

GW1N 系列 FPGA 产品 **数据手册**

DS100-3.0, 2023-06-09

版权所有© 2023 广东高云半导体科技股份有限公司

GOWIN高云、Gowin、小蜜蜂、LittleBee、高云均为广东高云半导体科技股份有限公司注册商标,本手册中提到的其他任何商标,其所有权利属其拥有者所有。未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

日期	版本	说明
2016/03/31	1.05	初始版本。
2018/07/31	1.2	 更新 PLL 结构框图,输入时钟为 CLKIN。 增加 User Flash 时序参数。 增加空白芯片可编程通用管脚(GPIO)默认状态描述。
2018/09/08	1.3	增加 UG256 封装信息。
2018/11/27	1.4	 添加 B 版本器件。 GW1N-6 和 GW1N-9 器件 BANK0 和 BANK2 支持 I3C OpenDrain/PushPull 转换。 IODELAY 每步延迟由 25ps 更新为 30ps。
2019/01/09	1.5	更新片内晶振频率。
2019/02/14	1.6	更新 UV 版本供电电压。电气特性 LV 版本参数适用于 UV 版本器件。更新器件命名图示。
2019/06/04	1.7	 电气特性中的环境温度更新为结温。 增加 GW1N-1S 器件信息。 增加 GW1N-6/9 的 BANK0/1/3 的供电限制。 增加 GW1N-2/2B/4/4B/6/9 用户闪存的描述。
2019/07/02	1.8	● 增加 GW1N-6/9 MG196, UG169 及 EQ144 的封装信息。● 增加 GW1N-1S CS30 的封装信息。
2019/10/10	1.9	 ● 增加 GW1N-1 LQ100X-LV/LQ100X-UV 信息。 ● GW1N-1S 器件的 BSRAM 不支持 Dual port 模式。 ● 修正 LQ100/LQ144/EQ144/LQ176/EQ176 封装尺寸。 ● 增加车规级结温范围。 ● 更新各器件电源上升斜率。
2019/11/15	2.0	● 修正最大 I/O 数。 ● 在 5.1 器件命名中增加车规级说明。 ● 更新延迟模块描述。
2020/01/15	2.1	● 修正 LQ100X-LV 及 LQ100X-UV 封装名称。● 增加 GW1N-4 MG132X 封装信息。
2020/03/16	2.2	新增 GW1N-9 CS81M 封装信息。更新锁相环 CLKIN 频率描述。
2020/04/16	2.3	 刪除 GW1N-2/GW1N-2B/GW1N-6 器件信息。 修改 CFU 结构示意图。 新增 GW1N-9C 器件。
2020/09/30	2.4	新增 GW1N-2 器件信息。新增 GW1N-9 MG100 封装。新增 GW1N-9 QN48F 封装。
2021/04/06	2.5	新增 GW1N-1P5 器件。
2021/05/27	2.6	新增 GW1N-1P5 LQ100 封装。新增 GW1N-2 MG132,LQ100,LQ144 封装。MG132 封装改名

日期	版本	说明
		为 MG132H,QN48M 封装改名为 QN48H。
		● 新增 GW1N-9 MG100T 封装。
		● 删除 GW1N-1 LQ100X 封装。
		● 新增"表 2-3 不同封装支持的配置模式列表"。
		● 新增 GW1N-4 UG169 封装。
		● 更新 GW1N-2 CS42H 封装。
2022/05/20	2.7	● 更新 MIPI IO 的输出驱动能力。
2022/03/20	2.1	● 更新 I/O 推荐工作条件。
		● 更新片内晶振特性参数。
		● 更新 Gearbox 时序参数。
2022/06/02	2.7.1	新增 GW1N-1 QN32、QN48、LQ100 及 LQ144 封装。
		● 新增 GW1N-2 QN32 封装。
		● 新增 GW1N-2 CS100H 封装。
2022/07/24	2.8	● 新增 GW1N-2 LQ144F 封装。
2022/07/21	2.0	● 更新差分输入门限 V _{THD} 的最大值。
		● 新增 GW1N-2 器件的加载频率的说明。
		● 新增 GW1N-1 CS30 所支持的配置模式的说明。
		● 增加关于 DC 电流限制的注释。
		● 更新表 4-2 推荐工作范围。
		● 增加关于 GW1N-4/GW1N-9 UV 版本器件 Vcc 电压的注释。
2022/09/29	2.9	● 更新器件结构示意图。
		● 更新表 4-5 POR 电压参数。
		● 更新表 4-9 静态电流。
		● 更新 4.4 AC 开关特性。
		● 更新表 4-3 电源上升斜率。
0000/44/44	0.04	● 更新表 4-8 推荐工作范围条件下 DC 电气特性。
2022/11/11	2.9.1	● 新增配置闪存资源的描述。
		● 增加关于字节使能功能的注释。
		● 更新表 4-1 绝对最大范围。
2022/11/21	2.9.2	● 更新表 4-9 静态电流。
		● 更新 3.12 编程配置一节中关于背景升级的说明。
		● 更新表 4-1 绝对最大范围。
		● 更新表 4-22 GW1N-1/ GW1N-1S 器件用户闪存 DC 电气特
		性。
2022/12/08	2.9.3	● 新增表 4-23 GW1N-2/4/9 器件用户闪存 DC 电气特性(一)。
		● 更新表 4-24 GW1N-2/4/9 器件用户闪存 DC 电气特性(二) ^[4] 。
		● 修改表 3-4 存储器配置列表的注释。
2022/12/19	2.9.4	新增 GW1N-1P5 QN48XF 封装。
0000151115		● 更新表 2-2 产品封装和最大用户 I/O 信息、True LVDS 对数。
2023/01/12	2.9.5	● 更新表 4-8 推荐工作范围条件下 DC 电气特性。
2023/02/22	2.9.6	● 删除 Slew Rate 的相关描述。
	2.0.0	- MATAN CIOTA FACTO HATELY CHARLES

日期	版本	说明
		 更新表 4-26 GW1N-1P5/2/4/9 器件用户闪存时序参数。 新增说明到 3.5 用户闪存资源(GW1N-1 和 GW1N-1S)和 3.6 用户闪存资源(GW1N-1P5/2/4/9)。 修改真 LVDS 的相关描述。
2023/04/13	2.9.7	 修改 GPIO 默认状态的相关注释。 修改图 3-5 CFU 结构示意图的注释。 更新表 4-3 电源上升斜率。 将 I/O 逻辑输出示意图和 I/O 逻辑输入示意图合并为图 3-13 I/O 逻辑输入输出示意图。 更新 MIPI 输入/输出的相关描述。
2023/04/27	2.9.8	更新 Flash 资源的相关描述。修改表 3-4 存储器配置列表的注释。更新 GW1N-9 器件 Vccio 供电限制的相关描述。
2023/05/25	2.9.9	更新 3.4.2 存储器配置模式。
2023/06/09	3.0	新增表 3-8 GW1N 系列 FPGA 产品的 MIPI IO 支持列表。

i

目录

表目录				
1 关于本手册	图	目录		iv
1 关于本手册	表	目录		vi
1.1 手册内容				
1.2 相关文档				
1.4 技术支持与反馈 2 产品概述 2.1 特性概述 2.2 产品信息列表 2.3 封装信息列表 3 结构介绍 3.1 结构框图 3.2 可配置功能单元 3.3 输入输出模块 3.3.1 I/O 电平标准 3.3.2 真 LVDS 设计 3.3.3 I/O 逻辑工作模式 3.4 以O 逻辑工作模式 3.4 块状静态随机存储器模块 3.4.1 简介 3.4.2 存储器配置模式 3.4.3 存储器混合数据宽度配置 3.4.4 字节使能功能配置 3.4.5 校验位功能配置 3.4.5 校验位功能配置 3.4.6 同步操作			相关文档	
1.4 技术支持与反馈 2 产品概述 2.1 特性概述 2.2 产品信息列表 2.3 封装信息列表 3 结构介绍 3.1 结构框图 3.2 可配置功能单元 3.3 输入输出模块 3.3.1 I/O 电平标准 3.3.2 真 LVDS 设计 3.3.3 I/O 逻辑工作模式 3.4 以O 逻辑工作模式 3.4 块状静态随机存储器模块 3.4.1 简介 3.4.2 存储器配置模式 3.4.3 存储器混合数据宽度配置 3.4.4 字节使能功能配置 3.4.5 校验位功能配置 3.4.5 校验位功能配置 3.4.6 同步操作		1.3	术语、缩略语	2
2.1 特性概述			技术支持与反馈	
2.1 特性概述	2	产品	.概述	. 4
2.2 产品信息列表 2.3 封装信息列表 3 结构介绍 3.1 结构框图 3.2 可配置功能单元 3.3 输入输出模块 3.3.1 I/O 电平标准 3.3.2 真 LVDS 设计 3.3.3 I/O 逻辑 3.3.4 I/O 逻辑工作模式 3.4 块状静态随机存储器模块 3.4.1 简介 3.4.2 存储器配置模式 3.4.3 存储器混合数据宽度配置 3.4.4 字节使能功能配置 3.4.5 校验位功能配置 3.4.5 校验位功能配置 3.4.6 同步操作	_			
2.3 封裝信息列表 3.4 结构介绍 3.1 结构框图 3.2 可配置功能单元 3.3 输入输出模块 3.3.1 I/O 电平标准 3.3.2 真 LVDS 设计 3.3.3 I/O 逻辑 3.4 I/O 逻辑工作模式 3.4 块状静态随机存储器模块 3.4.1 简介 3.4.2 存储器配置模式 3.4.2 存储器配置模式 3.4.3 存储器混合数据宽度配置 3.4.4 字节使能功能配置 3.4.6 同步操作				
3.1 结构框图			封装信息列表	
3.1 结构框图	3	结构	介绍	11
3.2 可配置功能单元 3.3 输入输出模块 3.3.1 I/O 电平标准 3.3.2 真 LVDS 设计 3.3.3 I/O 逻辑 3.4 I/O 逻辑工作模式 3.4 块状静态随机存储器模块 3.4.1 简介 3.4.2 存储器配置模式 3.4.3 存储器混合数据宽度配置 3.4.4 字节使能功能配置 3.4.5 校验位功能配置 3.4.6 同步操作				
3.3 输入输出模块				
3.3.1 I/O 电平标准				
3.3.2 真 LVDS 设计				
3.3.3 I/O 逻辑工作模式				
3.3.4 I/O 逻辑工作模式				
3.4 块状静态随机存储器模块 3.4.1 简介 3.4.2 存储器配置模式 3.4.3 存储器混合数据宽度配置 3.4.4 字节使能功能配置 3.4.5 校验位功能配置 3.4.6 同步操作			.4 I/O 逻辑工作模式	
3.4.2 存储器配置模式			块状静态随机存储器模块	
3.4.3 存储器混合数据宽度配置 3.4.4 字节使能功能配置 3.4.5 校验位功能配置 3.4.6 同步操作		3.4.	.1 简介	27
3.4.3 存储器混合数据宽度配置 3.4.4 字节使能功能配置 3.4.5 校验位功能配置 3.4.6 同步操作		3.4.	.2 存储器配置模式	28
3.4.5 校验位功能配置			.3 存储器混合数据宽度配置	
3.4.5 校验位功能配置		3.4.	.4 字节使能功能配置	30
			.5 校验位功能配置	
3.4.7 上电情况		3.4.	.6 同步操作	30
		3.4.	.7 上电情况	31

	3.4.8 BSRAM 操作模式	. 31
	3.4.9 时钟模式	. 32
	3.5 用户闪存资源(GW1N-1 和 GW1N-1S)	. 34
	3.6 用户闪存资源(GW1N-1P5/2/4/9)	. 35
	3.7 数字信号处理模块	. 35
	3.7.1 宏单元	. 36
	3.7.2 DSP 操作模式配置	. 36
	3.8 MIPI D-PHY	. 37
	3.8.1 硬核 MIPI D-PHY RX(GW1N-2)	. 37
	3.8.2 MIPI IO 支持 MIPI D-PHY RX/TX	. 37
	3.9 时钟	. 38
	3.9.1 全局时钟	. 38
	3.9.2 锁相环	. 38
	3.9.3 高速时钟	. 38
	3.10 长线	. 41
	3.11 全局复置位	. 41
	3.12 编程配置	. 41
	3.13 片内晶振	. 42
4	电气特性	44
	4.1 工作条件	. 44
	4.1.1 绝对最大范围	. 44
	4.1.2 推荐工作范围	. 44
	4.1.3 电源上升斜率	. 45
	4.1.4 热插拔特性	. 45
	4.1.5 POR 特性	. 46
	4.2 ESD 性能	. 47
	4.3 DC 电气特性	. 50
	4.3.1 推荐工作范围 DC 电气特性	. 50
	4.3.2 静态电流	. 51
	4.3.3 编程下载电流	. 52
	4.3.4 I/O 推荐工作条件	. 53
	4.3.5 单端 I/O DC 电气特性	. 54
	4.3.6 差分 I/O DC 电气特性	. 55
	4.4 AC 开关特性	. 56
	4.4.1 CFU 开关特性	. 56
	4.4.2 BSRAM 开关特性	. 57
	4.4.3 DSP 开关特性	. 59

	4.4.4 Gearbox 开关特性	60
	4.4.5 时钟和 I/O 开关特性	61
	4.4.6 片内晶振开关特性	63
	4.4.7 锁相环开关特性	63
	4.5 用户闪存电气特性	65
	4.5.1 DC 电气特性	65
	4.5.2 时序参数[1],[5],[6]	66
	4.5.3 操作时序图(GW1N-1/ GW1N-1S)	69
	4.5.4 操作时序图(GW1N-1P5/2/4/9)	70
	4.6 编程接口时序标准	71
5	器件订货信息	72
	5.1 器件命名	72
	5.2 器件封装标识	74

图目录

图 3-1 GW1N 系列 FPGA 器件结构示意图 (GW1N-9)	11
图 3-2 GW1N 系列 FPGA 器件结构示意图 (GW1N-4)	12
图 3-3 GW1N 系列 FPGA 器件结构示意图 (GW1N-1)	12
图 3-4 GW1N 系列 FPGA 器件结构示意图 (GW1N-2)	13
图 3-5 CFU 结构示意图	15
图 3-6 IOB 结构示意图	16
图 3-7 GW1N-1/4 I/O Bank 分布示意图	17
图 3-8 GW1N-1S I/O Bank 分布示意图	17
图 3-9 GW1N-1P5 I/O Bank 分布示意图	18
图 3-10 GW1N-2 I/O Bank 分布示意图	18
图 3-11 GW1N-9 I/O Bank 分布示意图	18
图 3-12 真 LVDS 设计参考框图	24
图 3-13 I/O 逻辑输入输出示意图	25
图 3-14 IODELAY 示意图	26
图 3-15 GW1N 的 I/O 寄存器示意图	26
图 3-16 GW1N 的 IEM 示意图	27
图 3-17 单端口、伪双端口及双端口模式下的流水线模式	31
图 3-18 独立时钟模式	33
图 3-19 读写时钟模式	33
图 3-20 单端口时钟模式	33
图 3-21 GW1N-1 HCLK 示意图	39
图 3-22 GW1N-1P5/GW1N-2 HCLK 示意图	39
图 3-23 GW1N-4 HCLK 示意图	40
图 3-24 GW1N-9 HCLK 示意图	40
图 3-25 GW1N-1S HCLK 示意图	41
图 4-1 读操作模式	69
图 4-2 写入页锁存模式	69
图 4-3 清除页锁存模式	69
图 4-4 高电平周期	70

图 4-5	5 用户闪存读操作时序	70
图 4-6	3 用户闪存编程操作时序	70
图 4-7	7 用户闪存擦除操作时序	71
图 5-1	I 器件命名方法-ES	72
图 5-2	2 器件命名方法–Production	73
图 5-3	3 器件封装标识示例	74

DS100-3.0

表目录

表 1-1 术语、缩略语	. 2
表 2-1 产品信息列表	. 7
表 2-2 产品封装和最大用户 I/O 信息、True LVDS 对数	. 8
表 2-3 不同封装支持的配置模式列表	. 9
表 3-1 GW1N 系列 FPGA 产品支持的输出 I/O 类型及部分可选配置	. 20
表 3-2 GW1N 系列支持的输入 I/O 类型及部分可选配置	. 21
表 3-3 端口介绍	. 25
表 3-4 存储器配置列表	. 28
表 3-5 双端口混合读写数据宽度配置列表[1],[2]	. 29
表 3-6 伪双端口混合读写数据宽度配置列表	. 30
表 3-7 时钟模式配置列表	. 32
表 3-8 GW1N 系列 FPGA 产品的 MIPI IO 支持列表	. 37
表 3-9 GW1N-4 片内晶振的部分输出频率选项	. 42
表 3-10 GW1N-1P5/2/9 片内晶振的部分输出频率选项	. 43
表 3-11 GW1N-1/1S 片内晶振的部分输出频率选项	. 43
表 4-1 绝对最大范围	. 44
表 4-2 推荐工作范围	. 44
表 4-3 电源上升斜率	. 45
表 4-4 热插拔特性	. 45
表 4-5 POR 电压参数	
表 4-6 GW1N ESD - HBM	
表 4-7 GW1N ESD – CDM	. 48
表 4-8 推荐工作范围条件下 DC 电气特性	
表 4-9 静态电流	. 51
表 4-10 编程下载电流	
表 4-11 I/O 推荐工作条件	
表 4-12 单端 I/O DC 电气特性	. 54
表 4-13 差分 I/O DC 电气特性	. 55
表 4-14 CFU 内部时序参数[1], [2]	. 56

表 4-15 BSRAM 时序参数	57
表 4-16 DSP 时序参数	59
表 4-17 Gearbox 时序参数	60
表 4-18 单端 IO Fmax	61
表 4-19 外部开关特性	61
表 4-20 片内晶振特性参数	63
表 4-21 锁相环特性参数	63
表 4-22 GW1N-1/ GW1N-1S 器件用户闪存 DC 电气特性	65
表 4-23 GW1N-2/4/9 器件用户闪存 DC 电气特性(一)	65
表 4-24 GW1N-2/4/9 器件用户闪存 DC 电气特性(二) ^[4]	66
表 4-25 GW1N-1/ GW1N-1S 器件用户闪存时序参数	67
表 4-26 GW1N-1P5/2/4/9 器件用户闪存时序参数	67

1 关于本手册 1.1 手册内容

1.1 手册内容

GW1N 系列 FPGA 产品数据手册主要包括高云半导体 GW1N 系列 FPGA 产品特性概述、产品资源信息、内部结构介绍、电气特性、编程接口时序以及器件订货信息。帮助用户快速了解高云半导体 GW1N 系列 FPGA 产品以及特性,有助于器件选型及使用。

1.2 相关文档

通过登录高云半导体网站 <u>www.gowinsemi.com.cn</u> 可以下载、查看以下相关文档:

- UG290, Gowin FPGA 产品编程配置手册
- UG103, GW1N 系列 FPGA 产品封装与管脚手册
- UG107, GW1N-1 器件 Pinout 手册
- UG167, GW1N-1S 器件 Pinout 手册
- UG105, GW1N-4 器件 Pinout 手册
- UG114, GW1N-9 器件 Pinout 手册
- UG171, GW1N-2 器件 Pinout 手册
- UG174, GW1N-1P5 器件 Pinout 手册

DS100-3.0 1(74)

 1 关于本手册
 1.3 术语、缩略语

1.3 术语、缩略语

表 1-1 中列出了本手册中出现的相关术语、缩略语及相关释义。

表 1-1 术语、缩略语

术语、缩略语	全称	含义
ALU	Arithmetic Logic Unit	算术逻辑单元
BSRAM	Block Static Random Access Memory	块状静态随机存储器
CFU	Configurable Function Unit	可配置功能单元
CLS	Configurable Logic Section	可配置逻辑块
CRU	Configurable Routing Unit	可编程布线单元
CS	WLCSP	WLCSP 封装
CSI	Camera Serial Interface	串行摄像头接口
DCS	Dynamic Clock Selector	动态时钟选择器
DP	True Dual Port 16K BSRAM	16K 双端口 BSRAM
DQCE	Dynamic Quadrant Clock Enable	动态象限时钟使能
DSI	Display Serial Interface	串行显示接口
DSP	Digital Signal Processing	数字信号处理
FF	Flip-Flop	触发器
FPGA	Field Programmable Gate Array	现场可编程门阵列
GPIO	Gowin Programmable I/O	Gowin 可编程通用管脚
IOB	Input/Output Block	输入输出模块
LQ	LQFP	LQFP 封装
LUT4	4-input Look-up Table	4 输入查找表
LUT5	5-input Look-up Table	5 输入查找表
LUT6	6-input Look-up Table	6 输入查找表
LUT7	7-input Look-up Table	7 输入查找表
LUT8	8-input Look-up Table	8 输入查找表
MG	MBGA	MBGA 封装
MIPI	Mobile Industry Processor Interface	移动行业处理器接口
PG	PBGA	PBGA 封装

DS100-3.0 2(74)

1 关于本手册 1.4 技术支持与反馈

术语、缩略语	全称	含义
PLL	Phase-locked Loop	锁相环
QN	QFN	QFN 封装
REG	Register	寄存器
SDP	Semi Dual Port 16K BSRAM	16K 伪双端口 BSRAM
SP	Single Port 16K BSRAM	16K 单端口 BSRAM
SSRAM	Shadow Static Random Access Memory	分布式静态随机存储器
TBD		
UG	UBGA	UBGA 封装

1.4 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: www.gowinsemi.com.cn

E-mail: support@gowinsemi.com

Tel: +86 755 8262 0391

DS100-3.0 3(74)

2 产品概述 2.1 特性概述

2产品概述

高云半导体 GW1N 系列 FPGA 产品是高云半导体小蜜蜂®(LittleBee®) 家族第一代产品,具有较丰富的逻辑资源,支持多种 I/O 电平标准,内嵌块状静态随机存储器、数字信号处理模块、锁相环资源,此外,内嵌 Flash 资源,是一款具有非易失性的 FPGA 产品,具有低功耗、瞬时启动、低成本、高安全性、产品尺寸小、封装类型丰富、使用方便灵活等特点。

高云半导体提供面向市场自主研发的新一代 FPGA 硬件开发环境,支持 GW1N 系列 FPGA 产品,能够完成 FPGA 综合、布局、布线、产生数据流文件及下载等一站式工作。

2.1 特性概述

- 低功耗
 - 55nm 嵌入式闪存工艺
 - LV 版本[1]: 支持 1.2V 核电压
 - UV 版本: 支持器件 Vcc/ Vccio/ Vccx 由单一电源供电 注!
 - [1] GW1N-1S 仅支持 LV 版本;
 - 支持时钟动态打开/关闭
- 用户闪存资源(GW1N-1 和 GW1N-1S)
 - NOR Flash
 - 100,000 次写寿命周期
 - 超过 10 年的数据保存能力(+85℃)
 - 可选的数据输入输出位宽 8/16/32
 - 页存储空间: 256-Byte
 - 3 μ A 待机电流
 - 页写入时间: 8.2ms
- 用户闪存资源(GW1N-1P5/2/4/9)

DS100-3.0 4(74)

2 产品概述 2.1 特性概述

- NOR Flash
- 10,000 次写寿命周期
- 超过 10 年的数据保存能力(+85℃)
- 数据位宽: 32
- GW1N-1P5/2 存储容量: 96K bits
- GW1N-4 存储容量: 256K bits
- GW1N-9 存储容量: 608K bits
- 页擦除能力: 2,048 bytes
- 字编程时间: ≤16µs
- 页擦除时间: ≤120ms
- 配置闪存资源(GW1N-1 和 GW1N-1S)
 - NOR Flash
 - 100,000 次写寿命周期
 - 超过 10 年的数据保存能力(+85℃)
- 配置闪存资源(GW1N-1P5/2/4/9)
 - NOR Flash
 - 10,000 次写寿命周期
 - 超过 10 年的数据保存能力(+85℃)
- 硬核 MIPI D-PHY RX(GW1N-2)
 - 支持 MIPI DSI 和 MIPI CSI-2 RX 器件接口
 - CS42、CS42H、QN48H、QN88、MG132H 封装中 IO Bank6 支 持 MIPI D-PHY RX
 - MIPI 传输速率单通道可达 2Gbps
 - 支持最多四个数据通道和一个时钟通道
- MIPI IO 支持 MIPI D-PHY RX/TX
 - 支持 MIPI CSI-2 和 MIPI DSI, RX 和 TX 器件接口, 传输速率单通 道可达 1.2Gbps

注!

GW1N 系列 FPGA 产品的 MIPI IO 支持情况,请参考表 3-8。

- 支持多种 I/O 电平标准
 - LVCMOS33/25/18/15/12; LVTTL33, SSTL33/25/18 I,
 SSTL33/25/18 II, SSTL15; HSTL18 I, HSTL18 II, HSTL15 I;
 PCI, LVDS25, RSDS, LVDS25E, BLVDSE, MLVDSE,
 LVPECLE, RSDSE

DS100-3.0 5(74)

2 产品概述 2.1 特性概述

- 提供输入信号迟滞选项
- 支持 4mA、8mA、16mA、24mA 等驱动能力
- 提供输出信号驱动电流选项
- 对每个 I/O 提供独立的 Bus Keeper、上拉/下拉电阻及 Open Drain 输出选项
- 支持热插拔
- 高性能 DSP 模块(GW1N-4/9)
 - 高性能数字信号处理能力
 - 支持 9 x 9, 18 x 18, 36 x 36bit 的乘法运算和 54bit 累加器
 - 支持多个乘法器级联
 - 支持寄存器流水线和旁路功能
 - 预加运算实现滤波器功能
 - 支持桶形移位寄存器
- 丰富的基本逻辑单元
 - 4 输入 LUT(LUT4)
 - 支持移位寄存器和分布式存储器
- 支持多种模式的静态随机存储器
 - 支持双端口、单端口以及伪双端口模式
 - 支持字节写使能
- 灵活的 PLL 资源
 - 实现时钟的倍频、分频和相移
 - 全局时钟网络资源
- 内置 Flash 编程
 - 瞬时启动
 - 支持安全位操作
 - 支持 AUTO BOOT 和 DUAL BOOT 编程模式
- 编程配置模式
 - 支持 JTAG 配置模式
 - 支持背景升级
- 支持多达 7 种 GowinCONFIG 配置模式: AUTOBOOT、SSPI、MSPI、CPU、SERIAL、DUAL BOOT、I²C Slave

DS100-3.0 6(74)

2 产品概述 2.2 产品信息列表

2.2 产品信息列表

表 2-1 产品信息列表

器件	GW1N-1	GW1N-1P5	GW1N-2	GW1N-4	GW1N-9	GW1N-1S
逻辑单元(LUT4)	1,152	1584	2304	4,608	8,640	1,152
寄存器(FF)	864	1584	2016	3,456	6,480	864
分布式静态随机存储器 SSRAM(bits)	0	12672	18432	0	17,280	0
块状静态随机存储器 BSRAM(bits)	72K	72K	72K	180K	468K	72K
块状静态随机存储 器数目 BSRAM(个)	4	4	4	10	26	4
用户闪存(bits)	96K	96K	96K	256K	608K	96K
乘法器 (18 x 18 Multiplier)	0	0	0	16	20	0
锁相环(PLLs)	1	1	1	2	2	1
I/O Bank 总数	4	6	6 ^[2]	4	4	3
最大 I/O 数	120	125	125	218	276	44
核电压(LV 版本)	1.2V	1.2V	1.2V	1.2V	1.2V	1.2V
核电压(UV 版本)	1.8V/2.5V/3.3V ^[1]	1.8V/2.5V/3.3	V	1.8V ^[3] /2.5V	/3.3V	-

注!

- [1]目前 GW1N-1 器件中仅 LQ100X 封装支持 UV 版本。
- [2] GW1N-2 CS42/QN48H/MG132H/QN88/CS42H 封装的 IO Bank 总数为 7 个。
- [3]对于 GW1N-4/GW1N-9UV 版本器件,如果 Vcc 和 Vccx 在某封装中共用一个管脚,那么 GW1N-4/GW1N-9 的 Vccx 范围(2.5V~3.3V)会将 Vcc 范围限制为 2.5V~3.3V,此时 Vcc 不支持 1.8V。

DS100-3.0 7(74)

2 产品概述 2.3 封装信息列表

2.3 封装信息列表

表 2-2 产品封装和最大用户 I/O 信息、True LVDS 对数

封装	间距(mm)	尺寸(mm)	GW1N-1S	GW1N-1	GW1N-1P5	GW1N-2	GW1N-4	GW1N-9
CS30	0.4	2.3 x 2.4	23	24	-	_	-	_
QN32	0.5	5 x 5	-	26	_	21 (1)	24 (3)	-
QN32X	0.5	5 x 5	-	-	_	21 (1)	-	-
FN32	0.4	4 x 4	25	-	-		-	-
CS42	0.4	2.4 x 2.9	-	-	_	24 (7)	-	_
CS42H	0.4	2.4 x 2.9	-	-	_	36 (3)	-	_
QN48	0.4	6 x 6	-	41	_	40 (12)	40 (9)	40 (12)
QN48H	0.4	6 x 6	-	-	-	30 (8)	-	-
QN48F	0.4	6 x 6	-	-	-	-	-	39 (11)
QN48X	0.5	7 x 7	-	-	39 (10)	-	-	-
QN48XF	0.5	7 x 7	-	-	40 (11)	-	-	-
CM64	0.5	4.1 x 4.1	-	-	-		-	55 (16)
CS72	0.4	3.6 x 3.3		-	-	-	57 (19)	-
CS81M	0.4	4.1 x 4.1	-	-	-	-	-	55 (15)
QN88	0.4	10 x 10	-	-	-	57 (17)	70 (11)	70 (19)
CS100H	0.4	4 x 4	-	-	-	88 (27)	-	-
LQ100	0.5	14 x 14		79	80 (16)	80 (15)	79 (13)	79 (20)
LQ100X	0.5	14 x 14		-	80 (16)	80 (15)	-	-
LQ144	0.5	20 x 20		116	-	113 (28)	119 (22)	120 (28)
LQ144X	0.5	20 x 20		-	-	113 (28)	-	-
LQ144F	0.5	20 x 20	-	-	-	115 (27)	-	-
EQ144	0.5	20 x 20		-	-	-	-	120 (28)
MG49	0.5	3.8 x 3.8	-	-	-	42 (11)	-	-
MG100	0.5	5 x 5	-	-	-	-	-	87 (25)
MG100T	0.5	5 x 5	-	-	-	-	-	87 (17)
MG121	0.5	6 x 6	-	-	-	100 (28)	-	-
MG121X	0.5	6 x 6	-	-	-	100 (28)	-	-
MG132	0.5	8 x 8	-	-	-	104 (29)	-	-

DS100-3.0 8(74)

2.3 封裝信息列表

封装	间距(mm)	尺寸(mm)	GW1N-1S	GW1N-1	GW1N-1P5	GW1N-2	GW1N-4	GW1N-9
MG132H	0.5	8 x 8	_	-	-	94 (29)	-	-
MG132X	0.5	8 x 8	_	-	-	104 (29)	105 (23)	-
MG160	0.5	8 x 8		-	-	_	131 (25)	131 (38)
UG169	0.8	11 x 11			-	_	129 (27)	129 (38)
LQ176	0.4	20 x 20	_	-	-	-	-	147 (37)
EQ176	0.4	20 x 20	_	-	-	_	-	147 (37)
MG196	0.5	8 x 8	_	-	-	_	-	113 (35)
PG256	1.0	17 x 17	-	-	-	_	207 (32)	207 (36)
PG256M	1.0	17 x 17	_	-	-	_	207 (32)	-
UG256	0.8	14 x 14	_	-	-	_	-	207 (36)
UG332	8.0	17 x 17		-	-	_	-	273 (43)

注!

- JTAGSEL_N 和 JTAG 管脚是互斥管脚,JTAGSEL_N 引脚和 JTAG 下载的 4 个引脚(TCK、TDI、TDO、TMS)不可同时复用为 I/O,此表格的数据为 JTAG 下载的 4 个引脚复用为 I/O 时的情况,但当 mode[2:0]=001 时,JTAGSEL_N 管脚与 JTAG 配置的 4 个管脚(TCK、TMS、TDI、TDO)可以同时设置为 GPIO,此时最大用户 I/O 数加 1。详细信息请参考 <u>UG103,GW1N 系列 FPGA 产品封装与管脚手册</u>。
- 本手册中 GW1N 系列 FPGA 产品封装命名采用缩写的方式,详细信息请参见 5.1 器件命名。
- GW1N-1 CS30 仅支持 SSPI 配置模式。

表 2-3 不同封装支持的配置模式列表

器件	封装	Mode[2:0]	配置模式	备注
GW1N-2 ^[1]	QN32 CS42 LQ100 LQ144 LQ144F MG121 MG132	000	JTAG Autoboot	_
	LQ100X LQ144X MG121X MG132X MG49 QN32X CS42H	100	JTAG I ² C Autoboot	当配置模式支持 I ² C 时, SDA 及 SCL 管脚需要保持外上 拉。配置成 100 模式下使用 Autoboot, SDA 需要保持外部上拉。

DS100-3.0 9(74)

2产品概述 2.3 封装信息列表

器件	封装	Mode[2:0]	配置模式	备注
	QN48 QN48H	00X	JTAG Autoboot SSPI	-
	MG132H CS100H	X0X	JTAG I ² C Autoboot SSPI	当配置模式支持 I ² C 时,SDA 及 SCL 管脚需要保持外上拉;配置成 100 模式下使用Autoboot, SDA 需要保持外部上拉。
	QN88	XXX	JTAG I ² C Autoboot SSPI MSPI DUAL BOOT SERIAL CPU	_
GW1N-1P5	LQ100X QN48X	100	JTAG I ² C Autoboot	当配置模式支持 I ² C 时,SDA 及 SCL 管脚需要外上拉。配置 成 100 模式下使用 Autoboot, SDA 需要保持外部上拉。
	LQ100 QN48XF	000	JTAG Autoboot	-

注!

[1]对于 GW1N-2 器件而言,若其 MODE[2]的值固定为 1,则其加载频率只能是 2.5MHz。

DS100-3.0 10(74)

3 结构介绍 3.1 结构框图

3结构介绍

3.1 结构框图

图 3-1 GW1N 系列 FPGA 器件结构示意图 (GW1N-9)

DS100-3.0 11(74)

3 结构介绍 3.1 结构框图

图 3-2 GW1N 系列 FPGA 器件结构示意图 (GW1N-4)

图 3-3 GW1N 系列 FPGA 器件结构示意图 (GW1N-1)

DS100-3.0 12(74)

3 结构介绍 3.1 结构框图

图 3-4 GW1N 系列 FPGA 器件结构示意图 (GW1N-2)

图 3-1~图 3-3 为 GW1N 系列 FPGA 器件结构示意图,器件内部是一个逻辑单元阵列,外围是输入输出模块(IOB),器件内嵌了静态随机存储器(BSRAM)模块、数字信号处理模块 DSP、PLL 资源、片内晶振和闪存资源,支持瞬时启动功能。图 3-4 为 GW1N-2 器件结构示意图,在 GW1N 系列其他器件的基础上内嵌了 MIPI D-PHY RX 硬核模块。内部资源数量详细信息请参见表 2-1。

注!

GW1N 系列 FPGA 产品包括的器件: GW1N-1, GW1N-1S, GW1N-1P5, GW1N-2, GW1N-4, GW1N-9。在这些器件中,可配置功能单元、块状静态随机存储器模块 BSRAM、全局时钟网络资源、片内晶振等这些资源相同。但这些器件中的其他资源,如数字信号处理模块 DSP、Flash 资源、输入输出 I/O 模块、锁相环、高速时钟资源等略有差异。

GW1N 系列 FPGA 产品基本的组成部分为可配置功能单元(CFU, Configurable Function Unit)。在器件内部按照行、列式矩阵排列,不同容量的器件行数和列数不同。可配置功能单元(CFU)可以配置成查找表(LUT4)模式、算术逻辑模式和存储器模式,其中存储器模式在 GW1N-1P5/2/9 器件中支持。详细资料请参见 3.2 可配置功能单元。

GW1N 系列 FPGA 产品的 I/O 资源分布在器件外围,以 Bank 为单位划分。I/O 资源支持多种电平标准,支持普通工作模式、SDR 工作模式和通用 DDR 模式。详细资料请参见 3.3 输入输出模块。

GW1N 系列 FPGA 产品的块状静态随机存储器(BSRAM)在器件内部按照行排列。一个 BSRAM 的容量大小为 18Kbits,支持多种配置模式和操作模式。详细资料请参见 3.4 块状静态随机存储器模块。

GW1N 系列 FPGA 产品内嵌了闪存资源,包括配置闪存资源和用户闪存资源。配置闪存资源用于内置 Flash 编程,详细资料请参考 3.12 编程配置。用户闪存资源用于用户存储,详细信息请参见 3.5 用户闪存资源 (GW1N-1 和 GW1N-1S)及 3.6 用户闪存资源(GW1N-1P5/2/4/9)。

DS100-3.0 13(74)

3.4 可配置功能单元

GW1N-4 和 GW1N-9 器件中内嵌了数字信号处理模块 DSP。每个 DSP 包含两个宏单元,每个宏单元包含两个前加法器(pre-adders),两个 18 位的乘法器(multipliers)和一个三输入的算术/逻辑运算单元(ALU54)。详细资料请参见 3.7 数字信号处理模块。

注!

GW1N-1、GW1N-2和GW1N-1S暂不支持数字信号处理模块DSP资源。

GW1N 系列 FPGA 产品内嵌了锁相环 PLL 资源。高云半导体 PLL 模块能够提供可以综合的时钟频率,通过配置不同的参数可以进行时钟的频率调整(倍频和分频)、相位调整、占空比调整等功能。同时产品内嵌可编程片内晶振,详细资料请参见 3.9 时钟及 3.13 片内晶振。

GW1N-2 器件包含硬核 MIPI D-PHY RX, 同时其多功能高速 FPGA IO 支持 MIPI D-PHY RX TX IP, 详细信息请参考 3.8 MIPI D-PHY。

此外,FPGA 器件内置了丰富的可编程布线单元(CRU,Configurable Routing Unit),为 FPGA 内部的所有资源提供连接关系。可配置功能单元(CFU)和 IOB 内部都分布着布线资源,连通了 CFU 内部资源和 IOB 内部的逻辑资源。布线资源可通过高云半导体 FPGA 软件自动生成。此外,GW1N 系列 FPGA 产品还提供了丰富的专用时钟网络资源,长线资源,全局置复位,以及编程选项等。详细资料请参见 3.9 时钟、3.10 长线、3.11 全局复置位。

3.2 可配置功能单元

可配置功能单元(CFU)和可配置逻辑单元(CLU)是构成高云半导体 FPGA产品内核的两种基本单元,每个基本单元可由四个可配置逻辑块 (CLS)以及相应的可配置布线单元(CRU)组成,其中三个可配置逻辑块各包含两个四输入查找表(LUT)和两个寄存器(REG),另外一个可配置逻辑块只包含两个四输入查找表,如图 3-5 所示。

CLU中的可配置逻辑块不能配置为静态随机存储器,可配置为基本查找表、算术逻辑单元和只读存储器。CFU中的可配置逻辑块可根据应用场景配置成基本查找表、算术逻辑单元、静态随机存储器和只读存储器四种工作模式。

关于 CFU 的更多详细信息,请参考 <u>UG288,Gowin 可配置功能单元</u> (CFU)用户指南。

DS100-3.0 14(74)

3 结构介绍 3.2 可配置功能单元

图 3-5 CFU 结构示意图

注!

- ▶ SREG 需要特殊的软件支持。如有需要,请联系高云半导体技术支持或当地办事处。
- 目前,仅 GW1N-1P5、GW1N-2 器件支持 CLS3 的 REG, 且 CLS3 与 CLS2 的 CLK/CE/SR 同源。

DS100-3.0 15(74)

3.3 输入输出模块

GW1N 系列 FPGA 产品的 IOB 主要包括 I/O Buffer、I/O 逻辑以及相应的布线资源单元三个部分。如图 3-6 所示为两个 IOB 的结构示意图,每个 IOB 单元包括了两个 I/O 管脚(标记为 A 和 B),它们可以配置成一组差分信号对,也可以作为单端信号分别配置。

图 3-6 IOB 结构示意图

GW1N 系列 FPGA 产品中 IOB 的功能特点:

- 基于 Bank 的 Vccio 机制。
- 支持 LVCMOS、PCI、LVTTL、LVDS、SSTL 以及 HSTL 等多种电平标准
- 提供输入信号迟滞选项。
- 提供输出信号驱动电流选项。
- 对每个 I/O 提供独立的 Bus Keeper、上拉/下拉电阻及 Open Drain 输出 选项。
- 支持热插拔。
- I/O 逻辑支持普通模式、SDR 模式以及 DDR 等多种模式。
- GW1N-1S 器件的 Bank0/Bank1 支持 MIPI IO 输入
- GW1N-2/GW1N-1P5 器件的 Bank0/Bank3/Bank4/Bank5 支持 MIPI IO 输出(支持动态 ODT)
- GW1N-2/GW1N-1P5 器件的 Bank2 支持 MIPI IO 输入(支持动态 ODT)
- GW1N-9 器件 Bank0 支持 MIPI IO 输入(支持动态 ODT)
- GW1N-9 器件 Bank2 支持 MIPI IO 输出
- GW1N-9 器件 Bank 0/2 支持 I3C

DS100-3.0 16(74)

注!

GW1N-1和 GW1N-1S 不支持真 LVDS 输出。

3.3.1~3.3.4 分别描述了 I/O 电平标准、真 LVDS 设计、I/O 逻辑、I/O 逻辑工作模式等信息,更多关于 I/O 模块的更多详细信息,请参考 <u>UG289,Gowin 可编程通用管脚(GPIO)</u>用户指南。

3.3.1 I/O 电平标准

GW1N 系列 FPGA 产品每个 Bank 支持单独供电,有独立的电源 Vccio。

为支持 SSTL,HSTL 等 I/O 输入标准,每个 Bank 还提供一个独立的参考电压(VREF),用户可以选择使用 IOB 内置的 VREF 源(等于 0.5*VccIo),也可选择外部的 VREF 输入(使用 Bank 中任意一个 I/O 管脚作为外部 VREF 输入)。

GW1N-1/4 的 I/O 包括 4 个 Bank,如图 3-7 所示。

图 3-7 GW1N-1/4 I/O Bank 分布示意图

GW1N-1S 的 I/O 包括 3 个 Bank,如图 3-8 所示。

图 3-8 GW1N-1S I/O Bank 分布示意图

GW1N-1P5 的 I/O 包括 6 个 Bank,如图 3-10 所示。

DS100-3.0 17(74)

图 3-9 GW1N-1P5 I/O Bank 分布示意图

GW1N-2 的 I/O 包括 6 个 Bank,GW1N-2 CS42、QN48H、MG132H、QN88、及 CS42H 封装包括 7 个 Bank,如图 3-10 所示。

图 3-10 GW1N-2 I/O Bank 分布示意图

GW1N-9 的 I/O 包括 4 个 Bank, 如图 3-7 所示。

图 3-11 GW1N-9 I/O Bank 分布示意图

DS100-3.0 18(74)

GW1N 系列 FPGA 产品分为 LV 及 UV 版本,其中 GW1N-1S 仅支持 LV 版本。

LV 版本器件支持 1.2V Vcc 供电电压,可以满足用户低功耗的需求。 Vccio 根据需要可在 1.2V、1.5V、1.8V、2.5V、3.3V 电压中灵活设置。 GW1N-1S 器件内部不支持 Vccx,其他器件的 Vccx 支持 2.5V 或 3.3V 供电电压。

UV 版本器件方便用户实现单一电源供电,内部集成了线性稳压器,内核电压支持 1.8V、2.5V、3.3V 供电电压。

GW1N 系列 FPGA 产品支持 MIPI IO, 详见表 3-8。

注!

- 配置过程中,器件所有 GPIO 均为内部弱上拉,配置完成后 I/O 状态由用户程序和约束控制。Config 相关 I/O 的状态根据配置模式的不同有所区别。
- 不同版本器件的推荐工作电压请参考 4.1 工作条件。
- GW1N-1S 器件 Bank0/Bank1 的 I/O 用作 MIPI 输入的时候,Vccioo/ Vccio₁ 需要提供 1.2V 电压。
- GW1N-2/GW1N-1P5 器件的 Bank0/Bank3/Bank4/Bank5 用作 MIPI 输出的时候, Vccios/Vccios/Vccios 需要提供 1.2V 电压。
- GW1N-2/GW1N-1P5 器件的 Bank2 用作 MIPI 输入的时候,Vccio2 需要提供 1.2V 电压。
- GW1N-9 器件的 Bank0 的 I/O 用作 MIPI 输入的时候, Vccioo 需要提供 1.2V 电压。
- GW1N-9 器件的 Bank2 的 I/O 用作 MIPI 输出的时候, Vccio2 需要提供 1.2V 电压。
- GW1N-9 器件的 BANK0、BANK1 和 BANK3 的 I/O 供电限制:
 - 当 Vccioo 大于或等于 1.8V 时,Vccio1 和 Vccio3 支持 1.2V、1.5V、1.8V、2.5V、3.3V。
 - 当 Vccioo 为 1.5V 时, Vccio1和 Vccio3 支持 1.2V、1.5V、1.8V、2.5V。

DS100-3.0 19(74)

不同的 I/O 输出/输入标准对 Vccio 的要求如表 3-1 及表 3-2 所示。

表 3-1 GW1N 系列 FPGA 产品支持的输出 I/O 类型及部分可选配置

I/O Type (输出)	单端/差分	Bank Vccio(V)	输出驱动能力(mA)	应用
MIPI ^[1]	差分(TLVDS)	1.2	3.5	移动行业处理器接口
LVDS25 ^[2]	差分(TLVDS)	2.5/3.3	3.5/2.5/2/1.25	点对点高速数据传输
RSDS ^[2]	差分(TLVDS)	2.5/3.3	2	点对点高速数据传输
MINILVDS ^[2]	差分(TLVDS)	2.5/3.3	2	LCD 时序驱动与列驱动器接口
PPLVDS ^[2]	差分(TLVDS)	2.5/3.3	1.25/2.0/2.5/3.5	LCD 行/列驱动
LVDS25E	差分	2.5	8	点对点高速数据传输
BLVDS25E	差分	2.5	16	多点高速数据传输
MLVDS25E	差分	2.5	16	LCD 时序驱动与列 驱动器接口
RSDS25E	差分	2.5	8	点对点高速数据传输
LVPECL33E	差分	3.3	16	通用接口
HSTL18D_I	差分	1.8	8	存储接口
HSTL18D_II	差分	1.8	8	存储接口
HSTL15D_I	差分	1.5	8	存储接口
SSTL15D	差分	1.5	8	存储接口
SSTL18D_I	差分	1.8	8	存储接口
SSTL18D_II	差分	1.8	8	存储接口
SSTL25D_I	差分	2.5	8	存储接口
SSTL25D_II	差分	2.5	8	存储接口
SSTL33D_I	差分	3.3	8	存储接口
SSTL33D_II	差分	3.3	8	存储接口
LVCMOS12D	差分	1.2	4/8	通用接口
LVCMOS15D	差分	1.5	4/8	通用接口
LVCMOS18D	差分	1.8	4/8/12	通用接口
LVCMOS25D	差分	2.5	4/8/12/16	通用接口
LVCMOS33D	差分	3.3	4/8/12/16/24	通用接口
HSTL15_I	单端	1.5	8	存储接口
HSTL18_I	单端	1.8	8	存储接口

DS100-3.0 20(74)

I/O Type (输出)	单端/差分	Bank Vccio(V)	输出驱动能力(mA)	应用
HSTL18_II	单端	1.8	8	存储接口
SSTL15	单端	1.5	8	存储接口
SSTL18_I	单端	1.8	8	存储接口
SSTL18_II	单端	1.8	8	存储接口
SSTL25_I	单端	2.5	8	存储接口
SSTL25_II	单端	2.5	8	存储接口
SSTL33_I	单端	3.3	8	存储接口
SSTL33_II	单端	3.3	8	存储接口
LVCMOS12	单端	1.2	4/8	通用接口
LVCMOS15	单端	1.5	4/8	通用接口
LVCMOS18	单端	1.8	4/8/12	通用接口
LVCMOS25	单端	2.5	4/8/12/16	通用接口
LVCMOS33/ LVTTL33	单端	3.3	4/8/12/16/24	通用接口
PCI33	单端	3.3	4/8	PC 和嵌入式系统

注!

- [1]以下器件支持 MIPI I/O 输出: GW1N-2/GW1N-1P5 器件的 Bank0/Bank3/Bank4/Bank5; GW1N-9 器件的 Bank2。
- [2] GW1N-1、GW1N-1S 器件不支持该 I/O 类型。

表 3-2 GW1N 系列支持的输入 I/O 类型及部分可选配置

I/O Type(输入)	单端/差分	Bank Vccio(V)	HYSTERESIS (支持迟滞选项)	是 否 需 要 V _{REF}
MIPI ^[1]	差分(TLVDS)	1.2	否	否
LVDS25 ^[2]	差分(TLVDS)	2.5/3.3	否	否
RSDS ^[2]	差分(TLVDS)	2.5/3.3	否	否
MINILVDS ^[2]	差分(TLVDS)	2.5/3.3	否	否
PPLVDS ^[2]	差分(TLVDS)	2.5/3.3	否	否
LVDS25E	差分	2.5/3.3	否	否
BLVDS25E	差分	2.5/3.3	否	否
MLVDS25E	差分	2.5/3.3	否	否
RSDS25E	差分	2.5/3.3	否	否
LVPECL33E	差分	3.3	否	否

DS100-3.0 21(74)

I/O Type(输入)	单端/差分	Bank Vccio(V)	HYSTERESIS (支持迟滞选项)	是 否 需 要 V _{REF}
HSTL18D_I	差分	1.8/2.5/3.3	否	否
HSTL18D_II	差分	1.8/2.5/3.3	否	否
HSTL15D_I	差分	1.5/1.8/2.5/3.3	否	否
SSTL15D	差分	1.5/1.8/2.5/3.3	否	否
SSTL18D_I	差分	1.8/2.5/3.3	否	否
SSTL18D_II	差分	1.8/2.5/3.3	否	否
SSTL25D_I	差分	2.5/3.3	否	否
SSTL25D_II	差分	2.5/3.3	否	否
SSTL33D_I	差分	3.3	否	否
SSTL33D_II	差分	3.3	否	否
LVCMOS12D	差分	1.2/1.5/1.8/2.5/3.3	否	否
LVCMOS15D	差分	1.5/1.8/2.5/3.3	否	否
LVCMOS18D	差分	1.8/2.5/3.3	否	否
LVCMOS25D	差分	2.5/3.3	否	否
LVCMOS33D	差分	3.3	否	否
HSTL15_I	单端	1.5 或 1.5/1.8/2.5/3.3 ^[3]	否	是
HSTL18_I	单端	1.8 或 1.8/2.5/3.3 ^[4]	否	是
HSTL18_II	单端	1.8 或 1.8/2.5/3.3 ^[4]	否	是
SSTL15	单端	1.5 1.5/1.8/2.5/3.3 ^[3] 或	否	是
SSTL18_I	单端	1.8 或 1.8/2.5/3.3 ^[4]	否	是
SSTL18_II	单端	1.8 或 1.8/2.5/3.3 ^[4]	否	是
SSTL25_I	单端	2.5 或 2.5/3.3 ^[5]	否	是
SSTL25_II	单端	2.5 或 2.5/3.3 ^[5]	否	是
SSTL33_I	单端	3.3	否	是
SSTL33_II	单端	3.3	否	是
LVCMOS12	单端	1.2/1.5/1.8/2.5/3.3	是	否
LVCMOS15	单端	1.2/1.5/1.8/2.5/3.3	是	否
LVCMOS18	单端	1.2/1.5/1.8/2.5/3.3	是	否
LVCMOS25	单端	1.2/1.5/1.8/2.5/3.3	是	否

DS100-3.0 22(74)

3 结构介绍 3.3 输入输出模块

I/O Type(输入)	单端/差分	Bank Vccio(V)	HYSTERESIS (支持迟滞选项)	是 否 需 要 V _{REF}
LVCMOS33/ LVTTL33	单端	1.2/1.5/1.8/2.5/3.3	是	否
PCI33	单端	3.3	是	否
LVCMOS33OD25	单端	2.5	否	否
LVCMOS33OD18	单端	1.8	否	否
LVCMOS33OD15	单端	1.5	否	否
LVCMOS250D18	单端	1.8	否	否
LVCMOS250D15	单端	1.5	否	否
LVCMOS18OD15	单端	1.5	否	否
LVCMOS15OD12	单端	1.2	否	否
LVCMOS25UD33	单端	3.3	否	否
LVCMOS18UD25	单端	2.5	否	否
LVCMOS18UD33	单端	3.3	否	否
LVCMOS15UD18	单端	1.8	否	否
LVCMOS15UD25	单端	2.5	否	否
LVCMOS15UD33	单端	3.3	否	否
LVCMOS12UD15	单端	1.5	否	否
LVCMOS12UD18	单端	1.8	否	否
LVCMOS12UD25	单端	2.5	否	否
LVCMOS12UD33	单端	3.3	否	否

Note!

- [1]以下器件支持 MIPI I/O 输入: GW1N-2/GW1N-1P5 器件的 Bank2; GW1N-2 器件的 Bank6 (硬核); GW1N-9 器件的 Bank0; GW1N-1S 器件的 Bank0 和 Bank1。
- [2] GW1N-1S 器件不支持该 I/O 类型。
- [3]当 V_{REF} 为 INTERNAL 时,该 I/O 类型的 V_{CCIO} 为 1.5V;当 V_{REF} 为 VREF1_LOAD 时,V_{CCIO} 为 1.5 V /1.8 V /2.5 V /3.3 V。
- [4]当 V_{REF} 为 INTERNAL 时,该 I/O 类型的 V_{CCIO} 为 1.8V;当 V_{REF} 为 VREF1_LOAD 时,V_{CCIO} 为 1.8 V /2.5 V /3.3 V。
- [5]当 V_{REF} 为 INTERNAL 时,该 I/O 类型的 V_{CCIO} 为 2.5V;当 V_{REF} 为 VREF1_LOAD 时,V_{CCIO} 为 2.5V /3.3 V。

3.3.2 真 LVDS 设计

除了 GW1N-1 / GW1N-1S 器件, GW1N 系列的 FPGA 产品支持真

DS100-3.0 23(74)

3 结构介绍 3.3 输入输出模块

LVDS 输出。此外,GW1N 系列的 FPGA 产品还支持 LVDS25E、MLVDS25E、BLVDS25E 等电平类型。

真 LVDS 的分布详细资料请参见 <u>UG174,GW1N-1P5 器件 Pinout 手</u> 册,<u>UG171,GW1N-2 器件 Pinout 手册</u>,<u>UG105, GW1N-4 器件 Pinout 手</u> 册及 <u>UG114,GW1N-9 器件 Pinout 手册</u>。

LVDS 的输入端 I/O 需要 100 欧姆终端电阻做匹配,设计参考如图 3-12 所示。GW1N 系列 FPGA 产品的特定 Bank 支持片内可编程的 100 欧姆输入差分匹配电阻,详见 <u>UG289, Gowin 可编程通用管脚(GPIO)用户指</u> 南。

图 3-12 真 LVDS 设计参考框图

LVDS25E、MLVDS25E、BLVDS25E 等差分 I/O 终端匹配电阻网络请参见 UG289, *Gowin 可编程通用管脚(GPIO)用户指南*。

DS100-3.0 24(74)

3.3 输入输出模块

3.3.3 I/O 逻辑

图 3-13 为 GW1N 系列 FPGA 产品的 I/O 逻辑的输入输出部分。

图 3-13 I/O 逻辑输入输出示意图

表 3-3 端口介绍

端口名	I/O	描述
CI ^[1]	Input	GCLK 输入信号。 不同封装器件中 GCLK 输入信号的数量请分别参考 <u>UG107, GW1N-1 器件 Pinout 手</u> <u>册</u> , <u>UG169, GW1N-1S 器件 Pinout 手</u> <u>册</u> , <u>UG174, GW1N-1P5 器件 Pinout 手</u> <u>册</u> , <u>UG171,GW1N-2 器件 Pinout 手册</u> , <u>UG105, GW1N-4 器件 Pinout 手册</u> , <u>UG114,GW1N-9 器件 Pinout 手册</u> 及
DI	Input	IO 口低速输入信号,直接输入到 Fabric。
Q	Output	SDR 模块中 IREG 输出信号。
Q ₀ -Q _{n-1}	Output	DDR 模块中 IDES 输出信号。

注!

[1] 当 CI 作为 GCLK 输入使用时,DI、Q 及 Q₀-Q_{n-1} 不能作为 IO 输入输出使用。

DS100-3.0 25(74)

3.3 输入输出模块

GW1N 系列 FPGA 产品的 I/O 逻辑的组成模块说明如下:

延迟模块

图 3-14 为延迟模块 IODELAY。GW1N 系列 FPGA 产品的每个 I/O 都包含 IODELAY 模块,总共提供 128(0~127)步的延迟,一步的延迟时间约为 30 ps。

图 3-14 IODELAY 示意图

有两种控制延迟的方式:

- 静态控制。
- 动态控制,可与 IEM 模块一起使用来调节动态取样窗口,IODELAY 不能同时用于输入和输出。

I/O 寄存器

图 3-15 为 GW1N 系列 FPGA 产品的 I/O 寄存器模块。GW1N 系列 FPGA 产品的每个 I/O 都提供可编程输入寄存器 IREG、输出寄存器 OREG 和高阻控制寄存器 TRIREG。

图 3-15 GW1N 的 I/O 寄存器示意图

注!

- CE 可以编程为低电平有效(0: enable)或高电平有效(1: enable)。
- CLK 可以编程为上升沿触发或下降沿触发。
- SR 可以编程为同步/异步的 SET/RESET 或无效(disable)。
- 寄存器可以编程为寄存器(register)或锁存器(latch)。

取样模块

取样模块(IEM)是用来取样数据边沿,用于通用 DDR 模式,如图 3-16 所示。

DS100-3.0 26(74)

图 3-16 GW1N 的 IEM 示意图

解串器 DES 模块

每个输入的 I/O 逻辑提供了简单的解串器 DES,丰富了 I/O 资源应用方式。

串化器 SER 模块

每个输出的 I/O 逻辑提供了简单的串化器 SER 模块,丰富了 I/O 资源应用方式。

3.3.4 I/O 逻辑工作模式

GW1N 系列 FPGA 产品的 I/O 逻辑支持多种工作模式。每一种工作模式下,I/O(或 I/O 差分信号对)又可以配置成输出信号、输入信号、INOUT 信号及三态输出信号(带三态控制的输出信号)。

GW1N-1S 和 GW1N-9 的管脚都支持 I/O 逻辑。GW1N-1 的管脚 IOL6(A,B,C....J)和 IOR6(A,B,C....J)不支持 I/O 逻辑,其他管脚支持 I/O 逻辑。GW1N-4 的管脚 IOL10(A,B,C....J)和 IOR10(A,B,C....J)不支持 IO 逻辑,其他管脚支持 I/O 逻辑。GW1N-1P5、GW1N-2 的管脚 IOT2(A、B)、IOT3A 不支持 I/O 逻辑,其它管脚支持 I/O 逻辑。

3.4 块状静态随机存储器模块

3.4.1 简介

GW1N 系列 FPGA 产品提供了丰富的块状静态随机存储器资源。这些存储器资源按照模块排列,以行的形式,分布在整个 FPGA 阵列中。因此称为块状静态随机存储器(BSRAM)。每个 BSRAM 可配置最高18,432bits(18Kbits)。提供的操作模式包括:单端口模式 Single Port,双端口模式 Dual Port,伪双端口模式 Semi Dual Port,只读存储器模式。

丰富的块状静态随机存储器资源为用户的高性能设计提供了保障。以下是 BSRAM 提供的各种功能:

- 1 个模块最大容量为 18,432bits
- 时钟频率达到 190MHz
- 単端口模式 Single Port
- 双端口模式 Dual Port
- 伪双端口模式 Semi Dual Port
- 提供校验位 Parity Bits

DS100-3.0 27(74)

- 提供只读存储器模式 ROM
- 数据宽度从 1 位到 36 位
- 多时钟操作模式 Mixed Clock Mode
- 多数据宽度模式 Mixed Data Width Mode
- 在双字节以上的数据宽度支持字节使能功能 Enable Byte
- 正常读写 Normal Read and Write Mode
- 先读后写 Read-before-write Mode
- 通写 Write-through Mode

3.4.2 存储器配置模式

GW1N 系列 FPGA 产品的块状静态随机存储器可支持多种的数据宽度,如表 3-4 所示。

表 3-4 存储器配置列表

单端口模式	双端口模式[1]	伪双端口模式	只读模式
16K x 1	16K x 1	16K x 1	16K x 1
8K x 2	8K x 2	8K x 2	8K x 2
4K x 4	4K x 4	4K x 4	4K x 4
2K x 8	2K x 8	2K x 8	2K x 8
1K x 16	1K x 16	1K x 16	1K x 16
512 x 32	-	512 x 32	512 x 32
2K x 9	2K x 9	2K x 9	2K x 9
1K x 18	1K x 18	1K x 18	1K x 18
512 x 36	-	512 x 36	512 x 36

注!

[1] GW1N-1S 器件不支持双端口模式; GW1N-9 器件中仅 C 版本的 GW1N-9 支持双端口模式。

单端口模式

单端口模式可支持 2 种读模式(bypass 模式和 pipeline 模式)和 3 种写模式(normal 模式、write-through 模式和 read-before-write 模式)。在单端口模式下,BSRAM 可以在一个时钟沿对 BSRAM 进行读或写操作。在写操作中,被写入的数据会传到 BSRAM 的输出。当输出寄存器旁路(Bypass)时,新数据出现在同一个时钟的上升沿。

关于单端口模式的端口框图及相关描述请参考 <u>UG285</u>, <u>Gowin 存储器</u>(<u>BSRAM & SSRAM</u>)用户指南。

双端口模式

双端口模式可支持 2 种读模式(bypass 模式和 pipeline 模式)和 2 种

DS100-3.0 28(74)

写模式 (normal 模式和 write-through 模式)。可对两个端口做如下操作:

- 两个端口同时读操作
- 两个端口同时写操作
- 任何一个端口的读和写

注!

不建议对同一地址同时进行读写操作。

关于双端口模式的端口示意图及相关描述请参考 <u>UG285,Gowin 存储</u>器(BSRAM & SSRAM)用户指南。

伪双端口模式

伪双端口模式可支持 2 种读模式(bypass 模式和 pipeline 模式)和 1 种写模式(normal 模式)。伪双端口可支持同时的读和写操作。但是对同一个端口不能做读写操作,只支持 A 端口写,B 端口读。

注!

不建议对同一地址同时进行读写操作。

关于伪双端口模式的端口示意图及相关描述请参考 <u>UG285,Gowin 存</u>储器(BSRAM & SSRAM)用户指南。

只读模式

BSRAM 可配置成只读存储器模式。用户可通过存储器初始化文件,通过编程端口来初始化只读存储器。用户需要提供 ROM 中的内容,编入初始化文件中。在器件上电编程时来完成初始化操作。

每个 BSRAM 可配置成一个 16Kbits ROM。关于只读模式的端口示意 图及详细描述请参考 <u>UG285,Gowin 存储器(BSRAM & SSRAM)用户指</u> 南。

3.4.3 存储器混合数据宽度配置

GW1N 系列 FPGA 产品的块状静态随机存储器模块可支持混合数据线宽度操作。在双端口模式模式和伪双端口模式下,读和写的数据宽度可以不同,但需要按照表 3-5 和表 3-6 的配置来应用。

表 3-5 双端口混合读写数据宽度配置列表[1],[2]

读端口	写端口						
	16K x 1	8K x 2	4K x 4	2K x 8	1K x 16	2K x 9	1K x 18
16K x 1	*	*	*	*	*		
8K x 2	*	*	*	*	*		
4K x 4	*	*	*	*	*		
2K x 8	*	*	*	*	*		
1K x 16	*	*	*	*	*		

DS100-3.0 29(74)

读端口	写端口						
	16K x 1	8K x 2	4K x 4	2K x 8	1K x 16	2K x 9	1K x 18
2K x 9						*	*
1K x 18						*	*

注!

- [1]GW1N-1S 器件不支持双端口模式, GW1N-9K 系列器件中仅 GW1N-9C 支持双端口模式。
- [2]标注为"*"的表示支持的模式。

表 3-6 伪双端口混合读写数据宽度配置列表

读端口	写端口	写端口							
决圳口	16K x 1	8K x 2	4K x 4	2K x 8	1K x 16	512 x 32	2K x 9	1K x 18	512 x 36
16K x 1	*	*	*	*	*	*			
8K x 2	*	*	*	*	*	*			
4K x 4	*	*	*	*	*	*			
2K x 8	*	*	*	*	*	*			
1K x 16	*	*	*	*	*	*			
512x32	*	*	*	*	*	*			
2K x 9							*	*	*
1K x 18							*	*	*

注!

标注为"*"的表示支持的模式。

3.4.4 字节使能功能配置

BSRAM 支持字节使能(byte-enable)功能。可以遮蔽输入数据,只让被选择到的字节写入。而被遮蔽的数据能继续保留。读/写使能信号(WREA, WREB),及 byte-enable 参数选项用于控制 BSRAM 的写操作。

注!

GW1N 系列中,仅 GW1N-1P5、GW1N-1P5B、GW1N-1P5C、GW1N-2、GW1N-2B、GW1N-2C、以及 GW1N-4D 支持字节使能功能。

3.4.5 校验位功能配置

所有的块状静态随机存储器模块 BSRAM 内置了校验位的配置。每个字节的第9位可用来做校验位,也可以用来存储数据。

3.4.6 同步操作

- 所有的块状静态随机存储器模块的输入寄存器支持同步写入。
- 输出寄存器可用作流水线寄存器提高用户的设计性能。

DS100-3.0 30(74)

輸出寄存器可旁路。

3.4.7 上电情况

BSRAM 支持上电时静态随机存储器初始化。在上电过程中,BSRAM 处于待机状态,所有数据输出为 0。此状态也适用于只读存储器模式 ROM。

3.4.8 BSRAM 操作模式

BSRAM 支持 5 种操作模式,包括 2 种读操作模式(旁路模式 Bypass Mode,流水线读模式 PipelineRead Mode)和 3 种写操作模式(正常写模式: Normal-write Mode,通写模式: Write-through Mode,先读后写模式: Read-before-write Mode)。

读操作模式

从 BSRAM 读出数据通过输出寄存器输出或不通过输出寄存器输出。

流水线模式

在同步写入存储器时,使用输出寄存器。此模式可支持数据宽度最大 36 位。

旁路模式

不使用输出寄存器,数据保留在存储器(Memory Array)的输出。

图 3-17 单端口、伪双端口及双端口模式下的流水线模式

DS100-3.0 31(74)

写操作模式

正常写模式

对一个端口进行正常写操作,此端口的输出数据不变。写入数据不会出现在读端口。

通写模式

在此模式下,对一个端口进行写操作时,写入数据会出现在此端口的输出。

先读后写模式

在此模式下,对一个端口进行写操作时,原来的数据会出现在此端口的输出,写入数据会存入相应单元。

3.4.9 时钟模式

表 3-7 中列出了不同 BSRAM 模式下可使用的时钟模式:

表 3-7 时钟模式配置列表

时钟模式	双端口模式[1]	伪双端口模式	单端口模式
独立时钟模式	Yes	No	No
读/写时钟模式	Yes	Yes	No
单端口时钟模式	No	No	Yes

注!

[1]GW1N-1S 器件不支持双端口模式。

独立时钟模式

图 3-18 显示了在双端口模式下的独立时钟使用模式,每个端口各有一个独立时钟。CLKA 信号控制了端口 A 的所有寄存器,CLKB 信号控制了端口 B 的所有寄存器。

DS100-3.0 32(74)

图 3-18 独立时钟模式

读写时钟模式

图 3-19 显示了在伪双端口模式下的读写时钟使用模式。每个端口各有一个时钟。写时钟(CLKA)信号控制了端口 A 的写入数据、写地址和读/写使能信号。读时钟(CLKB)信号控制了端口 B 的读出数据、读地址和读使能信号。

图 3-19 读写时钟模式

单端口时钟模式

图 3-20 显示了单端口时钟模式。

图 3-20 单端口时钟模式

DS100-3.0 33(74)

3.5 用户闪存资源(GW1N-1 和 GW1N-1S)

GW1N-1 和 GW1N-1S 提供 12 Kbytes(48 page x 256 Bytes)的用户 闪存资源(User Flash),主要特性如下所示:

- NOR Flash
- 100,000 次写寿命周期
- 超过 10 年的数据保存能力(+85℃)
- 可选的数据输入输出位宽 8/16/32
- 页存储空间: 256 Bytes
- 3µA 待机电流
- 页写入时间: 8.2ms

关于 GW1N-1 和 GW1N-1S 用户闪存资源详细信息,请参考 <u>UG295</u>, <u>Gowin 闪存资源(User Flash)用户指南</u>,其中有关用户闪存资源原语与适用 器件的对应关系,请参考该手册的表 3-1 适用器件。

DS100-3.0 34(74)

3.6 用户闪存资源(GW1N-1P5/2/4/9)

GW1N-1P5/2/4/9 器件提供用户闪存资源(User Flash),GW1N-1P5/2的用户闪存资源容量为96Kbits,GW1N-4的用户闪存资源容量为256Kbits,GW1N-9的用户闪存资源容量为608Kbits。用户闪存资源由行存储和列存储单元组成,一行由64个列存储单元组成,列存储单元的容量为32bits,行存储单元的容量为64*32=2048 bits。擦除操作支持页擦除,一页的容量为2048 字节,即一页包含8行。特性如下所示:

- NOR Flash
- 10,000 次写寿命周期
- 超过 10 年的数据保存能力(+85℃)
- 数据位宽: 32
- GW1N-1P5/2 容量: 48 行*64 列*32 = 96Kbits
- GW1N-/4 容量: 128 行*64 列*32 = 256Kbits
- GW1N-9 容量: 304 行*64 列*32 = 608Kbits
- 页擦除能力: 2,048 字节
- 快速页擦除/字编程操作
- 时钟频率: 40MHz
- 字编程时间: ≤16µs
- 页擦除时间: ≤120ms
- 电流
 - 读电流/持续时间: 2.19mA/25ns (Vcc) & 0.5mA/25ns (Vccx)(MAX)
 - 编程/擦除操作: 12/12mA(MAX)

关于 GW1N-1P5/2/4/9 器件用户闪存资源详细信息,请参考 <u>UG295</u>, Gowin 闪存资源(User Flash)用户指南,其中有关用户闪存资源原语与适用 器件的对应关系,请参考该手册的表 3-1 适用器件。

3.7 数字信号处理模块

GW1N-4/9 器件中具有丰富的 DSP 模块资源。高云半导体的 DSP 解决方案可满足用户的高性能数字信号处理需求,如 FIR、FFT 设计等。DSP 具有时序性能稳定、资源利用率高、功耗低等优点。

DSP 支持下列功能:

- 3 种宽度乘泆器 (9-bit, 18-bit, 36-bit)
- 54-bit 的算术/逻辑运算单元
- 多个乘法器可级联以增加数据宽度
- 桶形移位器(Barrel Shifter)
- 通过反馈信号做自适应滤波(Adaptive filtering through signal feedback)
- 运算可以自动取正(Computing with options of rounding to positive

DS100-3.0 35(74)

3.7 数字信号处理模块

number or prime number)

● 支持寄存器输出和旁路输出

3.7.1 宏单元

GW1N的 DSP 模块排列以行的形式分布在整个 FPGA 阵列中。每个 DSP 模块占用 9 个 CFU 的位置。每个 DSP 包含两个宏单元,每个宏单元包含两个前加法器(pre-adders),两个 18 位的乘法器(multipliers),和一个三输入的算术/逻辑运算单元(ALU54)。

前加器

DSP 宏单元包含两个前加器,实现预加、预减和移位功能。 前加器位于宏单元的最前端,有两个输入端:

- 并行 18-bit 输入 B 或 SBI。
- 并行 18-bit 输入 A 或 SIA。

注!

每个输入端都支持寄存器模式和旁路模式。

高云半导体 FPGA 产品的前加器可以作为功能模块单独使用,支持 9-bit 位宽和 18-bit 位宽。

乘法器

乘法器(multipliers)位于前加器之后,用来实现乘法运算。乘法器可以配置为9x9、18x18、36x18或36x36,输入端和输出端均支持寄存器模式和旁路模式。一个宏单元支持的配置模式包括:

- 一个 18 x 36 乘法器
- 两个 18 x 18 乘法器
- 四个9x9乘法器

注!

两个宏单元可以配置成一个 36 x 36 乘法器。

算术运算单元

每个 DSP 宏单元包含一个 54 位 ALU54,是对乘法器功能的进一步加强,输入端和输出端均支持寄存器模式和旁路模式。支持的功能包括:

- 乘法器输出数据/0、数据 A 和数据 B 的加法/减法运算。
- 乘法器输出数据/0、数据 B 和进位 C 的加法/减法运算。
- 数据 A、数据 B 和进位 C 的加法/减法运算。

3.7.2 DSP 操作模式配置

- 乘法器(multiplier)模式
- 乘法累加器(accumulator)模式

DS100-3.0 36(74)

3 结构介绍 3.8MIPI D-PHY

● 乘法求和累加器模式

关于数字信号处理模块更多详细信息,请参考 <u>UG287,Gowin 数字信</u> <u>号处理器(DSP)用户指南。</u>

3.8 MIPI D-PHY

3.8.1 硬核 MIPI D-PHY RX(GW1N-2)

GW1N-2 器件包含硬核 MIPI D-PHY RX,支持标准《MIPI Alliance Standard for D-PHY Specification》,版本 2.1。该 D-PHY 适用于串行显示接口(Display Serial Interface,DSI)和和串行摄像头接口(Camera Serial Interface,CSI-2)。主要特性如下:

- 支持单向高速(HS, High-speed)模式, 传输速率最高可达 8 Gbps (四个数据通道)。
- 支持最多四个数据通道和一个时钟通道。
- 支持双向低功耗(LP, Low-power)操作模式,数据传输速率为 10Mbps。
- 支持高速同步、位和通道对齐
- 支持 MIPI D-PHY RX 1:8 模式与 1:16 模式。
- 支持 MIPI DSI 和 MIPI CSI-2 链路层。
- IO Bank6 支持 MIPI D-PHY RX。

更多详细信息请参考 <u>IPUG778</u>, <u>Gowin GW1N-2 Hardened MIPI D-PHY RX 用户指</u>南。

3.8.2 MIPI IO 支持 MIPI D-PHY RX/TX

通过 MIPI IO 实现的 MIPI D-PHY RX/TX 适用于串行显示接口 (Display Serial Interface, DSI) 和串行摄像头接口(Camera Serial Interface, CSI-2),用于接收或发送图像或视频数据,MIPI D-PHY 为其提供物理层定义。GW1N 系列 FPGA 产品的 MIPI IO 支持情况如下表所示。

表 3-8 GW1N 系列 FPGA 产品的 MIPI IO 支持列表

MIPI 输入/输出	GW1N-1S	GW1N-1P5	GW1N-2	GW1N-9
MIPI 输入	Bank0/1	Bank2(支持动 态 ODT)	Bank2(支持 动态 ODT)	Bank0(支持动态 ODT)
MIPI 输出	None	Bank0/3/4/5(支 持动态 ODT)	Bank0/3/4/5(支持动态 ODT)	Bank2

主要特性如下:

- 支持标准《MIPI Alliance Standard for D-PHY Specification》, 版本 1.2
- 支持高速 RX 和 TX 器件接口, 传输速率最高可达 4.8 Gbps

DS100-3.0 37(74)

3 结构介绍 3.9 时钟

- 支持最多四个数据通道和一个时钟通道
- 支持多 PHY (IO 允许的情况下)
- 支持双向低功耗(LP, Low-power)操作模式
- 支持 MIPI DSI 和 MIPI CSI-2 链路层
- 支持高速同步、位和通道对齐
- 支持 MIPI D-PHY RX 1:8 模式与 1:16 模式
- 支持 ELVDS、TLVDS、SLVS200、LVDS 和 MIPI D-PHY IO 等 IO Type
- GW1N-9 器件 Bank 0/2 支持 I3C

更多详细信息请参考 <u>IPUG948</u>,Gowin MIPI D-PHY RX TX Advance 用户指南。

3.9 时钟

时钟资源及布线对 FPGA 高性能的应用至关重要。GW1N 系列 FPGA 产品提供了专用全局时钟(GCLK),直接连接到器件的所有资源。除了GCLK 资源,还提供了高速时钟 HCLK 资源。此外,还提供了锁相环(PLL)等时钟资源。

关于全局时钟、高速时钟及锁相环的更多详细信息,请参考 <u>UG286</u>, <u>Gowin 时钟资源(Clock)用户指南</u>。

3.9.1 全局时钟

GCLK 在器件中按象限分布,每个象限提供 8 个 GCLK 网络。GCLK 的可选时钟源包括专用的时钟输入管脚和普通布线资源,使用专用的时钟输入管脚具有更好的时钟性能。

3.9.2 锁相环

锁相环路是一种反馈控制电路,简称锁相环(PLL,Phase-locked Loop)。利用外部输入的参考时钟信号控制环路内部振荡信号的频率和相位。

GW1N 的 PLL 模块能够提供可以综合的时钟频率,通过配置不同的参数可以进行时钟的频率调整(倍频和分频)、相位调整、占空比调整等功能。

3.9.3 高速时钟

GW1N 系列 FPGA 产品的高速时钟 HCLK 可以支持 I/O 完成高性能数据传输,是专门针对源时钟同步的数据传输接口而设计的,如图 3-21、图 3-22、图 3-23、图 3-24 及图 3-25 所示。

注!

GW1N-1 和 GW1N-4 的高速时钟资源特性相同,GW1N-1S 和 GW1N-9 的高速时钟资源特性相同。

DS100-3.0 38(74)

3 结构介绍 3.9 时钟

图 3-21 GW1N-1 HCLK 示意图

图 3-22 GW1N-1P5/GW1N-2 HCLK 示意图

DS100-3.0 39(74)

3 结构介绍 3.9 时钟

图 3-23 GW1N-4 HCLK 示意图

图 3-24 GW1N-9 HCLK 示意图

DS100-3.0 40(74)

3 结构介绍 3.10 长线

图 3-25 GW1N-1S HCLK 示意图

3.10 长线

作为对 CRU 的有效补充,GW1N 系列 FPGA 产品提供了灵活丰富的长线资源,适用于时钟、时钟使能、置复位或其它高扇出的信号。

3.11 全局复置位

GW1N 系列 FPGA 产品中包含一个专用的全局复置位网络,直接连接到器件的内部逻辑,可用作异步/同步复位或异步/同步置位,CFU 和 I/O 中的寄存器均可以独立配置。

3.12 编程配置

GW1N 系列 FPGA 产品支持 SRAM 编程和 Flash 编程。Flash 编程模式既支持片内 Flash 编程也支持片外 Flash 编程。GW1N 器件支持 DUAL BOOT 模式,为用户提供了一种备份选择,用户可以根据自身需要将配置数据备份在外部 Flash 中。

GW1N 系列 FPGA 产品除了支持业界通用的 JTAG 配置模式外,还支持高云半导体特有的 GowinCONFIG 配置模式,支持多达 7 种模式: AUTO BOOT、SSPI、MSPI、DUAL BOOT、SERIAL、CPU 和 I2C Slave。所有器件均支持 JTAG 和 AUTO BOOT 模式。

详细信息请参见 UG290, Gowin FPGA 产品编程配置手册。

SRAM 编程

GW1N 系列 FPGA 产品的 SRAM 编程,每次上电后需要重新下载配置数据。

Flash 编程

Flash 编程的配置数据存放在片内 Flash 单元。上电后,配置数据从片

DS100-3.0 41(74)

3 结构介绍 3.13 片内晶振

内 Flash 单元传送到 SRAM 配置单元。在上电后的几个毫秒内就可以完成数据的配置,这种配置方式也称为"快速启动/瞬时启动"。

GW1N 系列 FPGA 产品(GW1N-4A 除外)支持 JTAG^[1]背景升级的特性,即器件支持在不影响现有工作状态的情况下通过 JTAG 接口编程内嵌 Flash 或外部 Flash 的操作,编程过程中器件可以按照原有的配置正常工作,编程完成后,低电平触发 RECONFIG_N^[2]即可完成在线升级。此特性适合应用于在线时间长但又需要不定期升级的场所。

注!

- [1]GW1N-1P5 和 GW1N-2 可通过使用 goConfig I2C IP 来支持 I²C 背景升级。推荐使用 JTAG 接口进行背景升级。
- [2] RECONFIG_N 作为配置管脚时,类型为输入,具有内部弱上拉,但作为 GPIO时,只能用作 output 类型。更多详细信息,请参见 <u>UG290, Gowin FPGA 产品编程配置手册</u>。

此外, GW1N 系列 FPGA 产品还支持外部 Flash 编程模式和双启动模式。更多详细信息,请参见 UG290, Gowin FPGA 产品编程配置手册。

3.13 片内晶振

GW1N 系列 FPGA 产品内嵌了一个可编程片内晶振,支持 2.5MHz 到 125MHz 的时钟频率范围。片内晶振提供可编程的用户时钟,时钟精度可达 ±5%,编程过程中为 MSPI 编程模式提供时钟源。

片内晶振还可以为用户设计提供时钟源,通过配置工作参数,可以获得 多达 **64** 种时钟频率。

GW1N-1/1S 器件的片内晶振输出时钟频率计算公式为:

fout=240MHz/Param.

GW1N-1P5/2/9 器件的片内晶振输出时钟频率计算公式为:

fout=250MHz/Param.

GW1N-4 器件的片内晶振输出时钟频率计算公式为:

fout=210MHz/Param.

注!

除数 Param 为配置参数,范围为 2~128,只支持偶数。

表 3-9、表 3-10 及表 3-11 列举了片内晶振的部分频率,如默认频率、最大频率和某些参数的输出小数的频率。

表 3-9 GW1N-4 片内晶振的部分输出频率选项

模式	频率	模式	频率	模式	频率
0	2.1MHz ^[1]	8	6.6MHz	16	13.1MHz
1	4.6MHz	9	7MHz	17	15MHz
2	4.8MHz	10	7.5MHz	18	17.5MHz

DS100-3.0 42(74)

3 结构介绍 3.13 片内晶振

模式	频率	模式	频率	模式	频率
3	5MHz	11	8.1MHz	19	21MHz
4	5.3MHz	12	8.8MHz	20	26.3MHz
5	5.5MHz	13	9.5MHz	21	35MHz
6	5.8MHz	14	10.5MHz	22	52.5MHz
7	6.2MHz	15	11.7MHz	23	105MHz ^[2]

表 3-10 GW1N-1P5/2/9 片内晶振的部分输出频率选项

模式	频率	模式	频率	模式	频率
0	2.5MHz ^[1]	8	7.8MHz	16	15.6MHz
1	5.4MHz	9	8.3MHz	17	17.9MHz
2	5.7MHz	10	8.9MHz	18	21MHz
3	6.0MHz	11	9.6MHz	19	25MHz
4	6.3MHz	12	10.4MHz	20	31.3MHz
5	6.6MHz	13	11.4MHz	21	41.7MHz
6	6.9MHz	14	12.5MHz	22	62.5MHz
7	7.4MHz	15	13.9MHz	23	125MHz ^[2]

表 3-11 GW1N-1/1S 片内晶振的部分输出频率选项

模式	频率	模式	频率	模式	频率
0	2.4MHz ^[1]	8	7.5MHz	16	15MHz
1	5.2MHz	9	8MHz	17	17MHz
2	5.5MHz	10	8.6MHz	18	20MHz
3	5.7MHz	11	9MHz	19	24MHz
4	6MHz	12	10MHz	20	20MHz
5	6.3MHz	13	11MHz	21	40MHz
6	6.7MHz	14	12MHz	22	60MHz
7	7MHz	15	13MHz	23	120MHz ^[2]

注!

- [1]默认输出频率。
- [2]不适用于 MSPI 编程模式。

DS100-3.0 43(74)

4 电气特性 **4.1** 工作条件

$oldsymbol{4}$ 电气特性

注!

建议在推荐的工作条件及工作范围内使用高云半导体器件,超出工作条件及工作范围的数据仅供参考,高云半导体不保证所有器件都能在超出工作条件及工作范围的情况下正常工作。

4.1 工作条件

4.1.1 绝对最大范围

表 4-1 绝对最大范围

名称	描述	最小值	最大值
Vcc	LV 版本核电压	-0.5V	1.32V
VCC	UV 版本核电压	-0.5V	3.75V
Vccio	I/O Bank 电压	-0.5V	3.75V
V _{CCX}	辅助电压	-0.5V	3.75V
-	I/O 电压 ^[1]	-0.5V	3.75V
Storage Temperature	储存温度	-65 ℃	+150℃
Junction Temperature	结温	-40 ℃	+125℃

注!

[1]允许-2V至(V_{IHMAX} + 2) V的过冲和下冲,持续时间<20 ns。

4.1.2 推荐工作范围

表 4-2 推荐工作范围

名称	描述	最小值	最大值
	LV 版本核电压	1.14V	1.26V
Vcc	UV 版本核电压	1.71V	3.6V
Vccio	I/O Bank 电压	1.14V	3.6V

DS100-3.0 44(74)

名称	描述	最小值	最大值
Vccx	辅助电压(GW1N-4/9)	2.375V	3.6V
	辅助电压(GW1N-1P5/2)	1.71V	3.6V
Тусом	结温(商业级)	0℃	+85℃
TJIND	JIND 结温(工业级)		+100℃

注!

- 某些封装中 Vccio 和 Vccx 可能共用一个管脚,这种情况下必须要优先满足 Vccx 的要求。
- 详细的器件供电电压信息请参考 <u>UG107, GW1N-1 器件 Pinout 手册</u>, <u>UG169, GW1N-1S 器件 Pinout 手册</u>, <u>UG174, GW1N-1P5 器件 Pinout 手册</u>, <u>UG171, GW1N-2 器件 Pinout 手册</u>, <u>UG105, GW1N-4 器件 Pinout 手册</u>及 <u>UG114, GW1N-9 器件 Pinout 手册</u>

4.1.3 电源上升斜率

表 4-3 电源上升斜率

名称	描述	器件	最小值	典型值	最大值
V _{CC} Ramp	Vcc 上升斜率	GW1N-1/GW1N-1S	1.2mV/μs	-	40mV/µs
	VCC 上丌科华	GW1N- 1P5/2/4/9	0.6mV/µs	-	6mV/µs
V _{CCX} Ramp	Vccx上升斜率	GW1N	0.6mV/µs	-	10mV/us
V _{CCIO} Ramp	Vccio 上升斜率	GW1N	0.1mV/μs	-	10mV/us

注!

- 所有电源的上升斜率必须单调。
- 在设备开始配置前,所有的电源都需要在表 **4-2** 中定义的工作范围内。不在工作范围内的电源需要调整到更快的斜率,否则用户必须推迟配置。

4.1.4 热插拔特性

表 4-4 热插拔特性

名称	描述	条件	I/O 类型	最大值
Інѕ	输入漏电流 (Input or I/O leakage current)	0 <v<sub>IN<v<sub>IH(MAX)</v<sub></v<sub>	I/O	150uA
Інѕ	输入漏电流 (Input or I/O leakage current)	0 <v<sub>IN<v<sub>IH(MAX)</v<sub></v<sub>	TDI, TDO, TMS,TCK	120uA

DS100-3.0 45(74)

4 电气特性 **4.1** 工作条件

4.1.5 POR 特性

表 4-5 POR 电压参数

名称	描述	器件	名称	值
		GW1N-1	Vcc	0.75V
		GWIN-1	Vccio	0.85V
			Vcc	0.8V
		GW1N-1P5 、 GW1N-2	Vccx	1.5V
			Vccio	0.95V
V _{POR_UP}	Power on reset ramp up trip point		Vcc	0.95V
	•	GW1N-4	V _{CCX}	1.95V
			Vccio	0.95V
			Vcc	0.95V
		GW1N-9	Vccx	1.95V
			V _{CCIO}	0.95V
		GW1N-1	Vcc	TBD
		GW IN-1	Vccio	TBD
			Vcc	0.65V
		GW1N-1P5 、 GW1N-2	Vccx	1.3V
			Vccio	0.75V
VPOR_DOWN	Power on reset ramp down trip point		Vcc	0.75V
		GW1N-4	Vccx	1.8V
			Vccio	0.6V
		GW1N-9	Vcc	0.75V
			Vccx	1.8V
			Vccio	0.6V

DS100-3.0 46(74)

4 电气特性 4.2ESD 性能

4.2 ESD 性能

表 4-6 GW1N ESD - HBM

器件	GW1N-1	GW1N-1P5	GW1N-2	GW1N-4	GW1N-9	GW1N-1S
LQ100	HBM>1,000V	HBM>1,000V	HBM>1,000V	HBM>1,000V	HBM>1,000V	-
LQ100X	-	HBM>1,000V	HBM>1,000V	-	-	-
LQ144	HBM>1,000V	-	-	HBM>1,000V	HBM>1,000V	-
LQ144X	-	-	HBM>1,000V	-	-	-
LQ144F	-	-	HBM>1,000V	-	-	-
EQ144	-	-	HBM>1,000V	HBM>1,000V	HBM>1,000V	-
LQ176	-	-	-	-	HBM>1,000V	-
EQ176	-	-	-	-	HBM>1,000V	-
MG100	-	-	-	-	HBM>1,000V	-
MG100T	-	-	-	-	HBM>1,000V	-
MG49	-	-	HBM>1,000V	-	-	-
MG121	-	-	HBM>1,000V	-	-	-
MG121X	-	-	HBM>1,000V	-	-	-
MG132	-	-	HBM>1,000V	-	-	-
MG132X	-	-	HBM>1,000V	HBM>1,000V	-	-
MG132H	-	-	HBM>1,000V	-	-	-
MG160	-	-	-	HBM>1,000V	HBM>1,000V	-
MG196	-	-	-	-	HBM>1,000V	-
PG256	-	-	-	HBM>1,000V	HBM>1,000V	-
PG256M	-	-	-	HBM>1,000V	-	-
UG169	-	-	-	HBM>1,000V	HBM>1,000V	-
UG256	-	-	-	-	HBM>1,000V	-
UG332	-	-	-	-	HBM>1,000V	-
QN32X	-	-	HBM>1,000V	-	-	-
QN32	HBM>1,000V	-	HBM>1,000V	HBM>1,000V	-	-
QN48	HBM>1,000V	-	HBM>1,000V	HBM>1,000V	HBM>1,000V	-
QN48H	-	-	HBM>1,000V	-	-	-
QN48F	-	-	-	-	HBM>1,000V	-
QN48X	-	HBM>1,000V	-	-	-	-
QN48XF	-	HBM>1,000V	-	-	-	-

DS100-3.0 47(74)

4 电气特性 4.2ESD 性能

器件	GW1N-1	GW1N-1P5	GW1N-2	GW1N-4	GW1N-9	GW1N-1S
CS30	HBM>1,000V	-	-	-	-	HBM>1,000 V
CS42	-	-	HBM>1,000V	-	-	-
CS42H	-	-	HBM>1,000V	-	-	-
CS72	-	-	-	HBM>1,000V	-	-
CS81M	-	-	-	-	HBM>1,000V	-
CS100H	-	-	HBM>1,000V	-	-	-
QN88	-	-	HBM>1,000V	HBM>1,000V	HBM>1,000V	-
FN32	-	-	-	-	-	HBM >1,000 V

表 4-7 GW1N ESD - CDM

器件	GW1N-1	GW1N-1P5	GW1N-2	GW1N-4	GW1N-9	GW1N-1S
LQ100	CDM>500V	-	CDM>500V	CDM>500V	CDM>500V	-
LQ100X	-	CDM>500V	CDM>500V	-	-	-
LQ144	CDM>500V	-	CDM>500V	CDM>500V	CDM>500V	-
LQ144X	-	-	CDM>500V	-	-	-
LQ144F	-	-	CDM>500V	-	-	-
EQ144	-	-	-	CDM>500V	CDM>500V	-
LQ176	-	-	-	-	CDM>500V	-
EQ176	-	-	-	-	CDM>500V	-
MG49	-	-	CDM>500V	-	-	-
MG100	-	-	-	-	CDM>500V	-
MG121	-	-	CDM>500V	-	-	-
MG121X	-	-	CDM>500V	-	-	-
MG132	-	-	CDM>500V	-	-	-
MG132X	-	-	CDM>500V	CDM>500V	-	-
MG132H			CDM>500V			
MG160	-	-	-	CDM>500V	CDM>500V	-
MG196	-	-	-	-	CDM>500V	-
MG100T		-	-	-	-	CDM>500V
PG256	-	-	-	CDM>500V	CDM>500V	-
PG256M	-	-	-	CDM>500V	-	-
UG169		-		CDM>500V	CDM>500V	

DS100-3.0 48(74)

4 电气特性 4.2ESD 性能

器件	GW1N-1	GW1N-1P5	GW1N-2	GW1N-4	GW1N-9	GW1N-1S
UG256	-	-	-	-	CDM>500V	-
UG332	-	-	-	-	CDM>500V	-
QN32	CDM>500V	-	CDM>500V	CDM>500V	-	-
QN32X	-	-	CDM>500V	-	-	-
QN48	CDM>500V	-	CDM>500V	CDM>500V	CDM>500V	-
QN48H	-	-	CDM>500V	-	-	-
QN48F	-	-	-	-	CDM>500V	-
QN48X	-	CDM>500V	-	-	-	-
QN48XF	-	CDM>500V	-	-	-	-
CS30	CDM>500V	-	-	-	-	CDM>500V
CS42	-	-	CDM>500V	-	-	-
CS42H	-	-	CDM>500V	-	-	-
CS72	-		-	CDM>500V	-	-
CS81M	-	-	-	-	CDM>500V	-
CS100H	-	-	CDM>500V	-	-	-
QN88	-	-	CDM>500V	CDM>500V	CDM>500V	-
FN32	-	-	-	-	-	CDM>500V

DS100-3.0 49(74)

4.3 DC 电气特性

4.3.1 推荐工作范围 DC 电气特性

表 4-8 推荐工作范围条件下 DC 电气特性

名称	描述	条件	最小值	典型值	最大值
	I/O 输入漏电流	V _{CCIO} <v<sub>IN<v<sub>IH(MAX)</v<sub></v<sub>	-	-	210μΑ
IIL,IIH	(Input or I/O leakage)	0V <vin<vccio< td=""><td>-</td><td>-</td><td>10μΑ</td></vin<vccio<>	-	-	10μΑ
lpu	I/O 上拉电流 (I/O Active Pull-up Current)	0 <vin<0.7vccio< td=""><td>-30µA</td><td>-</td><td>-150µA</td></vin<0.7vccio<>	-30µA	-	-150µA
I _{PD}	I/O 下拉电流 (I/O Active Pull- down Current)	VIL(MAX) <vin<vccio< td=""><td>30μΑ</td><td>-</td><td>150µA</td></vin<vccio<>	30μΑ	-	150µA
Івньѕ	总线保持低电平时 持续电流 (Bus Hold Low Sustaining Current)	V _{IN} =V _{IL} (MAX)	30µА	-	-
Івннѕ	总线保持高电平时 持续电流 (Bus Hold High Sustaining Current)	V _{IN} =0.7V _{CCIO}	-30µA	-	-
Івньо	总线保持低电平时 过载电流 (Bus Hold Low Overdrive Current)	0≤V _{IN} ≤V _{CCIO}	-	-	150µA
Івнно	总线保持高电平时 过 载 电 流 (BusHoldHigh Overdrive Current)	0≪V _{IN} ≪V _{CCIO}	-	-	-150µA
V _{ВНТ}	总线保持触发点时 电压(Bus hold trip points)		V _{IL} (MAX)	-	V _{IH} (MIN)
C1	I/O 电容 (I/O Capacitance)			5pF	8pF
	44 > >=	Vccio=3.3V, Hysteresis=L2H ^{[1],[2]}	-	200mV	-
V	输 入 迟 滞 (Hysteresis for	V _{CCIO} =2.5V, Hysteresis= L2H	-	125mV	-
V _{HYST}	Schmitt Trigger inputs)	V _{CCIO} =1.8V, Hysteresis= L2H	-	60mV	-
	pato)	Vccio=1.5V, Hysteresis= L2H	-	40mV	-

DS100-3.0 50(74)

名称	描述	条件	最小值	典型值	最大值
		V _{CCIO} =1.2V, Hysteresis= L2H	-	20mV	-
		Vccio=3.3V, Hysteresis= H2L ^{[1],[2]}	-	200mV	-
		V _{CCIO} =2.5V, Hysteresis= H2L	1	125mV	-
		V _{CCIO} =1.8V, Hysteresis= H2L	ı	60mV	-
		V _{CCIO} =1.5V, Hysteresis= H2L	-	40mV	-
		V _{CCIO} =1.2V, Hysteresis= H2L	1	20mV	-
		V _{CCIO} =3.3V, Hysteresis= HIGH ^{[1],[2]}	-	400mV	-
		Vccio=2.5V, Hysteresis= HIGH	-	250mV	-
		V _{CCIO} =1.8V, Hysteresis= HIGH	-	120mV	-
		V _{CCIO} =1.5V, Hysteresis= HIGH	-	80mV	-
		V _{CCIO} =1.2V, Hysteresis= HIGH	-	40mV	-

注!

- [1] Hysteresis="NONE", "L2H", "H2L", "HIGH"表示在 EDA 的 FloorPlanner 工具内设置 I/O Constraints 时的 Hysteresis 选项,设置方法详见 <u>SUG935,Gowin 设计物理约束指南</u>。
- [2]开启 L2H(low to high)选项表示 V_{IH} 被提高 V_{HYST}; 开启 H2L(high to low)选项表示 V_{IL} 被降低 V_{HYST}; HIGH 表示同时开启 L2H 和 H2L 选项,即 V_{HYST}(HIGH)= V_{HYST}(L2H) + V_{HYST}(L2H)。其示意图如下所示:

4.3.2 静态电流

表 4-9 静态电流

器件	名称	描述	器件类型	C7/I6	C6/I5	C5/I4	单位
	Icc	Core 电源电流(Vcc=1.2V)	LV	2.5	1.8	1.5	mA
GW1N-1	Iccio	I/O Bank 电源电流 (Vccio=2.5V)	LV	1	0.8	0.6	mA
	Icc + Iccx	Vccx 电源电流及 Core 电源 电流(Vccx=Vcc=3.3V)	UV	15	12	10	mA
GW1N-2	Iccio	I/O Bank 电源电流 (Vccio=2.5V)	UV	1.2	1	0.8	mA
GWTIN-2	Icc	Core 电源电流(Vcc=1.2V)	LV	3	2.5	2.2	mA
	Iccx	Vccx 电源电流(Vccx=3.3V)	LV	1.5	0.75	0.6	mA
	Iccio	I/O Bank 电源电流 (Vccio=2.5V)	LV	0.6	0.5	0.4	mA

DS100-3.0 51(74)

器件	名称	描述	器件类型	C7/I6	C6/I5	C5/I4	单位
	Icc + Iccx	Vccx 电源电流及 Core 电源 电流(Vccx=Vcc=3.3V)	UV	15	12	10	mA
GW1N-	Iccio	I/O Bank 电源电流 (Vccio=2.5V)	UV	1.2	1	0.8	mA
1P5	Icc	Core 电源电流(V _{CC} =1.2V)	LV	3	2.5	2.2	mA
	Iccx	Vccx 电源电流(Vccx=3.3V)	LV	1.5	0.75	0.6	mA
	Iccio	I/O Bank 电源电流 (Vccio=2.5V)	LV	0.6	0.5	0.4	mA
	Icc	Core 电源电流(Vcc=1.2V)	LV	3.4	2.8	2.4	mA
	Icc	Core 电源电流(Vcc=3.3V)	UV	20	18	16	mA
GW1N-4	Iccx	Vccx 电源电流(Vccx=3.3V)	LV/UV	1.4	0.9	0.7	mA
	Iccio	I/O Bank 电源电流 (Vccio=2.5V)	LV/UV	0.7	0.55	0.4	mA
	Icc	Core 电源电流(V _{CC} =1.2V)	LV	2.8	2.4	2	mA
	Icc	Core 电源电流(Vcc=3.3V)	UV	20	18	16	mA
GW1N-9	Iccx	Vccx 电源电流(Vccx=3.3V)	LV/UV	1.5	1.3	1	mA
	Iccio	I/O Bank 电源电流 (Vccio=2.5V)	LV/UV	0.9	0.7	0.5	mA

注!

表 4-9 中静态电流值为温度 25℃时的典型值。

4.3.3 编程下载电流

表 4-10 编程下载电流

器件	描述	器件类型	最大值(mA)
CWAN 4	编程 Flash 时 Core 电源电流(Vcc=1.2V)	LV 版本	4.8
GW1N-1	编程 Flash 时 I/O Bank 电源电流(Vccio=2.5V)	LV 版本	2.8
	编程 Flash 时 Core 电源电流(Vcc=1.2V)	LV 版本	2.19
GW1N-2	编程 Flash 时 Vccx 电源电流(Vccx=3.3V)	LV 版本	12
	编程 Flash 时 I/O Bank 电源电流(Vccio=2.5V)	LV 版本	2
	编程 Flash 时 Core 电源电流(Vcc=1.2V)	LV 版本	2.19
GW1N-1P5	编程 Flash 时 Vccx 电源电流(Vccx=3.3V)	LV 版本	12
	编程 Flash 时 I/O Bank 电源电流(Vccio=2.5V)	LV 版本	2
	编程 Flash 时 Core 电源电流(Vcc=1.2V)	LV 版本	2.19
GW1N-4	编程 Flash 时 Vccx 电源电流(Vccx=3.3V)	LV 版本	12
	编程 Flash 时 I/O Bank 电源电流(Vccio=2.5V)	LV 版本	2
	编程 Flash 时 Core 电源电流(Vcc=1.2V)	LV 版本	2.19
GW1N-9	编程 Flash 时 Vccx 电源电流(Vccx=3.3V)	LV 版本	12
	编程 Flash 时 I/O Bank 电源电流(Vccio=2.5V)	LV 版本	2

注!

表 4-10 中电流值为常温常压下进行编程下载的电流最大值。

DS100-3.0 52(74)

4.3.4 I/O 推荐工作条件

表 4-11 I/O 推荐工作条件

なわ	输出对应的	的 Vccio(V)		输入对应的	り VREF(V)	
名称	最小值	典型值	最大值	最小值	典型值	最大值
LVTTL33	3.135	3.3	3.6	-	-	-
LVCMOS33	3.135	3.3	3.6	-	-	-
LVCMOS25	2.375	2.5	2.625	-	-	-
LVCMOS18	1.71	1.8	1.89	-	-	-
LVCMOS15	1.425	1.5	1.575	-	-	-
LVCMOS12	1.14	1.2	1.26	-	-	-
SSTL15	1.425	1.5	1.575	0.68	0.75	0.9
SSTL18_I	1.71	1.8	1.89	0.833	0.9	0.969
SSTL18_II	1.71	1.8	1.89	0.833	0.9	0.969
SSTL25_I	2.375	2.5	2.645	1.15	1.25	1.35
SSTL25_II	2.375	2.5	2.645	1.15	1.25	1.35
SSTL33_I	3.135	3.3	3.6	1.3	1.5	1.7
SSTL33_II	3.135	3.3	3.6	1.3	1.5	1.7
HSTL18_I	1.71	1.8	1.89	0.816	0.9	1.08
HSTL18_II	1.71	1.8	1.89	0.816	0.9	1.08
HSTL15	1.425	1.5	1.575	0.68	0.75	0.9
PCI33	3.135	3.3	3.6	-	-	-
LVPECL33E	3.135	3.3	3.6	-	-	-
MLVDS25E	2.375	2.5	2.625	-	-	-
BLVDS25E	2.375	2.5	2.625	-	-	-
RSDS25E	2.375	2.5	2.625	-	-	-
LVDS25E	2.375	2.5	2.625	-	-	-
SSTL15D	1.425	1.5	1.575	-	-	-
SSTL18D_I	1.71	1.8	1.89	-	-	-
SSTL18D_II	1.71	1.8	1.89	-	-	-
SSTL25D_I	2.375	2.5	2.625	-	-	-
SSTL25D_II	2.375	2.5	2.625	-	-	-
SSTL33D_I	3.135	3.3	3.6	-	-	-
SSTL33D_II	3.135	3.3	3.6	-	-	-

DS100-3.0 53(74)

名称	输出对应的 Vccio(V)			输入对应的 V _{REF} (V)			
石 你	最小值	典型值	最大值	最小值	典型值	最大值	
HSTL15D	1.425	1.5	1.575	-	-	-	
HSTL18D_I	1.71	1.8	1.89	-	-	-	
HSTL18D_II	1.71	1.8	1.89	-	-	-	

4.3.5 单端 I/O DC 电气特性

表 4-12 单端 I/O DC 电气特性

名称	VIL		ViH		VoL	Vон	loL ^[1]	lон ^[1]
石柳	Min	Max	Min	Max	(Max)	(Min)	(mA)	(mA)
							4	-4
							8	-8
LVCMOS33	0.21/	0.01/	2.0V	3.6V	0.4V	Vccio-0.4V	12	-12
LVTTL33	-0.3V	0.8V	2.0 V	3.00			16	-16
							24	-24
					0.2V	V _{CCIO} -0.2V	0.1	-0.1
							4	-4
					0.4V	Vccio-0.4V	8	-8
LVCMOS25	-0.3V	0.7V	1.7V	3.6V	0.40	VCCIO-U.4 V	12	-12
							16	-16
					0.2V	V _{CCIO} -0.2V	0.1	-0.1
							4	-4
					0.4V	Vccio-0.4V	8	-8
LVCMOS18	-0.3V	0.35*V _{CCIO}	0.65*V _{CCIO}	3.6V			12	-12
					0.2V	Vccio-0.2V	0.1	-0.1
					0.41/	\/ 0 / \/	4	-4
LVCMOS15	-0.3V	0.35*Vccio	0.65*Vccio	3.6V	0.4V	Vccio-0.4V	8	-8
					0.2V	Vccio-0.2V	0.1	-0.1
					0.4V	V 0 4V	2	-2
LVCMOS12	-0.3V	0.35*V _{CCIO}	0.65*V _{CCIO}	3.6V	0.40	V _{CCIO} -0.4V	6	-6
					0.2V	Vccio-0.2V	0.1	-0.1
PCI33	-0.3V	0.3*Vccio	0.5*Vccio	3.6V	0.1*Vccio	0.9*Vccio	1.5	-0.5
SSTL33_I	-0.3V	V _{REF} -0.2V	V _{REF} +0.2V	3.6V	0.7	Vccio-1.1V	8	-8

DS100-3.0 54(74)

灯形	VIL		VIH		VoL	V _{OH}	I _{OL} [1]	I _{OH} ^[1]
名称	Min	Max	Min	Max	(Max)	(Min)	(mA)	(mA)
SSTL25_I	-0.3V	V _{REF} - 0.18V	V _{REF} +0.18V	3.6V	0.54V	Vcc10-0.62V	8	-8
SSTL25_II	-0.3V	V _{REF} -0.18V	V _{REF} +0.18V	3.6V	NA	NA	NA	NA
SSTL18_II	-0.3V	V _{REF} -0.125V	V _{REF} +0.125V	3.6V	NA	NA	NA	NA
SSTL18_I	-0.3V	V _{REF} -0.125V	V _{REF} +0.125V	3.6V	0.40V	Vccio-0.40V	8	-8
SSTL15	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	0.40V	Vccio-0.40V	8	-8
HSTL18_I	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	0.40V	Vccio-0.40V	8	-8
HSTL18_II	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	NA	NA	NA	NA
HSTL15_I	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	0.40V	Vccio-0.40V	8	-8
HSTL15_II	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	NA	NA	NA	NA

注!

同一个 Bank 所有 IO 的总的 DC 电流限制(包括 source 和 sink): 同一个 Bank 所有 IO 的总电流不能大于 n*8mA, n 表示该 Bank 被引出的 IO 数量。

4.3.6 差分 I/O DC 电气特性

表 4-13 差分 I/O DC 电气特性

名称	描述	测试条件	最小	典型	最大	单位
VINA, VINB	输入电压(Input Voltage)		0	-	2.15	V
Vсм	共模输入电压 (Input Common Mode Voltage)	Half the Sum of the Two Inputs	0.05	-	2.1	V
V _{THD}	差分输入门限(Differential Input Threshold)	Difference Between the Two Inputs	±100	-	±600	mV
I _{IN}	输入电流(Input Current)	Power On or Power Off	-	-	±20	μΑ
Vон	输出高电平 (Output High Voltage for V _{OP} or V _{OM})	R _T = 100Ω	-	-	1.60	V
VoL	输出低电平(Output Low Voltage for V _{OP} or V _{OM})	R _T = 100Ω	0.9	-	-	V
Vod	差模输出电压(Output Voltage Differential)	(V _{OP} - V _{OM}), R _T =100Ω	250	350	450	mV
ΔVod	差模输出电压的变化范围 (Change in Vo _D Between High and Low)		-	-	50	mV
Vos	输 出 零 漂 (Output Voltage Offset)	$(V_{OP} + V_{OM})/2$, $R_T = 100\Omega$	1.125	1.20	1.375	V

DS100-3.0 55(74)

名称	描述	测试条件	最小	典型	最大	单位
ΔVos	输出零漂变化(Change in Vos Between High and Low)		-	-	50	mV
Is	短路电流	V _{OD} = 0V 两路输 出短接	-	-	15	mA

4.4 AC 开关特性

4.4.1 CFU 开关特性

表 4-14 CFU 内部时序参数[1], [2]

器件	名称	描述	C7/I6		C6/I5		C5/I4		单位
奋件	石 柳	加 处	Min	Max	Min	Max	Min	Max	中世
	tLUT4_CFU	LUT4 延迟 (LUT4 delay)	0.412	0.594	0.556	0.802	0.695	1.002	ns
GW1N-1	tsr_cfu	置位/复位到寄存器输 出时间(Set/Reset to Register output)	0.648	1.268	0.875	1.712	1.094	2.140	ns
	tco_cfu	时钟到寄存器输出时间(Clock to Register output)	0.247	0.340	0.333	0.458	0.417	0.573	ns
	t _{LUT4_CFU}	LUT4 延迟 (LUT4 delay)	0.412	0.594	0.556	0.802	0.695	1.002	ns
GW1N- 2/GW1N- 1P5	tsr_cfu	置位/复位到寄存器输 出时间(Set/Reset to Register output)	0.648	1.268	0.875	1.712	1.094	2.140	ns
	tco_cfu	时钟到寄存器输出时间(Clock to Register output)	0.247	0.340	0.333	0.458	0.417	0.573	ns
	tLUT4_CFU	LUT4 延迟 (LUT4 delay)	0.412	0.594	0.556	0.802	0.695	1.002	ns
GW1N-4	t _{SR_CFU}	置位/复位到寄存器输出时间(Set/Reset to Register output)	0.648	1.268	0.875	1.712	1.094	2.140	ns
	tco_cfu	时钟到寄存器输出时间(Clock to Register output)	0.247	0.340	0.333	0.458	0.417	0.573	ns
	tLUT4_CFU	LUT4 延迟(LUT4 delay)	0.412	0.594	0.556	0.802	0.695	1.002	ns
GW1N-9	tsr_cfu	置位/复位到寄存器输出时间(Set/Reset to Register output)	0.648	1.268	0.875	1.712	1.094	2.140	ns

DS100-3.0 56(74)

器件	名称	描述	C7/I6		C6/I5		C5/I4		单位	
奋什	石 柳		Min	Max	Min	Max	Min	Max	+117	
	tco_cfu	时钟到寄存器输出时间(Clock to Register output)	0.247	0.340	0.333	0.458	0.417	0.573	ns	
	tLUT4_CFU	LUT4 延迟 (LUT4 delay)	0.412	0.594	0.556	0.802	0.695	1.002	ns	
GW1N- 1S	tsr_cfu	置位/复位到寄存器输 出时间(Set/Reset to Register output)	0.648	1.268	0.875	1.712	1.094	2.140	ns	
	tco_cfu	时钟到寄存器输出时间(Clock to Register output)	0.247	0.340	0.333	0.458	0.417	0.573	ns	

注!

- [1] min/max 数值是基于上升沿的延时数据。
- [2] LUT4 的数据是基于输入端口 I3->F 的延时数据

4.4.2 BSRAM 开关特性

表 4-15 BSRAM 时序参数

器件	名称	描述	C7/I6		C6/I5		C5/I4		单
命件	石 柳	细处	Min	Max	Min	Max	Min	Max	位
GW1N-1	t _{COAD_BSRAM}	BSRAM 读地 址/数据的时钟 到输出延时 (Clock to output time of read address/data)	2.56 4	2.56 4	3.46 0	3.46 0	4.32 5	4.325	ns
	tcoor_bsram	BSRAM 输出 寄存器的时钟 到输出延时 (Clock to output time of output register)	0.61	0.61	0.82	0.82	1.03	1.034	ns
GW1N-2/ GW1N-1P5	tcoad_bsram	BSRAM 读地 址/数据的时钟 到输出延时 (Clock to output time of read address/data)	2.56 4	2.56 4	3.46 0	3.46 0	4.32	4.325	ns

DS100-3.0 57(74)

RU /A-	カチャ	44.77	C7/I6		C6/I5		C5/I4		单
器件	名称	描述	Min	Max	Min	Max	Min	Max	位
	tcoor_bsram	BSRAM 输出 寄存器的时钟 到输出延时 (Clock to output time of output register)	0.61	0.61	0.82 7	0.82 7	1.03	1.034	ns
GW1N-4	tcoad_bsram	BSRAM 读地 址/数据的时钟 到输出延时 (Clock to output time of read address/data)	2.56 4	2.56 4	3.46 0	3.46 0	4.32 5	4.325	ns
	tcoor_bsram	BSRAM 输出 寄存器的时钟 到输出延时 (Clock to output time of output register)	0.61	0.61	0.82 7	0.82 7	1.03	1.034	ns
	tcoad_bsram	BSRAM 读地 址/数据的时钟 到输出延时 (Clock to output time of read address/data)	2.56 4	2.56 4	3.46 0	3.46 0	4.32 5	4.325	ns
GW1N-9	tcoor_bsram	BSRAM 输出 寄存器的时钟 到输出延时 (Clock to output time of output register)	0.61	0.61	0.82 7	0.82	1.03	1.034	ns
GW1N-1S	tcoad_bsram	BSRAM 读地址/数据的时钟到输出延时(Clock to output time of read address/data)	2.56 4	2.56 4	3.46 0	3.46 0	4.32 5	4.325	ns

DS100-3.0 58(74)

器件	名称	描述	C7/I6		C6/I5		C5/I4		单
			Min	Max	Min	Max	Min	Max	位
	tcoor_bsram	BSRAM 输出 寄存器的时钟 到输出延时 (Clock to output time of output register)	0.61	0.61	0.82	0.82	1.03	1.034	ns

注!

BSRAM 读地址/数据的时钟到输出延时是 bypass 模式的延时数据。

4.4.3 DSP 开关特性

表 4-16 DSP 时序参数

器件	名称	描述	C7/I6		C6/I5		C5/I4		X C
			Min	Max	Min	Max	Min	Max	单位
GW1N-1	tcoir_dsp	输入寄存器的时钟到输 出延时(Clock to output time of input register)	0.21 9	0.23 9	0.29 5	0.31	0.36 9	0.39	ns
	tcopr_dsp	流水寄存器的时钟到输 出延时(Clock to output time of pipeline register)	0.06	0.07 5	0.08	0.10	0.10	0.12 7	ns
	tcoor_dsp	输出寄存器的时钟到输 出延时(Clock to output time of output register)	0.03 4	0.03	0.04 6	0.05	0.05 7	0.06 5	ns
GW1N- 2/GW1N- 1P5	tcoir_dsp	输入寄存器的时钟到输 出延时(Clock to output time of input register)	0.21 9	0.23 9	0.29 5	0.31	0.36 9	0.39	ns
	tcopr_dsp	流水寄存器的时钟到输 出延时(Clock to output time of pipeline register)	0.06	0.07	0.08	0.10	0.10 6	0.12 7	ns
	tcoor_dsp	输出寄存器的时钟到输 出延时(Clock to output time of output register)	0.03 4	0.03	0.04 6	0.05	0.05 7	0.06 5	ns
GW1N-4	tcoir_dsp	输入寄存器的时钟到输 出延时(Clock to output time of input register)	0.21 9	0.23 9	0.29 5	0.31	0.36 9	0.39	ns
	tcopr_dsp	流水寄存器的时钟到输 出延时(Clock to output time of pipeline register)	0.06	0.07 5	0.08 5	0.10	0.10 6	0.12 7	ns

DS100-3.0 59(74)

器件	名称	描述	C7/I6		C6/I5		C5/I4		A C
			Min	Max	Min	Max	Min	Max	单位
	tcoor_dsp	输出寄存器的时钟到输 出延时(Clock to output time of output register)	0.03 4	0.03	0.04 6	0.05	0.05 7	0.06 5	ns
GW1N-9	tcoir_dsp	输入寄存器的时钟到输 出延时(Clock to output time of input register)	0.21 9	0.23 9	0.29 5	0.31	0.36 9	0.39	ns
	tcopr_dsp	流水寄存器的时钟到输 出延时(Clock to output time of pipeline register)	0.06	0.07	0.08	0.10	0.10 6	0.12 7	ns
	tcoor_dsp	输出寄存器的时钟到输 出延时(Clock to output time of output register)	0.03 4	0.03	0.04 6	0.05	0.05 7	0.06 5	ns
GW1N-1S	tcoir_dsp	输入寄存器的时钟到输 出延时(Clock to output time of input register)	0.21 9	0.23 9	0.29 5	0.31	0.36 9	0.39	ns
	tcopr_dsp	流水寄存器的时钟到输 出延时(Clock to output time of pipeline register)	0.06	0.07 5	0.08 5	0.10	0.10 6	0.12 7	ns
	tcoor_dsp	输出寄存器的时钟到输 出延时(Clock to output time of output register)	0.03 4	0.03	0.04 6	0.05	0.05 7	0.06 5	ns

4.4.4 Gearbox 开关特性

表 4-17 Gearbox 时序参数

器件	名称	描述	C7/I6		C6/I5		C5/I4		单位
			Min	Max	Min	Max	Min	Max	于世
GW1N- 1/4/9	FMAXIDDR	2:1Gearbox 输入 IO 最大串行速率	1	600	-	550	ı	500	Mbps
	FMAXIDES4	4:1 Gearbox 输入 IO 最大串行速率	1	800	-	750	ı	700	Mbps
	FMAXIDESx	8:1/10:1 Gearbox 输入 IO 最大串行 速率	ı	1000	-	900	ı	800	Mbps
	FMAXoddr	1:2Gearbox 输出 IO 最大串行速率	ı	600	-	550	1	500	Mbps
	FMAXoser4	1:4 Gearbox 输出 IO 最大串行速率	-	800	-	750	-	700	Mbps
	FMAXoserx	1:8/1:10 Gearbox 输出 IO 最大串行 速率	-	1000	-	900	-	800	Mbps

DS100-3.0 60(74)

器件 名称		描述	C7/I6	3	C6/I5		C5/I4		单位
拍门	石 柳	加处	Min	Max	Min	Max	Min	Max	千世
	FMAXIDDR	2:1Gearbox 输入 IO 最大串行速率	-	600	-	550	-	500	Mbps
	FMAXIDES4	4:1 Gearbox 输入 IO 最大串行速率	-	900	-	800	ı	700	Mbps
GW1N-	FMAXIDESx	8:1/10:1/16:1 Gearbox 输入 IO 最大串行速率	ı	1200	ı	1000	ı	900	Mbps
1P5/2	FMAXoddr	1:2Gearbox 输出 IO 最大串行速率	-	600	-	550	ı	500	Mbps
	FMAXoser4	1:4 Gearbox 输出 IO 最大串行速率	-	900	-	800	ı	700	Mbps
	FMAXoserx	1:8/1:10/1:16 Gearbox 输出 IO 最大串行速率	-	1200	-	1000	-	900	Mbps

注!

- LVDS IO 速度可以达到 1Gbps, 但是请注意 1:4 1:2 时候,内核速度可能达不到相应的速度。
- Drive=3.5 mA.

表 4-18 单端 IO Fmax

名称	Fmax						
石 柳	最小值(MHz)						
	DriverStrength = 4mA	DriverStrength > 4mA					
LVTTL33	150	300					
LVCMOS33	150	300					
LVCMOS25	150	300					
LVCMOS18	150	300					
LVCMOS15	150	200					
LVCMOS12	150	150					

注!

测试 loading 为 30pF 电容。

4.4.5 时钟和 I/O 开关特性

表 4-19 外部开关特性

器件	名称	C7/I6	C6/I5	C5/I4	单位
福 竹	石 柳	典型值	典型值	典型值	半 似
	HCLK Tree delay	1	1.2	1.4	ns
GW1N-1	PCLK Tree delay(GCLK0~5)	2.2	2.4	2.6	ns
	PCLK Tree delay(GCLK6~7)	2.4	2.7	2.9	ns

DS100-3.0 61(74)

42./A-	<i>57 ¥1</i> -	C7/I6	C6/I5	C5/I4	公
器件	名称	典型值	典型值	典型值	+ 単位
	Pin-LUT-Pin Delay	4	4.3	4.6	ns
	HCLK Tree delay	0.6	0.8	1.1	ns
GW1N-1P5	PCLK Tree delay(GCLK0~5)	1.8	2.1	2.4	ns
GW IN-IP5	PCLK Tree delay(GCLK6~7)	2.1	2.5	2.8	ns
	Pin-LUT-Pin Delay	2.5	3	3.5	ns
	HCLK Tree delay	0.6	0.8	1.1	ns
GW1N-2	PCLK Tree delay(GCLK0~5)	1.8	2.1	2.4	ns
GVV IN-2	PCLK Tree delay(GCLK6~7)	2.1	2.5	2.8	ns
	Pin-LUT-Pin Delay	2.5	3	3.5	ns
	HCLK Tree delay	0.8	1	1.2	ns
GW1N-4	PCLK Tree delay(GCLK0~5)	2	2.2	2.5	ns
GVV IN-4	PCLK Tree delay(GCLK6~7)	2.2	2.5	2.8	ns
	Pin-LUT-Pin Delay	4	4.2	4.5	ns
	HCLK Tree delay	0.8	1	1.2	ns
CWAN	PCLK Tree delay(GCLK0~5)	2	2.2	2.5	ns
GW1N-9	PCLK Tree delay(GCLK6~7)	2.2	2.5	2.8	ns
	Pin-LUT-Pin Delay	4	4.2	4.5	ns
	HCLK Tree delay	0.9	1.1	1.3	ns
CWAN 40	PCLK Tree delay(GCLK0~5)	2.1	2.4	2.6	ns
GW1N-1S	PCLK Tree delay(GCLK6~7)	2.3	2.6	2.8	ns
	Pin-LUT-Pin Delay	4.1	4.3	4.6	ns

DS100-3.0 62(74)

4.4.6 片内晶振开关特性

表 4-20 片内晶振特性参数

名称	说明 :		最小值	典型值	最大值
	日4日4公月11年末	GW1N-4	97.25MHz	105MHz	112.85MHz
	晶振输出频率 (0 ~ +85℃)	GW1N-1/1S	114MHz	120MHz	126MHz
f	(0 103 0)	GW1N-1P5/2/9	118.75MHz	125MHz	131.25MHz
f _{MAX}	晶振输出频率 (-40~+100℃)	GW1N-4	91.85MHz	105MHz	118.25MHz
		GW1N-1/1S	108MHz	120MHz	132MHz
	(-40 % 1 100 %)	GW1N-1P5/2/9	112.5MHz	125MHz	137.5MHz
t _{DT}	输出时钟占空比		43%	50%	57%
topJIT	输出时钟抖动		0.01UIPP	0.012UIPP	0.02UIPP

4.4.7 锁相环开关特性

表 4-21 锁相环特性参数

器件	速度等级	名称	最小值	最大值	单位
		CLKIN	3	400	MHz
	C7/I6	PFD	3	400	MHz
	CI/IO	VCO	400	900	MHz
		CLKOUT	3.125	450	MHz
		CLKIN	3	400	MHz
GW1N-1	C6/I5	PFD	3	400	MHz
GWIN-I	C0/15	VCO	400	900	MHz
		CLKOUT	3.125	450	MHz
	C5/I4	CLKIN	3	320	MHz
		PFD	3	320	MHz
		VCO	320	720	MHz
		CLKOUT	2.5	360	MHz
		CLKIN	3	400	MHz
	C7/I6	PFD	3	400	MHz
	CI/IO	VCO	400	1200	MHz
GW1N-1S		CLKOUT	3.125	600	MHz
		CLKIN	3	400	MHz
	C6/I5	PFD	3	400	MHz
		VCO	400	1200	MHz

DS100-3.0 63(74)

器件	速度等级	名称	最小值	最大值	单位
		CLKOUT	3.125	600	MHz
		CLKIN	3	320	MHz
	05/14	PFD	3	320	MHz
	C5/I4	VCO	320	960	MHz
		CLKOUT	2.5	480	MHz
		CLKIN	3	400	MHz
	07/10	PFD	3	400	MHz
	C7/I6	VCO	400	1000	MHz
		CLKOUT	3.125	500	MHz
		CLKIN	3	400	MHz
GW1N-4	00/15	PFD	3	400	MHz
GW1N-9	C6/I5	VCO	400	1000	MHz
		CLKOUT	3.125	500	MHz
	C5/I4	CLKIN	3	320	MHz
		PFD	3	320	MHz
		VCO	320	800	MHz
		CLKOUT	2.5	400	MHz
		CLKIN	3	400	MHz
	07/10	PFD	3	400	MHz
	C7/I6	VCO	400	800	MHz
		CLKOUT	3.125	800	MHz
		CLKIN	3	400	MHz
GW1N-1P5	00/15	PFD	3	400	MHz
GW1N-2	C6/I5	VCO	400	800	MHz
		CLKOUT	3.125	800	MHz
		CLKIN	3	320	MHz
	CEUA	PFD	3	320	MHz
	C5/I4	VCO	320	640	MHz
		CLKOUT	2.5	640	MHz

注!

[1]不同通道的最小输出频率可能不同,A 通道是最小 VCO 输出频率/128,即 3.125MHz / 2.5MHz; B/C/D 通道需要根据是否级联(参数)来判断,若不级联则和 A 通道一致,若级联则需再/128。

DS100-3.0 64(74)

4.5 用户闪存电气特性

4.5.1 DC 电气特性

 $(T_J = -40 \sim +100 \,^{\circ}\text{C}, V_{CC} = 0.95 \sim 1.05 \text{V}, V_{CCX} = 1.7 \sim 3.45 \text{V}, V_{SS} = 0 \text{V})$

表 4-22 GW1N-1/GW1N-1S 器件用户闪存 DC 电气特性

符号	描述	规格	单位			
1年5	抽坯	最小值	典型值	最大值	中亚	
Tj	结温	-40	25	100	$^{\circ}$	
llkg	漏电流	_	_	1 ^[1]	μΑ	
Isb		_	_	3 (Ta=25)		
ISD	1寸/ル电/ル	_	_	20 (Ta=85)	μA	
Icc0	空闲电流	_	_	1.3	mA	
		_	_	2 (Rmod=00)	mA	
lcc1	读操作电流	_	-	2.5 (Rmod=01)	mA	
		_	_	3 (Rmod=1x)	mA	
lcc2	页写入电流	_	_	2	mA	
Icc3	编程/擦除电流	_	_	3	mA	

注!

[1] Flash 的漏电流已包含在器件的漏电流中,详见表 4-4 热插拔特性。

表 4-23 GW1N-2/4/9 器件用户闪存 DC 电气特性(一)

符号	描述	规格	规格				
11) 5	抽处	最小值	典型值	最大值	单位		
Tj	结温	-40	25	125	$^{\circ}$		

DS100-3.0 65(74)

表 4-24 GW1N-2/4/9 器件用户闪存 DC 电气特性(二)[4]

名称	参数	最大值		单位	Wake-up	条件
石 柳	多奴	V _{CC} ^[3]	Vccx	千世	时间	ボ ロ
读 模 式 (w/l 25ns) ^[1]		2.19	0.5	mA	NA	最小时钟周期,占空比 100%, VIN = "1/0"
写模式	Icc1 ^[2]	0.1	12	mA	NA	-
擦除模式		0.1	12	mA	NA	-
页擦除模式		0.1	12	mA	NA	-
读模式静态电流 (25-50ns 之间)	Icc2	980	25	μА	NA	XE=YE=SE= "1",在 T=T _{acc} 到 T=50ns 之间,I/O 的电流为 0mA。T=50ns 之后,内部定时 器关闭读模式,I/O 的电流为待 机模式电流
待机模式	IsB	5.2	20	μΑ	0	Vss、Vccx和 Vcc

注!

- [1]这些数值为直流平均电流值,峰值电流值会高于该平均电流值。
- [2]Icc1 在 Tnew 不同的时钟周期计算。
 - 不允许 Tnew< Tacc
 - $T_{new} = T_{acc}$
 - T_{acc} < T_{new} 50ns: Icc1 (new) = (Icc1 Icc2)(T_{acc} / T_{new}) + Icc2
 - T_{new} >50ns: I_{CC1} (new) = (I_{CC1} I_{CC2})(T_{acc} / T_{new}) + 50ns* I_{CC2} / T_{new} +

IsB

- t > 50ns, $I_{CC2} = I_{SB}$
- [3]从 wake-up time 的零时刻开始 Vcc 必须大于 1.08V。
- [4] Flash 的漏电流已包含在器件的漏电流中,详见表 4-4 热插拔特性。

4.5.2 时序参数[1],[5],[6]

 $(T_J = -40 \sim +100 \,^{\circ}\text{C}, V_{CC} = 0.95 \sim 1.05 \text{V}, V_{CCX} = 1.7 \sim 3.45 \text{V}, V_{SS} = 0 \text{V})$

DS100-3.0 66(74)

表 4-25 GW1N-1/ GW1N-1S 器件用户闪存时序参数

/s/s □	4.44	规格			A A
符号	描述	最小值	正常值	最大值	单位
Taa	数据获取时间	_	_	38	ns
Тсу	读周期	43	_	_	ns
Taw	Aclk 高电平时间	10	_	_	ns
Tawl	Aclk 低电平时间	10	-	-	ns
Tas	建立时间	3	-	-	ns
Tah	保持时间	3	_	_	ns
Toz	Oe 拉低到高阻态	_	_	2	ns
Toe	Oe 拉高到 Dout	_	_	2	ns
Twcy	写周期	40	_	_	ns
Tpw	Pw 高电平时间	16	_	_	ns
Tpwl	Pw 低电平时间	16	-	-	ns
Tpas	页地址建立时间	3	_	_	ns
Tpah	页地址保持时间	3	-	-	ns
Tds	数据建立时间	16	_	_	ns
Tdh	数据保持时间	3	-	-	ns
Ts0	Seq0 周期	6	_	_	μs
Ts1	Seq1 周期	15	_	_	μs
Ts2p	Aclk 到 Pe 上升沿建立时间	5	-	10	μs
Ts3	Seq3 周期	5	-	10	μs
Tps3	Pe 下降沿到 Aclk 建立时间	60	-		μs
	Mode=1000 擦除时间	5.7	6	6.3	ms
Тре	Mode=1100 编程时间	1.9	2	2.1	ms
	Mode=11xx 预编程时间	190	200	210	us

表 4-26 GW1N-1P5/2/4/9 器件用户闪存时序参数

用户模式	参数	符号	最小值	最大值	单位
	WC1		-	25	ns
	TC		-	22	ns
访问时间[2]	ВС	T _{acc} ^[3]	-	21	ns
	LT		-	21	ns
	WC		-	25	ns
编程/擦除到数	据存储建立时间	T _{nvs}	5	-	μs
数据存储保持时间		T _{nvh}	5	-	μs
数据存储保持时	时间(整体擦除)	T _{nvh1}	100	-	μs

DS100-3.0 67(74)

用户模式参数	数	符号	最小值	最大值	単位
数据存储到编程建立时间		T _{pgs}	10	-	μs
编程保持时间		T _{pgh}	20	-	ns
编程时间		T _{prog}	8	16	μs
写准备时间		Twpr	>0	-	ns
擦除保持时间		T _{whd}	>0	-	ns
控制信号到写/擦除建立时间		T _{cps}	-10	-	ns
SE 到读操作建立时间		Tas	0.1	-	ns
SE 脉冲的高电平时间		T _{pws}	5	-	ns
地址/数据建立时间		Tads	20	-	ns
地址/数据保持时间		Tadh	20	-	ns
数据保持时间		T _{dh}	0.5	-	ns
读模式地址保持 时间 ^[3]	WC1	Tah	25	-	ns
	TC	-	22	-	ns
	ВС	-	21	-	ns
	LT	-	21	-	ns
	WC	-	25	-	ns
SE 脉冲低电平时间		T _{nws}	2	-	ns
恢复时间		T _{rcv}	10	-	μs
数据存储时间		$T_{hv}^{[4]}$	-	6	ms
擦除时间		Terase	100	120	ms
整体擦除时间		T _{me}	100	120	ms
掉电到待机模式的 Wake-up 时间		T _{wk_pd}	7	-	μs
待机保持时间		T _{sbh}	100	-	ns
Vcc 建立时间		T _{ps}	0	-	ns
Vccx 保持时间		T _{ph}	0	-	ns

注!

- [1]这些设定值可能会改变。
- [2]这些数值为仿真数据,在实际器件中会有改变。
- [3]在信号 XADR、YADR、XE 和 YE 信号有效后,T_{acc} 的开始时间为 SE 信号的上升 沿。读取的数据 DOUT 被保存直到在下一次有效的读操作开始。
- [4]T_{hv}时间为写操作开始到数据下一次擦除操作之前的累积时间,同一个地址在下一次擦除之前不能被写入两次;同一个存储单元在下一次擦除之前不能被写入两次。这种限制是基于安全考虑的。

DS100-3.0 68(74)

- [5]所有的波形都有 1ns 的上升沿时间和 1ns 的下降沿时间。
- [6]控制信号 X、YADR、XE 和 YE 信号需要至少保持 Tacc 的时间,Tacc 从 SE 的上升 沿处开始。

4.5.3 操作时序图(GW1N-1/GW1N-1S)

图 4-1 读操作模式

注!

读操作周期 Seq=0, Addr 信号包含 Ra, Ca, Rmod, Rbytesel。

图 4-2 写入页锁存模式

注!

写入页锁存周期 Seq=0, Mode=0000。

图 4-3 清除页锁存模式

注!

预编程 PEP 置位和将数据写入所有页的时序与清除页锁存模式时序参数相同,只是 MODE 值不同。

DS100-3.0 69(74)

图 4-4 高电平周期

4.5.4 操作时序图(GW1N-1P5/2/4/9)

图 4-5 用户闪存读操作时序

图 4-6 用户闪存编程操作时序

DS100-3.0 70(74)

4.6 编程接口时序标准

4.6 编程接口时序标准

NVSTR

GW1N 系列 FPGA 产品 GowinCONFIG 配置模式支持多达 7 种,包括自启动模式、双启动模式、MSPI 模式、SSPI 模式、CPU 模式、SERIAL模式、I²C Slave 模式,详细资料请参见 <u>UG290, Gowin FPGA 产品编程配</u>置手册。

DS100-3.0 71(74)

5 器件订货信息 5.1 器件命名

5 器件订货信息

5.1 器件命名

注!

- GW1N-1S 器件只支持 LV 版本。
- 关于器件详细的封装信息请参考 2.2 产品信息列表及 2.3 封装信息列表。

图 5-1 器件命名方法 - ES

DS100-3.0 72(74)

5 器件订货信息 5.1 器件命名

图 5-2 器件命名方法 - Production

注!

- 相同速度等级的小蜜蜂®(LittleBee®)家族器件和晨熙®家族器件速度不同。
- 高云器件速度等级采用双标标识,如 C7/I6,C6/I5等。芯片筛选采用的是工业级标准,所以同一芯片可以同时满足工业应用(I)和商业应用(C)。工业级最高温度 100℃,商业级最高温度 85℃,所以同一芯片如在商业级应用中满足速度等级 7,在工业级应用中速度等级则为 6。

DS100-3.0 73(74)

5 器件订货信息 5.2 器件封装标识

5.2 器件封装标识

高云半导体产品在芯片表面印制了器件信息,如图 5-3 所示。

图 5-3 器件封装标识示例

注!

- [1]上图右图中第一行与第二行均为 "Part Number"。
- [2] B 版本器件的 Date Code 后增加一位版本标识 "B"。
- [3] C 版本器件的 Date Code 后增加一位版本标识 "C"。

DS100-3.0 74(74)

