Name \_\_\_\_Chancheep Mahacharoensuk\_\_\_\_\_\_ID \_\_\_\_6288092\_\_[P1]

Part A: Basic Electronics
Part B: Voltage Divider

Part C: TinkerCAD
Part D: Fritzing

### **Part A: Basic Electronics**

### A1. Make the following conversions

- 1)  $3500 \, \mu A = ___3.5 ___ \, mA$
- 2)  $4.7 \text{ M}\Omega = 4700 \text{ k}\Omega$
- 3) 1510 kHz = \_\_\_1.51\_\_\_ MHz
- 4)  $0.3 \, \mu F = 300 \, nF$
- 5) 22 mA = \_\_\_22000\_\_\_ μA
- 6) 100 nF = \_\_100000\_\_\_\_ pF
- 7) 30000 nF = \_\_30\_\_\_ μF
- 8)  $150 \,\mu\text{H} = \__0.15 \,\__m\text{H}$
- 9)  $2200 \text{ k}\Omega = 2.2 \text{ M}\Omega$
- 10) 1.33 MHz = \_\_\_1330\_\_\_ kHz

Name \_\_\_\_Chancheep Mahacharoensuk\_\_\_\_\_\_ID \_\_\_\_6288092\_\_ [P2]

### A2. Write down the values and their colour codes of each given resistor.

#### Example

5 Bands:

1st Band: White, 2nd Band: Brown, 3rd Band: Brown, 4th Band: Red, 5th Band: Brown

The value: 91 K $\Omega$ , %Error: 1%, Range: 90090 – 91910  $\Omega$ 

| 1 <sup>st</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 4 <sup>th</sup> | 5 <sup>th</sup> | Value | %     | Pango      |  |
|-----------------|-----------------|-----------------|-----------------|-----------------|-------|-------|------------|--|
| Band            | Band            | Band            | Band            | Band            | value | Error | Range      |  |
| Red             | Red             | Brown           | -               | Gold            | 220   | 5     | 209-231 Ω  |  |
|                 |                 |                 |                 |                 | Ohm   |       |            |  |
| Brown           | Orange          | -               | -               | Brown           | 1K    | 1     | 990-1010 Ω |  |
|                 |                 |                 |                 |                 | Ohm   |       |            |  |

#### Colour Code used on Welwyn Band-marked Resistors

Through-hole and MELF style resistors with colour band marking use the following colour code (reference IEC60062):



Name \_\_\_\_Chancheep Mahacharoensuk\_\_\_\_\_\_ID \_\_\_\_6288092\_\_ [P3]

# A3: If any, consider series circuits

# Using Ohm's Law to calculate voltage flowing through each resistor

As the resistors are connected in series, the current that passes through both resistors is the same. But the voltage is not the same for both resisters. The input voltage of the circuit divides into both resisters. And the value of individual voltage depends on the resistance.



Figure 1: Two resistors are connected in series with the voltage source Vs

As shown in the above figure, two resistors R1 and R2 are connected in series with the voltage source Vs. The total current supplied by the source is I ampere (A). As all elements are connected in series, it will make a single loop and the current that passes through all elements is the same (I A).

The voltage across resistor  $R_1$  is  $V_{R1}$  and the voltage across resistor  $R_2$  is  $V_{R2}$ . And the total supplied voltage divides between both resistors. Hence, the total voltage is a sum of  $V_{R1}$  and  $V_{R2}$ .

$$V_S = V_{R1} + V_{R2} ... (2)$$

According to Ohm's Law, V = IR,

$$V_{R1} = IR_1 ... (3)$$

Similarly,

$$V_{R2} = IR_2 ... (4)$$

Therefore, substitute  $V_{R1}$  and  $V_{R2}$  in equation (2),

$$V_S = IR_1 + IR_2$$

$$V_S = I (R_1 + R_2)$$

$$I = V_S / (R_1 + R_2)$$

Now, put the value of current I in the equation (3) and (3=4),

$$V_{R1} = \{V_S / (R_1 + R_2)\} R_1$$

$$V_{R2} = \{V_S / (R_1 + R_2)\} R_2$$

**Exercise 1:** How much is the current, I, in a 500-kΩ resistor if its voltage is 25 V? Show your calculation.

**Solution:**  $V = IR 25 = I \times 500000 I = 25 / 500000 I = 5x10^-5A$ 

Name \_\_\_\_Chancheep Mahacharoensuk\_\_\_\_\_\_ID \_\_\_6288092\_\_[P4]

**Exercise 2:** How much voltage will be dropped across a 40 k $\Omega$  resistance whose current is 250  $\mu$ A? Show your calculation.

#### **Solution:**

V = IR

 $V = 250x10^{-6} x 40x10^{3}$ 

V = 10 V

#### Exercise 3:

Two resistors, 10 k $\Omega$  and 6.8 k $\Omega$ , connected in series with power supply 5V, find the following values.

- Current through each resistor
- Voltage dropped across each resistor

Show your calculation.



#### Solution:

$$I = VS / (R1 + R2)$$

$$I = 5 / (10x10^3 + 6.8x10^3 I = 5 / 16800$$

$$I = 297 \mu A$$

$$V1 = 2.97V$$

$$V2 = IR$$

$$V2 = 2.0196V$$

#### Exercise 4:

How much current does a 800-W coffee maker draw from the 220 V power line? Show your calculation.

#### **Solution:**

$$P = IV$$

$$I = 800 / 220$$

$$I = 3.63 A$$

| Name Chancheep Mahacharoensuk | ID | 6288092 [P5 |
|-------------------------------|----|-------------|
|-------------------------------|----|-------------|

#### Exercise 5:

Find the output voltage of each resistor where  $R_1$  is  $220\Omega$  and  $R_2$  is  $1k\Omega$ , and the input voltage is 9V.

### **Solution:**

Vs = I (R1 + R2) 9 = I (220 + 1000) I = 9 / 1220 I = 7377 μA

V1 = 9 / 1220 \* 220 V1 = 1.623V V2 = 9 / 1220 \* 1000 V2 = 7.377V

| Name Chancheep Mahacharoensuk | ID | 6288092 | [P6] |
|-------------------------------|----|---------|------|
|-------------------------------|----|---------|------|

#### Exercise 6:

Find the output voltage of each resistor where  $R_1$  is  $1k\Omega$  and  $R_2$  is  $220\Omega$ , and the input voltage is 12V.

#### **Solution:**

#### Exercise 7:

The input voltage is 5V, but the required output voltage is 3.3V, how much resistance value of resistors should be?

Solution: -

Name \_\_\_\_Chancheep Mahacharoensuk\_\_\_\_\_\_ID \_\_\_\_6288092\_\_ [P7]

# A4: Consider the "RED LED" datasheet

(https://www.alliedelec.com/m/d/6355b8aba0b01578df0bb7b871ceefd7.pdf), the LED can handle a current of 20 mA (forward current) and the forward voltage or the voltage drop is 2 V before it risks heating up. If the LED is connected to a 5 V supply, what value of a resistor should we place in series? Draw a circuit and show your calculation.



V = IR 2 = 20x10^-6 x R R = 1 / 10^-5

Name \_\_\_\_Chancheep Mahacharoensuk\_\_\_\_\_\_ID \_\_\_\_6288092\_\_ [P8]

### Part B: Voltage Divider

A voltage divider is a simple circuit which turns a large voltage into a smaller one. The output voltage that is a fraction of the input, can be calculated by using two series resistors. These are various types of potentiometers aka variable resistors which can be used to create an adjustable voltage divider.

#### **Schematic Circuit**

A voltage divider involves applying a voltage source across a series of two resistors.



Figure 2: Examples of voltage divider schematics. Shorthand, longhand, resistors at same/different angles, etc.

The resistor closest to the input voltage  $(V_{in})$  is  $R_1$ , and the resistor closest to ground is  $R_2$ . The voltage drop across  $R_2$  is called  $V_{out}$ , that is the divided voltage.

#### **Vout Computation**

The voltage divider equation assumes that the three values are already known, the input voltage  $(V_{in})$ , and both resistor values  $(R_1 \text{ and } R_2)$ . Given those values, we can use this equation to find the output voltage  $(V_{out})$  as followed equation.

$$V_{out} = V_{in} * (R2 / (R1 + R2)) ... (1)$$

This equation states that the output voltage is directly proportional to the input voltage and the ratio of  $R_1$  and  $R_2$ .

These are simplifications that make evaluating a voltage dividing circuit just a little easier.

- First, if R<sub>2</sub> and R<sub>1</sub> are equal then the output voltage is half of the input, regardless of the resistors' values.
- If R<sub>2</sub> is much larger than R<sub>1</sub>, then the output voltage will be very close to the input. There will be very little voltage across R<sub>1</sub>.
- Conversely, if R<sub>2</sub> is much smaller than R<sub>1</sub>, the output voltage will be tiny compared to the input.
   Most of the input voltage will be across R<sub>1</sub>.

Name \_\_\_\_Chancheep Mahacharoensuk \_\_\_\_\_ID \_\_\_6288092\_\_[P9]

#### Exercise 1: If R<sub>1</sub> is equal R<sub>2</sub>,

Find the divider voltage, when there are two resistors of  $500\Omega$  and the input voltage is 5V.

#### **Solution:**

$$V_{in} = 5V$$

$$R_1 = R_2 = 500\Omega$$

According to the Voltage Divider Equation,

$$V_{\text{out}} = V_{\text{in}} * (R2 / (R1 + R2))$$
  
= 5 x (500 / 500 + 500))  
= 2.5V

#### Exercise 2: If R<sub>2</sub> is larger than R<sub>1</sub>,

Find the divider voltage, when there are two resistors valued 500 $\Omega$  and 1k $\Omega$ , and the input voltage is 9V.

#### **Solution:**

$$V_{in} = 5V$$
 
$$R_1 = 500\Omega$$
 
$$R_2 = 1k\Omega = 1000\Omega$$

According to the Voltage Divider Equation,

```
V_{out} = V_{in} * (R2 / (R1 + R2))
= 5 \times (500 / (500 + 1000))
= 1.67V
```

#### Exercise 3: If R<sub>2</sub> is smaller than R<sub>1</sub>,

Find the divider volage, when there are two resistors valued  $1k\Omega$  and  $500\Omega$ , and the input voltage is 12V.

#### **Solution:**

$$V_{in} = 5V$$
 
$$R_1 = 1k\Omega = 1000\Omega$$
 
$$R_2 = 500\Omega$$

According to the Voltage Divider Equation,

```
V_{out} = V_{in} * (R2 / (R1 + R2))
= 5 x (1000 / (500 + 1000))
= 3.33V
```

Name \_\_\_\_Chancheep Mahacharoensuk \_\_\_\_\_ID \_\_\_6288092\_ [P10]

#### Part C: TinkerCAD

Create your personal at "https://www.tinkercad.com/".



Go to "Circuits" tab and click it. At there you can draw schematic and make simulation of your electronic circuit.



In the Tinkercad, you can share your circuit design with other people by clicking "Sent To" tab and then click "Invite People" button. At there you can see your Tinkercad circuit link which you can share to other people.

Name \_\_\_\_Chancheep Mahacharoensuk\_\_\_\_\_ID \_\_\_\_6288092\_ [P11]



Name \_\_\_\_\_Chancheep Mahacharoensuk\_\_\_\_\_\_\_\_ID \_\_\_\_ID \_\_\_\_6288092\_ [P12]

**Exercise 1:** Set up the voltage divider circuit as the following diagram in Tinkercad, where  $V_S$  is 9V (used 9V battery). Define  $R_1100~\Omega$  and another  $R_2$  as POT. Find the value of  $R_2$  in order to obtain Vout = 3.3V. Let's use "multimeters" to check the voltage of each resistor.



Example:



Show your result with screenshot and program.

 $R_2 = 1000 \text{ k}\Omega$ 



Your Tinkercad URL: <a href="https://www.tinkercad.com/things/9InmRPGaDgP-sizzling-vihelmo/editel?sharecode=Bgbcegkuf75YGLJMBZi3JvpupcQZwQ-RtjWZxC7rZcw">https://www.tinkercad.com/things/9InmRPGaDgP-sizzling-vihelmo/editel?sharecode=Bgbcegkuf75YGLJMBZi3JvpupcQZwQ-RtjWZxC7rZcw</a>

Name \_\_\_\_Chancheep Mahacharoensuk \_\_\_\_\_ID \_\_\_6288092\_ [P13]

**Exercise 2:** Draw the following circuit at Tinkercad. Find out the output volage of LED and resistor using multimeter.

### Components:

Arduino Uno R3

Breadboard

Resistors 220  $\Omega$ 

LED

Two multimeters



Show your result with screenshot and program.



Your Tinkercad URL: <a href="https://www.tinkercad.com/things/apS5tJsa6be-smashing-kieran-gaaris/editel?sharecode=8y4Stjj3IFxEClDIIXJHlv3OJm3TV2n8zgNrQQ7OYWI">https://www.tinkercad.com/things/apS5tJsa6be-smashing-kieran-gaaris/editel?sharecode=8y4Stjj3IFxEClDIIXJHlv3OJm3TV2n8zgNrQQ7OYWI</a>

Name \_\_\_\_\_Chancheep Mahacharoensuk\_\_\_\_\_\_\_\_\_\_\_\_ID \_\_\_\_\_ID \_\_\_\_6288092\_ [P14]

**Exercise 3:** Draw the following circuit at your Tinkercad.

Components:

Arduino Uno R3

Breadboard

Three Resistors each 220 Ω

**RGB LED** 



Copy the following code at the coding section.

```
#define R 2
#define G 4
#define B 3

void setup() {
    pinMode(R, OUTPUT);
    pinMode(G, OUTPUT);
    pinMode(B, OUTPUT);
}

void loop() {
    analogWrite(R, random(255));
    analogWrite(G, random(255));
    analogWrite(B, random(255));
    delay(200);
}
```

Name \_\_\_\_Chancheep Mahacharoensuk \_\_\_\_\_ID \_\_\_6288092\_ [P15]

If you change the "delay" value in the code from 200 to 1000, What will happen?

Ans: it will delay the led to change the color.

Show your result with screenshot and program.



Your Tinkercad URL: <a href="https://www.tinkercad.com/things/5nP2721Vkdh-bodacious-leelo-waasa/editel?sharecode=4haGSmPMVcnt42vFoLen8UKRkEgo4T7LsMeo7m-TdFI">https://www.tinkercad.com/things/5nP2721Vkdh-bodacious-leelo-waasa/editel?sharecode=4haGSmPMVcnt42vFoLen8UKRkEgo4T7LsMeo7m-TdFI</a>

Name \_\_\_\_Chancheep Mahacharoensuk \_\_\_\_\_ID \_\_\_6288092\_ [P16]

**Exercise 4**: Draw the following circuit at your Tinkercad.

Components:

Breadboard

Arduino Uno R3

Temperature Sensor [TMP36]



Copy the following code at the coding section. Understand the code and answer the question.

```
int baselineTemp = 0;
int celsius = 0;
int fahrenheit = 0;
void setup()
 pinMode(A0, INPUT);
 Serial.begin(9600);
 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);
 pinMode(4, OUTPUT);
}
void loop()
 baselineTemp = 40;
 celsius = map(((analogRead(A0) - 20) * 3.04), 0, 1023, -40, 125);
 fahrenheit = ((celsius * 9) / 5 + 32);
 Serial.print(celsius);  // L1
 Serial.print(" C, ");
                            // L2
 Serial.print(fahrenheit); // L3
 Serial.println("F"); // L4
 delay(1000);
```

Check the serial monitor and what is the output result.

Please change the program L1-L4 to print the output result in one line like "XX degree Celsius = XX degree Fahrenheit".

Show your result with screenshot and program.



Your Tinkercad URL: <a href="https://www.tinkercad.com/things/3n7NBXBNIvq-surprising-gaaris/editel?sharecode=Jdaf">https://www.tinkercad.com/things/3n7NBXBNIvq-surprising-gaaris/editel?sharecode=Jdaf</a> u4-GlDsrogDXh7GICDvujFbB4-kGhj7xrVRcZc

Name \_\_\_\_Chancheep Mahacharoensuk \_\_\_\_\_ID \_\_\_6288092\_ [P18]

# Part D: Fritzing

Sign up a new account for Fritzing at here "https://fritzing.org/" and then download it for your respective operating system.

#### **Exercise**

Draw the following circuits in fritzing.



Answer: Your circuit screenshot in Firtzing from both breadboard and schematic views.



Name \_\_\_\_Chancheep Mahacharoensuk\_\_\_\_\_ID \_\_\_\_6288092\_[P19]

