Detecting linguistic variation with geographic sampling

Ezequiel Koile, George Moroz

Linguistic Convergence Laboratory, NRU HSE

... 2020

Presentation is available here: tinyurl.com/y7kjsp67

Introduction

Our approach

Simulated data

Introduction

- Geolectal variation is often present in settings where one language is spoken across a vast geographic area (Labov [1963]).
- It can be found in phonological, morphosyntactic, and lexical features.
- Often overlooked by linguists (Dorian [2010]).

ADD SOME MAPS

The problem

 Let us consider a geolectal continuum formed by a group of small vilages (Chambers and Trudgill [1998])

FLAT MAP OF VILLAGES

• We are interested in spotting variation of a certain parameter among the lects spoken on these villages

MAP OF FEATURE ON VILLAGES

- We will very unlikely be able to conduct fieldwork in each single village. Therefore, we need to choose a *sample* of locations.
- Research Question: How to choose the sample of villages to survey?
 - 1 How many villages is enough for spotting variation?
 - 2 Given an amount of sampled villages, how to decide which ones are representative of our population?

Introduction

Our approach

Simulated data

Our approach

- We assume that we want to find the distribution of variation for one feature, and we try different ways of choosing the sampled villages for finding it:
- As we assume we don't have any data beyond the geographic location of each village, we use these locations for building our sample
- We generate clusters with different algorithms (k-means, hierarchical clustering) and pick our sampled locations based on them (package stats, Team et al. [2013]).
- We compare our results with random sampling for two different scenarios:
 - Binary categories for simulated data with different distributions
 - Multiple categorical data for Circassian languages

Introduction

Our approach

Simulated data

Simulated data

- total number of locations (N): 30, 60, 90, 120
- type of spatial relations:
 - random
 - two more or less separable regions
 - central and periphery
- proportion of variation in the explored variable (p): 0.1, 0.2, 0.3, 0.4,
 0.5
- amount of clusters (k): 2, ... N/2
- percantage of observations taken from each cluster (r): 0.1, 0.2, ...

From those values we could derive a number of sampled locations (n):

$$n = N \times r$$

Example of different number of locations (N)

Example of different type of spatial relations

Example of different proportions of variation in the explored variable (p)

Introduction

Our approach

Simulated data

References I

- Chambers, J. K. and Trudgill, P. (1998). *Dialectology*. Cambridge University Press.
- Dorian, N. C. (2010). *Investigating variation: The effects of social organization and social setting.* Oxford University Press.
- Labov, W. (1963). The social motivation of a sound change. *Word*, 19(3):273–309.
- Team, R. C. et al. (2013). R: A language and environment for statistical computing.