

Vector Institute Workshop, Feb 10, 2023

Presenters:
Yubo Gao < ybgao@centml.ai >
Xin Li < xin@centml.ai >
CentML Inc.

"Why are my jobs so slow?"

Performance engineering is complex and multifaceted

- Job scheduler
- Host (CPU) side bottleneck
- Device (GPU) side bottleneck

Low throughput is bad for everyone:

- a. Leads to resource underutilization and resource waste
- b. Training jobs runs slower

How much can under-utilization cost us?

A lot!

How to improve the utilization of my DL jobs?

- 1. System-level optimizations
 - a. Profiling to understand the performance bottlenecks
 - b. Optimize the bottlenecks with different techniques
 - c. Iterate
- 2. Use the right hardware resources and GPU

(this only scratches the surface of all possible optimizations that one can apply)

Agenda

- Preparation: Install VSCode extension for profiling and performance prediction
 - We are going to use <u>Skyline</u> and <u>Habitat</u>, open-source DL tools integrated with <u>VSCode</u>
- Hands-on iterative profiling and optimization
 - Using <u>Habitat</u> to select the right hardware
 - Walk through an example of image classification training (<u>link to repo</u>)
 - Profile, optimize (*x6*)
- 3. Additional optimizations and ideas
- 4. Q/A + Discussion

Preparation

- If you have VSCode with Remote SSH access to your own workstation
 - Follow the instructions found in docs.centml.ai
- If you want to use the tools on Vector's cluster
 - Follow the instructions on <u>github</u>
- If you want to check it out
 - Use a VM hosted on <u>centml-vms.dev</u>

Demo entML

Aren't more powerful GPUs better?

Not all the time! Not always a good to Walt for the A40.

Aren't more powerful GPUs better?

GPU Runtime Predictor (Habitat)

Pick the best GPU for your training job, whether it is:

- Deciding which new GPU to purchase for your local workstation
- Which cloud GPU instance to pick
- Which cluster GPU to queue up for at Vector

Tedious to benchmark model on all the available GPUs.

Which GPUs are supported?

Generation \ Use Case	Desktop/Consumer	Workstation/Server
Pascal	GTX1080Ti	Quadro P4000 P4 P100
Volta		V100
Turing	RTX2070 RTX2080Ti	Quadro RTX4000
Tesla		T4
Ampere	RTX3090	A100 A40 A4000
Hopper		H100 (soon?)

- Beta

- Deprecated / Not available

How accurate is Habitat?

Deploying to the cloud

Close integration with Skyline

Performance predictions provided as part of the VSCode extension.

<Add screenshot of Habitat here>

CentML Tools (DeepView)

Interactive Profiler (Skyline)

Identifies performance bottlenecks

Enables rapid iterative profiling

Quantifies energy consumption and environmental impacts of training jobs.

Runtime Predictor (Habitat)

Predicts a deep neural network's training iteration execution time on a different GPU.

Recommends the most cost/time effective hardware option for your workload

Additional Optimizations: Horizontal Fusion

Horizontally fused training array for efficient training

 Best for training small models + hyper-parameter tuning

Additional Optimizations: Tensor Compiler (Hidet)

GitHub

> github.com/hidet-org/hidet

Documentation

> docs.hidet.org

Academic Paper

> Hidet: Task-Mapping
Programming Paradigm for Deep
Learning Tensor Programs (to
appear in ASPLOS '23)

Thank you!

Check us out at centml.ai

Email us at ybgao@centml.ai xin@centml.ai

Backup Slides

Comparisons of Different Torch Dynamo Backends

Models: Torch Hub

torchvision: all CNNs

transformers: bert & gpt2

bert: bert-base-uncased

Data Type: float32

Input Size:

Batch Size = 1

Sequence length = 128 (bert & gpt2)

Hardware: NVIDIA RTX 3090

We are still actively working on optimizing the performance.

optimize the model with hidet provided backend 'hidet'
model_hidet = torch.compile(model, backend='hidet')

Customer Success

Speedup vs. others, RTX3090

Framework

Roberta Glue Benchmark ColA Text Classification (Nvidia A40 GPU + AMD CPU)

Hidet Script

```
with hidet.lang.script module() as script module:
    @hidet.lang.script
    def matmul_kernel(
        a_ptr: ~float32, # ~ means "pointer to", similar to "*"
        b_ptr: ~float32,
        c_ptr: ~float32,
        m_size: int32,
       n_size: int32,
        k_size: int32,
    ):
        attr.func name = 'matmul kernel'
        attr.cuda_block_dim = num_threads
        attr.cuda_grid_dim = (
            (m_size + block_m_size - 1) // block_m_size,
            (n_size + block_n_size - 1) // block_n_size,
        a = as_tensor_pointer(a_ptr, float32, [m_size, k_size])
        b = as_tensor_pointer(b_ptr, float32, [k_size, n_size])
        c = as_tensor_pointer(c_ptr, float32, [m_size, n_size])
        smem_a = tensor('shared', float32, shape=[block_m_size,
        smem b = tensor('shared', float32, shape=[block k size,
        reas c = tensor(
            scope='register',
            dtype=float32,
```

Snapshot of Hidet Script

(See the documentation for a complete example)

Compared with Triton:

- Both translate python ast;
- Both support tuning;
- Programming model:
 - Hidet Script: thread
 - Triton: thread block
- Complexity:
 - CUDA C: +++
 - Hidet Script: ++
 - o Triton: +
- Optimization Expression Ability:
 - CUDA C with PTX asm: +++
 - Hidet Script: ++
 - Triton: +

Task-mapping is the main contribution of our paper, which greatly simplifies tensor program writing and has implemented in Hidet Script.

What We Need

- 1. Not necessarily a PyTorch "feature"
 - a. But we'd still appreciate feedback from PyTorch developers & community.
- 2. Co-marketing with PyTorch 2.0 release
 - a. Promoting both Hidet and Dynamo (and how flexible it is to add custom backend)
 - b. Provide another backend for PyTorch users to choose.
- 3. Backend registration API
 - **a.** https://github.com/pytorch/pytorch/issues/91824