Probabilistic Inference via Weighted Model Counting

Algorithms, Encodings, and Random Instances

Paulius Dilkas

15th June 2021

The Computational Problem of Probabilistic Inference

ProbLog

```
:: burglary.
0.001
0.002 :: earthquake.
0.95 · · alarm
                :- burglary, earthquake,
0.94 :: alarm :- burglary, \+ earthquake.
0.29 :: alarm :- \+ burglary, earthquake.
0.001 :: alarm :- \+ burglary, \+ earthquake.
0.9
     :: iohnCalls :- alarm.
0.05
     :: johnCalls :- \+ alarm.
0.7
     :: maryCalls :- alarm.
0.01
     :: marvCalls :- \+ alarm.
```

Bayesian Network

BLOG

```
random Boolean Burglary ~ BooleanDistrib (0.001); random Boolean Earthquake ~ BooleanDistrib (0.002); random Boolean Alarm ~ if Burglary then if Earthquake then BooleanDistrib (0.95) else BooleanDistrib (0.94) else if Earthquake then BooleanDistrib (0.29) else BooleanDistrib (0.001); random Boolean JohnCalls ~ if Alarm then BooleanDistrib (0.9) else BooleanDistrib (0.05); random Boolean MaryCalls ~ if Alarm then BooleanDistrib (0.7) else BooleanDistrib (0.7)
```

Markov Random Field

The Computational Problem of Probabilistic Inference

ProbLog :: burglary. 0.001 0.002 :: earthquake. 0.95 :: alarm :- burglary, earthquake, 0.94 :: alarm :- burglary, \+ earthquake. 0.29 :: alarm :- \+ burklary, earthquake. 0.001 :: alarm :- \+ burglary , \+ eart \uake. 0.9 :: iohnCalls :- alarm. 0.05 :: johnCalls :- \+ alarm. 0.7 :: maryCalls :- alarm. 0.01 :: marvCalls :- \+ alarm. **WMC BLOG** random Boolean Earthquake ~ BooleanDistrib(0.002); random Boolean Alarm ~ if Burglary then if Earthquake then Boolean Distrib (0.95) else Boolean Distrib (0.94) else if Earthquake then Boolean Distrib (0.29) else Boolean Distrib (0.001): random Boolean JohnCalls ~ if Alarm then Boolean Distrib (0.9) else Boolean Distrib (0.05): random Boolean MaryCalls ~ if Alarm then Boolean Distrib (0.7) else Boolean Distrib (0.01):

Burglary Earthquake Alarm JohnCalls MaryCalls

Weighted Model Counting (WMC)

- Generalises propositional model counting (#SAT)
- Applications:
 - graphical models
 - probabilistic programming
 - neural-symbolic artificial intelligence

$$w(x) = 0.3, \ w(\neg x) = 0.7, w(y) = 0.2, \ w(\neg y) = 0.8$$

$$WMC(x \lor y) = w(x)w(y) + w(x)w(\neg y) + w(\neg x)w(y) = 0.44$$

- 1 The UAI Paper: Weighted Model Counting with Conditional Weights for Bayesian Networks
- 2 The SAT Paper: Weighted Model Counting Without Parameter Variables
- 3 The Next Paper: Parameterized Complexity of Weighted Model Counting in Theory and Practice
- 4 Concluding Thoughts

- 1 The UAI Paper: Weighted Model Counting with Conditional Weights for Bayesian Networks
- 2 The SAT Paper: Weighted Model Counting Without Parameter Variables
- 3 The Next Paper: Parameterized Complexity of Weighted Model Counting in Theory and Practice
- 4 Concluding Thoughts

An Alternative Way to Think About WMC

- Let V be the set of variables.
- Then 2^{2^V} is the Boolean algebra of propositional formulas.

Definition

A measure is a function $\mu: 2^{2^V} \to \mathbb{R}_{>0}$ such that:

- $\mu(\perp) = 0;$
- $\mu(x \lor y) = \mu(x) + \mu(y)$ whenever $x \land y = \bot$.

Observation

WMC corresponds to the process of calculating the value of $\mu(x)$ for some $x \in 2^{2^V}$.

Experimental Results

Algorithm & Encoding

- Ace + cd05
- - Ace + cd06
- - Ace + d02
- ADDMC + bklm16
 - ADDMC + cw
- ADDMC + d02
 - ADDMC + sbk05
- c2d + bklm16
- -- Cachet + sbk05

- 1 The UAI Paper: Weighted Model Counting with Conditional Weights for Bayesian Networks
- 2 The SAT Paper: Weighted Model Counting Without Parameter Variables
- 3 The Next Paper: Parameterized Complexity of Weighted Mode Counting in Theory and Practice
- 4 Concluding Thoughts

Formalising the Intuition from Before

For any propositional formula ϕ over a set of variables X and $p,q\in\mathbb{R}$, let $[\phi]_q^p\colon 2^X\to\mathbb{R}$ be the pseudo-Boolean function defined as

$$[\phi]_q^p(Y) \coloneqq egin{cases} p & ext{if } Y \models \phi \ q & ext{otherwise} \end{cases}$$

for any $Y \subseteq X$.

Definition (Pseudo-Boolean Projection (PBP))

A PBP instance is a tuple (F, X, ω) , where X is the set of variables, F is a set of two-valued pseudo-Boolean functions $2^X \to \mathbb{R}$, and $\omega \in \mathbb{R}$ is the scaling factor.

Example

- Indicator variable: x
- Parameter variables: p, q
- Weights: w(p) = 0.2, w(q) = 0.8, and $w(\neg p) = w(\neg q) = 1$

WMC Clause

 $\neg x$

- Indicator variable: x
- Parameter variables: p, q
- Weights: w(p) = 0.2, w(q) = 0.8, and $w(\neg p) = w(\neg q) = 1$

WMC Clause	In CNF
$\neg x \Rightarrow p$	$x \lor p$
$p \Rightarrow \neg x$	$\neg x \lor \neg p$
$x \Rightarrow q$	$\neg x \lor q$
$q \Rightarrow x$	$x \vee \neg q$
$\neg x$	$\neg X$

- Indicator variable: x
- Parameter variables: p, q
- Weights: w(p) = 0.2, w(q) = 0.8, and $w(\neg p) = w(\neg q) = 1$

WMC Clause	In CNF	Pseudo-Boolean Function
$\neg x \Rightarrow p$	$x \lor p$	$[\neg x]_1^{0.2}$
$p \Rightarrow \neg x$	$\neg x \lor \neg p$	
$x \Rightarrow q$	$\neg x \lor q$	$[x]_1^{0.8}$
$q \Rightarrow x$	$x \vee \neg q$	
$\neg x$	$\neg X$	$[\neg x]_0^1$

- Indicator variable: x
- Parameter variables: p, q
- Weights: w(p) = 0.2, w(q) = 0.8, and $w(\neg p) = w(\neg q) = 1$

WMC Clause	In CNF	Pseudo-Boolean Function	
$\neg x \Rightarrow p$	$x \lor p$	$[\neg x]_1^{0.2}$	
$p \Rightarrow \neg x$	$\neg x \lor \neg p$. 10.0	$[x]_{0.2}^{0.8}$
$x \Rightarrow q$	$\neg x \lor q$	$[x]_1^{0.8}$	
$q \Rightarrow x$	$x \vee \neg q$	r 11	r 11
¬ <i>X</i>	$\neg x$	$[\neg x]_0^1$	$[\neg x]_0^1$

- 1 The UAI Paper: Weighted Model Counting with Conditional Weights for Bayesian Networks
- 2 The SAT Paper: Weighted Model Counting Without Parameter Variables
- 3 The Next Paper: Parameterized Complexity of Weighted Model Counting in Theory and Practice
- 4 Concluding Thoughts

Plan for the Next Paper

Parameterized Complexity

Cachet: $2^{\mathcal{O}(w_b)} n^{\mathcal{O}(1)}$ (*n* is the number of variables, and w_b is the branch width).

c2d: $\mathcal{O}(mw2^w)$ (*m* is the number of clauses, and *w* is the primal treewidth).

DPMC: $\mathcal{O}(4^w nm)$ (my result, and the 4^w part is tight).

Empirical Study on Random Instances

- New random model for 3-CNF formulas (done)
- Running experiments (almost done)
- Plots and writing (some disorganised notes)

- 1 The UAI Paper: Weighted Model Counting with Conditional Weights for Bayesian Networks
- 2 The SAT Paper: Weighted Model Counting Without Parameter Variables
- 3 The Next Paper: Parameterized Complexity of Weighted Mode Counting in Theory and Practice
- 4 Concluding Thoughts

How Everything Fits Together

- My thesis is centered around two ideas:
 - Manipulating more expressive representations can lead to more efficient algorithms (c.f., cutting planes vs. resolution in SAT).
 - Random problem instances can help reveal fundamental differences in how algorithms behave in practice.
- UAI'21 and SAT'21 papers address the first idea.
 - There is no reason for weights to only be defined on literals (and there is no reason for a clause to be a just clause).
- CP'20 and the next paper undertake the second idea.
 - Random probabilistic logic programs and random 3-CNF formulas.
- Future work: perhaps tackle the first-order setting.