

Winning Space Race with Data Science

KYRI CHANDRAKANTH 24-JULY-2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion

Executive Summary

• Summary of methodologies

Data collection

Data wrangling

EDA with data visualization

EDA with SQL

Building an interactive map with folium

Building a Dashboard with plotly Dash

Predictive analysis (Classification)

Summary of all results

EDA results

Interactive analytics

Predictive analysis

Introduction

- Project background and context
 - SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage.
- Problems you want to find answers
 - The project task is to predicting if the first stage of the SpaceX Falcon 9 rocket will land successfully

Methodology

Executive Summary

- · Data collection methodology:
 - SpaceX Rest API
 - · Web Scrapping from Wikipedia
- Perform data wrangling
 - One Hot Encoding data fields for Machine Learning and data cleaning of null values and irrelevant columns
- Perform exploratory data analysis (EDA) using visualization and SQL
- · Perform interactive visual analytics using Folium and Plotly Dash
- · Perform predictive analysis using classification models
 - · LR, KNN, SVM, DT models have been built and evaluated for the best classifier

Data Collection

- The following datasets was collected:
 - SpaceX launch data that is gathered from the SpaceX REST API.
 - This API will give us data about launches, including information about the rocket used, payload delivered, launch specifications, landing specifications, and landing outcome.
 - The SpaceX REST API endpoints, or URL, starts with api.spacexdata.com/v4/.
 - Another popular data source for obtaining Falcon 9
 Launch data is web scraping Wikipedia using BeautifulSoup.

Data Collection – SpaceX API

 Data Collection with SpaceX REST calls

https://github.com/kyrichandrakanth/IBM-coursera-data-science-capstone-project-on-SpaceX/blob/master/Data%20Collection% 20API.ipynb

Data Collection - Scraping

 Web Scrapping from Wikipedia

https://github.com/kyrichandrakanth/IB
M-coursera-data-science-capstoneproject-onSpaceX/blob/master/Data%20Collection
%20with%20Web%20Scraping.ipynb

1 .Getting Response from HTML

page = requests.get(static url)

2. Creating BeautifulSoup Object

```
soup = BeautifulSoup(page.text, 'html.parser')
```

3. Finding tables

html_tables = soup.find_all('table')

4. Getting column names

```
column_names = []
temp = soup.find_all('th')
for x in range(len(temp)):
    try:
    name = extract_column_from_header(temp[x]
    if (name is not None and len(name) > 0):
        column_names.append(name)
    except:
    pass
```

5. Creation of dictionary

```
launch_dict= dict.fromkeys(cclumn_names)
# Remove on irrelvant column
del launch_dict['Date and time ( )']

launch_dict['Flight No.'] = []
launch_dict['Fayload'] = []
launch_dict['Payload mass'] = []
launch_dict['Poyload mass'] = []
launch_dict['Customer'] = []
launch_dict['Customer'] = []
launch_dict['Version Booster']=[]
launch_dict['Booster landing']=[]
launch_dict['Date']=[]
launch_dict['Date']=[]
launch_dict['Time']=[]
```

6. Appending data to keys (refer) to notebook block 12

```
In [12]: extracted_res = D

**Nertract each table

**For table_resbor_table in councratet

**N get table row

**Torrow in table_find_sll(****)

**Check to see if first table.
```

7. Converting dictionary to dataframe

```
df = pd.DataFrame.from_dict(launch_dict)
```

8. Dataframe to .CSV

```
df.to_csv('spacex_web_scraped.csv', index=False)
```

Data Wrangling

https://github.com/kyrichandrakanth/IBM-coursera-data-science-capstone-project-on-SpaceX/blob/master/EDI.ipynb

EDA with Data Visualisation

EDA with SQL

SQL queries performed include:

- Displaying the names of the unique launch sites in the space mission
- Displaying 5 records where launch sites begin with the string 'KSC'
- Displaying the total payload mass carried by boosters launched by NASA (CRS)
- Displaying average payload mass carried by booster version F9 v1.1
- Listing the date where the successful landing outcome in drone ship was achieved.
- Listing the names of the boosters which have success in ground pad and have payload mass greater than 4000 but less than 6000
- · Listing the total number of successful and failure mission outcomes
- Listing the names of the booster_versions which have carried the maximum payload mass.
- Listing the records which will display the month names, successful landing_outcomes in ground pad ,booster
- versions, launch_site for the months in year 2017
- Ranking the count of successful landing_outcomes between the date 2010 06 04 and 2017 03 20 in descendingorder.

Build an Interactive Map with Folium

Build a Dashboard with Plotly Dash

https://github.com/kyrichandrakanth/IBM-coursera-data-science-capstone-project-on-SpaceX/blob/master/Interactive%20Dashboard%20with%20Ploty%20Dash.ipynb

Predictive Analysis (Classification)

 The SVM, KNN, and Logistic Regression model achieved the highest accuracy at 83.33%, the SVM performs the best in terms of area under the curve

capstone-project-on-

SpaceX/blob/master/Machine%20Learning%20Prediction.ipynb

Results

- SVM, KNN and Logistic Regression, Tree models are best in terms of prediction accuracy for this dataset
- Lower weighted payloads is performs better then the heavier payloads
- KSC LC 39A had the most successful launches from all
- Orbit GEO, HEO, SSO, ES L1 has the best success Rate

Flight Number vs. Launch Site

 Launches from the site of CCAFS SLC 40 are significantly higher than launches form other sites.

Payload vs. Launch Site

 The majority of IPay Loads with lower Mass have been launched from CCAFS SLC 40.

Success Rate vs. Orbit Type

• The Orbit types of ES-L1, GEO, HEO, SSO are among the highest success rate.

Flight Number vs. Orbit Type

 A trend can be observed of shifting to VLEO launches in recent years.

Payload vs. Orbit Type

 There are strong correlation between ISS and Payload at the range around 2000, as well as between GTO and the range of 4000-8000.

Launch Success Yearly Trend

 Launch success rate has increased significantly since 2013 and has stablised since 2019, potentially due to advance in technology and lessons learned.

All Launch Site Names

• sql SELECT DISTINCT LAUNCH_SITE FROM SPACEX ORDER BY 1;

```
Out[37]: launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E
```

Launch Site Names Begin with 'CCA'

• sql SELECT * FROM SPACEX WHERE LAUNCH_SITE LIKE 'CCA%' LIMIT 5;

Out[38]:	DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
	2010-04- 06	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	2010-08- 12	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	2012-08- 10	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	2013-01- 03	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt
	2013-03- 12	22:41:00	F9 v1.1	CCAFS LC- 40	SES-8	3170	GTO	SES	Success	No attempt

Total Payload Mass

• sql SELECT SUM(PAYLOAD_MASS__KG_) AS TOTAL_PAYLOAD FROM SPACEX WHERE PAYLOAD LIKE '%CRS%';

```
Out[40]: total_payload
56479
```

Average Payload Mass by F9 v1.1

• sql SELECT AVG(PAYLOAD_MASS__KG_) AS AVG_PAYLOAD FROM SPACEX WHERE BOOSTER_VERSION = 'F9 v1.1';

```
Out[41]: avg_payload
3676
```

First Successful Ground Landing Date

• sql SELECT MIN(DATE) AS FIRST_SUCCESS_GP FROM SPACEX WHERE LANDING__OUTCOME = 'Success (ground pad)';

```
Out[42]: first_success_gp
2017-01-05
```

Successful Drone Ship Landing with Payload between 4000 and 6000

sql SELECT DISTINCT BOOSTER_VERSION FROM SPACEX WHERE PAYLOAD_MASS__KG_ BETWEEN 4000 AND 6000 AND LANDING__OUTCOME = 'Success (drone ship)';

```
Out[44]: booster_version

F9 FT B1031.2

F9 FT B1022
```

Total Number of Successful and Failure Mission Outcomes

 sql SELECT MISSION_OUTCOME, COUNT(*) AS QTY FROM SPACEX GROUP BY MISSION_OUTCOME ORDER BY MISSION_OUTCOME;

Boosters Carried Maximum Payload

• sql Select Distinct Booster_Version from Spacex where Payload_mass__kg_ = (select max(payload_mass__kg_) from Spacex) order by Booster_Version;

List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

 sql SELECT BOOSTER_VERSION, LAUNCH_SITE FROM SPACEX WHERE LANDING__OUTCOME = 'Failure (drone ship)' AND DATE_PART('YEAR', DATE) = 2015;

```
]: booster_version launch_site
F9 v1.1 B1012 CCAFS LC-40
```

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

• sql Select Landing__outcome, count(*) as QTY from spacex where Date Between '2010-06-04' and '2017-03-20' group by Landing_outcome order by QTY desc;

Out[50]:	landing_outcome	qty
	No attempt	7
	Failure (drone ship)	2
	Success (drone ship)	2
	Success (ground pad)	2
	Controlled (ocean)	1
	Failure (parachute)	1

All launch sites marked on a map

Success/failed launches marked on the map

Distances between a launch site to its proximities

Total success launches by all sites

Success rate by site

Payload vs launch outcome

Classification Accuracy

Confusion Matrix

Conclusions

- The success rates for SpaceX launches is directly proportional time in years they will eventually perfect the launches.
- KSC LC 39A had the most successful launches from all the sites.
- Orbit GEO,HEO,SSO,ES L1 has the best Success Rate.
- The SVM, KNN, and Logistic Regression models are the best in terms of prediction accuracy for this dataset.
- Low weighted payloads perform better than the heavier payloads.

