A Integral de Riemann-Stieltjes

The Riemann-Stieltjes Integral

DOI:10.34117/bjdv6n6-346

Recebimento dos originais: 15/05/2020 Aceitação para publicação: 15/06/2020

Víctor Marques Fernandes Mozer

Estudante de Engenharia Aeronáutica na Universidade Federal de Uberlândia Instituição: Universidade Federal de Uberlândia Endereço: Avenida João Naves de Ávila, 2121, Uberlândia - MG, Brasil E-mail: vemozer@gmail.com

Marisa de Souza Costa

Doutora em Matemática Instituição: Universidade Federal de Uberlândia Endereço: Avenida João Naves de Ávila, 2121, Uberlândia - MG, Brasil E-mail: marisasc@ufu.br

RESUMO

O intuito do presente trabalho é fazer um breve estudo de um processo de integração que generaliza o conceito da integral de Riemann: a *integral de Riemann-Stieltjes*. Tal método de integração atribui "pesos", definidos por uma função especial $\varphi(x)$, aos intervalos de integração. Apesar de ser mais geral, a integral de Riemann-Stieltjes preserva muitas propriedades da integral de Riemann, algumas delas, apresentadas neste trabalho. Também são apresentados casos especiais em que, sob certas condições sobre a função φ , uma integral de Riemann-Stieltjes pode ser convertida em uma soma ou ainda em uma integral de Riemann.

Palavras-chave: Integral, Riemann-Stieltjes, Critérios de integrabilidade.

ABSTRACT

The purpose of this work is to make a brief study of an integration process that generalizes the concept of the Riemann integral: the Riemann-Stieltjes integral. Such an integration method assigns "weights", defined by a special function ϕ (x), to the integration intervals. Despite being more general, the Riemann-Stieltjes integral preserves many properties of the Riemann integral, some of which are presented in this work. Special cases are also presented in which, under certain conditions on the ϕ function, a Riemann-Stieltjes integral can be converted into a sum or even a Riemann integral.

Keywords: Integral, Riemann-Stieltjes, Integrability criteria.

1 INTRODUÇÃO

A integral de Riemann-Stieltjes foi apresentada primeiramente pelo matemático holandês Thomas Joannes Stieltjes em 1894 em seu trabalho [6] e foi criada para suprir algumas limitações trazidas pela integral de Riemann em certas aplicações. A principal diferença entre as duas integrais está no fato de que na integral de Stieltjes, são atribuídos "pesos" aos intervalos de integração. Enquanto na integral de Riemann o peso de cada intervalo é seu próprio tamanho, para Stieltjes, o peso para cada intervalo é definido por uma função real monótona crescente $\varphi(x)$. Podemos dizer que a integral de Riemann-Stieltjes é uma generalização da integral de Riemann, uma vez que a integral de Riemann corresponde à integral de Stieltjes quando $\varphi(x) = x$. Tal generalização é significativamente útil para o tratamento de certos problemas de Análise Funcional e Teoria de Probabilidade (ver [3, 4]).

Consideremos uma função monótona φ : $[a,b] \to \mathbb{R}$ não decrescente no intervalo [a,b] e f: $[a,b] \to \mathbb{R}$ uma função limitada. Seja $P = \{x_0, \dots, x_n\}$ uma partição qualquer de [a,b], na qual $a = x_0 < x_1 < \dots < x_n = b$.

As somas superior e inferior de f para P com relação a φ são definidas, respectivamente, por

$$S(f, P, \varphi) = \sum_{t=1}^{n} M_t [\varphi(x_t) - \varphi(x_{t-1})], \text{ onde } M_t = \sup\{f(x) : x_{t-1} \le x \le x_t\},$$

e

$$s(f,P,\varphi)=\sum_{t=1}^n \quad m_t\left[\varphi(x_t)-\varphi(x_{t-1})\right] \;, \; \text{ onde } \; m_t=\inf\{f(x)\,;\, x_{t-1}\leq x\leq x_t\}.$$

Dadas duas partições P e P' de [a,b], dizemos que P' é um refinamento de P se $P\subseteq P'$. É fácil verificar que se P' é um refinamento de P, então $S(f,P',\varphi)\leq S(f,P,\varphi)$ e $S(f,P',\varphi)\geq S(f,P,\varphi)$.

A integral superior e a integral inferior de f são definidas, respectivamente, por

$$\overline{\int}_a^b f(x) \, d\varphi(x) = \inf\{S(f, P, \varphi)\} \, e \int_a^b f(x) \, d\varphi(x) = \sup\{s(f, P, \varphi)\},$$

onde o supremo e o ínfimo são tomados entre todas as partições P de [a, b].

Se as integrais superior e inferior de f coincidirem, o valor comum é chamado de integral de Riemann-Stieltjes, ou integral de Stieltjes e é denotado por

$$\int_a^b f(x) d\varphi(x)$$
 ou, simplesmente, $\int_a^b f d\varphi$.

Neste caso, f é dita integrável com relação a φ , ou simplesmente φ -integrável. Na expressão acima, f é chamada de integrando e φ , integrador.

EXEMPLO: Seja $f:[a,b] \to \mathbb{R}$ uma função tal que f(x)=c, para todo $x \in [a,b]$, $c \in \mathbb{R}$, e $\varphi:[a,b] \to \mathbb{R}$ a função crescente $\varphi(x)=2x+1$, para todo $x \in [a,b]$. Nosso objetivo é determinar o valor da integral $\int_a^b f \, d\varphi$. Para isto, considere uma partição $P=\{a=t_0 < t_1 < \cdots < t_n=b\}$ qualquer de [a,b]. Note que $M_t=m_t=c$, para todo $t=1,\ldots,n$. Assim, temos

$$S(f, P, \varphi) = \sum_{t=1}^{n} M_{t} [\varphi(x_{t}) - \varphi(x_{t-1})] = \sum_{t=1}^{n} m_{t} [\varphi(x_{t}) - \varphi(x_{t-1})] = s(f, P, \varphi)$$

$$= \sum_{t=1}^{n} c [\varphi(x_{t}) - \varphi(x_{t-1})]$$

$$= c [\varphi(t_{1}) - \varphi(a)] + c [\varphi(t_{2}) - \varphi(t_{1})] + \dots + c [\varphi(t_{n-1}) - \varphi(t_{n-2})] + c [\varphi(b) - \varphi(t_{n-1})]$$

$$= c [\varphi(b) - \varphi(a)] = c [(2b + 1) - (2a + 1)] = c (2b - 2a).$$

Como $S(f, P, \varphi) = s(f, P, \varphi) = c(2b - 2a)$, para toda partição P de [a, b], segue que

$$\int_a^b c \ d\varphi(x) = c (2b - 2a) = \overline{\int}_a^b c \ d\varphi(x),$$

de modo que

$$\int_a^b c \ d\varphi(x) = c (2b - 2a).$$

2 CRITÉRIOS DE INTEGRABILIDADE E PROPRIEDADES DA INTEGRAL DE RIEMANN-STIELTJES

Consideremos $f:[a,b] \to \mathbb{R}$ uma função limitada e $\varphi:[a,b] \to \mathbb{R}$ não-decrescente.

É necessário conhecer condições para que f seja φ -integrável. O Teorema 1 fornece um critério baseado na existência de partições de [a,b] tais que as somas superiores e inferiores de f com relação a tal partição sejam suficientemente próximas.

2.1 TEOREMA 1:

A função f é φ -integrável se, e somente se, para todo $\varepsilon > 0$, existe uma partição P de [a,b] tal que

$$S(f, P, \varphi) - s(f, P, \varphi) < \varepsilon$$
.

O resultado a seguir permite aproximar arbitrariamente bem uma integral por somas que envolvem o valor do integrando em pontos escolhidos nos subintervalos da partição tomada. Cabe ressaltar que tal aproximação fica melhor a cada refinamento da partição e, consequentemente, a integral de Riemann-Stieltjes pode ser estimada a partir do refinamento de uma partição qualquer.

2.2 TEOREMA 2

Suponhamos que dados um certo $\varepsilon>0$ e uma partição $P=\{x_0,\dots,x_n\}$ de [a,b], temse $S(f,P,\varphi)-s(f,P,\varphi)<\varepsilon$. Se f é uma função φ -integrável e v_t é um ponto qualquer do intervalo $[x_{t-1},x_t]$, $t=1,\dots,n$, então

$$\left| \begin{array}{ccc} \sum_{t=1}^n & f(v_t) \left[\varphi(x_t) - \varphi(x_{t-1}) \right] - \int_a^b & f \ d\varphi \end{array} \right| < \varepsilon.$$

Apresentamos a seguir algumas das propriedades principais da integral de Riemann-Stieltjes.

Sejam $\varphi, \psi : [a, b] \to \mathbb{R}$ funções não decrescentes e $f, g : [a, b] \to \mathbb{R}$ funções limitadas e integráveis com relação a φ e a ψ . Então:

1. Para qualquer $\alpha \in \mathbb{C}$, $\alpha f + g \in \varphi$ -integrável e

$$\int_{a}^{b} \left[\alpha f + g\right] d\varphi = \alpha \int_{a}^{b} f d\varphi + \int_{a}^{b} g d\varphi.$$

2. Para qualquer constante real positiva α , $f \in (\alpha \varphi + \psi)$ -integrável e

$$\int_{a}^{b} f d \left[\alpha \varphi + \psi\right] = \alpha \int_{a}^{b} f d\varphi + \int_{a}^{b} f d\psi.$$

- 3. A função fg é φ -integrável.
- 4. Para qualquer $c \in (a, b)$, a função $f \notin \varphi$ -integrável em [a, c] e em [c, b], e vale a igualdade

$$\int_a^b f \, d\varphi = \int_a^c f \, d\varphi + \int_c^b f \, d\varphi.$$

5. Se $f \le g$ para todo $x \in [a, b]$, então

$$\int_a^b f \, d\varphi \, \leq \, \int_a^b g \, d\varphi.$$

6. A função $f = \phi$ -integrável e

$$\left| \int_a^b f \, d\varphi \, \right| \leq \int_a^b /f \, /d\varphi.$$

7. Se $f / f \le M$ para todo $x \in [a, b]$, então

$$\int_{a}^{b} /f /d\varphi \leq M [\varphi(b) - \varphi(a)].$$

É importante observar que, a partir do critério de integrabilidade apresentado no Teorema 1, é possível garantir a Riemann-Stieltjes integrabilidade de algumas classes especiais de funções. Dentre elas, podemos destacar a classe das funções contínuas.

2.3 TEOREMA 3

Se $f: [a, b] \rightarrow \mathbb{R}$ é contínua, então f é φ -integrável.

As demonstrações dos resultados apresentados nesta seção podem ser encontradas nas referências [2] e [5].

3 CASOS PARTICULARES

Nesta seção, apresentamos dois casos especiais da integral de Riemann-Stieltjes.

O primeiro deles ocorre quando φ é uma "função escada", ou seja, é constante por partes. Assim, a integral se converte no somatório dos valores de f nos "pontos de salto" de φ , ponderado pelo tamanho de cada "salto".

3.1 PROPOSIÇÃO 1

Sejam $\lambda_1, \ldots, \lambda_n$ números reais positivos. Dados $x_1, \ldots, x_n \in (a,b)$, em ordem crescente, considere $\varphi: [a,b] \to \mathbb{R}$ definida por $\varphi(x)=0$, se $a \le x < x_1, \varphi(x)=\sum_{t=1}^m \lambda_t$, se $x_m \le x < x_{m+1}$, desde que m < n, e $\varphi(x)=\sum_{t=1}^n \lambda_t$, se $x_n \le x \le b$. Então, para qualquer função $f: [a,b] \to \mathbb{R}$ que seja contínua em x_1, \ldots, x_n , tem-se

$$\int_a^b f \, d\varphi = \sum_{t=1}^n \lambda_t \, f(x_t).$$

3.1.1 Demonstração

É suficiente verificar o caso n=1, já que é possível chegar ao caso geral usando indução finita e o item 4 das Propriedades da Integral, dado que

$$\int_a^b f \, d\varphi = \sum_{t=1}^{n+1} \int_{x_{t-1}}^{x_t} f \, d\varphi.$$

Portanto, podemos supor que $x^* \in (a, b)$, $\lambda > 0$ e $\varphi : [a, b] \to \mathbb{R}$ satisfazendo $\varphi(x) = 0$, se $a \le x < x^*$ e $\varphi(x) = \lambda$, se $x^* \le x \le b$.

Dado $\varepsilon > 0$ qualquer, a continuidade de f em x^* garante que existe um $\delta > 0$ tal que $f(x) - f(x^*) / < \varepsilon$ se $f(x) - x^* / < \delta$. Tomando a partição $f(x) - \delta$ 0, tem-se que

$$S(f,P,\varphi) - s(f,P,\varphi) = \lambda \left(sup_{x \in [x^* - \delta,x^*]} \ f(x) - inf_{x \in [x^* - \delta,x^*]} \ f(x) \right) \le 2 \lambda \varepsilon.$$

Como ε é arbitrário, segue que f é φ -integrável e que

$$\begin{vmatrix} \lambda f(x^*) - \int_a^b f(x) d\varphi(x) \end{vmatrix} = |f(x^*)[\varphi(x^*) - \varphi(x^* - \delta)] - \int_a^b f(x) d\varphi(x) \le 2 \lambda \varepsilon,$$

em virtude do Teorema 2. Logo, temos que

$$\int_a^b f \, d\varphi = \lambda \, f(x^*).$$

O resultado acima pode ser generalizado para o caso em que o número de subintervalos onde f é constante for infinito. Neste caso a integral de Riemann-Stieltjes se converte em uma série (ver Proposição 2.5 em [1]).

A Proposição 2, trata de um segundo caso especial para a integral de Riemann-Stieltjes, quando φ é diferenciável e sua derivada é Riemann-integrável. Neste caso, a integral de Stieltjes se transforma em uma integral de Riemann e φ atua como uma função peso na integral.

3.2 PROPOSIÇÃO 2

Seja $\varphi:[a,b]\to\mathbb{R}$ uma função não decrescente, diferenciável tal que φ' é Riemann-integrável. Então, para qualquer função contínua $f:[a,b]\to\mathbb{R}, f\ \varphi'$ é Riemann-integrável e

$$\int_a^b f(x) d\varphi(x) = \int_a^b f(x) \varphi'(x) dx.$$

3.2.1 Demonstração

Note que $f \varphi'$ é Riemann-integrável uma vez que $f e \varphi'$ o são.

Para $\varepsilon > 0$ arbitrário, tomemos uma partição $P = \{x_0, ..., x_n\}$ de [a, b] satisfazendo $S(f, P, \varphi) - s(f, P, \varphi) < \varepsilon$ e $S(f, \varphi', P) - s(f, \varphi', P) < \varepsilon$, onde $S(f, \varphi', P)$ e $s(f, \varphi', P)$ são as somas superior e inferior (no sentido de Riemann) de f, φ' em relação a P, respectivamente.

Fixada a partição P, o Teorema do Valor Médio garante que, para cada $t=1,\dots,n$, existe $v_t\in[x_{t-1},x_t]$ tal que

$$\varphi(x_t) - \varphi(x_{t-1}) = \varphi'(v_t)(x_t - x_{t-1})$$
(1)

Pelo Teorema 2, temos que

$$\Big|\sum_{t=1}^n f(v_t)\,\varphi'(v_t)(x_t-x_{t-1})\,-\,\int_a^b f\,\varphi'\,dx\,\Big|<\varepsilon$$

e também que

$$\left| \sum_{t=1}^{n} f(v_t) \left[\varphi(x_t) - \varphi(x_{t-1}) \right] - \int_a^b f \, d\varphi \right| < \varepsilon.$$

Logo, pelas desigualdades acima e por (1), temos que

$$\left| \int_a^b f(x) d\varphi(x) - \int_a^b f(x) \varphi'(x) dx \right| < 2 \varepsilon.$$

Como ε é arbitrário, o resultado segue.

Para mais detalhes e resultados sobre a Integral de Riemann-Stieltjes, ver [2] e [5].

REFERÊNCIAS

[1] Santos, C. F. *Polinômios Ortogonais no Círculo Unitário*, Monografia (Graduação) - Curso de Matemática Computacional, Instituto de Ciência e Tecnologia-UNIFESP, São José dos Campos, 2014.

- [2] Leite, T. *A Integral de Riemann-Stieltjes*, Monografia (Graduação) Curso de Matemática, Universidade Federal de Santa Catarina, Florianópolis, 2017.
- [3] Manço, R. F. *Integrais e aplicações*. Dissertação (Mestrado) Curso de Matemática, Universidade de São Paulo, São Carlos, 2016.
- [4] Riesz, F; Nagy, B. Sz. *Functional Analysis*. Hungria: Universidades de Budapeste e Szeged, 1956. Traduzido a partir da segunda edição francesa por Leo F. Boron.
- [5] Rudin, W. *Principles of Mathematical Analysis*, 3. ed. New York: McGraw-Hill International, 1976. (International series in pure and applied mathematics).
- [6] Stieltjes, T. J.. Recherches sur les fractions continues, *Ann. Fac. Sci. Toulouse*, VIII, p.1-122, 1894.