

Installation manual for MLIP (Machine learning interatomic potential)

MLIP developed by Prof. Alexander Shapeev

Manual wrote by Yucheng Ji on November 15th 2022

Update on March 01st 2023

The directory structure:

MLIP

 Download the source file from Gitlab (Permission required). 下载 MLIP 源文件,该文件下载需要经过作者许可; https://gitlab.com/ashapeev/mlip-2

2. Upload the source file to the destination path <MLIP> in your account.

上传源文件至目标路径 <MLIP>

tar -zxvf mlip-2-master mv mlip-2-master mlip

3. Prepare the file and environments

预备文件目录及软件环境

module load 2022r2 intel/oneapi-all (DelftBlue)
module load 2022 intel-2022a (Snellius)

Attention:

If the version 2017 or 2018 Intel compiler is available, please use load this compiler!

4. Compile the source code

编译配置文件

cd mlip

./configure

Configure option:

prefix= <path></path>	installation prefix path (e.g., /home/)			
prefix_fortran= <path></path>	install path to fortran			
no-mpi	disable MPI libraries [autodetect]			
no-selftest	disable selftest implementation			
lossless-cfg	turn on lossless configuration file writing			
compiler=[intel gnu]	which compilers to use [autodetect]			
blas=NAME	BLAS library [autodetect]			
program-suffix= <suffix></suffix>	program name suffix			
successfully created information				
成功创建信息				

Generating makefile configuration ...

Configuration complete.

5. compile the binary file

编译二进制文件

make mlp

there is no successfully created information, but the mlp compiled file can be found in the path as follows.

未有成功创建信息,但在以下路径可查询到 mlp 文件 ./bin/mlp

6. Shortcomings of this solution

本方案的不足之处

a. Using mlp command, all testing cannot be passed!

使用 mlp 命令所有的测试均不通过!

make test

The output error is as follows,

输出错误如下

INTEGRATION TESTING:

Running test 00.convert_vasp_outcar

Abort(1090831) on node 0 (rank 0 in comm 0): Fatal error in PMPI_Init: Other MPI

error, error stack:

MPIR_Init_thread(176):

MPID_Init(1430).....:

MPIR_pmi_init(167)...: PMI2_Job_GetId returned 14

make[1]: *** [Makefile:24:

/home/yuchengji/bin/mlp/mlip/test/examples/00.convert_vasp_outcar/test.sh] Error 1

make: *** [Makefile:173: test] Error 2

b. The normal mlp command should be used as follows,

常规 mlp 命令可使用如下:

mpirun -np 1 mlp convert-cfg --input-format=vasp-outcar OUTCAR out/relax.cfg

Instruction:

说明:

All commonly used mlp commands should be preceded by the beginning mpirun -np

1, these commands including convert-cfg, calc-error, mindist, calc-efs, calc-grade.

But the training mlp should be described according to the cores, such as *srun* or *mpirun -np 96*.

- c. If the version of Intel compiler is 2017 or 2018, these shortcomings can be avoid. 使用 2017 或 2018 版本的 Intel 编译器可能会避免上述问题
- 7. Compile the libinterface for lammps

为 lammps 编译 mlip 接口

make libinterface

successfully created information

成功创建信息

ar: creating lib/lib_mlip_interface.a

8. Download the interface software from the Gitlab (Permission required)

下载 interface 接口程序, 需要作者允许

cd /home/yuchengji/bin/mlp/

git clone https://gitlab.com/ashapeev/interface-lammps-mlip-2.git interface

9. Move the lib_mlip_interface.a file to the interface directory

移动生成的 mlip 库至 interface 文件夹

cd /home/yuchengji/bin/mlp/mlip/lib

mv lib_mlip_interface.a ../../interface/

LAMMPS

1. Download the lammps package

下载 lammps 源文件

cd /home/yuchengji/bin/mlp/

git clone -b stable https://github.com/lammps/lammps.git lammps2022

2. Choose the package required

选择 LAMMPS 运行所需的包

cd /home/yuchengji/bin/mlp/lammps2022/src

make package-status

make yes-MC

make yes-MEAM

make yes-manybody

Interface

1. Installing the mlip-lammps interface

安装 mlip与 lammps 接口程序

cd /home/yuchengji/bin/mlp/interface

./install.sh ../lammps2022 intel_cpu_intelmpi

successfully created information

成功创建信息

text data bss dec hex filename

10053427 235288 14312 10303027 9d3633 ../lmp_intel_cpu_intelmpi

make[1]: Leaving directory

'/home/yuchengji/bin/mlp/lammps2022/src/Obj_intel_cpu_intelmpi'

Yucheng Ji PhD candidate

MSE, 3mE, TU Delft

E-mail: Y.Ji-2@tudelft.nl **BAIC for MGE, USTB**

E-mail: jiyucheng@xs.ustb.edu.cn

Utilization manual for MLIP (Machine learning interatomic potential)

MLIP developed by Prof. Alexander Shapeev Manual wrote by Yucheng Ji November 2022

Potential training

1. Transfer the VASP/OUTCAR to cfg file

转化 OUTCAR 为 MLIP cfg 文件

mlp convert-cfg --input-format=vasp-outcar OUTCAR Sc3Al.cfg

Note: All structure optimization step will be extracted into cfg file.

注释: 所有的在优化过程中的结构都会被考虑<一定变形>

The file format:

文件格式

BEGIN_CFG

Size

6

Supercell

7.604607	0.000002	-0.000001
0.000002	7.604608	-0.000007
-0.000001	-0.000007	7.604623

AtomData	: id ty	ype	cartes	_X	cartes_	у	cartes_	_Z	fx	fy	fz
1	0	2.851	730	0.950	570	2.85	1730	-0.0	00019	0.000003	0.000030
2	0	6.654	030	6.654	-030	0.95	0570	0.00	00024	-0.000021	0.000001
3	0	4.752	880	6.654	-030	2.85	1730	-0.0	00039	-0.000039	0.000021
4	0	0.950	580	0.950	580	0.95	0580	0.0	00030	-0.000015	-0.000009
5	0	2.851	730	4.752	2880	6.65	4040	-0.0	00005	-0.000011	-0.000031
6	0	6.654	030	2.851	730	4.75	2890	0.0	00005	0.000021	-0.000009

Energy

-122.177426730000

PlusStress: xx yy zz yz xz xy

-0.33700 -0.33706 -0.33776 0.00029 0.00010 -0.00009

Feature EFS_by VASP

Feature mindist 2.688629

END_CFG

2. Summarize all cfg files to one train.cfg 综合所有的 cfg 文件成为一个文件

cat *.cfg >> train.cfg

- 3. Calculate the minimum distance in the train.cfg file 计算 train.cfg 文件中的原子最小间距 mlp mindist train.cfg
- 4. Copy and modify the initial.mtp file to the training directory 拷贝并编辑初始 mtp 文件

cp /home/yuchengji/bin/mlp/mlip/untrained_mtps/16.mtp .

vim 16.mtp

The file format:

文件格式

MTP

version = 1.1.0

 $potential_name = MTP1m$

species_count = 1 # modify the number of elements

potential_tag =

radial_basis_type = RBChebyshev

min_dist = 2.38362 # modify the number to minimum distance

 $max_dist = 5$ # modify the cut off distance

radial_basis_size = 8 # modify the number of radial basis functions, 8,6,10,4,12

radial_funcs_count = 2

radial_funcs_count = 4

alpha_moments_count = 350

alpha_index_basic_count = 130

Esc: wq

5. Compile the submit script file <Cluster required, e.g. DelftBlue> 编辑 submit 脚本<依据超算改变>

vim sub.sh

The content of submit script:

提交脚本内容

#!/bin/bash -1

#SBATCH --job-name="mlp"

#SBATCH --account=research-3me-mse

#SBATCH --partition=compute

#SBATCH -t 24:00:00

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=24

#SBATCH --mem-per-cpu=2G

module load 2022r2

module load intel/oneapi-all

export OMP_NUM_THREADS=1

Always be kept equal 1

srun mpirun -np 24 mlp train 16.mtp train.cfg --trained-pot-name=AlScCu.mtp

Esc: wq

6. Other train options provided in the mlp

Train 命令中其他选项

Options

--energy-weight=<double>: weight of energies in the fitting. Default=1

--force-weight=<double>: weight of forces in the fitting. Default=0.01

--stress-weight=<double>: weight of stresses in the fitting. Default=0.001

--scale-by-force=<double>: Default=0. If >0 then configurations near equilibrium (with roughtly force < <double>) get more weight.

--valid-cfgs=<string>: filename with configuration to validate

--max-iter=<int>: maximal number of iterations. Default=1000

--curr-pot-name=<string>: save potential on each iteration if <string> not empty

--trained-pot-name=<string>: filename for trained potential. Default=Trained.mtp_

--bfgs-conv-tol=<double>: stop if error dropped by a factor smaller than this over 50 BFGS iterations. Default=1e-3

--weighting=<string>: how to weight configuration with different sizes relative to each other. Default=vibrations. Other=molecules, structures

--init-params=<string>: how to initialize parameters if a potential was not pre-fitted. Default is random. Other is same - this is when interaction of all species is the same (more accurate fit, but longer optimization)

--skip-preinit: skip the 75 iterations done when parameters are not given

--update-mindist: updating the mindist parameter with actual minimal interatomic distance in the training set

7. Submit the task to the cluster

提交任务至超算

sbatch sub.sh

output from mlp

mlp程序输出

MTPR from 16.mtp, Database: train.cfg

Random initialization of radial coefficients

Rescaling...

scaling = 0.909090909090909, condition number = 3673.61312437045

scaling = 1, condition number = 5351.11880703349

scaling = 1.1, condition number = 7834.47326839507

scaling = 1.2, condition number = 10362.1760849044

Rescaling to 0.83333333333333... done

Rescaling...

scaling = 0.757575757575758, condition number = 2042.48285004521

scaling = 0.916666666666667, condition number = 3778.30974868583

scaling = 1, condition number = 5351.11880301559

Rescaling to 0.69444444444445... done

Rescaling...

scaling = 0.578703703703704, condition number = 942.573869338707

scaling = 0.694444444444445, condition number = 1637.70358201451

scaling = 0.76388888888888889, condition number = 2093.96259982992

► MD Simulation without Active Learning

1. File required

所需文件

AlScCu.mtp # potential

mlip.ini # potential control file

train.cfg # potential original training file

data.Al # lammps structure file rdf.in # lammps control file

2. The content of mlip.ini

mlip.ini 文件内容

mtp-filename all.mtp

calculate-efs FALSE

select FALSE

select:threshold 2.1

select:threshold-break 100.0

select:save-selected preselect.cfg

select:load-state state.als

3. Compile the submit script for MLIP-MD simulation MLIP-MD 模拟的提交脚本

#!/bin/bash

#SBATCH --job-name="lmp_no_al"

#SBATCH --account=research-3me-mse

#SBATCH --partition=compute

#SBATCH -t 72:00:00

#SBATCH --nodes=4

#SBATCH --ntasks-per-node=12

#SBATCH --mem-per-cpu=5G

module load 2022r2

module load intel/oneapi-all

export OMP_NUM_THREADS=1

srun lmp_intel_cpu_intelmpi -in rdf.in

MD Simulation with Active Learning

The flow of MLIP active learning.

MLIP主动学习流程

1. File required

所需文件

data

all.mtp	# potential	
mlip.ini	# potential	control file
train.cfg	# potential	original training file
data.Al	# lammps	structure file
rdf.in	# lammps	control file
vasp_md_al.sh	# script	active learning script
al_vasp_calibration.py	# script	create vasp model
calculate_ab_initio_ef	# directory	vasp calculation

directory

directory

vasp INCAR KP... lammps data file

The directory structure of active learning 主动学习目录结构

calculate_ab_initio_ef/raw_VASP_files

1. Compile the vasp_md_al.sh file

编辑主动学习脚本

vim vasp_md_al.sh

The content of vasp_md_al.sh file vasp_md_al.sh 文件内容 #!/bin/bash #SBATCH --job-name="AL-AlScCu"

#SBATCH --account=research-3me-mse

```
#SBATCH --partition=compute
   #SBATCH -t 72:00:00
   #SBATCH --nodes=2
   #SBATCH --ntasks-per-node=48
   #SBATCH --mem-per-cpu=3G
   module load 2022r2
   module load intel/oneapi-all
   export OMP NUM THREADS=1
   mddir=/scratch/yuchengji/lammps/al_vasp_md
   vaspdir=$mddir/calculate_ab_initio_ef
   cd $mddir
   touch $mddir/log.timestamp
   rm -f train.cfg curr.mtp preselect.cfg diff.cfg selected.cfg out.cfg
   cp all.mtp curr.mtp
   cp train_init.cfg train.cfg
   #A. Active set construction
   mlp calc-grade curr.mtp train.cfg train.cfg out.cfg --als-filename=state.als
   rm out.cfg
   while [ 1 -gt 0 ]
   do
   #B. MD simulations and extrapolative (preselected) configurations
   touch preselect.cfg
   srun --job-name="int_job" --partition=compute --time=00:30:00 --ntasks=1 --cpus-per-task=8
--mem-per-cpu=1GB --pty lmp_intel_cpu_intelmpi -in rdf.in
   #mpirun -np 2 lmp_intel_cpu_intelmpi -in rdf.in
   n_preselected=$(grep "BEGIN" preselect.cfg | wc -l)
   if [ $n_preselected -gt 0 ]; then
   #C. Selection
     mlp select-add curr.mtp train.cfg preselect.cfg diff.cfg --als-filename=state.als
     cp diff.cfg $vaspdir
     rm -f preselect.cfg
     rm -f selected.cfg
   #D and E. Ab initio calculations and merging (updating the training set)
```

cd \$vaspdir

```
mlp convert-cfg diff.cfg outmodel --output-format=vasp-poscar
 /home/yuchengji/bin/py39/bin/python3.9 al_vasp_calibration.py
  for file in outmodel*
  do
    cd $vaspdir/mlp_al/$file
    echo -e "VASP Calc : \c" >> $mddir/log.timestamp
    date >> $mddir/log.timestamp
    srun /home/yuchengji/bin/vasp/vasp_std_recompiled
    energy=$( grep "TOTEN" OUTCAR | tail -n 1 | awk -F" " '{print $5}')
    if [ $(echo "$energy < 10000 "| bc ) -eq 1 ];then
         echo -e "VASP Calc : $mfile $energy \c" >> $mddir/log.timestamp
         date >> $mddir/log.timestamp
         mlp convert-cfg --input-format=vasp-outcar OUTCAR $mfile.cfg
         cp $mfile.cfg $vaspdir
    else
         echo -e "VASP Calc : Error --> skipped \c">> $mddir/log.timestamp
         date >> $mddir/log.timestamp
    fi
    mlp convert-cfg --input-format=vasp-outcar OUTCAR $file.cfg
    cd $vaspdir
  done
  cat *.cfg >> $mddir/train.cfg
  rm -rf mlp_al diff.cfg outmodel* OUTCAR
  cd $mddir
#F. Training
  echo -e "MLIP Start : \c" >> $mddir/log.timestamp
  date >> $mddir/log.timestamp
  srun mlp train curr.mtp train.cfg --trained-pot-name=curr.mtp --update-mindist
  echo -e "MLIP END : \c" >> $mddir/log.timestamp
  date >> $mddir/log.timestamp
#A. Active set construction
 mlp calc-grade curr.mtp train.cfg diff.cfg out.cfg --als-filename=state.als
rm -f diff.cfg
 rm -f out.cfg
elif [$n_preselected -eq 0]; then
 exit
fi
```

done

2. Compile the al_vasp_calibration.py file and transfer the cfg file to the POSCAR 编辑 al_vasp_calibration.py 文件,将 cfg 格式转化为 POSCAR 格式 vim al_vasp_calibration.py The content of al_vasp_calibration.py al_vasp_calibration.py 文件内容 import os import sys import shutil sys.path.append("/scratch/yuchengji/script/python/") from lib import VASP_Structure as VS $model_list = []$ ele_model = VS.CfgRead('diff.cfg') for files in os.listdir('.'): if 'outmodel' in files: model_list.append(files) if $len(model_list) > 10$: model num = 10else: model_num = len(model_list) for i in range(model_num): model = model_list[i] model_path = './mlp_al/%s' %(model) if not os.path.exists(model_path): os.makedirs(model_path) poscar = VS.Cfg2Poscar(model, ['Al', 'Sc', 'Cu', 'H'], ele_model[i]) with open('%s/POSCAR' %(model_path), 'w') as psc_w: psc_w.write('\n'.join(poscar)) try: shutil.copy('./raw_VASP_files/INCAR', '%s/INCAR' % (model_path)) shutil.copy('./raw_VASP_files/KPOINTS', '%s/KPOINTS' % (model_path)) shutil.copy('./raw_VASP_files/POTCAR', '%s/POTCAR' % (model_path)) print("The %s model has been created" %(model))

except Exception as err:

print(err)

print("The %s model creation failed!" %(model))

3. Submit the task to the cluster 向超算提交任务

sbatch vasp_md_al.sh

Good luck with your potential training!

Yucheng Ji PhD candidate

MSE, 3mE, TU Delft

E-mail: Y.Ji-2@tudelft.nl **BAIC for MGE, USTB**

E-mail: jiyucheng@xs.ustb.edu.cn