Degrees of freedom.

1/2 goodness of fit

df = # categories - 1 - # parameters

because we know the total sample
size, n, which leaves only
categories - 1 freely determined cells.

| category 1 | cat. 2 | ... | cat c | total

counts | y₁ | y₂ | y₄ | y₄

y₅ = n - (y₁ + y₂ + ··· + y₆)

a makkin diga mananan di pandanan di kanan di k

75

Degrees of freedom

It test for homogeneity.

- for each population we have # categories 1 (same justification as for goodness of fit, ie we know n for each pop.).
- · also need to estimate parameters,

$$\hat{P}_1 = \underbrace{y \cdot 1}_{N} \quad \hat{P}_2 = \underbrace{y \cdot 2}_{N} \quad \hat{P}_C = \underbrace{y \cdot c}_{N}$$

BUT
$$\hat{p}_{c} = 1 - (\hat{p}_{1} + \hat{p}_{2} + \cdots + \hat{p}_{c-1})$$

so really only estimate C-1 parameters

· put it all together:

r populations and c categories:

$$T(c-1) - (c-1) = (T-1)(c-1)$$

rx # freely determined cells in each pop.

Degrees of Freedom X2 test for independence df = # freely determined cells - # of parameters estimated # # freely determined cells = rxc-1 (conditional an knowing total sample size).

parameters needing to be estimated

- marginal probabilities. (row and column)

rows: \hat{p}_1 , \hat{p}_2 , \hat{p}_2 , \hat{p}_3 , \hat{p}_4 , \hat{p}_5 , \hat{p}_6 , \hat{p}

..
$$df = (rc-1) - (r-1) - (c-1) = (r-1)(c-1)$$