

Sorry arima, I'm going Bayesian

Pierre Gauthier

École des Mines de Nancy

May 2019

Tuteur: Denis Villemonais

Pierre Gauthier Sorry ARIMA

Sommaire

Approche bayésinne pour la modélisation des séries temporelles

Les modèle espace-états

bruit blanc gaussien

		•
equation d'observation	$y_t = Z_t^T \alpha_t + \epsilon_t$	$\epsilon_t \sim N(0, H_t)$
equation de transition	$\alpha_{t+1} = T_t \alpha_t + R_t \eta_t$	$\eta_t \sim N\left(0,Q_t ight)$

- v_t obervations
- α_t variables d'états / latentes / cachées
- \blacksquare Z_t matrice de mesure
- T_t matrice de transitions

Figure - [researchgate.net]

Approche bayésinne pour la modélisation des séries temporelles

→ Bayesian structural time series (BSTS)

bruit blanc gaussien

observation	$y_t = \mu_t + \beta^T x_t + \tau_t + \varepsilon_t$	$arepsilon_{t}\sim N\left(0,\sigma_{arepsilon}^{2} ight)$
regression	$\beta^T x_t$	
tendance + marche aléatoire	$\mu_t = \mu_{t-1} + \delta_{t-1} + u_t$	$u_t \sim N\left(0, \sigma_u^2\right)$
marche aléatoire	$\delta_t = \delta_{t-1} + \nu_t$	$v_t \sim N\left(0, \sigma_v^2\right)$
sainsonnalité	$ au_t = -\sum_{s=1}^{s-1} au_{t-s} + w_t$	$w_t \sim N\left(0, \sigma_w^2\right)$

Pierre Gauthier Sorry ARIMA May 2019 3 / 1

→ Bayesian structural time series (BSTS)

observation	$y_t = Z_t^T \alpha_t + \epsilon_t$	$\epsilon_t \sim N\left(0, H_t\right)$
	Z_t^T $(1 0 \beta^T \mathbf{x}_t)$	$\begin{pmatrix} \alpha_t^T \\ \mu_t & \delta_t & 1 \end{pmatrix}^T$
equation de transition	$\alpha_{t+1} = T_t \alpha_t + R_t \eta_t$	$\eta_t \sim N\left(0, Q_t ight)$
$\left(egin{array}{c} lpha_t \ lpha_t \ \delta_t \ 1 \end{array} ight)$	$egin{pmatrix} T_t \ 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ \end{pmatrix}$	$egin{pmatrix} N_t\eta_t \ u_t \ v_t \ w_t \end{pmatrix}$

 \rightarrow estimation des paramètres

Pierre Gauthier Sorry ARIMA May 2019 4 /

Loi à postériori états cachés α_t : Le filtre de Kalman

Itérations sur l'estimation $p(\alpha_t|y_{1:t}) \sim \mathcal{N}(\hat{\alpha}_t, P_t)$

Figure – [github : anhdanggit/nowcasting-google-queries/]

Loi à postériori de β : *spike-and-slab prior*

- On prend la partie regression $y_t^* = y_t \mu_t$
- On utilise pour β une distribution à priori *spike-and-slab* :

$$p(\gamma) = \prod_{k=1}^N \pi^{\gamma_k} (1-\pi)^{1-\gamma_k}, \ \gamma_k \in \{0,1\} \ \textit{N} = \textit{Card}(\textbf{x})$$

- $\beta_{\gamma} \left| \sigma_{\epsilon}^{2}, \gamma \sim \mathcal{N} \left(b_{\gamma}, \sigma_{\epsilon}^{2} \left(\Omega_{\gamma}^{-1} \right)^{-1} \right) \right. \left. \sigma_{\epsilon}^{2} \right| \gamma \sim \textit{IG} \left(\frac{\nu}{2}, \frac{\textit{ss}}{2} \right)$ papramètres à priori : ν nombre de paramètres, $\frac{\textit{ss}}{\nu} = (1 R^{2}) \, \textit{s}_{\nu}^{2}, \quad \Omega^{-1} \propto X^{T} X$
- On utilise les propriété des lois conjugé pour obtenir les loi à postériori $\beta_{\gamma}|\sigma_{\epsilon}, \gamma, \mathbf{y}^* \qquad \gamma_{\epsilon}^2|\gamma, \mathbf{y}^* \qquad \gamma|\mathbf{y}^*$
- Intérêt

Figure – [batisengul.co.uk]

Échantilloneur de Gibbs pour BSTS : SSVS algorithm

$$\Theta = \left(\gamma, \beta, \sigma_{\varepsilon}^2, \sigma_{v}^2, \sigma_{u}^2\right)$$

- ► Choisir paramètres à priori v, R^2 , s_v^2
- ► Tirer $\gamma, \beta, \sigma_{\varepsilon}^2, \sigma_{v}^2, \sigma_{u}^2$ $\sigma_{u}^2, \sigma_{v}^2, \sigma_{w}^2$ sont tiré selon la loi $.|\gamma \sim \mathit{IG}\left(\frac{\nu}{2}, \frac{\mathit{ss}}{2}\right)$ Sur $1, \ldots$:
 - **1** Avec le filtre de Kalman on simule les état latents α depuis $p\left(\alpha|y,\gamma,\beta,\sigma_{\varepsilon}^2,\sigma_{v}^2,\sigma_{u}^2\right)$
 - 2 On simule σ_u^2 et σ_v^2 avec la distribution postérieure $p\left(\frac{1}{\sigma_u^2},\frac{1}{\sigma_v^2}|y,\alpha,\beta,\sigma_\varepsilon^2\right)$
 - **3** On simule β et σ_{ϵ}^2 avec la distribution postérieure $p\left(\beta, \sigma_{\epsilon}^2 | y, \alpha, \sigma_u^2, \sigma_v^2\right)$
 - 4 Retour à la première étape.
 - $\sigma_u^2, \sigma_u^2, \sigma_w^2$ sont tiré selon la loi .| $\gamma \sim \mathit{IG}\left(\frac{\nu}{2}, \frac{\mathit{ss}}{2}\right)$

Le modèle final est la moyenne des modèles $(\gamma, \beta, \sigma_{\varepsilon}^2, \sigma_{v}^2, \sigma_{u}^2)_{t}$ ainsi tirés.

Conclusion

■ Auteur prèfère mettre incertitude dans la prior que sur l'estimation des coéfficientss

Pierre Gauthier Sorry ARIMA May 2019 8 / 1

Merci de votre attention

Pierre Gauthier Sorry ARIMA May 2019