

Instituto Federal de Educação, Ciência e Tecnologia do Maranhão – IFMA Campus Santa Inês

Curso de Licenciatura Plena em Física e Engenharia da Computação

2º Verificação do Aprendizado Professor: Esp. Thalyson Patrick

Nome:	Curso:

OBS: FAÇA TODOS OS CÁLCULOS E TODAS AS ETAPAS SERÁ CONSIDERADO PARA CORREÇÃO TODOS OS PASSOS DO DESENVOLVIMENTO DO CÁLCULO USE AS PROPRIEDADES ABORDADAS EM SALA OU EXPLIQUE DISCURSIVAMENTE.

Questão 1.

(1 ponto) Sejam $u=\left(\frac{1}{\sqrt{2}},\ 0,\ \frac{-1}{\sqrt{2}}\right)$ e $v=(\alpha,\ -1,\ \beta)$. Determine todos os valores de α e β de modo que o conjunto $\{u,v\}$ seja ortonormal.

Questão 2.

(1 ponto) Calcule:

- a) O produto interno usual, $\langle u, v \rangle$, onde $u = \left(\frac{1}{2}, 3, 2\right)$ e v = (-2, 1, -1)
- b) O valor de $\beta \in \mathbb{R}$ tal que o vetor $\left(\frac{1}{2}, \beta, \frac{1}{2}\right)$ seja unitário.
- c) O ângulo entre os vetores (0, -1) e (1, 0) de \mathbb{R}^2

Questão 3.

(1 ponto) Determine o valor de m para que os vetores (3, -5, m) e $(m-3,\ 1,\ 3)$ sejam ortogonais em relação ao produto interno do \mathbb{R}^3 .

Questão 4.

(1 ponto) Considere os vetores $u=(-2,\ 3,\ 2)$ e $v=(-5,\ -3,\ 4)$ no espaço euclidiano $\mathbb{R}^3.$

- a) Calcule o produto interno $\langle u, v \rangle$.
- b) Calcule as normas dos vetores $u \in v$.

Questão 5.

(1 ponto) Considere os seguintes vetores de \mathbb{R}^3 $u=(1,\ -1,\ 1),$ $v=\left(\frac{2}{5},\ \frac{3}{5},\ \frac{\sqrt{12}}{5}\right)$ e $w=\left(0,\frac{1}{2},\ \frac{1}{2}\right)$

a) Calcule a norma destes vetores.

- b) Determine quais são unitários.
- c) Verifique se os vetores u e w são ortogonais.

Questão 6.

(1 ponto) Determine k sabendo que o vetor $v=(1,\ -2,\ k,\ 4)$ em \mathbb{R}^4 tem módulo igual a $\sqrt{30}$.

Questão 7.

(1 ponto) Em $P_3(\mathbb{R})$, considere o produto interno:

$$\left\langle f(t), \ g(t) \right\rangle = \int_0^1 f(t) \cdot g(t) \ dt$$

- a) Calcule o produto interno de f(t) = t 1 por $g(t) = 3t^3 + 2t + 1$.
- b) Calcule ||p(t)||, onde $p(t) = t^2 t$.
- c) Determine $\gamma \in \mathbb{R}$ para que $f(t) = \gamma t^2 + 1$ e g(t) = t 2 sejam ortogonais.

Questão 8.

(1 ponto) Em \mathbb{R}^3 , com o produto interno usual, determine a projeção ortogonal do vetor u = (1, 2, -3) sobre o subespaço gerado pelos vetores $v_1 = (1, 0, 2)$ e $v_2 = (0, 1, 0)$.

Questão 9.

(1 ponto) Sejam os pontos A=(-2, 2), B=(3, -3), C=(3, 0) e D=(1, 2). Mostrar que o quadrilátero ABCD é um paralelogramo e calculemos sua área.

Questão 10.

(1 ponto) Determine $\chi \in \mathbb{R}$ tal que os vetores $u = (\chi, \chi + 2, 1)$ e $v = (\chi + 1, 1, \chi)$, de \mathbb{R}^3 , sejam ortogonais.