- 1. Multiple choice. Clearly mark your answers. No justification is required but may result in partial credit if provided.
 - (a) [3 pts] If $|\mathbf{v} \times \mathbf{w}| = 0$ for two unit vectors \mathbf{v} and \mathbf{w} , then $\mathbf{v} = \mathbf{w}$.
 - (a) True.
 - (b) False.
 - (c) Indeterminable.

- (b) [3 pts] If $\mathbf{a} \cdot \mathbf{b} > 0$, and $\mathbf{b} \cdot \mathbf{c} > 0$, then $\mathbf{a} \cdot \mathbf{c} > 0$.
 - (a) True.
 - (b) False.
 - (c) Indeterminable.

- (c) [3 pts] If $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ and \mathbf{u} is not the zero vector, then which of the following is necessarily true?
 - (a) $\mathbf{u} \cdot \mathbf{v} = 0$
 - (b) Either $proj_{\mathbf{u}}\mathbf{v} = \mathbf{v}$ or $proj_{\mathbf{u}}\mathbf{v} = -\mathbf{v}$
 - (c) $|\mathbf{u}| = |\mathbf{v}|$
 - (d) All of the above.
 - (e) None of the above.

2. [4 pts] If $\mathbf{a} = \mathbf{j} - \mathbf{k}$ and $\mathbf{b} = \mathbf{k} - \mathbf{i}$, then determine the value of the coss product $\mathbf{a} \times \mathbf{b}$.

3. [4 pts] Let \mathbf{a} and \mathbf{b} be two vectors in \mathbb{R}^3 such that the projection of \mathbf{b} onto \mathbf{a} is $\mathsf{proj}_{\mathbf{a}}(\mathbf{b}) = \mathbf{i} - \mathbf{j}$. Determine the value of the projection vector $\mathsf{proj}_{\mathbf{a}}(3\mathbf{b})$.