Inviting Students to Reflect: Meta-Discourse Tool in Knowledge Forum

Bodong Chen, Monica Resendes OISE/University of Toronto

CSSE2012, 27/05/2012

Agenda

- Background
 - Knowledge Building
 - Ways of contributing
 - Metadiscourse
- Research questions
- Research methods
 - Metadiscourse tool
 - Design
 - Data analysis
- Results and discussion
- Conclusion

Knowledge Building

- Theory and Pedagogy
 - Knowledge building may be defined as the production and continual improvement of ideas of value to a community.
 - It engages learners in the full process of knowledge creation from an early age.
 - Learners take collective cognitive responsibility to advance public knowledge in their community.
 - Knowledge-building discourse as collaborative problem solving rather than argumentation.
- Technology
 - Knowledge Forum

Ways of Contributing

Main categories	Sub categories		
I Questions	1-Explanatory question2-Design question 3-Factual question		
II Theorizing	4-Proposing a theory 5-Supporting a theory 6-Improving a theory 7-Alternative theory		
III Obtaining Information	8-Asking for Evidence 9-Reporting Experimental Results 10-Testing Hypotheses11-Introducing New Information 12-Introducing New Fact/Experience 13-Identifying a Design Problem 14-Improving a Design Problem		
IV Working with Information	15-Supporting an Idea 16-Discarding an Idea 17-Weighing Different Ideas 18-Accounting for Conflicting Ideas or Theories		
V Syntheses and Analogies	19-Synthesizing 20-Making a Comparisor 21-Making a Rise-above	20-Making a Comparison or Analogy	
VI Supporting Discussion	22-Drawing a Diagram 23-Giving an Opinion 24-Mediating Discussion		

Note: Chuy et al., 2010, Chuy et al., 2011

Metadiscourse

Discourse about discourse:

- how the discourse is progressing?
- where it is headed?
- what is hampering progress?
- what types of contribution are needed?
- ...

Research Questions

- 1. With teacher's guidance and help from tools, to what extent can young students be engaged in metadiscourse?
- 2. By participating in metadiscourse, to what extent can students expand their contribution repertoires?
- 3. Do metadiscourse and more diverse contributions lead to greater knowledge advancement?

Meta-Discourse Tool

How it functions

- extracts log data of scaffold use in a view
- presents students' scaffold use in a bar chart

Research Methods

Participants

22 Grade 2 students in 2011/2012 school year

Group	Experimental	Control
Student count	11	11
Metadiscourse discussion	Yes	Yes
Using Metadiscourse tool	Yes	No

Procedure

- 21 students were randomly assigned to two groups.
- Both groups were working on the same view about "Birds" for 4 months.
- Both groups participated in repeated "metadiscourse sessions".
- The experimental group was introduced to the Meta-Discourse tool and used it to mediate their reflective discussion.

Research Methods

Data analysis: Content Analysis

- 1. Ways of contributing
 - a. contribution categories: 6 main categories (e.g. questions, theorizing, obtaining information, etc.) and 24 subcategories.
 - b. contribution measures
 - i. # of notes
 - ii. # of contributions
 - iii. contribution richness
 - iv. contributor diversity on main categories
 - V. contributor diversity on subcategories
- 2. Knowledge advancement
 - a. Scientificness: 4 levels (Zhang, Scardamalia, Lamon, Messina, & Reeve, 2007)

1. Baseline comparison: How did the experimental and control groups perform in grade 1?

No significant difference on any measures, including all ways of contributing categories, contribution measures, and scientificness levels.

- 2. Did the experimental group contribute more diversely than the control group?
 - Significantly higher contribution on three subcategories: "proposing theories", "asking factual questions", and "introducing new facts or information" (p < .05).
 - Significantly higher number of notes, number of contributions, and contributor diversity (main and sub) (p < .05).

- 3. Did the experimental and control groups performed better than one year ago when they were in grade 1?
 - Experimental group: Significantly higher contribution on "Obtaining Evidence" main category, and higher score on "contributor diversity main categories".
 - Control group: Not significantly better on any of those measures.

- 4. Did the experimental and control groups in the grade 2 class 2012 perform better than the grade 2 class 2011?
 - The experimental group did significantly better than the grade 2 class 2011 on "Theorizing" and "Obtaining Evidence" main category, and had higher scores on "contributor diversity (main and sub)", "number of notes", and "total contributions".
 - The control group did not perform significantly better on any of those measures.

- 5. Did the experimental group achieve more knowledge advancement?
 - Difference on sicentificness scores is not significant between the experimental and control groups.
 - However, the grade 2 class 2012 achieved significantly more scientific understanding than either grade 1 2011 or grade 2 2012.

Conclusion

- Students as young as grade 2 can be engaged in metadiscourse with help from teacher and tools.
- The Meta-Discourse tool, combined with metadiscourse sessions, helps young students make a greater number and more diverse types of contributions to their own dialogue.
- More particularly, grade 2 students who have access to this tool tend to introduce more information into their dialogue, which is usually scant for this age level.
- The tool did not show a significant impact on knowledge advancement, which might more depend on either developmental stage or classroom discourse.

Thank you!

Email: bodong.chen@utoronto.ca

Twitter: <a>@bodongchen

Slides: bit.ly/csse2012