

Veri Temsili (Data Representation)

- > Veri Temsili
 - > birden fazla sekilde olabilir.
 - veriler uzerinde yapilan islemlerin sonucuna etkisi yoktur.
 - veriler uzerindeki islemlerin zorluk/kolaylik derecesine etki eder.
- Verilerin temsil edilme sekilleri bilgisayarin dizaynina etki eder.

Infinite Setlerin Finite Setlere donusumu

- Eger bir sembol M degisik deger alirsa, N tane sembolden olusan tum verilerin sayisi M^N dir.
 - Ornek: 3-digitli decimal verilerin toplam sayisi 10³=1000 ([0,999])
- Iki farkli durumu birbirinden ayirt eden devrelerin tasarimi son derece basit
 - Bilgisayarlar iki farkli durumu olabilen binary digitlerden (bit) ler kullanilarak design edilmektedir
 - > N bit 2^N farkli sayi temsil eder.
- Farkli turdeki sayilar icin genelde farkli temsil sekilleri vardir. (ornek: floating-point, integer)

Binary (ikili) Gosterim

- $> s_{n-1}s_{n-2}s_{n-3} \dots s_2s_1s_0 = \sum_{i=0..n-1}s_i2^i$
- $> 100101 = 2^0 + 2^2 + 2^5 = 37_{10}$
- Most Significat Bit (MSB)
- Least Significant Bit (LSB)
- > Big-Endian
- > Little-Endian
- Cogu bilgisayarlar gunumuzde 32bit veya 64 bitlik verilerle calisirlar

.byte 0, 1, 2,3

Byte#				
0	1	2	3	

Big Endian

Byte #				
3	2	1	0	

Little Endian

1025 00000000 00000000 00000100 00000001

Address	Big Endian	Little Endian
00	0000000	0000001
01	0000000	00000100
02	00000100	0000000
03	0000001	0000000

Integer Sayilar

- > Unsigned integer
 - $\rightarrow b_n b_{n-1} b_{n-2} \dots b_2 b_1 b_0 = \sum_{i=0,n} b_i 2^i$
- Sign magnitude
 - Bir extra bit kullanılmak suretiyle positive sayılar negative sayılardan ayırt edilir (Sign bit).
 - Geri kalan bitler magnitude bitler olarak adlandirilirlar

sign magnitude

8-bit sign magnitude

Bit Pattern	Decimal Deger
0000 0011	3
1000 0111	-7
1111 1111	-127
0000 0000	0
1000 0000	0

$$(-1)^{bn} \sum_{i=0..n-1} b_i 2^i$$

Eger MSB 0 ise sayi positive, MSB 1 ise sayi negativedir.

Avantajlari: kolayca anlasilabilmesi

Dezavantajlari: 0 iki farkli sekilde temsil edilir. Toplama ve cikarma islemlerinde kolay degil.

Integerlarin Complement olarak Temsili

- > Toplama ve cikarma islemlerini kolaylastirir.
- Positive sayilarin temsili, positive sayilarin sign magnitude olarak temsili ile ayni.
- Negative sayilarin temsili farkli.

One's Complement

$$b_n b_{n-1} b_{n-2} \dots b_2 b_1 b_0$$

 $\sum_{i=0\dots n-1} (b_i, 2^i) - b_n (2^n-1)$

 $b_{n}.(2^{n}-1)$: Bias

 b_n nin degeri sayinin positive/negative olmasini belirler Eger b_n 1 ise sayi negative, 0 ise sayi positive dir. 000.....000 ve 111.....111 nin her ikisi de sifiri gosterir

One's Complement

Ikili Gosterim	Decimal Degeri	
0000 0011	3	
1111 1100	-3	
0001 1111	31	
1110 0000	-31	
0000 0000	0	
1111 1111	0	
0000 0001	1	
1111 1110	-1	

(n+1) bit kullanılarak temsil edilen tamsayıların araligi $[+(2^n-1) - (2^n-1)]$.

Two's Complement

$$b_n b_{n-1} b_{n-2} \dots b_2 b_1 b_0$$

$$\sum_{i=0...n-1} (b_i. 2^i) - b_n.2^n$$

b_n.2ⁿ: Bias

 b_n nin degeri sayinin positive/negative olmasini belirler Eger b_n 1 ise sayi negative, 0 ise sayi positive dir. Sifirin tek gosterimi vardir ve 000.....000 dir.

Ikili Gosterim	Decimal Degeri
0000 0011	3
1111 1101	-3
1111 1100	-4
0001 1111	31
1110 0001	-31
1110 0000	-32
0000 0000	0
1111 1111	-1

(n+1) bit kullanılarak temsil edilen tamsayıların araligi $[+(2^n-1) ... -2^n]$.

Biased Gosterim

$$b_n b_{n-1} b_2 b_1 b_0$$

$$\sum_{i=0...n} (b_i. 2^i) - B$$
 B: bias (B=2ⁿ veya B=2ⁿ-1)

Decimal	Biased Gosterim		
	Decimal Binary		
-4	0	000	
-3	1	001	
-2	2	010	
-1	3	011	
0	4	100	
1	5	101	
2	6	110	
3	7	111	

n=3 Bias: 2³⁻¹=4

binary	unsigned	sign	two's	one's	biased-127	biased-128
		mag.	comp.	comp.		
0000 0000	0	0	0	0	-127	-128
0000 0001	1	1	1	1	-126	-127
0000 0010	2	2	2	2	-125	-126
0111 1111	127	127	127	127	0	-1
1000 0000	128	0	-128	-127	1	0
1000 0001	129	-1	-127	-126	2	1
1111 1101	253	-125	-3	-2	126	125
1111 1110	254	-126	-2	-1	127	126
1111 1111	255	-127	-1	0	128	127

$b_n b_{n-1} b_{n-2} \dots b_3 b_2 b_1 b_0$

Format	Range	Value
unsigned	0<= I < 2 ⁿ⁺¹	$I = \sum_{i=0}^{n} b_i.2^i$
sign magnitude	-2 ⁿ < I < 2 ⁿ	$I = (-1)^{b_n} \sum_{i=0}^{n-1} b_i . 2^i$
one's complement	-2n <i<2n< td=""><td>$I = \sum_{i=0}^{n-1} b_i \cdot 2^i - b_n (2^n - 1)$</td></i<2n<>	$I = \sum_{i=0}^{n-1} b_i \cdot 2^i - b_n (2^n - 1)$
two's complement	-2"<=I<2"	$I = \sum_{i=0}^{n-1} b_i \cdot 2^i - b_n \cdot 2^n$
bias-B	-B <=I< 2 ⁿ⁺¹ -B	$I = \sum_{i=0}^{n-1} b_i \cdot 2^i - B$

Sign Extension

- > 8/16 bitlik sayilar 32 bitlik sayi olarak gosterilebilir.
- > Original sayinin degerinde degisiklik olmaz
- Carpma islemlerinde bazen gereksinim duyulur.

Unsigned Integers

sign magnitude

Complement (one's /two's)

Character

- > Alphanumerical
- > Gosterim Standardi
 - ➤ ASCII (American Standard for Computer Information Exchange)
 - > Her bir character 7 bit olarak kodlanir (128 tane)
 - Non-printing karakters (esc)
- Soru: Character ler ASCII standardinda 7 bitle kodlanir. Oysa C dilinde uzunkulkari 1 byte (8) bit. 8-7=1 (1 bite ne oldu?)

.data

ch: .byte int: .word digit: .word

.text

move int,0 get ch

procch: bgt ch, '9', notadigit

sub digit, ch, '0'

bltz digit, notadigit

mul int, int, 10 add int, int, digit

get ch

procch

notadigit:

Floating Point (FP)


```
.625 *2 = 1.250 1
.250 *2 = 0.5
.5 *2 = 1.0
```


IEEE Floating Point Standard (IEEE 17.15)

S (1 bit) E (8 bit) F (23 bit) single precision

S (1 bit) E (11 bit) F (52 bit) double precision

Single Precision (IEEE 17.15)

S (1 bit) E (8 bit) F (23 bit) single precision

 $0 \le E \le 255$ e = E -127 (Biased-127)

S	Е	F	Number
0/1	0	0	0
0	255	0	+∞
1	255	0	-∞
0/1	255	≠0	NaN

Single Precision (IEEE 17.15)

$$Z_{31}Z_{30}Z_{29}....Z_0$$

$$I = (-1)^{z_{31}} (1 + 2^{-23} x \sum_{i=0}^{22} z_i 2^i) x 2^{i} = 0$$

