Physics 155 HW # 6

1.) a.) One of Maxwell's equations is $\vec{\nabla} \cdot \vec{B} = 0$ with \vec{B} the magnetic field. Use the divergence theorem to prove that

$$\iint_S \vec{B} \cdot \hat{n} \, dS = 0$$

for any closed surface S.

b.) Determine the flux of a uniform magnetic field \vec{B} through the curved surface of a right circular cone (radius R, height h) oriented so \vec{B} is <u>normal</u> to the base of the cone as shown here.

Another way of saying this is $\vec{B} = B\hat{k}$ with B a constant.

- 2.) Let S be the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ and let D(x, y, z) = the distance from the origin to the plane tangent to S at point (x, y, z) (the tangent plane is \perp to the normal \hat{n}).
 - a.) Show that if $\vec{F}(\vec{r}) = \hat{\imath} \frac{x}{a^2} + \hat{\jmath} \frac{y}{b^2} + \hat{k} \frac{z}{c^2}$, then $\vec{F} \cdot \hat{n} = D^{-1}$ with \hat{n} the outward normal at (x, y, z).

b.) Show
$$\iint_S D^{-1}(x, y, z) dS = \frac{4\pi}{3} \left(\frac{bc}{a} + \frac{ca}{b} + \frac{ab}{c} \right)$$

Hint: \hat{n} Lies in the direction $\frac{x}{a^2}\hat{i} + \frac{y}{b^2}\hat{j} + \frac{z}{c^2}\hat{k}$

D(x,y,z) = length of vector \vec{D} which is parallel to \hat{n} but runs through the origin. \vec{D} intersects the red tangent plane.

For part (b), use the divergence theorem and the fact that $V_{ellipsoid} = \frac{4\pi}{3}abc$

- 3.) We will show that if $\vec{\nabla} \cdot \vec{G} = 0$, then $\vec{G} = \vec{\nabla} \times \vec{H}$ and that if $\vec{G} = \vec{\nabla} \times \vec{H}$, then $\vec{\nabla} \cdot \vec{G} = 0$.
 - a.) Prove that if $\vec{G} = \vec{\nabla} \times \vec{H}$, then $\vec{\nabla} \cdot \vec{G} = 0$ by directly evaluating the derivatives.

b.) Suppose
$$\vec{\nabla} \cdot \vec{G} = 0$$
, show that

$$H_{x} = 0, \quad H_{y} = \int_{x_{0}}^{x} G_{z}(x', y, z) dx'$$

$$H_{z} = -\int_{x_{0}}^{x} G_{y}(x', y, z) dx' + \int_{y_{0}}^{y} G_{x}(x_{0}, y', z) dy'$$

$$\uparrow \text{note!}$$
(1)

satisfies $\vec{G} = \vec{\nabla} \times \vec{H}$. Note that the first argument of G_x is $x_0!$

4.) Determine the cases where one can write $\vec{G} = \vec{\nabla} \times \vec{H}$. If it is possible, find \vec{H} (hint: use problem 3).

a.)
$$\vec{G} = \hat{\imath}y + \hat{\jmath}z + \hat{k}x$$

b.)
$$\vec{G} = B_0 \hat{k}$$
 $B_0 = \text{constant}$

$$\vec{G} = \hat{\imath}x^2 - \hat{\jmath}y^2$$

$$\mathbf{d.)} \qquad \vec{G} = 2\hat{\imath}x - \hat{\jmath}y - \hat{k}z$$

e.)
$$\vec{G} = 2\hat{\imath}x - \hat{\jmath}y + \hat{k}z$$

5.) Show that the following vector fields have both $\vec{\nabla} \times \vec{F} = \vec{0}$ and $\vec{\nabla} \cdot \vec{F} = 0$.

a.)
$$(x^2 - y^2)\hat{\imath} - 2xy\hat{\jmath}$$

b.)
$$e^x(\cos(y)\hat{\imath} - \sin(y)\hat{\jmath})$$

c.)
$$\frac{1}{2}\ln(x^2+y^2)\hat{i} - \tan^{-1}\left(\frac{y}{x}\right)\hat{j}$$
 for $x > 0$