ZŁOŻONOŚĆ ALGORYTMÓW

> Złożoność pamięciowa algorytmu

wynika z liczby i rozmiaru struktur danych wykorzystywanych w algorytmie;

> Złożoność czasowa algorytmu

wynika z liczby operacji elementarnych wykonywanych w trakcie przebiegu algorytmu.

ZŁOŻONOŚĆ CZASOWA ALGORYTMU

zależność pomiędzy rozmiarem danych wejściowych a liczbą wybranych operacji elementarnych wykonywanych w trakcie przebiegu algorytmu

(zależność podawana jako funkcja, której argumentem jest rozmiar danych, a wartością liczba operacji).

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2018 r.

Przykłady funkcji złożoności czasowej

2. Algorytm rozwiązywania problemu wież Hanoi: dla N krażków jego złożoność może wyrazić funkcja F(N) = liczba przeniesień pojedynczego krążka z kołka na kołek (?)

3. Algorytm wyznaczania najdłuższej przekątnej wielokąta wypukłego: dla wielokąta o N wierzchołkach jego złożoność może wvrazić funkcja

F(N) = liczba porównań długości dwóch przekątnych (?)

4. Algorytm zachłanny wyznaczania "najkrótszej sieci kolejowej": dla N "miast" i M możliwych do zbudowania odcinków jego złożoność może wyrazić funkcja

F(N, M) = liczba porównań długości dwóch odcinków (?)

Jaroslaw Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2018 r.

W praktyce złożoność czasowa algorytmu decyduje często o jego przydatności

- > trzeba rozwiązywać algorytmicznie coraz większe zadania:
 - w komputerowych systemach wspomagania decyzji,
 - przy komputerowych symulacjach i prognozach złożonych
- > rozwijane są komputerowe systemy czasu rzeczywistego:
 - sterujące automatycznie złożonymi układami (transport, produkcja),
 - wyszukujące i przetwarzające bardzo duże ilości informacji.

Chcemy stosować algorytmy o jak najniższej złożoności czasowej

Musimy umieć porównywać ich złożoność

4 = =

Jaroslaw Sikorski - BUDOWA i ANALIZA ALGORYTMÓW. WIT 2018 I

Algorytm normalizacji wartości przechowywanych w tablicy jednowymiarowej względem wartości maksymalnej

Dane wejściowe zapisane w tablicy T(K) dla K = 1, 2, ..., N

Alg. 1 1. wyznacz w zmiennej MAX największą z wartości;

2. dla K od 1 do N wykonuj co następuje:

 $F_1(N) = 2 \cdot N$ 2.1. $T(K) \leftarrow T(K) \cdot 100 / MAX$

Alg. 2 1. wyznacz w zmiennej MAX największą z wartości

2. $ILORAZ \leftarrow 100 / MAX$;

3. dla K od 1 do N wykonuj co następuje:

3.1. $T(K) \leftarrow T(K) \cdot ILORAZ$

 $F_2(N) = N + 1$

Wybieramy operację elementarną, którą jest wyznaczenie wartości iloczynu lub ilorazu dwóch zmiennych

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW. WIT 2018 r.

2. Przykład na proste zmniejszenia liczby operacji

Algorytm (liniowego) wyszukiwania elementu z podanej listy

Dane wejściowe to N elementów zapisanych w polach kluczowych listy wskaźnikowej (pola rekordu: A – kluczowe, N – wskaźnikowe; ${\it G}$ – wskaźnik pierwszego rekordu) i szukany element podany w ${\it S}.$

Alg. 1 | 1. $P \leftarrow G$; $F \leftarrow \text{NIL}$;

2. dopóki $P \neq \text{NIL i } F = \text{NIL wykonuj co następuje:}$

2.1. **jeżeli** S = A.[P], **to** $F \leftarrow P$;

 $2.2. P \leftarrow N.[P]$

3. **jeżeli** $F \neq NIL$, **to** odczytaj wartość wskaźnika F.

Jaroslaw Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2018 r.

 $2. P \leftarrow G ; F \leftarrow \text{NIL} ;$

3. dopóki F = NIL wykonuj co następuje:

3.1. **jeżeli** S = A.[P], **to** $F \leftarrow P$; $3.2. P \leftarrow N.[P]$

 $F_2(N) = N + 2$

4. **jeżeli** $F \neq T$, **to** odczytaj wartość wskaźnika F.

Wybieramy operację elementarną, którą jest porównanie zawartości wskaźników P lub F z innym wskaźnikiem lub adresem NIL

Badamy najgorszy przypadek

Alg. 1 $F_1(N) = 2 \cdot N + 1$

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW. WIT 2018 r.

W obu przykładach funkcje złożoności były funkcjami liniowymi o różnych współczynnikach.

4 = =

W każdym przykładzie mamy dwa algorytmy do porównania na podstawie ich funkcji złożoności:

$$\boldsymbol{F}_1(N) = \mathbf{K}_1 + \mathbf{L}_1 \cdot N$$

$$\mathbf{F}_2(N) = \mathbf{K}_2 + \mathbf{L}_2 \cdot N$$

Do porównania funkcji złożoności tych algorytmów możemy wykorzystać iloraz:

$$s(N) = \frac{F_1(N)}{F_2(N)}$$

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2018 r.

W asymptotycznej analizie złożoności przyjęto, że porównując algorytmy badamy wartość ilorazu s(N) dla bardzo dużych wartości N, czyli formalnie badamy jego granicę dla $N \to \infty$

Zatem o wyniku porównania złożoności dwóch algorytmów decyduje wartość:

$$\lim_{N \to \infty} s(N) = \lim_{N \to \infty} \frac{F_1(N)}{F_2(N)}$$

W przypadku porównywania dwóch funkcji liniowych będzie to

$$\lim_{N\to\infty} s(N) = \frac{L_1}{L_2}$$

Jaroslaw Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2018 r.

Poprawianie czasowej złożoności algorytmu jest czymś więcej, niż tylko zmniejszaniem liczby operacji wykonywanych w trakcie jego działania!

Jak możemy stwierdzić, że złożoność została <u>znacząco</u> zmniejszona?

Wykonując <u>asymptotyczną analizę złożoności</u> stwierdzamy jak szybko w miarę wzrostu rozmiaru danych wejściowych rośnie funkcja złożoności podająca liczbę operacji wykonywanych w algorytmie (badamy tzw. rząd złożoności algorytmu).

Jeżeli chcemy stwierdzić, który z dwóch algorytmów będących rozwiązaniami tego samego problemu algorytmicznego ma istotnie niższą złożoność, to musimy porównać ich funkcje złożoności i określić, czy różnią się ich rzędy złożoności.

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW. WIT 2018 r.

(= =)

10

Asymptotyczna analiza złożoności algorytmów

złożoność tego samego rzędu, jeśli

Dwa algorytmy opisane funkcjami $F_1(N)$ i $F_2(N)$ mają

$$\lim_{N \to \infty} \frac{F_1(N)}{F_2(N)} = C \quad \text{i zachodzi} \quad \mathbf{0} < C < \infty$$

Sytuację, w której dwie funkcje złożoności są tego samego rzędu zapisujemy

$$F_1(N) = \Theta(F_2(N))$$
 (notacja theta)

Jeśli zachodzi $F_1(N) = \Theta(F_2(N))$, to także $F_2(N) = \Theta(F_1(N))$

Jaroslaw Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2018 r. 11 Algorytm opisany funkcją $F_1(N)$ ma złożoność nie wyższego **rzędu** niż algorytm opisany funkcją $F_2(N)$, jeśli

Sytuację, w której pierwsza funkcja złożoności jest nie wyższego rzędu niż druga zapisujemy

$$F_1(N) = O(F_2(N))$$
 (notacja O duże)

Jeśli zachodzi jednocześnie $F_1(N) = O(F_2(N))$ i $F_2(N) = O(F_1(N))$, to $F_1(N) = \Theta(F_2(N))$.

Jeśli zachodzi $F_1(N) = \Theta(F_2(N))$, to także $F_1(N) = O(F_2(N))$.

Jaroslaw Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2018 r.

12

Algorytm opisany funkcją $F_1(N)$ ma **złożoność niższego rzędu** niż algorytm opisany funkcją $F_2(N)$, jeśli

$$\lim_{N\to\infty} \frac{F_1(N)}{F_2(N)} = 0 \quad , \text{ czyli } \boxed{C=0}$$

Sytuację, w której pierwsza funkcja złożoności jest niższego rzędu niż druga zapisujemy

$$F_1(N) \prec F_2(N)$$

Badanie złożoności algorytmów w sposób asymptotyczny prowadzi do wyróżnienia typowych rzędów złożoności:

- liniowa,
- ▶ kwadratowa
- ➤ logarytmiczna, ...

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2018 r.

Algorytm opisany funkcją F(N) ma złożoność liniową, jeśli

Złożoność liniowa (rzędu N) oznaczana jest symbolem $\Theta(N)$ Algorytm ma złożoność **co najwyżej liniową**, jeśli $C \leq \infty$; oznaczenie O(N)

Algorytm opisany funkcją F(N) ma **złożoność kwadratową,** jeśli

$$\lim_{N \to \infty} \frac{F(N)}{N^2} = C \quad \text{i zachodzi} \quad \mathbf{0} < C < \infty$$

Złożoność kwadratową (rzędu N^2) oznaczana jest symbolem $\Theta(N^2)$ Algorytm ma złożoność co najwyżej kwadratową, jeśli $C \leq \infty$; oznaczenie $O(N^2)$ $N \prec N^2$

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2018 r.

14

Przypadek, w którym zachodzi warunek $\forall N: 0 \le F(N) \le C \le \infty$

13

oznaczamy

F(N) = O(1)

400 000

Dopiero obniżenie rzędu złożoności algorytmu jest istotnym ulepszeniem rozwiązania problemu algorytmicznego!

Jeżeli algorytm może wykonywać różną liczbę operacji elementarnych dla danych wejściowych o tym samym rozmiarze, w zależności od konkretnego ich zestawu, to możemy badać jego złożoność w najgorszym przypadku

(czyli skupiając się na takich przypadkach dopuszczalnych danych wejściowych, dla których liczba operacji jest największa)

> analiza złożoności najgorszego przypadku lub pesymistyczna

> analiza złożoności średniego przypadku (trudniejsza)

Jaroslaw Sikorski - BUDOWA i ANALIZA ALGORYTMÓW. WIT 2018 r.

(m m)

15

Porównanie złożoności przykładowych algorytmów normalizacji tablicy

Złożoność czasowa algorytmu 2. wynosi $F_2(N) = N + 1$, czyli $F_2(N) = \Theta(N)$

 $F_1(N) = \Theta(F_2(N))$

Porównanie złożoności przykładowych algorytmów wyszukiwania elementu z listy

(złożoność pesymistyczna) Złożoność czasowa algorytmu 1. wynosi $F_1(N) = 2 \cdot N + 1$,

czyli $F_1(N) = \Theta(N)$ Złożoność czasowa algorytmu 2. wynosi $F_2(N) = N + 2$,

czyli $F_2(N) = \Theta(N)$ $F_1(N) = \Theta(F_2(N))$

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW. WIT 2018 I

4 =

16

Czy można zaproponować algorytm dla wyszukiwania elementu z listy o pesymistycznej złożoności niższej niż liniowa?

Szukamy zatem algorytmu, dla którego pesymistyczna funkcja złożoności spełniałaby warunek $F(N) \prec N$.

Jeżeli założymy, że lista $Y_1,~Y_2,~\dots,~Y_N$ jest <u>uporządkowana,</u> tzn. dla każdego $i \le j$ zachodzi $Y_i \le Y_i$, to takim algorytmem jest wyszukiwanie binarne (przez połowienie)

Jeśli dane wejściowe są zapisane w polach kluczowych rekordów z listy wskaźnikowej o podanej w przykładzie strukturze, to warunek uporządkowania ma postać:

dla każdego bieżącego wskaźnika P zachodzi $A.[P] \le A.[N.[P]]$

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2018 r.

Jeśli, jako zliczaną operację elementarną, wybierzemy porównanie elementu szukanego ze środkowym elementem listy, to analiza złożoności będzie polegała po pierwsze na znalezieniu odpowiedzi na pytanie:

ile razy w najgorszym przypadku jest powtarzana pętla w algorytmie?

- ➤ Najgorszy przypadek jest wtedy, kiedy na liście nie ma szukanego elementu;
- ➤ Po każdej iteracji długość bieżącej listy maleje o połowę i iteracje są przerywane, gdy jej długość osiągnie wartość 0.

19

Jarosław Sikorski - BUDOWA i ANALIZA ALGORYTMÓW, WIT 2018 r.

