Sfærisk ladningsfordeling

1. En sfærisk symmetrisk ladningsfordeling har en ladningstetthet $\rho(r)$ gitt ved

$$\rho(r) = \begin{cases} \alpha & \text{for} \quad r \in [0, R/2) \\ 2\alpha(1 - r/R) & \text{for} \quad r \in [R/2, R) \\ 0 & \text{for} \quad r \in [R, \infty) \end{cases}.$$

Den totale ladningen for denne fordelingen er $Q = 900 \,\mathrm{nC}$, radius til den sfærisk symmetriske ladningsfordelingen er $R = 90.0 \,\mathrm{mm}$, og α er konstant med enhet $\mathrm{C/m^3}$).

- (a) Bestem α gitt ved Q og R. (Du må integrere $\rho\,\mathrm{d}\tau$ over kulevolumet.) Finn også den numeriske verdien.
- (b) Bestem det elektriske feltet som funksjon av avstanden fra sentrum av ladningsfordelingen for alle de tre områder av r. TIPS: Gauss' lov.
- (c) Sjekk spesielt kontinuitet av det elektriske feltet i grensene mellom områdene. Hva er numerisk verdi av E på overflata av kula?
- (d) Lag en skisse av E(r) ved å bruke et digitalt verktøy (f. eks. Python). Velg $\frac{r}{R}$ som x-akse og $\frac{E(r/R)}{kQ/R^2}$ som y-akse. Skissér også $\frac{\rho(r/R)}{\alpha}$ i samme grafen. Disse valg gir dimensjonsløse størrelser på begge aksene, som er nærmest påkrevd i digirale plotteprogram.
- (e) Hvor stor andel av totalladningen befinner seg i området $r \leq R/2$?

Molekylære dipoler

2. Ammoniakk, NH₃, er en elektrisk dipol, bortrifluorid, BF₃, er det ikke. N og F er elektronegative (trekker elektroner til seg) mens H og B er elektropositive. Bruk disse opplysningene til å finne ut (kvalitativt) hvordan disse to molekylene ser ut. Kontroller svaret ditt via internett eller andre kilder.

Potensiell energi

3. (a) Fire punktladninger, to positive og to negative med $Q=9.0\,\mu\text{C}$ er plassert i hjørnene på et kvadrat med sidekanter $a=5.00\,\text{cm}$, som vist i figuren under. Hva er systemets potensielle energi?

(b) En punktladning $Q_1 = 120 \,\text{nC}$ er plassert i origo og en punktladning $Q_2 = -90 \,\text{nC}$ i (x,y) = (a,0), som vist i figuren. $a = 0.800 \,\text{m}$ og $b = 0.600 \,\text{m}$. Et elektron flyttes fra punkt A(0,-b) til punkt B(a,b). Hvor stor endring gir denne forflytningen i systemets potensielle energi? ("Systemet" = de to punktladningene og elektronet.)

Gi svaret i elektronvolt, der $1 \text{ eV} = 1.60 \cdot 10^{-19} \text{ J}.$

