Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,
информационн	ые технологии»

Практическое занятие №5 «Проверка гипотез»

ДИСЦИПЛИНА: «Методы обработки информации»

Выполнил: студент гр. ИУК4-72Б		(Сафронов Н.С.
	(подпись)		(Ф.И.О.)
Проверил:		_ (_	Никитенко У.В.
	(подпись)		(Ф.И.О.)
Дата сдачи (защиты):			
Результаты сдачи (защиты):			
- Балльная	оценка:		
- Оценка:			

Постановка задачи

Пусть проверяется простая гипотеза относительно параметра распределения H_0 : $\theta = \theta_0$, с заданным уровнем значимости α .

Для нескольких альтернативных гипотез H1: $\theta = \theta_{1i}$, при $\theta_{1i} = \theta_0 + i\Delta(i=1,2,3,4,5)$. Построить графики мощности критерия значимости, если используется выборка (выборка из ПЗ-2):

- 1. объема $k_1 = 25$ (любые 25 значений из заданной выборки);
- 2. объема $k_2 = N$ (полный объем исходной выборки) Используя полученные результаты, построить таблицы "Ошибка II рода и мощность для нескольких альтернативных гипотез с объемом выборки k_i и α " и графики функций мощности критерия для случая 1 и 2.

Ход выполнения практического задания

За нулевую гипотезу будем брать среднее значение выборки.

Уровень значимости a = 0.1.

Bce	значения выборки:				
+					
3н	ачение параметра распределения		Мощность критерия	Ошибка II рода	
+					
1	0.1461757984121978		0.4004016061579658	0.5995983938420342	
1	0.22031553737164683		0.7642757723355271	0.23572422766447287	
1	0.2944552763310958		0.9571518535622745	0.0428481464377255	
1	0.36859501529054484		0.9967206201316634	0.003279379868336596	
1	0.44273475424999387		0.999899775068096	0.00010022493190398052	
+		+			+

Рисунок 1 – Ошибки II рода и мощность критерия для полной выборки

3н	ачение параметра распределения	Мощность критерия	Ошибка II рода
	0.1461757984121978	0.24078266609083318	0.7592173339091668
	0.22031553737164683	0.35300632649265795	0.646993673507342
	0.2944552763310958	0.508814786124697	0.491185213875303
	0.36859501529054484	0.6712869326824206	0.32871306731757943
	0.44273475424999387	0.8081769602965775	0.19182303970342252

Рисунок 3 – Ошибки II рода и мощность критерия для малой выборки (N=25)

Рисунок 3 – График мощности критерия значимости для малой и полной выборок

приложения

Листинг программы

```
import argparse
import csv
import matplotlib.pyplot as plt
import numpy as np
from prettytable import PrettyTable
from scipy.stats import norm
def get_test_power(
        data: list[float], theta_0: float, alpha: float, theta: float,
        sample size: int
) -> float:
    critical_value = norm.ppf(1 - alpha)
    standard_error = np.std(data) / np.sqrt(sample_size)
    critical region = (
        theta_0 - critical_value * standard_error,
        theta_0 + critical_value * standard_error
    )
    power = 1 - norm.cdf(critical region[1], theta, standard error) +
norm.cdf(
        critical_region[0], theta, standard_error
    return power
def read points(path: str) -> list[float]:
    points = []
   with open(path, newline='') as file:
        reader = csv.reader(file, delimiter=' ', quotechar='|')
        for row in reader:
            points.append(float(''.join(row)))
    return points
def solve(points: list[float]):
    alpha = 0.1
    theta_0 = np.mean(points)
    delta = np.std(points) / np.sqrt(len(points))
    thetas = [theta 0 + i * delta for i in range(1, 6)]
    small_sample_power = np.array(
        get_test_power(
                points, theta 0, alpha, theta, 25
            ) for theta in thetas
        ]
    full_sample_power = np.array(
```

```
get test power(
                points, theta_0, alpha, theta, len(points)
            ) for theta in thetas
        ]
    )
    table = PrettyTable()
    table.add_column('Значение параметра распределения', thetas)
    table.add_column('Мощность критерия', small_sample_power)
    table.add_column('Ошибка II рода', 1 - small_sample_power)
    print('Любые 25 из заданной выборки:')
    print(table)
    table = PrettyTable()
    table.add column('Значение параметра распределения', thetas)
    table.add_column('Мощность критерия', full_sample_power)
    table.add_column('Ошибка II рода', 1 - full_sample_power)
    print('Все значения выборки:')
    print(table)
    plt.figure(figsize=(10, 5))
    plt.plot(thetas, small_sample_power, label='$Мощность критерия при
N=25$')
    plt.plot(
        thetas, full_sample_power, label=f'Мощность критерия
$N={len(points)}$'
    plt.xlabel('Значение параметра распределения')
    plt.ylabel('Мощность критерия')
    plt.title('График мощности критерия')
    plt.axhline(
        alpha, color='red',
        label=f"$\\alpha={alpha}$"
    plt.legend()
    plt.show()
if name == ' main ':
    parser = argparse.ArgumentParser()
    parser.add_argument('-file')
    args = parser.parse_args()
    file = args.file or './data/Test14.csv'
    points = read_points(file)
    solve(points)
```