Perceptron (neural) branch predictor

Daniel A. Jiménez

Slides adapted by: Dr Sparsh Mittal

Conditional Branch Prediction is a Machine Learning Problem

- ◆ The machine learns to predict conditional branches
- So why not apply a machine learning algorithm?
- Artificial neural networks
 - ◆ Simple model of neural networks in brain cells
 - ◆ Learn to recognize and classify patterns
- ◆ Idea: Use fast and accurate perceptrons [Rosenblatt `62, Block `62] for dynamic branch prediction

Input and Output of the Perceptron

- The inputs to the perceptron are branch outcome histories
 - Just like in 2-level adaptive branch prediction
 - Can be global or local (per-branch) or both (alloyed)
 - Conceptually, branch outcomes are represented as
 - +1, for taken
 - ◆ -1, for not taken
- The output of the perceptron is
 - Non-negative, if the branch is predicted taken
 - Negative, if the branch is predicted not taken
- Ideally, each static branch is allocated its own perceptron

Branch-Predicting Perceptron

- Inputs (x's) are from branch history and are -1 or +1
- n + 1 small integer weights (w's) learned by on-line training
- Output (y) is dot product of x's and w's; predict taken if $y \ge 0$
- Training finds correlations between history and outcome

Training Algorithm

```
x_{1...n} is the n-bit history register, x_0 is 1.
w_{0..n} is the weights vector.
t is the Boolean branch outcome.
\theta is the training threshold.
if |y| \le \theta or ((y \ge 0) \ne t) then \leftarrow
     for each 0 \le i \le n in parallel
          if t = x_i then
               w_i := w_i + 1
          else
               w_i := w_i - 1
          end if
     end for
end if
```

For our course, we ignore this condition => we will always retrain the predictor after each prediction

What Do The Weights Mean?

- The bias weight, w_0 :
 - Proportional to the probability that the branch is taken
 - Doesn't take into account other branches; just like a Smith predictor
- The correlating weights, w_1 through w_n :
 - w_i is proportional to the probability that the predicted branch agrees with the i^{th} branch in the history
- \bullet The dot product of the w's and x's
 - $w_i \times x_i$ is proportional to the probability that the predicted branch is taken based on the correlation between this branch and the i^{th} branch
 - Sum takes into account all estimated probabilities
- What's θ ?
 - Keeps from overtraining; adapt quickly to changing behavior

Example: (1 of 3)

(a) First time prediction

Example: (2 of 3)

(b) Retraining

Example: (3 of 3)

(c) Next time prediction

Mathematical Intuition

A perceptron defines a hyperplane in n+1-dimensional space:

$$y = w_n x_n + w_{n-1} x_{n-1} + \dots + w_1 x_1 + w_0$$

For instance, in 2D space we have: $y = w_1 x_1 + w_0$

This is the equation of a line, the same as y = mx + b

Example: AND

- ◆ Here is a representation of the AND function
- ◆ White means *false*, black means *true* for the output
- ◆ -1 means *false*, +1 means *true* for the input

$$-1$$
 AND -1 = false

$$-1$$
 AND $+1$ = false

$$+1$$
 AND -1 = false

$$+1$$
 AND $+1$ = true

Program to Compute AND

```
int f () {
           int a, b, x, i, s = 0;
           for (i=0; i<100; i++) {
                      a = rand () \% 2;
                      b = rand () \% 2;
                      if (a) {
                                  if (b)
                                             x = 1;
                                  else
                                             x = 0;
                       } else {
                                  if (b)
                                             x = 0;
                                  else
                                             x = 0;
                      }
if (x) s++; /* this is the branch */
           return s;
```

Example: AND continued

◆ A linear decision surface (i.e. a plane in 3D space) intersecting the feature space (i.e. the 2D plane where *z*=0) separates *false* from *true* instances

Example: AND continued

• Watch a perceptron learn the AND function:

Program to Compute XOR

```
int f () {
           int a, b, x, i, s = 0;
           for (i=0; i<100; i++) {
                      a = rand () \% 2;
                      b = rand () \% 2;
                      if (a) {
                                  if (b)
                                             x = 0;
                                  else
                                             x = 1;
                       } else {
                                  if (b)
                                             x = 1;
                                  else
                                             x = 0;
                      }
if (x) s++; /* this is the branch */
           return s;
```

Example: XOR

• Here's the XOR function:

Perceptrons cannot learn such linearly inseparable functions

Example: XOR continued

Watch a perceptron try to learn XOR

Concluding Remarks

- Perceptron is an alternative to traditional branch predictors
- Provides high accuracy
- Limitations:
 - Latency
 - Linear inseparability

Idealized Piecewise Linear Branch Prediction

Daniel A. Jiménez

This and subsequent slides are not part of CS2323 course.

They are included just for illustration.

Previous Neural Predictors

- The perceptron predictor uses only pattern history information
 - ◆ The same weights vector is used for every prediction of a static branch
 - The i^{th} history bit could come from any number of static branches
 - So the i^{th} correlating weight is aliased among many branches
- ◆ The newer path-based neural predictor uses path information
 - The i^{th} correlating weight is selected using the i^{th} branch address
 - This allows the predictor to be pipelined, mitigating latency
 - This strategy improves accuracy because of path information
 - But there is now even more aliasing since the *i*th weight could be used to predict many different branches

Piecewise Linear Branch Prediction

Generalization of perceptron and path-based neural predictors

Why It's Better

- ◆ Forms a piecewise linear decision surface
 - Each piece determined by the path to the predicted branch
- Can solve more problems than perceptron

Perceptron decision surface for XOR doesn't classify all inputs correctly

Piecewise linear decision surface for XOR classifies all inputs correctly

22

Learning XOR

◆ From a program that computes XOR using if statements

perceptron prediction

piecewise linear prediction