

## Bien commencer avec Arduino



**Amiens** 

TP01 : Faire clignoter la LED progressivement

Page 1 sur 4

Première

### Objectifs de l'activité :

Pouvoir activer et désactiver les entrées sorties de la carte Arduino.

| Nom de l'élève | Prénom de l'élève | Classe |
|----------------|-------------------|--------|
| ?              | ?                 | ?      |

Nous allons créer notre premier programme en Langage C arduino pour faire clignoter une LED. La carte Arduino Uno dispose d'entrées / sorties numériques. Ils permettent la communication avec des composants extérieurs (sonde de température, LED, interrupteur...) afin de récupérer les données et de pouvoir les traiter.

Ce premier programme consiste à faire clignoter une LED.

### 1 Matériel nécessaire :

- Une carte Arduino Uno
- Une LED
- Une résistance de  $220\Omega$  (ou plus)
- Une Breadboard
- Des câbles

# 2 Branchement d'une LED à la carte Arduino Uno.

Pour connecter une LED à la carte Arduino Uno, on a besoin d'une résistance afin de diminuer la tension à ses bornes. Une LED fonctionne avec une tension et une intensité donnée par le constructeur. Il faut donc savoir calculer la valeur de la résistance.

#### 2.1 Comment calculer la valeur d'une résistance.

Pour connaître la valeur de la résistance que nous devons choisir, il faut appliquer la loi des mailles :

Exemple de caractéristiques de LED :

|                            | Tension | Courant |
|----------------------------|---------|---------|
| Led rouge standard         | 1,6 V   | 20 mA   |
| Led verte standard         | 2,1 V   | 20 mA   |
| Led jaune standard         | 2,1 V   | 20 mA   |
| Led bleue standard         | 3,6 V   | 20 mA   |
| Led rouge haute luminosité | 2,0 V   | 20 mA   |
| Led verte haute luminosité | 3,6 V   | 20 mA   |
| Led jaune haute luminosité | 2,0 V   | 20 mA   |
| Led bleue haute luminosité | 3,6 V   | 20 mA   |



On choisira une résistance d'environ  $220\Omega$ .



# Bien commencer avec Arduino



**Amiens** 

TP01 : Faire clignoter la LED progressivement

Page 2 sur 4

Première

#### 2.2 Schéma de montage.



Nous utiliserons la sortie numérique PWM 9 de la carte Arduino Uno, et le Ground.

# 3 Programme 1:

```
2 Progr AR01_Led801 fait clignoter la led
 3 brancher sur la pin 9.
5 Devos le 20/03/2020
 6 ************
8 void setup()
9 {
10 pinMode(9, OUTPUT); //Déclare la broche 9 en sortie
11 }
12
13 void loop()
14 {
15
   digitalWrite(9, HIGH);// Applique un niveau "haut" sur la broche 9
16
17
   delay(1000);  // Attendre 1 seconde (1000 miliseconde)
18
   digitalWrite(9, LOW); //Apllique un niveau bas sur la broche 9
19 delay(1000); //// Attendre 1 seconde (1000 miliseconde)
20 }
```



#### Bien commencer avec Arduino



**Amiens** 

**TP01 : Faire clignoter la LED progressivement** 

Page 3 sur 4

Première

# 4 Programme 2:

Nous allons maintenant faire varier l'intensité lumineuse de la Led, à l'aide du programme.

```
// Broche à laquelle la LED est reliée
                                                                           Déclaration des variables
int brightness = 0; //Intensité lumineuse de la LED
int fadeAmount = 5; //Ampleur de la baisse d'intensité lumineuse
 // put your setup code here, to run once:
 pinMode(led,OUTPUT); //Déclare la broche 9 en sortie
                                                                           Setup
void loop() {
 //Modifie la luminosité sur la broche 9
                                                                           Boucle
 analogWrite(led, brightness);
  //Changer la luminosité pour e tour de boucle suivant
 brightness = brightness + fadeAmount;
  //Inverser la variation de la luminosité quand on arrive à son terme.
  if (brightness == 0 || brightness == 255){
     fadeAmount = -fadeAmount;
  //Attendre 30 miliseconde
 delay(30);
```

Au lieu des valeurs ON et OFF, une variation progressive de la luminosité a besoin de toute une plage de valeurs. **analogWrite()** vous permet d'envoyer une valeur numérique entre 0 et 255 à une broche PWM de l'Arduino. 0 correspond à 0 V, et 255 correspond à 5 V. Toute valeur intermédiaire produit une tension proportionnelle, ce qui fait varier la luminosité de la LED.



### Bien commencer avec Arduino



Amiens

TP01: Faire clignoter la LED progressivement

Page 4 sur 4

Première

# 5 Exercice.

Vous allez maintenant devoir ajouter une LED verte à la LED rouge déjà présente sur le montage. Attention, la LED verte doit s'allumer lorsque la LED rouge est éteinte et inversement.

#### 5.1 Travail à réaliser :

- Calculer la valeur de la nouvelle résistance à mettre en série avec la LED verte.
- Pensez à utiliser la ligne « moins » de la Breadboard afin de mettre la cathode de chaque LED sur cette ligne.
- Faire le montage à l'aide du logiciel Tinkercad.
- Réaliser l'algorithme ou l'algorigramme.
- Réaliser le programme (chaque ligne de votre programme doit être commentée)
- Sur la feuille à rendre je dois y trouver :
  - o Le calcul de la valeur de la résistance et préciser le code couleur de celle-ci.
  - L'algorigramme ou l'algorithme.
  - Une copie du montage Tinkercad
  - o Une copie de votre programme
  - o Une photo de votre montage avec la LED verte allumée.

## 6 Exercice Chenillard

Réaliser un chenillard avec 10 leds rouges branchées sur les broches 1 à 10.

- 1. Le chenillard doit partir de la led 1, la led doit restée allumé pendant 100 milisecondes, puis s'éteindre
- 2. La led suivante doit s'allumer, pendant 100 milisecondes, puis s'éteindre.
- 3. Continuez ainsi jusqu'à la led 10.
- 4. Lorsque le chenillard arrive à la led 10 ou à la led 1, le chenillard doit changer de sens :

L1,L2,L3,L4,L5,L6,L7,L8,L9,L10,L9,L8,L7,L6,L5,L4,L3,L2,L1,L2,L3....

Votre programme doit être commenté.

Point Bonus pour celui qui réalise l'ensemble avec moins de 15 lignes de codes (hors accolade et hors commentaire)

- Sur la feuille à rendre je dois y trouver :
  - o L'algorigramme ou l'algorithme.
  - o Une copie du montage Tinkercad
  - Une copie de votre programme