Introduction to Field Extension

Date: Mar 13 Made by Eric

In this note, \mathbb{E} is always a field

Definition

Definition 1. \mathbb{E} is an extension of \mathbb{F} if $\mathbb{F} \leq \mathbb{E}$

Definition 2. *Let* $\mathbb{F} \leq \mathbb{E}$ *and* $\alpha \in \mathbb{E}$

 α is algebraic over $\mathbb F$ if there exists non-zero polynomial f in $\mathbb F[x]$ such that $f(\alpha)=0$

 α is **transcendental over** \mathbb{F} if α is not algebraic over \mathbb{F} , more precisely, if $f(\alpha) = 0 \implies f = 0$

Definition 3. Let $\alpha \in \mathbb{C}$

 α is an **algebraic number** if α is algebraic over $\mathbb Q$

 α is an **transcendental number** is α is not an algebraic number

Definition 4. Let $f \in \mathbb{F}[x]$

f is a monic polynomial if the leading coefficient is 1

Definition 5. Let $\mathbb{F} \leq \mathbb{E}$, and let $\alpha \in \mathbb{E}$ be algebraic over \mathbb{F}

The **irreducible polynomial for** α **over** \mathbb{F} is the unique monic irreducible polynomial f that satisfy $f(\alpha) = 0$ $irr(\alpha, \mathbb{F}) = f$

The **degree of**
$$\alpha$$
 over \mathbb{F} is $deg(irr(\alpha, \mathbb{F}))$ $deg(\alpha, \mathbb{F}) = deg(irr(\alpha, \mathbb{F}))$

Definition 6. Let $\mathbb{F} \leq \mathbb{E}$, $\alpha \in \mathbb{E}$ be algebraic, and $\phi_{\alpha} : \mathbb{F}[x] \to \mathbb{E}$ be evaluation homomorphism

$$\mathbb{F}(\alpha) = \phi_{\alpha}[\mathbb{F}[x]]$$

Definition 7. Let $\mathbb{F} \leq \mathbb{E}$, $\alpha \in \mathbb{E}$ be transcendental, and $\phi_{\alpha} : \mathbb{F}[x] \to \mathbb{E}$

 $\mathbb{F}(\alpha)$ is the field of quotient expanded by $\phi_{\alpha}[\mathbb{F}[x]]$

Definition 8. Let $\mathbb{F} \leq \mathbb{E}$

 \mathbb{E} is a simple extension of \mathbb{F} if $\mathbb{E} = \mathbb{F}(\alpha)$ for some $\alpha \in \mathbb{E}$

Theorems

Theorem 1. Let $f \in \mathbb{F}[x]$

There exists \mathbb{E} , an extension of \mathbb{F} , such that $\exists \alpha \in \mathbb{E}$, $f(\alpha) = 0$

Proof. Let $p \in \mathbb{F}[x]$ be an irreducible factor of f, such that p is of degree more than 1 (If every irreducible factor of f is of degree less than or equal to 1, we can simply pick $\mathbb{F} = \mathbb{E}$ and pick any $(x - \alpha)$)

Let
$$\mathbb{E} := \mathbb{F}[x]/\langle p(x) \rangle$$

We now prove \mathbb{F} is isomorphic to a subfield of \mathbb{E}

Let $\phi : \mathbb{F} \to \mathbb{E}$ be defined by $c \mapsto c + \langle p(x) \rangle$

$$\phi(c+d) = ((c+d) + \langle p \rangle) = (c + \langle p \rangle) + (d + \langle p \rangle) = \phi(c) + \phi(d)$$

$$\phi(cd) = cd + \langle p \rangle = (c + \langle p \rangle)(d + \langle p \rangle) = \phi(c)\phi(d)$$

$$\phi(a) = \phi(b) \implies a + \langle p \rangle = b + \langle p \rangle \implies a - b \in \langle p \rangle \implies a = b$$

 $\forall \phi(r) \in \phi[\mathbb{F}], \phi(r^{-1})\phi(r)=1$ This guarantee that the image of ϕ is a field (done)

We now prove $\exists \alpha \in \mathbb{E}, f(\alpha) = 0$

Let
$$\beta = x + \langle p \rangle$$

$$f(\beta) = f(x) + \langle p \rangle = \langle p \rangle$$

Notice $\langle p \rangle$ is the additive identity in \mathbb{E} (done)

Theorem 2. Let \mathbb{E} be an extension of \mathbb{F} and let $\alpha \in \mathbb{E}$. Let $\phi_{\alpha} : \mathbb{F}[x] \to \mathbb{E}$ be the evaluation homomorphism of α

 α is transcendental over $\mathbb F$ if and only if ϕ_{α} is a monomorphism

Proof. (\longrightarrow)

$$\phi_{\alpha}(f) = \phi_{\alpha}(g) \implies f(\alpha) = g(\alpha) \implies (f - g)(\alpha) = 0 \implies f - g = 0 \implies f = g$$

 (\longleftarrow)

$$f(\alpha) = 0 \implies \phi_{\alpha}(f) = 0 \implies f = 0$$

Theorem 3. Let \mathbb{E} be an extension of \mathbb{F} , and pick $\alpha \in \mathbb{E}$ where α is algebraic over \mathbb{F} The smallest polynomial $p \in \mathbb{F}[x]$ that satisfy $p(\alpha) = 0$, is irreducible

Proof. Let
$$S = \{ f \in \mathbb{F}[x] | f(\alpha) = 0 \}$$

We now prove S is an ideal of $\mathbb{F}[x]$

Let $g, h \in S$ and $r \in \mathbb{F}[x]$

$$(g+h)(\alpha) = g(\alpha) + h(\alpha) = 0 \implies g+h \in S$$

$$0(\alpha) = 0 \implies 0 \in S$$

$$(-q)(\alpha) = -q(\alpha) = 0 \implies -q \in S$$

$$(gs)(\alpha) = g(\alpha)s(\alpha) = 0s(\alpha) = 0 \implies gs \in S$$

$$(sg)(\alpha) = s(\alpha)g(\alpha) = s(\alpha)0 = 0 \implies sg \in S \text{ (done)}$$

We know $\mathbb{F}[x]$ contains only principal ideal, so we can pick a polynomial p that generate S and see that p is of smallest degree and is irreducible

Theorem 4. Let $\mathbb{E} = \mathbb{F}(\alpha)$, where $\alpha \in \mathbb{E}$ is algebraic over \mathbb{F} . Let $\beta \in \mathbb{E}$, and let $n = deg(\alpha, \mathbb{F})$

$$\beta$$
 can be uniquely expressed as $c_0\alpha^0 + c_1\alpha^1 + \cdots + c_{n-1}\alpha^{n-1}$ for some $\{c_0, \ldots, c_{n-1}\} \subseteq \mathbb{F}$

Proof. Let $\phi_{\alpha}: \mathbb{F}[x] \to \mathbb{E}$ be evaluation homomorphism

Because $\mathbb{E} = \mathbb{F}(\alpha)$ and α is algebraic over \mathbb{F} , so we know $\mathbb{E} \simeq \phi_{\alpha}[\mathbb{F}[x]]$

Because we know $\langle \operatorname{irr}(\alpha, \mathbb{F}) \rangle$ is the kernel of $\phi_{\alpha}[\mathbb{F}[x]]$, so by First Isomorphism Theorem, we know $\mu: \mathbb{F}[x]/\langle \operatorname{irr}(\alpha, \mathbb{F}) \rangle \to \mathbb{E}$ defined by $f+\langle \operatorname{irr}(\alpha, \mathbb{F}) \rangle \mapsto \phi_{\alpha}(f)$ is an isomorphism

We now prove β can be expressed in such fashion

Because μ is an isomorphism, we know there exists $f+\langle\operatorname{irr}(\alpha,\mathbb{F})\rangle$ satisfy $\mu(f+\langle\operatorname{irr}(\alpha,\mathbb{F})\rangle)=\beta$

We fix such f

Do division algorithm on f with $\langle \operatorname{irr}(\alpha, \mathbb{F}) \rangle$ to have $f = q \operatorname{irr}(\alpha, \mathbb{F}) + r$

Because
$$f-r=q$$
 $\operatorname{irr}(\alpha,\mathbb{F})\in\langle\operatorname{irr}(\alpha,\mathbb{F})\rangle$, we know $f+\langle\operatorname{irr}(\alpha,\mathbb{F})\rangle)=r+\langle\operatorname{irr}(\alpha,\mathbb{F})\rangle$

Then we see
$$\beta = \mu(f + \langle \operatorname{irr}(\alpha, \mathbb{F}) \rangle) = \mu(r + \langle \operatorname{irr}(\alpha, \mathbb{F}) \rangle) = \phi_{\alpha}(r) = r(\alpha)$$
 where $deg(r) < deg(\alpha, \mathbb{F})$ (done)

We now prove uniqueness

Assume such expression is not unique

Let $\beta = d_0 \alpha^0 + \cdots + d_{n-1} \alpha^{n-1}$ where d is another sequence of coefficients

$$(c_0-d_0)\alpha^0+\cdots+(c_{n-1}-d_{n-1})\alpha^{n-1}=0$$
 CaC to that $n=deg(\alpha,\mathbb{F})$ (done)

Theorem 5.
$$\mathbb{R}(x + \langle x^2 + 1 \rangle) \simeq \mathbb{C}$$

Proof. Let $\phi: \mathbb{C} \to \mathbb{R}(x+\langle x^2+1\rangle)$ be defined by lifting $1\mapsto 1+\langle x^2+1\rangle$ and $i\mapsto x+\langle x^2+1\rangle$

$$\phi(a+bi) + \phi(c+di) = [(a+bx) + \langle x^2 + 1 \rangle] + [(c+dx) + \langle x^2 + 1 \rangle] = [(a+c) + (b+d)x] + \langle x^2 + 1 \rangle = \phi((a+bi) + (c+di))$$

LEFT TO PROVE

Summary

- 1. The spirit of simple extension $\mathbb{F}(\alpha)$ is to take all outputs of \mathbb{F} -coefficient polynomial with input x, as a field
- 2. All element in simple extension $\mathbb{F}(\alpha)$ can be expressed as a polynomial of α of degree less than $deg(\alpha, \mathbb{F})$
- 3. If α is algebraic over $\mathbb F$, $|\mathbb F(\alpha)|=|\mathbb F|^{deg(\alpha,\mathbb F)}$. If α is transcendental over $\mathbb F$, $\mathbb F(\alpha)\geq \infty$
- 4. To have $|\mathbb{F}(\alpha)|=p^n$, construct irreducible $f\in\mathbb{Z}_p[x]$ such that deg(f)=n, and let α be a zero of f, then $|\mathbb{Z}_p(\alpha)|=p^n$
- 5. If α is algebraic over $\mathbb F$, then there is a set of coefficient in $\mathbb F$ that can assemble α back to 0