Arithmetic Circuits

CS211 Chapter 8

James YU yujq3@sustech.edu.cn

Department of Computer Science and Engineering Southern University of Science and Technology

Jul. 13, 2021

Arithmetic circuits

- One important aspect of digital design not dealt with in earlier lectures is the design and implementation of arithmetic circuits.
 - Various information-processing jobs are carried out by digital computers.
 - Arithmetic operations are among the basic functions of a digital computer.

Addition

- Addition of two binary digits is the most basic arithmetic operation.
 - 0+0=0
 - 0+1=1,
 - 1+0=1,
 - 1+1=10.
 - The higher significant bit of this result is called the *carry*.
- A combinational circuit that performs the addition of two bits as described above is called a *half-adder*.
- The addition operation involves three bits the *augend bit*, *addend bit*, and the *carry bit* and produces a sum result as well as carry.
- The combinational circuit performing this type of addition operation is called a *full-adder*.

Half-adder

- As described above, a half-adder has two inputs and two outputs.
- Let the input variables augend and addend be designated as *A* and *B*, and output functions be designated as *S* for sum and *C* for carry.

_	Input va	ariables	Output variables			
	\overline{A}	В	\overline{S}	C		
	0	0	0	0		
	0	1	1	0		
	1	0	1	0		
	1	1	0	1		

• It can be seen that the outputs *S* and *C* functions are similar to Exclusive-OR and AND functions, respectively.

Half-adder

有方科技大学 SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

- $S = A \oplus B$
- \bullet C = AB.

Full-adder

 A combinational circuit of full-adder performs the operation of addition of three bits — the augend, addend, and previous carry X, and produces the outputs sum and carry.

Inpu	ut varia	bles	Output variables		
\overline{X}	X = A		\overline{S}	C	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

Full-adder

- S = X'A'B + X'AB' + XA'B' + XAB'
- C = AB + BX + AX.

Full-adder

 It can also be implemented with two half adders and one OR gate, as shown below.

$$S = B \oplus (X \oplus A) = B'(XA' + X'A) + B(XA' + X'A)'$$

= B'(XA' + X'A) + B(XA + X'A') = XA'B' + X'AB' + XAB + X'A'B.
$$C = B(XA' + X'A) + XA = XA'B + X'AB + XA$$

Binary adder

- A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers.
- It can be constructed with full adders connected in cascade, with the output carry from each full adder connected to the input carry of the next full adder in the chain.
- Addition of n-bit numbers requires a chain of n full adders or a chain of one-half adder and n-1 full adders.
 - Below shows the interconnection of four full-adder (FA) circuits to provide a four-bit binary ripple carry adder.

Binary adder

• 1011 + 0011 = 1110.

Subscript i	3	2	1	0	
Input carry	0	1	1	0	C_i
Augend	1	0	1	1	A_i
Addend	0	0	1	1	B_i
Sum	1	1	1	0	$\overline{S_i}$
Output carry	0	0	1	1	C_{i+1}
Output carry	U	U	-	-	

Binary adder

- The four-bit adder is a typical example of a standard component.
- It can be used in many applications involving arithmetic operations.
- Observe that the design of this circuit by the classical method would require a truth table with $2^9 = 512$ entries, since there are nine inputs to the circuit.
- By using an iterative method of cascading a standard function, it is possible to obtain a simple and straightforward implementation.

- The addition of two binary numbers in parallel implies that all the bits of the augend and addend are available for computation at the same time.
- As in any combinational circuit, the signal must propagate through the gates before the correct output sum is available in the output terminals.
 - The total propagation time is equal to the propagation delay of a typical gate, times the number of gate levels in the circuit.
 - In this regard, consider output S_3 . Inputs A_3 and B_3 are available as soon as input signals are applied to the adder.
 - However, input carry C_3 does not settle to its final value until C_2 is available from the previous stage.

CS211 Chapter 8 Sa Arithmetic Circuits 50 11/33

- The carry propagation time is an important attribute of the adder because it limits the speed with which two numbers are added.
 - Since all other arithmetic operations are implemented by successive additions, the time consumed during the addition process is critical.
- A solution is to increase the complexity of the equipment in such a way that the carry delay time is reduced.
- The most widely used technique employs the principle of carry lookahead logic.

- Consider this full-adder circuit:
 - $P_i = A_i \oplus B_i$,
 - $G_i = A_i B_i$.
- The output sum and carry can respectively be expressed as
 - $S_i = P_i \oplus C_i$
 - $\bullet \ C_{i+1} = G_i + P_i C_i.$
- G_i is called a *carry generator*. P_i is called a *carry propagator*.

• We now write the Boolean functions for the carry outputs of each stage and substitute the value of each C_i from the previous equations.

$$\begin{split} &C_0 = \text{input carry}, \\ &C_1 = G_0 + P_0 C_0, \\ &C_2 = G_1 + P_1 C_1 = G_1 + P_1 G_0 + P_1 P_0 C_0, \\ &C_3 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0. \end{split}$$

Subtraction

- Subtraction is the other basic function of arithmetic operations of information-processing tasks of digital computers.
 - 0 0 = 0.
 - 0-1=1 with borrow of 1,
 - 1-0=1,
 - 1 1 = 0.
 - The first, third, and fourth operations produce a subtraction of one digit, but the second operation produces a difference bit as well as a *borrow* bit.
- A combinational circuit that performs the subtraction of two bits as described above is called a *half-subtractor*.
- the subtraction operation involves three bits the *minuend* bit, *subtrahend* bit, and the *borrow* bit, and produces a different result as well as a borrow.
- The combinational circuit that performs this type of subtraction operation is called a *full-subtractor*.

Half-subtractor

- As described above, a half-subtractor has two inputs and two outputs.
- Let the input variables minuend and subtrahend be designated as X and Y, and output functions be designated as D for difference and B for borrow.

Input va	ariables	Output variables			
X Y		\overline{D}	B		
0	0	0	0		
0	1	1	1		
1	0	1	0		
1	1	0	0		

- $D = X \oplus Y$,
- \bullet B = X'Y

Full-subtractor

 A combinational circuit of full-subtractor performs the operation of subtraction of three bits — the minuend, subtrahend, and borrow Z generated from the subtraction operation of previous significant digits and produces the output difference and borrow.

Inp	ut varia	bles	Output variables		
X	Y	Z	D	B	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	

Full-subtractor

$\stackrel{\wedge}{\approx}^A$	B 00	01	11	10
0		1		1
1	1		1	

- D = X'Y'Z + X'YZ' + XY'Z' + XYZ' + XYZ
- $\bullet \ B = X'Z + X'Y + YZ.$

- The subtraction of unsigned binary numbers can be done most conveniently by means of complements.
 - The subtraction A-B can be done by taking the 2's complement of B and adding it to A.
 - The 2's complement can be obtained by taking the 1's complement and adding 1 to the least significant pair of bits.
 - The 1's complement can be implemented with inverters, and a 1 can be added to the sum through the input carry.

• The circuit for subtracting A-B consists of an adder with inverters placed between each data input B and the corresponding input of the full adder.

 The addition and subtraction operations can be combined into one circuit with one common binary adder by including an exclusive-OR gate with each full adder.

- It is worth noting that binary numbers in the signed-complement system are added and subtracted by the same basic addition and subtraction rules as are unsigned numbers.
- Therefore, computers need only one common hardware circuit to handle both types of arithmetic.

- When two numbers with n digits each are added and the sum is a number occupying n+1 digits, we say that an overflow occurred.
 - When the addition is performed with paper and pencil, an overflow is not a problem, since there is no limit by the width of the page to write down the sum.
- ullet Overflow is a problem in digital computers because the number of bits that hold the number is finite and a result that contains n+1 bits cannot be accommodated by an n-bit word.
 - For this reason, many computers detect the occurrence of an overflow, and when it occurs, a corresponding flip-flop is set that can then be checked by the user.
- The detection of an overflow after the addition of two binary numbers depends on whether the numbers are considered to be signed or unsigned.
 - When two unsigned numbers are added, an overflow is detected from the end carry out of the most significant position.
 - When two signed numbers are added, the sign bit is treated as part of the number and the end carry does not indicate an overflow.

• An overflow may occur if the two numbers are both positive or negative.

carries:	0	1	
+70		0	1000110
+80		0	1010000
+150		1	0010110
carries:	1	0	
carries: -70	1	0	0111010
	1	0	0111010 0110000

- If the carry out of the sign bit position is taken as the sign bit of the result, then the nine-bit answer so obtained will be correct.
- But since the answer cannot be accommodated within eight bits, we say that an overflow has occurred.

- An overflow condition can be detected by observing the carry into the sign bit position and the carry out of the sign bit position.
- If these two carries are not equal, an overflow has occurred.

carries:	0	1	
+70		0	1000110
+80		0	1010000
+150		1	0010110
carries:	1	0	
-70		1	0111010
-80		1	0110000
		1	0110000

• If the two carries are applied to an exclusive-OR gate, an overflow is detected when the output of the gate is equal to 1.

Decimal adder

- Computers or calculators that perform arithmetic operations directly in the decimal number system represent decimal numbers in binary coded form.
- An adder for such a computer must employ arithmetic circuits that accept coded decimal numbers and present results in the same code.
- Consider the arithmetic addition of two decimal digits in BCD, together with an input carry from a previous stage.
 - Since each input digit does not exceed 9, the output sum cannot be greater than 9+9+1=19, the 1 in the sum being an input carry.
 - Suppose we apply two BCD digits to a four-bit binary adder. The adder will form the sum in binary and produce a result that ranges from 0 through 19.

Decimal adder

- When the binary sum is equal to or less than 1001, the result is a valid BCD code.
- When the binary sum is greater than 1001, we obtain an invalid BCD representation. The addition of binary 6 (0110) to the binary sum converts it to the correct BCD representation and also produces an output carry as required.

K	Z8	Z4	Z2	Z1	C	S8	S4	S2	S1
0	1	0	1	0	1	0	0	0	0
0	1	0	1	1	1	0	0	0	1
0	1	1	0	0	1	0	0	1	0
0	1	1	0	1	1	0	0	1	1
0	1	1	1	0	1	0	1	0	0
0	1	1	1	1	1	0	1	0	1
1	0	0	0	0	1	0	1	1	0
1	0	0	0	1	1	0	1	1	1
1	0	0	1	0	1	1	0	0	0
1	0	0	1	1	1	1	0	0	1

Decimal adder

- $C = K + Z_8 Z_4 + Z_8 Z_2$.
- When C=1, it is necessary to add 0110 to the binary sum and provide an output carry for the next stage.

Binary multiplier

- Multiplication of binary numbers is performed in the same way as multiplication of decimal numbers.
- The multiplicand is multiplied by each bit of the multiplier, starting from the least significant bit.
- Each such multiplication forms a partial product. Successive partial products are shifted one position to the left.

$$\begin{array}{c|ccccc}
 & B_1 & B_0 \\
 & A_1 & A_0 \\
\hline
 & A_0B_1 & A_0B_0 \\
\hline
 & A_1B_1 & A_1B_0 & \\
\hline
 & C_3 & C_2 & C_1 & C_0
\end{array}$$

Binary multiplier

$$\begin{array}{c|cccc} & B_1 & B_0 \\ & A_1 & A_0 \\ \hline & A_0B_1 & A_0B_0 \\ \hline & A_1B_1 & A_1B_0 & \\ \hline & C_3 & C_2 & C_1 & C_0 \\ \hline \end{array}$$

Binary multiplier

- A combinational circuit binary multiplier with more bits can be constructed in a similar fashion.
 - A bit of the multiplier is ANDed with each bit of the multiplicand in as many levels as there are bits in the multiplier.
 - The binary output in each level of AND gates is added with the partial product of the previous level to form a new partial product.