7 Week 7: The triple scalar product

The *triple scalar product* $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$ of the vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ is the real number $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$.

Proposition 7.1. If $\begin{bmatrix} \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k} \end{bmatrix}$ is a direct orthonormal basis and

$$\overrightarrow{a} = a_1 \xrightarrow{i} + a_2 \xrightarrow{j} + a_3 \xrightarrow{k}$$

$$\overrightarrow{b} = b_1 \xrightarrow{i} + b_2 \xrightarrow{j} + b_3 \xrightarrow{k}$$

$$\overrightarrow{c} = c_1 \xrightarrow{i} + c_2 \xrightarrow{j} + c_3 \xrightarrow{k}$$

then

$$(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
 (7.1)

Proof. Indeed, we have successively:

$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$= \left(\begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \vec{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \vec{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \vec{k} \right) \cdot (c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k})$$

$$= \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} c_1 - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} c_2 + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} c_3 = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}.$$

Remark 7.1. Taking into account the formula (7.2) for the distance $\delta(N, \Delta)$ from the point $N(x_N, y_N, z_N)$ to the straight line Δ : $\frac{x - x_0}{p} = \frac{y - y_0}{q} = \frac{z - z_0}{r}$ as well as Proposition 6.3 we deduce that

$$\frac{\delta(N,\Delta)}{\delta(N,\Delta)} = \| \overrightarrow{Np_{\Delta}(N)} \| \\
= \| \overrightarrow{NO} + \overrightarrow{Op_{\Delta}(N)} \| = \| \overrightarrow{NA_0} - \frac{\overrightarrow{d}_{\Delta} \cdot \overrightarrow{NA_0}}{\| \overrightarrow{d}_{\Delta} \|^2} \overrightarrow{d}_{\Delta} \|$$
(7.2)

$$= \frac{\| \left(\overrightarrow{d}_{\Delta} \cdot \overrightarrow{d}_{\Delta} \right) \overrightarrow{NA_0} - \left(\overrightarrow{d}_{\Delta} \cdot \overrightarrow{NA_0} \right) \overrightarrow{d}_{\Delta} \|}{\| \overrightarrow{d}_{\Delta} \|^2}$$

$$= \frac{\| \overrightarrow{d}_{\Delta} \times (\overrightarrow{NA_0} \times \overrightarrow{d}_{\Delta}) \|}{\| \overrightarrow{d}_{\Delta} \|^2} = \frac{\| \overrightarrow{NA_0} \times \overrightarrow{d}_{\Delta} \|}{\| \overrightarrow{d}_{\Delta} \|}.$$

Thus, we recovered the distance formula from one point to one straight line (see formula 6.4) by using different arguments.

Corollary 7.2. 1. The free vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are linearly dependent (collinear) iff $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = 0$

- 2. The free vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are linearly independent (noncollinear) if and only if $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) \neq 0$
- 3. The free vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} form a basis of the space \mathcal{V} if and only if $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) \neq 0$.
- 4. The correspondence $F: \mathcal{V} \times \mathcal{V} \times \mathcal{V} \to \mathbb{R}$, $F(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$ is trilinear and skew-symmetric, i.e.

$$(\alpha \overrightarrow{a} + \alpha' \overrightarrow{a}', \overrightarrow{b}, \overrightarrow{c}) = \alpha(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) + \alpha'(\overrightarrow{a}', \overrightarrow{b}, \overrightarrow{c})$$

$$(\overrightarrow{a}, \beta \overrightarrow{b} + \beta' \overrightarrow{b}', \overrightarrow{c}) = \beta(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) + \beta'(\overrightarrow{a}, \overrightarrow{b}', \overrightarrow{c})$$

$$(\overrightarrow{a}, \overrightarrow{b}, \gamma \overrightarrow{c} + \gamma' \overrightarrow{c}') = \gamma(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) + \gamma'(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}')$$

$$(7.3)$$

 $\forall \alpha, \beta, \gamma, \alpha', \beta', \gamma' \in \mathbb{R}, \forall \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{a}', \overrightarrow{b}', \overrightarrow{c}' \in \mathcal{V}$ *şi*

$$(\overrightarrow{a}_{1}, \overrightarrow{a}_{2}, \overrightarrow{a}_{3}) = sgn(\sigma)(\overrightarrow{a}_{\sigma(1)}, \overrightarrow{a}_{\sigma(2)}, \overrightarrow{a}_{\sigma(3)}), \ \forall \ \overrightarrow{a}_{1}, \overrightarrow{a}_{2}, \overrightarrow{a}_{3} \in \mathcal{V} \ \text{i} \ \forall \ \sigma \in S_{3}$$
 (7.4)

Remark 7.2. *One can rewrite the relations (7.4) as follows:*

$$(\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}) = (\overrightarrow{a_2}, \overrightarrow{a_3}, \overrightarrow{a_1}) = (\overrightarrow{a_3}, \overrightarrow{a_1}, \overrightarrow{a_2}) = -(\overrightarrow{a_2}, \overrightarrow{a_1}, \overrightarrow{a_3}) = -(\overrightarrow{a_1}, \overrightarrow{a_3}, \overrightarrow{a_2}) = -(\overrightarrow{a_3}, \overrightarrow{a_2}, \overrightarrow{a_1}),$$

 $\forall \overrightarrow{a}_1, \overrightarrow{a}_2, \overrightarrow{a}_3 \in \mathcal{V}$

Corollary 7.3. 1. $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) \forall \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \in \mathcal{V}$.

2. For every \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , $\overrightarrow{d} \in \mathcal{V}$ the Laplace formula holds:

$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{c} \times \overrightarrow{d}) = \begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{c} & \overrightarrow{a} \cdot \overrightarrow{d} \\ \overrightarrow{b} \cdot \overrightarrow{c} & \overrightarrow{b} \cdot \overrightarrow{d} \end{vmatrix}.$$

Proof. While the first identity is obvious, for the Laplace formula we have successively:

$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{c} \times \overrightarrow{d}) = (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \times \overrightarrow{d}) = (\overrightarrow{c} \times \overrightarrow{d}, \overrightarrow{a}, \overrightarrow{b})$$

$$= [(\overrightarrow{c} \times \overrightarrow{d}) \times \overrightarrow{a}] \cdot \overrightarrow{b} = -[(\overrightarrow{a} \cdot \overrightarrow{d}) \overrightarrow{c} - (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{d}] \cdot \overrightarrow{b}$$

$$= -(\overrightarrow{a} \cdot \overrightarrow{d}) (\overrightarrow{c} \cdot \overrightarrow{b}) + (\overrightarrow{a} \cdot \overrightarrow{c}) (\overrightarrow{d} \cdot \overrightarrow{b}) = \begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{c} & \overrightarrow{a} \cdot \overrightarrow{d} \\ \overrightarrow{b} \cdot \overrightarrow{c} & \overrightarrow{b} \cdot \overrightarrow{d} \end{vmatrix}.$$

Definition 7.1. The basis $[\vec{a}, \vec{b}, \vec{c}]$ of the space \mathcal{V} is said to be *directe* if $(\vec{a}, \vec{b}, \vec{c}) > 0$. If, on the contrary, $(\vec{a}, \vec{b}, \vec{c}) < 0$, we say that the basis $[\vec{a}, \vec{b}, \vec{c}]$ is *inverse*

Definition 7.2. The *oriented* volume of the parallelepiped constructed on the noncoplanar vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} is $\varepsilon \cdot V$, where V is the volume of this parallelepiped and $\varepsilon = +1$ or -1 insomuch as the basis $[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}]$ is directe or inverse respectively.

Proposition 7.4. The triple scalar product $(\vec{a}, \vec{b}, \vec{c})$ of the noncoplanar vectors $\vec{a}, \vec{b}, \vec{c}$ is equal with the oriented volume of the parallelepiped constructed on these vectors.

7.1 Applications of the triple scalar product

7.1.1 The distance between two straight lines

If d_1 , d_2 are two straight lines, then the distance between them, denoted by $\delta(d_1, d_2)$, is being defined as

$$\min\{|| \ \overrightarrow{M_1 M_2} \ || \ | \ M_1 \in d_1, \ M_2 \in d_2\}.$$

- 1. If $d_1 \cap d_2 \neq \emptyset$, then $\delta(d_1, d_2) = 0$.
- 2. If $d_1||d_2$, then $\delta(d_1, d_2) = ||\overrightarrow{MN}||$ where $\{M\} = d \cap d_1$, $\{N\} = d \cap d_2$ and d is a straight line perpendicular to the lines d_1 and d_2 . Obviously $||\overrightarrow{MN}||$ is independent on the choice of the line d.
- 3. We now assume that the straight lines d_1 , d_2 are noncoplanar (skew lines). In this case there exits a unique straight line d such that $d \perp d_1$, d_2 and $d \cap d_1 = \{M_1\}$, $d \cap d_2 = \{M_2\}$. The straight line d is called the *common perpendicular* of the lines d_1 , d_2 and obviously $\delta(d_1, d_2) = \|M_1M_2\|$.

Assume that the straight lines d_1 , d_2 are given by their points $A_1(x_1, y_1, z_1)$, $A_2(x_2, y_2, z_2)$ and their vectors \vec{q}_1 (p_1 , q_1 , r_1) \vec{d}_2 (p_2 , q_2 , r_2), that is, their equations are

$$d_1: \frac{x-x_1}{p_1} = \frac{y-y_1}{q_1} = \frac{z-z_1}{r_1}$$

$$d_2: \frac{x-x_2}{p_2} = \frac{y-y_2}{q_2} = \frac{z-z_2}{r_2}.$$

The common perpendicular of the lines d_1 , d_2 is the intersection line between the plane containing the line d_1 which is parallel to the vector $\overset{\rightarrow}{d_1} \times \overset{\rightarrow}{d_2}$, and the plane containing the line d_2 which is parallel to $\overset{\rightarrow}{d_1} \times \overset{\rightarrow}{d_2}$. Since

$$\vec{d}_{1} \times \vec{d}_{2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ p_{1} & q_{1} & r_{1} \\ p_{2} & q_{2} & r_{2} \end{vmatrix} = \begin{vmatrix} q_{1} r_{1} \\ q_{2} r_{2} \end{vmatrix} \vec{i} + \begin{vmatrix} r_{1} p_{1} \\ r_{2} p_{2} \end{vmatrix} \vec{j} + \begin{vmatrix} p_{1} q_{1} \\ p_{2} q_{2} \end{vmatrix} \vec{k}$$

it follows that the equations of the common perpendicular are

Figure 8: Perpendiculara comună a dreptelor d_1 și d_2

$$\begin{cases}
\begin{vmatrix}
x - x_1 & y - y_1 & z - z_1 \\
p_1 & q_1 \\
q_2 & r_2
\end{vmatrix} & q_1 \\
r_1 & p_1 \\
r_2 & p_2
\end{vmatrix} & p_1 & p_1 & q_1 \\
p_2 & q_2
\end{vmatrix} = 0$$

$$\begin{vmatrix}
x - x_2 & y - y_2 & z - z_2 \\
p_2 & q_2 & p_1 & p_1 & q_1 \\
q_1 & r_1 & p_1 & p_1 & q_1 \\
q_2 & r_2 & p_1 & p_1 & q_1 \\
p_2 & q_2 & p_2 & p_1 & p_1 & q_1 \\
p_2 & q_2 & p_2 & p_2 & q_2
\end{vmatrix} = 0.$$
(7.5)

The distance between the straight lines d_1 , d_2 can be also regarded as the height of the parallelogram constructed on the vectors \overrightarrow{d}_1 , \overrightarrow{d}_2 , $\overrightarrow{d}_1 \times \overrightarrow{d}_2$. Thus

$$\delta(d_1, d_2) = \frac{|(\overrightarrow{A_1 A_2}, \overrightarrow{d_1}, \overrightarrow{d_2})|}{||\overrightarrow{d_1} \times \overrightarrow{d_2}||}.$$
(7.6)

Therefore we obtain

$$\delta(d_1, d_2) = \frac{\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ p_1 & q_1 & r_1 \\ p_2 & q_2 & r_2 \end{vmatrix}}{\sqrt{\begin{vmatrix} q_1 & r_1 \\ q_2 & r_2 \end{vmatrix}^2 + \begin{vmatrix} r_1 & p_1 \\ r_2 & p_2 \end{vmatrix}^2 + \begin{vmatrix} p_1 & q_1 \\ p_2 & q_2 \end{vmatrix}^2}}$$
(7.7)

7.1.2 The coplanarity condition of two straight lines

Using the notations of the previous section, observe that the straight lines d_1 , d_2 are coplanar if and only if the vectors $\overrightarrow{A_1A_2}$, $\overrightarrow{d_1}$, $\overrightarrow{d_2}$ are linearly dependent (coplanar), or equivalently $(\overrightarrow{A_1A_2}$, $\overrightarrow{d_1}$, $\overrightarrow{d_2}$) = 0. Consequently the stright lines $\overrightarrow{d_1}$, $\overrightarrow{d_2}$ are coplanar if and only if

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ p_1 & q_1 & r_1 \\ p_2 & q_2 & r_2 \end{vmatrix} = 0$$
 (7.8)

7.2 Problems

1. **(2p)** Show that

(a)
$$|(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})| \leq ||\overrightarrow{a}|| \cdot ||\overrightarrow{b}|| \cdot ||\overrightarrow{c}||$$
; Solution.

(b) (2p)
$$(\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a}) = 2(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}).$$

Solution.

2. (3p) Prove the following identity:

$$(\overrightarrow{a}\times\overrightarrow{b})\times(\overrightarrow{c}\times\overrightarrow{d})=(\overrightarrow{a},\overrightarrow{c},\overrightarrow{d})\vec{b}-(\overrightarrow{b},\overrightarrow{c},\overrightarrow{d})\vec{a}=(\overrightarrow{a},\overrightarrow{b},\overrightarrow{d})\vec{c}-(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c})\vec{d}.$$

Solution. By using the identity $\overrightarrow{u} \times (\overrightarrow{v} \times \overrightarrow{w}) = (\overrightarrow{u} \cdot \overrightarrow{w}) \overrightarrow{v} - (\overrightarrow{u} \cdot \overrightarrow{v}) \overrightarrow{v}$ for $\overrightarrow{u} = \overrightarrow{a} \times \overrightarrow{b}$, $\overrightarrow{v} = \overrightarrow{c}$ and $\overrightarrow{w} = \overrightarrow{d}$ we obtain

$$(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = \overrightarrow{u} \times (\overrightarrow{v} \times \overrightarrow{w}) = (\overrightarrow{u} \cdot \overrightarrow{w}) \overrightarrow{v} - (\overrightarrow{u} \cdot \overrightarrow{v}) \overrightarrow{v}$$

$$= \left[(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{d} \right] \overrightarrow{c} - \left[(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} \right] \overrightarrow{d}$$

$$= (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{d}) \overrightarrow{c} - (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) \overrightarrow{d} .$$

By using the identity $(\overrightarrow{u} \times \overrightarrow{v}) \times \overrightarrow{w} = (\overrightarrow{u} \cdot \overrightarrow{w}) \overrightarrow{v} - (\overrightarrow{v} \cdot \overrightarrow{w}) \overrightarrow{u}$ for $\overrightarrow{u} = \overrightarrow{a}$, $\overrightarrow{v} = \overrightarrow{b}$ and $\overrightarrow{w} = \overrightarrow{c} \times \overrightarrow{d}$ we obtain

$$(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = (\overrightarrow{u} \times \overrightarrow{v}) \times \overrightarrow{w} = (\overrightarrow{u} \cdot \overrightarrow{w}) \overrightarrow{v} - (\overrightarrow{v} \cdot \overrightarrow{w}) \overrightarrow{u}$$

$$= \begin{bmatrix} \overrightarrow{a} \cdot (\overrightarrow{c} \times \overrightarrow{d}) \end{bmatrix} \overrightarrow{b} - \begin{bmatrix} \overrightarrow{b} \cdot (\overrightarrow{c} \times \overrightarrow{d}) \end{bmatrix} \overrightarrow{a}$$

$$= (\overrightarrow{a}, \overrightarrow{c}, \overrightarrow{d}) \overrightarrow{b} - (\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}) \overrightarrow{a} .$$

3. **(3p)** Prove the following identity: $(\overrightarrow{u} \times \overrightarrow{v}, \overrightarrow{v} \times \overrightarrow{w}, \overrightarrow{w} \times \overrightarrow{u}) = (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})^2$. *Solution.* We have successively:

4. (3p) The *reciprocal vectors* of the noncoplanar vectors \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} are defined by

$$\overrightarrow{u} = \frac{\overrightarrow{v} \times \overrightarrow{w}}{(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})}, \ \overrightarrow{v} = \frac{\overrightarrow{w} \times \overrightarrow{u}}{(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})}, \ \overrightarrow{w} = \frac{\overrightarrow{u} \times \overrightarrow{v}}{(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})}.$$

Show that:

(a)

(b) the reciprocal vectors of $\overrightarrow{u}', \overrightarrow{v}', \overrightarrow{w}'$ are the vectors $\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$.

Solution. (4a) Obviously $\vec{a} = \alpha \vec{u} + \beta \vec{v} + \gamma \vec{c}$, as $\vec{u}, \vec{v}, \vec{w}$ are three linearly independent vectors of the three dimensional vector space V, i.e. $\vec{u}, \vec{v}, \vec{w}$ form a basis of V. Moreover we have

$$\vec{a} \cdot \vec{u}' = \frac{\vec{a} \cdot (\vec{v} \times \vec{w})}{(\vec{u}, \vec{v}, \vec{w})} = \frac{(\vec{a}, \vec{v}, \vec{w})}{(\vec{u}, \vec{v}, \vec{w})} = \frac{(\vec{a}, \vec{v}, \vec{w})}{(\vec{u}, \vec{v}, \vec{w})} = \frac{(\vec{a}, \vec{u} + \vec{\beta} \vec{v} + \vec{\gamma} \vec{c}, \vec{v}, \vec{w})}{(\vec{u}, \vec{v}, \vec{w})} = \frac{(\vec{a}, \vec{v}, \vec{w}) + \vec{\gamma} \vec{v} \vec{v}, \vec{w})}{(\vec{u}, \vec{v}, \vec{w}) + \vec{\gamma} \vec{v} \vec{v}, \vec{w})} = \alpha.$$

One can similarly show that

$$\overrightarrow{a} \cdot \overrightarrow{v}' = \frac{(\overrightarrow{u}, \overrightarrow{a}, \overrightarrow{w})}{(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})} = \beta \text{ and } \overrightarrow{a} \cdot \overrightarrow{w}' = \frac{(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{a})}{(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})} = \gamma.$$

(4b) Let us first observe that

$$(\overrightarrow{u}',\overrightarrow{v}',\overrightarrow{w}') = (\overrightarrow{w}',\overrightarrow{u}',\overrightarrow{v}') = \frac{(\overrightarrow{u}\times\overrightarrow{v},\overrightarrow{v}\times\overrightarrow{w},\overrightarrow{w}\times\overrightarrow{u})}{(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})^3} = \frac{(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})^2}{(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})^3} = \frac{1}{(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})^3}.$$

On the other hand we have:

$$\frac{\overrightarrow{v}' \times \overrightarrow{w}'}{(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}')} = (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})(\overrightarrow{v}' \times \overrightarrow{w}') = (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) \frac{(\overrightarrow{w} \times \overrightarrow{u}) \times (\overrightarrow{u} \times \overrightarrow{v})}{(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})^2} = \frac{(\overrightarrow{w}, \overrightarrow{u}, \overrightarrow{v}) \overrightarrow{u} - (\overrightarrow{w}, \overrightarrow{u}, \overrightarrow{u}) \overrightarrow{v}}{(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})^2} = \overrightarrow{u}.$$

One can similarly show that

$$\frac{\overrightarrow{w}' \times \overrightarrow{u}'}{(\overrightarrow{u}', \overrightarrow{v}', \overrightarrow{w}')} = \overrightarrow{v} \text{ and } \frac{\overrightarrow{u}' \times \overrightarrow{v}'}{(\overrightarrow{u}', \overrightarrow{v}', \overrightarrow{w}')} = \overrightarrow{w}.$$

5. **(2p)** Find the value of the parameter α for which the pencil of planes through the straight line AB has a common plane with the pencil of planes through the straight line CD, where $A(1,2\alpha,\alpha)$, B(3,2,1), $C(-\alpha,0,\alpha)$ and D(-1,3,-3). *Solution.*

6. **(2p)** Find the value of the parameter λ for which the straight lines

$$(d_1) \frac{x-1}{3} = \frac{y+2}{-2} = \frac{z}{1}, (d_2) \frac{x+1}{4} = \frac{y-3}{1} = \frac{z}{\lambda}$$

are coplanar. Find the coordinates of their intersection point in that case. *Solution*.

7. (2p) Find the distance between the straight lines

$$(d_1)$$
 $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{1}$, (d_2) $\frac{x+1}{3} = \frac{y}{4} = \frac{z-1}{3}$

as well as the equations of the common perpendicular. *Solution*.

8. **(2p)** Find the distance between the straight lines M_1M_2 and d, where $M_1(-1,0,1)$, $M_2(-2,1,0)$ and

$$(d) \left\{ \begin{array}{cccccc} x & + & y & + & z & = & 1 \\ 2x & - & y & - & 5z & = & 0. \end{array} \right.$$

as well as the equations of the common perpendicular. *Solution*.