My internship at GIGA research center/ CHU Liège

Investigation of GPU methylation tools in the context of Nanopore sequencing

Context

- Genomic medicine initiative: cancer mutational signatures
- ▶ Homologous Recombination Deficiency (HRD): study of promotor methylation

Methylation detection on Nanopore data

Published: 20 February 2017

Detecting DNA cytosine methylation using nanopore sequencing

Jared T Simpson ⊠, Rachael E Workman, P C Zuzarte, Matei David, L J Dursi & Winston Timp ⊠

Nature Methods 14, 407–410(2017) | Cite this article

13k Accesses | 257 Citations | 294 Altmetric | Metrics

Nanopolish (2017)

- Hidden Markov Model trained on synthetic DNA
- Multi-threading
- No GPU acceleration

RESEARCH ARTICLE

Open Access

GPU accelerated adaptive banded event alignment for rapid comparative nanopore signal analysis

Hasindu Gamaarachchi^{1,2*} , Chun Wai Lam¹, Gihan Jayatilaka³, Hiruna Samarakoon³, Jared T. Simpson^{4,5}, Martin A. Smith^{2,6,7,8†} and Sri Parameswaran^{1†}

F5c (2020)

- Adaptative Banded Alignment
- Optimized multi-threading (cpu-opti)
- Support (1) GPU acceleration (cuda)

Setup

- Dataset
 - ► Human cell (NA12878)
 - Region: chr20:5,000,000-10,000,000 (fast5 + fastq + ref)
- Hardware
 - Dragon2 CPU nodes: 16-core Intel Xenon Gold
 - Dragon2 GPU nodes: 12-core Intel Xenon Gold + Tesla V100 (32Go)
- Jobs
 - ► Time evaluation with: echo Current time \$(date+"%T")
 - Run with 1, 2 and 4 CPUs

Nanopolish vs. f5c

GPU monitoring

nvtop

```
olivier - orenson@drg2-w018:~ - ssh 4 ssh dragon2 - 129×31
Device 0 [Tesla V100-PCIE-16GB] PCIe GEN 3@16x RX: 1.139 GiB/s TX: 1.596 GiB/s
                    TEMP 543C FAN N/A% POW 101 / 250 W
GPU[]]]]]]]]]]]
                            53%] MEM[|
                                                  0.438Gi/15.782Gi]
Device 1 [Tesla V100-PCIE-16GB] PCIe GEN 3@16x RX: 0.000 KiB/s TX: 0.000 KiB/s
GPU 1380MHz MEM 877MHz TEMP 383C FAN N/A% POW 43 / 250 W
GPU[
100<
  <</p>
75%<
50%<0
25%<
                                         5368MiB f5c_linux_cuda call-methylation -x hpc-low -r /scratch//albacore_outpu
                                          454MiB namd2 +idlepoll +setcpuaffinity +p 12 +devices 0 DOPC Pure step7.7.3.i
```

Monitoring file systems

- Monitoring new working directories I/O speed
 - ▶ df -Th \$WORKINGDIR
 - ▶ dd if=/dev/zero of=\$WORKINGDIR/test1 bs=1M count=2048 oflag=dsync

More CPU = more GPU activity

Conclusions on f5c

- ► f5c = **hybrid** software
- Balanced setup (workstation) >>> high end GPU (Alan)
- ! I/O bottleneck!
- ► CPU vs. GPU speed up : ~4.5x (Nanopolish 7m 50s \rightarrow f5c, 1m 43s)
- f5c monitoring speed up: ~2x (4 CPUs, HOME, 1m 43s → 20 CPUs, /dev/shm, 52s)
- Multi-fast5 not worth it for a small dataset

Nanopore basecalling: Guppy

Small dataset (512 Mo)

/tmp	CPU	GPU	Speed up
Dragon2 (Tesla 16Go)	5h 25m 52s	31s	x631
Workstation (GeForce GTX 1660 Ti 6Go)	~ 5h 30m	26m 45s	x12.3

Table 1: execution time for each hardware setup

- ► F5c = hybrid CPU/GPU -> Workstation (balanced setup) wins
- Guppy = GPU only -> Dragon2 (big GPU) wins

MCF7 whole genome sequencing data

- Objectives
 - Test f5c on a new dataset
 - Compare methylation frequencies with bisulfite sequencing
- Data (~ 1.5 To)
 - ► Fast5 directory: raw nanopore signal 1023 Go 9.26M reads
 - ► Fasta file: referance genome 3 Go
 - ► Fastq file: basecalled reads 136 Go 8.59M reads avg length 8369
 - ► Sam/bam files: alignment data- 158 Go/79Go 11.46M alignments

Regions of interest

Genes	Chr	Start	End	Length	CpG	Function(s)
SEMA3B	3	50275437	50275514	77	6	Inhibits axonal extension, tumor suppressor by inducing apoptosis
RASSF1	3	50340943	50341036	93	6	Tumor suppressor, negatively regulate cell cycle at G1/S-phase
KLHL6	3	183555418	183555536	118	5	B-lymphocyte antigen receptor signalisation
INA	10	103276779	103276913	135	8	Type IV intermediate filament heteropolymers
PTPRCAP	11	67437695	67437765	70	2	T- and B-lymphocyte activation (transmembrane phosphoprotein)

- > Split in single chromosomes for transfer on dragon2
 - ► CECI quotas: /CECI/home 100 Go, /CECI/trsf 1 To (10 days)
 - ▶ 1.5 To -> 125 Go, 72 Go, 55 Go

SEMA3B

CpG pos	bisulfites	nanopore
50,275,437	0.91	1.00
50,275,465	0.78	0.80
50,275,471	0.85	0.80
50,275,482	?	0.90
50,275,485	?	0.90
50,275,496	?	0.84

SEMA3B methylation

RASSF1

positive strand - genomic sequence			
50.340.943	CAATGGAAACCTGGGTGCAG		
50.340.963	GGACTGTGGGGCCCGAAGGC		
50.340.983	GGGGCTGGGCGCGCTCTCGC		
50.341.003	AGAGCCCCCCCGCCTTGCC		
50.341.023	сттссттссстсст		

CpG pos	bisulfites	nanopore
50,340,976	0.62	0.94
50,340,982	0.63	0.94
50,340,992	0.62	0.94
50,340,994	0.60	0.94
50,341,000	0.61	0.94
50,341,014	0.53	0.83

RASSF1 methylation

KLHL6

positive strand	- genomic sequence
183.555.418	TCCACACACAAGATGACATC
183.555.438	TGTCAGAGCGTTTTCCATTC
183.555.458	GCAGGGTTTCCAGGCCATTC
183.555.478	TGAAGAATTAAGGAGAGTCC
183.555.498	CGCGTCGTCAAATTTGACCT
183.555.518	TTTCCCCATTTAAGATCTC

CpG pos	bisulfites	nanopore
183,555,446	0.85	0.86
183,555,456	0.92	1.00
183,555,498	0.94	1.00
183,555,600	0.95	1.00
183,555,603	0.93	1.00

KLHL6 methylation

INA

103.276.779	CAGAAACCCCTAACCTCCCA
103.276.799	GTCGGTTAAAGAAGAGGGGA
103.276.819	TAGGGTCAAGGGATGCGACA
103.276.839	GAGCTGTGTGGTTTCCGGAT
103.276.859	GGGAAACCTCAGTCGTTTAG
103.276.879	GCACCCCTC <mark>CG</mark> CTCGAGTCA
103.276.899	CTTCCGAAGCAGTCG

CpG pos	bisulfites	nanopore
103,276,801	0.89	0.82
103,276,834	0.94	0.89
103,276,854	0.93	1.00
103,276,872	0.79	1.00
103,276,888	0.96	1.00
103,276,892	?	1.00
103,276,903	?	1.00
103,276,912	?	1.00

INA methylation

PTPRCAP

CpG pos	bisulfites	nanopore
67,437,695	0.89	1.00
67,437,724	?	0.92

19

PTPRCAP methylation

Comparison with bisulfite sequencing

Img10: correlation between f5c output and bisulfite sequencing with the dataset provided by Oxford Nanopore (left) and with mcf7 data (right).

Thank you for your attention!