Problem A. Simple sum

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

You have to answer requests "sum of numbers on the segment".

Array doesn't change. There're many requests. You should answer on each in $\mathcal{O}(1)$ time.

Input

First line contains four integers: n, x, y and a_0 — length of the array and numbers which generates array a: $a_i = (x \cdot a_{i-1} + y) \mod 2^{16}$.

Next line contains four integers: m, z, t and b_0 — number of requests and numbers which generates array b: $b_i = (z \cdot b_{i-1} + t) \mod 2^{30}$.

Array c is generating in the following way: $c_i = b_i \mod n$.

Request number i is to find sum on segment from $\min(c_{2i}, c_{2i+1})$ to $\max(c_{2i}, c_{2i+1})$ in the array a.

 $1 \le n \le 10^7$, $0 \le m \le 10^7$. All other number are from 0 to 2^{16} . t can also be equal to -1.

Output

Output sum of all sums.

Example

standard input	standard output
3 1 2 3	23
3 1 -1 4	

Note

$$a = \{3, 5, 7\}, b = \{4, 3, 2, 1, 0, 2^{30} - 1\}, c = \{1, 0, 2, 1, 0, 0\},$$

$$\text{Requests} = \{[0, 1], [1, 2], [0, 0]\}, \text{ sums} = \{8, 12, 3\}.$$

Problem B. RMQ

Input file: standard input
Output file: standard output

Time limit: 4 seconds Memory limit: 256 megabytes

Input

First line contains integer n — length of array ($1 \le n \le 500000$). Second line contains n integers a_i — array elements. After that requests description is given. Number of requests doesn't exceed 1 000 000. Every line contains on of the following requests:

- set $i \times x$ set a[i] value $x (|x| \le 10^9)$.
- min i j output minimum in the array from position i to j, it's guaranteed that $(1 \le i \le j \le n)$.

Output

Output answer on every request of the second type.

standard input	standard output
5	2
1 2 3 4 5	1
min 2 5	1
min 1 5	2
min 1 4	2
min 2 4	2
set 1 10	3
set 2 3	3
set 5 2	
min 2 5	
min 1 5	
min 1 4	
min 2 4	

Problem C. RSQ

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 256 megabytes

Input

The first line contains the number n — the size of the array. ($1 \le n \le 500\,000$) The second line contains n numbers a_i — elements of the array. The following is the description of operations, their number doesn't exceed 1 000 000. Each line contains one of the following operation:

- set i x set value x to a[i].
- sum i j print the sum of the elements in the array in the range from i to j, it's guaranteed, that $(1 \le i \le j \le n)$.

All numbers in the input file and the results of all operations do not exceed 10¹⁸ in absolute value.

Output

Print successively all the operations sum. Follow the output file format from the example.

standard input	standard output
5	14
1 2 3 4 5	15
sum 2 5	10
sum 1 5	9
sum 1 4	12
sum 2 4	22
set 1 10	20
set 2 3	10
set 5 2	
sum 2 5	
sum 1 5	
sum 1 4	
sum 2 4	

Problem D. Sign alternation

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 256 megabytes

Implement data structure of n elements $a_1, a_2 \dots a_n$, with the following operations:

- assign the element a_i value j;
- find alternating sign sum in the range from l to r inclusive $(a_l a_{l+1} + a_{l+2} \ldots \pm a_r)$.

Input

The first line of the input file contains a natural number n ($1 \le n \le 10^5$) — the length of the array. The second line contains the initial values of the elements (non-negative integers not exceeding 10^4).

The third line contains a positive integer m $(1 \le m \le 10^5)$ — the number of operations. The following m lines contain operations:

- the operation of the first type is given by three numbers 0 i j $(1 \le i \le n, 1 \le j \le 10^4)$.
- an operation of the second type is given by three numbers 1 1 r $(1 \le l \le r \le n)$.

Output

For each operation of the second type, print on a separate line the corresponding sign alternating sum.

standard input	standard output
3	-1
1 2 3	2
5	-1
1 1 2	3
1 1 3	
1 2 3	
0 2 1	
1 1 3	

Problem E. RMQ2

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 256 megabytes

Input

The first line contains the number n — the size of the array. ($1 \le n \le 10^5$) The second line contains n numbers a_i — elements of the array. The following is a description of the operations, their number does not exceed $2 \cdot 10^5$. Each line contains one of the following operations:

- set i j x set value x to all a[k], $i \le k \le j$.
- add $i\ j\ x$ increase $a[k],\ i \le k \le j$ by x.
- min i j print the value of the minimum element in the array between i and j, it is guaranteed that $(1 \le i \le j \le n)$.

All numbers in the input file and the results of all operations do not exceed 10^{18} in absolute value.

Output

Print successively all the operations sum. Follow the output file format from the example.

standard input	standard output
5	2
1 2 3 4 5	1
min 2 5	1
min 1 5	2
min 1 4	5
min 2 4	5
set 1 3 10	8
add 2 4 4	8
min 2 5	
min 1 5	
min 1 4	
min 2 4	

Problem F. Backward RMQ

Input file: rmq.in
Output file: rmq.out
Time limit: 2 seconds
Memory limit: 256 megabytes

Consider array a[1..n]. Let Q(i,j) be a minimum among numbers $a[i], \ldots, a[j]$. You are given multiple triples i, j and Q(i,j). Restore the array.

Input

First line contains two integers n and m — length of the array and number of requests $(1 \le n, m \le 100\,000)$. Next m lines contains three integers i, j and q, meaning that Q(i,j) = q $(1 \le i \le j \le n, -2^{31} \le q \le 2^{31} - 1)$.

Output

If there's no suitable array exist, output "inconsistent".

Otherwise, first line should contain "consistent". Second line should contain array. Array elements should be integers from -2^{31} to $2^{31}-1$ inclusively. If more than one solution exist, output any.

rmq.in	rmq.out
3 2	consistent
1 2 1	1 2 2
2 3 2	
3 3	inconsistent
1 2 1	
1 1 2	
2 3 2	

Problem G. Distinct num

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 256 megabytes

How many different numbers are there in an array segment?

Input

On the first line, there's the length of the array is n ($1 \le n \le 300\,000$). On the second line, there are n integers from 0 to 10^9-1 . On the third line, there's the number of queries q ($1 \le q \le 300\,000$). The following q lines contain a description of the queries, one per line. Each query is given by a pair of integers l, r ($1 \le l \le r \le n$).

Output

Print the answers to the queries one per line.

standard input	standard output
5	3
1 1 2 1 3	2
3	3
1 5	
2 4	
3 5	