Fondamenti di Internet e Reti – SOLUZIONE!!!

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina I prova in itinere – 17 Aprile 2019

Cognome e r	nome:		(sta	ampatello)
			(firma	leggibile)

Matricola:

Esercizio 1* (7 punti)

Nella rete a commutazione di pacchetto in figura, al tempo t=0 sono presenti 6 pacchetti in H diretti rispettivamente alle seguenti destinazioni: A, B, C, D, B, D. Si indichino tali pacchetti, rispettivamente con A1, B1, C1, D1, B2, D2. Si assuma che tutti i router (R1, R2, R3 e R4) siano nodi store&forward, e che abbiano tutti ritardo di elaborazione trascurabile.

Si assuma che i pacchetti abbiano tutti dimensione fissa e pari a L=12 kbyte.

- Si utilizzi la tabella sottostante per indicare gli istanti di inizio trasmissione di ciascun pacchetto ai vari nodi.
- Calcolare l'istante di <u>fine</u> ricezione di ciascuno dei pacchetti, indicando tali istanti, rispettivamente con T_{AI} , T_{BI} , T_{CI} , T_{DI} , T_{B2} , T_{D2} , e riportando tali valori nell'ultima colonna della tabella sottostante.

Si riportino nello spazio vuoto al disotto della tabella i calcoli e/o i disegni necessari a determinare i risultati in tabella.

Pacchetto	inizio tx in H	inizio tx in R1	inizio tx in R2	inizio tx in R3	inizio tx in R4	fine ricezione a destinazione
A1	$T_{Al,H}=0$ ms	$T_{AI,RI} = 13 \text{ ms}$	$T_{A1,R2} = 22 \text{ ms}$	$T_{A1,R3} = 47.5 \text{ ms}$		$T_{AI} = 145.7 \text{ ms}$
B1	$T_{Bl,H}=$ 12 ms	$T_{B1,R1}=25 ms$	$T_{B1,R2}=46 ms$	$T_{B1,R3} = 71.5 \text{ ms}$		T_{BI} = 82.6 ms
C1	$T_{CI,H}=$ 24 ms	$T_{CI,RI}$ = 37 ms	$T_{C1,R2} = 46 \text{ ms}$		$T_{Cl,R4} = 80.4 \text{ ms}$	$T_{CI} = 93.8 \text{ ms}$
D1	$T_{DI,H}=$ 36 ms	$T_{DI,RI} = 49 \text{ ms}$	$T_{D1,R2} = 78 \text{ ms}$		$T_{D1,R4} = 112.4 \text{ ms}$	$T_{DI} = 130.9 \text{ ms}$
B2	$T_{B2,H}=48 ms$	$T_{B2,RI} = 61 \text{ ms}$	$T_{B2,R2} = 70 \text{ ms}$	$T_{B2,R3} = 95.5 \text{ ms}$		$T_{B2} = 106.6 \text{ ms}$
D2	$T_{D2,H}=60 \text{ ms}$	$T_{D2,RI}$ = 73 ms	$T_{D2,R2} = 110 \text{ ms}$		$T_{D2,R4} = 144.4 \text{ ms}$	$T_{D2} = 162.9 \text{ ms}$

* NOTA BENE: Per TUTTI GLI ESERCIZI si adotta il <u>PUNTO (".") come separatore delle cifre decimali</u>. Non si usa separatore per le migliaia.

SOLUZIONE

$$T_1^A = \frac{L}{C_1} = \frac{12 * 8 \ kbit}{8 \ Mbit/s} = 12 \ ms$$

$$T_2^A = \frac{L}{C_2} = \frac{12 * 8 \text{ kbit}}{16 \text{ Mbit/s}} = 6 \text{ ms}$$

$$T_3^A = \frac{L}{C_3} = \frac{12 * 8 \text{ kbit}}{4 \text{ Mbit/s}} = 24 \text{ ms}$$

$$T_4^A = \frac{L}{C_4} = \frac{12 * 8 \ kbit}{1 \ Mbit/s} = 96 \ ms$$

$$T_1^B = \frac{L}{C_1} = \frac{12 * 8 \text{ kbit}}{8 \text{ Mbit/s}} = 12 \text{ ms}$$

$$T_2^B = \frac{L}{C_2} = \frac{12 * 8 \text{ kbit}}{16 \text{ Mbit/s}} = 6 \text{ ms}$$

$$T_3^B = \frac{L}{C_3} = \frac{12 * 8 \text{ kbit}}{4 \text{ Mbit/s}} = 24 \text{ ms}$$

$$T_5^B = \frac{L}{C_5} = \frac{12 * 8 \text{ kbit}}{12 \text{ Mbit/s}} = 8 \text{ ms}$$

$$T_1^C = \frac{L}{C_1} = \frac{12 * 8 \text{ kbit}}{8 \text{ Mbit/s}} = 12 \text{ ms}$$

$$T_2^C = \frac{L}{C_2} = \frac{12 * 8 \text{ kbit}}{16 \text{ Mbit/s}} = 6 \text{ ms}$$

$$T_6^C = \frac{L}{C_6} = \frac{12 * 8 \text{ kbit}}{3 \text{ Mbit/s}} = 32 \text{ ms}$$

$$T_7^C = \frac{L}{C_7} = \frac{12 * 8 \ kbit}{8 \ Mbit/s} = 12 \ ms$$

$$T_1^D = \frac{L}{C_1} = \frac{12 * 8 \text{ kbit}}{8 \text{ Mbit/s}} = 12 \text{ ms}$$

$$T_2^D = \frac{L}{C_2} = \frac{12 * 8 \text{ kbit}}{16 \text{ Mbit/s}} = 6 \text{ ms}$$

$$T_6^D = \frac{L}{C_6} = \frac{12 * 8 \ kbit}{3 \ Mbit/s} = 32 \ ms$$

$$T_8^D = \frac{L}{C_9} = \frac{12 * 8 \text{ kbit}}{6 \text{ Mbit/s}} = 16 \text{ ms}$$

Pacchetti verso A-B

Quindi si ha

$$T_{A1} = T_1^A + \tau_1 + T_2^A + \tau_2 + T_3^A + \tau_3 + T_4^A + \tau_4 = 145.7 ms$$

$$T_{B1} = T_1^A + \tau_1 + T_2^A + \tau_2 + T_3^A + T_3^B + \tau_3 + T_5^B + \tau_5 = 82.6 ms$$

$$T_{B2} = T_{B2} + T_3^B = T_1^A + \tau_1 + T_2^A + \tau_2 + T_3^A + 2T_3^B + \tau_3 + T_5^B + \tau_5 =$$

$$= T_1^A + T_1^B + T_1^C + T_1^D + T_1^B + \tau_1 + T_2^B + \tau_2 + T_3^B + \tau_3 + T_5^B + \tau_5 = 106.6 ms$$

Fondamenti di Internet e Reti

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina

I prova in itinere – 17 Aprile 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Pacchetti verso C-D

Quindi si ha

$$\begin{split} T_{C1} &= T_1^A + T_1^B + T_1^C + \tau_1 + T_2^C + \tau_2 + T_6^C + \tau_6 + T_7^C + \tau_7 = 93.8 \ ms \\ T_{D1} &= T_1^A + T_1^B + T_1^C + \tau_1 + T_2^C + \tau_2 + T_6^C + T_6^D + \tau_6 + T_8^D + \tau_8 = 130.9 \ ms \\ T_{D2} &= T_1^A + T_1^B + T_1^C + \tau_1 + T_2^C + \tau_2 + T_6^C + 2T_6^D + \tau_6 + T_8^D + \tau_8 = 162.9 \ ms \end{split}$$

Esercizio 2

(6 punti)

Nella rete in figura sono rappresentati 3 router (R1, R2 e R3), un client (H) e un server (S) HTTP. Accanto ad ogni collegamento è indicata la capacità di trasmissione del canale e il ritardo di propagazione del collegamento stesso. Nella rete sono presenti anche 4 ulteriori host (A, B, C, D) tra cui sono stati istaurati i seguenti flussi interferenti di lunga durata: 5 tra A e D, 4 tra B ed il server S.

Si assuma che il client voglia scaricare dal server una pagina web composta da una pagina HTML di dimensione L_{html}=9 kbyte e 56 oggetti JPEG richiamati nella pagina HTML, di dimensione L_{ogg}=900 kbyte ciascuno.

Assumendo che i messaggi di controllo usati per aprire una connessione TCP ed i messaggi di GET HTTP abbiano lunghezza trascurabile, si chiede di calcolare il tempo di trasferimento dell'intera pagina web (documento base e 56 oggetti) nei seguenti casi:

- a) il client H utilizza un'unica connessione TCP persistente (senza pipelining) per il documento base e gli oggetti;
- b) il client H utilizza **connessioni TCP non persistenti**; qualora sia possibile, le connessioni TCP sono aperte **in parallelo**;
- c) il client H utilizza **connessioni TCP non persistenti in serie** (ovvero senza la possibilità di aprirne diverse in parallelo).

N.B. Per il calcolo delle velocità di trasmissione utilizzabili dalle varie connessioni TCP, si consideri la capacità del "collo di bottiglia" del collegamento, assumendo il principio di *condivisione equa delle risorse*.

Si indichino di seguito i risultati finali e si usi lo spazio sottostante per mostrare i conti fatti.

- a) $T_{tot,a}=$
- b) $T_{\text{tot }b}=$
- c) $T_{tot,c} =$

SOLUZIONE

 $RTT_{HS} = 8 \text{ ms}$

Caso a)

Collo di bottiglia per A-D: C₈=C₆=20 Mbit/s

Poiché i flussi A-D erodono da C₄ 20 Mbit/s, la capacità disponibile per ciascuno dei flussi H-S e B-S sarà 80/5=16 Mbit/s (inferiore a quella disponibile su C₅, che è 90/5 = 18 Mbit/s per ogni flusso su C₅)

→ Collo di bottiglia per H-S: C₄

 \rightarrow C_{HS, HTML (a)}= C_{HS, ogg (a)}= 16 Mbit/s

Fondamenti di Internet e Reti

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina

I prova in itinere – 17 Aprile 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

$$\begin{split} &T_{HS,html}\!\!=L_{html}/\,C_{HS,html}=72\;[kbit]\,/\,16\;[Mbit/s]=4.5\;ms\\ &T_{HS,ogg}\!\!=L_{ogg}\!/\,C_{CS,ogg}=7200\;[kbit]\,/\,16\;[Mbit/s]=450\;ms \end{split}$$

$$T_{tot,a} = RTT_{HS} + RTT_{HS} + T_{HS,html} + 56 (RTT_{HS} + T_{HS,ogg}) = 25668.5 \text{ ms}$$

Caso b)

Per il download del file HTML, come caso a) \rightarrow C_{HS, HTML (b)}= C_{HS, ogg (b)}= 16 Mbit/s

Per il download degli oggetti:

collo di bottiglia per H-S: C₅

la capacità disponibile per ciascuno dei flussi H-S e B-S sarà 90/60=1.5 Mbit/s (inferiore a quella disponibile su C₄, che è 100/65 = 1.54 Mbit/s per ogni flusso su C₄)

$$\rightarrow$$
 C_{HS,ogg (b)}= 1.5 Mbit/s

$$\begin{split} T_{HS,html} &= L_{html} / \ C_{HS,html} = 72 \ [kbit] \ / \ 16 \ [Mbit/s] = 4.5 \ ms \\ T_{HS,ogg} &= L_{ogg} / \ C_{CS,ogg} = 7200 \ [kbit] \ / \ 1.5 \ [Mbit/s] = 4800 \ ms \end{split}$$

$$T_{tot,a} = RTT_{HS} + RTT_{HS} + T_{HS,html} + RTT_{HS} + RTT_{HS} + T_{HS,ogg} = 4836.5 \text{ ms}$$

Caso c)

Per il download del file HTML e degli oggetti, come caso a) → C_{HS, HTML (c)}= C_{HS, ogg (c)}= 16 Mbit/s

$$\begin{split} T_{HS,html} &= L_{html} / \ C_{HS,html} = 72 \ [kbit] \ / \ 16 \ [Mbit/s] = 4.5 \ ms \\ T_{HS,ogg} &= L_{ogg} / \ C_{CS,ogg} = 7200 \ [kbit] \ / \ 16 \ [Mbit/s] = 450 \ ms \end{split}$$

$$T_{tot,a} = RTT_{HS} + RTT_{HS} + T_{HS,html} + 56 (RTT_{HS} + RTT_{HS} + T_{HS,ogg}) = 26116.5 \text{ ms}$$

Esercizio 3

(5 punti)

L'host A deve inviare un file di dimensione D=25 kbyte all'host B instaurando una connessione TCP caratterizzata dai seguenti parametri:

- capacità del collegamento in entrambe le direzioni: C=2 kbit/s
- ritardo di propagazione in ciascuna direzione: $\tau_{AB} = \tau_{BA} = \tau = 15 \text{ ms}$
- lunghezze di *header, ack* e segmenti di apertura connessione TCP trascurabili;
- $MSS = 600 \ byte$
- dimensione degli header TCP e dei livelli inferiori trascurabile
- finestra di ricezione dell'host B pari a RCWND = 10 MSS
- valore iniziale della Slow-Start threshold in A: SSTHRESH = 8 MSS
- valore iniziale della finestra di congestione in A: CWND = 1 MSS

Si risponda ai seguenti quesiti:

- a) dire se la trasmissione diventerà mai continua sul collegamento A-B; in caso affermativo, si calcoli l'istante di tempo a partire dal quale la trasmissione diventa continua;
- b) calcolare il tempo di trasferimento del file *D* da A a B (dall'apertura della connessione TCP fino alla ricezione dell'ultimo riscontro in A).

SOLUZIONE

Il file è costituito da un numero di segmenti pari a $N = \left[\frac{D}{MSS}\right] = 42$

di cui

- (N-1)=41 di lunghezza massima pari a L=MSS,
- e l'ultimo di lunghezza inferiore pari a L' = D (N-1)MSS = 25 [kbyte] 41 * 600 [byte] = 400 byte

$$T = \frac{L}{C} = \frac{8 \cdot 600 \ [bit]}{2 \cdot 10^3 \ [bit/s]} = 2.4 \ s$$

$$RTT = T + 2\tau = 2.43 s$$

a) La trasmissione sul collegamento diventa continua non appena la finestra di trasmissione W soddisfa la relazione

$$W = \left[\frac{RTT}{T}\right] = 2 \text{ MSS}$$

quindi, considerando anche il tempo di apertura della connessione si ha:

$$T_{cont} = T_{open} + RTT = 2\tau + RTT = 2.46 s$$

b) La trasmissione avviene come in figura

L'ultimo segmento (L') viene trasmesso in un tempo T' pari a $T' = \frac{L'}{c} = \frac{8\cdot400 \ [bit]}{2\cdot10^3 \ [bit/s]} = 1.6 \ s$

Pertanto il valore di RTT per l'ultimo segmento (RTT') è dato da $RTT' = T' + 2\tau = 1.63 \text{ s}$ Quindi:

$$T_{tot} = T_{cont} + 40T + RTT' = T_{open} + RTT + 40T + RTT' = 100.09 s$$

Fondamenti di Internet e Reti

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina

I prova in itinere – 17 Aprile 2019

Cognome e nome: (stampatello) (firma leggibile)

Matricola:

Esercizio 4 - Domande

(9 punti)

- un CD-ROM contiene N=15 brani, ciascuno di durata t=3 minuti. Per ciascun brano, il relativo segnale musicale ha banda pari a B=22 kHz, e viene digitalizzato attraverso un campionamento a frequenza di Nyquist e una quantizzazione con l=256 livelli, per poi essere memorizzato sul CD-ROM.
- Qual è la dimensione (in bit) dell'insieme degli N brani sul CD-ROM?
- Nel caso in cui i brani fossero trasmessi in una rete a commutazione di pacchetto tramite pacchetti di lunghezza pari a *L*=1000 bit a cui sono aggiunti *h*=100 bit di header, si calcoli la velocità media (in bit/s) del flusso di pacchetti.

(3 punti)

SOLUZIONE

Frequenza di campionamento: $F_c=2B=44$ [kHz]

Numero di bit per campione: $b=log_2(l)=8$ [bit/campione]

Numero di bit per brano: $L = F_c *b *t = 63360 [kbit] = 63.36 [Mbit]$

Dimensione totale dei brani sul CD-ROM: $L_{tot} = N*L = 950.4$ [Mbit] = 118.8 [Mbyte]

Velocità del segnale musicale digitale: $R_b = F_c*b = 352$ [kbit/s]

che corrisponde a $R_p = R_b / L = 352$ [pacchetti/s]

Una volta aggiunto l'header h, il flusso medio dei pacchetti diventa: $R_b' = R_p *(L+h) = 387.2 \text{ [kbit/s]}$

- b) Un host H vuole richiedere ad un server http S una pagina web costituita da 1 documento base HTML e k immagini JPEG. Per farlo, apre **una connessione TCP persistente in modalità "con pipelining"**. Si indichi <u>in forma parametrica</u> il tempo totale necessario per il trasferimento dell'intera pagina web considerando:
 - dimensione della pagina web e di ciascuno dei k oggetti: L
 - dimensione <u>trascurabile</u> dei messaggi di apertura connessione TCP (2-way handshake) e GET http
 - ritardo di propagazione di andata e ritorno tra H e S: RTT
 - capacità del collegamento tra H e S: C

(3 punti)

SOLUZIONE

$$T_{tot} = RTT + RTT + \frac{L}{C} + RTT + \frac{k * L}{C} = 3RTT + \frac{(k+1) * L}{C}$$

c) Occorre inviare una mail all'indirizzo <u>thanos@marvel.com</u> dal mittente <u>antman@marvel.com</u>. Il mail agent del mittente si trova in una rete esterna al dominio marvel.com e si collega direttamente mediante protocollo SMTP al server destinatario.

Riportare la successione dei messaggi che Client e Server SMTP si scambiano per trasferire il messaggio indicato di seguito.

(3 punti)

MESSAGGIO DI POSTA

Da: Antman <antman@marvel.com>
A: Thanos <thanos@marvel.com>
Oggetto: Game is not over

Thanos,

You forgot someone.

Game is not over.

Cheers

Antman

SOLUZIONE

Per trasferire il messaggio i messaggi SMTP scambiati possono essere:

S: 220 marvel.com

C: HELO marvel.com

S: 250 Hello marvel.com, pleased to meet you

C: MAIL FROM: <antman@marvel.com>

S: 250 antman@marvel.com... Sender ok

C: RCPT TO: <thanos@marvel.com>

S: 250 thanos@marvel.com... Recipient ok

C: DATA

S: 354 Enter mail, end with "." on a line by itself

C: Thanos,

C: You forgot someone.

C: Game is not over.

C: Cheers

C: Antman

C: .

S: 250 Message accepted for delivery

C: QUIT

S: 221 marvel.com closing connection