1. Begin with the **diamonds** dataset.

carat	cut	color	clarity	depth	table	price	Х	у	Z
0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43
0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31
0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31
0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63
0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••

2. Compute counts for each cut value with **stat_count()**.

Fair	1610	1
Good	4906	1
Very Good	12082	1
Premium	13791	1
Ideal	51551	1

count prop

cut

stat_count()