AD703541 19⁷⁰ 10 19⁷⁰ Spheroidal Geodesics, Reference Systems.
& Local Geometry Reproduced by the CLEAR!NGHOUSE for Federal Scientific & Technical (Figure 1997) Springfield (Figure 2015)

173

U.S. NAVAL OCEANOGRAPHIC OFFICE WASHINGTON, D.C. 20390

Best Available Copy

PCCE2210M	for
CFSTI	WHITE SECTION TO
D9C	AUFF SECTION []
dh an rocht	
JUSTIFICAT	10 1
BY	
DISTRIBE	HOR/AVAILABILITY CODES
9157.	AVAIL ME'S SPEEIN
7131.	
1	1 .1

ABSTRACT

A discussion of the geodesic on the oblate spheroid (reference ellipsoid) is given with formulae of geodetic accuracy (second order in the flattening, distance and azimuths) for the noniterative direct and inverse solutions over the hemispheroid, requiring no root extraction and no tabular data except 8-place tables of the natural trigonometric functions.

Forms are presented for use with any ellipsoid of reference and the formulae are adaptable to high speed electronic computers. Instructions for use of the forms in desk computations are given with the parameters for ten known ellipsoids of reference and the radii of spherical approximations.

A discussion is included of the computation of a long reference line in stations and of reference systems in the vicinity of a station as may be useful in oceanography, seismology, or other geophysical disciplines.

While the formulae introduced are satisfactory for short as well as long lines, the emphasis is on long lines out to maximum spheroidal geodesic length under the shortest distance property of the geodesic. The use of certain types of map projections for such base line work is also discussed.

The direct and inverse solutions as presented here have been adapted to high speed computers by the Earth Sciences Division of Teledyne, Inc., Alexandria, Virginia under the direction of Dr. E. F. Chiburis. The Fortran statements for the inverse solution are given in Appendix 4.

January 1970

P. D. THOMAS

Staff Mathematician
Research and Development Department

FOREWORD

This report fills a void in the theory and computation of long geodetic distances on the reference ellipsoid. The results will be particularly useful to long range navigation systems such as the Omega, and to several geophysical disciplines such as oceanography, seismology, and geodesy.

T. K. TREADWELL

Captain, U. S. Navy

Commander

U. S. Naval Oceanographic Office

PREFACE

The exposition of the computation of geodesics on the reference ellipsoid (oblate spheroid with small eccentricity) is based on the mathematical investigation I have conducted and included as Appendix 1 to this report. The many papers which have appeared on the subject since the early work of Legendre and Bessel are evidence of the dissatisfaction with the classic methods. This paper is no exception. It is a "fresh" investigation, but shows the influence of literature search. Where results were identifiable in other treatises, I have made reference to them. All the published works consulted are listed in the bibliography. Many of the results presented here are new. The emphasis is on long lines, based upon somewhat arbitrary criteria, i.e., an accuracy of at least 1 meter in position-geodetic length within 1 meter; latitude, longitude, and azimuth within .035 second—over the longest possible hemispheroidal geodesics employing no tables except 8-place natural trigonometric for desk computations—in any case meeting the 1/100,000 distance and 1 second azimuth requirement as specified by ACIC in their special studies (bibliographical reference [22] of this report), easy adaptation to any reference ellipsoid by merely changing the defining parameters; no root extraction or iteration with formulae limited to first and second powers of the flattening and which are compatible with both desk and large electronic computers.

Since the investigation included the longest possible geodesics, the following questions had to be resolved in the evaluation: If we take an arbitrary point on a given nonplanar spheroidal geodesic, can we find a second limiting point on the geodesic beyond which the unique shortest distance property fails? While Euler's differential equation is a necessary condition, is it sufficient? For example, in a limiting case, the equator as well as a meridian on the spheroid are geodesics (both satisfy Euler's condition) and both contain a common equatorial diameter—is there an arc of the equator which satisfies the shortest distance criteria? Are there more than two consecutive geodesic vertices or more than two nodes (equatorial crossings) in a hemispheroid? Are there any antipodal points on nonplanar spheroidal geodesics? What happens antipodally in a family of geodesics each having a vertex in a common meridian? How can we independently check approximation equations for very long geodesics?

In the 1957 report of the study group No. 2 on long lines, International Association of Geodesy, we find the statement: "Consequently, if two points are situated near the equator and are separated by nearly 180° of longitude there is a certain ambiguity as to what is meant by the geodesic between them." In his paper "The distance between two widely separated points on the surface of the earth" (Bibliographical reference [17] below), Dr. W. D. Lambert stated (concerning the ambiguity): "There appears to be no comprehensive treatment readily available in English. The author hopes to publish one shortly." This was never done.

From my investigation (Appendix 1) it was concluded that the maximum lengths of all oblate spheroidal geodesics, under the shortest distance property, each having a vertex in a common semimeridian (pole to pole) are contained in a hemispheroid (on the same side of the meridian orthogonal to that containing the vertices). This permitted determination of maximum distances over which approximation formulae to geodesics need hold under assumed accuracy criteria.

The antipodal zones were investigated for such a family of geodesics (each with a vertex in a common meridian) and formulae developed for determining the axes of the geodesic evolutes (envelopes). A formula for the latitude of the conjugate of an arbitrary point on the spheroidal geodesic (the point beyond which the unique shortest distance property fails) was found.

Formulae were developed in terms of the vertex latitude of the geodesic for longitude difference and length to serve as control checks on approximation formulae, and to check already published lines to be used for comparative purposes. A new direct solution was developed, and the inverse solution (previously published in NAVOCEANO TR-182, 1966) improved in form layout, azimuths to second order in the flattening were added and the quadrant search for azimuths eliminated. Where possible or feasible the formulae presented were developed through at least two different analyses, the details of which are presented in Appendix 1.

No apology is made for including the computations of a large number of numerical results throughout the discourse of Appendix 1, or for those included as a group in Appendix 3. One of the disappointing aspects of the literature review (Bibliography to this report), was the frequency of a single or at most two numerical examples presented in verification of formulae, such formulae being subsequently unacceptable when applied to lines differing considerably from those presented. The numerical results of Appendix 3 are also useful as checks, should individual programming of the equations be attempted, and all the ACIC test lines, already published in reference [22], have been included in Appendix 3 for check purposes. Appendix 2 contains the parameters for ten reference ellipsoids, the radii of spherical approximations, antipodal zone axes and areas, coordinate systems and other useful formulae.

The formulae presented here for the direct and inverse (reverse) solutions of geodesics in terms of parametric latitude have been programmed (Fortran) by the Earth Sciences Division, Teledyne, Inc., Alexandria, Virginia, under the supervision of Dr. E. F. Chiburis. The Fortran statements for the inverse solution are given in Appendix 4, and the card deck is available.

Finally, it seemed desirable to devote a section to a discussion of the use of forms presented for desk computations, and in applications such as the computation of reference lines and local associated geometry in the neighborhood of stations on the base line as may be needed in geophysical surveys and studies.

Paul D. Thomas, Staff Mathematician Research and Development Department U. S. Naval Oceanographic Office

CONTENTS

P	age
FOREWORD	i
PREFACE	iii
HISTORICAL NOTE	1
THE GEODESIC ON THE SPHEROID Analogy with the subsatellite trace Geodesic antipodal zones Other properties of the geodesic	1 3 3 6
ACCURACY CRITERIA FOR COMPUTATIONS	6
DIRECT SOLUTION	7 7 8 8 8
INVERSE (REVERSE) SOLUTION Formulae—Second order in f First order in f(f² = 0) Spherical (f = 0) Azimuth determination—elimination of quadrant search.	8 9 9 10 10
DESK COMPUTATIONS OF DIRECT AND INVERSE SOLUTIONS Computation of the direct solution Computation of the inverse solution	10 11 12
DISCUSSION OF PROBLEMS INVOLVING LONG GEODETIC LINES, LOCAL COORDINATE SYSTEMS, ASSOCIATED GEOMETRY General remarks Long spheroidal geodesics, partitioning Spherical case Problems in local geometry	19 19 20 21 21
BIBLIOGRAPHY	22
APPENDICES APPENDIX I. MATHEMATICAL DISCUSSION OF THE SPHEROIDAL GEODESIC Differential equation from Euler's condition Expression of longitude and arc length in elliptic integrals Integration of differential equations Formulae referred to a node Limiting cases of the integral equations	25 28 30 32 34

	Page
PPENDICES (Continued)	
APPENDIX 1. (Continued)	
Formulae referred to a vertex	. 36
Formulae for longitude and arc length between two arbitrary points	
Antipodal zones	
Conjugate points on spheroidal geodesics	
Hemispheroidal geodesics under the shortest distance property	
Some numerical considerations	
The spheroidal triangle	
The approximate solution for geodesy-	
Direct solution	
Conventions for azimuth and longitude	
General hemispheroidal inverse (reverse) solution	
Azimuth determination in the inverse solution	
Direct and inverse solutions of maximum spheroidal geodesics—	67
Node to node, vertex to vertex	
Direct and inverse computation of the ACIC 6000 mile lines	
Complete check of direct and reverse solutions over a hemispheroidal geodesic	
A geometric limitation in the inverse solution	74
APPENDIX 2. SPHEROID PARAMETERS, SPHERICAL APPROXIMATIONS, SPACE	
COORDINATES AT A POINT OF THE ELLIPSOID, OTHER USEFUL FORMULAE	
Spheroid parameters	
Approximating spheres	
Equivalent area or volume	
Mean spherical approximations	
Principal radii of curvature	
Mean radius at a point of the spheroidal surface	
Meridional and equatorial arc axes, and area of antipodal zones	86
A space coordinate system referred to the normal and tangents to the meridian and	
parallel through a given point of the reference ellipsoid	90
The spherical case	92
Rectangular spherical coordinates	. , 92
Transformations between rectangular space coordinates X, Y, Z and local spherical	
space coordinates x, y, h	. 96
Plane coordinates and map projections	
Spherical coordinates relative to a great circle are determined by two given points of	
sphere	100
Formulae relating spherical coordinates to geographic coordinates	102
The doubly equidistant projection	
The world geodetic reference system 1967	105
APPENDIX 3. THE ACIC CHECK LINES 50-6000 MILES, AND GEODETIC LINE	
COMPUTATIONS	. 107
ACIC check lines, 50-6000 miles	
	113
Control computations for the hemispheroidal geodesic containing an ACIC 6000	
Photo and inverse recognitations over this begularbouised gardenic	
Transport and improve property property from 1916 1967 1967 1961 1961 1961 1961 1961	1 43

١.

		Page
PΙ	ENDICES (Continued)	
	APPENDIX 4. THE TELEDYNE INDUSTRIES SUBROUTINE GEODIST	159
	Industries and based on the inverse solution of P.D. Thomas	159
	TABLES	
	Commercian of income and direct commercials	
	Comparison of inverse and direct computations	
	Effect of radian decimal places and significant figures in computation of geodetic distances	
	over the hemispheroid	
	Azimuth determination in the inverse solution	
	Computation summery—ACIC 6000 mile lines	
	Computation summary—hemispheroidal seodesic containing an ACIC 6000 i. Te arc	
	Summary ut hemispheroidal geodesic computation	
	Summary of computations made with formulae (156)	
	Spheroid parameters	
	Approximating spheres	
	Computation—end point latitudes of meridional antipodal zone axes	
	Computation—antipodal zone arc axes and areas	
	Differences d, L, 2H, T, v from equations (41), Appendix 2	
	FIGURES	
	Pictorial representation of the nonplanar geodesic on the oblate spheroid	2
	Partial trace of subsatellite points and analogy with the oscillation of the spheroidal geodesic	
	may to a second of the second	•
	Direct computation-second order in f	
	Inverse computation—second order in f	
	Direct computation—first order in f	
	Inverse computation—first order in f	
	Direct computation—spherical	
	Inverse computation-spherical	
	Differential arc length on the oblate apheroid as obtained from a differential right triangle	
r	The amplitude of elliptic functions expressed as spherical distance from the geodesic vertex	•
	to an arbitrary point on the geodesic	32
	Geodesic evolutes and antipodal zones on the spheroid	40
	Conjugate points on the oblete spheroid	43
	Graphical solution of equations (83)	47
	The four equal nonplanar hemispheroidal geodesics determined by a given parametric	
	vertex htitude	
	Illustrating analogies between apherical and spheroidal triangles	
	Spherical triangle used in approximating the spheroidal triangle	55
,	Direct position computation form for long lines (first)	
,	First spherical solution (second method)	61
	Second spherical solution (second method)	
	Direct position computation form for long lines (second)	62

		Page
	FIGURES (Continued)	
22.	Spherical triangles used in the inverse approximation equations	63
23,	Azimuths in the equivalent spherical triangle	
24.	Azimuth situations over the hemispheroid	
25.	Inverse position computation form for long lines	68,82
26.	Geodesic containing ACIC 6000 mile line	71
27.	The great elliptic section containing two consecutive vertices of the geodesic	73
28.	The geodesic and great elliptic section through two points in the same latitude	76
29.	Graphs of θ_0 versus $\Delta\theta_0$ for $\theta_1 = 30'$, 1°, 5°, 10° and corresponding distance errors	
	(maximum longitude separation for each θ_0)	80
30 .	· · · · · · · · · · · · · · · · · · ·	
	at an arbitrary point of the reference ellipsoid	90
31.	· ·	
32.	An associated spherical rectangular space coordinate system	
33.	Tangent-arc-chord	
34.		
,	circle arc	101
35.	The doubly equidistant projection	

HISTORICAL NOTE

The French Mathematician, Legendre, published papers in 1806 and 1811 on the theory of spheroidal geodesics, consolidating and extending his work in the Traité des Fonctions Elliptiques, 1825.

The German astronomer, Bessel, published an approximation solution to the spheroidal geodesic in 1825, [1],* and since that time an almost endless stream of publications on the subject has appeared. Other famous 19th century scientists who studied the problem include Bennet (1850, '51), Christoffel (1868), Hansen (1868), Cayley (1870), Jacobi (posthumous publication), Halphen (1888), Darboux (1894), A.R. Forsyth (1895). Cayley was the first to use the term "parametric latitude" for the eccentric angle of the meridian ellipse, [25], preferring it to Legendre's "reduced latitude." Two outstanding 19th century treatises, in each of which the geodesic problem is presented with approximation solutions (iterative), are those of the British geodesist Clarke and of Helmert, the German contemporary, both volumes appearing in 1880, [2].

The Bessel-Helmert method, which is an iterative type computation of the development of the projection on the sphere of the spheroidal geodesic, has been modified by some investigators to eliminate the iterative process and the use of tables other than natural trigonometric, but usually involving root extraction, [3], [4]. Others have followed Clarke's method which in general involves tables for a particular reference ellipsoid, and may involve root extraction, [5].

Since the difference in length between the elliptic normal sections or the great elliptic section and the geodesic is of the 4th order in the eccentricity of the meridian ellipse, formulae have appeared computing these lengths rather than the geodesic, some using also azimuths of these sections rather than geodesic azimuths and with the option, in some cases, of applying difference or differential correction formulae for finally converting to geodesic length and geodesic azimuths, [6], [7], [8], [9]. Particularly with respect to long geodetic lines, the literature is quite extensive, [10], [11], [12], [13], [14]. Many of these formulae as published were developed to give distance up to a fixed predetermined maximum length with a given accuracy and fail almost immediately on lines in excess of that maximum. Many involve coefficients of many terms in powers of the eccentricity or other associated parameter. None of these examined appeared capable of supplying the versatility required under the criteria adopted for the present study.

THE GEODESIC ON THE OBLATE SPHERUID

The longest plane closed curve on the oblate ellipsoid of revolution is the circular equator, and the shortest closed curve, which is also a geodesic, is the meridian. The equator and the meridians are the only

[&]quot;Bracketed numbers refer to the bibliography attached to this report.

plane geodesics and the only closed geodesics. All other geodesics are three dimensional space curves, that is they have at each point two principal radii of curvature (a radius of curvature and a radius of torsion). The nonplanar geodesic oscillates symmetrically between tangencies to its two associated symmetric parallels with respect to the equator, and because of the flattening retrogresses through each revolution about the spheroid and thus cannot close on itself, as shown in Figure 1.

The geodesic is fundamentally defined as the curve of shortest distance between two points on a surface. From the integral for arc length we may, by the calculus of variations, determine the conditions on the integrand for the arc length to be a minimum. Actually maximum or minimum (extrema). That is the distance by way of the geodesic around the back side of the oblate spheroid, between two points within a hemispheroid, would be the longest geodesic distance. In Figure 1, note the geodesic arc P_1P_2 where P_2 is a first point of crossing after one revolution about the spheroid. Around the backside, the geodesic distance from P_1 to P_2 is the long geodesic arc P_1CDEFP_2 .

If the geodesic is traced from a point A, a node, on the equator in the direction of the tangents as shown it all not pass again through A after a complete revolution but will cross the equator at a point E as shown. The course is $AP_2P_1CDEFP_2G\ldots$; P_2 is the first point where the geodesic crosses itself.

Figure 1. Pictorial representation of the nonplanar goodesic on the oblate ellipsoid of revolution.

From the results of the extremal conditions may be deduced the property that the osculating plane at each point of a geodesic contains the normal to the surface, or equivalently that at each point of a geodesic the principal normal to the curve must coincide with the normal to the surface, [16]. But from simple mechanics, considering a string stretched under tension between two points on a *smooth* spheroid, we can show that the curve assumed by the string is a geodesic, [15].

Analogy with the subsatellite trace.

The normal projection of the orbit of an earth artificial sateilite upon an ellipsoid of reference simulates the geodesic. The normal projection of an equatorial orbit is very near the equator and that of a polar orbit is close to a meridian. For other orbits, the satellite responds in greater degree to the flattening (the equatorial bulge) of the geoid (sea level surface) which is approximated by the reference ellipsoid. This effect on the satellite (sustained by its velocity-falling very slowly back to earth) with the rotation of the earth under the orbit, causes the trace of the trajectory (orbit) as projected normally upon the reference ellipsoid to oscillate between two parallels symmetric with respect to the equator as shown in Figure 2. The symmetric parallels are in latitude ± 48° corresponding to the satellite inclination (the angle between the orbit and the equator). Note also in Figure 2 that the longitude difference between successive equatorial traces is 30°. Hence for each half revolution of the satellite the earth turns 15° to the east under the orbit which is itself in an easterly direction. Hence the longitude difference, node to node (N1 to N2) of the continuous trace is 165° as shown. The orbit also retrogresses but only about 3° per day as shown at the injection point of the orbit. Now a geodesic on the Clarke 1866 ellipsoid with vertex parametric latitude 48° has a longitude difference node to node, of about 179° 36' (see TABLE 8), and no geodesic on it can have a longitude difference, node to node, of less than about 179° 24' and this is along the equator itself. Hence the subsatellite trace is not a geodesic on the reference ellipsoid but it behaves like one, oscillating between two symmetric parallels in latitude equal to the inclination of the orbit, and with no more than two nodes or two vertices (of the trace) within a hemispheroid (on the same side of a meridian). But this digression is useful to remind us that the nonplanar geodesic tries to climb to the nearest pole.

Geodesic antipodal zones.

The behavior of the geodesic, when the geodesic are end points are nearly antipodal has been discussed in several sources [17], [24], [25]. Clearly if the two points are 180° apart on the equator, then the shortest distance between them on the surface is the meridional semilength. In fact the shortest distance on the surface between the end points of any diameter of the spheroid is either of the two equal arcs of the meridian subtended by the diameter—that is the meridians are the only antipodal geodesics. This is clearly so because of all the plane elliptic sections through any diameter of the oblate spheroid, the one with the largest eccentricity and therefore shortest length is the meridian.

Only the circular length πb along the equator belongs to the hemispheroidal family of geodesics (a vertex of each geodesic in a common meridian) and it is the shortest member. There are no antipodal points on nonplanar spheroidal geodesics. See Appendix 1 to this report for the proofs.

If the difference in longitude of two points on the equator is not π radians but $\pi(1-k)$ radians, where k is a small quantity, k < f (f is the flattening of the spheroid) then there are two geodesics, symmetric with

Figure 2.

respect to the equator, which take advantage of the flattening and climb toward the poles. Note the geodesics (1) and (2) in Figure 3. If k = f, the geodesic consists of the equatorial arc $DD' = CC' = \pi a(1 - e^2)^{1/2} = \pi a(1 - f)$.

Continuing the discussion, with the help of Figure 3, we suppose that T T' is an equatorial diameter of the spheroid orthogonal to a fixed meridian as shown. An arbitrary point P on the meridian has the symmetric R' with respect to the equator, the symmetric R with respect to the polar axis, and the symmetric P' with respect to the spheroidal center. There are thus four equal geodesics, two each with vertex latitude $\pm \theta_0$, determined by every point P and all are orthogonal to the fixed meridian. In the limit as $k \to f$, geodesics (1) and (2) coincide with the arc D D' of the equator and analogously geodesics (3) and (4) coincide with the arc C C'. When $k \to 0$, $\theta_0 \to \pi/2$, $-\theta_0 \to -\pi/2$ and then geodesics (1) and (3), (2) and (4) respectively coincide with the upper and lower halves of the meridian ABA'B' (plane of the paper in Figure 3).

Figure 3. Pictorial representation of the two geodesic antipodal zones with respect to a given meridian of the oblists subsented.

It has been shown that this family of geodesics, as depicted in Figure 3, has two evolutes. Cayley, [25], called these geodesic evolutes with respect a given meridian. These are shown pictorially in Figure 3 as the figures ABCD, A'B'C'D' and they resemble the evolute of the meridian ellipse or a hypocycloid of four cusps since the eccentricity of the meridian is small with respect to earth reference ellipsoids. See also Figure 12 of Appendix 1. (The evolute of a given plane curve is the curve tangent to all normals or perpendiculars to the given curve—also called the envelope of the normals. On the spheroid, arcs of geodesics correspond to straight line segments in the plane relative to the shortest distance property.) Determination of the meridional arc axes of the geodesic evolutes (AB = A'B' of Figure 3) requires the solution of a transcendental equation and is discussed in Appendix 1.

The spheroidal areas enclosed by the geodesic evolutes are called the geodesic antipodal zones with respect to a given meridian. Note from Figure 3 that only two consecutive nodes (equator crossings) occur in a hemispheroid and that they always lie in the geodesic antipodal zones with respect to the meridian containing the geodesic vertex. Because of the symmetry about the equator, the distance between consecutive nodes is the same as between consecutive vertices. Hence we may within a hemispheroid (on the same side of a meridian) have a maximum of two consecutive nodes and the vertex between them; or a maximum of two vertices and the node between them. For proof see Appendix 1 to this report.

Other properties of the geodesic.

The differential equation of the spheroidal geodesics may be found using the property of coincidence of principal normal to the curve and the normal to the surface at an arbitrary common point and it can be shown that the integral arc length depends on the evaluation of an elliptic integral. Since the eccentricity and the flattening are small quantities for earth reference ellipsoids, the series expansion of the integral in terms of eccentricity, flattening, or other associated parameter converges rapidly and evaluation is usually made in this way rather than by interpolation in elliptic integral tables.

An easily demonstrated but very important well known property of the geodesic on the oblate spheroid (or of the geodesic on any revolute) is that at each point of the geodesic the product of the radius of the parallel and the sine of the angle which the geodesic makes with the meridian is constant. The mathematical demonstration is found in Appendix 1.

The problem of determining azimuths or geographic position of an end point of a geodesic arc involves solution of a polar spheroidal triangle and is usually approximated by solution of a corresponding spherical triangle or a sequence of them (iteration).

ACCURACY CRITERIA FOR COMPUTATIONS

While sophisticated computer systems are becoming more available universally, there is a need additionally or alternatively to have some computing forms which will give a reasonable geodetic accuracy over hemispheroidal geodetics for both direct or inverse (reverse) solutions with minimum requirements of a deak computer, only 8-place tables of natural trigonometric functions—no iteration or root extraction.

Accordingly the following criteria were adopted relative to the mathematical study included as Appendix 1 to this report:

- 1. An accuracy of 1 meter in position-geodetic length within 1 meter; latitude, longitude, and azimuth within .035 second-over the longest possible hemispheroidal geodesics, but in any case equalling the 1/100,000 distance and 1 second azimuth requirement adopted by ACIC, [22].
- 2. No tabular data required except 8-place natural trigonometric for deak computations.
- 3. No iteration or root extraction with formulae also adaptable to large electronic computing systems.
- 4. Easy adaptation to any reference ellipsoid by merely changing the scale parameters a, f, etc.

DIRECT SOLUTION

All direct solutions of the spheroidal triangle involve approximations by one or more spherical triangles. They differ with respect to the variables, parameters, required tabular data, arithmetic operations and subsequent accuracy. The formulae to be presented here involve corrections to a single spherical triangle. The variables are longitude, λ , parametric latitude, θ . Parameters are a, f, θ_0 where α , f are the semimajor axis and flattening of the reference ellipsoid and θ_0 is the parametric latitude of the geodesic vertex. The only tabular data required is a table, such as Peters, of the natural trigonometric functions. No root extraction or iteration is required in arithmetic operations.

We are given the point P_1 (ϕ_1 , λ_1) on the spheroid, where ϕ_1 , λ_1 are geodetic latitude and longitude (geographic coordinates); the forward azimuth α_{1-2} and distance S to a second point P_2 (ϕ_2 , λ_2); and from these we are to find the geographic coordinates ϕ_2 , λ_3 and the back azimuth α_{2-1} . The given quantities are ϕ_1 , λ_1 , α_{1-2} , S.

Formulae. (The derivations are given in Appendix !)

Second Order in f.

```
Tan \theta_1 = (1-f) \tan \phi_1, M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2}, N = \cos \theta_1 \cos \alpha_{1-2}, c_1 = fM, c_2 = (1/4) f(1-M^2), D = (1-c_2)(1-c_2-c_1M), P = c_2 [1+(1/2)c_1M]D, \cos \sigma_1 = \sin \theta_1/\sin \theta_0, d = S/a D, u = 2(\sigma_1 - d), W = 1-2P\cos u, V = \cos (u+d) = \cos u \cos d - \sin u \sin d, X = c_1^2 \sin d \cos d (2V^2-1), Y = 2PVW \sin d, \Delta \sigma = d + X - Y, Z\sigma = 2\sigma_1 - \Delta \sigma, \tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma), \tan \phi_2 = -(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}/(1-f)M, \tan \Delta \sigma = \sin \Delta \sigma \sin \alpha_{1-2}/(\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1-2}), H = c_1 (1-c_2) \Delta \sigma - c_1c_2 \sin \Delta \sigma \cos \Sigma \sigma, \Delta \lambda = \Delta \eta - H, \lambda_2 = \lambda_1 + \Delta \lambda
```

```
First Order in f(f^2 = 0)
```

We place terms in f² equal to zero in the above equations which will remain the same except for the following:

$$D = 1 - 2c_2 - c_1 M$$
, $P = c_2/D$, $X = 0$, $\Delta \sigma = d - Y$, $H = c_1 \Delta \sigma$.

Spherical (f = 0)

If we place f = 0 in the above equations we have $\tan \phi_1 = \tan \theta_1$, $\phi_1 = \theta_1$,

 $M = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_0$, $N = \cos \theta_1 \cos \alpha_{1-2}$,

 $\Delta \sigma = d = S/a, \tan \alpha_{2-1} = M/(N \cos d - \sin \theta_1 \sin d),$

 $\tan \phi_2 = -(\sin \theta_1 \cos d + N \sin d) \sin \alpha_{2-1}/M,$

 $\tan \Delta \lambda = \sin d \sin a_{1-2}/(\cos \theta_1 \cos d - \sin \theta_1 \sin d \cos a_{1-2})$

 $\lambda_2 = \lambda_1 + \Delta \lambda$; a may be the radius of a spherical approximation such as given in Appendix 2.

Sign Conventions for Azimuth and Longitude

We take the initial point to be west of the terminus in the direct solution and then always $180^{\circ} \le a_{2-1} \le 360^{\circ}$. We also have $0 \le \Delta \eta \le \Delta \lambda \le \pi$. If two arbitrary points are both in the southern hemispheroid (both in negative latitude), we solve as though both were in the northern hemispheroid and write symmetric elements with respect to the equator. While not necessary, these conventions simplify somewhat the determination of azimuth and longitude difference in desk computing.

From the quantities above in the formulae we find the first quadrant angles u and v given by $\tan u = \tan a_{2-1} l$, $\tan v = \tan \Delta \eta l$

If $\tan a_{2-1} > 0$, then $a_{2-1} = 180^{\circ} + u$; if $\tan a_{2-1} < 0$, then $a_{2-1} = 360^{\circ} - u$. If $\tan \Delta \eta > 0$, then $\Delta \eta = v$; if $\tan \Delta \eta < 0$, then $\Delta \eta = 180^{\circ} - v$.

The conventions are sufficient, under the assumptions, as demonstrated by the following:

Always $0 \le a_{1-2} \le 180^{\circ}$. When $\tan a_{2-1} > 0$, then a_{2-1} is in the third quadrant and is of the form $180^{\circ} + u$, since $\tan (180^{\circ} + u) = \tan u$. When $\tan a_{2-1} \le 0$, then a_{2-1} is in the fourth quadrant and is of the form $360^{\circ} - u$, since $\tan (360^{\circ} - u) = -\tan u$.

Since always $0 \le \Delta \eta \le \Delta \lambda \le \pi$; when $\tan \Delta \eta > 0$, $\Delta \eta$ is in the first quadrant and $\Delta \eta = v$. When $\tan \Delta \eta < 0$, $\Delta \eta$ is in the second quadrant and is of the form 180 - v, since $\tan (180 - v) = -\tan v$.

The arrangement of the direct formulae into a computing form is shown in Figure 18, Appendix 1.

INVERSE (REVERSE) SOLUTION

The published inverse solutions have been more varied than the direct. The series expansion for the geodesic length in the flattening f, spherical length d (with reference to the geodetic latitude of the vertex of the great elliptic arc) in the form

$$S = a[d - F_1(d)f + F_2(d)f^2 + ...]$$

was published by A.R. Forsyth in 1895, [20]. Errors in $F_2(d)$, making untenable the use of the second order term, remained undetected until 1965, [21]. The more recent examinations also revealed that the

Andoyer-Lambert expansions to first order in the flattening are merely those of Forsyth to first order in f, [18]. An independent verification of the corrections to Forsyth's equations was found in the work of Gougenheim, [23]. Gougenheim's work has apparently gone unnoticed although he has had a correct expansion in terms of geodetic latitude to second order in the flattening since 1950.

Forsyth had the expansion in parametric latitude to first order in the flattening. This was extended to second order as .sported in [18]. The formulae for distance to be used here are basically those from [18]. The azimuth formulae are adaptations of those presented by Gougenheim in [23]. See Appendix 1, Equations (143).

We are given the points $P_1(\phi_1, \lambda_1)$, $P_2(\phi_2, \lambda_2)$ on the spheroid and are to find the distance S between the points and the forward and back azimuths, a_{1-2} and a_{2-1} . Given quantities are $\phi_1, \lambda_1, \phi_2$, λ_2 . It is assumed that east longitudes are positive and that P_1 is west of P_2 .

Formu**h**e

Second Order in f

$$\tan \theta_{i} = (1 - f) \tan \phi_{i}, i = 1, 2$$

$$\theta_{m} = (1/2)(\theta_{1} + \theta_{2}), \Delta \theta_{m} = (1/2)(\theta_{2} - \theta_{1}), \Delta \lambda = \lambda_{2} - \lambda_{1},$$

$$\Delta \lambda_{m} = (1/2)\Delta \lambda, H = \cos^{2} \Delta \theta_{m} - \sin^{2} \theta_{m} = \cos^{2} \theta_{m} - \sin^{2} \Delta \theta_{m},$$

$$L = \sin^{2} \Delta \theta_{m} + H \sin^{2} \Delta \lambda_{m} = \sin^{2} (1/2)d, 1 - L = \cos^{2} (1/2)d, \cos d = 1 - 2L,$$

$$U = 2 \sin^{2} \theta_{m} \cos^{2} \Delta \theta_{m} / (1 - L), V = 2 \sin^{2} \Delta \theta_{m} \cos^{2} \theta_{m} / L, X = U + V,$$

$$Y = U - V, T = d/\sin d, D = 4T^{2}, E = 2 \cos d, A = DE, B = 2D,$$

$$C = T - (1/2)(A - E); \qquad \text{check: } C - \frac{1}{2}E + AD/B = T.$$

$$n_{1} = X(A + CX), n_{2} = Y(B + EY), n_{3} = DXY, \delta_{1}d = (1/4)f(TX - Y),$$

$$\delta_{2}d = (f^{2}/64)(n_{1} - n_{2} + n_{3}), S_{1} = a \sin d (T - \delta_{1}d), S_{2} = a \sin d (T - \delta_{1}d + \delta_{2}d),$$

$$F = 2Y - E(4 - X), M = 32T - (20T - A)X - (B + 4)Y,$$

$$G = (1/2)fT + (f^{2}/64)M, Q = -(FG \tan \Delta \lambda)/4, \Delta \lambda'_{m} = (1/2)(\Delta \lambda + Q),$$

$$c_{1} = -\sin \Delta \theta_{m}/\cos \theta_{m} \tan \Delta \lambda'_{m}, u = \arctan \log_{1} \log_{2} \alpha_{2} = v + u,$$

$$c_{2} = \cos \Delta \theta_{m}/\sin \theta_{m} \tan \Delta \lambda'_{m}, v = \arctan \log_{1} \log_{2} \alpha_{2} = v + u,$$

C1	C ₂	<u> </u>	<u> </u>
-	+ ·	a, a _l	360 - a2
•	•	a ₂	360 - a1
•		180 - 42	180 + a1
+		180 - a,	180 + a ₂

First Order in $f(f^2 = 0)$

$$\tan \theta_1 = (1 - \ell) \tan \phi_1, i = 1, 2; \theta_m = (1/2)(\theta_1 + \theta_2), \Delta \theta_m = (1/2)(\theta_2 - \theta_1),$$

$$\Delta \lambda = \lambda_1 - \lambda_1, \Delta \lambda_m = (1/2)\Delta \lambda, H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \Delta \theta_m,$$

$$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m = \sin^2 Md, 1 - L = \cos^2 Md, \cos d = 1 - 2L,$$

$$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L)$$
, $V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L$,

$$X = U + V$$
, $Y = U - V$, $T = d/\sin d$, $\delta_1 d = (1/4)f(TX - Y)$,

$$S = a \sin d (T - \delta_1 d), F = 2 [Y - (1 - 2L)(4 - X)], G = (1/2)(T,$$

 $Q = -(FG \tan \Delta \lambda)/4$, $\Delta \lambda'_m = (1/2)(\Delta \lambda + Q)$; the rest of the azimuth solution is the same as for the original formulae above.

Spherical (f = 0)

With f = 0 in the above formulae we have:

$$\tan \phi_i = \tan \theta_i$$
, $\phi_i = \theta_i$, $\theta_m = (1/2)(\theta_1 + \theta_2)$, $\Delta \theta_m = (1/2)(\theta_2 - \theta_1)$,

$$\Delta \lambda = \lambda_2 - \lambda_1$$
, $\Delta \lambda_m = (1/2)\Delta \lambda$, $H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \Delta \theta_m$,

$$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m$$
, cos d = 1 - 2L, S = ad, Q = 0, $\Delta \lambda'_m = \Delta \lambda_m$,

 $c_1 = -\sin \Delta\theta_m/\cos\theta_m \tan \Delta\lambda_m$, $c_2 = \cos \Delta\theta_m/\sin\theta_m \tan \Delta\lambda_m$; the rest of the azimuth solution is the same as above.

Azimuth Determination—Elimination of Quadrant Search

In the above formulae we find two first quadrant angles given by $u = \arctan |c_1|$, $v = \arctan |c_2|$. We then form $a_1 = v - u$, $a_2 = v + u$ and determine the azimuths according to the signs of c_1 and c_2 from the array:

<u> </u>		<u> </u>	<u> </u>
•	•	a ₁	360 - a ₂
+	•	a ₂	360 - a ₁
•	-	$180 - a_2$	180 + a1
+		180 - a ₁	180+42

This, in effect, eliminates the quadrant search since it has been done in advance. For the development of these expressions see Appendix 1.

The arrangement of the inverse formulae into a computing form is shown in figure 25, Appendix 1.

DESK COMPUTATIONS OF DIRECT AND INVERSE SOLUTIONS

For a demonstration of the direct and inverse forms, Figures 18, 25—Appendix 1, the long line published in reference [4] will be used. Its elements as given there are:

ORIGIN
$$\phi_1 = 20^4$$
, $\lambda_1 = 0$; S = 9649412.505 meters

TERMINUS
$$\phi_2 = 45^\circ$$
, $\lambda_1 = 106^\circ$; $a_{1-2} = 42^\circ$ 56' 30".035.

$$f = .003367003367$$
, $a = 6378388$ meters, $a_{2-1} = 295^{\circ}$ 17' 18'.600

To provide a check for this line we use equations (49), (50) of Appendix 1 to make an independent commutation as follows:

$$c_1 = f \cos \theta_0 = .215629892 \times 10^{-2}, A = c_1(1 - c_2c_4) = .215522628 \times 10^{-2}$$

```
c_2 = (1/4) f \sin^2 \theta_0 = .49651618 \times 10^{-3}. B = (1/2) c_1 c_2 c_3 = .53606 \times 10^{-6}

c_3 = 1 + c_1 \cos \theta_0 = 1.0013809386, D = 2 + c_2 (c_2^2 + c_4^2) - (1 + c_2) c_4 - c_2 = .9976269631

c_4 = c_2 + c_3 = 1.0018774548, E = \frac{1}{2} c_2 [2 + c_3 (c_3 - 1) - c_2^2] = .49685942 \times 10^{-3}

\eta_1 = 72^\circ 23' 36''.933, F = \frac{1}{2} c_2^2 (2c_4 - 1) = .6186 \times 10^{-7}

\eta_2 = 33^\circ 47' 36''.695, \Sigma \eta = \eta_1 + \eta_2 = 106^\circ 11' 13''.628 = 1.8533148482 rad.

\sigma_1 = 63^\circ 38' 26''.269, \Sigma \sigma = \sigma_1 + \sigma_2 = 86^\circ 50' 29''.583 = 1.5156709899 rad.

\sigma_2 = 23^\circ 12' 03''.314, \sin \Sigma \sigma = .99848098, \Delta \sigma = \sigma_1 - \sigma_2 = 40^\circ 26' 22''.955,

\cos \Delta \sigma = .76108893, \sin 2\Sigma \sigma = .11002746, \rho = 2 \sin \Sigma \sigma \cos \Delta \sigma = 1.51986564,

\cos 2\Delta \sigma = .15851273, \rho = 2 \sin 2\Sigma \sigma \cos 2\Delta \sigma = .034881506.
```

Ση	1.8533148482	DΣσ	1.5120	742467
- ΑΣσ	0032666139	+ Ep	+ .0007	551596
	1,8500482343		1,5128	294063
+ Bp	+ .0000008147	-Fq	- .	22
$\Delta\lambda(rad)$	1,8500490490	S/a	1.5128	294041
Δλ	106° 00′ 00.009	S	9649	412.917 m

Figures 4 to 9 are respectively the direct and inverse solutions of this line – second order in f, first order in $f(f^2 = 0)$, and spherical (f = 0). The crosses in spaces of the first order and spherical examples indicate values to be omitted in the computation.

Computation of the direct solution.

Second order in f. We first identify the reference ellipsoid to be used at the top of the form and enter the indicated spheroidal constants from Appendix 2. The given quantities ϕ_1 , a_{1-2} , S, λ_1 are then entered in the spaces provided with heavy underline as shown in figure 4; $\sin a_{1-2}$, $\cos a_{1-2}$, $\tan \phi_1$ are found from the Peters (or other) 8-place tables of natural trigonometric functions; $\tan \phi_1$ is multiplied by 1-f to get $\tan \theta_1$ as shown, and then $\sin \theta_1$, $\cos \theta_1$ are found from the tables. In using linear interpolation in the Peters Tables, always take the tabular difference at the particular second in the table unless the difference is constant for the particular column as marked top and bottom. For instance, at 41° 52′ the tabular difference is a constant 361 for the sine column as indicated top and bottom, but this is seldom so. Convenient checks are provided by the identities $\sin \theta/\cos \theta = \tan \theta$, $\sin^2 \theta + \cos^2 \theta = 1$.

After M, N, θ_0 , sin θ_0 have been found we compute the constants c_1 , c_2 , D, P. We may compute c_2 in two ways since $1-M_1=\sin^2\theta_0$. We next find θ_1 ; then d=S/aD which is in radians. At the top of the form find 1 radian = 206264.8062 seconds. This factor is multiplied by d (radians) and then divided by 3600 seconds (1 degree) which will give an integral number of degrees plus a decimal part of a degree. This decimal part is multiplied by 60 to get an integral number of minutes plus a decimal part of a minute. The decimal part of a minute is multiplied by 60 to get seconds retaining three decimals. If the total number of seconds is less than 3600, but more than 60, we divide by 60 to get minutes and then continue as above. Always check by reversing the process to get the radians d.

With σ_1 and d in degrees we form $u = 2(\sigma_1 - d)$ and find six d, cos d, sin u, cos u. These are chacked by $\sin^2 x + \cos^2 x = 1$. V and W may now be computed and then X and Y. Note that X may be ignored if

it is less than .3 \times 10⁻⁸. Next $\Delta\sigma$ is computed from the radian values of d, X, Y and converted to degrees. $\Delta\sigma$ and d always differ by only a few minutes. $\Sigma\sigma$ is formed in degrees and then $\sin\Delta\sigma$, $\cos\Delta\sigma$, $\cos\Sigma\sigma$ found from the tables. We are then able to compute $\tan\alpha_{2-1}$. The first quadrant solution for $\tan u = 2.11661579$ is $u = 64^{\circ}$ 42' 41".399. Since the sign of $\tan\alpha_{2-1}$ as computed is negative, we have $\alpha_{2-1} = 360^{\circ} - u = 295^{\circ}$ 17' 18".601; $\sin\alpha_{2-1} = \sin(360^{\circ} - u) = -\sin u = -\sin 64^{\circ}$ 42' 41".399 = -.90416831. We may now compute $\tan\phi_2$ which is found to be 1.00000003 = 1 + (3 \times 10⁻⁸) and from the table $\phi_2 = 45^{\circ}$ 00' 00".003. Next find $\tan\Delta\eta = -3.4449133$. From the Peters tables we find for $\tan v = +3.4449133$, that $v = 73^{\circ}$ 48' 46".375, but since the sign of $\tan\Delta\eta$ is negative, $\Delta\eta = 180^{\circ} - v = 106^{\circ}$ 11' 13".625. Now the computation for H is in radians and converting to angular value, H=11' 13".620. We subtract H from $\Delta\eta$ and add the difference, $\Delta\lambda$, to λ_1 to get $\lambda_2 = 106^{\circ}$ 00' 00".005 as shown.

First order in $f(f^2 = 0)$. The input quantities are the same as shown in figure 4. We "cross out" the quantities to be omitted as shown in Figure 6, and the computational procedure is then the same.

Spherical (j = 0). We must adopt a spherical radius. For figure 8 we have adopted the great normal radius for $\phi = 20^{\circ}$, see Appendix 2, equations (11) and (22). The quantities to be omitted are then "crossed out" and the simplified computations made as shown.

Computation of the inverse solution.

Second order in f. We enter the name of the reference ellipsoid to be used and the corresponding spheroidal constants from Appendix 2. The given quantities θ_1 , θ_2 , λ_1 , λ_2 are entered in the spaces with heavy underline as shown in Figure 5. We find $\tan \theta_1$, and θ_2 from the tables and compute $\tan \theta_1$, $\tan \theta_2$ as shown; then back to the tables to find θ_1 , θ_2 . We then form θ_m and $\Delta\theta_m$ and check by adding, since $\theta_m + \Delta\theta_m = \theta_2$. Next find $\Delta\lambda$, $\Delta\lambda_m$ and then from the tables $\sin \theta_m$, $\cos \theta_m$; $\sin \Delta\theta_m$, $\cos \Delta\theta_m$; $\sin \Delta\lambda_m$, $\tan \Delta\lambda$. We next compute two values of H as shown which should agree within 5 in the 9th place of decimals. Take the mean and retain 8 decimals. L is then computed retaining 8 decimals.

With the value of L, we form 1 - L, cos d = 1 - 2L as shown; then find d, sin d from the tables. Now compute U, V, X, Y, T, E, D, B, A, C. Note that B = 2D, A = DE, $D = 4T^2$, C = T - (1/2)(A - E), so that these are relatively easy to compute. The check is given by $T = C - \frac{1}{2}E + \frac{1}{2}D = \frac{1}{2}D =$

Compute n_1 , n_2 , n_3 , and then $\delta_1 d$, $\delta_2 d$. We can now compute S_1 (first order for comparison) or go directly to S_2 for the second order distance as shown in figure S_2 .

For the azimuths, we compute in order F, M, G, Q, $\Delta\lambda'_{m}$, $\tan\Delta\lambda'_{m}$. Then c_{1} , c_{2} , u, v and in that order. We add and subtract the quantities u, v to get $a_{1} = v - u$, $a_{2} = v + u$. Now the signs of c_{1} , c_{2} are $a_{2} = v + u$, as shown in figure 5. Hence the azimuths are $a_{1-2} = a_{1}$, $a_{2-1} = 360 - a_{2}$ as shown.

First order in f. The heading information to first order in f and input quantities are the same as in figure 5. The quantities to be omitted are "crossed out" as shown in figure 7 and then the computations are done as before computing S_1 after finding the first order correction $\delta_1 d$.

Spherical (f = 0). We need a radius approximation to the ellipsoid and use that determined for the apherical direct solution which is the great normal length for $\phi = 20^{\circ}$, r = 6380897.5 meters (international ellipsoid). The omitted quantities are then "crossed out" as shown in figure 9, and the simplified computation made analogously as shown.

DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given $\phi_1, \lambda_1, \alpha_{1-2}$, S to find $\phi_2, \lambda_2, \alpha_{2-1}$. East longitudes positive; azimuths clockwise from north; no root extraction; only 8-place trigonometric natural tables (as Peters) required for desk work.

INTERNATIONAL SPHEROID a 6378388 m (.003367 003367 1-1 9966 329966 1 radian = 206264.8062 seconds TO TERMINUS $\tan \phi_1 \cdot 36397023 \quad \tan \theta_1 = (1-1) \tan \phi_1 \cdot 36274474$ α1-2 42 56 30.03 Sin θ1 3410 0267 cos θ1 9400 6233 θ1 19 56 16-706 $\sin \alpha_{1.2}$ 68 17 5353 M = $\cos \theta_0 = \cos \theta_1 \sin \alpha_{1.2}$ 6404 2078 θ_0 50 10 36.468 $\cos \alpha_{1.2} = 73204755$ N = $\cos \theta_1 \cos \alpha_{1.2} = 688/7033$ $\sin \theta_0 = 7680 2423$ $D = (1 - c_2)(1 - c_2 - c_1 M) - 99762696/2$ c1 = M - 2/56 299110-7 $c_2 = \frac{1}{4}(1 - M^2)i - \frac{4965162x10^{-3}}{2}$ 498041×10-3 $P = c_2 (1 + \frac{1}{2}c_1 M)/D$ $\cos \sigma_1 = \sin \theta_1 / \sin \theta_0$ 4439 9989 σ_1 63 38 26.27/ 1.5/6427946 (rad) d 86 53 05.716 S 96494/2.912 m u = 2(01 - d) - 46 29 18.890 sin u - . 7252 3716 sin d . 9985 2240 cos d .0543 4160 W=1-2P cos u .999314199 cos u .6884 9914 $V = \cos u \cos d - \sin u \sin d - \frac{76/579694}{} = 2PVW \sin d$ 200756 9553 1.515670991 (rad) X = c2 sin d cos d (2V2 - 1) -214 x10 (19 nare) 60 = d + X - Y SIN AO . 9984 8098 COS AO . 0550 9742 AO RG 50 29583 40 26 22.959 cos 20 + . 7610 8892 $2\sigma = 2\sigma_1 - \Delta\sigma$ $\tan \alpha_{2,1} = M/(N\cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma) - 2 \cdot 1/66 / 579 \alpha_{2,1}$ $\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \theta + N \sin \Delta \theta) \sin \alpha_{2,1}}{(1 - \Omega M)} + \frac{1 + (3 \times 10^{-8})}{\sin \alpha_{2,1}} = \frac{-90416831}{(1 - \Omega M)}$ cos 0, cos Δo - sin 0, sin Δo cos a1. 11 13.620 H = c1(1 - c1) Do - c1c2 sin Do cos So _003765803 (rad) H ax = 07-11/06 00 00.005 CHECK $M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1,2} = \cos \theta_2 \sin (180 + \alpha_{2,1})$

Figure 4. Direct computation—second online in f.

INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 ; ϕ_2 , λ_2 to find S, α_{1-2} , α_{2-1} . Azimuths clockwise from north; east longitudes positive; no tables except 8-place natural trigonometric (Peters); no root extraction.

```
1. INITIAL
                                                                                                                               2 TERMINUS
                                                                                                                                                                                                                                                         λ, 106
 ø, 45
                                                                                                                                                                                                                                                              \Delta \lambda = \lambda_2 - \lambda_1 - 106
 tan o. .3639 7023
                                                                                                                            1, always west of 2.
                                                                                                                                                                                                                                                             \Delta \lambda_{\rm m} = \frac{1}{2} \Delta \lambda - \frac{53}{2}
                                                                                                                                        \tan \theta = (i - f) \tan \phi
02 44 54 12.168
                                                                                                                                        tan θ, . 99663300 sin Δλm . 7986355/
 v, 19 56 16.706
                                                                                                                                        tan θ<sub>1</sub> _3627 4475 tan Δλ _3.4874/44
 \theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2) 32 25 14.437 \sin \theta_{\rm m} .536/3/46 \cos \theta_{\rm m} .844/3450
 \Delta\theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1)/2 + \frac{2857.73}{12} \sin \Delta\theta_{\rm m} - \frac{216/4487}{12} \cos \Delta\theta_{\rm m} - \frac{97636130}{12}
H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \Delta \theta_m \cdot 665844445i - L _ .5285 9337
 L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m - 47/4 0663 cos d = 1 - 2L + .057/8674
 U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) \frac{1.036745079}{1.950} d \frac{86}{43} \frac{43}{17.950}
 V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L_{\frac{14}{123}} \frac{14}{123} \frac{12}{12} \frac{12}{12} \frac{14}{123} \frac{12}{12} \frac{14}{123} \frac{14
 X = U + V / (17798/1/75) T = d/\sin d (15/6) 0594053 E = 2 \cos d (1/4) 37348
 Y=U-V. 8955084070 D=4T29,193744487 B=2D 18.38748896
 A = DE 1.05/52055/ C = T - ½ (A - E) 1.04748586 CHECK C - ½ E + AD/B = T
 n_1 = X(A + CX) 2.6923.04325 n_2 = Y(B + EY) 16.55787107 n_3 = DXY 9.698407923
 \delta_1 d = \frac{1}{4} f(TX - Y) - \frac{000749479}{1000749479} \qquad \delta_2 d = (f^2/64)(n_1 - n_2 + n_3) - \frac{738 \times 10^{-6}}{1000749479}
S_1 = a \sin d \left( T - \delta_1 d \right) \frac{9649417.494}{m} \quad m \quad S_2 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_3 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \sin d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \cos d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \cos d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \cos d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \cos d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \cos d \left( T - \delta_1 d + \delta_2 d \right) \frac{9649412.793}{m} \quad m \quad S_4 = a \cos d 
 F = 2Y - E (4 - X) /- 468 2 5 2 7 M = 32T - (20 T - A) X - (B + 4) Y - 6.0/340099
 G = 1/2fT + (f2/64) M. 00 255/2737
                                                                                                                                                                                  Q = -(FG \tan \Delta \lambda)/4 + 1/(13.625)
 \Delta \lambda_{\rm m}' = \frac{1}{2} (\Delta \lambda + Q) 53 05 36.8/3
                                                                                                                                                                                                    tan Δλm 1. 3315 4317
 v = arctan |c2| _ 53 49 35.7/7
                                                                                                                                                                                                   c_2 = \cos \Delta\theta_m / (\sin \theta_m \tan \Delta\lambda_m') + 1.36765794
u = arctan |c<sub>1</sub>| 10 53
                                                                                                                                                                                                    c_1 = -\sin \Delta\theta_m/(\cos \theta_m \tan \Delta\lambda_m') - \frac{19229656}{2}
                                                                                                                           30.034
                                                                                                                                                                                                    a2 = v + u 64 42 41.400
 a = v - u 42
                                                                                                                                                                                                    360 - \alpha_2 295 17 18.600
                                                                                                                                                                                                    360 - \alpha_1
                                       180 - 2<sub>2</sub> ______
                                                                                                                                                                                                    180 + \alpha_2 ___
```

Figure 5. Inverse computation-second order in f.

DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 , α_{1-2} , S to find ϕ_2 , λ_2 , α_{2-1} . East longitudes positive; azimuths clockwise from north; no root extraction; only 8-place trigonometric natural tables (as Peters) required for desk work.

INTERNATIONAL SPHEROID a 6378388 m f .003367 003367

1-1-9966329966 1 radian = 206264.8062 seconds TO TERMINUS $\tan \phi_1 = 3639 7023 \quad \tan \theta_1 = (1 - f) \tan \phi_1 = 3627 4474$ α_{1-2} 42 56 30.035 $\sin \theta_{1}$.34/0 0267 $\cos \theta_{1}$.9400 6233 θ_{1} 19 56 16.706 $\sin \alpha_{1,2}$.68/2 5353 M = $\cos \theta_0 = \cos \theta_1 \sin \alpha_{1,2}$.6404 2078 θ_0 50 10 36.468 $\cos \alpha_{1-2}$ -7320 4755 N = $\cos \theta_1 \cos \alpha_{1-2}$ -688/7033 $\sin \theta_0$ -7680 2423 $D = (4 - c_1)(1 - c_2 - c_1)M - 99762603$ c1 = IM _2/56299x10-2 P=c2 (1+1/29/M)/D=62/D 497698x10-3 $c_2 = \frac{1}{4}(1 - M^2)f + \frac{4965162 \times 10^{-3}}{2}$ $\cos \sigma_1 = \sin \theta_1 / \sin \theta_0 - 44399989 = \sigma_1 - 63 38 26.27/$ d=S/aD /.5/64/2936 / (rad) d 86 53 06.008 S 964 94/2.912 m $u = 2(\sigma_1 - d) - \frac{46}{19} = \frac{19.474}{19.474} \sin u - \frac{1}{2} - \frac{19.474}{19.474} \sin u$ sin d . 9985 2248 cos d _0543 4019 W=1-2P cos u _999314673 cos u + .6884 9708 $V = \cos u \cos d - \sin u \sin d - \frac{16}{5806/7} Y = 2PVW \sin d$.000 156 435 sin Δo . 9984 8/09 cos Δo . 0550 9549 Δo 86 50 29.982 $\Sigma \sigma = 2\sigma_1 - \Delta \sigma$ $\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma) - 2.1/66.0624$ α_{2-1} $\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{\sin \alpha_{2-1}} \frac{.99999835}{\sin \alpha_{2-1}} \sin \alpha_{2-1}$ sin Δσ sin α_{i-2} -3.4448816 Dn $\tan \Delta \eta = \frac{1}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1-2}}$ $H = c_1(1 - \sqrt{100}) \Delta \sigma - c_1 c_2 \sin \Delta \sigma \cos \Sigma \sigma = c_1 \Delta \sigma \cos \Delta \sigma \cos \Delta \sigma = c_1 \Delta \sigma \cos \Delta \sigma \phi \cos \Delta \sigma \phi \cos \Delta \sigma \phi \cos \Delta$ $\Delta \lambda = \Delta \eta - H / O G 00.011$ CHECK $M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_2 \sin (180 + \alpha_{2-1})$

Figure 6. Direct computation-first order in f.

INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 ; ϕ_2 , λ_2 to find S, α_{1-2} , α_{2-1} . Azimuths clockwise from north; east longitudes positive; no tables except 8-place natural trigonometric (Peters); no root extraction.

INTERNATIONAL SP	HEROID a 63	<i>78388</i> m	b 6356	911.94	15 m
1-f=b/a 9966379966					
f ² /64			106264.8062 seco		
φ ₁ 2 0 0 0 1.	INITIAL		λ ₁	Ó	0
	TERMI	NUS	λ, 106		
	always west of 2.		$\Delta \lambda = \lambda_2 - \lambda_1 \mathcal{L}$	06	
,	$\tan \theta = (1 - f) \tan \theta$	η <i>φ</i>	$\Delta \lambda_{\rm m} = \frac{1}{2} \Delta \lambda$	53	
B // // //	tan θ ₂ _ 996	6 3300	sin Δλ _m _ 792	36 355	/
	tan θ ₁	7 4475	tan Δλ	487419	14
$\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2)$	sin θ _m .536	13146	$\cos \theta_{\rm m}$. 84	14/ 343	50
$\Delta\theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1)$	sin Δθ _m _ 2/6	1 4487	$\cos \Delta \theta_{\rm m}$. 97	63 61	<i>20</i>
$H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \Delta \theta_m$	m.6658 444	51 - L 5	285 933	_	
$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m - 47/4 $			+.0571	8674	
$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) / \Omega 36$	_	Ü	43 17.	_	
$V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L 14/2366$	72 sin d _998	73 6350	d (rad) /5	135 78	3741
X=U+V/./7798//75 T					
Y=U-V .895508407 D	\ .	·	B = 2D	X	
A = DE C :	•	X	CHECK C - ½	F + AD/R =	т
$n_1 = X (A + CX) n_2$		~			•
$\delta_1 d = \frac{1}{4} f(TX - Y)$. 000 749	. ^	$\delta_2 d = (f^2/64)(n_1)$		\ \ .	
$S_1 = a \sin d (T - \delta_1 d) - 9649417$		$S_2 = a \sin d (T - a)$		•	m
F = 2Y - E (4 - X) 1.468 25 2		M = 32T - (20 T)			
G = 1/2fT + (f2/3/4) M .002552:		$Q = -(FG \tan \Delta)$	9	•	13.90L
$\Delta \lambda_{\mathbf{m}}' = \frac{1}{2} (\Delta \lambda + \mathbf{Q}) \underline{53} \underline{05} \underline{36}$	<i>7</i> 4	$\tan \Delta \lambda_{m}^{\prime} $		•	
v = arctan c ₂ 53 49 35) <i>4</i>	$c_2 = \cos \Delta\theta_{\rm m}/(\sin\theta_{\rm m})$			5600
$u = \arctan c_1 10.53.05$		$c_* = -\sin \Delta \theta_{**} / (c_*)$	os θ_{-} tan $\Delta \lambda_{-}^{\prime} \lambda_{-}^{\prime}$	/927	29628
$\alpha_1 = v - u $ $\frac{y^2}{2}$ $\frac{5}{6}$ $\frac{29}{2}$.	<u>95 /</u>	$\alpha_2 = v + u \underline{\qquad \qquad }$	4 42	41.20	5-
		0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.95/	$\frac{\alpha_{2-1}}{360 - \alpha_{2}}$	- 17	18.795	-
+ + \alpha_2	-	360 - α1			_
180 - α ₂		180 + α ₁			_
+ - 180 - α ₁		180 + α ₂		·····	-

Figure 7. Inverse solution-first order in f.

DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 , α_{1-2} , S to find ϕ_2 , λ_2 , α_{2-1} . East longitudes positive; azimuths clockwise from north; no root extraction; only 8-place trigonometric natural tables (as Peters) required for desk work.

SPHERE	SPHEROID a=16	<i>63808925</i> m f.	0		
1 - f		1 radian = 20626	64.8062 se c	on d s	
LINE INITIAL		TO TER	MINU	5	
	$\tan \phi_1 = X$	$\tan \theta_1 = ($		•	X
$\sin \alpha_{1-2}$. 68/2 535 3			_		
$\cos \alpha_{1-2}$.732.0 475.5 $c_1 = fM$		$D = (1 - c_2)(1 - c_2)$		\ \ \	
$c_1 = \frac{1}{1}$ $c_2 = \frac{1}{1}(1 - M^2)f$		$P = c_2 (1 + \frac{1}{2}c_1 M)/I$		X	
$\cos \sigma_1 = \sin \theta_1 / \sin \theta_0$			c 944	9412	.912 m
sin d		X sii			
cos d W : V = cos u cos d - sin u sin d	= 1 - 2P cos u		os u	<u>X</u>	
$X = c_2^2 \sin d \cos d (2V^2 - 1)$	Χ	$\Delta \sigma = d + X - Y$		χ.,	(rad)
sin 24.9982 85.75	cos 2 . 0585		=d 86	38° X	40.742
$\cos \Sigma \sigma$ \times $\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma)$	-2./255	$\Sigma \sigma = 2\sigma_1 - \Delta \sigma$ $9/37 \qquad \alpha_{2-1}$	295	11	41.935
$\tan \phi_2 = \frac{-\left(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma\right) s}{\left(1 - f\right)M}$	in α ₂₋₁ + . 998	96073 sin a2-1	90	2486	6 14/
$\tan \Delta y = \frac{\sin \Delta \sigma \sin \alpha_{1,2}}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma}$	-3.488	φ ₂ 5659 Δη	44	<u>58</u> 'X	/2.238
$H = c_1(1 - c_2) \Delta \sigma - c_1c_2 \sin \Delta \sigma \cos \Sigma \sigma$		(rad) H	e a phosphagagaid before a posterilipor e	X_	
		Δλ - کابرد کا	H 105	59	9/.96/
CHECK			•	,	"
$M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_2$	$\sin(180 + \alpha_{2-1})$	$\lambda_2 = \lambda_1 + \Delta$	λ <u>105</u>	59	41.961

Figure 8. Direct Computation-spherical.

INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 ; ϕ_2 , λ_2 to find S, α_{1-2} , α_{2-1} . Azimuths clockwise from north; east longitudes positive; no tables except 8-place natural trigonometric (Peters); no root extraction.

SPHERE	SPHEROLD at 6 380897	Im b X m
1 - f = b/a		
f²/64X	1 rad	ian = 206264.8062 seconds
\$1 20 0 Ö	1. /NITIAL	λ, σ σ Θ
φ ₂ 45 0 0	2. TERMINUS	λ ₂ //6
· 🗸	1. always west of 2.	$\Delta \lambda = \lambda_2 - \lambda_1 / 06$
tan ϕ_2	$ \tan \theta = (1 - f) \tan \phi $	$\Delta \lambda_m = \frac{1}{2} \Delta \lambda$ \mathcal{S} \mathcal{S}
θ ₂	tan θ ₂	- 4 44.4
θ,	tan θ_1	
$\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2)$	sin θ _m	/ cos θ _m _ 84339/45
$\Delta\theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1) / 2 = \frac{30}{2}$	sin \(\delta_m \) 2/64396	/_ cos \Delta m _ 9762960 /
$H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \frac{1}{2} \cos^$		X
$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m = 4/2$	06 5304 cos d = 1 -	21 -0586 9393
$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) $	<u> </u>	6 38 06.545
	_	d (rad) /5/206864
	T = d/sin d	• • • • • • • • • • • • • • • • • • • •
	D = 4T ² X	
	▲	CHECK C - ½ E + AD/B = T
_	$= n_2 = Y(B + EY) $	
$\delta_1 d = \%f(TX - Y) $		64)(n ₁ - n ₂ + n ₃)
S: = 1 1 (2=8.d) 2 dl. 91		$\frac{1}{1}\left(T-\delta_{1}d+\delta_{2}d\right) \underline{\hspace{1cm}} m$
F = 2Y - E (4 - X)X		(20 T - A) X - (B + 4) Y X
G = 1/2 (f ² /64) MX		tan Δλ)/4
$\Delta \lambda_{m}^{\prime} = \frac{1}{2} (\Delta \lambda + Q) \int \frac{1}{2} \frac{1}{2} dx$	**	ten Alm 1. 32704482
v = arctan c ₂ 53 5/		$\theta_{\rm m}/(\sin\theta_{\rm m}\tan\Delta\lambda_{\rm m}^2) + 1.36923943$
u = arctan c. 10 54	42.068 C. B. Sin A	$\theta_m/(\cos\theta_m \tan\Delta\lambda_m) = \sqrt{933.8463}$
a ₁ = v - u 42 5-4	47.205 a, = v+u	i4 42 11.341
- + a ₁ 42 5	54 47.205 360 - a2 _	295 11 48.659
+ + 0;		
180 - a ₁		
+ - 180 - a ₁	180 + a ₁	

Figure 9. Inverse computation—spherical

Table 1 gives a comparison of the given line elements, the control computation, second order, first orders, and spherical computations. See Appendix 3 for more examples or direct and inverse solutions for several line lengths and in several azimuths. Also see the evaluation and comparison in Appendix 1.

NOTE: Appendix 4 gives the Fortran statements for the inverse solution as presented here. The card deck including the arctangent library function (ATAN2) is available.

DISCUSSION OF PROBLEMS INVOLVING LONG GEODETIC LINES, LOCAL COORDINATE SYSTEMS, AND ASSOCIATED CROMETRY

General Remarks.

If we wish to compute reference lines connecting islands, continents, shoals in ocean areas, there are several alternatives available depending on the purpose for which the reference is needed and the accuracy required. Direct scaling from a large accurate globe may be used. If a mean spherical representation of the reference ellipsoid can be tolerated, then a plot of computed great circle intervals on an authalic (equal area), autogonal (true angles about points), or aphylactic (neither authalic nor autogonal) projection may suffice. Within a radius of 10 n.m. of a station, simple plane coordinates, appropriately scaled, will be adequate for most geodetic work, and small relative errors will be incurred as far as 100 n.m. See Table 14, Appendix 2, for errors in distance from the origin associated with plane coordinates involving several types of geometric projection. Also included there is a discussion of plane coordinates. See also reference [9].

For track line reference, the azimuthal equidistant or doubly equidistant projection may be useful, although both are aphylactic. Appendix 2 has a discussion of the doubly equidistant projection with its equations. The Department of Scientific and Industrial Research, New Zealand, has found the azimuthal equidistant projections useful in their South Pacific studies, see reference [34].

		•			l •),	•	S(meters)	•	a,	a .	[•	a _a .	1
Given, Reference [4]		45			106			9649412.505	42	56	30.035	295	17	18.600
Coetrol	Cartes				106	00	00.009	,917				 		
Direct	4	45	60	00.003	1		00.005		 			1		.601
laverse	L ₃				l			.793	l		.034			.400
Direct	ſ	44	59	59.830	 		.011					j 1		.960
lavers	ſ				1			17,494			29,951			.795
Direct (sphere)	0	44	58	12.238	105	59	41.961					1	11	41.935
lavers (sphere)	0				1			9648335.0		54	47.205	1	11	48.659

Table 1. Comparison of direct and inverse deals comparatives.

The diagonal (skew, oblique) Mercator (cylindrical) projection, is often useful, since the base line (the track) is one of the reference axes for rectangular coordinates, the scale may be held true along the base line or along two parallels symmetric to the base line, and the projection is autogonal. A mathematical development is given in reference [16]. General tables exist to provide coverage for route charting, see reference [33].

For detail and greater accuracy in local area survey: connected with a base line, rectangular spherical coordinates may be more convenient, particularly for point to point computation away from the base line. The formulas for this kind of computation are included in Appendix 2. Appendix 2 also includes transformations from local rectangular spherical coordinates to space rectangular at a point of the ellipsoid referred to the normal, great normal section tangent, and meridional tangent, and this system in turn referred to the rectangular system at ellipsoid center, with the axis of rotation a coordinate axis. These may be useful relative to the adoption of the World Geodetic Reference System, 1967, see Appendix 2.

For oceanographic surveys, the positioning problem may not be essentially different from the navigation track plot. The gnomonic linear plot, with projection center on the track, gives the geographical coordinates of the great circle which can then be transferred to any suitable projection, the resulting curve being the great circle track. Distances may then be scaled from the map or chart, azimuths or bearings measured directly, if the map is autogonal, etc. Where accuracy requirements are not high, the possibility of using existing maps and charts should be considered since U. S. Government agencies such as AMS, GIMRADA, ACIS, C&GS, USGS, NAVOCEANO; the National Geographic Society; the State governments; mapping and charting agencies of other countries, collectively publish large numbers of maps, charts and grids on various projections and at several scales. Direct scaling from a large globe may suffice.

For world reference, positions may be expressed in terms of the *Universal Transverse Mercator* coordinate system, reference [35]. See also an extensive study of world plane coordinate reference systems and recommendations as given in reference [36]. Positions may also be referenced in rectangular coordinates at ellipsoid center, see Appendix 2.

Long scheroidal predesics—partitioning.

If the end points are in triangulation nets on different spheroids, one station can be transferred to the ellipsoid of the other or both can be transferred to a third. The equations as used in the NASA tracking system will be found in reference [37]. See also references [9] and [38].

With the end point coordinates on the same ellipsoid, an inverse computation will give the distance and azimuths. This may be done by use of a form such as Figure 5. The distance is partitioned according to a preplot of the base line on a globe, into stations to fit islands, shoul areas, etc. Beginning with the first distance and forward azimuth of the base line, the coordinates of the first station and back azimuth are computed by a direct solution using the form of Figure 4. For best accuracy use the order f⁴ computation, keep the initial azimuth and position but increase the distance incrementally as partitioned until the terminal point is reached. The deak computing could be formidable if the line is very long and the stations numerous. Use of a large scale computer is then indicated if available.

Alternatively one may compute from station to station along the base line, but this requires additional computation, even if first order in f suffices, since all input elements change for each succeeding computation.

Spherical case.

A method of computing stations along a great circle and parallels to the great circle simultaneously is given in reference [18]. Alternatively the forms as given in Figures 8 and 9, can be used. See also reference [39]. The best spherical radius to use is probably the ellipsoidal mean radius computed for the mean latitude of the base line terminals, see Appendix 2, equation (12).

Problems in local geometry.

Problem. To compute the geographic coordinates of a point at distance S from a base line station and at angle a with the base line. The geographic coordinates ϕ_i , λ_i , and azimuth a_i at the particular station are known, which with given S and a, provide the input ϕ_i , λ_i , $a_i + a$, S for a direct solution from the form as shown in Figures 4, 6 or 8, depending on the magnitude of S and accuracy required. For a point at distance S on the perpendicular to the base line, $a = 90^\circ$. If S is constant and $a = 90^\circ$ at each base station, the direct computation at each station provides points on a parallel at a given distance S from the geodetic base line (this geodesic parallel is not itself a geodesic). If the base line is a great circle, a circle parallel to it is generated. If geographic coordinates along a partitioned spherical base line with corresponding coordinates along two symmetric parallels are required, the method as given in reference [18] may be used.

Problem. Given the geographic coordinates $Q_1(\phi_1, \lambda_1)$, $Q_2(\phi_2, \lambda_2)$ of two stations of a spherical base line, to find the perpendicular distance s from an arbitrary third point $p(\phi_k, \lambda_k)$ to the base line,

From equations (3) and (4), page (23), reference [18] solve for ϕ_0 , λ_0 :

```
\tan \lambda_0 = (\tan \phi_2 \cos \lambda_1 + \tan \phi_1 \cos \lambda_2)/(\tan \phi_1 \sin \lambda_2 - \tan \phi_2 \sin \lambda_1)

\cot \phi_0 = \cot \phi_1 \cos (\lambda_0 - \lambda_1) = \cot \phi_2 \cos (\lambda_0 - \lambda_2).
```

From the two figures, page (27) of reference [18], using the spherical formula $\cos a = \cos b \cos c + \sin b - \sin c \cos A$, with a = s, find

```
\sin s = \pm \left[ \sin \phi_k \cos \phi_0 - \cos \phi_k \sin \phi_0 \cos (\lambda_0 - \lambda_k) \right]
```

where the + sign corresponds to k = p, the - sign to k = p', relative to the points $p(\phi_p, \lambda_p)$, $p'(\phi_p', \lambda_p')$ respectively as shown in Figure 3, page 26, reference [18].

Note also the solution in Appendix 2 following equations (47), with reference to the distance s of Figure 34. Additionally $s \rightarrow y$ -coordinate of the doubly-equidistant projection, see the discussion following equations (56), Appendix 2.

Problem. An observer at the known station $Q(\phi_0, \lambda_0)$; h_0 meters above the spherical surface (assumed sea level), Figure 31, measures a linear distance D to S_0 (target on a hill, island mountain peak, etc.) at a measured angle of elevation δ , and in measured or known azimuth α . If the spheroid at Q is approximated with a sphere of radius N_0 (the great normal length for ϕ_0 , equation 11, Appendix 2) find the rectangular space coordinates of S_0 referred to the normal and tangents to the parallel and meridian at Q, the geographic

coordinates of the normal projection P of S₀ upon the sphere, the spherical distance d = PQ and the height h of S₀ above the sphere (sea level). We have a, D, N_0 , δ , ϕ_0 , λ_0 , h_0 , to find X, Y, Z, h, d, ϕ , λ . From Figure 31, and some trigonometric identities we have $D_2 = D\cos\delta$, $X = D_2\cos\alpha$, $Y = D_2\sin\alpha$, $Z = h_0 + D\sin\delta$, $\tan\tau = D_2/(N_0 + Z)$, $d = N_0\tau$ (radians), $h = (N_0 + Z)\sec\tau - N_0$, $h = D_2\csc\tau - N_0$, $\sin\phi = \cos d\sin\phi_0 + \sin d\cos\phi_0\cos\alpha$, $\cot\Delta\lambda = (\cos\phi_0\cos d - \sin\phi_0\sin d\cos\alpha)/\sin d\sin\alpha$, $\lambda = \lambda_0 - \Delta\lambda$.

These problems illustrate the use of the geodetic line computing forms, and the formulae of Appendix 2, for solving local problems of computation for a station configuration. For very long base lines, it may be desirable to compute the positions of the stations along them very accurately, but in the vicinity of a particular station, a spherical approximation or plane coordinate configuration may suffice. Additional formulae such as for dip; maximum separation, chord-arc; geographic coordinates of point of maximum separation, etc. will be found in reference [18]. Other coordinate problems are discussed in Appendix 2. For uniform high accuracy over a considerable extent of the spheroid, a plane rectangular coordinate system based on one of the autogonal projections as used for geodesy may be more appropriate, see references [9], [16], [36].

NIBLIOGRAPHY

- [1] Bessel, F.W. Über die Berechnungen der geographischen längen an 3 Breiten aus geodätischen vermessungen: Astronomische Nachrichten No. 86 (1825), Vol. 4,
- [2] Clarke, A.R. Geodesy, Oxford, 1880, Chapter VI; Helmert, F.R. Die mathematischen and physikalischen Theorian der höheren geodäsie, Leipzig, 1880, Vol. 1, ch. 5.
- [3] Bodemuller, H. Die geodätischen Linien des Rotations-ellipsoides and die Losung der geodatischen Hauptaufgaben für grosse Strecken unter besonderer Berucksichtigung der Bessel-Helmertschen Losungs-methode; Deutsche Geodätische Komission, Reihe B: Angewandte Geodäsie-Heft, Nr. 13, 1954.
- [4] Sodano, E.M. General Non-iterative solution of the Inverse and Direct Geodetic Problems, USAEGIMRADA Research Note No. 11, April 1963.
- [5] Robbins, A.R. Long Lines on the Spheroid, Survey Review, Vol. XVI, No. 125, 1963. Also, length and azimuths of long lines on the Earth, Empire Survey Review, Vol. XI, No. 84, 1952.
- [6] Tobey, W.M. Geodesy, Geodetic Survey of Canada Publication No. 11, 1928. Note on page 24, that if we replace D, N, I, m with their functions of latitude and azimuth, the expression for the difference in length of the normal section and the geodesic may be written:

 $S_n - S = (b^4 S^5 \sin^2 a \cos^2 a \cos^4 \phi/90)e^4 + F(b, S, a, \phi)e^4 + \dots$ which is the 4th order in the eccentricity, e.

- [7] Ward, L.E. Geodesics and Plane Arcs on an Oblate Spheroid, American Mathematical Monthly, Aug. Sept. 1943. Note that the separate expansions for the geodesic and the great elliptic arc in the same parameters, as found on pages 426 and 428 respectively, are identical to terms in e⁴.
- [8] Thomas, P.D. Inverse computation for long lines, transactions American Geophysical Union, Vol. 29, No. 6, 1948. Note—this form, based largely on Ward's work, uses the great elliptic arc for distance and the normal section azimuths.

- [9] Bomford, G. Geodesy, Sound Edition, Clarendon Press, 1962.
- [10] Rainsford, H.F. Long Lines on the Earth, Various Formulae, Empire Survey Review, Vol. X, No. 71, Vol. X, No. 72, 1949; Long Geodesics on the Ellipsoid, Bullstin Geodesique, No. 37, Sept. 1955.
 Rainsford, H.F.; Brazier, H.H. Long Lines on the Earth, A new and easier solution, Survey Conference of 1951; Rainsford, H.F., et al, Long Lines on the Earth, Photogrammetria, No. 3, 1950-1951.
- [11] Cole, J.H. Computation of Distances for Long Arcs, Empire Survey Review, Vol. No. 59, 1946; Vol. No. 83, 1952; Vol. No. 84, 1952.
- [12] Andersen, E. Practical formulas for accurate calculations by relative long distances, of geographical coordinates or distances and azimuths on the International Ellipsoid of Rotation, Memorial Institute of Geodesy, Denmark, Vol. 16, No. 3, 1953.
- [13] McCaw, G.T. Long Lines on the Earth, Empire Survey Review, Vol. 1, Vol. 11.
- [14] Dufour, H.M. Resolutions Practiques du Problem des Grandes Géodésiques par l'Emploi d'Une Sphere Auxilliare, Institute Geographique National, Paris, 1956; Calcul Electronic des Grandes Géodésiques Realize par l'Institute Geographique National.
- [15] Jordan, Vermessungskunde, Vol. 3, p. 371, 1890.
- [16] Thomas, P.D. Conformal projections in geodesy and cartography, C&GS Special Publication No. 251, 1952, pages 63-66.
- [17] Lambert, W.D. The distance between two widely separated points on the surface of the earth, Journal of the Washington Academy of Sciences, Vol. 32, No. 5, 1942.
- [18] Thomas, P.D. Mathematical models for navigation systems, U. S. Naval Oceanographic Office TR-182, October 1965.
- [19] Chauvenet, W. A treatise on plane and spherical trigonometry, 9th Edition, Philadelphia, J.P. Lippincott, 1871, pages 180-181.
- [20] Forsyth, A.R. Geodesics on an oblate spheroid, Messenger of Mathematics, Vol. XXV, 1895.
- [21] Thomas, P.D. Another note on the method of Forsyth. Bulletin Géodésique, No. 76, 1965; Geodesic arc length on the reference ellipsoid to second order terms in the flattening, Journal of Geophysical Research, Vol. 70, No. 14, July 1965.
- [22] U. S. Aeronautical Chart and Information Center (ACIC), Technical Report No. 59, Geodetic distance and azimuth computations for lines under 500 miles, September, 1960; Technical Report No. 80, Geodetic distance and azimuth computations for lines over 500 miles (to 6000 miles), Dec. 1959.
- [23] Gougenheim, André. Note sur la methode de Forsyth, Bulletin Géodésique, No. 15, March 1950.
- [24] Fichot, M.E. Sur les systèmes géodésiques équiliteres à la surface un sphéroide terrestre, annels hydrographiques: 3rd series, 4th Volume, No. 707, 1921, pgs. 99-192; la zone géodésique antipode, 3rd series, 5th Volume, 1937, pgs. 23-76.
- [25] Cayley. On the geodesic lines on an oblate spheroid, the London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. XI.—4th Series, July-December 1870.
- [26] Any of the following give a lucid introduction to elliptic integrals and elliptic functions: Integral Calculus, Byerly, Ginn, 1888, pgs. 215-282; Advanced Calculus, Woods, Ginn, 1934, pgs. 365-382; Modern Analysis, Whittaker and Watson, Cambridge, 1962, pgs. 429-535.

- [27] Carll, L.B. Calculus of Variations, Wiley, 1881, page 182.
- [28] Forsyth, A.R. On conjugate points of geodesics on an oblate spheroid, Messenger of Mathematics, Vol. XXV, 1895.
- [29] Bliss, G.A. Lectures on the calculus of variations, University of Chicago Press, Chicago, 1946.
- [30] Moritz, Helmut. The Geodetic Reference System 1967, Allgen Line Vermessungnachrichten, 1/1968, pp. 2-7.
- [31] Lambert, W.D. The International Gravity Formula, American Journal of Science, Vol. 243-A, Daly Volume 1945.
- [32] Crandall, C.L. Geodesy and Least Squares, John Wiley & Sons, New York, 1907.
- [33] Oblique Mercator Projection Tables, U. S. Department of Commerce, Coast & Geodetic Survey, Washington, D.C. 1951.
- [34] Notes on Azimuths, Distances, and Equidistant Azimuthal Projections in the South Pacific, New Zealand Journal of Science and Technology, Vol. 29, No. 1 (Sec. B), pp. 325-330, 1948.
- [35] Universal Transverse Mercator Grid, Army Map Service Technical Manual No. 19, Washington, D.C. 1948.
- [36] Colvocoresses, A.P. A Unified Plane Coordinate Reference System, Doctoral Dissertation, Ohio State University, 1965.
- [37] Goddard Directory of Tracking Station Locations, Goddard Space Flight Center Report X-554-67-54, Greenbelt, Maryland, August 1966.
- [38] Vincenty, T. Transformation of Geodetic Data between Reference Ellipsoids, Journal of Geophysical Research, Vol. 71, No. 10, May 15, 1966.
- [39] Carver, H.C. Distance and Azimuth Computations (Spherical) with Tables, Engineering Research Institute, University of Michigan, for Air Research and Development Command. 1954.
- [40] Bagratuni, G.V. Course in spheroidal geodesy, Moscow, 1962. (Defense documentation center translation AD 650 520, 1967).
- [41] Fischer, Irene. A Modification of the Mercury Datum, Army Map Service Technical Report No. 67, June 1968.

APPENDIX I. MATHEMATICAL DISCUSSION OF THE SPHEROIDAL GEODESIC

BLANK PAGE

MATHEMATICAL DISCUSSION OF THE SPHEROIDAL GEODESIC

In Figure 10, α is the angle which the differential arc length, ds, makes with the meridian at P_1 . The radius of the parallel in parametric latitude θ is $\arccos\theta$. Then $\arccos\theta$ dh is the differential arc length along the parallel in latitude θ . Now the element of arc length along the meridian is defined as Rd ϕ where R is the radius of curvature in the meridian given by $R = a(1-e^2)/(1-e^2\sin^2\phi)^{3/2}$, see reference [16], page 59. The transformation between geodetic and parametric latitude is $\tan\phi = \tan\theta/(1-e^2)^{1/2}$,

From the differential right triangle PP₁P₂ we have $ds^2 = a^2 \cos^2 \theta \ d\lambda^2 + r^2 d\theta^2$ where $r^2 = a^2(1 - e^2 \cos^2 \theta)$.

Figure 10. Differential arc length on the oblate spheroid as obtained from a differential right triangle.

whence

$$1/(1-e^2\sin^2\phi)^{3/2}=\frac{(1-e^2\cos^2\theta)^{3/2}}{(1-e^2)^{3/2}}, d\phi=(1-e^2)^{1/2}d\theta/(1-e^2\cos^2\theta),$$

and

$$Rd\phi = a(1 - e^2)d\phi/(1 - e^2 \sin^2 \phi)^{3/2} = \frac{a(1 - e^2)(1 - e^2 \cos^2 \theta)^{3/2}}{(1 - e^2)^{3/2}} \frac{(1 - e^2)^{1/2}d\theta}{(1 - e^2 \cos^2 \theta)}$$

or $Rd\phi = rd\theta$, where $r = a(1 - e^2 \cos^2 \theta)^{1/2} = R(1 - e^2)^{1/2}/(1 - e^2 \cos^2 \theta)$.

NOTE that r is not the radius of curvature in the spheroidal meridian, but rd0 is the differential arc length along the meridian in terms of parametric latitude and applying the pythagorean theorem to the right differential triangle P₁P P₂ we have at once the formula for the general differential arc length on the spheroid in terms of parametric latitude:

$$ds^2 = a^2 \left[(1 - e^2 \cos^2 \theta) d\theta^2 + \cos^2 \theta d\lambda^2 \right]. \tag{1}$$

Differential equation from Euler's Condition

We may write (1) as

$$s = \int H d\theta \tag{2}$$

where

$$H = a[1 - e^2 \cos^2 \theta + \cos^2 \theta \lambda'^2]^{1/2}, \lambda' = d\lambda/d\theta.$$

Now along geodesics, the Euler equation $d(\partial H/\partial \lambda')/d\theta - \partial H/\partial \lambda = 0$ must be satisfied.

Since $\partial H/\partial \lambda = 0$, the equation is $d(\partial H/\partial \lambda')/d\theta = 0$, a first integral being then

$$\partial H/\partial \lambda' = c \text{ (constant)}.$$
 (3)

From (2) $\partial H/\partial \lambda' = (a\lambda' \cos^2 \theta)/H$ and this value placed in (3) gives

$$a\lambda' \cos^2 \theta = cH = ac[1 - e^2 \cos^2 \theta + \cos^2 \theta \lambda'^2]^{1/2}$$
 (4)

Solving (4) for λ' and then placing $\lambda' = d\lambda/d\theta$ gives

$$d\lambda = \frac{c}{\cos \theta} \cdot \frac{(1 - e^2 \cos^2 \theta)^{1/2}}{(\cos^2 \theta - c^2)^{1/2}} d\theta.$$
 (5)

From (2), $H = ds/d\theta$ and this value place in (4) gives

$$a \cos^2 \theta \, d\lambda/ds = c$$
, or $a^2 \cos^2 \theta \, d\lambda/ds = ac$. (6)

From the differential right triangle P P₁P₂ of Figure 10

$$\cos(90^{\circ} - a) = a\cos\theta d\lambda/ds = \sin a. \tag{7}$$

The value from (7) placed in (6) gives

$$\cos \theta \sin a = c$$
, or $a \cos \theta \sin a = ac$. (8)

Since a $\cos \theta$ is the radius of the parallel in latitude θ and α is the angle which the geodesic makes with the meridian as shown in Figure 10, equation (8) states that the product of the radius of the parallel and the sine of the azimuth, α , is a constant along the geodesic.

Now the geodesic will be orthogonal to a meridian when $a = 90^{\circ}$, and using this value in (8) we have $c = \cos \theta_0$, where θ_0 is the parametric latitude of the vertex of the geodesic. With this value of c, equation (5) becomes

$$d\lambda = \frac{\cos\theta_0}{\cos\theta} \frac{(1 - e^2 \cos^2\theta)^{1/2}}{(\cos^2\theta - \cos^2\theta_0)^{1/2}} d\theta, \tag{9}$$

where always

$$\cos\theta\sin\alpha = \cos\theta_0. \tag{10}$$

With the differential equation to the geodesics in this form, equation (9), we can make several observations concerning the behavior of the geodesic. The substitution of $\pm \theta$ does not alter the coefficient of $d\theta$, since $\cos \pm \theta = \cos \theta$ and therefore the curve is symmetric about the equatorial plane. When $\theta = \pm \theta_0$, $d\theta = 0$, which means that the geodesic is tangent to the parallels $\theta = \pm \theta_0$ and hence undulates alternately between tangencies to them.

From (10), with $\theta = 0$, we have $\sin a_0 = \cos \theta_0$. That is at a node (a point where the geodesic crosses the equator) the sine of the angle which the geodesic makes with the meridian is equal to the cosine of the parametric latitude of the vertex, or $a_0 = 90 - \theta_0$. (11)

For reference in the developments to follow we include here a short resume of elliptic integrals and functions to be used, [26].

Elliptic Integrals (Legendre Forms) $S = F(k, \sigma) = \int_0^{\sigma} \frac{d\sigma}{(1 - k^2 \sin^2 \sigma)^{1/2}} = \int_0^{\sigma} \frac{d\sigma}{\Delta \sigma}, k < 1$ $E(k, \sigma) = \int_0^{\sigma} (1 - k^2 \sin^2 \sigma)^{1/2} d\sigma = \int_0^{\sigma} \Delta \sigma d\sigma$ 2 (12)

$$\Pi(n, k, \sigma) = \int_0^{\sigma} \frac{d\sigma}{(1 + n \sin^2 \alpha)(1 - k^2 \sin^2 \alpha)^{1/2}} = \int_0^{\sigma} \frac{d\sigma}{\delta \sigma \Delta \sigma}$$

Complete Elliptic Integrals

CLASS

$$K = F(k, \pi/2) = \int_0^{\pi/2} \frac{d\sigma}{(1 - k^2 \sin^2 \sigma)^{1/2}} = \int_0^{\pi/2} \frac{d\sigma}{\Delta \sigma}$$

$$E = E(k, \pi/2) = \int_0^{\pi/2} (1 - k^2 \sin^2 \sigma)^{1/2} d\sigma = \int_0^{\pi/2} \Delta \sigma d\sigma$$
(12)a

Elliptic Functions

In the elliptic integral of the first class, σ is called the amplitude of $S = F(k, \sigma)$ and k < 1 is the modulus. $\sin \sigma$, $\cos \sigma$, $\Delta \sigma$ are called the sine, cosine, delta of the amplitude of S and we have the following:

Definitions (Jacobi)

$$\sigma$$
 = amS, sin σ = snS, cos σ = cnS, tan σ = tnS,
 $\Delta \sigma$ = $(1 - k^2 \sin^2 \sigma)^{1/2}$ = dnS. (13)

Identities

$$sn^2S + cn^2S = dn^2S + k^2sn^2S = 1$$
, $tnS = snS/cnS$,
 $dn^2S - k^2cn^2S = k'^2 = 1 - k^2$, $k < 1$ ($k^2 = c, c' = 1 - c = k'^2$)
 $sn(S' \pm S) = (snS'cnSdnS \pm cnS'snSdnS')/(1 - k^2sn^2S'sn^2S)$,
(13)a

$$E(k, \sigma_1) \pm E(k, \sigma_2) = E(k, \sigma_1 \pm \sigma_2) \pm k^2 \operatorname{sn}\sigma_1 \operatorname{sn}\sigma_2 \operatorname{sn}(\sigma_1 \pm \sigma_2)$$

$$\operatorname{cn}(S + S') = (\operatorname{cn}S' \operatorname{cn}S - \operatorname{sn}S' \operatorname{dn}S' \operatorname{sn}S\operatorname{dn}S)/(1 - \operatorname{csn}^2 S' \operatorname{sn}^2 S)$$

$$E(x_1 + 2K, k) = E(x_1, k) + 2E, E - c'K = 2\operatorname{cc'}dK/\operatorname{dc}$$

$$E(x_1, k) - c'x_1 = c \int_0^{x_1} \operatorname{cn}^2 x \, dx$$
(13)a

Special Values:

$$S = 0, \text{ am}(0) = 0, \text{ cn}(0) = \text{dn}(0) = 1, \text{ sn}(0) = \text{tn}(0) = 0;$$
for $S = K$; $\text{sn}K = 1$, $\text{cn}K = 0$, $\text{dn}K = k' = (1 - k^2)^{1/2}$; (13)b
for $S = 2K$; $\text{sn}2K = \text{sn}(0) = 0$, $\text{cn}(2K) = -\text{cn}(0) = -1$, $\text{dn}(2K) = \text{dn}(0) = 1$;
 $\text{cn}(S + 2K) = -\text{cn}S$.

Differentials:

d amS =
$$d\sigma = (1 - k^2 \sin^2 \sigma)^{V2} dS = dnS dS$$

d snS = $\cos \sigma d \sigma = cnS dnS dS$
d cnS = $-\sin \sigma d \sigma = -snS dnS dS$
d dnS = $d\Delta\sigma = -k^2 \sin \sigma \cos \sigma (1 - k^2 \sin^2 \sigma)^{-V2} d\sigma$ (13)c
= $-k^2 snS cnS (dnS)^{-1} dnS dS$
d dnS = $-k^2 snS cnS dS$
d tnS = $-k^2 snS cnS dS$

Note that the elliptic functions as determined by (13) have an analogy with trigonometric functions but S is not an angle as is clear from its integral definition, (12). Like trigonometric functions they have a real period and like exponential functions have a pure imaginary period and are thus doubly periodic.

If we define $K' = F(k', \pi/2)$ where $k' = (1 - k^2)^{1/2}$, that is K' is the complete integral K of (12)a with the modulus k replaced by k' then the periods of the elliptic functions snS, cnS, dnS are:

where $i = \sqrt{-1}$, $K = F(k, \pi/2)$, $K' = F(k', \pi/2)$, $k' = (1 - k^2)^{1/2}$, k < 1.

Expression of longitude and arc length in elliptic integrals. If we let $\cos \sigma = \cos \theta = \sin \theta / \sin \theta_0$ we have then:

$$1 - e^{2} \cos^{2} \theta = (1 - e^{2} \cos^{2} \theta_{0})(1 - k^{2} \sin^{2} \sigma) = (1 - e^{2} \cos^{2} \theta_{0}) \Delta \sigma^{2}$$

$$\cos^{2} \theta - \cos^{2} \theta_{0} = \sin^{2} \theta_{0} \sin^{2} \sigma$$

$$d\theta^{2} = \sin^{2} \theta_{0} \sin^{2} \sigma d\sigma^{2}/\cos^{2} \theta$$

$$\cos^{2} \theta = 1 - \sin^{2} \theta = 1 - \sin^{2} \theta_{0} \cos^{2} \sigma = \cos^{2} \theta_{0} (1 + n \sin^{2} \sigma) = \delta \sigma \cos^{2} \theta_{0}$$

$$\cos^{2} \sigma = \csc^{2} \theta_{0} \sin^{2} \theta = \csc^{2} \theta_{0} (1 - \cos^{2} \theta)$$

$$= \csc^{2} \theta_{0} - \cot^{2} \theta_{0} (1 + n \sin^{2} \sigma) = \csc^{2} \theta_{0} - \delta \sigma \cot^{2} \theta_{0}$$

$$\sin^{2} \sigma = 1 - \cos^{2} \sigma = -\cot^{2} \theta_{0} + \cot^{2} \theta_{0} (1 + n \sin^{2} \sigma) = -\cot^{2} \theta_{0} (1 - \delta \sigma)$$

$$k^{2} = e^{2} \sin^{2} \theta_{0}/(1 - e^{2} \cos^{2} \theta_{0}), n = \tan^{2} \theta_{0}.$$

Eliminating dh between equations (1) and (9) we have

$$ds = \frac{a(1 - e^2 \cos^2 \theta)^{1/2} \cos \theta}{(\cos^2 \theta - \cos^2 \theta_0)^{1/2}} d\theta$$
 (16)

Applying the transformation equations (15) to (16) and (9) we get

$$S = \frac{ea \sin \theta_0}{k} \cdot \int_0^{\sigma} (1 - k^2 \sin^2 \sigma)^{1/2} d\sigma = \frac{ea \sin \theta_0}{k} \int_0^{\sigma} \Delta \sigma d\sigma,$$

$$\Delta \lambda = \frac{e \tan \theta_0}{k} \int_0^{\sigma} \frac{(1 - k^2 \sin^2 \sigma)^{1/2}}{1 + n \sin^2 \sigma} d\sigma = \frac{e \tan \theta_0}{k} \int_0^{\sigma} \frac{\Delta \sigma}{\delta \sigma} d\sigma.$$
(17)

In the second of (17), multiply numerator and denominator of the integrand by $(1 - k^2 \sin^2 \sigma)^{\nu 2}$ and in the resulting numerator replace $\sin^2 \sigma$ with its value from (15) which then allows the integral to be written in the form

$$\Delta \lambda = (e \tan \theta_0/k) \left[(1 + k^2 \cot^2 \theta_0) \int_0^\sigma \frac{d\sigma}{\delta \sigma \Delta \sigma} - k^2 \cot^2 \theta_0 \int_0^\sigma \frac{d\sigma}{\Delta \sigma} \right]. \tag{18}$$

Now comparing the first integral of (17) and the integrals of (18) with the elliptic integrals (12) we can then write

$$S = \frac{ea \sin \theta_0}{k} E(k, \sigma), \tag{19}$$

$$\Delta \lambda = \frac{e \tan \theta_0}{k} \left[(1 + k^2 \cot^2 \theta_0) \Pi(n, k, \sigma) - k^2 \cot^2 \theta_0 F(k, \sigma) \right],$$

Where the modulus is $k = e \sin \theta_0/(1 - e^2 \cos^2 \theta_0)^{1/2}$; $n = \tan^2 \theta_0$; and the amplitude is $a = arc \cos (\sin \theta/\sin \theta_0)$ or the spherical length from the vertex of the geodesic in parametric latitude θ_0 to a point in parametric latitude θ on the geodesic as shown in Figure 11, $|\theta| \le |\theta_0|$. That is, the formulae (19) give longitude and distance along the geodesic measured from the geodesic vertex in terms of the spherical distance.

The elliptic functions in terms of the amplitude σ and modulus k; σ = arc \cos ($\sin \theta/\sin \theta_0$), $k = e \sin \theta_0/(1 - e^2 \cos^2 \theta_0)^{1/2}$.

From the definitions (13) we have:

cnS =
$$\cos \sigma = \sin \theta / \sin \theta_0$$
; snS = $\sin \sigma = (\sin^2 \theta_0 - \sin^2 \theta)^{1/2} / \sin \theta_0$;
tnS = $\tan \sigma = \text{snS/cnS} = (\sin^2 \theta_0 - \sin^2 \theta)^{1/2} / \sin \theta$;
 $\Delta \sigma = \text{dnS} = (1 - k^2 \sin^2 \sigma)^{1/2} = (1 - e^2 \cos^2 \theta)^{1/2} / (1 - e^2 \cos^2 \theta_0)^{1/2}$;
 $\delta \sigma = 1 + n \sin^2 \sigma = 1 + n \sin^2 S = \sec^2 \theta_0 \cos^2 \theta$, $n = \tan^2 \theta_0$.

Since $\sigma = \arccos(\sin \theta/\sin \theta_0)$, we have the correspondences $\theta = 0$, $\sigma = \pi/2$; $\theta = \theta_0$, $\sigma = 0$. From (13)c, (17) and (19)a, we may write for the geodesic, vertex to vertex or node to node:

$$S_0 = 2a(1 - e^2 \cos^2 \theta_0)^{1/2} \int_0^{\pi/2} dn^2 S dS$$

$$\Delta \lambda_0 = \frac{2(1 - e^2 \cos^2 \theta_0)^{1/2}}{\cos \theta_0} \int_0^{\pi/2} \frac{dn^2 S dS}{1 + n \sin^2 S}$$
(19)6

P is an arbitrary point on the geodesic, P_0 is the geodesic vertex, and σ is the amplitude of the elliptic functions. In the right spherical triangle P_0 PN as shown we have:

 $\sin \theta_0 = \sin \theta_0 \cos \sigma$, $\sigma = \arccos (\sin \theta/\sin \theta_0)$, $\cos \eta = \tan \theta/\tan \theta_0$, $\eta = \arccos (\tan \theta/\tan \theta_0)$, $\tan \sigma = \cos \theta_0 \tan \eta$, $\eta = \arctan (\sec \theta_0 \tan \sigma)$.

Figure 11. The amplitude of elliptic functions expressed as spherical distance from the geodesic vertex to an arbitrary point on the geodesic.

When $\theta = \theta_0 = 0$, we have from (19)a that $1 + n \operatorname{sn}^2 S = \operatorname{dn} S = 1$, and from (19)b,

$$\Delta \lambda_0 = 2(1 - e^2)^{1/2} \int_0^{1/2} ds = \pi (1 - e^2)^{1/2} = \pi b/a,$$

 $S_0 = a\pi(1-e^2)^{1/3} = \pi b$; where a, b are the semimajor, semiminor axes of the spheroid. This shows that an arc of the equator of length πb is a limiting position of spheroidal geodesics and that there are no anti-podal points on nonplanar spheroidal geodesics.

Since the vertex, θ_0 , may be negative and internal or external to a segment S_{1-2} of the geodesic, all alternatives are included from the first of (19) by writing

$$S_{1-2} = \frac{e_0}{k} |\sin \theta_0 [E(k, \sigma_1) \pm E(k, \sigma_2)]|,$$
 (20)

and by use of the addition formula for elliptic integrals of the second class with the same modulus, from (13)s, we may write (20) as

$$S_{1-2} = \frac{\sigma_2}{k} \left| \sin \theta_0 \left\{ E(k, \sigma_1 \pm \sigma_2) \pm k^2 \sin \sigma_1 \sin \sigma_2 \sin \left(\sigma_1 \pm \sigma_2 \right) \right\} \right| \tag{21}$$

where σ_1 = arc cos (sin θ_1 /sin θ_0), σ_2 = arc cos (sin θ_2 /sin θ_0), k= e sin θ_0 /(1 - e² cos² θ_0)^{1/2}.

Similar expressions may be written for the longitude difference from the second of (19).

integration of differential equations

Since many tables of the elliptic integrals exist it would appear that evaluation of expressions like (21) would be simple. But (21) is in terms of θ_0 , the parametric latitude of the vertex of the geodesic, and

not obtainable directly from the geographic coordinates of two given points on the nonplanar geodesic. Interpolation in the tables is not easy. Since the eccentricity and flattening of oblate spheroids, as used for the earth representation, are small, series expansions in them converge rapidly and numerical evaluation is then relatively simple. Now the elliptic integrals themselves can be expanded in series of e or f since the modulus k is a function of e-see equations (19)—but we will first expand the differential equations (9) and (16) in powers of e and of f and integrate term by term. The eccentricity, e, and flattening, f, are connected by the relation $1 - f = (1 - e^2)^{1/2}$, or $e^2 = 2f - f^2$.

From (9) and (16) we write again for reference

$$d\lambda = \frac{\cos\theta_0}{\cos\theta} \frac{(1 - e^2 \cos^2\theta)^{1/2} d\theta}{(\cos^2\theta - \cos^2\theta_0)^{1/2}}$$

$$ds = \frac{a\cos^2\theta}{\cos\theta_0} d\lambda = \frac{a\cos\theta(1 - e^2 \cos^2\theta)^{1/2} d\theta}{(\cos^2\theta - \cos^2\theta_0)^{1/2}}$$
(22)

The expansion by the binomial formula of $(1 - e^2 \cos^2 \theta)^{1/2}$ to sixth order in e is

$$(1 - e^2 \cos^2 \theta)^{1/2} = 1 - (1/2)e^2 \cos^2 \theta - (1/8)e^4 \cos^4 \theta - (1/16)e^6 \cos^6 \theta - \dots$$
 (23)

If we place $e^2 = 2f - f^2$, $e^4 = 4f^2 - 4f^3$, $e^6 = 8f^3$, then

$$(1 - e^2 \cos^2 \theta)^{1/2} = 1 - f \cos^2 \theta + (f^2/2)(\cos^2 \theta - \cos^4 \theta) + (f^3/2)(\cos^4 \theta - \cos^4 \theta) + \dots$$
 (24)

Substituting from (23) and (24), in (22) we find

$$\Delta\lambda = I_1 - (e^2/2)\cos\theta_0 I_2 - (e^4/8)\cos\theta_0 I_3 - (e^4/16)\cos\theta_0 I_4 - ...$$

$$= I_1 - f\cos\theta_0 I_2 + (f^2/2)\cos\theta_0 (I_2 - I_3) + (f^3/2)(I_3 - I_4)\cos\theta_0 + ...$$

$$S = a[I_2 - (e^2/2)I_3 - (e^4/8)I_4 - (e^4/16)I_5 - ...]$$

$$= a[I_2 - fI_3 + (f^2/2)(I_3 - I_4) + (f^3/2)(I_4 - I_5) + ...]$$
(25)

Where

$$I_{1} = \int \frac{\cos \theta_{0}}{\cos \theta} \frac{d\theta}{(\cos^{2}\theta - \cos^{2}\theta_{0})^{1/2}} = \int \frac{\left(\frac{\sec^{2}\theta}{\tan^{2}\theta_{0}}\right)d\theta}{\left(1 - \frac{\tan^{2}\theta}{\tan^{2}\theta_{0}}\right)^{1/2}} = \arcsin\left(\frac{\tan \theta}{\tan \theta_{0}}\right) = \gamma,$$

$$I_{2} = \int \frac{\cos \theta}{(\cos^{2}\theta - \cos^{2}\theta_{0})^{1/2}} = \int \frac{\left(\frac{\cos \theta}{\sin \theta_{0}}\right)d\theta}{\left(1 - \frac{\sin^{2}\theta}{\sin^{2}\theta_{0}}\right)^{1/2}} = \arctan\left(\frac{\sin \theta}{\sin \theta_{0}}\right) = \beta.$$

$$I_{3} = \int \frac{\cos^{3}\theta}{\cos^{2}\theta - \cos^{2}\theta_{0}} = \int \frac{(1 - \sin^{2}\theta)\cos \theta}{(\sin^{2}\theta_{0} - \sin^{2}\theta)^{1/2}} = \int \frac{(1 - x^{2})dx}{(c^{2} - x^{2})^{1/2}}$$

$$I_{4} = \int \frac{\cos^{3}\theta}{(\cos^{2}\theta - \cos^{2}\theta_{0})^{1/2}} = \int \frac{(1 - \sin^{2}\theta)^{2}\cos \theta}{(\sin^{2}\theta_{0} - \sin^{2}\theta)^{1/2}} = \int \frac{(1 - x^{2})^{2}dx}{(c^{2} - x^{2})^{1/2}}$$

$$I_{5} = \int \frac{\cos^{3}\theta}{(\cos^{3}\theta - \cos^{2}\theta_{0})^{1/2}} = \int \frac{(1 - \sin^{2}\theta)^{2}\cos \theta}{(\sin^{2}\theta_{0} - \sin^{2}\theta)^{1/2}} = \int \frac{(1 - x^{2})^{2}dx}{(c^{2} - x^{2})^{1/2}}$$

$$I_{5} = \int \frac{\cos^{3}\theta}{(\cos^{3}\theta - \cos^{3}\theta_{0})^{1/2}} = \int \frac{(1 - \sin^{2}\theta)^{2}\cos \theta}{(\sin^{2}\theta_{0} - \sin^{2}\theta)^{1/2}} = \int \frac{(1 - x^{2})^{2}dx}{(c^{2} - x^{2})^{1/2}}$$

$$I_{7} = \int \frac{\cos^{3}\theta}{(\cos^{3}\theta - \cos^{3}\theta_{0})^{1/2}} = \int \frac{(1 - \sin^{2}\theta)^{2}\cos \theta}{(\sin^{2}\theta_{0} - \sin^{2}\theta)^{1/2}} = \int \frac{(1 - x^{2})^{2}dx}{(c^{2} - x^{2})^{1/2}}$$

and where $x = \sin \theta$, $c = \sin \theta_0$.

We let $x = c \sin \beta$ in the three last integrals of (27), whence $dx = c \cos \beta d\beta$, $(c^2 - x^2)^{\nu/2} = c \cos \beta$ and the integrals may be written

$$I_3 = \int (1 - c^2 \sin^2 \beta) d\beta, I_4 = \int (1 - c^2 \sin^2 \beta)^2 d\beta, I_5 = \int (1 - c^2 \sin^2 \beta)^3 d\beta$$
 (28)

where $c = \sin \theta_0$ and β is the integral I_2 of (26).

Now

$$\sin^2 \beta = (1/2)(1 - \cos 2\beta)$$

$$\sin^4 \beta = (1/8)(3 - 4\cos 2\beta + \cos 4\beta)$$

$$\sin^4 \beta = (1/32)(10 - 15\cos 2\beta + 6\cos 4\beta - \cos 6\beta)$$
(29)

By expanding the integrands in equations (28) and using the identities (29) we are able to integrate term by term and we find that the integrals (28) are

$$I_{3} = (1/4)[2(1 + \cos^{2}\theta_{0})\beta + \sin^{2}\theta_{0} \sin 2\beta],$$

$$I_{4} = (1/32)[4(8 \cos^{2}\theta_{0} + 3 \sin^{4}\theta_{0})\beta + 8 \sin^{2}\theta_{0}(1 + \cos^{2}\theta_{0}) \sin 2\beta + \sin^{4}\theta_{0} \sin 4\beta],$$

$$I_{5} = (1/192) \begin{bmatrix} 12(1 + \cos^{2}\theta_{0})(8 \cos^{2}\theta_{0} + 5 \sin^{4}\theta_{0})\beta \\ + 9(16 \cos^{2}\theta_{0} + 5 \sin^{4}\theta_{0}) \sin^{2}\theta_{0} \sin 2\beta \\ + 9(1 + \cos^{2}\theta_{0}) \sin^{4}\theta_{0} \sin 4\beta + \sin^{6}\theta_{0} \sin 6\beta \end{bmatrix},$$

$$\beta = I_{2} = \arcsin\left(\frac{\sin\theta}{\sin\theta}\right).$$
(30)

where

Formulae referred to a node

If we place the values of the integrals l_1 , l_2 , l_3 , l_4 , l_5 from (26) and (30) in (25) we may write in terms of e

$$\Delta\lambda = \gamma - \frac{e^2}{2} \cos \theta_0 \beta - \frac{e^4}{32} \cos \theta_0 [2(1 + \cos^2 \theta_0)\beta + \sin^2 \theta_0 \sin 2\beta]$$

$$- \frac{e^6}{512} \cos \theta_0 \left[4(8 \cos^2 \theta_0 + 3 \sin^4 \theta_0)\beta + 3 \sin^2 \theta_0 (1 + \cos^2 \theta_0) \sin 2\beta \right]$$

$$+ \sin^4 \theta_0 \sin 4\beta$$

$$S/a = \beta - \frac{e^2}{8} \left[2(1 + \cos^2 \theta_0)\beta + \sin^2 \theta_0 \sin 2\beta \right]$$

$$- \frac{e^4}{256} \left[4(8 \cos^2 \theta_0 + 3 \sin^4 \theta_0)\beta + 8 \sin^2 \theta_0 (1 + \cos^2 \theta_0) \sin 2\beta \right]$$

$$+ \sin^4 \theta_0 \sin 4\beta$$

$$- \frac{e^4}{3072} \left[12(1 + \cos^2 \theta_0)(8 \cos^2 \theta_0 + 5 \sin^4 \theta_0)\beta + \sin^2 \theta_0 \sin 2\beta \right]$$

$$+ 9(16 \cos^2 \theta_0 + 5 \sin^4 \theta_0) \sin^2 \theta_0 \sin 2\beta$$

$$+ 9(16 \cos^2 \theta_0 + 5 \sin^4 \theta_0) \sin^2 \theta_0 \sin 2\beta$$

$$+ 9(1 + \cos^2 \theta_0) \sin^4 \theta_0 \sin 4\beta + \sin^4 \theta_0 \sin 6\beta$$

and in terms of f

$$\Delta\lambda = \gamma - f \cos\theta_{\theta}\beta + \frac{f^2}{8}\cos\theta_{\theta} \sin^2\theta_{\theta}(2\beta - \sin2\beta)$$

$$+ \frac{f^3}{64}\cos\theta_{\theta} \sin^2\theta_{\theta}[4(1+3\cos^2\theta_{\theta})\beta - 8\cos^2\theta_{\theta} \sin2\beta - \sin^2\theta_{\theta} \sin4\beta],$$
(32)

$$S/a = \beta - (f/4)[2(1 + \cos^2 \theta_0)\beta + \sin^2 \theta_0 \sin 2\beta]$$

$$+ \frac{f^2}{64} \sin^2 \theta_0 [4(1 + 3\cos^2 \theta_0)\beta - 8\cos^2 \theta_0 \sin 2\beta - \sin^2 \theta_0 \sin 4\beta]$$

$$+ \frac{f^3}{384} \sin^2 \theta_0 \left[12(1 + 2\cos^2 \theta_0 + 5\cos^4 \theta_0)\beta - 3(1 + 3\cos^2 \theta_0)(5\cos^2 \theta_0 - 1)\sin 2\beta - 3(1 + 3\cos^3 \theta_0)\sin^2 \theta_0 \sin 4\beta - \sin^4 \theta_0 \sin 6\beta \right]$$

$$\gamma = \arctan \frac{\tan \theta}{\tan \theta_0} , \beta = \arctan \frac{\sin \theta}{\sin \theta_0} .$$

Limiting cases of integral equations

Where

We first make some preliminary evaluations of equations (32). First we find the values of $\Delta\lambda$, S between $\theta = 0$, $\theta = \theta_0$ or from a node to the first vertex. For $\theta = 0$, $\beta = \gamma =$ arc sin 0 = 0. For $\theta = \theta_0$, $\beta = \gamma =$ arc sin $1 = \pi/2$, and from (32) we have (doubling the result)

$$\Delta\lambda_0 = \pi [1 - f \cos\theta_0 + (f^2/4) \cos\theta_0 \sin^2\theta_0 + (f^3/16) \cos\theta_0 \sin^2\theta_0 (1 + 3 \cos^2\theta_0)],$$

$$S_0 = a\pi [1 - (f/2)(1 + \cos^2\theta_0) + (f^2/16) \sin^2\theta_0 (1 + 3 \cos^2\theta_0) + (f^3/32) \sin^2\theta_0 (1 + 2 \cos^2\theta_0 + 5 \cot^4\theta_0)],$$
(33)

which will subsequently be shown to give all hemispheroidal geodesics, vertex to vertex or node to node; compare (19)b.

The expressions (33) are even functions of θ_0 , $f(-\theta_0) = f(\theta_0)$, which would be expected from the discussion of symmetry following equation (10). Therefore, the expressions (33) give longitude and distance between successive vertices and also between successive nodes.

From the first of equations (33) we have $\pi - \Delta \lambda_0 = \pi f \cos \theta_0 \cdot [1 - (f/4) \sin^2 \theta_0 - (f^2/16) \sin^2 \theta_0 (1 + 3 \cos^2 \theta_0)]$, which shows again that except for the meridian ($\theta_0 = \pi/2$), two consecutive vertices of the geodesic on the oblate spheroid cannot be antipodal (end points of a diameter).

From equations (32) and (33) we have with

$$\theta_0 = 0$$
: $\Delta \lambda_0 = \pi (1 - f) = \pi (1 - e^2)^{1/2} = \pi b/a$
 $S_0 = \pi \pi (1 - f) = \pi b = a \Delta \lambda_0$; (34)
 $\theta_0 = \pi / 2$: $\Delta \lambda_{\pi / 2} = \pi$,
 $S_{\pi / 2} = \pi \pi (1 - f/2 + f^2/16 + f^3/32 + ...)$.

If we take the derivative of S₀ with respect to θ_0 and place equal to zero we obtain $\sin \theta_0 \cos \theta_0 [15 \, f^2 \cos^4 \theta_0 + 6f(2-f) \cos^2 \theta_0 + 16 - 4f - f^2] = 0$.

The discriminant of the quadratic factor in $\cos^2\theta_0$ is $48f^2[2f(1+f)-17] < 0$, since f < 1, hence the only real values are given by $\sin\theta_0 = 0$, $\cos\theta_0 = 0$, or by $\theta_0 = 0$, $\theta_0 = \pi/2$; equations (34) are actually the upper and lower limits to hamispheroidal geodesic length (vertex to next vertex or node to next node.) Along the equator, only the arc πb satisfies the fundamental definition of the geodesic, i.e. the longest hemispheroidal geodesic is the nentimeridian, the shortest is the spherical arc πb . The values of S_0 , $\Delta\lambda_0$ from (33) satisfy the inequalities

$$a\pi(1-f/2+f^2/16+f^3/32) > S_0 > \pi b; \pi > \Delta \lambda_0 > \pi b/a$$
 (35)

If derivatives of the second and third order terms in equations (33) are placed equal to zero, we find that for the Clarke 1866 ellipsoid:

$$\Delta\lambda_0$$
: $\Delta\lambda_0(f^2)$ (max) occurs at $\theta_0 = 54^\circ 44' 08''.197$

$$\Delta\lambda_0(f^3)$$
 (max) occurs at $\theta_0 = 43^\circ 28' 31''$
S₀: $S_0(f^2)$ (max) occurs at $\theta_0 = 54^\circ 44' 05''.197$
S₀(f^3) (max) occurs at $\theta_0 = 43^\circ 23' 31''$
(36)

With the values of θ_0 from (36) placed in (33) we find the maximum contribution of second and third order terms over the Clarke 1866 hemispheroid:

$$\Delta\lambda_0(f^2)(\max.) = 3474.2 \times 10^{-9} \text{ radians} \approx 3.5 \text{ seconds}$$

$$\Delta\lambda_0(f^3)(\max.) = 6.8 \times 10^{-9} \text{ radians} \approx .0012 \text{ seconds}$$

$$S_0(f^2)(\max.) = 19.190 \text{ meters}$$

$$S_0(f^3)(\max.) = .040 \text{ meters}$$
(37)

Formulae referred to a vertex

Now equations (31) and (32) are referred to a node, (equator crossing) of the geodesic.

If we substract, respectively, the equations for longitude and distance in (32) from those of (33), then place $\gamma = (\pi/2) - \eta$, $\sigma = (\pi/2) - \beta$ we have:

$$\Delta\lambda = \eta - \{\cos\theta_0\sigma + (f^2/8)\cos\theta_0\sin^2\theta_0(2\sigma + \sin2\sigma) + (f^3/64)\cos\theta_0\sin^2\theta_0[4(1 + 3\cos^2\theta_0)\sigma + 8\cos^2\theta_0\sin2\sigma - \sin^2\theta_0\sin4\sigma],$$

$$\frac{S}{a} = \sigma - (f/4)[2(1 + \cos^2\theta_0)\sigma - \sin^2\theta_0\sin2\sigma] + (f^2/64)\sin^2\theta_0[4(1 + 3\cos^2\theta_0)\sigma + 8\cos^2\theta_0\sin2\sigma - \sin^2\theta_0\sin4\sigma] + (f^3/384)\sin^2\theta_0[4(1 + 3\cos^2\theta_0)\sigma + 8\cos^2\theta_0\sin2\sigma - \sin^2\theta_0\sin4\sigma] + (f^3/384)\sin^2\theta_0[12(1 + 2\cos^2\theta_0 + 5\cos^4\theta_0)\sigma] + (f^3/384)\sin^2\theta_0[12(1 + 2\cos^2\theta_0 + 5\cos^2\theta_0)\sigma] + (f^3/384)\sin^2\theta_0[12(1 + 3\cos^2\theta_0 + 5\cos^2\theta_0)\sigma] + (f^3/384)\sin^2\theta_0[12(1 + 3\cos^2\theta_0 + 5\cos^2\theta_0)\sigma] + (f^3/384)\cos^2\theta_0[12(1 + 3\cos^2\theta_0 + 5\cos^2\theta_0 + 5\cos^2\theta_0)\sigma] + (f^3/384)\cos^2\theta_0[12(1 + 3\cos^2\theta_0 + 5\cos^2\theta_0 + 5\cos^2\theta_0 + 5\cos^2\theta_0)\sigma] + (f^3/384)\cos^2\theta_0[12(1 + 3\cos^2\theta_0 + 5\cos^2\theta_0 + 5\cos^2\theta_0 + 5\cos^2\theta_0)\sigma] + (f^3/384)\cos^2\theta_0[12(1 + 3\cos^2\theta_0 + 5\cos^2\theta_0 + 5\cos^2\theta_0 + 5\cos^2\theta_0)\sigma] + (f^3/384)\cos^2\theta_0[12(1 + 3\cos^2\theta_0 + 5\cos^2\theta_0 + 5\cos^2\theta_0 + 5\cos^2\theta_0)\sigma] + (f^3/36)\cos^2\theta_0[12(1 + 3\cos^2\theta_0 + 5\cos^2\theta_0 + 5\cos^2\theta_0 + 5\cos^2\theta_0)\sigma] + (f^3/36)\cos^2\theta_0[12(1 + 3\cos^2\theta_0 + 5\cos^2\theta_0 + 5\cos^2\theta_$$

where now $a = \sec \cos(\sin \theta/\sin \theta_0)$, $\eta = \sec \cos(\tan \theta/\tan \theta_0)$, and the formulae (38) give largitude and distance from the vertex of the geodesic to a point on the gradesic in parametric intitude θ , where $\|\theta\| \le \|\theta_0\|$.

Note that η and v are spherical longitude and spherical distance from the geodesic vertex, see figure 11. To show that $\Delta\lambda$ and S of equations (38) are in fact the expansions of equations (19), we write from the first of (17) using the binomial formula,

$$S = \frac{\sin \theta_{0}}{k} \int_{0}^{\sigma} (1 - k^{2} \sin^{2} \sigma)^{1/2} d\sigma$$

$$= \frac{\cos \sin \theta_{0}}{k} \int_{0}^{\sigma} \left[1 - (1/2)k^{2} \sin^{2} \sigma - (1/8)k^{4} \sin^{4} \sigma - (1/16)k^{4} \sin^{6} \sigma \dots \right] d\sigma$$

$$= a \int_{0}^{\sigma} \left[\frac{e \sin \theta_{0}}{k} - (1/2)ek \sin \theta_{0} \sin^{2} \sigma - (1/8)ek^{2} \sin \theta_{0} \sin^{4} \sigma - (1/16)ek^{2} \sin \theta_{0} \sin^{6} \sigma \right] d\sigma$$
(39)

From (15), $k = e \sin \theta_0 / (1 - e^2 \cos^2 \theta_0)^{1/2}$, and

$$(e/k) \sin \theta_0 = (1 - e^2 \cos^2 \theta_0)^{1/2} \approx 1 - (1/2)e^2 \cos^2 \theta_0 - (1/8)e^4 \cos^4 \theta_0 - (1/16)e^4 \cos^6 \theta_0$$
ek sin $\frac{1}{2} = e^2 \sin^2 \theta_0 [1 + (1/2)e^2 \cos^2 \theta_0 + (3/8)e^4 \cos^4 \theta_0]$
(40)

$$ek^3 \sin \theta_0 = e^4 \sin^4 \theta_0 [1 + (3/2)e^2 \cos^2 \theta_0]$$

 $ek^5 \sin \theta_0 = e^6 \sin^6 \theta_0.$

New from (29), with β replaced by σ , we have

$$\int \sin^2 \sigma \, d\sigma = \int (1/2)(1 - \cos 2\sigma) \, d\sigma = (1/4)(2\sigma - \sin 2\sigma)$$

$$\int \sin^4 \sigma \, d\sigma = \int (1/8)(3 - 4\cos 2\sigma + \cos 4\sigma) \, d\sigma = (1/8)[3\sigma - 2\sin 2\sigma + (1/4)\sin 4\sigma]$$

$$\int \sin^6 \sigma \, d\sigma = \int (1/32)(10 - 15\cos 2\sigma + 6\cos 4\sigma - \cos 6\sigma)d\sigma$$

$$= (1/32)[10\sigma - (15/2)\sin 2\sigma + (3/2)\sin 4\sigma - (1/6)\sin 6\sigma]$$
(41)

With the values from (40) and (41) we may evaluate (39) and we have then

$$S/a = \left\{1 - (1/2)e^{2} \cos^{2}\theta_{0} - (1/8)e^{4} \cos^{4}\theta_{0} - (1/16)e^{6} \cos^{6}\theta_{0}\right]\sigma$$

$$- (1/8)e^{2} \sin^{2}\theta_{0}\left[1 + (1/2)e^{2} \cos^{2}\theta_{0} + (3/8)e^{4} \cos^{4}\theta_{0}\right](2\sigma - \sin 2\sigma)$$

$$- (1/64)e^{4} \sin^{4}\theta_{0}\left[1 + (3/2)e^{2} \cos^{2}\theta_{0}\right] \left[3\sigma - 2 \sin 2\sigma + (1/4) \sin 4\sigma\right]$$

$$- (1/512)e^{6} \sin^{6}\theta_{0}\left[10\sigma - (15/2) \sin 2\sigma + (3/2) \sin 4\sigma - (1/6) \sin 6\sigma\right]$$
(42)

Collecting the coefficients of the terms in like powers of e, letting $e^2 = 2f - f^2$, $e^4 = 4f^2 - 4f^3$, $e^6 = 8f^3$, and using some elementary trigonometric identities in the coefficients of the powers of f, we find that equation (42) becomes exactly the second of equations (38).

Similarly from the second of equations (17) we have:

$$\Delta \lambda = \frac{e \tan \theta_0}{k} \int_0^{\sigma} \frac{(1 - k^2 \sin^2 \sigma)^{1/2} d\sigma}{1 + n \sin^2 \sigma} = \frac{e \tan \theta_0}{k} I_1 - (1/2)ek \tan \theta_0 I_2 - (1/8)ek^3 \tan \theta_0 I_3 - (1/16)ek^5 \tan \theta_0 I_4$$
 (43)

Where

$$I_{1} = \int_{0}^{\sigma} \frac{d\sigma}{1 + n \sin^{2} \sigma} = \cos \theta_{0} \arctan (\sec \theta_{0} \tan \sigma) = \cos \theta_{0} \eta, (\sec \text{Figure 11})$$

$$I_{2} = \int_{0}^{\sigma} \frac{\sin^{2} \sigma d\sigma}{1 + n \sin^{2} \sigma} = \cot^{2} \theta_{0} (\sigma - I_{1})$$

$$I_{3} = \int_{0}^{\sigma} \frac{\sin^{4} \sigma d\sigma}{1 + n \sin^{2} \sigma} = \cot^{4} \theta_{0} \{(i/2)(\tan^{2} \theta_{0} - 2)\sigma - (1/4) \tan^{2} \theta_{0} \sin 2\sigma + I_{1}\}$$

$$I_{4} = \int_{0}^{\sigma} \frac{\sin^{6} \sigma d\sigma}{1 + n \sin^{4} \sigma} = \cot^{6} \theta_{0} \{(i/8)(3 : \sin^{4} \theta_{0} - 4 \tan^{2} \theta_{0} + 8)\sigma - I_{1}\}$$

$$+ (i/4) \tan^{2} \theta_{0} (1 - \tan^{2} \theta_{0}) \sin 2\sigma + (i/3) \tan^{4} \theta_{0} \sin 4\sigma$$

Now $k = e \sin \theta_0 / (1 - e^2 \cos^2 \theta_0)^{1/2}$, e $\tan \theta_0 / k = \sec \theta_0 (1 - e^2 \cos^2 \theta_0)^{1/2}$ and expanding by the binomial formula to sixth order terms in e we have

$$\frac{e \tan \theta_0}{k} = \left[\sec \theta_0 - (1/2)e^2 \cos \theta_0 - (1/8)e^2 \cos^2 \theta_0 - (1/16)e^6 \cos^2 \theta_0\right]$$

$$- (1/2)ek \tan \theta_0 = -(e^2/2) \sin \theta_0 \tan \theta_0 \left[1 + (1/2)e^2 \cos^2 \theta_0 + (3/8)e^4 \cos^4 \theta_0\right]$$

$$- (1/5)ek^3 \tan \theta_0 = -(1/8)e^4 \sin^3 \theta_0 \tan \theta_0 \left[1 + (3/2)e^2 \cos^2 \theta_0\right]$$

$$- (1/16)ek^3 \tan \theta_0 = -(1/16)e^4 \sin^3 \theta_0 \tan \theta_0$$
(45)

Placing the values from (44) and (45) in (43), collecting like terms and employing some trigonometric identities we have

$$\Delta\lambda = \eta - \frac{e^2}{2} \cos\theta_0 \ \sigma - \frac{e^4}{32} \cos\theta_0 \ [2(1 + \cos^2\theta_0)\sigma - \sin^2\theta_0 \sin 2\sigma]$$

$$- \frac{e^6}{512} \cos\theta_0 \left[\frac{4(8 \cos^2\theta_0 + 3 \sin^4\theta_0)\sigma}{(1 + \cos^2\theta_0) \sin 2\sigma + \sin^4\theta_0 \sin 4\sigma} \right]$$
(46)

Placing $e^2 = 2f - f^2$, $e^4 = 4f^2 - 4f^3$, $e^6 = 8f^3$ in (46) find

$$\Delta\lambda = \eta - f\cos\theta_0\sigma + \frac{f^2}{8}\cos\theta_0\sin^2\theta_0 (2\sigma + \sin2\sigma)$$

$$+ \frac{f^3}{64}\cos\theta_0\sin^2\theta_0 \left[4(1 + 3\cos^2\theta_0)\sigma + 8\cos^2\theta_0\sin2\sigma - \sin^2\theta_0\sin4\sigma\right]$$

which is exactly the first of equations (38).

Collecting like terms in β and σ , equations (32) and (38) may be written with longitude and arc length measured from the geodesic node;

$$\Delta\lambda = \gamma - A\beta - B \sin 2\beta - C \sin 4\beta, \gamma = \arcsin (\tan \theta / \tan \theta_0),$$

$$S/a = D\beta - E \sin 2\beta - F \sin 4\beta - G \sin 6\beta, \beta = \arcsin (\sin \theta / \sin \theta_0),$$
(47)

longitude and arc length measured from the geodesic vertex;

$$\Delta \lambda = \eta - A\sigma + B \sin 2\sigma - C \sin 4\sigma, \eta = arc \cos (\tan \theta / \tan \theta_0)$$

$$5/a = D\sigma + E \sin 2\sigma - F \sin 4\sigma + G \sin 6\sigma, \sigma = arc \cos (\sin \theta / \sin \theta_0)$$
(48)

and where in both cases with $c_1 = f \cos \theta_0$, $c_2 = (1/4)f \sin^2 \theta_0$, $c_3 = 1 + c_1 \cos \theta_0$, $c_4 = c_2 + c_3$, we have

A =
$$c_1 (1 - c_2 c_4)$$
, B = $(1/2)c_1 c_2 c_3$, C = $(1/4)c_1 c_2^2$,
D = $2 + c_2 (c_4^2 + c_2^2) - (1 + c_2) c_4 - c_2$, E = $(1/2)c_2 [2 + c_3 (c_3 - 1) - c_2^2]$, (49)
F = $(1/4)c_2^2 (2c_4 - 1)$, G = $(1/6)c_2^3$,

and c_1 , c_2 , c_3 satisfy $c_1^2 - 4c_2(c_1 - 1) + c_3(2 - c_3) = 1$.

Formulae for longitude and arc length between two arbitrary points on the hemispheroidsi geodesic

From (48), for a geodesic arc containing a vertex

$$\Delta\lambda = \Sigma \eta - A \Sigma \sigma + Bp - Cq \qquad \Sigma \eta = \eta_1 + \eta_2, \ \Sigma \sigma = \sigma_1 + \sigma_2, \ \Delta \sigma = \sigma_2 - \sigma_1,$$

$$S/a = D \Sigma \sigma + Ep - Fq - Gr \qquad p = 2 \sin \Sigma \sigma \cos \Delta \sigma, \ q = 2 \sin 2\Sigma \sigma \cos 2\Delta \sigma,$$

$$r = 2 \sin 3\Sigma \sigma \cos 3\Delta \sigma, \ \eta_i = \arccos \left(\tan \theta_i / \tan \theta_0\right), \ \sigma_i = \arccos \left(\sin \theta_i / \sin \theta_0\right)$$
(50)

Also from (48) for a geodesic arc containing neither node nor vertex

$$\Delta\lambda = \Delta\eta - A\Delta\sigma + Bp - Cq \qquad \Delta\eta = \eta_2 - \eta_1, \Delta\sigma = \sigma_2 - \sigma_1, \Sigma\sigma = \sigma_1 + \sigma_2$$

$$S/a = D\Delta\sigma + Ep - Fq - Gr \qquad p = 2\cos\Sigma\sigma\sin\Delta\sigma, q = 2\sin2\Delta\sigma\cos2\Sigma\sigma \qquad (51)$$

$$r = 2\cos3\Sigma\sigma\sin3\Delta\sigma, \eta_i = \arccos(\tan\theta_i/\tan\theta_0), \sigma_i = \arccos(\sin\theta_i/\sin\theta_0)$$

From (47) for a geodesic arc containing a node

$$\Delta\lambda = \Sigma\gamma - A\Sigma\beta - Bp - Cq, \qquad \Sigma\gamma = \gamma_1 + \gamma_2, \ \Sigma\beta = \beta_1 + \beta_2, \ \Delta\beta = \beta_2 - \beta_1$$

$$S/a = D\Sigma\beta - Ep - F1 - Gr, \qquad p = 2 \sin \Sigma\beta \cos \Delta\beta, \ q = 2 \sin 2\Sigma\beta \cos 2\Delta\beta, \qquad (52)$$

$$\gamma_1 = \arcsin (\tan \theta_1 / \tan \theta_0), \ \beta_1 = \arcsin (\sin \theta_1 / \sin \theta_0)$$

Also from (47) for a geodesic arc containing neither node nor vertex

$$\Delta\lambda = \Delta\gamma - A\Delta\beta - Bp - Cq \qquad \Delta\gamma = \gamma_1 - \gamma_2, \Delta\beta = \beta_1 - \beta_2, \Sigma\beta = \beta_1 + \beta_2,$$

$$S/a = D\Delta\beta - Ep - Fq - Gr \qquad p = 2\cos\Sigma\beta\sin\Delta\beta, 1 = 2\cos2\Sigma\beta\sin2\Delta\beta \qquad (53)$$

$$r = 2\cos3\Sigma\beta\sin3\Delta\beta, \qquad \gamma_1 = \arcsin(\tan\theta_1/\tan\theta_0), \beta_1 = \arcsin(\sin\theta_1/\sin\theta_0)$$

The constants A, B, C, D, E, F, G, of formulae (50), (51), (52), (53) are given by (49). Since (51) and (53) should give the same results one should transform into the other if we make the substitutions respectively from $\sigma + \beta = \pi/2$, $\eta + \gamma = \pi/2$. For instance in (53)

$$\Delta \gamma = \gamma_1 - \gamma_2 = (\pi/2) - \eta_1 - (\pi/2) + \eta_2 = \eta_2 - \eta_1 = \Delta \tau_i,$$

$$\Delta \beta = \beta_1 - \beta_2 = (\pi/2) - \sigma_1 - (\pi/2) + \sigma_2 = \sigma_2 - \sigma_1 = \Delta \sigma, \ \Sigma \beta = \beta_1 + \beta_2 = \pi - \Sigma \sigma.$$

These substitutions in $\Delta\lambda$ and S/a of (53) give

$$\Delta\lambda = \Delta\eta - A\Delta\sigma + Bp - Cq$$

$$p = 2\cos \Sigma\sigma \sin \Delta\sigma, q = 2\cos 2\Sigma\sigma \sin 2\Delta\sigma$$

$$S/a = D\Delta\sigma + Ep - Fq - Gr$$

$$r = 2\cos 3\Sigma\sigma \sin 3\Delta\sigma$$

Which are formulae (51).

Now in (50) with $\theta_1 = \theta_2 = 0$, we have $\Sigma \sigma = \Sigma \eta = \pi$, p = q = r = 0. Analogously for (52) with $\theta_1 = \theta_2 = \theta_0$ we have $\Sigma \gamma = \Sigma \beta = \pi$, p = q = r = 0 and both therefore give for length and longitude of hemispheroidal geodesics, node to node or vertex to vertex,

$$\Delta \lambda_0 = \pi (1 - A), S_0 = \pi a D. \tag{54}$$

Equations (54) are thus a shorter version of equations (33). Referring to equations (49), (54), when $\theta_0 = \pi/2$. $c_1 = 0$, $c_2 = (1/4)f$, $c_3 = 1$, $c_4 = 1 + (1/4)f$, A = 0, $D = 1 - f/2 + (1/16)f^2 + (1/32)f^3$, and again for the semi-meridian $\Delta\lambda = \pi$, $S = a\pi[1 - f/2 + (1/16)f^2 + (1/32)f^3]$. When $\theta_0 = 0$, $c_1 = f$, $c_2 = 0$, $c_3 = c_4 = 1 + f$, A = f. D = 2 - (1 + f) = 1 - f and we have again the equatorial limiting arc $\Delta\lambda = \pi(1 - f)$, $S = a\pi(1 - f)$.

Throughout this discussion $\Delta \sigma$ has been used to represent two quantities. When dealing with elliptic integrals and functions, $\Delta \sigma = (1 - k^2 \sin^2 \sigma)^{1/2}$, see equations (12). When dealing with computational formulae for distance and longitude, $\Delta \sigma = \sigma_2 - \sigma_1$, see equations (50), (51). The usage is clearly indicated in each case, and no ambiguity occurs.

We now have equations to third order in the flattening which may be used to check approximation formulae to the geodesic and to check known or published geodetic lines. After a discussion of the spheroidal triangle, some of these formulae will be used in the derivation of the direct solution for the long geodetic line. But we next examine the antipodal zones and conjugate points with respect to the nonplanar geodesic.

Antipodal zones

The hemispheroidal geodesic is that part included between two consecutive vertices or two consecutive nodes since no more than two consecutive of either nodes or vertices can be contained in the same hemispheroid (on the same side of a meridian).

The antipodal zones are the two equal areas bounded by the two symmetric geodesic evolutes (envelopes) of all oblate spheroidal geodesics which have a vertex in a common fixed meridian. Cayley, reference [25].

NOTE: The evolute of a given curve is the curve tangent to all normals (perpendiculars) of the given curve, or the envelope of the normals. The normal to the meridian ellipse in terms of parametric latitude

 θ (eccentric angle of the ellipse) is $F(\theta) = ax/\cos\theta - by/\sin\theta - (a^2 - b^2) = 0$, where a, b are semimajor, semiminor axes of the spheroid, x and y are rectangular coordinates in the plane of the meridian, the y-axis coinciding with the ellipsoidal polar axis. The evolute (envelope) is obtained by eliminating θ between $F(\theta) = F'(\theta) = 0$ where the prime denotes differentiation with respect to θ . The result is the equation $a^{2/3} x^{2/3} + b^{2/3} y^{2/3} = (a^2 - b^2)^{2/3}$, its graph resembling the geodetic evolutes as displayed in Figure 12.

The geodesic evolutes are the figures ADBC, A'D'B'C' which resemble the meridional evolute EFE'F'. Geodesic arcs PN, OM are equal. Location of the nodes N, N' within the antipodal zones is known from equations (33). When $P(\theta_0, \pi/2) \rightarrow O(0, \pi/2)$, then $\theta_0 \rightarrow 0$, and $Q \rightarrow N \rightarrow D$, $Q' \rightarrow N' \rightarrow D'$; when $P \rightarrow N_0$, then $N \rightarrow T$, $N' \rightarrow T'$, and $Q \rightarrow A$, $Q' \rightarrow A'$.

Figure 12. Geodesic evolutes and antipodal zones on the oblate spheroid (pictorial).

Two consecutive nodes are in the geodesic antipodal zones with respect to the meridian containing the included vertex of the geodesic. From the first of the inequalities (35) we have, when $\theta_0 = 0$,

 $S_0 = \pi b = a\pi(1-f)$. Hence the equatorial arc axis of the geodesic evolute is then $a\pi - a\pi(1-f) = a\pi f$ as shown in Figure 12.

The distance from node to node (N to N' in the diametrically opposite antipodal zone) is given by equations (33) and by symmetry this is the same distance as that between two consecutive vertices. Is the geodesic distance thus obtained the maximum under the shortest distance property of the geodesic? Apparently this is so from the limits given by inequalities (35). But for any point P on a given geodesic, is there a point P' on the geodesic beyond which the unique shortest distance property does not hold? Before we attempt to answer this question we find the length of the meridional arc axis of the geodetic evolute (antipodal zone), the segments AB = A'B' of Figure 12.

In Figure 12, note that for the geodesic with vertex $P(\theta_0, \pi/2)$ we have

$$\Delta \lambda = (\pi/2) - (1/2)\Delta \lambda_0. \tag{55}$$

As $\theta_0 \to \pi/2$, N \to T, Q \to A, and there exists the value $+\theta$ which is the parametric latitude of A as given by (55). From equations (32), (33) and (55) we have to terms in f²:

$$\gamma - f \cos \theta_0 \beta + (f^2/8) \cos \theta_0 \sin^2 \theta_0 (2\beta - \sin 2\beta) = \pi/2 - \pi/2 + (\pi/2) f \cos \theta_0 - (\pi/2) (f^2/4) \cos \theta_0 \sin^2 \theta_0$$

$$F(\theta, \theta_0) = (\gamma/\cos \theta_0) - f(\beta + \pi/2) + (f^2/8) \sin^2 \theta_0 (\pi + 2\beta - \sin 2\beta) = 0.$$
(56)

 $F(\theta, \theta_0) = (\gamma/\cos\theta_0) - f(\beta + \pi/2) + (f^2/8)\sin^2\theta_0 (\pi + 2\beta - \sin 2\beta) = 0.$ OI

Where $\gamma = \arcsin (\tan \theta \cot \theta_0), \beta = \arcsin (\sin \theta \csc \theta_0).$

We must therefore solve for θ in the equation remaining by taking

$$\lim_{\theta_0 \to \pi/2} F(\theta, \theta_0) = 0.$$

Only the first term of (56) is bothersome in determining the required limit:

$$\frac{\lim_{\theta_0 \to \pi/2} \frac{\gamma}{\cos \theta_0}}{\frac{1}{\cos \theta_0}} = \frac{\lim_{\theta_0 \to \pi/2} \frac{\arcsin (\tan \theta \cot \theta_0)}{\cos \theta_0}}{\cos \theta_0} = \frac{\lim_{\theta_0 \to \pi/2} \frac{(d/d\theta_0) \arcsin (\tan \theta \cot \theta_0)}{(d/d\theta_0) \cos \theta_0}}{(d/d\theta_0) \cos \theta_0}$$

$$= \frac{\lim_{\theta_0 \to \pi/2} \frac{\tan \theta}{\sin^3 \theta_0 (1 - \tan^2 \theta \cot^2 \theta_0)^{1/2}} = \tan \theta.$$
(57)

We have then from (56) and (57)

$$\theta_0 \to \pi/2 \text{ F}(\theta, \theta_0) = \tan \theta - (f/2)(\pi + 2\theta) + (f^2/8)(\pi + 2\theta - \sin 2\theta) = 0,$$
or
$$\tan \theta - B \sin 2\theta = A(\pi + 2\theta)$$

$$B = f^2/8, A = (f/2) - B$$
(58)

In (58) let $\tan \theta = \theta$, B = 0, to get the approximation

$$2\theta = \pi f/(1 - f). \tag{59}$$

With the value f = .003390075283 (Clarke 1866 ellipsoid-Appendix 2), $\pi = 3.1415926536$, (59) gives $\theta = 18' 22''.121$ which fails to satisfy (58) by .00000457, i.e.

$$\tan \theta - 2A\theta - B \sin 2\theta > A \pi$$
 by .00000457.

Now the tangent different for 1 second at 18' 22" is .00000485 (Peters Tables). For 1 second change, $2A\theta$ changes by 2×10^{-8} but there is no change in B sin 2θ . Hence we take 459/485 = .946 second and reduce the first estimate by that amount since $\tan \theta > \theta > \sin \theta$, i.e. $\theta = 18' 22''.121 - ''.946 = 18' 21''.175$. This last values checks (58) to 1 in the 8th decimal.

Since the flattening does not vary much among the 10 reference ellipsoids of Appendix 2, we may alter the approximation (59) to give a solution for any reference ellipsoid. This was accomplished by changing .946 second to radians, factoring πf , writing $1/(1-f)=1+f+\ldots$ and then adjusting for the variation in f among the values as given in Appendix 2. The resulting solution to terms in f^2 is

$$2\theta = \pi f(1 + .7495f). \tag{60}$$

Seven of the values of θ computed from (60) checked (58) exactly to 8 decimals and 3 were within 1 in the 8th decimal. The computations are included in Appendix 2, where the axes and approximate areas of the antipodal zones for the 10 spheroids are also given.

Conjugate points on spheroidal geodesics

For an arbitrary point P_1 on a spheroidal geodesic there exists a second point P_2 on that geodesic beyond which the unique shortest distance property fails. Forsyth, citing Jacobi, called such pairs conjugate points, reference [28].

Because of symmetry, the distance, node to node is the same as vertex to vertex, or point P₁ to P₂ in numerically equal but opposite signed latitudes when the longitude difference is the same as node to node or vertex to vertex. But consecutive nodes are not conjugate since there exist two equal geodesics symmetric with respect to the equator with these common nodes, see Figure 12. Again, but in the meridian, any diameter bisects the meridianal arc length, hence the diametral end points are both antipodal and conjugate. Hence by inference two consecutive vertices should be conjugate.

That this is so may be demonstrated in Figure 13. The equal symmetric nodal hemispheroidal geodesics are N_1QN_2 , N_1RN_2 . Arc lengths N_1P_1 , N_2P_2 , P_1T are equal, hence the hemispheroidal geodesics P_1QP_2 , P_1SP_2 are both equal to N_1QN_2 or N_1RN_2 . By symmetry the longitude difference, $\Delta\lambda_0$, node to node, is equal to that from P_1 to P_2 . Again, the arc lengths V_1P_1' , V_2P_2' , $P_1'U$ are equal and therefore the geodesics $P_1'OP_2'$, $P_1'MP_2'$, V_1OV_2 , N_1QN_2 are all equal and the longitude difference, P_1' to P_2' , is $\Delta\lambda_0$, the same as from N_1 to N_2 .

For the mathematical demonstration we will maximize the equation for longitude difference between two points on the geodesic. As a preliminary, note from the inequalities (35), that for hemispheroidal geodesics we have the longitude difference and length satisfying

$$\pi > \Delta \lambda_0 > \pi b/a$$

 $a\pi [1 - (f/2) + (f^2/16) + f^3/32] > S_0 > \pi b,$

i.e. along the equator from a given point one can extend the length to πb before two equal and symmetric geodesics of length shorter than the subtended equatorial arc exist. In Figure 13 we can extend the distance along the equator from N_1 to T_1 , $N_1T_1 = \pi b$, before the two symmetric geodesics N_1QN_2 , N_1RN_2 exist. That is $N_1N_2 > N_1QN_2 = N_1RN_2 > N_1T_1 = \pi b$ and the points N_1 , T_1 are conjugate.

From equations (17) we may write

$$\Delta \lambda = IF, F = \sec \theta_0 (1 - e^2 \cos^2 \theta_0)^{1/2} = e \tan \theta_0 / k,$$

$$I = \int_{\sigma_2}^{\sigma_1} \frac{\Delta \sigma}{\delta \sigma} d\sigma, \Delta \sigma = (1 - c \sin^2 \sigma)^{1/2}, \delta \sigma = 1 + n \sin^2 \sigma, \tag{61}$$

Figure 13. Conjugate points on the oblate spheroid.

$$n = \tan^{2} \theta_{0}, c = e^{2} \sin^{2} \theta_{0} / (1 - e^{2} \cos^{2} \theta_{0}) = k^{2},$$

$$\sigma_{i} = \arccos \left(\sin \theta_{i} / \sin \theta_{0} \right), |\theta_{i}| \le |\theta_{0}|.$$

Now

$$\frac{\mathrm{d}\Delta\lambda}{\mathrm{d}\theta_0} = F \frac{\mathrm{d}I}{\mathrm{d}\theta_0} + I \frac{\mathrm{d}F}{\mathrm{d}\theta_0} = 0,$$

or equivalently

$$\frac{1}{F}\frac{d\Delta\lambda}{d\theta_0} = \frac{dI}{d\theta_0} + \frac{I}{F}\frac{dF}{d\theta_0} = 0$$
 (62)

Since σ_1 , σ_2 , $\Delta \sigma$, $\delta \sigma$ are all functions of θ_0 , we have

$$\frac{\mathrm{d}l}{\mathrm{d}\theta_0} = \int_{\sigma_2}^{\sigma_1} \frac{\partial}{\partial \theta_0} \frac{\Delta \sigma}{\delta \sigma} \, \mathrm{d}\sigma + \frac{\Delta \sigma_1}{\delta \sigma_1} \frac{\mathrm{d}\sigma_1}{\mathrm{d}\theta_0} - \frac{\Delta \sigma_2}{\delta \sigma_2} \frac{\mathrm{d}\sigma_2}{\mathrm{d}\theta_0}$$
 (63)

$$\frac{\partial}{\partial \theta_0} \left(\frac{\Delta \sigma}{\delta \sigma} \right) = \frac{1}{\delta \sigma^2} \left(\delta \sigma \frac{\mathrm{d} \Delta \sigma}{\mathrm{d} \theta_0} - \Delta \sigma \frac{\mathrm{d} \delta \sigma}{\mathrm{d} \theta_0} \right). \tag{64}$$

From (61) we have

$$\frac{\mathrm{d}\Delta\sigma}{\mathrm{d}\theta_0} = -\frac{\sin^2\sigma}{2\Delta\sigma}\frac{\mathrm{d}c}{\mathrm{d}\theta_0}, \frac{\mathrm{d}c}{\mathrm{d}\theta_0} = \frac{2c^2(1-e^2)}{e^2}\cot\theta_0\csc^2\theta_0,$$

$$\frac{d\delta\sigma}{d\theta_0} = \sin^2\sigma \frac{dn}{d\theta_0}, \frac{dn}{d\theta_0} = 2 \tan\theta_0 \sec^2\theta_0,$$

$$\frac{d\sigma_i}{d\theta_0} = \cot\sigma_i \cot\theta_0, (1/F) \frac{dF}{d\theta_0} = (c/e^2) \csc\theta_0 \sec\theta_0$$
(65)

With the values of $d\sigma_i/d\theta_0$ from (65) the last two terms of (63) may be written

$$\frac{\Delta \sigma_1}{\delta \sigma_1} \frac{d\sigma_1}{d\theta_0} - \frac{\Delta \sigma_2}{\delta \sigma_2} \frac{d\sigma_2}{d\theta_0} = \cot \theta_0 \left(\frac{\Delta \sigma_1}{\delta \sigma_1} \cot \sigma_1 - \frac{\Delta \sigma_2}{\delta \sigma_2} \cot \sigma_2 \right) \\
= \cot \theta_0 \int_{\sigma_2}^{\sigma_1} \frac{d}{d\sigma} \left(\frac{\Delta \sigma}{\delta \sigma} \cot \sigma \right) d\sigma$$
(66)

With the values of $\Delta \sigma$, $\delta \sigma$ from (61) we find

$$\frac{d}{d\sigma} \frac{(\Delta \sigma \cot \sigma)}{\delta \sigma} = -\frac{\Delta \sigma}{\delta \sigma \sin^2 \sigma} - \frac{c \cos^2 \sigma}{\Delta \sigma \delta \sigma} - \frac{2 \tan^2 \theta_0 \cos^2 \sigma \Delta \sigma}{\delta \sigma^2}$$
(67)

With the values of $d\Delta\sigma/d\theta_0$, $d\delta\sigma/d\theta_0$ from (65), we may write (64) as

$$\frac{\partial}{\partial \theta_0} \left(\frac{\Delta \sigma}{\delta \sigma} \right) = -\frac{c^2 (1 - e^2)}{e^2 \Delta \sigma \delta \sigma} \cot \theta_0 \csc^2 \theta_0 \sin^2 \sigma - 2 \tan \theta_0 \sec^2 \theta_0 \frac{\Delta \sigma}{\delta \sigma^2} \sin^2 \sigma \tag{68}$$

With the value of $(1/F) dF/d\theta_0$ from (65) and the value of I from (61) we have

$$\frac{I}{F} \frac{dF}{d\theta_0} = \int_{\sigma_2}^{\sigma_1} (c/e^2) \sec \theta_0 \csc \theta_0 \frac{\Delta \sigma}{\delta \sigma} d\sigma.$$
 (69)

Now with the value of (67) placed in (66) and the result returned to (63), together with the value of $\partial/\partial\theta_0$ ($\Delta\sigma/\partial\sigma$) from (68) for the first term of (63), we may, with the resulting value of $dI/d\theta_0$ and the value of (I/F)dF/d θ_0 from (69) write the condition (62) as

$$\cot \theta_{0} \int_{\sigma_{2}}^{\sigma_{1}} \frac{d\sigma}{e^{2} \Delta \sigma \delta \sigma^{2} \sin^{2} \sigma} \begin{cases} c^{2} (1 - e^{2}) \csc^{2} \theta_{0} \delta \sigma \sin^{4} \sigma + 2e^{2} n \sec^{2} \theta_{0} \Delta \sigma^{2} \sin^{4} \sigma \\ (3) \qquad (4) \\ + e^{2} \delta \sigma \Delta \sigma^{2} + ce^{2} \delta \sigma \sin^{2} \sigma \cos^{2} \sigma \\ (5) \qquad (6) \\ + 2e^{2} n \Delta \sigma^{2} \sin^{2} \sigma \cos^{2} \sigma - c \sec^{2} \theta_{0} \Delta \sigma^{2} \delta \sigma \sin^{2} \sigma \end{cases}$$
 (70)

where $n = \tan^2 \theta_0$, $\Delta \sigma^2 = 1 - c \sin^2 \sigma$, $\delta \sigma = 1 + n \sin^2 \sigma$, $c = e^2 \sin^2 \theta_0 / (1 - e^2 \cos^2 \theta_0)$.

In (70), within the braces, we first combine the terms (2) and (5) to get

$$(2) + (5) = 2e^2 n \Delta \sigma^2 \delta \sigma \sin^2 \sigma. \tag{71}$$

We next combine terms (1), (4), and (6) to get analogously

(1) + (4) + (6) =
$$- ne^2 \delta u \sin^2 \sigma + cne^2 \delta \sigma \sin^4 \sigma$$
. (72)

With the values from (71) and (72) returned to (70), we now have for the quantity within the braces

$$\left\{ \delta \sigma(e^2 n \Delta \sigma^2 \sin^2 \sigma + e^2 \Delta \sigma^2 \delta \sigma - e^2 n \Delta \sigma^2 \sin^2 \sigma) \right\} = \left\{ e^2 \Delta \sigma^2 \delta \sigma^2 \right\},$$
 (73)

where in the reductions we have used the identities given with equation (70). The value from (73) placed in (70) gives

$$(1/F) d\Delta\lambda/d\theta_0 = (dI/d\theta_0) + (I/F)(dF/d\theta_0) = -\cot\theta_0 \int_{\sigma_2}^{\sigma_1} \frac{e^2}{e^2} \frac{\Delta\sigma^2 \delta\sigma^2 d\sigma}{\Delta\sigma \delta\sigma^2 \sin^2\sigma}$$

$$= -\cot\theta_0 \int_{\sigma_2}^{\sigma_1} \frac{\Delta\sigma d\sigma}{\sin^2\sigma} = 0.$$
(74)

Since the equation to the geodesic evolute will be given by the elimination of θ_0 between $d\Delta\lambda/d\theta_0 = 0$, and $\Delta\lambda = FI$, equations (61) and (74), we should be able to get an equation for determining the parametric latitude of the meridional vertex of the geodesic evolute and thus provide a check for equation (58). In fact the equation should be given by (74), that is from

$$\lim_{\theta_0 \to \pi/2} \int_{-(\pi/2 + \theta)}^{\pi/2 + \theta} \frac{\Delta \sigma \, d\sigma / \sin^2 \sigma}{\sigma} = 0.$$

With $\theta_0 = \pi/2$, $c = e^2$, $\Delta \sigma = (1 - e^2 \sin^2 \sigma)^{1/2}$, we have

 $\Delta \sigma/\sin^2 \sigma = \csc^2 \sigma [1 - (1/2)e^2 \sin^2 \sigma - (1/8)e^4 \sin^4 \sigma - ..] = \csc^2 \sigma - f(1 - f/4) + (1/4)f^2 \cos 2\sigma$. Integrating this last expression with respect to σ and evaluating for the limits $\pi/2 + \theta$, $-(\pi/2 + \theta)$ we obtain equation (58).

In equation (74), the factor $\cot \theta_0 = 0$ implies the meridian, $\theta_0 = (1/2)\pi$. Now from (13) and (13)c, $\Delta \sigma = \text{dnS}$, $\sin^2 \sigma = \sin^2 S$, $\sigma = \text{amS}$, $d\sigma = \text{d}$ amS = dnS dS and the integral (74) may be written

$$\int_{S_2}^{S_1} dn^2 S dS/sn^2 S = 0.$$
 (75)

By manipulation of the identities (13)a and differentials (13)c, we can write the integral (75), indefinite, as

$$\int dS (c' - dn^2S + dn^2S + c cn^2S + cn^2S dn^2S/sn^2S) = \int c'dS - \int dn^2S dS - \int d (cnS dnS/snS), (76)$$

$$\int dn^2S dS/sn^2S = c'S - \int dn^2S dS - cnS dnS/snS.$$
(77)

From (12), (13), (13)c we have

where

$$E(k, \sigma) = \int_{0}^{\sigma} \Delta \sigma \, d\sigma = \int_{0}^{S} dn^{2} S \, dS = E(S, k). \tag{78}$$

From (77) and (78) the definite integral (75) may be written

$$\int_{S_2}^{S_1} dn^2 S dS/sn^2 S = [c'S - E(S, k) - cnS dnS/snS] \int_{S_2}^{S_1} = 0.$$
 (79)

We expand (79) and write the result in the form

$$c'(S_1 - S_2) = E(S_1, k) - E(S_2, k) - [(cnS_2 dnS_2/snS_2) - (cnS_1 dnS_1/snS_1)].$$
(80)

Using the difference formula for two elliptic integrals of the second class with the same modulus, and the difference formula for the sine amplitude from (13)a, we can write the right members of (80) respectively as

$$E(S_1, k) - E(S_2, k) = E(S_1 - S_2, k) - c \, snS_1 \, snS_2 \, sn(S_1 - S_2)$$

$$[-(cnS_1 \, dnS_1/snS_1) + (cnS_2 \, dnS_2/snS_2)] = sn(S_1 - S_2)(1 - c \, sn^2S_1 \, sn^2S_2)/snS_1 \, snS_2.$$
(81)

Placing the values from (81) in (80) and solving for $sn(S_1 - S_2)$ we find

$$sn(S_1 - S_2) = snS_1 \ snS_2 \ [E(S_1 - S_2, k) - c'(S_1 - S_2)],$$

$$c' = 1 - c = 1 - k^2 = (1 - e^2)/(1 - e^2 \cos^2 \theta_0), c = e^2 \sin^2 \theta_0/(1 - e^2 \cos^2 \theta_0).$$
(82)

45

If we place $S_1 = S_2$ in equation (82), the equation is satisfied since from (12) and (13)b, sn(0) = E(0, k) = 0. If we place, in equation (82), $S_1 = 2K$, $S_2 = 0$, the equation is satisfied since sn2K = sn(0) = 0. Hence the value of S_1 required is the root of (82) next greater than S_2 where $0 < S_2 < 2K$. Note that K is a complete elliptic integral, see (12)a.

For an approximation we write x for S₁ in (82) and consider the intersection of the functions (curves)

$$y = sn(x - S_2)/sn(x)snS_2 = E(x - S_2, k) - c'(x - S_2), c' = 1 - k^2$$

$$= (1 - e^2)/(1 - e^2 \cos^2 \theta_0) < 1.$$
(83)

As shown in Figure 14, the next value of x for which equations (83) are satisfied is S₁ and we have

$$0 < x_1 < 2K - S_2$$
, where $x_1 = S_1 - (S_2 + 2K)$. (84)

If we solve (84) for S_1 and place this value, $x = S_1 = x_1 + S_2 + 2K$, in (83), we may write, using the values from (13)b

$$y_1 = \sin(x_1 + 2K)/\sin(x_1 + S_2 + 2K)\sin S_2 = \sin x_1/\sin(x_1 + S_2)\sin S_2$$

= $E(x_1 + 2K, k) - c'(x_1 + 2K)$. (85)

Using the appropriate identities from (13)a, we transform the right member of (85) as follows:

$$E(x_1 + 2K, k) - c'(x_1 + 2K) = E(x_1, k) - c'x_1 + 2(E - c'K) = E(x_1, k) - c'x_1 + 4cc'dK/dc$$

$$= c \int_{-\infty}^{x_1} cn^2 x \, dx + 4cc'dK/dc.$$
(86)

Using the value of K from (12)a, we have

$$dK/dc = \int_0^{\pi/2} \frac{\partial}{\partial c} (1 - c \sin^2 x)^{-1/2} dx = (1/2) \int_0^{\pi/2} (1 - c \sin^2 x)^{-3/2} \sin^2 x dx.$$
 (87)

From (85), (86), and (87) we have, for the determination of x_1 , the equation

$$y_1 = \sin x_1 / \sin(x_1 + S_2) \sin S_2 = c \int_0^{x_1} \sin^2 x \, dx$$

$$+ 2c(1 - c) \int_0^{\pi/2} (1 - c \sin^2 x)^{-3/2} \sin^2 x \, dx.$$
(88)

Since $c = e^2 \sin^2 \theta_0/(1 - e^2 \cos^2 \theta_0) = 2f \sin^2 \theta_0 + \dots$, and $2f = e^2 + f^2$, then always $2f > e^2 > c$. For earth reference ellipsoids $2f - e^2 = f^2 \approx 1 \times 10^{-5}$. We consider here that 2f, e^2 , c are of the same order and reject terms of second and higher order in c or f. Since x_1 , snx_1 are of the same order as c, we place $snx_1 = x_1$, $sn(x_1 + S_2) = snS_2$ and write (88) as

$$y_1 = x_1/\sin^2 S_2 = c \int_0^{x_1} (1 - ...) dx + 2c \int_0^{\pi/2} (1/2 - ...) dx = 0 + (1/2)c\pi$$

and we find

$$x_1 = (1/2)c\pi \sin^2 S_2$$
. (89)

Placing $c = 2f \sin^2 \theta_0$ in (89) we may write

$$x_1 = \pi f \sin^2 \theta_0 \sin^2 S_2 = y_1 \sin^2 S_2, y_1 = \pi f \sin^2 \theta_0.$$
 (90)

From (84) and (90) we obtain

$$S_1 = 2K + S_2 + x_1 = 2K + S_2 + \pi f \sin^2 \theta_0 \text{ cm}^2 S_2.$$
 (91)

 $x_1 = y_1 \sin^2 S_2 = \pi f \sin^2 \theta_0 \sin^2 S_2, y_1 = \pi f \sin^2 \theta_0$

Figure 14. Graphical solution of equations (83).

Note that the value given by (91) is analogous to that obtained by Forsyth, see reference [28]. By direct integration of the integral for K, equations (12)a, we find to first order in f that $2K = \pi(1+i1/2H\sin^2\theta_0) = \pi + (1/2)y_1$. Substitution in (91) gives $S_1 - S_2 = \pi + x_1 + (1/2)y_1$ as shown in Figure 14.

From (61), (13), (13)a, (13)b we have

$$cnS_1 = \cos \sigma_1 = \sin \theta_1 / \sin \theta_0, cn(2K + S) = -cnS, sn^2 S = 1 - cn^2 S.$$
(92)

We write from (91), with the help of (92)

$$cnS_1 = cn[2K + (S_2 + x_1)] = -cn(S_2 + x_1),$$

$$sin \theta_1 = -sin \theta_0 cn(S_2 + x_1), x_1 = \pi f sin^2 \theta_0 sn^2 S_2 = \pi f(sin^2 \theta_0 - sin^2 \theta_2),$$
(93)

which to first order in f relates the parametric latitudes θ_1 , θ_2 of conjugate points on spheroidal geodesics.

When $\theta_2 = \theta_0$, a geodesic vertex, then $x_1 = 0$, $cnS_2 = 1$, and we have $sin \theta_1 = -sin \theta_0$, or $\theta_1 = -\theta_0$. That is the conjugate of a vertex of the geodesic is the next vertex, a result obtained by another argument. See the discussion following equations (33) and the geometric demonstration, Figure 13. A special case of this last is given by $\theta_0 = (1/2)\pi$, whence $sin \theta_1 = -1$, $\theta_1 = -(1/2)\pi$, i.e. the poles are conjugate as well as anti-podal for the meridian, a known result. When $\theta_0 = \theta_2 = 0$, then $\theta_1 = 0$ and we have the end points of the equatorial limiting geodesic arc πb , the segment $N_1 T_1$ of Figure 13.

Since along the geodesic $|\theta_2| \le |\theta_0|$, the range of x_1 for a particular geodesic is $0 \le x_1 \le \pi f \sin^2 \theta_0 = y_1$ and over the spheroid is $0 \le x_1 \le \pi f$. Note that πf is the equatorial central angle subtended by the equatorial arc axis of the geodesic evolute, see Figure 12, or to first order in f, πf is the meridional central angle subtended by the meridional arc axis, see equation (60). Consistent with the approximations used to obtain (89), we have

$$snx_1 = x_1, cnx_1 = dnx_1 = 1, 2f sin^2 \theta_0 sn^2 x_1 = cx_1^2 = 0.$$
 (94)

From (13)a, the addition formula for the cosine amplitude, we may write (93) as

$$\sin \theta_1 = -\sin \theta_0 \left(\cos \theta_1 \cos \theta_1 - \sin \theta_2 \sin \theta_1 \sin \theta_1\right) / (1 - 2 \sin^2 \theta_0 \sin^2 \theta_1 \sin^2 \theta_2\right)$$

and using (94)

$$\sin \theta_1 = -\sin \theta_0 (\cos \theta_1 - x_1 \sin \theta_2 \cos \theta_2). \tag{95}$$

Now from (19)a, with $e^2 = 2f$ and retaining terms in f, we have

$$snS_2 = (sin^2 \theta_0 - sin^2 \theta_2)^{1/2}/sin \theta_0, dnS_2 = [1 - 2f(sin^2 \theta_0 - sin^2 \theta_2)]^{1/2},
cnS_2 = sin \theta_2/sin \theta_0.$$
(96)

The values from (96), and the value of x_1 from (93), placed in (95), retaining terms of first order in f, give

$$\sin\theta_1 = -\sin\theta_2 + \inf(\sin^2\theta_2 - \sin^2\theta_2)^{Y^2}, |\theta_2| \le |\theta_0|, \tag{97}$$

which to first order in f is the equation relating the parametric latitudes θ_1 , θ_2 of conjugate points on spheroidal geodesics but free of elliptic functions. Note that (97) also gives the special cases discussed following equations (93), as it should.

Discussion. We have demonstrated mathematically and geometrically (pictorially in Figure 13) that along the equator, the end points of the segment πb are conjugate. We have proved that consecutive vertices are conjugate from both (93) and (97). Now if we ignore the term in f in equation (97), we have $\theta_1 = -\theta_2$ with the longitude difference that of the hemispheroidal geodesic in vertex parametric latitude θ_0 , whence we get two equal geodesic as demonstrated in Figure 13. Hence to test approximation formulae to the geodesic we need not exceed the length of the hemispheroidal geodesic (node to node or vertex to vertex) since it is maximum under the unique shortest distance criterion.

Note that equation (74) provides through the subsequent discussion, the sufficient condition for maximum gendetic length under the shortest distance property, the Euler equation, equation (3) above, being the necessary condition.

Also note that the parallels $\theta = \pm \theta_0$ are envelopes of all the geodesics whose vertex latitudes are $\pm \theta_0$, and the points V_1V_2 (vertices), Figure 13, are points of tanget by to the envelopes. But any conjugate point, according to the analysis definition, is a contact point of an envelope, reference [29] page 34. Finally note that two types of envelopes are involved. The envelope of all the geodesics having the same vertex parametric latitude $\|\theta_0\|$ are the parallels $\theta = \pm \theta_0$; the envelopes of all geodesics with a vertex in a common meridian are the two symmetric geodesic evolutes as shown in Figure 12.

Hemispheroidal geodesics under the shortest distance property

With the help of equations (33), (34), (35), (97) we establish that the nonplanar geodesic distance between two given spheroidal points, under the shortest distance property of the spheroidal geodesic, lies on an arc of one of the four equivalent spheroidal geodesics, as shown in Figure 15, where θ_0 is the vertex parametric latitude of the geodesic through the two given points.

Graphically, if a wire frame were constructed connecting the semiequator, the semimeridian m, the meridian NTST' and the four hemispheroidal geodesics with vertex latitude θ_0 as shown in Figure 15, then

Figure 15. The four equal notations hemispheroidal moderics determined by a since nexten measured testands.

* $\cos \theta \sin \alpha$. The arc DD * $\sin(1-t)$ * $\cos \theta$

the rotation of the ellipsoid about the polar axis under this frame would bring the two given points into coincidence with one of these four equal nonplanar spheroidal geodesics. Note that when $\theta_0 \to 0$, all four geodesics coincide with the equatorial limiting distance DD' and when $|\theta_0| \to (1/2)\pi$ both spheroidal geodesics (1) and (2) coincide with the semimeridian m while the spheroidal geodesics (3) and (4) coincide with the meridian NTST'.

We may then construct a table of possible cases of hemispheroidal geodesics to be considered in the testing of approximation formulae to the geodesic. With the help of equations (32), (33), (35), (38), (50)-(54), (97) the possible cases are listed in Table 2.

Note in Figure 15 that hemispheroidal geodesics (2) and (4) are the reflections in the equator of (1) and (3). Also the meridian NQS bisects all four hemispheroidal geodesics with the same vertex latitude θ_0 . We can treat a geodesic in the southern hemispheroid as though it were in the northern and translate computed elements symmetrically with respect to the equator. Thus all possible cases required to test approximation formulae to a geodesic with vertex latitude θ_0 are as shown in Figure 15. Note that arc AB contains a node, arc CE contains a vertex, and arc CF contains neither vertex nor node.

Table 2. Hemispheroidal geodesics.

 $\Delta\lambda_0$ is the longitude difference, node to node or vertex to vertex, of the spheroidal geodesic whose vertex parametric latitude is θ_0 , see equations (33) and Table 8.

CASE

I.
$$|\theta_2| \neq |\theta_1|$$
, $\Delta \lambda_1 \pm \Delta \lambda_2 < \Delta \lambda_0$

a.
$$|\theta_0| > \theta_2 > \theta_1 \ge 0$$

b.
$$|\theta_0| > \theta_1 > \theta_2 > 0$$

c.
$$\theta_2 < 0, \theta_1 > 0$$

1.
$$|\theta_0| > |\theta_2| > \theta_1 > 0$$

2.
$$|\theta_0| > \theta_1 > |\theta_2| > 0$$

d. $\theta_1 < 0, \theta_2 > 0$

1.
$$|\theta_0| > |\theta_1| > \theta_2 > 0$$

2.
$$|\theta_0| > \theta_1 > |\theta_2| > 0$$

II. $|\theta_2| = |\theta_1|$, $\Delta \lambda_1 = \pm \Delta \lambda_2 < (1/2) \Delta \lambda_0$

a.
$$|\theta_0| > \theta_1 > 0, \theta_2 = -\theta_1$$

b.
$$\theta_1 < 0$$
, $\theta_2 = |\theta_1| < |\theta_0|$

c.
$$\theta_2 = \theta_1, |\theta_0| > \theta_1$$

III. $\Delta \lambda_1 = \pm \Delta \lambda_2 = (1/2)\Delta \lambda_0$

$$|\theta_2| = |\theta_1| = |\theta_0| \neq 0$$

b.
$$\theta_1 = \theta_2 = 0, \theta_0 \neq 0$$

c.
$$\theta_1 = -\theta_2$$
, $\Delta \lambda = \Delta \lambda_0$

General — the geodesic arc may not include either a vertex or a node; may include one vertex or one node,

Symmetric — with respect to a node or vertex but not maximum; contains one node or one vertex. Special case of I.

Maximum — between two consecutive vertices or two consecutive nodes or between two points as in IIIc. Special case of II.

Some numerical considerations

Since there are 206264.8062 seconds in one radian, a 6 in the ninth decimal place of one radian represents .001 second. Maximum hemispheroidal radian geodesic length is the semimeridian which is slightly under π radians. Table 3 shows the effect of radian decimal places and significant figures in computing geodetic distances over the hemispheroid. Note that with 10 decimal places of radians there will be some uncertainty in the third decimal of meters at maximum hemispheroidal geodetic length.

The spheroidal triangle

We first indicate some analogies between spherical and spheroidal right triangles. From the definitions, equations (13), we have $\sin \sigma = \sin S$, $\cos \sigma = \cos S$, $\tan \sigma = \sin S$; where $\sigma = \cos S$, amplitude of the elliptic integral of the first kind, $S = F(k, \sigma)$, and where the modulus is $k = e \sin \theta_0 / (1 - e^2 \cos^2 \theta)^{1/2}$ —see equations

Table 3. Effect of radian decimal places and significant figures in computation of geodetic distances over the hemispheroid

Clarke 1866 ellipsoid, a = 6378206.4 meters

radians	decimals	significant figures	meters (a radians) 626179	
$\pi/32 = .0981748$	7	6		
. 77	8	7	8.9	
04	10	9	.949	
25	12	11	.94904	
$\pi/4 = .7853982$	7	7	5009432	
. 16	8	8	1.6	
3	9	9	.59	
4	10	10	.592	
$\pi/2 = 1.5707963$	7	8	10018863	
.3	8	9	3.2	
. 27	9	10	.19	
68	10	11	.185	
$\pi = 3.1415927$	7	8	20037727	
. 65	8	9	6.3	
4	9	10	.37	
36	10	11	.369	

(15) and (19)s. Hence for the spherical and spheroidal triangles N'P'₀P', NP₀P as shown in Figure 16, we have the following analogies:

	Spherical	Spheroidal		
A.1	$\cos \theta_0 \approx \cos \theta \sin \alpha \leftarrow \text{equation}$	B.1		
A.2	$\cot \theta_0 = \tan \alpha \sin \sigma$	$\cot \theta_0 = \tan a \text{snS}$	B.2	(00)
A.3	$\sin\theta = \sin\theta_0 \cos\sigma$	$\sin\theta = \sin\theta_0 \text{ cnS}$	B.3	(98)
A.4	$\tan \sigma = \cos \theta_0 \tan \eta$	$tnS = \cos\theta_0 \tan\Delta\lambda$		
		$= \cot \theta \cos a$	B.4	

From Figure 10 and the identity (98) (A.1 = B.1) we have respectively:

$$\cos a = \sin\left(\frac{\pi}{2} - a\right) = a(1 - e^2 \theta)^{1/2} \left(-\frac{d\theta}{ds}\right),$$

 $\sin a = \cos \theta_0 \sec \theta$,

whence

$$\tan \alpha = \frac{\cos \theta_0}{a(1 - e^2 \cos^2 \theta)^{1/2}} \cdot \frac{ds}{-\cos \theta d\theta}$$
 (99)

 θ is geocentric latitude for the sphere, parametric for the ellipsoid; ϕ is geodetic latitude

Pigure 16. Illustrating analogies between spherical and spheroidal

From (98), B.3 and (13)c

$$-\cos\theta \,d\theta = \sin\theta_0 \,\sin \theta \,dS \,dS \tag{100}$$

From (13) and (15)

$$(1 - e^2 \cos^2 \theta)^{1/2} = (1 - e^2 \cos^2 \theta_0)^{1/2} dnS$$
 (101)

From (13)c and (17)

$$ds = \frac{ea \sin \theta_0 dn^2 S dS}{k}$$
 (102)

From (100) and (102), with $k = e \sin \theta_0 (1 - e^2 \cos^2 \theta_0)^{1/2}$,

$$\frac{\mathrm{ds}}{-\cos\theta} = \frac{\mathrm{a}(1 - \mathrm{e}^2 \cos^2\theta_0)^{1/2}}{\sin\theta_0} \frac{\mathrm{dnS}}{\mathrm{snS}}$$
 (103)

Substituting from (101) and (103) in (99) find

$$\tan a = \frac{\cos \theta_0}{a} \cdot \frac{1}{(1 - e^2 \cos^2 \theta_0)^{1/2} \text{ dnS}} \cdot \frac{a(1 - e^2 \cos^2 \theta_0)^{1/2}}{\sin \theta_0} \frac{\text{dnS}}{\text{snS}} = \frac{\cot \theta_0}{\text{snS}},$$

or $\cot \theta_0 = \tan \alpha \sin S$ (104) which is (98) B.2 and becomes (98) A.2 when $e \to 0$, $k \to 0$, $S \to \int_0^{\sigma} d\sigma = \sigma$, see equations (12), and $\sin S \to \sin \sigma$, $\cos S \to \cos \sigma$, where σ is then the spherical distance from the vertex of the geodesic (parametric latitude θ_0) to a point on the geodesic in parametric latitude, θ , i.e. $\sigma = \arccos(\sin \theta/\sin \theta_0)$ or (98) A.3;

see also Figure 11.

To find an expression for $\Delta\lambda$ in (98) B.4, we have from equation (17)

$$(k/e) \cot \theta_0 d\lambda = (1 - k^2 \sin^2 \sigma)^{1/2} d\sigma / (1 + n \sin^2 \sigma), n = \tan^2 \theta_0$$
 (105)

and from (13)c and (19)a find

$$(1 - k^2 \sin^2 \sigma)^{1/2} = dnS, \sin^2 \sigma = sn^2 S, d\sigma = dnS dS.$$

whence (105) becomes

$$(k/e) \cot \theta_0 d\lambda = dn^2 S dS/(1 + n sn^2 S)$$
 (126)

If we let $\tan U = \sec \theta_0 \tan S$, then

$$\sec^2 U dU = \sec \theta_0 d(tnS) = \sec \theta_0 dnS dS/cn^2 S$$
 (107)

where we have used d(tnS) = dnS dS/cn²S from (13)c.

Now $\sec^2 U = 1 + \tan^2 U = 1 + \sec^2 \theta_0 \tan^2 S$

= 1 + (1 +
$$\tan^2 \theta_0$$
) $\tan^2 S$
= $(\cos^2 S + \sin^2 S + \tan^2 \theta_0 \sin^2 S)/\cos^2 S$

$$sec^2 U = (1 + n sn^2 S)/cn^2 S.$$
 (108)

(from the identities (13)a, $sn^2S + cn^2S = 1$, tnS = snS/cnS)

From (107) and (108) we have

$$\cos \theta_0 dU = dnS dS/(1 + n \sin^2 S), n = \tan^2 \theta_0.$$
 (109)

Subtracting respective members of (106) from (109), find

$$d\lambda = (e/k) \tan \theta_0 \left[\cos \theta_0 dU - \frac{dnS - dn^2S}{1 + n \sin^2S} ds\right],$$

or

$$\Delta \lambda = (e \sin \theta_0/k)U - (e \tan \theta_0/k) \int_0^S \frac{dnS - dn^2S}{1 + n \sin^2S} dS$$
 (110)

where U = arc tan (sec θ_0 tnS), k = e sin $\theta_0/(1 - e^2 \cos^2 \theta_0)^{1/2}$, n = tan² θ_0 . Solving for U, (110) may be written

$$tnS = \cos\theta_0 \tan \left[(k/e \sin\theta_0) \Delta \lambda + \sec\theta_0 \int_0^S \frac{dnS - dn^2S}{1 + n \sin^2S} dS \right]. \tag{111}$$

When $e \to 0$, $k/e \sin \theta_0 \to 1 \to dnS$, $tnS \to tan \sigma$ and (111) becomes the spherical formula $tan \sigma = \cos \theta_0 tan \Delta \lambda$ where $\Delta \lambda = \eta$, the spherical longitude, i.e. (111) becomes (98) A.4 when $e \to 0$. Thus the analogies (98) are implicit in the spherical approximation to the spheroidal triangle as demonstrated in Figure 11.

The approximate solution for geodesv

Direct Solution

For the direct solution we are given the geodesic length S from a given point $P_1(\phi_1, \lambda_1)$ in given azimuth a_{1-2} to find the geographic coordinates ϕ_2 , λ_2 of a point $P_2(\phi_2, \lambda_2)$ and the azimuth a_{2-1} . A solution, reliable over the hemispheroid, will be sought consistent with the following criteria:

- 1. An accuracy of 1 meter in position—geodetic distance within 1 meter: latitude, longitude, azimuth within .035 second over the longest possible hemispheroidal geodesics; at least, in the limiting case, equalling the 1/100,000 distance and 1 second azimuth requirement adopted by ACIC, reference [22].
- 2. No tables required in the computations except natural trigonometric as Peters 8-place for desk computing.
 - 3. Easy adaptation to any reference ellipsoid by merely changing the ellipsoid defining parameters.
- 4. No root calculation or iteration and formulae adaptable to both desk computation and large electronic computers with terms no higher than second order in the flattening.

Now the parametric latitude θ_1 of P_1 may be computed from $\tan \theta_1 = (1 - f)\tan \phi_1$ and from equation (10) or (98) we have

$$\cos \theta_0 = \sin a_{1-2} \cos \theta_1 = -\sin a_{2-1} \cos \theta_2. \tag{112}$$

We place
$$d = S/aD$$
, (113)

and from equations (48) write

$$\xi_1 = S_1/aD = \sigma_1 + P \sin 2\sigma_1 - Q \sin 4\sigma_1 + R \sin 6\sigma_1$$
 (114)

$$\xi_2 = d - \xi_1 = S_2/aD = \sigma_2 + P \sin 2\sigma_2 - Q \sin 4\sigma_2 + R \sin 6\sigma_2$$
 (115)

where $\sigma_1 = \operatorname{arc} \cos (\sin \theta_1 / \sin \theta_0), \sigma_2 = \operatorname{arc} \cos (\sin \theta_2 / \sin \theta_0)$

and P = E/D, Q = F/D, R = G/D,

with D, E, F, G from equations (49).

Since we have $\cos \theta_0$ from (112), the constants c_1 , c_2 , c_3 , c_4 and A, B, C, D, E, F, G may be computed from (49). Since we have θ_1 and θ_0 we can compute σ_1 and then ξ_1 from (114), ξ_2 from (115), i.e. from $\xi_2 = d - \xi_1$. But we need σ_2 and therefore the series (115) must be reversed. Figure 17 shows the spherical triangle being used.

Now the ranges of c_1 , c_2 , c_3 , c_4 are for $0 < |\theta_0| < \pi/2$; $f > c_1 > 0$, $0 < c_2 < f/4$, $1 + f > c_3 > 1$, $1 + f > c_4 > 1 + f/4$. Since the maximum hemispheroidal geodesic length under the shortest distance criterion is the semimeridian, given when $\theta_0 = (1/2)\pi$, we have for this value of θ_0 :

A = B = C = 0, D = .9983056819, E = .8475185
$$\times$$
 10⁻³, F = .1799 \times 10⁻⁶,
G = 1 \times 10⁻¹⁰, P = E/D = .8489569 \times 10⁻³, Q = F/D = .1802 \times 10⁻⁶, (116)
R = G/D = 1.001 \times 10⁻⁹, where f = .3390075283 \times 10⁻² (Clarke 1856).

The maximum contributions of the terms E sin 2σ , F sin 4σ , G sin 6σ are: 2aE = 10.811.296m, 2aF = 2.295m, 2aG = .0013m. An examination of Table 3 shows that there will be a maximum angular error of .001 second in holding 8 decimals of radians. We arbitrarily reject all decimal radian terms of the order .3 \times 10⁻⁸ or less in the analysis to follow. We have at once from (116) that G = R = 0.

We write (115) as

$$\xi_2 = \sigma_2 + \Sigma, \Sigma = P \sin 2\sigma_2 - Q \sin 4\sigma_2 \tag{117}$$

(118)

whence $\sin 2\xi_2 = \sin 2\sigma_2 \cos 2\Sigma + \cos 2\sigma_2 \sin 2\Sigma$

$$\sin 4\xi_2 = \sin 4\sigma_2 \cos 4\Sigma + \cos 4\sigma_2 \sin 4\Sigma$$

We use the series approximations, $\sin X = X - X^3/6$,

 $\cos X = 1 - X^2/2$, and find, rejecting terms of the order of .3 × 10⁻⁸

Figure 17. Spherical triangle used in approximating the spheroidal triangle. Azimuths are from north with

or less (using the values of P and Q from (116)):

$$\sin 2\Sigma = 2(P \sin 2\sigma_2 - Q \sin 4\sigma_2)$$

$$\cos 2\Sigma = 1 - 2P^2 \sin^2 2\sigma_2$$

$$\sin 4\Sigma = 4(P \sin 2\sigma_2 - Q \sin 4\sigma_2)$$

$$\cos 4\Sigma = 1 - 8P^2 \sin^2 2\sigma_2$$
(119)

The values from (119) returned to (118), with the help of some trigonometric identities, give

$$\sin 2\xi_2 = [1-(3/2)P^2 - Q] \sin 2\sigma_2 + P \sin 4\sigma_2 + [(1/2)P^2 - Q] \sin 6\sigma_2$$
 (120)

$$\sin 4\xi_2 = -2P \sin 2\sigma_2 + (1 - 4P^2) \sin 4\sigma_2 + 2P \sin 6\sigma_2 + 2(P^2 - Q) \sin 8\sigma_2 \tag{121}$$

If we multiply (120) by P, rejecting terms of the order $.3 \times 10^{-8}$ or less, with the values of P and Q from (116), we get

$$P \sin 2\xi_2 = P \sin 2\sigma_2 + P^2 \sin 4\sigma_2$$
 (122)

Now subtract respective members of (122) from (117) to get

$$\xi_2 - P \sin 2\xi_2 = \sigma_2 - (Q + P^2) \sin 4\sigma_2$$
 (123)

Next multiply (121) by $Q + P^2$, rejecting terms of order $.3 \times 10^{-8}$ or less, to get

$$(Q + P2) \sin 4\xi_2 = (Q + P2) \sin 4\sigma_2$$
 (124)

From (123) and (124) we have then

$$\sigma_2 = \xi_2 - P \sin 2\xi_2 + M \sin 4\xi_2, \tag{125}$$

where $M = P^2 + O$.

Now from (116), $Q - F = .3 \times 10^{-9}$, hence we may place Q = F and we write from (114), (115), and (125) with G = R = 0, Q = F, P = E/D, $M = P^2 + F$, d = S/aD.

$$\sigma_2 = U - P \sin 2U + M \sin 4U$$

$$U = d - \xi_1 = d - \sigma_1 - P \sin 2\sigma_1 + F \sin 4\sigma_1.$$
(126)

We next examine our fundamental coefficients for exclusion of terms of order $.3 \times 10^{-8}$ or smaller. From (49),

$$C = (1/4) c_1 c_2^2, c_1 = f \cos \theta_0, c_2 = (1/4) f \sin^2 \theta_0,$$

$$\frac{dC}{d\theta_0} = (1/4) c_2 \left(c_2 \frac{dc_1}{d\theta_0} + 2c_1 \frac{dc_2}{d\theta_0} \right) = 0, \frac{dc_1}{d\theta_0} = -f \sin \theta_0, \frac{dc_2}{d\theta_0} = (1/2) f \sin \theta_0 \cos \theta_0,$$

and we find

$$\frac{dC}{d\theta_0} = (1/4) c_2 f \sin \theta_0 (-c_2 + c_1 \cos \theta_0) = 0,$$

whence the minimum is given by $\theta_0 = 0$ (the equatorial limiting arc), and the maximum by $c_2 = c_1 \cos \theta_0$ or $(1/4)f \sin^2 \theta_2 = f \cos^2 \theta_0$, whence $\tan \theta_0 = 2$, $\theta_0 = 63^\circ 26'$ 05''.816 and maximum value of C is $C = (1/4) c_1 c_2^2 = .174 \times 10^{-9}$. Hence we place C = 0 with respect to our rejection criterion .3 × 10^{-9} . Since $c_2^3 = (1/64)f^3 \sin^6 \theta_0$, the maximum value is at $\theta_0 = \pi/2$, when $c_2^3 = .6 \times 10^{-9}$ (Clarke 1866). Hence we neglect terms of the order c_2^3 in the coefficients D and E and write:

$$A = c_1(1 - c_2c_4), B = (1/2)c_1c_2c_3, D = 2 + c_2c_4(c_4 - 1) - (c_2 + c_4),$$

$$E = (1/2)c_2 [2 + c_3(c_3 - 1)], F = (1/4)c_2^2(2c_4 - 1),$$

$$c_1 = f\cos\theta_0, c_2 = (1/4)f\sin^2\theta_0, c_3 = 1 + c_1\cos\theta_0, c_4 = c_2 + c_3.$$
(127)

We next consider the effect of omitting the terms in f^a in the coefficients. If this is done they become

$$A = c_1(1 - c_2), B = (1/2)c_1c_2, D = (1 - c_2)(2 - c_2 - c_3), E = (1/2)c_2(1 + c_3),$$

$$F = (1/4)c_2^2, c_1 = fN, c_2 = (1/4)f(1 - N^2), c_3 = 1 + fN^2, N = \cos\theta_0,$$
(128)

identity: $c_1^2 - 4c_2(c_3 - 1) + c_3(2 - c_3) = 1$.

Now we form the differences of coefficient values from (127) and (128) and examine for maximum values:

$$\begin{split} |\Delta A| &= c_1 c_2 |(c_4 - 1)| = (1/16) f^3 N(1 - N^2)(1 + 3N^2) = \frac{4N}{1 + 3N^2} |\Delta D| \\ |\Delta B| &= (1/2) c_1 c_2 |(1 - c_3)| = (1/8) f^3 N^3 (1 - N^2) = \frac{2N^2}{1 + 3N^2} |\Delta A| = \frac{2N^2}{1 + 3N^2} \cdot \frac{4N}{1 + 3N^2} |\Delta D| \\ |\Delta D| &= c_2 |[c_4 (2 - c_4) - 1]| = (1/64) f^3 (1 + 3N^2)^2 (1 - N^2) \\ |\Delta E| &= (1/2) c_2 |(2c_3 - 1 - c_3^2)| = (1/8) f^3 N^4 (1 - N^2) = N |\Delta B| = N \cdot \frac{2N^2}{1 + 3N^2} \cdot \frac{4N}{1 + 3N^2} \cdot |\Delta D| \\ |\Delta F| &= (1/2) c_2^2 |(1 - c_4)| = (1/128) f^3 (1 - N^2)^2 (1 + 3N^2) = \frac{1 - N^2}{2(1 + 3N^2)} |\Delta D| \end{split}$$

Since

$$|\theta_0| \le \pi/2, 0 \le N = \cos \theta_0 \le 1, 0 \le \frac{1 - N^2}{2(1 + 3N^2)} \le .5,$$

 $0 \le \frac{2N^2}{1 + 3N^2} \le .5, 0 \le \frac{4N}{1 + 3N^2} \le 1.2, \text{ we have}$

from (129) that

$$|\Delta A| \le (1.2) |\Delta D| \max_i |\Delta B| \le (0.6) |\Delta D| \max_i |\Delta E| \le (.6) |\Delta D| \max_i |\Delta F| \le (0.5) |\Delta D| \max_i$$

Thus we have only to find $|\Delta D|$ max and show that both it and $|\Delta A|$ are less than the rejection criterion, $.3 \times 10^{-8}$. We find

$$\frac{d |\Delta D|}{d \theta_0} = (f^3/64) \cdot 2(1+3N^2)NN'(5-9N^2) = 0,$$

whence N = 0, $(\theta_0 = \pi/2)$, N' = 0, $(\theta_0 = 0)$, N² max = 5/9. With this last value $|\Delta D|$ max = .2 × 10^{-6} , $|\Delta A| \le (1.2) |\Delta D|$ max = .24 × 10^{-6} which is sufficient to justify the values (128).

Now $\sin \theta_2 = \sin \theta_0 \cos \sigma_2$, $\tan \phi_2 = \tan \theta_2/(1-f)$,

$$\sin a_{2-1} = \cos \theta_0 / \cos \theta_2 = \cos \theta_1 \sin a_{1-2} / \cos \theta_2$$
 (130)

From (50)

$$\Sigma \eta = \eta_1 + \eta_2, \quad \Sigma \sigma = \sigma_1 + \sigma_2, \quad \Delta \sigma = \sigma_1 - \sigma_2,$$

$$P = 2 \sin \Sigma \sigma \cos \Delta \sigma, \quad \Delta \lambda = \Sigma \eta - A \Sigma \sigma + BP, \quad \lambda_2 = \lambda_1 + \Delta \lambda,$$

$$\eta_1 = \arccos \left(\tan \theta_1 / \tan \theta_0 \right) = \arccos \left(\cos \theta_0 \cos \sigma_1 / \cos \theta_1 \right)$$

$$\sigma_1 = \arccos \left(\sin \theta_1 / \sin \theta_0 \right).$$
(131)

Summary of first direct solution, given $\phi_1, \lambda_1, S, a_{1,2}$.

1. Convert ϕ_1 to parametric latitude from $\tan \theta_1 = (1 - f) \tan \phi_1$

- 2. Compute $\cos \theta_0 = \cos \theta_1 \sin a_{1-2}$ (geodesic vertex)
- 3. Compute $\sigma_1 = \arccos(\sin \theta_1/\sin \theta_0)$, $\sin 2\sigma_1$, $\sin 4\sigma_1$

4. Compute A, B, D, E, F from (128) and
$$P = E/D$$
, $M = F + D^2$, $d = S/aD$ (132)

- 5. From (126), $U = d \sigma_1 P \sin 2\sigma_1 + F \sin 4\sigma_1$, $\sin 2U$, $\sin 4U$
- 6. $\sigma_2 = U P \sin 2U + M \sin 4U \cos \sigma_2$
- 7. $\theta_2 = \arcsin(\sin \theta_0 \cos \theta_2), a_{2-1} = 2\pi \arcsin(\cos \theta_0 / \cos \theta_2)$ $\cos \theta_2, \tan \theta_2, \tan \phi_2 = \tan \theta_2 / (1 - f)$
- 8. $\eta_1 = \arccos(\tan \theta_1/\tan \theta_0)$, $\eta_2 = \arccos(\cos \theta_0 \cos \sigma_2/\cos \theta_2)$
- 9. From (131), $\Sigma \eta = \eta_1 + \eta_2$, $\Sigma \sigma = \sigma_1 + \sigma_2$, $\Delta \sigma = \sigma_1 \sigma_2$, $p = 2 \sin \Sigma \sigma \cos \Delta \sigma$, $\Delta \lambda = \Sigma \eta - A \Sigma \sigma + Bp$, $\lambda_2 = \lambda_1 + \Delta \lambda$

Alternative trigonometric formulae, reference [19].

When $\Sigma \sigma = \sigma_1 + \sigma_2$ has been found

$$\tan a_{2-1} = \cos \theta_0 / (\sin \Sigma \sigma \sin \theta_1 - N \cos \Sigma \sigma), N = \sin \theta_0 \sin \sigma_1 = \cos \theta_0 \cos \alpha_{1-2}$$

$$\tan \phi_2 = (\cos \Sigma \sigma \sin \theta_1 + N \sin \Sigma \sigma) \sin \alpha_{2-1} / (1-f) \cos \theta_0$$

$$\Sigma \eta = \arctan \left[\sin \Sigma \sigma \cos \theta_0 / (\cos \Sigma \sigma - \sin \theta_1 \sin \theta_2) \right]$$

$$= \arctan \left[\sin \Sigma \sigma \sin \alpha_{1-2} / (\cos \theta_1 \cos \Sigma \sigma - \sin \theta_1 \sin \Sigma \sigma \cos \alpha_{1-2}) \right]$$
(133)

We make the following changes for a geodesic arc that will contain no vertex, but will contain a node:

$$\alpha_{2-1} = \pi + \alpha = \pi + \arctan \left(\cos \theta_0 / \cos \theta_2\right),$$

$$U = \sigma_1 - d + P \sin 2\sigma_1 - F \sin 4\sigma_1$$

$$\tan \Delta \eta = \tan \left(\eta_1 - \eta_2\right) = \sin \Delta \sigma \sin \alpha_{1-2} / (\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1-2})$$

$$\Delta \lambda = \Delta \eta - A \Delta \sigma + 2B \sin \Delta \sigma \cos \Sigma \sigma, \text{ from (51)}.$$
(134)

General hemispheroidal direct solution. (First form).

Now the formulae (132), (134) respectively, suggest the following general direct solution over the hemispheroid:

from $U = \sigma_1 - d + P \sin 2\sigma_1 - F \sin 4\sigma_1$

$$\sigma_1 = U + d - P \sin 2\sigma_1 + F \sin 4\sigma_1$$

$$\sigma_2 = U - P \sin 2U + M \sin 4U$$

we have
$$\Delta \sigma = \sigma_1 - \sigma_2 = d + P(\sin 2U - \sin 2\sigma_1) + F \sin 4\sigma_1 - M \sin 4U$$
 (135)

Now $\sin 2U = \sin 2(\sigma_1 - d) \cos 2\Sigma + \cos 2(\sigma_1 - d) \sin 2\Sigma$

$$\sin 4U = \sin 4(\sigma_1 - d)\cos 4\Sigma + \cos 4(\sigma_1 - d)\sin 4\Sigma, \tag{136}$$

where $\Sigma = P \sin 2\sigma_1 - F \sin 4\sigma_1$

With the approximations $\sin x \approx x - x^3/6$, $\cos x = 1 - x^2/2$, where $x = 2\Sigma$, 4Σ and rejecting terms whose coefficients are .3 \times 10°° or less in using the values of P, F, M = P² + Q from (116), we find

$$P \sin 2U = P \sin 2(\sigma_1 - d) + 2P^2 \sin 2\sigma_2 \cos 2(\sigma_1 - d)$$

 $M \sin 4U = (F + P^2) \sin 4(\sigma_2 - d)$ (137)

The values from (137) placed in (135) and use of some trigonometric identities enable us to write

$$\Delta \sigma = \sigma_1 - \sigma_2 = d - 2P \sin d \cos(2\sigma_1 - d) [1 - 2P \cos 2(\sigma_1 - d)] + 2F \sin 2d \cos 2(2\sigma_1 - d)$$

 $\Sigma \sigma = \sigma_1 + \sigma_2 = 2\sigma_1 - \Delta \sigma.$ (138)

From equations (128), (133), and (138) we assemble the formulae for the general direct hemispheroidal solution:

$$\tan \theta_1 = (1 - f) \tan \phi_1, M = \cos \theta_0 = \cos \theta_1 \sin a_{1-2}, N = \cos \theta_1 \cos a_{1-2},$$

$$c_1 = fM, c_2 = (1/4)f(1 - M^2), A = c_1 - 2B, B = (1/2)c_1c_2, D = (1 - c_2)^2 - AM,$$

$$E = c_2 + BM, F = (1/4)c_2^2, P = E/D, Check: AM - 2BM + D + 2E - 4F = 1.$$

$$\sigma_1 = \arccos (\sin \theta_1/\sin \theta_0), d = S/aD,$$

$$\Delta \sigma = d - 2P \sin d \cos (2\sigma_1 - d)[1 - 2P \cos 2(\sigma_1 - d)] + 2F \sin 2d \cos 2(2\sigma_1 - d)$$

$$\cos (2\sigma_1 - d) = \cos 2(\sigma_1 - d) \cos d - \sin 2(\sigma_1 - d) \sin d,$$

$$\cos (2\sigma_1 - d) = 2\cos^2 (2\sigma_1 - d) - 1,$$

$$\Sigma \sigma = 2\sigma_1 - \Delta \sigma, \tan a_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma)$$

$$\tan \phi_2 = -(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin a_{2-1}/(1 - f)M,$$

$$\tan \Delta \eta = \sin \Delta \sigma \sin a_{1-2}/(\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos a_{1-2})$$

$$\Delta \lambda = \Delta \eta - A\Delta \sigma + 2B \sin \Delta \sigma \cos \Sigma \sigma, Check: M = \cos \theta_1 \sin a_{1-2} = \cos \theta_2 \sin (\pi + \alpha_{2-1})$$
We arrange equations (139) as follows for construction of a computing form:
$$\tan \theta_1 = (1 - f) \tan \phi_1, M = \cos \theta_0 = \cos \omega_1 \sin a_{1-2}, N = \cos \theta_1 \cos a_{1-2},$$

$$c_1 = fM, c_2 = (1/4)f(1 - M^2), D = (1 - c_2)(1 - c_2 - c_1 M), P = c_2[1 + (1/2)c_1 M]/D,$$

$$\cos \sigma_1 = \sin \theta_1/\sin \theta_0, d = S/aD, u = 2(\sigma_1 - d), W = 1 - 2P \cos u,$$

$$V = \cos (u + d) = \cos u \cos d - \sin u \sin d,$$

$$\Delta \sigma = d + X - Y, \Sigma \sigma = 2\sigma_1 - \Delta \sigma, \tan a_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma),$$

$$\tan \theta_2 = -(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin a_{2-1}/(1 - f)M,$$

$$\tan \Delta \eta = \sin \Delta \sigma \sin a_{1-2}/(\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos a_{1-2}),$$

$$H = c_1(1 - c_2) \Delta \sigma - c_1 c_2 \sin \Delta \sigma \cos \Sigma \sigma, \Delta \Lambda = \Delta \eta - H, \lambda_2 = \lambda_1 + \Delta \lambda,$$
Check:
$$M = \cos \theta_0 = \cos \theta_1 \sin a_{1-2} = \cos \theta_2 \sin \alpha (\pi + a_{2-1}).$$

Figure 18 shows equations (140) arranged in a computing form.

General hemispheroidal direct solution. (Second form)

With the hope of reducing the number of trigonometric functions involved, a second solution was developed which involves successive solutions on two apheres. The formulae are identical in some instances to those of the first solution. The quantities are the same in some cases but appear in different form with respect to formulae. The principal difference is in obtaining $\Delta \sigma$. The solution from there on is identical. The formulae are:

$$\tan \theta_1 = (1-1) \tan \theta_1 , M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2}, N = \cos \theta_1 \cos \alpha_{1-2}, c_1 = (M, c_2 = Q/4f(1-M^2), \cos \theta_1 = \sin \theta_1 / \sin \theta_0, d = S/b, T = d/\sin d, V = 1 + h \sin^2 \theta_1, h = (1/2f(1/(1-f)^2-1), A = V(1-M^2), \sin \theta_2 = \sin \theta_1 \cos d + N \sin d, B = V \sin \theta_1 \sin \theta_2', C = T = \cos d, L = AC + 2B, D = 4(B + L) = A \cos d, E = 8B(B + DL) \cos d, V = 2AD \sin^2 d, Q = 3CA^2 + E, \Delta a = \sin d [T - Q/2hL + (h^2/16)(P + Q)],$$
(141)

DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given $\phi_1, \lambda_1, \alpha_{1-2}$, S to find $\phi_2, \lambda_2, \alpha_{2-1}$. East longitudes positive; azimuths clockwise from north; no root extraction; only 8-place trigonometric natural tables (as Peters) required for desk work. ______ SPHEROID a ______ m f ____ 1 - f _____ 1 radian = 206264.8062 seconds_____TO____ $\tan \phi_1 = (1 - f) \tan \phi_1$ α_{1-2} $\sin \theta_1$ $\cos \theta_1$ θ_1 $\cos \alpha_{1-2}$ $N = \cos \theta_1 \cos \alpha_{1-2}$ $\sin \theta_0$ $D = (1 - c_2)(1 - c_2 - c_1M)$ c₁ = fM _____ $c_2 = \frac{1}{4}(1 - M^2)f$ $\cos \sigma_1 = \sin \theta_1 / \sin \theta_0$ σ_1 d=S/aD ______(rad) d ______S ________ $\sin d$ ______ $u = 2(\sigma_1 - d)$ ______ $\sin u$ _____ $V = \cos u \cos d - \sin u \sin d$ $Y = 2PVW \sin d$ $X = c_3^2 \sin d \cos d (2V^2 - 1)$ $\Delta \sigma = d + X - Y$ _____(rad) $\Sigma \sigma = 2\sigma_1 - \Delta \sigma$ $\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma)$ _____ α_{2-1} $\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{\sin \alpha_{2-1}}$ sin α_{2-1} (1 - f)M $\sin \Delta \sigma \sin \alpha_{1-2}$ $\tan \Delta \eta = \frac{1}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1-2}}$ **—** Δη $H = c_1(1 - c_2) \Delta \sigma - c_1 c_2 \sin \Delta \sigma \cos \Sigma \sigma$ (rad) H $\Delta \lambda = \Delta n - H$ **CHECK** " $M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_2 \sin (180 + \alpha_{2-1})$ $\lambda_2 = \lambda_1 + \Delta \lambda$

Figure 18. First direct solution computing form.

$$\Sigma \sigma = 2\sigma_1 - \Delta \sigma, \tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma),$$

$$\tan \phi_2 = -(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}/(1 - f)M,$$

$$\tan \Delta \eta = \sin \Delta \sigma \sin \alpha_{1-2}/(\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1-2})$$

$$H = c_1(1 - c_2)\Delta \sigma - c_1c_2 \sin \Delta \sigma \cos \Sigma \sigma, \Delta \lambda = \Delta \eta - H, \lambda_2 = \lambda_1 + \Delta \lambda.$$
(141)

Check:

 $M = \cos \theta_0 \sin a_{1-2} = \cos \theta_2 \sin (\pi + a_{2-1}).$

In essence, one solves for $\Delta \sigma$ through two spherical triangles. With a_{1-2} , θ_1 , and d = S/b one solves for θ_2' in the triangle of Figure 19, by the formula $\sin \theta_2' = \sin \theta_1 \cos d + N \sin d$. With this value of θ_2' , one computes the several quantities including $\Delta \sigma$ and then one solves for a_{2-1} , θ_2 , $\Delta \eta$ in the triangle of Figure 20 as was done in the first general direct solution, equations (146).

The second method appears to be slightly less accurate than the first, and little if anything is saved in computation. Figure 21 shows equations (141) arranged in a computing form.

Conventions for azimuth and longitude

We assume the initial is west of the terminus in the direct solution and then always $0 \le a_{1-2} \le 180^\circ$, $0 \le \Delta \eta \le \Delta \lambda \le \pi$. We find the first quadrant angles v and v given by $\tan u = |\tan a_{2-1}|$, $\tan v = |\tan \Delta \eta|$. If $\tan a_{2-1} > 0$, then $a_{2-1} = 180^\circ + u$; if $\tan a_{2-1} < 0$, then $a_{2-1} = 360^\circ - u$. If $\tan \Delta \eta > 0$, then $\Delta \eta = v$; if $\tan \Delta \eta < 0$, then $\Delta \eta = 180^\circ - v$.

Figure 19. First spherical solution-second direct solution method.

Figure 20. Second spherical solution-second direct solution method.

DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 , α_{1-2} , S to find ϕ_2 , λ_2 , α_{2-1} . East longitudes positive; azimuths clockwise from north; no root extraction; only 8-place trigonometric natural tables (as Peters) required for desk work. ______ SPHEROID a ______ m b _____ ____ $h = \frac{1}{2} \left[\frac{1}{(b/a)^2} - 1 \right]$ 1 radian = 206264.8062 secondsLINE ______TO_____ $\phi_1 = \tan \phi_1 = (1 - f) \tan \phi_1$ m θ_1 _____ $\cos \theta_1$ + _____ $\sin \alpha_{1-2}$ $\cos \alpha_{1-2}$ d(rad) = S/b + _____ d _____ sin d + _____ $M = \cos \theta_1 \sin \alpha_{1-2}$ $T = d/\sin d +$ $\cos d$ $N = \cos \theta_1 \cos \alpha_{1-2}$ $V = 1 + h \sin^2 \theta_1 + \dots$ $A = V(1 - M^2) + \underline{\hspace{1cm}} B = V \sin \theta_1 (N \sin d + \sin \theta_1 \cos d) \underline{\hspace{1cm}}$ C = T - cos d ______ L = AC + 2B _____ $D = 4(L + B) - A \cos d$ $E = 8B(2L + B) \cos d$ $P = 2AD \sin^2 d$ $Q = 3A^2C + E$ P + Q $\Delta \sigma = \sin d \left[T - (h/2) L + (h^2/16)(P + Q) \right] + \sigma_1$ sin Δσ _____ cos Δσ _____ Δσ _____ $\Sigma \sigma = 2\sigma_1 - \Delta \sigma$ cus Σσ_____ $\tan \alpha_{2-1} = M/(N\cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma) \qquad \alpha_{2-1}$ $\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{(1-f)M}$ $\tan \Delta \eta = \frac{\sin \omega \sigma \sin \alpha_{1-2}}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1-2}} - \Delta \eta$ $H = c_1 (1 - c_2) \Delta \sigma - c_1 c_2 \sin \Delta \sigma \cos \Sigma \sigma$ (rad) H _____ $\Delta \lambda = \Delta \lambda = \Delta \eta - H$ $c_2 = \frac{1}{4} f(1 - M^2)$ $M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_2 \sin (180 + \alpha_{2-1})$ $\lambda_2 = \lambda_1 + \Delta \lambda$

Figure 21. Second direct solution computing form.

General hemispheroidal inverse (reverse) solution

The following geodetic length approximation for the inverse (reverse) solution between two points $P_1(\theta_1, \lambda_1)$, $P_2(\theta_2, \lambda_2)$ of the reference ellipsoid, was developed by the author, following the method of Forsyth [20], and published in [18]:

$$S = a[d - (f/4)(Xd - Y \sin d) + (f^2/64)(AX - BY + CX^2 + DXY - EY^2)],$$

$$\cos d = \sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2 \cos \Delta \lambda, \Delta \lambda = \lambda_2 - \lambda_1,$$

$$B = 8d^2/\sin d, A = B \cos d, D = B/2, E = 2 \sin d \cos d, C = d + (1/2)(E - A),$$

$$X = (\sin \theta_1 + \sin \theta_2)^2/(1 + \cos d) + (\sin \theta_1 - \sin \theta_2)^2/(1 - \cos d) = 2 \sin^2 \theta_0',$$

$$Y = (\sin \theta_1 + \sin \theta_2)^2/(1 - \cos d) - (\sin \theta_1 - \sin \theta_2)^2/(1 - \cos d) = X \cos(d_1 + d_2),$$
(142)

where θ'_0 is the vertex of the great elliptic section through P_1 , P_2 (contains the center of the ellipsoid) and d_1 , d_2 are the spherical distances from this vertex to the points P_1 , P_2 ; ($d = d_1 - d_2$). Other trigonometric formulae may be used to obtain the most accurate value of d. Figure 22 shows the spherical elements involved.

 θ_0' is the parametric latitude of the vertex of the great elliptic section. In the spherical triangle NP₁P₂ we have $\cos d = \sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2 \cos \Delta \lambda$. In the right spherical triangles NP₀P₁, NP₀P₂ we have respectively $\cos d_1 = \sin \theta_1/\sin \theta_0'$, $\cos d_2 = \sin \theta_2/\sin \theta_0'$. Thus d_1 and d_2 are analogous to σ_1 and σ_2 , equations (114) and Figure 11, where θ_0 is the parametric latitude of the geodesic vertex.

Figure 22. The spherical triangles used in the inverse approximation.

To assure the best trigonometric solution for d, we adapt mid-latitude formulae, reference [18], page 87. We factor sin d out of each term and write equations (142) in the following form for computing (east longitudes considered positive):

Inverse (Reverse) Solution Formulae

$$\tan \theta_{1} = (1 - f) \tan \phi_{1}, i = 1, 2. \ \theta_{m} = (1/2)(\theta_{1} + \theta_{2}), \Delta \theta_{m} = (1/2)(\theta_{2} - \theta_{1}),$$

$$\Delta \lambda = \lambda_{2} - \lambda_{1}, \Delta \lambda_{m} = (1/2)\Delta \lambda, H = \cos^{2} \Delta \theta_{m} - \sin^{2} \theta_{m} = \cos^{2} \theta_{m} - \sin^{2} \Delta \theta_{m},$$

$$L = \sin^{2} \Delta \theta_{m} + H \sin^{2} \Delta \lambda_{m} = \sin^{2} (1/2)d, 1 - L = \cos^{2} (1/2)d, \cos d = 1 - 2L,$$

$$U = 2 \sin^{2} \theta_{m} \cos^{2} \Delta \theta_{m} / (1 - L), V = 2 \sin^{2} \Delta \theta_{m} \cos^{2} \theta_{m} / L, X = U + V,$$

$$Y = U - V, T = d/\sin d, D = 4T^{2}, E = 2 \cos d, A = DE, B = 2D,$$

$$C = T - (1/2)(A - E); Check: C - (1/2)E + AD/B = T.$$

$$n_{1} = X(A + CX), n_{2} = Y(B + EY), n_{3} = DXY, \delta_{1}d = (1/4)f(TX - Y),$$

$$\delta_{2}d = (f^{2}/64)(n_{1} - n_{2} + n_{3}), S_{1} = a \sin d(T - \delta_{1}d), S_{2} = a \sin d(T - \delta_{1}d + \delta_{2}d),$$

$$F = 2Y - E(4 - X), M = 32T - (20T - A)X - (B + 4)Y,$$

$$G = (1/2)fT + (f^{2}/64)M, Q = -(FG \tan \Delta \lambda)/4, \Delta \lambda'_{m} = (1/2)(\Delta \lambda + Q),$$

$$c_{1} = -\sin \Delta \theta_{m}/(\cos \theta_{m} \tan \Delta \lambda'_{m}), u = arc \tan |c_{1}|, a_{1} = v - u,$$

$$c_{2} = \cos \Delta \theta_{m}/(\sin \theta_{m} \tan \Delta \lambda'_{m}), v = arc \tan |c_{2}|, a_{2} = v + u,$$

$$c_1$$
 c_2 a_{1-2} a_{2-1}

+ a_1 $360 - a_2$

+ + a_2 $360 - a_1$

- a_1 a_2 a_2 a_3

- a_2 a_3

- a_2 a_3

+ a_3 a_4 a_5

The principal difference in equations (143) and those of reference [18] page 87, is the arrangement for P_1 to be always west of P_2 , east longitudes positive, and the addition of azimuth equations to second order in f. The azimuths are an adaptation of Guggenheim's equations, reference [23], where conversion has been made to parametric latitude and terms transformed into the parameters used in the length computations. The arrangement for identifying the azimuths without the quadrant search, as displayed in the last of (143), will be generated in a discussion of azimuths to follow.

Azimuth determination in the inverse solution

With the point P_1 always west of P_2 , east longitudes positive, we must establish some conventions in order to determine the azimuths from north. In a spherical triangle P_1NP_2 , as shown in Figure 23, we have the corresponding parts as indicated: $B = a_{1-2}$, $A = 360 - a_{2-1}$, $a = 90 - \theta_1$, $b = 90 - \theta_2$, $C = \Delta \lambda'$ and

$$(1/2)(A+B) = 180^{\circ} + (1/2)(a_{1-2} - a_{2-1}), (1/2)(A-B) = 180^{\circ} - (1/2)(a_{1-2} + a_{2-1}),$$

$$(1/2)(a-b) = (1/2)(\theta_2 - \theta_1) = \Delta\theta_m, (1/2)(a+b) = 90^{\circ} - (1/2)(\theta_1 + \theta_2) = 90 - \theta_m,$$

$$(1/2)(a+b) = (1/2)\Delta\lambda' = \Delta\lambda'_m.$$
(144)

From Guass's equations, reference [19] page 162:

$$\tan [(1/2)(A+B)] = \cos [(1/2)(a-b)]/\cos [(1/2)(a+b)] \tan [(1/2)C],$$

$$\tan [(1/2)(A-B)] = \sin [(1/2)(a-b)]/\sin [(1/2)(a+b)] \tan [(1/2)C].$$
(145)

The values from (144) placed in (145) give

$$\tan \left[(1/2)(a_{1-2} + a_{2-1}) \right] = -\sin \Delta\theta_{m} / \cos \theta_{m} \tan \Delta\lambda'_{m} = c_{1},$$

$$\tan \left[(1/2)(a_{1-2} - a_{2-1}) \right] = \cos \Delta\theta_{m} / \sin \theta_{m} \tan \Delta\lambda'_{m} = c_{2}.$$
(146)

The formulae (146) were given with equations (143) where $\Delta \lambda'_m$ is the mean longitude difference as corrected to account for the ellipsoid.

Since $|\theta_m| = |(1/2)(\theta_1 + \theta_2)| \le 90^\circ$ and $|\Delta\theta_m| = |(1/2)(\theta_2 - \theta_1)| \le 90^\circ$, then always $\cos(\pm\theta_m) > 0$, $\cos(\pm\Delta\theta_m) > 0$. Always, since east longitudes are positive, with P_1 west of P_2 $\Delta\lambda > 0$, $\Delta\lambda_m > 0$, $\Delta\lambda_m' > 0$. Hence the signs of c_1 and c_2 , in equations (146) depend only on the signs of $\sin\Delta\theta_m$ and of $\sin\theta_m$ respectively. Now Figure 24 shows all the possible azimuth situations, $\theta_1 \neq \theta_2$, from which the corresponding signs of $\sin\Delta\theta_m = \sin\left[(1/2)(\theta_2 - \theta_1)\right]$, $\sin\theta_m = \sin\left[(1/2)(\theta_1 + \theta_2)\right]$ can be determined. A summary of sign conventions as obtained from Figure 24 and equations (146) is given in Table 4.

If we find the first quadrant angles u and v corresponding to $\tan u = |c_1|$, $\tan v = |c_2|$ and then form $a_1 = v - u$, $a_2 = v + u$, we may determine all azimuths from Table 5.

Figure 23. Azimuths in the equivalent unbesied talands.

Pigus 24. Ashroth aboutions over the hemispheroid.

Table 4. Summary of azimuth sign conventions.

Figure	Sin $\Delta\theta_m$	Sin θ_m	Latitude Conditions	₫÷ j	ε_2
IA, IIA	+	+	$\theta_2 > 0, \theta_2 > \theta_1 $	•	*
IB, IIB	-	+	$\theta_1 > 0, \theta_1 > \mid \theta_2 \mid$	+	+
IIIA, IVA	+	-	$\theta_1 < 0, \theta_1 > \theta_2$	-	-
IIIB, IVB	-	-	$\theta_2 < 0, \theta_2 > \theta_1$	+	-

Table 5. Azimuth determination in the inverse solution.

Figure	Latitude Conditions	c_1	c ₂	a ₁₋₂	a_{2-1}
IA,IIA	$\theta_2 > 0$, $\theta_2 > \theta_1 $	-	+	a_1	$360 - a_2$
IB, IIB	$\theta_1 > 0$, $\theta_1 > \theta_2 $	+	+	a ₂	360 - a ₁
IIIA, IVA	$\theta_1 < 0, \theta_1 > \theta_2$	-	-	$180 - a_2$	$180 + a_1$
IIIB, IVB	$\theta_2 < 0, \theta_2 > \theta_1$	+	-	180 - a ₁	180 + 42

The last four columns of Table 5 are given with equations (143) and in effect eliminate the quadrant search since it has been done in advance. Figure 25 shows equations (143) arranged in a computing form.

Direct and inverse solutions of maximum spheroidal geodesics, node to node, vertex to vertex

Vertex to vertex. The direct and inverse are identical since the end points of the arc are the vertices and the longitude difference and length are given by equations (33) or (54). Azimutha are 90° and 270°.

Node to node. For the direct, $\theta_0 = 90^\circ - \alpha_{1-2}$, longitude and length are then given by equations (33) or (54). The back azimuth is given by $\alpha_{2-1} = 270^\circ + \theta_0$. For the inverse, we are given $\Delta\lambda_0 = \lambda_2 - \lambda_1$, i.e. the end points are $P_1(0, \lambda_1)$, $P_2(0, \lambda_2)$ on the equator, and we have two cases:

- 1. $\Delta\lambda_0 \le \pi(1-1)$. The distance P_1P_2 is $S = a\Delta\lambda_0$ and azimuths are 90° and 270°.
- 2. $\pi(1-f) < \Delta \lambda_0 < \pi$. The nodes are in the respective antipodal zones. In the first of equations (33) we place $\sin^2 \theta_0 = 1 \cos^2 \theta_0$ and write

$$(1 - \Delta \lambda_0/\pi) = f(1 - f/4 - f^2/16) \cos \theta_0 + (1/4)f^2(1 - f/2) \cos^2 \theta_0 + 3f^4 \cos^2 \theta_0/16, \tag{147}$$

Using $1/(1-x) = 1 + x + x^2 + ...$, we may write

$$D = (1/f)(1 - f/4 - f^4/16) = (1/f)[1 + f/4 + 2(f/4)^2 + 3(f/4)^3 + 4(f/4)^4 + \dots]$$

We then write (147) as

$$\cos \theta_0 + u \cos^2 \theta_0 = v = D(1 - \Delta \lambda_0/\pi), u = D(1/4)f^2(1 - f/2) = f/4 - (f/4)^2,$$

$$D = (1/f)[1 + f/4 + 2(f/4)^2],$$
(148)

where unnecessary terms have been omitted.

Finally the formula for v is reversed in (148) and with the equation for S₀ from (33) we write for the inverse solution

$$cos \theta_{\theta} = v - uv^{3}, v = D(1 - \Delta\lambda_{\theta}/\pi), u = f/4 - (f/4)^{3}, D = (1/f)\{1 + f/4 + 2(f/4)^{2}\},$$

$$a_{1-1} = 90^{\circ} - \theta_{\theta}, a_{2-1} = 270^{\circ} + \theta_{\theta}, S_{\theta} = a\pi\{1 - 2(f/4)A + (f/4)^{2}B + 2(f/4)^{3}C\},$$

$$A = I + cos^{2}\theta_{\theta}, B = (1 + 3 cos^{2}\theta_{\theta})(1 - cos^{2}\theta_{\theta}), C = (1 + 2 cos^{2}\theta_{\theta} + 5 cos^{4}\theta_{\theta}).$$

$$(1 - cos^{2}\theta_{\theta}).$$

INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 ; ϕ_2 , λ_2 to find S, α_{1-2} , α_{2-1} . Azimuths clockwise from north; east longitudes positive; no tables except 8-place natural trigonometric (Peters); no root extraction.

	SPHEROID a	m	bn			
1 - f = b/a	%f		¼f			
f²/64		1 radian =	206264.8062 seconds			
.	1		λι			
φ ₂			- λ ₂			
$tan \phi_1$			$\Delta \lambda = \lambda_2 - \lambda_1$			
$\tan \phi_2$	·		$\Delta\lambda_{m} = \frac{1}{2}\Delta\lambda$			
θ ₂			sin Δλ _m			
θ1	-		 tan Δλ			
$\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2) $	"		$\cos \theta_{m}$			
			cos Δθ _m			
$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m$		$\cos d = 1 - 2L$				
$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L)$. d	, "			
$V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L \underline{\hspace{1cm}}$	sin d		- d (rad)			
X = U + V	T = d/sin d		E = 2 cos d			
Y = U - V	D = 4T ²		B = 2D			
A = DE	C = T - ½ (A - E)_		. CHECK C - 1/2 E + AD/B = T			
	•		n; * DXY			
$\delta_1 d = Kf(TX - Y)$		$\delta_2 d = (f^2/64)(n$	ı - n ₂ + n ₃)			
$S_t = a \sin d (T - \delta_1 d)$	m	S ₂ = a sin d (T	- 5, d + 52d)			
F = 2Y - E (4 - X)		M = 32T - (20)	Γ - A) X - (B + 4) Y			
G = 1/1T + (f2/64) M		Q = - (FG tan &	١٨)/4			
$\Delta \lambda_{m}^{\prime} = \% (\Delta \lambda + Q)$		tan $\Delta\lambda_{m}$				
y = arctan c ₂		$c_2 = \cos \Delta \theta_m / (\sin \theta_m \tan \Delta \lambda_m')$				
u = arctan lc ₁ l		$c_1 = -\sin \Delta \theta_m / ($	cos θ _m tan Δλ _m)			
a, = v - u		Q2 = V + U				
<u>c₁ c₂ α₁₋₂ .</u>		360 - a ₁				
+ + a;						
180 - az		18C + a1				
+ - 180 - a1		180 + oz				

Piguro 25. Inverse poddien computation form

Now when $\theta_0 = 0$ in (149) we get B = C = 0, A = 2, $S_0 = a\pi(1 - f)$, $v = Df = 1 + f/4 \div 2(f/4)^2$, $uv^3 = f/4 + 2(f/4)^2$, $\cos \theta_0 = v - uv^3 = 1$, $a_{1-2} = 90^\circ$, $a_{2-1} = 270^\circ$, which is case 1 with the equality sign and $\Delta\lambda_0 = \pi(1 - f)$. When $\theta_0 = \pi/2$, $\Delta\lambda_{\pi/2} = \pi$, v = 0, $uv^3 = 0$, $\cos \theta_0 = 0$, A = B = C = 1, $S_{\pi/2} = a\pi(1 - f/2 + f^2/16 + f^3/32)$, the meridian semilength, see equations (34).

Direct and inverse computation of the ACIC 6000 mile lines

To begin the evaluation of equations (140) and (143), as arranged in the forms of Figures 18 and 25, the nine ACIC 6000 mile lines were computed. The results are compared in Table 6 and the actual computations displayed in Appendix 3. Note, for the meridional limiting case of the direct solution, that when $\theta_0 = 90^\circ$, then $\cos \sigma_1 = \sin \theta_1 = \cos (90^\circ - \theta_1)$ or $\sigma_1 = 90^\circ - \theta_1$, $\sigma_2 = 90^\circ - \theta_2$, $N = \cos \theta_1$, $\Delta \sigma = \sigma_1 - \sigma_2 = \theta_2 - \theta_1$. Using the identity $\cos \theta_1 \sin \alpha_{1-2} = -\cos \theta_2 \sin \alpha_{2-1}$, we have

$$\tan \phi_2 = -\frac{(\sin \theta_1 \cos \Delta \sigma + \cos \theta_1 \sin \Delta \sigma) \sin \alpha_{2-1}}{-(1-f)\cos \theta_2 \sin \alpha_{2-1}} = \frac{\sin (\theta_1 + \Delta \sigma)}{(1-f)\cos \theta_2} = \frac{\sin \theta_2}{(1-f)\cos \theta_2} = \frac{\tan \theta_2}{(1-f)},$$

and $a_{1-2} = 0$, $a_{2-1} = 360^{\circ}$, $\theta_2 = 90^{\circ} + \sigma_1 - \Delta \sigma$. Hence in the limit $\tan \phi_2 = \tan (90^{\circ} + \sigma_1 - \Delta \sigma)/(1 - f)$.

Table 6 shows that good results were obtained using only 8-place tables, (Peters). The maximum difference in length for the control value of 9655977.366 meters is -. 189 meter, the minimum difference is +.004 meter, and the mean difference for the nine line positions is -.044 meter. All the angular values are flat checks or at most .003 second from the control value. These results are better, at 6000 miles, than the adopted criteria (1 meter, .035 sec.) by a factor of 10 for both distance and angular quantities.

Complete check of direct and reverse solutions over a hemispheroidal geodesic

In order to test for all the cases as delineated in Table 2, we construct a geodesic model as given in Figure 26 containing the given initial and terminal points of the ACIC 6000 mile check line having the largest vertex parametric latitude (excluding the meridian), i.e.

I (initial)
$$\phi_1 = 70^\circ$$
, $\theta_1 = 69^\circ$ 56' 14".590, $\lambda_1 = -18^\circ$
T (terminus) $\phi_2 = 17^\circ$ 08' 38".317, $\theta_2 = 17^\circ$ 05' 21".296, $\lambda_2 = 114^\circ$ 18' 43".800 $\phi_0 = 76^\circ$ 00' 26".541, $\theta_0 = 75^\circ$ 57' 42".053, S = 965.5977.366 meters (150) $\alpha_{1-2} = 45^\circ$, $\alpha_{2-1} = 345^\circ$ 17' 56".277

From our geodesic model, Figure 26, we choose the arcs:

V_1P_1	$\Delta\lambda_1$	Si	A vertex end point	
V_1V_2	Δλ.	S.	Contains two vertices (end points)	
P _i N _i	۵۸	S ,	A node end point	
N ₁ P ₂	Δλ	S,	A node end point	
P ₁ P ₂	۵۸2 + ۵۸3	S, + S,	Contains a sode	(151)
Pal	Δλ.,	S ₄	Contains neither node nor vertex	
P ₁ P ₃	۵۱.	S.	Contains a node and a vertex	
V ₂ T	$\Delta\lambda_1 + \Delta\lambda_4$	S ₁ + S ₄	A vertex end point	
П	$\lambda_1 - \lambda_1 = 2\Delta\lambda_1 + \Delta\lambda_4$	25, + 5,	Given ACIC line-contains a vertex	
TN ₁	AX,	S,	A node end point	
N ₁ N ₂ = V ₁ N ₁ + N ₁ V ₂	Δλ	S.	Contains two nodes (end points)	

GETGE	5				STATION			S(meters)	48(m)	× 1-2	ç		42-1
> ~ %	9	100 180 D		830 11	.162°		M	9655977,366		0	,	3600	, ! , ! :
3				•		ļ t		T11	189	0	1	- 360	•
40 18		2	2	45,785	791							360	
•			:	. 786.	162					ĺ		360	!
3	_	:	•	1	1	•		1650	015	0	!	360	:
8	=======================================	2	22	64.908	162							360	
3			•	8 .	2 ·	1 1	1 1	316*	+.152		:	360 360	
	•	3	3	261	£	25 26.	26.869			4		281	01 12.685
		Δ.					990						
3	_	1	1	1 1 1 .	:	:			*0	44° 59	29,999		1
0	=	2	10	45.6	102	23.	29.621			45		318 2	23 43,000
3	—	• ₩	1 1	3		1 1	.822		107	45	•		,
8	=	17		36.517	**	18 45.	43.800			45		345	17 56.277
ê		' ! ⊃ ⊷		916.	:	•	3	90£ •····	062		•	,	ļ
10	2	٥	2	55.629	8	47 05.	05,259			06		279	57 15,199
3			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1	•	107	545	021	06	00,002	:	•
0		-	8	4	8	27 01.	01.115			06		309	51 55,419
3	-				, I , I		4	370	• 00	89 59	59,998		•
6	:	8	25	17.426	2	50 8.	04.891			06		339	54 57,211
(8)	*	A •		. 426 .			.892	•	•				

Figure 26. Geodesic exactions ACIC 6600 mile lies (elegated)

For control we compute $\Delta\lambda_0$, $\Delta\lambda_1$, $\Delta\lambda_2$, $\Delta\lambda_3$, $\Delta\lambda_4$ and S_0 , S_1 , S_2 , S_3 , S_4 from equations (47)-(54). This provides incidentally a check for the ACIC line (150). The computations are included in Appendix 3. The values obtained are:

	0	•	*		meters	
$\Delta\lambda_{0}$	179	51	07.553	So	20001779.136	
$\Delta\lambda_1$	46	46	49.167	S_1	1611471.024	
$\Delta\lambda_2$	43	08	44.619	S ₂	8389418,545	(152)
Δλ ₃	4	23	<i>3</i> 9,1₫6	S_3	1956383,534	
$\Delta \lambda_{4}$	38	45	05.464	S ₄	6433035.010	

From the longitude values of (152) and the given line (150) we have the coordinates of the points:

Point		θ			λ		
	0	,	n	0	,	,	
V_1	- 75	57	42,053	- 151	04	18.387	
$\mathbf{P_1}$	- 69	56	14,590	- 104	17	29.220	
N_1	0			- 01	38	44.610	
P_2	+ 17	05	21.296	- 56	45	05.464	
1	+ 69	56	14.590	- 18	0	0	(153)
V_2	+ 75	57	42,053	· 28	46	49.167	
P ₃	+ 69	56	14.590	+ 75	33	38.334	
T	+ 17	05	21.296	+ 114	18	43.798	
N ₂	0			+ 118	42	22,944	

From (150), (152) we may write the values for (151) including azimuths:

Line		Δλ	<u>. </u>	S (meters)			a ₁₋₂		a3-1	
	•	,	*		•	,	"	•	,	<u>"</u>
V_1P_1	46	46	49.167	1611471.024	90			225		
V_1V_2	179	51	07.553	20001779,136	90			270		
P_1N_1	43	80	44.F°)	8389418.545	45			194	02	17.947
N_1P_2	4	23	39.146	1956383.534	14	02	17.947	194	42	03.723
P_1P_2	47	32	23.756	10345802.079	45			194	42	03.723
P ₂ 1	38	45	05.464	5433035.010	14	42	03,723	225		(154)
P_1P_3	179	51	77.553	29001779,136	45			315		
V ₂ T	85	31	54.631	8044506.034	90			345	17	56.277
11	132	18	43.798	9655977.058	45			345	17	56.277
TN ₂	4	23	39.146	1956383.534	165	17	56.277	345	57	42.053
N_1N_2	179	51	07.553	20001779,136	14	02	17.947	345	57	42.053

By coroparing the properties of the lines, as delineated in (151), with Table 2, it is seen that the computation of hemispheroidal geodesics and arcs of (154) is sufficient. Note that the lines V_1V_2 , P_1P_3 , N_1N_2 are maximum hemispheroidal geodesics under the unique shortest distance property, i.e. node to

node; vertex to vertex; points in equal but opposite signed latitudes separated by maximum longitude (that between successive nodes or successive vertices).

We first dispose of the computation of the equal maximum hemispheroidal geodesics V_1V_2 , N_1N_2 , P_1P_3 .

 V_1V_2 . Since the direct and inverse are identical, the end points of the arc are the vertices $\pm \theta_0$; one may compute A and D from (49) and then $\Delta\lambda_0$ and S₀ from (54). This has already been done and the computations are given in Appendix 3. Azimuths are always $a_{1-2} = 90^\circ$, $a_{2-1} = 270^\circ$ (second vertex always east of the first).

Note in equations (143) that the term $T = d/\sin d$ grows very large when $d \to \pi$. Now from equations (142) with $\theta_2 = -\theta_1 = -\theta_0$, $\Delta\lambda_0 = \pi - 2\lambda_0$ we have:

$$-Y = X = 2 \sin^2 \theta_0' = 4 \sin^2 \theta_0 / (1 - \cos d) = 2 \sin^2 \theta_0 / \sin^2 (d/2).$$

$$\tan \theta_0' = \sin \theta_0 / \cos \theta_0 \cos \lambda_0, \cos (d/2) = \cos \theta_0 \sin \lambda_0, \cos d = 2 \cos^2 (d/2) - 1,$$

$$S = a [d - (f/4)X(d + \sin d) + (f^2/64)X \{X(d - \sin d \cos d) + 4d^2(2 - X) \cot (d/2)\} \}$$
 (155)

where θ_0' is the vertex parametric latitude of the great elliptic section, see Figure 27.

The great elliptic section containing the geodesic vertices P_1 , P_2 has the antipodal vertices P_1' , P_2' and passes through the point Q as shown. Its plane has the equation $\tan\theta = \tan\theta_0$ sec λ_0 cos λ , $\Delta\lambda_0$, as given by equations (33), is related to λ_0 by $\Delta\lambda_0 = \pi - 2\lambda_0$, and $\alpha_0 = \pi/2 - \theta_0$. The arc lengths P_1QP_2 , QP_2R , Q'PR' are all equal maximum hemispheroidal geodesics under the shortest distance property.

Figure 27. The great elliptic section containing two consecutive vertices of the geodesic.

From the control computations, Appendix 3, $\Delta\lambda_0 = 179^\circ$ 51' 07".554, and hence $\lambda_0 = (1/2)(\pi - \Delta\lambda_0) = 4' 26".223$;

```
\sin \lambda_0 = .00129069, \sin \theta_0 = .97013371, \cos \theta_0 = .24257076, \cos (d/2) = \cos \theta_0 \sin \lambda_0

= .00031308,

\sin (d/2) = .999999995, \sin d = 2 \sin (d/2) \cos (d/2) = .00062616, \cos d = 2 \cos^2 (d/2) - 1

= -.99999980,

\cot (d/2) = \cos (d/2)/\sin (d/2) = .00031308, d = 179^\circ 57' 50''.846 = 3.140966498 radians,

d - \sin d \cos d = d + \sin d = 3.141592658 = \pi, a = 6378206.4 meters

S = a(3.140966498 - .005011785 + .000001999) = (6378206.4)(3.135956712)

= 20001779.171 \text{ m},
```

which is within .035 meter of the control, Appendix 3.

 N_1N_2 . For the direct solution, $\theta_0 = 90^{\circ} - a_{1-2}$. A, D are computed from (49) and $\Delta\lambda_0$, S₀ from (54). For the inverse we are given $\Delta\lambda_0$, whence we have two possible cases as described in (147). For our case the second solution is appropriate and we solve for θ_0 and then S₀ from equations (149). The calculations are given in Appendix 3. Note that there are two solutions symmetric with respect to the equator for this reverse problem.

 P_1P_3 . For the direct solution we are given θ_1 , a_{1-2} and we have θ_0 from equation (10), $\cos \theta_0$ = $\cos \theta_1 \sin a_{1-2}$. $\Delta \lambda_0$, S_0 are then given by (54) after computing A and D from (49). $\theta_2 = -\theta_1$, $a_{2-1} = 360^{\circ} - a_{1-2}$. For the reverse solution we are given θ_1 , θ_2 , λ_1 , λ_2 where $\theta_2 = -\theta_1$, $\Delta \lambda = \lambda_2 - \lambda_1$ = $\Delta \lambda_0$. From $\Delta \lambda_0$ we may solve for $\cos \theta_0$ and then S_0 from equations (149). Then $\sin a_{1-2} = \cos \theta_0/\cos \theta_1$, $a_{2-1} = 360^{\circ} - a_{1-2}$. Since there are two solutions (see Figure 13) the alternative azimuths are $a'_{1-2} = 180^{\circ} - a_{1-2}$, $a'_{2-1} = 180^{\circ} + a_{1-2}$.

Comparison of direct and inverse computations of the geodesic line segments of (154) are given in Table 7, and the computations are included in Appendix 3. Over lengths of 1.5, 2, 6, 8, 9.5, 10, 20 megameters, maximum length error was .26 m, and maximum angular error was .018 second. All values were a factor of 2 to 10 better than the assumed criteria.

A geometric limitation in the inverse solution

Since $T = d/\sin d$ grows large when $d \to \pi$, some increase in accuracy is made for long almost antipodal geodesic arcs by returning sin d to the formulae, that is using them in the form of equations (142). However, when two spheroidal points are in nearly the same small latitude, and separated by maximum hemispheroidal geodetic longitude difference, as shown in Figure 28, a limitation is imposed which is purely geometric. An examination of Figure 28 shows that the separation of geodesic and great elliptic vertices may be large where P_1 , P_2 are in the same latitude and near the equator (in the antipodal zones), because the great elliptic section through P_1 , P_2 always contains the diameter AA', while the geodesic does only in the limiting case of the meridian. In fact for the complete hemispheroidal geodesic, node to node, the great elliptic section coincides with the equator, and $S = a\Delta\lambda$, for all such hemispheroidal geodesics as given by equations (142) but which is true for only the limiting case of the geodesic equatorial limiting arc when $\Delta\lambda = \pi(1 - f)$, see equations (34).

Are	1		4		` '	쉭		10	્તી		~	J	S(meters)	יי ר	S	% 1	2		اج		
(41 ^P)	CO CO	-76	-76 00 26 .6 41	1 %	151	. 42 . 18.	18,387	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00 00 00 00	_ 7	. g . 17 •	29.220 29.232	1611471	.024	a 6	00 00	00.00	2222	-888	1	00,000 00,012 00,006
(V ₁ V ₂	(V ₁ V ₂)Centrol -76 00 26,641 Direct	-76	00 26.		151	98. 18.	18,387	+76 0	00 26,641 26,641	+	28 46	49,167	20001779,136	136	! ₹' !	06	j , I	270		:	
(P ₁ H ₁	(P ₁ H ₁)Control -70 Direct Inverse,	2			. 1	17 29.	29,220	00	00 00*010		61 08	44.610	8389418	¥ 55.	2	45 45 00	00,001	. 194	4 02	, 2 2 2	2 2 2
A P	(M ₁ P ₂)Control Direct Inverse	· •	1	-, ·¹	្ត់ថ	, 44 80	44,610	+17 0	08 38,317	. !	56 45	05,464	1956383			14 02	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 42	. 60	725 726 725
(Pla)	(P1P2)Control Direct inverse	R	i i	€ <mark>.</mark> F	181	17 29.	. 220	+17 0	8 58,317 ,328	, 1	56 45	. 468 . 465	1034580	2.079. 1.820	26.	45 00	00.001	194	, 4 , 2		03, 723, 724, 724
C51	(P ₂ I)Control Direct Inverse		+17 06 38,517	- 713	26	'so s	05.464	+70 0	00 00*000	1 1	18 17 59	59,982	6433035,010	5.010 4.783	·	14 42	, S	723. 225 , 225 , 225	n in in	. 00°01	710
(P1P3)	(P1P3)Control	2) 	. I	100	17 29.	220	55	! . ! !	•••	75 33	38,334	20001777,136	136	·	່ ຊື່	! !	315	! !!! !!!	•	T 1
(121	MAE	4.4	+76 00 26,641		8 2	46 49.	49.167	+17 08	8 38,317	•	114 18	43, 798	8044506		8	90	59,999		5 17	9	56.277 .276 .277
£ 13)Comtrol +70 Direct Inverse	24	, I	ا - ا ا ا	92	,	-₹! 	+17 08	6 38,517	7 +11	14 18	43,798	9655977	_.	2	45	, , !	1	5 17	, SC	56.277 276 .276
. E	a. 8.	•17	06 58,517	17 -	1 2 1	18 45,	8	00	; ;	+118	18 42	22,944	1956383.9	.534 .521	8	65 17	56.277	7 7 36.3	. 52	\$	42.053 052 053
(m ₁ m ₂	(N, N,)Comtrol	0 .		. 1'	ر ا	8 4	910	• • '		+118	18 42	•	22,944 20001779,136	136		14 02	17,947,34	X	5 37	24	42,053

Takin 7. Summan of commissions for the homispheroidal moderle contribute on ACIC 6888 with term

The plane of the great elliptic now has for equation $\tan\theta=\tan\theta_1\sin\lambda/\sin\lambda_1$. Hence the vertex of the great elliptic is given by $\tan\theta_0=\tan\theta_1/\sin\lambda_1$.

Figure 28. The geodesic and great elliptic section through two points in the came intitude.

This geometric limitation applies also, unfortunately, to the inverse solution as given in reference [4]. This geometric singularity is also inherent in any solution based on the normal section for when two points on the geodesic are near the equator (same latitude) separated by maximum hemispheroidal geodesic longitude difference, the plane common to the normals at the geodesic arc end points, containing the common plane section vertex, lies near the equator, while the geodesic vertex is near the pole.

To obtain some estimates of this limitation, hemispheroidal geodesics, vertex to vertex, were computed from equations (33) and (155) simultaneously for several geodesic vertex parametric intitudes as shown in the summary, Table 8. From Figure 28 we have the vertex parametric intitude of the great

•	~	Top line: So	from equations (33)	me (33)				
000 00 00	180 06 00,000	(1) 20057726, 369 20057726, 369	(2)(£) -33964,700 -33964,700	(3)(£' +14,393 +14,393	^{\$)} (4)(£ +.024	(2)(f) (5)(f ²) (4)(f ³) £ (meters) -53964,700 +14,393 +.024 20003776,086 -53964,700 +14,395	8° = 20	
.	179 56 48,700	20037726, 369 20037210, 774	-34222, 700 -35706, 701	+14,609	+.025	20003518,303 20003518,248	• 00	+, 003
82	179 50 51.684	20057726,369 20053179,542	-36239,904 -31689,501	+16,127	+.026	20001502,618 20001502,574	8	+. 048
0	179 41 42,315	20037726,369 20020754,853	-42455,876 -25473,570	+18,891 + 8,141	+, 033	19995289,417 19995289,424	+.01	+,316
% 44 08.197	179 38 52,412	20037726, 369 20015095, 865	45286, 267 -22645, 205	+19,190	+.036	19992459,328 19992459,128	- 50	+,458
5	179 34 07,309	20037726, 369 20003775, 971	-50947,051 -16982,4 70	+17,991	• 040	19986797, 349 19986797, 219	.13	+,731
S.	179 26 17.946	20037726,369 19986790,226	-99438, 226 - 8491,510	+11.694	+,032		*• 08	+.951
15	179 24 38,205	20037726,369 19974351,003	-65654,198 2275,260	+ 5.663 + 0.120	4. 012		÷.02	.+.683
n	179 25 51,605	20057726, 369 19970513, 340	-67671,401 - 258,007	+ 0.435 + 0.003	÷ 001		• 06	+,252
•	179 25 25,251	20037726,369 20037726,369 Clarke 186	17726.369 -67929.401 17726.369 -67929.401 Clarke 1866 Ellipsof			19969796, 968 19969796, 968	•	0

本のでは

elliptic section given by $\tan \theta_0' = \tan \theta_1/\sin \lambda_1$ and with $\theta_2 = \theta_1$ we have from (47), (128), and (142) the following formulae:

```
\theta_0' = \arcsin \left( \sin \theta_1 / \cos d/2 \right) = \arctan \left( \tan \theta_1 / \sin \lambda_1 \right), X = Y = 2 \sin^2 \theta_0',
\sin d/2 = \cos \theta_1 \cos \lambda_1,
\cos d = 1 - 2 \sin^2 d/2, \lambda_1 = \delta \lambda_1 + \pi/2 - \Delta \lambda_0/2, \Delta \lambda_1 = \pi - 2\lambda_1, \Delta \lambda_0 = \theta_0 - \theta_0',
S_1 = a \left[ d - (f/4)X(d - \sin d) + (f^2/64)X \left\{ X(d - \sin d \cos d) - 4d^2 \left( 1 - \cos d \right) (2 - X) / \sin d \right\} \right],
\delta \lambda_1 = \gamma - A\beta - B \sin 2\beta, \gamma = \arctan \sin \left( \tan \theta_1 / \tan \theta_0 \right), \beta = \arctan \sin \left( \sin \theta_1 / \sin \theta_0 \right),
\delta S_1/a = D\beta - E \sin 2\beta - F \sin 4\beta, M = \cos \theta_0, c_1 = fM, c_2 = (1/4)f(1 - M^2), A = c_1 - 2B,
B = c_1 c_2/2, D = (1 - c_2)^2 - AM, E = c_2 + BM, F = c_2^2/4, a_{1-2} = \arcsin \left( \cos \theta_0 / \cos \theta_1 \right),
```

From Table 8 we have S_0 and $\Delta\lambda_0$ for the hemispheroidal geodesics with vertex parametric latitudes $\theta_0 = 5, 15, 30, 45, 60, 75, 85$ degrees. The values of $\Delta\theta = \theta_0' - \theta_0$ given there are for the hemispheroidal geodesic, vertex to vertex. Since the length of the geodesic, node to node, is the same and longitude difference is the same, distances and longitude differences were computed between $P_1(\theta_1, \lambda_1)$ and $P_2(\theta_1, \pi - \lambda_1)$, Figure 28, as follows:

With the values of $\theta_1 = 30'$, 1° , 5° , 10° for each value of θ_0 , the values of $\delta\lambda_1$, δS_1 were computed from their formulae as given in (156). Thus $\lambda_1 = \delta\lambda_1 + \pi/2 - \Delta\lambda_0/2$, $\Delta\lambda_1 = \pi - 2\lambda_1$, $S = S_0 - 2\delta S_1$ were correspondingly determined which define the control for each geodetic line P_1P_2 . Then θ_0' and S_1 were computed from (156) and the corresponding values of $\Delta S = S_1 - S$, $\Delta \theta_0 = \theta_0 - \theta_0'$, $S' = S_1/\Delta S$ obtained. Only geodesic arcs with end points in the same latitude and separated by maximum geodesic longitude were thus obtained.

Table 9 gives the results of the computations. Figure 29 shows the graphs of θ_0 versus $\Delta\theta_0 = \theta_0 - \theta_0'$ for $\theta_1 = 30'$, 1° , 5° , 10° and corresponding distance errors over maximum geodetic lengths, 10.6 to 19.9 magameters. Some conclusions may be drawn from these results. Under the distance criterion of one mater, when two points are in about the same intitude, $\theta_1 \geq 10^\circ$, separated by maximum hemispheroidal longitude difference for that common intitude and particular geodesic, the inverse solution holds for geodesic vertex intitude range $10^\circ \leq \theta_0 \leq 90^\circ$. Under the ACIC criterion 1/100000 for distance, the inverse is antisfactory for two points in the same intitude $\theta_1 \geq 1^\circ$, for values of geodesic vertex intitude $1^\circ \leq \theta_0 \leq 90^\circ$, and with longitude separation maximum for a given geodesic. The formulae will also hold under the ACIC distance criterion for $\theta_1 = 30'$ at maximum longitude separation for $0 \leq \theta_0 \leq 30^\circ$, $82^\circ \leq \theta_0 \leq 90^\circ$. All these values are approximations as deduced from Table 9. Obviously if the longitude separation between two points in the same intitude is less than the maximum possible for hemispheroidal geodesics, the formulae will give better results since the separation between geodesic and great elliptic vertices will be less, see Figure 28.

<u>~</u>	95(dat) 5	15	8	44			
30 8 (m)	1 Teachers on				8	72	8.5
•		1934 5579, 19	19756609, 79	19630125, 31	19866795.22		
<u>ુ</u>	167 50 55,544	175 At 28 CEA			•	2 ZBG2GG2	19892003.95
		-	W 47 44 43 300	1.7. to -2.306/ 178 to 19.32d	BL 4.01.10.571	179 34 18 166	
P 3(E)		431.44	+205.06	+227.39	-487 E1		
(e) 90	74, 25, 41		 	I_		-839,32	1-147.25
		1 25 57.956	6 06 45,237	9 59 46,819	11 21 33,366	8 12 07 94a	
<u>`</u>	1.0828922	12621609	1/96556			Ĺ_	2 W 98. 13
<u>}_</u>				77787	1/2128	1/23692	1/135090
۳,	17406993,12	19114172, 30	19534521.60	19673027,00	1071002		
ৰ্ব	156 27 11.72				27,302,70	19771610,42	19780776.65
• ;		***************************************	176 01 06, 500	177 34 50, 622	177 34 30 622 178 32 38 998	179 18 28, 986	179 46 28 843
3	87	14047	+62.89	+40.85	-150.14	1	1
3	6 57,999	1 00 11 724			1	7507/15	2.7
-	,		257.00 27.5	2 28 45,147	6 02 50 101	4 05 11.371	1 25 40 AT
30		-1.	1/310622	1/481650	1/131475	1/111603	
	000				*		1/2/00156
.	1473245.96	15602615.24	17750853, 96	10615805.41			
8.Y.	132 30 06,892				12.005778	18812812.00 18889824.75	18889824.75_
		1_	42 X24 X4 162 US 53.802	169 35 51 642 173 35 26 450	172 55 26.490	177 09 52 968	179 06 21, 744
₽ 4	22.	777	25.02	*1.44	-5.71	, y	
*	2 39,162	9 55.036	36 50.756	21 64.5			-24.19
.5/1	1,40923495	0000000	 -		- 15 46e*YB	47 23.553	17 06.400
8	Щ.		1/25/60758	1/12/20124	12377749	1/3151696	1/8827021
هر ح	1721372.53	10621760.50	184,000,000				
3	106 02 26 22	Ì	r	- M. D. S.	17628653.56	17703436. 52	17776011.83
-			IAA 01 32,296	159 19 50,260	168 02 54 080	174 26 39, 398	
4	+22	42	***	*	-1.24	92	
•°	1 14.522	2 40,719	16 25,196	30 07.994	1 2 2		
128	1/22656818	1/25289906	1 /211061117			22 05.484	7 58,068
			-	1/49507001	1/14055374	1/25290624	1 0000000

Figure 29. Graphs of θ_0 versus $\Delta\theta_0$ for $\theta_1=10^\circ$, 1° , 5° , 10° and corresponding distance errors (maximum goodstic longitude expression for a given θ_0).

DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 , α_{1-2} , S to find ϕ_2 , λ_2 , α_{2-1} . East longitudes positive; azimuths clockwise from north; no root extraction; only 8-place trigonometric natural tables (as Peters) required for desk work.

	SPHEROID a	m	ſ		
1 - f			6264.8062 se con	ıds	
LINE					
φ,					
α_{1-2} sin θ_1 _		cos θ,	θ1		
sin a ₁₋₂	$M = \cos \theta_0 = \cos \theta_1$	sin α ₁₋₂	θο.		
cos a ₁₋₃	$N = \cos \theta_1 \cos \alpha_{1-2}$		sin θ ₀		
c ₁ = fM		$D = (1 - c_2)(1 - c_2)$	c ₂ - c ₁ M)		
$c_2 = \frac{1}{2}(1 - M^2)f$		P=c2 (i + 1/2c1 M	4)/D		
$\cos o_1 = \sin \theta_1 / \sin \theta_0$			_		
d=S/aD	(rad) d		_ S		
sin d	$u = 2(\sigma_1 - d)$. sin u		
cos d W	/= 1 - 2P cos u		cos u		
V = cos u cos d - sin u sin d		Y = 2PVW sin d			
$X = c_1^2 \sin d \cos d (2V^2 - 1)$		$\Delta \sigma = d + X - Y$			(rad)
sin Δa	. cos Δσ		Δο		
cos Σο		$\Sigma o = 2o_1 - \Delta o$	an saidhnis saidh an t-airean (airean a		enganisen <mark>m</mark> yn maastuu on samma.
$\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma)$	ω)	e _{1.1}			
$\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma)}{(1 - \widehat{D}M)}$	sin o _{1-t}				
(1 - I)M			1.1		telementelejejejejejejejejeje, majarje seje i Pr
nia Aarin a		•1			
$\tan \Delta \eta = \frac{\sin \Delta \sigma \sin \sigma_{1,2}}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta}$	o cos e _{1.2}	Δη		Valuation to the second second	
$H = c_1(1-c_2)\Delta \sigma - c_1c_2 \sin \Delta \sigma \cos 2$		(rad) H	المنطق المراوضة مينفاذات الأموات	Million from the Armonic and a sequential	and the second s
		۵λ * ۵ι	7 - H	وكالورهن الكفاف مأمران لامر وورواللام	and the second s
		λ	-		
CHECK			•	,	11
M = cos 8 0 = cos 0 1 mn a 1.2 = cos 0 1	sin (180 + a _{2 , 1})	$\lambda_2 = \lambda_1$	٠ ۵۸		
		•			

INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 ; ϕ_2 , λ_2 to find S, α_{1-2} , α_{2-1} . Azimuths clockwise from north; east longitudes positive; no tables except 8-place matural trigonometric (Peters); no root extraction.

	SPHEROID a	m	bm
1 - f = b/a	%f		¥ſ
ſ³/64		1 radian =	206264.8062 seconds
			0 / //
\$ ₁	_ I		λ1
\$ 2	2		- λ ₂
tan ϕ_1	1. always west of 2	. .	$\Delta \lambda = \lambda_2 - \lambda_1$
tan ϕ_2	$tan \theta = (1-i) ta$	in ø	Δλ _m = ½Δλ
θ ₂	tan θ_2		sin Δλ _m
0 ₁	tan θ ₁		tan Δλ
$\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2)$	sin θ _m		cos θ _m
$\Delta \theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1)$	sin 🕰 💻		cos Δθ _m
$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m - \dots$	<u> </u>	cos d = 1 - 2L _	
$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) $			
$V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L$	sin d		- d (rad)
X = U + V	T = d/sin d		E = 2 cos d
Y = U - V .	D = 4T ²		B = 2D
A = DE	C = T - ½ (A - E)_		CHECK C + 1/2 E + AD/B = T
n ₁ = X (A + CX)	n ₂ = Y (B + EY)		n ₃ = DXY
$\delta_1 d = W(TX - Y)$		$\delta_2 d = (f^2/64)(n$	ı -nı +nı)
			8 i d + 8 i d)
F = 2Y - E (4 - X)		M = 32T - (20 T	'-A) X - (B + 4) Y
G = HIT + (F /64) M			λ)/4
Δλ. = ½ (Δλ + Q)		tan $\Delta \lambda_{m}$	
v = arctan (c ₁)			in θ _m tan Δλ _m)
u = arctan c ₁		$c_1 = \sin \delta \theta_m / (\epsilon_1)$	$\cos \theta_{\mathbf{m}} \; (an \; \Delta \lambda_{\mathbf{m}})$
a1 = A - A	····	a2 *** n	
<u>c₁ c₁ </u>	, ,	360 - a ₁	, .
+ + a ₁			
180 - a ₁		180 + α,	
+ - 180 - a ₁		180 + 21	

Appendix 2.

SPHEROID PARAMETERS; SPHERICAL APPROXIMATIONS; SPACE COORDINATES
AT A POINT OF THE SPHEROID; OTHER USEFUL FORMULAE

						append x10-3		append x10-6
Bllipsoid	meters	1/2	meters	1~€	4	£/2	£/4	£2/64
ADSTRALLAN	6578160	298,25	6556774.7192	.99647108131		J. 352891869 1. 6764459345	.83822296725	.1756544357
FISCHER (MERCURY)	6378166 6378150 *	298.3	6356784,28361 ₂ ,996647670131 6356768,33724 ⁴	,996647670131		3.352329369 1.6751649345	.83808246725	.1755955555
KRASSOVSKY	6378245	298.3	6356863.01877	.996647670131		3,352329869 1,6761649345	.83808246725	.175595535
INTERNATIONAL	6378388	297	6356511,94613	*996622396623	3,367003367	3,367003367 1,6835016835	.84175084175	.1771361199
нолон	6378270	297	6356794,34344	.9966323996633	3,367003367	1,6835016835	.84175064175	.1771361199
CLARKE 1866	6378206,4	294,9787	6336583.8	. 996609924717 3, 390075283 1, 6950376415	5, 390075283	1.6950376415	.04751682075	6.1795720379
CLARKE 1880	6378249,1	293,4663	293,4663 6356514,92098	996592453716 3,407346284 1,703773142	5,407546284	1,703773142	.851886571	.1814276825
FYEREST	6377276,3	300,8017	300,8017 6356075,36029	.99667550703	3, 324449297	3,324449297 1,6622246483	.83111232425	,1725869239
AIRY	6377563,4	299,325	6356256,91575	.996659149754 3.340850246 1.670425123	3,340850246	1,670425123	.8332125615	.1743950057
BRSSEL	6377397.2	299,1528	299,1528 6356079,00676 ,996657226675 3,342773325 1,6713866625 ,83569333125	.996657226675	3, 342773325	1,6713866625	.83569333125	.174595836

NOTE: The parameters a and 1/t were held fixed in the above derivations. The AIRY, CLARKE 1880, and EVEREST are revised ellipsoids. The star values are for the MERCURY ellipsoid which was changed in 1968, see reference[41].

Table 10. Spheroid parameters.

APPROXIMATING SPHERES FOR THE OBLATE SPHEROID

Equivalent area or volume

The area and volume of the oblate spheroid are given by

$$A = 4\pi(a/b^2) \int_0^b \left[b^4 + (a^2 - b^2)y^2 \right] dy$$

$$= 2\pi \left[a^2 + (b^2/e)(1/2)\ln\left(\frac{1+e}{1-e}\right) \right] = 2\pi \left[a^2 + (b^2/e) \arctan(e) \right]$$

$$V = 2\pi(b/a) \int_0^a (a^2 - x^2)^{1/2} x dx = (4/3)\pi a^2 b,$$
(1)

where the meridian ellipse (y-axis polar), is

$$b^2x^2 + a^2y^2 = a^2b^2$$
, $b^2 = a^2(1 - e^2)$

The area and volume of the sphere are

$$A_s = 4\pi R_A^2, V_s = (4/3)\pi R_V^3. \tag{2}$$

From: (1) and (2), the equalities $A_s = A$, $V_s = V$ lead to

$$2R_A^2 = a^2 + (b^2/e) \arctan(e), b^2 = a^2(1 - e^2),$$
 (3)

$$R_v^3 = a^2b, b = a(1 - e^2)^{1/2}$$
. (4)

Now

(1/e) arc tanh (e) = (1/2e)ln
$$\left(\frac{1+e}{1-e}\right)$$
 = 1 + e²/3 + e⁴/5 + e⁶/7 + . .

and this substitution in (3) gives

$$2R_A^2 = a^2 + a^2(1 - e^2)(1 + e^3/3 + e^4/5 + e^6/7 + ...)$$

which may be written, after expanding and combining like terms as

$$R_A = a[1 - e^2(1/3 + e^2/15 + e^4/35 + ..)]^{1/2}.$$
 (5)

Expanding the radical in (5) to 6th order terms in e leads to

$$R_A = a(1 - e^2/6 - 17e^4/360 - 67e^6/3024 - ...),$$
(6)

From (4) we have

$$R_v^3 = a^3(1 - e^2)^{1/2}$$
 or $P_v = a(1 - e^2)^{1/6}$

and expanding the radical to 6th order terms in e we find

$$R_v = a(1 - e^2/6 - 5e^4/72 - 55e^6/1296 - \dots). (7)$$

From (6) and (7) we have

$$\Delta R = R_A - R_V = a(e^4/45 + 23e^6/1134 + \dots). \tag{8}$$

With

$$e^2 = 2f - f^2$$
, $e^4 = 4f^2 - 4f^3$, $e^6 = 8f^3$ we may write from (7) and (8)

$$R_V = a(1 - f/3 - f^2/9 - 5f^3/81 - ...)$$

$$\Delta R = (4/45)af^2(1 + 52f/63)$$
(9)

$$R_A = R_V + \Delta R$$

Mean spherical approximations

$$r_A = (1/2)(a+b), r_G = (ab)^{1/2}, r_H = 2ab/(a+b) = ab/r_A, (r_G^2 = r_A \cdot r_H)$$
 (10)

are respectively the radii equal to the arithmetic, geometric, and harmonic means of the ellipsoid semiaxes and $r_A > r_G > r_H$. Since a and b differ very little, $r_G = (1/2)(r_A + r_H)$ is a satisfactory formula for reference ellipsoids.

Principal radii of curvature

The radii of curvature of the meridian and the normal section perpendicular to the meridian at a given point of the reference ellipsoid are the principal radii of curvature, i.e.

Meridian:
$$R = a(1 - e^2)/(1 - e^2 \sin^2 \phi)^{3/2} = a(1 - e^2 \cos^2 \theta)^{3/2}/(1 - e^2)^{1/2}$$
Great Normal:
$$N = a/(1 - e^2 \sin^2 \phi)^{1/2} = a(1 - e^2 \cos^2 \theta)^{1/2}/(1 - e^2)^{1/2}$$

$$= a(1 + e^2 \sin^2 \phi/2 + 3e^4 \sin \phi/8 + 5e^6 \sin^6 \phi/16)$$

$$= a[1 + f \sin \phi - (1/2)f^2 \sin^2 \phi(1 - 3\sin^2 \phi) - (1/2)f^3 \sin^4 \phi(3 - 5\sin^2 \phi) - \dots] \qquad (11)$$

$$= a\{1 + (1/2)e^2 \sin^2 \theta + (1/8)e^4 [4 - (1 + \cos^2 \theta)^2] + (1/16)e^6 \sin^2 \theta [4 + (1 + \cos^2 \theta)^2] + \dots\}$$

$$\sin \phi = \sin \theta/(1 - e^2 \cos^2 \theta)^{1/2}, \cos \phi = (1 - e^2)^{1/2} \cos \theta/(1 - e^2 \cos^2 \theta)^{1/2},$$

$$\tan \phi = \tan \theta/(1 - e^2)^{1/2} = \tan \theta/(1 - f), e^2 = 2f - f^2.$$

Mean radius of the spheroid at a given point of the surface

The mean radius of the spheroid at a given point of its surface is the geometric mean of the principal radii of curvature. From (11) we have

$$R_m = (RN)^{1/2} = a(1 - e^2)^{1/2}/(1 - e^2 \sin^2 \phi) = b/(1 - e^2 \sin^2 \phi), e^2 = 2f - f^2,$$

where ϕ is geodetic latitude, or in terms of parametric latitude

$$R_{\rm m} = \left\{ a/(1 - e^2)^{1/2} \right\} (1 - e^2 \cos^2 \theta) = (a^2/b)(1 - e^2 \cos^2 \theta), \tag{12}$$
see references [6], [9], or [16].

Table 11 gives the corresponding radii R_A , R_V , r_A , r_G , r_H for each of the 10 reference ellipsoids included here. Equations (9) and (10) above were used for the computations.

Meridional and equatorial arc axes and area of antipodal zones

From equations (58), (60)—Appendix I—with the constants for the 10 given ellipsoids, the parametric latitudes of the endpoints of the meridional arc axes of the antipodal zones were computed as shown in Table 12.

From the second of equations (32)—Appendix 1—with $\theta_0 = \pi/2$, and from Figure 12, we have for the arc length of the antipodal zone axes:

$$S_{M} = a \left[2\theta - (f/2)(2\theta + \sin 2\theta) \right]$$
 (meridional),

$$S_{E} = a\pi f \text{ (equatorial)}, 2\theta = \pi f(1 + .7495f).$$
 (13)

An approximation to the area of the antipodal zone is that of the hypocycloid of four cusps, i.e.

$$A = (3/8)\pi t^2, t = (1/4)(S_M + S_E).$$
 (14)

With the values of θ from Table 12, S_M , S_E were computed from (13) and then A from (14) for each of the 10 given spheroids. The computations are displayed in Table 13.

SPHEROTO	RA (AREA)	Ry (VOLUME)	rA =(1/2)(a+b)	5 = (1/2/tz, +4)	$r_{H} = ab/r_{A}$
FISCHER (MERCURY)	meters	meters		ŀ	Meters
a = 6378166 '. b = 6356784.28361 m f = 3.352329869x10-3	6371037.171	6371030.782	6367475.1418	6367466, 1669	6367457.1921
KRASSOVSKY # = 6376245 m b = 6356863.01877 m f = 3.352329869x10-3	6371116.083	6371109.694	6367554.0094	6367545.0344	6367536.0594
AUSTRALIAN a = 6378160 m b = 6356774.7192 m f = 3.352891869x10 ⁻³	6371029.982	6371023.591	6367467.3596	6367458.3818	6367449.4039
INTERNATIONAL a = 6378388 m b = 6356911.94513 m f = 3.367003367x10-3	6371227.712	6371221.266	6367649.9731	6367640.9191	6367631.8651
HOUGH a = 6378270 b = 6356794.34344 f = 3.367003367x10-3	6371109.844	6371103.399	6367532.1717	6367523.1179	6367514.0641
CLARKE 1846 a = 6378206.4 m b = 6356583.8 m £ = 3.590075283x10-3	6370997.241	6370990.707	6367395.1000	6367385.9216	6367376.7433
CLARKE 1880 a = 6378249.1 m b = 6356514.92098 m f = 3.407546284x10 ⁻³	6371002.731	6370996.129	6367382.0105	6367372.7372	6367363.4638
EVENEST a = 6377276.3 m b = 6356075.36829 m f = 3.324449297x10 ⁻³	6370207.759	637020 1477	6966675.8341	636667.0093	636658.1845
AIRY a = 6377563.4 m b = 6356256.91575 m f = 3.340850246x10 ⁻³	6370459.660	6370453,315	6366910.1579	6366901.2452	6366892.3326
messel a = 6377397.2 m b = 6356079.00676 m f = 3.942773325x10-3	6370289.555	6370283.203	6366738,1034	6366729.1808	6366720.2581

Table 11. Spheroid approximating spheres

SPIEMOID	*	20 = # f(1 + .7495f)	tanê, sin 20	•	B = £ ² /8, A = (£/3-B	Check: tan0-B Sin 20 = A(77 + 20)
Fischer (Mercury) Krassovsky	.00335232867	20 20; 36 17.768 .010558116	tan0 .00527911 sin 20	s a •	.1405x10 ⁻⁵	.00527910
Asstralian	.00335289187	red 20 20:36 18.134 .010559891 0:18 09.067	tan0 .00527999 sin 20 .01055970	*	.1405x10 ⁻⁵	.00527998
Internetional Hough	. 00336700337	red 20 20:36 27.324 .010604447 0:18 13.662	ten0 .00530227 sin 20 .01060425	a <	.1417x10 ⁻⁵	.00530225
Clearto 1866	.00359007528	rad 20 20: 36 42.350 .010677296 0: 18 21.175	tem0 .00533870 sin 20 .01067709	• <	.1437x10 ⁻⁵	.00533868
Clarke 1880 (revised)	.00340754628	red 20 20:36 53.730 .010732463 0:18 26.865	tam0 .00536629 sin 20 .01073226	6 <	.1451x10 ⁻⁵	.00536627
Portset (revised)	.00332444930	784 20 20:35 59.610 .010470089 0:17 59.805	tum0 .00523509 sin 20 .01046989	~ <	.1381x10 ⁻⁵	.00523508
Alry (revised)	. 00334085025	784 20;36 10,292 .010521871 .0105.146	tan0 .00526099 sin 20 .01052168	8	,1395x10-5 001669030	.00526098
[06500]	.00334277335	rad 20 20:36 11.544 .010527943 9:18 05.772	tan0 .00526402 sin 20 .01052775	• 4	.1397×10 ⁻⁵	.00526401

Table 12. Computation—and poles institutes of anticodal sons maridional sons

SPIEROID	£,4	95. sin 20	MERIDIQUAL AXIS S _K =a[20-\frac{f}{2}(20+sin20)]	EQUATORIAL AXIS $S_{\overline{E}} = aff$	MEAN SBULAXIS t = (1/4)(S _M +S _E)	AREA A = (5/4)et ²
					Statute Miles	Sq. Stat. Wiles
WELCHE)	.0035523299	200556116	67115.67 m	67172.64 m	20.86068	512.670
Krassovsky*	6.578245	sin20 .01055792	67116.50	67173,48	ZO. 86094*	512.683•
Australian	. 0033528919	.010559891	67126.85	67183.84	20.86416	512.841
International	.0033670034 A178188	.01066.747	67411.54	67469.01	20.95268	517.202
Heagh.	6378270	.01060425	67410.29*	67467.76•	20.95229*	517,1810
Clarke 1866	.00539075.	.010677296	67871.13	67929.40	21.09559	524.281
Clarke 1880 (revised)	.0034075445	.010732443	68221.06	68279,94	21.20440	529.704
Brorest (revised)	0033244493	.010470048	66541.07	66604.63	20.68438	504.041
Alsy (revised)	. 0033406562 6377563. 4	.010521871	64679.72	66636.29	20.78731	04.070
Bessel.	.0053427735	.010527943 .01052775	66916.44	66973.08	20.79673	50p. 30

13. Computation of entipodal

A space coordinate system referred to the normal and tangents to the meridian and parallel through a given point of the reference ellipsoid

In Figure 30, note that a change of coordinates from the center, 0, of the ellipsoid with axes x_1 , y_1 , z_1 to the point Q on the surface with axes X, Y, Z involves a translation from 0 to Q in the x_1z_1 -plane, and then a rotation about Q in that plane through the angle ϕ_0 . If we are interested in the slant range, D, from a point S_0 at a height habove or below the ellipsoidal surface, to a point Q_0 at a height h_0 above or below Q then the following derivation will give D.

From Figure 30, the parametric representation of the point $P(x_1, y_1, z_1)$ on the ellipsoidal surface relative to the rectangular system with origin, 0, the ellipsoid center, is

 $x_1 = N \cos \phi \cos \Delta \lambda$, $y_1 = N \cos \phi \sin \Delta \lambda$, $z_1 = N(1 - e^2) \sin \phi$ (15) where ϕ is geodetic latitude, $\Delta \lambda$ is the longitude computed from the meridian through Q, N = $a/(1 - e^2 \sin^2 \phi)^{1/2}$ is the great normal, see equation (11) above.

Figure 30. Speen exercisate system reduced to the secretal and tangents to the societies and secretal at an arbitrary solve of the efficients.

The coordinates of any point S_0 at a height h above or below $P(x_1, y_1, z_1)$ on the normal to the surface at P are

$$x_2 = (N \pm h) \cos \phi \cos \Delta \lambda, y_2 = (N \pm h) \cos \phi \sin \Delta \lambda, z_2 = [(1 - e^2)N \pm h] \sin \phi.$$
 (16)

Now the transformation equations which give the coordinates of S_0 referred to the normal and tangents to the meridian and parallel through a point Q in latitude ϕ_0 (translation from 0 to Q and rotation about Q through ϕ_0 in the x_1z_1 -plane) are

$$X = (x_2 - N_0 \cos \phi_0) \sin \phi_0 - [z_2 - N_0(1 - e^2) \sin \phi_0] \cos \phi_0$$

$$Y = y_2$$
(17)

 $Z = (x_2 - N_0 \cos \phi_0) \cos \phi_0 + [z_2 - N_0(1 - e^2) \sin \phi_0] \sin \phi_0.$

Placing the values of x_2 , y_2 , z_2 from (16) in (17) we have

 $X = u_1 \cos \phi \cos \Delta \lambda - u_2 \sin \phi - c_1$

 $Y = (N \pm h) \cos \phi \sin \Delta \lambda$

$$Z = v_1 \cos \phi \cos \Delta \lambda + v_2 \sin \phi - c_2 \tag{18}$$

$$u_1 = (N \pm h) \sin \phi_0, u_2 = [N(1 - e^2) \pm h] \cos \phi_0, c_1 = N_0 e^2 \sin \phi_0 \cos \phi_0$$

$$v_1 = (N \pm h) \cos \phi_0, v_2 = [N(1 - e^2) \pm h] \sin \phi_0, c_2 = N_0(1 - e^2 \sin^2 \phi_0)$$

With the coordinates from (18) we have then, as seen from Figure 30,

$$D_2^2 = X^2 + Y^2$$
, $E_2 = Z \mp h_0$, $D = (D_2^2 + E_2^2)^{1/2} = [X^2 + Y^2 + (Z \mp h_0)^2]^{1/2}$. (19)

In the computation of the coordinates (18), the values of N, N₀ may be taken from tables, if available, or computed from the series given above in equations (11).

Now the coordinates (16), with h = 0, represent a point on the ellipsoid. Hence if we solve (17) for x_2 , y_2 , z_2 we obtain

$$x_2 = Z \cos \phi_0 + X \sin \phi_0 + N_0 \cos \phi_0$$

$$y_2 = Y$$
(20)

 $z_2 = Z \sin \phi_0 - X \cos \phi_0 + N_0(1 - e^2) \sin \phi_0$

and x_2 , y_2 , z_2 , with $h \approx o$, must satisfy the ellipsoid equation

$$(x_1^2 + y_2^2)/a^2 + z_2^2/b^2 = 1$$
, or since $b^2 = a^2(1 - e^2)$,
 $(1 - e^2)(x_1^2 + y_2^2) + z_1^2 = a^2(1 - e^2)$. (21)

Now (21) may be written as $x_1^2 + y_1^2 + z_2^2 - e^2(x_2^2 + y_2^2 - e^2) = e^2$ which, when e = 0, represents the sphere of radius a. Analogously, if we place x_1, y_1, z_2 from (20) in (21), we obtain the equation of the ellipsoid referred to the point Q as origin (See Figure 30),

$$X^2 + Y^2 + (Z + N_0)^2 = N_0^2 - \frac{e^2}{1 - e^2} (X \cos \phi - Z \sin \phi)^2.$$
 (22)

Now when e = 0, equation (22) becomes the equation to a sphere tangent to the ellipsoid at Q with radius N_0 , the great normal length at Q. Hence the justification for using the great normal radius at the initial point when the spherical forms of the direct and inverse geodetic line solutions are used. See Figures 8 and 9.

The spherical case

If we place e = 0 in equations (18), we get $u_1 = v_2 = (N_0 \pm h) \sin \phi_0$, $v_1 = u_2 = (N_0 \pm h) \cos \phi_0$, $c_1 = 0$, $c_2 = N_0$, where N_0 is the great normal radius at Q, see equation (22) above, and then

$$X = (N_0 \pm h)(\cos \phi \sin \phi_0 \cos \Delta \lambda - \sin \phi \cos \phi_0)$$

$$Y = (N_0 \pm h)(\cos \phi \sin \Delta \lambda)$$

$$Z = (N_0 \pm h)(\cos \phi \cos \phi_0 \cos \Delta \lambda + \sin \phi \sin \phi_0) - N_0$$

$$D_3^2 = X^2 + Y^2, E_2 = Z \mp h_0, D = (D_2^2 + E_2^2)^{1/2} = [X^2 + Y^2 + (Z \mp h_0)^2]^{1/2},$$
(23)

see Figure 31. Also note in Figure 31, the quantities, u, v, c, a, δ , τ . a is the azimuth of P from Q, δ is the angle of elevation of S₀ above the horizontal at Q₀, τ is the central angle subtended by the arc distance s = PQ, $\tau(rad) = s/N_0$. We may write the following formulae involving the spherical triangle P'PQ and other quantities as indicated in Figure 31.

$$\cot a = (\cos \phi \sin \phi_0 \cos \Delta \lambda - \sin \phi \cos \phi_0)/\cos \phi \sin \Delta \lambda$$

$$\cos \tau = \sin \phi \sin \phi_0 + \cos \phi \cos \phi_0 \cos \Delta \lambda = N_0/(N_0 + c)$$

$$\sin \phi = \cos \tau \sin \phi_0 + \sin \tau \cos \phi_0 \cos \alpha$$

$$\cot \Delta \lambda = (\cos \phi_0 \cos \tau - \sin \phi_0 \sin \tau \cos \alpha)/\sin \tau \sin \alpha$$

$$u + v = D_2 = D \cos \delta, X = D_2 \cos \alpha, Y = D_2 \sin \alpha, Z = h_0 + D \sin \delta$$

$$\tan \tau = D_2/(N_0 + Z), h = (N_0 + Z) \sec \tau - N_0 = D_2 \csc \tau - N_0,$$

$$u = Z \tan \tau, v = N_0 \tan \tau, c = N_0(1 - \cos \tau)/\cos \tau,$$

$$u/v = Z/N_0 = (h - c)/(N_0 + c), u + v = D_2 = (N_0 + Z) \tan \tau = (h + N_0) \sin \tau.$$

Now h, he in equations (24) can have opposite or like signs, negative signs indicating below the surface of the sphere, see Figure 31. Note that further simplification of this type local reference system is possible for $d = PQ \le 8$ minutes ≈ 8 nautical miles, for then $r \approx \sin r \approx \tan r$, $\cos r \approx 1$.

Rectangular spherical coordinates

In Figure 32, we have the space rectangular coordinate system X, Y, Z with axes the normal and the tangents to the parallel and meridian through a point Q of the surface. Now the tangent at Q to the parallel is also tangent to the great circle containing the poles C, C' of the meridian through Q. A rectangular spherical system on the surface may be used where x-coordinates are measured along the circular meridian from Q and y coordinates are measured along the great circles through the poles C, C' of the meridian through Q. The points P and T as shown have the spherical coordinates x, y and x', y' respectively. The angles β , β' at P, T respectively are measured from the line PT = s to parallels through P, T having the same poles C, C' as the meridian through Q.

Now in the spherical triangle PTC we have

$$P = 90^{\circ} - \beta_{1}T = 90^{\circ} + \beta'_{1}C = (x' - x)/N_{0}, a = 90^{\circ} - y'/N_{0},$$

$$b = 90^{\circ} - y/N_{0}, c = x/N_{0}, P + T = \pi - (\beta - \beta'),$$

$$a - b = -(y' - y)/N_{0}, a + b = \pi - (y + y')/N_{0}.$$
(25)

To solve for x', y', β' we need the following three spherical formules (Napier's fourth analogy, sine, and coalse leve)

tan
$$M(P+T) = \cos M(a-b) \sec M(a+b) \cot Mc$$
,
 $\cos a = \cos b \cos c + \sin b \sin c \cos P$, $\sin C = \sin c \sin P/\sin a$ (26)

Figure 31. Local space correlinate system at a actival of the order.

Figure 32. A spherical rectangular space coordinate system x, y, h speciated with the sectangular space accordinate system X, Y, Z at a point O of the surface.

The values from (25) placed in (26) give

$$\tan \frac{1}{N_0}(x'-x) = \tan \frac{1}{2N_0}(x'-x) \sec \frac{1}{2N_0}(y'-y) \sin \frac{1}{2N_0}(y'+y)$$

$$\sin \frac{1}{N_0}(y'/N_0) = \cos (y/N_0) \sin (y/N_0) + \sin (y/N_0) \cos (y/N_0) \sin \beta$$

$$\sin \frac{1}{N_0}(x'-x) = \sin (y/N_0) \cos \beta \sec (y'/N_0)$$
(27)

For local coordinate systems the angles s/N_0 , y'/N_0 , y/N_0 , $(x'-x)/N_0$, $(y'-y)/2N_0$, $(x'-x)/2N_0$, $(y'+y)/2N_0$ are small and we may use the first two terms of their series expansion, i.e.

$$\sin x = x - x^3/6$$
, $\cos x = 1 - x^2/2$, $\tan x = x + x^3/3$. Hence we have
 $\sin (y'/N_0) = y'/N_0 - y'^3/6 N_0^3$, $\sin (y/N_0) = y/N_0 - y^3/6 N_0^3$, (28)
 $\sin (s/N_0) = s/N_0 - s^3/6 N_0^3$, $\cos (s/N_0) = 1 - s^2/2 N_0^2$, $\cos (y/N_0) = 1 - y^2/2 N_0^2$.

The values from (28) placed in the second of (27) give

$$y'-y'^3/6 N_0^2 = (1-s^2/2 N_0^2)(y-y^3/6 N_0^2) + (s-s^3/6 N_0^2)(1-y^2/2 N_0^2) \sin \beta$$

$$y' - y'^{3}/6 N_{0}^{2} = y + s \sin \beta - \frac{1}{6 N_{0}^{2}} (y^{3} + 3y^{2} s \sin \beta + 3y s^{2} + s^{3} \sin \beta)$$
 (29)

where the terms in s² y²/12 N₀⁴ have been ignored.

Now in (29), if we ignore the terms in $1/6 N_0^2$ we have the first term of the zeries which is $y' = y + s \sin \beta$. We now place this value of y' in the term in y'^3 and write (29) as

$$y' = y + s \sin \beta + \frac{1}{6N_0^2} [(y + s \sin \beta)^3 - y^3 - 3y^2 s \sin \beta - 3ys^2 - s^3 \sin \beta]$$

$$= y + s \sin \beta + \frac{1}{6N_0^2} (3ys^2 \sin^2 \beta - 3ys^2 + s^3 \sin^3 \beta - s^3 \sin \beta)$$

$$y' = y + s \sin \beta - s^2 \cos^2 \beta (3y + s \sin \beta) / 6N_0^2.$$
(30)

Similarly from the last of equations (27) we have

$$(x'-x) = \frac{(x'-x)^3}{6N_0^2} + \left(s + \frac{sy'^2}{2N_0^2} - \frac{s^3}{6N_0^2}\right)\cos\beta$$
 (31)

and if we ignore the terms in $1/N_0^2$ we get as first approximation $x' - x = s \cos \beta$. This value returned to the term in $(x' - x)^3$ in (31) allows us to write

$$x' - x = s \cos \beta + \frac{s \cos \beta}{6 N_0^2} (s^2 \cos^2 \beta + 3y'^2 - s^2)$$

$$= s \cos \beta + \frac{s \cos \beta}{6 N_0^2} (3y'^2 - s^2 \sin^2 \beta)$$
(32)

From the first of (27), since

$$\sin \frac{1}{2N_0}(y'+y) = \sin \left[\frac{1}{2N_0}(y'-y) + \frac{y}{N_0}\right],$$

and

$$\sec \frac{1}{2N_0}(y'-y)\sin \frac{1}{2N_0}(y'+y) = \tan \frac{1}{2N_0}(y'-y)\cos \frac{y}{N_0} + \sin \frac{y}{N_0}$$

we may write

$$\tan \frac{y}{2N_0}(x'-x) \left[\tan \frac{1}{2N_0}(y'-y) \cos \frac{y}{N_0} + \sin \frac{y}{N_0} \right]$$
 (33)

Using $\tan x = x + x^2/3$ and the values of $\sin y/N_0$, $\cos y/N_0$ from (28) we can write the right member of (33) as

$$\left[\frac{x'-x}{2N_0} + \frac{(x'-x)^2}{24N_0^2}\right] \left[\left(\frac{y'-y}{2N_0} + \frac{(y'-y)^2}{24N_0^2}\right) \left(1 - \frac{y^2}{2N_0^2}\right) + \frac{y}{N_0} - \frac{y^2}{6N_0^2}\right]. \tag{34}$$

Retaining terms in 1/No, we, from (34), wife (33) as

$$\tan \mathcal{H}(\beta - \beta') = \frac{1}{4N^{\frac{3}{2}}} \{ (x' - x)(y' - y) + 2(x' - x)y \}$$
 (35)

With
$$x' - x = s \cos \beta$$
, $y' - y = s \sin \beta$ from (32) and (30), equation (35) becomes

$$\tan \frac{1}{2}(\beta - \beta') = s \cos \beta(2y + s \sin \beta)/4N_0^2$$
(36)

Of

$$\beta' = \beta - 2 \arctan \left[s \cos \beta (2y + s \sin \beta) / 4N_0^2 \right]$$

With arc tan $u = u - u^3/3$, we may write (36) as

$$\beta' = \beta - s \cos \beta (2y + s \sin \beta)/2N_0^2. \tag{37}$$

Finally, equations (30), (32), and (37) may be written as

$$y' = y + v - u^{2}(3y + v)/6N_{0}^{2}$$

$$x' = x + u[1 + (3y'^{2} - v^{2})/6N_{0}^{2}]$$

$$\rho' = \beta - u(2y + v)/2N_{0}^{2} \sin 1'', u = s \cos \beta, v = s \sin \beta$$

$$= \beta - u(y + y')/2N_{0}^{2} \sin 1'',$$
(38)

since

$$\frac{u}{2N_0^2}(y+y') = \frac{u}{2N_0^2} \left[y + y + v - u^2 \frac{(3y+v)}{6N_0^2} \right] = \frac{u}{2N_0^2} (2y+v)$$

If we place x = y = 0, $\beta = a$, s = d, $P \rightarrow Q$ and equations (38) become

$$x = d \cos a(1 + d^2 \sin^2 a/3N_0^2), y = d \sin a(1 - d^2 \cos^2 a/6N_0^2)$$
 (38)a

$$\beta' = a - d^2 \cos a \sin a/2N_0^2 \sin 1''.$$

The terms in $1/N_0^2$ are corrections to plane coordinates. If the ellipsoid is to be taken into account one uses instead of $1/N_0^2$, the value $1/R_0N_0$ which is the square of the mean radius in latitude ϕ_0 , see equations (12). Equations (38), in equivalent form, are found in references [15], [32]. Note that β , β' are not azimuths as usually defined, that is the lines PA', TB' in Figure 32 are parallels to the meridian.

Transformations between rectangular space coordinates X, Y, Z and local spherical space coordinates x, y, h

In figure 32, if $S_0(X, Y, Z)$ is a point at altitude h above or below the point P(x, y), where x, y are the spherical coordinates as shown, we may from (24) and some formulae for right spherical triangles establish some transformations between the x, y, h system and the X, Y, Z system.

We have

$$\cos \tau = \cos\left(\frac{x}{N_{0}}\right) \cos\left(\frac{y}{N_{0}}\right) \approx \left(1 - \frac{x^{2}}{2N_{0}^{2}}\right) \left(1 - \frac{y^{2}}{2N_{0}^{2}}\right) \approx 1 - (x^{2} + y^{2})/2N_{0}^{2},$$

$$D_{2} = (h + N_{0}) \sin \tau, \sin \alpha = \sin\left(\frac{y}{N_{0}}\right) \left|\sin \tau, \cos \alpha = \tan\left(\frac{x}{N_{0}}\right)\right| \tan \tau$$

$$X = D_{2} \cos \alpha = (h + N_{0}) \tan\left(\frac{x}{N_{0}}\right) \cos \tau \approx (h + N_{0}) \left(\frac{x}{N_{0}} + \frac{x^{3}}{3N_{0}^{3}}\right) \left[1 - (x^{2} + y^{2})/2N_{0}^{2}\right]$$

$$X \approx x \left[1 + h/N_{0} - (x^{2} + 3y^{2})/6N_{0}^{2}\right] \approx x - (2/3) \frac{x^{3}}{N_{0}^{2}}$$

$$Y = D_{2} \sin \alpha = (h + N_{0}) \sin\left(\frac{y}{N_{0}}\right) \approx (h + N_{0}) \left(\frac{y}{N_{0}} - \frac{y^{3}}{6N_{0}^{3}}\right)$$

$$Y \approx y \left[1 + h/N_{0} - y^{2}/6N_{0}^{2}\right] \approx y - y^{3}/6N_{0}^{2}$$

$$Z = h \cos \tau - N_{0}(1 - \cos \tau) \approx h - (N_{0} + h)(x^{2} + y^{2})/2N_{0}^{2}$$

$$Z \approx h - (x^{2} + y^{2})/2N_{0}$$

Now
$$\sin\left(\frac{x}{N_0}\right) = \frac{X}{h + N_0} \sec\left(\frac{y}{N_0}\right)$$

$$\frac{x}{N_0} - \frac{x^3}{6N_0^3} \approx \frac{X}{h + N_0} \left(1 + \frac{y^2}{2N_0^2}\right)$$

$$x \approx \frac{X^3}{6N_0^2} + X\left(1 + \frac{X^2}{2N_0^2}\right) \approx X + (2/3)\frac{X^3}{N_0^2}$$

$$\sin\left(\frac{y}{N_0}\right) \approx \frac{1}{h + N_0} Y$$

$$\frac{y}{N_0} - \frac{y^3}{6N_0^3} \approx \frac{1}{N_0} \frac{Y, y \approx Y + Y^3/6N_0^2}{N_0^2}$$

$$\frac{h \approx Z + (x^2 + y^2)/2N_0 \approx Z + (X^2 + Y^3)/2N_0}{h \approx Z + (x^2 + y^2)/2N_0 \approx Z + (X^2 + Y^3)/2N_0}$$
this last implies $x \approx X \approx D_2 \cos a, y \approx Y \approx D_2 \sin a$

Pianz coordinates and map projections

Figure 33 shows the familiar tangent-arc-chord relationship as inherent in the spherical approximation as given in Figure 31. We have the following formulae relating T, v, d, L, H, τ , N₀ as shown in Figure 33:

$$d = \tau N_0 = L + L^3/24N_0^2 = v - v^3/3N_0^2$$

$$L = 2N_0 \sin(\tau/2) = N_0(\tau - \tau^3/24) = d - d^3/24N_0^2 = v - 3v^3/8N_0^2$$

$$v = N_0 \tan \tau = N_0(\tau + \tau^3/3) = d + d^3/3N_0^2 = L + 3L^2/8N_0^2$$

$$\tau = d/N_0 = L/N_0 + L^3/24N_0^3 = v/N_0 - v^3/3N_0^3$$

$$H = N_0 \tan \frac{1}{2}\tau = \frac{1}{2}N_0(\tau + \tau^3/12) = \frac{1}{2}(d + d^3/12N_0^2)$$

$$T = N_0 \sin \tau = N_0(\tau - \tau^3/6) = d - d^3/6N_0^2$$

$$d - L = d^3/24N_0^2, 2H - d = d^3/12N_0^2 = 2(d - L), d - T = d^3/6N_0^2 = 4(d - L),$$

$$v - 2H = d^3/4N_0^2 = 6(d - L), v - d = d^3/3N_0^2 = 8(d - L), v - L = (3/8)d^3/N_0^2,$$

$$v - T = d^3/2N_0^2 = 12(d - L).$$

Table 14 gives the differences, the last of equations (41), for arc distances from 10 to 100 n.m. in 5 n.m. increments.

Now in Figure 33 note that S_1 is the linear projection of the point P upon the tangent plane at Q from the spherical center 0. Such projection is *called gnomonic*. Since the tangent, v, is the projection of the great circle arc, d, upon the tangent plane, any straight line through Q in the tangent plane represents a great circle on the sphere.

From equations (24), (26) we have, with
$$Z = 0$$
, $h = c$, see Figure 31,

$$v = D_2 = N_0 \tan \tau, \sin \alpha = \cos \phi \sin \Delta \lambda / \sin \tau,$$

$$\cos \alpha = (\sin \phi - \cos \tau \sin \phi_0) / \cos \phi_0 \sin \tau,$$

$$X = D_2 \cos \alpha = \sin \phi \sec \tau - \sin \phi_0, Y = D_2 \sin \alpha = \cos \phi \sin \Delta \lambda \sec \tau,$$

$$\sec \tau = 1 / (\sin \phi \sin \phi_0 + \cos \phi \cos \phi_0 \cos \Delta \lambda),$$

$$\cos \tau = N_0 / (X^2 + Y^2 + N_0^2)^{1/2}, \sin \phi = (X + \sin \phi_0) \cos \tau$$

$$\sin \Delta \lambda = Y \cos \tau / \cos \phi, \lambda = \lambda_0 - \Delta \lambda.$$
(42)

Equations (42) thus give the plane coordinates X, Y as functions of the geographic coordinates of the points P, Q, that is of ϕ , ϕ_0 , $\Delta\lambda = \lambda_0 - \lambda$. The last of equations (42) show the solution for the geographic coordinates ϕ , λ of P when the plane coordinates X, Y of S, referenced to the tangents to the meridian and parallel at Q, are given, assuming S is gnomonically projected.

Now if we let $v = D_2 = d = N_0 \tau$, the resulting plane coordinates map a Lambert azimuthal equidistant projection on the tangent plane; if $v = D_2 = L = 2N_0 \sin \tau/2$ the resulting projection is the Lambert azimuthal authalic (equal area); if $v = D_2 = T = N_0 \sin \tau$ the projection is orthographic, points P are projected on the tangent plane at Q by lines parallel to OQ, see Figure 33; if $D_2 = 2H = 2N_0 \tan \tau/2$ the projection is stereographic, angles are preserved about each point of the projection (conformal or autogonal).

The last four columns of Table 14 show the error in the radius $v = D_2$ about Q when we allow $v = D_2$ to be 2H, d, L, or T, i.e. the point P to be projected upon the tangent plane at Q stereographically, equidistantly, equal-areally, or orthographically.

P d	8	d - L	2H - d	F	v - 2H	ъ 1 в 2	7 2 2	€4 - E >
10	18520	.01	.02	\$	90.	80.	60.	.12
15	27780	.02	4	.08	.12	.16	.18	.26
20	37040	.05	. 10	.20	.30	07.	.45	09.
25	46300	.10	.20	.40	9.	, 80	6.	1.20
30	55560	.17	¥.	27.	1.06	1.44	1.61	2.12
35	64820	.27	3 .	1.08	1.62	2.16	2.43	3.24
07	74080	.41	.82	1.64	2.46	3.28	3.69	4.92
45	83340	.58	1.16	2.32	3.48	49.4	5.22	96.9
20	92600	62.	1.58	3.16	4.74	6.32	7.11	87.6
55	101860	1.06	2.12	4.24	6.36	8.48	9.54	12.72
09	111120	1.37	2.74	5.48	8.22	10.96	12.33	16.44
65	120380	1.74	3.48	96.9	10.44	13.92	15.66	20.33
20	129640	2.18	4.36	8.72	13.08	17.44	19.62	26.16
75	138900	2.68	5.36	10.72	16.08	21.44	24.12	32.16
8	148160	3.25	6.50	13.00	19.50	26.00	29.25	39.00
85	157420	3.90	7.80	15.60	23.40	31.20	35.10	46.80
8	166680	4.63	9.26	18.52	27.78	37.04	41.67	55.56
95	175940	5.45	10.90	21.80	32.70	43.60	49.05	65.40
100	185200	6.35	12.70	25.40	38.10	50.80	57.15	76.20

Table 14. Differences for d, L, 2H, T, v from equations (41).

Now from equations (24), (26), (41), (42) we have

$$U = \cos \tau = \sin \phi \sin \phi_0 + \cos \phi \cos \phi_0 \cos \Delta\lambda$$

$$V = \sin \phi \cos \phi_0 - \cos \phi \sin \phi_0 \cos \Delta\lambda, W = \cos \phi \sin \Delta\lambda,$$

$$\sin a = W/\sin \tau, \cos a = V/\sin \tau$$
(43)

With the help of (43) we can express the rectangular plane coordinates of the several projections as functions of U, V, W and hence of the geographical coordinates of P and Q, i.e. as functions of ϕ , ϕ_0 , $\Delta\lambda = \lambda_0 - \lambda$.

Gnomonic. $D_2 = N_0 \tan \tau$

$$X = D_2 \cos \alpha = N_0 \tan \tau \cos \alpha = \frac{N_0 \sin \tau}{\cos \tau} \cdot \frac{V}{\sin \tau} = N_0 V/U$$

$$Y = D_2 \sin \alpha = N_0 \tan r \sin \alpha = \frac{N_0 \sin \tau}{\cos \tau} \cdot \frac{W}{\sin \tau} = N_0 W/U$$

Azimuthal equidistant. $D_2 = d = N_0 \tau$

$$X = D_2 \cos a = s \cos a = N_0 \tau \cos a = N_0 \tau V/\sin \tau$$

=
$$N_0 V$$
 arc cos U/sin (arc cos U)

$$Y = D_2 \sin \alpha = s \sin \alpha = N_0 \tau \sin \alpha = N_0 \tau W/\sin \tau$$

Azimuthal "qual area (authalic). $D_2 = L = 2N_0 \sin \tau/2 = N_0 \sin \tau / [\frac{1}{2}(1 + \cos \tau)]^{1/2}$

$$X = D_2 \cos \alpha = \frac{N_0 \sin \tau}{\left[\frac{1}{2}(1 + \cos \tau)\right]^{1/2}} \cdot \frac{V}{\sin \tau} = N_0 V / \left[\frac{1}{2}(1 + U)\right]^{1/2}$$

Y = D₂ sin
$$\alpha \frac{N_0 \sin \tau}{[\frac{1}{2}(1 + \cos \tau)]^{1/2}} \cdot \frac{W}{\sin \tau} = N_0 W/[\frac{1}{2}(1 + U)]^{1/2}$$

Orthographic. $D_2 = T = N_0 \sin \tau$

$$X = N_0 \sin \tau \cos \alpha = N_C \sin \tau \frac{V}{\sin \tau} = N_0 V$$

$$Y = N_0 \sin \tau \sin \alpha = N_0 \sin \tau \frac{W}{\sin \tau} = N_0 W$$
(44)

Stereographic. $D_2 = 2H = 2N_0 \tan \frac{1}{2}\tau = 2N_0 \sin \frac{\tau}{(1 + \cos \tau)}$

$$X = \frac{2N_0 \sin \tau}{1 + \cos \tau} \cos \alpha = \frac{2N_0 \sin \tau}{1 + \cos \tau} \frac{V}{\sin \tau} = 2N_0 V/(1 + U)$$

$$Y = \frac{2N_0 \sin \tau}{1 + \cos \tau} \sin \alpha = \frac{2N_0 \sin \tau}{1 + \cos \tau} \frac{W}{\sin \tau} = 2N_0 W/(1 + U)$$

Spherical coordinates relative to a great circle arc determined by two given points of the sphere

In Figure 34, Q is the midpoint (but may be any point) of the great circle arc determined by two given points $P_1(\phi_1, \lambda_1)$, $P_2(\phi_2, \lambda_2)$ of length 2S. The azimuth at Q is a and Q is taken as origin of the

Q is the midpoint of the great circle arc P_1P_2 .

Figure 34. Spherical coordinates referred to the metidian through the midpoint of a general great circle arc.

spherical coordinate system as shown. At an arbitrary point P of P_1P_2 , at distance d from Q, a perpendicular PT = s is constructed. Note that $\beta = \pi/2 - \beta_1$, hence the spherical rectangular coordinates x', y' of T may be computed using the value of x and y from (38)s and the value $\beta = \pi/2 - \beta'$, where β' is given by the expression in (38)s, i.e.

$$y' = y + v - u^{2}(3y + v)/6N_{0}^{2}, x' = x + u[1 + (3y'^{2} - v^{2})]/6N_{0}^{2},$$
where $u = s \cos \beta$, $v = s \sin \beta$, $\beta = \pi/2 - a + d^{2} \cos a \sin a/2N_{0}^{2} \sin 1^{\pi}$, $x = d \cos a(1 + d^{2} \sin^{2} a/3N_{0}^{2})$,
$$y = d \sin a(1 - d^{2} \cos^{2} a/6N_{0}^{2}).$$
(45)

Note that in the mapping of spherical coordinates, the y-coordinates are laid off perpendicular to the central meridian, which causes an increase in the latitude scale as the distance from the central meridian increases. The magnification is given by $K = 1 + [y + y')^2 - yy'] \cos^2 \beta/6N_0^2$ and for short lines we may let y = y', giving $K = 1 + y^2 \cos^2 \beta/2N_0^2$. When $\beta = \pi/2$, K = 1, and the map gives then true longitude differences. When $\beta = 0$, K is maximum with the value $K = 1 + y^2/2N_0^2$.

Formulae relating spherical coordinates to geographic coordinates

The given reference line P_1P_2 of Figure 34, having been already established, we may wish to compute the distance s to P_1P_2 from an arbitrary point $T(\phi', \lambda')$, or given s, find geographical coordinates of $T(\phi', \lambda')$ and $P(\phi, \lambda)$ at a given distance d from Q along P_1P_2 . From the right spherical triangles TPP_1 , QTT', QPT, QPQ', TT'P', TPP₂, we have

```
\cos s' = \cos x' \cos y' = \cos s \cos d = \cos s \cos x \cos y 
\tan x = \tan d \cos a, \sin y = \sin d \sin a, \tan s = \tan (a - a') \sin d,
\sin \phi' = \cos y' \sin (x' + \phi_0), \sin y' = \cos \phi' \sin (\lambda' - \lambda_0),
\sin s = \sin (a - a') \sin s',
\cos (\phi_0 + x') = \tan y' \cot (\lambda' - \lambda_0), \tan x' = \tan s' \cos a',
\tan d = \cos (a - a') \tan s',
\sin y' = \sin s' \sin a', \cos r = \cos s \cos (S - d), \cos r' = \cos S \cos (S + d).
(46)
```

Since P_1 , Q, P_2 are fixed, the constants $2S = P_1P_2$, $a_{1,2}$, $a_{2,1}$, a, ϕ_1 , ϕ_2 , ϕ_0 , λ_1 , λ_0 , λ_2 , are known. Some of the oblique spherical triangles involving these known parameters and the coordinates of T and P are, P_1TP_2 , QTP_3 , P'QT, P'QP, $P_1P'T$, $P'TP_2$, $PP'P_3$, $PP'P_1$, TP'P. From these we obtain the following spherical formulae from the sine and cosine laws for spherical triangles:

```
P'TP2:
                   \cos r = \sin \phi' \sin \phi_2 + \cos \phi' \cos \phi_2 \cos (\lambda_2 - \lambda')
PQT:
                   \cos s' = \sin \phi_0 \sin \phi' + \cos \phi_0 \cos \phi' \cos (\lambda' - \lambda_0)
                   \sin s' \sin a' = \cos \phi' \sin (\lambda' - \lambda_0)
                            \sin \phi' = \cos s' \sin \phi_0 + \sin s' \cos \phi_0 \cos \alpha'
                            \sin \phi = \sin \phi_0 \cos d + \sin d \cos \phi_0 \cos a
P'OP:
                   \cos d = \sin \phi_0 \sin \phi + \cos \phi_0 \cos \phi \cos (\lambda - \lambda_0)
                   \sin d \sin a = \cos \phi \sin (\lambda - \lambda_0)
                   \cos r = \cos s' \cos S + \sin s' \sin S \cos (a - a')
OTP<sub>1</sub>:
                                                                                                                                                                    (47)
P. TP.:
                   \cos 2S = \cos r \cos r' + \sin r \sin r' \cos (\lambda_2 - \lambda_1)
PP'P:
                   \cos (S + d) = \sin \phi_1 \sin \phi + \cos \phi_1 \cos \phi \cos (\lambda - \lambda_1)
                   \sin \alpha_{1-2} \sin (S+d) = \cos \phi \sin (\lambda - \lambda_1)
PP'P1:
                   \cos(S-d) = \sin\phi_2 \sin\phi + \cos\phi_2 \cos\phi \cos(\lambda_2 - \lambda)
                  \cos \phi \sin (\lambda_2 - \lambda) = -\sin \alpha_{2-1} \sin (S - d)
P.PT:
                  \cos t' = \sin \phi_1 \sin \phi' + \cos \phi_1 \cos \phi' \cos (\lambda' - \lambda_1)
TP'P:
                   \cos s = \sin \phi \sin \phi' + \cos \phi \cos \phi' \cos (\lambda - \lambda')
```

From (38), (38)a, (45), (46), (47) we have the formulae to handle most of the geometric problems which may occur in the local geometry of a given base line. For instance if a is constant but d varies, then β varies, and the rectangular coordinates x', y', as given by (45), give points T on the parallel at distance s from the base line P_1P_2 .

Suppose that we are given the geographic coordinates ϕ' , λ' of an arbitrary point T to find the perpendicular distance s to the base line, the geographic coordinates ϕ , λ of the foot, P, of the perpendicular, and the distance d from the origin Q to P. Now the known constants are $S = (1/2)P_1P_2$, a_{1-2} , a_{2-1} , a_{3-1} ,

$$\cos (S + d) = \cos S \cos d - \sin S \sin d = \cos r'/\cos s$$

$$\cos (S - d) = \cos S \cos d + \sin S \sin d = \cos r/\cos s$$
(48)

Adding and subtracting respective members of (48) get

$$\cos s \sin d = (\cos r - \cos r')/2 \sin S$$

$$\cos s \cos d = (\cos r + \cos r')/2 \cos S$$
(49)

Dividing respective members of (49) we find

$$\frac{\tan d}{\sin t} = \cot S \left(\cos t - \cos t'\right) / (\cos t + \cos t')$$
 (50)

where from (47), triangles P'TP₂, P'TP₁

$$\cos r = \sin \phi' \sin \phi_2 + \cos \phi' \cos \phi_2 \cos (\lambda_2 - \lambda')$$

 $\cos r' = \sin \phi' \sin \phi_1 + \cos \phi' \cos \phi_1 \cos (\lambda' - \lambda_1)$

From (46) and triangle P'QT of (47) we have

$$\frac{\cos s = \cos s'/\cos d,}{\cos s' = \sin \phi' \sin \phi_0 + \cos \phi' \cos \phi_0 \cos (\lambda' - \lambda_0).}$$
(51)

From triangle P'QP of (47) we have

$$\frac{\sin \phi = \sin \phi_0 \cos d + \cos \phi_0 \sin d \cos a}{\sin (\lambda - \lambda_0) = \sin d \sin a/\cos \phi \text{ or } \lambda = \arcsin \left[\sin d \sin a/\cos \phi\right] + \lambda_0.}$$
(52)

Note also a type of spherical rectangular coordinate system referenced to the base line and a great circle orthogonal to the base line at its midpoint as presented in Reference [18].

The doubly equidistant projection

This is a useful projection for investigators in fields such as seismology (earthquakes or microseisms), meteorology (long range location of cyclone trajectories), electronic distance measuring systems as Hiran or Shiran, location of aurorae or of meteors, studies of water waves, tsunamis or swell, oceanography. It is obtained by constructing the spheroidal (spherical) triangle P_1P_2T , of Figure 34, in the plane as shown in Figure 35. The true length (to scale) of the base line $P_1P_2=2S$ is drawn as a straight line in the plane. Points T are located with respect to the base line from the intersection of circular arcs about P_1 , P_2 with radii the true lengths (scaled) of r', r. Either spheroidal or spherical distances for S, r', r may be used. The projection is not conformal, that is angles are not preserved about every point of the projection.

The equations relating the several parameters as shown in Figure 35 are:

$$x = p \cos \theta = \frac{1}{2S} (S^2 + p^2 - r^2) = \frac{1}{4S} (r'^2 - r^2) = r' \cos a_1 - S = S - r \cos a_2,$$

$$y = x \tan \theta = p \sin \theta = \pm (p^2 - x^2)^{1/2} = r' \sin a_1 = r \sin a_2 = \pm \frac{1}{4S} \{16S^2 r'^2 - (r'^2 - r^2 + 4S^2)^2\}^{1/2},$$

Given distances on the spheroid (sphere) are S, r', r.

Figure 35. The doubly equidistant projection.

$$p^{2} = \frac{1}{2}(r'^{2} + r^{2}) - S^{2}, \cos \theta = \frac{1}{4pS}(r'^{2} - r^{2}) = \frac{1}{2pS}(S^{2} + p^{2} - r^{2}),$$

$$\cos a_{1} = (4S^{2} + r'^{2} - r^{2})/4r'S, \cos a_{2} = (4S^{2} - r'^{2} + r^{2})/4rS$$
(53)

and where for the apherical case, we have from (47)

r = arc cos
$$\{\sin \phi' \sin \phi_1 + \cos \phi' \cos \phi_2 \cos (\lambda_2 - \lambda')\}$$

r' = arc cos $\{\sin \phi' \sin \phi_1 + \cos \phi' \cos \phi_1 \cos (\lambda' - \lambda_1)\}$
2S = arc cos $\{\sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos (\lambda_2 - \lambda_1)\}$

Discussion. The doubly equidistant projection may also be called bi-polar, since we have two radii r', r from two foci P_1 , P_2 and the angles a_1 , a_2 . We have given, or compute, the values S, r', r and then from (53)

$$\cos \alpha_1 = (4S^3 + r'^2 - r^2)/4r'S, x = r'\cos \alpha_1 - S, y = r'\sin \alpha_1,$$

$$\cos \alpha_2 = (4S^2 - r'^2 + r^2)/4rS, x = S - r\cos \alpha_2, y = r\sin \alpha_2$$
(54)

which provide a check for rectangular coordinate computation.

Given the rectangular coordinates x, y of the point T on the doubly equidistant projection and the constants S, a, ϕ_0 , λ_0 of the base line as shown in Figure 34; find the geographic coordinates, ϕ' , λ' , of the point T on the sphere.

From x, y, S we have

$$t' = \{(x + S)^2 + y^2\}^{1/2}, t = \{(S - x)^2 + y^2\}^{1/2}.$$

From (50) we have

$$tan d = \cot S (\cos r - \cos r')/(\cos r + \cos r'), \tag{55}$$

From (46) find

$$\cos s' = \cos r' \cos d/\cos (S + d) = \cos r \cos d/\cos (S - d)$$

From (46) (QTP) we have

$$a' = a - \arccos(\tan d/\tan s')$$
,

Finally from P'QT of (47) find

 $\phi' = \arcsin(\cos s' \sin \phi_0 + \sin s' \cos \phi_0 \cos \alpha')$,

and

 $\lambda' = \lambda_0 + \arcsin(\sin s' \sin \alpha'/\cos \phi')$.

From equation (50) we have

$$\tan d = \frac{\cos r - \cos r'}{\tan S (\cos r + \cos r')} = \frac{\cos^2 r - \cos^2 r'}{\tan S (\cos r + \cos r')^2} = \frac{\sin^2 r' - \sin^2 r}{\tan S (\cos r + \cos r')^2}.$$
 (56)

Considering d/N_0 , r/N_0 , r'/N_0 , S/N_0 to be small mough to place $\tan d/N_0 = d/N_0$, $\tan S/N_0 = S/N_0$, $\cos r = \cos r' = 1$, $\sin r' = r'$, $\sin r = r$, then (56) becomes $d = (r'^2 - r^2)/4S = x$ -coordinate of the doubly equidistant projection, equations (53). From (46) (QTP) we have $\tan s = \tan (\alpha - \alpha') \sin d$, and if we place $\sin d/N_0 = d/N_0$, $\tan s/N_0 = s/N_0$ then $s = \tan (\alpha - \alpha')d$. But then d is x of Figure 35, $\alpha - \alpha' = \theta$, and s is the y-coordinate of the doubly equidistant projection, $y = x \tan \theta$, see figure 35 and equations (53).

The world geodetic reference system 1967

The International Union of Geodesy and Geophysics has tentatively adopted a new geodetic reference system, see reference [30]. It is defined by the three constants: equatorial radius a = 6378160 meters; earth geocentric gravitational constant including the atmosphere $GM = 398603 \times 10^9$ m³ s²; earth dynamical form factor $J_2 = 10827 \times 10^{17}$.

Now the earth's rotational velocity is given by

$$\omega = \{2\pi(1 + s_1/86400)/[s_1 + p \cos e/1500]\}$$
 s⁻¹, where

s₁ = 31556925.9747 (ephermeris seconds in one tropical year, 1900)

p = 5025.64 (seconds general precession in longitude per tropical century, 1900)

 $e = 23^{\circ} 27' 08"26$ (obliquity of the ecliptic, 1900)

$$\omega = 7.292115144 \times 10^{5} \text{ g}^{-1}$$
.

Since
$$I_2 = e'^2(1 - 2me'/15q_0)/3(1 + e'^2)$$
, where

$$m = \omega^2 a^2 / GM(1 + e^{r^2})^{1/2}$$
, $q_0 = \frac{1}{2} \{(1 + 3/e^{r^2}) \text{ arc tan } e^r - 3/e^r\}$.

and a, GM, I2, ware known we may solve for e',

e' = 0.08209582892 (the second eccentricity).

We can then solve for b, 1/f, and e2:

$$b = a/(1 + e^{12})^{1/2} = 6356774.516 m; 1/f = a/(a - b) = 298.2471675.$$

$$e^2 = (a^2 - b^2)/a^2 = 2f - f^2 = .006694605326$$

The formulae for gravity at the pole; equator; general (normal) are:

$$g_{\phi} = GM(1 + me'q_{\phi}'/3q_{\phi})/a^{2}$$
, $g_{\phi} = GM(1 - m - me'q_{\phi}'/6q_{\phi})/ah$

$$g = (ag_a \cos^2 \phi + bg_a \sin^2 \phi)/(a^2 \cos^2 \phi + b^2 \sin^2 \phi)^{1/2}$$

where

$$q'_0 = 3(1 + 1/e'^2) (1 - \frac{1}{e'} \arctan e') - 1.$$

With the above values of constants, these become:

$$g_p = 983,2177279 \text{ gal}, g_e = 978,0318456 \text{ gal}$$

 $g = 978,0318 (1 + .0053024 \sin^2 \phi - .0000058 \sin^2 2\phi) \text{ gal}$

(this last the series expansion of the above general formula).

The numerical values are preliminary. The official values will be published by the international Association of Geodesy.

Summary Values

Given
$$a = 6378160 \text{ m}, \text{ GM} = 398603 \times 10^6 \text{ m}^3 \text{ s}^{-2}, \text{ J}_2 = 10827 \times 10^{-7}$$

Computed $\omega = 7.292115144 \times 10^{-5} \text{ s}^{-1}, \text{ e}^2 = 0.006694605326,$
 $e'^2 = 0.006739725126, \text{ g}_p = 983.2177279 \text{ gal},$
 $g_e = 978.0318456 \text{ gal}, 1/f = 298.2471675, \text{ b} = 6356774.516 \text{ m}$
 $g = 978.0318 (1 + .0053024 \sin^2 \phi - .0000058 \sin^2 2\phi) \text{ gal}$

Comment. A comparison with the AUSTRALIAN ellipsoidal constants, Table 10, shows that, for practical geodetic purposes, using 8-place tables, we may use the AUSTRALIAN ellipsoid. Tables of metidion are length, principal radii of curvature, and latitude functions have been published for several spheroids by the Department of the Army as technical manuals. For instance, CLARKE 1866 (TM5-241-18), INTERNATIONAL (AMS TM-67); AUSTRALIAN (TM5-241-33); FISCHER (MERCURY) (TM5-241-35).

If we take a = 6378160 m,
$$\omega$$
 = 7.292115 × 10⁻⁵ s⁻³, 1/f = 298.25,
 f = .3352892 × 10⁻², g_0 = 978.0318 cm s⁻², we find $m = \omega^2 a/g_0$ = .3467753 × 10⁻²,
 fm = .1162703 × 10⁻⁴. From reference [31], page 366, we have
 $g = g_0 [1 + \beta \sin^2 \phi - \beta_1 \sin^2 2\phi]$, where
 β = (5/2)m = f = (17/14)mf, β_1 = (5/8)mf = (1/8)f²

With the stated values of f, m, and mf we have

$$\beta = .0053024$$
, $p_1 = .00000586$, and $g = 978.0318[1 + .0053024 sin^2 $\phi = .00000586 sin^2 2\phi]$ gal.$

This gravity formula gives only .06 $\sin^2 2\phi$ mgal less than the recommended formula above, the maximum difference being .06 mgal at $\phi = 45^\circ$.

Appendix 3,
THE ACIC CHECK LINES, 50-6000 MILES,
AND GEODETIC LINE COMPUTATIONS

ACIC CHECK LINES

Taken directly from ACIC Technical Reports 59, 80. See bibliographical reference [22]. The 500 mile lines are repeated since they were given in both publications.

ORIGIN AND TERMINAL POSITIONS OF LINES

LONG LATITUDE LONGITUDE LATITUDE 18° 10°43'39":378 18° 11°27'18":032 18° 40°43'28":790 18° 41°26'57":248 18° 70°43'16":379 18° 41°26'57":248 18° 70°43'16":379 18° 71°26'32":550 18° 10°30'37":757 17°19'43":280 41°01'01":097 18° 50°30'12":925 16°28'22":844 70°59'37":255 18° 9°59'46":211 17°03'27":926 9°59'48":349 18° 9°59'46":211 17°03'27":926 9°59'48":349 18° 69°59'15":149 15°53'37":449 69°57'00":764 18° 44°20'47":1740 18° 45°47'40":974 18° 74°19'35":289 18° 75°46'05":589 18° 13°04'12":545 18° 45°47'40":974 18° 74°19'35":289 18° 75°46'05":589 18° 72°47'48":242 37°36'58":487 73°35'09":210 18° 72°47'48":242 37°36'58":487 73°35'09":210		ORIGIN	SIN	SO MILES	LES	100 MILES	ILES	200 MILES	ILES
10° 18° 10°43'39''.978 18° 11°27'18''.032 40° 18° 40°43'28''.790 18° 41°26'57''.248 70° 18° 70°43'16''.379 18° 71°26'32''.530 10° 18° 10°30'50''.497 17°28'48''.777 11°01'37''.955 40° 18° 40°30'37''.757 17°019'43''.280 41°01'01''.097 70° 18° 40°30'37''.757 17°019'43''.280 41°01'01''.097 70° 18° 9°59'57''.087 17°015'7.1942 39°59'48''.349 40° 18° 9°59'57''.087 17°015'7.71942 39°59'48''.349 10° 18° 69°59'15''.1149 15°53'37''.1942 39°59'48''.349 10° 18° 69°59'15''.1149 15°53'37''.1942 39°59'48''.195 10° 18° 69°59'15''.1149 15°53'37''.1942 39°59'04''.134 10° 18° 44°20'47''.740 18° 45°47''40''.974 40° 18° 74°19'35''.254 18° 75°46'05''.653 40° 18°	AZIMUTH	LAT	LONG	LATITUDE	LONGITUDE	LATITUDE	LONGITUDE	LATITUDE	LONGITUDE
40° 18° 40°43'28''.790 18° 41°26'32''.548 70° 18° 70°43'16''.379 18° 71°26'32''.550 10° 18° 10°30'50''.497 17°28'48''.777 11°01'37''.857 40° 18° 40°30'37''.757 17°019'43''.280 41°01'01''.097 70° 18° 70°30'12''.925 16°28'22''.844 70°59'37''.295 40° 18° 9°59'57''.087 17°015'57''.926 9°59'48''.349 40° 18° 9°59'57''.1087 17°015'57''.926 9°59'48''.349 40° 18° 9°59'57''.1087 17°015'57''.949 9°59'04''.850 10° 18° 9°59'57''.1149 15°53'37''.1449 69°59'16''.1549 10° 18° 14°21'52''.156 15°53'37''.1449 69°59'16''.1649 40° 18° 14°21'52''.156 18° 45°40'16''.1549 10° 18° 14°21'52''.156 18° 45°40'08''.156 10° 18° 14°21'52''.156 18° 45°40'08''.156 10° 18°		100	180	10043'39':378	180	11027'18''.032	180	12°54'35''.538	180
70° 18° 70°43¹16¹¹379 18° 71°26¹32¹;550 10° 18° 10°30′50¹¹497 17°28¹48¹;777 11°01¹37¹;857 40° 18° 40°30¹37¹;757 17°19¹43¹;280 41°01¹01¹;097 70° 18° 70°30¹12¹;925 16°28¹22¹;844 70°59¹37¹;295 40° 18° 9°59¹57¹;087 17°015¹37¹;492 9°59¹48¹;349 40° 18° 9°59¹46¹;211 17°03¹27¹;942 9°59¹48¹;349 70° 18° 9°59¹46¹;211 17°03¹27¹;942 9°59¹48¹;349 10° 18° 14°21¹52¹;449 15°53³37¹;449 69°57¹00¹;764 40° 18° 14°21¹52¹;456 18° 45°47¹40¹;974 40° 18° 14°21¹52¹;456 18° 45°47¹40¹;974 70° 18° 74°19¹35¹;289 18° 45°47¹40¹;974 40° 18° 74°19¹35¹;289 18° 75°46¹05¹;63 40° 18° 74°19¹35¹;289 18° 75°46¹05¹;63 10° 18° 72°47¹48¹;242 07°36¹8³;48¹;48	00	400	180	40043'28".790	180	41026'57''.248	18°	4205315311,164	180
10° 18° 10°30′50′′.497 17°28′48′′.777 11°01′01′′.857 40° 18° 40°30′37′′.757 17°1943′′.280 41°01′01′′.097 70° 18° 70°30′12′′.925 16°28′22′′.344 70°59′37′′.295 40° 18° 9°59′57′′.087 17°015′57′′.942 9°59′48′′.349 40° 18° 69°59′15′′.149 15°53′37′′.149 69°59′04′′.154 70° 18° 69°59′15′′.149 15°53′37′′.149 69°57′00′′.764 10° 18° 14°21′52′′.456 18° 40° 15°49′08′′.754 40° 18° 14°21′52′′.456 18° 15°49′08′′.755 40° 11° 10° 18° 14°21′52′′.456 18° 15°49′08′′.755 40° 15°49′08′′.755 10° 18° 74°10′′.740 18° 75°46′′05′′.589 15°49′′08′′.589 15°49′′08′′.589 10° 18° 74°10′′.744 14°51′′13′′.283 14°05′′.66°′.663 16° 10° 18° 72°47′′48′′.242 07°36′′38′′.487 73°35′′99′′.50°′.663 <td></td> <td>200</td> <td>180</td> <td></td> <td>180</td> <td>71026'32'!550</td> <td>180</td> <td>7205310411.295</td> <td>180</td>		200	180		180	71026'32'!550	180	7205310411.295	180
40° 18° 40°30°17°1757 17°19943°1280 41°011°101°1.097 70° 18° 70°30°12°1925 16°28°22°1844 70°59°37°1295 10° 18° 9°59°57°1087 17°15°57°1926 9°59°48°1349 40° 18° 69°59°46°1211 17°03°27°1942 39°59°04°1850 70° 18° 69°59°15°1149 15°53°37°1449 69°57°00°1764 10° 18° 69°59°15°1149 15°53°37°1449 69°57°00°1764 LAT LONG LATITUDE LONGITUDE LATITUDE 10° 18° 44°20°47°1740 18° 45°47°40°1974 70° 18° 74°19°35°1289 18° 75°46°105°1589 10° 18° 74°19°35°1289 18° 75°46°105°1589 70° 18° 73°04°12°1564 14°51°13°1283 14°05°106°1509°1210 70° 18° 72°47′48°1242 77°36°1847 73°35°190°1210 70° 18° 72°47′48°1242 9°56°158°1487 9°56°158°1750°150 10° 18° 9°58°15°144	-	100	180	10°30'50'',497	17028'48",777	11001/37":857	16°57'31''.358	12003,02 1,498	1505413611649
70° 18° 70°30'12''925 16°28'22''844 70°59'37''295 10° 18° 9°59'57''1087 17°15'57''926 9°59'48''349 40° 18° 39°59'46''211 17°03'27''942 39°59'04''850 70° 18° 69°59'15''149 15°53'37''449 69°57'00'',764 10° 18° 14°21'52'',456 LATITUDE LATITUDE LAT LONG LATITUDE LATITUDE LATITUDE 10° 18° 14°21'52'',456 18° 45°47'40''974 70° 18° 74°19'35''.289 18° 45°47'40''974 10° 18° 74°19'35''.289 18° 75°46'05''.589 40° 18° 74°19'35''.289 18° 75°46'05''.589 40° 18° 74°19''35''.242 07°36''81'' 75°46''05''.589 10° 18° 72°47''48''.242 07°36''81'' 73°35''09''.210 10° 18° 72°47''48''.242 07°36''81'' 73°35''09''.250 40° 18° 9°58'15''14'''.20	450	400	180	40°30'37'!757	170191431:280	41001,01,002	16038'49''777	42001.021.610	1501510811672
10° 18° 9°59'57'!087 17°015'57'!926 9°59'48'!349 40° 18° 39°59'46'!211 17°03'27'!942 39°59'04'!850 70° 18° 69°59'15'!149 15°53'37'!449 69°57'00'!764 ORIGIN 300 MILES 400 MIL LAT LONG LATITUDE LATITUDE 10° 18° 14°21'52"456 18° 15°49'08'!725 40° 18° 74°10'47''740 18° 75°46'05''58' 10° 18° 74°19'35''289 18° 75°46'05''58'' 40° 18° 74°19'35''289 18° 75°46'05''58' 70° 18° 72°47'48''254 14°51'13''283 14°05'06''663 70° 18° 72°47'48''242 75°46'05''150 70° 18° 72°47'48''242 75°46''141 73°35'09''150 10° 18° 72°47'48'''242 73°35''48'''467 9°56''53'''750 10° 18° 9°58''15'''192 73°35''8'' 40° 18° 9°58''15'''192		200	180		16º28'22':844	70º59¹37¹!295	14º52'09'':888	7105514411745	11°25'02''.986
40° 18° 39°59'46''!211 17°03'27''942 39°59'04''850 70° 18° 69°59'15''!149 15°53'37''449 69°57'00''764 ORICIN 300 MILES 400 MIL LAT LONG LATITUDE LATITUDE LATITUDE 10° 18° 14°21'52''456 18° 15°49'08''725 40° 18° 74°19'35''289 18° 75°46'05''589 10° 18° 74°19'35''264 14°51'13''283 14°05'06''663 40° 18° 72°47'48''.256 13°48'49''.111 43°57'50''.690 70° 18° 72°47'48''.242 77°36'58''.487 73°35'09''.210 10° 18° 72°47'48''.242 73°35'58''.487 73°35'09''.210 10° 18° 9°58'15''!192 13°35'48''.467 9°56'53''.751 40° 18° 9°58'15''!192 75°45''19''.750 75°45''19''.750		001	180	90591571:087	17015'57''926	905914811349	1603115511877	905911311405	15°03'51''.963
70° 18° 69°59°15°:149 15°53°37°:449 69°57°00°:764 ORICIN 300 MILES 400 MILES 450 MILES 140 MILES	006	400	180	39059146":211	17003'27''942	39°59'04'',850	16°06′56′′.642	3905611911507	140131591!336
LAT LONG LATITUDE LATI	 	200	T	690591151:149	15053*37 1:449	6905710011764	1304713211949	69°48'05''.702	903712811,707
LAT LONG LATITUDE LATITUDE LATITUDE 10° 18° 14°21'52",456 18° 15°49'08";725 40° 18° 44°20'47";740 18° 45°47'40";974 70° 18° 74°19'35";289 18° 75°46'05";589 10° 18° 13°04'12";564 14°51'13";283 14°05'06";663 4C° 18° 43°00'00";556 13°48'49";111 43°57'50";690 70° 18° 72°47'48";242 07°36'58";487 73°35'09";210 10° 18° 9°58'15";192 13°35'48",467 9°56'53";751 40° 18° 9°58'15";192 12°21'14";090 39°45'19";750		ORI	GIN	300 M	ILES	400 M	ILES	SOO MIL.ES	n.es
10° 18° 14°21'52",456 18° 15°49'08";725 40° 18° 44°20'47";740 18° 45°47'40";974 70° 18° 74°19'35";289 18° 75°46'05";589 10° 18° 13°04'12";564 14°51'13";283 14°05'06";663 4C° 18° 43°00'00";556 13°48'49";111 43°57'50";690 70° 18° 72°47'48";242 07°36'58";487 73°35'09";210 10° 18° 9°58'15";192 13°35'48",467 9°56'53";751 40° 18° 39°51'44";295 12°21'14";090 39°45'19";750	1	LAT	LONG	LATITUDE	LONGITUDE	LATITUDE	LONGITUDE	LATITUDE	LONGITUDE
40° 18° 44°20¹47¹;740 18° 45°47¹40¹;974 70° 18° 74°19¹35¹;289 18° 75°46¹05¹;589 10° 18° 13°04¹12¹;564 14°51¹13¹;283 14°05¹06¹;663 40° 18° 43°00¹00¹;556 13°48¹49¹;111 43°57′50¹;690 70° 18° 72°47¹48¹;242 07°36¹58¹;487 73°35¹09¹;210 10° 18° 9°58¹15¹;192 13°35¹48¹;467 9°56¹53¹;751 40° 18° 39°51¹44¹;295 12°21¹14¹;090 39°45¹19¹;750		100	180	14021'52",456	180	15049'08'!725	180	17º16'24''.286	,8°
700 18° 74°19¹35¹;289 18° 75°46¹05¹;589 10° 18° 13°04¹12¹;564 14°51¹13¹;283 14°05¹06¹;663 40° 18° 43°00¹00¹;556 13°48¹49¹;111 43°57¹50¹;690 70° 18° 72°47¹48¹;242 07°36¹58¹;487 73°35¹09¹;210 10° 18° 9°58¹15¹;192 13°35¹48¹;467 9°56¹53¹;751 40° 18° 39°51¹44¹;295 12°21¹14¹;090 39°45¹19¹;750	60	406	180	4402014711740	180	45047'40''.974	180	4701413211867	18 ₀
10° 18° 13°04'12''.564 14°51'13''.283 14°05'06''.663 4C° 18° 43°00'00''.556 13°48'49''.111 43°57'50''.690 70° 18° 72°47'48''.242 07°36'58''.487 73°35'09''.210 10° 18° 9°58'15''.192 13°35'48''.467 9°56'53''.751 40° 18° 39°51'44''.295 12°21'14''.090 39°45'19''.750		200	180	7401913511289	18°	7594610511589	180	7701213511253	180
46° 18° 43°00°00°;556 13°48'49°;111 43°57°50°;690 70° 18° 72°47'48°;242 07°36'58°;487 73°35'09°;210 10° 18° 9°58'15°;192 13°35'48°;467 9°56'53°;751 40° 18° 39°51'44';295 12°21'14";090 39°45'19°;750		100	180		14051113":283	14º05'06'':663	13°47'18'':635	15°05'43'':367	12042'50''.044
70° 18° 72°47'48'!242 07°36'58'!487 73°35'09'!210 10° 18° 9°58'15'!192 13°35'48''467 9°56'53''751 40° 18° 39°51'44''295 12°21'14''090 39°45'19''750	450	400	180	430001001:556	1304849":111	43°57'50'',690	12019'43":420	44°54'28'',506	10047'43'',884
10° 18° 9°58°15°!192 13°35°48°',467 9°56°53°!,751 40° 18° 39°51°44°!,295 12°21°14°!,090 39°45°19°!,750	. L	200	180	7204714811242	07°36'58'',487	7303510911210	3º26'35''.190	74017'05'!184	-19061511,561
40° 18° 39°51'44".295 12°21'14".090 39°45'19".750		100	180	905811511192	13035'48'',467	9°56'53'!,751	120071451:595	9055'09'! 138	10039431.554
200111000 2001110000 2001110000 200100000	006	400	180		12021114".090	399451911750	10°28'46".813	39037'06'',613	803614311277
18° 50 51. 20 220. 10.25° 5 200. 22.55° 60 81		200	180	6903312211562	503210111822	69013'03'',648	01033'11''.478	6894712511.009	- 2017 23 1:583

Latitudes north; longitudes west, except those prefixed by a minus sign.

ACTUAL DISTANCE OF LINES

CLARKE 1866 ELLIPSOID

Latitude	Azimuth	50 Miles	100 Miles	200 Miles	300 Miles	400 Miles	500 Miles
100	00	80,466.478	160,932.956	321,865.912	482,798.868	643,731.824	804,664.780
400	00	80,466.478	160,932.956	321,865.912	482,798.868	643,731.824	804,664.780
200	00	80,466.478	160,932.956	321,865.912	482,798.868	643,731.824	804,664.780
100	450	80,466.477	160,932.956	321,865.912	482,799.868	643,731.824	804,664.780
400	450	80,466.478	160,932.955	321,865.911	482,798.868	643,731.824	804,664.780
002	450	80,766.478	160,932.956	321,865.912	482,798.868	643,731.824	804,664.780
100	006	80,466.476	160,932.956	321,865.912	482,798.868	643,731.824	804,664.780
400	006	80,466.477	160,932.955	321,865.912	482,798.868	643,731.824	804,664.780
002	%	80,466.478	160,932.956	321,865.912	482,798.868	643,731.824	804,664.780

ACTUAL FORWARD AZIMUTH OF LINES

Latitude	Azimuth	50 Miles	100 Miles	200 Miles	30C Miles	400 Miles	500 Miles
100	00	000,00,000	000:00:000	000,00,00000	000:00:0000	000:00:0000	000:00:00:000
400	&	000000000000	000:00:00000	000:00:0000	000000000000	000.00.0000	00000000000
200	00	000:00:00000	000:00:0000	00010010000	000:00:000	000:00:000	00010010000
100	450	44°59'59"999	45°00'00:000	45°00'00"000	45°00'00"000	45°00'00:000	45°00'00:000
400	450	45000'00"000	4500,00,000	44059'59"999	440591591999	45000'00"000	45°00'00"000
200	42°	45°00'00"000	45°00'00"000	45°00'00"000	45000,000,000	45°00'00"000	45°00'00'000
100	006	000:00:00006	100:00:00-06	000:00,00006	000:00:00006	000:00.00006	000:00:00-06
400	006	000:00:00006	000:00:0006	000:00:00-06	000;00,00006	000:00:00006	000,00,00006
200	<u>&</u>	100:00:00:00	000:00:00:006	000:00.00006	000:00:00006	000;00,00006	000:00.00-06

ACTUAL BACK AZIMUTH OF LINES

Latitude	Azimuth	50 Miles	100 Miles	200 Miles	300 Miles	400 Miles	500 Miles
100	00	180000000000000000000000000000000000000	180°00'00"000	180°00'00"000	180°00'00'000	180000000000000000000000000000000000000	180000100:000
400	%	180000.00.000	18000000000000	18000000000000	180000.00:000	180°00'00"000	180°00'00"000
200	8	180000:00:000	180°00'00"000	180000,00,000	180°00'00'000	180°00'00'000	1800000000000
1%	45°	225°05'33"200	225011'24"056	225°23'59"176	225037'46"346	225°52'46"641	226°09'01"224
400	450	225°26'01"695	225°52'43"715	226048'12"147	227046'32"222	228047159!!982	22905215525
200	45°	226º26¹13‼935	227°57'04"162	231013'26"981	234°50'49"050	238º50'31"359	243º13'18"356
100	°06	270007'38"786	270015'17"480	270030'34!337	270045'49"945	271001'03"684	271016'14"933
400	86	270036120!315	271012139#796	272°25'12"925	2730371321768	274049132!!801	276º01'06"777
200	006	271058'45"079	273°57'12''072	277052'01"046	281042'12"088	285°25'45"725	289001'02"923

ORIGIN AND TERMINAL POSITIONS OF ALL TEST LINES

	ORIGIN	NI:	500 N	500 MILES	1000 MILES	ILES
AZIMUTH	LAT	LONG	LATITUDE	LONGITUDE	LATITUDE	LONGITUDE
	10° N	18° W	17° 16' 24''286N	18° W	24° 32' 29':539N	18° W
80	40° N	18°₩	47° 14' 32''867N	18° W	54° 28' 32"474N	18° W
	70° N	18° W	77° 12' 35':253N	18° W	84° 24' 56"178N	18° W
	10° N	18° W	15° 05' 43':367N	12° 42' 50'044W	20° 03' 33''190N	7° 10' 22''015W
45°	40° N	18₀ ₩	44° 54' 28''506N	10° 47' 43':884W	49° 16' 35''187N	2° 19' 56''359W
	20° N	18°₩	74° 17' 05':184N	1° 06' 51':561E	76° 00' 26''593N	28° 42' 03''634E
	10° N	M .8I	9° 55' 09''138N	10° 39' 43':554W	9° 40' 41''618N	3º 19º 52º797W
. 06	40° N	18° W	39° 37' 06''613N	8° 36' 43':277W	38° 29' 31''652N	0° 34' 31''140E
	70° N	18° W	68° 47' 25''009N	2° 17' 23':583E	65° 30' 59''633N	18° 55' 21''211E
	ORIGIN	Z	3000	MILES	6000 MILES	IILES
AZIMUTH	LAT	LONG	LATITUDE	LONGITUDE	LATITUDE	LONGITUDE
	10° N	18° W	53° 32' 00':497N	18° W	83° 11' 48'515N	162° E
હ	40° N	18° ₩	83° 20' 01"540N	18° W	53° 23' 45!'785N	162° E
	70° N	18° W	66° 45' 22''460N	162° E	23° 18' 44''908N	162° E
	10° N	18° W	37° 18' 49'295N	19° 34' 07"117E	44° 54' 05':381N	77° 25' 26':869E
45°	40° N	18°₩	57° 06' 00':851N	45° 08' 40'.841E	35° 18' 45',644N	102° 02' 29''821E
	70° N	18°₩	58° 13' 05''486N	95° 02' 29''439E	17° 08' 38':317N	114° 18' 43''800E
	10° N	18° W	7° 14' 05':521N	25° 48' 13"908E	0° 30' 55''629N	68° 47' 05':259E
°06	40° N	18° W	27° 49' 42:130N	32° 54' 13':184E	1° 56' 54"386N	69° 27' 01''115E
	70° N	18° W	43° 07' 36''475N	52° 01' 00':626E	2° 55' 17''426N	70° 50' 04''891E

DISTANCE AND AZIMUTH

	<u> </u>	Γ .	Distance	Forward	Back
ø	α	S	(meters)	Azimuth	Azimuth
100	00	500			
10°	0°	500	804664.780	00° 00' 00'.000	180° 00' 00':000
40°	0°	500	804664.780	000' 00' 00'.000	180° 00' 00'.'000
70°	0°	500	804664.780	00° 00' 00'.000	180° 00' 00'.'000
10°	45°	500	804664.780	45° 00' 00'.'000	226° 09' 01'!224
40°	45°	500	804664.780	45° 00' 00'.'000	229° 52' 15'!525
70°	45°	500	804664.780	45° 00' 00'.000	243° 13' 18'!356
10°	90°	500	804664.780	90° 00' 00'.000	271° 16' 14'!933
40°	90°	500	804664.780	90° 00' 00'.000	276° 01' 06'.'634
70°	90°	500	804664.780	90° 00' 00'.'000	289° 01' 02'!923
10°	0°	1000	1609329.561	000°,00°,000	180° 00' 00'.'000
40°	0°	1000	1609329.561	000'.'00 '00 °00	180° 00' 00':'000
70°	0°	1000	1609329.561	000'.'00 '00 °00	180° 00' 00'.'000
10°	45°	1000	1609329.561	45° 00' 00'.'000	227° 49' 35'!353
40°	45°	1000	1609329.561	45° 00' 00'.'000	236° 04' 46'.580
70°	45°	1000	1609329.561	45° 00' 00'.'000	269° 55' 22'.'938
10°	90°	1000	1609329.561	90° 00' 00'.'000	272° 31' 12'.316
40°	90°	1000	1609329.561	90° 00' 00'.'000	281° 48' 53'.'917
70°	90°	1000	1609329.561	90° 00' 00':000	304° 22' 03'.'656
10°	0°	3000	4827988.683	00° 00' 00'.'000	180° 00' 00'.'000
40°	0°	3000	4827988.683	000'.00 '00 °00	180° 00' 00'!000
70°	0°	3000	4827988.683	00° 00' 00':000	360° 00' 00'!000
10°	45°	3000	4827988.683	45° 00' 00'!000	240° 59' 37'!859
40°	45°	3000	4827988.683	45° 00' 00'.'000	274° 57' 29'!108
70°	45°	3000	4827988.683	45° 00' 00'!000	332° 38' 58'!143
10°	90°	3000	4827988.683	90° 00' 00':'000	276° 53' 56'!283
40°	90°	3000	4827988.683	90° 00' 00'.'000	299° 54' 41'!259
70°	90°	3000	4827988.683	90° 00' 00'.'000	332° 00' 43'.685
10°	0°	6000	9655977.366	00° 00' 00'.000	360° 00' 00':000
40°	0°	6000	9655977.366	000'.'00 '00 °00	360° 00' 00',000
70°	0°	6000	9655977.366	00° 00' 00'.'000	360° 00' 00'.'000
10°	45°	6000	9655977.366	45° 00' 00':000	281° 01' 12'.685
40°	45°	6000	9655977.366	45° 00' 00'.'000	318° 23' 43'.'000
70°	45°	6000	9655977.366	45° 00' 00'.'000	345° 17' 56'.277
10°	90°	6000	9655977.366	90° 00' 00'.'000	279° 57' 13'!199
40°	90°	6000	9655977.366	90° 00' 00'.'000	309° 51' 53'.419
70°	90°	6000	9655977.366	90° 00' 00':000	339° 54' 37'.211

CLARKE 1866 ELLIPSOID

DIRECT AND REVERSE COMPUTATIONS OF ALL ACIC 6000 MILE CHECK LINES – Clarke 1866 Ellipsoid

DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 , α_{1-2} , S to find ϕ_2 , λ_2 , α_{2-1} . East longitudes positive; azimuths clockwise from north; no root extraction; only 8 place trigonometric natural tables (as Peters) required for desk work.

CLARKE 1866	SPHEROID a <u>63</u>	<i>78206.4</i> m	13.3900	75283x/L	2-3
1 - f		1 radian = 200	6264.8062 sec	on ds	
LINE ORIGIN		TO	MINU	S (ACIC	<u></u>
φ ₁ 10 0 0					
α_{1-2} θ_1 $\sin \theta_1$					
$\sin \alpha_{1-2}$	$ M = \cos \theta_0 = \cos \theta_1 $	$\sin \alpha_{1-2}$	<i>0</i>	0 90 0	<u> </u>
cos α ₁₋₂	$N = \cos \theta_1 \cos \alpha_{1-2}$	= cos 8,	sin <i>θ</i>	0	
c ₁ = fM		$D = (1 - c_2)(1 - c_2)$	<u>2</u> – c ₁ M) <u>-</u>	9830 568	06
$c_2 = \frac{1}{4}(1 - M^2)f \frac{8475/88}{2}$	0	/ //		0848957	12254
$\cos \sigma_1 = \sin \theta_1 / \sin \theta_0 = \cos (90)$)-81) 01 80	01 59.5	92		
d=S/aD /.5/647/0635	(rad) d & &	53 14.610	2 s <i>_963</i>	3-977.36	<u> </u>
sin d±. 9985 2475	· ·			•	
cos d 4.05479855					•
$V = \cos u \cos d - \sin u \sin d + 2$					
$X = c_2^2 \sin d \cos d (2V^2 - 1)$			•	,	
$\sin \Delta \sigma$	cos Δσ		Δο_86_	5/ 33.	572
cos Σσ		$\Sigma \sigma = 2\sigma_1 - \Delta \sigma$			
$\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \theta_1)$	ι Δσ)	α2-1	360		Secretary Secretary from professor secretary for the control of th
$\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma)}{(1 - \Omega M)}$	σ) $\sin \alpha_{2-1}$ β . 387	2927 sin o	t _{2.1}		
= tan (90+07-40)	1(1-1)	ϕ_2		11 48.	
$\tan \Delta \eta = \frac{\sin \Delta \sigma \sin \alpha_1}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin}$.2 0	Δη	. *	, "	
		•			
$H = c_1(1 - c_2) \Delta \sigma - c_1 c_2 \sin \Delta \sigma \cos \theta$	ς ΣοΟ				
				Committee of the second se	
		λ_i	- 18		
CHECK			•	, "	
$M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_2$	$\theta_2 \sin (180 + \alpha_{2-1})$	$\lambda_2 = \lambda_1$	1 DX 167		Maria Company

INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 ; ϕ_2 , λ_2 to find S, α_{1-2} , α_{2-1} . Azimuths clockwise from north; east longitudes positive; no tables except 8-place natural trigonometric (Peters): no root extraction.

CLARKE 1866 SPHEROID a63	78206.4 m	b 63565	-83.8	m
1-f=b/a.9966099247/7 4f 16950	3764/5×10"	V45 -8475/	282075	x10-3
12/64.17957720379 x10-6		06264.8062 se cc		
				======================================
φ1 10 0 0 1. O.E/4/N	(ALIC)	$\lambda_1 = \frac{1}{8}$	0	<u>"</u>
φ2 R3 11 48.545 2 TERMI				0
$\tan \phi_1 = 0.1763 + 2698 = 1$ always west of 2.		$\Delta \lambda = \lambda_2 - \lambda_1 \angle 4$	00	0
$\tan \phi_2 = 1.3822925$ $\tan \theta = (1 - f) \tan \theta$	n ø	$\Delta \lambda_{\mathbf{m}} = \frac{1}{2} \Delta \lambda$	00	0
θ ₂ 83 10 26.018 tan θ ₂ 8.353	8760	$\sin \Delta \lambda_m $ /		
$\theta_1 = \frac{9}{9} = \frac{58}{58} = \frac{00.408}{100} = \tan \theta_1 = \frac{.175}{.175}$	72922	tan Δλ _	2	
$\theta_{\rm rn} = \frac{1}{2}(\theta_1 + \theta_2) \frac{46}{46} \frac{34}{34} \frac{13.2}{3} \sin \theta_{\rm m} + \frac{726}{3}$	2 1887	$\cos \theta_{\rm m} + 68$	7463	57
$\Delta \theta_{\rm m} = \frac{1}{2} (\theta_2 - \theta_1) 36 36 12805 \sin \Delta \theta_{\rm m} + 596$	67 747/	cus $\Delta\theta_m + R$	02780	46
$H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \Delta \theta_m + 1/7062626$	≤i-L±	527393	845	
$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m $ 472606 155	cos d = 1 - 2L -#	.0547 8	769	
$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) + \frac{1.2889}{2939}$	d 26	5/ 33	566	
$V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L + 7 / 1027067 \sin \theta + 9$	984 9803	d (rad) /a.s	15981	1383
$X = U + V + 2$ $T = d \sin d 2.5/8$	2615716	$E = 2 \cos d \mathcal{Z}_{\infty}$	1095 7	538
Y=U-V + .577815872 D=4T2 9.220	472799	B = 2D /2.	44094	5598
A = DE = 1.010 3368 // C=T-1/2 (A-E)=				
$n_1 = X (A + CX) + 6.29 V / 9.70 + 6 n_2 = Y (B + EY) + 2.00 + 6 CX + $	_			
810 = 14 (TX - Y) + . 002083 7922			_	_
$S_1 = a \sin d (T - \delta_1 d) $ 9655 970 · 023 m	$S_2 = a \sin d (T - \delta)$	5,d+6,d) 96	15977	127_10
F = 2Y - E(4 - X)	M = 32T - (20 T)	- A) X - (B + 4)	Υ	ner green sie
$G = {}^{1}2fT + (f^{2}/64) M$	Q = - (FG tan Δλ	•		
$\Delta \lambda_{m} = \frac{1}{2} (\Delta \lambda + Q) = 4 \lambda_{m}$	tan $\Delta \lambda_m^*$. As λ_m	days 7 7	~	manager gazzen, penger in senere
v = arctan le ₂ l	$c_2 = \cos \Delta \theta_{\rm m}/(\sin \theta_{\rm m})$	$(\theta_{\mathbf{m}}, \tan \Delta \lambda_{\mathbf{m}}^{(i)})_{i=1}$	70	, ne na vytava na nase
u = arctan c ₁	$c_1 = -\sin \Delta \theta_m/(c_0$	$\partial s \theta_{m} \tan \Delta \lambda_{m}^{2}$	→ 0	
$\alpha_1 = v - u$	a; = v + u	e	Note: 12th Nation College	ćs.
c_1 c_2 $a_{1,2}$	G _{2.1}	,	••	
- + a ₁ Q	360 - 0: 36	Q	The relativestable	-
+ + a ₁	360 - 61	n managan sa Wasan sa a sa s	e et e selection assesses	
- 180 - α ₁	180 + a ₁			
+ - 180 - a ₁	180 + 02	named and the second second	athless a sumbore typestypestypestype	

DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given $\phi_1, \lambda_1, \alpha_{1,2}$, S to find $\phi_2, \lambda_2, \alpha_{2,1}$. East longitudes positive; azimuths clockwise from north; no root extraction; only 8-place trigonometric natural tables (as Peters) required for desk work.

CLARKE 1866 SPHEROID & 6.3	78206.4 m 1 3.390075283× 10-3
1-1-996609924717	1 radian = 206264.8062 seconds
LINEORILIN	TO TERMINUS (ACIC)
	29963 $\tan \theta_1 = (1-1) \tan \phi_1 - 83625502$
	C cos θ, 267/ 1787 θ, 39 54 15.203
$\sin \alpha_{1-2} \qquad \qquad M = \cos \theta_0 = \cos \theta$	$\theta_1 \sin \alpha_{1.2} = 0$ $\theta_0 = 0$ $\theta_0 = 0$
$\cos \alpha_{1,2}$ $N = \cos \theta_1 \cos \alpha_1$	$sin \theta_0 - 1$
c ₁ = fM	$D = (1 - c_1)(1 - c_1 - c_1M) - 9983056806$
$c_2 = \frac{1}{4}(1 - M^2)f \cdot \frac{8475}{84201540} - \frac{3}{4}$	$P = c_2 (1 + \frac{1}{2} c_1 M)/D$.0008489572254
$\cos \sigma_1 = \sin \theta_1 / \sin \theta_0 = \omega_5 (90 - \Theta_1) = \sigma_1 \le C$	
	53 14.610 89655977.366 m
•	3 34 59.626 sin u - 9597 3129
cos d + 0542 9855 W=1-2P cos u + 1	9995 VO13/6 cos u 4.2826 272 4
	Y = 2PVW sin d +.0016491167
	$\Delta o = d + X - Y$
sin Δσ cos Δσ	<u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</u>
cos Σσ	$\Sigma \sigma = 2\sigma_1 - \Delta \sigma$
$\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma)$	
$\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{(1 - f)M}$	3 073/ sin 01.1
= 144 (40+0, -00)/(1-f)	61 53 23 45.786
$\tan \Delta \eta = \frac{\sin \Delta \sigma \sin \alpha_{1,2}}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1,2}}$	Sn /RO
$H = c_1(1-c_2) \Delta \sigma - c_1c_1 \sin \Delta \sigma \cos \Sigma \sigma$	(rad) H
	Δλ = Δη - H . LBO.
	λ, -/8
CHECK	• , , , ,
$M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1,2} = \cos \theta_2 \sin (180 + \alpha_{2,1})$	$\lambda_1 = \lambda_1 + \Delta \lambda $ 262

INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given $\phi_1, \lambda_1; \phi_2, \lambda_2$ to find S, $\alpha_{1,2}, \alpha_{2,3}$. Azimuths clockwise from north; east longitudes positive; no tables except 8-place natural trigonometric (Peters); no root extraction.

1-1=6/3-793609927717 1616950376415×10-3 41.84751882075×10-3
1-1=6/3-793609927717 1616950376415×10-3
1 radian = 206264.8062 seconds

and an arrangement of the control of	ಶಿವ್ಯಗ ್ರಾಹಕ್ಕೆ ಭ್ರಾತಿಯೊಬ್ಬಿಯ ್ಟ್ ಪ್ರಗ್ರಾಪಕ್ಕ ಸ್ವಿತ್ಯ ಕನ್ನಡಚಿತ್ರವನ್ನು		
	PRIGIN (ALIC)		
6 53 23 45.785 2 7	ERMINUS	λ2 16 2	0 0
tan ϕ_1 . 83 90 9963 1. alway	s west of 2.	$\Delta \lambda = \lambda_2 - \lambda_1 / \mathcal{L}$	0 0 0
tan φ ₂ ζ. 3463 0730 tan θ	$= (1-t) \tan \phi$	$\Delta \lambda_m = \frac{1}{2} \Delta \lambda + \mathcal{L}$	0 0 0
θ ₂ 53 18 10.335 tan θ	1.3417 4322	sin Δλ _m Δ	g u
θ ₁ 39 54 15-203 tan θ	83675502	tan Δλ	?
$\theta_{\rm m} = {}^{1}2(\theta_{1} + \theta_{2})$ 46 36 12.719 $\sin \theta_{1}$	nt.7266 1721	cos θ _m + . 68	70 4253
$\Delta\theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1) 6 41 57.566 \sin \Delta$	0m t.1166 5902	_ cos ∆8 _m ± .9	93/7203
$H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \Delta \theta_m$	1584/8/10-1 - 1 + .	52797256	y
$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m - 4720224$	28 cos d = 1 - 21	1.05594	5/2
$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) H / 92276$	392 0 86	47 34	463
$V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / 1.4.0272/8654$	ind .9984 3385	d (rad) /.\$/	48219842
X=U+V 2.000000046 . 1=da			
Y=U-V/.945562738 D=+1			• • • • • • • • • • • • • • • • • • • •
A = DI 1.0302361915 _ C= 1-	· · · · · · · · · · · · · · · · · · ·	·	
n, = X (A + CX)+6.225723 n ₂ + Y		~	
5,4 - W. Ex - YE #. 000 92 7 80 2		=	
S = 4 und (1 - 8, d) \$655.970.63		•	•
F : Y - F (4 - N)	M = 321 - (20)		The second secon
G = aft eff oil M	O = «(FG tan)	ų.	• •
$\Delta \lambda_m^2 \approx \frac{1}{2} (\Delta \lambda + Q) = \Delta \lambda_m$		and has to	O
v = arctan (c,)		$\sin \theta_m (\sin \lambda_m) =$	
n * arctan (c) Q		(cos 9 _m tan Åλ _m) π	
0, = v - u 0	0; * t * u	3 /	•
C ₁ C ₂ O ₁ ;	, o _{i i}		*
- 0, 0	160 - 0;	60	*
□ :	360 - 01		* -
180 - 0;	180 + a ₁ .		Control of the Control
• ~ 180 - a ₁	180 • a ₁	seNew 1 at 1	•

DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given $\phi_1, \lambda_1, \alpha_{1-2}$, S to find $\phi_2, \lambda_2, \alpha_{2-1}$. East longitudes positive; azimuths clockwise from north; no root extraction; only 8-place trigonometric natural tables (as Peters) required for desk work.

CLARKE 1866 SPHEROID a 637	18206.4 m 13.390075283×10-3
1-f .9966 099247/7	
LINEORIGIN	TO TERMINUS (ALIC)
$\phi_1 = \frac{70}{70} = \frac{0}{0} = \frac{0}{0} = \tan \phi_1 = \frac{2.7474}{0}$	
α_{1-2} δ $\sin \theta_1$	cos θ1 .3430 4686 θ1 69 56 14.590
$\sin \alpha_{1-2}$ O $M = \cos \theta_0 = \cos \theta_1$	_
$\cos \alpha_{1-2}$ / N = $\cos \theta_1 \cos \alpha_{1-2}$	$= \cos \theta_1$ $\sin \theta_0$
c ₁ = fM	$D = (1 - c_2)(1 - c_2 - c_1 M) \cdot 9983056806$
$c_2 = \frac{1}{4}(1 - M^2)f \cdot \frac{8475/882/x}{0} - \frac{3}{4}$	$P = c_2 (1 + \frac{1}{2} c_1 M)/D$.000848957225
$\cos \sigma_1 = \sin \theta_1 / \sin \theta_0 = \cos(90 - \theta_1)$ $\sigma_1 = \cos(90 - \theta_1)$	
d=S/aD /.5/647/0635 (rad) d 86	
$\sin d + 9985 2475$ $u = 2(\sigma_1 - d) - 35$	
cos d + 05429855 W = 1 - 2P cos u + 14	
$V = \cos u \cos d - \sin u \sin d + .6850283395$	
$X = c_2^2 \sin d \cos d (2V^2 - 1) - (2394/10^2)$	• , , , , , , , , , , , , , , , , , , ,
sin Δσ cos Δσ	Δο 86 49 14.773
cos Σσ	$\Sigma \sigma = 2\sigma_1 - \Delta \sigma$
$\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma) \qquad $	
$\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{(1-f)M}$	sin α_{2-1}
= tan(90 +0; - A0)/(1-f)	φ ₂ <u>23 18 44.908</u>
$\tan \Delta \eta = \frac{\sin \Delta \sigma \sin \alpha_{1-2}}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1-2}}$	Δη 180
$H = c_1(1 - c_2) \Delta \sigma - c_1 c_2 \sin \Delta \sigma \cos \Sigma \sigma$	(rad) H
	$\Delta \lambda = \Delta \eta - H / \mathcal{L} Q$
	λ, - /8
CHECK	• / "
$M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_2 \sin (180 + \alpha_{2-1})$	$\lambda_2 = \lambda_1 + \Delta \lambda \underline{/62}$

INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 ; ϕ_2 , λ_2 to find S, α_{1-2} , α_{2-1} . Azimuths clockwise from north; east longitudes positive; no tables except 8-place natural trigonometric (Peters); no root extraction.

CLARKE 1866 S	PHEROID a 6378206.4 m b 6356583.8 m
1-f=b/a . 996609924717	1 45 1.6950376415×10-345 8475 1882 075 ×10-3
f2/64 .1795720379x10-	PHEROID a 6378206.4 m b 6356583.8 m // %f 1.69503764/5210-3 1 radian = 206264.8062 seconds

φ ₁ 20 0 0 1. ORIGIA	1 (ACIC) \(\lambda_1 - 18 \) 0 "0
φ2 23 18 44.908 2. TERMI	NUS 12 162 0 0
tan ϕ_1 2. 7474 7742 1. always west of 2	$\Delta \lambda = \lambda_2 - \lambda_1 - 80$
$\tan \phi_2 - 4309 26/6 = \tan \theta = (1 - f) \tan \theta$	$n \phi \qquad \Delta \lambda_{\mathbf{m}} = \frac{1}{2} \Delta \lambda \qquad \mathbf{g} \mathcal{O}$
θ ₂ 23 14 30.638 tan θ ₂ .42	946529 sin Δλ _m /
$\theta_1 = 69 - 56 - 14.590 $ $\tan \theta_1 = 2.738$	7/6326 tan $\Delta\lambda$ 0
$\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2) \frac{46}{46} = \frac{35}{35} = \frac{22.6}{6} \sin \theta_{\rm m} + \frac{726}{35}$	45012 cos 8m + 6872 1920
$\Delta \theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1) - 23$ 20 5/.976 $\sin \Delta \theta_{\rm m}39$	63 1114 cos Alm + 9181 1627
$H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \Delta \theta_m \cdot \frac{3/57 \cdot 0776}{2}$	91-L 4.52772977/5
$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m - 4722702285$	cos d = 1 - 2L + . 0554 5954
$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) / 6858749876$	d 36 49 14.777
$V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L_3. /4/75039L \sin d. 99$	846094 d (rad) 1.5/53083202
X = U + V 2.0000000272 T = d/sin d 25/	
	9740387 B=2D /8.425948076
A = DE 1.02/8946044 C = T - 1/2 (A - E) 1	2.062/563033 CHECK C - ½ E + AD/B = T
	5.4845 09517n3 = DXY 25-27579 365 9
• • • • • • • • • • • • • • • • • • • •	$\delta_2 d = (f^2/64)(n_1 - n_2 + n_3) + 0000010925$
	$S_2 = a \sin d (T - \delta_1 d + \delta_2 d) $ $g_4 = g_5 =$
F = 2Y - E (4 - X)	M = 32T - (20 T - A) X - (B + 4) Y
	$Q = -(FG \tan \Delta \lambda)/4$
$\Delta \lambda_{m}' = \frac{1}{2} (\Delta \lambda + Q)$	tan ∆\n' = tan A dm, → ∞
v = arctan c ₂	$c_2 = \cos \Delta\theta_m / (\sin \theta_m \tan \Delta\lambda_m') $
u = arctan c ₁	$c_1 = -\sin \Delta\theta_m/(\cos \theta_m \tan \Delta\lambda_m') \Rightarrow O$
$\alpha_1 = v - u$	$\alpha_2 = v + u$
$\frac{c_1}{c_2}$ $\frac{c_2}{a_{1-2}}$	α_{2-1}
- + α ₁ _ Q	360 - α ₂ _360
+ + \(\alpha_2 \)	360 - α1
180 - α ₂	180 + α ₁
+ - 180 - α ₁	180 + α ₂

DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 , α_{1-2} , S to find ϕ_2 , λ_2 , α_{2-1} . East longitudes positive; azimuths clockwise from north; no root extraction; only 8-place trigonometric natural tables (as Peters) required for desk work.

CLARICE 1866 SPHEROID a 6378206.4 m f 3.390075 283x10-3 1-1-996609924717 1 radian = 206264.8062 secondsTO TERMINUS (ACIL) $\tan \phi_1 = 0.1763 2698 \quad \tan \theta_1 = (1-f) \tan \phi_1 \cdot 1757 2922$ α_{1-2} 45 0 0 $\sin \theta_1$./730 77/6 $\cos \theta_1$. 9849 0827 θ_1 9 58 00.408 $\sin \alpha_{1.2} = 707/0678$ $M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1.2} = 6964353V \theta_0 45 5/29.865$ $\cos \alpha_{1-2}$. $\frac{107}{0678}$ $N = \cos \theta_1 \cos \alpha_{1-2}$. $\frac{6964}{3532}$ $\sin \theta_0$. $\frac{7176}{1957}$ c1 = IM .002360968/6 $D = (1 - c_2)(1 - c_2 - c_1 M) - 99748 37397$ $P = c_2 (1 + \frac{1}{2} c_1 M)/D$.000437914146 $c_2 = \frac{1}{4}(1 - M^2)f_2 = \frac{1}{4}(1 - M^2)f_3 = \frac{1}{4}(1 - M^$ d=S/aD /5/77206574 (rad) d 26 57 32.357 S 9655-977.366 m $\sin d + .99859/87$ $u = 2(\sigma_1 - d) - 2/4950.3/0 \sin u - .37/86434/$ cus d + .0530 5075 W=1-2P cos u .999/8698 cos u + .92878709 V = cos u cos d - sin u sin d 42058 70 144 Y = 2PVW sin d .000 3675 4422 $X = c_2^2 \sin d \cos d (2V^2 - 1) - 652 \times 10^{-8} \Delta \sigma = d + X - Y$ /.5/735 3/067 (rad) sin Δo 4 . 9985 7225 cos Δo + . 0534 / 779 Δo 86 56 /6.544 $\Sigma \sigma = 2\sigma_1 - \Delta \sigma$ 65 08 57.860 cos Σσ + · 42025353 $\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma) \sim S. /348.9288 \qquad \alpha_{2-1} \qquad 28/ O/ /2.683$ $\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{(1-f)M} + \frac{4.9965 674}{\sin \alpha_{2-1}} = \frac{-.9815 5988}{0.981}$ -10.1454135 Dy 95 37 45.384 $\tan \Delta \eta = \frac{\sin \Delta \sigma \sin \alpha_{1-2}}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1-2}}$ $H = c_1(1 - c_2) \Delta \sigma - c_1 c_2 \sin \Delta \sigma \cos \Sigma \sigma - 20358043638 \text{ (rad)} H$ $\Delta \lambda = \Delta \eta - H$ **95 25 26.868 CHECK** $M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_2 \sin (180 + \alpha_{2-1})$

INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 ; ϕ_2 , λ_2 to find S, α_{1-2} , α_{2-1} . Azimuths clockwise from north; east longitudes positive; no tables except 8-place natural trigonometric (Peters); no root extraction.

 $\frac{CLARKE}{866} \frac{866}{\text{SPHEROID a}} = \frac{6378206.4}{1-f} = \frac{35-6583.8}{1-f} = \frac{996609924717}{1-f} = \frac{1795-720379\times10^{-3}}{1 \text{ radian}} = \frac{206264.8062 \text{ seconds}}{1 \text{ seconds}}$

φ ₁ 10 0 0 1. OR/6/	N (ACK)	λ, -/8	0	"0
φ2 44 54 05.38/ 2. TERN		λ ₂ 27		
$\tan \phi_1 = 1763 2698$ 1. always west of 2.		$\Delta \lambda = \lambda_2 - \lambda_1 \mathcal{L}$		_
$\tan \phi_2 = 9945 6741$ $\tan \theta = (1 - f) \tan \theta$	ι φ	$\Delta\lambda_{m} = \frac{1}{2}\Delta\lambda$	7 42	43.434
θ ₂ 44 48 15.164 tan θ ₂ .993	18897	$\sin \Delta \lambda_m + 2$	397	7279
$\theta_1 = 9 + 8 + 00.408 + \tan \theta_1 = 175$	7 2922	tan Δλ	53/	552_
	599 7503	$\cos \theta_{\rm m}$	8879	3/85
$\Delta\theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1) \qquad \qquad \sin \Delta\theta_{\rm m} + 2$	1935249	$\cos \Delta\theta_{\rm m} + \frac{1}{2}$	1541	4259
$H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \Delta \theta_m \cdot 6.9821105$				
$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m - 4720458936$	$\cos d = 1 - 2L - 3$	+.0559	082	
$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L)$.7296740478	d 26	47 42	.089	-
$V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L \cdot 299349/1103 \sin d \cdot 99$	843591	d (rad)	1485	89561
X = U + V /. 02 90 / \$208 / T = d/sin d /. 5/3	2320436	$E = 2 \cos d$	1118	1642
Y=U-V_4903 798875 D=4T29.2079	7722965	B = 2D /8.	4159	44593
A = DE 4.0296 024977 C = T - 1/2 (A - E)4	05833 90048	CHECK C-14	E + AD/B	= T
$n_1 = X (A + CX) 2.180132106$ $n_2 = Y (B + EY) 2.180132106$	•			
δ ₁ d = ¼f (TX - Y). 000 958 4840	$\delta_2 d = (f^2/64)(n_1)$	- n ₂ + n ₃) =	00000	2303/
$S_1 = a \sin d (T - \delta_1 d) = 9455 - 979.242$ m	$S_2 = a \sin d (T - b)$	δ ₁ d + δ ₂ d) 26	55977	7.3/2 m
F = 2Y - E (4 - X) + 52845 522 7/	M = 32T - (20 T)	- A) X - (B + 4)	Y + 8 - 7.3	1466222
$G = \frac{1}{2}fT + (f^2/64) M \cdot 2025 7333 479$	$Q = -(FG \tan \Delta \lambda)$)/4 ±	12	18520
$\Delta \lambda_{m}' = \frac{1}{2} (\Delta \lambda + Q) \frac{47}{98} \frac{98}{52694}$	$\tan \Delta \lambda_m' $	034 126	9	
$v = \arctan c_2 $ 6/ 69 23.656	$c_2 = \cos \Delta \theta_m / (\sin \theta_m)$	iθ _m tan Δλ _m ') ±	1.879	19 2728
u = arctan ic, 1	$c_1 = -\sin \Delta\theta_m/(c_0)$	constan Δλ _m ').	305	5380V
$\alpha_1 = v - u$ 44 59 59.999	α ₂ = v + u	2 52	47.31	3
c_1 c_2 a_{1-2}	α ₂₋₁			
- + \(\alpha_1 \) \(\frac{44}{59} \) \(\frac{59.999}{59.999}\)	360 - α ₂ 2 8		12.68	Z
+ + a ₂	360 - α1			
180 - α ₂	180 + α ₁			
$+$ - 180 - α	180 + 00			

DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 , α_{1-2} , S to find ϕ_2 , λ_2 , α_{2-1} . East longitudes positive; azimuths clockwise from north; no root extraction; only 8-place trigonometric natural tables (as Peters) required for desk work.

CLARKE 1866 SPHEROID 2 6378206.4 m f 3.390075283 x 10-3

1-1-996609924717 1 radian = 206264.8062 seconds TO TERMINUS (ACIC) LINE ORIGIN $\tan \phi_1$.8390 9963 $\tan \theta_1 = (1-f) \tan \phi_1$.83625502 φ₁ 40 0 0 α_{1-2} 45 0 α_{1} α_{1} α_{2} α_{3} α_{4} α_{5} α_{6} α_{1} α_{5} α_{6} α_{5} α_{6} α_{6} $\sin \alpha_{1-2}$ = 707/0678 $M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2}$ = 5-4243425 $= \theta_0 57$ = 5-901.789 $\cos \alpha_{1-2} - 707/0678$ $N = \cos \theta_1 \cos \alpha_{1-2} - 54243435 \sin \theta_0 - 84009826$ c1 = IM _00/83889294 $D = (1 - c_2)(1 - c_2 - c_1 M) - 997807/775$ P = c₂ (1 + ½c₁M)/D . .000 5 9 9 76 2688 $c_2 = \frac{1}{4}(1 - M^2)f$. 0.00598149194' $\cos \sigma_1 = \sin \theta_1 / \sin \theta_0$. 7636 085 / $\sigma_1 = \frac{90}{40} / \frac{9}{12} = \frac{99}{12} = \frac{99}{12}$ d=S/aD 1.5/77286903 (rad) d 86 55 50.887 S 9655 977.366 m sin d + .9985 6560 u = 2(o1 - d) -93 25 4/.936 sin u - .9982 1040 cos d + . 05354202 W=1-2P cos u L. 00007/73/3 cos u - . 05979970 $V = \cos u \cos d - \sin u \sin d \cdot 9935767703$ $Y = 2PVW \sin d \cdot 200119019637$ $X = c_2^2 \sin d \cos d (2V^2 - 1) + .1864 \times 10^{-7}$ $\Delta \sigma = d + X - Y$ 1.5160385/26 (rad) sin Do + . 99 85 0117 cos Do + 0547 3045 Do 86 51 45.390 $\cos \Sigma \sigma + .9937 1074$ $\Sigma \sigma = 2\sigma_1 - \Delta \sigma - 6 25 45.562$ $\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma) - 8179819V \qquad \alpha_{2-1} = 2/8 23 43.00V$ $\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{(1-f)M} + \frac{70837/73}{\sin \alpha_{2-1}} \sin \alpha_{2-1} - \frac{6639}{6639} 8783$

 $\tan \Delta \eta = \frac{\sin \Delta \sigma \sin \alpha_{1-2}}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1-2}}$ -1.71808992 DA

 $H = c_1(1-c_2) \Delta \sigma - c_1 c_2 \sin \Delta \sigma \cos \Sigma \sigma + 0.027850336 \text{ (rad)} H$

 $\Delta \lambda = \Delta \eta - H / 20 07 29.822$

CHECK

 $M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_2 \sin (180 + \alpha_{2-1})$

 $\lambda_2 = \lambda_1 + \Delta \lambda$ 102 02 29.827

INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 ; ϕ_2 , λ_2 to find S, α_{1-2} , α_{2-1} . Azimuths clockwise from north; east longitudes positive; no tables except 8-place natural trigonometric (Peters); no root extraction.

CLARKE 1866 SPHEROID a 63	
1-f=b/a . 996609924717 14f 1.695	0376415x10 3/1 .8475/882075 x10-3
12/64 -1795720379 x10-6	1 radian = 206264.8062 seconds
φ1 40 0 0 1. ORIL	/N \\ \(\lambda_1 = 18 \text{0} 0
φ, 35 18 45.644 2. TERM	11NUS 1,102 02 29.82
$\tan \phi_1 = 83909963$ 1. always west of 2.	$\Delta \lambda = \lambda_2 - \lambda_1 / 20 / 07 / 29.82 /$
$\tan \phi_2 = \frac{70837174}{\tan \theta} = (1-i) \tan \theta$	$\Delta \lambda_{m} = \frac{15}{2} \Delta \lambda 60 01 14.910$
θ ₂ 35 /3 /5.443 tan θ ₂ .7069	7703/ sin Δλ _m + 8662 0693
θ ₁ 39 54 15.203 tan θ ₁ 836	25502 tan DA -1.729/4904
$\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2)$ 33 45323 $\sin \theta_{\rm m}$ + .60	096 2772 cos 8m + . 1926 8786
$\Delta\theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1) - \frac{1}{2} = 0.19.880 \sin \Delta\theta_{\rm m} - 0.05$	108 5 784 cos Alm + 999 / 6497
$H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \Delta \theta_m = 62428436$	81-L 528/200685
$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m - 47/87 993/5$	cos d = 1 - 2L _OS6740/4
$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) / 40508 027 33$	0 / " 1
•	24 /727 d (rad) /-5/4526495/
X = U + V 1.409526 // 2 / T = d/sin d 1.5/	692738/6 E = 2 cos d _//24 8028
-	274724 B=2D /8.408549448
A = DE / 035 299 395 2 C = T - ½ (A - E) /	LOSSS 178225 CHECK C - ½ E + AD/B = T
$n_1 = X(A + CX) 3.55634620$ $n_2 = Y(B + EY) 26$	6.0043095 n ₃ = DXY /8./7/8627
δ ₁ d = ¼f (TX - Y) _000 625 0 5 7 3	$\delta_2 d = (f^2/64)(n_1 - n_2 + n_3) - 000000768$
$S_1 = a \sin d (T - \delta_1 d) 9455982.150$ m	$S_2 = a \sin d (T - \delta_1 d + \delta_2 d) $ 9455977.359 m
F = 2Y - E (4 - X) 2.50989 16408	M = 32T - (20 T - A) X - (B + 4) Y - 24 - 442 20 333
G = 1/2 fT + (f2/64) M .0025 669 /2669	$Q = -(FG \tan \Delta \lambda)/4 + \frac{9}{2} \frac{9}{2}.445$
$\Delta \lambda_{\mathbf{m}}' = \frac{1}{2} \left(\Delta \lambda + \mathbf{Q} \right) 40 64 02 \mathbf{M2}$	tan $\Delta\lambda_m'$ 1.73909509
$v = \arctan ic_2 i 43 18 08.499$	$c_2 = \cos \Delta \theta_m / (\sin \theta_m \tan \Delta \lambda_m') + 9424 3013$
u = arctan c ₁	$c_1 = -\sin \Delta\theta_m/(\cos \theta_m \tan \Delta\lambda_m') + 0.256 3807$
$\alpha_1 = v - u $ 4/ 36 /4.998	a ₂ = v + u _ <u>v < 0 0</u>
c_1 c_2 α_{1-2}	$\frac{\alpha_{2-1}}{2\cdot 2}$, ,
- + α ₁	360 - α ₁
+ + \(\alpha_2 \frac{45}{0} \)	360 - a ₁ - 3/2 23 43.002
180 - α ₁	180 + α ₁
+ - 180 - α ₁	180 + a ₂

DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 , α_{1-2} , S to find ϕ_2 , λ_2 , α_{2-1} . East longitudes positive; azimuths clockwise from north; no root extraction; only 8-place trigonometric natural tables (as Peters) required for desk work.

```
CLARKE 1866 SPHEROID a 6378206.4 m f 3.390075283 x/0-3
1-1-996609924717
                                                    1 \text{ radian} = 206264.8062 \text{ seconds}
                           TO TERMINUS (ACIC)
LINE ORIGIN
                                \tan \phi_1 2.747477477 \tan \theta_1 = (1-1) \tan \phi_1 2.738/6326
\alpha_{1,2} 48 0 0 \sin \theta_1 9393 1830 \cos \theta_1 3430 4686 \theta_1 69 56 14.590
\sin \alpha_{1-2} 707/ 0678 M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} 2425 7076 \theta_0 75 57 42.053
\cos \alpha_{1-2} = \frac{707}{0678} = N = \cos \theta_1 \cos \alpha_{1-2} = \frac{2425}{7076} = \sin \theta_0 = \frac{970}{337}
                                                D = (1 - c_2)(1 - c_2 - c_1 M) - 9982060207
c1 = IM _000 822333 /38
                                                  P = c_2 (1 + \frac{1}{2}c_1 M)/D .000799163565
c_2 = \frac{1}{4}(1 - M^2)f_2 = \frac{2000797650327}{1}
\cos \sigma_1 = \sin \theta_1 / \sin \theta_0  9487359 / \sigma_1 14 28 47.23 /
d=S/aD /5/66224664 (rad) d 86 53 45.839 S 9655 977.366 m
sin d + 9085 32 96 u = 2(o1 - d) -144 49 57.216 sin u - 575 9 6785
cos d + . 054/4737 W=1-2P cos u / 00/30/5812 cos u - . 8/74/7234
V = cos u cos d - sin u sin d 45308589049 Y = 2PVW sin d + 0008483484
X = c_1^2 \sin d \cos d (2V^2 - 1) - 247/410^{-7} \Delta \sigma = d + X - Y /.5/57740933 (rad)
sin As + 9984 8666 cos As + 0549 9448 As 86 50 50.850
cos Eo + . 53/5 7748
                                                  \Sigma \sigma = 2\sigma_1 - \Delta \sigma
\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma) - 26236438 \alpha_{2-1} 345
\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{(1-i)M} \frac{4.30848056}{\sigma_{2-1}} \sin \alpha_{2-1} = \frac{25377540}{\sigma_{2-1}}
\tan \Delta \eta = \frac{\sin \Delta \sigma \sin \alpha_{1-2}}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_1}
                                       -1.09577302 DA
Δλ = Δη - H /32 /8
                                                                                      43.800
CHECK
M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_2 \sin (180 + \alpha_{2-1})
```

INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 ; ϕ_2 , λ_2 to find S, α_{1-2} , α_{2-1} . Azimuths clockwise from north; east longitudes positive; no tables except 8-place natural trigonometric (Peters); no root extraction.

 $\frac{CLARKE /866}{1-f=b/a} \frac{SPHEROID a}{996609924717} \frac{6378204.4}{1795720379210-6} m b 6356583.8 m$ 1-f=b/a 996609924717 \text{\text{16950376415210}} \text{\text{4}} \frac{84751242075}{1} \text{\text{radian}} = 206264.8062 seconds

ORIGIN (ACIC) X1-18 TERMINUS $\Delta \lambda = \lambda_2 - \lambda_1 /32 - 18 + 43.800$ tan p₁ 2.7474 7742 1. always west of 2. tan ϕ_2 3084 8055 $\Delta \lambda_m = \frac{1}{2} \Delta \lambda - \frac{16}{2} \frac{09}{2} \frac{21900}{100}$ $\tan \theta = (1 - f) \tan \phi$ tan 02 .3074 3478 02 17 05 21.296 sin Δλm + 9146 5008 tan Δλ -1. 0985 1694 tan θ₁ 2.738/6326 0, 19 56 14.590 $\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2) \frac{42}{42} \frac{20}{20} \frac{47.943}{435} \sin \theta_{\rm m} + \frac{10885}{23} \frac{23}{6} \cos \theta_{\rm m} + \frac{10}{25} \frac{252}{435} \frac{1435}{25}$ $\Delta\theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1) - \frac{26}{25} \frac{25}{26} \frac{25}{647} \sin \Delta\theta_{\rm m} - \frac{4450}{14} \cos \Delta\theta_{\rm m} + \frac{1}{25} \frac{4955}{2490}$ $H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \Delta \theta_m = \frac{3279007015}{1 - L} - \frac{52764}{81/24}$ $L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m + \frac{47235}{18826} \cos d = 1 - 2L + \frac{05529652}{18826}$ $U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) 2.4410 46666 d$ $V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L$ 44/1000834% in d 9984 6999 d (rad) 1.5/547/8866 X = U + V / 8204 75010 T = d/sin d /5/7794/268 E = 2 cos d - 1/059244 Y=U-V/0000458322 D=4T29.2/4796045 B=2D /8.42959209 A = DE 67788 C = T - 1/2 (A - E) 68 536 537 CHECK C - 1/2 E + AD/B * T n1 = X (A + CX) 5.685/12277 n2 = Y (B + EY) 18.5410 3934 n3 = DXY 17.3434 78722 δ,d = Vaf (TX - Y) -00/57 343/2 $\delta_1 d = (f^2/64)(n_1 - n_2 + n_3) + 000000 & 058$ $S_1 = a \sin d (T - \delta_1 d) = \frac{9655972 \cdot 172}{1000} \text{ m}$ $S_2 = a \sin d (T - \delta_1 d + \delta_2 d) = \frac{9655977 \cdot 172}{1000}$ F = 2Y - E(4 - X) + 1.745863/397 _ M = 32T - (20 T - A) X - (B + 4) Y - 29.074451173 G = 1/2 T + (f2/64) M. 25674 9872 8 10- $Q = -(FG \tan \Delta \lambda)/4$ $\Delta \lambda_{m}^{\prime} = \frac{1}{2} (\Delta \lambda + Q) - \frac{1}{2} \frac{$ tan AAm 2-2664 1999 v = arctan lc2 | 29 5/ 0/1867 $c_2 = \cos \Delta \theta_m / (\sin \theta_m \tan \Delta \lambda_m^2) + 5728 2687$ $c_1 = -\sin \Delta\theta_m/(\cos \theta_m \tan \Delta\lambda_m) + 27074744$ 02 = V + U _____ 42.1 360 - a1 ______ 45 0 0 $180 + a_2 180 - \alpha_1$.

DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 , $\alpha_{1,2}$, S to find ϕ_2 , λ_2 , $\alpha_{2,1}$. East longitudes positive; azimuths clockwise from north; no root extraction; only 8-place trigonometric natural tables (as Peters) required for desk work.

LLARKE 1866 1-1-1-9966099247/7	-	1 radian = 206264.	•	
LINE ORIGIN	то	TERM	INUS CA	(212)
φ ₁ <u>10 0 0</u>	tan ϕ_1 0, 176326	$\mathbf{g} = (1 - \theta_1) = (1 - \theta_2)$	1) tan ϕ_1	7 2922
α_{1-2} $go o o \sin \theta_1$				
$\sin \alpha_{1-2}$				
cos α ₁₋₂	$N = \cos \theta_1 \cos \alpha_{1-2} $	0	_ sin θ _o = Sin θ	9,
c ₁ = IM	D =	$= (1 - c_2)(1 - c_2 - c_3)$	1M) 99666	07849
c ₁ = fM <u>.0033P9/3/8</u> c ₂ = ¼(1 - M²)f. <u>0000 ≥ 5388</u>	1020 P=	c ₂ (1 + ½c ₁ M)/D	.0000 25	714966
$\cos \sigma_1 = \sin \theta_1 / \sin \theta_0 $	σ ₁ <u>0</u>	<u> </u>		
d=S/aD /.5/897 38576				
sin d + . 4986 575/	$u = 2(\sigma_1 - d) - 124 O$	3 41.696 sin u	- 1034 5	948
cos d + . 05/7 9928 W	V = 1 - 2P cos u ≠	05075609 cos	- 9946	7367
$V = \cos u \cos d - \sin u \sin d \underline{\qquad}$ $X = c_3^2 \sin d \cos d (2V^2 - 1) \underline{\qquad}$	Y:	= 2PVW sin d 🧪	.00000263	99
sin Do A. 9986 5738				
cos Eo RESAT			·	
$\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \theta_2)$	(a) -5.6997238	2 a2-1	279 57	13.198
$\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma)}{(1 - \Omega)M}$	sin a2-1 4.00299	459 sin az	- 9849 47	25
(1 - f)M			0 30	
sin ∆a sin a	+14.0127	2/e 2 .		1 340
$\tan \Delta \eta = \frac{\sin \Delta \sigma \sin \alpha_{1-2}}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta}$	σ cos α _{1 - 2}	Δη .	K/ 07	
$H = c_1(1-c_2) \Delta \sigma - c_1c_2 \sin \Delta \sigma \cos 2$	Tot DOSATISTA			
			26 V?	
		λ, -	18	
CHECK			18 47	//

INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 ; ϕ_2 , λ_2 to find S, α_{1-2} , α_{2-1} . Azimuths clockwise from north; east longitudes positive; no tables except 8-place natural irigonometric (Peters); no root extraction.

1. QRIGIN (ACK) X - 18 φ, 0 30 55.629 2 TERMINUS λ, 48 $\tan \phi_1 = 1763 2698 = 1$. always west of 2. $\Delta \lambda = \lambda_2 - \lambda_1 26 47 05.259$ $\Delta\lambda_m = \frac{1}{2}\Delta\lambda$ 43 13 32.629 tan \$2 0089 9658 $\tan \theta = (1 - f) \tan \phi$ 0, 0 30 49.337 tan 02 . 0089 6608 tan θ₁ __/757 2422 tan Δλ + 17.80/543 0, 9 58 60.408 $\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2) - \frac{1}{2}(\theta_2 + \theta_3) + \frac{1}{2}(\theta_3 + \theta_3) + \frac{1}{2}(\theta_1 + \theta_2) - \frac{1}{2}(\theta_1 + \theta_2) + \frac{1}{2}(\theta_1 + \theta_2)$ $\Delta\theta_{\rm m} = 1/6(\theta_2 - \theta_1) - \frac{1}{2} + \frac{1}{2$ $H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \Delta \theta_m - \frac{914162619}{2}1 - L$ $L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m$ 47/40 52/15 $\cos d = 1 - 2L$ 0547 8958 $U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) D3/3587594 d$ 86 94 40.002 $V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L D 2 R S S Y M / S \sin d Q 9 R 3 R 6 / 7 d (rad)$ 15/3976/734 X=U+V 0569 / 19009 T=d/sin d /5/14734230 E=2 cos d //3579/6 Y=U-V_00180 46/79 D=4T29, 19815 999/4 B=2D /2.3963/99828 A = DE / DYY7/92854 C = T - 1/3 (A - E) / DSDP523403 CHECK C - 1/2 E + AD/B = T n, = X (A + CX). O663642597 n2 = Y (B + EY). A515855417 n3 = DXY. 0015455925 $\delta_1 d = Mf(TX - Y) + 2000 746 129 = \delta_2 d = (f^2/64)(n_1 - n_2 + n_3) + 29 M/0 - V$ S₁ = a sin d (T - 8₁d) 9455 977. 324 m S₂ = a sin d (T - 8₁d + 8₂d) 9455 977. 345 m F = 2Y - E (4 - X) = .44/40 25477 M = 32T - (20T - A) X - (8 + 4) Y 4/4.7026305Y G = HIT + (17/64) M. 2025727 122 Q = - (FG tan SA)/4 + 12 26.072 $\Delta \lambda_{m}^{+} = \frac{1}{2} \left(\Delta \lambda + Q \right) \frac{43}{2}$ tan Dim __ 9502/540 v = arctan lc, 1 25 01 23.402 $c_2 = \cos \Delta \theta_m / (\sin \theta_m \tan \Delta \lambda_m^2) + 11.4235.202$ $c_1 = -\sin \Delta \theta_m /(\cos \theta_m \tan \Delta \lambda_m^2) \frac{1}{2} \cdot \frac{OR70R/25}{2}$ u = arctan ic; 1 _ 4 _ 5 _ 3 & & & QQ 01 = v + u 90 00 00 0002 01.3 02.1 0, 90 00 00.003 360 - a1 279 57 12.198 180 - 01 _____

DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 , α_{1-7} , S to find ϕ_2 , λ_2 , α_{2-1} . East longitudes positive; azimuths clockwise from north; no root extraction; only 8-place trigonometric natural tables (as Peters) required for desk work.

1-f 996609934717	1 radian = 206264.8062 seconds
LINE ORIGIN	TO TERMINUS (ACIC)
• , ,	9963 tan 81 = (1 - f) tan φ1 - 83625502
α ₁₋₂ <u>60 0 0 sin θ1 64/5 06/8</u>	cos θ ₁ .767/1787 θ ₁ 39 54 15.203
	$\theta_1 \sin \alpha_{1-2} = 205\theta_1 \qquad \theta_0 = \theta_0$
	$\sin \theta_0 = \sin \theta_1$
	$D = (1 - c_2)(1 - c_2 - c_1 M) - 99730 830/3$
$c_2 = \frac{1}{2}(1 - M^2)f$	$P = c_2 (1 + \frac{1}{2} c_1 M)/D$ 200 35 20 6 975
$\cos \sigma_1 = \sin \theta_1 / \sin \theta_0 $	
	58 17.427 S 9655977.366 m
	23 56 54/254 sin u - · 1054 2 11/
	000 696238/ cos u 99 44 2767
$V = \cos u \cos d - \sin u \sin d = \frac{\cos d}{\cos d}$	$Y = 2PVW \sin d$
	28 2/03 00 86 58 19.808
cos Σσ_ ε Ø5ΑΦ	$\Sigma \sigma = 2\sigma_1 - \Delta \sigma = -\Delta \sigma$
	17914 a2-1 309 51 53.420
$\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{(1 - \Omega)M}$	2 /982 sin α ₂₋₁ 7675, 5865
(- <i>y</i> -	φ ₂ / 56 54.387
$\tan \Delta \eta = \frac{\sin \Delta \sigma \sin \alpha_{1-2}}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1-2}} + 24.4$	344745 An 87 40 35.064
$H = c_1(1-c_2) \Delta \sigma - c_1c_2 \sin \Delta \sigma \cos \Sigma \sigma + DO3946$	/387 (rad) H /3 33.950
	Δλ = Δη - H 87 27 01.114
	λ ₁ - /8 0 0
CHECK	• / //
$M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_2 \sin (180 + \alpha_{2-1})$	λ: = λ1 + Δλ <u>69 27 α/. 1/4</u>

INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 ; ϕ_2 , λ_2 to find S, α_{1-2} , α_{2-1} . Azimuths clockwise from north; east longitudes positive; no tables except 8-place natural trigonometric (Peters); no root extraction.

1. DRIGIN (ALIC) XI-18 1 56 84.886 2 TERMINUS 01.115 A. 69 27 $\Delta \lambda = \lambda_2 - \lambda_1 87 27 01.115$ tan o 2390 9463 1. always west of 2. $\tan \phi_2 = 0340 | 082 \qquad \tan \theta = (1-1) \tan \phi$ $\Delta \lambda_m = \frac{1}{2} \Delta \lambda$ tan 02 0339 0449 sin DAm + 691/ 9975 0, 1 56 30.625 0, 39 54 15.203 tan J, 8362 5502 tan A +12.456827 $\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2) \frac{20}{20} \frac{55}{55} \frac{22.414}{2100} \sin \theta_{\rm m} \frac{1}{4.35} \frac{35^{\circ}}{211350} \cos \theta_{\rm m} + \frac{9340}{4100} \frac{6100}{4100}$ $\Delta\theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1) - \frac{1859}{53.389} \sin \Delta\theta_{\rm m} - \frac{32575775}{252575775} \cos \Delta\theta_{\rm m} + \frac{94563540}{2540}$ $H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \Delta \theta_m / (4.77345) - 1 / (5.275) / (1.547)$ $L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m$ $\frac{47207}{100}$ $\frac{81453}{100}$ $\cos d = 1 - 2L$ $\frac{10858}{100}$ $\frac{437}{100}$ $U = 2 \sin^2 \theta_{\rm m} \cos^2 \Delta \theta_{\rm m} / (1 - L) = 4320273583 d = 46 = 47 = 55.413$ $V = 2 \sin^2 L\theta_m \cos^2 \theta_m / L \frac{3910406316}{2910406316} \sin \theta_m = \frac{243952}{2910406316} d (rad)$ 1.51497 35527 X=U+V_8230678899 1= u/sin d 15/727/2554 E= 2 cos d 1/166742 Y=U-V.04098 66267 D=4T29.20869, 3/43 B=2D 18.4/73820286 A = DE 1028494941 C = T - 1/2 (A - E) 1588874949 CHECK C - 1/2 E + AD/B = T $S_1 = a \sin d (T - \delta_1 d) \frac{9 + 5597 \cos 990}{\cos 9655977 \cos 990}$ m $S_2 = a \sin d (T - \delta_1 d + \delta_2 d) \frac{9655977 \cos 990}{\cos 990}$ m F = 2Y - E (4 - X) - 27245 00 775 M = 32T - (20 T - A) X - (B + 4) Y 23-50435423 G = 1/2fT + (f2/64) M. PO25760F652 Q = - (FG $\tan \Delta \lambda$)/4 \pm /3 33.95/ $\Delta \lambda_{m}' = \frac{1}{2} (\Delta \lambda + Q)$ 43 52 11.533 tan Δλ_m 9602 4630 $c_2 = \cos \Delta \theta_m / (\sin \theta_m \tan \Delta \lambda_m') + 2.7575932$ $u = \arctan |c_1| \frac{19}{4} \frac{55}{4} \frac{56.709}{4}$ $c_1 = -\sin \Delta\theta_m/(\cos \theta_m \tan \Delta\lambda_m')$ + 36263504 α₁ = v - u _ **50** 0**8** a2 = v + u 89 59 59.998 C2 α_{1-2} α_{2-1} 360 - a1 309 5/ 83.42D a, 89 59 59.998 $180 - \alpha_1$ _____ $180 + \alpha_2$ ______

DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 , α_{1-2} , S to find ϕ_2 , λ_2 , α_{2-1} . East longitudes positive; azimuths clockwise from north; no root extraction; only 8-place trigonometric natural tables (as Peters) required for deak work.

CLARKE 1866 SPHEROID & 63	78206.4 m 1 3.390075283×10-3
1-1-906609924717	1 radian = 206264.8062 seconds
LINE ORIGIN	TO TERMINUS (ALIC)
$\phi_1 = \frac{70}{20} = \frac{0}{20} = \frac{0}{100} \tan \phi_1 = \frac{2.7474}{100}$	$2742 \tan \theta_1 = (1-f) \tan \phi_1 + \frac{2.738}{6326}$
α ₁₋₂ 90 0 0 sin θ ₁ 9343 1830	cos θ1 .3430 4636 θ, 69 56 M.590
$\sin \alpha_{1-2} \qquad \qquad M = \cos \theta_0 = \cos \theta$	$\sin \alpha_{1.2} = \omega_5 \theta_1 \qquad \theta_0 = \theta_1$
$\cos \alpha_{1-2}$ Q $N = \cos \theta_1 \cos \alpha_{1-2}$	0 $\sin \theta_0 = \sin \theta_1$
c ₁ = fM . 001/6295469	$D = (1 - c_2)(1 - c_2 - c_1 M) -9981063459$
$c_2 = \frac{1}{4}(1 - M^2)f 20074778/85$	$P = c_2 (1 + \frac{1}{2} c_1 M)/D$ 20074935002
$\cos \sigma_1 = \sin \theta_1 / \sin \theta_0 \underline{\hspace{1cm}} \sigma_1 \underline{\hspace{1cm}} \sigma_1$	6 0
d=S/aD /.5/67739223 (rad) d 86	54 17.079 S 9655977.366 m
$\sin d = 2(\sigma_1 - d) = 7$	3 48 34.158 sin u - · 1078 2472
cos d _05399614/ W = 1 - 2P cos u / 6	10148996 / cos u 994 / 6883
	Y = 2PVW sin d +.0000 809264
$X = c_2^2 \sin d \cos d (2V^2 - 1) - 2997 k/D^{-1}$	$\Delta \sigma = d + X - Y$ /5/66929659 (rad)
sin Δσ. 4. 9985 3677 cos Δσ. 4. 05	407697 DO 86 84 00.38/
cos Σσ <u>5 (0 \$ Δ σ </u>	$\Sigma \sigma = 2\sigma_1 - \Delta \sigma = -\Delta \sigma^{-1}$
$\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma) - 3657 4$	349 02-1 339 54 37,209
$\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{(1 - \Omega M)} + \frac{4 \Delta S M}{(1 - \Omega M)}$	2341/2 sin az 1 - 3434 9028
(1 – t)M	φ ₂ <u>7 55 17.426</u>
$\tan \Delta \eta = \frac{\sin \Delta \sigma \sin \alpha_{1-2}}{453.82}$	67631 An 88 56 08.429
$\cos \alpha_1 \cos \alpha_0 - \sin \alpha_1 \sin \alpha_0 \cos \alpha_{1-2}$	
$H = c_1(1 - c_2) \Delta \sigma - c_1 c_2 \sin \Delta \sigma \cos \Sigma \sigma $	•
	$\Delta \lambda = \Delta \eta - H + S + SO + SQV$
	λ ₁ -/3 0 0
CHECK	• / //
$M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_2 \sin (i80 + \alpha_{2-1})$	$\lambda_2 = \lambda_1 + \Delta \lambda 20 50 54.89V$

INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 ; ϕ_2 , λ_2 to find S, α_{1-2} , α_{2-1} . Azimuths clockwise from north; east longitudes positive; no tables except 8-place natural trigonometric (Peters); no root extraction.

```
CLARKE 1866 SPHEROID a 6378206.4 m b 6356583.8
1-1=b/2 996609924717 45 1.6950376415410 46 84951882075410-
12/64 1795 72037 9x10-6
                                                      1 radian = 206264.8062 seconds
                              1. DRIGIN PACIC X1-18
                                                                               50
01 2 55 17.426 2. TERMINUS
                                                                 \Delta \lambda = \lambda_2 - \lambda_1 88 50 04.89
\tan \phi_1 2.74747747 1. always west of 2.
                                                                Δλm = 12Δλ 44 25 02.446
tan \phi_2 = 25 10 34/6
                                  \tan \theta = (1 - f) \tan \phi
0, 2 <4 41.833
                                  tan θ<sub>2</sub> .0508 6 115 sin Δλ<sub>m</sub> + .6998 796 /
                                  tan θ<sub>1</sub> 2.738/6326 tan Δλ 449.16/14
0, 69 56 14.590
\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2) \frac{26}{2} \frac{262}{2} \frac{28.27}{2} \sin \theta_{\rm m} + \frac{4.59376206}{2} \cos \theta_{\rm m} + \frac{4.80463994}{2}
\Delta\theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1) - \frac{33}{20} = \frac{44.378}{100} \sin \Delta\theta_{\rm m} - \frac{552}{2447} \cos \Delta\theta_{\rm m} + \frac{8337}{200} = \frac{170}{100}
H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \Delta \theta_m - \frac{342604001}{2} - L
L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m - 4724594518 \cos d = 1 - 2L - 05468070
U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) \cdot 9294996425 d \qquad 86 \qquad 5' / 55.667
V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L - 835/38/357 \sin d - 99850389 \qquad d (rad) \qquad /.5/60883369
X=U+V 1.7646383777 T=d/sin d 1.5/23599704 E= 2 cos d .10936140
Y=U-V_09436 09073 D=4T29.22/6679992 B=2D /8.4493359985
A = DE 1.0084945227 C = T - 1/2 (A - E) 1.068793409 CHECK C - 1/2 E + AD/B = T
n_1 = X (A + CX) 5.1077958324/n_2 = Y (B + EY) 1.7413036703 n_3 = DXY 1.535526482
\delta_1 d = \frac{1}{2} f(TX - Y) + 00V + 9083 + V \delta_2 d = (f^2/64)(n_1 - n_2 + n_3) + 0000000 + 03
S_1 = a \sin d (T - \delta_1 d) \frac{9655971.659}{659}  m S_2 = a \sin d (T - \delta_1 d + \delta_2 d) \frac{9655977.266}{6}  m
F = 2Y - E (4 - X) - OSS74046 / QV M = 32T - (20 T - A) X - (B + 4) Y - S. 33775/85
G = ½fT + (f²/64) M . 2025727/879
                                              O = -(FG \tan \Delta \lambda)/4
\Delta \lambda_{m}^{\prime} = \frac{1}{2} (\Delta \lambda + Q) 44 18 04.215
                                                  tan Δλm ___9815 9445
v = arctan |c2 | 55 02 41.393
                                                  c_2 = \cos \Delta \theta_m / (\sin \theta_m \tan \Delta \lambda_m') + 1.43052407
                                                  c_1 = -\sin \Delta\theta_m/(\cos \theta_m \tan \Delta\lambda_m') + 6990 4207
u = \arctan |c_1| = 34 + 57 + 18.
\alpha_{2-1}
                                                  360 - \alpha_2
                                                  360 - a1 239 54 37.21/
          180 - \alpha_2 ____
```

 $180 - \alpha_1$

 $180 + \alpha_2 -$

BLANK PAGE

CONTROL COMPUTATIONS FOR THE HEMISPHEROIDAL GEODESIC CONTAINING AN ACIC GIVEN ARC

These are the control computations for the geodesic as presented in Figure 26. To completely determine the configuration we need compute only the constants A, B, C, D, E, F from equations (49); $\Delta\lambda_1$, S₁ from equations (48); $\Delta\lambda_2$, S₂ and $\Delta\lambda_3$, S₃ from equations (47); and $\Delta\lambda_0$, S₀ from equations (54). (The equations cited are from Appendix 1). These will provide the check equations:

$$S_4 = S_2 - S_3 = (1/2)S_0 - S_1 - S_3, \ \Delta\lambda_4 = \Delta\lambda_2 - \Delta\lambda_3 = (1/2)\Delta\lambda_0 - \Delta\lambda_1 - \Delta\lambda_3.$$
Now
$$f = .003390075283, \sin\theta_0 = .97013371, \cos\theta = .24257076, c_1 = f\cos\theta_0 = .0008223331378,$$

$$c_2 = (1/4)f\sin^2\theta_0 = .0007976503177, c_3 = 1 + c_1\cos\theta_0 = 1.000199474, c_4 = c_2 + c_3$$

$$= 1.000997124,$$

A =
$$c_1(1 - c_2c_4) = .00082167655$$
, B = $(1/2)c_1c_2c_3 = .3280325 \times 10^{-6}$, C = $(1/4)c_1c_2^2$
= $.1308 \times 10^{-9}$

$$D = 2 + c_2(c_2^2 + c_4^2) - (1 + c_2)c_4 - c_2 = .9982060223, E = (1/2)c_2[2 + c_3(c_3 - 1) - c_2^2]$$

= .0007977296351,

 $F = (1/4)c_2^2(2c_4 - 1) = .1593787 \times 10^{-6}$.

From equations (150) (Appendix 1) we have:

$$\theta_1 = 69^{\circ} 56' 14''.590, \theta_2 = 17^{\circ} 05' 21''.296, \theta_0 = 75^{\circ} 57' 42''.053$$

$$\sin \theta_1 = .93931830$$

$$\sin \theta_2 = .29386097$$

$$\sin \theta_0 = .97013371$$

$$\cos \theta_1 = .34304686$$

$$\cos \theta_2 = .95584817$$

$$\cos \theta_0 = .24257076$$

$$\tan \theta_1 = 2.73816326$$

$$\tan \theta_2 = .30743478$$

$$\tan \theta_0 = 3.99938439$$

$$\sin \theta_1/\sin \theta_0 = .96823591$$

$$\sin \theta_2/\sin \theta_0 = .30290770$$

$$\tan \theta_1 / \tan \theta_0 = .68464618$$

$$\tan \theta_2 / \tan \theta_0 = .07687053$$

From these last four numbers:

$$\sigma_1 = \arccos .96823591 = 14^{\circ} 28' 47'' 231 = .2427199475$$
 radians

$$\eta_1 = \text{arc cos } .68464618 = 46^{\circ} 47' 31''.966 = .8166781775 \text{ radians}$$

$$\beta_2 = \arcsin .96823591 = 75^{\circ} 31' 12.769 = 1.3180763796$$
 radians

$$\gamma_2 = \text{arc sin } .68464618 = 43^{\circ} 12' 28.034 = .7541181497 \text{ radians}$$

$$\beta_3 = \arcsin .30290770 = 17^{\circ} 37' 56''.390 = .3077422231$$
 radians

$$\gamma_3$$
 = arc sin .07687053 = 4° 24′ 31″.342 = .0769464374 radians

$$\sin 2\sigma_1 = .48419238$$

$$\sin 2\beta_2 = .48419238$$

$$\sin 2\beta_3 = .57735414$$

$$\sin 4\sigma_1 = .84729944$$

$$\sin 4\beta_2 = -84729944$$

$$\sin 4\beta_1 = .94281220$$

.2526528281

We can now make the computations, with a = 6378206.4 meters and $\pi = 3.1415926536$:

$$\eta_1$$
 .8166781775

$$-A\sigma_1 - .0002076541$$
 $-.8164705234$

$$\Delta\lambda_{1} (rad) \quad .8164706821$$

$$\Delta\lambda_{1} \quad 46^{\circ} 46' 49''.167 \qquad S_{1} \quad .1611471.024 \text{ meters}$$

$$\gamma_{2} \quad .7541181497 \qquad D\beta_{2} \quad 1.3157117800$$

$$-A\beta_{2} - .0010830332 \qquad -E \sin 2\beta_{2} - .0003862546$$

$$-B \sin 2\beta_{2} - \frac{1588}{.7530349577} \qquad S_{2}/a \quad 1.3153255254$$

$$-C \sin 4\beta_{2} + \frac{1}{\Delta\lambda_{2}(rad)} \quad .7530349578$$

$$\Delta\lambda_{2} \quad 43^{\circ} 08' 44''.610 \qquad S_{2} \quad 8389418.545 \text{ meters}$$

$$\gamma_{3} \quad .0769464374 \qquad D\beta_{3} \quad .3071901404$$

$$-A\beta_{3} - .0002528648 \qquad -E \sin 2\beta_{3} - .0004605725$$

$$-D \sin 2\beta_{3} - \frac{1894}{.006933872} \qquad -\frac{F \sin 4\beta_{3}}{.067295679}$$

$$-B \sin 2\beta_{3} - \frac{1894}{.006933832} \qquad -\frac{F \sin 4\beta_{3}}{.067294176}$$

$$\Delta\lambda_{3} \quad 4^{\circ} 23' 39''.146 \qquad S_{3} \quad .1956383.534 \text{ meters}$$

$$\Delta\lambda_{4} = \Delta\lambda_{2} - \Delta\lambda_{3} = 0/(2\mu\Delta\lambda_{0} - \Delta\lambda_{1} - \Delta\lambda_{3} = 38'' 45' 05''.464$$

$$S_{4} = S_{2} - S_{3} = 0/(2S_{0} - S_{1} - S_{3} = 6433035.010 \text{ meters}$$

$$1 - A = .9991783229, \Delta\lambda_{0} = \pi(1 - A) = 3.1390112787 \text{ (rad)} = 179'' 51' 07''.553$$

$$\Delta\lambda_{0}/2 = 89^{\circ} 55' 33''.777, S_{0} = \pi D = 20001779.136 \text{ m, } S_{0}/2 = 10000889.568 \text{ m}$$
As an overall check, we compute from formulae (48), Appendix 1, the values $\Delta\lambda = \Delta\lambda_{1} + \Delta\lambda_{4}$, $S = S_{1} + S_{4}$. We have

$$\alpha_{2} = \arccos .07687053 = 85'' 35'' 28''.658 = 1.4938498897 \text{ radians}$$

$$\sin 2\alpha_{2} = .57735414, \sin 4\alpha_{2} = -.94281220$$

$$\gamma_{3} \quad 1.4938498897 \qquad D\alpha_{2} \quad 1.2607882132$$

$$-A\alpha_{2} \quad .0010378227 \qquad +E \sin 2\alpha_{2} + \frac{.0004605725}{.1.69281272564}$$

$$-C \sin 4\alpha_{3} + \frac{1}{1.4928122565}$$

$$\Delta\lambda_{1} + \Delta\lambda_{4} + \Delta\lambda_{3} = 85'' 31' 54''.631 \qquad S = S_{1} + S_{4} \quad 8044506.036 \text{ meters}$$

$$\Delta\lambda_{1} + \Delta\lambda_{4} + \Delta\lambda_{3} = 85'' 31' 54''.631 \qquad S = S_{1} + S_{4} \quad 8044506.036 \text{ meters}$$

$$\Delta\lambda_{1} + \Delta\lambda_{1} + \Delta\lambda_{3} = 85'' 31' 54''.631 \qquad S = S_{1} + S_{4} \quad 8044506.036 \text{ meters}$$

 $S_1 + S_4 + S_3 = 8044506.036 + 1956383.534 = 10000889.570 = (1/2)S_0$, which gives a flat check for longitude, and length within .002 meter.

Computation of N_1N_2 from Figure 26. (Inverse solution)

Formulae are from equations (149), Appendix 1. We have

f = .003390075283, a = 6378206.4 meters, $\Delta \lambda_0 = 179^\circ 51' 07''.554 = 3.1390112787$ radians, $\pi = 3.1415926536$, D = $(1/f)[1 + (1/4)f + 2(f/4)^2] = 295.22912379$, $u = (1/4)f - (f/4)^2 = .0008468005326$, $v = D(1 - \Delta \lambda_0/\pi) = .2425830253$, $\cos \theta_0 = v - uv^3 = .24257094$, $\theta_0 = 75^\circ 57' 42''.015$, $a_{1-2} = 90^\circ - \theta_0 = 14^\circ 02' 17''.985$, $a_{2-1} = 270^\circ + \theta_0 = 345^\circ 57' 42''.015$, $A = 1 + \cos^2 \theta_0 = 1.0588406609$, $B = (1 + 3\cos^2 \theta_0)(1 - \cos^2 \theta_0) = 1.1072946516$, $C = (1 + 2\cos^2 \theta_0 + 5\cos^4 \theta_0)(1 - \cos^2 \theta_0) = 1.0682087334$, $S_0 = a\pi[1 - 2(f/4)A + (f/4)^2B + 2(f/4)^3C] = 20001779.127$ meters.

Alternatively, when one has $\cos \theta_0$, S_0 may be computed from equations (54) after computing D from equations (49), Appendix 1. Since there are two reverse solutions for the geodesic, node to node, the azimuths of the second solution are $a'_{1-2} = 90^\circ + \theta_0 = 165^\circ 57' 42''.015$, $a'_{2-1} = 270^\circ - \theta_0 = 194^\circ 02' 17''.985$. Now from (150), Appendix 1, $\theta_0 = 75^\circ 57' 42''.053$; from (152), (154) respectively $S_0 = 20001779.136$ meters, $a_{1-2} = 14^\circ 02' 17''.947$. Hence the computed values by use of equations (149), Appendix 1, are within the criteria adopted initially.

DIRECT AND INVERSE LINE COMPUTATIONS OVER A HEMISPHEROIDAL GEODESIC CONTAINING AN ACIC 6000 MILE ARC

(Clarke 1866 ellipsoid—See Appendix 1, Figure 26)

CLARKE 1866 SPHEROI	Da 4378206.4 m f.	00 339 00 75 283		
1-1-1-19660992472	1 radian = 206264	1 radian = 206264.8052 seconds		
LINE VERTEX L	то_ Р	(V, P,)		
φ ₁ <u>- 76 00 26.44/</u> tan φ ₁ - 2	$0/298772$ $\tan \theta_1 = (1$	- 1) tan ϕ_1 - 3 - 9993 8439		
α_{1-2} 90 0 sin θ_1 - 970/	3372 cos 8, 2425 70	76 0, -75 57 42.05		
$\sin \alpha_{1-2} \qquad \qquad M = \cos \theta$	$_0 = \cos \theta_1 \sin \alpha_{1-2} - 2925 7$	076 00 +75 57 42.05		
$\cos \alpha_{1-2}$ N = $\cos \theta$		_ sin θ ₀ # . 020/337/		
c ₁ = fM .000 82 2 333 /378		(1M) 9922060207		
$c_2 = \frac{1}{4}(1 - M^2)f$. 200 2 976 50327/		.000 799 16 3565 /		
$\cos \sigma_1 = \sin \theta_1 / \sin \theta_0$				
d=S/aD .253/0676/4 (rad)	· · · · · · · · · · · · · · · · · · ·			
$\sin d + 2504/294$ $u = 2(\sigma_1 - 1)$				
cos d # 968/ 39/3 W=1-2Pcc	-			
$V = \cos u \cos d - \sin u \sin d + 96813911$	•	· ·		
$X = c_2^2 \sin d \cos d (2V^2 - 1) + 1349 \times 10^2$		· / //		
sin Δο . 35 00 38 45 cos Δο .				
cos Eo P (OSA T		7-45		
$\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma)$		125 00 00.017		
$\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{(1 - \Omega M)}$	2.7474 7757 sin az.1.	707/ 0687-		
(1 - 1)44		-70 00 00.004		
$\tan \Delta \eta = \frac{\sin \Delta \sigma \sin \alpha_{1-2}}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1-2}}$. 1 84 44 8144.	46 47 31.954		
cos of cos too - ani of ani too coe of "3	_			
$H = c_1(1-c_2) \Delta \sigma - c_1c_2 \sin \Delta \sigma \cos \Sigma \sigma \Delta \sigma \Omega$	•	73.797		
		46 49.155		
ancor.	λ, -,	15/ 04 12.387		
CHECK		• / N		
$M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_2 \sin (180 +$	α_{2-1} $\lambda_2 = \lambda_1 + \Delta \lambda_2$	-104 17 29.232		

-1= b/a .996609924				
2/64 17957204 × 10-	,	l radian =		
0 / i/			0	, , , ,
-76 00 26.64/				
2-70 0 0	2	(VP)	λ2	· · · · · · · · · · · · · · · · · · ·
an ϕ_1				46 46 49.167
an ϕ_2	$\tan \theta = (1 - f) \tan \theta$	nφ	$\Delta \lambda_m = \frac{1}{2} \Delta \lambda$	13 13 1458
1-69 56 14.590	$\tan\theta_2=2.7$	38/6326	$\sin \Delta \lambda_m$	3969 9031
1-75 57 42.053	$\tan \theta_1 = 3$	9938439	tan $\Delta\lambda$	06415918
m = 1/2(01 + 02) = 72 56 57 32	γ sin θ _m 95	604687	$\cos \theta_{\rm m}$	2932 1391
$\theta_{\rm m} = \frac{1}{2}(\theta_1 - \theta_1) + 3$ so $\frac{43.72}{2}$	∦ sin Δθ _m <u>+ . O</u> S	725 4768	cus Δθ _m	9986 1242
$I = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \theta_m$	2 CM (08.3 24.313	41-L	.9841	24243
$z = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m \Delta I S $	257568	cos d = 1 - 2L _	+ .968	7 4849
$J = 2 \sin^2 \theta_{\rm in} \cos^2 \Delta \theta_{\rm m} / (1 - L) \angle \delta \delta$		•	,	**
$r = 2 \sin^2 \Delta \theta_{\rm m} \cos^2 \theta_{\rm m} / L = 2.990$				<u>.</u>
(=U+V_/.2213 /290		_		
-U-V 1.22250504				
		_		▼ .
- DE 79/1953 875				_
. = X (A + CX) Z. 222 MY 533	4	•		
1d = XI (TX - Y) 16.2295 AA				
1 = a sin d (T - 81d) 16 11470				
= 2Y - E(4 - X) - 4568 72				4) Y-/2 196 5YOK
" + 1/1 + (12/64) M. 40/ 7/10 7				12.79
λ. = N (Δλ + Q) 13 13	* .			97
= arctan ic ₁ <u>47 19</u>) - 2 . Y/Y 7 /35.
= arctan lc, l	₩	$c_1 = -\sin \Delta \theta_{m_1}/(\epsilon$	cos θ _m tan Δλ,	() 7/42 /35
1 = v - u 45 00	00.00L	aj anta 🚅	9 69	cq.992
<u>ı çı qı.ı</u> ,		<u>a₁₋₁</u>	,	
· + 01		360 - 01		
+ + a ₁		360 - 01		
- 180 - a ₂ 90 00		180+0,22		
- 180 - a ₁		180 + 02	***************************************	

CLARKE 1866 SPHEROID a 63	78206.4 m	1.003390	075283
1-1-99660992472	1 radian = 206	264.8062 second	s
LINE VERTER /	TO VER	TEX 2	(V, V,)
φ ₁ - 76 00 26 44/ tan φ ₁ - 4.0/2	9227 tan θ ₁ =	: (1 − f) tan φ ₁ 📆	3.44438439
$\alpha_{1-2} = 0$ 0 0 $\sin \theta_1 = 970/337/$	cos θ, .2425	2076 Bi -	75 c7 42 05
$\sin \alpha_{1-2} \qquad \qquad M = \cos \theta_0 = \cos \theta$			·
$\cos \alpha_{1-2}$ $N = \cos \theta_1 \cos \alpha_1$.2	$_{}$ sin $\theta_0 \pm$	170/337/
c ₁ = IM _PODR2V 333 /378	$D = (1 - c_2)(1 - c_3)$	- c, M) . 998	2060207
$c_1 = \frac{1}{4}(1 - M^2)f_1 = \frac{000747650317}{}$	$P = c_2 (1 + \frac{1}{2}c_1 M)$	/D .000	799163565!
$\cos o_1 = \sin \theta_1 / \sin \theta_0 \qquad = / \qquad \qquad o_1 / \Delta$			- 0 -4
d=S/aD 3.1415926588 (rad) d 11			
$\sin d = 2(\sigma_1 - d)$			
cos d W = 1 - 2P cos u			
V = cos u cos d - sin u sin d/			_
$X = c_1^2 \sin d \cos d (2V^2 - 1)$		•	, ,,
sin Δσ <u>Q</u> cos Δσ <u>-</u>			_
cos Σο		•	• •
$\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma)$		والأرز والمتراجع والمناطق المعاط	6
$\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{(1 - DM)}$	29887 sin a	1.1!	
(· · · · /p···	∳2		24.14/
tan $\Delta v = \sin \Delta \sigma \sin \alpha_{1/2}$	Δπ	•	7 10.000
- The contract and a latest and a latest			£ 52.447
$H = c_1(1-c_1) \Delta a - c_1c_1 \sin \Delta a \cos \Sigma a \cdot 00258/3$			
		* .	C/ 07.553
CHICK.	λį	- 43-4-1	04 /1:317
CHECK			i ii
$M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1,2} = \cos \theta_2 \sin (180 + \alpha_{2,1})$	$\lambda_2 = \lambda_1 +$	O A CONTRACT	4 21.166

CLARKE 1866 SI	PHEROID # 22	8206.4 m	b		m
1 - f = b/a	41 <u>.00 16</u>	1503764Y	14f .000	877518	8308
1-f=b/a f ² /54_/7957204x10-6		1 radian = 2	:06264.8062 s	conds	
0 1 "	VERTE	Y /	0	,	<u>"</u>
	NODE	4 4 - 4 3	^1		
			$\Delta \lambda = \lambda_2 - \lambda_1$	UA CC	- >> 777
$\tan \phi_1$ 1.	tan $\theta = (1 - i)$ tar		$\Delta \lambda = \lambda_2 = \lambda_1 = \Delta \lambda_m = 1/2 \Delta \lambda_m = 1/$		
θ_1 θ_2 θ_3 θ_4 θ_4 θ_5 θ_6 θ_7 θ_8			_		
01-15 57 42.053	•				
$\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2) - \frac{1}{27} \frac{1}{57} \frac{1}{57} \frac{1}{57} \frac{1}{27}$					
$\Delta\theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1) + \frac{37}{58} \frac{58}{6602}$					_
$H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \omega$				_	
$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m - \frac{.49984}{}$					
$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) - 94/08$		6	,	<i>"</i>	
$V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L .94/454/4$					
X = U + V /. 1273/8 99 T					
		•			
Y=U-V000589346 D					
A = DE _006/77 R834 C					
$n_1 = X (A + CX) 5.566.2//922$ n					
$\delta_1 d = \frac{1}{2} f(TX - Y) - 0025 05 8$		$\delta_2 d = (f^2/64)(n_1$			
$S_1 = a \sin d (T - \delta_1 d) $ $\frac{DO 383}{DO 383}$		$S_2 = a \sin d (T - A)$			
F = 2Y - E (4 - X) - 2025047 G = ½fT + (f²/64) M • 20266 04		$M = 321 - (201)$ $Q = -(FG \tan \Delta)$			• • • • • • • • • • • • • • • • • • • •
$\Delta \lambda_{m}' = \frac{1}{2} (\Delta \lambda + 2) $		$Q = (PO tall \Delta)$ $tan \Delta \lambda_m' = \sqrt{2}$			_ & # 1 C - 1 # .
$v = \arctan ic_2 \frac{52}{52} = \frac{61}{61}$	11	$c_2 = \cos \Delta\theta_m / (\sin \theta_m)$			08 14/4
u = arctan c ₁ . 37 58 5/.		$c_1 = -\sin \Delta\theta_m/(c_1)$			
α ₁ = v - u / μ ον 17.	<i>11</i>	$\alpha_2 = v + u \square $, ,	61	
	,,,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\frac{\alpha_{2-1}}{360-\alpha_2}$			
+ + \alpha_2		360 - α1			
180 - α ₂ 90 00 0	0.014	180 + α ₁ 194		17.94	2
+ - 180 - α ₁		180 + α ₂			
		-			

CLARKE 1866 SPHEROID : 6378306.4 m f 1-1-99660992472 1 radian = 206264.8062 seconds TO NODE E $\tan \phi_1 = \tan \phi_1 = (1-f) \tan \phi_1$ φ₁ -70 sin θ₁ = .9393 1830 cos θ₁ 3930 4686 θ₁ = 69 86 14.590 a1-2 45 $\sin \alpha_{1-2}$ 107 / 0673 $M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2}$ 245 7076 θ_0 25 57 42.053 $\cos \alpha_{1-2} = \frac{707}{6578} = \frac{678}{N} = \cos \theta_1 \cos \alpha_{1-2} = \frac{2475}{5076} = \sin \theta_0 = \frac{970}{287}$ $D = (1 - c_2)(1 - c_2 - c_1M) - 9987060207$ E1 = IM .000817-335/378 $P = c_2 (1 + \%c_1 M)/D$.000799/63565/ $c_2 = \frac{1}{2}(1 - M^2)f$ _000797650327/ $\cos \sigma_1 = \sin \theta_1 / \sin \theta_0 - 9682 - 3591 \sigma_1 / 165 31 / 2.769$ d=S/AD /. 3/76895682 (rad) d 75 2952.983 S 23894/8.546 m $\sin d - 968/39/2$ $u = 2(\sigma_1 - d)/80 = 0.0077362$ cos d 25/14/294 W=i-2P cos u 1. DOIS 983267 cos u - 9899 99 70 V = cos u cos d - sin u sin d - 24946 3893 / Y = 2PVW sin d - 200 386948 / $X = c_2^2 \sin d \cos d (2V^2 - 1)$ — 135 × 10 — $\Delta \sigma = d + X - Y$ 13/8/07 638/3 (rad) sin Ao . 9682 359/ cos Ao . 2500 3843 Ao 75 12.769 cos Σο -. 2500 3843 $\Sigma a = 2a_1 - \Delta a$ $\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma) + 2500,2848$ α_{2-1} $\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{(1-\Omega)M} \implies \sin \alpha_{2-1} = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{(1-\Omega)M}$ $\sin \Delta o \sin \alpha_{1-2}$ 1.0393 1831 An $\tan \Delta \eta = \frac{1}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1-2}}$ $H = c_1(1 - c_2) \Delta \sigma - c_1 c_2 \sin \Delta \sigma \cos \Sigma \sigma = 0.01083 142 114 \text{ (rad)}$ H $\Delta \lambda = \Delta \eta - H \mathcal{L}$ **CHECK** $M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_2 \sin (180 + \alpha_{2-1})$

CLARKE 1866					
1-f=b/a.9966099247		95 037642	141-000	28475 188	208
12/64 17957204 x 10 - 6		1 radian = 2	06264.8062	seconds	
• , , , , , , , , , , , , , , , , , , ,	1 <i>P</i> ,		~		"
φ ₁		1 (P, N,)	^1		
ϕ_1 tan ϕ_1		•	$\Lambda_2 = \lambda$	43 08 4	WAID
	$1. \text{ always west of } 2$ $1. \text{ tan } \theta = (1 - f) \text{ ta}$			2/34 1	-
θ_2 θ_2 θ_3				3676 841	
B, -69 56 M.590	_				
$\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2) = \frac{24}{24} = \frac{8}{2} = \frac{7.2}{2}$					
$\Delta\theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1) + \frac{34}{2} \frac{58}{2} \frac{07.2}{2}$	_	_			
$H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \theta_m$					
$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m$					···-
$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) = \sqrt{\frac{2}{2}}$		6	,	"	
$V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L \ell \cdot / 7681$	_	_			42
X=U+V /. 2825 7432 /					
Y=U-V-47/194659					
A = DE 3.709734712					
$n_1 = X (A + CX) 6./2/092707$	•			•	
$\delta_1 d = V_1 f(TX - Y) + .0025 7$		$\delta_2 d = (f^2/64)(n_1)$			
$S_1 = a \sin d (T - \delta_1 d) 2229411$					
F = 2Y - E (4 - X) -2.0023		M = 32T - (20 T -	- -		
G = 1/2T + (f2/64) M. 2023 08		$Q = -(FG \tan \Delta \lambda)$	U		13.424
$\Delta \lambda_{\mathbf{m}}' = \frac{1}{2} (\Delta \lambda + \mathbf{Q}) 2 \mathbf{J} \mathbf{G}'$		tan $\Delta \lambda_{m}$	960 DE	662	
$v = \arctan c_2 $ $y = y = 3/$	20	$c_2 = \cos \Delta \theta_m / (\sin \theta_m)$	ι θ _m tan Δλ _π) -3.610	5714
$u = \arctan c_1 $	51.027	$c_1 = -\sin \Delta\theta_{\rm m}/(c_0$	osθ _m tan Δλ	m) - 1.766	1578
α ₁ = v - u	7.945	$\alpha_2 = v + u $	4 59	59.999	
c_1 c_2 α_{1-2}		α ₂₋₁	,		
- + α ₁		360 - α2			.
+ + \alpha_2		360 - α1			
180 - α ₂ 45 00		$180 + \alpha_1 - 194$			
+ - 180 - α ₁		180 + α ₂			

CLARKE 1866 SPHEROID a 65	278206.4 m f	
1-1-99660992472	1 radian = 206264.8062 sec	conds
LINE NODE /	то	(N,P_*)
$\phi_1 = 0$ tan $\phi_1 = 0$	tan $\theta_1 = (1 - f) \tan \phi$)1
α ₁₋₂ 14 02 17.947 sin θ, 0		
$\sin \alpha_{1-2} = \omega_5 \theta_0 = M \qquad M = \cos \theta_0 = \cos \theta$	9 ₁ sin α ₁₋₂ -2425 7076	0 75 57 42.05
$\cos \alpha_{1-2} = Sin \theta_0 = N$ N = $\cos \theta_1 \cos \alpha_1$.	_2 _ 970/337/ sin (0 .9701 337/
c1 = IM .000 81 233 /378		
c ₂ = 1/4(1 - M ²)f -200 79650327/	$P = c_2 (1 + \frac{1}{2} c_1 M)/D$	00799163565]
$\cos \sigma_1 = \sin \theta_1 / \sin \theta_0 \qquad \qquad \sigma_1 \qquad \qquad \sigma_1$		
d=S/aD .30728 06727 (rad) d _/	7 36 2/.188 s 195	4383.534 m
$\sin d = \frac{3024 678}{}$ $u = 2(\sigma_1 - d) \frac{143}{}$	47 17.624 sin u +	5766 0018
cos d _953/5960 W=1-2P cos u #/	0013058756 cos u =	2170 2646
V = cos u cos d - sin u sin d 95 3/5 94075	Y = 2PVW sin d = 00	046 13996
$X = c_2^2 \sin d \cos d (2V^2 - 1)$	$\Delta \sigma = d + X - Y \qquad 307$	74 22217 (rad)
sin Δσ_3029 0770 cos Δσ_953		
cos Σο <u> 95-30 /990</u>	$\Sigma \sigma = 2\sigma_1 - \Delta \sigma \qquad \boxed{7 - \Delta \sigma}$	Γ
$\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma)$ $+ 2423$	6439 a2-1 194	42 03.724
$\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{(1-f)M}$		
(1 – f)M		08 38.316
$\sin \Delta \sigma \sin \alpha_{1.2}$		
$\tan \Delta \eta = \frac{\sin \Delta \sigma \sin \alpha_{1-2}}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1-2}}$		
$H = c_1(1 - c_2) \Delta \sigma - c_1 c_2 \sin \Delta \sigma \cos \Sigma \sigma \Delta \sigma \Delta S \delta \delta \delta \delta \delta$	4/352 (rad) H	52.196
	$\Delta \lambda = \Delta \eta - H \underline{4}$	23 39.144
	λ ₁ - <u>6</u> /	08 44.610
СНЕСК	•	, "
$M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_2 \sin (180 + \alpha_{2-1})$	$\lambda_2 = \lambda_1 + \Delta \lambda - 56$	45 05.466

1-f=b/a . 99660 99 247		•			m
12/64 1795 7204 x 10-6	//! IEE		06264.8062 s		
φ _i	I. NODE	/	λ.	, ,,	
ψ ₂		(N. Pz)	λ ₂		
tan ϕ_1		-	$\Delta \lambda = \lambda_2 - \lambda_1$	4 23 3	9.146
$\tan \phi_2$	$\tan\theta = (1-f)\tan\theta$	η φ	$\Delta \lambda_{m} = \frac{1}{2} \Delta \lambda_{-}$	2 11 49	7.573
0, 17 05 21.296	tan θ_2		sin Δλ _m	7383 372	9
θ1	$\tan \theta_1$		tan Δλe	2768 44/	2
$\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2) \frac{2}{2} \frac{2}{2} \frac{1}{2} \frac{1}{2}$	sin θ _m	5 7965	$\cos \theta_{m}$	9889 004	14
$\Delta\theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1) \frac{2}{2} \frac{32}{2} \frac{40}{2} \frac{44}{2}$					4
$H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \theta_m$					
$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m - 22.34$	18 076 8 14	$\cos d = 1 - 2L -$	9530	?? 46	
$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) \Delta \theta_m$	12153429	d /7	37 4	13.748	
$V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L / R / R / R / R / R / R / R / R / R$	1994 sin d _ 302	284930	d (rad) 🕹	3076809	23
X=U+V /.8830 44997	T = d/sin d // // S	753918	$E = 2 \cos d \Delta$	1.906076	92
Y=U-V-/.7946/4/306	D = 4T2 4./284	49454	B = 2D	2572989	20
A = DE 7.8695234/35	C = T - ½ (A - E) =	1.96576.934	CHECK C-	½ E + AD/B = T	
n ₁ = X (A + CX) 2.848.324885		•			105
δ ₁ d = ¼f (TX - Y) .00 3/4 2 3	147	$\delta_2 d = (f^2/64)(n_1$	-n2+n3) ±	.463410	<u>. 6</u>
$S_1 = a \sin d (T - \delta_1 d) 19563 22$					
F = 2Y - E (4 - X) -7.62430	7693	M = 32T - (20 T)	- A) X - (B +	4) Y 3/16 9	<i>\$77.</i> 3
G = 1/1T + (f2/64) M. 22/72765	8463	$Q = -(FG \tan \Delta)$	\)/4		3.196
$\Delta \lambda_{m} = \frac{1}{2} (\Delta \lambda + Q) \frac{1}{2} \frac{1}{2}$	المفيكا	tan Δλ _m			
v = arctan c ₂ 99 40		$c_2 = \cos \Delta \theta_m / (\sin \theta_m)$			
u = arctan c ₁		$c_1 = -\sin \Delta\theta_m/(c_1)$	•	<i>~</i>	13//1
a ₁ = v - u	7.947	a2 = v + u	5 17	56.275	
$\frac{c_1}{c_2}$ $\frac{c_1}{c_3}$ $\frac{a_{1-2}}{a_1}$	# **	$\frac{\alpha_{2-1}}{360-\alpha_2}$	ر مار د		
•					
+ + \alpha_2		360 - α ₁			
180 - α ₁		180 + a ₁			
+ - 180 - α ₁		180 + 02			

<u>LLARKE 1866</u> SPHEROID a <u>1</u> 1-f <u>.99660992477</u>	1 radian = 206264.8062 se	
LINE	_то	(PR)
ϕ_1 tan ϕ_1	tan $\theta_1 = (1 - f) \tan \phi$	b ₁
α_{1-2} 45 $\sin \theta_1 = 9393/83$	Q cos θ ₁ .3430 4686	,-69 56 14.590
$\sin \alpha_{1-2}$ 707/0678 $M = \cos \theta_0 = \cos \theta_0$	θ ₁ sin α ₁₋₂ 2925 7076	0. <u>75 57 42.053</u>
$\cos \alpha_{1.2} = \frac{707/0678}{}$ N = $\cos \theta_1 \cos \alpha$	1-2 -2425 7076 sin (0. 470/337/
c ₁ = fM .000827333/3/8	$D = (1 - c_2)(1 - c_2 - c_1 M)$	927060207
$c_2 = \frac{1}{4}(1 - M^2)f$. 000797650327/	$P = c_2 (1 + \frac{1}{2}c_1 M)/D$	07991635651
$\cos \sigma_1 = \sin \theta_1 / \sin \theta_0 - 9482359 / \sigma_1$	5 31 12.769	
d=S/aD /6249702409 (rad) d 4	3 06 14.172 S 123	46 802.079 n
$\sin d = 2(\sigma_1 - d) = 2(\sigma_1 - d)$	14 49 57.194 sin u	5759 4794
cos d = 054/4742 W=1-2P cos u L	00 130 65 R cos u	2174 7278
V = cos u cos d - sin u sin d - \$308589 \$14		
$X = c_2^2 \sin d \cos d (2V^2 - 1) + \sqrt{5^2 \times 10^2 - 7}$	_ Δo=d+X-Y /.625	2/86044 (rad)
sin Δο		
cos Συ \$3/5 777 ¥	$\Sigma \sigma = 2\sigma_1 - \Delta \sigma \qquad 237$	53 16.379
$\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma)$		
$\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{(1-f)M}$	4806/ 25	277641
(1 - f)M	_	
		or isise
$\tan \Delta \eta = \frac{\sin \Delta \sigma \sin \alpha_{1-2}}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1-2}}$	5/1309 An 47	36 59.376
$H = c_1(1-c_2) \Delta \sigma - c_1c_2 \sin \Delta \sigma \cos \Sigma \sigma \frac{QQ/3345}{2}$	24634 (rad) H	4 35.62/
		22 22.755
	h 104	17 29.220
CHECK	•	, "
$M = \cos\theta_0 = \cos\theta_1 \sin\alpha_{1-2} = \cos\theta_2 \sin(180 + \alpha_{2-1})$	$\lambda_2 = \lambda_1 + \Delta \lambda = 5$	45 05.465

INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ϕ_1 , λ_1 ; ϕ_2 , λ_2 to find S, α_{1-2} , α_{2-1} . Azimuths clockwise from north; east longitudes positive; no tables except 8-place natural trigonometric (Peters); no root extraction. $\frac{CLARKE/866}{1-6} \text{SPHEROID a} \frac{6378206.4}{1-6} \text{m} \quad \text{b} \qquad \text{m}}{1-6} = \text{b/a} \frac{99660992472}{1-6} \text{MeV} \frac{1}{1-6} \frac$

f ² /64 . 1795 7204 ×10 -6	1 radian = 206264.8062 seconds
φ ₁ ' ' '.	λ,
φ ₂ 2. P.	(P,P_{λ}) λ_{λ}
$\tan \phi_1$ 1. always west	of 2. $\Delta \lambda = \lambda_2 - \lambda_1 \cancel{Y} \cancel{7} \cancel{3} \cancel{2} \cancel{2} \cancel{3} \cancel{5} \cancel{5}$
$\tan \phi_2 = \tan \theta = (1 - 1)$	
	sin Δλ _m 4030 6563
θ_1 -49 ch M.590 $\tan \theta_1$	
$\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2) - \frac{26}{26} = \frac{26}{15} \cdot \frac{64}{15} 7 \sin \theta_{\rm m} - \frac{1}{15}$	4450 1141 cos 0 _m . 2755 2490
$\Delta\theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1)$ $43 30 47.943$ $\sin \Delta\theta_{\rm m}$	6885 3316 cos A8m .7257 1435
$H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \Delta \theta_m + 22294$	2763 1 ~ L 47 366 4486
$L = \sin^2 \Delta \theta_{m} + H \sin^2 \Delta \lambda_m - 52.733.56/4$	cos d = 1 - 2L0546 7/03
$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L)$ 440709/748	d 93 08 02.375
$V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L / 44 / 900 9024 \sin d$	9985 0447 d (rad) 1625 494631
$X = U + V / 22 2 6 / 0079$ $T = d/\sin d / L$	627929329 E=2 cos d 1093 4206
Y=U-V-/.00/19/726 D=4T2/0.	6006/56 B=2D 2/. 20/23/2
A = DE -/./59093/47 C=T-%(A-	_
	()-2/.334/8485 n3 = DXY -/9.98040884
· ·	$\delta_2 d = (f^2/64)(n_1 - n_2 + n_3) + 1222x/0^{-5}$
•	m $S_2 = a \sin d (T - \delta_1 d + \delta_2 d) 10.345 89 1.520 m$
	M = 32T - (20 T - A) X - (B + 4) Y -4/3. PY 775279
G = 1/2 (f2/64) M .QQ 276 /888 /6	$Q = -(FG \tan \Delta \lambda)/4 $
$\Delta \lambda_{m}' = \% \left(\Delta \lambda + Q \right) $	tan $\Delta \lambda_{m}^{'}$. 44/2 2449
v = arctan lc ₂ 74 6/ 0/.26/	$c_2 = \cos \Delta\theta_m/(\sin \theta_m \tan \Delta\lambda_m') - 3 \cdot 6934790$
u = arctan ic, 1 60 08 58./28	$c_1 = -\sin \Delta \theta_m /(\cos \theta_m \tan \Delta \lambda_m) = 1.74253407$
a ₁ = v - u 14 44 03.723	a ₂ = v + u /14 59 59 999
<u>c₁ c₂ α₁₋₂ , , , , , , , , , , , , , </u>	$\frac{\alpha_{2-1}}{360-\alpha_2}$
• • •	360 - a ₁
- 190 - α, <u>VS 00 00.00</u> /	180 + a; 194 42 03.723
190 - 0	180 + 0.

CLARKE 1866 SPHEROIT	D a 63.78206.4 m f
1-1 .99 660 99 2472	1 radian = 206264.8062 seconds
LINE	TO INITIAL (R.I)
ϕ_1 tan ϕ_1	$tan \theta_1 = (1-i) tan \phi_1$
	1097 cos 0, .9558 48/7 0, 17 05 2/.29
$\sin \alpha_{1-2}$ 2537 754 M = $\cos \theta_0$	$\theta_0 = \cos \theta_1 \sin \alpha_{1-2}$ 2425 7076 θ_0
$\cos \alpha_{1-2}$ 96726317 N = $\cos \theta_1$	$\cos \alpha_{1-2}$. G245. 5673 $\sin \theta_0$. 970/337/
c1 = [M _000827333/378	$D = (1 - c_2)(1 - c_2 - c_1 M) - 9982060207$
$c_2 = \frac{1}{4}(1 - M^2)f_* O O O 79 76 S O 32 7 /$	$P = c_2 (1 + \frac{1}{2} c_1 M)/D$
$\cos \sigma_1 = \sin \theta_1 / \sin \theta_0$ 3029 0770	0, 72 22 03.610
d=S/aD /.0/04088953 (rad)	d 57 53 3/795 S 6433035.010 m
$\sin d = \frac{94709955}{}$ u = 2(σ_1 -	-d) 28 57 08.650 sin u 4840 6/59
	os u .99860/4045 cos u .8750 3293
V = cos u cos d - sin u sin d _055069/36	Y = 2PVW sin d .744517×10-9
$X = c_2^2 \sin d \cos d (2V^2 - 1)$	Δσ = d + X - Y / Δ0/033 4/589 (rad)
sin Δο . 8470 095 2 cos Δο	5315 7772 DO 57 53 16279
cos Σσ05 49 945 2	$\Sigma \sigma = 2\sigma_1 - \Delta \sigma \qquad \qquad \textbf{26} \qquad \textbf{50 50.84}$
	0000 165 an 225 00 00 017
	3.74747X2 sin az., -707/0684
(1 - f)M	
ata A a da a	φ: <u>70 φο φφ:00</u> ξ
$\tan \Delta \eta = \frac{\sin \Delta \sigma \sin \alpha_{1-2}}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1-2}}$	10399438 An 38 47 56.710
$H = c_1(1-c_2) \Delta \sigma - c_1c_2 \sin \Delta \sigma \cos \Sigma \sigma = \Omega C C C$	
	Δλ = Δη - H . SR . YS . OS . YP2
	11 - 56 45 05.464
СНЕСК	- / "
$M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_2 \sin (180 + \cos \theta_2)$	α_{2-1}) $\lambda_2 = \lambda_1 + \Delta \lambda = 17$ 59 59.982

CLARKE 1866 SPHEROID 263	
1 - f = b/a	95 037647 45 .000 8475 188208
1º 164 17957204×10-6	1 radian = 206264.8062 seconds
•	9 / "
φ ₁ 1	λ ₁
φ ₂ 2. ZNITIA	
$tan \phi_1$ 1. always west of 2	_ •
$\tan \phi_2 \qquad \tan \theta = (1 - f) \tan \theta$	•••
θ ₂ 69 56 14.590 tan θ ₂	
θ ₁ /7 05 2/-296 tan θ ₁	•
$\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2) \frac{43}{43} \frac{90}{90} \frac{47.943}{90} \sin \theta_{\rm m} \frac{68}{100}$	
	50 114/ cos A8 _m 8955 2490
$H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \Delta \theta_m \frac{32792070}{2}$	
$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m - 234/2529$	· //
$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) - 992802492$	
$V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L \sqrt{\frac{12977465}{2}} \sin d \sqrt{\frac{1}{2}}$	690249 d (rad) L010132847
X=U+V/182532143 T=d/sin d/1/4	2738077 E=2 cos d /406349644
Y=U-V /0308284/ D=4T25.690	496482 B=2D 11.380992964
A = DE 4.05/832750 C=T-1/4 (A-E).	-/.30/425078 CHECK C - ½ E + AD/B = T
n ₁ = X (A + CX) 4.789596028 n ₂ = Y (B + EY) 4	/84485878 n; = DXY 1.104279319
δ ₁ d = Kf (TX - Y) . 00/2/5627	$\delta_2 d = (f^2/64)(n_1 - n_2 + n_3)$
$S_1 = a \sin d (T - \delta_1 d) 4433028 \cdot 285$ m	$S_2 = a \sin d (T - \delta_1 d + \delta_2 d)$
F=2Y-E(4-X) -2.04575.3846	M = 32T - (20 T - A) X - (B + 4) Y 3. P67 49.75
	Q = - (FG tan Δλ)/4 2 \$/.2.28
Δλ = 15 (Δλ + Q)	tan Δλ _m
v = arctan c ₂	$c_2 = \cos \Delta \theta_m / (\sin \theta_m \tan \Delta \lambda_m') + 2 \cdot 6934 / 290$
u = arctan lc, 1 40 48 69 135	$c_1 = -\sin \Delta \theta_m/(\cos \theta_m \tan \Delta \lambda_m^2) = \frac{1}{2} \frac{24251409}{2}$
01 = V - U 14 42 03.727	a, *v+u 135 0 0
C1 C1 C1	Q ₂₋₁
- + a, 14 42 03322	360 - a1 125 0
+ + a ₂	360 - 01
180 - α ₂	180 + a ₁
+ - 180 - a ₁	180 + a ₂

CLARKE 1866 SPHEROID a	6378206.4 m 1		
1-1-99660992472	1 radian = 206264.8062 seconds		
LINE P	то	(P_iP_i)	
	tan $\theta_1 = (1 - f)$ tan		
α_{1-2} 45 $\sin \theta_1 = 9393/8$			
$\sin \alpha_{1-2} = 707/0678$ M = $\cos \theta_0 = 0$	cos θ ₁ sin α ₁₋₂ .25/25 7076	θο	
$\cos \alpha_{1-2} = \frac{707}{0678} = N = \cos \theta_1 \cos \theta_2$	ia ₁₋₂ -2475 7076 si	100 + 970/337/	
c ₁ = IM .000 \$22-323/378	$D = (1 - c_2)(1 - c_2 - c_1M)_{-4}$	9982060207	
$c_2 = \frac{1}{2}(1 - M^2)f \sqrt{200.747650327}$	$P = c_2 (1 + \frac{1}{2} c_1 M)/D$	000 199 K 25LS /	
$\cos \sigma_1 = \sin \theta_1 / \sin \theta_0 - 9682359 / \sigma_1$			
d=S/aD 3.1415926528 (rad) d	180 0 0 S 34	00/779./26 m	
$\sin d \underline{\qquad \qquad } u = 2(\sigma_1 - d)$	sin u		
cos d/ W = 1 - 2P cos u	cos u		
V = cos u cos d - sin u sin d			
$X = c_2^2 \sin d \cos d (2V^2 - 1)$	Δo=d+X-Y = 4	(rad)	
sin Δσ cos Δσ			
cos Σο	$\Sigma a = 2a_1 - \Delta a$		
$\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma)$	Q ₂₋₁ 2/5	-	
$\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{(1-\Omega)M}$	474774 sing - 76	7/0678	
(I - ŊM			
sen Aa sen e		• • •	
$\tan \Delta \eta = \frac{\sin \Delta \sigma \sin \alpha_{1.2}}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1.2}}$	a an	-	
$H = c_1(1-c_2) \Delta \sigma - c_1c_2 \sin \Delta \sigma \cos \Sigma \sigma$	/375 / (rad) H	£ 52547	
	Δλ = Δη - H	EL 47.553	
	λ ₁ - 104	17 29.220	
CHECK	•	, ,	
$M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1,2} = \cos \theta_2 \sin (180 + \alpha_{2,2})$	$\lambda_2 = \lambda_1 + \Delta \lambda = \frac{7.5}{2}$	11 12.338	

CLARKE 1866 SPHEROID a 6378206.4 m. f
1 - f - 99 660 99 24 7 V 1 radian = 206264.8062 seconds
LINE VERTEX V TO TERMINAL (%T)
$\theta_1 = (1-f) \tan \phi_1$
$\alpha_{1-2} = 60$ $\sin \theta_1 = 5iAB_0 = \cos \theta_1 = 0.5B_0 = \theta_1 = 25 = 57 = 42.05$
$\sin \alpha_{1.2}$ / $M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1.2}$ 2425 7076 θ_0 75 5 7 42.053
$\cos \alpha_{1-2}$ O $\sin \theta_0 = 970/337/$
$c_1 = IM$
$c_2 = \frac{1}{4}(1 - M^2)f_2 27650327/$ $P = c_2 (1 + \frac{1}{4}c_1 M)/D$ 2007 69/63565/
$\cos \sigma_1 = \sin \theta_1 / \sin \theta_0 \qquad \qquad$
d=S/aD /. 2635 / 5656 7 (rad) d 12 22 388/2 S ROYY 506.034 m
sin d 953/5960 H= 2(01 - d) -144 47 17624 sin u - 5766 00/8
cos d 30246781 W= i - 2P cos u 1.00/3058756 cos u - 8/70 2646
V = cos u cos d - sin u sin d 3024677929 Y = 2PVW sin d 4.00046/3996
$X = c_1^2 \sin d \cos d (2V^2 - 1) - 1490 \times 10^{-6}$ $\Delta \sigma = d + X - Y$ /2630541072 (rad)
sin Δ0 . 9530 1990 cos Δ0 .3029 0770 Δ0 72 22 03.6!/
cos Σο 3029 0770 Σο = 2ο ₁ - Δο - 45
$\tan \alpha_{2-1} = M/(N\cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma) = 26236439 \alpha_{2-1}$
$\tan \phi_1 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{(1-1)M} + \frac{2084}{1} + \frac{2084}{1} + \frac{2084}{1} + \frac{2537}{1} +$
$\tan \Delta \eta = \frac{\sin \Delta \sigma \sin \alpha_{1.2}}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma \cos \alpha_{1.2}} = \frac{17 - 02}{07709865} \Delta \eta = \frac{17 - 02}{25 - 25} + \frac{17}{25} = \frac{17}{25} + \frac{17}{25} = \frac{17}{25} + \frac{17}{25} = \frac{17}{25}$
$\tan \Delta \eta = \frac{\sin \Delta \sigma \sin \alpha_{1,2}}{\cos \Delta \tau \sin \Delta \tau \sin \Delta \tau \cos \alpha_{1,2}} = \frac{02709265}{2709265} \Delta \eta = \frac{15}{25} \frac{35}{28.660}$
$H = c_1(1 - c_1) \Delta \sigma - c_1 c_1 \sin \Delta \sigma \cos \omega \sigma \frac{40/0376.33 \text{ Y/M}}{2} \text{ (rad) } H$
ω = ωη - H 25 3/ 57. 633
λ, 28 46 49./67
CHECK $M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1,2} = \cos \theta_2 \sin (180 + \alpha_{2,1})$ $\lambda_1 = \lambda_1 + \Delta \lambda_2 = \lambda_2 + \Delta \lambda_3 = \lambda_4 + \Delta \lambda_4 = $
$M = \cos\theta_0 = \cos\theta_1 \sin\alpha_{1,2} = \cos\theta_2 \sin(180 + \alpha_{2,1})$ $\lambda_1 = \lambda_1 + \Delta\lambda \underline{//4} //$

CLARKE 1866	SPHEROID 4437	8206.4 m	b		m
1 - f = b/a	41 00/69	5037642	%f008	475/28	108
12/64 17957204×10-6		1 radian = 20)6264.8062 s e	conds	
• / /			0	,	<i>"</i>
	I. VERTE	_			-
Φ ₂	2. TERMI	NAL	λ₂	· · · · · · · · · · · · · · · · · · ·	
tan ϕ_1	1. always west of 2.		$\Delta \lambda = \lambda_2 - \lambda_1.$	85 31	54.63/
$\tan \phi_2$	$\tan \theta = (1 - f) \tan \theta$	Φ .	$\Delta \lambda_{\mathbf{m}} = 1/2 \Delta \lambda \perp$	42 45	57.314
0, 17 05 21.296	tan θ_2		sin Δλ _m &	790 047	17
0, 75 57 42.053	$\tan \theta_1$		tan Δλ 	79712	7
$\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2) 46 \frac{3}{3} \frac{3}{675}$	sin θ _m	68024	$\cos \theta_{\rm m}$	88032	<u>'/</u>
$\Delta\theta_{\rm m}=\frac{1}{2}(\theta_1-\theta_1)-24/26/10.378$	sin 40 _m 49/4	15435	cos Δθ _m	70901	14
$H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \theta_m$	∆0 _m .23/84.08//	1-L65	157378	0	
$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m $	2672	cos d = 1 - 2L	. 303/	4756	
$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) \angle 22$	6018/6/	d 12	2/ /	695	
$V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L \Delta 563008$	22 sin d _982	94363	d (rad)	.26780	24/3
X = U + V /8823/892/					
Y=U-V_5697/734/		_			
A = DE 4.25873337				_	
n ₁ = X (A + CX) 6.2409 78199					
$\delta_1 d = Mf(TX - Y)$		$\delta_2 \mathbf{d} = (\mathbf{f}^2/64) \mathbf{m}_1 \cdot \mathbf{m}_2 \cdot \mathbf{m}_3 \cdot \mathbf{m}_4 \cdot \mathbf{m}_$			
$S_1 = a \sin d (T - \delta_1 d)$ EQY449					
F = 2Y - E(4 - X) - 144504					
G = 15fT + (f2/64) M	•	M = 32T - (20 T -		•	
(A) = 12 (A) + Q) 42 47	• •	$c = (r c \cos \Delta x)$			
v = arctan c ₁	**	$c_2 = \cos \Delta \theta_m / (\sin \theta_m)$			
		c₁ = - sin ∆0_/(sin			
u = arctan c ₁ 37 38 53 a ₁ = v = u 14 42 0	2 72 2	α ₃ = v + u	S V _{en} (EI) LIA _{en}	-6 000	AMZE
				39.777	9 77
$c_1 - c_1 = \alpha_{1,2}$	4	a _{1.1}	•	•	
· · · · · · · · · · · · · · · · · · ·		360 - az		C4 277	- }
180 - a ₁		180 + α ₁			
+ - 180 - 01		180 + 61			Sea.

```
CLARKE 1866 SPHEROID a 6375206.4 m f
1-1-99660992472
                                                                                                                                                                                         1 radian = 206264.8062 seconds
                                                                                                                   TO TERMINAL
LINE TNITIAL
                                                                                                                 \tan \phi_1 = (1 - f) \tan \phi_1
α<sub>1-2</sub> <u>Ψ5"</u> sin θ<sub>1</sub> . 9393 1830 cos θ<sub>1</sub> . 3430 4486 θ<sub>1</sub> L9 56 14.590
\sin \alpha_{1,2} = \frac{707}{0678} = M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1,2} = \frac{2425}{7096} = \theta_0 = \frac{75}{57} = \frac{57}{42.053}
\cos \alpha_{1,2} = \frac{707}{0678} = \frac{100}{100} = \frac
c1 = fM .0008223331378
                                                                                                                                                                      D = \{1 - c_2\}(1 - c_2 - c_1M) - 9982 060207
                                                                                                                                                                              P=c2 (1+1/c1 M)/D .000799/63565/
c_2 = \frac{1}{4}(1 - M^2)f_2 = \frac{1}{4}(1 - M^2)f_3 = \frac{1}{4}(1 - M^
\cos \sigma_1 = \sin \theta_1 / \sin \theta_0 96873591 \sigma_1 14 28 47.23/
d=S/aD /.5/46224/8/ (rad) d Dt 53 J5829 S 9655977.058 m
sin d . 908.5 32.95 u = 2(01 - d) = NY 49 57.196 sin u - . 575-9 679 3
cos d .054/4743 W=1-2P cos u /.00/30/588/ cos u - .8/74 7229
 V = \cos u \cos d - \sin u \sin d  \sqrt{53085F9326} Y = 2PVW \sin d
                                                                                                                                                                                                                                            + .000 F48 3485
X = c_2^2 \sin d \cos d (2V^2 - 1) — \Delta \sigma = d + X - Y
                                                                                                                                                                                                                                       1.5157740546 (rad)
sin Δσ. 99948666 cos Δο .0549945/ Δσ 86 50 50.842
cos Σσ 53/5 777/
                                                                                                                                                                               \Sigma_{0} = 2\sigma_{1} - \Delta\sigma - 57 53 16.380
 \tan \alpha_{2-1} = M/(N\cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma) = -26236439 \quad \alpha_{2-1} \quad 345 \quad 17 \quad 56.276
\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma) \sin \alpha_{2-1}}{2} + 30848060 \sin \alpha_{2-1} - 3537 \times 541
                                                                                                                                         -1.09577304 DT
\tan \Delta \eta = \frac{1}{\cos \theta_1 \cos \Delta \alpha - \sin \theta_1 \sin \Delta \alpha \cos \alpha_{1-2}}
                                                                                                                                                                                                                                              4 16.826
 H = c_1(1 - c_2) \Delta c - c_1 c_2 \sin \Delta c \cos \Sigma c \frac{OO124512223}{c} (rad) H
                                                                                                                                                                                                          Δλ = Δη - H /32 /8 43.748
                                                                                                                                                                                                                                        -_/8___
CHECK
                                                                                                                                                                                                      \lambda_2 = \lambda_1 + \Delta \lambda  114 18 43.798
 M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_2 \sin (180 + \alpha_{2-1})
```

CLARKE 1866	SPHEROID a 6378206.4 m	bm
1 - f = b/a		48.0008475188208
12/64 1/795 7204 x 10-6	1 radian = 2	206264,8062 seconds
φ ₁ , , ,	1. ENITIAL (Origin)	δ , "
P ₂	2 TERMINAL ITT	
tan ϕ_1	• •	$\Delta \lambda = \lambda_2 - \lambda_1 / 22 / 8 43.708$
$\tan \phi_2$	$\tan \theta = (1 - f) \tan \phi$	$\Delta \lambda_{m} = \frac{1}{2} \Delta \lambda - \frac{1}{2} \frac{1}$
0, 17 05 21.296	tan θ_2	
θ ₁ <u>69 56 14.590</u>	$\tan heta_1$	tan Δλ -/. 0985 /696
V •		cos θ _m
	47'sin A8m - 4450 1141	
	1 ² Ad _m	_
	35/8876 cos d = 1 - 2L _	
$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) \Delta d$	1104667 d 86	49 48.515
$V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / L \underline{\qquad 44/10}$	100835 in d 9084 6999	d (rad) 45/547/887
X = U + V / 882047501	T = d/sin d 1.5/7794/27	E = 2 cos d
Y=U-V 1.000045832	D=4T ² 9.2/4 796 045	B = 2D /8.42959209
A = DE 1.019086 179	C = T - 1/2 (A - E) / D6 35 4/695	CHECK C - ½ E + AD/B = T
$n_1 = X (A + CX) 5.685/67377$	n ₂ = Y (B + EY) (8.54) 03 934	n ₃ = DXY /7. 343 477722
$\delta_1 d = \frac{1}{2} f(TX - Y)$.00/57343	$\delta_2 d = (f^2/64)(n_1$	$-n_2+n_3$) 206 × 10-6
$S_1 = a \sin d (T - \delta_1 d) 9455973$	$\frac{2.172}{100} \text{ m } S_2 = a \sin d (T - a \sin d)$	δ ₁ d + δ ₂ d) <i>9 ± 55977.304</i> m
F = 2Y - E (4 - X) + /.765862	M = 32T - (20 T	- A) X - (B + 4) Y <u>- 2 4 - 074451172</u>
$G = \frac{1}{2}fT + (f^2/64) M$		h)/4 4 16.826
$\Delta \lambda_{m}' = \frac{1}{2} (\Delta \lambda + Q)$	<i>H</i>	6641999
$v = \arctan c_2 $ 29 5/	_	$\ln \theta_{\rm m} \tan \Delta \lambda_{\rm m}') + 57387487$
$u = \arctan c_1 $	•	$\cos \theta_{\rm m} \tan \Delta \lambda_{\rm m} = 27074744$
$\alpha_1 = v - u$ 14 42	•	5 0 0
$\frac{c_1 c_2}{- + \alpha_1}$	α_{2-1} $360 - \alpha_2$, "
$+$ $+$ α_2 45 α_2		5 17 56.276
$-$ - 180 - α_2		
$+$ - 180 - α_1		
- WI	100 . 42	

CLARKE 1866	_SPHEROID a <u>6378</u>	206.4 m f_			
-f .99660992477	-	1 radian = 206264,8062 seconds			
INE TERMINAL	T	NODE	2	(TN2)	
1					
1-2 <u>165 17 56.277</u> sin θ ₁					
n α ₁₋₂ -2537 754/	$M = \cos \theta_0 = \cos \theta_1 \sin \theta_2$	101.2 2425	7076 0 ₀		
os a ₁₋₂ = . 967263/7	$N = \cos \theta_1 \cos \alpha_{1-2} =$.9245567	$73 \sin \theta_0 =$	9701 3311	
1 = M . 000 82 2333/3	78 D	$=(1-c_2)(1-c_2-$	c ₁ M) _998	92060207	
2 = 1/4(1 - M2)f _00079765					
os $\sigma_1 = \sin \theta_1 / \sin \theta_0$. 2029	0770 0172 3	2 03.610	900-00/	see computa	
=S/aD	(rad) d		S	m_m	
in d	$u = 2(\sigma_1 - d)$	sin	ı u		
os d	W = 1 - 2P cos u	co	s u		
/ = cos u cos d - sin u sin d	Y	= 2PVW sin d		and the second s	
$K = c_2^2 \sin d \cos d (2V^2 - 1)$	Δ	$\sigma = d + X - Y$		(rad)	
n Δo . 3029 0770					
os Σo - 9530 1990	Σ	$\sigma = 2\sigma_1 - \Delta\sigma$	77-45		
an $\alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \theta_2)$					
$an \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma)}{(1 - \Omega M)}$				\$ 7077	
(1 - f)M				·	
ain Again a	. 41 100 100 400		o .	0 0	
an $\Delta \eta = \frac{\sin \Delta \sigma \sin \alpha_{1-2}}{\cos \theta_1 \cos \Delta \sigma - \sin \theta_1 \sin \Delta}$	$\Delta \sigma \cos \alpha_{1-2}$	Δη	4	24 31.340	
$I = c_1(1 - c_2) \Delta \sigma - c_1 c_2 \sin \Delta \sigma \cos$	Σο .000253054	(rad) H	. د د د د د د د د د د د د د د د د د د د	52.196	
		$\Delta \lambda = \Delta \eta - i$	1_41	3 39.144	
		λ_1	114	8 43.798	
CHECK			_	, ,,	
ALLCOIL					

CLARKE 1866	SPHEROID a 💪	278206.4 m	b	m
1 - f = b/a		95037142	1 1/45 . DOOSY)	5188208
f2/64 /795 72 04 X	10-6		206264.8062 second	
0 1 1			o	, , ,
φ ₁	1. TERMI			
φ ₂	2. NODE	2 (TN)	• •	
$tan \phi_1$	1. always west of 3	2.		23 39.146
$\tan \phi_2$	$tan \theta = (1 - f) ta$		•••	11 49.573
	tan θ_2			
0, 17 05 2/.296	• _			
$\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2) \cancel{P} \cancel{3} \cancel{\gamma} \cancel{40} \cancel{4}$	·	• •	• •	· · · · ·
$\Delta\theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1) - \frac{2}{2} + \frac{2}{2} + \frac{1}{2}$				_
$H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \frac{1}{2}$				_
$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m$		ć)	, "	
$U = 2 \sin^2 \theta_m \cos^2 \Delta \theta_m / (1 - L) $	44215343	_d _12	37 43.7	48
$V = 2 \sin^2 \Delta \theta_m \cos^2 \theta_m / \sqrt{4 \cdot 388}$	29649 sin d 30	28 4930	- d (rad)	7680933
X=U+V 1.883 044 992	$T = d/\sin d LQ$	15953918	$E = 2 \cos d / 2$	0607692
Y=U-V-/.194 6/4306	D=4T24/28	649454	B = 2D 2.25	7298908
A = DE 7.869523 435	•	_		· -
n ₁ = X (A + CX) 7.548326 88			,	
δ ₁ d = ¼l'(TX - Y) _00 3/47			1 - n2 + n3) + 4	<i>*</i>
$S_1 = a \sin d (T - \delta_1 d)$ 1956 38				
F = 2Y - E (4 - X) -7. 62 4 30			- A) X - (B + 4) Y_	
G = 15fT + (f2/64) M .00 177			λ)/4	
$\Delta \lambda_{m}^{\prime} = \frac{1}{2} (\Delta \lambda + Q) \frac{2}{2} \frac{12}{12}$	e e e e e e e e e e e e e e e e e e e		2384 922	•
v = arctan c ₂ 89 40	N		in $\theta_{\mathbf{m}}$ tan $\Delta \lambda_{\mathbf{m}}^{\prime}$)	
u = arctan lc, 1			$\cos \theta_{\rm m} (an \Delta \lambda_{\rm m}) \pm \frac{1}{2}$	_
a1 = v u 14 02			5 17 5	
c_1 c_1 α_{1-1}	,	<u>a₂₋₁</u>		
- + a ₁		360 - 22	,	
+ + a, 165 1			5 57 4	2.053
180 - α ₂		180 + a ₁		
+ - 180 - α1		180 + a ₂		

CLARKE 1866	SPHEROID a 63	78206.4	n f			
1-f .99660992472	-	l radian =	206264.80	62 seconds		
LINE NODE /		то/	ODE	2	(N.N.)
φι	tan ϕ_1	tan	$\theta_t = (1 - f)$	tan ϕ_1		
$\alpha_{1-2} $		cos θ ₁		θ ₁	2	
sin α ₁₋₂ = Μ	$M = \cos \theta_0 = \cos \theta_1$	sin α ₁₋₂ .24	25 707	<u>θ_ θ_ 7</u> 5	574	2. <i>Q</i> S.
cos α ₁₋₂ = Ν	$N = \cos \theta_1 \cos \alpha_{1-2}$	9701	337/	$\sin \theta_0$	70/ 33	7/
c1 = fM .4008 2 2333 /378		$D = (1 - c_2)(1$)		
$c_2 = K(1 - M^2)f$	27/	$P = c_2 (1 + \frac{1}{2}c_2)$	c ₁ M)/D			
$\cos \sigma_1 = \sin \theta_1 / \sin \theta_0$						
d=S/aD 3.445926588	(rad) d /80		s _2	0001	779.136	<u> </u>
sin d	$u=2(\sigma_1-d)=1$	0	sin u _	0)	
cos d W	/ = 1 - 2P cos u		cos u _	-/	and the second second second second	
V = cos u cos d - sin u sin d/		Y = 2PVW sin	1d	0	and the second second second	
$X = c_1^2 \sin d \cos d (2V^2 - 1)$		$\Delta \sigma = d + X -$	y ed			_(rad)
sin Δσ				- ,	•••	
cos Σσ	•	$\Sigma \sigma = 2\sigma_1 - \Delta$	o <u>0</u>			
$\tan \alpha_{2-1} = M/(N \cos \Delta \sigma - \sin \theta_1 \sin \Delta \sigma)$	o) - 2500 38	11 0	12-1	12 23W	42.0	<u> 254</u>
$\tan \phi_2 = \frac{-(\sin \theta_1 \cos \Delta \sigma + N \sin \Delta \sigma)}{(1 - \Omega)M}$	sin a ₂₋₁ 0		in a.	. 2425	7076	
(1 - I)M	-				_	
, sin Δσ sin α ,					-	
$\tan \Delta \eta = \frac{\sin 2\phi \sin \alpha_{1-2}}{\cos \theta_1 \cos \Delta \phi - \sin \theta_1 \sin \Delta \phi}$	7 cos e ₁₋₁		In L	10		
$H = c_1(1-c_2) \Delta \sigma - c_1 c_2 \sin \Delta \sigma \cos 2$		P33 (rad)	н		52.	YY Z
		۵λ ×	Δη - Η	75	1 47.	£23
			λ,	1 0	2 44.	610
CHECK					11	
$M = \cos \theta_0 = \cos \theta_1 \sin \alpha_{1-2} = \cos \theta_2$	$\sin(180 + a_{2-1})$	y ³ =	λ, + Δλ 🏄	1 47	82.9	<u> </u>

APPENDIX 4 SUBROUTINE GEODIST

Fortran statements as prepared by the Earth Sciences Division of Teledyne Industries and based on the inverse (reverse) solution of P.D. Thomas. (The card deck including the arc tangent library function (ATAN2) is available).

SEISMIC DATA LABORATORY EARTH SCIENCES A TELEDYNE COMPANY ALEXANDRIA, VIRGINIA

TITLE: Subroutine GEODIST

DATE: August 1968

GEODIST is a Fortran-63 subroutine used in computing surface distances on a given sphere id. The method used was supplied by Mr. Paul D. Thomas of the Naval Research Laboratory.

The subroutine currently uses the constants for the Clarke 1866 model of the Earth but another model may easily be substituted by replacing the semi-major and semi-minor axes (in kilometers) in the subroutine. The variable names are respectively, AL and BL.

The calling sequence for this subroutine includes the following values in the order listed: (Latitude 1, Longitude 1, Latitude 2, Longitude 2, Asimuth, Back Azimuth, Distance-kilometers, Distance-degrees). The Latitudes and Longitudes are the Geographic coordinates of the two points. The subroutine assumes that positive values are Morth or Bast and that negative values are South or West. The forward azimuth, in degrees east of north, is from point one to point two and conversely the back azimuth is from point two to point one. The distance in kilometers is the geodesic distance between the two points on the surface of the spheroid. The fiducial central angle distance in degrees (based on an equivalent mean sphere) is obtained by assuming that one degree equals 111.195 kilometers. All arguments are type REAL.

CAUTION: The back azimuth from either pole may be slightly in error.

The subroutine requires 225 CDC 1604 words plus four 1604 words of labeled common/GEODISTC/. There are no alarms, error returns, error stops or printouts. The time required is less than 0.15 seconds per call.

This subroutine uses an arctangent library function (ATAM2) which returns an angle between 0 and 2 Pi radians. If this function is not in the system library, it must be input with the subroutine. The fortran statements for this function are attached.

REPERENCE: Mr. Paul D. Thomas, Code 7004, Havel Research Laboratory, Washington, D.C. 20390.

PRECEDING PAGE PLANK

```
SUBROUTINE GEODIST(EPLAT, EPLUN, STLAT, STLON, AZ, HAZ, DIST, DEG)
      COMMON/GEODISTC/AL, BL, D2R, P12
      TYPE REAL LIR, LZR, KL, KK.L
     DATA (AL=6378206.4), (BL=6356983.8), (D2R=.017453292519),
    1(P12=6.28318530716)
     BOA=BL/AL
     F=1.0-BOA
     PIRSEPLAT +D2R
     P2R=STLAT+D2R
     LIREEPLON+D2R
     LZRESTLUN+DZR
     OLRELZRELIR
     TIREATAN(BOS+PAN(PIR))
     TERMATAN (BOATAN (PER))
     THE(118+128)/2.0
     DTH=(T2H-T1R) /2.U
    STHESIN(TH)
    CTH#COS(IM)
    SDTH=SIN(DTH)
    CDTH=COS(DTH)
    KL=STH+CDTH
    KK=SUTH+CTH
    SDLHHESINIDLK/2.U)
    Lasdinasdinasdingasches (Cothacdinastnastn)
    CD=1.0-2.0-L
    DL #ACOS (CO)
    SD=SIN(DL)
    TeDL/8D
    A85.00KF.KF\(1.0.F)
    ABS-DAKK+KK\L
   D=4.0+T+1
   X BUSY
   E-2.0-CD
   Yau-V
   As-D.E
   FF649F+F/64.0
   DISTUAL -SD-(T-(+/4.0)-(T-X-Y)-FF64+(X+(A+(T-(A+E)/2.0)+X)+Y+(-2.0+
  10.E.Y).D.X.Y))/1000.0
   DEG . DIST/111.175
   TDLPHOTAN( (DLR+1-((E+(4.8-X)+8.8*Y)+((F/2.8)+7+F64+(82.8+7+(A-28.
  1807)-X-2.00(Do2. W)07))/4.8)-TAN(ULR)))/2.0)
   HAPSROATAND (SDTH . (CTHOTDLPH))
   MAMBRUATAND (CDTM, (STHOTDLPM))
   Адманраминей-нарад
   ASH1 = P12 - HANBR - HAPBR
  2 IFCALHE.GE.PIET 3,4
2 474549745-615
  80 TO 1
4 WINSANINSOPIS
90 TO 1
5 IF ((A2M1.0E.0.4).A4D.(A2M1.LT.P12)) 9.4
7 AZHIMARHI-PIZ
  80 TO 5
90 10 5
90 10 5
# AZ#AZHZ/DZ#
 SAZUAZH1/DyR
 RETURN
 END
                                162
```

FUNCTION ATAM2 (Y,X) PI=3-1415926536 ARGEATAMF (Y/X)

- IF (X) 10,14,11 10 ATAN2#PI+APG RETUHA
- 11 IF (Y) 12,13,13 12 ATANZ=2.0*PI+ARG RETURN
- 13 ATANZBARG
- RETURN 14 if (1) 15,16,17 15 ATANZ=1,5+P[
- RETURN
- 16 ATAN2=0.0
- RETURN 17 ATANZ#0.5+PI RETURN END

W/ Subroutine Geodist

CLARKE 1866 CONSTANTS

6378206.4000 6356583.8000

REFERENCE POINT

OBJECT POINT

LATITUDE 55 45 19.5 37 34 15.5 LONGITUDE

LATITUDE -33-56 -3-5 LONGITUDE 18 28 41-4

DISTANCE BEINEEN POINTS 10102-069865 KM FORMARD AZIMUTH MACK -ZIMUTH

195 48 17.8 DEG 10 39 32.3 DEG

REFERENCE POINT

OBJECT POINT

LATITUUE 45 0 0 LONGITUDE 106 0

LATITUDE 20 0 LONGITUUE G. ¢ O

DISTANCE BETHEEN POINTS FORWARD AZIMUTH BACK AZIHUTH

9649,171338 KM 295 17 20.9 DEG 42 56 30.7 DEG

REFERENCE POINT

OBJECT POINT

FY111AR 57 59 9'0 LONGITUDE -158 -1-33.0

LATITUDE 6 58 25.0 LONGITUBE -79-34-24.0

DISTANCE BEIMEEN POINTS FORMARD AZTHUTH BACK AZINUTH

8406.621818 KM 85 37 10.4 DEG 289 57 17.4 DEG

W/ Subroutine Geodist

INTERNATIONAL CONSTANIS

6356911,9462 63/8368.0000

REFERENCE POINT

OBJECT POINT

LATITUUE 55 45 17.5 LONGITUDE 37 34 17.5

LATITUDE -33-56 -3-5 LONGITUDE 18 28 41.4

FORMARD AZIMUTH 195 46 16.5 DEG DACK AZIMUTH 10 39 31.1 DEG

REFERENCE POINT

OBJECT POINT

45 0 LATITUDE 0 LONGITUDE LOS 9

28 8 LATITUDE LONGITUDE

DISTANCE BETHERN POINTS

F BEINGEN POINTS 9649.412804 KH FORWARD AZIMUTH 295 17 18.6 DEG WACK AZIMUTH 42 56 30:0 DEG

REFERENCE POINT

QUIECT POINT

LATITUDE 21 26 6.0

LATITUDE 6 58 25-0 LONGITUDE -79-34-24-0

DISTANCE WEIMERN POINTS FORWARD AZINUTH

8466.858288 KM WACK AZINUTH 85 37 12.3 DEG