O. X smooth Fano/ C (i.e. x proj, - Kx-ample) When is X K-polystable? I a Kähler-Einstein degenerations of X metric on X How to tell if X is K-stable? Tian (1987): α -invariant $n=\dim X$ If $\alpha(X) > \frac{n}{n+1}$ \Longrightarrow χ is χ -stable.

I. Complex d-invariant. KLT-singularities: (X,Δ) pair $(K_X + \Delta)$ is Q-Cutien normal variety ≥ 0 Q-divisor -defined using log-resolutions of (X,D) - KLT: roughly - log-resolution is close to (X,Δ) Let $(X,\Delta) = \sup\{t \ge 0 \mid (X,t\Delta) \text{ is KLT}\}$ 109-canonical Threehold

Tian, Demailly: X KLT Fano ((X,0) is KLT). $X(X) = \sup \{t \ge 0 | (X,tD) \text{ is } KLT \text{ } D \ge 0 \text{ } 0 \text{-div} \}.$ $St. D \sim_{Q} - K_{X}$ = inf inf (let (X,D)-n)

n=1 DN-nKX Fact: $\alpha(x) > 0$ (not clear if X is not smooth). E.g. $X = \mathbb{P}^n$ $-K_X = (n+1) H - hyperplane$ $\alpha(x) = \frac{1}{n+1} = lat(x, (n+1)H)$

II Global F-regularity: k-perfect field, char p>0 (X, Δ) pair/k $X \xrightarrow{F^e} X$ (locally $r \mapsto r^{e}$)

Frobenius map ring homomorphism Def: (X/D) is globally F-regular (GFR) if for any effective divisor D20, 7 some e>>0 s.t. The map 6---- $\varphi: Q_{X} \longrightarrow F_{X}^{e}Q_{X} \longrightarrow F_{Q_{X}}^{e}Q_{X} ([p^{e}])\Delta I + D)$ Frobenius map 8 plits / Q i.e. J y s.t. Yo Q=id Ox-mod map

Fact (Schwede-Smith): X Fano/C Then For $0 \le t < 1$ (X,tD) is $KLT \iff (X,tD)$ mod p is GFRIII X_-invariant

X globally F-regular Fano/k $X_F(X) = \sup\{t \ge 0 \mid (X, tD) \text{ is globally } F\text{-regular}\}$ $X_F(X) = \sup\{t \ge 0 \mid (X, tD) \text{ is globally } F\text{-regular}\}$ $X_F(X) = \sup\{t \ge 0 \mid (X, tD) \text{ is globally } F\text{-regular}\}$

Remarks: 1) let $S = \bigoplus_{m \geq 0} H^{\circ}(X, O_{X}(-mrK_{X}))$ s.t. -rKx - Cautier Y= Spec(S) < come over (X, -rKx). More precise analogy (X, tD) is GFR $\approx (Y, tD)$ is KLT 2) $\alpha_F(X) = \inf_{n \geq 1} \inf_{D \sim -n \neq x} (fpt(Y, D) - n)$ $\sum_{n \geq 1} f_{n} = \sum_{D \sim -n \neq x} f_{n} = f_{n$ 3) If $\Delta \sim -K_X$ let $(Y, \Xi) = min\{1, let(X, \Delta)\}$ i. $\alpha_F(x) \approx \min_{x \in \mathbb{Z}} \{1, \alpha(x)\}$

IV. Thm (-): X globally F-regular Fano /kThen 1) 2F(X) > 0 (also follows from results of Kent a Sato) $2) \alpha_{\mathsf{F}}(\mathsf{X}) = 1/2.$ 3) $\alpha_F(x) = 1/2$ (=) 8(x) = Vol(-Kx)Fisignature 2^d (d+1)/ 4xd = dim X 4) If X is a toric Fano variety, Then $X_F(X) = X_C(X) \leftarrow \text{complex } X - \text{invariant}$ $Rem: (4) + (2) =) X_C(X) \leq 1/2 \text{ for toric } Fano X.$

V. Reason for Part (2). i.e. $\chi_F(X) \leq 1/2$ Duality for Frobenius: $\mathcal{H}_{ox}(F_{*}^{e}\omega_{x}^{-m}, O_{x}) \cong F_{*}^{e}\omega_{x}^{-(P^{e}-l-m)}$ + m. This gives a symmetry in the Frobenius splittings -

II. Semicontinuity; Thm2: [-] f. Z -> Y flat family of GFR Fanos Assumae Yis smooth /k i.e. - KX/y is Q-Cautier, and f-ample. Then, the map $Y \ni y \mapsto \mathcal{L}_F(\mathcal{X}_y \infty)$ is lower-semicontinuous. Rmk: Corresponding result for $Q_{\mathcal{B}}$ -invariant is due to Blum-Liu - using Nadel vanishing & global generation results.