Ciencia de Datos

Práctico N°3: Estimación de Parámetros

Problema 1: La variable aleatoria X tiene distribución exponencial,

$$p(x|\theta) = \begin{cases} \theta e^{-\theta x} & \text{si } x \ge 0\\ 0 & \text{en caso contrario} \end{cases}$$

- a) Graficar $p(x|\theta)$ versus x para $\theta = 1$. Graficar $p(x|\theta)$ versus θ , $(0 \le \theta \le 5)$, para x = 2.
- b) Suponiendo que n ejemplos x_1, \dots, x_n se generan de forma independiente de acuerdo a $p(x|\theta)$, mostrar que el estimador de máxima verosimilitud para θ viene dado por

$$\hat{\theta} = \left(\frac{1}{n} \sum_{k=1}^{n} x_k\right)^{-1} .$$

c) En el gráfico generado en el ítem (a) para $\theta = 1$, trazar una vertical en el valor del estimador de máxima verosimilitud correspondiente a un valor de n grande.

Problema 2: Suponer que la variable aleatoria X tiene distribución uniforme con parámetro θ ,

$$p(x|\theta) \sim U(0,\theta) = \left\{ \begin{array}{ll} \frac{1}{\theta}, & \text{si } 0 \leq x \leq \theta, \\ 0, & \text{en caso contrario.} \end{array} \right.$$

- a) Dados n ejemplos $\mathcal{D} = \{x_1, \dots, x_n\}$ generados de manera independiente de acuerdo a $p(x|\theta)$, mostrar que el estimador de máxima verosimilitud para θ es máx (\mathcal{D}) ; esto es, el valor del máximo elemento de \mathcal{D} .
- b) Se generan n=5 datos con esta distribución y el máximo valor de esos puntos resulta $\max_k\{x_k\}=0,6$. Graficar la verosimilitud $p(\mathcal{D}|\theta)$ en el rango $0 \leq \theta \leq 1$. Argumentar con palabras por que no es necesario conocer los otros 4 datos de la muestra.

Problema 3: Se prueba la salida de un sistema y las respuestas posibles son fallo o éxito. La variable aleatoria Y que cuenta el número k de fallos hasta obtener un éxito en la prueba k+1 tiene distribución de probabilidad geométrica con parámetro p, la probabilidad de éxito en una prueba independiente,

$$P(Y = k|p) = (1-p)^k p \text{ con } k = 0, 1, 2, \dots$$

Se realizan n series de pruebas independientes y se encuentra en cada una de ellas los valores k_1, k_2, \ldots, k_n . Calcular el estimador de máxima verosimilitud para el parámetro p a partir de los valores obtenidos.

Problema 4: La tabla adjunta reporta los datos empíricos tridimensionales correspondientes a tres clases independientes.

- a) Calcular los valores de máxima verosimilitud $\hat{\mu}$ y $\hat{\sigma}^2$ de forma individual para cada una de las tres característica x_i de la categoria w_1 (problema unidimensional).
- b) Calcular los valores de máxima verosimilitud $\hat{\mu}$ y $\hat{\Sigma}$ para cada una de las tres formas de apareamiento de a dos características para w_1 (problema bidimensional).

clase		w_1			w_2			w_3	
	x_1	x_2	x_3	x_1	x_2	x_3	x_1	x_2	x_3
1	0.42	-0.087	0.58	-0.4	0.58	0.089	0.83	1.6	-0.014
2	-0.2	-3.3	-3.4	-0.31	0.27	-0.04	1.1	1.6	0.48
3	1.3	-0.32	1.7	0.38	0.055	-0.035	-0.44	-0.41	0.32
4	0.39	0.71	0.23	-0.15	0.53	0.011	0.047	-0.45	1.4
5	-1.6	-5.3	-0.15	-0.35	0.47	0.034	0.28	0.35	3.1
6	-0.029	0.89	-4.7	0.17	0.69	0.1	-0.39	-0.48	0.11
7	-0.23	1.9	2.2	-0.011	0.55	-0.18	0.34	-0.079	0.14
8	0.27	-0.3	-0.87	-0.27	0.61	0.12	-0.3	-0.22	2.2
9	-1.9	0.76	-2.1	-0.065	0.49	0.0012	1.1	1.2	-0.46
10	0.87	-1.0	-2.6	-0.12	0.054	-0.063	0.18	-0.11	-0.49

- c) Calcular los valores de máxima verosimilitud $\hat{\mu}$ y $\hat{\Sigma}$ usando las tres características x_i de la categoria w_1 (problema tridimensional).
- d) Si se supone que las características son independientes entre sí el modelo gaussino es separable y la matriz Σ resulta diagonal, $\Sigma = \text{diag}(\sigma_1^2, \sigma_2^2, \sigma_3^2)$. Estimar por máxima verosimilitud la media y las componentes diagonales de Σ con los datos de las clases w_1 y w_2 .
- e) Comparar los resultados para la media de cada característica μ_i calculada en las formas previas. Explicar porqué son iguales o diferentes.
- f) Comparar sus resultados para la varianza de cada característica σ_i^2 calculada de las formas previas. Explicar por que los resultados son iguales o diferentes.

Problema 5: Usando los datos de la tabla del problema anterior, construir modelos gaussianos de clasificación para cada uno de los ítems a continuación y calcular las tasas de error de clasificación en diferentes dimensiones.

- a) Usar máxima verosimilitud para entrenar un dicotomizador gaussiano con los datos tridimensionales de las categorias w_1 y w_2 . Integrar numéricamente para estimar la proporción del error.
- b) Proyectar los datos sobre un subespacio bidimensional. Para cada uno de los tres subespacios definidos por $x_1 = 0$ ó $x_2 = 0$ ó $x_3 = 0$ entrenar un dicotomizador gaussiano. Integre numéricamente para estimar la proporción del error.
- c) Proyectar ahora en subespacios unidimensionales, definidos por cada uno de los tres ejes. Entrenar un clasificador gaussiano e integre numéricamente para estimar la proporción del error.
- d) Discutir el orden del rango de las tasas de error calculadas.
- e) Suponiendo que se reestima la distribución en las diferentes dimensiones, el error de Bayes es mayor en los espacios proyectados?

