Section 3.5 Implicit Differentiation DAY TWO

1. Fill out the table of Derivatives of Trigonometric Functions below

(a)
$$\frac{d}{dx}(\arcsin x) =$$

(b)
$$\frac{d}{dx}(\arccos x) =$$

(c)
$$\frac{d}{dx}(\arctan x) =$$

(d)
$$\frac{d}{dx}(\operatorname{arccot} x) =$$

(e)
$$\frac{d}{dx}(\operatorname{arcsec} x) =$$

(f)
$$\frac{d}{dx}(\operatorname{arccsc} x) =$$

2. Find dy/dx by implicit differentiation.

(a)
$$x^4 + x^2y^2 + y^3 = 5$$

(b)
$$\tan(x - y) = \frac{y}{1 + x^2}$$

(c)
$$x\sin(y) + y\sin(x) = 1$$

3. Use implicit differentiation to find an equation of the tangent line to the curve at the given point

$$x^2 + 2xy + 4y^2 = 12$$
, (2,1) (ellipse)

4. Find the derivative of the given function. Simplify where possible.

(a)
$$y = (\arctan x)^2$$

(b)
$$y = x \arcsin x + \sqrt{1 - x^2}$$

5. Find y'' by implicit differentiation for the given curve $x^2 + 4y^2 = 4$.