International IOR Rectifier

IRF540N

- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating
- Fast Switching
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

 $I_{D} = 33A$

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	33	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	23	A
I _{DM}	Pulsed Drain Current ①	110	
P _D @T _C = 25°C	Power Dissipation	140	W
	Linear Derating Factor	0.91	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy@	300	mJ
I _{AR}	Avalanche Current①	16	А
E _{AR}	Repetitive Avalanche Energy®	14	mJ
dv/dt	Peak Diode Recovery dv/dt 3	5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.1	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.11		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.052	Ω	V _{GS} = 10V, I _D = 16A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
9 _{fs}	Forward Transconductance	11			S	$V_{DS} = 50V, I_{D} = 16A$
I _{DSS}	Drain-to-Source Leakage Current			25	μA	V _{DS} = 100V, V _{GS} = 0V
יטאס	Brain to Godine Edakage Garrent			250	μΛ	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
Qg	Total Gate Charge			94		I _D = 16A
Q _{gs}	Gate-to-Source Charge			15	nC	$V_{DS} = 80V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			43		V_{GS} = 10V, See Fig. 6 and 13 \oplus
t _{d(on)}	Turn-On Delay Time		8.2			$V_{DD} = 50V$
t _r	Rise Time		39		ns	I _D = 16A
t _{d(off)}	Turn-Off Delay Time		44		115	$R_G = 5.1\Omega$
t _f	Fall Time		33			$R_D = 3.0\Omega$, See Fig. 10 \oplus
1	Internal Drain Inductance		4.5		- nH	Between lead,
L _D						6mm (0.25in.)
L _S	Internal Source Inductance		7.5		□ nH	from package
						and center of die contact
C _{iss}	Input Capacitance		1400			$V_{GS} = 0V$
Coss	Output Capacitance		330		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		170			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			22		MOSFET symbol
	(Body Diode)		- 33	A A	showing the	
I _{SM}	Pulsed Source Current			440		integral reverse
	(Body Diode) ① ©		110	10	p-n junction diode.	
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 16A, V_{GS} = 0V \oplus$
t _{rr}	Reverse Recovery Time		170	250	ns	$T_J = 25^{\circ}C, I_F = 16A$
Q _{rr}	Reverse RecoveryCharge		1.1	1.6	μC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} \hline @ Starting $T_J=25^\circ$C, $L=2.0mH$\\ $R_G=25\Omega, I_{AS}=16A.$ (See Figure 12) \\ \hline \end{tabular}$
- $\label{eq:loss_def} \begin{tabular}{l} $ I_{SD} \leq 16A, \ di/dt \leq 210A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ $ T_J \leq 175^{\circ}C$ \end{tabular}$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

 $^{\dagger}V_{DD}$

R_D ∕√√

D.U.T.

Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %

Fig 10a. Switching Time Test Circuit

 V_{DS} >

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Package Outline TO-220AB Outline

Dimensions are shown in millimeters (inches)

Part Marking Information

TO-220AB

