DJILLALI LIABES UNIVERSITY OF SIDI BEL ABBES FACULTY OF EXACT SCIENCES DEPARTMENT OF COMPUTER SCIENCES

Module: Compilation 2
1ST YEAR OF MASTER'S DEGEREE IN
NETWORKS, INFORMATION SYSTEMS & SECURITY (RSSI)
2021/2022

Les expressions régulières en lex TP-01

Students: HADJAZI M.Hisham AMUER Wassim Group: 01 / RSSI Module Instructor: Dr. S.AISSAOUI TP Instructor: Dr . L.Niar

A paper submitted in fulfilment of the requirements for the Compilation 2 TP-01

Contents

Li	st of	Figure	S	ii
1	Sol	ations	of Fiche TP-01	1
	1.1	Exerc	ise 1	2
		1.1.1	Ecrire une expression régulière pour :	2
			a. Les caractères superflus (inutiles)	
			b. Les entiers.	
			c. Les chaines alphanumériques.	4
			d. Les chaines alphanumériques dont le 1 er caractère est une	
			lettre	5
			e. Les floats (nombre décimal)	6
			f. Les réels avec exposant	
	1.2	Exerc	ise 2	
		1.2.1	Ecrire en lex un programme qui calcule le nombre de lignes et	
			de caractère d'un fichier	8

List of Figures

1.1	exo1 a .																					2
1.2	exo1b.																					3
1.3	exo1 c.																					4
1.4	exo1 d.																					5
1.5	exo1 e .																					6
1.6	exo1f.																					7
1.7	exo2																					9

Chapter 1

Solutions of Fiche TP-01

Notes regarding this solution :

This solution and the executions of the code in it was done in the following machine :

- PC: Lenovo IdeaPad S210 8GB
- OS: Linux Mint 20.2 Cinnamon Kernel v.5.4.0-88
- *IDE*: RStudio 2021.09.0 Build 351
- *R Version* : 3.6.1 (2019-07-05)

1.1 Exercise 1

1.1.1 Ecrire une expression régulière pour :

a. Les caractères superflus (inutiles).

```
%{
#include <stdio.h>
%}

%%

[a-zA-z0-9]+ {printf("accepted");}
.+ {printf("not_accepted");}
%%

int yywrap(){}
void yyerror(const char* mens){}
int main()
{
yylex();
getchar();

void yyerror(const char* mens);
return 0;
}
```


FIGURE 1.1: exo1 a

b. Les entiers.

```
%{
#include <stdio.h>
%/
%/
[0-9]+ {printf("accepted");}
.+ {printf("not_accepted");}
%/
int yywrap(){}
void yyerror(const char* mens){}
int main()
{
yylex();
getchar();

void yyerror(const char* mens);
return 0;
}
```


FIGURE 1.2: exo1 b

c. Les chaines alphanumériques.

```
#include <stdio.h>

#include <stdio.h>

%

[a-z A-Z 0-9]+ {printf("accepted");}
.+ {printf("not_accepted");}

%/

int yywrap(){}
void yyerror(const char* mens){}
int main()
{
yylex();
getchar();

void yyerror(const char* mens);
return 0;
}
```


FIGURE 1.3: exo1 c

d. Les chaines alphanumériques dont le 1 er caractère est une lettre.

```
#include <stdio.h>

%

#include <stdio.h>

%%

[a-z | A-Z]+[0-9 | a-z | A-Z]* {printf("accepted");}
.+ {printf("not_accepted");}

%%

int yywrap(){}
void yyerror(const char* mens){}
int main()
{
yylex();
getchar();

void yyerror(const char* mens);
return 0;
}
```


FIGURE 1.4: exo1 d

e. Les floats (nombre décimal)

```
%{
#include <stdio.h>
%/
%/
"-"?[0-9]+"."[0-9]+ {printf("accepted");}
.+ {printf("not_accepted");}
%/

int yywrap(){}
void yyerror(const char* mens){}
int main()
{
yylex();
getchar();

void yyerror(const char* mens);
return 0;
}
```


FIGURE 1.5: exo1 e

f. Les réels avec exposant.

```
%{
#include <stdio.h>
%/
%/
"-"?[0-9]+"."[0-9]+"^"?[0-9]* {printf("accepted");}
.+ {printf("not_accepted");}
%/
int yywrap(){}
void yyerror(const char* mens){}
int main()
{
yylex();
getchar();

void yyerror(const char* mens);
return 0;
}
```


FIGURE 1.6: exo1 f

1.2 Exercise 2

1.2.1 Ecrire en lex un programme qui calcule le nombre de lignes et de caractère d'un fichier

```
%{
#include < stdio . h>
int lines = 0, chars = 0;
%%
\n { lines++;}
. chars++;
%%
int main(void)
yyin= fopen("secretroom.txt","r");
yylex();
printf("\n\n\n\n_This_Text_File_contains_...");
printf("\n\t%d_lines", lines);
printf("\n\t%d_characters",chars);
printf("\n\tHadjazi_Mohammed_Hisham_+_Amuer_Wassim_Group_:_01/RSSI\n");
int yywrap()
return(1);
```


FIGURE 1.7: exo2