Q3: Symbolic Quantum Simulation

Q3 is a symbolic quantum simulation framework written in the Wolfram Language to help study quantum information systems, quantum many-body systems, and quantum spin systems. It provides various tools and utilities for symbolic and numerical calculations in these areas of quantum physics.

Installation

Q3 is distributed through the GitHub repository, https://github.com/quantum-mob/Q3App. It provides a fully automatic installation and update. Just evaluate (press the key combination Shift-Enter) the following code:

```
Module[{ps}, ps = PacletSiteRegister[
    "https://github.com/quantum-mob/PacletRepository/raw/main",
    "Quantum Mob Paclet Server"];
PacletSiteUpdate[ps];
PacletInstall["Q3"]
]
```

Once Q3 is installed, use Q3CheckUpdate and Q3Update to check for updates and install an update remotely.

Quick Start

Once Q3 is installed, put Q3 or Q3/guide/Q3 in the search field of the Wolfram Language Documentation Center (Mathematica help window) to get detailed technical information about the application . It will give you users' guides and tutorials .

A Quick Look

Make sure that the Q3 package is loaded.

```
In[*]:= << Q3 `
```

Quantum Information Systems

```
In[*]:= Let[Qubit, S]
```

$$\frac{|0_{S_{1}}0_{S_{2}}0_{S_{3}}\rangle}{2\sqrt{2}} + \frac{|0_{S_{1}}0_{S_{2}}1_{S_{3}}\rangle}{2\sqrt{2}} + \frac{|0_{S_{1}}1_{S_{2}}0_{S_{3}}\rangle}{2\sqrt{2}} + \frac{|0_{S_{1}}1_{S_{2}}0_{S_{3}}\rangle}{2\sqrt{2}} + \frac{|1_{S_{1}}0_{S_{2}}1_{S_{3}}\rangle}{2\sqrt{2}} + \frac{|1_{S_{1}}0_{S_{2}}1_{S_{3}}\rangle}{2\sqrt{2}} + \frac{|1_{S_{1}}0_{S_{2}}1_{S_{3}}\rangle}{2\sqrt{2}} + \frac{|1_{S_{1}}1_{S_{2}}0_{S_{3}}\rangle}{2\sqrt{2}} + \frac{|1_{S_{1}}1_{S_{2}}0_{S_{3}}\rangle}{2\sqrt{2}} + \frac{|1_{S_{1}}1_{S_{2}}1_{S_{3}}\rangle}{2\sqrt{2}} + \frac{|1_{S_{1}}1_{S_{2}}1_{S_{3}}}{2\sqrt{2}} + \frac{|1_{S_{1}}1_{S_{2}}1_{S_{3$$

In[*]:= Matrix[out] // Normal

Out[•]=

$$\big\{\frac{1}{2\;\sqrt{2}}\;,\;\frac{1}{2\;\sqrt{2}}\;,\;\frac{1}{2\;\sqrt{2}}\;,\;\frac{1}{2\;\sqrt{2}}\;,\;\frac{1}{2\;\sqrt{2}}\;,\;\frac{1}{2\;\sqrt{2}}\;,\;\frac{1}{2\;\sqrt{2}}\;,\;\frac{1}{2\;\sqrt{2}}\;\big\}$$

In[*]:= qc = QuantumCircuit[S[{1, 2}, 6], CNOT[S[1], S[2]], Measurement[S[{1, 2}, 3]]]
Out[*]=

Quantum Many-Body Systems

$$\label{eq:localization} \begin{split} & \textit{In[@]} \coloneqq \text{ Let[Fermion, c]} \\ & \textit{In[@]} \coloneqq \text{ bs = Basis[c@\{1,2\}]} \\ & \textit{Out[@]} \coloneqq \\ & \left\{ \left| 0_{c_1} 0_{c_2} \right\rangle, \, \left| 0_{c_1} 1_{c_2} \right\rangle, \, \left| 1_{c_1} 0_{c_2} \right\rangle, \, \left| 1_{c_1} 1_{c_2} \right\rangle \right\} \\ & \textit{In[@]} \coloneqq \text{ H = Q@c@\{1,2\}} \\ & \textit{Out[@]} \coloneqq \\ & c_1^{\dagger} c_1 + c_2^{\dagger} c_2 \\ & \textit{In[@]} \coloneqq \text{ H ** bs} \\ & \textit{Out[@]} \coloneqq \\ & \left\{ 0, \, \left| 0_{c_1} 1_{c_2} \right\rangle, \, \left| 1_{c_1} 0_{c_2} \right\rangle, \, 2 \, \left| 1_{c_1} 1_{c_2} \right\rangle \right\} \end{split}$$

Quantum Spin Systems

$$\begin{array}{ll} & & & \\ &$$

$$\begin{aligned} &\inf\{\circ\}:= & \mathbf{V}\mathbf{V} = \mathbf{H} ** \mathbf{V} \\ &\text{Out}[\circ]= \\ &\frac{1}{2} \left| -\frac{1}{2} \frac{1}{J_1} \frac{1}{2} \mathbf{J}_2 \right\rangle + \frac{1}{2} \left| \frac{1}{2} \mathbf{J}_1 - \frac{1}{2} \mathbf{J}_2 \right\rangle \end{aligned}$$