Reconstruct the continuous-time signal from the sampled signal

 If a band-limited signal is sampled with a frequency higher than the Nyquist rate, then it is possible to reconstruct the original continuous-time signal.

Reconstruct the continuous signal from the sampled signal with low-pass filter

 Ideal low-pass filter: a system for which the frequency response is constant over a low range of frequencies and is zero at the high frequencies.

Ideal low-pass filter: frequency domain

In frequency domain: the effect is equivalent to multiply the spectrum of the input signal and the rectangular window.

Figure 4.4 Exact recovery of a continuous-time signal from its samples using an ideal lowpass filter.

Reconstruction and Anti-aliasing filter

- For a band-limited signal, if we sample it with a sufficiently high rate (higher than the Nyquist rate), then it can be recovered exactly by ideal low-pass filter.
- Ideal low pass filter acts as an anti-aliasing filter when the signal is not band-limited (which is common in practice).
 - In this way, some rear frequencies of the signal's spectrum are discarded or sacrificed, but the aliasing effect is avoided.

Nyquist limit and anti-aliasing filters

Without anti-aliasing filter

With anti-aliasing filter

Anti-aliasing and reconstruction filters both suppress frequencies outside $|f| < f_s/2$.

Ideal low-pass filter: time domain

- In frequency domain, multiplication of a rectangle window is performed for an ideal low-pass filter.
- In time domain, convolution is performed.
- Recall the Fourier transform of a rectangular function is a sync function.

Figure 12-31: Ideal bandlimited reconstruction filter: (a) Impulse response $h_r(t)$, and (b) frequency response $H_r(j\omega)$.

Sync Function Interpolation

 Hence, in time domain, ideal low-pass filter is equivalent to the convolution with the sync function.

Reconstruction filter derivation (I)

- Let $x_a(t)$ be a band-limited signal with its frequencies inside the range $[-\omega_b, \omega_b]$. Suppose $x_a(t)$ is sampled with the frequency $\omega_s = 2w_b$ (without aliasing).
- Hence, $T=2\pi/\omega_s=\pi/\omega_b$ is the sampling period. Remember that the sampled signal is the multiplication of $x_a(t)$ and the impulse train,

$$x_s(t) = x_a(t) \sum_{n = -\infty}^{\infty} \delta(t - nT)$$

• To reconstruct $x_a(t)$ from $x_s(t)$, we use the low-pass filter (a rectangular window) with the cut-off frequency w_b in the frequency domain.

Reconstruction filter derivation (II)

• Recall that when the frequency domain is a rectangle window in $[-\omega_b, \omega_b]$, the time domain is the sync function $\frac{\sin(\omega_b t)}{\pi t}$.

Table of Fourier Transform Pairs	
Time-Domain: x(t)	Frequency-Domain: $X(j\omega)$
$e^{-at}u(t) (a>0)$	$\frac{1}{a+j\omega}$
$e^{bt}u(-t) (b>0)$	$\frac{1}{b-j\omega}$
$u(t+\tfrac{1}{2}T)-u(t-\tfrac{1}{2}T)$	$\frac{\sin(\omega T/2)}{\omega/2}$
$\frac{\sin(\omega_b t)}{\pi t}$	$[u(\omega+\omega_b)-u(\omega-\omega_b)]$

Reconstruction filter derivation (III)

- Ideal low-pass filtering: frequency domain multiplication with the rectangle window scaled by T.
- In time domain, idea low-pass filtering is equivalent to convolution with the sync function.

$$x_r(t) = x_s(t) * \frac{\sin(\omega_b t)}{\pi t} T$$

$$= \left(x_a(t) \sum_{n = -\infty}^{\infty} \delta(t - nT) \right) * \frac{\sin(\omega_b t)}{\pi t} T$$

Reconstruction filter derivation (IV)

• So,
$$x_r(t) =$$

$$\int_{-\infty}^{\infty} \left(x_a(\tau) \sum_{n=-\infty}^{\infty} \delta(\tau - nT) \right) \frac{\sin(\omega_b(t - \tau))}{\pi(t - \tau)} T d\tau$$

$$= \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} x_a(\tau) \frac{\sin(\omega_b(t - \tau))}{\pi(t - \tau)} T \delta(\tau - nT) d\tau$$

$$= \sum_{n=-\infty}^{\infty} x_a(nT) \frac{\sin(\omega_b(t - nT))}{\pi(t - nT)} T$$

Reconstruction filter derivation (V)

• Let $x[n] = x_a(nT)$ be the sampled signal, the reconstructed signal via ideal low-pass filtering is then

$$x_r(t) = \frac{T}{\pi} \sum_{n=-\infty}^{\infty} x[n] \frac{\sin(\omega_b(t-nT))}{(t-nT)}$$

Linear combination of the functions $\sin(\omega_b t)/t$ centered at the integer multiples of T.

Reconstruction filter example

