What kind of technical questions will I be asked?

- Questions that focus on architecture, design, and approach to problems more than the fine details of the solution
- · Questions that focus on what areas interest you technically

What WILL NOT be asked or expected during my interview?

- No whiteboard coding or finite circuit analysis during the interview.
- No live coding or calculator circuit analysis during the interview.
- · No riddles, complex logic, trick questions, or puzzles.
- · No questions about anything you DO NOT CLAIM to know.
- · No long questions with multiple parts.
- · No questions dug out of some obscure text book or internet search.
- · No one will be reading your resume during the interview.

What should I NOT bring to the interview?

- Do not bring your resume no one will read it during the onsite interview.
- · Uncomfortable clothing we want you to be comfortable and relaxed.

What should I bring to the interview?

- Please bring anything that you have designed and built as a hobby or from work. If you are bringing creative work examples, make sure your example or presentation DOES NOT REVEAL any protected intellectual property.
 - a. Here are some hobby examples for inspiration. This is not an exclusive list.
 - i. Ruby the robot https://youtu.be/sieoBzGjiU4
 - ii. Short wave radio
 - iii. Drone
 - iv. Android or MAC SW application, typically for the cell phone "app" market
 - b. Here are some work examples for inspiration. Again, we do not want to see any protected intellectual property (IP) and this is not an exclusive list.
 - i. A printed circuit board prototype (IP artwork should be covered)
 - ii. A process monitor design
 - iii. A high level BIST design
 - iv. An embedded SW driver or controller

- c. Here are some format ideas to communicate what you have built:
 - i. Power Point presentation
 - ii. Napkin drawing
 - iii. YouTube video
 - iv. 3D rendering
 - v. A "Show-n-tell" object to pass around
- 2. Orally, describe various schematic blocks at a high level no calculator required. Example sent in a separate attachment.
- 3. Orally, explain any recent technical paradigm or concept that you initially found difficult to understand.
- 4. Please bring a working code example (any language) predicting the target 'hardbin_FT1' from the attached data set.

ML problem details:

- Target: column 'hardbin_FT1'. Value of 1 == passing device, any other value == failing device. The goal is to predict failing hardbin_FT1 devices.
- Report crosstab/confusion matrix results on test data. If practical, show highest ranked features.
- There is no pass/fail based on your confusion matrix results we want to get to know you & have something to talk about NOT criticize your model performance.
- Primary Key/unique row ID = column 'ecid'. Value is a unique chip ID for any device over all time.
- Features/column descriptions:
 - ecid = Metadata not a feature, a unique serial #
 - A—J = electrical test equipment measurement results
 - "A_1 ... A_48" are grouped as the same test under 48 different conditions
 - "B 1 ... B 10" are grouped as the same test under 10 different conditions
 - This naming convention continues through the "J" group of columns
 - "A_1", "B_1", ... "J_1" are not the same test & not the same condition
 - Example: The "J's" are specific voltage measurements & the "G's" are specific current measurements
 - diex_WS1 = spatial location on wafer.
 - When groupby(wafername_WS1), each ecid for a specific wafer has neighbors based on the diex_WS1 & diey_WS1 cartesian coordinates
 - diey_WS1 = spatial location on wafer.
 - When groupby(wafername_WS1), each ecid for a specific wafer has neighbors based on the diex_WS1 & diey_WS1 cartesian coordinates
 - site_WS1 = spatial location on wafer test equipment.
 - totaldietestseconds_WS1 = how long wafer tests took.

- touchdownseq_WS1 = normalized time of when each ecid was tested on a particular wafer
 - When groupby(wafername_WS1), each ecid for a specific wafer will have an order of when they were tested w/ respect to other ecids on this wafer
- wafername_WS1 = Metadata not a feature but can be used for grouping
- hardbin_FT1 = Target. Value = 1 (passing device), value != 1, (failing device)
- site_FT1 = spatial location on final test equipment.
- totaldietestseconds_FT1 = how long final tests took.