Indian Institute of Technology Guwahati

QUIZ -1, September 1, 2022

MA201: Mathematics III

Answers without proper justifications will fetch zero marks.

Time: 50 Minutes (8.00AM -8.50 AM)

Marks: 10

1. Let $f: B(0,1) \to \mathbb{C}$ defined by

[2]

$$f(z) = \begin{cases} e^{-\frac{1}{\sin z}} & \text{if } z \neq 0, \\ 0 & \text{if } z = 0. \end{cases}$$

Check the continuity of f at z = 0.

Answer: Given function f is not continuous at z = 0.

Path-I(Limit along Real axis) Take $z_n = \frac{1}{n} \to 0$ an $n \to \infty$. Then

$$\lim_{n} f(z_n) = \lim_{n} e^{-\frac{1}{\sin(1/n)}} = 0.$$

Path-II(Limit along Imaginary axis) Take $z_n = \arcsin(\frac{i}{n}) \to 0$ an $n \to \infty$. Then

$$\lim_{n} f(z_n) = \lim_{n} e^{in} \neq 0.$$

So the limit is different along different paths and hence limit does not exists. So f is not continuous at z = 0.

2. Find all entire functions f = u + iv satisfying $u_x v_y - u_y v_x + 1 = 2u_x$.

[3]

Answer: If we use C-R equations in the given equation we will get |f'(z) - 1| = 0. This implies that f'(z) = 1 for all $z \in \mathbb{C}$. Define g(z) = f(z) - z. Then g'(z) = 0 for all $z \in \mathbb{C}$. So $g(z) = \alpha$ for all $z \in \mathbb{C}$ and $f(z) = z + \alpha$ for all $z \in \mathbb{C}$.

3. Let f be an entire function such that the image of f lies in $L = \{\log(1+|x|) + iy : x, y \in \mathbb{R}\}$. [3] If f(0) = 1, then find the value of f(1). Justify your answer.

Answer: Let f = u + iv be an entire function such that image of f lies in $L = \{\log(1 + |x|) + iy : y \in \mathbb{R}\}$ i.e $\text{Re}(f) = u \geq 0$. Consider

$$|e^{-f}| = |e^{-u-iv}| = |e^{-u}| \le 1.$$

So by Liouville's theorem e^{-f} is constant. So $\frac{d}{dz}e^{-f(z)}=-f'(z)e^{-f(z)}=0$. That would imply f(z)=c for all $z\in\mathbb{C}$. Since $f(0)=1,\ f(z)=1$ for all $z\in\mathbb{C}$.

4. Evaluate the integral

[2]

$$\int_{|z|=1} e^{i\sin z} d\bar{z}.$$

Answer: Notice that $|z|^2 = z\bar{z} = 1$. So $\bar{z} = \frac{1}{z}$ and $d\bar{z} = -\frac{1}{z^2}dz$. So by Cauchy integral formula

$$\int_{|z|=1} e^{i\sin z} d\bar{z} = \int_{|z|=1} e^{i\sin z} \left(-\frac{1}{z^2}\right) dz = -2\pi i e^{i\sin 0} i\cos 0 = 2\pi.$$