Fake News Project

Motivation For Project

- Fake news detection is important for several industries.
- Notably, regulatory agencies have begun to target websites with user-generated content (such as social media sites) for allowing the circulation of fake news on their platforms.
- Automated fake news detection can be useful for major websites to identify potentially problematic content in advance.

Questions for Analysis

 What can machine learning techniques tell us about fake news detection?

 How do different styles of sampling data influence results? Category Counts

News Source Counts

Every single article from a given source is in one category in the data

News Category

Initial Analysis – Reliable vs. Fake

News Source (domain)

Sentiment Analysis - Polarity

	SIA Polarity Score		TextBlob Polarity Score	
	Labelled "Fake"	Labelled "Reliable"	Labelled "Fake"	Labelled "Reliable"
Percentage of documents with a score greater than 0.2 (positive)	59.39%	67.21%	17.49%	11.75%
Percentage of documents with a score less than -0.2 (negative)	34.64%	25.81%	13.3%	7.30%
Percentage of documents with a score between -0.2 and 0.2 (neutral)	5.97%	6.98%	81.18%	87.52%

More documents labelled "fake" had more negative sentiment for both SIA and TextBlob.

Some differences between SIA and TextBlob regarding high polarity scores.

Sentiment Analysis - Subjectivity

	TextBlob Subjectivity		
	Labelled "Fake"	Labelled "Reliable"	
Percentage of documents with a score greater than 0.55 (subjective)	11.28%	7.62%	
Percentage of documents with a score less than 0.45 (objective)	57.84%	68.00%	
Percentage of documents with a score between 0.45 and 0.55 (neutral)	30.88%	24.38%	

Vectorization Technique

		Bag of Words	Tf-idf	Tf-idf with two bigrams
Classifier	MultinomialNB()	86.7%	87.2%	90.4%
	LinearSVC()	87.0%	90.8%	91.7%
	XGB Classifier()	87.5%	89.0%	83.3%

Predictive Modeling – Reliable vs. Fake

Most Predictive features for Initial Reliable vs. Fake Analysis

```
main stori
6.2862
6.2685
        read main
        advertis continu
5.9580
5.6588
        continu read
4.7699
        new york
4.2447
        to re
        2.3737
                 an articl
        1.9920
                 next in
        1.7252
                 said would
```

• These results indicate that the fact that a given article is from the New York Times is more predictive than anything else in the data. Because of this, the data was resampled (see following slide)

Topic Modeling

- Documents labelled "reliable" had two identifiable topics:
 - Vocabulary linked to the New York Times
 - This indicates that all articles from given sources given one label is a significant issue in this dataset.
 - - Vocabulary linked to arts and performance
 - These may be articles from the arts section of The New York Times
- Documents labelled "fake" had two identifiable topics:
 - Religious vocabulary coinciding with the words "day" and "night": (1, '-0.460*"christ" + -0.371*"day" + -0.220*"god" + -0.205*"jesu" + -0.172*"night")
 - Vocabulary linked to the ACA (Afforable Care Act) aka "Obamacare": (2, '0.507*"obamacar" + 0.466*"obama" + -0.262*"market" + 0.238*"websit" + 0.186*"insur")

Resampling

The New York Times and beforeitsnews.com were overrepresented in the initial sample

Data was resampled for better balance across domain

Lower accuracy than initial sampling. Classifiers from initial sub-sample were likely learning to predict majority classes

Predictive Accuracy – Resampled Data

		Vectorization Technique		
		Bag of Words	Tf-idf	Tf-idf with two bigrams
Classifier	MultinomialNB()	77.6%	72.3%	77.6%
	LinearSVC()	86.4%	89.0%	84.1%
	XGB Classifier()	84.7%	87.6%	77.6%

Predictive Features

Unigrams 2.8374 2016 2.3298 ap 2.2535 nov 2.1699 november 1.9041 said 1.5876 reuters 1.4786 photo 1.4026 film 1.3945 also 1.2465 percent 1,2073 savs

Bigrams

- -4.2017 budget rep
- -4.5269 aliens tend
- -4.6422 aiding abetting
- -4.6732 asking doctor
- -4.7910 becoming nurse
- -5.0097 books hillbilly
- -5.2696 500 name
- -5.3058 black sea
- -5.3252 bar great
- -5.3520 apartment metrocare
- -5.3822 cabinet bloomberg
- -5.3951 babies kinkade

• • • • • • • • •

$Confusion\ matrix\ of\ Multinomial NB (alpha=1.0,\ class_prior=None,\ fit_prior=True)$

Multiclass Classification with count vectorization

Confusion matrix of XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3, min_child_weight=1, missing=None, n_estimators=100, n_jobs=1, nthread=None, objective='multi:softprob', random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, silent=None, subsample=1, verbosity=1)

Confusion matrix of LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, verbose=0)

Multiclass Classification with tf-idf vectorization

Confusion matrix of XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3, min_child_weight=1, missing=None, n_estimators=100, n_jobs=1, nthread=None, objective='multi:softprob', random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, silent=None, subsample=1, verbosity=1)

Confusion matrix of LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, verbose=0)

More Classes

• The same six pairs of vectorization and classifiers were applied to the data, but for all of the classes (instead of just the four largest ones).

Concluding Points

- Prediction accuracy seems to be inherently tied to source.
- Some of the most informative features were direct references to the site or online newspaper that articles came from.
- This analysis was conducted with a smaller subset of data from the very large dataset.
- Conducting the analysis with a larger amount of data may yield more significant results.