

Ciência dos Materiais A

Departamento de Ciência dos Materiais

Margarida Lima (mmal@fct.unl.pt), Rui Borges (rcb@fct.unl.pt);

Carmo Lança (mcl@fct.unl.pt)

Departamento de Química

Ana Rita Duarte (ard08968@unl.pt)

FACULDADE DE CIÊNCIAS E TECNOLOGIA

UNIVERSIDADE NOVA DE LISBOA

Ano letivo de 2023-2024

Conteúdos programáticos

- Identificar os mecanismos de difusão, transporte de material por movimentos atómicos,
- Conhecer os fatores que influenciam a difusão,
- Distinguir entre difusão estacionária e não-estacionária,
- Calcular o coeficiente de difusão de um dado material para uma dada temperatura.

- Os átomos só ficam estáticos no zero absoluto
- Com o aumento da temperatura as vibrações térmicas dispersam os átomos para posições de menor energia
- Nos sólidos os movimentos são dificultados devido à ligação dos átomos em posições de equilíbrio.
- A maior parte das reacções em estado sólido envolve movimentos atómicos – precipitação de uma segunda fase a partir de uma solução sólida; nucleação e crescimento de novos grãos durante a recristalização de um metal deformado a frio.

EXEMPLOS DE PROCESSOS BASEADOS EM DIFUSÃO

- Cementação dos aços para endurecimento superficial.
- Outros tratamentos térmicos como recristalização, alívio de tensões, normalização,...
- Dopagem em materiais semicondutores para controlar a condutividade.
- Sinterização.
- · Alguns processos de soldadura.

FENÓMENO DA DIFUSÃO

TIPOS DE DIFUSÃO

- Interdifusão ou difusão de impurezas
 - mais comum, ocorre quando átomos de um metal se difundem noutro, com variação na concentração.

MECANISMOS DE DIFUSÃO

- Intersticial ocorre por movimentação de átomos pequenos nos interstícios e promove distorção na rede
- A difusão intersticial ocorre mais rapidamente que a difusão lacunar, pois os átomos intersticiais são menores e possuem maior mobilidade.
- Existem mais posições intersticiais que lacunares na rede sendo a probabilidade de movimento intersticial maior que a difusão lacunar.

ENERGIA DE ACTIVAÇÃO

Átomos com energia suficiente para se moverem

Boltzmann: $n / Ntotal = C (e^{-Q/KT})$

n= nº átomos com energia suficiente para difundir

Ntotal = nº total át.;

Q = energia de ativação (J/at)

 $K = Const. Boltzmann = 1,38x10^{-23} J/(at.K)$

T = Temperatura (K);

C = constante

ENERGIA DE ACTIVAÇÃO

VELOCIDADE DE DIFUSÃO

EQUAÇÃO DE ARRHENIUS

$$V = c (e^{-Q/RT})$$

- c= constante
- Q= energia de ativação (cal/mol ou J/mol) proporcional ao número de sítios disponíveis para o movimento atómico
- R= Constante dos gases= 1,987 cal/mol.K ou 8,314 J/mol.K
- T= Temp. em Kelvin

VELOCIDADE DE DIFUSÃO

• EQUAÇÃO DE ARRHENIUS

$$InV = Inc - Q/(RT)$$

$$Y = b + mx$$

Equação da reta

 Declive permite determinar Q

VELOCIDADE DE DIFUSÃO EM TERMOS DE FLUXO DE DIFUSÃO

J = M/(A.t)

em $kg/(m^2.s)$ ou at/ $(m^2.s)$

J = fluxo ou corrente global de átomos

M= número de átomos

A= área

t= tempo

DIFUSÃO ESTACIONÁRIA

- Estado estacionário => J constante no tempo
 - Ex: Difusão de átomos de um gás através de uma placa metálica, com a concentração dos dois lados mantida constante.

Caso do hidrogénio a difundir numa follha de paládio

DIFUSÃO ESTACIONÁRIA

J = - D dC/dx

J= Fluxo ou corrente global de átomos ;

D= coef. difusão

dC/dx= gradiente de concentração em função da distância

COEFICIENTE DE DIFUSÃO (D)

- Indicação da velocidade de difusão
- Depende:
 - da natureza dos átomos em questão
 - do tipo de estrutura cristalina
 - da temperatura

COEFICIENTE DE DIFUSÃO (D)

 O Coef. de difusão pode ser calculado a partir da equação:

$$D = D_0 (e^{-Q/RT})$$

onde D₀ é uma constante calculada para um determinado sistema (átomos e estrutura)

COEFICIENTE DE DIFUSÃO (D)

Diffusing Species	Host Metal	$D_0(m^2/s)$	Activation Energy Q_d		Calculated Values	
			kJ/moI	eV/ atom	T(°C)	$D(m^2/s)$
Fe	α-Fe (BCC)	2.8×10^{-4}	251	2.60	500 900	3.0×10^{-21} 1.8×10^{-15}
Fe	γ-Fe (FCC)	5.0×10^{-5}	284	2.94	900 1100	1.1×10^{-17} 7.8×10^{-16}
С	lpha-Fe	6.2×10^{-7}	80	0.83	500 900	2.4×10^{-12} 1.7×10^{-10}
С	γ-Fe	2.3×10^{-5}	148	1.53	900 1100	5.9×10^{-12} 5.3×10^{-11}
Cu	Cu	7.8×10^{-5}	211	2.19	500	4.2×10^{-19}
Zn	Cu	$2.4 imes 10^{-5}$	189	1.96	500	4.0×10^{-18}
Al	Al	2.3×10^{-4}	144	1.49	500	4.2×10^{-14}
Cu	Al	$6.5 imes 10^{-5}$	136	1.41	500	4.1×10^{-14}
Mg	Al	1.2×10^{-4}	131	1.35	500	1.9×10^{-13}
Cu	Ni	2.7×10^{-5}	256	2.65	500	1.3×10^{-22}

18 Aula T4

EFEITOS DA ESTRUTURA NA DIFUSÃO

FACTORES QUE FAVORECEM A DIFUSÃO

- f.e.a. baixo
- Baixo ponto de fusão
- Ligações fracas (Van der Waals)
- Baixa densidade
- Raio atómico pequeno
- Presença de defeitos

FACTORES QUE DIFICULTAM A DIFUSÃO

- f.e.a. alto
- Alto ponto de fusão
- Ligações fortes (iónica e covalente)
- Alta densidade
- Raio atómico grande
- Cristalinidade elevada

EFEITOS DA ESTRUTURA NA DIFUSÃO

Caso do Ferro (formas alotrópicas)

- O coeficiente de <u>difusão</u>
 <u>dos átomos de Carbono</u>
 <u>no Fe ccc é maior</u> que no
 cfc, pois o sistema ccc tem
 um fator de
 empacotamento menor
- f.e.a. ccc= 0,68 e
 f.e.a. cfc= 0,74

DIFUSÃO NÃO ESTACIONÁRIA

SEGUNDA LEI DE FICK

(dependente do tempo e unidimensional)

$$\frac{\partial \mathbf{C}}{\partial t} = \frac{\partial}{\partial x} \left[\mathbf{D} \frac{\partial \mathbf{C}}{\partial x} \right]$$

A concentração de átomos no soluto em qualquer ponto do material varia com o tempo.

DIFUSÃO NÃO ESTACIONÁRIA

SEGUNDA LEI DE FICK

(dependente do tempo e unidimensional)

SEGUNDA LEI DE FICK

$$\frac{\text{Cs-Cx}}{\text{Cs-C}_0} = \text{erf}\left(\frac{x}{2 \text{ (D.t)}^{1/2}}\right)$$

erf (Z) Função de erro

Cs= Concentração à superfície

Cx= Concentração à distância x

t= tempo

C₀= Concentração inicial

D= Coeficiente de difusão

Solução válida se D não variar com x

Exemplo: Cementação

