NAME: PAGLINAWAN, KING JOHN ADAMZ R.

COURSE & SECTION: BSCPE 2-1

Final term exercises and activities

$$G_9 = (V_9, E_9)$$

 $V_9 = \{1, 2, 3, 4, 5, 6\}$
 $E_9 = \{(1, 2), (1, 5), (2, 1), (2, 4), (5, 4), (5, 6), (6, 1), (6, 3)\}$

INDEGREE	OUTDEGREE
1 is 2	1 is 2
2 is 1	2 is 2
3 is 1	3 is 0
4 is 2	4 is 0
5 is 1	5 is 2
6 is 1	6 is 2

$$G_{10} = (V_{10}, E_{10})$$

$$V_{10} = \{1, 2, 3, 4, 5\}$$

$$E_{10} = \{(1, 4), (2, 1), (2, 5), (3, 1), (3, 4), (4, 1), (4, 3), (4, 5), (5, 2)\}$$

INDEGREE	OUTDEGREE
1 is 3	1 is 1
2 is 1	2 is 2
3 is 1	3 is 2
4 is 2	4 is 3
5 is 2	5 is 1

	1
KRUSKAL	PRIM'S
W(B,C)= 1	W(A,B)=11
W(M,N)=1	W(B,C)= 1
W(G,I)= 5	W(C,M)=8
W(D,L)= 6	W(M,N)=1
W(C,M)=8	W(C,D)=14
W(F,I)= 9	W(D,L)= 6
W(A,B)=11	W(D,K)=13
W(D,K)=13	W(M,O)=17
W(C,D)=14	W(C,F)=21
W(G,J)=16	W(F,I) = 9
W(M,O)=17	W(G,I)=5
W(C,F)=21	W(G,J)=16
W(E,N)=35	W(E,N)=35
W(M,P)=40	W(M,P)=40
TOTAL:197	TOTAL:197
	1

Exercises on Trees

- 1. Name the three properties of a tree.
- 2. Is a tree a forest?
- 3. What do you call the special designated node in a tree?
 - 4. What is the minimum number of nodes in

a tree?

5. Can a tree have no subtrees at all?

Given the tree to the right, identify the ff.:

- 6. Children of node 16.
- 7. Parent of node 1.
- 8. Siblings of 23.
- 9. Ancestors of 9.
- 10. Descendants of 16.
- 11. Leaves.
- 12. Non-leaves.
- 13. Depth of node 4.
- 14. Degree of the tree.
- 15. Height of the tree.
- 16. Weight of the tree.
- 17. Is the tree a binary tree?
- 18. Removing 6, is the tree a full binary tree?
- 19. Removing 6, is the tree a complete binary tree?
- 20. Is a full binary tree complete?
- 21. Is a complete binary tree full?
- 22. How many leaves does a complete n-ary tree of height h have?
- 23. What is the height of a complete n-ary tree with m leaves?
- 24. What is the number of internal nodes of a complete n-ary tree of height h?
- 25. What is the total number of nodes a complete n-ary tree of height h have?

Answers:

1.

- Free Tree/Tree (for short)-A connected, acyclic (no cycle), undirected graph.
- A tree is, therefore, a forest, but a forest is not a tree because it is not connected.
- A tree must contain at least 1 node or the root node. And tree can have no subtrees at all.
 - 2. YES
 - 3. ROOTS
 - 4. 1
 - 5. YES
 - 6. NODES 13, 6 AND 60
 - 7. NODE 7
 - 8. NONE
 - 9. 4, 12, 7, 22
 - 10. 13,6,60,23,21
 - 11. 23,21,20,9,1
 - 12. 13,16,60,12,4,7.22
 - 13. 3 DEPTH
 - 14.3 DEGREE
 - 15.4 HEIGHT
 - 16. 6 LEAVES
 - 17. NO
 - 18. NO
 - 19. NO
 - 20. NO
 - 21. YES
 - 22. n^h
 - $23.log_n m$
 - 24. $\frac{n^{h}-1}{n-1}$
 - 25. *n*^h-1