Chapter 7: Computations lifted to a functor context II. Monads

Part 2: Laws and structure of semimonads

Sergei Winitzki

Academy by the Bay

2018-03-11

Semimonad laws I: The intuitions

What properties of functor block programs do we expect to have?

- In $x \leftarrow c$, the value of x will go over items held in container c
- Manipulating items in container is followed by a generator:

• Manipulating items in container is preceded by a generator:

• After $x \leftarrow cont$, further computations will use all those x

```
\begin{array}{lll} x \leftarrow cont & y \leftarrow for \{ x \leftarrow cont \\ y \leftarrow p(x) & yy \leftarrow p(x) \} \ yield \ yy \\ z \leftarrow cont2(y) & z \leftarrow cont2(y) \end{array}
```

Semimonad laws II: The laws for flatMap

To get a more concise notation, use flm instead of flatMap A semimonad S^A has $flm^{[S,A,B]}: (A \Rightarrow S^B) \Rightarrow S^A \Rightarrow S^B$ with 3 laws:

2 flm $(f^{A \Rightarrow S^B} \circ \operatorname{fmap} g^{B \Rightarrow C}) = \operatorname{flm} f \circ \operatorname{fmap} g$ (naturality in B)

$$S^{A} \xrightarrow{\text{flm } f^{A \Rightarrow S^{B}}} S^{B} \xrightarrow{\text{fmap } g^{B \Rightarrow C}} S^{C}$$

$$flm (f^{A \Rightarrow S^{B}} \circ \text{fmap } g^{B \Rightarrow C})$$

3 $\operatorname{flm}(f^{A\Rightarrow S^B} \circ \operatorname{flm} g^{B\Rightarrow S^C}) = \operatorname{flm} f \circ \operatorname{flm} g$ (associativity)

$$S^{A} \xrightarrow{\text{flm } f^{A \Rightarrow S^{B}}} S^{B} \xrightarrow{\text{flm } g^{B \Rightarrow S^{C}}} S^{C}$$

Is there a shorter formulation of the laws?

3 / 16

Semimonad laws III: The laws for flatten

The methods flatten (denoted by ftn) and flatMap are equivalent:

$$\operatorname{ftn}^{[S,A]}: S^{S^A} \Rightarrow S^A = \operatorname{flm}^{\left[S,S^A,A\right]}(m^{S^A} \Rightarrow m)$$

$$\operatorname{flm}\left(f^{A \Rightarrow S^B}\right) = \operatorname{fmap} f \circ \operatorname{ftn}$$

$$S^A \xrightarrow{\operatorname{flm}\left(f^{A \Rightarrow S^B}\right)} S^{E}$$

It turns out that flatten has only 2 laws:

② $fmap(ftn^{[S,A]}) \circ ftn^{[S,A]} = ftn^{[S,S^A]} \circ ftn^{[S,A]}$ (associativity)

Equivalence of a natural transformation and a "lifting"

- Equivalence of flm and ftn: ftn = flm (id); flm $f = \text{fmap } f \circ \text{ftn}$
- We saw this before: deflate = fmapOpt(id); $fmapOpt f = fmap f \circ deflate$
 - ▶ Is there a general pattern where two such functions are equivalent?
- Let $tr: F^{G^A} \Rightarrow F^A$ be a natural transformation (F and G are functors)
- Define ftr : $(A \Rightarrow G^B) \Rightarrow F^A \Rightarrow F^B$ by ftr $f = \operatorname{fmap} f \circ \operatorname{tr}$
- It follows that tr = ftr(id), and we have equivalence between tr and ftr:

$$\operatorname{tr}: F^{G^A} \Rightarrow F^A = \operatorname{ftr}(m^{G^A} \Rightarrow m)$$

$$\operatorname{ftr}(f^{A \Rightarrow G^B}) = \operatorname{fmap} f \circ \operatorname{tr}$$

$$f^A \xrightarrow{\operatorname{ftr}(f^{A \Rightarrow G^B})} F^B$$

- An automatic law for ftr ("naturality in A") follows from the definition: fmap $g \circ \text{ftr } f = \text{fmap } g \circ \text{fmap } f \circ \text{tr} = \text{fmap } (g \circ f) \circ \text{tr} = \text{ftr } (g \circ f)$
 - ► This is why tr has one law fewer than ftr
- To demonstrate equivalence in the direction ftr → tr: start with an arbitrary ftr satisfying "naturality in A", then obtain tr = ftr (id) from it, then verify ftr f = fmap f o tr with that tr: fmap f o ftr (id) = ftr (f o id) = ftr f

Semimonad laws IV: Deriving the laws for flatten

Denote for brevity $q^{\uparrow} \equiv \operatorname{fmap}^{[S]} q$ for any function qExpress flm $f = f^{\uparrow} \circ$ ftn and substitute that into flm's 3 laws:

- flm $(f \circ g) = f^{\uparrow} \circ \text{flm } g \text{ gives } (f \circ g)^{\uparrow} \circ \text{ftn} = f^{\uparrow} \circ g^{\uparrow} \circ \text{ftn}$ - this law holds automatically due to functor composition law
- ② flm $(f \circ g^{\uparrow}) = \text{flm } f \circ g^{\uparrow} \text{ gives } (f \circ h)^{\uparrow} \circ \text{ftn} = f^{\uparrow} \circ \text{ftn} \circ h;$ using the functor composition law, we reduce this to $h^{\uparrow} \circ \text{ftn} = \text{ftn} \circ h - \text{this is the naturality law}$
- § $flm(f \circ flm g) = flm f \circ flm g$ with functor composition law gives $f^{\uparrow} \circ g^{\uparrow\uparrow} \circ \operatorname{ftn}^{\uparrow} \circ \operatorname{ftn} = f^{\uparrow} \circ \operatorname{ftn} \circ g^{\uparrow} \circ \operatorname{ftn}$; using ftn's naturality and omitting the common factor $f^{\uparrow} \circ g^{\uparrow\uparrow}$, we get $ftn^{\uparrow} \circ ftn = ftn \circ ftn - associativity law$
 - flatten has the simplest type signature and the fewest laws
 - It is usually easy to check naturality!
 - ▶ Parametricity theorem: Any pure, fully parametric code for a function of type $F^A \Rightarrow G^A$ will implement a natural transformation
- Checking flatten's associativity needs a lot more work!

The cats library has a FlatMap type class, defining flatten via flatMap

Checking the associativity law for standard monads

- Implement flatten for these functors and check the laws (see code):
 - ▶ Option monad: $F^A \equiv 1 + A$; ftn : $1 + (1 + A) \Rightarrow 1 + A$
 - ▶ Either monad: $F^A \equiv Z + A$; ftn : $Z + (Z + A) \Rightarrow Z + A$
 - ▶ List monad: $F^A \equiv \text{List}^A$; ftn : List List $\Rightarrow \text{List}^A$
 - ▶ Writer monad: $F^A \equiv A \times W$; ftn : $(A \times W) \times W \Rightarrow A \times W$
 - ▶ Reader monad: $F^A \equiv R \Rightarrow A$; ftn : $(R \Rightarrow (R \Rightarrow A)) \Rightarrow R \Rightarrow A$
 - ▶ State: $F^A \equiv S \Rightarrow A \times S$; ftn : $(S \Rightarrow (S \Rightarrow A \times S) \times S) \Rightarrow S \Rightarrow A \times S$
 - ► Continuation monad: $F^A \equiv (A \Rightarrow R) \Rightarrow R$; ftn : $((((A \Rightarrow R) \Rightarrow R) \Rightarrow R) \Rightarrow (A \Rightarrow R) \Rightarrow R$
- Code implementing these flatten functions is fully parametric in A
 - ▶ Naturality of these functions follows from parametricity theorem
 - Associativity needs to be checked for each monad!
- Example of a useful semimonad that is *not* a full monad:
 - $F^A \equiv A \times V \times W; \text{ ftn } ((a \times v_1 \times w_1) \times v_2 \times w_2) = a \times v_1 \times w_2$
- Examples of *non-associative* (i.e. wrong) implementations of flatten:
 - $F^A \equiv A \times W \times W; \text{ ftn} ((a \times v_1 \times v_2) \times w_1 \times w_2) = a \times w_2 \times w_1$
 - $ightharpoonup F^A \equiv \text{List}^A$, but flatten concatenates the nested lists in reverse order

Motivation for monads

- Monads represent values with a "special computational context"
- Specific monads will have methods to create various contexts
- Monadic composition will "combine" the contexts associatively
- It is generally useful to have an "empty context" available

pure :
$$A \Rightarrow M^A$$

- Combining empty context with another context works as a no-op
- Empty context is followed by a generator:

```
\begin{array}{lll} & \text{$y$ = x$} \\ & \text{$z$ \leftarrow $cont(y)$} & \text{$z$ \leftarrow $cont(y)$} \\ & \text{pure(x).flatMap($y$ <math>\Rightarrow $cont(y)$) = $cont(x)$} & \text{pure of } \text{flm } f = f - \text{left identity} \end{array}
```

• Empty context is preceded by a generator:

```
x \leftarrow cont y \leftarrow pure(x) x \leftarrow cont y = x
```

 $cont.flatMap(x \Rightarrow pure(x)) = cont$ flm(pure) = id - right identity

The monad laws formulated in terms of pure and flatten

• Naturality law for pure: $f \circ pure = pure \circ f^{\uparrow}$

• Left identity: pure \circ flm $f = \text{pure} \circ f^{\uparrow} \circ \text{ftn} = f \circ \text{pure} \circ \text{ftn} = f$ requires that pure \circ ftn = id (both sides applied to S^A)

• Right identity: $flm(pure) = pure^{\uparrow} \circ ftn = id$

Formulating laws via Kleisli functions

- Recall: we formulated the laws of filterables via fmapOpt
 - fmapOpt : $(A \Rightarrow 1 + B) \Rightarrow S^A \Rightarrow S^B$
- And then we had to compose functions of types $A \Rightarrow 1 + B$ with \diamond_{Opt}
- ullet Here we have flm : $(A\Rightarrow S^B)\Rightarrow S^A\Rightarrow S^B$ instead of fmapOpt
- Can we compose **Kleisli functions** with "twisted" types $A \Rightarrow S^B$?
- Use flm to define Kleisli composition: $f^{A\Rightarrow S^B} \diamond g^{B\Rightarrow S^C} \equiv f \circ \text{flm } g$
- Define Kleisli identity id_{\diamond} of type $A \Rightarrow S^A$ as $id_{\diamond} \equiv pure$
- Composition law: $flm(f \diamond g) = flm f \circ flm g$ (same as for fmapOpt)
 - ▶ Shows that flatMap is a "lifting" of $A \Rightarrow S^B$ to $S^A \Rightarrow S^B$
- These laws are similar to functor "lifting" laws...
 - ▶ except that ⋄ is used for composing Kleisli functions
- What are the properties of <?</p>
 - lacktriangle Exactly similar to the properties of function composition $f\circ g$

Reformulate flm's laws in terms of the \diamond operation:

- flm's left and right identity laws: pure $\diamond f = f$ and $f \diamond \text{pure} = f$
- Associativity law: $(f \diamond g) \diamond h = f \diamond (g \diamond h)$
 - ▶ Follows from the flm law: $f \circ \text{flm}(g \circ \text{flm}h) = f \circ \text{flm} g \circ \text{flm} h$

From Kleisli back to flatMap

Compare different "liftings" seen so far:

Category	Function type	Identity	Composition
plain functions	$A \Rightarrow B$	$id: A \Rightarrow A$	$f^{A\Rightarrow B}\circ g^{B\Rightarrow C}$
lifted to F	$F^A \Rightarrow F^B$	$id: F^A \Rightarrow F^A$	$f^{F^A \Rightarrow F^B} \circ g^{F^B \Rightarrow F^C}$
Kleisli over <i>F</i>	$A \Rightarrow F^B$	pure : $A \Rightarrow F^A$	$f^{A\Rightarrow F^B}\diamond g^{B\Rightarrow F^C}$

Category axioms: identity and associativity for composition

General functor: a "lifting" maps functions from one category to another

- Functor laws: "lifting" must preserve identity and composition Reformulate map and flatMap in terms of the \diamond operation:
 - Define flatMap through Kleisli composition: $\operatorname{flm} f^{A\Rightarrow S^B} \equiv \operatorname{id}^{S^A\Rightarrow S^A} \diamond f$
 - Define flatten through Kleisli: $ftn \equiv id^{S^{S^A} \Rightarrow S^{S^A}} \diamond id^{S^A \Rightarrow S^A}$
 - Express fmap through Kleisli: fmap $f \equiv (\text{fmap id}) \diamond (f \circ \text{pure})$
 - Need two additional laws to connect ◊ and ○:
 - ▶ Left naturality: $f^{A\Rightarrow B} \circ g^{B\Rightarrow S^C} = (f \circ pure) \diamond g$
 - ▶ Right naturality: $f^{A\Rightarrow B} \circ \operatorname{fmap} g^{B\Rightarrow S^{C}} = f \diamond (g \circ \operatorname{pure})$
 - ★ With these laws, monad laws follow from category axioms for Kleisli

Structure of semigroups and monoids

- Semimonad contexts are combined associatively, as in a semigroup
- A full monad includes an "empty" context, i.e. the identity element
- Semigroup with an identity element is a monoid

Some constructions of semigroups and monoids:

- **1** Any type Z is a semigroup with operation $z_1 \circledast z_2 = z_1$ (or z_2)
- 2 1 + S is a monoid if S is (at least) a semigroup
- **3** List^A is a monoid (for any type A), also Seq^A etc.
- **1** The function type $A \Rightarrow A$ is a monoid (for any type A)
 - ▶ The operation $f \circledast g$ is either $f \circ g$ or $g \circ f$
- **o** $S_1 \times S_2$ is a semigroup (monoid) if S_1 , S_2 are semigroups (monoids)
- **②** $S \times P$ is a semigroup (monoid) if S is a semigroup (monoid) such that S acts on P. ("Twisted product.") Example: $(A \Rightarrow A) \times A$
 - ▶ The "action" is $a: S \Rightarrow P \Rightarrow P$ such that $a(s_1) \circ a(s_2) = a(s_1 \circledast s_2)$.

12 / 16

- ${f 3}$ $Z\Rightarrow S$ is a semigroup/monoid, for any Z, if S is a semigroup/monoid
 - There are other examples: Int, String, Set^A, Akka routes, ...
- Non-examples: trees; $S_1 + S_2$ where $S_{1,2}$ are different monoids

Structure of (semi)monads

How to recognize a (semi)monad by its type? Open question!

Intuition from flatten: reshuffle data in F^{F^A} to fit into F^A Some constructions of exponential-polynomial semimonads:

- $F^A \equiv Z$ (constant functor) for a fixed type Z
 - ▶ For a full monad, need to choose Z = 1
- $F^A \equiv A \times G^A$ for any functor G^A (a full monad only if $G^A \equiv 1$)
- $F^A \equiv Z + A \times W$ for a fixed type Z and a semigroup W
 - For a full monad, need W to be a monoid
- $F^A \equiv G^{Z+A\times W}$ if $Z+A\times W$ is a (semi)monad
- **5** $F^A \equiv G^A \times H^A$ for any (semi)monads G^A and H^A
- \bullet $F^A \equiv A + G^A$ for any semimonad G^A
- § $F^A \equiv G^A + G^{F^A}$ (recursive) for any functor G^A (semimonad only!)
- $P^A \equiv R \rightarrow G^A$ for any (semi)monad G^A
- - ▶ For a full monad, need to set $G^A \equiv 1$

7

Exercises II

- For an arbitrary monad M^A , show that the functor $F^A \equiv \text{Boolean} \times M^A$ can be defined as a semimonad but not a monad.
- ② If W and R are arbitrary fixed types, which of the functors can be made into a semimonad: $F^A \equiv W \times (R \Rightarrow A)$, $G^A = R \Rightarrow (W \times A)$?
- ③ Suppose a functor F^A has a natural transformation $ex^{[A]}: F^A \Rightarrow A$ that "extracts the value" from F^A . Would F^A be a semimonad if we defined flatten as $ftn = ex^{[F^A]}$ or $ftn = fmap \, ex$?
- **4** A programmer implemented the fmap method for the type constructor $F^A \equiv A \times (A \Rightarrow Z)$ as

```
def fmap[A,B](f: A\Rightarrow B): ((A, A\Rightarrow Z)) \Rightarrow (B, B\Rightarrow Z) = { case(a, az) \Rightarrow (f(a), (_: B) \Rightarrow az(a)) }
```

Show that this implementation fails to satisfy the functor laws.

- Implement the flatten and pure methods for the type constructor $F^A \equiv 1 + A \times A$ (type F[A] = Option[(A, A)]) in at least two different ways, and show that the monad laws always fail.
- **1** Implement the monad methods for $F^A \equiv (Z \Rightarrow 1 + A) \times \text{List}^A$ using the known monad constructions.

Exercises II

(continued from the previous slide)

- ② Check the identity laws for monad construction 6, $F^A \equiv A + G^A$, when pure_F is defined as $\mathsf{id}^{[A]} + 0$ (given that G^A is a monad). Show that the identity laws fail if pure_F is defined as $0 + \mathsf{pure}_G$.
- **3** Show that $F^A = (P \Rightarrow A) + (Q \Rightarrow A)$ is not a semimonad when P and Q are arbitrary, different types.