Chapter 01 디지털 영상처리의 개요

Education

2002~2006 Computer Science & Engineering, Korea University (Ph.D.)

Career

- •2006~2008 Telecommunication Network Business (TN), Samsung Electronics
- •2008~ 2020 Dept. of Game Engineering, Paichai University
- •2020~ Current Dept. of Computer Engineering, Jeju National University

Publication

- •2006~ Current 60 International Journal Papers (including SCIs and SCIE)
- •2006~ Current International Journal Papers (including SCOPUS)
- •2015 International Book (Springer)

학습목표

- ✔ 디지털 영상처리의 기본 개념을 학습한다.
- ✔ 다양한 종류의 디지털 영상처리 기술을 살펴본다.
- ✓ 디지털 영상처리 기술을 구현하는 알고리즘 종류를 알아본다.
- ✓ 디지털 영상을 획득, 처리, 저장하는 디지털 영상 처리 시스템을 학습한다.
- ✓ 광범위하게 응용되는 디지털 영상처리 응용 분야 를 살펴본다.

■ 개념

- 디지털 영상을 처리하는 학문
- 입력이 영상인 디지털 처리 과정과 시스템 기술을 총칭

과거에 사용하던 영상처리 장비

■ 방법

- 아날로그로 취득 한 영상을 디지털로 변환 후 컴퓨터로 처리
- 취득 장치 자체를 디지털로 구현하여 취득 후 처리

■ 장점

■ 취득, 처리, 재현, 저장이 용이

■ 단점

■ 데이터 손실

■ 영상 관련 학문 분야

- 영상처리
- 컴퓨터 비젼
- 컴퓨터 그래픽
- Al

입력 출력	영상	심볼
영상		
심볼		

영상과 심볼의 입출력에 따른 학문 분야

■ 영상 관련 학문 분야

■ 영상처리 : 입·출력이 모두 영상

■ 컴퓨터 비젼 : 입력이 영상이며 출력은 심볼

■ 컴퓨터 그래픽 : 입력이 심볼이며 출력은 영상

■ AI: 입·출력이 모두 심볼

입력 출력	영상	심볼
영상	영상처리	컴퓨터 그래픽
심볼	컴퓨터 비젼	Al

영상과 심볼의 입출력에 따른 학문 분야

■ 영상 개선

- 영상 화질을 <mark>주관적</mark>으로 향상 시키는 기술
- 영상을 **인간**이 보기 좋은 화질로 변환

디지털 영상 개선의 예 - 포토샵을 이용한 화질 향상

디지털 영상개선 (Digital Image Enhancement)

- 디지털 영상을 처리하여 응용 목적에 맞게 고치는 것
- 디지털 영상을 개선하는 기술
 - 평활화(Equalization), 첨예화(Sharpening), 잡음제거

[그림 1-5] 디지털 영상 개선의 예(평활화)

■ 영상 복원

- 영상 화질을 객관적으로 향상 시키는 기술
- 손상된 영상을 원본 영상으로 변환
- 영상 훼손 원인을 모델링 후 역변환

[그림 1-6] 디지털 영상 복원의 예

■ 영상 변환

 디지털 공간 영상 데이터를 주파수 평면 등 물리적으로 다른 의미의 공간으로 변환하는 기술

■ 디지털 영상 처리에 사용하는 변환 종류

- 푸리에 변환(Fourier Transformation),
- 이산 코사인 변환(Discrete Cosine Transformation)
- 웨이브렛 변환(Wavelet Transformation) 등

[그림 1-7] 디지털 영상의 이산 코사인 변환 예

■ 영상 분석

- 영상이 지닌 특징을 수치화하여 표현
- 구조적 특징, 통계적 특징 등을 추출
- 추출된 특징만을 이용해서는 원 영상으로 복원 불가

[그림 1-8] 디지털 영상을 분석하는 윤곽선 검출의 예

■ 영상 인식

- 입력 영상을 분석 후 조건에 맞는 의미 있는 정보를 추출·분류
- 디지털 영상 입력, 전처리, 영상 분할, 특징 추출, 인식의 처리 단계의 과정을 거침

[그림 1-9] 디지털 영상을 인식하는 지문인식의 예

■ 영상 압축

- 영상 데이터를 효율적으로 표현하여 저장·전송 효율성 최대화
- 부호화 과정과 복호화 과정으로 구성
- 손실 압축과 무손실 압축
 - 무손실 압축 : 부호화 · 복호화 과정에 데이터 손실이 없음
 - 손실 압축 : 부호화 ·복호화 과정에 데이터 손실이 발생

(a) 압축률 1:12 [그림 1-10] JPEG 압축의 예

(b) 압축률 1:6

(c) 압축률 1:2

얼굴 인식을 위한 얼굴 검출 예시(좌)와 페이스북에서의 얼굴 인식(우)

학습목표

- ▶ 영상을 표현하는 빛과 색의 원리를 이해한다.
- ▶ 영상을 인식하는 눈의 구조를 파악하여 영상처리의 효율성을 증대시키는 방안을 모색한다.
- ▶ 다양한 컬러 모델을 이해한다.
- ▶ 디지털 영상의 생성 과정을 학습한다.
- ▶ 디지털 영상의 특성을 파악하고 영상처리 방법을 이해한다.
- ▶ 디지털 영상처리에서 사용되는 디지털 영상의 종류를 알아 본다.

빛과 색

■ 빛

- 사람이 볼 수 있는 일정 범위의 파장을 가진 전자기파
 - 좁은 의미의 빛: 가시광선
 - 넓은 의미의 빛 : 모든 종류의 전자기파를 포함

전자기파 스펙트럼 (출처: Wikipedia, @CC BY-SA 3.0)

■ 빛과 색의 관계

- 빛을 통해 인간이 감지하는 느낌으로 표현 가능
- 인간이 인지하는 색은 조명, 물체의 특성 및 인간 눈의 특성에 따라 다르게 인지

빛과 색, 시각

■ 빛과 색

- 가시광선 (Visible rays)
 - 인간이 볼 수 있는 빛의 영역
 - 인간은 가시광선으로 색(Color)을 인식함
 - 파장의 길이에 따라 성질이 변화하여 각각의 색깔로 나타나는데, 빨강색에서 보라색으로 갈수록 파장이 짧아짐

[그림 2-1] 가시광선 스펙트럼

눈의 구조

- 각막 (Cornea): 안구 보호. 눈으로 들어오는 광선의 초기 초점을 형성
- 홍채 (Iris): 들어오는 빛의 양 조절
- 수정체 (the eye lens) : 상을 망막에 맺게 하는 볼록 렌즈 역할. 초점 길이 조절 기능
- 망막(Retina) : 영상을 감지하는 기관. 간상체와 원추세포 분포
 - 간상세포 : 약 1억 개. 빛의 밝기에 민감하지만 색을 잘 구분하지 못함
 - 원추세포 : 약 600만 개. 세 종류의 시색소가 색에 따라 다르게 반응
- 황반(Yellow spot) : 망막에서 가장 깊이 들어간 곳에 있음

[그림 2-2] 눈의 구조

빛과 색

■ 인간의 색 인지

- 광원
 - 가시광선에서 각 파장의 빛의 양에 따라 색이 결정
- 물체
 - 파장의 반사 계수에 따라 반사
- 사람의 눈
 - 물체에서 반사 된 빛을 인지
- 인간의 눈으로 입력되는 스펙트럼.
 - $I(\lambda) = L(\lambda) \times R(\lambda)$
 - L(λ): 광원
 - R(λ): 반사계수
 - $-I(\lambda)$: 반사 스펙트럼

인간이 색을 인지하기 위한 필수 3요소-광원, 물체, 눈

- 파장별로 입사되는 에너지 반사계수에 따라 일부만이 눈으로 입사
- $I(\lambda)$ 는 인간의 시각 세포에 따라 다른 응답 특성을 가짐

■ 영상

- 일반적 의미
 - 가시광선을 센싱하여 자연 세계의 광학 현상을 2차원 이상의 데이터로 표현한 것
- 넓은 의미
 - 가시광선 영역 외의 범위를 센싱한 영상
 - 컴퓨터 그래픽을 이용하여 생성한 영상

■ 인식

- 인간이 인지하는 시각
 - 3차원 공간에 존재하는 빛이 눈으로 입력되어 뇌가 인지하는 모든 과정
- 인식 단계
 - 감각 단계
 - 외부 빛이 눈의 렌즈를 통해 망막의 신경 세포에서 전기적 신호로 변환 후 신경계를 통해 뇌로 보내지는 단계
 - 선택 단계
 - 보고자 하는 대상을 분리하는 단계
 - 지각 단계
 - 기억 데이터를 근거로 대상을 이해하여 지각하는 단계

■ 디지털 영상처리의 단계

- 저수준 영상처리
 - 디지털 영상 획득, 포맷에 맞춰 저장
- 중간 수준 영상처리
 - 영상 분할, 심볼 매핑 등 특별 목적에 따라 영상을 가공하는 과정
- 고수준 영상처리
 - 영상 해석, 영상 인식

■ 디지털 영상처리의 단계

인간이 영상을 인지하고 처리하는 단계 비교

시각

■ 컬러 디지털 영상과 흑백 디지털 영상으로 구분

- 흑백 디지털 영상
 - 이진 영상(검정색, 흰색으로 구성)과 그레이 레벨(Gray-Level) 영상(검정색, 회색, 흰색으로 구성) 분류
- 컬러 디지털 영상
 - 색 정보를 세 가지 지각 변수(색상, 채도, 명도)로 인식
 - 색상+채도=색도(Chromaticity)

(a) 컬러 영상

(b) 그레이 레벨 영상

(c) 이진 영상

[그림 2-3] 컬러 영상, 그레이 레벨 영상, 이진 영상

■ 색의 특징을 설명하기 위한 수학적 방법

- 완벽한 컬러모델을 만드는 것은 불가능
- 응용에 따라 다양한 컬러모델이 존재
- RGB
 - 컬러 모니터, TV, 디스플레이 장치 등에서 사용
- CMYK
 - 컬러 인쇄, 출판 분야
- HSI
 - 인간의 색체 지각 능력 표현하는 응용
- YCbCr
 - 영상 압축

■ RGB 컬러 모델

- R(빨강), G(녹색), B(파랑) 3요소를 이용하여 다른 색을 정의
- 빛의 삼원색을 이용

■ 특징

- 취득 및 출력 관점에서 신호의 표현이 용이
- 인지시각, 영상 압축, 인지 해석과 같은 응용에는 부적합

■ 응용

■ 컬러 모니터, 컬러 TV 등 빛을 이용한 색 표현 디스플레이 장치

- RGB, CMY(K), HSI, YCrCb, YUV 등이 있음
- RGB 컬러 모델
 - Red, Green, Blue 세 가지 색상 값을 이용해 색 표시

[그림 2-5] RGB 컬러 모델

■ RGB 컬러 모델의 디지털 영상 표현

- R, G, B 성분 영상의 결합
- 각 성분 영상들은 동일한 비트 심도(bit-depth)로 구성
 - R: 8-비트, G: 8-비트, B: 8-비트 영상일 경우, 컬러 영상은 24-bit 영상

(a) RGB 컬러 영상

(b) Red 채널 영상 (c) Green 채널 영상

(d) Blue 채널 영상

RGB 컬러 모델에서 영상의 채널별 결합과 분해

CMY 컬러 모델

- 청록색(Cyan), 자홍색(Magenta), 노랑색(Yellow)을 기본색으로 사용
- RGB 컬러 모델에서 대각선으로 마주보는 색의 모양을 서로 바꿔 놓은 것처럼 보임

[그림 2-7] CMY 컬러 모델

CMY 컬러 모델(계속)

■ C, M, Y 세 가지 색을 더하면 검정색(1, 1, 1)이 되어 색의 밝기가 낮아 지는 감산체계(Subtractive System) 사용

[그림 2-8] 컬러 영상에서 CMY 채널 분리

CMY 컬러 모델(계속)

- RGB 컬러와는 정반대 공간에 위치하므로, 청록색-빨강색, 자홍색-초록 색, 노랑색-파란색은 보색(Complement) 관계
- RGB → CMY상으로 변환

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

■ CMY → RGB 상으로 변환

$$\begin{bmatrix} R \\ G \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ - \end{bmatrix} - \begin{bmatrix} C \\ M \\ Y \end{bmatrix}$$

컬러 모델의 가산과 감산체계

[그림 2-9] 컬러 모델의 가산과 감산체계

HSI 컬러 모델

■ HSI = Hue(색상), Saturation(채도), Intensity(명도)

[그림 2-10] HSI 컬러 모델

취득과 표현

■ 영상 취득 단계

- 광원을 통해 생성된 빛이 물체에서 반사, 투영 된 빛을 취득 장치가 취득.
 - 광원 : 스스로 빛을 생성하는 물체
 - 태양, 형광등, 전등 네온사인 등
 - 취득 장치
 - 렌즈를 통해 들어온 빛이 센서에 맺히면서 전기적 신호로써 영상을 생성
- 카메라 모델
 - 원근 투영으로 모델화 된 핀홀 카메라 모델

취득과 표현

■ 원근 투영 모델

■ 실제 좌표계와 카메라 좌표계의 관계

•
$$\frac{x}{f} = -\left(\frac{X_c}{Z_{c-f}}\right)$$
, $\frac{y}{f} = -\left(\frac{Y_c}{Z_{c-f}}\right)$

• *f* : 초점 거리

원근(투시) 투영 모델

■ 영상 - 위치 값과 밝기 값을 가진 일정한 수의 화소들의 모임으로 정의

■ 샘플링

■ 무한한 연속된 값을 일정한 해상도에 따라 유한개의 화소수 만큼 입력 값을 취하는 과정

■ 양자화

■ 제한된 비트수로 화소값을 나타내려 밝기 값을 정수화 시키는 과정

■ M×N 크기 디지털 영상

- 표본화 수에 따라 M, N 결정
- 양자화 수준에 따라 밝기 값 레벨 결정
 - k 비트로 양자화→ 2k개 레벨
 - 8비트 양자화 → 2⁸ 개 = 256개 레벨

디지털 영상의 공간 표현

디지털 영상 처리의 개념

해상도(Resolution)

■ 개념

- 아날로그 영상 요소를 분해하여 디지털로 영상화해 주는 능력
- 디지털 영상의 화질을 결정하는 데 사용하는 요소
- 공간 해상도(Spatial Resolution)와 밝기 해상도(Intensity Resolution 또는 Brightness Resolution)로 구분됨

■ 공간 해상도(Spatial Resolution)

- 디지털 영상이 몇 개의 화소로 구성되었는지를 나타냄.
- 가로축의 화소 수 X 세로축의 화소 수

■ 밝기 해상도(Intensity Resolution 또는 Brightness Resolution)

- 디지털 영상 화소의 밝기나 색 값이 얼마나 정확하게 원 영상의 명암(Intensity)을 표현할 수 있느냐를 나타냄.
- 양자화할 때 비트 수를 어느 정도까지 사용하느냐로 결정됨
- 양자화 비트 수는 밝기 해상도를 나타냄.

해상도(Resolution)(계속)

■ 컬러 해상도

- 컬러 영상에서도 표본화, 양자화, 공간 및 명도 해상도 개념이 똑같이 사용됨.
- 표본화와 양자화로 결정하는 해상도도 이 컬러 요소 세 개의 명도 값에 따라 달라짐.
- 컬러 영상의 공간 해상도와 컬러 영상의 밝기 해상도는 이 컬러 요소 세 개가 적용되어 각각 세 개씩 있음.
- 컬러 요소 세 개의 공간과 밝기 해상도는 서로 다를 수 있음.

디지털 영상의 종류

■ 이진 영상, 그레이 레벨 영상, 컬러 영상 등이 있음

■ 이진 영상 (Binary Image)

- 화소 값이 두 가지(검정색, 흰색)만 있는 영상
- 양자화 비트 수를 1로 하여 양자화를 수행해서 얻으므로 값이 1과 0밖에 없음

$$f(x, y) = 0, 1$$

- 값이 두 종류밖에 없어 처리 속도가 빠르다는 장점이 있음.
- 경계 구분이 정확하지 않는 영상에서는 영상 정보가 손실될 수 있음.
- 지문, 팩스, 문자 영상 등이 이진 영상에 해당됨.

디지털 영상의 종류(계속)

■ 그레이 레벨 영상(Gray-Level Image)

- 이진 영상보다는 더 밝음.
- 각 화소의 밝기가 여러 단계로 보통 흑백 사진이 이에 해당됨.
- 밝기의 단계는 검정색에서 시작해서 중간에 회색이 있고 마지막에 흰색으로 끝남.
- 단계의 수는 양자화 비트 수(n)로 결정됨 $0 \le f(x, y) \le 2^n 1$
- 디지털 영상 처리는 기본적으로 그레이 레벨 영상으로 처리함.

Section 04 디지털 영상의 종류

1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0
1 1	1 1	1 1	1 1	1 1	1 1	0	0	0	0	0 0

[그림 2-27] 이진 영상


```
119 119 121 121 130 139 114
                                        73
119 121 121 119 129 139 114
                                        74
120 120 119 119 128 139 112 72
121 120 119 122 130 138 109
120 121 119 122 133 136 105
121 121 118 122 133 133 102
                                        77
122 122 117 123 132 133 101
                                         79
123 123 117 122 133 135
                                77
                                    78
                                        80
                           70
122 123 117 123 133 135 97 70
                                        79
121 123 118 123 131 133 95 70
                                        79
120 122 117 122 131 133
                         94 72
                                    78
                                        78
```

[그림 2-28] 그레이 레벨 영상

디지털 영상의 종류(계속)

■ 컬러 영상(Color Image)

- 실제로 눈에 보이는 모습과 비슷하게 밝기와 색상을 표현하는 영상
- 빛의 삼원색인 빨강색(R), 초록색(G), 파란색(B)을 이용하여 모든 색을 표현할 수 있다는 사실이 알려지면서 등장함.

$$f_c(x, y) = \{f_{c1}(x, y), f_{c2}(x, y), f_{c3}(x, y)\}$$

- 각 색을 그레이 레벨 영상처럼 독립적 형태로 처리하여 그 결과를 다시 합침
- 각 색의 상호작용이 너무 커서 영상을 처리하는 데 어려움이 있음.

디지털 영상의 종류(계속)


```
158 158 160 159 163 167 126
                                 52
                                          52
                                 52
158 159 159 157 161 166 124
                                     54
                                          53
                                          53
159 159 158 157 161 166 122
                                     54
160 160 158 159 164 166 119
                                          55
159 160 158 160 166 164 114
157 159 157 160 165 163 109
                                 54
                                     55
                                          56
159 161 156 159 164 162 108
                                     55
                                          56
160 162 156 157 165 163 107
                                          56
160 161 155 157 165 162 103
                                     56
                                          54
160 161 156 158 164 160 100
                                     55
                                          54
158 159 156 159 164 160 98
                                          54
```

```
103 103 105 106 119 129 111
                                          78
103 105 105 104 117 130 111
                                          80
104 104 103 104 116 130 110
105 104 103 107 117 129 107
105 105 104 108 120 127 103
106 106 102 108 121 123 100
                              77
                                          84
                             75
                                          85
107 106 101 108 120 123 100
107 108 101 108 121 126
                             75
                                          87
107 108 102 109 121 126
                         96
                                          87
105 108 102 108 120 124
                         94
                             75
105 108 101 107 120 125
                         93
                             77
```

```
132 132 132 131 140 148 112
133 132 130 129 138 148 110
                                      31
                                          29
133 133 130 130 138 149 108
                                          30
                                  29
                                      31
134 133 132 135 141 148 105
                                          31
                                      33
133 134 131 136 145 146
                                      33
                         99
                                          31
                                      32
                                          33
132 132 130 136 142 144
                         91
                              31
135 133 130 135 142 143
                         91
                                      32
                                          34
136 136 130 137 144 145
                                      33
                                          33
                                          32
136 136 131 137 144 145
                         85
                                      33
134 136 131 137 144 143
                         82
                                          33
132 135 129 135 144 141
                         79
                             29
                                 31
                                          33
                                      34
```

[그림 2-29] 컬러 영상 47

■ 영상의 헤더 정보

■ 파일 정보 및 영상의 보조 데이터 저장

■ 영상의 데이터

- M x N개의 픽셀로 구성
- 일반적으로 2차원 배열

Data format	
File size	
Image resolution	헤더 정보부
Pixel data	영상 데이터부

디지털 영상의 구조

Format	Width x Height		
SQCIF	128 x 96		
QCIF	176 x 144		
CIF	352 x 288		
VGA	640 x 480		
HD	1280 x 720		
Full HD	1920 x 1080		
4K UHD	3840 x 2160		
8K UHD	7680 x 4320		

크기에 따른 공간 해상도 명칭

■ RAW 데이터 포맷

- 별도의 헤더 정보 없이, 영상 데이터(픽셀 값)로만 구성
- 영상의 크기 정보 필요

RAW 데이터 포맷의 구조

■ 디지털 이미지의 다양한 저장 포맷

파일 포맷	특징	응용
JPG	정지 영상에 대한 압축 표준으로, 영상 정보가 헤더 정보에 포함된다.	이미지 압축
ВМР	각 픽셀을 나타내는 비트를 나열하여 이미지를 저장 및 출력하는 영상 포 맷으로, 비트맵 방식이라고도 부른다.	윈도 기반의 이미지 편집
GIF	비트맵 그래픽의 데이터 포맷으로, 웹에서 널리 쓰이는 파일 포맷이다. 다양한 환경에서 쉽게 쓸 수 있으며 간단한 애니메이션을 제작할 때도 용이하다.	인터넷 이미지
PDF	일반 문서, 문자, 도형, 그림 등을 저장하는 전자 문서 형식의 데이터 포맷 이다.	문서 및 이미지 변환
TIFF	무손실 압축 방법으로 단일한 표준 파일 형식을 갖지 못해 업체간 서로 다른 태그를 사용, 고정 파일 형식에 비해 복잡하고 구현이 어려운 것이 단점이다.	스캐너, 디지털 카메라
OpenEXR	HDR 이미지를 저장하는 포맷으로, 채널당 16비트 이상의 컬러를 사용할 수 있다.	HDR 영상 생성
PCX	도스 기반의 프로그램에서 영상처리를 위해 사용한다.	도스 기반의 이미지 편집
PNG	무손실 압축 방법을 이용한 영상 데이터 포맷 중 일부로, GIF의 컬러 표현 한계를 극복하기 위해 고안되었다.	인터넷 이미지

■ JPG (JPEG) 파일 포맷

- 정지 영상의 대표적인 압축 표준
- 디지털 영상을 압축하여 저장
- 영상의 색상 정보, 해상도 등이 헤더에 포함
- 특징
 - 이미지를 만드는 사람이 이미지의 화질 (Quality)을 조절할 수 있음

■ BMP

- 비트맵 방식
- 픽셀을 이차원으로 정렬하여 표현
- 각각의 픽셀은 숫자로 표현되는 고유의 색을 갖고 있다
 - 8비트 그림은 색을 나타내는데 8자리의 이진수 사용
- 픽셀은 256가지의 색깔 중 하나를 표현
 - 16비트와 24비트 그림은 8비트의 그림보다 다양하게 색깔을 표현 가능