ADA Mini HW #10

Student Name: 林楷恩 Student ID: b07902075

The procedure that "Find a node $v_j \in V \setminus S$ that is closest to S is just the same as how Prim's Algorithm select the next node to add to the MST. Let P_n be the Tree Prim's Algorithm obtains after the n-th iteration, and T_n be the tour after the n-th iteration of **NEAREST-ADDITION** algorithm. I show that $cost(T_n) \leq 2 \times cost(P_n)$ always holds by induction on n:

• Base Case: $n = 0 \implies$ Both T_0 and P_0 have only one edge (u, v)

$$\implies cost(T_0) = cost(P_0) \le 2 \times cost(P_0)$$

- Inductive Step: Assume the statement holds when n = m, I show it also holds when n = m + 1. * v_i, v_j, v_k refer to the notation in given pseudo-code.
 - 1. NEAREST-ADDITION: $cost(T_{m+1}) = cost(T_m) + w(v_i, v_j) + w(v_j, v_k) w(v_i, v_k)$
 - 2. Prim: $cost(P_{m+1}) = cost(P_m) + w(v_i, v_j)$
 - 3. By Triangle Inequality, $w(v_i, v_j) + w(v_i, v_k) \ge w(v_j, v_k) \implies w(v_j, v_k) w(v_i, v_k) \le w(v_i, v_j)$ $\implies w(v_i, v_j) + w(v_j, v_k) - w(v_i, v_k) \le 2 \times w(v_i, v_j)$
 - 4. By induction hypothesis, $cost(T_m) \leq 2 \times cost(P_m)$
 - 5. By 3. and 4., $cost(T_{m+1}) \le 2 \times cost(P_{m+1})$

Since $P_N = MST$, we have $cost(T_N) \leq 2 \times cost(MST)$. And in class, we have proved that the optimal tour H^* is formed by some tree T and some edge e, which indicates $cost(MST) \leq cost(H^*)$. Hence,

$$cost(T_N) \le 2 \times cost(MST) \le 2 \times cost(H^*)$$

 \implies the approximation ratio $\rho(N) = 2 \#$