Etapes du pipeline

Guide des étapes des pipelines de données Big Data

Introduction

Un **pipeline de données** est une série d'étapes automatisées permettant de collecter, transformer, enrichir et stocker des données dans un environnement Big Data. Chaque étape lit des données à partir d'une source, effectue des transformations spécifiques, puis écrit le résultat sur un **Data Lake** basé sur **HDFS** (**Hadoop Distributed File System**). Ces résultats peuvent être réutilisés par d'autres étapes du pipeline.

Ce guide décrit les principales étapes d'un pipeline de données :

- 1. Ingestion des données
- 2. Nettoyage et validation des données
- 3. Enrichissement des données

1. Ingestion des données

1.1. Définition

L'ingestion des données est la première étape d'un pipeline. Elle consiste à collecter des données à partir de différentes sources : bases de données, API, fichiers CSV, logs, flux en temps réel, etc.

1.2. Types d'ingestion

- Batch Ingestion : Traitement des données en lots à des intervalles réguliers.
- Stream Ingestion : Traitement des données en continu (ex. : Kafka, Flink).

1.3. Exemple d'ingestion avec PySpark

```
from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("DataIngestion").getOrCreate()
```

```
# Lecture d'un fichier CSV

df = spark.read.csv("hdfs:///datalake/raw_data.csv", header=True,
inferSchema=True)

# Écriture dans le Data Lake HDFS (bronze layer)

df.write.parquet("hdfs:///datalake/bronze/ingested_data.parquet")
```

2. Nettoyage et validation des données

2.1. Définition

Après l'ingestion, les données brutes peuvent contenir des erreurs, des doublons ou des valeurs manquantes. L'étape de **nettoyage et validation** vise à :

- Supprimer les doublons
- Gérer les valeurs nulles
- Valider les types de données
- Appliquer des règles de qualité des données

2.2. Techniques courantes

- Suppression des valeurs nulles : dropna()
- Remplacement des valeurs manquantes : fillna()
- Détection des anomalies : validation de schéma

2.3. Exemple de nettoyage avec PySpark

```
# Suppression des doublons
df_clean = df.dropDuplicates()

# Remplacement des valeurs manquantes
df_clean = df_clean.fillna({"age": 0, "city": "Unknown"})

# Validation des types de données
from pyspark.sql.functions import col
df_clean = df_clean.withColumn("age", col("age").cast("Integer"))

# Écriture des données nettoyées dans HDFS (silver layer)
df_clean.write.parquet("hdfs:///datalake/silver/cleaned_data.parquet")
```

3. Enrichissement des données

3.1. Définition

L'enrichissement des données consiste à ajouter des informations supplémentaires provenant d'autres sources pour améliorer la valeur analytique des données. Cela peut inclure des jointures, des calculs dérivés ou des intégrations de données externes.

3.2. Exemples d'enrichissement

- Jointures avec des bases de référence (ex. : codes postaux, données démographiques)
- Calcul de nouvelles métriques (ex. : indicateurs de performance)
- Ajout de données issues d'APIs externes

3.3. Exemple d'enrichissement avec PySpark

```
# Chargement des données nettoyées et des données externes
df_clean = spark.read.parquet("hdfs:///datalake/silver/cleaned_data.parquet")
df_external = spark.read.csv("hdfs:///datalake/external/demographics.csv",
header=True)

# Jointure pour enrichir les données
df_enriched = df_clean.join(df_external, on="city", how="left")

# Calcul d'un nouvel indicateur
df_enriched = df_enriched.withColumn("income_per_person", col("income") /
col("population"))

# Écriture des données enrichies dans HDFS (gold layer)
df_enriched.write.parquet("hdfs:///datalake/gold/enriched_data.parquet")
```

4. Architecture du Data Lake : Bronze, Silver, Gold

Un pipeline de données suit souvent une architecture en trois couches :

- Bronze (Raw Layer) : Données brutes, ingérées sans modification.
- Silver (Clean Layer) : Données nettoyées et validées.
- Gold (Enriched Layer) : Données enrichies prêtes pour l'analyse ou le reporting.

Toutes ces couches sont stockées dans **HDFS** pour assurer la scalabilité et la résilience.

5. Exemple de Pipeline Complet

```
# Ingestion
raw_data = spark.read.csv("hdfs:///datalake/raw_data.csv", header=True,
inferSchema=True)
raw_data.write.parquet("hdfs:///datalake/bronze/ingested_data.parquet")

# Nettoyage
clean_data = raw_data.dropDuplicates().fillna({"age": 0}).withColumn("age",
col("age").cast("Integer"))
clean_data.write.parquet("hdfs:///datalake/silver/cleaned_data.parquet")

# Enrichissement
external_data = spark.read.csv("hdfs:///datalake/external/data.csv",
header=True)
enriched_data = clean_data.join(external_data, on="id", how="left")
enriched_data.write.parquet("hdfs:///datalake/gold/enriched_data.parquet")
```

6. Bonnes pratiques pour les pipelines de données

- Automatisation des pipelines avec des outils comme Apache Airflow
- Surveillance de la qualité des données à chaque étape
- Gestion des erreurs pour assurer la robustesse des workflows
- Optimisation des performances via le partitionnement et la parallélisation
- Utilisation efficace de HDFS pour la gestion du stockage distribué

Conclusion

Un pipeline de données efficace repose sur des étapes bien définies : **ingestion**, **nettoyage/validation**, et **enrichissement**. Chaque étape contribue à garantir des données de qualité, prêtes pour des analyses avancées et des prises de décision stratégiques, le tout en s'appuyant sur la robustesse d'**HDFS** comme solution de stockage distribué.