МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

О.Н. БУЛЫЧЁВА, В.П. ГРИГОРЬЕВ

ВЫСШАЯ МАТЕМАТИКА

СБОРНИК РАСЧЁТНЫХ ЗАДАНИЙ

Методическое пособие по курсу "Высшая математика"

для студентов МЭИ (ТУ), обучающихся по всем направлениям подготовки

ЗАДАЧА Ж. 1. По данным матрицам А, В, С, D и числам сс и В вычислить матрицу $G = \alpha A B + \beta C^T D$.

BAPMAHT M: 1

$$A = \begin{pmatrix} -10 & -3 & -8 & 7 \\ 10 & 2 & 5 & 18 \end{pmatrix}$$
; $B = \begin{pmatrix} 10 & 9 & 3 \\ -2 & 1 & -2 \\ 3 & -6 & -6 \\ 2 & 9 & -4 \end{pmatrix}$; $C = \begin{pmatrix} -7 & 1 \\ 2 & -1 \end{pmatrix}$; $D = \begin{pmatrix} -1 & -9 & -1 \\ -7 & 5 & 1 \end{pmatrix}$

BAPMAHT M: 2

 $A = \begin{pmatrix} 6 & 8 & 3 & 2 \\ -2 & -5 & 3 & 9 \end{pmatrix}$; $B = \begin{pmatrix} -9 & 5 & -6 \\ 4 & -4 & 2 \\ 8 & 2 & 2 \\ -3 & 7 & 3 \end{pmatrix}$; $C = \begin{pmatrix} -6 & -9 \\ 5 & -9 \end{pmatrix}$; $D = \begin{pmatrix} 8 & -6 & -2 \\ 1 & -8 & 10 \end{pmatrix}$

BAPMAHT M: 3

 $A = \begin{pmatrix} -9 & 7 & -10 & -5 \\ -4 & -5 & 5 & 5 \end{pmatrix}$; $B = \begin{pmatrix} 8 & 5 & 9 \\ 1 & 1 & 1 \\ -5 & 3 & 2 \\ 9 & 7 & 6 \end{pmatrix}$; $C = \begin{pmatrix} 5 & 2 \\ -8 & -5 \end{pmatrix}$; $D = \begin{pmatrix} -9 & 8 & 5 \\ -10 & 4 & 3 \end{pmatrix}$

BAPMAHT M: 4

 $A = \begin{pmatrix} 5 & -4 & 10 & -5 \\ -3 & -10 & 1 & -10 \end{pmatrix}$; $B = \begin{pmatrix} 3 & 2 & -7 \\ 7 & 9 & 3 \\ -7 & 10 & 1 \\ -9 & -2 & -2 \end{pmatrix}$; $C = \begin{pmatrix} -7 & 5 \\ 1 & 8 \end{pmatrix}$; $D = \begin{pmatrix} -1 & -4 & -3 \\ 9 & 4 & -7 \end{pmatrix}$.

BAPMAHT M: 5

 $A = \begin{pmatrix} 3 & -4 & -10 & -9 \\ 9 & -9 & -10 & 8 \end{pmatrix}$; $B = \begin{pmatrix} 8 & 8 & 1 \\ 9 & 6 & 10 \\ 9 & -8 & 7 \\ -1 & 7 & 1 \end{pmatrix}$; $C = \begin{pmatrix} -2 & 7 \\ -7 & -3 \end{pmatrix}$; $D = \begin{pmatrix} -10 & 10 & -3 \\ -1 & 10 & -8 \end{pmatrix}$

BAPMAHT M: $A = \begin{pmatrix} 4 & -8 & 2 & -9 \\ 4 & 8 & 2 & -7 \end{pmatrix}$; $A = \begin{pmatrix} 10 & 10 & -1 \\ -5 & 2 & -8 \\ -1 & -1 & 2 \\ 2 & -10 & -6 \end{pmatrix}$; $C = \begin{pmatrix} -3 & -1 \\ -3 & -10 \end{pmatrix}$; $D = \begin{pmatrix} 6 & 2 & 3 \\ -8 & -3 & 8 \end{pmatrix}$

BAPMAHT M: $A = \begin{pmatrix} -5 & -2 & -4 & -7 \\ -8 & -3 & -10 \end{pmatrix}$; $A = \begin{pmatrix} -5 & -2 & -4 & -7 \\ -8 & -3 & -10 \end{pmatrix}$; $A = \begin{pmatrix} -6 & -2 & -2 & -8 \\ -2 & -8 & 5 \end{pmatrix}$; $A = \begin{pmatrix} -3 & -1 & -10 \\ -5 & -2 & -4 & -7 \\ -2 & -8 & 5 \end{pmatrix}$; $C = \begin{pmatrix} -3 & -1 \\ -3 & -10 \end{pmatrix}$; $D = \begin{pmatrix} -4 & -1 & -10 \\ -4 & -1 & -10 \\ -5 & -2 & -4 & -7 \end{pmatrix}$; $D = \begin{pmatrix} -4 & -1 & -10 \\ -5 & -2 & -8 & 5 \end{pmatrix}$; $D = \begin{pmatrix} -4 & -1 & -10 \\ -5 & -2 & -4 & -7 \end{pmatrix}$; $D = \begin{pmatrix} -4 & -1 & -10 \\ -5 & -2 & -8 & 5 \end{pmatrix}$; $D = \begin{pmatrix} -4 & -1 & -10 \\ -5 & -2 & -8 & 5 \end{pmatrix}$; $D = \begin{pmatrix} -4 & -1 & -10 \\ -5 & -2 & -4 & -7 \end{pmatrix}$; $D = \begin{pmatrix} -4 & -1 & -10 \\ -2 & -8 & 5 \end{pmatrix}$; $D = \begin{pmatrix} -4 & -1 & -10 \\ -3 & -1 & -10 \end{pmatrix}$; $D = \begin{pmatrix} -4 & -1 & -10 \\ -4 & -1 & -10 \end{pmatrix}$; $D = \begin{pmatrix} -4 & -1 & -10 \\ -5 & -2 & -8 & 5 \end{pmatrix}$; $D = \begin{pmatrix} -4 & -1 & -10 \\ -5 & -2 & -8 & 5 \end{pmatrix}$; $D = \begin{pmatrix} -4 & -1 & -10 \\ -5 & -2 & -8 & 5 \end{pmatrix}$; $D = \begin{pmatrix} -4 & -1 & -10 \\ -5 & -2 & -4 & -7 \end{pmatrix}$; $D = \begin{pmatrix} -4 & -1 & -10 \\ -5 & -2 & -8 & 5 \end{pmatrix}$; $D = \begin{pmatrix} -4 & -1 & -10 \\ -5 & -2 & -8 & 5 \end{pmatrix}$; $D = \begin{pmatrix} -4 & -1 & -10 \\$

$$A = \begin{pmatrix} -5 & -2 & -4 & -7 \\ 9 & -7 & 3 & -10 \end{pmatrix}; B = \begin{pmatrix} 8 & -4 & -6 \\ -2 & -8 & 5 \\ -7 & 8 & 5 \\ -5 & -8 & 3 \end{pmatrix}; C = \begin{pmatrix} -3 & -1 \\ -4 & 2 \end{pmatrix}; D = \begin{pmatrix} -4 & -1 & -10 \\ 9 & 1 & 8 \end{pmatrix}$$

$$A = \begin{pmatrix} -10 & -6 & 1 & -6 \\ -4 & -4 & 1 & -3 \end{pmatrix}; B = \begin{pmatrix} 9 & -1 & 6 \\ 6 & 7 & 9 \\ -8 & 1 & 7 \\ 4 & 10 & -4 \end{pmatrix}; C = \begin{pmatrix} -9 & 10 \\ 6 & -1 \end{pmatrix}; D = \begin{pmatrix} 4 & 9 & 10 \\ 8 & 3 & -2 \end{pmatrix}$$

$$A = \begin{pmatrix} -5 & 2 & 9 & -4 \\ -7 & 3 & 1 & 2 \end{pmatrix}; B = \begin{pmatrix} -1 & -9 & 2 \\ -6 & 6 & 1 \\ -1 & 10 & 4 \\ -3 & 5 & 7 \end{pmatrix}; C = \begin{pmatrix} 2 & -3 \\ 2 & -5 \end{pmatrix}; D = \begin{pmatrix} 3 & 9 & -10 \\ 4 & -6 & 4 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -4 & 6 & 2 \\ -7 & 5 & -9 & -9 \end{pmatrix}; B = \begin{pmatrix} 8 & -6 & -2 \\ 1 & -9 & 10 \\ -10 & 3 & -2 \\ -9 & 10 & 5 \end{pmatrix}; C = \begin{pmatrix} 10 & -5 \\ -6 & -7 \end{pmatrix}; D = \begin{pmatrix} 3 & 4 & 7 \\ 3 & 8 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 8 & 7 & 6 \\ 5 & -9 & 2 & -5 \end{pmatrix}; B = \begin{pmatrix} -9 & 7 & 5 \\ -10 & 4 & 3 \\ -9 & -8 & 3 \\ 5 & 3 & -5 \end{pmatrix}; C = \begin{pmatrix} 9 & -4 \\ -6 & 10 \end{pmatrix}; D = \begin{pmatrix} 2 & 10 & 1 \\ 2 & -8 & 6 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -9 & -2 & -3 \\ -7 & 1 & 5 & 8 \end{pmatrix}; B = \begin{pmatrix} -2 & -4 & -3 \\ 9 & 4 & -8 \\ -4 & -9 & -9 \\ 1 & 1 & -6 \end{pmatrix}; C = \begin{pmatrix} 10 & 8 \\ -10 & -10 \end{pmatrix}; D = \begin{pmatrix} 10 & 6 & 6 \\ 6 & 2 & 8 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & -2 & 7 & 1 \\ -3 & -7 & 7 & -3 \end{pmatrix}; B = \begin{pmatrix} -10 & 10 & -3 \\ -1 & 10 & -9 \\ 5 & 2 & -5 \\ 2 & 3 & -10 \end{pmatrix}; C = \begin{pmatrix} 1 & 3 \\ -10 & 7 \end{pmatrix}; D = \begin{pmatrix} -1 & -9 & 8 \\ 9 & -2 & -6 \end{pmatrix}$$

BAPHAHT MG 14

$$A = \begin{pmatrix} 2 & 2 & -10 & -7 \\ -1 & -3 & 4 & -10 \end{pmatrix}; B = \begin{pmatrix} 6 & -1 & 3 \\ -8 & -3 & 8 \\ 8 & 1 & -4 \\ -4 & -6 & -4 \end{pmatrix}; C = \begin{pmatrix} -5 & 7 \\ -8 & -8 \end{pmatrix}; D = \begin{pmatrix} 2 & 9 & 6 \\ -5 & -7 & -3 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -6 & -8 & 3 \\ -3 & -4 & -1 & 2 \end{pmatrix}; B = \begin{pmatrix} -4 & -2 & -10 \\ 8 & 1 & 7 \\ 10 & -3 & 8 \\ -3 & 9 & -7 \end{pmatrix}; C = \begin{pmatrix} 2 & -6 \\ -7 & -5 \end{pmatrix}; D = \begin{pmatrix} -1 & -5 & 7 \\ -2 & 5 & 4 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 4 & 10 & -4 \\ -9 & 6 & 10 & -1 \end{pmatrix}; B = \begin{pmatrix} 4 & 9 & 9 \\ 8 & 3 & -2 \\ 1 & -3 & 2 \\ -7 & -7 & -1 \end{pmatrix}; C = \begin{pmatrix} 8 & -8 \\ -5 & 2 \end{pmatrix}; D = \begin{pmatrix} 2 & -2 & -2 \\ -10 & -2 & -7 \end{pmatrix}$$

$$A = \begin{pmatrix} 4 & -3 & 5 & 6 \\ 2 & -1 & -3 & -6 \end{pmatrix}; B = \begin{pmatrix} 3 & 8 & -10 \\ 4 & -6 & 4 \\ -5 & 2 & 7 \\ -1 & 1 & -4 \end{pmatrix}; C = \begin{pmatrix} 6 & -7 \\ 2 & 5 \end{pmatrix}; D = \begin{pmatrix} -9 & -10 & 7 \\ -7 & -3 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} -2 & -8 & -10 & 5 \\ -10 & -5 & -5 & -6 \end{pmatrix}; B = \begin{pmatrix} 4 & 4 & 7 \\ 4 & 9 & 2 \\ 2 & 2 & -6 \\ 2 & -1 & 8 \end{pmatrix}; C = \begin{pmatrix} 7 & 5 \\ 5 & -9 \end{pmatrix}; D = \begin{pmatrix} 2 & -6 & -10 \\ 7 & 5 & 10 \end{pmatrix}$$

$$A = \begin{pmatrix} 4 & 6 & 4 & -5 \\ 9 & -6 & -3 & -10 \end{pmatrix}; B = \begin{pmatrix} 1 & 10 & 2 \\ 2 & -7 & 6 \\ 8 & 3 & -8 \\ 9 & 2 & -10 \end{pmatrix}; C = \begin{pmatrix} -3 & -7 \\ -3 & 2 \end{pmatrix}; D = \begin{pmatrix} 4 & 7 & -2 \\ -5 & -4 & 9 \end{pmatrix}$$

BAPHAHT 76 20
$$\alpha = 2$$
 $\beta = -2$

$$A = \begin{pmatrix} -9 & 1 & 2 & -5 \\ -10 & -10 & 9 & -10 \end{pmatrix}; B = \begin{pmatrix} 10 & 7 & 7 \\ 7 & 1 & 9 \\ 6 & 9 & 8 \\ -9 & 6 & -3 \end{pmatrix}; C = \begin{pmatrix} 6 & -3 \\ 1 & -7 \end{pmatrix}; D = \begin{pmatrix} 6 & -4 & 10 \\ 9 & -3 & -2 \end{pmatrix}$$

BAPHART 36 21
$$\alpha = -5$$
 $\beta = 6$

$$A = \begin{pmatrix} -5 & 1 & 3 & -9 \\ 2 & -10 & 3 & 7 \end{pmatrix}; B = \begin{pmatrix} 2 & -8 & 9 \\ 9 & -1 & -5 \\ 6 & -8 & -1 \\ 2 & 2 & 3 \end{pmatrix}; C = \begin{pmatrix} -10 & -1 \\ -7 & -3 \end{pmatrix}; D = \begin{pmatrix} 3 & 10 & 5 \\ -1 & 2 & -8 \end{pmatrix}$$

$$A = \begin{pmatrix} -3 & -3 & -6 & -3 \\ -4 & -7 & 8 & -7 \end{pmatrix}; B = \begin{pmatrix} 2 & 10 & 7 \\ -5 & -6 & -2 \\ -8 & 4 & -8 \\ 7 & 4 & -6 \end{pmatrix}; C = \begin{pmatrix} -8 & -4 \\ 3 & -5 \end{pmatrix}; D = \begin{pmatrix} -2 & -1 & -5 \\ -2 & -10 & 8 \end{pmatrix}$$

$$A = \begin{pmatrix} 9 & -3 & 10 & -7 \\ 1 & -7 & -5 & -5 \end{pmatrix} ; B = \begin{pmatrix} 2 & -5 & 8 \\ -2 & 5 & 5 \\ 6 & 8 & -9 \\ 2 & 5 & 3 \end{pmatrix} ; C = \begin{pmatrix} 10 & -9 \\ -4 & 6 \end{pmatrix} ; D = \begin{pmatrix} 9 & -2 & 3 \\ 8 & 9 & 8 \end{pmatrix}$$

$$A = \begin{pmatrix} 3 & -7 & -7 & -1 \\ 9 & -4 & -7 & 2 \end{pmatrix}; B = \begin{pmatrix} 1 & -1 & -2 \\ -10 & -1 & -7 \\ 5 & 1 & -1 \\ 9 & 3 & -4 \end{pmatrix}; C = \begin{pmatrix} 5 & 2 \\ 6 & -1 \end{pmatrix}; D = \begin{pmatrix} -3 & -7 & 2 \\ 8 & 10 & 3 \end{pmatrix}$$

ВАРИАНТ № 25

$$A = \begin{pmatrix} 8 & 2 & 1 & -4 \\ 6 & 3 & -6 & 5 \end{pmatrix}; B = \begin{pmatrix} -9 & -10 & 7 \\ -6 & -2 & 1 \\ -9 & 10 & -10 \\ 2 & -3 & -9 \end{pmatrix}; C = \begin{pmatrix} 10 & 10 \\ 5 & -6 \end{pmatrix}; D = \begin{pmatrix} -5 & -7 & 3 \\ 4 & 7 & 4 \end{pmatrix}$$

ВАРИАНТ № 26

$$A = \begin{pmatrix} -5 & 2 & -1 & 9 \\ 7 & 6 & 5 & -9 \end{pmatrix}; B = \begin{pmatrix} 2 & -6 & -9 \\ 7 & 5 & -10 \\ 4 & 3 & -9 \\ -8 & 3 & 6 \end{pmatrix}; C = \begin{pmatrix} 3 & 9 \\ -5 & -6 \end{pmatrix}; D = \begin{pmatrix} -4 & 10 & 2 \\ 10 & 1 & 2 \end{pmatrix}$$

ВАРИАНТ № 27

$$A = \begin{pmatrix} -8 & 9 & 2 & -9 \\ -2 & -3 & -7 & 1 \end{pmatrix}; B = \begin{pmatrix} 5 & 8 & -2 \\ -4 & -3 & 9 \\ 4 & -7 & -4 \\ -9 & -10 & 1 \end{pmatrix}; C = \begin{pmatrix} 1 & 10 \\ -6 & -10 \end{pmatrix}; D = \begin{pmatrix} 8 & 10 & 9 \\ 6 & 6 & 6 \end{pmatrix}$$

$$A = \begin{pmatrix} 9 & -9 & 6 & -2 \\ 7 & 1 & -2 & -7 \end{pmatrix}; B = \begin{pmatrix} 7 & -4 & -10 \\ 10 & -3 & -1 \\ 10 & -8 & 5 \\ 1 & -6 & 1 \end{pmatrix}; C = \begin{pmatrix} 3 & 1 \\ -10 & -10 \end{pmatrix}; D = \begin{pmatrix} 3 & 7 & -1 \\ -9 & 9 & 9 \end{pmatrix}$$

$$A = \begin{pmatrix} -1 & -2 & 2 & 2 \\ -10 & -6 & -1 & -3 \end{pmatrix}; B = \begin{pmatrix} 4 & 10 & 5 \\ -1 & 3 & -8 \\ -3 & 8 & 9 \\ 1 & -4 & -4 \end{pmatrix}; C = \begin{pmatrix} -6 & -5 \\ -4 & -8 \end{pmatrix}; D = \begin{pmatrix} 8 & -8 & 1 \\ 9 & 6 & -5 \end{pmatrix}$$

$$A = \begin{pmatrix} -7 & 8 & 4 & -6 \\ -8 & 3 & -3 & -4 \end{pmatrix}; B = \begin{pmatrix} -1 & 2 & -5 \\ -2 & -10 & 8 \\ 1 & 8 & 10 \\ -3 & 8 & -3 \end{pmatrix}; C = \begin{pmatrix} 9 & 2 \\ -7 & -7 \end{pmatrix}; D = \begin{pmatrix} -5 & -6 & -1 \\ -5 & 7 & -2 \end{pmatrix}$$

ВАРИАНТ Ж 31

$$A = \begin{pmatrix} -8 & 2 & 6 & 4 \\ 10 & -4 & -9 & 6 \end{pmatrix}; B = \begin{pmatrix} 10 & -1 & 4 \\ 9 & 9 & 8 \\ 3 & -2 & 1 \\ -3 & 2 & -7 \end{pmatrix}; C = \begin{pmatrix} -7 & 8 \\ -1 & -5 \end{pmatrix}; D = \begin{pmatrix} -8 & 1 & 2 \\ -2 & -2 & -10 \end{pmatrix}$$

ВАРИАНТ № 32

$$A = \begin{pmatrix} -1 & 10 & 3 & -3 \\ 5 & 7 & 2 & 2 \end{pmatrix}; B = \begin{pmatrix} -3 & -6 & 2 \\ 8 & -10 & 4 \\ -6 & 4 & -5 \\ -1 & 7 & -1 \end{pmatrix}; C = \begin{pmatrix} 1 & 6 \\ -4 & 2 \end{pmatrix}; D = \begin{pmatrix} -7 & 4 & -10 \\ -10 & 7 & -7 \end{pmatrix}$$

ВАРИАНТ № 33

$$A = \begin{pmatrix} -9 & 3 & -2 & -8 \\ -10 & 6 & -10 & -5 \end{pmatrix}; B = \begin{pmatrix} -5 & -6 & 4 \\ 4 & 7 & 4 \\ 9 & 2 & 2 \\ 2 & -6 & 2 \end{pmatrix}; C = \begin{pmatrix} -1 & 7 \\ 8 & 5 \end{pmatrix}; D = \begin{pmatrix} 5 & -9 & -1 \\ -6 & -10 & 7 \end{pmatrix}$$

ВАРИАНТ № 34

$$A = \begin{pmatrix} -9 & -8 & 3 & 6 \\ 4 & -5 & 9 & -6 \end{pmatrix}; B = \begin{pmatrix} -3 & 10 & 2 \\ 10 & 2 & 1 \\ -7 & 6 & 8 \\ 2 & -8 & 9 \end{pmatrix}; C = \begin{pmatrix} 2 & -3 \\ -10 & -3 \end{pmatrix}; D = \begin{pmatrix} -7 & 2 & 4 \\ 7 & -2 & -5 \end{pmatrix}$$

$$A = \begin{pmatrix} -3 & -9 & -9 & 1 \\ 2 & -5 & -10 & -10 \end{pmatrix}; B = \begin{pmatrix} 9 & -10 & 10 \\ 7 & 7 & 7 \\ 1 & 9 & 6 \\ 9 & 8 & -9 \end{pmatrix}; C = \begin{pmatrix} 6 & 6 \\ -2 & 1 \end{pmatrix}; D = \begin{pmatrix} -3 & -8 & 6 \\ -4 & 10 & 9 \end{pmatrix}$$

ЗАДАЧА № 2. Для данной матрицы А найти обратную матрицу А⁻¹ и выполнить проверку результата.

ВАРИАНТ № 1 ВАРИАНТ № 2 ВАРИАНТ № 3 ВАРИАНТ № 4

$$A = \begin{pmatrix} 5 & 4 & 0 \\ 8 & 7 & 5 \\ 7 & 6 & 3 \end{pmatrix} \qquad A = \begin{pmatrix} 19 & 18 & 8 \\ 28 & 27 & 19 \\ 24 & 23 & 14 \end{pmatrix} \qquad A = \begin{pmatrix} 5 & 4 & 1 \\ 8 & 7 & 6 \\ 7 & 6 & 4 \end{pmatrix} \qquad A = \begin{pmatrix} 22 & 21 & 15 \\ 21 & 28 & 16 \\ 22 & 21 & 16 \end{pmatrix}$$

ВАРИАНТ № 5 ВАРИАНТ № 6 ВАРИАНТ № 7 ВАРИАНТ № 8

$$A = \begin{pmatrix} 10 & 9 & 9 \\ 11 & 10 & 12 \\ 11 & 10 & 11 \end{pmatrix} \qquad A = \begin{pmatrix} 9 & 8 & 4 \\ 12 & 11 & 9 \\ 11 & 10 & 7 \end{pmatrix} \qquad A = \begin{pmatrix} 7 & 6 & 0 \\ 20 & 19 & 15 \\ 14 & 13 & 8 \end{pmatrix} \qquad A = \begin{pmatrix} 6 & 5 & 1 \\ 11 & 10 & 8 \\ 9 & 8 & 5 \end{pmatrix}$$

BAPKAHT M9 BAPKAHT M 10 BAPKAHT M 11 BAPKAHT M 12

$$A = \begin{pmatrix} 15 & 14 & 3 \\ 32 & 31 & 22 \\ 24 & 23 & 13 \end{pmatrix} \qquad A = \begin{pmatrix} 5 & 4 & 2 \\ 16 & 15 & 15 \\ 11 & 10 & 9 \end{pmatrix} \qquad A = \begin{pmatrix} 16 & 15 & 13 \\ 21 & 20 & 20 \\ 19 & 18 & 17 \end{pmatrix} \qquad A = \begin{pmatrix} 24 & 23 & 15 \\ 31 & 30 & 24 \\ 28 & 27 & 20 \end{pmatrix}$$

ВАРИАНТ № 13 ВАРИАНТ № 14 ВАРИАНТ № 15 ВАРИАНТ № 16

$$A = \begin{pmatrix} 2\theta & 19 & 10 \\ 19 & 18 & 11 \\ 20 & 19 & 11 \end{pmatrix} \qquad A = \begin{pmatrix} 16 & 15 & 5 \\ 19 & 18 & 10 \\ 18 & 17 & 8 \end{pmatrix} \qquad A = \begin{pmatrix} 11 & 10 & 6 \\ 24 & 23 & 21 \\ 18 & 17 & 14 \end{pmatrix} \qquad A = \begin{pmatrix} 17 & 16 & 6 \\ 24 & 23 & 15 \\ 21 & 20 & 11 \end{pmatrix}$$

ВАРИАНТ № 17 ВАРИАНТ № 18 ВАРИАНТ № 19 ВАРИАНТ № 20

$$A = \begin{pmatrix} 16 & 15 & 14 \\ 33 & 32 & 33 \\ 25 & 24 & 24 \end{pmatrix} \qquad A = \begin{pmatrix} 5 & 4 & 1 \\ 4 & 3 & 2 \\ 5 & 4 & 2 \end{pmatrix} \qquad A = \begin{pmatrix} 10 & 9 & 5 \\ 15 & 14 & 12 \\ 13 & 12 & 9 \end{pmatrix} \qquad A = \begin{pmatrix} 7 & 6 & 2 \\ 18 & 17 & 15 \\ 13 & 12 & 9 \end{pmatrix}$$

ВАРИАНТ № 21 ВАРИАНТ № 22 ВАРИАНТ № 23 ВАРИАНТ № 24

$$A = \begin{pmatrix} 25 & 24 & 15 \\ 32 & 31 & 24 \\ 29 & 28 & 20 \end{pmatrix} \qquad A = \begin{pmatrix} 20 & 19 & 9 \\ 31 & 30 & 22 \\ 26 & 25 & 16 \end{pmatrix} \qquad A = \begin{pmatrix} 9 & 8 & 0 \\ 16 & 9 & 3 \\ 10 & 9 & 2 \end{pmatrix} \qquad A = \begin{pmatrix} 3 & 2 & 0 \\ 10 & 9 & 9 \\ 7 & 6 & 5 \end{pmatrix}$$

ВАРИАНТ №25 ВАРИАНТ № 26 ВАРИАНТ № 27 ВАРИАНТ № 26

$$A = \begin{pmatrix} 20 & 19 & 14 \\ 31 & 30 & 27 \\ 26 & 25 & 21 \end{pmatrix} \qquad A = \begin{pmatrix} 6 & 5 & 0 \\ 5 & 4 & 1 \\ 6 & 5 & 1 \end{pmatrix} \qquad A = \begin{pmatrix} 19 & 18 & 9 \\ 36 & 35 & 28 \\ 28 & 27 & 19 \end{pmatrix} \qquad A = \begin{pmatrix} 12 & 11 & 2 \\ 11 & 10 & 3 \\ 12 & 11 & 3 \end{pmatrix}$$

ВАРИАНТ MG 29 ВАРИАНТ MG 30 ВАРИАНТ MG 31 ВАРИАНТ MG 32

$$A = \begin{pmatrix} 20 & 19 & 13 \\ 29 & 28 & 24 \\ 25 & 24 & 19 \end{pmatrix} \qquad A = \begin{pmatrix} 13 & 12 & 6 \\ 18 & 17 & 13 \\ 16 & 15 & 10 \end{pmatrix} \qquad A = \begin{pmatrix} 20 & 19 & 10 \\ 29 & 28 & 21 \\ 25 & 24 & 16 \end{pmatrix} \qquad A = \begin{pmatrix} 14 & 13 & 2 \\ 15 & 14 & 5 \\ 15 & 14 & 4 \end{pmatrix}$$

ВАРИАНТ № 34 ВАРИАНТ № 35 ВАРИАНТ № 33

$A = \begin{pmatrix} 20 & 19 & 9 \\ 25 & 24 & 16 \\ 23 & 27 & 13 \end{pmatrix} \qquad A = \begin{pmatrix} 16 & 15 & 6 \\ 27 & 26 & 19 \\ 22 & 21 & 13 \end{pmatrix} \qquad A = \begin{pmatrix} 15 & 14 & 5 \\ 32 & 31 & 24 \\ 24 & 23 & 15 \end{pmatrix}$

ЗАЛАЧА № 3. Решить систему линейных алгебранческих уравнений двумя способами: по правилу Крамера и методом Гаусса.

BAPHAHT No 1

$$\begin{cases} 9x_1 - 5x_2 - 4x_3 - 2x_4 = 2 \\ -6x_1 + 2x_2 + 3x_3 + 2x_4 = -8 \\ -x_1 + 6x_2 + x_3 - 2x_4 = 29 \\ x_1 - 9x_2 - 10x_3 - 4x_4 = 4 \end{cases} \begin{cases} 8x_1 - 5x_2 - x_3 - x_4 = -50 \\ -10x_1 + 5x_2 - x_3 - x_4 = 80 \\ x_1 + 6x_2 + 2x_3 - 2x_4 = 15 \\ -3x_1 - 6x_2 - 10x_3 - 8x_4 = 83 \end{cases}$$

ВАРИАНТ № 2

$$\begin{cases} 8 x_1 - 5x_2 - x_3 - x_4 = -50 \\ -10x_1 + 5x_2 - x_3 - x_4 = 80 \\ x_1 + 6x_2 + 2x_3 - 2x_4 = 15 \\ -3 x_1 - 6x_2 - 10x_3 - 8x_4 = 83 \end{cases}$$

$$\begin{cases}
5 x_1 - x_2 - 9 x_3 - 2 x_4 = -11 \\
-3 x_1 + 3 x_2 + 4 x_3 + 2 x_4 = 2 \\
-2 x_1 + x_2 - 3 x_3 + x_4 = +28 \\
-2 x_1 - 5 x_2 - 2 x_3 - 2 x_4 = -23
\end{cases}$$

ВАРИАНТ № 4

$$\begin{cases}
5 x_1 - x_2 - 9x_3 - 2 x_4 = -11 \\
-3 x_1 + 3x_2 + 4x_3 + 2 x_4 = 2 \\
-2 x_1 + x_2 - 3x_3 + x_4 = +28 \\
-2 x_1 - 5x_2 - 2x_3 - 2x_4 = -23
\end{cases}$$

$$\begin{cases}
4 x_1 - 2x_2 - 6x_3 - x_4 = 45 \\
-x_1 + 2 x_2 - 2x_3 + x_4 = 12 \\
x_1 + 3 x_2 + x_3 + 5x_4 = 19 \\
x_1 - 6x_2 - 8x_3 - 8x_4 = 17
\end{cases}$$

ВАРИАНТ № 5

$$\begin{cases} 5 x_1 - 4x_2 - 8x_3 - 6x_4 = 3 \\ -6 x_1 + 4x_2 + 2x_3 + x_4 = 3 \\ x_1 + x_2 - x_3 + x_4 = 7 \\ -5 x_1 - 4x_2 - 4x_3 - 10x_4 = -19 \end{cases} \begin{cases} 5 x_1 - x_2 - 8x_3 - 10x_4 = 12 \\ -3 x_1 + x_2 - x_3 + x_4 = 5 \\ -2 x_1 + 4x_2 + 2x_3 + 6x_4 = -28 \\ -2 x_1 - 5x_2 - 7x_3 - 10x_4 = 61 \end{cases}$$

ВАРИАНТ № 6

$$5x_1 - x_2 - 8x_3 - 10x_4 = 12$$

$$-3x_1 + x_2 - x_3 + x_4 = 5$$

$$-2x_1 + 4x_2 + 2x_3 + 6x_4 = -28$$

$$-2x_1 - 5x_2 - 7x_3 - 10x_4 = 61$$

BAPHAHT M 7

$$\begin{cases} 2 x_1 - 9 x_2 - 3 x_3 - 4 x_4 = 68 \\ -7 x_1 + 4 x_2 + 3 x_3 + 2 x_4 = -65 \\ 2 x_1 + 3 x_2 + x_3 + 2 x_4 = -12 \\ x_1 - 4 x_2 - 10 x_3 - 9 x_4 = 77 \end{cases}$$

$$\begin{cases} 8 x_1 - 3 x_2 - 3 x_3 - 4 x_4 = 77 \\ -3 x_1 + x_2 - 3 x_3 - 3 x_4 = 7 \\ -5 x_1 + 5 x_2 - 3 x_3 + 2 x_4 = -51 \\ x_1 - 4 x_2 - 5 x_3 - 10 x_4 = 94 \end{cases}$$

$$\begin{cases} 8x_1 - 3x_2 - 3x_3 - 4x_4 = 77 \\ -3x_1 + x_2 - 3x_3 - 3x_4 = 7 \\ -5x_1 + 5x_2 - 3x_3 + 2x_4 = -51 \\ x_1 - 4x_2 - 5x_3 - 10x_4 = 94 \end{cases}$$

$$\begin{cases} 8 x_1 - 3x_2 + x_3 - x_4 = -46 \\ -7 x_1 + 4x_2 - 3x_3 - 7x_4 = 10 \\ -5 x_1 + 2x_2 + x_3 + 5x_4 = 54 \\ -3x_1 - 10x_2 - 9x_3 - 4x_4 = -123 \end{cases} \begin{cases} 4x_1 - 4x_2 - x_3 - x_4 = 31 \\ -7x_1 + x_2 + x_3 + 2x_4 = -34 \\ x_1 + x_2 - x_3 - 2x_4 = -2 \\ -3x_1 - 4x_2 - 3x_3 - 5x_4 = -12 \end{cases}$$

ВАРИАНТ № 10

$$4x_1 - 4x_2 - x_3 - x_4 = 31$$

$$-7x_1 + x_2 + x_3 + 2x_4 = -34$$

$$x_1 + x_2 - x_3 - 2x_4 = -2$$

$$-3x_1 - 4x_2 - 3x_3 - 5x_4 = -12$$

BAPHAHT M 11

$$\begin{cases}
4 x_1 - 6 x_2 - 2 x_3 - 9 x_4 &= 7 \\
-4 x_1 + 2 x_2 - x_3 - x_4 &= -3 \\
4 x_1 + 2 x_2 + x_3 + x_4 &= 15 \\
x_1 - 10 x_2 - x_3 - 5 x_4 &= -20
\end{cases}$$

ВАРИАНТ № 12

$$\begin{cases} 4 x_1 - 6x_2 - 2x_3 - 9 x_4 = 7 \\ -4 x_1 + 2x_2 - x_3 - x_4 = -3 \\ 4 x_1 + 2x_2 + x_3 + x_4 = 15 \\ x_1 - 10x_2 - x_3 - 5x_4 = -20 \end{cases} \begin{cases} 6x_1 + x_2 - 2x_3 - 2x_4 = -15 \\ -7x_1 - x_2 + 3x_3 + x_4 = 19 \\ -x_1 + 8x_2 + 4x_3 - 2x_4 = 13 \\ 4x_1 - 5x_2 - 3x_3 - 3x_4 = -14 \end{cases}$$

ВАРИАНТ № 13

$$\begin{cases}
4 x_1 - x_2 - 4 x_3 - 3 x_4 = -12 \\
-2 x_1 + 4 x_2 + 4 x_3 - 4 x_4 = -2 \\
x_1 + 7 x_2 + 2 x_3 + 6 x_4 = -6 \\
x_1 + 4 x_2 + x_3 + x_4 = -6
\end{cases}$$

$$\begin{cases}
x_1 - x_2 + x_3 - 6 x_4 = -19 \\
x_1 + 2 x_2 + 5 x_3 + 6 x_4 = 41 \\
-2 x_1 + 7 x_2 - 4 x_3 + 3 x_4 = -25 \\
x_1 + 6 x_2 + 4 x_3 + x_4 = 14
\end{cases}$$

ВАРИАНТ № 14

$$x_1 - x_2 + x_3 - 6x_4 = -19$$

$$x_1 + 2x_2 + 5x_3 + 6x_4 = 41$$

$$-2x_1 + 7x_2 - 4x_3 + 3x_4 = -25$$

$$x_1 + 6x_2 + 4x_3 + x_4 = 14$$

BAPHAHT No. 15

$$\begin{cases}
4 x_1 - 8 x_2 - 7 x_3 - 10 x_4 = 98 \\
-5 x_1 - 2 x_2 + 2 x_3 - x_4 = -19 \\
-2 x_1 + x_2 - x_3 + x_4 = -15 \\
4 x_1 + 7 x_2 + 5 x_3 + 8 x_4 = -43
\end{cases}$$
BAPHAHT No. 16
$$2 x_1 - x_2 - 9 x_3 - 5 x_4 = 41 \\
-6 x_1 + 6 x_2 - 5 x_3 - x_4 = 30 \\
-5 x_1 + x_2 - 3 x_3 - 3 x_4 = 5 \\
x_1 - 2 x_2 - 2 x_3 - 2 x_4 = 4
\end{cases}$$

$$\begin{cases} 2x_1 - x_2 - 9x_3 - 5x_4 = 41 \\ -6x_1 + 6x_2 - 5x_3 - x_4 = 30 \\ -5x_1 + x_2 - 3x_3 - 3x_4 = 5 \\ x_1 - 2x_2 - 2x_3 - 2x_4 = 4 \end{cases}$$

BAPHAHT Nº 17

BAPHAHT No. 17

$$\begin{cases}
4 x_1 - 8 x_2 - 3 x_3 - x_4 = -11 \\
-3 x_1 + x_2 - 4 x_3 - 6 x_4 = 38 \\
x_1 + x_2 - 4 x_3 + x_4 = 20 \\
x_1 - 10 x_2 - 7 x_3 - 10 x_4 = 24
\end{cases}$$
BAPHAHT No. 18
$$\begin{cases}
4 x_1 - 5 x_2 - 9 x_3 - 5 x_4 = 47 \\
-8 x_1 + 2 x_2 + x_3 + x_4 = 23 \\
x_1 + x_2 + x_3 - 2 x_4 = -10 \\
3 x_1 - 3 x_2 + 5 x_3 - x_4 = 20
\end{cases}$$

$$\begin{cases} 4x_1 - 5x_2 - 9x_3 - 5x_4 &= 47 \\ -8x_1 + 2x_2 + x_3 + x_4 &= 23 \\ x_1 + x_2 + x_3 - 2x_4 &= -10 \\ 3x_1 - 3x_2 + 5x_3 - x_4 &= 20 \end{cases}$$

BAPHAHT 36 19

$$2 x_1 - 2 x_2 + 3 x_3 - 4 x_4 = 9$$

$$-4 x_1 + 4 x_2 - x_3 - 4 x_4 = 53$$

$$-x_1 + x_2 + x_3 - x_4 = 7$$

ВАРИАНТ № 20

$$2 x_1 - 2 x_2 + 3 x_3 - 4 x_4 = 9$$

$$-4 x_1 + 4 x_2 - x_3 - 4 x_4 = 53$$

$$-x_1 + x_2 + x_3 - x_4 = 7$$

$$x_1 - 4 x_2 - 3 x_3 - 5 x_4 = 9$$

$$8 x_1 - 3 x_2 + x_3 - x_4 = 15$$

$$-7 x_1 + 4 x_2 - 3 x_3 - 7 x_4 = -73$$

$$-5 x_1 + 2 x_2 + x_3 + 5 x_4 = 23$$

$$-3 x_1 - 10 x_2 - 9 x_3 - 4 x_4 = -33$$

ВАРИАНТ № 21

$$\begin{cases}
10x_1 - 3x_2 - 7x_3 - 7x_4 = 1 \\
3x_1 + x_2 + 2x_3 + x_4 = 13 \\
3x_1 + 2x_2 - x_3 - x_4 = 17 \\
-4x_1 + 5x_2 + x_3 + x_4 = 15
\end{cases}$$

$$\begin{cases}
8x_1 - 5x_2 - 2x_3 - 2x_4 = 35 \\
-2x_1 + 4x_2 - 4x_3 + x_4 = 8 \\
-2x_1 + 4x_2 + 4x_3 + 4x_4 = -11 \\
4x_1 + x_2 + 3x_3 + 10x_4 = 10
\end{cases}$$

ВАРИАНТ № 22

ВАРИАНТ № 23

$$\begin{cases}
-3x_1 + 2x_2 + 2x_3 + 2x_4 = 14 \\
-7x_1 - 2x_2 - 2x_3 + 2x_4 = 30
\end{cases} = 30$$

$$x_1 - x_2 + x_3 - 2x_4 = 10$$

$$-x_1 + 6x_2 + x_3 + 6x_4 = -31$$

$$\begin{cases}
9x_1 - 8x_2 + x_3 - x_4 = 78 \\
-2x_1 + x_2 + 3x_3 - 3x_4 = -11 \\
-x_1 + x_2 + 3x_3 - x_4 = -14 \\
5x_1 + 2x_2 + 9x_3 + 7x_4 = -38
\end{cases}$$

ВАРИАНТ № 24

$$\begin{cases} 9x_1 - 8x_2 + x_3 - x_4 = 78 \\ -2x_1 + x_2 + 3x_3 - 3x_4 = -11 \\ -x_1 + x_2 + 3x_3 - x_4 = -14 \\ 5x_1 + 2x_2 + 9x_3 + 7x_4 = -38 \end{cases}$$

ВАРИАНТ № 25

$$\begin{cases} -9x_1 + 5x_2 + 4x_3 + x_4 = 72 \\ -6x_1 + 2x_2 + 3x_3 + x_4 = 49 \\ x_1 - 7x_2 + 4x_3 + 2x_4 = 12 \\ 2x_1 - 2x_2 - 9x_3 - 4x_4 = -65 \end{cases} \begin{cases} 6x_1 - 6x_2 - 5x_3 - 8x_4 = 7 \\ -3x_1 + x_2 + 4x_3 + x_4 = -16 \\ x_1 + 2x_2 + x_3 + 2x_4 = 10 \\ 2x_1 + 5x_2 + 3x_3 + 6x_4 = 27 \end{cases}$$

ВАРИАНТ № 26

ВАРИАНТ № 27

$$\begin{cases}
-3x_1 + 3x_2 + 4x_3 + 7x_4 = -18 \\
-5x_1 + 4x_2 - x_3 - 3x_4 = 24 \\
-3x_1 + 2x_2 + 2x_3 + 5x_4 = -9 \\
2x_1 + 2x_2 + 5x_3 + 2x_4 = -19
\end{cases} \begin{cases}
8x_1 - 6x_2 + x_3 - 4x_4 = 8 \\
-5x_1 + x_2 + 2x_3 - 2x_4 = 7 \\
-2x_1 + 6x_2 + 3x_3 + 2x_4 = 30 \\
-x_1 + 8x_2 + x_3 + 5x_4 = 20
\end{cases}$$

ВАРИАНТ № 28

BAPMANT No. 27

$$-3x_1 + 3x_2 + 4x_3 + 7x_4 = -18$$

$$-5x_1 + 4x_2 - x_3 - 3x_4 = 24$$

$$-3x_1 + 2x_2 + 2x_3 + 5x_4 = -9$$

$$2x_1 + 2x_2 + 5x_3 + 2x_4 = -19$$
BAPMANT No. 28
$$8x_1 - 6x_2 + x_3 - 4x_4 = 8$$

$$-5x_1 + x_2 + 2x_3 - 2x_4 = 7$$

$$-2x_1 + 6x_2 + 3x_3 + 2x_4 = 30$$

$$-x_1 + 8x_2 + x_3 + 5x_4 = 23$$

ВАРИАНТ № 29

$$\begin{cases} 6x_1 - 5x_2 + x_3 - 10x_4 = 57 \\ x_1 - x_2 + x_3 + x_4 = -10 \\ -5x_1 + 7x_2 + x_3 + 3x_4 = -4 \\ -x_1 + 4x_2 + 6x_3 + 5x_4 = -29 \end{cases} \begin{cases} 2x_1 - 2x_2 - 3x_3 - 4x_4 = 37 \\ 4x_1 - 4x_2 + x_3 + 5x_4 = 3 \\ -x_1 + x_2 + x_3 - x_4 = -1 \\ -x_1 + 4x_2 + 4x_3 + 5x_4 = -43 \end{cases}$$

$$\begin{cases} 2x_1 - 2x_2 - 3x_3 - 4x_4 = 37 \\ 4x_1 - 4x_2 + x_3 + 5x_4 = 3 \\ -x_1 + x_2 + x_3 - x_4 = -1 \\ -x_1 + 4x_2 + 4x_3 + 5x_4 = -43 \end{cases}$$

$$4x_{3} - 3x_{2} - 3x_{3} - x_{4} = -14$$

$$-x_{1} - 3x_{2} + 3x_{3} - 4x_{4} = -27$$

$$x_{1} + 5x_{2} - 3x_{3} + 5x_{4} = 37$$

RAPHAHT Nº 32

ВАРИАНТ № 33

$$5x_1 - 4x_2 - 2x_3 - 5x_4 = 45$$

 $9x_1 + x_2 + 2x_3 + 5x_4 = 3$

$$-x_1 + x_2 + x_3 + 8x_4 = -27$$

ВАРИАНТ № 34

$$5x_1 - 4x_2 - 2x_3 - 5x_4 = 42$$

$$9x_1 + x_2 + 2x_3 + 5x_4 = 37$$

$$2x_1 - 8x_2 - 4x_3 + 3x_4 = 5$$

$$-x_1 + x_2 + x_3 + 8x_4 = -27$$

$$6x_1 - 8x_2 - 6x_3 - 7x_4 = -12$$

$$-4x_1 + 4x_2 + 3x_3 - x_4 = -10$$

$$-4x_1 + 4x_2 - 3x_3 + 6x_4 = 6$$

$$-x_1 + 4x_2 + 10x_3 + 4x_4 = 18$$

ВАРНАНТ № 35

$$10x_{1} - 4x_{2} - x_{3} - 6x_{4} = -7$$

$$-x_{1} + x_{2} + 3x_{3} - 4x_{4} = 15$$

$$x_{1} + 4x_{2} + 2x_{3} + x_{4} = -18$$

$$3x_{1} - 5x_{2} - 3x_{3} - 2x_{4} = 9$$

ЗАДАЧА № 4. Найти ранг данной матрицы методом Гаусса.

$$\begin{pmatrix}
-1 & 1 & -1 & 2 & -2 & -3 \\
-2 & 2 & 2 & -1 & -1 & 2 \\
1 & -1 & -2 & -1 & -2 & -1 \\
-1 & -3 & 2 & 1 & 1 & 1 & -3 \\
5 & -1 & -3 & 0 & 5 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
-1 & 2 & -1 & -3 & 2 & 2 \\
2 & -3 & -2 & -3 & 1 & 2 \\
2 & 1 & -1 & -3 & -2 & -1 \\
-1 & -1 & -1 & -1 & -1 & -2 \\
2 & 2 & 1 & -2 & 2 & -1
\end{pmatrix}$$

ВАРНАНТ Ж 3

$$\begin{cases}
-3 & -1 & -1 & 1 & -1 & 1 \\
2 & -1 & 2 & -3 & 2 & -2 \\
1 & 1 & -1 & -1 & 2 & -1 \\
-2 & 2 & -2 & 6 & -5 & 4 \\
2 & -1 & 2 & -3 & 2 & -2
\end{cases}$$

ВАРИАНТ № 6

$$\begin{pmatrix}
1 & 1 & 1 & -2 & -3 & -1 \\
-2 & -1 & 2 & 2 & -1 & -1 \\
-1 & -1 & -2 & -1 & -1 & -3 \\
1 & -2 & -1 & -2 & -1 & -2 \\
-2 & -1 & -3 & 1 & -3 & 2
\end{pmatrix}
\begin{pmatrix}
-2 & 2 & -1 & -3 & 2 & 1 \\
1 & -2 & -2 & 2 & -3 & -1 \\
-3 & -1 & -1 & 2 & -1 & 2 \\
4 & 1 & 4 & -1 & 2 & -2 \\
3 & 1 & 1 & -2 & 1 & -2
\end{pmatrix}$$

$$\begin{cases}
-2 & 2 & -1 & -3 & 2 & 1 \\
1 & -2 & -2 & 2 & -3 & -1 \\
-3 & -1 & -1 & 2 & -1 & 2 \\
4 & 1 & 4 & -1 & 2 & -2 \\
3 & 1 & 1 & -2 & 1 & -2
\end{cases}$$

ВАРИАНТ № 7

ВАРИАНТ № 8

$$\begin{cases}
1 & -1 & -2 & 2 & -2 & -2 \\
-2 & -2 & -2 & -2 & 2 & 2 \\
-1 & -1 & -1 & 1 & -1 & -3 \\
-2 & -3 & -1 & -3 & 1 & -1 \\
3 & 8 & 8 & 0 & 2 & 6
\end{cases}$$

$$\begin{pmatrix}
1 & -1 & -2 & 2 & -2 & -2 \\
-2 & -2 & -2 & -2 & 2 & 2 \\
-1 & -1 & -1 & 1 & -1 & -3 \\
-2 & -3 & -1 & -3 & 1 & -1 \\
3 & 8 & 8 & 0 & 2 & 6
\end{pmatrix}
\begin{pmatrix}
-1 & -1 & -3 & -2 & 1 & -3 \\
1 & -2 & 1 & 2 & -2 & 2 \\
1 & 2 & -1 & -1 & 1 & -2 \\
-3 & -1 & -1 & 1 & -2 & 1 \\
-1 & 1 & -1 & -3 & 1 & 1
\end{pmatrix}$$

ВАРИАНТ № 9

$$\begin{pmatrix} 1 & -1 & -3 & -1 & -1 & -1 \\ 1 & -3 & -1 & -1 & -2 & 1 \\ -1 & -3 & -1 & -3 & -2 & -1 \\ 1 & 1 & 3 & 3 & 1 & 3 \\ -4 & 10 & 6 & 4 & 7 & -2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & -3 & -1 & -1 & -1 \\ 1 & -3 & -1 & -1 & -2 & 1 \\ -1 & -3 & -1 & -3 & -2 & -1 \\ 1 & 1 & 3 & 3 & 1 & 3 \\ -4 & 10 & 6 & 4 & 7 & -2 \end{pmatrix} \quad \begin{pmatrix} -1 & -1 & -3 & -1 & 1 & 2 \\ 2 & -2 & 2 & 2 & -2 & -1 \\ -2 & -3 & -2 & -1 & -1 & -1 \\ -1 & 2 & -1 & 2 & 1 & 1 \\ 4 & 3 & 8 & -3 & -1 & -4 \end{pmatrix}$$

BAPHAHT 36 12

$$\begin{bmatrix} 1 & -2 & -3 & -3 & -3 & -1 \\ -2 & -1 & 2 & -3 & -1 & -2 \\ 2 & 2 & -2 & -1 & 2 & -3 \\ -1 & -1 & 1 & -1 & -3 & -2 \\ 1 & -2 & 2 & 1 & -1 & -3 \end{bmatrix}$$

$$\begin{pmatrix} 1 & -2 & -3 & -3 & -3 & -1 \\ -2 & -1 & 2 & -3 & -1 & -2 \\ 2 & 2 & -2 & -1 & 2 & -3 \\ -1 & -1 & 1 & -1 & -3 & -2 \\ 1 & -2 & 2 & 1 & -1 & -3 \end{pmatrix} \qquad \begin{pmatrix} -1 & -3 & -1 & -1 & 2 & -1 \\ -1 & 2 & -3 & -3 & 1 & -1 \\ 2 & 1 & 2 & -1 & -2 & -1 \\ -2 & 4 & -4 & -1 & 1 & 1 \\ -1 & 2 & -1 & 2 & 0 & 2 \end{pmatrix}$$

ВАРИАНТ № 13

$$\begin{pmatrix} -3 & 2 & -3 & 2 & 1 & 1 \\ -2 & -1 & -1 & 1 & -1 & 2 \\ -3 & 1 & -1 & 1 & -1 & -1 \\ -1 & 1 & 1 & 2 & -1 & -2 \\ 12 & -9 & 5 & -9 & 1 & 6 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 & -1 & -1 & -3 & -1 \\ -1 & -1 & -1 & -1 & -1 & 2 \\ 2 & -1 & -2 & -1 & -3 & -1 \\ 2 & -1 & -3 & -3 & -1 & -1 \\ -1 & -1 & 2 & 1 & -1 & -1 \end{pmatrix}$$

ВАРИАНТ № 16

$$\begin{pmatrix}
2 & -3 & -1 & -1 & -2 & -3 \\
-1 & 2 & -1 & 2 & -1 & -1 \\
2 & -2 & 1 & -1 & 2 & 2 \\
-2 & 1 & 2 & -2 & 2 & 3 \\
-2 & 2 & -1 & 1 & -2 & -2
\end{pmatrix}$$

$$\begin{pmatrix}
-1 & 2 & -1 & -1 & -1 & 1 \\
-3 & -1 & 1 & -3 & -2 & -3 \\
-2 & -1 & -3 & -1 & -3 & -1 \\
-2 & -1 & 2 & -1 & -2 & -1 \\
16 & 2 & 2 & 12 & 16 & 8
\end{pmatrix}$$

ВАРИАНТ № 17

ВАРИАНТ № 18

$$\begin{pmatrix} -3 & -3 & -2 & 1 & 2 & 2 \\ 1 & -1 & 1 & 2 & -1 & -1 \\ 2 & -3 & +3 & -3 & 1 & -1 \\ -2 & -1 & -2 & -1 & 2 & -1 \\ -3 & -1 & -2 & 1 & 1 & -1 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 & -1 & -1 & 2 & 1 \\ -3 & -3 & -2 & -1 & -1 & 2 & 1 \\ 1 & -1 & -1 & -1 & 1 & -3 \\ -3 & 0 & 0 & 1 & -4 & 4 \\ 1 & 2 & 1 & 1 & -2 & -1 \end{pmatrix}$$

ВАРИАНТ № 19

ВАРИАНТ № 20

$$\begin{pmatrix} -3 & -2 & 2 & -1 & -2 & 2 \\ 2 & 1 & -2 & -1 & -1 & -3 \\ -2 & 1 & -1 & 1 & -2 & -3 \\ -2 & -1 & 2 & -1 & -1 & 2 \\ 5 & 1 & -1 & 2 & 6 & 2 \end{pmatrix} \quad \begin{pmatrix} -1 & -1 & -3 & -3 & -3 & 2 \\ 1 & -3 & -3 & -1 & 2 & -1 \\ 1 & -3 & 2 & 1 & -1 & -1 \\ -2 & -1 & 1 & 1 & -2 & -2 \\ -1 & -2 & 2 & -1 & 2 & 2 \end{pmatrix}$$

ВАРИАНТ № 21

ВАРИАНТ № 22

$$\begin{pmatrix} 2 & 1 & 1 & -2 & -2 & 2 \\ -3 & -1 & -3 & -1 & -3 & -1 \\ -1 & -1 & -3 & -1 & -1 & -1 \\ 2 & -1 & 2 & 2 & 2 & 2 & -3 \\ -10 & 0 & -6 & 0 & -2 & 2 \end{pmatrix} \quad \begin{pmatrix} -1 & -1 & 2 & -3 & -1 & 1 \\ 1 & -2 & -1 & -3 & 1 & -1 \\ -2 & -1 & -2 & -1 & -3 & 1 \\ -3 & -1 & -1 & 1 & -1 & 1 \\ -3 & -3 & -3 & -3 & -1 & 1 \end{pmatrix}$$

BAPHAHT No 23

$$\begin{pmatrix}
-1 & -1 & 2 & -1 & 2 & -1 \\
-2 & -3 & -2 & 1 & -2 & -3 \\
2 & -1 & 2 & -2 & -2 & -1 \\
2 & -1 & -1 & -2 & 1 & -1 \\
-1 & 10 & -1 & 5 & 5 & 10
\end{pmatrix}
\begin{pmatrix}
-3 & -2 & -1 & -1 & -1 & -2 \\
-1 & -3 & -1 & -2 & -2 & 1 \\
-3 & -1 & 2 & 1 & -3 & -3 \\
-1 & 2 & -3 & -3 & -2 & -2 \\
-3 & 2 & -1 & -2 & 2 & -2
\end{pmatrix}$$

BAPHAHT JA 25

ВАРНАНТ № 26

$$\begin{cases}
-1 & 2 & -1 & 2 & 2 & -1 \\
-1 & -2 & 1 & 2 & -2 & 1 \\
-1 & -2 & 2 & 1 & -1 & 1 \\
5 & 2 & -2 & -9 & 1 & -1 \\
-1 & 2 & -1 & 2 & 2 & -1
\end{cases}$$

$$\begin{pmatrix}
-1 & 2 & -1 & 2 & 2 & -1 \\
-1 & -2 & 1 & 2 & -2 & 1 \\
-1 & -2 & 2 & 1 & -1 & 1 \\
5 & 2 & -2 & -9 & 1 & -1 \\
-1 & 2 & -1 & 2 & 2 & -1
\end{pmatrix}
\begin{pmatrix}
-2 & 1 & 1 & 1 & -1 & 2 \\
-2 & -2 & -1 & -3 & -1 & -1 \\
1 & -1 & -2 & -3 & -3 & -2 \\
-1 & 2 & 1 & -1 & -1 & -3 \\
3 & 1 & 3 & 9 & 9 & 6
\end{pmatrix}$$

ВАРИАНТ № 27

ВАРИАНТ № 28

$$\begin{bmatrix}
-1 & -2 & 1 & -2 & 2 & 1 \\
2 & -3 & -1 & 2 & 2 & -2 \\
1 & -1 & -1 & -1 & -1 & 1 \\
-1 & -3 & -2 & -1 & -3 & -2 \\
2 & -1 & -1 & -2 & -2 & 1
\end{bmatrix}$$

ВАРИАНТ № 29

ВАРИАНТ № 30

$$\begin{pmatrix}
-2 & -1 & 1 & -2 & -1 & 2 \\
-1 & -1 & -2 & 2 & 1 & 1 \\
-2 & 2 & -3 & 1 & -2 & -3 \\
1 & -1 & 2 & 1 & 1 & -1 \\
9 & 1 & 6 & -3 & 3 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
-2 & -1 & 1 & -2 & -1 & 2 \\
-1 & -1 & -2 & 2 & 1 & 1 \\
-2 & 2 & -3 & 1 & -2 & -3 \\
1 & -1 & 2 & 1 & 1 & -1 \\
9 & 1 & 6 & -3 & 3 & 1
\end{pmatrix}
\begin{pmatrix}
-1 & 1 & -1 & 2 & -2 & -3 \\
-2 & 2 & 2 & -1 & -1 & -3 \\
1 & -1 & -1 & -1 & -1 & -1 & -1 \\
2 & -3 & 2 & 1 & 1 & -3 \\
-1 & -1 & -1 & -2 & 2 & -1
\end{pmatrix}$$

RAPHAHT No 31

BAPHAHT JA 31

ВАРНАНТ № 32

$$\begin{cases}
-2 & -3 & -1 & -1 & -3 & 1 \\
-2 & 2 & -1 & 1 & -1 & -1 \\
-1 & 2 & -2 & -1 & 1 & -2 \\
7 & 2 & 5 & 2 & 6 & 1 \\
-1 & -5 & 1 & 0 & -4 & 3
\end{cases}$$

$$\begin{pmatrix} -2 & -3 & -1 & -1 & -3 & 1 \\ -2 & 2 & -1 & 1 & -1 & -1 \\ -1 & 2 & -2 & -1 & 1 & -2 \\ 7 & 2 & 5 & 2 & 6 & 1 \\ -1 & -5 & 1 & 0 & -4 & 3 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 & 1 & -1 & 1 & 1 \\ -2 & 1 & -1 & -1 & -2 & -1 \\ 2 & -2 & 2 & 1 & 2 & -1 \\ -3 & 2 & -1 & 1 & -3 & -2 \\ 1 & 5 & -4 & -1 & -3 & 0 \end{pmatrix}$$

ВАРИАНТ № 33

$$\begin{pmatrix}
-3 & -1 & 2 & -2 & -3 & -1 \\
2 & -1 & 2 & 2 & 2 & -3 \\
1 & -1 & -1 & 2 & -1 & -2 \\
-2 & 1 & -3 & -1 & 1 & -3 \\
-1 & 1 & 2 & -1 & -3 & -1
\end{pmatrix}
\begin{pmatrix}
2 & -3 & -1 & -3 & -2 & 2 \\
2 & -2 & -1 & -1 & -2 & 1 \\
-1 & 2 & -3 & -2 & 1 & -1 \\
-7 & 8 & 7 & 10 & 7 & -5 \\
9 & -11 & -8 & -13 & -9 & 7
\end{pmatrix}$$

$$\begin{pmatrix}
2 & -3 & -1 & -3 & -2 & 2 \\
2 & -2 & -1 & -1 & -2 & 1 \\
-1 & 2 & -3 & -2 & 1 & -1 \\
-7 & 8 & 7 & 10 & 7 & -5 \\
9 & -11 & -8 & -13 & -9 & 7
\end{pmatrix}$$

ЗАДАЧА № 5. Решить систему линейных алгебраических уравнений методом Гаусса.

$\begin{cases} -2 x_1 + x_2 + 2x_3 + 2x_4 + 6x_5 + x_6 = 0 \\ x_1 - x_2 + x_3 + 2x_4 + 6x_5 - x_6 = 0 \\ 3 x_1 + x_2 - 2 x_3 + 3 x_4 + x_6 = 0 \\ x_1 + 3 x_2 + 2x_3 + x_4 + 8x_5 + 3x_6 = 0 \end{cases}$

BAPHAHT No. 2

$$\begin{cases}
x_1 + x_2 - x_3 + 2x_4 - 2x_5 - x_6 = 0 \\
-x_1 + x_2 - x_3 + 4x_4 + 2x_5 + x_6 = 0 \\
-x_1 + 2x_2 + x_3 + x_4 - x_5 - 2x_6 = 0 \\
-5x_2 + 2x_3 - 9x_4 + 3x_5 + 3x_6 = 0
\end{cases}$$

BAPHAHT Me 3

$$x_1 - x_2 + 2x_3 - 2x_{45} - 7x_6 = 0$$

$$-x_1 - 3x_2 + 2x_3 - 3x_4 - 5x_5 - 6x_6 = 0$$

$$-2x_1 + 2x_2 - x_3 - 2x_4 + 2x_6 = 0$$

$$2x_1 + x_2 + 2x_3 - x_4 + 5x_5 - 7x_6 = 0$$

ВАРИАНТ № 6

$$\begin{cases} -x_1 + x_2 - 2x_3 + 2x_4 + 2x_5 + 3x_6 = 0 \\ -2x_1 - x_2 + 2x_3 + x_4 + 19x_5 - 3x_6 = 0 \\ -x_1 - 2x_2 + x_3 + x_4 + 13x_5 + x_6 = 0 \\ x_1 - x_2 + x_3 + 2x_4 + 10x_5 + 6x_6 = 0 \end{cases} \begin{cases} x_1 - 2x_2 - x_3 - 2x_4 + 2x_5 + 3x_6 = 0 \\ -x_1 - x_2 + 2x_3 - 2x_4 - x_5 + 2x_6 = 0 \\ -3x_1 - x_2 - x_3 + 3x_4 + 9x_5 + 9x_6 = 0 \\ 3x_1 + 5x_2 + 6x_3 - 4x_4 - 23x_5 - 22x_6 = 0 \end{cases}$$

$$\begin{cases} -2 x_1 + x_2 + 2x_3 + 2x_4 + 6x_5 + x_6 = 0 \\ x_1 - x_2 + x_3 + 2x_4 + 6x_5 - x_6 = 0 \\ 3 x_1 + x_2 - 2 x_3 + 3 x_4 + x_6 = 0 \\ x_1 + 3 x_2 + 2x_3 + x_4 + 8x_5 + 3x_6 = 0 \end{cases}$$

ВАРИАНТ № 8

$$\begin{cases} -2 x_1 + x_2 + 2x_3 + 2x_4 + 6x_5 + x_6 = 0 \\ x_1 - x_2 + x_3 + 2x_4 + 6x_5 - x_6 = 0 \\ 3 x_1 + x_2 - 2 x_3 + 3 x_4 + x_6 = 0 \\ x_1 + 3 x_2 + 2x_3 + x_4 + 8x_5 + 3x_6 = 0 \end{cases}$$

BAPHAHT M 9

$$\begin{cases} -2 x_1 + x_2 + 2x_3 + 2x_4 + 6x_5 + x_6 = 0 \\ x_1 - x_2 + x_3 + 2x_4 + 6x_5 - x_6 = 0 \\ 3 x_1 + x_2 - 2 x_3 + 3 x_4 + x_6 = 0 \\ x_1 + 3 x_2 + 2x_3 + x_4 + 8x_5 + 3x_6 = 0 \end{cases}$$

ВАРИАНТ № 10

$$\begin{cases} -2 x_1 + x_2 + 2x_3 + 2x_4 + 6x_5 + x_6 = 0 \\ x_1 - x_2 + x_3 + 2x_4 + 6x_5 - x_6 = 0 \\ 3 x_1 + x_2 - 2 x_3 + 3 x_4 + x_6 = 0 \\ x_1 + 3 x_2 + 2x_3 + x_4 + 8x_5 + 3x_6 = 0 \end{cases}$$

BAPHAHT M: 11

$$\begin{cases}
-x_1 - 3x_2 - x_3 - 3x_4 - 4x_6 = 0 \\
x_1 + x_2 + x_3 - x_4 + 4x_5 + 2x_6 = 0 \\
x_1 + x_2 + x_3 + 3x_4 - 4x_5 + 6x_6 = 0 \\
-3x_1 + 2x_2 - x_3 + 2x_4 - 6x_5 - 12x_6 = 0
\end{cases}$$

ВАРИАНТ № 12

$$\begin{cases}
-x_1 + x_2 - x_3 + x_5 + 4x_6 = 0 \\
-x_1 - 3x_2 - 3x_3 + 10x_4 + 13x_5 + 4x_6 = 0 \\
-x_1 - 2x_2 + x_3 + 4x_4 + 3x_5 - 3x_6 = 0 \\
3x_1 + 4x_2 + 3x_3 - 14x_4 - 17x_5 - 5x_6 = 0
\end{cases}$$

ВАРИАНТ № 13

$$\begin{cases} x_1 + x_2 + 2x_3 + 3x_4 + 3x_5 + 3x_6 = 0 \\ -x_1 + 2x_2 + x_3 - x_4 - 2x_5 + 2x_6 = 0 \\ x_1 - x_2 + 2x_3 - 2x_4 - 5x_5 - 2x_6 = 0 \\ -x_1 - 3x_2 + 2x_3 - 3x_4 - x_5 + x_6 = 0 \end{cases}$$

BAPHAHT 36 14

$$\begin{cases} x_1 + x_2 - x_3 + x_5 - 3 x_6 = 0 \\ -2x_1 - x_2 - 2x_3 + 3x_4 + 7x_5 + 8x_6 = 0 \end{cases}$$
$$x_1 - x_2 - 2x_3 + 4x_5 + 2x_6 = 0$$
$$4x_1 + 4x_2 + 5x_3 - 5x_4 - 18x_5 - 21x_6 = 0$$

ВАРНАНТ № 15

ВАРИАНТ № 16

$$\begin{cases} -2x_1 - 2x_2 + 2x_3 - 2x_4 + 4x_5 - 12x_6 = 0 \\ -x_1 - x_2 + 2x_3 - x_4 + 5x_5 - 10x_6 = 0 \\ -x_1 + x_2 - 3x_3 + 2x_4 - 15x_5 + 7x_6 = 0 \\ -2x_1 - x_2 + 2x_3 - x_4 + 2x_5 - 14x_6 = 0 \end{cases}$$

$$\begin{cases} -x_1 - x_2 - 2x_3 + 6x_4 + 2x_5 + 2x_6 = 0 \\ x_1 - x_2 + x_3 - x_4 + x_5 - 3x_6 = 0 \\ x_1 - 2x_2 + 2x_3 + x_5 - 5x_6 = 0 \\ -2x_1 + 6x_2 - 3x_3 - 5x_4 - 5x_5 + 11x_6 \end{cases}$$

$$\begin{cases}
-x_1 - x_2 - 2x_3 + 6x_4 + 2x_5 + 2x_6 = 0 \\
x_1 - x_2 + x_3 - x_4 + x_5 - 3x_6 = 0 \\
x_1 - 2x_2 + 2x_3 + x_5 - 5x_6 = 0 \\
-2x_1 + 6x_2 - 3x_1 - 5x_4 - 5x_5 + 11x_6 = 0
\end{cases}$$

ВАРИАНТ № 17

 $\int x_1 - x_2 - 3x_1 + 2x_4 + 5x_5 + 3x_6 = 0$

$$\begin{cases} -3x_1 + 2x_2 - 3x_3 - x_4 - 15x_5 + 2x_6 = 0 \\ 2x_1 + x_2 - x_3 + x_4 + 4x_5 + 3x_6 = 0 \\ x_1 - 2x_2 - 2x_3 + 2x_4 - x_5 + 10x_6 = 0 \end{cases}$$

$$\begin{cases}
-3x_1 - 3x_2 + x_3 + 8x_4 + 7x_5 + 5x_6 = 0 \\
-x_1 - 2x_2 + 2x_3 + 2x_5 + x_6 = 0 \\
3x_1 + 6x_2 - 12x_4 - 12x_5 - 9x_6 = 0
\end{cases}$$

ВАРИАНТ № 19

ВАРИАНТ № 20

$$\begin{cases}
-x_1 + x_2 - 2x_3 - x_4 + 13x_5 + 4x_6 = 0 \\
-3x_1 - x_2 - 2x_3 - 2x_4 + 7x_5 + 3x_6 = 0 \\
x_1 + x_2 + x_3 - x_4 + 4x_5 - 6x_6 = 0 \\
-x_1 + 2x_2 - 3x_3 + x_4 + 12x_5 + 13x_6 = 0
\end{cases}$$

$$\begin{cases} 2x_1 + x_2 - x_3 + x_4 + x_5 - 4x_6 = 0 \\ x_1 + x_2 - x_3 + 2x_4 - 2x_6 = 0 \\ -x_1 + 2x_2 + 2x_3 - x_4 - 7x_5 - 6x_6 = 0 \\ -x_2 - x_3 + x_4 + 3x_5 + 4x_6 = 0 \end{cases}$$

BAPHAHT Nº 21

$$\begin{cases}
-x_1 - x_2 - x_3 - 3x_4 + 13x_5 - 6x_6 = 0 \\
-3x_1 + 2x_2 - x_3 + 2x_4 - 3x_5 + 17x_6 = 0
\end{cases}$$

$$3x_1 + 2x_2 + x_3 - 2x_4 + 11x_5 - 9x_6 = 0$$

$$-2x_1 - 3x_2 + 2x_3 - 2x_4 - 8x_3 - 18x_6 = 0$$

$$\begin{cases} 2x_1 + 3x_2 + 2x_3 - 3x_4 - 9x_3 - 9x_6 = 0 \\ 2x_1 - 2x_2 - 3x_3 - 3x_4 + x_5 + 6x_4 = 0 \\ -x_1 + 2x_2 + x_3 + 3x_4 - x_5 - 3x_6 = 0 \\ 6x_1 - 3x_2 - 3x_3 - 12x_4 - 6x_4 + 3x_4 = 0 \end{cases}$$

$$\begin{cases}
-x_1 + 2x_2 + 2x_3 + x_4 + 12x_5 - 3x_6 = 0 \\
-3x_1 - x_2 + 2x_3 + x_4 + 6x_5 - 17x_6 = 0 \\
-3x_1 - 2x_2 + 2x_3 - x_4 + 8x_5 - 17x_6 = 0 \\
-2x_1 - x_2 - 3x_3 + 2x_4 - 21x_5 - 9x_6 = 0
\end{cases}$$

ВАРИАНТ Ј 24

$$\begin{cases}
-x_1 + 2x_2 - 3x_3 + 4x_4 + 3x_5 + 7x_6 = 0 \\
-2x_1 - 2x_2 - x_3 + 10x_4 + 7x_5 + 3x_6 = 0 \\
x_1 - 2x_2 - 3x_3 + 8x_4 + 3x_5 - x_6 = 0 \\
3x_1 + 6x_2 + 11x_3 - 40x_4 - 23x_5 - 11x_6 = 0
\end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 - x_4 - 6x_5 = 0 \\ -2x_1 - x_2 - x_3 + 2x_4 + 8x_5 + x_6 = 0 \\ 2x_1 + 2x_2 - 2x_3 - x_4 + 5x_5 + 9x_6 = 0 \\ 2x_1 - 2x_2 - x_3 + 2x_4 + 4x_5 - 2x_6 = 0 \end{cases}$$

ВАРИАНТ № 26

$$-x_1 + 2x_2 - 3x_3 + 2x_4 + 3x_5 + 3x_6 = 0$$

$$x_1 - x_2 - x_3 + x_4 + 3x_6 = 0$$

$$-2x_1 - 2x_2 + x_3 + 3x_4 + 5x_5 + 4x_6 = 0$$

$$3x_1 + 4x_2 + 3x_3 - 10x_4 - 13x_5 - 17x_6 = 0$$

ВАРИАНТ № 27

$$\begin{cases} 3x_1 + x_2 + x_3 + x_4 + 4x_5 + 7x_5 = 0 \\ x_1 - 2x_2 - x_3 + x_4 + x_5 + 8x_6 = 0 \\ 2x_1 + 2x_2 - x_3 - x_4 + 3x_5 + 5x_6 = 0 \\ 2x_1 - 3x_2 + x_3 - 3x_4 + 14x_5 + 4x_6 = 0 \end{cases}$$

ВАРИАНТ Ж 28

$$\begin{cases}
-x_1 - 2x_2 - 3x_3 + 2x_4 + 6x_5 + 2x_6 = 0 \\
-x_1 - 3x_2 - 3x_3 + x_4 + 7x_5 + x_6 = 0 \\
-2x_1 + 2x_2 + x_3 + 3x_4 - x_5 + 3x_6 = 0 \\
5x_1 + 5x_2 + 8x_3 - 8x_4 - 18x_5 - 8x_6 = 0
\end{cases}$$

ВАРИАНТ № 29

$$3x_{1}-2x_{2}+2x_{3}-x_{4}+2x_{5}+13x_{5}=0$$

$$x_{1}+3x_{2}+x_{3}+2x_{4}+3x_{5}+12x_{6}=0$$

$$x_{1}+x_{2}-3x_{3}+2x_{4}+3x_{5}+4x_{6}=0$$

$$x_{1}-x_{2}+2x_{3}-3x_{4}+4x_{5}-x_{6}=0$$

ВАРИАНТ № 30

BAPHAHT No. 30
$$(-x_1 - x_2 - 2x_3 + 2x_4 + 4x_5 + 8x_6 = 0)$$

$$-3x_1 + x_2 + x_3 + 3x_4 - 6x_5 + 2x_6 = 0$$

$$-3x_1 + 2x_2 - x_3 + 6x_4 - 3x_5 + 4x_6 = 0$$

$$13x_1 - 5x_2 + 2x_3 - 20x_4 + 14x_5 - 20x_6 = 0$$

ВАРИАНТ Ж 31

$$x_1 + x_2 + x_3 + x_4 - 2x_5 = 0$$

$$x_1 - 3x_2 - 2x_3 + 2x_4 + 2x_5 + 4x_6 = 0$$

$$3x_1 + x_2 + 3x_3 + x_4 - 2x_5 - 4x_6 = 0$$

$$x_1 + 2x_2 + 3x_3 + 2x_4 - 6x_4 = 0$$

$$-x_1 + x_2 - 3x_3 + 5x_4 + x_5 + 6x_6 = 0$$

$$-x_1 + x_2 - x_3 + x_4 - x_5 + 4x_6 = 0$$

$$2x_1 + x_2 - x_3 - 2x_4 + 2x_5 - 2x_6 = 0$$

$$x_1 + 2x_2 - 6x_1 + 7x_4 + 5x_5 + 6x_6 = 0$$

$$\begin{cases} 2x_1 + x_2 + 3x_3 + x_4 - 14x_5 + 7x_5 = 0 \\ x_1 + x_2 - 3x_3 - x_4 + 3x_5 + 5x_6 = 0 \\ x_1 + 3x_2 + x_3 + 2x_4 - 5x_5 + 2x_6 = 0 \\ x_1 + x_2 + 3x_3 + 3x_4 - 7x_5 + x_6 = 0 \end{cases}$$

$$\begin{cases} -x_1 - x_2 - 2x_3 + 4x_4 + 4x_5 + 8x_6 = 0 \\ 2x_1 + x_2 + 2x_3 - 5x_4 - 3x_5 - 10x_6 = 0 \\ -3x_1 - x_2 - 3x_3 + 7x_4 + 4x_5 + 14x_6 = 0 \\ 2x_1 + x_2 + 3x_3 - 6x_4 - 5x_5 - 12x_6 = 0 \end{cases}$$

$$2x_1 + 3x_2 + 2x_3 - x_4 + 12x_5 + x_5 = 0$$

$$3x_1 + 2x_2 + x_3 - 2x_4 + 10x_5 - 2x_6 = 0$$

$$3x_1 + x_2 + x_3 + 2x_4 - 6x_5 = 0$$

$$-2x_1 + 2x_2 - x_3 + x_4 - 7x_5 + 8x_6 = 0$$

3 А Д А Ч А М 6. Найти общее решение системы линейных алгебранческих уравнений.

BAPHAHT M 1

$$\begin{cases} -2x_1 - x_2 + 2x_3 + x_4 + x_5 - 5x_6 = 1 \\ x_1 + x_2 + x_3 - 2x_4 - 14x_5 + x_6 = 77 \\ 3x_1 + x_2 - x_3 - 2x_4 - 12x_5 + 5x_6 = 63 \\ x_1 - 2x_2 + 2x_3 + x_4 - 9x_5 - 2x_6 = 60 \end{cases}$$

ВАРИАНТ Ж 2

$$\begin{cases} 2x_1 - x_2 + x_3 - 4x_4 - 4x_5 - 5x_6 = 21 \\ x_1 + x_2 - x_3 + x_4 - 2x_5 + 2x_6 = 9 \\ -x_1 + x_2 + 2x_3 - x_5 - 2x_6 = 31 \\ -6x_2 + x_3 + 5x_4 + 2x_4 - 3x_6 = 23 \end{cases}$$

ВАРИАНТ № 3

$$\begin{cases} 2x_1 + x_2 - x_3 - 3x_4 + 10x_5 + 10x_6 = 3 \\ x_1 + x_2 + x_3 + 3x_4 - 5x_5 + 4x_6 = -28 \\ x_1 + x_2 + 3x_3 + 2x_4 - 5x_5 - 5x_6 = -6 \end{cases}$$

ВАРИАНТ № 4

$$2x_1 + 2x_2 + x_3 - 3x_4 - x_5 - 8x_6 = 45$$

$$x_1 - x_2 - x_3 - 2x_4 + 3x_5 + 3x_6 = -21$$

$$2x_1 + 3x_2 - 2x_3 + x_4 + x_5 - 4x_6 = -12$$

$$6x_2 - 3x_3 + 9x_4 - 3x_5 - 6x_6 = -27$$

ВАРНАНТ № 5

$$x_1 - x_2 - x_3 - 2x_4 + 7x_5 + 2x_6 = -25$$

$$2x_1 + x_2 + x_3 + x_4 - 6x_5 + 10x_6 = 6$$

$$2x_1 + 2x_2 + x_3 - 3x_4 + 12x_5 + 12x_6 = -39$$

BAPHAHT M: 6 $\begin{cases} 3x_1 + x_2 + x_3 - 3x_4 - 5x_5 - 9x_6 = 58 \end{cases}$

$$3x_1 + x_2 - x_3 - x_4 - 3x_5 - 7x_6 = 60$$

$$x_1 + 2x_1 + x_2 - 4x_3 - 7x_4 = 52$$

$$11x_1 + 7x_2 + x_3 - 5x_4 - 19x_5 - 37x_6 = 282$$

BAPHAHT No. 7

$x_2 + 3x_3 - 2x_4 - 3x_5 - 11x_6 = 8$ $2x_1 - 3x_2 - x_3 + 2x_4 - 10x_5 + 15x_6 = -69$

ВАРИАНТ №8

$$\begin{cases} 2x_1 + x_2 - 2x_3 - 4x_4 - x_5 + x_6 = 32 \\ 2x_1 + 2x_2 + x_3 - 9x_4 - 8x_5 - 4x_6 = 37 \\ 2x_1 + x_2 + x_3 - 7x_4 - 7x_5 - 5x_6 = 29 \\ 2x_1 + 2x_2 + 7x_3 - 15x_4 - 20x_5 - 16x_6 = 31 \end{cases}$$

ВАРИАНТ № 9

$$\begin{cases} x_1 - 2x_2 + 2x_3 + 2x_4 + 2x_5 - 2x_6 = -10 \\ 2x_1 - x_2 - 3x_3 - 3x_4 + 4x_5 + 7x_6 = -46 \\ -2x_1 - 2x_2 - x_3 + 2x_4 + 2x_5 + x_6 = -43 \\ 3x_1 + 2x_2 - 2x_3 - 2x_4 + 6x_5 + 2x_6 = -14 \end{cases} \begin{cases} 2x_1 - x_2 - 2x_3 + x_4 + 6x_5 + x_6 = -5 \\ 2x_1 + x_2 - x_3 - 2x_4 + x_5 - 3x_6 = 11 \\ -3x_1 - 3x_2 + 2x_3 + 4x_4 + x_5 + 5x_6 = -3x_6 = -$$

ВАРИАНТ № 10

$$\begin{cases} 2x_1 - x_2 - 2x_3 + x_4 + 6x_5 + x_6 = -5 \\ 2x_1 + x_2 - x_3 - 2x_4 + x_5 - 3x_6 = 11 \\ -3x_1 - 3x_2 + 2x_3 + 4x_4 + x_5 + 5x_6 = -26 \\ 3x_1 + 5x_2 - x_3 - 7x_4 - 6x_5 - 9x_6 = 42 \end{cases}$$

ВАРИАНТ № 11

$$\begin{cases} 3x_1 - 2x_2 + 2x_3 + x_4 - 13x_5 + 10x_6 = 59 \\ 3x_1 + 3x_2 + x_3 + 3x_4 - 2x_5 + 16x_6 = 34 \\ -x_1 + x_2 + 3x_3 + 3x_4 - 20x_5 + 4x_6 = 152 \\ 2x_1 + 3x_2 - x_3 + 2x_4 + 9x_5 + 10x_6 = -35 \end{cases} \begin{cases} 2x_1 + x_2 + 3x_3 - 6x_4 - 2x_5 - 9x_6 = -5 \\ x_1 - 3x_2 - x_3 - 4x_4 + 5x_5 - 3x_6 = -1 \\ -2x_1 - x_2 - 2x_3 + 5x_4 + x_5 + 7x_6 = 51 \\ 5x_1 - x_2 + 4x_3 - 15x_4 + 2x_5 - 19x_6 = -110 \end{cases}$$

BAPRAHT Nº 12

$$\begin{cases} 2x_1 + x_2 + 3x_3 - 6x_4 - 2x_5 - 9x_6 = -5 \\ x_1 - 3x_2 - x_3 - 4x_4 + 5x_5 - 3x_6 = -1 \\ -2x_1 - x_2 - 2x_3 + 5x_4 + x_5 + 7x_6 = 51 \\ 5x_1 - x_2 + 4x_3 - 15x_4 + 2x_5 - 19x_6 = -110 \end{cases}$$

ВАРИАНТ № 13

$$\begin{cases} x_1 - 2x_2 + 2x_3 - x_4 - 15x_5 - 3x_6 = -37 \\ x_1 + x_2 - 2x_3 + 2x_4 + 7x_5 + 5x_6 = 12 \\ -x_1 + x_2 + 2x_3 - x_4 - 3x_5 - 4x_6 = 8 \\ 2x_1 - x_2 - x_3 + x_4 - 4x_5 + 4x_6 = -21 \end{cases} \begin{cases} 3x_1 + x_2 + 2x_3 - 7x_4 - 10x_5 - 6x_6 = 28 \\ x_1 - 2x_2 + x_3 + 2x_4 + x_5 = 10 \\ -2x_1 + 2x_2 - x_3 + x_4 + x_5 + x_6 = -2 \\ 12x_1 - 6x_2 + 8x_3 - 8x_4 - 20x_5 - 14x_6 = -32 \end{cases}$$

ВАРИАНТ № 14

$$\begin{cases} 3x_1 + x_2 + 2x_3 - 7x_4 - 10 x_5 - 6x_6 = 28 \\ x_1 - 2x_2 + x_3 + 2x_4 + x_5 = 10 \\ -2x_1 + 2x_2 - x_3 - x_4 + x_5 + x_6 = -2 \\ 12x_1 - 6x_5 + 8x_5 - 8x_4 - 20x_4 - 14x_4 = -32 \end{cases}$$

ВАРИАНТ № 15

$$\begin{cases}
-3x_1 + x_2 + 2x_3 - x_4 + 12x_5 - 5x_6 = 28 \\
x_1 + 2x_2 - x_3 - x_4 - 6x_5 + 6x_6 = -24 \\
2x_1 + x_2 + 3x_3 + x_4 + 3x_5 - 6x_6 = 33 \\
2x_1 - x_2 - 3x_3 - 3x_4 - 9x_5 + 4x_6 = -23
\end{cases}$$

$$\begin{array}{l} -3x_1 + x_2 + 2x_3 - x_4 + 12x_5 - 5x_6 = 28 \\ x_1 + 2x_2 - x_3 - x_4 - 6x_5 + 6x_6 = -24 \\ 2x_1 + x_2 + 3x_3 + x_4 + 3x_5 - 6x_6 = 33 \\ 2x_1 - x_2 - 3x_3 - 3x_4 - 9x_5 + 4x_6 = -23 \end{array} \left\{ \begin{array}{l} x_1 + 2x_2 + 2x_3 - 5x_4 - 10x_5 - 8x_6 = 20 \\ x_1 + 2x_2 + x_3 - 4x_4 - 8x_5 - 6x_6 = 17 \\ -3x_1 - x_2 - x_3 + 5x_4 + 10x_5 + 9x_6 = -25 \\ 4x_1 - 2x_2 - x_3 - x_4 - 2x_5 - 4x_6 = 13 \end{array} \right.$$

BAPRAHT Nº 17

ВАРИАНТ № 18

$$3x_1 + 3x_2 - 2x_3 - 4x_4 - 5x_5 + x_6 = 6$$

$$x_1 + x_2 - x_3 - x_4 - x_5 + x_6 = 3$$

$$-2x_1 - 3x_2 + 2x_3 + 3x_4 + 3x_5 - 3x_6 = -8$$

$$9x_1 + 10x_2 - 7x_3 - 12x_4 - 14x_5 + 6x_6 = 2$$

ВАРИАНТ № 19

$$x_1 + x_2 + x_3 - 2x_4 - 12x_5 - 4x_6 = 75$$

$$2x_1 + 2x_2 + 2x_3 + 3x_4 + 4x_5 - x_6 = -11$$

$$-3x_1 + 2x_2 - 2x_3 - x_4 + x_6 = -11$$

$$3x_1 + 3x_2 + x_3 + 3x_4 + 6x_5 - 5x_6 = 2$$

ВАРИАНТ № 20

$$\begin{cases} 3x_1 + 3x_2 - x_3 - 5x_4 + 2x_5 - 5x_6 = 20 \\ 2x_1 + x_2 + x_3 - 4x_4 - x_5 - 4x_6 = 17 \\ x_1 + 2x_2 + 2x_3 - 5x_4 - 5x_5 - 5x_6 = 43 \\ 10x_1 + 11x_2 + 3x_3 - 24x_4 - 7x_5 - 24x_6 = 143 \end{cases}$$

BAPHAHT Nº 21

$$3x_1 + x_2 + 3x_3 + x_4 - 5x_5 - 3x_6 = 40$$

$$3x_1 + 2x_2 + x_3 - 2x_4 - 5x_5 + 2x_6 = 19$$

$$x_1 - 3x_2 + 2x_3 - x_4 - 13x_5 + 5x_6 = 72$$

$$x_1 + x_2 - 2x_3 + 2x_4 + 16x_5 + 9x_6 = -67$$

ВАРИАНТ № 22

$$\begin{cases} x_1 + 3x_2 + x_3 - 3x_5 - 6x_6 = 47 \\ x_1 + x_2 + 3x_3 - 4x_4 - 3x_5 - 8x_6 = 55 \\ -x_1 + x_2 - 3x_3 + 6x_4 + x_5 + 6x_6 = -33 \\ x_1 - x_2 + 3x_3 - 6x_4 - x_3 - 6x_6 = 33 \end{cases}$$

ВАРИАНТ № 23

$$\begin{cases} 3x_1 - x_2 + x_3 + 2x_4 - 5x_5 + 8x_6 = 26 \\ 3x_1 - x_2 + x_3 + x_4 - 2x_5 + 6x_6 = -1 \\ -3x_1 + x_2 + 2x_3 - x_4 - 7x_5 - 9x_6 = 55 \\ x_1 - 2x_2 + x_3 + x_4 - 3x_5 + 6x_6 = 23 \end{cases}$$

ВАРИАНТ № 24

$$\begin{cases}
-2x_1 + x_2 + 2x_3 + x_4 - x_5 + x_6 = -9 \\
-x_1 + 2x_2 - 3x_3 + 3x_4 + 2x_5 + 10x_6 = -8 \\
2x_1 + 2x_2 + x_3 - 7x_4 - 5x_5 - 4x_6 = -9 \\
x_1 - 8x_2 - 3x_3 + 9x_4 + 10x_5 - 4x_6 = 44
\end{cases}$$

ВАРИАНТ № 25

$$\begin{cases} x_1 - x_2 - 2x_3 - x_4 + 6x_5 - 5x_6 = 28 \\ 3x_1 + 2x_2 - 2x_3 + 3x_4 + 5x_5 + 2x_6 = -10 \\ 2x_1 - x_2 + 2x_3 + 2x_4 - x_5 - x_6 = -38 \\ x_1 + x_2 + x_3 + x_4 - 2x_5 + x_6 = -16 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + x_3 - 7x_4 - 7x_5 - 4x_6 = 13 \\ 2x_1 - 3x_2 - 2x_3 + 8x_4 + 8x_5 + 3x_6 = -20 \\ -x_1 + 2x_2 - 2x_3 + x_4 + x_5 + x_6 = 10 \\ 4x_1 - 3x_2 + x_3 - 2x_6 = -17 \end{cases}$$

$$\begin{cases} 3x_1 + x_2 + 2x_3 - x_4 - 3x_5 + 5x_6 = 8 \\ 3x_1 + x_2 + x_3 - x_4 - 2x_5 + 3x_6 = 9 \\ -x_1 + x_2 + 2x_3 - x_4 + 5x_5 + 9x_6 = -20 \end{cases}$$

$$\begin{cases} x_1 - x_2 - 3x_3 + x_4 + 3x_5 + 2x_6 = 10 \\ 3x_1 + 2x_2 + 3x_3 - 4x_4 - 8x_5 - 11x_6 = 12 \\ x_1 + x_2 + x_3 - x_4 - 3x_5 - 4x_6 = 2 \end{cases}$$

$$\begin{cases} x_1 - x_2 - 3x_3 + x_4 + 3x_5 + 2x_6 = 10 \\ 3x_1 + 2x_2 + 3x_3 - 4x_4 - 8x_5 - 11x_6 = 12 \\ x_1 + x_2 + x_3 - x_4 - 3x_5 - 4x_6 = 2 \end{cases}$$

$$\begin{cases} x_1 - x_2 - 3x_3 + x_4 + 3x_5 + 2x_6 = 10 \\ 3x_1 + 2x_2 + 3x_3 - 4x_4 - 8x_5 - 11x_6 = 12 \\ x_1 + x_2 + x_3 - x_4 - 3x_5 - 4x_6 = 2 \\ 7x_1 + 7x_2 + 11x_1 - 11x_2 - 25x_5 - 32x_6 = 2 \end{cases}$$

ВАРИАНТ № 28

$$\begin{cases} x_1 - x_2 - 3x_3 + x_4 + 3x_5 + 2x_6 = 10 \\ 3x_1 + 2x_2 + 3x_3 - 4x_4 - 8x_5 - 11x_6 = 12 \\ x_1 + x_2 + x_3 - x_4 - 3x_5 - 4x_6 = 2 \\ 7x_1 + 7x_2 + 11x_3 - 11x_4 - 25x_5 - 32x_6 = 18 \end{cases}$$

ВАРИАНТ № 29

$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 + 8x_5 - 5x_6 = 41 \\ x_1 - 2x_2 - 3x_3 + x_4 - 20x_5 + 15x_6 = -93 \\ 2x_1 + 2x_2 + 2x_3 - x_4 + 15x_5 + x_6 = 23 \\ 2x_1 + x_2 - x_3 - x_4 - x_5 + 13x_6 = -59 \end{cases} \begin{cases} x_1 - x_2 - 2x_3 + 2x_4 + 6x_5 + 2x_6 = 18 \\ -x_1 + 2x_2 - x_3 - x_5 + 5x_6 = 3 \\ 2x_1 + x_2 - 2x_3 - x_4 + 5x_5 + 3x_6 = 0 \\ -x_1 - 6x_2 + x_3 + 6x_4 + 3x_5 - 7x_6 = 33 \end{cases}$$

ВАРИАНТ Ж 30

$$\begin{cases} x_1 - x_2 - 2x_3 + 2x_4 + 6x_5 + 2x_6 = 18 \\ -x_1 + 2x_2 - x_3 - x_5 + 5x_6 = 3 \\ 2x_1 + x_2 - 2x_3 - x_4 + 5x_5 + 3x_6 = 0 \\ -x_1 - 6x_2 + x_3 + 6x_4 + 3x_5 - 7x_6 = 33 \end{cases}$$

BAPHAHT No. 31

$$\begin{cases} 2x_1 + 3x_2 - x_3 + 3x_4 + 4x_5 + 14x_6 = 28 \\ x_1 + x_2 - x_3 - x_4 + 5x_5 - 6x_6 = 14 \\ 2x_1 + x_2 + 3x_3 + x_4 + 2x_5 + 8x_6 = -16 \\ 2x_1 - x_2 - x_3 + x_4 + 6x_5 = 20 \end{cases} \begin{cases} 2x_1 + x_2 - 2x_3 + x_4 + 3x_5 + 3x_6 = -33 \\ 2x_1 - 3x_2 - x_3 + 3x_4 + 6x_5 - 3x_6 = 13 \\ -x_1 - 2x_2 - x_3 + 5x_4 + 2x_5 + x_6 = 16 \\ 2x_1 + 8x_2 + x_3 - 12x_4 - 7x_5 + 4x_6 = -6 \end{cases}$$

ВАРИАНТ № 32

$$2x_1 + 3x_2 - x_3 + 3x_4 + 4x_5 + 14x_6 = 28$$

$$x_1 - x_2 - x_3 - x_4 + 5x_5 - 6x_6 = 14$$

$$2x_1 + x_2 + 3x_3 + x_4 + 2x_5 + 8x_6 = -16$$

$$2x_1 - x_2 - x_3 + x_4 + 6x_5 - 3x_6 = 10$$

$$2x_1 - x_2 - x_3 + x_4 + 6x_5 = 20$$

$$2x_1 + x_2 - x_3 + x_4 + 6x_5 - 3x_6 = 10$$

$$2x_1 - x_2 - x_3 + x_4 + 6x_5 = 20$$

$$2x_1 + 8x_2 + x_3 - 12x_4 - 7x_5 + 4x_6 = -66$$

ВАРИАНТ № 33

ВАРИАНТ № 34

$$\begin{cases} x_1 + 3x_2 - x_3 + 3x_4 + 6x_5 + 5x_6 = -51 \\ 3x_1 + 2x_2 - 2x_5 - 3x_4 - 6x_5 - 8x_6 = 82 \\ -x_1 + x_2 + 2x_3 - 2x_4 - 4x_5 - 2x_6 = 13 \\ -3x_1 + x_2 + 2x_4 + 4x_4 + 5x_6 = -44 \end{cases}$$

$$\begin{cases} 3x_1 - x_2 + 2x_3 + 3x_4 - 11x_5 + 21x_6 = 9 \\ -x_1 - x_2 + x_3 + 2x_4 - 2x_5 + 4x_6 = 7 \\ 2x_1 + x_2 + 3x_3 - 2x_4 + 8x_5 + 7x_6 = -20 \\ -x_1 + x_2 - x_3 - x_4 + 3x_5 - 7x_6 = 4 \end{cases}$$

3 А Д А Ч А M_2 7. Выполнить указанные действия с комплексными числами, представив ответ в алгебраической форме: $Z_1 + Z_2$, $Z_2 - Z_3$, $Z_1 \cdot Z_4$, Z_2 / Z_5 .

) √ 9	77	-	7		7
BAP.	Z ₁	Z ₁	Z ₃	Z ₄	Z ₅
1	-1-5i	-2 - 31	5 – i	2+5i	4-7i
2	4 + 5 i	3 - 5 i	5 - 6 i	2 + i	<u>-5</u> +4i
3	-3 + 4 i	5 - 6i	4 - 2 i	3 -7 i	-8 + 4i
4	-2 + 3i	-1 + i	-10 - i	-7+5i	1-2 <i>i</i>
5	2 - 7 i	2 - 7 i	-7 -7i	-5+2i	-2+2i
6	2 -5 i	-1-5i	-2 -2 <i>i</i>	-7 +2 i	3 +5 i
7	5 – 2 i	-7 + i	1 - i	3 +6 i	-6 -5i
8	3+6i	1+4 <i>i</i>	4 – 6 <i>i</i>	-10 + 3 i	-8 + 3 i
9	-3-5 <i>i</i>	+6-4 <i>i</i>	~7 - i	4 + 2 i	~2 + 5 i
10	-1-2i	4 +2i	2+3i	2 + 3 i	-1+2 <i>i</i>
11	3 – i	-5-2 <i>i</i>	3+3 <i>i</i>	-5-7i	-8-6i
12	-5-7i	-1+2i	-8+61	-2-4i	-2-6i
13	-2-6 <i>i</i>	-7+6i	-5+58	-8-2i	-6+2 <i>i</i>
14	-3- i	5 2 i	-5-5 <i>i</i>	5+2 i	-6+4 <i>i</i>
15	-5+ i	-10 - 2 i	3 - 7 i	-8-3i	-8-5 <i>i</i>
16	-7-6i	3-7i	-10+6i	3 - 1	4+3i
17	4 – 6 i	2-21	4-i	-7- i	4-51
18	-1-6 <i>i</i>	5 + 5 i	-9-6i	-9+6i	2 + 5 i
19	-8-i	-2- i	-5-2i	2+6 <i>i</i>	-6 + 5 i
20	-8+3 <i>i</i>	-6+3 <i>i</i>	-1+5i	-2+5i	3+3 <i>i</i>
21	-7+1	7 - i	-10+3 i	-8-4 <i>i</i>	-5-7i
22	4+3i	~-1+2 <i>i</i>	1+31	-10+ i	-7+6i
23	-10-21	-7+5i	-2+3 <i>i</i>	-8-i	-8-3 <i>i</i>
24	4+5i	3 – 5 i	5-6i	2 + i	-5+4i
25	-3+4i	5-6i	4 - 2 i	3 – 7 i	-8+4 <i>i</i>
26	-2+3i	-1 + i	- 10 - i	-7+5i	1 – 2 i
27	2-7i	2-7 i	-7-7 i	-5+2 <i>i</i>	-2+2i
28	2-5 <i>i</i>	-1-51	-2-2 <i>i</i>	-7+2i	3+5 <i>i</i>
29	5-2i	-7+ i	1-I	3+6 <i>i</i>	-6-5i
30	3+6 <i>i</i>	1+4 <i>i</i>	4 - 6i	-10+3i	-8+3 <i>i</i>
31	-3-5i	-6-4 <i>i</i>	-7 - i	4+2 <i>i</i>	-2+5 <i>i</i>
32	-1-2 i	4+2:	2 + 3 i	2+3 <i>i</i>	-1+2 <i>i</i>
33	3 - i	-5-2i	3+3i	-5-7i	-8-6 <i>i</i>
34	-5-7i	-1+2 <i>i</i>	-8+6i	-2-4i	-2-6 <i>i</i>
35	-2-6i	-7+6i	-5+5i	-8-2i	-6+2i

3 А Д А Ч А Ма 8. По заданным комплексным числам Z_1, Z_2 и Z_1 и показателям K, L, M и N вычислить $Z_1^K \cdot Z_2^L$ и Z_2^M / Z_3^N . Ответ представить в алгебраической форме.

Ng Bap.	Z ₁	Z ₂	z ₃	K	L	М	N
1	$1+\sqrt{3}i$	$-\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}i$	$-\sqrt{1+\sqrt{2}} + \sqrt{\sqrt{2}-1}i$	2	6	9	4
2	1+ i	$-\sqrt{1+\sqrt{2}}+\sqrt{\sqrt{2}-1} i$	$-1 - \sqrt{5} + \sqrt{10 + 2\sqrt{5}} i$	3	6	18	5
3	$\sqrt{3} + i$	$\sqrt{\sqrt{2}-1} + \sqrt{1+\sqrt{2}} \ell$	$1 - \sqrt{5} + \sqrt{10 + 2\sqrt{5}} i$	9	4	10	5
4	~1+√3 i	$\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}i$	$1 + \sqrt{5} + \sqrt{10 - 2\sqrt{5}}i$	7	4	15	10
5	-1+1	$-\sqrt{\sqrt{2}-1}+\sqrt{1+\sqrt{2}} i$	$-1 + \sqrt{5} + \sqrt{10 + 2\sqrt{5}} i$	11	8	12	5
6	$-\sqrt{3} + i$	$-\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}i$	1+ i	10	4	15	9
_7	$\sqrt{2+\sqrt{3}} + \sqrt{2-\sqrt{3}}i$	$-\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}i$	1+1	7	5	9	17
8	$\sqrt{1+\sqrt{2}}+\sqrt{\sqrt{2}-1} i$	$-\sqrt{\sqrt{2}-1}+\sqrt{1+\sqrt{2}} i$	$\sqrt{3} + l$	10	4	12	7
9	$-\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}i$	-1+√3 <i>t</i>	$-\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}i$	8	5	21	20
10	$-\sqrt{1+\sqrt{2}}+\sqrt{\sqrt{2}-1}$	$-\sqrt{\sqrt{2}-1} + \sqrt{1+\sqrt{2}} i$	- √3 + I	4	8	18	15
21	$\sqrt{\sqrt{2}-1} + \sqrt{1+\sqrt{2}} i$	$-\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}i$	1+ √3 (12	3	20	17
12	$-\sqrt{\sqrt{2}-1}+\sqrt{1+\sqrt{2}} i$	1+1	$\sqrt{1+\sqrt{2}} + \sqrt{\sqrt{2}-1} i$	10	6	17	22
13	$\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}i$	$-\sqrt{3}+i$	$-\sqrt{1+\sqrt{2}} + \sqrt{\sqrt{2}-1}i$	14	2	27	24
14	$-\sqrt{2-\sqrt{3}} + \sqrt{2+\sqrt{3}}i$	$\sqrt{2+\sqrt{3}} + \sqrt{2-\sqrt{3}} i$	1+1	10	6	15	27
LS	$1 + \sqrt{5} + \sqrt{10 - 2\sqrt{5}i}$	$\sqrt{\sqrt{2}-1} + \sqrt{1+\sqrt{2}} i$	$-\sqrt{\sqrt{2}-1}+\sqrt{1+\sqrt{2}}i$	15	6	17	13
16	$-1 + \sqrt{5} + \sqrt{10 + 2\sqrt{5}}i$	$\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}i$	1+ i	10	4	9	18
12	$1 - \sqrt{5} + \sqrt{10 + 2\sqrt{5}i}$	$-\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}i$	$-\sqrt{2+\sqrt{3}} + \sqrt{2-\sqrt{3}} i$	5	9	16	4
18	$-1 - \sqrt{5} + \sqrt{10 - 2\sqrt{5}}i$	$-\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}i$	$\sqrt{3} + i$	5	0	9	15
19	$-1+\sqrt{3} i$	$-\sqrt{1+\sqrt{2}}+\sqrt{\sqrt{2}-1}$ i		6	10	12	10
20	$\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}i$	-1+1	$\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}i$	15	3	15	18
21	$\sqrt{\sqrt{2}-1}+\sqrt{1+\sqrt{2}}i$	$-\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}i$	$-\sqrt{3} + i$	6	3	20	18
22	$-\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}i$	$\sqrt{3} + i$	-1 + i	10	6	15	27
23	$1 + \sqrt{5} + \sqrt{10 - 2\sqrt{5}i}$	1 + √3 i	$-\sqrt{3}+i$	5	7	10	11_
24	1 + √3 i	$\sqrt{2+\sqrt{3}} + \sqrt{2-\sqrt{3}} i$	$\sqrt{\sqrt{2}-1} + \sqrt{1+\sqrt{2}} i$	7	8	9	14
25	$-\sqrt{1+\sqrt{2}} + \sqrt{\sqrt{2}-1}$		$\sqrt{1+\sqrt{2}}+\sqrt{\sqrt{2}-1} i$	4	12	15	28
26	$-\sqrt{\sqrt{2}-1}+\sqrt{1+\sqrt{2}}$ i		$\sqrt{3} + i$	4	9	14	13
27	-1+ i	$\sqrt{\sqrt{2}-1} + \sqrt{1+\sqrt{2}}$	1 + 4	7	6	14	18
28	$\sqrt{3} + i$	$-\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}i$	-1 + i	5	4	9	17

Окончание таблицы No Z_1 K L N Z_2 Z_3 вар. $-1 + \sqrt{5} + \sqrt{10 + 2\sqrt{5}}i$ $\sqrt{2 + \sqrt{3}} + \sqrt{2 - \sqrt{3}}i$ 1 + 1 29 7 10 20 $\sqrt{1+\sqrt{2}} + \sqrt{\sqrt{2}-1} i - \sqrt{2+\sqrt{3}} + \sqrt{2-\sqrt{3}}i$ $-\sqrt{3} + i$ 30 6 19 20 $1 - \sqrt{5} + \sqrt{10 + 2\sqrt{5}i}$ $\sqrt{2 - \sqrt{3}} + \sqrt{2 + \sqrt{3}}i$ $\sqrt{3} + i$ 31 5 22 3 20 $-1 - \sqrt{5} + \sqrt{10 - 2\sqrt{5}}i$ - l + √3 i $-\sqrt{3}+i$ 32 5 8 17 19 $-\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}i$ $-1+\sqrt{5}+\sqrt{10+2\sqrt{5}}i$ $-\sqrt{3} + i$ 33 6 19 5 10 $-\sqrt{\sqrt{2}-1}+\sqrt{1+\sqrt{2}}i$ $-\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}i$ $-\sqrt{3} + 1$ 34 4 9 10 $\sqrt{2-\sqrt{3}} + \sqrt{2+\sqrt{3}} i$ $\sqrt{1+\sqrt{2}} + \sqrt{\sqrt{2}-1}$ $1 + \sqrt{3} i$ 35 17 12

ЗАДАЧА № 9. Найти все значения корней к-й степени из заданного комплексного числа Z. Ответ представить в алгебраической форме. На чертеже комплексной плоскости изобразить полученные значения корней.

Me sap.	Z	k	№ вар.	Z	k
1	$1+\sqrt{3}i$	4	19	$-1 + \sqrt{3} i$. 6
2	1 + 1	3	20	$\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}i$	4
. 3	$\sqrt{3} + i$	4	21	$\sqrt{\sqrt{2}-1} + \sqrt{1+\sqrt{2}} i$	3
4	$-1+\sqrt{3}i$	5	22	$-\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}i$	4
5	-1 + i	3	23	$1 + \sqrt{5} + \sqrt{10 - 2\sqrt{5}}i$	5
6	$-\sqrt{3} + i$	4	24	$1+\sqrt{3}i$	4
7	$\sqrt{2+\sqrt{3}} + \sqrt{2-\sqrt{3}} i$	5	25	$-\sqrt{1+\sqrt{2}}+\sqrt{\sqrt{2}-1}$ i	3
8	$\sqrt{1+\sqrt{2}} + \sqrt{\sqrt{2}-1} i$	6	26	$-\sqrt{\sqrt{2}-1}+\sqrt{1+\sqrt{2}}i$	4
9	$-\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}i$	4	27	-1 + i	4
10	$-\sqrt{1+\sqrt{2}}+\sqrt{\sqrt{2}-1}i$	5	28	$\sqrt{3} + i$	5
11	$\sqrt{\sqrt{2}-1} + \sqrt{1+\sqrt{2}} i$	3	29	1 + 1	ó
12	$-\sqrt{\sqrt{2}-1}+\sqrt{1+\sqrt{2}}i$	4	30	$\sqrt{1+\sqrt{2}} + \sqrt{\sqrt{2}-1} i$	5
13	$\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}i$	5	31	$1 - \sqrt{5} + \sqrt{10 + 2\sqrt{5}}i$	3
14	$-\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}i$	3	32	$-1-\sqrt{5}+\sqrt{10-2\sqrt{5}}i$	4
15_	$1+\sqrt{5}+\sqrt{10-2\sqrt{5}}i$	6	33	$-\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}$	6
16	$-1+\sqrt{5}+\sqrt{10+2\sqrt{5}}i$	4	34	$-\sqrt{3} + i$	3
17	$1 - \sqrt{5} + \sqrt{10 + 2\sqrt{5}}i$	5	35	$\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}i$	5
18	$-1 - \sqrt{5} + \sqrt{10 - 2\sqrt{5}}i$	3	36	$-1 + \sqrt{5} + \sqrt{10 + 2\sqrt{5}} i$	6

 $\overline{3}$ А Д А Ч А \overline{M}_1 10. Даны два геометрических вектора \overline{P}_1 и \overline{P}_2 таких, что вектор \overline{P}_1 перпендикулярен вектору \overline{Q} , а вектор \overline{P}_2 вектору \overline{Q} коллинеарен.

Номер варианта	Коорди	наты векту	ора \overline Р	Координ	аты вектора	ιQ̄
i	0	7	- 7	-2	3	- 1
2	~ 5	8	-3	-3	2	l
3	7	3	2	- 3	-1	- 2
4	10	-2	2	-3	1	- 3
5	-7	6	-3	1	-2	3
6	10	_ 5	7	- 2	1	-5
7	. 0	9	-1	-2	- 3	1
8	3	-2	-5	1	2	1
9	-4	1	11	2	3	- 3
10	0	9	1	2	3	-1
11	2	- 4	12	1	-1	- 5
· 12	8	- 4	- 10	1	1	- 5
13	1	6	-1	- l	-2	i
14	-7	-3	-2	3	i	2
15	6	-9	1	3	- 2	- 2
16	7	- 3	- 2	- 2	2	- 1
17	4	2	12	-1	-3	-5
18	12	- 4	6	- 3	1	-5
19	2	10	-2	-3	-3	L
20	3	5	2	-1	. 1	2
21	-6	2	6	3	-1	-1
22	3	4	1	1	2	1
23	0	7	-7	-1	- 2	-4
24	1	-9	6	2	2	-3
25	0	8 -	-4	-2	- 2	2
26	- 5	- 2	-3	2	1	2
27	-6	3	7	2	3	– 1

Окончание таблицы

Номер варианта	Коорд	инаты векто	pa P	Коорди	Координаты вектора $\overline{f Q}$			
28	6	2 .	-6	-3	1	1		
29	0	-2	8	1	-1	- 3		
30	0	4	- 8	-2	2	- 2		
31	0	7	-7	-2	-1	3		
32	10	- 10	6	-1	3	- 5		
33	-7	3	2	2	-2	1		
34	2	0	-4	1	1	1		
35	- 2	-8	-4	-1	- 3	- 3		

ЗАДАЧА № 11.

А. Нечётные варианты.

В ромбе ABCD даны коодинаты его центра Q и вершины A, а также – его площадь S. Найти уравнения сторон ромба.

Б. Чётные варианты.

В ромбе *ABCD* даны уравнения двух его сторон *AB* и *AD*, а также координаты вершины *C*. Найти площадь ромба.

	BAP	И <u>АН</u>	T No	1	ВАРИАНТ № 2		
	Q	A		S	Уравнения сторон ромба	C	
15	10	7	2	32	3X - 4Y + 2 = 0 $4X - 3Y - 9 = 0$	20	19
	BAP	ИАН	T N₂	3	ВАРИАНТ № 4		
	Q	. A		S	Уравнения сторон ромба	C	
16	10	7	1	36	3X - 5Y + 3 = 0 5X - 3Y - 11 = 0	12	11
	BAP	ИАН	T Ñs	5	ВАРИАНТ № 6		
	Q	A	ļ	S	Уравнения сторон ромба	С	
12	13	6	7	24	7X - 9Y + 60 = 0 $9X - 7Y + 36 = 0$	19	25
<u> </u>	BAP	ИАН	T №	7	ВАРИАНТ № 8		
	Q	A	1	S	Уравнения сторон ромба	С	,
4	9	2	7	8	3X - 4Y + 24 = 0 $4X - 3Y + 11 = 0$	18	23

						_	
	BAP	ИАН	Γ №	9	ВАРИАНТ № 1	0	
	Q	A		S	Уравнения сторон ромба	С	
13	9	8	4	20	2X - 3Y + 4 = 0	14	14
ļ,					3X - 2Y - 4 = 0		
	BAPI	AHI	No I		ВАРИАНТ № 1	-	
	Q	A		S	Уравнения сторон ромба	C	
8	11	1	4	28	3X - 5Y = 0	13	11
⊢	DAD	ИАН	T Ma	12	5X - 3Y - 16 = 0 ВАРИАНТ № 1	4	
 -		A		S		' с	
: —	<u>Q</u>	A		- 3	Уравнения сторон ромба		
10	8	3	ι	28	4X - 5Y + 22 = 0 5X - 4Y + 5 = 0	25	28
├─	BAP	ИАН	T No	15		6	
	Q	A		S	Уравнения сторон ромба	C	
 , ,	-	10	_	2.4	5X - 6Y - 3 = 0	a. I	
16	13	10	7	24	6X - 5Y - 19 = 0	31	29
	BAP	ИАН	T №	17	ВАРИАНТ № 1	8	
	Q	A	i	S	Уравнения сторон ромба	С	
11	8	8	5	12	4X - 5Y + 19 = 0	22	25
<u> </u>	-	_			5X - 4Y + 8 = 0	<u> </u>	
	BAP	ИАН	T №	19	ВАРИАНТ № 2	:0	
	Q	. A	!	S	Уравнения сторон ромба	<u>C</u>	
10	10	2	2	32	X - 3Y = 0	10	6
<u> </u>	<u>L</u>	<u></u>		<u> </u>	3X - Y - 16 = 0	1	<u> </u>
ļ	BAP	ИАН		21	ВАРИАНТ № 2	2	
L	Q		1	S	Уравнения сторон ромба	С	
15	18	7	10	32	9X - 11Y + 2 = 0	21	21
	DAD	ИАН	T MA	23	11 X - 9 Y - 2 = 0 BAPHAHT № 2	1	Щ
\vdash		1			!	1	
<u> </u>	ϱ	1	1	S	Уравнения сторон ромба	_ C	
17	18	7	8	40	2X - 3Y + 15 = 0 $3X - 2Y = 0$	16	19
	BAP	ИАН	T №	25	ВАРИАНТ № 2	26	
	Q	_	1	S	Уравнения сторон ромба	C	
16	12	6	2	40	5X - 7Y + 25 = 0	14	17
					7X - 5Y + 11 = 0	<u> </u>	

	ВАРИ	АНТ	№ 27		ВАРИАНТ № :	28	
Q		,	4	S	Уравнения сторон ромба		
12	19	3	10	36	4X - 5Y - 14 = 0 $5X - 4Y - 22 = 0$	24	20
	ВАРИ	AHT	№ 29		ВАРИАНТ № :	30	
Q		,	4	S	Уравнения сторон ромба		ď ,
3	12	1	10	8	$\begin{array}{c} X - 2Y - 4 = 0 \\ 2X - Y - 11 = 0 \end{array}$	12	7
	ВАРИ	AHT	№ 31		ВАРИАНТ №	32	<u> </u>
Q			4	S	Уравнения сторон ромба	ļ ,	С
12	15	5	8	28	3X - 4Y - 2 = 0 $4X - 3Y - 19 = 0$	24	21
	ВАРИ	AHT	<i>№</i> 33		ВАРИАНТ №	34	
Q			A	S	Уравнения сторон ромба	,	С
14	11	7	4	28	5X - 6Y - 26 = 0 $6X - 5Y - 40 = 0$	32	26
	ВАРИ	AHT	Nº 35		ВАРИАНТ №	36	
Q		_	Á ·	S	Уравнения сторон ромба		<i>C</i>
13	9	7	3	24	3X - 4Y - 13 = 0 4X - 3Y - 22 = 0	21	16

3 А Д А Ч А № 12. Найти точку, симметричную данной точке *А* относительно прямой, проходящей через данную точку *В* и перпендикулярной данной плоскости.

№ вар.		ордина очки и			ордина очки		Уравнение данной плоскости
1	4	12	_ 3	1	9	0	X+Y+Z-2=0
2	6	10	9	3	7	6	X+Y-Z+3=0
3	5	6	9	2	3	6	X - Y + Z - 6 = 0
4	11	4	11	8	1	8	X - Y - Z + 11 = 0
. 5	15	7	10	9	1	4	X+Y+2Z-5=0
6	11	12	6	5	6	0	X+Y-2Z+6=0
7	6	8	15	0	2	9	X-Y+2Z-9=0
8	11	7	12	5	1	6	X-Y-2Z+5=0
9	19	11	20	8	0	9	X+Y+3Z-4=0
10	13	14	16	2	3	5	X+Y-3Z+5=0

Ni		ордина			ордина		Уравнение данной
вар.	T	очки /		T	очки л	8	плоскости
11	18	20	15	7	9	4	X - Y + 3 Z - 8 = 0
12	18	18	20	7	7	9	X - Y - 3Z + 15 = 0
13	14	15	10	8	9	4	X+2Y+Z-2=0
14	13	8	6	7	2	0	X+2Y-Z+3=0
15	7	14	_ 6	1	8	0	X-2Y+Z-6=0
16	15	15	10	9	9	4	X-2Y-Z+14=0
17	11	18	18	2	9	9	X+2Y+2Z-1=0
18	13	13	14	4	4	5	X+2Y-2Z+2=0
19	17	9	14	8	0	5	X-2Y+2Z-5=0
20	10	18	16	J	9	7	X - 2 Y - 2 Z + 4 = 0
21	16	22	16	2	8	2	X+2Y+3Z-11=0
22	17	15	22	3	1	8	X+2Y-3Z+12=0
23	17	23	16	3	9	2	X - 2Y + 3Z - 5 = 0
24	15	19	16	1	5	2	X-2i-3Z+4=0
25	20	19	18	9	8	7	X + 3 Y + Z - 11 = 0
26	12	11	14	1	0	3	X + 5Y - Z + 12 = 0
27	14	17	19	3	6	8	X-3Y+Z-5=0
28	12	6	18	1	5	7	X-3Y-Z+2=0
29	16	21	17	2	7	3	X+3Y+2Z-9=0
30	22	19	-23 -	8	5	9	X + 3Y - 2Z + 10 = 0
31	17	14	17	3	0	3	X - 3Y + 2Z - 3 = 0
32	14	2.3	16	0	9	2	X-3Y-2Z+5=0
33	22	28	27	3	9	8	X + 3Y + 3Z - 8 = 0
34	24	23	23	5	4	4	X + 3 Y - 3 Z + 9 = 0
35	19	19	25	0	0	6	X - 3Y + 3Z - 16 = 0

3 А μ А ν А ν 13. По координатам вершии треугольника ν ν найти канонические уравнения высоты, опущенной из вершины ν

№ вар.		юрдина гозки А	LPT .		оординат точки <i>В</i>	ы	Координаты точки С			
1	- 6	7	-7	- 20	-6	2	- 14	9	19	

№ вар.		ординать чки <i>А</i>	I		ординаты эчки <i>В</i>			инаты и С	
2	- 2	9	-6	-4	16	-9	2	7	-6
3	5	9	-1	11	2	-8	-1	5	1
4_	-4	8	10	- 5	23	- 13	1	-7	_11
5_	- 3	10	5	- 14	13	4	-2	7	- 2
6	1	-6	4	- 28	40	-3_	29	- 14	-6
7	-2	9	5	1	- 12	15	- 14	15	3
8	-1	8	4	11	-5	8	- 8	13	- 13
9	6	-8	6	- 19	-2	18	11	- 5	-9
10	5	- 10	- 10	- 38	2	16	16	- 1	- 35
11	8	-2	1	29	2	-31	5	- 19	14
12	5	– 3	- 10	12	-2	2	9	7	-4
13	4	3	-9	24	3	- 20	3	0	_4
14	9	- 3	1	- 15	-4	25	12	8	-14
15	4	-5	-9	15	4	-31	6	- 17	-1
16	-8	-2	-1	0	- 32	17	- 24	10	-1
17	-7	1	- 10	- 10	~19	-1	- 19	5	- 16
18_	-6	-3	- 5	-31	0	3	-4	~3	-21
19	7	-3	10	-8	- 17	31	1	7	-2
20	- 5	4	9	25	- 22	- 1	– 23	2	23
21	4	-4	*	14	8	-27	5	- 25	15
22	9	-2	-6	14	11	-12	17	-4	0
23	1	2	1_	0_	15	- 29	3	-18	1
24	8	- 3	10	36	- 31	11	-9	2	23
25	-6	9	7	-8	- 11	19	-2	17	7_
26	-9	-3	-2	10	12	- 36	-5	- 21	12
27	-1	-2	1	26	5	- 29	-1	-16	19
28	- 5	9	-1	- 23	4	7	8	10	-14
29	7	2	8	11	- 28	36	-7	20	6_
30	5	-6	-9	11	25	- 52	17	- 32	-1
31	-7	4	-3	12	- 32	-7	-30	7	-4
32	4	-6	9	5	-7	_22	-1	5	16

№ вар.	Координаты точки А			Координаты точки <i>В</i>			Координаты точки С		
33	4	-3	-2	- 16	27	- 16	20	- 15	-10
34	2	-7	3	28	- 10	-14	-2	- 13	19
35	6	- l	7	-23	13	18	16	1	-9

З А Д А Ч А № 14. Через данную прямую проходят две плоскости. Одна из них проходит через данную точку А, вторая – через данную точку В. Найти уравнения плоскостей, которые делят пополам двугранные углы, образованные этими двумя плоскостями.

	ВАРНАНТ № 1	ВАРИАНТ № 2			
	Y + 5 Z - 3	X - 1 $Y - 3$ $Z + 3$			
	-10 -17	4 2 -1			
A (8;-1	8;-16), B(-23;7;16)	A(5;6;-2), B(-2;-1;-2)			
	ВАРИАНТ № 3	ВАРИАНТ № 4			
X + 3	Y + 1 Z - 2	X Y-1 Z-2			
8	-18 7	16 -22 -1			
A (1;-2	20; 11), B(-12; 15;-9)	A (12; -24; 3), B (-19; 21; -1)			
	ВАРИАНТ № 5	ВАРИАНТ № 6			
X + 1	Y + 5 Z	X - 3 Y + 2 Z - 4			
-4	1 2	-4 6 9			
A (4:-0	5:0), B(-5:-6:3)	A(7:-11:-3), $B(-4:2:13)$			

ВАРИАНТ № 8

$$\frac{X+5}{7} = \frac{Y-4}{18} = \frac{Z+2}{8}$$

$$\frac{X+5}{7} = \frac{Y-4}{18} = \frac{Z+2}{8}$$

$$\frac{X+3}{4} = \frac{Y-4}{-9} = \frac{Z+4}{6}$$

$$A(-16;-12;-11), B(4;23;2)$$

$$A(4;-5;0), B(-7;15;-7)$$

ВАРИАНТ № 9

$$\frac{X+5}{8} = \frac{Y-4}{-18} = \frac{Z+2}{7}$$

$$\frac{X+5}{8} = \frac{Y-4}{-18} = \frac{Z+2}{7} \qquad \frac{X+3}{16} = \frac{Y-4}{-22} = \frac{Z+4}{-1}$$

$$A(3;-8;-1), B(5;11;4) \qquad A(4;-13;-5), B(-11;3;6)$$

ВАРИАНТ № 10

ВАРИАНТ № 11

$$\frac{X+2}{7} = \frac{Y-1}{-11} = \frac{Z+4}{5}$$

$$\frac{X+2}{7} = \frac{Y-1}{-11} = \frac{Z+4}{5} \qquad \frac{X+3}{-1} = \frac{Y+2}{7} = \frac{Z+5}{11}$$

$$A(2;-11;3), B(-10;10;-12) \qquad A(-1;-12;-14), B(-7;3;7)$$

ВАРИАНТ № 13

$$\frac{X+3}{1} = \frac{Y-4}{-9} = \frac{Z-2}{3}$$

$$A(1;-5;4), B(-4;14;2)$$

$$\frac{X+3}{1} = \frac{Y-4}{-9} = \frac{Z-2}{3}$$

$$\frac{X+3}{6} = \frac{Y+2}{9} = \frac{Z-3}{4}$$

$$A(1;-5;4), B(-4;14;2)$$

$$A(-12;-9;-1), B(5;7;4)$$

BAPHAHT M 15

BAPHAHT Nº 16

$$\frac{X}{1} = \frac{Y-4}{2} = \frac{Z-1}{-4}$$

$$A(1; 8; -4), B(1; 1; 3)$$

 $X-4 \qquad Y+4 \qquad Z+5$

ВАРИАНТ № 18

$$\frac{X+2}{0}=\frac{Y}{2}=\frac{Z-1}{1}$$

$$\frac{X+5}{7} = \frac{Y+4}{18} = \frac{Z+3}{8}$$

A(-6;-17;-10), B(-1;20;6) A(-16;-20;-12), B(4;15;1)

ВАРИАНТ № 19

ВАРИАНТ № 20

$$\frac{X}{7} = \frac{1 - 2}{-11} = \frac{2 + 4}{5}$$

$$\frac{X}{7} = \frac{Y-2}{-11} = \frac{Z+4}{5} \qquad \frac{X-4}{-4} = \frac{Y-3}{9} = \frac{Z+5}{6}$$

$$A(4;-10;3), B(-8;11;-12) \qquad A(5;-6;-13), B(0;14;-2)$$

ВАРИАНТ № 21

ВАРИАНТ № 22

$$\frac{X+4}{6} = \frac{Y}{9} = \frac{Z-2}{4}$$

$$\frac{X+1}{6} = \frac{Y-1}{4} = \frac{Z}{9}$$

$$A(-7;-11;-2), B(0; 9; 9)$$

$$A(-5;-6; -9), B(2; 5; 11)$$

ВАРИАНТ № 23

ВАРИАНТ № 24

$$\frac{X+4}{-1} = \frac{Y-2}{1} = \frac{Z}{1}$$

$$\frac{X+5}{5} = \frac{Y+3}{1} = \frac{Z}{7}$$

$$A(0;-7;-8), B(-13;10;4)$$

$$A(-8;-7;-8), B(-3;-1;9)$$

$$\frac{-5}{5} = \frac{-7}{1} = \frac{-7}{7}$$

ВАРИАНТ № 25

$$\frac{X-1}{4} = \frac{Y+4}{-1} = \frac{Z+5}{-2}$$

$$\frac{X}{-1} = \frac{Y+3}{1} = \frac{Z-1}{1}$$

$$A(6:-5:-5), B(-3:-5:-2)$$

$$A (6; -5; -5), B (-3; -5; -2)$$
 $A (9; -19; -13), B (-16; 11; 10)$

BAPKAHT Nº 27

$$\frac{X+3}{-6} = \frac{Y+5}{9} = \frac{Z}{4}$$

$$\frac{X-2}{-4} = \frac{Y+2}{1} = \frac{Z-3}{2}$$

$$A (6;-12;-4), B (-7;4;7) A (7;-3;3), B (-2;-3;6)$$

$$A(7;-3;3), B(-2;-3;6)$$

ВАРИАНТ № 29

ВАРИАНТ № 30

$$\frac{X}{6} = \frac{Y+5}{4} = \frac{Z-3}{9}$$

$$\frac{X}{6} = \frac{Y+5}{4} = \frac{Z-3}{9} \qquad \frac{X+1}{5} = \frac{Y-4}{7} = \frac{Z+3}{1}$$

$$A(-4;-12;-6), B(3;-1;14) \qquad A(-9;-1;-3), B(6;10;-5)$$

ВАРИАНТ № 31

ВАРИАНТ № 32

$$\frac{X-3}{1} = \frac{Y}{2} = \frac{Z-4}{-4}$$

$$A(4\cdot 4\cdot 1) = B(4\cdot -3\cdot 8)$$

$$\frac{X-3}{1} = \frac{Y}{2} = \frac{Z-4}{-4} \qquad \frac{X-1}{0} = \frac{Y-2}{-2} = \frac{Z+4}{1}$$

$$A(4;4;1), B(4;-3;8) \qquad A(-3;-11;5), B(2;14;-15)$$

ВАРИАНТ № 33

ВАРИАНТ № 34

$$\frac{X-1}{-4} = \frac{Y+3}{1} = \frac{Z+1}{2}$$

$$\frac{X+2}{7} = \frac{Y-1}{-11} = \frac{Z-2}{-1}$$

$$A(4;-4;-5), B(-3;0;0)$$

$$A(8;-8;0), B(-7;13;6)$$

$$\frac{X+2}{7} = \frac{Y-1}{-11} = \frac{Z-2}{-1}$$
A (8;-8; 0), B (-7; 13; 6)

$$\frac{X-2}{-4} = \frac{Y-3}{1} = \frac{Z-4}{2} ; A(7;2;4), B(-2;2;7).$$

3 А Д А Ч А № 15. Луч света идёт вдоль прямой L1, заданной как линия пересечения двух плоскостей, и отражается от прямой L2, также заданной как линия пересечения двух плоскостей. Найти направляющий вектор прямой, вдоль которой пойдёт отражённый луч.

BAPHAHT M 1						
Уравнения прямой L1	Уравнення прямой L2					
2X - Y + 4Z + 10 = 0	5X - 9Y - 5Z - 44 = 0					
2X + 5Y + Z + 40 = 0	X - 3Y - 2Z - 18 = 0					
BAPNAHT M 2						
Уравнения прямой L1	Уравнения прямой L2					
X + 2Y - Z + 3 = 0	2X + Y - 2Z + 18 = 0					
3X - 8Y + 3Z + 29 = 0	X - 7Y + 2Z + 21 = 0					
ВАРИАІ						
Уравнения прямой L1	Уравнения прямой L2					
X - 8Y - Z + 33 = 0	3X - 2Y - 3Z + 22 = 0					
X - 11Y - 2Z + 47 = 0	2X - Y - Z + 16 = 0					
BAPHAHT X: 4						
Уравнения прямой L1	Уравнения прямой L2					
4X + 7Y - 2Z - 9 = 0	2X - 7Y - Z + 6 = 0					
4X + 5Y + 2Z + 5 = 0	X - 5Y - Z + 3 = 0					
BAPHAI						
Уравнения прямой L1	Уравнения прямой L2					
18 X - 17 Y - 9 Z + 50 = 0	5X + Y - 10Z - 39 = 0					
9X - 31Y - 18Z + 61 = 0	X + 2Y + Z - 3 = 0					
ВАРИА						
Уравнения прямой L1	Уравнения прямой 1.2					
3X - Y - 3Z - 26 = 0	4X + 5Y + 2Z - 29 = 0					
X + Y + Z - 6 = 0	2X + Y + 4Z - 7 = 0					
BAPHAHT X 7						
Уравнения прямой L1	Уравнения прямой L2					
7X + 12Y + 7Z + 60 = 0	3X + 4Y - 3Z + 56 = 0					
14 X - 9 Y - 7 Z + 81 = 0	3 X + 10 Y + 6 Z + 32 = 0					
BAPHAHT Me 8						
Уравнения прямой L1	Уравнения прямой L2					
9X - 2Y - 9Z - 104 = 0	7X + Y + 7Z - 21 = 0					
3 X + 2 Y + 3 Z + 2 = 0	7X + 16Y - 14Z + 21 = 0					

ВАРИАНТ № 9		
Уравнения прямой L1	Уравнения прямой L2	
18 X + 7 Y + 9 Z + 19 = 0	4X + 5Y - 4Z - 24 = 0	
6X - Y - 3Z - 49 = 0	2 X + Y + Z + 3 = 0	
ВАРИАІ		
Уравнения прямой L1	Уравнения прямой L2	
5X - 19Y - 10Z - 25 = 0	2 X + 11Y - Z + 68 = 0	
5 X + 14 Y + 5 Z + 65 = 0	X + Y - 2Z + 19 = 0	
BAPMAI		
Уравнения прямой L1	Уравнения прямой L2	
X + Y - Z - 2 = 0	X + 18 Y - 2 Z - 85 = 0	
3X + 2Y + 3Z - 13 = 0	2X + 15Y - Z - 71 = 0	
ВАРИА		
Уравнения прямой L1	Уравнения прямой L2	
X - 10Y - Z - 18 = 0	X + 4Y + 2Z + 7 = 0	
2X + Y + Z + 3 = 0	4X + Y - 2Z + 8 = 0	
ВАРИАН		
Уравнения прямой L1	Уравнения прямой L2	
3X - 5Y - 3Z + 4 = 0	X + 2Y - Z + 16 = 0	
3X + 7Y + 3Z + 16 = 0	X + 5Y + Z + 16 = 0	
ВАРИА		
Уравнения прямой L1	Уравнения прямой L2	
3X + 16Y - 6Z + 21 = 0	5X - 11Y - 5Z - 58 = 0	
3X + 4Y + 3Z + 21 = 0	5X + 3Y + 5Z + 24 = 0	
	HT 76 15	
Уравнения прямой L1	Уравнения прямой L2	
X + 2Y + Z - 4 = 0	X + 5Y + 2Z - 12 = 0	
2X - Y - Z + 12 = 0	X + 2Y - Z + 6 = 0	
BAPHAHT M- 16		
Уравнения прямой L1	Уравнения прямой L2	
X + Y - Z - 9 = 0	2X - 15Y - Z + 32 = 0	
4X + 7Y + 8Z - 57 = 0	X - 3Y + Z + I = 0	
	HT No. 17	
Уравнения прямой L1	Уравнения прямой L2	
X + 8Y + Z - 52 = 0	5X - 6Y - 5Z + 6 = 0	
X + 5Y + 2Z - 33 = 0	10 X - 6 Y + 5 Z - 9 = 0	

!

BAPHAHT M 18		
Уравнения прямой L1	Уравнения прямой L2	
4X + 9Y - 4Z - 5 = 0	X + 2Y + Z - 7 = 0	
8X + 9Y + 4Z - 37 = 0	4X + Y + 2Z - 15 = 0	
ВАРИАН		
Уравнения прямой L1	Уравнения прямой L2	
X - 2Y + Z - 10 = 0	7X - 11Y + 7Z - 49 = 0	
3 X - 2 Y - 3 Z - 20 = 0	14X - 17Y + 7Z - 84 = 0	
ВАРИАЕ		
Уравнения прямой L1	Уравнения прямой L2	
9X - 20Y - 9Z - 102 = 0	2X + 5Y + 4Z + 46 = 0	
9 X - 37 Y - 18 Z - 222 = 0	6X + 11Y + 6Z + 102 = 0	
ВАРИАТ		
Уравнения прямой L1	Уравнения прямой L2	
X + 2Y + Z + 2 = 0	X - 9Y - 2Z - 37 = 0	
14 X + 13 Y - 7 Z - 59 = 0	X - 8Y - Z - 32 = 0	
ВАРИАІ		
Уравнения прямой L1	Уравнения прямой L2	
2 X - 29 Y - Z + 135 = 0	10 X - 3 Y - 5 Z - 35 = 0	
X - 20 Y - Z + 94 = 0	5X - 9Y - 10Z + 5 = 0	
BAPHAI		
Уравнения прямой L1	Уравнения прямой L.2	
X + Y + 2Z + 3 = 0	7X - 5Y + 14Z + 9 = 0	
34 X - Y - 17 Z - 188 = 0	14X + 5Y + 7Z - 30 = 0	
BAPHAI		
Уравнения прямой L1	Уравнения прямой L2	
3X + 7Y + 3Z - 19 = 0	X - 2Y - Z + 7 = 0	
3X + 5Y + 6Z - 5 = 0	6 X - 17 Y - 12 Z + 50 = 0	
BAPHAI		
Уравнения прямой L1	Уравнения прямой L2	
9X + 11 Y + 18Z - 114 = 0	2X - 5Y - Z + 27 = 0	
18 X + 37 Y - 9 Z - 3 = 0	2X - 2Y + Z + 6 = 0	
ВАРИАНТ № 26		
Уравнения прямой L1	Уравнения прямой L2	
11 X - 4 Y - 11 Z + 6 = 0	5X + 9Y - 10Z + 3I = 0	
22 X + 7 Y + 11 Z + 171 = 0	10 X + 3 Y + 5 Z + 77 = 0	

ВАРНАНТ № 27		
Уравнения прямой L1	Уравнения прямой L2	
6X ~ 5Y ~ 3Z + 5 = 0	2X + 2Y - Z + 20 = 0	
9X - 14Y - 9Z + 2 = 0	5X + 8Y + 5Z + 20 = 0	
ВАРИАЯ		
Уравнения прямой L1	Уравнения прямой L2	
3 X - 20 Y - 3 Z + 109 = 0	10X + 11Y + 5Z + 5 = 0	
X - 11Y - 2Z + 56 = 0	5X + 13Y + 10Z - 20 = 0	
ВАРИАТ		
Уравнения прямой L1	Уравнения прямой L2	
2X + 2Y + Z - 3 = 0	2X + Y - Z - 10 = 0	
X + 4Y + Z + 14 = 0	X - 2Y - 2Z - 19 = 0	
ВАРИАІ		
Уравнения прямой L1	Уравнения прямой L2	
X - 3Y + Z - 26 = 0	6X - 19Y + 3Z - 141 = 0	
4X + 3Y - 2Z + 28 = 0	3 X - 13 Y + 3 Z - 102 = 0	
ВАРИАІ		
Уравнения прямой L1	Уравнения прямой L2	
6X - Y - 3Z + 12 = 0	4X + 5Y - 8Z - 17 = 0	
3X - 23Y + 6Z - 9 = 0	4X - 13Y + 4Z + 13 = 0	
BAPHAI		
Уравнения прямой L1	Уравнения прямой L2	
11X + 12Y + 11Z - 51 = 0	X + 2Y - 2Z - 26 = 0	
11 X - 6 Y - 11 Z - 35 = 0	4X + 5Y + 4Z - 23 = 0	
BAPHAI		
Уравнения прямой L1	Уравнения прямой L2	
2X - Y + 4Z + 8 = 0	X - 4Y - 2Z + 21 = 0	
X + 4Y - Z - 26 = 0	3X + 8Y + 6Z - 45 = 0	
BAPHA		
Уравнения прямой L1	Уравнения прямой L2	
3X + 8Y + 3Z - 28 = 0	4X - Y + 2Z - 39 = 0	
6X + 23Y + 3Z - 34 = 0	12 X - 13 Y - 6 Z - 67 = 0	
ВАРИА	HT Na 35	
Уравнения прямой L1	Уравнения прямой L2	
7X + 10Y - 7Z + 59 = 0	X - 6Y - 2Z + 4 = 0	
7X + 9Y - 14Z + 79 = 0	2X - 3Y + 2Z - 1 = 0	

3 А Д А Ч А № 16. Дана матрица линейного оператора в базисе $\{e_1,e_2,e_3\}$. Найти матрицу этого оператора в базисе $\{f_1,f_2,f_3\}$ если

$$f_1 = C_{11}e_1 + C_{12}e_2 + C_{13}e_3$$

$$f_2 = C_{21}e_1 + C_{22}e_2 + C_{23}e_3$$

$$f_3 = C_{31}e_1 + C_{32}e_2 + C_{33}e_3.$$

ВАРИАНТ № 1

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} -2 & -4 & -2 \\ -1 & -1 & -1 \\ 2 & 1 & 1 \end{array} \right)$$

новый базис

$$f_1 = 4 e_1 + 3 e_2 + 3 e_3$$

 $f_2 = e_1 + e_2 + e_3$
 $f_3 = 4 e_1 + 3 e_2 + 4 e_3$

ВАРИАНТ № 3

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} 3 & 2 & -2 \\ 1 & -2 & 1 \\ -3 & -2 & -1 \end{array} \right)$$

новый базис

$$f_1 = e_1 + 2e_2 + 2e_3$$

 $f_2 = e_1 + 3e_2 + 3e_3$
 $f_3 = e_1 + 3e_2 + 4e_3$

ВАРИАНТ № 2

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & -2 & -1 \\ -2 & 2 & -1 \\ 2 & -1 & -1 \end{array} \right)$$

новый вазис

$$f_1 = e_1 + e_2 + e_3$$

 $f_2 = 2e_1 + 3e_2 + 3e_3$
 $f_3 = e_1 + e_2 + 2e_3$

ВАРИАНТ № 4

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} 2 & -4 & -2 \\ 4 & -3 & 4 \\ 3 & -2 & -6 \end{array} \right)$$

новый вызис

$$f_1 = 3 e_1 + e_2 + e_3$$

 $f_2 = 2 e_1 + e_2 + e_3$
 $f_3 = 3 e_1 + e_2 + 2 e_3$

ВАРИАНТ № 5

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} 2 & -1 & -3 \\ -3 & 1 & -1 \\ -3 & -2 & 4 \end{array} \right)$$

НОВЫЙ БАЗИС $f_1 = -2e_1 - e_2 - e_3$

$$f_2 = -5 e_1 - 3 e_2 - 3 e_3$$

$$f_1 = -5 e_1 - 3 e_2 - 2e_3$$

ВАРИАНТ Ж 6 МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{ccc} -2 & 2 & -3 \\ 4 & -1 & -1 \\ -3 & 1 & -5 \end{array} \right)$$

$$f_1 = -e_2 - 2e_3$$

 $f_2 = e_1 + e_2 + e_3$
 $f_3 = -e_1 - 3e_2 - 4e_3$

ВАРИАНТ № 7 Матрица оператора

$$\mathbf{A} = \begin{pmatrix} -3 & -4 & 2 \\ 2 & -2 & -1 \\ -1 & -1 & -4 \end{pmatrix}$$

$$\mathbf{H} \circ \mathbf{B} = \mathbf{M} \quad \mathbf{B} = \mathbf{A} \cdot \mathbf{3} = \mathbf{M} \circ \mathbf{A} = \mathbf{A} \cdot \mathbf{A} = \mathbf{A} = \mathbf{A} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{A} = \mathbf{$$

$$f_1 = e_1 + e_2 + e_3$$

 $f_2 = e_1 + 2e_2 + 2e_3$
 $f_3 = e_1 + 4e_2 + 5e_3$

ВАРИАНТ № 8

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{ccc} 1 & 2 & -1 \\ 1 & -1 & -4 \\ 1 & -2 & 3 \end{array} \right)$$

новый базис

$$f_1 = 3 e_1 + 2 e_2 + 2 e_3$$

 $f_2 = e_1 + e_2 + e_3$
 $f_3 = -5 e_1 - 2 e_2 - e_3$

ВАРИАНТ № 9

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \begin{pmatrix} -2 & 2 & -2 \\ 4 & -1 & -1 \\ -1 & -1 & 4 \end{pmatrix}$$

новый вазис

$$f_1 = -e_1 - e_3$$

 $f_2 = -3 e_1 - e_2 - 3 e_3$
 $f_3 = -3 e_1 - e_2 - 2 e_3$

ВАРИАНТ № 10 МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} 3 & -4 & 1 \\ -3 & 2 & -3 \\ -2 & 2 & 3 \end{array} \right)$$

новый базис

$$f_1 = e_1 + e_2 + e_3$$

 $f_2 = 2e_1 + 3e_2 + 3e_3$
 $f_3 = 3e_1 + 5e_2 + 6e_3$

ВАРИАНТ Ж 11 МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \begin{pmatrix} -1 & -2 & 1 \\ 1 & 2 & -3 \\ -1 & 2 & -1 \end{pmatrix}$$

$$f_1 = -e_1 - 3 e_2 - 5 e_3$$

$$f_2 = -e_2 - 2e_3$$

$$f_3 = -e_1 - 3 e_2 - 4 e_3$$

ВАРИАНТ № 12 МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} 2 & -4 & 2 \\ 1 & -3 & -1 \\ -1 & 2 & -5 \end{array} \right)$$

новый рузис

$$f_1 = -e_2 - e_3$$

 $f_2 = e_1 + e_2 + e_3$
 $f_3 = 3e_1 + 5e_2 + 6e_3$

ВАРИАНТ № 13 МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \begin{pmatrix} -2 & -2 & -2 \\ -4 & 1 & -1 \\ -2 & -2 & -1 \end{pmatrix}$$

новый базис

$$f_1 = e_1 + e_2 + e_3$$

 $f_2 = -e_1 - e_3$
 $f_3 = -5 e_1 - 2 e_2 - 4 e_3$

ВАРИАНТ № 14

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} -3 & -1 & -2 \\ -4 & 2 & -2 \\ 3 & 2 & 2 \end{array} \right)$$

новый базис

$$f_1 = -2 e_1 - e_2$$

 $f_2 = -5 e_1 - 3 e_2 - e_3$
 $f_3 = -2 e_1 - e_2 + e_3$

ВАРИАНТ № 15

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} 3 & -3 & -3 \\ -1 & 2 & -4 \\ -3 & -1 & -2 \end{array} \right)$$

новый базис

$$f_1 = 4 e_1 + 3 e_2 + 2 e_3$$

 $f_2 = e_1 + e_2 + e_3$
 $f_3 = -5 e_1 - 3 e_2$

ВАРИАНТ № 16

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} -3 & 3 & 2 \\ -3 & 2 & 1 \\ 2 & 1 & 2 \end{array} \right)$$

новый базис

$$f_1 = 3 e_1 + 2 e_2 + e_3$$

 $f_2 = e_1 + e_2 + e_3$
 $f_3 = 3 e_1 + 2 e_2 + 2 e_3$

ВАРИАНТ № 17

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & 2 & -1 \\ 4 & -2 & -4 \\ -3 & -1 & -2 \end{array} \right)$$

$$f_1 = -e_1 - 3 e_2 - 5 e_3$$

$$f_2 = -e_2 - 2 e_3$$

$$f_3 = e_1 + e_2 + 2 e_3$$

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \begin{pmatrix} 1 & -4 & 1 \\ 2 & 1 & -3 \\ 1 & 2 & -5 \end{pmatrix}$$

$$f_1 = e_1 - e_2 - 3 e_3$$

 $f_2 = e_1 - e_3$

$f_3 = e_1 - 2e_2 - 4e_3$ ВАРИАНТ № 20

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} 3 & -1 & -3 \\ -1 & -2 & 3 \\ 3 & -1 & -4 \end{array} \right)$$

$$f_1 = e_1 - e_2 - 3 e_3$$

 $f_2 = e_1 - e_3$
 $f_3 = e_1 + e_2 + 2 e_3$

ВАРИАНТ № 22

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \begin{pmatrix} -3 & -4 & -1 \\ 4 & -3 & -3 \\ -3 & 2 & -6 \end{pmatrix}$$

$$f_1 = e_1 + e_2 + e_3$$

$$f_2 = 2 e_1 + 3 e_2 + 4 e_3$$

$$f_3 = 3 e_1 + 5 e_2 + 8 e_3$$

ВАРИАНТ № 19

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} -2 & -3 & -2 \\ -5 & 2 & -4 \\ 2 & -1 & -6 \end{array} \right)$$

$$f_1 = -e_2 - e_3$$

$$f_2 = e_1 + e_2 + e_3$$

$$f_3 = 2e_1 + 3e_2 + 4e_3$$

ВАРИАНТ № 21

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} -2 & -3 & -2 \\ 1 & -2 & -2 \\ 3 & 2 & -3 \end{array} \right)$$

$$f_1 = 7 e_1 + 5 e_2 + 7 e_3$$

$$f_2 = 4 e_1 + 3 e_2 + 4 e_3$$

$$f_3 = 4 e_1 + 3 e_2 + 5 e_3$$

ВАРИАНТ № 23

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \begin{pmatrix} 3 & -3 & 2 \\ 2 & -3 & 3 \\ -1 & -2 & -6 \end{pmatrix}$$

$$f_1 = -e_1 - e_3$$

$$f_2 = e_1 + e_2 + e_3$$

$$f_3 = -e_1 - 3e_2 - 2e_3$$

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \begin{pmatrix} -2 & 3 & 2 \\ -1 & -2 & 1 \\ 3 & 2 & -2 \end{pmatrix}$$

новый базис

$$f_1 = e_1 + e_2 + e_3$$

 $f_2 = e_2 + 3 e_3$
 $f_3 = -e_1 + e_2 + 6 e_3$

ВАРИАНТ № 26

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} 2 & 2 & -2 \\ -5 & -1 & -2 \\ 1 & -2 & 1 \end{array} \right)$$

новый базис

$$f_1 = e_1 - e_2 - 3 e_3$$

 $f_2 = e_1 - e_3$
 $f_3 = e_1 - e_2 - 2 e_3$

ВАРИАНТ № 28

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} -2 & -1 & -3 \\ 4 & -3 & -4 \\ 2 & 1 & 2 \end{array} \right)$$

новый вазис

$$f_1 = 3 e_1 + 2 e_2 + 2 e_3$$

$$f_2 = e_1 + e_2 + e_3$$

$$f_3 = 3 e_1 + 2 e_2 + 3 e_3$$

BAPHAHT Nº 25

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} 3 & -2 & -2 \\ 1 & -1 & 2 \\ -3 & -2 & 3 \end{array} \right)$$

новый вазис

$$f_1 = 2 e_1 + e_2 + e_3$$

 $f_2 = e_1 + e_2 + e_3$
 $f_3 = e_2 + 2 e_3$

ВАРИАНТ № 27

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} 2 & -3 & -2 \\ 4 & -3 & -1 \\ 2 & 2 & -5 \end{array} \right)$$

новый базис

$$f_1 = 3 e_1 + 2 e_2 + e_3$$

 $f_2 = e_1 + e_2 + e_3$
 $f_3 = 3 e_1 + 2 e_2 + 2 e_3$

ВАРИАНТ № 29

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} -1 & 2 & 1 \\ 2 & -1 & -2 \\ -2 & -1 & -4 \end{array} \right)$$

$$f_1 = e_2 + 3 e_3$$

$$f_2 = -e_1 + e_2 + 5 e_3$$

$$f_3 = 3 e_1 + 2 e_2 + 2 e_3$$

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} 3 & -3 & -3 \\ 3 & -2 & -3 \\ -1 & 2 & -4 \end{array} \right)$$

новый базис

$$f_1 = -2 e_1 - e_2$$

$$f_2 = -5 e_1 - 3 e_2 - e_3$$

$$f_3 = e_1 + e_2 + 2 e_3$$

ВАРИАНТ № 31

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} -3 & 3 & 2 \\ 2 & 2 & -1 \\ 3 & 1 & -4 \end{array} \right)$$

новый вузис

$$f_1 = e_1 + e_2 + e_3$$

$$f_2 = -2 e_1 - e_2 - e_3$$

$$f_3 = 4 e_1 + 3 e_2 + 4 e_3$$

ВАРИАНТ № 32

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} -3 & -4 & -2 \\ -5 & -3 & 2 \\ 2 & -2 & 3 \end{array} \right)$$

новый базис

$$f_1 = e_1 + 2 e_2 + e_3$$

$$f_2 = e_1 + 3 e_2 + e_3$$

$$f_3 = e_1 + 6 e_2 + 2 e_3$$

ВАРИАНТ № 33

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} -1 & 3 & 2 \\ -5 & 2 & 4 \\ 1 & -1 & -5 \end{array} \right)$$

новый базис

$$f_1 = e_1 + e_2 + e_3$$

 $f_2 = -e_1 - e_3$
 $f_3 = 3 e_1 + 2 e_2 + 4 e_3$

ВАРИАНТ № 34

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & 3 & -3 \\ -1 & 2 & 3 \\ 2 & 1 & -4 \end{array} \right)$$

новый вузис

$$f_1 = e_1 + e_2 + e_3$$

 $f_2 = e_1 + 2e_2 + 3e_3$
 $f_3 = e_1 + e_2 + 2e_3$

ВАРИАНТ № 35

МАТРИЦА ОПЕРАТОРА

$$\mathbf{A} = \left(\begin{array}{rrr} -3 & 2 & -1 \\ 2 & 1 & -2 \\ -1 & -2 & -1 \end{array} \right)$$

$$f_1 = e_1 + e_2 + e_3$$

$$f_2 = -2 e_1 - e_2 - e_3$$

$$f_3 = e_1 + e_2 + 2 e_3$$

ЗАДАЧА № 17. Линейный оператор переводит векторы $m{e}_1, \ m{e}_2, \ m{e}_3$ соответственно в векторы $m{f}_1, \ m{f}_2, \ m{f}_3$. Найти, в какой вектор $m{f}$ оператор переводит данный вектор $m{e}$.

	ВАРИАНТ № 1			
e_1	{ 3; -2; 2 }	f ₁ { 4; -3; 3 }		
e ₂	{-2; -3; -3 }	f ₂ { 4; 3; -1 }		
e ₃	{ 2; 3; +3 }	f ₃ { 1; 1; 2 }		
	€ =	{-4; 7; 11 }		
		UAHT № 2		
e_{i}	{ 1; 3; 3 }	f ₁ { 1; 4; -2 }		
e ₂	{-3; -3; -2 }	f ₂ {-2; -1; 2 }		
e ₃ _	{-2; 2; 3}	$f_3 \cdots f_3 \cdots f_4; 1; -2$		
	e =	{ 2; 18; 19 }		
		ИАНТ № 3		
e ₁	{-2 ;-2; -3 }	f ₁ (-1; 3; 4)		
e ₂	(-1; -1; 1)	f ₂ { 1; -1; -3 }		
e ₃	{ 2; 3; -2 }	f ₃ { 1; 4; -2 }		
	<i>t</i> = -	(-17; -20; -3 }		
		HAHT № 4		
\boldsymbol{e}_1	(3; 1; -3)	f ₁ {-3; 1; -2 }		
e_2	(-2; 1; -3)	f_2 { 2; -1; -3 }		
e ₃	(-3; -3; -3]	f ₃ { 3; 1; 3 }		
	e = {-1; -1; -21 }			
		ИАНТ № 5		
e_1	(1; -3; -2)	$f_1 = \{ 4; 4; -1 \}$		
e ₂	(-3; 3; 1)	f ₂ {-1; 1; -1 }		
e_3	(1; -3; 3)	f ₃ {-2; 1; -4 }		
	e = { 9; -9; -18 }			
	ВАРИАНТ № 6			
e ₁	(-1; -1; -1)	f ₁ {-2; -1; -2 }		
e ₂	(-1; 3; -3)	f ₂ { 2; -3; 1 }		
\boldsymbol{e}_3	{-2; -3; 2 }	f ₃ { 3; 2; 2 }		
	e = {-10; 2; -2 }			

(3; -1; 1)		
(+, +, - ,	$ f_1 $	{ 4; 4; 4 }
{ 1; 2; -1 }	f_2	{ 3; 2; 2 }
(-1; 1; 2)	f_3	{-4; 1; 1}
e = {	18; -1; -	5 }
BA	THARY.	NG 8
{-2; -1; -3 }	f_1	{-2; -3; -2 }
{ 3; -3; 1 }	f_2	{-3; -4; -4 }
(2; -3; 1)	f_3	(-2; 2; 4)
e - (8; -22;	-6)
ВА	РИАНТ	76: 9
{ 1; 3; -1 }	f_1	{-2; 3; 4 }
(1; 2; 2)	f_2	{ 1; -2; -4 }
{-2; 1; -2 }	f_3	(-1; -2; 3)
e = (-1; 23;	-9)
	THANT	
{-3; -3; 3 }	f_1	{-2; -3; -1 }
	f_2	{ 4; 1; -4 }
{-1; 3; 2 }	f_3	{-2; -2; -1 }
е.	• {~6; 2;	29 }
	РИАНТ	
	f_1	(1; 3; 3)
	f_2	(-4; 4; 1)
{-1; -2; -2 }	f_3	{-1; 4; 2 }
e ·	(13; -	-30; -14 }
	РИАНТ	
	f_1	(-1; 3; - 2)
{-1; -1; -1 }	f_2	(4; 4; 3)
{-3; -1; 3}	f_3	{ 2; 2; -2 }
	## C = { ## BA ## (-2; -1; -3) ## (2; -3; 1) ## (2; -3; 1) ## (1; 3; -1) ## (1; 2; 2) ## (-2; 1; -2) ## (3; 2; 2) ## (-1; 3; 2) ## (1; -3; -3) ## (1; -3; -3) ## (2; 3; -2) ## (2; 3; -2) ## (-1; -1; -1) ## (-3; -1; 3)	(-1; 1; 2)

	BAPMAHT Nº 13			
e ₁	{ 1; 3; 2 }	f_1	{ 2; -4; 1 }	
e ₂	(-1; 1; 2)	f_2	{-3; -2; -4 }	
e ₃	{-1; 1; -2 }	f ₃	{-4; -4; 1 }	
	e -	{ 4; 1€	5; 24 }	
		THAN		
e_1	{-1; -1; 2 }	f_1	{-4; 1; 1 }	
e ₂	{ 1; 1; -3 }	f_2	{ 1; 2; 1 }	
e ₃	{-1; -2; -2 }	f_3	{-3; -2; 3 }	
	e =	(10; 1	[3;-13]	
	BAP	THAN	Ng 15	
$e_{\scriptscriptstyle 1}$	{-3; -3; 3 }	f_1	{-2; -3; -1 }	
e_2	{ 3; 2; 2 }	f_2	{ 4; 1; -4 }	
e ₃	{-1; 3; 2 }	f_3	{-2; -2; -1 }	
	e =	{ -14;	-4; 6)	
		РИАНТ	№ 16	
e_1	{ 3; -3; 1 }	f_1	{ 1; 3; 3 }	
\boldsymbol{e}_2	{ 1; -3; -3 }	f_2	{-4; 4; 1 }	
e ₃	{-1; -2; -2 }	f_3	{-1; 4; 2 }	
e = { 10;-22;-10 }				
		PHAHT		
\boldsymbol{e}_1	{ 2; 3; -2 }	f_1	(-1; 3; -2)	
e_2	(-1; -1; -1)	f_2	{ 4; 4; 3 }	
e ₃	{-3; -1; 3 }	f_3	{ 2; 2; -2 }	
	e = {-11: 3: 3}			
		THAR	№ 18	
e_1	{ 1; 3; 2 }	f_1	{ 2; -4; 1 }	
e_2	{-1; 1; 2 }	f_2	(-3; -2; -4)	
e ₃	{-1; 1; -2 }	f_3	{-4; -4; 1 }	
e = { 3; 13; 18 }				

e ₁ { 1; -3; 1 }	f ₁ { 4; -4; -1 }	
e ₂ { 1; 2; 2 }	f ₂ { 1; -2; -4 }	
e ₃ {-2; 1; -2 }	f_3 (-1; -2; 3)	
e =	{ -6; -17; -9 }	
BAP	HAHT No 20	
e ₁ {-3; -3; 3}	f ₁ {-2; -3; -1 }	
e ₂ (3; 2; 2)	f_2 { 4; 1; -4 }	
e ₃ {-1; 3; 2 }	f_3 (-2; -2; -1)	
e =	(-26; -4; 21)	
	HAHT N- 21	
e ₁ { 3; -2; 2 }	f ₁ (4; -3; 3)	
e ₂ {-2; -2; -3 }	$f_2 $ { 4; 3; -1 }	
e ₃ { 2; 3; -3 }	f_3 { 1; 1; 2 }	
e =	(8; ~1; -17)	
	PHAHT No 22	
e ₁ (1; 3; 3)	f_1 (1; 4; -2)	
e ₂ {-3; -3; -2 }	f_2 (-2; -1; 2)	
e ₃ (-2; 2; 3)	f_3 { 4; 1; -2 }	
e = { -19; 7; 16 }		
	РИАНТ № 23	
e ₁ (-2; -1; -3)	$f_1 = \{-2; -3; -2\}$	
e ₂ { 3; -3; 1 }	f ₂ (-3; -4; -4)	
e ₃ { 2; -3; 1 }	f_3 {-2; 2; 4}	
e = (0; −17; −11)		
BAPHAHT No 24		
e ₁ {-1; 1; 2 }	f ₁ {-2; -3; 2 }	
e ₂ {-1; 3; -1 }	$f_2 = \{ 4; 1; -1 \}$	
e ₃ (-1; -1; -1)	f_3 (-4; 4; -3)	
<i>e</i> =	{ -5; 21; 4 }	

	BA1	C THARS	6 25
e_1	{-2; -1; -2 }	f_1	(1; -1; 2)
e ₂	{-2; -3; -3 }	f ₂	(-3; 3; -2)
<i>e</i> ₃	(-1; 1; -3)	f_3	(4; 2; 2)
	e =	(-17; -	-9; -31 }
		PHAHT)	No. 26
e ₁	{-2; -1; 3'}	f_1	{ 4; -4; -3 }
e ₂	{ 2; -3; -2 }	f_2	{-1; -3; -1 }
e ₃	{-2; -2; 2 }	f_3	{-1; -2; -1 }
	e -		; 3)
			Na 27
e ₁	(1; 3; 2)	f_1	(4; -2; -3)
e ₂	(2; 3; 3)	f_2	{ 4; 3; 3 }
e ₃	{ 2; 1; 3 }	<i>f</i> ₃	(-1; -3; -2)
	<i>e</i> =		0; 21 }
		РИАНТ .	
e ₁	(-1; 3; -1)	f_1	(-3; -4; 3)
<i>e</i> ₂	{-2; 3; -1 }	f_2	{-2; -1; -4 }
<i>e</i> ₃	{-3; -1; 1}	f ₃	{ 1; -4; -4 }
e = { -21; 7; 1 }			
			No. 29
e ₁	(2; -3; -2)	f_1	{ 1; 1; 3 }
<i>e</i> ₂	(-2; 3; -2)	f_2	
<i>e</i> ₃		f ₃	, -, -, -, -, -, -, -, -, -, -, -, -, -,
ļ——	e = { −1; −6; 13 }		
	BA {-1; -1; 3}		36 36 (-2; -4; -4)
e_1	{-2; 3; 2}	f_1	(4; 3; -1)
e ₂	{ 1; -3; 3 }	f_2	(-2; 1; -4)
e ₃	(1; -3; 3 ; e =	f₃ (0; 3	(-2; 1; -4;
L	U = { U , S , U }		

		HAHT :	N L 31
e ₁	{-3; -1; -1 }	f_1	(-3; 4; 1)
e ₂	{ 2; 3; -1 }	f_2	{-3; -4; 4 }
e ₃	{ 3; -1; 3 }	f_3	{ 3; 2; 4 }
_	e =	(25; 1	4; 6 }
		HAHT.	No. 32
$e_{\scriptscriptstyle \parallel}$	{-3; 2; 2 }	f_1	(2; -2; 4)
e_2	{-2; -2; 1 }	f_2	{ 1; 4; 3 }
e_3	{-1; 2; 3 }	f_3	{-2; 3; -3 }
	e =	{ -25;	4; 22 }
		PHART	Ne 33
$e_{\scriptscriptstyle \parallel}$	{-3; 2; -2 }	f_1	{-1; -3; -1 }
\boldsymbol{e}_2	{ 2; 1; -2 }	f_2	{ 4; 1; 1 }
e ₃	(3; 1; -3)	f_3	{-3; -4; 2 }
	€ =	{ 4; 18	1; -29 }
		THÁN	№ 34
e_1	{ 2; 1; 2 }	f_1	{ 2; 1; -1 }
e_2	(3; -3; 3)	f_2	{-4; 3; 4 }
e_3	{-3; 1; -1 }	f_3	{-3; 4; 3 }
	e = { 10; 11; 4 }		
		THANS	Na 35
$\boldsymbol{e}_{\scriptscriptstyle 1}$	{ 2; 1; 3 }	f_1	{-1; 1; 4 }
e_2	{-2; 3; -2 }	f_2	(-3; -3; -3)
e ₃	{-3; 3; 3 }	f_3	{ 2; -1; 1 }
	e = { -26; 21; -5 }		
ВАРИАНТ № 36			
e_1	{ 2; -1; 3 }	f_1	{ 2; -2; -1 }
e ₂	(-3; -3; -2)	f_2	{ 4; 4; -1 }
e ₃	{ 2; 2; 1 }	f_3	{ 1; 2; -4 }
	e = {-5; -20; 6 }		

ЗАДАЧА Ж 18. Найти собственные значения и собственные векторы линейного оператора, заданного в некотором базисе данной матрицей, при условии, что модуль одного из собственных значений равен 1.

ВАРИАНТ № 1	ВАРИАНТ № 2
$\mathbf{A} = \begin{pmatrix} -9 & -6 & 2 \\ 4 & 2 & -1 \\ -4 & -8 & -5 \end{pmatrix}$	$\mathbf{A} = \left(\begin{array}{rrr} 3 & 4 & 8 \\ -5 & -9 & -13 \\ 3 & 6 & 8 \end{array} \right)$
вариант ж з	ВАРИАНТ № 4
$\mathbf{A} = \left(\begin{array}{ccc} -7 & -2 & 8 \\ 8 & 10 & 6 \\ -4 & -8 & -9 \end{array} \right)$	$\mathbf{A} = \left(\begin{array}{rrr} 3 & -4 & -8 \\ -2 & 1 & 4 \\ 4 & 8 & 3 \end{array} \right)$
ВАРИАНТ № 5	ВАРИАНТ № 6
$\mathbf{A} = \left(\begin{array}{ccc} 7 & 12 & 12 \\ -4 & -9 & -6 \\ -4 & -4 & -7 \end{array} \right)$	$\mathbf{A} = \left(\begin{array}{rrr} -9 & -6 & -1 \\ 10 & 7 & 1 \\ -10 & -10 & -4 \end{array} \right)$
ВАРИАНТ № 7	BAPHAHT M 8
$\mathbf{A} = \begin{pmatrix} -8 & -6 & 6 \\ 6 & 12 & 10 \\ -3 & -9 & -11 \end{pmatrix}$	$\mathbf{A} = \left(\begin{array}{ccc} 7 & 5 & 14 \\ 2 & 4 & 2 \\ -8 & -8 & -15 \end{array} \right)$

ВАРИАНТ № 10

$$\mathbf{A} = \begin{pmatrix} 3 & 4 & 8 \\ -6 & -7 & -18 \\ 2 & 2 & 6 \end{pmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 3 & 3 & 3 \\ -6 & -4 & -3 \\ 6 & 6 & 5 \end{bmatrix}$$

ВАРИАНТ № 11

ВАРИАНТ № 12

$$\mathbf{A} = \left[\begin{array}{rrr} -1 & -4 & -8 \\ 8 & 11 & 32 \\ -2 & -2 & 7 \end{array} \right]$$

$$\mathbf{A} = \left(\begin{array}{cccc} 6 & 21 & 4 \\ -2 & -7 & -2 \\ 1 & 3 & 3 \end{array} \right)$$

ВАРИАНТ № 13

ВАРИАНТ № 14

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 3 \\ -6 & -8 & -15 \\ 6 & 6 & 13 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} -3 & -9 & -4 \\ 4 & 10 & 4 \\ 1 & 1 & 2 \end{pmatrix}$$

ВАРИАНТ № 15

ВАРИАНТ № 16

$$\mathbf{A} = \begin{pmatrix} -5 & -20 & -16 \\ 2 & 9 & 8 \\ -2 & -4 & -3 \end{pmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 6 & 16 & 12 \\ -1 & -4 & -1 \\ -5 & -10 & -11 \end{bmatrix}$$

ВАРИАНТ № 17

ВАРИАНТ № 18

$$\mathbf{A} = \begin{pmatrix} -1 & 2 & 6 \\ -6 & -9 & -30 \\ 2 & 2 & 7 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} -1 & -14 & -12 \\ 1 & 8 & 6 \\ 3 & 6 & 4 \end{pmatrix}$$

$$\mathbf{A} = \begin{bmatrix} -2 & -18 & -3 \\ 3 & 13 & 9 \\ -2 & -6 & -7 \end{bmatrix}$$

ВАРИАНТ № 20

$$\mathbf{A} = \begin{bmatrix} -8 & -18 & -6 \\ 4 & 9 & 4 \\ -1 & -2 & -3 \end{bmatrix}$$

ВАРИАНТ 🥦 21

$$\mathbf{A} = \begin{bmatrix} 3 & 7 & 9 \\ -3 & -7 & -21 \\ 1 & 1 & 3 \end{bmatrix}$$

ВАРИАНТ № 22

$$\mathbf{A} = \left(\begin{array}{cccc} -4 & -3 & -5 \\ 5 & 4 & 5 \\ -7 & -7 & -6 \end{array} \right)$$

ВАРИАНТ № 23

$$\mathbf{A} = \begin{pmatrix} 1 & 12 & 12 \\ 3 & 6 & 8 \\ -3 & -9 & -11 \end{pmatrix}$$

ВАРИАНТ № 24

$$\mathbf{A} = \begin{bmatrix} 1 & -3 & -3 \\ 7 & 11 & 17 \\ -7 & -7 & -13 \end{bmatrix}$$

ВАРИАНТ № 25

$$\mathbf{A} = \begin{bmatrix} 1 & -12 & -24 \\ -3 & 1 & 3 \\ 3 & 6 & 10 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} -1 & 5 & 15 \\ 3 & -3 & -3 \\ -1 & -1 & -5 \end{bmatrix}$$

ВАРИАНТ № 27

$$\mathbf{A} = \begin{bmatrix} -5 & -6 & -12 \\ -2 & -1 & -6 \\ 3 & 3 & 8 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 2 & 7 & 4 \\ 4 & 7 & 4 \\ -5 & -5 & -9 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 8 & 8 \\ 10 & 3 & 7 \\ -10 & -10 & -14 \end{bmatrix}$$

ВАРИАНТ № 30

$$\mathbf{A} = \left(\begin{array}{ccc} 8 & 4 & 12 \\ 3 & 7 & 3 \\ -10 & -10 & -14 \end{array} \right)$$

BAPHAHT № 31

$$\mathbf{A} = \begin{pmatrix} 3 & 7 & 2 \\ -2 & -6 & -2 \\ -4 & -4 & -3 \end{pmatrix}$$

ВАРИАНТ № 32

$$\mathbf{A} = \begin{pmatrix} -3 & 6 & 8 \\ 4 & 7 & 4 \\ -4 & -12 & -9 \end{pmatrix}$$

ВАРИАНТ № 33

$$\mathbf{A} = \begin{bmatrix} -1 & 6 & 12 \\ 4 & -3 & -8 \\ -2 & -2 & -3 \end{bmatrix}$$

ВАРИАНТ № 34

$$\mathbf{A} = \begin{bmatrix} -3 & -1 & -2 \\ 4 & 2 & 2 \\ -10 & -10 & -4 \end{bmatrix}$$

ВАРИАНТ № 35

$$\mathbf{A} = \begin{pmatrix} -6 & -10 & -5 \\ 7 & 11 & 5 \\ -4 & -4 & -1 \end{pmatrix}$$

Контрольные вопросы

- 1. Произведение матриц какого порядка определено?
- 2. Какие изменения матрицы не изменяют её определитель?
- 3. Пусть даны две квадратные матрицы. Как проверить, являются ли они обратными?
- 4. Какое количество решений может иметь система линейных алгебраических уравнений с квадратной матрицей?
- 5. Какие преобразования матрицы не изменяют ее ранг?
- 6. Какие системы векторов называются линейно зависимыми?
- 7. Всегда ли системы линейных однородных алгебраических уравнений имеют нетривиальное решение?
- 8. Дайте определение фундаментального решения системы линейных однородных алгебраических уравнений.
- 9. Какова размерность пространства собственных векторов, принадлежащих данному собственному значению матрицы?
- 10.Пусть даны два комплексных числа. Каковы модуль и аргумент их произведения? Их частного?

Библиографический список

- **1. Беклемишев Д.В.** Курс аналитической геометрии и линейной алгебры. М: Физматлит, 2001. 376 с.
- 2. **Ильин В.А., Позняк В.Г.** Линейная алгебра. М: Физматлит, 2001. 320 с.
- 3. Бугров Я.С., Никольский СМ. Элементы линейной алгебры и аналитической геометрии. М.: Наука, 1988. 222 с.