Matrix Completion: Fundamental Limits and Efficient Algorithms

Sewoong Oh

PhD Defense Stanford University

July 23, 2010

Matrix completion

• Find the missing entries in a huge data matrix

Example 1. Recommendation systems

- Given less than 1% of the movie ratings
- Goal: Predict missing ratings

Example 2. Positioning

- Only distances between close-by sensors are measured
- Goal: Find the sensor positions up to a rigid motion

Matrix completion

• More applications:

- ► Computer vision: Structure-from-motion
- ► Molecular biology: Microarray
- ▶ Numerical linear algebra: Fast low-rank approximations
- etc.

Outline

Background

2 Algorithm and main results

3 Applications in positioning

Background

The model

- Rank-r matrix M
- Random uniform sample set *E*
- Sample matrix M^E

$$\mathsf{M}_{ij}^{E} = \left\{ \begin{array}{cc} \mathsf{M}_{ij} & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{array} \right.$$

The model

- Rank-r matrix M
- Random uniform sample set E
- Sample matrix M^E

$$\mathsf{M}^{E}_{ij} = \left\{ egin{array}{ll} \mathsf{M}_{ij} & \mathrm{if} \; (i,j) \in E \\ 0 & \mathrm{otherwise} \end{array} \right.$$

Which matrices?

Pathological example

$$\mathsf{M} \; = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}$$

Which matrices?

• Pathological example

$$\mathsf{M} \; = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}$$

• [Candès, Recht '08] $M = U\Sigma V^T$ has coherence μ if

$$\begin{array}{ll} \textit{A0.} & \max_{1 \leq i \leq \alpha n} \sum_{k=1}^r \mathsf{U}_{ik}^2 \leq \mu \frac{r}{n} \;, \;\; \max_{1 \leq j \leq n} \sum_{k=1}^r \mathsf{V}_{jk}^2 \leq \mu \frac{r}{n} \\ \\ \textit{A1.} & \max_{i,j} \Big| \sum_{k=1}^r \mathsf{U}_{ik} \mathsf{V}_{jk} \Big| \leq \mu \frac{\sqrt{r}}{n} \end{array}$$

- Intuition
 - lacksquare μ is small if singular vectors are well balanced
 - ▶ We need low-coherence for matrix completion

Rank minimization

```
 \begin{array}{ll} \text{minimize} & \text{rank}(\mathsf{X}) \\ \text{subject to} & \mathsf{X}_{ij} = \mathsf{M}_{ij}, \ (i,j) \in E \end{array}
```

NP-hard

Rank minimization

minimize
$$\operatorname{rank}(X)$$

subject to $X_{ij} = M_{ij}, (i, j) \in E$

NP-hard

Heuristic [Fazel '02]

$$\begin{tabular}{ll} minimize & \|X\|_* \\ subject to & X_{ij} = M_{ij}, \ (i,j) \in E \\ \end{tabular}$$

- Convex relaxation
- Nuclear norm

$$||X||_* = \sum_{i=1}^n \sigma_i(X)$$

 Can be solved using Semidefinite Programming(SDP)

- [Candès, Recht '08]
 - Nuclear norm minimization reconstructs M exactly with high probability, if

$$|E| \ge C \, \mu \, r \, n^{6/5} \log n$$

Surprise?

- [Candès, Recht '08]
 - Nuclear norm minimization reconstructs M exactly with high probability, if

$$|E| \ge C \, \mu \, r \, n^{6/5} \log n$$

- ▶ Degrees of freedom $\simeq (1 + \alpha)rn$
- Open questions
 - **★** Optimality: Do we need $n^{6/5} \log n$ samples?
 - ★ Complexity: SDP is computationally expensive
 - * Noise: Can not deal with noise

- [Candès, Recht '08]
 - Nuclear norm minimization reconstructs M exactly with high probability, if

$$|E| \ge C \, \mu \, r \, n^{6/5} \log n$$

- ▶ Degrees of freedom $\simeq (1 + \alpha)rn$
- Open questions
 - **★** Optimality: Do we need $n^{6/5} \log n$ samples?
 - ★ Complexity: SDP is computationally expensive
 - * Noise: Can not deal with noise

A new approach to Matrix Completion: OPTSPACE

0.25% sampled

0.50% sampled

0.75% sampled

1.00% sampled

1.25% sampled

1.50% sampled

1.75% sampled

Algorithm

Naïve approach

• Singular Value Decomposition (SVD)

$$\mathsf{M}^E = \sum_{i=1}^n \sigma_i \mathsf{x}_i \mathsf{y}_i^T$$

• Compute rank-r approximation $\widehat{\mathsf{M}}_{\mathrm{SVD}}$

$$\widehat{\mathsf{M}}_{\mathrm{SVD}} \triangleq \frac{\alpha n^2}{|E|} \sum_{i=1}^r \sigma_i x_i y_i^T$$

Naïve approach fails

• Singular Value Decomposition (SVD)

$$\mathsf{M}^E = \sum_{i=1}^n \sigma_i \mathsf{x}_i \mathsf{y}_i^T$$

• Compute rank-r approximation $\widehat{\mathsf{M}}_{\mathrm{SVD}}$

$$\widehat{\mathsf{M}}_{\mathrm{SVD}} \triangleq \frac{\alpha n^2}{|E|} \sum_{i=1}^r \sigma_i x_i y_i^T$$

Naïve approach fails

• Singular Value Decomposition (SVD)

$$\mathsf{M}^E = \sum_{i=1}^n \sigma_i \mathsf{x}_i \mathsf{y}_i^T$$

• Compute rank-r approximation $\widehat{\mathsf{M}}_{\mathrm{SVD}}$

$$\widehat{\mathsf{M}}_{\mathrm{SVD}} \triangleq \frac{\alpha n^2}{|E|} \sum_{i=1}^r \sigma_i x_i y_i^T$$

Trimming

$$\mathsf{M}^{\mathcal{E}} =$$

$$\widetilde{\mathsf{M}}^{E}_{ij} = \left\{ \begin{array}{ll} 0 & \text{if } deg(row_i) > 2|E|/\alpha n \\ 0 & \text{if } deg(col_j) > 2|E|/n \\ \mathsf{M}^{E}_{ij} & otherwise \end{array} \right.$$

 $deg(\cdot)$ is the number of samples in that row/column

Trimming

$$\widetilde{\mathsf{M}}^{E}_{ij} = \left\{ \begin{array}{c} 0 \quad \text{if } deg(row_i) > 2|E|/\alpha n \\ 0 \quad \text{if } deg(col_j) > 2|E|/n \\ \mathsf{M}^{E}_{ij} \quad \text{otherwise} \end{array} \right.$$

 $deg(\cdot)$ is the number of samples in that row/column

Trimming

$$\widetilde{\mathsf{M}}^{E}_{ij} = \left\{ \begin{array}{ll} 0 & \text{if } deg(row_i) > 2|E|/\alpha n \\ 0 & \text{if } deg(col_j) > 2|E|/n \\ \mathsf{M}^{E}_{ij} & otherwise \end{array} \right.$$

 $deg(\cdot)$ is the number of samples in that row/column

Algorithm

OPTSPACE

Input: sample indices E, sample values M^E , rank r

Output : estimation \widehat{M}

1: Trimming

2: Compute $\widehat{\mathsf{M}}_{\mathrm{SVD}}$ using SVD

3: Greedy minimization of the residual error

Algorithm

OPTSPACE

Input: sample indices E, sample values M^E , rank r

Output : estimation \widehat{M}

1: Trimming

2: Compute \widehat{M}_{SVD} using SVD

 \bullet $\widehat{M}_{\mathrm{SVD}}$ can be computed efficiently for sparse matrices

Main results

Theorem

For any |E|, $\widehat{M}_{\mathrm{SVD}}$ achieves, with high probability,

$$\mathsf{RMSE} \leq \mathsf{CM}_{\max} \sqrt{\frac{\mathsf{nr}}{|E|}}$$

- RMSE = $\left(\frac{1}{\alpha n^2} \sum_{i,j} (\mathsf{M} \widehat{\mathsf{M}}_{\mathrm{SVD}})_{ij}^2\right)^{1/2}$
- $M_{\max} \triangleq \max_{i,j} |M_{ij}|$

Main results

Theorem

For any |E|, $\widehat{M}_{\mathrm{SVD}}$ achieves, with high probability,

$$\mathsf{RMSE} \leq \mathsf{CM}_{\max} \sqrt{\frac{\mathsf{nr}}{|E|}}$$

• [Achlioptas, McSherry '07] If $|E| \ge n(8 \log n)^4$, with high probability,

$$\mathsf{RMSE} \leq \mathsf{4M}_{\max} \sqrt{\frac{\mathsf{nr}}{|E|}}$$

• For $n = 10^5$, $(8 \log n)^4 \simeq 7.2 \cdot 10^7$

Main results

Theorem

For any |E|, $\widehat{M}_{\mathrm{SVD}}$ achieves, with high probability,

$$\mathsf{RMSE} \leq C\mathsf{M}_{\max} \sqrt{\frac{nr}{|E|}}$$

• [Achlioptas, McSherry '07] If $|E| \ge n(8 \log n)^4$, with high probability,

$$\mathsf{RMSE} \leq 4\mathsf{M}_{\max} \sqrt{\frac{\mathit{nr}}{|\mathit{E}|}}$$

Netflix dataset

A single user rated 17,000 movies.

"Miss Congeniality": 200,000 ratings.

• For $n = 10^5$, $(8 \log n)^4 \simeq 7.2 \cdot 10^7$

Can we do better?

Greedy minimization of residual error

• Starting from (X_0,Y_0) for $\widehat{M}_{\mathrm{SVD}}=X_0S_0Y_0^{\mathcal{T}}$, use gradient descent methods to solve

minimize
$$F(X, Y)$$

subject to $X^TX = \mathbb{I}, Y^TY = \mathbb{I}$

$$F(X, Y) \triangleq \min_{S \in \mathbb{R}^{r \times r}} \sum_{(i,j) \in E} \left(M_{ij}^E - (XSY^T)_{ij} \right)^2$$

$$X \qquad S \qquad Y^T$$

Can be computed efficiently for sparse matrices

Algorithm

OPTSPACE

Input: sample indices E, sample values M^E , rank r**Output**: estimation \widehat{M}

1: Trimming

2: Compute $\widehat{\mathsf{M}}_{\mathrm{SVD}}$ using SVD

3: Greedy minimization of the residual error

Main results

Theorem (Trimming+SVD)

 $\widehat{M}_{\mathrm{SVD}}$ achieves, with high probability,

$$\mathsf{RMSE} \leq \mathsf{CM}_{\max} \sqrt{\frac{\mathsf{nr}}{|E|}}$$

Theorem (Trimming+SVD+Greedy minimization)

OPTSPACE reconstructs M exactly, with high probability, if

$$|E| \ge C \mu r n \max{\{\mu r, \log n\}}$$

OPTSPACE is order-optimal

Theorem

If μ and r are bounded, OPTSPACE reconstructs M exactly, with high probability, if

$$|E| \ge C n \log n$$

• Lower bound (coupon collector's problem): If $|E| \le C' n \log n$, then exact reconstruction is impossible

OPTSPACE is order-optimal

Theorem

If μ and r are bounded, OPTSPACE reconstructs M exactly, with high probability, if

$$|E| \ge C n \log n$$

- Lower bound (coupon collector's problem): If $|E| \le C' n \log n$, then exact reconstruction is impossible
- Nuclear norm minimization: [Candès, Recht '08, Candès, Tao '09, Recht '09, Gross et al. '09] If $|E| \ge C'' n (\log n)^2$, then exact reconstruction by SDP

Comparison

• 1000×1000 rank-10 matrix M

Fundamental Limit [Singer, Cucuringu '09], FPCA [Ma, Goldfarb, Chen '09], SVT [Cai, Candès, Shen '08], ADMIRA [Lee, Bresler '09]

Story so far

- OPTSPACE reconstructs M from a few sampled entries, when M is exactly low-rank and samples are exact
- In reality,
 - ▶ M is only approximately low-rank
 - samples are corrupted by noise

The model with noise

- Rank-r matrix M
- Random sample set E
- Sample noise Z^E
- Sample matrix $N^E = M^E + Z^E$

The model with noise

- Rank-r matrix M
- Random sample set E
- Sample noise **Z**^E
- Sample matrix $N^E = M^E + Z^E$

Main results

Theorem

For $|E| \ge C \mu r n \max\{\mu r, \log n\}$, OPTSPACE achieves, with high probability,

$$\mathsf{RMSE} \leq C' \frac{n\sqrt{r}}{|E|} ||\mathsf{Z}^E||_2 \;,$$

provided that the RHS is smaller than $\sigma_r(M)/n$.

• $\|\cdot\|_2$ is the spectral norm

OPTSPACE is order-optimal when noise is i.i.d. Gaussian

Theorem

For $|E| \ge C \mu r n \max\{\mu r, \log n\}$, OPTSPACE achieves, with high probability,

$$\mathsf{RMSE} \leq C' \, \sigma_{\mathsf{Z}} \, \sqrt{\frac{r \, n}{|E|}}$$

provided that the RHS is smaller than $\sigma_r(M)/n$.

- Lower bound: [Candès, Plan '09] RMSE $\geq \sigma_z \sqrt{\frac{2rn}{|E|}}$
- Trimming + SVD $\mathsf{RMSE} \leq \underbrace{\mathsf{CM}_{\max} \sqrt{\frac{r\,n}{|E|}}}_{\text{missing entries}} + \underbrace{\mathsf{C}'\sigma_z \sqrt{\frac{r\,n}{|E|}}}_{\text{sample noise}}$

Comparison

- 500 imes 500 rank-4 matrix M, Gaussian noise with $\sigma_z=1$
- Example from [Candès, Plan '09]

Comparison

- 500 imes 500 rank-4 matrix M, Gaussian noise with $\sigma_z=1$
- Example from [Candès, Plan '09]

 ${\rm FPCA}$ [Ma, Goldfarb, Chen '09], ${\rm ADMiRA}$ [Lee, Bresler '09]

Positioning

The model

- *n* wireless devices uniformly distributed in a bounded convex region
- ullet Distance measurements between devices within radio range R
- Find the locations up to a rigid motion

The model

Distance Matrix D

- How is it related to Matrix Completion?
 - Need to find the missing entries
 - rank(D) = 4
- How is it different?
 - Non-uniform sampling
 - Rich information not used in Matrix Completion

The model

Distance Matrix D

- \bullet $\mathrm{MDS\text{-}MAP}$ [Shang et al. '03]
 - 1. Fill in the missing entries with shortest paths
 - 2. Compute rank-4 approximation

Main results

Theorem

For
$$R > C\sqrt{\frac{\log n}{n}}$$
, with high probability,

$$\mathsf{RMSE} \leq \frac{C}{R} \sqrt{\frac{\log n}{n}} + o(1) \; .$$

- RMSE = $\left(\frac{1}{n^2}\sum_{i,j}\left(D-\widehat{D}\right)_{ij}^2\right)^{1/2}$
- Lower Bound: If $R < \sqrt{\frac{\log n}{\pi n}}$, then the graph is disconnected
- Generalized to quantized measurements and distributed algorithms
- We can add Greedy Minimization step

Oh, Karbasi, Montanari, *Information Theory Workshop*, 2010 Karbasi, Oh, *ACM SIGMETRICS*, 2010

Numerical simulation

Conclusion

- Matrix Completion is an important problem with many practical applications
- OPTSPACE is an efficient algorithm for Matrix Completion
- OPTSPACE achieves performance close to the fundamental limit

• Officemates: Morteza, Yash, Jose, Raghu, Satish

 Friends: Mohsen, Adel, Farshid, Fernando, Arian, Haim, Sachin, Ivana, Ahn, Cha, Choi, Rhee, Kang, Kim, Lee, Na, Park, Ra, Seok, Song

• My family and Kyung Eun

Thank you!