Решающие деревья. Random Forest.Композиция методов. Бустинг

Морозов Никита Романов Даниил

Санкт-Петербург 2023 г.

Решающие деревья

Решающее дерево — бинарное дерево, в котором

- Каждой листовой вершине v приписан прогноз $c_v \in Y$ или $(c_v \in \mathbb{R}^k, \sum_{i=1}^k c_{vi} = 1).$

Рис.: Бинарное решающее дерево для классификации на 5 классов и решающие поверхности порождаемых деревом

Задачи решающих деревьев

Решающие деревья можно применять как для задач регрессии, так и для задач классификации.

Есть обучающая выборка $D=\{(x_1,y_1),(x_2,y_2)\dots(x_n,y_n)\}$,где x_i —входные данные, y_i — известные ответы (метки классов, значение регрессии).

- ullet $y_i \in \{1,\ldots,K\} \Rightarrow$ задача классификации.
- ullet $y_i \in \mathbb{R} \Rightarrow$ задача регрессии.

Общий подход

Для каждого объекта выборки x начинаем из корня. Если $\beta_v(x)=1$ двигаемся вправо, если $\beta_v(x)=0$ то влево. Двигаемся пока не дойдем до листа и получим прогноз c_v для объекта x.

Предикат β_v может иметь любую структуру, но обычно просто сравниваем с порогом $t\in\mathbb{R}$ по какому-то j-му признаку:

$$\beta_v(x,j,t) = [x_j \le t]$$

Решающие деревья в задаче регрессии

Общая идея состоит в разбиении нашего пространства предикатов (множества возможных значений для $X_1\dots X_p$) на J различных и непересекающихся областей R_1,R_2,\dots,R_J . Для каждого наблюдения попавшего в R_j , мы делаем такой же прогноз, который является средним значением ответа для обучающих наблюдений в R_j

Цель: найти такие прямоугольники R_1,\dots,R_J в которых минимизируется RSS:

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2,$$

где \hat{y}_{R_j} среднее ответов на обучающих наблюдения в j-м прямоугольнике

Решающие деревья в задаче регрессии

Рис.: Решающее дерево для регрессии

Естественная альтернатива RSS для классификации — коэффициент ошибок классификаций.

$$E = 1 - \max_{k} (\hat{p}_{mk})$$

где \hat{p}_{mk} — доля объектов обучающей выборки класса k попавших в m-область.

На практике чаще используют две других метрики:

$$ullet$$
 $G = \sum\limits_{k=1}^K \hat{p}_{mk}(1-\hat{p}_{mk})$ — индекс Джини,

• $D = -\sum\limits_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk}$ — коэффициент перекрёстной энтропии,

Предсказание для объекта x:

$$f(x) = \operatorname*{argmax}_{k \in Y} \hat{p}_{jk}.$$

Рис.: Информационные индексы для двухклассовой классовой классификации, как функция от пропорции p для класса 2.

Рис.: Использование решающих деревьев в задачах классификации

Рис.: Переобученное решающее дерево для классификации

Обучение деревьев(CART)

• Выбираем признак j и порог s так, чтобы разбиение $X^{(n)}$ на $R_1(j,s)=\{x\in X^{(n)}|X_j< s\}$ и $R_2(j,s)=\{x\in X^{(n)}|X_j\geq s\}$ решало задачу:

$$\sum_{i:x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2 \to \min_{j,s},$$

где
$$\hat{y}_{R_l} = \frac{1}{|R_l|} \sum_{i: x_i \in R_l(j,s)} y_i, \quad l = 1, 2.$$

- **2** Разбиваем выборку на области R_1 и R_2 , образуя две дочерние вершины.
- Повторяем процедуру в пределах каждой получаемой области, пока не выполнится критерий остановки.

На выходе получаем дерево, в каждом из листов которого содержится по крайней мере 1 объект исходной выборки X^n .

Обучение деревьев(IDE3)

- **1 X** обучающая выборка, $\mathbf{y} \in \{1, \dots, k\}$.
- ② Если все \mathbf{x}_i имеют класс k, ставим метку 1 в корень и выходим из цикла.
- ullet Если ни один ${f x}_i$ не имеет класс k, ставим метку 0 в корень и выходим из цикла.
- ① Предикат $R(\mathbf{x}_i) := \{\mathbf{x}_i | X_j \lessgtr s_j\}$ для которого информационная выгода наибольшая.
- lacktriangle Разбиваем lacktriangle на lacktriangle и lacktriangle по предикату R

$$\mathbf{X}_0 := \{ \mathbf{x}_i \in \mathbf{X} : R(\mathbf{x}_i) = 0 \},$$

$$\mathbf{X}_1 := \{ \mathbf{x}_i \in \mathbf{X} : R(\mathbf{x}_i) = 1 \}.$$

- ullet Если $\mathbf{X}_0=\varnothing$ или $\mathbf{X}_1=\varnothing$, создаем новый лист $v,\,k_v$ класс, в котором находится большинство элементов \mathbf{x}_i .
- $m{0}$ Иначе создаем внутреннюю вершину v:

 - $\mathbf{2}$ L_v ;
 - \mathbf{S} R_v .

Сравнение алгоритмов

- Тип задач: ID3: Классификация. CART: Классификация и регрессия.
- Критерий разбиения: ID3: Энтропия. CART: Индекс Джини (классификация) и среднеквадратичная ошибка (регрессия).
- **3** Тип разбиения: ID3: Многоразовое. CART: Бинарное.
- Устойчивость к выбросам: ID3: Чувствителен. CART: Более устойчив.
- **5** Типы признаков: ID3: Категориальные. CART: Категориальные и числовые.
- Критерии останова: ID3: Глубина, полное разбиение. CART: Глубина, минимум объектов в листе.
- **О Сложность модели: ID3:** Более сложные. **CART:** Более простые (бинарная структура).

Критерии остановки

- Ограничение максимальной глубины дерева.
- Ограничение минимального числа объектов в листе .
- Ограничение максимального количества листьев в дереве.
- Остановка в случае, если изменение метрики меньше порога.
- Остановка в случае, если все объекты относятся к 1 классу

Оба метода основаны на жадных подходах (решение лишь оптимально локальное).

Стрижка деревьев (pruning tree)

- **Проблема:** переобучение небольшое смещение, но большая дисперсия.
- Решение: пожертвовать смещением, но получить меньшую дисперсию
- Выращиваем дерево только до тех пор, пока уменьшение RSS из-за разбиения превышает некоторый(высокий) порог.
- Однако таким образом можно пропустить хорошее разбиение, остановившись слишком рано. Поэтому можно выращивать большие деревья T_0 , а затем обрезать его, для получения поддерева.

Cost complexity pruning

- Получим большое дерево T_0 и обрежем его в узле t, получив поддерево $T^t \subset T_0$.
- Рассмотрим последовательность деревьев проиндексированных положительным параметром α . Каждому α соответствует поддерево $T \subset T_0$, минимизирующее критерий

$$Q_{\alpha}(T) = Q(T) + \alpha |l(T)|,$$

где Q(T) — training error, $\alpha \geq 0$, |l(T)| — число листьев в поддереве T.

• Выберем α с помощью кросс-валидации и возьмём соответствующее поддерево.

Сравнение деревьев с линейными моделями

Из определения, решающее дерево разбивает все пространство признаков на некоторое количество непересекающихся подмножеств $\{R_1,\ldots,R_n\}$, и в каждом подмножестве выдает константный прогноз c_j . Модель регрессионного дерева:

$$f(X) = \sum_{j=1}^{n} c_j [X \in R_j].$$

По сути, она является линейной моделью над признаками

$$([X \in R_j])_{j=1}^n.$$

Сравнение деревьев с линейными моделями

Рис.: Примеры решений задач классификации с линейной (верхний ряд) и нелинейной (нижний ряд) зависимостью. В левой части решение с помощью линейной модели, в правой — с помощью решающего дерева.

Вероятностная постановка задачи

Генеральная постановка задачи:

Предполагаем, что η и ξ функционально зависимы:

$$\eta = \varphi(\xi) + \varepsilon,$$

 φ — неизвестная функция.

 $\eta \in \mathbb{R}$ — случайная величина, зависимая переменная.

 $\xi \in \mathbb{R}^p$ — случайный вектор, признаки.

 $arepsilon \in \mathbb{R}$ — случайная величина, ошибка.

Выборочная постановка

$$y_i = \varphi(\mathbf{x}_i) + \varepsilon_i,$$

 φ — неизвестная функция.

 y_i — реализация случайной величины η , зависимая переменная.

 \mathbf{x}_i — реализация случайного вектора ξ , признаки.

 $arepsilon_i \in \mathbb{R}$ — реализация случайной величины arepsilon, ошибка.

Преимущества и недостатки решающих деревьев

Преимущества:

- Простота интерпретации
- Пригодность и для задач регрессии, и для задач классификации
- Возможность работы с пропусками в данных
- Возможность работы с категориальными значениями

Недостатки:

- Основан на «жадном» алгоритме (решение является лишь локально оптимальным)
- Метод явялется неустойчивым и склонным к переобучению

Bootstrap

- ullet Дано $\mathbf{X} \in \mathbb{R}^{n imes p}$ набор данных, $\mathbf{Y} \in \mathbb{R}^n$ зависимые переменные, $X = (x_i, y_i)$.
- ullet Возьмем l объектов с возвращениями X_1
- ullet Повторим N раз $-X_1,\ldots,X_N$
- Обучим по каждой выборке модель линейной регрессии и получим базовые алгоритмы $b_1(x),\dots,b_N(x)$
- Предположим, что существует модель $y(x) = \sum \beta_i x_i + \varepsilon_i$ и p(x) распределение ${\bf X}$.
- Ошибка регрессии: $\varepsilon_j(x) = b_j(x) y(x), \ \ j = 1,...,N.$
- $\mathbb{E}_x \varepsilon_j^2(x) = \mathbb{E}_x (b_j(x) y(x))^2$

Среднеквадратичная ошибка

Средняя ошибка построенных функций регрессии:

$$E_1 = \frac{1}{N} \sum_{j=1}^{N} \mathbb{E}_x \epsilon_j^2(x)$$

Пусть

•
$$\mathbb{E}_x \epsilon_j(x) = 0$$
 и $\mathbb{E}_x \epsilon_i(x) \epsilon_j(x) = 0$, $i \neq j$

•
$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x)$$

Тогда

$$E_N = \mathbb{E}_x \left(\frac{1}{N} \sum_{j=1}^N b_j(x) - y(x) \right)^2 = \mathbb{E}_x \left(\frac{1}{N} \sum_{j=1}^N \epsilon_j(x) \right)^2 =$$
$$= \frac{1}{N^2} \mathbb{E}_x \left(\sum_{j=1}^N \epsilon_j^2(x) + \sum_{i \neq j} \epsilon_i(x) \epsilon_j(x) \right) = \frac{1}{N} E_1$$

Bias-Variance decomposition

Пусть задана выборка $X=(x_i,y_i)_{i=1}^l$ с ответами $y_i\in\mathbb{R}$ и $\exists p(x,y)$ Рассмотрим $L(y,a)=(y-a(x))^2$ — функция потерь, и $R(a)=\mathbb{E}_{x,y}\left[(y-a(x))^2\right]\int_{\mathbb{X}}\int_{\mathbb{Y}}p(x,y)(y-a(x))^2dxdy$ — ее среднеквадратичный риск.

Ошибка метода обучения

Метод обучения

$$\mu: (\mathbb{X} \times \mathbb{Y})^l \to \mathbf{A}$$

$$L(\mu) = \mathbb{E}_X \left[\mathbb{E}_{x,y} \left[\left(y - \mu(X)(x) \right) \right)^2 \right]$$
 (1)

Среднеквадратичный риск на фиксированной выборке X

$$\mathbb{E}_{x,y} [(y - \mu(X))^2] = \mathbb{E}_{x,y} [(y - \mathbb{E}[y|x])^2] + \mathbb{E}_{x,y} [(\mathbb{E}[y|x] - \mu(X))^2]$$

Подставим это в формулу (1).

Ошибка метода обучения

$$L(\mu) = \mathbb{E}_{X} \left[\underbrace{\mathbb{E}_{x,y} \left[(y - \mathbb{E}[y|x])^{2} \right]}_{\text{He Зависит от X}} + \mathbb{E}_{x,y} \left[(\mathbb{E}[y|x] - \mu(X))^{2} \right] \right] = \\ = \mathbb{E}_{x,y} \left[(y - \mathbb{E}[y|x])^{2} \right] + \mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[(\mathbb{E}[y|x] - \mu(X))^{2} \right] \right]$$

$$(2)$$

Преобразовываем второе слагаемое:

$$\mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[(\mathbb{E}[y|x] - \mu(X))^{2} \right] \right] =$$

$$= \mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[(\mathbb{E}[y|x] - \mathbb{E}_{X}[\mu(X)] + \mathbb{E}_{X}[\mu(X)] - \mu(X))^{2} \right] \right] =$$

$$= \mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[\underbrace{ \left(\mathbb{E}[y|x] - \mathbb{E}_{X}\mu(X))^{2} \right)}_{\text{He Sabucut ot X}} \right] + \mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[(\mathbb{E}_{X}\mu(X) - \mu(X))^{2} \right] \right] + 2\mathbb{E}_{x,y} \left[\mathbb{E}_{X} \left[(\mathbb{E}[y|x] - \mathbb{E}_{X}[\mu(X)]) (\mathbb{E}_{X}[\mu(X)] - \mu(X)) \right] \right]$$

$$(3)$$

Bias-Variance decomposition

Подставим (3) в (2).

$$L(\mu) = \underbrace{\mathbb{E}_{x,y}\left[\left(y - \mathbb{E}[y|x]^2\right)\right]}_{\text{mym}} + \tag{4}$$

+
$$\underbrace{\mathbb{E}_{x}\left[\mathbb{E}_{X}[\mu(X)] - \mathbb{E}[y|x]\right]}_{\text{смещение}} + \underbrace{\mathbb{E}_{x}\left[\mathbb{E}_{X}\left[(\mu(X) - \mathbb{E}_{X}[\mu(X)])^{2}\right]\right]}_{\text{разброс}}$$
 (5)

Bagging

Цель: уменьшение дисперсии модели с сохранением низкого смещения.

Идея: пусть ξ_1,\dots,ξ_n — н.о.р.с.в., $\mathrm{D}\,\xi_i=\sigma^2$, тогда $\mathrm{D}\,\bar\xi=\frac{\sigma^2}{n}.$

Реализация:

 $X^n = (x_i, y_i)_{i=1}^n$ — обучающая выборка.

- ullet В бутстреп-выборок (с возвращением) $X_b^{*n},\quad b=1,\dots,B$,
- ullet B решающих деревьев $\{T_b\}_{b=1}^B$,
- находим оценку:
 - ullet в задаче регрессии $\hat{f}_{bag}(x)=rac{1}{B}\sum\limits_{b=1}^{B}T_{b}(x)$,
 - в задаче классификации с K классами: записываем класс предсказанный каждым деревом, итоговое предсказание самый часто встречающийся класс среди предсказаний.

Оценка ошибки out-of-bag

- Дерево, обученное по бутстреп-выборке, использует в среднем 2/3 наблюдений.
- Оставшуюся 1/3 выборки называют *out-of-bag* наблюдениями.
- Те деревья, у которых i-ое наблюдение out-of-bag, могут использоваться для предсказания на i. Таким образом можно получить примерно B/3 предсказаний.
- В результате получаем способ тестирования bagged модели прямо на обучающей выборке.