Part I

Basic Number Theory

1. Basic Number Theory

- Modular Arithmetic
- 2 Prime Numbers

Modular Arithmetic

Let *n* a positive integer. Then $\mathbb{Z}_n = \{0, 1, ..., n-1\}.$

Addition and multiplication are defined as the usual addition and multiplication. If the result is equal to or larger than n, we reduce modulo n (divide by n and take the reminder).

Example

In \mathbb{Z}_6 , we have:

$$4 + 5 = 9 \mod 6 = 3$$

$$4 \times 5 = 20 \mod 6 = 2$$

4 D > 4 A > 4 B > 4 B > B

Greatest Common Divisor (gcd)

Definition (Greatest Common Divisor (gcd))

Given the integers x, y, we define $d = \gcd(x, y)$ as the largest number that divides both x and y.

Definition (Relatively Prime)

If gcd(x, y) = 1, we say that x and y are *relatively prime*.

◆ロト→部ト→車ト→車ト 車

Modular Inversion

Consider an element x in \mathbb{Z}_n . We call inverse of x an element y such that $xy \mod n = 1$.

If the inverse exists, we will indicate it as x^{-1} .

Example

In \mathbb{Z}_7 the inverse of 2 is $2^{-1} = 4$. In fact, $2 \times 4 = 8 \mod 7 = 1$.

- The integer x has an inverse mod n if and only if gcd(x, n) = 1.
- The set \mathbb{Z}_n^* contains all the elements in \mathbb{Z}_n that have an inverse mod n.

How to Solve Modular Equations

Consider the equation in which all the coefficients and unknowns are defined in \mathbb{Z}_n :

$$ax + b = 0 \pmod{n}$$

Let $d = \gcd(a, n)$, there are three cases:

- If d = 1, then $x = -ba^{-1} \mod n$
- If d > 1 and $b \mod d = 0$, then there are d solutions
 - Solve the new equation

$$(a/d)x_0 + (b/d) = 0 \pmod{n/d}$$

2 The *d* solutions to the original equation are

$$x_0, x_0 + (n/d), x_0 + 2(n/d), \dots, x_0 + (d-1)(n/d)$$

• If d > 1 and $b \mod d > 0$, then there is no solution.

1. Basic Number Theory

- Modular Arithmetic
- 2 Prime Numbers

4 D > 4 A > 4 B > 4 B >

Fermat's Little Theorem

Let p be a prime number. Then $\mathbb{Z}_p^* = \{1, \dots, p-1\}$. For any integer in \mathbb{Z}_p^* , we have $x^{p-1} \mod p = 1$.

Example

Multiplying both sides by x, we have $x^p \mod p = x$. Dividing by both sides by x, we have $x^{p-2} \mod p = x^{-1}$.

Fermat Primality Test

- Let *n* be an integer. It is unknown if *n* is prime. Let *a* be a random integer smaller than *n*.
- Calculate $a^{n-1} \mod n$.
 - If *n* is prime, then $a^{n-1} = 1$.
 - If n is composite, then a^{n-1} may or may not be equal to 1.
- Thus
 - If $a^{n-1} \neq 1$, then *n* is composite.
 - If $a^{n-1} = 1$, n may be prime or not.

There is a non-negligible probability that $a^{n-1} = 1$ for some a even if n is composite. The probability that this happens for multiple values of a drops quickly.

4 D > 4 A > 4 B > 4 B >

Fermat Primality Test

Fermat Primality Test

```
Input: integer n, candidate prime
Choose a from \mathbb{Z}_n
if a^n \mod n = 1 then
return n may be prime
else
return n is composite
end if
```

The test is repeated several times to reduce the probability of error.

This test has a fairly large probability of error. In practice, there are other tests with lower probability of error.

4 D > 4 A > 4 B > 4 B > B

Generating Random Primes

Problem: generate a random prime number with l bits. No fast deterministic algorithm. Standard practice is

- Generate a random odd integer n with l bits
- 2 Apply non-deterministic test of primality.

How long does it take to find a prime? It depends on the density of prime numbers.

Let $\pi(x)$ be the number of primes smaller than x. Gauss approximation says that $\pi(x) \sim x/\log x$.

The density of primes is $\pi(x)/x = 1/\log x$.

Thus, the average number of attempts to find a prime smaller than x is $\log x$. For $x = 2^l$, the average number of attempts is $l \log 2$.