clusterAl 2020
ciencia de datos en ingeniería
industrial
UTN BA
curso I5521

clase_04: ML Strategy

Presentación: Matías Callara

Mi nivel de energía está en

0

1

2

3

agenda clase04: ML Strategy

This class is a summary of <u>Andrew Ng's great</u>
 course on <u>ML Strategy</u>. He is a much better
 communicator than me so I suggest you to go and
 join his course and enjoy a great teacher.

agenda clase04: ML Strategy

- Data Science Project Phases
- Orthogonalization
- Train / Dev / Test
- Training: Bias vs Variance
- Evaluation metrics

Solving problems with ML

Data Science Project Phases

Kenneth Jensen / CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0) - CRISP-DM Process Diagram

Focus on one problem at a time (Orthogonalization)

Reaching the target

Use sliders a & b to reach target T.

 First, try to reach T with point NO and then with point O. Which one was easier?

Data Preparation

Train/dev/test distributions and size

Guideline

Choose a dev set and test set to reflect data you expect to get in the future and consider important to do well on.

Size of test set

Set your test set to be big enough to give high confidence in the overall performance of your system.

Modeling

The best possible result

Is it possible to have **perfect** performance at this task? How can I **estimate** the best possible performance (Bayes' Error)?

Comparing to human-level performance

Why compare to human-level performance

Humans are quite good at a lot of tasks. So long as ML is worse than humans, you can:

- Get labeled data from humans. (x,y)
- Gain insight from manual error analysis: Why did a person get this right?
- Better analysis of bias/variance.

Error Analysis. Using the training and dev error to identify on what to focus.

Training Error 8 %

Dev Error 10 %

Error Analysis. Using the training and dev error to identify on what to focus.

Human Error 1 %

Training Error 8 %

Dev Error 10 %

Human error is used as a proxy for Bayes error.

Error Analysis. Using the training and dev error to identify on what to focus.

Human Error	1 '	%
-------------	-----	---

Training Error 8 %

Dev Error 10 %

(Avoidable) Bias

Human error is used as a proxy for Bayes error.

Error Analysis. Using the training and dev error to identify on what to focus.

Human Error 1 %

Training Error 8 %

Dev Error 10 %

Focus on Bias

Human error is used as a proxy for Bayes error.

(Avoidable) Bias

Error Analysis. Using the training and dev error to identify on what to focus.

Human Error	1 %	7.5 %	(Avoidable) Bias
Training Error	8 %	8 %	(Avoidable) Blas
Dev Error	10 %	10%	
	Focus on Bias		

Human error is used as a proxy for Bayes error.

Error Analysis. Using the training and dev error to identify on what to focus.

	Focus on Bias	Focus on Variance	
Dev Error	10 %	10%	Variance
Training Error	8 %	8 %	
Human Error	1 %	7.5 %	(Avoidable) Bias

Human error is used as a proxy for Bayes error.

What is Human-level performance?

Human-level error as a proxy for Bayes error

Medical image classification example:

Suppose:

(c) Experienced doctor 0.7 % error

 \rightarrow (d) Team of experienced doctors .. 0.5 % error \leftarrow

What is "human-level" error?

Dage ena 5 0.60%

Surpassing human-level Performance

Working as a Data Scientist

Get ready to compete!

(With a lot of effort) I manage to get very small error on the training set. Am I done?

(With a lot of effort) I manage to get very small error on the training set. Am I done?

Yes

No

(With a lot of effort) I manage to get very small error on the training set. Am I done?

Yes

No ✓ 0%

Leaderboard

Getting better training error

Reduce bias by

- Using a more flexible model (a bigger model)
- Train longer / use a better optimization algorithm
- Change the NN architecture / use better hyperparameter search

(With a lot of effort) I manage to get very small error on the validation set. Am I done?

(With a lot of effort) I manage to get very small error on the validation set. Am I done?

Yes

No

(With a lot of effort) I manage to get very small error on the validation set. Am I done?

Yes

No ✓ 0%

Leaderboard

Getting better dev (validation) error

Reduce variance by:

- Get more training data
- Apply regularization
- Change the NN architecture / better hyperparameter search

(With a lot of effort) I manage to get very small error on the test set. Am I done?

(With a lot of effort) I manage to get very small error on the test set. Am I done?

Yes

No

(With a lot of effort) I manage to get very small error on the test set. Am I done?

Yes

No ✓ 0%

Leaderboard

Getting better test error

- Get a bigger dev dataset
- Check distributions of the dataset split

(With a lot of effort) I manage to get very small error in the real world. Am I done?

(With a lot of effort) I manage to get very small error in the real world. Am I done?

Yes

No

(With a lot of effort) I manage to get very small error in the real world. Am I done?

Yes

No ✓ 0%

Leaderboard

Getting better Real Life error

- Change dev dataset
- Change cost function

Summary

The two fundamental assumptions of supervised learning

1. You can fit the training set pretty well.

a Avaidable bias

2. The training set performance generalizes pretty well to the dev/test set.

Andrew Ng

Reducing (avoidable) bias and variance

Evaluation

$$CE = \begin{cases} if \ y = 1 \end{cases}$$

Engineering Time!

Let's create a loss function

$$CE = \begin{cases} -log(\hat{y}) & \text{if } y = 1 \end{cases}$$

$$CE = \begin{cases} -log(\hat{y}) & \text{if } y = 1 \\ & \text{if } y = 0 \end{cases}$$

$$CE = \begin{cases} -log(\hat{y}) & \text{if } y = 1 \\ -log(1 - \hat{y}) & \text{if } y = 0 \end{cases}$$

$$CE = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

Loss function: (Binary) Cross Entropy

$$CE = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

https://commons.wikimedia.org/wiki/File:Precisionrecall.svg

Loss function: (Binary) Cross Entropy

$$CE = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

	p' (Predicted)	n' (Predicted)
p (Actual)		
n (Actual)		

Loss function: (Binary) Cross Entropy

$$CE = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

	P' (Predicted)	n' (Predicted)
p (Actual)	True Positive	
n (Actual)	8	

Loss function: (Binary) Cross Entropy

$$CE = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

	p' (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)		

Loss function: (Binary) Cross Entropy

$$CE = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

	p' (Predicted)	n' (Predicted)
p (Actual)	True Positive	False Negative
n (Actual)	False Positive	200

Loss function: (Binary) Cross Entropy

$$CE = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

	p' (Predicted)	n' (Predicted)
p (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Loss function: (Binary) Cross Entropy

$$CE = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

	p' (Predicted)	n' (Predicted)
p (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Evaluation Metrics

Loss function: (Binary) Cross Entropy

$$CE = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

	p' (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Evaluation Metrics

F1-score =
$$\frac{2 * precision * recall}{precision + recall}$$

selected elements

https://commons.wikimedia.org/wiki/File:Precisionrecall.svg

Single Evaluation Metric

- Having a single real number evaluation metric will help you compare the performance of different models.
- You can decide how to combine different metrics.
- You can change your metric. If the models ranking generated by the metric doesn't match your personal/business ranking, it may mean that your metric is not reflecting your real objective.
- **Keep it orthogonal**. First, fix the evaluation metric then fix the system to get better at the new metric.

Satisficing and Optimizing Metrics

In the problem understanding phase we need to identify which are **objectives** we need to **optimize for** and which are **conditions** that we need **to satisfy**.

Classifier	Accuracy	Running time
A	90%	80ms
В	92%	95ms
С	95%	1,500ms

Andrew Ng

$$\begin{aligned} &\text{ACC} = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN} \end{aligned}$$

Now is your turn!

https://playground.tensorflow.org/

Some thoughts...

Let's get (a bit) philosophical

In Mathematics, we try to come up with **abstractions** (structures, patterns) that will help us **deal** with **complex concepts**, **apply** them to **other situations** (context) or **compare** them with **other perspective** (abstractions) of the same phenomena.

Compare:

$$A \mathrm{x} = \mathrm{b}$$
 $v s$ $\left\{egin{array}{l} A_{11} x_1 + A_{12} x_2 = b1 \ A_{21} x_1 + A_{22} x_2 = b2 \end{array}
ight.$

How does this relate to ML?

https://www.facebook.com/photo.php?fbid=10211102465031995&set=gm.1260 906740625159&type=3&theater&ifg=1

- 4 Ingenieros entran a un auto. El auto no enciende.
- -Ingeniero mecánico: "Está dañado el arranque"
- -Ingeniero electricista: "La batería está descargada"
- -Ingeniero químico: "Impurezas
- en la gasolina"
- -Ingeniero de sistemas:
- "Chicos, ¿y si nos salimos del auto y volvemos a entrar?"

0.00

https://www.facebook.com/photo.php?fbid=2478961752187299&set=gm.2385663964816092&type=3&theater&ifg=1

My experience...

- I (really) started learning mathematics after getting my engineering degree.
- At a company, I wanted to be able of solving (some) of their problems.
- Learning how to construct data-driven solutions changed the relationship with my work (and eventually my life).

For a next session...

- Relación entre funciones y vectores.
- Funciones como vectores infinitos.
- Matrices como funciones lineales.
- Operadores como "funciones" para funciones.
- Las múltiples caras de la regresión lineal (Algebraica (escalar y vectorial), Ajuste de Puntos, Geométrica, Probabilística, Logística, Red Neuronal, Ecuación Normal, Método del gradiente)