DATA SCIENCE WITH R

INTRODUCING AND INTERACTING WITH R

Graham.Williams@togaware.com

Senior Director and Data Scientist, Analytics Australian Taxation Office

Adjunct Professor, Australian National University Fellow, Institute of Analytics Professionals of Australia

Graham.Williams@togaware.com
http://datamining.togaware.com

OVERVIEW

- 1 R TOOL SUITE
- 2 RSTUDIO
- 3 Introduction to R
- 4 Knitting

OVERVIEW

- 1 R TOOL SUITE
- 2 RSTUDIO
- 3 Introduction to R
- 4 Knitting

TOOLS

- Ubuntu GNU/Linux operating system
 - Feature rich toolkit, up-to-date, easy to install, FLOSS
- RStudio
 - Easy to use integrated development environment, FLOSS
- R Statistical Software Language
 - Extensive, powerful, thousands of contributors, FLOSS
- KnitR
 - Produce beautiful documents, easily reproducible, FLOSS

USING UBUNTU

- Desktop Ubuntu
- Connecting to Analytics Servers
 - Using XWin
 - Using VNC
- Start up RStudio from the Dash

OVERVIEW

- 1 R Tool Suite
- 2 RSTUDIO
- 3 Introduction to R
- MITTING

RSTUDIO—THE DEFAULT THREE PANELS

RSTUDIO—WITH R SCRIPT FILE—EDITOR PANEL

OVERVIEW

- 1 R Tool Suite
- 2 RSTUDIO
- 3 Introduction to R
- MITTING

SCATTERPLOT—R CODE

Our first little bit of R code:

Load a couple of packages into the R library

```
library(rattle) # Provides the weather dataset
library(ggplot2) # Provides the qplot() function
```

Then produce a quick plot using qplot()

```
ds <- weather
qplot(MinTemp, MaxTemp, data=ds)</pre>
```

Your turn: give it a go.

SCATTERPLOT—R CODE

Our first little bit of R code:

Load a couple of packages into the R library

```
library(rattle) # Provides the weather dataset
library(ggplot2) # Provides the qplot() function
```

Then produce a quick plot using qplot()

```
ds <- weather
qplot(MinTemp, MaxTemp, data=ds)</pre>
```

• Your turn: give it a go.

SCATTERPLOT—PLOT

SCATTERPLOT—RSTUDIO

Missing Packages—Tools→Install Packages...

RSTUDIO—INSTALLING GGPLOT2

RSTUDIO—KEYBOARD SHORTCUTS

These will become very useful!

- Editor:
 - Ctrl-Enter will send the line of code to the R console
 - Ctrl-2 will move the cursor to the Console
- Console:
 - UpArrow will cycle through previous commands
 - Ctrl-UpArrow will search previous commands
 - Tab will complete function names and list the arguments
 - Ctrl-1 will move the cursor to the Editor

Your turn: try them out.

RSTUDIO—KEYBOARD SHORTCUTS

These will become very useful!

- Editor:
 - Ctrl-Enter will send the line of code to the R console
 - Ctrl-2 will move the cursor to the Console
- Console:
 - UpArrow will cycle through previous commands
 - Ctrl-UpArrow will search previous commands
 - Tab will complete function names and list the arguments
 - Ctrl-1 will move the cursor to the Editor

Your turn: try them out.

Basic R

```
library(rattle) # Load the weather dataset.
head(weather) # First 6 observations of the dataset.
##
         Date Location MinTemp MaxTemp Rainfall Evapora...
## 1 2007-11-01 Canberra 8.0
                                         0.0
                                24.3
## 2 2007-11-02 Canberra 14.0 26.9 3.6
## 3 2007-11-03 Canberra 13.7 23.4 3.6
str(weather) # Struncture of the variables in the dataset.
## 'data.frame': 366 obs. of 24 variables:
## $ Date : Date, format: "2007-11-01" "2007-11-...
## $ Location : Factor w/ 46 levels "Adelaide", "Alba...
## $ MinTemp : num 8 14 13.7 13.3 7.6 6.2 6.1 8.3 ...
. . . .
```


Basic R

summary(weather) # Univariate summary of the variables.

```
Location
##
       Date
                                       MinTemp
   Min.
         :2007-11-01 Canberra
                                :366 Min. :-5.30
##
                                                   . . .
##
   1st Qu.:2008-01-31 Adelaide : 0 1st Qu.: 2.30
                                                   . . .
##
   Median :2008-05-01
                    Albany : 0 Median : 7.45
                                                   . . .
                    Albury : 0 Mean : 7.27
##
   Mean :2008-05-01
                                                   . . .
                    AliceSprings: 0 3rd Qu.:12.50
##
   3rd Qu.:2008-07-31
                                                   . . .
##
   Max. :2008-10-31
                    BadgerysCreek: 0 Max.
                                            :20.90
                                                   . . .
                     (Other)
##
                                                   . . .
##
     Rainfall Evaporation Sunshine WindGust...
##
   Min. : 0.00
                Min. : 0.20 Min. : 0.00
                                           NW
                                                 : ...
##
   1st Qu.: 0.00
                1st Qu.: 2.20 1st Qu.: 5.95
                                           NNW
                                                 : ...
##
   Median: 0.00
                Median: 4.20 Median: 8.60
                                           E : ...
##
   Mean : 1.43
                Mean : 4.52 Mean : 7.91
                                           WNW : ...
   3rd Qu.: 0.20
                3rd Qu.: 6.40 3rd Qu.:10.50
                                           ENE
                                                  : ...
##
```

. . . .

VISUAL SUMMARIES—ADD A LITTLE COLOUR

qplot(Humidity3pm, Pressure3pm, colour=RainTomorrow, data=ds)

VISUAL SUMMARIES—CAREFUL WITH CATEGORICS

qplot(WindGustDir, Pressure3pm, data=ds)

VISUAL SUMMARIES—ADD A LITTLE JITTER

qplot(WindGustDir, Pressure3pm, data=ds, geom="jitter")

VISUAL SUMMARIES—AND SOME COLOUR

qplot(WindGustDir, Pressure3pm, data=ds, colour=WindGustDir, geom="jitter")

GETTING HELP—PRECEDE COMMAND WITH?

OVERVIEW

- ① R Tool Suite
- 2 RSTUDIO
- 3 Introduction to R
- 4 Knitting

Create a Knitr Document: New→R Sweave

SETUP KNITR

We wish to use KnitR rather than the older Sweave processor

In RStudio we can configure the options to use knitr:

- Select Tools→Options
- Choose the Sweave group
- Choose knitr for Weave Rnw files using:
- The remaining defaults should be okay
- Click Apply and thenOK

SIMPLE KNITR DOCUMENT

Insert the following into your new KnitR document:

```
\title{Sample KnitR Document}
\author{Graham Williams}
\maketitle
```

\section*{My First Section}

This is some text that is automatically typeset by the LaTeX processor to produce well formatted quality output as PDF.

Your turn—Click **Compile PDF** to view the result

SIMPLE KNITR DOCUMENT

Insert the following into your new KnitR document:

```
\title{Sample KnitR Document}
\author{Graham Williams}
\maketitle
```

\section*{My First Section}

This is some text that is automatically typeset by the LaTeX processor to produce well formatted quality output as PDF.

Your turn—Click Compile PDF to view the result.

SIMPLE KNITR DOCUMENT

SIMPLE KNITR DOCUMENT—RESULTING PDF

Result of Compile PDF

KNITR: ADD R COMMANDS

R code can be used to generate results into the document:

```
<<echo=FALSE, message=FALSE>>=
library(rattle) # Provides the weather dataset
library(ggplot2) # Provides the qplot() function
ds <- weather
qplot(MinTemp, MaxTemp, data=ds)
@</pre>
```

Your turn—Click **Compile PDF** to view the result.

KNITR: ADD R COMMANDS

R code can be used to generate results into the document:

```
<<echo=FALSE, message=FALSE>>=
library(rattle) # Provides the weather dataset
library(ggplot2) # Provides the qplot() function
ds <- weather
qplot(MinTemp, MaxTemp, data=ds)
@</pre>
```

Your turn—Click **Compile PDF** to view the result.

KNITR DOCUMENT WITH R CODE

SIMPLE KNITR DOCUMENT—RESULTING PDF WITH PLOT

Result of Compile PDF

LATEX BASICS

```
\subsection*{...}
                          % Introduce a Sub Section
\subsubsection*{...}
                          % Introduce a Sub Sub Section
\textbf{...}
                          % Bold font
\textit{...}
                          % Italic font
\begin{itemize}
                          % A bullet list
 \item ...
  \item ...
\end{itemize}
```

Plus an extensive collection of other markup and capabilities.

KNITR BASICS

```
echo=FALSE  # Do not display the R code
```

eval=TRUE # Evaluate the R code

```
results="hide"  # Hide the results of the R commands
```

```
fig.width=10  # Extend figure width from 7 to 10 inches
fig.height=8  # Extend figure height from 7 to 8 inches
```

```
out.width="0.8\\textwidth"  # Fit figure 80% page width
out.height="0.5\\textheight"  # Fit figure 50% page height
```

Plus an extensive collection of other options.

THANK YOU

Question Time

This document, sourced from IntroRL.Rnw revision 282, was processed by KnitR version 1.5 of 2013-09-28 and took 2.4 seconds to process. It was generated by giw on nyx running Ubuntu 13.10 with Intel(R) Xeon(R) CPU W3520 @ 2.67GHz having 4 cores and 12.3GB of RAM. It completed the processing 2014-02-14 06:19:56.

