Efficient Proximity Queries on Simplified Height Maps

Anonymous Anonymous Anonymous Anonymous Anonymous Anonymous

ABSTRACT

Performing proximity queries on a 3D surface has gained significant attention from both academic and industry. The height map is one fundamental 3D surface representation with many advantages over others such as the point cloud and <u>Triangular-Irregular Network</u> (TIN). In this paper, we study the shortest path query on a height map. Since performing proximity queries using the shortest path on a height map is costly, we propose a simplification algorithm on the height map to accelerate it. We also propose a shortest path query algorithm and algorithms for answering proximity queries on the original/simplified height map. Our experiments show that our simplification algorithm is up to 21 times and 5 times (resp. 412 times and 7 times) better than the best-known adapted point cloud (resp. TIN) simplification algorithm in terms of the simplification time and output size (the size of the simplified surface), respectively. Performing proximity queries on our simplified height map is up to 5 times and 1,340 times quicker than on the simplified point cloud and the simplified TIN with an error at most 10%, respectively.

ACM Reference Format:

1 INTRODUCTION

12

Performing proximity queries on a 3D surface has gained significant attention from both academic and industry [66, 73]. Academic researchers studied different types of proximity queries [31, 32, 52, 60, 66, 69, 70, 73], including *shortest path queries* [28, 45, 46, 50, 51, 55, 56, 65–68, 71–74], *k-Nearest Neighbor (kNN) queries* [31, 32, 60, 66, 69] and *range queries* [52, 62]. In industry, Google Earth [9] and Metaverse [16] employ shortest paths passing on 3D surfaces (e.g., Earth and virtual reality) for user navigation.

Height map, point cloud and TIN: There are different representations of a 3D surface, including *height map, point cloud* [73] and $\underline{Triangular}$ - $\underline{Irregular}$ $\underline{Network}$ (TIN) [66, 69, 70]. Figure 1 (a) shows a 3D surface in a $20 \text{km} \times 20 \text{km}$ region in Gates of the Arctic [58] national park, USA. Figure 1 (b) shows the height map representation of this surface. Consider a 2D plane with 9×9 grid cells in this region. Each cell has 2D coordinate values representing 2D coordinate values of its center point, and a grayscale pixel color

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

SIGMOD '26, May 31 – June 5, 2026, Bengaluru India © 2025 Association for Computing Machinery. ACM ISBN 978-1-4503-XXXX-X/18/06...\$15.00 https://doi.org/XXXXXXXXXXXXXX

representing its elevation value (e.g., calculated using a simple linear interpolation using the pixel color), meaning the height projected from this center point on the 3D surface. If this value is larger, this pixel's color is brighter. Besides, each cell has 8 neighbors, shown as blue points in Figure 1 (b). All these cells form a height map. Figure 1 (c) shows this height map in bird's eye view. Figure 1 (d) shows the point cloud representation of this surface. Each cell in the height map could be one-to-one mapped to a 3D point, where the x- and y- coordinate values of this point are the 2D coordinate values of the center point of this cell, and the z-coordinate of this point is the elevation value of this cell [26, 48, 64, 77]. This is the best-known exact height map to point cloud conversion algorithm that runs in O(n) time, where n is the number of cells in the height map. The best-known approximate conversion algorithm uses machine learning approach, e.g., uniform random sampling [39, 49] for acceleration. But, the converted point cloud is an approximated representation of the height map, since it randomly selects some (not all) cells for mapping. This runs in $O(n_r)$ time, where n_r is the number of randomly selected cells. Figure 1 (e) shows the TIN representation of this surface. A TIN has a set of contiguous triangulated faces, where each face has three edges connecting at three vertices. In practice, the TIN is converted from the point cloud [73] via triangulation [36, 63, 73] where all vertices of faces are the points in the point cloud. This runs in O(n) time. If the triangulation is applied on the approximated point cloud, this runs in $O(n_r)$ time.

1.1 Advantages of Height Map

Height maps offer several advantages over point clouds and TINs.

- (1) Compared with point cloud datasets, there are more height map datasets available (e.g., there are 50M height map datasets but only 20M point cloud datasets in an open data 3D surface dataset platform called OpenDEM [17]), with four reasons.
- (i) Longer history of the height map. The height map and point cloud were introduced in 1884 [2] and 1960 [13], respectively. So, more height map datasets are available due to the earlier adoption.
- (ii) Lower cost of obtaining a height map dataset. The height map dataset could be obtained from either optical images of cost USD \$25 [21] captured by an optical satellite or radar images of cost USD \$3,300 [8] captured by a radar satellite. But, the point cloud dataset could be obtained only from radar images captured by a radar satellite (if no conversion operation from the height map to the point cloud is involved). The image cost difference is probably due to the satellite launching cost difference: USD \$0.4 billion [14] for an optical satellite and USD \$1.5 billion [1] for a radar satellite.
- (iii) More region coverage of the height map datasets. Since optical and radar satellites cover 100% [3] and 80% [20] of Earth's land area, respectively, height map datasets cover more regions compared with point cloud datasets. For example, high-latitude regions (e.g., Gates of the Arctic national park in the northern part of Alaska, USA) are regions covered by height map datasets but not point

Figure 1: Paths passing on (a) a 3D surface, (b) a height map, (c) a height map in bird's eye view, (d) a point cloud, (e) a TIN, (f) a height map graph, (g) a simplified height map and (h) a simplified height map in bird's eye view

cloud datasets [22]. We perform a snowfall evacuation case study there, using the only available height map datasets for evacuation.

(iv) Additional conversion time from height map datasets to point cloud datasets. In our experiment, converting height map datasets to point cloud datasets [26, 48, 64, 77] for radar satellites' uncovered region takes 21 years¹. It can be fast (e.g., 42s for a region of 1km²) for a small area and we need it once. But, in our evacuation case study, we capture the height map (in only 4s for a region of 1 km² [54]) after snowfall due to avalanches (i.e., the height map is updated), and the weather changes suddenly (that complicates rescue efforts) in 1s [4]. We aim to avoid the conversion to minimize sudden weather changes and save more lives.

(2) Compared with *TIN* datasets (i.e., usually converted from point cloud datasets), height map datasets are *easier to access* since satellites can capture them directly. So, more height map datasets are available, and the 4 reasons above also apply to *TINs*. Height maps also *use less hard disk space*, since they store cell information, while *TINs* store vertex, edge and face information.

1.2 Our Focus

71

72

74

75

77

78

79

81

82

83

85

86

87

88

92

93

94

95

97

101

102

103

1.2.1 Height map shortest path query. In this paper, we study the shortest path query on the height map. There are two issues.

(1) How to find the shortest path passing on the height map. To the best of our knowledge, there is no existing study finding the shortest path directly on a height map. Most (if not all) algorithms [48, 57, 64, 77] adapt shortest path algorithms on the point cloud or TIN by converting the height map to point cloud and TIN, and then perform the shortest path query on the converted point cloud [73] or TIN [28, 45-47, 51, 67, 68, 72, 74]. In this paper, we propose a height map graph in Figure 1 (f) (constructed from the height map). Intuitively, for each cell in the height map, we construct a corresponding 3D vertex in the graph. For each pair of neighboring cells, we create an edge between their corresponding vertices with a weight equal to the Euclidean distance between them. Based on this graph, we could find the shortest path by Dijkstra's algorithm [33]. Our experiments show that computing the shortest path passing on a height map with 0.5M cells needs 3s, but computing the shortest path passing on a point cloud (see Figure 1 (d)) converted from this height map [73] needs 3.4s due to data conversion. Besides, computing the shortest surface path passing on a TIN (see Figure 1

(e)) converted from this height map [28, 67, 74] needs $280s \approx 4.6$ min, since the height map's structure is simpler.

(2) How to improve it in other proximity queries. In our experiments, using shortest paths to answer kNN or range queries for 10k query objects on a height map with 50k cells both need 4,400s ≈ 1.2 hours, which is quite long. Thus, we propose a *simplification* process on the height map.

1.2.2 **Height map simplification**. In this paper, we also study how to simplify the height map. If we merge *nearby* cells with similar elevation values (considered as *redundant* information) into one cell, then the number of cells is reduced and Dijkstra's algorithm on this simplified height map is faster. Figure 1 (g) shows a simplified height map of the same surface, where cell *X* is merged from 6 cells (whose elevation value is the average of these 6 cells). Figure 1 (h) shows this simplified height map in bird's eye view. Consider a pair of points *a* and *c*. There is a relative error called the *distance error ratio* of the distance calculated by a studied algorithm compared with the ground-truth or optimal distance, i.e., the *approximate* shortest distance between *a* and *c* on the simplified height map in Figure 1 (g) compared with the (*exact*) shortest distance between *a* and *c* on the original height map in Figure 1 (b).

Given an error parameter $\epsilon \in [0, 1]$, we study how to simplify the height map so that the distance error ratio for each pair of points on the original height map is at most ϵ . There are two challenges.

(1) How to simplify the height map with a small size efficiently. To the best of our knowledge, there is no existing study focusing on simplifying a height map. The only closely related work are the simplification algorithms on the point cloud [24, 73] or TIN [32, 41, 46, 50]. We adapt them by converting the height map to point cloud and TIN, and then performing the original simplification algorithms on the converted point cloud and TIN. But, the size of the simplified point cloud and TIN are large since they lack optimization techniques, resulting in large shortest path query time on the simplified surfaces. The simplification time of the point cloud and TIN simplification algorithms are large since they lack pruning techniques and TIN simplification algorithms involve expensive TIN re-triangulation [36, 63, 73].

(2) How to define the neighborhoods of cells in the simplified height map. In the original height map (Figure 1 (b)), it is clear to understand the neighborhoods of each cell. But, in the simplified height map (Figure 1 (g)), since each merged cell can be adjacent to many different cells, we need to define clearly neighborhoods of each (merged/non-merged) cell for the shortest path query.

 $^{^1\}mathrm{Since}$ the total Earth's land area is 149M km² [7], the total areas covered by optical satellites but not radar satellites are 30M km² (i.e., 149M km² \times (100% - 80%)). In our experiment, converting a height map dataset in a region of 1 km² (with 3m \times 3m resolution) to a point cloud dataset takes 42s. Thus, the conversion time is 42s/km² \times 30M km² = 1.26 \times 10°s \approx 21 years.

1.3 Contribution and Organization

We summarize our contributions as follows.

151

152

153

154

155

157

158

161

162

163

164

165

170

171

172

175

176

177

178

179

181

182

183

185

188

191

192

193

195

201

202

(1) We are the first to study the shortest path query directly on the height map. We also adopt a height map simplification process so that the distance error ratio for each pair of points on the original height map is at most ϵ . We show that this process is *NP-hard*.

(2) We propose an ϵ -approximate height map simplification algorithm called Height Map Simplification Algorithm (HM-Simplify). It can significantly reduce the number of cells of the simplified height map, i.e., reduce the output size (the size of the simplified height map), to further reduce the shortest path query time on the simplified height map using a novel cell merging technique (by considering cell information of height maps) for optimization. It can also efficiently reduce the simplification time using the novel cell merging technique and an efficient checking technique during simplification (by considering neighbor information of height maps) for pruning. We also propose a shortest path query algorithm called Height Map Shortest Path Query Algorithm (HM-SP) on the original/simplified height map. It can efficiently reduce the shortest path query time on the simplified height map using an efficient implicit edge insertion technique (by considering neighbor information of height maps and the single-source-all-destination feature of Dijkstra's algorithm) for pruning. We also design algorithms for answering kNN and range queries on the original/simplified height map. It can also efficiently reduce the proximity query time on the original/simplified height map using an efficient parallel computation technique (by considering the single-source-all-destination feature of Dijkstra's algorithm) for pruning.

(3) We give theoretical analysis on (i) algorithm *HM-Simplify*'s simplification time, the number of cells in the simplified height map, output size, simplification memory and error guarantee, and (ii) algorithm *HM-SP* and proximity query algorithms' query time, memory and error guarantee.

(4) Algorithm *HM-Simplify* outperforms the best-known adapted point cloud [24, 73] and *TIN* [43, 46] simplification algorithm concerning the simplification time and output size. Performing proximity queries on the simplified height map is much quicker than the best-known algorithms [28, 67, 73, 74] on the simplified point cloud and the simplified *TIN*. Our experiments show that given a height map with 50k cells, the simplification time and output size are 250s \approx 4.6 min and 0.07MB for algorithm *HM-Simplify*, but are 5,250s \approx 1.5 hours and 0.35MB for the best-known adapted point cloud simplification algorithm [24, 73], and 103,000s \approx 1.2 days and 0.5MB for the best-known adapted *TIN* simplification algorithm [43, 46]. The proximity query time of 10k objects is 50s on the simplified height map, 250s \approx 4.2 min on the simplified point cloud and 67,000s \approx 18.6 hours on the simplified *TIN*.

The remainder of the paper is organized as follows. Section 2 gives the problem definition. Section 3 covers the related work. Section 4 presents our algorithms. Section 5 discusses the experimental results and Section 6 concludes the paper.

2 PROBLEM DEFINITION

2.1 Notation and Definitions

2.1.1 **Height map**. Consider a height map $H = (C, N(\cdot))$ on a 2D plane containing a set of *cells* C with size n, and a *neighbor*

cells (hash) table [30] $N(\cdot)$. In H, each cell $c \in C$ has 2D coordinate values (representing 2D coordinate values of its center point) and a grayscale pixel color (representing its elevation value), denoted as c.x, c.y and c.z, respectively. Given cell $c \in C$, N(c) returns c's neighbor cells in O(1) time, and it is initialized to be c's nearest 8 surrounding cells on H. Figure 2 (a) shows a height map with 9 cells. For point p on cell c, 6 orange and 2 red points form N(c).

We define G to be the *height map graph* of H. For each cell $c \in C$, we create a vertex v_c in G whose x-, y- and z-coordinate values are defined to c.x, c.y and c.z of c, respectively. For each cell $c \in C$ and each cell $c' \in N(c)$, we create an edge between vertex v_c and vertex $v_{c'}$ in G (corresponding to c and c') with a weight equal to the Euclidean distance between v_c and $v_{c'}$, and c and c' are said to be *adjacent*. The graphs in Figures 2 (a) and (b) are the height map graph of H on the 2D plane and in a 3D space, respectively. Given a pair of points s and t on H, let $\Pi(s,t|H)$ be the (*exact*) shortest path between them passing on (G of) H. Let $|\cdot|$ be a path's distance (e.g., $\Pi(s,t|H)$'s distance is denoted by $|\Pi(s,t|H)|$). Figures 2 (a) and (b) show $\Pi(s,t|H)$ in green line.

Figure 2: Paths passing on (a) a height map, (b) a height map graph, (c) a point cloud and (d) a TIN

Figure 3: Cell merging

2.1.2 Simplified height map. Given a height map H, we can obtain a simplified height map $\widetilde{H}=(\widetilde{C},\widetilde{N}(\cdot))$ by merging some adjacent cells (deleting these cells and adding a new larger cell covering these cells for replacement) in $H.\widetilde{C}$ and $\widetilde{N}(\cdot)$ are initialized as C and $N(\cdot)$, and are updated during simplification. Figures 3 (a) and (b) show H and \widetilde{H} , where the blue cell in \widetilde{H} is the larger cell merged from 2 cells in H.

A cell in H that is deleted from (resp. remaining in) H during simplification is referred as a deleted (resp. remaining) cell. A cell in \widetilde{H} that covers some adjacent deleted and/or previously added cells is referred as an added cell. We say that these adjacent deleted cells belong to the added cell. A property of a deleted cell is that each deleted cell only belongs to one added cell. In Figures 3 (a) and (b), we merge cells a and b to cell e, 10 orange and red points (around e) form all cells in $\widetilde{N}(e)$, $\{a,b\}$ are deleted cells, all other cells in C except $\{a, b\}$ are remaining cells, e is an added cell, and $\{a, b\}$ belong to e. The coordinate and elevation values of the added cell are weighted average values of those of the adjacent deleted cells (if these adjacent deleted cells contain a previously added cell c, the weight is the number of cells in H belonging to c; otherwise, the weight is 1). In Figures 3 (b), we use the coordinate and elevation values of a, b with weight equal to 1 to calculate the corresponding values of e. If we keep merging e with other cells, the weight of e is 2, since the number of cells in H belonging to e is 2. We denote a set of remaining cells and added cells as C_{rema} and C_{add} , so \widetilde{C} = $C_{rema} \cup C_{add}$. A set of deleted cells is denoted as $C - C_{rema}$. Given a

243

244

cell $c \in H$, we define \widetilde{c} be the *estimated cell* of c (on \widetilde{H}). In Figures 3 296 (a) and (b), we have a and \widetilde{a} .

Similar to G, let \widetilde{G} be the simplified height map graph of \widetilde{H} . We use \widetilde{C} and $\widetilde{N}(\cdot)$ to substitute C and $N(\cdot)$ in the definition of G to obtain \widetilde{G} 's vertices and edges. The graphs in Figures 3 (a) and (b) are G and \widetilde{G} . Given a pair of points \widetilde{s} and \widetilde{t} on \widetilde{H} , let $\Pi(\widetilde{s},\widetilde{t}|\widetilde{H})$ be the approximate shortest path between them passing on $(\widetilde{G}$ of \widetilde{H} . Figure 3 (b) shows $\Pi(\widetilde{c},\widetilde{d}|\widetilde{H})$ in blue line. A notation table can be found in the appendix of Table 4.

2.2 Problem

251

252

253

254

255

257

259

260

262

264

265

267

269

270

271

272

273

274

275

276

277

278

279

281

282

285

288

290

291

292

We introduce the concept of ϵ -approximate simplified height map in Definition 1 to describe that \widetilde{H} guarantees that for each pair of points on H, their distance error ratio is at most ϵ .

Definition 1 (ϵ -Approximate Simplified Height Map Definition). Given H,\widetilde{H} and ϵ,\widetilde{H} is said to be an ϵ -approximate simplified height map of H (or \widetilde{H} is said to be an ϵ -approximation of H) if and only if for each pair of points s and t on H,

$$(1 - \epsilon)|\Pi(s, t|H)| \le |\Pi(\widetilde{s}, \widetilde{t}|\widetilde{H})| \le (1 + \epsilon)|\Pi(s, t|H)|. \tag{1}$$

We have the following problem.

Problem 1 (Height Map Simplification Problem). Given H 318 and ϵ , we want to find an ϵ -approximate simplified height map \widetilde{H} of 319 H with the minimum number of cells. 320

The following theorem shows this problem is *NP-hard*.

THEOREM 2.1. The height map simplification problem is NP-hard.

PROOF SKETCH. We transform Minimum T-Spanner Problem [27] (*NP-complete*) to our problem in polynomial time for proving. The detailed proof appears in the appendix.

3 RELATED WORK

3.1 Point Cloud and TIN

Let P be a point cloud converted from H by cell mapping [26, 48, 64, 77], and T be a TIN converted from P by point triangulation [36, 63, 73]. Given a pair of points s and t on P, let $\Pi(s,t|P)$ be the shortest path between them passing on (point cloud graph [73] of) P. The height map graph and point cloud graph are the same. Given a pair of vertices s and t on T, let $\Pi(s,t|T)$ and $\Pi_N(s,t|T)$ be the shortest surface path [46] (passing on faces of T) and shortest network path [46] (passing on edges of T) between them. Their distances are called the shortest surface and network distance, respectively. Let θ be the smallest interior angle of a triangle of T. Figure 2 (c) shows a point cloud with $\Pi(s,t|P)$ in green line, and Figure 2 (d) shows a TIN with $\Pi(s,t|T)$ in green line and $\Pi_N(s,t|T)$ in purple line.

Given a pair of points s and t on a height map, since the height map graph is the same as the point cloud graph, we know $|\Pi(s,t|H)| = |\Pi(s,t|P)|$. According to Lemma 4.3 of study [73], we know $|\Pi(s,t|H)| \le \alpha \cdot |\Pi(s,t|T)|$, where $\alpha = \max\{\frac{2}{\sin\theta}, \frac{1}{\sin\theta\cos\theta}\}$, and $|\Pi(s,t|H)| \le |\Pi_N(s,t|T)|$. But, $|\Pi(s,t|H)|$ can be larger or smaller than $|\Pi(s,t|T)|$. In Figures 1 (e) and (f) (see blue lines), $|\Pi(c,e|T)| > |\Pi(c,e|H)|$, but $|\Pi(d,f|T)| < |\Pi(d,f|H)|$.

3.2 Height Map Shortest Path Query Algorithms

There is no existing study finding the shortest path *directly* on a height map. Existing studies [48, 57, 64, 77] adapt shortest path algorithms on the point cloud or *TIN* by converting the height map to a point cloud or a *TIN*, and then computing the shortest path passing on the converted point cloud [73] or *TIN* [28, 45–47, 51, 67, 68, 72, 74] (by defining their 3D surfaces first, e.g., point clouds and *TINs*, and find paths under their 3D surfaces).

- 3.2.1 **Point cloud shortest path query algorithm**. The best-known exact point cloud shortest path query algorithm called <u>Point Cloud Shortest Path Query Algorithm (PC-SP)</u> [73] uses Dijkstra's algorithm on the point cloud graph for querying in $O(n \log n)$ time.
- 3.2.2 **TIN** shortest surface path query algorithms. (1) Exact algorithms: Two studies use continuous Dijkstra's [51] and checking window [68] algorithms for querying both in $O(n^2 \log n)$ time. The best-known exact TIN shortest surface path query algorithm called \underline{TIN} Exact Shortest Surface Path Query Algorithm (TIN-ESSP) [28, 67, 74] uses a line to connect the source and destination on a 2D TIN unfolded by the 3D TIN, for querying in $O(n^2)$ time.
- (2) Approximate algorithms: All algorithms [45, 47, 72] use discrete Steiner points to construct a graph and use Dijkstra's algorithm it for querying. The best-known $(1+\epsilon)$ -approximate TIN shortest surface path query algorithm called TIN Approximate SIN Shortest Surface Path Query Algorithm (TIN-ASSP) [45, 72] runs in $O(\frac{I_{max}n}{\epsilon I_{min}\sqrt{1-\cos\theta}}\log(\frac{I_{max}n}{\epsilon I_{min}\sqrt{1-\cos\theta}}))$ time, where I_{max}/I_{min} are the longest/shortest edge's length of the TIN, respectively.
- 3.2.3 **TIN** shortest network path query algorithm. Network paths are surface paths restricted to *TIN*'s edge without traversing the faces, resulting in an approximate path. The best-known approximate *TIN* shortest network path query algorithm called <u>TIN</u> Shortest Network Path Query Algorithm (TIN-SNP) [46] uses Dijkstra's algorithm on TIN's edge for querying in $O(n \log n)$ time.

Adaptations: (1) Given a <u>Height Map</u>, we adapt these four best-known point cloud or *TIN* shortest path query algorithms to be algorithms *PC-SP-Adapt(HM)* [73], *TIN-ESSP-Adapt(HM)* [28, 67, 74], *TIN-ASSP-Adapt(HM)* [45, 72] and *TIN-SNP-Adapt(HM)* [46], by converting the height map to a point cloud or a *TIN*, and then computing the shortest path passing on the point cloud or *TIN*. (2) Given a height map without data conversion, algorithm *TIN-ESSP* cannot be directly adapted to the height map since no face can be unfolded in a height map. But, algorithms *PC-SP*, *TIN-ASSP* and *TIN-SNP* can be directly adapted to the height map (by constructing a height map graph), and they become algorithm *HM-SP* (since they are Dijkstra's algorithms).

Drawback: All algorithms are very slow. Our experiments show that for a height map with 50k cells, answering kNN queries for all 10k objects needs $4{,}400s \approx 1.2$ hours, $380{,}000s \approx 4.3$ days, $70{,}000s \approx 19.4$ hours and $33{,}000s \approx 9.2$ hours for algorithms PC-SP-Adapt(HM), TIN-ESSP-Adapt(HM), TIN-ASSP-Adapt(HM) and TIN-SNP-Adapt(HM), respectively.

3.3 Height Map Simplification Algorithms

There is no existing study focusing on simplifying a height map. The only closely related work are simplification algorithms on the

305

314

352

353

355

356

357

358

359

361

362

363

367

372

373

374

375

376

377

379

380

381

383

387

388

389

393

394

395

396

397

point cloud [24, 73] or TIN [32, 41, 46, 50]. They iteratively remove a point in a point cloud, or remove a vertex v in a TIN and use triangulation [36, 63, 73] to form new faces among the adjacent vertices of v. Point Cloud Simplification Algorithm (PC-Simplify) [24, 73] is the best-known point cloud simplification algorithm. TIN shortest Network distance Simplification Algorithm (TIN-NSimplify) [46] is the most efficient TIN simplification algorithm. By using shortest surface distances, we obtain the best-known TIN simplification algorithm (TIN-SSimplify) [43, 46]. They can be adapted to the height map by converting the height map to a point cloud or a TIN first, then applying them for point cloud or TIN simplification.

3.3.1 Algorithm PC-Simplify. Since study [24] finds a TIN with a minimum number of vertices without TIN triangulation, it indeed is a point cloud simplification algorithm. But, each point cloud simplification iteration checks whether the z-coordinate value difference of each point on the original and simplified point cloud is at most ϵ . We adapt it by retaining its simplification process and constructing a point cloud graph [73], so when it removes a point p, we remove p's adjacent edges in the graph, and check for each pair of points (we can simplify it to check "each pair of adjacent points of p"), whether the relative error of the shortest distance between them on the simplified and original point cloud is at most ϵ . Its simplification time is $O(n^2 \log n)$ and output size is O(n).

3.3.2 **Algorithm TIN-NSimplify**. Each *TIN* simplification iteration checks for "each pair of vertices" on the original *TIN*, whether the relative error of the shortest network distance between them on the simplified and original *TIN* is at most ϵ . We simplify to "each pair of *adjacent* vertices of the removed vertex v" for acceleration. Its simplification time is $O(n^2 \log n)$ and output size is O(n).

3.3.3 **Algorithm TIN-SSimplify**. Similarly, we simplify to "arbitrary pair of points² on the adjacent faces of v" for acceleration. We further simplify it by placing Steiner points on the adjacent faces of v (using any-to-any points TIN shortest surface path query technique [43]), and check related to "each pair of Steiner points". Its simplification time is $O(\frac{n^3}{\sin\theta\sqrt{\epsilon}}\log\frac{1}{\epsilon})$ and output size is O(n).

Adaptations: (1) Given a Height Map, we adapt these three algorithms to be algorithms PC-Simplify-Adapt(HM) [24, 73], TIN-NSimplify-Adapt(HM) [46] and TIN-SSimplify-Adapt(HM) [43, 46], by converting the height map to a point cloud or a TIN, and then applying the corresponding algorithms for point cloud or TIN simplification. (2) Given a height map without data conversion, algorithm PC-Simplify can be directly adapted to the height map (by constructing a height map graph), and it performs the same as algorithm PC-Simplify on point cloud (which has a large simplification time since it lacks pruning techniques). But, algorithms TIN-NSimplify and TIN-SSimplify cannot, since no vertices can be deleted and no new faces can be created in a height map.

Drawbacks: (1) *Large output size*: All algorithms lack optimization techniques, so their simplified point cloud and *TIN* have a

large size, resulting in large shortest path query time on the simplified surfaces. Since they only remove points or vertices without adding new ones, the simplified point cloud or TIN differs a lot from the original one, limiting further simplification. But, if they add new ones by following our novel cell merging technique, their output size are similar to ours. (2) Large simplification time: All algorithms lack pruning techniques, resulting in a large simplification time. Since they remove only one point or vertex per iteration, this needs many distance checking iterations. They cannot remove many points or vertices at once, otherwise the simplified point cloud or TIN may change a lot. But, if they add new point or vertex by following our novel cell merging technique, they can remove more than one point or vertex. Then, the simplification time for algorithm PC-Simplify-Adapt(HM) is similar to ours, but algorithms TIN-NSimplify-Adapt(HM) and TIN-SSimplify-Adapt(HM) remain high due to expensive TIN re-triangulation. Our experiments show that for a height map with 50k cells, the simplification time of algorithms *PC-Simplify-Adapt(HM)*, *TIN-NSimplify-Adapt(HM)*, TIN-SSimplify-Adapt(HM) and HM-Simplify are $5.250s \approx 1.5$ hours. $7,100s \approx 2 \text{ hours}, 103,000s \approx 1.2 \text{ days and } 250s \approx 4.6 \text{ min, respec-}$ tively. The kNN query time of 10k objects on the simplified point cloud, TIN, or height map are $250s \approx 4.2 \text{ min}$, $16,800s \approx 4.7 \text{ hours}$, $67,000s \approx 18.6$ hours and 50s, respectively.

4 METHODOLOGY

4.1 Overview

- 4.1.1 **Two phases**. There are two phases for our framework.
- (1) **Simplification phase using algorithm** *HM-Simplify*: In Figure 4 and Figures 5 (a) (f), given H, we generate \widetilde{H} by iteratively cell merging whenever \widetilde{H} is an ϵ -approximation of H (H is deleted).
- (2) **Shortest path query phase using algorithm** *HM-SP*: In Figure 4 and Figure 5 (g), given \widetilde{H} , a pair of points s and t on H, we first calculate s and t's estimated points \widetilde{s} and \widetilde{t} on \widetilde{H} , and then use Dijkstra's algorithm [33] on \widetilde{H} to compute $\Pi(\widetilde{s}, \widetilde{t}|\widetilde{H})$.
- 4.1.2 **Two components**. There are two *hash tables* involved.
- (1) **The containing table** $O(\cdot)$: Given an added cell c in \widetilde{H} , O(c) returns the set of deleted cells $\{p_1, p_2, \dots\}$ in H belonging to c in O(1) time. In Figure 5 (b), we merge $\{a, b\}$ to cell c, the deleted cells $\{a, b\}$ belongs to the added cell c, so $O(c) = \{a, b\}$.
- (2) **The belonging table** $O^{-1}(\cdot)$: Given a deleted cell c in H, $O^{-1}(c)$ returns the added cell c' in \widetilde{H} such that c belongs to c' in O(1) time. In Figure 5 (b), $O^{-1}(a) = c$.

4.2 Key Idea

4.2.1 Significant output size reducing for algorithm HM-Simplify. It can significantly reduce the number of cells in \widetilde{H} (output size), to further reduce the shortest path query time of algorithm HM-SP on \widetilde{H} using a novel cell merging technique with two merging types for optimization. Since we delete some cells and create a newly added cell during merging, \widetilde{H} remains similar to H, enabling further merging. The following two types discuss which cells to delete and the position of the newly added cell.

(1) **Merge two cells**: We first choose two adjacent remaining and non-boundary (not on H's boundary) cells with the smallest elevation value variance. In Figure 5 (b), we merge $\{a, b\}$ to form

²Given a pair of vertices not adjacent to v, the shortest surface path between them may pass on the adjacent faces of v but not on the adjacent vertices of v. So, only checking the shortest surface distance between each pair of adjacent vertices of v is

Simplification phase	Height map $H \Rightarrow Simplification \Rightarrow$ Simplified height map \widetilde{H} , containing table $\mathcal{O}(\cdot)$ and belong table $\mathcal{O}^{-1}(\cdot)$
Shortest path query phase	\widetilde{H} , a pair of points s and t on \widetilde{H} on \widetilde{H} \bullet

Figure 4: Overview of algorithm HM-Simplify and HM-SP

Figure 5: Details of algorithm HM-Simplify and HM-SP

c, and obtain \widetilde{H} . If \widetilde{H} is an ϵ -approximation of H, we confirm this merging and go to the next type. If not, we terminate the algorithm. 488

453

455

457

461

462

463

464

465

469

470

472

473

474

475

476

480

482

483

484

485

(2) Merge added cell with neighbor cells: Given an added cell c from the previous merge, we merge c with its neighbor cells, i.e., expand c's non-boundary neighbor cells into left, right, top and/or bottom directions to reduce the number of cells in \widetilde{H} . Expanding left (resp. right) covers neighbors cells with x-coordinate value smaller (resp. larger) than c, and expanding top (resp. bottom) covers neighbors cells with ycoordinate value larger (resp. smaller) than c, and the origin is set at left-bottom side of H. Let Direction, i.e., $Dir = \{(L, R, T, B), \}$ $(L, R, T, \cdot), (L, R, \cdot, B), (L, \cdot, T, B), (\cdot, R, T, B), (L, R, \cdot, \cdot), (L, \cdot, T, \cdot),$ $(L, \cdot, \cdot, B), (\cdot, R, T, \cdot), (\cdot, R, \cdot, B), (\cdot, \cdot, T, B), (L, \cdot, \cdot, \cdot), (\cdot, R, \cdot, \cdot), (\cdot, \cdot, T, \cdot),$ (\cdot, \cdot, \cdot, B) } be the expanded directions, where L, R, T, B means that we expand c into *left*, *right*, *top* and *bottom* directions, and \cdot means no expansion in that direction. For example, $Dir[1] = (L, R, T, \cdot)$ means that we cover c's neighbors cells with x-coordinate value smaller and larger than *c*, and *y*-coordinate value larger than *c*.

In Figure 5 (c), we merge c with $\{d, e, ...\}$ to form f, i.e., expand cinto (L, R, T, B) directions, and obtain \widetilde{H} . If \widetilde{H} is an ϵ -approximation of H, we confirm this merging and repeat. If not, we go back to the two cells merging type by selecting two new cells. In Figure 5 (d), we merge l with $\{j, k, \dots\}$ to form a potential newly added cell with a blue frame, i.e., expand l into (L, R, T, B) directions. For one of l's neighbor cells, i.e., k, we cover it as a whole to reduce the number of cells in \widetilde{H} . But, four pink deleted cells will belong to both f and the potential newly added cell. This violates the property of the deleted cell in Section 2.1.2 that each deleted cell only belongs to one added cell, since we do not want the potential newly added cell to overlap with any added cell f. So, we expand l into the direction of other elements in *Dir*. In Figure 5 (e), we merge l with $\{j, \dots\}$ to form m, i.e., expand l into (L, \cdot, T, \cdot) directions, and obtain \widetilde{H} . If \widetilde{H} is an ϵ -approximation of H, we confirm this merging and repeat. If not, we go back to the two cells merging type. Similarly, we cannot expand four green added cells to cover a in Figure 6.

4.2.2 Efficient simplification for algorithm HM-Simplify. There are three reasons why it has a small simplification time.

- (1) **Efficient height map shortest path query**: We use efficient algorithm HM-SP to check whether \widetilde{H} is an ϵ -approximation of H.
- (2) **Efficient simplification iteration reducing**: Due to the *novel cell merging technique*, \widetilde{H} is similar to H, and we can merge more cells in one iteration to reduce iteration numbers for pruning.
- (3) Efficient ϵ -approximate simplified height map checking: Checking whether \widetilde{H} is an ϵ -approximation of H involves checking distances related *all* points on H. This naive method is time-consuming. Instead, *our efficient checking technique* only checks distances related to newly added cells' *neighbor* for pruning.

4.3 Simplification Phase

We illustrate the simplification phase using algorithm *HM-Simplify* in Algorithm 1, which uses Algorithm 2 twice. Algorithm 1 shows the two merging types, and Algorithm 2 clearly updates the neighborhoods of each cell, and other related components.

4.3.1 **Detail and example for Algorithm 1**. In each simplification iteration, let $\widehat{C} = \{p_1, p_2, \dots\}$ be a set of adjacent cells to be merged, and c_{add} be an added cell merged from cells in \widehat{C} . Let *FindTwoCell* (\widetilde{H}) be a function that returns two adjacent remaining and non-boundary cells in \widetilde{H} with the smallest elevation values variance. Let FindAddedCellNeig $(\widetilde{H}, c_{add}, i)$ be a function that returns a set of cells in \widetilde{H} including c_{add} and its expanded non-boundary neighbor cells (as a whole) in Dir[i] directions without violating the property of deleted cells. Both functions return NULL if such cells do not exist. The following shows Algorithm 1 with an example.

- (1) Merge two cells (lines 2-5): In Figures 5 (a) and (b), $\widehat{C} = FindTwoCell(\widetilde{H}) = \{a, b\}$, and we can merge cells in \widehat{C} to obtain $c_{add} = c$. Suppose that UpdateSatisfy is True, we obtain \widetilde{H} .
- (2) Merge added cell with neighbor cells (lines 6-14). In Figure 5 (c), $c_{add} = c, i = 0 < 15$, $\widehat{C} = FindAddedCellNeig$ ($\widetilde{H}, c_{add}, i$) = $\{c, d, e, \ldots\}$, i.e., we can expand c into Dir[0] = (L, R, T, B) directions to form $c_{add} = f$. Suppose that UpdateSatisfy is True, we

Algorithm 1 *HM-Simplify* (*H*)

522

523

525

527

528

529

532

534

535

536

538

539

542

543

546

548

550

551

552

553

554

555

```
Input: H = (C, N(\cdot) = \emptyset)
Output: \widetilde{H}, O(\cdot) and O^{-1}(\cdot)
  1: initialize N(\cdot) using C, C_{rema} \leftarrow C, C_{add} \leftarrow \emptyset, \widetilde{N}(\cdot) \leftarrow N(\cdot), O(\cdot) \leftarrow \emptyset,
       O^{-1}(\cdot) \leftarrow \emptyset
  2: \widehat{C} \leftarrow \textit{FindTwoCell}(\widetilde{H} = (C_{\textit{rema}} \cup c_{\textit{add}}, \widetilde{N}(\cdot)))
      while \widehat{C} is NON-NULL do
            merge cells in \widehat{C} to form cell c_{add}
            if UpdateSatisfy (C_{rema}, C_{add}, \widetilde{N}(\cdot), \widehat{C}, c_{add}, O(\cdot), O^{-1}(\cdot)) then
                  while i < 15 do
                       \widehat{C} \leftarrow FindAddedCellNeig(\widetilde{H} = (C_{rema} \cup c_{add}, \widetilde{N}(\cdot)), c_{add}, i)
  8:
 9:
                       if \widehat{C} is NON-NULL then
                            merge cells in \widehat{C} to form cell c_{add}
10:
                             if UpdateSatisfy (C_{rema}, C_{add}, \widetilde{N}, \widehat{C}, c_{add}, O(\cdot), O^{-1}(\cdot)) then
11:
12:
13:
14:
            \widehat{C} \leftarrow FindTwoCell(\widetilde{H} = (C_{rema} \cup c_{add}, \widetilde{N}(\cdot)))
15:
16: return \widetilde{H} = (C_{rema} \cup C_{add}, \widetilde{N}(\cdot)), O(\cdot) \text{ and } O^{-1}(\cdot)
```

obtain \widetilde{H} , and set i=0. For later iterations, suppose that *Update-Satisfy* is always *False*, we always increase i by 1. When i=15, we exit this loop. The following is the iteration.

- (3) Merge two or added cell with neighbor cells (lines 2-15): In Figure 5 (d), we obtain h, j, k, l and \widetilde{H} . Then, we further process l.
- (4) Merge added cell with neighbor cells (lines 6-14): In Figure 5 (d), $c_{add}=l, i=0<15$, we want to use FindAddedCellNeig ($\widetilde{H}, c_{add}, i$) to expand l into Dir[0]=(L,R,T,B) directions (to include $\{j,k,\dots\}$). We get the potential newly added cell with a blue frame. But, four pink deleted cells will belong to both f and the newly added cell, violating the property of the deleted cell, so such cells do not exist and \widehat{C} is NULL. We repeat it until \widehat{C} is NON-NULL. In Figure 5 (e), $c_{add}=l, i=6<15, \widehat{C}=FindAddedCellNeig$ (\widehat{H}, c_{add}, i) = $\{l,j,\dots\}$, i.e., we can expand l into $Dir[6]=(L,\cdot,T,\cdot)$ directions to form $c_{add}=m$. Suppose that UpdateSatisfy is True, we obtain \widehat{H} .
- 4.3.2 **Detail and example for Algorithm 2**. The following shows Algorithm 2 with an example. Figure 5 (b) and (c) illustrate steps 1–4 and 5–8, respectively. Figures 5 (d) and (e) are similar.
- (1) Update $O'(\cdot)$ and $O^{-1}(\cdot)$ (lines 2-8): $\widehat{C} = \{a, b\}$ and $c_{add} = c$, since all cells in \widehat{C} are in C_{rema} , we have $O'(c) = \{a, b\}$, $O^{-1}(a) = c$, $O^{-1}(b) = c$.
- (2) *Update neighbor cells* (lines 9-12): We update *c* and cells represented in orange points as neighbors of each other.
- (3) Update H' (lines 13-18): $\{a,b\}$ are deleted from C'_{rema} and c is added into C'_{add} , so $C'_{add} = \{c\}$.
- (4) Check ϵ -approximation (lines 19-21): Suppose that \widetilde{H}' is an ϵ -approximation of H, we have $C_{rema} = C \setminus \{a,b\}$, $C_{add} = \{c\}$, updated $\widetilde{N}(\cdot)$, \widetilde{H} , $O(\cdot)$ and $O^{-1}(\cdot)$. The following is the iteration.
- (5) Update $O'(\cdot)$ and $O^{-1}(\cdot)$ (lines 2-8): $C_{add} = \{c\}$, $\widehat{C} = \{f, d, e, \dots\}$ and $c_{add} = f$, since for cells in \widehat{C} , c is in C_{add} and other cells are in C_{rema} , we have $O'(f) = \{a, b, d, e, \dots\}$, $O^{-1}(a) = f$, $O^{-1}(b) = f$, $O^{-1}(d) = f$, $O^{-1}(e) = f$, ..., and delete O'(c).
- (6) Update neighbor cells (lines 9-12): We update f and cells represented in orange points as neighbors of each other. $_{579}$
- (7) Update H' (lines 13-18): $\{d, e, ...\}$ are deleted from C'_{rema} , c is deleted from C'_{add} , and f is added into C'_{add} , so $C'_{add} = \{f\}$.

Algorithm 2 UpdateSatisfy (C_{rema} , C_{add} , $\widetilde{N}(\cdot)$, \widehat{C} , c_{add} , $O(\cdot)$, $O^{-1}(\cdot)$)

```
Input: C_{rema}, C_{add}, \widetilde{N}(\cdot), \widehat{C}, c_{add}, O(\cdot) and O^{-1}(\cdot)
Output: updated C_{rema}, C_{add}, \widetilde{N}(\cdot), O(\cdot), O^{-1}(\cdot), and whether the updated height
        map is an \epsilon-approximation of H
   1: C'_{rema} \leftarrow C_{rema}, C'_{add} \leftarrow C_{add}, \widetilde{N}'(\cdot) \leftarrow \widetilde{N}(\cdot), \widetilde{N}'(c_{add}) \leftarrow \emptyset, O'(\cdot) \leftarrow O(\cdot),
        O^{-1\prime}(\cdot) \leftarrow O^{-1}(\cdot)
  2: for each c \in \widehat{C} do
             if c \in C_{rema} then
 3:
                  O'(c_{add}) \leftarrow O'(c_{add}) \cup \{p\}, O^{-1\prime}(c) \leftarrow \{c_{add}\}
  4:
             else if c \in C_{add} then
  5:
                  for each c' \in O'(c) do
                        O'(c_{add}) \leftarrow O'(c_{add}) \cup \{c'\}, O^{-1\prime}(c') \leftarrow \{c_{add}\}
                  O'(\cdot) \leftarrow O'(\cdot) - \{O'(c)\}
 9: for each c \in \widehat{C} do
            for each c' \in N(c) such that c' \notin \widehat{C} do
10:
                   \widetilde{N}'(c_{add}) \leftarrow \widetilde{N}'(c_{add}) \cup \{c'\}, \widetilde{N}'(c') \leftarrow \widetilde{N}'(c') - c \cup \{c_{add}\}
12: clear \widetilde{N}'(c) for each c \in \widehat{C}
13: for each c \in \widehat{C} do
             if c \in C_{rema} then
                  C'_{rema} \leftarrow C'_{rema}
15: C_{rema} \leftarrow C_{rema} - C_{rema}
16: else if c \in C_{add} then
17: C'_{add} \leftarrow C'_{add} - \{p\}
18: C'_{add} \leftarrow C'_{add} \cup \{c_{add}\}
19: if \widetilde{H}' = (C'_{rema} \cup C'_{add}, \widetilde{N}'(\cdot)) is an \epsilon-approximation of H then
             C_{rema} \leftarrow C_{rema}', C_{add} \leftarrow C_{add}', \widetilde{N}(\cdot) \leftarrow \widetilde{N}'(\cdot), O(\cdot) \leftarrow O'(\cdot), O^{-1}(\cdot) \leftarrow
            return True
22: return False
```

(8) Check ϵ -approximation (lines 19-21): Suppose that \widetilde{H}' is an ϵ -approximation of H, we have $C_{rema} = C \setminus \{a, b, d, e, \dots\}, C_{add} = \{f\},$ updated $\widetilde{N}(\cdot)$, \widetilde{H} , $O(\cdot)$ and $O^{-1}(\cdot)$.

4.4 Efficient ϵ -Approximate Simplified Height Map Checking

We illustrate our efficient checking about whether \widetilde{H} is an ϵ -approximation of H.

- *4.4.1* **Notation**. Given an added cell $c_{add} \in C_{add}$, we define a set of *adjacent added cells* of c_{add} , denoted by $A(c_{add})$, to be a set of added cells in C_{add} which contain c_{add} and are adjacent to each other. In Figure 7, $A(c_{add} = a) = \{a, b\}$.
- 4.4.2 **Detail and example**. In Definition 1, we simplify the checking of Inequality 1 from "each pair of points s and t on H" to points on the following each type of cells related to c_{add} 's neighbor.
- (1) **Remaining to Remaining cells (**R2R**)**: We simplify to "each pair of points s and t of remaining cells that are neighbor cells of each added cell in $A(c_{add})$ ". Figure 7 shows these points in orange.
- (2) **Remaining to Deleted cells (**R2D**)**: We simplify to "each point s of remaining cell that is a neighbor cell of each cell in $A(c_{add})$, and each point t of deleted cell that belongs to each added cell in $A(c_{add})$ ". Figure 7 shows these points in orange (corresponding to s) and purple (corresponding to t).
- (3) **Deleted to Deleted cells (***D2D***)**: We simplify to "each pair of points s and t of deleted cells that belong to each added cell in $A(c_{add})$ ". Figure 7 shows these points in purple.

Figure 7: Dis-

inter-path

The path

The

and inter-paths

584

585

587

588

589

592

595

597

598

599

600

601

603

604

605

609

610

612

614

615

616

617

Table 1: Height map datasets

622

623

624

625

626

628

629

630

631

632

633

634

Name	n
Original dataset	
$\underline{GunnisonForest}$ (GF _h) [12, 73]	0.5M
$\underline{L}aramie\underline{M}ount (LM_h) [15, 73]$	0.5M
RobinsonMount (RMh) [19, 73]	0.5M
BearHead (BHh) [6, 65, 66, 73]	0.5M
EaglePeak (EPh) [6, 65, 66, 73]	0.5M
Small-version dataset	
GF _h -small	1k
LM _h -small	1k
RM_h -small	1k
BH _h -small	1k
EP_h -small	1k
Multi-resolution dataset	
GF _h multi-resolution	5M, 10M, 15M, 20M, 25M
LM _h multi-resolution	5M, 10M, 15M, 20M, 25M
RM _h multi-resolution	5M, 10M, 15M, 20M, 25M
BH _h multi-resolution	5M, 10M, 15M, 20M, 25M
EP _h multi-resolution	5M, 10M, 15M, 20M, 25M
EPh-small multi-resolution	10k, 20k, 30k, 40k, 50k

4.5 Shortest Path Query Phase

We illustrate the shortest path query phase using algorithm HM-SP on the simplified height map graph \widetilde{G} . Intuitively, we use Dijkstra's algorithm between source and destination points on \widetilde{G} . But, if the source point s is on a deleted cell c_s (i.e., s does not exist in \widetilde{G}), a naive algorithm uses Dijkstra's algorithm multiple times with all points on neighbor cells of $O^{-1}(c_s)$ as sources. But, we propose an efficient algorithm using an efficient implicit edge insertion technique to use Dijkstra's algorithm only once for pruning.

4.5.1 **Notation**. Given a point m (on a deleted cell c_m) and a point n (on a remaining/added cell $c_n \in \widetilde{N}(O^{-1}(c_m))$), we call the path between them passing on \widetilde{H} as the intra-path, and denote it by $\Pi_1(\widetilde{m},\widetilde{n}|\widetilde{H}) = \langle \widetilde{m},\widetilde{n} \rangle$. Given a pair of a point \widetilde{p} (on a remaining/added cell $\widetilde{c_p}$) and a point \widetilde{q} (on a remaining/added cell $\widetilde{c_q}$), we call the path between them passing on \widetilde{H} as the inter-path, and denote it by $\Pi_2(\widetilde{p},\widetilde{q}|\widetilde{H})$. In Figures 5 (g) and 8, $\Pi_1(\widetilde{g},\widetilde{n}|\widetilde{H})$ and $\Pi_1(\overline{s},\widetilde{p}|\widetilde{H})$ in blue dashed lines are two intra-paths, $\Pi_2(\widetilde{n},k|\widetilde{H})$ and $\Pi_2(\widetilde{p},\widetilde{q}|\widetilde{H})$ in blue solid lines are two inter-paths.

4.5.2 **Detail and example**. There are two steps.

- (1) **Point estimation**: Given a pair of points s and t (on cells c_s and c_t) of H, we estimate \widetilde{s} using s, such that $\widetilde{s}.x = s.x$, $\widetilde{s}.y = s.y$, $\widetilde{s}.z = O^{-1}(c_s).z$ (if c_s is a deleted cell), or $\widetilde{s} = s$ (if c_s is a remaining cell). We estimate \widetilde{t} similarly.
- (2) **Path querying**: There are three cases depending on whether c_s and c_t are deleted or remaining cells.
- (i) Both cells deleted: Firstly, there are two special cases that we return $\Pi(\widetilde{s},\widetilde{t}|\widetilde{H})=\langle\widetilde{s},\widetilde{t}\rangle$. One is that c_s and c_t belong to the different added cells c_u and c_v , where c_u and c_v are neighbor. The other one is that c_s and c_t belong to the same added cell. In Figure 5 (g), $\Pi(\widetilde{d},\widetilde{i}|\widetilde{H})=\langle\widetilde{d},\widetilde{i}\rangle$ (i.e., the first case) and $\Pi(\widetilde{a},\widetilde{d}|\widetilde{H})=\langle\widetilde{a},\widetilde{d}\rangle$ (i.e., the second case). Secondly, for common case, we return $\Pi(\widetilde{s},\widetilde{t}|\widetilde{H})$ by concatenating the intra-path $\Pi_1(\widetilde{s},\widetilde{p}|\widetilde{H})$, the inter-path $\Pi_2(\widetilde{p},\widetilde{q}|\widetilde{H})$, and the intra-path $\Pi_1(\widetilde{q},\widetilde{t}|\widetilde{H})$, such that $|\Pi(\widetilde{s},\widetilde{t}|\widetilde{H})|=\min_{\bigvee \widetilde{C_p}\in \widetilde{N}(O^{-1}(c_s)),\widetilde{c_q}\in \widetilde{N}(O^{-1}(c_t))}|\Pi_1(\widetilde{s},\widetilde{p}|\widetilde{H})|+$ $|\Pi_2(\widetilde{p},\widetilde{q}|\widetilde{H})|+|\Pi_1(\widetilde{q},\widetilde{t}|\widetilde{H})|$, where \widetilde{p} and \widetilde{q} are a pair of points on cells $\widetilde{c_p}$ and $\widetilde{c_q}$. In Figure 8, orange and pink points denote possible points on cells $\widetilde{N}(O^{-1}(c_s))$ and $\widetilde{N}(O^{-1}(c_t))$, \widetilde{p} and \widetilde{q} are points resulting in the minimum distance among these points, respectively.

A naive algorithm uses Dijkstra's algorithm on \widetilde{H} with each point on cell in $\widetilde{N}(O^{-1}(c_s))$ as a source to compute inter-paths. But, our efficient algorithm uses Dijkstra's algorithm only once. If the number of cells in $\widetilde{N}(O^{-1}(c_s))$ is less than that of in $\widetilde{N}(O^{-1}(c_t))$, we implicitly insert intra-paths between $\widetilde{c_s}$ and each cell in $\widetilde{N}(O^{-1}(c_s))$ as edges in \widetilde{G} (we remove them after this calculation). Then, we use Dijkstra's algorithm on \widetilde{G} with \widetilde{s} as a source, and terminate after visiting all points on cells in $\widetilde{N}(O^{-1}(c_t))$, to compute the intrapath connecting to \widetilde{s} and the inter-path. We append them with the intra-path connecting to \widetilde{t} and obtain $\Pi(\widetilde{s},\widetilde{t}|\widetilde{H})$. If the number of cells in $\widetilde{N}(O^{-1}(c_s))$ is larger than that of in $\widetilde{N}(O^{-1}(c_t))$, we swap s and t. In Figure 5 (g), $\Pi(\widetilde{g},\widetilde{t}|\widetilde{H}) = \langle \widetilde{q},\widetilde{n},k,\widetilde{t} \rangle$.

(ii) One cell deleted and one cell remaining: If $c_s \in C_{rema}$, the interpath connecting to s does not exist, we use Dijkstra's algorithm on \widetilde{G} with s as a source, and terminate after visiting all points on cells in $\widetilde{N}(O^{-1}(c_t))$. We append them with the intra-path connecting to \widetilde{t} and obtain $\Pi(\widetilde{s}, \widetilde{t}|\widetilde{H})$. If $t \in C_{rema}$, we swap s and t. In Figure 5 (g), $\Pi(\widetilde{n}, \widetilde{i}|\widetilde{H}) = \langle \widetilde{n}, k, \widetilde{i} \rangle$.

(iii) Both cells remaining: Both inter-paths do not exist, we use Dijkstra's algorithm on \widetilde{G} between s and t to obtain $\Pi(\widetilde{s},\widetilde{t}|\widetilde{H})$. In Figure 5 (g), $\Pi(\widetilde{o},\widetilde{p}|\widetilde{H}) = \langle \widetilde{o},k,\widetilde{p}\rangle$.

4.6 Proximity Query Algorithms

Given H and \widetilde{H} , a query point i on cell c_i , a set of n' interested points on cells on H or \widetilde{H} , two parameters k (k value in kNN query) and r (range value in range query), we can answer kNN and range queries using algorithm HM-SP. A naive algorithm uses it for n' times between i and all interested points, and then performs a linear scan on the paths to compute kNN and range query results.

But, we propose an efficient algorithm using an efficient parallel computation technique to use it (i.e., Dijkstra's algorithm) only once for pruning. (1) For algorithm HM-SP on H, we use Dijkstra's algorithm once with i as a source and all interested points as destinations, and then directly return kNN and range query results without any linear scan. Since these paths are already sorted in order during the execution of Dijkstra's algorithm. (2) For algorithm HM-SP on H, we also use Dijkstra's algorithm once. Except for two special cases in Section 4.5.2 case (2-i) that directly return the path $\Pi(\widetilde{i},\widetilde{j}|H) = \langle \widetilde{i},\widetilde{j} \rangle$, where j is the interested point of an interested cell c_j , there are two cases. We define S to be a set of cells, such that for each c_j , we store c_j in S if c_j is a remaining cell, or we store cells in $\widetilde{N}(O^{-1}(c_i))$ into S if c_i is a deleted cell. The two cases are: (i) If c_i is a deleted cell, we change "s" to "i", "terminate after Dijkstra's algorithm visits all points on cells in $N(O^{-1}(c_t))$ " to "terminate after Dijkstra's algorithm visits all points on cells in S" and "append them with the intra-path connecting to \tilde{t} " to "append them with the intra-path connecting to each j if c_j is a deleted cell" in Section 4.5.2 case (2-i). (ii) If c_i is a remaining cell, we apply the same three changes in Section 4.5.2 case (2-ii). Finally, we perform a linear scan on the paths to compute kNN and range query results.

4.7 Add-on Data Structure

Given a $(1 + \epsilon)$ -approximate simplified graph of a complete graph, study [53] constructs a $(1 + \epsilon')$ -approximate data structure (i.e.,

a graph $G_{\widetilde{H}}$) on the simplified graph, to return $(1+\epsilon')(1+\epsilon)$ -719 approximate paths in O(1) time. We can use $G_{\widetilde{H}}$ in the simplified 720 height map graph of \widetilde{H} in algorithm HM-Simplify, and use HM-SP on $G_{\widetilde{H}}$ for querying in O(1) time. We denote our adapted algorithms (after using $G_{\widetilde{H}}$) to be algorithms HM-Simplify D-ata S-tructure S-tr

4.8 Theoretical Analysis

675

676

677

679

680

681

682

683

685

686

694

695

696

697

700

701

702

703

705

708

711

712

713

714

718

4.8.1 Algorithms HM-Simplify and HM-SP. We analyze them in Theorems 4.1 and 4.2.

Theorem 4.1. The simplification time, number of cells in \widetilde{H} , output size and simplification memory of algorithm HM-Simplify are $O(n\lambda \log n)$, $O(\frac{n}{\mu})$, $O(\frac{n}{\mu})$ and O(n) respectively, where $\lambda \in [\sqrt[3]{n}, \frac{n}{2}]$ and $\mu \in [2, \log n]$ are constants depending on H and ϵ , and $\lambda \in [10, 290]$ and $\mu \in [5, 88]$ in our experiments. Given H, it returns \widetilde{H} such that $(1 - \epsilon)|\Pi(s, t|H)| \leq |\Pi(\widetilde{s}, \widetilde{t}|\widetilde{H})| \leq (1 + \epsilon)|\Pi(s, t|H)|$ for each pair of points s and t on H.

PROOF SKETCH. The simplification time is due to the usage of Dijkstra's algorithm in $O(n \log n)$ time for O(1) cells in R2R, R2D and D2D checking, with total λ cell merging iterations. The number of cells in \widetilde{H} and output size are due to the total n cells on H and μ deleted cells belonging to each added cell on average. The simplification memory is due to the original size O(n) of H. The error guarantee of \widetilde{H} is due to the R2R, R2D and D2D checking. The detailed proof appears in the appendix.

Theorem 4.2. The shortest path query time and memory of algorithm HM-SP are $O(n \log n)$ and O(n) on H, and are $O(\frac{n}{\mu} \log \frac{n}{\mu})$ and $O(\frac{n}{\mu})$ on \widetilde{H} , respectively. It returns the exact shortest path passing on H, and returns an approximate shortest path passing on \widetilde{H} such that $(1-\epsilon)|\Pi(s,t|H)| \leq |\Pi(\widetilde{s},\widetilde{t}|\widetilde{H})| \leq (1+\epsilon)|\Pi(s,t|H)|$.

PROOF. Since there are O(n) and $O(\frac{n}{\mu})$ cells in H and \widetilde{H} , respectively, algorithm HM-SP is a Dijkstra's algorithm which returns the exact result on H and \widetilde{H} , and \widetilde{H} is an ϵ -approximation of H, we finish the proof.

4.8.2 **Proximity query algorithms**. Given a query point i, let p_f and p_f' be the furthest point to i computed using the ground-truth or optimal distance and a studied algorithm (computed by algorithm HM-SP on H and \widetilde{H}), respectively. Let the error ratio of kNN or range query be $(\frac{|\Pi(i,p_f'|Z)|}{|\Pi(i,p_f|Z)|}-1)$, where $Z \in \{H,P,T\}$ is the 3D surface (height map, point cloud or TIN) used for calculating the ground-truth or optimal distance (Z = H in our case). We analysis kNN or range query using algorithm HM-SP in Theorem 4.3.

Theorem 4.3. The kNN or range query time and memory of using algorithm HM-SP are $O(n\log n)$ and O(n) on H and $O(\frac{n}{\mu}\log\frac{n}{\mu})$ and $O(\frac{n}{\mu})$ on \widetilde{H} , respectively. It returns the exact result on H and has an error ratio $\frac{2\epsilon}{1-\epsilon}$ on \widetilde{H} for kNN or range query.

PROOF SKETCH. The query time and memory are due to usage of algorithm HM-SP once. The error arises from its error. \Box

4.8.3 Algorithms HM-Simplify-DS and HM-SP-DS. We analyze them in Theorems 4.4 and 4.5.

Theorem 4.4. The simplification time, number of edges in $G_{\widetilde{H}}$, output size and simpflication memory of algorithm HM-Simplify-DS are $O(n\lambda\log n + \frac{n^2}{\mu^2}\log^2\frac{n}{\mu}), \ O(\frac{n}{\mu}\log\frac{n}{\mu}), \ O(\frac{n}{\mu}\log\frac{n}{\mu}) \ and \ O(\frac{n}{\mu}\log\frac{n}{\mu}),$ respectively. Given a height map H, it returns $G_{\widetilde{H}}$ such that $|\Pi(\widetilde{s},\widetilde{t}|G_{\widetilde{H}})| \leq (1+\epsilon')(1+\epsilon)|\Pi(s,t|H)|$ for each pair of points s and t on H, where $\Pi(\widetilde{s},\widetilde{t}|G_{\widetilde{H}})$ is the approximate shortest path between \widetilde{s} and \widetilde{t} passing on $G_{\widetilde{H}}$.

Theorem 4.5. The shortest path query time and memory, kNN or range query time and memory of algorithm HM-SP-DS are O(1), $O(\frac{n}{\mu}\log\frac{n}{\mu})$, O(n') and $O(\frac{n'n}{\mu}\log\frac{n}{\mu})$, respectively. It returns an approximate shortest path passing on $G_{\widetilde{H}}$ such that $|\Pi(\widetilde{s},\widetilde{t}|G_{\widetilde{H}})| \leq (1+\epsilon')(1+\epsilon)|\Pi(s,t|H)|$, and has an error ratio $\epsilon' \cdot \epsilon + \epsilon' + \epsilon$ for kNN or range query.

PROOF SKETCH. The detailed proofs of Theorems 4.4 and 4.5 appear in the appendix.

5 EMPIRICAL STUDIES

5.1 Experimental Setup

We performed experiments using a Linux machine with 2.2 GHz CPU and 512GB memory. Algorithms were implemented in C++. The experiment setup follows studies [45, 46, 65, 66, 72–74].

5.1.1 Datasets. (1) Height map datasets: We conducted experiments using 34 (= 5+5+24) real height map datasets listed in Table 1, where the subscript h indicates a height map. (i) 5 Original datasets: GF_h [12, 73], LM_h [15, 73] and RM_h [19, 73] are originally represented as height maps obtained from Google Earth [9]. They are used in study [73]. BH_h [6, 65, 66, 73] and EP_h [6, 65, 66, 73] are originally represented as points clouds, we created height maps with cell's 2D coordinate and elevation values equal to the z-coordinate values of these points. They are used in studies [65, 66, 73]. These five datasets have a $20 \text{km} \times 20 \text{km}$ region with a $28 \text{m} \times 28 \text{m}$ resolution [46, 66, 72, 73]. (ii) 5 Small-version datasets: They are generated using the same region as the original datasets, with a $633m \times 633m$ resolution, following the dataset generation steps [66, 72, 73]. (iii) 24 Multi-resolution datasets: They are generated similarly with varying numbers of cells. (2 & 3) Point cloud and TIN datasets: We convert the height map datasets to 34 point cloud datasets by cell mapping [26, 48, 64, 77], and then to 34 TIN datasets by point triangulation [36, 63, 73]. We use p and t as subscripts, respectively.

5.1.2 **Algorithms**. (1) To solve our problem on <u>Height Maps</u>, we adapted existing algorithms on point clouds or *TINs*, by converting the given height maps to point clouds [26, 48, 64, 77] or *TINs* [26, 36, 48, 63, 64, 73, 77] so that the existing algorithms could be performed. Then, we add "-Adapt(HM)" in algorithm names. We have 4 simplification algorithms: (i) the best-known adapted *TIN* simplification algorithm *TIN-SSimplify-Adapt(HM)* [43, 46], (ii) adapted *TIN* shortest network distance simplification algorithm *TIN-NSimplify-Adapt(HM)* [46], (iii) the best-known adapted point cloud simplification algorithm *PC-Simplify-Adapt(HM)* [24, 73] and (iv) our height map simplification algorithm *HM-Simplify*. We have 5 proximity

772

773

774

775

778

779

780

781

782

783

787

788

789

791

792

793

795

800

801

802

query algorithms: (i) the best-known adapted exact TIN shortest 807 surface path query algorithm TIN-ESSP-Adapt(HM) [28, 67, 74], (ii) the best-known adapted approximate TIN shortest surface path query algorithm TIN-ASSP-Adapt(HM) [45, 72], (iii) the best-known 810 adapted approximate TIN shortest network path query algorithm 811 TIN-SNP-Adapt(HM) [46], (iv) the best-known adapted exact point cloud shortest path query algorithm PC-SP-Adapt(HM) [73] and (v) our exact height map shortest path query algorithm HM-SP. The exact algorithms refer to their particular 3D surfaces only. For 4 proximity query algorithms TIN-ESSP-Adapt(HM), TIN-SNP-Adapt(HM), *PC-SP-Adapt(HM)* and *HM-SP*, we use $\epsilon = 0$ (resp. $\epsilon > 0$) to denote that we apply them on the original (resp. simplified) surfaces. Since TIN-ESSP-Adapt(HM) with $\epsilon > 0$ already means calculating the exact shortest surface path passing on a simplified TIN, there is no need to use TIN-ASSP-Adapt(HM) on the simplified TIN again, i.e., no need to distinguish $\epsilon = 0$ or $\epsilon > 0$ for it. So, we only consider it with $\epsilon > 0$ on the original height map for simplicity. We compare all algorithms in Tables 2 and 3.

Table 2: Comparison of simplification algorithms

Algorithm	Simplification tim	Output size		
TIN-SSimplify-Adapt(HM) [43, 46]	$O(\frac{n^3}{\sin\theta\sqrt{\epsilon}}\log\frac{1}{\epsilon})$	Large	O(n)	Large
TIN-NSimplify-Adapt(HM) [46]	$O(n^2 \log n)$	Medium	O(n)	Large
PC-Simplify-Adapt(HM) [24, 73]	$O(n^2 \log n)$	Medium	O(n)	Large
HM-Simplify (ours)	$O(n\lambda \log n)$	Small	$O(\frac{n}{\mu})$	Small

Table 3: Comparison of proximity query algorithms

Algorithm	Shortest path query tim	Error	
On the original 3D surfaces			
TIN-ESSP-Adapt(HM) [28, 67, 74]	$O(n^2)$	Large	Small
TIN-ASSP-Adapt(HM) [45, 72]	$O(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}} \log(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}}))$	Large	Small
TIN-SNP-Adapt(HM) [46]	$O(n \log n)$	Medium	Medium
PC-SP-Adapt(HM) [73]	$O(n \log n)$	Medium	No error
HM-SP (ours)	$O(n \log n)$	Medium	No error
On the simplified 3D surfaces			
TIN-ESSP-Adapt(HM) [28, 67, 74]	$O(n^2)$	Large	Small
TIN-SNP-Adapt(HM) [46]	$O(n \log n)$	Medium	Medium
PC-SP-Adapt(HM) [73]	$O(n \log n)$	Medium	Small
HM-SP (ours)	$O(\frac{n}{\mu}\log\frac{n}{\mu})$	Small	Small

(2) To solve the existing problem on *Point Clouds* [73], we adapted algorithms on height maps or *TINs*, by converting the given point clouds to height maps [25, 61] or *TINs* [36, 63, 73]. Then, we add "-*Adapt(PC)*" in algorithm names. Similarly, we have 9 algorithms: (i) 847 *TIN-SSimplify-Adapt(PC)* [43, 46], (ii) *TIN-NSimplify-Adapt(PC)* [46], 848 (iii) *PC-Simplify* [24, 73], (iv) *HM-Simplify-Adapt(PC)*, (v) *TIN-ESSP-Adapt(PC)* [28, 67, 74], (vi) *TIN-ASSP-Adapt(PC)* [45, 72], (vii) *TIN-SNP-Adapt(PC)* [46], (viii) *PC-SP* [73] and (ix) *HM-SP-Adapt(PC)*. 851

(3) To solve the existing problem on <u>TINs</u> [43, 46], we adapted algorithms on height maps or point clouds, by converting the given *TINs* to height maps [23, 40] or point clouds [73, 75]. Then, we add "-*Adapt(TIN)*" in algorithm names. <u>Similarly</u>, we have 9 algorithms: (i) *TIN-SSimplify* [43, 46], (ii) *TIN-NSimplify* [46], (iii) *PC-Simplify-Adapt(TIN)* [24, 73], (iv) *HM-Simplify-Adapt(TIN)*, (v) *TIN-ESSP* [28, 67, 74], (vi) *TIN-ASSP* [45, 72], (vii) *TIN-SNP* [46], (viii) *PC-SP-Adapt(TIN)* [73] and (ix) *HM-SP-Adapt(TIN)*.

Points (2) and (3) are *additional* adaptations since we want to see the performance of our algorithms for other problems. These adaptations involve data conversion. If no data conversion is involved, (1) we can adapt *HM-Simplify* and *HM-SP* to the point cloud, and the adapted versions have the same performance as them on the height map since the height map graph and the point cloud graph are the same, and (2) there is no reason to adapt *HM-Simplify* and *HM-SP* to the *TIN* since expensive *TIN* re-triangulation is involved in simplification, and the *TIN*'s structure is more complex, which both significantly harm the performance (i.e., adapted versions have the similar performance of *TIN-NSimplify* and *TIN-SNP* on the *TIN*).

5.1.3 **Proximity Queries**. We conducted 3 queries. (1) Shortest path query: we used 100 travelers' hiking GPS location data (recording sources and destinations) in 2023 from Google Maps [11] on each real height map, point cloud or *TIN* dataset to perform the query. We report the average, maximum and minimum results. The experimental result figures' points indicate the average results, and vertical bars represent the maximum and minimum values. (2 & 3) kNN and range queries: we used travelers' nearby searching data of 1000 query objects (viewpoints, hotels and restaurants) in 2023 from Tripadvisor [76] on each dataset to perform the proximity query algorithm in Section 4.6.

5.1.4 Factors and Metrics. We studied 5 factors: (1) ϵ , (2) n(dataset size, i.e., the number of cells, points or vertices of a height map, point cloud or TIN), (3) d (the maximum pairwise distances among query objects), (4) k (k value in kNN query) and (5) r (range value in range query). When not varying $d \in [4\text{km}, 20\text{km}], k \in [200, 4\text{km}]$ 1000] and $r \in [2\text{km}, 10\text{km}]$, we fix d at 10km, k at 500 and r at 5km according to studies [32, 60]. For simplification algorithms, we employed 4 metrics: (1) preprocessing time (the data conversion time (if any) plus the simplification time, where the former is 10⁶ to 10⁹ times smaller than the latter), (2) the number of cells, points or vertices in the simplified height map, point cloud or TIN, (3) output size and (4) preprocessing memory (simplification memory). For proximity query algorithms, we employed 9 metrics: (1) query time (the data conversion time (if any) plus the shortest path query time, where the former is 10^4 to 10^6 times smaller than the latter), (2 & 3) kNN or range query time (the data conversion time (if any) plus kNN or range query time), (4) memory (during the shortest path query algorithm execution), (5 & 6) kNN or range query memory, (7) distance error ratio (the error ratio of the distance calculated by a studied algorithm compared with the ground-truth or optimal distance), (8 & 9) kNN or range query error ratio (see Section 4.8.2).

There are two sets of experiments regarding distance error ratio calculation. We first introduce the following. The relative error of the TIN's exact shortest surface distance [35, 44] and the height map's exact shortest distance [48, 64] compared with the real shortest distance in the real world (measured in an on-site survey on a real 3D surface by human) are 0.0454 and 0.0613 on average, with variance 0.0015 and 0.0026, and standard deviation 0.0387 and 0.0511, respectively. Both distances are approximation of the real shortest distance without a bound guarantee (similar to well-known road network models [38, 42]), and the latter is computed on the point cloud converted from the given height map (since the point cloud's exact shortest distance is the same as the height map's exact shortest distance in Section 3.1). Then, we introduce the two sets of experiments. (1) We regard the TIN's exact shortest surface distance (computed by TIN-ESSP with $\epsilon = 0$) as the ground-truth distance when using height maps, point clouds and TINs as input

825

827

828

829

830

831

835

836

837

838

839

consistently across experiments. One reason is that compared with the real shortest distance, the average error of this distance, i.e., 0.0454, is smaller than that of the height map's exact shortest distance, i.e., 0.0613, although this distance is not always smaller than the height map's exact shortest distance in Section 3.1 (e.g., Euclidean distance is usually smaller than TIN's exact shortest surface distance, but its error is larger). Another reason is that a TIN is a more detailed representation of the underlying 3D surface. (2) For the rigorous formulation of our problem and proposed algorithms comparison (based on height map only), we regard the height map's exact shortest distance (computed by HM-SP with $\epsilon = 0$) as the optimal distance under this particular 3D surface.

5.2 Experimental Results

867

872

873

874

875

878

879

880

881

882

883

885

886

887

893

894

895

900

902

903

904

905

908

911

912

913

5.2.1 Height maps with ground-truth distance. We studied proximity queries on height maps using the ground-truth distance for distance error ratio calculation. We compared all algorithms in Tables 2 and 3 on small-version datasets, and compared all algorithms except TIN-SSimplify-Adapt(HM), TIN-NSimplify-Adapt(HM) and PC-Simplify-Adapt(HM) on original datasets (due to their large preprocessing time), and except TIN-ESSP-Adapt(HM) and TIN-SNP-Adapt(HM) on the simplified TIN, and PC-SP-Adapt(HM) on the simplified point cloud (due to their dependency on the previous three algorithms).

(1) Baseline comparisons:

(i) **Effect of** ϵ : In Figures 9 (a) to (g), we tested 7 values of ϵ in $\{0, 1\}$ 0.05, 0.1, 0.25, 0.5, 0.75, 1} on GF_h -small dataset while fixing n at 1k for baseline comparisons. The preprocessing time of HM-Simplify is much smaller than three baselines' due to the efficient height map shortest path query and efficient ϵ -approximate simplified height map checking (although the worst case is $O(n^2 \log n)$ in Theorem 4.1, which never happens in the experiment). The number of cells of the simplified height map and output size of HM-Simplify are also much smaller than three baselines' due to the novel cell merging technique. The memory of a simplification algorithm is the same as that of the corresponding shortest path query algorithm with $\epsilon = 0$, since we clear the memory after performing one shortest path query during simplification, the preprocessing memory figures are omitted. The shortest path query time and the kNN query time $(O(\frac{nn'}{\mu}\log\frac{n}{\mu})$ in Theorem 4.3) of *HM-SP* on the simplified height map are also small since its simplified height map has a small output size. The shortest path, kNN and range query memorys are similar, since we clear the memory after performing one shortest path query during kNN or range query, the kNN and range query memory figures are omitted. Although increasing ϵ slightly increases the experimental distance error ratio of *HM-SP* on the simplified height map, its value is 0.0340, i.e., close to 0. So, increasing ϵ has no impact on the experimental kNN and range query error ratios, their values are 0 (since $|\Pi(i, p_f'|T)| = |\Pi(i, p_f|T)|$ in Section 4.8.2), and their results are omitted. Compared with the real shortest distance, since the relative error of the ground-truth distance is 0.0454, the relative error of the shortest distance returned by HM-SP on the simplified height map is at most 0.0809 = max(0.0809) = max(0.0 $(1+0.0340)\times(1+0.0454)-1$, $0.0779(=1-(1-0.0340)\times(1-0.0454))$.

(ii) Effect of n (scalability test): In Figures 10 (a) to (e), we tested 5 values of n in $\{5M, 10M, 15M, 20M, 25M\}$ on LM_h dataset

while fixing ϵ at 0.25 for baseline comparisons. *HM-Simplify* (in terms of output size, i.e., 6.8MB) and *HM-SP* on the simplified height map (in terms of range query time, i.e., 310s \approx 5.1 min, and range query memory, i.e., 320MB) are scalable on extremely large height map with 25M cells. Although the theoretical output size of *HM-Simplify* is only μ times smaller than the size of an original height map, it returns a simplified height map with an experimental size of 6.8MB from an original one with size 600MB and 25M cells, and performing range query on them with 500 objects takes 400s \approx 6.7 min and 35,200s \approx 9.8 hours, with 320MB and 1.1GB memory, respectively. When n is smaller, i.e., datasets with looser density or fragmentation (since multi-resolution datasets have the same region), algorithms run faster with less memory.

(iii) **Effect of** d: In Figure 11, we tested 5 values of d in {4km, 8km, 12km, 16km, 20km} on RM_h dataset while fixing ϵ at 0.25 and n at 0.5M for baseline comparisons. A smaller d reduces kNN and range query time, since our proximity query algorithm uses Dijkstra's algorithm once, we can terminate it earlier after visiting all query objects. As d increases, there is no upper bound on the increase in kNN query time (since we append the paths computed by Dijkstra's algorithm and the intra-paths as results, we cannot determine the distance correlations among these paths until we perform a linear scan, i.e., we terminate Dijkstra's algorithm based solely on d). But, there is an upper bound on the increase in range query time (since we can also terminate Dijkstra's algorithm earlier if the searching distance exceeds r).

(2) Ablation study for proximity query algorithms (effect of k and r): We considered two variations of HM-SP (on the simplified height map), i.e., (i) HM-SP Naive Shortest path query (HM-SP-NS): HM-SP using the naive shortest path query algorithm in Section 4.5, but the efficient proximity query algorithm in Section 4.6, and (ii) HM-SP Naive Proximity query (HM-SP-NP): HM-SP using the efficient shortest path query algorithm, but the naive proximity query algorithm. In Figure 12, we tested 5 values of k in {200, 400, 600, 800, 1000} and 5 values of r in {2km, 4km, 6km, 8km, 10km} both on RM_h dataset while fixing ϵ at 0.25 and n at 0.5M for ablation study. On the simplified height map, HM-SP outperforms both HM-SP-NS and HM-SP-NP, due to the efficient querying algorithms. Due to the two reasons in the previous paragraph, k does not affect kNN query time, but a smaller r reduces range query time.

(3) Ablation study for simplification algorithms: We considered three variations of HM-Simplify, i.e., (i) HM-Simplify Naive Merging (HM-Simplify-NM): HM-Simplify using the naive merging technique that only merges two cells in Sections 4.2.1 and 4.2.2 point (2), (ii) HM-Simplify Naive Checking (HM-Simplify-NC): HM-Simplify using the naive checking technique that checks whether Inequality 1 is satisfied for all points in Section 4.2.2 point (3) and (iii) *HM-Simplify-DS* (with $\epsilon' = 0.25$). Let *HM-SP-NM*, *HM-SP-NC* and HM-SP-DS be the corresponding proximity query algorithms on the simplified height map. In Figure 13, we tested 6 values of ϵ in $\{0.05, 0.1, 0.25, 0.5, 0.75, 1\}$ on BH_h -small dataset while fixing n at 0.5M for ablation study. HM-Simplify performs the best, showing the effectiveness of our merging and checking techniques. Since HM-Simplify-DS has a large simplification time but HM-SP-DS has a small shortest path query time, they are useful when we prioritize the latter time over the former time.

930

Figure 9: Effect of ϵ on GF_h -small height map dataset

Figure 10: Effect of n on LM_h height map dataset

Figure 11: Effect of d on RM_h height map dataset

Figure 12: Ablation study for proximity query algorithms (effect of k and r on RM_h height map dataset)

Figure 13: Ablation study for simplification algorithms on BH_h -small height map dataset

Figure 14: Effect of ϵ on EP_p -small point cloud dataset

Figure 15: Effect of n on EPt-small TIN dataset

Figure 16: Paths passing on original/simplified height maps (in bird's view), point clouds and TINs

5.2.2 **Point clouds with ground-truth distance.** We studied proximity queries on point clouds using the ground-truth distance

980

982

983

984

985

986

987

989

990

991

994

995

996

997

999

1000

1001

1003

1004

1005

1006

1010

1011

1012

1013

1016

1017

1018

1019

1023

1024

1025

for distance error ratio calculation. In Figure 14, we tested 7 values of ϵ in $\{0, 0.05, 0.1, 0.25, 0.5, 0.75, 1\}$ on EP_p -small dataset while fixing n at 1k for baseline comparison. HM-Simplify-Adapt(PC) and HM-SP-Adapt(PC) on the simplified height map still outperforms other baselines.

5.2.3 TINs with ground-truth distance. We studied proximity queries on TINs using the ground-truth distance for distance error ratio calculation. In Figure 15, we tested 5 values of n in {10k, $_{1034}$ 20k, 30k, 40k, 50k} on EP_t -small dataset while fixing ϵ at 0.1 for baseline comparisons. HM-Simplify-Adapt(TIN) still outperforms other baselines. The distance error ratio of HM-SP-Adapt(TIN) on the simplified height map is 0.0401, but the distance error ratio of TIN-SNP on the simplified TIN is 0.2732.

5.2.4 Height maps with optimal distance. We studied proximity queries on height maps using the optimal distance for distance error ratio calculation. In Figures 9 (h) and 10 (f), the experimental distance error ratio of HM-SP on the simplified height map is 0.0186. Compared with the real shortest distance, since the relative error of the optimal distance is 0.0613, the relative error of the shortest distance returned by HM-SP on the simplified height map is at most $0.0810 = \max(0.0810(=(1+0.0186)\times(1+0.0613)-1), 0.0788(=1-(1-0.0186)\times(1-0.0613))$. The experimental kNN and range query error ratios are 0 (since $|\Pi(i, p_f'|H)| = |\Pi(i, p_f|H)|$ in Section 4.8.2, although the theoretical ones are $\frac{2\epsilon}{1-\epsilon}$ in Theorem 4.3).

5.2.5 Case study. We performed a snowfall evacuation case study [5] at Gates of the Arctic [58] to evacuate tourists to nearby hotels. In Figure 1 (a), due to each hotel's capacity constraints, 1053 we find shortest paths from viewpoint a to k-nearest hotels b, c, d, 1054 where c and d are k-nearest options when k = 2. An individual will 1055 be buried in snow in 2.4 hours³, and the evacuation can be finished in 2.2 hours⁴. Thus, we need to compute shortest paths within 12 min (= 2.4 - 2.2 hours). Our experiments show that for a height map with 50k cells, 10k tourist positions and 50 hotels, the simplification time for our algorithm HM-Simplify, our adapted algorithm HM-Simplify-DS, the best-known adapted point cloud simplification algorithm PC-Simplify-Adapt(HM) and the best-known adapted TIN simplification algorithm *TIN-SSimplify-Adapt(HM)* are 250s ≈ 4.6 min, $125,000s \approx 1.5$ days, $5,250s \approx 1.5$ hours and $103,000s \approx 1.2$ days. Computing 10 nearest hotels for each tourist position on the simplified 3D surfaces of these algorithms takes 50s, 5s, 250s \approx 4.2 min and $67,000s \approx 18.6$ hours, respectively. Thus, height map simplification is necessary since 4.6 min + 1.6 min ≤ 12 min. Recall that only the height map dataset is available for this region, we capture the height map dataset after snowfall, and we have efficient height map simplification and shortest path query algorithms. So, there is no reason to convert the height map to the point cloud or TIN, and perform other slow adapted point cloud or TIN algorithms for simplification and shortest path query. In addition, it is 1072 known that algorithms with larger (resp. smaller) simplification time but smaller (resp. larger) shortest path query time are better 1074 (resp. worse) if we need simplification before the query issue. But, it is not true in our case, since we capture the height map dataset after snowfall, the simplification time is considered after snowfall. So, we design HM-Simplify to efficiently reduce the simplification time, and significantly reduce its output size so that the shortest path query time on the simplified height map is small. But, HM-Simplify-DS is not suitable due to the large simplification time.

5.2.6 **Paths visualization**. In Figure 16, we visualize different paths to verify distance relationships in Section 3.1. (1) Given a height map, the paths in Figures 16 (a) (showing the height map) and (b) (showing the same height map in bird's eye view) computed by our algorithm HM-SP on the original height map and the path in Figure 16 (c) computed by the best-known adapted point cloud shortest path query algorithm PC-SP-Adapt(HM) on the original **point cloud** are identical (since $|\Pi(s, t|H)| = |\Pi(s, t|P)|$). The paths in Figures 16 (a) and (b) are similar to the green path in Figure 16 (d) computed by the best-known adapted exact TIN shortest surface path query algorithm TIN-ESSP-Adapt(HM) on the original TIN (since $|\Pi(s, t|H)| \le \alpha \cdot |\Pi(s, t|T)|$), but computing the former path is much quicker. The distance error ratios of the paths in Figures 16 (a) and (b) are smaller than that of the purple (network) path in Figure 16 (d) computed by the best-known approximate TIN shortest network path query algorithm TIN-ESSP on the original TIN (since $|\Pi(s, t|H)| \le |\Pi_N(s, t|T)|$). The paths in Figures 16 (a) and (b) are similar to the paths in Figures 16 (e), (f), (g) and (h) computed by our algorithm HM-SP on the simplified height maps, but computing the latter four paths are quicker due to the simplified height maps. The path in Figures 16 (e) and (f) are similar to the green path in Figure 16 (i) on a simplified point cloud (generated by the best-known adapted point cloud simplification algorithm PC-Simplify-Adapt(HM)) and the green (surface) path in Figure 16 (j) on a simplified TIN (generated by the best-known adapted TIN simplification algorithm TIN-SSimplify-Adapt(HM)). (2 & 3) Given a point cloud or a TIN, the path results are the same, since only data conversion is involved in the beginning of the algorithm.

5.2.7 **Summary**. On a height map with 50k cells and 10k objects, HM-Simplify's simplification time and output size are 250s ≈ 4.6 min and 0.07MB, which are up to 21 times and 5 times (resp. 412 times and 7 times) better than the best-known adapted point cloud (resp. TIN) simplification algorithm PC-Simplify-Adapt(HM) (resp. TIN-SSimplify-Adapt(HM)). Performing kNN query on our simplified height map takes 50s, which is up to 5 times and 1,340 times smaller than on the simplified point cloud and on the simplified TIN, respectively. All algorithms perform better on LM_h , RM_h and EP_h datasets, since their 3D surfaces are flatter.

6 CONCLUSION

We propose an efficient height map simplification algorithm *HM-Simplify*, that outperforms the best-known adapted algorithm concerning the simplification time and output size. We also propose an efficient shortest path algorithm *HM-SP* on the original/simplified height map, and design algorithms for answering *kNN* and range queries on the original/simplified height map. For future work, we can propose new pruning techniques to further reduce the simplification time and output size of *HM-Simplify*.

 $[\]frac{3}{2.4 \text{ hours}} = \frac{10 \text{centimeters} \times 24 \text{hours}}{\text{Imeter}}, \text{ since the snowfall rate (i.e., the snow depth over a period [29, 59]) at Gates of the Arctic is 1 meter per 24 hours [5], and when the snow depth exceeds 10 centimeters, it is difficult to walk and easy to bury in the snow [37]. <math display="block">\frac{4}{2.2 \text{ hours}} = \frac{11.2 \text{km}}{5.1 \text{km/h}}, \text{ since the average distance between the viewpoints and hotels at Gates of the Arctic is 11.2 km [10], and human's average walking speed is 5.1 km/h [18].}$

REFERENCES

1080

1081

1082

1083

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1106

1107

1108

1109

1110

1111

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155 1156

- [1] 2017. 1.5 Billion the world's most expensive imaging satellite nisar. https:// syntheticapertureradar.com/nasa-isro-sar-project-nisar/
- 2025. 125 Years of topographic mapping. https://www.esri.com/news/arcnews/ fall09articles/125-years.html
- 2025. 50 Years of Landsat Science. https://landsat.gsfc.nasa.gov
- 2025. Avalanche. https://en.wikipedia.org/wiki/Avalanche
- 2025. Climate and average weather year round in Gates of the Arctic National Park. https://weatherspark.com/y/150336/Average-Weather-in-Gates-of-the-Arctic-National-Park-Alaska-United-States-Year-Round
- 2025. Data geocomm. http://data.geocomm.com/
- 2025. The earth. https://www.nationsonline.org/oneworld/earth.htm
- 2025. Geocento commercial sar satellite imagery resolutions 2022, by cost per scene. https://www.statista.com/statistics/1293899/geocento-commercialsatellite-sar-imagery-resolution-cost-worldwide/
- 2025. Google Earth. https://earth.google.com/web
- 2025. Google Map. https://www.google.com/maps
- 2025. Google Maps Platform. https://mapsplatform.google.com
 - 2025. Gunnison national forest. https://gunnisoncrestedbutte.com/visit/placesto-go/parks-and-outdoors/gunnison-national-forest/
- 2025. The history of point cloud development. https://www.linkedin.com/pulse/ history-point-cloud-development-bimprove/
- 2025. How satellites work. https://science.howstuffworks.com/satellite10.htm 2025. Laramie mountain. https://www.britannica.com/place/Laramie-Mountains [15]
- 2025. Metaverse. https://about.facebook.com/meta 1104 [16]
- 2025. Open digital elevation model. https://www.opendem.info/ [17] 1105
 - [18] 2025. Preferred walking speed. https://en.wikipedia.org/wiki/Preferred_walking_ speed
 - [19] 2025. Robinson mountain. https://www.mountaineers.org/activities/routesplaces/robinson-mountain
 - [20] 2025. Shuttle radar topography mission. https://www.earthdata.nasa.gov/data/ instruments/srtm
- 2025. Transparent pricing for commercial Earth observation imagery. https: 1112 [21] //skvfi.com/en/pricing 1113
 - [22] 2025. Zoom earth. https://zoom.earth/maps/
 - Segun M Adedapo and Hamdi A Zurqani. 2024. Evaluating the performance [23] of various interpolation techniques on digital elevation models in highly dense forest vegetation environment. Ecological Informatics (EI) 81 (2024).
 - Pankaj K Agarwal and Pavan K Desikan. 1997. An efficient algorithm for terrain simplification. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 139-147.
 - Mehul Arora, Louis Wiesmann, Xieyuanli Chen, and Cyrill Stachniss. 2021. Mapping the static parts of dynamic scenes from 3d lidar point clouds exploiting ground segmentation. In IEEE European Conference on Mobile Robots (ECMR).
 - [26] Mehul Arora, Louis Wiesmann, Xieyuanli Chen, and Cyrill Stachniss. 2023. Static map generation from 3d lidar point clouds exploiting ground segmentation. Robotics and Autonomous Systems (RAS) 159 (2023), 104287.
 - Leizhen Cai. 1994. NP-completeness of minimum spanner problems. Discrete Applied Mathematics (DAM) 48, 2 (1994), 187–194.
 - Jindong Chen and Yijie Han. 1990. Shortest paths on a polyhedron. In Symposium on Computational Geometry (SOCG). New York, NY, USA, 360-369.
 - [29] The Conversation. 2025. How is snowfall measured? A meteorologist explains how volunteers tally up winter storms. https://theconversation.com/how-is-snowfallmeasured-a-meteorologist-explains-how-volunteers-tally-up-winter-storms-
 - [30] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022. Introduction to algorithms. MIT press.
 - Ke Deng, Heng Tao Shen, Kai Xu, and Xuemin Lin. 2006. Surface k-nn query processing. In IEEE International Conference on Data Engineering (ICDE). 78–78.
 - [32] Ke Deng, Xiaofang Zhou, Heng Tao Shen, Qing Liu, Kai Xu, and Xuemin Lin. 2008. A multi-resolution surface distance model for k-nn query processing. The VLDB Fournal (VLDBF) 17 (2008), 1101-1119.
 - Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs. Numerische mathematik 1, 1 (1959), 269-271.
 - [34] Hristo N Djidjev and Christian Sommer. 2011. Approximate distance queries for weighted polyhedral surfaces. In Proceedings of the European Symposium on Algorithms, 579-590.
 - [35] Weili Fang, Weiya Chen, Peter ED Love, Hanbin Luo, Haiming Zhu, and Jiajing Liu. 2024. A status digital twin approach for physically monitoring over-andunder excavation in large tunnels. Advanced Engineering Informatics (AEI) 62
 - 1228 [36] Haoan Feng, Yunting Song, and Leila De Floriani. 2024. Critical features tracking 1229 on triangulated irregular networks by a scale-space method. In ACM International Conference on Advances in Geographic Information Systems (GIS). 54-66.
 - Fresh Off The Grid. 2025. Winter hiking 101: everything you need to know about hiking in snow. https://www.freshoffthegrid.com/winter-hiking-101-hiking-in-

- [38] Peng Han, Jin Wang, Di Yao, Shuo Shang, and Xiangliang Zhang. 2021. A graphbased approach for trajectory similarity computation in spatial networks. In ACM Conference on Knowledge Discovery & Data Mining (SIGKDD). 556–564.
- Xian-Feng Han, Huixian Cheng, Hang Jiang, Dehong He, and Guoqiang Xiao. 2024. Pcb-randnet: rethinking random sampling for lidar semantic segmentation in autonomous driving scene. In IEEE International Conference on Robotics and Automation (ICRA). 4435-4441.
- Nadine Hobeika, Laurens van Rijssel, Maarit Prusti, Constantijn Dinklo, Denis Giannelli, Balázs Dukai, Arnaud Kok, Rob van Loon, René Nota, and Jantien Stoter. 2024. Automated noise modelling using a triangulated terrain model. Geo-Spatial Information Science (GSIS) 27, 6 (2024), 1893-1913.
- Hugues Hoppe. 1996. Progressive meshes. In Conference on Computer Graphics and Interactive Techniques (CGIT). 99-108.
- Songhua Hu, Mingyang Chen, Yuan Jiang, Wei Sun, and Chenfeng Xiong. 2022. Examining factors associated with bike-and-ride (bnr) activities around metro stations in large-scale dockless bikesharing systems. Journal of Transport Geography (7TG) 98 (2022), 103271.
- Bo Huang, Victor Junqiu Wei, Raymond Chi-Wing Wong, and Bo Tang. 2023. [43] Ear-oracle: on efficient indexing for distance queries between arbitrary points on terrain surface. In ACM International Conference on Management of Data (SIGMOD), Vol. 1. ACM New York, NY, USA, 1-26.
- Md Kamruzzaman, Tanzila Islam, and Smrity Rani Poddar. 2014. Accuracy of handheld gps compairing with total station in land use survey: a case study in RUET campus. International Journal of Innovation and Applied Studies (IJIAS) 7, 1 (2014), 343,
- Manohar Kaul, Raymond Chi-Wing Wong, and Christian S Jensen. 2015. New [45] lower and upper bounds for shortest distance queries on terrains. In International Conference on Very Large Data Bases (VLDB), Vol. 9. 168-179.
- Manohar Kaul, Raymond Chi-Wing Wong, Bin Yang, and Christian S Jensen. 2013. Finding shortest paths on terrains by killing two birds with one stone. In International Conference on Very Large Data Bases (VLDB), Vol. 7. 73-84.
- Mark Lanthier, Anil Maheshwari, and I-R Sack, 2001. Approximating shortest paths on weighted polyhedral surfaces. In Algorithmica, Vol. 30. 527-562.
- [48] Jinheng Li, Feng Shuang, Junjie Huang, Tao Wang, Sijia Hu, Junhao Hu, and Hanbo Zheng, 2023. Safe distance monitoring of live equipment based upon instance segmentation and pseudo-LiDAR. IEEE Transactions on Power Delivery (TPD) 38, 4 (2023), 2953-2964.
- Shujuan Li, Junsheng Zhou, Baorui Ma, Yu-Shen Liu, and Zhizhong Han. 2024. Learning continuous implicit field with local distance indicator for arbitrary-scale point cloud upsampling. In AAAI Conference on Artificial Intelligence, Vol. 38. 3181-3189
- Lian Liu and Raymond Chi-Wing Wong. 2011. Finding shortest path on land [50] surface. In ACM International Conference on Management of Data (SIGMOD). 433-444
- Joseph SB Mitchell, David M Mount, and Christos H Papadimitriou. 1987. The [51] discrete geodesic problem. SIAM J. Comput. 16, 4 (1987), 647-668.
- [52] Hoong Kee Ng, Hon Wai Leong, and Ngai Lam Ho. 2004. Efficient algorithm for path-based range query in spatial databases. In IEEE International Database Engineering and Applications Symposium (IDEAS). 334-343.
- Eunjin Oh. 2020. Shortest-path queries in geometric networks. In International Symposium on Algorithms and Computation (ISAAC). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 52-1.
- Michael Recla and Michael Schmitt. 2024. The sar2height framework for urban height map reconstruction from single sar intensity images. Journal of Photogrammetry and Remote Sensing (ISPRS) 211 (2024), 104-120.
- Jagan Sankaranarayanan and Hanan Samet. 2009. Distance oracles for spatial networks. In IEEE International Conference on Data Engineering (ICDE). 652-663.
- Jagan Sankaranarayanan, Hanan Samet, and Houman Alborzi. 2009. Path oracles for spatial networks. In International Conference on Very Large Data Bases (VLDB), Vol. 2. 1210-1221.
- Olga Schukina, Maksud Abdukarimov, and Albina Valieva. 2024. Creating a 3d terrain model for the territory of the hasti-imom ensemble in tashkent, uzbekistan. In E3S Web of Conferences, Vol. 497. EDP Sciences, 02024
- National Park Service. 2025. Gates of the Arctic. https://www.nps.gov/gaar/index.
- National Weather Service. 2025. Measuring Snow. https://www.weather.gov/
- Cyrus Shahabi, Lu-An Tang, and Songhua Xing. 2008. Indexing land surface for efficient knn query. In International Conference on Very Large Data Bases (VLDB),
- Yixin Sun, Yusen Luo, Qian Zhang, Lizhang Xu, Liying Wang, and Pengpeng Zhang. 2022. Estimation of crop height distribution for mature rice based on a moving surface and 3d point cloud elevation. Agronomy 12, 4 (2022), 836.
- Farhan Tauheed, Laurynas Biveinis, Thomas Heinis, Felix Schurmann, Henry Markram, and Anastasia Ailamaki. 2012. Accelerating range queries for brain simulations. In IEEE International Conference on Data Engineering (ICDE). 941-

1232

1157

1164

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1197

1198

1199

1201

1202

1203

1205

1207

1209

1211

1224

1236

1237

1238

1239

1240

1241

1242

1243 1244

1245

1246 1247

1248

1249

1250

1251 1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273 1274

1275

1276

1277 1278

1279

1280

1281

1282

1283

1287

1288

1289

1290

1291

1292

1293

1294

1297

1298

- [63] Tao Wang, Lianbin Deng, Yuhong Li, and Hao Peng. 2021. Progressive tin densification with connection analysis for urban lidar data. *Photogrammetric Engineering & Remote Sensing (PERS)* 87, 3 (2021), 205–213.
- [64] Xixun Wang, Yoshiki Mizukami, Makoto Tada, and Fumitoshi Matsuno. 2021. Navigation of a mobile robot in a dynamic environment using a point cloud map. Artificial Life and Robotics (ALR) 26 (2021), 10–20.
- [65] Victor Junqiu Wei, Raymond Chi-Wing Wong, Cheng Long, and David M. Mount. 2017. Distance oracle on terrain surface. In ACM International Conference on Management of Data (SIGMOD). New York, NY, USA, 1211–1226.
- [66] Victor Junqiu Wei, Raymond Chi-Wing Wong, Cheng Long, David M Mount, and Hanan Samet. 2022. Proximity queries on terrain surface. ACM Transactions on Database Systems (TODS) (2022).
- [67] Victor Junqiu Wei, Raymond Chi-Wing Wong, Cheng Long, David M Mount, and Hanan Samet. 2024. On efficient shortest path computation on terrain surface: a direction-oriented approach. *IEEE Transactions on Knowledge & Data Engineering* (TKDE) 1 (2024), 1–14.
- [68] Shi-Qing Xin and Guo-Jin Wang. 2009. Improving chen and han's algorithm on the discrete geodesic problem. ACM Transactions on Graphics (TOG) 28, 4 (2009), 1–8
- [69] Songhua Xing, Cyrus Shahabi, and Bei Pan. 2009. Continuous monitoring of nearest neighbors on land surface. In *International Conference on Very Large Data Bases (VLDB)*, Vol. 2. 1114–1125.
- [70] Da Yan, Zhou Zhao, and Wilfred Ng. 2012. Monochromatic and bichromatic reverse nearest neighbor queries on land surfaces. In ACM International Conference on Information and Knowledge Management (CIKM). 942–951.
- [71] Yinzhao Yan and Raymond Chi-Wing Wong. 2021. Path advisor: a multi-functional campus map tool for shortest path. In *International Conference on Very Large Data Bases (VLDB)*, Vol. 14. 2683–2686.
- [72] Yinzhao Yan and Raymond Chi-Wing Wong. 2024. Efficient shortest path queries on 3d weighted terrain surfaces for moving objects. In IEEE International Conference on Mobile Data Management (MDM).
- [73] Yinzhao Yan and Raymond Chi-Wing Wong. 2024. Proximity queries on point clouds using rapid construction path oracle. In ACM International Conference on Management of Data (SIGMOD), Vol. 2. 1–26.
- [74] Yinzhao Yan, Raymond Chi-Wing Wong, and Christian S Jensen. 2024. An efficiently updatable path oracle for terrain surfaces. IEEE Transactions on Knowledge & Data Engineering (TKDE) 1 (2024), 1–14.
- [75] Hongchuan Yu, Jian J Zhang, and Zheng Jiao. 2014. Geodesics on point clouds. Mathematical Problems in Engineering (MPE) 2014 (2014).
- [76] Yating Zhang, Hongbo Tan, Qi Jiao, Zhihao Lin, Zesen Fan, Dengming Xu, Zheng Xiang, Rob Law, and Tianxiang Zheng. 2024. A Predictive Model Based on TripAdvisor Textual Reviews: Early Destination Recommendations for Travel Planning. SAGE Open 14, 2 (2024).
- [77] Yifei Zhang and Shiyuan Wang. 2023. A robot navigation system in complex terrain based on statistical features of point clouds. IEEE Transactions on Intelligent Vehicles (TIV) (2023).

A SUMMARY OF ALL NOTATION

Table 4 shows a summary of all notation.

B COMPARISON OF ALL ALGORITHMS

Tables 5 and 6 show comparisons of all simplification and proximity query algorithms. Recall that we have two variations of *HM-SP* (on the simplified height map) in terms of proximity queries, i.e., *HM-SP-NS* (on the simplified height map) and *HM-SP-NP* (on the simplified height map). Let *HM-Simplify-NS* and *HM-Simplify-NP* be the simplification algorithms, so that *HM-SP-NS* and *HM-SP-NP* are applied on the simplified height map of these two simplification algorithms.

C EMPIRICAL STUDIES

C.1 Experimental Results for Height Maps with Ground-truth Distance

We studied proximity queries on height maps using the groundtruth distance for distance error ratio calculation. We compared
algorithms TIN-SSimplify-Adapt(HM), TIN-NSimplify-Adapt(HM),
PC-Simplify-Adapt(HM), HM-Simplify, TIN-ESSP-Adapt(HM) (on the
original height map and the simplified TIN), TIN-ASSP-Adapt(HM), 1309

Table 4: Summary of all notation

Notation	Meaning
Н	The height map with a set of cells
C	The set of cells of H
$N(\cdot)$	The neighbor cells table of <i>H</i>
n	The number of cells of H
P	The point cloud converted from H
T	The <i>TIN</i> converted from <i>H</i>
θ	The minimum inner angle of any face in <i>T</i>
G	The height map graph of H and the point cloud graph of P
$\Pi(s,t H)$	The shortest path passing on H between s and t
$ \Pi(s,t H) $	$\Pi(s, t H)$'s length
$\Pi(s,t P)$	The shortest path passing on P between s and t
$\Pi(s,t T)$	The shortest surface path passing on T between s and t
$\Pi_N(s,t T)$	The shortest network path passing on T between s and t
$\Pi_E(s,t T)$	The shortest path passing on the edges of T between s and t where these edges belongs to the faces that $\Pi(s, t T)$ passes
\widetilde{H}	The simplified height map
\widetilde{C}	The set of cells of \widetilde{H}
$\widetilde{N}(\cdot)$	The neighbor cells table of \widetilde{H}
C_{rema}	The set of remaining cells
C_{dd}	The set of added cells
\widetilde{G}	The simplified height graph of \widetilde{H}
$\Pi(\widetilde{s},\widetilde{t} \widetilde{H})$	The approximate shortest path passing on \widetilde{H} between s and t
ϵ	The error parameter
l_{max}/l_{min}	The longest $/$ shortest edge's length of T
$O(\cdot)$	The containing table
$O^{-1}(\cdot)$	The belonging table
ĉ	The set of adjacent cells that we need to merge
	in each simplification iteration
c_{add}	The added cell formed by merging each cell \widehat{C}
\widetilde{c}	The estimated cell of c
$\Pi_1(p,q \widetilde{H})$	The intra-path passing on \widetilde{H} between c and q
$\Pi_2(p,q \widetilde{H})$	The inter-path passing on \widetilde{H} between c and q
$A(c_{add})$	The set of adjacent added cells of c_{add}
$G_{\widetilde{H}}$	The data structure from study [53] used in algorithm <i>HM-Simplify</i>

TIN-SNP-Adapt(HM) (on the original height map and the simplified TIN), PC-SP-Adapt(HM) (on the original and simplified point cloud) and HM-SP (on the original and simplified height map) on small-version datasets, and compared all algorithms except TIN-SSimplify-Adapt(HM), TIN-NSimplify-Adapt(HM) and PC-Simplify-Adapt(HM) on original datasets (due to their excessive simplification time), and except TIN-ESSP-Adapt(HM) and TIN-SNP-Adapt(HM) on the simplified TIN, and PC-SP-Adapt(HM) on the simplified point cloud (due to their dependency on the previous two algorithms).

Table 5: Comparison of all simplification algorithms

Algorithm	Simplification time	Output size		Simplification memory		
TIN-SSimplify-Adapt(HM) [43, 46]	$O(\frac{n^3}{\sin\theta\sqrt{\epsilon}}\log\frac{1}{\epsilon})$	Large	O(n)	Large	$O(n^2)$	Large
TIN-NSimplify-Adapt(HM) [46]	$O(n^2 \log n)$	Medium	O(n)	Large	O(n)	Medium
PC-Simplify-Adapt(HM) [24, 73]	$O(n^2 \log n)$	Medium	O(n)	Large	O(n)	Medium
HM-Simplify-NS	$O(n\lambda \log n)$	Small	$O(\frac{n}{\mu})$	Small	O(n)	Medium
HM-Simplify-NP	$O(n\lambda \log n)$	Small	$O(\frac{\overline{n}}{\mu})$	Small	O(n)	Medium
HM-Simplify-NM	$O(n^2 \log n)$	Medium	O(n)	Large	O(n)	Medium
HM-Simplify-NC	$O(n^2\lambda \log n)$	Large	$O(\frac{n}{\mu})$	Small	O(n)	Medium
HM-Simplify-DS [53]	$O(n\lambda \log n + \frac{n^2}{\mu^2} \log^2 \frac{n}{\mu})$	Large	$O(\frac{n}{\mu}\log\frac{n}{\mu})$	Medium	$O(\frac{n}{\mu}\log\frac{n}{\mu})$	Large
HM-Simplify (ours)	$O(n\lambda \log n)$	Small	$O(\frac{n}{\mu})$	Small	O(n)	Medium

Table 6: Comparison of all proximity query algorithms

Algorithm Shortest path query time		Shortest path query memory		kNN or range query time		kNN or range query time		Error	
On the original 3D surfaces									
TIN-ESSP-Adapt(HM) [28, 67, 74]	$O(n^2)$	Large	$O(n^2)$	Large	$O(n^2)$	Large	$O(n^2)$	Large	Small
TIN-ASSP-Adapt(HM) [45, 72]	$O(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}} \log(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}}))$	Large	O(n)	Medium	$O(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}} \log(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}}))$	Large	O(n)	Medium	Small
TIN-SNP-Adapt(HM) [46]	$O(n \log n)$	Medium	O(n)	Medium	$O(n \log n)$	Medium	O(n)	Medium	Medium
PC-SP-Adapt(HM) [73]	$O(n \log n)$	Medium	O(n)	Medium	$O(n \log n)$	Medium	O(n)	Medium	No error
HM-SP (ours)	$O(n \log n)$	Medium	O(n)	Medium	$O(n \log n)$	Medium	O(n)	Medium	No error
On the simplified 3D surfaces									
TIN-ESSP-Adapt(HM) [28, 67, 74]	$O(n^2)$	Large	$O(n^2)$	Large	$O(n^2)$	Large	$O(n^2)$	Large	Small
TIN-SNP-Adapt(HM) [46]	$O(n \log n)$	Medium	O(n)	Medium	$O(n \log n)$	Medium	O(n)	Medium	Medium
PC-SP-Adapt(HM) [73]	$O(n \log n)$	Medium	O(n)	Medium	$O(n \log n)$	Medium	O(n)	Medium	Small
HM-SP-NS	$O(\frac{n^2}{\mu}\log\frac{n}{\mu})$	Medium	$O(\frac{n}{\mu})$	Small	$O(\frac{n^2}{\mu}\log\frac{n}{\mu})$	Medium	$O(\frac{n}{\mu})$	Small	Small
HM-SP-NP	$O(\frac{n}{\mu}\log\frac{n}{\mu})$	Small	$O(\frac{n}{\mu})$	Small	$O(\frac{nn'}{\mu}\log\frac{n}{\mu})$	Medium	$O(\frac{n}{\mu})$	Small	Small
HM-SP-NM	$O(n \log n)$	Medium	O(n)	Medium	$O(n \log n)$	Medium	O(n)	Medium	Small
HM-SP-NC	$O(\frac{n}{\mu}\log\frac{n}{\mu})$	Small	$O(\frac{n}{\mu})$	Small	$O(\frac{n}{\mu}\log\frac{n}{\mu})$	Small	$O(\frac{n}{\mu})$	Small	Small
HM-SP-DS [53]	O(1)	Small	$O(\frac{n}{u}\log\frac{n}{u})$	Large	O(n')	Small	$O(\frac{n'n}{u}\log\frac{n}{u})$	Large	Large
HM-SP (ours)	$O(\frac{n}{\mu}\log\frac{n}{\mu})$	Small	$O(\frac{n}{\mu})$	Small	$O(\frac{n}{\mu}\log\frac{n}{\mu})$	Small	$O(\frac{\dot{n}}{\mu})$	Small	Small

Figure 17: Effect of ϵ on GF_h -small height map dataset with ground-truth distance in distance error ratio calculation

 $\textbf{Figure 18:} \ \textbf{Effect of} \ d \ \textbf{on} \ \textit{GF}_h \text{-} \textbf{small} \ \textbf{height map dataset with ground-truth distance in distance error ratio calculation}$

Figure 19: Effect of ϵ on LM_h -small height map dataset with ground-truth distance in distance error ratio calculation

Figure 20: Effect of d on LMh-small height map dataset with ground-truth distance in distance error ratio calculation

Figure 21: Effect of ϵ on RM_h -small height map dataset with ground-truth distance in distance error ratio calculation

Figure 22: Effect of d on RM_h -small height map dataset with ground-truth distance in distance error ratio calculation

Figure 23: Effect of ϵ on BH_h -small height map dataset with ground-truth distance in distance error ratio calculation

Figure 24: Effect of d on BH_h-small height map dataset with ground-truth distance in distance error ratio calculation

Figure 25: Effect of ϵ on EP_h -small height map dataset with ground-truth distance in distance error ratio calculation

Figure 26: Effect of n on EP_h -small height map dataset with ground-truth distance in distance error ratio calculation

smaller than three baselines' due to the efficient height map short- $_{1318}$ checking (although the worst case is $O(n^2 \log n)$ in Theorem 4.1, est path query and efficient ϵ -approximate simplified height map

Figure 27: Effect of d on EP_h -small height map dataset with ground-truth distance in distance error ratio calculation

Figure 28: Effect of ϵ on GF_h height map dataset with ground-truth distance in distance error ratio calculation

Figure 29: Effect of n on GF_h height map dataset with ground-truth distance in distance error ratio calculation

Figure 30: Effect of d on GF_h height map dataset with ground-truth distance in distance error ratio calculation

which never happens in the experiment). The number of cells of 1324 the simplified height map and output size of *HM-Simplify* are also 1325 much smaller than three baselines' due to the novel cell merging 1326 technique. The memory of a simplification algorithm is the same 1327 as that of the corresponding shortest path query algorithm with 1328

1319

1320

1321

1322

1323

 $\epsilon=0$, since we clear the memory after performing one shortest path query during simplification, the preprocessing memory figures are omitted. The shortest path query time and the *kNN* query time of *HM-SP* on the simplified height map are also small since its simplified height map has a small output size. The shortest path, *kNN* and

Figure 31: Effect of ϵ on LM_h height map dataset with ground-truth distance in distance error ratio calculation

Figure 32: Effect of n on LM_h height map dataset with ground-truth distance in distance error ratio calculation

Figure 33: Effect of d on LM_h height map dataset with ground-truth distance in distance error ratio calculation

Figure 34: Effect of ϵ on RM_h height map dataset with ground-truth distance in distance error ratio calculation

range query memorys are similar, since we clear the memory after performing one shortest path query during kNN or range query, 1335 the kNN and range query memory figures are omitted. Although increasing ϵ slightly increases the experimental distance error ratio of 1337 HM-SP on the simplified height map, its value is 0.0340, i.e., close to 1338

1329

1330

1331

1332

1333

0. So, increasing ϵ has no impact on the experimental kNN or range query error ratios, their values are 0, and their results are omitted. Compared with the real shortest distance, since the relative error of the ground-truth distance is 0.0454, the relative error of the shortest distance returned by HM-SP on the simplified height map is at most

Figure 35: Effect of n on RM_h height map dataset with ground-truth distance in distance error ratio calculation

Figure 36: Effect of d on RM_h height map dataset with ground-truth distance in distance error ratio calculation

Figure 37: Effect of ϵ on BH_h height map dataset with ground-truth distance in distance error ratio calculation

Figure 38: Effect of n on BH_h height map dataset with ground-truth distance in distance error ratio calculation

 $0.0809 = \max(0.0809 (= (1 + 0.0340) \times (1 + 0.0454) - 1), 0.0779 (= _{1345} 1 - (1 - 0.0340) \times (1 - 0.0454))).$

1340

1341

1342

1343

1344

Effect of n (scalability test): In Figure 26, we tested 5 values of $_{1347}$ n in {10k, 20k, 30k, 40k, 50k} on EP_h -small dataset while fixing ϵ $_{1348}$ at 0.1 for baseline comparisons. In Figure 29, Figure 32, Figure 35, $_{1349}$ Figure 38 and Figure 41, we tested 5 values of n in {5M, 10M, 15M, $_{1350}$

20M, 25M} on GF_h , LM_h , RM_h , BH_h and EP_h dataset while fixing ϵ at 0.25 for baseline comparisons. HM-Simplify (in terms of output size, i.e., 6.8MB) and HM-SP on the simplified height map (in terms of range query time, i.e., 310s \approx 5.1 min, and range query memory, i.e., 320MB) are scalable on extremely large height map with 25M cells. Although the theoretical output size of HM-Simplify is only μ

Figure 39: Effect of d on BH_h height map dataset with ground-truth distance in distance error ratio calculation

Figure 40: Effect of ϵ on EP_h height map dataset with ground-truth distance in distance error ratio calculation

Figure 41: Effect of n on EP_h height map dataset with ground-truth distance in distance error ratio calculation

Figure 42: Effect of d on EP_h height map dataset with ground-truth distance in distance error ratio calculation

times smaller than the size of an original height map, it returns a 1357 simplified height map with an experimental size of 6.8MB from an 1358 original one with size 600MB and 25M cells, and performing range 1359 query on them with 500 objects takes $400s \approx 6.7$ min and $35,200s \approx 1360$ 9.8 hours, with 320MB and 1.1GB memory, respectively. When n is 1361 smaller, i.e., datasets with looser density or fragmentation (since 1362

1352

1353

1354

1355

1356

multi-resolution datasets have the same region), algorithms run faster with less memory.

Effect of d: In Figure 18, Figure 20, Figure 22, Figure 24 and Figure 27, we tested 5 values of d in {4km, 8km, 12km, 16km, 20km} on GF_h -small, LM_h -small, RM_h -small, BH_h -small and EP_h -small dataset while fixing ϵ at 0.1 and n at 1k for baseline comparisons.

1367

1368

1372

1373

1374

1375

1377

1378

1379

1383

1384

1385

1386

1390

1391

1392

1393

1394

1395

1396

1397

1401

1402

1403

1404

1408

1409

1410

1411

In Figure 30, Figure 33, Figure 36, Figure 39 and Figure 42, we tested 5 values of d in $\{4\text{km}, 8\text{km}, 12\text{km}, 16\text{km}, 20\text{km}\}$ on GF_h , 1417 LM_h , RM_h , BH_h and EP_h dataset while fixing ϵ at 0.25 and n at 0.5M 1418 for baseline comparisons. A smaller d reduces kNN or range query 1419 time, since our proximity query algorithm uses Dijkstra's algorithm 1420 once, we can terminate it earlier after visiting all query objects. As 1421 d increases, there is no upper bound on the increase in kNN query 1422 time (since we append the paths computed by Dijkstra's algorithm 1423 and the intra-paths as results, we cannot determine the distance 1424 correlations among these paths until we perform a linear scan, i.e., 1425 we terminate Dijkstra's algorithm based solely on d). But, there is 1426 an upper bound on the increase in range query time (since we can 1427 also terminate Dijkstra's algorithm earlier if the searching distance 1428 exceeds r).

C.1.2 Ablation study for proximity query algorithms. Effect 1431 of k and r: In Figure 43, Figure 45, Figure 47, Figure 49 and Figure 51, 1432 we tested 5 values of k in {200, 400, 600, 800, 1000} on GF_h , LM_h , 1433 RM_h , BH_h and EP_h dataset while fixing ϵ at 0.25 and n at 0.5M for ablation study. In Figure 44, Figure 46, Figure 48, Figure 50 and 1435 Figure 52, we tested 5 values of r in {2km, 4km, 6km, 8km, 10km} 1436 on GF_h , LM_h , RM_h , BH_h and EP_h dataset while fixing ϵ at 0.25 and 1437 n at 0.5M for ablation study for proximity query algorithms. On 1438 the simplified height map, HM-SP outperforms both HM-SP-NS and 1439 HM-SP-NP, due to the efficient querying algorithms. k does not 1440 affect kNN query time, since we append the paths computed by 1441 Dijkstra's algorithm and the intra-paths as the path results, and we 1442 do not know the distance correlations among these paths before we 1443 perform a linear scan on them. But, a smaller r reduces range query time, since we can terminate Dijkstra's algorithm earlier when the 1445 searching distance is larger than r.

C.1.3 **Ablation study for simplification algorithms.** In Fig- 1448 ure 53, Figure 54, Figure 55, Figure 56 and Figure 57, we tested 6 1449 values of ϵ in $\{0.05, 0.1, 0.25, 0.5, 0.75, 1\}$ on GF_h -small, LM_h -small, 1450 RM_h -small, BH_h -small and EP_h -small dataset while fixing n at 0.5M 1451 for ablation study. HM-Simplify performs the best, showing the 1452 effectiveness of our merging and checking techniques. Since HM- Simplify-DS has a large simplification time but HM-SP-DS has a 1454 small shortest path query time, they are useful when we prioritize the shortest path query time over simplification time.

C.2 Experimental Results for Point Clouds with Ground-truth Distance

We studied proximity queries on point clouds using the ground-truth distance for distance error ratio calculation. We compared algorithms TIN-SSimplify-Adapt(PC), TIN-NSimplify-Adapt(PC), PC-Simplify, HM-Simplify-Adapt(PC), TIN-ESSP-Adapt(PC) (on the original point cloud and the simplified TIN), TIN-ASSP-Adapt(PC), TIN-SNP-Adapt(PC) (on the original point cloud and the simplified TIN), 1462 PC-SP (on the original and simplified point cloud) and HM-SP-Adapt(PC) (on the original point cloud and the simplified height map) on small-version datasets, and compared all algorithms except TIN-SSimplify-Adapt(PC), TIN-NSimplify-Adapt(PC) and PC-Simplify on original datasets (due to their excessive simplification time), and except TIN-ESSP-Adapt(PC) and TIN-SNP-Adapt(PC) on 1468

the simplified *TIN*, and *PC-SP* on the simplified point cloud (due to their dependency on the previous three algorithms).

Effect of ϵ : In Figure 58, Figure 60, Figure 62, Figure 64 and Figure 66, we tested 7 values of ϵ in $\{0, 0.05, 0.1, 0.25, 0.5, 0.75, 1\}$ on GF_p -small, LM_p -small, RM_p -small, BH_p -small and EP_p -small dataset while fixing n at 1k for baseline comparisons. In Figure 69, Figure 72, Figure 75, Figure 78 and Figure 81, we tested 7 values of ϵ in $\{0, 0.05, 0.1, 0.25, 0.5, 0.75, 1\}$ on GF_p , LM_p , RM_p , BH_p and EP_p dataset while fixing n at 0.5M for baseline comparisons. The preprocessing time, number of cells of the simplified height map and output size of HM-Simplify-Adapt(PC) are much smaller than three baselines'. The proximity queries time of HM-SP-Adapt(PC) on the simplified height map are also small since its simplified height map has a small output size.

Effect of n (scalability test): In Figure 67, we tested 5 values of n in {10k, 20k, 30k, 40k, 50k} on EP_p -small dataset while fixing ϵ at 0.1 for baseline comparisons. In Figure 70, Figure 73, Figure 76, Figure 79 and Figure 82, we tested 5 values of n in {5M, 10M, 15M, 20M, 25M} on GF_p , LM_p , RM_p , BH_p and EP_p dataset while fixing ϵ at 0.25 for baseline comparisons. HM-Simplify-Adapt(PC) outperforms all the remaining simplification algorithms and HM-SP-Adapt(PC) on the simplified height map outperforms all the remaining proximity query algorithms.

Effect of d: In Figure 59, Figure 61, Figure 63, Figure 65 and Figure 68, we tested 5 values of d in {4km, 8km, 12km, 16km, 20km} on GF_p -small, LM_p -small, RM_p -small, BH_p -small and EP_p -small dataset while fixing ϵ at 0.1 and n at 1k for baseline comparisons. In Figure 71, Figure 74, Figure 77, Figure 80 and Figure 83, we tested 5 values of d in {4km, 8km, 12km, 16km, 20km} on GF_D , LM_{p} , RM_{p} , BH_{p} and EP_{p} dataset while fixing ϵ at 0.25 and n at 0.5M for baseline comparisons. A smaller d reduces kNN or range query time, since our proximity query algorithm uses Dijkstra's algorithm once, we can terminate it earlier after visiting all query objects. As d increases, there is no upper bound on the increase in kNN query time (since we append the paths computed by Dijkstra's algorithm and the intra-paths as results, we cannot determine the distance correlations among these paths until we perform a linear scan, i.e., we terminate Dijkstra's algorithm based solely on *d*). But, there is an upper bound on the increase in range query time (since we can also terminate Dijkstra's algorithm earlier if the searching distance exceeds r).

C.3 Experimental Results for TINs with Ground-truth Distance

We studied proximity queries on *TINs* using the ground-truth distance for distance error ratio calculation. We compared algorithms *TIN-SSimplify, TIN-NSimplify, PC-Simplify-Adapt(TIN), HM-Simplify-Adapt(TIN), TIN-ESSP* (on the original and simplified *TIN), PC-SP-Adapt(TIN)* (on the original *TIN* and the simplified point cloud) and *HM-SP-Adapt(TIN)* (on the original *TIN* and the simplified height map) on small-version datasets, and compared all algorithms except *TIN-SSimplify, TIN-NSimplify* and *PC-Simplify-Adapt(TIN)* on original datasets (due to their excessive simplification time), and

Figure 43: Ablation study for proximity query algorithms (effect of k on GF_h height map dataset) with ground-truth distance in distance error ratio calculation

Figure 44: Ablation study for proximity query algorithms (effect of r on GF_h height map dataset) with ground-truth distance in distance error ratio calculation

Figure 45: Ablation study for proximity query algorithms (effect of k on LM_h height map dataset) with ground-truth distance in distance error ratio calculation

Figure 46: Ablation study for proximity query algorithms (effect of r on LM_h height map dataset) with ground-truth distance in distance error ratio calculation

except *TIN-ESSP* and *TIN-SNP* on the simplified *TIN*, and *PC-SP*- 1472 *Adapt(TIN)* on the simplified point cloud (due to their dependency 1473 on the previous three algorithms).

1471

Effect of ϵ : In Figure 84, Figure 86, Figure 88, Figure 90 and Figure 92, we tested 7 values of ϵ in $\{0, 0.05, 0.1, 0.25, 0.5, 0.75, 1\}$ on GF_t -small, LM_t -small, RM_t -small, BH_t -small and EP_t -small dataset

Figure 47: Ablation study for proximity query algorithms (effect of k on RM_h height map dataset) with ground-truth distance in distance error ratio calculation

Figure 48: Ablation study for proximity query algorithms (effect of r on RM_h height map dataset) with ground-truth distance in distance error ratio calculation

Figure 49: Ablation study for proximity query algorithms (effect of k on BH_h height map dataset) with ground-truth distance in distance error ratio calculation

Figure 50: Ablation study for proximity query algorithms (effect of r on BH_h height map dataset) with ground-truth distance in distance error ratio calculation

while fixing n at 1k for baseline comparisons. In Figure 95, Figure 98, 1478 Figure 101, Figure 104 and Figure 107, we tested 7 values of ϵ in $\{0, 1479, 0.05, 0.1, 0.25, 0.5, 0.75, 1\}$ on GF_t , LM_t , RM_t , BH_t and EP_t dataset 1480

while fixing *n* at 0.5M for baseline comparisons. The preprocessing time, number of cells of the simplified height map and output size of *HM-Simplify-Adapt(TIN)* are much smaller than three baselines'.

Figure 51: Ablation study for proximity query algorithms (effect of k on EP_h height map dataset) with ground-truth distance in distance error ratio calculation

Figure 52: Ablation study for proximity query algorithms (effect of r on EP_h height map dataset) with ground-truth distance in distance error ratio calculation

Figure 53: Ablation study for simplification algorithms on GF_h -small height map dataset with ground-truth distance in distance error ratio calculation

Figure 54: Ablation study for simplification algorithms on LM_h -small height map dataset with ground-truth distance in distance error ratio calculation

The proximity queries time of *HM-SP-Adapt(TIN)* on the simplified height map are also small since its simplified height map has a small output size. 1486

1481

1482

Effect of *n* **(scalability test)**: In Figure 93, we tested 5 values of *n* in $\{10k, 20k, 30k, 40k, 50k\}$ on EP_t -small dataset while fixing ϵ at 0.1 for baseline comparisons. In Figure 96, Figure 99, Figure 102,

Figure 55: Ablation study for simplification algorithms on RM_h -small height map dataset with ground-truth distance in distance error ratio calculation

Figure 56: Ablation study for simplification algorithms on BH_h -small height map dataset with ground-truth distance in distance error ratio calculation

Figure 57: Ablation study for simplification algorithms on EP_h -small height map dataset with ground-truth distance in distance error ratio calculation

Figure 58: Effect of ϵ on GF_p -small point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 105 and Figure 108, we tested 5 values of n in $\{5M, 10M, 1489 \text{ fixing } \epsilon \text{ at } 0.25 \text{ for baseline comparisons. } \text{\textit{HM-Simplify-Adapt(TIN)}} \}$ 15M, 20M, 25M $\}$ on GF_t , LM_t , RM_t , BH_t and EP_t dataset while

Figure 59: Effect of d on GF_p -small point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 60: Effect of ϵ on LM_p -small point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 61: Effect of d on LMp-small point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 62: Effect of ϵ on RM_p -small point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 63: Effect of d on RM_0 -small point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 64: Effect of ϵ on BH_p -small point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 65: Effect of d on BHp-small point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 66: Effect of ϵ on EP_p -small point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 67: Effect of n on EP_p -small point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 68: Effect of d on EP_p -small point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 69: Effect of ϵ on GF_p point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 70: Effect of n on GF_p point cloud dataset with ground-truth distance in distance error ratio calculation

5 values of d in {4km, 8km, 12km, 16km, 20km} on GF_t , LM_t , RM_t , 1501 BH_t and EP_t dataset while fixing ϵ at 0.25 and n at 0.5M for baseline 1502 comparisons. A smaller d reduces kNN or range query time, since 1503

1499

1500

our proximity query algorithm uses Dijkstra's algorithm once, we can terminate it earlier after visiting all query objects. As d increases, there is no upper bound on the increase in kNN query

Figure 71: Effect of d on GF_p point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 72: Effect of ϵ on LM_D point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 73: Effect of n on LM_p point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 74: Effect of d on LM_h height map dataset with ground-truth distance in distance error ratio calculation

time (since we append the paths computed by Dijkstra's algorithm 1509 and the intra-paths as results, we cannot determine the distance 1510 correlations among these paths until we perform a linear scan, i.e., we terminate Dijkstra's algorithm based solely on *d*). But, there is an upper bound on the increase in range query time (since we can

1505

1506

1507

1508

also terminate Dijkstra's algorithm earlier if the searching distance exceeds r).

Figure 75: Effect of ϵ on RM_D point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 76: Effect of n on RM_p point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 77: Effect of d on RM_h height map dataset with ground-truth distance in distance error ratio calculation

Figure 78: Effect of ϵ on BH_D point cloud dataset with ground-truth distance in distance error ratio calculation

1512

1513

1516

C.4 Experimental Results for Height Maps with Optimal Distance

We studied proximity queries on height maps using the optimal distance for distance error ratio calculation. We compared algorithms TIN-SSimplify-Adapt(HM), TIN-NSimplify-Adapt(HM), PC-Simplify-Adapt(HM), HM-Simplify, TIN-ESSP-Adapt(HM) (on the

Figure 79: Effect of n on BH_p point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 80: Effect of d on BH_h height map dataset with ground-truth distance in distance error ratio calculation

Figure 81: Effect of ϵ on EP_p point cloud dataset with ground-truth distance in distance error ratio calculation

Figure 82: Effect of n on EP_p point cloud dataset with ground-truth distance in distance error ratio calculation

original height map and the simplified *TIN*), *TIN-ASSP-Adapt*(HM), 1523 *TIN-SNP-Adapt*(HM) (on the original height map and the simplified 1524 *TIN*), *PC-SP-Adapt*(HM) (on the original and simplified point cloud) 1525 and *HM-SP* (on the original and simplified height map) on smallversion datasets, and compared all algorithms except *TIN-SSimplify-Adapt*(HM), *TIN-NSimplify-Adapt*(HM) and *PC-Simplify-Adapt*(HM) 1527

1518

1519

1520

1521

1522

on original datasets (due to their excessive simplification time), and except *TIN-ESSP-Adapt(HM)* and *TIN-SNP-Adapt(HM)* on the simplified *TIN*, and *PC-SP-Adapt(HM)* on the simplified point cloud (due to their dependency on the previous two algorithms).

C.4.1 **Baseline comparisons.** Effect of ϵ : In Figure 110, Figure 112, Figure 114, Figure 116 and Figure 118, we tested 7 values of

Figure 83: Effect of d on EP_h height map dataset with ground-truth distance in distance error ratio calculation

Figure 84: Effect of ϵ on GF_t -small TIN dataset with ground-truth distance in distance error ratio calculation

Figure 85: Effect of d on GF_t-small TIN dataset with ground-truth distance in distance error ratio calculation

Figure 86: Effect of ϵ on LM_t -small TIN dataset with ground-truth distance in distance error ratio calculation

 ϵ in {0, 0.05, 0.1, 0.25, 0.5, 0.75, 1} on GF_h -small, LM_h -small, RM_h - 1531 small, BH_h -small and EP_h -small dataset while fixing n at 1k for 1532

1530

baseline comparisons. In Figure 121, Figure 124, Figure 127, Figure 130 and Figure 133, we tested 7 values of ϵ in $\{0, 0.05, 0.1, 0.25, 0.5, 0.75, 1\}$ on GF_h , LM_h , RM_h , BH_h and EP_h dataset while fixing n

Figure 87: Effect of d on LM_t -small TIN dataset with ground-truth distance in distance error ratio calculation

Figure 88: Effect of ϵ on RM_t -small TIN dataset with ground-truth distance in distance error ratio calculation

Figure 89: Effect of d on RMt-small TIN dataset with ground-truth distance in distance error ratio calculation

Figure 90: Effect of ϵ on BH_t -small TIN dataset with ground-truth distance in distance error ratio calculation

Figure 91: Effect of d on BH_t -small TIN dataset with ground-truth distance in distance error ratio calculation

Figure 92: Effect of ϵ on EP_t -small TIN dataset with ground-truth distance in distance error ratio calculation

Figure 93: Effect of n on EP_t -small TIN dataset with ground-truth distance in distance error ratio calculation

Figure 94: Effect of d on EP_t -small TIN dataset with ground-truth distance in distance error ratio calculation

Figure 95: Effect of ϵ on GF_t TIN dataset with ground-truth distance in distance error ratio calculation

Figure 96: Effect of n on GF_t TIN dataset with ground-truth distance in distance error ratio calculation

Figure 97: Effect of d on GFt TIN dataset with ground-truth distance in distance error ratio calculation

Figure 98: Effect of ϵ on LM_t TIN dataset with ground-truth distance in distance error ratio calculation

are also much smaller than three baselines' due to the novel cell $_{1545}$ merging technique. The memory of a simplification algorithm is $_{1546}$ the same as that of the corresponding shortest path query algo- $_{1547}$ rithm with $\epsilon=0$, since we clear the memory after performing $_{1548}$ one shortest path query during simplification, the preprocessing $_{1549}$

1541

1543

1544

memory figures are omitted. The shortest path query time and the *kNN* query time of *HM-SP* on the simplified height map are also small since its simplified height map has a small output size. The shortest path, *kNN* and range query memorys are similar, since we clear the memory after performing one shortest path query

Figure 99: Effect of n on LM_t TIN dataset with ground-truth distance in distance error ratio calculation

Figure 100: Effect of d on LM_t TIN dataset with ground-truth distance in distance error ratio calculation

Figure 101: Effect of ϵ on RM_t TIN dataset with ground-truth distance in distance error ratio calculation

Figure 102: Effect of n on RM_t TIN dataset with ground-truth distance in distance error ratio calculation

during kNN or range query, the kNN and range query memory 1556 figures are omitted. Although increasing ϵ slightly increases the 1557 experimental distance error ratio of HM-SP on the simplified height 1558 map, its value is 0.0186, i.e., close to 0. So, increasing ϵ has no impact on the experimental kNN or range query error ratios, their 1560 values are 0, and their results are omitted. Compared with the real 1561

1551

1552

1553

1554

1555

shortest distance, since the relative error of the optimal distance is 0.0613, the relative error of the shortest distance returned by *HM-SP* on the simplified height map is at most $0.0810 = \max(0.0810(1+0.0186)\times(1+0.0613)-1)$, $0.0788(=1-(1-0.0186)\times(1-0.0613))$.

Effect of n (scalability test): In Figure 119, we tested 5 values of n in {10k, 20k, 30k, 40k, 50k} on EP_h -small dataset while fixing ϵ at

Figure 103: Effect of d on RM_t TIN dataset with ground-truth distance in distance error ratio calculation

Figure 104: Effect of ϵ on BH_t TIN dataset with ground-truth distance in distance error ratio calculation

Figure 105: Effect of n on BH_t TIN dataset with ground-truth distance in distance error ratio calculation

Figure 106: Effect of d on BH_t TIN dataset with ground-truth distance in distance error ratio calculation

0.1 for baseline comparisons. In Figure 122, Figure 125, Figure 128, 1568 Figure 131 and Figure 134, we tested 5 values of n in {5M, 10M, 15M, 1569 20M, 25M} on GF_h , LM_h , RM_h , BH_h and EP_h dataset while fixing ϵ 1570 at 0.25 for baseline comparisons. HM-Simplify (in terms of output 1571 size, i.e., 6.8MB) and HM-SP on the simplified height map (in terms 1572 of range query time, i.e., 310s \approx 5.1 min, and range query memory, 1573

1563

1564

1565

1566

1567

i.e., 320MB) are scalable on extremely large height map with 25M cells. Although the theoretical output size of *HM-Simplify* is only μ times smaller than the size of an original height map, it returns a simplified height map with an experimental size of 6.8MB from an original one with size 600MB and 25M cells, and performing range query on them with 500 objects takes $400s \approx 6.7$ min and $35,200s \approx 6.7$

Figure 107: Effect of ϵ on EP_t TIN dataset with ground-truth distance in distance error ratio calculation

Figure 108: Effect of n on EP_t TIN dataset with ground-truth distance in distance error ratio calculation

Figure 109: Effect of d on EP_t TIN dataset with ground-truth distance in distance error ratio calculation

Figure 110: Effect of ϵ on GF_h -small height map dataset with optimal distance in distance error ratio calculation

9.8 hours, with 320MB and 1.1GB memory, respectively. When n is smaller, i.e., datasets with looser density or fragmentation (since multi-resolution datasets have the same region), algorithms run faster with less memory.

1574

1575

Effect of d: In Figure 111, Figure 113, Figure 115, Figure 117 and Figure 120, we tested 5 values of d in {4km, 8km, 12km, 16km, 20km} on GF_h -small, LM_h -small, RM_h -small, BH_h -small and EP_h -small dataset while fixing ϵ at 0.1 and n at 1k for baseline comparisons. In Figure 123, Figure 126, Figure 129, Figure 132 and Figure 135,

Figure 111: Effect of d on GF_h -small height map dataset with optimal distance in distance error ratio calculation

Figure 112: Effect of ϵ on LM_h -small height map dataset with optimal distance in distance error ratio calculation

Figure 113: Effect of d on LM_h -small height map dataset with optimal distance in distance error ratio calculation

Figure 114: Effect of ϵ on RM_h -small height map dataset with optimal distance in distance error ratio calculation

Figure 115: Effect of d on RM_h -small height map dataset with optimal distance in distance error ratio calculation

Figure 116: Effect of ϵ on BH_h -small height map dataset with optimal distance in distance error ratio calculation

Figure 117: Effect of d on BH_h -small height map dataset with optimal distance in distance error ratio calculation

Figure 118: Effect of ϵ on EP_h -small height map dataset with optimal distance in distance error ratio calculation

Figure 119: Effect of n on EP_h -small height map dataset with optimal distance in distance error ratio calculation

Figure 120: Effect of d on EP_h -small height map dataset with optimal distance in distance error ratio calculation

Figure 121: Effect of ϵ on GF_h height map dataset with optimal distance in distance error ratio calculation

Figure 122: Effect of n on GF_h height map dataset with optimal distance in distance error ratio calculation

once, we can terminate it earlier after visiting all query objects. As $_{1590}$ d increases, there is no upper bound on the increase in kNN query $_{1591}$ time (since we append the paths computed by Dijkstra's algorithm $_{1592}$

1587

1588

1589

and the intra-paths as results, we cannot determine the distance correlations among these paths until we perform a linear scan, i.e., we terminate Dijkstra's algorithm based solely on *d*). But, there is

Figure 123: Effect of d on GF_h height map dataset with optimal distance in distance error ratio calculation

Figure 124: Effect of ϵ on LM_h height map dataset with optimal distance in distance error ratio calculation

Figure 125: Effect of n on LM_h height map dataset with optimal distance in distance error ratio calculation

Figure 126: Effect of d on LM_h height map dataset with optimal distance in distance error ratio calculation

an upper bound on the increase in range query time (since we can also terminate Dijkstra's algorithm earlier if the searching distance exceeds *r*).

1594

1595

1597

1598

C.4.2 Ablation study for proximity query algorithms. Effect of k and r: In Figure 136, Figure 138, Figure 140, Figure 142 and Figure 144, we tested 5 values of k in $\{200, 400, 600, 800, 1000\}$ on GF_h ,

 LM_h , RM_h , BH_h and EP_h dataset while fixing ϵ at 0.25 and n at 0.5M for ablation study. In Figure 137, Figure 139, Figure 141, Figure 143 and Figure 145, we tested 5 values of r in {2km, 4km, 6km, 8km, 10km} on GF_h , LM_h , RM_h , BH_h and EP_h dataset while fixing ϵ at 0.25 and n at 0.5M for ablation study for proximity query algorithms. On the simplified height map, HM-SP outperforms both HM-SP-NS

Figure 127: Effect of ϵ on RM_h height map dataset with optimal distance in distance error ratio calculation

Figure 128: Effect of n on RM_h height map dataset with optimal distance in distance error ratio calculation

Figure 129: Effect of d on RM_h height map dataset with optimal distance in distance error ratio calculation

Figure 130: Effect of ϵ on BH_h height map dataset with optimal distance in distance error ratio calculation

and HM-SP-NP, due to the efficient querying algorithms. k does not affect kNN query time, since we append the paths computed by 1611 Dijkstra's algorithm and the intra-paths as the path results, and we do not know the distance correlations among these paths before we perform a linear scan on them. But, a smaller r reduces range query 1612

1608

1609

time, since we can terminate Dijkstra's algorithm earlier when the searching distance is larger than r.

C.4.3 **Ablation study for simplification algorithms.** In Figure 146, Figure 147, Figure 148, Figure 149 and Figure 150, we tested

Figure 131: Effect of n on BH_h height map dataset with optimal distance in distance error ratio calculation

Figure 132: Effect of d on BH_h height map dataset with optimal distance in distance error ratio calculation

Figure 133: Effect of ϵ on EP_h height map dataset with optimal distance in distance error ratio calculation

Figure 134: Effect of n on EP_h height map dataset with optimal distance in distance error ratio calculation

6 values of ϵ in {0.05, 0.1, 0.25, 0.5, 0.75, 1} on GF_h -small, LM_h - 1619 small, RM_h -small, BH_h -small and EP_h -small dataset while fixing n 1620 at 0.5M for ablation study. HM-Simplify performs the best, showing the effectiveness of our merging and checking techniques. Since HM-Simplify-DS has a large simplification time but HM-SP-DS has

1615

1616

1617

1618

a small shortest path query time, they are useful when we prioritize the shortest path query time over simplification time.

Figure 135: Effect of d on EP_h height map dataset with optimal distance in distance error ratio calculation

Figure 136: Ablation study for proximity query algorithms (effect of k on GF_h height map dataset) with optimal distance in distance error ratio calculation

Figure 137: Ablation study for proximity query algorithms (effect of r on GF_h height map dataset) with optimal distance in distance error ratio calculation

Figure 138: Ablation study for proximity query algorithms (effect of k on LM_h height map dataset) with optimal distance in distance error ratio calculation

1622

1623

D PROOF

PROOF OF THEOREM 2.1. Based on the Height Map Simplification Problem in Problem 1, we first need to find the Height Map Simplification Decision Problem in Problem 2.

Figure 139: Ablation study for proximity query algorithms (effect of r on LM_h height map dataset) with optimal distance in distance error ratio calculation

Figure 140: Ablation study for proximity query algorithms (effect of k on RM_h height map dataset) with optimal distance in distance error ratio calculation

Figure 141: Ablation study for proximity query algorithms (effect of r on RM_h height map dataset) with optimal distance in distance error ratio calculation

Figure 142: Ablation study for proximity query algorithms (effect of k on BH_h height map dataset) with optimal distance in distance error ratio calculation

PROBLEM 2 (HEIGHT MAP SIMPLIFICATION DECISION PROBLEM). Given H, a non-negative integer i and ϵ , we want to find an ϵ -approximate simplified height map \widetilde{H} of H with at most i cells.

Figure 143: Ablation study for proximity query algorithms (effect of r on BH_h height map dataset) with optimal distance in distance error ratio calculation

Figure 144: Ablation study for proximity query algorithms (effect of k on EP_h height map dataset) with optimal distance in distance error ratio calculation

Figure 145: Ablation study for proximity query algorithms (effect of r on EP_h height map dataset) with optimal distance in distance error ratio calculation

Figure 146: Ablation study for simplification algorithms on GF_h -small height map dataset with optimal distance in distance error ratio calculation

Then, the proof is by transforming Minimum T-Spanner Prob- $_{1631}$ lem [27] in Problem 3, which is an NP-complete problem, to the $_{1632}$ Height Map Simplification Decision Problem.

1628

1629

1630

Problem 3 (Minimum T-Spanner Decision Problem). Given a graph G_{NPC} with a set of vertices $G_{NPC}.V$ and a set of edges $G_{NPC}.E$, a non-negative integer j and an error parameter t, we want to find a

Figure 147: Ablation study for simplification algorithms on LM_h -small height map dataset with optimal distance in distance error ratio calculation

Figure 148: Ablation study for simplification algorithms on RM_h -small height map dataset with optimal distance in distance error ratio calculation

Figure 149: Ablation study for simplification algorithms on BH_h -small height map dataset with optimal distance in distance error ratio calculation

Figure 150: Ablation study for simplification algorithms on EP_h -small height map dataset with optimal distance in distance error ratio calculation

sub-graph \widetilde{G}_{NPC} of G_{NPC} with at most j edges, such that for each pair 1636 of vertices s and t in G_{NPC} .V, $|\Pi(\widetilde{s},\widetilde{t}|\widetilde{G}_{NPC})| \leq (1+\epsilon)|\Pi(s,t|G_{NPC})|$, 1637

1634

where $\Pi(\tilde{s}, \tilde{t} | \tilde{G}_{NPC}$ (resp. $\Pi(s, t | G_{NPC})$) is the shortest path between s and t on \tilde{G}_{NPC} (resp. G_{NPC}).

1641

1642

1643

1646

1647

1650

1651

1652

1654

1655

1656

1657

1661

1662

1663

1668

1669

1670

1673

1674

1675

1676

1677

But, in order to do this transformation, we need the Height Map Graph Decision Simplification Problem in Problem 4. We transfer the Minimum T-Spanner Decision Problem to the Height Map Graph Simplification Decision Problem, and show that the Height Map Simplification Decision Problem is equivalent to the Height Map Graph Simplification Decision Problem.

Problem 4 (Height Map Graph Simplification Decision Problem). Given a height map graph G of H, a non-negative integer i' and an error parameter ϵ , we want to find a simplified height map graph \widetilde{G} of \widetilde{H} , with at most i' edges, such that for each pair of vertices s and t in vertices of G (i.e., G.V), $(1 - \epsilon)|\Pi(s, t|G)| \leq |\Pi(\widetilde{s}, \widetilde{t}|\widetilde{G})| \leq (1 + \epsilon)|\Pi(s, t|G)|$.

We then construct a complete height map graph G_C , with a set 1693 of vertices $G_C.V$ and a set of edges $G_C.E$. In $G_C.V$, it contains all 1694 the vertices in G (i.e., the cell centers of H) and all possible new 1695 vertices in G (i.e., all possible added cells in H). Figure 151 (a) shows 1696 a height map, Figure 151 (b) shows the complete height map graph 1697 in a 2D plane. In Figure 151 (b), (1) each orange point represents the vertex with the same x-, y- and z-coordinate values of the corresponding vertex in the original height map graph G, (2) each green point represents vertices with the same *x*- and *y*-coordinate values of the possible new vertex, and (3) the middle green point with an orange outline represents (i) the vertex with the same x- 1702 , y- and z-coordinate of the corresponding vertex in G, and (ii) vertices with the same *x*- and *y*-coordinate values of the possible new vertex. These points form a set of vertices in $G_C.V.$ There is an edge connecting each pair of vertices in $G_C.V$, and these edges form $G_C.E.$ Figure 151 (c) shows G_C with some possible vertices in 3D space (but we only show 5 of them for the sake of illustration). In addition, there should be an edge between each pair of points, we omit some of them for the sake of illustration. Clearly, G and \overline{G} are both sub-graphs of G_C . Given a pair of vertices s and t in G_C . V, and the original height map graph G, let $\Pi(s, t|G_C)$ be the shortest path between s and t passing on G_C , and we set $\Pi(s, t|G_C) = \Pi(s, t|G)$. We can simply regard $\Pi(s,t|G_C)$ as a function, such that given s,t, 1713 and G, it can return a result. When s or t are on G, but not on Gnor G, we can simply regard $\Pi(s, t|G_C)$ as NULL.

Figure 151: (a) A height map, (b) a complete height map graph in a 2D plane, and (c) a complete height map graph in a 3D space

The transformation from the Minimum T-Spanner Decision 1729 Problem to the Height Map Graph Simplification Decision Problem is as follows. We transfer G_{NPC} to G_C , transfer checking "can 1731 we find a sub-graph \widetilde{G}_{NPC} of G_{NPC} with at most j edges, such 1732 that for each pair of vertices s and t in G_{NPC} .V, $|\Pi(\widetilde{s},\widetilde{t}|\widetilde{G}_{NPC})| \leq 1733$

 $(1+\epsilon)|\Pi(s,t|G_{NPC})|$ " to "can we find a simplified height map graph G of G_C , with at most i' edges, such that for each pair of vertices s and t in $G_{C,V}$, $(1-\epsilon)|\Pi(s,t|G)| = (1-\epsilon)|\Pi(s,t|G_{C})| \le$ $|\Pi(\widetilde{s},\widetilde{t}|G)| \le (1+\epsilon)|\Pi(s,t|G_C)| = (1+\epsilon)|\Pi(s,t|G)|$ ". Note that in the Height Map Graph Simplification Decision Problem, no matter whether the given graph is G or G_C , the given graph G or G_C will not affect the problem transformation, since the transformation is about the checking of the distance requirement, and given s and t, we have defined $\Pi(s, t|G_C) = \Pi(s, t|G)$. The transformation can be finished in polynomial time. Since the height map H and the height map graph G are equivalent, and i and i' can be any value, the Height Map Simplification Decision Problem is equivalent to the Height Map Graph Simplification Decision Problem. Thus, when the Height Map Graph Simplification Decision Problem is solved, the Height Map Simplification Decision Problem is solved equivalently, and the Minimum T-Spanner Decision Problem is also solved. Since the Minimum T-Spanner Decision Problem is NP-complete, the Height Map Simplification Decision Problem is NP-hard, and Height Map Simplification Problem is NP-hard.

Lemma D.1. Given a height map H, algorithm HM-Simplify returns a simplified height map \widetilde{H} of H, such that for each pair of points s_1 and t_1 on cells in C_{rema} , $(1 - \epsilon)|\Pi(s_1, t_1|H)| \leq |\Pi(\widetilde{s_1}, \widetilde{t_1}|\widetilde{H})| \leq (1 + \epsilon)|\Pi(s_1, t_1|H)|$.

PROOF. We use mathematical induction to prove it. In algorithm *HM-Simplify*, even though it simplifies a height map using two different two simplification techniques, i.e., two cells merging and added cell with neighbor cells merging, the logic is the same, and we always perform the same distance checking, i.e., *R2R* distance checking, *R2D* distance checking and *D2D* distance checking. Thus, there is no need to distinguish these two simplification techniques in the following proof, and we regard any one step of the simplification process in these two simplification techniques as one equivalent iteration.

For the base case, we show that after the first simplification iteration, the inequality holds. Let C_{add} be the added cell in this iteration.

- Firstly, we show that $(1 \epsilon)|\Pi(s_1, t_1|H)| \leq |\Pi(\widetilde{s_1}, \widetilde{t_1}|H)|$. Along $\Pi(\widetilde{s_1}, \widetilde{t_1}|\widetilde{H})$ from s_1 to t_1 (resp. from t_1 to s_1), let \overline{p} (resp. \overline{q}) be the point on cell that $\Pi(\widetilde{s_1}, \widetilde{t_1} | \widetilde{H})$ and the remaining neighbor cells of adjacent added cells of C_{add} intersects for the first time. We have $|\Pi(\widetilde{s_1}, \widetilde{t_1}|\widetilde{H})| = |\Pi(\widetilde{s_1}, \widetilde{\overline{p}}|\widetilde{H})| + |\Pi(\widetilde{\overline{p}}, \widetilde{\overline{q}}|\widetilde{H})| + |\Pi(\widetilde{\overline{q}}, \widetilde{t_1}|\widetilde{H})|$. Since \overline{p} and \overline{q} are points on cells in C_{rema} , and their corresponding cells are remaining neighbor cells of adjacent added cells of C_{add} , we have $(1 - \epsilon)|\Pi(\overline{p}, \overline{q}|H)| \leq |\Pi(\overline{p}, \overline{q}|\widetilde{H})|$ due to the *R2R* distance checking. Since s_1 and t_1 are points on cells in C_{rema} , and \overline{p} and \overline{q} are also points on cells in C_{rema} , and there is no difference between \widetilde{H} and H (apart from the changes of C_{add}), we have $(1 - \epsilon)|\Pi(s_1, \overline{p}|H)| = (1 - \epsilon)|\Pi(\widetilde{s_1}, \overline{p}|\widetilde{H})| \le |\Pi(\widetilde{s_1}, \overline{p}|\widetilde{H})|$ and $(1-\epsilon)|\Pi(\overline{q},t_1|H)| = (1-\epsilon)|\Pi(\widetilde{\overline{q}},\widetilde{t_1}|\widetilde{H})| \leq |\Pi(\widetilde{\overline{q}},\widetilde{t_1}|\widetilde{H})|$. Thus, we have $|\Pi(\widetilde{s_1}, \widetilde{t_1}|\widetilde{H})| = |\Pi(\widetilde{s_1}, \overline{p}|\widetilde{H})| + |\Pi(\overline{p}, \overline{q}|\widetilde{H})| + |\Pi(\overline{q}, \widetilde{t_1}|\widetilde{H})| \ge$ $(1-\epsilon)|\Pi(s_1,\overline{p}|H)|+(1-\epsilon)|\Pi(\overline{p},\overline{q}|H)|+(1-\epsilon)|\Pi(\overline{q},t_1|H)|\geq$ $(1-\epsilon)|\Pi(s_1,t_1|H)|.$
- Secondly, we show that $|\Pi(\widetilde{s_1}, \widetilde{t_1}|\widetilde{H})| \leq (1 + \epsilon)|\Pi(s_1, t_1|H)|$. Along $\Pi(s_1, t_1|H)$ from s_1 to t_1 (resp. from t_1 to s_1), let \overline{p}' (resp.

1716

1717

1718

1719

1720

1721

1722

 $\overline{q}') \text{ be the point on cell that } \Pi(s_1,t_1|H) \text{ and the remaining neighbor cells of adjacent added cells of } C_{add} \text{ intersects for the first time. We have } |\Pi(s_1,t_1|H)| = |\Pi(s_1,\overline{p}'|H)| + |\Pi(\overline{p}',\overline{q}'|H)| + |_{1788} |\Pi(\overline{q}',t_1|H)|. \text{ Since } \overline{p}' \text{ and } \overline{q}' \text{ are points on cells in } C_{rema}, \text{ and their corresponding cells are remaining neighbor cells of adjacent added cells of C_{add}, we have } |\Pi(\overline{p}',\overline{q}'|\widetilde{H})| \leq (1+\epsilon)|\Pi(\overline{p}',\overline{q}'|H)| \\ \text{ due to the } R2R \text{ distance checking. Since } s_1 \text{ and } t_1 \text{ are points on cells in } C_{rema}, \text{ and } \overline{p}' \text{ and } \overline{q}' \text{ are also in } C_{rema}, \text{ and there is no indifference between } \widetilde{H} \text{ and } H \text{ (apart from the changes of } C_{add}), \text{ we indifference between } \widetilde{H} \text{ and } H \text{ (apart from the changes of } C_{add}), \text{ and } |\Pi(\overline{s}_1,\overline{p}'|\widetilde{H})| \leq (1+\epsilon)|\Pi(\overline{s}_1,\overline{p}'|\widetilde{H})| = (1+\epsilon)|\Pi(s_1,\overline{p}'|H)| \\ \text{ and } |\Pi(\overline{q}',\widetilde{t}_1|\widetilde{H})| \leq (1+\epsilon)|\Pi(\overline{q}',\widetilde{t}_1|\widetilde{H})| = (1+\epsilon)|\Pi(s_1,\overline{p}'|H)| \\ \text{ Thus, we have } (1+\epsilon)|\Pi(s_1,t_1|H)| = (1+\epsilon)|\Pi(s_1,\overline{p}'|H)| + \\ (1+\epsilon)|\Pi(\overline{p}',\overline{q}'|H)| + (1+\epsilon)|\Pi(\overline{q}',t_1|H)| \geq |\Pi(\widetilde{s}_1,\overline{p}'|\widetilde{H})| + \\ (1+\epsilon)|\Pi(\overline{p}',\overline{q}'|H)| + (1+\epsilon)|\Pi(\overline{q}',t_1|H)| \geq |\Pi(\widetilde{s}_1,\overline{p}'|\widetilde{H})| + \\ |\Pi(\overline{p}',\overline{q}'|\widetilde{H})| + |\Pi(\overline{q}',\widetilde{t}_1|\widetilde{H})| \geq |\Pi(\widetilde{s}_1,\widetilde{t}_1|\widetilde{H})|. \\ \\ \text{ 1799}}$

For the hypothesis case, assume that after the i-th simplification literation, for each pair of points s_1 and t_1 on cells in C_{rema} , we have $(1-\epsilon)|\Pi(s_1,t_1|H)| \leq |\Pi(\widetilde{s_1},\widetilde{t_1}|\widetilde{H})| \leq (1+\epsilon)|\Pi(s_1,t_1|H)|$. We show that for the (i+1)-th simplification iteration, the inequality holds. Let C_{add} be the added cell in this iteration.

- Firstly, we show that $(1-\epsilon)|\Pi(s_1,t_1|H)| \leq |\Pi(\widetilde{s_1},\widetilde{t_1}|\widetilde{H})|$. Along 1805 $\Pi(\widetilde{s_1},\widetilde{t_1}|\widetilde{H})$ from s_1 to t_1 (resp. from t_1 to s_1), let \overline{p} (resp. \overline{q}) be the point on cell that $\Pi(\widetilde{s_1},\widetilde{t_1}|\widetilde{H})$ and the remaining neighbor cells of adjacent added cells of C_{add} intersects for the first time. We have 1808 $|\Pi(\widetilde{s_1},\widetilde{t_1}|\widetilde{H})| = |\Pi(\widetilde{s_1},\widetilde{\overline{p}}|\widetilde{H})| + |\Pi(\widetilde{\overline{p}},\widetilde{\overline{q}}|\widetilde{H})| + |\Pi(\widetilde{\overline{q}},\widetilde{t_1}|\widetilde{H})|$. Since \overline{p} and \overline{q} are points on cells in C_{rema} , and their corresponding cells are remaining neighbor cells of adjacent added cells of C_{add} , we have $(1-\epsilon)|\Pi(\overline{p},\overline{q}|H)| \leq |\Pi(\widetilde{\overline{p}},\widetilde{\overline{q}}|\widetilde{H})|$ due to the R2R distance checking. Since s_1 and t_1 are points on cells in C_{rema} , and \overline{p} and \overline{q} are also points on cells in C_{rema} , we have $(1-\epsilon)|\Pi(s_1,\overline{p}|H)| \leq 1814$ $|\Pi(\widetilde{s_1},\widetilde{\overline{p}}|\widetilde{H})|$ and $(1-\epsilon)|\Pi(\overline{q},t_1|H)| \leq |\Pi(\widetilde{\overline{q}},\widetilde{t_1}|\widetilde{H})|$ due to the R2R distance checking after the i-th simplification iteration. Thus, we have $|\Pi(\widetilde{s_1},\widetilde{t_1}|\widetilde{H})| = |\Pi(\widetilde{s_1},\widetilde{\overline{p}}|\widetilde{H})| + |\Pi(\widetilde{\overline{p}},\widetilde{\overline{q}}|\widetilde{H})| + |\Pi(\widetilde{\overline{q}},\widetilde{t_1}|\widetilde{H})| \geq 1815$ $(1-\epsilon)|\Pi(s_1,\overline{p}|H)| + (1-\epsilon)|\Pi(\overline{p},\overline{q}|H)| + (1-\epsilon)|\Pi(\overline{q},t_1|H)| \geq 1816$ $(1-\epsilon)|\Pi(s_1,t_1|H)|$.
- Secondly, we show that $|\Pi(\widetilde{s_1},\widetilde{t_1}|\widetilde{H})| \leq (1+\epsilon)|\Pi(s_1,t_1|H)|$. Is Along $\Pi(s_1,t_1|H)$ from s_1 to t_1 (resp. from t_1 to s_1), let \overline{p}' (resp. \overline{q}') be the point on cell that $\Pi(s_1,t_1|H)$ and the remaining neighbor cells of adjacent added cells of C_{add} intersects for the first time. We have $|\Pi(s_1,t_1|H)| = |\Pi(s_1,\overline{p}'|H)| + |\Pi(\overline{p}',\overline{q}'|H)| + 1824$ $|\Pi(\overline{q}',t_1|H)|$. Since \overline{p}' and \overline{q}' are points on cells in C_{rema} , and their corresponding cells are remaining neighbor cells of adjacent added cells of C_{add} , we have $|\Pi(\overline{p}',\overline{q}'|\widetilde{H})| \leq (1+\epsilon)|\Pi(\overline{p}',\overline{q}'|H)|$ 1827 due to the R2R distance checking. Since s_1 and t_1 are points on cells in C_{rema} , and \overline{p}' and \overline{q}' are also points on cells in C_{rema} , we have $|\Pi(\widetilde{s_1},\overline{p}'|\widetilde{H})| \leq (1+\epsilon)|\Pi(s_1,\overline{p}'|H)|$ and $|\Pi(\overline{q}',\widetilde{t_1}|\widetilde{H})| \leq 1830$ $(1+\epsilon)|\Pi(\overline{q}',t_1|H)|$ due to the R2R distance checking after the 1831 i-th simplification iteration. Thus, we have $(1+\epsilon)|\Pi(s_1,t_1|H)| = 1832$ $(1+\epsilon)|\Pi(s_1,\overline{p}'|H)| + (1+\epsilon)|\Pi(\overline{p}',\overline{q}'|H)| + (1+\epsilon)|\Pi(\overline{q}',t_1|H)| \geq 1833$ $|\Pi(\widetilde{s_1},\overline{p}'|\widetilde{H})| + |\Pi(\overline{p}',\overline{q}'|\widetilde{H})| + |\Pi(\overline{p}',\overline{q}'|H)| + |\Pi(\overline{p}',t_1|\widetilde{H})| \geq 1834$

Thus, we have proved that for each pair of points s_1 and t_1 on cells in C_{rema} , $(1 - \epsilon)|\Pi(s_1, t_1|H)| \le |\Pi(\widetilde{s_1}, \widetilde{t_1}|\widetilde{H})| \le (1 + \epsilon)|\Pi(s_1, t_1|H)|$. 1837

Lemma D.2. Given a height map H, algorithm HM-Simplify returns a simplified height map \widetilde{H} of H, such that for each pair of points s_2 on cells in C_{rema} and points t_2 on cells in $C - C_{rema}$, $(1 - \epsilon)|\Pi(s_2, t_2|H)| \leq |\Pi(\widetilde{s_2}, \widetilde{t_2}|\widetilde{H})| \leq (1 + \epsilon)|\Pi(s_2, t_2|H)|$.

Proof. We use mathematical induction to prove it. Similar to the proof of Lemma D.1, there is no need to distinguish two simplification techniques, and we regard any one step of the simplification process in the two simplification techniques as one equivalent iteration.

For the base case, we show that after the first simplification iteration, the inequality holds. Let C_{add} be the added cell in this iteration. Since this is the first iteration, there are no other deleted cells except the cells belonging to C_{add} , we just need to show that the inequality holds when t_2 is any one of the points of the deleted cells belong to adjacent added cells of C_{add} .

- Firstly, we show that $(1 \epsilon)|\Pi(s_2, t_2|H)| \leq |\Pi(\widetilde{s_2}, \widetilde{t_2}|\widetilde{H})|$. Along $\Pi(\widetilde{s_2}, \widetilde{t_2}|\widetilde{H})$ from $\widetilde{t_2}$ to $\widetilde{s_2}$, let \overline{m} be the point on cell that $\Pi(\widetilde{s_2}, \widetilde{t_2}|\widetilde{H})$ and the remaining neighbor cells of adjacent added cells of C_{add} intersects for the first time. We have $|\Pi(\widetilde{s_2}, \widetilde{t_2}|\widetilde{H})| = |\Pi(\widetilde{s_2}, \overline{m}|\widetilde{H})| + |\Pi(\overline{m}, \widetilde{t_2}|\widetilde{H})|$. Since \overline{m} is a point on cell in C_{rema} , which is a remaining neighbor cell of adjacent added cells of C_{add} , and t_2 is a point on cell in $C C_{rema}$, we have $(1 \epsilon)|\Pi(\overline{m}, t_2|H)| \leq |\Pi(\overline{m}, \widetilde{t_2}|\widetilde{H})|$ due to the R2D distance checking. Since s_2 and \overline{m} are points on cells in C_{rema} , we have $(1 \epsilon)|\Pi(s_2, \overline{m}|H)| \leq |\Pi(\widetilde{s_2}, \overline{m}|\widetilde{H})|$ from Lemma D.1. Thus, we have $|\Pi(\widetilde{s_2}, \widetilde{t_2}|\widetilde{H})| = |\Pi(\widetilde{s_2}, \overline{m}|\widetilde{H})| + |\Pi(\overline{m}, \widetilde{t_2}|\widetilde{H})| \geq (1 \epsilon)|\Pi(s_2, \overline{m}|H)| + (1 \epsilon)|\Pi(\overline{m}, t_2|H)| \geq (1 \epsilon)|\Pi(s_2, t_2|H)|$.
- Secondly, we show that $|\Pi(\widetilde{s_2},\widetilde{t_2}|\widetilde{H})| \leq (1+\epsilon)|\Pi(s_2,t_2|H)|$. Along $\Pi(s_2,t_2|H)$ from $\widetilde{t_2}$ to $\widetilde{s_2}$, let \overline{m}' be the point on cell that $\Pi(s_2,t_2|H)$ and the remaining neighbor cells of adjacent added cells of C_{add} intersects for the first time. We have $|\Pi(s_2,t_2|H)| = |\Pi(s_2,\overline{m}'|H)| + |\Pi(\overline{m}',t_2|H)|$. Since \overline{m}' is a point on cell in C_{rema} , which is a remaining neighbor cell of adjacent added cells of C_{add} , and t_2 is a point on cell in $C C_{rema}$, we have $|\Pi(\overline{m},\widetilde{t_2}|\widetilde{H})| \leq (1+\epsilon)|\Pi(\overline{m},t_2|H)|$ due to the R2D distance checking. Since s_2 and \overline{m}' are are points on cells in C_{rema} , we have $|\Pi(\widetilde{s_2},\overline{m}'|\widetilde{H})| \leq (1+\epsilon)|\Pi(s_2,\overline{m}'|H)|$ from Lemma D.1. Thus, we have $(1+\epsilon)|\Pi(s_2,t_2|H)| = (1+\epsilon)|\Pi(s_2,\overline{m}'|H)| + (1+\epsilon)|\Pi(\overline{m}',t_2|H)| \geq |\Pi(\widetilde{s_2},\widetilde{\overline{m}'}|\widetilde{H})| + |\Pi(\overline{m}'',\widetilde{t_2}|\widetilde{H})| \geq |\Pi(\widetilde{s_2},\widetilde{t_2}|\widetilde{H})|$.

For the hypothesis case, assume that after the i-th simplification iteration, for each pair of points s_2 on cells in C_{rema} and points t_2 on cells in $C - C_{rema}$, we have $(1 - \epsilon) |\Pi(s_2, t_2|H)| \leq |\Pi(\widetilde{s_2}, \widetilde{t_2}|\widetilde{H})| \leq (1 + \epsilon) |\Pi(s_2, t_2|H)|$. We show that for the (i + 1)-th simplification iteration, the inequality holds. Let C_{add} be the added cell in this iteration. Since the difference of \widetilde{H} after the i-th simplification iteration and the (i + 1)-th simplification iteration is due to the changes of C_{add} , we just need to show that the inequality holds when t_2 is any one of the points of the deleted cells belong to adjacent added cells C_{add} . The proof is exactly the same as in the base case

Thus, we have proved that for each pair of points s_2 on cells in C_{rema} and points t_2 on cells in $C - C_{rema}$, $(1 - \epsilon)|\Pi(s_2, t_2|H)| \le |\Pi(\widetilde{s_2}, \widetilde{t_2}|\widetilde{H})| \le (1 + \epsilon)|\Pi(s_2, t_2|H)|$.

1841

1842

1843

1844

1846

1847

1848

1851

1852

1853

1854

1855

1857

1858

1859

1862

1863

1864

1865

1868

1872

1874

1875

1877

1878

1880

1882

1883

1884

1885

1886

1890

1891

1892

Lemma D.3. Given a height map H, algorithm HM-Simplify returns a simplified height map \widetilde{H} of H, such that for each pair of points and t_3 on cells in $C-C_{rema}$, $(1-\epsilon)|\Pi(s_3,t_3|H)| \leq |\Pi(\widetilde{s_3},\widetilde{t_3}|\widetilde{H})| \leq 1895$ $(1+\epsilon)|\Pi(s_3,t_3|H)|$.

PROOF. Similar to the proof of Lemma D.1, there is no need to distinguish two simplification techniques, and we regard any one step of the simplification process in the two simplification techniques as one equivalent iteration. There are two sub-cases. (1) $\Pi(\widetilde{s}, \widetilde{t}|\widetilde{H})$ does not pass on cells in C_{rema} . (2) $\Pi(\widetilde{s}, \widetilde{t}|\widetilde{H})$ passes on cells in C_{rema} .

(1) We prove the first sub-case, i.e., $\Pi(\widetilde{s},\widetilde{t}|\widetilde{H})$ does not pass on cells in C_{rema} . We use mathematical induction to prove it.

For the base case, we show that after the first simplification iteration, the inequality holds. Let C_{add} be the added cell in this iteration. Since this is the first iteration, there are no other deleted cells except the cells belonging to C_{add} , we just need to show that the inequality holds when s_3 and t_3 are any one of the points of the deleted cells belong to C_{add} . Due to the D2D distance checking, we have $(1-\epsilon)|\Pi(s_3,t_3|H)| \leq |\Pi(\widetilde{s_3},\widetilde{t_3}|\widetilde{H})| \leq (1+\epsilon)|\Pi(s_3,t_3|H)|$.

For the hypothesis case, assume that after the i-th simplification piteration, for each pair of points s_3 and t_3 on cells in $C-C_{rema}$, we have $(1-\epsilon)|\Pi(s_3,t_3|H)| \leq |\Pi(\widetilde{s_3},\widetilde{t_3}|\widetilde{H})| \leq (1+\epsilon)|\Pi(s_3,t_3|H)|$. We plant show that for the (i+1)-th simplification iteration, the inequality pholds. Let C_{add} be the added cell in this iteration. Since the difference of \widetilde{H} after the i-th simplification iteration and the (i+1)-th simplification iteration is due to the changes of C_{add} , we just need to show that the inequality holds when t_3 is any one of the points of the deleted cells belong to adjacent added cells of C_{add} . The proof is exactly the same as in the base case.

Thus, we have proved that for each pair of points s_3 and t_3 on $_{1921}$ cells in $C - C_{rema}$, when $\Pi(\widetilde{s}, \widetilde{t}|\widetilde{H})$ does not pass on cells in C_{rema} , $_{1922}$ $(1 - \epsilon)|\Pi(s_3, t_3|H)| \leq |\Pi(\widetilde{s_3}, \widetilde{t_3}|\widetilde{H})| \leq (1 + \epsilon)|\Pi(s_3, t_3|H)|$.

(2) We prove the second sub-case, i.e., $\Pi(\widetilde{s}, \widetilde{t}|\widetilde{H})$ passes on cells in C_{rema} . We use the Lemma D.1 and Lemma D.2 to prove it.

- Firstly, we show that $(1-\epsilon)|\Pi(s_3,t_3|H)| \leq |\Pi(\widetilde{s_3},\widetilde{t_3}|\widetilde{H})|$. Along $\Pi(\widetilde{s_3},\widetilde{t_3}|\widetilde{H})$ from $\widetilde{s_3}$ to $\widetilde{t_3}$ (resp. from $\widetilde{t_3}$ to $\widetilde{s_3}$), let \overline{p} (resp. \overline{q}) be the point on cell that $\Pi(\widetilde{s_3},\widetilde{t_3}|\widetilde{H})$ and the remaining neighbor cells of adjacent added cells of $O^{-1}(s_3)$ (resp. $O^{-1}(t_3)$) intersects for the first time. We have $|\Pi(\widetilde{s_3},\widetilde{t_3}|\widetilde{H})| = |\Pi_1(\widetilde{s_3},\widetilde{\overline{p}}|\widetilde{H})| + |\Pi_2(\overline{\overline{p}},\overline{\overline{q}}|\widetilde{H})| + |\Pi_1(\overline{\overline{q}},\widetilde{t_3}|\widetilde{H})|$. Since \overline{p} and \overline{q} are points on cells in C_{rema} , we have $(1-\epsilon)|\Pi(\overline{p},\overline{q}|H)| \leq |\Pi_2(\overline{\widetilde{p}},\overline{\widetilde{q}}|\widetilde{H})|$ by Lemma D.1. Since s_3 and t_3 are points on cells in C_{rema} , we have $(1-\epsilon)|\Pi(s_3,\overline{p}|H)| \leq |\Pi_1(\widetilde{s_3},\overline{\widetilde{p}}|\widetilde{H})|$ and $(1-\epsilon)|\Pi(\overline{q},t_3|H)| \leq |\Pi_1(\overline{\widetilde{q}},\widetilde{t_3}|\widetilde{H})|$ by Lemma D.2. Thus, we have $|\Pi(\widetilde{s_3},\widetilde{t_3}|\widetilde{H})| = |\Pi_1(\widetilde{s_3},\overline{\widetilde{p}}|\widetilde{H})| + |\Pi_2(\overline{\widetilde{p}},\overline{\widetilde{q}}|\widetilde{H})| + |\Pi_1(\overline{\widetilde{q}},\widetilde{t_3}|\widetilde{H})| \geq |\eta_3|$ $(1-\epsilon)|\Pi(s_3,\overline{p}|H)| + (1-\epsilon)|\Pi(\overline{p},\overline{q}|H)| + (1-\epsilon)|\Pi(\overline{q},t_3|H)| \geq |\eta_3|$ $(1-\epsilon)|\Pi(s_3,t_3|H)|$.
- Secondly, we show that $|\Pi(\widetilde{s_3}, \widetilde{t_3}|\widetilde{H})| \leq (1+\epsilon)|\Pi(s_3, t_3|H)|$. 1940 Along $\Pi(s_3, t_3|H)$ from s_3 to t_3 (resp. from t_3 to s_3), let \overline{p}' (resp. \overline{q}') 1941 be the point on cell that $\Pi(s_3, t_3|H)$ and the remaining neighbor 1942 cells of adjacent added cells of $O^{-1}(s_3)$ (resp. $O^{-1}(t_3)$) intersects for the first time. We have $|\Pi(s_3, t_3|H)| = |\Pi(s_3, \overline{p}'|H)| + 1944 |\Pi(\overline{p}', \overline{q}'|H)| + |\Pi(\overline{q}', t_3|H)|$. Since \overline{p}' and \overline{q}' are points on cells 1945 in C_{rema} , we have $|\Pi_2(\overline{p}', \overline{q}'|\widetilde{H})| \leq (1+\epsilon)|\Pi(\overline{p}', \overline{q}'|H)|$ by 1946

Lemma D.1. Since s_3 and t_3 are points on cells in $C - C_{rema}$, and \overline{p}' and \overline{q}' are points on cells in C_{rema} , we have $|\Pi_1(\widetilde{s_3}, \overline{p}'|\widetilde{H})| \le (1 + \epsilon)|\Pi(s_3, \overline{p}'|H)|$ and $|\Pi_1(\overline{q}', t_3|\widetilde{H})| \le (1 + \epsilon)|\Pi(\overline{q}', t_3|H)|$ by Lemma D.2. Thus, we have $(1 + \epsilon)|\Pi(s_3, t_3|H)| = (1 + \epsilon)|\Pi(s_3, \overline{p}'|H)| + (1 + \epsilon)|\Pi(\overline{p}', \overline{q}'|H)| + (1 + \epsilon)|\Pi(\overline{q}', t_3|H)| \ge |\Pi_1(\widetilde{s_3}, \overline{p}'|\widetilde{H})| + |\Pi_2(\overline{p}', \overline{q}'|\widetilde{H})| + |\Pi_1(\overline{q}', t_3|\widetilde{H})| \ge |\Pi(\widetilde{s_3}, t_3|\widetilde{H})|$.

Thus, we have proved that for each pair of points s_3 and t_3 on cells in $C - C_{rema}$, when $\Pi(\widetilde{s}, \widetilde{t} | \widetilde{H})$ passes on cells in C_{rema} , $(1 - \epsilon)|\Pi(s_3, t_3|H)| \le |\Pi(\widetilde{s_3}, \widetilde{t_3}|\widetilde{H})| \le (1 + \epsilon)|\Pi(s_3, t_3|H)|$.

In general, we have proved that for each pair of points s_3 and t_3 on cells in $C - C_{rema}$, $(1 - \epsilon)|\Pi(s_3, t_3|H)| \le |\Pi(\widetilde{s_3}, \widetilde{t_3}|\widetilde{H})| \le (1 + \epsilon)|\Pi(s_3, t_3|H)|$.

PROOF OF THEOREM 4.1. Firstly, we prove the simplification time. In each simplification iteration of the R2R, R2D and D2D distance checking, since we only check the cells related to the neighbor cells of adjacent added cells of an added cell, there are O(1) such cells. Since we use Dijkstra's algorithm in $O(n \log n)$ time for distance calculation, the distance checking. (1) The best case is that in both of the two cells merging and added cell with neighbor cells merging, we always expand by one cell in four directions. Let i be the total number of iterations we need to perform. That is, we keep removing $1 \times 2, 3 \times 4, \dots, (2i-1) \times 2i$ until we have deleted all npoints, and we have $1 \times 2 + 3 \times 4 + \cdots + (2i - 1) \times 2i = n$, which is equivalent to $\frac{i(i+1)(4i-1)}{2} = n$. We solve i and obtain $i = O(\sqrt[3]{n})$. (2) The worst case is that we only have two cells merging, and there are total $\frac{n}{2}$ iterations. In general, we need $\lambda \in [\sqrt[3]{n}, \frac{n}{2}]$ iterations, where each iteration needs $O(n \log n)$ for distance checking. Thus, the simplification time is $O(n\lambda \log n)$.

Secondly, we prove the number of cells in \widetilde{H} and output size. (1) The best case is that we have both of the two cells merging and added cell with neighbor cells merging, and our experiments shows that there are $O(\mu)$ deleted cells belonging to each added cell on average. (2) The worst case that we only have two cells merging, and there are only 2 deleted cells belonging to each added cell. In general, there are $\mu \in [2, \log n]$ deleted cells belonging to each added cell. Since there are total n cells on H, we obtain that there are $O(\frac{n}{\mu})$ cells on \widetilde{H} . Thus, the number of cells in \widetilde{H} and output size are $O(\frac{n}{\mu})$.

Thirdly, we prove the simplification memory. Since we clear the memory after performing one shortest path query during simplification, the simplification memory is the same as the shortest path query memory of algorithm HM-SP on H, which is O(n). Thus, the simplification memory is O(n).

Fourthly, we prove that H is an ϵ -approximation of H. We need to show that for each pair of points s and t on H, $(1-\epsilon)|\Pi(s,t|H)| \leq |\Pi(\widetilde{s},\widetilde{t}|\widetilde{H})| \leq (1+\epsilon)|\Pi(s,t|H)|$. There are three cases. (1) For the both cells remaining case, from Lemma D.1, we know that for each pair of points s_1 and t_1 on cells in C_{rema} , $(1-\epsilon)|\Pi(s_1,t_1|H)| \leq |\Pi(\widetilde{s_1},\widetilde{t_1}|\widetilde{H})| \leq (1+\epsilon)|\Pi(s_1,t_1|H)|$. (2) For the one cell deleted and one cell remaining case, from Lemma D.2, we know that for each pair of points s_2 on cells in C_{rema} and points t_2 on cells in $C - C_{rema}$, $(1-\epsilon)|\Pi(s_2,t_2|H)| \leq |\Pi(\widetilde{s_2},\widetilde{t_2}|\widetilde{H})| \leq (1+\epsilon)|\Pi(s_2,t_2|H)|$. (3) For the both cells deleted case, from Lemma D.3, we know that for each pair of points s_3 and t_3 on cells in $C - C_{rema}$, $(1-\epsilon)|\Pi(s_3,t_3|H)| \leq$

1951

1953

1954

1955

1957

1958

1960

1961

1963

1964

1967

1968

1969

1970

1971

1973

1974

1975

1978

1979

1980

1981

1983

1984

1985

1990

1991

1992

1993

1994

1995

1996

 $|\Pi(\widetilde{s_3},\widetilde{t_3}|\widetilde{H})| \leq (1+\epsilon)|\Pi(s_3,t_3|H)|$. In general, we have considered all three cases for s and t, and we obtain that \widetilde{H} is an ϵ -approximation of H.

PROOF OF THEOREM 4.3. Firstly, we prove the query time of the kNN or range query algorithm.

- For algorithm *HM-SP* on H, given a query point i on cell c_i , we just need to perform one Dijkstra's algorithm on H.
- For algorithm *HM-SP* on \widetilde{H} , given a query point i on cell c_i , if c_i is a remaining cell, we just need to perform one Dijkstra's algorithm on \widetilde{H} ; if c_i is a deleted cell, we just need to perform $\widetilde{N}(O^{-1}(c_i))$ Dijkstra's algorithm on \widetilde{H} . Since $\widetilde{N}(O^{-1}(c_i))$ is a constant, it can be omitted in the big-O notation.

Since performing one Dijkstra's algorithm on H and \widetilde{H} needs $O(n\log n)$ and $O(\frac{n}{\mu}\log\frac{n}{\mu})$ time (i.e., the shortest path query time for algorithm HM-SP on H and \widetilde{H}), respectively, the query time of the kNN or range query by using algorithm HM-SP is $O(n\log n)$ on H and is $O(\frac{n}{\mu}\log\frac{n}{\mu})$ on \widetilde{H} .

Secondly, we prove the memory of the kNN or range query algorithm. Since performing one Dijkstra's algorithm on H and \widetilde{H} 2013 needs O(n) and $O(\frac{n}{\mu})$ (i.e., the memory for algorithm HM-SP on H 2014 and \widetilde{H}), respectively, the memory of the kNN or range query by using algorithm HM-SP is O(n) on H and is $O(\frac{n}{\mu})$ on \widetilde{H} .

Thirdly, we prove the error ratio of the k N N or range query algorithm (using the height map as the 3D surface for calculating the optimal distance).

- For algorithm HM-SP on H, it returns the exact shortest path passing on H, so it also returns the exact result for the kNN or range query.
- For algorithm *HM-SP* on \overline{H} , we give some notation first. For the $_{2023}$ kNN query and the range query, both of which return a set of points, we can simplify the notation by denoting the set of points returned using the shortest distance on H computed by algorithm HM-SP on H as X, where X contains either (1) k nearest points to query point i, or (2) points within a range of distance $_{_{2028}}$ *r* to *i*. Similarly, we denote the set of points returned using the shortest distance on \overline{H} computed by algorithm HM-SP on \overline{H} as X', where X' contains either (1) k nearest points to query point ²⁰³⁰ i, or (2) points within a range of distance r to i. In Figure 1 (a), 2031suppose that the exact k nearest points (k = 2) of a is c, d, i.e., 2032 $X = \{c, d\}$. Suppose that our kNN query algorithm finds the k 2033 nearest points (k = 2) of a is b, c, i.e., $X' = \{b, c\}$. Recall that we 2034 let p_f (resp. p_f') be the point in X (resp. X') that is furthest from $_{^{2035}}$ i. We further let q_f (resp. q_f') be the point in X (resp. X') that 2036 is furthest from i calculated by algorithm HM-SP on \widetilde{H} . Recall 2037 the error ratio of *kNN* or range queries is $\beta = \frac{|\Pi(i,p_f|\Pi_f)|}{|\Pi(i,p_f|H)|}$ 1. According to Theorem 4.2, we have $|\Pi(\widetilde{i},\widetilde{p_f'}|\widetilde{H})| \ \geq \ (1 \ - \ _{^{2040}}$
 $$\begin{split} \epsilon)|\Pi(i,p_f'|H)|. \text{ Thus, we have } \beta &\leq \frac{|\Pi(\widetilde{i,p_f'}|\widetilde{H})|}{(1-\epsilon)|\Pi(i,p_f|H)|} - 1. \text{ By the } \frac{^{2041}}{^{2042}} \\ \text{definition of } p_f \text{ and } q_f, \text{ we have } |\Pi(i,p_f|H)| &\geq |\Pi(i,q_f|H)|. \\ \text{}_{2043} \end{split}$$
 Thus, we have $\beta \leq \frac{|\Pi(i,P_f|\Pi)|}{(1-\epsilon)|\Pi(i,q_f|H)|} - 1$. By the definition ²⁰⁴⁴ of p'_f and q'_f , we have $|\Pi(\widetilde{i}, \widetilde{p'_f} | \widetilde{H})| \leq |\Pi(\widetilde{i}, \widetilde{q'_f} | \widetilde{H})|$. Thus, we

have $\beta \leq \frac{|\Pi(\widetilde{i,q_f}|\widetilde{H})|}{(1-\epsilon)|\Pi(\widetilde{i,q_f}|H)|} - 1$. According to Theorem 4.2, we have $|\Pi(\widetilde{i},\widetilde{q_f}|\widetilde{H})| \leq (1+\epsilon)|\Pi(i,q_f|H)|$. Then, we have $\beta \leq \frac{(1+\epsilon)|\Pi(\widetilde{i,q_f}|\widetilde{H})|}{(1-\epsilon)|\Pi(\widetilde{i,q_f}|\widetilde{H})|} - 1$. By our kNN or range query algorithm, we have $|\Pi(\widetilde{i},\widetilde{q_f}|\widetilde{H})| \leq |\Pi(\widetilde{i},\widetilde{q_f}|\widetilde{H})|$. Thus, we have $\beta \leq \frac{1+\epsilon}{1-\epsilon} - 1 = \frac{2\epsilon}{1-\epsilon}$. So, algorithm HM-SP on \widetilde{H} has an error ratio $\frac{2\epsilon}{1-\epsilon}$ for the kNN or range query.

There is no error ratio guarantee of the kNN or range query algorithm when using the TIN as the 3D surface for calculating the ground-truth distance. This is because given a pair of points s and t on H, \widetilde{H} and T, there is no relationship between $|\Pi(s,t|H)|$ and $|\Pi(s,t|T)|$ for algorithm HM-SP on H, and there is no relationship between $|\Pi(\widetilde{s},\widetilde{t}|\widetilde{H})|$ and $|\Pi(s,t|T)|$ for algorithm HM-SP on \widetilde{H} . \square

Theorem D.4. Compared with the exact shortest path passing on a TIN (that is converted from a height map), i.e., ground-truth distance, algorithm HM-SP's versions on a height map and a simplified height map are both the approximate shortest path passing on a TIN.

PROOF. Since we compare with the exact shortest surface path passing on a *TIN*, algorithm *HM-SP* on both the height map and the simplified height map returns the approximate shortest path passing on a *TIN*.

PROOF OF THEOREM 4.4. Firstly, we prove the simplification time. After using algorithm HM-Simplify for simplification, it needs additional time for data structure construction. According to study [53], the data structure construction time is $O(\mu'\log\mu')$, where μ' is the number of vertices of the input graph. Since the input graph in our case is the simplified height map graph with $O(\frac{n}{\mu})$ vertices (i.e., \widetilde{H} has $O(\frac{n}{\mu})$ cells), the data structure construction time is $O(\frac{n}{\mu}\log\frac{n}{\mu})$. Since the original data structure in study [53] uses Euclidean distance as the distance metric, where each computation can be finished in O(1) time, but we use the shortest distance on the simplified height map graph as the the distance metric, where each computation can be finished in $O(\frac{n}{\mu}\log\frac{n}{\mu})$ time, we need to multiple it with the original data structure construction time $O(\frac{n}{\mu}\log\frac{n}{\mu})$. So the total simplification time is $O(n\lambda\log n + \frac{n^2}{\mu^2}\log^2\frac{n}{\mu})$.

Secondly, we prove the number of edges in $G_{\widetilde{H}}$ and output size. According to study [53], the number of edges in $G_{\widetilde{H}}$ and output size are $O(\mu' \log \mu')$. Since the input graph in our case is the simplified height map graph with $O(\frac{n}{\mu})$ vertices (i.e., \widetilde{H} has $O(\frac{n}{\mu})$ cells), the number of edges in $G_{\widetilde{H}}$ and output size are $O(\frac{n}{\mu} \log \frac{n}{\mu})$.

Thirdly, we prove the simplification memory. According to study [53], simplification memory is $O(\mu' \log \mu')$. Since the input graph in our case is the simplified height map graph with $O(\frac{n}{\mu})$ vertices (i.e., \widetilde{H} has $O(\frac{n}{\mu})$ cells), the simplification memory is $O(\frac{n}{\mu} \log \frac{n}{\mu})$.

Fourthly, we prove that for each pair of points s and t on H, algorithm HM-Simplify-DS has $|\Pi(\widetilde{s},\widetilde{t}|G_{\widetilde{H}})| \leq (1+\epsilon')(1+\epsilon)|\Pi(s,t|H)|$. Since $G_{\widetilde{H}}$ is a $(1+\epsilon')$ -approximate data structure on \widetilde{H} according to study [53], and \widetilde{H} is an ϵ -approximation of H, we obtain that for each pair of points s and t on H, algorithm HM-Simplify-DS has $|\Pi(\widetilde{s},\widetilde{t}|G_{\widetilde{H}})| \leq (1+\epsilon')(1+\epsilon)|\Pi(s,t|H)|$.

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2062

2065

2066

2067

2068

2071

2072

2073

2074

2075

2077

2080

2081

2085

2088

2092

2093

2094

PROOF OF THEOREM 4.5. Firstly, we prove the shortest path 2096 query time. According to study [53], the data structure $G_{\widetilde{H}}$ can 2097 return the shortest path result in O(1) time. Thus, the shortest path 2098 query time is O(1).

Secondly, we prove the shortest path query memory. Since the output size of algorithm *HM-Simplify-DS* is $O(\frac{n}{\mu}\log\frac{n}{\mu})$, the shortest path query memory of algorithm *HM-Simplify-DS* is also $O(\frac{n}{\mu}\log\frac{n}{\mu})$.

Thirdly, we prove the kNN or range query time. Since we need to 2103 use algorithm HM-SP-DS O(n') times for the kNN or range query, 2104 the kNN or range query time is O(n').

Fourthly, we prove the kNN or range query memory. Since we need to use algorithm HM-SP-DS O(n') times for the kNN or range query, and the shortest path query memory of each algorithm HM-SP-DS is $O(\frac{n}{\mu}\log\frac{n}{\mu})$, the kNN or range query memory is $O(\frac{n''}{\mu}\log\frac{n}{\mu})$.

Fifthly, we prove the error guarantee. Since $G_{\widetilde{H}}$ is a $(1+\epsilon')(1+\epsilon)$ approximate graph of (the height map graph of) H, we finish the proof.

Sixthly, we prove the error ratio of the kNN or range query $_{2113}$ algorithm (using the height map as the 3D surface for calculating 2114 the optimal distance). We give some notation first. For the kNN $_{2115}$ query and the range query, both of which return a set of points, we can simplify the notation by denoting the set of points returned using the shortest distance on *H* computed by algorithm *HM-SP* on $\overset{\smile}{H}$ as X, where X contains either (1) k nearest points to query point i, or (2) points within a range of distance r to i. Similarly, $_{2120}$ we denote the set of points returned using the shortest distance on $G_{\widetilde{H}}$ computed by algorithm *HM-SP-DS* on $G_{\widetilde{H}}$ as X', where X'contains either (1) k nearest points to query point i, or (2) points $_{2123}$ within a range of distance r to i. We let p_f (resp. p_f') be the point p_f in X (resp. X') that is furthest from i. We further let q_f (resp. q_f') 2125 be the point in X (resp. X') that is furthest from i calculated by 2126 algorithm HM-SP-DS on $G_{G_{\widetilde{H}}}$. Recall the error ratio of kNN or range 2127 queries is $\beta = \frac{|\Pi(i,p_f'|H)|}{|\Pi(i,p_f|H)|} - 1$. Note that we have $|\Pi(\widetilde{i},\widetilde{p_f'}|G_{\widetilde{H}})| \ge 1$ $|\Pi(i,p_f'|H)|. \text{ Thus, we have } \beta \leq \frac{|\Pi(\widetilde{i},\widetilde{p_f'}|G_{\widetilde{H}})|}{|\Pi(i,p_f|H)|} - 1. \text{ By the definition}$ of p_f and q_f , we have $|\Pi(i, p_f|H)| \ge |\Pi(i, q_f|H)|$. Thus, we have $\beta \leq \frac{|\Pi(i,p_f'|G_{\widetilde{H}})|}{|\Pi(i,q_f|H)|} - 1. \text{ By the definition of } p_f' \text{ and } q_f', \text{ we have } |\Pi(\widetilde{i},\widetilde{p_f'}|G_{\widetilde{H}})| \leq |\Pi(\widetilde{i},\widetilde{q_f'}|G_{\widetilde{H}})|. \text{ Thus, we have } \beta \leq \frac{|\Pi(\widetilde{i},\widetilde{q_f'}|G_{\widetilde{H}})|}{|\Pi(i,q_f|H)|} - 1.$ Note that we have $|\Pi(\widetilde{i},\widetilde{q_f}|G_{\widetilde{H}})| \leq (1+\epsilon')(1+\epsilon)|\Pi(i,q_f|H)|$. Then, we have $\beta \leq \frac{(1+\epsilon')(1+\epsilon)|\Pi(\widetilde{i},\widetilde{q_f}|G_{\widetilde{H}})|}{|\Pi(\widetilde{i},\widetilde{q_f}|G_{\widetilde{H}})|} - 1$. By our kNN or range query $\frac{2138}{2139}$ algorithm, we have $|\Pi(\widetilde{i},\widetilde{q_f'}|G_{\widetilde{H}})| \leq |\Pi(\widetilde{i},\widetilde{q_f}|G_{\widetilde{H}})|$. Thus, we have $\beta \le (1 + \epsilon')(1 + \epsilon) - 1 = \epsilon' \cdot \epsilon + \epsilon' + \epsilon$. So, algorithm *HM-SP-DS* on ²¹⁴¹ $G_{\widetilde{H}}$ has an error ratio $\epsilon' \cdot \epsilon + \epsilon' + \epsilon$ for the *kNN* or range query.

There is no error ratio guarantee of the kNN or range query

algorithm when using the TIN as the 3D surface for calculating the 2144

ground-truth distance. This is because given a pair of points s and

t on $G_{\widetilde{H}}$ and T, there is no relationship between $|\Pi(\widetilde{s},\widetilde{t}|G_{\widetilde{H}})|$ and

 $|\Pi(s,t|T)|$ for algorithm *HM-SP-DS* on $G_{\widetilde{H}}$.

Theorem D.5. The simplification time, number of vertices in the simplified TIN \widetilde{T} of T, output size and simplification memory of algorithm TIN-SSimplify-Adapt(HM) are $O(\frac{n^3}{\sin\theta\sqrt{\epsilon}}\log\frac{1}{\epsilon})$, O(n), $O(n^2)$ and O(n), respectively. Given a height map H, it first convert H to a TIN T, and then returns \widetilde{T} such that $(1-\epsilon)|\Pi(s,t|T)| \leq |\Pi(s,t|\widetilde{T})| \leq (1+\epsilon)|\Pi(s,t|T)|$ for each pair of vertices s and t on T, where $\Pi(s,t|\widetilde{T})$ is the shortest surface path between s and t passing on \widetilde{T} .

PROOF. Firstly, we prove the simplification time. It first needs to convert the height map to a $T\!I\!N$ in O(n) time. Then, in each vertex removal iteration, it places $O(\frac{1}{\sin\theta\sqrt{\epsilon}}\log\frac{1}{\epsilon})$ Steiner points [34, 43] on each face adjacent to the deleted vertex, and use algorithm $T\!I\!N$ - $E\!S\!S\!P$ [28, 67, 74] in $O(n^2)$ time to check the distances between these Steiner points on the original $T\!I\!N$ and the simplified $T\!I\!N$, so this step needs $O(\frac{n^2}{\sin\theta\sqrt{\epsilon}}\log\frac{1}{\epsilon})$ time. Since there are total O(n) vertex removal iterations, the simplification time for simplifying a $T\!I\!N$ is $O(\frac{n^3}{\sin\theta\sqrt{\epsilon}}\log\frac{1}{\epsilon})$. In general, the total simplification time is $O(n+\frac{n^3}{\sin\theta\sqrt{\epsilon}}\log\frac{1}{\epsilon})=(\frac{n^3}{\sin\theta\sqrt{\epsilon}}\log\frac{1}{\epsilon})$.

Secondly, we prove the number of vertices in \widetilde{T} and output size. Although this algorithm could simplify a TIN, our experimental results show the simplified TIN still has O(n) vertices. Thus, the number of vertices in \widetilde{T} and output size are both O(n).

Thirdly, we prove the simplification memory. Since we clear the memory after performing one shortest path query during simplification, the simplification memory is the same as the shortest path query memory of algorithm TIN-ESSP-Adapt(HM) on H. The proof of the shortest path query memory of algorithm TIN-ESSP is in [28, 67, 74], which is similar to algorithm TIN-ESSP-Adapt(HM). So, the shortest path query memory of algorithm TIN-ESSP-Adapt(HM) on H is $O(n^2)$. Thus, the simplification memory is $O(n^2)$.

Fourthly, we prove that for each pair of vertices s and t on T, algorithm TIN-SSimplify-Adapt(HM) has $(1 - \epsilon)|\Pi(s, t|T)| \leq$ $|\Pi(s,t|T)| \leq (1+\epsilon)|\Pi(s,t|T)|$. In each vertex removal iteration, it performs a check between each pair of Steiner points u and v(on the faces that are adjacent to the deleted vertex) on T whether $(1-\epsilon)|\Pi(u,v|T)| \leq |\Pi(u,v|T)| \leq (1+\epsilon)|\Pi(u,v|T)|$. According to study [43], given each pair of points c and q (on the faces that are adjacent to the deleted vertex) on T, if $(1 - \epsilon)|\Pi(u, v|T)| \leq$ $|\Pi(u,v|T)| \leq (1+\epsilon)|\Pi(u,v|T)|$, then $(1-\epsilon)|\Pi(p,q|T)| \leq$ $|\Pi(p,q|T)| \leq (1+\epsilon)|\Pi(p,q|T)|$. Following the similar proof in Theorem 4.1, we know that for each pair of points s' and t' on any faces of T, we have $(1-\epsilon)|\Pi(s',t'|T)| \leq |\Pi(s',t'|\widetilde{T})| \leq (1+\epsilon)|\Pi(s',t'|T)|$. This is because if the distances between each pair of points on the faces near the deleted vertex do not change a lot, then the distances between each pair of points on the faces far away from the deleted vertex cannot change a lot. Since s and t can be any vertices of T, and s' and t' can be any points on any faces of T, we obtain that for each pair of vertices s and t on T, algorithm TIN-SSimplify-Adapt(HM) has $(1 - \epsilon)|\Pi(s, t|T)| \le |\Pi(s, t|T)| \le (1 + \epsilon)|\Pi(s, t|T)|$.

Theorem D.6. The simplification time, number of vertices in the simplified TIN \widetilde{T} of T, output size and simplification memory of algorithm TIN-NSimplify-Adapt(HM) are $O(n^2 \log n)$, O(n) and O(n), respectively. Given a height map H, it first converts H to a TIN T,

and then returns \widetilde{T} such that $(1 - \epsilon)|\Pi_N(s, t|T)| \le |\Pi_N(s, t|\widetilde{T})| \le 2203$ $(1 + \epsilon)|\Pi_N(s, t|T)|$ for each pair of vertices s and t on T, where 2204 $\Pi_N(s, t|\widetilde{T})$ is the shortest network path between s and t passing on \widetilde{T} . 2205

PROOF. Firstly, we prove the simplification time. It first needs to convert the height map to a TIN in O(n) time. Then, in each vertex removal iteration, it uses algorithm TIN-SNP [46] in $O(n \log n)$ 2209 time to check the distances between each pair of vertices that are neighbors of the deleted vertex on the original TIN and the simplified TIN. Since there are only O(1) vertices that are neighbors of the deleted vertex, this step needs $O(n \log n)$ time. Since there are total O(n) vertex removal iterations, the simplification time for simplifying a TIN is $O(n^2 \log n)$. In general, the total simplification time is $O(n + n^2 \log n) = O(n^2 \log n)$.

Secondly, we prove the number of vertices in \widetilde{T} and output size. Although this algorithm could simplify a *TIN*, our experimental 2218 results show the simplified *TIN* still has O(n) vertices. Thus, the 2219 number of vertices in \widetilde{T} and output size are both O(n).

Thirdly, we prove the simplification memory. Since we clear 22221 the memory after performing one shortest path query during simplification, the simplification memory is the same as the shortest path query memory of algorithm TIN-ESSP-Adapt(HM) on H. 2224 ESSP-ES

Fourthly, we prove that for each pair of vertices s and t on 2229 T, algorithm TIN-NSimplify-Adapt(HM) has $(1-\epsilon)|\Pi_N(s,t|T)| \leq ^{2230}$ $|\Pi_N(s,t|\widetilde{T})| \leq (1+\epsilon)|\Pi_N(s,t|T)|$. In each vertex removal iteration, 2231 it performs a check between each pair of vertices u and v (adjacent to the deleted vertex) on T whether $(1-\epsilon)|\Pi_N(u,v|T)| \leq ^{2232}$ $|\Pi_N(u,v|\widetilde{T})| \leq (1+\epsilon)|\Pi_N(u,v|T)|$. If the distances between each 2233 pair of vertices adjacent to the deleted vertex do not change a lot, then the distances between each pair of vertices far away from the deleted vertex cannot change a lot. So we obtain that for each pair of vertices s and s on s algorithm s obtains that for each pair of vertices s and s on s algorithm s obtains that for each pair of vertices s and s on s algorithm s obtains that s of s obtains that s of s obtains s of s obtains s of s obtains s of s of s obtains s of s obtains that s of s obtains s of s obtains s of s obtains s obtains s of s obtains s obtains s obtains s of s obtains s obtains s obtains s of s obtains s

Theorem D.7. The simplification time, number of points in the simplified point cloud \widetilde{P} of P, output size and simplification memory of algorithm PC-Simplify-Adapt(HM) are $O(n^2 \log n)$, O(n), O(n) and O(n), respectively. Given a height map H, it first converts H to a point cloud P, and then returns \widetilde{p} such that $(1-\epsilon)|\Pi(s,t|P)| \leq 2243$ $|\Pi(s,t|\widetilde{P})| \leq (1+\epsilon)|\Pi(s,t|P)|$ for each pair of points s and t on P, 2244 where $\Pi(s,t|\widetilde{P})$ is the shortest path between s and t passing on \widetilde{P} .

PROOF. Firstly, we prove the simplification time. It first needs to convert the height map to a point cloud in O(n) time. Then, in each point removal iteration, we adapt it by constructing a point cloud graph and useing algorithm PC-SP [73] in $O(n \log n)$ time to check the distances between each pair of point that are neighbors of the deleted point on the original point cloud and the simplified point cloud. Since there are only O(1) points that are neighbors of the deleted point, this step needs $O(n \log n)$ time. Since there are total O(n) point removal iterations, the simplification time for 2254

simplifying a point is $O(n^2 \log n)$. In general, the total simplification time is $O(n + n^2 \log n) = O(n^2 \log n)$.

Secondly, we prove the number of points in \widetilde{P} and output size. Although this algorithm could simplify a point cloud, our experimental results show the simplified point cloud still has O(n) points. Thus, the number of points in \widetilde{P} and output size are both O(n).

Thirdly, we prove the simplification memory. Since we clear the memory after performing one shortest path query during simplification, the simplification memory is the same as the shortest path query memory of algorithm PC-SP-Adapt(HM) on H. Since algorithm PC-SP-Adapt(HM) is a Dijkstra's algorithm and there are total n points on the point cloud, the shortest path query memory is O(n). Thus, the simplification memory is O(n).

Fourthly, we prove that for each pair of points s and t on P, algorithm PC-Simplify-Adapt(HM) has $(1-\epsilon)|\Pi(s,t|P)| \leq |\Pi(s,t|\widetilde{P})| \leq (1+\epsilon)|\Pi(s,t|P)|$. In each point removal iteration, it performs a check between each pair of points u and v (adjacent to the deleted point) on P whether $(1-\epsilon)|\Pi(u,v|P)| \leq |\Pi(u,v|\widetilde{P})| \leq (1+\epsilon)|\Pi(u,v|P)|$. If the distances between each pair of points adjacent to the deleted point do not change a lot, then the distances between each pair of points far away from the deleted point cannot change a lot. So we obtain that for each pair of points s and t on P, algorithm PC-Simplify-Adapt(HM) has $(1-\epsilon)|\Pi(s,t|P)| \leq |\Pi(s,t|\widetilde{P})| \leq (1+\epsilon)|\Pi(s,t|P)|$.

Theorem D.8. The simplification time, number of cells in the simplified \widetilde{H} of H, output size and simplification memory of algorithm HM-Simplify-NS are $O(n\lambda \log n)$, $O(\frac{n}{\mu})$, $O(\frac{n}{\mu})$ and O(n), respectively. Given a height map H, it returns an ϵ -approximate simplified height map \widetilde{H} of H.

PROOF. The simplification time, number of cells in \widetilde{H} , output size, simplification memory and error guarantee of algorithm HM-Simplify-NS are the same as algorithm HM-Simplify.

Theorem D.9. The simplification time, number of cells in the simplified \widetilde{H} of H, output size and simplification memory of algorithm HM-Simplify-NP are $O(n\lambda \log n)$, $O(\frac{n}{\mu})$, $O(\frac{n}{\mu})$ and O(n), respectively. Given a height map H, it returns an ϵ -approximate simplified height map \widetilde{H} of H.

PROOF. The simplification time, number of cells in \widetilde{H} , output size, simplification memory and error guarantee of algorithm HM-Simplify-NP are the same as algorithm HM-Simplify.

Theorem D.10. The simplification time, number of cells in the simplified \widetilde{H} of H, output size and simplification memory of algorithm HM-Simplify-NM are $O(n^2 \log n)$, O(n), O(n) and O(n), respectively. Given a height map H, it returns an ϵ -approximate simplified height map \widetilde{H} of H.

PROOF. Firstly, we prove the simplification time. Since it uses the naive merging technique that only merges two cells in Section 4.2, its simplification time corresponds to the worst case of algorithm *HM-Simplify*. Thus, the simplification time is $O(n^2 \log n)$.

Secondly, we prove the number of cells in \widetilde{H} and output size. Since it uses the naive merging technique that only merges two cells in Section 4.2, its number of cells in \widetilde{H} and output size correspond

2256

2257

2258

2259

2260

2261

2263

2264

2267

2268

2269

2270

2271

2272

2273

2274

2276

2277

2278

2281

2282

2283

2284

2285

2288

2289

2290

2291

2292

2293

2294

2296

2297

2298

2302

2303

2304

2305

to the worst case of algorithm *HM-Simplify*. Thus, the number of 2308 cells in \widetilde{H} and output size are both O(n).

The simplification memory and error guarantee of algorithm 2310 *HM-Simplify-NM* is the same as algorithm *HM-Simplify*.

Theorem D.11. The simplification time, number of cells in the 2313 simplified \widetilde{H} of H, output size and simplification memory of algorithm 2314 HM-Simplify-NC are $O(n^2\lambda\log n)$, $O(\frac{n}{\mu})$, $O(\frac{n}{\mu})$ and O(n), respectively. Given a height map H, it returns an ϵ -approximate simplified 2316 height map \widetilde{H} of H.

PROOF. We prove the simplification time. Since it uses the naive checking technique that checks whether Inequality 1 is satisfied for all cells in Section 4.2, in each cell merging iteration, it needs to check the distance between each pair of cells on \widetilde{H} and H, i.e., run Dijkstra's algorithm in $O(n\log n)$ time for O(n) cells, which needs $O(n^2\log n)$ time. According to Theorem 4.1, there are total λ cell merging iterations. So the total simplification time is $O(n^2\lambda\log n)$.

The number of cells in the simplified \widetilde{H} of H, output size, simplification memory and error guarantee of algorithm HM-Simplify-NC 2327 are the same as algorithm HM-Simplify.

THEOREM D.12. The shortest path query time and memory, kNN or range query time and memory of algorithm TIN-ESSP-Adapt(HM) are $O(n^2)$, $O(n^2)$, $O(n^2)$ and $O(n^2)$ on a TINT, and are $O(n^2)$, $O(n^2)$, $O(n^2)$ and $O(n^2)$ on a simplified TIN T, respectively. Compared with $\Pi(s,t|T)$, i.e., the ground-truth distance, it returns the exact shortest surface path passing on a TIN (that is converted from the height map), and always has $(1 - \epsilon)|\Pi(s, t|T)| \le |\Pi_{TIN-ESSP-Adapt(HM)}(s, t|T)| \le$ $(1+\epsilon)|\Pi(s,t|T)|$ for each pair of vertices s and t on T, where 2335 $\Pi_{\textit{TIN-ESSP-Adapt}(HM)}(s,t|\widetilde{T})$ is the approximate shortest surface path of algorithm TIN-ESSP-Adapt(HM) passing on a simplified TIN \widetilde{T}_{2337} (that is calculated by algorithm TIN-SSimplify-Adapt(HM)) between s and t. Compared with $\Pi(s, t|H)$, i.e., the optimal distance, its versions on a TIN and a simplified TIN are both the approximate shortest paths 2340 passing on a height map. When using the TIN as the 3D surface for 2341 calculating the ground-truth distance, it returns the exact kNN or 2342 range query result on T and has an error ratio $\frac{2\epsilon}{1-\epsilon}$ on \widetilde{T} for both kNN $_{2343}$ or range queries, respectively.

Proof. Firstly, we prove the shortest path query time on both T and \widetilde{T} . The proof of the shortest path query time of algorithm TIN-ESSP on a TIN with O(n) vertices is in [28, 67, 74]. Since there are both O(n) vertices on T and \widetilde{T} , the shortest path query time is $O(n^2)$. But, since algorithm TIN-ESSP-Adapt(HM) first needs to convert the height map to a TIN, it needs an additional O(n) time for this step. Thus, the shortest path query time is $O(n+n^2) = O(n^2)$.

Secondly, we prove the shortest path query memory on both T^{2351} and \widetilde{T} . The proof of the shortest path query memory of algorithm TIN-ESSP is in [28, 67, 74], which is similar to algorithm TIN-ESSP-2353 TIN-E

Thirdly, we prove the kNN or range query time on both T and \widetilde{T} . Since it is a single-source-all-destination algorithm, we use it once for the kNN or range query. So, the kNN or range query time is $O(n^2)$.

Fourthly, we prove the kNN or range query memory on both T_{2358} and \widetilde{T} . Since it is a single-source-all-destination algorithm, we use

it once for the kNN or range query. So, the kNN or range query memory is $O(n^2)$.

Fifthly, we prove the error guarantee. Compared with $\Pi(s,t|T)$, the proof that it returns the exact shortest path passing on a TIN is in [28, 67, 74]. Since the TIN is converted from the height map, so algorithm TIN-ESSP-Adapt(HM) returns the exact shortest surface path passing on a TIN (that is converted from the height map). Since the simplified TIN is calculated by algorithm TIN-SSImplify-Adapt(HM), so it has $(1 - \epsilon)|\Pi(s,t|T)| \leq |\Pi_{TIN}$ -ESSP-Adapt(HM)($s,t|\widetilde{T}| \leq (1 + \epsilon)|\Pi(s,t|T)|$ for each pair of vertices s and t on T. Compared with $\Pi(s,t|H)$, since we regard $\Pi(s,t|H)$ as the exact shortest path passing on the height map, algorithm TIN-ESSP-Adapt(HM) on both the TIN and the simplified TIN returns the approximate shortest path passing on a height map.

Sixthly, we prove the error ratio of the *kNN* or range query algorithm (using the *TIN* as the 3D surface for calculating the ground-truth distance). The proof is similar to algorithm *HM-SP*.

There is no error ratio guarantee of the kNN or range query algorithm when using the height map as the 3D surface for calculating the optimal distance. This is because given a pair of points s and t on T, \widetilde{T} and H, there is no relationship between $|\Pi(s,t|T)|$ and $|\Pi(s,t|H)|$ for algorithm TIN-ESSP-Adapt(HM) on T, and there is no relationship between $|\Pi_{TIN}$ -ESSP-Adapt(HM) (\widetilde{s} , \widetilde{t} $|\widetilde{T}$) | and $|\Pi(s,t|H)|$ for algorithm TIN-ESSP-Adapt(HM) on \widetilde{T} .

Theorem D.13. The shortest path query time and memory, kNN or range query time and memory of algorithm TIN-ASSP-Adapt(HM) are $O(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}}\log(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}}))$, O(n), $O(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}}\log(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}}))$ and O(n), respectively. Compared with $\Pi(s,t|T)$, i.e., the ground-truth distance, it always has $|\Pi_{TIN-ASSP-Adapt(HM)}(s,t|T)| \leq (1+\epsilon)|\Pi(s,t|T)|$ for each pair of vertices s and t on T, where $\Pi_{TIN-ASSP-Adapt(HM)}(s,t|T)$ is the shortest surface path of algorithm TIN-ASSP-Adapt(HM) passing on a TIN T (that is converted from the height map) between s and t. Compared with $\Pi(s,t|H)$, i.e., the optimal distance, it returns the approximate shortest path passing on a height map. When using the TIN as the 3D surface for calculating the ground-truth distance, it has an error ratio ϵ on T for both kNN or range queries.

Proof. Firstly, we prove the shortest path query time. The proof of the shortest path query time of algorithm TIN-ASSP is in [45]. Note that in Section 4.2 of [45], the shortest path query time of algorithm TIN-ASSP-Adapt(HM) is $O((n+n')(\log(n+n')+(\frac{l_{max}K}{l_{min}\sqrt{1-\cos\theta}})^2))$, where $n'=O(\frac{l_{max}K}{l_{min}\sqrt{1-\cos\theta}}n)$ and K is a parameter which is a positive number at least 1. By Theorem 1 of [45], we obtain that its error guarantee ϵ is equal to $\frac{1}{K-1}$. Thus, we can derive that the shortest path query time of algorithm TIN-ASSP-Adapt(HM) is $O(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}}\log(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}})+\frac{l_{max}^2}{(\epsilon l_{min}\sqrt{1-\cos\theta})^2})$. Since for n, the first term is larger than the sec-

 $\frac{max}{(\epsilon l_{min}\sqrt{1-\cos\theta})^2}$). Since for n, the first term is larger than the second term, so we obtain the shortest path query time of algorithm TIN-ASSP-Adapt(HM) is $O(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}}\log(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}}))$. But since algorithm TIN-ASSP-Adapt(HM) first needs to convert the height map to a TIN, it needs an additional O(n) time for this step. Thus, the shortest path query time of algorithm

2362

2363

2367

2368

2369

2370

2371

2372

2373

2375

2376

2377

2378

2379

2380

2382

2383

2384

2385

2386

2388

2389

2390

2391

2392

2393

2395

2396

2397

2398

2401

2402

2403

2405

2409

2410

2411

TIN-ASSP-Adapt(HM) is $O(n + \frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}}\log(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}})) = \frac{2414}{\epsilon l_{min}\sqrt{1-\cos\theta}}$ $O(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}}\log(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}}))$. In [72], it omits the constant term in the shortest path query time. After adding back these terms, 2417 the shortest path query time is the same.

Secondly, we prove the shortest path query memory. Since it is a Dijkstra's algorithm and there are total n vertices on the TIN, the shortest path query memory is O(n).

Thirdly, we prove the kNN or range query time. Since it 2422 is a single-source-all-destination algorithm, we use it once for the kNN or range query. So, the kNN or range query time is 2424 $O(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}}\log(\frac{l_{max}n}{\epsilon l_{min}\sqrt{1-\cos\theta}})).$ 2425 Fourthly, we prove the kNN or range query memory. Since it is a 2426

Fourthly, we prove the kNN or range query memory. Since it is a ²⁴²⁶ single-source-all-destination algorithm, we use it once for the kNN or range query memory is O(n).

Fifthly, we prove the error guarantee. Compared with $\Pi(s,t|T)$, ²⁴²⁹ the proof of the error guarantee of algorithm *TIN-ASSP-* ²⁴³⁰ *Adapt(HM)* is in [45, 72]. Since the *TIN* is converted from ²⁴³¹ the point cloud, so algorithm *TIN-ASSP-Adapt(HM)* always has ²⁴³² $|\Pi_{TIN-ASSP-Adapt(HM)}(s,t|T)| \leq (1+\epsilon)|\Pi(s,t|T)|$ for each pair of ²⁴³³ vertices s and t on T. Compared with $\Pi(s,t|H)$, since we regard ²⁴³⁴ $\Pi(s,t|H)$ as the exact shortest path passing on the height map, ²⁴³⁵ algorithm *TIN-ASSP-Adapt(HM)* returns the approximate shortest ²⁴³⁶ path passing on a height map.

Sixthly, we prove the error ratio of the *kNN* or range query 2438 algorithm (using the *TIN* as the 3D surface for calculating the 2439 ground-truth distance). The proof is similar to algorithm *HM-SP*- 2440 *DS*, by just changing $(1+\epsilon')(1+\epsilon)$ to $(1+\epsilon)$. Thus, we have 2441 $\beta \leq (1+\epsilon) - 1 = \epsilon$. So, algorithm *TIN-ASSP-Adapt(HM)* on *T* has 2442 an error ratio ϵ for the *kNN* or range query. 2433

There is no error ratio guarantee of the kNN or range query 2444 algorithm when using the height map as the 3D surface for 2445 calculating the optimal distance. This is because given a pair 2446 of points s and t on T and H, there is no relationship be- 2447 tween $|\Pi_{TIN-ASSP-Adapt(HM)}(s,t|T)|$ and $|\Pi(s,t|H)|$ for algorithm 2448 TIN-ASSP-Adapt(HM) on T.

Theorem D.14. The shortest path query time and memory, kNN or range query time and memory of algorithm TIN-SNP-Adapt(HM) are $O(n\log n)$, O(n), $O(n\log n)$ and O(n) on a TIN T, and are $O(n\log n)$, $O(n\log n)$ and O(n) on a simplified TIN T, respectively. Compared with $\Pi(s,t|T)$, i.e., the ground-truth distance, it always has $|\Pi_{TIN-SNP-Adapt(HM)}(s,t|T)| \le \alpha \cdot |\Pi(s,t|T)|$ for each pair of vertices s and t on T, where $\Pi_{TIN-SNP-Adapt(HM)}(s,t|T)$ is the shortest network path of algorithm TIN-SNP-Adapt(HM) passing on a TIN T (that is converted from the height map) between s and t, $a = \max\{\frac{2}{\sin \theta}, \frac{1}{\sin \theta \cos \theta}\}$, and returns the approximate shortest path passing on a simplified TIN T (that is calculated by algorithm TIN-NSimplify-Adapt(HM)). Compared with $\Pi(s,t|H)$, i.e., the optimal distance, its versions on a TIN and a simplified TIN are both the approximate shortest paths passing on a height map. When using the TIN as the 3D surface for calculating the ground-truth distance, there is no error ratio guarantee on T and T for both kNN or range queries.

Proof. Firstly, we prove the shortest path query time on both 2466 T and \widetilde{T} . Since algorithm TIN-SNP only computes the shortest net- 2467 work path passing on T (that is converted from the height map 2468

with total n vertices) and \widetilde{T} (that is calculated by algorithm TIN-NSimplify-Adapt(HM) total n vertices), it is a Dijkstra's algorithm, the shortest path query time is $O(n \log n)$. But since algorithm TIN-SNP-Adapt(HM) first needs to convert the height map to a TIN, it needs an additional O(n) time for this step. Thus, the shortest path query time is $O(n+n\log n)=O(n\log n)$.

Secondly, we prove the shortest path query memory. Since it is a Dijkstra's algorithm and there are total n vertices on the TIN, the shortest path query memory is O(n).

Thirdly, we prove the kNN or range query time on both T and \widetilde{T} . Since it is a single-source-all-destination algorithm, we use it once for the kNN or range query. So, the kNN or range query time is $O(n \log n)$.

Fourthly, we prove the kNN or range query memory on both T and \widetilde{T} . Since it is a single-source-all-destination algorithm, we use it once for the kNN or range query. So, the kNN or range query memory is O(n).

Fifthly, we prove the error guarantee. Recall that $\Pi_N(s, t|T)$ is the shortest network path passing on *T* (that is converted from the height map) between s and t, so actually $\Pi_N(s,t|T)$ is the same as $\Pi_{TIN-SNP-Adapt(HM)}(s,t|T)$. Recall that $\Pi_E(s,t|T)$ is the shortest path passing on the edges of T (where these edges belong to the faces that $\Pi(s, t|T)$ passes) between s and t. Compared with $\Pi(s, t|T)$, we know $|\Pi_E(s, t|T)| \leq \alpha \cdot |\Pi(s, t|T)|$ (according to left hand side equation in Lemma 2 of [46]) and $|\Pi_N(s, t|T)| \le$ $|\Pi_E(s,t|T)|$ (since $\Pi_N(s,t|T)$ considers all the edges on T), so we have $|\Pi_{TIN-SNP-Adapt(HM)}(s,t|T)| \leq \alpha \cdot |\Pi(s,t|T)|$ for each pair of vertices s and t on T. Since the simplified TIN is calculated by algorithm TIN-NSimplify-Adapt(HM), algorithm TIN-SNP-Adapt(HM) returns the approximate shortest path passing on a simplified TIN. Compared with $\Pi(s, t|H)$, since we regard $\Pi(s, t|H)$ as the exact shortest path passing on the height map, algorithm TIN-SNP-Adapt(HM) on both the TIN and the simplified TIN returns the approximate shortest path passing on a height map.

There is no error ratio guarantee of the kNN or range query algorithm when using the TIN as the 3D surface for calculating the ground-truth distance). This is because given a pair of points s and t on T and \widetilde{T} , there is no relationship between $|\Pi_N(s,t|T)|$ and $|\Pi(s,t|T)|$ for algorithm TIN-SNP-Adapt(HM) on T, and there is no relationship between $|\Pi_{TIN}$ -SNP- $Adapt(HM)(\widetilde{s},\widetilde{t}|\widetilde{T})|$ and $|\Pi(s,t|T)|$ for algorithm TIN-ESSP-Adapt(HM) on \widetilde{T} .

There is no error ratio guarantee of the kNN or range query algorithm when using the height map as the 3D surface for calculating the optimal distance. This is because given a pair of points s and t on T, \widetilde{T} and H, there is no relationship between $|\Pi_N(s,t|T)|$ and $|\Pi(s,t|H)|$ for algorithm TIN-SNP-Adapt(HM) on T, and there is no relationship between $|\Pi_{TIN$ -SNP- $Adapt(HM)(\widetilde{s},\widetilde{t}|\widetilde{T})|$ and $|\Pi(s,t|H)|$ for algorithm TIN-SNP-Adapt(HM) on \widetilde{T} .

Theorem D.15. The shortest path query time and memory, kNN or range query time and memory of algorithm PC-SP-Adapt(HM) are $O(n\log n)$, O(n), $O(n\log n)$ and O(n) on a point cloud P, and are $O(n\log n)$, $O(n\log n)$ and O(n) on a simplified point cloud \widetilde{P} , respectively. Compared with $\Pi(s,t|P)$, it returns the exact shortest path passing on a point cloud (that is converted from the height map), and always has $(1 - \epsilon)|\Pi(s,t|P)| \leq |\Pi_{PC-SP-Adapt(HM)}(s,t|\widetilde{P})| \leq$

2471

2472

2473

2474

2475

2477

2478

2479

2480

2482

2483

2484

2485

2486

2487

2488

2489

2494

2495

2496

2498

2499

2500

2504

2505

2506

2507

2508

2510

2511

2512

2513

2516

2517

2518

2521

2522

 $(1+\epsilon)|\Pi(s,t|P)|$ for each pair of points s and t on P, where 2523 $\Pi_{PC-SP-Adapt(HM)}(s,t|\widetilde{P})$ is the approximate shortest path of algorithm 2524 PC-SP-Adapt(HM) passing on a simplified point cloud \widetilde{P} (that is calculated by algorithm PC-Simplify-Adapt(HM)) between s and t. Compared with $\Pi(s,t|H)$, i.e., the optimal distance, its version on a point 2527 cloud is the exact shortest path passing on a height map, and its 2528 version on a simplified point cloud always has $(1-\epsilon)|\Pi(s,t|H)| \leq 2529$ $|\Pi_{PC-SP-Adapt(HM)}(s,t|\widetilde{P})| \leq (1+\epsilon)|\Pi(s,t|H)|$ for each pair of points 2530 s and t on H. Compared with $\Pi(s,t|T)$, i.e., the ground-truth distance, 2531 its versions on a point cloud and a simplified point cloud are both the 2632 approximate shortest path passing on a TIN (that is converted from 2533 the height map). When using the height map as the 3D surface for calculating the optimal distance, it returns the exact kNN or range 2534 query result on H and has an error ratio $\frac{2\epsilon}{1-\epsilon}$ on \widetilde{H} for both kNN or 2535 range queries, respectively.

PROOF. Firstly, we prove the shortest path query time on both P^{2539} and \widetilde{P} . Since algorithm PC-SP only computes the shortest path passing on P (that is converted from the height map with total n points) and \widetilde{P} (that is calculated by algorithm PC-Simplify-Adapt(HM) total n points), it is a Dijkstra's algorithm, the shortest path query time is $O(n \log n)$. But since algorithm PC-SP-Adapt(HM) first needs to convert the height map to a point cloud, it needs an additional O(n) time for this step. Thus, the shortest path query time is $O(n + n \log n) = O(n \log n)$.

Secondly, we prove the shortest path query memory. Since it is a Dijkstra's algorithm and there are total n points on the point cloud, the shortest path query memory is O(n).

Thirdly, we prove the kNN or range query time on both P and \widetilde{P} . ²⁵⁵⁰ Since it is a single-source-all-destination algorithm, we use it once for the kNN or range query. So, the kNN or range query time is $O(n \log n)$.

Fourthly, we prove the kNN or range query memory on both P 2554 and \widetilde{P} . Since it is a single-source-all-destination algorithm, we use 2555 it once for the kNN or range query. So, the kNN or range query 2556 memory is O(n).

Fifthly, we prove the error guarantee. Compared with $\Pi(s, t|P)$, 2558 the proof that it returns the exact shortest path passing on a 2559 point cloud is in [73]. Since the point cloud is converted from 2560 the height map, so algorithm PC-SP-Adapt(HM) returns the exact 2561 shortest path passing on a point cloud (that is converted from 2562 the height map). Since the simplified point cloud is calculated by 2563 algorithm *PC-Simplify-Adapt(HM)*, so it has $(1 - \epsilon)|\Pi(s, t|P)| \leq 2564$ $|\Pi_{PC\text{-}SP\text{-}Adapt(HM)}(s,t|P)| \le (1+\epsilon)|\Pi(s,t|P)|$ for each pair of points 2565 s and t on \hat{P} . Compared with $\Pi(s, t|H)$, since we regard $\Pi(s, t|H)$ as 2566 the exact shortest path passing on the height map, and the height 2567 map graph and the point cloud are the same, algorithm PC-SP-Adapt(HM) on the point cloud returns the exact shortest path pass- 2568 ing on a height map, algorithm PC-SP-Adapt(HM) on the simplified 2569 point cloud has $(1 - \epsilon)|\Pi(s, t|H)| \le |\Pi_{PC\text{-}SP\text{-}Adapt(HM)}(s, t|P)| \le$ $(1+\epsilon)|\Pi(s,t|H)|$ for each pair of points s and t on H. Compared 2571 with $\Pi(s, t|T)$, since we regard $\Pi(s, t|T)$ as the exact shortest sur- 2572 face path passing on the TIN, algorithm PC-SP-Adapt(HM) on both 2573 the point cloud and the simplified point cloud returns the approxi- 2574 mate shortest path passing on a TIN. 2575

Sixthly, we prove the error ratio of the *kNN* or range query algorithm (using the height map as the 3D surface for calculating the optimal distance). Since the height map graph and the point cloud are the same, the proof is similar to algorithm *HM-SP*.

There is no error ratio guarantee of the kNN or range query algorithm when using the TIN as the 3D surface for calculating the ground-truth distance. This is because given a pair of points s and t on P, \widetilde{P} and T, there is no relationship between $|\Pi(s,t|P)|$ and $|\Pi(s,t|T)|$ for algorithm PC-SP-Adapt(HM) on P, and there is no relationship between $|\Pi_{PC$ -SP-Adapt(HM)($\widetilde{s},\widetilde{t}|\widetilde{P}$)| and $|\Pi(s,t|T)|$ for algorithm PC-SP-Adapt(HM) on \widetilde{P} .

Theorem D.16. The shortest path query time and memory, kNN or range query time and memory of algorithm HM-SP-NS on the simplified height map are $O(\frac{n^2}{\mu}\log\frac{n}{\mu})$, $O(\frac{n}{\mu})$, $O(\frac{n^2}{\mu}\log\frac{n}{\mu})$ and $O(\frac{n}{\mu})$, respectively. Compared with $\Pi(s,t|H)$, i.e., the optimal distance, it returns an approximate shortest path passing on ϵ -approximate simplified height map \widetilde{H} of H. Compared with $\Pi(s,t|T)$, i.e., the groundtruth distance, it returns an approximate shortest path passing on a TIN (that is converted from the height map). When using the height map as the 3D surface for calculating the optimal distance, it has an error ratio $\frac{2\epsilon}{1-\epsilon}$ on \widetilde{H} for both kNN or range queries, respectively.

PROOF. Firstly, we prove the shortest path query time. Since it needs to use Dijkstra's algorithm with each cell in $\widetilde{N}(O^{-1}(s))$ or $\widetilde{N}(O^{-1}(t))$ as a source to compute inter-path, and the size of $\widetilde{N}(O^{-1}(s))$ or $\widetilde{N}(O^{-1}(t))$ is O(n), so its shortest path query time is O(n) times the shortest path query time of algorithm *HM-SP* on the simplified height map. Thus, the shortest path query time is $O(\frac{n^2}{\mu}\log\frac{n}{\mu})$.

Secondly, we prove the kNN or range query time. Since we just need to use algorithm HM-SP-NS on the simplified height map once for the kNN or range query, the kNN or range query time is $O(\frac{n^2}{u}\log\frac{n}{u})$.

 $O(\frac{n^2}{\mu}\log\frac{n}{\mu})$. The shortest path query memory, kNN or range query memory and error guarantee of algorithm HM-SP-NS on the simplified height map are the same as algorithm HM-SP on the simplified height map. The error guarantee of algorithm HM-SP on the TIN is the same as algorithm HM-SP on the TIN. The error ratio of the kNN or range query algorithm of algorithm HM-SP-NS on the simplified height map (using the height map as the 3D surface for calculating the optimal distance) is similar to algorithm HM-SP on the simplified height map. The reason that there is no error ratio guarantee of the kNN or range query algorithm of algorithm HM-SP-NS on the simplified height map (using the TIN as the 3D surface for calculating the ground-truth distance) is still similar to algorithm HM-SP on the simplified height map.

Theorem D.17. The shortest path query time and memory, kNN or range query time and memory of algorithm HM-SP-NP on the simplified height map are $O(\frac{n}{\mu}\log\frac{n}{\mu})$, $O(\frac{n}{\mu})$, $O(\frac{nn'}{\mu}\log\frac{n}{\mu})$ and $O(\frac{n}{\mu})$, respectively. Compared with $\Pi(s,t|H)$, i.e., the optimal distance, it returns an approximate shortest path passing on ϵ -approximate simplified height map \widetilde{H} of H. Compared with $\Pi(s,t|T)$, i.e., the groundtruth distance, it returns an approximate shortest path passing on a TIN (that is converted from the height map). When using the height

map as the 3D surface for calculating the optimal distance, it has an 2630 error ratio $\frac{2\epsilon}{1-\epsilon}$ on \widetilde{H} for both kNN or range queries, respectively. 2631

PROOF. We prove the kNN or range query time. Since we need to use algorithm HM-SP on the simplified height map n' times for the kNN or range query, the kNN or range query time is $O(\frac{nn'}{\mu}\log\frac{n}{\mu})$.

The shortest path query time and memory, *kNN* or range query memory and error guarantee of algorithm *HM-SP-NP* on the simplified height map are the same as algorithm *HM-SP* on the simplified height map. The error guarantee of algorithm *HM-SP-NP* on the *TIN* is the same as algorithm *HM-SP* on the *TIN*. The error ratio of the *kNN* or range query algorithm of algorithm *HM-SP-NP* on the simplified height map (using the height map as the 3D surface for calculating the optimal distance) is similar to algorithm *HM-SP* on the simplified height map. The reason that there is no error ratio guarantee of the *kNN* or range query algorithm of algorithm *HM-SP-NP* on the simplified height map (using the *TIN* as the 3D surface for calculating the ground-truth distance) is still similar to algorithm *HM-SP* on the simplified height map.

Theorem D.18. The shortest path query time and memory, kNN or range query time and memory of algorithm HM-SP-NM on the simplified height map are $O(n \log n)$, O(n), $O(n \log n)$ and O(n), respectively. Compared with $\Pi(s,t|H)$, i.e., the optimal distance, it returns an approximate shortest path passing on ϵ -approximate simplified height map \widetilde{H} of H. Compared with $\Pi(s,t|T)$, i.e., the ground-truth distance, it returns an approximate shortest path passing on a TIN (that is converted from the height map). When using the height map as the 3D surface for calculating the optimal distance, it has an error ratio $\frac{2\epsilon}{1-\epsilon}$ on \widetilde{H} for both kNN or range queries, respectively.

PROOF. Firstly, we prove the shortest path query time. Since it is applied on the simplified height map calculated by algorithm HM-Simplify-NM with O(n) cells on \widetilde{H} , and we use Dijkstra's algorithm on \widetilde{H} for once, the shortest path query time is $O(n \log n)$.

Secondly, we prove the shortest path query memory. Since there are O(n) cells on \widetilde{H} , the shortest path query memory is O(n).

Thirdly, we prove the kNN or range path query time. Since we just need to use Dijkstra's algorithm once for the kNN or range query, the kNN or range query time is $O(n \log n)$.

Fourthly, we prove the kNN or range path query memory. Since we just need to use Dijkstra's algorithm once for the kNN or range query, the kNN or range query memory is O(n).

The error guarantee of algorithm *HM-SP-NM* on the simplified height map is the same as algorithm *HM-SP* on the simplified height map. The error guarantee of algorithm *HM-SP-NM* on the *TIN* is the same as algorithm *HM-SP* on the *TIN*. The error ratio of the *kNN* or range query algorithm of algorithm *HM-SP-NM* on the simplified height map (using the height map as the 3D surface for calculating the optimal distance) is similar to algorithm *HM-SP* on the simplified height map. The reason that there is no error ratio guarantee of the *kNN* or range query algorithm of algorithm *HM-SP-NM* on the simplified height map (using the *TIN* as the 3D surface for calculating the ground-truth distance) is still similar to algorithm *HM-SP* on the simplified height map.

Theorem D.19. The shortest path query time and memory, kNN or range query time and memory of algorithm HM-SP-NC on the

simplified height map are $O(\frac{n}{\mu}\log\frac{n}{\mu})$, $O(\frac{n}{\mu}\log\frac{n}{\mu})$ and $O(\frac{n}{\mu})$, respectively. Compared with $\Pi(s,t|H)$, i.e., the optimal distance, it returns an approximate shortest path passing on ϵ -approximate simplified height map \widetilde{H} of H. Compared with $\Pi(s,t|T)$, i.e., the groundtruth distance, it returns an approximate shortest path passing on a TIN (that is converted from the height map). When using the height map as the 3D surface for calculating the optimal distance, it has an error ratio $\frac{2\epsilon}{1-\epsilon}$ on \widetilde{H} for both kNN or range queries, respectively.

PROOF. The shortest path query time and memory, *kNN* or range query time, *kNN* or range query memory and error guarantee of algorithm *HM-SP-NC* on the simplified height map are the same as algorithm *HM-SP* on the simplified height map. The error guarantee of algorithm *HM-SP-NC* on the *TIN* is the same as algorithm *HM-SP* on the *TIN*. The error ratio of the *kNN* or range query algorithm of algorithm *HM-SP-NC* on the simplified height map (using the height map as the 3D surface for calculating the optimal distance) is similar to algorithm *HM-SP* on the simplified height map. The reason that there is no error ratio guarantee of the *kNN* or range query algorithm of algorithm *HM-SP-NC* on the simplified height map (using the *TIN* as the 3D surface for calculating the ground-truth distance) is still similar to algorithm *HM-SP* on the simplified height map.