■ 性能参数

参数名称	备注	最小值	典型值	最大值	单位
工作电压		2.8		5.5	٧
工作电流		1.8	2	3	mA
最大探测距离	平整墙面		450	550	CM
工作频率			40		KHz
盲区	盲区内随机值		25	26	CM
探测精度	同一温度		±2		%
分辨率	理论		1		mm
探测角度	最大方向角度		±20	±30	度
测量周期时间			50		mS
输出接口模式		GP10	/UART/IIC/1-	-WIRE	
工作温度	塑壳探头(需定制)	-10		60	°C
工作温度	铝壳探头	-10		70	°C

■ GPIO / UART / IIC / 1-WIRE 模式选择

序号	模式		M1/M2 电阻设置	
1	GPIO	M1 = NC	M2 = NC 默认	
2	IIC	M1 = NC	M2 = 10K	
3	UART	M1 = 10K	M2 = NC	
4	1-WIRE	M1 = 10K	M2 = 10K	

■ 测量操作

一: GPIO 模式

超声波时序图

工作模式同 HC-SR04。外部 MCU 给模块 Trig 脚一个大于 10uS 的高电平脉冲;模块会给出一个与距离等比的高电平脉冲信号,可根据脉宽时间"T"算出:

距离=T*C/2 (C 为声速)

声速温度公式: c=(331.45+0.61t/°C)m•s-1 (其中 330.45 是在 0°C)

0°C声速: 330.45M/S

20°C声速: 342.62M/S

40°C声速: 354.85M/S

0℃-40℃声速误差 7%左右。实际应用,如果需要精确距离值,必需要考虑温度影响,做温度补偿。

二: UART 模式

UART 模式波特率设置: 9600 N 1

命令	返回值	说明
OXAO	BYTE_H	输出距离为:
	BYTE_M	((BYTE_H<<16) + (BYTE_M<<8) + BYTE_L)/1000
	BYTE_L	单位 mm
0XF1		公司及版本信息

连接串口。外部 MCU 或 PC 发命令 0XAO, 模块完成测距后发 3 个返回距离数据:

BYTE_H, BYTE_M与BYTE_L。

距离计算方式如下(单位 mm):

距离=((BYTE_H<<16)+(BYTE_M<<8)+BYTE_L)/1000

三: IIC 模式

IIC 地址: 0X57

IIC 传输格式:

写数据:

读数据:

命令格式:

地址	命令	返回值	说明
写地址	0X01		开始测距命令
OXAE			
读地址		BYTE_H	输出距离为:
OXAF		BYTE_M	((BYTE_H<<16) + (BYTE_M<<8) + BYTE_L)/1000
		BYTE_L	单位 mm

向模块写入 0X01, 模块开始测距; 等待 100mS(模块最大测距时间)

以上。直接读出 3 个距离数据。BYTE_H, BYTE_M 与 BYTE_L。

距离计算方式如下(单位 mm):

距离=((BYTE_H<<16)+(BYTE_M<<8)+BYTE_L)/1000

四: 1-WIRE 单总线模式

超声波时序图

外部 MCU 初始设置为输出,给模块 I/O 脚一个大于 10uS 的高电平脉冲;输出脉冲信号后, MCU 设置为输入模式,等待模块给出的一个与距离等比的高电平脉冲信号;测量结束后 MCU 设置为输出模式,进行下次测量。声速可根据脉宽时间"T"算出:

距离=T*C/2 (C 为声速)

声速温度公式: c=(331.45+0.61t/°C)m•s-1(其中 330.45 是在 0°C)

0°C声速: 330.45M/S

20°C声速: 342.62M/S

40°C声速: 354.85M/S

■ 外型尺寸图

■ 应用注意

- 1: 此模块不宜带电连接,如果要带电连接,则先让模块的 Gnd 端先连接。
- 2: 如果测试面不是很规则或测试远距离物体时,可采用多次测量的方法来校正。
- 3: 两次测试间隔要不小于 50mS。