

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
FURTHER MATHEMA	ATICS		9231/12
Paper 1		O	ctober/November 2018
			3 hours
Candidates answer or	n the Question Paper.		
Additional Materials:	List of Formulae (MF10)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 The roots of the cubic equation	or
-----------------------------------	----

ion
$$x^3 - 5x^2 + 13x - 4 = 0$$

are α , β , γ .

(i)	Find the value of $\alpha^2 + \beta^2 + \gamma^2$.	[3]
(ii)	Find the value of $\alpha^3 + \beta^3 + \gamma^3$.	[2]

2 It is given that

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

(i)	Find the eigenvalue of A corresponding to the eigenvector $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.	[1]
(ii)	Write down the negative eigenvalue of ${\bf A}$ and find a corresponding eigenvector.	[3]
(iii)	Find an eigenvalue and a corresponding eigenvector of the matrix $\mathbf{A} + \mathbf{A}^6$.	[2]

The curve C has polar equation $r = a \cos 3\theta$, for $-\frac{1}{6}\pi \le \theta \le \frac{1}{6}\pi$, where a is a positive constant.	
(i) Sketch C.	[2]
(ii) Find the area of the region enclosed by C, showing full working.	[3]
(ii) This the area of the region enclosed by C, showing full working.	ری
	••••••
	••••••
	•••••
	•••••

(iii)	Using the identity $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$, find a cartesian equation of <i>C</i> . [3]

4	(i)	Find the general solution of the differential equation
		$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\frac{\mathrm{d}x}{\mathrm{d}t} + x = 4\sin t. \tag{7}$

(ii)	State an approximate solution for large positive values of t . [1]

5	The linear tra	ansformation	$\mathbf{n} \; \mathbf{T} : \mathbb{R}$	$^4 \rightarrow \mathbb{R}^4$	is rep	presented	by the	matrix M	, where
---	----------------	--------------	---	-------------------------------	--------	-----------	--------	----------	---------

$$\mathbf{M} = \begin{pmatrix} 3 & 2 & 0 & 1 \\ 6 & 5 & -1 & 3 \\ 9 & 8 & -2 & 5 \\ -3 & -2 & 0 & -1 \end{pmatrix}.$$

(i)	Find the rank of M .	[3]
Let	K be the null space of T.	
(ii)	Find a basis for K .	[3]

(iii)	Find the general solution of $\begin{pmatrix} 2 \end{pmatrix}$
	$\mathbf{M}\mathbf{x} = \begin{pmatrix} 2\\5\\8\\-2 \end{pmatrix}.$ [3]
	$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$

6

It is given that $y = e^x u$, where u is a function of x . The r th derivatives $\frac{d^r y}{dx^r}$ and $\frac{d^r u}{dx^r}$ are $y^{(r)}$ and $u^{(r)}$ respectively. Prove by mathematical induction that, for all positive integers r	denoted by i ,
$y^{(n)} = e^{x} \left(\binom{n}{0} u + \binom{n}{1} u^{(1)} + \binom{n}{2} u^{(2)} + \dots + \binom{n}{r} u^{(r)} + \dots + \binom{n}{n} u^{(n)} \right).$	[8]
[You may use without proof the result $\binom{k}{r} + \binom{k}{r-1} = \binom{k+1}{r}$.]	

7 Let

$$S_N = \sum_{r=1}^N (3r+1)(3r+4)$$
 and $T_N = \sum_{r=1}^N \frac{1}{(3r+1)(3r+4)}$.

$S_N = N(3N^2 + 12N + 13).$	
 differences to show that $T_N = \frac{1}{12} - \frac{1}{3(3N+4)}.$	
12 3(3N+4)	

		•••••		••••••
		•••••		
		•••••		
	S			
(iii)	Deduce that $\frac{S_N}{T_N}$ is an integer.			[2]
	- N			
		••••••		•••••
	S			
(iv)	Find $\lim_{N\to\infty} \frac{S_N}{N^3 T_N}$.			[2]
	11 1 _N			
		•••••	•••••	•••••

By considering the binomial expansion of $\left(z + \frac{1}{z}\right)^6$, where $z = \cos \theta + i \sin \theta$ the form $\frac{1}{32}(p + q \cos 2\theta + r \cos 4\theta + s \cos 6\theta),$	
where p , q , r and s are integers to be determined.	[6]
where p, q, r and s are integers to be determined.	ران

)	Hence find the exact value of	
	$\int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi}\cos^6\left(\frac{1}{2}x\right)\mathrm{d}x.$	[4]
		••••
		••••
		••••
		••••
		••••
		•••••
		••••
		•••••
		••••
		•••••
		•••••
		••••
		• • • • • •
		•••••
		••••
		••••
		••••
		••••
		••••
		••••
		•••••
		•••••

9	The curve	C has	equation

$$y = \frac{5x^2 + 5x + 1}{x^2 + x + 1}.$$

(i)	Find the equation of the asymptote of C .	[2]
(ii)	Show that, for all real values of x , $-\frac{1}{3} \le y < 5$.	[4]

(iii)	Find the coordinates of any stationary points of C .	[2]
(iv)	Sketch C , stating the coordinates of any intersections with the y -axis.	[2]

10	The position vector	ors of the points	SA, B, C, D are		
		i + j + 3k,	$3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k},$	$-\mathbf{i} + 3\mathbf{k}$,	$m\mathbf{j} + 4\mathbf{k}$
	respectively, whe	re <i>m</i> is a consta	nt.		

(i)	Show that the lines AB and CD are parallel when $m = \frac{3}{2}$.	[1]
		•••••
		· • • • • • •
		· • • • • • •
(ii)	Given that $m \neq \frac{3}{2}$, find the shortest distance between the lines AB and CD.	[5]
		· • • • • • • •
		· • • • • • •
		· • • • • • •
		· • • • • • •

•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••

11 Answer only **one** of the following two alternatives.

EITHER

The curve C is defined parametrically by

$$x = 18t - t^2$$
 and $y = 8t^{\frac{3}{2}}$,

where $0 < t \le 4$.

	(i)	Show	that	at all	points	of	C
--	-----	------	------	--------	--------	----	---

$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{3(9+t)}{2t^{\frac{1}{2}}(9-t)^3}.$	[4]

Show that the mean value of	f $\frac{d^2y}{dx^2}$ with respect to x over the interval $0 < x \le 56$ is $\frac{3}{70}$.	[4]
		•••••
		•••••
		•••••

SHOWL	ing full worl	xiiig.							
•••••	•••••		•••••	•••••		•••••	•••••	•••••	
•••••									
	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••
	•••••								
••••••		•••••••••••		••••••	••••••	••••••	••••••	•••••	•••••
• • • • • • • • • • • • • • • • • • • •					•••••	••••••	•••••		•••••
•••••	•••••				•••••	•••••	•••••		•••••
• • • • • • • • • • • • • • • • • • • •									
•••••			•••••	•••••	•••••	•••••	•••••	•••••	•••••
				•••••	•••••	•••••	•••••		
	••••••								
••••••	•	•••••	•••••	•••••	•••••	••••••	•••••	•••••	••••••
•••••				•••••	•••••	••••••	•••••	•••••	•••••

OR

Let
$$I_n = \int_1^{\sqrt{2}} (x^2 - 1)^n dx$$
.

Show that, for $n \ge 1$,	$(2n+1)I_n = \sqrt{2} - 2nI_{n-1}.$	[5

	24
(ii)	Using the substitution $x = \sec \theta$, show that
	$I_n = \int_0^{\frac{1}{4}\pi} \tan^{2n+1}\theta \sec\theta \mathrm{d}\theta. \tag{4}$

(iii)	Deduce the exact value of	
	$\int_0^{\frac{1}{4}\pi} \frac{\sin^7 \theta}{\cos^8 \theta} \mathrm{d}\theta.$	[5]
		• • • • • •
		• • • • • •
		•••••
		•••••
		•••••
		•••••
		•••••
		• • • • • •
		• • • • • •
		•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.