# Calculating Probability Using R

# BIO210 Biostatistics

Extra reading material for Lecture 20

Xi Chen School of Life Sciences Southern University of Science and Technology

March 2022

# 1 Calculating Probability Using R

As we gradually introduce more and more statistic concepts and tests, we will need to do quite a few complicated calculations. Some of them cannot be computed by hand or regular calculator; others can, but there are just too many steps and they are error-prone. Therefore, we introduce how to use the programming language  ${\bf R}$  for the calculation of probabilities and related stuff. You don't really need to know how to write scripts in  ${\bf R}$ . For now, you can just use it as a calculator.

Go to the SUSTech mirror of R: https://mirrors.sustech.edu.cn/CRAN. Download and install the program based on your operating system.

If you open the program, you will probably see a window like shown in the screenshot on the right-handside. The ">" mark that I highlighted at the bottom is your "prompt", where you can type commands. Like I said before, for now, you don't really need to know how to write scripts in **R**. You just use it as a probability calculator. Later on, we will see how to perform statistical tests.



Since we already introduced how to calculate probability using **Excel**, we will use that as the comparison. Let's start with simple examples of three different distributions: B(6, 0.3), Pois(2) and  $\mathcal{N}(1,4)$ . In **R**, if you want the cumulative probability, the function always starts with "p"; if you want the probability mass/density, the function always starts with "d". For example, **pbinom**, **ppois**, and **pnorm** will give us the cumulative probability of the binomial, Poisson and normal distributions, respectively. They are like the \*.DIST functions in **Excel** with the "cumulative" option set to "TRUE or 1".

Similarly, the **dbinom**, **dpois** will give the exact probability of a binomial and Poisson distributions respectively, and **dnorm** will give you the probability density of a normal distribution. They are like the \*.DIST functions in **Excel** with the "cumulative" option set to "**FALSE** or **0**".

If you want to do the opposite, that is, provide the cumulative probability and return the value of the random variable, the function always starts with "q", like **qbinom**, **qpois** and **qnorm**. They are like the "\*.INV" functions in **Excel**.

Just to give you some visual explanation of typical calculations:





# Excel:

1 - BINOM.DIST(2, 6, 0.3, TRUE)

#### **R**:

pbinom(q=2, size=6, prob=0.3, lower.tail=FALSE)



# Excel:

POISSON.DIST(3, 2, FALSE)

#### R:

dpois(x = 3, lambda = 2)



#### Excel:

POISSON.DIST(3, 2, TRUE)

#### R:

ppois(q = 3, lambda = 2, lower.tail = TRUE)





# 2 Find x with certain probability in a normal distribution

Again, using the function from **Excel** as a comparison, visually:



# 3 More Complicated Distributions

For more complicated distributions that we will encounter later in the course, the principle is exactly the same.





# Excel:

T.INV(0.2, 9)

#### R:

qt(p = 0.2, df = 9, lower.tail = TRUE)



# Excel:

T.INV(0.8, 9)

#### R:

 $qt(p=0.2,\,df=9,\,lower.tail=FALSE)$ 



# Excel:

CHISQ.DIST(5, 9, FALSE)

#### **R**:

dchisq(x = 5, df = 9)













### Excel:

F.INV(0.3, 9, 10)

# R:

 $qf(p=0.3,\,df1=9,\,df2=10,\,lower.tail=TRUE)$ 



#### Excel:

=F.INV(0.9, 9, 10)

### R:

qf(p = 0.1, df1 = 9, df2 = 10, lower.tail = FALSE)