MT - How to ...

Help for MT data processing and analysing

Kent Inverarity, Jared Peacock, Lars Krieger*

2012

 $^{{\}rm ^*University\ of\ Adelaide-School\ of\ Earth\ and\ Environmental\ Sciences-Mawson\ Building-Adelaide}$

₁ Introduction

- $_2$ $\,$ This is a collection of guides ($How\ to\ \ldots$) for various steps in the processing of MT data. Most
- 3 steps are based on the MTpy package.

4 January 21, 2013, LK

Contents

2	1	Structure 1.1	4
4	2	In the field	5
5	3	Raw-data-/time-series processing	6
6		3.1 E field logger data	6
7		3.2 step by step	6
8		3.2.1 raw data	6
9	4	Modelling (1-/2-/3-D)	7
10	5	Visualisation	8
11	6	Helpful information, tools, and scripts	g

₁ 1 Structure

1.1

₁ 2 In the field

3 Raw-data-/time-series processing

2 3.1 E field logger data

- ₃ 3.2 step by step
- 4 3.2.1 raw data
- 5 concatenate time series recorded by EDLs
- ⁶ Functions for concatenation are in the *mtpy.utils.filehandling* module. The reference to the
- 7 module is given here as FH. It is assumed that the files are ascii-formatted, and are named ac-
- cording to the EDL standard. This is <stationname><year><month><day><hour><minute><seconds>
- and the cannnels in question are ex, ey, bx, by, bz, case insensitive.
- The data in the files are assumed to be either in single-column form (instrument counts), or
- in two-column form: single column time stamp (e.g. epochs or datetime-string) instrument
- 12 counts

13

17

18

- 1. Find the sampling rate
- You have to know the duration of your single files (e.g. 10 mins, 1 hour,...). Chose a
- file, of which you know that it contains complete information for the full duration. Then
- obtain the sampling period with the function
 - FH.get_sampling_interval_fromdatafile(filename, duration in seconds)
 - 2. Put all files of interest into one folder (preferably sorted by station).
- 19 3. Call
- FH.EDL_make_dayfiles(foldername, sampling, stationname = None)
- This generates a subfolder called *dayfiles*. If the given files cannot be merged continuously,
- several files are created for the same day.
- 23 4. Output dayfiles have a single header line, which starts with the character #. The contnet of the line is
- stationname; sampling interval; time of first sample; time of last sample.

26 Time series data calibration

- The conversion of time series from lists of raw *instrument counts* into time series of data values with an actual physical meaning and approprite units is called *calibration*.
- The calibration depends on the instrument as well as on the respective data logger. The
- given time series are multiplied by various factors, which are unique for each kind of instrument,
- logger, and their software setup. Additionally, possible spurious offsets can be removed.

The basic unit for the magnetic flux density is Tesla ($[\mathbf{B}] = T$), the unit of the electric field is Volt per meter ($[\mathbf{E}] = \frac{\mathrm{V}}{\mathrm{m}}$). For obtaining more convenient numbers, these units are often scaled e.g. to nT or $\frac{\mu\mathrm{V}}{\mathrm{nm}}$

4 Modelling (1-/2-/3-D)

₁ 5 Visualisation

₁ 6 Helpful information, tools, and scripts

