CHEM 20B Week 8

Aidan Jan

February 28, 2024

Acid-Base Equilibria

Arrhenius Definition of Acids and Bases

 \bullet Acids: when dissolved in water increases the concentration of ${\rm H_3O^+}$

• Bases: when dissolved in water increases the concentration of OH⁻

Brønsted-Lowry Definition of Acids and Bases

• Acids: Proton donor

• Bases: Proton acceptor

Lewis Definition of Acids and Bases

• Electron pair acceptor

• Electron pair donor

Properties of Acids and Bases in Aqueous Solutions: The Brønsted-Lowry Scheme Autoionization of Water

$$H_2O(l) + H_2O(l) \leftrightharpoons H_3O^+(aq) + OH^-(aq)$$

 K_w , the acid-base constant of water is determined by

$$K_w[H_3O^+][OH^-]$$

This constant varies by temperature.

Temperature Dependence of K_w

Temperature (° C)	K_w	pH of Water
0	0.114×10^{-14}	7.47
10	0.292×10^{-14}	7.27
20	0.681×10^{-14}	7.08
25	1.01×10^{-14}	7.00
30	1.47×10^{-14}	6.92
40	2.92×10^{-14}	6.77
50	5.47×10^{-14}	6.63
60	9.61×10^{-14}	6.51

Strong Acids

Strong Acids ionize completely in aqueous solution.

$$H_2O(l) + HA(aq) \to H_3O^+(aq) + A^-(aq)$$

Common Strong Acids

- HBr (aq)
- HCl (aq)
- HI (aq)
- HNO₃ (aq)
- HClO₄ (aq)
- HClO₃ (aq)
- H_2SO_4 (aq)

Strong Bases

Strong Bases react completely to give OH^- when put in water.

$$H_2O(l) + NH_2^-(aq) \to OH^-(aq) + H_2(aq)$$

$$H_2O(l) + H^-(aq) \to OH^-(aq) + H_2(aq)$$

Common Strong Bases

- Group 1 hydroxides
- $\bullet\,$ Alkaline earth metal hydroxides
- Group 1 and Group 2 oxides

The pH Function

$$pH = -\log_{10}[H_3O^+]$$

At 25° C,

- pH < 7 = Acidic solution
- \bullet pH = 7 = Neutral solution
- pH > 7 = Basic solution

Similar to how $[H_3O^+][OH^-] = K_w$, $pH + pOH = pK_w$. As a consequence,

- $[H^+] = 10^{-pH}$
- $[OH^-] = 10^{-pOH}$

Acid and Base Strength

Acid strength is based on the extent to which they are ionized in solution.

$$HA(aq) \leftrightharpoons H^+(aq) + A^-(aq)$$

The Acid Ionization Constant, K_a is a quantitative measure of the strength of the acid.

$$K \equiv K_a = \frac{[H^+][A^-]}{[HA]}$$

If:

- $K_a \gg 1 \rightarrow \text{HA}$ is a strong acid.
- $K_a \ll 1 \rightarrow \text{HA}$ is a weak acid.

Convenient characterization of strength of acid is pK_a .

$$pK_a = -\log_{10}(K_a)$$

For Example:

$$K_a = 10^7 \rightarrow pK_a = -7$$
 (strong acid)
 $K_a = 10^-5 \rightarrow pK_a = 5$ (weak acid)

Similarly to acids, base strength is represented by K_b , which is inversely related to the strength of its conjugate acid.

$$H_2O(l) + B(aq) \leftrightharpoons OH^-(aq) + BH^+(aq)$$

$$K \equiv K_b = \frac{[OH^-][BH^+]}{[B]}$$

Similarly, a convenient characterization of strength of base is pK_b .

$$pK_b = -\log_{10}(K_b)$$

If:

- $K_b \gg 1 \rightarrow \text{strong base, many } OH^- \text{ produced, little } [B] \text{ left.}$
- $K_b \ll 1 \rightarrow$ weak base, most [B] remains.

Importantly,

$$K_b K_a = K_w$$
$$pK_b + pK_a = pK_w$$