

Proba de Avaliación do Bacharelato Código: 23 para o Acceso á Universidade

CONVOCATORIA ORDINARIA 2020

FÍSICA

O exame consta de 8 preguntas de 2 puntos, das que poderá responder un <u>MÁXIMO DE 5</u>, combinadas como queira. Se responde máis preguntas das permitidas, <u>só se corrixirán as 5 primeiras respondidas.</u>

PREGUNTA 1. Responda indicando e xustificando a opción correcta:

- 1.1. Para escalar unha montaña podemos seguir dúas rutas diferentes: unha de pendentes moi suaves e outra con pendentes moi pronunciadas. O traballo realizado pola forza gravitacional sobre o corpo do montañeiro é: A) Maior na ruta de pendentes moi pronunciadas. B) Maior na ruta de pendentes moi suaves. C) Igual en ambas rutas.
- 1.2. Unha esfera metálica cárgase positivamente atopándose en equilibrio electrostático. O campo eléctrico será: A) Nulo no interior e constante no exterior da esfera. B) Máximo na superficie e nulo no interior. C) Aumenta linealmente dende o centro da esfera.

PREGUNTA 2. Responda indicando e xustificando a opción correcta:

- 2.1. Sitúase un obxecto a unha distancia de 20 cm á esquerda dunha lente delgada converxente de distancia focal 10 cm. A imaxe que se forma é: A) De maior tamaño, real, dereita. B) De igual tamaño, virtual, invertida. C) De igual tamaño, real, invertida.
- 2.2. Un protón e unha partícula α entran perpendicularmente no seo dun campo magnético estacionario e uniforme de indución, \overline{B} , describindo traxectorias circulares de igual raio. O cociente entre as velocidades da partícula α e do protón, $\nu(\alpha) / \nu(p)$, é: A) 0,5. B) 2. C) 8. DATOS: $m(\alpha) = 4 m(p)$; $q(\alpha) = 2 q(p)$.

PREGUNTA 3. Responda indicando e xustificando a opción correcta:

3.1. Nunha célula fotoeléctrica, o cátodo metálico ilumínase cunha radiación de 175 nm de lonxitude de onda e o potencial de freado é de 1 V. Se usamos unha luz de 250 nm, o potencial de freado será: A) Menor. B) Maior. C) Igual. 3.2. Medimos o noso pulso na Terra (en repouso) observando que o tempo entre cada latexo é de 0,80 s. Despois facemos a medida viaxando nunha nave espacial á velocidade de 0,70 c, sendo c a velocidade da luz no baleiro. De acordo coa teoría especial da relatividade, o tempo que medimos será: A) 1,12 s. B) 0,57 s. C) 0,80 s.

PREGUNTA 4. Desenvolva esta práctica:

Estudando o fenómeno da refracción nunha lámina de vidro faise incidir un raio de luz con distintos ángulos sobre a superficie. Na táboa da marxe aparecen os ángulos de incidencia e os ángulos de refracción. a) Calcule o índice de refracción do material a partir dos datos da táboa. b) Indique en que condicións se produciría reflexión total. DATOS: n(aire) = 1; $c = 3 \times 10^8 \text{ m·s}^{-1}$.

(°)	r (°)	
27	16	aire
36	21	
48	27	vidrio
57	31	

PREGUNTA 5. Resolva este problema:

Un meteorito de 150 kg de masa achégase á Terra e acada unha velocidade de 30 km·s⁻¹ cando está a unha altura sobre a superficie da Terra igual a 6 veces o raio desta. Calcule: a) O seu peso a esa altura. b) A súa enerxía mecánica a esa altura. DATOS: $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$; $M(T) = 5.98 \times 10^{24} \text{ kg}$; $R(T) = 6.37 \times 10^6 \text{ m}$.

PREGUNTA 6. Resolva este problema:

Un dipolo eléctrico é un sistema formado por dúas cargas do mesmo valor e de signo contrario que están separadas unha distancia fixa. Se o valor absoluto de cada unha das cargas é $2\,\mu\text{C}$ e están situadas nos puntos (0,0) e (4,0), calcule: a) O potencial eléctrico creado polo dipolo no punto (2,2). b) A aceleración que experimenta un protón situado no punto medio do dipolo.

DATOS: $K = 9 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$; $\dot{q}(p) = 1.6 \times 10^{h-19} \text{ C}$; $m(p) = 1.67 \times 10^{-27} \text{ kg}$. As distancias están en metros.

PREGUNTA 7. Resolva este problema:

A ecuación y(x, t) = 0.04 sen 2 π (4 t - 2x) m representa unha onda que se propaga por unha corda situada ao longo do eixe X, estando t expresado en segundos. Calcule: a) A frecuencia, a lonxitude de onda e a velocidade de propagación da onda. b) A diferenza de fase, nun instante determinado, entre dous puntos da corda separados 1 m.

PREGUNTA 8. Resolva este problema:

Nunha cova encóntranse restos orgánicos e ao realizar a proba do carbono-14 obsérvase que a actividade da mostra é de 106 desintegracións/s. Sabendo que o período de semidesintegración do carbono-14 é de 5730 anos, calcule: a) A masa inicial da mostra. b) A masa da mostra cando transcorran 4000 anos.

DATOS: $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$; $A(^{14}\text{C}) = 14$.

Solucións

1.1. Para escalar unha montaña podemos seguir dúas rutas diferentes: unha de pendentes moi suaves e outra con pendentes moi pronunciadas. O traballo realizado pola forza gravitacional sobre o corpo do montañeiro é:

- A) Maior na ruta de pendentes moi pronunciadas.
- B) Maior na ruta de pendentes moi suaves.
- C) Igual en ámbalas rutas.

(A.B.A.U. ord. 20)

Solución: C

A forza gravitacional é unha forza conservativa. Pódese definir unha magnitude, chamada enerxía potencial, que depende só da posición, ademais da masa. No caso da forza gravitacional preto da superficie da Terra.

$$E_p = m \cdot g \cdot h$$

O traballo realizado por unha forza conservativa é independente do camiño, só depende dos puntos inicial e final.

$$W_{1\rightarrow 2}=E_{\rm p1}-E_{\rm p2}=-\Delta E_{\rm p}$$

$$W_{1\rightarrow 2} = m \cdot g \cdot (-\Delta h)$$

O traballo só depende das alturas inicial e final.

1.2. Unha esfera metálica cárgase positivamente atopándose en equilibrio electrostático. O campo eléctri- 🌊

A) Nulo no interior e constante no exterior da esfera.

- B) Máximo na superficie e nulo no interior.
- C) Aumenta linealmente dende o centro da esfera.

(A.B.A.U. ord. 20)

Solución: B

A intensidade, \overline{E} , de campo eléctrico no interior dun condutor metálico en equilibrio é nula. Se non fose así, as cargas desprazaríanse debido á forza do campo.

O campo eléctrico no exterior é igual que o campo creado por unha carga puntual situada no centro da esfera, o seu valor diminúe co cadrado da distancia ao centro:

$$\vec{E} = K \frac{Q}{r^2} \vec{u}$$

Como a carga é positiva, o valor é máximo na superficie.

2.1. Sitúase un obxecto a unha distancia de 20 cm á esquerda dunha lente delgada converxente de distan- 🌑 cia focal 10 cm. A imaxe que se forma é:

- A) De maior tamaño, real, dereita.
- B) De igual tamaño, virtual, invertida.
- C) De igual tamaño, real, invertida.

(A.B.A.U. ord. 20)

Solución: C

Debúxase un esquema de lente converxente (unha liña vertical rematada por dúas puntas de frechas) e sitúase o foco F' á dereita da lente.

Debúxase, á súa esquerda, unha frecha vertical cara arriba, que representa ao obxecto O. Desde o punto superior do obxecto debúxanse dous raios:

- Un, cara ao centro da lente. Atravésaa sen desviarse.
- Outro, horizontal cara á lente, que a atravesa e se refracta. Debúxase de forma que o raio refractado pase polo foco da dereita F'.

Análise: A imaxe é real xa que se forma á dereita da lente que é a zona onde se forman as imaxes reais nas lentes. É invertida e de igual tamaño que o obxecto.

B) 2.

C) 8.

DATOS:
$$m(\alpha) = 4 m(p)$$
; $q(\alpha) = 2 q(p)$.

(A.B.A.U. ord. 20)

0

Solución: A

A forza magnética, \overline{F}_B , sobre unha carga, q, que se despraza no interior dun campo magnético, \overline{B} , cunha velocidade, \overline{v} , vén dada pola lei de Lorentz:

$$\overline{F}_B = q (\overline{v} \times \overline{B})$$

Esta forza é perpendicular en todos os puntos á dirección de avance da partícula, polo que describe unha traxectoria circular con velocidade de valor constante xa que a aceleración só ten compoñente normal a_N .

$$a_{\rm N} = \frac{v^2}{r}$$

Se só actúa a forza magnética:

$$\Sigma \overline{\boldsymbol{F}} = \overline{\boldsymbol{F}}_B$$

Aplicando a 2.ª lei de Newton:

$$\Sigma \overline{F} = m \cdot \overline{a}$$

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Como as partículas entran perpendicularmente ao campo, sen φ = 1. Despexando a velocidade v:

$$v = \frac{q \cdot B \cdot R}{m}$$

Como o raio e o campo magnético son os mesmos, aplicando esta expresión tanto á partícula α como ao protón e dividindo unha entre a outra queda:

$$\frac{v_{\alpha}}{v_{p}} = \frac{\frac{q_{\alpha} \cdot \frac{B \cdot R}{B \cdot R}}{m_{\alpha}}}{\frac{q_{p} \cdot B \cdot R}{m_{p}}} = \frac{m_{p} \cdot q_{\alpha}}{m_{\alpha} \cdot q_{p}} = \frac{m_{p} \cdot 2 q_{p}}{4 m_{p} \cdot q_{p}} = \frac{1}{2}$$

$$v_{\alpha} = 1/2 v_{\rm r}$$

A velocidade da partícula alfa é a metade que a do protón.

3.1. Nunha célula fotoeléctrica, o cátodo metálico ilumínase cunha radiación de 175 nm de lonxitude de onda e o potencial de freado é de 1 V. Se usamos unha luz de 250 nm, o potencial de freado será:

- A) Menor.
- B) Maior.
- C) Igual.

Solución: A

Cando a luz interactúa co metal da célula fotoeléctrica faino coma se fose un chorro de partículas chamadas fotóns (paquetes de enerxía).

Cada fotón choca cun electrón e transmítelle toda a súa enerxía.

Para que se produza efecto fotoeléctrico, os electróns emitidos deben ter enerxía suficiente para chegar ao anticátodo, o que ocorre cando a enerxía do fotón é maior que o traballo de extracción, que é unha característica do metal.

A ecuación de Einstein do efecto fotoeléctrico pode escribirse:

$$E_{\rm f} = W_e + E_{\rm c}$$

Na ecuación, $E_{\rm f}$ representa a enerxía do fotón incidente, $W_{\rm e}$ o traballo de extracción do metal e $E_{\rm c}$ a enerxía cinética máxima dos electróns (fotoelectróns) emitidos.

A enerxía que leva un fotón de frecuencia f é:

$$E_f = h \cdot f$$

h é a constante de Planck e ten un valor moi pequeno: $h = 6,63 \cdot 10^{-34}$ J·s.

A frecuencia dunha onda é inversamente proporcional a súa lonxitude de onda λ ,

$$f = \frac{c}{\lambda}$$

Cuanto maior sexa a súa lonxitude de onda, menor será a frecuencia e menor será a enerxía do fotón. A enerxía cinética máxima dos electróns emitidos será:

$$E_{\rm c} = E_{\rm f} - W_{\rm e}$$

A enerxía do fotón, que depende da frecuencia f, escríbese en función da lonxitude de onda λ .

$$E_{\rm f} = h \cdot f = h \cdot \frac{c}{\lambda}$$

A enerxía cinética E_c máxima dos electróns escríbese en función do potencial de freado

$$E_{\rm c} = |e| \cdot V$$

A ecuación de Einstein queda:

$$\frac{h \cdot c}{\lambda} = W_e + |e| \cdot V$$

Por tanto, canto maior sexa a súa lonxitude de onda menor será a enerxía dos fotóns e a enerxía cinética e o potencial de freado dos electróns emitidos.

Se tivésemos todos os datos para facer os cálculos (a constante de Planck, a velocidade da luz no baleiro e a carga do electrón) descubririamos que a radiación de 250 nm non produciría efecto fotoeléctrico. O traballo de extracción é:

$$W_{e} = \frac{h \cdot c}{\lambda} - |e| \cdot V = \frac{6.63 \cdot 10^{-34} [\text{J} \cdot \text{s}] \cdot 3.00 \cdot 10^{8} [\text{m/s}]}{175 \cdot 10^{-9} [\text{m}]} - 1.60 \cdot 10^{-19} [\text{C}] \cdot 1[\text{V}] = 9.74 \cdot 10^{-19} \text{J}$$

A enerxía do fotón de 250 nm vale:

$$E_{\rm f} = h \cdot f = h \cdot \frac{c}{\lambda} = \frac{6.63 \cdot 10^{-34} \,[\,\text{J} \cdot \text{s}\,] \cdot 3.00 \cdot 10^8 \,[\,\text{m/s}\,]}{250 \cdot 10^{-9} \,[\,\text{m}\,]} = 7.95 \cdot 10^{-19} \,[\,\text{J}\,]$$

Enerxía menor que o traballo de extracción. Non sería suficiente para producir efecto fotoeléctrico.

3.2. Medimos o noso pulso na Terra (en repouso) observando que o tempo entre cada latexo é de 0,80 s. Despois facemos a medida viaxando nunha nave espacial á velocidade de 0,70 c, sendo c a velocidade da luz no baleiro. De acordo coa teoría especial da relatividade, o tempo que medimos será:

B) 0,57 s.

C) 0,80 s.

(A.B.A.U. ord. 20)

Solución: C

A teoría da relatividade especial predí que o tempo dun sistema que se move a velocidade moi alta relativa a un sistema en repouso, transcorre máis lentamente. A dilatación do tempo vén dada pola expresión:

$$\Delta t' = \frac{\Delta t}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Pero o tempo propio, medido por un observador situado dentro do sistema que se move, é o mesmo que se estivese en repouso. O principio de relatividade di que non se pode determinar mediante a experiencia se un sistema está en repouso ou está movéndose.

4. Estudando o fenómeno da refracción nunha lámina de vidro faise incidir un raio de luz con distintos ángulos sobre a superficie. Na táboa da marxe aparecen os ángulos de incidencia e os ángulos de refracción.

i (°) r (°) 27 16

a) Calcula o índice de refracción do material a partir dos datos da táboa.

36 21

b) Indica en que condicións se produciría reflexión total.

48 27

DATOS: n(aire) = 1; $c = 3 \times 10^8 \text{ m} \cdot \text{s}^{-1}$.

(A.B.A.U. ord. 20) 57 31

Solución:

<u>DETERMINACIÓN DO ÍNDICE DE REFRACCIÓN DUN MEDIO</u> en <u>Prácticas</u>: <u>Orientacións xerais</u> do *Grupo de Traballo*.

a) A lei de Snell pode resumirse na ecuación:

$$n_i \cdot \text{sen } i = n_r \cdot \text{sen } r$$

Se o medio de incidencia é o aire, $n_i = 1$, o índice de refracción do vidro será

$$n_{\rm r} = \frac{{\rm sen}\,i}{{\rm sen}\,r}$$

Se se fai unha representación gráfica de sen r fronte a sen i, a pendente da gráfica será a inversa do índice de refracción.

$$sen r = (1 / n_r) \cdot sen i$$

Faise unha táboa calculando os senos dos ángulos de incidencia e refracción.

i (°)	r (°)	sen i	sen r	sen i / sen r
27	16	0,454	0,276	1,647
36	21	0,588	0,358	1,640
48	27	0,743	0,454	1,637
57	31	0,839	0,515	1,628

Nunha folla de cálculo represéntanse nunha gráfica sen r fronte a sen i e trázase a liña de tendencia que pasa pola orixe de coordenadas.

A inversa da pendente será o índice de refracción:

$$n_{\rm r} = \frac{{\rm sen}\,i}{{\rm sen}\,r} = \frac{1}{0.611} = 1,64$$

Se non se ten unha folla de cálculo trázase a ollo a recta polos puntos. Nese caso a incerteza vai ser moito maior.

$$n_{\rm r} = 1.6 \pm 0.1$$

A falta de papel milimetrado, o valor do índice de refracción pode calcularse como a media aritmética dos cocientes sen i / sen r

$$n_{\rm r} = \frac{1,647 + 1,640 + 1,637 + 1,628}{4} = 1,64$$

Índice de refracción

b) A reflexión total dun raio de luz ocorre cando pasa dun medio dun determinado índice de refracción a outro que ten un índice maior se o ángulo de incidencia fose maior que o ángulo límite. Neste caso podería ocorrer para o raio de luz no interior do vidro ao chegar á superficie de separación do aire. O ángulo límite entre este vidro e o aire é o ángulo de incidencia ao que correspondería un ángulo de refracción de 90°.

$$n_{\rm i} \cdot {\rm sen} \ \lambda = n_{\rm r} \cdot {\rm sen} \ 90^{\circ}$$

$$\lambda = \arcsin \frac{n_{\rm r}}{n_{\rm i}} = \arcsin \frac{1}{1,64} = 38^{\circ}$$

- Un meteorito de 150 kg de masa achégase á Terra e acada unha velocidade de 30 km⋅s⁻¹ cando está a unha altura sobre a superficie da Terra igual a 6 veces o raio desta. Calcula:
 - a) O seu peso a esa altura.
 - b) A súa enerxía mecánica a esa altura.

Datos: $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$; $M(T) = 5.98 \times 10^{24} \text{ kg}$; $R(T) = 6.37 \times 10^6 \text{ m}$.

Rta.: a) $P_h = 30.1 \text{ N}$; b) $E = 6.61 \cdot 10^{10} \text{ J}$.

(A.B.A.U. ord. 20)

Datos

Raio da Terra Masa da Terra

Constante da gravitación universal

Masa do meteorito

Velocidade do meteorito

Altura

Incógnitas

Peso do meteorito a esa altura = forza gravitacional que actúa sobre el Enerxía mecánica do meteorito a esa altura

Outros símbolos

Raio da órbita

Ecuacións

Lei de Newton da gravitación universal, en módulos.

(forza que exerce un planeta esférico sobre un corpo puntual)

Enerxía cinética dunha masa, m, que se move cunha velocidade, v

Enerxía potencial gravitacional (referida ao infinito)

Enerxía mecánica

Cifras significativas: 3

 $R = 6.37 \cdot 10^6 \text{ m}$ $M = 5.98 \cdot 10^{24} \text{ kg}$ $G = 6.67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$ m = 150 kg

 $v = 30.0 \text{ km} \cdot \text{s}^{-1} = 3.00 \cdot 10^4 \text{ m/s}$

 $h = 6 R = 3.82 \cdot 10^7 \text{ m}$

 $P_{\rm h}$ Е

$$F_{G} = G \frac{M m}{r^{2}}$$

$$E_{c} = \frac{1}{2} m \cdot v^{2}$$

 $E_{\rm p} = -G \frac{M \cdot m}{r}$

 $E = E_{\rm c} + E_{\rm p}$

Solución:

a) Calcúlase a distancia do meteorito coa Tera:

$$r = R + h = R + 6 R = 7 R = 7 \cdot 6.37 \cdot 10^{6} [m] = 4.46 \cdot 10^{7} m$$

Calcúlase o peso, que é a forza gravitacional:

$$P_{h} = F_{G} = G \frac{M \cdot m}{r^{2}} = \frac{6.67 \cdot 10^{-11} \left[\text{N} \cdot \text{m}^{2} \cdot \text{kg}^{-2} \right] \cdot 5.98 \cdot 10^{24} \left[\text{kg} \right] \cdot 150 \left[\text{kg} \right]}{\left(4.46 \cdot 10^{7} \left[\text{m} \right] \right)^{2}} = 30.1 \text{ N}$$

b) Calcúlase a enerxía potencial:

$$E_{p} = -G \frac{M \cdot m}{r} = -\frac{6.67 \cdot 10^{-11} \left[N \cdot m^{2} \cdot kg^{-2} \right] \cdot 5.98 \cdot 10^{24} \left[kg \right] \cdot 150 \left[kg \right]}{4.46 \cdot 10^{7} \left[m \right]} = -1.34 \cdot 10^{9} \text{ J}$$

Calcúlase a enerxía cinética:

$$E_c = m \cdot v^2 / 2 = 150 \text{ [kg]} \cdot (3,00.10^4 \text{ [m/s]})^2 / 2 = 6,75.10^{10} \text{ J}$$

A enerxía mecánica é a suma das enerxías cinética e potencial.

$$E = E_{\rm c} + E_{\rm p} = 6.75 \cdot 10^{10} \, [\rm J] + (-1.34 \cdot 10^9 \, [\rm J]) = 6.61 \cdot 10^{10} \, \rm J$$

- 6. Un dipolo eléctrico é un sistema formado por dúas cargas do mesmo valor e de signo contrario que están separadas unha distancia fixa. Se o valor absoluto de cada unha das cargas é 2 μ C e están situadas nos puntos (0, 0) e (4, 0), calcula:
 - a) O potencial eléctrico creado polo dipolo no punto (2, 2).
 - b) A aceleración que experimenta un protón situado no punto medio do dipolo.

DATOS: $K = 9.10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$; $q(p) = 1,6.10^{-19} \text{ C}$; $m(p) = 1,67.10^{-27} \text{ kg}$. As distancias están en metros.

(A.B.A.U. ord. 20)

Rta.: a) V = 0; b) $\overline{a} = 8.62 \cdot 10^{11} \overline{i} \text{ m/s}^2$.

Datos	Cifras significativas: 3
Posición da carga Q_1	$rac{\mathbf{r}}{\mathbf{r}_1} = (0, 0) \text{ m}$
Posición da carga Q_2	$rac{\mathbf{r}}_2 = (4,00, 0) \text{ m}$
Posición do punto 3	$rac{\mathbf{r}_3}{} = (2,00, 2,00) \text{ m}$
Posición do punto medio do dipolo (punto 4)	$rac{r}{4} = (2,00, 0) \text{ m}$
Valor da carga situada no punto 1	$Q_1 = 2,00 \ \mu\text{C} = 2,00 \cdot 10^{-6} \ \text{C}$
Valor da carga situada no punto 2	$Q_2 = -2,00 \ \mu\text{C} = -2,00 \cdot 10^{-6} \ \text{C}$
Valor da carga do protón	$q = 1,60 \cdot 10^{-19} \text{ C}$
Masa do protón	$m = 1,67 \cdot 10^{-27} \text{ kg.}$
Constante de Coulomb	$K = 9,00 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$
Incógnitas	
Potencial eléctrico no punto 3	V_3
Aceleración dun protón situado no punto medio do dipolo	a
Outros símbolos	
Distancia	r
Ecuacións	
Campo eléctrico nun punto a unha distancia, r , dunha carga puntual, Q	$\vec{E} = K \frac{Q}{r^2} \vec{u}_r$ $\vec{E}_A = \sum_i \vec{E}_{Ai}$
Principio de superposición	
Potencial eléctrico nun punto a unha distancia, r , dunha carga puntual, Q	$V = K \frac{Q}{r}$
Potencial eléctrico nun punto debido a varias cargas	$V = \sum_{i} V_i$
Campo eléctrico	$V = \sum_{i} V_{i}$ $\vec{E} = \frac{\vec{F}}{q}$
2.ª lei de Newton da Dinámica	$\overline{F} = m \cdot \overline{a}$

Solución:

a)

O potencial eléctrico nun punto, debido á presencia de varias cargas, é a suma dos potenciais producidos nese punto por cada carga, coma se o resto das cargas non estivese presente.

Para determinar o potencial eléctrico nun punto, calcúlanse os potenciais creados nese punto por cada carga, e despois súmanse.

A ecuación do potencial eléctrico, V, nun punto situado a unha distancia, r, dunha carga puntual, Q, é:

$$V = K \frac{Q}{r}$$

K é a constante de Coulomb.

Calcúlase a distancia do punto 1(0, 0) ao punto 3(2, 2):

$$r_{13} = |\vec{r}_3 - \vec{r}_1| = \sqrt{(2,00 \text{ [m]} - (0 \text{ [m]}))^2 + (2,00 \text{ [m]} - 0 \text{ [m]})^2} = 2,83 \text{ m}$$

Calcúlase o potencial no punto 3(2, 2), debido á carga de 2 µC situada no punto 1:

$$V_{31} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{2,00 \cdot 10^{-6} \left[\text{C} \right]}{(2,83 \left[\text{m} \right])} = 6,36 \cdot 10^3 \text{ V}$$

O potencial no punto 3(2, 2), debido á carga de -2 μC situada no punto 2, ten o valor oposto xa que a distancia é a mesma pero a carga é oposta:

$$V_{32} = -6.36 \cdot 10^3 \text{ V}$$

O potencial eléctrico dun punto debido á presenza de varias cargas, é a suma alxébrica dos potenciais debidos a cada carga. Como son opostos, o potencial anúlase.

$$V_3 = V_{31} + V_{32} = 6.36 \cdot 10^3 \text{ [V]} + (-6.36 \cdot 10^3 \text{ [V]}) = 0$$

b) O punto medio do dipolo é o punto 4(2, 0).

Nun debuxo sitúanse os puntos 1(0, 0), 2(4, 0), y 4(2, 0).

Suponse que a carga positiva está no punto 1.

Debúxanse os vectores do campo no punto 4, un vector por cada carga, prestando atención ao sentido prestando atención ao sentido.

O campo creado pola carga positiva situada no punto 1 é de repulsión,

pero o campo creado pola carga negativa situada no punto 2 é de atracción.

A medida de ambos os vectores é a mesma, porque os valores dos campos son os mesmos, xa que as distancias e os valores absolutos das cargas son iguais.

Debúxase o vector suma que é o campo resultante, \overline{E}_4 .

A medida do resultado será o dobre da medida dun dos campos.

Para calcular a aceleración do protón, calcúlase antes a forza eléctrica no punto medio, a partir do campo eléctrico.

O principio de superposición di que a intensidade de campo eléctrico nun punto, debido á presencia de varias cargas, é a suma vectorial dos campos producidos nese punto por cada carga, coma se o resto das cargas non estivese presente.

Para determinar o campo nun punto, calcúlanse os campos creados nese punto por cada carga, e despois súmanse os vectores.

A forza eléctrica entre dúas cargas puntuais, Q e q, separadas por unha distancia, r, vén dada pola lei de Coulomb, na que K é a constante de Coulomb e $\overline{\boldsymbol{u}}_{r}$ o vector unitario na liña que une as cargas.

$$\vec{F}_E = K \frac{Q \cdot q}{r^2} \vec{u}_r$$

O campo eléctrico nun punto situado a unha distancia, r, dunha carga puntual, Q, é a forza sobre a unidade de carga positiva situada nese punto:

$$\vec{E} = \frac{\vec{F}_E}{q} = \frac{K \frac{Q \cdot q}{r^2} \vec{u}_r}{\frac{q}{q}} = K \frac{Q}{r^2} \vec{u}_r$$

A distancia do punto 1 ao punto 4 é: $r_{14} = |(2,00,0)[m] - (0,0)| = 2,00 \text{ m}.$

O vector unitario do punto 4, tomando como orixe o punto 1, $\dot{\mathbf{i}}$, o vector unitario do eixe X. Calcúlase o campo no punto 4, debida á carga de 2 µC situada no punto 1:

$$\vec{E}_{41} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{2,00 \cdot 10^{-6} \left[\text{C} \right]}{(2,00 \left[\text{m} \right])^2} \vec{i} = 4,50 \cdot 10^3 \vec{i} \text{ N/C}$$

O campo no punto 4, debida á carga de 2 µC situada no punto 2, é o mesmo:

$$\overline{E}_{42} = 4.50 \cdot 10^3 \, \overline{i} \, \text{N/C}$$

Polo principio de superposición, o campo resultante no punto 4 é a suma vectorial dos campos creados nese punto por cada carga.

$$\overline{E}_{4} = \overline{E}_{41} + \overline{E}_{42} = 4,50 \cdot 10^{3} \, \overline{i} \, [\text{N/C}] + 4,50 \cdot 10^{3} \, \overline{i} \, [\text{N/C}] = 9,00 \cdot 10^{3} \, \overline{i} \, \text{N/C}$$

Análise: Coincide co debuxo. O campo resultante do cálculo está dirixido no sentido positivo do eixe X.

Como o campo eléctrico é a forza sobre a unidade de carga positiva, calcúlase a forza despexando:

$$\vec{E} = \frac{\vec{F}}{q} \implies \vec{F} = q \cdot \vec{E}_4 = 1,60 \cdot 10^{-19} [C] \cdot 9,00 \cdot 10^3 \, \vec{i} \, [N/C] = 1,44 \cdot 10^{-15} \, \vec{i} \, N$$

A aceleración calcúlase aplicando a segunda lei de Newton:

$$\vec{F} = m \cdot \vec{a} \implies \vec{a} = \frac{\vec{F}}{m} = \frac{1,44 \cdot 10^{-15} \, \vec{i} \, [\text{N}]}{1,67 \cdot 10^{-27} \, [\text{kg}]} = 8,62 \cdot 10^{11} \, \vec{i} \, \text{m/s}^2$$

O resultado, independente dea orientación do dipolo, sería: a aceleración do protón é de $8,62\cdot10^{11}$ m/s², cara á carga negativa.

Análise: O valor da aceleración parece moi elevado, pero os cálculos son correctos.

- 7. A ecuación y(x, t) = 0.04 sen 2 π (4 t 2x) m representa unha onda que se propaga por unha corda situada ao longo do eixe X, estando t expresado en segundos. Calcula:
 - a) A frecuencia, a lonxitude de onda e a velocidade de propagación da onda.
 - b) A diferenza de fase, nun instante determinado, entre dous puntos da corda separados 1 m.

(A.B.A.U. ord. 20)

Rta.: a) f = 4 Hz; $\lambda = 0.5$ m; $v_p = 2$ m/s; b) $\Delta \varphi = 4$ π rad.

Datos	Cifras significativas: 3
Ecuación da onda	$y = 0.0400 \text{ sen } 2\pi (2.00 x - 4.00 t) \text{ [m]}$
Distancia entre os puntos	$\Delta x = 1,00 \text{ m}$
Incógnitas	
Velocidade de propagación	$ u_{ m p}$
Diferenza de fase entre dous puntos separados 1 m	$\Delta arphi$
Outros símbolos	
Pulsación (frecuencia angular)	ω
Frecuencia	f
Lonxitude de onda	λ
Número de onda	k
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia angular e a frecuencia	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_n = \lambda \cdot f$

Solución:

a) Obtéñense a frecuencia angular e o número de onda comparando a ecuación dunha onda harmónica unidimensional coa ecuación do problema:

$$y = A \cdot \text{sen}(\omega \cdot t \pm k \cdot x)$$

$$y = 0.0400 \text{ sen } 2\pi (2.00 \ x - 4.00 \ t) = 0.0400 \cdot \text{sen}(-8.00 \cdot \pi \cdot t + 4.00 \cdot \pi \cdot x) \text{ [m]}$$

Frecuencia angular: $\omega = 8,00 \cdot \pi \text{ [rad/s]} = 25,1 \text{ rad/s}$ Número de onda: $k = 4,00 \cdot \pi \text{ [rad/m]} = 12,6 \text{ rad/m}$

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2\pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{8,00 \cdot \pi \left[\text{rad} \cdot \text{s}^{-1} \right]}{2\pi \left[\text{rad} \right]} = 4,00 \text{ s}^{-1} = 4,00 \text{ Hz}$$

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = \frac{2\pi}{\lambda} \Rightarrow \lambda = \frac{2\pi}{k} = \frac{2\pi \text{ [rad]}}{4,00 \cdot \pi \text{ [rad \cdot m}^{-1]}} = 0,500 \text{ m}$$

Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 0.500 \text{ [m]} \cdot 4.00 \text{ [s}^{-1}] = 2.00 \text{ m} \cdot \text{s}^{-1}$$

b) Nun instante t, a diferenza de fase entre dous puntos situados en x_1 e x_2 é:

$$\Delta \varphi = [2 \pi (-4,00 \cdot t + 2,00 \cdot x_2)] - [4 \pi (2 \pi (-4,00 \cdot t + 2,00 \cdot x_1)] = 2 \pi \cdot 2,00 \cdot (x_1 - x_2) = 2 \pi \cdot 2,00 \cdot \Delta x$$
$$\Delta \varphi = 2 \pi \cdot 2,00 \cdot 1,00 = 4,00 \pi \text{ rad}$$

Análise: A distancia entre os puntos é 1,00 m que é o dobre da lonxitude de onda. Como os puntos que están en fase ou cuxa diferencia de fase é múltiplo de 2π atópanse a unha distancia que é múltiplo da lonxitude de onda, unha distancia de dúas veces a lonxitude de onda corresponde a unha diferenza de fase dobre de 2π , ou sexa, 4 π rad.

Os dous puntos atópanse en fase.

Nunha cova encóntranse restos orgánicos e ao realizar a proba do carbono-14 obsérvase que a actividade da mostra é de 106 desintegracións/s. Sabendo que o período de semidesintegración do carbono-14 é de 5730 anos, calcula:

- a) A masa inicial da mostra.
- b) A masa da mostra cando transcorran 4000 anos.

DATOS: $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$; $A(^{14}\text{C}) = 14$.

Rta.: a) $m_0 = 6,06 \,\mu\text{g}$; b) $m = 3,74 \,\mu\text{g}$.

(A.B.A.U. ord. 20)

Datos

Período de semidesintegración Actividade da mostra Tempo para calcular a actividade Masa atómica do 14C Número de Avogadro

Incógnitas

Masa inicial da mostra Masa aos 4000 anos Outros símbolos

Constante de desintegración radioactiva

Ecuacións

Lei da desintegración radioactiva

Relación do período de semidesintegración coa constante de desintegración $T_{\frac{1}{2}} \cdot \lambda = \ln 2$ Actividade radioactiva

Cifras significativas: 3

 $T_{\frac{1}{2}} = 5 730 \text{ anos} = 1.81 \cdot 10^{11} \text{ s}$ $A_0 = 1,00.10^6 \text{ Bq}$ t = 4000 anosM = 14.0 g/mol $N_{\rm A} = 6.02 \cdot 10^{23} \, \rm mol^{-1}$

 m_0 \boldsymbol{A}

λ

 $N = N_0 \cdot e^{-\lambda \cdot t}$

 $A = -d N / d t = \lambda \cdot N$

Solución:

a) Pódese calcular o número de átomos a partir da expresión da actividade radioactiva.

A lei de desintegración radioactiva, que di que o número de átomos que se desintegran na unidade de tempo é proporcional á cantidade de átomos presentes, ($-dN = \lambda \cdot N \cdot dt$), pode expresarse como:

$$N = N_0 \cdot e^{-\lambda \cdot t}$$

N é a cantidade de átomos que quedan sen desintegrar ao cabo dun tempo t, N_0 é a cantidade inicial de átomos e λ é a constante de desintegración.

Obtense unha versión máis manexable da ecuación de desintegración radioactiva, $N = N_0 \cdot e^{-\lambda \cdot t}$, pasando N_0 ao outro membro, aplicando logaritmos neperianos e cambiando o signo:

$$-\ln (N/N_0) = \ln (N_0/N) = \lambda \cdot t$$

O período de semidesintegración dunha substancia radioactiva é o tempo que transcorre ata que só queda a metade da mostra orixinal. Cando $t = T_{1/2}$, $N = N_0 / 2$.

Poñendo na ecuación logarítmica: (2 N) en lugar de N_0 , e $T_{1/2}$ en vez de t, queda:

$$\ln (2 N/N) = \lambda \cdot T_{1/2} \qquad \Longrightarrow \lambda \cdot T_{1/2} = \ln 2$$

Calcúlase o período de semidesintegración en segundos:

$$T_{1/2}$$
=5730 [anos] $\frac{365,25 \text{ [días]}}{1 \text{ [ano]}} \frac{24,0 \text{ [h]}}{1 \text{ [día]}} \frac{3600 \text{ [s]}}{1 \text{ [h]}} = 1,81 \cdot 10^{11} \text{ s}$

Calcúlase a constante λ de desintegración radioactiva, a partir do período de semidesintegración:

$$\lambda = \frac{\ln 2}{T_{1/2}} = \frac{0.693}{1.81 \cdot 10^{11} \, [s]} = 3.83 \cdot 10^{-12} \, \text{s}^{-1} = \frac{0.693}{5730 \, [anos]} = 0.000175 \, \text{ano}^{-1}$$

A actividade radioactiva é o número de átomos que se desintegran nun segundo. É proporcional á cantidade de substancia radioactiva, sendo λ , a constante radioactiva, característica de cada isótopo.

$$A = \frac{-\mathrm{d} N}{\mathrm{d} t} = \lambda \cdot N$$

Calcúlase o número de átomos inicial despexando na actividade:

$$A = \lambda \cdot N \Rightarrow N_0 = \frac{A_0}{\lambda} = \frac{1,00 \cdot 10^6 \text{ [Bq]}}{3.83 \cdot 10^{-12} \text{ [s}^{-1]}} = 2,61 \cdot 10^{17} \text{ átomos}$$

Calcúlase a masa, que é proporcional á cantidade de átomos:

$$m_0 = \frac{N_0}{N_A} \cdot M = \frac{2.61 \cdot 10^{17} [\text{átomos}]}{6.02 \cdot 10^{23} [\text{átomos/mol}]} \cdot 14.0 [\text{g/mol}] = 6.06 \cdot 10^{-6} \text{g} = 6.06 \mu \text{g}$$

Análise: Coa nula precisión do dato da actividade, 106 Bq, o resultado podería ser calquera ente 0,1 μg e 10 μg.

b) Dedúcese a lei da desintegración radioactiva en función da masa.

Como a masa, m, é proporcional á cantidade de átomos, N: $(m = N \cdot M / N_A)$, pódese obter unha expresión similar á lei da desintegración radioactiva, $N = N_0 \cdot e^{-\lambda \cdot t}$, multiplicando ambos os membros por (M / N_A) :

$$N \cdot \frac{M}{N_A} = N_0 \cdot \frac{M}{N_A} e^{-\lambda t} \Rightarrow m = m_0 \cdot e^{-\lambda \cdot t}$$

 $N_{\!\scriptscriptstyle A}$ é o número de Avogadro e Mé a masa atómica do elemento.

Calcúlase a masa da mostra cando transcorran 4000 anos:

$$m = m_0 \cdot e^{-\lambda \cdot t} = 6,06 \cdot 10^{-6} [g] \cdot e^{-0,000175 [ano]^{-1} \cdot 4000 [ano]} = 3,74 \cdot 10^{-6} g = 3,74 \mu g$$

Análise: 4000 anos son algo menos que 1 período de semidesintegración, polo que a masa que debe quedar debe ser un pouco máis da metade da inicial (6,06 µg), o que está de acordo co resultado.

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 16/07/24