EIGHTH edition

Clinical Chemistry

Principles, Techniques, and Correlations

EIGHTH edition

Clinical Chemistry

Principles, Techniques, and Correlations

Michael L. Bishop, MS, MLS(ASCP)^{CM}

Campus Department Chair Medical Laboratory Science Keiser University Orlando, Florida

Edward P. Fody, MD

Clinical Professor
Department of Pathology, Microbiology and Immunology
Vanderbilt University School of Medicine
Nashville, Tennessee
Medical Director
Department of Pathology
Holland Hospital

Holland, Michigan

Larry E. Schoeff, MS, MT(ASCP)

Professor (Retired), Medical Laboratory Science Program Department of Pathology University of Utah School of Medicine Salt Lake City, Utah

Acquisitions Editor: Jonathan Joyce

Product Development Editor: John Larkin

Marketing Manager: Leah Thomson

Production Project Manager: Kim Cox

Design Coordinator: Joan Wendt

Manufacturing Coordinator: Margie Orzech

Prepress Vendor: SPi Global

Eighth edition

Copyright © 2018 Wolters Kluwer

Copyright © 2013, 2010, 2005, 2000, 1996, 1992, 1985 Wolters Kluwer Health/Lippincott Williams & Wilkins. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Wolters Kluwer at Two Commerce Square, 2001 Market Street, Philadelphia, PA 19103, via email at permissions@lww.com, or via our website at lww.com (products and services).

987654321

Printed in China

Library of Congress Cataloging-in-Publication Data

Names: Bishop, Michael L., editor. | Fody, Edward P., editor. | Schoeff, Larry E., editor. Title: Clinical chemistry: principles, techniques, and correlations / [edited by] Michael L. Bishop,

Edward P. Fody, Larry E. Schoeff.

Other titles: Clinical chemistry (Bishop)

Description: Eighth edition. | Philadelphia: Wolters Kluwer, [2018] | Includes bibliographical

references and index.

Identifiers: LCCN 2016031591 | ISBN 9781496335586

Subjects: | MESH: Clinical Chemistry Tests | Chemistry, Clinical—methods Classification: LCC RB40 | NLM QY 90 | DDC 616.07/56—dc23 LC record

This work is provided "as is," and the publisher disclaims any and all warranties, express or implied, including any warranties as to accuracy, comprehensiveness, or currency of the content of this work.

This work is no substitute for individual patient assessment based upon healthcare professionals' examination of each patient and consideration of, among other things, age, weight, gender, current or prior medical conditions, medication history, laboratory data and other factors unique to the patient. The publisher does not provide medical advice or guidance and this work is merely a reference tool. Healthcare professionals, and not the publisher, are solely responsible for the use of this work including all medical judgments and for any resulting diagnosis and treatments. Given continuous, rapid advances in medical science and health information, independent professional verification of medical diagnoses, indications, appropriate pharmaceutical selections and dosages, and treatment options should be made and healthcare professionals should consult a variety of sources. When prescribing medication, healthcare professionals are advised to consult the product information sheet (the manufacturer's package insert) accompanying each drug to verify, among other things, conditions of use, warnings and side effects and identify any changes in dosage schedule or contraindications, particularly if the medication to be administered is new, infrequently used or has a narrow therapeutic range. To the maximum extent permitted under applicable law, no responsibility is assumed by the publisher for any injury and/or damage to persons or property, as a matter of products liability, negligence law or otherwise, or from any reference to or use by any person of this work.

LWW.com

Not authorised for sale in United States, Canada, Australia, New Zealand, Puerto Rico, and U.S. Virgin Islands.

Acquisitions Editor: Jonathan Joyce

Product Development Editor: John Larkin

Marketing Manager: Leah Thomson
Production Project Manager: Kim Cox

Design Coordinator: Joan Wendt

Manufacturing Coordinator: Margie Orzech

Prepress Vendor: SPi Global

Eighth edition

Copyright © 2018 Wolters Kluwer

Copyright © 2013, 2010, 2005, 2000, 1996, 1992, 1985 Wolters Kluwer Health/Lippincott Williams & Wilkins. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Wolters Kluwer at Two Commerce Square, 2001 Market Street, Philadelphia, PA 19103, via email at permissions@lww.com, or via our website at

lww.com (products and services).

987654321

Printed in China

Library of Congress Cataloging-in-Publication Data

Names: Bishop, Michael L., editor. | Fody, Edward P., editor. | Schoeff, Larry E., editor. Title: Clinical chemistry: principles, techniques, and correlations / [edited by] Michael L. Bishop,

Edward P. Fody, Larry E. Schoeff.

Other titles: Clinical chemistry (Bishop)

Description: Eighth edition. | Philadelphia: Wolters Kluwer, [2018] | Includes bibliographical

references and index.

Identifiers: LCCN 2016031591 | ISBN 9781496365392

Subjects: | MESH: Clinical Chemistry Tests | Chemistry, Clinical—methods Classification: LCC RB40 | NLM QY 90 | DDC 616.07/56—dc23 LC record

available at https://lccn.loc.gov/2016031591

This work is provided "as is," and the publisher disclaims any and all warranties, express or implied, including any warranties as to accuracy, comprehensiveness, or currency of the content of this work.

This work is no substitute for individual patient assessment based upon healthcare professionals' examination of each patient and consideration of, among other things, age, weight, gender, current or prior medical conditions, medication history, laboratory data and other factors unique to the patient. The publisher does not provide medical advice or guidance and this work is merely a reference tool. Healthcare professionals, and not the publisher, are solely responsible for the use of this work including all medical judgments and for any resulting diagnosis and treatments.

Given continuous, rapid advances in medical science and health information, independent professional verification of medical diagnoses, indications, appropriate pharmaceutical selections and dosages, and treatment options should be made and healthcare professionals should consult a variety of sources. When prescribing medication, healthcare professionals are advised to consult the product information sheet (the manufacturer's package insert) accompanying each drug to verify, among other things, conditions of use, warnings and side effects and identify any changes in dosage schedule or contraindications, particularly if the medication to be administered is new, infrequently used or has a narrow therapeutic range. To the maximum extent permitted under applicable law, no responsibility is assumed by the publisher for any injury and/or damage to persons or property, as a matter of products liability, negligence law or otherwise, or from any reference to or use by any person of this work.

LWW.com

In memory of my mother, Betty Beck Bishop, for her constant support, guidance, and

encou

ent.

MLB

To Nancy, my wife, for continuing support and dedication.

EPF

To my wife, Anita, for continuing support.

LES

Contributors

Dev Abraham, MD

Professor of Medicine Division of Endocrinology University of Utah Salt Lake City, Utah

Josephine Abraham, MD, MPH

Professor of Medicine
Division of Nephrology
University of Utah
Salt Lake City, Utah

Michael J. Bennett, PhD, FRCPath, FACB, DABCC

Professor of Pathology and Laboratory Medicine University of Pennsylvania Director, Metabolic Disease Laboratory Children's Hospital of Philadelphia Abramson Pediatric Research Center Philadelphia, Pennsylvania

Takara L. Blamires, M.S., MLS(ASCP)^{CM}

Medical Laboratory Science Program Department of Pathology University of Utah School of Medicine

Salt Lake City, Utah

Maria G. Boosalis, PhD, MPH, RD, LD

Professor, College of Health and Wellness Northwestern Health Sciences University Bloomington, Minnesota

Raffick A. R. Bowen, PhD, MHA, MT(CSMLS), DClChem, FCACB, DABCC, FACB

Clinical Associate Professor of Pathology Associate Director of Clinical Chemistry and Immunology Laboratory Department of Pathology Stanford Health Care Stanford, California

Janelle M. Chiasera, PhD

Department Chair, Clinical and Diagnostic Sciences University of Alabama – Birmingham Birmingham, Alabama

Heather Corn, MD

Internal Medicine – Clinical Instructor Endocrinology and Diabetes Center University of Utah Salt Lake City, Utah

Heather Crookston, PhD

Point of Care Coordinator Nemours Children's Hospital Orlando, Florida

Julia C. Drees, PhD, DABCC

Clinical Research and Development Scientist Kaiser Permanente Regional Laboratory Berkeley, California

Kathryn Dugan, MEd, MT(ASCP)

Instructor Medical and Clinical Laboratory Sciences

Auburn University at Montgomery Montgomery, Alabama

Michael Durando, MD, PhD

Research Track Resident, Internal Medicine and Hematology/Oncology Emory University Atlanta, Georgia

Edward P. Fody, MD

Clinical Professor
Department of Pathology, Microbiology and
Immunology Vanderbilt University School of
Medicine
Nashville, Tennessee
Medical Director
Department of Pathology
Holland Hospital
Holland, Michigan

Elizabeth L. Frank, PhD

Associate Professor, Department of Pathology University of Utah School of Medicine Medical Director, Analytic Biochemistry and Calculi ARUP Laboratories, Inc. Salt Lake City, Utah

Vicki S. Freeman, PhD, MLS(ASCP)^{CM} SC, FACB

Department Chair and Associate Professor, Clinical Laboratory Sciences University of Texas Medical Branch Galveston, Texas

Linda S. Gorman, PhD

Retired Associate Professor Medical Laboratory Science University of Kentucky Lexington, Kentucky

Ryan W. Greer, MS, I&C(ASCP)

Assistant Vice President, Group Manager Chemistry Group III, Technical Operations ARUP Laboratories, Inc. Salt Lake City, Utah

Marissa Grotzke, MD

Assistant Professor
Endocrinology and Metabolism
Internal Medicine
University of Utah
Salt Lake City, Utah

Mahima Gulati, MD

Endocrinologist
Middlesex Hospital
Danbury, Connecticut
Carrie J. Haglock-Adler, MSFS, C(ASCP)

Research Scientist ARUP Institute for Clinical and Experimental Pathology Salt Lake City, Utah

Matthew P. A. Henderson, PhD, FCACB

Clinical Biochemist and Laboratory Director for the Children's Hospital of Eastern Ontario
Ottawa Hospital

Assistant Professor

Department of Pathology and Laboratory Medicine at the University of Ottawa University of Ottawa

Ottawa, Ontario, Canada

Ronald R. Henriquez, PhD, NRCC

Fellow, Clinical Chemistry

University of North Carolina at Chapel Hill, Pathology and Laboratory Medicine University of North Carolina

Chapel Hill, North Carolina

Clinical Chemist, Department of Pathology

Walter Reed National Military Medical Center, United States

Army Bethesda, Maryland

Laura M. Hickes, PhD

Chemistry and Applications Support Manager Roche Diagnostics Greensboro, North Carolina

Brian C. Jensen, MD

Assistant Professor of Medicine and Pharmacology UNC Division of Cardiology UNC McAllister Heart Institute University of North Carolina Chapel Hill, North Carolina

Kamisha L. Johnson-Davis, PhD, DABCC (CC, TC),

FACB Assistant Professor (Clinical)

Department of Pathology University of Utah Medical Director, Clinical Toxicology ARUP Laboratories Salt Lake City, Utah

Robert E. Jones, MD

Professor of Medicine
Endocrinology and Diabetes Center
Division of Endocrinology
University of Utah
Salt Lake City, Utah

Yachana Kataria, Phd

Clinical Chemistry Fellow
Department of Laboratory Medicine
Boston Children's Hospital
Research Fellow
Harvard Medical School
Boston, Massachusetts

Mark D. Kellogg, PhD, MT(ASCP), DABCC,

FACB Director of Quality Programs

Associate Director of Chemistry

Department of Laboratory Medicine

Boston Children's Hospital

Assistant Professor of Pathology

Harvard Medical School

Boston, Massachusetts

Cindi Bullock Letsos, MT(ASCP)

Lean Six Sigma Black Belt Consultant Retired from University of North Carolina Health Care Chapel Hill, North Carolina

Kara L. Lynch, PhD

Associate Division Chief, Chemistry and Toxicology Laboratory San Francisco General Hospital San Francisco, California

J. Marvin McBride, MD, MBA

Assistant Clinical Professor Division of Geriatric Medicine UNC School of Medicine Chapel Hill, North Carolina

Christoper R. McCudden, PhD

Clinical Biochemist, Pathology and Laboratory Medicine

The Ottawa Hospital

Assistant Professor

Department of Pathology and Laboratory Medicine at the University of

Ottawa University of Ottawa

Ottawa, Ontario, Canada

Shashi Mehta, PhD

Associate Professor

Department of Clinical Laboratory Sciences

School of Health Related Professions

University of Medicine and Dentistry of New Jersey

Newark, New Jersey

James March Mistler, MS, MLS

Lecturer

Department of Medical Laboratory Science University of Massachusetts Dartmouth North Dartmouth, Massachusetts

Matthew S. Petrie, PhD

Clinical Chemistry Fellow, Department of Laboratory Medicine University of California San Francisco San Francisco, California

Tracey G. Polsky, MD, PhD

Assistant Professor of Clinical Pathology and Laboratory Medicine University of Pennsylvania Perelman School of Medicine

Assistant Director of the Clinical Chemistry Laboratory Children's Hospital of Philadelphia Philadelphia, Pennsylvania

Deepika S. Reddy, MD

Assistant Professor (Clinical)
Internal Medicine
Endocrinology and Diabetes Center
University of Utah
Salt Lake City, Utah

Alan T. Remaley, MD, PhD

Senior Staff, Department of Laboratory Medicine National Institutes of Health Bethesda, Maryland

Kyle B. Riding, PhD, MLS(ASCP)

Instructor, Medical Laboratory Science Teaching and Learning Center Coordinator Keiser University – Orlando Campus Orlando, Florida

Michael W. Rogers, MT(ASCP), MBA

Clinical Laboratory Quality Management Consultant Retired from University of North Carolina Health Care Chapel Hill, North Carolina

Amar A. Sethi, PhD

Chief Scientific Officer, Research and Development Pacific Biomarkers Seattle, Washington

Joely A. Straseski, PhD

Assistant Professor, Pathology University of Utah Salt Lake City, Utah

Frederick G. Strathmann, PhD, DABCC (CC,

TC) Assistant Professor

Department of Pathology University of Utah

Offiversity of Otali

Medical Director of Toxicology

ARUP Laboratories

Salt Lake City, Utah

Vishnu Sundaresh, MD, CCD

Assistant Professor (Clinical)
Internal Medicine
Endocrinology and Diabetes Center
University of Utah

Salt Lake City, Utah

Sara A. Taylor, PhD, MLS(ASCP), MB

Associate Professor and Graduate Advisor Department of Medical Laboratory Science Tarleton State University Fort Worth, Texas

Tolmie E. Wachter, MBA/HCM, SLS(ASCP)

Assistant Vice President

Director of Corporate Safety/RSO ARUP Laboratories Salt Lake City, Utah

G. Russell Warnick, MS, MBA

Chief Scientific Officer Health Diagnostic Laboratory Richmond, Virginia

Elizabeth Warning, MS, MLS(ASCP)^{CM}

Adjunct Faculty
MLS Program
University of Cincinnati
Cincinnati, Ohio

Monte S. Willis, MD, PhD, FCAP, FASCP, FAHA

Associate Professor, Vice Chair of Academic Affairs Department of Pathology & Laboratory Medicine, Director, Campus Health Services Laboratory University of North Carolina at Chapel Hill, Pathology & Laboratory Medicine Director, Sweat Chloride Testing Assistant Director Clinical Core (Chemistry) Laboratory Services University of North Carolina Healthcare University of North Carolina Chapel Hill, North Carolina Alan H. B. Wu, PhD, DABCC

Director, Clinical Chemistry Laboratory, San Francisco General Hospital Professor, Laboratory Medicine, University of California, San Francisco San Francisco, California

Xin Xu, MD, PhD, MLS(ASCP)

Division of Pulmonary, Allergy, and Critical Care MedicineDepartment of Medicine University of Alabama at Birmingham Birmingham, AL

foreword to the eighth edition

For many years, the health care and medical laboratory communities have been preparing for an impending workforce shortage that could threaten to compromise patient care and safety. It is vital that the medical laboratory community continue to educate and prepare credentialed professionals who can work efficiently, have essential analytical and critical thinking skills, and can communicate test results and test needs to health care providers. While the shortage of qualified laboratory practitioners has been in the forefront of our collective thoughts, a more insidious shortage has also arisen among the ranks of faculty within medical laboratory education programs.

As a profession, we have long been blessed with dedicated faculty who strive to impart their knowledge and experience onto countless students. We know, however, that many of these dedicated faculty members have and will continue to step aside to pursue other passions through retirement. As new dedicated faculty step up to take over, we must support these new educators in their roles as program directors and content specialists. Furthermore, we must provide tools for these educators about techniques and theories that are appropriate as they continue to develop their curricula.

One potential tool to assist educators is the American Society for Clinical Laboratory Science (ASCLS) Entry Level Curriculum. At the 2016 ASCLS Annual Meeting, the House of Delegates adopted a newly formatted version of the entry level curriculum for MLT and MLS programs. This document had not been updated since 2002, and a subcommittee of the ASCLS Education Scientific Assembly was charged with editing the document to better represent the field's expectations of new graduates. Subcommittee members solicited feedback from educators and professionals in all subdisciplines and reviewed the content for currency. New material was added to reflect techniques and theories that have emerged since the last edition while material was removed if it was no longer deemed relevant. After this extensive process, the final document is reflective of what the industry demands of a new professional.

Similarly, the material presented throughout Clinical Chemistry: Principles, Techniques, and Correlations has always kept current with

changes in the laboratory industry. This exceptional ability of authors and editors to keep pace with the needs of an ever-changing profession has not diminished through its, now, eight editions. The content inherent to the discipline of clinical chemistry is

foundational to all other areas of laboratory medicine. The eighth edition of this textbook is ideal for students learning the principles of clinical chemistry while helping them build connections to other areas of the laboratory. The chapters have a perfect blend of basic theory and practical information that allows the student to comprehend each area of clinical chemistry. The text is well organized to help MLT and MLS educators distinguish what each unique student population needs to be successful in the marketplace. The online materials, powerpoints, and exam questions, for educators, are an invaluable resource for those creating a new course or revising a current course.

As we face this transition of laboratory practitioners who perform testing and faculty who train and educate our students, products that stay current with the times and help facilitate better understanding of the unique levels of practice within our field are the most essential element to success. The eighth edition of *Clinical Chemistry: Principles, Techniques, and Correlations* accomplishes this and serves as an invaluable tool for any new educator looking for guidance, or seasoned educator looking to refresh their teachings.

As educators we are thrilled that students continue to find the field of medical laboratory science an avenue to build a professional career. We wish all students and educators who use this book the best to carry on a tradition of excellence!

Joan Polancic, MSEd, MLS(ASCP)^{CM}
Director, School of Medical Laboratory Science
Denver Health Medical Center
Denver, Colorado

Kyle B. Riding, PhD, MLS(ASCP) Instructor, Medical Laboratory Science Teaching and Learning Center Coordinator Keiser University – Orlando Campus Orlando, Florida

foreword to the seventh edition

You should not be surprised to learn that the delivery of health care has been undergoing major transformation for several decades. The clinical laboratory has been transformed in innumerable ways as well. At one time, the laboratory students' greatest asset was motor ability. That is not the case any longer. Now the need is for a laboratory professional who is well educated, an analytical thinker, and problem solver, and one who can add value to the information generated in the laboratory regarding a specific patient.

This change impacts the laboratory professional in a very positive manner. Today the students' greatest asset is their mental skill and their ability to acquire and apply knowledge. The laboratory professional is now considered a knowledge worker, and a student's ability to successfully become this knowledge worker depends on their instruction and exposure to quality education. Herein lies the need for the seventh edition of Clinical Chemistry: Principles, Techniques, and Correlations. contributes to the indispensable solid science foundation in medical laboratory sciences and the application of its principles in improving patient outcomes needed by the laboratory professional of today. This edition provides not only a comprehensive understanding of clinical chemistry but also the foundation upon which all the other major laboratory science disciplines can be further understood and integrated. It does so by providing a strong discussion of organ function and a solid emphasis on pathophysiology, clinical correlations, and differential diagnosis. This information offers a springboard to better understand the many concepts related to the effectiveness of a particular test for a particular patient.

Reduction of health care costs, while ensuring quality patient care, remains the goal of health care reform efforts. Laboratory information is a critical element of such care. It is estimated that \$65 billion is spent each year to perform more than 4.3 billion laboratory tests. This impressive figure has also focused a bright light on laboratory medicine, and appropriate laboratory test utilization is now under major scrutiny. The main emphasis is on reducing costly overutilization and unnecessary diagnostic testing; however, the issue of under- and misutilization of laboratory tests must be a cause for concern as well. The role of laboratorians in providing guidance to clinicians regarding appropriate test utilization is becoming not only accepted but also welcomed as clinicians try to maneuver their way through an increasingly complex and expensive test menu. These new roles lie in the pre- and postanalytic functions of laboratorians. The authors of this text

have successfully described the importance of these phases as well as the more traditional analytic phase. It does not matter how precise or accurate a test is during the analytic phase if the sample has been compromised or if an inappropriate test has been ordered on the patient. In addition, the validation of results with respect to a patient's condition is an important step in the postanalytic phase. Participation with other health care providers in the proper interpretation of test results and appropriate follow-up will be important abilities of future graduates as the profession moves into providing greater consultative services for a patient-centered medical delivery system. Understanding these principles is a necessary requirement of the knowledge worker in the clinical laboratory. This significant professional role provides effective laboratory services that will improve medical decision making and thus patient safety while reducing medical errors. This edition of *Clinical Chemistry: Principles, Techniques, and Correlations* is a crucial element in graduating such professionals.

Diana Mass, MA, MT(ASCP)
Clinical Professor and Director (Retired)
Clinical Laboratory Sciences Program
Arizona State University
Tempe, Arizona
President
Associated Laboratory Consultants
Valley Center, California

Make no mistake: There are few specialties in medicine that have a wider impact on today's health care than laboratory medicine. For example, in the emergency room, a troponin result can not only tell an ER physician if a patient with chest pain has had a heart attack but also assess the likelihood of that patient suffering an acute myocardial infarction in 30 days. In the operating room during a parathyroidectomy, a parathyroid hormone assay can tell a surgeon that it is appropriate to close the procedure because he has successfully removed all of the affected glands or go back and look for more glands to excise. In labor and delivery, testing for pulmonary surfactants from amniotic fluid can tell an obstetrician if a child can be safely delivered or if the infant is likely to develop life-threatening respiratory distress syndrome. In the neonatal intensive care unit, measurement of bilirubin in a premature infant is used to determine when the ultraviolet lights can be turned off. These are just a handful of the thousands of medical decisions that are made each day based on results from clinical laboratory testing.

Despite our current success, there is still much more to learn and do. For example, there are no good laboratory tests for the diagnosis of stroke or traumatic brain injury. The work on Alzheimer's and Parkinson's

disease prediction and treatment is in the early stages. And when it comes to cancer, while our laboratory tests are good for monitoring therapy, they fail in the detection of early cancer, essential for improving treatment and prolonging survival. Finally, personalized medicine including pharmacogenomics will play an increasingly important role in the future. Pharmacogenomic testing will be used to select the right drug at the best dose for a particular patient in order to maximize efficacy and minimize side effects.

If you are reading this book, you are probably studying to be a part of the field. As a clinical chemist for over 30 years, I welcome you to our profession.

Alan H. B. Wu, PhD, DABCC Director, Clinical Chemistry Laboratory, San Francisco General Hospital Professor, Laboratory Medicine, University of California, San Francisco San Francisco, California

Preface

Clinical chemistry continues to be one of the most rapidly advancing areas of laboratory medicine. Since the initial idea for this textbook was discussed in a meeting of the Biochemistry/Urinalysis section of ASMT (now ASCLS) in the late 1970s, the only constant has been changed. New technologies and analytical techniques have been introduced, with a dramatic impact on the practice of clinical chemistry and laboratory medicine. In addition, the health care system is rapidly changing. There is ever increasing emphasis on improving the quality of patient care, individual patient outcomes, financial responsibility, and total quality management. Now, more than ever, clinical laboratorians need to be concerned with disease correlations, interpretations, problem solving, quality assurance, and cost-effectiveness; they need to know not only the how of tests but more importantly the what, why, and when. The editors of Clinical Chemistry: Principles, Techniques, and Correlations have designed the eighth edition to be an even more valuable resource to both students and practitioners.

Now almost 40 years since the initiation of this effort, the editors have had the privilege of completing the eighth edition with another diverse team of dedicated clinical laboratory professionals. In this era of focusing on metrics, the editors would like to share the following information. The 330 contributors in the 8 editions represent 70 clinical laboratory science

programs, 83 clinical laboratories, 13 medical device companies, 4 government agencies, and 3 professional societies. One hundred and thirty contributors were clinical laboratory scientists with advanced degrees. With today's global focus, the previous editions of the text have been translated into at least six languages. By definition, a profession is a calling requiring specialized knowledge and intensive academic preparation to define its scope of work and produce its own literature. The profession of Clinical Laboratory Science has evolved significantly over the past four decades.

The eighth edition of *Clinical Chemistry: Principles, Techniques, and Correlations* is comprehensive, up-to-date, and easy to understand for students at all levels. It is also intended to be a practically organized resource for both instructors and practitioners. The editors have tried to maintain the book's readability and further improve its content. Because clinical laboratorians use their interpretative and analytic skills in the daily practice of clinical chemistry, an effort has been made to maintain an appropriate balance between analytic principles, techniques, and the correlation of results with disease states.

In this edition, the editors have maintained features in response to requests from our readers, students, instructors, and practitioners. Ancillary materials have been updated and expanded. Chapters now include current, more frequently encountered case studies and practice questions or exercises. To provide a thorough, up-to-date study of clinical chemistry, all chapters have been updated and reviewed by professionals who practice clinical chemistry and laboratory medicine on a daily basis. The basic principles of the analytic procedures discussed in the chapters reflect the most recent or commonly performed techniques in the clinical chemistry laboratory. Detailed procedures have been omitted because of the variety of equipment and commercial kits used in today's clinical laboratories. Instrument manuals and kit package inserts are the most reliable reference for detailed instructions on current analytic procedures. All chapter material has been updated, improved, and rearranged for better continuity and readability. thePoint*, a Web site with additional case studies, review questions, teaching resources, teaching tips, additional references, and teaching aids for instructors and students, is available from the publisher to assist in the use of this textbook.

Michael L. Bishop

Edward P. Fody

Larry E. Schoeff

Acknowledgments

A project as large as this requires the assistance and support of many

clinical laboratorians. The editors wish to express their appreciation to the contributors of all the editions of *Clinical Chemistry: Principles, Techniques, and Correlations*—the dedicated laboratory professionals and educators whom the editors have had the privilege of knowing and exchanging ideas with over the years. These individuals were selected because of their expertise in particular areas and their commitment to the education of clinical laboratorians. Many have spent their professional careers in the clinical laboratory, at the bench, teaching students, or consulting with clinicians. In these frontline positions, they have developed a perspective of what is important for the next generation of clinical laboratorians.

We extend appreciation to our students, colleagues, teachers, and mentors in the profession who have helped shape our ideas about clinical chemistry practice and education. Also, we want to thank the many companies and professional organizations that provided product information and photographs or granted permission to reproduce diagrams and tables from their publications. Many Clinical and Laboratory Standards Institute (CLSI) documents have also been important sources of information. These documents are directly referenced in the appropriate chapters.

The editors would like to acknowledge the contribution and effort of all individuals to previous editions. Their efforts provided the framework for many of the current chapters. Finally, we gratefully acknowledge the cooperation and assistance of the staff at Wolters Kluwer for their advice and support.

The editors are continually striving to improve future editions of this book. We again request and welcome our readers' comments, criticisms, and ideas for improvement.

Contents

Contributors
Foreword to the Eighth Edition
Foreword to the Seventh Edition
Preface

Acknowledgments

PART one Basic Principles and Practice of Clinical Chemistry

1 Basic Principles and Practices

Kathryn Dugan and Elizabeth Warning

UNITS OF MEASURE

REAGENTS

Chemicals

Reference Materials

Water Specifications

Solution Properties

Concentration

Colligative Properties

Redox Potential

Conductivity

pH and Buffers

CLINICAL LABORATORY SUPPLIES

Thermometers/Temperature

Glassware and Plasticware

Desiccators and Desiccants

Balances

CENTRIFUGATION

LABORATORY MATHEMATICS AND

CALCULATIONS Significant Figures

Logarithms

Concentration

Dilutions

Water of Hydration

Graphing and Beer's Law

SPECIMEN CONSIDERATIONS

Types of Samples

Sample Processing

Sample Variables

Chain of Custody

Electronic and Paper Reporting of Results

QUESTIONS

REFERENCES

2 Laboratory Safety and Regulations

Tolmie E. Wachter

LABORATORY SAFETY AND REGULATIONS

Occupational Safety and Health Act

Other Regulations and Guidelines

SAFETY AWARENESS FOR CLINICAL LABORATORY PERSONNEL

Safety Responsibility

Signage and Labeling

SAFETY EQUIPMENT

Chemical Fume Hoods and Biosafety

Cabinets Chemical Storage Equipment

PPE and Hygiene

BIOLOGIC SAFETY

General Considerations
Spills
Bloodborne Pathogens
Airborne Pathogens
Shipping
CHEMICAL SAFETY
Hazard Communication
Safety Data Sheet
OSHA Laboratory Standard
Toxic Effects from Hazardous
Substances Storage and Handling of
Chemicals
RADIATION SAFETY
Environmental Protection
Personal Protection
Nonionizing Radiation
FIRE SAFETY
The Chemistry of Fire
Classification of Fires
Types and Applications of Fire
Extinguishers CONTROL OF OTHER
HAZARDS Electrical Hazards
Compressed Gas Hazards
Cryogenic Materials Hazards
Mechanical Hazards
Ergonomic Hazards
DISPOSAL OF HAZARDOUS MATERIALS

										4
('	h		m	П	ca	ı١	Λ	10	20	tΔ
L J	ı	C		П	$\cup a$	١ ١	v١	ıc	10	10

Radioactive Waste

Biohazardous Waste

ACCIDENT DOCUMENTATION AND INVESTIGATION QUESTIONS

BIBLIOGRAPHY AND SUGGESTED READING

3 Method Evaluation and Quality Control

Michael W. Rogers, Cindi Bullock Letsos, Matthew P. A. Henderson, Monte S. Willis, and Christoper R. McCudden

BASIC CONCEPTS

Descriptive Statistics: Measures of Center, Spread, and

Shape Descriptive Statistics of Groups of Paired

Observations Inferential Statistics

METHOD EVALUATION

Regulatory Aspects of Method Evaluation (Alphabet

Soup) Method Selection

Method Evaluation

First Things First: Determine Imprecision and

Inaccuracy Measurement of Imprecision

Interference Studies

COM Studies

Allowable Analytical Error

Method Evaluation Acceptance Criteria

QUALITY CONTROL

QC Charts

Operation of a QC System

Multirules RULE!
Proficiency Testing
REFERENCE INTERVAL STUDIES
Establishing Reference Intervals
Selection of Reference Interval Study Individuals
Preanalytic and Analytic Considerations
Determining Whether to Establish or Transfer and Verify Reference Intervals
Analysis of Reference Values
Data Analysis to Establish a Reference Interval
Data Analysis to Transfer and Verify a Reference
Interval DIAGNOSTIC EFFICIENCY
Measures of Diagnostic Efficiency
SUMMARY
PRACTICE PROBLEMS
Problem 3-1. Calculation of Sensitivity and
Specificity Problem 3-2. A Quality Control
Decision
Problem 3-3. Precision (Replication)
Problem 3-4. Recovery
Problem 3-5. Interference
Problem 3-6. Sample Labeling
Problem 3-7. QC Program for POCT Testing
Problem 3-8. QC Rule Interpretation
Problem 3-9. Reference Interval Study Design
QUESTIONS
ONLINE RESOURCES

REFERENCES

4 Lean Six Sigma Methodology Basics and Quality Improvement in the Clinical Chemistry Laboratory

Cindi Bullock Letsos, Michael W. Rogers, Christoper R. McCudden, and Monte S. Willis

LEAN SIX SIGMA METHODOLOGY

ADOPTION AND IMPLEMENTATION OF LEAN SIX SIGMA PROCESS IMPROVEMENT

MEASUREMENTS OF SUCCESS USING LEAN AND SIX SIGMA

LEAN SIX SIGMA APPLICATIONS IN THE LABORATORY
AND THE GREATER HEALTH CARE SYSTEM
PRACTICAL APPLICATION OF SIX SIGMA

METRICS Detecting Laboratory Errors

Defining the Sigma Performance of an Assay

Choosing the Appropriate Westgard Rules

PRESENT AND EVOLVING APPROACHES TO QUALITY IMPROVEMENT AND QUALITY ASSURANCE IN THE CLINICAL LABORATORY: FROM QCP TO IQCP AND

ISO5189 Today's Standard: Quality Control Plan

QUALITY CONTROL PLAN BASED ON RISK MANAGEMENT: CLSI EP23-A DOCUMENT

QUALITY ASSESSMENT

INDIVIDUAL QUALITY CONTROL PROGRAM: AN OPTION TO STREAMLINE QCP

ISO5189—QUALITY MANAGEMENT IN MEDICAL LABORATORIES: ADDING RISK ASSESSMENT TO THE FORMULA INTERNATIONALLY (GLOBAL INITIATIVE)

CONCLUSIONS

ACKNOWLEDGMENTS

QUESTIONS

REFERENCES

RESOURCES FOR FURTHER INFORMATION

ON 5 Analytic Techniques

Julia C. Drees, Matthew S. Petrie, and Alan H. B. Wu

SPECTROPHOTOMETRY

Beer Law

Spectrophotometric Instruments

Components of a Spectrophotometer

Spectrophotometer Quality Assurance

Atomic Absorption Spectrophotometer

Flame Photometry

Fluorometry

Basic Instrumentation

Chemiluminescence

Turbidity and Nephelometry

Laser Applications

ELECTROCHEMISTRY

Galvanic and Electrolytic Cells

Half-Cells

Ion-Selective Electrodes

pH Electrodes

Gas-Sensing Electrodes

Enzyme Electrodes

Coulometric Chlori	dometers and Anodic Stripping
Voltammetry ELECTI	ROPHORESIS

Procedure

Support Materials

Treatment and Application of Sample

Detection and Quantitation

Electroendosmosis

Isoelectric Focusing

Capillary Electrophoresis

Two-Dimensional Electrophoresis

OSMOMETRY

Freezing Point Osmometer

SURFACE PLASMON RESONANCE

QUESTIONS

REFERENCES

6 Chromatography and Mass Spectrometry

Julia C. Drees, Matthew S. Petrie, and Alan H. B. Wu

CHROMATOGRAPHY

Modes of Separation

Chromatographic Procedures

High-Performance Liquid Chromatography

Gas Chromatography

MASS SPECTROMETRY

Sample Introduction and Ionization

Mass Analyzer

Detector

APPLICATIONS OF MS IN THE CLINICAL LABORATORY Small Molecule Analysis Mass Spectrometry in Proteomics and Pathogen Identification Mass Spectrometry at the Point of Care QUESTIONS REFERENCES

7 Principles of Clinical Chemistry Automation

Ryan W. Greer and Joely A. Straseski

HISTORY OF AUTOMATED ANALYZERS DRIVING FORCES TOWARD MORE AUTOMATION BASIC APPROACHES TO AUTOMATION

STEPS IN AUTOMATED ANALYSIS

Specimen Preparation and Identification

Specimen Measurement and Delivery

Reagent Systems and Delivery

Chemical Reaction Phase

Measurement Phase

Signal Processing and Data Handling

SELECTION OF AUTOMATED ANALYZERS

TOTAL LABORATORY AUTOMATION

Preanalytic Phase (Sample Processing)

Analytic Phase (Chemical Analyses)

Postanalytic Phase (Data Management)

FUTURE TRENDS IN AUTOMATION QUESTIONS

REFERENCES

8 Immunochemical Techniques

Alan H. B. Wu

IMMUNOASSAYS

General Considerations

Unlabeled Immunoassays

Labeled Immunoassays

Future Directions for

Immunoassays QUESTIONS

REFERENCES

9 Molecular Theory and

Techniques Shashi Mehta

NUCLEIC ACID-BASED

TECHNIQUES Nucleic Acid

Chemistry

Nucleic Acid Extraction

Hybridization Techniques

DNA Sequencing

DNA Chip Technology

Target Amplification

Probe Amplification

Signal Amplification

Nucleic Acid Probe Applications

QUESTIONS

REFERENCES

10 Point-of-Care Testing

Heather Crookston

LABORATORY

REGULATIONS

Accreditation

POCT Complexity

IMPLEMENTATION

Establishing Need

POCT Implementation Protocol

Personnel Requirements

QUALITY MANAGEMENT

Accuracy Requirements

QC and Proficiency Testing

POC APPLICATIONS

INFORMATICS AND POCT

QUESTIONS

REFERENCES

PART two Clinical Correlations and Analytic Procedures

11 Amino Acids and Proteins

Takara L. Blamires

AMINO ACIDS

Overview

Basic Structure

Metabolism

Essential Amino Acids
Nonessential Amino Acids
Recently Identified Amino Acids
Aminoacidopathies
Methods of Analysis
PROTEINS
Overview
Basic Structure
General Chemical Properties
Synthesis
Catabolism and Nitrogen Balance
Classification
PLASMA PROTEINS
Prealbumin
Albumin
Globulins
OTHER PROTEINS OF CLINICAL
SIGNIFICANCE Myoglobin
Cardiac Troponin
Brain Natriuretic Peptide and N-Terminal–Brain Natriuretic Peptide
Fibronectin
Adiponectin
β-Trace Protein
Cross-Linked C-Telopeptides
Cystatin C
Amyloid

TOTAL PROTEIN ABNORMALITIES
Hypoproteinemia
Hyperproteinemia
METHODS OF ANALYSIS
Total Nitrogen Total Protein
Fractionation, Identification, and Quantitation of Specific Proteins
Serum Protein Electrophoresis
High-Resolution Protein Electrophoresis
Capillary Electrophoresis
Isoelectric Focusing
Immunochemical Methods
PROTEINS IN OTHER BODY FLUIDS
Urinary Protein
CSF Protein
QUESTIONS
REFERENCES
12 Nonprotein Nitrogen Compounds
Elizabeth L. Frank
UREA
Biochemistry
Clinical Application
Analytical Methods
Pathophysiology
URIC ACID
Biochemistry

Clinical Application

Analytical Methods

Pathophysiology

CREATININE/CREATINE

Biochemistry

Clinical Application

Analytical Methods

Pathophysiology

AMMONIA

Biochemistry

Clinical Application

Analytical Methods

Pathophysiology

QUESTIONS

REFERENCES

13 Enzymes

Kamisha L. Johnson-Davis

GENERAL PROPERTIES AND DEFINITIONS

ENZYME CLASSIFICATION AND

NOMENCLATURE ENZYME KINETICS

Catalytic Mechanism of Enzymes

Factors That Influence Enzymatic Reactions

Measurement of Enzyme Activity

Calculation of Enzyme Activity

Measurement of Enzyme Mass

Enzymes as Reagents

ENZYMES OF CLINICAL

SIGNIFICANCE Creatine Kinase

Lactate Dehydrogenase

Aspartate Aminotransferase

Alanine Aminotransferase

Alkaline Phosphatase

Acid Phosphatase

γ-Glutamyltransferase

Amylase

Lipase

Glucose-6-Phosphate Dehydrogenase

Drug-Metabolizing Enzymes

QUESTIONS

REFERENCES

14 Carbohydrates

Vicki S. Freeman

GENERAL DESCRIPTION OF

CARBOHYDRATES Classification of

Carbohydrates

Stereoisomers

Monosaccharides, Disaccharides, and

Polysaccharides Chemical Properties of

Carbohydrates

Glucose Metabolism

Fate of Glucose

Regulation of Carbohydrate Metabolism

Н	IY	P	F	R	G	ΙY	C.	FI	١/١	IA
					•				·v·	_

Diabetes Mellitus

Pathophysiology of Diabetes Mellitus

Criteria for Testing for Prediabetes and Diabetes

Criteria for the Diagnosis of Diabetes Mellitus

Criteria for the Testing and Diagnosis of GDM

HYPOGLYCEMIA

Genetic Defects in Carbohydrate Metabolism

ROLE OF LABORATORY IN DIFFERENTIAL DIAGNOSIS AND MANAGEMENT OF PATIENTS WITH GLUCOSE METABOLIC ALTERATIONS

Methods of Glucose Measurement

Self-Monitoring of Blood Glucose

Glucose Tolerance and 2-Hour Postprandial Tests

Glycosylated Hemoglobin/HbA₁c

Ketones

Albuminuria

Islet Autoantibody and Insulin Testing

QUESTIONS

REFERENCES

15 Lipids and Lipoproteins

Raffick A. R. Bowen, Amar A. Sethi, G. Russell Warnick, and Alan T. Remaley

LIPID CHEMISTRY

Fatty Acids

Triglycerides

Phospholipids
Cholesterol
GENERAL LIPOPROTEIN STRUCTURE
Chylomicrons
Very-Low-Density Lipoproteins
Intermediate-Density Lipoproteins
Low-Density Lipoproteins
Lipoprotein (a)
High-Density Lipoproteins
Lipoprotein X
LIPOPROTEIN PHYSIOLOGY AND
METABOLISM Lipid Absorption
Exogenous Pathway
Endogenous Pathway
Reverse Cholesterol Transport Pathway
LIPID AND LIPOPROTEIN POPULATION
DISTRIBUTIONS Dyslipidemia and Children
National Cholesterol Education Program
National Heart, Lung, and Blood Institute
DIAGNOSIS AND TREATMENT OF LIPID
DISORDERS Arteriosclerosis
Hyperlipoproteinemia
Hypercholesterolemia
PCSK9
Hypertriglyceridemia
Combined Hyperlipidemia
Lp(a) Elevation

Non–HDL Cholesterol
Hypobetalipoproteinemia
Hypoalphalipoproteinemia
LIPID AND LIPOPROTEIN ANALYSES
Lipid Measurement
Cholesterol Measurement
Triglyceride Measurement
Lipoprotein Methods
HDL Methods
LDL Methods
Compact Analyzers
Apolipoprotein Methods
Phospholipid Measurement
Fatty Acid Measurement
STANDARDIZATION OF LIPID AND LIPOPROTEIN
ASSAYS Precision
Accuracy
Matrix Interactions
CDC Cholesterol Reference Method Laboratory
Network Analytic Performance Goals
Quality Control
Specimen Collection
QUESTIONS
REFERENCES
6 Electrolytes
lames March Mistler

```
WATER
   Osmolality
 THE ELECTROLYTES
   Sodium
   Potassium
   Chloride
   Bicarbonate
   Magnesium
   Calcium
   Phosphate
   Lactate
 ANION GAP
 ELECTROLYTES AND RENAL FUNCTION
 QUESTIONS
 REFERENCES
17 Blood Gases, pH, and Buffer Systems
 Yachana Kataria and Mark D. Kellogg
   ACID-BASE BALANCE
   Maintenance of H<sup>+</sup>
   Buffer Systems: Regulation of H<sup>+</sup> and the Henderson
   Hasselbalch Equation
   Regulation of Acid-Base Balance: Lungs and Kidneys
   (Transport of Carbon Dioxide)
 ASSESSMENT OF ACID-BASE HOMEOSTASIS
   The Bicarbonate Buffering System
```

Acid-Base	Dicardoro	A oidooio		$\alpha \alpha i \alpha$
ACIO-DASE	LUSOLORIS	ACIOOSIS	ALIO AIKAII	

OXYGEN AND GAS EXCHANGE

Oxygen and Carbon Dioxide

Oxygen Transport

Assessment of a Patient's Oxygen Status

Hemoglobin-Oxygen Dissociation

MEASUREMENT

Spectrophotometric Determination of Oxygen Saturation (CO Oximetry)

Blood Gas Analyzers: pH, pCO₂, and pO₂

Measurement of pO₂

Measurement of pH and pCO₂

Types of Electrochemical Sensors

Optical Sensors

Calibration

Correction for Temperature

Calculated Parameters

QUALITY ASSURANCE

Preanalytic Considerations

Analytic Assessments: Quality Control and Proficiency

Testing QUESTIONS

REFERENCES

18 Trace and Toxic Elements

Frederick G. Strathmann and Carrie J. Haglock-Adler

OVERVIEW AND OBJECTIVES
INSTRUMENTATION AND METHODS

```
Sample Collection and Processing
  Atomic Emission Spectroscopy
  Atomic Absorption Spectroscopy
  Inductively Coupled Plasma Mass Spectrometry
  Interferences
  Elemental Speciation
  Alternative Analytical Techniques
ALUMINUM
  Introduction
  Absorption, Transport, and Excretion
  Health Effects and Toxicity
  Laboratory Evaluation of Aluminum Status
ARSENIC
  Introduction
  Health Effects and Toxicity
  Absorption, Transport, and Excretion
Laboratory Evaluation of Arsenic
Status CADMIUM
  Introduction
  Absorption, Transport, and
  Excretion Health Effects and
  Toxicity
  Laboratory Evaluation of Cadmium
Status CHROMIUM
  Introduction
  Absorption, Transport, and Excretion
Health Effects, Deficiency, and Toxicity
```

```
Laboratory Evaluation of Chromium
Status COPPER
  Introduction
  Absorption, Transport, and Excretion
Health Effects, Deficiency, and Toxicity
Laboratory Evaluation of Copper
Status IRON
  Introduction
  Absorption, Transport, and Excretion
Health Effects, Deficiency, and Toxicity
Laboratory Evaluation of Iron Status
LEAD
  Introduction
  Absorption, Transport, and
  Excretion Health Effects and
  Toxicity
  Laboratory Evaluation of Lead
Status MERCURY
  Introduction
  Absorption, Transport, and
  Excretion Health Effects and
  Toxicity
  Laboratory Evaluation of Mercury
Status MANGANESE
  Introduction
  Absorption, Transport, and Excretion
Health Effects, Deficiency, and Toxicity
```

Laboratory Evaluation of Manganese Status MOLYBDENUM

Introduction

Absorption, Transport, and Excretion Health Effects, Deficiency, and Toxicity Laboratory Evaluation of Molybdenum Status SELENIUM

Introduction

Absorption, Transport, and Excretion Health Effects, Deficiency, and Toxicity Laboratory Evaluation of Selenium Status ZINC

Introduction

Absorption, Transport, and Excretion Health Effects, Deficiency, and Toxicity Laboratory Evaluation of Zinc Status QUESTIONS
BIBLIOGRAPHY
REFERENCES

19 Porphyrins and Hemoglobin

Elizabeth L. Frank and Sara A. Taylor

PORPHYRINS

Porphyrin Properties

Biochemistry: Synthesis of Heme

Pathophysiology: Disorders of Heme

Biosynthesis Clinical Application

Analytical Methods

HEMOGLOBIN

Role in the Body

Structure of Hemoglobin

Synthesis and Degradation of

Hemoglobin Clinical Significance and

Disease Correlation Analytical Methods

DNA Technology

MYOGLOBIN

Structure and Role in the Body

Clinical Significance

Analytical Methods

QUESTIONS

REFERENCES

PART three

Assessment of Organ System Functions 20 Hypothalamic and Pituitary Function

Robert E. Jones and Heather Corn

EMBRYOLOGY AND ANATOMY

FUNCTIONAL ASPECTS OF THE HYPOTHALAMIC-

HYPOPHYSEAL UNIT

HYPOPHYSIOTROPIC OR HYPOTHALAMIC

HORMONES ANTERIOR PITUITARY HORMONES

PITUITARY TUMORS

GROWTH HORMONE

Actions of GH

```
Testing
   Acromegaly
  GH Deficiency
 PROLACTIN
   Prolactinoma
   Other Causes of Hyperprolactinemia
   Clinical Evaluation of Hyperprolactinemia
   Management of Prolactinoma
   Idiopathic Galactorrhea
 HYPOPITUITARISM
   Etiology of Hypopituitarism
   Treatment of Panhypopituitarism
 POSTERIOR PITUITARY HORMONES
   Oxytocin
   Vasopressin
  QUESTIONS
 REFERENCES
21 Adrenal Function
 Vishnu Sundaresh and Deepika S. Reddy
 THE ADRENAL GLAND: AN OVERVIEW
 EMBRYOLOGY AND ANATOMY
 THE ADRENAL CORTEX BY ZONE
   Cortex Steroidogenesis
   Congenital Adrenal Hyperplasia
 PRIMARY ALDOSTERONISM
   Overview
```

Clinical Presentation

Diagnosis

Interfering medications

Biochemical Testing

Plasma-Free Metanephrines

24-Hour Urine Fractionated Metanephrines and

Catecholamines Normal Results

Case Detection

24-Hour Urine Fractionated Metanephrines and

Catecholamines Plasma-Fractionated Metanephrines

Radiographic Localization

Treatment

Outcome, Prognosis, and Follow-up

Genetic Testing

ADRENAL INCIDENTALOMA

CASE STUDIES

QUESTIONS

REFERENCES

22 Gonadal Function

Mahima Gulati

THE TESTES

Functional Anatomy of the Male Reproductive

Tract Physiology of the Testicles

Disorders of Sexual Development and Testicular

Hypofunction Diagnosis of Hypogonadism

Testosterone Replacement Therapy

Monitoring Testosterone Replacement Therapy THE OVARIES

Early Ovarian Development

Functional Anatomy of the Ovaries

Hormonal Production by the Ovaries

The Menstrual Cycle

Hormonal Control of Ovulation

Pubertal Development in the Female

Precocious Sexual Development

Menstrual Cycle Abnormalities

Hirsutism

Estrogen Replacement Therapy

QUESTIONS

REFERENCES

23 The Thyroid Gland

Marissa Grotzke

THE THYROID

Thyroid Anatomy and Development

Thyroid Hormone Synthesis

Protein Binding of Thyroid Hormone

Control of Thyroid Function

Actions of Thyroid Hormone

TESTS FOR THYROID FUNCTION

Blood Tests

OTHER TOOLS FOR THYROID

EVALUATION Nuclear Medicine Evaluation

Thyroid Ultrasound	Th	yro	id	Ult	ras	ou	nd
--------------------	----	-----	----	-----	-----	----	----

Fine-Needle Aspiration

DISORDERS OF THE THYROID

Hypothyroidism

Thyrotoxicosis

Graves' Disease

Toxic Adenoma and Multinodular Goiter

DRUG-INDUCED THYROID DYSFUNCTION

Amiodarone-Induced Thyroid Disease

Subacute Thyroiditis

NONTHYROIDAL ILLNESS

THYROID NODULES

QUESTIONS

REFERENCES

24 Calcium Homeostasis and Hormonal

Regulation Josephine Abraham and Dev

Abraham

CALCIUM HOMEOSTASIS

HORMONAL REGULATION OF CALCIUM METABOLISM

Vitamin D

Parathyroid Hormone

ORGAN SYSTEM REGULATION OF CALCIUM

METABOLISM

GI Regulation

Role of Kidneys

Bone Physiology

HYPERCALCEMIA

Causas	411		م نمون م
Causes	OI H	yperca	icemia

Primary Hyperparathyroidism

Familial Hypocalciuric Hypercalcemia

Hyperthyroidism

Addison's Disease

Milk Alkali Syndrome

Medications That Cause Hypercalcemia

HYPOCALCEMIA

Causes of Hypocalcemia

METABOLIC BONE DISEASES

Rickets and Osteomalacia

Osteoporosis

SECONDARY HYPERPARATHYROIDISM IN RENAL

FAILURE

QUESTIONS

REFERENCES

25 Liver Function

Janelle M. Chiasera and Xin Xu

ANATOMY

Gross Anatomy

Microscopic Anatomy

BIOCHEMICAL FUNCTIONS

Excretory and Secretory

Metabolism

Detoxification and Drug Metabolism

LIVER FUNCTION ALTERATIONS DURING

DISEASE Jaundice
Cirrhosis
Tumors
Reye's Syndrome
Drug- and Alcohol-Related Disorders
ASSESSMENT OF LIVER FUNCTION/LIVER FUNCTION TESTS
Bilirubin
METHODS
Urobilinogen in Urine and Feces
Serum Bile Acids
Enzymes
Tests Measuring Hepatic Synthetic Ability
Tests Measuring Nitrogen Metabolism
Hepatitis
QUESTIONS
REFERENCES
Ronald R. Henriquez, Michael Durando, Brian C. Jensen, Christoper R. McCudden, and Monte S. Willis
CARDIAC ISCHEMIA, ANGINA, AND HEART ATTACKS THE PATHOPHYSIOLOGY OF ATHEROSCLEROSIS, THE

CK-MB and Troponin I/Troponin T Considerations in Kidney

MARKERS OF CARDIAC DAMAGE

Cardiac Troponins

Initial Markers of Cardiac Damage

	•	
	10000	しょっちょっちゃっ
. ,		Panenc
\boldsymbol{L}	13CG3C	Patients

Other Markers of Cardiac Damage

CARDIAC INJURY OCCURS IN MANY DISEASE PROCESSES, BEYOND MI

THE LABORATORY WORKUP OF PATIENTS SUSPECTED OF HEART FAILURE AND THE USE OF CARDIAC BIOMARKERS IN HEART FAILURE

THE USE OF NATRIURETIC PEPTIDES AND TROPONINS IN THE DIAGNOSIS AND RISK STRATIFICATION OF HEART FAILURE

Cardiac Troponins

MARKERS OF CHD RISK

C-Reactive Protein

Homocysteine

MARKERS OF PULMONARY EMBOLISM

Use of D-Dimer Detection in PE

Value of Assaying Troponin and BNP in Acute PE

SUMMARY

QUESTIONS

REFERENCES

27 Renal Function

Kara L. Lynch and Alan H. B. Wu

RENAL ANATOMY
RENAL PHYSIOLOGY

Glomerular Filtration

Tubular Function

Elimination of Nonprotein Nitrogen

Compounds Water, Electrolyte, and Acid-Base Homeostasis Endocrine **Function ANALYTIC PROCEDURES Creatinine Clearance Estimated GFR** Cystatin C β₂-Microglobulin Myoglobin **Albuminuria** Neutrophil Gelatinase–Associated Lipocalin NephroCheck **Urinalysis PATHOPHYSIOLOGY** Glomerular Diseases **Tubular Diseases Urinary Tract Infection/Obstruction** Renal Calculi Renal Failure **QUESTIONS REFERENCES**

28 Pancreatic Function and Gastrointestinal Function Edward P. Fody

PHYSIOLOGY OF PANCREATIC FUNCTION DISEASES OF THE PANCREAS TESTS OF PANCREATIC FUNCTION

Secretin/CCK Test
Fecal Fat Analysis
Sweat Electrolyte Determinations
Serum Enzymes
FECAL ELASTASE
PHYSIOLOGY AND BIOCHEMISTRY OF GASTRIC SECRETION
CLINICAL ASPECTS OF GASTRIC ANALYSIS
TESTS OF GASTRIC FUNCTION
Measuring Gastric Acid in Basal and Maximal Secretory
Tests Measuring Gastric Acid
Plasma Gastrin
NTESTINAL PHYSIOLOGY
CLINICOPATHOLOGIC ASPECTS OF INTESTINAL FUNCTION
TESTS OF INTESTINAL FUNCTION

Lactose Tolerance Test

D-Xylose Absorption Test

D-Xylose Test

Serum Carotenoids

Other Tests of Intestinal Malabsorption

QUESTIONS

SUGGESTED READING

REFERENCES

29 Body Fluid Analysis

Kyle B. Riding **CEREBROSPINAL FLUID**

SEROUS FLUIDS

Pleural Fluid

Pericardial Fluid

Peritoneal Fluid

AMNIOTIC FLUID

Hemolytic Disease of the Newborn

Neural Tube Defects

Fetal Lung Maturity

Phosphatidylglycerol

Lamellar Body Counts

SWEAT

SYNOVIAL FLUID

QUESTIONS

REFERENCES

PART four Specialty Areas of Clinical Chemistry

30 Therapeutic Drug Monitoring

Takara L. Blamires

OVERVIEW

ROUTES OF ADMINISTRATION

DRUG ABSORPTION

DRUG DISTRIBUTION

FREE VERSUS BOUND DRUGS

DRUG METABOLISM

DRUG ELIMINATION

PHARMACOKINETICS SPECIMEN COLLECTION **PHARMACOGENOMICS** CARDIOACTIVE DRUGS Digoxin Quinidine **Procainamide** Disopyramide **ANTIBIOTICS** Aminoglycosides **Teicoplanin** Vancomycin **ANTIEPILEPTIC DRUGS** Phenobarbital and Primidone Phenytoin and Fosphenytoin Valproic **Acid** Carbamazepine Ethosuximide **Felbamate** Gabapentin Lamotrigine Levetiracetam Oxcarbazepine **Tiagabine Topiramate**

Zonisamide
PSYCHOACTIVE DRUGS
Lithium
Tricyclic Antidepressants
Clozapine
Olanzapine
IMMUNOSUPPRESSIVE DRUGS
Cyclosporine
Tacrolimus
Sirolimus
Mycophenolic Acid
ANTINEOPLASTICS
Methotrexate
BRONCHODILATORS
Theophylline
QUESTIONS
SUGGESTED READINGS
REFERENCES
31 Toxicology
Takara L. Blamires
XENOBIOTICS, POISONS, AND
TOXINS ROUTES OF EXPOSURE
DOSE-RESPONSE
RELATIONSHIP Acute and
Chronic Toxicity

ANALYSIS OF TOXIC AGENTS

TOXICOLOGY OF SPECIFIC

AGENTS Alcohols

Carbon Monoxide

Caustic Agents

Cyanide

Metals and Metalloids

Pesticides

TOXICOLOGY OF THERAPEUTIC DRUGS

Salicylates

Acetaminophen

TOXICOLOGY OF DRUGS OF ABUSE

Amphetamines

Anabolic Steroids

Cannabinoids

Cocaine

Opiates

Phencyclidine

Sedatives-Hypnotics

QUESTIONS

REFERENCES

32 Circulating Tumor Markers: Basic Concepts and Clinical Applications

Christoper R. McCudden and Monte S. Willis

TYPES OF TUMOR MARKERS

APPLICATIONS OF TUMOR MARKER

DETECTION Screening and Susceptibility

Testing
Prognosis
Monitoring Effectiveness of Therapy and Disease
Recurrence LABORATORY CONSIDERATIONS FOR
TUMOR MARKER MEASUREMENT
Immunoassays
High-Performance Liquid Chromatography
Immunohistochemistry and
Immunofluorescence Enzyme Assays
FREQUENTLY ORDERED TUMOR
MARKERS α-Fetoprotein
METHODOLOGY
Cancer Antigen 125
Carcinoembryonic Antigen
Human Chorionic Gonadotropin
Prostate-Specific Antigen
FUTURE DIRECTIONS
QUESTIONS
SUGGESTED READING
REFERENCES
33 Nutrition Assessment
Linda S. Gorman and Maria G. Boosalis
NUTRITION CARE PROCESS:
OVERVIEW NUTRITION ASSESSMENT
BIOCHEMICAL MARKERS:
MACRONUTRIENTS Protein

Fat

Car	bol	hvc	Irate
		, -	

BIOCHEMICAL MARKERS:

MISCELLANEOUS Parenteral Nutrition

Electrolytes

Urine Testing

Organ Function

BIOCHEMICAL MARKERS:

MICRONUTRIENTS Vitamins

Conditionally Essential Nutrients

Minerals

Trace Elements

QUESTIONS

REFERENCES

34 Clinical Chemistry and the Geriatric

Patient Laura M. Hickes and J. Marvin McBride

THE AGING OF AMERICA
AGING AND MEDICAL SCIENCE

GENERAL PHYSIOLOGIC CHANGES WITH

AGING Muscle

Bone

Gastrointestinal System

Kidney/Urinary System

Immune System

Endocrine System

Sex Hormones

Glucose Metabolism
EFFECTS OF AGE ON LABORATORY
TESTING Muscle
Bone
Gastrointestinal System
Urinary System
Immune System Endocrine System
Sex Hormones
Glucose Metabolism
ESTABLISHING REFERENCE INTERVALS FOR THE ELDERLY
PREANALYTICAL VARIABLES UNIQUE TO GERIATRIC PATIENTS
DISEASES PREVALENT IN THE ELDERLY
AGE-ASSOCIATED CHANGES IN DRUG
METABOLISM Absorption
Distribution
Metabolism
Elimination
ATYPICAL PRESENTATIONS OF COMMON
DISEASES Geriatric Syndromes
THE IMPACT OF EXERCISE AND NUTRITION ON CHEMISTRY RESULTS IN THE ELDERLY
QUESTIONS

35 Clinical Chemistry and the Pediatric Patient

REFERENCES

DE	\/FI	OPMENITAL	CHANGES	FROM N	IEONATE TO
$D \subset$	$V \sqsubset L$		CHAINGEO		EUNALE IU

ADULT Respiration and Circulation

Growth

Organ Development

Problems of Prematurity and Immaturity

PHLEBOTOMY AND CHOICE OF INSTRUMENTATION FOR PEDIATRIC SAMPLES

Phlebotomy

Preanalytic Concerns

Choice of Analyzer

POINT-OF-CARE ANALYSIS IN PEDIATRICS

REGULATION OF BLOOD GASES AND PH IN NEONATES AND INFANTS

Blood Gas and Acid-Base Measurement

REGULATION OF ELECTROLYTES AND WATER: RENAL FUNCTION

Disorders Affecting Electrolytes and Water

Balance DEVELOPMENT OF LIVER FUNCTION

Physiologic Jaundice

Energy Metabolism

Diabetes

Nitrogen Metabolism

Nitrogenous End Products as Markers of Renal

Function Liver Function Tests

CALCIUM AND BONE METABOLISM IN

PEDIATRICS Hypocalcemia and Hypercalcemia
ENDOCRINE FUNCTION IN PEDIATRICS
Hormone Secretion
Hypothalamic-Pituitary-Thyroid System
Hypothalamic–Pituitary–Adrenal Cortex System
Growth Factors
Endocrine Control of Sexual Maturation
DEVELOPMENT OF THE IMMUNE SYSTEM
Basic Concepts of Immunity
Components of the Immune System
Neonatal and Infant Antibody Production
Immunity Disorders
GENETIC DISEASES
Cystic Fibrosis
Newborn Screening for Whole Populations
Diagnosis of Metabolic Disease in the Clinical
Setting DRUG METABOLISM AND
PHARMACOKINETICS Therapeutic Drug
Monitoring
Toxicologic Issues in Pediatric Clinical
Chemistry QUESTIONS

Index

REFERENCES

PART one Basic Principles and Practice of

Clinical Chemistry

1

Basic Principles and

Practices KATHRYN DUGAN and ELIZABETH

WARNING

Chapter Outline

Units of Measure

Reagents

Chemicals

Reference Materials

Water Specifications

Solution Properties

Concentration

Colligative Properties

Redox Potential

Conductivity

pH and Buffers

Clinical Laboratory Supplies

Thermometers/Temperature

Glassware and Plasticware

Desiccators and Desiccants

Balances

Centrifugation

Laboratory Mathematics and Calculations Significant Figures

Logarithms

Concentration

Dilutions

Water of Hydration

Graphing and Beer's Law

Specimen Considerations

Types of Samples

Sample Processing

Sample Variables

Chain of Custody

Electronic and Paper Reporting of Results

Questions

References

Chapter Objectives

Upon completion of this chapter, the clinical laboratorian should be able to do the following:

Convert results from one unit format to another using the SI and traditional systems. Describe the classifications used for reagent grade water.

Identify the varying chemical grades used in reagent preparation and indicate their correct use. Define primary standard and standard reference materials.

Describe the following terms that are associated with solutions and, when appropriate, provide the respective units: percent, molarity, normality, molality, saturation, colligative properties, redox potential, and conductivity.

Define a buffer and give the formula for pH and pK calculations.

Use the Henderson-Hasselbalch equation to determine the missing variable when given either the pK and pH or the pK and concentration of the weak acid and its conjugate base. List and describe the types of thermometers used in the clinical laboratory.

Classify the type of pipette when given an actual pipette or its description.

Demonstrate the proper use of a measuring and volumetric pipette.

Describe two ways to calibrate a pipetting device.

Define a desiccant and discuss how it is used in the clinical laboratory.

Describe how to properly care for and balance a centrifuge.

Correctly perform the laboratory mathematical calculations provided in this chapter. Identify and describe the types of samples used in clinical chemistry.

Outline the general steps for processing blood samples.

Apply Beer's law to determine the concentration of a sample when the absorbance or change in absorbance is provided.

Identify the preanalytic variables that can adversely affect laboratory results as presented in this chapter.

Key Terms

Analyte

Anhydrous

Arterial blood

Beer's law

Buffer

Centrifugation

Cerebrospinal fluid (CSF)

Colligative property

Conductivity

Deionized water

Deliquescent substance

Delta absorbance

Density

Desiccant

Desiccator

Dilution

Dilution factor

Distilled water

Equivalent weight

Erlenmeyer flasks

Filtration

Graduated cylinder

Griffin Beaker

Hemolysis

Henderson-Hasselbalch

equation Hydrate

Hygroscopic

Icterus

International unit

Ionic strength

Lipemia

Molality

Molarity

Normality

One-point calibration

Osmotic pressure

Oxidized

Oxidizing agent

Percent solution

Hq

Pipette

Primary standard

Ratio

Reagent grade water

Redox potential

Reduced

Reducing agent

Reverse osmosis

Serial dilution

Serum

Significant figures

Solute

Solution

Solvent

Specific gravity

Standard

Standard reference materials

(SRMs) Système International

d'Unités (SI) Thermistor

Ultrafiltration

Valence

Whole blood

The primary purpose of a clinical chemistry laboratory is to perform analytic procedures that yield accurate and precise information, aiding in patient diagnosis and treatment. The achievement of reliable results requires that the clinical laboratory scientist be able to correctly use basic supplies and equipment and possess an understanding of fundamental concepts critical to any analytic procedure. The topics in this chapter include units of measure, basic laboratory supplies, and introductory laboratory mathematics, plus a brief discussion of specimen collection, processing, and reporting.

UNITS OF MEASURE

Any meaningful *quantitative* laboratory result consists of two components: the first component represents the number related to the actual test value and the second is a label identifying the units. The unit defines the physical quantity or dimension, such as mass, length, time, or volume. Not all laboratory tests have well-defined units, but whenever possible, the units used should be reported.

Although several systems of units have traditionally been utilized by various scientific divisions, the Système International d'Unités (SI), adopted internationally in 1960, is preferred in scientific literature and clinical laboratories and is the only system employed in many countries. This system was devised to provide the global scientific community with a uniform method of describing physical quantities. The SI system units (referred to as SI units) are based on the metric system. Several subclassifications exist within the SI system, one of which is the basic unit. There are seven basic units (Table 1.1), with length (meter), mass (kilogram), and quantity of a substance (mole) being the units most frequently encountered. Another set of SI-recognized units is termed derived units. A derived unit, as the name implies, is a derivative or a mathematical function describing one of the basic units. An example of an SI derived unit is meters per second (m/s), used to express velocity. Some non-SI units are so widely used that they have become acceptable for use within the SI system (Table 1.1). These include long-standing units such as hour, minute, day, gram, liter, and plane angles expressed as degrees. The SI uses standard prefixes that, when added to a given basic unit, can indicate decimal fractions or multiples of that unit (Table 1.2). For example, 0.001 liter can be expressed using the prefix milli, or 10⁻³, and since it requires moving the decimal point three places to the right, it can then be written as 1 milliliter, or abbreviated as 1 mL. It may also be written in scientific notation as 1 × 10⁻³ L. Likewise, 1,000 liters would use the prefix of kilo (10³) and could be written as 1 kiloliter or expressed in scientific notation as 1×10^3 L.

TABLE 1.1 SI Units

Name	Symbol					
Meter	m					
Kilogram	kg					
Second	S					
Ampere	Α					
Kelvin	K					
Mole	mol					
Candela	cd					
Hertz	Hz					
Newton	N					
Degree Celsius	°C					
Katal	kat					
Selected Accepted Non-Si						
(60 s)	min					
(3,600 s)	h					
(86,400 s)	d					
•	L					
$(0.1 \text{ nm} = 10^{-10} \text{ m})$	Å					
	Meter Kilogram Second Ampere Kelvin Mole Candela Hertz Newton Degree Celsius Katal Si (60 s) (3,600 s) (3,600 s) (86,400 s) (1 dm³ = 10⁻³ m³)					

TABLE 1.2 Prefixes Used with SI Units

Factor	Prefix	Symbol	Select Decimals
10-18	atto	а	_
10-15	femto	f	_
10-12	pico	р	_
10-9	nano	n	_
10-6	micro	μ	0.000001
10-3	milli	m	0.001
10-2	centi	С	0.01
10-1	deci	d	0.1
10°	Liter, meter, gram	Basic unit	1.0
10 ¹	deka	da	10.0
10 ²	hecto	h	100.0
10 ³	kilo	k	1,000.0
10 ⁴	mega	M	_
10 ⁹	giga	G	_
10 ¹²	tera	T	_
10 ¹⁵	peta	Р	_
1018	exa	E	_

Prefixes are used to indicate a subunit or multiple of a basic SI unit.

It is important to understand the relationship these prefixes have to the basic unit. The highlighted upper portion of Table 1.2 indicates prefixes that are smaller than the basic unit and are frequently used in clinical laboratories. When converting between prefixes, simply note the relationship between the two prefixes based on whether you are changing to a smaller or larger prefix. For example, if converting from one liter (1.0 \times 10⁰ or 1.0) to milliliters (1.0 \times 10⁻³ or 0.001), the starting unit (L) is larger than the desired unit by a factor of 1,000 or 10³. This means that

the decimal place would be moved to the *right* three places, so 1.0 liter (L) equals 1,000 milliliters (mL). When changing 1,000 milliliters (mL) to 1.0 liter (L), the process is reversed and the decimal point would be moved three places to the left to become 1.0 L. Note that the SI term for mass is *kilogram*; it is the only basic unit that contains a prefix as part of its name. Generally, the standard prefixes for mass use the term *gram* rather than *kilogram*.

Example 1: Convert 1.0 L to µL

1.0 L (1 × 10^0) = ? μ L (micro = 10^{-6}); move the decimal place six places to the right and it becomes 1,000,000 μ L; reverse the process to determine the expression in L (move the decimal six places to the left of 1,000,000 μ L to get 1.0 L).

SI CONVERSIONS

To convert between SI units, move the decimal by the difference between the exponents represented by the prefix either to the right (from a larger to a smaller unit) or to the left (from a smaller to a larger one) of the number given:

> decimal point ←000 #.000→

smaller to larger unit larger to smaller unit

Convert to larger unit: smaller to larger unit—move to the left
Convert to a smaller unit: larger to smaller—move to the right
= the numeric value given

Example 2: Convert 5 mL to µL

5 mL (milli = 10^{-3} , larger) = ? μ L (micro = 10^{-6} , smaller); move the decimal by three places to the right and it becomes 5,000 μ L.

Example 3: Convert 5.3 mL to dL

5.3 mL (milli = 10^{-3} , smaller) = ? dL (deci = 10^{-1} , larger); move the decimal place by two places to the left and it becomes 0.053 dL.

Reporting of laboratory results is often expressed in terms of substance concentration (e.g., moles) or the mass of a substance (e.g., mg/dL, g/dL, g/L, mmol/L, and IU) rather than in SI units. These familiar and traditional units can cause confusion during interpretation. Appendix D (on the Point), Conversion of Traditional Units to SI Units for Common Clinical Chemistry Analytes, lists both reference and SI units together with the conversion factor from traditional to SI units for common analytes. As with other areas of industry, the laboratory and the rest of medicine are toward adopting universal standards promoted International Organization for Standardization, often referred to as ISO. This group develops standards of practice, definitions, and guidelines that can be adopted by everyone in a given field, providing for more uniform terminology and less confusion. Many national initiatives recommended common units for laboratory test results, but none have been widely adopted.² As with any transition, clinical laboratory scientists should be familiar with all the terms currently used in their field.

REAGENTS

In today's highly automated laboratory, there seems to be little need for reagent preparation by the clinical laboratory scientist. Most instrument manufacturers make the reagents in a ready-to-use form or "kit" where all necessary reagents and respective storage containers are prepackaged as a unit requiring only the addition of water or buffer to the prepackaged components for reconstitution. A heightened awareness of the hazards of certain chemicals and the numerous regulatory agency requirements has caused clinical chemistry laboratories to readily eliminate massive stocks of chemicals and opt instead for the ease of using prepared reagents. Periodically, especially in hospital laboratories involved in research and development, biotechnology applications, specialized analyses, or method validation, the laboratorian may still face preparing various reagents or solutions.

Chemicals

Analytic chemicals exist in varying grades of purity: analytic reagent (AR); ultrapure, chemically pure (CP); United States Pharmacopeia (USP); National Formulary (NF); and technical or commercial grade.³ A committee of the American Chemical Society (ACS) established specifications for AR grade

chemicals, and chemical manufacturers will either meet or exceed these requirements. Labels on reagents state the actual impurities for each chemical lot or list the maximum allowable impurities. The labels should be clearly printed with the percentage of impurities present and either the initials AR or ACS or the term For laboratory use or ACS Standard-Grade Reference Materials. Chemicals of this category are suitable for use in most analytic laboratory procedures. Ultrapure chemicals have been put through additional purification steps for use in specific procedures such as chromatography, atomic absorption, immunoassays, molecular diagnostics, standardization, or other techniques that require extremely pure chemicals. These reagents may carry designations of HPLC (high-performance liquid chromatography) or chromatographic on their labels.

Because USP and NF grade chemicals are used to manufacture drugs, the limitations established for this group of chemicals are based only on the criterion of not being injurious to individuals. Chemicals in this group may be pure enough for use in most chemical procedures; however, it should be recognized that the purity standards are not based on the needs of the laboratory and, therefore, may or may not meet all assay requirements.

Reagent designations of CP or pure grade indicate that the impurity limitations are not stated and that preparation of these chemicals is not uniform. It is not recommended that clinical laboratories use these chemicals for reagent preparation unless further purification or a reagent blank is included. Technical or commercial grade reagents are used primarily in manufacturing and should never be used in the clinical laboratory.

Organic reagents also have varying grades of purity that differ from

those used to classify inorganic reagents. These grades include a practical grade with some impurities; CP, which approaches the purity level of reagent grade chemicals; spectroscopic (spectrally pure) and chromatographic grade organic reagents, with purity levels attained by their respective procedures; and reagent grade (ACS), which is certified to contain impurities below certain levels established by the ACS. As in any analytic method, the desired organic reagent purity is dictated by the particular application.

Other than the purity aspects of the chemicals, laws related to the Occupational Safety and Health Administration (OSHA)⁴ require manufacturers to indicate any physical or biologic health hazards and precautions needed for the safe use, storage, and disposal of any chemical. A manufacturer is required to provide technical data sheets for each chemical manufactured on a document