Representação binária em IEEE 754

Exemplo: Converter o 19.59375 para IEEE 754 32 bits

1º passo – Determinar o sign bit

Existem duas hipóteses:

- Se for positivo, sign bit = 0;
- Se for negativo, sign bit = 1;

2º passo – Converter para um número binário

19.59375 ₁₀ = 10011.10011 ₂

Passo 1: Converter a parte inteira (19₁₀)

Dividimos 19 por 2 e anotamos os restos:

Divisão	Quociente	Resto	
19 ÷ 2	9	1	
9 ÷ 2	4	1	
4 ÷ 2	2	0	
2 ÷ 2	1	0	
1 ÷ 2	0	1	

Parte inteira em binário: 10011₂

(Lemos os restos de baixo para cima)

Passo 2: Converter a parte fracionária (0,5937510)

Multiplicamos a parte fracionária por 2 e anotamos a parte inteira:

Multiplicação	Parte Inteira	Parte Fracionária	
0,59375 × 2 = 1 .1875	1	0,1875	
0,1875 × 2 = 0 .375	0	0,375	
0,375 × 2 = 0 .75	0	0,75	
0,75 × 2 = 1 .5	1	0,5	
0,5 × 2 = 1.0	1	0,0 (fim)	

Parte fracionária em binário: .10011.

3º passo – Normalizar para determinar a mantissa e o unbiased expoente (colocar o ponto binário após o mais à esquerda 1)

$$1 \sqrt[4]{0} \sqrt[4]{1} \sqrt[$$

4º passo – Determinar o biased exponente (adicionar 127 para converter para unsigned binary)

$$4 + 127 = 131_{10} = 10000011_{2}$$

Divisão	Quociente	Resto
131 ÷ 2 = 65	65	1
65 ÷ 2 = 32	32	1
32 ÷ 2 = 16	16	0
16 ÷ 2 = 8	8	0
8 ÷ 2 = 4	4	0
4 ÷ 2 = 2	2	0
2 ÷ 2 = 1	1	0
1 ÷ 2 = 0	0	1

Agora, lemos os restos de baixo para cima:

5º passo – Remover o 1 mais à esquerda da mantisssa

1.001110011 = 001110011

6º passo – Escrever o número em IEEE 754

 $0\ 100\underline{0}0011\ 001110011000000000000000$

Nota: Para passar para biased expoente o valor depende do IEEE 754 format

IEEE 754 Format	Sign	Exponent	Mantissa	Exponent Bias
32 bit single precision	1 bit	8 bits	23 bits (+ 1 not stored)	2 ⁽⁸⁻¹⁾ - 1 = 127
64 bit double precision	1 bit	11 bits	52 bits (+ 1 not stored)	2 ⁽¹¹⁻¹⁾ - 1 = 1023
128 bit quadruple precision	1 bit	15 bits	112 bits (+ 1 not stored)	2 ⁽¹⁵⁻¹⁾ - 1 = 16383