

B2 - Analysis

- 1 Gegeben ist die Funktionenschar f_k mit $f_k(t)=k\cdot t\cdot \mathrm{e}^{-0.4\cdot t},\; k,t\in\mathbb{R}, k>0.$
- 1.1 In Material 1 sind die Graphen von f_1 , $f_{1,5}$ und f_2 dargestellt. Ordne die Graphen A, B und C den verschiedenen Werten des Parameters k zu und begründe deine Zuordnung anhand des Funktionsterms.

Untersuche das Verhalten der Funktionswerte von f_k für $t o \infty$.

(4 BE)

1.2 Zeige rechnerisch, dass der Graph jeder Funktion der Schar f_k genau einen Hochpunkt bei $H\left(2,5\mid 2,5\cdot k\cdot \mathrm{e}^{-1}\right)$ hat.

Beschreibe die Lage der Hochpunkte der Schar.

(9 BE)

1.3 Mithilfe des Formansatzes $F_k(t) = k \cdot (a \cdot t + b) \cdot \mathrm{e}^{-0,4 \cdot t}$ soll eine Stammfunktionenschar F_k von f_k bestimmt werden.

Berechne die Ableitungsfunktionenschar F_k^\prime der Funktionenschar F_k .

Ermittle durch Vergleich der Funktionsterme von F_k' und f_k eine Stammfunktionenschar F_k von f_k . [zur Kontrolle: $F_k(t) = k \cdot (-2, 5t - 6, 25) \cdot \mathrm{e}^{-0,4t}$]

(6 BE

1.4 Untersuche, ob der Graph von f_k mit der positiven t-Achse eine Fläche mit endlichem Inhalt einschließt und berechne ggf. den Flächeninhalt.

(4 BE)

2 Gegeben ist eine zweite Funktionenschar g_k mit $g_k(t)=k^2\cdot t\cdot \mathrm{e}^{-0.6t},\ k,t\in\mathbb{R},k>0.$

Zeige rechnerisch, dass sich die Graphen der Scharen f_k aus Aufgabe 1 und g_k in den Punkten $S_1(0\mid 0)$ und $S_2\left(\frac{\ln k}{0,2}\mid \frac{\ln k}{0,2\cdot k}\right)$ schneiden und bestimme die Funktionsgleichung der Ortskurve der Schnittpunkte S_2 .

[zur Kontrolle: $o(t) = t \cdot \mathrm{e}^{-0,2 \cdot t}$]

(10 BE)

3 Mit Nebelfängern (Material 2) lassen sich trockene Gebiete mit Trinkwasser versorgen. Der Nebel kondensiert an Folien, das Wasser sammelt sich und rinnt in Zisternen.

Die Sammelrate eines Nebelfängers vom Typ I kann durch geeignete Funktionen der Schar f_k aus Aufgabe 1, die Sammelrate eines Nebelfängers vom Typ II durch geeignete Funktionen der Schar g_k aus Aufgabe 2 modelliert werden.

Dabei gibt t mit $t \in [0;10]$ die nach 19 Uhr vergangene Zeit in Stunden an; $f_k(t)$ bzw. $g_k(t)$ gibt die Sammelrate des jeweiligen Nebelfängers in hundert Liter pro Stunde an. Die Sammelrate des jeweiligen Nebelfängers hängt von unterschiedlichen Wetterlagen ab, welche mithilfe des Parameters k mit $k \in [1;3]$ modelliert werden können.

Unter der Ausbeute eines Nebelfängers versteht man die in der Zeit von 19 Uhr abends bis 5 Uhr morgens gesammelte Wassermenge.

3.1 Zeige, dass die Ausbeute eines Nebelfängers vom Typ I in hundert Liter in Abhängigkeit von k durch die Funktion $A(k) = 5,678 \cdot k$ näherungsweise beschrieben wird.

Bestimme die minimal und die maximal mögliche Ausbeute eines Nebelfängers vom Typ $\emph{\textbf{I}}$ in Liter.

(4 BE)

3.2 Zeige, dass bei der durch den Wert k=2,08 modellierten Wetterlage beide Nebelfänger auf ganze Liter gerundet die gleiche Ausbeute erzielen.

(3 BE)

3.3 Erläutere die Zeilen (I) und (II) sowie die Rechensätze in Zeile (III) des Kastens. Deute die beiden Ergebnisse in Zeile (III) im Sachzusammenhang.

$$(I) f_{2,08}(t) = g_{2,08}(t) \Rightarrow t_1 = 0 \ \lor \ t_2 \approx 3,66$$

$$(II) \ u(t) = f_{2,08}(t) - g_{2,08}(t)$$

$$(III) \int_0^{3,66} u(t) \; \mathrm{d}t pprox -2,15 \; ; \; \int_{3,66}^{10} u(t) \; \mathrm{d}t pprox +2,15$$

(5 BE)

- 4 Zu jeder durch den Parameter k modellierten Wetterlage gibt es einen Zeitpunkt $t^*>0$, zu dem die Nebelfänger vom Typ I und II die gleiche Sammelrate haben.
- 4.1 Erkläre, wie man unter Zuhilfenahme des Kontrollergebnisses aus Aufgabe 2 den Zeitpunkt t_{\max}^* berechnen kann, bei dem die beiden Nebelfänger die größtmögliche gleiche Sammelrate haben.

Hinweis: Eine rechnerische Herleitung des Zeitpunktes $t_{
m max}^*$ ist nicht erforderlich.

(2 BE)

4.2 Es ergibt sich $t_{
m max}^*=5$. Berechne den zugehörigen Wert des Parameters k.

(3 BE)

Material 1

Material 2

Bildnachweise [nach oben]

[1] https://de.wikipedia.org/wiki/Datei:Atrapanieblas_en_Alto_Patache.jpg - Atrapanieblas en Alto Patache, Nicole Saffie, CC BY-SA.