# Задача 1. Космодром

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В последнее время все больше марсиан совершают межпланетные перелеты. А в результате развития межпланетной торговли увеличилось количество грузовых космических кораблей, которые прилетают на Марс. Чтобы избежать перегрузки существующих транспортных узлов, мэрия Олимп-Сити решила построить около города новый космодром.

Перед началом работ была подготовлена строительная площадка. Для этого местность около Олимп-Сити разбили на квадраты, образующие сетку. Стороны квадратов параллельны сторонам света. Введем систему координат: обозначим координаты некоторого квадрата как (0,0), а оси координат направим с севера на юг и с запада на восток соответственно. Тогда квадрат (x,y) граничит по стороне с квадратами (x-1,y), (x+1,y), (x,y-1) и (x,y+1).

По плану территория космодрома должна быть квадратной. Т. е. будут выбраны некоторые три целых числа  $x_0, y_0$  и p ( $p \ge 1$ ). Все квадраты с координатами (x, y) такими, что  $x_0 \le x \le x_0 + p - 1$  и  $y_0 \le y \le y_0 + p - 1$  будут находиться на территории космодрома, а остальные — вне его территории.

Квадраты на территории космодрома, которые граничат хотя бы с одним квадратом не на территории космодрома, будем называть *граничными*. Все граничные квадраты должны содержать забор, а на остальных квадратах (как внутри, так и вне космодрома) забора быть не должно.

Строители уже поставили забор на некоторые квадраты. Вам необходимо проконтролировать их работу и убедиться, что построенный забор действительно ограничивает квадратную территорию космодрома. Иными словами, вам необходимо проверить, что забор находится во всех граничных квадратах космодрома с некоторыми параметрами  $x_0$ ,  $y_0$  и p, а остальные квадраты не содержат забора.

# Формат входных данных

В первой строке входных данных находится целое число  $n\ (1\leqslant n\leqslant 2\cdot 10^5)$  — количество квадратов, в которых расположен забор.

В каждой из следующих n строк находится по два целых числа  $x_i$  и  $y_i$   $(-10^5 \leqslant x_i, y_i \leqslant 10^5)$  — координаты i-го квадрата, где расположен забор.

Гарантируется, что координаты всех перечисленных во входных данных квадратов различны.

# Формат выходных данных

Если описанный во входных данных забор не ограничивает никакой квадратный космодром, выведите одно целое число -1. Иначе выведите три целых числа  $x_0, y_0, p$  ( $-10^6 \le x_0, y_0 \le 10^6, 1 \le p \le 2 \cdot 10^6$ ) — параметры космодрома, который ограничен построенным забором.

# Система оценки

| $N_{\overline{0}}$ | Дополнительные ограничения            | Баллы за подзадачу | Необходимые подзадачи |
|--------------------|---------------------------------------|--------------------|-----------------------|
| 1                  | $n \leqslant 4$                       | 3                  |                       |
| 2                  | $n \leqslant 1000$                    | 23                 | 1                     |
| 3                  | $0 \leqslant x_i, y_i \leqslant 1000$ | 16                 |                       |
| 4                  | Нет дополнительных ограничений        | 58                 | 1 - 3                 |

# Примеры

|     | стандартный ввод | стандартный вывод |
|-----|------------------|-------------------|
| 12  |                  | 1 1 4             |
| 1 1 |                  |                   |
| 1 2 |                  |                   |
| 1 3 |                  |                   |
| 1 4 |                  |                   |
| 2 4 |                  |                   |
| 3 4 |                  |                   |
| 4 4 |                  |                   |
| 4 3 |                  |                   |
| 4 2 |                  |                   |
| 4 1 |                  |                   |
| 3 1 |                  |                   |
| 2 1 |                  |                   |
| 13  |                  | -1                |
| 1 1 |                  |                   |
| 1 2 |                  |                   |
| 1 3 |                  |                   |
| 1 4 |                  |                   |
| 2 4 |                  |                   |
| 3 4 |                  |                   |
| 4 4 |                  |                   |
| 4 3 |                  |                   |
| 4 2 |                  |                   |
| 4 1 |                  |                   |
| 3 1 |                  |                   |
| 2 1 |                  |                   |
| 5 2 |                  |                   |
| 11  |                  | -1                |
| 1 1 |                  |                   |
| 1 2 |                  |                   |
| 1 3 |                  |                   |
| 1 4 |                  |                   |
| 2 4 |                  |                   |
| 4 4 |                  |                   |
| 4 3 |                  |                   |
| 4 2 |                  |                   |
| 4 1 |                  |                   |
| 3 1 |                  |                   |
| 2 1 |                  |                   |
|     |                  |                   |

# Замечание

В первом примере построенный забор выглядит следующим образом:

| (1,1) | (1,2) | (1,3) | (1,4) |  |
|-------|-------|-------|-------|--|
| (2,1) |       |       | (2,4) |  |
| (3,1) |       |       | (3,4) |  |
| (4,1) | (4,2) | (4,3) | (4,4) |  |
|       |       |       |       |  |

Можно заметить, что если космодром имеет параметры  $x_0 = 1$ ,  $y_0 = 1$  и p = 4, то тогда забором покрыты все его граничные клетки.

Во втором примере забор выглядит следующим образом:

| (1,1) | (1,2) | (1,3) | (1,4) |  |
|-------|-------|-------|-------|--|
| (2,1) |       |       | (2,4) |  |
| (3,1) |       |       | (3,4) |  |
| (4,1) | (4,2) | (4,3) | (4,4) |  |
|       | (5,2) |       |       |  |

Здесь необходимо вывести -1, поскольку квадрат (5,2) содержит забор, хотя забором должны быть покрыты только граничные клетки.

Теперь рассмотрим третий пример:

| (1,1) | (1,2) | (1,3) | (1,4) |  |
|-------|-------|-------|-------|--|
| (2,1) |       |       | (2,4) |  |
| (3,1) |       |       |       |  |
| (4,1) | (4,2) | (4,3) | (4,4) |  |
|       |       |       |       |  |

Здесь граничный квадрат (3,4) должен быть покрыт забором, а он является пустым. Поэтому ответ, как и в предыдущем примере, равен -1.

# Задача 2. Игра с числами

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Мальчик Петя со своим другом, роботом Petya++, любит играть в различные игры. Недавно ребята придумали новую игру и решили сыграть в нее.

Правила игры описаны ниже. В начале задается некоторый набор из n целых чисел  $a_i$ . Каждый ход один из игроков может либо поменять знак некоторого числа из набора на противоположный, либо не делать ничего. В конце игры вычисляется сумма всех чисел в полученном наборе. Задача Пети — максимизировать данную сумму, а Petya++ — минимизировать ее.

Особенность данной игры в том, что игроки не обязательно ходят по порядку. Перед началом игры выбирается целое число k — общее количество ходов за игру. Затем игроки k раз тянут жребий, чтобы определить, кто будет ходить на i-м ходу.

Друзья очень долго играли в эту игру, пока им не надоело. Затем они занялись поиском оптимальной стратегии, но так и не сумели ее отыскать. Поэтому ребята обратились за помощью к Вам и попросили написать программу, которая по заданному исходному набору чисел и порядку ходов сможет определить счет игры, если Петя и Ретуа++ будут играть оптимально.

#### Формат входных данных

В первой строке входных данных находятся два целых числа n и k ( $1 \leq n \leq 3 \cdot 10^5$ ,  $1 \leq k \leq 3 \cdot 10^5$ ) — количество чисел в наборе и количество ходов в игре.

Во второй строке входных данных находится n целых чисел  $a_i$  ( $-10^9 \leqslant a_i \leqslant 10^9$ ) — набор, который игроки изменяют во время игры.

В третьей строке входных данных находится k целых чисел  $b_i$  ( $1 \leqslant b_i \leqslant 2$ ). Если  $b_i = 1$ , то на i-м ходу ходит Петя, иначе ходит Рetya++.

# Формат выходных данных

Выведите одно целое число — сумму чисел в наборе после того, как игроки сделают k ходов при оптимальной игре.

# Система оценки

| $N_{\overline{0}}$ | Дополнительные ограничения              | Баллы за подзадачу | Необходимые подзадачи |
|--------------------|-----------------------------------------|--------------------|-----------------------|
| 1                  | $Bce \ b_i \ равны$                     | 3                  |                       |
| 2                  | $n \leqslant 10$                        | 5                  |                       |
| 3                  | $n \leqslant 100,   a_i  \leqslant 100$ | 7                  |                       |
| 4                  | $n \leqslant 1000$                      | 32                 | 2, 3                  |
| 5                  | Нет дополнительных ограничений          | 53                 | 1 - 4                 |

# Примеры

| стандартный ввод | стандартный вывод |
|------------------|-------------------|
| 3 2              | 12                |
| 3 4 5            |                   |
| 2 1              |                   |
| 3 2              | 2                 |
| 3 4 5            |                   |
| 1 2              |                   |

#### Замечание

В первом примере Petya++ может поменять знак на любом из чисел. Следующим ходом Петя поменяет знак у этого числа обратно. Тогда набор чисел не изменится, а сумма будет равна 3+4+5=12.

# Третий этап республиканской олимпиады по учебному предмету «Информатика» 1 тур. Вариант 1, 2020/2021 учебный год

| 1 тур. Вариант 1, 2020/2021 учебный год                                                                                                                                                          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Во втором примере первым ходит Петя. Ему выгоднее всего не менять никакое из чисел. Следующим ходом $Petya++$ изменяет число $5$ на $-5$ . $B$ конце игры сумма получается равной $3+4+(-5)=2$ . |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                  |  |  |

# Задача 3. Вражеские шпионы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Инопланетные захватчики из одной далекой звездной системы атакуют Марс. Для победы над противником у марсиан есть современная армия и мощное вооружение, поэтому жители Марса не сомневаются в своей победе. Однако если врагу удастся заполучить военные секреты марсиан, то его войска доставят куда больше неприятностей, а победа марсиан будет не столь очевидной. Поэтому генерал марсианской армии поставил перед своими подчиненными крайне важную задачу: найти и уничтожить всех вражеских шпионов.

Для поиска шпионов была произведена аэрофотосъемка местности. В результате получилась черно-белая фотография, которую можно представить в виде матрицы, состоящей из n строк и m столбцов. Каждый элемент матрицы является либо черным, либо белым пикселем.

Известно, что шпионские дроны противника имеют крестообразную форму. Поэтому был разработан следующий алгоритм поиска. Рассматриваются все квадратные подматрицы с длиной стороны, **строго** большей 1. Если в некоторой подматрице все пиксели на двух главных диагоналях черные, а все остальные пиксели белые, то данная подматрица считается *подозрительной*. Примеры подозрительных подматриц приведены на рисунке ниже:



После определения всех подозрительных подматриц необходимо подсчитать их количество, что-бы оценить число шпионов на участке местности.

По итогам аэрофотосъемки накопилось довольно большое количество снимков, и теперь стоит вопрос автоматизированной обработки всех этих изображений. Решить данный вопрос должна известная компания «Interplanetary Software, Inc.».

Вы — сотрудник «Interplanetary Software, Inc.». Вам было поручено разработать программу, которая по заданному снимку определяет количество подозрительных подматриц на нем.

# Формат входных данных

В первой строке входных данных находится два целых числа n и m  $(1 \leqslant n, m \leqslant 2000)$  — размеры изображения.

В каждой из следующих n строк находится по одной строке, состоящей из m символов «.» и «#» — описание изображения. Символу «.» соответствует белый пиксель, а символу «#» — черный.

### Формат выходных данных

Выведите одно целое число — количество подозрительных подматриц в заданном изображении.

# Система оценки

| $N_{\overline{0}}$ | Дополнительные ограничения     | Баллы за подзадачу | Необходимые подзадачи |
|--------------------|--------------------------------|--------------------|-----------------------|
| 1                  | $n, m \leqslant 2$             | 3                  |                       |
| 2                  | $n, m \leqslant 3$             | 1                  | 1                     |
| 3                  | $n, m \leqslant 20$            | 14                 | 1, 2                  |
| 4                  | $n, m \leqslant 300$           | 21                 | 1 - 3                 |
| 5                  | Нет дополнительных ограничений | 61                 | 1 - 4                 |

# Примеры

| стандартный ввод | стандартный вывод |
|------------------|-------------------|
| 10 9             | 7                 |
| ##.#             |                   |
| .#.##.           |                   |
| ##.#             |                   |
| .#.##            |                   |
| ###.             |                   |
| ##               |                   |
| ##               |                   |
| #.#.##.          |                   |
| .#.#.##.#        |                   |
| ###.###          |                   |
| 8 8              | 4                 |
| ##               |                   |
| .##.             |                   |
| ##               |                   |
| ##               |                   |
| ##               |                   |
| ##               |                   |
| .##.             |                   |
| ##               |                   |

#### Замечание

На рисунке ниже изображен первый пример из условия. Все семь подозрительных подматриц выделены:



# Задача 4. Мощный процессор

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Инженеры одной из крупнейших марсианских корпораций «Black Hole Semiconductors, Inc.» выпустили новый мощный процессор ВН-42. Одной из ключевых особенностей данного процессора является аппаратное ускорение часто используемых алгоритмов. Например, процессор может решать так называемую  $sadaчy\ Xorseq$ , т. е. быстро выполнять следующие операции над массивом a из n чисел:

- Для всех чисел i от l до r поменять значение  $a_i$  на  $a_i \oplus v$ . Здесь  $\oplus$  обозначает операцию побитового исключающего ИЛИ.
- Найти длину наибольшей возрастающей подпоследовательности на отрезке [l;r], т. е. найти наибольший по размеру набор чисел  $(i_1,i_2,\ldots,i_k)$  такой, что  $l\leqslant i_1< i_2<\cdots< i_k\leqslant r$  и  $a_{i_1}< a_{i_2}<\cdots< a_{i_k}$ .

Компания-конкурент, «Interplanetary Software, Inc.» поставляет своим клиентам компьютеры с процессорами Mars-24, которые не умеют эффективно решать описанную выше задачу. Однако инженеры компании считают, что хорошая программная реализация позволит обрабатывать операции Xorseq не медленнее, чем процессор ВН-42.

Теперь перед компанией стоит крайне важная задача: разработать эффективный алгоритм для Xorseq, чтобы убедить клиентов не переходить на процессоры конкурента. Вам, как специалисту по алгоритмам в компании «Interplanetary Software, Inc.» было поручено написать реализацию требуемого алгоритма.

# Формат входных данных

В первой строке входных данных находится два целых числа n и q  $(1 \leqslant n \leqslant 10^5, 1 \leqslant q \leqslant 10^5)$  — размер массива и количество операций соответственно.

Во второй строке входных данных находится n целых чисел  $a_i$  ( $0 \le a_i \le 7$ ) — исходный массив. В каждой из следующих строк описана ровно одна операция. Описание операции может иметь один из заданных ниже форматов:

- хот  $l \ r \ v \ (1 \leqslant l \leqslant r \leqslant n, \ 0 \leqslant v \leqslant 7)$  заменить  $a_i$  на  $a_i \oplus v$  для всех  $l \leqslant i \leqslant r$ .
- seq  $l\ r\ (1\leqslant l\leqslant r\leqslant n)$  вывести длину наибольшей возрастающей подпоследовательности на отрезке [l;r].

# Формат выходных данных

Для каждой операции второго типа в отдельной строке выведите целое число — ответ на данную операцию. Ответы должны следовать в том же порядке, в котором заданы сами операции.

# Система оценки

| № | Дополнительные ограничения              | Баллы за подзадачу | Необходимые подзадачи |
|---|-----------------------------------------|--------------------|-----------------------|
| 1 | $n \leqslant 2,  q \leqslant 10$        | 3                  |                       |
| 2 | $n \leqslant 4, \ q \leqslant 10$       | 1                  | 1                     |
| 3 | $n \leqslant 50,  q \leqslant 50$       | 7                  | 1, 2                  |
| 4 | $n \leqslant 1000,  q \leqslant 1000$   | 11                 | 1 - 3                 |
| 5 | $a_i\leqslant 1$ в любой момент времени | 13                 |                       |
| 6 | Нет запросов типа хог                   | 9                  |                       |
| 7 | $n, q \leqslant 50000$                  | 22                 | 1 - 4                 |
| 8 | Нет дополнительных ограничений          | 34                 | 1 - 7                 |

# Пример

| стандартный ввод    | стандартный вывод |
|---------------------|-------------------|
| 10 11               | 4                 |
| 0 1 4 3 0 7 2 5 2 3 | 6                 |
| seq 1 10            | 6                 |
| xor 3 5 6           | 1                 |
| seq 1 6             | 2                 |
| seq 1 10            | 5                 |
| seq 3 3             | 2                 |
| seq 5 10            | 1                 |
| xor 7 10 5          |                   |
| seq 2 9             |                   |
| xor 1 10 7          |                   |
| seq 2 10            |                   |
| seq 5 5             |                   |

#### Замечание

Исключающее ИЛИ — операция, которая на вход принимает два бита и возвращает бит 0, если биты на входе равны и 1 в противном случае. Например:  $1 \oplus 0 = 1$ ,  $1 \oplus 1 = 0$ . Для применения побитового исключающего ИЛИ двух чисел эти числа сначала переводят в двоичную систему счисления, а затем применяют исключающее ИЛИ к каждому из разрядов. Например,  $6 \oplus 3 = 5$ , поскольку  $6 = 110_2$ ,  $3 = 11_2$ . Применив исключающее ИЛИ поразрядно, получаем  $5 = 101_2$ :

$$\begin{array}{c}
110_2 \\
\oplus 11_2 \\
\hline
101_2
\end{array}$$

В языке программирования Pascal побитовое исключающее ИЛИ чисел a и b обозначается a хог b, а в языках Python и C++-a  $^{\circ}$  b.

Теперь рассмотрим пример из условия.

После первой операции мы выводим ответ 4, поскольку можно выбрать неубывающую подпоследовательность длины четыре:  $\mathbf{0} \ \mathbf{1} \ 4 \ \mathbf{3} \ 0 \ \mathbf{7} \ 2 \ 5 \ 2 \ 3$ .

После второй операции массив станет выглядеть так: 0 1 2 5 6 7 2 5 2 3.

Ответ на третью операцию равен 6, т. к. отрезок из первых шести чисел имеет вид  $0\ 1\ 2\ 5\ 6\ 7$  и уже является неубывающим.

Для четвертой операции оптимальная подпоследовательность выглядит как 0 1 2 5 6 7 2 5 2 3.

В пятой операции отрезок состоит из одного элемента, поэтому ответ равен 1.

В шестой операции оптимальная подпоследовательность выглядит как 7 2 5 2 3.

После седьмой операции массив станет выглядеть как 0 1 2 5 6 7 7 0 7 6.

В восьмой операции оптимальная подпоследовательность выглядит как 1 2 5 6 7 7 0 7.

После девятой операции массив станет выглядеть как 7 6 5 1 0 0 7 0 1.

В десятой операции оптимальная подпоследовательность выглядит как 6 5 2 1 0 0 7 0 1.

В одиннадцатой операции отрезок состоит из одного элемента, поэтому ответ равен 1.