PEL 208 Prof. Reinaldo A. C. Bianchi

Tópicos Especiais em Aprendizagem Entrega: 22/11/2017

Introdução

Esse relatório tem como objetivo detalhar a teoria, a implementação, os resultados e a conclusão da quinta atividade do curso. A propósta do exercício é implementar uma rede neural artificial utilizando back-propagation.

Teoria

Rede Neural Artificial

As Redes Neurais Artificiais (RNA) são técnicas que se inspiram na estrutura neural biologica e podem adquirir conhecimento a partir de experiências.

Uma RNA possui unidades de processamento que são conectadas por canais associadas a um determinado peso. Essas unidades executam operações em cima de seus dados de entrada gerando assim um dado de saída.

Podemos descrever o funcionamento de uma unidade de processamento da seguinte forma:

- Sinais são apresentados à entrada;
- Cada sinal é multiplicado por um peso, que indica a sua influência na saída da unidade;
- Soma-se os sinais produzindo um nível de atividade;
- Se este nível de atividade ultrapassar um limiar a unidade produz uma determinada saída.

Também é possível ajustar os pesos das conexões das RNAs de acordo com uma regra de treinamento, isso faz com que a rede aprenda a partir de exemplos.

A arquitetura de uma rede neural é organizada em camadas que são conectadas a outras camadas. Podemos classificar essas camadas em tres diferentes grupos::

- Camada de entrada: onde os valores iniciais são inseridos na rede;
- Camada escondida: onde é feito o processamento;
- Camada de saída: onde se obtem o resultado final.

Aprendizado

Uma característica importante da RNA é a possibilidade de aprendizado, melhorando assim o seu desempenho. Para isso, um processo iterativo de treinamento realiza o ajuste de cada peso. O aprendizado ocorre quando a rede neural atinge uma solução generalizada para uma classe de problemas.

Para um problema de aprendizado supervisionado, onde se sabe a resposta desejada para o padrão de entrada, podemos corrigir os pesos de duas maneiras:

Modo Padrão: Corrigi os pesos a cada amostra de entrada do conjunto de treinamento.
 Essa correção baseia-se no erro do exemplo apresentado naquela iteração. Assim, em cada ciclo ocorrem N correções.

 Modo Batch: Apenas uma correção é feita por ciclo. Todos os exemplos do conjunto de treinamento são apresentados à rede, seu erro médio é calculado e a partir deste erro fazem-se as correções dos pesos.

Quando um padrão é inicialmente apresentado à rede, ela produz uma saída. Após medir a distância entre a resposta atual e a desejada, são realizados os ajustes apropriados nos pesos das conexões de modo a reduzir esta distância. Este procedimento é conhecido como Regra Delta.

Implementação

Para a elaboração do exercício foi utilizada a linguagem de programação python. Foram criadas funções separadas para cada etapa da rede neural.

Função inicia rede

Função que retorna uma rede iniciada de acordo com os parâmetros enviados.

Função forward propagate

Função para calcular o foward propagate de uma rede.

```
def forward_propagate(rede, linha):
    entrada = linha
    for camada in rede:
        nova_entrada = []
        for neuronio in camada:
            ativacao = ativar(neuronio['pesos'], entrada)
            neuronio['saida'] = transferir(ativacao)
            nova_entrada.append(neuronio['saida'])
        entrada = nova_entrada
    return entrada

# Calcula a ativacao do neuronio para uma entrada
def ativar(pesos, entradas):
    ativacao = pesos[-1]
    for i in range(len(pesos)-1):
```

```
ativacao += pesos[i] * entradas[i]
return ativacao

# Transferir a ativacao do neuronio
def transferir(ativacao):
    return 1.0 / (1.0 + math.exp(-ativacao))

# Calcula a derivada de uma saida de neuronio
def transferir_derivada(saida):
    return saida * (1.0 - saida)
```

Função backward propagate erro

Função para calcular o erro do backward propagate.

```
def backward_propagate_erro(rede, esperado):
    for i in reversed(range(len(rede))):
        camada = rede[i]
        erros = list()
        if i != len(rede)-1:
            for j in range(len(camada)):
                erro = 0.0
                for neuronio in rede[i + 1]:
                    erro += (neuronio['pesos'][j] *
                            neuronio['delta'])
                erros.append(erro)
        else:
            for j in range(len(camada)):
                neuronio = camada[j]
                erros.append(esperado[j] - neuronio['saida'])
        for j in range(len(camada)):
            neuronio = camada[j]
            neuronio['delta'] = erros[j] *
                transferir_derivada(neuronio['saida'])
```

Função treinar rede

Função para treinar uma rede de acordo com os parâmetros enviados.

```
soma_erro += sum([(esperado[i]-saidas[i])**2
                         for i in range(len(esperado))])
            backward_propagate_erro(rede, esperado)
            atualiza_pesos(rede, linha, taxa_aprendizado)
# Atualiza pesos da rede com devido erro
def atualiza_pesos(rede, linha, taxa_aprendizado):
    for i in range(len(rede)):
        entradas = linha[:-1]
        if i != 0:
            entradas = [neuronio['saida']
                       for neuronio in rede[i - 1]]
        for neuronio in rede[i]:
            for j in range(len(entradas)):
                neuronio['pesos'][j] += taxa_aprendizado *
                    neuronio['delta'] * entradas[j]
        neuronio['pesos'][-1] += taxa_aprendizado *
            neuronio['delta']
```

Função back propagation

Função back-propagation

```
\# Backpropagation
def back_propagation(treinamento, teste, taxa_treinamento,
        num_epoca, num_escondidas):
   num_{entradas} = len(treinamento[0]) - 1
    num_saidas = len(set([row[-1] for row in treinamento]))
    rede = inicia_rede(num_entradas, num_escondidas,
           num_saidas)
    treinar_rede(rede, treinamento, taxa_treinamento,
        num_epoca, num_saidas)
    predicoes = list()
    for row in teste:
        pred = predicao(rede, row)
        predicoes.append(pred)
    return predicoes
# Faz uma predicao com uma rede
def predicao(rede, linha):
   saidas = forward_propagate(rede, linha)
```

return saidas.index(max(saidas))

Os códigos completos podem ser vistos nos arquivos redeneural.py e testes.ipynb que se encontram na pasta da atividade.

Testes

Para testar o funcionamento da rede neural artificial foi utilizado o banco de dados de digitos escritos a mão dos códigos postais dos envelopes de cartas dos Estados Unidos.

Cada imagem do banco representa um único digito extraído do código postal. As imagens possuem dimenssão de 16x16 bits e estão em escala de cinza. Nesse trabalho, foram feitos três testes alterando as variáveis da rede neural artificial.

Resultados

1º Teste

Digitos utilizados: 0 e 1 Taxa de Aprendizado: 0.5

Nº de épocas: 5

Nº neurônios na camada escondida: 30

Acuracia: 98.876%

2º Teste

Digitos utilizados: 0 e 1 Taxa de Aprendizado: 0.3

Nº de épocas: 10

Nº neurônios na camada escondida: 15

Acuracia: 99.197%

3° Teste

Digitos utilizados: 0 e 1 Taxa de Aprendizado: 0.7

Nº de épocas: 3

Nº neurônios na camada escondida: 10

Acuracia: 98.716%

Conclusão

Nesse relatório foi implementado, em linguagem python, um algoritmo para criar uma rede neural artificial com backpropagation. Para testar o algoritimo, foi utilizado o dataset com imagens de digitos obtidos de códigos postais em correspondências do Estados Unidos.

Podemos observar que, ao aumentar o número de épocas que se realiza a correção do back-propagation, conseguimos um melhor resultado.

Referências

- [1] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2001.
- [2] S. Russell, and P. Norvig. Artificial Intelligence: A Modern Approach. Series in Artificial Intelligence Prentice Hall, Upper Saddle River, NJ, terceira edition, 2010
- [3] Rede neural artificial Disponível em (https://pt.wikipedia.org/wiki/Rede_neural_artificial). Acesso em: 20 de out. de 2017