Logarithms

If $a^x = N$ then $x \equiv \log_a N$, and we have the very useful identity $a^{\log_a N} = N$. Letting $x = a^b$ and $y = a^c$, we get the following laws of logarithms:

logarithm rule	corresponding algebra	comments			
$\log_a(xy) = \log_a x + \log_a y$	$a^b a^c = a^{b+c}$	multiplication adds exponents			
$\log_a\left(x^p\right) = p\log_a x$	$(a^b)^p = a^{pb}$	exponentiation multiplies exponents			
$\log_a(x+y)$	$a^b + a^c$	does not (in general) simplify			

Notice that $a^{\log_a N} = N = b^{\log_b N}$. By taking \log_b of both sides and rearranging, we get the change-of-base formula, which allows us to compute \log_a of a number even if we only know how to do \log_b :

$$\log_a N = \frac{\log_b N}{\log_b a}$$

Note that $\log_b a$ is just some constant, a fact that will be useful when discussing big-O notation.

Writing Numbers In Any Base

We can expand any number as the sum of contributions of each of its digits:

$$2107_{10} = (2 \cdot 1000) + (1 \cdot 100) + (0 \cdot 10) + (7 \cdot 1)$$
$$= (2 \cdot 10^{3}) + (1 \cdot 10^{2}) + (0 \cdot 10^{1}) + (7 \cdot 10^{0})$$

The same could be done in any other base, e.g., base-2:

$$2107_{10} = (1 \cdot 2048) + (0 \cdot 1024) + (0 \cdot 512) + (0 \cdot 256) + (0 \cdot 128) + (0 \cdot 64) + (1 \cdot 32) + (1 \cdot 16) + (1 \cdot 8) + (0 \cdot 4) + (1 \cdot 2) + (1 \cdot 1)$$

$$= (1 \cdot 2^{11}) + (0 \cdot 2^{10}) + (0 \cdot 2^{9}) + (0 \cdot 2^{8}) + (0 \cdot 2^{7}) + (0 \cdot 2^{6}) + (1 \cdot 2^{5}) + (1 \cdot 2^{4}) + (1 \cdot 2^{3}) + (0 \cdot 2^{2}) + (1 \cdot 2^{1}) + (1 \cdot 2^{0})$$

which gives us $2107_{10} = 100000111011_2$. It is important to realize that the exponent pattern continues to the right of the radix (e.g., decimal or binary) point:

$$4.75_{10} = (1 \cdot 4) + (0 \cdot 2) + (0 \cdot 1) + (1 \cdot 0.5) + (1 \cdot 0.25)$$

$$= (1 \cdot 2^{2}) + (0 \cdot 2^{1}) + (0 \cdot 2^{0}) + (1 \cdot 2^{-1}) + (1 \cdot 2^{-2})$$

$$= 100.11_{2}$$

The general case of base-r is shown in Figure 1.

Figure 1: Base-r

Important Number Bases In Computer Science

You should get comfortable with bases 2 (binary), 8 (octal), 10 (decimal), and 16 (hexadecimal). This means writing values in each of them, converting values between them, and (especially in binary) how to do basic math (addition, subtraction, multiplication, division).

	base					base			
value	2	8	10	16	value	2	8	10	16
0	0	0	0	0	11	1011	13	11	В
1	1	1	1	$\mid 1 \mid$	12	1100	14	12	\mid C
2	10	2	2	2	13	1101	15	13	D
3	11	3	3	3	14	1110	16	14	E
4	100	4	4	4	15	1111	17	15	F
5	101	5	5	5	16	10000	20	16	10
6	110	6	6	6	17	10001	21	17	11
7	111	7	7	7	18	10010	22	18	12
8	1000	10	8	8	19	10011	23	19	13
9	1001	11	9	9	20	10100	24	20	14
10	1010	12	10	A	21	10101	25	21	15

Conversions between binary and octal (or hexadecimal) are easy, since each octal (or hexadecimal) digit maps to exactly 3 (or 4) binary digits, starting from the radix point. For example,

$$1111010110_2 = 1 111 010 110_2 = 1726_8$$

= $11 1101 0110_2 = 3D6_{16}$

Converting between decimal and any of the other bases is usually done only approximately. Make sure you remember that:

$$2^{10} = 1024 \approx 1000 = 10^3$$

since that will be very handy. Also, $\log_{10}(2) \approx 0.3$ and $\log_2(10) \approx 3.33$.

Note that any value written in base-r shifts one place to the right when divided by r.

Sequences, Series, Sums, and Products

You should be comfortable with sum and product notations:

$$\sum_{i=L}^{H} f(i) = f(L) + f(L+1) + f(L+2) + \dots + f(H-2) + f(H-1) + f(H)$$

$$\prod_{i=L}^{H} f(i) = f(L) \cdot f(L+1) \cdot f(L+2) \cdots f(H-2) \cdot f(H-1) \cdot f(H)$$

for instance:

$$\sum_{x=4}^{9} 2x = (2 \cdot 4) + (2 \cdot 5) + (2 \cdot 6) + (2 \cdot 7) + (2 \cdot 8) + (2 \cdot 9)$$

$$\prod_{k=-2}^{2} (k-1)^2 = (-2-1)^2 \cdot (-1-1)^2 \cdot (0-1)^2 \cdot (1-1)^2 \cdot (2-1)^2$$

We can define factorial this way:

$$N! = \prod_{k=1}^{N} k = 1 \cdot 2 \cdots (N-1) \cdot N$$

It is easy to prove that:

$$1 = 0.999\bar{9}_{10} = 0.111\bar{1}_2$$

which is handy because it makes following sum easy to remember:

$$\sum_{x=0}^{\infty} \frac{1}{2^x} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = 2$$

Another commonly occuring sum, especially when dealing with trees, is:

$$2^{N-1} + 2^{N-2} + \dots + 4 + 2 + 1 = 2^N - 1$$

which is easy to remember if you think about binary numbers. Choosing N=5 gives:

$$111111_2 = 100000_2 - 1$$

When a series of independent decisions is made, the number of possible outcomes is the product of the number of choices for each decision:

$$(\# \text{ possible outcomes}) = \prod_{i=1}^{\# \text{ decisions}} (\# \text{ choices for decision } i)$$

Since we can choose to store one of two different values (0 or 1) in a bit, this result tells us that the number of values V we can store in B bits is:

$$V = 2^B$$

Asymptotic Growth and Big-O Notation

We say that f(x) = O(g(x)) if there exist constants c and n_0 such that $f(n) \le c \cdot g(n)$ for any $n \ge n_0$.

Essentially, this means that g(x) eventually grows at least as fast as f(x).

Looking at Figure 2, we can see that $x = O(x^2)$. It is also the case that $x = O(x \log x)$, and even x = O(x). Because constants are absorbed by the big-O notation, x = O(4x) and 4x = O(x). But $x \neq O(\log x)$, since $\log x$ will never "catch up" to x.

The equals sign in big-O notation is unfortunately quite deceptive, since equality is not really implied. It would be better to think in terms of set membership: f(x) = O(g(x)) really means that f(x) is a member of the set of functions which do not grow more quickly than g(x).

Using this idea, we can rank different growth rates as follows:

$$O(1) \subsetneq O(\log x) \subsetneq O(\sqrt{x}) \subsetneq O(x) \subsetneq O(x \log x) \subsetneq O(x^2) \subsetneq O(3^x) \subsetneq O(5^x)$$

where \subseteq means "is a strict subset of".

There are a few things to note:

- We didn't say which base of logarithm we're using, and it doesn't matter. The change-of-base formula says that converting between bases is the same as multiplying by a constant, and that constant is just absorbed by the big-O notation.
- Even though the base doesn't matter for $\log x$, it does matter for exponentials.
- Technically, $\log x = O(x^c)$ for any c > 0, so any polynomial in x (including any root of x) will eventually dominate $\log x$.
- Any exponential c^x with c > 1 will eventually dominate any polynomial in x.

Figure 2: Asymptotic growth

Digits, Logarithms, and Trees

We can think as $\log_r N$ as:

- \bullet (roughly) the number of base-r digits needed to write N
- \bullet (roughly) the number of times we can divide N by r before the result is between zero and one
- (roughly) the height of a balanced r-ary tree with N nodes

Let's consider the value 24 and base-2 in detail.

We already know that the number V of values that can be stored in B bits is $V = 2^B$, so:

$$B = \log_2 V$$

In our specific case, $B = \log_2 24 \approx 4.6$, so 5 bits are needed to store the value 24:

$$24_{10} = 11000_2$$

Note that this approximation is off by one bit when $N=2^k$ exactly.

If we start dividing by 2, we get:

$$24_{10} = 11000.00000_2$$

$$24_{10}/2 = 01100.00000_2$$

$$24_{10}/4 = 00110.00000_2$$

$$24_{10}/8 = 00011.00000_2$$

$$24_{10}/16 = 00001.10000_2$$

$$24_{10}/32 = 00000.11000_2$$

where the last result is in the interval [0, 1].

If we start building a (nearly) balanced binary tree with N/2 = 12 leaf nodes we get Figure 3, a tree with a height of 5. Notice that each layer has (roughly) half the nodes of the layer beneath it.

Figure 3: A (roughly) balanced binary tree with N=24 nodes.