Thèse de doctorat

Présentée en vue de l'obtention du grade de docteur de l'Université de Bourgogne-Franche-Comté

Evaluation des bénéfices énergétiques et environnementaux des politiques de soutien à la R&D

Présentée et soutenue le 12 Décembre 2022 Par Saliou DIEDHIOU

Devant le jury composé de :

Mme. RENOU-MAISSANT Patricia (Rapportrice): Maître de Conférences HDR, Université Paris Nanterre
 M. ROBIN Stéphane (Rapporteur): Maître de Conférences HDR, Université Paris 1 Panthéon-Sorbonne
 M. LEDEZMA Ivan (Examinateur): Professeur des Universités, Université Bourgogne - Franche-Comté
 M. MULKAY Benoît (Examinateur): Professeur des Universités, Université de Montpellier
 Mme. BAUMONT Catherine (Directrice de thèse): Professeur des Universités, Université de Bourgogne-Franche-Comté
 M. LOPEZ Jimmy (Go-directeur de thèse): Maître de Conférences HDR. Université de Bourgogne-Franche-Comté

Plan de la soutenance

- Introduction générale
 - Contexte et motivations
 - Objectif principal de notre thèse
- Les principaux enjeux Méthodologies et Résultats
- Conclusion générale
 - Contribution de la thèse
 - Implications en termes de politiques économiques
 - Limites et perspectives

3 / 18

▶ Contexte de transition écologique et de changement climatique

- Le contexte de la transition écologique : interrogation sur la façon de réduire les émissions
- ➤ Cette réduction peut passer par le développement des innovations environnementales (IE) (GIEC, 2014)
- ▶ En plus de ses objectifs de réduction, nous avons étudié les IE
 - A travers leurs impacts sur la compétitivité des entreprises (Kammerer, 2009 Popp et al., 2011; Kaenzig et al., 2013)
 - A travers leurs impacts sur le dynamisme du système innovant français

- ▶ Contexte de transition écologique et de changement climatique
- ▶ Le contexte de la transition écologique : interrogation sur la façon de réduire les émissions
- Cette réduction peut passer par le développement des innovations environnementales (IE) (GIEC, 2014)
- ▶ En plus de ses objectifs de réduction, nous avons étudié les IE
 - A travers leurs impacts sur la compétitivité des entreprises (Kammerer, 2009 Popp et al., 2011; Kaenzig et al., 2013)
 - A travers leurs impacts sur le dynamisme du système innovant français

- ► Contexte de transition écologique et de changement climatique
- ▶ Le contexte de la transition écologique : interrogation sur la façon de réduire les émissions
- ► Cette réduction peut passer par le développement des innovations environnementales (IE) (GIEC, 2014)
- ▶ En plus de ses objectifs de réduction, nous avons étudié les IE
 - A travers leurs impacts sur la compétitivité des entreprises (Kammerer, 2009; Popp et al., 2011; Kaenzig et al., 2013)
 - A travers leurs impacts sur le dynamisme du système innovant français

- ► Contexte de transition écologique et de changement climatique
- ▶ Le contexte de la transition écologique : interrogation sur la façon de réduire les émissions
- ► Cette réduction peut passer par le développement des innovations environnementales (IE) (GIEC, 2014)
- ▶ En plus de ses objectifs de réduction, nous avons étudié les IE :
 - A travers leurs impacts sur la compétitivité des entreprises (Kammerer, 2009 Popp et al., 2011; Kaenzig et al., 2013)
 - A travers leurs impacts sur le dynamisme du système innovant français

- ▶ Contexte de transition écologique et de changement climatique
- ▶ Le contexte de la transition écologique : interrogation sur la façon de réduire les émissions
- ➤ Cette réduction peut passer par le développement des innovations environnementales (IE) (GIEC, 2014)
- ▶ En plus de ses objectifs de réduction, nous avons étudié les IE :
 - A travers leurs impacts sur la compétitivité des entreprises (Kammerer, 2009; Popp et al., 2011; Kaenzig et al., 2013)
 - A travers leurs impacts sur le dynamisme du système innovant français

- ► Contexte de transition écologique et de changement climatique
- ▶ Le contexte de la transition écologique : interrogation sur la façon de réduire les émissions
- ➤ Cette réduction peut passer par le développement des innovations environnementales (IE) (GIEC, 2014)
- ▶ En plus de ses objectifs de réduction, nous avons étudié les IE :
 - A travers leurs impacts sur la compétitivité des entreprises (Kammerer, 2009; Popp et al., 2011; Kaenzig et al., 2013)
 - A travers leurs impacts sur le dynamisme du système innovant français

Objectif principal de la thèse

Déterminer les spécificités des innovations environnementales, quant à leurs définitions, leurs formes, leurs déterminants et enfin et surtout leurs conséquences sur la productivité

- Montrer ce qu'est une innovation environnementale et comment elle se mesure (Kemp et Pearson, 2008)
- Son émergence autour de la notion de développement durable (Aggeri et Godard, 2006 ; Ambec et Lanoie, 2008)
- D'évaluer sa relation avec l'intensité de R&D et la productivité des entreprises (Crépon et al., 1998; Mairesse et Robin, 2011; Kedjar, 2020)

18

Objectif principal de la thèse

- Montrer ce qu'est une innovation environnementale et comment elle se mesure (Kemp et Pearson, 2008)
- Son émergence autour de la notion de développement durable (Aggeri et Godard, 2006; Ambec et Lanoie, 2008)
- D'évaluer sa relation avec l'intensité de R&D et la productivité des entreprises (Crépon et al., 1998; Mairesse et Robin, 2011; Kedjar, 2020)

Objectif principal de la thèse

- Montrer ce qu'est une innovation environnementale et comment elle se mesure (Kemp et Pearson, 2008)
- Son émergence autour de la notion de développement durable (Aggeri et Godard 2006; Ambec et Lanoie, 2008)
- D'évaluer sa relation avec l'intensité de R&D et la productivité des entreprises (Crépon et al., 1998; Mairesse et Robin, 2011; Kedjar, 2020)

Objectif principal de la thèse

- Montrer ce qu'est une innovation environnementale et comment elle se mesure (Kemp et Pearson, 2008)
- Son émergence autour de la notion de développement durable (Aggeri et Godard, 2006; Ambec et Lanoie, 2008)
- D'évaluer sa relation avec l'intensité de R&D et la productivité des entreprises (Crépon et al., 1998; Mairesse et Robin, 2011; Kedjar, 2020)

Objectif principal de la thèse

- Montrer ce qu'est une innovation environnementale et comment elle se mesure (Kemp et Pearson, 2008)
- Son émergence autour de la notion de développement durable (Aggeri et Godard, 2006; Ambec et Lanoie, 2008)
- D'évaluer sa relation avec l'intensité de R&D et la productivité des entreprises (Crépon et al., 1998; Mairesse et Robin, 2011; Kedjar, 2020)

Introduction générale
Les principaux enjeux - Méthodologies - et Résultats
Conclusion générale

Les principaux Enjeux - Méthodologies - et Résultats

Méthodologie 1

Focus sur la littérature empirique

- Lien évident avec l'innovation non environnementale, sauf que l'IE s'appuie sur trois piliers (Redclift, 2005)
- L'existence d'une taxonomie de définitions et peut revêtir plusieurs formes (Kemp et Pearson, 2008; Faucheux et al., 2006; Debref, 2018)
- Les entreprises mettent en œuvre des innovations environnementales pour diverses raisons :
 - Des objectifs internes: Croissance et de performance (Hollen et al., 2013), dynamise de l'entreprise en matière d'innovation (Dangelico et al., 2013)
 - Des objectifs externes: les opportunités économiques, les motivations éthiques (Chen, 2008; Zhang et al., 2014; Chowdhury et al., 2019)

Méthodologie 1

Focus sur la littérature empirique

Constate

- Lien évident avec l'innovation non environnementale, sauf que l'IE s'appuie sur trois piliers (Redclift, 2005)
- L'existence d'une taxonomie de définitions et peut revêtir plusieurs formes (Kemp et Pearson, 2008; Faucheux et al., 2006; Debref, 2018)
- Les entreprises mettent en œuvre des innovations environnementales pour diverses raisons :
 - Des objectifs internes: Croissance et de performance (Hollen et al., 2013), dynamise de l'entreprise en matière d'innovation (Dangelico et al., 2013)
 - Des objectifs externes : les opportunités économiques, les motivations éthiques (Chen. 2008 : Zhang et al., 2014 : Chowdhury et al., 2019)

Méthodologie 1

Focus sur la littérature empirique

- Lien évident avec l'innovation non environnementale, sauf que l'IE s'appuie sur trois piliers (Redclift, 2005)
- L'existence d'une taxonomie de définitions et peut revêtir plusieurs formes (Kemp et Pearson, 2008; Faucheux et al., 2006; Debref, 2018)
- Les entreprises mettent en œuvre des innovations environnementales pour diverses raisons :
 - Des objectifs internes: Croissance et de performance (Hollen et al., 2013), dynamise de l'entreprise en matière d'innovation (Dangelico et al., 2013)
 - Des objectifs externes: les opportunités économiques, les motivations éthiques (Chen, 2008; Zhang et al., 2014; Chowdhury et al., 2019)

Méthodologie 1

Focus sur la littérature empirique

- Lien évident avec l'innovation non environnementale, sauf que l'IE s'appuie sur trois piliers (Redclift, 2005)
- L'existence d'une taxonomie de définitions et peut revêtir plusieurs formes (Kemp et Pearson, 2008; Faucheux et al., 2006; Debref, 2018)
- Les entreprises mettent en œuvre des innovations environnementales pour diverses raisons :
 - Des objectifs internes : Croissance et de performance (Hollen et al., 2013), dynamise de l'entreprise en matière d'innovation (Dangelico et al., 2013)
 - Des objectifs externes : les opportunités économiques, les motivations éthiques (Chen. 2008 : Zhang et al., 2014 : Chowdhury et al., 2019)

Méthodologie 1

Focus sur la littérature empirique

- Lien évident avec l'innovation non environnementale, sauf que l'IE s'appuie sur trois piliers (Redclift, 2005)
- L'existence d'une taxonomie de définitions et peut revêtir plusieurs formes (Kemp et Pearson, 2008; Faucheux et al., 2006; Debref, 2018)

Méthodologie 1

Focus sur la littérature empirique

- Lien évident avec l'innovation non environnementale, sauf que l'IE s'appuie sur trois piliers (Redclift, 2005)
- L'existence d'une taxonomie de définitions et peut revêtir plusieurs formes (Kemp et Pearson, 2008; Faucheux et al., 2006; Debref, 2018)
- Les entreprises mettent en œuvre des innovations environnementales pour diverses raisons :
 - Des objectifs internes: Croissance et de performance (Hollen et al., 2013), dynamise de l'entreprise en matière d'innovation (Dangelico et al., 2013)
 - Des objectifs externes: les opportunités économiques, les motivations éthiques (Chen. 2008: Zhang et al., 2014: Chowdhury et al., 2019)

Méthodologie 1

Focus sur la littérature empirique

- Lien évident avec l'innovation non environnementale, sauf que l'IE s'appuie sur trois piliers (Redclift, 2005)
- L'existence d'une taxonomie de définitions et peut revêtir plusieurs formes (Kemp et Pearson, 2008; Faucheux et al., 2006; Debref, 2018)
- Les entreprises mettent en œuvre des innovations environnementales pour diverses raisons :
 - Des objectifs internes : Croissance et de performance (Hollen et al., 2013), dynamise de l'entreprise en matière d'innovation (Dangelico et al., 2013)
 - Des objectifs externes : les opportunités économiques, les motivations éthiques (Chen. 2008 : Zhang et al., 2014 : Chowdhury et al., 2019)

Méthodologie 1

Focus sur la littérature empirique

- Lien évident avec l'innovation non environnementale, sauf que l'IE s'appuie sur trois piliers (Redclift, 2005)
- L'existence d'une taxonomie de définitions et peut revêtir plusieurs formes (Kemp et Pearson, 2008; Faucheux et al., 2006; Debref, 2018)
- Les entreprises mettent en œuvre des innovations environnementales pour diverses raisons :
 - Des objectifs internes : Croissance et de performance (Hollen et al., 2013), dynamise de l'entreprise en matière d'innovation (Dangelico et al., 2013)
 - Des objectifs externes: les opportunités économiques, les motivations éthiques (Chen, 2008; Zhang et al., 2014; Chowdhury et al., 2019)

Méthodologie 2 : Analyse statistique

- C'est quoi les enquêtes **Community Innovation Survey** (CIS) (OCDE, 2005)
 - Leurs objectifs
 - Leur champ
 - Leur périodicité
- Choix des données CIS 2008 et CIS 2014
- La représentativité de nos échantillons et leur qualité (enquêtes pour les entreprises d'au moins 10 salariés)

- Oconformément à la distribution par taille d'entreprises (plus d'entreprises de 10 à 49 salariés)
- Les entreprises sont plus nombreuses à innover qu'à éco-innover (51, 23% contre 35, 95% pour CIS 2008)
- ② Plus d'éco-innovations pour la période 2012-2014 (45, 96%) ⇒ forte dépendance entre

Méthodologie 2 : Analyse statistique

- ① C'est quoi les enquêtes Community Innovation Survey (CIS) (OCDE, 2005)
 - Leurs objectifs
 - Leur champ
 - Leur périodicité
- Choix des données CIS 2008 et CIS 2014
- La représentativité de nos échantillons et leur qualité (enquêtes pour les entreprises d'au moins 10 salariés)
- Résultats : Des points essentiels
- Conformément à la distribution par taille d'entreprises (plus d'entreprises de 10 à 49 salariés)
- Les entreprises sont plus nombreuses à innover qu'à éco-innover (51, 23% contre 35, 95% pour CIS 2008)
- O Plus d'éco-innovations pour la période 2012-2014 (45, 96%) ⇒ forte dépendance entre

Méthodologie 2 : Analyse statistique

- ① C'est quoi les enquêtes Community Innovation Survey (CIS) (OCDE, 2005)
 - · Leurs objectifs
 - Leur champ
 - Leur périodicité
 - Choix des données CIS 2008 et CIS 2014
- La représentativité de nos échantillons et leur qualité (enquêtes pour les entreprises d'au moins 10 salariés)
- Résultats : Des points essentiels
- Conformément à la distribution par taille d'entreprises (plus d'entreprises de 10 à 49 salariés)
- Les entreprises sont plus nombreuses à innover qu'à éco-innover (51, 23% contre 35, 95% pour CIS 2008)
- O Plus d'éco-innovations pour la période 2012-2014 (45, 96%) ⇒ forte dépendance entre

Méthodologie 2 : Analyse statistique

- ① C'est quoi les enquêtes Community Innovation Survey (CIS) (OCDE, 2005)
 - · Leurs objectifs
 - Leur champ
 - Leur périodicité
- 2 Choix des données CIS 2008 et CIS 2014
- La représentativité de nos échantillons et leur qualité (enquêtes pour les entreprises d'au moins 10 salariés)
- Résultats : Des points essentiels
- Conformément à la distribution par taille d'entreprises (plus d'entreprises de 10 à 49 salariés)
- Les entreprises sont plus nombreuses à innover qu'à éco-innover (51, 23% contre 35, 95% pour CIS 2008)
- O Plus d'éco-innovations pour la période 2012-2014 (45, 96%) ⇒ forte dépendance entre

Méthodologie 2 : Analyse statistique

- ① C'est quoi les enquêtes Community Innovation Survey (CIS) (OCDE, 2005)
 - · Leurs objectifs
 - Leur champ
 - Leur périodicité
- Choix des données CIS 2008 et CIS 2014
- La représentativité de nos échantillons et leur qualité (enquêtes pour les entreprises d'au moins 10 salariés)

- Conformément à la distribution par taille d'entreprises (plus d'entreprises de 10 à 49 salariés)
- Les entreprises sont plus nombreuses à innover qu'à éco-innover (51, 23% contre 35, 95% pour CIS 2008)
- O Plus d'éco-innovations pour la période 2012-2014 (45, 96%) ⇒ forte dépendance entre

Méthodologie 2 : Analyse statistique

- O'est quoi les enquêtes Community Innovation Survey (CIS) (OCDE, 2005)
 - · Leurs objectifs
 - Leur champ
 - Leur périodicité
- Choix des données CIS 2008 et CIS 2014
- La représentativité de nos échantillons et leur qualité (enquêtes pour les entreprises d'au moins 10 salariés)

- Conformément à la distribution par taille d'entreprises (plus d'entreprises de 10 à 49 salariés)
- Les entreprises sont plus nombreuses à innover qu'à éco-innover (51, 23% contre 35, 95% pour CIS 2008)
- O Plus d'éco-innovations pour la période 2012-2014 (45, 96%) ⇒ forte dépendance entre

Méthodologie 2 : Analyse statistique

- ① C'est quoi les enquêtes Community Innovation Survey (CIS) (OCDE, 2005)
 - · Leurs objectifs
 - Leur champ
 - Leur périodicité
- 2 Choix des données CIS 2008 et CIS 2014
- La représentativité de nos échantillons et leur qualité (enquêtes pour les entreprises d'au moins 10 salariés)

- Oconformément à la distribution par taille d'entreprises (plus d'entreprises de 10 à 49 salariés)
- Les entreprises sont plus nombreuses à innover qu'à éco-innover (51, 23% contre 35, 95% pour CIS 2008)
- O Plus d'éco-innovations pour la période 2012-2014 (45, 96%) ⇒ forte dépendance entre

Méthodologie 2 : Analyse statistique

- O'est quoi les enquêtes Community Innovation Survey (CIS) (OCDE, 2005)
 - · Leurs objectifs
 - Leur champ
 - Leur périodicité
- Choix des données CIS 2008 et CIS 2014
- La représentativité de nos échantillons et leur qualité (enquêtes pour les entreprises d'au moins 10 salariés)

- Oconformément à la distribution par taille d'entreprises (plus d'entreprises de 10 à 49 salariés)
- 2 Les entreprises sont plus nombreuses à innover qu'à éco-innover (51, 23% contre 35, 95% pour CIS 2008)
- 3 Plus d'éco-innovations pour la période 2012-2014 (45, 96%) ⇒ forte dépendance entre

Méthodologie 2 : Analyse statistique

- C'est quoi les enquêtes Community Innovation Survey (CIS) (OCDE, 2005)
 - · Leurs objectifs
 - Leur champ
 - Leur périodicité
- Choix des données CIS 2008 et CIS 2014
- 3 La représentativité de nos échantillons et leur qualité (enquêtes pour les entreprises d'au moins 10 salariés)

- Onformément à la distribution par taille d'entreprises (plus d'entreprises de 10 à 49 salariés)

Méthodologie 2 : Analyse statistique

- C'est quoi les enquêtes Community Innovation Survey (CIS) (OCDE, 2005)
 - · Leurs objectifs
 - Leur champ
 - Leur périodicité
- Choix des données CIS 2008 et CIS 2014
- 3 La représentativité de nos échantillons et leur qualité (enquêtes pour les entreprises d'au moins 10 salariés)

- Onformément à la distribution par taille d'entreprises (plus d'entreprises de 10 à 49 salariés)
- Les entreprises sont plus nombreuses à innover qu'à éco-innover (51, 23% contre 35, 95% pour CIS 2008)

Méthodologie 2 : Analyse statistique

- O'est quoi les enquêtes Community Innovation Survey (CIS) (OCDE, 2005)
 - · Leurs objectifs
 - Leur champ
 - Leur périodicité
- Choix des données CIS 2008 et CIS 2014
- La représentativité de nos échantillons et leur qualité (enquêtes pour les entreprises d'au moins 10 salariés)

- Conformément à la distribution par taille d'entreprises (plus d'entreprises de 10 à 49 salariés)
- 2 Les entreprises sont plus nombreuses à innover qu'à éco-innover (51, 23% contre 35, 95% pour CIS 2008)
- O Plus d'éco-innovations pour la période 2012-2014 (45, 96%) ⇒ forte dépendance entre secteurs et types d'entreprises

Enjeux 3 - Chapitre 3 : Interactions intensité de recherche et développement, innovation environnementale et productivité

Méthodologie 3 : Analyse économétrique

- ▶ Réduction des émissions de CO2 par unité produite (0,1), □ ➤ ←♠ ➤ ← ℍ ← ℍ ➤ ← ℍ ➤ ← ℍ ➤ ← ℍ

Enjeux 3 - Chapitre 3 : Interactions intensité de recherche et développement, innovation environnementale et productivité

Méthodologie 3 : Analyse économétrique

Principal objectif de ce chapitre

- Nous étudions l'impact de l'effort de R&D sur les innovations environnementales
- Aussi l'impact des innovations environnementales sur la productivité
- Nous utilisons les données CIS 2008 (20114 entreprises) et CIS 2014 (18109 entreprises) et Ficus-Fare 2007 et 2013

Méthodologie 3 : Analyse économétrique

Mesure de l'innovation environnementale

- ▶ Réduction de l'utilisation de matières par unité produite (0,1)
- Remplacement de substances avec des produits de substitution moins polluants (0,1)
- ► Facilité du recyclage du produit après usage (0,1)
- ▶ Réduction des émissions de CO2 par unité produite (0,1), □ → ← ② → ← □ → □ → ← □ →

Enjeux 3 - Chapitre 3 : Interactions intensité de recherche et développement, innovation environnementale et productivité

Méthodologie 3 : Analyse économétrique

Principal objectif de ce chapitre

- ▶ Nous étudions l'impact de l'effort de R&D sur les innovations environnementales
- Aussi l'impact des innovations environnementales sur la productivité
- Nous utilisons les données CIS 2008 (20114 entreprises) et CIS 2014 (18109 entreprises) et Ficus-Fare 2007 et 2013

Méthodologie 3 : Analyse économétrique

Mesure de l'innovation environnementale

- Réduction de l'utilisation de matières par unité produite (0,1)
- Remplacement de substances avec des produits de substitution moins polluants (0,1)
- ► Facilité du recyclage du produit après usage (0,1)

Méthodologie 3 : Analyse économétrique

Principal objectif de ce chapitre

- ▶ Nous étudions l'impact de l'effort de R&D sur les innovations environnementales
- ▶ Aussi l'impact des innovations environnementales sur la productivité
- ▶ Nous utilisons les données CIS 2008 (20114 entreprises) et CIS 2014 (18109 entreprises) et Ficus-Fare 2007 et 2013

Méthodologie 3 : Analyse économétrique

- ▶ Réduction de l'utilisation de matières par unité produite (0,1)
- Remplacement de substances avec des produits de substitution moins polluants (0,1)
- ► Facilité du recyclage du produit après usage (0.1)
- ▶ Réduction des émissions de CO2 par unité produite (0,1), □ → ← ② → ← □ → □ → ← □ →

Méthodologie 3 : Analyse économétrique

Principal objectif de ce chapitre

- ▶ Nous étudions l'impact de l'effort de R&D sur les innovations environnementales
- ▶ Aussi l'impact des innovations environnementales sur la productivité
- ▶ Nous utilisons les données CIS 2008 (20114 entreprises) et CIS 2014 (18109 entreprises) et Ficus-Fare 2007 et 2013

Méthodologie 3 : Analyse économétrique

- ▶ Réduction de l'utilisation de matières par unité produite (0,1)
- Remplacement de substances avec des produits de substitution moins polluants (0.1)
- ► Facilité du recyclage du produit après usage (0.1)
- ▶ Réduction des émissions de CO2 par unité produite (0,1), □ ▶ ← ♬ ▶ ← ℍ ▶ →

Méthodologie 3 : Analyse économétrique

Principal objectif de ce chapitre

- ▶ Nous étudions l'impact de l'effort de R&D sur les innovations environnementales
- ► Aussi l'impact des innovations environnementales sur la productivité
- ▶ Nous utilisons les données CIS 2008 (20114 entreprises) et CIS 2014 (18109 entreprises) et Ficus-Fare 2007 et 2013

Méthodologie 3 : Analyse économétrique

Méthodologie 3 : Analyse économétrique

Principal objectif de ce chapitre

- ▶ Nous étudions l'impact de l'effort de R&D sur les innovations environnementales
- ▶ Aussi l'impact des innovations environnementales sur la productivité
- ▶ Nous utilisons les données CIS 2008 (20114 entreprises) et CIS 2014 (18109 entreprises) et Ficus-Fare 2007 et 2013

Méthodologie 3 : Analyse économétrique

- ▶ Réduction de l'utilisation de matières par unité produite (0,1)
- Remplacement de substances avec des produits de substitution moins polluants (0.1)
- ► Facilité du recyclage du produit après usage (0,1)

Méthodologie 3 : Analyse économétrique

Principal objectif de ce chapitre

- ▶ Nous étudions l'impact de l'effort de R&D sur les innovations environnementales
- ► Aussi l'impact des innovations environnementales sur la productivité
- ▶ Nous utilisons les données CIS 2008 (20114 entreprises) et CIS 2014 (18109 entreprises) et Ficus-Fare 2007 et 2013

Méthodologie 3 : Analyse économétrique

- ▶ Réduction de l'utilisation de matières par unité produite (0,1)

- ▶ Réduction des émissions de CO2 par unité produite (0,1), □ ▶ ∢♠ ▶ ∢ ≧ ▶ ∢ ≧ ▶

Méthodologie 3 : Analyse économétrique

Principal objectif de ce chapitre

- ▶ Nous étudions l'impact de l'effort de R&D sur les innovations environnementales
- ▶ Aussi l'impact des innovations environnementales sur la productivité
- ► Nous utilisons les données CIS 2008 (20114 entreprises) et CIS 2014 (18109 entreprises) et Ficus-Fare 2007 et 2013

Méthodologie 3 : Analyse économétrique

- ▶ Réduction de l'utilisation de matières par unité produite (0,1)
- ► Remplacement de substances avec des produits de substitution moins polluants (0,1)
- ► Facilité du recyclage du produit après usage (0,1)
- ▶ Réduction des émissions de CO2 par unité produite (0,1), □ ▶ ← ☐ № ← ☐ № ←

Méthodologie 3 : Analyse économétrique

Principal objectif de ce chapitre

- ▶ Nous étudions l'impact de l'effort de R&D sur les innovations environnementales
- ▶ Aussi l'impact des innovations environnementales sur la productivité
- ► Nous utilisons les données CIS 2008 (20114 entreprises) et CIS 2014 (18109 entreprises) et Ficus-Fare 2007 et 2013

Méthodologie 3 : Analyse économétrique

- ▶ Réduction de l'utilisation de matières par unité produite (0,1)
- ► Remplacement de substances avec des produits de substitution moins polluants (0,1)
- ► Facilité du recyclage du produit après usage (0,1)

Méthodologie 3 : Analyse économétrique

Principal objectif de ce chapitre

- ▶ Nous étudions l'impact de l'effort de R&D sur les innovations environnementales
- ► Aussi l'impact des innovations environnementales sur la productivité
- ▶ Nous utilisons les données CIS 2008 (20114 entreprises) et CIS 2014 (18109 entreprises) et Ficus-Fare 2007 et 2013

Méthodologie 3 : Analyse économétrique

- ▶ Réduction de l'utilisation de matières par unité produite (0,1)
- ▶ Remplacement de substances avec des produits de substitution moins polluants (0,1)
- ► Facilité du recyclage du produit après usage (0,1)
- ► Réduction des émissions de CO2 par unité produite (0,1)

Enjeux 3 - Chapitre 3 : Interactions intensité de recherche et développement, innovation environnementale et productivité

Modèle économétrique

Figure 1 – Modélisation économétrique

Méthode d'estimation : CDM (Crépon-Duguet-Mairesse, 1998)

Méthode d'estimation : CDM (Crépon-Duguet-Mairesse, 1998)

Notre procédure d'estimation : Estimation séquentielle

- Etape 1 : Problème de sélection à cause de la troncature des données sur l'innovation (Kedjar, 2020)
- ▶ Etape 2 : Probleme d'endogeneite principalement cause par les erreurs de mesure Mairesse et Robin, 2011)
- ► Etape 3 : Même problème que celui de l'étape 2 et (de simultanéité avec l'investissement corporel, dans notre cas)
- ▶ Solution aux problèmes : Redéfinition de l'effort de R&D (étape 1), valeurs prédites (étapes 2 et 3, Crépon et al., 1998 ; Mairesse et Robin, 2011) et variable retardée

Méthode d'estimation : CDM (Crépon-Duguet-Mairesse, 1998)

Notre procédure d'estimation : Estimation séquentielle

- ► Etape 1 : Problème de sèlection à cause de la troncature des données sur l'innovation (Kedjar, 2020)
- ► Etape 2 : Problème d'endogénéité principalement causé par les erreurs de mesure Mairesse et Robin, 2011)
- ► Etape 3 : Même problème que celui de l'étape 2 et (de simultanéité avec l'investissement corporel, dans notre cas)
- ▶ Solution aux problèmes : Redéfinition de l'effort de R&D (étape 1), valeurs prédites (étapes 2 et 3, Crépon et al., 1998 ; Mairesse et Robin, 2011) et variable retardée (étape 3)

Méthode d'estimation : CDM (Crépon-Duguet-Mairesse, 1998)

Notre procédure d'estimation : Estimation séquentielle

- ► Etape 1 : Problème de sélection à cause de la troncature des données sur l'innovation (Kedjar, 2020)
- ▶ Etape 2 : Probleme d'endogeneite principalement cause par les erreurs de mesure Mairesse et Robin, 2011)
- ► Etape 3 : Même problème que celui de l'étape 2 et (de simultanéité avec l'investissement corporel, dans notre cas)
- ▶ Solution aux problèmes : Redéfinition de l'effort de R&D (étape 1), valeurs prédites (étapes 2 et 3, Crépon et al., 1998 ; Mairesse et Robin, 2011) et variable retardée (étape 3)

Méthode d'estimation : CDM (Crépon-Duguet-Mairesse, 1998)

Notre procédure d'estimation : Estimation séquentielle

- ► Etape 1 : Problème de sélection à cause de la troncature des données sur l'innovation (Kedjar, 2020)
- ► Etape 2 : Problème d'endogénéité principalement causé par les erreurs de mesure (Mairesse et Robin, 2011)
- ► Etape 3 : Même problème que celui de l'étape 2 et (de simultanéité avec l'investissement corporel, dans notre cas)
- ▶ Solution aux problèmes : Redéfinition de l'effort de R&D (étape 1), valeurs prédites (étapes 2 et 3, Crépon et al., 1998 ; Mairesse et Robin, 2011) et variable retardée (étape 3)

Méthode d'estimation : CDM (Crépon-Duguet-Mairesse, 1998)

Notre procédure d'estimation : Estimation séquentielle

- ► Etape 1 : Problème de sélection à cause de la troncature des données sur l'innovation (Kedjar, 2020)
- ► Etape 2 : Problème d'endogénéité principalement causé par les erreurs de mesure (Mairesse et Robin, 2011)
- ► Etape 3 : Même problème que celui de l'étape 2 et (de simultanéité avec l'investissement corporel, dans notre cas)
- ▶ Solution aux problèmes : Redéfinition de l'effort de R&D (étape 1), valeurs prédites (étapes 2 et 3, Crépon et al., 1998 ; Mairesse et Robin, 2011) et variable retardée (étape 3)

Méthode d'estimation : CDM (Crépon-Duguet-Mairesse, 1998)

Notre procédure d'estimation : Estimation séquentielle

- ► Etape 1 : Problème de sélection à cause de la troncature des données sur l'innovation (Kedjar, 2020)
- ► Etape 2 : Problème d'endogénéité principalement causé par les erreurs de mesure (Mairesse et Robin, 2011)
- ► Etape 3 : Même problème que celui de l'étape 2 et (de simultanéité avec l'investissement corporel, dans notre cas)
- ► Solution aux problèmes : Redéfinition de l'effort de R&D (étape 1), valeurs prédites (étapes 2 et 3, Crépon et al., 1998 ; Mairesse et Robin, 2011) et variable retardée (étape 3)

- ▶ Plus le principal marché est international, plus est élevé, l'effort de R&D
- La part de marché affecte positivement l'effort de R&D
- Mettre en place un SME durant la période de l'enquête tend à accroître l'effort de R&D (CIS 2008)

- ▶ Plus le principal marché est international, plus est élevé, l'effort de R&D
- ▶ La part de marché affecte positivement l'effort de R&D
- Mettre en place un SME durant la période de l'enquête tend à accroître l'effort de R&D (CIS 2008)

- ▶ Plus le principal marché est international, plus est élevé, l'effort de R&D
- ▶ La part de marché affecte positivement l'effort de R&D
- ▶ Mettre en place un SME durant la période de l'enquête tend à accroître l'effort de R&D (CIS 2008)

- ▶ Plus le principal marché est international, plus est élevé, l'effort de R&D
- ▶ La part de marché affecte positivement l'effort de R&D
- ► Mettre en place un SME durant la période de l'enquête tend à accroître l'effort de R&D (CIS 2008)

Principaux résultats : Etape 2 : Equation d'innovation environnementale

UBFC, ED DGEP, LEDI, UFR DSEP

Principaux résultats : Etape 2 : Equation d'innovation environnementale

- ▶ L'effort de R&D prédit à un impact positif et significatif sur la probabilité de mettre en œuvre des innovations environnementales
- ▶ Un résultat intéressant : la mise en place d'un SME (avant ou durant la période d'enquête)
- ▶ Les tailles des entreprises peuvent inciter à la mise en œuvre d'innovations environnementales

Principaux résultats : Etape 2 : Equation d'innovation environnementale

- ▶ L'effort de R&D prédit à un impact positif et significatif sur la probabilité de mettre en œuvre des innovations environnementales
- ▶ Un résultat intéressant : la mise en place d'un SME (avant ou durant la période d'enquête)
- ▶ Les tailles des entreprises peuvent inciter à la mise en œuvre d'innovations environnementales

Principaux résultats : Etape 2 : Equation d'innovation environnementale

- ▶ L'effort de R&D prédit à un impact positif et significatif sur la probabilité de mettre en œuvre des innovations environnementales
- ► Un résultat intéressant : la mise en place d'un SME (avant ou durant la période d'enquête)
- ▶ Les tailles des entreprises peuvent inciter à la mise en œuvre d'innovations environnementales

- La valeur prédite de la probabilité d'éco-innover est positivement liée à la productivité
- Les entreprises sous le controle etranger sont plus productives que les entreprises domestiques
- ▶ L'investissement corporel agit de manière positive et significative sur la productivité

- ▶ La valeur prédite de la probabilité d'éco-innover est positivement liée à la productivité
- ▶ Les entreprises sous le contrôle étranger sont plus productives que les entreprises domestiques
- ▶ L'investissement corporel agit de manière positive et significative sur la productivité

- ▶ La valeur prédite de la probabilité d'éco-innover est positivement liée à la productivité
- ▶ Les entreprises sous le contrôle étranger sont plus productives que les entreprises domestiques
- L'investissement corporel agit de manière positive et significative sur la productivité

- ▶ La valeur prédite de la probabilité d'éco-innover est positivement liée à la productivité
- ► Les entreprises sous le contrôle étranger sont plus productives que les entreprises domestiques
- ▶ L'investissement corporel agit de manière positive et significative sur la productivité

Contribution de la thèse

14 / 18

mplications en termes de politiques économiques .imites et perspectives

Contribution de la thèse

- ▶ CDM appliqué aux innovations environnementales pour le cas de la France
- ► Certaines pratiques organisationnelles environnementales (SME), peuvent inciter à la mise en œuvre d'innovations environnementales de la part des entreprises
- ▶ La prise en compte du SME dans l'équation de l'effort de R&D à l'étape 1

mplications en termes de politiques économiques .imites et perspectives

Contribution de la thèse

- ▶ CDM appliqué aux innovations environnementales pour le cas de la France
- ► Certaines pratiques organisationnelles environnementales (SME), peuvent inciter à la mise en œuvre d'innovations environnementales de la part des entreprises
- ▶ La prise en compte du SME dans l'équation de l'effort de R&D à l'étape 1

Implications en termes de politiques économiques Limites et perspectives

Contribution de la thèse

- ▶ CDM appliqué aux innovations environnementales pour le cas de la France
- ► Certaines pratiques organisationnelles environnementales (SME), peuvent inciter à la mise en œuvre d'innovations environnementales de la part des entreprises
- ▶ La prise en compte du SME dans l'équation de l'effort de R&D à l'étape 1

mplications en termes de politiques économiques Limites et perspectives

Contribution de la thèse

- ▶ CDM appliqué aux innovations environnementales pour le cas de la France
- ► Certaines pratiques organisationnelles environnementales (SME), peuvent inciter à la mise en œuvre d'innovations environnementales de la part des entreprises
- ▶ La prise en compte du SME dans l'équation de l'effort de R&D à l'étape 1

Implications en termes de politiques économiques
Limites et perspectives

Implications en termes de politiques économiques

Implications en termes de politiques économiques

- Les pouvoirs publics peuvent opter pour des politiques économiques tournées vers des secteurs à fortes émissions de GES
- ▶ Au vue de l'impact du SME sur les IE, cela pourrait amener à penser que les pouvoirs publics pourraient être amenés à intensifier la réglementation dans les secteurs à forte intensité de R&D
- Amplification des actions en matière de R&D, afin de développer des technologies et des comportements qui contribueront à réduire les émissions

Implications en termes de politiques économiques

Implications en termes de politiques économiques

Implications en termes de politiques économiques

Implications en termes de politiques économiques

Implications en termes de politiques économiques

Implications en termes de politiques économiques

- ▶ Les pouvoirs publics peuvent opter pour des politiques économiques tournées vers des secteurs à fortes émissions de GES

UBFC, ED DGEP, LEDI, UFR DSEP

18

Implications en termes de politiques économiques

Implications en termes de politiques économiques

- ▶ Les pouvoirs publics peuvent opter pour des politiques économiques tournées vers des secteurs à fortes émissions de GES
- ▶ Au vue de l'impact du SME sur les IE, cela pourrait amener à penser que les pouvoirs publics pourraient être amenés à intensifier la réglementation dans les secteurs à forte intensité de R&D
- ▶ Amplification des actions en matière de R&D, afin de développer des technologies et des comportements qui contribueront à réduire les émissions

Implications en termes de politiques économiques Limites et perspectives

Implications en termes de politiques économiques

Implications en termes de politiques économiques

- ▶ Les pouvoirs publics peuvent opter pour des politiques économiques tournées vers des secteurs à fortes émissions de GES
- ▶ Au vue de l'impact du SME sur les IE, cela pourrait amener à penser que les pouvoirs publics pourraient être amenés à intensifier la réglementation dans les secteurs à forte intensité de R&D
- ► Amplification des actions en matière de R&D, afin de développer des technologies et des comportements qui contribueront à réduire les émissions

Principales limites

- La non prise en compte des innovations non environnementales dans le CDM
- Notre méthode d'estimation séquentielle (problème de convergence au niveau des estimateurs)

- D'autres méthodes d'estimation (simultanée=FIML)
- Actualisation de l'étude : politiques de recommandation (volets 2014 2020 et l'effet du SME)
- Analyse empirique sur la complémentarité des différentes formes d'innovations environnementales

Limites et perspectives

Principales limites

- La non prise en compte des innovations non environnementales dans le CDM

Principales limites

- La non prise en compte des innovations non environnementales dans le CDM
- Notre méthode d'estimation séquentielle (problème de convergence au niveau des estimateurs)

- O D'autres méthodes d'estimation (simultanée=FIML)
- Actualisation de l'étude : politiques de recommandation (volets 2014 2020 et l'effet du SME)
- Analyse empirique sur la complementarite des differentes formes d'innovations environnementales

Principales limites

- La non prise en compte des innovations non environnementales dans le CDM
- Notre méthode d'estimation séquentielle (problème de convergence au niveau des estimateurs)

- O D'autres méthodes d'estimation (simultanée=FIML)
- Actualisation de l'étude : politiques de recommandation (volets 2014 2020 et l'effet du SME)
- Analyse empirique sur la complementarite des differentes formes d'innovations environnementales

Principales limites

- La non prise en compte des innovations non environnementales dans le CDM
- Notre méthode d'estimation séquentielle (problème de convergence au niveau des estimateurs)

- 3 D'autres méthodes d'estimation (simultanée=FIML)
- Actualisation de l'étude : politiques de recommandation (volets 2014 2020 et l'effet du SME)
- Analyse empirique sur la complémentarité des différentes formes d'innovations environnementales

Principales limites

- La non prise en compte des innovations non environnementales dans le CDM
- Notre méthode d'estimation séquentielle (problème de convergence au niveau des estimateurs)

- 3 D'autres méthodes d'estimation (simultanée=FIML)
- Actualisation de l'étude : politiques de recommandation (volets 2014 2020 et l'effet du SME)
- Analyse empirique sur la complémentarité des différentes formes d'innovations environnementales

Principales limites

- La non prise en compte des innovations non environnementales dans le CDM
- Notre méthode d'estimation séquentielle (problème de convergence au niveau des estimateurs)

- 3 D'autres méthodes d'estimation (simultanée=FIML)
- Actualisation de l'étude : politiques de recommandation (volets 2014 2020 et l'effet du SME)
- Analyse empirique sur la complémentarité des différentes formes d'innovations environnementales

Je vous remercie pour votre attention!

