

- 11 domini di collisione (in rosso)
- 4 domini di broadcast (in verde)
- 2. Nella rete b sono presenti 5 domini di collisione in quanto 5 sono le porte dello switch a cui sono collegati dei dispositivi

e un unico dominio di broadcast

PORTA	INTERFACCE
Α	Mac PC-A(99)
В	Mac PC-B(F2)
С	
D	
L	Mac PC-E(12), Mac PC-G

- 1. a quali interfacce verrà inviato il frame 1? F, G, L e dallo switch a A, B, C, D
- 2. a quali interfacce verrà inviato il frame 2? B, C, D, L e dall'hub a E, F, G
- 3. a quali interfacce verrà inviato il frame 3? L e quindi dall'hub a E, F, G
- 4. a quali interfacce verrà inviato il frame 4? Broadcast F, E, L e quindi dallo switch a A, B, C, D
- 5. a quali interfacce verrà inviato il frame 5? F, G, L e quindi dallo switch a A, B, C, D
- 6. a quali interfacce verrà inviato il frame 6 (da B a G)? L e quindi dall'hub a E, F, G

- 3. La rete A è correttamente progettata in quanto :
 - a. Per raggiungere le due macchine più lontane connesse alla rete si passa per solo 2 ripetitori (hub) e 2<4
 - b. Le due macchine più lontane sono collegate da 3 segmenti di cavo (3<5)
 - c. I segmenti popolati sono meno di 3

La rete B non è correttamente progettata in quanto:

- a. Le due macchine più lontane sono collegate da 6 segmenti di cavo (6>5)
- b. Per comunicare, le due macchine più lontane devono fare passare i dati attraverso 5 ripetitori (5>4)
- 4. nc = 3: ogni nodo genera un numero casuale r compreso tra $0 \div 2^{nc} 1 \rightarrow 0 \div 7$
 - e poi attende un tempo = r x tempo andata ritorno prima di ritrasmettere
 - a seconda dei numeri generati è possibile che la trasmissione generi una nuova collisione.

A\B	0	1	2	3	4	5	6	7
0	00	01	02	03	04	05	06	07
1	10	11	12	13	14	15	16	17
2	20	21	22	23	24	25	26	27
3	30	31	32	33	34	35	36	37
4	40	41	42	43	44	45	46	47
5	50	51	52	53	54	55	56	57
6	60	61	62	63	64	65	66	67
7	70	71	72	73	74	75	76	77

64 casi possibili

8 collisioni (quando i tempi di attesa sono uguali)

8/64=1/8

12,5 % di probabilità di collidere

5. MAC mittente = 00:90:4B:92:CA:CB
IP mittente = C0.A8.01.4A

IP mittente = 192.168.1.74

MAC destinatario = 00:25:53:DC:88:F9

IP destinatario = AD.C2.28.2E

IP destinatario = 173.194.40.46

6.

- 1) PC0 → PC2
 - Indirizzi aggiunti alla MAC table FE1 = MAC PC0
 - Interfacce a cui viene inoltrato il frame: FE3, FE4, FE6
 - A chi arriva il frame: PC1, PC2, PC3, PC4, PC5
- 2) PC2 → PC0
 - Indirizzi aggiunti alla MAC table FE3 = MAC PC2
 - Interfacce a cui viene inoltrato il frame: FE1
 - A chi arriva il frame: PC0, PC1
- PC3 → PC2
 - Indirizzi aggiunti alla MAC table FE4 = MAC PC3
 - Interfacce a cui viene inoltrato il frame: FE3
 - A chi arriva il frame : PC2
- 4) PC2 → TUTTI
 - Indirizzi aggiunti alla MAC table Nessuno
 - Interfacce a cui viene inoltrato il frame: FE1, FE4, FE6
 - A chi arriva il frame: PC0, PC1, PC3, PC4, PC5

- 5) PC1 → PC0
 - Indirizzi aggiunti alla MAC table FE1 = MAC PC1
 - Interfacce a cui viene inoltrato il frame: FE1
 - A chi arriva il frame: PC0, PC1
- 6) PC4 → PC2
 - Indirizzi aggiunti alla MAC table FE6 = MAC PC4
 - Interfacce a cui viene inoltrato il frame: FE3
 - A chi arriva il frame: PC5, PC2
- 7. Risponde router1 e invia il MAC di Fa0/0 Risponde PC2 e invia il suo MAC
- 8. Quello del router (INTERFACCIA DI RETE INTERNA), ovvero 00-60-2F-3A-07-CC
- 9. A manda una richiesta ARP in cui chiede quale sia il MAC di D a tutta la rete. D si accorge che il messaggio ha il suo IP e risponde inviando il suo MAC. B e C ricevono il messaggio ma, dato che vedono che il frame non ha il loro IP, lo droppano e non rispondono.

```
10. V = 50 \text{ Mbps} = 50*10^6 \text{ bps} = 50 \text{ bit/microsecondo}

MAC = 2000 \text{ B} = 16000 \text{ bit}

tMAC = MAC/V = 16000/50 = 320 \text{ microsecondi}

RTS = 20 \text{ B} = 160 \text{ bit}

tRTS = RTS/V = 3.2 \text{ microsecondi}

CTS = ACK = 14 \text{ B} = 112 \text{ bit}

tCTS = tACK = CTS/V = 2.24 \text{ microsecondi}

P = 144 + 48 = 192 \text{ bit}

V_P = 2 \text{ Mbps} = 2 \text{ b/micros}

tP = P/V_P = 96 \text{ microsecondi}

t(MAC+P) = tMAC + tP = 320+96 = 416 \text{ (micros)}

t(RTS \div ACK) = tRTS + tP + SIFS + tCTS + tP + SIFS + tMAC + tP + SIFS + Tack + tP + DIFS = 771.68 \text{ micros}

V_{MAX} = MAC/t(RTS \div ACK) = 16000/771.68 = 20.73 \text{ Mbps}
```