Digital Image Processing (CSE/ECE 478)

Lecture-3: Recap/Discussion

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Spatial Domain Processing

- Manipulating Pixels Directly in Spatial Domain
- ▶ 3 approaches
- ▶ 1. Point to Point

Linear Intensity Transforms

$$T(z) = z + K$$

$$T(z) = z - K$$

$$T(z) = Kz$$

$$T(z) = K_1 z + K_2$$

Piecewise-Linear Transformations

Power-Law Transformations

a b c d

FIGURE 3.9

(a) Aerial image. (b)–(d) Results of applying the transformation in Eq. (3.2-3) with c=1 and $\gamma=3.0$, 4.0, and 5.0, respectively. (Original image for this example courtesy of NASA.)

Power-Law Transformations

Demo:

https://colab.research.google.com/drive/11ql LOVKleZnONtPuxAryAf9WkUC7kEMI#scrollTo =aU5WQaqOpSCr&line=12&uniqifier=1

Intensity Slicing

FIGURE 3.14 (a) An 8-bit gray-scale image of size 500×1192 pixels. (b) through (i) Bit planes 1 through 8, with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.

Digital Image Processing (CSE/ECE 478)

Lecture-4: Histogram Processing

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Piecewise-Linear Transformations

Histogram: An image representation + visualization

$$h_r(\underline{i}) = n_i$$

Histograms

What can we infer from histograms?

Histogram viewing standard in most DSLR cameras

Histograms and Contrast

Histograms and Contrast

Histograms

Under exposure

Histograms

Over exposure

A low-contrast image and its histogram

Contrast Stretching

$$f_{\rm ac}(a) = a_{\rm min} + (a - a_{\rm low}) \cdot \frac{a_{\rm max} - a_{\rm min}}{a_{\rm high} - a_{\rm low}}$$

Contrast Stretching

$$f_{\rm ac}(a) = a_{\rm min} + (a - a_{\rm low}) \cdot \frac{a_{\rm max} - a_{\rm min}}{a_{\rm high} - a_{\rm low}}$$

If
$$a_{min}$$
 = 0 and a_{max} = 255
$$f_{ac}(a) = (a-a_{low}) \cdot \frac{255}{a_{high}-a_{low}}$$

Contrast Stretching

Suppose we have a <u>single</u> pixel with intensity 255 in the original intensity range. What happens?

$$f_{\rm ac}(a) = a_{\rm min} + (a - a_{\rm low}) \cdot \frac{a_{\rm max} - a_{\rm min}}{a_{\rm high} - a_{\rm low}}$$

If
$$a_{min}$$
 = 0 and a_{max} = 255
$$f_{ac}(a) = (a-a_{low}) \cdot \frac{255}{a_{high}-a_{low}}$$

Contrast Stretching

$$f_{\rm ac}(a) = a_{\rm min} + (a - a_{\rm low}) \cdot \frac{a_{\rm max} - a_{\rm min}}{a_{\rm high} - a_{\rm low}}$$

If
$$a_{min}$$
 = 0 and a_{max} = 255
$$f_{ac}(a) = (a-a_{low}) \cdot \frac{255}{a_{high}-a_{low}}$$

Suppose we have a <u>single</u> pixel with intensity 0 in the original intensity range. What happens?

Contrast Stretching ver. 2

Ver. 2

Are all intensities well represented?

Ver. 2

The issue with contrast stretching

$$f_{\rm ac}(a) = a_{\rm min} + (a - a_{\rm low}) \cdot \frac{a_{\rm max} - a_{\rm min}}{a_{\rm high} - a_{\rm low}}$$

If
$$a_{min}$$
 = 0 and a_{max} = 255
$$f_{ac}(a) = (a-a_{low}) \cdot \frac{255}{a_{high}-a_{low}}$$

Normali, Histogram Equalization 255

Contrast Stretching

Histogram Equalization

References

▶ GW Chapter – 3.3.1 to 3.3.3

Transformations of Random Variables

- http://www.randomservices.org/random/dist/Transformations.html
- Section 1 of http://www.cs.cmu.edu/~minx/transform.pdf
- Leibnitz Integration Rule : <u>https://en.wikipedia.org/wiki/Leibniz_integral_rule#Alternative_derivation</u>
- Univariate transformation of a random variable

Scribe Group

20171172
20171205
20171208
2018101002
2018101003
2018101005

Mini Quiz 1 Link

https://forms.office.com/Pages/ResponsePage.aspx?id=vDsaA3zPK06W7IZ1VVQKHNFN1LYrWjx AktM68Sb-hiFUOEdKVEIEOU8xTjNZTjNCUDFRTjhHQ09BNC4u