

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

 $\rm MAT02215$ - Estatística Geral 2 - 2020/1

Plano Aula 02

Markus Stein

11 March 2020

Variáveis Aleatórias (v.a.) (Bussab e Morettin - Capítulo 10)

Qual a população em estudo?

Exemplo 1: X (PIB do Brasil), $X \in \mathbb{R}$, $X \sim Normal(\mu, \sigma^2)$. $E(X) = \mu$.

Exemplo 2: X (avaliação do governo, positiva ou negativa), $X \in \{0,1\}$, $X \sim Bernoulli(\pi)$. $E(X) = \pi$.

Exemplo 3: Y (consumo) e X (renda), $E(Y) = \alpha + \beta X$.

- População -> parâmetros $(\mu, \sigma^2, \pi, ...)$
 - finita (censo) versus infinita (modelos = distribuições de probabilidade).
 - -X é uma v.a. de interesse, e assumiremos $X \sim f(x;\theta)$.
- Amostra -> estatísticas $(\overline{X}, S^2, p, ...)$
 - Toda a estatística é uma v.a.!!!

Como obter amostras - Amostragem

Principai tipos de amostragens

- probabilística versus não porbabilística
- ullet com e sem **reposição**

Amostra aleatória (simples) (a.a.s., ou a.a.) = v.a.s idependentes e identicamente distribuídas (i.i.d.)

- sorteio (tabela de números aleatórios?) \times geração de números aleatórios
- Seja X_1, X_2, \ldots, X_n uma a.a. de tamanho n de $X = X_1 \sim f(x; \theta), \ldots, X_n \sim f(x; \theta)$ e X_i e X_j são independentes para todo $i \neq j$.

Qual o tamanho ideal de amostra?

Veremos em breve critério	s para calcular.	
Ler slides da aula 2		
Exercícios		