Invertible matrices

Nachiketa Mishra IIITDM Kancheepuram, Chennai

Let A be an $n \times n$ matrix over the field F.

Let A be an $n \times n$ matrix over the field F. An $n \times n$ matrix B such that BA = I is called a left inverse of A;

Let A be an $n \times n$ matrix over the field F. An $n \times n$ matrix B such that BA = I is called a left inverse of A; an $n \times n$ matrix B such that AB = I is called a right inverse of A.

1

Let A be an $n \times n$ matrix over the field F. An $n \times n$ matrix B such that BA = I is called a left inverse of A; an $n \times n$ matrix B such that AB = I is called a right inverse of A. If AB = I = BA, then B is called a two-sided inverse of A and A is said to be invertible.

Let A be an $n \times n$ matrix over the field F. An $n \times n$ matrix B such that BA = I is called a left inverse of A; an $n \times n$ matrix B such that AB = I is called a right inverse of A. If AB = I = BA, then B is called a two-sided inverse of A and A is said to be invertible.

Note: If A is an invertible matrix, then A has no zero row.

If A has a left inverse B and a right inverse C, then B = C.

$$B = BI$$

If A has a left inverse B and a right inverse C, then B = C.

$$B = BI = B(AC)$$

If A has a left inverse B and a right inverse C, then B = C.

$$B = BI = B(AC) = (BA)C$$

If A has a left inverse B and a right inverse C, then B = C.

$$B = BI = B(AC) = (BA)C = IC = C$$

Note (Theorem 10)

(i): If A has a left inverse and a right inverse, then A is invertible and the inverse of A is denoted by A^{-1} .

$$AA^{-1} = I = A^{-1}A$$

By symmetry of the definition, $(A^{-1})^{-1} = A$

(ii) Suppose that A and B are invertible $n \times n$ matrices.

$$(AB)(B^{-1}A^{-1}) = I = (B^{-1}A^{-1})(AB)$$

⇒ Corollary : Product of invertible matrices is invertible.

3

Theorem 11: An elementary matrix is invertible.

Proof : Let E be an $m \times m$ elementary matrix corresponding to the elementary row operation e. Thus E = e(I). By Theorem 2, there exists an elementary operation e_1 , same type as e, such that

$$e(e_1(A)) = A = e_1(e(A))$$
 for every matrix A .

Let $E_1 = e_1(I)$ where I is the $m \times m$ identity matrix.

$$EE_1 = e(I)E_1 = e(E_1) = e(e_1(I)) = I$$

$$E_1E = e_1(I)E = e_1(E) = e_1(e(I)) = I$$

$$EE_1 = I = E_1E$$
 Hence E is an invertible matrix.

Thus an elementary matrix is invertible.

Find inverses of all 2×2 elementary matrices

$$\begin{bmatrix} c & 0 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{c} & 0 \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ 0 & c \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{c} \end{bmatrix}$$
$$\begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -c \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ c & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ -c & 1 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Find inverses of all 3×3 elementary matrices. (Assignment)

Theorem 12

If A is an $n \times n$ matrix, the following are equivalent.

- (i) A is invertible.
- (ii) A is row-equivalent to the $n \times n$ identity matrix.
- (iii) A is a product of elementary matrices.

Proof : Let R be a row-reduced echelon $n \times n$ matrix which is row-equivalent to A. By Corollary to Theorem 9,

$$R = E_k E_{k-1} \dots E_2 E_1 A$$
 $----$ (a)

where E_i is an elementary matrix. Note that the inverse of E_i is also an elementary matrix. Since $E_i's$ are invertible,

$$A = E_1^{-1} E_2^{-1} \dots E_k^{-1} R \quad ---- \quad (b)$$

6

Theorem 12 contd.

- $(i) \Longrightarrow (ii)$ Suppose that A is invertible. Using (a), R is a product of invertible matrices and by corollary to Theorem 10, R is invertible. Note that an invertible matrix has no zero-row. So R is an $n \times n$ row-reduced echelon matrix with no zero row and $k_1 = 1 < k_2 = 2 < \ldots < k_n = n$. Hence R is the $n \times n$ identity matrix. A is row-equivalent to R = I.
- $(ii) \Longrightarrow (iii)$ Suppose that A is row-equivalent to R = I. By (b)

$$A = E_1^{-1} E_2^{-1} \dots E_k^{-1} R = E_1^{-1} E_2^{-1} \dots E_k^{-1} I$$

 $A = E_1^{-1} E_2^{-1} \dots E_k^{-1}$, a product of elementary matrices.

Theorem 12 contd.

 $(iii) \Longrightarrow (i)$ Suppose that A is a product of elementary matrices. By Theorem 11, an elementary matrix is invertible. By Corollary to Theorem 10, a product of invertible matrices is invertible. Hence A is invertible.

Corollaries (to Theorem 12)

Consider an $n \times n$ matrix A and the $n \times n$ identity matrix I. Next we consider the augmented matrix [A|I]. Suppose that

$$[A|I] \sim [I|B]$$

Note that A is row equivalent to I (thus A is invertible) and I is row equivalent to B. By Corollary to Theorem 9, there exists an $n \times n$ matrix P such that I = PA and $B = PI \implies B = P$ and I = BA $\implies A$ is invertible and $B = A^{-1}$

Corollary (12.1)

If A is an $n \times n$ matrix and if a sequence of elementary row operations reduces A to the indentity matrix, then that same sequence of operations when applied to I yields A^{-1} .

Corollary (12.2)

Let A and B be two $m \times n$ matrices. Then B is row-equivalent to A if and only if B = PA where P is an $m \times m$ invertible matrix.

Corollary (12.2)

Let A and B be two $m \times n$ matrices. Then B is row-equivalent to A if and only if B = PA where P is an $m \times m$ invertible matrix.

Why?

Find the inverse of

$$A = \left[\begin{array}{rrr} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{array} \right]$$

Find the inverse of

$$A = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix}$$

Solution: Consider

$$[A|I] = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & 0 & 1 & 0 \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & 0 & 0 & 1 \end{bmatrix}$$

Find the inverse of

$$A = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix}$$

Solution: Consider

$$[A|I] = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & 0 & 1 & 0 \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & 0 & 0 & 1 \end{bmatrix}$$

$$R_2 \longleftarrow R_2 - \frac{1}{2}R_1, \quad R_3 \longleftarrow R_3 - \frac{1}{3}R_1$$

$$\sim \left[\begin{array}{ccc|c} 1 & \frac{1}{2} & \frac{1}{3} & 1 & 0 & 0 \\ 0 & \frac{1}{12} & \frac{1}{12} & -\frac{1}{2} & 1 & 0 \\ 0 & \frac{1}{12} & \frac{4}{45} & -\frac{1}{3} & 0 & 1 \end{array}\right]$$

$$\sim \left[\begin{array}{ccc|c} 1 & \frac{1}{2} & \frac{1}{3} & 1 & 0 & 0 \\ 0 & \frac{1}{12} & \frac{1}{12} & -\frac{1}{2} & 1 & 0 \\ 0 & \frac{1}{12} & \frac{4}{45} & -\frac{1}{3} & 0 & 1 \end{array}\right]$$

$$R_2 \longleftarrow 12R_2$$

$$\sim \left[\begin{array}{ccc|c} 1 & \frac{1}{2} & \frac{1}{3} & 1 & 0 & 0 \\ 0 & \frac{1}{12} & \frac{1}{12} & -\frac{1}{2} & 1 & 0 \\ 0 & \frac{1}{12} & \frac{4}{45} & -\frac{1}{3} & 0 & 1 \end{array}\right]$$

$$R_2 \longleftarrow 12R_2$$

$$\sim \left[\begin{array}{ccc|c} 1 & \frac{1}{2} & \frac{1}{3} & 1 & 0 & 0 \\ 0 & 1 & 1 & -6 & 12 & 0 \\ 0 & \frac{1}{12} & \frac{4}{45} & -\frac{1}{3} & 0 & 1 \end{array} \right]$$

$$\sim \left[\begin{array}{ccc|c} 1 & \frac{1}{2} & \frac{1}{3} & 1 & 0 & 0 \\ 0 & \frac{1}{12} & \frac{1}{12} & -\frac{1}{2} & 1 & 0 \\ 0 & \frac{1}{12} & \frac{4}{45} & -\frac{1}{3} & 0 & 1 \end{array} \right]$$

$$R_2 \leftarrow 12R_2$$

$$\sim \left[\begin{array}{ccc|ccc|c} 1 & \frac{1}{2} & \frac{1}{3} & 1 & 0 & 0 \\ 0 & 1 & 1 & -6 & 12 & 0 \\ 0 & \frac{1}{12} & \frac{4}{45} & -\frac{1}{3} & 0 & 1 \end{array}\right]$$

$$R_1 \longleftarrow R_1 - \frac{1}{2}R_2, \quad R_3 \longleftarrow R_3 - \frac{1}{12}R_2$$

$$\sim \left[\begin{array}{ccc|c} 1 & 0 & -\frac{1}{6} & 4 & -6 & 0 \\ 0 & 1 & 1 & -6 & 12 & 0 \\ 0 & 0 & \frac{1}{180} & \frac{1}{6} & -1 & 1 \end{array} \right]$$

$$\sim \begin{bmatrix}
1 & 0 & -\frac{1}{6} & 4 & -6 & 0 \\
0 & 1 & 1 & -6 & 12 & 0 \\
0 & 0 & \frac{1}{180} & \frac{1}{6} & -1 & 1
\end{bmatrix}$$

$$R_3 \longleftarrow 180R_3$$

$$\sim \begin{bmatrix}
1 & 0 & -\frac{1}{6} & 4 & -6 & 0 \\
0 & 1 & 1 & -6 & 12 & 0 \\
0 & 0 & 1 & 30 & -180 & 180
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 0 & -\frac{1}{6} & 4 & -6 & 0 \\
0 & 1 & 1 & -6 & 12 & 0 \\
0 & 0 & \frac{1}{180} & \frac{1}{6} & -1 & 1
\end{bmatrix}$$

$$R_{3} \longleftarrow 180R_{3}$$

$$\sim \begin{bmatrix}
1 & 0 & -\frac{1}{6} & 4 & -6 & 0 \\
0 & 1 & 1 & -6 & 12 & 0 \\
0 & 0 & 1 & 30 & -180 & 180
\end{bmatrix}$$

$$R_{2} \longleftarrow R_{2} - R_{3}, \quad R_{1} \longleftarrow R_{1} + \frac{1}{6}R_{3}$$

$$[A|I] \sim \left[\begin{array}{ccc|ccc|c} 1 & 0 & 0 & 9 & -36 & 30 \\ 0 & 1 & 0 & -36 & 192 & -180 \\ 0 & 0 & 1 & 30 & -180 & 180 \end{array} \right]$$

$$[A|I] \sim \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 9 & -36 & 30 \\ 0 & 1 & 0 & -36 & 192 & -180 \\ 0 & 0 & 1 & 30 & -180 & 180 \end{array} \right] = [I|B]$$

$$[A|I] \sim \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 9 & -36 & 30 \\ 0 & 1 & 0 & -36 & 192 & -180 \\ 0 & 0 & 1 & 30 & -180 & 180 \end{array} \right] = [I|B]$$

By Corollary 12.1,

$$A^{-1} = B = \begin{bmatrix} 9 & -36 & 30 \\ -36 & 192 & -180 \\ 30 & -180 & 180 \end{bmatrix}$$

Find the inverse of

$$A = \left[\begin{array}{rrr} 2 & 5 & -1 \\ 4 & -1 & 2 \\ 6 & 4 & 1 \end{array} \right]$$

Find the inverse of

$$A = \left[\begin{array}{rrr} 2 & 5 & -1 \\ 4 & -1 & 2 \\ 6 & 4 & 1 \end{array} \right]$$

Solution:

Find the inverse of

$$A = \left[\begin{array}{rrr} 2 & 5 & -1 \\ 4 & -1 & 2 \\ 6 & 4 & 1 \end{array} \right]$$

Solution:

$$[A|I] = \begin{bmatrix} 2 & 5 & -1 & 1 & 0 & 0 \\ 4 & -1 & 2 & 0 & 1 & 0 \\ 6 & 4 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Find the inverse of

$$A = \left[\begin{array}{rrr} 2 & 5 & -1 \\ 4 & -1 & 2 \\ 6 & 4 & 1 \end{array} \right]$$

Solution:

$$[A|I] = \begin{bmatrix} 2 & 5 & -1 & 1 & 0 & 0 \\ 4 & -1 & 2 & 0 & 1 & 0 \\ 6 & 4 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$R_3 \longleftarrow R_3 - R_1, \quad R_3 \longleftarrow R_3 - R_2$$

Solution contd.

$$\sim \left[\begin{array}{ccc|ccc|ccc|ccc|ccc|ccc|} 2 & 5 & -1 & 1 & 0 & 0 \\ 4 & -1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 1 \end{array} \right]$$

Solution contd.

$$\sim \left[\begin{array}{ccc|ccc|ccc|ccc|ccc|ccc|} 2 & 5 & -1 & 1 & 0 & 0 \\ 4 & -1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 1 \end{array} \right]$$

Thanks to the last zero row, A is not row-equivalent to /

Solution contd.

$$\sim \left[egin{array}{ccc|ccc|c} 2 & 5 & -1 & 1 & 0 & 0 \\ 4 & -1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 1 \end{array}
ight]$$

Thanks to the last zero row, A is not row-equivalent to I and A is not invertible.

For an $n \times n$ matrix A, the following are equivalent.

(i) A is invertible.

For an $n \times n$ matrix A, the following are equivalent.

- (i) A is invertible.
- (ii) The homogeneous system AX = 0 has only the trivial solution X = 0.

For an $n \times n$ matrix A, the following are equivalent.

- (i) A is invertible.
- (ii) The homogeneous system AX = 0 has only the trivial solution X = 0.
- (iii) The system of equations AX = Y has a solution X for each $n \times 1$ matrix Y.

For an $n \times n$ matrix A, the following are equivalent.

- (i) A is invertible.
- (ii) The homogeneous system AX = 0 has only the trivial solution X = 0.
- (iii) The system of equations AX = Y has a solution X for each $n \times 1$ matrix Y.

Proof: $(i) \Longrightarrow (ii)$ Suppose that A is invertible.

For an $n \times n$ matrix A, the following are equivalent.

- (i) A is invertible.
- (ii) The homogeneous system AX = 0 has only the trivial solution X = 0.
- (iii) The system of equations AX = Y has a solution X for each $n \times 1$ matrix Y.

Proof: (i) \Longrightarrow (ii) Suppose that A is invertible. By Theorem 12, A is row-equivalent to I.

For an $n \times n$ matrix A, the following are equivalent.

- (i) A is invertible.
- (ii) The homogeneous system AX = 0 has only the trivial solution X = 0.
- (iii) The system of equations AX = Y has a solution X for each $n \times 1$ matrix Y.

Proof: (i) \Longrightarrow (ii) Suppose that A is invertible. By Theorem 12, A is row-equivalent to I. By Theorem 3, AX = 0 and IX = 0 have exactly same solutions.

For an $n \times n$ matrix A, the following are equivalent.

- (i) A is invertible.
- (ii) The homogeneous system AX = 0 has only the trivial solution X = 0.
- (iii) The system of equations AX = Y has a solution X for each $n \times 1$ matrix Y.

Proof: (i) \Longrightarrow (ii) Suppose that A is invertible. By Theorem 12, A is row-equivalent to I. By Theorem 3, AX = 0 and IX = 0 have exactly same solutions. The solution set of AX = 0 is

$$S = \{X : AX = 0\}$$

For an $n \times n$ matrix A, the following are equivalent.

- (i) A is invertible.
- (ii) The homogeneous system AX = 0 has only the trivial solution X = 0.
- (iii) The system of equations AX = Y has a solution X for each $n \times 1$ matrix Y.

Proof: (i) \Longrightarrow (ii) Suppose that A is invertible. By Theorem 12, A is row-equivalent to I. By Theorem 3, AX = 0 and IX = 0 have exactly same solutions. The solution set of AX = 0 is

$$S = \{X : AX = 0\} = \{X : IX = 0\}$$

For an $n \times n$ matrix A, the following are equivalent.

- (i) A is invertible.
- (ii) The homogeneous system AX = 0 has only the trivial solution X = 0.
- (iii) The system of equations AX = Y has a solution X for each $n \times 1$ matrix Y.

Proof: (i) \Longrightarrow (ii) Suppose that A is invertible. By Theorem 12, A is row-equivalent to I. By Theorem 3, AX = 0 and IX = 0 have exactly same solutions. The solution set of AX = 0 is

$$S = \{X : AX = 0\} = \{X : IX = 0\} = \{X : X = 0\} = \{0\}$$

For an $n \times n$ matrix A, the following are equivalent.

- (i) A is invertible.
- (ii) The homogeneous system AX = 0 has only the trivial solution X = 0.
- (iii) The system of equations AX = Y has a solution X for each $n \times 1$ matrix Y.

Proof: (i) \Longrightarrow (ii) Suppose that A is invertible. By Theorem 12, A is row-equivalent to I. By Theorem 3, AX = 0 and IX = 0 have exactly same solutions. The solution set of AX = 0 is

$$S = \{X : AX = 0\} = \{X : IX = 0\} = \{X : X = 0\} = \{0\}$$

Hence the system AX = 0 has only the trivial solution X = 0

(ii) \Longrightarrow (i) Suppose that AX = 0 has only the trivial solution X = 0.

(ii) \Longrightarrow (i) Suppose that AX = 0 has only the trivial solution X = 0. By Theorem 7, A is row-equivalent to I.

(ii) \Longrightarrow (i) Suppose that AX = 0 has only the trivial solution X = 0. By Theorem 7, A is row-equivalent to I. By Theorem 12, A is invertible.

- (ii) \Longrightarrow (i) Suppose that AX = 0 has only the trivial solution X = 0. By Theorem 7, A is row-equivalent to I. By Theorem 12, A is invertible.
- $(i) \Longrightarrow (iii)$ Suppose that A is invertible.

- (ii) \Longrightarrow (i) Suppose that AX = 0 has only the trivial solution X = 0. By Theorem 7, A is row-equivalent to I. By Theorem 12, A is invertible.
- $(i) \Longrightarrow (iii)$ Suppose that A is invertible. That is A^{-1} exists.

- (ii) \Longrightarrow (i) Suppose that AX = 0 has only the trivial solution X = 0. By Theorem 7, A is row-equivalent to I. By Theorem 12, A is invertible.
- (i) \Longrightarrow (iii) Suppose that A is invertible. That is A^{-1} exists. Consider the system AX = Y.

- (ii) \Longrightarrow (i) Suppose that AX = 0 has only the trivial solution X = 0. By Theorem 7, A is row-equivalent to I. By Theorem 12, A is invertible.
- (i) \Longrightarrow (iii) Suppose that A is invertible. That is A^{-1} exists. Consider the system AX = Y. This implies that $X = A^{-1}Y$ is a solution for the system AX = Y for each Y.

- (ii) \Longrightarrow (i) Suppose that AX = 0 has only the trivial solution X = 0. By Theorem 7, A is row-equivalent to I. By Theorem 12, A is invertible.
- (i) \Longrightarrow (iii) Suppose that A is invertible. That is A^{-1} exists. Consider the system AX = Y. This implies that $X = A^{-1}Y$ is a solution for the system AX = Y for each Y.
- (iii) \Longrightarrow (i) Suppose that the system of equations AX = Y has a solution X for each $n \times 1$ matrix Y.

- (ii) \Longrightarrow (i) Suppose that AX = 0 has only the trivial solution X = 0. By Theorem 7, A is row-equivalent to I. By Theorem 12, A is invertible.
- (i) \Longrightarrow (iii) Suppose that A is invertible. That is A^{-1} exists. Consider the system AX = Y. This implies that $X = A^{-1}Y$ is a solution for the system AX = Y for each Y.
- (iii) \Longrightarrow (i) Suppose that the system of equations AX = Y has a solution X for each $n \times 1$ matrix Y. Let R be a row-reduced echelon matrix which is row-equivalent to A.

- (ii) \Longrightarrow (i) Suppose that AX = 0 has only the trivial solution X = 0. By Theorem 7, A is row-equivalent to I. By Theorem 12, A is invertible.
- (i) \Longrightarrow (iii) Suppose that A is invertible. That is A^{-1} exists. Consider the system AX = Y. This implies that $X = A^{-1}Y$ is a solution for the system AX = Y for each Y.
- (iii) \Longrightarrow (i) Suppose that the system of equations AX = Y has a solution X for each $n \times 1$ matrix Y. Let R be a row-reduced echelon matrix which is row-equivalent to A. By Corollary 12.2, R = PA where P is an $n \times n$ invertible matrix.

AX = Y has a solution X for each Y.

AX = Y has a solution X for each Y. $\iff P(AX) = PY$ has a solution X for each Y.

AX = Y has a solution X for each Y. $\iff P(AX) = PY$ has a solution X for each Y. $\iff RX = PY$ has a solution X for each Y (Note that R = PA).

AX = Y has a solution X for each Y. $\iff P(AX) = PY$ has a solution X for each Y. $\iff RX = PY$ has a solution X for each Y (Note that R = PA). $\iff RX = E$ has a solution X for each E (= PY).

AX = Y has a solution X for each Y. $\iff P(AX) = PY$ has a solution X for each Y. $\iff RX = PY$ has a solution X for each Y (Note that R = PA). $\iff RX = E$ has a solution X for each E (= PY).

Let

$$E = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

RX = E has a solution X.

RX = E has a solution $X. \Longrightarrow$ The last row of R is non-zero.

RX = E has a solution X. \Longrightarrow The last row of R is non-zero. \Longrightarrow R is an $n \times n$ row-reduced echelon matrix with no zero rows.

RX = E has a solution X. \Longrightarrow The last row of R is non-zero. \Longrightarrow R is an $n \times n$ row-reduced echelon matrix with no zero rows. \Longrightarrow R = I.

RX = E has a solution $X. \Longrightarrow$ The last row of R is non-zero.

 \implies R is an $n \times n$ row-reduced echelon matrix with no zero rows.

 \implies R = 1.

Hence A is row-equivalent to R = I.

RX = E has a solution $X \implies$ The last row of R is non-zero.

 \implies R is an $n \times n$ row-reduced echelon matrix with no zero rows.

 \implies R = I.

Hence A is row-equivalent to R = I. By Theorem 12, A is invertible.

Corollary 13.1

A square matrix with either a left or right inverse is invertible.

Corollary 13.1

A square matrix with either a left or right inverse is invertible.

Proof: Let *A* be an $n \times n$ matrix.

A square matrix with either a left or right inverse is invertible.

Proof: Let *A* be an $n \times n$ matrix.

Case 1. Suppose A has a left inverse, say B.

A square matrix with either a left or right inverse is invertible.

Proof: Let *A* be an $n \times n$ matrix.

Case 1. Suppose A has a left inverse, say B. That is BA = I.

A square matrix with either a left or right inverse is invertible.

Proof: Let *A* be an $n \times n$ matrix.

Case 1. Suppose A has a left inverse, say B. That is BA = I.

Consider the system AX = 0.

A square matrix with either a left or right inverse is invertible.

Proof: Let *A* be an $n \times n$ matrix.

Case 1. Suppose A has a left inverse, say B. That is BA = I.

A square matrix with either a left or right inverse is invertible.

Proof: Let A be an $n \times n$ matrix.

Case 1. Suppose A has a left inverse, say B. That is BA = I.

$$\implies (BA)X = 0.$$

A square matrix with either a left or right inverse is invertible.

Proof: Let A be an $n \times n$ matrix.

Case 1. Suppose A has a left inverse, say B. That is BA = I.

$$\Longrightarrow (BA)X = 0. \Longrightarrow IX = 0.$$

A square matrix with either a left or right inverse is invertible.

Proof: Let *A* be an $n \times n$ matrix.

Case 1. Suppose A has a left inverse, say B. That is BA = I.

$$\Longrightarrow (BA)X = 0. \Longrightarrow IX = 0. \Longrightarrow X = 0.$$

A square matrix with either a left or right inverse is invertible.

Proof: Let A be an $n \times n$ matrix.

Case 1. Suppose A has a left inverse, say B. That is BA = I.

$$\Longrightarrow (BA)X = 0. \implies IX = 0. \implies X = 0.$$

Thus
$$AX = 0 \Longrightarrow X = 0$$

A square matrix with either a left or right inverse is invertible.

Proof: Let A be an $n \times n$ matrix.

Case 1. Suppose A has a left inverse, say B. That is BA = I.

Consider the system AX = 0. That implies B(AX) = B0 = 0.

$$\Longrightarrow (BA)X = 0. \Longrightarrow IX = 0. \Longrightarrow X = 0.$$

Thus
$$AX = 0 \Longrightarrow X = 0$$

By Theorem 13, *A* is invertible.

A square matrix with either a left or right inverse is invertible.

Proof: Let A be an $n \times n$ matrix.

Case 1. Suppose A has a left inverse, say B. That is BA = I.

Consider the system AX = 0. That implies B(AX) = B0 = 0.

$$\Longrightarrow (BA)X = 0. \Longrightarrow IX = 0. \Longrightarrow X = 0.$$

Thus
$$AX = 0 \Longrightarrow X = 0$$

By Theorem 13, *A* is invertible.

Case 2 : Suppose that A has a right inverse say C.

A square matrix with either a left or right inverse is invertible.

Proof: Let A be an $n \times n$ matrix.

Case 1. Suppose A has a left inverse, say B. That is BA = I.

Consider the system AX = 0. That implies B(AX) = B0 = 0.

$$\Longrightarrow (BA)X = 0. \Longrightarrow IX = 0. \Longrightarrow X = 0.$$

Thus
$$AX = 0 \Longrightarrow X = 0$$

By Theorem 13, *A* is invertible.

Case 2 : Suppose that A has a right inverse say C. i.e., AC = I.

A square matrix with either a left or right inverse is invertible.

Proof: Let A be an $n \times n$ matrix.

Case 1. Suppose A has a left inverse, say B. That is BA = I.

Consider the system AX = 0. That implies B(AX) = B0 = 0.

$$\Longrightarrow (BA)X = 0. \Longrightarrow IX = 0. \Longrightarrow X = 0.$$

Thus
$$AX = 0 \Longrightarrow X = 0$$

By Theorem 13, *A* is invertible.

Case 2 : Suppose that A has a right inverse say C. i.e.,

AC = I. So A is a left inverse of C.

A square matrix with either a left or right inverse is invertible.

Proof: Let A be an $n \times n$ matrix.

Case 1. Suppose A has a left inverse, say B. That is BA = I.

Consider the system AX = 0. That implies B(AX) = B0 = 0.

$$\Longrightarrow (BA)X = 0. \Longrightarrow IX = 0. \Longrightarrow X = 0.$$

Thus
$$AX = 0 \Longrightarrow X = 0$$

By Theorem 13, *A* is invertible.

Case 2 : Suppose that A has a right inverse say C. i.e., AC = I. So A is a left inverse of C. By Case 1, C is invertible and $C^{-1} = A$.

A square matrix with either a left or right inverse is invertible.

Proof: Let A be an $n \times n$ matrix.

Case 1. Suppose A has a left inverse, say B. That is BA = I.

Consider the system AX = 0. That implies B(AX) = B0 = 0.

$$\Longrightarrow (BA)X = 0. \Longrightarrow IX = 0. \Longrightarrow X = 0.$$

Thus
$$AX = 0 \Longrightarrow X = 0$$

By Theorem 13, *A* is invertible.

Case 2 : Suppose that A has a right inverse say C. i.e., AC = I. So A is a left inverse of C. By Case 1, C is invertible and $C^{-1} = A$. Hence A is invertible and $A^{-1} = C$.

Let $A = A_1 A_2 ... A_k$ where $A_1, A_2, ..., A_k$ are $n \times n$ (square) matrices.

Let $A = A_1 A_2 ... A_k$ where $A_1, A_2, ..., A_k$ are $n \times n$ (square) matrices. Then A is invertible if and only if each A_i is invertible.

Let $A = A_1 A_2 ... A_k$ where $A_1, A_2, ..., A_k$ are $n \times n$ (square) matrices. Then A is invertible if and only if each A_i is invertible.

Proof : $A = A_1 A_2 ... A_k --- (a)$

Let $A = A_1 A_2 ... A_k$ where $A_1, A_2, ..., A_k$ are $n \times n$ (square) matrices. Then A is invertible if and only if each A_i is invertible.

Proof : $A = A_1 A_2 ... A_k --- (a)$

Case 1. Suppose that *A* is invertible.

Let $A = A_1 A_2 ... A_k$ where $A_1, A_2, ..., A_k$ are $n \times n$ (square) matrices. Then A is invertible if and only if each A_i is invertible.

Proof : $A = A_1 A_2 ... A_k --- (a)$

Case 1. Suppose that *A* is invertible. By Theorem 13,

$$AX = 0 \Longrightarrow X = 0.$$

Let $A = A_1 A_2 ... A_k$ where $A_1, A_2, ..., A_k$ are $n \times n$ (square) matrices. Then A is invertible if and only if each A_i is invertible.

Proof : $A = A_1 A_2 ... A_k --- (a)$

Case 1. Suppose that *A* is invertible. By Theorem 13,

 $AX = 0 \Longrightarrow X = 0$. Show that each A_i is invertible.

Let $A = A_1 A_2 ... A_k$ where $A_1, A_2, ..., A_k$ are $n \times n$ (square) matrices. Then A is invertible if and only if each A_i is invertible.

Proof : $A = A_1 A_2 ... A_k --- (a)$

Case 1. Suppose that *A* is invertible. By Theorem 13,

 $AX = 0 \Longrightarrow X = 0$. Show that each A_i is invertible. First, we prove that A_k is invertible.

Let $A = A_1 A_2 ... A_k$ where $A_1, A_2, ..., A_k$ are $n \times n$ (square) matrices. Then A is invertible if and only if each A_i is invertible.

Proof : $A = A_1 A_2 ... A_k --- (a)$

Case 1. Suppose that *A* is invertible. By Theorem 13,

Let $A = A_1 A_2 ... A_k$ where $A_1, A_2, ..., A_k$ are $n \times n$ (square) matrices. Then A is invertible if and only if each A_i is invertible.

Proof : $A = A_1 A_2 ... A_k --- (a)$

Case 1. Suppose that *A* is invertible. By Theorem 13,

$$\implies A_1A_2...A_{k-1}(A_kX)=0.$$

Let $A = A_1 A_2 ... A_k$ where $A_1, A_2, ..., A_k$ are $n \times n$ (square) matrices. Then A is invertible if and only if each A_i is invertible.

Proof : $A = A_1 A_2 ... A_k --- (a)$

Case 1. Suppose that *A* is invertible. By Theorem 13,

$$\implies A_1A_2...A_{k-1}(A_kX) = 0. \implies AX = 0.$$

Let $A = A_1 A_2 ... A_k$ where $A_1, A_2, ..., A_k$ are $n \times n$ (square) matrices. Then A is invertible if and only if each A_i is invertible.

Proof : $A = A_1 A_2 ... A_k --- (a)$

Case 1. Suppose that *A* is invertible. By Theorem 13,

 $AX = 0 \Longrightarrow X = 0$. Show that each A_i is invertible. First, we prove that A_k is invertible. Consider the system $A_kX = 0$.

 $\implies A_1 A_2 \dots A_{k-1} (A_k X) = 0. \implies AX = 0. \implies X = 0.$

Let $A = A_1 A_2 ... A_k$ where $A_1, A_2, ..., A_k$ are $n \times n$ (square) matrices. Then A is invertible if and only if each A_i is invertible.

Proof : $A = A_1 A_2 ... A_k --- (a)$

Case 1. Suppose that *A* is invertible. By Theorem 13,

$$\implies A_1A_2...A_{k-1}(A_kX) = 0. \implies AX = 0. \implies X = 0.$$

Thus
$$A_k X = 0 \Longrightarrow X = 0$$

Let $A = A_1 A_2 ... A_k$ where $A_1, A_2, ..., A_k$ are $n \times n$ (square) matrices. Then A is invertible if and only if each A_i is invertible.

Proof : $A = A_1 A_2 ... A_k --- (a)$

Case 1. Suppose that *A* is invertible. By Theorem 13,

 $AX = 0 \Longrightarrow X = 0$. Show that each A_i is invertible. First, we prove that A_k is invertible. Consider the system $A_kX = 0$.

$$\implies A_1A_2...A_{k-1}(A_kX) = 0. \implies AX = 0. \implies X = 0.$$

Thus
$$A_k X = 0 \Longrightarrow X = 0$$

By Theorem 13, A_k is invertible.

Let $A = A_1 A_2 ... A_k$ where $A_1, A_2, ..., A_k$ are $n \times n$ (square) matrices. Then A is invertible if and only if each A_i is invertible.

Proof : $A = A_1 A_2 ... A_k --- (a)$

Case 1. Suppose that *A* is invertible. By Theorem 13,

 $AX = 0 \Longrightarrow X = 0$. Show that each A_i is invertible. First, we prove that A_k is invertible. Consider the system $A_kX = 0$.

$$\implies A_1A_2...A_{k-1}(A_kX) = 0. \implies AX = 0. \implies X = 0.$$

Thus
$$A_k X = 0 \Longrightarrow X = 0$$

By Theorem 13, A_k is invertible. Since A and A_k are invertible, $AA_k^{-1} = A_1A_2...A_{k-1}$ is invertible.

Let $A = A_1 A_2 ... A_k$ where $A_1, A_2, ..., A_k$ are $n \times n$ (square) matrices. Then A is invertible if and only if each A_i is invertible.

Proof : $A = A_1 A_2 ... A_k --- (a)$

Case 1. Suppose that *A* is invertible. By Theorem 13,

 $AX = 0 \Longrightarrow X = 0$. Show that each A_i is invertible. First, we prove that A_k is invertible. Consider the system $A_kX = 0$.

$$\implies A_1A_2...A_{k-1}(A_kX) = 0. \implies AX = 0. \implies X = 0.$$

Thus
$$A_k X = 0 \Longrightarrow X = 0$$

By Theorem 13, A_k is invertible. Since A and A_k are invertible, $AA_k^{-1} = A_1A_2 \dots A_{k-1}$ is invertible. By preceding argument, A_{k-1} is invertible.

Let $A = A_1 A_2 ... A_k$ where $A_1, A_2, ..., A_k$ are $n \times n$ (square) matrices. Then A is invertible if and only if each A_i is invertible.

Proof : $A = A_1 A_2 ... A_k --- (a)$

Case 1. Suppose that A is invertible. By Theorem 13, $AX = 0 \Longrightarrow X = 0$. Show that each A_i is invertible. First, we prove that A_k is invertible. Consider the system $A_kX = 0$. $\Longrightarrow A_1A_2...A_{k-1}(A_kX) = 0$. $\Longrightarrow AX = 0$. $\Longrightarrow X = 0$.

Thus
$$A_k X = 0 \Longrightarrow X = 0$$

By Theorem 13, A_k is invertible. Since A and A_k are invertible, $AA_k^{-1} = A_1A_2 \dots A_{k-1}$ is invertible. By preceding argument, A_{k-1} is invertible. Continuing in this way, we conclude that each A_i is invertible.

Contd.

Case 2. Suppose that each A_i is invertible.

Contd.

Case 2. Suppose that each A_i is invertible. Since product of invertible matrices is invertible, $A = A_1 A_2 ... A_k$ is invertible.

Qn. Prove or disprove that if *A* is an $m \times n$ matrix, *B* is an $n \times m$ matrix and n < m, then *AB* is not invertible.

Qn. Prove or disprove that if A is an $m \times n$ matrix, B is an $n \times m$ matrix and n < m, then AB is not invertible. Solution :

Qn. Prove or disprove that if A is an $m \times n$ matrix, B is an $n \times m$ matrix and n < m, then AB is not invertible.

Solution : Since B is an $n \times m$ matrix and n < m,

Qn. Prove or disprove that if A is an $m \times n$ matrix, B is an $n \times m$ matrix and n < m, then AB is not invertible. Solution: Since B is an $n \times m$ matrix and n < m, by Theorem 6, the homogeneous system BX = 0 has a non-trivial solution, say $X^* \neq 0$.

Qn. Prove or disprove that if A is an $m \times n$ matrix, B is an $n \times m$ matrix and n < m, then AB is not invertible. Solution: Since B is an $n \times m$ matrix and n < m, by Theorem 6, the homogeneous system BX = 0 has a non-trivial solution, say $X^* \neq 0$. i.e., $BX^* = 0$.

Qn. Prove or disprove that if A is an $m \times n$ matrix, B is an $n \times m$ matrix and n < m, then AB is not invertible. Solution: Since B is an $n \times m$ matrix and n < m, by Theorem 6, the homogeneous system BX = 0 has a non-trivial solution, say $X^* \neq 0$. i.e., $BX^* = 0$. Consider the system (AB)X = 0.

Qn. Prove or disprove that if A is an $m \times n$ matrix, B is an $n \times m$ matrix and n < m, then AB is not invertible. Solution: Since B is an $n \times m$ matrix and n < m, by Theorem 6, the homogeneous system BX = 0 has a non-trivial solution, say $X^* \neq 0$. i.e., $BX^* = 0$. Consider the system (AB)X = 0. $(AB)X^* = A(BX^*) = A0 = 0$.

Qn. Prove or disprove that if A is an $m \times n$ matrix, B is an $n \times m$ matrix and n < m, then AB is not invertible.

Solution : Since B is an $n \times m$ matrix and n < m, by Theorem 6, the homogeneous system BX = 0 has a non-trivial solution, say

 $X^* \neq 0$. i.e., $BX^* = 0$.

Consider the system (AB)X = 0.

 $(AB)X^* = A(BX^*) = A0 = 0$. $\Longrightarrow X^*$ is a non-trivial solution of the homogeneous system (AB)X = 0.

Qn. Prove or disprove that if A is an $m \times n$ matrix, B is an $n \times m$ matrix and n < m, then AB is not invertible.

Solution : Since B is an $n \times m$ matrix and n < m, by Theorem 6, the homogeneous system BX = 0 has a non-trivial solution, say

 $X^* \neq 0$. i.e., $BX^* = 0$.

Consider the system (AB)X = 0.

 $(AB)X^* = A(BX^*) = A0 = 0$. $\Longrightarrow X^*$ is a non-trivial solution of the homogeneous system (AB)X = 0. By Theorem 7, AB is not invertible.

Let
$$A = \begin{bmatrix} \frac{1}{3} & 2 & -6 \\ -4 & 0 & 5 \\ -3 & 6 & -13 \\ -\frac{7}{3} & 2 & -\frac{8}{3} \end{bmatrix}$$

Does there exist a 3×4 matrix B such that (i) AB = 0, a zero matrix, and (ii) $B \neq 0$?

Find a non-trivial solution of the sytem AX = 0.

Find a non-trivial solution of the sytem AX = 0. Solution set, $S = \{(\frac{5}{4}a, \frac{67}{24}a, a) : a \in R\}$ (Visit previous lecture notes.)

Find a non-trivial solution of the sytem AX = 0. Solution set, $S = \{(\frac{5}{4}a, \frac{67}{24}a, a) : a \in R\}$ (Visit previous lecture notes.) Choose $a = 24 \implies (30, 67, 24)$ is a solution.

Find a non-trivial solution of the sytem AX = 0. Solution set, $S = \{(\frac{5}{4}a, \frac{67}{24}a, a) : a \in R\}$ (Visit previous lecture notes.) Choose $a = 24 \implies (30, 67, 24)$ is a solution.

$$\implies B = \left[\begin{array}{ccccc} 30 & 30 & 30 & 30 \\ 67 & 67 & 67 & 67 \\ 24 & 24 & 24 & 24 \end{array} \right]$$

Verify that AB = 0, and $B \neq 0$

Prove of disprove that A is invertible and find A^{-1} if it exists where

$$A = \left[\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{array} \right]$$

Prove of disprove that A is invertible and find A^{-1} if it exists where

$$A = \left[\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{array} \right]$$

$$A^{-1} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{4} \end{bmatrix}$$