МІНІСТЕРСТВО ОСВІТИ І НАУКИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ І.СІКОРОСЬКОГО»

КАФЕДРА КОНСТРУЮВАННЯ ЕОА

3BIT

з лабораторної роботи №4

по курсу «Аналогова та цифрова схемотехніка»

Виконав:

студент гр. ДК-51

Тимошенко С.В.

Перевірив:

доц. Короткий Є. В.

Дослідження підсилювача на біполярному транзисторі з загальним емітером.

1. Скласти схему підсилювача на біполярному транзисторі з загальним емітером:

Рис 1. Схема підсилювача з загальним емітером

Просимулювали та впевнились, що ε підсилення:

Рис 2. Вхідний та вихідний сигнали(симуляція

На практиці:

Рис 3. Вхідний та вихідний сигнали

2. Визначити робочу точку

Визначили параметри робочої точки в режимі великого сигналу (відключили V1).

Отримали наступні результати:

$$U_{6e} = 0.688 \text{ B}$$
 $U_{ke} = 3.62 \text{ B}$

$$I_6=60$$
 мкА $I_\kappa=5.2$ мА

3. Виміряти вхідний опір підсилювача

Виміряли значення вхідного опору підсилювача за допомогою змінного резистору, омметрк та вольтметру.

Послідовно до генератора підключили змінний резистор. Змінний резистор R_{var} та $R_{\rm Bx}$ утворять подільник напруги. І ми встановлюємо опір змінного резистору так, щоб напруга на правому вольтметрі була в два рази меншою, ніж на лівому. При досягненні такого результату від'єднали змінний резистор і виміряли його опір вольтметром. Отримали, що $R_{\rm Bx} = 437~{\rm Om}$

Рис 4. Схема вимірювання вхідного опору

4. Виміряти вихідний опір підсилювача

Вихідний опір підсилювача визначається так само, як і вхідний. Тільки для початку встановили кругу $U_{\rm xx}$, для зручності вимірювання. Отримали, що $R_{\rm виx}=250$ Ом. $R_{\rm виx}\approx R_{\rm K}$. $R_{\rm K}=240$ Ом.

5. Виміряти амплітудну характеристику підсилювача

Для початку потрібно знайти $U_{\text{вх }max}$. Для цього, поступово збільшуємо напругу на вході до тих пір, доки напруга на виході не почне спотворюватись.

Рис.5 Визначення $U_{\text{вх }max}$.

З експериментальних даних видно, що напруга насичення приблизно дорівнює 24 мВ. Далі, з проміжку [4 мВ ; 24 мВ], беремо вісім точок рівновіддалених одна від одної та заносимо в таблицю [1] залежність $U_{\rm Bux}$ ($U_{\rm Bx}$).

Таблиця [1]. Залежність $U_{\text{вих}}(U_{\text{вх}})$.

$U_{\scriptscriptstyle m BX}$, м $ m B$	$U_{{\scriptscriptstyle \mathrm{B}} u_{\mathrm{X}}}$, м B	
4	162	
7	270	
10	374	
13	459	
16	554	
19	646	
22	722	
24	754	

На основі даних з таблиці [1] побудуємо графік $U_{\text{вих}}\left(U_{\text{вх}}\right)$. 800

Рис.6 Графік залежності $U_{\text{вих}}(U_{\text{вх}})$.

3 цього графіку K_u можна розрахувати, як відношення катетів, це і буде відношенням вихідної до вхідної напруги.

$$K_u = \frac{592}{20} = 29,6.$$

6. Знайти значення вхідного і вихідного струму за даними попереднього завдання.

Знайдемо вхідний та вихідний струм за законом Ома, використовуючи дані, які отримали в минулому пункті та занесемо результати в таблицю:

Таблиця [2]. Вхідний та вихідний струми

$I_{\scriptscriptstyle m BX}$, мк ${ m A}$	$I_{\scriptscriptstyle exttt{BUX}}$, мк $ exttt{A}$	
9,153	16,2	
16,018	27	
22,883	37,4	
29,748	45,9	
36,613	55,4	
43,478	64,6	
50,343	72,2	
54,919	75,4	

Тепер за даними таблиці [2] побудуємо графік залежності $I_{\text{вих}}(I_{\text{вх}})$:

Рис.7 Графік залежності $I_{\text{вих}}(I_{\text{вх}})$

3 графіку знайдемо коефіцієнт підсилення за струмом, як відношення катетів прямокутного трикутника:

$$K_{\rm i} = \frac{59}{45} = 1.31$$

7. Розрахувати параметри підсилювача теоретично

$$g_m = \frac{I_{k0}}{\varphi_T} = \frac{5.2}{25} = 0.208$$

$$\beta = \frac{I_{k0}}{I_{b0}} = \frac{5.2}{0.06} = 86.6$$

$$r_i = \frac{\beta}{g_m} = \frac{86.6}{0.208} = 416.6 \ O$$
M

$$R_{\text{BX}} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{r_i}} = \frac{1}{\frac{1}{51000} + \frac{1}{17000} + \frac{1}{416,6}} = 403,41 \text{ Om}$$

$$R_{\text{вих}} = R_k = 240 \ O \text{M}$$

$$K_u = -g_m * \frac{R_k * R_n}{R_k + R_n} = -0.208 * \frac{240 * 10000}{240 + 10000} = -48.75$$

$$K_i = K_u * \frac{R_{\text{BX}}}{R_n} = 48,75 * \frac{403,4}{10000} = 1,96$$

Таблиця [3]. Порівняння результатів

Теоретичне значення		Практичне значення	
$R_{\scriptscriptstyle \mathrm{BX}}$	403,4 Ом	$R_{\scriptscriptstyle \mathrm{BX}}$	437 Ом
$R_{\scriptscriptstyle \mathrm{BUX}}$	240 Ом	$R_{\scriptscriptstyle \mathrm{BHX}}$	250 Ом
K_u	48,75	K_u	29,6
$K_{\rm i}$	1,96	$K_{\rm i}$	1,31

Висновок: в даній лабораторній роботі було досліджено принцип роботи підсилювача з загальним емітером. Під час виконання роботи були встановленні параметри робочої точки спокою для даної схеми. Також отримані експериментально деякі параметри схеми, а саме: $R_{\rm BX}$, $R_{\rm Bux}$, K_u та K_i . Потім ці ж самі параметри були розраховані теоретично. По даним таблиці [3] можна зробити висновок, що практичні та теоретичні значення приблизно сходяться, це свідчить про правильність розрахунків.