

Written assessment, February, 6, 2025

Last name, First name _

Exercise 1 (value 9)

A company must plan the production of a single type of good for the next T periods. The demand d_t of the product for each period $t \in T$ is kwown. The company can produce up to P units in each period. Units not sold in a period can be stored in a depot and used in the next periods. The depot is initially empty. The cost for storing units is negligible, while the production cost of each unit in a period is c_s if the production of the period is smaller than or equal to ϑ units and $c_l > c_s$ if the production is larger than ϑ units. Write a Mixed Integer Linear Program to plan the production in each period, together with the quantities to be stored. (Hint: use two variables to represent the production of a period, one for productions up to ϑ units, productions higher than ϑ units). PRODUCTS \Longrightarrow UNITS

Exercise 2 (value 8)

Consider the following linear program:

$$\max x_1 + x_2$$

$$s.t. \ 2x_1 \le 5$$

$$x_2 \le 3$$

$$x_1, x_2 \ge 0 \text{ integer}$$

- Relax the integrality constraints, draw the feasible region and solve the problem graphically (report the solution and its value)
- Write the tableau corresponding to the optimal solution in basic form
- Find a Gomory's cut and add it to the tableau, compute and report the new feasible solution
- Is the new solution optimal for the given problem? Motivate your answer

Exercise 3 (value 8)

Consider the following ILP:

$$\max 2x_1 + x_2$$
s.t. $x_1 - x_2 \ge 0$

$$2x_1 + 3x_2 \le 35$$

$$x_1 - 2x_2 \le 0$$

$$x_1 \le 9$$

$$x_1, x_2 \ge 0 \text{ integer}$$

Solve the problem using the standard branch-and-bound algorithm. Solve all the relaxed problems encountered via the graphical method. (Explore at most five nodes of the tree)

Exercise 1

Variables

 $xs_t = \text{units produced in period } t$, if production $\leq \vartheta$ units $xl_t = \text{units produced in period } t$, if production $\geq \vartheta$ units $I_t = \text{units stored in the depot at the end of period } t$ $\delta_t = 1$ if at most ϑ units are produced in period t; 0 otherwise

$$\begin{aligned} &\min \ c_s \sum_{t=1}^T x s_t + c_l \sum_{t=1}^T x l_t \\ &x s_1 + x l_1 = I_1 + d_1 \\ &x s_t + x l_t + I_{t-1} = I_t + d_t \\ &x s_t \leq \vartheta \delta_t \\ &t = 1, \dots, T \\ &x l_t \leq P(1 - \delta_t) \\ &x s_t \geq 0, \text{integer} \\ &t = 1, \dots, T \\ &x l_t \geq 0, \text{integer} \\ &t = 1, \dots, T \end{aligned}$$

Exercise 2

Optimal solution : x = (5/2, 3, 0, 0) z = 11/2

x_1	x_2	s_1	s_2		
0	0	-1/2	-1	-11/2	-z
1	0	1/2	0	5/2	
0	1	0	1	3	

Gomory's cut:

 $1/2s_1 \ge 1/2$

x_1	x_2	$^{o}1$	$^{\circ}2$	$^{\circ}3$		
0	0	-1/2	-1	0	-11/2	-z
1	0	1/2	0	0	5/2	
0	1	0	1	0	3	
0	0	-1/2	0	1	-1/2	
						•
\boldsymbol{x}				_		
$\underline{}$	x_2	s_1	s_2	s_3		
$\begin{bmatrix} x_1 \\ 0 \end{bmatrix}$	$\frac{x_2}{0}$	$\frac{s_1}{0}$	-1	$\begin{array}{c c} s_3 \\ \hline -1 \end{array}$	-5	-z
$\begin{bmatrix} x_1 \\ 0 \\ 1 \end{bmatrix}$	$\begin{array}{c c} x_2 \\ \hline 0 \\ \hline 0 \\ \end{array}$	$\begin{array}{c} s_1 \\ \hline 0 \\ \hline 0 \end{array}$	$\frac{s_2}{-1}$	$\begin{array}{c c} s_3 \\ \hline -1 \\ \hline 1 \end{array}$	-5 2	-z
$ \begin{array}{c c} x_1 \\ \hline 0 \\ 1 \\ 0 \end{array} $	$egin{array}{c} x_2 \\ \hline 0 \\ 0 \\ 1 \\ \end{array}$	$ \begin{array}{c c} s_1 \\ \hline 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} s_2 \\ \hline -1 \\ 0 \\ 1 \end{array} $	$ \begin{array}{c c} s_3 \\ \hline -1 \\ 1 \\ 0 \end{array} $		-z

New solution : x = (2, 3, 1, 0, 0), z = 5.

It is the optimal solution of the original problem since it is optimal for the relaxed problem (non-positive reduced costs) and it is feasible (integer)

Exercise 3

The optimal solution is in node P_1 with x=(9,5) and value 23.