

# Thieme

## S3-Leitlinie Klinische Ernährung in der Chirurgie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) e. V.

in Zusammenarbeit mit dem Arbeitskreis Klinische Ernährung (AKE), der Gesellschaft für Klinische Ernährung der Schweiz (GESKES) und den Fachgesellschaften Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI) e.V., Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie (DGAV) e. V., Deutsche Gesellschaft für Chirurgie (DGCH) e.V.

## S3-Guideline Clinical Nutrition in Surgery of the German Society for Nutritional Medicine (DGEM)

in cooperation with the Working Group Clinical Nutrition (AKE), the Swiss Society for Clinical Nutrition and metabolism (GESKES) and the professional societies German Society of Anesthesiology and Intensive Care Medicine (DGAI) e.V., German Society for General and Visceral Surgery (DGAV) e.V., German Society of Surgery (DGCH) e.V.

#### Autorinnen/Autoren

Arved Weimann<sup>1</sup>, Stefan Breitenstein<sup>2</sup>, Sabine Gabor<sup>3</sup>, Stefan Holland-Cunz<sup>4</sup>, Matthias Kemen<sup>5</sup>, Friedrich Längle<sup>6</sup>, Marc Martignoni<sup>7</sup>, Nada Rayes<sup>8</sup>, Bernd Reith<sup>9</sup>, Anna Schweinlin<sup>10</sup>, Wolfgang Schwenk<sup>11</sup>, Daniel Seehofer<sup>8</sup>, Metin Senkal<sup>12</sup>, Christian Stoppe<sup>13, 14</sup>

#### Institute

- 1 Abteilung für Allgemein-, Viszeral- und Onkologische Chirurgie, Klinikum St. Georg gGmbH, Leipzig, Deutschland
- 2 Klinik für Viszeral- und Thoraxchirurgie, Klinischer Bereich B, Kantonsspital Winterthur, Winterthur, Schweiz
- 3 Abteilung für Chirurgie, KRAGES Burgenländische Krankenanstalten Gesellschaft m. b. H., Oberwart, Österreich
- 4 Klinik für Kinderchirurgie des Universitätskinderspitals beider Basel, Basel, Schweiz
- 5 Abteilung für Allgemein- und Viszeralchiurgie, Lehrkrankenkaus der RUB Bochum, Evangelisches Krankenhaus, Herne, Deutschland
- 6 Chirurgische Abteilung, Landesklinikum Wr. Neustadt, Wiener Neustadt, Österreich
- 7 Klinik und Poliklinik für Chirurgie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, Leipzig, Deutschland
- 9 Klinik für Allgemein-, Viszeralchirurgie und Proktologie, Agaplesion Diakonie Kliniken Kassel, Kassel, Deutschland
- 10 Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Deutschland

- 11 Gesellschaft für Optimiertes PeriOperatives Management mbH - GOPOM GmbH, Düsseldorf, Deutschland
- 12 Klinik für Allgemein- und Viszeralchirurgie, Plastische und Rekonstruktive Chirurgie, Marien Hospital Witten, Lehrkrankenhaus der Ruhr-Universität Bochum, Witten, Deutschland
- 13 Klinik und Poliklinik für Anästhesiologie, Intensivmedizin, Notfallmedizin und Schmerztherapie, Universitätsklinikum Würzburg, Würzburg, Deutschland
- 14 Klinik für Kardioanästhesiologie und Intensivmedizin, Deutsches Herzzentrum Berlin, Charité Berlin, Berlin, Deutschland

#### Schlüsselwörter

Perioperative Ernährung, enterale Ernährung, parenterale Ernährung, Immunonutrition, ERAS, Carbohydrate Loading, Prähabilitation, Trinknahrung

#### **Key words**

Perioperative nutrition, enteral nutrition, parenteral nutrition, immunonutrition, ERAS, carbohydrate loading, prehabilitation, Oral Nutritional Supplements

#### **Bibliografie**

Aktuel Ernahrungsmed 2023; 48: 237-290

DOI 10.1055/a-2104-9792

ISSN 0341-0501

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag, Rüdigerstraße 14,

70469 Stuttgart, Germany

#### Korrespondenzadresse

Prof. Dr. med. Arved Weimann Klinikum St. Georg GmbH

Abteilung für Allgemein-, Viszeral- und Onkologische

Chirurgie mit Klinischer Ernährung

Delitzscher Str. 141

04129 Leipzig

Arved.Weimann@sanktgeorg.de



Zusätzliches Material finden Sie unter https://doi.org/10.1055/a-2104-9792.

#### **ZUSAMMENFASSUNG**

Die Vermeidung einer ausgeprägten Katabolie nach chirurgischen Eingriffen mit frühem postoperativen Kostaufbau und Mobilisierung zur raschen Rekonvaleszenz ist heute der Standard des perioperativen Management im so genannten Enhanced Recovery After Surgery (ERAS) Konzept. So ist die frühe orale Nahrungszufuhr auch die bevorzugte Form der postoperativen Ernährung. Gemessen am Kalorienbedarf ist jedoch gerade nach Eingriffen am oberen Gastrointestinaltrakt für längere Zeit von einer verminderten Nahrungsaufnahme auszugehen. Dies birgt grundsätzlich das Risiko eines fortschreitenden Gewichtsverlusts und einer Unterernährung der Patienten während des postoperativen Verlaufs. Mangel- und Unterernährung stellen signifikante Risikofaktoren für postoperative Komplikationen dar. So ist die frühe enterale Ernährung besonders für chirurgische Patienten mit einem bereits bestehenden Ernährungsrisiko wichtig. Der Fokus dieser Leitlinie liegt besonders auf den ernährungstherapeutischen Aspekten des ERAS Konzeptes (Plan A). Dies betrifft präoperativ Strategien zur Konditionierung ("Prähabilitation"). Postoperativ können trotz bestmöglicher Versorgung schwere Komplikationen mit der Notwendigkeit zur Reoperation und Intensivtherapie eintreten, die eine besondere, auch medizinische (künstliche) Ernährungstherapie erforderlich machen (Plan B)

Aus der Stoffwechsel- und Ernährungsperspektive sind folgende Aspekte in der perioperativen Versorgung zentral:

- Integration der Ernährung in das gesamte perioperative Management des Patienten
- Vermeidung von längeren perioperativen Nüchternheitsperioden
- Möglichst frühe Wiederaufnahme der oralen Ernährung nach chirurgischen Eingriffen
- früher Start einer Ernährungstherapie bei Patienten mit metabolischem Risiko

- metabolische Kontrolle z. B. des Blutzuckers
- Reduzierung von Faktoren, die Stress und Katabolie induzieren oder die gastrointestinale Funktion beeinträchtigen
- Zurückhaltende Gabe von Medikamenten mit ungünstigem Einfluss auf die Darmperistaltik
- frühe Mobilisation zur Stimulierung der Proteinsynthese und der Muskelfunktion

Diese Leitlinie präsentiert insgesamt Empfehlungen für die tägliche klinische Praxis

#### **ABSTRACT**

The avoidance of pronounced catabolism after surgical interventions with early postoperative diet build-up and mobilization for rapid convalescence is today the standard of perioperative management in the so-called Enhanced Recovery After Surgery (ERAS). Thus, early oral nutrition is also the preferred form of postoperative nutrition. However, measured in terms of caloric requirements, reduced food intake can be assumed for a longer period of time, especially after surgery on the upper gastrointestinal tract. This fundamentally carries the risk of progressive weight loss and patient malnutrition during the postoperative course. Malnutrition and undernutrition are significant risk factors for postoperative complications. Thus, early enteral nutrition is particularly important for surgical patients at pre-existing nutritional risk. The focus of this guideline is particularly on the nutritional aspects of the ERAS concept (Plan A). This relates preoperatively to strategies for conditioning ("prehabilitation"). Postoperatively, despite the best possible care, severe complications may occur with the need for reoperation and intensive therapy, requiring special nutritional therapy, including medical (artificial) nutrition (Plan B).

From a metabolic and nutritional perspective, the following aspects are central to perioperative care:

- Integration of nutrition into the overall perioperative management of the patient.
- Avoidance of prolonged perioperative fasting periods
- Resumption of oral nutrition as early as possible after surgical interventions
- Early start of nutrition therapy in patients at metabolic risk
- Metabolic control, e. g., of blood glucose
- Reduction of factors that induce stress and catabolism or impair gastrointestinal function
- Restrained administration of drugs with unfavorable influence on intestinal peristalsis
- Early mobilization to stimulate protein synthesis and muscle function

This guideline presents overall recommendations for daily clinical practice

#### **ABKÜRZUNGEN** ADH Antidiuretisches Hormon AKE Arbeitskreis Klinische Ernährung **ASPEN** American Society for Parenteral and Enteral **AWMF** Arbeitsgemeinschaft Wissenschaftlich Medizinischer Fachgesellschaften **BCA** verzweigtkettigen Aminosäuren BIA Bioelektrische Impedanzanalyse BMI Body-Mass-Index **CRP** C-reaktives Protein DGAI Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin **DGAV** Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie **DGCH** Deutsche Gesellschaft für Chirurgie **DGEM** Deutsche Gesellschaft für Ernährungsmedizin **ECMO** extrakorporale Membranoxigenierung ΕE enterale Ernährung **ERAS Enhanced Recovery After Surgery** European Society of Intensive Medicine **FSICM ESPEN** European Society for Clinical Nutrition and Metabolism European Society for Pediatric Gastroentero-**ESPGHAN** logy Hepatology and Nutrition FK] Feinnadelkatheterjejunostomie **GESKES** Gesellschaft für Klinische Ernährung der Schweiz **GLIM** Global Leadership Initiative on Malnutrition HOMA-IR Homeostatis Model Assessment of Insulin Resistance **IFALD** mit Kurzdarm assoziierte Lebererkrankungen IGF-1 Insulin-like growth factor 1 LCT lanakettiae Trialvceride MCT mittelkettige Triglyceride NRS Nutritional Risk Screening ONS orale Nahrungssupplemente, (bilanzierte) Trinknahrung PΕ parenterale Ernährung PEG perkutane endoskopische Gastrostomie PG-S Patient Generated Subjective Global Assessment **PONV** Postoperative Nausea and Vomiting **POPF** postoperativen pankreatische Fistel **PYMS** Pediatric Yorkhill Malnutrition Score QUICKI Quantitative Insulin Sensitivity Check Index **RCT** randomisierte kontrollierte Studie Subjective Global Assessment SGA SIGN Scottish Intercollegiate Guidelines Network SIRS Systemic Inflammatory Response Syndrome Skelettmuskelindex SMI SOP Standardarbeitsanweisung **STAMP** Screening Tool for the Assessment for

Malnutrition in Pediatrics

World Health Organisation

Status and Growth

Screening Tool for Risk of Impaired Nutritional

STRONGkids

WHO

### 1. Einleitung

# 1.1 Vorbemerkungen – Prinzipien der Ernährung bei chirurgischen Patienten

Für die optimale Planung einer Ernährungstherapie bei chirurgischen Patienten ist Verständnis für die grundlegenden Veränderungen des Stoffwechsels als Reaktion auf Stress und Trauma unabdingbar. Dabei stellt ein unzureichender Ernährungsstatus einen substantiellen Risikofaktor für postoperative Komplikationen dar. Hungern bei metabolischem Stress durch jedwede Art von Verletzung unterscheidet sich maßgeblich vom Fasten unter physiologischen Bedingungen [1]. Chirurgische Eingriffe führen zur Inflammation, die mit der Größe des Eingriffes korreliert und verursachen eine metabolische Stressantwort, aus der sich in der Folge auch postoperative Komplikationen wie Infektionen oder Organdysfunktion entwickeln können. Um eine adäguate Heilung und funktionelle Erholung ("restitutio ad integrum") zu ermöglichen, benötigt es diese metabolische Stressantwort, jedoch wird dadurch gleichzeitig eine Ernährungstherapie notwendig, insbesondere wenn der Patient mangelernährt ist oder eine verlängerte Stress-/ Entzündungsantwort zu erwarten ist. Der negative Effekt eines lang anhaltenden Defizits von Kalorien und Eiweiß auf den Verlauf von kritisch kranken chirurgischen Patienten ist immer wieder gezeigt worden [2]. Der Erfolg einer Operation beruht demnach nicht alleine auf den technischen Fähigkeiten des Operateurs, sondern auch auf der optimalen perioperativen Therapie und Versorgung des Patienten, welche die Bereitstellung einer optimalen Ernährung mit einschließt. Insbesondere bei Patienten mit malignen Erkrankungen kann das perioperative Management eine zentrale Bedeutung für das langfristige onkologische Ergebnis der Patienten haben [3, 4].

Chirurgie, wie jede andere Verletzung, induziert durch das chirurgische Trauma oder die Ischämie/Reperfusion eine Serie von Reaktionen, die die Freisetzung von Stresshormonen und inflammatorischen Mediatoren wie z. B. Zytokinen beinhalten. Diese Zytokinantwort auf eine Operation, Verletzung oder Infektion – das Systemic Inflammatory Response Syndrome (SIRS) – hat wiederum Einfluss auf den Stoffwechsel. SIRS fördert den Katabolismus von Glykogen, Fett und Protein sowie die Freisetzung von Glukose, freien Fett- und Aminosäuren in die Blutbahn. Es kommt zudem zu einer Insulinresistenz. Dadurch werden diese Substrate von ihrer eigentlichen Funktion – der Erhaltung der peripheren Proteinmasse (v. a. der Muskelmasse) – abgezogen und für die Aufgabe der Heilung und Immunantwort zur Verfügung gestellt [5, 6]. Dies führt zwangsweise zum Verlust von Muskelmasse, welcher wiederum die kurz- und auch die langfristige funktionelle Erholung erschwert, die das eigentlich primäre Ziel nach chirurgischen Eingriffen sein sollte [7]. Um Proteinressourcen zu erhalten, sind Lipolyse, Lipidoxidation und verringerte Glukoseoxidation wichtige Überlebensmechanismen [8]. Die Ernährungstherapie kann zwar die Energie für eine optimale Heilung zur Verfügung stellen, aber in der Stressantwort der frühen postoperativen Phase kann sie allenfalls gering bis gar nicht dem Muskelkatabolismus entgegenwirken.

Um die periphere Protein- bzw. Körperzellmasse zu erhalten oder sogar wiederherzustellen, muss der Körper eine adäquate Reaktion auf das chirurgische Trauma und eine mögliche Infektion finden. Substratangebot und -aufnahme genauso wie körperliche

Aktivität sind hierbei Grundvoraussetzungen. Patienten können im Rahmen der Grundkrankheit oder Komorbidität schon präoperativ unter einer chronischen geringgradigen Inflammation wie bei Karzinomen, Diabetes, Nieren- oder Lebererkrankungen leiden [9]. Ebenfalls müssen auch andere nicht ernährungsbedingte metabolische Faktoren mit Einfluss auf die Immunfunktion in Betracht gezogen und – wenn möglich – korrigiert bzw. verbessert werden. Diese sind verringerte kardio-respiratorische Funktion, Anämie, akute oder chronische Intoxikationen (wie z. B. Alkohol oder Medikamente) sowie eine Therapie mit antientzündlichen oder zytotoxischen Medikamenten.

Der Chirurg muss deshalb das Ausmaß des chirurgischen Eingriffes an den Ernährungsstatus, die inflammatorische Aktivität und die zu erwartende Entzündungsreaktion in Einanpassen. Eine schwere vorbestehende Entzündung und/oder Sepsis beeinflussen die Heilung des Patienten negativ (hinsichtlich Wundheilung, Anastomosen, Immunfunktion etc.). Hier reduziert sich natürlich auch der positive Effekt einer Ernährungstherapie. Schwer mangelernährte Patienten können eine adyname Form der Sepsis mit Hypothermie, Leukopenie, Somnolenz, verzögerter Wundheilung und Abszessbildung aufweisen, welche unbehandelt zu einem langsamen körperlichen Verfall und erhöhter Letalität führt. In dieser Situation trägt Ernährungstherapie wahrscheinlich nicht zu einem Erhalt oder Aufbau von Muskelmasse bei, kann aber eine adäquate Stressantwort mit der Chance auf unkomplizierten Verlauf und Rekonvaleszenz sicherstellen.

Schwer beeinträchtigte Patienten mit Mangelernährung sollten perioperativ eine länger dauernde Ernährungstherapie erhalten. Kurzfristig sollte eine 7–10 Tage dauernde Ernährungsintervention in Betracht gezogen werden. Sofern vertretbar z. B im Rahmen eines neoadjuvanten Therapiekonzepts ist eine 4–6 wöchige Phase der Ernährungstherapie anzustreben, die zusätzlich auch mit körperlicher Aktivität als "Prähabilitation" kombiniert werden sollte [10].

Bei nachgewiesener Sepsis hat die sofortige Kontrolle des Infektionsherdes ("Source control") Vorrang. Auf ausgedehnte chirurgische Maßnahmen sollte möglichst verzichtet werden (z. B. nur interventionelle Drainage, Stomaanlage) Die definitive chirurgische Versorgung sollte zu einem späteren Zeitpunkt durchgeführt werden, wenn die Sepsis erfolgreich behandelt und kontrolliert ist.

Bei elektiven Eingriffen konnte gezeigt werden, dass Maßnahmen zur Reduktion des chirurgischen Stresses und der Katabolie das Erreichen einer anabolen Stoffwechselsituation unterstützen können. Dadurch wird es dem Patienten ermöglicht, sich substantiell besser und schneller auch von einem großen chirurgischen Eingriff zu erholen. Diese Programme für Fast-Track-Surgery [11] wurden dann zum "Enhanced Recovery After Surgery" (ERAS) Konzept weiterentwickelt [5, 12–14].

ERAS zielt auf eine rasche Erholung und Verkürzung des Krankenhausaufenthalts und ist zum perioperativen Standard geworden [12, 15–17]. Das Konzept beschreibt eine Vielzahl von Komponenten, die darauf abzielen, den Stress zu minimieren und die Rückkehr zur normalen Funktion zu ermöglichen: diese beinhalten präoperative Vorbereitung und Medikation des Patienten, Flüssigkeitsbalance, Anästhesie und postoperative Analgesie und zu einem erheblichen Ausmaß auch die prä- und postoperative Ernährung sowie Mobilisation [5, 12–14]. Aus diesem Grund haben sich die

verschiedenen ERAS-Programme in vielen Ländern und über zahlreiche chirurgische Disziplinen als Gold-Standard im perioperativen Management der Patienten etabliert. Angefangen bei Koloneingriffen [12, 15, 17–19] wurden ERAS Programme für alle großen Operationen entwickelt und eingeführt. Sie sind ebenfalls erfolgreich in der Förderung der raschen "funktionellen" Erholung nach Ösophagusresektion [20, 21], Gastrektomie [21–23], Pankreasresektion [24–26], großen Beckeneingriffen [27, 28], Hysterektomie [29] und in der onkologischen Gynäkologie [30]. ERAS ist durch Kürzung der Krankenhausverweildauer auch ökonomisch sinnvoll [31]. ERAS Protokolle können sicher und vorteilhaft auch bei älteren Patienten angewendet werden [32]. Außerdem kann die strenge Einhaltung von ERAS Protokollen bei großen kolorektalen Eingriffen auch beispielsweise zu einer verbesserten 5-Jahres Überlebensrate dieser Patienten führen [4].

ERAS Programme beinhalten auch eine metabolische Strategie zur Reduktion des chirurgischen Stresses und damit zur Verbesserung des Behandlungsergebnis [13]. Die ERAS Protokolle unterstützen eine frühe orale Nahrungsaufnahme um die normale Darmfunktion rasch wieder herzustellen Ein Verzicht auf jede weitere supplementierende Zufuhr kann jedoch bei Risikopatienten ein Ernährungsdefizit und sogar Unterernährung nach sich ziehen. Aus diesem Grund raten die ERAS Leitlinien zur Motivation der Patienten mit großzügiger Verordnung von oralen Nahrungssupplementen (ONS) während der prä- und postoperativen Phase. Essentiell sind:

- Einbeziehung der Ernährung in das therapeutische Gesamtkonzept
- Screening und Erfassung des metabolischen Risikos bei der Aufnahme
- Vermeidung längerer Nüchternheitsperioden, insbesondere präoperativ
- Frühestmögliche Wiederaufnahme der Nahrungszufuhr postoperativ
- Verminderung von katabolen Stressfaktoren und solchen mit Beeinträchtigung der Funktion des Gastrointestinaltrakts
- Blutzuckermonitoring
- Frühe Mobilisierung zur Stimulation von Proteinsynthese und Muskelfunktion.

Ernährung ist als Modul des ERAS-Programms eine interprofessionelle Aufgabe. Für den Chirurgen muss die mechanistische Herangehensweise an den Patienten um die metabolische Dimension einer der Operation erweitert werden. So ist das ERAS-Programm auch ein metabolisches Konzept. Ein früher oraler Kostaufbau wird angestrebt. Eine längerfristig verminderte orale Kalorienzufuhr kann gerade nach großen Eingriffen das Risiko für Komplikationen im weiteren postoperativen Verlauf erhöhen. Dies gilt ganz besonders bei bereits präoperativ bestehendem ernährungsmedizinischem Defizit und großen Eingriffen im oberen Gastrointestinaltrakt. Bei diesen Risikopatienten ist ein flexibles Vorgehen erforderlich, sodass auch die Indikation zur supplementierenden enteralen/parenteralen Ernährung geprüft werden muss [33]. Deswegen wird auch für ERAS empfohlen, bei den Patienten schon bei der chirurgischen Aufnahme ein ernährungsmedizinisches Risikoscreening durchzuführen [15].

# 1.2 Krankheitsspezifische Mangelernährung in der Chirurgie (siehe auch [34])

Mangelernährung wird allgemein im Zusammenhang mit Fasten und Hunger bei Fehlen von Nahrung assoziiert. Das Vorkommen in der westlichen Welt wird insbesondere aufgrund der Zunahme an Übergewicht und Adipositas in der Bevölkerung weder realisiert noch verstanden. Krankheitsspezifische Mangelernährung ist subtiler, als es durch die World Health Organisation (WHO)-Definition der Unterernährung mit einem Body-Mass-Index (BMI) < 18,5 kg/m² abgebildet wird. Ein krankheitsassoziierter Gewichtsverlust führt in der Definition der WHO gerade bei Patienten mit Übergewicht nicht notwendiger Weise zu einem niedrigen BMI. Der ungewollte Gewichtsverlust für sich bedeutet eine Veränderung der Körperzusammensetzung, die ein "metabolisches Risiko" nach sich zieht, welches bei Patienten vor großen, insbesondere Tumoroperationen, berücksichtigt werden muss.

Da die krankheitsspezifische Mangelernährung häufig nicht erkannt wird und deswegen unbehandelt bleibt, werden metabolische Faktoren häufig auch nicht bei der kritischen Analyse der postoperativen Morbidität und des Outcomes berücksichtigt. Sehr viele retrospektive [35–43] und prospektive [44–63] große Studien haben den Zusammenhang zwischen einer Einschränkung des Ernährungsstatus und der postoperativen Komplikationsrate und der Letalität herausgearbeitet. Das Vorliegen einer krankheitsspezifischen Mangelernährung ist häufig Ausdruck der Grunderkrankung, wie z. B. bei einem Tumor oder einer chronischen Organinsuffizienz [64–72]. Eine systematische Übersicht von 10 Studien zeigte, dass die Anwendung eines validierten Instrumentes zur Messung des Ernährungsstatus bei chirurgischen Patienten mit gastrointestinalen Tumoroperationen als Prädiktor für die Krankenhausverweildauer dient [73]. Eine krankheitsspezifische Mangelernährung ist auch relevant für Patienten nach Organtransplantation [74-83].

Das metabolische Risiko als signifikanter Faktor der Krankenhausletalität ist bei älteren Menschen mit den Daten des europäischen "NutritionDay" an über 15.000 Patienten gezeigt worden [84]. Auch die aktuelle ERAS Leitlinie empfiehlt die vorherige Erfassung des Ernährungsstatus und bereits bei Risikopatienten die Durchführung einer Ernährungstherapie möglichst oral über 7–10 Tage.

Nach den prospektiven Daten einer großen multizentrischen europaweit durchgeführten Untersuchung finden sich die meisten Risikopatienten im Krankenhaus in der Chirurgie, Onkologie, Geriatrie und Intensivmedizin. Die univariate Analyse dieser Studie zeigte als signifikante Faktoren für das Risiko von Komplikationen im Krankenhaus: die Schwere der Erkrankung, das Alter > 70 Jahre, die Durchführung einer Operation und das Vorliegen einer Tumorerkrankung [85]. Im Hinblick auf die demographische Entwicklung in der westlichen Welt müssen Chirurgen von einer Risikoakkumulation bei alten Menschen vor großen Tumoroperationen ausgehen [86].

Das krankheitsassoziierte metabolische Risiko kann sehr leicht mit dem "Nutritional Risk Screening" (NRS 2002) [87] erfasst werden. Dieses Screening-Instrument ist auch für chirurgische Patienten validiert worden [85, 88].

- BMI < 20,5 kg/m<sup>2</sup>
- Gewichtsverlust > 5 % innerhalb von 3 Monaten
- Verminderte Nahrungsaufnahme

- Schwere der Erkrankung (2 Punkte für Tumorerkrankungen mit nachfolgender Operation)
- Einen Zusatzpunkt erhalten Patienten über 70 Jahren. Der Score definiert ein metabolisches Risiko ab 3 Punkten. Dies besteht somit bereits bei einem 71-jährigen Patienten ohne Ernährungsdefizit vor einer Hemikolektomie wegen eines Karzinoms.

Klassisch ist das "Subjective Global Assessment" (SGA), das jedoch einen erfahrenen Untersucher erfordert [89]. Für den chirurgischen Patienten wird unter Einbeziehung der Scores

- ein hohes metabolisches Risiko definiert: [90]
- BMI < 18.5 kg/m<sup>2</sup>
- Gewichtsverlust > 10–15% innerhalb von 6 Monaten
- Serumalbumin < 30 g/l (Ausschluss Leber und/oder Nierenerkrankung
- SGA Grad C, NRS > 5

In einer großen Kohortenstudie hat sich bei abdominalchirurgischen Patienten eine verminderte Nahrungsaufnahme in der Woche vor der Krankenhausaufnahme als ein noch besserer Risikoprädiktor gezeigt [91] (IIa). Für ältere chirurgische Patienten (> 65 Jahre) konnten in einer systematischen Übersicht von 15 Studien aus den Jahren 1998 bis 2008 nur der Gewichtsverlust und das Serumalbumin als prädiktive Parameter des postoperativen Ergebnisses gefunden werden [92].

Der präoperative Serumalbuminspiegel ist ein signifikanter Prognosefaktor für das Entstehen postoperativer Komplikationen [93, 94], wobei auch eine Assoziation mit einem schlechten Ernährungsstatus besteht. In einer Metaanalyse von 19 Studien mit 34.363 geriatrischen Patienten mit Schenkelhalsfraktur war eine präoperative Hypalbuminämie signifikant mit einer erhöhten Letalität im Krankenhaus und Komplikationen nach der operativen Versorgung assoziiert [95]. Basierend auf diesen Erkenntnissen sollte der Serumalbuminspiegel bei chirurgischen Patienten zur Einschätzung des metabolischen Risikos mit einbezogen werden. Dies ist auch im Einklang mit dem aktuellen Joint Consensus Statement on Nutritional Screening and Therapy within a Surgical Enhanced Recovery Pathway der American Society for Enhanced Recovery and Perioperative Quality Initiative [96]. Gleichzeitig sollte die klinische Bedeutung des Albumin aufgrund seines trägen Reaktionsverhaltens (lange Halbwertszeit) und Beeinträchtigung im Falle von Leberdysfunktionen kritisch betrachtet werden.

Die Mangelernährung ist 2015 von der ESPEN definiert worden [97]:

- BMI < 18,5 kg/m<sup>2</sup>
- kombinierter Gewichtsverlust > 10 % oder 5 % innerhalb von 3 Monaten und
- verminderter BMI < 20 kg/m<sup>2</sup> oder < 22 kg/m<sup>2</sup> bei Patienten > 70 Jahren oder

niedriger Fettfreier Massenindex < 15 kg/m² (Frauen) und < 17 kg/m² (Männer)</li>

Diese Definition ist aus 2 Gründen viel diskutiert worden. Die Kopplung eines Gewichtsverlusts an den BMI ist problematisch. Ein niedriger Fettfreier-Massenindex setzt eine quantitative Messung der fettfreien Masse z. B. durch Bioelektrische Impedanzanalyse (BIA) voraus, welche nicht überall zur Verfügung steht.

#### Neue GLIM Definition der Mangelernährung

2019 ist von der Global Leadership Initiative on Malnutrition (GLIM) eine neue Definition der Mangelernährung erarbeitet worden, welche von allen großen Fachgesellschaften weltweit getragen wird [98].

Hierbei werden nach dem Screening auf Mangelernährung phänotypische und ätiologische Kriterien unterschieden:

#### Phänotypische Kriterien sind

- Unfreiwilliger Gewichtsverlust
- Niedriger BMI
- Verminderte Muskelmasse

#### Ätiologische Kriterien sind

- Verminderte Nahrungsaufnahme und -resorption
- Inflammation
- Krankheitsschwere

Jeweils ein phänotypisches und ein ätiologisches Kriterium müssen zum Vorliegen einer Mangelernährung erfüllt sein.

Dabei bleibt es dem Untersucher überlassen, welche Methoden zur Erhebung der Muskelmasse herangezogen werden.

Die GLIM Definition der schweren Mangelernährung ist in Übereinstimmung mit den Empfehlungen der ESPEN Leitlinie zur Definition eines hohen metabolischen Risikos. In einer norwegischen Registerstudie haben sich Gewichtsverlust und niedriger BMI wieder als signifikante Risikofaktoren für postoperative Komplikationen und erhöhte Letalität gezeigt [63].

Diese Daten sprechen in der klinischen Praxis für

- Ein Screening auf Mangelernährung (z. B. NRS 2002) bei der stationären Aufnahme oder dem ersten Patientenkontakt
- Die Definition eines krankheitsassoziierten "schweren metabolischen Risikos" (s. o.)
- Beobachtung und Dokumentation der oralen Nahrungsaufnahme
- routinemäßige Verlaufskontrolle des Gewichts und des BMI

#### Indikationen zur Ernährungstherapie

Die Indikationen für eine supplementierende medizinische Ernährung sind Prävention und Behandlung von Katabolie und Mangelernährung. Dies betrifft vor allem den perioperativen Erhalt des Ernährungsstatus. Die Erfolgskriterien für die "therapeutische" Indikation zur medizinischen Ernährung sind die sogenannten "Outcome"-Parameter Morbidität, Krankenhausverweildauer und Letalität. Auch das Kosten-Nutzen-Verhältnis muss berücksichtigt werden. Die Verbesserung des Ernährungsstatus und der Lebens-

qualität sind vor allem wichtige ernährungsmedizinische Ziele im postoperativen Verlauf [99–112].

Eine supplementierende medizinische Ernährung findet ihre Indikation auch bei Patienten ohne offensichtliche krankheitsspezifische Mangelernährung, wenn vorhersehbar ist, dass der Patient für eine längere postoperative Zeitdauer unfähig sein wird, zu essen oder eine adäquate orale Kalorienmenge zu sich zu nehmen. Auch in diesen Situationen wird ohne Verzögerung zum Beginn einer medizinischen Ernährung geraten. Insgesamt gilt, nicht erst bis zur Manifestation einer krankheitsspezifischen Mangelernährung zu warten, sondern bereits bei Bestehen eines metabolischen Risikos eine Ernährungstherapie frühzeitig zu beginnen.

ONS und enterale Ernährung (EE) (Sondenernährung) wie auch die parenterale Ernährung (PE) bieten die Möglichkeit im Falle einer unzureichenden oralen Nahrungsaufnahme, eine adäquate Kalorienzufuhr sicher zu stellen. Die vorliegende Leitlinie ist eine von der deutschen Arbeitsgruppe vorgenommene Aktualisierung der ESPEN Leitlinie Clinical Nutrition in Surgery von 2017 (90). Sie gibt evidenzbasierte Empfehlungen für den Einsatz der oralen/enteralen und/oder parenteralen Ernährung für chirurgische Patienten mit besonderem Fokus auf

- hohes Risiko durch Komorbidität
- großen Tumoroperationen
- schweren Komplikationen trotz bestmöglicher perioperativer Betreuung.

In vielen Aspekten ist die Evidenz für den Nutzen der perioperativen Ernährungstherapie noch unbefriedigend. Ein Problem ist vor allem die erhebliche Heterogenität der Studien.

Eine aktuelle Metaanalyse von 56 randomisierten kontrollierten Studien (RCT) mit 6.370 Patienten mit Operationen wegen eines gastrointestinalen Karzinoms hat bei ernährungsmedizinischer Supplementierung (Glukosedrink, Erhöhung der Proteinzufuhr, Immunonutrition) die Senkung der postoperativen Komplikationen (RR 0,74, 95 %CI 0,69–0,80); postoperativen Infektionen (RR 0,71, 95 %CI 0,64–0,79, n = 4.582, I² = 4 %) und nichtinfektiösen Komplikationen (RR 0,79, 95 %CI 0,71–0,87, n = 4.883, I² = 16 %) mit Verminderung der Krankenhausverweildauer (MD – 1,58 d; 95 %CI -1,83 – -1,32; I² = 89 %) gezeigt [113]. Eine weitere Metaanalyse von 10 Studien mit 1.838 Patienten mit Magenkarzinom hat Vorteile für die Gabe von Trinknahrungen und EE bezüglich Gewichtsverlustes und Präalbuminspiegel gezeigt [114].

Es besteht weiterhin ein Bedarf an prospektiven, randomisierten Studien mit ausreichender Zahl homogener Patienten mit klar definierten Endpunkten. Die meisten vorliegenden Studien selektierten die Patienten beim Einschluss nicht nach dem metabolischen Risiko. Das typische Dilemma zeigt eine systematische Übersicht zur Ernährung nach partieller Duodenopankreatektomie [115]. Zwar konnten 15 Studien mit 3.474 Patienten eingeschlossen werden. Dennoch konnte weder Evidenz für eine enterale noch für eine parenterale Supplementierung beim oralen Kostaufbau gezeigt werden. Die Qualität der Studien war für die Durchführung einer Metaanalyse nicht ausreichend, welches sich allerdings bei Ernährungsstudien sehr oft zeigt.

## 2. Grundlegende Fragen

### 2.1 Ist präoperative Nüchternheit notwendig?

| EMPFEHLUNG 1               |                                                                                                                                                                                                                                                                         |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А                          | Patienten ohne besonderes Aspirationsrisiko soll<br>vor einem chirurgischen Eingriff die Einnahme<br>klarer Flüssigkeiten bis 2 h, die Einnahme von leicht<br>verdaulichen, festen Speisen bis 6 h vor Beginn der<br>Anästhesie erlaubt sein. (BM, IE, QL) <sup>a</sup> |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100% Zustimmung                                                                                                                                                                                                                                         |

<sup>a</sup>Die in den Empfehlungskästen verwendeten Empfehlungsgrade (A, B, 0, KKP), die in Klammern angegebenen Endpunkte, sowie die im Kommentartext angegebenen Evidenzlevel sind am Ende des Leitlinientextes erläutert.

#### Kommentar

In den letzten Jahrzehnten wurde immer mehr vom Dogma des präoperativen Fastens abgewichen, da sich keine Vorteile aus einer präoperativen Nüchternheit ergeben. Das Risiko von Aspiration oder Regurgitation ist bei zweistündiger Nüchternheit für Flüssigkeiten gegenüber einer zwölfstündigen Nüchternheit nicht erhöht. Dies korreliert mit der physiologischen Zeit der Magenentleerung für Flüssigkeiten, welche 60–90 Minuten beträgt [99, 116, 117] (1++, 1+, 1+)<sup>a</sup>. Dementsprechend haben viele nationale Anästhesiegesellschaften ihre Leitlinien zum Fasten überarbeitet [93, 118, 119] und erlauben Patienten klare Flüssigkeiten bis 2 Stunden vor Anästhesiebeginn bei elektiven Eingriffen. Ausgenommen von dieser Empfehlung sind Patienten mit einem "besonderen Risiko", wie einer Notfalloperation und Patienten mit einer verzögerten Magenentleerung [99] oder mit gastroösophagealem Reflux [117] (1++). Seit der Implementierung der Leitlinien gab es keine Berichte über einen Anstieg der Rate von Aspirationen, Regurgitationen oder perioperativer pulmonaler Komplikationen. Die Minimierung von Nüchternphasen ist eine zentrale Komponente des ERAS Konzeptes. Die Möglichkeit, klare Flüssigkeiten sowie Kaffee oder Tee zu sich zu nehmen reduziert die Durstsymptomatik und damit auch daraus resultierende Kopfschmerzen.

# 2.2 Ist bei elektiven Eingriffen eine präoperative metabolische Vorbereitung mittels Kohlenhydratgabe vorteilhaft?

| EMPFEHLUNG 2               |                                                                                                                                                                                                                                                 |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В/0                        | Vor großen elektiven abdominellen Operationen<br>sollten gezielt die Kohlenhydratspeicher aufgefüllt<br>werden (B). (QL) Die flüssige Kohlenhydratgabe<br>kann nach Beginn am Vortag bis 2 h vor Anästhesie-<br>beginn gegeben werden (0). (QL) |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100% Zustimmung                                                                                                                                                                                                                 |

#### Kommentar

Die präoperative Einnahme von kohlenhydrathaltigen Getränken (das sogenannte "Carbohydrate Loading") ist Teil des ERAS. Ziel ist es, mit 800 mL Trinkmenge über Nacht und 400 mL bis 2 Stunden vor Anästhesiebeginn den perioperativen Katabolismus zu reduzieren. Ähnlich wie bei anderen klaren Flüssigkeiten wird die Aspirationsgefahr nicht erhöht [99, 119–121] und die Magenentleerung wird nicht verlängert [122–125] (1++, 1+, 1+, 1+).

Bei der Bewertung der RCT wurden mögliche Interessenskonflikte eines Autors der ESPEN Leitlinie durch ein Patent für den Kohlenhydrat-Drink berücksichtigt.

Zwei RCT haben den Effekt der präoperativen Gabe von Kohlenhydrat-Drinks auf das PONV-Syndrom (PostOperative Nausea and Vomiting) bei Patienten mit elektiver Cholezystektomie untersucht. Eine Studie zeigte eine Reduktion von PONV durch Kohlenhydrat-Drinks im Vergleich zu nüchternen Patienten, während die andere keinen Unterschied zwischen der Behandlungsgruppe und der Placebogruppe nachweisen konnte [94, 126] (beide 1+). Zwei weitere Studien bei Patienten mit Cholezystektomie konnten ebenfalls keinen zusätzlichen direkten Vorteil für Kohlenhydrat-Drinks in Bezug auf postoperativen Schmerz oder die Qualität der Erholung (gemessen mittels quality of recovery from anesthesia, QoR-40-Fragebogen) aufzeigen [127, 128] (beide 1+). Die orale Kohlenhydratgabe führt jedoch in mehreren Studien zu einer Verbesserung des postoperativen Wohlbefindens [129–134].

Der Einfluss von Carbohydrate Loading auf die, mit einer erhöhten Komplikationsrate assoziierte [135], postoperative Insulinresistenz ist ein zentraler Punkt der aktuellen Forschung. Eine postoperative Insulinresistenz bzw. postoperative Hyperglykämie spiegelt eine katabole Stress-Reaktion auf das chirurgische Trauma wider [136], wobei Carbohydrate Loading darauf abzielt, dies zu reduzieren.

Bei kolorektalen Patienten bewirkte die Gabe von kohlenhydratreicher Lösung eine Reduktion der postoperativen Insulinresistenz [137, 138] (beide 1 + ). Dies wurde in 2 weiteren, aktuellen prospektiven RCT, bestätigt [139, 140] (1 + ), wobei erstere einen positiven Einfluss auf den postoperativen Gewichtsverlauf und letztere ebenso eine Senkung des Interleukin-6 Spiegel zeigen konnte.

Mittlerweile sind präoperative Drinks käuflich zu erwerben, die mit Glutamin, Antioxidantien und grünem Tee-Extrakt angereichert sind. Bei Patienten mit laparoskopischer Cholezystektomie zeigte eine Supplementation von Kohlenhydraten + Glutamin einen Vorteil bei der Entwicklung der postoperativen Insulinresistenz (gemessen mittels Homeostatis Model Assessment of Insulin Resistance, HOMA-IR), dem antioxidativen Status (Serum-Glutathion Konzentration) und der inflammatorischen Antwort (Serum Interleukin-6-Konzentration) [140, 141] (1+, 1-). Bei Pankreasresektionen erbrachte eine Präkonditionierung mit Glutamin, Antioxidantien und grünem Tee Extrakt eine signifikante Erhöhung der Plasma Vitamin-C Konzentration und eine Hebung der endogenen antioxidativen Kapazität im Vergleich zur Placebogruppe ohne jedoch den oxidativen Stress und die inflammatorische Antwort zu verbessern [142] (1-). Die Verwendung von selbst hergestellten Produkten wie gesüßtem Tee wurde bisher noch nicht in kontrollierten Studien untersucht. Es konnte jedoch gezeigt werden, dass ein Carbohydrate Loading auch durch handelsübliche fruchtbasierte Limonaden-Getränke erreicht werden kann [143] (2++).

Kritisch anzumerken ist hierbei, dass das Assessment der Insulinresistenz in vielen Studien auf dem Homeostasis Model Assessment (HOMA) und Quantitative Insulin Sensitivity Check Index (QUICKI) basiert. Dies sind etablierte Methoden um die Insulinresistenz einzuschätzen, da sie im Vergleich zum Goldstandard der Hyperinsulinemic euglycemic clamp-Technik, bedeutend billiger sind und weniger Zeit in Anspruch nehmen. Beide Methoden beruhen auf Berechnungen anhand der gemessenen Nüchternglukose bzw. des Insulins, reflektieren also nicht die «wahre» Insulinresistenz [124, 144].

Es gilt aber auch die Studien zu erwähnen, die keine Reduktion der Insulinresistenz durch Carbohydrate Loading zeigten. So konnte eine prospektive RCT mit 142 Patienten, welche offene, kolorektale und leberchirurgische Eingriffe einschloss, keine positiven Effekte von Carbohydrate Loading auf die HOMA-IR in der frühen postoperativen Phase nachweisen. Auch in Bezug auf die Inflammation, welche mittels C-reaktivem Protein (CRP) gemessen wurde, zeigten sich keine Unterschiede. Hingegen waren die Cortison-Plasmaspiegel am ersten postoperativen Tag niedriger, was auf eine Reduktion des postoperativen Stresses hinweisen könnte [145] (1+).

Ebenso konnten in der Herzchirurgie 3 Studien, welche den Einfluss eines präoperativer Kohlenhydrat-Drinks auf die postoperative Insulinsensitivität als primären Outcome-Parameter untersucht haben, keinen signifikanten Einfluss aufzeigen [124, 125, 133] (alle 1+).

Um eine mögliche kontraproduktive Wirkung der Kohlenhydrat-Gabe zu vermeiden, sollte dieses Konzept nicht bei Patienten mit schwerem Diabetes und insbesondere auch nicht bei einer vermuteten Gastroparese angewendet werden. Kohlenhydrat-Produkte sind höchstwahrscheinlich nicht geeignet bei Patienten mit Diabetes Typ I, da hier ein Insulindefizit und keine Insulinresistenz vorliegt und es somit zu einer deutlichen Hyperglykämie kommen kann.

Die vermutete Reduktion von postoperativen Infekten durch eine bessere postoperative Glukosekontrolle nach Carbohydrate Loading konnte bisher nicht bestätigt werden [146] (1+).

Den Einfluss von Carbohydrate Loading auf die Hospitalisationsdauer wurde in diversen Studien untersucht. In einer kleinen prospektiven RCT mit insgesamt 36 Patienten mit elektiven kolorektalen Eingriffen (nüchtern vs. Wasser vs. Maltodextrin-Lösung) konnte die Länge des Krankenhausaufenthaltes verkürzt werden (Studienlösung vs. Wasser, p = 0,019) [147] (1+).

Zusätzlich setzte bei Patienten mit Carbohydrate Loading die Darmfunktion früher ein und die Patienten konnten im Schnitt einen Tag früher entlassen werden [140] (1-).

Zwei Metaanalysen von 21 prospektiven RCT mit insgesamt 1.685 Patienten [148] (1++), bzw. 27 prospektiven RCT mit 1.976 Patienten [149] (1++) zeigten beide eine Reduktion der Hospitalisationsdauer nach präoperativem Carbohydrate Loading, zumindest für größere abdominale Eingriffe. Allerdings ist die Evidenz, dass Carbohydrate Loading zu einer Reduktion der Hospitalisationsdauer führt, als gering oder sehr gering zu werten aufgrund der großen Heterogenität und Qualität der analysierten Studien. Bezüglich der Hospitalisationsdauer gab es in den oben erwähnten Studien keinen Unterschied in der Placebogruppe und in der Gruppe mit Carbohydrate Loading.

Eine noch umfangreichere Metaanalyse mit 43 Studien und 3.110 Patienten deutet auf eine geringe Reduktion der Länge des Krankenhausaufenthaltes im Vergleich zur Nüchterngruppe hin, zeigte jedoch keinen Vorteil im Vergleich zu Wasser oder Placebo. Unterschiede bezüglich der Komplikationsrate konnten nicht festgestellt werden [121] (1++). Der neuste systematische Review mit 22 RCT und 2.065 Patienten zeigte eine Verbesserung des Wohlbefindens der Patienten und der Insulinresistenz, blieb jedoch in Bezug auf die Verkürzung der Hospitalisationsdauer vage [150] (1++).

Obwohl hauptsächlich in der Kolonchirurgie auf eine ausgeprägte Sammlung von guten Studien bezüglich Carbohydrate Loading zurückgegriffen werden kann, sind mittlerweile auch Studien in anderen Fachbereichen, wie in der Neurochirurgie, Thoraxchirurgie, bariatrischen Chirurgie und auch Kinderchirurgie durchgeführt worden. Diese Studien zeigten unterschiedliche Ergebnisse.

So konnte in der Thorax- und bariatrischen Chirurgie durch Carbohydrate Loading die Übelkeit und der Schmerzmittelbedarf verbessert werden [151, 152] (1-), bei Patienten mit neurochirurgischen Eingriffen verbesserte sich die Glukose-Homöostase, die Handkraft und die Lungenfunktion [153] (1-), während bei kinderchirurgischen Eingriffen lediglich die Übelkeit und der Mageninhalt verringert werden konnte [123] (1-).

Zwei aktuelle Studien aus der Schilddrüsenchirurgie zeigen unterschiedliche Ergebnisse. Die größere der beiden weist in fast allen gemessenen Parametern eine Verbesserung der Symptomatik in der Kohlenhydrat-Gruppe auf [153]. Die zweite Studie mit 50 Patienten konnte nur eine Verbesserung des Wohlbefindens und Patientenzufriedenheit nachweisen [154].

Des Weiteren gibt es 3 RCT zum Carbohydrate Loading aus der Gynäkologie. Eine Studie untersuchte Patienten mit einem geplanten Kaiserschnitt und konnte eine Verbesserung des Wohlbefindens gemessen mit einer visuellen Analogskala zeigen. Komplikationsrate und Krankenhausverweildauer waren nicht unterschiedlich [155] (1-).

Die zweite Studie wurde bei Patienten mit gynäkologischen Tumoren durchgeführt, und die Patienten wiesen eine bessere Handkraftstärke, einen höheren Anteil erhaltener Muskelmasse, eine geringere CRP/Albumin-Ratio sowie eine signifikant bessere postoperative Darmfunktion auf [156] (1-). Die dritte RCT beschäftigte sich mit der Frage der Tumorproliferation und dem klinischem Outcome bei Patienten mit Carbohydrate Loading und Mammakarzinom. Die Autoren fanden in einer Subgruppenanalyse von Östrogenrezeptor-positiven (ER+)T2-Tumoren eine erhöhte Proliferationstendenz und ein schlechteres Relapse-free survival in der Gruppe mit Kohlenhydraten an. Da dies jedoch nicht den primären Endpunkt der Studie darstellte und die Fallzahl für eine Überlebensanalyse nicht gepowert war, haben diese Ergebnisse keinen Einfluss auf unsere Empfehlung genommen [157] (1-).

Zusammenfassend muss anhand der oben aufgeführten Studien und Metaanalysen postuliert werden, dass der Effekt des Carbohydrate Loading vor allem bei großen und speziell bei abdominalen Eingriffen wirksam ist. Ein sicherer Einfluss auf die Senkung von Komplikationen ist bisher jedoch nicht gezeigt worden. Als Grund ist zu diskutieren, dass bei diesen Eingriffen der perioperative Stressmetabolismus besonders ausgeprägt ist. Zum jetzigen Zeitpunkt sind die Daten, bei jeweils relativ kleinen Fallzahlen, zu wenig robust um eine Empfehlung bezüglich des routi-

nemäßigen Einsatzes von Kohlenhydraten vor chirurgischen Eingriffen abzugeben. Hier sind noch weitere, qualitativ gute RCT mit einer großen Patientenanzahl notwendig. In welche Richtung sich die präoperative Kohlenhydratgabe entwickeln könnte, zeigen die 2 größten RCT von Gianotti et al. [146] (1+) und Savluk et al. [158] (1+), die eine signifikante Reduzierung des Insulinbedarfs und eine Verbesserung bei den "weichen" Kriterien wie "Patientenbefinden", jedoch keinen Unterschied bei dem "harten" Parameter "postoperative Komplikationen" nachgewiesen haben. In einer RCT an 139 Patienten mit Gastrektomie hat die doppelte Gabe (Abend und Morgen) keine Vorteile gegenüber der alleinigen Morgengabe des Kohlenhydrat-Drinks gezeigt [159] (1+). Dies bestätigt eine aktuelle Netzwerk-Metaanalyse mit Einbeziehung dieser Studien. Hier zeigten sich Vorteile für die Kohlenhydrat-Gabe bezüglich PONV, Glukosehomöostase, Inflammation und Krankenhausverweildauer [160] (1++).

### 2.3 Ist eine Pause der oralen/enteralen Nahrungseinnahme nach einem chirurgischen Eingriff prinzipiell notwendig?

| EMPFEHLUNG 3               |                                                                                                                   |
|----------------------------|-------------------------------------------------------------------------------------------------------------------|
| Α                          | Die orale/enterale Nahrungsaufnahme soll nach<br>chirurgischen Eingriffen frühzeitig begonnen<br>werden. (BM, IE) |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100 % Zustimmung                                                                                  |
|                            |                                                                                                                   |

| EMPFEHLUNG 4               |                                                                                                                        |
|----------------------------|------------------------------------------------------------------------------------------------------------------------|
| KKP                        | Der orale Kostaufbau soll an die Art des<br>chirurgischen Eingriffs und die individuelle<br>Toleranz adaptiert werden. |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100 % Zustimmung                                                                                       |

#### Kommentar zu den Empfehlungen 3 und 4

Orale Ernährung (bilanzierte Krankenhausdiät und/oder ONS) kann - in den meisten Fällen - direkt nach dem chirurgischen Eingriff bei neurologisch vollständig wachem Patienten wiederaufgenommen werden. Sowohl nach Cholezystektomien wie auch kolorektalen Resektionen konnte gezeigt werden, dass weder die ösophagogastrische Dekompression noch verzögerte orale Nahrungsaufnahme einen positiven Effekt aufweisen [161–163] (1+, 1+, 1++). Frühe orale oder enterale Ernährung, klare Flüssigkeiten am ersten oder zweiten postoperativen Tag miteingeschlossen, verursachte keine Einschränkung der Anastomosenheilung im Kolon oder Rektum [163–168] (1+, 1+, 1+, 1+, 1+, 1++) und führt vielmehr zu einem signifikant kürzeren Krankenhausaufenthalt [169–172] (1+, 1+, 1+, 1++). Dies konnte durch systematische Cochrane Reviews bestätigt werden, zuletzt mit 17 prospektiven RCT und 1.437 eingeschlossenen Patienten mit Operationen am unteren Gastrointestinaltrakt [173] (1++).

Mehrere Metaanalysen demonstrieren signifikante Vorteile bezüglich der Komplikationsraten im allgemeinen [172, 174, 175] (alle 1++), aber auch speziell in Bezug auf Wundinfekte, intraabdominelle Abszesse, sowie Anastomoseninsuffizienz [172, 175]. Andere zeigten, dass eine frühe orale Kost diesbezüglich keine Nachteile mit sich bringt [176] (1++).

Frühe EE ist zudem eine zentrale Komponente von ERAS, welches signifikant weniger Komplikationen und eine Verkürzung des Krankenhausaufenthaltes in mehreren Metaanalysen erbrachte [17, 19, 26] (alle 1++). Auch ohne Teilnahme an einem ERAS Programm verkürzt die frühe orale Nahrungsaufnahme den Krankenhausaufenthalt [177] (2+).

Im Vergleich zum traditionellem restriktiven Kostaufbau, verkürzte eine liberale Nahrungszufuhr am zweiten postoperativen Tag nach chirurgischen Eingriffen die Zeit bis zur Toleranz der oralen Nahrung ohne eine höhere Rate der erneuten Anlage einer Magensonde. Keine Unterschiede wurden bezüglich der Dauer des postoperativen Ileus gefunden [178] (1+).

Neuere Studien deuten darauf hin, dass durch eine frühe orale Ernährung die postoperative Stressreaktion, gemessen an der Menge zirkulierender inflammatorischer Zytokine, reduziert wird [179] (1+).

Sogar nach Gastrektomien führte der Verzicht auf eine Magensonde zu einer Verkürzung des Krankenhausaufenthaltes [180] (1+). Eine Metaanalyse von 15 Studien (davon 8 RCT) mit 2.112 Patienten mit einem Eingriff am oberen Gastrointestinaltrakt erbrachte ebenfalls eine Verkürzung des Krankenhausaufenthaltes in der Gruppe mit früher oraler Ernährung. Hierbei war die Komplikationsrate insbesondere die Rate an Anastomoseninsuffizienzen war nicht unterschiedlich [181] (1++).

Obschon eine frühe orale Ernährung nach Ösophagusresektion kontrovers diskutiert wird [182] deutet die aktuelle Datenlage darauf hin, dass auch in diesem Kontext ein früher oraler Kostaufbau einer oralen Nahrungskarenz mit EE mindestens ebenbürtig ist.

So zeigen neue Studien [183–185] (1++, 1++, 1+), dass eine frühe orale Ernährung nach minimalinvasiver, thorakaler Ösophagusresektion sicher ist und keine Unterschiede bezüglich Komplikationsraten bestehen. Zudem konnte gezeigt werden, dass ein früher oraler Kostaufbau einen schnelleren Eintritt der Darmaktivität und einen verkürzten Krankenhausaufenthalt mit sich bringt [186] (1+), sowie die kurzfristige Lebensqualität verbessert [187] (2+).

Bei der offenen Ösophaguschirurgie, sowie bei einer zervikalen Anastomose ist die Situation weiterhin unklar. So deuten 2 kürzlich publizierte retrospektive Studien [188, 189] (beide 2 + ) darauf hin, dass ein früher oraler Kostaufbau erhöhte Leckageraten aufweist. Bevor hier der sichere Einsatz einer frühen oralen Ernährung erfolgen kann, bedarf es weiterer qualitativ hochstehender Studien [190–192].

In der Pankreaschirurgie konnte mit der Implementation von ERAS eine Reduktion der Komplikationsrate und eine verkürzte Krankenhausaufenthaltsdauer nachgewiesen werden [26] (2++). In einer randomisierten multizentrischen Studie konnte nachgewiesen werden, dass die orale Ernährung weder zum gehäuften Auftreten von postoperativen pankreatischen Fisteln (POPF) führt und auch bezüglich der Heilung von POPF der EE ebenbürtig ist [170] (1++). Auch bei Patienten mit POPF ist eine orale Ernährung

ohne Risiko für eine klinische Verschlechterung mit Verlängerung der Notwendigkeit einer Drainage und prolongierter Krankenhausverweildauer möglich [193] (1++).

Eine Metaanalyse in der Urologie konnte zeigen, dass die frühe EE zu einer signifikanten Senkung der Rate von Infekt-Komplikationen, sowie der Kosten bewirkt im Vergleich zur PE [175] (1++).

Vergleicht man offene Chirurgie mit laparoskopischen Eingriffen, so wird die orale Nahrungsaufnahme bei diesen Eingriffen durch eine frühere Rückkehr der Peristaltik und der Darmfunktion noch besser toleriert [192, 194, 195] (1-, 2++, 2++). In Kombination mit ERAS konnten keine Unterschiede zwischen laparoskopischer und offener Kolonchirurgie bei voller Implementation des Programmes gefunden werden [196] (1-). In einem multizentrischen RCT war der Krankenhausaufenthalt signifikant kürzer bei laparoskopischer Chirurgie [197] (1+). Eine kürzlich erschienene Metaanalyse bestätigte die Vorteile der Kombination von ERAS und laparoskopischer Chirurgie in Bezug auf Morbidität und Krankenhausaufenthalt [198] (1++).

Die Menge der oralen Nahrungsszufuhr sollte selbstverständlich an die gastrointestinalen Funktion und die individuelle Toleranz der Patienten angepasst werden [164–166, 174, 199–201] (1+, 1+, 1+, 1+, 1+, 1+, 1+) (1++). Dies zeigt auch eine Studie bei älteren chinesischen Patienten, die bei beeinträchtigter oraler Toleranz der Nahrung mehr Übelkeit, Erbrechen, Magenretention, intestinale Obstruktion und eine höhere Wiederaufnahmerate in der ERAS-Gruppe im Vergleich zur konventionellen Gruppe aufwies [202] (1-). So sollte insbesondere bei älteren Patienten (>75 Jahre) ein vorsichtigeres Vorgehen gewählt werden."

Eine frühe orale Ernährung scheint nicht nur bei der Therapie von Erwachsenen Vorteile zu bringen. So konnte in einer prospektiven randomisierten Studie, eine frühe orale Ernährung nach kongenitalen Herzoperationen bei Neugeborenen die Aufenthaltsdauer auf der Intensivstation und die Dauer einer mechanische Beatmung zu verkürzen [203] (1-). Dies, nachdem bereits bei Erwachsenen gezeigt werden konnte, dass eine frühe orale Ernährung nach Herzeingriffen sicher ist und keine erhöhten Komplikationsraten aufweist. [204] (2++).

In der kolorektalen Chirurgie besteht eine ausreichende Evidenz für die Empfehlung zum frühpostoperativen, oralen Nahrungsaufbau. Die Daten in anderen chirurgischen Bereichen weisen ebenfalls in diese Richtung, sind aber weniger eindeutig. Selbst in der Ösophagus- und Pankreaschirurgie scheint die frühe orale Ernährung der enteralen oder gar parenteralen Ernährung aber nicht unterlegen. Hier sollte aber noch an einem individualisierten Therapieansatz festgehalten werden, bis die Studienlage klarer ist.

Insbesondere bei älteren Patienten ist nach Operationen des oberen Gastrointestinaltraktes und des Pankreas zu vermehrter Vorsicht zu raten bezüglich des frühpostoperativen enteralen Nahrungsaufbaus [188, 189, 202, 205] (2+, 2+, 1+, 1+).

Ähnliches gilt für intensivmedizinische Patienten. Nach der European Society of Intensive Medicine (ESICM) von 2017 sollte jedoch im Falle von hämodynamischer Instabilität, unkontrollierter bzw. nicht-kompensierter Hypoxämie, Hyperkapnie oder Azidose bzw. bei akutem Darmverschluss, -ischämie, abdominellem Kompartmentsyndrom, intestinalen High-Output-Fisteln oder oberen gastrointestinalen Blutungen auf eine EE verzichtet werden [93, 206]. Weder bei Notwendigkeit einer extrakorporalen Memb-

ranoxigenation (ECMO), therapeutischen Hypothermie, Bauchlagebeatmung, noch bei intensivmedizinischer Betreuung nach Schädelhirntrauma, Schlaganfall, Wirbelsäulenverletzungen, Operationen an der abdominellen Aorta (alle 4), schwerer Pankreatitis oder am Gastrointestinaltrakt (beide 3) soll eine frühe EE aufgeschoben werden [206].

### 3. Indikation zur Ernährungstherapie

### 3.1 Wann ist eine Ernährungstherapie beim chirurgischen Patienten indiziert?

| EMPFEHLUNG 5           |                                                                            |
|------------------------|----------------------------------------------------------------------------|
| KKP                    | Der Ernährungsstatus soll vor und nach größeren Eingriffen erhoben werden. |
| Geprüft,<br>Stand 2017 | Starker Konsens 100 % Zustimmung                                           |

#### Kommentar

Der Einfluss des Ernährungsstatus auf die postoperative Morbidität und Letalität ist sowohl in retrospektiven [36–40] als auch in prospektiven Studien [35, 46–48, 50–53, 55–57, 59, 62, 207, 208] und einer aktuellen Metaanalyse [209] klar gezeigt worden. Eine inadäquate orale Nahrungszufuhr für mehr als 14 Tage geht mit einer erhöhten Letalität einher [210] (1-).

Größere Eingriffe, international als "major surgery" bezeichnet, betreffen im Abdomen Organresektionen wegen Tumoren oder (chronisch) entzündlichen Erkrankungen, bei denen eingriffsspezifisch schwere (infektiöse) Komplikationen über einfache Wundheilungsstörungen hinaus zu einer Verlängerung der Krankenhausverweildauer und erhöhter Letalität führen können

Auch bei kleineren Eingriffen mit Verdacht auf Mangelernährung sollte der Ernährungsstatus sorgfältig erhoben werden. Bei längerem Verlauf wird die wöchentliche Verlaufskontrolle empfohlen.

| EMPFEHLUNG 6               |                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ККР                        | Bei Patienten, die voraussichtlich 5 Tage oder mehr postoperativ keine orale Nahrung aufnehmen können, soll eine Ernährungstherapie unverzüglich begonnen werden. Die Indikation besteht auch für Patienten, die für mehr als 7 Tage nicht in der Lage sind, mehr als 50% der empfohlenen Energiemenge oral aufzunehmen. Hierbei sollte die Zufuhr bevorzugt enteral erfolgen. |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100 % Zustimmung                                                                                                                                                                                                                                                                                                                                               |

#### Kommentar

Der ESPEN Leitlinie Parenterale Ernährung in der Chirurgie entsprechend können Energie- und Proteinbedarf mit 25–30 kcal/kg und 1,5 g/kg idealem Körpergewicht geschätzt werden [211].

Zwei multivariate Analysen haben für hospitalisierte Patienten im Allgemeinen sowie explizit für chirurgische Patienten mit Tumoroperationen gezeigt, dass ein Ernährungsdefizit ein unabhängiger Risikofaktor für das Entstehen von Komplikationen ist, mit einer erhöhten Letalität einhergeht und die Länge der Krankenhausverweildauer sowie die Kosten beeinflusst [65, 212] (2+).

Ernährungsdefizite sind häufig assoziiert mit der zugrunde liegenden Erkrankung (z. B. Karzinom) oder einer chronischen Organdysfunktion [64–72, 208, 213, 214] (siehe die entsprechenden organspezifischen Leitlinien). In einer prospektiven multizentrischen Observationsstudie von Patienten mit Magenkarzinom [215] waren Dysphagien und Magenausgangsstenosen signifikante unabhängige Faktoren für das Risiko einer Anastomoseninsuffizienz nach Gastrektomie (2+). Der Ernährungsstatus beeinflusst auch das Behandlungsergebnis nach Organtransplantationen [74–82, 214] sowie die Morbidität und Letalität nach der Operation geriatrischer Patienten [84].

Die allgemeine Indikation zur medizinischen Ernährung in der Chirurgie ist die Prävention und die Behandlung einer krankheitsspezifischen Mangelernährung, wie der Ausgleich eines Ernährungsdefizits vor der Operation und der Erhalt des Ernährungsstatus nach der Operation, insbesondere wenn längere Perioden der Nüchternheit und der schweren Katabolie zu erwarten sind. Morbidität, Krankenhausverweildauer und Letalität sind die wesentlichen Endpunkte für die Evaluation des Nutzens einer Ernährungstherapie im Krankenhaus.

Nach der Entlassung aus dem Krankenhaus oder im Rahmen einer Palliation sind primäre Ziele der medizinischen Ernährung die Verbesserung des Ernährungsstatus und der Lebensqualität [100–112, 196].

Die enterale Zufuhr sollte grundsätzlich bevorzugt werden. Ausnahmen sind:

- intestinale Obstruktionen oder Ileus
- schwerer Schock
- Darmfisteln (high output)
- schwere intestinale Blutungen

Der Effekt einer EE auf das postoperative Outcome ist in vielen prospektiv randomisierten Studien, jedoch nicht homogen, untersucht worden [145, 216–249].

Die Arbeitsgruppe hat 35 kontrollierte Studien mit Endpunkten des Outcomes durchgesehen. Hierbei wurden vor allem Patienten nach gastrointestinalen Eingriffen eingeschlossen, jedoch auch nach Trauma oder Schenkelhalsfraktur. Die EE wurde definiert als Einsatz einer oralen bilanzierten Diät (Trinknahrung) und/oder Sondennahrung. Eine frühzeitige EE wurde mit einer normalen Nahrung, der parenteralen Zufuhr von Kristalloiden und einer totalen PE verglichen. 24 der 35 Studien zeigten signifikante Vorteile der EE bezüglich einer Verminderung der Rate an infektiösen Komplikationen, der Krankenhausverweildauer und der Kosten (1+).

In 8 der 35 Studien wurden keine Vorteile beobachtet [217, 226, 230, 234–236, 241, 247] (1+). Einige Autoren wiesen auf mögliche Nachteile der EE hin, welche nicht in allen Studien beobachtet wurden. Die Nachteile betrafen eine verlängerte Krankenhausverweildauer [245] (1+), eine verminderte Lungenfunktion nach Ösopha-

gus- und Pankreasresektionen durch abdominelle Distension [249] (1+) oder eine verzögerte Magenentleerung nach Pankreasresektion mit der Folge einer verlängerten Krankenhausverweildauer [250] (2+). Diese Probleme könnten Folge einer zu hohen Zufuhrrate der EE in der frühen postoperativen Phase sein. Bei Patienten mit schwerem Polytrauma ist besonders auf die Toleranz der Menge der EE zu achten [251] (1+) (siehe DGEM Leitlinie "Klinische Ernährung in der Intensivmedizin" [252]). Verglichen mit einer PE, beeinflusst eine frühe EE die postoperative Infektionsrate bei unterernährten Patienten mit gastrointestinalen Tumoren, jedoch nicht bei Patienten in gutem Ernährungsstatus [223] (1+).

In 7 von 11 RCT [253–263] wurden lediglich Surrogatparameter des Outcomes gemessen, wie z. B. positive Effekte der EE auf die Stickstoffbilanz und Substrattoleranz. Vier der 11 Studien zeigten keine signifikanten Unterschiede zwischen einer frühen enteralen und einer Standard-Krankenhausernährung [253–255, 262] (1+). Die Vorteile einer frühzeitigen enteralen Nahrungszufuhr innerhalb von 24 Stunden sind in 2 Metaanalysen (eine davon Cochrane) gezeigt worden [176, 264] (1++). Auf Patienten nach gastrointestinalen Eingriffen fokussierend hat eine weitere Metaanalyse [172] von 29 Studien mit 2.552 Patienten diese günstigen Auswirkungen bestätigt (1++). Es konnte jedoch keine Verminderung der Letalität gezeigt werden

Die American Society for Parenteral and Enteral Nutrition (ASPEN) Leitlinien von 2016 [265] empfehlen den Beginn einer postoperativen EE wann immer möglich innerhalb von 24 Stunden.

Bei Patienten nach Schenkelhalsfraktur, die anhand des Ernährungsstatus vor der Randomisierung stratifiziert wurden, zeigte eine nächtliche nasogastrale Ernährung bei den unterernährten Patienten eine raschere Erholung und signifikante Verminderung postoperativen Verweildauer [218] (1+). In einer weiteren Studie mit Sondenernährung ergab sich kein Einfluss auf das Outcome im Krankenhaus; die Sechs-Monate-Letalität wurde jedoch reduziert [246] (1-). In einer Studie von Delmi et al. [225] (1+) verbesserte sich bei Einsatz von einer Trinknahrung einmal täglich das Ergebnis nach 6 Monaten signifikant durch niedrigere Komplikationsrate und Letalität [225] (1-). Metaanalysen der randomisierten Studien von Elia (2016) und Gillis (2018) haben eine geringere Rate an postoperativen Komplikationen und eine kürzere Krankenhausverweildauer gezeigt [266, 267] (1++).

# 3.1.1 Wann ist eine kombiniert enterale/parenterale ("duale") Ernährung beim chirurgischen Patienten indiziert?

| EMPFEHLUNG 7A              |                                                                                                                                                                                                                                                                                                   |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ККР                        | Sofern der Energie- und Substratbedarf nicht durch<br>eine orale und/oder enterale Ernährung allein<br>gedeckt werden kann (<50% des Energiebedarfs<br>für mehr als 7 Tage), kann ab Tag 3–4 die<br>Kombination von enteraler und (supplementieren-<br>der) parenteraler Ernährung erfolgen. (BM) |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100 % Zustimmung                                                                                                                                                                                                                                                                  |

| EMPFEHLUNG 7B              |                                                                                                                                                                                                                                        |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Α                          | Die supplementierte parenterale Ernährung soll<br>sobald wie möglich begonnen werden, wenn bei<br>Indikation zur Ernährungstherapie eine Kontraindi-<br>kation zur enteralen Ernährung besteht (z.B.<br>intestinale Obstruktion). (BM) |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100 % Zustimmung                                                                                                                                                                                                       |

| EMPFEHLUNG 7C      |                                                                                                                                                                                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                  | Wenn die voraussichtliche Dauer der Supplementie-<br>rung zwischen 4 und 7 Tagen liegt, kann die<br>Ernährung über einen peripheren Zugang<br>parenteral zugeführt werden. (BM) |
| Neu, Stand<br>2022 | Starker Konsens 100% Zustimmung                                                                                                                                                 |

| EMPFEHLUNG 7D      |                                                                                                                                                                                                                                                        |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А                  | Wenn die Implantation eines zentralvenösen<br>Katheters ausschließlich zur Durchführung einer<br>parenteralen Ernährung erforderlich ist, soll diese<br>Indikation kritisch in Bezug auf die voraussichtliche<br>Ernährungsdauer gestellt werden. (BM) |
| Neu, Stand<br>2022 | Starker Konsens 100 % Zustimmung                                                                                                                                                                                                                       |

| EMPFEHLUNG 7E      |                                                                                                                                         |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| ККР                | Eine totale parenterale Ernährung soll begonnen<br>werden, wenn eine enterale Ernährung nicht<br>durchführbar oder kontraindiziert ist. |
| Neu, Stand<br>2022 | Starker Konsens 100 % Zustimmung                                                                                                        |

### Kommentar zu den Empfehlungen 7 a-e

In den ESPEN Leitlinien 2009 zur parenteralen Ernährung bei chirurgischen Patienten wird die PE in folgenden Fällen empfohlen [105]: Unterernährte Patienten, bei denen eine EE nicht durchführbar ist bzw. nicht toleriert wird, sowie bei Patienten, die aufgrund von postoperativen Komplikationen durch Einschränkung der gastrointestinalen Funktion unfähig zur Aufnahme und Resorption adäquater Kalorienmengen für eine Dauer von mindestens 7 Tagen sind [105]. Dies gilt ganz besonders für Patienten mit Kurzdarm < 60 cm oder Peritonealkarzinose).

Die ASPEN-Leitlinien empfehlen die Durchführung einer postoperativen PE für Patienten, die ihren Energiebedarf oral für 7 bis 10 Tage nicht decken können [268].

#### Enteral vs. parenteral

Die Auswirkungen einer PE werden im Vergleich zu einer oralen/ enteralen Standardernährung im Hinblick auf die Prognose von chirurgischen Patienten kontrovers diskutiert (siehe auch Kommentar zu Empfehlung 6) [216, 217, 221, 223, 227, 229, 233– 236, 239, 241, 248, 269–276]. Die Arbeitsgruppe begutachtete die gefundenen 21 randomisierten Studien von Patienten nach abdominalchirurgischen Eingriffen unter Einschluss von Patienten mit Lebertransplantation und Polytrauma. In diesen Studien wurde eine (totale) PE entweder mit einer EE, der Zufuhr von Kristalloiden oder einer normalen Krankenhausernährung verglichen.

Enterale und parenterale Ernährung wurden in 15 Studien verglichen, von denen 6 signifikante Vorteile für die EE zeigten, vor allem durch die niedrigere Rate an infektiösen Komplikationen, einen kürzeren Krankenhausaufenthalt und niedrigere Kosten (1+) (siehe auch Kommentar zu Empfehlung 6). Kein signifikanter Unterschied wurde in 8 von 15 Studien gefunden, wobei die meisten Autoren dennoch die EE aufgrund der niedrigeren Kosten favorisieren [220, 230, 233, 248] (1+).

#### Enterale Toleranz und Beginn einer parenteralen Ernährung

Mehrere Autoren haben auf mögliche Vorteile der PE hingewiesen, wenn eine eingeschränkte Toleranz zur EE durch intestinale Dysfunktion vor allem in der frühen postoperativen Phase besteht [251]. Diese ist dann auch mit einer niedrigeren Energiezufuhr assoziiert. So ist eine adäquate Energiezufuhr bei limitierter gastrointestinaler Toleranz durch eine PE besser zu erreichen [277] (2+). Ein Algorithmus zum Beginnn einer parenteralen Ernährung bei eingeschränkter intestinaler Toleranz wurde von Weimann und Felbinger (2016) vorgeschlagen [278].

Eine Metaanalyse von Braunschweig et al. [279] verglich enterale und parenterale Ernährung unter Einschluss von 27 Studien mit 1.828 chirurgischen und nichtchirurgischen Patienten. Hier zeigte sich eine signifikant niedrigere Infektionsrate bei oraler/enteraler Ernährung. Bei mangelernährten Patienten resultierte aus der PE jedoch eine signifikant niedrigere Letalität mit einer Tendenz zu niedrigeren Infektionsraten (1++). Heyland et al. [280] schloss 27 Studien in einer Metaanalyse zur PE bei chirurgischen Patienten ein (1-). Hier konnte ein Einfluss der PE auf die Letalität der chirurgischen Patienten nicht gezeigt werden. Es fand sich jedoch auch hier bei den parenteral ernährten Patienten mit Mangelernährung eine niedrigere Komplikationsrate. Daraus wurde von der Arbeitsgruppe gefolgert, dass bei Patienten mit normalem Ernährungsstatus im Fall eingeschränkter oraler und enteraler Kalorienzufuhr (>50%) in den ersten 7 postoperativen Tagen eine PE zur Deckung des Energiebedarfs nicht unbedingt erforderlich ist.

Auf Patienten nach gastrointestinalen Operationen zielend haben Mazaki et al. eine Metaanalyse mit 29 randomisierten Studien und 2.552 Patienten durchgeführt. Hier konnten günstige Auswirkungen der EE für eine niedrigere Rate von infektiösen Komplikationen, weniger Anastomoseninsuffizienzen und eine kürzere Krankenhausverweildauer gezeigt werden [119] (1++). Zhao et al. fanden bei Einschluss von 18 randomisierten Studien mit 2.540 Patienten ein früheres Einsetzen von Flatus, eine kürzere Krankenhausverweildauer und einen höheren Anstieg des Serumalbumins [240] (1++). Betont werden muss der fehlende Einfluss auf die Letalität. Eine große multizentrische randomisierte Studie hat bei

2.388 Intensivpatienten enterale und parenterale Ernährung verglichen. Kein Unterschied wurde für die Letalität, Rate infektiöser Komplikationen und die Krankenhausverweildauer zwischen beiden Gruppen beobachtet [241] (1+).

Vor allem auf Intensivpatienten zielend liegen zum Vergleich (früh) enteraler und parenteraler Ernährung aktuell 4 Metaanalysen vor [281–284] (1++), welche zwischen 16 und 25 Studien mit 3.325 bis 3.816 Patienten einschließen. Diese haben folgende Ergebnisse:

- Im Allgemeinen hat eine früh EE keinen Einfluss auf die Letalität, aber Vorteile könnten durchaus für Subgruppen mit besonderem Risiko gelten.
- Eine frühe EE senkt signifikant das Risiko für infektiöse Komplikationen.

Es kann kritisch diskutiert werden, dass die Reduktion der Infektionsrate mehr Folge einer geringeren Kalorienzufuhr als der enteralen Zufuhr sein könnte [281].

In diesen Metaanalysen fehlte noch eine aktuellere randomisierte multizentrische Studie (Nutrirea-2) an 2.410 beatmeten Patienten mit Schock. Diese Studie zeigte im Vergleich einer frühen isokalorischen enteralen (n = 1.202) mit einer parenteralen Ernährung (n = 1.208) keine Vorteile bezüglich Letalität oder sekundären Komplikationen. An Tag 28 waren 443 (37%) der enteral ernährten Patienten und 422 (35%) der parenteral ernährten Patienten verstorben (absolute Differenz 2% (95%CI -1.9–5.8); p = 0.33. Die kumulative Inzidenz von Patienten mit auf der Intensivstation erworbenen Infektionen war ohne Unterschied. (enteral: 174–14%, parenteral: 194–16%) HR 0.89 (95%CI 0.72–1.09); p = 0.25. Jedoch hatte die enterale Gruppe eine signifikant höhere Inzidenz von Erbrechen, Diarrhö, Darmischämie und Pseudoobstruktion [285].

Ziel der supplementierenden parenteraeln Ernährung ist die Deckung des Energiebedarfs.

Eine supplementierende PE (kombinierte Ernährung) ist nicht notwendig, wenn die erwartete Periode der PE unter 4 Tagen liegt. Wenn die voraussichtliche Dauer zwischen 4 und 7 Tagen liegt, kann die Ernährung hypokalorisch über einen peripheren Zugang (2 g Glukose und 1 g Aminosäuren pro kg Körpergewicht pro Tag) verabreicht werden. Eine Erhöhung der Energiezufuhr kann bei Bedarf über eine zusätzliche Lipidgabe erreicht werden. Wenn die Implantation des zentralvenösen Katheters zur Durchführung einer medizinischen Ernährung erforderlich ist, muss diese Indikation kritisch in Bezug auf die voraussichtliche Ernährungsdauer gestellt werden. Erst bei einer Dauer von 7 bis 10 Tagen wird die Implantation eines zentralvenösen Katheters empfohlen. Berücksichtigt werden muss bei eingeschränkter Flüssigkeitstoleranz das erforderliche hohe Volumen bei peripher venöser Ernährung.

Noch immer besteht ein Mangel an kontrollierten Daten zur kombinierten Ernährung nach elektiv chirurgischen Eingriffen. Eine RCT nach Ösophagusresektion zeigte eine signifikant verbesserte Insulinsensitivität und verminderte Glukosespiegel bei kombinierter Ernährung [286] (1+).

Wu et al. (2017) randomisierten 80 Patienten mit Ösophagusresektion postoperativ zur Frage einer frühen parenteralen Supplementierung der EE mit dem Ziel einer Deckung des Kalorienbedarfs. Der individuelle Kalorienbedarf wurde mit indirekter Kalorimetrie bestimmt. Nur die Patienten in der kombiniert ernährten Gruppe konnten Körpergewicht und fettfreie Masse stabil halten  $(0.18\pm3.38~kg~vs.~-2.15\pm3.19~kg,~p<0.05)$  und fettfreie Masse  $(1.46\pm2.97~kg~vs.~-2.08\pm4.16~kg)$ . Morbidität, Krankenhausverweildauer und laborchemische Parameter waren ohne Unterschied. Jedoch zeigten sich nach 3 Monaten bei früher parenteraler Supplementierung signifikant bessere Werte der Lebensqualität für die körperliche Funktion  $(71.5\pm24.3~vs.~60.4\pm27.4,~p<0.05)$  und Energie/Fatigue  $(62.9\pm19.5~vs.~54.2\pm23.5,~p<0.05)$  [287] (1+).

Dhaliwal et al. [288] analysierten 2004 die bis dahin durchgeführten 5 randomisierten kontrollierten Studien bei kritisch kranken Patienten. Zwei dieser Studien aus den 1980er Jahren kamen von derselben Arbeitsgruppe und betrafen Patienten mit schweren Verbrennungen und Trauma. In der Metaanalyse dieser Studien konnte keine Vorteil für die kombinierte Ernährung bezüglich Letalität, Infektionsrate, Krankenhausverweildauer und Länge der Beatmungsdauer gezeigt werden (1-). Heyland et al. [289] raten deswegen in den kanadischen Leitlinien vom Beginn einer kombinierten enteralen und parenteralen Ernährung bei kritisch kranken Patienten generell ab. Empfohlen wird die individuelle Entscheidung in Abhängigkeit vom Ausmaß der enteralen Dysfunktionen und Toleranz.

Für kritisch Kranke sind 2 prospektiv randomisierte multizentrische Studien erschienen, die der Frage nachgegangen sind, ob bei Intensivpatienten mit enteraler Intoleranz eine parenterale Zufuhr frühzeitig ("early") innerhalb von 4 Tagen oder spät ("late") nach 7 Tagen erfolgen sollte. Die Ergebnisse sprechen jetzt dafür, eine frühzeitige parenterale Supplementierung bei mangelernährten Patienten und solchen mit voraussichtlich längerem Intensivaufenthalt spätestens ab Tag 4 zu beginnen [278, 290, 291] (siehe DGEM Leitlinie "Klinische Ernährung in der Intensivmedizin").

Bei großen chirurgischen Eingriffen erfolgt zumeist routinemäßig die Platzierung eines zentralen Venenkatheters. Es ist die Meinung der Expertengruppe, dass bei gegebener Indikation zur medizinischen Ernährung dieser Zugang auch für die supplementierende parenterale Substratzufuhr ggf. auch hypokalorisch, genutzt werden sollte.

Eine RCT hat gezeigt, dass bei einer hypokalorischen parenteralen Ernährung von 25 kcal/kg Körpergewicht und 1,5 g/kg Körpergewicht Protein pro Tag kein erhöhtes Risiko für Hyperglykämien und infektiöse Komplikationen besteht, dies jedoch bereits zu einer signifikanten Verbesserung der Stickstoffbilanz führt [292] (1+).

Mit dem Ziel, bei inadäquater oraler/enteraler Energiezufuhr den Effekt einer frühzeitigen parenteralen (E-SPN Tag 3) mit einer späten Supplementierung (L-SPN) zu vergleichen, haben Gao et al (2022) 230 Patienten mit abdominalchirurgischen Eingriffen in eine multizentrische randomisierte Studie eingeschlossen, die von der Arbeitsgruppe mit niedrigem RoB bewertet wurde [293] (1+). Die Studie wurde nach Abschluss der systematischen Literaturrecherche im Rahmen der Delphi-Runde von den Experten beigesteuert.

Die E-SPN-Gruppe erhielt zwischen Tag 3 und 7 eine höhere mittlere (SD) Energiezufuhr im Vergleich zur L-SPN-Gruppe (26,5 + 7,4 vs. 15,1 + 4,8 kcal/kg täglich; p < 0.001). Die E-SPN-Gruppe hatte signifikant weniger nosokomiale Infektionen im Vergleich zur L-SPN-Gruppe (10/115 [8,7%] vs. 21/114 [18,4%]; Risikounterschied 9,7%; 95%CI 0,9%-18,5%; p = 0,04). Es wurden keine signifikanten Unterschiede zwischen der E-SPN-Gruppe und der L-SPN-Gruppe in der Anzahl nichtinfektiöser Komplikationen, unerwünschter Ereignisse

und anderer sekundärer Endpunkte beobachtet. Ein signifikanter Unterschied wurde außerdem in der mittleren Anzahl der Antibiotikatherapietage zwischen der E-SPN-Gruppe und der L-SPN-Gruppe gefunden (6,0+0,8 vs. 7,0+1,1 Tage; mittlerer Unterschied, 1,0 Tage; 95%CI, 0,2-1,9 Tage; p = 0.01) [293].

In einer randomisierten Studie (n=158) zur peripheren parenteralen Ernährung nach kolorektalen Resektionen im Rahmen eines ERAS Programms zeigte sich die Supplementierung (1 Tag vor und 3 Tage nach der Operation) zur Vermeidung von Komplikationen protektiv bei den Patienten mit verminderter ERAS- Compliance d. h. Verzögerung des oralen Kostaufbaus und der Mobilisierung (1-moderater RoB) [294].

In der post-hoc Subgruppenanalyse profitierten besonders Patienten mit niedrigem Skelettmuskelindex (SMI) bzw. BMI  $\geq$  35 kg/m² mit einer signifikanten Verminderung der postoperativen Komplikationen (2-) [295].

Eine europäische Expertengruppe hat die Implementierung der bisher wenig eingesetzten peripheren parenteralen Ernährung in die ERAS-Protokolle bei großen gastrointestinalen Operationen empfohlen [296], In einer europäischen Umfrage wurde der Einsatz von peripher parenteraler Ernährung von 71 % der befragten Chirurgen als weniger invasive Methode für die PE befürwortet [297]. Erst bei einer Dauer der parenteralen Substratzufuhr von 7 bis 10 Tagen kann die Implantation eines zentralvenösen Katheters empfohlen werden.

Bei der parenteralen Ernährung von kritisch kranken Patienten ist zur Vermeidung von Hyperglykämien eine intensivierte Insulintherapie empfohlen worden. Die Arbeitsgruppe vertritt die Meinung, dass eine intensivierte Insulintherapie auf Grund des nicht kalkulierbaren Risikos einer Hypoglykämie für chirurgische Patienten auf der Normalstation nicht geeignet ist. Im Falle einer Erhöhung des Glukosespiegels auf > 150 mg % sollte im Fall einer parenteralen Ernährung die Glukosezufuhr reduziert werden (siehe DGEM-Leitlinie "Besonderheiten der Überwachung bei künstlicher Ernährung" [298]).

| EMPFEHLUNG 8           |                                                                                                                                                        |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| В                      | Bei der parenteralen Ernährung sollten Dreikammer-<br>beutel (all-in-one) den Einzelkomponenten (Mehrfla-<br>schensysteme) vorgezogen werden. (BM, HE) |
| Geprüft,<br>Stand 2017 | Starker Konsens 100% Zustimmung                                                                                                                        |

#### Kommentar

In 2 RCT sind die Kosten-Nutzen-Vorteile eines Dreikammerbeutels (all-in-one) gegenüber einem Mehrflaschensystem gezeigt worden [299, 300] (1+). In der retrospektiven Analyse einer großen US-Datenbank [301] sind bei Verwendung eines Dreikammerbeutels signifikant weniger Sepsisepisoden nachgewiesen worden.

| EMPFEHLUNG 9           |                                                                                                                                           |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| ККР                    | Für das Qualitätsmanagement bei der Durchfüh-<br>rung einer klinischen Ernährung sollen Standard-<br>arbeitsanweisungen verwendet werden. |
| Geprüft,<br>Stand 2022 | Starker Konsens 100% Zustimmung                                                                                                           |

#### Kommentar

Die Anwendung von Ernährungsprotokollen und Standardarbeitsanweisungen (SOP) hat sich als vorteilhaft für die Sicherstellung der Durchführung der medizinischen Ernährung und das Erreichen des Kalorienziels gezeigt [302, 303] (2+ und 1+) Eine angemessene Versorgung mit Mikronährstoffen wird als wesentlich für eine langfristige totale PE angesehen. Bhattacharyya haben randomisiert positive Auswirkungen eines präoperativen Protokolls auf das Eintreten der Darmtätigkeit und den Beginn einer EE gezeigt [304] (1-).

# 3.2 Gibt es eine Indikation zur Supplementierung mit Glutamin?

| EMPFEHLUNG 10A             |                                                                                                                                                        |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                          | Eine parenterale Glutamin-Supplementierung<br>kann nicht bei Patienten empfohlen werden, die<br>ausreichend enteral ernährt werden können.<br>(BM, HE) |
| Modifiziert,<br>Stand 2022 | Starker Konsens 100% Zustimmung                                                                                                                        |

| EMPFEHLUNG 10B     |                                                                                                                                             |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| A                  | Patienten mit schwerem Leber-, Nieren- oder<br>Multiorganversagen sollen keine zusätzliche<br>Glutamin- Supplementierung erhalten. (BM, HE) |
| Neu, Stand<br>2022 | Starker Konsens 100% Zustimmung                                                                                                             |

| EMPFEHLUNG 10C     |                                                                                                                  |
|--------------------|------------------------------------------------------------------------------------------------------------------|
| В                  | Eine zusätzlich enterale Pharmakotherapie mit<br>Glutamin sollte generell nicht durchgeführt<br>werden. (BM, HE) |
| Neu, Stand<br>2022 | Starker Konsens 100 % Zustimmung                                                                                 |

#### Kommentar zu den Empfehlungen 10 a-c

Der Stellenwert einer Glutamin-Substitution wurde in den vergangenen Jahren vielfach diskutiert, nachdem kein Nutzen einer Supplementierung oder einer hochdosierten Pharmakotherapie bei allgemeinen kritisch kranken Intensivpatienten demonstriert werden konnte [305–310]. Unterschieden werden muss eine komplementäre Strategie, so wie diese in allen Leitlinien zur Vervollständigung einer rein parenteralen Ernährungslösung empfohlen und notwendig wird, von einer Supplementierung, welche mit Verabreichung von hohen Dosierungen über den essentiell benötigten Bedarf hinausgeht, wie z. B. in der REDOX Studie [305] (1+). Kleinere Studien bei Patienten mit schwerem Trauma oder schweren Verbrennungen und eine Metaanalyse [311–314] konnten klinische Vorteile von mit Glutamin angereicherten enteralen Produkten demonstrieren, welche in einer groß angelegten multizentrischen Studie überprüft wurden [315] (1+).

250

Für abdominalchirurgische Patienten Eine Reihe älterer Studien und nachfolgende Metaanalysen konnten signifikante Vorteile, wie verkürzte postoperative Krankenhausverweildauer und eine reduzierte Anzahl an postoperativen Komplikationen nach Glutamin-Supplementierung zeigen [316]. Ebenso konnten 2 ältere Metaanalysen (darunter 14 RCT mit 587 chirurgischen Patienten) signifikante Vorteile nach Glutamin-Supplementierung hinsichtlich infektiöser Komplikationen und der Krankenhausaufenthaltsdauer zeigen [317,318] (1++). Darüber hinaus zeigte eine 2015 durchgeführten Metaanalyse von Kang et al in 13 RCT, darunter 1.034 chirurgischen Patienten mit gastrointestinalen Tumoren eine Verbesserung der Immunantwort im postoperativen Verlauf [319] (1++). Eine weitere Metaanalyse umfasste 19 RCT mit 1.243 Patienten und ergab eine signifikante Reduktion der Krankenhausverweildauer, wobei keine Unterschiede in der Komplikationsrate festgestellt werden konnten [320] (1++). Eine methodische Überprüfung dieser Metaanalyse und eingeschlossenen Studien zeigte jedoch erhebliche Schwachstellen wie z.B. das Fehlen klarer Kriterien für die Definition infektiöser Komplikationen und der Heterogenität der Krankenhausaufenthaltsdauer [321].

In einer 2014 durchgeführten RCT bei 60 Patienten mit Kolonresektion ergaben sich signifikante Vorteile einer prä- und postoperativen Glutamininfusion hinsichtlich der perioperativen Glukose-Insulin-Homöostase und Wiederherstellung der Darmfunktion [322]. Dem gegenüber konnte in einer großen multizentrischen RCT bei normalernährten Patienten mit größeren gastrointestinalen Operationen kein signifikanter Nutzen einer prä- und postoperativen parenteralen Verabreichung von 0,4 g Dipeptid/kg/d im Hinblick auf die Entstehung von postoperativen Komplikationen oder bzgl. der Krankenhausaufenthaltsdauer gezeigt werden [323] (1+).

In einer großen multizentrischen RCT zeigte die hochdosierte Verabreichung von Glutamin einen signifikanten Anstieg der Letalität bei kritisch kranken Intensivpatienten mit Organfunktionsstörungen [305] (1+), sodass ebenso Bedenken hinsichtlich der Anwendung bei chirurgischen Patienten auftraten.

In einer multizentrischen doppelblinden Studie wurden an 150 chirurgischen Intensivpatienten, Sicherheit und Effekt einer parenteralen Glutamingabe in der Standarddosis von 0,5 g/kg/d untersucht. Hierbei zeigten sich keine Sicherheitsrisiken, jedoch ebenso keine signifikanten Unterschiede hinsichtlich der primären Endpunkte Krankenhausmortalität und Infektionsrate. Mit dieser von der Arbeitsgruppe mit niedrigem RoB bewerteten Arbeit wird die Herabstufung der aktuellen Empfehlungen begründet [324] (1++).

In eine aktuelle Metaanalyse wurden 31 Studien mit 2.201 Patienten mit Operation eines kolorektalen Karzinoms eingeschlossen. Hierbei wurde Glutamin in 23 Studien parenteral, in 8 Studien enteral verabreicht. In der Glutamingruppe waren signifikant vermindert: die Raten an Wundkomplikationen (Z=3,18, p=0,001; RR = 0,48, 95 %CI 0,30–0,75,  $I^2=0$ %), die Rate an Anastomoseninsuffizienzen (Z=2,98, Z=0,003; RR = 0,23, 95 %CI 0,09–0,61, Z=0%) und die Krankenhausverweildauer (Z=4,03, Z=0,000; SMD = -1,13,95 %CI -1,68 - -0,58, Z=0,000; [325] (1++).

Hier ist kritisch zu bemerken, dass nach heutigem Kenntnisstand eine exklusive PE über 5–7 Tage bei den meisten chirurgischen Patienten nicht empfohlen wird, insbesondere nicht nach einer elektiven kolorektalen Operation mit einem unkomplizierten Verlauf [12, 17, 19]. Auf Grundlage der verfügbaren Daten ist die Verabreichung von Glutamin in einer Standarddosis bei Patienten ohne Organ-

dysfunktion sicher. Es kann jedoch nur eine Expertenempfehlung für die zusätzliche Gabe bei überwiegend PE gegeben werden kann. Der mögliche klinische Nutzen einer parenteralen Verabreichung von Glutamin in Kombination mit oraler oder enteraler Ernährung, kann derzeit mangels verfügbarer Daten nicht eindeutig geklärt werden.

# 3.2.1 Gibt es eine Indikation für die orale Supplementierung mit Glutamin?

| EMPFEHLUNG 10D         |                                                                                                                   |
|------------------------|-------------------------------------------------------------------------------------------------------------------|
| 0                      | Für oder gegen die orale Supplementierung mit<br>Glutamin kann keine generelle Empfehlung<br>gegeben werden. (BM) |
| Geprüft, Stand<br>2017 | Starker Konsens 100 % Zustimmung                                                                                  |

#### Kommentar

Aktuell existiert nur begrenzte Evidenz über die potentiellen Effekte einer oralen Supplementierung mit Glutamin als Einzelsubstanz. Bei Patienten mit Bauchspeicheldrüsen-Operation erhöht die orale Konditionierung am Tag vor der Operation und dreu Stunden präoperativ mit Glutamin, Antioxidantien und Grüntee-Extrakt signifikant die Vitamin C-Konzentrationen im Plasma im Vergleich zu Placebo und verbesserte somit die gesamte endogene antioxidative Kapazität, ohne jedoch den oxidativen Stress und die Entzündungsreaktion signifikant zu verringern [121]. Mögliche Hinweise auf einen klinischen Nutzen fehlen bislang.

Bei Verbrennungspatienten hat sich in einer Cochrane Analyse von 16 Studien mit 678 Patienten für eine vor allem glutaminhaltige orale/enterale Immunonutrition eine Reduktion der Krankenhausverweildauer (-5,65, 95 %CI -8,09 – -3,22, I² = 29,5 %) und sogar der Letalität (RR 0,25, 95 %CI 0,08–0,78, I² nicht anwendbar) gezeigt, wobei diese Ergebnisse aufgrund der relativ geringen Zahl an eingeschlossenen Studienpatienten falsch positiv sein können und kritisch zu bewerten sind [326] (1++).

# 3.3 Gibt es eine Indikation für eine alleinige enterale oder parenterale Supplementierung mit Arginin

| STATEMENT 1            |                                                                                                                                        |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|                        | Derzeit kann keine Empfehlung bezüglich der<br>intravenösen oder enteralen Ergänzung von<br>Arginin als Einzelsubstanz gegeben werden. |
| Geprüft,<br>Stand 2017 | Starker Konsens 100 % Zustimmung                                                                                                       |

#### Kommentar

Die Daten zur Arginin-Supplementierung als Einzelsubstanz sind stark begrenzt und lassen nach Einschätzung der Arbeitsgruppe eine Empfehlung nicht zu.

In einer Metaanalyse wurden 6 Studien und 397 Patienten analysiert, die wegen Kopf- oder Halstumor operiert wurden und eine peri- und postoperative enterale mit Arginin in verschiedenen Do-

sierungen und teils in Kombination mit anderen Substanzen abgereicherte Formuladiät erhielten. Hierbei zeigte sich eine Verringerung der Fistelbildung und Verkürzung der Krankenhausverweildauer. Hinsichtlich der Entstehung von Wundinfektionen konnten keine signifikanten Unterschiede demonstriert werden und so zeigte sich keine Reduktion infektiöser Komplikationen [327] (1++).

Die Daten einer Langzeitbeobachtung über 10 Jahre bei 32 Patienten mit Kopf- und Halstumor, die perioperativ eine mit Arginin angereicherte Diät erhielten, zeigte ein signifikant längeres Überleben und weniger Tumorrezidive. Kritisch anzumerken ist, dass diese Studie statistisch für einen Überlebensvorteil nicht gepowert war [328].

Die Sekundäranalyse einer früheren randomisierten Studie bei Patienten, die sich einer größeren Operation wegen Speiseröhrenund Bauchspeicheldrüsenkarzinom unterziehen mussten, konnte die Auswirkungen einer mit Arginin angereicherten Immunnahrung auf das Langzeitüberleben nicht bestätigen [329].

# 3.4 Gibt es eine Indikation für eine parenterale Supplementierung mit Omega-3-Fettsäuren?

| EMPFEHLUNG 11              |                                                                                                                                                                                                                                                                                                            |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В                          | Eine postoperative parenterale Ernährung mit<br>Supplementierung von Omega-3-Fettsäuren sollte<br>bei Patienten eingesetzt werden, die enteral nicht<br>ausreichend ernährt werden können und daher<br>eine überwiegend parenteral oder kombiniert ente-<br>rale/parenterale Ernährung benötigen. (BM, HE) |
| Modifiziert,<br>Stand 2022 | Starker Konsens 100% Zustimmung                                                                                                                                                                                                                                                                            |

#### Kommentar

Patienten nach chirurgischen Eingriffen zeigen regelhaft eine perioperative Entzündungsreaktion, sodass der Einsatz anti-inflammatorischer und immunwirksamer Substanzen wie Fischöl-Lösungen vielversprechend erscheint, um der Entstehung von Organdysfunktionen und Komplikationen entgegenzuwirken. Dies gilt insbesondere bei Patienten mit überschießender Entzündungsreaktion und postoperativer Indikation zur parenteralen oder kombiniert enteral/parenteralen Ernährung.

In den vergangenem Jahrzehnten wurden mehr als 10 Metaanalysen über den Gebrauch von fischölhaltigen parenteralen Ernährungslösungen publiziert [330–336] (1+), wobei viele Studien chirurgische Intensivpatienten eingeschlossen haben und klinische Vorteile gegenüber Standardlösungen demonstrieren konnten.

Für die parenterale Supplementation mit Omega-3-Fettsäuren konnte eine Metaanalyse von 13 RCT bei 892 chirurgischen Patienten signifikante Vorteile hinsichtlich der postoperativen Infektionsrate und der Krankenhausaufenthaltsdauer zeigen [331] (1++). Dieses wurde ebenso durch eine weitere Metaanalyse bestätigt, welche 23 Studien mit insgesamt 1.502 Patienten untersuchte [332] (1++). Eine uneinheitliche Definition für infektiöse Komplikationen sowie erhebliche Varianz in der Krankenhausaufenthaltsdauer reflektiert jedoch signifikante Schwachpunkte, welche auch hier die Bewertung der hier gewonnenen Erkenntnisse erschwert [321]. Tian et al. analysierten in einer Metaanalyse mögliche Unterschie-

de zwischen Lipidemulsion mit Sojabohnenöl, mittelkettigen Triglyceriden (MCT), Olivenöl und Fischöl im Vergleich zu Olivenölund MCT- und langkettigen Triglycerid (LCT)-basierten Emulsionen [333] (1++), Hierbei konnten jedoch keine Unterschiede zwischen den Lipid-Emulsionen festgestellt werden. Vor dem Hintergrund der methodischen Schwäche, dass die Mehrheit der Studienpatienten nach einem kolorektalem Eingriff keine geeigneten Kandidaten für eine alleinige PE waren, müssen auch diese Ergebnisse kritisch betrachtet werden.

In einer randomisierten Studie mit moderatem RoB wurde eine olivenölhaltige peripherparenterale Ernährung bei Patienten einen Tag vor und 3 Tage nach kolorektalen Resektionen im Rahmen eines ERAS Programms mit normaler Flüssigkeitstherapie verglichen [294]. Hier zeigten sich signifikante Vorteile bezüglich des Auftretens von Komplikationen. Randomisierte Studien zum vergleichenden Einsatz von Oliven- und Fischöl liegen für chirurgische Patienten nicht vor.

Eine kürzlich veröffentlichte nach AMSTAR II (12/16) bewertete Metaanalyse konnte in 24 randomisierten Studien bei 2.154 Patienten demonstrieren, dass mit Fischöl angereicherte Ernährungslösungen das Risiko für Infektionen (RR 0,60; 95 %CI 0,49–0,72; p < 0,00001,  $I^2$ =0%), und konsekutiv die Aufenthaltsdauer auf Intensivstation (-1,95 d; 95 %CI -3,49 -0,42; p = 0,01,  $I^2$ =83%) und im Krankenhaus (-2,14 d; 95 % CI -2,93 -1,36, p < 0,00001,  $I^2$ =51%) im Vergleich zu Standardlösungen ohne Fischöl signifikant reduziert. Nicht signifikant war hingegen die Verminderung der 30-Tage-Letalität (RR 0,84,95%CI 0,65–1,07, p=0,15, $I^2$ =0%) [337] (1++). Die antiinflammatorischen und immunmodulatorischen Wirkungen sind einhergehend mit einer Senkung der Krankenhausverweildauer in einer sehr aktuellen nach AMSTAR II (12/16) bewerteten Metaanalyse von 10 randomisierten Studien bei chirurgischen Patienten mit gastrointestinalem Karzinom noch einmal bestätigt worden [338] (1++).

Die möglichen Vorteile einer kurzfristigen perioperativen Omega-3-Fettsäureinfusion und deren potentiell konditionierende Wirkung vor elektiven Operationen müssen weiter geklärt werden [339]. Basierend auf der aktuell verfügbaren Evidenz, sowie den Empfehlungen einer speziellen ESPEN-Expertengruppe sollten ungesättigte Omega-3-Fettsäuren in der PE verwendet werden. Neben den mehrfach demonstriert positiven Effekten wie Reduktion der infektiösen Komplikationen, kürzeren Verweildauer auf Intensivstation und im Krankenhaus zeigen fischölhaltige Lipidemulsionen ein gutes Sicherheit- und Verträglichkeitsprofil, welches insgesamt den Einsatz bei chirurgischen Intensivpatienten unterstützt [330–334, 340].

3.5 Gibt es eine Indikation für eine bestimmte orale/ enterale Formel, die mit unterschiedlichen, immunologisch wirksamen Nährstoffkombinationen (Immunonutrition) angereichert ist?

| EMPFEHLUNG 12              |                                                                                                                                                                                                                               |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                          | Patienten, die sich einer größeren Tumoroperation<br>unterziehen, kann präoperativ oder perioperativ<br>eine Immunonutrition (angereichert mit Arginin,<br>Omega-3-Fettsäuren, Ribonukleotiden) angeboten<br>werden. (BM, HE) |
| Modifiziert,<br>Stand 2022 | Konsens 91 % Zustimmung                                                                                                                                                                                                       |

#### Kommentar

Insbesondere nach viszeralchirurgische Tumoroperationen kann das Auftreten von postoperativen Infektionen wie Wundkomplikationen (Surgical-Site-Infections), Atemwegs- und Harnwegsinfektionen, sowie systemischen Infektionen das postoperative klinische Ergebnis schmälern, und zur Verlängerung der Hospitalisation sowie zur Entwicklung weiterer Komplikationen führen. Vor diesem Hintergrund besteht die Rationale für die orale und enterale Immunonutrition mit dem Ziel der Stärkung des Immunsystems, um das Auftreten von infektiösen Komplikationen zu reduzieren

Eine Vielzahl an randomisierten Studien mit allgemeinchirurgischen Patienten hat den Effekt von immunmodulierenden Substraten wie Arginin, Omega-3-Fettsäuren, Ribonukleotiden mit oder ohne Glutamin als Teil der oralen Trinknahrung untersucht [341–352]. Die Ergebnisse der einzelnen und resultierenden Metaanalysen legen nahe, dass die perioperative Verabreichung von immunmodulierenden Substanzen zu einer Reduktion an postoperativen Komplikationen und folglich zu einer verringerten Verweildauer im Krankenhaus beigetragen kann [353–367] (1++). In Bezug auf die immunmodulierenden Substrate wurden die meisten RCT mit Arginin, Omega-3-Fettsäuren und Ribonukleotiden durchgeführt. Die ESPEN-Leitlinien zur Ernährung von Karzinom patienten aus dem Jahr 2016 gaben eine starke Empfehlung für die perioperative Gabe von immunmodulierenden Substraten bei Patienten mit einer Tumor resektion des oberen Gastrointestinaltrakt [368].

Die kritische Durchsicht der zahlreichen Metaanalysen zeigt eine erhebliche Heterogenität der eingeschlossenen Studien mit Unterschieden in der Behandlungsdauer, welche nach Auffassung der Arbeitsgruppe eine starke Empfehlung für eine generelle perioperative Verwendung von immunmodulierender Sondennahrung nicht zulässt [321]. Zeitpunkt und Dauer der Intervention sind von entscheidender Bedeutung und limitieren die Analyse der aggregierten Daten.

### Bedeutung des perioperativen Timings

Frühere Studien konnten zeigen, dass die präoperative Einnahme von oralen Trinknahrungen für 5 bis 7 Tage, angereichert mit immunmodulierenden Nahrungssubstraten (wie z. B. Arginin und Omega-3-Fettsäuren), die postoperative Morbidität und Krankenhausverweildauer nach größeren abdominellen Tumoroperationen verringern kann [369–372]. Drei RCT (jeweils 1+) konnten darüber hinaus demonstrieren, dass die postoperative Verabreichung von immunmodulierenden Sondennahrungen sowohl bei unterernährten [373] als auch bei normal ernährten Patienten mit gastrointestinalen Karzinomen [369, 371] wirksam waren und zu einer Verringerung von postoperativen Komplikationen bei unterernährten Patienten beitrugen [373].

Durch präoperative Supplementation (5–7 Tage) mit Immunonutrition konnten bei Patienten mit kolorektalen und hepatobiliären Tumoren die infektiösen Komplikationen und die Hospitalisationsdauer reduziert werden [375–378] (jeweils 2+).

Für den Vergleich von präoperativ verabreichten immunmodulierenden Nährsubstraten mit oraler Standardnahrung führten Hübner et al. eine doppelblinde RCT bei chirurgischen Risikopatienten (definiert als NRS > 3) durch [380] (1+). Im selben Zusammenhang wurde in einer weiteren RCT bei gut ernährten Patienten präoperativ eine Ernährungsintervention für 3 Tage mit oralen Trinknah-

rungen durchgeführt [381] (1+). In keiner der beiden Studien konnte ein Vorteil für die Interventionsgruppe beobachtet werden. In der Metaanalyse von Hegazi et al. wurden Studien mit immunmodulierender Trinknahrung (561 Patienten) und Standardpräparaten (895 Patienten) untersucht [382] (1++). Hier zeigten sich signifikant positive Effekte in der Interventionsgruppe mit Abnahme der infektiösen Komplikationen und Reduktion des Krankenhausverweildauer nur im Vergleich mit normaler Krankenhauskost, jedoch nicht im Vergleich mit einer oralen Standardtrinknahrung.

Demgegenüber konnte eine Cochrane-Metaanalyse zur präoperativen Gabe von immunwirksamen Trinknahrungen signifikante Vorteile in Bezug auf die Entstehung von postoperativen Komplikationen demonstrieren. Eine Vielzahl an methodologischen Schwachpunkten begrenzt jedoch die Gewichtung und Generalisierbarkeit der hier resultierenden Ergebnisse, sodass diese für die Empfehlungen nicht berücksichtigt wurden [383] (1++). Für eine kombinierte peri- und postoperative Anwendung von immunmodulierenden Trinknahrungen konnten in der Metaanalyse von Marimuthu et al. [360] signifikante Vorteile in Bezug auf die Entstehung von infektiösen Komplikationen und die Krankenhausaufenthaltsdauer gezeigt werden. Darüber hinaus bestätigten die Metaanalysen von Osland et al. sowie Song et al. diese klinischen Vorteile für die peri- und postoperative Anwendung von immunmodulierenden Trinknahrungen [365, 366] (1++).

Für die rein postoperative Anwendung demonstrierte eine Metaanalyse von 19 RCT mit 2016 Patienten, die sich einer Ösophagektomie, Gastrektomie und Pankreatektomie unterzogen, einen signifikant klinischen Nutzen hinsichtlich einer Verringerung der Wundinfektionen und der Krankenhausaufenthaltsdauer bei Verwendung von oralen Präparaten mit immunmodulierenden Substanzen [367] (1++).

Für chirurgische Tumorpatienten allgemein zeigte eine Metaanalyse von 61 randomisierten Studien eine signifikante Senkung postoperativer infektiöser Komplikationen (RR 0,71 95 %CI, 0,64–0,79,  $I^2 = 0$  %), Wundinfektionen, (RR 0,72 95 %CI, 0,60–0,87,  $I^2 = 0$  %), Infektionen des Respirationstraktes (RR 0,70 95 %CI, 0,59–0,84), der Harnwege (RR 0,69 95 %CI, 0,51–0,94,  $I^2 = 0$  %), als auch von Anastomoseninsuffizienzen (RR 0,70 95 %CI, 0,53–0,91,  $I^2 = 0$  %) und der Krankenhausverweildauer (MD -2,12 d 95 %CI -2,72 – -1,52,  $I^2 = 83$  %) [384] (1++).

Im Vergleich zu den früheren Studien, in denen die Immunnutrition oftmals nur postoperativ appliziert wurde, haben sich die Konzepte in Richtung prä- oder perioperativer Gabe verändert. In die aktuellsten Metaanalysen sind nur randomisierte Studien mit prä- und perioperativer Gabe von Immunonutrition aufgenommen worden [385, 386].

Bislang war offen, ob die ausschließlich präoperative Gabe Vorteile auch im Vergleich mit einer Standardtrinknahrung bietet. Auf diese Frage zielte eine aktuelle mit AMSTAR II (13/16) gut bewertete Metaanalyse ab. Verfügbare Daten aus 16 randomisierten Studien mit 1.387 chirurgischen Patienten mit gastrointestinalem Karzinom (Immunonutrition n = 715, Kontrolle n = 672) wurden dazu untersucht. Hier führte der alleinige präoperative Einsatz für 5–7 Tage sowohl im Vergleich mit einer normalen Kost als auch mit einer isonitrogenen Standardtrinknahrung zu einer signifikanten Verminderung des Auftretens infektiöser Komplikationen (OR 0,52; 95 %CI 0,38–0,71, p < 0,0001). Die Heterogenität der Daten war

gering ( $I^2 = 16\%$ ). Bei der Krankenhausverweildauer bestand eine signifikante Verkürzung im Vergleich zur normalen Kost und eine Tendenz im Vergleich mit der Standardtrinknahrung (-1,57 Tage, 95 %CI -2,48–0.66, p=0,0007,  $I^2 = 34\%$ ). Unbeeinflusst waren nichtinfektiöse Komplikationen und Letalität [385] (1++).

Eine weitere danach erschienene Metaanalyse (AMSTAR II 11/16) hat 35 Studien mit 3.692 Patienten mit Operationen eines gastrointestinalen Karzinoms eingeschlossen. Hier wurde für die Intervention eine signifikante Verminderung des Auftretens von Komplikationen insgesamt (RR = 0,79 95 %CI 0,70–0,88, p < 0,001,  $I^2 = 2\%$ ) und auch der infektiösen Komplikationen (RR = 0,66, 95 %CI 0,55–0,78, p < 0,001,  $I^2 = 45\%$ ) sowie der Krankenhausverweildauer gezeigt [387] (1++).

Zwei Studien haben mit großen Kohorten Daten aus der Versorgungsrealität geliefert. Die retrospektive Analyse einer französischen Gesundheitsdatenbank von 1.771 Patienten mit großen Tumoroperationen am Gastrointestinaltrakt hat keine Vorteile der präoperativen Gabe für die 90-Tage Morbidität und das Überleben, jedoch für die Krankenhausverweildauer gezeigt (-1,26 d, 95%CI: -2,4 – -0,1)] [378] (2+).

Immunutrition als Teil eines präoperativen «Wellness» Bündels u. a. mit Chlorhexidinbad, Spirometer und Motivation zur Nikotinkarenz hat bei 12.396 chirurgischen Patienten zu einer erheblichen Senkung der nosokomialen Infektionen mit Surgical-Site-Infections und Harnwegsinfektionen geführt [379] (2+).

Für Patienten mit kolorektalen Resektionen konnten in einer großen prospektiven Kohortenstudie mit 3.375 Patienten und Propensity Score Matching als Kontrolle auch in der Versorgungssituation bei Einnahme einer immunmodulierenden Trinknahrung 3 Mal täglich für 5 Tage eine signifikante Reduktion der Krankenhausverweildauer beobachtet werden [376] (2+). Ebenfalls ohne Stratifikation nach dem Ernährungsstatus wurde in einer randomisierten Studie bei 176 Patienten mit kolorektalen Resektionen wegen Karzinoms die Immunnutrition als Supplement mit der normalen oralen Diät verglichen. Signifikante Unterschiede in der Rate infektiöser Komplikationen und der Krankenhausverweildauer fanden sich nicht. Die supplementierte Gruppe wies jedoch als Zeichen der Erholung einen signifikanten postoperativen Anstieg des Körpergewichts auf  $(+0,4\pm2,1$  vs.  $-0,7\pm2,3$  kg, p=0,002) [388] (1+).

Eine Metaanalyse von 8 randomisierten und einer nicht randomisierten Studie mit 1.400 Patienten zeigte auch für Tumorpatienten mit gutem Ernährungsstatus nach der Intervention eine signifikante Verminderung der postoperativen infektiösen Komplikationen (OR = 0,74, 95 %CI 0,57–0,96, I<sup>2–</sup>35 %) mit einem Trend zur Senkung der Morbidität insgesamt und der Krankenhausverweildauer [389] (1++).

Ein signifikanter Nutzen zeigte sich zudem in einer Cochrane Analyse nach präoperativer Gabe bei Patienten mit Kopf-Hals-Tumoren bezüglich der postoperativen Fistelrate [390] (1++) und für Patienten mit Gastrektomie bezüglich Surgical-Site-Infections, Verweildauer, Kosten [391, 392] (1++). Quiang et al. (2017) [393] und Cheng et al (2018) haben für Patienten mit Gastrektomie neben der signifikanten Verbesserung der zellulären Immunität (CD4+, CD4+/CD8+, IgM und IgG eine signifikante Senkung der Komplikationsrate gefunden [394] (1++). Die Netzwerkanalyse von Song

et al (2017) von 11 Studien mit 840 Patienten spricht bei Patienten mit Gastrektomie für die Überlegenheit der Kombination von Arginin, Omega-3-Fettsäuren und Ribonukleotiden gegenüber Arginin und Ribonukleotiden und Arginin und Glutamin [392] (1++).

Zwei Metaanalysen von 6 bzw. 7 qualitativ guten randomisierten Studien mit 320 bzw. 604 Patienten haben für Patienten mit Ösophagusresektion keine klinischen Vorteile der Immunmodulation gezeigt [395, 396] (1++).

Für Patienten mit Leberresektionen haben 2 Metaanalysen jeweils (8 prospektive RCT mit 805 Patienten, 9 prospektive RCT mit 966 Patienten) bei Einsatz Omega-3-Fettsäuren enthaltender Diäten eine signifikant niedrigere Rate der Komplikationen insgesamt, der infektiösen Komplikationen sowie eine signifikant kürzere Krankenhausverweildauer gezeigt [397, 398] (1++). Eine weitere Metaanalyse mit 11 Studien und 1.084 Patienten fand für große Leberresektionen, vor allem bei hepatozellulärem Karzinom eine signifikante Senkung der Rate an Wundinfektionen und der Krankenhausverweildauer [399] (1++).

Bei Patienten mit Pankreasresektionen haben 2 Metaanalysen (jeweils 4 prospektive RCT mit 299 Patienten und 6 prospektive RCT mit 366 Patienten) ebenfalls eine signifikant niedrigere Rate der infektiösen Komplikationen und der Krankenhausverweildauer gezeigt [400, 401] (1++).

Bisher hat nur eine randomisierte Studie den Einsatz einer Immunonutrition im Vergleich mit einer hochkalorischen isonitrogenen Standardnahrung bei Patienten mit kolorektalen Resektionen innerhalb eines ERAS Programms untersucht. In der SONVI Studie wurden multizentrisch 264 Patienten randomisiert und erhielten 7 Tage vor und 5 Tage nach der Operation die Intervention bzw. Kontrolle. Die Patienten waren vergleichbar im Alter, Geschlecht, chirurgischem Risiko, Komorbidität, Labor und Ernährungsstatus. Die mediane Krankenhausverweildauer war 5 Tage kürzer ohne Unterschied zwischen den Gruppen. Eine signifikante Verminderung der infektiösen Komplikationen wurde in der Interventionsgruppe beobachtet (23,8 % vs. 10,7 %, p = 0,0007). Bei den infektiösen Komplikationen fand sich ein signifikanter Unterschied bei den Wundinfektionen (16,4% vs. 5.7%, p = 0,0008) (1+) [402].

In einem sogenannten Umbrella Review wurden 20 Metaanalysen (11 zu abdominellen Eingriffen, und 8 zu Pankreas-, Ösophagus-, Leber- oder kolorektalen Operationen eingeschlossen. Insgesamt war die Immunonutrition bei erheblicher Heterogenität mit einer signifikant geringeren Rate an infektiösen Komplikationen assoziiert (OR 0,60 95 %CI 0,54–0,65, I² = 64 %) und niedrigerer postoperativer Morbidität (OR 0,78 95 %CI 0,74–0,81, I² = 30,3 %). Der Ausschluss von 3 Studien mit erheblicher Heterogenität änderte die Ergebnisse nicht. Es bestand kein signifikanter Unterschied im Timing der Intervention (prä-, peri- oder nur postoperativ) [403] (1++). Danach ist die Überlegenheit einer ausschließlich präoperativen Intervention weiter nicht eindeutig.

Im Hinblick auf langfristige Ergebnisse fehlen adäquat designte Studien, um etwaige Effekte von immun-modulierenden Nährstoffen zur analysieren. In einer 10-Jahres Nachbeobachtung von 32 Patienten mit Kopf- und Halstumoren, denen perioperativ eine mit Arginin angereicherte Diät verabreicht worden war, konnte ein signifikant längeres Überleben sowie eine geringere Rezidivrate demonstriert werden [328] (2+). Dem gegenüber wurde in einer post-

hoc-Analyse einer kleineren RCT an 99 Patienten mit Magenkarzinom keine Verbesserung des Langzeitüberlebens durch postoperative Initiierung einer EN in Kombination mit Glutamin, Arginin und Omega-3-Fettsäuren beobachtet [340] (2+).

In Deutschland ist die Immunonutrition ambulant nicht erstattungsfähig sondern Individuelle Gesundheitsleistung (IGEL), während diese in Österreich und der Schweiz als Kassenleistung verschreibungsfähig ist.

#### Synbiotika

Das Mikrobiom zunehmend als wichtiger Faktor bei der Entstehung zahlreicher Erkrankungen in den Fokus. Die Gabe von Probiotika oder Synbiotika (Kombination von Prä- und Probiotika) zur Beeinflussung des Mikrobioms mit günstigen Auswirkungen auf die intestinale Barriere und lokale Immunabwehr konnte in mehreren prospektiv-randomisierten, Placebo kontrollierten klinischen Studien und deren Metaanalysen vor allem nach großen viszeralchirurgischen Eingriffen (Pankreas, Leberresektion, Lebertransplantation, Rektum), aber auch bei Traumapatienten auf der Intensivstation die postoperative Infektionsrate senken [404] (1++).

Eine Metaanalyse von 13 RCT mit 962 Patienten ergab, dass die probiotische und symbiotische Anwendung bei elektiven chirurgischen Patienten zu einer signifikanten Reduktion septischer Komplikationen führen kann [404] (1++).

Eine weitere Metaanalyse von 34 prospektiv randomisierten kontrollierten Studien mit Einschluss von 2.723 Patienten mit abdominellen Eingriffen (kolorektal, oberer Gastrointestinaltrakt, hepatopankreatobiliär und Lebertransplantation) hat die gute Toleranz ohne unerwünschte Ereignisse bestätigt. Die perioperative Gabe sowohl von Probiotika als auch Synbiotika führte im Vergleich mit den Kontrollen zur Reduktion der postoperativen infektiösen Komplikationen (RR 0,56; 95 %CI 0,46-0,69; p < 0,00001, n = 2.723, 1<sup>2</sup> = 42 %). Dabei zeigten Synbiotika einen größeren Effekt als Probiotika allein (Synbiotika RR: 0,46; 95 %CI 0,33-0,66; p < 0,0001, n = 1.399, I<sup>2</sup> = 53 % Probiotika RR: 0,65; 95 %CI 0,53-0,80; p < 0.0001, n = 1.324,  $l^2 = 18\%$ ). Nur Synbiotika führten zur signifikanten Verkürzung der Krankenhausverweildauer (Synbiotika gewichteter mittlerer Unterschied: -3,89; 95 %CI -6,60 - -1,18 d; p = 0,005, n = 535, I<sup>2</sup> = 91 % Probiotika RR: -0,65; 95 %CI -2,03-0,72; p = 0,35, n = 294, I<sup>2</sup> = 65%). Kein Unterschied bestand in der Letali $t\ddot{a}t$  (RR: 0,98; 95%CI 0,54–1,80; p = 0,96, n = 1.729,  $I^2$  = 0%) und den nichtinfektiösen Komplikationen [405] (1 + +).

Eine Metaanalyse von 5 Studien mit 281 Traumapatienten zeigte signifikante Vorteile hinsichtlich einer Verringerung der nosokomialen Infektionen (p = 0,02), der Rate an beatmungsassoziierten Pneumonien (3 Studien, p = 0,01) und Aufenthaltsdauer auf der Intensivstation (2 Studien, p = 0,001). Kein Unterschied konnte jedoch hinsichtlich der Mortalität beobachtet werden, wobei sich eine starke Heterogenität zwischen den Studien zeigte [406] (1++). Eine Studie mit Patienten nach Schädel-Hirn-Trauma [407] zeigte bei Einsatz einer Sondennahrung, die mit Glutamin und Probiotika angereichert war, signifikante Vorteile hinsichtlich Entstehung von infektiösen Komplikationen und der Verweildauer auf der Intensivstation (1+).

In einigen Studien wurde zudem ein positiver Effekt auf die Leberfunktion und/oder Leberregeneration beobachtet [408]. In neu-

eren, gut konzipierten prospektiven Studien vor allem mit Laktobazillen und Bifidobakterien, hatten Patienten, die nach Listung zur Lebertransplantation Synbiotika bis zur Transplantation erhielten, signifikant niedrigere Infektionsraten und niedrigere Bilirubin- und Transaminasenwerte nach 30 und 90 Tagen als die Kontrollgruppe (4,8% versus 34,8%) [409]. Nach Leberresektion bei kolorektalen Lebermetastasen konnte durch perioperative Gabe von Probiotika im Vergleich zur Kontrolle ebenfalls die Rate von infektiösen Komplikationen und die Konzentration von Plasma-Endotoxin signifikant gesenkt werden [410]. Eine nicht-randomisierte Studie an Patienten nach Leberresektion ergab wiederum keinen Unterschied hinsichtlich chirurgischer Infektionen bei der Gabe von Clostridium butyricum und Präbiotika verglichen mit der konventionellen Gruppe [411]. Patienten nach Kolonresektion wurden 4 Wochen postoperativ für 6 Monate (während einer Radiochemotherapie) mit Laktobazillen und Bifidobakterien behandelt. Im Vergleich zu Placebo wurde die Konzentration von proinflammatorischen Zytokinen gesenkt [412]. Nach metabolischer Chirurgie wiederum konnten in einer Placebo kontrollierten, doppelblinden Studie durch Gabe von Probiotika anti-inflammatorische Effekte erzielt werden [413].

In weiteren Studien konnte eine Verringerung der Infektionen nach Pankreas- und Hepatobiliärresektionen sowie nach Lebertransplantationen gezeigt werden [414–419]. Keine Unterschiede ergaben sich hinsichtlich der Wirkung von lebenden oder hitzegetöteten Laktobazillen [415, 416, 420]. Eine relevante signifikant verringerte Infektionsrate wurde ebenso bei kritisch kranken Traumapatienten beobachtet [421] (1++).

Da die vorliegenden Studien aber sehr heterogen konzipiert sind bezüglich Beginn und Dauer der Therapie, Zusammensetzung der Synbiotika und Art der Applikation, ist eine generelle Empfehlung schwer zu treffen, zumal in einer großen multizentrischen Studie an Patienten mit schwerer Pankreatitis eine erhöhte Mortalität beobachtet wurde [414]. Dies war allerdings die einzige Studie mit schwerwiegenden Nebenwirkungen. Kritisiert wurde, dass in dieser Studie erstmalig eine sehr hochkonzentrierte Synbiotikakombination eingesetzt wurde.

Ein weiterer einschränkender Faktor ist weiterhin die sehr begrenzte Verfügbarkeit von wirksamen, in klinischen Studien getesteten Synbiotikapräparaten.

So sind weitere gut geplante klinische Studien in diesem Feld noch dringend erforderlich.

Eine detaillierte Übersicht über vorhandene Studien [414–418,420–440] zum Einsatz verschiedener Synbiotika bei verschiedenen chirurgischen Eingriffen ist als Supplement zu dieser Leitlinie abrufbar

Auf Grundlage der aktuell verfügbaren und hier diskutierten Evidenz bleibt der klinische Nutzen von gemischten immunmodulierenden Nährsubstraten oder die reine Pharmakonutrition im perioperativen Kontext unklar. Die enterale und parenterale Ernährungstherapie bei chirurgischen Patienten kann u. a. durch den Zeitpunkt des Beginns, die Wahl des Applikationsweges, die Menge und Zusammensetzung sowie Wahl spezieller, immunmodulierender Nährsubstrate variieren. Adäquat designte, große multizentrische Studien sind weiter nötig und in Durchführung [315, 441] um die Evidenz eines potentiellen klinischen Nutzens bei allgemeinen oder speziell vulnerablen Patienten zu prüfen.

## 4. Präoperative Ernährung

# 4.1 Welche Patienten profitieren von einer präoperativen Ernährungstherapie?

| EMPFEHLUNG 13              |                                                                                                                                                                                                                   |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A/0                        | Patienten mit hohem metabolischem Risiko sollen eine Ernährungstherapie präoperativ erhalten (A), sogar, wenn dadurch die Operation verschoben wird. (BM) Ein Zeitraum von 10–14 Tagen kann empfohlen werden (0). |
| Modifiziert,<br>Stand 2022 | Konsens 92 % Zustimmung                                                                                                                                                                                           |

| EMPFEHLUNG 14              |                                                                                                          |
|----------------------------|----------------------------------------------------------------------------------------------------------|
| А                          | Die orale/enterale Zufuhr soll gegenüber der<br>parenteralen Ernährung bevorzugt werden.<br>(BM, HE, QL) |
| Modifiziert,<br>Stand 2022 | Starker Konsens 100 % Zustimmung                                                                         |

#### Kommentar zu den Empfehlungen 13 und 14

Mit dem Ziel einer Senkung der postoperativen Komplikationen ist beim Vorliegen einer Mangelernährung in mehreren prospektiven randomisierten Studien der Nutzen einer präoperativen medizinischen Ernährung gezeigt [242, 248, 269, 275] (1+) und durch 3 Metaanalysen belegt worden [280, 442] (1++). Hierbei wurden die Patienten für eine Dauer von mindestens 7 bis 10 Tagen präoperativ medizinisch ernährt.

Von der ESPEN ist 2017 das schwere metabolische Risiko bei Vorliegen eines der folgenden Kriterien definiert worden:

- Gewichtsverlust > 10–15 % innerhalb von 6 Monaten
- BMI < 18,5 kg/m<sup>2</sup>
- SGA Grad C, NRS > 5
- Serumalbumin < 30 g/L (Ausschluss einer Leber- oder Niereninsuffizienz)

Diese Parameter reflektieren sowohl den Ernährungsstatus als auch die krankheitsassoziierte Katabolie.

Hierbei sieht die Arbeitsgruppe in Übereinstimmung mit der Literatur die Hypoalbuminämie als evidenzbasierten prognostischen Faktor bei chirurgischen Patienten [207,443]. Diese ist jedoch vor allem Ausdruck der Krankheitsschwere und der krankheitsassozierten Katabolie als des Ernährungsstatus. Auch neuere Daten bestätigen die prognostische Bedeutung des Serumalbumins für das Entstehen postoperativer Komplikationen [212,444–446].

Kuppinger et al. haben bei Patienten mit abdominalchirurgischen Eingriffen die verminderte Nahrungsaufnahme in der Woche vor der stationären Aufnahme in ihrem Patientengut als einzigen unabhängigen Risikofaktor für das Entstehen postoperativer Komplikationen herausgearbeitet [91] (2+).

Die Höhe des präoperativen Gewichtsverlustes und des Serumalbuminspiegels waren in der Untersuchung von Pacelli et al. [235] bei 145 Patienten mit Gastrektomie oder subtotaler Magenresektion ohne signifikanten Einfluss auf das Entstehen postoperativer Komplikationen (2-). Bei genauerer Betrachtung der Daten zeigte sich jedoch, dass der prozentuale Anteil der so definierten Risikopatienten mit postoperativen Komplikationen höher war. Die Studie war für diese Fragestellung statistisch nicht ausgelegt. Diese Studiendaten zeigen jedoch, dass die Zahl von Patienten mit Magenkarzinom und kritischem Gewichtsverlust oder erniedrigtem Serumalbumin unter 20 % liegen dürfte.

Die Dauer der präoperativen Ernährungstherapie sollte entsprechend des metabolischen Risikos gewählt werden. Bei 800 Patienten mit Magenkarzinom und hohem metabolischen Risiko nach der ESPEN Definition ergab der Vergleich zwischen einer adäquaten Energiezufuhr für mindestens 10 Tage und einer unzureichenden oder ausbleibenden Ernährungstherapie eine signifikant niedrigere Inzidenz der Surgical-Site-Infections (17,0% vs. 45,4%, p = 0,00069). Schwere Komplikationen nach Clavien-Dindo > 3 wurden erst nach einer Therapiedauer von 10-13 Tagen nicht mehr beobachtet. Die multivariate Analyse zeigte die Ernährungstherapie als unabhängigen Faktor für ein vermindertes Auftreten von Surgical-Site-Infections (OR 0,14, 95 %CI 0,05-0,37, p = 0,0002) [447] (2+). Bei präoperativer Gabe für 3 Tage eines mit Hydroxymethylbutyrat (1,2 g HMB), 7 q L-Arginin und 7 q L-Glutamin angereicherten Supplements konnten im Vergleich mit einem Placebo bei Patienten mit offen operierten abdominellen Malignomen und Fortsetzung für 7 Tage postoperativ keine Unterschiede in der Rate von Wund- sowie anderer Komplikationen gezeigt werden. Auch die Körperzusammensetzung und Handgriffstärke war ohne Unterschied [448]. Aufgrund dieser Daten erfolgt die Expertenempfehlung von 10–14 Tagen.

Zum Vergleich einer parenteralen und enteralen Ernährung präoperativ liegt nur eine RCT vor. In einer prospektiven RCT konnte kein klarer Vorteil einer präoperativen PE gezeigt werden [248]. Die Metaanalyse von Braunschweig et al. aus randomisierten Studien [279] (1++) spricht für die PE bei mangelernährten Patienten, da eine signifikant niedrige Letalität mit Tendenz zu niedrigen Infektionsraten bei den mangelernährten Patienten mit PE beobachtet wurde (siehe auch 3.1). Heyland et al. [280] (1-) haben in ihrer Metaanalyse einen günstigen Einfluss der PE auf die Senkung der Komplikationsrate nur bei den mangelernährten Patienten gezeigt (siehe auch 3.1). Jie et al. [449] haben eine Serie von 1.085 Patienten mit NRS vor abdominalchirurgischer Operation vorgestellt (2+). 512 Patienten waren nach dem NRS Risikopatienten. Diese erhielten auf Grund der Erfahrung des Chirurgen ohne Kenntnis des NRS enterale oder parenterale Ernährung für 7 Tage präoperativ. Unterschiede der Infektionsrate und der Krankenhausverweildauer wurden bei Patienten mit einem NRS von 3 und 4 im Fall einer präoperativen Ernährung nicht gefunden. Von 120 Patienten mit einem NRS von mehr als 5 profitierten diejenigen, welche eine präoperative Ernährung erhielten: signifikant niedrigere Komplikationsrate (25,6 vs. 50,6%, p = 0,008) und kürzere Krankenhausverweildauer (13,7 ± 7,9 vs.  $17.9 \pm 11.3 d$ , p=0.018).

In einem systematischen Review von 9 Studien, in denen insgesamt 442 Patienten mit Ösophagusresektion und 418 Patienten mit Magenresektion eingeschlossen waren, zeigten sich bei Ernährungsberatung und EE bei neoadjuvant behandelten Patienten mit Öso-

phaguskarzinom positive Effekte für die Stabilität des Körpergewichts und auch das Entstehen von chirurgischen Komplikationen. Die GRADE Evidenzbewertung für die Qualität der einzelnen Studien war sehr niedrig. Die präoperative Ernährung bei den Patienten führte zu einer Verminderung der Surgical-Site-Infections, der Krankenhausverweildauer und -kosten, wobei hier die Bewertung nach GRADE aufgrund unvollständiger Angaben zum Outcome nicht möglich war [391] (1++).

Aufgrund der Daten empfiehlt die Arbeitsgruppe, die orale oder enterale Supplementierung, wann immer möglich, zu bevorzugen. Auch für den Fall einer zur Deckung des Kalorienbedarfs notwendigen PE, wie bei einer Stenose im oberen Gastrointestinal-Trakt, sollte die orale Kalorienzufuhr z. B. durch Trinknahrung erhalten bleiben.

Zur Vermeidung eines Refeeding-Syndroms bei schwerer Mangelernährung sollte die PE nur langsam unter Kontrolle von Serumphosphat, Kalium und Magnesium mit eventuellem Substitutionsbedarf einschließlich Thiamin gesteigert werden [450]. Im Rahmen einer Prähabilitation beträgt die Zeitdauer der prästationären Konditionierung variabel 2–6 Wochen

# 4.2 Wann besteht die Indikation zur präoperativen Einnahme einer Trinknahrung oder enteralen Ernährung?

| EMPFEHLUNG 15              |                                                                                                                                                                                                     |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                          | Bei Patienten mit Mangelernährung und/oder hohem<br>metabolischen Risiko soll vor großen abdominellen<br>Eingriffen eine Trinknahrung (Oral Nutritional<br>Supplement) verabreicht werden. (BM, HE) |
| Modifiziert,<br>Stand 2022 | Starker Konsens 100% Zustimmung                                                                                                                                                                     |

| EMPFEHLUNG 16              |                                                                                                                                                                                                 |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В                          | Patienten mit gastrointestinalem Karzinom sollte<br>eine mit Arginin, Omega-3-Fettsäuren, Ribonukleo-<br>tide angereicherte Trinknahrung präoperativ für<br>5–7 Tage angeboten werden. (BM, HE) |
| Modifiziert,<br>Stand 2022 | Konsens 92% Zustimmung                                                                                                                                                                          |

| EMPFEHLUNG 17              |                                                                                                                                      |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| ККР                        | Eine enterale Ernährung einschließlich der<br>Einnahme von Trinknahrung sollte prähabilitativ<br>prästationär erfolgen. (BM, HE, QL) |
| Modifiziert,<br>Stand 2022 | Starker Konsens 100% Zustimmung                                                                                                      |

#### Kommentar zu den Empfehlungen 15-17

Es ist Konsens der Arbeitsgruppe, dass orale Trinknahrungen (ONS) eine voll bilanzierte nicht krankheitsspezifische Nährstoffzusam-

mensetzung aufweisen, als einzige Nahrungsquelle dienen können und den Regularien an ein Lebensmittel für diätetische Zwecke der Europäischen Union (2016/128 (FSMP) entsprechen müssen [266, 451].

Die Kosteneffektivität einer ONS ist für chirurgische Patienten im Krankenhaus in einer Metaanalyse randomisierter Studien gezeigt worden [266] (1++). Dennoch ist die Datenlage insgesamt etwas uneinheitlich.

Unabhängig vom Ernährungsstatus wurden präoperativ bei viszeralchirurgischen Patienten Trinknahrungen in 3 wichtigen prospektiv randomisierten Studien untersucht [230, 244, 452] (alle 1+). Obwohl 2 Studien keine signifikante Verbesserung des Outcomes zeigten, fand sich bei Smedley et al eine signifikante Verminderung der leichteren Komplikationen. Außerdem ging die postoperative Fortsetzung der Einnahme der Trinknahrung mit einem geringeren Gewichtsverlust einher [246] (1+). In einer systematischen Übersicht und Metaanalyse von 9 unter dem Aspekt der präoperativen Prähabilitation zusammengestellten kontrollierten Studien (6 ausschließlich Ernährungsintervention, 3 multimodal) bei Patienten mit kolorektalen Resektionen fand sich für eine Ernährungsintervention mit Trinknahrung über mindestens 7 Tage eine signifikante Verkürzung der Krankenhausverweildauer um 2 Tage, wobei die Supplementierung postoperativ fortgesetzt wurde. Während die alleinige Ernährungs-Prähabilitation die Rekonvaleszenz bezüglich der Funktionalität nach 4 und 8 Wochen nicht verbesserte, wurde dies dann durch eine multimodale Prähabilitation erreicht [267] (1++). Eine besondere Risikogruppe sind geriatrische Patienten mit Sarkopenie.

Die Datenlage ist gerade für ältere Patienten begrenzt. Daniels et al. (2020) schlossen in ihre nach AMSTAR II gut bewerteten auf ältere Patienten mit abdominalchirurgischer Tumoroperation zielende systematische Übersicht 33 Studien mit 3.962 Patienten ein. Bei gezielter präoperativer Ernährungstherapie konnte in der Metaanalyse eine Senkung der postoperativen Komplikationsraten erreicht werden. (Risikodifferenz – 0,18 (95 %CI -0,26 – -0,10); p<0.001, I²=0%) [453] (1++).

Es kann kritisch eingewandt werden, dass die meisten Patienten mit kolorektaler Resektion wegen eines Karzinoms bei insgesamt niedriger Komplikationsrate kein hohes ernährungsmedizinisches Risiko aufweisen. Dies erklärt auch das Ergebnis einer systematischen Übersicht von 5 randomisierten Studien mit 583 Patienten, in der die präoperative Einnahme einer Trinknahrung nicht zu einer signifikanten Senkung der Komplikationsrate führte [454] (1++). Bemerkenswert ist, dass Burden et al. bei Patienten mit Operationen wegen eines kolorektalen Karzinoms eine geringere Rate von Surgical-Site-Infectionen in der Buzby Definition bei den Patienten mit präoperativem Gewichtsverlust beobachtet haben [452] (1+).

Für Patienten mit Gastrektomie und hohem metabolischen Risiko (SGA C) wurde randomisiert bei perioperativer Gabe einer Trinknahrung (500 mL/d) eine signifikante Senkung der Komplikationsrate insgesamt, besonders der schweren Komplikationen (Clavien-Dindo > IIIa) gezeigt [455] (1 + ). In einer multizentrischen australischen Beobachtungsstudie bei 200 Patienten mit Resektionen am oberen Gastrointestinaltrakt hatten Patienten mit präoperativer Einnahme einer Trinknahrung für mehr als 2 Wochen einen signifikant niedrigeren Gewichtsverlust als solche ohne Supplement (1,2 ± 1,8 vs. 2.9 ± 3,4, p = 0.001). Bei den mangelernährten Patienten führte die Einnahme der Trinknahrung über mehr als

2 Wochen zu einer verminderten Krankenhausverweildauer (Regressionskoeffizient -7,3, 95 %CI -14,3 – -0,3, p = 0,04). Mehr als 3 Diätberatungen führten bei den mangelernährten Patienten zu einer signifikant reduzierten Komplikationsrate (OR 0,2, 95 %CI 0,1–0,9, p = 0,04) [456] (2+).

Da viele Patienten in der letzten Woche präoperativ ihren Energiebedarf oral nicht ausreichend decken, ist es Konsens in der Arbeitsgruppe, diese Patienten unabhängig vom Ernährungsstatus zur Einnahme von Trinknahrungen zu motivieren. Da die Compliance zur Einnahme von Trinknahrungen eingeschränkt sein kann, ist es sinnvoll, den Patienten über potenzielle Vorteile und Nutzen eingehend zu informieren (Grass et al, 2015 [457] (2+). In der Argumentation werden die Vorteile für die Heilung und die Verminderung des Risikos einer Reoperation von Patienten am besten angenommen. Dies wurde für die Einnahme eines Vitamin D- Supplements bei orthopädisch operierten Patienten gezeigt [458] (2+).

Die prästationäre Durchführung der enteralen Ernährungstherapie ggf. mit Unterstützung eines Homecare Pflegedienstes ist sowohl aus ökonomischen als auch aus infektiologischen Gründen anzustreben. Zu den immunmodulierenden Diäten s. Kommentar zu Empfehlung 12

# 4.3 Wann besteht die Indikation zur präoperativen parenteralen Ernährung?

| EMPFEHLUNG 18              |                                                                                                                                                                                                                                                                                      |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A/0                        | Bei Patienten mit Mangelernährung und/oder hohem metabolischen Risiko, bei denen eine bedarfsgerechte orale/enterale Ernährung nicht möglich ist, soll eine präoperative parenterale Ernährung durchgeführt werden (A). (BM) Ein Zeitraum von 10–14 Tagen kann empfohlen werden (0). |  |
| Modifiziert,<br>Stand 2022 | Starker Konsens 100% Zustimmung                                                                                                                                                                                                                                                      |  |

#### Kommentar

Die Vorteile einer präoperativen parenteralen Ernährung für 7–14 Tage mit dem Ziel der Verminderung postoperativer Komplikationen sind nur evident für Patienten mit schwerer Mangelernährung (Gewichtsverlust > 15 %) [269, 459] (beide 1 + ) oder hohem metabolischen Risiko [447] (2 + ). Die Kombination einer Mangelernährung mit Nichtdurchführbarkeit einer EE findet sich zumeist bei Patienten mit Tumoren im oberen Gastrointestinaltrakt oder schwerer entzündlicher Darmerkrankung [460].

Eine große Cochrane-Analyse zur präoperativen PE hat bei Patienten mit Resektionen im Gastrointestinaltrakt eine Senkung der Komplikationsrate von 45 % auf 28 % gezeigt [383] (1++). Während die Autoren einen hohen Bias bei 3 der eingeschlossenen über 20 Jahre alten Studien diskutierten, waren 2 aktuellere Studien mit positiven Ergebnissen nicht in die Metaanalyse aufgenommen worden [269, 275] beide (1+).

Wenn die PE für 10 Tage präoperativ verabreicht und postoperativ 9 Tage fortgesetzt wird, kann eine Senkung der Komplikationsrate um 30% und eine Verminderung der Letalität erreicht werden [269] (1+).

Eine Erholung der körperlichen Funktion und des Körpereiweiß kann bereits nach 7 Tagen einer PE erreicht werden. Eine weitere signifikante Verbesserung erfordert noch eine weitere Woche [461] (2+). Kontrollierte Studien zum Vergleich einer Zeitdauer von 7 und 14 Tagen liegen nicht vor. Fukuda et al (2015) haben bei Verwendung der ESPEN Definition des hohen metabolischen Risikos für Patienten nach Gastrektomie gezeigt, dass die schweren Komplikationen nach Clavien-Dindo IIIb erst nach 10–13 Tagen Ernährungstherapie gesenkt wurden und eine Fortsetzung keine weiteren Vorteile brachte [447] (2+). Bisher liegen nur retrospektive Daten für die Definition des Risikos durch computertomografisch diagnostizierte Sarkopenie vor. In einer Propensity Score Matching Analyse von jeweils 166 sarkopenen Patienten mit Gastrektomie konnten Huang et al. bei einer präoperativen PE für 3–7 Tage eine Senkung der postoperativen Komplikationen und der Krankenhausverweildauer nur bei gleichzeitig bestehender Hypalbuminämie (<35 g/l) beobachten (2-) [462].

Während die ASPEN Leitlinie 2009 für eine präoperative PE 7 Tage empfiehlt [463], ist es die Meinung der Arbeitsgruppe, dass bei Patienten mit hohem metabolischem Risiko die zu erwartende Verminderung des Komplikationsrisikos ggf. auch stationär eine präoperative Durchführung über 14 Tage rechtfertigt. Wann immer möglich z. B. bei neoadjuvanter Therapie sollte prästationär eine Prähabilitation für 4–6 Wochen angestrebt werden [267, 464].

### 5. Postoperative Ernährung

# 5.1 Welche Patienten profitieren besonders von einer frühen postoperativen Ernährung?

| EMPFEHLUNG 19              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| А/ККР                      | Eine enterale Ernährung soll innerhalb von 24 Stunden bei den Patienten begonnen werden, bei denen ein oraler Kostaufbau noch nicht möglich ist (A). Dies gilt insbesondere bei: Patienten, bei denen die orale Kalorienzufuhr voraussichtlich in den nächsten 7 Tagen < 50 % sein wird (BM) (KKP) Patienten nach großen Kopf-Hals-Operationen und gastrointestinalen Resektionen wegen eines Tumors (KKP) (BM) Patienten mit Polytrauma und/oder schwerem Schädel-Hirn-Trauma (KKP) (BM) Patienten mit Mangelernährung zum Zeitpunkt der Operation (KKP) (BM) |  |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100% Zustimmung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

#### Kommentar

Früh postoperativ sollte die Ernährung möglichst ballaststoffarm sein – dies gilt besonders bei neu angelegten Kolonanastomosen, einem Ileostoma oder einem Kurzdarmsyndrom.

Prospektiv randomisierte Studien und eine Metaanalyse haben gezeigt, dass auch nach Gastrektomie und Ösophagusresektion eine frühe orale Ernährung sicher durchgeführt werden kann und ohne Risiko für die Anastomosenheilung ist [18, 181, 184, 465] (alle 1+). Eine randomisierte Studie bei Patienten mit Laryngektomie und primärem Pharynxverschluss zeigte, dass auch hier der Beginn der oralen Ernährung am ersten postoperativen Tag sicher möglich war [369] (1+). Nach Gastrektomie war eine nasojejunale Sonde zur Dekompression nicht erforderlich. Dies ging mit einer kürzeren Krankenhausverweildauer einher [180] (1+).

Patienten mit großen Karzinomoperationen wegen Kopf-Hals-Tumoren und Ösophagus- Magen- oder Pankreaskopfkarzinom weisen präoperativ häufig ernährungsmedizinische Defizite auf [45, 47, 48, 57, 59, 64, 70, 71, 208] und haben ein höheres Risiko für die Entwicklung septischer Komplikationen [47, 48, 57, 59, 71, 208, 212, 466] (alle 2). Postoperativ ist der orale Kostaufbau zumeist durch Schwellung oder verzögerte Magenentleerung bis zur Deckung des Kalorienbedarfs protrahiert, Die supplementierende Ernährungstherapie reduziert die Morbidität mit einem protektiven Effekt von enteraler und parenteraler Ernährung einschließlich Immunonutrition [212] (2+). In der Analyse einer großen USDatenbank haben nur etwa 15 % der mangelernährten Patienten postoperative Trinksupplemente erhalten [467].

Traumapatienten haben auch bei normalem Ernährungsstatus ein hohes Risiko für die Entwicklung septischer Komplikationen oder eines Multiorganversagens. Eine frühe EE verfolgt das Ziel der Verminderung septischer Komplikationen [106, 229] (beide 1 + ) und hat bei Beginn innerhalb von 24 Stunden auch zu einer verminderten Rate an Multiorganversagen geführt [468] (1 + ). Bei Patienten mit Schädel-Hirn-Trauma ist die frühe EE mit signifikant weniger Infektionen und verkürztem Intensivaufenthalt assoziiert (407) (1+). Viele dieser Studien haben jedoch methodische Schwächen.

# 5.2 Welche Sondennahrung sollte zur enteralen Ernährung eingesetzt werden?

| EMPFEHLUNG 20              |                                                                                               |
|----------------------------|-----------------------------------------------------------------------------------------------|
| ККР                        | Bei einer enteralen Ernährung sollte eine voll<br>bilanzierte Standardnahrung gegeben werden. |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100% Zustimmung                                                               |

#### Kommentar

Die meisten Patienten können durch eine voll bilanzierte Standardnahrung adäquat ernährt werden (s. 3.6.2–3.6.4). Auch bei vorhandener Jejunalsonde wie bei einer Feinnadelkatheterjejunostomie (FKJ) ist die Gabe einer speziellen Oligopeptiddiät nicht erforderlich. Die Anreicherung der Sondennahrung mit Ballaststoffen ist sicher und kann möglicherweise die Rate an Diarrhöen vermindern. Die Studienlage ist jedoch ungenügend [469]. Bei der Auswahl der Sondennahrung sollte auch die individuelle Patiententoleranz/-präferenz berücksichtigt werden. Zur Vermeidung von Sondenverschluss durch "Clotting" und Infektionen wird auch aus Hygienegründen vom Einsatz selbst hergestellter ("home-made") Sondennahrungen abgeraten.

# 5.3 Welche Patienten profitieren von einer enteralen Sondennahrung?

| EMPFEHLUNG 2               | 21                                                                                                                                                                                                                                                                                              |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В                          | Bei Patienten mit Mangelernährung und/oder<br>hohem metabolischen Risiko sollte insbesondere<br>bei Ösophagus- und Magenresektion sowie<br>partieller Duodenopankreatektomie die intraope-<br>rative Platzierung einer nasojejunalen Sonde oder<br>Feinnadelkatheterjejunostomie erfolgen. (BM) |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100% Zustimmung                                                                                                                                                                                                                                                                 |
|                            |                                                                                                                                                                                                                                                                                                 |

| EMPFEHLUNG 22              |                                                                             |
|----------------------------|-----------------------------------------------------------------------------|
| Α                          | Eine Sondenernährung soll innerhalb von 24<br>Stunden begonnen werden. (BM) |
| Modifiziert,<br>Stand 2017 | Starker Konsens 97 % Zustimmung                                             |

| EMPFEHLUNG 23              |                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ККР                        | Bei Patienten mit Mangelernährung und/oder metabolischem Risiko sollte die Sondenernährung mit einer niedrigen Zufuhrrate (10–20 mL/h) begonnen und vorsichtig unter Beobachtung der individuellen intestinalen Toleranz gesteigert werden. So kann die Zeit bis zum Erreichen des Kalorienziels individuell sehr verschieden sein und 5 bis 7 Tage dauern. |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100% Zustimmung                                                                                                                                                                                                                                                                                                                             |

#### Kommentar zu den Empfehlungen 21-23

In zahlreichen Studien sind bei Resektionen am oberen Gastrointestinaltrakt die risikoarmen Vorteile einer intraoperativ mit der Spitze aboral der Anastomose platzierten Ernährungssonde (nasojejunal oder FKJ) gezeigt worden [344, 470–475] (alle 2+).

Die offene oder sogar laparoskopische Platzierung einer FKJ [476] ist bei entsprechender Erfahrung und Anwendung mit standardisierter Technik risikoarm. Die Komplikationsrate liegt in der Literatur zwischen 1.5-6% [373, 470, 472, 477–487] (12x 2-, 2x 2+).

Einige Autoren sehen die Routineanlage einer FKJ als Überbehandlung an und empfehlen die Anlage nur bei Hochrisikopatienten [115, 488, 489, 490] (alle 2-). Bei Patienten mit Pankreatoduodenektomie kann ein Score zur Einschätzung des Risikos schwerer chirurgischer Komplikationen angewandt werden, in den die Pankreastextur, der Durchmesser des Ductus pancreaticus, der intraoperative Blutverlust und der ASA-Score einfließen [491] (2+).

Retrospektiv haben Zhuang et al. von 716 Patienten mit Ösophagusresektion 68 mit intraoperativ platzierter Jejunostomieson-

Patienten mit Ösophagusresektion bestand in einer RCT im Vergleich zwischen früh EE über eine nasoduodenale Sonde oder FKJ kein signifikanter Unterschied in den katheterassoziierten Komplikationen [499](1+).

Thieme

Zwei nach AMSTAR II befriedigend bis gut bewertete Metaanalysen mit 7 bzw. 9 Studien (8 und 10/16) haben bei Patienten mit partieller Pankreatoduodenektomie signifikante Vorteile der früh enteralen gegenüber einer parenteralen Ernährung bezüglich der Krankenhausverweildauer gezeigt [500, 501] (1++). In einer weiteren nach AMSTAR II bewerteten Metaanalyse (10/16) von 8 randomisierten Studien mit 955 Patienten hat sich bei den Patienten mit enteraler supplementierender Ernährung nur bei Applikation über eine perkutane Sonde eine signifikant niedrigere Rate an infektiösen Komplikationen (OR 0,47, 95 %CI 0,25-0,87; p = 0.017,  $I^2 = 0\%$ ) und eine signifikant kürzere Krankenhausverweildauer (-1,56 Tage (95 %CI -2,13 – 0,98; p < 0,001,  $I^2 = 0$  %) ergeben [502] (1++).

Da zudem die nasojejunalen und -duodenalen Sonden im Vergleich zur FKJ ein signifikant höheres Dislokationsrisiko haben [115, 503] (beide 1 + + ), stimmt die Arbeitsgruppe Markides et al. [503] zu, dass bei Patienten mit Mangelernährung oder hohem metabolischen Risiko der FKJ der Vorzug gegeben werden sollte. Es ist sinnvoll, bei diesen Patienten die enterale Sonde bei der Entlassung zur poststationären Fortsetzung der EE zu belassen.

Die Toleranz der Sondennahrung muss in jedem Fall und besonders bei eingeschränkter gastrointestinaler Passage (z. B. beim Intensivpatienten) streng beobachtet werden [250] (1 + ). Eine zu rasche Steigerung der enteralen Zufuhr geht mit einer erhöhten Rate gastrointestinaler Intoleranz einher [504] (1+). So sollte eingeplant werden, dass der Nahrungsaufbau bis zur enteralen Deckung des Kalorienbedarfs 5–7 Tage oder länger dauern kann [220, 221, 473, 475] (3x 1+, 1x 2+). Eventuell sollte eine supplementierende parenterale Ernährung erfolgen (s. 3.1.1). In etlichen Kasuistiken ist er ischämiichtet wor-

| ant geringerer dewichtsver      | Territerate Erriaini                                           | ing cholgen (3. 3.1.1). In etherich Rasulstiken is                                              |
|---------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| t subtotaler Resektion [496]    | bei zu rascher Steigerung der EE die Entwicklung einer ischämi |                                                                                                 |
| n Studie wurde bei Patienten    | schen Darmnekro                                                | ose mit hohem Risiko der Letalität berichtet wor                                                |
| g in Kombination mit oraler     | den [115, 505-5]                                               | 11] (jeweils 3).                                                                                |
| ante Verminderung des Ge-       |                                                                |                                                                                                 |
| SMI beobachtet. Signifikant     |                                                                |                                                                                                 |
| oetitverlust als bei alleiniger | EMPFEHLUNG 2                                                   | 4                                                                                               |
| atienten nach Gastrektomie      | ККР                                                            | Wenn bei Patienten mit Mangelernährung und/                                                     |
| r ein Teil der Patienten in der |                                                                | oder metabolischem Risiko eine Sondenernäh-                                                     |
| nd 50,8%) mehr als 250 mL       |                                                                | rung für mehr als 4 Wochen erforderlich ist, wie                                                |
| 455] (1+).                      |                                                                | z. B. bei einem schweren Hirn-Trauma, sollte die<br>Platzierung einer perkutanen endoskopischen |
| on zeigte eine Beobachtungs-    |                                                                | Gastrostomiesonde (PEG/PEJ) erfolgen.                                                           |
| über eine FKJ bezüglich des     | MA I'C '                                                       | , , , , , , , , , , , , , , , , , , ,                                                           |
|                                 | Modifiziert,                                                   | Starker Konsens 100 % Zustimmung                                                                |

#### Kommentar

Stand 2017

Eine perkutane endoskopische Gastrostomie (PEG) sollte bei Patienten mit Indikation zur längerfristigen EE erfolgen, vor allem, wenn eine Laparotomie nicht indiziert ist wie bei schwerem Schädel-Hirn-Trauma oder nach neurochirurgischen Eingriffen. Bei Patienten mit stenosierendem Ösophaguskarzinom und geplanter neoadjuvanter Therapie sollte die PEG-Anlage vorher mit dem Chi-

de mit 648 Patienten ohne Sonde verglichen. Die Ernährungssonde wurde nur bei den Patienten implantiert, bei denen das Risiko einer Anastomoseninsuffizienz als hoch eingeschätzt wurde. Hinsichtlich der Krankenhausaufenthaltsdauer, der Letalität und des Gesamtüberlebens wurde kein signifikanter Unterschied beobachtet. Bei den Patienten mit Sonde bestand jedoch eine Tendenz zur rascheren Heilung einer Anastomoseninsuffizienz (27.2 vs. 37.4 d. p = 0,073). Sondenkomplikationen wurden nicht beobachtet [492] (2-). Eine Metaanalyse von 10 Studien zum Vergleich von Jejunostomie versus Nasoenteralsonde nach Ösophagusresektion zeigte Vorteile der Jejunostomie hinsichtlich postoperativer Pneumonie, Krankenhausverweildauer und Sondendislokation, jedoch ein erhöhtes Risiko für einen Ileus [493] (1-). Ähnliche Ergebnisse erbrachte die retrospektive Analyse von 847 Patienten mit Ösophagusresektion aus dem Nationalen Schwedischen Register für Ösophagus- und Magenkarzinome. Im Falle einer Anastomoseninsuffizienz war das Risiko, schwere Komplikationen (Clavien-Dindo≥IIIb) zu entwickeln, bei den Patienten mit Jejunostomie signifikant geringer. Es bestand kein erhöhtes Risiko für Jejunostomie-assoziierte Komplikationen [494] (2+). In einer Metaanalyse von 18 Studien zeigte sich in der Gruppe ohne FKI eine vergleichbare oder sogar geringere postoperative Komplikationsrate. Anastomoseninsuffizienz, pulmonale Komplikationen, Wundinfektionen. Ileus und lokale Infektionen an der FKJ-Austrittsstelle waren die häufigsten FKJ-Komplikationen. Die Inzidenz eines Ileus betrug etwa 6 % (95 %CI 3–12 %,  $I^2$  = 70,7 %). Mehr als 63 % der Patienten mit Ileus bedurften einer Reoperation. Die gepoolte mittlere Rate lokaler FKJ-Infektionen lag bei 7 % (95%CI 6-9%, I<sup>2</sup> = 48,1%). Etwa 7% der Patienten hatten eine Sondendysfunktion (Obstruktion oder Dislokation) (95 %CI 3-14 %, I<sup>2</sup>=81,8%) [495] (1++). Zu kritisieren ist, dass weder Parameter des Ernährungsstatus noch der Körperzusammensetzung erfasst wurden.

Nach Gastrektomie wurde in einer randomisierten Studie durch Einsatz einer Trinknahrung ein signifikant geringerer Gewichtsverlust beobachtet, bei den Patienten mit (1+). In einer weiteren randomisierten nach Gastrektomie durch Diätberatung Trinknahrung [497] (1+) eine signifika wichtsverlusts mit höherem BMI und S niedriger waren auch Fatigue und Appe diätetischer Beratung. Ebenfalls bei Pa haben Kong et al. beobachtet, dass nur zweiten und vierten Woche (26,2% un Trinknahrung pro Tag zu sich nimmt [4

Bei Patienten mit Ösophagusresektio studie Vorteile einer längerfristigen EE Risikos von Anastomosenkomplikationen [474, 485] (2-). Die Komplikationsrate war niedrig (1,5%) [485] (2-). In einer RCT mit 68 Patienten nach Pankreatoduodenektomie ergab sich im Vergleich einer EE über Nasojejunalsonde vs. FKJ kein signifikanter Unterschied in der Rate infektiöser Komplikationen (15% vs. 13%) [498] (1+). Die Rate von Darmverschluss und Magenentleerungsstörung war signifikant niedriger in der Gruppe mit nasojejunaler Ernährung. Katheterassoziierte Komplikationen waren häufiger in der FKJ Gruppe (35,3 % vs. 20,6 %). Nasojejunale Ernährungssonden wurden signifikant früher wieder entfernt. Die postoperative Krankenhausverweildauer war signifikant kürzer in der FKJ Gruppe [498] (1+). Bei 150 rurgen abgestimmt werden. Die Leitlinie zur Platzierung einer PEG [512] empfiehlt die Anlage ab einer Ernährungsdauer von 2–3 Wochen.

# 5.4 Welchen Patienten nutzt eine enterale Ernährung nach der Entlassung aus dem Krankenhaus?

| EMPFEHLUNG 25              |                                                                                                                                                                                                                                                                                                                |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В                          | Bei Patienten, die perioperativ einer Ernährungs-<br>therapie bedurften, sollte die regelmäßige<br>Erfassung des Ernährungsstatus während des<br>Krankenhausaufenthaltes mit poststationärer<br>Fortsetzung einschließlich Ernährungsberatung<br>sowie ggf. oraler/enterale Supplementierung<br>erfolgen. (BM) |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100 % Zustimmung                                                                                                                                                                                                                                                                               |

#### Kommentar

In einer prospektiven Studie von 50 Patienten mit großer abdominaler Operation wurden Eiweiß- und Energieaufnahme in der ersten Woche postoperativ erfasst. Bei der Mehrheit der Patienten waren Energie- (82%) und Eiweißaufnahme (90%) unzureichend Bei den Patienten, die das Proteinziel nicht erreichten, wurden zudem mehr Clavien-Dindo III Komplikationen beobachtet [513] (2+).

Eine prospektive Kohortenstudie hat nur bei 10% der Patienten mit Ösophagusresektion (n = 96), die eine Rekonstruktion als Magenhochzug erhielten, eine den allgemeinen Empfehlungen folgende ausreichende Zufuhr an Mikronährstoffen gezeigt [514] (2+). Bei der Einnahme von oraler Trinknahrung ist die Compliance häufig eingeschränkt [457, 515]. Mögliche Ursachen sind Geschmack, der Verlust an Appetit, Völlegefühl, eine verminderte enterale Toleranz mit Dumping-Syndrom, Meteorismus und Diarrhö.

Die Zahl von ernährungsbezogenen Beschwerden war jedoch kein unabhängiger Risikofaktor für das Vorliegen einer suboptimalen Nahrungszufuhr [514] (2+).

Eine systematische Übersicht von 18 Studien hat bei Patienten nach Ösophagusresektion einen postoperativen Gewichtsverlust von 5–12% innerhalb von 6 Monaten gezeigt. Mehr als die Hälfte der Patienten verlor>10% an Körpergewicht [516] (2++).

So muss beachtet werden, dass diese Patienten auch postoperativ metabolische Risikopatienten sind und damit Verlaufskontrollen des Ernährungsstatus (Minimum: BMI) einschließlich der Dokumentation der Menge an oraler Nahrungszufuhr zu empfehlen sind. Die Compliance bei der Einnahme von Trinknahrungen ist häufig eingeschränkt [457].

Eine Ernährungsberatung wird dringend empfohlen und von den meisten Patienten sehr gerne angenommen. In 6 RCT wurde eine postoperative und poststationäre Gabe von oraler Trinknahrung untersucht [219, 226, 228, 230, 244, 247] (jeweils 1+). Die verfügbaren Daten lassen die Empfehlung einer Routinegabe nicht zu, zeigen aber einen Nutzen bei der Erholung des Ernährungsstatus, eine Senkung der Komplikationsrate und eine Besserung des allgemeinen Wohlbefindens sowie der Lebensqualität bei den Patienten, die ihren Ka-

lorienbedarf in der häuslichen Umgebung nicht durch die normale Ernährung decken können. Dies gilt ganz besonders für Patienten nach großen gastrointestinalen Eingriffen wie einer Gastrektomie [517], für geriatrische Patienten mit Frakturen [39, 55, 225] aber auch nach kolorektalen Resektionen [518]. Bei Einnahme einer Trinknahrung war die Energieaufnahme jeweils in der Interventionsgruppe signifikant höher als in der Kontrollgruppe [55, 247]. Bei geriatrischen Patienten war jedoch die Compliance der Einnahme von Trinknahrung gering und dies unabhängig vom Ernährungsstatus. Dennoch war die Energieaufnahme signifikant höher in der Interventionsgruppe als in der Kontrollgruppe [55, 247] (2+).

Eine Verlaufskontrolle des Ernährungsstatus kann mit der Beobachtung des BMI leicht durchgeführt werden. Jedoch ist der BMI nicht sensitiv für Unterschiede in der Körperzusammensetzung. Die Bioelektrische Impedanzanalyse (BIA) ist eine leicht durchführbare nicht-invasive Methode, welche auch bei ambulanten Patienten ohne Belastung durchgeführt werden kann. Der intraindividuelle Verlauf kann in einem Drei-Kompartiment-Model (Extrazellulärmasse, Körperzellmasse und Fettmasse) dargestellt und beobachtet werden.

| EMPFEHLUNG 26      |                                                                                                                                                                               |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ККР                | Eine intraoperativ platzierte Feinnadelkatheterjejun-<br>ostomie kann zum Zeitpunkt der Entlassung vorüber-<br>gehend in Abhängigkeit vom Gewichtsverlauf<br>belassen werden. |
| Neu, Stand<br>2022 | Starker Konsens 100% Zustimmung                                                                                                                                               |

#### Kommentar

Sofern bei der Operation eine FKJ implantiert wurde, kann es von Vorteil sein, diese nicht bereits bei der Entlassung aus dem Krankenhaus zu entfernen. Wenn notwendig, kann eine supplementierende EE über die FKJ z. B. mit 500–1000 kcal/d über Nacht über eine längere Periode erfolgen. Eine entsprechende Unterweisung des Patienten und seiner Familie ermöglicht in den meisten Fällen die Versorgung ohne Einbindung eines Pflegedienstes. In einer randomisierten Studie zur heimenteralen Ernährung ist die Sicherheit der FKJ gezeigt worden. Ein besserer Erhalt des Körpergewichts, der Muskel- und Fettkompartiments konnte beobachtet werden [519] (1+). So kann bei dem unvermeidlichen Gewichtsverlust zumindest eine Verminderung zum Erhalt der Körperzusammensetzung erreicht werden.

Insbesondere Patienten mit postoperativen Komplikationen verlieren Körpergewicht und haben ein hohes Risiko zur weiteren Verschlechterung des Ernährungsstatus. Dies ist in der retrospektiven Analyse von 146 Patienten einer prospektiven Studie gezeigt worden [520] (2-).

Außerdem wird bei den meisten Patienten nach großen gastrointestinalen Eingriffen und Pankreasresektionen gemessen am Kalorienbedarf die orale Kalorienzufuhr für eine längere Periode inadäquat sein. Dies bedeutet das potenzielle Risiko für eine postoperative Mangelernährung. In einer Beobachtungsstudie ist bei Patienten mit kompliziertem Verlauf und Intensivbehandlung nach

der Extubation eine spontane Kalorienaufnahme nicht höher als 700 kcal/d gezeigt worden. Dies ist in einer Periode mit einer empfohlenen Energiezufuhr von 1,2–1,5 Mal·dem Ruheenergiebedarf metabolisch völlig unzureichend und macht deutlich, wie wichtig die Beobachtung der spontanen oralen Nahrungsaufnahme in der Phase der Rekonvaleszenz ist [521] (2+).

Nach Ösophagusresektion kann bei 30 % der Patienten ein Gewichtsverlust von mehr als 15 % innerhalb von 6 Monaten erwartet werden [522] (2+). Eine Metaanalyse von 18 Studien ergab postoperativ einen Gewichtsverlust von 5–12 % nach 6 Monaten. Mehr als die Hälfte der Patienten verlor > 10 % des Körpergewichts nach 12 Monaten [512,516] (1-). Dies muss als bariatrischer Effekt dieser Operationen aufgefasst werden.

Im Vergleich mit einer Kontrollgruppe haben Chen et al. bei älteren Patienten nach Ösophagusresektion signifikante Vorteile für eine heimenterale Ernährung über 8 Wochen bezüglich BMI, Patient Generated SGA (PG-SGA) Score, Serumalbumin und Immunparameter gezeigt [523] (1+).

Eigene Ergebnisse bei Patienten mit Ösophagus- und Magenresektion einschließlich partieller Pankreatoduodenektomie zeigen auch bei konsequenter postoperativer Fortsetzung der Ernährungstherapie über FKJ nach 6 Monaten bei 40 % der Patienten einen Gewichtsverlust > 10 %. Eine Stabilisierung des Körpergewichts wurde bei fortgesetzter enteraler Supplementierung nach 4–6 Monaten erreicht. [524] (2+). Vor der Entfernung einer FKJ sollte ein mehrwöchiger Auslassversuch unter Supplementierung mit ONS erfolgen. Im Fall einer Verschlechterung kann die EE wieder aufgenommen werden.

#### Heimenteral versus orale Trinknahrung

In einer aktuellen Metaanalyse von 15 RCT mit 1.059 Patienten mit Resektionen am oberen Gastrointestinaltrakt wurden heimenterale Ernährung und ONS verglichen [525] (1++). Bei der heimenteralen Ernährung wurde im Vergleich zur Kontrolle ohne Supplementierung ein signifikant geringerer Gewichtsverlust (-3,95 vs. -5,82 kg; SMD 1,98 kg; 95 %CI 1,24–2,73, I²=71 %) mit Verminderung der Entwicklung einer Mangelernährung beobachtet (RR = 0,54; p<0,01). Keine signifikanten Unterschiede wurden hingegen im Vergleich zwischen den Patienten mit oraler Supplementierung und der Kontrollgruppe ohne Supplementierung gefunden. In der enteral ernährten Gruppe fielen auch die Dimensionen der Lebensqualität Körperliche Funktion und Fatigue signifikant besser aus.

In einer randomisierten Studie konnte bei 353 Patienten mit NRS≥3, die nach Gastrektomie in der Interventionsgruppe eine Ernährungsberatung in Kombination mit ONS erhielten, eine signifikante Verminderung des Gewichtsverlusts bei höherem BMI und SMI beobachtet werden. Während kein Unterschied in der 90-Tage-Wiederaufnahmerate bestand, waren Fatigue und Appetitverlust weniger häufig als bei den Patienten mit ausschließlicher Ernährungsberatung [497] (1+).

In einer multizentrischen randomisierten Studie von 1.003 Patienten nach Gastrektomie wurden die Auswirkungen der Einnahme einer Trinknahrung mit 400 kcal/d auf den Gewichtsverlust innerhalb eines Jahres mit Kontrollpatienten verglichen. Insgesamt war der Gewichtsverlust in der Interventionsgruppe nach 3 Monaten signifikant geringer. Dies glich sich im weiteren Verlauf an und war nach einem Jahr ohne signifikanten Unterschied. In der ONS

Gruppe nahmen nur 50,4% der Patienten mehr als 200 kcal/d ein (im Mittel 301 mL), hatten aber dann auch nach einem Jahr einen signifikant niedrigeren Verlust des Körpergewichts  $(8,2\pm7,2\%)$  als die Kontrollen (p = 0,0204) [526] (1+).

Weitere Daten aus kontrollierten Studien sind dringend erforderlich, um die langfristigen Vorteile der poststationären Ernährungstherapie zu untersuchen. Aufgrund der vorliegenden Daten erscheint eine randomisierte Studie ethisch nur zum Vergleich einer enteralen mit einer oralen Supplementierung vertretbar.

Für die Verlaufskontrollen kann die Evaluation durch den Patienten selbst mit einem validierten Instrument wie dem PG-SGA hilfreich sein [527]. Zukünftig werden auch Apps und virtuelles Coaching an Bedeutung gewinnen [528].

### 6. Bariatrische Chirurgie

| EMPFEHLUNG 27              |                                                                                             |
|----------------------------|---------------------------------------------------------------------------------------------|
| Α                          | Nach bariatrischer Chirurgie soll ein früher<br>oraler Kostaufbau durchgeführt werden. (BM) |
| Modifiziert, Stand<br>2017 | Starker Konsens 100 % Zustimmung                                                            |

#### Kommentar

Nach Roux-Y-Bypass basiert der postoperative Gewichtsverlust nicht auf einer Erhöhung des Energieverbrauchs, sondern neben dem mechanisch restriktiven Effekt auf der Einschränkung des Appetits durch die veränderte Sekretion gastrointestinaler Hormone [529]. Hierbei sind auch Mikrobiom und Gallefluss von Bedeutung.

Die Evidenz bezüglich der Wirksamkeit einer hohen Proteinzufuhr von mindestens 60 g/d nach einer bariatrischen Operation ist bislang inkonsistent. Während erste Untersuchungen zeigten, dass hierdurch sogenannte fettfreie Körpermasse geschützt wird [530, 531] (beide 2+), konnte eine 12 Studien inkludierende systematische quantitative Übersicht diesen Effekt nicht als signifikant bestätigen [532] (2++). In einer prospektiven Kohortenstudie bei 77 Patienten mit Sleeve-Gastrektomie war eine Proteinzufuhr≥60 q/d nach 6 Monaten mit einem signifikant niedrigeren Verlust an fettfreier Masse bei Frauen assoziiert (8,9 ± 6,5 % versus 12,4 ± 4,1 %; p = 0,039), und dies konnte jedoch nicht signifikant auch bei Männern beobachtet werden  $(9,5\pm5,5\%)$  versus  $13,4\pm6,0\%$ ; p = 0,068) [533] (2+). Einige Studien weisen auf weitere positive Aspekte einer hohen Proteinaufnahme, wie eine höhere Gewichtsreduktion und eine verbesserte Wundheilung, hin [531, 534]. Eine verbesserte Gewichtsreduktion konnte auch im Vergleich einer proteinreichen Diät von 1,34 g/kg Körpergewicht mit Standardproteinzufuhr von 0,8 g/kg Körpergewicht bei konservativer Gewichtsabnahme gezeigt werden – jedoch nur wenn die Patienten eine hohe Therapieadhärenz aufwiesen [535] (1+). Ferner wird basierend auf der Beobachtung von Patienten mit diätetischer Gewichtsreduktion eine bessere subjektive Sättigung und Vermeidung von Mangelernährung angenommen [536]. Insgesamt fehlt es für die Empfehlungen zur postbariatrischen Proteinzufuhr noch immer an validen Daten.

In jedem Fall scheint eine proteinreiche hypokalorische Diät mindestens so gut zu sein wie eine Diät mit nicht erhöhter Protein-

zufuhr. Um Prozesse in der Nachsorge der bariatrischen Chirurgie zu erleichtern und eine Verbesserung der Compliance zu erzielen, kann die Empfehlung einer hohen Proteinaufnahme von mindestens 60 g/d ausgesprochen werden.

Mit niedrigem Evidenzgrad empfiehlt die ASPEN eine proteinreiche Ernährung mit 1,2 g Eiweiß/kg tatsächlichem Körpergewicht oder 2–2,5 g Eiweiß/kg idealem Körpergewicht [537]. So kann bei adipösen Patienten nach einer bariatrischen Operation eine an das Körpergewicht oder das ideale Körpergewicht angepasste proteinreiche Ernährung empfohlen werden.

Erste Studien verweisen zudem auf eine Verbesserung verschiedener Aspekte einer nichtalkoholischen Fettlebererkrankung nach einer zweiwöchigen präoperativen kalorienarmen Diät bei adipösen Patienten, die sich einer bariatrischen Operation unterziehen [538, 539]. Aber auch um den Weg für die Umsetzung postoperativer Ernährungsempfehlungen zu ebnen, kann eine präoperative proteinreiche und kalorienarme Ernährung als Vorbereitung für bariatrische Verfahren angedacht werden. Bei Patienten mit Nierenfunktionsstörung müssen Einschränkungen einer proteinreichen Ernährung berücksichtigt werden [540].

Übergewichtige Menschen haben bereits vor einer bariatrischen Operation ein hohes Risiko für malnutritionsbedingten Mikronährstoffmangel [541, 542]. Auch in diesem Zusammenhang sind geschlechtsspezifische Aspekte zu berücksichtigen [543]. Da bariatrische Operationen – insbesondere Verfahren mit einer hohen malabsorptiven Komponente – diese Situation eher verschlechtern, wird eine ausreichende Supplementierung der Mikronährstoffe empfohlen [544]. Die postoperative Verminderung der Knochendichte und der Magermasse kann durch präoperative Vitamin D Gabe ("Loading") mit postoperativer Vitamin D- und Kalzium-Gabe und BMIadjustierter Proteinzufuhr in Verbindung mit körperlicher Aktivität (Gymnastik) zumindest abgeschwächt werden [545]. Im Falle eines längeren Krankenhausaufenthaltes nach einer bariatrischen Operation kann eine Mikronährstoff-Supplementierung bereits in der Klinik in Betracht gezogen werden. Dies gilt besonders für Vitamin B1. In Anbetracht neuer Daten die zeigen, dass Ernährungsempfehlungen wie die Substitution von Mikronährstoffen und der Proteinzufuhr in der Langzeitbeobachtung nach einer bariatrischen Operation nur unzureichend eingehalten werden, erscheinen diese Empfehlungen umso wichtiger [546] (1++).

Eine hypokalorische Ernährung ist Teil der Behandlungsstrategie, sodass bei unkompliziertem Verlauf kein Bedarf zur parenteralen Supplementierung besteht. So empfehlen auch die Allied Health Nutritional Guidelines for the Surgical Weight Loss keine routinemäßige parenterale Ernährung [547]. Bei diesen Patienten ist ein funktionierender Gastrointestinaltrakt zu erwarten, was gegen die möglichen Komplikationen eines zentralen Venenkatheters abzuwägen ist [548] (2+).

| EMPFEHLUNG 28       |                                                                                                                                                                                                                   |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ККР                 | Bei Patienten mit bariatrischer Chirurgie<br>und Komplikationen mit Indikation zur<br>Relaparoskopie/-tomie kann der Einsatz<br>einer nasojejunalen Sonde oder Feinnadel-<br>katheterjejunostomie erwogen werden. |
| Geprüft, Stand 2017 | Starker Konsens 100% Zustimmung                                                                                                                                                                                   |

| EMPFEHLUNG 29          |                                                                                                                                                         |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                      | Für alle weiteren Fragestellungen können die<br>Empfehlungen für Patienten mit großen<br>viszeralchirurgischen Eingriffen zur Anwendung<br>kommen. (BM) |
| Geprüft,<br>Stand 2022 | Starker Konsens 100 % Zustimmung                                                                                                                        |

#### Kommentar zu den Empfehlungen 28 und 29

Selbst bei schweren Komplikationen sind die Vorteile einer EE im Hinblick auf das Outcome (Letalität) und das Kosten-Nutzen-Verhältnis zu berücksichtigen [549–551] (alle 2+). Für die EE können eine intraoperativ vorsichtig platzierte nasojejunale Sonde, eine FKJ oder sogar eine Gastrostomie im Restmagen zum Einsatz kommen [549–552] (alle 2+). Hier ist das Risiko einer Leckage beim morbid adipösen Patienten jedoch erhöht.

### 7. Organtransplantation

# 7.1 Wann ist eine Ernährungstherapie vor Organtransplantation notwendig?

| EMPFEHLUNG 30              |                                                                                                                |
|----------------------------|----------------------------------------------------------------------------------------------------------------|
| Α                          | Bei Mangelernährung soll vor Organtransplantati-<br>on eine Optimierung des Ernährungsstatus<br>erfolgen. (BM) |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100% Zustimmung                                                                                |

| EMPFEHLUNG 31              |                                                                                                                                                                                                    |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В                          | Bei manifester Mangelernährung sollten zunächst<br>ein strukturierter Ernährungsplan und erst danach<br>die Supplementierung mit Trinknahrung oder eine<br>enterale Sondenernährung erfolgen. (BM) |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100 % Zustimmung                                                                                                                                                                   |

| EMPFEHLUNG 32              |                                                                                                                                                    |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| ККР                        | Bei Verlaufskontrollen von Patienten auf der<br>Transplantationswarteliste sollte auch eine Erfassung<br>des Ernährungsstatus durchgeführt werden. |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100% Zustimmung                                                                                                                    |

#### Kommentar zu den Empfehlungen 30-32

Eine Mangelernährung bestimmt den Verlauf einer chronischen Organinsuffizienz. Die Prävalenz bei Patienten auf der Warteliste zur Lebertransplantation kann zwischen 17,2 % und 57,7 % betragen [553] (2-). Dies gilt besonders für den funktionellen Status (siehe die entsprechenden organspezifischen Leitlinien). Ernährungsmedizinische Parameter korrelieren mit dem Outcome nach Transplantation [74, 75, 78, 80, 554]. Während der oft langen präoperativen Wartezeit muss diese Phase zur ernährungsmedizinischen Mitbehandlung genutzt werden. Vier Interventionsstudien (2 randomisiert) zur präoperativen Ernährung von Patienten auf der Warteliste für eine Organtransplantation liegen vor [555–558] (jeweils 1+ und 2+). Eine Verbesserung der ernährungsmedizinischen Parameter ist in allen 4 Studien gezeigt worden. Im Fall einer ernährungsmedizinischen Intervention konnte keine Beziehung zwischen Letalität und Ernährungsstatus festgestellt werden [553] (2+). In einer randomisierten Studie waren die vor der Transplantation verbesserten Parameter des Ernährungsstatus jedoch ohne Einfluss auf Outcome und Letalität [556] (1+).

Erste Ergebnisse zum Einsatz einer immunmodulierenden Diät bei Patienten auf der Warteliste für eine Lebertransplantation und für 5 Tage nach der Transplantation zeigten günstige Auswirkungen auf das Gesamtkörperprotein und eine mögliche Verminderung der Rate infektiöser Komplikationen [579] (2-).

Zur metabolischen Konditionierung des Lebendspenders und Empfängers liegen keine Daten vor. Experimentelle Ergebnisse [559], die einen Einfluss des Ernährungsstatus auf den Leberischämieperfusionsschaden zeigen, könnten das Konzept einer metabolischen Konditionierung durch zusätzliche präoperative Glukosedrinks bestätigen.

# 7.2 Wann ist eine Ernährungstherapie nach Organtransplantation indiziert?

| EMPFEHLUNG 33              |                                                                                                                                                                            |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В                          | Nach Organtransplantationen sollte ein früher<br>oraler Kostaufbau bzw. eine enterale Ernährung<br>gemäß individueller Toleranz innerhalb von 24<br>Stunden erfolgen. (BM) |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100 % Zustimmung                                                                                                                                           |

| EMPFEHLUNG 34              |                                                                                                                                                                                                  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                          | Nach Dünndarmtransplantationen kann<br>frühzeitig mit der oralen/enteralen Zufuhr<br>begonnen werden, wobei innerhalb der ersten<br>Woche auf eine vorsichtige Steigerung zu achten<br>ist. (BM) |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100% Zustimmung                                                                                                                                                                  |

| EMPFEHLUNG 35              |                                                                                                                                                            |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В                          | Wenn vor oder nach Organtransplantation die enterale<br>Ernährung nicht ausreicht, sollte eine supplementie-<br>rende parenterale Ernährung erfolgen. (BM) |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100 % Zustimmung                                                                                                                           |

| EMPFEHLUNG 36              |                                                                                                                                                                                      |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ККР                        | Im Rahmen der Verlaufskontrolle nach Transplan-<br>tation soll der Ernährungsstatus mitbeobachtet<br>werden. Für diese Patienten soll eine Ernährungs-<br>beratung angeboten werden. |
| Modifiziert,<br>Stand 2017 | Starker Konsens 100 % Zustimmung                                                                                                                                                     |

#### Kommentar zu den Empfehlungen 33-36

Insgesamt ist die Datenlage für spezifische Empfehlungen nach Lebertransplantation unbefriedigend. Dies hat eine Cochrane Analyse von Langer et al. [560] (1++) anhand von 13 prospektiven RCT oder solchen mit Cross-over-Design gezeigt. Es besteht Konsens, dass eine frühe orale/enterale Nahrungszufuhr auch bei Transplantationspatienten möglich ist [561, 562].

Eine speziell mit verzweigtkettigen Aminosäuren (BCAA) angereicherte orale Diät wird gut akzeptiert und kann eine bessere orale Nahrungsaufnahme bewirken [563] (2+). Eine Metaanalyse von 9 RCT und 10 Kohortenstudien mit 1.300 Patienten zum Vergleich enteraler vs. parenteraler Ernährung nach Lebertransplantation hat enteral eine signifikante Verminderung der postoperativen Infektionsraten sowie der Intensiv- und Krankenhausverweildauer mit günstigen Auswirkungen auf Ernährungsstatus und Leberfunktion gezeigt [564] (1++). Im Falle einer Mangelernährung sollte diese entsprechend der allgemeinen Empfehlungen frühzeitig mit einer PE kombiniert werden [564–567].

Die Absorption und Blutspiegel von Tacrolimus werden durch eine EE nicht beeinflusst [568] (2+). Nach Lebertransplantation sind enterale und parenterale Ernährung gleichwertig [276] (1+). Zusätzlich ist bei einer EE eine Reduktion der Inzidenz für virale Infektionen gezeigt worden [569] (1+).

Verglichen mit einer Standardsondennahrung und der Kombination mit einer selektiven Dünndarmdekontamination hat der Einsatz von Synbiotika (probiotische Bakterien, wie Lactobacillus plantarum) und Präbiotika zu einer signifikanten Reduktion der Rate an Infektionen nach Lebertransplantationen geführt [422] (1+). Im Vergleich mit einem lediglich Präbiotika enthaltenden Supplement konnte ebenfalls bei Einsatz von Synbiotika eine signifikante Senkung der bakteriellen Infektionsrate gezeigt werden [417] (1+). Eine Metaanalyse von 6 Studien mit 345 Patienten betrug die Dauer der Synbiotikagabe 7,14 Tage. In der Interventionsgruppe signifikant niedriger waren die Infektionsrate (RR = 0,29; 95 %CI, 0,14-0,60;  $p_H = 0,066$ ,  $I^2 = 51,7\%$ ) und das Auftreten eines Harnweginfektes (RR = 0,14; 95 %CI, 0,04-0,47,  $p_=0,724$ ,  $I^2 = 0$  %). Probiotika senkten signifikant die Dauer des Krankenhausaufenthalts  $(WMD = -1,37; 95\%CI, -1,92-0,82; p = 0,506; I^2 = 0\%)$  und der antimikrobiellen Therapie (WMD = -4,31; 95 %CI, -5,41 – 3,22; p = 0,019;  $I^2 = 69,8\%$ ) [570] (1++).

Die Implantation einer FKJ ist auch nach Lebertransplantation sicher möglich [571] (2-). Eine EE ist auch bei erhöhter intestinaler Sekretion nach Dünndarmtransplantation möglich und kann mit niedrigen Zufuhrraten in der ersten postoperativen Woche durchgeführt werden [572–575] (alle 2-).

Bei der Frage der Lipidzufuhr, hat eine MCT/LCT-Emulsion im Vergleich mit reinen LCT-Emulsionen günstige Auswirkungen auf die Regeneration der Funktion des retikuloendothelialen Systems gezeigt [576] (2+). Der Stoffwechsel beider Lipidemulsionen war ohne Unterschied [577] (1+). Im Vergleich mit einer normalen oralen Krankenhauskost sowie einer parenteralen Supplementierung mit 20 %-iger MCT-/LCT-Emulsion hat sich der Einsatz einer Omega-3-Fischöl angereicherten Lipidemulsion für 7 Tage nach Lebertransplantation günstig auf das Ausmaß des Ischämieschadens, die Rate infektiöser Komplikationen und die postoperative Verweildauer ausgewirkt [578, 579] (beide 1-).

Die Erfahrungen mit dem Einsatz von enteralen immunmodulierenden Nahrungen sind noch immer limitiert. Die ersten kontrollierten Daten haben nach Lebertransplantation gezeigt, dass ungünstige Effekte auf die Immunsuppression wahrscheinlich nicht auftreten [558] (2+). In der daraufhin durchgeführten RCT konnten jedoch auch keine Vorteile gezeigt werden [580] (1+).

Eine andere multizentrische kontrollierte Studie ist aufgrund ungenügender Rekrutierung vorzeitig abgebrochen worden [581]. Die Bedeutung einer Präkonditionierung des Organspenders und des Spenderorgans durch Hochdosisgabe von Arginin mit dem Ziel einer Bildung von Stickstoffmonoxid und einer vermehrten Bildung von Glutamin und Glutathion ist immer noch in der Diskussion [582, 583]. Auch die Beeinflussung des Ischämie-Reperfusionsschadens nach Lebertransplantation oder Leberoperationen im Allgemeinen durch die Aminosäure Glycin über die Kupferschen Sternzellen ist auch weiterhin in Diskussion [584, 585]. Die parenterale und enterale Anwendung von Omega-3-Fettsäuren erfasste die Metaanalyse von Lei et al. [437] (1–) mit vier heterogenen Studien, von denen zwei auf Chinesisch veröffentlicht wurden. Zur Verwendung von Glutamindipeptid wurden zwei auf Chinesisch veröffentlichte Studien einbezogen. Während bei Patienten, die Omega-3-Fettsäuren erhielten, kein signifikanter Rückgang der Rate infektiöser Komplikationen festgestellt wurde, konnte dieser Vorteil bei der parenteralen Glutamingabe beobachtet werden (RR: 0,30; 95 % CI: 0,12-0,75, p = 0,01). Die Rate der Abstoßungsreaktionen war für die gepoolten Daten und die Untergruppen ohne signifikanten Unterschied [586]. Aus diesen Gründen können derzeit keine Empfehlungen zum Einsatz einer Immunonutrition gegeben werden.

Malnutrition, Ischämie-Reperfusion und Immunosuppression beeinflussen auch das Mikrobiom nach Transplantation. Es kommt zu einer Veränderung der Mikrobiomdiversität, mit unterschiedlicher Bakterienzusammensetzung des Stuhls bei Abstoßung und Infektion, Diese Mikrobiomveränderungen sind auch prognostisch für den Krankheitsverlauf nach Organtransplantation [587, 588]. Erste Studien untersuchen den Einfluss einer EE auf das Mikrobiom nach allogener Stammzelltransplantation [589] (2+). Nach der Transplantation kommt es durch Normalisierung des Stoffwechsels, des Lebensstils und der körperlichen Aktivität primär zur Zunahme der Fett- und weniger der Muskelmasse [590]. So bedürfen die Patienten auch in dieser Phase und langfristig ernährungsmedizinische Verlaufskontrollen und diätetischer Beratung. Bei 145 Patienten nach Nierentransplantation fanden sich eine relativ erhöhte Fett- und verminderte Magermasse. Patienten mit normalem BMI wiesen eine bessere Transplantatfunktion auf als die mit Adipositas [591] (2-). Mit dem Ziel einer Verbesserung der Transplantatfunktion, des Patienten- und Transplantatüberlebens bei

verminderten Abstoßungsraten, wurde Fischöl in 15 randomisierten Studien mit 733 Patienten verabreicht. Die Cochrane Analyse hat außer einer moderaten Anhebung des HDL und Senkung des Cholesterins im Serum sowie des diastolischen Blutdrucks keine klinisch relevanten Verbesserungen ergeben [592] (1++).

Für Lebendspender und Lebendspender-Empfänger können keine anderen Empfehlungen gegeben werden als für Patienten nach großen abdominalchirurgischen Eingriffen.

### 8. Besondere Aspekte in der Kinderchirurgie

| EMPFEHLUNG 37              |                                                                                                              |
|----------------------------|--------------------------------------------------------------------------------------------------------------|
| 0                          | Ein frühzeitiger postoperativer oraler<br>Kostaufbau kann bei Kindern und Jugendlichen<br>erfolgen. (BM, QL) |
| Modifiziert,<br>Stand 2013 | Starker Konsens 100% Zustimmung                                                                              |

#### Kommentar

Bei neugeborenen und frühgeborenen Kindern resultiert die frühzeitige EE in einer verbesserten Entwicklung der Immunkompetenz und im niedrigeren Risiko für septische Komplikationen [593] (1+). Dies gilt auch nach intestinalen Anastomosen bei Chirurgie wegen kongenitaler Malformationen (1 + ) [594]. In einer Metaanalyse von 4 randomisierten Studien hat eine frühenterale Ernährung vor dem dritten Tag auch nach Darmanastomosen nicht zu einer erhöhten Rate von Anastomoseninsuffizienzen geführt. Bei frühenteraler Ernährung fanden sich eine signifikant verkürzte Krankenhausverweildauer (MD = -3.38; 95 %CI -4.29 - -2.48; p < 0.00001, I<sup>2</sup> = 36 %), ein früheres Eintreten der Darmtätigkeit (MD = -0,57; 95 %CI -0,79 --0.35; p < 0.00001,  $I^2 = 0\%$ ), eine niedrigere Rate chirurgischer Infektionen (OR = 0,27; 95 %CI 0,08-0,90; p = 0,03,  $I^2$  = 0 %), und schnellere Toleranz einer vollen EE (MD = - 2,00; 95 %CI -3,01 --2.79; p < 0.00001; 95 %CI 0.10-1.31; p = 0.12, I<sup>2</sup> = 41 %). Postoperatives Erbrechen und abdominelle Distension traten nicht häufiger auf (OR = 0,63; 95 %CI 0,13-3,16; p = 0,58, I<sup>2</sup> = 60 %) [595] (1++). Eine randomisierte Studie hat bei Kindern mit Herzoperation wegen eines kongenitalen Herzfehlers gezeigt, dass eine hochenergetische Ernährung mit einem verbesserten Wachstum, einem kürzeren Aufenthalt auf der Intensivstation, einer kürzeren Beatmungszeit und einer verminderten postoperativen Infektionsrate assoziiert war [596] (1+).

Zahlreiche Studien haben gezeigt, dass der Energiebedarf bei Neugeborenen nach größeren chirurgischen Eingriffen um 20% steigt und sich danach wieder innerhalb von 12 bis 24 Stunden normalisiert [597]. Postoperativ wird bei Kindern eine Wasserretention während der ersten 24 Stunden beobachtet, einhergehend mit erhöhten Spiegeln des antidiuretischen Hormons (ADH). Aus diesem Grund sollte die Flüssigkeitszufuhr eingeschränkt werden und auf die Natriumzufuhr besonders geachtet werden [598, 599].

Ein Kurzdarmsyndrom kann bei Kindern durch genetischen/angeborenen oder erworbenen Verlust an Dünndarmresorptionsfläche entstehen. Während einer langzeitparenteralen Ernährung bestimmen assoziierte Probleme und Komplikationen, wie Einschränkung der Leberfunktion, Thrombose, Embolie und Sepsis die Prognose [600].

Eine Metaanalyse von 5 RCT und 3 qualitativ guten prospektiven Kohortenstudien zeigte eine günstige Auswirkung einer Supplementierung der PE mit Omega-3-Fettsäuren auf biochemische Parameter der mit dem Kurzdarm assoziierten Lebererkrankungen (IFALD). Diese hatte jedoch keine Auswirkungen auf die Letalität [601] (1 + ). So kann sich derzeit der Einsatz einer mit Omega-3-Fettsäuren angereicherten PE bei Kindern nicht auf eindeutige Daten stützen.

#### **Nutritional Scores**

Validierte Nutritional Scores sind in der Kindermedizin selten. Sie unterscheiden sich von den in der Erwachsenenmedizin geltenden Scores, da Kinder einen anderen Metabolismus aufweisen und zusätzliche Anforderungen an eine ausgewogene Ernährung haben. Bei hospitalisierten Kindern werden unterschiedliche Risk Scores verwendet. Drei der meist verwendeten Scores sind das Screening Tool for Risk of Impaired Nutritional Status and Growth (STRONGkids), Pediatric Yorkhill Malnutrition Score (PYMS) und das Screening Tool for the Assessment for Malnutrition in Pediatrics (STAMP) [602]. Das STRONGkids Screening Tool wurde basierend auf den ESPEN Leitlinien entwickelt [87]. Eine Validierungsstudie aus dem Jahr 2013, welche in Belgien durchgeführt wurde, erachtet den Score als authentisch und einfach in der Handhabung [603] (2+). Der PYMS wurde am Royal Hospital for Sick Children in Yorkhill, Glasgow entwickelt. Er basiert ebenfalls auf den ESPEN Leitlinien. Im Vergleich zu STAMP sind falsch-positive Ergebnisse beim PYMS seltener [604] (2+). Der Vorteil des STAMP liegt darin, dass er auch ohne besondere ernährungsmedizinische Expertise mit minimalem Training in den klinischen Alltag eingebaut werden kann [605] (2+). Eine Studie aus dem Jahr 2016 evaluierte alle 3 genannten Screening Tools. In Anbetracht der schlechten Identifikation von subnormalen anthropometrischen Maßen, raten die Autoren von der Verwendung der Scores ab [606](2+). Demgegenüber wird die klinische Anwendbarkeit vom STRONGkids Score und vom STAMP Score von anderen Autoren in einer systematischen Übersicht von 8 Arbeiten als 'qut' taxiert [607](1-). Zusammengefasst hat sich bisher kein validierter und allseits anerkannter Ernährungsscore in der Pädiatrie etabliert.

#### Carboloading

Präoperatives Verabreichen von kohlenhydratreichen Nahrungsmitteln wird vereinzelt auch bei Kindern beschrieben. In einer randomiserten Studie wurden reduzierte Übelkeit, sowie verringerter Mageninhalt nach präoperativer Gabe von mit Kohlenhydraten angereicherten Getränken beschrieben beobachtet. Durch beide Faktoren wird eine Reduktion des Risikos von Aspirationen beschrieben [123] (1+). Eine weitere Studie untersuchte den Mageninhalt nach Gabe von kohlenhydratreichen Getränken 2 Stunden präoperativ sonographisch. Auch in dieser Studie wurde ein reduzierter Mageninhalt direkt vor der Einleitung der Anästhesie beschrieben [608] (2+).

#### Parenterale Ernährung

Bei kritisch kranken Erwachsenen wurde durch die randomisierte multizentrische EPaNIC Studie (Early versus Late Parenteral Nutri-

tion in ICU, n = 4.640) gezeigt, dass eine PE nicht vor dem achten Tag auf der Intensivstation begonnen werden sollte [609] (1+). Im Gegensatz zu Erwachsenen haben kritisch kranke Kinder eine limitierte Energie-, Fett und Proteinreserve und einen relativ höheren Energiebedarf [610]. Darauf basierend entstand die Empfehlung, parenteral zu ernähren, wenn eine EE insuffizient, kontraindiziert oder nicht möglich ist [611]. Im Jahr 2016 folgte dann die multizentrische und randomisierte Studie PEPaNIC (Early versus Late Parenteral Nutrition in the Pediatric ICU, n = 1.440), das Äquivalent zur EPaNIC Studie bei Kindern. Entgegengesetzt zu den bisher geltenden Empfehlungen, kommt die Studie zum Schluss, dass eine PE erst eine Woche nach Aufnahme auf die Intensivstation beginnen sollte. Der spätere Beginn der PE führt zu statistisch signifikanten Unterschieden hinsichtlich einer reduzierten Anzahl von Infektionen, kürzerem Aufenthalt auf der Intensivstation und verkürzter mechanischer Beatmung im Vergleich mit einer innerhalb von 24 Stunden begonnenen "frühen" parenteralen Applikation [612] (1+). Eine Subgruppenanalyse, nur Neugeborene betrachtend, kam zu ähnlichen Ergebnissen. Auch hier zeigt sich ein Vorteil für den verzögerten Einsatz der PE bei Neugeborenen [613] (2+). Eine weitere Subgruppenanalyse derselben Patientenkohorte, die nur Kinder einschloss, welche bei Eintritt auf die Intensivstation eine Malnutrition zeigten, spricht ebenfalls erst für den Einsatz der PE nach einer Woche. [614] (2+). Diese Ergebnisse haben Eingang in die Leitlinien aus dem Jahr 2018 der ESPGHAN (European Society for Pediatric Gastroenterology Hepatology and Nutrition) gefunden. Darin wird die Empfehlung ausgesprochen, eine PE erst eine Woche nach Eintritt auf die Intensivstation zu starten [615]. Eine abschlie-Bende Empfehlung ist allerdings auch hier noch ausstehend.

### 9. Besonderheiten in der Wundheilung

# 9.1 Wird eine Supplementierung bei Wundheilungsstörungen und chronischen Wunden empfohlen?

| EMPFEHLUNG 38              |                                                                                                                                                                  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В                          | Bei chronischen Wunden sollte frühzeitig eine<br>orale/enterale eiweißreiche Ernährung ggfs. mit<br>Substitution von Spurenelementen verabreicht<br>werden. (BM) |
| Modifiziert,<br>Stand 2013 | Starker Konsens 100 % Zustimmung                                                                                                                                 |

#### Kommentar

#### Akute und chronische Wunden

Es besteht Konsens darüber, dass gerade für die Heilung von akuten und chronischen Problemwunden wie bei einem Dekubitalukus eine adäquate individualisierte Ernährungstherapie Voraussetzung ist [616–618]. Die Evidenz zu konkreten Empfehlungen der Ernährungstherapie ist jedoch begrenzt. Dennoch liegen für das Leitlinien-Update aktuelle randomisierte Studien und Metaanaly-

sen vor. Hinzuweisen ist auch auf die ESPEN Micronutrients Leitlinie von 2022 (619).

Für den primären Endpunkt der qualitativen und quantitativen Wundheilung sind RCT schwierig zu standardisieren. So bezieht sich die Datenlage überwiegend auf chronische Dekubitalulzera, diabetische Fußulzera oder schwere Verbrennungen. Die Zahl der eingeschlossenen Patienten in den überwiegend monozentrischen Studien ist zumeist gering, die Heterogenität stark ausgeprägt und somit die Studienlage zur Supplementierung von Mikronährstoffen bei akuten Wunden eingeschränkt [617]. Es kann angenommen werden, dass Präparate mit Anteilen von Zink, Eisen, Karotin, Kupfer, Vitaminen A und C die normale Wundheilung unterstützen können. In einer aktuellen Metaanalyse von 28 Studien zeigten sich bei Patienten mit diabetischen und Dekubitalulzera Vorteile für die Wundheilung bei Anreicherung der Supplemente mit Mineralien, Vitaminen und Antioxidanzien im Vergleich mit einem einfachen Eiweißsupplement [618] (1++).

#### Wundheilung in verschiedenen Regionen

In der Studie von Collins et al. [620] (1-) wurde älteren Patienten (n = 50) mit Wundheilungsstörung als Ernährungsintervention eine orale Trinknahrung über 4 Wochen verabreicht. Untersucht wurde der Einsatz von Lösungen mit 1 oder 2 kcal/mL hinsichtlich der Effektivität. Verglichen mit der 1 kcal-Gruppe verbesserte sich in der 2 kcal-Gruppe der mentale Status, die Wundheilung und die Exsudatmenge.

Für geriatrische Patienten in Akut- und Langzeitbehandlung zeigte eine systematische Übersicht von 6 Studien mit eingeschränkter Qualität eine signifikante Reduktion der Wundgröße und verbesserte Wundheilung bei Anreicherung einer oralen Trinknahrung mit Arginin [621] (1-). Bei 75 geriatrischen Patienten mit Schenkelhalsfraktur führte eine Supplementierung mit Kalzium-Hydroxymethylbutyrat, Vitamin D und 36 g Eiweiß zu einer besseren Wundheilung [622] (1+).

Im Vergleich mit einem Placebo konnten bei Anreicherung mit Hydroxymethylbutyrat, Arginin und Glutamin für Patienten mit offen operierten abdominellen Malignomen bei präoperativer Gabe für 3 Tage und Fortsetzung für 7 Tage postoperativ keine Unterschiede in der Rate von Wund- sowie anderer Komplikationen gezeigt werden. Auch die Körperzusammensetzung und Handgriffstärke war ohne Unterschied [448] (1+).

Bei 20 Traumapatienten mit Wundheilungsstörung ist doppelblind randomisiert und Placebo kontrolliert bei Gabe eines Supplements mit Antioxidanzien ( $\alpha$ -Tocopherol,  $\beta$ -Carotin, Zink und Selen) und Glutamin eine raschere Wundheilung gezeigt worden ( $35\pm22$  d vs.  $70\pm35$  d; p=0,01) [623] (1+).

Farreras et al. (2005) zeigten in einer prospektiven randomisierten Studie bei 60 Patienten nach Magenresektion mit erst postoperativer immunmodulierender Supplementierung (Arginin, Omega-3-Fettsäuren, Ribonukleotide) signifikant weniger Wundheilungsstörungen, Nahtdehiszenzen und infektiöse Komplikationen [624]. Als Maß für die Wundheilung war die Menge an Hydroxyprolin in einem subkutan implantierten Katheterröhrchen signifikant höher als in der Interventionsgruppe. (59,7 nmol (5,0–201,8), vs. 28,0 nmol (5,8–89,6) p = 0,0018) (1+).

#### Diabetische Ulzera

Für die Wundheilung diabetischer Fußulzera haben einzelne randomisierte Studien metabolische Vorteile für die Supplementierung mit Magnesium [625] (1+), Magnesium und Vitamin E [626] (1+), Zink [627] (1+), Probiotika [628] (1+) und Omega-3 Fettsäuren (1000 mg 2 Mal pro Taq) [629] (1++) gezeigt. Für diese Patienten mit diabetischen Fußulzera hat die Anreicherung mit Hydroxymethylbutyrat. Arginin und Glutamin vor allem bei niedrigem Serumalbumin und verminderter Extremitätenperfusion eine bessere Heilung in Woche 16 gezeigt [630] (1+). In einer Studie mit 15 vs. 14 Patienten wurde gezeigt, dass neben der Supplementierung auch die Schulung der Diabetiker einen wichtigen Aspekt bildet So heilten diabetische Ulzera 13 Mal schneller durch 2 Mal tägliche Supplementierung und Schulung [631] (1+). Eine aktuelle Cochrane Metaanalyse von 9 randomisierten Studien mit 629 Patienten hat jedoch in 8 Studien keine sicheren Vorteile für eine evtl. auch dosisabhängige Supplementierung ergeben. Nebenwirkungen wurden nicht beobachtet [632] (1++). Verglichen wurden verschiedene Regime der eiweißangereicherten Trinknahrung gegen Placebo. Dabei zeigten sich die Heilungsraten nicht unterschiedlich, ebenso konnten keine Unterschiede im Hinblick auf Amputationsrate, Nebenwirkungen, Entwicklung weiterer Ulzerationen und Lebensqualität gefunden werden [632] (1++).

#### Prophylaxe/Prävention eines Dekubitus

Zur Prävention eines Dekubitus gehört neben den Basismaßnahmen (Lagerung, Druckentlastung, Mobilisation) auch die Ernährungsintervention. Es existieren 2 RCT mit kleinen Fallzahlen, die diesen Zusammenhang untersucht haben.

Eine randomisierte Studie von Theilla et al. [633] an 28 Intensivpatienten mit akutem Lungenversagen hat eine Standardnahrung versus eine Diät, die reich an Eicosapentaensäure und γ-Linolensäure über 7 Tage verglichen. Im Ergebnis traten weniger neue Dekubiti in der Interventionsgruppe auf. Die kontrollierten Ernährungsparameter zeigten eine deutliche Verbesserung durch den Einsatz von Eicosapentaensäure und γ-Linolensäure (1+).

Die placebokontrollierte Studie von Houwing et al. [634] hat 103 Patienten mit einer Schenkelhalsfraktur untersucht. Die Therapiegruppe bekam zusätzlich orale Trinknahrung, angereichert mit Protein, Arginin, Zink und Antioxidanzien. Ein Unterschied in der Inzidenz von Dekubitalulzera konnte nicht gefunden werden (Intervention 55% vs. Placebo 59%) Das Auftreten von Druckulzera m Stadium II war mit 18% vs. 28% tendenziell niedriger zugunsten der Therapiegruppe. Die Zeit bis zum Auftreten eines Dekubitus unterschied sich ebenfalls: In der Therapiegruppe dauerte es im Durchschnitt 3,6 Tage vs. 1,6 Tage in der Kontrollgruppe (p=0,09). Die regelmäßige enterale Zusatzernährung könnte somit auch zur Prophylaxe eines Dekubitus vorteilhaft sein.

#### Therapie des Dekubitus

Die allgemeinen Empfehlungen aller Fachgesellschaften hinsichtlich der Kalorienaufnahme sind eindeutig hinweisend auf die Notwendigkeit eines höheren Kalorienangebotes bei Patienten mit Dekubitus. Hierzu existieren einige RCT. Bauer et al. (2013) haben die Bedeutung der oralen Supplementierung für die Wundheilung gezeigt, während die Anreicherung mit speziellen Substraten keine Vorteile brachte [635] (1+).

Die Studie von Ohura et al. [636] ist eine Multizenterstudie. Dreißig Patienten mit einem Dekubitus wurden dabei randomisiert und eine Standarddiät gegen eine zusätzliche orale Trinknahrung über 12 Wochen getestet. Die Einstellung der Kalorien erfolgte nach Harris-Benedict (Basal Energy Expenditure x 1,1 x 1,3 bis 1,5). Das Alter der Patienten lag im Durchschnitt bei 81 Jahren. Gemessen wurden die tatsächliche Kalorienaufnahme und die Veränderung der Wundfläche. Die Kalorienaufnahme war in der Therapiegruppe signifikant höher. Die Kontrollgruppe erhielt 29,1 kcal/kg Körpergewicht/d, die Therapiegruppe 37,9 kcal/kg Körpergewicht/d. In der Beobachtungszeit nahm die Wundfläche in der Therapiegruppe signifikant schneller ab. Bereits nach 8 Wochen war dieser Effekt deutlich und hielt bis zum Studienende an (1+).

Die RCT von van Anholt et al. [637] untersuchte nicht mangelernährte Patienten mit Dekubitus. Die Therapiegruppe erhielt täglich zusätzlich 3 Mal 200 mL orale Trinknahrung. wohingegen der Kontrollgruppe ein Placebo verabreicht wurde. Die 34 Patienten wurden 8 Wochen therapiert. In der Therapiegruppe verkleinerte sich die Ulkusgröße signifikant (10,5 cm² vs. 11,5 cm²). Außerdem war der Verbrauch an Verbänden in der Therapiegruppe signifikant geringer, und die Häufigkeit an Exsudat verringerte sich (1+).

In die Metaanalyse von Stratton et al. [638] konnten nur 3 RCT in die eingehen. Die Auswertung der Studien ergab, dass eine Ernährungsintervention zu geringeren Exsudatmengen führt, daher mit weniger Verbänden und kürzeren Verbandzeiten einhergeht. (1++)

Cereda et al. [639] untersuchten bei älteren Patienten mit Dekubitus (n = 28) den Effekt des additiven Einsatzes oraler Trinknahrung mit Arginin, Zink und Vitamin C über 12 Wochen. Die Ernährungsintervention führte zur schnelleren Heilung bei einem Dekubitus. Die Abnahme der Wundgröße lag bei -6,1 cm² in der Therapiegruppe vs. -3,3 cm² in der Kontrollgruppe (p<0.05) (1+).

Die Effektivität der oralen Supplementation bei Dekubituspatienten wurde von Soriano et al. [557] bestätigt. In einer offenen Studie wurde orale Trinknahrung mit Arginin, Zink und Vitamin C über 3 Wochen Patienten mit Dekubitus gegeben (n = 39). Die Ernährungsintervention führte zur schnelleren Heilung beim Dekubitus. Die Wundgröße nahm signifikant von 23,6 cm² auf 19,2 cm² ab, der Bedarf an Verbandsmaterial wurde geringer, da auch Exsudatmenge und nekrotisches Gewebe signifikant abnahmen (2+).

Multizentrisch haben Cereda et al (2015) (1+) in einer großen Studie bei 200 mangelernährten Patienten mit Druckulzera II, III und IV randomisiert eine energiedichte, proteinreiche mit Arginin, Zink und Antioxidans angereicherte Formuladiät (400 mL/d) isokalorisch, isonitrogen über 8 Wochen verglichen [640]. Der primäre Endpunkt war die prozentuale Veränderung der Wundfläche nach 8 Wochen. Sekundäre Endpunkte waren die Komplettheilung, Reduktion der Wundfläche um 40% und mehr, die Inzidenz von Wundinfektionen, die Gesamtzahl der Verbände nach 8 Wochen und die prozentuale Veränderung der Wundfläche nach 4 Wochen. Als Ergebnis fand sich in der Interventionsgruppe (n = 101) ein Unterschied in der mittleren Verminderung der Wundfläche nach 8 Wochen (60,9 %; 95 %CI 54,3 % – 67,5 %), in der Kontrollgruppe (n = 99) (45,2%; 95%CI 38,4% – 52,0%), welcher adjustiert 18,7% (5,7% - 31,8%) betrug und signifikant war (p = 0,017). Eine signifikant häufigere Reduktion der Wundfläche über 40 % wurde nach 8 Wochen in der Interventionsgruppe beobachtet (OR 1,98 (95 %CI

1,12–3,48; p = 0,018). Als Einschränkung des positiven Einflusses der über 8 Wochen angereicherten Ernährung auf die Wundheilung wurde die Begrenzung auf mangelernährte Patienten in Pflegeinrichtungen oder mit Homecare angegeben.

Eine nach AMSTAR II gut bewertete Metaanalyse von 7 Studien hat für Patienten mit Dekubitus signifikante Vorteile für die Wundheilung bei Supplementierung mit Zink gezeigt [641] (1++): (RR 1,44; 95 %CI, 1,01–2,06; p=0,043, I²=19,3%). Theilla et al. (2012) haben randomisiert bei 40 Patienten für den Einsatz einer Formuladiät mit Omega-3-Fettsäuren ein vermindertes Fortschreiten des Decubitus und niedrigere CRP-Spiegel im Serum gezeigt [642]. Leigh et al. (2012) haben 2 verschiedene Dosierungen der Arginingabe (4,5 vs. 9 g/d) verglichen [643]. Ein Unterschied in der Wundheilung wurde nicht gesehen, sodass die niedrigere Dosis ausreichend erscheint (1+). Günstige Auswirkungen auf die Vitalität des Wundgrunds wurde zudem bei Einsatz einer mit Hydroxymethybutyrat, Arginin und Glutamin angereicherten Diät beobachtet [644] (1+).

Die regelmäßige enterale Zusatzernährung in der Therapie eines Dekubitus ist somit effektiv hinsichtlich einer schnelleren Wundheilung, Reduktion des Exsudates und geringerer Verbandswechselzeiten. Die Kalorienmenge sollte pro Tag 30–35 kcal/kg Körpergewicht betragen.

#### Ernährungsintervention bei Verbrennungen

Die Verbrennung ist ein hochkataboles Krankheitsbild. Die Patienten werden nach Verbrennungen mehrfach chirurgisch versorgt.

Eine Cochrane Analyse von Wasiak et al. (2006) konnte in 3 randomisierten Studien keine klare Überlegenheit einer frühen, innerhalb von 24 Stunden begonnenen EE gegenüber einem späteren Beginn hinsichtlich Krankenhausverweildauer und Letalität zeigen. Es bestanden jedoch Hinweise auf eine günstige Beeinflussung der hypermetabolen Reaktion auf das Verbrennungstrauma [645] (1++).

In der Cochrane Analyse von Masters et al. (2012) wurde bei Patienten mit mindestens 10 % Verbrennung der Körperoberfläche der Frage nach klinischen Vorteilen einer enteralen kohlenhydratund proteinreichen, fettarmen Diät im Vergleich mit einer kohlenhydratarmen, fettreichen Ernährung nachgegangen [646] (1++). Zwei randomisierte Studien mit Ergebnissen von 93 Patienten konnten analysiert werden. Die Patienten, die die kohlenhydratreiche Ernährung erhalten hatten, hatten ein signifikant geringeres Risiko eine Pneumonie zu entwickeln (OR 0,12 (95 %CI 0,04-0,39) als die Patienten mit der fettreichen Formuladiät (p = 0,0004). In der Gruppe der Patienten mit kohlenhydratreicher Diät bestand sogar eine Tendenz zu geringerer Letalität (OR 0,36; 95 %CI 0,11-1,15, p=0,08). Das Bias-Risiko wurde für beide Studien mäßig bis hoch eingeschätzt. Eine aktuelle systematische Übersicht von 11 Studien hat signifikante Vorteile hinsichtlich der Inzidenz von Pneumonien, Wundinfektionen, akutem Lungenversagen, Lebersteatose und Sepsis gezeigt. Wundheilung und Krankenhausverweildauer waren kürzer. Metabolische Vorteile waren niedrigere Stickstoffverluste im Urin, verbesserte Stickstoffbilanz, höhere Insulin- und Insulin-like growth factor 1 (IGF-1) Spiegel, sowie niedrigere Kortisolspiegel. Aufgrund der Ergebnisse sehen die Autoren die Evidenz zur Empfehlung der Zusammensetzung bei Verbrennungspatienten auf der Intensivstation mit≤15 % Fett und≥60 % Kohlenhydraten [647] (1++).

Acht kleinere Studien (randomisiert n = 4, nicht randomisiert n = 4) mit 398 Patienten wurden von Kurmis et al. systematisch gesichtet und metaanalysiert, Hierbei zeigte sich, dass die die Verwendung von parenteral verabreichten kombinierten Spurenelementen (Kupfer, Selen und Zink) nach Brandverletzungen positive Auswirkungen auf die Verringerung der gesamten infektiösen Komplikationen hat (-1,25 Episoden, 95 %CI -170 – -0,80; p<0,00001). Zudem wurde die Entwicklung von pulmonalen Infekten durch eine kombinierte Spurenelement-Supplementierung verringert [648] (1++).

Eine Verbesserung der Wundheilung bei brandverletzten Patienten wurde zudem gezeigt für die Gabe von Sojaöl [649] (1+), Vitaminen in Kombination mit Kalzium und Magnesium [650] (1+), Probiotika [651] (1+) und Olivenöl bei Beteiligung von 10–20% der Körperoberfläche [652] (1+).

Zur Immunonutrition hat eine Cochrane-Analyse 16 randomisierte Studien teilweise mit eingeschränkter Qualität mit 678 Patienten eingeschlossen [326] (1++). Am häufigsten wurde Glutamin eingesetzt (7 der 16 Studien). Im Vergleich mit der isonitrogenen Kontrolle fand sich eine signifikant verminderte mittlere Krankenhausverweildauer (-5,65 d; 95 %CI -8,09 - -3,22, I<sup>2</sup> = 29,5 %) und Letalität (RR 0,25; 95 %CI 0,08-0,78, 12 nicht anwendbar). Ein signifikanter Einfluss auf die Infektion der Brandwunden konnte nicht gezeigt werden. Aufgrund der geringen Fallzahl wurde ein falsch positiver Effekt diskutiert. Für die anderen immunmodulierenden Substrate (Arginin, BCAA, Omega-3-Fettsäuren und Ribonukleotide) wurde ein Effekt nicht nachgewiesen. In einer aktuell durchgeführten großen multizentrischen Placebokontrollierten Doppelblindstudie (RE-ENERGIZE) bei 1.209 schwerstverbrannten Patienten (im Mittel 33 % verbrannte Körperoberfläche) ist der Einfluss einer innerhalb von 72 Stunden beginnenden mit Glutamin (0,5q/kq Körpergewicht/d) angereicherten enteralen Ernährung untersucht worden. Für den primären Endpunkt die Zeitdauer bis zur Entlassung lebend konnte kein signifikanter Unterschied gefunden werden (40 vs. 38 d, HR 0,91; 95 %CI, 0,80-1,04; p = 0,17). Die 6-Monatsletalität war 17,2% in der Glutamin- und 16,2% in der Kontrollgruppe HR 1,06; 95 %CI, 0,80-1,41) [653] (1+).

In der Zusammenfassung sprechen die Ergebnisse insgesamt für eine frühe enterale kohlenhydratreiche Ernährung bzw. orale Supplementierung mit Trinknahrung. Die Anreicherung mit immunmodulierenden Substraten und Antioxidantien kann erwogen werden, wobei die Evidenz gerade für die einzelnen Substrate weiterhin begrenzt ist.

## Forschungsfragen

Zur Beantwortung folgender Forschungsfragen/-gebiete sollten in naher Zukunft klinische Studien durchgeführt werden, um die ernährungsmedizinische Versorgungslage chirurgischer Patienten zu verbessern.

- 1. Klinischer Nutzen der medizinischen Ernährungstherapie im ERAS
- 2. Klinischer Nutzen der Supplementierung mit einzelnen oder kombinierten immunmodulierenden Substraten einschließlich Synbiotika in verschiedenen chirurgischen Subgruppen
- 3. Beginn einer supplementierenden parenteralen Ernährung
- Bedeutung der Ernährungstherapie in der poststationären ambulanten Phase
- 5. Langzeitfolgen der klinischen Ernährungstherapie

- Entwicklung neuer Patienten orientierter und klinisch relevanter Outcome Parameter zur Evaluation des Erfolges einer Ernährungstherapie
- ▶ **Tab. 1** Definition der Evidenzlevel nach dem Bewertungssystem des Scottish Intercollegiate Guidelines Network (SIGN).

| Evidenzlevel | Zugrunde liegende Studientypen                                                                                                                                                                                                                                                  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1++          | Qualitativ hochwertige Metaanalysen, systematische<br>Überprüfungen von RCT oder RCT mit einem sehr<br>geringen Risiko der Verzerrung                                                                                                                                           |
| 1+           | Gut durchgeführte Metaanalysen, systematische<br>Überprüfungen oder RCT mit geringem Verzerrungsrisiko                                                                                                                                                                          |
| 1-           | Metaanalysen, systematische Übersichten oder RCT mit einem hohen Risiko der Verzerrung                                                                                                                                                                                          |
| 2++          | Hochwertige systematische Übersichten von Fall-Kontroll- oder Kohortenstudien. Qualitativ hochwertige Fall-Kontroll- oder Kohortenstudien mit einem sehr geringen Risiko von Verwechslungen oder Verzerrungen und einer hohen Wahrscheinlichkeit, dass die Beziehung kausal ist |
| 2+           | Gut durchgeführte Fall-Kontroll- oder Kohortenstudien<br>mit einem geringen Risiko von Verwechslungen oder<br>Verzerrungen und einer mäßigen Wahrscheinlichkeit,<br>dass der Zusammenhang kausal ist                                                                            |
| 2-           | Fall-Kontroll- oder Kohortenstudien mit einem hohen<br>Risiko von Verwechslungen oder Verzerrungen und<br>einem erheblichen Risiko, dass die Beziehung nicht<br>kausal ist                                                                                                      |
| 3            | Nicht-analytische Studien, z. B. Fallberichte, Fallserien                                                                                                                                                                                                                       |
| 4            | Expertenmeinung                                                                                                                                                                                                                                                                 |

#### ▶ **Tab. 2** Definition der Empfehlungsgrade.

| , ss                 |                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Empfeh-<br>lungsgrad | Definition des Empfehlungsgrades                                                                                                                                                                                                                                                                                                                                                                               |
| A                    | Mindestens eine Metaanalyse, systematische Übersichts-<br>arbeit oder RCT, die mit 1 + bewertet wurde und direkt<br>auf die Zielpopulation anwendbar ist; oder eine<br>Sammlung von Belegen, die hauptsächlich aus Studien<br>besteht, die mit 1 + bewertet wurden, direkt auf die<br>Zielpopulation anwendbar sind und eine allgemeine<br>Konsistenz der Ergebnisse aufweisen                                 |
| В                    | Eine Reihe von Belegen, einschließlich Studien, die mit<br>2+ + bewertet wurden und direkt auf die Zielpopulation<br>anwendbar sind; oder Eine Reihe von Belegen, einschließlich<br>Studien, die mit 2+ bewertet wurden, direkt auf die<br>Zielpopulation anwendbar sind und die allgemeine<br>Konsistenz der Ergebnisse zeigen; oder Extrapolierte Belege<br>aus Studien, die mit 1++ oder 1+ bewertet wurden |
| 0                    | Evidenzgrad 3 oder 4; oder extrapolierte Evidenz aus<br>Studien, die mit 2++ oder 2+ bewertet wurden                                                                                                                                                                                                                                                                                                           |
| KKP                  | Klinischer Konsenspunkt: Empfohlene bewährte<br>Verfahren auf der Grundlage der klinischen Erfahrung der<br>Leitlinienentwicklungsgruppe                                                                                                                                                                                                                                                                       |

▶ **Tab. 3** Endpunkte mit Auswirkungen auf die Bewertung von Studien in der klinischen Ernährung.

| Endpunkte mit<br>Auswirkungen auf die<br>Bewertung von Studien<br>in der klinischen<br>Ernährung | Beispiele                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Biomedizinischer<br>Endpunkt (BM)                                                                | z.B. Verbesserung von Körpergewicht,<br>Körperzusammensetzung, Morbidität,<br>Mortalität                                                                                                                            |
| Patientenzentrierter/<br>berichteter Endpunkt<br>(PC)                                            | z. B. validierter Lebensqualitäts-Score                                                                                                                                                                             |
| Gesundheitsökonomi-<br>scher Endpunkt (HE)                                                       | z. B. QALYs oder Haushaltseinsparungen                                                                                                                                                                              |
| Endpunkt der Entschei-<br>dungsfindung (DM)                                                      | z. B. klinische Parameter oder Biomarker, die<br>eine klinisch relevante Entscheidung<br>ermöglichen, wie z. B. Verlegung von der<br>Intensivstation auf eine Normalstation oder<br>Ernährungsunterstützung ja/nein |
| Integration von<br>klassischen und<br>patientenberichteten<br>Endpunkten (IE)                    | Die Kombination von BM und PC, z.B.<br>komplexe Scores wie der Frailty-Index                                                                                                                                        |

## Disclaimer: Keine Haftung für Fehler in Leitlinien der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) e.V.

Die medizinisch wissenschaftlichen Leitlinien der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) e.V. sind systematisch entwickelte Hilfen für Ärzte zur Entscheidungsfindung in spezifischen Situationen. Sie beruhen auf aktuellen wissenschaftlichen Erkenntnissen und in der Praxis bewährten Verfahren und sorgen für mehr Sicherheit in der Medizin, sollen aber auch ökonomische Aspekte berücksichtigen. Die "Leitlinien" sind für Ärzte rechtlich nicht bindend; maßgeblich ist immer die medizinische Beurteilung des einzelnen Untersuchungs- bzw. Behandlungsfalles. Leitlinien haben daher weder – im Falle von Abweichungen – haftungsbegründende noch – im Falle ihrer Befolgung – haftungsbefreiende Wirkung.

Die Mitglieder jeder Leitliniengruppe, die Arbeitsgemeinschaft Wissenschaftlicher Medizinischer Fachgesellschaften e.V. und die in ihr organisierten Wissenschaftlichen Medizinischen Fachgesellschaften erfassen und publizieren die Leitlinien der Fachgesellschaften mit größtmöglicher Sorgfalt – dennoch können sie für die Richtigkeit des Inhalts keine rechtliche Verantwortung übernehmen. Insbesondere bei Dosierungsangaben für die Anwendung von Arzneimitteln oder bestimmten Wirkstoffen sind stets die Angaben der Hersteller in den Fachinformationen und den Beipackzetteln sowie das im einzelnen Behandlungsfall bestehende individuelle Nutzen-Risiko-Verhältnis des Patienten und seiner Erkrankungen vom behandelnden Arzt zu beachten! Die Haftungsbefreiung be-

zieht sich insbesondere auf Leitlinien, deren Geltungsdauer überschritten ist.

Berlin im Juni 2023

Das Präsidium der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) e.V.

### Danksagung

Die AutorInnen danken Dr. med. Thomas Bächler und Herrn Lukas Gantner, beide KSW Kantonspital Winterthur, Schweiz, für die großartige Unterstützung. Der Dank gilt auch Frau Ulrike Dornheim, Leipzig und Herrn Ingo van Thiel, Deutsche Leberhilfe e. V., Köln für die wertvolle Unterstützung und Einbringung der Patientenperspektive.

#### Interessenskonflikte

Die Übersicht über die Interessenkonflikte der Autorinnen und Autoren ist im Supplemental Material veröffentlicht.

#### Literatur

- [1] Soeters P, Bozzetti F, Cynober L et al. Meta-analysis is not enough: The critical role of pathophysiology in determining optimal care in clinical nutrition. Clin Nutr 2016; 35: 748–757. DOI: 10.1016/j. clnu.2015.08.008
- [2] Yeh DD, Fuentes E, Quraishi SA et al. Adequate Nutrition May Get You Home: Effect of Caloric/Protein Deficits on the Discharge Destination of Critically Ill Surgical Patients. JPEN J Parenter Enteral Nutr 2016; 40: 37–44. DOI: 10.1177/0148607115585142
- [3] Horowitz M, Neeman E, Sharon E et al. Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat Rev Clin Oncol 2015; 12: 213–226. DOI: 10.1038/nrclinonc.2014.224
- [4] Gustafsson UO, Oppelstrup H, Thorell A et al. Adherence to the ERAS protocol is Associated with 5-Year Survival After Colorectal Cancer Surgery: A Retrospective Cohort Study. World J Surg 2016; 40: 1741–1747. DOI: 10.1007/s00268-016-3460-y
- [5] Gillis C, Carli F. Promoting Perioperative Metabolic and Nutritional Care. Anesthesiology 2015; 123: 1455–1472. DOI: 10.1097/ ALN.0000000000000795
- [6] Alazawi W, Pirmadjid N, Lahiri R et al. Inflammatory and Immune Responses to Surgery and Their Clinical Impact. Ann Surg 2016; 264: 73–80. DOI: 10.1097/SLA.000000000001691
- [7] Aahlin EK, Trano G, Johns N et al. Risk factors, complications and survival after upper abdominal surgery: a prospective cohort study. BMC Surg 2015; 15: 83. DOI: 10.1186/s12893-015-0069-2
- [8] Soeters MR, Soeters PB, Schooneman MG et al. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. Am J Physiol Endocrinol Metab 2012; 303: E1397–1407. DOI: 10.1152/ ajpendo.00397.2012
- [9] Soeters PB, Schols AM. Advances in understanding and assessing malnutrition. Curr Opin Clin Nutr Metab Care 2009; 12: 487–494. DOI: 10.1097/MCO.0b013e32832da243