ESO207: Data Structures and Algorithms

Theory Assignment 1

Due Date: 12th February, 2021

Total Number of Pages: 2

Total Points 80

Instructions

- 1. The assignment contains 2 parts Part 1 and Part 2. Please submit both parts in separate files titled part1_roll.pdf and part2_roll.pdf respectively (where roll is your roll no). Failure to do so will result in loss of marks.
- 2. For each question you must give the pseudocode of your algorithm and a brief description of the idea of your algorithm.
- 3. If an algorithm requires a certain time complexity or space complexity, then you must describe why your algorithm indeed works in that complexity bound.
- 4. The teaching assistant in charge of Part 1 is Madhusmita Sahoo (madhusmita@cse.iitk.ac.in) and in charge of Part 2 is Neeraj Matiyali (neermat@cse.iitk.ac.in). Contact them if you have any doubts.

Part 1

Problem1. (10 points) Let A be an array consisting of n elements such that there exists indices $i, j, k \in [0, n-1]$, where $0 \le i < k < j \le n-1$, and A[0] < A[1] < ... < A[i-1] < A[i] > A[i+1] > ... > A[k] < A[k+1] < A[k+2] < ... A[j-1] < A[j] > A[j+1] > A[j+2].... > A[n-1]. Design an $O(\log n)$ time algorithm to find i and j (the two local maxima) in the array. Describe your approach and prove the correctness of your algorithm.

Problem2. (10 points) Given a doubly linked list a_1, a_2, \ldots, a_n , rotating it from location p to location q to the right by k places gives the list $a_1, \ldots, a_{p-1}, a_{q-k+1}, \ldots, a_q, a_p, \ldots, a_{q-k}, a_{q+1}, \ldots, a_n$.

For example if $p=3,\,q=7$ and k=2 then your algorithm should return L' .

Location	1	2	3	4	5	6	7	8	9	10
Before Rotation(L)	22	13	17	35	11	56	49	64	28	62
After Rotation(L')	22	13	56	49	17	35	11	64	28	62

Design an O(n) time algorithm to rotate a sub-list from location p to location q to the right by k places using only O(1) (not O(k)) extra space.

Problem3. (10 points) Suppose you are given two sorted arrays $A[0, \ldots, n-1]$ and $B[0, \ldots, n-1]$. Design an algorithm to find the median of the array obtained after merging the above two arrays (i.e. array of length 2n). The time complexity of the algorithm should be $O(\log n)$. You can use only O(1) extra space only. Prove the correctness of your algorithm.

Example:

A	12	17	23	34	65	
В	40	53	59	61	66	

Output: (40 + 53)/2 = 46.5

Problem4. (10 points) Suppose you are given a sorted array A storing n distinct positive integers, and three positive integers a,b and c. Design an O(n) time algorithm to determine if there exist any two distinct integers $x,y \in A$ such that $a^2 = bx + cy$. Prove correctness of your algorithm.

Part 2

Problem5. (10 points) Prove the following statements:

- (a) $\min(n^2, 10^{12}) = \mathcal{O}(1)$
- (b) $n^2 + n \log n = \mathcal{O}(n^2)$
- (c) $n^3 + 3n^2 + 8 \neq \mathcal{O}(n^2)$
- (d) $4^n \neq \mathcal{O}(2^n)$
- (e) $\log(n!) = \mathcal{O}(n \log n)$

Problem6. (10 points) Design an $\mathcal{O}(\log n)$ time algorithm that takes as input two arrays A and B sorted in ascending order and outputs an index k for which A[k] = B[n-1-k]. If such an index does not exist then your algorithm must return -1 to indicate failure. Describe your approach, provide the pseudocode and prove that your algorithm is correct and has a worst time complexity of $\mathcal{O}(\log n)$.

Example: For following input A and B (n = 8), the correct output is k = 5, since A[5] = B[8 - 1 - 5] = B[2] = 10.

index i	0	1	2	3	4	5	6	7
A[i]	-5	-2	-1	0	5	10	120	150
B[i]	-10	5	10	15	17	40	47	90

Problem7. (10 points) Consider two sets of points $A = [(a_x^0, a_y^0), \dots (a_x^{n-1}, a_y^{n-1})]$ and $B = [(b_x^0, b_y^0), \dots , (b_x^{n-1}, b_y^{n-1})]$ sampled from two parallel lines l_A and l_B , respectively. Design an $O(n \log n)$ time algorithm that takes A and B as input and returns two points (a_x^p, a_y^p) and (b_x^q, b_y^q) $(0 \le p, q \le n-1)$ from sets A and B that are closest to each other. Describe your algorithm and provide the pseudocode. Prove the correctness of your algorithm and show that it runs in $\mathcal{O}(n \log n)$ time.

Problem8. (10 points) You are given an unsorted array A. Design an algorithm that, given a query [a, b] $(a, b \in \mathbb{R}, a \leq b)$, finds the following in $\mathcal{O}(\log n)$ time:

- 1. the total number of elements in A whose values lie in the interval [a, b]
- 2. the value in [a, b] which occurs the most in A.

Example:

$$A = [1.5, 1.5, -2, 0, 2, 0, 0, 3.2, 0, 3, 2.4, -1, 1, 1, 1.7, 1.5, 1.2, -3, -2.1, -5]$$

- For query [0.8, 3], there are 10 elements ([1.5, 1.5, 2, 3, 2.4, 1, 1, 1.7, 1.5, 1.2]) in the query interval, and 1.5 is the most frequent one.
- For query [-0.2, 1.3], there are 7 elements ([0, 0, 0, 0, 1, 1, 1.2]) in the query interval, and 0 is the most frequent one.

Explain your approach and provide the pseudocode. You may use $\mathcal{O}(n \log n)$ time to preprocess the input data once. You can keep $\mathcal{O}(n \log n)$ additional space.