RWTH AACHEN UNIVERSITY CENTER FOR COMPUTATIONAL ENGINEERING SCIENCE

Selbstrechenübung 1

Student: Joshua Feld, 406718

Kurs: Mathematische Grundlagen I – Professor: Prof. Dr. Torrilhon & Prof. Dr. Stamm

Aufgabe 1. (Aussagenlogik)

Zeigen Sie mithilfe einer Wahrheitstafel, dass das Kontrapositionsgesetz

$$(A \Longrightarrow B) \iff (\neg B \Longrightarrow \neg A)$$

für beliebige Aussagen A, B gültig ist.

Lösung. Es seien A und B beliebige Aussagen. Dann gilt

A	B	$\neg A$	$\neg B$	$A \implies B$	$\neg B \implies \neg A$	$(A \Longrightarrow B) \Longrightarrow (\neg B \Longrightarrow \neg A)$
\overline{w}	w	f	f	w	w	\overline{w}
w	f	f	w	f	f	w
f	w	w	f	w	w	w
f	f	w	w	w	w	w

 $(A \Longrightarrow B) \Longleftarrow (\neg B \Longrightarrow \neg A)$	$(A \implies B) \iff (\neg B \implies \neg A)$
 w	w

Da in der letzten Spalte nur die Belegung w, also wahr, herauskommt, ist das Kontrapositionsgesetz bewiesen.

Aufgabe 2. (Aussagenlogik: Negation)

Negieren Sie die folgenden Aussagen. Bestimmen Sie anschließend, ob die Aussage oder ihre Negation wahr ist.

- a) $\exists x \in \mathbb{R} : x^2 + 3 < 0$
- b) $\forall n, m \in \mathbb{N} : \frac{n}{m} \in \mathbb{Z}$
- c) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : x^2 + y^2 = 1$

Lösung.

a) $\forall x \in \mathbb{R} : x^2 + 3 \ge 0$. Hier ist die Negation wahr, denn $x^2 + 3 \ge 3 \ge 0$.

- b) $\exists n, m \in \mathbb{N} : \frac{n}{m} \notin \mathbb{Z}$. Hier ist ebenfalls die Negation wahr, weil $n = 1, m = 3 \implies \frac{1}{3} \notin \mathbb{Z}$ ein Gegenbeispiel zur Ursprungsaussage ist.
- c) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} : x^2 + y^2 \neq 1$. Wieder ist die Negation wahr, denn es gilt

$$x^{2} + y^{2} = 1 \iff y^{2} = 1 - x^{2} \iff y = \pm \sqrt{1 - x^{2}}.$$

So ein x existiert, denn für |x| > 1 ist nämlich y mit obiger Eigenschaft nicht definiert.

Aufgabe 3. (Morgansche Regeln)

Beweisen Sie für zwei beliebige Aussagen A und B die Regeln von de Morgan:

a)
$$\neg (A \land B) \iff (\neg A) \lor (\neg B)$$
.

b)
$$\neg (A \lor B) \iff (\neg A) \land (\neg B)$$
.

Lösung.

a) Es seien A und B Aussagen. Dann gilt

\overline{A}	В	$\neg A$	$\neg B$	$\neg(A \land B)$	$(\neg A) \lor (\neg B)$	$\neg (A \land B) \implies (\neg A) \lor (\neg B)$
\overline{w}	w	f	f	f	f	\overline{w}
w	f	f	w	w	w	w
f	w	w	f	w	w	w
f	f	w	w	w	w	w

 $\neg (A \land B) \iff (\neg A) \lor (\neg B)$	$\neg (A \land B) \iff (\neg A) \lor (\neg B)$
 w	w

b) Es seien A und B Aussagen. Dann gilt

\overline{A}	B	$\neg A$	$\neg B$	$\neg(A \vee B)$	$(\neg A) \wedge (\neg B)$	$\neg (A \lor B) \implies (\neg A) \land (\neg B)$
\overline{w}	w	f	f	f	f	w
w	f	f	w	w	w	w
f	w	w	f	w	w	w
f	f	w	w	w	w	w

Aufgabe 4. (Relationen)

Es ist $3\mathbb{Z} = \{\dots, -9, -6, -3, 0, 3, 6, 9, \dots\}$ die Menge aller durch 3 teilbaren ganzen Zahlen.

- a) Zeigen Sie, dass durch $x \sim y \iff y x \in 3\mathbb{Z}$ eine Äquivalenzrelation auf \mathbb{Z} definiert ist.
- b) Geben Sie die Äquivalenzklassen an, in die \mathbb{Z} bezüglich \sim zerlegt werden kann.

Lösung.

- a) Wir müssen zeigen, dass die Relation \sim reflexiv, symmetrisch und transitiv ist:
 - Reflexivität: Sei $x \in \mathbb{Z}$. Dann gilt $x \sim x \iff x x = 0 \in 3\mathbb{Z}$.
 - Symmetrie: Seien $x, y \in \mathbb{Z}$. Dann gilt

$$x \sim y \iff y - x \in 3\mathbb{Z} \iff \exists z \in Z : y - x = 3z$$

 $\iff \exists z \in Z : x - y = -3z \iff x - y \in 3\mathbb{Z} \iff y \sim x$

• Transitivität: Seien $x, y, z \in \mathbb{Z}$ mit $x \sim y$ und $y \sim z$. Es gilt also

$$x \sim y \iff \exists z_1 \in \mathbb{Z} : y - x = 3z_1, \tag{1}$$

$$y \sim z \iff \exists z_2 \in \mathbb{Z} : z - y = 3z_2.$$
 (2)

Wir addieren nun (1) und (2) und erhalten

$$z - x = 3(z_1 + z_2) \in 3\mathbb{Z} \iff x \sim z.$$

Da alle drei Eigenschaften erfüllt sind, ist \sim eine Äquivalenzrelation auf \mathbb{Z} .

b) Die Äquivalenzklassen sind

$$[0]_{\sim} = \{\dots, -6, -3, 0, 3, 6, \dots\} = 3\mathbb{Z},$$

$$[1]_{\sim} = \{\dots, -5, -2, 1, 4, 7, \dots\} = 3\mathbb{Z} + 1,$$

$$[0]_{\sim} = \{\dots, -4, -1, 2, 5, 8, \dots\} = 3\mathbb{Z} + 2.$$

Dies sind alle Klassen, da $[3]_{\sim} = [0]_{\sim}$ und $[-1]_{\sim} = [2]_{\sim}$ usw.