Finite automata and formal languages (DIT323, TMV029)

Nils Anders Danielsson

2023-02-06

Today

- ► Translation from regular expressions to finite automata.
- ▶ More about regular expression algebra.
- ► The pumping lemma for regular languages.
- ► Some closure properties for regular languages.

Translating

expressions

to automata

regular

Regular expressions to automata

Given a regular expression in $RE(\Sigma)$ we construct an ε -NFA (with alphabet Σ) with exactly one accepting state, no transitions from the accepting state, and no transitions to the start state:

The translation is defined recursively.

The empty language

$$\varepsilon\text{-NFA}(\emptyset) =$$

The empty string

$$\varepsilon$$
-NFA(ε) =

A symbol

$$\varepsilon\text{-NFA}(a) =$$

Alternation

$$\varepsilon\text{-NFA}(e_1+e_2) =$$

Sequencing

$$\varepsilon\text{-NFA}(e_1e_2) =$$

Kleene star

$$\varepsilon\text{-NFA}(e^*) =$$

Which of the following ε -NFAs is equal to ε -NFA $((\emptyset 1)^*)$ (ignoring the alphabet and the names of the states)?

Respond at https://pingo.coactum.de/375102.

$$\varepsilon\text{-NFA}(\emptyset 1) =$$

 $\varepsilon\text{-NFA}((\emptyset 1)^*) =$

Regular languages

- ▶ Recall that a language $M \subseteq \Sigma^*$ is regular if there is some DFA A with alphabet Σ such that L(A) = M.
- ▶ A language $M \subseteq \Sigma^*$ is also regular if and only if there is some regular expression $e \in RE(\Sigma)$ such that L(e) = M.

More about

regular

algebra

expression

Discovering and proving laws

- ▶ In the last lecture I mentioned that $(\varepsilon + e)^* = e^*$.
- ▶ How can you figure out that this holds?
- And how can you prove it?

Proving laws

- $\blacktriangleright \ \mbox{ Recall that } e_1=e_2 \ \mbox{means that } L(e_1)=L(e_2).$
- $\begin{array}{l} \blacktriangleright \ \mbox{We can prove} \ L(e_1) = L(e_2) \ \mbox{by proving} \\ L(e_1) \subseteq L(e_2) \ \mbox{and} \ L(e_2) \subseteq L(e_1), \ \mbox{i.e. that} \\ \forall w \in L(e_1). \ w \in L(e_2) \ \mbox{and} \\ \forall w \in L(e_2). \ w \in L(e_1). \end{array}$

Let $e \in RE(\Sigma)$. Then $(\varepsilon + e)^* = e^*$.

$$L((\varepsilon + e)^*) \subseteq L(e^*)$$
:

- ▶ If $w \in L((\varepsilon + e)^*)$, then there is some $n \in \mathbb{N}$ such that $w = w_1 \cdots w_n$ and each string w_i is either ε or a member of L(e).
- Remove the strings w_i that are equal to ε .
- ▶ Remove the strings w_i that are equal to ε . ▶ We get a string $w' = w_{k_i} \cdots w_{k_m}$, for some
- natural numbers m and $k_1 < \cdots < k_m$. • Because all strings w_{k_i} belong to L(e) we get that $w' \in L(e^*)$.
- Furthermore w=w', so $w\in L(e^*)$.

Let $e \in RE(\Sigma)$. Then $(\varepsilon + e)^* = e^*$.

 $L(e^*) \subset L((\varepsilon + e)^*)$:

- $\blacktriangleright \ \ \text{We have that} \ L(e) \subseteq L(\varepsilon) \cup L(e) = L(\varepsilon + e).$
- The result follows by monotonicity of -*.

Monotonicity

- ▶ $M \subseteq N$ implies that $M^* \subseteq N^*$.
- $\blacktriangleright \ M_1 \subseteq N_1 \ \text{and} \ M_2 \subseteq N_2 \ \text{imply:}$
 - $\blacktriangleright \ M_1 \cup M_2 \subseteq N_1 \cup N_2.$
 - $\blacktriangleright M_1 \cap M_2 \subseteq N_1 \cap N_2.$
 - $\blacktriangleright \ M_1M_2 \subseteq N_1N_2.$

Discovering (and proving) laws

- ▶ A regular expression proposition $e_1 = e_2$ is valid iff the equation obtained by replacing each variable e by a *fresh* symbol a is true.
- Examples:
 - $(\varepsilon + e)^* = e^*$ is valid iff $(\varepsilon + 1)^* = 1^*$ is true.
 - $e_1 1 e_2 = e_2 1 e_1$ is valid iff 012 = 210 is true.
- ► Next lecture: An algorithm for checking if two regular languages are equal.

Which of the following regular expression equivalences are valid?

```
1. \emptyset^* e = e.
```

2.
$$(e_1 + e_2)^* = e_1^* + (e_1 e_2)^* + e_2^*$$
.
3. $e_1(e_2 e_1)^* = (e_1 e_2)^* e_1$.

4.
$$(e_1 + e_2)^* = (e_1^* e_2)^* e_1^*$$
.

```
5. (e_1 + e_2)^* = e_1^* (e_2 e_1^* e_2)^* e_1^*.
```

Respond at https://pingo.coactum.de/375102.

The shifting and denesting rules

- 1. The shifting rule: $e_1(e_2e_1)^* = (e_1e_2)^*e_1$.
- 2. The denesting rule: $(e_1 + e_2)^* = (e_1^* e_2)^* e_1^*$.

The denesting rule

Consider the following equations:

$$e_1 = e_2$$

$$e_2 = 0e_1 + 1e_2 + \varepsilon$$

One way to find a solution for e_1 , using Arden's lemma:

$$\begin{aligned} e_2 &= (0+1)e_2 + \varepsilon \\ e_2 &= (0+1)^*\varepsilon = (0+1)^* \\ e_1 &= (0+1)^* \end{aligned}$$

Another way:

$$\begin{aligned} e_2 &= 1^*(0e_1 + \varepsilon) \\ e_1 &= 1^*0e_1 + 1^* \\ e_1 &= (1^*0)^*1^* \end{aligned}$$

One can combine methods

Is it the case that $((\varepsilon + e)^*)^* \subseteq (1 + e)^*$?

- We know that $(\varepsilon+e)^*=e^*$, so $((\varepsilon+e)^*)^*=(e^*)^*$.
- ▶ We also have $e \subseteq 1 + e$, and thus, by monotonicity, $e^* \subseteq (1 + e)^*$.
- We can conclude if $(e^*)^* = e^*$.
- ▶ This holds if $(1^*)^* = 1^*$.
- We have $1^* \subseteq (1^*)^*$.
- ▶ We also have $(1^*)^* \subseteq 1^*$, because a string in $(1^*)^*$ consists of an arbitrary number of 1s, and is thus a member of 1^* .

More laws related to the Kleene star

- 1. $e^* = \varepsilon + ee^*$.
- 2. $e^*e^* = e^*$.
- 3. $(e^*)^* = e^*$.

The pumping lemma

The pumping lemma for regular languages

For every regular language L over the alphabet Σ :

```
\exists m \in \mathbb{N}.
\forall w \in L. \ |w| \ge m \Rightarrow
\exists t, u, v \in \Sigma^*.
w = tuv \land |tu| \le m \land u \ne \varepsilon \land
\forall n \in \mathbb{N}. \ tu^n v \in L
```

The pumping lemma for regular languages

For every regular language L over the alphabet Σ :

```
\exists m \in \mathbb{N}.
\forall w \in L. \ |w| \ge m \Rightarrow
\exists t, u, v \in \Sigma^*.
w = tuv \land |tu| \le m \land u \ne \varepsilon \land
\forall n \in \mathbb{N}. \ tu^n v \in L
```

The pumping lemma for regular languages

Proof sketch:

- ▶ There is at least one DFA $A = (Q, \Sigma, \delta, q_0, F)$ such that L(A) = L.
- Let m = |Q|.
- ▶ If a string $w \in \Sigma^*$ with $|w| \ge |Q|$ is accepted by A, then, by the pigeonhole principle, $\hat{\delta}(q_0, w_1 \cdots w_i) = \hat{\delta}(q_0, w_1 \cdots w_j)$ for some $i, j \in \{0, ..., |Q|\}, i < j$.
- $\text{Let } t = w_1 \cdots w_i, \ u = w_{i+1} \cdots w_j, \\ v = w_{i+1} \cdots w_{|w|}.$
- ▶ Note that tuv = w, $|tu| \le |Q|$ and $u \ne \varepsilon$.
- ▶ Furthermore $tv \in L$, $tu^2v \in L$, $tu^3v \in L$, ...

Is the language
$$P\subseteq \{\,(,)\,\}^*$$
 regular?

$$\frac{w \in P}{(w) \in P}$$

- 1. Yes.
- 2. No.

Respond at https://pingo.coactum.de/375102.

$$\frac{w \in P}{\varepsilon \in P} \qquad \frac{w \in P}{(w) \in P}$$

No, P is not regular:

- ► Assume that *P* is regular.
 - ▶ By the pumping lemma there is some $m \in \mathbb{N}$ such that, for all $w \in P$ for which $|w| \ge m$, there are strings $t, u, v \in \{\ (,)\ \}^*$ such that $w = tuv, \ |tu| \le m, \ u \ne \varepsilon$ and, for all $n \in \mathbb{N}$, $tu^n v \in P$.
- ▶ Let w be the string $(^m)^m$.
- ▶ Note that $w \in P$ and $|w| \ge m$.

$$\frac{w \in P}{\varepsilon \in P} \qquad \frac{w \in P}{(w) \in P}$$

- ▶ We get that there are strings $t, u, v \in \{ (,) \}^*$ such that $(^m)^m = tuv$, $|tu| \le m$, $u \ne \varepsilon$ and, for all $n \in \mathbb{N}$, $tu^n v \in P$.
- ▶ Because $(^m)^m = tuv$ and $|tu| \le m$ we know that u consists only of left parentheses, and because $u \ne \varepsilon$ we know that u consists of at least one left parenthesis.
- ▶ We also know that $tv \in P$. However, this is contradictory, because tv contains more right parentheses than left parentheses.

Necessary, not sufficient

- ▶ I have seen students try to use the pumping lemma to prove that a language *is* regular.
- ▶ However, there are non-regular languages that satisfy the pumping lemma's formula (" $\exists m \in \mathbb{N}....$ ").

properties

Closure

Closure properties

Let $M, N \subseteq \Sigma^*$ be regular languages. Then

- ▶ M^* is regular,
- ightharpoonup MN is regular,
- ▶ $M \cup N$ is regular,
- ▶ $M \cap N$ is regular,
- $ightharpoonup \Sigma^* \setminus N$ is regular, and
- ▶ $M \setminus N$ is regular. (Note that $M \setminus N = M \cap (\Sigma^* \setminus N)$.)

For which of the following definitions of M is $M \setminus \{ 1^n \mid n \in \mathbb{N}, n > 0 \}$ regular? 1. $M = \{ 1 \} \cup L((21)^*).$

2.		$w \in M$
	$\overline{\varepsilon \in M}$	$\overline{1w2 \in M}$
3.		$w \in M$

 $\varepsilon \in M$

Respond at https://pingo.coactum.de/375102.

 $1w1 \in M$

Today

- ► Translation from regular expressions to finite automata.
- ▶ More about regular expression algebra.
- ► The pumping lemma for regular languages.
- ► Some closure properties for regular languages.

Next lecture

- ► Various algorithms.
- ► Equivalence of states.