Panduan Proyek 1

Mata Kuliah: Artificial Intelligence

Sistem Penjadwalan Adaptif untuk Penempatan Peserta Didik Profesi Dokter di Wahana Pendidikan

Proyek ini bertujuan untuk:

- Menerapkan konsep dasar planning, reasoning, searching dalam konteks nyata.
- Mensimulasikan sistem penjadwalan adaptif untuk penempatan peserta didik profesi dokter di berbagai wahana pendidikan rumah sakit/klinik.
- Mengembangkan kemampuan analisis masalah dinamis, berpikir kritis, serta kerja tim dalam menyusun solusi penjadwalan yang responsif terhadap perubahan situasi di lapangan.
- Membantu memvisualisasikan solusi melalui aplikasi sederhana yang menunjukkan alur penempatan, perubahan kondisi, dan penyesuaian jadwal.

Aturan Umum

1. Kelompok

- Dikerjakan dalam kelompok yang terdiri dari 3 orang.
- Setiap anggota bertanggung jawab memahami seluruh bagian proyek.

2. Data

- Data awal berupa jumlah peserta didik dan jumlah wahana ditentukan oleh masing-masing kelompok.
- o Kelompok membangun sendiri data performa wahana seperti:
 - Kapasitas optimal wahana (berapa peserta didik maksimal yang dapat diterima).
 - Estimasi beban wahana (misalnya estimasi pasien per hari sebagai indikator kesibukan).

3. Simulasi Aplikasi

- o Aplikasi yang dibangun oleh kelompok harus mampu:
 - Menyusun penjadwalan awal secara otomatis berdasarkan data dummy yang dibangun oleh kelompok.
 - Mensimulasikan skenario gangguan seperti overload atau underutilized.

- Menunjukkan hasil penyesuaian penempatan peserta didik berdasarkan gangguan yang terjadi.
- o Input data awal dan hasil perhitungan penjadwalan awal dilakukan dalam aplikasi, bukan secara manual di luar aplikasi.Setiap kelompok membangun aplikasi sederhana untuk:
 - Menampilkan penjadwalan awal.
 - Mensimulasikan perubahan kondisi wahana.
 - Menunjukkan penyesuaian penempatan peserta didik.

4. Kompleksitas Kasus

- o Setiap kelompok menentukan sendiri tingkat kompleksitas kasus.
- Semakin tinggi kompleksitas yang berhasil disusun dan disimulasikan, semakin tinggi nilai apresiasi.

5. Pengumpulan

- o Hasil kerja berisi:
 - Laporan kelompok (.pdf atau .docx).
 - File aplikasi simulasi.

Langkah-langkah Pengerjaan

1. Pahami Konteks Penempatan Peserta Didik

- Telaah konteks penempatan peserta didik di wahana pendidikan profesi dokter.
- Tentukan variabel yang memengaruhi keputusan penempatan, seperti:
 - Kapasitas maksimal wahana.
 - o Estimasi beban kerja di wahana.
 - o Kebutuhan pembelajaran klinis yang merata.

2. Bangun Data Dummy

- Buat data dummy realistis yang mencakup:
 - o Daftar wahana dan kapasitas masing-masing.
 - o Jumlah total peserta didik yang akan ditempatkan.
 - o Estimasi dinamika beban wahana, misalnya estimasi pasien harian.
 - Kriteria gangguan: batas overload dan underutilized (misal: overload = >20 pasien per peserta didik).
- Data dummy ini menjadi dasar penyusunan jadwal awal dan simulasi perubahan.

3. Susun Jadwal Awal

- Berdasarkan data dummy, susun rencana penempatan awal peserta didik ke wahana.
- Pastikan penempatan merata dan sesuai kapasitas optimal wahana.
- Dokumentasikan dalam bentuk yang jelas dalam laporan.

4. Susun Skenario Gangguan

- Tentukan minimal dua skenario gangguan:
 - o Wahana dengan beban kerja meningkat drastis (overload).
 - o Wahana dengan penurunan beban kerja (underutilized).
- Jelaskan bagaimana skenario tersebut memengaruhi penempatan peserta didik.

5. Kembangkan Alternatif Solusi

- Buat beberapa alternatif penyesuaian penempatan untuk mengatasi skenario gangguan.
- Evaluasi kelebihan dan kekurangan setiap alternatif.
- Pilih solusi terbaik secara rasional berdasarkan logika yang jelas.

6. Bangun Simulasi Aplikasi

- Bangun aplikasi yang:
 - o Menampilkan jadwal awal.
 - Mensimulasikan skenario gangguan.
 - o Menampilkan penyesuaian penempatan setelah terjadi perubahan kondisi.
- Pastikan aplikasi dapat menampilkan alur perubahan penempatan secara jelas.

7. Susun Laporan Akhir

Laporan kelompok disusun secara terstruktur, memuat:

- 1. Sampul + identitas kelompok.
- 2. Latar belakang dan kontribusi terhadap pengelolaan penempatan peserta didik.
- 3. Data dummy dan asumsi dasar.
- 4. Rencana penempatan awal.
- 5. Skenario gangguan dan dampaknya.
- 6. Alternatif solusi dan justifikasi pilihan.
- 7. Deskripsi aplikasi simulasi dan cara penggunaannya.

Rubrik Penilaian

Aspek Penilaian	Bobot
Pemahaman masalah & asumsi	10%
Penyusunan solusi awal (penempatan awal)	15%
Strategi adaptasi skenario gangguan	20%
Argumentasi metode & logika sistem	15%
Simulasi aplikasi sederhana	20%
Kompleksitas kasus & keberhasilan solusi	15%
Kualitas laporan & dokumentasi	5%

Apresiasi akan diberikan untuk kelompok yang mampu menyusun kasus lebih kompleks dan berhasil menjalankan simulasinya dengan baik.

Contoh Format Data Dummy

Berikut contoh format **struktur data dummy** untuk membantu memahami penyusunan data:

Wahana Kapasitas Optimal Estimasi Pasien Normal Estimasi Pasien Gangguan

RS A	4	40	90 (Overload berat)
RS B	3	35	15 (Underutilized)
RS C	4	40	70 (Overload ringan)
RS D	2	20	20 (Stabil)
RS E	2	10	5 (Underutilized)

- Jumlah peserta didik untuk penempatan: 15 orang
- Kriteria gangguan:

o Overload: >20 pasien per peserta didik

o Underutilized: <5 pasien per peserta didik

Setiap kelompok wajib membuat data dummy sendiri, data di atas hanya contoh format, bukan skenario yang harus diikuti.

Catatan Penting

- Proyek ini bukan hanya sekadar tugas akademik, melainkan simulasi realistis yang berkontribusi dalam pengelolaan penempatan peserta didik profesi dokter.
- Tingkat kompleksitas kasus sepenuhnya ditentukan oleh kelompok. Disarankan untuk memilih kasus yang menantang namun dapat diselesaikan dengan baik.

Jadwal Pengumpulan

• Batas waktu pengumpulan: 28 April 2025 jam 13.00 WIB

• Media pengumpulan: Live UNPAD