Széchenyi István Egyetem Gépészmérnöki, Informatikai és Villamosmérnöki Kar Informatika Tanszék

SZAKDOLGOZAT

Székely Dániel

Mérnökinformatikus BSc

SZAKDOLGOZAT

Digitális audio - Dante protokollra épülő hangrendszer tervezése, építése, optimalizálása, beüzemelése

Székely Dániel

Mérnökinformatikus BSc

FELADATKIÍRÁS

A feladatkiíró lapot két példányban kell leadni a tanszéki adminisztrációban. Beadás előtt az egyiket visszakapod és a leadott munkába eredeti, tanszéki pecséttel ellátott és a tanszékvezető által aláírt lapot kell belefűzni (ezen oldal *helyett*, ez az oldal csak útmutatás).

Nyilatkozat

Alulírott, **Székely Dániel (JAXC3C)**, Mérnökinformatikus BSc szakos hallgató kijelentem, hogy a *Digitális audio - Dante protokollra épülő hangrendszer tervezése, építése, optimalizálása, beüzemelése* című szakdolgozat feladat kidolgozása a saját munkám, abban csak a megjelölt forrásokat, és a megjelölt mértékben használtam fel, az idézés szabályainak megfelelően, a hivatkozások pontos megjelölésével.

Eredményeim saját munkán, számításokon, kutatáson, valós méréseken alapulnak, és a legjobb tudásom szerint hitelesek.

Győr, 2024. január 4.	
3	Székely Dániel
	hallgató

Kivonat

Szakdolgozatomban egy olyan digitális hangtechnikai rendszer tervezését és megvalósítását mutatom be, amely teljes mértékben digitális alapokra helyezi a hangsúlyt. Be fogom mutatni a rendszer tervezésének lépéseit, a különböző protokollok közötti választást, a rendszer felépítését, és a rendszer működését.

Abstract

This document is a LATEX-based skeleton for BSc/MSc theses based on the official template developed and maintained at the Electrical Engineering and Informatics Faculty, Budapest University of Technology and Economics. The goal of this skeleton is to guide and help students that wish to use LATEX for their work at Széchenyi István Egyetem Gépészmérnöki, Informatikai és Villamosmérnöki Kar. It has been tested with the TeXLive TeX implementation, and it requires the PDF-LATEX compiler.

Many thanks to the Fault Tolerant Systems Research Group who maintain the repository this template is based on: https://github.com/FTSRG/thesis-template-latex

Tartalomjegyzék

1.	\mathbf{Bev}	vezetés								
	1.1.	A kezo	letek							
		1.1.1.	Téma választás							
2.	Aud	lio ove	r IP rendszerek bemutatása 4							
	2.1.	Beveze	etés az Audio over IP világába							
		2.1.1.	Előnyök							
		2.1.2.	Hátrányok							
		2.1.3.	Fázishelyesség							
		2.1.4.	Időszinkronizáció							
		2.1.5.	Mintavételi frekvencia és bitmélység							
		2.1.6.	Késleltetés és bufferek							
		2.1.7.	IP címek és maszkok							
		2.1.8.	Unicast és Multicast							
		2.1.9.	Redundancia							
	2.2.	AES67	7							
	2.3.	Waves	SoundGrid							
	2.4.	Audin	ate Dante							
3.	Ren	\mathbf{dszert}	ervezés és telepítés elő környezetben							
			elmények							
	3.2.	Rends	zerterv							
		3.2.1.	Martin Audio Wavefront Precision hangrendszer							
			3.2.1.1. Martin Audio Display 2.3.4 b1 tervező szoftver 6							
			3.2.1.2. Martin Audio VU-NET rendszer szoftver							
		3.2.2.	Allen & Heath digitális keverőrendszer							
		3.2.3.	Shure ULXD digitális vezeték nélküli mikrofonrendszer							
		3.2.4.	Dante audio szerver							
		3.2.5.	Dante hálózat kialakítása és optimalizálása							
			3.2.5.1. Dante Controller: Hálózati mátrix							
			3.2.5.2. Dante Controller: Eszköz nézet							
			3.2.5.3. IP kiosztás							
			3.2.5.4. Dante Controller: Órajel nézet							
	3.3.	Rends	zermérések és monitorozás							
		3.3.1.	Dante rendszer monitorozása							
			3.3.1.1. Dante Controller: Hálózati állapot nézet							
			3.3.1.2. Dante Controller: Események nézet							
		3.3.2.	Cardioid mélyláda rendszer mérése							
		3.3.3.	Mélyláda és Line Array fázishelyesség							
		994	Dandgran hangnyamág grint ág frakvancia átvital mánága							

4.	Üzemeltetési tapasztalatok és továbbfejlesztési lehetőségek										
	4.1.	További eszközök integrálása	9								
	4.2.	Bővítés nagyobb interfészre	9								
Κċ	iszön	netnyilvánítás	10								
Áŀ	orák	jegyzéke	11								
Iro	odalo	omjegyzék	11								
Fü	iggel	ék	13								

Bevezetés

1.1. A kezdetek

Kisgyermek koromtól kezdve érdekelnek a hangtechnikához fűződő eszközök és azok elméleti-gyakorlati működése. Első élményeim egyike közé tartozik az, amikor szüleim egy új fajta rádiólejátszót vásároltak otthonra, amelyen már nem csak a rádióadásokat lehetett hallgatni, hanem lejátszhatóak voltak kazetták is. A készüléket akkoriban jobban tudtam kezelni gyermekként, mint a szüleim, egyértelmű volt már akkoriban is, a technika és a zene iránti érdeklődésem. Ezek után általános iskolában a fizika tanárommal együtt kezdük el a sulirádió működtetését, amelynek a telepítési részében is részt vettem, mivel azelőtt csak egyszerű csengők voltak felszerelve az épületben. Szükség volt hangsugárzókra, erősítőkre, mikrofonokra, és egyéb kiegészítőkre. A rádió működtetése is az én feladatom lett két másik barátommal együtt, az iskolával kapcsolatos híreket és információkat mondtuk be rövid szünetekben, a hosszabb szünetekben pedig zenéket játszottunk. Mindeközben zeneiskolába is beiratkoztam, ahol ütőhangszeresként tanultam egészen egyetemi tanulmányaim kezdetéig. A több mint tíz év alatt, sok új ismeretet és tapasztalatot szereztem, amit a későbbiekben mint zenész, mint hangosító tudtam hasznosítani. Megismerkedtem a különböző zenei stílusok egyedi hangzásvilágával, ami a későbbiekben a hangosításban is nagy segítségemre volt. Középiskolai tanulmányaim alatt kezdtem el komolyabban foglalkozni a hangtechinka világával komolyabb szinten. A fizika tanárommal ugyanis korábban nem csak a sulirádiót működtettük, hanem az összes sulibulit és rendezvényt a faluban mi szolgáltuk ki technikailag. Ezért mivel már középiskolába jártam, a későbbiekben egy feltörekvő fiatalos és modern gondolkodású magánvállalkozáshoz ajánlott be engem, mivel a fiatal és motivált munkaerőt kerestek. (TéDé Rendezvények) Már az első munkalehetőségnél éreztem, hogy ez egy nagyon jó lehetőség számomra, mindenképpen szeretnék ebben a szakmában dolgozni. A cég fő profilja a hangrendszerek kiépítése és üzemeltetése volt, de későbbiekben már a fénytechnikával és színpadtechnikával is el kezdtünk foglalkozni. Ettől kezdve kezdtem el aktívan dolgozni a rendezvényiparban a hangrendszerek világában. Az évek során egyre több tapasztalatot szereztem. Évente több mint száz rendezvényen tudtam folyamatosan fejlődni, rutint és ismerettséget szerezni a szakmában.

1.1.1. Téma választás

A hangrendszerek világa az elmúlt években nagy változáson ment keresztül. A digitális technika térhódítása a hangtechnikában is megjelent, és egyre több fajta megoldás jelent meg a piacon. A digitális fejlesztésekből mi sem szerettünk volna kimaradni, hogy hangtechnikai apparátusunk korszerű és versenyképes maradjon. Ekkor jött a fejlesztési ötlet, egy olyan rendszert tervezni, amely teljes mértékben digitális alapokra helyezi a jelenlegi hibrid megoldásunkat. A cégvezetőtől azt a feladatot kaptam, hogy tervezzek egy

olyan rendszert, amely megoldja a jelenlegi hibrid rendszerünk teljes digitális megoldásra való cseréjét. Az alapvető szempontok közé tartozott, hogy a rendszer legyen könnyen skálázható, és bővíthető, valamint a jelenlegi rendszert minden tekintetben felülmúlja. Első lépésben a különböző Audio over IP protokollok közül kellett választanom, amely a leginkább megfelel a rendszerünk igényeinek. Ehhez a piacon lévő protokollokat kellett megvizsgálnom, és a legjobb megoldást választani.

Audio over IP rendszerek bemutatása

2.1. Bevezetés az Audio over IP világába

[1][2]

Az 1990-es évek óta az informatika és a hálózatok robbanásszerű fejlődésével együtt a professzionális audio ipar is elkezdett változni. A 'pontról pontra' elvű (minden eszközt külön-külön kell fizikailag összekapcsolni kábellel amely digitális információt hordoz) digitális audió átvitel helyett, mint például az AES/EBU vagy a MADI, az IP alapú rendszerek felé kezdett el elmozdulni. Mivel ezek az IP rendszerek csomagalapúak, hatalmas rugalmasságot és továbbfejlesztési lehetőségeket biztosítanak a hagyományos rendszerekkel szemben. Ezek az előnyök mind hardveres, mind szoftveres szinten megjelennek, és lehetővé teszik a rendszerek könnyebb kezelhetőségét, valamint a hálózatok egyszerűbb kiépítését és karbantartását.

2.1.1. Előnyök

Nincsen szükség fizikai kábelekre a különböző végpontok között. Egyetlen egy CAT kábelre van szükségünk a rendszerbe kapcsoláshoz, majd egy szoftveres kezelőfelületen keresztül bármikor megváltoztathatóak a jelek útjai. (Ez alól kivételt képeznek a redundáns rendszerek amelyek két CAT kábelt igényelnek a redundancia biztosítása végett) A megfelelően megtervezett rendszerünk modulárissá válik, és a hálózat bármely pontján könnyen bővíthető, illetve a hálózat bármely pontjáról elérhetővé válik a rendszer. Egyes eszközökre a gyártó akár olyan fundamentális frissítéseket is kiadhat, amely nagymértékben képes lehet az adott eszköz funkcionalitását javítani, vagy új funkciók hozzáadásával tovább növelni a komponens értékét.

2.1.2. Hátrányok

A digitális hangfeldolgozás nagy flexibilitást és helytakarékosságot hozott el magával ebben az iparágban, de mindez nem teljes mértékben jött hátrány nélkül. Még a legmodernebb és legjobb A-D (analog to digital) konverterek sem tudták teljes mértékben visszaadni azt a tipikus analog hangot, amire egy analog hangrendszer képes. Ez elsősorban abból fakad, hogy egy átlagos digitális keverővel és végfokrendszerrel ellátott új generációs hangrendszerben sok A-D és D-A konverzió történik, és minden egyes konverzi-óval, hiába veszünk sok mintát (96 kHz 24 bit 3000+kbps), a hang akkor is veszt egy kicsit a karakterisztiká-jából.

- 2.1.3. Fázishelyesség
- 2.1.4. Időszinkronizáció
- 2.1.5. Mintavételi frekvencia és bitmélység
- 2.1.6. Késleltetés és bufferek
- 2.1.7. IP címek és maszkok
- 2.1.8. Unicast és Multicast
- 2.1.9. Redundancia
- 2.2. AES67
- 2.3. Waves SoundGrid
- 2.4. Audinate Dante

Rendszertervezés és telepítés elő környezetben

3.1. Követelmények

3.2. Rendszerterv

!!!ÁBRA HELYE!!! Egy jel útja a régi hibrid rendszerben !!!ÁBRA HELYE!!! Egy jel útja az új teljesen digitális rendszerben

3.2.1. Martin Audio Wavefront Precision hangrendszer

3.2.1.1. Martin Audio Display 2.3.4 b1 tervező szoftver

Mielőtt bele kezdenénk a tervezési folyatba, fontos megemlíteni, hogy a szoftver eredetileg Intel alapú processzorokra lett tervezve és MatLab alapú. Ebből fakadóan AMD processzorokon habár elidult a szoftver, de nem volt stabil és a számítások során minden esetben összeomlott, és használtatalanul lassú volt. Személy szerint a saját gépem amivel dolgoztam sajnos ilyen processzorral van szerelve ezért muszáj volt megoldást találni a problémára. A Martin Audio hivatalos szoftveres támogatásához fordultam először, de sajnos nem tudtak segíteni. Ezért a szoftver használatához sok belefektetett óra olvasás után sikerült egy olyan MatLab CMD parancsot találnom, amivel a szoftver elindul és használható. Miután rájöttem a probléma gyökerére, ezt megosztottam velük, hogy a jövőben másoknak ne kelljen ezzel a problémával szembesülniük. A probléma az alábbi volt. Az új AMD processzorok másfajta utasításkészletet használnak. Ebből kifolyólag a MatLab alapú szoftver adta sima utasításokat nem tudta értelmezni a CPU. A vezető szoftvermérnökkel való e-mail-es beszélgetésünk során megköszönte a probléma megoldását, és nemsokkal a megoldásom megosztása után a hivatalos oldalra feltölttötték az indító parancsfáljt. A kompatibilási probémát rögtön a script elején megoldottam, mivel a következő parancs megadásával már használhatóvá válik a program: set MKL DEBUG CPU TYPE=5 Ez a sor a program vezérlését AVX2-re állítja át, és mivel ezt az utasításkészletet ismeri az AMD processzor is ezért a probléma már a múlté. Az indító fájl további részei optimalizálások a számítások gyorsítására, és a párhuzamosításra AMD processzorokon.

```
@echo off
set PATH=%PATH%;C:\Program Files\Martin Audio\Display2_3_4_b1\application
set MKL_DEBUG_CPU_TYPE=5
set options=optimoptions('ga','UseParallel',true,'UseVectorized',false)
set options=optimoptions('gamultiobj','UseParallel',true,'UseVectorized',false)
set options=optimoptions('paretosearch','UseParallel',true)
set options=optimoptions('particleswarm','UseParallel',true,'UseVectorized',false)
```

```
set options=optimoptions('patternsearch','UseParallel',true,'UseCompletePoll',true,'UseVectorized ',false)
set options=optimoptions('surrogateopt','UseParallel',true)
set GPUAcceleration=on
start "Martin Audio" Display2_3_4_b1.exe
pause
```

3.1. lista. A Display 2.3.4 b1 indító ".bat" scriptje AMD processzorokhoz

3.1. ábra. E-mail a Martin Audio vezető szoftvermérnökétől

Most, hogy már a szoftver használható és teljes mértékben működőképes, kezdjük el a tervezést. A modellezés során a budapesti Millenáris B csarnoka lesz a referencia helyszín. Két LineArray rendszert fogunk tervezni, mivel a terem hosszúsága és a lefedettség növelése miatt szükségünk lesz Delay kiegészítésre a fő hangrendszerhez.

- 3.2.1.2. Martin Audio VU-NET rendszer szoftver
- 3.2.2. Allen & Heath digitális keverőrendszer
- 3.2.3. Shure ULXD digitális vezeték nélküli mikrofonrendszer
- 3.2.4. Dante audio szerver
- 3.2.5. Dante hálózat kialakítása és optimalizálása
- 3.2.5.1. Dante Controller: Hálózati mátrix

Ezen a felületen tudjuk a hálózaton összekapcsolni a különböző hang vevőket és adókat. Egy nagyobb rendszerben a konfigurálása rendkívül nagy odafigyelést és precíziót igényel, pontosan tudnunk kell mit, hogyan és miért kötünk össze.

3.2.5.2. Dante Controller: Eszköz nézet

Mielőtt elkezdenénk konfigurálni az adott eszközt, fontos eldöntenünk, hogy milyen módban szeretnénk használni. Lehetőségünk van két fő mód közül választani, a redundáns és a váltott mód közül. A redundant mód mint ahogy azt a neve is sugallja redundáns kommunikációt valósít meg az eszközök között szoftveresen és hardveresen egyaránt. Az összes Dante kártya a jelenlegi rendszerben gyárilag két RJ45-s csatlakozóval rendelkezik. Jelen esetben ezt a módot választjuk az üzembiztosság és a kritikus hibák minimalizálása miatt. A másik lehetőség a váltott pedig eszközök láncolását teszi egyszerűbbé. Amennyiben a rendundancia nem elsődleges szempont számunkra, nem kell minden egyes eszköz mögé switch, hanem a másodlagos RJ45 port direktbe köti az arra csatlakoztatott eszközt az elsődleges hálózatra. Így gyorsabban és költséghatékonyabban tudjuk kiépíteni a hálózatot, azonban a redundancia lehetősége megszűnik.

3.2.5.3. IP kiosztás

A rendszer képes automatikusan IP címeket osztani az egyes eszközöknek, így meggyorsítva a munkafolyamatot. Azonban egy fixen előre megtervezett rendszernél praktikusabb és üzembiztosabb megoldás, ha minden eszköznek manuálisan megadjuk a címét a hálózaton. A tervezett rendszerben minden egyes eszköznek fix IP címet adtam, hogy könnyen és logikusan átlátható legyen az előbb említett előnyökön kívül. A címeket egy online is elérhető Excel táblázatban tároltam, hogy amennyiben szükség van rá bármikor könnyen elérhető legyen. Ez a táblázat a cégnél dolgozó összes munkatárs számára látható, aki a rendszerrel foglalkozik. Így amennyiben új eszköz kerül a hálózatra, vagy egy eszköz IP címét valamilyen okból meg kell változtatni, egyszerűen elérhető a szükséges információ.

	Eszköz	Dante Elsődleges	Dante Másodlagos	Maszk	Ethernet IP	Switch Neve	Switch IP	Groove Neve/SSID	Jelszó	Groove IP	DHCP tartomány
Pultok											
SQ5_01	SQ5 (01)	192.168.1.1	192.168.2.1	255.255.255.0	-	-	-	Titkos információ	Titkos információ	-	-
SQ6_01	SQ6 (01)	192.168.1.10	192.168.2.10	255.255.255.0	-	-	-	Titkos információ	Titkos információ	-	-
SQ6_02	SQ6 (02)	192.168.1.20	192.168.2.20	255.255.255.0	-	-	-	Titkos információ	Titkos információ	-	-
QU-SB_01	QU-SB (01)	-	-	-	-	-	-	Titkos információ	Titkos információ	-	-
<u>Boxok</u>											
DT168_01	DT168 (01)	192.168.1.31	192.168.2.31	255.255.255.0	-	DT168_01_P	DHCP	-	-	-	-
	-	-	-	-	-	DT168_01_S	DHCP	-	-	-	-
DT168_02	DT168 (02)	192.168.1.32	192.168.2.32	255.255.255.0	-						
DT168_03	DT168 (03)	192.168.1.33	192.168.2.33	255.255.255.0	-						
PA Racks											
PA WPC 01	IK42 UP	192.168.1.111	192.168.2.111	255.255.255.0	192.168.100.111	PA_WP_01_P	DHCP	Titkos információ	Titkos információ	192.168.100.1	192.168.100.10-49
	IK42 MID	192.168.1.112	192.168.2.112	255.255.255.0	192.168.100.112	PA_WP_01_S	DHCP				
	IK42 DOWN	192.168.1.113	192.168.2.113		192.168.100.113						
PA WPC 03	IK42UP	192.168.1.131	192.168.2.131		192.168.100.131		DHCP	Titkos információ	Titkos információ	192.168.100.1	192.168.100.10-49
	IK42DOWN	192.168.1.132	192.168.2.132		192.168.100.132		DHCP				
PA WPC 04	IK42UP	192.168.1.141	192.168.2.141		192.168.100.141		DHCP	Titkos információ	Titkos információ	192.168.100.1	192.168.100.10-49
	IK42DOWN	192.168.1.142	192.168.2.142		192.168.100.142		DHCP				
PA WPC 05	IK81UP	192.168.1.151	192.168.2.151		192.168.100.151		DHCP	Titkos információ	Titkos információ	192.168.100.1	192.168.100.10-49
	IK42DOWN	192.168.1.152	192.168.2.152	255.255.255.0	192.168.100.152	PA_WP_05_S	DHCP				
Audio Szerverek	1										
AMD Prof	LiveProfessor	192.168.1.250	192.168.2.250	255.255.255.0		-	-	-	-	-	-

3.2. ábra. Dante eszközök IP címei a hálózaton

3.2.5.4. Dante Controller: Órajel nézet

Meg kell adnunk az audio hálózatunk master órajelét, ehhez az órajelhez szinkronizál a többi eszköz, az időszinkronizáció kulcsontosságú élőzenei produkcióknál.

3.3. Rendszermérések és monitorozás

- 3.3.1. Dante rendszer monitorozása
- 3.3.1.1. Dante Controller: Hálózati állapot nézet
- 3.3.1.2. Dante Controller: Események nézet
- 3.3.2. Cardioid mélyláda rendszer mérése
- 3.3.3. Mélyláda és Line Array fázishelyesség
- 3.3.4. Rendszer hangnyomás szint és frekvencia átvitel mérése

Üzemeltetési tapasztalatok és továbbfejlesztési lehetőségek

- 4.1. További eszközök integrálása
- 4.2. Bővítés nagyobb interfészre

Köszönetnyilvánítás

Ábrák jegyzéke

3.1.	E-mail a Martin Audio vezető szoftvermérnökétől	,
3.2.	Dante eszközök IP címei a hálózaton	8

Irodalomjegyzék

- [1] Wolfgang Ahnert Dirk Noy (szerk.): Sound Reinforcement for Audio Engineers. Abingdon, Oxon and New York, NY, 2023, Routledge. ISBN 978-1-032-11518-4 (hbk).
- [2] Bob McCarthy: Sound Systems: Design and Optimization. Third edition. kiad. New York, NY and Abingdon, Oxon, 2016, Focal Press, 12–842. p. ISBN 978-0-415-73101-0 (pbk). Library of Congress Cataloging-in-Publication Data: TK7881.4.M42 2016.

Függelék