Examenul național de bacalaureat 2024 Proba E. c) Matematică *M_şt-nat* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 10

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	Rația progresiei este $r = a_3 - a_2 = 4$	3 p
	$a_1 = a_2 - r = 4$	2p
2.	f(m) = 3m - 2, pentru orice număr real m	2p
	3m-2=m, de unde obţinem $m=1$	3 p
3.	$9 - x^2 = 5$, de unde obţinem $x^2 - 4 = 0$	2p
	x = -2 sau $x = 2$, care convin	3 p
4.	Mulțimea A are 10 elemente, deci sunt 10 cazuri posibile	2p
	Numerele n din mulțimea A pentru care $\sqrt{2n+1}$ aparține mulțimii A sunt 0 și 4 , deci sunt	
	2 cazuri favorabile, de unde obținem $p = \frac{2}{10} = \frac{1}{5}$	3 p
5.	$m_{AC} = \frac{1}{2}$	2p
	$m_{BC} = -2 \Rightarrow m_{AC} \cdot m_{BC} = -1$, deci triunghiul ABC este dreptunghic în C	3 p
6.	$\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$, $\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$, $\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}$	3p
	$E\left(\frac{\pi}{3}\right) = 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{2}{4} = 2$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$B(1) = \begin{pmatrix} 1 & 2 \\ -2 & 3 \end{pmatrix} \Rightarrow \det(B(1)) = \begin{vmatrix} 1 & 2 \\ -2 & 3 \end{vmatrix} = 1 \cdot 3 - 2 \cdot (-2) =$	3 p
	= 3 + 4 = 7	2p
b)	$B(0) = \begin{pmatrix} 0 & 1 \\ -3 & -1 \end{pmatrix}, \ B(0) \cdot B(1) = \begin{pmatrix} -2 & 3 \\ -1 & -9 \end{pmatrix}$	3 p
	$B(2) - B(0) \cdot B(1) = \begin{pmatrix} 4 & 0 \\ 0 & 16 \end{pmatrix} = 4A$	2p
c)	$C(a) = \begin{pmatrix} 0 & a+1 \\ a-3 & -1 \end{pmatrix} \Rightarrow \det(C(a)) = -(a-3)(a+1), \text{ pentru orice număr real } a$	3 p
	$\det(C(a)) = 0$, de unde obţinem $a = -1$ sau $a = 3$	2p
2.a)	$2 * 2 = 2 \cdot 2 - 2 \cdot 2 - 3 \cdot 2 + 6 =$ $= 4 - 4 - 6 + 6 = 0$	3p 2p
b)	x*6=4x-12, pentru orice număr real $x4x-12=x$, de unde obținem $x=4$	3p 2p
c)	$2*x=2-x$, $x*(2*x)=-x^2+3x$, pentru orice număr real x	2p
	$-x^2 + 3x \ge 2 \Leftrightarrow -x^2 + 3x - 2 \ge 0$, de unde obţinem $x \in [1, 2]$	3 p

SUBIECTUL al III-lea (30 de puncte)

OUDIE	BIECT OL al III-lea (50 de pu	
1.a)	$f'(x) = \frac{2(x^2 + x + 4) - 2x(2x + 1)}{(x^2 + x + 4)^2} =$	3p
	$= \frac{8 - 2x^2}{\left(x^2 + x + 4\right)^2} = \frac{2\left(4 - x^2\right)}{\left(x^2 + x + 4\right)^2}, \ x \in \mathbb{R}$	2 p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x}{x^2 + x + 4} = \lim_{x \to +\infty} \frac{2}{x \left(1 + \frac{1}{x} + \frac{4}{x^2}\right)} = 0$	3p
	Dreapta de ecuație $y = 0$ este asimptota orizontală spre $+\infty$ la graficul funcției f	2p
c)	$f'(x) = 0 \Rightarrow x = -2$ sau $x = 2$; pentru orice $x \in (-\infty, -2]$, $f'(x) \le 0$, deci f este descrescătoare pe $(-\infty, -2]$; pentru orice $x \in [-2, 2]$, $f'(x) \ge 0$, deci f este crescătoare pe $[-2, 2]$; pentru orice $x \in [2, +\infty)$, $f'(x) \le 0$, deci f este descrescătoare pe $[2, +\infty)$	2p
	$x \in [4, +\infty) \Rightarrow 4 - x \in (-\infty, 0] \text{, deci } f(x) \le f(4) \text{ si } f(4 - x) \ge f(-2) \text{ si, cum } f(-2) = -\frac{2}{3}$ $\text{si } f(4) = \frac{1}{3}, \text{ obținem } f(x) - f(4 - x) \le 1, \text{ pentru orice } x \in [4, +\infty)$	3p
	$\int_{0}^{2} (x+1) f(x) dx = \int_{0}^{2} (x+3) dx = \left(\frac{x^{2}}{2} + 3x\right) \Big _{0}^{2} =$	3p
1-)	= 2 + 6 = 8	2p
D)		3 p
	$=1+2\ln 2-2\ln 1=1+2\ln 2$	2p
c)	$\int_{1}^{2} (x^{2} - 1)e^{x} f(x) dx = \int_{1}^{2} (x^{2} + 2x - 3)e^{x} dx = (x^{2} - 3)e^{x} \Big _{1}^{2} = e^{2} + 2e$	3p
	$e(e+a) = e^2 + 2e$, de unde obţinem $a = 2$	2p