CS 350 Algorithms and Complexity

Fall 2018

Lecture 3: Asymptotic Notation, and Analyzing Non-Recursive Algorithms

Andrew P. Black

Department of Computer Science Portland State University

Formalizing Asymptotic Noting Oh"

♦ A function f(n) is said to be Ó(g(n)) if there are constants c>0 and N>0 such that:

$$f(n) \le c g(n)$$
 for all $n \ge N$

- ♦ In other words: for large enough input n, f(n) is no more than a constant multiple of g(n).
- Big Oh is used for stating <u>upper bounds</u>.

Which of the following is true:

A.
$$3n^2 + 500 \in O(n)$$

B.
$$3n^2 + 500 \in O(n^2)$$

C.
$$3n^2 + 500 \in O(n^3)$$

- D. A & B
- E. B & C
- F. none of the above

Which of the following is true:

A.
$$3n^3/500 \in O(n)$$

B.
$$3n^3/500 \in O(n^2)$$

C.
$$3n^3/500 \in O(n^3)$$

- D. A & B
- E. B & C
- F. none of the above

Examples:

- $4n^2 + 3 \in O(n^2)$
- $4n^3 + 3 \in O(n^3)$
- $\Rightarrow n^2/1000 + 3000n \in O(n^2)$

In general:

- Can ignore all but the highest power
- Can ignore coefficients

Logarithms

Which of the following is true?

- **A.** $O(\ln n) = O(\log_{10} n)$
- $B. \quad O(\lg n) = O(\ln n)$
- $\mathbf{C.} \quad \lg n = \ln n$
- D. all of the above are true
- E. none of the above is true
- F. A and B are true
- G. B and C are true

Powers

Which of the following is true

A.
$$O(4^n) = O(2^n)$$

B.
$$O(2 \times 2^n) = O(10 \times 2^n)$$

- C. both of the above are true
- D. neither of the above is true

More Examples:

Logarithms:

Can ignore base because:

$$\log_a b = \log_c b / \log_c a.$$

 \diamond Thus $O(\log_2 n)$ is the same as $O(\log_{10} n)$.

Exponents:

- Can ignore non-exponential terms
- ♦ Base of exponentiation <u>is</u> important; for example, $O(4^n)$ is bigger than $O(2^n)$.

Properties of Big Oh:

♦ For all constants c>0 and a>1, and monotonically increasing functions f(n):

$$f(n)^c$$
 is $O(a^{f(n)})$

- For example:
 - n^c is O(aⁿ)
 - n^{256} is $O(1.0001^n)$
 - $(\log_a n)^c$ is $O(a^{\log_a n})$, which is O(n).

More Properties of Big Oh:

♦ O notation is additive and multiplicative:

```
If f(n) \in O(s(n)) and g(n) \in O(t(n)), then:
```

- $f(n) + g(n) \in O(s(n) + t(n));$
- $f(n)g(n) \in O(s(n)t(n)).$
- ♦ O notation is transitive:

```
If f(n) \in O(g(n)), and g(n) \in O(h(n)), then f(n) \in O(h(n)).
```

Classes of Algorithm:

There are standard names for some of the most common complexity classes:

- \bullet Constant: O(1)
- \bullet Logarithmic: $O(\log n)$
- + Linear: O(n)
- \bullet Linearithmic: $O(n \log n)$
- Quadratic: $O(n^2)$
- \bullet Exponential: $O(2^n)$
- Double Exponential: $O(2^{2^n})$

Polynomial Algorithms:

 \diamond An algorithm is said to be <u>polynomial</u> if it is $O(n^p)$ for some integer p.

Terminology:

- Problems with polynomial algorithms are generally considered to be <u>tractable</u>.
- Problems for which no polynomial algorithm has been found are often considered intractable.

Lower Bounds

there exists a C such that for all n > N, $f(n) \ge C g(n)$. f(n)

C g(n)

What's the relationship between f(n) and g(n)?

A.
$$f(n) \in O(g(n))$$

B.
$$f(n) \in \Omega(g(n))$$

C.
$$f(n) \in \Theta(g(n))$$

D.
$$f(n) > C(g(n))$$

E. none of the above

Omega, Ω

lower bound

$$f(n) \in \Omega(g(n))$$

f(n)

C g(n)

there exists a C such that for all $n \ge N$, $f(n) \ge C g(n)$.

Dealing with Lower Bounds:

"This algorithm takes at least ..."

Omega

 \diamond A function f(n) is said to be in $\Omega(g(n))$ if there are constants c>0 and N>0 such that:

$$f(n) \ge c \ g(n)$$
 for all $n \ge N$

 \Rightarrow Note that $f(n) \in \Omega(g(n))$ if and only if $g(n) \in O(f(n))$.

Mnemonics

- \diamond Big Oh is really a Capital greek letter Omicron; pronounce it O-micron. Pronounce Ω O-mega.
- \Rightarrow Read $f(n) \in O(g(n))$ as f is O-smaller-than g
- \Rightarrow Read $f(n) \in \Omega(g(n))$ as f is O-larger-than g
 - The large O (O, Ω) says: f may be equal to g

Tight Bounds:

- \diamond A function f(n) is said to be in $\Theta(g(n))$ if it is in both O(g(n)) and $\Omega(g(n))$.
 - If $f(n) \in \Theta(g(n))$, then it is eventually "sandwiched" between constant multiples of g(n).

$$\Rightarrow f(n) \in \Theta(g(n))$$
 if and only if $\lim_{n \to \infty} \frac{g(n)}{f(n)} = c$

Theta, _O

 $C_2 g(n)$

tight bound

f(n)

$$f(n) \in \Theta(g(n))$$

 C_1 g(n)

there exist C_1 and C_2 such that, for all $n \ge N$, C_1 $g(n) \le f(n) \le C_2$ g(n).

Simple laws of $\Theta(...)$ notation:

Addition:

$$\Theta(f(n) + g(n)) = \Theta(f(n)) + \Theta(g(n))$$

♦ Scaling: for any constant c>0,

$$\Theta(\mathrm{cf}(\mathsf{n})) = \mathrm{c}\ \Theta(\mathrm{f}(\mathsf{n})) = \Theta(\mathrm{f}(\mathsf{n}))$$

True or False

- ♦ You have two sorting algorithms: B is $O(n^2)$, while Q is $O(n \lg n)$.
- ♦ True or false: Q is <u>always</u> faster than B
 - A. True
 - B. False

Beware Constant Factors!

- Use complexity measures with care!
- \Rightarrow A $\Theta(n^2)$ algorithm might actually be faster than a $\Theta(n)$ algorithm for all values of n encountered in some real application!

The $\Theta(n^2)$ algorithm is faster than the $\Theta(n)$ alternative if we're working within this particular range ...

Comparing Orders of Growth

❖ If you need to compare the rates of growth of two functions, t and g, the easiest way is often to take limits:

$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \begin{cases} 0 & \Rightarrow t(n) \text{ has a smaller order of growth than } g(n) \\ c > 0 & \Rightarrow t(n) \text{ has the same order of growth as } g(n) \\ \infty & \Rightarrow t(n) \text{ has a larger order of growth than } g(n) \end{cases}$$

Analysis of time efficiency

- Time efficiency is analyzed by determining the number of repetitions of the "basic operation"
- Almost always depends on the size of the input
- * "Basic operation": the operation that contributes most towards the running time of the algorithn cost of basic op: constant number

run time

 $T(n) \approx c_{op} \times C(n)$

of times basic op

is executed

Problem	Input size measure	Basic operation
Searching for key in a list of <i>n</i> items	A: Number of list's items, i.e. <i>n</i>	
Multiplication of two matrices	B: Matrix dimension, or total number of elements	
Checking primality of a given integer <i>n</i>	C: size of $n =$ number of digits (in binary rep)	
Shortest path through a graph	D: #vertices and/or edges	

Problem	Input size measure	Basic operation
Searching for key in a list of n items	A: Number of list's items, i.e. <i>n</i>	A: Key comparison
	B: Matrix dimension, or total number of elements	B: Multiplication of two numbers
	C: size of $n =$ number of digits (in binary rep)	C: Division
	D: #vertices and/or edges	D: Visiting a vertex or traversing an edge

Best-case, average-case, worst-case

- ♦ For some algorithms, efficiency depends on the input:
- ♦ Worst case: $C_{worst}(n)$ maximum over inputs of size n
- \diamond Best case: $C_{best}(n)$ minimum over inputs of size n
- ♦ Average case: $C_{avg}(n)$ "average" over inputs of size n
 - Number of times the basic operation will be executed on typical input
 - Not the average of worst and best case
 - Expected number of basic operations treated as a random variable under some assumption about the probability distribution of all possible inputs

Discuss:

```
ALGORITHM UniqueElements (A[0..n-1])

//Determines whether all the elements in a given array are distinct

//Input: An array A[0..n-1]

//Output: Returns "true" if all the elements in A are distinct

// and "false" otherwise

for i \leftarrow 0 to n-2 do

for j \leftarrow i+1 to n-1 do

if A[i] = A[j] return false

return true
```

- What's the best case, and its running time?
 - A. constant -O(1)
 - B. linear O(n)
 - c. quadratic $O(n^2)$

Discuss:

ALGORITHM UniqueElements (A[0..n-1])//Determines whether all the elements in a given array are distinct //Input: An array A[0..n-1]//Output: Returns "true" if all the elements in A are distinct // and "false" otherwise for $i \leftarrow 0$ to n-2 do for $j \leftarrow i+1$ to n-1 do if A[i] = A[j] return false return true

- What's the worst case, and its running time?
 - A. constant -O(1)
 - B. linear O(n)
 - c. quadratic $O(n^2)$

Discuss:

ALGORITHM UniqueElements (A[0..n-1])//Determines whether all the elements in a given array are distinct //Input: An array A[0..n-1]//Output: Returns "true" if all the elements in A are distinct // and "false" otherwise for $i \leftarrow 0$ to n-2 do for $j \leftarrow i+1$ to n-1 do if A[i] = A[j] return false return true

- What's the average case, and its running time?
 - A. constant -O(1)
 - B. linear O(n)
 - c. quadratic $O(n^2)$

General Plan for Analysis of non-recursive algorithms

- 1. Decide on parameter n indicating input size
- 2. Identify algorithm's basic operation
- Determine worst, average, and best cases for input of size n
- 4. Set up a <u>sum</u> for the number of times the basic operation is executed
- 5. Simplify the sum using standard formulae and rules (see Levitin Appendix A)

"Basic Operation"

```
ALGORITHM MaxElement(A[0..n-1])

//Determines the value of the largest element in a given array
//Input: An array A[0..n-1] of real numbers
//Output: The value of the largest element in A

maxval \leftarrow A[0]

for i \leftarrow 1 to n-1 do

if A[i] > maxval

maxval \leftarrow A[i]

return maxval
```

- Why choose > as the basic operation?
 - Why not $i \leftarrow i + 1$?
 - Or [] ?

Same Algorithm:

```
ALGORITHM MaxElement (A: List)

// Determines the value of the largest element in the list A

// Input: a list A of real numbers

// Output: the value of the largest element of A

maxval ← A.first

for each in A do

if each > maxval

maxval ← each

return maxval
```

- Why choose > as the basic operation?
 - Why not $i \leftarrow i + 1$?
 - Or [] ?

Useful Summation Formulae

$$\sum_{1 \leq i \leq u} 1 =$$

In particular, $\sum_{1 \le i \le n} 1 = n$

$$\sum_{1 \leq i \leq n} i =$$

$$\sum_{1 \le i \le n} i^2 =$$

$$\sum_{0 \le i \le n} a^i =$$

In particular, $\Sigma_{0 \le i \le n} 2^i =$

$$\sum (a_i \pm b_i) = \sum_{1 \le i \le u} a_i = \sum_{i \le u} a_i$$

$$\sum c a_i =$$

Useful Summation Formulae

$$\Sigma_{1 \le i \le u} 1 = 1 + 1 + \dots + 1 = u - l + 1$$
In particular, $\Sigma_{1 \le i \le n} 1 = n - 1 + 1 = n \in \Theta(n)$

$$\Sigma_{1 \le i \le n} i = 1 + 2 + \dots + n = n(n+1)/2 \approx n^2/2 \in \Theta(n^2)$$

$$\sum_{1 \le i \le n} i^2 = 1^2 + 2^2 + \dots + n^2 = n(n+1)(2n+1)/6 \approx n^3/3 \in \Theta(n^3)$$

$$\Sigma_{0 \le i \le n} a^i = 1 + a + ... + a^n = (a^{n+1} - 1)/(a - 1)$$
 for any $a \ne 1$
In particular, $\Sigma_{0 \le i \le n} 2^i = 2^0 + 2^1 + ... + 2^n = 2^{n+1} - 1 \in \Theta(2^n)$

$$\Sigma(a_i \pm b_i) = \Sigma a_i \pm \Sigma b_i \qquad \Sigma c \ a_i = c \Sigma a_i$$

$$\Sigma_{l \le i \le u} a_i = \Sigma_{l \le i \le m} a_i + \Sigma_{m+1 \le i \le u} a_i$$

Where do the Summation formulae come from?

- Answer: mathematics.
- Example:

The Euler–Mascheroni constant γ is <u>defined</u> as:

What does Levitin's \approx mean?

- \diamond "becomes almost equal to as $n \to \infty$ "
- ♦ So formula 8

$$\sum_{i=1}^{n} \lg i \approx n \lg n$$

means

$$\lim_{n \to \infty} \left(\sum_{i=1}^{n} \lg i - n \lg n \right) = 0$$

Example: Counting Binary Digits

```
ALGORITHM Binary(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n's binary representation count \leftarrow 1

while n > 1 do

count \leftarrow count + 1

n \leftarrow \lfloor n/2 \rfloor
```

return count

- How many times is the basic operation executed?
- Why is this algorithm harder to analyze than the earlier examples?

Working with a partner:

1. Compute the following sums.

a.
$$1+3+5+7+...+999$$

b.
$$2+4+8+16+...+1024$$

c.
$$\sum_{i=3}^{n+1} 1$$

d.
$$\sum_{i=3}^{n+1} i$$

e.
$$\sum_{i=0}^{n-1} i(i+1)$$

f.
$$\sum_{i=1}^{n} 3^{j+1}$$

g.
$$\sum_{i=1}^{n} \sum_{j=1}^{n} ij$$

g.
$$\sum_{i=1}^{n} \sum_{j=1}^{n} ij$$
 h. $\sum_{i=1}^{n} 1/i(i+1)$

2. Find the order of growth of the following sums.

a.
$$\sum_{i=0}^{n-1} (i^2+1)^2$$

b.
$$\sum_{i=2}^{n-1} \lg i^2$$

c.
$$\sum_{i=1}^{n} (i+1)2^{i-1}$$

c.
$$\sum_{i=1}^{n} (i+1)2^{i-1}$$
 d. $\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} (i+j)$

Use the $\Theta(g(n))$ notation with the simplest function g(n) possible.

3. The sample variance of n measurements $x_1, x_2, ..., x_n$ can be computed as

$$\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$
 where $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$

or

$$\frac{\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2 / n}{n-1}.$$

Find and compare the number of divisions, multiplications, and additions/subtractions (additions and subtractions are usually bunched together) that are required for computing the variance according to each of these formulas.

4. Consider the following algorithm.

```
Algorithm Mystery(n)

//Input: A nonnegative integer n

S \leftarrow 0

for i \leftarrow 1 to n do

S \leftarrow S + i * i

return S
```

What does this algorithm compute?

A.
$$n^2$$

B.
$$\sum_{i=1}^{n} i$$

C.
$$\sum_{i=1}^{n} i^2$$

D.
$$\sum_{i=1}^{n} 2i$$

4. Consider the following algorithm.

```
Algorithm Mystery(n)

//Input: A nonnegative integer n

S \leftarrow 0

for i \leftarrow 1 to n do

S \leftarrow S + i * i

return S
```

What is the basic operation?

- A. multiplication
- B. addition
- C. assignment
- D. squaring

4. Consider the following algorithm.

How many times is the basic operation executed?

Algorithm Mystery(n)//Input: A nonnegative integer n $S \leftarrow 0$ for $i \leftarrow 1$ to n do $S \leftarrow S + i * i$ return S

A. once

B. n times

C. $\lg n$ times

D. none of the above

4. Consider the following algorithm.

```
Algorithm Mystery(n)

//Input: A nonnegative integer n

S \leftarrow 0

for i \leftarrow 1 to n do

S \leftarrow S + i * i

return S
```

What is the efficiency class of this algorithm?
$$[b \text{ is } \# \text{ of bits needed to represent } n]$$

A.
$$\Theta(1)$$

B.
$$\Theta(n)$$

C.
$$\Theta(b)$$

D.
$$\Theta(2^b)$$

Ex 2.3, Problem 4 (cont)

e. Suggest an improvement or a better algorithm altogether and indicate its efficiency class. If you cannot do it, try to prove that, in fact, it cannot be done.

Prove the formula

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

either by mathematical induction or by following the insight of a 10-year old schoolboy named Karl Friedrich Gauss (1777–1855) who grew up to become one of the greatest mathematicians of all times.

```
Algorithm GE(A[0..n-1,0..n])

//Input: An n-by-n+1 matrix A[0..n-1,0..n] of real numbers

for i \leftarrow 0 to n-2 do

for j \leftarrow i+1 to n-1 do

for k \leftarrow i to n do

A[j,k] \leftarrow A[j,k] - A[i,k] * A[j,i] / A[i,i]
```

- a. Find the time efficiency class of this algorithm
- b. What glaring inefficiency does this code contain, and how can it be eliminated?
- c. Estimate the reduction in run time.