

Optimizing EV Charging Infrastructure in Boston

Yuki Yu & Brimar Ólafsson 15.C57 Optimization

Introduction

Powering Boston's Sustainable Future

- Boston's goal:
 - Widespread adoption of zero-emission vehicles
- Challenge:
 - Ensuring equitable access to EV charging infrastructure
- Focus:
 - Dorchester as a test case
- Objective:
 - Develop optimization model for Level 2 charger placement

Methodology - Data Sources

Building a Comprehensive Dataset

- Alternative Fuels Data Center (AFDC):
 - Current EV station placements
- ChargePoint:
 - Charging station & charger costs
- 2020 U.S. Census:
 - Residential units by neighborhood
- Mass.gov:
 - \$15 million budget constraint

Methodology - Data Preprocessing

- Generated grid of candidate locations (0.1-mile spacing)
- Identified uncovered areas beyond 0.5-mile buffer zones
- Simulated housing unit locations

Problem Formulation

Objective:

Minimize total cost of building and operating EV charging stations

•Coverage:

 Every housing unit within 0.5-mile radius of a station

Demand:

 Sufficient chargers to meet projected EV adoption

Budget:

 \$15 million total (scaled to \$2.85 million for Dorchester)

$$\min_{x,y,u,x',u'} \sum_{j \in F_k} \sum_{k \in N} (cx_{jk} + gu_{jk}) + \sum_{j \in F'_k} \sum_{k \in N} (cx'_{jk} + gu'_{jk})$$

$$\sum_{j \in \Omega_k} \sum_{k \in N} y_{ijk} \ge 1, \quad \forall i \in \Omega_k$$

$$2(u_{jk} + u'_{jk}) \ge \frac{1}{24}\alpha \cdot p \sum_{i \in H_k} y_{ijk}, \quad \forall j \in F_k, k \in N$$

$$\sum_{j \in F_k} \sum_{k \in N} (cx_{jk} + gu_{jk}) + \sum_{j \in F_k'} \sum_{k \in N} (cx'_{jk} + gu'_{jk}) \le B$$

Optimization Model

Decision variables:

 Station locations, number of chargers, housing unit coverage

Constraints:

 Coverage, logical, charger limits, demand, budget

Assumptions:

62% EV adoption rate, 50% partial charging rate

$$\begin{split} \min_{x,y,u,x',u'} \sum_{j \in F_k} \sum_{k \in N} (cx_{jk} + gu_{jk}) + \sum_{j \in F_k'} \sum_{k \in N} (cx_{jk}' + gu_{jk}') \\ \text{subject to} \quad & \sum_{j \in \Omega_k} \sum_{k \in N} y_{ijk} \geq 1, \quad \forall i \in \Omega_k \\ y_{ijk} &= x_{jk}, \quad \forall (i,j) \in \Omega_k, k \in N \\ u_{jk} \leq 12x_{jk}, \quad \forall j \in F_k, k \in N \\ u_{jk} \geq x_{jk}, \quad \forall j \in F_k, k \in N \\ 2(u_{jk} + u_{jk}') \geq \frac{1}{24} a \cdot p \sum_{i \in H_k} y_{ijk}, \quad \forall j \in F_k, j \in F_k', k \in N \\ u_{jk}' \leq 12x_{jk}', \quad \forall j \in F_k', k \in N \\ \sum_{j \in F_k} \sum_{k \in N} (cx_{jk} + gu_{jk}) + \sum_{j \in F_k'} \sum_{k \in N} (cx_{jk}' + gu_{jk}') \leq B, \quad \forall j \in F_k, j \in F_k', k \in N \\ y_{ijk} \geq 0, \quad \forall (i,j) \in \Omega_k, k \in N \\ u_{jk} \in Z_{\geq 0} \\ x_{jk}, x_{ik}' \in \{0,1\}, \quad \forall j \in F_k, j \in F_k', k \in N \end{split}$$

Results for Dorchester

- 27 stations identified
- 213 total chargers
- Total cost: \$1,936,800 (68% of allotted budget)
- Efficient coverage and demand satisfaction

Station ID	Charger Count	Overflow Station ID	Charger Count
Station 124	4.00	Station 124.1	12.00
Station 132	8.00	_	_
Station 162	3.00	_	_
Station 166	12.00	Station 166.1	2.00
Station 173	11.00	_	_
Station 251	12.00	_	_
Station 292	12.00	Station 292.1	5.00
Station 302	8.00	_	_
Station 307	12.00	Station 307.1	7.00
Station 315	6.00	Station 315.1	12.00
Station 342	12.00	_	_
Station 362	5.00	Station 362.1	12.00
Station 363	6.00	Station 363.1	12.00
Station 373	10.00	_	_
Station 376	12.00	_	_
Station 433	3.00	Station 433.1	12.00
Station 470	2.00	_	_
Station 507	10.00	_	_
Station 509	2.00	_	_

Comparison with Heuristic Approach

· Heuristic:

Placing stations at community hubs (parks, libraries, schools)

Result:

- 28 stations required, still incomplete coverage
- No information on how many chargers to allot to each station

Our model:

- Better coverage with fewer stations (27)
- Detailed allocation of chargers for each station

Our Model

Heuristic Approach

Discussion & Future Directions

- Model outperforms simpler heuristic methods
- Iterative scaling approach for citywide expansion

Future enhancements:

- Adaptive formulation for different EV adoption scenarios
- Integration of real-time data on charging patterns and grid capacity

"The future is in our hands. Let's come together, raise our voices, and demand the sustainable and just world we deserve."

Helena Gualinga

Massachusetts Institute of Technology 11