Organizing Tagged Knowledge

Similarity Measures and Semantic Fluency in Structure Mining

Thurston Sexton (NIST) Mark Fuge (UMD)

8 August 2019

1

Background

How to "Get Smart"?

Maintenance is expensive (\$50 billion for USA in 2016 [1]) and expertise-driven, but... Smart manufacturing technologies can reduce costs!

SME's still not employing these technologies

- · High Cost to implement; Risk is high with incorrect implementation
- · Lack of Support/Expertise in manufacturing
- · Leads to a lack of high quality (or understood) sensor data

Have little/no data

Difficult to assess impacts of new technologies

How to "Get Smart"?

Except...that's not entirely true.

- · Untapped source of data...natural language documents
- · Maintenance Work Orders
- · These come with severe issues! [2]

jargon/misspellings

Hyd leak at saw atachment

abbreviations

HP coolant pressure at 75 psi

lack of context

Replaced - Operator could have done this!

What kinds of useable system knowledge could be gained from such data? Things that could assist in diagnostics, prognostics, schedule, etc.?

- 1. What components/concepts are relevant to our system
- 2. How these components are related

4

Tagging Example

Historical Record (MWO) Annotation Comparison

"Hydraulic Leak at cutoff unit; Missing fitting replaced"

Categorization:

Subsystem 142_HYD_SYSTEM

Error Code ERR_142A

Action Taken PART_ORDERED

Tags:

objects cutoff_unit, hydraulic, fitting

problems/actions leak, replace

Tagging Example

Historical Record (MWO) Annotation Comparison

"Hydraulic Leak at cutoff unit; Missing fitting replaced"

Categorization:

Subsystem 142_HYD_SYSTEM

Error Code ERR_142A

Action Taken PART_ORDERED

Tags:

objects cutoff_unit, hydraulic, fitting

problems/actions leak, replace

Missing the second half: tag relationships (this work!)

→ Structure Mining (e.g. Representation Learning)

Modeling Tag Relationships

Compare the Archetypes

At a high level:

- Context (global) e.g. Cosine Similarity
 Summary: "Tags found in similar contexts are similar."
 - Excellent Recall;
 - Used in structure mining/representation learning literature
 - · Hard to tune, mistakes correlation with relation

Compare the Archetypes

At a high level:

- Context (global) e.g. Cosine Similarity
 Summary: "Tags found in similar contexts are similar."
 - · Excellent Recall:
 - · Used in structure mining/representation learning literature
 - · Hard to tune, mistakes correlation with relation
- Sequence (local) e.g. Markov Chain Summary: Tags come "out" of the user in order!
 - · Better Precision;
 - Used to model generative human processes
 - possibility to miss large-scale patterns

Which one? How to combine?

Cosine Similarity

Cosine of the angle between example vectors:

MWO 1: "Hyd leak at saw attachment" [hydraulic, saw]\$

MWO 2: "Hydraulic Leak at cutoff unit; Missing fitting replaced" [hydraulic, cutoff_unit, fitting]

MWO 3: "Replaced – Operator could have done this!"
[operator]

 $u_{\text{saw}} = (1, 0, 0, \cdots)$

Markov Chain

Each "tag" is a **state** with transition probabilities to other tags. Tags on a resource are observed random walks through tag-states.

Random Walk 1

 $hydraulic \rightarrow cutoff_unit \rightarrow fitting$

Random Walk 2

 $hydraulic \rightarrow saw$

Random Walk 3

operator

Hold up a minute...

Let's step back. What might actually be going on? What could a reasonable set of tags be coming from?

Random Walk 1

hydraulic → cutoff_unit → fitting

Random Walk 2

hydraulic \rightarrow saw

More Realistic Example

Component network model from Walsh et al. [3]

Semantic Fluency Data

Audience Participation

VOLUNTEER NEEDED

Audience Participation

VOLUNTEER NEEDED

What patterns were there? Why did those transitions happen?

Semantic (or verbal) Fluency Tasks ask participants to recall objects in a category and write them down, as quickly as possible.

· dog

- · dog
- cat

- · dog
- cat
- lion

- · dog
- cat
- lion
- tiger

- · dog
- cat
- lion
- tiger
- · elephant

- · dog
- cat
- lion
- tiger
- · elephant
- · wolf

- · dog
- cat
- lion
- tiger
- · elephant
- · wolf
- ...

- · dog
- cat
- lion
- tiger
- · elephant
- · wolf
- ...

Semantic (or verbal) Fluency Tasks ask participants to recall objects in a category and write them down, as quickly as possible.

- · dog
- cat
- lion
- tiger
- elephant
- · wolf
- ...

Household

Felines

"African"

Canines

What have we learned?

Key observations:

- 1. Recalled items **jump** between overlapping **contexts** (global)
- 2. No item repetition through the list (local)
- 3. Past items influence sequential context-changes

What have we learned?

Key observations:

- 1. Recalled items **jump** between overlapping **contexts** (global)
- 2. No item repetition through the list (local)
- 3. Past items influence sequential context-changes

This describes a combination of *both* modelling archetypes! How to describe computationally? **Initial-Visit Emitting Random Walks**

INVITE - Jun et al. (2015); Zemla & Austerweil (2018) [4,5]

- All visited nodes are "allowed" and hidden
- infinite number of paths can generate a given observation!

key insight

Split each "random walk" of length K into K-1 absorbing random sub-walks.

Experiments

Research Question

What are we missing if a process like INVITE is generating our data?

- · If we assume Bag-of-Words applies
- If we assume Markov property applies

Research Question

What are we missing if a process like INVITE is generating our data?

- · If we assume Bag-of-Words applies
- If we assume Markov property applies

Let's Find Out - We are looking to quantify model effects on edge probability.

- · recall is our ability to select all relevant edges, and
- precision is the relevance of our selected edges.

The edge probability threshold (σ) we choose has a huge effect on these.

Experiment 1 - Example

To illustrate, return to the example of Walsh et al. [3]

- · adjacency matrix representation (recovered edge probabilities):
- \cdot C=20 random walks of length l=4

Experiment 1 - Example

To illustrate, return to the example of Walsh et al. [3]

- · adjacency matrix representation (recovered edge probabilities):
- \cdot C=20 random walks of length l=4

Let's threshold for optimal F_1 score...

Experiment 1 - Summary Curves

Across 90 graphs, $N,C \in \{10,25,50\}$:

- · Precision: INVITE ~ Sequential Probabilities
- Recall: INVITE ~ Contextual Similarity

Experiment 1 - Performance Curves

Experiment 1 - Performance Curves

Experiment 1 - Performance Curves

Exp. 2 - Excavator Case Study

Excavator - Dataset

- 1. Mining Dataset: Excavator Maintenance Work orders [6,7]
 - · 8 Excavators, 8264 MWOs
 - · Bespoke keyword-recognition tool; recognize failure "major subsystem"
 - · Labor intensive... months (and a dissertation!)
- 2. Tags Nestor Toolkit [8]
 - · Compare Survival Analysis tags vs. keyword-recognition [9]
 - · Subsystems approximated by expert-determined "tag-sets"

PROBLEM

How to estimate subsystem by tags? Which tags?

Excavator - Recovered Structure

manifold

mount slew

retainer

olate

motor

INVITE hydraulic brake cylinder

bolt

shroud

lip

engine hose belt brake cylinder adapter bucket tooth hr line radiator pump tube steel pin walk

roller

valve

Cosine

Excavator - Recovered Structure

Excavator Data

Some tags are trivially known (use these!)

- \cdot bucket o "Bucket Subsystem"
- \cdot hydraulic ightarrow "Hydraulic System"
- \cdot engine o "Engine Subsystem"

Thanks to the keyword-tagger, we can compare ground-truth tag-subsystem allocations:

- hose: probably hydraulic
- teeth: always bucket
- bolt: all of them?

Semi-supervised Learning

More generally, this is a problem of estimating labels from the data *topology*; Label Spreading

We apply the label spreading algorithm of Zhou et al (2004) [10]

Excavator - Results

Comparing tag label distributions: **ground-truth** (from keyword extractor) v.s. **predicted** classification (from label spreading)

Excavator - Results

Comparing tag label distributions: **ground-truth** (from keyword extractor) v.s. **predicted** classification (from label spreading)

	F_1^*	ΣKL	μ_{KL}
INVITE	0.83	13.5	0.35
Cosine	0.71	16.5	0.42
MC1	0.80	17.0	0.44
MC2	0.66	17.6	0.45

INVITE consistently performs best, across a wide range of σ .

Conclusions

Key Contributions - Modeling Similarity

- 1. If censored random walks are taking place
 - · Context-based models could work; hard to tune
 - · Sequential models can miss latent relationships
 - · Accounting for censoring improves precision and recall

Key Contributions - Modeling Similarity

- 1. If censored random walks are taking place
 - · Context-based models could work; hard to tune
 - · Sequential models can miss latent relationships
 - · Accounting for censoring improves precision and recall
- 2. In analytics tasks down-stream (i.e. Semi-Supervised Classifier)
 - · Use similarity model assumptions as pre-processor
 - Incorporating INVITE can better map to users' organizational intuitions.

Future Work

INVITE is only the beginning...

- · Relevant tags may be skipped entirely
 - · Too general
 - Too specific
 - · Hidden nodes? Node hierarchies?

Future Work

INVITE is only the beginning...

- · Relevant tags may be skipped entirely
 - · Too general
 - · Too specific
 - · Hidden nodes? Node hierarchies?
- · Active Learning of representation learning
 - · Real-time feedback to build trust
 - · Exploit embeddings, probabilistic models, etc.
 - · Mixture models for different types of relationships

Thank You! Questions?

Backup

Animals Network - Goni et al. (2011) [11]

INVITE - Absorbing Random (sub-) Walks

Partition at k^{th} observed transition $(t_k \to t_{k+1})$:

- $\cdot \ q$ transient states
- \cdot transition matrix $\mathbf{Q}_{q imes q}^{(k)}$
- \cdot r absorbing states with q o r transitions as $\mathbf{R}_{q imes r}^{(k)}$

Markov transition matrix $\mathbf{M}_{n \times n}^{(k)}$ has the form:

$$\mathbf{M}^{(k)} = \begin{pmatrix} \mathbf{Q}^{(k)} & \mathbf{R}^{(k)} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \tag{1}$$

INVITE - Absorbing Random (sub-) Walks

Partition at k^{th} observed transition $(t_k \to t_{k+1})$:

- $\cdot \ q$ transient states
- \cdot transition matrix $\mathbf{Q}_{q \times q}^{(k)}$
- \cdot $\, r$ absorbing states with q
 ightarrow r transitions as ${f R}_{q imes r}^{(k)}$

Markov transition matrix $\mathbf{M}_{n \times n}^{(k)}$ has the form:

$$\mathbf{M}^{(k)} = \begin{pmatrix} \mathbf{Q}^{(k)} & \mathbf{R}^{(k)} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \tag{1}$$

Probability P of chain starting at t_k being absorbed into state k+1, letting $\mathbf{N}=(\mathbf{I}-\mathbf{Q})^{-1}$, is [12]:

$$P(t_{k+1}|t_{1:k}, \mathbf{M}) = \mathbf{N}^{(k)}R^{(k)}|_{q,1}$$
 (2)

Summary

The probability of being absorbed at k+1 conditioned on jumps 1:k is the probability of observing our k+1 INVITE tag.

Likelihood of ${f M}$ given observed *censored* chain ${f t}$ is:

$$\mathcal{L}\left(\vec{t} \mid \theta; \mathbf{M}\right) = \theta(t_1) \prod_{k=1}^{T-1} P\left(t_{k+1} \mid t_{1:k}; \mathbf{M}\right)$$
(3)

This implies that a "folksonomy" of tag lists $\mathbf{C}=\left\{\vec{t}_1,\vec{t}_2,\cdots,\vec{t}_c\right\}$ can recover an \mathbf{M} through optimization:

$$\mathbf{M}^* \leftarrow \operatorname*{arg\,min}_{\mathbf{M}} \quad \sum_{i=1}^{C} \sum_{k=1}^{T_i-1} -\log \mathcal{L}\left(t_{k+1}^{(i)} \middle| t_{1:k}^{(i)}, \mathbf{M}\right) \tag{4}$$

Model Inference - Implementation Details

How to optimize?

- · Still nearly intractable for large numbers of tags, given search-space
- · Analytic gradient given in Jun & Zemla et al. [4] has restrictions
- Binarizing edge states [5] removes edge weights entirely.

Model Inference - Implementation Details

How to optimize?

- · Still nearly intractable for large numbers of tags, given search-space
- Analytic gradient given in Jun & Zemla et al. [4] has restrictions
- · Binarizing edge states [5] removes edge weights entirely.

We leverage automatic differentiation

- Tensor library PyTorch to minimize the loss via ADAM [13]
- · Flexible w.r.t symmetry, bound transformations, etc during training

Excavator - Results ($l \geq 3$)

Excavator - Distribution Comparison ($l \geq 3$)

at optimal F_1 -score:

Excavator - Results ($l \geq 2$)

· MWOs with at least 2 tags, each occurring at least 10x

·
$$C = 1712$$

Excavator - Distribution Comparison ($l \ge 2$)

Excavator - Recovered Structure ($l \geq 2$)

Excavator - Recovered Structure ($l \geq 2$)

References

References i

- [1] Thomas, D. S., and Thomas, D. S., 2018, *The Costs and Benefits of Advanced Maintenance in Manufacturing*, US Department of Commerce, National Institute of Standards; Technology.
- [2] Sexton, T., Brundage, M. P., Hoffman, M., and Morris, K. C., 2017, "Hybrid Datafication of Maintenance Logs from Ai-Assisted Human Tags," 2017 leee International Conference on Big Data (Big Data), IEEE, pp. 1769–1777.
- [3] Walsh, H. S., Dong, A., and Tumer, I. Y., 2019, "An Analysis of Modularity as a Design Rule Using Network Theory," Journal of Mechanical Design, 141(3), p. 031102.

References ii

- [4] Jun, K.-S., Zhu, J., Rogers, T. T., Yang, Z., and others, 2015, "Human Memory Search as Initial-Visit Emitting Random Walk," *Advances in Neural Information Processing Systems*, pp. 1072–1080.
- [5] Zemla, J. C., and Austerweil, J. L., 2018, "Estimating Semantic Networks of Groups and Individuals from Fluency Data," Computational Brain & Behavior, 1(1), pp. 36–58.
- [6] Hodkiewicz, M. R., Batsioudis, Z., Radomiljac, T., and Ho, M. T., 2017, "Why Autonomous Assets Are Good for Reliability–the Impact of 'Operator-Related Component' failures on Heavy Mobile Equipment Reliability," *Annual Conference of the Prognostics and Health Management Society* 2017.

References iii

- [7] Hodkiewicz, M., and Ho, M. T.-W., 2016, "Cleaning Historical Maintenance Work Order Data for Reliability Analysis," Journal of Quality in Maintenance Engineering, **22**(2), pp. 146–163.
- [8] Madhusudanan Navinchandran, F., Bones, L., Brundage, M., Hoffman, M., Moccozet, S., and Sexton, T., 2018, "Nestor: A Toolkit for Quantifying Tacit Maintenance Knowledge, for Investigatory Analysis in Smart Manufacturing."
- [9] Sexton, T., Hodkiewicz, M., Brundage, M. P., and Smoker, T., 2018, "Benchmarking for Keyword Extraction Methodologies in Maintenance Work Orders," *PHM Society Conference*.
- [10] Zhou, D., Bousquet, O., Lal, T. N., Weston, J., and Schölkopf, B., 2004, "Learning with Local and Global Consistency," *Advances in Neural Information Processing Systems*, pp. 321–328.

References iv

- [11] Goñi, J., Arrondo, G., Sepulcre, J., Martincorena, I., Mendizábal, N. V. de, Corominas-Murtra, B., Bejarano, B., Ardanza-Trevijano, S., Peraita, H., Wall, D. P., and others, 2011, "The Semantic Organization of the Animal Category: Evidence from Semantic Verbal Fluency and Network Theory," Cognitive processing, **12**(2), pp. 183–196.
- [12] Doyle, P. G., and Snell, J. L., 2000, "Random Walks and Electric Networks," arXiv preprint math/0001057.
- [13] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A., 2017, "Automatic Differentiation in Pytorch," *NIPS-W*.