2021 级理科数学分析(II)期中考试试题(1-2)

座号_	至号班级			学号			姓名			成绩		
题 号	1	2	3	4	5	6	7					
得分												
签 名												

- 1. (10 分) 设 $\vec{a} = (-1,3,0)$, $\vec{b} = (3,1,0)$, 求满足 $\vec{a} = \vec{b} \times \vec{c}$, 且 $|\vec{c}|$ 最小的向量 \vec{c} .
- 2. (10 分)设直线 L经过 P_0 (-2,3,0)点,平行于平面 x-2y-z+4=0,并且与直线 $\frac{x+1}{3} = \frac{y-3}{1} = \frac{z}{2}$ 相交,求*L*的方程.
- 3. (28分)
- (1)设 $u = (xy)^z$. 求du.
- (2) 设 $z = xe^{xy}$. 求 $\frac{\partial^3 z}{\partial x^2 \partial y}$ 和 $\frac{\partial^3 z}{\partial x \partial y^2}$.
- (3) 设 z = z(x, y) 是由方程组 $\begin{cases} x = u + v \\ y = u^2 + v^2 \text{ 确定的隐函数.} & 求 \frac{\partial z}{\partial x} \Rightarrow \frac{\partial z}{\partial y} \end{cases}$ (写出 $\frac{\partial z}{\partial x} \Rightarrow \frac{\partial z}{\partial y}$ 所 满足的方程组即可).
- 4. (22分)
- (1) 求二重积分 $I = \iint_D (x^2 + y) dx dy$, 其中 D 由 $y = \frac{x^2}{2}$, y = x 所围.

- (2) 求三重积分 $I = \iiint_{\Omega} y \cos(x+z) dx dy dz$, 其中 Ω 由 $y = \sqrt{x}, y = 0, z = 0, x + z = \frac{\pi}{2}$ 所围.
- (3) 求三重积分 $I = \iiint_{\Omega} z \sqrt{x^2 + y^2} dx dy dz$, 其中 Ω 由 $x^2 + y^2 = 2x$, y = 0, z = 0 和 z = a(a > 0) 在第一卦限的部分围成.
- 5. (8 分) 证明: 曲面 F(ax-by,cx-bz)=0 上任意一点处的切平面都与某一定直线平行,其中函数 F(u,v) 具有连续偏导数,且常数 a,b,c 不同时为零.
- 6. (12 分) 设 f(x, y) 在 R^2 有连续的二阶偏导数, $g(x, y) = f(e^{xy}, x^2 + y^2)$, $f(x, y) = 1 x y + o\left(\sqrt{(x-1)^2 + y^2}\right), \quad (x, y) \to (1, 0).$

证明: (0,0) 是 g(x,y) 的极值点, 判断 (0,0) 是极大值点还是极小值点? 并求出 g(0,0).

7. (10 分) 设 $f_x(x, y)$ 和 $f_y(x, y)$ 在区域 $D = \{(x, y): a < x < b, c < y < d\}$ 有界. 证明: z = f(x, y) 在D 一致连续.