Universal Serial Bus Content Security Method 2 USB Digital Transmission Content Protection Implementation

INTEL CORPORATION

Revision 1.0 22 August 2000

Revision History

Revision	Date	Filename	Author	Description
1.0	08/22/2000			Corrected Copyright statement
1.0	03/15/2000			Promotion to 1.0 at USB DWG
.9	01/25/2000			Promotion to .9 at USB DWG.
.8b	12/23/1999	Csm2_v0_8b		Adjust to changes in CS class specification. Get_channel_setting, notification service,
.8a	11/9/1999	Csm2_v0_8a		Add requests to support transport of encrypted data over control endpoint.
.8	11/01/1999	Csm2_v0_8		Promoted to .8 at 10/22/1999 USB DWG. Corrected LByte of wValue of all requests to have bMethod value as denoted in Devices CS channel Descriptor.
.7	09/27/1999	csm2_v0_7		Separated CSM Appendices into individual CSM specification per Sept 1999 CSWG meeting

Contributors

Michael Andre Intel
John Howard Intel
Steve McGowan Intel

Universal Serial Bus Class Definitions
Copyright © 2000 by USB Implementers Forum
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS SPECIFICATION FOR INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

All product names are trademarks, registered trademarks, or service marks of their respective owners.

Please send comments via electronic mail to michael.andre@intel.com

22 August 2000 ii

Table of Contents

R	evisio	n History	i
С	ontrib	utors	ii
Т	able o	f Contents	iii
L	ist of T	Tables	iv
L	ist of I	igures	iv
1		oduction	
	1.1	Purpose	1
	1.2	Scope	1
	1.3	Related Documents	1
	1.4	Terms and Abbreviations	1
2	CS	M-2 Content Security Class Additions	2
	2.1	AKE USB Requests	2
	2.1.	1 Command And Response Requests Format	2
	2.2	Content Security Notification Service (CSNS)	4
	2.3	CSM-2 Descriptors	
	2.3.		
	2.3.		
	2.3.	,	
	2.3.	, i	
	2.3.	,	
3		CP AKE Packet Formats	_
	3.1	Control Packet Format.	
	3.2	Status Packet Format	
4	CS	M-2 Protected Content Header	
Α	ppend	·	
	A.1	CSM-2 Specific Request Codes	
	Α2	CSM-2 Notification Values	8

List of Tables

Table 2-1 AKE General Request Format	2
Table 2-2 AKE Command Response Pairing	2
Table 2-3 GET_COMMAND Request	3
Table 2-4 PUT_COMMAND Request	3
Table 2-5 GET_RESPONSE Request	3
Table 2-6 PUT_RESPONSE Requests	4
Table 2-7 GET_DATA Request	4
Table 2-8 PUT_DATA Request	4
Table 2-9 CSM-2 Notification Format	4
Table 2-10 String Descriptor	6
List of Figures	
Figure 3-1 CSM-2 Control Packet Format	
Figure 3-2 Status Packet Format	7
Figure 4-1 Protected Content Packet	7

1 Introduction

1.1 Purpose

This paper describes the USB transport services and protocol formats that support Digital Transmission Content Protection (DTCP). Use of DTCP requires licensing by the Digital Transmission Licensing Administrator (DTLA). The details of this licensing can be found at www.dtcp.com.

1.2 Scope

USB CSM-2 describes the USB transport services, descriptors, and requests necessary to support DTCP protocols over USB. This document does not change or alter DTCP functionality.

The Content Security Class (CSC) specification allows Content Security Methods (CSM) to define additional requests as needed. CSM-2 defines additional USB CSC requests in order to support DTCP AKE protocols between USB Host and Device. In addition, CSM-2 implements the Content Security Notification Service and defines additional notifications that are needed to support DTCP protocols.

1.3 Related Documents

- Digital Transmission Content Protection Specification Volume 1 Revision 1.0, February 18, 1990
 - Appendix A, USB DTCP Specification
- Universal Serial Bus Device Class Definition for Content Security Devices
- Universal Serial Bus Specification Version 1.1
- USB Common Class Specification Version 1.0

1.4 Terms and Abbreviations

AKE	Authentication and Key Exchange
CCI	Copy Control Information
cs	Content Security, USB terminology for Content Protection
CSC	Content Security Class, refers to USB Device Class Definition for Content Security Devices specification
CSI	Content Security Interface
CSM	Content Security Method
DTCP	Digital Transmission Content Protection
DTLA	Digital Transmission Licensing Administrator
CSNS	Content Security Notification Service
USB	Universal Serial Bus

2 CSM-2 Content Security Class Additions

The USB Device Class Definition For Content Security Devices (CSC) allows Content Security Methods to define additional services as needed. DTCP requires four additional USB Requests to transfer the AKE commands and responses. The CS Notification Service (CSNS) is used to allow USB devices to initiate DTCP AKE protocols.

2.1 AKE USB Requests

DTCP requires four additional USB requests to transfer the AKE command frames rather than defining a unique USB request for each individual AKE Command and corresponding response. There are two additional requests that provide for the transport of encrypted data over the control endpoint. This section details the structure of these requests. The General Request format for AKE Command Response request is as follows:

Offset Field Description Size Value bmRequestType Bitmap Characteristics of request: D7: Data transfer direction 0 = Host-to-device 1 = Device-to-host D6...5: Type 1 = Class D4...0: Recipient 1 = Interface bRequest 1 Value CSM-2 Requests PUT COMMAND, GET RESPONSE GET COMMAND, PUT RESPONSE PUT_DATA, GET_DATA 2 wValue 2 HByte: 0, Reserved Value LByte: 0x02 - CSM-2 2 4 wIndex Value HByte: Channel ID. LByte: CSI Interface number. Byte length of the AKE Command or Response 6 wLength 2 Count Frame.

Table 2-1 AKE General Request Format

2.1.1 Command and Response Requests Format

The requests are paired together, one pair is used to send AKE commands to the Device and return the associated response. The other pair is used to retrieve an AKE command from the Device and send the associated response.

 Command
 Associated Response

 PUT_COMMAND
 GET_RESPONSE

 GET_COMMAND
 PUT_RESPONSE

 PUT_DATA
 GET_DATA

Table 2-2 AKE Command Response Pairing

2.1.1.1 Command Requests

There are two Command requests, *GET_COMMAND* and *PUT_COMMAND*.

The GET COMMAND is used to transfer an AKE command from the Device to the Host.

Table 2-3 GET_COMMAND Request

bmRequestType	bRequest	wValue	windex	wLength	Data
1 01 00001B	GET_COMMAND (0x80)	HByte – 0x00 Reserved	HByte: Channel ID	Byte Length of USB AKE Command	DTCP AKE Commands
		LByte: 0x02 CSM-2	LByte: CSI Interface Number		

PUT COMMAND is used to send an AKE command from the Host to the Device.

Table 2-4 PUT_COMMAND Request

bmRequestType	bRequest	wValue	windex	wLength	Data
0 01 00001B	PUT_COMMAND (0x81)	HByte: 0x00 Reserved LByte: 0x02 CSM-2	HByte: Channel ID LByte: CSI Interface Number	Byte Length of Data	DTCP AKE Commands

2.1.1.2 Response Requests

There are two Response requests *GET_RESPONSE* and *PUT_RESPONSE*. Response Requests are used to transport the AKE response frame.

The GET_RESPONSE is used to transfer the response to an AKE command from the Device to the Host.

Table 2-5 GET_RESPONSE Request

bmRequestType	bRequest	wValue	windex	wLength	Data
1 01 00001B	GET_RESPONSE (0x82)	HByte: 0x00 Reserved	HByte: Channel ID	Byte Length AKE Response	AKE Response
		LByte: 0x02 CSM-2	LByte: CSI Interface Number	·	

22 August 2000 3

The **PUT RESPONSE** is used to transfer the response to an AKE command from the Host to the Device.

Table 2-6 PUT_RESPONSE Requests

bmRequestType	bRequest	wValue	windex	wLength	Data
0 01 00001B	PUT_RESPONSE (0x83)	HByte – 0x00 Reserved	HByte: Channel ID	Byte Length of AKE Response	AKE Response
		LByte: 0x02 CSM-2	LByte: CSI Interface Number		

2.1.1.3 Data Requests

There are two Data requests **GET_DATA** and **PUT_DATA**. **GET_DATA** is used to transport data from the device to the host.

Table 2-7 GET_DATA Request

bmRequestType	bRequest	wValue	wIndex	wLength	Data
1 01 00001B	GET_DATA (0x84)	HByte: 0x00 Reserved LByte: 0x02 CSM-2	HByte: Channel ID LByte: CSI Interface Number	Byte Length	

The **PUT DATA** is used to transport Data form the host to the device.

Table 2-8 PUT DATA Request

bmRequestType	bRequest	wValue	windex	wLength	Data
0 01 00001B	PUT_DATA (0x85)	HByte: 0x00 Reserved LByte: 0x02 CSM-2	Channel ID CSI Interface Number	Byte Length	

2.2 Content Security Notification Service (CSNS)

CSM-2 compliant devices will implement the CS notification service, support the CHANGE_CHANNEL_SETTINGS notification, and support the CSM-2 notifications defined in this section.

The CSM-2 CSNS allows the USB Device to send AKE commands, responses, and data as needed via the CSM-2 requests: **GET_COMMAND**, **GET_RESPONSE**, and **GET_DATA**. The CSM-2 host driver upon receiving a CSM-2 notification will issue the corresponding request to the device. The CSNS is started once a CS channel is established that links CSM-2 to an interface or endpoint via the **SET_CHANNEL_SETTINGS** request.

The CSC specification defines a general format for CSM notifications returned by the USB Device. CSM-2 notification format does not require a data field at offset three as described in CSC specification. The CSM-2 format is as follows:

Table 2-9 CSM-2 Notification Format

Offset	Field	Size	Value	Description
0	bLength	1	0x03	Byte length of this descriptor.

1	bChannel	1	SBD	Channel ID of CSM that generated the
				notification.
2	bNotification	1	Number	$00_{16} - 7F_{16}$ = Set by CS specification.
				80 ₁₆ = Send_GET_COMMAND Request
				81 ₁₆ = Send_GET_RESPONSE Request
				82 ₁₆ = Send_GET_DATA Request
				83 ₁₆ – FF ₁₆ = Reserved

Note, USB Interrupt IN service is somewhat of a misnomer; it is implemented such that the Host periodically polls the USB Device. This provides the Device with an opportunity to send a notification to the Host. Recall that USB is designed so that the Host has total control of the USB.

2.3 CSM-2 Descriptors

This section describes information relevant to the CSM-2 instantiation and use of CSC descriptors. Each subsection corresponds to a CSC descriptor and only values pertinent to CSM-2 are listed in each subsection. Note, some subsections may not have any data and therefore the definition and use of the descriptor as specified in CSC is sufficient.

2.3.1 Device Descriptor

No additional definition needed.

2.3.2 Configuration Descriptor

No additional definition needed.

2.3.3 Content Security Interface Descriptor

No additional definition needed.

2.3.4 Content Security Method Descriptor

The **bMethodID** has a value of 0x02.

The **bcdVersion** field has a value of 0x0100

The CSMData Field is not used.

2.3.4.1 CSM-2 String Descriptor

Table 2-10 String Descriptor

Field	Size	Value	Description	
bLength	1	Number	Byte length of this descriptor.	
bDescriptorType	1	0x03	Specified by Table 9-5 of USB 1.1	
bString	0x34	ASCII	The value of this field is as follows and contained within the square brackets [Digital Transmission Content Protection	
			Version 1.00]	

2.3.5 Content Security Method Variant Descriptor

Not used by CSM-2.

3 DTCP AKE Packet Formats

3.1 Control Packet Format

The Control Packet is used to exchange DTCP control frames between Host and USB Device via the default control pipe using the CSM Get and Put Requests.

	Msb							Lsb
Control[0]	C/R	Reserved(Zero)			Ctype			
Control[1]		AKE Control Data						
Control[2]								
Control[3]								
Control[4]								
Control[5]								
Control[6]								
Control[7]								
Control[8]	Byte Length N of AKE_Info Field							
Control[9]								
AKE_Info[1]	AKE_Info						•	
-								
AKE_Info[N]								

Figure 3-1 CSM-2 Control Packet Format

The contents and structure of the AKE Control Data and AKE_Info fields are detailed in DTCP specification appendix A.

3.2 Status Packet Format

The Status Packet is used to query and determine DTCP status and state.

	msb							Lsb
Control[0]	C/R	Reserved(Zero)			Ctype			
Control[1]		AKE Control Data						
Control[2]								
Control[3]								
Control[4]								
Control[5]								
Control[6]								
Control[7]								

Figure 3-2 Status Packet Format

The contents and structure of the AKE Control Data and AKE_Info fields are detailed in DTCP specification appendix A.

4 CSM-2 Protected Content Header

This header is used to transfer content protected data over the USB data transport pipe of the associated audio or video class and provides the functionality described in subsections of section 6 of DTCP specification. The header format is defined in Appendix A of the DTCP specification.

Figure 4-1 Protected Content Packet

22 August 2000 7

Appendix A. CSM-2 Specific Request Codes

A.1 CSM-2 Specific Request Codes

Table A-1: CSM-2 Specific Request Codes

Request Code	Value		
Get_Command	0x80		
Put_Command	0x81		
Get_Response	0x82		
Put_Response	0x83		
Get_Data	0x84		
Put_Data	0x85		
Reserved	0x860xFF		

A.2 CSM-2 Notification Values

Table A-2: CSM-2 Notification Values

bNotification	Value		
Send_Get_Command	0x80		
Send_Get_Response	0x81		
Send_Get_Data	0x82		
Reserved	0x830xFF		