DIALOG(R) File 351: Derwent WPI (c) 2001 Derwent Info Ltd. All rts. reserv. 009565138 WPI Acc No: 1993-258686/199332 XRAM Acc No: C93-114929 New granulocyte colony stimulating factor fusion proteins - contq. stabilising protein, for treating leukopenia, leukaemia, etc. Patent Assignee: RHONE POULENC RORER SA (RHON); RHONE-POULENC RORER SA (RHON) Inventor: YEH P Number of Countries: 022 Number of Patents: 007 Patent Family: Kind Date Applicat No Patent No Kind Date Week A1 19930805 WO 93FR86 WO 9315211 · A 19930128 199332 A1 19930806 FR 921065 FR 2686900 Α 19920131 199344 19940729 WO 93FR86 FI 9403564 · A 19930128 199437 FI 943564 Α 19940729 NO 9402858 19940801 WO 93FR86 Α 19930128 199438 NO 942858 Α 19940801 EP 93904130 A1 19941117 EP 624200 Α 19930128 199444 WO 93FR86 19930128 Α JP 7503844 19950427 JP 93512987 A 19930128 199525 WO 93FR86 Α 19930128 WO 93FR86 19970909 US 5665863 Α Α 19930129 199742 US 94256938 Α 19940727 Priority Applications (No Type Date): FR 921065 A 19920131 Cited Patents: DE 3723781; EP 361991; EP 364980; EP 395918; EP 401384; WO 9013653 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes A1 F 36 C12N-015/62 WO 9315211 Designated States (National): CA FI JP NO US Designated States (Regional): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE 26 C12P-021/02 FR 2686900 A1 C12N-015/62 EP 624200 A1 F Based on patent WO 9315211 Designated States (Regional): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE JP 7503844 W. C12N-015/09 Based on patent WO 9315211 US 5665863 Α 32 C12N-015/27 Based on patent WO 9315211 FI 9403564 Α C12N-000/00 NO 9402858 Α C12N-000/00 Abstract (Basic): WO 9315211 A

8/5/5

New recombinant polypeptides (I) comprise an active portion (II) coupled to a protein stabilising structure (III), where (II) comprises all or part of human granulocyte colony stimulating factor (G-CSF) or a G-CSF variant.

Also claimed are: (1) nucleotide sequences coding for (I); (2) expression cassettes contg. such a nucleotide sequence under the control of a transcription initiation region and opt. a transcription termination region; (3) self-replicating plasmids contg. such expression cassettes; and (4) recombinant eukaryotic or prokaryotic cells contg. such sequences, cassettes or plasmids.

USE/ADVANTAGE - (I) may be used to treat diseases requiring an increase in granulocyte count and/or activity, esp. leucopenia and certain forms of leukaemia, or to stimulate the immune system during transplantation (e.g. of bone marrow) or after cancer chemotherapy. (I) are capable of maintaining G-CSF activity for long periods in vivo. E.g., a specifically disclosed polypeptide (HSA-G-CSF) has lowerf activity than native G-CSF in vitro but comparable activity in vivo. Dwq.0/8

Title Terms: NEW; GRANULOCYTE; COLONY; STIMULATING; FACTOR; FUSE; PROTEIN; CONTAIN; STABILISED; PROTEIN; TREAT; LEUKOPENIA; LEUKAEMIA

Derwent Class: B04; D16

International Patent Class (Main): C12N-000/00; C12N-015/09; C12N-015/27;
C12N-015/62; C12P-021/02

International Patent Class (Additional): A61K-037/02; A61K-038/00; C07K-013/00; C07K-014/53; C12N-001/19; C12N-015/14; C12N-015/81; C12R-001-645

File Segment: CPI

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

OHP)

PCT

92/01065

a DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 5:
 C12N 15/62, 1/19, A61K 37/02
 C07K 13/00, C12N 15/27, 15/14
 // (C12N 1/19, C12R 1:645)

(11) Numéro de publication internationale: WO 93/15211

(43) Date de publication internationale: 5 août 1993 (05.08.93)

FR

(21) Numéro de la demande internationale: PCT/FR93/00086 (81) Eta

31 janvier 1992 (31.01.92)

(22) Date de dépôt international: 28 janvier 1993 (28.01.93)

(30) Données relatives à la priorité:

(71) Déposant (pour tous les Etats désignés sauf US): RHONE-POULENC RORER S.A. [FR/FR]; 20, avenue Raymond-Aron, F-92160 Antony (FR).

(72) Inventeur; et
 (75) Inventeur/Déposant (US seulement): YEH, Patrice [FR/FR]; 11 bis, rue Lacepède, F-75005 Paris (FR).

(74) Mandataire: BECKER, Philippe; Rhône-Poulenc Rorer S.A., Direction Brevets, 20, avenue Raymond-Aron, F-92165 Antony Cédex (FR). (81) Etats désignés: CA, FI, JP, NO, US, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Publiée

Avec rapport de recherche internationale, Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont reçues.

(54) Title: NEW POLYPEPTIDES HAVING GRANULOCYTE COLONY STIMULATING ACTIVITY, PREPARATION THEREOF AND PHARMACEUTICAL COMPOSITIONS CONTAINING SAID POLYPEPTIDES

(54) Titre: NOUVEAUX POLYPEPTIDES AYANT UNE ACTIVITE DE STIMULATION DES COLONIES DE GRANU-LOCYTES, LEUR PREPARATION ET COMPOSITIONS PHARMACEUTIQUES LES CONTENANT

(57) Abstract

يَوج

New polypeptides having human granulocyte colony stimulating activity, preparation thereof and pharmaceutical compositions containing said polypeptides.

(57) Abrégé

La présente invention concerne de nouveaux polypeptides ayant une activité de stimulation des colonies de granulocytes humains, leur préparation et des compositions pharmaceutiques les contenant.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Autriche	FR	France	MR	Mauritanie
AU	Australie	GA	Gahon	MW	Malawi
BB	Barbade	GB	Royaume-Uni	NL	Pays-Bas
BE	Belgique	GN	Guinée	NO	Norvêge
BF	Burkina Faso	CR	Grèce	NZ	Nouvelle-Zélande
BG	Bulgarie	HU	Hongric	PL	Pologna
BJ	Bénin	1E	Irlande	PT	Portugal
BR	Brůsil	IT	Italie	RO	Roumanie
CA	Canada	JP	Japon	RU	Fédération de Russie
CF	République Centrafricaine	KP	République populaire démocratique	SD	Soudan
CC	Congo		de Corée	SE	Suède
CH	Suisse	KR	République de Corée	SK	République slovaque
CI	Côte d'Ivoire	ΚZ	Kazakhstan	SN	Sénégat
CM	Cameroun	LI	Liechtenstein	SU	Union sovičtique
cs	Tchécoslovaquie .	LK	Sri Lanka	TD	Tchad
CZ	République tchèque	LU	Luxembourg	TG	Tuga
DE	Allemagne	MC	Manaco	UA	Ukraine
DK	Danemark	MG	Madagascar	US	Etats-Unis d'Amérique
ES	Espagne	ML.	Mali	YN	Viet Nam
FI	Finlande	MN	Mongolie		

10

15

20

25

30

1

NOUVEAUX POLYPEPTIDES AYANT UNE ACTIVITE DE STIMULATION DES COLONIES DE GRANULOCYTES. LEUR PREPARATION ET COMPOSITIONS PHARMACEUTIQUES LES CONTENANT

La présente invention concerne de nouveaux polypeptides ayant une activité de stimulation des colonies de granulocytes humain, leur préparation et des compositions pharmaceutiques les contenant.

La présente invention concerne en particulier des polypeptides chimères composés d'une partie biologiquement active constituée par tout ou partie du G-CSF ou d'un variant du G-CSF, et d'une structure stabilisatrice essentiellement protéique lui conférant de nouvelles propriétes biologiques.

Le G-CSF humain est un polypeptide sécrété de 174 acides aminés, ayant un poids moléculaire de 18 kD environ. Il a été isolé initialement à partir d'une lignée cellulaire cancéreuse (EP 169 566), et son gène a été cloné, séquencé, et exprimé dans différents hôtes cellulaires par les techniques du génie génétique (EP 215 126, EP 220 520). Un ARNm codant potentiellement pour une forme du G-CSF ayant 177 acides aminés a par ailleurs été mis en évidence [Nagata S. et al., EMBO J. 5 (1986) 575-581]. Le G-CSF possède la capacité de stimuler la différentiation et la prolifération de cellules progénitrices de la moelle osseuse en granulocytes. A ce titre, il possède la capacité de stimuler les capacités protectrices de l'organisme contre l'infection en favorisant la croissance des polynucléaires neutrophiles et leur différentiation aboutissant à la maturité. Il est ainsi capable d'activer les fonctions prophylactiques de l'organisme, et peut être utilisé dans différentes situations pathologiques dans lesquelles le nombre de neutrophiles est anormalement faible, ou dans lesquelles le système immunitaire doit être renforcé. De telles situations surviennent par exemple à la suite des traitements de chimiothérapie anticancéreuse, lors de greffes, et en particulier de greffes de moelle osseuse, ou lors des leukopénies.

L'un des inconvénients du G-CSF actuellement disponible réside dans le fait qu'il est dégradé rapidement par l'organisme une fois administré. Ceci est d'autant plus sensible que le G-CSF est généralement utilisé à des doses faibles. De plus, l'utilisation de doses plus importantes n'a pu permettre d'améliorer les capacités

thérapeutiques de cette molécule et peut induire des effets secondaires indésirables. Ces phénomènes d'élimination et de dégradation <u>in vivo</u> constituent donc pour l'instant un obstacle à l'exploitation de l'activité biologique du G-CSF en tant qu'agent pharmaceutique.

La présente invention permet de remédier à ces inconvénients. La présente invention fournit en effet de nouvelles molécules permettant une exploitation optimale sur le plan thérapeutique des propriétés biologiques du G-CSF. La demanderesse a en effet mis en évidence que l'activité optimale du G-CSF se manifestait lorsque le G-CSF était présent à faible dose et pendant un temps prolongé. La demanderesse a maintenant réalisé des molécules capables de maintenir dans l'organisme une activité G-CSF pendant un temps suffisamment long. De plus, la demanderesse a montré qu'il est possible d'exprimer dans des hôtes cellulaires à des niveaux élevés des fusions génétiques générant des chimères présentant de nouvelles propriétés pharmacocinétiques et les propriétés biologiques désirables du G-CSF. En particulier, les polypeptides hybrides de l'invention conservent leur affinité pour les récepteurs du G-CSF, et sont suffisamment fonctionnels pour conduire à la prolifération et à la différentiation cellulaire. Les molécules de l'invention possèdent par ailleurs une distribution et des propriétés pharmacocinétiques particulièrement avantageuses dans l'organisme et permettent le développement thérapeutique de leur activité biologique.

Un objet de la présente invention concerne donc des polypeptides recombinants comportant une partie active constituée par tout ou partie du G-CSF, ou d'un variant du G-CSF, et une structure stabilisatrice essentiellement protéique.

Au sens de la présente invention, le terme variant du G-CSF désigne toute molécule obtenue par modification de la séquence comprise entre les résidus Thr586 et Pro759 de la séquence présentée sur la Figure 1, conservant une activité G-CSF, c'est-à-dire la capacité de stimuler la différenciation des cellules cibles et la formation de colonies de granulocytes. Cette séquence corresponds à celle du G-CSF mature décrite par Nagata et al. [EMBO J. 5 (1986) 575-581]. Par modification, on doit entendre toute mutation, substitution, délétion, addition ou modification consécutive à une action de nature génétique et/ou chimique. De tels variants peuvent être générés dans des buts différents, tels que notamment celui d'augmenter l'affinité de la molécule pour le(s) récepteur(s) du G-CSF, celui d'améliorer ses

15

20

25

30

niveaux de production, celui d'augmenter sa résistance à des protéases, celui d'augmenter son efficacité thérapeutique ou de réduire ses effets secondaires, ou celui de lui conférer de nouvelles propriétés pharmacocinétiques et/ou biologiques.

Des polypeptides de l'invention particulièrement avantageux sont ceux dans lesquels la partie biologiquement active possède :

- (a) la séquence peptidique comprise entre les résidus Thr586 et Pro759 de la séquence présentée sur la Figure 1, ou,
 - (b) une partie de la structure (a), ou,
- (c) une structure dérivée des structures (a) ou (b) par modifications structurales (mutation, substitution addition et/ou délétion d'un ou plusieurs résidus) et ayant une activité biologique identique ou modifiée. Ce dernier type de polypeptides comprend par exemple les molécules dans lesquelles certains sites de glycosylation ont été modifiés ou supprimés, ainsi que des molécules dans lesquelles un, plusieurs, voire tous les résidus cystéine ont été substitués. Il comprend également des molécules obtenues à partir de (a) ou (b) par délétion de régions n'intervenant pas ou peu dans l'activité, ou intervenant dans une activité indésirable, et des molécules comportant par rapport à (a) ou (b) des résidus supplémentaires, tels que par exemple une méthionine N-terminale ou un signal de sécrétion.

Plus préférentiellement, les polypeptides chimères de l'invention comprennent une partie active de type (a).

La partie active des molécules de l'invention peut être couplée à la structure stabilisatrice protéique, soit directement, soit par l'intermédiaire d'un peptide de jonction. De plus, elle peut constituer l'extrémité N-terminale comme l'extrémité C-terminale de la molécule. Préférentiellement, dans les molécules de l'invention, la partie active constitue la partie C-terminale de la chimère.

Comme indiqué plus haut, la structure stabilisatrice des polypeptides de l'invention est essentiellement protéique.

Préférentiellement, cette structure est un polypeptide possédant une demievie plasmatique élevée. A titre d'exemple, il peut s'agir d'une albumine, une apolipoprotéine, une immunoglobuline ou encore une transferrine. Il peut également s'agir de peptides dérivés de telles protéines par modifications structurales, ou de peptides synthétisés artificiellement ou semi-artificiellement, et possédant une

10

15

20

25

30

demie-vie plasmatique élevée. Par ailleurs, la structure stabilisatrice utilisée est plus préférentiellement un polypeptide faiblement ou non-immunogénique pour l'organisme dans lequel les polypeptides de l'invention sont utilisés.

Dans un mode de réalisation particulièrement avantageux de l'invention, la structure stabilisatrice est une albumine ou un variant de l'albumine et par exemple la sérum-albumine humaine (SAH). Il est entendu que les variants de l'albumine désignent toute protéine à haute demie-vie plasmatique obtenue par modification (mutation, délétion et/ou addition) par les techniques du génie génétique d'un gène codant pour un isomorphe donné de la sérum-albumine humaine, ainsi que toute macromolécule à haute demie-vie plasmatique obtenue par modification in vitro de la protéine codée par de tels gènes. L'albumine étant très polymorphe, de nombreux variants naturels ont dèjà été identifiés, et plus de 30 types génétiques différents ont été répertoriés [Weitkamp L.R. et al., Ann. Hum. Genet. 37 (1973) 219]. Plus préférentiellement, la structure stabilisatrice est une albumine mature.

A titre d'exemples on peut citer des polypeptides de l'invention comportant, dans le sens N-terminal --> C-terminal, (i) la séquence de la SAH mature couplée directement à la séquence du G-CSF mature (cf. Figure 1), ou (ii) la séquence du G-CSF mature couplée par l'intermédiaire d'un peptide de liaison à la séquence de la SAH mature.

Un autre objet de l'invention concerne un procédé de préparation des molécules chimères décrites ci-avant. Plus précisément, ce procédé consiste à faire exprimer par un hôte cellulaire eucaryote ou procaryote une séquence nucléotidique codant pour le polypeptide désiré, puis à récolter le polypeptide produit.

Parmi les hôtes eucaryotes utilisables dans le cadre de la présente invention, on peut citer les cellules animales, les levures, ou les champignons. En particulier, s'agissant de levures, on peut citer les levures du genre Saccharomyces, Kluyveromyces, Pichia, Schwanniomyces, ou Hansenula. S'agissant de cellules animales, on peut citer les cellules COS, CHO, Cl27, etc... Parmi les champignons susceptibles d'être utilisés dans la présente invention, on peut citer plus particulièrement Aspergillus ssp. ou Trichoderma ssp. Comme hôtes procaryotes, on préfère utiliser les bactéries telles que Escherichia coli, ou appartenant aux genres Corvnebacterium, Bacillus, ou Streptomyces.

15

20

25

30

Les séquences nucléotidiques utilisables dans le cadre de la présente invention peuvent être préparées de différentes manières. Généralement, elles sont obtenues en assemblant en phase de lecture les séquences codant pour chacune des parties fonctionnelles du polypeptide. Celles-ci peuvent être isolées par les techniques de l'homme de l'art, et par exemple directement à partir des ARN messsagers (ARNm) cellulaires, ou par reclonage à partir d'une banque d'ADN complémentaire (ADNc) isolé à partir de cellules productrices, ou encore il peut s'agir de séquences nucléotidiques totalement synthétiques. Il est entendu de plus que les séquences nucléotidiques peuvent également être ultérieurement modifiées, par exemple par les techniques du génie génétique, pour obtenir des dérivés ou des variants desdites séquences.

Plus préférentiellement, dans le procédé de l'invention, la séquence nucléotidique fait partie d'une cassette d'expression comprenant une région d'initiation de la transcription (région promoteur) permettant, dans les cellules hôtes, l'expression de la séquence nucléotidique placée sous son contrôle et codant pour les polypeptides de l'invention. Cette région peut provenir de régions promoteurs de gènes fortement exprimés dans la cellule hôte utilisée, l'expression étant constitutive ou régulable. S'agissant de levures, il peut s'agir du promoteur du gène de la phosphoglycérate kinase (PGK), de la glycéraldéhyde-3-phosphate déshydrogénase (GPD), de la lactase (LAC4), des énolases (ENO), des alcools deshydrogénases (ADH), etc... S'agissant de bactéries, il peut s'agir du promoteur des gènes droit ou gauche du bactériophage lambda (PL, PR), ou encore des promoteurs des gènes des opérons tryptophane (Ptrp) ou lactose (Plac). En outre, cette région de contrôle peut être modifiée, par exemple par mutagénèse in vitro, par introduction d'éléments additionnels de contrôle ou de séquences synthétiques, ou par des délétions ou des substitutions des éléments originels de contrôle. La cassette d'expression peut également comprendre une région de terminaison de la transcription fonctionnelle dans l'hôte envisagé, positionnée immédiatement en aval de la séquence nucléotidique codant pour un polypeptide de l'invention.

Dans un mode préféré, les polypeptides de l'invention résultent de l'expression dans un hôte eucaryote ou procaryote d'une séquence nucléotidique et de la sécrétion du produit d'expression de ladite séquence dans le milieu de culture. Il est en effet particulièrement avantageux de pouvoir obtenir par voie recombinante des molécules directement dans le milieu de culture. Dans ce cas, la séquence

nucléotidique codant pour un polypeptide de l'invention est précédée d'une séquence "leader" (ou séquence signal) dirigeant le polypeptide naissant dans les voies de sécrétion de l'hôte utilisé. Cette séquence "leader" peut être la séquence signal naturelle du G-CSF ou de la structure stabilisatrice dans le cas où celle-ci est une protéine naturellement sécrétée, mais il peut également s'agir de toute autre séquence "leader" fonctionnelle, ou d'une séquence "leader" artificielle. Le choix de l'une ou l'autre de ces séquences est notamment guidé par l'hôte utilisé. Des exemples de séquences signal fonctionnelles incluent celles des gènes des phéromones sexuelles ou des toxines "killer" de levures.

En plus de la cassette d'expression, un ou plusieurs marqueurs permettant de sélectionner l'hôte recombiné peuvent être additionnés, tels que par exemple le gène <u>URA</u>3 de la levure <u>S. cerevisiae</u>, ou des gènes conférant la résistance à des antibiotiques comme la généticine (G418) ou à tout autre composé toxique comme certains ions métalliques.

10

15

20

25

30

L'ensemble constitué par la cassette d'expression et par le marqueur de sélection peut être introduit directement dans les cellules hôtes considérées, soit inséré préalablement dans un vecteur autoréplicatif fonctionnel. Dans le premier cas, des séquences homologues à des régions présentes dans le génôme des cellules hôtes sont préférentiellement additionnées à cet ensemble; lesdites séquences étant alors positionnées de chaque côté de la cassette d'expression et du gène de sélection de façon à augmenter la fréquence d'intégration de l'ensemble dans le génôme de l'hôte en ciblant l'intégration des séquences par recombinaison homologue. Dans le cas où la cassette d'expression est insérée dans un système réplicatif, un système de réplication préféré pour les levures du genre Kluyveromyces est dérivé du plasmide pKD1 initialement isolé de K. drosophilarum; un système préféré de réplication pour les levures du genre Saccharomyces est dérivé du plasmide 2µ de S. cerevisiae. De plus, ce plasmide d'expression peut contenir tout ou partie desdits systèmes de réplication, ou peut combiner des éléments dérivés du plasmide pKD1 aussi bien que du plasmide 2µ.

En outre, les plasmides d'expression peuvent être des vecteurs navettes entre un hôte bactérien tel que <u>Escherichia coli</u> et la cellule hôte choisie. Dans ce cas, une origine de réplication et un marqueur de sélection fonctionnant dans l'hôte bactérien sont requises. Il est également possible de positionner des sites de

15

25

restriction entourant les séquences bactériennes et uniques sur le vecteur d'expression: Ceci permet de supprimer ces séquences par coupure et religature in vitro du vecteur tronqué avant transformation des cellules hôtes, ce qui peut résulter en une augmentation du nombre de copies et en une stabilité accrue des plasmides d'expression dans lesdits hôtes. Par exemple, de tels sites de restriction peuvent correspondre aux séquences telles que 5'-GGCCNNNNNGGCC-3' (SfiI) ou 5'-GCGGCCGC-3' (NotI) dans la mesure où ces sites sont extrêmement rares et généralement absents d'un vecteur d'expression.

Après construction de tels vecteurs ou cassette d'expression, ceux-ci sont introduits dans les cellules hôtes retenues selon les techniques classiques décrites dans la littérature. A cet égard, toute méthode permettant d'introduire un ADN étranger dans une cellule peut être utilisée. Il peut s'agir notamment de transformation, électroporation, conjugaison, ou toute autre technique connue de l'homme de l'art. A titre d'exemple pour les hôtes de type levure, les différentes souches de Kluyveromyces utilisées ont été transformées en traitant les cellules entières en présence d'acétate de lithium et de polyéthylène glycol, selon la technique décrite par Ito et al. [J. Bacteriol. 153 (1983) 163]. La technique de transformation décrite par Durrens et al. [Curr. Genet. 18 (1990) 7] utilisant l'éthylène glycol et le diméthylsulfoxyde a également été utilisée. Il est aussi possible de transformer les levures par électroporation, selon la méthode décrite par Karube et al. [FEBS Letters 182 (1985) 90]. Un protocole alternatif est également décrit en détail dans les exemples qui suivent.

Après sélection des cellules transformées, les cellules exprimant lesdits polypeptides sont inoculées et la récupération desdits polypeptides peut être faite, soit au cours de la croissance cellulaire pour les procédés "en continu", soit en fin de croissance pour les cultures "en lots" ("batch"). Les polypeptides qui font l'objet de la présente invention sont ensuite purifiés à partir du surnageant de culture en vue de leur caractérisation moléculaire, pharmacocinétique et biologique.

Un système d'expression préféré des polypeptides de l'invention consiste en l'utilisation des levures du genre <u>Kluyveromyces</u> comme cellule hôte, transformées par certains vecteurs dérivés du réplicon extrachromosomique pKD1 initialement isolé chez <u>K. marxianus</u> var. <u>drosophilarum</u>. Ces levures, et en particulier <u>K. lactis</u> et <u>K. fragilis</u> sont généralement capables de répliquer lesdits vecteurs de façon stable et

.

•

10

15

20

25

30

possèdent en outre l'avantage d'être incluses dans la liste des organismes G.R.A.S. ("Generally Recognized As Safe"). Des levures privilégiées sont préférentiellement des souches industrielles du genre Kluyveromyces capables de répliquer de façon stable lesdits plasmides dérivés du plasmide pKD1 et dans lesquels a été inséré un marqueur de sélection ainsi qu'une cassette d'expression permettant la sécrétion à des niveaux élevés des polypeptides de l'invention.

La présente invention concerne également les séquences nucléotidiques codant pour les polypeptides chimères décrits ci-avant, ainsi que les cellules recombinantes, eucaryotes ou procaryotes, comprenant de telles séquences.

La présente invention concerne aussi l'application à titre de médicament des polypeptides selon la présente invention. Plus particulièrement, l'invention a pour objet toute composition pharmaceutique comprenant un ou plusieurs polypeptides tel que décrit ci-avant. Plus particulièrement, ces compositions peuvent être utilisées dans toutes les situations pathologiques dans lesquelles le nombre et/ou l'activité des granulocytes doivent être stimulées. Notamment, elles peuvent être utilisées pour la prévention ou le traitement des leukopénies ou de certaines leucémies, ou dans le cas de greffes ou de traitement anticancéreux, pour renforcer ou restaurer le système immunitaire.

La présente invention sera plus complètement décrite à l'aide des exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.

LISTE DES FIGURES

Les représentations des plasmides indiquées dans les Figures suivantes ne sont pas traçées à l'échelle et seuls les sites de restriction importants pour la compréhension des clonages réalisés ont été indiqués.

Figure 1 : Séquence nucléotidique du fragment de restriction HindIII du plasmide pYG1259 (chimère prépro-SAH-G.CSF). Les flèches noires indiquent la fin des régions "pré" et "pro" de la SAH. Les sites de restriction MstII, ApaI et SstI (SacI) sont soulignés. La séquence peptidique du G-CSF est en italique (Thr586->Pro759, la numérotation des acides aminés correspond à la protéine chimère mature).

15

20

Figure 2 : Schématisation des chimères du type SAH-G.CSF (A), du type G.CSF-SAH (B) ou G.CSF-SAH-G.CSF (C). Abréviations utilisées : M/LP, méthionine initiatrice de la traduction, éventuellement suivie d'une séquence signal de sécrétion; SAH, sérum-albumine humaine mature ou un de ses variants; G.CSF, peptide dérivé du G-CSF et ayant une activité identique ou modifiée. La flèche noire indique l'extrémité N-terminale de la protéine mature.

Figure 3: Carte de restriction du plasmide pYG105 et stratégie de construction des plasmides d'expression des protéines chimères de la présente invention. Abréviations utilisées: P, promoteur transcriptionnel; T, terminateur transcriptionnel; IR, séquences répétées inversées du plasmide pKD1; LPSAH, région "prépro" de la SAH; Apr et Kmr désignent respectivement les gènes de résistance à l'ampicilline (E, coli) et au G418 (levures).

Figure 4: Caractérisation du matériel sécrété après 4 jours de culture (erlenmeyers) de la souche CBS 293.91 transformée par les plasmides pYG1266 (plasmide d'expression d'une chimère du type SAH-G.CSF) et pKan707 (plasmide contrôle). Dans cette expérience les résultats des panneaux A, B, et C ont été migrés sur le même gel (SDS-PAGE 8,5 %) puis traités séparemment.

A, coloration au bleu de coomassie; standard de poids moléculaire (piste 2); surnageant équivalent à 100 µl de la culture transformée par les plasmides pKan707 en milieu YPL (piste 1), ou pYG1266 en milieu YPD (piste 3) ou YPL (piste 4).

B, caractérisation immunologique du matériel sécrété après utilisation d'anticorps primaires dirigés contre le G-CSF humain: même légende qu'en A.

C, caractérisation immunologique du matériel sécrété après utilisation d'anticorps primaires dirigés contre l'albumine humaine: même légende qu'en A.

Figure 5: Séquence nucléotidique du fragment de restriction HindIII du plasmide pYG1301 (chimère G.CSF-Gly4-SAH). Les flèches noires indiquent la fin des régions "pré" et "pro" de la SAH. Les sites de restriction ApaI, SstI (SacI) et MstII sont soulignés. Les domaines G.CSF (174 résidus) et SAH (585 résidus) sont séparés par le linker synthétique GGGG. La numérotation des acides aminés corresponds à la protéine chimère G.CSF-Gly4-SAH mature (763 résidus). La séquence nucléotidique comprise entre le codon de terminaison de la traduction et le

10

15

20

25

30

site <u>Hind</u>III provient de l'ADN complémentaire (cDNA) de la SAH tel que décrit dans la demande de brevet EP 361 991.

Figure 6: Caractérisation du matériel sécrété après 4 jours de culture (erlenmeyers en milieu YPD) de la souche CBS 293.91 transformée par les plasmides pYG1267 (chimère SAH-G.CSF), pYG1303 (chimère G.CSF-Gly4-SAH) et pYG1352 (chimère SAH-Gly4-G.CSF) après migration sur gel SDS-PAGE 8,5 %.

A, coloration au bleu de coomassie; surnageant équivalent à 100 µl de la culture transformée par les plasmides pYG1303 (piste 1), pYG1267 (piste 2) ou pYG1352 (piste 3); standard de poids moléculaire (piste 4).

B, caractérisation immunologique du matériel sécrété après utilisation d'anticorps primaires dirigés contre le G-CSF humain : même légende qu'en A.

Figure 7: Activité sur la prolifération cellulaire <u>in vitro</u> de la lignée murine NFS60. La radioactivité (³H-thymidine) incorporée dans les noyaux cellulaires après 6 heures d'incubation est représentée en ordonnée (cpm); la quantité de produit indiquée en abscisse est exprimée en molarité (unités arbitraires).

Figure 8: Activité sur la granulopoièse <u>in vivo</u> chez le rat. Le nombre de neutrophiles (moyenne de 7 animaux) est indiquée en ordonnée en fonction du temps. Les produits testés sont la chimère SAH-G.CSF (pYG1266, 4 ou 40 mg/rat/jour), le G-CSF référence (10 mg/rat/jour), la SAH recombinante purifiée à partir de surnageant de <u>Kluyveromyces lactis</u> (rHSA, 30 mg/rat/jour, cf. EP 361 991), ou du sérum physiologique.

EXEMPLES

TECHNIQUES GENERALES DE CLONAGE

Les méthodes classiquement utilisées en biologie moléculaire telles que les extractions préparatives d'ADN plasmidique, la centrifugation d'ADN plasmidique en gradient de chlorure de césium, l'électrophorèse sur gels d'agarose ou d'acrylamide, la purification de fragments d'ADN par électroélution, les extraction de protéines au phénol ou au phénol-chloroforme, la précipitation d'ADN en milieu salin par de l'éthanol ou de l'isopropanol, la transformation dans Escherichia coli

10

15

20

25

30

etc... sont bien connues de l'homme de métier et sont abondament décrites dans la littérature [Maniatis T. et al., "Molecular Cloning, a Laboratory Manual", Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1982; Ausubel F.M. et al. (eds), "Current Protocols in Molecular Biology", John Wiley & Sons, New York, 1987].

Les enzymes de restriction ont été fournies par New England Biolabs (Biolabs), Bethesda Research Laboratories (BRL) ou Amersham et sont utilisées selon les recommandations des fournisseurs.

Les plasmides de type pBR322, pUC et les phages de la série M13 sont d'origine commerciale (Bethesda Research Laboratories).

Pour les ligatures, les fragments d'ADN sont séparés selon leur taille par électrophorèse en gels d'agarose ou d'acrylamide, extraits au phénol ou par un mélange phénol/chloroforme, précipités à l'éthanol puis incubés en présence de l'ADN ligase du phage T4 (Biolabs) selon les recommandations du fournisseur.

Le remplissage des extrémités 5' proéminentes est effectué par le fragment de Klenow de l'ADN Polymérase I d'<u>E.coli</u> (Biolabs) selon les spécifications du fournisseur. La destruction des extrémités 3' proéminentes est effectuée en présence de l'ADN Polymérase du phage T4 (Biolabs) utilisée selon les recommandations du fabricant. La destruction des extrémités 5' proéminentes est effectuée par un traitement ménagé par la nucléase S1.

La mutagénèse dirigée <u>in vitro</u> par oligodéoxynucléotides synthétiques est effectuée selon la méthode développée par Taylor et al. [Nucleic Acids Res. <u>13</u> (1985) 8749-8764] en utilisant le kit distribué par Amersham.

L'amplification enzymatique de fragments d'ADN par la technique dite de PCR [Polymérase-catalyzed Chain Reaction, Saiki R.K. et al., Science 230 (1985) 1350-1354; Mullis K.B. et Faloona F.A., Meth. Enzym. 155 (1987) 335-350] est effectuée en utilisant un "DNA thermal cycler" (Perkin Elmer Cetus) selon les spécifications du fabricant.

La vérification des séquences nucléotidiques est effectuée par la méthode développée par Sanger et al. [Proc. Natl. Acad. Sci. USA, <u>74</u> (1977) 5463-5467] en utilisant le kit distribué par Amersham.

Les transformations de <u>K. lactis</u> avec l'ADN des plasmides d'expression des protéines de la présente invention sont effectuées par toute technique connue de l'homme de l'art, et dont un exemple est donné dans le texte.

Sauf indication contraire, les souches bactériennes utilisées sont <u>E. coli</u> MC1060 (<u>lac</u>IPOZYA, X74, <u>gal</u>U, <u>gal</u>K, <u>str</u>A^T), ou <u>E. coli</u> TG1 (<u>lac</u>, <u>pro</u>A,B, <u>sup</u>E, <u>thi, hsdD5 / FtraD36, pro</u>A+B+, <u>lac</u>Iq, <u>lac</u>Z, M15).

Les souches de levures utilisées appartiennent aux levures bourgeonnantes et plus particulièrement aux levures du genre <u>Kluyveromyces</u>. Les souche <u>K. lactis</u> MW98-8C (a. <u>uraA</u>, <u>arg</u>, <u>lys</u>, K⁺, pKD1°) et <u>K. lactis</u> CBS 293.91 ont été particulièrement utilisées ; un échantillon de la souche MW98-8C a été déposé le 16 Septembre 1988 au Centraalbureau voor Schimmelkulturen (CBS) à Baarn (Pays-Bas) où il a été enregistré sous le numéro CBS 579.88.

5

10

15

20

25

30

Les souches de levures transformées par les plasmides d'expression codant pour les protéines de la présente invention sont cultivées en erlenmeyers ou en fermenteurs pilotes de 2l (SETRIC, France) à 28°C en milieu riche (YPD: 1 % yeast extract, 2 % Bactopeptone, 2 % glucose; ou YPL: 1 % yeast extract, 2 % Bactopeptone, 2 % lactose) sous agitation constante.

EXEMPLE 1 : CONSTRUCTION D'UN FRAGMENT DE RESTRICTION MSTII/HINDIII INCLUANT LA PARTIE MATURE DU G-CSF HUMAIN

Un fragment de restriction MstII-HindIII incluant la forme mature du G-CSF humain est généré, par exemple selon la stratégie suivante : un fragment de restriction KpnI-HindIII est d'abord obtenu par la technique d'amplification Sq2291 utilisant les oligodéoxynucléotides enzymatique PCR en CAAGGATCCAAGCTTCAGGGCTGCGCAAGGTGGCGTAG-3', le site <u>Hind</u>III Sq2292 (5'-CGGGGTACCTTAGGCTTAACCCCCCTG-GGCCCTGCCAGC-3', le site KpnI est souligné) comme amorce sur le plasmide BBG13 servant comme matrice. Le plasmide BBG13 comporte le gène codant pour la forme B (174 acides aminés) du G-CSF mature humain, obtenu auprès de British Bio-technology Limited, Oxford, England. Le produit d'amplification enzymatique d'environ 550 nucléotides est ensuite digéré par les enzymes de restriction KpnI et HindIII et cloné dans le vecteur pUC19 coupé par les mêmes enzymes, ce qui génère le plasmide recombinant pYG1255. Ce plasmide est la source d'un fragment de restriction MstII-HindIII, dont la séquence est incluse dans celle de la Figure 1. Un fragment de restriction MstII-HindIII codant pour la même séquence polypeptidique peut également être généré par la technique d'amplification PCR à partir des cDNA correspondants, dont la séquence est connue [Nagata S. et al., EMBO J. 5 (1986)

10

20

25

575-581]. Ces cDNA peuvent être isolés par les techniques de l'homme de l'art, par exemple en utilisant le kit distribué par Amersham, à partir d'une lignée cellulaire humaine exprimant le G-CSF, et par exemple la lignée cellulaire CHU-2 de carcinome humain [Nagata et al., Nature 319 (1986) 415-418].

Il peut être également souhaitable d'insérer un linker peptidique entre la partie SAH et G-CSF, par exemple pour permettre une meilleure présentation fonctionnelle de la partie transductrice. Un fragment de restriction MstII-HindIII est par exemple généré par substitution du fragment MstII-ApaI de la Figure 1 par les oligodéoxynucléotides Sq2742 (5'-TTAGGCTT'AGGTGGTGGCGGTACCCCCC-TGGGCC-3', les codons codant pour les résidus glycine de ce linker particulier sont soulignés) et Sq2741 (5'-CAGGGGGGTACCGCCACCACCTAAGCC-3') qui forment en s'appariant un fragment MstII-ApaI. Le plasmide pYG1336 ainsi généré comporte donc un fragment de restriction MstII-HindIII, dont la séquence est identique à celle de la Figure 1 à l'exception du fragment MstII-ApaI.

EXEMPLE 2: FUSIONS EN PHASE TRADUCTIONNELLE ENTRE LA SAH ET LE G-CSF HUMAIN

E.2.1. Fusion traductionnelle du type SAH-G.CSF.

Le plasmide pYG404 est décrit dans la demande de brevet EP 361 991. Ce plasmide comporte un fragment de restriction HindIII codant pour le gène de la prépro-SAH précédé des 21 nucléotides naturellement présents immédiatement en amont de l'ATG initiateur de traduction du gène PGK de S. cerevisiae. Plus particulièrement, ce fragment comporte un fragment de restriction HindIII-MstII correspondant à la totalité du gène codant pour la prépro-SAH à l'exception des trois acides aminés les plus C-terminaux (résidus leucine-glycine-leucine). La ligature de ce fragment avec le fragment MstII-HindIII du plasmide pYG1255 permet de générer le fragment HindIII du plasmide pYG1259 qui code pour une protéine chimère dans laquelle la forme B du G-CSF mature est positionnée par couplage génétique en phase traductionnelle en C-terminal de la molécule de SAH. La séquence nucléotidique de ce fragment de restriction est donnée à la Figure 1, ainsi que la séquence polypeptidique de la chimère correspondante (SAH-G.CSF, cf. Figure 2, panneau A).

Un fragment de restriction <u>Hind</u>III identique à l'exception du fragment <u>Mst</u>II-<u>Apa</u>I peut également être facilement généré et qui code pour une protéine chimère dans laquelle la forme B du G-CSF mature est positionnée par couplage génétique en phase traductionnelle en C-terminal de la molécule de SAH et d'un linker peptidique particulier. Par exemple ce linker est constitué de 4 résidus glycine dans le fragment <u>HindIII</u> du plasmide pYG1336 (chimère SAH-Gly4-G.CSF, cf. Figure 2, panneau A).

E.2.2. Fusion traductionnelle du type G.CSF-SAH.

5

10

15

20

25

30

Dans un mode réalisation particulier, les techniques combinées de mutagénèse dirigée et d'amplification PCR permettent de construire des gènes hybrides codant pour une protéine chimère (Figure 2, panneau B) résultant du couplage traductionnel entre un peptide signal (et par exemple la région prépro de la SAH), une séquence incluant un gène ayant une activité G-CSF, et la forme mature de la SAH ou un de ses variants moléculaires. Ces gènes hybrides sont préférentiellement bordés en 5' de l'ATG initiateur de traduction et en 3' du codon de fin de traduction par des sites de restriction HindIII. Par exemple l'oligodéoxynucléotide Sq2369 (5'-GTTCTACGCCACCTTGCGCAGCCCGGTGGAGGCGGTrésidus soulignés GATGCACACAAGAGTGAGGTTGCTCATCGG-3', les (optionnels) correspondent dans cette chimère particulière à un linker peptidique composé de 4 résidus glycine) permet par mutagénèse dirigée de mettre en phase traductionelle la forme mature du G-CSF humain du plasmide BBG13 immédiatement en amont de la forme mature de la SAH, ce qui génère le plasmide intermédiaire A. De façon similaire, l'utilisation de l'oligodéoxynucléotide Sq2338 [5'-CAGGGAGCTGGCAGGGCCCAGGGGGGTTCGACGAAACACACCCCTG-GAATAAGCCGAGCT-3' (brin non codant), les nucléotides complémentaires aux nucléotides codant pour les premiers résidus N-terminaux de la forme mature du G-CSF humain sont soulignés] permet par mutagénèse dirigée de coupler en phase traductionnelle de lecture la région prépro de la SAH immédiatement en amont de la forme mature du G-CSF humain, ce qui génère le plasmide intermédiaire B. On génère ensuite le fragment HindIII de la Figure 5 en associant le fragment HindIII-SstI du plasmide B (jonction région prépro de la SAH + fragment N-terminal du GCSF mature) avec le fragment SstI-HindIII du plasmide A [jonction G-CSF mature-(glycine)_{X4}-SAH mature]. Le plasmide pYG1301 contient ce fragment de restriction HindIII particulier codant pour la chimère G.CSF-Gly4-SAH fusionnée immédiatement en aval de la région prépro de la SAH.

15

30

E.2.3. Fusion traductionnelle du type G.CSF-SAH-G.CSF.

Ces mêmes techniques de mutagénèse dirigée et d'amplification de l'ADN in vitro permettent de construire des gènes hybrides dans lesquelles une séquence codant pour une activité G-CSF est couplée aux extrémités N- et C- terminales de la SAH ou un de ses variants moléculaires (Figure 2, panneau C). Ces gènes hybrides sont préférentiellement bordés en 5' de l'ATG initiateur de traduction et en 3' du codon de fin de traduction par des sites de restriction HindIII.

EXEMPLE 3: CONSTRUCTION DES PLASMIDES D'EXPRESSION

Les protéines chimères des exemples précédents peuvent être exprimées dans les levures à partir de promoteurs fonctionnels, régulables ou constitutifs, tels que, par exemple, ceux présents dans les plasmides pYG105 (promoteur <u>LAC</u>4 de <u>Kluyveromyces lactis</u>), pYG106 (promoteur <u>PGK</u> de <u>Saccharomyces cerevisiae</u>), pYG536 (promoteur <u>PHO</u>5 de <u>S. cerevisiae</u>), ou des promoteur hybrides tels que ceux portés par les plasmides décrits dans la demande de brevet EP 361 991.

Par exemple, le fragment de restriction HindIII du plasmide pYG1259 est cloné dans l'orientation productive dans le site de restriction HindIII du plasmide d'expression pYG105, ce qui génère le plasmide d'expression pYG1266 (Figure 3). Le plasmide pYG105 corresponds au plasmide pKan707 décrit dans la demande de brevet EP 361 991 dans lequel le site de restriction HindIII a été détruit par mutagénèse dirigée (oligodeoxynucleotide Sq1053: 5'-GAAATGCATAAGCTC-TTGCCATTCTCACCG-3') et dont le fragment SalI-SacI codant pour le gène URA3 a été remplacé par un fragment de restriction SalI-SacI comportant le promoteur LAC4 (sous la forme d'un fragment SalI-HindIII) et le terminateur du gène PGK de S. cerevisiae (sous la forme d'un fragment HindIII-SacI). Le plasmide pYG105 est mitotiquement très stable en l'absence de généticine (G418) et permet d'exprimer la protéine chimère à partir du promoteur LAC4 de K. lactis, notamment quand la source carbonnée est du lactose. Dans une autre exemplification, le clonage dans l'orientation productive du fragment de restriction HindIII du plasmide pYG1259 dans le site HindIII du plasmide pYG106 génère le plasmide d'expression pYG1267. Les plasmides pYG1266 et pYG1267 sont isogéniques entre eux à l'exception du fragment de restriction SalI-HindIII codant pour le promoteur LAC4

15

20

de K. lactis (plasmide pYG1266) ou le promoteur <u>PGK</u> de <u>S. cerevisiae</u> (plasmide pYG1267).

Dans une autre exemplification, le clonage dans l'orientation productive du fragment de restriction <u>Hind</u>III du plasmide pYG1336 (chimère SAH-Gly4-G.CSF, cf. E.2.1.) dans le site <u>Hind</u>III des plasmides pYG105 et pYG106 génère les plasmides d'expression pYG1351 et pYG1352, respectivement.

De même, le clonage dans l'orientation productive du fragment de restriction <u>HindIII</u> du plasmide pYG1301 (chimère G.CSF-Gly4-SAH, cf. E.2.2.) dans le site <u>HindIII</u> des plasmides pYG105 et pYG106 génère les plasmides d'expression pYG1302 et pYG1303, respectivement.

EXEMPLE 4: TRANSFORMATION DES LEVURES

La transformation des levures appartenant au genre Kluyveromyces, et en particulier les souches MW98-8C et CBS 293.91 de K. lactis, s'effectue par exemple par la technique de traitement des cellules entières par de l'acétate de lithium (Ito H. et al., J. Bacteriol. 153 (1983) 163-168), adaptée comme suit. La croissance des cellules se fait à 28°C dans 50 ml de milieu YPD, avec agitation et jusqu'à une densité optique à 600 nm (DO₆₀₀) comprise entre 0,6 et 0,8 ; les cellules sont récoltées par centrifugation à faible vitesse, lavées dans une solution stérile de TE (10 mM Tris HCl pH 7,4; 1 mM EDTA), resuspendues dans 3-4 ml d'acétate lithium (0,1 M dans du TE) pour obtenir une densité cellulaire d'environ 2×10^8 cellules/ml, puis incubées à 30°C pendant 1 heure sous agitation modérée. Des aliquotes de 0,1 ml de la suspension résultante de cellules compétentes sont incubés à 30°C pendant 1 heure en présence d'ADN et à une concentration finale de 35 % de polyéthylène glycol (PEG4000, Sigma). Après un choc thermique de 5 minutes à 42°C, les cellules sont lavées 2 fois, resuspendues dans 0,2 ml d'eau stérile et incubées 16 heures à 28°C dans 2 ml de milieu YPD pour permettre l'expression phénotypique de la fusion ORF1-APH exprimée sous contrôle du promoteur P_{k1} ; 200 µl de la suspension cellulaire sont ensuite étalés sur boites YPD sélectives (G418, 200 μg/ml). Les boites sont mises à incuber à 28°C et les transformants apparaissent après 2 à 3 jours de croissance cellulaire.

10

20

25

EXEMPLE 5: SECRETION DES CHIMERES

Après sélection sur milieu riche supplémenté en G418 les clones recombinants sont testés pour leur capacité à sécréter la forme mature des protéines chimères entre SAH et G-CSF. Quelques clones correspondant à la souche K. lactis CBS 293.91 transformée par les plasmides pYG1266 ou pYG1267 (SAH-G.CSF), pYG1302 ou pYG1303 (G.CSF-Gly4-SAH) ou encore pYG1351 ou pYG1352 (SAH-Gly4-G.CSF) sont mis à incuber en milieu liquide complet sélectif à 28°C. Les surnageants cellulaires sont alors testés après électrophorèse en gel d'acrylamide à 8.5 %, soit directement par coloration du gel d'acrylamide par du bleu de coomassie (Figure 4, panneau A), soit après immunoblot en utilisant comme anticorps primaires des anticorps polyclonaux de lapin spécifiquement dirigés contre le G-CSF humain, ou contre la SAH. Lors des expériences de détection immunologique, le filtre de nitrocellulose est d'abord incubé en présence de l'anticorps spécifique, lavé plusieurs fois, incubé en présence d'anticorps de chèvre anti-lapin biotinylés, puis incubé en présence d'un complexe avidine-péroxydase en utilisant le "kit ABC" distribué par Vectastain (Biosys S.A., Compiègne, France). La réaction immunologique est ensuite révélée par addition de diamino-3,3' benzidine tetrachlorydrate (Prolabo) en présence d'eau oxygénée, selon les recommandations du fournisseur. Les résultats de la Figure 4 démontrent que la protéine hybride SAH-G.CSF est reconnue à la fois par des anticorps dirigés contre l'albumine humaine (panneau C) et le G-CSF humain (panneau B). Les résultats de la Figure 6 indiquent que la chimère SAH-Gly4-G.CSF (piste 3) est particulièrement bien sécrétée par la levure Kluyveromyces, possiblement du fait que la présence du linker peptidique entre partie SAH et partie G-CSF est plus favorable à un repliement indépendant de ces 2 parties lors du transit de la chimère dans la voie sécrétoire. De plus la fusion Nterminale (G.CSF-Gly4-SAH) est également sécrétée par la levure Kluyveromyces (Figure 6, piste 1).

EXEMPLE 6: PURIFICATION ET CARACTERISATION MOLECULAIRE DES PRODUITS SECRETES

Après centrifugation d'une culture de la souche CBS 293.91 transformée par les plasmides d'expression selon l'exemple 3, le surnageant de culture est passé à travers un filtre de 0,22 mm (Millipore), puis concentré par ultrafiltration (Amicon)

20

30

en utilisant une membrane dont le seuil de discrimination se situe à 30 kDa. Le concentrat obtenu est alors ajusté à 50 mM Tris HCl à partir d'une solution stock de Tris HCl 1M (pH 6), puis déposé par fractions de 20 ml sur une colonne (5 ml) échangeuse d'ions (Q Fast Flow, Pharmacia) équilibrée dans le même tampon. La protéine chimère est alors éluée de la colonne par un gradient (0 à 1 M) de NaCl. Les fractions contenant la protéine chimère sont alors réunies et dialysées contre une solution de Tris HCl 50 mM (pH 6) et redéposées sur colonne Q Fast Flow (1 ml) équilibrée dans le même tampon. Après élution de la colonne, les fractions contenant la protéine sont réunies, dialysées contre de l'eau et lyophilisées avant caractérisation: par exemple, le séquençage (Applied Biosystem) de la protéine SAH-G.CSF sécrétée par la levure CBS 293.91 donne la séquence N-terminale attendue de la SAH (Asp-Ala-His...), démontrant une maturation correcte de la chimère immédiatement en C-terminal du doublet de résidus Arg-Arg de la région "pro" de la SAH (Figure 1).

15 EXEMPLE 7: ACTIVITE BIOLOGIQUE DES CHIMERES ENTRE SAH ET G-CSF

E.7.1. Activité biologique in vitro.

Les chimères purifiées selon l'exemple 6 sont testées pour leur capacité à permettre la prolifération in vitro de la lignée murine IL3-dépendante NFS60, par mesure de l'incorporation de thymidine tritiée essentiellement selon le protocole décrit par Tsuchiya et al. [Proc. Natl. Acad. Sci. (1986) 83 7633]. Pour chaque chimère, les mesures sont réalisées entre 3 et 6 fois dans un test trois points (trois dilutions du produit) dans une zone ou la relation entre quantité de produit actif et incorporation de thymidine marquée (Amersham) est linéaire. Dans chaque plaque de microtitration, l'activité d'un produit référence constitué de G-CSF humain recombinant exprimé dans des cellules mammifères est également systématiquement incorporé. Les résultats de la Figure 7 démontrent que la chimère SAH-G.CSF (pYG1266) sécrétée par la levure Kluyveromyces est capable in vitro de transduire un signal de prolifération cellulaire pour la lignée NFS60. Dans ce cas particulier, l'activité spécifique (cpm/molarité) de la chimère est environ 7 fois plus faible que celle du G-CSF référence (non couplé).

10

E.7.2. Activité in vivo

L'activité de stimulation des chimères SAH/G-CSF sur la granulopoièse <u>in vivo</u> est testée après injection sous-cutanée chez le rat (Sprague-Dawley/CD, 250-300 g, 8-9 semaines) et comparée à celle du G-CSF référence exprimé à partir de cellules de mammifère. Chaque produit, testé à raison de 7 animaux, est injecté par voie sous-cutanée en région dorso-scapulaire à raison de 100 ml pendant 7 jours consécutifs (J1-J7). 500 ml de sang sont recueillis aux jours J-6, J2 (avant la 2ème injection), J5 (avant la 5ème injection) et J8, et une numération sanguine est effectuée. Dans ce test, l'activité spécifique (unités de neutropoièse/mole injectée) de la chimère SAH-G.CSF (pYG1266) est identique à celle du G-CSF référence (Figure 8). Puisque cette chimère particulière possède <u>in vitro</u> une activité spécifique 7 fois plus faible que celle du G-CSF référence (Figure 7), il est donc démontré que le couplage génétique du G-CSF sur la SAH en modifie favorablement les propriétés pharmacocinétiques.

REVENDICATIONS

- 1. Polypeptide recombinant comportant une partie active constituée par tout ou partie du G-CSF ou d'un variant du G-CSF couplé à une structure stabilisatrice essentiellement protéique.
- 2. Polypeptide selon la revendication 1 caractérisé en ce que la partie active présente une structure choisie parmi :
 - (a) la séquence peptidique comprise entre les résidus Thr586-Pro759 de la séquence donnée sur la Figure 1,
- (b) une partie de la structure peptidique (a) ayant conservé l'activité 10 biologique du G-CSF, et,
 - (c) une structure dérivée des structures (a) ou (b) par modifications structurales (mutation, substitution, addition et/ou délétion d'un ou plusieurs résidus), et ayant conservé l'activité biologique du G-CSF, ou une activité modifiée.
- 3. Polypeptide selon la revendication 1 ou 2 caractérisé en ce que la partie active est couplée à l'extrémité N-terminale de la structure stabilisatrice.
 - 4. Polypeptide selon la revendication 1, 2 ou 3 caractérisé en ce que la partie active est couplée à l'extrémité C-terminale de la structure stabilisatrice.
- Polypeptide selon l'une des revendications 1 à 4 caractérisé en ce que la structure stabilisatrice est un polypeptide possédant une demie-vie plasmatique
 élevée.
 - 6. Polypeptide selon la revendication 5 caractérisé en ce que le polypeptide possédant une demie-vie plasmatique élevée est une protéine telle qu'une albumine, une apolipoprotéine, une immunoglobuline ou encore une transferine.
- 7. Polypeptide selon la revendication 5 caractérisé en ce que le polypeptide 25 possédant une demie-vie plasmatique élevée est dérivé par modification(s) structurale(s) (mutation, substitution, addition et/ou délétion d'un ou plusieurs résidus, modification chimique) d'une protéine selon la revendication 6.

- 8. Polypeptide selon l'une des revendications 5 à 7 caractérisé en ce que la structure stabilisatrice est un polypeptide faiblement ou non-immunogénique pour l'organisme dans lequel il est utilisé.
- 9. Polypeptide selon la revendication 5 caractérisé en ce que la structure stabilisatrice est une albumine ou un variant de l'albumine.
 - 10. Séquence nucléotidique codant pour un polypeptide selon l'une quelconque des revendications 1 à 9.
- 11. Séquence nucléotidique selon la revendication 10 caractérisée en ce qu'elle comprend une séquence "leader" permettant la sécrétion du polypeptide exprimé.
 - 12. Cassette d'expression comprenant une séquence nucléotidique selon l'une des revendications 10 ou 11 sous le contrôle d'une région d'initiation de la transcription et éventuellement d'une région de terminaison de la transcription.
- 13. Plasmide autoréplicatif comportant une cassette d'expression selon la revendication 12.
 - 14. Cellule recombinante eucaryote ou procaryote dans laquelle a été inséré une séquence nucléotidique selon l'une des revendications 10 ou 11 ou une cassette d'expression selon la revendication 12 ou un plasmide selon la revendication 13.
- 15. Cellule recombinante selon la revendication 14 caractérisée en ce qu'il s'agit d'une levure, d'une cellule animale, d'un champignon ou d'une bactérie.
 - 16. Cellule recombinante selon la revendication 15 caractérisée en ce qu'il s'agit d'une levure.
 - 17. Cellule recombinante selon la revendication 16 caractérisée en ce qu'il s'agit d'une levure du genre <u>Saccharomyces</u> ou <u>Kluvveromyces</u>.
- 18. Procédé de préparation d'un polypeptide tel que défini dans l'une des revendications 1 à 9 caractérisé en ce que l'on cultive une cellule recombinante selon l'une des revendications 14 à 17 dans des conditions d'expression, et on récupère le polypeptide produit.

- 19. Composition pharmaceutique comprenant un ou plusieurs polypeptides selon l'une quelconque des revendications 1 à 9.
- 20. Composition pharmaceutique selon la revendication 19 destinée à être utilisée dans toutes les situations pathologiques dans lesquelles le nombre et/ou l'activité des granulocytes doivent être stimulées.
- 21. Composition pharmaceutique selon la revendication 20 destinée à la prévention ou au traitement des leukopénies ou de certaines leucémies.
- 22. Composition pharmaceutique selon la revendication 20 utilisable dans le cas de greffes ou de traitement anticancéreux, pour restaurer le système immunitaire.

SEO. ID NO: 1

TYPE DE SEQUENCE : LONGUEUR :

Nucléotide et sa protéine correspondante 2382 nucléotides

NOMBRE DE BRINS: CONFIGURATION: TYPE DE MOLECULE:

Linéaire
Fragment de restriction <u>Hind</u>III du plasmide d'expression pYG1259

(chimère G.CSF-SAH)
Recombinaisons génétiques in vitro ORIGINE:

AAGCT TTACAACAAA TATAAAAACA		ACC TTT ATT TCC CTT Thr Phe Ile Ser Leu	
AGC TCG GCT TAT TCC AGG GGT Ser Ser Ala Tyr Ser Arg Gly			
CGG TTT AAA GAT TTG GGA GAA Arg Phe Lys Asp Leu Gly Glu	GAA AAT TTC AAA Glu Asn Phe Lys	GCC TTG GTG TTG ATT Ala Leu Val Leu Ile	GCC TTT GCT CAG Ala Phe Ala Gln 29
TAT CTT CAG CAG TGT CCA TTT Tyr Leu Gln Gln Cys Pro Phe			
GCA AAA ACA TGT GTT GCT GAT Ala Lys Thr Cys Val Ala Asp	Glu Ser Ala Glu	Asn Cys Asp Lys Ser	Leu His Thr Leu 69
TTT GGA GAC AAA TTA TGC ACA Phe Gly Asp Lys Leu Cys Thr			
TGC TGT GCA AAA CAA GAA CCT Cys Cys Ala Lys Gln Glu Pro			
CCA AAC CTC CCC CGA TTG GTG Pro Asn Leu Pro Arg Leu Val	Arg Pro Glu Val	Asp Val Met Cys Thr	Ala Phe His Asp 129
AAT GAA GAG ACA TTT TTG AAA Asn Glu Glu Thr Phe Leu Lys	Lys Tyr Leu Tyr	Glu Ile Ala Arg Arg	His Pro Tyr Phe 149
TAT GCC CCG GAA CTC CTT TTC Tyr Ala Pro Glu Leu Leu Phe	Phe Ala Lys Arg	Tyr Lys Ala Ala Phe	Thr Glu Cys Cys 169
CAA GCT GCT GAT AAA GCT GCC Gln Ala Ala Asp Lys Ala Ala	Cys Leu Leu Pro	Lys Leu Asp Glu Leu	Arg Asp Glu Gly 189
AAG GCT TCG TCT GCC AAA CAG Lys Ala Ser Ser Ala Lys Gln	Arg Leu Lys Cys	Ala Şer Leu Gln Lys	s Phe Gly Glu Arg 209
GCT TTC AAA GCA TGG GCA GTA Ala Phe Lys Ala Trp Ala Val	Ala Arg Leu Ser	Gln Arg Phe Pro Lys	s Ala Glu Phe Ala 229
GAA GTT TCC AAG TTA GTG ACA Glu Val Ser Lys Leu Val Thr	Asp Leu Thr Lys	Val His Thr Glu Cys	Cys His Gly Asp 249
CTG CTT GAA TGT GCT GAT GAC Leu Leu Glu Cys Ala Asp Asp	Arg Ala Asp Leu	Ala Lys Tyr Ile Cys	s Glu Asn Gln Asp 269
TCG ATC TCC AGT AAA CTG AAG Ser Ile Ser Ser Lys Leu Lys	Glu Cys Cys Glu	Lys Pro Leu Leu Gl	Lys Ser His Cys 289
ATT GCC GAA GTG GAA AAT GAT Ile Ala Glu Val Glu Asn Asp	Glu Met Pro Ala	Asp Leu Pro Ser Le	u Ala Ala Asp Phe 309
GTT GAA AGT AAG GAT GTT TGC Val Glu Ser Lys Asp Val Cys	Lys Asn Tyr Ala	Glu Ala Lys Asp Va	l Phe Leu Gly Met 329
TTT TTG TAT GAA TAT GCA AGA Phe Leu Tyr Glu Tyr Ala Arg			

GCC AAG ACA TAT GAA ACC ACT CTA GAG AAG TGC TGT GC	CC GCT GCA GAT CCT CAT GAA TGC
Ala Lys Thr Tyr Glu Thr Thr Leu Glu Lys Cys Cys A	la Ala Ala Asp Pro His Glu Cys 369
TAT GCC AAA GTG TTC GAT GAA TTT AAA CCT CTT GTG GA	AA GAG CCT CAG AAT TTA ATC AAA
Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val G	lu Glu Pro Gln Asn Leu Ile Lys 389
CAA AAT TGT GAG CTT TTT GAG CAG CTT GGA GAG TAC A	AA TTC CAG AAT GCG CTA TTA GTT
Gln Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu Tyr Ly	ys Phe Gln Asn Ala Leu Leu Val 409
CGT TAC ACC AAG AAA GTA CCC CAA GTG TCA ACT CCA AC	CT CTT GTA GAG GTC TCA AGA AAC
Arg Tyr Thr Lys Lys Val Pro Gln Val Ser Thr Pro Th	hr Leu Val Glu Val Ser Arg Asn 429
CTA GGA AAA GTG GGC AGC AAA TGT TGT AAA CAT CCT G	AA GCA AAA AGA ATG CCC TGT GCA
Leu Gly Lys Val Gly Ser Lys Cys Cys Lys His Pro G	lu Ala Lys Arg Met Pro Cys Ala 449
GAA GAC TAT CTA TCC GTG GTC CTG AAC CAG TTA TGT G	TG TTG CAT GAG AAA ACG CCA GTA
Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Va	al Leu His Glu Lys Thr Pro Val 469
AGT GAC AGA GTC ACC AAA TGC TGC ACA GAA TGC TTG G	TG AAC AGG CGA CCA TGC TTT TCA
Ser Asp Arg Val Thr Lys Cys Cys Thr Glu Ser Leu Va	al Asn Arg Arg Pro Cys Phe Ser 489
GCT CTG GAA GTC GAT GAA ACA TAC GTT CCC AAA GAG T	TT AAT GCT GAA ACA TTC ACC TTC
Ala Leu Glu Val Asp Glu Thr Tyr Val Pro Lys Glu Pi	he Asn Ala Glu Thr Phe Thr Phe 509
CAT GCA GAT ATA TGC ACA CTT TCT GAG AAG GAG AGA CA His Ala Asp Ile Cys Thr Leu Ser Glu Lys Glu Arg G	ln Ile Lys Lys Gln Thr Ala Leu 529
GTT GAG CTT GTG AAA CAC AAG CCC AAG GCA ACA AAA G Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys G	lu Gln Leu Lys Ala Val Met Asp 549
GAT TTC GCA GCT TTT GTA GAG AAG TGC TGC AAG GCT GA ASP Phe Ala Ala Phe Val Glu Lys Cys Cys Lys Ala As	sp Asp Lys Glu Thr Cys Phe Ala 569
GAG GAG GGT AAA AAA CTT GTT GCT GCA AGT CAA GCT G Glu Glu Gly Lys Lys Leu Val Ala Ala Ser Gln Ala A	la Leu Gly Leu Thr Pro Leu Gly 589
CCT GCC AGC TCC CTG CCC CAG AGC TTC CTG CTC AAG TC Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys C	ys Leu Glu Gln Val Arg Lys Ile 609
CAG GGC GAT GGC GCA GCG CTC CAG GAG AAG CTG TGT G Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys A	la Thr Tyr Lys Leu Cys His Pro 629
GAG GAG CTG GTG CTG CTC GGA CAC TCT CTG GGC ATC CC Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile P.	ro Trp Ala Pro Leu Ser Ser Cys 649
CCC AGC CAG GCC CTG CAG CTG GCA GGC TGC TTG AGC CA Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser G	In Leu His Ser Gly Leu Phe Leu 669
TAC CAG GGG CTC CTG CAG GCC CTG GAA GGG ATA TCC C	CC GAG TTG GGT CCC ACC TTG GAC
Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser P.	TO Glu Leu Gly Pro Thr Leu Asp 689
ACA CTG CAG CTG GAC GTC GCC GAC TTT GCC ACC ACC A	TC TGG CAG CAG ATG GAA GAA CTG
Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr I	le Trp Gln Gln Met Glu Glu Leu 709
GGA ATG GCC CCT GCC CTG CAG CCC ACC CAG GGT GCC A Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala M	et Pro Ala Phe Ala Ser Ala Phe 729
CAG CGC CGG GCA CGA CGG GTC CTG GTT GCT AGC CAT C	TG CAG AGC TTC CTG GAG GTG TCG
Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His L	eu Gln Ser Phe Leu Glu Val Ser 749
TAC CGC GTT CTA CGC CAC CTT GCG CAG CCC TGA AGCTT Tyr Arg Val Leu Arg His Leu Ala Gln Pro ***	759

Figure 1(b)

Figure 2

Figure 3

Figure 4

SEO. ID NO:

TYPE DE SEQUENCE : LONGUEUR:

Nucléotide et sa protéine correspondante 2455 nucléotides

NOMBRE DE BRINS : CONFIGURATION:

TYPE DE MOLECULE:

Linéaire
Fragment de restriction <u>Hind</u>III du plasmide d'expression pYG1301
(chimère G.CSF-Gly4-SAH positionnée immédiatement en aval de la région prépro de la SAH)

ORIGINE: Recombinaisons génétiques in vitro

AAG	T T	racai	ACAA	A TA	ΓΑΑΑ	AACA	ATG Met	AAG Lys	TGG Trp	GTA Val	ACC Thr	TTT Phe	ATT Ile	TCC Ser	CTT Leu	CTT Leu	TTT Phe	CTC Leu	TTT Phe	-12
AGC	TCG	GCT	TAT	TCC	AGG	GGT	GTG	TTT	CGT	CGA	ACC	CCC	CTG	Apa:	CCT	GCC	AGC	TCC	√CT/G	
Ser	Ser	Ala	Tyr	Ser	Arg	Gly	Val	Phe	Arg	Arg	Thr I	Pro	Leu	Gly	Pro	Ala	Ser	Ser	Leu	9
CCC	CAG	AGC	TTC	CTG	CTC	AAG	TGC	TTA	GAG	CAA	GTG	AGG	AAG	ATC	CAG	GGC	GAT	GGC	GCA	
Pro	Gln	Ser	Phe	Leu	Leu	Lys	Cys	Leu	Glu	Gln	Val	Arg	Lys	Ile	Gln	Gly	Asp	Gly	Ala	29
GCG	CTC	CAG	GAG	AAG	CTG	TGT	GCC	ACC	TAC	AAG	CTG	TGC	CAC	ccc	GAG	GAG	CTG	GTG	CIG	
MIG	neu	GIN	GIU	гÀг	ren	Cys	Ala	Thr	Tyr	Lys	Leu	Cys Sat	His	Pro	Glu	Glu	Leu	Val	Leu	49
CTC	GGA	CAC	TCT	CTG	GGC	ATC	CCC	TGG	CCT	CCC	CTG	ACC	TCC	TCC	ccc	.204	CAG	CCC	CTC	
Leu	Gly	His	Ser	Leu	Gly	Ile	Pro	Trp	Ala	Pro	Leu	Ser	Ser	Cys	Pro	Ser	Gln	Ala	Leu	69
CNC	~	CC3	~~~	maa	mma															
CAG	וובו	Ala	GGC	CVC	TOU	AGC	CAA	CIC	CAT	AGC	GGC	CIT	TTC	CIC	TAC	CAG	GGG	CIC	CTG	
													Phe				_			89
CAG	GCC	CTG	GAA	GGG	ATA	TCC	ccc	GAG	TTG	GGT	CCC	ACC	TTG	GAC	ACA	CTG	CAG	CTG	GAC	
Gln	Ala	Leu	Glu	Gly	Ile	Ser	Pro	Glu	Leu	Gly	Pro	Thr	Leu	Asp	Thr	Leu	Gln	Leu	Asp	109
כיוויר	CCC	GNC	utalah	ccc	300	200	»mc	maa	~~	C3C	3.mc	~	GAA	~						
Val	Ala	Asp	Phe	Ala	Thr	Thr	TIC	TUG	CAG	Gin	Mor	GAA	GAA	Lou	GGA	Mot	GCC	CCL	GCC	120
																				129
CTG	CAG	CCC	ACC	CAG	GGT	GCC	ATG	CCG	GCC	TTC	GCC	TCT	GCT	TTC	CAG	CGC	CGG	GCA	GGA	
Leu	Gln	Pro	Thr	Gln	Gly	Ala	Met	Pro	Ala	Phe	Ala	Ser	Ala	Phe	Gln	Arg	Arg	Ala	Gly	149
GGG	GTC.	CTG	GTT	GCT	AGC	САТ	CTG	CAG	AGC	יאניי	CTG	GAG	GTG	TCG	ТЪС	CCC	ششك	מיזי	ccc	
Gly	Val	Leu	Val	Ala	Ser	His	Leu	Gln	Ser	Phe	Leu	Glu	Val	Ser	Tyr	Arg	Val	Leu	Arg	169
																			_	
LAC	LOU	Ala	CAG	CCC	GGI.	GGA	GGC	GGT	GAT	GCA	CAC	AAG	AGT	GAG	GTT	GCT	CAT	CGG	TTT	
птэ	Deu	G-C	SF<	-~-I	GIA	lin	GIV.	GIV,	Asp :]	AIZ	HIS	ьуs	Ser	GIU	val	Ala	His	Arg	Phe	189
444	СУТ			-								m	ATT							
Lvs	Asp	Leu	Glv	Glu	Glu	VVI	Phe	LVC	Δla	Ten	Val	LOU	Ile	Ala	TTT	GCT.	CAG	TAT	CTT	200
																		-		209
CAG	CAG	TGT	CCA	TTT	GAA	GAT	CAT	GTA	AAA	TTA	GTG	AAT	GAA	GTA	ACT	GAA	TTT	GCA	AAA	
GIn	GIn	Cys	Pro	Phe	Glu	Asp	His	Val	Lys	Leu	Val	Asn	Glu	Val	Thr	Glu	Phe	Ala	Lys	229
ACA	TCT	Cum	CTT	СЪТ	GAG	ጥርል	ССТ	CAA	አ እጥ	тст	CAC	מממ	TCA	CALIMITY	Chm	200	~~~		663	
Thr	Cys	Val	Ala	Asp	Glu	Ser	Ala	Glu	Asn	CVS	Asp	LVS	Ser	Leu	His	Thr	ten	Pho	GGA	249
																			_	243
GAC	AAA	TTA	TGC	ACA	GTT	GCA	ACT	CTT	CGT	GAA	ACC	TAT	GGT	GAA	ATG	GCT	GAC	TGC	TGT	
Asp	Lys	Leu	Cys	Thr	Val	Ala	Thr	Leu	Arg	Glu	Thr	Tyr	Gly	Glu	Met	Ala	Asp	Cys	Cys	269
GCA	AAA	CAA	GAA	ССТ	CAG	AGA	ል ልጥ	CAA	ייבאנו	ጥጥር	TTTC	ממי	CAC	***	CAM	CNO	220			
Ala	Lvs	Gln	Glu	Pro	Glu	Ara	Asn	Glu	CVS	Phe	Leu	Gln	His	Ive	7cu	Acn	AAC	Dro	AAC	289
																				203
CTC	ccc	CGA	TTG	GTG	AGA	CCA	GAG	GTT	GAT	GTG	ATG	TGC	ACT	GCT	TTT	CAT	GAC	AAT	GAA	
ren	Pro	Arg	Leu	Val	Arg	Pro	Glu	Val	Asp	Val	Met	Cys	Thr	Ala	Phe	His	Asp	Asn	Glu	309
GAG	AC A	ملحلمك	تكلمك	מממ	מממ	ጥልጦ	מידיים	ጥልጥ	CNN	ע טאני	CCC)C)	AGA	ርስጥ	Com	m»~	יייינאנו)	m s er	000	
Glu	Thr	Phe	Leu	Lvs	LVS	Tvr	Leu	Tvr	Glu	Ile	Ala	Ara	Arg	His	Pro	TVr	Phe	TAT	Ala Ala	329
				_, _	_, _			-,-				3	9			- 1 -	r 11G	-11	ura	223

														ACA Thr						. 34	ي
				_										CGG Arg						36	9
		_												TTT Phe						38	9
														GCT Ala						40	9
														TGC Cys					CTT Leu	42	9
														GAA Glu						44	9
														AAA Lys						46	9
														GCT Ala					GAA Glu	48	39
														TTC Phe					TTG Leu	50	
														CTG Leu					AAG Lys	52	29
														CCT Pro					GCC Ala	54	19
AAA Lys	GTG Val	TTC Phe	GAT Asp	GAA Glu	TTT Phe	aaa Lys	CCT Pro	CTT Leu	GTG Val	GAA Glu	GAG Glu	CCT Pro	CAG Gln	AAT Asn	TTA Leu	ATC Ile	aaa Lys	CAA Gln	AAT Asn	56	59
TGT Cys	GAG Glu	CTT Leu	TTT Phe	GAG Glu	CAG Gln	CTT Leu	GGA Gly	GAG Glu	TAC Tyr	AAA Lys	TTC Phe	CAG Gln	TAA naA	GCG Ala	CTA Leu	TTA Leu	GIT Val	CGT Arg	TAC Tyr	58	39
ACC Thr	AAG Lys	AAA Lys	GTA Val	CCC Pro	CAA Gln	GTG Val	TCA Ser	ACT Thr	CCA Pro	ACT Thr	CTT Leu	GTA Val	GAG Glu	GTC Val	TCA Ser	AGA Arg	AAC Asn	CTA Leu	GGA Gly	60	09
AAA Lys	GTG Val	GGC Gly	AGC Ser	AAA Lys	TGT Cys	TGT Cys	AAA Lys	CAT His	CCT Pro	GAA Glu	GCA Ala	AAA Lys	AGA Arg	ATG Met	CCC Pro	TGT Cys	GCA Ala	GAA Glu	GAC Asp	62	29
TAT Tyr	CTA Leu	TCC Ser	GTG Val	GTC Val	CTG Leu	AAC Asn	CAG Gln	TTA Leu	TGT Cys	GTG Val	TTG Leu	CAT His	GAG Glu	AAA Lys	ACG Thr	CCA Pro	GTA Val	AGT Ser	GAC Asp	64	49
AGA Arg	GTC Val	ACC Thr	AAA Lys	TGC Cys	TGC Cys	ACA Thr	GAA Glu	TCC Ser	TTG Leu	GTG Val	AAC Asn	AGG Arg	CGA Arg	CCA Pro	TGC Cys	TTT Phe	TCA Ser	GCT Ala	CTG Leu	6	69
																			GCA Ala	6	89
GAT Asp	ATA Ile	TGC Cys	ACA Thr	CTT Leu	TCT Ser	GAG Glu	AAG Lys	GAG Glu	AGA Arg	CAA Gln	ATC Ile	AAG Lys	AAA Lys	CAA Gln	ACT Thr	GCA Ala	CTT	GTT Val	GAG Glu	7	09
																			TTC Phe	-7:	29
											Asp	Lys							GAG Glu	7	49
												GGC		TAA		CACA	TTT			7	63

AAAAGCATCT CAGCCTACCA TGAGAATAAG AGAAAGAAAA TGAAGATCAA AAGCTT

8/10

Figure 6

Figure 7 .

Figure 8

INTERNATIONAL SEARCH REPORT

International application No. PCT/FR93/00086

								
Int	''	A61K 37/02; C07K 13700 /19, C12R 1/645)	C12N 15/27;					
	According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED							
	DIS SEARCHED Ocumentation searched (classification system followed by							
	c. C1. ⁵ : C07K; C12N; A61K	, classification symbols)						
Documentati	on searched other than minimum documentation to the ϵ	extent that such documents are included in th	e fields searched					
Electronic da	ata base consulted during the international search (name	of data base and, where practicable, search t	erms used)					
C. DOCU	MENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.					
Y	DE, A, 3 723 781 (CHUGAISEIY 21 January 1988, see pag line 1; claims; tables	AKU K.K.) e 4, line 68 - page 5,	1,5-6,8-9					
Α	,,		19-22					
Y	EP, A, O 364 980 (DENKI KAGA 25 April 1990, see abstr	KU KOGYOKABUSHIKI KAISHA) act	1,5-6,8-9					
	see page 2, lines 28-30 see page 3, lines 1-6 see page 3, line 54							
Υ	EP, A, 0 395 918 (VASCULAR L 7 November 1990, see col see column 16, lines 26-	umn 1, lines 24-48	1,5-6,8-9					
ү	WO, A, 9 013 653 (DELTA BIOT 15 November 1990, see pa	ECHNOLOGY LIMITED) ge 9, lines 18-24	1,5-6,8-9					
A	EP, A, O 361 991 (RHONE-POUL cited in the application	ENC SANTE) 4 April 1990,	10-18					
Furthe	r documents are listed in the continuation of Box C.	See patent family annex.						
"A" docume to be of	categories of cited documents: nt defining the general state of the art which is not considered particular relevance	"T" later document published after the interdate and not in conflict with the applitude the principle or theory underlying the	cation but cited to understand					
"L" docume cited to	ocument but published on or after the international filing date of which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	considered novel or cannot be considered	lered to involve an inventive					
"O" docume means	eason (as specified) nt referring to an oral disclosure, use, exhibition or other nt published prior to the international filing date but later than	"Y" document of particular relevance; the considered to involve an inventive combined with one or more other such	step when the document is documents, such combination					
The prior	nty date claimed	"&" document member of the same patent	Camily					
	ctual completion of the international search 9 1993 (17.06.93)	Date of mailing of the international season 2 July 1993 (02.07.93)	rch report					
Name and m	ailing address of the ISA/	Authorized officer	 					
Europea	n Patent Office							
Facsimile No		Telephone No.						
Form PCT/IS/	4/210 (second sheet) (July 1992)							

INTERNATIONAL SEARCH REPORT

International application No.
PCT/FR93/00086

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	See examples 1-4	
A	EP, A, O 401 384 (KIRIN-AMGEN, INC.) 12 December 1990, see page 1, line 15 - page 3	1,19-22
	· .	
		•
	·	
		· v

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

9300086 SA 70240

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

17/0 17/06/93

01-88 AU-B- AU-A-	mber(s)	date
	611856	27-06-91
	7566587	21-01-88
BE-A-	1000253	27-09-88
CH-A-	671157	15-08-89
FR-A-	2601591	22-01-88
GB-A, B		17-02-88
		18-06-88
		16-02-88
		19-01-88
		18-06-88
		24-06-88
JP-A-	63146828 	18-06-88
04-90 JP-A-	2111799	24-04-90
DE-U-	6890599	19-05-93
JP-A-	2275900	09-11-90
11-90 All-A-	531620N	18-10-90
		13-10-90
		13-10-90
UP-X-	311/404	20-05-91
	630450	29-10-92
	5564690	29-11-90
	0470165	12-02-92
	2246783	12-02-92
JP-T-	4506598	19-11-92
04-90 FR-A-	2635115	09-02-90
		25-01-91
		14-05-92
		08-02-90
JP-A-	2276589	13-11-90
12_00	2006526	
		22-06-90
-A-UW	9006952	28-06-90
	JP-A- NL-A- SE-A- JP-A- JP-A- JP-A- JP-A- JP-A- 04-90 DE-U- JP-A- 11-90 AU-A- CA-A- CN-A- JP-A- 11-90 AU-B- AU-A- EP-A- GB-A, B JP-T- 04-90 FR-A- FR-A- AU-B- AU-A-	JP-A- 63146826 NL-A- 8701640 SE-A- 8702907 JP-A- 63146827 JP-A- 63152326 JP-A- 63146828 04-90 JP-A- 2111799 DE-U- 6890599 JP-A- 2275900 11-90 AU-A- 5316290 CA-A- 2014470 CN-A- 1049865 JP-A- 3117484 11-90 AU-B- 630450 AU-A- 5564690 EP-A- 0470165 GB-A,B 2246783 JP-T- 4506598 04-90 FR-A- 2635115 FR-A- 2649991 AU-B- 623425 AU-A- 3933289 JP-A- 2276589

Demande Internationale No

I CLASSE	VENT DE LONGEN	TON (at alustanes are bales to stands at		The state of the s
		TON (si plusieurs symboles de classification s		
Selon is d	assification internation 5 C12N15/6 C12N15/2	aio des brevets (CIB) on à la fois selon la clas 2;	sification nationale et la CIB A61K37/02; //(C12N1/19,C12R1	C07K13/00 /645)
II DOMAI	NES SUD LESOUEL	S LA RECHERCHE A PORTE		
II. DOMEN	NES SUR LESQUES			
		Documentation min	imale consultée	
Système	de classification	Sym	boles de classification	
CIB	5	CO7K ; C12N ;	A61K	
		Documentation consultée autre que la doc où de tels documents font partie des doma	umentation minimale dans la mesure ines sur lesquels la recherche a porté	·
III. DOCU	MENTS CONSIDERE	S COMME PERTINENTS ¹⁰		
Catégorie °	Ide	ntification des documents cités, avec indicati des passages pertinents 13	on, si nécessaire,12	No. des revendications visées 14
Y	21 Janv voir pa	723 781 (CHUGAISEIYAKU K ier 1988 ge 4, ligne 68 – page 5,	-	1,5-6, 8-9
A	revenati	cations; tableaux		19-22
Y				1,5-6, 8-9
	voir pa	ge 2, ligne 28 - ligne 3 ge 3, ligne 1 - ligne 6 ge 3, ligne 54	0	
Y	INC.) 7 Novem voir co	395 918 (VASCULAR LABORA bre 1990 lonne 1, ligne 24 - lign	e 48	1,5-6, 8-9
	voir co	lonne 16, ligne 26 - lig	ne 40	·
			· / · · ·	
"A" doc cor "E" doc tio "L" doc pri aut "O" do un "P" doc postérieures	asideré comme particul rument antérieur, mais nal ou après cette date rument pouvant jeter u orité ou cité pour déter re citation ou pour une cument se référant à u e exposition ou tous au rument publié avant la nent à la date de priori	at général de la technique, non lérement pertinent publié à la date de dépôt interna- n doute sur une revendication de miner la date de publication d'une traison spéciale (telle qu'indiquée) net sur la date de publication d'une traison spéciale (telle qu'indiquée) net es moyens date de dépôt international, mais	"T" document ultérieur publié postérieu international ou à la date de priori à l'état de la technique pertinent, r le principe ou la théorie constituum "X" document particulièrement pertiner quée ne peut être considérée commimpilquant une activité inventive diquée ne peut être considérée con activité inventive lorsque le docum plusieurs autres documents de mén naison étant évidente pour une per "&" document qui fait partie de la mén	té et n'appartemennt pas nais cité pour comprendre et la base de l'invention et; l'invention revendi- e nouvelle ou comme et; l'invention reven- me impliquant une ent est associé à un ou ne nature, cette combi- sonne du métier.
IV. CERTI	FICATION			
Date à laqu		ationale a été effectivement achevée UIN 1993	Date d'expédition du présent rappor 0 2 -07- 19	
Administrat	ion chargée de la reche OFFICE I	erche internationale EUROPEEN DES BREVETS	Signature du fonctionnaire autorisé LE CORNEC N.D.R	

1

	NTS CONSIDERES COMME PERTINENTS 14 (SUITE DES RENSEIGNEMET DEUXIEME FEUILLE)	NTS INDIQUES SUR LA
Catégorie °	ldentification des documents cités, ¹⁶ avec indication, si nécessaire des passages pertinents ¹⁷	No. des revendication visées 18
Y	WO,A,9 013 653 (DELTA BIOTECHNOLOGY LIMITED) 15 Novembre 1990 voir page 9, ligne 18 - ligne 24	1,5-6, 8-9
A	EP,A,O 361 991 (RHONE-POULENC SANTE) 4 Avril 1990 cité dans la demande voir exemples 1-4	10-18
A	EP,A,O 401 384 (KIRIN-AMGEN, INC.) 12 Décembre 1990 voir page 1, ligne 15 - page 3	1,19-22
	•	
·		1
	•	
	·	
	·	

ANNEXE AU RAPPORT DE RECHERCHE INTERNATIONALE RELATIF A LA DEMANDE INTERNATIONALE NO.

FR 9300086 SA 70240

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche internationale visé ci-dessus.

Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

17/06/93

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
DE-A-3723781	21-01-88	AU-B- 611856 AU-A- 7566587 BE-A- 1000253 CH-A- 671157 FR-A- 2601591 GB-A,B 2193631 JP-A- 63146826 NL-A- 8701640 SE-A- 8702907 JP-A- 63146827 JP-A- 63152326 JP-A- 63146828	27-06-91 21-01-88 27-09-88 15-08-89 22-01-88 17-02-88 18-06-88 19-01-88 18-06-88 24-06-88
EP-A-0364980	25-04-90	JP-A- 2111799 DE-U- 6890599 JP-A- 2275900	24-04-90 19-05-93 09-11-90
EP-A-0395918	07÷11 - 90	AU-A- 5316290 CA-A- 2014470 CN-A- 1049865 JP-A- 3117484	18-10-90 13-10-90 13-03-91 20-05-91
WO-A-9013653	15-11-90	AU-B- 630450 AU-A- 5564690 EP-A- 0470165 GB-A,B 2246783 JP-T- 4506598	29-10-92 29-11-90 12-02-92 12-02-92 19-11-92
EP-A-0361991	04-04-90	FR-A- 2635115 FR-A- 2649991 AU-B- 623425 AU-A- 3933289 JP-A- 2276589	09-02-90 25-01-91 14-05-92 08-02-90 13-11-90
EP-A-0401384	12-12-90	CA-A- 2006596 WO-A- 9006952	22-06-90 28-06-90

O FORM POOL

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.