МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по Заданию 1

на тему «Преобразование аналогового сигнала в цифровой сигнал»

Дисциплина: СиСПИ

Группа: 21ПИ1

Выполнил: Борисов Д. Е.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

1 Цель работы: изучение преобразования аналогового сигнала в цифровой сигнал.

2 Задание. Осуществить преобразование аналогового сигнала, приведенного на рисунке 1 в цифровую кодовую последовательность. Определить шумы квантования. Результаты привести на временной диаграмме и в таблице по шаблону таблицы 1. Вид аналогового сигнала, его максимальную амплитуду и частотный диапазон взять из таблицы 2 в соответствии с вариантом.

Рисунок 1 — Вариант задания (сигнал)

3 Выполнение работы.

- 3.1 В соответсвии с рисунком и 29 вариантом задания были определены:
 - $U_{MAX} = 1,5 B$ и U_{MIN} : -1,5 B;
 - в соотвествии с заданием $U_{\text{O\Gamma P}} = U_{\text{MAX}} = 1,5 \text{ B};$
 - в соотвествии с вариантом 29 $f_{\text{MIN}} = 0,3$ к Γ ц и $f_{\text{MAX}} = 3,4$ к Γ ц;
 - в соответсвии с заданием $\Delta_{\text{идоп}} = 0.25 \text{ B};$

Было расчитано минимальное число уровней квантования N_{MIN} по формуле $(U_{MAX}-U_{MIN})/\Delta_{u_{JOI}}$. $N_{MIN}=3$ / 0.25=12

Было определено число уровней N_{KB} из условия $N_{\text{KB}} > N_{\text{MIN}}$. $N_{\text{KB}} = 16$.

Было определено количество разрядов n в коде. $n = log_2 16 = 4$ бит.

Было расчитан шаг квантования по формуле $\,\delta = U_{\text{O\GammaP}}/2^{\text{n}} = 1,5/2^4 = 0,09375\,$ В.

Была рассчитана частота дискретизации в соотвествии с теоремой Котельникова (любой непрерывный сигнал, ограниченный по спектру верхней частотой Fв, полностью определяется последовательностью своих дискретных отсчетов, взятых через промежуток времени $T_{\perp} \leq 1/2F_{\rm B}$) должна удовлетворять условию $F_{\perp} \geq 2F_{\rm B}$). $F_{\perp} = F_{\rm MAX} * 2 = 6.8 \ \mbox{к} \Gamma_{\rm I}$

3.2 При частоте дескритизации 6,8 кГц длина одного отсчета будет равна 1000 мс / 6400 гц = 0,16мс \rightarrow количесвто отсчетов за 1мс будет равно 1мс / 0,16мс \approx 6 отсчетов, для 6мс количество отсчетов равняется 26. Было определено Uвx(t), Uкв(t), Δ KB(t) и N. Результат представлен в таблице 1. Точки Uвx(t) Представлены на рисунке 2.

1,5

-1,5

Рисунок 2 - Uвх(t)

Таблица 1 — Результаты измерений

Отсчет сигнала	UBX(t), B	UKB(t),B	ΔKB(t)	N	Двоичный код
1	0,48	0,56	-0,08	6	0110
2	0,80	0,84	-0,04	9	1001
3	1,02	1,03	-0,01	11	1011
4	1,09	1,13	-0,04	12	1100
5	1,04	1,13	-0,09	12	1100

6	0,90	0,94	-0,04	10	1010
7	0,73	0,75	-0,02	8	1000
8	0,58	0,66	-0,08	7	0111
9	0,52	0,56	-0,05	6	0110
10	0,55	0,56	-0,01	6	0110
11	0,67	0,75	-0,08	8	1000
12	0,83	0,84	-0,01	9	1001
13	1,01	1,03	-0,03	11	1011
14	1,09	1,13	-0,04	12	1100
15	1,05	1,13	-0,07	12	1100
16	0,90	0,94	-0,04	10	1010
17	0,60	0,66	-0,06	7	0111
18	0,21	0,28	-0,07	3	0011
19	0,20	0,28	-0,08	3	0011
20	0,60	0,66	-0,05	7	0111
21	0,89	0,94	-0,05	10	1010
22	1,05	1,13	-0,08	12	1100
23	1,04	1,13	-0,08	12	1100
24	0,93	0,94	-0,01	10	1010
25	0,76	0,84	-0,08	9	1001
26	0,60	0,66	-0,06	7	0111
27	0,60	0,66	-0,06	7	0111
28	0,50	0,56	-0,06	6	0110
29	0,50	0,56	-0,07	6	0110
30	0,58	0,66	-0,08	7	0111
31	0,72	0,75	-0,03	8	1000
32	0,89	0,94	-0,05	10	1010
33	1,03	1,03	0,00	11	1011
34	1,06	1,13	-0,07	12	1100
35	0,94	1,03	-0,09	11	1011
36	0,68	0,75	-0,07	8	1000

3.3 В соответствии с вариантом задания кодовая последовательность была записана с помощью кода 2B1Q. Результат приведен на рисунке 3.

Рисунок 3 — Код 2B1Q

4 Вывод: было изучено преобразование аналогового сигнала в цифровой сигнал.