Deep Learning class 2024/2025

M.Sc. Data Science

Car Damage and Repair Cost Estimation Using Image Segmentation

Alexandre Baptista (nº 64506); Carolina Rodrigues (nº 62910)

Objectives

- Image segmentation task and damage detection from vehicle photos.
- **Aim:** Develop an AI-based application that analyzes vehicle images to:
 - ✓ **Detect and localize vehicle damage** precisely on the vehicle;
 - ✓ Categorize types of damage (e.g., dents, scratches, cracks);
 - ✓ Estimate repair costs based on damage severity.

Problem

- **Problem statement:** Assessing vehicle damage is essential for insurance companies, yet manual inspections are slow, costly, and error-prone.
- An Al-based system, from customer-taken photo, can locate and classify exterior damages and produce a report with cost-range estimates.
- This makes inspection process faster, more reliable and cost-effective, cutting the on-site physical inspections expenses.
- Common approaches and drawbacks: Some early digital solutions are being developed [1, 2] but remain largely unused by insurers. These tools often miss uncommon damage patterns and rarely provide reliable cost estimates.

Dataset

- Source: "Car Damage Detection (CarDD)" dataset from Roboflow [3];
- Format: YOLOv8 (data.yaml + .txt file per image (polygons and class IDs) → multiple labels
- **Split**: 70/20/10 → *Train* = 1 395, *Valid* = 401, *Test* = 204 images and labels;

- Sanity Checks:
 - ✓ No leakage (SHA-1 & pHash);
 - ✓ No corrupted images (PIL verify);
 - × Moderate class imbalance.

Classes (11): car-part-crack, detachment, flat-tire, glass-

Results

Experiment 1: Baseline model and Hyper-parameter Search

- YOLOv8 variants: **n, s** (small, for mobile/edge), **m** (balanced), and **l, x** (large, hight capacity);
- Baseline model → YOLOv8m: Balance between speed and accuracy;
- Hyper-parameter sweep \rightarrow (lr \in {0.005, 0.01, 0.05}, Adam vs RAdam).

Model	Learning rate:	Optimizer:	time(s):	precision(B)	recall(B)	F1(B)	mAP50(B)	precision(M)	recall(M)	F1(M)	mAP50(M)
YOLOv8m- seg	0.01	* not specified	584,54	0,415	0,412	0,413	0,391	0,426	0,396	0,411	0,384
	0.01	Adam	565,15	0,462	0,345	0,395	0,323	0,470	0,332	0,389	0,304
	0.05	Adam	541,25	0,554	0,253	0,347	0,223	0,562	0,244	0,340	0,211
	0.005	Adam	525,50	0,342	0,374	0,357	0,348	0,338	0,364	0,350	0,340
	0.01	SGD	519,65	0,425	0,461	0,442	0,412	0,423	0,451	0,437	0,403
	0.01	Radam	508,08	0,510	0,376	0,433	0,380	0,511	0,369	0,428	0,363

Highlighted in **blue** → baseline model; in **green** → best model parameters (underlined and in bold, are the first- and second-best performing metrics, respectively; (B) = bounding box detection, (M) = segmentation masks)

Methodology

The methodology integrates YOLOv8 segmentation models. The experiments:

- 1. Baseline + Hyper-parameter search: Tune learning rate and optimizer for YOLOv8m baseline.
- 2. Augmentation test: Baseline Vs. Albumentations enabled.
- 3. Model-size comparison: Best YOLOv8m against YOLOv8s and YOLOv8l, each trained for 10, 25 and 50 epochs.

Conclusions

Although we expected the larger models (YOLOv8I) to outperform the smaller ones, results were that: only after 50 epochs it improved mAP only marginally over the medium model (YOLOv8m) yet required far more training time and GPU memory.

Future Work: Extend the model for precise costestimation → using mask size to predict damage-specific repair-cost estimates based on the size, location and severity of the affected area.

Experiment 2: Baseline model and Hyper-parameter Search

Sanity checks revealed moderate class imbalance, we tested YOLOv8's built-in **Albumentations** & oair i dal Nyoi 7 and compared results to the non-augmented baseline.

Yolov8m baseline	precision(B)	recall(B)	F1(B)	mAP50(B)	precision(M)	recall(M)	F1(M)	mAP50(M)
10ep - No augmentation	0,51017	0,37605	0,4330	0,38042	0,51122	0,36858	0,4283	0,36333
10ep - With augmentation	0,47033	0,39487	0,4293	0,38585	0,46334	0,38714	0,4218	0,37576
25ep -No Augmentation	0,51905	0,42047	0,4646	0,40831	0,52865	0,40696	0,4599	0,40015
25ep -With Augmentation	0,57255	0,39713	0,4690	0,40846	0,58204	0,39231	0,4687	0,40623
50ep -With Augmentation	0,57475	0,39379	0,4674	0,41227	0,55029	0,38597	0,4537	0,39725

and mAP but decreased recall. In 50 epochs, improved in precision and mAP for object detection (B) but decreased for the masks (M).

ToGray(p=0.01, method='weighted_average', num_output_channels=3; CLAHE(p=0.01, clip_limit=(1.0, 4.0), tile_grid_size=(8, 8))

Experiment 3: Best YOLOv8m Vs. YOLO (s and l) versions

Model chosen for prediction yolov8l with 50 epochs

Among all models tested, YOLOv8-I trained epochs delivered the most consistent and best overall performance. Therefore, the one used for the predictions.

Refferences

[1] Celebal Technologies, "Leading Insurance Provider Leverages AI-Powered Vehicle Damage Detection," Case Study. [Online]. Available: https://celebaltech.com/case-

studies/leading-insurance-provider-leverages-ai-powered-vehicle-damage-detection [2] Solera. "Guided Image Capture – Product Overview." Vehicle Claims & Collision, https://www.claims.solera.com/products/guided-image-capture/

[3] Roboflow dataset, "Car Damage Severity Detection – CarDD" [Online]. Available: https://universe.roboflow.com/car-damage-detection-cardd/car-damage-severity-

[4] YOLOv8.org. "How to Fine-Tune YOLOv8." [Online]. Available: https://yolov8.org/how-to-use-fine-tune-yolov8/ [5] Ultralytics, "YOLOv8 Models — Documentation." [Online]. Available: https://docs.ultralytics.com/models/volov8

