CS1632, LECTURE 20: Security Testing

Bill Laboon

Writing Secure Software Is Difficult; So Is Testing It!

- Heartbleed: ~ 66% of servers connected to the Internet vulnerable; allowed for basically untraceable eavesdropping on data in memory
- Shellshock: A defect in bash (default shell for OS X and most Linux distributions) which allowed arbitrary code execution. Discovered in 2014; vulnerability was introduced in 1989.
- June 2016: Sixteen vulnerabilities found in Windows 7 font display subsystem!

Why Is It Difficult?

- 1. Adversaries are actively seeking to defeat security
- 2. Information about security vulnerabilities modifies behavior of adversaries
- 3. You need to protect all doors; they only need to find one they can open
- 4. Even minor vulnerabilities can have truly catastrophic consequences

Pittsburgh - A Great City To Learn About Security!

- Actually!
- Many security researchers here at Pitt and CMU
 - LERSAIS in the iSchool Laboratory for Education & Research on Security-Assured Information System
 - CyLab at CMU
 - Professors Lee, Farnan, Garrison here in the CS department
- Software Engineering Institute
- CERT
- Many security engineering positions (esp. at banks)

History

- Security was not a big deal in the early computing world
- Usually required physical access to a system to do anything
- Few people had necessary skills even if they did ("security through obscurity")

But there were networked systems in the 60s and 70s...

Phone Phreaking

The 80s: Security Goes Mainstream

People Were Concerned This Would Happen

Breaking Into Computers Went Mainstream

1988 - The Year It All Changed

Sadly, skills used less and less often for curiosity... exploiting vulnerabilities is Big Business

The InfoSec (CIA) Triad

- A secure system needs to provide three qualities:
 - Confidentiality
 - Integrity
 - Availability

Confidentiality

No unauthorized users may read data.

Integrity

No unauthorized users may write data.

Availability

System is available for authorized parties to read from and write to.

Terminology: Kinds of Security Attacks

- 1. Interruption (attack on availability, e.g. pulling plug from network switch, DDoS)
- 2. Interception (attack on confidentiality; e.g. eavesdropping, keylogger)
- 3. Modification (attack on integrity; modifying or deleting data)
- 4. Fabrication (attack on integrity; making up or inserting data)

Terminology: Passive vs Active Attacks

- Passive: Do not modify system in any way
 - Eavesdropping
 - Monitoring
 - Traffic Analysis
- Active: Modify the system in some way
 - Log in as a different user
 - Fill up database with garbage data
 - Modify bank account information

Terminology: Vulnerability vs Exploit

- Vulnerability: identified weakness of a system
- Exploit: (aka "sploit") Technique or mechanism used to compromise a system using a vulnerability

Terminology: Kinds of Malicious Code

- Malware General term for malicious code (includes all kinds below)
- Bacteria program that consumes system resources (e.g. fork bomb)
- Logic bomb code within a program which executes an unauthorized function
- Trapdoor secret undocumented access to a system or app
- Trojan horse program that pretends to be another program
- Virus replicates itself WITH human intervention
- Worm replicates itself WITHOUT human intervention
- Zombie A computer or program being run by an unauthorized controller
- Bot network collection of zombies controlled by master
- Spyware surreptitiously monitors your actions
- Adware Shows you more ads
- DOS (Denial of service) attacks (e.g. via LOIC)

Protections

- Firewalls
- Operating System Permissions
- CDNs
- Well-written code
- Proper security measures
- Cryptography
- User training

Common Attacks

- Injection Attacks
- Broken Authentication
- Cross-Site Scripting (XSS)
- Insecure Object References
- Security Misconfiguration
- Insecure Storage
- Buffer overruns
- Social Engineering

Injection Attacks

HI, THIS IS
YOUR SON'S SCHOOL.
WE'RE HAVING SOME
COMPUTER TROUBLE.

OH, DEAR - DID HE BREAK SOMETHING?

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;--?

WELL, WE'VE LOST THIS YEAR'S STUDENT RECORDS. I HOPE YOU'RE HAPPY.

AND I HOPE.
YOU'VE LEARNED
TO SANITIZE YOUR
DATABASE INPUTS.

Broken Authentication

- One user pretends to be another
- How?
 - Guess or crack passwords
 - "Password reset"
 - Unencrypted session IDs
- Apple iCloud leak was suspected of being this
- Sarah Palin email hack was definitely this
 - · All he needed to know, he learned from Wikipedia
 - Answered security questions, reset password

Cross-Site Scripting

- Get a third party to execute code on their system
- Similar to an injection attack, but with an intermediary

Insecure Object References

- Someone can access something by knowing where it is, despite not having proper security credentials
 - http://bank.com/?account=9844
 - http://bank.com/?account=9845

Security Misconfiguration

- You have proper security, it's just not set up correctly!
- Default passwords
- IPS, packet filtering, etc. not running
- Insecure machine on secure network

Insecure Storage

- Secure data is stored in an unsafe way
- Example: credit card numbers being stored in a /tmp or logging directory as part of logging all transactions

Buffer Overrun

- Trying to read or write more data than a buffer supposedly has access to - reading or writing past the end of a buffer
- This is what heartbleed was see heartbleed.c in sample_code directory

Social Engineering

