ENTIERS, SOMMES, RÉCURRENCES

I. Généralités sur les entiers

1. Vocabulaire

Définition 4.1

• On note N l'ensemble des entiers naturels, c'est à dire les entiers positifs ou nuls.

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

• On note \mathbb{Z} l'ensemble des entiers relatifs, c'est à dire les entiers positifs et négatifs

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

Tout entier naturel est aussi un entier relatif, on a donc $\mathbb{N} \subset \mathbb{Z}$.

Propriété 4.1

Le produit ou la somme de deux entiers naturels est un entier naturel. Le produit, la somme ou la différence de deux entiers relatifs est un entier relatif

Propriété 4.2 (Axiomes de Peano, admis)

- 1. 0 est un entier naturel. ($\mathbb{N} \neq \emptyset$)
- 2. Tout entier naturel n a un unique successeur, noté S(n) ($\exists S : \mathbb{N} \to \mathbb{N}$)
- 3. Aucun entier naturel n'a 0 pour successeur. $(\forall n \in \mathbb{N}, S(n) \neq 0)$
- 4. Deux entiers naturels ayant même successeur sont égaux. (*S* est injective)
- 5. Si un ensemble d'entiers naturels contient 0 et contient le successeur de chacun de ses éléments, alors cet ensemble est égal à \mathbb{N} :

$$[(E \subset \mathbb{N}) \land (0 \in E) \land (\forall n \in E, s(n) \in E)] \Longrightarrow E = \mathbb{N}$$

Le 5^{ème} axiome de Peano est une formulation du principe de récurrence.

Définition 4.2 -

Un nombre entier $n \in \mathbb{Z}$ est...

- ...pair s'il existe $k \in \mathbb{Z}$, n = 2k
- ...impair s'il existe $k \in \mathbb{Z}$, n = 2k + 1
- ...divisible par $m \in \mathbb{Z}$ s'il existe $k \in \mathbb{Z}$, n = km
- ...multiple de $m \in \mathbb{Z}$ s'il est divisible par m
- ...premier si |n| est divisible par seulement 2 entiers naturels : 1 et |n|.

2. Familles

La notion de famille généralise la notion de suite.

Définition 4.3

Si un ensemble I peut être mis en bijection avec \mathbb{N} , on dit qu'il est **dénombrable**. Certains ensembles infinis sont **indénombrables** comme l'ensemble des nombres réels.

Exemple 4.1

 \mathbb{N}^* est dénombrable car l'application $\mathbb{N}^* \mapsto \mathbb{N}$, $x \mapsto x - 1$ est une bijection.

 \mathbb{Z} est dénombrable car l'application $n \mapsto \begin{cases} \frac{n}{2} & \text{si } n \text{ est pair} \\ -\frac{n+1}{2} & \text{si } n \text{ est impair} \end{cases}$ est une bijection de \mathbb{N} vers \mathbb{Z} (exercice). \mathbb{Q} est aussi dénombrable (plus difficile), mais \mathbb{R} est indénombrable.

Définition 4.4

Une **famille** d'éléments de E indexée par un ensemble I est une application de I vers E qui à un élément $i \in I$ associe un élément $x_i \in E$, on note alors cette famille $(x_i)_{i \in I}$. On dit que la famille est **finie** (respectivement **dénombrable**) si I est fini (respectivement dénombrable).

En pratique en BL on aura toujours $I \subset \mathbb{N}$ ou $I \subset \mathbb{Z}$, donc I fini ou dénombrable.

Exemples 4.2

- Un n-uplet $(x_1, x_2, ..., x_n)$ d'éléments d'un ensemble E est une famille d'éléments de E indexée par $\{1, ..., n\}$.
- Une suite numérique est une famille d'éléments de $\mathbb R$ indexée par $\mathbb N$

II. Symboles somme Σ et produit \prod

1. Intervalle d'entier

Soient a et b deux entiers avec $a \le b$. On note [a, b] l'ensemble des entiers compris entre a et b

Exemple 4.3

$$[\![3;10]\!] = \{3;4;5;6;7;8;9;10\} \text{ et } [\![0;1]\!] = \{0;1\}$$

2. Somme

Définition 4.5

Soient a et b deux entiers avec $a \le b$. Soit $I = [\![a,b]\!]$ et soit $(u_a,u_{a+1},u_{a+2},\ldots,u_b) = (u_i)_{i \in I}$ une famille de réels. La notation $\sum_{i=a}^b u_i$ signifie $u_a + u_{a+1} + u_{a+2} + \cdots + u_b$. On note aussi

$$\sum_{i=a}^{b} u_i = \sum_{i \in I} u_i = u_a + u_{a+1} + \dots + u_b$$

et la notation $\sum_{i \in I}$ se généralise si I est un ensemble fini d'entiers quelconque.

Par convention, si $I=\varnothing$ on pose $\sum_{i\in I}u_i=0$. Ainsi, on aura toujours $\sum_{i=a}^bu_i=0$ si b< a.

Dans l'expression $\sum_{i=a}^b u_i$, i s'appelle l'**indice de sommation**. C'est une variable muette, c'est à dire que l'on peut changer son nom sans changer le sens de l'expression : $\sum_{i=a}^b u_i = \sum_{k=a}^b u_k = \sum_{\emptyset=a}^b u_{\emptyset}$

Exemple 4.4

•
$$\sum_{k=1}^{5} k = \sum_{j=1}^{5} j = 1 + 2 + 3 + 4 + 5 = 15$$

•
$$\sum_{i=0}^{3} i^2 = 0^2 + 1^2 + 2^2 + 3^2 = 14$$

On peut préciser d'autres façons l'ensemble auquel appartient l'indice de sommation, comme dans l'exemple suivant.

Exemple 4.5

$$\sum_{\substack{1 \le k \le 100 \\ k \text{ set train}}} = 2 + 4 + 6 + \dots + 100 = \sum_{i=0}^{50} 2i = 2 \times \frac{50 \times 51}{2} = 2550$$

On peut d'ores et déjà retenir les formules suivantes dont la démonstration est rappelée plus loin

Proposition 4.3

Pour tout entier $n \ge 1$:

$$\boxed{\sum_{k=1}^{n} k = \frac{n(n+1)}{2}} \quad \text{et} \quad \boxed{\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}}$$

Pour tout réel $q \neq 1$ et tout entiers naturels n et p avec $p \leq n$:

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q} = \frac{q^{n+1} - 1}{q - 1} \quad \text{et} \quad \sum_{k=p}^{n} q^k = \frac{q^{n+1} - q^p}{q - 1}$$

3. Produit

Définition 4.6 -

La notation \prod s'utilise exactement comme la notation \sum , ainsi si I = [a,b] avec $a,b \in \mathbb{Z}$ et $a \leq b$, et si $(u_a,u_{a+1},u_{a+2},\ldots,u_b)=(u_i)_{i\in I}$ une famille de réels on note :

$$\prod_{i=a}^{b} u_i = \prod_{i \in I} u_i = u_a \times u_{a+1} \times \cdots \times u_b$$

et la notation $\prod_{i \in I}$ se généralise si I est un ensemble fini d'entiers quelconque.

Par convention, si $I = \emptyset$ on pose $\prod_{i \in I} u_i = 1$. Ainsi, on aura toujours $\prod_{i=a}^b u_i = 1$ si b < a.

Exemple 4.6

- $\prod_{k=3}^{6} (7-k) = (7-3) \times (7-4) \times (7-5) \times (7-6) = 4 \times 3 \times 2 \times 1 = 24$
- Par définition, $n! = 1 \times 2 \times 3 \times \cdots \times n$. On peut donc écrire

$$n! = \prod_{k=1}^{n} k = \prod_{1 \le k \le n} k$$

Remarque

Les propriétés de l'exponentielle et du logarithme peuvent permettre d'exprimer une somme comme un produit et inversement (sous réserve d'existence) :

$$\exp\left(\sum_{k=a}^{b} u_k\right) = \prod_{k=a}^{b} \exp(u_k)$$
 et $\ln\left(\prod_{k=a}^{b} u_k\right) = \sum_{k=a}^{b} \ln(u_k)$

4. Quelques propriétés

Dans toute cette partie, a, b, c désignent des entiers relatifs et (u_k) et (v_k) désignent des familles de réels.

Propriété 4.4 (Relation de Chasles)

$$\sum_{k=a}^{c} u_k = \sum_{k=a}^{b} u_k + \sum_{k=b+1}^{c} u_k$$

$$\prod_{k=a}^{c} u_k = \prod_{k=a}^{b} u_k \times \prod_{k=b+1}^{c} u_k$$

Exemple 4.7

Calculer $\sum_{k=1}^{n} (2k+3)^2$

$$\sum_{k=1}^{n} (2k+3)^2 = \sum_{k=1}^{n} 4k^2 + 12k + 9$$

$$= 4 \sum_{k=1}^{n} k^2 + 12 \sum_{k=1}^{n} k + 9 \sum_{k=1}^{n} 1$$

$$= 4 \times \frac{n(n+1)(2n+1)}{6} + 12 \times \frac{n(n+1)}{2} + 9n$$

$$= \frac{4n(n+1)(2n+1) + 36n(n+1) + 54n}{6}$$

$$= \frac{8n^3 + 48n^2 + 94n}{6}$$

Propriété 4.5 (Linéarité de la somme) -

$$\sum_{k=a}^{b} (\lambda u_k + \mu v_k) = \lambda \sum_{k=a}^{b} u_k + \mu \sum_{k=a}^{b} v_k$$

Propriété 4.6 (Changement d'indice)

En posant le changement de variable j = k + c, on a

$$\sum_{k=a}^{b} u_k = \sum_{j=a+c}^{b+c} u_{j-c} \quad \text{et} \quad \prod_{k=a}^{b} u_k = \prod_{j=a+c}^{b+c} u_{j-c}$$

Exemple 4.8

La somme $\sum_{k=185}^{300} 2^{k-185}$ s'écrit de façon développée :

$$\sum_{k=185}^{300} 2^{k-185} = 2^0 + 2^1 + 2^2 + 2^3 + \dots + 2^{115}$$

Il y a donc une façon plus simple de l'écrire : il suffit de faire le changement d'indice i=k-185 pour pouvoir écrire

$$\sum_{k=185}^{300} 2^{k-185} = \sum_{i=0}^{115} 2^i = \frac{2^{116} - 1}{2 - 1} = 2^{116} - 1$$

Remarque

Pour vérifier que l'on ne s'est pas trompé dans un changement d'indice, penser à toujours vérifier le premier et le dernier terme de la somme.

\rightarrow Exercice de cours nº 1.

Si a < b l'indice de sommation va de a vers b, mais il peut arriver de vouloir écrire la somme (ou le produit) dans l'autre sens.

Propriété 4.7 (Changement de sens)

$$\sum_{k=a}^{b} u_k = \sum_{j=a}^{b} u_{b+a-j} \quad \text{et} \quad \prod_{k=a}^{b} u_k = \prod_{j=a}^{b} u_{b+a-j}$$

Remarque

En pratique, on écrit le changement de variable j = a + b - k sans retenir l'égalité ci-dessus et on vérifie bien les bornes.

- → Exercice de cours nº 2.
- → Exercice de cours nº 3.
- → Exercice de cours nº 4.

Proposition 4.8 (Sommes téléscopiques) —

$$\sum_{k=a}^{b}(u_{k+1}-u_k)=u_{b+1}-u_a$$

→ Exercice de cours nº 5.

5. Somme double

Propriété 4.9 (Somme sur un rectangle)

Soit $I=[\![a,b]\!]$ et $J=[\![c,d]\!]$ deux parties finies de $\mathbb N$ et soit $(u_{i,j})_{(i,j)\in I\times J}$ une famille de réels. Alors

$$\sum_{i=a}^{b} \left(\sum_{j=c}^{d} u_{i,j} \right) = \sum_{i=a}^{b} S_i = \sum_{j=c}^{d} T_j = \sum_{j=c}^{d} \left(\sum_{i=a}^{b} u_{i,j} \right)$$

avec $S_i = \sum_{j=c}^d u_{i,j}$ et $T_j = \sum_{i=a}^b u_{i,j}$ On note aussi cette somme

$$\sum_{i=a}^{b} \sum_{j=c}^{d} u_{i,j} = \sum_{(i,j) \in I \times J} u_{i,j} = \sum_{i \in I} \sum_{j \in J} u_{i,j}$$

Exemple 4.9

$$\sum_{i=1}^{5} \sum_{j=1}^{10} i \, j = \sum_{i=1}^{5} \left(i \times \sum_{j=1}^{10} j \right) = \sum_{i=1}^{5} i \frac{10 \times 11}{2} = 55 \times \sum_{i=1}^{5} i = 55 \times \frac{5 \times 6}{2} = 825$$

→ Exercice de cours nº 6.

Dans la somme double $\sum_{i=a}^{b} \sum_{j=c}^{d}$, on peut considérer que (i,j) parcours toutes les coordonnées entières dans le rectangle $[a,b] \times [c,d]$ du plan. Il peut arriver que les indices d'une somme double parcourent un triangle au lieu d'un rectangle :

Propriété 4.10 (Somme sur un triangle)

Soit n un entier strictement positif et $(u_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ une famille de réels.

Alors

$$\sum_{i=1}^{n} \sum_{j=1}^{i} u_{i,j} = \sum_{i=1}^{n} S_i = \sum_{j=i}^{n} T_j = \sum_{j=1}^{n} \sum_{i=j}^{n} u_{i,j}$$

avec $S_i = \sum_{j=1}^i u_{i,j}$ et $T_j = \sum_{i=j}^n u_{i,j}$

→ Exercice de cours nº 7.

Propriété 4.11

Si $(a_i)_{i \in I}$ et $(b_j)_{j \in J}$ sont deux familles finies de réels, alors

$$\left(\sum_{i \in I} a_i\right) \times \left(\sum_{j \in J} b_j\right) = \sum_{i \in I} \sum_{j \in J} a_i b_j$$

→ Exercice de cours nº 8.

Remarque

Attention, on peut être tenté d'écrire par exemple $\sum_{k=1}^{n} k2^k = \sum_{k=1}^{n} k\sum_{k=1}^{n} 2^k$ mais cette égalité est fausse.

En général on a $(\sum_{i=a}^b a_i) \times (\sum_{i=a}^b b_i) \neq \sum_{i=a}^b a_i b_i$

Un produit de sommes n'est pas égal à la somme des produits (sinon on aurait $(a+b)^2 = a^2 + b^2$...)

La propriété précédente n'est vraie que si la somme porte sur 2 indices **distincts** et que le terme général a_ib_j est un produit d'un terme a_i **qui ne dépend que de** i et d'un terme b_j **qui ne dépend que de** j.

III. Principe de récurrence

1. Énoncé

Proposition 4.12 (Principe de récurrence) —

On considère une propriété $\mathcal{P}(n)$ qui dépend d'un entier n. Supposons que les deux conditions suivantes sont remplies :

- Il existe un entier n_0 tel que $\mathcal{P}(n_0)$ est vraie
- Pour tout $n \ge n_0$, on a $\mathcal{P}(n) \Rightarrow \mathcal{P}(n+1)$.

Alors $\mathcal{P}(n)$ est vraie quel que soit $n \ge n_0$.

Remarque

Le principe de récurrence fonctionne comme un jeu de dominos : si chaque domino fait tomber le suivant, et que le domino n_0 tombe, alors tous les dominos après le domino n_0 tomberont.

Le raisonnement par récurrence se rédige donc en trois étapes :

- Initialisation : On démontre que $\mathcal{P}(n_0)$ est vraie.
- **Hérédité** : On suppose que $\mathcal{P}(n)$ est vraie pour un entier $n \ge n_0$ quelconque et on montre que cela implique que $\mathcal{P}(n+1)$ est vraie.

On peut écrire

- «Supposons que $\mathcal{P}(n)$ soit vraie pour un certain rang $n \in \mathbb{N}$...»
- «Supposons qu'il existe $n \in \mathbb{N}$ tel que $\mathcal{P}(n)$ soit vrai...»
- etc.
- Conclusion : Par principe de récurrence, on en conclut que $\mathcal{P}(n)$ est vraie pour tout $n \geq n_0$.

Remarque

En général l'initialisation se fait pour $n_0 = 0$ ou $n_0 = 1$ mais cela peut être un autre entier, on choisit en fonction du contexte.

- → Exercice de cours nº 9.
- → Exercice de cours nº 10.
- → Exercice de cours nº 11.

Exemple 4.10

Cet exemple illustre pourquoi il faut impérativement vérifier l'initialisation!

Notons $\mathcal{P}(n)$: « $7^n + 3$ est un multiple de 6 »

Cette propriété est héréditaire : supposons que $\mathcal{P}(n)$ est vraie pour un certain entier n, alors il existe $k \in \mathbb{N}$ tel que $7^n + 3 = 6k$ donc $7^{n+1} + 21 = 42k$ et finalement $7^{n+1} + 3 = 42k - 18 = 6(7k - 3)$. Ainsi, $7^{n+1} + 3$ est un multiple de 6 donc $\mathcal{P}(n + 1)$ est vraie.

Pour tout $n \in \mathbb{N}$, $\mathcal{P}(n) \Rightarrow \mathcal{P}(n+1)$, mais pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est faux!

- → Exercice de cours nº 12.
- → Exercice de cours nº 13.

2. Récurrence double, récurrence forte

Deux variantes du principe de récurrence dont l'hérédité ne repose pas seulement sur le rang précédent mais sur les **deux** rangs précédents (récurrence double), ou bien sur **l'ensemble de tous les rangs précédents** (récurrence forte)

Proposition 4.13 (Principe de récurrence double)

On considère une propriété $\mathcal{P}(n)$ qui dépend d'un entier n. Supposons que les deux conditions suivantes sont remplies :

- Il existe un entier n_0 tel que $\mathcal{P}(n_0)$ et $\mathcal{P}(n_0+1)$ sont vraies.
- Pour tout $n \ge n_0$, on a $(\mathcal{P}(n) \land \mathcal{P}(n+1)) \Rightarrow \mathcal{P}(n+2)$.

Alors $\mathcal{P}(n)$ est vraie quel que soit $n \ge n_0$.

Le raisonnement par récurrence double se rédige en trois étapes :

- **Initialisation** : On démontre que $\mathcal{P}(n_0)$ et $\mathcal{P}(n_0+1)$ sont vraies.
- **Hérédité** : On suppose que $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vraies pour un entier $n \ge n_0$ quelconque et on montre que cela implique que $\mathcal{P}(n+2)$ est vraie.
- Conclusion: Par principe de récurrence double, on en conclut que $\mathcal{P}(n)$ est vraie pour tout $n \geq n_0$.
- → Exercice de cours nº 14.
- → Exercice de cours nº 15.

Proposition 4.14 (Principe de récurrence forte) –

On considère une propriété $\mathcal{P}(n)$ qui dépend d'un entier n. Supposons que les deux conditions suivantes sont remplies :

- Il existe un entier n_0 tel que $\mathcal{P}(n_0)$ est vraie
- Pour tout $n \ge n_0$, on a $(\forall k, n_0 \le k \le n, \mathcal{P}(k)) \Rightarrow \mathcal{P}(n+1)$.

Alors $\mathcal{P}(n)$ est vraie quel que soit $n \geq n_0$.

Le raisonnement par récurrence forte se rédige en trois étapes :

- **Initialisation** : On démontre que $\mathcal{P}(n_0)$ est vraie.
- **Hérédité** : On suppose que $\mathcal{P}(n_0)$, $\mathcal{P}(n_0+1)$,..., $\mathcal{P}(n)$ sont vraies pour un entier $n \ge n_0$ quelconque et on montre que cela implique que $\mathcal{P}(n+1)$ est vraie.
- Conclusion: Par principe de récurrence forte, on en conclut que $\mathcal{P}(n)$ est vraie pour tout $n \ge n_0$.

Application de la récurrence forte : un théorème sur les nombres premiers

Théorème 4.15

Tout entier $n \ge 2$ admet un diviseur premier.

→ Exercice de cours nº 16.

Remarque

Dans l'exercice précédent la propriété n'est pas vraie pour le rang n=0, on initialise donc à n=1.

IV. Formule du binôme de Newton

1. Propriétés des coefficients binomiaux

On rappelle que pour tout $n \in \mathbb{N}$ et tout $k \in [0, n]$, $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Propriété 4.16

Soit $n \in \mathbb{N}$ et $k \in [0, n]$. Alors

$$\binom{n}{k} = \binom{n}{n-k}$$

Lemme 4.17 (Formule de Pascal)

Soit $n \in \mathbb{N}$. On a, pour tout $k \in [0, n]$,

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

Une conséquence de ce Lemme est que l'on peut retrouver la valeur des coefficients binomiaux à l'aide du triangle de Pascal et de la relation :

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}, \forall n \in \mathbb{N}, \forall k \in \mathbb{N}, 0 \leq k \leq n$$

Le triangle de Pascal

2. Formule du binôme

Proposition 4.18

Binôme de Newton

Soit $(x, y) \in \mathbb{R}^2$ un couple de réels, alors pour tout $n \in \mathbb{N}$ on a

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

où $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ est le nombre de combinaisons de k éléments parmi n, qui s'appelle **coefficient binomial** dans ce contexte

Remarque

Cette formule fournit une preuve plus simple de la proposition 3 du chapitre 3 :

$$2^{n} = (1+1)^{n}$$

$$= \sum_{k=0}^{n} {n \choose k} 1^{k} 1^{n-k}$$

$$= \sum_{k=0}^{n} {n \choose k}$$

Remarque

En utilisant l'égalité $\binom{n}{k} = \binom{n}{n-k}$ et le changement de variable k' = n-k on remarque que

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Plus simplement, cette égalité est une conséquence du fait que $(x + y)^n = (y + x)^n$.

- → Exercice de cours nº 17.
- → Exercice de cours nº 18.

On retiendra aussi la formule de factorisation suivante

Proposition 4.19

Soit $(x, y) \in \mathbb{R}^2$ et $n \in \mathbb{N}^*$, alors

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{k} y^{n-k-1} = (x - y)(y^{n-1} + xy^{n-2} + x^{2} y^{n-3} + \dots + x^{n-2} y + x^{n-1})$$

Remarque

Le cas n=2 est l'identité remarquable $x^2-y^2=(x-y)(x+y)$ et le cas y=1 donne la formule bien connue $\sum_{k=0}^{n-1} x^k = \frac{x^n-1}{x-1}$

→ Exercice de cours nº 19.

Exercices de cours

Exercice 1

 $\text{Calculer } \sum_{k=2}^{n} \ln \left(1 - \frac{1}{k^2} \right)$

Exercice 2 -

Calculer $\sum_{k=5}^{20} 2^{20-k}$.

Exercice 3 -

Calculer $\sum_{k=-10}^{20} |k-5|$.

Exercice 4

Soit $n \ge 2$, calculer la somme $\sum_{k=1}^{n-1} \ln \left(\frac{k}{n-k} \right)$

Exercice 5 -

Déterminer deux réels α et β tels que pour tout $n \in \mathbb{N}$, $\frac{1}{n(n+1)} = \frac{\alpha}{n} + \frac{\beta}{n+1}$ et en déduire la valeur de la somme $\sum_{k=1}^{n} \frac{1}{k(k+1)}$

Exercice 6

Calculer $\sum_{\substack{1\leq i\leq 4\\1\leq j\leq 3}} \max(i,j)$ où $\max(i,j)$ désigne la valeur maximale entre i et j.

Exercice 7 -

Calculer $\sum_{i=1}^{n} \sum_{j=i}^{n} \frac{i}{j}$

Exercice 8

Calculer $\sum_{0 \le i, j \le 10} 2^{i+j}$

Exercice 9

On considère la suite u définie par $u_0 = 1$ et $u_{n+1} = u_n + 2n + 1$

- 1. Montrer par récurrence que pour tout $n \in \mathbb{N}$ on a $u_n \ge n^2$
- 2. En déduire la limite de la suite (u_n)

Exercice 10

Soit (u_n) la suite définie par $u_0 = 50$ et $u_{n+1} = 0,8u_n + 20$.

- 1. Montrer par récurrence que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 100$
- 2. En déduire les variations de la suite u_n
- 3. En déduire que (u_n) converge vers une limite finie ℓ .

	Exercice 11
Montrer par récurrence que pour tout $n \in \mathbb{N}$, $4^n + 2$	est un multiple de 3.
	Exercice 12
Montrer par récurrence que pour tout $n \in \mathbb{N}^*$, on a $1+2+\cdots+n=\frac{n(n+1)}{2}$	
	Exercice 13
Montrer par récurrence que pour tout réel $q \neq 1$ et	tout entier $n \ge 0$, on a $1 + q + q^2 + \dots + q^n = \frac{q^{n+1} - 1}{q - 1}$
	Exercice 14
Soit (u_n) la suite définie par	
$u_0 = 2, u_1 = 1$ Montrer que pour tout $n \in \mathbb{N}$ on a $u_n = 5^n + 7^n$	$2, u_{n+2} = 12u_{n+1} - 35u_n$
	Exercice 15
La suite de Fibonacci (F_n) est une suite récurrente	d'ordre 2 définie par
$F_0=0, F_1=1$ Montrer que pour tout $n\in\mathbb{N}, F_n<\left(\frac{5}{3}\right)^n$	$\forall n \ge 0, F_{n+2} = F_{n+1} + F_n$
	Exercice 16
On considère la suite définie par $u_0 = 1$ et $u_{n+1} = \sum$	$\sum_{k=0}^{n} u_k$. Montrer que pour tout $n \ge 1$, $u_n = 2^{n-1}$.
	Exercice 17
Soit $x \in \mathbb{R}$. Calculer $\sum_{k=0}^{n} \binom{n}{k} e^{kx}$	
	Exercice 18
Montrer que pour tout entier $n \in \mathbb{N}$, $(1 + \sqrt{2})^n + (1 - \sqrt{2})^n$	$-\sqrt{2}$) ⁿ est un entier.

------ Exercice 19 -

Soient $n, m \in \mathbb{N}$. Justifier que $2025^n - 2025^m$ est divisible par 2024.

