Homework 4: Geodesic Flow

This set of problems is adapted from [53].

Let (X,g) be a riemannian manifold. The arc-length of a smooth curve $\gamma:[a,b]\to X$ is

$$\text{arc-length of } \gamma \ := \ \int_a^b \left| \frac{d\gamma}{dt} \right| \, dt \ , \quad \text{ where } \quad \left| \frac{d\gamma}{dt} \right| \ := \ \sqrt{g_{\gamma(t)} \left(\frac{d\gamma}{dt}, \frac{d\gamma}{dt} \right)} \ .$$

- 1. Show that the arc-length of γ is independent of the parametrization of γ , i.e., show that, if we reparametrize γ by $\tau:[a',b']\to [a,b]$, the new curve $\gamma'=\gamma\circ\tau:[a',b']\to X$ has the same arc-length. A curve γ is called a curve of constant velocity when $\left|\frac{d\gamma}{dt}\right|$ is independent of t. Show that, given any curve $\gamma:[a,b]\to X$ (with $\frac{d\gamma}{dt}$ never vanishing), there is a reparametrization $\tau:[a,b]\to [a,b]$ such that $\gamma\circ\tau:[a,b]\to X$ is of constant velocity.
- 2. Given a smooth curve $\gamma:[a,b]\to X$, the action of γ is $\mathcal{A}(\gamma):=\int_a^b\left|\frac{d\gamma}{dt}\right|^2dt$. Show that, among all curves joining x to y, γ minimizes the action if and only if γ is of constant velocity and γ minimizes arc-length.

Hint: Suppose that γ is of constant velocity, and let $\tau:[a,b] \to [a,b]$ be a reparametrization. Show that $\mathcal{A}(\gamma \circ \tau) \geq \mathcal{A}(\gamma)$, with equality only when $\tau=$ identity.

3. Assume that (X,g) is geodesically convex, that is, any two points $x,y\in X$ are joined by a unique (up to reparametrization) minimizing geodesic; its arc-length d(x,y) is called the riemannian distance between x and y.

Assume also that (X,g) is geodesically complete, that is, every geodesic can be extended indefinitely. Given $(x,v)\in TX$, let $\exp(x,v):\mathbb{R}\to X$ be the unique minimizing geodesic of constant velocity with initial conditions $\exp(x,v)(0)=x$ and $\frac{d\exp(x,v)}{dt}(0)=v$.

Consider the function $f: X \times X \to \mathbb{R}$ given by $f(x,y) = -\frac{1}{2} \cdot d(x,y)^2$. Let $d_x f$ and $d_y f$ be the components of $df_{(x,y)}$ with respect to $T^*_{(x,y)}(X \times X) \simeq T^*_x X \times T^*_y X$. Recall that, if

$$\Gamma_f^{\sigma} = \{(x, y, d_x f, -d_y f) \mid (x, y) \in X \times X\}$$

is the graph of a diffeomorphism $f:T^*X\to T^*X$, then f is the symplectomorphism generated by f. In this case, $f(x,\xi)=(y,\eta)$ if and only if $\xi=d_xf$ and $\eta=-d_yf$.

Show that, under the identification of TX with T^*X by g, the symplectomorphism generated by f coincides with the map $TX \to TX$, $(x,v) \mapsto \exp(x,v)(1)$.

 $\begin{array}{ll} \textbf{Hint:} & \text{The metric g provides the identifications $T_x X v \simeq \xi(\cdot) = g_x(v,\cdot) \in T_x^* X$.} & \text{We need to show that, given $(x,v) \in T X$, the unique solution of } \\ (\star) \left\{ \begin{array}{l} g_x(v,\cdot) = d_x f(\cdot) \\ g_y(w,\cdot) = -d_y f(\cdot) \end{array} \right. & \text{is $(y,w) = (\exp(x,v)(1), d\frac{\exp(x,v)}{dt}(1))$.} \end{array} \right.$

Look up the Gauss lemma in a book on riemannian geometry. It asserts that geodesics are orthogonal to the level sets of the distance function.

To solve the <u>first</u> line in (\star) for y, evaluate both sides at $v=\frac{d\exp(x,v)}{dt}(0)$. Conclude that $y=\exp(x,v)(1)$. Check that $d_xf(v')=0$ for vectors $v'\in T_xX$ orthogonal to v (that is, $g_x(v,v')=0$); this is a consequence of f(x,y) being the arc-length of a *minimizing* geodesic, and it suffices to check locally.

The vector w is obtained from the $\underline{\operatorname{second}}$ line of (\star) . Compute $-d_y f(\frac{d \exp(x,v)}{dt}(1))$. Then evaluate $-d_y f$ at vectors $w' \in T_y X$ orthogonal to $\frac{d \exp(x,v)}{dt}(1)$; this pairing is again 0 because f(x,y) is the arc-length of a minimizing geodesic. Conclude, using the nondegeneracy of g, that $w = \frac{d \exp(x,v)}{dt}(1)$. For both steps, it might be useful to recall that, given a function $\varphi: X \to \mathbb{R}$ and a tangent vector $v \in T_x X$, we have $d\varphi_x(v) = \frac{d}{du} \left[\varphi(\exp(x,v)(u)) \right]_{u=0}$.