Lecture 4

Boolean Algebra and Logic Simplification:

Page | 1

Introduced by George Boole in 1854.

- Boolean: which is always either true or false.
- Variable: a variable is a symbol used to represent a logical quantity. Any single variable can have a 1 or a 0 value. For example: A, B, C, X,Y...etc.
- Complement: the complement is the inverse of a variable and is indicated by a bar over the variable. For example, the complement of the variable A is \overline{A} . If A=1, then $\overline{A} = 0$. If A=0, then $\overline{A} = 1$.
- Literal: a variable or its complement.

Laws of Boolean Algebra:

1. Commutative Laws:

a) The commutative law of addition for two variables is written as:

$$A+B=B+A$$

b) The commutative law of multiplication for two variables is written as:

$$AB = BA$$

2. Associative Laws:

a) The associative law of addition is written as follows for three variables:

$$A+(B+C) = (A+B)+C$$

b) The associative law of multiplication is written as follows for three variables: A(BC) = (AB) C

3. Distributive Laws: for three variables:

- a) AND distributed over OR: A(B+C) = AB+AC
- b) OR distributed over AND: A + BC = (A + B) (A + C)

SYEDA SHABNAM HASAN CSE.AUST

Rules of Boolean Algebra:

1.
$$A+0=A$$
 2. $A+1=1$ 3. $A \cdot 0=0$ 4. $A \cdot 1=A$ 5. $A+A=A$

6. A +
$$\overline{A}$$
 = 1 7. A . A = A 8. A . \overline{A} = 0 9. $\overline{(A)}$ = A 10. A + AB = A

11.
$$A + \overline{A}B = A + B$$
 12. $(A + B)(A + C) = A + BC$

Page | 2

Dual: Operators (AND/OR) and fixed values (1/0) will be changed but variables (A/B/C/X/Y/Z etc) will not change. NOT operator will not change, but AND will become OR and OR will become AND. For example: the dual of A+1=1 is

A
$$.0=0$$
, the dual of A+B+C=0 is ABC=1.

Duality Principle: It states that every algebraic expression deducible from the postulates of Boolean algebra remains valid if the operators and identity elements are interchanged. For example if $A + \overline{A} = 1$ is true then $A \cdot \overline{A} = 0$ is true also.

De- Morgan's theorems:

i.
$$\overline{AB} = \overline{A} + \overline{B}$$

ii. $\overline{A+B} = \overline{A}.\overline{B}$

Example 1: Proof that $A + \overline{A}C = A + C$

L.H.S= A+
$$\overline{A}$$
 C
= (A+ \overline{A}) (A+C) [using distributive law]
= A+ C [A+ \overline{A} = 1]
= R.H.S

So, L.H.S= R.H.S [proved]

^{*} See the proofs of the above rules from book.

^{*} See the proofs of the above theorems from book.

Alternative approach:

Using truth table:

A	C	\overline{A} C	$A + \overline{A}C$	A+C
0	0	0	0	0
0	1	1	1	1
1	0	0	1	1
1	1	0	1	1

Page | 3

Example 2: Proof that X+XY = X(X+Y)

L.H.S= X+XY
=
$$(X+X)(X+Y)[\because A+BC = (A+B)(A+C)]$$

= $X(X+Y)[\because A+A=A]$
= R.H.S

Example 3: Proof that $X(\overline{X}+Y) = XY$

L.H.S =
$$X (\overline{X} + Y)$$

= $X \overline{X} + XY [\because A(B+C) = AB+AC]$
= $0 + XY$
= XY
= R.H.S