Animal Disease Spread Model (ADSM) Text Support Document for Training

The slide-based training was designed to optimize visual interest. This format does not always create a slide bank that is printer-friendly. In some sections, there are many images and little text. This text support document is intended to be a printer-friendly version of the slides that can be used as a reference. This document is not intended to take the place of main training slides.

Training 4 Disease

Slide	Image	Text
1	Laying Hens	Animal Disease Spread Model
		Defining Disease
2	ADSM	Table of Contents
	Application	Disease Description
	Sample	Disease Progression
	Scenario with	Disease Spread
	Outputs	Review and Confirm
		What's Next
3	Gear Section Break	Disease Description
4	Feedlot cattle	Describing a disease in ADSM
		ADSM is very flexible for simulating highly infectious diseases. Because
		many users may create models for a number of diseases, it is important that
		a name is provided to accurately describe the disease of interest.
		Photo credit Dr. Liesel Schneider
5	ADSM Disease	On the Disease tab, the name field must be completed to proceed to the
	navigation tab	next sections, as noted by the yellow highlight. It may also be helpful to
		provide a short description of the disease.
		Airborne Spread
		When a disease can be spread by tiny particles carried in air currents or
		aerosolized respiratory droplets, it is considered an airborne transmitted
		disease . The default setting in ADSM is a linear decay, which requires entry
		of a parameter of the max distance of spread. As appropriate, you can
		select the option that airborne exponential decay will be simulated instead.
		Within Unit Prevalence
		You may prefer utilizing within unit prevalence, which is the average daily
		prevalence within a single unit. Within unit prevalence requires adding a
		prevalence parameter by production type on the Disease Progression tab. If
		this option is left unselected, ADSM uses the infection probability at the
		production type level on the Disease Spread tab.
6	Gear Section	Be sure to select <i>Apply</i> to save the changes.
6		Disease Progression
	Break	

Page 1 of 8 ADSM – Disease

7	Foodlat Cattle	Disease States Used in ADSM
7	Feedlot Cattle	Disease States Used in ADSM Susceptible: A disease state characterized by the capacity of a unit to become infected. Units in this disease state are neither infected, naturally immune, nor vaccine immune. Latent: A disease state characterized by the period of time that elapses between exposure to a disease agent and onset of infectiousness (shedding of disease agent). Sub-clinically infectious: A disease state in which there is an absence of clinical signs but in which the disease agent is being shed. Clinically infectious: A disease state characterized by the presence of clinical signs and shedding of the disease agent. Immune: A disease state in which units are immune due to natural
		progression through the disease states (i.e. previous exposure to the
		pathogen) or vaccination.
		All disease states in ADSM are considered at the farm or unit level.
8	Image of disease transition states	Disease Progression - Describing Disease States in ADSM As described in the population file, units (individual farms) are initially defined as susceptible, latent, sub-clinical, clinical, naturally immune, vaccine immune or destroyed.
		Probability density functions characterize the length of the time period for each disease state. The value for the length of the disease state is then selected stochastically for each new infection from the range of possible values within the function.
9	Cattle on range	Herd immunity Herd immunity can be defined as the resistance to the spread of a contagious disease within a population that results if a sufficiently high proportion of individuals are immune to the disease. Herd immunity decreases the risk of disease in a population. The risk of infection in susceptible individuals is greatly reduced by surrounding them with immune individuals. In ADSM, immunity at the unit level can be achieved either by natural exposure or through vaccination.
10	ADSM disease progression navigation tab	Defining each stage of disease progression is required to fully capture the entire process of infection within a unit. Within each disease state, a unique probability density functions can be used to describe the range of possible values. The user-named probability density functions are then assigned to each state to mimic biological disease progression.
11	ADSM disease progression navigation tab, close up	With adequate time and survival, infected units will progress into the immune state unless they are destroyed. A specific disease state may be bypassed to the subsequent state by setting its duration to 0 days. In this example, the Subclinical period parameter is set to a Fixed Value of 0.

Page **2** of **8**

12	ADSM Assign	Use the drop-down tabs to assign the specific progression function to
	disease	each disease state for each production type.
	progression	Be sure to select <i>Apply</i> to save the changes.
	navigation tab,	De saile to select Apply to save the changes.
13	Gear Section	Disease Spread
	Break	
14	Images of	ADSM simulates three types of contact that may spread disease:
	disease spread	Direct Contact
	mechanisms (mixed species,	Indirect Contact
	fomites,	Airborne Contact
	airborne	Photo Credit - Dr. Danelle Bickett-Weddle
	plume	Ross Dynamics Lab (plume modeling)
	example)	
15	Image of cattle	Definitions Related to Disease Spread
	on range	Direct contact: The movement of animals within units (premises,
		section, pen) or from one unit to another unit with animals.
		Indirect contact: The movement of people, vehicles, equipment, etc.
		from one premises to another premises with animals.
		Direct transmission: The transfer of a disease agent by direct or close
		contact.
		Indirect transmission: The transfer of disease agent via movement of
		personnel, vehicles, equipment, etc.
		Airborne transmission: The distribution of microbial aerosols
		consisting partially or completely of microorganisms which can be
		drawn into lung alveoli. This type of transmission includes
		transmission by droplet nuclei and dust.
		Fomites: Inanimate objects that when contaminated with infectious agents can transfer disease to a new host.
		Vectors: Any organism (vertebrate or invertebrate) that functions as
		a carrier of an infectious agent between organisms of a different
		species.
		Mechanical vs biological transmission: In mechanical transmission,
		the disease agent does not replicate or develop in/on the vector but
		in biological transmission, the agent replicates and/or develops in it.
		Photo credit - Dr. Liesel Schneider
16	Image of	Additional considerations regarding disease spread
	feedlot cattle	 Latent cases can be a source of infection in direct disease spread.
		Simulation results are achieved at the herd level, not in
		individual level.
		Production types differ in their susceptibility and can greatly
		influence the results of a simulation.
		Photo credit - Dr. Liesel Schneider
	1	1

Page **3** of **8**

17	Image of cattle on range	Direct Spread Within ADSM, parameters associated with direct spread of disease includes the contact rate, infection probability, and distance distribution. These direct contact measures consider different production types and movement control. Direct contact measures the movement of one or more animals from one herd to another. These are assigned within ADSM by selecting a production type to be the source of the animal movement, and one or more production types to be the recipient of the animal movement. Photo credit - Dr. Liesel Schneider
18	ADSM Direct spread center panel	Direct Spread To begin, create a name to accurately describe the production typeto-production type spread. In this example, we are considering cattleto-cattle direct spread. With these production types and the disease of interest in mind, you would then determine if latent and/or subclinical units can infect other susceptible units and check the boxes as appropriate.
19	Image of cattle on range and ADSM contact rate and infection probability parameters	Contact rate Disease is spread from one unit to another based on contact rate and the probability of infection transfer, which are set for each pair of production types. A contact rate is used to indicate the average number of contacts (shipments of animals in the case of direct contact, or movements of people, equipment, etc., for indirect contact) that are generated by each unit for each time period. For each unit that can infect others, the model simulates a number of outgoing shipments. A distance in chosen for each shipment from a probability density function of movement distances. Photo credit - Dr. Liesel Schneider
20	ADSM Sample Scenario distance distribution and function view	The Distance distribution uses a probability density function. ADSM supports 22 general types of probability density functions (pdf). Some distributions are more suitable to certain applications than others, but all are provided to ensure maximum flexibility to model users.
21	ADSM Sample Scenario contact Source to destination assignment	Open the spread after you have saved. Be sure that you are selecting source and destinations. Even though the name already has this specified, the name is only labeling it, not assigning it. You can add multiple destinations to each production type. These selections Apply automatically to save the changes. Swine is not a source in this spread from cattle to cattle, therefore it is empty.

Page **4** of **8**

22	Image of calf getting ear tag Population in edit mode	Indirect Spread Disease can indirectly spread in many ways. Disease agents can spread by movement of animals, people, farm equipment, and vehicles. Within ADSM, indirect spread is modeled similar to direct spread, considering the same potential parameters of contact rate, infection probability, distance, and movement control. Contact rates between production types can be calculated for each time unit (e.g., daily), or they can use a fixed contact rate throughout the disease simulation period. When applying values to these parameters, you consider the likelihood of indirect contacts from production type-to-production type. Photo credit - Dr. Liesel Schneider
23	Image of cattle loading on to trailer and ADSM Indirect spread center panel	For each susceptible unit, ADSM stochastically calculates a number of outgoing shipments using a pdf. Photo Credit - www.agweb.com
24	Image of cattle on range and infection probability parameter	Infection probability in <i>ADSM</i> You must set the probability of infection within indirect disease spread. This is the probability that a contact will result in disease transmission. This can also be thought of as the likelihood of an effective contact. Photo credit - Dr. Liesel Schneider
25	Image of cattle on range	Airborne spread is the process of spreading a disease agent through the air. If appropriate for the disease agent you want to model, ADSM can simulate airborne disease spread. Susceptible animals can become infected through inhalation of airborne biological droplets. Photo credit - Dr. Liesel Schneider
26	Image of cattle on range	All species may pose varying likelihoods for emitting virus in the form of aerosols. Additionally, susceptibility to air droplets also differs by production types. ADSM uses exponential or linear algorithms to simulate airborne disease spread. Photo credit - Dr. Liesel Schneider
27	ADSM Sample Scenario linear spread parameters	Airborne Disease Spread – Linear Decay The probability of airborne disease spread is calculated within a 1km area of the farm, with a maximum distance indicated. As in direct and indirect disease spread, the user determines the source and destination for disease spread (e.g., Swine > All). To set the spread at a constant probability within a certain area, select "all probable production types" in the Destinations field.

Page **5** of **8**

28	ADSM Sample Scenario exponential spread parameters	Airborne Disease Spread – Exponential Decay The probability of airborne disease spread is calculated within a 1km area of the farm. As in direct and indirect disease spread, the user determines the source and destination for disease spread (i.e. Swine > All). To set the spread at a constant probability within a certain area, select "all probable production types" in the Destinations field.
29	Image of cattle on range and wind direction parameters	To adequately describe airborne transmission, ADSM allows you to enter the directionality of the spread. In this image, we have set our exposure direction to begin at 0 degrees (North) and to end at 360 degrees. This allows a full rotational effect to mimic local area spread. If a directional wind is more appropriate, this can be applied as well. Photo credit - Dr. Liesel Schneider
30	Gear Section Break	Review and Confirm
31	ADMS Sample Scenario Review Disease Spread	ADSM provides a review step for easy visualization of the methods of contact and disease spread between production types. You can use the contact method matrix to see a summary of the connections between production types that were parameterized in the model. How many possible spread options are there? Number of production types (2) x Number of production types (2) x Spread methods (3) = 12 possible spread options for a simple example!
32	ADMS Sample Scenario Review Disease Spread	Review Disease Spread Brown represents direct contact Green represents indirect contact Blue represents airborne spread White indicates that no spread has been assigned Every row is a source and every column is a destination. If a correction is needed, you can return to a specific parameter block by clicking on it.
33	ADMS complex example Review Disease Spread	With more production types, the interaction become much more complex. Here is a complex example. Number of production types (12) X Number of production types (12) X Spread methods (3) = 432 possible spread possibilities

Page 6 of 8

	1	
34	ADMS complex example Review Disease Spread	In this view, only direct spread is showing. The white space allows you to see if you have failed to select a Production Type Combination in the Disease Spread tab.
25	direct only	
35	Image of goats	Review Disease Spread
		If any disease contact combinations are missing
		Go back to the individual disease spread option and add it in with the
		probability of disease spread for that combination.
36	Cattle on range	Summary
		In this training we have covered Production type specific disease and
		transmission parameters. This training also included the definition of
		how one production type (source) is connected to another
		production type (destination).
		NAHMS Archives – Judy Rodriguez
37	Gear Section	What's Next
	Break	What s Next
38	Image of bull	Parameters related to control measures will be covered in the next
		training.
39	Image of flock	Join the flock!
	of Sheep	Learn more about ADSM or try an example
	·	ADSM is currently available at
		https://github.com/NAVADMC/ADSM/releases/latest
		Try the sample scenario
		https://github.com/NAVADMC/ADSM/wiki/A-Quick-Start-Guide:-Running-
		the-sample-scenario
		Read the wiki pages link https://github.com/NAVADMC/ADSM/wiki
40	Goat on with	What's Next?
	green foliage	Addition training materials will be posted at
		http://navadmc.github.io/ADSM/
		Training will include:
		Overview
		Populations and Production Types
		Getting Started
		Disease Parameters
		Control Parameters
		Output settings and Run
		Results
		Verification and Validation
		Vaccination Strategy
		Administration
41	Cows grazing	The outcome of an ADSM simulation (as with any computer simulation
7.	with blue sky	model) depends heavily on the quality of the scenario input parameters; the
	and green	assumptions of the modeler who created the scenario; and the capabilities
	grass	and limitations of the model framework itself. The utility of disease models
	P. 022	and initiations of the model framework itself. The utility of disease models

Page **7** of **8**

		like those created with ADSM critically depends on input and interpretation of experts familiar with the behavior of disease within populations, and with the limitations, assumptions, and output of the model. While ADSM is available as a service to animal health communities, the ADSM team does not necessarily endorse results obtained with the ADSM application or any conclusions drawn from such results. Note that the parameters provided in the Sample Scenario are simple examples to clarify concepts in the application. These parameters do not represent any real population or disease event.
42	Cattle image	This work was funded in whole through Cooperative Agreement AP18VSCEAH00C005 by the Animal and Plant Health Inspection Service, an agency of the United States Department of Agriculture. University of Tennessee Animal Science logo Photo credits Canva.com Pinecroft Farms, Woodstock CT, Mariah Chapman Ross Dynamics Lab (plume modeling) www.agweb.com Dr. Liesel Schneider Dr. Danelle Bickett-Weddle Ken Rager Photography
	Metadata	Last Update: 2/6/2020 By: Schoenbaum Approved: 2/28/2020 Delgado

Page 8 of 8