

PREDICTING EMPLOYEE ATTRITION

1. Introduction

EMPLOYEE TURNOVER has been identified as a key issue for organizations because of its adverse impact on work place productivity and long term growth strategies.

Attrition in human resources refers to the gradual loss of employees over time. In general, relatively high attrition is problematic for companies

The key to success in an organization is the ability to attract and retain top talents. It is vital for the Human Resource (HR) Department to identify the factors that keep employees and those which prompt them to leave.

PROBLEM:

COSTS

- Job posting
- Hiring processes paperwork
- New hire training

SOLUTION:

MACHINE

LEARNING

2. Business context exploration and feature analysis

2.1 Data Analysis and Cleaning (1/3)

- Dimension of the dataset: (49653,18)
- Data types:

EmployeeID	object
recorddate_key	datetime64[ns]
birthdate_key	datetime64[ns]
orighiredate_key	datetime64[ns]
terminationdate_key	datetime64[ns]
age	int64
length_of_service	int64
city_name	object
department_name	object
job_title	object
store_name	object
gender_short	object
gender_full	object
termreason_desc	object
termtype_desc	object
STATUS_YEAR	datetime64[ns]
STATUS	object
BUSINESS_UNIT	object
dtype: object	00

Employees:

76% Active; 24% Inactive

- Some Preliminary barplots:
- 1 employees' distribution per department
- 2 employees' distribution per job title
- 3 employees' distribution per store name

2. Business context exploration and feature analysis

Business context exploration and feature analysis Birth Date **Data Analysis and Cleaning (3/3)** 2.1 Status Year Employers: Age Employers: length of service **Record Date Termination Date**

job_title store_name gender_full STATUS length_of_service city_name department_name 13 Meat Cutter 48424 Vernon Meats 36 Female 48812 60 Meats Meat Cutter 35 Male Vancouver 0 65 **New Westminster** 48423 Meats Meat Cutter 21 Female 48811 60 Richmond Produce Produce Clerk 29 Male 48808 60 Surrey Produce Clerk 31 Male Produce 0

Exploratory data analysis Relationship between AGE and STATUS 3.1 3.2 **Relationship between STATUS and LENGTH OF SERVICE** 3.3 **Relationship between STATUS and CITY NAME** Relationship between STATUS and DEPARTMENT NAME 3.4 **Relationship between STATUS and JOB TITLE** 3.5 **Relationship between STATUS and STORE NAME** 3.6 **Relationship between STATUS and GENDER**

4. Model development

4.1 Train and Test Split

1. 2.

4713 1571

- 0.7644812221514958
- 0.7644812221514958

1. dimension of the training dataset

- **2.** dimension of the testing dataset
- **3.** propotions of the target variable in both of them

4.2

	age	length_of_service	city_name	department_name	job_title	store_name	gender_full	STATUS
count	4713.000000	4713.000000	4713	4713	4713	4713	4713	4713.000000
unique	NaN	NaN	39	21	41	45	2	NaN
top	NaN	NaN	Vancouver	Meats	Meat Cutter	46	Female	NaN
freq	NaN	NaN	1021	922	899	395	2472	NaN
mean	44.643751	12.803734	NaN	NaN	NaN	NaN	NaN	0.764481
std	14.116833	6.741237	NaN	NaN	NaN	NaN	NaN	0.424368
min	19.000000	0.000000	NaN	NaN	NaN	NaN	NaN	0.000000
25%	32.000000	7.000000	NaN	NaN	NaN	NaN	NaN	1.000000
50%	45.000000	13.000000	NaN	NaN	NaN	NaN	NaN	1.000000
75%	58.000000	19.000000	NaN	NaN	NaN	NaN	NaN	1.000000
max	65.000000	26.000000	NaN	NaN	NaN	NaN	NaN	1.000000

Imputation

There are no missing values in train and test set, so we don't need to do the imputation

	perc_miss
age	0.0
length_of_service	0.0
city_name	0.0
department_name	0.0
job_title	0.0

4. Model development

4.3 Category Encoding

Target mean encoding method in order to have numerical columns.

train.shape (4713, 8)

					No.	The state of the s			
	age	length_of_service	city_name	department_name	job_title	store_name	gender_full	STATUS	
count	4713.000000	4713.000000	4713.000000	4713.000000	4713.000000	4713.000000	4713.000000	4713.000000	
mean	44.643751	12.803734	0.773344	0.770471	0.773033	0.775103	0.764473	0.764481	
std	14.116833	6.741237	0.112084	0.090345	0.100855	0.199608	0.040533	0.424368	
min	19.000000	0.000000	0.159267	0.266120	0.266120	0.100521	0.725884	0.000000	
25%	32.000000	7.000000	0.766413	0.698117	0.706980	0.768597	0.725884	1.000000	
50%	45.000000	13.000000	0.788210	0.778639	0.783874	0.818208	0.725884	1.000000	
75%	58.000000	19.000000	0.818208	0.870312	0.893239	0.897114	0.807039	1.000000	
max	65.000000	26.000000	0.864999	0.883469	0.898276	0.934831	0.807039	1.000000	

Feature selection

4.4

Most of the variables are positively correlated to STATUS; «City Name» is **slightly positive** correlated to STATUS, instead of «Age» that is **negative** correlated to it.

Machine learning models 5.1 **Logistic Regression** 5.2 **Decision Tree Random Forest** 5.3 **5.4 Gradient Boosting Neural Network** 5.5

5.1

Logistic Regression

ROC CURVE FOR TRAIN AND TEST DATA

ROC is a probability curve and **AUC** represents a model's ability to discriminate between positive and negative classes.

Very good ROC curves. There is a slightly difference between train and test logistic regression.

An area of 1.0 represents a model that made all predictions perfectly.

CONFUSION MATRIX

292+1199 = 1491 **correct** predictions 78+2 = 80 **incorrect** predictions

5.2 Decision Tree

It is a predictive model which is a mapping from observations about an item to conclusions about its target value.

ROC CURVE FOR TRAIN AND TEST DATA

Ψ

For the moment, we prefer

Logistic Regression model
since it has a higher AUC
score compared to the

Decision Tree model

CONFUSION MATRIX

277+1199 = 1476 **correct** predictions 93+2 = 95 **incorrect** predictions

5.3 Random Forest

Consists of a large number of individual decision trees that operate as an ensemble.

Each individual tree spits out a class prediction and the class with the most votes becomes our model's prediction

ROC CURVE FOR TRAIN AND TEST DATA

CONFUSION MATRIX

277+1200 = 1477 correct predictions 93+1 = 94 incorrect predictios

Gradient Boosting

Technique for regression and classification problems. The best possible next model, when combined with previous models, minimizes the overall prediction error

ROC CURVE FOR TRAIN AND TEST DATA

4

For the moment, we prefer Logistic

Regression model since it has a higher AUC score compared to the Gradient Boosting model

CONFUSION MATRIX

304+1199 = 1503 correct predictions 66+2 = 68 incorrect predictios

5.5 Neural Network

Neural networks are a series of algorithms that mimic the operations of a human brain to recognize relationships between vast amounts of data.

ROC CURVE FOR TRAIN AND TEST DATA

Ψ

In conclusion, we prefer
Neural Network model
since it has a higher AUC
score compared to the
Logistic Regression model

CONFUSION MATRIX

353+1199 = 1552 correct predictions 17+2 = 19 incorrect predictios

6. Model Comparison

Plot the probability distribution of all the models created

ROC CURVE SCORE

	train_ROC	test_ROC
Logistic Regression	0.983375	0.981290
Decision Tree	0.912740	0.915827
Random Forest	0.925298	0.932281
Gradient Boosting	0.953934	0.956655
Neural Network	0.997789	0.998346

As we said, we prefer **NEURAL NETWORK** since it has a higher
AUC score compared to the other
models.

The ROC curve is almost at 90 degrees indicating that the model performs very well

Accuracy

Percentage of correctly classified records on the total

accuracy for lr_preds: 0.9490770210057289 accuracy for dt_preds: 0.939528962444303 accuracy for rf_preds: 0.9401654996817314 accuracy for gb_preds: 0.9567154678548695 accuracy for nn_preds: 0.9879057924888606

Precision-Recall

Precision: TP/(TP+FP)
Recall: TP/(TP+FN)

precision for lr_preds: 0.9389193422083008 recall for lr_preds: 0.9983347210657785

precision for dt_preds: 0.9280185758513931 recall for dt_preds: 0.9983347210657785

precision for rf_preds: 0.9280742459396751 recall for rf preds: 0.9991673605328892

precision for gb_preds: 0.9478260869565217 recall for gb_preds: 0.9983347210657785

precision for nn_preds: 0.9860197368421053 recall for nn_preds: 0.9983347210657785

F1 score

$$F1\ Score = \frac{2 * Precision * Recall}{Precision + Recall}$$

for lr_preds: 0.9677158999192899 for dt_preds: 0.9618933012434818 for rf_preds: 0.9623095429029671 for gb_preds: 0.9724249797242499 for nn_preds: 0.9921390153082333

7. Model Results 2/3

RESULTS with a different Cut-Off

We did our analysis using the default cut-off of 0.5. To improve our model we would like to fix a different cut-off.

Because of the high accuracy, we can't just choose a value as cut-off but we have to choose **the best cut-off value**. The optimal cut off point is where the "true positive rate" is high and the "false positive rate" is low. The optimal cut-off is the point where there is the **elbow of the ROC curve**: **0.7698501664999003**

LOGISTIC

Accuracy 0.949714
Precision 0.963636
Recall 0.970858
F1-Score 0.967234

DECISION TREE

Accuracy 0.877785
Precision 0.954095
Recall 0.882598
F1-Score 0.916955

RANDOM FOREST

Accuracy 0.940165
Precision 0.929403
Recall 0.997502
F1-Score 0.962249

GRADIENT BOOSTING

Accuracy 0.955442
Precision 0.954948
Recall 0.988343
F1-Score 0.971358

NEURAL NETWORK

Accuracy 0.987906
Precision 0.994975
Recall 0.989176
F1-Score 0.992067

7. Model Results 3/3

Esembling models

Process of creating a model composed by different algorithms in order to gain a better prediction of the outcome.

The goal of is to reduce the generalization error of the prediction.

We put together all the models except Decision tree (because it is has the smaller accuracy).

Scores for the esembling models:

train auc: 0.9970112493842719 test auc: 0.9964286517991763 train f1: 0.974129757551131 test f1: 0.9771986970684039

train recall: 0.9980571745767416 test recall: 0.9991673605328892 train precision: 0.9513227513227513 test precision: 0.9561752988047809

Create a dataframe with the results:

		auc_test	auc_train	f1_test	f1_train	precision_test	precision_train	recall_test	recall_train
	lr	0.981290	0.983375	0.967716	0.965538	0.938919	0.937516	0.998335	0.995282
	dt	0.915827	0.912740	0.961893	0.958450	0.928019	0.924008	0.998335	0.995559
ı	rf	0.932281	0.925298	0.962310	0.959840	0.928074	0.924203	0.999167	0.998335
	gb	0.958855	0.953934	0.972425	0.971629	0.947826	0.946565	0.998335	0.998057
	nn	0.998346	0.997789	0.992139	0.990765	0.986020	0.984118	0.998335	0.997502
E	ensemble	0.996429	0.997011	0.977199	0.974130	0.956175	0.951323	0.999167	0.998057

