Matementica Discreta

Det Uniasieme à una Collezione ben-definita di osgetti, dotti gli elementi dell' insieme

Insieme: A, B, a, X, Y, ...

Medi di descrivere insiem: (1) un elenco Complote de le elen. eg. A=S1,2,37. $N = \{0, 1, 2, 3, \dots \}$ (2) Da un critterio per gli elemanti. B = { Studenti d: information} C = S radici dell'equazione $\begin{cases} \chi^2 - 1 = 0 \end{cases}$. = $\{1, -1\}.$ Z={numeriinteri} $= \{0, \pm 1, \pm 2, \dots \}$ Q = { numer i vazionalis. IR = { 'realit Complessit

Def: le Cardinalita di Un
insieme A è il numero desti
elementi di A, si denota 1A1
1A1<00 om. 1A1=00
Del. Un insieure B è un Solloinsier di A, sidonata B SA, se ogni
diA, sidonata BSA, se ogni
elemento di B è anche elem. dit
i.e. ABEB, BEA
(B) (A)
Venn diagram. BEA
$x \in A, x \notin B$
e.f. WSZSQSRSC

797 (1)

Dato un insieme A,
X un elemento di A: XEA
se x Don è un elem. did, x #A.
5 i a Puna propriété/affermazione
Per x E A, P(x): x Soddisfa P
$A = \{ \chi \mid \varphi(x) \}$
$C' = \{x \in R x^2 - 1 = 0\} = \{\pm \}.$
$ = \{x \in \mathbb{Z} \mid x \ge 0\}$
Simboli: "Y" per ogni, "I" esiste
Det: Un insieme Vuoto è unins
Frivo di elementi.

4

.

Prop. Due insiemé A e B Sono uguali se e Solo se A S B e B S A.

Del: Sia A un insieme, Si dice insieme delle Parti di A si donota P(A), & è l'insieme i cui elementi

Sono i sottoinsiemi di A,

P(A) = {B|B \in A}

e.S: A = {a,b}. P(A) = {\phi, {a}, {b}, {a,b}}

Es. Dati due insiemi A e B

Se P(A) = P(B), allora A = B

Soluz. Tesi: A \(\text{B} \)
\(\text{B} \)
\(\text{B} \)
\(\text{A} \(\text{A} \)
\(\text{A} \(\text{A} \)
\(\text{A} \(\text{A} \)
\(\text{A} \)
\(\text{B} \)
\(\text{B} \)
\(\text{B} \)
\(\text{Simile} \)
\(\text{B} \)
\(\text{Simile} \)
\(\text{B} \)
\(\text{Simile} \)
\(\text{B} \)
\(\text{CA} \)

ES, Ste A un insieme.

B = {A, {A}}

es: $A = \{0,1\}, B = \{\{0,1\}, \{\{0,1\}\}\}\}$ Esercizo: $A \in B \Rightarrow \{A\} \in B$ $P(B) = \{\emptyset, \{\{0,1\}\}, \{\{\{0,1\}\}\}\}, B\}$ $A \neq B$? Compito:

1) Leggere il libro
di rif:

Cap 1, 81-83. *

e Eserci § 1.1, 1.2, 1.3.

.

1