Εργαστηριακή Αναφορά 031 - Συστήματα Αυτομάτου Ελέγχου ΙΙ

Ιωάννης Δημουλιός 10641

Εαρινό εξάμηνο 2024

Προεργασία

Το μοντέλο του συστήματος δίνεται από το μπλοκ διάγραμμα.

Έχουν γίνει οι απαραίτητες αλλαγές στα πρόσημα καθ' υπόδειξη του διδάσκοντος. Ορίζουμε μεταβλητές κατάστασης του συστήματος

$$x_1 = \theta$$
$$x_2 = v_{\text{tacho}}.$$

Από το σχήμα παίρνουμε

$$\Omega = \frac{v_{\text{tacho}}}{k_T} = \frac{x_2}{k_T} \tag{1}$$

$$\Theta = \Omega k_{\mu} \frac{k_0}{s} \stackrel{(1)}{\Longrightarrow} \dot{x_1} = \frac{k_{\mu} k_0}{k_T} x_2 \tag{2}$$

$$\Omega = \frac{k_m}{T_m s + 1} U \stackrel{\text{(1)}}{\Longrightarrow} \dot{x_2} = -\frac{1}{T_m} x_2 + \frac{k_T k_m}{T_m} u. \tag{3}$$

Γράφουμε τις εξισώσεις (2) και (3) σε μορφή πινάκων, οπότε

$$\dot{x} = \underbrace{\begin{bmatrix} 0 & \frac{k_{\mu}k_0}{k_T} \\ 0 & -\frac{1}{T_m} \end{bmatrix}}_{A} x + \underbrace{\begin{bmatrix} 0 \\ \frac{k_Tk_m}{T_m} \end{bmatrix}}_{B} u.$$

Το χαρακτηριστικό πολυώνυμο του συστήματος είναι

$$p(s) = \det(sI - A) = s^2 + \frac{1}{T_m}s.$$

Το ζεύγος πινάκων (A,B) είναι ελέγξιμο, αφού

$$M = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 0 & \frac{k_{\mu}k_{0}k_{m}}{T_{m}} \\ \frac{k_{T}k_{m}}{T_{m}} & -\frac{k_{T}k_{m}}{T_{m}^{2}} \end{bmatrix}, \quad \det(M) \neq 0.$$

Επίσης, αφού έχουμε ως έξοδο μόνο τη θέση, τότε

$$y = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{C} x.$$

Δείχνουμε ότι το σύστημα είναι και παρατηρήσιμο. Πράγματι,

$$W = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{k_{\mu}k_0}{k_T} \end{bmatrix}, \quad \det(W) \neq 0.$$

1ο Εργαστήριο

Ακολουθώντας τις οδηγίες του φυλλαδίου, λαμβάνουμε, όταν $U=10\,\mathrm{V}, V_{\mathrm{tacho}}=8.6\,\mathrm{V}$, άρα

$$k_m k_T = \frac{8.6}{10} = 0.86.$$

Υπολογίζουμε $8.6\cdot 63.3\%=5.44\,\mathrm{V}$ και ο χρόνος που απαιτείται για να φτάσει σε αυτήν την τιμή είναι

$$T_m = 0.555 \,\mathrm{s}.$$

Μια πλήρης περιστροφή του άξονα του κινητήρα αντιστοιχεί σε 10° του άξονα εξόδου, άρα

$$k_{\mu} = \frac{10^{\circ}}{360^{\circ}} = \frac{1}{36}.$$

Μετά μετράμε $\Delta x_2=12.6\,\mathrm{V}$ σε $\Delta t=0.873\,\mathrm{s}$ για 1 περιστροφή, άρα

$$\omega_{\rm out} = \frac{60\,{\rm s} \cdot 1 {\rm round}}{\Delta t} = 68.73\,{\rm rpm}.$$

Τότε,

$$\frac{\Delta x_2}{\Delta t} = k_0 \omega_{\text{out}} \implies k_0 = 0.21$$

$$\omega_{\text{in}} = \frac{1}{k_{\mu}} \omega_{\text{out}} = 2474.28 \text{ rpm}$$

$$V_{\text{tacho}} = k_T \omega_{\text{in}} \implies k_T = \frac{8.6}{2474.28} = 0.00348$$

$$k_m k_T = 0.86 \implies k_m = \frac{0.86}{0.00348} = 247.13.$$

Συγκεντρωτικά, οι ζητούμενες σταθερές έχουν τις ακόλουθες τιμές

$$k_m = 247.13$$

 $T_m = 0.55$
 $k_T = 0.00348$
 $k_0 = 0.21$
 $k_\mu = \frac{1}{36}$.

20 Εργαστήριο

Καλούμαστε να σχεδιάσουμε έναν ελεγκτή γραμμικής ανάδρασης καταστάσεων. Επομένως, θέτουμε

$$u = -k_1 x_1 - k_2 x_2 + k_r r$$

και ψάχνουμε τα κέρδη k_1, k_2, k_r . Όμως πρέπει, μετά από πράξεις,

$$k_r = -\frac{1}{C(A - Bk)^{-1}Bk} = k_1.$$

Τότε,

$$\dot{x} = Ax + Bu = (A - Bk)x + Bk_1 r$$

$$= \underbrace{\begin{bmatrix} 0 & \frac{k_{\mu}k_0}{k_T} \\ -\frac{k_1k_Tk_m}{T_m} & -\frac{1 + k_2k_Tk_m}{T_m} \end{bmatrix}}_{A'} x + \begin{bmatrix} 0 \\ \frac{k_Tk_mk_1}{T_m} \end{bmatrix} r.$$

Τώρα το χαρακτηριστικό πολυώνυμο του A' γράφεται

$$\begin{split} \det(sI-A') &= \det\left(\begin{bmatrix} s & -\frac{k_\mu k_0}{k_T} \\ \frac{k_1 k_T k_m}{T_m} & \frac{1+k_2 k_T k_m}{T_m} s \end{bmatrix}\right) \\ &= s^2 + \frac{1+k_2 k_T k_m}{T_m} s + \frac{k_\mu k_1 k_0 k_m}{T_m}. \end{split}$$

Το σύστημα για θετικά k_1, k_2 από το κριτήριο Routh-Hurwitz είναι ευσταθές.

Ερωτήματα

Για αυτό το εργαστήριο χρησιμοποιούμε

$$k_1 = 2, \quad k_2 = 0.9.$$

2.1

2.2

Υπάρχει ένα μικρό σφάλμα της τάξεως του 1%, το οποίο οφείλεται στις τριβές του συστήματος. Για να μειωθεί το σφάλμα στη μόνιμη κατάσταση μπορούμε να προσθέσουμε έναν ολοκληρωτικό όρο στον ελεγκτή μας, ακριβώς δηλαδή αυτό που ορίζει η δυναμική ανάδραση καταστάσεων στο επόμενο εργαστήριο.

2.3

Τα αποτελέσματα είναι πανομοιότυπα με την αρχική περίπτωση, με μια ελαφρώς μεγαλύτερη απόκλιση, της τάξεως του 1.5% από την επιθυμητή τελική τιμή. Αυτό οφείλεται στην εξωτερική παρεμβολή που εισάγει το μαγνητικό φρένο στην είσοδο του συστήματος, η οποία δεν αποσβέννυται με τη χρήση γραμμικής ανάδραση καταστάσεων.

2.4

$$\omega = 2\pi \cdot 0.1$$
 (μισή περίοδος σε $5\,\mathrm{s}$)

 $\omega = 2\pi \cdot 0.2$ (μία περίοδος σε 5 s)

 $\omega = 2\pi \cdot 0.4$ (δύο περίοδοι σε 5 s)

Καταρχάς, παρατηρούμε ότι σε όλες τις περιπτώσεις η θέση του συστήματος εκτελεί και αυτή ταλάντωση στην εισηγμένη συχνότητα, αλλά το πλάτος της μειώνεται όσο μεγαλώνει η συχνότητα της ταλάντωσης της επιθυμητής θέσης. Επιπλέον, παρατηρούμε ότι σε κάθε περίπτωση η θέση του συστήματος, αν και προσπαθεί να ακολουθήσει την επιθυμητή τιμή, υστέρει με μια διαφορά φάσης σχεδόν σταθερή περίπου στις 70°. Αυτή εισάγεται αμέσως μόλις ξεκινάει η ταλάντωση της επιθυμητής θέσης, οπότε και η θέση του συστήματος παραμένει σχεδόν σταθερή στην αρχική της τιμή για τον χρόνο που αντιστοιχεί στην προαναφερθείσα διαφορά φάσης σε κάθε περίπτωση.

30 Εργαστήριο

Καλούμαστε να σχεδιάσουμε έναν ελεγκτή δυναμικής ανάδρασης καταστάσεων. Επομένως, εισάγουμε μια επιπλέον μεταβλητή κατάστασης, την z, για την οποία

$$\dot{z} = y - r = x_1 - r.$$

Ο νέος ελεγκτής θα είναι

$$u = -k_1 x_1 - k_2 x_2 - k_i z$$

και το νέο σύστημα με αυτόν τον ελεγκτή

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{z} \end{bmatrix} = \begin{bmatrix} 0 & \frac{k_{\mu}k_0}{k_T} & 0 \\ 0 & -\frac{1}{T_m} & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ z \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{k_Tk_m}{T_m} \\ 0 \end{bmatrix} \begin{bmatrix} -k_1 & -k_2 & -k_i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ z \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} r$$

$$= \begin{bmatrix} 0 & \frac{k_{\mu}k_0}{k_T} & 0 \\ -\frac{k_1k_Tk_m}{T_m} & -\frac{1+k_2k_Tk_m}{0} & -\frac{k_ik_Tk_m}{T_m} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ z \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} r.$$

Τώρα το χαρακτηριστικό πολυώνυμο του συστήματος κλειστού βρόχου γράφεται

$$\det(sI - A'') = \det \begin{pmatrix} s & \frac{k_{\mu}k_{0}}{k_{T}} & 0\\ \frac{k_{1}k_{T}k_{m}}{T_{m}} & s + \frac{1 + k_{2}k_{T}k_{m}}{T_{m}} & \frac{k_{i}k_{T}k_{m}}{T_{m}} \\ -1 & 0 & s \end{pmatrix}$$

$$= s^{3} + \frac{1 + k_{2}k_{T}k_{m}}{T_{m}}s^{2} + \frac{k_{1}k_{\mu}k_{0}k_{m}}{T_{m}}s + \frac{k_{i}k_{\mu}k_{0}k_{m}}{T_{m}}.$$

Θεωρώντας θετικά κέρδη k_1, k_2, k_i , από το κριτήριο Routh-Hurwitz, για να είναι ευσταθές το σύστημα πρέπει

$$\frac{1+k_2k_Tk_m}{T_m} \cdot \frac{k_1k_\mu k_0k_m}{T_m} > \frac{k_ik_\mu k_0k_m}{T_m} \implies \frac{(1+k_2k_Tk_m)k_1}{T_m} > k_i.$$

Ερωτήματα

Σε αυτό το εργαστήριο χρησιμοποιούμε

$$k_1 = 3$$
, $k_2 = 1$, $k_i = 3$.

Εύκολα διαπιστώνουμε ότι ικανοποιείται η συνθήκη ευστάθειας, όπως ορίστηκε παραπάνω.

Εξαιτίας προβληματών του Arduino στη μετατροπή τιμών θέσης σε τάση για θέσεις του συστήματος που αντιστοιχούσαν σε τιμές μικρότερες του $1.5\,\mathrm{V}$, χρησιμοποιούμε αρχική τιμή $\theta_0=4\,\mathrm{V}$, $\theta_\mathrm{ref}=10\,\mathrm{V}$ και $T_\mathrm{max}=8\,\mathrm{s}$.

Τώρα τα σφάλματα που είχαμε στο δεύτερο εργαστήριο μειώνονται. Τελευταία τιμή που μετρήθηκε για τη θέση είναι η positionData(end) = 9.9267 που αντιστοιχεί σε σφάλμα 0.7%, υποδιπλάσιο του προηγούμενου στο ερώτημα του μαγνητικού φρένου.

Ωστόσο αυτή η ενίσχυση της ακρίβειας αυξάνει αρκετά τον χρόνο αποκατάστασης. Εδώ τα 8 s μόλις είναι αρκετά για να φτάσει η θέση στη μόνιμη κατάσταση. Αντίθετα, στο προηγούμενο εργαστήριο (αν και για διαφορετική αρχική θέση και θέση αναφοράς) το σύστημα έφτανε στη μόνιμη κατάσταση σε λιγότερο από 2 s.

Ακόμα, επειδή ο ελεγκτής u λαμβάνει αρχικά αρνητικές τιμές δεδομένων των επιλεγμένων κερδών και της αρχικής κατάστασης του συστήματος, από τις εξισώσεις κατάστασης προκύπτει ότι η παράγωγος της ταχύτητας είναι αρχικά αρνητική με αποτέλεσμα και η ταχύτητα να γίνεται αρνητική και άρα η θέση για ένα σύντομο χρονικό διάστημα περίπου $0.5 \, {\rm s}$ να μειώνεται, δηλαδή το σφάλμα θέσης να αυξάνεται πριν ξεκινήσει να μειώνεται.

40 Εργαστήριο

Καλούμαστε να σχεδιάσουμε έναν παρατηρητή του συστήματος και κατ' επέκταση έναν ελεγκτή γραμμικής ανάδρασης εξόδου. Έστω

$$p_d(s) = s^2 + p_1 s + p_2$$

το επιθυμητό χαρακτηριστικό πολυώνυμο του παρατηρητή.

Στην πρώτη ενότητα υπολογίσαμε τον πίνακα W και το χαρακτηριστικό πολυώνυμο του συστήματος p(s), οπότε

$$W^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{k_{\mu}k_0}{k_T} \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & -\frac{k_T}{k_{\mu}k_0} \end{bmatrix},$$
$$\tilde{W} = \begin{bmatrix} 1 & 0 \\ \frac{1}{T_m} & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{T_m} & 1 \end{bmatrix}.$$

Τότε,

$$\begin{split} L &= W^{-1} \tilde{W} \begin{bmatrix} p_1 - \frac{1}{T_m} \\ p_2 \end{bmatrix} \\ &= \begin{bmatrix} p_1 - \frac{1}{T_m} \\ \frac{k_T}{k_\mu k_0 T_m} \left(p_1 - \frac{1}{T_m} \right) - \frac{k_T}{k_\mu k_0} p_2 \end{bmatrix} \end{split}$$

Τώρα ο παρατηρητής γράφεται

$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - Cx),$$

όπου $u = -k\hat{x} + k_r r$.

Ερωτήματα

Θέτουμε

$$p_1 = 15, \quad p_2 = 25,$$

οπότε προκύπτει

$$L = \begin{bmatrix} 13.18 \\ 0.62 \end{bmatrix}.$$

Για κέρδη του ελεγκτή χρησιμοποιούμε αυτά από τη γραμμική ανάδραση καταστάσεων, δηλαδή

$$k_1 = k_r = 2, \quad k_2 = 0.9.$$

4.1

Βηματική είσοδος u=3

Η δειγματοληψία της εξόδου, δηλαδή της θέσης, γινόταν πολύ αργά (μόλις 40 δείγματα σε 5 s) με αποτέλεσμα να χάνεται η ακρίβεια ιδιαίτερα σε απότομες αλλαγές, όπως φαίνεται χαρακτηριστικά στην περίπτωση u=7. Στην προσπάθεια επίλυσης αυτού του ζητήματος αλλάξαμε το Baud Rate της σειριακής θύρας του Arduino από το προεπιλεγμένο 9600 σε 115200, αλλά δεν είδαμε κάποια βελτίωση.

Και στις δύο περιπτώσεις ο παρατηρητής ακολουθεί ικανοποιητικά την πραγματική θέση.

Αντίθετα, στην περίπτωση u=7 ο παρατηρητής δεν καταφέρνει να συγκλίνει στην πραγματική ταχύτητα, γεγονός που οφείλεται κυρίως στην απουσία ικανοποιητικής δειγματοληψίας. Πράγματι, μεταξύ απότομων μεταβολών της θέσης δεν υπάρχουν ενδιάμεσες μετρήσεις με αποτέλεσμα η παρατήρηση της ταχύτητας να μην προλαβαίνει να αυξηθεί ή να μειωθεί επαρκώς, ώστε να αντικατοπτρίσει αυτήν την μεταβολή.

Στην περίπτωση u=3 ο παρατηρητής φτάνει στην μόνιμη κατάσταση της ταχύτητας του συστήματος, αλλά σε απότομες μεταβολές της θέσης μειώνεται ακαριαία η παρατήρηση της ταχύτητας εξαιτίας, όπως προκύπτει από τις εξισώσεις κατάστασης του παρατηρητή, έως ότου να επαναφερθεί στην πρότερη τιμή της.

4.2

Και πάλι η παρατήρηση της θέσης είναι ικανοποιητική, ενώ της ταχύτητας παρουσιάζει σφάλμα ως προς την πραγματική τιμή. Για επαρκώς μεγάλα p_1 και p_2 (π.χ. 60 και 100 αντίστοιχα), δηλαδή για μεγαλύτερους κατά απόλυτη τιμή πόλους, ο παρατηρητής καταρρέει λόγω υπερυψώσεων.

Για μικρότερα p_1 και p_2 (π.χ. τέτοια ώστε $L=\begin{bmatrix}4&0.1\end{bmatrix}^T$), δηλαδή για μικρότερους κατά απόλυτη τιμή πόλους, η παρατήρηση του συστήματος είναι πιο αργή και λιγότερο αξιόπιστη, ιδιαίτερα κατά τη διάρκεια του μεταβατικού φαινομένου. Ω στόσο, ο παρατηρητής της ταχύτητας εδώ συγκλίνει τελικά στη μόνιμη κατάσταση της πραγματικής ταχύτητας.

