# University of Ottawa Faculty of Engineering School of Electrical Engineering and Computer Science



# Assignment 2 - Part 2

Course ELG7186 – AI for Cybersecurity Applications

Academic year 2022/2023

Semester Fall

Instructor Miguel Garzon
Announced February 11, 2022

Deadline March 7, 2022, 11:59PM (EDT)

**NOTE**: Strictly avoid copying your colleague's project. That would amount to plagiarism. Penalty in case plagiarism is detected: <u>zero marks</u> will be assigned for all parties whose project would be considered as plagiarized OR copies of each other.

Every student must submit the assignment individually on Brightspace

#### **Assignment Overview**

In this assignment, you will implement a binary classifier aiming at predicting data exfiltration via DNS.

You are expected to implement two predictive modeling solutions: the training model (train\_model.py) and another solution that adapts through time (run\_model.py).

For both problems, you will have 2 sources of data:

- An Initial CSV file which you can use to train an initial model.
- A data stream (local Kafka Server) which will be used to evaluate the model.

### **Instructions:**

### Problem - Detection of data exfiltration via DNS:

- CSV file with the initial data provided on Brightspace: training dataset.csv
- Docker Compose to deploy a local Kafka Server is available on Brightspace.
- Test the algorithm(s) (choose adequate metrics, performance evaluation strategy, etc)
- Summarize, compare, and discuss the results
- Read more about the data and its attributes here: <a href="https://www.unb.ca/cic/datasets/dns-exf-2021.html">https://www.unb.ca/cic/datasets/dns-exf-2021.html</a>

## **Important Note for the task:**

- The messages that you will consume from the Kafka server contain the attributes only (the class label will not be provided, as this is a real-life scenario).
- You need to consume (read and evaluate) ALL events (DNS queries) in the Kafa Queue.

#### **Deliverables:**

- (1) Source code used (should be clean and with comments).
  - You need to accept the following invitation: <a href="https://classroom.github.com/a/1p0Rg9mY">https://classroom.github.com/a/1p0Rg9mY</a>
  - By accepting the invitation, you are given a repository that includes a source code template you need to use.
  - Make sure push your code into the GitHub repository before the deadline.
- (2) Report (maximum 3 pages) summarizing the results of the experiment.

#### Submission:

- The **report** (pdf) and
- A **README** file containing the link of your repository, your name and student ID.
- A CSV file containing the following columns: the domain (ingested via the input topic), the features generated (14), the predicted label (named **predicted\_label**) and the confidence score (**score**). Your CSV file must contain 17 columns.

#### Report guidelines:

In this report you should focus on briefly explaining the solution you implemented, and describing the experiments carried out. The report should include the following sub-sections:

- A subsection "Algorithms" describing the algorithms implemented for the problem. Be sure to add any necessary references. Provide only the overall idea of the algorithm (no pseudo code is necessary; no detailed explanation is required).
- A subsection "Experiments" containing:
  - a description of how you tested the algorithms (metrics selected, hyperparameters tuning, performance assessment setting, etc)
  - the results obtained (tables, plots, etc)
  - a discussion of the results (what do the plots/tables show us, the knowledge learned from the experiments, advantages, and disadvantages of the solutions)