Introduction to Matrix Algebra

J. Alexander Branham

Fall 2015

Scalars Vectors Matrices

Scalars

• Let's start with something familiar, with a new word

Scalars

- Let's start with something familiar, with a new word
- One number (12, for example) is referred to as a scalar

Scalars

- Let's start with something familiar, with a new word
- One number (12, for example) is referred to as a scalar
- This can be thought of as a 1x1 matrix

Scalars

- Let's start with something familiar, with a new word
- One number (12, for example) is referred to as a scalar
- This can be thought of as a 1x1 matrix
 - More on that in a bit...

$$[12] = c$$

Scalars Vectors Matrices

Vectors

• We can put several scalars together to make a vector

Vectors

- We can put several scalars together to make a vector
- For example:

$$\begin{bmatrix} 12 \\ 14 \\ 15 \end{bmatrix} = k$$

Vectors

- We can put several scalars together to make a vector
- For example:

$$\begin{bmatrix} 12\\14\\15 \end{bmatrix} = b$$

• Since this is a column of numbers, we cleverly refer to it as a column vector

Row Vectors

If we take *b* and arrange it so that it it a row of numbers instead of a column, we refer to it as a *row vector*:

$$\begin{bmatrix} 12 & 14 & 15 \end{bmatrix} = d$$

Matrix

We can put multiple vectors together to get a matrix:

$$\begin{bmatrix} 12 & 14 & 15 \\ 115 & 22 & 127 \\ 193 & 29 & 219 \end{bmatrix} = A$$

• We refer to the *dimensions* of matrices by row x column

- We refer to the *dimensions* of matrices by row x column
- So A is a 3x3 matrix.

- We refer to the *dimensions* of matrices by row x column
- So A is a 3x3 matrix.
- Note that matrices are usually designated by capital letters

- We refer to the dimensions of matrices by row x column
- So A is a 3x3 matrix.
- Note that matrices are usually designated by capital letters
 - And sometimes bolded as well

Dimensions

ROW x COLUMN

• How do we refer to specific elements of the matrix???

- How do we refer to specific elements of the matrix???
- Solution: come up with a clever indexing scheme

- How do we refer to specific elements of the matrix????
- Solution: come up with a clever indexing scheme
- Matrix A is an mxn matrix where m = n = 3.

- How do we refer to specific elements of the matrix????
- Solution: come up with a clever indexing scheme
- Matrix A is an mxn matrix where m = n = 3.
- More generally, matrix B is an mxn matrix where the elements look like this:

$$B = \begin{bmatrix} b_{11} & b_{12} & b_{13} & \dots & b_{1m} \\ b_{21} & b_{22} & b_{23} & \dots & b_{2m} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ b_{n1} & b_{n2} & b_{n3} & \dots & b_{nm} \end{bmatrix}$$

Addition and subtraction Multiplication Division Properties of matrix operations

Addition and subtraction are EASY!

• Requirement: Must have exactly the same dimensions

Addition and subtraction are EASY!

- Requirement: Must have exactly the same dimensions
- To do the operation, just add or subtract each element with the corresponding element from the other matrix:

$$A \pm B$$

Addition and Subtraction

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \pm \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} \pm b_{11} & a_{12} \pm b_{12} & a_{13} \pm b_{13} \\ a_{21} \pm b_{21} & a_{22} \pm b_{22} & a_{23} \pm b_{23} \\ a_{31} \pm b_{31} & a_{32} \pm b_{32} & a_{33} \pm b_{33} \end{bmatrix}$$

Scalar multiplication

Easy - just multiply each element of the matrix by the scalar

$$cA = \begin{bmatrix} ca_{11} & ca_{12} & ca_{13} \\ ca_{21} & ca_{22} & ca_{23} \\ ca_{31} & ca_{32} & ca_{33} \end{bmatrix}$$

Addition and subtraction Multiplication
Division
Properties of matrix operations

Matrix multiplication

• Requirement: the two matrices must be conformable

Addition and subtraction Multiplication
Division
Properties of matrix operations

Matrix multiplication

- Requirement: the two matrices must be conformable
- This means that the number of columns in the first matrix equals the number of rows in the second

Matrix multiplication

- Requirement: the two matrices must be conformable
- This means that the number of columns in the first matrix equals the number of rows in the second
- The resulting matrix will have the number of rows in the first, and the number of columns in the second!

Pop quiz

• Which can we multiply? What will the resulting dimensions be?

$$b = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 1 \end{bmatrix} M = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 4 \\ 2 & 3 & 2 \end{bmatrix} L = \begin{bmatrix} 6 & 5 & -1 \\ 1 & 4 & 3 \end{bmatrix}$$

Pop quiz

• Which can we multiply? What will the resulting dimensions be?

$$b = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 1 \end{bmatrix} M = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 4 \\ 2 & 3 & 2 \end{bmatrix} L = \begin{bmatrix} 6 & 5 & -1 \\ 1 & 4 & 3 \end{bmatrix}$$

ONLY LM and NOT ML

Pop quiz

• Which can we multiply? What will the resulting dimensions be?

$$b = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 1 \end{bmatrix} M = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 4 \\ 2 & 3 & 2 \end{bmatrix} L = \begin{bmatrix} 6 & 5 & -1 \\ 1 & 4 & 3 \end{bmatrix}$$

- ONLY LM and NOT ML
- The dimensions will be 2x3

Addition and subtraction Multiplication
Division
Properties of matrix operations

How to actually do this?

• Multiply each row by each column

Addition and subtraction Multiplication
Division
Properties of matrix operations

How to actually do this?

- Multiply each row by each column
- (Board examples)

Addition and subtraction Multiplication
Division
Properties of matrix operations

How to actually do this?

- Multiply each row by each column
- (Board examples)

How to actually do this?

- Multiply each row by each column
- (Board examples)

```
## [,1] [,2] [,3]
## [1,] 9 7 30
## [2,] 11 17 24
```

Addition and subtraction Multiplication **Division** Properties of matrix operations

Matrix Division

Addition and subtraction Multiplication **Division** Properties of matrix operations

Matrix Division

HAHAHA... NOPE

Addition and subtraction Multiplication Division Properties of matrix operations

Properties of operators

Addition and subtraction

- Addition and subtraction
 - Associative $(A \pm B) \pm C = A \pm (B \pm C)$

- Addition and subtraction
 - Associative $(A \pm B) \pm C = A \pm (B \pm C)$
 - Communicative $A \pm B = B \pm A$

- Addition and subtraction
 - Associative $(A \pm B) \pm C = A \pm (B \pm C)$
 - Communicative $A \pm B = B \pm A$
- Multiplication

- Addition and subtraction
 - Associative $(A \pm B) \pm C = A \pm (B \pm C)$
 - Communicative $A \pm B = B \pm A$
- Multiplication
 - AB ≠ BA

- Addition and subtraction
 - Associative $(A \pm B) \pm C = A \pm (B \pm C)$
 - Communicative $A \pm B = B \pm A$
- Multiplication
 - AB ≠ BA
 - $\bullet \ A(BC) = (AB)C$

- Addition and subtraction
 - Associative $(A \pm B) \pm C = A \pm (B \pm C)$
 - Communicative $A \pm B = B \pm A$
- Multiplication
 - AB ≠ BA
 - A(BC) = (AB)C
 - $\bullet \ A(B+C) = AB + AC$

- Addition and subtraction
 - Associative $(A \pm B) \pm C = A \pm (B \pm C)$
 - Communicative $A \pm B = B \pm A$
- Multiplication
 - AB ≠ BA
 - A(BC) = (AB)C
 - A(B+C) = AB + AC
 - $\bullet \ (A+B)C=AC+BC$

Introduction to Matrix Algebra

Qu'est-ce que c'est?

Switch the rows and columns

```
##
         [,1] [,2] [,3]
## [1,]
## [2,]
t(L)
##
          [,1] [,2]
                  J. Alexander Branham
```

Introduction to Matrix Algebra

Qu'est-ce que c'est?

- Switch the rows and columns
- So a nxm matrix becomes mxn

```
## [,1] [,2] [,3]

## [1,] 6 5 -1

## [2,] 1 4 3

t(L)

## [,1] [,2]

## [1,] 6 1
```

Qu'est-ce que c'est?

- Switch the rows and columns
- So a *nxm* matrix becomes *mxn*
- Typically denoted L' or L^T

```
L
```

```
## [,1] [,2] [,3]
## [1,] 6 5 -1
## [2,] 1 4 3
t(L)
```

• Matrix is *always* conformable for multiplication with its transpose in both directions

- Matrix is *always* conformable for multiplication with its transpose in both directions
- $(A \pm B)' = A' \pm B'$

- Matrix is *always* conformable for multiplication with its transpose in both directions
- $(A \pm B)' = A' \pm B'$
- A'' = A

- Matrix is *always* conformable for multiplication with its transpose in both directions
- $(A \pm B)' = A' \pm B'$
- A'' = A
- (AB)' = B'A'

- Matrix is *always* conformable for multiplication with its transpose in both directions
- $(A \pm B)' = A' \pm B'$
- A'' = A
- (AB)' = B'A'
- (cA)' = cA' where c is a scalar

• I kinda lied when I said there isn't matrix division

- I kinda lied when I said there isn't matrix division
- We use matrix inverses all the time

- I kinda lied when I said there isn't matrix division
- We use matrix inverses all the time
- If A is an nxn square matrix:

$$AB = BA = I_n$$

- I kinda lied when I said there isn't matrix division
- We use matrix inverses all the time
- If A is an nxn square matrix:

$$AB = BA = I_n$$

• Then B is said to be the *inverse* of A

- I kinda lied when I said there isn't matrix division
- We use matrix inverses all the time
- If A is an nxn square matrix:

$$AB = BA = I_n$$

- Then B is said to be the *inverse* of A
 - ullet This is usually denoted A^{-1}

- I kinda lied when I said there isn't matrix division
- We use matrix inverses all the time
- If A is an nxn square matrix:

$$AB = BA = I_n$$

- Then B is said to be the *inverse* of A
 - This is usually denoted A^{-1}
 - So $AA^{-1} = I_n$

- I kinda lied when I said there isn't matrix division
- We use matrix inverses all the time
- If A is an nxn square matrix:

$$AB = BA = I_n$$

- Then B is said to be the *inverse* of A
 - This is usually denoted A^{-1}
 - So $AA^{-1} = I_n$
- If B doesn't exist, then the matrix is singluar

- I kinda lied when I said there isn't matrix division
- We use matrix inverses all the time
- If A is an nxn square matrix:

$$AB = BA = I_n$$

- Then B is said to be the *inverse* of A
 - This is usually denoted A^{-1}
 - So $AA^{-1} = I_n$
- If B doesn't exist, then the matrix is singluar
- Finding inverses by hand is super hard (especially as *n* increases), so we let computers do this for us

• Let A be nxn square matrix:

- Let A be nxn square matrix:
- If A^{-1} exists:

- Let A be nxn square matrix:
- If A^{-1} exists:
- A is full rank: rank(A) = n

- Let A be nxn square matrix:
- If A^{-1} exists:
- A is full rank: rank(A) = n
- A' is also invertible

- Let A be nxn square matrix:
- If A^{-1} exists:
- A is full rank: rank(A) = n
- A' is also invertible
- $(A^{-1})^{-1} = A$

- Let A be nxn square matrix:
- If A^{-1} exists:
- A is full rank: rank(A) = n
- A' is also invertible
- $(A^{-1})^{-1} = A$
- $(cA)^{-1} = c^{-1}A^{-1}$ for nonzero scalar k

- Let A be nxn square matrix:
- If A^{-1} exists:
- A is full rank: rank(A) = n
- A' is also invertible
- $(A^{-1})^{-1} = A$
- $(cA)^{-1} = c^{-1}A^{-1}$ for nonzero scalar k
- $(A')^{-1} = (A^{-1})'$

What is a matrix? Matrix Operations Transposition Matrix Inverse Special matrices OLS in Matrix Form

Special matrices

Special types of matrices

Some matricies get more love than others

Square matrix

Any nxn matrix (same number rows and columns)

$$\begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 4 \\ 2 & 3 & 2 \end{bmatrix}$$

Symmetric matrix

A square matrix that is the same as its transpose

$$\begin{bmatrix} 2 & 5 & 7 \\ 5 & 9 & 6 \\ 7 & 6 & 7 \end{bmatrix}$$

Diagonal matrix

A symmetric matrix with zeros everywhere but the main diagonal

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$

Scalar matrix

A diagonal matrix with the same number all along the diagonal

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Identity matrix

• A scalar matrix where the diagonal elements are 1.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• A scalar matrix where the diagonal elements are 1.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• A scalar matrix where the diagonal elements are 1.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• This is a super important type of matrix.

• A scalar matrix where the diagonal elements are 1.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- This is a super important type of matrix.
- It gets its own notation: I_n where n is the number of rows and columns

• A scalar matrix where the diagonal elements are 1.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- This is a super important type of matrix.
- It gets its own notation: I_n where n is the number of rows and columns
- Note that $I_n A = A$ and also $AI_n = A$

• Let's pretend that we know the true model

- Let's pretend that we know the true model
 - Y is nx1 column vector

- Let's pretend that we know the **true** model
 - Y is nx1 column vector
 - X is nxk(+1) matrix

- Let's pretend that we know the **true** model
 - Y is nx1 column vector
 - X is $n \times k(+1)$ matrix
 - β is kx1 column vector

- Let's pretend that we know the true model
 - Y is nx1 column vector
 - X is nxk(+1) matrix
 - β is kx1 column vector
 - E is nx1 column vector

- Let's pretend that we know the true model
 - Y is nx1 column vector
 - X is $n \times k(+1)$ matrix
 - β is kx1 column vector
 - E is nx1 column vector
- Therefore, we have:

- Let's pretend that we know the true model
 - Y is nx1 column vector
 - X is $n \times k(+1)$ matrix
 - β is kx1 column vector
 - E is nx1 column vector
- Therefore, we have:

- Let's pretend that we know the true model
 - Y is nx1 column vector
 - X is $n \times k(+1)$ matrix
 - β is kx1 column vector
 - E is nx1 column vector
- Therefore, we have:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1k} \\ 1 & x_{21} & x_{22} & \dots & x_{2k} \\ 1 & \vdots & \vdots & \dots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nk} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

Matrix form

$$Y = X\beta + E$$

• How to do that in matrix form?

- How to do that in matrix form?
- First, what is sum of squared residuals?

- How to do that in matrix form?
- First, what is sum of squared residuals?
- The residuals:

$$E = Y - X\hat{\beta}$$

- How to do that in matrix form?
- First, what is sum of squared residuals?
- The residuals:

$$E = Y - X\hat{\beta}$$

• Sum of squared residuals:

- How to do that in matrix form?
- First, what is sum of squared residuals?
- The residuals:

$$E = Y - X\hat{\beta}$$

• Sum of squared residuals:

(show why on board)

- How to do that in matrix form?
- First, what is sum of squared residuals?
- The residuals:

$$E = Y - X\hat{\beta}$$

• Sum of squared residuals:

- (show why on board)
- Alternatively,

$$E'E = (Y - X\hat{\beta})'(Y - X\hat{\beta})$$

$$= Y'Y - \hat{\beta}X'Y - Y'X\hat{\beta} + \hat{\beta}'X'X\hat{\beta}$$

$$= Y'Y - 2\hat{\beta}'X'Y + \hat{\beta}X'X\hat{\beta}$$

Remember:

$$E'E = Y'Y - 2\hat{\beta}'X'Y + \hat{\beta}X'X\hat{\beta}$$

Remember:

$$E'E = Y'Y - 2\hat{\beta}'X'Y + \hat{\beta}X'X\hat{\beta}$$

 \bullet The first derivative with respect to $\hat{\beta}$

$$\frac{\partial E'E}{\partial \hat{\beta}} = -2X'Y + 2X'X\hat{\beta} = 0$$

Remember:

$$E'E = Y'Y - 2\hat{\beta}'X'Y + \hat{\beta}X'X\hat{\beta}$$

 \bullet The first derivative with respect to $\hat{\beta}$

$$\frac{\partial E'E}{\partial \hat{\beta}} = -2X'Y + 2X'X\hat{\beta} = 0$$

 To check that this is a minimum, we check to make sure that the second derivative is positive

Remember:

$$E'E = Y'Y - 2\hat{\beta}'X'Y + \hat{\beta}X'X\hat{\beta}$$

 \bullet The first derivative with respect to $\hat{\beta}$

$$\frac{\partial E'E}{\partial \hat{\beta}} = -2X'Y + 2X'X\hat{\beta} = 0$$

- To check that this is a minimum, we check to make sure that the second derivative is positive
- The second derivative is 2X'X, which is positive definite so long as X is full rank

• Here ya go:

$$-2X'Y + 2X'X\hat{\beta} = 0$$

• Here ya go:

$$-2X'Y + 2X'X\hat{\beta} = 0$$

Move things around and divide by two:

$$X'Y = X'X\hat{\beta}$$

• Here ya go:

$$-2X'Y + 2X'X\hat{\beta} = 0$$

• Move things around and divide by two:

$$X'Y = X'X\hat{\beta}$$

• Premultiply each side by $(X'X)^{-1}$

$$(X'X)^{-1}X'Y = (X'X)^{-1}(X'X)\hat{\beta}$$

• Here ya go:

$$-2X'Y + 2X'X\hat{\beta} = 0$$

• Move things around and divide by two:

$$X'Y = X'X\hat{\beta}$$

• Premultiply each side by $(X'X)^{-1}$

$$(X'X)^{-1}X'Y = (X'X)^{-1}(X'X)\hat{\beta}$$

• We know that $(X'X)^{-1}(X'X) = I$

$$(X'X)^{-1}X'Y = I\hat{\beta}$$

• Here ya go:

$$-2X'Y + 2X'X\hat{\beta} = 0$$

• Move things around and divide by two:

$$X'Y = X'X\hat{\beta}$$

• Premultiply each side by $(X'X)^{-1}$

$$(X'X)^{-1}X'Y = (X'X)^{-1}(X'X)\hat{\beta}$$

• We know that $(X'X)^{-1}(X'X) = I$

$$(X'X)^{-1}X'Y = I\hat{\beta}$$

• And I is (kinda) like multiplying by 1 so :

$$(X'X)^{-1}X'Y = \hat{\beta}$$