Gruppe 3 Formale Systeme und Automaten

Phil Pützstück, 377247 Benedikt Gerlach, 376944 Sebastian Hackenberg, 377550

Hausaufgabe 11

Aufgabe 5

Aufgabe 6

a)

Wir markieren folgende Nichtterminale in angegebener Reihenfolge: C, A, D, G

Wir können keine weitern Nichtterminale markieren, da sie eine zirkuläre Abhängigkeit haben:

Um S zu markieren, müssten wir B oder F markiert haben.

Um B zu markieren, müssten wir S oder F markiert haben.

Um F zu markieren, müssten wir B markiert haben.

b) Insbesondere ist die Sprache damit leer, da S kein terminierendes Nichtterminal ist.

Aufgabe 7

a	A,B,C	S	A	S,B	A	$_{\mathrm{S,B}}$
	b	в,С		A	S	A
		c	С	S	A	S
			a	A,B,C	S	A
				b	в,С	
					c	С

\mathbf{c}	С			\mathbf{S}	A
	c	С	S	A	S
		a	A,B,C	S	A
			c	С	
				c	С

Damit gilt $abcabc \in L(\mathcal{G})$ und $ccacc \notin L(\mathcal{G})$.

Aufgabe 8

Sei eine kontextfreie Grammatik $\mathcal{G}=(N,\Sigma,P,S)$ gegeben. Wenn $|L(\mathcal{G})|=\infty$, so muss ein Wort $z\in L(\mathcal{G})$ mit $|z|\geq 2^{|N|+1}$ existieren, sodass der Ableitungsbaum von z mindestens Höhe $h\geq |N|+1$ hat, also eins der endlich vielen Nichtterminale mehr als einmal in der Ableitung von z vorkommt (Idee Pumping-Lemma). Andererseits haben wir nun endlich viele Nichtterminale und damit endlich viele Ableitungen, in denen jedes Nichtterminal höchstens ein mal vorkommt. Weiter gilt auch, dass wenn ein $z\in L(\mathcal{G})$ mit $|z|\geq n=2^{|N|+1}$ existiert (wobei n eben genau das n aus dem Pumping-Lemma ist), dass dann das Pumping Lemma uns einer Zerlegung liefert, welche wir insebsondere beliebig oft "pumpen" können, um unendlich viele verschiedene Wörter in $L(\mathcal{G})$ zu erhalten.

Insgesamt haben wir also gezeigt, dass:

$$\exists z \in L(\mathcal{G}) : |z| \ge 2^{|N|+1} \iff |L(\mathcal{G})| = \infty$$

Nun können wir wie folgt entscheiden, ob $L(\mathcal{G})$ zu einer gegebenen Grammatik \mathcal{G} unendlich ist: Es ist Σ endlich, also ist $\Sigma^n\Sigma^*$ ein regulärer Ausdruck, welcher alle Wörter über dem Eingabealphabeit mit mindestens Länge $n:=2^{|N|+1}$ erkennt. Dann können wir einen DFA \mathcal{A} erstellen mit $L(\mathcal{A})=L(\Sigma^n\Sigma^*)$. Weiter können wir aus der gegebenen Grammatik \mathcal{G} einen PDA \mathcal{B} mit $L(\mathcal{B})=L(\mathcal{G})$ erstellen, welcher mit leerem Zustand akzeptiert. Dann können wir den PDA \mathcal{C} erstellen, welcher die Produktkonstruktion der beiden darstellt. Also $L(\mathcal{C})=L(\mathcal{A})\cap L(\mathcal{B})$. Zu diesem können wir nun wieder eine kontextfreie Grammatik \mathcal{G}' erstellen, sodass $L(\mathcal{G}')=L(\mathcal{C})$. Ferner ist also $L(\mathcal{G}')=\{z\mid z\in L(\mathcal{G})\wedge |z|\geq n\}$. Wenn wir also mit dem Markierungsalgoritmus das Leerheitsproblem auf \mathcal{G}' lösen, so wissen wir, ob die Sprache $L(\mathcal{G})$ ein Wort der Länge $\geq n$ enthält. Nach dem obigen Beweis ist dann $L(\mathcal{G}')\neq\varnothing\Longrightarrow|L(\mathcal{G})|=\infty$.

Somit können wir mit dem angegebenen Algorithmus testen, ob die Sprache einer gegebenen kontextfreien Grammatik unendlich ist.