Devoir 10 IFT2125-A-H19

Student: Qiang Ye (20139927)

Date: 29 March 2019

mailto: samuel.ducharme@umontreal.ca (mailto:samuel.ducharme@umontreal.ca)

Question & Answer

Utiliser l'algorithme FFT pour calculer le produits suivant de deux polynômes

$$(x^3 - 3x + 1)(x^3 - 1x + 2)$$

en montrant dans les tableaux prévu toutes les itérations (utilisez ce qu'il faut, il se peut qu'il reste de la place inutilisée).

Mettez le résultat final - le polynôme obtenu - dans la boîte ci-dessous :

$$x^6 - 4x^4 + 3x^3 + 3x^2 - 7x + 2$$

Montrez ici votre travail:

1. Levecteur Ω

|--|

2. Les vecteurs initiaux:

1	0	0	0	-3	0	1	0
				Г			
2	0	0	0	- 1	0	1	0

3. Les itérations (transformées successives):

1	1	0	0	-3	-3	1	1	
								ĺ

			2123	-Qiang-re-devi	OII 10		
1	1	1	1	-2	-3 + i	-4	-3 - i
-1	$(1-2\sqrt{2})$ $-\sqrt{2}i$	1-4i	$(1+2\sqrt{2})$ $-\sqrt{2}i$	3	$(1+2\sqrt{2}) + \sqrt{2}i$	1+4i	$(1 - 2\sqrt{2}) + \sqrt{2}i$
		,					
2	2	0	0	-1	-1	1	1
2	2	2	2	0	-1+i	-2	-1-i
2	$2-\sqrt{2}$	2-2i	$2+\sqrt{2}$	2	$2+\sqrt{2}$	2+2i	$2-\sqrt{2}$
	1	1	1	T	1	1	1

4. La multiplication - la transformée du résultat (obtenue à partir des tranformées de la page précédente):

-2	$(6-5\sqrt{2})$ $+(2$	-6 - 10i	$(6+5\sqrt{2})$ $-(2$	6	$(6+5\sqrt{2})$ $+(2$	-6 + 10 <i>i</i>	$(6 - 5\sqrt{2})$ $+ (2\sqrt{2}$
	$-2\sqrt{2}i$		$+2\sqrt{2})i$		$+2\sqrt{2}i$		-2)i

5. La transformée inverse:

 Ω :

1	$\frac{1-i}{\sqrt{2}}$	-i	$\frac{-1-i}{\sqrt{2}}$	-1	$\frac{-1+i}{\sqrt{2}}$	i	$\frac{1+i}{\sqrt{2}}$	
---	------------------------	----	-------------------------	----	-------------------------	---	------------------------	--

Itération:

(Fisrt line is just the re-ordered Multiplication)

				o quality it dev			
-2	6	-6 - 10 <i>i</i>	-6 + 10 <i>i</i>	·	$(6+5\sqrt{2})$ $+(2$ $+2\sqrt{2})i$	·	$(6 - 5\sqrt{2})$ $+ (2\sqrt{2}$ $- 2)i$
4	-8	-12	-20 <i>i</i>	12 + 4 <i>i</i>	$-10\sqrt{2}$ $-4\sqrt{2}i$	12 – 4i	$10\sqrt{2}$ $-4\sqrt{2}i$
-8	-28	16	12	24	$-14\sqrt{2}(1 + i)$	8i	$-6\sqrt{2}(1$ $-i)$
16	-56	24	24	-32	0	8	0

6. Résultat:

(divide by 8)

2 -7 3 3 -4 0 1 0

▼ Verification

```
from cmath import cos, sin, pi
In [1]:
            from math import log2
          3
          4
             def re arange(a): \# len(a) = 2^k, where k \setminus in Z
          5
                 # there is a more efficient way to implement this using bit flipping
          6
                 if len(a) <= 2:
          7
                     return a
          8
                 b = [a[i] for i in range(0, len(a), 2)]
          9
                 c = [a[i+1] \text{ for } i \text{ in } range(0, len(a), 2)]
         10
                 return re_arange(b) + re_arange(c)
         11
         12
            def omega(n, k):
         13
                 return complex(cos(2*pi*k/n), sin(2*pi*k/n))
         14
         15
             def _FFT_Iter(arr, inv = False):
                 n = len(arr)#end - start # length, shouldbe <math>2^k
         16
         17
                 result = [None] * n
         18
                 if n == 0:
         19
                     return
         20
                 for k in range(n):
         21
                     k prime = k if k < n//2 else k - n//2
         22
                     k prime = -1 * k prime if inv else k prime
         23
                     if k < n//2:
         24
                         result[k] = arr[k] + omega(n, k prime) * arr[k+n//2]
         25
                     else:
         26
                         result[k] = arr[k-n//2] - omega(n, k prime) * arr[k]
         27
                 return result
         28
         29
            def FFT(arr, inv = False, verbose = True):
         30
         31
                 n = len(arr)
         32
                 arr = re arange(arr)
         33
                 if verbose:
         34
                     print("after re-order:{}\n".format(arr))
         35
                 n_{iter} = int(log2(n))
         36
                 for i in range(1, n_iter+1): # log(n)
         37
                     sub group len = pow(2, i)
                     n_sub_group = n // sub_group_len
         38
         39
                     for j in range(n sub group):
                         start, end = j*sub_group_len, (j+1)*sub_group_len
         40
         41
                         sub_group = arr[start : end]
         42
                         arr[start : end] = _FFT_Iter(sub_group, inv)
         43
         44
                         print("Iter{}: {}\n".format(i, arr))
         45
                 return arr
         46
         47
         48
            def FFT(arr, verbose = True):
         49
                 return _FFT(arr, inv = False, verbose = verbose)
         50
         51
         52
             def IFFT(arr, verbose = True):
         53
                 a = FFT(arr, inv = True, verbose = verbose)
                 n = len(a)
         54
         55
                 a over n = [a[i]/n for i in range(n)]
         56
                 return a over n
```

```
In [2]: 1 a = [1, -3, 0, 1, 0, 0, 0] b = [2, -1, 0, 1, 0, 0, 0]
```

```
In [3]:
                             1 \mid A, B = FFT(a), FFT(b)
                         after re-order:[1, 0, 0, 0, -3, 0, 1, 0]
                         Iter1: [(1+0j), (1+0j), 0j, 0j, (-3+0j), (-3+0j), (1+0j), (1+0j)]
                         Iter2: [(1+0j), (1+0j), (1+0j), (1+0j), (-2+0j), (-3+1j), (-4+0j), (-3-1j)]
                         Iter3: [(-1+0j), (-1.8284271247461903-1.414213562373095j), (0.999999999999998-4j), (3.828423562373095j)
                         00000002+4j), (-1.8284271247461898+1.4142135623730954j)]
                         after re-order: [2, 0, 0, 0, -1, 0, 1, 0]
                         Iter1: [(2+0j), (2+0j), 0j, 0j, (-1+0j), (-1+0j), (1+0j), (1+0j)]
                         Iter2: [(2+0j), (2+0j), (2+0j), (2+0j), 0j, (-0.9999999999999999999), (-2+0j), (-1-1j)]
                         Iter3: [(2+0j), (0.5857864376269051+2.220446049250313e-16j), (1.999999999999999929), (3.414
                         213562373095-1.1102230246251565e-16j), (2+0j), (3.414213562373095-2.220446049250313e-16j),
                         (2+2j), (0.5857864376269051+1.1102230246251565e-16j)]
                              1 C = [A[i]*B[i]  for i in range(len(A))]
In [4]:
                                     print(C)
                          j), (13.071067811865474-4.828427124746191<math>j), (6+0\bar{j}), (13.071067811865476+4.828427124746189)
                         i), (-6+10i), (-1.0710678118654755+0.8284271247461903i)]
In [5]:
                            1 c = IFFT(C)
                                     print(c)
                         after re-order:[(-2+0j), (6+0j), (-6.000000000000001-9.99999999999999), (-6+10j), (-1.0710
                         678118654753-0.8284271247461906j), (13.071067811865476+4.828427124746189j), (13.071067811865
                         474-4.828427124746191j), (-1.0710678118654755+0.8284271247461903j)]
                         Iter1: \ [(4+0j), \ (-8+0j), \ (-12+1.7763568394002505e-15j), \ (-8.881784197001252e-16-20j), \ (12+3.881784197001252e-16-20j), \ (12+3.8817841962e-16-20j), \ (12+3.8817841962e-16-20j), \ (12+3.8817841962e-16-20j), \ (12+3.8817841962e-16-20j), \ (12+3.8817841962e-16-20j), \ (
                         999999999999982j), (-14.142135623730951-5.65685424949238j), (11.9999999999998-4j), (14.14
                         213562373095-5.6568542494923815j)]
                         Iter2: [(-8+1.7763568394002505e-15j), (-28-3.36468379447228e-16j), (16-1.7763568394002505e-1
                         5j), (12+3.36468379447228e-16j), (24-1.7763568394002505e-15j), (-19.79898987322333-19.798989
                         873223327j), (1.7763568394002505e-15+7.9999999999999j), (-8.485281374238571+8.485281374238
                         57j)]
                         Iter3: [(16+0j), (-56-3.36468379447228e-16j), (24-3.0628549591415595e-15j), (24+2.1128252188
                         474783e-15j), (-32+3.552713678800501e-15j), -3.36468379447228e-16j, (8.000000000000002-4.898
                         587196589412e-16j), -1.4398884599530224e-15j]
                           \hspace{0.5cm}  \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm}
                         j), (-4+4.440892098500626e-16j), -4.20585474309035e-17j, (1.000000000000002-6.1232339957367
                         65e-17j), -1.799860574941278e-16j]
In [ ]:
                             1
```