SEMINAR 12

1) In the \mathbb{Q} -vector space \mathbb{Q}^3 we consider the vectors

$$a = (-2, 1, 3), b = (3, -2, -1), c = (1, -1, 2), d = (-5, 3, 4), e = (-9, 5, 10).$$

Does the following equality $\langle a, b \rangle = \langle c, d, e \rangle$ hold?

- 2) In the \mathbb{R} -vector space \mathbb{R}^4 one considers the subspaces:
- a) $S = \langle u_1, u_2 \rangle$, with $u_1 = (1, 1, 0, 0), u_2 = (1, 0, 1, 1),$ $T = \langle v_1, v_2 \rangle$, with $v_1 = (0, 0, 1, 1), v_2 = (0, 1, 1, 0);$
- b) $S = \langle u_1, u_2, u_3 \rangle$, with $u_1 = (1, 2, -1, -2)$, $u_2 = (3, 1, 1, 1)$, $u_3 = (-1, 0, 1, -1)$, $T = \langle v_1, v_2 \rangle$, with $v_1 = (-1, 2, -7, -3)$, $v_2 = (2, 5, -6, -5)$;
- c) $S = \langle u_1, u_2 \rangle$, with $u_1 = (1, 2, 1, 0), u_2 = (-1, 1, 1, 1),$ $T = \langle v_1, v_2 \rangle$, with $v_1 = (2, -1, 0, 1), v_2 = (1, -1, 3, 7);$
- d) $S = \langle u_1, u_2, u_3 \rangle$, with $u_1 = (1, 2, 1, -2)$, $u_2 = (2, 3, 1, 0)$, $u_3 = (1, 2, 2, -3)$, $T = \langle v_1, v_2, v_3 \rangle$, with $v_1 = (1, 1, 1, 1)$, $v_2 = (1, 0, 1, -1)$, $v_3 = (1, 3, 0, -3)$.

Find a basis and the dimension for each of the subspaces S, T, S+T and $S \cap T$.