Processing data "Iris" dengan metode klasifikasi menggunakan algoritma C5.0

1. Pengaturan lokasi directory

```
setwd("E:/Tugas_DM/Tugas_kelompok")
> setwd("E:/Tugas_DM/Tugas_kelompok")
```

2. baca data

```
plataset <- read.csv("iris.csv", sep = ";")
> dataset <- read.csv("iris.csv", sep = ";")</pre>
```

3. Pembuatan model decision tree menggunakan algoritman C5.0

```
model <- C5.0(Species ~., data=dataset)
> model <- C5.0(Species ~., data=dataset)</pre>
```

4. Melihat model

```
model

call:
    c5.0.formula(formula = Species ~ ., data = dataset)

Classification Tree
    Number of samples: 150
    Number of predictors: 4

Tree size: 4

Non-standard options: attempt to group attributes

summary(model)
```

```
> summary(model)
C5.0.formula(formula = Species ~ ., data = dataset)
C5.0 [Release 2.07 GPL Edition]
                                 Sun Nov 24 15:29:31 2019
Class specified by attribute `outcome'
Read 150 cases (5 attributes) from undefined.data
Decision tree:
Petal.Length <= 1.9: setosa (50)
Petal.Length > 1.9:
:...Petal.Width > 1.7: virginica (46/1)
   Petal.Width <= 1.7:
   :...Petal.Length <= 4.9: versicolor (48/1)
        Petal.Length > 4.9: virginica (6/2)
Evaluation on training data (150 cases):
           Decision Tree
          -----
         Size
                Errors
           4 4(2.7%) <<
          (a) (b) (c) <-classified as
           50
                            (a): class setosa
                 47 3 (b): class versicolor
1 49 (c): class virginica
       Attribute usage:
       100.00% Petal.Length
```

66.67% Petal.Width

5. Menampilkan pohon dari model yang sudah dibangun

plot(model)

6. Menjadikan dataset, sebagai data testing. Namun hanya kolom 1,2,3,4 saja, dan tanpa label

```
datatesting <- dataset[,1:4]
datatesting <- dataset[,1:4]</pre>
```

•	Sepal.Length [‡]	Sepal.Width	Petal.Length †	Petal.Width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
4	4.6	3.1	1.5	0.2
5	5.0	3.6	1.4	0.2
6	5.4	3.9	1.7	0.4
7	4.6	3.4	1.4	0.3
8	5.0	3.4	1.5	0.2
9	4.4	2.9	1.4	0.2
10	4.9	3.1	1.5	0.1
11	5.4	3.7	1.5	0.2
12	4.8	3.4	1.6	0.2
13	4.8	3.0	1.4	0.1
14	4.3	3.0	1.1	0.1
15	5.8	4.0	1.2	0.2

7. Membandingkan hasil prediksi dengan dataset

table(predictions, dataset\$Species)

```
> table(predictions, dataset$species)

predictions setosa versicolor virginica setosa 50 0 0 versicolor 0 47 1 virginica 0 3 49
```