Partial Differential Equations

(Semester II; Academic Year 2024-25)

Indian Statistical Institute, Bangalore

Instructor: Renjith Thazhathethil renjitht_pd@isibang.ac.in

Assignment - 4

Given Date: February 15, 2025

Number of questions: 5

Submission Date: February 15, 2025

Maximum Marks: 25

- 1. (Spherical Symmetry) Let R be a rotational matrix, that is $RR^t = I$, and u be harmonic in \mathbb{R}^n . Define v by v(x) = u(Rx). Show that v is harmonic in \mathbb{R}^n .
- 2. (Schwarz reflection principle) Let Ω be a domain in \mathbb{R}^2 symmetric about the x-axis and let $\Omega^+ = \{(x,y) : y > 0\}$ be the upper part. Assume $u \in C(\Omega^+)$ is harmonic in Ω^+ with u = 0 on $\partial \Omega^+ \cap \{y = 0\}$. Define

$$v(x,y) = \begin{cases} u(x,y), & y \ge 0, (x,y) \in \Omega, \\ -u(x,-y), & y < 0, (x,y) \in \Omega. \end{cases}$$

Show that v is harmonic.

3. (Harnack's inequality) Let $u \geq 0$ be harmonic in a domain Ω . Let $V \subset\subset \Omega$ be connected, open and let $d = d(V, \partial\Omega)$ be the distance from V to the boundary $\partial\Omega$. Use MVT in suitable open balls to prove that

$$2^n u(y) \ge u(x) \ge 2^{-n} u(y)$$

for all $x, y \in V$ satisfying $|x-y| \leq \frac{r}{4}$. Use this estimate to prove the following: There are constants $C_1, C_2 > 0$ depending on V such that

$$C_1 u(y) > u(x) > C_2 u(y)$$

for all $x, y \in V$.

- 4. (Harnack's Convergence Theorem) Let $u_n : \Omega \to \mathbb{R}$ be a monotonically increasing sequence of harmonic functions. If there exists $y \in \Omega$ for which the sequence $\{u_n(y)\}_{n\in\mathbb{N}}$ is bounded, then u_n converges on any $\Omega' \subset\subset \Omega$ uniformly to a harmonic function.
- 5. (Eigen Values) Consider the PDE $-\Delta u = \lambda u$ in Ω , u = 0 on $\partial \Omega$ where λ is a scalar and Ω is a bounded open set. If $\lambda \leq 0$, prove that $u \equiv 0$ and there is no non-trivial solution. (5)