

Analysis of the dataset of Indian Liver Patients

BY

Ashwin

Prasad

Shintu Mathew

Sreelalan S

Swaroop Murali

Indian Liver Patients

- Aim of this analysis is to develop a model for early detection of liver disorder from imbalance Liver Function Test
- The initial stage symptoms of the diseases are vague so the medical practitioners often fail to detect the disease. The model tries to improve the accuracy using various classification algorithms.

Sample Data

age	gender	ТВ	DB		alkphos	s sgpt	sgot	:	TP	ALE	3	A _.	_G	cla	SS	
	65 Female		0.7	0	1	187	16		18	6.8		3.3		0.9		1
	62 Male		10.9	5	5	699	64		100	7.5		3.2		0.74		1
	62 Male		7.3	4	1	490	60		68	7		3.3		0.89		1
	58 Male		1	0	4	182	14		20	6.8		3.4		1		1
	72 Male		3.9		2	195	27		59	7.3		2.4		0.4		1
	46 Male		1.8	0	7	208	19		14	7.6		4.4		1.3		1
	26 Female		0.9	0	2	154	16		12	7		3.5		1		1
	29 Female		0.9	0	3	202	14		11	6.7		3.6		1.1		1
	17 Male		0.9	0	3	202	22		19	7.4		4.1		1.2		2
	55 Male		0.7	0	2	290	53		58	6.8		3.4		1		1
	57 Male		0.6	0	1	210	51		59	5.9		2.7		0.8		1
	72 Male		2.7	1	3	260	31		56	7.4		3		0.6		1

EDA — Visualization of the data

```
In [110]:
           1 liver.info()
           2 #Describe gives statistical information about NUMERICAL columns in the dataset
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 583 entries, 0 to 582
          Data columns (total 11 columns):
                                        583 non-null int64
          Total Bilirubin
                                        583 non-null float64
          Direct Bilirubin
                                       583 non-null float64
          Alkaline Phosphotase
                                       583 non-null float64
          Alamine Aminotransferase
                                       583 non-null float64
         Aspartate_Aminotransferase
                                       583 non-null float64
          Total Protiens
                                        583 non-null float64
          Albumin
                                        583 non-null float64
          Albumin and Globulin Ratio
                                        583 non-null float64
                                        583 non-null float64
          class
          gender
                                        583 non-null int32
          dtypes: float64(9), int32(1), int64(1)
          memory usage: 47.9 KB
```

In [109]:

- 1 liver.describe()
- 2 #We can see that there are missing values for Albumin_and_Globulin_Ratio as only 579 entries have valid values indicating 4
- 3 #Gender has only 2 values Male/Female

Out[109]:

	age	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspartate_Aminotransferase	Total_Protiens	Albumin	Α
count	583.000000	583.000000	583.000000	583.000000	583.000000	583.000000	583.000000	583.000000	
mean	44.746141	3.298799	1.486106	290.576329	80.713551	109.910806	6.483190	3.141852	
std	16.189833	6.209522	2.808498	242.937989	182.620356	288.918529	1.085451	0.795519	
min	4.000000	0.400000	0.100000	63.000000	10.000000	10.000000	2.700000	0.900000	
25%	33.000000	0.800000	0.200000	175.500000	23.000000	25.000000	5.800000	2.600000	
50%	45.000000	1.000000	0.300000	208.000000	35.000000	42.000000	6.600000	3.100000	
75%	58.000000	2.600000	1.300000	298.000000	60.500000	87.000000	7.200000	3.800000	
max	90.000000	75.000000	19.700000	2110.000000	2000.000000	4929.000000	9.600000	5.500000	

Explanation of each feature

- Bilirubin is a substance made when body breaks down old red blood cells. Bilirubin is also part of bile, which liver makes to help digest the food.
- Alkaline phosphatase, or ALP, Aspartate transaminase, or AST and Alanine transaminase, or ALT are the enzymes which are found in the blood. They are present in higher quantity when the liver is damaged. They are leaked into the blood.
- Total protein, is a biochemical test for measuring the total amount of protein in the blood.
- Albumin is a protein made by the liver. Albumin helps keep fluid in the bloodstream so it doesn't leak into other tissues.
- Globulin. This is a group of proteins. Some of them are made by the liver.
 Others are made by immune system. They help fight infection and transport nutrients.

Number of patients diagnosed with liver disease: 416 Number of patients not diagnosed with liver disease: 167

Number of patients that are male: 142 Number of patients that are female: 441

greatlearning Learning for Life

	class	gender	age
2	2.0	0	50
3	2.0	1	117
0	1.0	0	92
1	1.0	1	324

Out[13]:

	class	gender	age
2	2.0	0	42.740000
3	2.0	1	40.598291
0	1.0	0	43.347826
1	1.0	1	46.950617

- 0.25

LOGISTIC REGRESSION

WITHOUT SCALING AND PCA

```
score 1.0
Accuray 0.7428571428571429
Confusion matrix
 [[120 9]
 [ 36 10]]
```

WITH SCALING AND PCA

```
score 1.0
Accuray 0.6495726495726496
Confusion matrix
 [[74 6]
 [35 2]]
```

KMEANS & Agglomerative

```
score 1.0
Accuray 1.0
Confusion matrix
 [[173 0]
 [ 0 2]]
score 1.0
Accuray 1.0
Confusion matrix
[[172 0]
 [ 0 3]]
```

```
score 1.0
Accuray 0.7371428571428571
Confusion matrix
[[129 0]
 [ 46 0]]
```


Decision tree (Entropy)

WITHOUT SCALING AND PCA

WITH SCALING AND PCA

```
score 1.0
Accuray 0.6571428571428571
Confusion matrix
 [[98 31]
 [29 17]]
```

```
score 1.0
Accuray 0.6324786324786325
Confusion matrix
 [[58 22]
 [21 16]]
```

KMEANS & Agglomerative

```
score 1.0
Accuray 0.6571428571428571
Confusion matrix
[[98 31]
[29 17]]
 score 1.0
 Accuray 1.0
 Confusion matrix
   [[172 0]
   [ 0 3]]
```

```
score 1.0
Accuray 0.7028571428571428
Confusion matrix
 [[101 28]
 [ 24 22]]
```


Decision tree (Gini)

WITHOUT SCALING AND PCA

WITH SCALING AND PCA

```
score 1.0
Accuray 0.6571428571428571
Confusion matrix
[[97 32]
[28 18]]
```

```
score 1.0
Accuray 0.6324786324786325
Confusion matrix
 [[57 23]
 [20 17]]
```

KMEANS & Agglomerative

```
score 1.0
Accuray 1.0
Confusion matrix
[[172 0]
[ 0 3]]
score 1.0
Accuray 1.0
Confusion matrix
[[172 0]
[ 0 3]]
```

```
score 1.0
Accuray 0.7028571428571428
Confusion matrix
[[103 26]
[ 26 20]]
```


Random Forest

WITHOUT SCALING AND PCA

WITH SCALING AND PCA

score 0.9085714285714286 Accuray 0.7314285714285714 Confusion matrix [[110 19] [28 18]]

score 1.0 Accuray 0.7028571428571428 Confusion matrix [[103 26] [26 20]]

KMEANS & Agglomerative

```
score 1.0
Accuray 0.9885714285714285
Confusion matrix
[[173 0]
[ 2 0]]
```

```
score 1.0
Accuray 0.9828571428571429
Confusion matrix
[[172 0]
[ 3 0]]
```

```
score 1.0
Accuray 0.7028571428571428
Confusion matrix
[[103 26]
[ 26 20]]
```


Naive Bayes

WITHOUT SCALING AND PCA

WITH SCALING AND PCA

```
score 1.0
Accuray 0.64
Confusion matrix
[[63 57]
[ 6 49]]
```

```
score 1.0
Accuray 0.5811965811965812
Confusion matrix
[[46 34]
[15 22]]
```

KMEANS & Agglomerative

```
score 1.0
Accuray 1.0
Confusion matrix
[[173 0]
[ 0 2]]
score 1.0
Accuray 1.0
Confusion matrix
[[172 0]
[ 0 3]]
```

```
score 0.9371428571428572
Accuray 0.6914285714285714
Confusion matrix
[[106 23]
[ 31 15]]
```


WITHOUT SCALING AND PCA

0.6857142857142857 0.7843137254901961 score 1.0 Accuray 0.6857142857142857

K neighbors

WITH SCALING AND PCA

```
score 1.0
Accuray 0.6068376068376068
Confusion matrix:
[[63 17]
[29 8]]
```

KMEANS & Agglomerative

```
score 1.0
Accuray 0.7085714285714285
Confusion matrix:
[[115 14]
[ 37 9]]
```

```
score 1.0
Accuray 0.7085714285714285
Confusion matrix:
[[115  14]
[ 37  9]]
```

```
score 1.0
Accuray 0.68
Confusion matrix:
[[109 20]
[ 36 10]]
```


Support Vector Machine

```
0.7521367521367521
Confusion matrix
[[88 0]
[29 0]]
```


Inference

- logistic regression accuracy is highest without scaling and PCA 0.74285
- Decision tree (entropy)accuracy is highest without scaling but with PCA -0.70285
- Decision tree (gini)accuracy is highest without scaling but with PCA -0.70285
- Random forest accuracy is highest without scaling and PCA 0.731
- Naive Bayes accuracy is highest without scaling but with PCA -0.6914
- K Neighbours accuracy is highest without scaling but with PCA -0.68
- Support Vector machine gives accuracy of 0.752136 but false negative is higher in the model and true negative is 0. This model for this dataset should be ignored.
- Overall, for this dataset, Logistic regression yields better accuracy with 0.74285