

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ И УПРАВЛЕНИЕ ПО ПРОГНОЗИРУЮЩЕЙ МОДЕЛИ ДЛЯ ЗАДАЧИ РОСТА ТЕХНОЛОГИЧЕСКОГО ПОСЛЕДОВАТЕЛЯ

Готовец Мария Алексеевна

М.А. Готовец Диплом, 2020 1 / 22

Цели работы

•

•

Задача оптимального роста технологического последователя

$$\begin{split} J(N^B,L_N^B) &= \int_0^\infty e^{-\rho^B t} \left\{ (\frac{1}{\alpha} - 1) l n N^B(t) + l n (L^B - L_N^B(t)) \right\} dt \to \max \\ \dot{N}^B(t) &= \frac{L_N^B}{a^B} (N^B(t) + \gamma N^A(t)), \ L_N^B(t) \in [0,L^B[\\ \dot{N}^A(t) &= g^A N^A(t) \\ N^A(0) &= N_0^A, \ N^B(0) = N_0^B \end{split}$$

где $g^A,\ L^B,\ a^B,\ \gamma>0,\ n_0^A>0,\ N_0^B>0$ — заданные начальные состояния.

М.А. Готовец Диплом, 2020 3 / 22

Задача оптимального роста технологического последователя

$$J(x,u) = \int_0^\infty e^{-\rho t} [\kappa \ln x(t) + \ln(b - u(t))] dt \to \max$$

$$\dot{x}(t) = u(t)(x(t) + \gamma y(t))$$

$$x(0) = x_0$$

$$\dot{y}(t) = \nu y(t)$$

$$y(0) = y_0, \ u(t) \in [0, b - \varepsilon]$$

где b, γ , ρ , ν , $\kappa > 0$, $\varepsilon > 0$, $\gamma < 1$; x_0 , $y_0 > 0$

Редуцированная задача

• Замена переменных с целью понижения размерности:

$$z(t) = \frac{x(t)}{y(t)}, \ t \ge 0, \ z_0 = \frac{x_0}{y_0}$$

• Редуцированная задача

$$I(z,u) = \int_0^\infty e^{-\rho t} [\kappa \ln z(t) + \ln(b - u(t))] dt \to \max$$

$$\dot{z}(t) = u(t)(z(t) + \gamma) - \nu z(t), \ z(0) = z_0$$

$$u(t) \in [0, b - \varepsilon], \ t \ge 0$$
(1)

 $z \in \mathbb{R}$ — состояние системы, $u \in \mathbb{R}$ — управление.

 Задача оптимального управления нелинейной системы с критерием Лагранджа.

Решение редуцированной задачи

- Типичные фазовые траектории решений гамильтоновой системы в неособых невырожденных случаях
- Гамильтоновая система:

$$\dot{z}(t) = (b-\nu)z(t) + b\gamma - \frac{1}{p(t)},$$

$$\dot{p}(t) = -(b-\nu-\rho)p(t) - \frac{\gamma\kappa + (\kappa+1)z(t)}{z(t) + \gamma)z(t)} p_1$$

$$h_{11}(z) = h_{12}(z)$$

Стабилизация нелинейной системы

Прогнозирующая задача оптимального управления

$$\mathcal{P}(t, x_t, T) = \int_t^{t+T} L(x(s), u(s), s) ds + W(t+T, x(t+T))$$

при условиях

$$\dot{x}(s) = f(x(s), u(s), s), \ x(t) = x_t$$
$$u(s) \in U(s), \ s \in [t, t+T]$$
$$x(t+T) \in S$$

- lacktriangle горизонт управления T
- $oldsymbol{\circ}$ функции текущей и конечной (терминальной) стоимостей L и W
- $oldsymbol{3}$ терминальное множество $S \subset \mathbb{R}^n$

Управление по прогнозирующей модели

Прогнозирующая задача оптимального управления

$$\mathcal{P}(t, x_t, T) = \int_t^{t+T} L(x(s), u(s), s) ds + W(t + T, x(t + T))$$

$$\dot{x}(s) = f(x(s), u(s), s), \ x(t) = x_t$$

$$u(s) \in U(s), \ s \in [t, t + T]$$

$$x(t + T) \in S$$

Алгоритм МРС

- **1** Измерить текущего состояния объекта x_{t_i} .
- f 2 Вычисляется оптимального (программного) управления $u^0(t)$, $t \in [t_i, t_i + T]$, задачи $\mathcal{P}(t_i, x_{t_i}, T)$.
- ullet Управление $u^*(t) := u^0(t)$ при $t \in [t_i, t_i + \delta]$ подается на вход объекта управления.
- **1** Процедура повторяется для следующего момента t_{i+1} .

Подход 1: Прогнозирующая задача для неограниченного ЕМРС

- В задаче (1) заменим бесконечный горизонт управления конечным
- Дополнительные условия на правый конец траектории не накладываем

$$I_{1}(z,u) = \int_{\tau}^{\tau+T} e^{-\rho t} \left[\kappa \ln z(t) + \ln(b - u(t))\right] dt \to \max$$

$$\dot{z}(t) = u(t)(z(t) + \gamma) - \nu z(t)$$

$$z(\tau) = \frac{x(\tau)}{y(\tau)}$$

$$u(t) \in [0, b - \varepsilon], \ t \in [\tau, \tau + T]$$

$$(2)$$

М.А. Готовец Диплом, 2020 9 / 22

Подход 2: с терминальным ограничением 🚺 🦳

- В прогнозирующую задачу добавим терминальное ограничение-равенство
- Потребуем, чтобы в терминальный момент состояние равнялось магистральному значению z_1

$$I_{2}(z,u) = \int_{t}^{t+T} e^{-\rho t} \left[\kappa \ln z(t) + \ln(b - u(t)) \right] dt \to \max$$

$$\dot{z}(t) = u(t)(z(t) + \gamma) - \nu z(t)$$

$$z(\tau) = \frac{x(\tau)}{y(\tau)}, \ z(\tau + T) = z_{1}$$

$$u(t) \in [0, b - \varepsilon], \ t \in [\tau, \tau + T]$$

$$(3)$$

М.А. Готовец Диплом, 2020 10 / 22

Подход 3: с терминальной стоимостью

- В прогнозирующую задачу добавим терминальную стоимость
- В качестве значения параметра α выберем соответствующее магистральное значение p_1

$$I_{3}(z,u) = \alpha e^{-\rho(\tau+T)} z(\tau+T) + \int_{t}^{t+T} e^{-\rho t} [\kappa \ln z(t) + \ln(b-u(t))] dt \to \max$$

$$\dot{z}(t) = u(t)(z(t) + \gamma) - \nu z(t)$$

$$z(\tau) = \frac{x(\tau)}{y(\tau)}$$

$$u(t) \in [0, b - \varepsilon], \ t \in [\tau, \tau + T]$$

$$(4)$$

М.А. Готовец Диплом, 2020 11 / 22

Подход 1: Программное решение

12 / 22

• Оптимальные траектории имеют продолжительные промежутки убывания и далеки от магистрали

Подход 2: Программное решение

• Участков убывания оптимальной траектории нет и значения уже ближе к магистральным, но время решения на 61% больше

Подход 3: Программное решение

14 / 22

• Участки убывания оптимальной траектории значительно сократились, значения стремятся к магистральным

М.А. Готовец Диплом, 2020

Сравнения программных решений в подходах 1-3

Параметры:

$$\gamma = 0.1, \ \nu = 0.5, \ b = 0.55, \ \rho = 0.15, \ \kappa = 1.5, \ z_0 = 0.1$$

М.А. Готовец Диплом, 2020 15 / 22

Подход 1: Неограниченный ЕМРС

- Оптимальные траектории задачи имеют продолжительные участки убывания
- При увеличении T с 10 до 30 с сохранением точности траектория достигает магистрали, однако время решения прогнозирующей задачи возрастает в 7.15 раз

Подход 2: EMPC с ограничениями-равенствами

17 / 22

Использование задачи с терминальным ограничением-равенством имеет два недостатка:

- трудоемкость решения задачи
- начальная недопустимость задачи с ограничением-равенством

Подход 3: ЕМРС с терминальной стоимостью

- Достигает магистрального значения
- Имеет решение при любом горизонте Т

М.А. Готовец Диплом, 2020 18 / 22

Терминальная стоимость

Общая прогнозирующая задача для ЕМРС с терминальной стоимостью

$$\min_{u} \int_{\tau}^{\tau+T} L(x(t), u(t))dt + W(x(\tau+T))$$

$$\dot{x}(t) = f(x(t), u(t)), \ x(\tau) = x_{\tau}$$

$$u(t) \in U, \ x(t) \in X, \ t \in [\tau, \tau+T]$$

Гамильтоновая система для прогнозирующей задачи в общем виде:

$$\dot{p} = -(\partial f(x(t), u(t))/\partial x)^T p(t) + \partial L(x(t), u(t))/\partial x$$

$$\dot{x}(t) = f(x(t), u(t)), t \in [\tau, \tau + T]$$

Необходимое условие трансверсальности:

$$p(\tau + T) = p_1$$

Выберем линейную терминальную стоимость $W(x) = p_1^T x$

• Тогда:

$$p(\tau + T) \equiv -\partial W(z(\tau + T))/\partial x = p_1$$

• Условия оптимальности имеют вид:

$$\partial L(x, u)/\partial x + (\partial f(x, u)/\partial x)^T \lambda = 0$$

 $f(x, u) = 0$

• Гамильтоновая система на магистральных значениях:

$$-(\partial f(z_1, u_1)/\partial x)^T p_1 + \partial L(z_1, u_1)/\partial x = 0$$
$$f(z_1, u_1) = 0$$

Сравнив гамильтонову систему с условиями оптимальности установим $p_1 = -\lambda_1$

$$W(x) = -\lambda_1^T x$$

В случае нашей задачи терминальная стоимость содержит ещё и ремонтирующий множитель

$$W(z(\tau+T)) = e^{-\rho(\tau+T)} p_1 z(\tau+T)$$

М.А. Готовец Диплом, 2020 20 / 22

Заключение

- Сравнивались три варианта ЕМРС
 - неограниченный ЕМРС
 - ▶ EMPC с терминальным ограничением типа равенства
 - ▶ EMPC с терминальной стоимостью
- Построено программное решение прогнозирующих задач оптимального роста технологического последователя для всех трех подходов
- Исследовались параметры, позволяющие получить решение асимптотически приближающие магистральное значение, установленное с помощью принципа максимума
- В результате численных экспериментов продемонстрировано преимущества третьего подхода
 - ▶ Простой вариант выбора терминальной стоимости
 - Задача оптимального управления проще с точки зрения численного решения
 - Задача проще с вычислительной точки зрения
 - lacktriangle Имеет решение при любом горизонте T

Спасибо за внимание!

М.А. Готовец Диплом, 2020 22 / 22