

FACULTY OF COMPUTER SCIENCE

CSCI 5408 – Data Management, Warehousing, and Analytics

Assignment 4

Angi Chen

B00838586

Instructor: Dr. Saurabh Dey

Date of submission: December 4, 2020

Business Intelligence Reporting using Cognos

1. Download the weather dataset on Kaggle [1]

2. & 3. Explore the dataset

Identify dimensions on selected data fields

On the website, we can easily get an idea about the general information about this dataset – it contains 17 climate parameters (continuous hourly values) from 122 weather stations in Southeast Brazil. Start with this, we classify that the data fields can be measured by 3 dimensions.

- Location dimension (8 fields)
 wsid, wsnm, elvt, lat, lon, inme, city, prov
- Time Dimension (6 fields)
 mdct, date, yr, mo, da, hr
- Weather Dimension (17 fields)

Prcp, stp, smax, smin, gbrd, temp, dewp, tmax, dmax, tmin, dmin, hmdy, hmax, hmin, wdsp, wdct, gust

Select the measurable fields

- Location dimension: State (Province), City, Station
- Time Dimension: Year, Month, Date, Hour
- Weather Dimension: Each **factor** can be divided into 3 ways: instant, max, min (Temperature, Humidity, Dew Point, Pressure, Wind, Solar Radiation, Precipitation)

Figure 1 Weather Parameters Classification

Possible scenarios

- On Time Dimension:

Hourly changes in a day → When is the hottest, wettest, windiest time in a day?

Monthly changes in a year → When is the hottest, wettest, windiest time during a year?

Yearly changes of one parameter at the same time of each year \rightarrow Trends of changes? Like global warming?

- On Location Dimension:

Where are these stations located?

What are the differences of same time data observed between these stations?

- On Weather Parameter Dimension:

What is the possible relationship between dew point and wind, or between temperature and atmospheric pressure?

These are some possible dimensions that a meteorologist may be interested in. The real concern will depend on the actual business domain.

4. Clean and format the dataset

df.isnull().sum()/df.info()

prcp	8371184	
stp	0	
smax	0	
smin	0	
gbrd	4108820	
temp	31	
dewp	475	
tmax	26	
dmax	310	
tmin	34	
dmin	807	
hmdy	0	
hmax	12	
hmin	44	
wdsp	925561	
wdct	0	
gust	316474	
dtype:	int64	

Figure 2 Before cleaning

Data	columns	(total	15 columns	s):
#	Column	Non-Nu1	ll Count	Dtype
0	wsnm	884920	non-null	object
1	lat	884920	non-null	float64
2	lon	884920	non-null	float64
3	city	884920	non-null	object
4	prov	884920	non-null	object
5	mdct	884920	non-null	object
6	yr	884920	non-null	int64
7	mo	884920	non-null	int64
8	da	884920	non-null	int64
9	hr	884920	non-null	float64
10	stp	884920	non-null	float64
11	temp	884920	non-null	float64
12	dewp	884920	non-null	float64
13	hmdy	884920	non-null	float64
14	wdct	884920	non-null	float64
dtypes: float64(8), int64(3), object(4)				
memory usage: 108.0+ MB				

Figure 3 After cleaning

Figure 4 Error info: file size exceeds

Since it is too slow to clean such a huge dataset with more than 9700000 records, also Cognos cannot deal with file exceeds 100 MB, so I decided to drop some rows and columns to make the file size less than 100MB.

The script doing all the simple clean-up can be found on GitLab – format.py.

https://git.cs.dal.ca/anqi/csci5408-a1-oceantracking/-/tree/master/A4

5. Create/import the dimension tables

Figure 5 The data file is imported

6. Justification of your model creation

As mentioned before, to create the data model, I want to have information on both Time and Location for the core weather data. After normalizing the dimensional tables, creating other csv, the star schema will be built like the screenshot shown below (Fig 6).

7. Screenshots of the model

Figure 6 Normalized Snowflake Schema

8. Screenshot of the analysis

Note: details of this part can also be seen in another file named "dashboard.pdf".

Figure 7 Dashboard Tab1 (Weather changes on Location, Time)

Figure 8 Dashboard Tab3 (Hourly weather changes on a specific day)

Basic Data Analysis and Presentation using R

- 1. Convert the value of tag "created_at" from String into Timestamps (numeric)
- 2. Data Preparation (rescale variables for comparability)
- 3. Determine the optimal number of clusters for k-means clustering

As the figure shown below (Fig 9), it seems 2 is the elbow point in the curve.

Figure 9 Finding optimal number of clusters

4. Plotting cluster images (K=2,3,4,5,6,7,8)

The script can be found on GitLab and in zipped file (KMeans.R)

To validate the KMeans clustering, I compute cluster validation statistics as below.

cluster.number	cluster.size	cluster.ceters	separation
2	1596 1596	1 -0.9764937	1.468462 1.468462
		2 0.9764937	
3	1197 399 1596	1 -0.8294241	0.3965278 1.468462 2.103508
		2 0.9764937	
		3 -1.1235634	
4	399 798 1197 798	1 -0.9764937	0.39652780 0.09682406 0.39652780
		2 0.9166095	0.09682406
		3 0.8014500	
		4 1.4107097	
5	399 399 399	1 -0.8294241	0.39652780 0.11636062 0.09682406
	1197 798	2 -1.1235634	0.39652780 0.09682406
		3 1.4107097	
		4 0.9166095	
		5 0.8014500	
6	399 599 399	1 0.9764937	0.116360620 0.004723125
	199 399 1197	2 -0.7555912	0.396527795 0.004723125 0.096824058 0.396527795
		3 -0.8448379	0.030024030 0.330327733
		4 -1.0374250	
		5 -0.8972834	
		6 -1.2097018	
7	199 318 170 798 599 709 399	1 0.8014500	0.004723125 0.000429375
		2 -1.0475964	0.002576250 0.096824058 0.004723125 0.000429375
		3 1.4107097	0.396527795
		4 -1.2097018	
		5 -1.0272025	
		6 0.9166095	
		7 -0.8294241	

8	315 84 882	1 0.8014500	0.0002146875 0.0004293750
	399 199 515	2 -0.8972834	0.0002146875 0.3965277952
	399 399		0.0047231248 0.0004293750
		3 1.4107097	0.1163606199 0.0968240583
		4 -0.8448379	
		5 -1.2097018	
		6 0.9166095	
		7 -1.0374250	
		8 -0.7555912	

Sentiment Analysis

1. Bag-of-words for Each Tweet

```
print (dict)
{'rt': 1, 'frank': 1, 'chimienti': 1, 'handfuls': 1, 'biden': 1, 'rally': 1,
'pa': 1, 'cars': 2, 'honking': 1, 'least': 1, 'trump': 1, 'voters': 1}
{'usually': 1, 'wicker': 1, 'furniture': 1, 'used': 1, 'outdoors': 1, 'porches':
1, 'decks': 1, 'using': 1, 'dining': 1, 'room': 1, 'table': 1}
{'underthewitness': 1, 'hi': 1, 'city': 1, 'law': 2, 'amp': 1, 'requires': 1,
'everyone': 1, 'wear': 1, 'mask': 1, 'face': 1, 'c': 1}
{'dawnroseturner': 1, 'bonjour': 1, 'unroll': 1, 'smillssk': 1, 'sk': 1,
'covid': 1, 'update': 1, 'new': 1, 'restrictions': 1, 'expansion': 1, 'mandat':
1}
{'rt': 1, 'fox': 1, 'dallas': 1, 'county': 1, 'issuing': 1, 'warning': 1,
'increase': 1, 'covid': 1, 'cases': 1, 'like': 1, 'never': 1, 'seen': 1,
'judge': 1, 'clay': 1, 'jenkins': 1, 'urged': 1, 'peop': 1}
{'rt': 1, 'fox': 1, 'dallas': 1, 'county': 1, 'issuing': 1, 'warning': 1,
'increase': 1, 'covid': 1, 'cases': 1, 'like': 1, 'never': 1, 'seen': 1,
'judge': 1, 'clay': 1, 'jenkins': 1, 'urged': 1, 'peop': 1}
{'spend': 1, 'weekend': 1, 'mulligans': 1, 'take': 1, 'advantage': 1,
'takeaway': 1, 'options': 1, 'heat': 1, 'serve': 1, 'dinner': 1, 'package': 1,
'includi': 1}
{'rt': 1, 'katinalynn': 1, 'please': 3, 'prioritize': 1, 'schools': 2, 'bars':
1, 'restaurants': 1, 'gyms': 1, 'far': 1, 'less': 1, 'transmission': 1}
{'rt': 1, 'fox': 1, 'dallas': 1, 'county': 1, 'issuing': 1, 'warning': 1,
'increase': 1, 'covid': 1, 'cases': 1, 'like': 1, 'never': 1, 'seen': 1,
'judge': 1, 'clay': 1, 'jenkins': 1, 'urged': 1, 'peop': 1}
{'rt': 1, 'fox': 1, 'dallas': 1, 'county': 1, 'issuing': 1, 'warning': 1,
'increase': 1, 'covid': 1, 'cases': 1, 'like': 1, 'never': 1, 'seen': 1,
'judge': 1, 'clay': 1, 'jenkins': 1, 'urged': 1, 'peop': 1}
{'current': 2, 'indoor': 1, 'temperature': 2, 'humidity': 1, 'forestville': 1,
'time': 1}
{'rt': 1, 'drericding': 1, 'breaking': 1, 'entire': 1, 'country': 1,
'coronavirus': 1, 'pandemic': 1, 'another': 1, 'new': 1, 'time': 1, 'record': 1,
```

Figure 10 Sample BOW of tweets

2. Positive.txt & Negative.txt

Online sources used [4].

3. Polarity Tags

[A	В	С	D
Tweet	Text	Match	Polarity
1	['rt', 'frank', 'chimienti', 'handfuls', 'biden', 'rally', 'pa	trump	positive
2	['usually', 'wicker', 'furniture', 'used', 'outdoors', 'por	ches', 'decks', 'using', 'dining', 'room', 'table']	neutral
3	['underthewitness', 'hi', 'city', 'law', 'amp', 'law', 'rec	uires', 'everyone', 'wear', 'mask', 'face', 'c']	neutral
4	['dawnroseturner', 'bonjour', 'unroll', 'smillssk', 'sk', '	covid', 'update', 'new', 'restrictions', 'expansion', 'mandat	neutral
5	['rt', 'fox', 'dallas', 'county', 'issuing', 'warning', 'incre	warning,like	neutral
6	['spend', 'weekend', 'mulligans', 'take', 'advantage', '	advantage	positive
7	['rt', 'katinalynn', 'please', 'please', 'please', 'prioritiz	e', 'schools', 'bars', 'restaurants', 'gyms', 'far', 'less', 'tran	neutral
8	['current', 'indoor', 'temperature', 'humidity', 'tempe	rature', 'forestville', 'current', 'time']	neutral
9	['rt', 'drericding', 'breaking', 'entire', 'country', 'coron	breaking	negative
10	['appletontech', 'journalsentinel', 'protests', 'outside'	protests, problems, selfish	negative
11	['rt', 'proflwiley', 'go', 'indoor', 'gym', 'dine', 'indoors'	risk	negative
12	['rt', 'titialayour', 'tunmiike', 'kastro', 'whatever', 'loc	cry	negative
13	['nygovcuomo', 'agreed', 'spreading', 'widely', 'schoo	risk,worsening	negative
14	['jim', 'jordan', 'differences', 'indoor', 'outdoor', 'wea	ring', 'mask', 'wearing', 'mask', 'indoor', 'maskless', 'gath	neutral
15	['deitymicrophone', 'bruh', 'get', 'every', 'wanted', 're	right	positive

Figure 11 Sample Polarity Results

More information can be found in the following appendix (after reference) and GitLab Repo.

- bagOfWords.ipynb
- sentimenta_analysis_result.csv

Semantic Analysis

1. TF-IDF on "Canada", "rain", "cold", "hot"

Table 1 Words Occurrence in New Articles

Search Query	Document	Total Documents(N)/ number	Log10(N/df)
	containing	of documents term appeared	
	term(df)	(df)	
Canada	25	40.0	1.6020599913279623
rain	85	11.764705882352942	1.0705810742857074
cold	1	1000.0	3.0
hot	7	142.85714285714286	2.154901959985743

2. Frequency Count of "Canada" per document

Α	В	С	D	Е
Article	Total Words	Frequency(f)	Relative Frequency (f/m)	
article111	105	2	0.066666667	
article213	194	1	0.036082474	
article261	58	1	0.120689655	
article279	254	3	0.027559055	
article320	39	2	0.179487179	
article357	448	1	0.015625	
article412	190	3	0.036842105	
article479	84	2	0.083333333	
article542	94	1	0.074468085	
article565	45	1	0.15555556	
article609	274	2	0.025547445	
article674	223	1	0.031390135	
article700	89	1	0.078651685	
article674	223	1	0.031390135	
article733	147	2	0.047619048	
article739	243	3	0.028806584	
article756	75	2	0.093333333	
article772	82	1	0.085365854	
article778	29	1	0.24137931	
article858	505	1	0.013861386	
article863	271	4	0.025830258	
article890	775	1	0.009032258	

Figure 12 Sample Result Table

3. News article with the highest relative frequency

It is article991 in reuster14.json, and f/m is 0.

More information can be found in the following appendix (after reference) and GitLab Repo.

- TF-IDF.ipynb
- semantic_analysis_results.csv

Reference

- [1] "Hourly Weather Surface Brazil (Southeast region)." https://kaggle.com/PROPPG-PPG/hourly-weather-surface-brazil-southeast-region.
- [2] "pandas.DataFrame pandas 1.1.4 documentation." https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html.
- [3] "Quick-R: Cluster Analysis." https://www.statmethods.net/advstats/cluster.html.
- [4] Bing Liu, Minqing Hu and Junsheng Cheng. "Opinion Observer: Analyzing and Comparing Opinions on the Web." Proceedings of the 14th International World Wide Web conference (WWW-2005), May 10-14, 2005, Chiba, Japan.
- [4] "An introduction to Bag of Words and how to code it in Python for NLP," freeCodeCamp.org, Dec. 18, 2018. https://www.freecodecamp.org/news/an-introduction-to-bag-of-words-and-how-to-code-it-in-python-for-nlp-282e87a9da04.
- [5] "(Tutorial) Simplifying Sentiment Analysis in Python," *DataCamp Community*, Jan. 07, 2020. https://www.datacamp.com/community/tutorials/simplifying-sentiment-analysis-python.
- [6] "Tutorial: Extracting Keywords with TF-IDF and Python's Scikit-Learn." https://kavita-ganesan.com/extracting-keywords-from-text-tfidf/#.X8vzARP0m8p.

bagOfWords

December 5, 2020

```
[1]: import glob
     import os
     import pandas as pd
[2]: inputfile = str(os.path.dirname(os.getcwd())) + "/A4/tweets/*.csv"
     outputfile = str(os.path.dirname(os.getcwd())) + "/A4/tweets/all.csv"
     csv_list = glob.glob(inputfile)
[3]: filepath = csv_list[0]
     df = pd.read_csv(filepath, encoding="gbk", low_memory=False)
     df = df.text
     df = df.to_csv(outputfile, encoding="gbk", index=False)
[4]: # Combine csv files and only select the text field, save into all.csv
     for i in range(1, len(csv_list)):
         filepath = csv list[i]
         df = pd.read_csv(filepath, encoding="gbk", low_memory=False)
         df = df.to_csv(outputfile, encoding="gbk", index=False, header=False,
      →mode='a+')
[5]: # Change Dtype to String, Drop duplicated rows
     import pandas as pd
     import re
     data = pd.read_csv("tweets/all.csv")
     data['text'] = data['text'].astype('string')
     data.drop_duplicates(inplace=True)
[6]: # Download stopwords from NLTK
     from nltk import download
     download('stopwords')
     from nltk.corpus import stopwords
     stop_words = set(stopwords.words('english'))
    [nltk_data] Downloading package stopwords to
    [nltk data]
                    /Users/chenanqi/nltk_data...
    [nltk_data]
                  Package stopwords is already up-to-date!
```

```
[7]: # Clean Data
      def text_cleaner(text):
          new_string = text.lower() #lower case
          new_string = re.sub(r'\([^)]*\)', '', new_string)
          new_string = re.sub('"','', new_string)
          new_string = re.sub(r"'s\b","",new_string) # delete 's in the text
          new_string = re.sub("[^a-zA-Z]", " ", new_string) # Change punctuation into⊔
       →a single space
          new_string = re.sub('[m]{2,}', 'mm', new_string)
          cleaned_text = [w for w in new_string.split() if w not in stop_words]
          return cleaned_text
 [8]: # Collect cleaned texts, save them into another column
      words = []
      for t in data['text']:
          word = text cleaner(t)
          words.append(word)
 [9]: data['cleaned_text'] = words
      # data['cleaned_text'] = data['cleaned_text'].astype('string')
      data['cleaned text'][:5]
 [9]: 0
           [rt, frank, chimienti, handfuls, biden, rally,...
      1
           [usually, wicker, furniture, used, outdoors, p...
           [underthewitness, hi, city, law, amp, law, req...
           [dawnroseturner, bonjour, unroll, smillssk, sk...
      3
           [rt, fox, dallas, county, issuing, warning, in...
      Name: cleaned_text, dtype: object
[10]: data.info()
     <class 'pandas.core.frame.DataFrame'>
     Int64Index: 2185 entries, 0 to 4787
     Data columns (total 2 columns):
          Column
                        Non-Null Count Dtype
                        2185 non-null
                                         string
          cleaned text 2185 non-null object
     dtypes: object(1), string(1)
     memory usage: 51.2+ KB
[11]: for r in data['cleaned_text']:
          dict = \{\}
          for w in r:
              dict[w] = dict.get(w, 0) + 1
            print (dict)
```

```
[12]: pWords = open("polarity/positive-words.txt", "r")
      pWordsRead = pWords.read()
      pWList = pWordsRead.split("\n")
      nWords = open("polarity/negative-words.txt", "r")
      nWordsRead = nWords.read()
      nWList = nWordsRead.split("\n")
[13]: def polarity_check(row):
          dict = \{\}
          for w in row:
              dict[w] = dict.get(w, 0) + 1
          positive = 0
          negative = 0
          match = []
          for key in dict:
              if key in pWList:
                  # count positive words
                  positive += dict[key]
                  match.append(key)
              elif key in nWList:
                  # count negative words
                  negative += dict[key]
                  match.append(key)
          if negative < positive:</pre>
              polarity = "positive"
          elif negative == positive:
              polarity = "neutral"
          else:
              polarity = "negative"
          return match, polarity
[14]: import csv
      result_csv = open("sentiment_analysis_results.csv", "w+", newline='', u
      →encoding="utf-8")
      result_csv = csv.writer(result_csv, delimiter=',', quotechar='"', quoting = csv.
      →QUOTE_MINIMAL)
      result_csv.writerow(['Tweet', 'Text', 'Match', 'Polarity'])
      cnt = 0
      for row_text in data['cleaned_text']:
          cnt += 1
          match, polarity = polarity_check(row_text)
          result_csv.writerow([cnt, row_text, ','.join(match), polarity])
```

[]:[

TF-IDF

December 5, 2020

[1]: import pandas as pd

```
df=pd.read_json("data/reuster.json")
     print("Schema:\n",df.dtypes)
    Schema:
     _id
               object
               object
    article
               object
    reuters
    text
               object
    title
               object
    dtype: object
[2]: import re
     def pre_process(text):
        text=text.lower() # lowercase
         text=re.sub("","",text) #remove tags
         text=re.sub("(\d|\W)+"," ",text) # remove special characters and digits
         return text
     df['text'] = df['text'].apply(lambda x:pre_process(x))
     df['text'][:1]
          title johannesburg gold shares close mixed to...
[2]: 0
     Name: text, dtype: object
[3]: import math
     def wordCounter(word):
         count = 0
         for t in df['text']:
             if t.count(word) > 0:
                 count += 1
         return count
     words = ['canada', 'rain', 'cold', 'hot']
     N=1000
     for w in words:
         count = wordCounter(w)
```

```
print(w)
         print("df: " + str(count))
         if count != 0:
             tmp = N / count
             print("N/df: " + str(tmp))
             print("Log10(N/df):" + str(math.log10(tmp))+"\n")
    canada
    df: 25
    N/df: 40.0
    Log10(N/df):1.6020599913279623
    rain
    df: 85
    N/df: 11.764705882352942
    Log10(N/df):1.0705810742857074
    cold
    df: 1
    N/df: 1000.0
    Log10(N/df):3.0
    hot
    df: 7
    N/df: 142.85714285714286
    Log10(N/df):2.154901959985743
[4]: resultList=[]
    maxRF = 0
     word = "canada"
     for t in df['text']:
         cnt = 0
         total = t.split()
         if t.count(word) > 0:
             cnt += len(re.findall(word, t))
             relativeFreq = count /len(total)
             articleName=df.loc[df['text']==t, 'article'].values[0]
             res = [str(articleName), str(len(total)), str(cnt), str(relativeFreq)]
             resultList.append(res)
             if maxRF < relativeFreq:</pre>
                 maxRF = relativeFreq
                 target =articleName
     resultList
```

```
[4]: [['article111', '105', '2', '0.0666666666666667'],
      ['article213', '194', '1', '0.03608247422680412'],
      ['article261', '58', '1', '0.1206896551724138'],
      ['article279', '254', '3', '0.027559055118110236'],
      ['article320', '39', '2', '0.1794871794871795'],
      ['article357', '448', '1', '0.015625'],
      ['article412', '190', '3', '0.03684210526315789'],
      ['article479', '84', '2', '0.08333333333333333],
      ['article542', '94', '1', '0.07446808510638298'],
      ['article565', '45', '1', '0.155555555555555555],
      ['article609', '274', '2', '0.025547445255474453'],
      ['article674', '223', '1', '0.03139013452914798'],
      ['article700', '89', '1', '0.07865168539325842'],
      ['article674', '223', '1', '0.03139013452914798'],
      ['article733', '147', '2', '0.047619047619047616'],
      ['article739', '243', '3', '0.02880658436213992'],
      ['article756', '75', '2', '0.0933333333333333333],
      ['article772', '82', '1', '0.08536585365853659'],
      ['article778', '29', '1', '0.2413793103448276'],
      ['article858', '505', '1', '0.013861386138613862'],
      ['article863', '271', '4', '0.025830258302583026'],
      ['article890', '775', '1', '0.00903225806451613'],
      ['article927', '98', '1', '0.07142857142857142'],
      ['article987', '372', '1', '0.01881720430107527'],
      ['article991', '14', '1', '0.5']]
[5]: target
[5]: 'article991'
[6]:
    maxRF
[6]: 0.5
[7]: import csv
     # write csv file
     semantic_csv = open("semantic_analysis_results.csv", "w+", newline='',_
     semantic_csv = csv.writer(semantic_csv, delimiter=',', quotechar='"',_
     →quoting=csv.QUOTE_MINIMAL)
     semantic_csv.writerow(['Article', 'Total Words(m)', 'Frequency(f)', 'Relative_
     →Frequency (f/m)'])
     for result in resultList:
         semantic_csv.writerow([result[0], result[1], result[2], result[3]])
[]:
```