1 nalen

 $x \in A, x \in B$ -ע נראה ש- $x \in C$ יהי יהי הכלה בכיוון אחד:

 $(x,x) \in C \times C$ מכאן ומהנתון בשאלה: מכיוון ש- אז מהגדרת מכפלה קרטזית, מכיוון ש-

 $(x,x) \in (B \times A)$ או $(x,x) \in (A \times B)$, מהגדרת איחוד $(x,x) \in (A \times B) \cup (B \times A)$

 $C \subseteq A, B$ נפיכך $X \in B$ וגם $X \in A$ בכל מקרה, מהגדרת מכפלה מקבלים

 $x \in C$ - נראה של, $x \in A$ יהי שני: הכלה בכיוון שני

מכיוון שנתון ש- B אינה ריקה, יהי $y \in B$ יהי , לכן מהגדרת איחוד,

מכפלה מכפלה , $(x,y) \in C \times C$, מכאן ומהנתון בשאלה . $(x,y) \in (A \times B) \cup (B \times A)$

 $A,B\subseteq C$ בפרט לפיכך - בדומה. $x\in C$ בפרט . $x\in C$

משני הכיוונים מתקבל השוויון המבוקש.

אז לכל $A=C=\varnothing$ אז למשל היא חיונית: אם למשל אינן ריקות היא A,B אינן השלה בשאלה ההנחה

! יתקיים: $\varnothing = C \times C$ במקרה זה , $(A \times B) \cup (B \times A) = \varnothing = C \times C$: יתקיים

יש לשים לב שאכן אנו משתמשים בהוכחה בהנחה ששתי הקבוצות אינן ריקות, אחרת יסתבר

שייהוכחנויי טענה שאינה נכונה! זו הסיבה לכך שהוכחת הכיוון השני נוסחה בזהירות, ולא

B-ו A ויבמכה אחתיי עבור

.(! השלימו הפרטים י) $C=\varnothing$, $A=B=\{1\}$ יקטנהיי: ב. לא נכון. דוגמא נגדית ייקטנהיי:

. אינה ריקה אינה C אינה דוגמאות שבהן

ראו גם אתר הקורס, שאלוני רב-ברירה, שאלון ייתורת הקבוצות - יחסיםיי, שאלה 2.

2 nalen

. א. דוגמא נגדית: $\emptyset = \emptyset$ כאשר $A \neq \emptyset$ כלשהי

. $R = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $A = \{1,2\}$: דוגמא אחרת

ב. כיוון אחד:

. $(a,a) \in RR^{-1}$ - עלינו להראות ש. Domain(R) = A

 $(a,b) \in R$ המקיים $b \in A$ המקיים , $a \in Domain(R)$ בפרט , Domain(R) = A

. $(b,a) \in R^{-1}$, מהגדרת היחס ההפוך

. כמבוקש (a,a) $\in RR^{-1}$ כמבוקש מכאן, מהגדרת כפל יחסים,

. Domain(R) = A נוכיח RR^{-1} רפלקסיבית, נוכיח

. $(a,a) \in RR^{-1}$, רפלקסיבית, RR^{-1} -ש מכיוון ש

. $(b,a)\in R^{-1}$, $(a,b)\in R$ המקיים $b\in A$ היים, קיים, כלומר, לפי הגדרת כפל יחסים, קיים $a\in \mathrm{Domain}(R)$, $(a,b)\in R$ בפרט

נ. יחס הוא סימטרי אםיים הוא שווה ליחס ההפוך לו (רי הגדרת יחס סימטרי).

. $(RS)^{-1} = S^{-1}R^{-1}$ לפי שאלה 2.8 בעמי 40 בספר, כללית,

מכאן:
$$(RR^{-1})^{-1} = (R^{-1})^{-1}R^{-1} = RR^{-1}$$
 : מכאן

 $R=\{(n,n+1)\mid n\in\mathbb{N}\}$ ניקח, $A=\mathbb{N}$ ד.

(אגב, היחס R הנ"ל הוא גם פונקציה. בכתיב של פונקציות: R(n) = n + 1).

(השלימו: הוכיחו זאת עייי הכלה דו-כיוונית!) $RR^{-1} = I_{\mathbb{N}}$ אז

(! אד באופן דומה) אך $R^{-1}R = \{(n,n) \mid 1 \leq n \in \mathbb{N}\} \neq I_{\mathbb{N}}$

3 nalen

۸.

- $(n,n)\in R$ הפלקסיבי: לכל אורית, כלומר n , $n\in\mathbb{N}-\{0\}$ לכל R *
 - . $(1,2) \notin R$ אך $(2,1) \in R$ אינו סימטרי: למשל R *

מכיון ש- R אינו סימטרי, הוא אינו יחס שקילות.

m - או אנטי-סימטרי: לכל m - אם m מתחלק ב- n וגם n מתחלק ב- n אז n=m אז n=m (תכונה ידועה. אפשר להוכיח אותה למשל מתוך כך שאם m מתחלק ב- n אז $n\leq m$, והיחס m

שימו לב שמתוך כך ש- R אנטי-סימטרי לא נובע שהוא אינו סימטרי!

ראו דוגמאות בעניין זה בשאלון רב-ברירה בנושא יחסים, באתר הקורס.

עבור a טבעי חיובי כלשהו. m מתחלק ב- n משמע n משמע n אם m מתחלק ב- n משמע n עבור n עבור n טבעי חיובי כלשהו.

. k - ביחד נקבל m מתחלק הא טבעי שונה מאפס, לכן הוא טבעי שונה $b \cdot a$. $m = k \cdot b \cdot a$

ב. מהגדרת S ומתכונות ידועות של כפל במספרים ממשיים, $(x,y) \in S$ אם "ם עלי בעלי מחלקים מאפס השונים מאפס ושניהם חיוביים או שניהם שליליים). נחלק אפוא את הממשיים השונים מאפס לשתי מחלקות: חיוביים ושליליים. כאמור, $(x,y) \in S$ אם "ם עייכים לאותה מחלקה של החלוקה הנ"ל.

 $^{\circ}$ כעת, לפי משפט 2.19 בעמ׳ 61 בספר, S הוא יחס שקילות, המתאים לחלוקה זו

לכן הוא רפלקסיבי, סימטרי וטרנזיטיבי. שימו לב שלא בדקנו את 3 התכונות המאפיינות יחס שקילות, אלא הוכחנו שזהו יחס שקילות ע"י כך שמצאנו חלוקה שמשרה אותו. זוהי דרך לגיטימית לגמרי.

 $1 \neq 2$ -ו $(2,1) \in S$, $(1,2) \in S$ ו- $(2,1) \in S$ לסיום הסעיף, S אינו אנטי-סימטרי כי

4 22167

- $R=I_A\cup\{(1,2)\,,(1,3)\}=\{(1,1)\,,(2,2)\,,(3,3)\,,(1,2)\,,(1,3)\}$ א. $R\cup R^{-1}=I_A\cup\{(1,2)\,,(1,3)\,,(2,1)\,,(3,1)\}$ מתקיים:
- . (3,2) אבל לא נמצא בו (1,2) ו- (3,1) אינו טרנזיטיבי כי נמצאים בו אינו $R \cup R^{-1}$
- ב. Rרפלקסיבית גם R^{-1} רפלקסיבית גם Rרפלקסיבית. ב. $I_A\subseteq R\cap R^{-1}$ רפלקסיבית גם $I_A\subseteq R\cap R^{-1}$ מכאן ומהגדרת רפלקסיביות, $I_A\subseteq R\cap R^{-1}$ וגם $I_A\subseteq R\cap R^{-1}$ לפיכך $R\cap R^{-1}$ רפלקסיבית.

 $R(R\cap S)^{-1}=R^{-1}\cap S^{-1}$, בספר, 2 בעמי 2.6 בסני שאלה לפי שאלה 1.6 בעמי 36 בסני

 $R \cap R^{-1}$ - $R \cap R^{-1} \cap R$ - $R \cap R^{-1} \cap R$ - $R \cap R^{-1} \cap R$ בפרט, לכל רלציה

. היא סימטרית אפי היא $R \cap R^{-1}$ היא סימטרית רלציה הגדרת לפי הגדרת משמע, לפי

 R^{-1} טרנזיטיביות: לפי שאלה 2.29 א בעמי 53 בספר, אם R טרנזיטיבית אז כך גם טרנזיטיבית. מכאן, לפי שאלה 2.30 ג באותו העמוד, נקבל כי גם $R \cap R^{-1}$ היא טרנזיטיבית.

- . מהגדרת E שני איברים של A השייכים לאותה מחלקה עומדים ביחס E זה לזה, ושני איברים של A שאינם באותה מחלקה אינם עומדים ביחס E זה לזה ושני איברים של E שאינם באותה מחלקה אינם עומדים ביחס E המחלקות, לכן, אם נרשום E באותה E באות המחלקות המחל

$$|E| = |A_1 \times A_1| + |A_2 \times A_2| + |A_3 \times A_3| + |A_4 \times A_4| + |A_5 \times A_5|$$

=1² + 2² + 2² + 3² + 3² = 27

ראו בעניין זה גם החוברת ייאוסף תרגילים פתוריםיי עמי 4 שאלה 4ב.

איתי הראבן