<u>МФТИ</u>.

МОДЕЛИ ARIMA

$$y_t = lpha + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + arepsilon_t + \\ + heta_1 arepsilon_{t-1} + \dots + heta_q arepsilon_{t-q}$$

lacksquare Теорема Вольда: любой стационарный ряд может быть описан моделью ARMA(p,q)

Модель ARIMA(p,d,q) — модель ARMA(p,q) для d раз продифференцированного ряда

> Модель ARIMA(0,1,0):

- ightharpoonup Пусть ряд имеет сезонный период длины S
- $lacksymbol{
 ho}$ Возьмём модель ARMA(p,q):

$$y_t = lpha + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + arepsilon_t + heta_1 arepsilon_{t-1} + \ + \dots + heta_q arepsilon_{t-q}$$

ightarrow и добавим $oldsymbol{P}$ авторегрессионных компонент:

$$+\phi_S y_{t-S} + \phi_{2S} y_{t-2S} + \dots + \phi_{PS} y_{t-PS}$$

) и *Q* компонент скользящего среднего:

$$+\theta_S \varepsilon_{t-S} + \theta_{2S} \varepsilon_{t-2S} + \dots + \theta_{PS} \varepsilon_{t-PS}$$

 $m{
ho}$ Это модель $SARMA(p,\overline{q}) imes (\overline{P,Q})$

Модель SARIMA(p,d,q) imes(P,D,Q) — модель SARMA(p,q) imes(P,Q) для ряда, к которому d раз было применено обычное дифференцирование и D раз — сезонное

 $lacksymbol{>}$ Критерий Дики-Фуллера: p=0.2265

- ightharpoonup После преобразования Бокса-Кокса с $\lambda=0.22$:
- ightarrow Критерий Дики-Фуллера: p=0.1661

- > После сезонного дифференцирования:
- ightarrow Критерий Дики-Фуллера: p=0.01

lacksquare Модель ARMA(2,2) для перобразованного ряда:

 $m{N}$ Модель SARIMA(2,0,2) imes(0,1,0) с преобразованием Бокса-Кокса:

> Остатки регрессий на время:

> Остатки построенной модели:

РЕЗЮМЕ

<u>\МФТИ</u>

ARIMA — класс моделей, описывающих произвольные временные ряды

ДАЛЕЕ В ПРОГРАММЕ

<u> ∫ифти</u>

Как подбирать параметры моделей?