Global Ecology and Biogeography

A Mac

Sylvan Seeds, a database and shiny app to explore the seed germination ecology of the temperate broadleaf and mixed forest biome

Journal:	Global Ecology and Biogeography
Manuscript ID	Draft
Manuscript Type:	Data Paper
Keywords:	temperate deciduous forests, seed traits, germination database, seed dormancy, germination temperature, alternating temperatures, light germination, dark germination, temperate evergreen forests, temperate coniferous forests

SCHOLARONE™ Manuscripts

- 1 Title: Sylvan Seeds, a database and shiny app to explore the seed germination ecology of the
- 2 temperate broadleaf and mixed forest biome
- 3 Running title: Sylvan Seeds, a forest germination database

4 Abstract

- 5 Motivation Recent discussion on the utility of seed traits in ecology has highlighted the
- 6 unavailability of reliable germination databases of wide geographical scope. This data paper
- 7 presents a first global dataset of raw germination data, encompassing an ecologically and
- 8 biogeographically coherent unit: the Temperate Broadleaf and Mixed Forests biome as defined
- 9 by the World Wildlife Fund. Data has been gathered using a meta-analytical approach to search
- the literature.
- 11 Main types of variable contained Proportion of seeds germinated in different experimental
- 12 combinations of scarification, stratification, light or darkness, constant or alternating
- 13 germination temperatures.
- 14 Spatial location and grain Seed lots collected across the biome and beyond, provided with
- approximate geographical coordinates in decimal degrees.
- 16 Time period and grain Seed lots collected between 1920 and today.
- 17 Major taxa and level of measurement 326 frequent species of the biome, representing 74
- families of seed plants (gymnosperms and angiosperms).
- 19 Software format The database is provided as a single csv file. A shiny web app, Sylvan Seeds, has
- 20 been written to explore the database and make it accessible to the wide public.
- **Keywords:** temperate deciduous forests, temperate evergreen forests, temperate coniferous
- 22 forests, seed traits, germination database, seed dormancy, germination temperature,
- 23 alternating temperatures, light germination, dark germination

24 Introduction

- 25 Recent discussion on the utility of seed traits in ecology has highlighted the unavailability of
- 26 reliable germination databases of wide geographical scope (Jiménez-Alfaro, Silveira, Fidelis,
- 27 Poschlod, & Commander, 2016; Saatkamp et al., 2019). Germination is a complex transition of
- 28 plant life which is driven by a combination of environmental signals. Amongst these are
- 29 temperature (Fernández-Pascual, Mattana, & Pritchard, 2019), diurnal temperature alternation
- 30 (Thompson, Mason, & Grime, 1977), light (Carta, Skourti, Mattana, Vandelook, & Thanos, 2017)
- and seed dormancy inductors and relievers (Finch-Savage & Leubner-Metzger, 2006). All these

signals interact to produce a coarse- and fine-scale regulation of germination timing, integrating inputs from both seasonal climatic cycles (Jurado & Flores, 2005) and local environmental gradients (Fernández-Pascual, Pérez-Arcoiza, Prieto, & Díaz, 2017). The practical consequence of this is that the response of seeds to - for example - light will depend on other conditions set by the experimenter. This makes it difficult to summarise germination "traits" into a single value in a way comparable to seed mass, specific leaf area or plant height (Pérez-Harguindeguy et al., 2013). Another complication of germination "traits" is that they are most frequently reported as a proportion, i.e. a number of seeds germinated out of seeds sown, which implies a set of derived complications in the analytical treatment of the data (Stijnen, Hamza, & Özdemir, 2010). These technical considerations may explain the scarcity of global germination databases. Germination compilations with a biogeographical background, of which the prime example today is the cornerstone book of C. C. Baskin and Baskin (2014), only provide summary information, for instance the interpreted optimal germination temperature instead of the proportion of seeds germinated at this and that temperature. For this reason, this data paper compiles a first global dataset of raw germination data for an ecologically and biogeographically coherent unit: the Temperate Broadleaf and Mixed Forests biome as defined by the World Wildlife Fund classification of terrestrial ecoregions (Olson et al., 2001). This biome was chosen because it is the home of many of the classical research groups in seed ecology, and therefore it can be expected to provide the widest scope of available data. As a methodology to gather data, a meta-analytical approach (Koricheva, Gurevitch, & Mengersen, 2013) was taken to search the literature for a list of frequent species representing the flora of

Methods

Seeds) developed to explore the data.

- 56 Species list
- 57 A list of species for which to search germination data was created using vegetation relevés.

the biome. The database is made accessible both as the full file and as a shiny web app (Sylvan

- 58 These relevés were provided by sPlot (Bruelheide et al., 2019), specifically by sPlot's project #12.
- 59 They had been recorded in 17 ecoregions of the Temperate Broadleaf and Mixed Forests biome
- 60 (Appalachian mixed mesophytic forests, Atlantic mixed forests, Cantabrian mixed forests,
- 61 Caspian Hyrcanian mixed forests, Central Korean deciduous forests, Dinaric Mountains mixed
- 62 forests, Euxine-Colchic broadleaf forests, Hokkaido deciduous forests, Manchurian mixed
- 63 forests, Nihonkai evergreen forests, Nihonkai montane deciduous forests, Pindus Mountains
- 64 mixed forests, Southeastern mixed forests, Taiheiyo evergreen forests, Taiheiyo montane

deciduous forests, Western European broadleaf forests, Western Great Lakes forests), plus three neighbouring ecoregions of the Temperate Coniferous Forest biome (Cascade Mountains leeward forests, Central and Southern Cascades forests, Eastern Cascades forests). All relevés came from the Northern Hemisphere and were classified as forest plots by sPlot. The taxa names were standardized to species level with The Plant List (2013) using the 'Taxonstand' package (Cayuela, Stein, & Oksanen, 2019) in R version 3.6.2 (R Core Team, 2019). The final vegetation database contained 17,852 relevés and 7,670 standardized species names, considering only seed plants, and encompassing all forest layers. To obtain the final list of species, only species that were present in at least 5% of the relevés of an ecoregion were kept, rendering a list of 1,393 frequent species.

75 Web of Science literature search

The list of frequent species (plus the synonyms recorded in the relevés) was incorporated into a Boolean search string, together with the words "(seed OR seeds) AND (dormancy OR germination)". This string was searched in the Thompson Reuters Web of Science on 5 Mar 2019, returning 6,791 results. A first filter of the results by the relevance of the title retained 1,490 references, which were accessed to retrieve relevant germination data to build the database. Of these references, 611 provided relevant data, 643 were non-relevant, and for 236 it was impossible to access the full text. The references were considered to contain relevant germination data when they described the results of a laboratory germination experiment in which at least the germination temperature had been controlled and recorded.

Recording of the database

For each relevant reference, three blocks of information were recorded. The first block described the plant material, including the species, the populations that had been sampled, the year of sampling (or the year of publication if that information was missing), the country, the geographical coordinates (if not provided in the reference, the closest available toponyms were searched in Google Maps; in some cases the only geographical information was the country, in these cases the coordinates of the capital were recorded). The second block described the experimental conditions: length of the germination incubations, use of stratification (none, cold [< 15°C], warm [>= 15°C] or combinations of cold and warm), use of scarification, photoperiod, maximum germination temperature, minimum germination temperature, and weighted average germination temperature. The minority of cases in which GA3 had been applied were excluded. The third block contained the response variable, the final germination proportion: the reported final germination percentages (retrieved from the text, tables or figures) and the

reported number of replicates and seeds per replicate were used to calculate a count of seeds sown and a count of seeds germinated.

Description of the database

Summary of contents

The final database contains 4,814 records (germination proportions for a given seed lot of a species, recorded in a set of experimental conditions) from 611 references. The plant materials had been collected across the Temperate Broadleaf and Mixed Forest biome and beyond (Fig. 1). The oldest record was from 1920 and the top three contributing countries were the USA (1,351), the UK (591) and Japan (525). There were 362 species represented, from 74 seed plant families. The total estimate of seeds used in the experiments was 946,942. The range of germination temperatures (weighted average of the daily thermoperiod) went from -4 to 43°C, with 2,101 records of constant temperatures and 2,713 of alternating temperatures. Light was used in 2,840 records, darkness in 1,224 and 750 did not provide information on this parameter. The experiments were performed with unstratified seeds in 3,224 records, and of the rest, the majority (1,410) went through cold stratification. Scarification was applied to 252 records.

Database file

The database is provided as a csv file, comma separated, named "Supplementary material 1 -Database" (see online supplementary materials). The first row of the file contains the header data, with the following variables: Species (The Plant List species names), Reference (bibliographic source of the record), Population (geographical information of the seed lot), Year (year the seed lot was collected), Country (country where the seed lot was collected), Latitude (approximated latitude where the seed lot was collected, in decimal degrees), Longitude (approximated longitude where the seed lot was collected, in decimal degrees), Scarification (binary variable indicating whether the seed lot was scarified before the test), Stratification days (number of days the seed lot was exposed to any type of stratification, before the test), Stratification_type (type of stratification, which can be none, cold, warm or combinations of cold and warm), Stratification (binary variable indicating whether the seed lot was stratified or not before the test), Light (binary variable indicating whether the seed lot was germinated in light or in darkness), Photoperiod (number of hours of light in the daily photoperiod), Alternating (binary variable indicating whether the germination test was conducted under constant or alternating temperatures), Tdif (difference in degrees between the hottest and the coldest temperatures of the daily thermoperiod), Tmax (hottest temperature in the daily thermoperiod), Tmin (coldest temperature in the daily thermoperiod), Tmean (mean

germination temperature, weighted by the length of each phase of the daily thermoperiod), *Temperature* (aggregation of the mean germination temperature in 5 °C intervals), *Length.experiment* (number of days between the start of the experiment, not including stratification, and the day when germinated seeds were counted), *Germinated* (count of seeds that germinated during the experiment), *Germinable* (count of seeds used in the experiment). Each row below the header represents a record for a seed lot germinated in a given set of experimental conditions.

Sylvan Seeds app

To facilitate the visualization of the database, the Sylvan Seeds app was written using the 'shiny' package (Chang, Cheng, Allaire, Xie, & Mcpherson, 2020). It is publicly accessible at http://sylvanseeds.shinyapps.io/sylvanseeds/. The app uses the 'tidyverse' package (Wickham et al., 2019) to aggregate and show results for species and experimental treatments (i.e., aggregating all seed lots of the same species germinated in the same experimental conditions). To facilitate comparisons, germination temperatures are aggregated to 5 °C intervals. When there is only one seed lot per species and combination of experimental conditions, the binomial 95% confidence interval is calculated using the Wilson method in the 'binom' package (Dorai-Raj, 2014). When there is more than one seed lot per species and combination of experimental conditions, the aggregate proportion and binomial confidence intervals are calculated using binomial-normal meta-analysis models (Stijnen et al., 2010) as implemented in the package 'metaphor' (Viechtbauer, 2010). By visiting the app, users can consult the available germination information for a species (Fig. 2), the origin of its seed lots, and the bibliographical references for the species.

Utility of the database

The database provided in this article, and the web app to visualize it, can have a wide applicability in science and beyond. The data can be used to extend to seed germination the current trend in global analyses of plant traits and functions, both at the species (Díaz et al., 2016) and community levels (Bruelheide et al., 2018). The ecological determinants of seed germination are also valuable information for species distribution models (Bykova, Chuine, Morin, & Higgins, 2012). The visualization of the database with the Sylvan Seeds app can help plant ecologists to select experimental treatments that are adequate for their experiments (Carol C. Baskin, Thompson, & Baskin, 2006). Outside of academia, the data is useful for seed industries (De Vitis et al., 2017), restoration practitioners (Ladouceur et al., 2018) and the implementation of regional schemes for seed-based landscape intervention (Jiménez-Alfaro,

- Frischie, Stolz, & Gálvez-Ramírez, 2020). The app is accessible to citizens in general who are
- interested in germinating wild plants. Finally, apart from the dataset itself, this article can bring
- two innovations to the seed ecology community, helping to advance the agenda of functional
- seed ecology (Saatkamp et al., 2019). First, the meta-analysis-inspired methodology used to
- 168 compile the dataset can be extended to other biomes and lists of species, contributing to the
- creation of a global database for ecologically and biogeographically coherent floras. Second, the
- database and the app can serve as a standard in further efforts to compile and standardize seed
- 171 germination data.

References

- Baskin, C. C., & Baskin, J. M. (2014). *Seeds. Ecology, Biogeography and Evolution of Dormancy and Germination. Second Edition.* San Diego: Academic Press.
- Baskin, C. C., Thompson, K., & Baskin, J. M. (2006). Mistakes in germination ecology and how to avoid them. *Seed Science Research*, *16*(03), 165-168.
 - Bruelheide, H., Dengler, J., Jiménez-Alfaro, B., Purschke, O., Hennekens, S. M., Chytrý, M., . . . Sandel, B. (2019). sPlot–A new tool for global vegetation analyses. *Journal of Vegetation Science*, 30(2), 161-186.
 - Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., Hennekens, S. M., . . . Jansen, F. (2018). Global trait—environment relationships of plant communities. *Nature Ecology & Evolution*, 2(12), 1906-1917.
 - Bykova, O., Chuine, I., Morin, X., & Higgins, S. I. (2012). Temperature dependence of the reproduction niche and its relevance for plant species distributions. *Journal of Biogeography*, 39(12), 2191-2200.
 - Carta, A., Skourti, E., Mattana, E., Vandelook, F., & Thanos, C. A. (2017). Photoinhibition of seed germination: occurrence, ecology and phylogeny. *Seed Science Research*, *27*(2), 131-153.
 - Cayuela, L., Stein, A., & Oksanen, J. (2019). Taxonstand: taxonomic standardization of plant species names. R package version 2.2.
 - Chang, W., Cheng, J., Allaire, J., Xie, Y., & Mcpherson, J. (2020). shiny: web application framework for R. R Package Version 1.4.0.2.
 - De Vitis, M., Abbandonato, H., Dixon, K. W., Laverack, G., Bonomi, C., & Pedrini, S. (2017). The European native seed industry: characterization and perspectives in grassland restoration. *Sustainability*, *9*(10), 1682.
 - Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., . . . Gorné, L. D. (2016). The global spectrum of plant form and function. *Nature*, *529*(7585), 167-171.
 - Dorai-Raj, S. (2014). binom: binomial confidence intervals for several parameterizations. R package version 1.1-1.
 - Fernández-Pascual, E., Mattana, E., & Pritchard, H. W. (2019). Seeds of future past: climate change and the thermal memory of plant reproductive traits. *Biological Reviews*, *94*(2), 439-456.
 - Fernández-Pascual, E., Pérez-Arcoiza, A., Prieto, J. A., & Díaz, T. E. (2017). Environmental filtering drives the shape and breadth of the seed germination niche in coastal plant communities. *Annals of Botany*, 119(7), 1169-1177.
 - Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. *New Phytologist*, *171*, 501-523.
 - Jiménez-Alfaro, B., Frischie, S., Stolz, J., & Gálvez-Ramírez, C. (2020). Native plants for greening Mediterranean agroecosystems. *Nature Plants, 6*(3), 209-214.

- Jiménez-Alfaro, B., Silveira, F. A. O., Fidelis, A., Poschlod, P., & Commander, L. E. (2016). Seed germination traits can contribute better to plant community ecology. *Journal of Vegetation Science*, *27*, 637-645.
 - Jurado, E., & Flores, J. (2005). Is seed dormancy under environmental control or bound to plant traits? *Journal of Vegetation Science*, *16*(5), 559-564.
 - Koricheva, J., Gurevitch, J., & Mengersen, K. L. (2013). *Handbook of Meta-Analysis in Ecology and Evolution*: Princeton University Press.
 - Ladouceur, E., Jiménez-Alfaro, B., Marin, M., De Vitis, M., Abbandonato, H., Iannetta, P. P. M., . . . Pritchard, H. W. (2018). Native seed supply and the restoration species pool. *Conservation Letters*, 11(2), e12381-e12381.
 - Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V., Underwood, E. C., . . . Morrison, J. C. (2001). Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. *Bioscience*, *51*(11), 933-938.
 - Pérez-Harguindeguy, N., Díaz, S., Garnier, É., Lavorel, S., Poorter, H., Jaureguiberry, P., . . . Gurvich, D. (2013). New handbook for standardised measurement of plant functional traits worldwide. *Australian Journal of Botany, 61*, 167-234.
 - R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
 - Saatkamp, A., Cochrane, A., Commander, L., Guja, L. K., Jimenez-Alfaro, B., Larson, J., . . . Cross, A. T. (2019). A research agenda for seed-trait functional ecology. *New Phytologist*, 221(4), 1764-1775.
 - Stijnen, T., Hamza, T. H., & Özdemir, P. (2010). Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. *Statistics in medicine*, *29*(29), 3046-3067.
 - The Plant List. (2013). Version 1.1. http://www.theplantlist.org/, accessed Feb 2020
 - Thompson, J. P., Mason, G. K., & Grime. (1977). Seed germination in response to diurnal fluctuations of temperature. *Nature*, *267*(5607), 147-149.
 - Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. *Journal of Statistical Software*, *36*(3), 1-48.
- Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., . . . Hester, J. (2019).
 Welcome to the Tidyverse. *Journal of Open Source Software*, 4(43), 1686.

Data accessibility statement

- 243 All persons can use the database providing they cite this data paper properly in any publications
- or in the metadata of any derived products that are produced using the database. The database
- is provided as supplementary material and will be stored in Dryad. It can be visualized with the
- Sylvan Seeds app at http://sylvanseeds.shinyapps.io/sylvanseeds/. The code of the app is stored
- at (note: the GitHub page is kept private until publication of the manuscript).

Figure 1 Geographical distribution of the germination records in the database. Each golden circle is a record. The green areas correspond to the extension of the Temperate Broadleaf and Mixed Forests biome.

Figure 2 Example of the germination records as shown by the Sylvan Seeds app. Records for one species, the European pedunculate oak, *Quercus robur*. Each panel shows the results for a combination of experimental conditions, with the germination temperature varying within each panel. Bars represent the mean germination proportion and brackets the 95% binomial confidence interval.

- 261 Appendix 1 Data sources. List of references used to build the germination database.
- Note: References are provided as they were exported from Web of Science to Endnote, and
- exactly as they are in the database and the Sylvan Seeds app. They can be edited for final
- *publication*.

<u>2</u>99

- Aalders, L. E. and I. V. Hall (1979). "Germination of Lowbush Blueberry Seeds as Affected by Sizing, Planting Cover, Storage, and Pelleting." Canadian Journal of Plant Science 59(2): 527-530.
- Acharya, S. N. C., C. B.; Hermesh, R.; Schaalje, G. B. (1992). "Factors affecting red-osier dogwood seed germination." Canadian Journal of Botany 70(5): 1012-1016.
- Acharya, S. N., et al. (1989). "EFFECTS OF POPULATION, ENVIRONMENT AND THEIR INTERACTION ON SASKATOON BERRY (Amelanchier alnifolia Nutt.) SEED GERMINATION." Canadian Journal of Plant Science 69(1): 277-284.
- Adams, C. A., et al. (2005). "Trait stasis versus adaptation in disjunct relict species: evolutionary changes in seed dormancy-breaking and germination requirements in a subclade of <I>Aristolochia</I> subgenus <I>Siphisia</I> (<I>Piperales</I>)." Seed Science Research 15(2): 161-173.
- Adams, C. A., et al. (2011). "Using size-class structure to monitor growth of underdeveloped embryos in seeds of three Aristolochia species: implications for seed ecology." Seed Science Research 21(02): 159-164.
- Afroze, F. and C. O'Reilly (2015). "Effect of harvest date, drying, short-term storage and freezing after chilling on the germination of rowan seeds." Scandinavian Journal of Forest Research 31(4): 339-346.
- Afroze, F. and C. O'Reilly (2013). "Breaking seed dormancy in European rowan seeds and its implications for regeneration." New Forests 44(4): 547-557.
- Afroze, F. O. R., C. (2016). "Effects of seed moisture content, warm, chilling, and exogenous hormone treatments and germination temperature on the germination of blackthorn seeds." Plant Biosystems An International Journal Dealing with all Aspects of Plant Biology 151(3): 474-483.
- Ahmad, H. H., J. D. (2007). "Germination and emergence of understorey and tall canopy forbs used in naturalistic sowing mixes. A comparison of performance in vitro v the field." Seed Science and Technology 35(3): 624-637.
- Ahn, S.-Y., et al. (2014). "Effect of Pre-treatment Methods and Germination Promoter on the Seed Emergence of Zanthoxylum schinifolium." Journal of Agriculture & Life Science 48(5): 9-17.
- Ahola, V. and K. Leinonen (1999). "Responses of Betula pendula, Picea abies, and Pinus sylvestris seeds to red/far-red ratios as affected by moist chilling and germination temperature." Canadian Journal of Forest Research 29(11): 1709-1717.
- Albrecht, M. A. and B. C. McCarthy (2006). "Seed germination and dormancy in the medicinal woodland herbs Collinsonia canadensis L. (Lamiaceae) and Dioscorea villosa L. (Dioscoreaceae)." Flora Morphology, Distribution, Functional Ecology of Plants 201(1): 24-31.
- Albrecht, M. A. and B. C. McCarthy (2011). "Variation in dormancy and germination in three co-occurring perennial forest herbs." Plant Ecology 212(9): 1465-1477.
- Allen, R. F., R. E. (1977). "Germination of Silky Dogwood." The Journal of Wildlife Management 41(4): 767-770.
- Alp, S., et al. (2009). "The effects of different warm stratification periods on the seed germination of some Rosa taxa." African Journal of Biotechnology 8(21): 5838-5841.
- Alvarez, R., et al. (2007). "Effect of high temperatures on seed germination and seedling survival in three pine species (Pinus pinaster, P. sylvestris and P. nigra)." International Journal of Wildland Fire 16(1): 63-70.
- Aoki, C. F. R., William H.; Rocca, Monique E. (2011). "Lodgepole Pine Seed Germination Following Tree Death from Mountain Pine Beetle Attack in Colorado, USA." The American Midland Naturalist 165(2): 446-451.
- Aou-ouad, H., et al. (2014). "Seed germination at different temperatures and seedling emergence at different depths of Rhamnus spp." Open Life Sciences 9(5): 569-578.
- Araki, S. and I. Washitani (2000). "Seed dormancy/germination traits of seven Persicaria species and their implication in soil seed-bank strategy." Ecological Research 15(1): 33-46.
- Arcamone, J. R. and P. Jaureguiberry (2018). "Germination response of common annual and perennial forbs to heat shock and smoke treatments in the Chaco Serrano, central Argentina." Austral Ecology 43(5): 567-577.
- Artola, A. C. C., G. (2005). "Accelerated aging time estimation for birdsfoot trefoil seed." Seed Science and Technology 33(2): 493-497.
- Babenko, L. M., NV; Norvajšene, EE (2016). "Izucenie laboratornoj vshožesti semjan zjuznika evropejskogo (Lycopus europaeus L.)." Voprosy biologiceskoj, medicinskoj i farmacevticeskoj himii(8): 44-47.
- Bae, J., et al. (2016). "Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes." Environ Pollut 213: 112-118.
- Baeten, L., et al. (2015). "Intraspecific variation in flowering phenology affects seed germinability in the forest herb Primula elatior." Plant Ecology and Evolution 148(2): 283-288.
- Baeten, L., et al. (2015). "The phosphorus legacy of former agricultural land use can affect the production of germinable seeds in forest herbs." Ecoscience 17(4): 365-371.
- Baldwin, H. I. (1934). "Effect of After-Ripening Treatment on Germination of White Pine Seeds of Different Ages." Botanical Gazette 96(2): 372-376.
- Ballegaard, T. K. W., E. (1985). "OBSERVATIONS ON AUTOTOXIC EFFECTS ON SEED-GERMINATION AND SEEDLING GROWTH IN CIRSIUM-PALUSTRE FROM A SPRING AREA IN JUTLAND, DENMARK." Holarctic Ecology 8(1): 63-65.
- Barden, C. J., et al. (2017). "Promoting Red Elm (Ulmus rubra Muhl.) Germination with Gibberellic Acid." Journal of Forestry 115(5): 393-396.
- Barnett, P. E. F., R. E. (1978). "ALTITUDINAL VARIATION IN GERMINATION CHARACTERISTICS OF YELLOW-POPLAR IN THE SOUTHERN APPALACHIANS." Silvae Genetica 27(3-4): 101-104.
- Baskin, C. C. B., Jerry M. (1995). "Warm plus cold stratification requirement for dormancy break in seeds of the woodland herb Cardamine concatenata (Brassicaceae), and evolutionary implications." Canadian Journal of Botany 73(4): 608-612.
- Baskin, C. C. M., Per; Andersson, Lars; Baskin, Jerry M. (2000). "Germination studies of three dwarf shrubs (Vaccinium, Ericaceae) of Northern Hemisphere coniferous forests." Canadian Journal of Botany 78(12): 1552-1560.
- Baskin, C. C. M., Susan E.; Baskin, Jerry M. (1995). "Two Types of Morphophysiological Dormancy in Seeds of Two Genera (Osmorhiza; and Erythronium;) with an Arcto-Tertiary Distribution Pattern." American Journal of Botany 82(3): 293-298.
- Baskin, J. M. and C. C. Baskin (1979). "Promotion of Germination of Stellaria Media Seeds by Light from a Green Safe Lamp." New Phytologist 82(2): 381-383.
- Baskin, J. M. B., C. C. (1992). "SEED-GERMINATION BIOLOGY OF THE WEEDY BIENNIAL ALLIARIA-PETIOLATA." Natural Areas Journal 12(4): 191-197.
- Baskin, J. M. B., Carol C. (1986). "Seed Germination Ecophysiology of the Woodland Herb Asarum canadense." American Midland Naturalist 116(1): 132-139.
- Baskin, J. M. B., Carol C. (1986). "Temperature requirements for after-ripening in seeds of nine winter annuals." Weed Research 26(6): 375-380.
- Basto, S., et al. (2013). "Effect of pH buffer solutions on seed germination of Hypericum pulchrum, Campanula rotundifolia and Scabiosa columbaria." Seed Science and Technology 41(2): 298-302.
- Baturin, S. O. (2009). "Seed germination of Fragaria vesca L. From atypical ecotopes of West Siberia." Contemporary Problems of Ecology 2(6): 556-559.

- Bauer, M. (1998). "A simulation model to predict seed dormancy loss in the field for Bromus tectorum L." Journal of Experimental Botany 49(324): 1235-1244.
- Bavcon, J. D., B.; Papes, D. (1994). "GERMINATION OF SEEDS AND CYTOGENETIC ANALYSIS OF THE SPRUCE IN DIFFERENTLY POLLUTED AREAS OF SLOVENIA." Phyton-Annales Rei Botanicae 33(2): 267-277.
- Bean, E. W. S., S.; Tyler, B. F. (1984). "The germination of grass seeds after storage at different temperatures in aluminium foil and manilla paper packets." Annals of Applied Biology 105(2): 399-403.
- Beardmore, T., et al. (2008). "Effects of seed water content and storage temperature on the germination parameters of white spruce, black spruce and lodgepole pine seed." New Forests 36(2): 171-185.
- Beckmann, M., et al. (2011). "Germination responses of three grassland species differ between native and invasive origins." Ecological Research 26(4): 763-771.
- Beckstead, J. M., Susan E.; Allen, Phil S. (1996). "Bromus tectorum seed germination: between-population and between-year variation." Canadian Journal of Botany 74(6): 875-882.
- Benedetti, S., et al. (2012). "An analysis of the physical and germination parameters of the sweet Chestnut (Castanea sativa)." Ciencia E Investigacion Agraria 39(1): 185-192.
- Benvenuti, S. and A. Pardossi (2016). "Germination ecology of nutraceutical herbs for agronomic perspectives." European Journal of Agronomy 76: 118-129.
- Bertsouklis, K. F. and M. Papafotiou (2013). "Seed Germination of Arbutus unedo, A-andrachne and Their Natural Hybrid A-andrachnoides in Relation to Temperature and Period of Storage." Hortscience 48(3): 347-351.
- Bevington, J. (1986). "Geographic Differences in the Seed Germination of Paper Birch (Betula Papyrifera)." American Journal of Botany 73(4): 564-573. Bevington, J. M. (1981). "Phytochrome Action during Prechilling Induced Germination of Betula papyrifera Marsh." Plant Physiol 67(4): 705-710.
- Bezd??ková, L., et al. (2013). "Practical implications of inconsistent germination and viability results in testing stored Fagus sylvatica seeds." Dendrobiology 71: 35-47.
- Bicknell, S. H. S., William H. (1975). "Influence of soil salt, at levels characteristic of some roadside environments, on the germination of certain tree seeds." Plant and Soil 43(1-3): 719-722.
- Bischoff, A. and H. Müller-Schärer (2010). "Testing population differentiation in plant species how important are environmental maternal effects." Oikos 119(3): 445-454.
- Bischoff, A., et al. (2006). "Seed provenance matters Effects on germination of four plant species used for ecological restoration." Basic and Applied Ecology 7(4): 347-359.
- Biswas, P. K. B., P. A.; Paul, K. B. (1972). "Germination Promotion of Loblolly Pine and Baldcypress Seeds by Stratification and Chemical Treatments." Physiologia Plantarum 27(1): 71-76.
- Black, M. W., P. F. (1955). "Growth Studies in Woody Species VII. Photoperiodic Control of Germination in Betula pubescens Ehrh." Physiologia Plantarum 8(2): 300-316.
- Blossey, B., et al. (2017). "Climate and rapid local adaptation as drivers of germination and seed bank dynamics of Alliaria petiolata (garlic mustard) in North America." Journal of Ecology 105(6): 1485-1495.
- Boberg, P., et al. (2010). "The effect of high temperatures on seed germination of one native and two introduced conifers in Patagonia." Nordic Journal of Botany 28(2): 231-239.
- Bochenek, A., et al. (2016). "Do the seeds of Solidago gigantea Aiton have physiological determinants of invasiveness?" Acta Physiologiae Plantarum 38(6).
- Boedeltje, G., et al. (2016). "Effect of gut passage in fish on the germination speed of aquatic and riparian plants." Aquatic Botany 132: 12-16.
- $Bolin, J. F. \ (2009). \ "Heat Shock Germination Responses of Three Eastern North American Temperate Species." \ Castanea \ 74(2): 160-167.$
- Boncaldo, E., et al. (2010). "Germinability and fungal occurrence in seeds of Abies alba Mill. populations in southern Italy." Plant Biosystems An International Journal Dealing with all Aspects of Plant Biology 144(3): 740-745.
- Bonner, F. (1996). "Responses to Drying of Recalcitrant Seeds of Quercus nigral." Annals of Botany 78(2): 181-187.
- Bonner, F. T. (1967). "GERMINATION OF SWEETGUM SEED IN RESPONSE TO LIGHT." Journal of Forestry 65(5): 339-&.
- Booth, D. T. (1999). "Imbibition temperatures affect bitterbrush seed dormancy and seedling vigor." Journal of Arid Environments 43(1): 91-101.
- Booth, D. T. B., Yuguang (1999). "Imbibition Temperature Affects on Seedling Vigor: In Crops and Shrubs." Journal of Range Management 52(5): 534-538.
- Bourgeois, J. M., L. (1991). "Metabolic changes related to the acceleration of jack pine germination by osmotic priming." Tree Physiology 8(4): 407-413. Bourgoin, A. and J. D. Simpson (2004). "Soaking, moist-chilling, and temperature effects on germination of Acer pensylvanicum seeds." Canadian Journal of Forest Research 34(10): 2181-2185.
- Bouteiller, X. P. P., Annabel J.; Mariette, Stéphanie; Monty, Arnaud (2017). "Using automated sanding to homogeneously break seed dormancy in black locust (Robinia pseudoacacia L., Fabaceae)." Seed Science Research 27(03): 243-250.
- Boyd, N. S. H., A. (2011). "Germination and Emergence Characteristics of Spreading Dogbane (Apocynum androsaemifolium)." Weed Science 59(04): 533-537.
- Boyd, N. V. A., Rene (2017). "Seed germination of common weed species as affected by oxygen concentration, light, and osmotic potential." Weed Science 52(04): 589-596.
- Bradbeer, J. W. (1968). "Studies in seed dormancy: IV. The role of endogenous inhibitors and gibberellin in the dormancy and germination of Corylus avellana L. seeds." Planta 78(3): 266-276.
- Bradbeer, J. W. A., Ingrid E.; Nirmala, Ilango S. (1978). "The role of chilling in the breaking of seed dormancy inCorylus avellanaL." Pesticide Science 9(2): 184-186.
- Bradbeer, J. W. and B. Colman (1967). "Studies in Seed Dormancy. I. The Metabolism of [2-14c] Acetate by Chilled Seeds of Corylus Avellana L." New Phytologist 66(1): 5-15.
- Bram, M. R. M., James N. (2004). "Seed germinability and its seasonal onset of Japanese knotweed (Polygonum cuspidatum)." Weed Science 52(5): 759-767.
- Brändel, M. and W. Schütz (2005). "Temperature effects on dormancy levels and germination in temperate forest sedges (Carex)." Plant Ecology 176(2): 245-261.
- Brunvatne, J. O. (1998). "Influence of light quality on the germination of Betula papyrifera seeds." Scandinavian Journal of Forest Research 13(1-4): 324-330.
- Bujarska-Borkowska, B. and P. Chmielarz (2010). "Stratification, germination and emergence of mazzard seeds following 15- or 20-year storage." Forestry 83(2): 189-194.
- Bulut, Y. and M. Demir (2007). "The allelopathic effects of Scots pine (Pinus sylvestris L.) leaf extracts on turf grass seed germination and seedling growth." Asian Journal of Chemistry 19(4): 3169-3177.
- Bungard, R. (1997). "Effects of Chilling, Light and Nitrogen-containing Compounds on Germination, Rate of Germination and Seed Imbibition of Clematis vitalbal." Annals of Botany 79(6): 643-650.
- Butler, T. J., et al. (2017). "Germination in Cool-Season Forage Grasses under a Range of Temperatures." Crop Science 57(3): 1725-1731.
- Butnor, J. R., et al. (2018). "Ethanol exposure can inhibit red spruce (Picea rubens) seed germination." Seed Science and Technology 46(2): 259-265.
- Cabra-Rivas, I. and P. Castro-Diez (2016). "Comparing the Sexual Reproductive Success of Two Exotic Trees Invading Spanish Riparian Forests vs. a Native Reference." Plos One 11(8): e0160831.
- Cain, M. D. and M. G. Shelton (1998). "Viability of litter-stored Pinus taeda L seeds after simulated prescribed winter burns." New Forests 16(1): 1-10. Cain, M. D. and M. G. Shelton (2003). "Fire effects on germination of seeds from Rhus and Rubus: competitors to pine during natural regeneration." New Forests 26(1): 51-64.

- Cain, M. D. S., M. G. (1998). "Viability of Litter-Stored Quercus falcata Michx. Acorns After Simulated Prescribed Winter Burns." International Journal of Wildland Fire 8(4): 199-203.
- Çali?kan, O., et al. (2012). "Influences of presowing treatments on the germination and emergence of fig seeds (Ficus carica L.)." Acta Scientiarum. Agronomy 34(3): 293-297.
- Caliskan, S. (2014). "Germination and seedling growth of holm oak (Quercus ilex L.): effects of provenance, temperature, and radicle pruning." iForest Biogeosciences and Forestry 7(2): 103-109.
- Camberato, J. J. M., S. B. (2004). "Salinity slows germination of rough bluegrass." Hortscience 39(2): 394-397.
- Campbell, M. H. (1985). "Germination, emergence and seedling growth of Hypericum perforatum L." Weed Research 25(4): 259-266.
- Campbell, R. A. D., Donald J. (1979). "Laser activation of phytochrome-controlled germination in Pinusbanksiana." Canadian Journal of Forest Research 9(4): 522-524.
- Carles, S., et al. (2009). "Genetic Variation in Seed Size and Germination Patterns and their Effect on White Spruce Seedling Characteristics." Silvae Genetica 58(1-6): 152-161.
- Carlson, C. E. (1994). "Germination and early growth of western larch (Larixoccidentalis), alpine larch (Larixlyallii), and their reciprocal hybrids." Canadian Journal of Forest Research 24(5): 911-916.
- Caron, G. E. W., B. S. P.; Schooley, H. O. (1990). "Effect of Tree Spacing, Cone Storage, and Prechilling on Germination of Picea glauca Seed." The Forestry Chronicle 66(4): 388-392.
- Castoldi, E. and J. A. Molina (2014). "Effect of seed mass and number of cotyledons on seed germination after heat treatment in Pinus sylvestris L. var. iberica Svob." Forest Systems 23(3): 483-489.
- Catana, R., et al. (2018). "Effect of the storage at low temperatures on the germination and antioxidant activity of Geum urbanum seeds." Romanian Biotechnological Letters 23(3): 13599-13606.
- Chachalis, D. R., Krishna N. (2000). "Factors affectingCampsis radicansseed germination and seedling emergence." Weed Science 48(2): 212-216.
- Chen, H., et al. (2012). "Post desiccation germination of mature seeds of tea (Camellia sinensis L.) can be enhanced by pro-oxidant treatment, but partial desiccation tolerance does not ensure survival at -20 degrees C." Plant Sci 184: 36-44.
- Chen, S. Y. K., S. R.; Chien, C. T. (2007). "Storage behaviour of seeds of Cinnamomum osmophloeum and Neolitsea aciculata var. variabillima (Lauraceae)." Seed Science and Technology 35(1): 237-243.
- Chen, S. Y., et al. (2008). "Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds." Tree Physiol 28(9): 1431-1439.
- Chen, S. Y., et al. (2010). "Storage behavior and changes in concentrations of abscisic acid and gibberellins during dormancy break and germination in seeds of Phellodendron amurense var. wilsonii (Rutaceae)." Tree Physiol 30(2): 275-284.
- Chien, C. T. C., S. Y.; Chang, S. H.; Chung, J. D. (2006). "Dormancy and germination in seeds of the medicinal Asian tree species Phellodendron amurense var. wilsonii (Rutaceae)." Seed Science and Technology 34(3): 561-571.
- Ching, T. M. (1959). "Activation of Germination in Douglas Fir Seed by Hydrogen Peroxide." Plant Physiol 34(5): 557-563.
- Chmielarz, P. (2009). "Cryopreservation of conditionally dormant orthodox seeds of Betula pendula." Acta Physiologiae Plantarum 32(3): 591-596.
- Chmielarz, P. (2009). "Cryopreservation of dormant European ash (Fraxinus excelsior) orthodox seeds." Tree Physiol 29(10): 1279-1285.
- Chmielarz, P. (2010). "Cryopreservation of dormant orthodox seeds of European hornbeam (Carpinus betulus)." Seed Science and Technology 38(1): 146-157.
- Chmielarz, P. (2010). "Cryopreservation of orthodox seeds of Alnus glutinosa." Cryo Letters 31(2): 139-146.
- Chmielarz, P. (2010). "Cryopreservation of the non-dormant orthodox seeds of Ulmus glabra." Acta Biol Hung 61(2): 224-233.
- Cho, J. S. and C. H. Lee (2018). "Effect of germination and water absorption on scarification and stratification of kousa dogwood seed." Horticulture, Environment, and Biotechnology 59(3): 335-344.
- Cho, J. S., et al. (2014). "Several Factors Affecting Seed Germination of Hydrangea petiolaris Siebold & Zucc." Korean Journal of Plant Resources 27(5): 534-539.
- Choi, D., et al. (2009). "Seed germination and seedling physiology of Larix kaempferi and Pinus densiflora in seedbeds with charcoal and elevated CO2." Landscape and Ecological Engineering 5(2): 107-113.
- Choi, G. E., et al. (2016). "Scarification and stratification protocols for breaking dormancy of Rubus (Rosaceae) species in Korea." Seed Science and Technology 44(2): 239-252.
- Chunhui, W. (2011). "Effects of drought and salt stress on seed germination of three leguminous species." African Journal of Biotechnology 10(78): 17954-17961.
- Cicek, E. and F. Tilki (2007). "Seed germination of three Ulmus species from Turkey as influenced by temperature and light." Journal of Environmental Biology 28(2): 423-425.
- Clifton-Brown, J., et al. (2011). "Thermal requirements for seed germination in Miscanthus compared with Switchgrass (Panicum virgatum), Reed canary grass (Phalaris arundinaceae), Maize (Zea mays) and perennial ryegrass (Lolium perenne)." GCB Bioenergy 3(5): 375-386.
- Cóbar-Carranza, A. J., et al. (2015). "Efecto de la alta temperatura en la germinación y supervivencia de semillas de la especie invasora Pinus contorta y dos especies nativas del sur de Chile." Bosque (Valdivia) 36(1): 53-60.
- Conner, P. J. (2008). "Effects of stratification, germination temperature, and pretreatment with gibberellic acid and hydrogen peroxide on germination of 'Fry' muscadine (Vitis rotundifolia) seed." Hortscience 43(3): 853-856.
- Connolly, B. M., et al. (2017). "Interactive Effects of Contact Fungicide and Cold Stratification on the Germination Rate for Five Dominant Temperate Tree Species." Forest Science 63(3): 303-309.
- Connor, K. F. and F. T. Bonner (2001). "The effects of desiccation on seeds of Acer saccharinum and Aesculus pavia: recalcitrance in temperate tree seeds." Trees 15(3): 131-136.
- Connor, K. F. and S. Sowa (2003). "Effects of desiccation on the physiology and biochemistry of Quercus alba acorns." Tree Physiol 23(16): 1147-1152. Conversa, G. and A. Elia (2009). "Effect of seed age, stratification, and soaking on germination of wild asparagus (Asparagus acutifolius L.)." Scientia Horticulturae 119(3): 241-245.
- Conversa, G., et al. (2010). "Effects of after-ripening, stratification and GA3 on dormancy release and on germination of wild asparagus (Asparagus acutifolius L.) seeds." Scientia Horticulturae 125(3): 196-202.
- Corbineau, F., et al. (2002). "Breakage of Pseudotsuga menziesii seed dormancy by cold treatment as related to changes in seed ABA sensitivity and ABA levels." Physiologia Plantarum 114(2): 313-319.
- Couvillon, G. A. (2002). "Cercis canadensis L. seed size influences germination rate, seedling dry matter, and seedling leaf area." Hortscience 37(1): 206-207.
- Crowe, A. U., et al. (2002). "Effects of an industrial effluent on plant colonization and on the germination and post-germinative growth of seeds of terrestrial and aquatic plant species." Environ Pollut 117(1): 179-189.
- Dacasa Rudinger, M. C. and A. Dounavi (2008). "Underwater germination potential of common ash seed (Fraxinus excelsior L.) originating from flooded and non-flooded sites." Plant Biol (Stuttg) 10(3): 382-387.
- Dalgleish, H. J., et al. (2012). "Weevil seed damage reduces germination and seedling growth of hybrid American chestnut." Canadian Journal of Forest Research 42(6): 1107-1114.
- Daskalakou, E. N., et al. (2017). "Interannual variability of germination and cone/seed morphometric characteristics in the endemic Grecian fir (Abies cephalonica) over an 8-year-long study." Seed Science Research 28(01): 24-33.
- David, A. (2002). "Germination percentage and germination speed of European larch (Larix decidua Mill.) seed after prolonged storage." Northern Journal of Applied Forestry 19(4): 168-170.
- Davidson, R. H. E., D. G. W.; Sziklai, O.; ElKassaby, Y. A. (1996). "Genetic variation in germination parameters among populations of Pacific silver fir)." Silvae Genetica 45(2-3): 165-171.

- Davis, O. H. (1927). "Germination and Early Growth of Cornus florida, Sambucus canadensis, and Berberis thunbergii." Botanical Gazette 84(3): 225-263
- Daws, M. I. and H. W. Pritchard (2008). "The development and limits of freezing tolerance in Acer pseudoplatanus fruits across Europe is dependent on provenance." Cryoletters 29(3): 189-198.
- Daws, M. I., et al. (2006). "Pressure time dependency of vacuum degassing as a rapid method for viability assessment using tetrazolium chloride: a comparative study of 17 Pinus species." Seed Science and Technology 34(2): 475-483.
- Daws, M. I., et al. (2006). "Variable desiccation tolerance in Acer pseudoplatanus seeds in relation to developmental conditions: a case of phenotypic recalcitrance?" Functional Plant Biology 33(1): 59-66.
- De Atrip, N., et al. (2007). "Target seed moisture content, chilling and priming pretreatments influence germination temperature response in Alnus glutinosa and Betula pubescens." Scandinavian Journal of Forest Research 22(4): 273-279.
- De Frenne, P., et al. (2010). "Significant effects of temperature on the reproductive output of the forest herb Anemone nemorosa L." Forest Ecology and Management 259(4): 809-817.
- Dello Jacovo, E., et al. (2018). "Towards a characterisation of the wild legume bitter vetch (Lathyrus linifolius L. (Reichard) Bassler): heteromorphic seed germination, root nodule structure and N-fixing rhizobial symbionts." Plant Biol (Stuttg).
- Dillon, K. R., Sarah Hayden (2014). "Effect of Temperature on the Seed Germination of Garden Loosestrife (Lysimachia vulgarisL.)." Natural Areas Journal 34(2): 212-215.
- Doescher, P. M., Richard; Winward, Alma (1985). "Effects of Moisture and Temperature on Germination of Idaho Fescue." Journal of Range Management 38(4): 317-320.
- Doody, C. N. and C. O'Reilly (2008). "Drying and soaking pretreatments affect germination in pedunculate oak." Annals of Forest Science 65(5): 509-509.
- Doody, C. N. and C. O'Reilly (2011). "Effect of long-phase stratification treatments on seed germination in ash." Annals of Forest Science 68(1): 139-147.

 Doody, P. O. R., C. (2005). "Effect of moist chilling and priming treatments on the germination of Douglas-fir and noble fir seeds." Seed Science and
- Doody, P. O. R., C. (2005). "Effect of moist chilling and priming treatments on the germination of Douglas-fir and noble fir seeds." Seed Science and Technology 33(1): 63-76.
- Dorning, M. and D. Cipollini (2005). "Leaf and root extracts of the invasive shrub, Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects." Plant Ecology 184(2): 287-296.
- Dow, M. A. S., Christa R. (1999). "Seed germination, seedling emergence, and seed bank ecology of sweet fern (Comptonia peregrina (L.) Coult.)." Canadian Journal of Botany 77(9): 1378-1386.
- Downie, B. B., J. D. (1996). "Dormancy in white spruce (Picea glauca Moench Voss) seeds is imposed by tissues surrounding the embryo." Seed Science Research 6(1): 9-15.
- Downie, B. C., J.; Scheer, G.; Wang, B. S. P.; Jensen, M.; Dhir, N. (1998). "Alleviation of seed dormancy in white spruce (Picea glauca Moench. Voss.) is dependent on the degree of seed hydration." Seed Science and Technology 26(3): 555-569.
- Downie, B. W., Ben S. P. (1992). "Upgrading germinability and vigour of jack pine, lodgepole pine, and white spruce by the IDS technique." Canadian Journal of Forest Research 22(8): 1124-1131.
- Draghici, C. and I. V. Abrudan (2011). "The Effect of Different Stratification Conditions on the Germination of Fraxinus angustifolia Vahl. and F. ornus L. Seeds." Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39(1): 283-287.
- Dunlap, J. R. B., J. P. (1983). "Influence of seed size on germination and early development of loblolly pine (Pinustaeda L.) germinants." Canadian Journal of Forest Research 13(1): 40-44.
- Dwiyanti, M. S., et al. (2014). "Natural variation in Miscanthus sinensisseed germination under low temperatures." Grassland Science 60(3): n/a-n/a.
- Edwards, D. G. W. E., Y. A. (1996). "The effect of stratification and artificial light on the germination of mountain hemlock seeds." Seed Science and Technology 24(2): 225-235.
- Ehlenfeldt, M. K. (1996). "Sequential style removal in highbush blueberry, Vaccinium corymbosum L: Effects on fertilization success and seed germination." Sexual Plant Reproduction 9(3): 170-174.
- El-Kassaby, Y. A. E., D. G. W. (1998). "Genetic control of germination and the effects of accelerated aging in mountain hemlock seeds and its relevance to gene conservation." Forest Ecology and Management 112(3): 203-211.
- El-Kassaby, Y. A. E., D. G. W. (2001). "Germination ecology in mountain hemlock (Tsuga mertensiana (Bong.) Carr.)." Forest Ecology and Management 144(1-3): 183-188.
- Elbers, J. P. and D. Moll (2011). "Ingestion by a Freshwater Turtle Alters Germination of Bottomland Hardwood Seeds." Wetlands 31(4): 757-761.
- Endoh, K. M., Michinari; Kimura, Megumi K.; Hanaoka, So; Kurita, Yuko; Hanawa, Eiichi; Kinoshita, Satoshi; Abe, Namio; Yamada, Hiroo; Ubukata, Masatoshi (2018). "Cryopreservation of Fagus crenata seeds: estimation of optimum moisture content for maintenance of seed viability by Bayesian modeling." Canadian Journal of Forest Research 48(2): 192-196.
- Erfmeier, A. and H. Bruelheide (2005). "Invasive and nativeRhododendron ponticumpopulations: is there evidence for genotypic differences in germination and growth?" Ecography 28(4): 417-428.
- Ertekin, M. and E. Kirdar (2010). "Breaking Seed Dormancy of Strawberry Tree (Arbutus unedo)." International Journal of Agriculture and Biology 12(1): 57-60.
- Ervin, G. N. and R. G. Wetzel (2002). "Effects of sodium hypochlorite sterilization and dry cold storage on germination of Juncus effusus L." Wetlands 22(1): 191-195.
- Escarré, J. H., C. (1988). "Aptitudes germinatives comparées de graines de Rumex acetosella issues de populations correspondant à des stades distincts d'une succession postculturale." Canadian Journal of Botany 66(7): 1381-1390.
- Escudero, A., et al. (1997). "Effects of high temperatures and ash on seed germination of two Iberian pines (Pinus nigra ssp salzmannii, P sylvestris var iberica)." Annales Des Sciences Forestieres 54(6): 553-562.
- Escudero, A., et al. (1999). "Probability of germination after heat treatment of native Spanish pines." Annals of Forest Science 56(6): 511-520.
- Esen, D., et al. (2007). "Effects of different pretreatments on germination of Prunus serotina seed sources." J Environ Biol 28(1): 99-104.
- Esen, D., et al. (2009). "EFFECTS OF CITRIC ACID PRESOAKING AND STRATIFICATION ON GERMINATION BEHAVIOR OF PRUNUS AVIUM L. SEED." Pakistan Journal of Botany 41(5): 2529-2535.
- Etherington, J. R. (1983). "Control of Germination and Seedling Morphology by Ethene: Differential Responses, Related to Habitat of Epilobium hirsutum L. and Chamerion angustifolium (L.) J. Holub." Annals of Botany 52(5): 653-658.
- Evans, R. A. Y., James A. (1977). "Bitterbrush Germination with Constant and Alternating Temperatures." Journal of Range Management 30(1): 30-32. Ewald, A. Z., S.; Porzelt, M. (1998). "Investigations of seed quality of Primula vulgaris Huds." Agribiological Research-Zeitschrift Fur Agrarbiologie Agrikulturchemie Okologie 51(2): 109-115.
- Falleri, E. (2004). "Dormancy breaking in Cornus sanguinea seeds." Seed Science and Technology 32(1): 1-4.
- Farhadi, M., et al. (2013). "Pre-sowing treatment for breaking dormancy in Acer velutinum Boiss. seed lots." Journal of Forestry Research 24(2): 273-
- Farmer, R. E. B., F. T. (1967). "Germination and Initial Growth of Eastern Cottonwood as Influenced by Moisture Stress, Temperature, and Storage." Botanical Gazette 128(3/4): 211-215.
- Farmer, R. E. C., Paul; Searle, Ian E.; Tarjan, David P. (1984). "Interaction of light, temperature, and chilling in the germination of black spruce." Canadian Journal of Forest Research 14(1): 131-133.
- Faron, M. L. B., et al. (2004). "Temperatura, nitrato de potássio e fotoperíodo na germinação de sementes de Hypericum perforatum L. e H. Brasiliense Choisy." Bragantia 63(2): 193-199.
- Fazal, H., et al. (2016). "FACTORS INFLUENCING IN VITRO SEED GERMINATION, MORPHOGENETIC POTENTIAL AND CORRELATION OF SECONDARY METABOLISM WITH TISSUE DEVELOPMENT IN PRUNELLA VULGARIS L." Pakistan Journal of Botany 48(1): 193-200.

- Fechner, G. H. B., Karen E.; Myers, Joseph F. (1981). "Effects of storage, temperature, and moisture stress on seed germination and early seedling development of trembling aspen." Canadian Journal of Forest Research 11(3): 718-722.
- Feurtado, J. A. X., J. H.; Ma, Y.; Kermode, A. R. (2003). "Increasing the temperature of the water soak preceding moist-chilling promotes dormancy-termination of seeds of western white pine (Pinus monticola Dougl.)." Seed Science and Technology 31(2): 275-288.
- Feurtado, J. A., et al. (2004). "Dormancy termination of western white pine (Pinus monticola Dougl. Ex D. Don) seeds is associated with changes in abscisic acid metabolism." Planta 218(4): 630-639.
- Feurtado, J. A., et al. (2007). "Disrupting Abscisic Acid Homeostasis in Western White Pine (Pinus monticola Dougl. Ex D. Don) Seeds Induces Dormancy Termination and Changes in Abscisic Acid Catabolites." Journal of Plant Growth Regulation 26(1): 46-54.
- Finch-Savage, W. (1998). "Nuclear Replication Activity During Seed Development, Dormancy Breakage and Germination in Three Tree Species: Norway Maple (Acer platanoidesL.), Sycamore (Acer pseudoplatanusL.) and Cherry (Prunus aviumL.)." Annals of Botany 81(4): 519-526.
- Finch-Savage, W. E. (1992). "Seed development in the recalcitrant species Quercus robur L.: germinability and desiccation tolerance." Seed Science Research 2(1): 17-22.
- Finch-Savage, W. E. C., H. A. (1994). "Water relations of germination in the recalcitrant seeds of Quercus robur L." Seed Science Research 4(03): 315-322.
- Finnerty, T. L. Z., J. M.; Hussey, M. A. (1992). "USE OF SEED PRIMING TO BYPASS STRATIFICATION REQUIREMENTS OF 3 AQUILEGIA SPECIES." Hortscience 27(4): 310-313.
- Flannigan, M. D. W., F. I. (1993). "A laboratory study of the effect of temperature on red pine seed germination." Forest Ecology and Management 62(1-4): 145-156.
- Flores, P., et al. (2017). "Ruptura de la dormición y exigencias de luz para la germinación de semillas de Juglans nigra." Fave. Sección ciencias agrarias 16(2): 33-46.
- Froud-Williams, R. J. F., R. (1987). "Germination of proximal and distal seeds of Poa trivialis L. from contrasting habitats." Weed Research 27(4): 245-250.
- Froud-Williams, R. J., et al. (1984). "The Influence of Burial and Dry-Storage Upon Cyclic Changes in Dormancy, Germination and Response to Light in Seeds of Various Arable Weeds." New Phytologist 96(3): 473-481.
- Froud-Williams, R. J., et al. (1986). "Evidence for an Endogenous Cycle of Dormancy in Dry Stored Seeds of Poa Trivialis L." New Phytologist 102(1): 123-131.
- Fu, X. X., et al. (2013). "Seed dormancy mechanism and dormancy breaking techniques for Cornus kousa var. chinensis." Seed Science and Technology 41(3): 458-463.
- Galinato, M. I. V., A. G. (1986). "SEED-GERMINATION TRAITS OF ANNUALS AND EMERGENTS RECRUITED DURING DRAWDOWNS IN THE DELTA MARSH, MANITOBA, CANADA." Aquatic Botany 26(1-2): 89-102.
- Gange, A. C. B., V. K.; Farmer, L. M. (1992). "Effects of Pesticides on the Germination of Weed Seeds: Implications for Manipulative Experiments." The Journal of Applied Ecology 29(2): 303-310.
- Geneve, R. L. (1991). "SEED DORMANCY IN EASTERN REDBUD (CERCIS-CANADENSIS)." Journal of the American Society for Horticultural Science 116(1): 85-88.
- Giménez-Benavides, L., et al. (2005). "Seed germination of high mountain Mediterranean species: altitudinal, interpopulation and interannual variability." Ecological Research 20(4): 433-444.
- Giuliani, C., et al. (2015). "Temperature-related effects on the germination capacity of black locust (Robinia pseudoacacia L., Fabaceae) seeds." Folia Geobotanica 50(3): 275-282.
- Gleiser, G., et al. (2004). "Seed dormancy in relation to seed storage behaviour in Acer." Botanical Journal of the Linnean Society 145(2): 203-208.
- Golle, D. P., et al. (2009). "Subsídio hídrico fornecido por substratos alternativos usados na germinação in vitro de Pinus taeda L." Ciencia Rural 39(7): 2218-2221.
- González?Andrés, F. and J. M. Ortiz (2010). "Potential ofCytisusand allied genera (Genisteae: Fabaceae) as forage shrubs." New Zealand Journal of Agricultural Research 39(2): 195-204.
- Gonzlez-Rabanal, F. C., Mercedes (1995). "Effect of high temperatures and ash on germination of ten species from gorse shrubland." Vegetatio 116(2): 123-131.
- Goodwin, J. R. D., P. S.; Eddleman, L. E. (1996). "Germination of Idaho fescue and cheatgrass seeds from coexisting populations." Northwest Science 70(3): 230-241.
- Goodwin, J. R. D., Paul S.; Eddleman, Lee E. (1995). "After-Ripening in Festuca idahoensis Seeds: Adaptive Dormancy and Implications for Restoration." Restoration Ecology 3(2): 137-142.
- Gorai, M., et al. (2006). "Seed germination characteristics of Phragmites communis: Effects of temperature and salinity." Belgian Journal of Botany 139(1): 78-86.
- Gorian, F., et al. (2007). "Seed size and chilling affect germination of Larix decidua Mill. seeds." Seed Science and Technology 35(2): 508-513.
- Gosling, P. G. (1988). "THE EFFECT OF MOIST CHILLING ON THE SUBSEQUENT GERMINATION OF SOME TEMPERATE CONIFER SEEDS OVER A RANGE OF TEMPERATURES." Journal of Seed Technology 12(1): 90-98.
- Gosling, P. G. (1989). "The Effect of Drying Quercus robur Acorns to Different Moisture Contents, followed by Storage, either with or without Imbibition." Forestry 62(1): 41-50.
- Gosling, P. G. (2004). "Six chemicals with animal repellent or insecticide properties are screened for phytotoxic effects on the germination and viability of ash, birch, Corsican pine and sycamore seeds." Forestry 77(5): 397-403.
- Gosling, P. G. S., Y.; Peace, A. (2003). "The effect of moisture content and prechill duration on dormancy breakage of Douglas fir seeds (<I>Pseudotsuga menziesii</I> var. <I>menziesii</I> [Mirb.] Franco)." Seed Science Research 13(3): 239-246.
- Gosling, P. G., et al. (2009). "Seed dormancy and germination characteristics of common alder (Alnus glutinosa L.) indicate some potential to adapt to climate change in Britain." Forestry 82(5): 573-582.
- Graae, B. J., et al. (2015). "Germination requirements and seed mass of slow- and fast- colonizing temperate forest herbs along a latitudinal gradient." Ecoscience 16(2): 248-257.
- Gresta, F., et al. (2007). "Effect of maturation stage, storage time and temperature on seed germination of Medicago species." Seed Science and Technology 35(3): 698-708.
- Groeneveld, E., et al. (2014). "Sexual reproduction of Japanese knotweed (Fallopia japonica s.l.) at its northern distribution limit: new evidence of the effect of climate warming on an invasive species." Am J Bot 101(3): 459-466.
- Grundy, A. C. (1997). "The influence of temperature and water potential on the germination of seven different dry-stored seed lots of Stellaria media." Weed Research 37(4): 257-266.
- Grundy, A. C., et al. (2000). "Modelling the germination of Stellaria media using the concept of hydrothermal time." New Phytologist 148(3): 433-444. Guney, K., et al. (2016). "INFLUENCE OF GERMINATION PERCENTAGE AND MORPHOLOGICAL PROPERTIES OF SOME HORMONES PRACTICE ON Lilium martagon L. SEEDS." Oxidation Communications 39(1): 466-474.
- Guo, Y., et al. (1998). "Effects of flood duration and season on germination of black, cherrybark, northern red, and water oak acorns." New Forests 15(1): 69-76.
- Haasis, F. W. T., Adrian C. (1931). "Temperature Relations of Lodgepole-Pine Seed Germination." Ecology 12(4): 728-744.
- Hale, A. N., et al. (2017). "Reduced Seed Germination after Pappus Removal in the North American Dandelion (Taraxacum officinale; Asteraceae)." Weed Science 58(04): 420-425.
- Hallgren, S. W. (1989). "Effects of osmotic priming using aerated solutions of polyethylene glycol on germination of pine seeds." Annales Des Sciences Forestieres 46(1): 31-37.

- Hanley, M. E. (2009). "Thermal shock and germination in North-West European Genisteae: implications for heathland management and invasive weed control using fire." Applied Vegetation Science 12(3): 385-390.
- Hanslin, H. M. H., Hans Martin; Eggen, Trine (2005). "Salinity tolerance during germination of seashore halophytes and salt-tolerant grass cultivars." Seed Science Research 15(1): 43-50.
- Hardegree, S. P. (1994). "Drying and Storage Effects on Germination of Primed Grass Seeds." Journal of Range Management 47(3): 196-199.
- Hardegree, S. P., et al. (2003). "Hydrothermal germination response and the development of probabilistic germination profiles." Ecological Modelling 167(3): 305-322.
- Hardin, E. D. (1984). "Variation in Seed Weight, Number per Capsule and Germination in Populus deltoides Bartr. Trees in Southeastern Ohio." American Midland Naturalist 112(1): 29-34.
- Harniss, R. O. M., W. T. (1976). "Yearly Variation in Germination in Three Subspecies of Big Sagebrush." Journal of Range Management 29(2): 167-168. Harris, S. M. D., D. J.; Gordon, R. J.; Jensen, K. I. N. (1998). "The effect of thermal time and soil water on emergence of Ranunculus repens." Weed Research 38(6): 405-412.
- Hassell, R. L., et al. (2004). "Influence of temperature gradients on pale and purple coneflower, feverfew, and Valerian germination." Horttechnology 14(3): 368-371.
- Haunold, A. Z., Charles E. (1974). "Pollen Collection, Crossing, and Seed Germination of Hop1." Crop Science 14(5): 774-776.
- Hawkins, K. K., et al. (2017). "Secondary dormancy induction and release in Bromus tectorum seeds: the role of temperature, water potential and hydrothermal time." Seed Science Research 27(01): 12-25.
- Hawkins, T. S., et al. (2010). "Morphophysiological dormancy in seeds of three eastern North American Sanicula species (Apiaceae subf. Saniculoideae): evolutionary implications for dormancy break." Plant Species Biology 25(2): 103-113.
- Hellum, A. K. (1973). "Seed Storage and Germination of Black Poplar." Canadian Journal of Plant Science 53(1): 227-228.
- Hellum, A. K. H., Lisa (1988). "Variable dormancy in seed of Pinus contorta." Scandinavian Journal of Forest Research 3(1-4): 137-146.
- Helsper, H. P. G. K., G. A. M. (1984). "Germination of Calluna Vulgaris (L.) Hull in Vitro under Different Ph-Conditions." Acta Botanica Neerlandica 33(3): 347-353.
- Henning, K., et al. (2017). "The reproductive potential and importance of key management aspects for successful Calluna vulgaris rejuvenation on abandoned Continental heaths." Ecol Evol 7(7): 2091-2100.
- Herranz, J. M., et al. (1998). "Influence of heat on seed germination of seven Mediterranean Leguminosae species." Plant Ecology 136(1): 95-103.
- Herranz, J. M., et al. (2005). "Effect of allelopathic compounds produced by Cistus ladanifer on germination of 20 Mediterranean taxa." Plant Ecology 184(2): 259-272.
- Hidayati, S. N. B., J. M.; Baskin, C. C. (2000). "Dormancy-breaking and germination requirements of seeds of four Lonicera species (Caprifoliaceae) with underdeveloped spatulate embryos." Seed Science Research 10(4): 459-469.
- Hidayati, S. N. B., J. M.; Baskin, C. C. (2002). "Effects of dry storage on germination and survivorship of seeds of four Lonicera species (Caprifoliaceae)." Seed Science and Technology 30(1): 137-148.
- Hidayati, S. N. B., Jerry M.; Baskin, Carol C. (2000). "Dormancy-breaking and germination requirements for seeds of Diervilla Ionicera (Caprifoliaceae), a species with underdeveloped linear embryos." Canadian Journal of Botany 78(9): 1199-1205.
- Hidayati, S. N., et al. (2000). "Morphophysiological dormancy in seeds of two North American and one Eurasian species of Sambucus (Caprifoliaceae) with underdeveloped spatulate embryos." Am J Bot 87(11): 1669-1678.
- Hidayati, S. N., et al. (2001). "Dormancy-breaking and germination requirements for seeds of Symphoricarpos orbiculatus (Caprifoliaceae)." Am J Bot 88(8): 1444-1451.
- Hidayati, S. N., et al. (2005). "Epicotyl Dormancy in Viburnum acerifolium (Caprifoliaceae)." The American Midland Naturalist 153(2): 232-244.
- Hill, M. J. L., R. (1991). "The effect of temperature on germination and seedling growth of temperate perennial pasture legumes." Australian Journal of Agricultural Research 42(1): 175-189.
- Hilli, A., et al. (2003). "Germination of pretreated Scots pine seeds after long-term storage." Canadian Journal of Forest Research 33(1): 47-53.
- Himanen, K., et al. (2013). "Soaking effects on seed germination and fungal infection inPicea abies." Scandinavian Journal of Forest Research 28(1): 1-7.
- Hirao, A. S. (2010). "Kinship between parents reduces offspring fitness in a natural population of Rhododendron brachycarpum." Ann Bot 105(4): 637-646
- Hoffman, G. R. (1985). "Germination of Herbaceous Plants Common to Aspen Forests of Western Colorado." Bulletin of the Torrey Botanical Club 112(4): 409-413.
- Hong, T. D. and R. H. Ellis (1990). "A comparison of maturation drying, germination, and desiccation tolerance between developing seeds of Acer pseudoplatanus L. and Acer platanoides L." New Phytologist 116(4): 589-596.
- Hopley, T. Y., Andrew G. (2015). "Knowledge of the reproductive ecology of the invasive Salix cinerea, in its invaded range, assists in more targeted management strategies." Australian Journal of Botany 63(6): 477-483.
- Hu, X., et al. (2013). "Seed dormancy in four Tibetan Plateau Vicia species and characterization of physiological changes in response of seeds to environmental factors." Seed Science Research 23(02): 133-140.

 Huebner, C. D. (2017). "Seed Mass, Viability, and Germination of Japanese Stiltgrass (Microstegium vimineum) under Variable Light and Moisture
- Huebner, C. D. (2017). "Seed Mass, Viability, and Germination of Japanese Stiltgrass (Microstegium vimineum) under Variable Light and Moisture Conditions." Invasive Plant Science and Management 4(03): 274-283.
- Husband, B. C. and J. E. Gurney (1998). "Offspring fitness and parental effects as a function of inbreeding in Epilobium angustifolium (Onagraceae)." Heredity 80(2): 173-179.
- lakovoglou, V. and K. Radoglou (2015). "Breaking seed dormancy of three orthodox Mediterranean Rosaceae species." J Environ Biol 36(2): 345-349.
- Ibyeongtae and Bakjongmin (2006). "Effects of Seed Coating, Slope Control and Soil Mulching onSeed Germination and Seedling Growth of Rehabilitation Plants." Journal of the Korea Society of Environmental Restoration Technology 9(6): 38-51.
- Ijongseok and Hanseungwon (2007). "Studies on Seed Germination of Miscanthus sinensis Native to Jeju Island." Journal of the Korea Society of Environmental Restoration Technology 10(1): 9-15.
- Ives, S. A. (1923). "Maturation and Germination of Seeds of Ilex opaca." Botanical Gazette 76(1): 60-77.
- Jaderlund, A. Z., O.; Nilsson, M. C. (1996). "Effects of bilberry (Vaccinium myrtillus L.) litter on seed germination and early seedling growth of four boreal tree species." J Chem Ecol 22(5): 973-986.
- Jankowska-Blaszczuk, M. and M. I. Daws (2007). "Impact of red: far red ratios on germination of temperate forest herbs in relation to shade tolerance, seed mass and persistence in the soil." Functional Ecology 21(6): 1055-1062.
- Jarvis, B. C. (1975). "The Role of Seed Parts in the Induction of Dormancy of Hazel (Corylus Avellana L.)." New Phytologist 75(3): 491-494.
- Jastrz?bowski, S., et al. (2017). "Effects of thermal-time artificial scarification on the germination dynamics of black locust (Robinia pseudoacacia L.) seeds." European Journal of Forest Research 136(3): 471-479.
- Jauzein, P. and A. Mansour (1992). "Principaux facteurs de la germination de Heracleum sphondylium L: importance de l'oxygène." Agronomie 12(1): 85-96.
- Javanmard, T. Z., Z.; Keshavarz Afshar, R.; Hashemi, M.; Struik, P. C. (2014). "Seed washing, exogenous application of gibberellic acid, and cold stratification enhance the germination of sweet cherry (Prunus aviumL.) seed." The Journal of Horticultural Science and Biotechnology 89(1): 74-78.
- Jensen, M. (2010). "Temperature Relations of Germination in Acer platanoides L. Seeds." Scandinavian Journal of Forest Research 16(5): 404-414. Joseph, H. C. (1929). "Germination and Vitality of Birch Seeds." Botanical Gazette 87(1): 127-151.
- Julin-Tegelman, Å. P., Neville (1983). "Changes in the Levels of Endogenous Cytokinin-like Substances During Cold-induced Germination of Acer platanoides L. Seeds." Zeitschrift Fur Pflanzenphysiologie 110(1): 89-95.

,,,

- Junttila, O. (1972). "EFFECT OF GIBBERELLIC-ACID ON DARK AND LIGHT GERMINATION AT DIFFERENT TEMPERATURES OF CALLUNA, LEDUM AND RHODODENDRON SEEDS." Physiologia Plantarum 26(2): 239-&.
- Junttila, O. (1976). "Effects of Red and Far-red Irradiation on Seed Germination in Betula verrucosa and B. pubescens." Zeitschrift Fur Pflanzenphysiologie 80(5): 426-435.
- Kabouw, P., et al. (2010). "Activated carbon addition affects substrate pH and germination of six plant species." Soil Biology and Biochemistry 42(7): 1165-1167
- Kalemba, E. M. and E. Ratajczak (2018). "The effect of a doubled glutathione level on parameters affecting the germinability of recalcitrant Acer saccharinum seeds during drying." J Plant Physiol 223: 72-83.
- Kaliniewicz, Z. and P. Tylek (2018). "Influence of Scarification on the Germination Capacity of Acorns Harvested from Uneven-Aged Stands of Pedunculate Oak (Quercus robur L.)." Forests 9(3).
- Kaliniewicz, Z., et al. (2013). "Correlations between the Germination Capacity and Selected Physical Properties of Scots Pine (Pinus sylvestris L.) Seeds." Baltic Forestry 19(2): 201-211.
- Kaliniewicz, Z., et al. (2018). "Correlations between Germination Capacity and Selected Properties of Black Alder (Alnus glutinosa Gaertn.) Achenes." Baltic Forestry 24(1): 68-76.
- Kang, H.-K. Y., Ja-Yeon; Cho, Yong-Hyeon; Song, Hong-Seon (2016). "Germination Characteristics by Temperature and Production Time to Poaceae Plant Seed." Journal of the Korea Society of Environmental Restoration Technology 19(2): 71-81.
- Kang, H.-K., et al. (2014). "Germination Characteristics and Maturity by Production Time of Chamaecrista nomame, Lespedeza cuneata and Lespedeza bicolor Seed in Fabaceae Plant." Korean Journal of Plant Resources 27(4): 359-364.
- Kang, H., et al. (2012). "A Study on Characteristics of Seed Germination of Native Plants for Revegetation on the Slope of River bank." Journal of the Korea Society of Environmental Restoration Technology 15(2): 103-115.
- Kang, S.-Y., et al. (2005). "Seed Germination and Seedling Growth of Rhododendron Species by Gamma Rays Irradiation." Flower Research Journal 13(2): 116-120.
- Karlin, E. F. B., L. C. (1983). "Germination Ecology of Ledum groenlandicum and Ledum palustre ssp. decumbens." Arctic and Alpine Research 15(3): 397-404.
- Kashiwagi, Y. (1991). "Successional development from stands of Miscanthus sinensis to stands of Pinus densiflora and elements of microclimates: The seed germination and seedling establishment conditions of P. densiflora." Theoretical and Applied Climatology 43(3): 149-158.
- Kemball, K. J., et al. (2010). "Laboratory assessment of the effect of forest floor ash on conifer germination." Canadian Journal of Forest Research 40(4): 822-826.
- Kettenring, K. M. and D. F. Whigham (2009). "Seed viability and seed dormancy of non-native Phragmites australis in suburbanized and forested watersheds of the Chesapeake Bay, USA." Aquatic Botany 91(3): 199-204.
- Kim, D. H. and S. H. Han (2018). "Direct Effects on Seed Germination of 17 Tree Species under Elevated Temperature and CO2 Conditions." Open Life Sciences 13(1): 137-148.
- Kim, D. H. H., Sim Hee (2018). "Seed coat and aging conditions affect germination and physiological changes of aging Korean pine seeds." Journal of Forest Research 23(6): 372-379.
- Kim, D. H., et al. (2009). "Effects of Cryoprotectants and Post-storage Priming on Seed Germination of Sugi (Cryptomeria japonica." Silvae Genetica 58(1-6): 162-168.
- Kim, J. J., et al. (2014). "Effects of Temperature and Shading on Germination and Early Growth in Pimpinella brachycarpa." Protected Horticulture and Plant Factory 23(4): 342-348.
- Kim, J. S., et al. (2015). "Effect of Environmental Factors on Sprout Germination, Growth, and Storage of Six Aster Species." Korean Journal of Horticultural Science and Technology 33(5): 638-646.
- Kim, r., et al. (2006). "Vegetation Distribution Near Abandoned Metalliferous Mines and Seed Germination Properties of Woody Plants by the Contaminated Soils." The Korean Society of Environmental Agriculture 25(1): 47-57.
- Kirdar, E. E., M. (2008). "The role of polystimulin hormone application and stratification temperature to break the dormancy and improve seed germination for Abies nordmanniana (Stev.) Spach." Seed Science and Technology 36(2): 301-310.
- Kolodziejek, J. (2017). "Effect of seed position and soil nutrients on seed mass, germination and seedling growth in Peucedanum oreoselinum (Apiaceae)." Sci Rep 7(1): 1959.
- Kolodziejek, J., et al. (2017). "Effect of light, gibberellic acid and nitrogen source on germination of eight taxa from dissapearing European temperate forest, Potentillo albae-Quercetum." Sci Rep 7(1): 13924.
- Kondo, T., et al. (2015). "Morphophysiological dormancy in seeds of Convallaria keiskei and a proposal to recognize two types of double dormancy in seed dormancy classification." Seed Science Research 25(02): 210-220.
- Kosi?ski, I. (2007). "Long-term variability in seed size and seedling establishment of Maianthemum bifolium." Plant Ecology 194(2): 149-156.
- KÖVendi-Jakó, A. (2017). "Relationship of Germination and Establishment for Twelve Plant Species in Restored Dry Grassland." Applied Ecology and Environmental Research 15(4): 227-239.
- Krauss, N. K., Karl-Hermann (1985). "Ein Beitrag zur Kenntnis über die Stratifikation und Keimung von Eschensamen (Fraxinus excelsior L.)." Flora 177(1-2): 91-105.
- Krawiarz, K. and Z. Szczotka (2005). "Adenine nucleotides and energy charge during dormancy breaking in embryo axes of Acer platanoides and Fagus sylvatica seeds." Acta Physiologiae Plantarum 27(4): 455-461.
- Kuneš, I., et al. (2017). "Effects of brassinosteroid application on seed germination of Norway spruce, Scots pine, Douglas fir and English oak." iForest Biogeosciences and Forestry 10(1): 121-127.
- Landgraff, A. J., Olavi (1979). "Germination and Dormancy of Reed Canary-Grass Seeds (Phalaris arundinacea)." Physiologia Plantarum 45(1): 96-102.
- Le Pichon, C. G., M. (2001). "Evaluating the germination capacity of commercial seedlots of Quercus petraea." Seed Science and Technology 29(2): 377-385.
- Leadem, C. L. (1986). "Stratification of Abiesamabilis seeds." Canadian Journal of Forest Research 16(4): 755-760.
- Leck, M. A. (1996). "Germination of Macrophytes from a Delaware River Tidal Freshwater Wetland." Bulletin of the Torrey Botanical Club 123(1): 48-67.
- Lee, B. D., et al. (2015). "The Impact of Environmental and Host Specificity in Seed Germination and Survival of Korean Mistletoe [Viscum album var. coloratum (Kom.) Ohwi]." Korean Journal of Plant Resources 28(6): 710-717.
- Lee, I.-J. (2013). "Influence of Plant Growth Regulator Application on Seed Germination of Dandelion (Taraxacum officinale)." Weed & Turfgrass Science 2(2): 152-158.
- Lee, J. H., et al. (2014). "Effect of Temperature, Light Intensity, Covering Depth, Watering Frequency or GA3 on the Germination of Rhododendron brachycarpum Native to Korea." Flower Research Journal 22(2): 68-73.
- Lee, K. Y., et al. (2013). "Botanical and germinating characteristics of Miscanthus species native to Korea." Horticulture, Environment, and Biotechnology 53(6): 490-496.
- Lee, S. Y., et al. (2008). "Characteristics of Seed Germination and Seedling Growth of Native Hydrangea serrata for. Acuminata." Flower Research Journal 16(2): 134-142.
- Leinonen, K. (1998). "Effects of storage conditions on dormancy and vigor of Picea abies seeds." New Forests 16(3): 231-249.
- Leinonen, K. D. C., Michelle (1998). "Regulation of Picea abies seed dormancy by red and far?red light at various moisture contents." Scandinavian Journal of Forest Research 13(1-4): 43-49.
- Leiva, M. J., et al. (2018). "The effect of simulated damage by weevils on Quercus ilex subsp. Ballota acorns germination, seedling growth and tolerance to experimentally induced drought." Forest Ecology and Management 409: 740-748.
- León-Lobos, P. and R. H. Ellis (2002). "Seed storage behaviour of Fagus sylvatica and Fagus crenata." Seed Science Research 12(1): 31-37.

- León-Lobos, P. and R. H. Ellis (2018). "Comparison of seed desiccation sensitivity amongst Castanea sativa, Quercus ilex and Q. cerris." Seed Science and Technology 46(2): 233-237.
- Letchamo, W. G., A. (1996). "Light, temperature and duration of storage govern the germination and emergence of Taraxacum officinaleseed." Journal of Horticultural Science 71(3): 373-377.
- Li, H. Z., Donglin (2018). "In Vitro Seed Germination of Kalmia latifolia L. Hybrids: A Means for Improving Germination and Speeding Up Breeding Cycle." Hortscience 53(4): 535-540.
- Li, L. I. R., James D. (1990). "Lipid Mobilization During Dormancy Breakage in Oilseed of Corylus avellana." Annals of Botany 66(5): 501-505.
- Li, S., et al. (2013). "Methods for breaking the dormancy of eastern redbud (Cercis canadensis) seeds." Seed Science and Technology 41(1): 27-35.
- Li, X. J. B., P. J.; Leadem, C. L. (1994). "Interactive effects of light and stratification on the germination of some British Columbia conifers." Canadian Journal of Botany 72(11): 1635-1646.
- Li, Y. L. C., H. Y.; Song, S. Q. (2009). "Effects of temperature, after-ripening, stratification, and scarification plus hormone treatments on dormancy release and germination of Acer truncatum seeds." Seed Science and Technology 37(3): 554-562.
- Lim, H.-l. K., Gil-Nam; Jang, Kyung-Hwan; Park, Wan-Geun (2015). "Effect of Wet Cold and Gibberellin Treatments on Germination of Dwarf Stone Pine Seeds." Korean Journal of Plant Resources 28(2): 253-258.
- Lindig-Cisneros, R. and J. Zedler (2001). "Effect of light on seed germination in Phalaris arundinacea L. (reed canary grass)." Plant Ecology 155(1): 75-78.
- Liopa-Tsakalidi, A., et al. (2011). "Effect of NaCl and GA(3) on seed germination and seedling growth of eleven medicinal and aromatic crops." Journal of Medicinal Plants Research 5(17): 4065-4073.
- Lisci, M. (1994). "Germination ecology of drupelets of the fig (Ficus carica L.)." Botanical Journal of the Linnean Society 114(2): 133-146.
- Liu, C. H. C., J. J.; Martin, S. B.; Turner, A. V. (2001). "Rough bluegrass germination varies with temperature and cultivar/seed lot." Hortscience 36(1): 153-156.
- Liu, H., et al. (2015). "Causes and Breaking of Seed Dormancy in Flowering Dogwood (Cornus florida L.)." Hortscience 50(7): 1041-1044.
- Liu, K., et al. (2018). "Linking seed germination and plant height: a case study of a wetland community on the eastern Tibet Plateau." Plant Biol (Stuttg) 20(5): 886-893.
- Liu, M. H., Andrew; Mallory-Smith, Carol (2017). "Waterlogging Influence on Roughstalk Bluegrass (Poa trivialis) and Tall Fescue Germination." Weed Technology 31(05): 732-739.
- Liu, Y. and Y. A. El-Kassaby (2014). "Timing of seed germination correlated with temperature-based environmental conditions during seed development in conifers." Seed Science Research 25(01): 29-45.
- Liu, Y., et al. (2012). "Influence of pericarp, cotyledon and inhibitory substances on sharp tooth oak (Quercus aliena var. acuteserrata) germination." Plos One 7(10): e47682.
- Liu, Y., et al. (2013). "The role of moist-chilling and thermo-priming on the germination characteristics of white spruce (Picea glauca) seed." Seed Science and Technology 41(3): 321-335.
- Liu, Y., et al. (2015). "Changes in hormone flux and signaling in white spruce (Picea glauca) seeds during the transition from dormancy to germination in response to temperature cues." BMC Plant Biol 15: 292.
- Liu, Y., et al. (2015). "Effects of different mechanical treatments on Quercus variabilis, Q. wutaishanica and Q. robur acorn germination." iForest Biogeosciences and Forestry 8(6): 728-734.
- Lonati, M., et al. (2010). "Thermal time requirements for germination, emergence and seedling development of adventive legume and grass species." New Zealand Journal of Agricultural Research 52(1): 17-29.
- Ludewig, K., et al. (2014). "Differential effects of reduced water potential on the germination of floodplain grassland species indicative of wet and dry habitats." Seed Science Research 24(01): 49-61.
- Luna, B. and J. M. Moreno (2008). "Light and nitrate effects on seed germination of Mediterranean plant species of several functional groups." Plant Ecology 203(1): 123-135.
- Luo, J. and J. Cardina (2012). "Germination patterns and implications for invasiveness in three Taraxacum (Asteraceae) species." Weed Research 52(2): 112-121.
- Ma, Y. L., et al. (2003). "Effect of solid matrix priming during moist chilling on dormancy breakage and germination of seeds of four fir species." New Forests 25(1): 49-66.
- Mancilla-Leytón, J. M., et al. (2013). "Effects of rabbit gut passage on seed retrieval and germination of three shrub species." Basic and Applied Ecology 14(7): 585-592.

 Marchiol, L., et al. (2000). "Germination and Initial Root Growth of Four Legumes as Affected by Landfill Biogas Atmosphere." Restoration Ecology 8(1):
- 93-98.
- Måren, I. E., et al. (2009). "Prescribed burning of northern heathlands: Calluna vulgaris germination cues and seed-bank dynamics." Plant Ecology 207(2): 245-256.
- Mariko, S. K., Hiroshi; Suzuki, Jun-ichirou; Furukawa, Akio (1993). "Altitudinal variations in germination and growth responses of Reynoutria japonica; populations on Mt Fuji to a controlled thermal environment." Ecological Research 8(1): 27-34.
- Marin, M., et al. (2018). "Responses of Primula vulgaris to light quality in the maternal and germination environments." Plant Biol (Stuttg).
- Maroder, H. (2000). "Storage Behaviour of Salix alba and Salix matsudana Seeds." Annals of Botany 86(5): 1017-1021.
- Marshall, J., et al. (2000). "The effects of paclobutrazol, abscisic acid, and gibberellin on germination and early growth in silver, red, and hybrid maple." Canadian Journal of Forest Research 30(4): 557-565.
- Martín-García, J., et al. (2015). "Influence of temperature on germination of Quercus ilexin Phytophthora cinnamomi, P. gonapodyides, P. quercina and P. psychrophila infested soils." Forest Pathology 45(3): 215-223.
- Martin, R. M. (2017). "Effects of Warming on Invasive Phragmites australis and Native Spartina patens Seed Germination Rates and Implications for Response to Climate Change." Northeastern Naturalist 24(3): 235-238.
- Masaka, K. and K. Yamada (2017). "Variation in germination character of Robinia pseudoacacia L. (Leguminosae) seeds at individual tree level." Journal of Forest Research 14(3): 167-177.
- Masin, R., et al. (2017). "Can alternating temperatures be used to estimate base temperature for seed germination?" Weed Research 57(6): 390-398. Masselink, A. K. (1980). "Germination and Seed Population Dynamics in Melampyrum Pratense L." Acta Botanica Neerlandica 29(5-6): 451-468.
- Mataruga, M., et al. (2010). "Dynamics of seed imbibition and germination of Austrian pine (Pinus nigra Arnold) from extreme habitat conditions within
- five Balkan provenances." New Forests 40(2): 229-242.

 McCartan, S. A., et al. (2015). "Using thermal time models to predict the impact of assisted migration on the synchronization of germination and shoot
- emergence of oak (Quercus robur L.)." Annals of Forest Science 72(4): 479-487.
- McCartan, S. A., et al. (2017). "Secondary dormancy imposition in pre-chilled, dried seeds of Douglas fir (Pseudotsuga menziesii) during storage." Seed Science and Technology 45(2): 296-305.
- McDonough, W. T. H., R. O. (1974). "Effects of Temperature on Germination in Three Subspecies of Big Sagebrush." Journal of Range Management 27(3): 204-205.
- McGinnis, E. E. and M. H. Meyer (2011). "After-ripening, Stratification, and Perigynia Removal Enhance Pennsylvania Sedge Germination." Horttechnology 21(2): 187-192.
- McKee, J. (1998). "The Effect of Temperature on Reproduction in FivePrimulaSpecies." Annals of Botany 82(3): 359-374.
- McKersie, B. D., et al. (1981). "EFFECT OF SEED SIZE ON GERMINATION, SEEDLING VIGOR, ELECTROLYTE LEAKAGE, AND ESTABLISHMENT OF BIRD'S-FOOT TREFOIL (Lotus corniculatus L.)." Canadian Journal of Plant Science 61(2): 337-343.
- Mennan, H. (2003). "The Effects of Depth and Duration of Burial on Seasonal Germination, Dormancy and Viability of Galium aparine and Bifora radians Seeds." Journal of Agronomy and Crop Science 189(5): 304-309.

<u>966</u>

- Mennan, H. and M. Ngouajio (2017). "Seasonal cycles in germination and seedling emergence of summer and winter populations of catchweed bedstraw (Galium aparine) and wild mustard (Brassica kaber)." Weed Science 54(01): 114-120.
- Merou, T., et al. (2012). "Effect of stratification and scarification treatments on the germination of oriental hornbeam (Carpinus orientalis) seeds." Seed Science and Technology 40(2): 265-270.
- Mesléard, F. and J. Lepart (1991). "Germination and seedling dynamics of Arbutus unedoand Erica arbóreaon Corsica." Journal of Vegetation Science 2(2): 155-164.
- Meyer, S. (2000). "Genetic Regulation of Seed Dormancy in Purshia tridentata(Rosaceae)." Annals of Botany 85(4): 521-529.
- Meyer, S. E. (1989). "WARM PRETREATMENT EFFECTS ON ANTELOPE BITTERBRUSH (PURSHIA-TRIDENTATA) GERMINATION RESPONSE TO CHILLING." Northwest Science 63(4): 146-153.
- Meyer, S. E. A., Phil S.; Beckstead, Julie (1997). "Seed Germination Regulation in Bromus tectorum (Poaceae) and Its Ecological Significance." Oikos 78(3): 475-485.
- Meyer, S. E. M., Stephen B.; McArthur, E. Durant (1990). "Germination Response of Artemisia tridentata (Asteraceae) to Light and Chill: Patterns of Between-Population Variation." Botanical Gazette 151(2): 176-183.
- Michalak, M., et al. (2013). "Desiccation sensitivity and successful cryopreservation of oil seeds of European hazelnut (Corylus avellana)." Annals of Applied Biology 163(3): n/a-n/a.
- Midmore, E. K., et al. (2015). "Using thermal time models to predict germination of five provenances of silver birch (Betula pendula Roth) in southern England." Silva Fennica 49(2).
- Milberg, P. (1994). "Germination ecology of the polycarpic grassland perennials Primula veris and Trollius europaeus." Ecography 17(1): 3-8.
- Milberg, P. A., Lars (1997). "Seasonal variation in dormancy and light sensitivity in buried seeds of eight annual weed species." Canadian Journal of Botany 75(11): 1998-2004.
- Mitchell, E. (1926). "Germination of Seeds of Plants Native to Dutchess County, New York." Botanical Gazette 81(1): 108-112.
- Moldoveanu, C., et al. (2015). "Biological Effects of Some New Imidazole Derivatives on Spruce (Picea Abies) Germination." Revista De Chimie 66(1): 104-108.
- Molina-Montenegro, M. A., et al. (2018). "Is the Success of Plant Invasions the Result of Rapid Adaptive Evolution in Seed Traits? Evidence from a Latitudinal Rainfall Gradient." Front Plant Sci 9: 208.
- Mollard, F. P. and M. A. Naeth (2015). "Germination sensitivities to water potential among co-existing C3 and C4 grasses of cool semi-arid prairie grasslands." Plant Biol (Stuttg) 17(2): 583-587.
- Monaco, T. A., et al. (2003). "Nitrogen Effects on Seed Germination and Seedling Growth." Journal of Range Management 56(6): 646-653.
- Mondoni, A., et al. (2008). "Habitat-correlated seed germination behaviour in populations of wood anemone (Anemone nemorosa L.) from northern Italy." Seed Science Research 18(4): 213-222.
- Mortensen, L. C. E., E. N. (2004). "The effect of gibberellic acid, paclobutrazol and ethephon on the germination of Fagus sylvatica and Picea sitchensis seeds exposed to varying durations of moist chilling." Seed Science and Technology 32(1): 21-33.
- Mortensen, L. C., et al. (2007). "Decline in a seed-specific abscisic acid-responsive glycine-rich protein (GRPF1) mRNA may reflect the release of seed dormancy in Fagus sylvatica during moist prechilling." Seed Science Research 14(01): 27-34.
- Muller, C. and M. Bonnet-Masimbert (1983). "Amélioration de la germination des faînes (Fagus silvatica) par prétraitement en présence de polyéthylène glycol." Annales Des Sciences Forestieres 40(2): 157-164.
- Muller, C. and M. Bonnet-Masimbert (1985). "Levée de dormance des faînes avant leur conservation : résultats préliminaires." Annales Des Sciences Forestieres 42(4): 385-396.
- Muller, C. F., E.; Laroppe, E.; Bonnet-Masimbert, M. (1999). "Drying and storage of prechilled Douglas fir, Pseudotsuga menziesii, seeds." Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 29(2): 172-177.
- Myerscough, P. J. and F. H. Whitehead (1966). "Comparative Biology of Tussilago Farfara L., Chamafnerion Angustifolium (L.) Scop., Epilobium Montanum L. And Fpilobium Adfnocaulon Hausskn.. I. General Biology and Germination." New Phytologist 65(2): 192-210.
- Naghipour, A. A., et al. (2016). "Effects of smoke, ash and heat shock on seed germination of seven species from Central Zagros rangelands in the semiarid region of Iran." African Journal of Range & Forage Science 33(1): 67-71.
- Nesme, X. (1985). "RESPECTIVE EFFECTS OF ENDOCARP, TESTA AND ENDOSPERM, AND EMBRYO ON THE GERMINATION OF RASPBERRY (Rubus idaeus L.) SEEDS." Canadian Journal of Plant Science 65(1): 125-130.
- Newton, R. J., et al. (2013). "Seed development and maturation in early spring-flowering Galanthus nivalis and Narcissus pseudonarcissus continues post-shedding with little evidence of maturation in planta." Ann Bot 111(5): 945-955.
- Nie, G., et al. (2017). "Effect of moist pre-chill and dry pre-heat treatment on the germination of Miscanthus sinensis seed from southwest China." Grassland Science 63(2): 93-100.
- Nielsen, J. A., et al. (2015). "Germination and growth responses of co-occurring grass species to soil from under invasive Thymus vulgaris." Allelopathy Journal 35(1): 139-152.

 Niimi, Y., et al. (2006). "Temperatures affecting embryo development and seed germination of Christmas rose (Helleborus niger) after sowing." Scientia
- Horticulturae 107(3): 292-296.
 Nijjer, S., et al. (2002). "Effects of temperature and light on Chinese tallow (Sapium sebiferum and Texas sugarberry (Celtis laevigata) seed germination."
- Texas Journal of Science 54(1): 63-68.

 Nikolic, R., et al. (2007). "Cytokinins and urea derivatives stimulate seed germination in Lotus corniculatus L." Archives of Biological Sciences 59(2): 125-
- 128.
 Nin, S., et al. (2017). "Effects of environmental factors on seed germination and seedling establishment in bilberry (Vaccinium myrtillus L.)." Scientia
- Horticulturae 226: 241-249.
 Nishitani, S. M., Takehiro (1996). "Germination Characteristics of Two Species of Polygonum in Relation to Their Altitudinal Distribution on Mt. Fuji,
- Japan." Arctic and Alpine Research 28(1): 104-110.

 Nomiya, H. (2017). "Differentiation of seed germination traits in relation to the natural habitats of three Ulmus species in Japan." Journal of Forest
- Research 15(2): 123-130.

 Noronha, A. (1997). "Rate of Change in Dormancy Level and Light Requirement in Weed Seeds During Stratification." Annals of Botany 80(6): 795-801.
- Nosko, P. B., Pierre; Kramer, James R.; Kershaw, Kenneth A. (1988). "The effect of aluminum on seed germination and early seedling establishment, growth, and respiration of white spruce (Picea glauca)." Canadian Journal of Botany 66(11): 2305-2310.
- Nozzolillo, C. T., Ingrid (1983). "Aspects of Germination of Impatiens capensis Meerb., Formae capensis and immaculata, and I. pallida Nutt." Bulletin of the Torrey Botanical Club 110(3): 335-344.
- Núñez, M. R. C., L. (2000). "Effect of high temperatures on seed germination of Pinus sylvestris and Pinus halepensis." Forest Ecology and Management 131(1-3): 183-190.
- O'Reilly, C. and N. De Atrip (2007). "Seed moisture content during chilling and heat stress effects after chilling on the germination of common alder and downy birch seeds." Silva Fennica 41(2): 235-246.
- Okagami, N. and K. Terui (1996). "Differences in the Rates of Metabolism of Various Triacylglycerols during Seed Germination and the Subsequent Growth of Seedlings of Dioscorea tokoro, a Perennial Herb." Plant and Cell Physiology 37(3): 273-277.
- Okagami, N. and M. Kawai (1977). "Dormancy in Dioscorea: Gibberellin-Induced Inhibition or Promotion in Seed Germination of D. tokoro and D. tenuipes in Relation to Light Quality." Plant Physiology 60(3): 360-362.
- Okagami, N. K., Masashi (1982). "Dormancy inDioscorea: Differences of temperature responses in seed germination among six Japanese species." The Botanical Magazine Tokyo 95(2): 155-166.
- Oliveira, G., et al. (2012). "Testing Germination of Species for Hydroseeding Degraded Mediterranean Areas." Restoration Ecology 20(5): 623-630.

982 983

997

1002

1012

1017

1019

1021

1039

1048

1052

- Oomes, M. J. M. E., W. Th (1976). "Germination of Six Grassland Herbs in Microsites with Different Water Contents." The Journal of Ecology 64(2): 745-
- Ostroshenko, V. I. and V. V. Ostroshenko (2018). "Influence of growth stimulators on germination energy and ability of scots pine seeds (Pinus Sylvestris L.)." Research Journal of Pharmaceutical Biological and Chemical Sciences 9(1): 529-535.
- Ozbingol, N. (2005). "Increasing acorn moisture content followed by freezing-storage enhances germination in pedunculate oak." Forestry 78(1): 73-
- Pannangpetch, K. and E. W. Bean (1984). "Effects of Temperature on Germination in Populations of Dactylis glomerata from NW Spain and Central Italy." Annals of Botany 53(5): 633-639.
- Pari?, A., et al. (2008). "Breaking dormancy of two endemic Lilium species: Lilium bosniacum (G. Beck) Beck ex Fritsch and Lilium martagon L. var. cattaniae Vis." Seed Science and Technology 36(3): 788-791.
- Parker, W. C., et al. (2006). "The Effects of Seed Mass on Germination, Seedling Emergence, and Early Seedling Growth of Eastern White Pine (Pinus strobus L.)." New Forests 32(1): 33-49.
- Pasquini, N. M. and G. E. Defossé (2012). "Effects of storage conditions and pre-chilling periods on germinability of Pinus ponderosa seeds from Patagonia, Argentina: preliminary study," Bosque (Valdivia) 33(1): 23-24.
- Pasquini, S., et al. (2011), "Effect of different storage conditions in recalcitrant seeds of holm oak (Quercus ilex L.) during germination," Seed Science and Technology 39(1): 165-177.
- Patten, D. T. (1963). "Light and Temperature Influence on Engelmann Spruce Seed Germination and Subalpine Forest Advance." Ecology 44(4): 817-
- Paw?owski, T. A., et al. (2004). "Cell Cycle Activity and -Tubulin Accumulation During Dormancy Breaking of Acer platanoides L. seeds." Biologia Plantarum 48(2): 211-218.
- Pawlowski, T. A. (2009). "Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids." BMC Plant Biol 9: 48.
- Pedrol, N., et al. (2017). "Optimal and synchronized germination of Robinia pseudoacacia, Acacia dealbata and other woody Fabaceae using a handheld rotary tool: concomitant reduction of physical and physiological seed dormancy." Journal of Forestry Research 29(2): 283-290.
- Pegtel, D. M. (1985). "Germination in Populations of Solanum Dulcamara L. From Contrasting Habitats." New Phytologist 100(4): 671-679.
- Perez-Fernandez, M. A. and S. Rodriguez-Echeverria (2003). "Effect of smoke, charred wood, and nitrogenous compounds on seed germination of ten species from woodland in central-western Spain." J Chem Ecol 29(1): 237-251.
- Perez-Fernandez, M. A., et al. (2006). "Seed germination in response to chemicals: effect of nitrogen and pH in the media." J Environ Biol 27(1): 13-20. Pérez-García, F., et al. (2002). "Effects of light, temperature and population variability on the germination of seven Spanish pines." Seed Science Research 12(4): 261-271.
- PÉRez-GarcíA, F., et al. (2003). "Interpopulation variation in seed germination of five Mediterranean Labiatae shrubby species." Israel Journal of Plant Sciences 51(2): 117-124.
- Pérez-García, F., et al. (2006). "Hypericum perforatum L. Seed Germination: Interpopulation Variationand Effect of Light, Temperature, Presowing Treatments and Seed Desiccation." Genetic Resources and Crop Evolution 53(6): 1187-1198.
- Pérez-García, F., et al. (2007), "High viability recorded in ultra-dry seeds of 37 species of Brassicaceae after almost 40 years of storage," Seed Science and Technology 35(1): 143-153.
- Pérez-Ramos, I. M. and T. Marañón (2009). "Effects of waterlogging on seed germination of three Mediterranean oak species: Ecological implications." Acta Oecologica 35(3): 422-428.
- Perglova, I., et al. (2009). "Differences in germination and seedling establishment of alien and native Impatiens species." Preslia 81(4): 357-375.

 Persson, L., et al. (2006). "The effect of endocarp and endocarp splitting resistance on warm stratification requirement of hawthorn seeds (Crataegus
- monogyna)." Seed Science and Technology 34(3): 573-584.
- Peterson, J. K. (1983). "Mechanisms Involved in Delayed Germination of Quercus nigra L. Seeds." Annals of Botany 52(1): 81-92.
- Phartyal, S. S., et al. (2009). "Seed development and germination ecophysiology of the invasive tree Prunus serotina (Rosaceae) in a temperate forest in Western Europe." Plant Ecology 204(2): 285-294.
- Phartyal, S. S., et al. (2009). "Temperature requirements differ for the two stages of seed dormancy break in Aegopodium podagraria (Apiaceae), a species with deep complex morphophysiological dormancy." Am J Bot 96(6): 1086-1095.
- Phartyal, S. S., et al. (2014). "A comprehensive view of epicotyl dormancy in Viburnum furcatum: combining field studies with laboratory studies using temperature sequences." Seed Science Research 24(04): 281-292.
- Picciau, R., et al. (2017). "Can alternating temperature, moist chilling, and gibberellin interchangeably promote the completion of germination in Clematis vitalba seeds?" Botany 95(8): 847-852.
- Pinfield, N. J. and P. A. Stutchbury (1990). "Seed Dormancy in Acer: The Role of Testa-imposed and Embryo Dormancy in Acer velutinum." Annals of Botany 66(2): 133-137.
- Pinfield, N. J. S., P. A.; Bazaid, S. M. (1987). "Seed dormancy in Acer: Is there a common mechanism for all Acer species and what part is played in it by abscisic acid?" Physiologia Plantarum 71(3): 365-371.
- Pipinis, E., et al. (2012). "Effects of stratification and pre-treatment with gibberellic acid on seed germination of two Carpinus species." Seed Science and Technology 40(1): 21-31.
- Pipinis, E., et al. (2014). "Dormancy-Breaking Requirements and Germination for Seeds of Ostrya carpinifolia Scop." Notulae Botanicae Horti Agrobotanici Clui-Napoca 42(1): 209-213.
- Pipinis, E., et al. (2015). "Effects of dormancy-breaking treatments on seed germination of Koelreuteria paniculata and Mahonia aquifolium." Dendrobiology 74: 149-155.
- Pipinis, E., et al. (2017). "Effects of Cold Stratification and Ga3 on Germination of Arbutus Unedo Seeds of Three Provenances." Afr J Tradit Complement Altern Med 14(1): 318-323.
- Pita, J. M. S., V.; Escudero, A. (1998). "Seed cryopreservation of seven Spanish native pine species." Silvae Genetica 47(4): 220-223.
- Pitel, J. A. C., W. M. (1988). "Metabolism of enzymes with imbibition and germination of seeds of jack pine (Pinus banksiana)." Canadian Journal of Botany 66(3): 542-547.
- Pitel, J. A. W., B. S. P. (1985). "Physical and chemical treatments to improve laboratory germination of western white pine seeds." Canadian Journal of Forest Research 15(6): 1187-1190.
- Pitel, J. A. W., B. S. P.; Cheliak, W. M. (1984). "Improving germination of hop-hornbeam seeds." Canadian Journal of Forest Research 14(3): 464-466.
- Pliszko, A. and K. Kostrakiewicz-Gieralt (2018). "Effect of cold stratification on seed germination in Solidago x niederederi (Asteraceae) and its parental species." Biologia (Bratisl) 73(10): 945-950.
- Pons, T. L. (1984). "Possible significance of changes in the light requirement of Cirsium palustre seeds after dispersal in ash coppice." Plant, Cell and Environment 7(4): 263-268.
- Pons, T. L. (1991). "Dormancy, Germination and Mortality of Seeds in a Chalk-Grassland Flora." The Journal of Ecology 79(3): 765-780.
- Póvoa, O., et al. (2017). "Adaptação ao cultivo de oregão (Origanum vulgare L.) na região de Elvas." Revista de Ciências Agrárias 40(SP): S059-S070.
- Pritchard, H. W. and K. R. Manger (1990). "Quantal Response of Fruit and Seed Germination Rate inQuercus roburL. and Castanea sativa Mill, to Constant Temperatures and Photon Dose." Journal of Experimental Botany 41(12): 1549-1557.
- Pritchard, H. W., et al. (1993). "Influence of temperature on seed germination and the nutritional requirements for embryo growth in Arum maculatum L." New Phytologist 123(4): 801-809.
- Probert, R. J. S., R. O. (1986). "The joint action of phytochrome and alternating temperatures in the control of seed germination in Dactylis glomerata." Physiologia Plantarum 67(2): 299-304.

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1074

1086

1087

1088

1089

1093

1094

1095

1096

1108

1109

1117

1137

1138

- Probert, R. J., et al. (1985). "Germination Responses to Light and Alternating Temperatures in European Populations of Dactylis Glomerata L." New Phytologist 100(3): 447-455.
- Probert, R. J., et al. (1986). "Germination Responses to Light and Alternating Temperatures in European Populations of Dactylis Glomerata L.. V. The Principle Components of the Alternating Temperature Requirement." New Phytologist 102(1): 133-142.
- Prochazkova, Z. and L. Bezdeckova (2009). "Effect of accelerated ageing on the viability and germination of European beech (Fagus sylvatica L.) seeds." Seed Science and Technology 37(3): 699-712.
- Putievsky, E. (1983). "Temperature and daylength influences on the growth and germination of sweet basil and oregano." Journal of Horticultural Science 58(4): 583-587.
- Qin, J. and Q. Liu (2009). "Oxidative metabolism-related changes during germination of mono maple (Acer mono Maxim.) seeds under seasonal frozen soil." Ecological Research 25(2): 337-345.
- Radvanyi, A. (1975). "Effect of storage on germination of R-55 repellent-treated seed of white spruce." The Forestry Chronicle 51(1): 21-23.
- Raghu, S. P., Susan L. (2008). "Cold Stratification Requirements for Germination of Alliaria petiolata." Invasive Plant Science and Management 1(3): 315-
- Ratajczak, E. and S. Pukacka (2005). "Decrease in beech (Fagus sylvatica) seed viability caused by temperature and humidity conditions as related to membrane damage and linid composition." Acta Physiologiae Plantarum 27(1): 3-12
- Ratajczak, E., et al. (2015). "Age-related changes in protein metabolism of beech (Fagus sylvatica L.) seeds during alleviation of dormancy and in the early stage of germination." Plant Physiol Biochem 94: 114-121.
- Rawlins, J. K., et al. (2012). "Predicting germination in semi-arid wildland seedbeds. I. Thermal germination models." Environmental and Experimental Botany 76: 60-67.
- Ren, C. and A. R. Kermode (2000). "An increase in pectin methyl esterase activity accompanies dormancy breakage and germination of yellow cedar seeds." Plant Physiol 124(1): 231-242.
- Reyes, O. and L. Trabaud (2008). "Germination behaviour of 14 Mediterranean species in relation to fire factors: smoke and heat." Plant Ecology 202(1):
- Richardson, W. C., et al. (2018). "Use of auto-germ to model germination timing in the sagebrush-steppe." Ecol Evol 8(23): 11533-11542.
- Richter, D. D. and G. L. Switzer (1982). "A Technique for Determining Quantitative Expressions of Dormancy in Seeds." Annals of Botany 50(4): 459-
- Roberts, H. A. and P. M. Lockett (1977). "Temperature Requirements for Germination of Dry-Stored, Cold-Stored and Buried Seeds of Solanum Dulcamara L." New Phytologist 79(3): 505-510.
- Robocker, W. C. (1977). "GERMINATION OF SEEDS OF COMMON YARROW (ACHILLEA-MILLEFOLIUM) AND ITS HERBICIDAL CONTROL." Weed Science 25(5): 456-459.
- Rosario Nuñez, M., et al. (2003). "Predicting the probability of seed germination in Pinus sylvestris L. and four competitor shrub species after fire." Annals of Forest Science 60(1): 75-81.
- Rosner, L. S. and J. T. Harrington (2004). "Effect of stratification in polyethylene glycol solutions on germination of three North American shrub species." Seed Science and Technology 32(2): 309-318.
- Rostamikia, Y., et al. (2016). "Effect of Plant Growth Promoting Rhizobacteria (PGPR) and Cold Stratification on Seed Germination and Early Growth of Corylus avellana L." Austrian Journal of Forest Science 133(4): 337-352.
- Rounsaville, T. J., et al. (2018). "Seed dynamics of the liana Euonymus fortunei (Celastraceae) and implications for invasibility." The Journal of the Torrey Botanical Society 145(3): 225-236.
- Rowley, L., et al. (2007). "Seed stratification of an intermountain west Chokecherry ecotype." Journal of the American Pomological Society 61(4): 179-
- Russi, L. C., P. S.; Roberts, E. H. (1992). "The Fate of Legume Seeds Eaten by Sheep from a Mediterranean Grassland." The Journal of Applied Ecology 29(3): 772-778.
- Sahramaa, M. K. H., L. (2000). "Seed production characters and germination performance of reed canary grass in Finland." Agricultural and Food Science in Finland 9(3): 239-251.
- Sakurai, A. and K. Takahashi (2017). "Flowering phenology and reproduction of the Solidago virgaurea L. complex along an elevational gradient on Mt Norikura, central Japan." Plant Species Biology 32(4): 270-278.
- Salahshoor, F. and F. Kazemi (2016). "Effect of calcium on reducing salt stress in seed germination and early growth stage of Festuca ovina L..." Plant, Soil and Environment 62(No. 10): 460-466.
- Santiago, A., et al. (2013). "Species-specific environmental requirements to break seed dormancy: implications for selection of regeneration niches in three Lonicera (Caprifoliaceae) species." Botany 91(4): 225-233.
- Santiago, A., et al. (2014). "Non-deep simple morphophysiological dormancy in seeds of Viburnum lantana (Caprifoliaceae), a new dormancy level in the genus Viburnum." Seed Science Research 25(01): 46-56. Sarvas, R. (1950). "Effect of Light on the Germination of Forest Tree Seeds." Oikos 2(1): 109-119.
- Sasaki, S. K., T. T. (1968). "Effects of Herbicides on Seed Germination and Early Seedling Development of Pinus resinosa." Botanical Gazette 129(3): 238-246
- Savers, R. L. W., Richard T. (1966), "Germination Responses in Alpine Species." Botanical Gazette 127(1): 11-16.
- Schalin, I. (1967). "Germination Analysis of Alnus incana (L.) Moench and Alnus glutinosa (L.) Gaertn. Seeds." Oikos 18(2): 253-&.
- Scherbatskoy, T. K., Richard M.; Badger, G. J. (1987). "Germination responses of forest tree seed to acidity and metal ions." Environmental and Experimental Botany 27(2): 157-164.
- Schmiedel, D. and O. Tackenberg (2013). "Hydrochory and water induced germination enhance invasion of Fraxinus pennsylvanica." Forest Ecology and Management 304: 437-443.
- Schonfeld, M. A. C., R. J. (1983). "Factors influencing seed movement and dormancy in grass seeds." Grass and Forage Science 38(4): 243-250.
- Schütz, W. (1997). "Are germination strategies important for the ability of cespitose wetland sedges (Carex) to grow in forests?" Canadian Journal of Botany 75(10): 1692-1699
- Schütz, W. (1997). "Primary dormancy and annual dormancy cycles in seeds of six temperate wetland sedges." Aquatic Botany 59(1-2): 75-85.
- Seglie, L., et al. (2012). "In vitroseed germination and seedling propagation in Campanulaspp." Plant Biosystems An International Journal Dealing with all Aspects of Plant Biology 146(1): 15-23.
- Seiwa, K., et al. (2009). "Spatio-temporal variation of environmental signals inducing seed germination in temperate conifer plantations and natural hardwood forests in northern Japan." Forest Ecology and Management 257(1): 361-369
- Seong, C. K. S., Ki Seon; Koo, Da Eun; Hana, Lee; Kim, Jong Jin; ???, (2018). "Characteristics of Seed and Germination of Rhododendron mucronulatum by Collection Dates and Germination Temperatures." Journal of Korean Society of Forest Science 107(3): 237-244.
- Sevik, H. and M. Cetin (2015). "Effects of Water Stress on Seed Germination for Select Landscape Plants." Polish Journal of Environmental Studies 24(2):
- Shannon, P. R. M. J., R. A.; Jarvis, B. C. (1983). "Light-Sensitivity of Hazel Seeds with Respect to the Breaking of Dormancy." Plant and Cell Physiology 24(5): 933-936.
- Sharaf, A. R. N., et al. (2011). "In vitro seed germination and micropropagation of primrose (Primula heterochroma Stapf.) an endemic endangered Iranian species via shoot tip explants." Horticulture, Environment, and Biotechnology 52(3): 298-302.
- Shimomura, H. S., Yutaka; Nakata, Hiroyuki; Yamamoto, Akiko; Kawakubo, Yoshie; Kawasaki, Junichi (1983). "Germination and Growth Inhibitors in Fruits of Gardenia jasminoides," Plant and Cell Physiology 24(1): 123-126.
- Shimono, Y. and G. Kudo (2005). "Comparisons of germination traits of alpine plants between fellfield and snowbed habitats." Ecological Research 20(2): 189-197.

 $\bar{1}220$

- Shipley, B. P., M. (1991). "Germination Responses of 64 Wetland Species in Relation to Seed Size, Minimum Time to Reproduction and Seedling Relative Growth Rate." Functional Ecology 5(1): 111-118.
- Silvertown, J. (1980). "Leaf-Canopy-Induced Seed Dormancy in a Grassland Flora." New Phytologist 85(1): 109-118.
- Simpson, J. D., et al. (2004). "Long-term seed storage of various Canadian hardwoods and conifers." Seed Science and Technology 32(2): 561-572.
- Smith, D. C. (1939). "Influence of moisture and low temperature on the germination of hop seeds." Journal of Agricultural Research 58: 0369-0381.
- Sniezko, R. A., et al. (2017). "Ex situ genetic conservation potential of seeds of two high elevation white pines." New Forests 48(2): 245-261.
- Snow, A. G. S., A. G.; Borthwick, H. A.; Hendricks, S. B.; Toole, E. H. (1961). "RESPONSES OF SEEDS OF PINUS VIRGINIANA TO LIGHT." Plant Physiology 36(3): 285-+.
- Soares, V. N. E., Sabry G.; Gadotti, Gizele I.; Garay, Adriel E.; Villela, Francisco A. (2016). "Can the Tetrazolium Test be Used as an Alternative to the Germination Test in Determining Seed Viability of Grass Species?" Crop Science 56(2): 707-715.
- Solarik, K. A., et al. (2016). "Assessing tree germination resilience to global warming: a manipulative experiment using sugar maple (Acer saccharum)." Seed Science Research 26(02): 153-164.
- Soltani, A., et al. (2005). "Alleviation of physiological dormancy in oriental beechnuts with cold stratification at controlled and unrestricted hydration." Seed Science and Technology 33(2): 283-292.
- Song, D., et al. (2017). "Seed dormancy in Camellia sinensis L. (Theaceae): effects of cold-stratification and exogenous gibberellic acid application on germination." Botany 95(2): 147-152.
- Song, U., et al. (2014). "Effects of three fire-suppressant foams on the germination and physiological responses of plants." Environ Manage 54(4): 865-874.
- Song, Y., et al. (2018). "Korean pine seed: linking changes in dormancy to germination in the 2 years following dispersal." Forestry: An International Journal of Forest Research 91(1): 98-109.
- Spindelbock, J. P., et al. (2013). "Conditional cold avoidance drives between-population variation in germination behaviour in Calluna vulgaris." Ann Bot 112(5): 801-810.
- Springer, T. L. (2017). "Recurrent selection increases seed germination in little bluestem (Schizachyrium scoparium)." Euphytica 213(12).
- Spyroglou, G. and K. Radoglou (2017). "Effect of pre-treatments on the germination of jasmin box (Phillyrea latifolia) seeds in Greece." Bosque (Valdivia) 38(2): 347-355.
- Stanisavljevic, R., et al. (2011). "Seed germination and seedling vigour of italian ryegrass, cocksfoot and timothy following harvest and storage." Ciencia E Agrotecnologia 35(6): 1141-1148.
- Stanisavljevic, R., et al. (2015). "Enhancement of seed germination in three grass species using chemical and temperature treatments." Range Management and Agroforestry 36(2): 115-121.
- Stanton, S., et al. (2010). "Seed germination tests of the parasitic perennial Viscum album (Viscaceae) from fragmented habitats at the northern edge of its range." Plant Ecology and Evolution 143(2): 113-118.
- Stearns, F. O., Jerry (1958). "Interactions of Photoperiod and Temperature Affecting Seed Germination in Tsuga canadensis." American Journal of Botany 45(1): 53-58.
- Stewart, R. N. S., Peter (1965). "The Effect of the Interaction of Temperature with After-Ripening Requirement and Compensating Temperature on Germination of Seed of Five Species of Rosa." American Journal of Botany 52(7): 755-&.
- Struve, D. K. D., Martin F.; Bennett, Mark A. (1991). "Aerated water soak increases red oak seed germination and seedling emergence." Canadian Journal of Forest Research 21(8): 1257-1261.
- Sun, Q. Y., Toshihiko; Takano, Tetsuo (2014). "Salinity Effects on Germination, Growth, Photosynthesis, and Ion Accumulation in Wild Anderss. Populations." Crop Science 54(6): 2760-2771.
- Susko, D. J. M., J. Paul; Spears, Janet F. (2001). "An evaluation of methods for breaking seed dormancy in kudzu (Pueraria lobata)." Canadian Journal of Botany 79(2): 197-203.
- Suszka, B., et al. (2005). "How long can seeds of Norway spruce (Picea abies (L.) Karst.) be stored?" Annals of Forest Science 62(1): 73-78.
- Suzuki, K., et al. (2007). "Responses of Liriope platyphylla F.T. Wang & T. Tang and Ophiopogon japonicus (L.f.) Ker Gawl. seeds to desiccation." Seed Science and Technology 35(1): 129-133.
- Suzuki, W. (1997). "Germination responses of Rubus palmatus var. coptophyllus and Rubus parvifolius seeds with different burial durations to a variable light and temperature regime." Ecological Research 12(2): 167-174.
- Takos, I. A. and G. S. Efthimiou (2003). "Germination results on dormant seeds of fifteen tree species autumn sown in a northern Greek nursery." Silvae Genetica 52(2): 67-71.
- Takos, I., et al. (2012). "Can Electrical Conductivity Predict Seed Germination of Three Pinus Species?" Silvae Genetica 61(1-6): 168-170.
- Tav?ano?lu, Ç., et al. (2015). "Fire-related germination and early seedling growth in 21 herbaceous species in Central Anatolian steppe." Journal of Arid Environments 122: 109-116.
- Tavsanoglu, C. (2011). "Fire-Related Cues (Heat Shock and Smoke) and Seed Germination in a Cistus creticus Population in Southwestern Turkey." Ekoloji 20(79): 99-104.
- Taylor, R. J. S., David C. (1983). "Allelopathic effects of Engelmann spruce bark stilbenes and tannin–stilbene combinations on seed germination and seedling growth of selected conifers." Canadian Journal of Botany 61(1): 279-289.

 Taylorson, R. B. (1987). "Reverse bimodal action of 2,2,2-trifluoroethanol on Rumex crispus seed germination." Physiologia Plantarum 69(4): 716-720.
- Taylorson, R. B. (1987). Reverse bimodal action of 2,2,2-trifluoroetrianol on Rumex Crispus seed germination. Physiologia Plantarum 69(4): 716-720. Temel, F., et al. (2011). "Germination of Anatolian Black Pine (Pinus nigra subsp pallasiana) Seeds from the Lakes Region of Turkey: Geographic Variation and Effect of Storage." Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39(1): 267-274.
- Terui, K. O., Nobuo (1989). "Dormancy in Dioscorea: Rapid Germination of Detached Embryos from Dormant Seeds of D. tokoro." Plant and Cell Physiology 30(2): 287-293.
- Tezuka, T., et al. (2013). "Factors Affecting Seed Germination of Ilex latifolia and I-rotunda." Hortscience 48(3): 352-356.
- Thanos, C. A. G., K. (1988). "Ecophysiology of fire-stimulated seed germination in Cistus incanus ssp. creticus (L.) Hey wood and C. salvifolius L." Plant, Cell & Environment 11(9): 841-849.
- Thanos, C. A. K., C. C.; Skarou, F. (1995). "ECOPHYSIOLOGY OF GERMINATION IN THE AROMATIC PLANTS THYME, SAVORY AND OREGANO (LABIATAE)." Seed Science Research 5(3): 161-170.
- Thomas, T. H. and I. Davies (2002). "Responses of dormant heather (Calluna vulgaris) seeds to light, temperature, chemical and advancement treatments." Plant Growth Regulation 37(1): 23-29.
- Thompson, A. J., et al. (1997). "The effect of temperature on viability of imbibed weed seeds." Annals of Applied Biology 130(1): 123-134.
- Thompson, K. (1989). "A Comparative Study of Germination Responses to High Irradiance Light." Annals of Botany 63(1): 159-162.
- Thompson, K. G., J. P. (1983). "A Comparative Study of Germination Responses to Diurnally-Fluctuating Temperatures." The Journal of Applied Ecology 20(1): 141-156.
- Thompson, P. A. (1974). "Effects of Fluctuating Temperatures on Germination." Journal of Experimental Botany 25(1): 164-175.
- Thompson, P. A. (1980). "Germination Strategy of a Woodland Grass: Milium effusum L." Annals of Botany 46(5): 593-602.
- Thompson, P. A. and S. A. Cox (1978). "Germination of the Bluebell (Hyacinthoides non-scripta (L.) Chouard) in Relation to its Distribution and Habitat." Annals of Botany 42(1): 51-62.
- Thomson, E. F. R., S.; Cocks, P. S.; Osman, A. E.; Russi, L. (1990). "Recovery and germination rates of seeds of Mediterranean medics and clovers offered to sheep at a single meal or continuously." The Journal of Agricultural Science 114(03): 295-299.
- Tilki, F. (2005). "Seed germination and radicle development in six provenances of Pinus sylvestris L. under water stress." Israel Journal of Plant Sciences 53(1): 29-33.
- Tilki, F. (2007). "Preliminary results on the effects of various pre-treatments on seed germination of Juniperus oxycedrus L." Seed Science and Technology 35(3): 765-770.

- Tilki, F. (2008). "Seed germination of Cistus creticus L. and Cistus laurifolius L. as influenced by dry-heat, soaking in distilled water and gibberellic acid." Journal of Environmental Biology 29(2): 193-195.
- Tilki, F. (2010). "Influence of acorn size and storage duration on moisture content, germination and survival of Quercus petraea (Mattuschka)." J Environ Biol 31(3): 325-328.
- Tipton, J. L. (1992). "REQUIREMENTS FOR SEED-GERMINATION OF MEXICAN REDBUD, EVERGREEN SUMAC, AND MEALY SAGE." Hortscience 27(4): 313-316.
- Tisdale, E. W. H., M.; Pringle, W. L. (1959). "Observations on the Autecology of Hypericum Perforatum." Ecology 40(1): 54-62.
- Toole, E. H., et al. (1955). "Interaction of Temperature and Light in Germination of Seeds." Plant Physiol 30(5): 473-478.
- Toole, V. K., et al. (1962). "Responses of Seeds of Pinus taeda & P. strobus to Light." Plant Physiol 37(2): 228-233.
- Topacoglu, O., et al. (2016). "EFFECTS OF WATER STRESS ON GERMINATION OF PINUS NIGRA ARNOLD. SEEDS." Pakistan Journal of Botany 48(2): 447-453.
- Toumi, M., et al. (2017). "[Effect of several methods of scarification and osmotic stress on seed germination of Robinia pseudoacacia L.]." C R Biol 340(5): 264-270.
- Trueblood, C., et al. (2010). "Evaluating Fertility of Triploid Clones of Hypericum androsaemum L. for Use as Non-invasive Landscape Plants." Hortscience 45(8): S280-S281.
- Tsuyuzaki, S. and C. Miyoshi (2009). "Effects of smoke, heat, darkness and cold stratification on seed germination of 40 species in a cool temperate zone in northern Japan." Plant Biol (Stuttg) 11(3): 369-378.
- Tylkowski, T. (2007). "Stratification conditions determining seed dormancy release of european bladder nut (Staphylea pinnata L.)." Acta Societatis Botanicorum Poloniae 76(2): 95-101.
- Tylkowski, T. (2009). "Improving seed germination and seedling emergence in the Juniperus communis." Dendrobiology 61: 47-53.
- Valbuena, L. and M. L. Vera (2002). "The effects of thermal scarification and seed storage on germination of four heathland species." Plant Ecology 161(1): 137-144.
- Valbuena, L. and R. Tarrega (1998). "The influence of heat and mechanical scarification on the germination capacity of Quercus pyrenaica seeds." New Forests 16(2): 177-183.
- Van Assche, J. A. and F. E. A. Vandelook (2006). "Germination ecology of eleven species of <|>Geraniaceae</|> and <|>Malvaceae</|>, with special reference to the effects of drying seeds." Seed Science Research 16(4): 283-290.
- Van Assche, J. A., et al. (2003). "Seasonal cycles in the germination capacity of buried seeds of some Leguminosae (Fabaceae)." New Phytologist 158(2): 315-323.
- Van Assche, J., et al. (2002). "The comparative germination ecology of nine Rumex species." Plant Ecology 159(2): 131-142.
- van der Vegte, F. W. (1978). "Population differentiation and germination ecology in Stellaria media (L.) Vill." Oecologia 37(2): 231-245.
- van Tooren, B. F. P., T. L. (1988). "Effects of Temperature and Light on the Germination in Chalk Grassland Species." Functional Ecology 2(3): 303-310.
- Vandelook, F. and J. A. Van Assche (2010). "A combined physical and physiological dormancy controls seasonal seedling emergence of Geranium robertianum." Plant Biol (Stuttg) 12(5): 765-771.
- Vandelook, F. V. A., J. A. (2008). "Deep complex morphophysiological dormancy in Sanicula europaea (Apiaceae) fits a recurring pattern of dormancy types in genera with an Arcto-Tertiary distribution." Botany 86(12): 1370-1377.
- Vandelook, F., et al. (2007). "Multiple environmental signals required for embryo growth and germination of seeds of Selinum carvifolia (L.) L. and Angelica sylvestris L. (Apiaceae)." Seed Science Research 17(4): 283-291.
- Vandelook, F., et al. (2008). "Environmental signals for seed germination reflect habitat adaptations in four temperate Caryophyllaceae." Functional Ecology 22(3): 470-478.
- Vandelook, F., et al. (2009). "Morphological and physiological dormancy in seeds of Aegopodium podagraria (Apiaceae) broken successively during cold stratification." Seed Science Research 19(2): 115-123.
- Vandelook, F., et al. (2009). "The role of temperature in post-dispersal embryo growth and dormancy break in seeds of Aconitum lycoctonum L." Flora Morphology, Distribution, Functional Ecology of Plants 204(7): 536-542.
- Vanhatalo, V., et al. (1996). "Effect of prechilling on the dormancy of Betulapendula seeds." Canadian Journal of Forest Research 26(7): 1203-1208.
- Vansplunder, I. C., H.; Voesenek, Lacj; Blom, Cwpm (1995). "ESTABLISHMENT OF ALLUVIAL FOREST SPECIES IN FLOODPLAINS THE ROLE OF DISPERSAL TIMING, GERMINATION CHARACTERISTICS AND WATER-LEVEL FLUCTUATIONS." Acta Botanica Neerlandica 44(3): 269-278.
- Vasques, A., et al. (2014). "The role of cold storage and seed source in the germination of three Mediterranean shrub species with contrasting dormancy types." Annals of Forest Science 71(8): 863-872.
- Vera, M. L. (1997). "Effects of altitude and seed size on germination and seedling survival of heathland plants in North Spain." Plant Ecology 133(1): 101-106.
- Voronkova, N. and A. Holina (2011). "Biologija prorastanija i kriohranenie semjan nekotoryh pisevyh i lekarstvennyh vidov rastenij Dalnego Vostoka Rossii." Vestnik Krasnojarskogo gosudarstvennogo agrarnogo universiteta(9).
- Vranckx, G. and F. Vandelook (2012). "A season- and gap-detection mechanism regulates seed germination of two temperate forest pioneers." Plant Biol (Stuttg) 14(3): 481-490.
- Wada, S. and B. M. Reed (2011). "Optimized scarification protocols improve germination of diverse Rubus germplasm." Scientia Horticulturae 130(3): 660-664.
- Wada, S. and B. M. Reed (2011). "Standardizing germination protocols for diverse raspberry and blackberry species." Scientia Horticulturae 132: 42-49.
- Wagner, M. P., Richard F.; Knopp, Tatjana; Bullock, James M.; Heard, Matthew S. (2011). "The germination niches of grassland species targeted for restoration: effects of seed pre-treatments." Seed Science Research 21(02): 117-131.
- Walbott, M., et al. (2018). "[Beech (Fagus sylvatica) germination and seedling growth under climatic and allelopathic constraints]." C R Biol 341(9-10): 444-453.
 Walck, J. L. B., Carol C.; Baskin, Jerry M. (1997). "Comparative Achene Germination Requirements of the Rockhouse Endemic Ageratina luciae-brauniae
- and its Widespread Close Relative A. altissima (Asteraceae)." American Midland Naturalist 137(1): 1-12. Walck, J. L., et al. (2002). "Seed germination ecophysiology of the Asian species Osmorhiza aristata (Apiaceae): comparison with its North American
- congeners and implications for evolution of types of dormancy." Am J Bot 89(5): 829-835.
 Walck, J. L., et al. (2012). "Seed germination and seedling development ecology in world-wide populations of a circumboreal Tertiary relict." Abb Plants
- Walck, J. L., et al. (2012). "Seed germination and seedling development ecology in world-wide populations of a circumboreal Tertiary relict." Abb Plants 2012: pls007.
- Wang, B. (2000). "Beneficial Effects of Moist Chilling on the Seeds of Black Spruce (Picea mariana [Mill.] B.S.P.)." Annals of Botany 86(1): 29-36.
- Wang, G., et al. (2017). "EFFECTS OF LOW TEMPERATURE IN WINTER ON THE GERMINATION OF CAMELLIA JAPONICA SEEDS." Bangladesh Journal of Botany 46(3): 1145-1152.
- Wang, H., et al. (2015). "Differences in female reproductive success between female and hermaphrodite individuals in the subdioecious shrub Eurya japonica (Theaceae)." Plant Biol (Stuttg) 17(1): 194-200.
- Wang, W. Q. S., S. Q.; Li, S. H.; Gan, Y. Y.; Wu, J. H.; Cheng, H. Y. (2011). "Seed dormancy and germination in Vitis amurensis and its variation." Seed Science Research 21(04): 255-265.
- Wang, Z. M. M., S. E. (1992). "PEATLAND AND UPLAND BLACK SPRUCE POPULATIONS IN ALBERTA, CANADA ISOZYME VARIATION AND SEED-GERMINATION ECOLOGY." Silvae Genetica 41(2): 117-122.
- Washitani, I. (1984). "GERMINATION RESPONSES OF A SEED POPULATION OF TARAXACUM-OFFICINALE WEBER TO CONSTANT TEMPERATURES INCLUDING THE SUPRA-OPTIMAL RANGE." Plant Cell and Environment 7(9): 655-659.
- Washitani, I. (1988). "Effects of High Temperatures on the Permeability and Germinability of the Hard Seeds of Rhus javanica L." Annals of Botany 62(1): 13-16.

- Washitani, I. S., Toshiro (1986). "Germination Responses of Pinus densiflora Seeds to Temperature, Light and Interrupted Imbibition." Journal of Experimental Botany 37(9): 1376-1387.
- Webb, D. P. D., E. B. (1969). "Factors influencing the stratification process in seeds of Acer saccharum." Canadian Journal of Botany 47(10): 1555-1563. Weber, J. C. S., F. C. (1990). "EFFECTS OF STRATIFICATION AND TEMPERATURE ON SEED-GERMINATION SPEED AND UNIFORMITY IN CENTRAL OREGON PONDEROSA PINE (PINUS-PONDEROSA DOUGL EX-LAWS)." Usda Forest Service Pacific Northwest Research Station Research Paper(429): 1-13.
- West, T. P., et al. (2014). "Germination of Nonstratified Japanese Tree Lilac Seeds as Influenced by Seed Capsule Maturity and Moisture Content." Horttechnology 24(2): 177-180.
- White, S. N. Z., Linshan; Pruski, Kris (2017). "Investigation of Potential Seed Dormancy Mechanisms in American Burnweed (Erechtites hieraciifolius) Seeds from Wild Blueberry (Vaccinium angustifolium) fields." Weed Science 65(02): 256-265.
- Wijte, A. H. B. M. and J. L. Gallagher (1996). "Effect of Oxygen Availability and Salinity on Early Life History Stages of Salt Marsh Plants. I. Different Germination Strategies of Spartina alterniflora and Phragmites australis (Poaceae)." American Journal of Botany 83(10): 1337-1342.
- Wille, W., et al. (2013). Limited evidence for allelopathic effects of giant hogweed on germination of native herbs." Seed Science Research 23(02): 157-162.
- Williams, E. D. (1983). "Germinability and enforced dormancy in seeds of species of indigenous grassland." Annals of Applied Biology 102(3): 557-566. Williams, M. I., et al. (2016). "Can biochar be used as a seed coating to improve native plant germination and growth in arid conditions?" Journal of Arid Environments 125: 8-15.
- Winston, D. A. H., B. D. (1981). "Effects of early cone collection and artificial ripening on white spruce and red pine germination." Canadian Journal of Forest Research 11(4): 817-826.
- Woodard, P. M. C., G. (1987). "ENGELMANN SPRUCE, LODGEPOLE PINE AND SUBALPINE FIR SEED-GERMINATION SUCCESS ON ASHBED CONDITIONS." Northwest Science 61(4): 233-238.
- Wu, A.-P., et al. (2010). "Effects of Mikania micrantha extracts and their exposure time on seed vigour, seed germination and seedling growth of plants." Allelopathy Journal 25(2): 503-511.
- Wu, L., et al. (2001). "Effects of moist chilling and solid matrix priming on germination of loblolly pine (Pinus taeda L.) seeds." New Forests 21(1): 1-16. Xia, Q., et al. (2016). "Interaction of seed size with light quality and temperature regimes as germination cues in 10 temperate pioneer tree species." Functional Ecology 30(6): 866-874.
- Xiao, C., et al. (2010). "Seed germination of 14 wetland species in response to duration of cold-wet stratification and outdoor burial depth." Aquatic Biology 11(2): 169-177.
- Xiao, Y., et al. (2016). "Effects of salinity and sulphide on seed germination of three coastal plants." Flora Morphology, Distribution, Functional Ecology of Plants 218: 86-91.
- Yagihashi, T., et al. (1998). "Effects of bird ingestion on seed germination of Sorbus commixta." Oecologia 114(2): 209-212.
- Yambe, Y. T., K.; Saito, T. (1995). "LIGHT AND PHYTOCHROME INVOLVEMENT IN ROSA-MULTIFLORA SEED-GERMINATION." Journal of the American Society for Horticultural Science 120(6): 953-955.
- Yang, J. C., et al. (2007). "Intermediate storage behaviour and the effect of prechilling on germination of Japanese Zelkova (Zelkova serrata) seeds." Seed Science and Technology 35(1): 99-110.
- Yang, Q. H., et al. (2009). "Seed germination physiology of Ardisia crenata var. bicolor." Seed Science and Technology 37(2): 291-302.
- Yasin, M. and C. Andreasen (2015). "Breaking seed dormancy of Alliaria petiolata with phytohormones." Plant Growth Regulation 77(3): 307-315.
- Yasin, M. and C. Andreasen (2018). "Hypoxia Improves Germination of the Problematic Invader Garlic Mustard (Alliaria petiolata) of North American Forests." American Midland Naturalist 179(1): 150-156.
- Yazdi, S. A. F., et al. (2013). "FACTORS AFFECTING SEED GERMINATION AND SEEDLING EMERGENCE OF SHEEP SORREL (RUMEX ACETOSELLA)." Romanian Agricultural Research 30: 373-380.
- Yilmaz, M. and F. Tonguç (2012). "Effects of temperature on the germination of Fraxinus ornus subsp. cilicica seeds." Dendrobiology 69: 111-115.
- Yilmaz, M. and F. Tonguc (2013). "DORMANCY LEVEL AND DORMANCY-BREAKING PRETREATMENTS IN SEEDS OF FRAXINUS ORNUS SUBSP CILICICA." Propagation of Ornamental Plants 13(1): 40-45.
- Yoon, J.-H., et al. (2013). "Effects of Seed Pre-treatment and Germination Environments on Germination Characteristics of Ligularia fischeri Seeds." Protected Horticulture and Plant Factory 22(3): 262-269.
- Young, A. T., et al. (2010). "The Influence of Germinations in Soaking Treatment of Rhus chinensis, Lespedeza cyrtobotrya and Lespedeza cuneata." Journal of the Korea Society of Environmental Restoration Technology 13(2): 42-51.
- Young, J. A. E., Raymond A. (1977). "Squirreltail Seed Germination." Journal of Range Management 30(1): 33-36.
- Young, J. A. E., Raymond A. (1979). "Arrowleaf Balsamroot and Mules Ear Seed Germination." Journal of Range Management 32(1): 71-74.
- Young, J. A., et al. (2003). "Germination of Seeds of Big and Bottlebrush Squirreltail." Journal of Range Management 56(3): 277-281.
- Yu, J., et al. (2012). "Effects of Salinity and Water Depth on Germination of Phragmites australisin Coastal Wetland of the Yellow River Delta." CLEAN Soil, Air, Water 40(10): 1154-1158.
- Zerche, S. and A. Ewald (2005). "Seed Potassium Concentration Decline During Maturation Is Inversely Related to Subsequent Germination of Primrose." Journal of Plant Nutrition 28(4): 573-603.
- Zhang, M., et al. (2012). "[Effects of light quality on the seed germination of main tree species in a secondary forest ecosystem of Northeast China]." Ying Yong Sheng Tai Xue Bao 23(10): 2625-2631.
- Zhang, X., et al. (2018). "Allelopathic Potential of Koelreuteria bipinnata var. integrifoliola on Germination of Three Turf Grasses." Russian Journal of Plant Physiology 65(6): 833-841.
- Zhang, Z. and F. Yu (2019). "Effects of Salt Stress on Seed Germination of Four Ornamental Non-Halophyte Species." International Journal of Agriculture and Biology 21(1): 47-53.
- Zhong, X., et al. (2002). "Temperature dependence of seedling establishment of a perennial, Dioscorea tokoro." J Plant Res 115(1117): 55-57.
- Zhu, J., et al. (2005). "[Effects of polyethylene glycol (PEG)-simulated drought stress on Pinus sylvestris var. mongolica seed germination on sandy land]." Ying Yong Sheng Tai Xue Bao 16(5): 801-804.
- Zhu, J., et al. (2017). "Effects of drought stresses induced by polyethylene glycol on germination of Pinus sylvestris var. mongolica seeds from natural and plantation forests on sandy land." Journal of Forest Research 11(5): 319-328.
- Zitnik, S. H., D. E.; Kraigher, H. (1999). "Reduced germination is associated with loss of phytic acid in stored seeds of sessile oak (Quercus petraea (Matt.) Liebl.)." Phyton-Annales Rei Botanicae 39(4): 275-280.
- Zuloaga-Aguilar, S., et al. (2010). "Effect of heat shock on germination of 23 plant species in pine oak and montane cloud forests in western Mexico." International Journal of Wildland Fire 19(6): 759-773.

Fraxinus chZhang, Z. aJi�an, Jiar Solidago vipliszko, A. Warsaw, Proposition Solidago vipliszko, A. Warsaw, Pr	0
Solidago viiPliszko, A. Warsaw, Pr. Solidago viiPliszko, Pr. Solidago viiPliszko, A. Warsaw, Pr. Solidago viiPliszko, Pr.	0
Solidago viiPliszko, A. Warsaw, Pr. Julknown, Ed. 2016 Poland 42.11577 20.99223 N 34. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167 -60.8833 N 40. Juglans nigFlores, P., (Unknown, Ed. 2016 Argentina -33.0167	0
Juglans nigFlores, P., (Unknown, € Juglans nigFlores, P., (Unknown, F., (Unknown, € Juglans nigFlores, P., (Unknown, € Juglans nigFlores, P., (Unknown, € Juglans nigFlores, P., (Unknown, € J	4
Juglans nigFlores, P., (Unknown, € 2016 Argentina -33.0167 -60.8833 N 3.0	4
Juglans nigFlores, P., (Unknown, ε 2016 Argentina -33.0167 -60.8833 N 90 Juglans nigFlores, P., (Unknown, ε 2016 Argentina -33.0167 -60.8833 N 120 Abies ceph Daskalakot Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha Nf 2015 Greece 38.16667 23.71667 N <td>0</td>	0
Juglans nigFlores, P., Unknown, ε 2016 Argentina -33.0167 -60.8833 N 120 Abies ceph Daskalakoι Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha Nf 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha Nf 2015 Greece 38.16667 23.71667 N	0
Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N	0
Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N	O
Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N	0
Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0	0
Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0	0
Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0	0
Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0	0
Abies ceph Daskalakot Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha NI 2015 Greece 38.16667 23.71667 N 0	0
Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakoι Parnitha NI 2015 Greece 38.16667 23.71667 N 0	
Abies ceph Daskalakot Parnitha NF 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha NF 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha NF 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha NF 2015 Greece 38.16667 23.71667 N 0 Abies ceph Daskalakot Parnitha NF 2015 Greece 38.16667 23.71667 N 0	
Abies ceph Daskalako Parnitha Nf 2015 Greece 38.16667 23.71667 N 38.16667 23.71667 N Abies ceph Daskalako Parnitha Nf 2015 Greece 38.16667 23.71667 N	
Abies ceph Daskalako Parnitha NI 2015 Greece 38.16667 23.71667 N CAbies ceph Daskalako Parnitha NI 2015 Greece 38.16667 23.71667 N CAbies ceph Daskalako Parnitha NI 2015 Greece 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 Greece 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 Greece 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 Greece 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 Greece 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 Greece 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 Greece 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 38.16667 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 23.71667 N CABIES CEPH DASKALAKO PARNITHA NI 2015 GREECE 23.71667	
Abies ceph Daskalako Parnitha NF 2015 Greece 38.16667 23.71667 N Company Abies ceph Daskalako Parnitha NF 2015 Greece 38.16667 23.71667 N Company Abies ceph Daskalako Parnitha NF 2015 Greece 38.16667 23.71667 N Company Abies ceph Daskalako Parnitha NF 2015 Greece 38.16667 23.71667 N Company Abies ceph Daskalako Parnitha NF 2015 Greece 38.16667 23.71667 N Company Abies ceph Daskalako Parnitha NF 2015 Greece 38.16667 23.71667 N Company Abies ceph Daskalako Parnitha NF 2015 Greece 38.16667 23.71667 N Company Abies ceph Daskalako Parnitha NF 2015 Greece 38.16667 23.71667 N Company Abies ceph Daskalako Parnitha NF 2015 Greece 38.16667 23.71667 N Company Abies ceph Daskalako Parnitha NF 2015 Greece 38.16667 23.71667 N Company Abies ceph Daskalako Parnitha NF 2015 Greece 38.16667 23.71667 N Company Abies ceph Daskalako Parnitha NF 2015 Greece 38.16667 23.71667 N Company Abies ceph Daskalako Parnitha NF 2015 Greece 38.16667 23.71667 N Company Abies ceph Daskalako Parnitha NF 2015 Greece 38.16667 23.71667 N Company Abies Company Ab	
Abies ceph Daskalako Parnitha NF 2015 Greece 38.16667 23.71667 N	
Abies ceph Daskalako Parnitha Nf 2015 Greece 38.16667 23.71667 N	0
Abies balsaConnolly, EWisconsin 2011 USA 44.35 -89.8167 N 56	
Acer sacch Connolly, EWisconsin 2011 USA 44.35 -89.8167 N	
Picea glaucConnolly, EWisconsin 2011 USA 44.35 -89.8167 N	
Pinus resin Connolly, EWisconsin 2011 USA 44.35 -89.8167 N 56	
Acer sacch Connolly, EWisconsin 2011 USA 44.35 -89.8167 N 30	
	0
Pinus resin Connolly, EWisconsin 2011 USA 44.35 -89.8167 N	
Pinus strob Connolly, EWisconsin 2011 USA 44.35 -89.8167 N 56	
Pinus strobConnolly, EWisconsin 2011 USA 44.35 -89.8167 N	
Picea glaucConnolly, EWisconsin 2011 USA 44.35 -89.8167 N 56	6
	0
	0
	0
	0
	0
	0
	0
	0
	0
• •	0
	0
	0
	0
	0
• •	0
Acer rubrur Marshall, J. Ontario, Ca 1997 Canada 46.7 -82.6333 N 30	
	0
	0
	0
	0
Picea maria Beardmore Ontario, Ca 1992 Canada 45.9 -77.2833 N 21	
	0
·	0

Alliaria peti Blossey, B. New York,	1997 USA	42.55	-74.8667 N	0
Alliaria peti Blossey, B. Illinois, US/	1997 USA	39.63333	-89.3833 N	0
Alliaria peti Blossey, B. Massachus	1997 USA	42.38333	-71.5333 N	0
Pinus sylveOstroshenkPrimorye To	2017 Russia	43.5	133.9 N	0
Alliaria peti Blossey, B. Ohio, USA	1997 USA	40.43333	-83.1833 N	0
Alliaria peti Blossey, B. Kansas, US	1997 USA	38.55	-97.8167 N	0
Alliaria peti Blossey, B. District of C	1997 USA	38.91667	-77.05 N	0
Acer sacch Solarik, K. Kentucky, l	2013 USA	38.05	-84.35 N	14
Acer sacch Solarik, K. Kentucky, l	2013 USA	38.05	-84.35 N	14
Acer sacch Solarik, K. Kentucky, l	2013 USA	38.05	-84.35 N	14
Alliaria peti Blossey, B. Kentucky, t	1997 USA	37.48333	-86.1167 N	0
Acer sacch Solarik, K. Kentucky, l	2013 USA	38.05	-84.35 N	14
Acer sacch Solarik, K. Kentucky, l	2013 USA	38.05	-84.35 N	14
Acer sacch Solarik, K. Kentucky, l	2013 USA	38.05	-84.35 N	14
Acer sacch Solarik, K. Kentucky, l	2013 USA	38.05	-84.35 N	14
Acer sacch Solarik, K. Kentucky, l	2013 USA	38.05	-84.35 N	14
Acer sacch Solarik, K. Kentucky, l	2013 USA	38.05	-84.35 N	14
Alliaria peti Blossey, B. Georgia, U	1997 USA	32.75	-82.7833 N	0
Ulmus glabBarden, C. Douglas Co	2010 USA	38.86667	-95.25 N	90
Ulmus glabBarden, C. Douglas Cc	2010 USA	38.86667	-95.25 N	0
Ulmus glabBarden, C. Butler Co, ł	2010 USA	37.73333	-96.9 N	90
Ulmus glabBarden, C. Butler Co, ł	2010 USA	37.73333	-96.9 N	0
PhragmitesXiao, Y., et Yancheng I	2013 China	32.33333	119.4833 N	0
Magnolia olXia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Magnolia olXia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Hydrangea Xia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Hydrangea Xia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Alnus hirsu Xia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Alnus hirsu Xia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Cercidiphyl Xia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Cercidiphyl Xia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Hydrangea Xia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Magnolia k(Xia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Magnolia kiXia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Cercidiphyl Xia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Cercidiphyl Xia, Q., et & Field Scien	2012 Japan 2012 Japan	38.75	140.75 N	30
• • • •	•		140.75 N	
Magnolia kiXia, Q., et ¿Field Scien	2012 Japan	38.75		30
Magnolia olXia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Alnus hirsu Xia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Magnolia olXia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Hydrangea Xia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Magnolia kıXia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Alnus hirsu Xia, Q., et ¿Field Scien	2012 Japan	38.75	140.75 N	30
Betula ermiXia, Q., et iHokkaido, .	2012 Japan	43.11667	142.7 N	30
PhellodendXia, Q., et aHokkaido, c	2012 Japan	43.11667	142.7 N	30
PhellodendXia, Q., et ¿Hokkaido, 、	2012 Japan	43.11667	142.7 N	30
PhellodendXia, Q., et ¿Hokkaido, 、	2012 Japan	43.11667	142.7 N	30
Betula erm;Xia, Q., et ¿Hokkaido, 、	2012 Japan	43.11667	142.7 N	30
PhellodendXia, Q., et ¿Hokkaido, .	2012 Japan	43.11667	142.7 N	30
Betula ermiXia, Q., et aHokkaido, c	2012 Japan	43.11667	142.7 N	30
Betula ermiXia, Q., et aHokkaido, c	2012 Japan	43.11667	142.7 N	30
TaraxacumMolina-MorCaldera, Cl	2017 Chile	-27.1	-70.0167 N	0
Achillea milWilliams, MMoses Lake	2015 USA	47.13333	-119.283 N	0
Achillea milWilliams, MMoses Lake	2015 USA	47.13333	-119.283 N	0
Achillea milWilliams, MMoses Lake	2015 USA	47.13333	-119.283 N	0
Pinus nigra Topacoglu, Asar, Turke	2015 Turkey	39.85	27.23333 N	0

Pinus nigraTopacoglu, Kalkim, Tur	2015 Turkey	39.8	27.2 N	0
Pinus nigraTopacoglu, Karakoy, Tı	2015 Turkey	39.83333	26.88333 N	0
Pinus nigraTopacoglu, Bursa, Turk	2015 Turkey	40.16667	28.91667 N	0
Pinus nigra Topacoglu, Alabarda, T	2015 Turkey	39.88333	29.43333 N	0
Pinus nigra Topacoglu, Golcuk, Tu	2015 Turkey	39.81667	28.91667 N	0
Pinus nigra Topacoglu, Kicir, Turke	2015 Turkey	39.23333	28.7 N	0
Pinus nigra Topacoglu, Bogazova,	2015 Turkey	40.61667	29.71667 N	0
Pinus nigra Topacoglu, Uluhan, Tu	2015 Turkey	40.53333	31.43333 N	0
TaraxacumMolina-MorLa Serena,	2017 Chile	-29.9	-70.0167 N	0
Pinus nigra Topacoglu, Sorgun, Tu	2015 Turkey	39.88333	29.31667 N	0
Pinus nigraTopacoglu, Aktuzla, Tu	2015 Turkey	39.6	28.93333 N	0
Pinus nigra Topacoglu, Derecarsar	2015 Turkey	40.33333	29.75 N	0
Pinus nigra Topacoglu, Balikoy, Tu	2015 Turkey	39.5	29.08333 N	0
Pinus nigra Topacoglu, Inceler, Tur	2015 Turkey	37.71667	29.56667 N	0
Pinus nigra Topacoglu, Tota, Turke	2015 Turkey	37.86667	31.38333 N	0
Acer sacch Solarik, K. Montmagny	2013 Canada	46.96667	-70.6 N	14
Acer sacch Solarik, K. Montmagny	2013 Canada	46.96667	-70.6 N	14
Acer sacch Solarik, K. Montmagny	2013 Canada	46.96667	-70.6 N	14
Acer sacch Solarik, K. Montmagny	2013 Canada	46.96667	-70.6 N	14
Acer sacch Solarik, K. Montmagny	2013 Canada	46.96667	-70.6 N	14
Acer sacch Solarik, K. Montmagny	2013 Canada	46.96667	-70.6 N	14
Acer sacch Solarik, K. Montmagny	2013 Canada	46.96667	-70.6 N	14
Acer sacch Solarik, K. Montmagny	2013 Canada	46.96667	-70.6 N	14
Acer sacch Solarik, K. Montmagny	2013 Canada	46.96667	-70.6 N	14
Sambucus Davis, O. HPennsylvar	1925 USA	40.81667	-77.75 N	99
Acer sacch Solarik, K. Pennsylvar	2013 USA	41.15	-78.0167 N	14
Sambucus Davis, O. HPennsylvar	1925 USA	40.81667	-77.75 N	99
Sambucus Davis, O. HPennsylvar	1925 USA	40.81667	-77.75 N	99
Sambucus Davis, O. HPennsylvar	1925 USA	40.81667	-77.75 N	99
Sambucus Davis, O. HPennsylvar	1925 USA	40.81667	-77.75 N	99
Acer sacch Solarik, K. Pennsylvar	2013 USA	41.15	-78.0167 N	14
Sambucus Davis, O. HPennsylvar	1925 USA	40.81667	-77.75 N	99
Acer sacch Solarik, K. Pennsylvar	2013 USA	41.15	-78.0167 N	14
Acer sacch Solarik, K. Pennsylvar	2013 USA	41.15	-78.0167 N	14
Sambucus Davis, O. HPennsylvar	1925 USA	40.81667	-77.75 N	99
Sambucus Davis, O. HPennsylvar	1925 USA	40.81667	-77.75 N	99
Acer sacch Solarik, K. Pennsylvar	2013 USA	41.15	-78.0167 N	14
Acer sacch Solarik, K. Pennsylvar	2013 USA	41.15	-78.0167 N	14
Sambucus Davis, O. HPennsylvar	1925 USA	40.81667	-77.75 N	99
Sambucus Davis, O. HPennsylvar	1925 USA	40.81667	-77.75 N	99
Sambucus Davis, O. HPennsylvar	1925 USA	40.81667	-77.75 N	99
Acer sacch Solarik, K. Pennsylvar	2013 USA	41.15	-78.0167 N	14
Sambucus Davis, O. HPennsylvar	1925 USA	40.81667	-77.75 N	99
Sambucus Davis, O. HPennsylvar	1925 USA	40.81667	-77.75 N	99
Acer sacch Solarik, K. Pennsylvar	2013 USA	41.15	-78.0167 N	14
Acer sacch Solarik, K. Pennsylvar	2013 USA	41.15	-78.0167 N	14
Sambucus Davis, O. HPennsylvar	1925 USA	40.81667	-77.75 N	99
Sambucus Davis, O. HPennsylvar	1925 USA 2013 Canada	40.81667	-77.75 N	99 14
Acer sacch Solarik, K. Rivi re-du	2013 Canada 2013 Canada	47.83333	-69.5333 N -69.5333 N	14
Acer sacch Solarik, K. Rivi re-du	2013 Canada 2013 Canada	47.83333	-69.5333 N	14
Acer sacch Solarik, K. Rivi re-du Acer sacch Solarik, K. Rivi re-du	2013 Canada 2013 Canada	47.83333 47.83333	-69.5333 N	14
Acer sacch Solarik, K. /Rivi re-du	2013 Canada 2013 Canada	47.83333	-69.5333 N	14
Acer sacch Solarik, K. /Rivi re-du	2013 Canada 2013 Canada	47.83333	-69.5333 N	14
Acer sacch Solarik, K. /Rivi re-du	2013 Canada 2013 Canada	47.83333	-69.5333 N	14
Acer sacch Solarik, K. Rivi re-du	2013 Canada 2013 Canada	47.83333	-69.5333 N	14
Acei Sacci Solatik, N. /KIVI VIE-QU	ZUIJ Gallaua	-1 1.00000	-บฮ.ออออ เพ	14

Acer sacch Solarik, K. ≀Rivi re-du	2013 Canada	47.83333	-69.5333	
Acer sacch Solarik, K. Sherbrooke	2013 Canada	45.4	-71.9167	
Acer sacch Solarik, K. Sherbrooke	2013 Canada	45.4	-71.9167	
Acer sacch Solarik, K. Sherbrooke	2013 Canada	45.4	-71.9167	
Acer sacch Solarik, K. βherbrooke	2013 Canada	45.4	-71.9167	N 14
Acer sacch Solarik, K. βherbrooke	2013 Canada	45.4	-71.9167	N 14
Acer sacch Solarik, K. βherbrooke	2013 Canada	45.4	-71.9167	N 14
Acer sacch Solarik, K. βherbrooke	2013 Canada	45.4	-71.9167	N 14
Acer sacch Solarik, K. Sherbrooke	2013 Canada	45.4	-71.9167	N 14
Acer sacch Solarik, K. βherbrooke	2013 Canada	45.4	-71.9167	N 14
TaraxacumMolina-MorValparaiso,	2017 Chile	-33.0167	-71.0167	N 0
Acer sacch Solarik, K. Tennessee	2013 USA	35.71667	-87.4667	N 14
Acer sacch Solarik, K. Tennessee	2013 USA	35.71667	-87.4667	N 14
Acer sacch Solarik, K. Tennessee	2013 USA	35.71667	-87.4667	N 14
Acer sacch Solarik, K. Tennessee	2013 USA	35.71667	-87.4667	N 14
Acer sacch Solarik, K. Tennessee	2013 USA	35.71667	-87.4667	N 14
Acer sacch Solarik, K. Tennessee	2013 USA	35.71667	-87.4667	N 14
Acer sacch Solarik, K. Tennessee	2013 USA	35.71667	-87.4667	N 14
Acer sacch Solarik, K. Tennessee	2013 USA	35.71667	-87.4667	
Acer sacch Solarik, K. Tennessee	2013 USA	35.71667	-87.4667	
Acer sacch Solarik, K. Vile Marie,	2013 Canada	47.31667	-79.4333	
Acer sacch Solarik, K. Vile Marie,	2013 Canada	47.31667	-79.4333	
Acer sacch Solarik, K. Vile Marie,	2013 Canada	47.31667	-79.4333	
Acer sacch Solarik, K. Vile Marie,	2013 Canada	47.31667	-79.4333	
Acer sacch Solarik, K. Vile Marie,	2013 Canada	47.31667	-79.4333	
Acer sacch Solarik, K. Vile Marie,	2013 Canada	47.31667	-79.4333	
Acer sacch Solarik, K. Wile Marie,	2013 Canada	47.31667	-79.4333	
Acer sacch Solarik, K. Wile Marie,	2013 Canada	47.31667	-79.4333	
Acer sacch Solarik, K. Vile Marie,	2013 Canada	47.31667	-79.4333	
	2015 Canada 2015 Iran	36.28333	59.6	
Festuca oviSalahshoorAgriculture Corylus aveRostamikia Guilan	2015 Iran	37.71667	47.88333	
Corylus aveRostamikia Guilan	2015 Iran	37.71667	47.88333	
Corylus aveRostamikia Ardebil	2015 Iran	38.31667		
•			48.6	
Corylus aveRostamikia Ardebil	2015 Iran	38.31667	48.6	
Corylus aveRostamikia Arasbaran	2015 Iran	38.85	48.65	
Corylus aveRostamikia Arasbaran	2015 Iran	38.85	48.65	
Lilium mart/Guney, K., Kure Mount	2012 Turkey	41.85	33.76667	
Prunella vuFazal, H., eMadyan va	2015 Pakistan	35.13333	72.53333	
Prunella vuFazal, H., eMadyan va	2015 Pakistan	35.13333	72.53333	
Prunella vuFazal, H., eMadyan va	2015 Pakistan	35.13333	72.53333	
Prunella vuFazal, H., eMadyan va	2015 Pakistan	35.13333	72.53333	
TaraxacumMolina-MorConcepci	2017 Chile	-36.95	-73.0167	
Rubus parvChoi, G. E. Jeonju si, J	2013 South Kore		127.1167	
Rubus parvChoi, G. E. Jeonju si, J	2013 South Kore		127.1167	
Rubus parvChoi, G. E. Jeonju si, J	2013 South Kore		127.1167	
Rubus bueiChoi, G. E. Seogwipo s	2012 South Kore		126.55	
Rubus bueiChoi, G. E. Seogwipo s	2012 South Kore		126.55	
Rubus bueiChoi, G. E. Seogwipo s	2012 South Kore		126.55	Y 0
Robinia pscCabra-RivaHenares Ri	2013 Spain	40.7	-3.15	
Robinia pscCabra-RivaHenares Ri	2013 Spain	40.7	-3.15	
Stellaria mevan der VerThe Nether	1977 Netherland		4.566667	
Angelica syBoedeltje, (The Nether	2012 Netherland		5.266667	N 108
Stellaria mevan der VeeThe Nether	1977 Netherland		4.566667	
Lycopus euBoedeltje, (The Nether	2012 Netherland		5.266667	N 108
Filipendula Boedeltje, (The Nether	2012 Netherland		5.266667	
Prunella vuOomes, M. The Nether	1975 Netherland	52.11667	4.833333	N 0

Stellaria mevan der VerThe Nether	1977 Netherland		4.566667 N	0
Alnus glutirBoedeltje, (The Nether	2012 Netherland		5.266667 N	108
Stellaria mevan der VerThe Nether	1977 Netherland		4.566667 N	0
Achillea milOomes, M. The Nether	1975 Netherland		4.833333 N	0
Stellaria mevan der VerThe Nether	1977 Netherland		4.566667 N	0
Juncus effuBoedeltje, (The Nether	2012 Netherland		5.266667 N	108
Stellaria mevan der VerThe Nether	1977 Netherland		4.566667 N	0
Quercus ro Ozbingol, NThe Nether	2002 Netherland	52.05	5.3 N	0
Stellaria mevan der VerThe Nether	1977 Netherland		4.566667 N	0
Solidago gi Bochenek, Krakow, Pc	2015 Poland	50.05	19.93333 N 19.93333 N	80
Solidago gi Bochenek, Krakow, Pc	2015 Poland	50.05		0
SanguisorbBenvenuti, Tuscany, It	2013 Italy	43.38333	11.1 N 11.1 N	0
CampanulaBenvenuti, Tuscany, It	2013 Italy	43.38333		30 0
Alliaria peti Benvenuti, Tuscany, It	2013 Italy 2013 Italy	43.38333	11.1 N 11.1 N	0
CampanulaBenvenuti, Tuscany, It	2013 Italy	43.38333	11.1 N 11.1 Y	0
Alliaria peti Benvenuti, Tuscany, It	2013 Italy	43.38333	11.1 T 11.1 Y	0
SanguisorbBenvenuti, Tuscany, ItaraxacumBenvenuti, Ita	2013 Italy	43.38333 43.38333	11.1 T 11.1 N	0
TaraxacumBenvenuti, Tuscany, It	2013 Italy 2013 Italy	43.38333	11.1 N	30
Securigera Bae, J., et ¿Pickseed E	2013 Italy 2011 Canada	45.36333	-72.9167 N	42
Lotus corni Bae, J., et Richters se	2011 Canada	45.65	-72.9107 N	0
Alliaria peti/Yasin, M. aHoejbakke	2011 Canada 2014 Denmark	55.63333	12.28333 Y	0
Alliaria peti Yasin, M. a Hoejbakkeç	2014 Denmark	55.63333	12.28333 N	0
Eurya japorWang, H., ¿Females, N	2014 Delilliark 2014 Japan	35.16667	136.9667 N	0
TaraxacumMolina-MorCoyhaique,	2014 Japan 2017 Chile	-46.0167	-72.0167 N	0
Eurya japorWang, H., (Hermaphro	2017 Cilile 2014 Japan	35.16667	136.9667 N	0
SanguisorbTav?ano?ltHacettepe	2014 Japan 2010 Turkey	39.86667	32.71667 N	0
Dactylis glcStanisavlje Serbia and	2010 Turkey 2012 Serbia	44.01667	19.55 N	0
Pinus nigra Sevik, H. aıKastamonu	2012 Serbia 2015 Turkey	41.38333	33.76667 N	0
PyracanthaSevik, H. aiKastamonu	2015 Turkey	41.38333	33.76667 N	5
Berberis aqPipinis, E., Thessalonil	2010 Greece	40.63333	22.93333 N	0
Berberis aqPipinis, E., Thessalonil	2010 Greece	40.63333	22.93333 N	120
Dactylis glcNielsen, J. Flat Top Hil	2011 New Zealar	-45.2333	169.3667 N	0
Picea glaucBeardmore Alberta, Ca	1993 Canada	54.11667	-112.467 N	0
Pinus contcBeardmore Alberta, Ca	1993 Canada	54.11667	-112.467 N	21
Pinus contcBeardmore Alberta, Ca	1993 Canada	54.11667	-112.467 N	0
SchizachyriMollard, F. Alberta, Ca	2011 Canada	54.25	-113.733 N	0
Picea glaucBeardmore Alberta, Ca	1993 Canada	54.11667	-112.467 N	
Picea abiesMoldovean Forest Disti	2011 Romania	47.68333	25.53333 N	0
Betula pen(Midmore, ECentral Eng	2010 UK	53.01667	-3.01667 N	21
Betula pen(Midmore, ECentral Eng	2010 UK	53.01667	-3.01667 N	0
Betula pen(Midmore, ECentral Eng	2010 UK	53.01667	-3.01667 N	0
Betula pencMidmore, ECentral Enc	2010 UK	53.01667	-3.01667 N	21
Betula pencMidmore, ECentral Enc	2010 UK	53.01667	-3.01667 N	21
Betula pencMidmore, ECentral Enç	2010 UK	53.01667	-3.01667 N	0
Betula pencMidmore, ECentral Enc	2010 UK	53.01667	-3.01667 N	0
Betula pencMidmore, ECentral Enc	2010 UK	53.01667	-3.01667 N	0
Betula pencMidmore, ECentral Enc	2010 UK	53.01667	-3.01667 N	0
Betula pencMidmore, ECentral Enc	2010 UK	53.01667	-3.01667 N	21
Betula pencMidmore, ECentral Enc	2010 UK	53.01667	-3.01667 N	21
Betula pencMidmore, ECentral Enc	2010 UK	53.01667	-3.01667 N	21
Betula pencMidmore, ECentral Enç	2010 UK	53.01667	-3.01667 N	
Betula pencMidmore, ECentral Enç	2010 UK	53.01667	-3.01667 N	0
Betula pendidmore, EEngland Ke	2009 UK	55.01667	-3.01667 N	21
Betula penιMidmore, EEngland Κε	2009 UK	55.01667	-3.01667 N	0
Betula pendMidmore, EEngland Ke	2009 UK	55.01667	-3.01667 N	0
=				

Betula pencMidmore, EEngland Ke	2009 UK	55.01667	-3.01667 N	21
Betula pencMidmore, EEngland Ke	2009 UK	55.01667	-3.01667 N	0
Betula pencMidmore, EEngland Ke	2009 UK	55.01667	-3.01667 N	0
Betula pencMidmore, EEngland Ke	2009 UK	55.01667	-3.01667 N	21
Betula pencMidmore, EEngland Ke	2009 UK	55.01667	-3.01667 N	21
Betula pendMidmore, EEngland Ke	2009 UK	55.01667	-3.01667 N	0
Betula pen(Midmore, EEngland Ke	2009 UK	55.01667	-3.01667 N	0
Betula pen(Midmore, EEngland Ke	2009 UK	55.01667	-3.01667 N	21
Betula pen(Midmore, EEngland Ke	2009 UK	55.01667	-3.01667 N	21
Betula pen(Midmore, EEngland Ke	2009 UK	55.01667	-3.01667 N	0
Betula pen(Midmore, EEngland Ke	2009 UK	55.01667	-3.01667 N	21
Primula vul Marin, M., (Scotia See	2016 UK	57.15	-3.08333 N	0
Primula vul Marin, M., (Scotia See	2016 UK	57.15	-3.08333 N	0
Primula vul Marin, M., (Scotia See	2016 UK	57.15	-3.08333 N	0
Primula vul Marin, M., (Scotia See	2016 UK	57.15	-3.08333 N	0
Primula vul Marin, M., (Scotia See	2016 UK	57.15	-3.08333 N	0
Primula vul Marin, M., (Scotia See	2016 UK	57.15	-3.08333 N	0
Primula vul Marin, M., (Scotia See	2016 UK	57.15	-3.08333 N	0
	2016 UK	57.15		
Primula vul Marin, M., (Scotia See			-3.08333 N	0
Primula vul Marin, M., (Scotia See	2016 UK	57.15	-3.08333 N	0
Primula vul Marin, M., (Scotia See	2016 UK	57.15	-3.08333 N	0
Betula pen(Midmore, ELahti, Finla	2002 Finland	60.01667	25.01667 N	0
Betula pen(Midmore, ELahti, Finla	2002 Finland	60.01667	25.01667 N	0
Betula pen(Midmore, ELahti, Finla	2002 Finland	60.01667	25.01667 N	21
Betula pen(Midmore, ELahti, Finla	2002 Finland	60.01667	25.01667 N	21
Betula pen(Midmore, ELahti, Finla	2002 Finland	60.01667	25.01667 N	0
Betula pencMidmore, ELahti, Finla	2002 Finland	60.01667	25.01667 N	21
Betula pencMidmore, ELahti, Finla	2002 Finland	60.01667	25.01667 N	0
Betula pen(Midmore, ELahti, Finla	2002 Finland	60.01667	25.01667 N	21
Betula pencMidmore, ELahti, Finla	2002 Finland	60.01667	25.01667 N	21
Betula pencMidmore, ELahti, Finla	2002 Finland	60.01667	25.01667 N	0
Betula pencMidmore, ELahti, Finla	2002 Finland	60.01667	25.01667 N	0
Betula pencMidmore, ELahti, Finla	2002 Finland	60.01667	25.01667 N	21
Betula pencMidmore, ELahti, Finla	2002 Finland	60.01667	25.01667 N	21
Betula pendMidmore, ELahti, Finla	2002 Finland	60.01667	25.01667 N	0
Betula pendMidmore, ERh�ne-Alp	2010 France	47.01667	5.016667 N	21
Betula pen Midmore, ERh Phe-Alp	2010 France	47.01667	5.016667 N	21
Betula pencMidmore, ERh�ne-Alç	2010 France	47.01667	5.016667 N	21
Betula pendMidmore, ERh�ne-Alp	2010 France	47.01667	5.016667 N	0
Betula pendMidmore, ERh�ne-Alp	2010 France	47.01667	5.016667 N	21
Betula pendMidmore, ERh�ne-Alp	2010 France	47.01667	5.016667 N	21
Betula pendMidmore, ERh�ne-Alp	2010 France	47.01667	5.016667 N	0
Betula pencMidmore, ERh�ne-Alç	2010 France	47.01667	5.016667 N	0
Betula pencMidmore, ERh�ne-Alr	2010 France	47.01667	5.016667 N	0
Betula pencMidmore, ERh�ne-Alr	2010 France	47.01667	5.016667 N	21
Betula pencMidmore, ERh�ne-Alr	2010 France	47.01667	5.016667 N	21
Betula pencMidmore, ERh�ne-Alr	2010 France	47.01667	5.016667 N	0
Betula pencMidmore, ERh ne-Alp	2010 France	47.01667	5.016667 N	0
Betula pencMidmore, ERh ne-Alp	2010 France	47.01667	5.016667 N	0
Betula pencMidmore, EScottish Hiç	2001 UK	57.01667	-3.01667 N	0
Betula pencMidmore, EScottish Hig	2001 UK	57.01667	-3.01667 N	21
Betula pen(Midmore, EScottish Hig	2001 UK	57.01667	-3.01667 N	21
Betula pen(Midmore, EScottish Hig	2001 UK	57.01667	-3.01667 N	0
Betula pen(Midmore, EScottish Hig	2001 UK	57.01667	-3.01667 N	0
Betula pen(Midmore, EScottish Hig	2001 UK	57.01667	-3.01667 N	21
Betula pen(Midmore, EScottish Hig	2001 UK	57.01667	-3.01667 N	21
,			_	

Betula pencMidmore, EScottish Hiç	2001 UK	57.01667	-3.01667 N	0
Betula pen(Midmore, EScottish Hig	2001 UK	57.01667	-3.01667 N	0
Betula pen(Midmore, EScottish Hig	2001 UK	57.01667	-3.01667 N	21
Betula pen(Midmore, EScottish Hig	2001 UK	57.01667	-3.01667 N	21
Betula pen(Midmore, EScottish Hig	2001 UK	57.01667	-3.01667 N	0
Betula pen(Midmore, EScottish Hig	2001 UK	57.01667	-3.01667 N	0
Betula pen(Midmore, EScottish Hig	2001 UK	57.01667	-3.01667 N	21
Quercus ro McCartan, Moriago de	2010 Italy	45.86667	12.1 N	0
Quercus ro McCartan, Moriago de	2010 Italy	45.86667	12.1 N	0
Quercus ro McCartan, Moriago de	2010 Italy	45.86667	12.1 N	0
Quercus ro McCartan, Moriago de	2010 Italy	45.86667	12.1 N	0
Quercus ro McCartan, Moriago de	2010 Italy	45.86667	12.1 N	0
Quercus ro McCartan, Moriago de	2010 Italy	45.86667	12.1 N	0
Quercus ro McCartan, Moriago de	2010 Italy	45.86667	12.1 N	0
Quercus ro McCartan, New Forest	2010 UK	50.86667	-1.56667 N	0
Quercus ro McCartan, New Forest	2010 UK	50.86667	-1.56667 N	0
Quercus ro McCartan, New Forest	2010 UK	50.86667	-1.56667 N	0
Quercus ro McCartan, New Forest	2010 UK	50.86667	-1.56667 N	0
Quercus ro McCartan, New Forest	2010 UK	50.86667	-1.56667 N	0
Quercus ro McCartan, New Forest	2010 UK	50.86667	-1.56667 N	0
Quercus ro McCartan, New Forest	2010 UK	50.86667	-1.56667 N	0
Quercus ileMart�n-G₂Malpartida	2012 Spain	39.96667	-6.05 N	0
Quercus ileMart�n-G₂Malpartida	2012 Spain	39.96667	-6.05 N	0
Quercus ileMart�n-G₂Malpartida	2012 Spain	39.96667	-6.05 N	0
Quercus ileMart�n-G₂Malpartida	2012 Spain	39.96667	-6.05 N	0
PseudotsuçLi, X. J. B., British Colu	1990 Canada	50.85	-118.033 N	0
Pinus contcLi, X. J. B., British Colu	1990 Canada	55.21667	-127.567 N	0
PseudotsuçLi, X. J. B., British Colu	1990 Canada	50.85	-118.033 N	21
Picea glaucLiu, Y., et aBritish Colu	2014 Canada	54.43333	-121.733 N	21
Abies amatLi, X. J. B., British Colu	1990 Canada	49.36667	-122.083 N	21
Abies gran(Li, X. J. B., British Colu	1988 Canada	49.06667	-122.017 N	21
Tsuga heteLi, X. J. B., British Colu	1990 Canada	55.46667	-127.917 N	0
Pinus montLi, X. J. B., British Colu	1990 Canada	50.93333	-118.217 N	0
Abies grancLi, X. J. B., British Colu	1988 Canada	49.06667	-122.017 N	0
Thuja plicatLi, X. J. B., British Colu	1990 Canada	55.45	-127.833 N	0
Abies amatLi, X. J. B., British Colu	1990 Canada	49.36667	-122.083 N	21
Pinus pondLi, X. J. B., British Colu	1989 Canada	50.83333	-122.117 N	0
Abies lasio(Li, X. J. B., British Colu	1990 Canada	55.5	-128.25 N	0
Abies granఁMa, Y. L., ∈British Colu	1981 Canada	49.46667	-124.8 N	84
Pinus montLi, X. J. B., British Colu	1990 Canada	50.93333	-118.217 N	0
Pinus contcLi, X. J. B., British Colu	1990 Canada	55.21667	-127.567 N	21
Abies lasio(Li, X. J. B., British Colu	1990 Canada	55.5	-128.25 N	21
Picea glaucLi, X. J. B., British Colu	1990 Canada	58.41667	-122.917 N	21
Picea glaucLi, X. J. B., British Colu	1990 Canada	58.41667	-122.917 N	0
Picea glaucLi, X. J. B., British Colu	1990 Canada	58.41667	-122.917 N	21
Tsuga heteLi, X. J. B., British Colu	1990 Canada	55.46667	-127.917 N	21
Larix occid«Li, X. J. B., British Colu	1989 Canada	50.05	-115.633 N	0
Abies grancLi, X. J. B., British Colu	1988 Canada	49.06667	-122.017 N	0
Picea glaucLi, X. J. B., British Colu	1990 Canada	58.41667	-122.917 N	0
Pinus contcLi, X. J. B., British Colu	1990 Canada	55.21667	-127.567 N	21
Pinus montFeurtado, JBritish Colu	2006 Canada	51.35	-125 N	0
Pinus contcLi, X. J. B., British Colu	1990 Canada	55.21667	-127.567 N	0
Picea glaucLiu, Y., et aBritish Colu	2014 Canada	54.43333	-121.733 N	21
Pinus pondLi, X. J. B., British Colu	1989 Canada	50.83333	-122.117 N	21
Pinus montLi, X. J. B., British Colu	1990 Canada	50.93333	-118.217 N	21
Pinus pondLi, X. J. B., British Colu	1989 Canada	50.83333	-122.117 N	21

Thuja plicatLi, X. J. B., British Colu	1990 Canada	55.45	-127.833 N	21
Pinus pondLi, X. J. B., British Colu	1989 Canada	50.83333	-122.117 N	0
Larix occideLi, X. J. B., British Colu	1989 Canada	50.05	-115.633 N	21
Tsuga mertEdwards, EBritish Colu	1990 Canada	53.46667	-123.933 N	28
Pinus montLi, X. J. B., British Colu	1990 Canada	50.93333	-118.217 N	21
Abies lasio(Li, X. J. B., British Colu	1990 Canada	55.5	-128.25 N	21
Tsuga mertEdwards, EBritish Colu	1990 Canada	53.46667	-123.933 N	0
Abies grancLi, X. J. B., British Colu	1988 Canada	49.06667	-122.017 N	21
Abies amatLi, X. J. B., British Colu	1990 Canada	49.36667	-122.083 N	0
Picea glaucLiu, Y., et aBritish Colu	2014 Canada	54.43333	-121.733 N	21
Abies amatMa, Y. L., eBritish Colu	1985 Canada	49.13333	-122.75 N	84
Abies proc∈Ma, Y. L., ∈British Colu	1982 Canada	49	-121.5 N	84
PseudotsuçLi, X. J. B., British Colu	1990 Canada	50.85	-118.033 N	0
Larix occideLi, X. J. B., British Colu	1989 Canada	50.05	-115.633 N	0
Thuja plicatLi, X. J. B., British Colu	1990 Canada	55.45	-127.833 N	21
Tsuga mertEdwards, EBritish Colu	1990 Canada	53.46667	-123.933 N	0
Abies amatLi, X. J. B., British Colu	1990 Canada	49.36667	-122.083 N -127.917 N	0
Tsuga heteLi, X. J. B., British Colu	1990 Canada 1990 Canada	55.46667 55.46667		0 21
Tsuga heteLi, X. J. B., British Colu Tsuga mertEdwards, EBritish Colu	1990 Canada	53.46667	-127.917 N -123.933 N	28
	1990 Canada	55.5	-123.933 N -128.25 N	0
Abies Iasio(Li, X. J. B., British Colu Pseudotsu(Li, X. J. B., British Colu	1990 Canada	50.85	-120.23 N	21
Larix occideLi, X. J. B., British Colu	1989 Canada	50.05	-115.633 N	21
Abies lasio(Ma, Y. L., eBritish Colu	1992 Canada	55.26667	-113.033 N	84
Thuja plicalLi, X. J. B., British Colu	1990 Canada	55.45	-120.4 N	0
Quercus aliLiu, Y., et aBeijing Bota	2009 China	39.93333	116.3333 Y	0
Quercus aliLiu, Y., et abeijing Bota	2009 China	39.93333	116.3333 N	0
Quercus ro Liu, Y., et a Beijing Bota	2009 China	39.93333	116.3333 N	0
Quercus vaLiu, Y., et aBeijing Bota	2009 China	39.93333	116.3333 N	0
Quercus vaLiu, Y., et aBeijing Bota	2009 China	39.93333	116.3333 Y	0
Quercus ro Liu, Y., et aBeijing Bota	2009 China	39.93333	116.3333 Y	0
Cornus floriLiu, H., et aKnoxville, T	2013 USA	35.95	-83.9167 Y	0
Cornus floriLiu, H., et aKnoxville, T	2013 USA	35.95	-83.9167 Y	90
Viscum alb Lee, B. D., Mt. Jiri (Sar	2007 South Kore		127.7167 N	0
Viscum alb Lee, B. D., Mt. Jiri (Sar	2007 South Kore		127.7167 N	0
Deschamp:Liu, K., et aMaqu, Gan	2008 China	33.75	102.0667 N	196
Deschamp:Liu, K., et aMaqu, Gan	2008 China	33.75	102.0667 N	196
Deschamp:Liu, K., et aMaqu, Gan	2008 China	33.75	102.0667 N	196
Deschamp:Liu, K., et aMaqu, Gan	2008 China	33.75	102.0667 N	196
Deschamp:Liu, K., et aMaqu, Gan	2008 China	33.75	102.0667 N	196
Deschamp:Liu, K., et aMaqu, Gan	2008 China	33.75	102.0667 N	196
Convallaria Kondo, T., Sapporo, Ja	2009 Japan	43.08333	141.35 N	0
Convallaria Kondo, T., Sapporo, Ja	2009 Japan	43.08333	141.35 N	0
Convallaria Kondo, T., Sapporo, Ja	2009 Japan	43.08333	141.35 N	0
Convallaria Kondo, T., Sapporo, Ja	2009 Japan	43.08333	141.35 N	120
ConvallariaKondo, T., Sapporo, Ja	2009 Japan	43.08333	141.35 N	0
ConvallariaKondo, T., Sapporo, Ja	2009 Japan	43.08333	141.35 N	0
ConvallariaKondo, T., Sapporo, Ja	2009 Japan	43.08333	141.35 N	0
ConvallariaKondo, T., Sapporo, Ja	2009 Japan	43.08333	141.35 N	0
ConvallariaKondo, T., Sapporo, Ja	2009 Japan	43.08333	141.35 N	120
Convallaria Kondo, T., Sapporo, J.	2009 Japan	43.08333	141.35 N	0
Convallaria Kondo, T., Sapporo, J.	2009 Japan	43.08333	141.35 N	0
Convallaria Kondo, T., Sapporo, J.	2009 Japan	43.08333	141.35 N	0
Prunus aviulakovoglou Vermio, Gr	2010 Greece	40.58333	21.76667 N	28
Prunus avitlakovoglou Vermio, Gr	2010 Greece	40.58333	21.76667 N	28
Prunus spirlakovoglou Lachana, G	2010 Greece	40.95	23.2 N	28

Prunus spirlakovoglou, Lachana, G	2010	Greece	40.95	23.2		28
Rosa canin lakovoglou Xiloupoli, G		Greece	37.91667	23.75		28
Rosa canin lakovoglou, Xiloupoli, G		Greece	37.91667	23.75		28
Rosa canin lakovoglou, Xiloupoli, G		Greece	37.91667	23.75		28
Rosa canin lakovoglou, Xiloupoli, G		Greece	37.91667	23.75		28
Robinia pseGiuliani, C. Six merged		Italy	43.41667	11.13333		0
Robinia pseGiuliani, C. Six merged	2011	Italy	43.41667	11.13333		0
Robinia pseGiuliani, C. Six merged	2011	Italy	43.41667	11.13333	Υ	0
Robinia pseGiuliani, C. Six merged	2011	Italy	43.41667	11.13333	Υ	0
Robinia pseGiuliani, C. Six merged	2011	Italy	43.41667	11.13333	Υ	0
Robinia pseGiuliani, C. Six merged	2011	Italy	43.41667	11.13333	Υ	0
Pinus contcC�bar-CarReserva Na	2011	Chile	-38.4	-71.5833	Ν	20
Oxalis acet Graae, B. J France	2005	France	49.6	3.516667	Ν	0
Oxalis acet Graae, B. J France	2005	France	49.6	3.516667	Ν	126
Geum urbaGraae, B. JFrance	2005	France	50.36667	2.266667	Ν	0
Stachys sylGraae, B. J France	2005	France	49.51667	3.483333	Ν	0
Anemone nGraae, B. J France	2005	France	50.38333	2.266667	Ν	0
Lamium ga Graae, B. J France	2005	France	50.43333	2.8	Ν	126
Anemone nGraae, B. J France	2005	France	50.38333	2.266667	Ν	126
Brachypodi Graae, B. J France	2005	France	50.36667	2.266667	Ν	0
Circaea lut(Graae, B. J France	2005	France	50.36667	2.266667	Ν	0
Stellaria ho Graae, B. J France		France	50.38333	2.266667		0
Stachys sylGraae, B. J France		France	49.51667	3.483333		126
Stellaria hoGraae, B. JFrance		France	50.38333	2.266667		126
Geum urbaGraae, B. JFrance		France	50.36667	2.266667		126
Mercurialis Graae, B. J France		France	50.43333	2.8		0
Melica uniflGraae, B. JFrance		France	50.36667	2.266667		0
Carex sylvaGraae, B. J France		France	49.51667	3.483333		126
Melica uniflGraae, B. JFrance		France	50.36667	2.266667		126
Mercurialis Graae, B. J France		France	50.43333	2.8		126
Lamium ga Graae, B. J France		France	50.43333	2.8		0
Carex sylvaGraae, B. J France		France	49.51667	3.483333		0
Circaea luteGraae, B. J France		France	50.36667	2.266667		126
Brachypodi Graae, B. J France		France	50.36667	2.266667		126
Circaea lut Graae, B. J Belgium		Belgium	50.8	4.7		0
Lamium ga Graae, B. J Belgium		Belgium	50.96667	3.8		126
Stellaria hoGraae, B. JBelgium		Belgium	50.8	4.7		0
Melica uniflGraae, B. JBelgium		Belgium	50.8	4.7		126
Lamium ga Graae, B. J Belgium		Belgium	50.96667	3.8		0
Melica uniflGraae, B. JBelgium		Belgium	50.8	4.7		0
Oxalis acet Graae, B. J Belgium		Belgium	50.96667	3.8		0
Geum urbaGraae, B. JBelgium		Belgium	50.8	4.7		0
Circaea lut Graae, B. J Belgium		Belgium	50.8	4.7		126
Stachys sylGraae, B. JBelgium		Belgium	50.96667	3.8		0
Anemone nGraae, B. JBelgium		Belgium	50.96667	3.8		0
Anemone nGraae, B. JBelgium		Belgium	50.96667	3.8		126
_		-	50.90007	4.7		0
Brachypodi Graae, B. JBelgium		Belgium		4.7		
Geum urbaGraae, B. JBelgium		Belgium	50.8			126
Carex sylvaGraae, B. JBelgium		Belgium	50.8	4.7		0
Oxalis acet Graae, B. J Belgium		Belgium	50.96667	3.8		126
Mercurialis Graae, B. JBelgium		Belgium	50.96667	3.8		0
Stachys sylGraae, B. JBelgium		Belgium	50.96667	3.8		126
Stellaria ho Graae, B. J Belgium		Belgium	50.8	4.7		126
Brachypodi Graae, B. J Belgium		Belgium	50.8	4.7		126
Mercurialis Graae, B. J Belgium		Belgium	50.96667	3.8		126
Carex sylvaGraae, B. J Belgium	∠005	Belgium	50.8	4.7	IN	126

Anemone nGraae, B. JNW Germa	2005 Germany	53.31667	9.383333 N	126
Mercurialis Graae, B. JNW Germa	2005 Germany	53.41667	9.383333 N	126
Mercurialis Graae, B. JNW Germa	2005 Germany	53.41667	9.383333 N	0
Stachys sylGraae, B. JNW Germa	2005 Germany	53.4	9.366667 N	0
BrachypodiGraae, B. JNW Germa	2005 Germany	53.4	9.366667 N	0
Carex sylvaGraae, B. JNW Germa	2005 Germany	53.31667	9.383333 N	126
Circaea luteGraae, B. JNW Germa	2005 Germany	53.21667	8.633333 N	126
Carex sylvaGraae, B. JNW Germa	2005 Germany	53.31667	9.383333 N	0
Anemone nGraae, B. JNW Germa	2005 Germany	53.31667	9.383333 N	0
Geum urba Graae, B. JNW Germa	2005 Germany	53.18333	8.666667 N	0
Oxalis acet Graae, B. JNW Germa	2005 Germany	53.18333	8.666667 N	0
Geum urba Graae, B. JNW Germa	2005 Germany	53.18333	8.666667 N	126
Stachys sylGraae, B. JNW Germa	2005 Germany	53.4	9.366667 N	126
Stellaria ho Graae, B. JNW Germa	2005 Germany	53.18333	8.666667 N	0
BrachypodiGraae, B. JNW Germa	2005 Germany	53.4	9.366667 N	126
Oxalis acet Graae, B. JNW Germa	2005 Germany	53.18333	8.666667 N	126
Stellaria ho Graae, B. JNW Germa	2005 Germany	53.18333	8.666667 N	126
Circaea luteGraae, B. JNW Germa	2005 Germany	53.21667	8.633333 N	0
Anemone nGraae, B. JNE Germar	2005 Germany	52.28333	13.11667 N	0
Geum urba Graae, B. JNE Germar	2005 Germany	52.58333	13 N	126
Circaea luteGraae, B. JNE German	2005 Germany	52.58333	13 N	126
Melica unifl Graae, B. JNE Germar	2005 Germany	52.58333	13.01667 N	0
Carex sylvaGraae, B. JNE German	2005 Germany	53.01667	13.0 1007 N	126
-		52.58333	13.9 N	0
Geum urba Graae, B. JNE Germar	2005 Germany	52.28333	13.11667 N	126
Oxalis acet Graae, B. JNE Germar	2005 Germany			
Stellaria ho Graae, B. JNE Germar	2005 Germany	52.58333	13.01667 N	126
Brachypodi Graae, B. JNE German	2005 Germany	52.58333	13 N	126
Lamium ga Graae, B. JNE Germar	2005 Germany	52.58333	13.01667 N	0
Carex sylvaGraae, B. JNE German	2005 Germany	53.01667	13.9 N	0
Mercurialis Graae, B. JNE Germar	2005 Germany	52.28333	13.11667 N	0
Brachypodi Graae, B. JNE Germar	2005 Germany	52.58333	13 N	0
Circaea lut Graae, B. JNE Germar	2005 Germany	52.58333	13 N	0
Oxalis acet Graae, B. JNE Germar	2005 Germany	52.28333	13.11667 N	0
Melica uniflGraae, B. JNE Germar	2005 Germany	52.58333	13.01667 N	126
Mercurialis Graae, B. JNE Germar	2005 Germany	52.28333	13.11667 N	126
Stachys sylGraae, B. JNE Germar	2005 Germany	52.58333	13.01667 N	126
Lamium ga Graae, B. JNE Germar	2005 Germany	52.58333	13.01667 N	126
Stellaria hoGraae, B. JNE Germar	2005 Germany	52.58333	13.01667 N	0
Stachys sylGraae, B. JNE Germar	2005 Germany	52.58333	13.01667 N	0
Anemone nGraae, B. JNE Germar	2005 Germany	52.28333	13.11667 N	126
Quercus ileLe�n-LobcUniversity c	1997 UK	51.43333	-0.95 N	0
Castanea sLe�n-LobcUniversity c	1997 UK	51.43333	-0.95 N	0
Quercus ceLe�n-LobcUniversity c	1997 UK	51.43333	-0.95 N	0
Carex sylvaGraae, B. JS Sweden	2005 Sweden	55.53333	13.26667 N	126
BrachypodiGraae, B. JS Sweden	2005 Sweden	56.15	13.6 N	126
Oxalis acet Graae, B. JS Sweden	2005 Sweden	56.4	12.96667 N	126
Mercurialis Graae, B. JS Sweden	2005 Sweden	56.4	12.96667 N	0
Melica unifl Graae, B. JS Sweden	2005 Sweden	55.55	13.3 N	126
Oxalis acet Graae, B. JS Sweden	2005 Sweden	56.4	12.96667 N	0
Carex sylvaGraae, B. JS Sweden	2005 Sweden	55.53333	13.26667 N	0
Mercurialis Graae, B. JS Sweden	2005 Sweden	56.4	12.96667 N	126
Geum urbaGraae, B. JS Sweden	2005 Sweden	55.53333	13.26667 N	126
Stachys sylGraae, B. JS Sweden	2005 Sweden	55.55	13.18333 N	0
Stachys sylGraae, B. JS Sweden	2005 Sweden	55.55	13.18333 N	126
Geum urba Graae, B. JS Sweden	2005 Sweden	55.53333	13.26667 N	0
Circaea luteGraae, B. JS Sweden	2005 Sweden	55.53333	13.16667 N	126
		22.00000		120

BrachypodiGraae, B. JS Sweden	2005 Sweden	56.15	13.6 N	0
Anemone nGraae, B. JS Sweden	2005 Sweden	55.53333	13.18333 N	0
Melica uniflGraae, B. JS Sweden	2005 Sweden	55.55	13.3 N	0
Anemone nGraae, B. JS Sweden	2005 Sweden	55.53333	13.18333 N	126
Circaea lut(Graae, B. JS Sweden	2005 Sweden	55.53333	13.16667 N	0
Lamium ga Graae, B. JC Sweden	2005 Sweden	59.31667	17.88333 N	126
Stellaria ho Graae, B. JC Sweden	2005 Sweden	59.31667	17.88333 N	0
Geum urba Graae, B. JC Sweden	2005 Sweden	58.95	17.6 N	0
Oxalis acet Graae, B. JC Sweden	2005 Sweden	58.91667	17.16667 N	126
Carex sylvaGraae, B. JC Sweden	2005 Sweden	59.33333	18.16667 N	126
Melica uniflGraae, B. JC Sweden	2005 Sweden	58.95	17.6 N	0
Stachys sylGraae, B. JC Sweden	2005 Sweden	58.95	17.6 N	126
Stellaria ho Graae, B. JC Sweden	2005 Sweden	59.31667	17.88333 N	126
Oxalis acet Graae, B. JC Sweden	2005 Sweden	58.91667	17.16667 N	0
Carex sylvaGraae, B. JC Sweden	2005 Sweden	59.33333	18.16667 N	0
Anemone nGraae, B. JC Sweden	2005 Sweden	59.36667	18.05 N	126
Brachypodi Graae, B. J.C. Sweden	2005 Sweden	59.31667	17.88333 N	126
Mercurialis Graae, B. JC Sweden	2005 Sweden	59.31667	17.88333 N	126
Mercurialis Graae, B. JC Sweden	2005 Sweden	59.31667	17.88333 N	0
Anemone nGraae, B. JC Sweden	2005 Sweden	59.36667	18.05 N	0
BrachypodiGraae, B. JC Sweden	2005 Sweden	59.31667	17.88333 N	0
Stachys sylGraae, B. JC Sweden	2005 Sweden	58.95	17.6 N	0
Geum urba Graae, B. JC Sweden	2005 Sweden	58.95	17.6 N	126
Melica uniflGraae, B. JC Sweden	2005 Sweden	58.95	17.6 N	126
Lamium ga Graae, B. JC Sweden	2005 Sweden	59.31667	17.88333 N	0
Geum urbaBaeten, L., Ancient fore	2009 Belgium	51.01667	4.016667 N	112
Primula elaBaeten, L., Ancient fore	2009 Belgium	51.01667	4.016667 N	0
Primula elaBaeten, L., Ancient fore	2013 Belgium	51.01667	4.016667 N	154
Primula elaBaeten, L., Post-agricu	2009 Belgium	51.01667	4.016667 N	0
Geum urbaBaeten, L., Post-agricu	2009 Belgium	51.01667	4.016667 N	112
Sorbus aucAfroze, F. aBallintemple	2011 Ireland	52.73333	-6.7 N	224
Sorbus aucAfroze, F. aBallintemple	2009 Ireland	52.71667	-6.68333 N	0
Sorbus aucAfroze, F. aBallintemple	2009 Ireland	52.71667	-6.68333 N	140
Sorbus aucAfroze, F. aBallintemple	2009 Ireland	52.71667	-6.68333 N	140
Sorbus aucAfroze, F. aBallintemple	2009 Ireland	52.71667	-6.68333 N	0
Syringa retiWest, T. P. North Dako	2012 USA	46.88333	-96.8 N	0
Arbutus un(Vasques, ABraga, Port	2009 Portugal	37.83333	-8.66667 N	0
Arbutus un Vasques, ABraga, Port	2009 Portugal	37.83333	-8.66667 N	70
Arbutus un Vasques, ACoimbra, P	2009 Portugal	40.23333	-8.65 N	0
Arbutus un Vasques, ACoimbra, P	2009 Portugal	40.23333	-8.65 N	70
Arbutus un Vasques, AFaro, Portu	2009 Portugal	37.23333	-8.8 N	70
Arbutus un Vasques, AFaro, Portu	2009 Portugal	37.23333	-8.8 N	0
Pinus dens Song, U., e Korea	2013 South Kore	36.48333	128.05 N	0
Quercus ileLeiva, M. J.Villamanriq	2015 Spain	37.23333	-6.31667 N	0
Quercus ileLeiva, M. J.Villamanriq	2015 Spain	37.23333	-6.31667 Y	0
Crataegus ≀Mancilla-L∈Villamanriq	2012 Spain	37.23333	-6.33333 N	0
Viburnum I Santiago, ACorduente,	2009 Spain	40.85	-1.98333 N	0
Viburnum I Santiago, ACorduente,	2009 Spain	40.85	-1.98333 N	0
Viburnum I Santiago, ACorduente,	2009 Spain	40.85	-1.98333 N	168
Viburnum kSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	168
Viburnum kSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	168
Viburnum kSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	0
Viburnum kSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	168
Viburnum kSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	168
Viburnum kSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	0
Viburnum I:Santiago, ACorduente,	2009 Spain	40.85	-1.98333 N	168

Viburnum IaSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	0
Viburnum laSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	168
Viburnum kSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	168
Viburnum kSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	168
Viburnum kSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	168
Viburnum kSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	168
Viburnum kSantiago, ACorduente, Viburnum kSantiago, ACorduente,	2009 Spain 2009 Spain	40.85 40.85	-1.98333 N -1.98333 N	0 168
Viburnum kSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	0
Viburnum kSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	168
Viburnum IsSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	168
Viburnum kSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	0
Viburnum kSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	168
Viburnum kSantiago, ACorduente,	2009 Spain	40.85	-1.98333 N	168
Ostrya carrPipinis, E., Northern G	2008 Greece	39.95	21.2 N	0
Ostrya carr Pipinis, E., Northern G	2008 Greece	39.95	21.2 N	120
Carpinus oiPipinis, E., Northern G	2008 Greece	39.95	21.2 N	120
Carpinus orPipinis, E., Northern G	2008 Greece	39.95	21.2 N	0
Carpinus b(Pipinis, E., Northern G	2008 Greece	39.96667	21.2 N	0
Carpinus b(Pipinis, E., Northern G	2008 Greece	39.96667	21.2 N	120
Viburnum fiPhartyal, S Sapporo, H	2007 Japan	43	141.35 N	0
Viburnum fiPhartyal, S Sapporo, H	2007 Japan	43	141.35 N	0
Viburnum fiPhartyal, S Sapporo, H	2007 Japan	43	141.35 N	0
Viburnum fiPhartyal, S Sapporo, H	2007 Japan	43	141.35 N	0
Viburnum fiPhartyal, S Sapporo, H	2007 Japan	43	141.35 N	0
Viburnum fiPhartyal, S Sapporo, H	2007 Japan	43	141.35 N	0
Viburnum fıPhartyal, S Sapporo, H	2007 Japan	43	141.35 N	0
SanguisorbLudewig, KRieger & H	2010 Germany	49.28333	9.916667 N	35
SanguisorbLudewig, KRieger & H	2010 Germany	49.28333	9.916667 N	35
Filipendula Ludewig, KRieger & H	2010 Germany	49.28333	9.916667 N	35
Filipendula Ludewig, KRieger & H	2010 Germany	49.28333	9.916667 N	35
Galium bor Ludewig, K Northern U	2010 Germany	49.83333	8.416667 N	35
Galium bor Ludewig, K Northern U	2010 Germany	49.83333	8.416667 N	35
Galium palıLudewig, KMiddle Elbe	2010 Germany	52.53333	11.98333 N	35
Galium palıLudewig, KMiddle Elbe	2010 Germany	52.53333	11.98333 N	35
Pinus contcLiu, Y. and TOD, Britis	1978 Canada	50.93333	-122.833 N	0
Pinus contcLiu, Y. and WK, British	1987 Canada	49.11667	-118.367 N	0
Tsuga heteLiu, Y. and WK, British	2008 Canada	50.13333	-117.967 N	0
Pinus contcLiu, Y. and CT, British	1988 Canada	52.05	-121.083 N	0
Pinus contcLiu, Y. and CHL, Britisł	1996 Canada	52.85	-123.633 N	0
Malus baccKim, D. H. ; Suwon	2015 South Kore		127 N	60
RhododencKim, D. H. ; Suwon	2015 South Kore		127 N	0
Pinus dens Kim, D. H. ; Suwon	2015 South Kore		127 N	0
RhododencKim, D. H. ; Suwon	2015 South Kore		127 N	0
RhododencKim, D. H. ; Suwon	2015 South Kore		127 N	0
Malus baccKim, D. H. Suwon	2015 South Kore		127 N	60
RhododencKim, D. H. Suwon	2015 South Kore		127 N	0
Pinus dens Kim, D. H. Suwon	2015 South Kore		127 N	0
Pinus contcLiu, Y. and TOA, Britisl	2005 Canada	50.45	-120.05 N	0
Tsuga heteLiu, Y. and NST, British	1978 Canada	55.5	-128.95 N	0
Tsuga heteLiu, Y. and M. British C	1979 Canada	48.98333	-124.417 N	0
Tsuga heteLiu, Y. and SM, British	1992 Canada	54.58333	-128.083 N	0
Tsuga heteLiu, Y. and MIC, British	1993 Canada	51.03333	-118.267 N	0
Reynoutria GroenevelcQuebec Cit	2012 Canada	46.81667	-71.2167 N	0
Miscanthus Dwiyanti, NJM0575, nc	2010 Japan	43.45	142.8167 N	0
MiscanthusDwiyanti, NJM0575, nc	2010 Japan	43.45	142.8167 N	0

MiscanthusDwiyanti, NJM0594, ce	2010 Japan	35.9	137.7333 N	0
MiscanthusDwiyanti, NJM0594, ce	2010 Japan	35.9	137.7333 N	0
MiscanthusDwiyanti, NJM0620, sc	2010 Japan	33.1	131.0167 N	0
MiscanthusDwiyanti, NJM0620, sc	2010 Japan	33.1	131.0167 N	0
Pinus sylveCastoldi, E.Seed mass	2011 Spain	40.9	-3.86667 N	0
Betula erm;Kim, D. H. ;Mt. Jiri	2015 South Kore		127.7167 N	60
Betula ermiKim, D. H. iMt. Jiri	2015 South Kore		127.7167 N	60
Pinus sylveCastoldi, E.Seed mass	2011 Spain	40.9	-3.86667 N	0
Quercus ileCaliskan, SCanakkale,	2013 Turkey	40.16667	25.83333 N	0
Quercus ileCaliskan, SCanakkale,	2013 Turkey	40.16667	25.83333 N	0
Quercus ileCaliskan, SSinop, Turk	2013 Turkey	40.01667	35 N	0
Quercus ileCaliskan, SSinop, Turk	2013 Turkey	40.01667	35 N	0
Quercus ileCaliskan, SAydin, Turk	2013 Turkey	37.65	27.08333 N	0
Quercus ileCaliskan, SAydin, Turk	2013 Turkey	37.65	27.08333 N	0
Quercus ileCaliskan, SMugla, Turl	2013 Turkey	36.71667	27.53333 N	0
Quercus ileCaliskan, SMugla, Turl	2013 Turkey	36.71667	27.53333 N	0
Rhamnus aAou-ouad, Esporles, N	2010 Spain	39.66667	2.566667 N	0
Rhamnus aAou-ouad, Esporles, N	2010 Spain	39.66667	2.566667 N	0
Rhamnus aAou-ouad, Esporles, N	2010 Spain	39.66667	2.566667 N	0
Rhamnus aAou-ouad, Lloret, Mall	2010 Spain	39.61667	2.966667 N	0
Rhamnus aAou-ouad, Lloret, Mall	•		2.966667 N	0
	2010 Spain	39.61667		0
Rhamnus aAou-ouad, Lloret, Mall	2010 Spain	39.61667	2.966667 N	
Fraxinus or Yilmaz, M. Menzelet (2012 Turkey	37.68333	36.83333 N	126
Fraxinus or Yilmaz, M. Menzelet (F	2012 Turkey	37.68333	36.83333 N	0
Fraxinus or Yilmaz, M. Boztoprak (2012 Turkey	37.53333	36.3 N	126
Fraxinus orYilmaz, M. Boztoprak (2012 Turkey	37.53333	36.3 N	0
Fraxinus or Yilmaz, M. D�zi�i (O	2012 Turkey	37.26667	36.5 N	0
Fraxinus or Yilmaz, M. D�zi�i (O	2012 Turkey	37.26667	36.5 N	126
Prunus padKim, D. H. (Chungju	2015 South Kore	36.96667	127.9167 N	60
Maackia anKim, D. H. Chungju	2015 South Kore		127.9167 N	0
Maackia anKim, D. H. (Chungju	2015 South Kore		127.9167 N	0
Prunus padKim, D. H. (Chungju	2015 South Kore		127.9167 N	60
Fraxinus orYilmaz, M. Kozan (Ada	2012 Turkey	37.51667	35.86667 N	0
Fraxinus orYilmaz, M. Kozan (Ada	2012 Turkey	37.51667	35.86667 N	126
Fraxinus orYilmaz, M. Pozant? (A	2012 Turkey	37.36667	34.88333 N	0
Fraxinus orYilmaz, M. Pozant? (A	2012 Turkey	37.36667	34.88333 N	126
Fraxinus orYilmaz, M. G�ndo?mı	2012 Turkey	36.81667	32 N	0
Fraxinus orYilmaz, M. G�ndo?mı	2012 Turkey	36.81667	32 N	126
Fraxinus orYilmaz, M. E?irdir (Ispa	2012 Turkey	37.73333	30.83333 N	0
Fraxinus or Yilmaz, M. E?irdir (Ispa	2012 Turkey	37.73333	30.83333 N	126
Rumex aceYazdi, S. A Qaemshah	2010 Iran	36.45	52.85 N	30
Rumex aceYazdi, S. A Qaemshah	2010 Iran	36.45	52.85 N	0
Rumex aceYazdi, S. A Qaemshah	2010 Iran	36.45	52.85 Y	0
Lapsana ccWille, W., eBotanical C	2008 Denmark	55.66667	12.53333 N	21
Urtica dioic Wille, W., eBotanical C	2008 Denmark	55.66667	12.53333 N	21
BrachypodiWille, W., eBotanical C	2008 Denmark	55.66667	12.53333 N	21
Poa trivialisWille, W., eBotanical G	2008 Denmark	55.66667	12.53333 N	21
llex rotundaTezuka, T.,Osaka Pref	2007 Japan	34.53333	135.5 N	308
Calluna vul Spindelboc Norway	2007 Norway	63.51667	10.25 N	28
Calluna vul Spindelboc Norway	2007 Norway	63.51667	10.25 N	0
Acer pseudDaws, M. I. Norway	2003 Norway	60.2	5.316667 N	0
Fraxinus peSchmiedel, Dessau, Sa	2006 Germany	51.81667	12.23333 N	0
Lonicera xySantiago, AOrea, Guac	2008 Spain	40.53333	-1.71667 N	0
Lonicera xySantiago, AOrea, Guac	2008 Spain	40.53333	-1.71667 N	0
Lonicera xySantiago, AOrea, Guac	2008 Spain	40.53333	-1.71667 N	0
Lonicera xySantiago, AOrea, Guac	2008 Spain	40.53333	-1.71667 N	0
· · · ·	-			

Lonicera xySantiago, AOrea, Guac	2008 Spain	40.53333	-1.71667		0
Lonicera xySantiago, AOrea, Guac	2008 Spain	40.53333	-1.71667		0
Lonicera xySantiago, AOrea, Guac	2008 Spain	40.53333	-1.71667		0
Lonicera xySantiago, AOrea, Guac	2008 Spain	40.53333	-1.71667		0
Lonicera xySantiago, AOrea, Guac	2008 Spain	40.53333	-1.71667		0
Lonicera xySantiago, AOrea, Guac	2008 Spain	40.53333	-1.71667		0
Lonicera xySantiago, AOrea, Guac	2008 Spain	40.53333	-1.71667		0
Lonicera xySantiago, AOrea, Guac	2008 Spain	40.53333	-1.71667		0
Zelkova seiKim, D. H. (Imsil	2015 South Kore	35.6	127.2167		60
Zelkova seiKim, D. H. i Imsil	2015 South Kore	35.6	127.2167		60
Galanthus Newton, R. Wakehurst	2009 UK	51.06667			0
Galanthus Newton, R. Wakehurst	2009 UK	51.06667			0
Galanthus Newton, R. Wakehurst	2009 UK	51.06667	#########		0
Galanthus Newton, R. Wakehurst	2009 UK	51.06667			0
Galanthus Newton, R. Wakehurst	2009 UK	51.06667			0
Galanthus Newton, R. Wakehurst	2009 UK	51.06667			0
Corylus av(Michalak, NJarocin 🌢 (2012 Poland	51.96667	17.5		98
Picea glaucLiu, Y., et a33356 WK,	1991 Canada	50.25	-118.167		0
Picea glaucLiu, Y., et a33356 WK,	1991 Canada	50.25	-118.167		21
Picea glaucLiu, Y., et a35707 MIC	1991 Canada	51.03333	-118.8		21
Picea glaucLiu, Y., et a35707 MIC	1991 Canada	51.03333	-118.8		0
Picea glaucLiu, Y., et a37842 MGF	1992 Canada	54.43333	-121.733		21
Picea glaucLiu, Y., et a37842 MGF	1992 Canada	54.43333	-121.733		0
Picea glaucLiu, Y., et a39450 CP,	1994 Canada	55.05	-125.033		0
Picea glaucLiu, Y., et a39450 CP,	1994 Canada	55.05	-125.033		21
Picea glaucLiu, Y., et a45353 SM,	1996 Canada	54.65	-128.75		21
Picea glaucLiu, Y., et a45353 SM,	1996 Canada	54.65	-128.75		0
Cercis cantLi, S., et al. Elsberry, M	2011 USA	39.15	-90.7833		14
MiscanthusLee, K. Y., Mokpo Nati	2011 South Kore	34.9	126.4333		0
MiscanthusLee, K. Y., Mokpo Nati	2011 South Kore	34.9	126.4333		0
Miscanthus Lee, K. Y., Mokpo Nati	2011 South Kore	34.9	126.4333		0
Miscanthus Lee, K. Y., Mokpo Nati	2011 South Kore	34.9	126.4333		0
Miscanthus Lee, K. Y., Mokpo Nati	2011 South Kore	34.9 34.9	126.4333 126.4333		0
Miscanthus Lee, K. Y., Mokpo Nati	2011 South Kore 2011 South Kore	34.9			0
MiscanthusLee, K. Y., Mokpo Nati MiscanthusLee, K. Y., Mokpo Nati	2011 South Kore	34.9	126.4333 126.4333		0
		35.26667			
Vicia unijugHu, X., et aQinghai-Tik	2010 China 2010 China	35.26667	102.5 102.5		0 0
Vicia unijugHu, X., et aQinghai-Tik Vicia unijugHu, X., et aQinghai-Tik	2010 China	35.26667	102.5		0
	2010 China	35.26667	102.5		0
Vicia unijugHu, X., et aQinghai-Tik Quercus ro Kaliniewicz batch 76 Sz	2016 Poland	53.55	20.98333		30
Quercus ro Kaliniewicz batch 76 Sz	2016 Poland	53.55	20.98333		30
Picea abiesHimanen, kHeinamaki,	2006 Finland	62.21667	20.96333		0
	2008 Finland	60.01667	23.01667		
Picea abiesHimanen, kPohja, Fink Picea abiesHimanen, kLeppaniem	1995 Finland		26.68333		0
Cornus kouFu, X. X., eFuniu mour	2009 China	61.93333 33.83333	111.2		0 50
Cornus kouFu, X. X., eFuniu mour	2009 China	33.83333	111.2		0
	2012 Iran	36.7	54.35		112
Acer velutirFarhadi, M.300 m, Sha Acer velutirFarhadi, M.300 m, Sha	2012 Iran	36.7	54.35		0
Acer velutir Farhadi, M.600 m, Sha	2012 Iran	36.7	54.35		0
Acer velutir Farhadi, M.600 m, Sha	2012 Iran	36.7	54.35		112
					112
Acer velutirFarhadi, M.900 m, Sha Acer velutirFarhadi, M.900 m, Sha	2012 Iran 2012 Iran	36.7 36.7	54.35 54.35		0
Acer velutir Farhadi, M.1200 m, Sh	2012 Iran	36.7 36.7	54.35		0
Acer velutir Farhadi, M. 1200 m, Sh	2012 Iran 2012 Iran	36.7 36.7	54.35		112
Acer velutir Farhadi, M. 1500 m, Sh	2012 Iran 2012 Iran	36.7 36.7	54.35		0
Acei veiuii i ailiaui, ivi. 1300 III, SI	LUIL IIAII	30.7	54.55	IN	U

1	
2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
5 6 7 8 9 10 11 12 13 14 15 16 17 18	
20	
20 21	
22	
24 25	
26	
26 27	
28	
29 30	
31	
32	
33	
34 35	
35 36	
36 37	
38	
39	
40 41	
42	
43	
44	
45 46	
40 47	
48	
49	
50 51	
51 52	
53	
54	
55	
56 57	
57 58	
59	
CO	

Acer velutirFarhadi, M.1500 m, Sh	2012 Iran	36.7	54.35	N 112
Acer velutirFarhadi, M.1800 m, Sh	2012 Iran	36.7	54.35	
Acer velutirFarhadi, M.1800 m, Sh	2012 Iran	36.7	54.35	
Quercus ro Kaliniewicz batch 91 Sz	2016 Poland	53.55	20.98333	
Quercus ro Kaliniewicz batch 91 Sz	2016 Poland	53.55	20.98333	
Fagus sylv:Bezd??kov Jizera Mou	2009 Czech Rep	50.71667	14.98333	
Fagus sylv:Bezd??kovWhite Carp	2009 Czech Rep		18.13333	
Fagus sylv:Bezd??kov2nd White	2009 Czech Rep		18.13333	
Fagus sylv:Bezd??kovLesko-Sred	2010 Poland	49.46667	22.31667	
Fagus sylv:Bezd??kov Krasiczyn-ł	2010 Poland	49.76667	22.65	
Fagus sylvaBezd??kovRymanow,	2010 Poland	49.56667	21.86667	
Arbutus un Bertsouklis Mount Parr	2008 Greece	38.13333	23.78333	
Arbutus un Bertsouklis Mount Parr	2008 Greece	38.13333	23.78333	
Arbutus un Bertsouklis Mount Parr	2008 Greece	38.13333	23.78333	
Arbutus un Bertsouklis Mount Parr	2008 Greece	38.13333	23.78333	
Arbutus un Bertsouklis Mount Parr	2008 Greece	38.13333	23.78333	
Arbutus un Bertsouklis Mount Parr	2008 Greece	38.13333	23.78333	
Arbutus un Bertsouklis Mount Parr	2008 Greece	38.13333	23.78333	
Arbutus un Bertsouklis Mount Parr	2008 Greece	38.13333	23.78333	
Hypericum Basto, S., ¿Harpur Hill,	2012 UK	53.21667	-1.91667	
Phragmites Yu, J., et al Yellow Rive	2010 China	37.58333	118.55	
Fraxinus or Yilmaz, M. Andirin/K.N	2007 Turkey	37.6	36.4	
Fraxinus or Yilmaz, M. Andirin/K.N	2007 Turkey	37.6	36.4	
Fraxinus or Yilmaz, M. Andirin/K.N	2007 Turkey	37.6	36.4	
Fraxinus or Yilmaz, M. Andirin/K.N	2007 Turkey	37.6	36.4 36.4	
Fraxinus or Yilmaz, M. Andirin/K.N	2007 Turkey	37.6 37.6	36.4	
Fraxinus or Yilmaz, M. Andirin/K.N Fraxinus or Yilmaz, M. Andirin/K.N	2007 Turkey 2007 Turkey	37.6	36.4	
Fraxinus or Yilmaz, M. Andirin/K.N	2007 Turkey	37.6	36.4	
Quercus ro Kaliniewicz batch 131 §	2016 Poland	53.55	20.98333	
Quercus ro Kaliniewicz batch 131 {	2016 Poland	53.55	20.98333	
Fraxinus or Yilmaz, M. Kozan/Ada	2007 Turkey	37.51667	35.86667	
Fraxinus or Yilmaz, M. Kozan/Ada	2007 Turkey	37.51667	35.86667	
Fraxinus or Yilmaz, M. Kozan/Ada	2007 Turkey	37.51667		
Fraxinus or Yilmaz, M. Kozan/Ada	2007 Turkey	37.51667	35.86667	
Fraxinus or Yilmaz, M. Kozan/Ada	2007 Turkey	37.51667		
Fraxinus or Yilmaz, M. Kozan/Ada	2007 Turkey	37.51667		
Fraxinus or Yilmaz, M. Kozan/Ada	2007 Turkey	37.51667		
Fraxinus orYilmaz, M. Kozan/Ada	2007 Turkey	37.51667		
Fraxinus orYilmaz, M. Pozanti/Ada	2007 Turkey	37.36667		
Fraxinus orYilmaz, M. Pozanti/Ada	2007 Turkey	37.36667		
Fraxinus orYilmaz, M. Pozanti/Ada	2007 Turkey	37.36667		
Fraxinus orYilmaz, M. Pozanti/Ada	2007 Turkey	37.36667		
Fraxinus orYilmaz, M. Pozanti/Ada	2007 Turkey	37.36667		
Fraxinus or Yilmaz, M. Pozanti/Ada	2007 Turkey	37.36667		
Fraxinus or Yilmaz, M. Pozanti/Ada	2007 Turkey	37.36667	34.88333	
Fraxinus or Yilmaz, M. Pozanti/Ada	2007 Turkey	37.36667	34.88333	
Viburnum cWalck, J. L Japan, Hok	2004 Japan	44.35	143.35	
Viburnum cWalck, J. L Japan, Hok	2004 Japan	44.35	143.35	
Viburnum cWalck, J. L Japan, Hok	2004 Japan	44.35	143.35	
Viburnum cWalck, J. L Japan, Hok	2004 Japan	44.35	143.35	
Viburnum cWalck, J. L Japan, Hok	2004 Japan	44.35	143.35	
Viburnum cWalck, J. L Canada, No	2004 Canada	46.1	-64.7833	
Viburnum cWalck, J. L Canada, Ne	2004 Canada	46.1	-64.7833	
Viburnum cWalck, J. L Canada, Ne	2004 Canada	46.1	-64.7833	N 84
Viburnum cWalck, J. L Canada, Ne	2004 Canada	46.1	-64.7833	N 84

Viburnum cWalck, J. L Canada, Ne	2004 Canada	46.1	-64.7833 N	84
Viburnum cWalck, J. L Sweden, O	2004 Sweden	58.41667	15.5 N	84
Viburnum cWalck, J. L Sweden, O	2004 Sweden	58.41667	15.5 N	84
Viburnum cWalck, J. L Sweden, O	2004 Sweden	58.41667	15.5 N	84
Viburnum cWalck, J. L Sweden, O	2004 Sweden	58.41667	15.5 N	84
Viburnum cWalck, J. L Sweden, O	2004 Sweden	58.41667	15.5 N	84
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	48
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	48
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	48
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	48
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	48
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	48
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	0
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	48
ScrophulariVranckx, GMeerdaalw	2008 Belgium	50.8	4.7 N	48
Pinus nigraTakos, I., e Greek Natio	2010 Greece	38.35	23.28333 N	60
CampanulaSeglie, L., (Giaglione g	2006 Italy	44.3	7.45 N	40
CampanulaSeglie, L., (Valle Gess)	2006 Italy	44.23333	7.516667 N	40
CampanulaSeglie, L., (Val Tronce)	2006 Italy	44.95	6.933333 N	40
Quercus ro Kaliniewicz batch 161 §	2016 Poland	53.55	20.98333 N	30
Quercus ro Kaliniewicz batch 161 §	2016 Poland	53.55	20.98333 Y	30
CampanulaSeglie, L., (Val Vermer	2006 Italy	44.23333	7.533333 N	40
CampanulaSeglie, L., «Valle Stura	2006 Italy	44.26667	7.016667 N	40
CampanulaSeglie, L., «Valle Stura	2006 Italy	44.03333	7.033333 N	40
CampanulaSeglie, L., (Val Sesia g	2006 Italy	46.01667	8.066667 N	40
CampanulaSeglie, L., «Val Grande	2006 Italy	44.23333	7.533333 N	40
CampanulaSeglie, L., «Vallecrosia	2006 Italy	43.78333	7.05 N	40
CampanulaSeglie, L., (Barzio gras	2006 Italy	45.93333	9.033333 N	40
Bromus tecRawlins, J. Lookout Pa	2005 USA	40.1	-112.55 N	0
Bromus tecRawlins, J. Lookout Pa	2005 USA	40.1	-112.55 N	0
Bromus tecRawlins, J. Lookout Pa	2005 USA	40.1	-112.55 N	0
Bromus tecRawlins, J. Lookout Pa	2005 USA	40.1	-112.55 N	0
Bromus tecRawlins, J. Lookout Pa	2005 USA	40.1	-112.55 N	0
Bromus tecRawlins, J. Lookout Pa	2005 USA	40.1	-112.55 N	0
, -				-

Bromus tecRawlins, J. Lookout Pa	2005 USA	40.1	-112.55 N	0
Bromus tecRawlins, J. Skull Valley	2005 USA	40.38333	-112.717 N	0
Bromus tecRawlins, J. Skull Valley	2005 USA	40.38333	-112.717 N	0
Bromus tecRawlins, J. Skull Valley	2005 USA	40.38333	-112.717 N	0
Bromus tecRawlins, J. Skull Valley	2005 USA	40.38333	-112.717 N	0
Bromus tecRawlins, J. Skull Valley	2005 USA	40.38333	-112.717 N	0
Bromus tecRawlins, J. Skull Valley	2005 USA	40.38333	-112.717 N	0
Bromus tecRawlins, J. Skull Valley	2005 USA	40.38333	-112.717 N	0
Achillea milRawlins, J. UDWR-Lot	2003 USA	47.25	-120.533 N	0
Achillea milRawlins, J. UDWR-Loti	2003 USA	47.25	-120.533 N	0
Achillea milRawlins, J. UDWR-Loti	2003 USA	47.25	-120.533 N	0
Achillea milRawlins, J. UDWR-Loti	2003 USA	47.25	-120.533 N	0
Achillea milRawlins, J. UDWR-Loti	2003 USA	47.25	-120.533 N	0
Achillea milRawlins, J. UDWR-Loti	2003 USA	47.25	-120.533 N	0
Achillea milRawlins, J. UDWR-Loti	2003 USA	47.25	-120.533 N	0
Elymus elyiRawlins, J. UDWR-Sar	2003 USA	39.35	-111.583 N	0
Elymus elyiRawlins, J. UDWR-Sar	2003 USA	39.35	-111.583 N	0
Elymus elyiRawlins, J. UDWR-Sar	2003 USA	39.35	-111.583 N	0
Elymus elyiRawlins, J. UDWR-Sar	2003 USA	39.35	-111.583 N	0
Elymus elyrRawlins, J. UDWR-Sar	2003 USA	39.35	-111.583 N	0
Elymus elyrRawlins, J. UDWR-Sar	2003 USA	39.35	-111.583 N	0
Elymus elyıRawlins, J. UDWR-Sar	2003 USA	39.35	-111.583 N	0
Pinus sylveKaliniewicz Ruciane-Ni	2011 Poland	53.01667	21.01667 N	0
Pinus pondPasquini, NTrevelin, Cl	2000 Argentina	-43.0667	-71.45 N	21
Dactylis glcOliveira, G.Non-local s	2005 Portugal	38.48333	-8.93333 N	0
SanguisorbOliveira, G.Non-local s	2005 Portugal	38.48333	-8.93333 N	0
Lotus corni Oliveira, G. Non-local s	2005 Portugal	38.48333	-8.93333 N	0
Carpinus olMerou, T., Drama, Gre	2011 Greece 2011 Greece	41.15 41.15	24.16667 N 24.16667 Y	0 90
Carpinus oıMerou, T., ıDrama, Gre Carpinus oıMerou, T., ıDrama, Gre	2011 Greece	41.15	24.16667 N	90
Castanea dDalgleish, Four merge	2009 USA	39.71667	-86.2167 N	180
Camellia siiChen, H., eKunming, C	2010 China	25.01667	102.7167 N	0
Camellia siiChen, H., eLincang, Cl	2010 China	23.88333	100.0833 N	0
Camellia siiChen, H., ePuer, China	2010 China	22.81667	100.9667 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
•				

TaraxacumLuo, J. and Ohio State	2007 USA	40.78333	-81.9167 N	0
Ficus carica∳ali?kan, (cv. Bursa S	2009 Turkey	36.33333	36.18333 N	0
Ficus carica ♦ ali?kan, (cv. Bursa S	2009 Turkey	36.33333	36.18333 N	21
Ficus caric≀�ali?kan, (cv. Sarilop,	2009 Turkey	36.33333	36.18333 N	21
Ficus carica ♦ ali?kan, (cv. Sarilop,	2009 Turkey	36.33333	36.18333 N	0
Agrostis ca Zhang, X., Commercia	2016 China	36.41667	116 N	0
Pinus sylveKaliniewiczMikolajki, P	2007 Poland	53.01667	21.01667 N	0
Castanea sBenedetti, Las Minas,	2008 Chile	-39.9167	-73.2167 N	0
Castanea sBenedetti, (Pillo Pillo, (2008 Chile	-39.8667	-73.1 N	0
Rubus parvWada, S. a USA	2007 USA	37.41667	-79.6833 N	120
Rubus parvWada, S. a USA	2007 USA	37.41667	-79.6833 Y	120
Lotus corni(Hill, M. J. L USA	1990 USA	38.35	-100.267 Y	0
Lotus corni(Hill, M. J. L USA	1990 USA	38.35	-100.267 Y	0
Securigera Hill, M. J. L USA	1990 USA	38.35	-100.267 Y	0
Securigera Hill, M. J. L USA	1990 USA	38.35 38.35	-100.267 Y	0
Lotus corni/Hill, M. J. L USA	1990 USA	38.35	-100.267 Y	0
Securigera Hill, M. J. L USA	1990 USA	38.35	-100.267 Y	
Securigera Hill, M. J. L USA	1990 USA		-100.267 Y	0
Lotus corni Hill, M. J. L USA	1990 USA	38.35	-100.267 Y	0
Lotus corni Hill, M. J. L USA	1990 USA 2006 USA	38.35 44.53333	-100.267 Y	0 120
Rubus ursirWada, S. a Oregon Sta			-123.2 N	120
Rubus parvWada, S. a Oregon Sta Rubus ursirWada, S. a Oregon Sta	2006 USA	44.53333	-123.2 N	
	2006 USA 2006 USA	44.53333	-123.2 Y	120
Rubus caetWada, S. a Oregon Sta	2006 USA 2006 USA	44.53333	-123.2 N -123.2 N	120 120
Rubus cratiWada, S. a Oregon Sta		44.53333	-123.2 N	120
Rubus cae:Wada, S. a Oregon Sta Pinus nigra Temel, F., £23 average	2006 USA	44.53333 37.68333	30.9 N	0
Cistus creti Tavsanogli Bozburun p	1998 Turkey 2008 Turkey	36.76667	28.16667 N	0
Cistus creti Tavsanogli Bozburun p	2008 Turkey	36.76667	28.16667 Y	0
Cistus creti Tavsanogli Bozburun p	2008 Turkey	36.76667	28.16667 N	21
Dactylis glcStanisavlje Zaje • ar, S	2007 Serbia	43.85	22.36667 N	5
Primula hetSharaf, A. ISaravan, G	2010 Iran	37.05	49.65 Y	0
Quercus ilePasquini, SMonte Lupr	2008 Italy	45.56667	10.66667 N	0
Quercus ilePasquini, SPorto Caler	2008 Italy	45.1	12.31667 N	0
Pinus sylveKaliniewicz Lomza, Pol	2010 Poland	53.01667	22.01667 N	0
Carex pensMcGinnis, IPrairie Moc	2005 USA	43.9	-91.6333 N	60
Carex pensMcGinnis, IPrairie Moc	2005 USA	43.9	-91.6333 N	0
Carex pensMcGinnis, IPrairie Moc	2005 USA	43.9	-91.6333 N	60
Carex pensMcGinnis, IPrairie Moc	2005 USA	43.9	-91.6333 N	0
Carex pensMcGinnis, IPrairie Moc	2005 USA	43.9	-91.6333 N	0
Carex pensMcGinnis, IPrairie Moc	2005 USA	43.9	-91.6333 N	60
Origanum vLiopa-Tsak Messolongl	2010 Greece	38.36667	21.41667 N	0
Diospyros \Elbers, J. FSheffield	2009 USA	42.63333	-76.4833 N	60
Quercus phElbers, J. FLouisiana F	2009 USA	31.11667	-92.4333 Y	0
Fraxinus or Draghici, CR?cari, Ror	2009 Romania	44.61667	25.73333 N	0
Fraxinus or Draghici, C Dr?g??ani,	2009 Romania	44.65	24.25 N	0
Fraxinus or Draghici, CBal?, Roma	2009 Romania	44.35	24.08333 N	0
Fraxinus exDoody, C. (Coillte See	2005 Ireland	52.73333	-6.7 N	294
Fraxinus exDoody, C. (Coillte See	2005 Ireland	52.73333	-6.7 N	294
MiscanthusClifton-Bro\ Mx117, UK	2010 UK	53.3	-1.48333 N	0
MiscanthusClifton-Brov Mx117, UK	2010 UK	53.3	-1.48333 N	0
MiscanthusClifton-Brov Mx117, UK	2010 UK	53.3	-1.48333 N	0
MiscanthusClifton-Brov Mx117, UK	2010 UK	53.3	-1.48333 N	0
MiscanthusClifton-Brov Mx117, UK	2010 UK	53.3	-1.48333 N	0
MiscanthusClifton-Bro\ Mx117, UK	2010 UK	53.3	-1.48333 N	0
MiscanthusClifton-Bro\ Mx117, UK	2010 UK	53.3	-1.48333 N	0

Securigera Chunhui, WJindao See	2010 China	25.33333	110.35 N	0
Alnus glutir Kaliniewicz Gorowo Ila	2012 Poland	54.31667	20.31667 N	0
Achillea milBeckmann,3 merged p	2006 Germany	51.01667	11.01667 N	0
Achillea milBeckmann,3 merged p	2006 Germany	51.01667	11.01667 N	0
Achillea milBeckmann,3 merged p	2006 Germany	51.01667	11.01667 N	0
Actaea rac(Albrecht, MAthens and	2002 USA	39.31667	-82.0833 N	0
Sanguinaria Albrecht, MAthens and	2002 USA	39.31667	-82.0833 N	0
Actaea raceAlbrecht, MAthens and	2002 USA	39.31667	-82.0833 N	0
Sanguinaria Albrecht, MAthens and	2002 USA	39.31667	-82.0833 N	0
Sanguinaria Albrecht, MAthens and	2002 USA	39.31667	-82.0833 N	0
Actaea raceAlbrecht, MAthens and	2002 USA	39.31667	-82.0833 N	0
Sanguinaria Albrecht, MAthens and	2002 USA	39.31667	-82.0833 N	0
Actaea raceAlbrecht, MAthens and	2002 USA	39.31667	-82.0833 N	0
AristolochiaAdams, C. Pine Mount	1999 USA	37.05	-82.8667 N	84
AristolochiaAdams, C. Pine Mount	1999 USA	37.05	-82.8667 N	0
AristolochiaAdams, C. Pine Mount	1999 USA	37.05	-82.8667 N	84
AristolochiaAdams, C. Pine Mount	1999 USA	37.05	-82.8667 N	0
AristolochiaAdams, C. Pine Mount	1999 USA	37.05	-82.8667 N	0
AristolochiaAdams, C. Pine Mount	1999 USA	37.05	-82.8667 N	0
AristolochiaAdams, C. Pine Mount	1999 USA	37.05	-82.8667 N	84
AristolochiaAdams, C. Pine Mount	1999 USA	37.05	-82.8667 N	84
AristolochiaAdams, C. Pine Mount	1999 USA	37.05	-82.8667 N	0
AristolochiaAdams, C. Pine Mount	1999 USA	37.05	-82.8667 N	84
AristolochiaAdams, C. Pine Mount	1999 USA	37.05	-82.8667 N	0
AristolochiaAdams, C. Pine Mount	1999 USA	37.05	-82.8667 N	84
Prunus ser Zuloaga-AcLas Joyas	2009 Mexico	19.58333	-104.617 N	0
Prunus ser Zuloaga-AcLas Joyas	2009 Mexico	19.58333	-104.617 Y	0
Oenanthe jiXiao, C., et Central Chi	2007 China	32.51667	111.1333 N	0
Oenanthe jiXiao, C., et Central Chi	2007 China	32.51667	111.1333 N	45
Robinia pseWu, AP., China Natic	2007 China	39.96667	116.4 N	0
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 Y	90
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 Y	90
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 Y	0
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 Y	0
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 Y	90
Rumex aceVan Assch(Leuven, Be	1993 Belgium	50.86667	4.7 N	0
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 Y	90
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 Y	90
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 Y	90
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 Y	90
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 Y	0
Medicago IıVan Assch(Leuven, Be	1996 Belgium	50.86667	4.683333 N	0
Lotus corni Van Assch Leuven, Be	1996 Belgium	50.86667	4.683333 N	0
Anemone nDe Frenne, Leuven, Be	2006 Belgium	50.86667	4.683333 N	182
Medicago IıVan Assch(Leuven, Be	1996 Belgium	50.86667	4.683333 N	0
Rumex aceVan Assch(Leuven, Be	1993 Belgium	50.86667	4.7 N	0
Rumex aceVan Assch(Leuven, Be	1993 Belgium	50.86667	4.7 N	0
Sanicula eւVandelook,Leuven, Be	2007 Belgium	50.85	4.683333 N	0
Rumex aceVan Assch(Leuven, Be	1993 Belgium	50.86667	4.7 N	0
Medicago IıVan AsschıLeuven, Be	1996 Belgium	50.86667	4.683333 N	0
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 Y	90
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 Y	90
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 Y	0
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 Y	0
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 Y	0
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 Y	0
	=======================================			· ·

Geranium rVan Assch(Leuven, Be	2002 Belgium	50.86667	4.7 1	N 0
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 \	
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 \	
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 \	
Lotus corni/Van Assch(Leuven, Be	1996 Belgium	50.86667	4.683333 1	
Lotus corni/Van Assch(Leuven, Be	1996 Belgium	50.86667	4.683333 N	
Lotus corni/Van Assch(Leuven, Be	1996 Belgium	50.86667	4.683333 N	
Lotus corni/Van Assch(Leuven, Be	1996 Belgium	50.86667	4.683333 N	
Medicago ItVan AsschtLeuven, Be	1996 Belgium	50.86667	4.683333 1	
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 \	
Medicago Ivan AsschtLeuven, Be	1996 Belgium	50.86667	4.683333 1	
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 \	
Geranium rVandelook, Leuven, Be	2007 Belgium	50.86667	4.683333 \	
Sanicula etVandelook,Leuven, Be	2007 Belgium	50.85	4.683333 N	
Sanicula etVandelook,Leuven, Be	2007 Belgium	50.85	4.683333 N	
Sanicula etVandelook,Leuven, Be	2007 Belgium	50.85	4.683333 N	
Hypericum Trueblood, Mountain H	2009 USA	35.41667	-82.55 `	
Quercus p∈Tilki, F. (20 Ardanuc, T	2005 Turkey	41.13333	42.16667 N	
Viscum alb Stanton, S. Three merg	2009 Belgium	50.7	4.533333 N	
Viscum alb Stanton, S. Three merg	2009 Belgium	50.7	4.533333 N	
Viscum alb Stanton, S. Three merg	2009 Belgium	50.7	4.533333 1	
Alnus glutir Kaliniewicz Ketrzyn, Pc	2012 Poland	54.11667	21.48333 1	
Pinus nigraMataruga, ISutjeska, B	2000 Bosnia and		18.65 N	
Pinus nigraMataruga, IVisegrad, E	2000 Bosnia and	43.85	19.23333 N	
Pinus nigraMataruga, ITara, Serbi	2000 Bosnia and	43.88333	19.53333 N	
Pinus nigraMataruga, ITeslic, Bos	2000 Bosnia and	44.56667	17.71667 N	
Pinus nigraMataruga, IDurmitor, N	2000 Montenegro	43	19.41667 N	
Festuca oviLonati, M., Commercia	2008 New Zealar	-42.3167	172.3333 N	
Festuca oviLonati, M., Commercia	2008 New Zealar	-42.3167	172.3333 N	
Festuca oviLonati, M., Commercia	2008 New Zealar	-42.3167	172.3333 N	
Festuca oviLonati, M., Commercia	2008 New Zealar	-42.3167	172.3333 N	
Festuca oviLonati, M., Commercia	2008 New Zealar	-42.3167	172.3333 N	
Festuca oviLonati, M., Commercia	2008 New Zealar	-42.3167	172.3333 N	
Festuca oviLonati, M., Commercia	2008 New Zealar	-42.3167	172.3333 I	
Festuca oviLonati, M., Commercia	2008 New Zealar	-42.3167	172.3333 N	
Pinus bank Kemball, K. Pineland Fo	2009 Canada	49.63333	-95.8833 N	
Picea glaucKemball, K.Pineland Fo	2009 Canada	49.63333	-95.8833 N	
Picea mariaKemball, K.Pineland Fo	2009 Canada	49.63333	-95.8833 N	
Abies balsaKemball, K.Quebec, Ca	2009 Canada	46.96667	-73.1167 N	
Lotus corni₁Kabouw, P.Unknown, €	2009 Netherland	51.95	5.75 N	
RhododencHirao, A. S.Mt Hakkoda	2006 Japan	40.63333	140.85	
Alnus glutirKaliniewiczLolkowo, P	2012 Poland	54.33333	20.26667 N	
Sanicula caHawkins, TUniversity c	2002 USA	37.5	-83.3333 1	
Sanicula caHawkins, TUniversity c	2002 USA	37.5	-83.3333 1	
Sanicula caHawkins, TUniversity c	2002 USA	37.5	-83.3333 1	
Sanicula caHawkins, TUniversity c	2002 USA	37.5	-83.3333 N	
Sanicula caHawkins, TUniversity c	2002 USA	37.5	-83.3333 1	
Sanicula caHawkins, TUniversity c	2002 USA	37.5	-83.3333 N	
Sanicula caHawkins, TUniversity c	2002 USA	37.5	-83.3333 1	
Sanicula caHawkins, TUniversity c	2002 USA	37.5	-83.3333 1	
Sanicula caHawkins, TUniversity c	2002 USA	37.5	-83.3333 1	
Cytisus hirsGonz lez Madrid Bota	1993 Spain	40.4	-3.68333 1	
Cytisus hirsGonz lez Madrid Bota	1993 Spain	40.4	-3.68333 1	
Cytisus hirsGonz lez Vacratot Bo	1993 Hungary	47.7	19.23333 N	
Cytisus hirsGonz lez Vacratot Bo	1993 Hungary	47.7	19.23333 N	
Arbutus un(Ertekin, M. Bart?n, Tur	2008 Turkey	41.63333	32.33333 1	N 0

Arbutus un(Ertekin, M. Bart?n, Tur	2008 Turkey	41.63333	32.33333 N	90
Poa bulbos Naghipour, Central Zaç	2013 Iran	31.18333	50.7 N	0
Bromus tecNaghipour, Central Zaç	2013 Iran	31.18333	50.7 N	0
Anemone nDe Frenne, Amiens, Fra	2006 France	49.88333	2.283333 N	182
Anemone nDe Frenne, Bremen, G	2006 Germany	53.06667	8.783333 N	182
Anemone nDe Frenne, Postdam, C	2006 Germany	52.38333	13.05 N	182
Anemone nDe Frenne, Alnarp, Sw	2006 Sweden	55.65	13.06667 N	182
Acer platan Julin-Tegel Stockholm,	1979 Sweden	59.31667	18.03333 N	131
Acer platanJulin-Tegel Stockholm,	1979 Sweden	59.31667	18.03333 N	0
Anemone nDe Frenne, Stockholm,	2006 Sweden	59.31667	18.05 N	182
Alnus glutir Kaliniewicz Czarnia, Po	2012 Poland	53.31667	21.18333 N	0
Anemone nDe Frenne, Umea, Swe	2006 Sweden	63.81667	20.25 N	182
Asparagus Conversa, Manfredoni	2007 Italy	41.61667	15.9 N	56
Asparagus Conversa, Manfredoni	2007 Italy	41.61667	15.9 N	0
Asparagus Conversa, Manfredoni	2007 Italy	41.61667	15.9 N	56
Asparagus Conversa, Manfredoni	2007 Italy	41.61667	15.9 Y	0
Carpinus b(Chmielarz, K♦rnik, Po	2000 Poland	52.23333	17.08333 N	140
Alnus glutir Chmielarz, Bierzwnik,	2000 Poland	53.03333	15.65 N	0
Alnus glutir Chmielarz, Henryk • w	2000 Poland	50.65	17.01667 N	0
Ulmus glab Chmielarz, Ko?obrzeg	2000 Poland	54.16667	15.51667 N	0
Ulmus glab Chmielarz, Ko?obrzeg	2000 Poland	54.16667	15.58333 N	0
Phellodend Chen, S. Y. Taiping Mo	2004 Taiwan	24.5	121.4833 N	0
Phellodend Chen, S. Y. Taiping Mo	2004 Taiwan	24.5	121.4833 N	84
Prunus avitBujarska-BK rnik Arb	1985 Poland	52.25	17.1 N	98
Prunus avitBujarska-BK rnik Arb	1985 Poland	52.25	17.1 N	98
Prunus avitBujarska-BK rnik Arb	1985 Poland	52.25	17.1 N	98
Abies alba Boncaldo, [Laurenzana	2009 Italy	40.45	15.96667 N	21
Alnus glutir Kaliniewicz Ilawa, Pola	2012 Poland	53.7	19.6 N	0
Abies alba Boncaldo, [Monte Gari	2009 Italy	38.66667	16.33333 N	21
Abies alba Boncaldo, [Serra San I	2009 Italy	38.56667	16.3 N	21 30
Pseudotsu(Boberg, P.,El Bols n,	2007 Argentina	-41.95	-71.5333 N	30
Pinus pondBoberg, P., Bariloche, /	2006 Argentina	-41.1333 46.85	-71.3 N	
Origanum Nicahoff, A.Fribourg an	2001 Switzerland	51.31667	7.166667 N 11.9 N	0
Origanum vBischoff, A.Sachsen-A	2001 Germany 2006 China		11.9 N 116.1167 N	0
Ardisia crerYang, Q. HMeizhou Ci	2006 China	24.3		0
Ardisia crerYang, Q. H.Meizhou Ci			116.1167 N	
Ardisia crerYang, Q. H.Meizhou Ci	2006 China	24.3 24.3	116.1167 N 116.1167 N	0
Ardisia crerYang, Q. HMeizhou Ci	2006 China	24.3		0
Ardisia crerYang, Q. HMeizhou Ci	2006 China 2006 China	24.3	116.1167 N 116.1167 N	0
Ardisia crerYang, Q. HMeizhou Ci	2006 China	24.3	116.1167 N	
Ardisia crerYang, Q. HMeizhou Ci Ardisia crerYang, Q. HMeizhou Ci	2006 China	24.3	116.1167 N	0
Aconitum lyVandelook,Lesse river	2006 Crima 2006 Belgium	50.23333	4.9 N	0
	2006 Belgium	50.23333		0
Aconitum lyVandelook, Lesse river	•		4.9 N	0
Aconitum lyVandelook, Lesse river	2006 Belgium	50.23333	4.9 N	
Aconitum lyVandelook,Lesse river Aconitum lyVandelook,Lesse river	2006 Belgium	50.23333 50.23333	4.9 N 4.9 N	0
Acontum ty varidelook, Lesse river AegopodiurVandelook, Diest, Belgi	2006 Belgium 2007 Belgium	50.2333	5.383333 N	140
AegopodiurVandelook,Diest, Belgi AegopodiurVandelook,Diest, Belgi	2007 Belgium	50.8	5.383333 N	0
· ·	-	50.8	5.383333 N	140
AegopodiuiVandelook, Diest, Belgi Angelica syVandelook, Diest, Belgi	2007 Belgium 2006 Belgium	50.8	5.05 N	0
Angenica syvandelook, Diest, Belgi AegopodiurVandelook, Diest, Belgi	2007 Belgium	50.8	5.383333 N	140
Stellaria ho Vandelook, Diest, Belgi	2007 Belgium	50.8	5.05 N	0
Angelica syVandelook, Diest, Belgi	2005 Belgium	50.8	5.05 N 5.05 N	112
Stellaria ho Vandelook, Diest, Belgi	_	50.8	5.05 N 5.05 N	112
	2005 Belgium	50.8	5.05 N 5.05 N	0
Stellaria hoVandelook,Diest, Belgi	2005 Belgium	50.6	5.05 IN	U

Angelica syVandelook, Diest,	Belgi	2006	Belgium	50.8	5.05	5 N	112
AegopodiurVandelook, Diest,	Belgi	2007	Belgium	50.8 5.3	383333	3 N	0
Moehringia Vandelook, Diest,	Belgi	2005	Belgium	50.8	5.05	5 N	0
Moehringia Vandelook, Diest,	Belgi	2005	Belgium	50.8	5.05	5 N	112
Moehringia Vandelook, Diest,	Belgi	2005	Belgium	50.8	5.05	5 N	0
AegopodiurVandelook, Diest,	Belgi	2007	Belgium	50.8 5.3	383333	3 N	0
Angelica syVandelook, Diest,	Belgi	2006	Belgium	50.8	5.05	5 N	112
Angelica syVandelook, Diest,	Belgi	2006	Belgium	50.8	5.05	5 N	0
Moehringia Vandelook, Diest,	Belgi	2005	Belgium	50.8	5.05	5 N	0
Angelica syVandelook, Diest,	Belgi	2006	Belgium	50.8	5.05	5 N	0
Moehringia Vandelook, Diest,	Belgi	2005	Belgium	50.8	5.05	5 N	112
Stellaria hoVandelook, Diest,	Belgi	2005	Belgium	50.8	5.05	5 N	112
Stellaria hoVandelook, Diest,	Belgi	2005	Belgium	50.8	5.05	5 N	112
Angelica syVandelook, Diest,	Belgi	2006	Belgium	50.8	5.05	5 N	0
Moehringia Vandelook, Diest,	Belgi	2005	Belgium	50.8	5.05	5 N	112
Moehringia Vandelook, Diest,	Belgi	2005	Belgium	50.8	5.05	5 N	112
Stellaria hoVandelook, Diest,	Belgi	2005	Belgium	50.8	5.05	5 N	112
Stellaria hoVandelook, Diest,	Belgi	2005	Belgium	50.8	5.05	i N	112
Moehringia Vandelook, Diest,	Belgi	2005	Belgium	50.8	5.05	5 N	0
Moehringia Vandelook, Diest,	Belgi		Belgium	50.8	5.05	5 N	0
Moehringia Vandelook, Diest,	Belgi		Belgium	50.8	5.05	5 N	112
Angelica syVandelook, Diest,	_		Belgium	50.8	5.05		112
Moehringia Vandelook, Diest,	-		Belgium	50.8	5.05		112
Stellaria hoVandelook, Diest,	-		Belgium	50.8	5.05		112
Stellaria hoVandelook, Diest,	-		Belgium	50.8	5.05		112
Stellaria hoVandelook, Diest,	•		Belgium	50.8	5.05		0
Stellaria hoVandelook, Diest,	-		Belgium	50.8	5.05		112
Stellaria hoVandelook, Diest,	-		Belgium	50.8	5.05		112
Moehringia Vandelook, Diest,	-		Belgium	50.8	5.05		0
Moehringia Vandelook, Diest,	-		Belgium	50.8	5.05		112
Moehringia Vandelook, Diest,	-		Belgium	50.8	5.05		112
Stellaria hoVandelook, Diest,	-		Belgium	50.8	5.05		112
Angelica syVandelook, Diest,	•		Belgium	50.8	5.05		0
Moehringia Vandelook, Diest,	•		Belgium	50.8	5.05		112
Moehringia Vandelook, Diest,	•		Belgium	50.8	5.05		112
Stellaria hoVandelook, Diest,	•		Belgium	50.8	5.05		112
Stellaria hoVandelook, Diest,	•		Belgium	50.8	5.05		112
AegopodiurVandelook, Diest,	-		Belgium		383333		140
Moehringia Vandelook, Diest,	-		Belgium	50.8	5.05		112
Angelica syVandelook, Diest,	•		Belgium	50.8	5.05		112
Stellaria hoVandelook, Diest,	-		Belgium	50.8	5.05		112
Moehringia Vandelook, Diest,	-		Belgium	50.8	5.05		112
Stellaria hoVandelook, Diest,	-		Belgium	50.8	5.05		112
Moehringia Vandelook, Diest,	-		Belgium	50.8	5.05		0
Angelica syVandelook, Diest,	-		Belgium	50.8	5.05		112
Stellaria ho Vandelook, Diest,	-		Belgium	50.8	5.05		0
Stellaria ho Vandelook, Diest,	-		Belgium	50.8	5.05		0
Moehringia Vandelook, Diest,	-		Belgium	50.8	5.05		112
Moehringia Vandelook, Diest,	-		Belgium	50.8	5.05		0
Stellaria ho Vandelook, Diest,	-		Belgium	50.8	5.05		112
Stellaria ho Vandelook, Diest,	-		Belgium	50.8	5.05		0
Angelica syVandelook, Diest,	-		Belgium	50.8	5.05		112
Stellaria ho Vandelook, Diest,	-		Belgium	50.8	5.05		112
Angelica syVandelook, Diest,	-		Belgium	50.8	5.05		0
Angelica syVandelook, Diest,	-		Belgium	50.8	5.05		112
Angelica syVandelook, Diest,	-		Belgium	50.8	5.05		0
gonoa og tandoloon, bloot,	_ 0.9.	_555	_ J.g.u	30.5	5.00	• • •	J

Angelica syVandelook,Diest, Belgi	2006 Belgium	50.8	5.05 N	0
Stellaria hoVandelook, Diest, Belgi	2005 Belgium	50.8	5.05 N	0
Stellaria hoVandelook, Diest, Belgi	2005 Belgium	50.8	5.05 N	0
Moehringia Vandelook, Diest, Belgi	2005 Belgium	50.8	5.05 N	0
Moehringia Vandelook, Diest, Belgi	2005 Belgium	50.8	5.05 N	112
Moehringia Vandelook, Diest, Belgi	2005 Belgium	50.8	5.05 N	112
•	•	50.8	5.05 N	112
Moehringia Vandelook, Diest, Belgi	2005 Belgium			
AegopodiurVandelook, Diest, Belgi	2007 Belgium	50.8	5.383333 N	0
Stellaria ho Vandelook, Diest, Belgi	2005 Belgium	50.8	5.05 N	112
Moehringia Vandelook, Diest, Belgi	2005 Belgium	50.8	5.05 N	112
Moehringia Vandelook, Diest, Belgi	2005 Belgium	50.8	5.05 N	112
Moehringia Vandelook, Diest, Belgi	2005 Belgium	50.8	5.05 N	112
Moehringia Vandelook, Diest, Belgi	2005 Belgium	50.8	5.05 N	0
Moehringia Vandelook, Diest, Belgi	2005 Belgium	50.8	5.05 N	112
Stellaria hoVandelook, Diest, Belgi	2005 Belgium	50.8	5.05 N	112
Stellaria hoVandelook, Diest, Belgi	2005 Belgium	50.8	5.05 N	112
Stellaria hoVandelook, Diest, Belgi	2005 Belgium	50.8	5.05 N	112
Stellaria hoVandelook, Diest, Belgi	2005 Belgium	50.8	5.05 N	0
Stellaria hoVandelook, Diest, Belgi	2005 Belgium	50.8	5.05 N	0
Juniperus cTylkowski, Shrub A, W	2003 Poland	51.21667	18.56667 N	182
Fagus sylvaRatajczak, K�rnik Arb	2014 Poland	52.23333	17.08333 N	0
Acer sacch Kalemba, EK rnik Arb	2017 Poland	52.23333	17.08333 N	0
Acer platanPawlowski, K�rnik Arb	2005 Poland	52.23333	17.08333 N	0
•				
Juniperus cTylkowski, Shrub B, W	2006 Poland	51.21667	18.56667 N	182
Juniperus cTylkowski, Shrub C, G	2006 Poland	52.03333	18.05 N	182
Rubus parvTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	0
MiscanthusTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	30
Prunus graːTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	0
Hydrangea Tsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 Y	0
Vitis coigneTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	0
Weigela hoTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	30
Aralia elataTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 Y	0
Leucothoe Tsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 Y	0
Aster ageraTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	30
MiscanthusTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	0
Solidago viiTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	0
Weigela hoTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	0
AmpelopsisTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	0
Aralia elataTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	0
Calamagro:Tsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	0
AmpelopsisTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	30
Rubus parvTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	30
Hydrangea Tsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	30
Pinus dens Tsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	30
MiscanthusTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 Y	0
Calamagro:Tsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	30
Juncus effuTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	0
Solidago viiTsuyuzaki, Mount Kom	2004 Japan 2004 Japan	40.06667	140.7 N	0
-	·		140.7 T	
ToxicodencTsuyuzaki, Mount Kom	2004 Japan	40.06667		0
Lotus corni Tsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	0
Rumex aceTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	0
ToxicodencTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 Y	0
Weigela hoTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	0
Artemisia nTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	0
Juncus effuTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 Y	0
Aralia elataTsuyuzaki, Mount Kom	2004 Japan	40.06667	140.7 N	0

0 Leucothoe Tsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 N ToxicodencTsuyuzaki, Mount Kom 2004 Japan 40.06667 0 140.7 N 0 Anaphalis rTsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 Y 30 Solidago viiTsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 N Pinus dens Tsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 N 0 Juncus effuTsuyuzaki, Mount Kom 2004 Japan 140.7 N 0 40.06667 Prunus gra Tsuyuzaki, Mount Kom 2004 Japan 30 40.06667 140.7 N Pinus dens Tsuyuzaki, Mount Kom 2004 Japan 0 40.06667 140.7 N 0 Anaphalis rTsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 N 30 Rumex aceTsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 N Aster ageraTsuyuzaki, Mount Kom 2004 Japan 140.7 Y 0 40.06667 Rumex aceTsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 Y 0 2004 Japan 40.06667 0 AmpelopsisTsuyuzaki, Mount Kom 140.7 Y 0 Lotus corni/Tsuvuzaki. Mount Kom 2004 Japan 40.06667 140.7 N Artemisia nTsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 Y 0 Anaphalis rTsuyuzaki, Mount Kom 2004 Japan 140.7 N 0 40.06667 Aralia elata Tsuyuzaki, Mount Kom 2004 Japan 30 40.06667 140.7 N 0 AmpelopsisTsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 N Artemisia nTsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 N 0 Juncus effuTsuyuzaki, Mount Kom 2004 Japan 140.7 N 30 40.06667 Vitis coigneTsuyuzaki, Mount Kom 2004 Japan 140.7 N 30 40.06667 Leucothoe Tsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 N 30 Anaphalis rTsuyuzaki, Mount Kom 2004 Japan 140.7 N 30 40.06667 Pinus dens Tsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 Y 0 Hydrangea Tsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 N 0 Prunus gra Tsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 Y 0 Lotus corni Tsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 Y 0 0 Vitis coigneTsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 Y Rumex aceTsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 N 0 2004 Japan 140.7 N 0 Leucothoe Tsuyuzaki, Mount Kom 40.06667 2004 Japan 140.7 Y 0 Calamagro: Tsuyuzaki, Mount Kom 40.06667 Aster ageraTsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 N 0 0 Rubus parvTsuyuzaki, Mount Kom 2004 Japan 140.7 Y 40.06667 Hydrangea Tsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 N 0 Lotus corni Tsuyuzaki, Mount Kom 2004 Japan 140.7 N 30 40.06667 2004 Japan 0 Aster ageraTsuyuzaki, Mount Kom 40.06667 140.7 N 0 Prunus gra Tsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 N Calamagro: Tsuyuzaki, Mount Kom 2004 Japan 0 40.06667 140.7 N Rubus parvTsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 N 0 ToxicodencTsuyuzaki, Mount Kom 2004 Japan 140.7 N 30 40.06667 0 Vitis coigneTsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 N Weigela hoTsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 Y 0 MiscanthusTsuyuzaki, Mount Kom 2004 Japan 0 40.06667 140.7 N Artemisia nTsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 N 30 0 Solidago viiTsuyuzaki, Mount Kom 2004 Japan 40.06667 140.7 N 2005 Japan CommelinaTsuyuzaki, Ishikari Plai 43.05 141.3333 N 0 Epilobium ¿Tsuyuzaki, Ishikari Plai 2005 Japan 43.05 141.3333 N 30 0 Betula platyTsuyuzaki, Ishikari Plai 2005 Japan 43.05 141.3333 N Betula platyTsuyuzaki, Ishikari Plai 2005 Japan 43.05 141.3333 N 30 0 Lespedeza Tsuyuzaki, Ishikari Plai 43.05 141.3333 N 2005 Japan 0 Betula platyTsuyuzaki, Ishikari Plai 2005 Japan 43.05 141.3333 Y Commelina Tsuyuzaki, Ishikari Plai 2005 Japan 43.05 141.3333 N 0 30 CommelinaTsuyuzaki, Ishikari Plai 2005 Japan 43.05 141.3333 N Commelina Tsuyuzaki, Ishikari Plai 2005 Japan 43.05 141.3333 Y 0 0 Epilobium aTsuyuzaki, Ishikari Plai 2005 Japan 43.05 141.3333 N 0 Epilobium aTsuyuzaki, Ishikari Plai 2005 Japan 43.05 141.3333 Y

Loopodoza Tauruzaki, lahikari Dlai	2005 Japan	42 OF	141.3333 N	N 0
Lespedeza Tsuyuzaki, Ishikari Pla	·	43.05		
Lespedeza Tsuyuzaki, Ishikari Pla	2005 Japan	43.05	141.3333 N	
Betula platyTsuyuzaki, Ishikari Pla	2005 Japan	43.05	141.3333 N	
Lespedeza Tsuyuzaki, Ishikari Pla	2005 Japan	43.05	141.3333	
Epilobium aTsuyuzaki, Ishikari Pla	2005 Japan	43.05	141.3333 N	
Betula maxSeiwa, K., (Hardwood t	2007 Japan	42.86667	142.5833 N	N 28
Betula maxSeiwa, K., (Hardwood f	2007 Japan	42.86667	142.5833 N	N 28
Acer pictunQin, J. and Lixian Cour	2007 China	31.83333	102.8333 N	N 0
Fagus sylv¿Prochazko\Hostynsko-	1999 Czech Rep	50.38333	17 N	N 0
Fagus sylv:Prochazko\Predhor	1999 Czech Rep	49.41667	15.65 N	
Fagus sylvaProchazkovStredoslova	1999 Slovakia	48.73333	19.15 N	
Fagus sylvaProchazko\Stredoslova	1999 Slovakia	48.73333	19.15 N	
Fagus sylvaProchazko\Podtatransl	1999 Slovakia	49.05	20.28333 N	
•				
Lathyrus linDello Jaco\Green mor	2016 UK	54.73333	-1.36667 N	
Lathyrus linDello Jaco\Green mor	2016 UK	54.73333	-1.36667 N	
Lathyrus linDello Jaco\Green mor	2016 UK	54.73333	-1.36667	
Lathyrus linDello Jaco\Green morı	2016 UK	54.73333	-1.36667 N	
Lathyrus linDello JacovGreen morp	2016 UK	54.73333	-1.36667 N	
Lathyrus linDello JacovGreen mor	2016 UK	54.73333	-1.36667 N	N 0
Lathyrus linDello JacovGreen mor	2016 UK	54.73333	-1.36667 N	N 0
Fagus sylv¿Prochazko\Predhori Hı	1999 Czech Rep	50.2	17.21667 N	N 0
Fagus sylvaProchazkovDrahanska	1999 Czech Rep	49.38333	17 N	
Fagus sylvaProchazkovCeskomora	1999 Czech Rep		16 N	
AegopodiurPhartyal, S Hokkaido L	2007 Japan	43.06667	141.3333 N	
AegopodiurPhartyal, S Hokkaido L	2007 Japan	43.06667	141.3333 N	
• .				
AegopodiurPhartyal, S Hokkaido L	2007 Japan	43.06667	141.3333 N	
AegopodiurPhartyal, S Hokkaido L	2007 Japan	43.06667	141.3333 N	
AegopodiurPhartyal, S Hokkaido L	2007 Japan	43.06667	141.3333 N	
AegopodiurPhartyal, S Hokkaido L	2007 Japan	43.06667	141.3333 N	
AegopodiurPhartyal, S Hokkaido L	2007 Japan	43.06667	141.3333 N	
AegopodiurPhartyal, S Hokkaido L	2007 Japan	43.06667	141.3333 N	N 0
AegopodiurPhartyal, S Hokkaido L	2007 Japan	43.06667	141.3333 N	N 112
AegopodiurPhartyal, S Hokkaido L	2007 Japan	43.06667	141.3333 N	٥ (
AegopodiurPhartyal, S Hokkaido L	2007 Japan	43.06667	141.3333 N	N 0
AegopodiurPhartyal, S Hokkaido L	2007 Japan	43.06667	141.3333 N	N 0
AegopodiurPhartyal, S Hokkaido L	2007 Japan	43.06667	141.3333 N	N 112
AegopodiurPhartyal, S Hokkaido L	2007 Japan	43.06667	141.3333 N	
AegopodiurPhartyal, S Hokkaido L	2007 Japan	43.06667	141.3333 N	
AegopodiurPhartyal, S Hokkaido L	2007 Japan	43.06667	141.3333 N	
Prunus ser/Phartyal, S Sonian For	2002 Belgium	50.78333	4.433333 N	
Prunus ser(Phartyal, S Sonian For	2002 Belgium	50.78333	4.433333 N	
· · · · · · · · · · · · · · · · · · ·	_			
Prunus ser(Phartyal, S Sonian For	2002 Belgium	50.78333	4.433333 N	
Impatiens rPerglova, I.Three merç	2005 Czech Rep	49.68333	13.98333 N	
Impatiens rPerglova, I.Three merç	2005 Czech Rep	49.68333	13.98333 N	
Impatiens rPerglova, I.Three merç	2005 Czech Rep	49.68333	13.98333 N	
Impatiens cPerglova, I.Three merç	2005 Germany	50.8	8.85 1	٥ (
Impatiens cPerglova, I.Three merç	2005 Germany	50.8	8.85 N	N 0
Impatiens cPerglova, I.Three merç	2005 Germany	50.8	8.85 1	N 0
Quercus pyP�rez-RarSierra Mor€	2005 Spain	38.36667	-3.81667 N	N 0
Calluna vul M�ren, I. [Lygra island	2007 Norway	60.68333	5.116667 N	N 0
Cryptomeri Kim, D. H., Jeju Island,	2005 South Kore		126.55 N	
Lathyrus linDello Jaco\Brown mor	2016 UK	54.73333	-1.36667 N	
Lathyrus linDello Jaco\Brown mor	2016 UK	54.73333	-1.36667	
Lathyrus linDello Jaco\Brown mor	2016 UK	54.73333	-1.36667 N	
Lathyrus linDello JacovBrown mor	2016 UK	54.73333	-1.36667 N	
· · · · · · · · · · · · · · · · · · ·			-1.36667 N	
Lathyrus linDello Jaco\Brown mor	2016 UK	54.73333	-1.3000 <i>1</i> 1	N U

Lathyrus linDello Jaco\Brown mor	2016 UK	54.73333	-1.36667 N	0
Lathyrus linDello Jaco\Brown mor	2016 UK	54.73333	-1.36667 N	0
· · · · · · · · · · · · · · · · · · ·				
PhragmitesKettenring, 3 merged p	2006 USA	38.01667	-76.0167 N	0
PhragmitesKettenring, 3 merged p	2006 USA	38.01667	-76.0167 N	60
PhragmitesKettenring, 3 merged p	2006 USA	38.01667	-76.0167 N	0
PhragmitesKettenring, 3 merged p	2006 USA	38.01667	-76.0167 N	60
Ulex gallii Hanley, M. Buckland C	2008 UK	50.55	-3.78333 N	0
Ulex gallii Hanley, M. Buckland C	2008 UK	50.55	-3.78333 Y	0
Alnus glutirGosling, P. Durham, Er	1992 UK	54.76667	-1.58333 N	42
Alnus glutirGosling, P. Durham, Er	1992 UK	54.76667	-1.58333 N	42
Alnus glutir Gosling, P. Durham, Er	1992 UK	54.76667	-1.58333 N	0
Alnus glutir Gosling, P. Durham, Er	1992 UK	54.76667	-1.58333 N	0
Alnus glutir Gosling, P. Durham, Er	1992 UK	54.76667	-1.58333 N	42
Alnus glutir Gosling, P. Durham, Er	1992 UK	54.76667	-1.58333 N	0
Alnus glutir Gosling, P. Durham, Er	1992 UK	54.76667	-1.58333 N	42
	1992 UK	54.76667	-1.58333 N	0
Alnus glutin Gosling, P. Durham, E.			-1.58333 N	
Alnus glutir Gosling, P. Durham, Er	1992 UK	54.76667		42
Alnus glutir Gosling, P. Durham, Er	1992 UK	54.76667	-1.58333 N	42
Alnus glutir Gosling, P. Durham, Er	1992 UK	54.76667	-1.58333 N	0
Alnus glutir Gosling, P. Durham, Er	1992 UK	54.76667	-1.58333 N	42
Alnus glutir Gosling, P. Durham, Er	1992 UK	54.76667	-1.58333 N	42
Alnus glutir Gosling, P. Durham, Er	1992 UK	54.76667	-1.58333 N	0
Alnus glutir Gosling, P. Durham, Er	1992 UK	54.76667	-1.58333 N	0
Alnus glutirGosling, P. Durham, Er	1992 UK	54.76667	-1.58333 N	0
Alnus glutirGosling, P. Durham, Er	1992 UK	54.76667	-1.58333 N	0
Acer platanJensen, M. Departmen	1993 Denmark	55.3	10.43333 N	12
Acer platanJensen, M. Departmen	1993 Denmark	55.3	10.43333 N	12
Acer platanJensen, M. Departmen	1993 Denmark	55.3	10.43333 N	12
Acer platanJensen, M. Departmen	1993 Denmark	55.3	10.43333 N	12
Acer platanJensen, M. Departmen	1993 Denmark	55.3	10.43333 N	12
Acer platanJensen, M. Departmen	1993 Denmark	55.3	10.43333 N	12
Acer platanJensen, M. Departmen	1993 Denmark	55.3	10.43333 N	12
Acer platanJensen, M. Departmen	1993 Denmark	55.3	10.43333 N	12
Pinus taedaGolle, D. P.Universidad	2008 Brazil	-29.7	-53.7167 N	0
Prunus avitEsen, D., e Four merge	2003 Turkey	41.2	33.55 N	135
Asparagus Conversa, Orsara di P	2006 Italy	41.28333	15.26667 N	0
Asparagus Conversa, Orsara di P	2006 Italy	41.28333	15.26667 N	30
Pinus dens Choi, D., etHokkaido F	2008 Japan	43.05	141.35 N	10
Acer pseudDaws, M. I.Poznan, Pc	2003 Poland	52.41667	16.88333 N	0
-		52.41667	16.88333 N	
Acer pseudDaws, M. I.Poznan, Pc	2003 Poland			0
Acer pseudDaws, M. I.Poznan, Pc	2003 Poland	52.41667	16.88333 N	0
Fraxinus exChmielarz, Poznan, Pc	2000 Poland	52.41667	16.91667 N	16
Acer pseudDaws, M. I.Poznan, Pc	2003 Poland	52.41667	16.88333 N	0
Acer pseudDaws, M. I.Poznan, Pc	2003 Poland	52.41667	16.88333 N	0
Acer pseudDaws, M. I.Poznan, Pc	2003 Poland	52.41667	16.88333 N	0
Acer pseudDaws, M. I.Poznan, Pc	2003 Poland	52.41667	16.88333 N	0
Fagus sylv≀Walbott, M.For�t de F	2014 France	47	3.233333 N	150
Fagus sylv≀Walbott, M.For�t de F	2014 France	47	3.233333 N	150
Cornus kouCho, J. S. &Miwon-mye	2013 South Kore	36.61667	127.6667 Y	84
Cornus kouCho, J. S. &Miwon-mye	2013 South Kore	36.61667	127.6667 Y	0
Cornus kouCho, J. S. &Miwon-mye	2013 South Kore	36.61667	127.6667 Y	84
Cornus kouCho, J. S. & Miwon-mye	2013 South Kore	36.61667	127.6667 Y	0
Cornus kouCho, J. S. ¿Miwon-mye	2013 South Kore	36.61667	127.6667 Y	84
Cornus kouCho, J. S. & Miwon-mye	2013 South Kore	36.61667	127.6667 N	84
Cornus kouCho, J. S. & Miwon-mye	2013 South Kore	36.61667	127.6667 Y	84
Cornus kouCho, J. S. ¿Miwon-mye	2013 South Kore	36.61667	127.6667 Y	84

Cornus kouCho, J. S. aMiwon-mye	2013 South Kore	36.61667	127.6667 Y	84
Cornus kouCho, J. S. aMiwon-mye	2013 South Kore	36.61667	127.6667 Y	84
Cornus kouCho, J. S. aMiwon-mye	2013 South Kore	36.61667	127.6667 Y	84
Cornus kouCho, J. S. ¿Miwon-mye	2013 South Kore		127.6667 Y	84
Cornus kouCho, J. S. aMiwon-mye	2013 South Kore	36.61667	127.6667 Y	84
Cornus kouCho, J. S. & Miwon-mye	2013 South Kore	36.61667	127.6667 N	0
Cornus kouCho, J. S. ¿Miwon-mye	2013 South Kore		127.6667 N	84
Cornus kouCho, J. S. ¿Miwon-mye	2013 South Kore		127.6667 N	0
Betula pen(Chmielarz, Totun, Pola	2000 Poland	53	18.58333 N	0
Picea glaucCarles, S., Cap Tourm	2001 Canada	47.06667	-70.8333 N	21
Rhus copalBolin, J. F. Zuni Pine E	2004 USA	36.85	-76.8167 Y	0
Rhus copalBolin, J. F. Zuni Pine E	2004 USA	36.85	-76.8167 N	0
Rhus copalBolin, J. F. City ofAlexa	2004 USA	38.8	-77.0333 N	0
Rhus copalBolin, J. F. City ofAlexa	2004 USA	38.8	-77.0333 Y	0
Rhus copal Bolin, J. F. Newport Ne	2004 USA	37.11667	-76.5167 Y	0
Rhus copal Bolin, J. F. Newport Ne	2004 USA	37.11667	-76.5167 N	0
Rhus copal Bolin, J. F. James City	2004 USA	37.28333	-76.7833 Y	0
Rhus copal Bolin, J. F. James City	2004 USA	37.28333	-76.7833 N	0
	2004 03A 2008 Russia	54.63333	82.85 N	120
Fragaria ve Baturin, S. Burmistrov	2008 Russia	54.63333	83.58333 N	120
Fragaria veBaturin, S. 1 Berd Ri				120
Fragaria veBaturin, S. Syenga Riv	2008 Russia	54.33333	84.2 N	
Fragaria veBaturin, S. 2 Berd Ri	2008 Russia	54.63333	83.61667 N	120
TaraxacumArcamone, Sierras Chi	2017 Argentina	-30.9667	-64.4833 N	0
Fragaria veBaturin, S. Tashtagol,	2008 Russia	52.75	87.88333 N	120
Fragaria veBaturin, S. Tashtagol,	2008 Russia	52.75	87.88333 N	120
Rosa canin Alp, S., et ¿Van, Turke	2007 Turkey	38.5	43.36667 N	84
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	0
Stellaria ne Vandelook, Anseremm	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook,Anseremm	2005 Belgium	50.23333	4.9 N	0
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook,Anseremm	2005 Belgium	50.23333	4.9 N	0
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	0
Stellaria neVandelook,Anseremm	2005 Belgium	50.23333	4.9 N	0
Stellaria neVandelook,Anseremme	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	0
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremme	2005 Belgium	50.23333	4.9 N	0
Stellaria neVandelook, Anseremme	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremme	2005 Belgium	50.23333	4.9 N	0
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremmo	2005 Belgium	50.23333	4.9 N	0
Stellaria neVandelook, Anseremmo	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremmo	2005 Belgium	50.23333	4.9 N	112
Stellaria neVandelook, Anseremm	2005 Belgium	50.23333	4.9 N	0

Cistus creti Tilki, F. (20 Artvin, Turk	2006 Turkey	41.16667	41.81667	7 0
Cistus creti Tilki, F. (20 Artvin, Turk	2006 Turkey	41.16667	41.81667 N	N 0
Juniperus cTilki, F. (20 Artvin, Turk	2005 Turkey	41.16667	41.8 N	٥ ا
Juniperus cTilki, F. (20 Artvin, Turk	2005 Turkey	41.16667	41.8 N	N 90
Genista sccReyes, O. (Montpellier	2008 France	43.6	3.866667 N	N 0
Melica cilia Reyes, O. Montpellier	2008 France	43.6	3.866667	
Rhamnus aReyes, O. (Montpellier	2008 France	43.6	3.866667	
Melica cilia Reyes, O. Montpellier	2008 France	43.6	3.866667 N	
	2008 France		3.866667 N	
Rhamnus aReyes, O. (Montpellier		43.6		
Genista scrReyes, O. (Montpellier	2008 France	43.6	3.866667	
Lilium mart Pari?, A., e Borova Gla	2007 Bosnia and		17.11667 N	
Lilium martiPari?, A., eBorova Gla	2007 Bosnia and		17.11667	
Anemone nMondoni, A1 Poo plain	2006 Italy	45	10.48333 N	
Anemone nMondoni, A1 Poo plain	2006 Italy	45	10.48333 N	N 0
Anemone nMondoni, A1 Poo plain	2006 Italy	45	10.48333 N	N 0
Anemone nMondoni, A1 Poo plain	2006 Italy	45	10.48333 N	N 0
Anemone nMondoni, A2 Poo plain	2006 Italy	45	10.5 N	N 0
Anemone nMondoni, A2 Poo plain	2006 Italy	45	10.5 N	
Anemone nMondoni, A2 Poo plain	2006 Italy	45	10.5 N	
Anemone nMondoni, A2 Poo plain	2006 Italy	45	10.5 N	
Anemone nMondoni, A3 Poo plain	2006 Italy	45	10.5 N	
Anemone nMondoni, A3 Poo plain	2006 Italy	45	10.5 N	
Anemone nMondoni, A3 Poo plain	2006 Italy	45	10.5 N	
•				
Anemone nMondoni, A3 Poo plain	2006 Italy	45	10.5 1	
Pinus sylveZhu, J., et aHonghuaer	2003 China	47.58333	118.9667 N	
Anemone nMondoni, ANorthern A	2006 Italy	43.26667	12.58333 N	
Anemone nMondoni, ANorthern A	2006 Italy	43.26667	12.58333 N	
Anemone nMondoni, ANorthern A	2006 Italy	43.26667	12.58333 N	
Anemone nMondoni, ANorthern A	2006 Italy	43.26667	12.58333 N	
Erica ciner(Luna, B. ar Serran 🍫 a l	2008 Spain	39.83333	-1.33333 N	
Erica ciner(Luna, B. ar Serran 🍫 a l	2008 Spain	39.83333	-1.33333 N	
Teucrium cLuna, B. arSerran�a I	2008 Spain	39.83333	-1.33333 N	
Teucrium cLuna, B. arSerran�a l	2008 Spain	39.83333	-1.33333 N	
Quercus ro Doody, C. Coillte See	2006 Ireland	52.83333	-6.93333 N	
Pinus sylveDaws, M. I. United King	2005 UK	53.38333	-2.05 N	
Pinus pond Daws, M. I. United King	2005 UK	53.38333	-2.05 N	N 0
Acer pseudDaws, M. I. United King	2003 UK	51.05	-0.1 N	N 0
Pinus mont Daws, M. I. United King	2005 UK	53.38333	-2.05 N	٥ ا
Pinus contcDaws, M. I. United King	2005 UK	53.38333	-2.05 N	N 0
Castanea sPritchard, Fltaly	1987 Italy	42.9	12.76667 N	N 100
Castanea sPritchard, Fltaly	1987 Italy	42.9	12.76667 N	
Castanea sPritchard, FItaly	1987 Italy	42.9	12.76667 N	
Castanea sPritchard, FItaly	1987 Italy	42.9	12.76667 N	
Castanea sPritchard, FItaly	1987 Italy	42.9	12.76667 N	
Castanea sPritchard, Fltaly	1987 Italy	42.9	12.76667 N	
Castanea sPritchard, Fltaly	1987 Italy	42.9	12.76667 N	
-	•	45.68333	11.21667 N	
Acer pseudDaws, M. I. Italy	2003 Italy			
Castanea sPritchard, Fltaly	1987 Italy	42.9	12.76667 N	
Castanea sPritchard, FItaly	1987 Italy	42.9	12.76667 N	
Castanea sPritchard, Fltaly	1987 Italy	42.9	12.76667 N	
Fraxinus exDacasa Ru Oberrheing	2004 Germany	48.36667	7.816667 N	
Fraxinus exDacasa Ru S ddeutsc	2004 Germany	47.88333	8.1 1	
Fraxinus e>Dacasa Ru S • ddeutsc	2004 Germany	48.48333	9.4 1	
Myrica rubrChen, S. Y.Nanjuang, I	2003 Taiwan	24.6	120.9833 N	
Myrica rubr Chen, S. Y. Nanjuang, I	2003 Taiwan	24.6	120.9833 N	
Myrica rubrChen, S. Y.Nanjuang, I	2003 Taiwan	24.6	120.9833 N	N 84

Zelkova seıYang, J. C.Da-Mann, ∃	1999 Taiwan	24.66667	121.3833 N	0
Camellia ja Wang, G., (Qingdao Bo	2013 China	36.06667	120.35 N	0
Camellia ja Wang, G., (Qingdao Bo	2013 China	36.06667	120.35 N	0
Camellia ja Wang, G., (Qingdao Bo	2013 China	36.06667	120.35 N	0
Camellia ja Wang, G., (Qingdao Bo	2013 China	36.06667	120.35 N	0
Camellia ja Wang, G., (Qingdao Bo	2013 China	36.06667	120.35 N	0
Zelkova seiYang, J. C. Wu-Sheh,	1999 Taiwan	24.03333	121.1333 N	0
Zelkova seiYang, J. C. Mei-Shan,	1999 Taiwan	23.26667	120.8333 N	Ö
Zelkova seiYang, J. C. Fong-Shu-I	2000 Taiwan	24	121.0667 N	0
Zelkova seiYang, J. C. Nan-Juang	2000 Taiwan	24.56667	121.0333 N	0
		35.43333		0
Ophiopogo Suzuki, K., Yokohama,	1996 Japan		139.6333 N	
Alliaria peti P♦rez-Gar Spain	1966 Spain	40.01667	-3.86667 N	0
Alliaria peti∘P�rez-Gar Spain	1968 Spain	40.01667	-3.86667 N	0
Alnus glutir O'Reilly, C. Two merge	2001 UK	56.46667	-3 N	0
Alnus glutir O'Reilly, C. Two merge	2001 UK	56.46667	-3 N	84
Alnus glutir O'Reilly, C. Two merge	2001 UK	56.46667	-3 N	84
Alnus glutir O'Reilly, C. Two merge	2001 UK	56.46667	-3 N	0
Betula pub(O'Reilly, C. Two merge	2000 Ireland	53.03333	-7.28333 N	0
Betula pub(O'Reilly, C. Two merge	2000 Ireland	53.03333	-7.28333 N	84
Betula pub(O'Reilly, C. Two merge	2000 Ireland	53.03333	-7.28333 N	84
Betula pub(O'Reilly, C. Two merge	2000 Ireland	53.03333	-7.28333 N	0
Lotus corni₁Nikolic, R., Zaje?ar, S∈	1999 Serbia	43.88333	22.26667 N	0
Fagus sylv:Mortensen, Danish Sta	2000 Denmark	55.95	9.316667 N	0
Fagus sylv:Mortensen, Danish Sta	2000 Denmark	55.95	9.316667 N	0
Fagus sylv:Mortensen, Danish Sta	2000 Denmark	55.95	9.316667 N	119
Fagus sylvaMortensen, Danish Sta	2003 Denmark	55.86667	9.2 N	70
Fagus sylvaMortensen, Danish Sta	2003 Denmark	55.86667	9.2 N	0
Fagus sylvaMortensen, Danish Sta	2000 Denmark	55.95	9.316667 N	119
Fagus sylvaMortensen, Danish Sta	2003 Denmark	55.86667	9.2 N	70
Fagus sylv:Mortensen, Danish Sta	2003 Denmark	55.86667	9.2 N	0
Robinia pscToumi, M., Cherchell, v	2014 Algiers	36.78333	2.616667 N	0
Robinia pscToumi, M., Cherchell, v	2014 Algiers	36.78333	2.616667 Y	0
Maianthem Kosi?ski, I. Two popula	2000 Poland	54.83333	18.05 N	0
Maianthem Kosi?ski, I. Two popula	2000 Poland	54.83333		0
Maianthem Kosi?ski, I. Two popula	2000 Poland	54.83333	18.05 N	0
Stellaria ne Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Scrophulari Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Paris quadrJankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Milium effu:Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Moehringia Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
_				126
Geranium r Jankowska Bialowieza	2004 Poland 2004 Poland	52.83333	23.81667 N	
Scrophulari Jankowska Bialowieza		52.83333	23.81667 N	126
Phyteuma Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Hypericum Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Ranunculus Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Milium effu:Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Stellaria ho Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Juncus effuJankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Epilobium rJankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Oxalis acet Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Melica nutaJankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Stachys sylJankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Maianthem Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Ajuga reptaJankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Lamium ga Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Urtica dioic Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126

Phyteuma :Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Maianthem Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Melica nutaJankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Epilobium rJankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Circaea lut Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Lapsana ccJankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Urtica dioic Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Poa nemor;Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Lamium ga Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Stellaria ne Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Geranium r Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Paris quadrJankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
AegopodiurJankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Moehringia Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Stellaria ho Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Stachys sylJankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Juncus effuJankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Ajuga reptaJankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Ranunculus Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Oxalis acet Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Circaea lut Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Allium ursir Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
AegopodiurJankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Poa nemoriJankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
	2004 Poland	52.83333	23.81667 N	126
Lapsana ccJankowska Bialowieza				126
Allium ursir Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	
Hypericum Jankowska Bialowieza	2004 Poland	52.83333	23.81667 N	126
Medicago liGresta, F., Castiglione	2003 Italy	37.86667	15.11667 N	0
Medicago liGresta, F., Castiglione	2003 Italy	37.86667	15.11667 Y	0
Medicago lıGresta, F., Castiglione	2003 Italy	37.86667	15.11667 Y	0
Medicago liGresta, F., Castiglione	2003 Italy	37.86667	15.11667 Y	0
Medicago liGresta, F., Castiglione	2003 Italy	37.86667	15.11667 N	0
Medicago liGresta, F., Castiglione	2003 Italy	37.86667	15.11667 N	0
Medicago IıGresta, F., Castiglione	2003 Italy	37.86667	15.11667 Y	0
Medicago IıGresta, F., Castiglione	2003 Italy	37.86667	15.11667 N	0
Medicago lıGresta, F., Castiglione	2003 Italy	37.86667	15.11667 Y	0
Medicago IıGresta, F., Castiglione	2003 Italy	37.86667	15.11667 N	0
Larix decidiGorian, F., Seven pool	2004 Italy	45.25	10.91667 Y	0
Larix decidiGorian, F., Seven pool	2004 Italy	45.25	10.91667 Y	100
Prunus ser(Esen, D., e Ukraine	2006 Ukraine	49.55	30.6 N	120
Prunus ser(Esen, D., e Ukraine	2006 Ukraine	49.55	30.6 N	0
Prunus ser(Esen, D., e Ukraine	2006 Ukraine	49.55	30.6 N	90
Prunus ser(Esen, D., e Hungary	2006 Hungary	47.23333	19.05 N	90
Prunus ser(Esen, D., e Hungary	2006 Hungary	47.23333	19.05 N	0
Prunus ser(Esen, D., e Hungary	2006 Hungary	47.23333	19.05 N	120
Prunus ser(Esen, D., e Michigan 1,	2006 USA	45.01667	-84.8333 N	120
Prunus ser(Esen, D., e Michigan 1,	2006 USA	45.01667	-84.8333 N	90
Prunus ser(Esen, D., e Michigan 1,	2006 USA	45.01667	-84.8333 N	0
Prunus ser(Esen, D., e Michigan 2,	2006 USA	44.43333	-84.4667 N	120
Prunus ser(Esen, D., e Michigan 2,	2006 USA	44.43333	-84.4667 N	0
Prunus serŒsen, D., e Michigan 2	2006 USA	44.43333	-84.4667 N	90
Prunus ser Esen, D., e Virginia hig	2006 USA	36.96667	-81.5333 N	0
Prunus ser(Esen, D., e Virginia hig	2006 USA	36.96667	-81.5333 N	90
Prunus ser Esen, D., e Virginia hig	2006 USA	36.96667	-81.5333 N	120
Prunus ser(Esen, D., e Virginia me	2006 USA	37.15	-78.6167 N	0
Prunus sercEsen, D., e Virginia me	2006 USA	37.15	-78.6167 N	90
, , , , , g			· ·	- •

Dhillyron loi Chyrodlau Kanaandra	2012 Crasss	20 00222	22.5	N 100
Phillyrea la Spyroglou, Kassandra,	2012 Greece	39.98333	23.5	
Phillyrea la Spyroglou, Kassandra,	2012 Greece	39.98333	23.5	
Phillyrea la Spyroglou, Kassandra,	2012 Greece	39.98333	23.5	
Phillyrea la Spyroglou, Kassandra,	2012 Greece	39.98333	23.5	
Prunus ser(Esen, D., e Virginia low	2006 USA	37.58333	-76.7	N 0
Prunus ser(Esen, D., e Virginia low	2006 USA	37.58333	-76.7	N 90
Alnus glutir De Atrip, N South-west	2001 UK	55.41667	-4.03333	N 84
Alnus glutir De Atrip, N South-west	2001 UK	55.41667	-4.03333	N 84
Alnus glutir De Atrip, N South-west	2001 UK	55.41667	-4.03333	N 84
Alnus glutir De Atrip, N South-west	2001 UK	55.41667	-4.03333	N 84
Alnus glutir De Atrip, N South-west	2001 UK	55.41667	-4.03333	N 84
Alnus glutir De Atrip, N South-west	2001 UK	55.41667	-4.03333	
Alnus glutir De Atrip, N Mid-easterr	2001 UK	52.78333	0	
Alnus glutir De Atrip, N Mid-easterr	2001 UK	52.78333	0	
Alnus glutir De Atrip, N Mid-easterr	2001 UK	52.78333	0	
Alnus glutir De Atrip, N Mid-easterr	2001 UK	52.78333	0	
•	2001 UK	52.78333	0	
Alnus glutir De Atrip, N Mid-easterr				
Alnus glutir De Atrip, N Mid-easterr	2001 UK	52.78333	0	
Betula pub De Atrip, N Co. Laois, I	2000 Ireland	52.83333	-6.91667	
Betula pubeDe Atrip, N Co. Laois, I	2000 Ireland	52.83333	-6.91667	
Betula pub(De Atrip, N Co. Laois, I	2000 Ireland	52.83333	-6.91667	
Betula pub(De Atrip, N Co. Laois, I	2000 Ireland	52.83333	-6.91667	
Betula pub(De Atrip, N Co. Laois, I	2000 Ireland	52.83333	-6.91667	
Betula pubeDe Atrip, N Co. Laois, I	2000 Ireland	52.83333	-6.91667	
Betula pubeDe Atrip, N Co. Cork, Ir	2000 Ireland	51.85	-8.58333	
Betula pub Edula Pub	2000 Ireland	51.85	-8.58333	
Betula pub Edula Pub	2000 Ireland	51.85	-8.58333	
Betula pub Edula Pub	2000 Ireland	51.85	-8.58333	N 84
Betula pub Edula Pub	2000 Ireland	51.85	-8.58333	N 84
Betula pub Edula Pub	2000 Ireland	51.85	-8.58333	N 84
Vitis rotundConner, P. University c	2006 USA	31.46667	-83.5167	N 90
Vitis rotundConner, P. University c	2006 USA	31.46667	-83.5167	N 0
Vitis rotundConner, P. University c	2006 USA	31.46667	-83.5167	N 0
Vitis rotundConner, P. University c	2006 USA	31.46667	-83.5167	N 90
Vitis rotundConner, P. University of	2006 USA	31.46667	-83.5167	N 90
Vitis rotund Conner, P. University c	2006 USA	31.46667	-83.5167	N 0
Vitis rotund Conner, P. University c	2006 USA	31.46667	-83.5167	N 0
Vitis rotund Conner, P. University (2006 USA	31.46667	-83.5167	N 90
Ulmus mincCicek, E. arWestern Bla	2004 Turkey	41.41667	32.85	N 0
Ulmus glab Cicek, E. a Western Bl	2004 Turkey	41.41667	32.85	N 0
Ulmus glab Cicek, E. aiWestern Bl	2004 Turkey	41.41667	32.85	
Ulmus glab Cicek, E. aiWestern Bl	2004 Turkey	41.41667	32.85	
Ulmus glab Cicek, E. aiWestern Bl	2004 Turkey	41.41667	32.85	
Ulmus glab Cicek, E. aiWestern Bl	2004 Turkey	41.41667	32.85	
Ulmus glab Cicek, E. aiWestern Bl	2004 Turkey	41.41667	32.85	
Ulmus mincCicek, E. alWestern Bl	2004 Turkey	41.41667	32.85	
Ulmus mincCicek, E. alWestern Bl	2004 Turkey	41.41667	32.85	
Ulmus mincCicek, E. alWestern Bl	2004 Turkey	41.41667	32.85	
Ulmus mincCicek, E. alWestern Bl	2004 Turkey	41.41667	32.85	
Ulmus glab Cicek, E. aiWestern Bl	2004 Turkey	41.41667	32.85	
Ulmus glab Cicek, E. alWestern Bl	2004 Turkey	41.41667	32.85	
Ulmus mincCicek, E. alWestern Bl	2004 Turkey	41.41667	32.85	
Ulmus mincCicek, E. aiWestern Bl	2004 Turkey 2004 Turkey	41.41667	32.85	
	2004 Turkey 2004 Turkey	41.41667	32.85	
Ulmus mincCicek, E. aiWestern Bl	2004 Turkey 2005 Netherland	52.3	5.233333	
Festuca oviBulut, Y. ar Mommerste				
Pinus sylveAlvarez, R. Sierra del T	2006 Spain	42.33333	-6.38333	U U

Pinus nigra Alvarez, R. Sierra del T	2006 Spain	42.33333	-6.38333	N 0
Staphylea rTylkowski, Dukla fores	2000 Poland	49.55	21.66667	
SchizachyriSpringer, TNU1 South	2013 USA	36.41667	-99.4	
Hypericum P�rez-GarVillarubia d	2002 Spain	39.01667	-3.01667	
Hypericum P�rez-GarVillarubia d	2002 Spain	39.01667	-3.01667	
Hypericum P♦rez-GarBienservida	2002 Spain	38.01667	-2.01667	
Hypericum P♦rez-GarBienservida	2002 Spain	38.01667	-2.01667	
Hypericum P rez-GarBienservida	2002 Spain	38.01667	-2.01667	
Dactylis glcPerez-FernQuercus ro	2005 Spain	39.16667	-7	
Pinus strobParker, W. Central On	2005 Canada	48.98333	-84.25	
Helleborus Niimi, Y., ellshizuka far	2003 Japan	37.5	138.9167	
Helleborus Niimi, Y., elishizuka far	2003 Japan 2003 Japan	37.5	138.9167	
	2003 Japan 2001 Tunisia	33.66667	10.21667	
Phragmites Corai, M., ¿Zirkine, Gal	2001 Tunisia 2001 Tunisia	33.66667	10.21667	
Phragmites Gorai, M., ¿Zirkine, Gal	2001 Tunisia 2001 Tunisia			
PhragmitesGorai, M., ¿Zirkine, Gal		33.66667	10.21667	
PhragmitesGorai, M., ¿Zirkine, Gal	2001 Tunisia	33.66667	10.21667	
PhragmitesGorai, M., ¿Zirkine, Gal	2001 Tunisia	33.66667	10.21667	
PhragmitesGorai, M., ¿Zirkine, Gal	2001 Tunisia	33.66667	10.21667	
PhragmitesGorai, M., ¿Zirkine, Gal	2001 Tunisia	33.66667	10.21667	
PhragmitesGorai, M., ¿Zirkine, Gal	2001 Tunisia	33.66667	10.21667	
Acer pseudDaws, M. I. Aberdeen,	2003 UK	57.16667	-2.06667	
Acer pseudDaws, M. I. Aberdeen,	2003 UK	57.16667	-2.06667	
Acer pseudDaws, M. I.Aberdeen,	2003 UK	57.16667	-2.06667	
Acer pseudDaws, M. I. Aberdeen,	2003 UK	57.16667	-2.06667	
Acer pseudDaws, M. I. Aberdeen,	2003 UK	57.16667	-2.06667	
Acer pseudDaws, M. I. Aberdeen,	2003 UK	57.16667	-2.06667	
Acer pseudDaws, M. I. Aberdeen,	2003 UK	57.16667	-2.06667	
Acer pseudDaws, M. I.Angers, Fra	2003 France	47.15	########	
Acer pseudDaws, M. I.Angers, Fra	2003 France	47.15	########	
Acer pseudDaws, M. I.Angers, Fra	2003 France	47.15		
Acer pseudDaws, M. I.Angers, Fra	2003 France	47.15		
Acer pseudDaws, M. I.Angers, Fra	2003 France	47.15		• •
Acer pseudDaws, M. I.Angers, Fra	2003 France	47.15	########	
Acer pseudDaws, M. I.Angers, Fra	2003 France		########	
Acer pseudDaws, M. I. Ardingly, El	2003 UK	51.05	-0.1	
Acer pseudDaws, M. I. Ardingly, El	2003 UK	51.05	-0.1	
Acer pseudDaws, M. I. Ardingly, El	2003 UK	51.05	-0.1	
Acer pseudDaws, M. I. Ardingly, El	2003 UK	51.05	-0.1	
Acer pseudDaws, M. I. Ardingly, El	2003 UK	51.05	-0.1	
Acer pseudDaws, M. I. Ardingly, El	2003 UK	51.05	-0.1	
Acer pseudDaws, M. I. Ardingly, El	2003 UK	51.05	-0.1	
Acer pseudDaws, M. I.Bergen, No	2003 Norway	60.2		
Acer pseudDaws, M. I.Bergen, No	2003 Norway	60.2	5.316667	
Acer pseudDaws, M. I.Bergen, No	2003 Norway	60.2	5.316667	
Acer pseudDaws, M. I.Bergen, No	2003 Norway	60.2	5.316667	
Acer pseudDaws, M. I.Bergen, No	2003 Norway	60.2	5.316667	
Acer pseudDaws, M. I.Bergen, No	2003 Norway	60.2	5.316667	
Acer pseudDaws, M. I.Bergen, No	2003 Norway	60.2	5.316667	
Schizachyr Springer, TNU2 South	2013 USA	36.41667	-99.4	
Acer pseudDaws, M. I.Mt Lessini,	2003 Italy	45.68333	11.21667	
Acer pseudDaws, M. I.Mt Lessini,	2003 Italy	45.68333	11.21667	
Acer pseudDaws, M. I.Mt Lessini,	2003 Italy	45.68333	11.21667	
Acer pseudDaws, M. I.Mt Lessini,	2003 Italy	45.68333	11.21667	
Acer pseudDaws, M. I.Mt Lessini,	2003 Italy	45.68333	11.21667	N 0
Acer pseudDaws, M. I.Mt Lessini,	2003 Italy	45.68333	11.21667	
Acer pseudDaws, M. I.Mt Lessini,	2003 Italy	45.68333	11.21667	N 0

Acer pseudDaws, M. I. Thessaly, C	2003	Greece	39.25	21.66667	N	0
Acer pseudDaws, M. I. Thessaly, C	2003	Greece	39.25	21.66667	N	0
Acer pseudDaws, M. I. Thessaly, C	2003	Greece	39.25	21.66667	N	0
Acer pseudDaws, M. I. Thessaly, C		Greece	39.25	21.66667	N	0
Acer pseudDaws, M. I. Thessaly, C	2003	Greece	39.25	21.66667	N	0
Acer pseudDaws, M. I. Thessaly, C		Greece	39.25	21.66667		0
Acer pseudDaws, M. I. Thessaly, C		Greece	39.25	21.66667		0
Origanum vBischoff, A.Naumburg,		Germany	51.13333	11.73333		0
Origanum vBischoff, A.Naumburg,		Germany	51.13333	11.73333		0
Origanum vBischoff, A.Norfolk, UK	2005	•	52.75			0
Origanum vBischoff, A.Norfolk, UK	2005			#########		0
Origanum vBischoff, A.North Bade		Germany	48.76667			0
Origanum vBischoff, A.North Bade		Germany	48.76667	8.183333		0
Origanum vBischoff, A.Region Frit		Switzerlanc		7.133333		0
Origanum vBischoff, A.Region Frit		Switzerland		7.133333		0
Origanum vBischoff, A.Region Wir		Switzerland		8.716667		0
Origanum vBischoff, A.Region Wir		Switzerland		8.716667		0
Dioscorea Albrecht, MHorizon He	2003		42.21667	-123.267		0
Dioscorea Albrecht, MHorizon He	2003		42.21667	-123.267		0
	2003		42.21667	-123.267		0
Dioscorea Albrecht, MHorizon He						0
Dioscorea Albrecht, MHorizon He	2003		42.21667	-123.267		
Pinus sylveZhu, J., et aHonghuaer		China	48.01667	119.0167		0
Picea abiesSuszka, B.,Hochsauerl		Germany	51.31667	8.316667		0
SchizachyriSpringer, TUC1 South	2013		36.41667	-99.4		0
Fagus orierSoltani, A., Hyrcanian ı	2004		36.48333	51.13333		56
Fagus orierSoltani, A., Hyrcanian ı	2004		36.48333	51.13333		0
Vaccinium Shimono, YTaisetsu M		Japan	43.55	142.8667		0
Solidago vi Shimono, YTaisetsu M		Japan	43.55	142.8667		60
Vaccinium Shimono, YTaisetsu M		Japan	43.55	142.8667		0
Solidago viiShimono, YTaisetsu M		Japan	43.55	142.8667		60
Solidago vi Shimono, YTaisetsu M		Japan	43.55	142.8667		0
Solidago viiShimono, YTaisetsu M		Japan	43.55	142.8667		0
Vaccinium Shimono, YTaisetsu M		Japan	43.55	142.8667		60
Vaccinium Shimono, YTaisetsu M		Japan	43.55			60
Solidago vi Shimono, YTaisetsu M		Japan	43.55	142.8667		0
Vaccinium Shimono, YTaisetsu M		Japan	43.55	142.8667		0
Vaccinium 'Shimono, YTaisetsu M		Japan	43.55	142.8667		60
Solidago viiShimono, YTaisetsu M		Japan	43.55	142.8667		0
Solidago vi Shimono, YTaisetsu M		Japan	43.55	142.8667		60
Vaccinium Shimono, YTaisetsu M		Japan	43.55	142.8667		60
Vaccinium Shimono, YTaisetsu M		Japan	43.55	142.8667		60
Solidago vi Shimono, YTaisetsu M		Japan	43.55	142.8667		60
Solidago vi Shimono, YTaisetsu M		Japan	43.55	142.8667		0
Vaccinium Shimono, YTaisetsu M		Japan	43.55	142.8667		60
Solidago vi⊧Shimono, YTaisetsu M		Japan	43.55	142.8667		60
Vaccinium Shimono, YTaisetsu M		Japan	43.55	142.8667		0
Vaccinium Shimono, YTaisetsu M	1998	Japan	43.55	142.8667	N	0
Solidago vi⊧Shimono, YTaisetsu M		Japan	43.55	142.8667	N	60
Solidago vi⊧Shimono, YTaisetsu M	1998	Japan	43.55	142.8667	N	0
Crataegus Persson, L.Dyrelund, E	2000	Denmark	55.86667	12.26667		0
Crataegus Persson, L.Dyrelund, E	2000	Denmark	55.86667	12.26667		112
Crataegus Persson, L.Dyrelund, E	2000	Denmark	55.86667	12.26667		112
Crataegus Persson, L.Dyrelund, E		Denmark	55.86667	12.26667		0
Primula vulZerche, S. Institute of		Germany	51.03333	10.98333		7
Fagus sylvaRatajczak, Krucz Fore		Poland	52.83333	16.4		0
Acer platanPaw?owskiK�rnik, Po	1997	Poland	52.23333	17.08333	N	0

Acer platanPaw?owskiK�rnik, Po	1997 Poland	52.23333	17.08333 N	0
Acer platanKrawiarz, KK�rnik, Po	2000 Poland	52.23333	17.08333 N	0
Fagus sylv≀Krawiarz, KK�rnik, Po	2000 Poland	52.23333	17.08333 N	0
Viburnum aHidayati, S.Powell Cou	1997 USA	37.83333	-83.8167 N	0
Viburnum aHidayati, S.Powell Cou	1997 USA	37.83333	-83.8167 N	0
Viburnum aHidayati, S.Powell Cou	1997 USA	37.83333	-83.8167 N	0
Viburnum aHidayati, S.Powell Cou	1997 USA	37.83333	-83.8167 N	0
Viburnum aHidayati, S.Powell Cou	1997 USA	37.83333	-83.8167 N	0
Viburnum aHidayati, S.Powell Cou	1997 USA	37.83333	-83.8167 N	0
Arbutus un Herranz, J. Sierra del F	2001 Spain	38.61667	-2.7 N	0
Rhamnus aHerranz, J. Valle de Tu	2001 Spain	38.36667	-2.41667 N	0
Solidago viiGim�nez-IPico Pe�a	2001 Spain	40.83333	-3.95 N	0
Solidago viiGim�nez-IPico Pe�a	2001 Spain	40.83333	-3.95 N	0
Solidago viiGim�nez-IPico Pe�a	2001 Spain	40.83333	-3.95 N	0
SchizachyriSpringer, TUC2 South	2013 USA	36.41667	-99.4 N	0
RhododencErfmeier, ASix populat	2000 Spain	40.11667	-3.85 N	0
RhododencErfmeier, ASix populat	2000 Spain	40.11667	-3.85 N	0
RhododencErfmeier, ASix populat	2000 Spain	40.11667	-3.85 N	0
RhododencErfmeier, ASix populat	2000 Spain	40.11667	-3.85 N	0
RhododencErfmeier, ASix populat	1999 Georgia	41.96667	43.53333 N	0
RhododencErfmeier, ASix populat	1999 Georgia	41.96667	43.53333 N	0
RhododencErfmeier, ASix populat	1999 Georgia	41.96667	43.53333 N	0
RhododencErfmeier, ASix populat	1999 Georgia	41.96667	43.53333 N	0
Alliaria peti Dorning, M Wright Stat	2003 USA	39.78333	-84.05 N	0
Impatiens cDorning, M Wright Stat	2003 USA	39.78333	-84.05 N	0
Carex pencBr�ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Carex pencBr • ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Carex pencBr • ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Carex pencBr�ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Carex remcBr�ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Carex pencBr�ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Carex pencBr�ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Carex pencBr ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Carex pencBr ndel, NKiel, northe	2000 Germany	54.3		70
Carex remcBr�ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Carex pencBr�ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Carex remcBr�ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	140
Carex remcBr • ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Carex pencBr ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Carex remcBr�ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	140
Carex remcBr • ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
	2000 Germany	54.3	10.11667 N	70 70
Carex remcBr ndel, NKiel, northe				70 70
Carex pencBrondel, NKiel, northe	2000 Germany	54.3	10.11667 N 10.11667 N	
Carex remcBr ndel, NKiel, northe	2000 Germany	54.3		70 70
Carex remcBr ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Carex pencBr ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	140
Carex remcBr ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70 70
Carex remcBr ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Carex remcBr ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70 70
Carex pencBr ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70 70
Carex remcBr�ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Carex remcBr�ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Carex pencBr ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70 70
Carex remcBr�ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Carex pencBr�ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	140
Carex pencBr�ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70

Carex remcBr�ndel, NKiel, northe	2000 Germany	54.3	10.11667 N	70
Pinus bank Simpson, J Canada	1967 Canada	53.18333	-100.517 N	0
Pinus strobSimpson, J Canada	1967 Canada	53.18333	-100.517 N	30
Picea ruberSimpson, J Canada	1967 Canada	53.18333	-100.517 N	0
Picea glaucSimpson, J Canada	1967 Canada	53.18333	-100.517 N	30
Acer rubrur Simpson, J Canada	1967 Canada	53.18333	-100.517 N	30
Betula alleçSimpson, J Canada	1967 Canada	53.18333	-100.517 N	30
Pinus contcSimpson, J Canada	1967 Canada	53.18333	-100.517 N	30
Pinus resin Simpson, J Canada	1967 Canada	53.18333	-100.517 N	0
Betula papySimpson, J Canada	1967 Canada	53.18333	-100.517 N	0
Picea marisSimpson, J Canada	1967 Canada	53.18333	-100.517 N	0
Abies balsaSimpson, J Canada	1967 Canada	53.18333	-100.517 N	30
Populus treSimpson, J Canada	1967 Canada	53.18333	-100.517 N	0
Populus graSimpson, J Canada	1967 Canada	53.18333	-100.517 N	0
Amelanchi∈Rosner, L. Idaho, USA	2003 USA	44.18333	-114.183 N	0
Amelanchi∈Rosner, L. Idaho, USA	2003 USA	44.18333	-114.183 N	84
ShepherdiaRosner, L. Montana, L	2003 USA	46.38333	-109.9 Y	0
ShepherdiaRosner, L. Montana, L.	2003 USA	46.38333	-109.9 Y	84
TanacetumHassell, R. Johnny's S	1999 USA	44.56667	-69.5833 N	0
TanacetumHassell, R. Johnny's S	1999 USA	44.56667	-69.5833 N	0
Valeriana oHassell, R. Johnny's S	1999 USA	44.56667	-69.5833 N	0
TanacetumHassell, R. Johnny's S	1999 USA	44.56667	-69.5833 N	0
Valeriana oHassell, R. Johnny's S	1999 USA	44.56667	-69.5833 N	0
Valeriana oHassell, R. Johnny's S	1999 USA	44.56667	-69.5833 N	0
Valeriana oHassell, R. Johnny's S	1999 USA	44.56667	-69.5833 N	0
TanacetumHassell, R. Johnny's S	1999 USA	44.56667	-69.5833 N	0
Valeriana oHassell, R. Johnny's S	1999 USA	44.56667	-69.5833 N	0
TanacetumHassell, R. Johnny's S	1999 USA	44.56667	-69.5833 N	0
TanacetumHassell, R. Johnny's S	1999 USA	44.56667	-69.5833 N	0
TanacetumHassell, R. Johnny's S	1999 USA	44.56667	-69.5833 N	0
Valeriana oHassell, R. Johnny's So	1999 USA	44.56667	-69.5833 N	0
Valeriana oHassell, R. Johnny's So	1999 USA	44.56667	-69.5833 N	0
Valeriana oHassell, R. Johnny's S	1999 USA	44.56667	-69.5833 N	0
TanacetumHassell, R. Johnny's So	1999 USA	44.56667	-69.5833 N	0
Valeriana oHassell, R. Johnny's S	1999 USA	44.56667	-69.5833 N	0
TanacetumHassell, R. Johnny's S	1999 USA	44.56667	-69.5833 N	0
Valeriana oHassell, R. Johnny's So	1999 USA	44.56667	-69.5833 N	0
TanacetumHassell, R. Johnny's S	1999 USA	44.56667		0
Acer pseudGosling, P. Forestry Co	2003 UK	52.56667		0
Pinus nigraGosling, P. Forestry Co	2003 UK	52.56667		0
Fraxinus exGosling, P. Forestry Co	2003 UK	52.56667	-1.03333 N	0
Betula pencGosling, P. Forestry Co	2003 UK	52.56667	-1.03333 N	0
Acer opalus Gleiser, G., El Boixar, e	2001 Spain		####### N	90
Acer opalusGleiser, G.,El Boixar, e	2001 Spain		####### N	0
Pinus korai Song, Y., e Pine planta	2013 China	41.8517	124.9091 N	0
SchizachyriSpringer, TUO1 South	2013 USA	36.41667	-99.4 N	0
Pinus montFeurtado, JBritish Colu	2003 Canada	49.15	-122.767 N	0
Pinus montFeurtado, JBritish Colu	2003 Canada	49.15	-122.767 N	98
Hypericum Faron, M. LDelfim More	2001 Brazil	-22.5	-45.2833 N	0
Hypericum Faron, M. LDelfim Mor	2001 Brazil	-22.5	-45.2833 N	0
Hypericum Faron, M. LDelfim Mor	2001 Brazil	-22.5	-45.2833 N	0
Hypericum Faron, M. LDelfim Mor	2001 Brazil	-22.5	-45.2833 N	0
Hypericum Faron, M. LDelfim Mor	2001 Brazil	-22.5	-45.2833 N	0
Hypericum Faron, M. LDelfim Mor	2001 Brazil	-22.5	-45.2833 N	0
Hypericum Faron, M. LDelfim Mor	2001 Brazil	-22.5	-45.2833 N	0
Hypericum Faron, M. LDelfim More	2001 Brazil	-22.5	-45.2833 N	0

0 Cornus sanFalleri, E. (:Florence, It 2003 Italy 43.76667 11.23333 N Cornus sanFalleri, E. (:Florence, It 2003 Italy 43.76667 11.23333 N 119 112 Acer pensy Bourgoin, &Five popula 2000 Canada 45.91667 -64.2833 N Acer pensyBourgoin, Five popula 2000 Canada 45.91667 -64.2833 N 224 Acer pensyBourgoin, AFive popula 2000 Canada 45.91667 -64.2833 N 112 Acer pensyBourgoin, AFive popula 2000 Canada 224 45.91667 -64.2833 N Prunus virgRowley, L., Wild stand 2006 USA 0 42.32502 -111.244 N Prunus virgRowley, L., Wild stand 2006 USA 0 42.32502 -111.244 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA -120.317 N 0 39.63333 0 Elymus elviYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 -120.317 N Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyıYoung, J. AMedell Flat 0 1972 USA 39.63333 -120.317 N Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA -120.317 N 0 39.63333 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 -120.317 N Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 0 1972 USA 39.63333 -120.317 N Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 -120.317 N Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyıYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA -120.317 N 0 39.63333 Elymus elyiYoung, J. AMedell Flat 1972 USA 0 39.63333 -120.317 N Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 0 -120.317 N Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 0 -120.317 N Elymus elyiYoung, J. AMedell Flat 1972 USA 0 39.63333 -120.317 N Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 0 1972 USA 39.63333 -120.317 N Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA -120.317 N 0 39.63333 1972 USA Elymus elyiYoung, J. AMedell Flat 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elviYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 0 1972 USA 39.63333 -120.317 N Elymus elyiYoung, J. AMedell Flat 1972 USA 39.63333 -120.317 N 0 Elymus elyiYoung, J. AMedell Flat 1972 USA 0 39.63333 -120.317 N Elymus elyiYoung, J. AMedell Flat 0 1972 USA 39.63333 -120.317 N

Elymus elyıYoung, J. AMedell Flat	1972 USA	39.63333	-120.317	N	0
Elymus elyiYoung, J. AMedell Flat	1972 USA	39.63333	-120.317		0
Elymus elyiYoung, J. AMedell Flat	1972 USA	39.63333	-120.317		0
Elymus elyiYoung, J. AMedell Flat	1972 USA	39.63333	-120.317		0
Elymus elyiYoung, J. AMedell Flat	1972 USA	39.63333	-120.317		0
Elymus elyiYoung, J. AMedell Flat	1972 USA	39.63333	-120.317		0
	1972 USA 1972 USA	39.63333	-120.317		0
Elymus elyiYoung, J. AMedell Flat Cornus sanTakos, I. A.Tyria, Pedii	1999 Greece	39.51667	20.68333		
Pinus sylveRosario NuMonta • a s	1994 Spain	42.38333	-3.05		0
•	1995 Spain	42.01667	-2.01667		0
Pinus sylveN��ez, WMonta�a s	1999 Spain	40.01667	-4.01667		0
Origanum NP Rez-GaCasavieja,	1999 Spain	40.01667	-3.01667		0
Origanum vP�Rez-GaCenicientos	2013 USA	36.41667	-99.4		0
SchizachyriSpringer, TUO2 South	1999 Spain	38.01667	-6.01667		0
Origanum NP Rez-GaSalvatierra	•		-6.01667		0
Origanum VP Rez-GaLa Parra, B	1999 Spain	38.01667			
Origanum VP Rez-GaVera de Mc	2000 Spain 2000 Spain	41.01667 41.01667	-1.01667 -3.01667		0
Origanum VP Rez-GaSabulcor, S	•				
Origanum NP Rez-GaErmua, Viz	1999 Spain	43.01667	-2.01667		0
Origanum \P • Rez-GaAlcudia de	2000 Spain	39.01667			0
Origanum vP�Rez-GaSueras, Ca	2000 Spain	39.01667			0
Origanum VP Rez-GaCarbas de	2000 Spain	42.01667			0
Origanum vP Rez-GaRodellar, H	2000 Spain	42.01667			0
Origanum vP�Rez-GaVillamalur,	2000 Spain 2016 Romania	39.01667 45.75	####### 24.81667		0
Geum urba Catana, R., Romania	2016 Romania	45.75	24.81667		8
Geum urba Catana, R., Romania Origanum vP�Rez-GaVillarcayo,	2000 Spain	42.01667	-3.01667		0
Holcus lanaPerez-FernQuercus ro	1998 Spain	39.16667	-3.0100 <i>1</i> -7		0
Dactylis glcPerez-FernQuercus ro	1998 Spain	39.16667	- <i>1</i> -7		0
Bromus tecMonaco, T.Cache Co.,	2002 USA	41.76667	-111.783		0
Elymus elyiMonaco, T.USDA-ARS	2002 USA	41.73333	-111.8		0
Galium apaMennan, H Havza distr	1995 Turkey	41.05	35.73333		0
Pinus sylveHilli, A., et (Inari, Finlar	1992 Finland	68.88333	27.03333		0
Pinus sylveHilli, A., et Rovaniemi,	1992 Finland	66.5	25.76667		0
Pinus sylveHilli, A., et ¿Lieksa, Finl	1992 Finland	63.31667	30.01667		0
Pinus sylveHilli, A., et ¿Parkkola, F	1992 Finland	61.61667	26.73333		0
Bromus tecHardegree, Ada Co., Id	1997 USA	43.53333	-116.217		0
Bromus tecHardegree, Ada Co., Id	1997 USA	43.53333	-116.217		0
Bromus tecHardegree, Ada Co., Id	1997 USA	43.53333	-116.217		0
Bromus tecHardegree, Ada Co., Id	1997 USA	43.53333	-116.217		0
Bromus tecHardegree, Ada Co., Id	1997 USA	43.53333	-116.217		0
Bromus tecHardegree, Ada Co., Id	1997 USA	43.53333	-116.217		0
Bromus tecHardegree, Ada Co., Id	1997 USA	43.53333	-116.217		0
Bromus tecHardegree, Ada Co., Id	1997 USA	43.53333	-116.217		0
Bromus tecHardegree, Ada Co., Id	1997 USA	43.53333	-116.217		0
Bromus tecHardegree, Ada Co., Id	1997 USA	43.53333	-116.217		0
Bromus tecHardegree, Ada Co., Id	1997 USA	43.53333	-116.217		0
Picea ruberButnor, J. FMT10, Mou	2016 USA	35.01667	-82.0167		0
Bromus tecHardegree, Kuna Butte	1997 USA	43.43333	-116.433		0
Bromus tecHardegree, Kuna Butte	1997 USA	43.43333	-116.433		0
Bromus tecHardegree, Kuna Butte	1997 USA	43.43333	-116.433		0
Bromus tecHardegree, Kuna Butte	1997 USA	43.43333	-116.433		0
Bromus tecHardegree, Kuna Butte	1997 USA	43.43333	-116.433		0
Bromus tecHardegree, Kuna Butte	1997 USA	43.43333	-116.433		0
Bromus tecHardegree, Kuna Butte	1997 USA	43.43333	-116.433		0
Bromus tecHardegree, Kuna Butte	1997 USA	43.43333	-116.433		0
Bromus tecHardegree, Kuna Butte	1997 USA	43.43333	-116.433	N	0

				_
Bromus tecHardegree, Kuna Butte	1997 USA	43.43333	-116.433 N	
Bromus tecHardegree, Kuna Butte	1997 USA	43.43333	-116.433 N	
Quercus allConnor, K. Starkville, N	2002 USA	33.43333	-88.8167 Y	0
Rhus copalCain, M. D.School of F	2002 USA	33.61667	-91.7667 Y	60
Rubus arguCain, M. D. School of F	2002 USA	33.61667	-91.7667 Y	0
Quercus falCain, M. D.School of F	1996 USA	33.61667	-91.7667 N	0
Dioscorea tZhong, X., Yakuraisan	1998 Japan	38.63333	141.1 N	0
Dioscorea tZhong, X., Yakuraisan	1998 Japan	38.63333	141.1 N	
Dioscorea tZhong, X., Yakuraisan	1998 Japan	38.63333	141.1 N	
Dioscorea tZhong, X., Yakuraisan	1998 Japan	38.63333	141.1 N	
Dioscorea tZhong, X., Yakuraisan	1998 Japan	38.63333	141.1 N	
Dioscorea tZhong, X., Yakuraisan	1998 Japan	38.63333	141.1 N	
Dioscorea tZhong, X., Yakuraisan	1998 Japan	38.63333	141.1 N	
-	•	38.63333	141.1 N	
Dioscorea tZhong, X., Yakuraisan	1998 Japan			
Dioscorea tZhong, X., Yakuraisan	1998 Japan	38.63333	141.1 N	
Dioscorea tZhong, X., Yakuraisan	1998 Japan	38.63333	141.1 N	
Dioscorea tZhong, X., Yakuraisan	1998 Japan	38.63333	141.1 N	
Osmorhiza Walck, J. L Matsuyama	√ 1998 Japan	33.83333	132.7667 N	
Osmorhiza Walck, J. L Matsuyama	1998 Japan	33.83333	132.7667 N	
Osmorhiza Walck, J. L Matsuyama	1998 Japan	33.83333	132.7667 N	
Osmorhiza Walck, J. L Sendai (Mi)	1999 Japan	38.26667	140.8667 N	
Osmorhiza Walck, J. L Sendai (Miy	1999 Japan	38.26667	140.8667 N	
Osmorhiza Walck, J. L Sendai (Miy	1999 Japan	38.26667	140.8667 N	
Osmorhiza Walck, J. L Sendai (Mi	1999 Japan	38.26667	140.8667 N	
Osmorhiza Walck, J. L Sendai (Mi	1999 Japan	38.26667	140.8667 N	
Daboecia cValbuena, ISan Isidro,	1994 Spain	43.05	-5.38333 Y	0
Daboecia cValbuena, ISan Isidro,	1994 Spain	43.05	-5.38333 N	0
Daboecia cValbuena, ISan Isidro,	1994 Spain	43.05	-5.38333 N	0
Calluna vulThomas, T.Cornwall H	2001 UK	50.25	-5.05 Y	0
Calluna vulThomas, T.Cornwall H	2001 UK	50.25	-5.05 Y	0
Calluna vulThomas, T.Cornwall H	2001 UK	50.25	-5.05 Y	0
Calluna vulThomas, T.Cornwall H	2001 UK	50.25	-5.05 Y	0
Calluna vul Thomas, T.Cornwall H	2001 UK	50.25	-5.05 Y	0
Calluna vul Thomas, T.Cornwall H	2001 UK	50.25	-5.05 Y	0
Calluna vul Thomas, T.Cornwall H	2001 UK	50.25	-5.05 Y	0
Calluna vul Thomas, T.Cornwall H	2001 UK	50.25	-5.05 Y	0
Calluna vul Thomas, T. Cornwall H	2001 UK	50.25	-5.05 Y	0
Calluna vul Thomas, T.Cornwall H	2001 UK	50.25	-5.05 Y	0
Calluna vul Thomas, T. Cornwall H	2001 UK	50.25	-5.05 Y	
Calluna vul Thomas, T.Cornwall H	2001 UK	50.25	-5.05 Y	
Calluna vul Thomas, T.Cornwall H	2001 UK	50.25	-5.05 Y	
Calluna vul Thomas, T.Cornwall H	2001 UK	50.25	-5.05 Y	
Calluna vul Thomas, T.John Cham	2001 UK	54.03333	-1.38333 Y	
Calluna vul Thomas, T.John Cham	2001 UK	54.03333	-1.38333 Y	
Calluna vul Thomas, T.John Cham	2001 UK	54.03333	-1.38333 Y	
Calluna vul Thomas, T.John Cham	2001 UK	54.03333	-1.38333 Y	
Calluna vul Thomas, T.John Cham	2001 UK	54.03333	-1.38333 Y	
Calluna vul Thomas, T.John Cham	2001 UK	54.03333	-1.38333 Y	
Calluna vul Thomas, T.John Cham	2001 UK	54.03333	-1.38333 Y	
Calluna vul Thomas, T.John Cham	2001 UK	54.03333	-1.38333 Y	
Calluna vul Thomas, T.John Cham	2001 UK	54.03333	-1.38333 Y	
Calluna vul Thomas, T.John Cham	2001 UK	54.03333	-1.38333 Y	
Calluna vul Thomas, T.John Cham	2001 UK	54.03333	-1.38333 Y	
Calluna vul Thomas, T.John Cham	2001 UK	54.03333	-1.38333 Y	
Calluna vul Thomas, T.John Cham	2001 UK	54.03333	-1.38333 Y	
Calluna vul Thomas, T.John Cham	2001 UK	54.03333	-1.38333 Y	
Canana vai momas, 1.00mi Onam	2001 010	J-1.00000	1.00000 1	U

Pinus nigraP�rez-GarCuenca, Sr	1999 Spain	40.06667	-2.13333 Y	0
Pinus nigra Escudero, ، Cuenca, Sr	1995 Spain	40.05	-2.13333 N	0
Pinus sylveEscudero, ,Cuenca, Sr	1995 Spain	40.05	-2.13333 N	0
Pinus nigraP�rez-GarCuenca, Sr	1999 Spain	40.06667	-2.13333 Y	0
Pinus nigraP�rez-GarCuenca, Sr	1999 Spain	40.06667	-2.13333 Y	0
Pinus nigraP�rez-GarCuenca, Sr	1999 Spain	40.06667	-2.13333 Y	0
Pinus nigra Escudero, ،Cuenca, Sp	1995 Spain	40.05	-2.15 N	0
Pinus nigraP�rez-GarCuenca, Sr	1999 Spain	40.06667	-2.13333 Y	0
Pinus nigraP�rez-GarCuenca, Sţ	1999 Spain	40.06667	-2.13333 Y	0
Pinus nigraP�rez-GarCuenca, Sţ	1999 Spain	40.06667	-2.13333 Y	0
Pinus nigraP�rez-GarCuenca, Sr	1999 Spain	40.06667	-2.13333 Y	0
Pinus nigraP�rez-GarCuenca, Sr	1999 Spain	40.06667	-2.13333 Y	0
Pinus nigraP�rez-GarCuenca, Sr	1999 Spain	40.06667	-2.13333 Y	0
Picea ruberButnor, J. FMT103, Mo	2016 USA	35.01667	-82.0167 N	0
Pinus sylveP rez-GarSoria, Spai	1999 Spain	41.75	-2.46667 Y	0
Pinus sylveP rez-GarSoria, Spai	1999 Spain	41.75	-2.46667 Y	0
Pinus sylveP rez-GarSoria, Spai	1999 Spain	41.75	-2.46667 Y	0
Pinus sylveP rez-GarSoria, Spai	1999 Spain	41.75	-2.46667 Y	0
Pinus sylveP rez-GarSoria, Spai	1999 Spain	41.75	-2.46667 Y	0
Pinus sylveP rez-GarSoria, Spai	1999 Spain	41.75	-2.46667 Y	0
Pinus sylveP rez-GarSoria, Spai	1999 Spain	41.75	-2.46667 Y	0
Pinus sylveP rez-GarSoria, Spai	1999 Spain	41.75	-2.46667 Y	0
Pinus sylveEscudero, /Soria, Spai	1995 Spain	41.76667	-2.46667 N	0
Pinus sylveP rez-GarSoria, Spai	1999 Spain	41.75	-2.46667 Y	0
Pinus sylveP rez-GarSoria, Spai	1999 Spain	41.75	-2.46667 Y	0
Celtis laevi(Nijjer, S., e Houston Ur	1999 USA	29.31667	-94.8 N	0
Celtis laevi(Nijjer, S., e Houston Ur	1999 USA	29.31667	-94.8 N	0
Celtis laevi(Nijjer, S., e Houston Ur	1999 USA	29.31667	-94.8 N	0
Celtis laevi(Nijjer, S., e Houston Ur	1999 USA	29.31667	-94.8 N	0
Celtis laevi(Nijjer, S., e Houston Ur	1999 USA	29.31667	-94.8 N	0
Celtis laevi(Nijjer, S., e Houston Ur	1999 USA	29.31667	-94.8 N	0
Celtis laevi(Nijjer, S., e Houston Ur	1999 USA	29.31667	-94.8 N	0
Celtis laevi(Nijjer, S., e Houston Ur	1999 USA	29.31667	-94.8 N	0
Celtis laevi(Nijjer, S., e Houston Ur	1999 USA	29.31667	-94.8 N	0
Fagus sylv:Le�n-LobcWhiteknigh	1997 UK		####### N	0
Fagus crenLe�n-Lobolto-Nouen N	1997 Japan	40.15	140.3333 N	0
Juncus effuErvin, G. N Talladega N	1999 USA	32.9	-87.4333 N	0
Larix decidiDavid, A. (2Trencin, Sk	1998 Slovakia	48.88333	18.03333 N	0
Phalaris artCrowe, A. lGardener C	2001 Canada	51.01667	-114.033 N	0
Pinus taedaCrowe, A. lCarolina Bi	2001 USA	45.38333	-122.583 N	0
Cercis can¿Couvillon, (Athens, Ge	2000 USA	33.93333	-83.4167 Y	90
PseudotsucCorbineau, Forestry Co	2001 UK	51.16667	-0.85 N	0
PseudotsuçCorbineau, Forestry Co	2001 UK	51.16667	-0.85 N	140
PseudotsuçCorbineau, Forestry Co	2001 UK	51.16667	-0.85 N	140
PseudotsuçCorbineau, Forestry Co	2001 UK	51.16667	-0.85 N	0
PseudotsuçCorbineau, Forestry Co	2001 UK	51.16667	-0.85 N	0
PseudotsuçCorbineau, Forestry Co	2001 UK	51.16667	-0.85 N	0
PseudotsuçCorbineau, Forestry Co	2001 UK	51.16667	-0.85 N	140
PseudotsuçCorbineau, Forestry Co	2001 UK	51.16667	-0.85 N	0
PseudotsuçCorbineau, Forestry Co	2001 UK	51.16667	-0.85 N	140
Pseudotsu(Corbineau, Forestry Co	2001 UK	51.16667	-0.85 N	0
Pseudotsu(Corbineau, Forestry Co	2001 UK	51.16667	-0.85 N	0
Pseudotsu(Corbineau, Forestry Co	2001 UK	51.16667	-0.85 N	140
Pseudotsu(Corbineau, Forestry Co	2001 UK	51.16667	-0.85 N	140
Pseudotsu(Corbineau, Forestry Co	2001 UK	51.16667	-0.85 N	140
PseudotsuçCorbineau, Forestry Cc	2001 UK	51.16667	-0.85 N	0

PseudotsuçCorbineau, Forestry Cc	2001 UK	51.16667	-0.85 N	140
Picea ruberButnor, J. FPerth-Ando	2016 Canada	46.01667	-67.0167 N	0
Pinus taedaWu, L., et aNC59, Wey	2000 USA	35.76667	-76.7833 N	0
Pinus taedaWu, L., et aNC59, Wey	2000 USA	35.76667	-76.7833 N	60
	2000 USA	35.65	-76.6667 N	0
Pinus taedaWu, L., et aNC103, We				
Pinus taedεWu, L., et aNC103, Wε	2000 USA	35.65	-76.6667 N	60
Pinus taedaWu, L., et aOK100, Ok	2000 USA	35.15	-97.45 N	0
Pinus taedaWu, L., et aOK100, Ok	2000 USA	35.15	-97.45 N	60
Pinus taedaWu, L., et aOK125, Ok	2000 USA	35.13333	-97.4333 N	60
Pinus taedaWu, L., et aOK125, Ok	2000 USA	35.13333	-97.4333 N	0
Phalaris artLindig-CisnUniversity (1999 USA	43.03333	-89.4167 N	0
-				
SymphoricaHidayati, S Camp Nels	1996 USA	37.78333	-84.5833 N	0
SymphoricaHidayati, S.Camp Nels	1996 USA	37.78333	-84.5833 N	392
SymphoricaHidayati, S.Camp Nels	1996 USA	37.78333	-84.5833 N	224
SymphoricaHidayati, S.Camp Nels	1996 USA	37.78333	-84.5833 N	0
Acer sacch Connor, K. Starkville, N	2000 USA	33.43333	-88.8167 N	0
Picea mariaWang, B. (¿Chapleau I	1982 Canada	47.86667	-83.1667 N	0
- · · · · · · · · · · · · · · · · · · ·	1999 Canada	49.05	-122.7 N	90
Cupressus Ren, C. antTree Seed				
Purshia tridMeyer, S. (Common g	1995 USA	37.61667	-112.167 N	14
Picea ruberButnor, J. FCoy Brook,	2016 Canada	46.01667	-65.0167 N	0
Salix alba Maroder, HDelta area,	1997 Argentina	-34.2167	-58.3 N	0
Lotus corni Marchiol, L Dipartiment	1999 Italy	46.06667	13.23333 N	0
Sambucus Hidayati, S.Morehead,	1998 USA	38.18333	-83.4667 N	126
Sambucus Hidayati, S.Morehead,	1998 USA	38.18333	-83.4667 N	126
· · · · · · · · · · · · · · · · · · ·				
Sambucus Hidayati, S.Morehead,	1998 USA	38.18333	-83.4667 N	0
Sambucus Hidayati, S.Morehead,	1998 USA	38.18333	-83.4667 N	0
Sambucus Hidayati, S.Morehead,	1998 USA	38.18333	-83.4667 N	126
Sambucus Hidayati, S.Morehead,	1998 USA	38.18333	-83.4667 N	0
Sambucus Hidayati, S Morehead,	1998 USA	38.18333	-83.4667 N	0
Sambucus Hidayati, S.Morehead,	1998 USA	38.18333	-83.4667 N	0
Sambucus Hidayati, S.Morehead,	1998 USA	38.18333	-83.4667 N	0
Sambucus Hidayati, S.Morehead,	1998 USA		-83.4667 N	126
		38.18333		
Sambucus Hidayati, S Morehead,	1998 USA	38.18333	-83.4667 N	126
Sambucus Hidayati, S.Morehead,	1998 USA	38.18333	-83.4667 N	0
Sambucus Hidayati, S.Morehead,	1998 USA	38.18333	-83.4667 N	126
Sambucus Hidayati, S.Morehead,	1998 USA	38.18333	-83.4667 N	0
Sambucus Hidayati, S Morehead,	1998 USA	38.18333	-83.4667 N	0
Sambucus Hidayati, S.Morehead,	1998 USA	38.18333	-83.4667 N	126
Sambucus Hidayati, S.Morehead,	1998 USA	38.18333	-83.4667 N	126
Sambucus Hidayati, S.Morehead,	1998 USA	38.18333	-83.4667 N	126
Sambucus Hidayati, S.Morehead,	1998 USA	38.18333	-83.4667 N	126
Sambucus Hidayati, S.Morehead,	1998 USA	38.18333	-83.4667 N	0
Sambucus Hidayati, S.Kalmar, Srr	1997 Sweden	56.66667	16.31667 N	0
Sambucus Hidayati, S.Kalmar, Sn	1997 Sweden	56.66667	16.31667 N	126
Sambucus Hidayati, S.Kalmar, Sn	1997 Sweden	56.66667	16.31667 N	126
Sambucus Hidayati, S.Kalmar, Srr	1997 Sweden	56.66667	16.31667 N	126
· · · · · · · · · · · · · · · · · · ·				
Sambucus Hidayati, S.Kalmar, Sn	1997 Sweden	56.66667	16.31667 N	126
Sambucus Hidayati, S.Kalmar, Sn	1997 Sweden	56.66667	16.31667 N	0
Sambucus Hidayati, S.Kalmar, Sn	1997 Sweden	56.66667	16.31667 N	126
Sambucus Hidayati, S.Kalmar, Sm	1997 Sweden	56.66667	16.31667 N	0
Sambucus Hidayati, S.Kalmar, Sn	1997 Sweden	56.66667	16.31667 N	126
Sambucus Hidayati, S.Kalmar, Sn	1997 Sweden	56.66667	16.31667 N	0
Sambucus Hidayati, S.Kalmar, Srr	1997 Sweden	56.66667	16.31667 N	0
Sambucus Hidayati, S.Kalmar, Sm	1997 Sweden	56.66667	16.31667 N	0
Sambucus Hidayati, S Kalmar, Sn	1997 Sweden	56.66667	16.31667 N	126
Sambucus Hidayati, S.Kalmar, Sn	1997 Sweden	56.66667	16.31667 N	0

Cambusus Hidayati C Kalmar Cr	1997 Sweden	EC CCCC7	16 21667 N	106
Sambucus Hidayati, S.Kalmar, Srr		56.66667	16.31667 N	126
Sambucus Hidayati, S.Kalmar, Srr	1997 Sweden	56.66667	16.31667 N	0
Sambucus Hidayati, S.Kalmar, Sn	1997 Sweden	56.66667	16.31667 N	126
Sambucus Hidayati, S.Kalmar, Sn	1997 Sweden	56.66667	16.31667 N	0
Sambucus Hidayati, S.Kalmar, Sn	1997 Sweden	56.66667	16.31667 N	0
Sambucus Hidayati, S.Kalmar, Sn	1997 Sweden	56.66667	16.31667 N	126
Stellaria mcGrundy, A. Horticulture	1999 UK	52.2	-1.6 N	0
Stellaria mcGrundy, A. Horticulture	1999 UK	52.2	-1.6 N	0
Stellaria mcGrundy, A. Horticulture	1999 UK	52.2	-1.6 N	0
Stellaria mcGrundy, A. Horticulture	1999 UK	52.2	-1.6 N	0
Stellaria mcGrundy, A. Horticulture	1999 UK	52.2	-1.6 N	0
Stellaria mcGrundy, A. Horticulture	1999 UK	52.2	-1.6 N	0
Stellaria mcGrundy, A. Horticulture	1999 UK	52.2	-1.6 N	0
Stellaria mcGrundy, A. Horticulture	1999 UK	52.2	-1.6 N	0
Polygonum Araki, S. ar Lake Kasur	1995 Japan	36.06667	140.2833 N	0
Polygonum Araki, S. ar Lake Kasur	1995 Japan	36.06667	140.2833 N	0
Polygonum Araki, S. ar Lake Kasur	1995 Japan	36.06667	140.2833 N	42
PolygonumAraki, S. arLake Kasur	1995 Japan	36.06667	140.2833 N	42
PolygonumAraki, S. arLake Kasur	1995 Japan	36.06667	140.2833 N	42
PolygonumAraki, S. arLake Kasur	1995 Japan	36.06667	140.2833 N	0
PolygonumAraki, S. arLake Kasur	1995 Japan	36.06667	140.2833 N	42
PolygonumAraki, S. ar Lake Kasur	1995 Japan	36.06667	140.2833 N	0
Betula pencAhola, V. a Seed orcha	1993 Finland	62.75	25.63333 N	0
Betula pencAhola, V. a Seed orcha	1993 Finland	62.75	25.63333 N	22
Betula pencAhola, V. a Seed orcha	1993 Finland	62.75	25.63333 N	22
Betula pencAhola, V. a Seed orcha	1993 Finland	62.75	25.63333 N	0
Betula pencAhola, V. a Seed orcha	1993 Finland	62.75	25.63333 N	0
Betula pen(Ahola, V. a/Seed orcha	1993 Finland	62.75	25.63333 N	0
·	1993 Finland	62.75	25.63333 N	22
Betula pen(Ahola, V. a Seed orcha	1993 Finland	62.75	25.63333 N	22
Betula pen(Ahola, V. a Seed orcha Picea abiesAhola, V. a Seed orcha	1993 Finland	60.85	27.48333 N	0
	1993 Finland	60.85	27.48333 N	22
Picea abiesAhola, V. a Seed orcha				22
Picea abiesAhola, V. a Seed orcha	1993 Finland	60.85	27.48333 N	
Picea abiesAhola, V. a Seed orcha	1993 Finland	60.85		0
Picea abiesAhola, V. a Seed orcha	1993 Finland	60.85	27.48333 N	0
Picea abiesAhola, V. a Seed orcha	1993 Finland	60.85	27.48333 N	22
Picea abiesAhola, V. a Seed orcha	1993 Finland	60.85	27.48333 N	22
Picea abiesAhola, V. a Seed orcha	1993 Finland	60.85	27.48333 N	0
Pinus sylveAhola, V. a Seed orcha	1993 Finland	61.56667	26.3 N	0
Pinus sylveAhola, V. a Seed orcha	1993 Finland	61.56667	26.3 N	22
Pinus sylveAhola, V. a Seed orcha	1993 Finland	61.56667	26.3 N	0
Pinus sylveAhola, V. a Seed orcha	1993 Finland	61.56667	26.3 N	0
Pinus sylveAhola, V. a Seed orcha	1993 Finland	61.56667	26.3 N	0
Pinus sylveAhola, V. a Seed orcha	1993 Finland	61.56667	26.3 N	22
Pinus sylveAhola, V. a Seed orcha	1993 Finland	61.56667	26.3 N	22
Pinus sylveAhola, V. a Seed orcha	1993 Finland	61.56667	26.3 N	22
Sorbus conYagihashi, 1992 collec	1992 Japan	43.68333	141.65 Y	180
Sorbus conYagihashi, 1992 collec	1992 Japan	43.68333	141.65 N	390
Sorbus conYagihashi, 1992 collec	1992 Japan	43.68333	141.65 N	180
Sorbus conYagihashi, 1992 collec	1992 Japan	43.68333	141.65 Y	390
Sorbus con Yagihashi, 1993 collec	1993 Japan	43.68333	141.65 Y	390
Sorbus con Yagihashi, 1993 collec	1993 Japan	43.68333	141.65 Y	180
Sorbus con Yagihashi, 1993 collec	1993 Japan	43.68333	141.65 N	390
Sorbus con Yagihashi, 1993 collec	1993 Japan	43.68333	141.65 N	180
Quercus pyValbuena, ISalamanca	1993 Spain	40.98333	-5.7 Y	0
Quercus pyValbuena, ISalamanca	1993 Spain	40.98333	-5.7 N	0

Primula verMcKee, J. (Whittle Der	1996 UK	55	-1.9 N	21
Primula vul McKee, J. (Whittle Der	1996 UK	55	-1.9 N	21
Picea abiesLeinonen, lTree A, For	1992 Finland	61.85	24.33333 N	0
Picea abiesLeinonen, l'Tree A, For	1992 Finland	61.85	24.33333 N	0
Picea abiesLeinonen, l'Tree A, For	1992 Finland	61.85	24.33333 N	0
Picea abiesLeinonen, l'Tree A, For	1992 Finland	61.85	24.33333 N	21
Picea abiesLeinonen, l'Tree A, For	1992 Finland	61.85	24.33333 N	0
Picea abiesLeinonen, l'Tree A, For	1992 Finland	61.85	24.33333 N	21
	1992 Finland			21
Picea abiesLeinonen, l'Tree A, For		61.85	24.33333 N	
Picea abiesLeinonen, l'Tree A, For	1992 Finland	61.85	24.33333 N	21
Picea abiesLeinonen, lTree B, For	1992 Finland	61.85	24.33333 N	0
Picea abiesLeinonen, ITree B, For	1992 Finland	61.85	24.33333 N	21
Picea abiesLeinonen, ITree B, For	1992 Finland	61.85	24.33333 N	0
Picea abiesLeinonen, l'Tree B, For	1992 Finland	61.85	24.33333 N	0
Picea abiesLeinonen, lTree B, For	1992 Finland	61.85	24.33333 N	21
Picea abiesLeinonen, l'Tree B, For	1992 Finland	61.85	24.33333 N	21
Picea abiesLeinonen, l'Tree B, For	1992 Finland	61.85	24.33333 N	21
Picea abiesLeinonen, l'Tree B, For	1992 Finland	61.85	24.33333 N	0
Epilobium & Husband, EBeartooth F	1997 USA	44.93333	-109.6 N	0
Dorycnium Herranz, J. Moropeche	1994 Spain	38.38333	-2.36667 Y	0
Dorycnium Herranz, J. Moropeche	1994 Spain	38.38333	-2.36667 N	0
· · · · · · · · · · · · · · · · · · ·				
Quercus ru Guo, Y., et Conway Cc	1994 USA	35.31667	-92.7167 N	30
Quercus veGuo, Y., et Fayette Co	1994 USA	35.16667	-89.3833 N	30
Quercus ni(Guo, Y., et Fayette Co	1994 USA	35.16667	-89.3833 N	30
Stellaria mcGrundy, A. Wellsbourn	1996 UK	52.18333	-1.6 N	0
Prunus avitFinch-SavaWellsbourn	1994 UK	52.18333	-1.58333 N	0
Acer platanFinch-SavaWellsbourn	1994 UK	52.18333	-1.58333 N	84
Stellaria mcGrundy, A. Wellsbourn	1996 UK	52.18333	-1.6 N	0
Acer pseudFinch-SavaWellsbourn	1994 UK	52.18333	-1.58333 N	0
Stellaria mcGrundy, A. Wellsbourn	1996 UK	52.18333	-1.6 N	0
Prunus avitFinch-SavaWellsbourn	1994 UK	52.18333	-1.58333 N	119
Stellaria mcGrundy, A. Wellsbourn	1996 UK	52.18333	-1.6 N	0
Stellaria mcGrundy, A. Wellsbourn	1996 UK	52.18333	-1.6 N	0
Acer platanFinch-SavaWellsbourn	1994 UK	52.18333		0
•	1994 UK	52.18333	-1.58333 N	84
Acer pseudFinch-SavaWellsbourn				
Camellia si Song, D., eHangzhou,	2015 China	30.01667	120.0167 N	0
Camellia si Song, D., eHangzhou,	2015 China	30.01667	120.0167 N	0
Camellia si Song, D., eHangzhou,	2015 China	30.01667	120.0167 N	90
Camellia si Song, D., eHangzhou,	2015 China	30.01667	120.0167 N	0
Camellia si Song, D., eHangzhou,	2015 China	30.01667	120.0167 N	0
Camellia si⊧Song, D., eHangzhou,	2015 China	30.01667	120.0167 N	0
Pinus taedaCain, M. D.Southeaste	1993 USA	33.61667	-91.7667 N	0
Calluna vul Vera, M. L. Ptu San Isic	1994 Spain	43.06667	-5.38333 N	0
Erica vagarVera, M. L. Ptu San Isio	1994 Spain	43.06667	-5.38333 N	0
Erica cinereVera, M. L. Ptu San Isio	1994 Spain	43.06667	-5.38333 N	0
Galium apaThompson,Unknown o	1996 UK	52.25	####### N	0
Rubus palnSuzuki, W. Tohoku Re	1992 Japan	39.75	141.25 N	0
Rubus palnSuzuki, W. Tohoku Re	1992 Japan	39.75	141.25 N	270
Rubus parvSuzuki, W. Tohoku Re	1992 Japan	39.75	141.25 N	0
Rubus palnSuzuki, W. Tohoku Re	1992 Japan 1992 Japan	39.75	141.25 N	270
· · · · · · · · · · · · · · · · · · ·	•			
Rubus parvSuzuki, W. Tohoku Re	1992 Japan	39.75	141.25 N	0
Rubus parvSuzuki, W. Tohoku Re	1992 Japan	39.75	141.25 N	240
Rubus parvSuzuki, W. Tohoku Re	1992 Japan	39.75	141.25 N	240
Rubus parvSuzuki, W. Tohoku Re	1992 Japan	39.75	141.25 N	240
Rubus palnSuzuki, W. Tohoku Re	1992 Japan	39.75	141.25 N	0
Rubus palnSuzuki, W. Tohoku Re	1992 Japan	39.75	141.25 N	0

Rubus parvSuzuki, W. Tohoku Re	1002	Japan	39.75	141.25	NI	240
Rubus parvSuzuki, W. Tohoku Re		Japan	39.75	141.25		0
•		•				
Rubus parvSuzuki, W. Tohoku Re		Japan	39.75	141.25		0
Rubus palnSuzuki, W. Tohoku Re		Japan	39.75	141.25		270
Rubus palnSuzuki, W. Tohoku Re		Japan	39.75	141.25		0
Rubus palnSuzuki, W. Tohoku Re		Japan	39.75	141.25		270
TaraxacumNoronha, ASouthern S		Sweden	56.08333	14		0
Stellaria mcNoronha, ASouthern S	1994	Sweden	56.08333	14	Ν	0
Stellaria mcNoronha, ASouthern S	1994	Sweden	56.08333	14	Ν	0
TaraxacumNoronha, ASouthern S	1994	Sweden	56.08333	14	Ν	0
Clematis vi Bungard, RChristchurc	1996	New Zealar	-43.4833	172.65	Ν	0
Clematis vi Bungard, RChristchurc	1996	New Zealar	-43.4833	172.65	Ν	84
Clematis vi Bungard, RChristchurc	1996	New Zealar	-43.4833	172.65		0
Clematis viiBungard, RChristchurc		New Zealar	-43.4833	172.65		84
PhragmitesWijte, A. H. Canary Cre	1991		38.78333	-75.1667		0
Betula pencVanhatalo, Haapasten:		Finland	60.6	24.41667		0
Betula pen(Vanhatalo, Haapasten:		Finland	60.6	24.41667		42
		Finland	60.6	24.41667		22
Betula pen(Vanhatalo, Haapasten)				24.41667		0
Betula pen(Vanhatalo, Haapasten:		Finland	60.6			
Betula pen(Vanhatalo, Haapasten:		Finland	60.6	24.41667		22
Betula pen(Vanhatalo, Haapasten:		Finland	60.6	24.41667		0
Betula pen(Vanhatalo, Haapasten:		Finland	60.6	24.41667		0
Betula pen(Vanhatalo, Haapasten:		Finland	60.6	24.41667		0
Betula pencVanhatalo, Haapasten		Finland	60.6	24.41667		0
Betula pencVanhatalo, Haapasten		Finland	60.6	24.41667		22
Betula pencVanhatalo, Haapastens		Finland	60.6	24.41667		22
Betula pencVanhatalo, Haapastens		Finland	60.6	24.41667		22
Dioscorea tOkagami, NTohoku Uni		Japan	38.25	140.8667		0
Dioscorea tOkagami, NTohoku Uni		Japan	38.25	140.8667		0
Dioscorea tOkagami, NTohoku Uni		Japan	38.25	140.8667		0
Quercus ni(Bonner, F. Oktibbeha	1992		33.41667	-88.95		0
Pinus albiciSniezko, R.USFS Regi	2009		45.45	-116.8		90
Arum macuPritchard, FWakehurst	1988		51.06667		N	0
Arum macuPritchard, FWakehurst	1988	UK	51.06667	#########	Ν	0
Arum macuPritchard, FWakehurst	1988	UK	51.06667	########	Ν	0
Arum macuPritchard, FWakehurst	1988	UK	51.06667	########	Ν	0
Arum macuPritchard, FWakehurst	1988	UK	51.06667	########	Ν	0
Arum macuPritchard, FWakehurst	1988	UK	51.06667	########	Ν	0
Arum macuPritchard, FWakehurst	1988	UK	51.06667	########	Ν	0
Arum macuPritchard, FWakehurst	1988	UK	51.06667	########	Ν	0
Arum macuPritchard, FWakehurst	1988	UK	51.06667	########	Ν	0
Arum macuPritchard, FWakehurst	1988	UK	51.06667	########	Ν	0
Milium effu:Thompson,Wakehurst	1975			########		0
Quercus ro Pritchard, FWakehurst	1987			########		0
Quercus ro Pritchard, FWakehurst	1987		51.06667			0
Arum macuPritchard, FWakehurst	1988		51.06667			0
Quercus ro Pritchard, FWakehurst	1987			#########		0
Arum macuPritchard, FWakehurst	1988		51.06667			0
Milium effu:Thompson,Wakehurst	1975			########		0
Milium effu:Thompson,Wakehurst	1975			#########		0
Arum macuPritchard, FWakehurst	1988			#########		0
Arum macuPritchard, FWakehurst	1988			########		0
Arum macuPritchard, FWakehurst	1988			########		0
Arum macuPritchard, I Wakehurst	1988			######################################		0
Milium effu:Thompson,Wakehurst	1975			######################################		0
Milium effu:Thompson, Wakehurst	1975			######################################		0
winiam ena, mompson, wakenurst	1913	JIX.	51.05		1 1	U

Milium effu:Thompson,Wakehurst	1975 UK	51.05	####### N	0
Arum macuPritchard, FWakehurst	1988 UK		####### N	0
Arum macuPritchard, FWakehurst	1988 UK	51.06667	####### N	0
Arum macuPritchard, FWakehurst	1988 UK	51.06667	####### N	0
Arum macuPritchard, FWakehurst	1988 UK	51.06667	####### N	0
Arum macuPritchard, FWakehurst	1988 UK	51.06667	####### N	0
Quercus ro Pritchard, FWakehurst	1987 UK	51.06667		0
Arum macuPritchard, FWakehurst	1988 UK	51.06667		0
Arum macuPritchard, FWakehurst	1988 UK	51.06667		0
Quercus ro Pritchard, FWakehurst	1987 UK	51.06667		0
Arum macuPritchard, FWakehurst	1988 UK	51.06667		0
Arum macuPritchard, FWakehurst	1988 UK		####### N	0
Milium effu:Thompson,Wakehurst	1975 UK		####### N	0
Quercus ro Pritchard, FWakehurst	1987 UK		####### N	0
Arum macuPritchard, FWakehurst	1988 UK	51.06667		0
Milium effu:Thompson,Wakehurst	1975 UK		####### N	0
Heracleum Jauzein, P. Montigny-le	1986 France	48.76667	2 N	84
Heracleum Jauzein, P. Montigny-le	1986 France	48.76667	2 N	14
Heracleum Jauzein, P. Montigny-le	1986 France	48.76667	2 N	84
Heracleum Jauzein, P. Montigny-le	1986 France	48.76667	2 N	14
Heracleum Jauzein, P. Montigny-le	1986 France	48.76667	2 N	84
Heracleum Jauzein, P. Montigny-le	1986 France	48.76667	2 N	84
Heracleum Jauzein, P. Montigny-le	1986 France	48.76667	2 N	14
Heracleum Jauzein, P. Montigny-le	1986 France	48.76667	2 N	84
Heracleum Jauzein, P. Montigny-le	1986 France	48.76667	2 N	14
Heracleum Jauzein, P. Montigny-le	1986 France	48.76667	2 N	14
Heracleum Jauzein, P. Montigny-le	1986 France	48.76667	2 N	14
Heracleum Jauzein, P. Montigny-le	1986 France	48.76667	2 N	84
Heracleum Jauzein, P. Montigny-le	1986 France	48.76667	2 N	14
Heracleum Jauzein, P. Montigny-le	1986 France	48.76667	2 N	84
Heracleum Jauzein, P. Montigny-le	1986 France	48.76667	2 N	14
Heracleum Jauzein, P. Montigny-le	1986 France	48.76667	2 N	84
Arbutus un₁Mesl�ard, V�naco ar	1990 France	42.5	9.2 N	0
Arbutus un₁Mesl�ard, V�naco ar	1990 France	42.5	9.2 N	0
Acer velutirPinfield, N. Westonbirt,	1987 UK	51.6	-2.2 N	0
Acer velutirPinfield, N. Westonbirt,	1987 UK	51.6	-2.2 N	120
Acer pseudHong, T. D Whiteknigh	1988 UK	51.45	-0.95 N	0
Acer pseudHong, T. D Whiteknigh	1988 UK	51.45	-0.95 N	0
Acer platanHong, T. D Whiteknigh	1988 UK	51.45	-0.95 N	0
Poa trivialisThompson,Plymouth, l	1988 UK	50.36667	-4.13333 N	0
Agrostis ca Thompson, Plymouth, I	1988 UK	50.36667	-4.13333 N	0
Milium effu:Thompson,Plymouth, l	1988 UK	50.36667	-4.13333 N	0
Holcus lanaThompson,Plymouth, l	1988 UK	50.36667	-4.13333 N	0
TaraxacumThompson,Plymouth, l	1988 UK	50.36667	-4.13333 N	0
Milium effu:Thompson,Plymouth, l	1988 UK	50.36667	-4.13333 N	0
BrachypodiThompson,Plymouth, l	1988 UK	50.36667	-4.13333 N	0
Agrostis ca Thompson, Plymouth, I	1988 UK	50.36667	-4.13333 N	0
Holcus lanaThompson,Plymouth, l	1988 UK	50.36667	-4.13333 N	0
Agrostis ca Thompson, Plymouth, I	1988 UK	50.36667	-4.13333 N	0
Festuca oviThompson,Plymouth, l	1988 UK	50.36667	-4.13333 N	0
Milium effu:Thompson,Plymouth, l	1988 UK	50.36667	-4.13333 N	0
Achillea milThompson,Plymouth, l	1988 UK	50.36667	-4.13333 N	0
Holcus lanaThompson,Plymouth, I	1988 UK	50.36667	-4.13333 N	0
TaraxacumThompson,Plymouth, l	1988 UK	50.36667	-4.13333 N	0
Poa trivialisThompson,Plymouth, l	1988 UK	50.36667	-4.13333 N	0
$Taraxacum Thompson, Plymouth, \ l$	1988 UK	50.36667	-4.13333 N	0

Festuca oviThompson,Plymouth, I	1988 UK	50.36667	-4.13333 N	0
Silene dioicThompson, Plymouth, I	1988 UK	50.36667	-4.13333 N	0
Agrostis ca Thompson, Plymouth, I	1988 UK	50.36667	-4.13333 N	0
Poa trivialisThompson,Plymouth, l	1988 UK	50.36667	-4.13333 N	0
Achillea milThompson,Plymouth, I	1988 UK	50.36667	-4.13333 N	0
BrachypodiThompson,Plymouth, I	1988 UK	50.36667	-4.13333 N	0
BrachypodiThompson,Plymouth, I	1988 UK	50.36667	-4.13333 N	0
Milium effu:Thompson,Plymouth, I	1988 UK	50.36667	-4.13333 N	0
Achillea milThompson,Plymouth, I	1988 UK	50.36667	-4.13333 N	0
TaraxacumThompson,Plymouth, I	1988 UK	50.36667	-4.13333 N	0
Silene dioicThompson,Plymouth, I	1988 UK	50.36667	-4.13333 N	0
Festuca oviThompson,Plymouth, I	1988 UK	50.36667	-4.13333 N	0
BrachypodiThompson,Plymouth, I	1988 UK	50.36667	-4.13333 N	0
Silene dioicThompson,Plymouth, I	1988 UK	50.36667	-4.13333 N	0
Festuca oviThompson,Plymouth, I	1988 UK	50.36667	-4.13333 N	0
Silene dioicThompson,Plymouth, I	1988 UK	50.36667	-4.13333 N	0
Achillea milThompson,Plymouth, I	1988 UK	50.36667	-4.13333 N	0
Poa trivialisThompson,Plymouth, I	1988 UK	50.36667	-4.13333 N	0
Holcus lanaThompson,Plymouth, I	1988 UK	50.36667	-4.13333 N	0
Pinus taed:Hallgren, STexas fore:	1985 USA	31.36667	-94.7833 N	0
Pinus taed:Hallgren, STexas fores	1985 USA	31.36667	-94.7833 N	0
Pinus taedaHallgren, STexas fores	1985 USA	31.36667	-94.7833 N	53
Pinus taed:Hallgren, STexas fores	1985 USA	31.36667	-94.7833 N	53
Pinus echir Hallgren, S Oklahoma 1	1985 USA	35.13333	-97.2333 N	53
Pinus echir Hallgren, S Oklahoma 1	1985 USA	35.13333	-97.2333 N	53
Amelanchi∈Acharya, S Population	1984 Canada	53.33333	-117.417 N	84
Dactylis glcProbert, R. Nantes, Fra	1985 France	47.21667	-1.55 N	0
Dactylis glcProbert, R. Nantes, Fra	1985 France	47.21667	-1.55 N	0
Dactylis glcProbert, R. Nantes, Fra	1985 France	47.21667	-1.55 N	0
Dactylis glcProbert, R. Nantes, Fra	1985 France	47.21667	-1.55 N	0
Dactylis glcProbert, R. Nantes, Fra	1985 France	47.21667	-1.55 N	0
Dactylis glcProbert, R. Nantes, Fra	1985 France	47.21667	-1.55 N	0
Dactylis glcProbert, R. Nantes, Fra	1985 France	47.21667	-1.55 N	0
Dactylis glcProbert, R. Nantes, Fra	1984 France	47.21667	-1.55 N	0
Dactylis glcProbert, R. Nantes, Fra	1985 France	47.21667	-1.55 N	0
Dactylis glcProbert, R. Nantes, Fra	1984 France	47.21667	-1.55 N	0
Dactylis glcProbert, R. Nantes, Fra	1984 France	47.21667	-1.55 N	0
Pinus korai Song, Y., e Secondary	2013 China	41.8517	124.9091 N	150
Pinus korai Song, Y., e Secondary	2013 China	41.8517	124.9091 N	0
Pinus korai Song, Y., e Secondary	2013 China	41.8517	124.9091 N	150
Solidago vi Sakurai, A. 1600 m asl	2014 Japan	36.1	137.55 N	0
Poa trivialisFroud-WilliaWeed Rese	1982 UK	51.75	-1.25 N	0
Poa trivialisFroud-WilliaWeed Rese	1983 UK	51.75	-1.25 N	0
Poa trivialisFroud-WilliaWeed Rese	1983 UK	51.75	-1.25 N	0
Poa trivialisFroud-WilliaWeed Rese	1983 UK	51.75	-1.25 N	0
Poa trivialisFroud-Willi:Weed Rese	1982 UK	51.75	-1.25 N	0
Poa trivialisFroud-Willi:Weed Rese	1982 UK	51.75	-1.25 N	0
Poa trivialisFroud-Willi:Weed Rese	1982 UK	51.75	-1.25 N	0
Poa trivialisFroud-WillisWeed Rese	1982 UK	51.75	-1.25 N	0
Poa trivialisFroud-WillisWeed Rese	1982 UK	51.75	-1.25 N	0
Poa trivialisFroud-WillisWeed Rese	1983 UK	51.75	-1.25 N	0
Poa trivialisFroud-WillisWeed Rese	1982 UK	51.75	-1.25 N	0
Poa trivialisFroud-WillisWeed Rese	1982 UK	51.75	-1.25 N	0
Poa trivialisFroud-WillisWeed Rese	1982 UK	51.75	-1.25 N	0
Poa trivialisFroud-WillisWeed Rese	1982 UK	51.75	-1.25 N	0
Poa trivialisFroud-WilliaWeed Rese	1982 UK	51.75	-1.25 N	0

Poa trivialisFroud-WilliaWeed Rese	1982 UK	51.75	-1.25 N	0
Poa trivialisFroud-WilliaWeed Rese	1982 UK	51.75	-1.25 N	0
BrachypodiSchonfeld, Weed Rese	1982 UK	51.75	-1.25 N	0
Poa trivialisFroud-WilliaWeed Rese	1982 UK	51.75	-1.25 N	0
Poa trivialisFroud-WilliaWeed Rese	1982 UK	51.75	-1.25 N	0
Poa trivialisFroud-WillitWeed Rest	1982 UK	51.75	-1.25 N	0
Poa trivialisFroud-WilliaWeed Rese	1982 UK	51.75	-1.25 N	0
Poa trivialisFroud-WilliaWeed Rese	1982 UK	51.75	-1.25 N	0
Holcus lanaSchonfeld, Weed Rese	1982 UK	51.75	-1.25 N	0
Poa trivialisFroud-WilliaWeed Rese	1982 UK	51.75	-1.25 N	0
Solanum di Pegtel, D. l'Eernewoud	1984 Netherland		5.933333 N	0
Solanum di Pegtel, D. NEernewoud	1984 Netherland		5.933333 N	173
Solanum di Pegtel, D. Nernewoud	1984 Netherland		5.933333 N	0
Solanum di Pegtel, D. Nernewoud	1984 Netherland		5.933333 N	0
Solanum di Pegtel, D. Nernewoud	1984 Netherland		5.933333 N 5.933333 N	173
Solanum di Pegtel, D. Nernewoud	1984 Netherland		5.933333 N	173
Solanum dıPegtel, D. NEernewoud Solanum dıPegtel, D. NEernewoud	1984 Netherland		5.933333 N	173
Solanum di Pegtel, D. l'Eernewood	1984 Netherland		5.933333 N	0
Solanum di Pegtel, D. l'Eernewood	1984 Netherland		5.933333 N	173
Solanum di Pegtel, D. l'Eernewoud	1984 Netherland		5.933333 N	0
Solanum di Pegtel, D. l'Eernewoud	1984 Netherland		5.933333 N	173
Solanum di Pegtel, D. l'Eernewoud	1984 Netherland		5.933333 N	0
Solanum di Pegtel, D. l'Eernewoud	1984 Netherland		5.933333 N	173
Solanum di Pegtel, D. l'Eernewoud	1984 Netherland		5.933333 N	173
Solanum di Pegtel, D. l'Eernewoud	1984 Netherland		5.933333 N	0
Solanum di Pegtel, D. l'Eernewoud	1984 Netherland		5.933333 N	0
Solanum di Pegtel, D. l'Eernewoud	1984 Netherland		5.933333 N	173
Solanum di Pegtel, D. Nernewoud	1984 Netherland		5.933333 N	0
Solanum di Pegtel, D. Nernewoud	1984 Netherland		5.933333 N	0
Solanum diPegtel, D. NEernewoud	1984 Netherland		5.933333 N	173
Solanum diPegtel, D. lEernewoud	1984 Netherland		5.933333 N	0
Solanum dıPegtel, D. NEernewoud	1984 Netherland		5.933333 N	0
Solanum dıPegtel, D. NEernewoud	1984 Netherland		5.933333 N	0
Solanum dıPegtel, D. lEernewoud	1984 Netherland		5.933333 N	0
Solanum diPegtel, D. l'Eernewoud	1984 Netherland		5.933333 N	173
Solanum diPegtel, D. IEernewoud	1984 Netherland	53.11667	5.933333 N	0
Solanum diPegtel, D. IEernewoud	1984 Netherland	53.11667	5.933333 N	0
Rubus idaeNesme, X. Vosges, Fra	1984 France	47.98333	6.966667 N	0
Rubus idaeNesme, X. Vosges, Fra	1984 France	47.98333	6.966667 Y	0
Rubus idaeNesme, X. Vosges, Fra	1984 France	47.98333	6.966667 Y	0
Rubus idaeNesme, X. Vosges, Fra	1984 France	47.98333	6.966667 Y	0
Rubus idaeNesme, X. Vosges, Fra	1984 France	47.98333	6.966667 Y	0
Rubus idaeNesme, X. Vosges, Fra	1984 France	47.98333	6.966667 Y	0
Rubus idaeNesme, X. Vosges, Fra	1984 France	47.98333	6.966667 Y	0
Rubus idaeNesme, X. Vosges, Fra	1984 France	47.98333	6.966667 Y	0
Fagus sylv:Muller, C. aPicardie, Fr	1984 France	49.75	2.183333 N	0
Fagus sylv:Muller, C. aAmance, Fi	1984 France	48.28333	4.45 N	0
Poa trivialisFroud-WilliaHarwell, Uh	1977 UK	51.58333	-1.28333 N	0
Stellaria mcFroud-WillicHarwell, Uk	1977 UK	51.58333	-1.28333 N	0
Dactylis glcPannangpeGalicia, Spa	1983 Spain	42.85	-7.9 N	0
Dactylis glcPannangpeGalicia, Spa	1983 Spain	42.85	-7.9 N	0
Dactylis glcPannangpeGalicia, Spa	1983 Spain	42.85	-7.9 N	0
Dactylis glcPannangpeGalicia, Sp	1983 Spain	42.85	-7.9 N	0
Dactylis glcPannangpeGalicia, Spa	1983 Spain	42.85	-7.9 N	0
Dactylis glcPannangpeGalicia, Spa	1983 Spain	42.85	-7.9 N	0

Dactylis glcPannangpeGalicia, Spa	1083	Spain		42.85	-7.9	N	0
Dactylis glcPannangpeGalicia, Spa		Spain		42.85	-7.9		0
Quercus nicPeterson, J1978 Missis	1980	•		33.45	-88.7833		0
Quercus nicPeterson, J1978 Missis	1979			33.45	-88.7833		49
Quercus nicPeterson, J1978 Missis	1978			33.45	-88.7833		49
Quercus nicPeterson, J1978 Missis	1978			33.45	-88.7833		0
•							49
Quercus ni Peterson, J1978 Missis	1980 1979			33.45	-88.7833		
Quercus ni(Peterson, J1978 Missis		France		33.45	-88.7833 2.566667		0
Fagus sylvaMuller, C. aFor t de F	1981		,	49.26667			
Pinus taedaRichter, D. Mississippi				33	-89.7333		0
Solidago vi Sakurai, A. 1900 m asl		Japan		36.1	137.55		0
Lotus corni McKersie, [Commercia		Canada		43.53333	-80.2333		0
Betula papyBevington, Fairbanks,	1977			64.86667	-147.767		0
Betula pap Bevington, Fairbanks,	1977			64.86667	-147.767		0
Betula pap Bevington, Fairbanks,	1977			64.86667	-147.767		42
Betula papyBevington, Fairbanks,	1977			64.86667	-147.767		0
Betula papyBevington, Fairbanks,	1977			64.86667	-147.767		42
Origanum vSilvertown, Castle Hill I	1976			51.01667	0.2		0
Achillea milSilvertown, Castle Hill I	1976			51.01667	0.2		0
Hypericum Silvertown, Castle Hill I	1976			51.01667	0.2		0
Prunella vuSilvertown, Castle Hill I	1976			51.01667	0.2		0
Lotus corni Silvertown, Castle Hill I	1976			51.01667	0.2		0
Stellaria meBaskin, J. NLexington,	1973			38.01667	-84.5		480
Stellaria meBaskin, J. NLexington,	1973	USA		38.01667	-84.5	Ν	480
Stellaria meBaskin, J. NLexington,	1973	USA		38.01667	-84.5	Ν	480
Stellaria meBaskin, J. NLexington,	1973	USA		38.01667	-84.5	Ν	480
Stellaria meBaskin, J. NLexington,	1973	USA		38.01667	-84.5	Ν	480
Stellaria meBaskin, J. NLexington,	1973	USA		38.01667	-84.5	Ν	480
Stellaria meBaskin, J. NLexington,	1973	USA		38.01667	-84.5	Ν	480
Stellaria meBaskin, J. NLexington,	1973	USA		38.01667	-84.5	Ν	480
Stellaria meBaskin, J. NLexington,	1973	USA		38.01667	-84.5	Ν	480
Stellaria meBaskin, J. NLexington,	1973	USA		38.01667	-84.5	Ν	480
Stellaria meBaskin, J. NLexington,	1973	USA		38.01667	-84.5	Ν	480
Stellaria meBaskin, J. NLexington,	1973	USA		38.01667	-84.5	Ν	480
Stellaria meBaskin, J. NLexington,	1973	USA		38.01667	-84.5	Ν	480
Stellaria meBaskin, J. NLexington,	1973	USA		38.01667	-84.5	Ν	480
Vaccinium Aalders, L. cv 70-36a,	1976	Canada		45.06667	-64.5333	Ν	0
HyacinthoicThompson, Bethlehem	1975	UK		51.06667	########	N	0
HyacinthoicThompson, Bethlehem	1975	UK		51.06667	########	N	0
HyacinthoicThompson, Bethlehem	1975	UK		51.06667	########	N	0
HyacinthoicThompson, Bethlehem	1975	UK		51.06667	########	N	0
HyacinthoicThompson,Bethlehem	1975	UK		51.06667	########	N	0
HyacinthoicThompson, Bethlehem	1975			51.06667		N	0
HyacinthoicThompson, Bethlehem	1975				########	N	0
HyacinthoicThompson, Bethlehem	1975				########		0
HyacinthoicThompson, Great Rack	1975				########		0
HyacinthoicThompson, Great Rack	1975				########		0
HyacinthoicThompson, Great Rack	1975				########		0
HyacinthoicThompson, Great Rack	1975				########		0
HyacinthoicThompson, Great Rack	1975			51.05			0
HyacinthoicThompson, Great Rack	1975				########		0
HyacinthoicThompson, Great Rack	1975				########		0
HyacinthoicThompson, Great Rack	1975				########		0
Solanum diRoberts, H.Compton V	1973			52.16667	-1.55		0
Solanum diRoberts, H.Compton V	1973			52.16667	-1.55		180
Solanum diRoberts, H.Compton V	1973			52.16667	-1.55		0
· · · · · · · · · · · · · · · ·						-	•

Solanum dıRoberts, H.Compton V	1973 UK	52.16667	-1.55 N	0
Solanum diRoberts, H.Compton V	1973 UK	52.16667	-1.55 N	0
·			-1.55 N	
Solanum diRoberts, H.Compton V	1973 UK	52.16667		180
Solanum diRoberts, H.Compton V	1973 UK	52.16667	-1.55 N	180
Solanum diRoberts, H.Compton V	1973 UK	52.16667	-1.55 N	180
Solanum dıRoberts, H.Compton V	1973 UK	52.16667	-1.55 N	180
Solanum dıRoberts, H.Compton V	1973 UK	52.16667	-1.55 N	180
Solanum diRoberts, H.Compton V	1973 UK	52.16667	-1.55 N	0
Solanum diRoberts, H.Compton V	1973 UK	52.16667	-1.55 N	180
Solanum diRoberts, H.Compton V	1973 UK	52.16667	-1.55 N	0
Solanum diRoberts, H.Compton V	1973 UK	52.16667	-1.55 N	180
Solanum dıRoberts, H.Compton V	1973 UK	52.16667	-1.55 N	0
Solanum dıRoberts, H.Compton V	1973 UK	52.16667	-1.55 N	0
Dioscorea tOkagami, NShizuoka P	1975 Japan	35.06667	138.2833 N	0
Dioscorea tOkagami, NShizuoka P	1975 Japan	35.06667	138.2833 N	0
Dioscorea tOkagami, NShizuoka P	1975 Japan	35.06667	138.2833 N	80
Dioscorea (Okagami, NShizuoka P	1975 Japan	35.06667	138.2833 N	80
	•	36.1	130.2033 N	
Solidago vi Sakurai, A. 2000 m asl	2014 Japan			0
Corylus aveJarvis, B. CArtindale ar	1973 UK	53.36667	-1.51667 N	0
Corylus aveJarvis, B. CArtindale ar	1973 UK	53.36667	-1.51667 N	0
Lycopus euThompson,Royal Bota	1973 UK	51.46667		0
Lycopus euThompson, Royal Bota	1973 UK	51.46667		0
Silene dioicThompson, South-east	1973 UK	51.2		0
Silene dioicThompson,South-east	1973 UK		####### N	0
Populus baHellum, A. Bowness, A	1967 Canada	51.08333	-114.2 N	0
Corylus aveBradbeer, Aberystwyt	1960 UK	52.4	-4.08333 Y	50
Corylus aveBradbeer, Aberystwyt	1960 UK	52.4	-4.08333 Y	0
Epilobium & Myerscoug Edinburgh,	1965 UK	55.93333	-3.18333 N	0
Epilobium & Myerscoug Edinburgh,	1965 UK	55.93333	-3.18333 N	0
Epilobium rMyerscoug Edinburgh,	1965 UK	55.93333	-3.18333 N	0
Epilobium rMyerscoug Edinburgh,	1965 UK	55.93333	-3.18333 N	0
Epilobium rMyerscoug Edinburgh,	1965 UK	55.93333	-3.18333 N	0
Epilobium aMyerscoug Edinburgh,	1965 UK	55.93333	3.18333 N	0
Epilobium rMyerscoug Edinburgh,	1965 UK	55.93333	-3.18333 N	0
Epilobium aMyerscoug Edinburgh,	1965 UK	55.93333	-3.18333 N	0
Epilobium rMyerscoug Edinburgh,	1965 UK	55.93333	-3.18333 N	0
Epilobium ¿Myerscoug Edinburgh,	1965 UK	55.93333	-3.18333 N	0
Epilobium ¿Myerscoug Edinburgh,	1965 UK	55.93333	-3.18333 N	0
Epilobium rMyerscoug Edinburgh,	1965 UK	55.93333	-3.18333 N	0
Pinus strobToole, V. KNortheaste	1955 USA	39.96667	-75.4 N	0
Pinus taed¿Toole, V. KNortheaste	1955 USA	39.96667	-75.4 N	0
Pinus taedaToole, V. KNortheaste	1955 USA	39.96667	-75.4 N	0
Pinus strobToole, V. KNortheaste	1955 USA	39.96667	-75.4 N	0
Pinus taedaToole, V. KNortheaste	1955 USA	39.96667	-75.4 N	0
Pinus strobToole, V. KNortheaste	1955 USA	39.96667	-75.4 N	0
Pinus strobToole, V. KNortheaste	1955 USA	39.96667	-75.4 N	0
Pinus taedaToole, V. KNortheaste	1955 USA	39.96667	-75.4 N	0
Pinus strobToole, V. KNortheaste	1955 USA	39.96667	-75.4 N	0
Pinus taedaToole, V. KNortheaste	1955 USA	39.96667	-75.4 N	0
Pinus taeda Toole, V. KNortheaste	1955 USA	39.96667	-75.4 N	0
			-75.4 N	0
Pinus strobToole, V. KNortheastel Pinus taedaToole, V. KNortheastel	1955 USA 1955 USA	39.96667 39.96667	-75.4 N -75.4 N	0
Pinus taeda Toole, V. K.Northeaste	1955 USA	39.96667	-75.4 N	0
Pinus strob Toole, V. K.Northeaste	1955 USA	39.96667	-75.4 N	0
Pinus strobToole, V. KNortheaste	1955 USA	39.96667	-75.4 N	0
Pinus strobToole, V. KNortheaste	1955 USA	39.96667	-75.4 N	0

Pinus strobToole, V. KNortheaste	1955 USA	39.96667	-75.4	N 0
Pinus taedaToole, V. KNortheaste	1955 USA	39.96667	-75.4	
Pinus taedaToole, V. KNortheaste	1955 USA	39.96667	-75.4	
PseudotsucChing, T. NWeyerhaus	1957 USA	46.71667	-122.95	
Fragaria virToole, E. HUSDA, Belt	1954 USA	39.01667	-76.9167	
Fragaria virToole, E. HUSDA, Belt	1954 USA	39.01667	-76.9167	
Rosa multifStewart, R. USDA, Belt	1964 USA	38.96667	-77	
Fragaria virToole, E. HUSDA, Belt	1954 USA	39.01667	-76.9167	
Fragaria virToole, E. HUSDA, Belt	1954 USA	39.01667	-76.9167	N 0
Rosa multifStewart, R. USDA, Belt	1964 USA	38.96667	-77	N 120
Fragaria virToole, E. HUSDA, Belt	1954 USA	39.01667	-76.9167	N 0
Rosa multifStewart, R. USDA, Belt	1964 USA	38.96667	-77	N 120
Fragaria virToole, E. HUSDA, Belt	1954 USA	39.01667	-76.9167	N 0
Rosa multifStewart, R.USDA, Belt	1964 USA	38.96667	-77	N 120
Fragaria virToole, E. HUSDA, Belt	1954 USA	39.01667	-76.9167	N 0
Fragaria virToole, E. HUSDA, Belt	1954 USA	39.01667	-76.9167	N 0
Fragaria virToole, E. HUSDA, Belt	1954 USA	39.01667	-76.9167	N 0
Fragaria virToole, E. HUSDA, Belt	1954 USA	39.01667	-76.9167	N 0
Primula elaAhmad, H. Various sur	2006 USA	39.58333	-95.9667	N 0
Primula vul Ahmad, H. Various sur	2006 USA	39.58333	-95.9667	N 0
Primula vul Ahmad, H. Various sur	2006 USA	39.58333	-95.9667	N 60
Primula verAhmad, H. Various sur	2006 USA	39.58333	-95.9667	N 60
Primula elaAhmad, H. Various sur	2006 USA	39.58333	-95.9667	N 150
Primula verAhmad, H. Various sur	2006 USA	39.58333	-95.9667	N 0
Solidago vi Sakurai, A. 2400 m asl	2014 Japan	36.1	137.55	N 0
Kalmia latif ₁ Li, H. Z., D ₁ Hybrids of ₁	2016 USA	33.95	-83.4167	N 0
Pinus korai Kim, D. H. Chuncheon	2017 South Kore	37.88333	127.6167	N 0
Fagus cren Endoh, K. l'Ozedake N	2015 Japan	37.61667	139.5333	N 60
Fagus cren Endoh, K. l'Ozedake N	2015 Japan	37.61667	139.5333	N 30
Erechtites IWhite, S. NQueen s (2015 Canada	44.1	-64.9333	
Erechtites l'White, S. NQueen s (2015 Canada	44.1	-64.9333	
Erechtites l'White, S. NQueen s (2015 Canada	44.1	-64.9333	
Erechtites l'White, S. NQueen s (2015 Canada	44.1	-64.9333	
Ulmus davi Nomiya, H. Natural fore	1997 Japan	36.75	139.4333	
Ulmus lacirNomiya, H. Natural fore	1997 Japan	36.75	139.4333	
Ulmus davi Nomiya, H. Natural fore	1997 Japan	36.75	139.4333	
Ulmus davi Nomiya, H. Natural fore	1997 Japan	36.75	139.4333	
Ulmus lacirNomiya, H. Natural fore	1997 Japan	36.75	139.4333	
Ulmus lacirNomiya, H. Natural fore	1997 Japan	36.75	139.4333	
Ulmus davi Nomiya, H. Natural fore	1997 Japan	36.75	139.4333	
Ulmus lacirNomiya, H. Natural fore	1997 Japan	36.75	139.4333	
Ulmus davi Nomiya, H. Natural fore	1997 Japan	36.75	139.4333	
Ulmus lacirNomiya, H. Natural fore	1997 Japan	36.75	139.4333	
Ulmus lacirNomiya, H. Natural fore	1997 Japan	36.75	139.4333	
Ulmus lacirNomiya, H. Natural fore	1997 Japan	36.75	139.4333	
Ulmus davi Nomiya, H. Natural fore	1997 Japan	36.75	139.4333	
Ulmus davi Nomiya, H. Natural fore	1997 Japan	36.75	139.4333	
Ulmus davi Nomiya, H. Natural fore	1997 Japan	36.75	139.4333	
Ulmus lacir Nomiya, H. Natural fore	1997 Japan	36.75	139.4333	
Phragmites Martin, R. New York r	2016 USA	40.86667	-73.3667	
Phragmites Martin, R. New York p	2016 USA	40.86667	-73.3667	
Poa trivialis Liu, M. H., Seed Rese	2013 USA	44.53333	-123.1	
Poa trivialisLiu, M. H., Seed Rese Poa trivialisLiu, M. H., Seed Rese	2013 USA 2013 USA	44.53333 44.53333	-123.1 -123.1	
Galium apaBoyd, N. V.Several col	2003 Canada	54.75	-105.683	
Galium apaBoyd, N. V.Several col	2003 Canada	54.75 54.75	-105.683	
Oanum apaboyu, N. V.Severai Coi	2000 Canada	54.75	-100.003	IN U

TaraxacumBoyd, N. V.Several col	2003 Canada	54.75	-105.683 N	0
TaraxacumBoyd, N. V.Several col	2003 Canada	54.75	-105.683 N	0
Robinia pseBouteiller,)Gabarnac,	2016 France	44.6	-0.25 Y	0
Robinia pseBouteiller, >Gabarnac,	2016 France	44.6	-0.25 N	0
Origanum vP�voa, O. EN4, Sta. N	2015 Portugal	38.81667	-7.53333 N	0
Albizia julibBouteiller, >Sunshine S	2016 Germany	51.75	7.9 N	0
Albizia julib Bouteiller, >Sunshine S	2016 Germany	51.75	7.9 Y	0
Agrostis ca Soares, V. Seed mixes	2015 Brazil	-31.8333	-52.4667 N	7
Prunus spirAfroze, F. (Coillte See	2010 Ireland	52.71667	-6.68333 N	70
•	2010 Ireland	52.71667	-6.68333 N	91
Prunus spirAfroze, F. (Coillte See				
Prunus spirAfroze, F. (Coillte See	2010 Ireland	52.71667	-6.68333 N	70
Prunus spirAfroze, F. (Coillte See	2010 Ireland	52.71667	-6.68333 N	91
Salix cinereHopley, T. 'Victoria, Au	2008 Australia	-37.2	144.0833 N	0
MiscanthusSun, Q. Y., Fukagawa,	2013 Japan	43.01667	142.0167 N	0
MiscanthusSun, Q. Y., Kamui, Jap	2013 Japan	43.01667	140.0167 N	0
MiscanthusSun, Q. Y., Iwanai, Jap	2013 Japan	42.01667	140.0167 N	0
MiscanthusSun, Q. Y., Niseko, Jar	2013 Japan	42.01667	140.0167 N	0
MiscanthusSun, Q. Y., Oshamanb	2013 Japan	42.01667	140.0167 N	0
MiscanthusSun, Q. Y., Toya, Japa	2013 Japan	42.01667	140.0167 N	0
Origanum \P�voa, O. Vila Boim, I	2015 Portugal	38.86667	-7.26667 N	0
MiscanthusSun, Q. Y., Makkari, Ja	2013 Japan	42.01667	140.0167 N	0
MiscanthusSun, Q. Y., Hakodate,	2013 Japan	41.01667	141.0167 N	0
MiscanthusSun, Q. Y., Esashi, Jar	2013 Japan	41.01667	140.0167 N	0
MiscanthusSun, Q. Y., Onuma, Ja	2013 Japan	42.01667	140.0167 N	0
MiscanthusSun, Q. Y., Iozan, Japa	2013 Japan	43.01667	144.0167 N	0
MiscanthusSun, Q. Y., Bihoro, Jap	2013 Japan	43.01667	144.0167 N	0
MiscanthusSun, Q. Y., Kobuchizav	2013 Japan	35.01667	138.0167 N	0
MiscanthusSun, Q. Y., Nagasaka,	2013 Japan	35.01667	138.0167 N	0
MiscanthusSun, Q. Y., Shiozuka, C	2013 Japan	33.01667	133.0167 N	0
MiscanthusSun, Q. Y., Kochi, Japa	2013 Japan	33.01667	133.0167 N	0
Arbutus uniPipinis, E., Rodopi, Gri	2013 Greece	41.13333	25.25 N	0
Arbutus un(Pipinis, E., Rodopi, Gro	2013 Greece	41.13333	25.25 N	30
MiscanthusSun, Q. Y., Takachino,	2013 Japan	32.01667	131.0167 N	0
Prunus avitJavanmard Iran	2011 Iran	31.7	53.71667 N	28
Prunus avitJavanmard Iran	2011 Iran	31.7	53.71667 N	56
Lysimachia Dillon, K. RWashingtor	2013 USA	47.51667	-122.283 N	0
Lysimachia Dillon, K. RWashingtor	2013 USA	47.51667	-122.283 N	0
Lysimachia Dillon, K. RWashingtor	2013 USA	47.51667	-122.283 N	0
Vitis amureWang, W. (Changbai N	2010 China	42.05	127.7833 N	60
Vitis amureWang, W. (Changbai N	2010 China	42.05	127.7833 N	0
Vitis amureWang, W. (Changbai N	2010 China	42.05	127.7833 N	0
Vitis amureWang, W. (Changbai N	2010 China	42.05	127.7833 N	0
Vitis amureWang, W. (Changbai N	2010 China	42.05	127.7833 N	0
Vitis amureWang, W. (Changbai N	2010 China 2010 China	42.05	127.7833 N	0
Vitis amureWang, W. (Changbai N	2010 China 2010 China	42.05	127.7833 N	60
Vitis amureWang, W. (Changbai N	2010 China 2010 China	42.05	127.7833 N	60
Vitis amureWang, W. (Changbai N	2010 China 2010 China	42.05	127.7833 N	60
<u> </u>	2010 China	42.05		
Vitis amure Wang, W. (Changbai N			127.7833 N	60
Vitis amure Wang, W. (Changbai N	2010 China	42.05	127.7833 N	60
Vitis amure Wang, W. (Changbai N	2010 China	42.05	127.7833 N	0
Vitis amureWang, W. (Changbai N	2010 China	42.05	127.7833 N	0
Vitis amure Wang, W. (Changbai N	2010 China	42.05	127.7833 N	60
Carex flaccWagner, M Calcareous	2007 UK	53.2	-1.63333 N	0
Stachys off Wagner, M Calcareous	2007 UK	53.2	-1.63333 N	0
Carex flaceWagner, M Calcareous	2007 UK	53.2	-1.63333 N	35
Carex flaccWagner, M Calcareous	2007 UK	53.2	-1.63333 N	35

Stachys off Wagner, M Calcareous	2007 UK	53.2	-1.63333 N	0
Carex flaccWagner, M Calcareous	2007 UK	53.2	-1.63333 N	0
Stachys off Wagner, M Calcareous	2007 UK	53.2	-1.63333 N	35
HelianthemWagner, M Calcareous	2007 UK	53.2	-1.63333 N	35
Stachys off Wagner, M Calcareous	2007 UK	53.2	-1.63333 N	0
Stachys off Wagner, M Calcareous	2007 UK	53.2	-1.63333 N	35
Stachys off Wagner, M Calcareous	2007 UK	53.2	-1.63333 N	35
HelianthemWagner, M Calcareous	2007 UK	53.2	-1.63333 N	35
HelianthemWagner, M Calcareous	2007 UK	53.2	-1.63333 N	0
Carex flaccWagner, M Calcareous	2007 UK	53.2	-1.63333 N	35
HelianthemWagner, M Calcareous	2007 UK	53.2	-1.63333 N	0
HelianthemWagner, M Calcareous	2007 UK	53.2	-1.63333 N	35
Carex flaccWagner, M Calcareous	2007 UK	53.2	-1.63333 N	35
Stachys off Wagner, M Calcareous	2007 UK	53.2	-1.63333 N	0
HelianthemWagner, M Calcareous	2007 UK	53.2	-1.63333 N	0
Carex flaccWagner, M Calcareous	2007 UK	53.2	-1.63333 N	0
HelianthemWagner, M Calcareous	2007 UK	53.2	-1.63333 N	0
HelianthemWagner, M Calcareous	2007 UK	53.2	-1.63333 N	35
Stachys off Wagner, M Calcareous	2007 UK	53.2	-1.63333 N	35
Carex flaccWagner, M Calcareous	2007 UK	53.2	-1.63333 N	0
Apocynum Boyd, N. S.Mt. Stewart	2008 Canada	46.35	-62.8667 N	0
Apocynum Boyd, N. S.Mt. Stewart	2008 Canada	46.35	-62.8667 N	0
Apocynum Boyd, N. S.Mt. Stewart	2008 Canada	46.35	-62.8667 N	0
Apocynum Boyd, N. S.Mt. Stewart	2008 Canada	46.35	-62.8667 N	0
Apocynum Boyd, N. S.Mt. Stewart	2008 Canada	46.35	-62.8667 N	0
Apocynum Boyd, N. S.Mt. Stewart	2008 Canada	46.35	-62.8667 N	0
Pinus contcAoki, C. F. Rocky Mou	2007 USA	40.33333	-105.683 N	0
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333	116.2167 N	0
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333	116.2167 N	0
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333	116.2167 N	0
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333	116.2167 N	28
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333	116.2167 N	28
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333	116.2167 N	0
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333		0
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333	116.2167 N	0
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333	116.2167 N	28
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333	116.2167 N	0
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333	116.2167 N	0
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333	116.2167 N	28
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333	116.2167 N	28
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333	116.2167 N	0
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333	116.2167 N	0
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333	116.2167 N	0
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333	116.2167 N	0
Acer truncaLi, Y. L. C., Beijing Bota	2008 China	39.98333	116.2167 N	28
Alliaria peti Raghu, S. FTazawell C	2006 USA	40.72072	-89.5056 N	115
Alliaria peti Raghu, S. FTazawell C	2006 USA	40.72072	-89.5056 N	40
Abies nordrKirdar, E. ESavsat-Mey	2006 Turkey	41.48333	42.13333 N	23
Arbutus un(Pipinis, E., Chalkidiki,	2013 Greece	40.58333	23.78333 N	0
Arbutus un(Pipinis, E., Chalkidiki,	2013 Greece	40.58333	23.78333 N	30
Abies nordrKirdar, E. ESavsat-Yay	2006 Turkey	41.21667	42.45 N	23
Abies nordrKirdar, E. ESavsat-Veli	2006 Turkey	41.31667	42.51667 N	23
Abies nordrKirdar, E. EArtvin-Ortal	2006 Turkey	41.26667	41.95 N	23
Neolitsea aChen, S. Y.Peitungyen	2002 Taiwan	24.08333	121.1167 N	0
Phellodend Chien, C. TTaiping Mo	2004 Taiwan	24.5	121.4833 N	0
Phellodend Chien, C. TTaiping Mo	2004 Taiwan	24.5	121.4833 N	0
	_00 : raimaii	21.0		· ·

Phellodend Chien, C. TTaiping Mo	2004 Taiwan	24.5	121.4833 N	140
PhellodendChien, C. TTaiping Mo	2004 Taiwan	24.5	121.4833 N	0
Phellodend Chien, C. TTaiping Mo	2004 Taiwan	24.5	121.4833 N	0
Pinus sylveTilki, F. (20 Akyaz?-Do	2004 Turkey	40.61667	30.83333 N	0
Pinus sylveTilki, F. (20 Artvin-Merk	2004 Turkey	41.13333	41.6 N	0
Pinus sylveTilki, F. (20 Kutahya-S.	2004 Turkey	39.61667	30.3 N	0
Pinus sylveTilki, F. (20 Kastamonu	2004 Turkey	41.36667	33.46667 N	0
Pinus sylveTilki, F. (20 Akdagmade	2004 Turkey	39.5	35.86667 N	0
Arbutus uniPipinis, E., Pieria, Gree	2013 Greece	40.18333	22.31667 N	30
Arbutus uniPipinis, E., Pieria, Gree	2013 Greece	40.18333	22.31667 N	0
Pinus sylveTilki, F. (20 Kayseri-Pin	2004 Turkey	38.71667	36.21667 N	0
Agrostis ca Hanslin, H. DLF-TRIFC	2004 Denmark	55.75	9.683333 N	0
Achillea milHanslin, H. Olberg, No	2004 Norway	58.85	5.566667 N	0
Filipendula Hanslin, H. Klepp St., N	2004 Norway	58.76667	5.666667 N	0
Abies proceDoody, P. (Three lots,	2004 Norway 2004 Denmark	55.43333	9.033333 N	0
· · · · · · · · · · · · · · · · · · ·	2004 Denmark	55.43333	9.033333 N	8
Abies proceDoody, P. (Three lots,		55.43333	9.033333 N	8
Abies proceDoody, P. (Three lots,	2004 Denmark			
Abies proceDoody, P. (Three lots,	2004 Denmark	55.43333	9.033333 N	0
Pseudotsu(Doody, P. (Three lots,	2004 USA	46.73333	-121.567 N	56
Pseudotsu(Doody, P. (Three lots,	2004 USA	46.73333	-121.567 N	0
Pseudotsu(Doody, P. (Three lots,	2004 USA	46.73333	-121.567 N	56
Pseudotsu(Doody, P. (Three lots,	2004 USA	46.73333	-121.567 N	0
AristolochiaAdams, C. Pine Mount	2000 USA	37.05	-82.8667 N	0
AristolochiaAdams, C. Pine Mount	2000 USA	37.05	-82.8667 N	0
AristolochiaAdams, C. Pine Mount	2000 USA	37.05	-82.8667 N	0
AristolochiaAdams, C. Pine Mount	1999 USA	37.05	-82.8667 N	84
AristolochiaAdams, C. Pine Mount	2000 USA	37.05	-82.8667 N	0
AristolochiaAdams, C. Pine Mount	2000 USA	37.05	-82.8667 N	0
AristolochiaAdams, C. Pine Mount	1999 USA	37.05	-82.8667 N	0
AristolochiaAdams, C. Pine Mount	2000 USA	37.05	-82.8667 N	0
Lotus corni Artola, A. CProsedel S	2004 Uruguay	-33.8167	-56.1167 N	0
Poa trivialisCamberato Several cul	2003 USA	34.66667	-82.8333 N	0
Reynoutria Bram, M. RCarroll Parl	2000 USA	39.96667	-75.2333 N	30
Clematis viiPicciau, R.,Monte Pade	2012 Italy	39		0
Clematis vitPicciau, R.,Monte Pade	2012 Italy	39	8.983333 N	90
Clematis vitPicciau, R.,Monte Pade	2012 Italy	39	8.983333 N	90
Clematis vitPicciau, R.,Monte Pade	2012 Italy	39	8.983333 N	90
Clematis viiPicciau, R.,Monte Pade	2012 Italy	39	8.983333 N	90
Clematis vii Picciau, R., Monte Pade	2012 Italy	39	8.983333 N	0
Clematis vii Picciau, R., Monte Pade	2012 Italy	39	8.983333 N	0
Clematis vii Picciau, R., Monte Pade	2012 Italy	39	8.983333 N	90
Clematis vii Picciau, R., Monte Pade	2012 Italy	39	8.983333 N	0
Clematis vii Picciau, R., Monte Pade	2012 Italy	39	8.983333 N	90
Clematis vii Picciau, R., Monte Pad	2012 Italy	39	8.983333 N	0
Clematis vi/Picciau, R.,Monte Pad	2012 Italy	39	8.983333 N	90
Clematis vii Picciau, R., Monte Pad	2012 Italy	39	8.983333 N	90
Clematis viiPicciau, R.,Monte Pad	2012 Italy	39	8.983333 N	90
Clematis viiPicciau, R.,Monte Pad	2012 Italy	39	8.983333 N	0
Clematis viiPicciau, R.,Monte Pad	2012 Italy	39	8.983333 N	90
Clematis vitPicciau, R.,Monte Pade	2012 Italy	39	8.983333 N	0
Clematis viiPicciau, R.,Monte Pad	2012 Italy	39	8.983333 N	0
Clematis vitPicciau, R.,Monte Pade	2012 Italy	39	8.983333 N	0
Clematis vitPicciau, R.,Monte Pade	2012 Italy	39	8.983333 N	0
Clematis vitPicciau, R.,Monte Pade	2012 Italy	39	8.983333 N	0
Clematis vitPicciau, R.,Monte Pade	2012 Italy	39	8.983333 N	0
Clematis viiPicciau, R.,Monte Pade	2012 Italy	39	8.983333 N	90

Clematis viiPicciau, R.,Monte Pado	2012 Italy	39	8.983333	N	90
Reynoutria Bram, M. RTacony Cre	2000 USA	40.03333	-75.1		30
Reynoutria Bram, M. RFriends Ho	2000 USA	40.01667	-75.1		30
PseudotsucGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		21
PseudotsucGosling, P. Forestry Co	2002 UK	52.75			0
PseudotsucGosling, P. Forestry Co	1987 UK	53.18333	-1.58333	N	0
PseudotsucGosling, P. Forestry Co	2002 UK	52.75			336
PseudotsuçGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		0
Pinus sylveGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		21
Pinus sylveGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		0
Pinus sylveGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		0
PseudotsuçGosling, P. Forestry Co	2002 UK		########		0
PseudotsucGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		21
Pinus sylveGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		0
Pinus sylveGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		0
PseudotsucGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		21
PseudotsucGosling, P. Forestry Co	2002 UK	52.75			0
PseudotsucGosling, P. Forestry Co	2002 UK	52.75			336
PseudotsucGosling, P. Forestry Co	2002 UK		########		336
PseudotsucGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		0
Quercus ro Gosling, P. Forestry Co	1988 UK	53.18333	-1.58333		0
PseudotsucGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		0
PseudotsucGosling, P. Forestry Co	2002 UK	52.75			0
Pinus sylveGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		0
PseudotsucGosling, P. Forestry Co	2002 UK	52.75	########		336
PseudotsucGosling, P. Forestry Co	2002 UK		########		336
Pinus sylveGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		21
Pinus sylveGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		21
Pinus sylveGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		21
PseudotsucGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		0
Pinus sylveGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		21
PseudotsucGosling, P. Forestry Co	2002 UK	52.75			0
PseudotsucGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		0
Pinus sylveGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		0
PseudotsucGosling, P. Forestry Co	2002 UK	52.75	########		336
PseudotsucGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		21
PseudotsucGosling, P. Forestry Co	2002 UK		########		0
Pinus sylveGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		21
PseudotsucGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		21
PseudotsucGosling, P. Forestry Co	1987 UK	53.18333	-1.58333		21
Pinus montFeurtado, JBC Ministry	2002 Canada	49.05	-122.7		72
Lonicera ja Hidayati, S.Jessamine	1997 USA	37.85	-84.5833		0
Lonicera ja Hidayati, S.Jessamine	1997 USA	37.85	-84.5833		0
Lonicera ja Hidayati, S.Jessamine	1997 USA	37.85	-84.5833		0
Lonicera ja Hidayati, S.Jessamine	1997 USA	37.85	-84.5833		84
Alliaria peti Baskin, J. NJessamine	1985 USA	37.86667	-84.5833		0
Lonicera ja Hidayati, S.Jessamine	1997 USA	37.85	-84.5833		0
Lonicera ja Hidayati, S.Jessamine	1997 USA	37.85	-84.5833		180
Lonicera ja Hidayati, S.Jessamine	1997 USA	37.85	-84.5833		180
Alliaria peti Baskin, J. NJessamine	1985 USA	37.86667	-84.5833		0
Lonicera ja Hidayati, S.Jessamine	1997 USA	37.85	-84.5833		180
Lonicera ja Hidayati, S.Jessamine	1997 USA	37.85	-84.5833		84
Lonicera ja Hidayati, S.Jessamine	1997 USA	37.85	-84.5833		180
Lonicera jai lidayati, S.Jessamine Lonicera jai Hidayati, S.Jessamine	1997 USA	37.85	-84.5833		0
Lonicera ja Hidayati, S.Jessamine	1997 USA	37.85	-84.5833		0
Cardamine Baskin, C. Jessamine	1987 USA	37.78333	-84		0
Saraamine Daskin, O. 10633amine	1007 007	01.10000	-04	. •	U

Lonicera ja Hidayati, S. Jessamine	1997 USA	37.85	-84.5833 N	180
Lonicera ja Hidayati, S.Jessamine	1997 USA	37.85	-84.5833 N	0
Lonicera ja Hidayati, S.Jessamine	1997 USA	37.85	-84.5833 N	0
Lonicera ja Hidayati, S.Jessamine	1997 USA	37.85	-84.5833 N	0
Lonicera ja Hidayati, S.Jessamine	1997 USA	37.85	-84.5833 N	180
Lonicera ja Hidayati, S. Jessamine	1997 USA	37.85	-84.5833 N	0
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	84
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	0
Cardamine Baskin, C. Jessamine	1987 USA	37.78333	-84 N	0
Cardamine Baskin, C. Jessamine	1987 USA	37.78333	-84 N	0
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	180
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	180
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	180
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	84
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	84
Alliaria peti Baskin, J. NJessamine	1985 USA	37.86667	-84.5833 N	112
Alliaria peti Baskin, J. NJessamine	1985 USA	37.86667	-84.5833 N	112
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	0
Cardamine Baskin, C. Jessamine	1987 USA	37.78333	-84 N	0
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	0
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	84
Alliaria peti Baskin, J. NJessamine	1985 USA	37.86667	-84.5833 N	112
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	84
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	0
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	0
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	180
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	84
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	0
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	0
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	84
Alliaria peti Baskin, J. NJessamine	1985 USA	37.86667	-84.5833 N	112
Alliaria peti Baskin, J. NJessamine	1985 USA	37.86667	-84.5833 N	0
Lonicera ja Hidayati, S Jessamine	1997 USA	37.85	-84.5833 N	0
Cardamine Baskin, C. Jessamine	1987 USA	37.78333	-84 N	0
Alliaria peti Baskin, J. NJessamine	1985 USA	37.86667	-84.5833 N	112
Alliaria peti Baskin, J. NJessamine	1985 USA	37.86667	-84.5833 N	0
Lonicera ja Hidayati, S. Jessamine	1997 USA	37.85	-84.5833 N	0
Lonicera ja Hidayati, S. Jessamine	1997 USA	37.85	-84.5833 N	0
Lonicera ja Hidayati, S.Jessamine	1997 USA	37.85	-84.5833 N	84
Alliaria peti Baskin, J. Nessamine	1985 USA	37.86667	-84.5833 N	0
Pueraria m Susko, D. JNorth Carol	1999 USA	35.78333	-78.6667 N	42
Pueraria m Susko, D. JNorth Carol	1999 USA	35.78333	-78.6667 N	0
Pueraria m Susko, D. JNorth Carol	1999 USA	35.78333	-78.6667 N	0
Pueraria m Susko, D. JNorth Carol	1999 USA	35.78333	-78.6667 N	42
Pueraria m Susko, D. JNorth Carol	1999 USA	35.78333	-78.6667 N	0
Pueraria m Susko, D. JNorth Carol	1999 USA	35.78333	-78.6667 N	42
Pueraria m Susko, D. JNorth Carol	1999 USA	35.78333	-78.6667 N	42
Pueraria m Susko, D. JNorth Carol	1999 USA	35.78333	-78.6667 N	0
Pueraria m Susko, D. JNorth Carol	1999 USA	35.78333	-78.6667 N	0
Pueraria m Susko, D. JNorth Carol	1999 USA	35.78333	-78.6667 N	0
Pueraria m Susko, D. JNorth Carol	1999 USA	35.78333	-78.6667 Y	0
Pueraria mcSusko, D. JNorth Carol	1999 USA	35.78333	-78.6667 N	42
Poa trivialisLiu, C. H. CCypress A	2000 USA	34.66667	-82.8333 N	0
Poa trivialisLiu, C. H. CCypress A	2000 USA	34.66667	-82.8333 N	0
Poa trivialisLiu, C. H. CCypress A	2000 USA	34.66667	-82.8333 N	0
Poa trivialisLiu, C. H. CCypress A	2000 USA	34.66667	-82.8333 N	0

				_
Quercus peLe Pichon, Commercia	1998 France	45.88333	4.35 N	0
Tsuga mertEl-KassabySale Mtn., I	2000 Canada	51.16667	-118.167 N	84
Tsuga mertEl-KassabySale Mtn., I	2000 Canada	51.16667	-118.167 N	84
Tsuga mertEl-KassabySale Mtn., I	2000 Canada	51.16667	-118.167 N	0
Tsuga mertEl-KassabySale Mtn., I	2000 Canada	51.16667	-118.167 N	0
Tsuga mertEl-KassabySale Mtn., I	2000 Canada	51.16667	-118.167 N	84
Tsuga mertEl-KassabySale Mtn., I	2000 Canada	51.16667	-118.167 N	0
Tsuga mertEl-KassabySale Mtn., I	2000 Canada	51.16667	-118.167 N	84
Tsuga mertEl-KassabySale Mtn., I	2000 Canada	51.16667	-118.167 N	0
Phalaris arıSahramaa, Jokioinen, I	1995 Finland	60.8	23.46667 N	0
Euonymus RounsavilleScott's Gro	2012 USA	36.63333	-88.3 N	0
Euonymus RounsavilleScott's Gro	2012 USA	36.63333	-88.3 N	0
Euonymus RounsavilleScott's Gro	2012 USA	36.63333	-88.3 N	0
Euonymus RounsavilleScott's Gro	2012 USA	36.63333	-88.3 N	0
Euonymus RounsavilleScott's Gro	2012 USA	36.63333	-88.3 N	0
•			-3.48333 N	0
Robinia ps(Pedrol, N., Semillas M	2017 Spain	40.83333		
Robinia ps(Pedrol, N., Semillas M	2017 Spain	40.83333	-3.48333 Y	0
Diervilla lor Hidayati, S. Randolph (1998 USA	38.8	-79.8667 N	0
Diervilla lor Hidayati, S. Randolph (1998 USA	38.8	-79.8667 N	0
Diervilla lor Hidayati, S Randolph (1998 USA	38.8	-79.8667 N	0
Diervilla lor Hidayati, S Randolph (1998 USA	38.8	-79.8667 N	0
Diervilla lor Hidayati, S Randolph (1998 USA	38.8	-79.8667 N	0
Diervilla lor Hidayati, S.Randolph (1998 USA	38.8	-79.8667 N	0
Diervilla lorHidayati, S.Randolph (1998 USA	38.8	-79.8667 N	0
Diervilla lorHidayati, S.Randolph (1998 USA	38.8	-79.8667 N	0
Diervilla lorHidayati, S.Randolph (1998 USA	38.8	-79.8667 N	0
Diervilla lorHidayati, S.Randolph C	1998 USA	38.8	-79.8667 N	0
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	0
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	0
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	14
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	0
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	0
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	14
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	14
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	14
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	14
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	0
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	0
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	14
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	0
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	0
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	0
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	0
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	14
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	0
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	14
•	1998 USA		-90.9 N	14
Campsis raChachalis, Southern W		33.41667		
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	14
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	14
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	0
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	14
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	14
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	0
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	0
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	14
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	14

Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	0
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	0
Campsis raChachalis, Southern W	1998 USA	33.41667	-90.9 N	14
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	84
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	0
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	0
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	84
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	0
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	84
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	0
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	0
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	0
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	84
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	84
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	84
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	0
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	84
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	84
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	84
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	84
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	0
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	0
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	84
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	0
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	0
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	0
Vaccinium Baskin, C. Gysinge, G	1997 Sweden	60.28333	16.88333 N	84
Vaccinium Baskin, C. Vimmerby,	1997 Sweden	57.66667	15.85 N	84
Vaccinium Baskin, C. Vimmerby,	1997 Sweden	57.66667	15.85 N	0
Vaccinium Baskin, C. Vimmerby,	1997 Sweden	57.66667	15.85 N	0
Vaccinium Baskin, C. Vimmerby,	1997 Sweden	57.66667	15.85 N	84
Vaccinium Baskin, C. Vimmerby,	1997 Sweden	57.66667	15.85 N	84
Vaccinium Baskin, C. Vimmerby,	1997 Sweden	57.66667	15.85 N	0
Vaccinium Baskin, C. Vimmerby,	1997 Sweden	57.66667	15.85 N	0
Vaccinium Baskin, C. Vimmerby,	1997 Sweden	57.66667	15.85 N	84
Vaccinium Baskin, C. Vimmerby,	1997 Sweden	57.66667	15.85 N	0
Vaccinium Baskin, C. Vimmerby,	1997 Sweden	57.66667	15.85 N	84
Vaccinium Baskin, C. Vimmerby,	1997 Sweden	57.66667	15.85 N	84
Vaccinium Baskin, C. Vimmerby,	1997 Sweden	57.66667	15.85 N	0
Vaccinium⊣Baskin, C. (Arjeplog, La	1997 Sweden	66.05	17.88333 N	0
Vaccinium⊣Baskin, C. (Arjeplog, La	1997 Sweden	66.05	17.88333 N	84
Vaccinium Baskin, C. Arjeplog, La	1997 Sweden	66.05	17.88333 N	84
Vaccinium⊣Baskin, C. (Arjeplog, La	1997 Sweden	66.05	17.88333 N	84
Vaccinium ⊦Baskin, C. ∙Arjeplog, La	1997 Sweden	66.05	17.88333 N	0
Vaccinium ⊦Baskin, C. ∙Arjeplog, La	1997 Sweden	66.05	17.88333 N	0
Vaccinium ⊦Baskin, C. ∙Arjeplog, La	1997 Sweden	66.05	17.88333 N	84
Vaccinium ⊦Baskin, C. ∙Arjeplog, La	1997 Sweden	66.05	17.88333 N	84
Vaccinium Baskin, C. Arjeplog, La	1997 Sweden	66.05	17.88333 N	0
Vaccinium ⊦Baskin, C. ∙Arjeplog, La	1997 Sweden	66.05	17.88333 N	84
Vaccinium Baskin, C. Arjeplog, La	1997 Sweden	66.05	17.88333 N	0
Vaccinium Baskin, C. Arjeplog, La	1997 Sweden	66.05	17.88333 N	0
Vaccinium Baskin, C. (Mj lby,	1997 Sweden	58.31667	15.11667 N	0
Vaccinium Baskin, C. Mj�lby, �	1997 Sweden	58.31667	15.11667 N	84
Vaccinium Baskin, C. Mj�lby, �	1997 Sweden	58.31667	15.11667 N	84
Vaccinium Baskin, C. Mj�lby, �	1997 Sweden	58.31667	15.11667 N	84
Vaccinium 'Baskin, C. 'Mj�lby, �:	1997 Sweden	58.31667	15.11667 N	84

Vaccinium Baskin, C. (Mj�lby, �:	1997 Sweden	58.31667	15.11667 N	0
Vaccinium Baskin, C. Mj�lby, �	1997 Sweden	58.31667	15.11667 N	0
Vaccinium Baskin, C. (Mj lby,)	1997 Sweden	58.31667	15.11667 N	0
Vaccinium Baskin, C. (Mj lby,)	1997 Sweden	58.31667	15.11667 N	0
Vaccinium Baskin, C. (Mj♦lby, ♦	1997 Sweden	58.31667	15.11667 N	84
Vaccinium Baskin, C. (Mj�lby, ♦:	1997 Sweden	58.31667	15.11667 N	0
Vaccinium Baskin, C. (Mj�lby, ♦:	1997 Sweden	58.31667	15.11667 N	84
Quercus p∈Zitnik, S. H Slovenia	1998 Slovenia	46.01667	15.71667 Y	0
PseudotsuçMuller, C. FBout, 04 Es	1998 France	45.1	2.666667 N	196
PseudotsuçMuller, C. FBout, 04 Es	1998 France	45.1	2.666667 N	0
PseudotsuçMuller, C. FBout, 04 Es	1998 France	45.1	2.666667 N	196
PseudotsuçMuller, C. FBout, 04 Es	1998 France	45.1	2.666667 N	0
Comptonia Dow, M. A. Kelly Rd, O	1989 USA	44.86667	-68.7 N	0
Comptonia Dow, M. A. Kelly Rd, O	1989 USA	44.86667	-68.7 N	0
Comptonia Dow, M. A. Kelly Rd, O	1989 USA	44.86667	-68.7 N	0
Comptonia Dow, M. A. Kelly Rd, O	1989 USA	44.86667	-68.7 N	60
Artemisia trBooth, D. TWind River	1998 USA	44.23333	-107.967 N	0
Vaccinium Nin, S., et abetone ar	2016 Italy	44.13333	10.65 N	0
Vaccinium Nin, S., et abetone ar	2016 Italy	44.13333	10.65 N	90
Vaccinium Nin, S., et abetone ar	2016 Italy	44.13333	10.65 N	90
Vaccinium Nin, S., et abetone ar	2016 Italy	44.13333	10.65 N	0
Vaccinium Nin, S., et abetone ar	2016 Italy	44.13333	10.65 N	0
Vaccinium Nin, S., et abetone ar	2016 Italy	44.13333	10.65 N	0
Vaccinium Nin, S., et abetone ar	2016 Italy	44.13333	10.65 N	90
Vaccinium Nin, S., et abetone ar	2016 Italy	44.13333	10.65 N	90
Vaccinium Nin, S., et abetone ar	2016 Italy	44.13333	10.65 N	90
Vaccinium Nin, S., et abetone ar	2016 Italy	44.13333	10.65 N	90
Vaccinium Nin, S., et abetone ar	2016 Italy	44.13333	10.65 N	0
Vaccinium Nin, S., et aAbetone ar	2016 Italy	44.13333	10.65 N	0
Purshia tridBooth, D. T Utah	1998 USA	39.41667	-111.617 N	28
Purshia tridBooth, D. T Utah	1998 USA	39.41667	-111.617 N	14
Purshia tridBooth, D. T California	1998 USA	36.21667	-119.75 N	28
Purshia tridBooth, D. T California	1998 USA	36.21667	-119.75 N	14
Purshia tridBooth, D. T Oregon	1998 USA	44.51667	-120.55 N	14
Purshia tridBooth, D. T Oregon	1998 USA	44.51667	-120.55 N	28
Pinus nigraPita, J. M. (ICONA, Ma	1997 Spain	40.4	-3.68333 N	0
Pinus sylvePita, J. M. (ICONA, Ma	1997 Spain	40.4	-3.68333 N	0
Picea abiesLeinonen, IInkoo, Finla	1997 Finland	60.01667	23.95 N	0
Picea abiesLeinonen, IInkoo, Finla	1997 Finland	60.01667	23.95 N	0
Picea abiesLeinonen, IInkoo, Finla	1997 Finland	60.01667	23.95 N	0
Picea abiesLeinonen, IInkoo, Finla	1997 Finland	60.01667	23.95 N	0
Picea abiesLeinonen, IInkoo, Finla	1997 Finland	60.01667	23.95 N	0
Picea abiesLeinonen, IInkoo, Finla	1997 Finland	60.01667	23.95 N	0
Picea abiesLeinonen, IInkoo, Finla	1997 Finland	60.01667	23.95 N	0
Picea abiesLeinonen, IInkoo, Finla	1997 Finland	60.01667	23.95 N	0
RanunculusHarris, S. NKings Cour	1997 Canada	45	-64.7 N	0
RanunculusHarris, S. NKings Cour	1997 Canada	45	-64.7 N	0
RanunculusHarris, S. NKings Cour	1997 Canada	45	-64.7 N	0
RanunculusHarris, S. NKings Cour	1997 Canada	45	-64.7 N	
Primula vul Ewald, A. ZBest nonhy	1997 Germany	50.96667	11.01667 N	7
Tsuga mertEl-KassabyHoodoo Cr	1979 Canada	51.33333	-125.533 N	
Tsuga mertEl-KassabyHoodoo Cr	1979 Canada	51.33333	-125.533 N	
Tsuga mertEl-KassabyGarbage C	1982 Canada	48.55	-124.1 N	
Tsuga mertEl-KassabyGarbage C	1982 Canada	48.55	-124.1 N	
Tsuga mertEl-KassabyHkusam Mt	1982 Canada	50.33333	-125.833 N	
Tsuga mertEl-KassabyHkusam Mt	1982 Canada	50.33333	-125.833 N	0

MiscanthusNie, G., et ¿Sichuan, C	2010 China	30	102.45 N	0
MiscanthusNie, G., et ¿Sichuan, C	2010 China	29.88333	103.35 N	28
Tsuga mertEl-KassabyKearsley C	1982 Canada	49.31667	-122.367 N	0
Tsuga mertEl-KassabyKearsley C	1982 Canada	49.31667	-122.367 N	28
Tsuga mertEl-KassabyPort Alice, I	1982 Canada	50.4	-127.45 N	0
Tsuga mertEl-KassabyPort Alice,	1982 Canada	50.4	-127.45 N	28
Tsuga mertEl-KassabySale Mt., B	1988 Canada	51.16667	-118.167 N	0
Tsuga mertEl-KassabySale Mt., B	1988 Canada	51.16667	-118.167 N	28
·				
Tsuga mertEl-KassabyLyon Lake,	1982 Canada	49.65	-123.9 N	0
Tsuga mertEl-KassabyLyon Lake,	1982 Canada	49.65	-123.9 N	28
Tsuga mertEl-KassabyHanna Ridç	1990 Canada	56.3	-129.333 N	0
Tsuga mertEl-KassabyHanna Ridç	1990 Canada	56.3	-129.333 N	28
Picea glaucDownie, B. Hawk Hills,	1979 Canada	57.58333	-117.617 N	0
Picea glaucDownie, B. High Level,	1995 Canada	58.46667	-117.267 N	0
Picea glaucDownie, B. High Level,	1988 Canada	57.58333	-117.617 N	0
Picea glaucDownie, B. Bear River,	1979 Canada	57.58333	-117.617 N	0
Picea glaucDownie, B. Paddle Pra	1987 Canada	57.58333	-117.617 N	0
Betula papyBrunvatne, Old Ridge I	1997 USA	45.13333	-67.2 N	0
Galium apaMennan, H Winter popi	2000 Turkey	41.26667	36.3 N	0
Bromus tecBauer, M. (Potosi Pass	1995 USA	35.98333	-115.517 N	126
Bromus tecBeckstead, Potosi Pass	1992 USA	35.98333	-115.517 N	0
Bromus tecBauer, M. (Potosi Pass	1995 USA	35.98333	-115.517 N	126
Bromus tecBeckstead, Potosi Pass	1992 USA	35.98333	-115.517 N	0
Bromus tecBeckstead, Potosi Pass	1992 USA	35.98333	-115.517 N	0
Bromus tecBauer, M. (Potosi Pass	1995 USA	35.98333	-115.517 N	0
Bromus tecBauer, M. (Potosi Pas:	1995 USA	35.98333	-115.517 N	0
Bromus tecBeckstead, Potosi Pass	1992 USA	35.98333	-115.517 N	0
Ageratina aWalck, J. L Nicholas Co	1994 USA	38.33333	-84.0333 N	0
Ageratina aWalck, J. L Nicholas Co	1994 USA	38.33333	-84.0333 N	70
Ageratina aWalck, J. L Nicholas Co	1994 USA	38.33333	-84.0333 N	0
-	1994 USA	38.33333	-84.0333 N	0
Ageratina aWalck, J. L. Nicholas Co	1994 USA			0
Ageratina aWalck, J. L. Nicholas Co		38.33333	-84.0333 N	
Ageratina aWalck, J. L. Nicholas Co	1994 USA	38.33333	-84.0333 N	70
Ageratina aWalck, J. L Nicholas Co	1994 USA	38.33333	-84.0333 N	0
Ageratina aWalck, J. L Nicholas Co	1994 USA	38.33333	-84.0333 N	70
Ageratina aWalck, J. L Nicholas Co	1994 USA	38.33333	-84.0333 N	70
Ageratina aWalck, J. L Nicholas Co	1994 USA	38.33333	-84.0333 N	0
Ageratina aWalck, J. L Nicholas Co	1994 USA	38.33333	-84.0333 N	70
Ageratina aWalck, J. L Nicholas Co	1994 USA	38.33333	-84.0333 N	70
Ageratina aWalck, J. L Nicholas Co	1994 USA	38.33333	-84.0333 N	0
Ageratina aWalck, J. L Nicholas Co	1994 USA	38.33333	-84.0333 N	0
Ageratina aWalck, J. L Nicholas Co	1994 USA	38.33333	-84.0333 N	0
Ageratina aWalck, J. L Nicholas Co	1994 USA	38.33333	-84.0333 N	70
Ageratina aWalck, J. L Nicholas Co	1994 USA	38.33333	-84.0333 N	70
Ageratina aWalck, J. L Nicholas Co	1994 USA	38.33333	-84.0333 N	0
Ageratina aWalck, J. L Nicholas Co	1994 USA	38.33333	-84.0333 N	70
Carex remcSch tz, WKiel, Germa	1993 Germany	54.36667	10.16667 N	180
Carex remcSch tz, WKiel, Germa	1993 Germany	54.36667	10.16667 N	180
Carex remcSch tz, WKiel, Germa	1993 Germany	54.36667	10.16667 N	180
Carex remcSch tz, WKiel, Germa	1993 Germany	54.36667	10.16667 N	180
Carex remcSch tz, WKiel, Germa	1993 Germany	54.36667	10.16667 N	180
Carex remcSch tz, WKiel, Germa	1993 Germany	54.36667	10.16667 N	180
Carex remcSch tz, WKiel, Germa	1993 Germany	54.36667	10.16667 N	180
Carex remcSch tz, WKiel, Germa	1993 Germany	54.36667	10.16667 N	180
Carex remcSch tz, WKiel, Germa	1993 Germany	54.36667	10.16667 N	180
Carex remcSch tz, WKiel, Germa	1993 Germany	54.36667	10.16667 N	180
23. 3. 13. 13. 14. 25. 44 14. 31. 33. 11. 11. 11. 11. 11. 11. 11. 11	. CCC Connainy	3		100

O	4000 0	F4 00007	40 40007 N	400
Carex remcSch�tz, WKiel, Germa	1993 Germany	54.36667	10.16667 N	180
Carex remcSch tz, WKiel, Germa	1993 Germany	54.36667	10.16667 N	180
Lapsana ccMilberg, P. Normlosa,	1996 Sweden	58.4	15.21667 N	0
Lapsana ccMilberg, P. Normlosa,	1996 Sweden	58.4	15.21667 N	0
Bromus tecMeyer, S. EStrawberry	1996 USA	40.16667	-110.65 N	0
Bromus tecMeyer, S. EStrawberry,	1996 USA	40.16667	-110.65 N	0
Bromus tecMeyer, S. EStrawberry	1996 USA	40.16667	-110.65 N	0
Bromus tecMeyer, S. EStrawberry,	1996 USA	40.16667	-110.65 N	0
	1985 Japan	35.35	138.7167 N	210
Reynoutria Nishitani, SMt Fuji, Jar	•			
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	0
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	210
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	0
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	0
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	210
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	210
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	0
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	210
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	210
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	210
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	0
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	0
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	0
				210
Reynoutria Nishitani, SMt Fuji, Jap	1985 Japan	35.35	138.7167 N	
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	0
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	210
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	0
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	210
Reynoutria Nishitani, SMt Fuji, Jar	1985 Japan	35.35	138.7167 N	0
Reynoutria Nishitani, SShizuoka, C	1985 Japan	35.05	138.3833 N	210
Reynoutria Nishitani, SShizuoka, C	1985 Japan	35.05	138.3833 N	0
Reynoutria Nishitani, SShizuoka, C	1985 Japan	35.05	138.3833 N	0
Reynoutria Nishitani, SShizuoka, c	1985 Japan	35.05	138.3833 N	0
Reynoutria Nishitani, SShizuoka, c	1985 Japan	35.05	138.3833 N	210
Reynoutria Nishitani, SShizuoka, C	1985 Japan	35.05	138.3833 N	0
Reynoutria Nishitani, SShizuoka,	1985 Japan	35.05	138.3833 N	210
Reynoutria Nishitani, SShizuoka,	1985 Japan	35.05	138.3833 N	210
Reynoutria Nishitani, SShizuoka,	1985 Japan	35.05	138.3833 N	210
Reynoutria Nishitani, SShizuoka, L	1985 Japan	35.05	138.3833 N	0
Reynoutria Nishitani, SShizuoka, C	1985 Japan	35.05	138.3833 N	0
Reynoutria Nishitani, SShizuoka, C	1985 Japan	35.05	138.3833 N	210
Reynoutria Nishitani, SShizuoka, C	1985 Japan	35.05	138.3833 N	0
•				
Reynoutria Nishitani, SShizuoka,	1985 Japan	35.05	138.3833 N	210
Reynoutria Nishitani, SShizuoka, C	1985 Japan	35.05	138.3833 N	210
Reynoutria Nishitani, SShizuoka, C	1985 Japan	35.05	138.3833 N	0
Reynoutria Nishitani, SShizuoka, C	1985 Japan	35.05	138.3833 N	210
Reynoutria Nishitani, SShizuoka, c	1985 Japan	35.05	138.3833 N	0
Reynoutria Nishitani, SShizuoka, c	1985 Japan	35.05	138.3833 N	210
Reynoutria Nishitani, SShizuoka, C	1985 Japan	35.05	138.3833 N	0
TaraxacumLetchamo, Offstein, Ge	1993 Germany	49.6	8.233333 N	0
Pilea pumil:Leck, M. A. Hamilton M	1995 USA	40.15	-74.7 N	0
Impatiens cLeck, M. A. Hamilton M	1995 USA	40.15	-74.7 N	0
Pilea pumil Leck, M. A. Hamilton M	1995 USA	40.15	-74.7 N	252
Phalaris artLeck, M. A. Hamilton M	1995 USA	40.15	-74.7 N	252
Phalaris artLeck, M. A. Hamilton M	1995 USA	40.15	-74.7 N	0
Populus treJaderlund, Alidhem, S	1995 Sweden	63.8	20.3 N	0
Galium apaMennan, H Spring popi	2000 Turkey	41.26667	36.3 N	0
Canam apomorman, mopiling popi	_ooo ruikey	-1.20007	JU.J 11	U

Betula pencJaderlund, Mattismyra	1995 Norway	65.43333	13.43333 N	0
Picea abiesJaderlund, Lillpite, Swe	1995 Sweden	65.36667	21.15 N	0
Pinus sylveJaderlund, Skaholma,	1995 Sweden	64.3	19.73333 N	0
Bromus tecGoodwin, JCombs Flat	1995 USA	44.3	-120.817 N	0
Bromus tecGoodwin, JCombs Flat	1995 USA	44.3	-120.817 N	0
Festuca idaGoodwin, JCombs Flat	1995 USA	44.3	-120.817 N	0
Bromus tecGoodwin, JCombs Flat	1995 USA	44.3	-120.817 N	0
Festuca idaGoodwin, JCombs Flat	1995 USA	44.3	-120.817 N	0
Festuca idaGoodwin, JCombs Flat	1995 USA	44.3	-120.817 N	0
Bromus tecGoodwin, JLone Pine,	1995 USA	42.58333	-121.633 N	0
Bromus tecGoodwin, JLone Pine,	1995 USA	42.58333	-121.633 N	0
Bromus tecGoodwin, JLone Pine,	1995 USA	42.58333	-121.633 N	0
Festuca idaGoodwin, JLone Pine,	1995 USA	42.58333	-121.633 N	0
Festuca idaGoodwin, JLone Pine,	1995 USA	42.58333	-121.633 N	0
Festuca idaGoodwin, JLone Pine,	1995 USA	42.58333	-121.633 N	0
Bromus tecGoodwin, JBlanchard,	1995 USA	45.33333	-122.617 N	0
Festuca idaGoodwin, JBlanchard,	1995 USA	45.33333	-122.617 N	0
Festuca idaGoodwin, JBlanchard,	1995 USA	45.33333	-122.617 N	0
Bromus tecGoodwin, JBlanchard,	1995 USA	45.33333	-122.617 N	0
Festuca idaGoodwin, JBlanchard,	1995 USA	45.33333	-122.617 N	0
Bromus tecGoodwin, JBlanchard,	1995 USA	45.33333	-122.617 N	0
Festuca idaGoodwin, JMcCoin, Or	1989 USA	45.03333	-123.217 N	182
Bromus tecGoodwin, JMcCoin, Or	1995 USA	42	-120.633 N	0
Bromus tecGoodwin, JMcCoin, Or	1995 USA	42	-120.633 N	0
Festuca idaGoodwin, JMcCoin, Or	1995 USA	42	-120.633 N	0
Festuca idaGoodwin, JMcCoin, Or	1995 USA	42	-120.633 N	0
Festuca idaGoodwin, JMcCoin, Or	1995 USA	42	-120.633 N	0
Festuca idaGoodwin, JMcCoin, Or	1989 USA	45.03333	-123.217 N	0
Bromus tecGoodwin, JMcCoin, Or	1995 USA	42	-120.633 N	0
Vaccinium Ehlenfeldt, Cv Bluecro	1995 USA	39.81667	-74.5333 N	0
Picea glaucDownie, B. Slava Lake	1995 Canada	57	-114.833 N	0
Abies amatDavidson, IRonning Cr	1995 Canada	50.73333	-128 N	28
Abies amatDavidson, IRonning Cr	1995 Canada	50.73333	-128 N	0
TaraxacumMasin, R., (Padova Un	2011 Italy	45.35	11.96667 N	0
TaraxacumMasin, R., (Padova Un	2011 Italy	45.35	11.96667 N	0
TaraxacumMasin, R., (Padova Un	2011 Italy	45.35	11.96667 N	0
TaraxacumMasin, R., (Padova Un	2011 Italy	45.35	11.96667 N	0
TaraxacumMasin, R., (Padova Un	2011 Italy	45.35	11.96667 N	0
TaraxacumMasin, R., (Padova Un	2011 Italy	45.35	11.96667 N	0
TaraxacumMasin, R., (Padova Un	2011 Italy	45.35	11.96667 N	0
TaraxacumMasin, R., (Padova Un	2011 Italy	45.35	11.96667 N	0
TaraxacumMasin, R., (Padova Un	2011 Italy	45.35	11.96667 N	0
TaraxacumMasin, R., (Padova Un	2011 Italy	45.35	11.96667 N	0
TaraxacumMasin, R., (Padova Un	2011 Italy 2011 Italy	45.35	11.96667 N	0
TaraxacumMasin, R., (Padova Un	•	45.35 45.35	11.96667 N 11.96667 N	0
TaraxacumMasin, R., (Padova Un	2011 Italy	45.35		
TaraxacumMasin, R., (Padova Un	2011 Italy 2011 Italy	45.35 45.35	11.96667 N 11.96667 N	0
TaraxacumMasin, R., (Padova Un TaraxacumMasin, R., (Padova Un	2011 Italy 2011 Italy	45.35	11.96667 N	0
Abies amatDavidson, Hathaway (1995 Canada	50.71667	-124.433 N	28
· · · · · · · · · · · · · · · · · · ·	1995 Canada	50.71667	-124.433 N	0
Abies amatDavidson, FHathaway (Abies amatDavidson, FSebalhall C	1995 Canada 1995 Canada	49.95	-124.433 N -126.417 N	28
Abies amatDavidson, iSebalhali C	1995 Canada 1995 Canada	49.95	-126.417 N -126.417 N	20
Abies amatDavidson, Maquila Cr	1995 Canada 1995 Canada	50.06667	-126.417 N -126.35 N	0
Abies amatDavidson, IMaquila Cri	1995 Canada	50.06667	-126.35 N	28
Abies amatDavidson, Fleet River	1995 Canada	50.0667	-120.33 N -124.1 N	28
ADICO AMALDAVIUSUM, IFICCI NIVCI,	1995 Callaua	50.05	-124.1 IN	20

Abies amatDavidson, IFleet River,	1995 Canada	50.65	-124.1 N	0
Abies amatDavidson, fMystery Cro	1995 Canada	50.8	-128.15 N	0
Abies amatDavidson, fMystery Cro	1995 Canada	50.8	-128.15 N	1 28
Bromus tecBeckstead, Whiterocks	1993 USA	40.45	-109.917 N	0
Bromus tecBeckstead, Whiterocks	1993 USA	40.45	-109.917 N	0
Bromus tecBeckstead, Whiterocks	1993 USA	40.45	-109.917 N	0
Bromus tecBeckstead, Whiterocks	1993 USA	40.45	-109.917 N	0
Bromus tecBeckstead, Castle Roc	1993 USA	39.36667	-104.833 N	0
Bromus tecBeckstead, Castle Roc	1993 USA	39.36667	-104.833 N	0
Bromus tecBeckstead, Castle Roc	1993 USA	39.36667	-104.833 N	0
Bromus tecBeckstead, Castle Roc	1993 USA	39.36667	-104.833 N	0
Bromus tecBeckstead, Hobble Cre	1992 USA	40.15	-111.6 N	0
Bromus tecBeckstead, Hobble Cre	1992 USA	40.15	-111.6 N	0
Bromus tecBeckstead, Hobble Cre	1992 USA	40.15	-111.6 N	0
Bromus tecBeckstead, Hobble Cre	1992 USA	40.15	-111.6 N	0
Rosa multifYambe, Y. Faculty of <i>I</i>	1991 Japan	38.25	140.8333 N	
Rosa multifYambe, Y. Faculty of <i>I</i>	1991 Japan	38.25	140.8333 N	
Salix alba Vansplund(Nijmegen, I	1994 Netherland	51.86667	6.116667 N	0
Salix alba Vansplund(Nijmegen, I	1994 Netherland	51.86667	6.116667 N	0
Salix alba Vansplund(Nijmegen, I	1994 Netherland	51.86667	6.116667 N	0
Salix alba Vansplund(Nijmegen, I	1994 Netherland	51.86667	6.116667 N	0
Salix alba Vansplund(Nijmegen, I	1994 Netherland	51.86667	6.116667 N	0
PseudotsuçMcCartan, seed lot 03	2008 USA	43.03333	-107.6 N	224
Origanum vThanos, C. Mournies, (1992 Greece	35.48333	24 N	0
Origanum vThanos, C. Mournies, (1992 Greece	35.48333	24 N	0
Origanum vThanos, C. Mournies, (1992 Greece	35.48333	24 N	0
Origanum vThanos, C. Mournies, (1992 Greece	35.48333	24 N	0
Origanum vThanos, C. Mournies, (1992 Greece	35.48333	24 N	0
Origanum vThanos, C. Mournies, (1992 Greece	35.48333	24 N	0
Origanum vThanos, C. Mournies, (1992 Greece	35.48333	24 N	
Origanum vThanos, C. Mournies, (1992 Greece	35.48333	24 N	0
Origanum vThanos, C. Mournies, (1992 Greece	35.48333	24 N	0
Origanum vThanos, C. Mournies, (1992 Greece	35.48333	24 N	
Origanum vThanos, C. Mournies, (1992 Greece	35.48333	24 N	
Origanum vThanos, C. Mournies, (1992 Greece	35.48333	24 N	
Daboecia cGonzlez-RaMonte Cast	1994 Spain	42.73333	-8.63333 N	
Calluna vul Gonzlez-RaMonte Cast	1994 Spain	42.73333	-8.63333 N	
Osmorhiza Baskin, C. (Loafer Can	1991 USA	40.01667	-111.667 N	
Osmorhiza Baskin, C. (Loafer Can	1991 USA	40.01667	-111.667 N	
Osmorhiza Baskin, C. (Loafer Can	1991 USA	40.01667	-111.667 N	
Osmorhiza Baskin, C. Loafer Can	1991 USA	40.01667	-111.667 N	
Primula verMilberg, P. Akerby, Up	1993 Sweden	60.41667	17.75 N	
Primula verMilberg, P. Akerby, Up	1993 Sweden	60.41667	17.75 N	
Primula verMilberg, P. Akerby, Up	1993 Sweden	60.41667	17.75 N	
Primula verMilberg, P. Akerby, Up	1993 Sweden	60.41667	17.75 N	
Primula verMilberg, P. Akerby, Up	1993 Sweden	60.41667	17.75 N	
Primula verMilberg, P. Akerby, Up	1993 Sweden	60.41667	17.75 N	
Primula verMilberg, P. Akerby, Up	1993 Sweden	60.41667	17.75 N	
Primula verMilberg, P. Akerby, Up	1993 Sweden	60.41667	17.75 N	
Primula verMilberg, P. Akerby, Up	1993 Sweden	60.41667	17.75 N	
Primula verMilberg, P. Akerby, Up	1993 Sweden	60.41667	17.75 N	
Ficus caricaLisci, M. (1!Botanical C	1992 Italy	43.3	11.31667 N	
Ficus caricaLisci, M. (1!Botanical C	1992 Italy	43.3	11.31667 N	
Ficus caricaLisci, M. (1!Botanical C	1992 Italy	43.3	11.31667 N	
Ficus caricaLisci, M. (1!Botanical C	1992 Italy	43.3	11.31667 N	
Ficus caricaLisci, M. (1!Botanical G	1992 Italy	43.3	11.31667 N	0

Ficus caricaLisci, M. (1!Botanical G	1992 Italy	43.3	11.31667 N	0
Ficus caricaLisci, M. (1:Botanical C	1992 Italy	43.3	11.31667 N	0
Ficus caric¿Lisci, M. (1!Botanical C	1992 Italy	43.3	11.31667 N	0
Festuca oviHardegree,Commercia	1991 USA	43.61667	-116.217 N	0
Bromus tecHardegree, Commercia	1991 USA	43.61667	-116.217 N	0
PseudoscleHardegree,Commercia	1991 USA	43.61667	-116.217 N	0
Elymus elyıHardegree,Commercia	1991 USA	43.61667	-116.217 N	0
Quercus ro Finch-SavaWellesbour	1992 UK	52.18333	-1.6 Y	0
Quercus ro Finch-SavaWellesbour	1991 UK	52.18333	-1.58333 N	0
Quercus ro Finch-SavaWellesbour	1992 UK	52.18333	-1.6 N	0
Larix occideCarlson, C.Missoula, N	1991 USA	46.86667	-114 N	30
Picea abiesBavcon, J. Jelovica 2,	1993 Slover	ia 46.16667	14.15 N	0
Reynoutria Mariko, S. IUpland Mt I	1989 Japan	35.35	138.7167 N	10
Reynoutria Mariko, S. IUpland Mt I	1989 Japan	35.35	138.7167 N	10
Reynoutria Mariko, S. IUpland Mt I	1989 Japan	35.35	138.7167 N	10
Robinia pseMasaka, K.Iwamizawa	2006 Japan	43.16667	141.8 N	180
Robinia pseMasaka, K. Iwamizawa	2006 Japan	43.16667	141.8 N	0
Robinia pseMasaka, K. Iwamizawa	2006 Japan	43.16667	141.8 N	180
Robinia pseMasaka, K. Iwamizawa	2006 Japan	43.16667	141.8 N	180
Robinia pseMasaka, K. Iwamizawa	2006 Japan	43.16667	141.8 Y	0
Pinus resin Flannigan, Alexander I	1983 Canad	a 48.66667	-54.1 N	0
Pinus resin Flannigan, Alexander I	1983 Canad	a 48.66667	-54.1 N	0
Pinus resin Flannigan, Alexander I	1983 Canad	a 48.66667	-54.1 N	0
Pinus resin Flannigan, Alexander I	1983 Canad	a 48.66667	-54.1 N	0
Pinus resin Flannigan, Alexander I	1983 Canad	a 48.66667	-54.1 N	14
Pinus resin Flannigan, Alexander I	1983 Canad	a 48.66667	-54.1 N	0
Pinus resin Flannigan, Alexander I	1983 Canad	a 48.66667	-54.1 N	0
Pinus resin Flannigan, Alexander I	1983 Canad	a 48.66667	-54.1 N	0
Pinus resin Flannigan, Alexander I	1983 Canad	a 48.66667	-54.1 N	14
Pinus resin Flannigan, Alexander I	1983 Canad	a 48.66667	-54.1 N	14
Pinus resin Flannigan, Alexander I	1983 Canad	a 48.66667	-54.1 N	14
Pinus resin Flannigan, Alexander I	1983 Canad	a 48.66667	-54.1 N	14
Pinus resin Flannigan, Alexander I	1983 Canad	a 48.66667	-54.1 N	0
Pinus resin Flannigan, Chalk River	1989 Canad	a 46.01667	-77.45 N	0
Pinus resin Flannigan, Chalk River	1989 Canad	a 46.01667	-77.45 N	0
Pinus resin Flannigan, Chalk River	1989 Canad	a 46.01667	-77.45 N	14
Pinus resin Flannigan, Chalk River	1989 Canad	a 46.01667	-77.45 N	0
Pinus resin Flannigan, Chalk River	1989 Canad	a 46.01667	-77.45 N	0
Pinus resin Flannigan, Chalk River	1989 Canad	a 46.01667	-77.45 N	0
Pinus resin Flannigan, Chalk River	1989 Canad	a 46.01667	-77.45 N	0
Pinus resin Flannigan, Chalk River	1989 Canad	a 46.01667	-77.45 N	14
Pinus resin Flannigan, Chalk River	1989 Canad	a 46.01667	-77.45 N	0
Pinus resin Flannigan, Chalk River	1989 Canad	a 46.01667	-77.45 N	14
Pinus resin Flannigan, Chalk River	1989 Canad	a 46.01667	-77.45 N	14
Pinus resin Flannigan, Chalk River	1989 Canad	a 46.01667	-77.45 N	0
Pinus resin Flannigan, Chalk River	1989 Canad	a 46.01667	-77.45 N	14
Pinus resin Flannigan, Upper Peni	1990 USA	46.25	-87.2833 N	0
Pinus resin Flannigan, Upper Peni	1990 USA	46.25	-87.2833 N	0
Pinus resin Flannigan, Upper Peni	1990 USA	46.25	-87.2833 N	14
Pinus resin Flannigan, Upper Peni	1990 USA	46.25	-87.2833 N	0
Pinus resin Flannigan, Upper Peni	1990 USA	46.25	-87.2833 N	14
Pinus resin Flannigan, Upper Peni	1990 USA	46.25	-87.2833 N	0
Pinus resin Flannigan, Upper Peni	1990 USA	46.25	-87.2833 N	14
Pinus resin Flannigan, Upper Peni	1990 USA	46.25	-87.2833 N	14
Pinus resin Flannigan, Upper Peni	1990 USA	46.25	-87.2833 N	0
Pinus resin Flannigan, Upper Peni	1990 USA	46.25	-87.2833 N	0

Pinus resin Flannigan, Upper Peni	1990 USA	46.25	-87.2833 N	14
Pinus resin Flannigan, Upper Peni	1990 USA	46.25	-87.2833 N	0
Pinus resin Flannigan, Upper Peni	1990 USA	46.25	-87.2833 N	0
Picea mariaWang, Z. NPeatland 1,	1990 Canada	55.13333	-114.25 N	0
Picea mariaWang, Z. WPeatland 1,	1991 Canada	55.13333	-114.25 N	0
Picea mariaWang, Z. WPeatland 1,	1991 Canada	55.13333	-114.25 N	0
Picea mariaWang, Z. NUpland 1, A	1991 Canada	55.13333	-114.25 N	0
<u> </u>	1991 Canada	55.13333	-114.25 N	0
Picea marisWang, Z. NUpland 1, A	1991 Canada	55.13333	-114.25 N	0
Picea mariaWang, Z. NUpland 1, A Picea mariaWang, Z. NPeatland 2,	1991 Canada	55.03333	-114.23 N	0
=	1991 Canada	55.03333	-114.033 N	0
Picea marisWang, Z. WPeatland 2,	1991 Canada	55.03333	-114.033 N	0
Picea marisWang, Z. NPeatland 2,	1991 Canada	55.03333	-114.033 N	0
Picea marisWang, Z. NUpland 2, A	1991 Canada	55.03333	-114.033 N	0
Picea marisWang, Z. NUpland 2, A	1991 Canada			0
Picea marisWang, Z. NUpland 2, A	1991 Canada	55.03333	-114.033 N -116.017 N	0
Picea marisWang, Z. NPeatland 3,		53.41667		0
Picea marisWang, Z. NPeatland 3,	1991 Canada	53.41667	-116.017 N	
Picea marisWang, Z. WPeatland 3,	1991 Canada	53.41667	-116.017 N -116.017 N	0
Picea marisWang, Z. NUpland 3, A	1991 Canada	53.41667		0
Picea marisWang, Z. NUpland 3, A	1991 Canada	53.41667	-116.017 N	0
Picea mariaWang, Z. NUpland 3, A	1991 Canada	53.41667	-116.017 N	0
Cercis canaTipton, J. L Texas A&N	1987 USA	31.75	-106.4 N	0
Cercis cana Tipton, J. L Texas A&N	1987 USA	31.75	-106.4 N	0
Cercis canaTipton, J. LTexas A&N	1987 USA	31.75	-106.4 N	0
Robinia pscMasaka, K.Kami-Suna	2006 Japan	43.46667	142 N	
Robinia ps(Masaka, K.Kami-Suna	2006 Japan	43.46667	142 N 142 N	180 180
Robinia pscMasaka, K.Kami-Suna Robinia pscMasaka, K.Kami-Suna	2006 Japan 2006 Japan	43.46667 43.46667	142 N	0
Robinia pstMasaka, K.Kami-Suna	2006 Japan	43.46667	142 N	180
Trifolium caRussi, L. C Tel Hadya,	1991 Syria	36.01667	36.93333 N	0
Trifolium caThomson, ITel Hadya,	1989 Syria	36.01667	36.93333 Y	0
Trifolium caThomson, ITel Hadya,	1989 Syria	36.01667	36.93333 N	0
Trifolium caRussi, L. C Tel Hadya,	1991 Syria	36.01667	36.93333 Y	0
Stellaria mcGange, A. (Silwood Pa	1991 UK	51.4		0
Aquilegia c:Finnerty, T.Texas A&N	1991 USA	30.61667	-96.3333 N	30
Aquilegia c:Finnerty, T.Texas A&N	1991 USA	30.61667	-96.3333 N	0
Aquilegia c:Finnerty, T.Texas A&N	1991 USA	30.61667	-96.3333 N	0
Aquilegia c:Finnerty, T.Texas A&N	1991 USA	30.61667	-96.3333 N	30
Pinus contcDownie, B. Clearwater,	1991 Canada	51.66667	-119.933 N	0
Pinus contcDownie, B. Fort St Jarr	1991 Canada	54.5	-124.25 N	0
Pinus contcDownie, B. Lake le Jea	1991 Canada	50.5	-120.6 N	0
Pinus contcDownie, B. 1296, Cana	1991 Canada	54.18333	-125.717 N	0
Pinus contcDownie, B. 2176, Cana	1991 Canada	50.91667	-120.083 N	0
Pinus bank Downie, B. Shinnickbu	1991 Canada	46.5	-66 N	0
Pinus bank Downie, B. Big River, (1991 Canada	54.73333	-107.2 N	0
Robinia pseMasaka, K.Bibai, Hokk	2006 Japan	43.3	141.8833 N	180
Robinia pstMasaka, K.Bibai, Hokk	2006 Japan	43.3	141.8833 N	180
Robinia pstMasaka, K.Bibai, Hokk	2006 Japan	43.3	141.8833 N	180
Robinia pseMasaka, K.Bibai, Hokk	2006 Japan	43.3	141.8833 Y	0
Robinia pstMasaka, K.Bibai, Hokk	2006 Japan	43.3	141.8833 N	0
Pinus bank Downie, B. Lake la Roi	1991 Canada	55.2	-105.3 N	0
Cornus seriAcharya, S Hazeldine,	1984 Canada	53.56667	-110.433 N	30
Quercus ru Struve, D. IOhio State	1988 USA	40	-83.0167 N	0
Phalaris arıShipley, B. Eastern Ca	1988 Canada	49.13333	-80.3167 N	0
Carex crinitShipley, B. Eastern Ca	1988 Canada	49.13333	-80.3167 N	0
Juncus effuShipley, B. Eastern Ca	1988 Canada	49.13333	-80.3167 N	0
: :				

Owing a service of the angle of	4005 Noth and and	E0 00007	E 040007 N	
Origanum van ToorenVrakelberg	1985 Netherland		5.916667 N	
Origanum vvan ToorenVrakelberg	1985 Netherland	50.86667	5.916667 N	
Origanum vvan ToorenVrakelberg	1985 Netherland		5.916667 N	
Origanum vvan ToorenVrakelberg	1985 Netherland		5.916667 N	
Origanum vvan ToorenVrakelberg	1985 Netherland	50.86667	5.916667 N	
Origanum vPons, T. L. Vrakelberg	1984 Netherland	50.86667	5.916667 N	I 150
Origanum vvan ToorenVrakelberg	1985 Netherland	50.86667	5.916667 N	J 56
Origanum vPons, T. L. Vrakelberg	1984 Netherland	50.86667	5.916667 N	I 150
Origanum vvan ToorenVrakelberg	1985 Netherland	50.86667	5.916667 N	J 56
Origanum vvan ToorenVrakelberg	1985 Netherland	50.86667	5.916667 N	0
Origanum vPons, T. L. Vrakelberg	1984 Netherland	50.86667	5.916667 N	
Origanum vvan ToorenVrakelberg	1985 Netherland	50.86667	5.916667 N	
Origanum vvan ToorenVrakelberg	1985 Netherland	50.86667	5.916667 N	
Origanum vvan ToorenVrakelberg	1985 Netherland	50.86667	5.916667 N	
Origanum vvan ToorenVrakelberg	1985 Netherland	50.86667	5.916667 N	
Pinus dens Kashiwagi, Sugadaira,	1984 Japan	36.5	138.3333 N	
Pinus dens Kashiwagi, Sugadaira,	1984 Japan	36.5	138.3333 N	
Pinus dens Kashiwagi, Sugadaira,	1984 Japan	36.5	138.3333 N	
Pinus dens Kashiwagi, Sugadaira,	1984 Japan	36.5	138.3333 N	
Pinus dens Kashiwagi, Sugadaira,	1984 Japan	36.5	138.3333 N	
Pinus dens Kashiwagi, Sugadaira,	1984 Japan	36.5	138.3333 N	
Pinus dens Kashiwagi, Sugadaira,	1984 Japan	36.5	138.3333 N	
		36.5		
Pinus dens Kashiwagi, Sugadaira,	1984 Japan		138.3333 N	
Pinus dens Kashiwagi, Sugadaira,	1984 Japan	36.5	138.3333 N	
Pinus dens Kashiwagi, Sugadaira,	1984 Japan	36.5	138.3333 N	
Pinus dens Kashiwagi, Sugadaira,	1984 Japan	36.5	138.3333 N	
Pinus dens Kashiwagi, Sugadaira,	1984 Japan	36.5	138.3333 N	
Pinus dens Kashiwagi, Sugadaira,	1984 Japan	36.5	138.3333 N	
Pinus dens Kashiwagi, Sugadaira,	1984 Japan	36.5	138.3333 N	
Pinus dens Kashiwagi, Sugadaira,	1984 Japan	36.5	138.3333 N	
Pinus dens Kashiwagi, Sugadaira,	1984 Japan	36.5	138.3333 N	
Pinus dens Kashiwagi, Sugadaira,	1984 Japan	36.5	138.3333 N	
Pinus dens Kashiwagi, Sugadaira,	1984 Japan	36.5	138.3333 N	
Pinus strobGeneve, R.New Bruns	1987 Canada	46.91667	-67.3833 N	
Pinus strobGeneve, R.New Bruns	1987 Canada	46.91667	-67.3833 N	
Pinus pondWeber, J. (Central Ore	1981 USA	43.81667	-120.7 N	I 15
Pinus pondWeber, J. (Central Ore	1981 USA	43.81667	-120.7 N	I 15
Pinus pondWeber, J. (Central Ore	1981 USA	43.81667	-120.7 N	I 15
Pinus pondWeber, J. (Central Ore	1981 USA	43.81667	-120.7 N	I 120
Pinus pondWeber, J. (Central Ore	1981 USA	43.81667	-120.7 N	l 120
Pinus pondWeber, J. (Central Ore	1981 USA	43.81667	-120.7 N	l 120
Pinus pondWeber, J. (Central Ore	1981 USA	43.81667	-120.7 N	I 15
Pinus pondWeber, J. (Central Ore	1981 USA	43.81667	-120.7 N	I 120
Corylus aveLi, L. I. R., Whiteknigh	1989 UK	51.43333	####### N	I 56
Corylus aveLi, L. I. R., Whiteknigh	1989 UK	51.43333	####### N	
Artemisia trMeyer, S. ECaliente, N	1989 USA	37.61667	-114.717 N	0
Artemisia trMeyer, S. ECaliente, N	1989 USA	37.61667	-114.717 N	
Artemisia trMeyer, S. ECaliente, N	1989 USA	37.61667	-114.717 N	
Artemisia trMeyer, S. ECaliente, N	1989 USA	37.61667	-114.717 N	
Artemisia trMeyer, S. ECaliente, N	1989 USA	37.61667	-114.717 N	
Artemisia trMeyer, S. ECaliente, N	1989 USA	37.61667	-114.717 N	
Alliaria peti/Yasin, M. aSnubbekor:	2017 Denmark	55.63333	12.28333 N	
Pinus sylveKune , I., Plzen, Czec	2009 Czech Rep	49.73333	13.36667 N	
Picea abiesKune , I., Plzen, Cze	2009 Czech Rep	49.73333	13.36667 N	
Quercus ro Kune , I., Plzen, Cze	2009 Czech Rep	49.73333	13.36667 Y	
Picea glaucCaron, G. EPetawawa,	1984 Canada	46.08333	-77.4333 N	
i loca gladicoalon, O. Er Glawawa,	1007 Callada	-∓∪.∪∪∪∪∪	-11. T JJJ I	. 0

Picea glaucWinston, D Petawawa,	1978 Canada	45.96667	-77.4167 N	0
Pinus resin Winston, D Petawawa,	1978 Canada	45.96667	-77.4167 N	0
Picea glaucWinston, D Petawawa,	1978 Canada	45.96667	-77.4167 N	21
Pinus bank Campbell, IPetawawa,	1978 Canada	45.86667	-77.3 N	0
Picea glaucCaron, G. EPetawawa,	1984 Canada	46.08333	-77.4333 N	42
Pinus bank Campbell, IPetawawa,	1978 Canada	45.86667	-77.3 N	0
Dioscorea tTerui, K. O.Suzaki, Shi	1986 Japan	34.65	138.9667 N	0
Dioscorea tTerui, K. O.Suzaki, Shi	1986 Japan	34.65	138.9667 N	30
Dioscorea tTerui, K. O.Suzaki, Shi	1986 Japan	34.65	138.9667 N	0
Dioscorea tTerui, K. O.Suzaki, Shi	1986 Japan	34.65	138.9667 N	0
Dioscorea tTerui, K. O.Suzaki, Shi	1986 Japan	34.65	138.9667 N	0
Dioscorea tTerui, K. O.Suzaki, Shi	1986 Japan	34.65	138.9667 N	0
Dioscorea tTerui, K. O.Suzaki, Shi	1986 Japan	34.65	138.9667 N	0
Dioscorea tTerui, K. O.Suzaki, Shi	1986 Japan	34.65	138.9667 N	0
Purshia tridMeyer, S. EIntermounta	1986 USA	40.21667	-111.633 N	14
Purshia tridMeyer, S. EIntermounta	1986 USA	40.21667	-111.633 N	28
Purshia tridMeyer, S. EIntermounta	1986 USA	40.21667	-111.633 N	14
Purshia tridMeyer, S. EIntermounta	1986 USA	40.21667	-111.633 N	28
Brucea javaWashitani, University F	1984 Japan	35.7	139.75 N	0
Brucea javaWashitani, University F	1984 Japan	35.7	139.75 Y	0
Cistus creti Thanos, C. University (1982 Greece	37.93333	23.8 Y	0
Cistus creti Thanos, C. University (1982 Greece	37.93333	23.8 N	0
Cistus creti Thanos, C. University (1982 Greece	37.93333	23.8 N	0
Cistus creti Thanos, C. University (1982 Greece	37.93333	23.8 Y	0
Cistus creti Thanos, C. University (1982 Greece	37.93333	23.8 N	0
Cistus creti Thanos, C. University (1982 Greece	37.93333	23.8 N	0
Cistus creti Thanos, C. University (1982 Greece	37.93333	23.8 N	0
Cistus creti Thanos, C. University (1982 Greece	37.93333	23.8 N	0
Cistus creti Thanos, C. University (1982 Greece	37.93333	23.8 N	0
Cistus creti Thanos, C. University (1982 Greece	37.93333	23.8 N	0
Cistus creti Thanos, C. University (1982 Greece	37.93333	23.8 N	0
Cistus creti Thanos, C. University (1982 Greece	37.93333	23.8 Y	0
Pinus bank Pitel, J. A. (Audrey Lak	1973 Canada	49.75	-94.1667 N	0
Picea glaucNosko, P. EBracebridge	1987 Canada	45.01667	-79.2833 N	0
Pinus contcHellum, A. Grande Pra	1984 Canada	54.63333	-119.083 N	0
Pinus contcHellum, A. Grande Pra	1984 Canada	54.63333	-119.083 N	42
Abies lasio Woodard, FUniversity c	1986 Canada	53.51667	-113.517 N	21
Pinus contcWoodard, FUniversity c	1986 Canada	53.51667	-113.517 N	21
Picea engeWoodard, FUniversity (1986 Canada	53.51667	-113.517 N	21
Rumex aceEscarr , JFontaineble	1982 France	48.4	2.7 N	0
Rumex aceEscarr , JFontaineble	1982 France	48.4	2.7 N	0
Rumex aceEscarr , JFontaineble	1982 France	48.4	2.7 N	0
Rumex aceEscarr , J Fontaineble	1982 France	48.4	2.7 N	0
Rumex aceEscarr , JFontaineble	1982 France	48.4	2.7 N	0
Rumex aceEscarr , JFontaineble	1982 France	48.4	2.7 N	0
Pseudotsu(Kune , I., Snoqualmic	2009 USA	47.51667	-121.833 N	0
Rumex aceTaylorson, Beltsville, N	1986 USA	39.03333	-76.9167 N	0
Rumex ace Taylorson, Beltsville, N	1986 USA	39.03333	-76.9167 N	0
Abies balsaScherbatskSchumache	1986 USA	41.73333	-70.3107 N	0
Betula allecScherbatskSchumache	1986 USA	41.73333	-70.4667 N	0
Picea ruberScherbatskSchumache	1986 USA	41.73333	-70.4667 N	0
Betula papyScherbatskSchumache	1986 USA	41.73333	-70.4667 N	0
Acer pseudPinfield, N. University (1985 UK	51.45	-70.4007 N -2.6 N	100
Acer pseudPinfield, N. University (1985 UK	51.45	-2.6 N	0
Pinus dens Washitani, Ibaraki, Ho	1983 Japan	36.28333	140.4167 N	0
Pinus dens Washitani, Ibaraki, Hoi	1983 Japan	36.28333	140.4167 N	0
i iiius uciis vvasiiilaiii, Ibalaki, 1701	1900 Japan	JU.ZUJJJ	140.410/ N	U

Pinus dens Washitani, Ibaraki, Hoi	1093 Japan	36.28333	140.4167 N	0
	1983 Japan		-	
Pinus dens Washitani, Ibaraki, Ho	1983 Japan	36.28333	140.4167 N	0
Pinus dens Washitani, Ibaraki, Hoi	1983 Japan	36.28333	140.4167 N	0
Pinus dens Washitani, Ibaraki, Hoi	1983 Japan	36.28333	140.4167 N	0
Pinus dens Washitani, Ibaraki, Ho	1983 Japan	36.28333	140.4167 N	0
Pinus dens Washitani, Ibaraki, Ho	1983 Japan	36.28333	140.4167 N	0
Pinus dens Washitani, Ibaraki, Ho	1983 Japan	36.28333	140.4167 N	0
Pinus dens Washitani, Ibaraki, Ho	1983 Japan	36.28333	140.4167 N	0
Pinus dens Washitani, Ibaraki, Ho	1983 Japan	36.28333	140.4167 N	0
Pinus dens Washitani, Ibaraki, Ho	1983 Japan	36.28333	140.4167 N	0
Pinus dens Washitani, Ibaraki, Ho	1983 Japan	36.28333	140.4167 N	0
Pinus dens Washitani, Ibaraki, Ho	1983 Japan	36.28333	140.4167 N	0
Pinus dens Washitani, Ibaraki, Hoi	1983 Japan	36.28333	140.4167 N	0
Pinus dens Washitani, Ibaraki, Hoi	1983 Japan	36.28333	140.4167 N	0
Pinus dens Washitani, Ibaraki, Hoi	1983 Japan	36.28333	140.4167 N	0
	1985 Canada	48.41667	-123.35 N	56
Abies amal Leadem, C 3636, Victo				
Abies amatLeadem, C 3636, Victo	1985 Canada	48.41667	-123.35 N	56
Abies amatLeadem, C 4217, Victo	1985 Canada	48.41667	-123.35 N	56
Abies amakLeadem, C 4217, Victo	1985 Canada	48.41667	-123.35 N	56
Abies amałLeadem, C 4293, Victo	1985 Canada	48.41667	-123.35 N	56
Abies amalLeadem, C 4293, Victo	1985 Canada	48.41667	-123.35 N	56
Abies amatLeadem, C 4347, Victo	1985 Canada	48.41667	-123.35 N	56
Abies amatLeadem, C 4347, Victo	1985 Canada	48.41667	-123.35 N	56
Abies amatLeadem, C 4348, Victo	1985 Canada	48.41667	-123.35 N	56
Abies amatLeadem, C 4348, Victo	1985 Canada	48.41667	-123.35 N	56
PhragmitesGalinato, MDelta Marsl	1985 Canada	50.18333	-98.3167 N	0
PhragmitesGalinato, MDelta Marsl	1985 Canada	50.18333	-98.3167 N	0
PhragmitesGalinato, MDelta Marsl	1985 Canada	50.18333	-98.3167 N	0
PhragmitesGalinato, MDelta Marsl	1985 Canada	50.18333	-98.3167 N	0
PhragmitesGalinato, MDelta Marsl	1985 Canada	50.18333	-98.3167 N	0
PhragmitesGalinato, MDelta Marsl	1985 Canada	50.18333	-98.3167 N	0
PhragmitesGalinato, MDelta Marsl	1985 Canada	50.18333	-98.3167 N	0
PhragmitesGalinato, MDelta Marsl	1985 Canada	50.18333	-98.3167 N	0
Securigera K�Vendi-JNy�rs�g,	2013 Hungary	47.95	21.65 N	30
Securigera K�Vendi-JNy�rs�g,	2013 Hungary	47.95	21.65 N	0
Betula papyBevington, 65B, Porcu	1985 USA	67.15	-142.1 N	0
Betula papyBevington, 65B, Porcu	1985 USA	67.15	-142.1 N	0
Betula papyBevington, 65B, Porcu	1985 USA	67.15	-142.1 N	0
Betula papyBevington, 65B, Porcu	1985 USA	67.15	-142.1 N	0
Betula papyBevington, 65B, Porcu	1985 USA	67.15	-142.1 N	0
Betula papyBevington, 65B, Porcu	1985 USA	67.15	-142.1 N	0
Betula papyBevington, 65B, Porcu	1985 USA	67.15	-142.1 N	0
Betula papyBevington, 73B, White	1985 USA	44.28333	-71.2833 N	0
Betula papyBevington, 73B, White	1985 USA	44.28333	-71.2833 N	0
Betula papyBevington, 73B, White	1985 USA	44.28333	-71.2833 N	0
Betula papyBevington, 73B, White	1985 USA	44.28333	-71.2833 N	0
Betula papyBevington, 73B, White	1985 USA	44.28333	-71.2833 N	0
Betula papyBevington, 73B, White	1985 USA	44.28333	-71.2833 N	0
Betula papyBevington, 73B, White	1985 USA	44.28333	-71.2833 N	0
Stellaria meBaskin, J. NFayette Co	1982 USA	38.03333	-84.5 N	90
Stellaria meBaskin, J. NFayette Co.	1982 USA	38.03333	-84.5 N	90
Stellaria meBaskin, J. NFayette Co	1982 USA	38.03333	-84.5 N	90
Asarum carBaskin, J. NFayette Co	1980 USA	38.03333	-84.5 N	42
Asarum carBaskin, J. NFayette Co	1980 USA	38.03333	-84.5 N	0
Stellaria meBaskin, J. NFayette Co	1982 USA	38.03333	-84.5 N	90
Stellaria meBaskin, J. NFayette Co.	1982 USA	38.03333	-84.5 N	90

Stellaria meBaskin, J. NFayette Co	1982 USA	38.03333	-84.5 N	90
Pinus montPitel, J. A. \Adams Lak	1970 Canada	51.41667	-119.5 N	0
Pinus montPitel, J. A. \Adams Lak	1970 Canada	51.41667	-119.5 N	63
Pinus montPitel, J. A. \Adams Lak	1970 Canada	51.41667	-119.5 N	63
Pinus montPitel, J. A. \Adams Lak	1970 Canada	51.41667	-119.5 N	63
Pinus montPitel, J. A. \Adams Lak	1970 Canada	51.41667	-119.5 N	
•				0
Pinus montPitel, J. A. \Adams Lak	1970 Canada 1970 Canada	51.41667 51.41667	-119.5 N -119.5 N	0
Pinus montPitel, J. A. \Adams Lak	1970 Canada			
Pinus montPitel, J. A. \Adams Lak		51.41667	-119.5 N	63
Pinus montPitel, J. A. Vackson Co	1965 USA	43.01667	-120.5 N	0
Pinus montPitel, J. A. Vackson Co	1965 USA	43.01667	-120.5 N	0
Pinus montPitel, J. A. Vackson Co	1965 USA	43.01667	-120.5 N	63
Pinus montPitel, J. A. Vackson Co	1965 USA	43.01667	-120.5 N	63
Pinus montPitel, J. A. \Jackson Cc	1965 USA	43.01667	-120.5 N	63
Pinus montPitel, J. A. \Jackson Cc	1965 USA	43.01667	-120.5 N	0
Pinus montPitel, J. A. \Jackson Cc	1965 USA	43.01667	-120.5 N	0
Pinus montPitel, J. A. \Jackson Cc	1965 USA	43.01667	-120.5 N	63
Fraxinus exKrauss, N. Greifswald,	1984 Germany	54.08333	13.38333 N	126
Heracleum Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	0
Elymus gla Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	0
Heracleum Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	0
Elymus gla Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	0
Bromus cili:Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	0
Bromus cili:Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	0
Heracleum Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	120
Bromus cili:Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	120
Elymus gla Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	120
Bromus cili:Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	0
Bromus cili:Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	0
Elymus gla Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	0
Heracleum Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	0
Heracleum Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	0
Heracleum Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	0
Elymus gla Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	120
Elymus gla Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	0
Bromus cili:Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	0
Bromus cili:Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	120
Elymus gla Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	0
Heracleum Hoffman, GRoutt Natio	1981 USA	40.55	-106.683 N	120
Festuca idaDoescher, Hampton 1	1984 USA	45.68333	-121.5 N	0
Festuca idaDoescher, Hampton 1	1984 USA	45.68333	-121.5 N	0
Festuca idaDoescher, Hampton 1	1984 USA	45.68333	-121.5 N	0
Festuca idaDoescher, Hampton 1	1984 USA	45.68333	-121.5 N	0
Festuca idaDoescher, Hampton 1	1984 USA	45.68333	-121.5 N	0
Festuca idaDoescher, Hampton 1	1984 USA	45.68333	-121.5 N	0
Festuca idaDoescher, Brothers, C	1984 USA	43.8	-120.6 N	0
Festuca idaDoescher, Brothers, C	1984 USA	43.8	-120.6 N	0
Festuca idaDoescher, Brothers, C	1984 USA	43.8	-120.6 N	0
Festuca idaDoescher, Brothers, C	1984 USA	43.8	-120.6 N	0
Festuca idaDoescher, Brothers, C	1984 USA	43.8	-120.6 N	0
Festuca idaDoescher, Brothers, C	1984 USA	43.8	-120.6 N	0
Festuca idaDoescher, Hampton 2	1984 USA	45.65	-121.45 N	0
Festuca idaDoescher, Hampton 2	1984 USA	45.65	-121.45 N	0
Festuca idaDoescher, Hampton 2	1984 USA	45.65	-121.45 N	0
Festuca idaDoescher, Hampton 2	1984 USA	45.65	-121.45 N	0
Festuca idaDoescher, Hampton 2	1984 USA	45.65	-121.45 N	0

Festuca idaDoescher, Hampton 2	1984 USA	45.65	-121.45 N	0
Melica nutaKolodziejekPodd?bice,	2015 Poland		19.48333 N	
Melica nutaKolodziejekPodd?bice,	2015 Poland		19.48333 N	
Melica nutaKolodziejekPodd?bice,	2015 Poland		19.48333 N	
Stachys off Kolodziejek Podd?bice,	2015 Poland		19.48333 N	
Stachys off Kolodziejek Podd?bice,	2015 Poland		19.48333 N	
Stachys off Kolodziejek Podd?bice,	2015 Poland		19.48333 N	
Festuca idaDoescher, Millican, Or	1984 USA	43.86667	-120.917 N	
Festuca idaDoescher, Millican, Or	1984 USA	43.86667	-120.917 N	
Festuca idaDoescher, Millican, Or	1984 USA	43.86667	-120.917 N	
Festuca idaDoescher, Millican, Or	1984 USA	43.86667	-120.917 N	
Festuca idaDoescher, Millican, Or	1984 USA	43.86667	-120.917 N	
Festuca idaDoescher, Millican, Or	1984 USA	43.86667	-120.917 N	
Hypericum Campbell, ITuena, Aus	1974 Austral		149.3 N	
Hypericum Campbell, ITuena, Aus	1974 Austral		149.3 N	
Cirsium palBallegaard,Jutland, De	1984 Denma		9.183333 N	
TaraxacumWashitani, University (1983 Japan	35.7	139.75 N	
TaraxacumWashitani, University	1983 Japan	35.7	139.75 N	
TaraxacumWashitani, University c	1983 Japan	35.7	139.75 N	
TaraxacumWashitani, University (1983 Japan	35.7	139.75 N	
TaraxacumWashitani, University c	1983 Japan	35.7	139.75 N	
TaraxacumWashitani, University c	1983 Japan	35.7	139.75 N	
TaraxacumWashitani, University c	1983 Japan	35.7	139.75 N	
TaraxacumWashitani, University c	1983 Japan	35.7	139.75 N	
TaraxacumWashitani, University c	1983 Japan	35.7	139.75 N	
TaraxacumWashitani, University c	1983 Japan	35.7	139.75 N	
TaraxacumWashitani, University c	1983 Japan	35.7	139.75 N	
TaraxacumWashitani, University c	1983 Japan	35.7	139.75 N	
TaraxacumWashitani, University c	1983 Japan	35.7	139.75 N	
TaraxacumWashitani, University c	1983 Japan	35.7	139.75 N	
Cirsium palPons, T. L. Utrecht, Th	1981 Netherl		5.083333 N	
Ostrya virgiPitel, J. A. \Ross Town	1979 Canada		-76.7167 Y	
Ostrya virgiPitel, J. A. \Ross Town	1979 Canada		-76.7167 Y	
Ostrya virgiPitel, J. A. \Ross Town	1979 Canada		-76.7167 N	
Ostrya virgiPitel, J. A. \Ross Town	1979 Canada		-76.7167 N	
Calluna vul Helsper, H. Heide, The	1982 Netherl		5.933333 N	
Populus deHardin, E. IOhio Unive	1982 USA	39.31667	-82.1 N	I 0
Picea mariaFarmer, R. Thunder Ba	1982 Canada		-89.25 N	
Picea mariaFarmer, R. Thunder Ba	1982 Canada		-89.25 N	
Picea mariaFarmer, R. Thunder Ba	1982 Canada	a 48.66667	-89.25 N	
Picea mariaFarmer, R. Thunder Ba	1982 Canada		-89.25 N	
Picea mariaFarmer, R. Thunder Ba	1982 Canada		-89.25 N	
Picea mariaFarmer, R. Thunder Ba	1982 Canada	a 48.66667	-89.25 N	I 24
Picea mariaFarmer, R. Thunder Ba	1982 Canada		-89.25 N	
Picea mariaFarmer, R. Thunder Ba	1982 Canada		-89.25 N	
Picea mariaFarmer, R. Thunder Ba	1982 Canada		-89.25 N	
Picea mariaFarmer, R. Thunder Ba	1982 Canada	a 48.66667	-89.25 N	0
Picea mariaFarmer, R. Thunder Ba	1982 Canada	a 48.66667	-89.25 N	I 24
Picea mariaFarmer, R. Thunder Ba	1982 Canada	a 48.66667	-89.25 N	I 24
Dactylis glcBean, E. WGap, Franc	1983 France	44.55	6.066667 N	0
PeucedanuKolodziejekPrimary out	2016 Poland	53.98333	17.4 N	I 150
Dactylis glcBean, E. WBocca Trab	1983 Italy	43.58333	12.23333 N	0
Dactylis glcBean, E. WChateaux-C	1983 France	47.81667	-0.7 N	0
Poa trivialisWilliams, EYarnton, O	1981 UK	51.8	-1.3 N	0
Poa trivialisWilliams, EYarnton, O	1981 UK	51.8	-1.3 N	I 336
Poa trivialisWilliams, EYarnton, O	1981 UK	51.8	-1.3 N	0

Poa trivialisWilliams, EYarnton, O	1981 UK	51.8	-1.3 N	336
Poa trivialisWilliams, EYarnton, Oz	1981 UK	51.8	-1.3 N	0
Poa trivialisWilliams, EYarnton, Oz	1981 UK	51.8	-1.3 N	0
Poa trivialisWilliams, EYarnton, O	1981 UK	51.8	-1.3 N	336
Poa trivialisWilliams, EYarnton, O	1981 UK	51.8	-1.3 N	336
Gardenia jaShimomuraTokyo Colle	1982 Japan	35.68333	139.7 N	0
Corylus aveShannon, FUniversity c	1982 UK	53.36667	-1.48333 N	0
Corylus aveShannon, FUniversity c	1982 UK	53.36667	-1.48333 N	0
Corylus aveShannon, FUniversity c	1982 UK	53.36667	-1.48333 Y	0
Corylus aveShannon, FUniversity c	1982 UK	53.36667	-1.48333 Y	0
Stellaria mcThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Urtica dioicThompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Stellaria mcThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Ranunculu:Thompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Ranunculu:Thompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Juncus effuThompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Urtica dioic Thompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Stellaria mcThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
RanunculusThompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Holcus lanaThompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
RanunculusThompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
RanunculusThompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Stellaria mcThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
RanunculusThompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Urtica dioic Thompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Stellaria mcThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Stellaria mcThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Stellaria mcThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Urtica dioic Thompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Urtica dioic Thompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Holcus lanaThompson, Sheffield, L	1982 UK 1982 UK	53.36667	-1.46667 N -1.46667 N	0
Stellaria mcThompson, Sheffield, L	1982 UK	53.36667 53.36667	-1.46667 N	0
Juncus effuThompson,Sheffield, L Holcus lanaThompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Juncus effuThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Urtica dioic Thompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Stellaria mcThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Urtica dioic Thompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Ranunculus Thompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Ranunculus Thompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Stellaria mcThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Urtica dioic Thompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Juncus effuThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
RanunculusThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Holcus lanaThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Holcus lanaThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Juncus effuThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Stellaria m∈Thompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Urtica dioic Thompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Urtica dioic Thompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
RanunculusThompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Holcus lanaThompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Ranunculu:Thompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Juncus effuThompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Holcus lanaThompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Holcus lanaThompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0

0 Stellaria mcThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N Stellaria mcThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 Juncus effuThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 Ranunculus Thompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 Stellaria mcThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 Juncus effuThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 1982 UK Juncus effuThompson, Sheffield, L 0 53.36667 -1.46667 N 0 Holcus lanaThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 Urtica dioic Thompson, Sheffield, L 1982 UK 53.36667 -1.46667 N Juncus effuThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 Holcus IanaThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 Stellaria mcThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 0 Urtica dioic Thompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 Urtica dioic Thompson, Sheffield, L 1982 UK 53.36667 -1.46667 N Ranunculus Thompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 Ranunculu: Thompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 1982 UK Juncus effuThompson, Sheffield, L 0 53.36667 -1.46667 N -1.46667 N 0 Holcus lanaThompson, Sheffield, U 1982 UK 53.36667 Stellaria mcThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 Holcus IanaThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 Stellaria mcThompson, Sheffield, L 1982 UK 0 53.36667 -1.46667 N Ranunculu: Thompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 1982 UK 53.36667 -1.46667 N 0 Juncus effuThompson, Sheffield, L Urtica dioic Thompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 1982 UK Juncus effuThompson, Sheffield, L 53.36667 -1.46667 N 0 Urtica dioic Thompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 Stellaria mcThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 0 Juncus effuThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N Holcus IanaThompson, Sheffield. L 1982 UK 53,36667 -1.46667 N 0 Urtica dioic Thompson, Sheffield, L 1982 UK 0 53.36667 -1.46667 N 1982 UK 0 Holcus lanaThompson, Sheffield, L 53.36667 -1.46667 N Ranunculu: Thompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 -1.46667 N Holcus lanaThompson, Sheffield, L 1982 UK 53.36667 0 Holcus lanaThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 Stellaria mcThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 Holcus lanaThompson, Sheffield, L 1982 UK -1.46667 N 0 53.36667 -1.46667 N 0 Juncus effuThompson, Sheffield, L 1982 UK 53.36667 0 Urtica dioic Thompson, Sheffield, L 1982 UK 53.36667 -1.46667 N Juneus effuThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 Juncus effuThompson, Sheffield, L 1982 UK 0 53.36667 -1.46667 N 0 Ranunculus Thompson, Sheffield, L 1982 UK 53.36667 -1.46667 N Juncus effuThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 0 Urtica dioic Thompson, Sheffield, L 1982 UK 53.36667 -1.46667 N Holcus lanaThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 0 Ranunculu: Thompson, Sheffield, L 1982 UK 53.36667 -1.46667 N Juneus effuThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 53.36667 Holcus lanaThompson, Sheffield, L 1982 UK -1.46667 N 0 0 Juncus effuThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N Ranunculus Thompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 Urtica dioic Thompson, Sheffield, L 1982 UK 53.36667 0 -1.46667 N Stellaria mcThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 1982 UK Ranunculus Thompson, Sheffield, L 53.36667 -1.46667 N 0 0 Urtica dioic Thompson, Sheffield, L 1982 UK 53.36667 -1.46667 N -1.46667 N Holcus lanaThompson, Sheffield, L 1982 UK 53.36667 0 0 Juncus effuThompson, Sheffield, L 1982 UK 53.36667 -1.46667 N 0 Urtica dioic Thompson, Sheffield, L 1982 UK 53.36667 -1.46667 N

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 35	
35 36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Juncus effuThompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Stellaria m∢Thompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Stellaria mcThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Urtica dioic Thompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Stellaria mcThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Ranunculu:Thompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Holcus lanaThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Holcus lanaThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Urtica dioic Thompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Ranunculus Thompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Holcus lanaThompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Stellaria mcThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Ranunculus Thompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
·	1982 UK	53.36667	-1.46667 N	0
Urtica dioic Thompson, Sheffield, L				
Juncus effuThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Holcus lanaThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Juncus effuThompson, Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Ranunculu:Thompson,Sheffield, L	1982 UK	53.36667	-1.46667 N	0
Picea engeTaylor, R. JKoksilals R	1982 Canada	53.73333	-127.65 N	30
Pinus contcTaylor, R. JKoksilals R	1982 Canada	54.05	-127.817 N	20
Abies lasio(Taylor, R. JKoksilals R	1982 Canada	54.05	-127.817 N	50
Tsuga mertTaylor, R. JKoksilals R	1982 Canada	54.05	-127.817 N	50
Origanum \Putievsky, ∣Greece	1982 Greece	39.2	22.21667 N	0
Origanum \Putievsky, ∣Greece	1982 Greece	39.2	22.21667 N	0
Origanum \Putievsky, ∣Greece	1982 Greece	39.2	22.21667 N	0
Origanum \Putievsky, ∣Greece	1982 Greece	39.2	22.21667 N	0
Origanum vPutievsky, ∣Greece	1982 Greece	39.2	22.21667 N	0
Origanum \Putievsky, ∣Greece	1982 Greece	39.2	22.21667 N	0
Origanum \Putievsky, ∣Greece	1982 Greece	39.2	22.21667 N	0
Origanum vPutievsky, Greece	1982 Greece	39.2	22.21667 N	0
Impatiens cNozzolillo, Rideau Riv	1980 Canada	45.21667	-75.6833 N	140
Ledum palı Karlin, E. F Heatherdov	1977 Canada	53.61667	-114.267 N	0
Ledum palı Karlin, E. F Heatherdov	1977 Canada	53.61667	-114.267 N	0
Ledum palı Karlin, E. F Heatherdov	1977 Canada	53.61667	-114.267 N	0
PeucedanuKolodziejekPrimary cer	2016 Poland	53.98333	17.4 N	150
Epilobium ¿Etherington Cardiff, UK	1982 UK	51.48333	-3.2 N	0
Pinus taedaDunlap, J. IWashingtor	1983 USA	35.55	-77.05 N	30
		37.9	139.05 N	35
Dioscorea (Okagami, Niigata, Jar	1978 Japan			
Dioscorea (Okagami, Niigata, Jar	1978 Japan	37.9	139.05 N	35
Dioscorea (Okagami, Niigata, Jar	1978 Japan	37.9	139.05 N	35
Dioscorea rOkagami, NNiigata, Jar	1978 Japan	37.9	139.05 N	35
Dioscorea rOkagami, Niigata, Jar	1976 Japan	37.9	139.05 N	0
Dioscorea rOkagami, Niigata, Jar	1978 Japan	37.9	139.05 N	35
Dioscorea rOkagami, Niigata, Jar	1976 Japan	37.9	139.05 N	0
Dioscorea rOkagami, Niigata, Jar	1978 Japan	37.9	139.05 N	35
Dioscorea rOkagami, Niigata, Jar	1976 Japan	37.9	139.05 N	0
Dioscorea rOkagami, Niigata, Jar	1978 Japan	37.9	139.05 N	35
Dioscorea rOkagami, Niigata, Jar	1978 Japan	37.9	139.05 N	35
Dioscorea rOkagami, Niigata, Jar	1978 Japan	37.9	139.05 N	35
Dioscorea rOkagami, Niigata, Jar	1976 Japan	37.9	139.05 N	0
Dioscorea rOkagami, Niigata, Jar	1978 Japan	37.9	139.05 N	35
Dioscorea rOkagami, Niigata, Jar	1976 Japan	37.9	139.05 N	0
Dioscorea rOkagami, Niigata, Jar	1976 Japan	37.9	139.05 N	0
Dioscorea rOkagami, Niigata, Jar	1976 Japan	37.9	139.05 N	0
Dioscorea rOkagami, Niigata, Jar	1976 Japan	37.9	139.05 N	0
Dioscorea rOkagami, Niigata, Jar	1976 Japan	37.9	139.05 N	0
σ , σ= , σ=	- r			_

Dioscorea rOkagami, Niigata, Jar	1978 Japan	37.9	139.05 N	35
Dioscorea rOkagami, Niigata, Jar	1976 Japan	37.9	139.05 N	0
Dioscorea rOkagami, Niigata, Jar	1978 Japan	37.9	139.05 N	35
Dioscorea rOkagami, Niigata, Jar	1978 Japan	37.9	139.05 N	35
Dioscorea rOkagami, Niigata, Jar	1978 Japan	37.9	139.05 N	35
Dioscorea jOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea jOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea tOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	35
Dioscorea tOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	35
Dioscorea jOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea (Okagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea (Okagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea jOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea tOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea jOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea jOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea (Okagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea (Okagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea tOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea (Okagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea tOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	35
Dioscorea tOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea (Okagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea jOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea jOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea jOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea jOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea tOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea tOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	35
Dioscorea jOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea (Okagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea tOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	35
Dioscorea tOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea (Okagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea (Okagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea jOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea tOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	35
Dioscorea jOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea (Okagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea jOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea jOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea jOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea (Okagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea jOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea jOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea jOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea jOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea (Okagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea (Okagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea tOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	35
Dioscorea tOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea tOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	35
Dioscorea tOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea tOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea tOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea jOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Diosocica jokagami, magosiilila	1010 Japan	31.30007	100.0000 11	05

Dioscorea tOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea jOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea jOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea tOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	35
Dioscorea (Okagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea tOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	35
Dioscorea (Okagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea jOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea (Okagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea tOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	35
Dioscorea tOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	35
Dioscorea tOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	35
Dioscorea (Okagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea jOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea jOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea jOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea (Okagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea tOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea (Okagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea tOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea (Okagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea (Okagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea (Okagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea tOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea (Okagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea (Okagami, NKagoshima	1978 Japan	31.56667	130.5333 N	65
Dioscorea tOkagami, NKagoshima	1978 Japan	31.56667	130.5333 N	35
Dioscorea (Okagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea (Okagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea tOkagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea (Okagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea j Okagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Dioscorea (Okagami, NKagoshima	1976 Japan	31.56667	130.5333 N	0
Populus treFechner, GLarimer Co	1977 USA	40.61667	-105.483 N	0
Populus treFechner, GLarimer Co	1977 USA	40.61667	-105.483 N	0
Melampyru Masselink, Appelberge	1974 Netherland		6.633333 N	60
Melampyru Masselink, Appelberge	1974 Netherland		6.633333 N	60
Melampyru Masselink, Appelberge	1974 Netherland		6.633333 N	0
Melampyru Masselink, Appelberge	1974 Netherland		6.633333 N	60
Melampyru Masselink, Appelberge	1974 Netherland		6.633333 N	0
Melampyru Masselink, Appelberge	1974 Netherland		6.633333 N	60
Melampyru Masselink, Appelberge	1974 Netherland		6.633333 N	0
Melampyru Masselink, Appelberge	1974 Netherland		6.633333 N	60
Melampyru Masselink, Appelberge	1974 Netherland		6.633333 N	0
Melampyru Masselink, Appelberge	1974 Netherland		6.633333 N	60
Melampyru Masselink, Appelberge	1974 Netherland		6.633333 N	0
Melampyru Masselink, Appelberge	1974 Netherland		6.633333 N	0
Melampyru Masselink, Eext, The N	1974 Netherland		6.733333 N	60
Melampyru Masselink, Eext, The N	1974 Netherland		6.733333 N	60
Melampyru Masselink, Eext, The N	1974 Netherland		6.733333 N	0
Melampyru Masselink, Eext, The N	1974 Netherland		6.733333 N	60
Melampyru Masselink, Eext, The N	1974 Netherland		6.733333 N	60
Melampyru Masselink, Eext, The N	1974 Netherland		6.733333 N	60
Melampyru Masselink, Eext, The N	1974 Netherland		6.733333 N	0
Melampyru Masselink, Eext, The N	1974 Netherland		6.733333 N	0
Melampyru Masselink, Eext, The N	1974 Netherland	33.01007	6.733333 N	60

Melampyru Masselink, Eext, The N	1974 Netherland	53.01667	6.733333	
Melampyru Masselink, Eext, The N	1974 Netherland	53.01667	6.733333	N 0
Melampyru Masselink, Eext, The N	1974 Netherland	53.01667	6.733333	N 0
Melampyru Masselink, Annen, The	1974 Netherland	53.05	6.716667	
Melampyru Masselink, Annen, The	1974 Netherland	53.05	6.716667	N 60
Melampyru Masselink, Annen, The	1974 Netherland	53.05	6.716667	N 0
Melampyru Masselink, Annen, The	1974 Netherland	53.05	6.716667	N 0
Melampyru Masselink, Annen, The	1974 Netherland	53.05	6.716667	N 0
Melampyru Masselink, Annen, The	1974 Netherland	53.05	6.716667	N 0
Melampyru Masselink, Annen, The	1974 Netherland	53.05	6.716667	N 0
Melampyru Masselink, Annen, The	1974 Netherland	53.05	6.716667	N 60
Melampyru Masselink, Annen, The	1974 Netherland	53.05	6.716667	N 60
Melampyru Masselink, Annen, The	1974 Netherland	53.05	6.716667	N 60
Melampyru Masselink, Annen, The	1974 Netherland	53.05	6.716667	N 0
Melampyru Masselink, Annen, The	1974 Netherland	53.05	6.716667	N 60
Melampyru Masselink, Norg, The I	1974 Netherland	53.06667	6.45	N 60
Melampyru Masselink, Norg, The 1	1974 Netherland	53.06667	6.45	N 0
Melampyru Masselink, Norg, The	1974 Netherland	53.06667	6.45	N 60
Melampyru Masselink, Norg, The I	1974 Netherland	53.06667	6.45	N 60
Melampyru Masselink, Norg, The I	1974 Netherland	53.06667	6.45	
Melampyru Masselink, Norg, The I	1974 Netherland	53.06667	6.45	
Melampyru Masselink, Norg, The I	1974 Netherland	53.06667	6.45	
Melampyru Masselink, Norg, The I	1974 Netherland	53.06667	6.45	
Melampyru Masselink, Norg, The I	1974 Netherland	53.06667	6.45	
Melampyru Masselink, Norg, The I	1974 Netherland	53.06667	6.45	
Melampyru Masselink, Norg, The I	1974 Netherland	53.06667	6.45	
Melampyru Masselink, Norg, The I	1974 Netherland	53.06667	6.45	
Melampyru Masselink, Amen, The	1974 Netherland	52.91667	6.583333	
Melampyru Masselink, Amen, The	1974 Netherland	52.91667	6.583333	
Melampyru Masselink, Amen, The	1974 Netherland		6.583333	
Melampyru Masselink, Amen, The	1974 Netherland		6.583333	
Melampyru Masselink, Amen, The	1974 Netherland		6.583333	
Melampyru Masselink, Amen, The	1974 Netherland		6.583333	
Melampyru Masselink, Amen, The	1974 Netherland		6.583333	
Melampyru Masselink, Amen, The	1974 Netherland	52.91667	6.583333	
Melampyru Masselink, Amen, The	1974 Netherland		6.583333	
Melampyru Masselink, Amen, The	1974 Netherland		6.583333	
Melampyru Masselink, Amen, The	1974 Netherland		6.583333	
Melampyru Masselink, Amen, The	1974 Netherland	52.91667	6.583333	
PeucedanuKolodziejekSecondary	2016 Poland	53.98333	17.4	
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4	
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4	
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4	
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4	
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4	
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4	
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4	
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4	
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4	
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4	
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4	
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4	
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4	
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4	
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4	
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4	
				J

BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
_				
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	28
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
<u> </u>				
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
-	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. A Northeaste				
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
<u> </u>	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. A Northeaste				
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
_	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. A Northeaste				
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
-				
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0

BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
BalsamorhiYoung, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. ANortheaste	1976 USA	39.01667	-120.4 N	0
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	28
Balsamorhi Young, J. A Northeaste	1976 USA	39.01667	-120.4 N	0
Phalaris artLandgraff, Tjotta, Norv	1978 Norway		12.41667 N	0
Phalaris artLandgraff, Tjotta, Norv	1978 Norway		12.41667 N	28
Phalaris artLandgraff, Tjotta, Norv	1978 Norway		12.41667 N	28
Phalaris artLandgraff, Tjotta, Norv	1978 Norway		12.41667 N	0
Corylus aveBradbeer, King's Colle	1977 UK	51.5	-0.1 N	0
Corylus aveBradbeer, King's Colle	1977 UK	51.5	-0.1 Y	42
Corylus aveBradbeer, King's Colle	1977 UK	51.5	-0.1 N	0
Corylus aveBradbeer, King's Colle	1977 UK	51.5	-0.1 N	42
Corylus aveBradbeer, King's Colle	1977 UK	51.5	-0.1 Y	0
Corylus aveBradbeer, King's Colle	1977 UK	51.5	-0.1 Y	0
Liriodendro Barnett, P. Low elevati	1971 USA	35.16667	-84.3667 N	56
Liriodendro Barnett, P. Low elevati	1971 USA	35.16667	-84.3667 N	56
Liriodendro Barnett, P. Low elevati	1971 USA	35.16667	-84.3667 N	56
Liriodendro Barnett, P. Low elevati	1971 USA	35.16667	-84.3667 N	168
Liriodendro Barnett, P. Low elevati	1971 USA	35.16667	-84.3667 N	56
LiriodendroBarnett, P. Low elevati	1971 USA	35.16667	-84.3667 N	168
LiriodendroBarnett, P. Low elevati	1971 USA	35.16667	-84.3667 N	168
LiriodendroBarnett, P. Low elevati	1971 USA	35.16667	-84.3667 N	168

Elymus elyıYoung, J. ANevada anı	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
,, cag, c.,			J

Chimina ahiiVanna I Mayada ani	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and			0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyıYoung, J. ANevada anı	1967 USA	39.1 -119.883 N	0
Elymus elyıYoung, J. ANevada anı	1967 USA	39.1 -119.883 N	0
Elymus elyıYoung, J. ANevada anı	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
	1971 USA		0
Purshia tridEvans, R. /Nevada and			
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
	1971 USA	39.1 -119.883 N	
Purshia tridEvans, R. /Nevada and			0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and			
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Elymus elyiYoung, J. ANevada and	1967 USA	39.1 -119.883 N	0
Elymus elyıYoung, J. ANevada anı	1967 USA	39.1 -119.883 N	0
Elymus elyıYoung, J. ANevada anı	1967 USA	39.1 -119.883 N	0
Elymus elyıYoung, J. ANevada anı	1967 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia trid Evans, R. / Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Purshia tridEvans, R. /Nevada and	1971 USA	39.1 -119.883 N	0
Elymus elyıYoung, J. ANevada anı	1967 USA	39.1 -119.883 N	0

Purshia tridEvans, R. / Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L	ISA 39.1	-119.883	N 0
Purshia tridEvans, R. /Nevada and	1971 L	ISA 39.1	-119.883	N 0
Purshia tridEvans, R. /Nevada and	1971 L	ISA 39.1	-119.883	N 0
Purshia tridEvans, R. /Nevada and	1971 L	ISA 39.1	-119.883	N 0
Purshia tridEvans, R. /Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L			
Purshia tridEvans, R. / Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L	ISA 39.1	-119.883	N 0
Purshia tridEvans, R. /Nevada and	1971 L	ISA 39.1	-119.883	N 0
Purshia tridEvans, R. /Nevada and	1971 L	ISA 39.1	-119.883	N 0
Purshia tridEvans, R. /Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L			
Elymus elyıYoung, J. ANevada anı	1967 L			
Purshia tridEvans, R. / Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L	SA 39.1	-119.883	N 0
Purshia tridEvans, R. /Nevada and	1971 L	SA 39.1	-119.883	N 0
Elymus elyiYoung, J. ANevada and	1967 L	SA 39.1	-119.883	N 0
Purshia tridEvans, R. /Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L			
Elymus elyiYoung, J. ANevada and	1967 L			
Purshia tridEvans, R. /Nevada and	1971 L			
	1971 L			
Purshia tridEvans, R. /Nevada and				
Purshia tridEvans, R. /Nevada and	1971 L			
Elymus elyiYoung, J. ANevada and	1967 L			
Purshia tridEvans, R. INevada and	1971 L			
Purshia tridEvans, R. / Nevada and	1971 L			
Elymus elyıYoung, J. ANevada anı	1967 L	SA 39.1	-119.883	N 0
Purshia tridEvans, R. /Nevada and	1971 L	ISA 39.1	-119.883	N 0
Purshia tridEvans, R. /Nevada and	1971 L	ISA 39.1	-119.883	N 0
Purshia tridEvans, R. /Nevada and	1971 L	ISA 39.1	-119.883	N 0
Purshia tridEvans, R. /Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L			
Purshia tridEvans, R. /Nevada and	1971 L			
Elymus elyiYoung, J. ANevada and	1967 L			
Achillea milRobocker, 'Washingtor	1971 L			
Achillea milRobocker, 'Washingtor	1972 L			
Achillea milRobocker, 'Washingtor	1972 L	ISA 46.71667	-117.15	N 0
Achillea milRobocker, 'Washingtor	1972 L	SA 46.71667	-117.15	N 0
Achillea milRobocker, 'Washingtor	1972 L	ISA 46.71667	-117.15	N 0
Achillea milRobocker, 'Washingtor	1971 L	ISA 46.71667	-117.15	N 0
Achillea milRobocker, 'Washingtor	1971 L			
Achillea milRobocker, 'Washingtor	1971 L			
Cornus am Allen, R. F. Norris, Ten	1973 L			
Cornus am/Allen, R. F. Norris, Ten	1974 L			
Cornus am/Allen, R. F. Norris, Ten	1974 U			
Comus amiranen, IX. I ² . NOITIS, Tell	1914 0	JU.0 1007	-U 4 .0107	IN U

Cornus am Allen, R. F. Norris, Ten	1974 USA	36.01667	-84.0167 I	N 112
Cornus am Allen, R. F. Norris, Ten	1974 USA	36.01667	-84.0167 I	
Cornus am Allen, R. F. Norris, Ten	1973 USA	36.01667	-84.0167 I	
Cornus am Allen, R. F. Norris, Ten	1973 USA	36.01667	-84.0167 I	
Cornus am Allen, R. F. Norris, Ten	1974 USA	36.01667	-84.0167 I	
Cornus am Allen, R. F. Norris, Ten	1973 USA	36.01667	-84.0167 I	
Cornus am Allen, R. F. Norris, Ten	1974 USA	36.01667	-84.0167 I	
Cornus am Allen, R. F. Norris, Ten	1974 USA	36.01667	-84.0167 I	
Cornus am Allen, R. F. Norris, Ten	1974 USA	36.01667	-84.0167 I	
Cornus am Allen, R. F. Norris, Ten	1973 USA	36.01667	-84.0167 I	
Cornus am Allen, R. F. Norris, Ten	1974 USA	36.01667	-84.0167 I	
Cornus am Allen, R. F. Norris, Ten	1974 USA	36.01667	-84.0167 I	
Cornus am Allen, R. F. Norris, Ten	1973 USA	36.01667	-84.0167 I	
Cornus am Allen, R. F. Norris, Ten	1974 USA	36.01667	-84.0167 I	
Cornus am Allen, R. F. Norris, Ten	1973 USA	36.01667	-84.0167 I	
Cornus am Allen, R. F. Norris, Ten	1974 USA	36.01667	-84.0167 I	
Cornus am Allen, R. F. Norris, Ten	1973 USA	36.01667	-84.0167 I	
Betula pub Junttila, O. 1 Finland	1975 Finland	61.66667	29.5	
Betula pub Junttila, O. 1 Finland	1975 Finland	61.66667	29.5	
Betula pub Junttila, O. 2 Finland	1975 Finland	62	25 I	
Betula pub Junttila, O. 2 Finland	1975 Finland	62	25 I	
Betula pubiJunttila, O. 3 Finland	1975 Finland	64.5	29 1	
Betula pubiJunttila, O. 3 Finland	1975 Finland	64.5	29 1	
PeucedanuKolodziejekSecondary	2016 Poland	53.98333	17.4	
Betula pub Junttila, O. 4 Finland	1975 Finland	64.5	29 1	
Betula pub Junttila, O. 4 Finland	1975 Finland	64.5	29	
Betula pub Junttila, O. 5 Norway	1975 Norway	60.75	11.16667 I	
Betula pubiJunttila, O. 5 Norway	1975 Norway	60.75	11.16667 I	
Betula pendunttila, O. 6 Finland	1975 Finland	60.08333	24 1	
Betula pendunttila, O. 6 Finland	1975 Finland	60.08333	24 [
Betula pendunttila, O. 7 Finland	1975 Finland	60.5	24.5 I	
Betula pendunttila, O. 7 Finland	1975 Finland	60.5	24.5	
Betula pendunttila, O. 8 Finland	1975 Finland	62	25	
Betula pendunttila, O. 8 Finland	1975 Finland	62	25	
Betula pendunttila, O. 9 Finland	1975 Finland 1975 Finland	62.5 62.5	27	
Betula pendunttila, O. 9 Finland			27	
Betula pendunttila, O. 10 Finland	1975 Finland	64.5	29	
Betula pendunttila, O. 10 Finland	1975 Finland	64.5	29	
Betula pendunttila, O. 11 Finland	1975 Finland	65.25	27	
Betula pendunttila, O. 11 Finland	1975 Finland	65.25	27	
Betula pendunttila, O. 12 Norway	1975 Norway	60.75	11.16667 I	
Betula pendunttila, O. 12 Norway	1975 Norway	60.75	11.16667 I	
Artemisia trMcDonouglDubois, Ida	1971 USA	44.16667	-112.217	
Artemisia trMcDonouglDubois, Ida	1971 USA	44.16667	-112.217	
Artemisia tr McDonougl Dubois, Ida	1971 USA	44.16667	-112.217	
Artemisia tr Harniss, R. Dubois, Ida	1973 USA	44.16667	-112.217	
Artemisia trMcDonouglDubois, Ida	1971 USA	44.16667	-112.217	
Artemisia trMcDonouglDubois, Ida	1971 USA	44.16667	-112.217	
Artemisia trMcDonouglDubois, Ida	1971 USA	44.16667	-112.217	
Artemisia trMcDonouglDubois, Ida	1971 USA	44.16667	-112.217	
Artemisia trMcDonouglDubois, Ida	1971 USA	44.16667	-112.217 I	
Artemisia trMcDonouglDubois, Ida	1971 USA	44.16667	-112.217 I	
Artemisia trMcDonouglDubois, Ida	1971 USA 2016 Poland	44.16667	-112.217 I	
PeucedanuKolodziejekPrimary out		50.96667	16.98333 I	
Picea glaucRadvanyi, /Alberta For	1974 Canada	53.36667	-115.517 I	
Robinia ps ßicknell, S. New Haver	1973 USA	41.3	-72.9333 I	N 0

Quercus ceBicknell, S. New Haver	1973 USA	41.3	-72.9333 N	0
Quercus ccBicknell, S. New Haver	1973 USA	41.3	-72.9333 N	0
Betula alleçBicknell, S.New Haver	1973 USA	41.3	-72.9333 N	0
Humulus lu Haunold, AUSDA, Ore	1973 USA	43.95	-122.117 N	56
Humulus luSmith, D. CUSDA, Ore	1936 USA	43.78333	-121.917 N	35
Ledum paltJunttila, O. Finland	1968 Finland	61.11667	24.33333 N	0
Ledum palıJunttila, O. Finland	1968 Finland	61.11667	24.33333 N	0
Ledum paltJunttila, O. Finland	1968 Finland	61.11667	24.33333 N	0
Ledum paltJunttila, O. Finland	1968 Finland	61.11667	24.33333 N	0
Ledum paltJunttila, O. Finland	1968 Finland	61.11667	24.33333 N	0
·	1968 Finland	61.11667	24.33333 N	0
Ledum palı lunttila, O. Finland				
Ledum palı Junttila, O. Finland	1968 Finland	61.11667	24.33333 N	0
Ledum palıJunttila, O. Finland	1968 Finland	61.11667	24.33333 N	0
Pinus taedaBiswas, P. American F	1971 USA	31.11667	-92.4333 N	84
Pinus taedaBiswas, P. American F	1971 USA	31.11667	-92.4333 N	0
Acer sacch Webb, D. FVermont, U	1966 USA	43.9	-72.6 N	41
Acer sacch Webb, D. FVermont, U	1966 USA	43.9	-72.6 N	41
Acer sacch Webb, D. FVermont, U	1966 USA	43.9	-72.6 N	41
Acer sacch Webb, D. FVermont, U	1966 USA	43.9	-72.6 N	41
Acer sacch Webb, D. FVermont, U	1966 USA	43.9	-72.6 N	41
Corylus aveBradbeer, Mereworth,	1966 USA	51.25	####### N	0
Corylus aveBradbeer, Mereworth,	1966 USA	51.25	####### Y	0
Alnus incar Schalin, I. (Vihti, Finlar	1964 Finland	60.4	24.31667 N	180
Alnus glutirSchalin, I. (Vihti, Finlar	1964 Finland	60.4	24.31667 N	0
Alnus incarSchalin, I. (Vihti, Finlar	1964 Finland	60.4	24.31667 N	0
Alnus glutir Schalin, I. (Vihti, Finlar	1964 Finland	60.4	24.31667 N	180
Populus de Farmer, R. Stoneville,	1966 USA	33.41667	-90.9 N	0
Populus de Farmer, R. Stoneville,	1966 USA	33.41667	-90.9 N	0
Populus de Farmer, R. Stoneville,	1966 USA	33.41667	-90.9 N	0
LiquidambaBonner, F. Stoneville,	1963 USA	33.41667	-90.9 N	28
LiquidambaBonner, F. Stoneville,	1963 USA	33.41667	-90.9 N	0
Populus de Farmer, R. Stoneville,	1966 USA	33.41667	-90.9 N	0
	1963 USA		-90.9 N	0
LiquidambaBonner, F. Stoneville,		33.41667		
LiquidambaBonner, F. Stoneville,	1963 USA	33.41667	-90.9 N	28
LiquidambaBonner, F. Stoneville,	1963 USA	33.41667	-90.9 N	0
LiquidambaBonner, F. Stoneville,	1963 USA	33.41667	-90.9 N	0
LiquidambaBonner, F. Stoneville,	1963 USA	33.41667	-90.9 N	28
LiquidambaBonner, F. Stoneville,	1963 USA	33.41667	-90.9 N	28
Populus de Farmer, R. Stoneville,	1966 USA	33.41667	-90.9 N	0
PeucedanuKolodziejekPrimary cer	2016 Poland	50.96667	16.98333 N	150
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp:Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp:Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp:Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp:Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp:Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp:Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp:Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp:Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
= 555 maniprodyoro, it. i aloo maili	.002 00/1	₹0.0	.00.00 11	O

DeschampŧSayers, R. False Mum	1962 USA	40.5	-105.65 N	0
DeschampŧSayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp:Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp:Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
		40.5		
Deschamp(Sayers, R. False Mum	1962 USA			0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
DeschampsSayers, R. False Mum	1962 USA	40.5	-105.65 N	0
DeschampsSayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp:Sayers, R. False Mum	1962 USA	40.5		0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp(Sayers, R. False Mum	1962 USA	40.5		0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp:Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp(Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Deschamp:Sayers, R. False Mum	1962 USA	40.5	-105.65 N	0
Picea engePatten, D. Golden, Co	1959 USA	39.73333	-105.2 N	0
Picea engePatten, D. Golden, Co	1959 USA	39.73333	-105.2 N	0
Picea engePatten, D. Golden, Co	1959 USA	39.73333	-105.2 N	0
Picea engePatten, D. Golden, Co	1959 USA	39.73333	-105.2 N	0
Picea engePatten, D. Golden, Co	1959 USA	39.73333	-105.2 N	0
Picea engePatten, D. Golden, Co	1959 USA	39.73333	-105.2 N	0
Picea engePatten, D. Golden, Co	1959 USA	39.73333	-105.2 N	0
Picea engePatten, D. Golden, Co	1959 USA	39.73333	-105.2 N	0
Picea engePatten, D. Golden, Co	1959 USA	39.73333	-105.2 N	0
Picea engePatten, D. Golden, Co	1959 USA	39.73333	-105.2 N	0
Pinus virgir Snow, A. GBeltsville E.	1953 USA	39.03333	-76.9167 N	0
Pinus virgir Snow, A. GBeltsville E.	1953 USA	39.03333		0
Hypericum Tisdale, E. Colville, Wa	1950 USA	48.53333	-117.9 N	0
Hypericum Tisdale, E. Salmon Riv	1951 USA	45.36667	-115.5 N	0
Hypericum Tisdale, E. Salmon Riv	1951 USA	45.43333	-115.433 N	0
Tsuga canaStearns, F. Five popula	1953 USA	41.9	-83.55 N	70
Tsuga canaStearns, F. Five popula	1953 USA	41.9	-83.55 N	0
Tsuga caneStearns, F. Five popula	1953 USA	41.9	-83.55 N	70
Tsuga caneStearns, F. Five popula	1953 USA	41.9	-83.55 N	70
• • • • • • • • • • • • • • • • • • • •	1953 USA	41.9	-83.55 N	
Tsuga cansStearns, F. Five popula		41.9		0
Tsuga cansStearns, F. Five popula	1953 USA		-83.55 N	
Tsuga cansStearns, F. Five popula	1953 USA	41.9	-83.55 N	70
Tsuga cansStearns, F. Five popula	1953 USA	41.9	-83.55 N	0
Tsuga canaStearns, F. Five popula	1953 USA	41.9	-83.55 N	70
Tsuga canaStearns, F. Five popula	1953 USA	41.9	-83.55 N	0
Tsuga canaStearns, F. Five popula	1953 USA	41.9	-83.55 N	70
Tsuga canaStearns, F. Five popula	1953 USA	41.9		0
Tsuga canaStearns, F. Five popula	1953 USA	41.9		0
Tsuga canaStearns, F. Five popula	1953 USA	41.9		0
Tsuga canaStearns, F. Five popula	1953 USA	41.9	-83.55 N	70
Tsuga canaStearns, F. Five popula	1953 USA	41.9	-83.55 N	70
Betula pub Black, M. VSouthern E	1954 UK		####### N	0
Pinus sylveSarvas, R. Helsinki, Fi	1949 Finland	60.16667		0
Betula pub∢Sarvas, R. Helsinki, Fi	1949 Finland	60.16667	24.93333 N	0

Betula pencSarvas, R. Helsinki, Fi	1949 Finland	60.16667	24.93333 N	0
Betula pub∈Sarvas, R. Helsinki, Fi	1949 Finland	60.16667	24.93333 N	0
Betula pen(Sarvas, R. Helsinki, Fi	1949 Finland	60.16667	24.93333 N	0
Pinus sylveSarvas, R. Helsinki, Fi	1949 Finland	60.16667	24.93333 N	0
Pinus strobBaldwin, H.Hillboro, N€	1933 USA	43.15	-71.9333 N	112
Pinus strobBaldwin, H.Hillboro, N€	1933 USA	43.15	-71.9333 N	0
Achillea milRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Elymus elyıRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Artemisia trRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Festuca idaRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Elymus elyıRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Festuca idaRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Artemisia trRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Achillea milRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Achillea milRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Artemisia trRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Festuca idaRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Achillea milRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Achillea milRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Festuca idaRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Elymus elyıRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Elymus elyıRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Artemisia trRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Elymus elyıRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Artemisia trRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
Festuca idaRichardsonCertified lot	2017 USA	40.41667	-111.85 N	0
PeucedanuKolodziejekSecondary	2016 Poland	50.96667	16.98333 N	150
Pinus contcHaasis, F. \Shuswap L	1927 Canada	50.96667	-119.283 N	0
Pinus contcHaasis, F. \Shuswap L	1927 Canada	50.96667	-119.283 N	0
Pinus contcHaasis, F. \Shuswap L	1927 Canada	50.96667	-119.283 N	0
Pinus contcHaasis, F. \Shuswap L	1927 Canada	50.96667	-119.283 N	0
Pinus contcHaasis, F. \Shuswap L	1927 Canada	50.96667	-119.283 N	0
Pinus contcHaasis, F. \Shuswap L	1927 Canada	50.96667	-119.283 N	0
Pinus contcHaasis, F. \Shuswap L	1927 Canada	50.96667	-119.283 N	0
Pinus contcHaasis, F. \Mount Ida,	1927 Canada	50.63333	-119.3 N	0
Pinus contcHaasis, F. \Mount Ida,	1927 Canada	50.63333	-119.3 N	0
Pinus contcHaasis, F. \Mount Ida,	1927 Canada	50.63333	-119.3 N	0
Pinus contcHaasis, F. \Mount Ida,	1927 Canada	50.63333	-119.3 N	0
Pinus contcHaasis, F. \Mount Ida,	1927 Canada	50.63333	-119.3 N	0
Pinus contcHaasis, F. \Mount Ida,	1927 Canada	50.63333	-119.3 N	0
Pinus contcHaasis, F. \Mount Ida,	1927 Canada	50.63333	-119.3 N	0
Pinus contcHaasis, F. \Highland V	1927 Canada	50.56667	-121.133 N	0
Pinus contcHaasis, F. \Highland V	1927 Canada	50.56667	-121.133 N	0
Pinus contcHaasis, F. \Highland V	1927 Canada	50.56667	-121.133 N	0
Pinus contcHaasis, F. \Highland V	1927 Canada	50.56667	-121.133 N	0
Pinus contcHaasis, F. \Highland V	1927 Canada	50.56667	-121.133 N	0
Pinus contcHaasis, F. \Highland V	1927 Canada	50.56667	-121.133 N	0
Pinus contcHaasis, F. \Highland V	1927 Canada	50.56667	-121.133 N	0
Pinus contcHaasis, F. \Long Lake,	1927 Canada	49.2	-124.017 N	0
Pinus contcHaasis, F. \Long Lake,	1927 Canada	49.2	-124.017 N	0
Pinus contcHaasis, F. \Long Lake,	1927 Canada	49.2	-124.017 N	0
Pinus contcHaasis, F. \Long Lake,	1927 Canada	49.2	-124.017 N	0
Pinus contcHaasis, F. \Long Lake,	1927 Canada	49.2	-124.017 N	0
Pinus contcHaasis, F. \Long Lake,	1927 Canada	49.2	-124.017 N	0
Pinus contcHaasis, F. \Long Lake,	1927 Canada	49.2	-124.017 N	0
Pinus contcHaasis, F. \Barnes Cre	1927 Canada	50.68333	-121.233 N	0

Pinus contcHaasis, F. \Barnes Cre	1927 Canada	50.68333	-121.233 N	0
Pinus contcHaasis, F. \Barnes Cre	1927 Canada	50.68333	-121.233 N	0
Pinus contcHaasis, F. \Barnes Cre	1927 Canada	50.68333	-121.233 N	0
Pinus contcHaasis, F. \Upper Hat	1927 Canada	50.81667	-121.567 N	0
Pinus contcHaasis, F. \Upper Hat \	1927 Canada	50.81667	-121.567 N	0
Pinus contcHaasis, F. \Upper Hat \	1927 Canada	50.81667	-121.567 N	0
Pinus contcHaasis, F. \Upper Hat	1927 Canada	50.81667	-121.567 N	0
Betula lentaJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8833 N	70
Betula lentaJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8833 N	0
Betula alleçJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8667 N	0
Betula papyJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8667 N	0
Betula alleçJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8667 N	0
Betula alleçJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8667 N	0
Betula lentaJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8833 N	0
Betula lentaJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8833 N	0
Betula papyJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8667 N	0
Betula lentaJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8833 N	70
Betula lentaJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8833 N	70
Betula lentaJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8833 N	0
Betula lentaJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8833 N	70
Betula alleçJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8667 N	0
Betula papyJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8667 N	0
Betula lentaJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8833 N	0
Betula alleçJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8667 N	0
Betula lentaJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8833 N	70
Betula papyJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8667 N	0
Betula papyJoseph, H. Boyce Thor	1926 USA	40.96667	-73.8667 N	0
Cornus floriDavis, O. HHudson Riv	1925 USA	40.93333	-73.9 N	0
Cornus floriDavis, O. HHudson Riv	1925 USA	40.93333	-73.9 N	0
Cornus floriDavis, O. HHudson Riv	1925 USA	40.93333	-73.9 N	0
Cornus floriDavis, O. HHudson Riv	1925 USA	40.93333	-73.9 N	0
Maianthem Mitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0
Solanum dıMitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0
Achillea milMitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0
Rhamnus cMitchell, E. Dutchess C	1924 USA	41.75	-73.7333 N	0
Dioscorea Mitchell, E. Dutchess C	1923 USA	41.75	-73.7333 Y	0
Anaphalis rMitchell, E. Dutchess C	1924 USA	41.75	-73.7333 N	0
Dioscorea Mitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0
Rhus copalMitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0
Viburnum pMitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0
Rhus copalMitchell, E. Dutchess C	1923 USA	41.75	-73.7333 Y	0
Rhamnus cMitchell, E. Dutchess C	1924 USA	41.75	-73.7333 N	0
Anaphalis rMitchell, E. Dutchess C	1924 USA	41.75	-73.7333 N	0
Rhus copalMitchell, E. Dutchess C	1923 USA	41.75	-73.7333 Y	0
Viburnum aMitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0
Viburnum aMitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0
Maianthem Mitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0
Viburnum pMitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0
PolygonatuMitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0
Dioscorea Mitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0
Rhus copal Mitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0
PolygonatuMitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0
Dioscorea Mitchell, E. Dutchess C	1923 USA	41.75	-73.7333 Y	0
Maianthem Mitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0
Achillea milMitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0
Maianthem Mitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0

Solanum dıMitchell, E. Dutchess C	1923 USA	41.75	-73.7333 N	0
llex opaca Ives, S. A. North Caro	1920 USA	35.61667	-79.1833 N	0
Ilex opaca Ives, S. A. North Caro	1920 USA	35.61667	-79.1833 Y	0
llex opaca Ives, S. A. North Caro	1920 USA	35.61667	-79.1833 Y	0
Ilex opaca Ives, S. A. North Caro	1920 USA	35.61667	-79.1833 N	0
PeucedanuKolodziejekSecondary	2016 Poland	50.96667	16.98333 N	150
Acer pictunZhang, M., Estaci�n E	2011 China	41.85	124.9 N	0
Acer pictunZhang, M., Estaci�n E	2011 China	41.85	124.9 N	0
Fraxinus m Zhang, M., Estaci n E	2011 China	41.85	124.9 N	0
Fraxinus mZhang, M., Estaci�n E	2011 China	41.85	124.9 N	0
PhellodendZhang, M., Estaci�n E	2011 China	41.85	124.9 N	0
Pinus korai Zhang, M., Estaci�n E	2011 China	41.85	124.9 N	0
PhellodendZhang, M., Estaci�n E	2011 China	41.85	124.9 N	0
Pinus korai Zhang, M., Estaci�n E	2011 China	41.85	124.9 N	0
Ribes tristeVoronkova,Bystrinsky,	2010 Russia	55.61667	158.25 N	124
Lycopus euBabenko, LAII-Russian	2015 Russia	55.75	37.58333 N	0
RhododencSeong, C. IMt. Goryeo	2013 South Kore		126.4333 N	0
RhododencSeong, C. IMt. Goryeo	2013 South Kore		126.4333 N	0
RhododencSeong, C. IMt. Goryeo	2013 South Kore		126.4333 N	0
RhododencSeong, C. IMt. Goryeo	2013 South Kore		126.4333 N	0
RhododencSeong, C. IMt. Goryeo	2013 South Kore		126.4333 N	0
RhododencSeong, C. IMt. Goryeo	2013 South Kore		126.4333 N	0
Hydrangea Lee, S. Y., Hantaek, Y	2006 South Kore		127.4 N	0
Hydrangea Lee, S. Y., Hantaek, Y	2006 South Kore		127.4 N	0
Hydrangea Lee, S. Y., Hantaek, Y	2006 South Kore		127.4 N	0
Hydrangea Lee, S. Y., Hantaek, Y	2006 South Kore		127.4 N	0
Hydrangea Lee, S. Y., Hantaek, Y	2006 South Kore		127.4 N	0
Hydrangea Lee, S. Y., Hantaek, Y	2006 South Kore		127.4 N	0
Hydrangea Lee, S. Y., Hantaek, Y	2006 South Kore		127.4 N	0
Hydrangea Lee, S. Y., Hantaek, Y	2006 South Kore		127.4 N	0
SymphyotriKim, J. S., (Cheongwor	2014 South Kore		127.45 N	0
SymphyotriKim, J. S., (Cheongwor	2014 South Kore		127.45 N	0
SymphyotriKim, J. S., (Cheongwor	2014 South Kore		127.45 N	0
SymphyotriKim, J. S., (Cheongwor	2014 South Kore		127.45 N	0
Symphyotri Kim, J. S., (Cheongwor	2014 South Kore		127.45 N	0
SymphyotriKim, J. S., (Cheongwor	2014 South Kore		127.45 N	0
SymphyotriKim, J. S., (Cheongwor	2014 South Kore		127.45 N	0
SymphyotriKim, J. S., (Cheongwor	2014 South Kore		127.45 N	0
Zanthoxylu Ahn, SY., Jirisan Fue	2013 South Kore		127.7167 N	240
Zanthoxylu Ahn, SY., Jirisan Fue	2013 South Kore		127.7167 Y	240
Zanthoxylu Ahn, SY., Jirisan Fue	2013 South Kore		127.7167 N	240
Zanthoxylu Ahn, SY., Jirisan Fue	2013 South Kore		127.7167 N	240
Zanthoxylu Ahn, SY., Jirisan Fue	2013 South Kore		127.7167 Y	240
Zanthoxylu Ahn, SY., Jirisan Fue	2013 South Kore		127.7167 Y	240
RhododencLee, J. H., (Korea Fore	2013 South Kore		127.9167 N	0
RhododencLee, J. H., (Korea Fore	2013 South Kore		127.9167 N	0
Pinus pumi Lim, HI. KDaecheong	2014 South Kore		128.45 N	42
Pinus pumi Lim, HI. KDaecheong	2014 South Kore	38.11667	128.45 N	0
Lespedeza Ibyeongtae Departmen	2003 South Kore	36.4	128 N	0
Robinia pscJastrz?bowRadomicko	2013 Poland	52.13333	14.91667 Y	0
Robinia pscJastrz?bowRadomicko	2013 Poland	52.13333	14.91667 N	0
Ligularia fisYoon, JH.Yanggu, G	2013 South Kore	38.15	127.9833 N	0
Ligularia fisYoon, JH.Yanggu, G	2013 South Kore	38.15	127.9833 N	0
Ligularia fisYoon, JH.Yanggu, G	2013 South Kore	38.15	127.9833 N	0
Ligularia fisYoon, JH.Yanggu, G	2013 South Kore	38.15	127.9833 N	0
Pimpinella lKim, J. J., €Yeongwol,	2013 South Kore	37.18333	128.5 N	0

Pimpinella Kim, J. J., ¿Yeongwol,	2013 South Kore		128.5 N	0
Pimpinella Kim, J. J., ¿Yeongwol,	2013 South Kore		128.5 N	40
Pimpinella Kim, J. J., ¿Yeongwol,	2013 South Kore		128.5 N	0
Pimpinella Kim, J. J., ¿Yeongwol,	2013 South Kore		128.5 N	0
Pimpinella Kim, J. J., ¿Yeongwol,	2013 South Kore		128.5 N	0
Pimpinella Kim, J. J., ¿Yeongwol,	2013 South Kore		128.5 N	0
Lespedeza Kang, HK Chungnam	2013 South Kore		126.9333 N	0
Lespedeza Kang, HK Chungnam	2013 South Kore		126.9333 N	0
Lespedeza Kang, HK Chungnam	2013 South Kore		126.9333 N	0
Lespedeza Kang, HK Chungnam	2013 South Kore		126.9333 N	0
MiscanthusKang, HK Chungchec	2015 South Kore	36.65	126.9 N	0
PhragmitesKang, HK Chungchec	2015 South Kore		126.9 N	0
PhragmitesKang, HK Chungchec	2015 South Kore	36.65	126.9 N	0
Miscanthus Kang, HK Chungchec	2015 South Kore	36.65	126.9 N	0
Miscanthus Kang, HK Chungchec	2015 South Kore	36.65	126.9 N	0
MiscanthusKang, HK Chungchec PhragmitesKang, HK Chungchec	2015 South Kore 2015 South Kore	36.65 36.65	126.9 N	0
PhragmitesKang, HK Chungchec	2015 South Kore	36.65	126.9 N	0
0.	2013 South Kore		126.9 N 127.8833 N	0
MiscanthusKang, H., eSouth Kore	2005 South Kore			0
Robinia pscKim, r., et aSouth Kore Lespedeza Kim, r., et aSouth Kore	2005 South Kore		127.9 N 127.9 N	0
Lespedeza Kang, H., eSouth Kore	2011 South Kore		127.9 N 127.8833 N	0
Pinus dens Kim, r., et aSouth Kore	2005 South Kore		127.0033 N	0
Lespedeza Kang, H., eSouth Kore	2011 South Kore		127.8 N	0
RhododencKang, SY.Daejeon, S	2002 South Kore		127.3833 N	0
RhododencKang, SY.Daejeon, S	2002 South Kore		127.3833 N	0
Lespedeza Young, A. Dankook U	2002 South Kore		127.3033 N	0
TaraxacumLee, IJ. (2Hayang-eu	2012 South Kore		128.7833 N	0
Hydrangea Cho, J. S., Jeju, South	2012 South Kore		126.5667 N	0
Hydrangea Cho, J. S., Jeju, South	2011 South Kore		126.5667 N	0
Hydrangea Cho, J. S., Jeju, South	2011 South Kore		126.5667 N	0
Hydrangea Cho, J. S., Jeju, South	2011 South Kore		126.5667 N	0
Hydrangea Cho, J. S., Jeju, South	2011 South Kore		126.5667 N	0
Miscanthusljongseok aJeju, South	2006 South Kore		126.5667 N	0
Hydrangea Cho, J. S., Jeju, South	2011 South Kore		126.5667 N	0
Hydrangea Cho, J. S., Jeju, South	2011 South Kore		126.5667 N	0
Hydrangea Cho, J. S., Jeju, South	2011 South Kore		126.5667 N	0
Robinia ps	2013 Poland	52.15	14.9 Y	0
Robinia pscJastrz?bowGestowice,	2013 Poland	52.15	14.9 N	0
Robinia pscJastrz?bowRudnica, M	2013 Poland	51.85	14.18333 Y	0
Robinia ps	2013 Poland	51.85	14.18333 N	0
MicrostegiuHuebner, C2005 collec	2005 USA	39.65	-79.7833 N	0
MicrostegiuHuebner, C2008 collec	2008 USA	39.65	-79.7833 N	0
MicrostegiuHuebner, C2008 collec	2008 USA	39.65	-79.7833 N	0
Calluna vul Henning, K Oranienbau	2012 Germany	51.76667	12.35 N	56
Calluna vul Henning, K Oranienbau	2012 Germany	51.76667	12.35 N	56
Bromus tecRawlins, J. Spanish Fo	2002 USA	40.1	-111.65 N	0
Bromus tecRawlins, J. Spanish Fo	2002 USA	40.1	-111.65 N	0
Bromus tecHawkins, KSpanish Fo	2011 USA	40.1	-111.633 N	0
Bromus tecRawlins, J. Spanish Fo	2002 USA	40.1	-111.65 N	0
Bromus tecRawlins, J. Spanish Fo	2002 USA	40.1	-111.65 N	0
Bromus tecRawlins, J. Spanish Fo	2002 USA	40.1	-111.65 N	0
Bromus tecRawlins, J. Spanish Fo	2002 USA	40.1	-111.65 N	0
Bromus tecRawlins, J. Spanish Fo	2002 USA	40.1	-111.65 N	0
TaraxacumHale, A. N. Springfield,	2005 USA	39.15	-84.5167 N	0

Stratification	o Strat	tificatio Light	Photoperio	Alternating	Tdif	Tmax	Tmin	Tmean
None	Ν	Υ	24	N	0	25	25	25
None	Ν	Υ	24	N	0	25	25	25
Cold	Υ	Υ	12	N	0	25	25	25
Warm	Υ	Υ	12		0			25
Cold	Ϋ́	N		Y	10		20	25
Cold	Ϋ́	N		Ϋ́	10		20	25
Cold	Ϋ́	Y		Ϋ́	10		20	23.33333
	Ϋ́	Ϋ́						
Cold				Y	10			23.33333
None	N	N		N	0			5
None	N	N		N	0			15
None	N	N		N	0			20
None	Ν	N		Υ	10			15
None	Ν	Υ	12		10			25
None	Ν	Υ	12	N	0	5	5	5
None	Ν	N	0	N	0	10	10	10
None	Ν	Υ	12	N	0	15	15	15
None	Ν	Υ	12	N	0	25	25	25
None	Ν	Υ	12		10		10	15
None	N	N		N	0			25
None	N	Y	12		0		10	10
None	N	Ϋ́	12		0			20
	N	N		Y	10		20	
None								25
Cold	Y	Y	12		10			20
None	N	Y	12		0			0.9
None	Ν	Υ	12		10			20
Cold	Υ	Υ	12		10			20
Cold	Υ	Υ	12		0		0.9	0.9
None	Ν	Υ	12	Υ	10	25	15	20
None	Ν	Υ	12	Υ	10	25	15	20
Cold	Υ	Υ	12	Υ	10	25	15	20
None	Ν	Υ	12	Υ	_10	25	15	20
Cold	Υ	Υ	12		10			20
None	Ν	Υ	13		0		20	20
None	N	Y	13		0			25
None	N	Ϋ́	13		O		30	30
None	N	Ϋ́	13		0			35
None	N	Ϋ́	13		0			10
	N	Ϋ́	13		0			
None								15
None	N	Y	13		0			5
None	N	Y	13		0			20
None	N	Y	13		0			25
None	Ν	Υ	13		0			35
None	Ν	Υ	13		0			15
None	Ν	Υ	13		0			10
None	Ν	Υ	13	N	0	5	5	5
None	Ν	Υ	13	N	0	30	30	30
None	Ν	Υ	8	N	0	20	20	20
Cold	Υ	Υ		N	0			20
None	Ν	NA	NA	N	0			4
None	N	Y		N	0			22.5
None	N	Ϋ́		N	0			20
None	N	Ϋ́	12		0			26
Cold	Y	Ϋ́	12		0			26
None	N	NA	NA	N	0			4
None	N	Υ	12	IN	0	21	21	21

None	N	NA	NA	N	0	4	4	4
None	N	NA	NA	N	0	4	4	4
None	N	NA	NA	N	0	4	4	4
None	Ν	NA	NA	N	0	23	23	23
None	Ν	NA	NA	N	0	4	4	4
None	Ν	NA	NA	N	0	4	4	4
None	Ν	NA	NA	N	0	4	4	4
Cold	Υ	N		0 N	0	3	3	3
Cold	Υ	N		0 N	0	-1	-1	-1
Cold	Υ	N		0 N	0	13	13	13
None	Ν	NA	NA	N	0	4	4	4
Cold	Υ	N		0 N	0	7	7	7
Cold	Υ	N		0 N	0	11	11	11
Cold	Υ	N		0 N	0	1	1	1
Cold	Y	N		0 N	0	9	9	9
Cold	Y	N		0 N	0	5	5	5
Cold	Ϋ́	N		0 N	0	0	0	0
None	N	NA	NA	N	0	4	4	4
Cold	Y	Y	14/	8 N	0	20	20	20
None	N	Ϋ́		8 N	0	20	20	20
Cold	Y	Y		8 N	0	20	20	20
	n N	Ϋ́		8 N	0			20
None		Ϋ́				20	20	
None	N			14 Y	5	25	20	22.91667
Cold	Y	N		0 N	0	20	20	20
Cold	Y	Y		16 N	0	20	20	20
Cold	Y	Y		16 Y	20	30	10	23.33333
Cold	Y	N		0 N	0	20	20	20
Cold	Y	Y		16 N	0	20	20	20
Cold	Y	N		0 N	0	20	20	20
Cold	Y	N		0 Y	20	30	10	20
Cold	Υ	Y		16 Y	20	30	10	23.33333
Cold	Υ	N		0 Y	20	30	10	20
Cold	Υ	Υ		16 Y	20	30	10	23.33333
Cold	Υ	Υ		16 N	0	20	20	20
Cold	Υ	N		0 N	0	20	20	20
Cold	Υ	Υ		16 N	0	20	20	20
Cold	Υ	N		0 Y	20	30	10	20
Cold	Υ	Υ		16 Y	20	30	10	23.33333
Cold	Υ	Υ		16 Y	20	30	10	23.33333
Cold	Υ	N		0 Y	20	30	10	20
Cold	Υ	Υ		16 N	0	20	20	20
Cold	Υ	Ν		0 N	0	20	20	20
Cold	Υ	N		0 Y	20	30	10	20
Cold	Υ	Υ		16 N	0	20	20	20
Cold	Υ	Υ		16 N	0	20	20	20
Cold	Υ	Υ		16 Y	20	30	10	23.33333
Cold	Υ	N		0 N	0	20	20	20
Cold	Υ	Υ		16 Y	20	30	10	23.33333
Cold	Υ	N		0 Y	20	30	10	20
Cold	Ϋ́	N		0 N	0	20	20	20
Cold	Ϋ́	N		0 Y	20	30	10	20
None	N	Ϋ́		14 N	0	20	20	20
None	N	Ϋ́		12 N	0	6	6	6
None	N	Ý		12 N	0	12	12	12
None	N	Y		12 N	0	18	18	18
None	N	NA	NA	N	0	20	20	20
INOITE	1 1	111/1	IN/A	IN	U	20	20	20

Ν Ν Ν Ν Ν Ν Ν Ν 14 N Ν Ν Ν Ν Ν Ν 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N Y 0 N Υ Υ Y Υ 0 N Ν 0 N 0 N Ν Υ 0 N 0 N Υ Υ Ν 0 N Υ Ν 0 N 0 N Ν Ν 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N

1				
2				
3	None	Ν	NA	NA
4	None	N	NA	NA
5 6	None	N	NA	NA
7	None	N	NA	NA
8	None	N	NA	NA
9	None	N	NA	NA
10	None None	N N	NA NA	NA NA
11	None	N	Y	INA
12	None	N	NA	NA
13	None	N	NA	NA
14	None	N	NA	NA
15	None	N	NA	NA
16 17	None	N	NA	NA
18	None	Ν	NA	NA
19	Cold	Υ	N	
20	Cold	Υ	N	
21	Cold	Υ	N	
22	Cold	Υ	N	
23	Cold	Υ	N	
24	Cold	Υ	N	
25	Cold	Υ	N	
26	Cold	Υ	N	
27	Cold	Y	N	
28	Cold	Y	NA	NA
29	Cold	Y	N	
30	Cold	Y	NA	NA
31 32	Cold	Y	NA	NA
33	Cold	Y Y	NA NA	NA NA
34	Cold Cold	Ϋ́	NA N	INA
35	Cold	Ϋ́	NA	NA
36	Cold	Ϋ́	N	INA
37	Cold	Ϋ́	N	
38	Cold	Ϋ́	NA	NA
39	Cold	Ϋ́	NA	NA
40	Cold	Υ	N	
41	Cold	Υ	N	
42	Cold	Υ	NA	NA
43	Cold	Υ	NA	NA
44 45	Cold	Υ	NA	NA
45 46	Cold	Υ	N	
47	Cold	Υ	NA	NA
48	Cold	Υ	NA	NA
49	Cold	Y	N	
50	Cold	Y	N	
51	Cold	Y	NA	NA
52	Cold	Y	NA	NA
53	Cold	Y	N	
54	Cold	Y Y	N	
55	Cold	Y Y	N N	
56	Cold Cold	Ϋ́Υ	N N	
57 50	Cold	Ϋ́	N	
58 50	Cold	Ϋ́	N	
59 60	Cold	Ϋ́	N	
00	20.0	•	.,	

Cold	Υ	N		0 N	0	9	9	9
Cold	Υ	N		0 N	0	-1	-1	-1
Cold	Y	N		0 N	0	3	3	3
Cold	Ϋ́	N		0 N	0	1	1	1
Cold	Ϋ́	N		0 N	0	7	7	7
Cold	Ϋ́	N		0 N	0	11	11	11
Cold	Ϋ́	N		0 N	0	5	5	5
Cold	Ϋ́	N		0 N	0	0	0	0
Cold	Ϋ́	N		0 N	0	13	13	13
Cold	Ϋ́	N		0 N	0	9	9	9
	N	Y		14 N	0		20	20
None	Y	N		0 N	0	20 5	5	5
Cold	Y					-1	-1	
Cold		N		0 N	0			-1
Cold	Y	N		0 N	0	11	11	11
Cold	Y	N		0 N	0	0	0	0
Cold	Y	N		0 N	0	1	1	1
Cold	Y	N		0 N	0	9	9	9
Cold	Y	N		0 N	0	7	7	7
Cold	Υ	N		0 N	0	13	13	13
Cold	Υ	N		0 N	0	3	3	3
Cold	Υ	N		0 N	0	7	7	7
Cold	Υ	N		0 N	0	13	13	13
Cold	Υ	N		0 N	0	-1	-1	-1
Cold	Υ	N		0 N	0	3	3	3
Cold	Υ	N		0 N	0	0	0	0
Cold	Υ	N		0 N	0	5	5	5
Cold	Υ	N		0 N	0	9	9	9
Cold	Υ	N		0 N	0	11	11	11
Cold	Υ	N		0 N	0	1	1	1
None	Ν	Υ		12 N	0	20	20	20
None	Ν	NA	NA	Ν	0	23.5	23.5	23.5
Cold	Υ	NA	NA	Ν	0	23.5	23.5	23.5
Cold	Υ	NA	NA	N	0	23.5	23.5	23.5
None	Ν	NA	NA	Ν	0	23.5	23.5	23.5
Cold	Υ	NA	NA	N	0	23.5	23.5	23.5
None	Ν	NA	NA	Ν	0	23.5	23.5	23.5
None	Ν	NA	NA	N	0	22.5	22.5	22.5
None	Ν	Υ		15 N	0	25	25	25
None	Ν	Υ		15 N	0	15	15	15
None	N	Y		15 N	0	30	30	30
None	N	Y		15 N	0	20	20	20
None	N	Ϋ́		14 N	0	20	20	20
None	N	Ý		14 Y	10	25	15	20.83333
Cold	Y	Ϋ́		14 Y	10	25	15	20.83333
Cold	Ϋ́	Ý		14 Y	10	25	15	20.83333
Cold	Ϋ́	Ý		14 Y	10	25	15	20.83333
Cold	Ϋ́	Ϋ́		14 Y	10	25	15	20.83333
None	N	Ϋ́		14 Y	10	25	15	20.83333
None	N	Ϋ́		12 N	0	20.5	20.5	20.63333
		Ϋ́		12 N				
None	N N	Ϋ́		12 N 8 N	0	20.5 16	20.5	20.5
None	N				0		16 15	16
Cold	Y	Y		15 Y	9	24	15	20.625
None	N	Y		8 N	0	8	8	8 20 625
Cold	Y	Y		15 Y	9	24	15	20.625
Cold	Y	Y		15 Y	9	24	15	20.625
None	N	Y		8 N	0	20	20	20

1								
2								
3	None	Ν	Υ	8 N	0	20	20	20
4	Cold	Υ	Υ	15 Y	9	24	15	20.625
5	None	Ν	Υ	8 N	0	4	4	4
6	None	Ν	Υ	8 N	0	20	20	20
7	None	Ν	Υ	8 N	0	28	28	28
8 9	Cold	Υ	Υ	15 Y	9	24	15	20.625
	None	Ν	Υ	8 N	0	12	12	12
10	None	Ν	Υ	8 N	0	15	15	15
11 12	None	Ν	Υ	8 N	0	24	24	24
13	Cold	Υ	Υ	16 Y	10	30	20	26.66667
14	None	N	Υ	16 Y	10	30	20	26.66667
15	None	N	Υ	12 Y	10	20	10	15
16	Cold	Υ	Υ	12 Y	10	20	10	15
17	None	N	Υ	12 Y	10	20	10	15
18	None	N	Υ	12 Y	10	20	10	15
19	None	N	Υ	12 Y	10	20	10	15
20	None	N	Υ	12 Y	10	20	10	15
21	None	N	Υ	12 Y	10	20	10	15
22	Cold	Υ	Υ	12 Y	10	20	10	15
23	Cold	Υ	Υ	14 Y	15	25	10	18.75
24	None	Ν	Υ	14 Y	15	25	10	18.75
25	None	N	Υ	18 Y	10	15	5	12.5
26	None	N	Υ	16 N	0	22	22	22
27	None	N	Υ	14 Y	14	24	10	18.16667
28	None	N	Υ	14 N	0	20	20	20
29	None	N	Υ	14 Y	14	24	10	18.16667
30	None	N	N	0 N	0	20	20	20
31	None	N	Υ	12 Y	10	30	20	25
32	None	N	NA	NIA NI	^	25	25	25
				NA N	0	25		
33	Cold	Υ	NA	NA N	0	25	25	25
34	Cold None	Y N	NA Y	NA N 8 Y	0 5	25 25	25 20	25 21.66667
34 35	Cold None Cold	Y N Y	NA Y Y	NA N 8 Y 8 Y	0 5 5	25 25 25	25 20 20	25 21.66667 21.66667
34 35 36	Cold None Cold None	Y N Y N	NA Y Y Y	NA N 8 Y 8 Y 12 N	0 5 5 0	25 25 25 25	25 20 20 25	25 21.66667 21.66667 25
34 35 36 37	Cold None Cold None None	Y N Y N	NA Y Y Y Y	NA N 8 Y 8 Y 12 N 12 N	0 5 5 0 0	25 25 25 25 26	25 20 20 25 26	25 21.66667 21.66667 25 26
34 35 36 37 38	Cold None Cold None None Cold	Y N Y N N	NA Y Y Y Y	NA N 8 Y 8 Y 12 N 12 N 12 N	0 5 5 0 0	25 25 25 25 26 26	25 20 20 25 26 26	25 21.66667 21.66667 25 26 26
34 35 36 37 38 39	Cold None Cold None None Cold None	Y N Y N N Y	NA Y Y Y Y Y	NA N 8 Y 8 Y 12 N 12 N 12 N 12 N	0 5 5 0 0 0	25 25 25 25 26 26 26	25 20 20 25 26 26 26	25 21.66667 21.66667 25 26 26 26
34 35 36 37 38 39 40	Cold None Cold None None Cold None None	Y N Y N N Y	NA Y Y Y Y Y	NA N 8 Y 8 Y 12 N 12 N 12 N 12 N 12 N	0 5 5 0 0 0 0	25 25 25 25 26 26 26 26	25 20 20 25 26 26 26 20	25 21.66667 21.66667 25 26 26 26 20
34 35 36 37 38 39 40 41	Cold None Cold None None Cold None None Cold	Y N Y N N Y N	NA Y Y Y Y Y Y	NA N 8 Y 8 Y 12 N 12 N 12 N 12 N 12 N 12 N	0 5 5 0 0 0 0 0	25 25 25 25 26 26 26 20 26	25 20 20 25 26 26 26 20 26	25 21.66667 21.66667 25 26 26 26 20 26
34 35 36 37 38 39 40 41 42	Cold None Cold None None Cold None Cold None	Y N Y N N Y N N	NA Y Y Y Y Y Y Y Y Y Y Y Y Y	NA N 8 Y 8 Y 12 N 12 N 12 N 12 N 12 N 12 N 12 N	0 5 5 0 0 0 0 0	25 25 25 25 26 26 26 20 26 20	25 20 20 25 26 26 26 20 26 20	25 21.66667 21.66667 25 26 26 20 26 20
34 35 36 37 38 39 40 41 42 43	Cold None Cold None Cold None None Cold None Cold	Y N Y N N Y N Y	NA Y Y Y Y Y Y Y Y Y Y Y Y Y	NA N 8 Y 8 Y 12 N 12 N 12 N 12 N 12 N 12 N 12 N 12 N	0 5 5 0 0 0 0 0 0	25 25 25 25 26 26 26 20 26 20 13	25 20 20 25 26 26 26 20 26 20	25 21.66667 21.66667 25 26 26 20 26 20 13
34 35 36 37 38 39 40 41 42 43 44	Cold None Cold None Cold None Cold None Cold None	Y N Y N Y N Y N Y	NA Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NA N 8 Y 8 Y 12 N	0 5 5 0 0 0 0 0 0	25 25 25 26 26 26 20 26 20 13 10	25 20 20 25 26 26 20 26 20 13	25 21.66667 21.66667 25 26 26 20 26 20 13 10
34 35 36 37 38 39 40 41 42 43 44	Cold None Cold None Cold None Cold None Cold None Cold None	Y N Y N N Y N Y N N N N N N N N N N N N	NA Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NA N 8 Y 8 Y 12 N	0 5 5 0 0 0 0 0 0 0	25 25 25 26 26 26 20 26 20 13 10 35	25 20 20 25 26 26 20 26 20 13 10 35	25 21.66667 21.66667 25 26 26 20 26 20 13 10 35
34 35 36 37 38 39 40 41 42 43 44 45 46	Cold None Cold	Y N Y N N Y N N Y N N Y N N Y	NA Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NA N 8 Y 8 Y 12 N	0 5 5 0 0 0 0 0 0 0	25 25 25 26 26 26 20 26 20 13 10 35	25 20 20 25 26 26 20 26 20 13 10 35	25 21.66667 21.66667 25 26 26 20 26 20 13 10 35
34 35 36 37 38 39 40 41 42 43 44 45 46 47	Cold None Cold None Cold None Cold None Cold None Cold None Cold Cold Cold	Y N Y N N Y N Y N Y N Y	NA Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NA N 8 Y 8 Y 12 N	0 5 5 0 0 0 0 0 0 0 0	25 25 25 25 26 26 20 26 20 13 10 35 10 35	25 20 20 25 26 26 20 26 20 13 10 35	25 21.66667 21.66667 25 26 26 20 26 20 13 10 35 10
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Cold None None	Y N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N Y N N N N Y N N N N Y N N N N Y N N N N Y N N N N Y N N N N Y N	NA Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NA N 8 Y 8 Y 12 N	0 5 5 0 0 0 0 0 0 0 0 0	25 25 25 26 26 26 20 26 20 13 10 35 10 35 30	25 20 20 25 26 26 20 26 20 13 10 35 10 35 30	25 21.66667 21.66667 25 26 26 20 26 20 13 10 35 10 35 30
34 35 36 37 38 39 40 41 42 43 44 45 46 47	Cold None None Cold None None None	Y	NA Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NA N 8 Y 8 Y 12 N	0 5 5 0 0 0 0 0 0 0 0 0	25 25 25 26 26 26 20 26 20 13 10 35 10 35 30 25	25 20 20 25 26 26 20 26 20 13 10 35 10 35 30 25	25 21.66667 21.66667 25 26 26 20 26 20 13 10 35 10 35 30 25
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Cold None None Cold None None None Cold None None None	Y	NA Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NA N 8 Y 8 Y 12 N	0 5 5 0 0 0 0 0 0 0 0 0 0	25 25 25 26 26 26 20 26 20 13 10 35 10 35 30 25	25 20 20 25 26 26 20 26 20 13 10 35 10 35 30 25	25 21.66667 21.66667 25 26 26 20 26 20 13 10 35 10 35 30 25 17
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Cold None None Cold None None Cold None None None None	Y	NA	NA N 8 Y 8 Y 12 N	0 5 5 0 0 0 0 0 0 0 0 0 0 0	25 25 25 26 26 26 20 26 20 13 10 35 10 35 10 35 10	25 20 20 25 26 26 20 26 20 13 10 35 10 35 30 25 17	25 21.66667 21.66667 25 26 26 20 26 20 13 10 35 10 35 30 25 17
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	Cold None Cold None None Cold None Cold None Cold None Cold None None Cold None None Cold Cold None None Cold Cold Cold None None None Cold	Y	NA Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NA N 8 Y 8 Y 12 N	0 5 5 0 0 0 0 0 0 0 0 0 0 0	25 25 25 26 26 26 20 26 20 13 10 35 10 35 10 35 17 13	25 20 20 25 26 26 20 26 20 13 10 35 10 35 30 25 17 13	25 21.66667 21.66667 25 26 26 20 26 20 13 10 35 10 35 10 35 17
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	Cold None Cold None None Cold None Cold None Cold None Cold None Cold None None Cold Cold None None Cold Cold Cold Cold Cold Cold Cold Cold	Y	NA	NA N 8 Y 8 Y 12 N	0 5 5 0 0 0 0 0 0 0 0 0 0 0 0	25 25 25 25 26 26 20 26 20 13 10 35 10 35 10 35 17 13	25 20 20 25 26 26 20 26 20 13 10 35 10 35 30 25 17 13	25 21.66667 21.66667 25 26 26 20 26 20 13 10 35 10 35 10 35 17 13
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	Cold None Cold None None Cold None Cold None Cold None Cold None None Cold Cold None Cold Cold Cold Cold Cold Cold Cold Cold	Y	NA Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NA N 8 Y 8 Y 12 N	0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 25 25 26 26 26 20 26 20 13 10 35 10 35 10 35 10 35 30 25 17 13 17	25 20 20 25 26 26 20 26 20 13 10 35 10 35 10 35 17 13 17 30 25	25 21.66667 21.66667 25 26 26 20 26 20 13 10 35 10 35 10 35 17 13 17
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	Cold None Cold None None Cold None Cold None Cold None Cold None None Cold Cold Cold Cold Cold Cold Cold Cold	Y	NA Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	NA N 8 Y 8 Y 12 N	0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 25 25 26 26 26 20 26 20 13 10 35 10 35 10 35 17 13 17 30 25 20 25 20	25 20 20 25 26 26 20 26 20 13 10 35 10 35 17 13 17 30 25 20	25 21.66667 21.66667 25 26 26 20 26 20 13 10 35 10 35 10 35 17 13 17 30 25 20
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	Cold None Cold None None Cold None Cold None Cold None Cold None None Cold Cold None None Cold Cold Cold Cold Cold Cold Cold Cold	Y	NA	NA N 8 Y 8 Y 12 N	0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 25 25 26 26 26 20 26 20 13 10 35 10 35 10 35 17 13 17 30 25 20 20 20 20 20 20 20 20 20 20 20 20 20	25 20 20 25 26 26 20 26 20 13 10 35 10 35 30 25 17 13 17 30 25 20 20	25 21.66667 21.66667 25 26 26 20 26 20 13 10 35 10 35 10 35 17 13 17 30 25 20 20
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Cold None Cold None None Cold None Cold None Cold None Cold None None Cold Cold Cold None None Cold Cold Cold Cold Cold Cold Cold Cold	Y	NA	NA N 8 Y 8 Y 12 N	0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 25 25 26 26 26 20 26 20 13 10 35 10 35 30 25 17 13 17 30 25 20 20 20	25 20 20 25 26 26 20 26 20 13 10 35 10 35 30 25 17 13 17 30 25 20 20	25 21.66667 21.66667 25 26 26 20 26 20 13 10 35 10 35 10 35 17 13 17 30 25 20 20 10
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	Cold None Cold None None Cold None Cold None Cold None Cold None None Cold Cold None None None Cold Cold Cold Cold Cold Cold Cold Cold	Y	NA	NA N 8 Y 8 Y 12 N	0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 25 25 25 26 26 20 26 20 13 10 35 10 35 30 25 17 13 17 30 25 20 20 10 13	25 20 20 25 26 26 20 26 20 13 10 35 10 35 17 13 17 30 25 20 20 10 13	25 21.66667 21.66667 25 26 26 20 26 20 13 10 35 10 35 30 25 17 13 17 30 25 20 20
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Cold None Cold None None Cold None Cold None Cold None Cold None None Cold Cold Cold None None Cold Cold Cold Cold Cold Cold Cold Cold	Y	NA	NA N 8 Y 8 Y 12 N	0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 25 25 26 26 26 20 26 20 13 10 35 10 35 30 25 17 13 17 30 25 20 20 20	25 20 20 25 26 26 20 26 20 13 10 35 10 35 30 25 17 13 17 30 25 20 20	25 21.66667 21.66667 25 26 26 20 26 20 13 10 35 10 35 10 35 17 13 17 30 25 20 20 10

Cold	Υ	Υ	12 N	0	25	25	25
None	Ν	Υ	12 N	0	20	20	20
None	Ν	Υ	12 N	0	25	25	25
Cold	Υ	Υ	12 N	0	35	35	35
Cold	Y	Y	12 N	0	20	20	20
None	N	Ϋ́	12 N	Ö	35	35	35
None	N	Ý	12 N	Ö	30	30	30
Cold	Y	Ϋ́	12 N	0	13	13	13
Cold	Ϋ́	Ϋ́	12 N	0	17	17	17
	N	Y	12 N	0	17	17	17
None							
Cold	Y	Y	12 N	0	30	30	30
None	N	N	0 N	0	15	15	15
None	N	N	0 N	0	5	5	5
None	N	Y	12 N	0	25	25	25
None	N	Υ	12 N	0	20	20	20
None	N	Υ	12 N	0	5	5	5
None	N	N	0 N	0	25	25	25
None	Ν	N	0 N	0	10	10	10
None	Ν	Υ	12 N	0	15	15	15
None	N	Υ	12 N	0	10	10	10
None	Ν	N	0 N	0	20	20	20
None	Ν	Υ	12 N	0	10	10	10
None	Ν	Υ	12 N	0	20	20	20
Cold	Υ	Y	12 N	0	13	13	13
Cold	Ϋ́	Ϋ́	12 N	0	30	30	30
None	N	Ý	12 N	Ö	17	17	17
Cold	Y	Ϋ́	12 N	0	35	35	35
None	N	Ϋ́	12 N	0	25	25	25
Cold	Y	Y	12 N	0	23 17	17	23 17
	Ϋ́	Ϋ́	12 N 12 N		17		
Cold		Ϋ́		0		10	10
None	N		12 N	0	30	30	30
None	N	Y	12 N	0	35	35	35
Cold	Y	Y	12 N	0	20	20	20
Cold	Y	Y	12 N	0	25	25	25
None	N	Υ	12 N	0	13	13	13
Cold	Υ	Υ	12 N	0	20	20	20
Cold	Υ	Υ	12 N	0	30	30	30
Cold	Υ	Υ	12 N	0	17	17	17
None	N	Υ	12 N	0	30	30	30
Cold	Υ	Υ	12 N	0	10	10	10
Cold	Υ	Υ	12 N	0	35	35	35
None	Ν	Υ	12 N	0	17	17	17
None	N	Υ	12 N	0	25	25	25
None	Ν	Υ	12 N	0	13	13	13
Cold	Υ	Υ	12 N	0	13	13	13
Cold	Υ	Υ	12 N	0	25	25	25
None	Ň	Y	12 N	0	35	35	35
None	N	Ϋ́	12 N	Ö	10	10	10
None	N	Ý	12 N	0	20	20	20
None	N	Ϋ́	12 N	0	35	35	35
Cold	Y	Y	12 N 12 N	0	13	13	13
Cold	Y	Y	12 N	0	35	35	35
None	N	Y	12 N	0	20	20	20
None	N	Y	12 N	0	30	30	30
Cold	Y	Y	12 N	0	17	17	17
Cold	Υ	Υ	12 N	0	10	10	10

1								
2								
3	None	Ν	Υ	12 N	0	25	25	25
4	None	Ν	Υ	12 N	0	10	10	10
5	Cold	Υ	Υ	12 N	0	25	25	25
6	Cold	Υ	Υ	12 N	0	20	20	20
7	None	N	Y	12 N	0	13	13	13
8	None	N	Ϋ́	12 N	0	17	17	17
9	Cold	Y	Ϋ́	12 N	0	30	30	30
10	None	N	NA	NA N	0	15	15	15
11	None	N	NA	NA N	0	35	35	35
12		N	NA NA	NA N	0	20	20	20
13	None							
14	None	N	NA	NA N	0	25	25	25
15	None	N	NA	NA N	0	30	30	30
16	None	N	NA	NA N	0	5	5	5
17	None	N	NA	NA N	0	10	10	10
18	None	N	NA	NA N	0	25	25	25
19	None	N	NA	NA N	0	10	10	10
20	None	Ν	NA	NA N	0	15	15	15
21	None	Ν	NA	NA N	0	20	20	20
22	None	Ν	NA	NA N	0	30	30	30
23	None	Ν	NA	NA N	0	5	5	5
24	None	Ν	NA	NA N	0	35	35	35
25	None	Ν	Υ	14 N	0	17	17	17
26	None	N	Y	14 N	0	26	26	26
27	None	N	Ϋ́	14 N	0	23	23	23
28	None	N	Ϋ́	14 N	0	20	20	20
29	None	N	N N	0 Y	10	30	20	25
			N	0 Y	10	30	20	25
30	None	N	Y					
31	Cold	Y		8 Y	10	30	20	23.33333
32	Cold	Y	Y	8 Y	10	30	20	23.33333
33	Cold	Y	N	0 Y	10	30	20	25
34	Cold	Y	Y	8 Y	10	30	20	23.33333
35	None	N	Υ	8 Y	10	30	20	23.33333
36	None	N	Υ	8 Y	10	30	20	23.33333
37	None	N	Υ	8 Y	10	30	20	23.33333
38	None	N	Υ	8 Y	10	30	20	23.33333
39	Cold	Υ	Υ	8 Y	10	30	20	23.33333
40	None	Ν	Υ	8 Y	10	30	20	23.33333
41	None	Ν	Υ	8 Y	10	30	20	23.33333
42	Cold	Υ	Υ	8 Y	6	21	15	17
43	None	Ν	N	0 Y	10	30	20	25
44	Cold	Υ	N	0 Y	10	30	20	25
45	Cold	Υ	Υ	8 Y	10	30	20	23.33333
46	Cold	Ϋ́	N	0 Y	10	30	20	25
47	None	N	Y	8 Y	10	30	20	23.33333
48	Cold	Y	Ϋ́	8 Y	10	30	20	23.33333
49	Cold	Ϋ́	Ϋ́	8 Y	10	30	20	23.33333
50	None	N	r N	0 Y	10	30	20	
51				0 Y	10		20	25 25
52	None	N	N			30		25 25
53	None	N	N	0 Y	10	30	20	25
54	Cold	Y	Y	8 Y	10	30	20	23.33333
55	None	N	Y	16 N	0	23	23	23
56	None	N	Υ	8 Y	10	30	20	23.33333
57	Cold	Υ	Υ	8 N	0	3	3	3
58	Cold	Υ	N	0 Y	10	30	20	25
59	Cold	Υ	N	0 Y	10	30	20	25
60	Cold	Υ	Υ	8 Y	10	30	20	23.33333

Cold	Υ	N	0 Y	10	30	20	25
None	Ν	N	0 Y	10	30	20	25
Cold	Υ	N	0 Y	10	30	20	25
Cold	Υ	Υ	24 N	0	20	20	20
Cold	Υ	Υ	8 Y	10	30	20	23.33333
Cold	Y	N	0 Y	10	30	20	25
None	Ň	Y	24 N	0	20	20	20
Cold	Υ	N.	0 Y	10	30	20	25
None	Ň	Y	8 Y	10	30	20	23.33333
Cold	Υ	N.	0 Y	10	30	20	25
Cold	Ϋ́	Y	8 Y	6	21	15	17
Cold	Ϋ́	Ϋ́	8 Y	6	21	15	17
None	N	Ϋ́	8 Y	10	30	20	23.33333
None	N	Ϋ́	8 Y	10	30	20	23.33333
Cold	Y	Ϋ́	8 Y	10	30	20	23.33333
None	N	N	0 N	0	20	20	20.55555
None	N	N	0 Y	10	30	20	25
	N	N	0 Y	10	30	20	25 25
None	Y		0 Y				
Cold		N		10	30	20	25
Cold	Y	N	0 N	0	20	20	20
None	N	N	0 Y	10	30	20	25
Cold	Y	N	0 Y	10	30	20	25
Cold	Y	Y	8 Y	10	30	20	23.33333
Cold	Y	Y	8 Y	6	21	15	17
None	N	N	0 Y	10	30	20	25
None	N	Y	8 N	0	25	25	25
None	N	Y	8 N	0	25	25	25
None	N	Y	8 N	0	25	25	25
None	Ν	Υ	8 N	0	25	25	25
None	N	Y	8 N	0	25	25	25
None	Ν	Υ	8 N	0	25	25	25
None	Ν	Υ	8 N	0	25	25	25
Cold	Υ	Υ	8 N	0	25	25	25
None	N	NA	NA N	0	15	15	15
None	N	NA	NA N	0	25	25	25
Warm	Υ	Υ	12 Y	20	25	5	15
Warm	Υ	Υ	12 N	0	20	20	20
Warm	Υ	Y	12 N	0	5	5	5
Warm	Υ	Y	12 N	0	15	15	15
Warm	Υ	Y	12 N	0	25	25	25
Warm	Υ	Υ	12 N	0	10	10	10
None	Ν	N	0 N	0	30	30	30
None	Ν	N	0 N	0	20	20	20
None	Ν	N	0 Y	10	30	20	25
Cold	Υ	Υ	12 N	0	20	20	20
None	Ν	N	0 N	0	5	5	5
None	Ν	N	0 Y	10	25	15	20
None	Ν	N	0 Y	10	20	10	15
None	Ν	N	0 Y	10	15	5	10
Cold	Υ	N	0 N	0	20	20	20
None	N	N	0 N	0	25	25	25
None	N	N	0 N	0	10	10	10
None	N	N	0 N	0	15	15	15
Warm	Y	Y	14 N	0	15	15	15
Cold	Ϋ́	Ϋ́	14 N	0	15	15	15
Warm	Ϋ́	Ϋ́	14 N	0	15	15	15
	•	•		Ŭ		.0	.0

1								
2								
3	Cold	Υ	Y	14 N	0	15	15	15
4	Cold	Υ	Υ	14 N	0	15	15	15
5	Warm	Υ	Υ	14 N	0	15	15	15
6	Cold	Υ	Υ	14 N	0	15	15	15
7	Warm	Υ	Υ	14 N	0	15	15	15
8	None	Ν	N	0 N	0	15	15	15
9	None	Ν	N	0 N	0	18	18	18
10	None	Ν	N	0 N	0	12	12	12
11	None	Ν	N	0 N	0	18	18	18
12	None	N	N	0 N	0	21	21	21
13	None	N	N	0 N	0	9	9	9
14	Cold	Y	Y	12 N	0	27	27	27
15	None	N	Ý	14 Y	10	20	10	15.83333
16	Cold	Y	Ý	14 Y	10	20	10	15.83333
17	None	N	Ϋ́	14 Y	10	20	10	15.83333
18	None	N	Ϋ́	14 Y	10	20	10	15.83333
19		N	Ϋ́	14 Y	10	20	10	15.83333
20	None	Y	Y	14 Y	10	20	10	
21	Cold	Y	Ϋ́					15.83333
22	Cold			14 Y	10	20	10	15.83333
23	None	N	Y	14 Y	10	20	10	15.83333
24	None	N	Y	14 Y	10	20	10	15.83333
25	None	N	Y	14 Y	10	20	10	15.83333
26	Cold	Y	Y	14 Y	10	20	10	15.83333
27	Cold	Y	Y	14 Y	10	20	10	15.83333
28	Cold	Υ	Y	14 Y	10	20	10	15.83333
29	None	N	Υ	14 Y	10	20	10	15.83333
30	None	N	Υ	14 Y	10	20	10	15.83333
31	Cold	Υ	Υ	14 Y	10	20	10	15.83333
32	Cold	Υ	Υ	14 Y	10	20	10	15.83333
33	Cold	Υ	Υ	14 Y	10	20	10	15.83333
34	None	Ν	Υ	14 Y	10	20	10	15.83333
35	None	Ν	Υ	14 Y	10	20	10	15.83333
36	Cold	Υ	Y	14 Y	10	20	10	15.83333
37	Cold	Υ	Υ	14 Y	10	20	10	15.83333
38	None	Ν	Υ	14 Y	10	20	10	15.83333
39	Cold	Υ	Υ	14 Y	10	20	10	15.83333
40	None	Ν	Υ	14 Y	10	20	10	15.83333
41	Cold	Υ	Υ	14 Y	10	20	10	15.83333
42	None	Ν	Υ	14 Y	10	20	10	15.83333
43	None	Ν	Υ	14 Y	10	20	10	15.83333
44	None	Ν	Υ	14 Y	10	20	10	15.83333
45	None	Ν	Υ	14 Y	10	20	10	15.83333
46	Cold	Υ	Υ	14 Y	10	20	10	15.83333
47	None	N	Υ	14 Y	10	20	10	15.83333
48	None	Ν	Υ	14 Y	10	20	10	15.83333
49	Cold	Υ	Y	14 Y	10	20	10	15.83333
50	None	N	Ý	14 Y	10	20	10	15.83333
51	Cold	Y	Ý	14 Y	10	20	10	15.83333
52	None	N	Ý	14 Y	10	20	10	15.83333
53	Cold	Y	Ϋ́	14 Y	10	20	10	15.83333
54	None	N	Ϋ́	14 Y	10	20	10	15.83333
55	Cold	Y	Ϋ́	14 Y	10	20	10	15.83333
56	Cold	Ϋ́	Ϋ́	14 Y	10	20	10	15.83333
57	Cold	Y	Y	14 Y	10	20	10	15.83333
58	Cold	Y	Y	14 Y	10	20		15.83333
59	Cold	Y	Y	14 Y	10	20	10	15.83333
60	Colu		1	17 1	10	20	10	10.00000

Cold	Υ	Υ	14 Y	10	20	10 15.83333
Cold	Υ	Υ	14 Y	10	20	10 15.83333
None	Ν	Υ	14 Y	10	20	10 15.83333
None	N	Υ	14 Y	10	20	10 15.83333
None	N	Ϋ́	14 Y	10	20	10 15.83333
Cold	Y	Ϋ́	14 Y	10	20	10 15.83333
Cold	Ϋ́	Ϋ́	14 Y	10	20	10 15.83333
None	, N	Ϋ́	14 Y	10	20	10 15.83333
None	N	Y	14 Y	10	20	10 15.83333
None	N	Y	14 Y	10	20	10 15.83333
None	N	Y	14 Y	10	20	10 15.83333
Cold	Υ	Υ	14 Y	10	20	10 15.83333
Cold	Υ	Υ	14 Y	10	20	10 15.83333
None	Ν	Υ	14 Y	10	20	10 15.83333
Cold	Υ	Υ	14 Y	10	20	10 15.83333
Cold	Υ	Υ	14 Y	10	20	10 15.83333
Cold	Υ	Υ	14 Y	10	20	10 15.83333
None	Ν	Υ	14 Y	10	20	10 15.83333
None	Ν	Υ	14 Y	10	20	10 15.83333
Cold	Υ	Υ	14 Y	10	20	10 15.83333
Cold	Ϋ́	Ϋ́	14 Y	10	20	10 15.83333
None	N	Ϋ́	14 Y	10	20	10 15.83333
Cold	Y	Ϋ́	14 Y	10	20	10 15.83333
None	N	Ϋ́	14 Y	10	20	10 15.83333
Cold	Y	Y	14 Y	10	20	10 15.83333
Cold	Y	Y	14 Y	10	20	10 15.83333
Cold	Y	Y	14 Y	10	20	10 15.83333
None	N	Y	14 Y	10	20	10 15.83333
None	Ν	Υ	14 Y	10	20	10 15.83333
None	N	Υ	14 Y	10	20	10 15.83333
None	N	Υ	14 Y	10	20	10 15.83333
None	Ν	Υ	14 Y	10	20	10 15.83333
None	Ν	Υ	14 Y	10	20	10 15.83333
Cold	Υ	Υ	14 Y	10	20	10 15.83333
Cold	Υ	Υ	14 Y	10	20	10 15.83333
Cold	Υ	Υ	14 Y	10	20	10 15.83333
Cold	Υ	Υ	14 Y	10	20	10 15.83333
None	Ν	Υ	14 Y	10	20	10 15.83333
None	Ν	Υ	14 Y	10	20	10 15.83333
Cold	Υ	Υ	14 Y	10	20	10 15.83333
None	Ν	Υ	8 Y	10	30	20 23.33333
None	N	Ϋ́	8 Y	10	30	20 23.33333
None	N	Ϋ́	8 Y	10	30	20 23.33333
Cold	Y	Ϋ́	14 Y	10	20	10 15.83333
Cold	Ϋ́	Ϋ́	14 Y	10	20	10 15.83333
	Ϋ́	Ϋ́	14 Y	10	20	
Cold						
None	N	Y	14 Y	10	20	10 15.83333
Cold	Y	Y	14 Y	10	20	10 15.83333
None	N	Y	14 Y	10	20	10 15.83333
None	N	Y	14 Y	10	20	10 15.83333
Cold	Y	Y	14 Y	10	20	10 15.83333
Cold	Υ	Υ	14 Y	10	20	10 15.83333
None	N	Υ	14 Y	10	20	10 15.83333
Cold	Υ	Υ	14 Y	10	20	10 15.83333
None	Ν	Υ	14 Y	10	20	10 15.83333
Cold	Υ	Υ	14 Y	10	20	10 15.83333

2								
3	None	N	Υ	14 Y	10	20	10	15.83333
4	None	N	Ϋ́	14 Y	10	20	10	15.83333
5	None	N	Ϋ́	14 Y	10	20	10	15.83333
6	Cold	Y	Ϋ́	14 Y	10	20	10	15.83333
7	None	N	Ϋ́	14 Y	10	20	10	15.83333
8	Cold	Y	Ϋ́	14 Y	10	20	10	15.83333
9	None	N	Ϋ́	14 Y	10	20	10	15.83333
10	None	N	Ý	14 Y	10	20	10	15.83333
11	Cold	Y	Ý	14 Y	10	20	10	15.83333
12	Cold	Ϋ́	Ý	14 Y	10	20	10	15.83333
13	None	N	Ϋ́	14 Y	10	20	10	15.83333
14	Cold	Y	Ý	14 Y	10	20	10	15.83333
15	Cold	Ϋ́	Ϋ́	14 Y	10	20	10	15.83333
16	None	N	Ý	14 Y	10	20	10	15.83333
17	None	N	Ý	14 Y	10	20	10	15.83333
18	Cold	Y	Ý	14 Y	10	20	10	15.83333
19	Cold	Ϋ́	Ϋ́	14 Y	10	20	10	15.83333
20	Cold	Ϋ́	Ý	14 Y	10	20	10	15.83333
21 22	None	N	Y	14 Y	10	20	10	15.83333
23	None	N	Y	14 Y	10	20	10	15.83333
24	None	N	Y	14 Y	10	20	10	15.83333
25	None	N	Y	14 Y	10	20	10	15.83333
26	Cold	Υ	Υ	14 Y	10	20	10	15.83333
27	Cold	Y	Y	14 Y	10	20	10	15.83333
28	None	N	Y	14 Y	10	20	10	15.83333
29	W+C	Υ	Y	12 Y	10	20	10	15
30	None	N	Y	12 Y	10	20	10	15
31	W+C	Υ	NA	NA N	0	20	20	20
32	None	Ν	Υ	12 Y	10	20	10	15
33	W+C	Υ	Υ	12 Y	10	20	10	15
34	Cold	Υ	Υ	8 N	0	15	15	15
35	None	N	Υ	8 N	0	15	15	15
36	Cold	Υ	Υ	8 N	0	15	15	15
37	Cold	Υ	Υ	8 Y	10	30	20	23.33333
38	None	N	Υ	8 Y	10	30	20	23.33333
39	None	N	Υ	12 N	0	21	21	21
40	None	N	Υ	16 N	0	20	20	20
41	Cold	Υ	Υ	16 N	0	20	20	20
42	None	N	Υ	16 N	0	20	20	20
43	Cold	Υ	Υ	16 N	0	20	20	20
44 45	Cold	Υ	Υ	16 N	0	20	20	20
45 46	None	N	Υ	16 N	0	20	20	20
46 47	None	N	Υ	18 N	0	24	24	24
48	None	N	Υ	12 Y	13	25	12	18.5
49	None	N	Υ	12 Y	13	25	12	18.5
50	None	N	Υ	12 Y	13	25	12	18.5
51	None	N	N	0 Y	11	15	4	9.5
52	None	N	Υ	12 Y	13	20	7	13.5
53	W+C	Υ	N	0 Y	15	25	10	17.5
54	C+W	Υ	Υ	12 Y	11	15	4	9.5
55	C+W	Υ	Υ	12 N	0	5	5	5
56	None	N	N	0 Y	13	20	7	13.5
57	C+W	Y	N	0 N	0	5	5	5
58	W+C	Y	N	0 Y	13	20	7	13.5
59	None	N	Y	12 Y	11	15	4	9.5
60	W+C	Υ	Υ	12 Y	15	25	10	17.5

None	N	N	0 Y	15	25	10	17.5
C+W	Υ	Υ	12 Y	13	20	7	13.5
W+C	Υ	Υ	12 Y	13	20	7	13.5
W+C	Υ	Υ	12 N	0	5	5	5
W+C	Υ	Υ	12 Y	11	15	4	9.5
W+C	Y	Ň	0 Y	11	15	4	9.5
None	N	N	0 N	0	5	5	5
C+W	Y	N	0 Y	11	15	4	9.5
None	N	Y	12 Y	15	25	10	17.5
W+C	Y	N	0 N	0	5	5	5
C+W	Ϋ́	N	0 Y	13	20	7	13.5
None	N	Y	12 N	0	5	5	5
C+W	Y	Ϋ́	12 Y	15	25	10	17.5
C+W	Ϋ́	N	0 Y	15	25	10	17.5
None	N	Y	8 Y	5	25	20	21.66667
Cold	Y	Ϋ́	8 Y	5	25	20	21.66667
Cold	Ϋ́	Ϋ́	8 Y	5	25	20	21.66667
None	N	Ϋ́	8 Y	5	25	20	21.66667
None	N	Ϋ́	8 Y	5	25	20	21.66667
	Y	Ϋ́	8 Y	5			21.66667
Cold					25 25	20	
None	N	Y	12 Y 12 N	10	25 25	15	20
None	N	Y		0	25	25	25
None	N	Y	12 N	0	5	5	5
None	N	Y	12 Y	10	15	5	10
None	N	Y	12 Y	10	20	10	15
None	N	Y	12 N	0	15	15	15
None	N	Y	12 Y	10	30	20	25
Cold	Y	Y	12 Y	10	15	5	10
Cold	Y	Y	12 Y	10	20	10	15
Cold	Y	Y	12 Y	10	20	10	15
Cold	Y	Y	12 Y	10	15	5	10
Cold	Y	Y	12 Y	10	15	5	10
Cold	Υ	Υ	12 Y	10	20	10	15
Cold	Υ	Υ	12 Y	10	20	10	15
Cold	Υ	Υ	12 Y	10	15	5	10
None	N	Υ	8 Y	10	30	20	23.33333
None	N	Υ	8 Y	10	30	20	23.33333
None	N	Υ	8 Y	10	30	20	23.33333
None	N	Υ	8 Y	10	30	20	23.33333
None	N	Υ	8 Y	10	30	20	23.33333
Cold	Υ	Υ	16 N	0	27	27	27
None	N	Υ	16 N	0	24	24	24
None	N	Υ	16 N	0	24	24	24
None	N	Υ	16 N	0	27	27	27
None	N	Υ	16 N	0	27	27	27
Cold	Υ	Υ	16 N	0	24	24	24
None	N	Υ	16 N	0	24	24	24
None	N	Υ	16 N	0	27	27	27
None	N	Υ	8 Y	10	30	20	23.33333
None	N	Υ	8 Y	10	30	20	23.33333
None	N	Υ	8 Y	10	30	20	23.33333
None	N	Υ	8 Y	10	30	20	23.33333
None	N	Υ	8 Y	10	30	20	23.33333
None	N	Υ	16 N	0	22	22	22
None	N	Υ	12 Y	5	15	10	12.5
None	N	Υ	12 Y	10	30	20	25

1									
2									
3	None	Ν	Υ		12 Y	5		10	12.5
4	None	N	Υ		12 Y	10		20	25
5 6	None	N	Υ		12 Y	5		10	12.5
7	None	N	Υ		12 Y	10		20	25
	None	N	Υ		24 N	0		22	22
8 9	Cold	Υ	Υ		16 N	0	27	27	27
10	Cold	Y	Y		16 N	0	24	24	24
11	None	N	Y		24 N	0	22	22	22
12	None	N	NA	NA	Y	10		10	15
13	None	N	NA	NA	N	0	20	20	20
14	None	N	NA	NA	N	0	20	20	20
15	None	N	NA	NA	Y	10		10	15
16	None	N	NA	NA	Y	10		10	15
17	None	N	NA	NA	N	0	20	20	20
18	None	N	NA	NA	Y	10		10	15
19	None	N	NA	NA	N	0	20	20	20
20	None	N	N		0 Y	10		5	10
21	None	N	N		0 Y	10		15	20
22	None	N	N		0 Y	10		10	15
23	None	N	N		0 Y	10		5	10
24	None	N	N		0 Y	10		10	15
25	None	N	N		0 Y	10		15	20
26	Cold	Y	Y		16 Y	10		5	11.66667
27	None	N	Y		16 Y	10		5	11.66667
28	Cold	Y	Y		16 Y	10		5	11.66667
29	None	N	Y		16 Y	10	15	5	11.66667
30	None	N	Y		16 Y	10		5	11.66667
31	Cold	Y	Y		16 Y	10		5	11.66667
32	Cold	Y	Y		16 N	0	27	27	27
33	None	N	Y		16 N	0	24	24	24
34 35	None	N	Y		16 N	0	27	27	27
36	Cold	Y	Y		16 N	0	24	24	24
37	None	N Y	Y Y		16 Y	10	15	5	11.66667
38	Cold				16 Y	10		5	11.66667
39	None Cold	N Y	Y Y		16 Y 16 Y	10 10	15 15	5	11.66667 11.66667
40		n N	Ϋ́		16 Y	10		5	11.66667
41	None Cold	Y	Ϋ́		16 Y	10		5	11.66667
42	None	n N	Ϋ́		16 Y	10		5 5	11.66667
43	Cold	Y	Ϋ́		16 Y	10		5	11.66667
44	Cold	Ϋ́	Ϋ́		16 Y	10		15	21.66667
45	None	N	Ϋ́		16 Y	10		15	21.66667
46	None	N	Ϋ́		16 Y	10		15	21.66667
47	Cold	Y	Ϋ́		10 T	10		10	15
48	Cold	Ϋ́	Ϋ́		12 T	10		10	15
49	Cold	Ϋ́	Ϋ́		12 Y	10		10	15
50	Cold	Ϋ́	Ϋ́		12 Y	10		10	15
51	W+C	Ϋ́	N		0 N	0		15	15
52	Cold	Ϋ́	Y		16 N	0	20	20	20
53 54	None	N	Y		16 N	0	20	20	20
54 55	None	N	Ϋ́		8 N	0		5	5
55 56	None	N	Ϋ́		8 Y	10		20	23.33333
56 57	None	N	Ϋ́		12 Y	11	15	4	9.5
57 58	None	N	N		0 N	0		5	5
59	None	N	N		0 Y	15		10	17.5
60	None	N	Y		12 Y	14		14	21

None	N	N	0 Y	14	28	14	21
None	N	Υ	12 N	0	5	5	5
None	N	N	0 Y	11	15	4	9.5
None	N	Υ	12 Y	14	32	18	25
None	N	N	0 Y	13	20	7	13.5
None	N	N	0 Y	14	32	18	25
None	N	Y	12 Y	15	25	10	17.5
None	N	Ϋ́	12 Y	13	20	7	13.5
Cold	Y	Ϋ́	16 N	0	24	24	24
Cold	Ϋ́	Ϋ́	16 N	Ö	27	27	27
None	N	, N	0 N	Ö	5	5	5
None	N	N	0 N	0	20	20	20
None	N	N	0 N	0	0	0	0
	N	N	0 N	0	15	15	15
None							
None	N	N	0 N	0	10	10	10
None	N	N	0 N	0	25	25	25
Cold	Y	Y	8 Y	17	20	3	8.666667
None	N	Y	8 Y	10	30	20	23.33333
Cold	Υ	Υ	8 Y	10	30	20	23.33333
Cold	Υ	Υ	8 Y	10	30	20	23.33333
None	N	Y	8 Y	10	30	20	23.33333
Cold	Υ	Υ	8 Y	10	30	20	23.33333
None	N	Υ	8 Y	10	30	20	23.33333
None	N	Y	8 Y	10	30	20	23.33333
Cold	Υ	Υ	8 Y	10	30	20	23.33333
Cold	Υ	Υ	8 Y	10	30	20	23.33333
None	N	Υ	8 Y	10	30	20	23.33333
Cold	Υ	Υ	8 N	0	25	25	25
None	N	Υ	14 N	0	20	20	20
None	N	Υ	14 N	0	25	25	25
None	N	Υ	14 N	0	25	25	25
None	N	Υ	14 N	0	20	20	20
None	N	Ϋ́	14 N	0	25	25	25
None	N	Ϋ́	14 N	0	30	30	30
None	N	Ϋ́	14 N	0	25	25	25
	N	Ϋ́	14 N	0	30	30	30
None None	N	, N	0 N	0	20	20	20
None	N	N	0 N	0	10	10	10
None	N	N	0 N	0	15	15	15
None	N	N	0 N	0	5	5	5
Cold	Y	Y	8 N	0	20	20	20
Cold	Ϋ́	Ϋ́	8 N	0	20	20	20
		Ϋ́		0	20	20	20
None	N		16 N				
None	N	Y	16 N	0	20	20	20
None	N	Y	16 N	0	20	20	20
Cold	Y	Y	8 Y	10	30	20	23.33333
None	N	Y	8 Y	10	30	20	23.33333
Cold	Y	Y	24 N	0	20	20	20
None	N	Y	24 N	0	20	20	20
None	N	Υ	24 N	0	20	20	20
Cold	Υ	Υ	24 N	0	20	20	20
Cold	Υ	Υ	24 N	0	20	20	20
None	N	Υ	24 N	0	20	20	20
None	N	Υ	24 N	0	20	20	20
Cold	Υ	Υ	24 N	0	20	20	20
None	N	Υ	24 N	0	20	20	20

1									
2									
3	Cold	Υ	Υ		24 N	0	20	20	20
4	None	N	Υ		24 N	0	20	20	20
5	Cold	Υ	Υ		24 N	0	20	20	20
6	Cold	Υ	Υ		8 N	0	20	20	20
7	Cold	Υ	Υ		8 N	0	20	20	20
8	None	Ν	NA	NA	N	0	3	3	3
9	None	Ν	NA	NA	N	0	3	3	3
10	None	Ν	NA	NA	Ν	0	3	3	3
11	None	Ν	NA	NA	Ν	0	3	3	3
12	None	N	NA	NA	Ν	0	3	3	3
13	None	N	NA	NA	N	0	3	3	3
14	None	N	Y		16 N	0	25	25	25
15	None	N	Ϋ́		16 N	0	10	10	10
16	Cold	Y	Ϋ́		16 N	0	15	15	15
17	None	, N	Ϋ́		16 N	0	15	15	15
18		Y	Ϋ́						
19	Cold				16 N	0	25	25	25
20	Cold	Y	Y		16 N	0	20	20	20
21	Cold	Y	Y		16 N	0	10	10	10
22	None	N	Υ		16 N	0	20	20	20
23	None	N	Υ		12 Y	10	20	10	15
24	None	Ν	Υ		12 Y	10	25	15	20
25	Cold	Υ	Υ		8 N	0	20	20	20
26	Cold	Υ	Υ		8 N	0	15	15	15
27	Cold	Υ	Υ		8 Y	20	25	5	11.66667
28	Cold	Υ	Υ		8 Y	10	25	15	18.33333
29	Cold	Υ	Υ		8 Y	10	15	5	8.333333
30	Cold	Υ	Υ		8 N	0	25	25	25
31	Cold	Ϋ́	Ϋ́		8 Y	15	20	5	10
32	Cold	Ϋ́	Ϋ́		8 N	0	5	5	5
33	Cold	Ϋ́	Ϋ́		8 N	0	20	20	20
34	Cold	Ϋ́	Ϋ́		8 N	0	20	20	20
35	Cold	Ϋ́	Ϋ́		8 Y	20	25	5	11.66667
36		Ϋ́	Ϋ́		8 Y		15	5	8.333333
37	Cold		I V		8 N	10			
38	Cold	Y	Y				15	15	15
39	Cold	Y	Y		8 N	0	25	25	25
40	Cold	Y	Y		8 N	0	20	20	20
41	Cold	Y	Υ		8 Y	10	25	15	18.33333
42	Cold	Υ	Υ		8 Y	15	20	5	10
43	Cold	Υ	Υ		8 N	0	5	5	5
44	Cold	Υ	Υ		8 Y	20	25	5	11.66667
45	Cold	Υ	Υ		8 N	0	25	25	25
45 46	Cold	Υ	Υ		8 N	0	15	15	15
	Cold	Υ	Υ		8 Y	15	20	5	10
47	Cold	Υ	Υ		8 Y	10	25	15	18.33333
48	Cold	Υ	Υ		8 N	0	20	20	20
49	Cold	Υ	Υ		8 Y	10	15	5	8.333333
50	Cold	Υ	Υ		8 N	0	5	5	5
51 52	Cold	Y	Y		12 Y	10	25	15	20
52	Cold	Ϋ́	Ϋ́		12 N	0	5	5	5
53	Cold	Ϋ́	Ϋ́		12 Y	10	15	5	10
54	Cold	Ϋ́	Ϋ́		12 Y	10	20	10	15
55	Cold	Ϋ́	Ϋ́		12 T	15	30	15	22.5
56			Ϋ́		12 Y	10		15	
57	Cold	Y	Y Y				25		20
58	Cold	Y			12 Y	10	20	10	15
59	Cold	Y	Y		12 N	0	5	5	5
60	Cold	Υ	Υ		12 Y	10	15	5	10

Cold	Υ	Υ	1:	2 Y	15	30	1	5	22.5
Cold	Y	Y		2 Y	10	20		0	15
Cold	Ϋ́	Ϋ́		2 Y	10	15	•	5	10
Cold	Ϋ́	Ϋ́		2 N	0	5		5	5
Cold	Ϋ́	Ϋ́		2 Y	10	25	1	5	20
Cold	Y	Y		2 Y	10	30		0.0	25
None	N	Y		2 Y	9	15		6	10.5
None	N	Y		2 N	0	30		0	30
Cold	Υ	N		N	0	20		0.	20
Cold	Υ	Υ		2 N	0	10		0	10
None	Ν	Υ		2 Y	10	20		0	15
None	Ν	N) Y	10	20		0	15
Cold	Υ	N	() Y	9	15		6	10.5
None	Ν	Υ	1:	2 N	0	25	2	25	25
None	Ν	Υ	1:	2 N	0	20	2	0	20
None	Ν	Υ	1:	2 N	0	10	1	0	10
None	Ν	Υ		2 Y	10	25		5	20
None	Ν	Υ		2 Y	-4	25		9	27
None	N	Ϋ́		2 Y	5	15		0	12.5
None	N	Ϋ́		2 Y	5	30		25	27.5
None	N	N) N	0	10		0	10
	N	Y		2 Y	5	20		5	17.5
None									
None	N	Y		2 Y	20	30		0	20
None	N	N) Y	9	15		6	10.5
None	N	Y		2 N	0	15		5	15
None	N	Y		2 Y	10	30		0.	25
None	N	Υ		2 N	0	20		0.	20
None	Ν	Υ		2 Y	10	20		0	15
None	Ν	Υ		2 N	0	10		0	10
Cold	Υ	N		NC	0	10		0	10
None	Ν	N		NC	0	20	2	0	20
Cold	Υ	Υ	1:	2 Y	10	20	1	0	15
Cold	Υ	N	() Y	10	20	1	0	15
None	Ν	Υ	1:	2 Y	15	25	1	0	17.5
None	Ν	Υ		2 Y	15	30	1	5	22.5
Cold	Υ	Υ		2 Y	9	15		6	10.5
Cold	Υ	Υ		2 N	0	20	2	0.	20
Cold	Υ	Υ		3 Y	9	25		6	19
Cold	Y	Ϋ́		5 N	0	15		5	15
Cold	Y	Ϋ́		5 N	0	15		5	15
Cold	Ϋ́	Ϋ́		3 N	0	15		5	15
Cold	Ϋ́	Ϋ́		3 N	0	20		20	20
Cold	Ϋ́	Ϋ́		3 N	0	20		20	20
	Y	Ϋ́							
Cold				6 N	0	15		5	15
Cold	Y	Y		6 N	0	15		5	15
Cold	Y	Y		6 N	0	15		5	15
Cold	Y	Y		5 N	0	15		5	15
Cold	Υ	Y		5 N	0	15		5	15
Cold	Υ	Y		5 N	0	15		5	15
Cold	Υ	Υ		3 N	0	15		5	15
None	Ν	NA	NA	N	0	15		5	15
None	Ν	NA	NA	N	0	35		5	35
None	Ν	NA	NA	Ν	0	25	2	25	25
None	Ν	NA	NA	Ν	0	5		5	5
None	Ν	NA	NA	N	0	30	3	0	30
None	Ν	NA	NA	N	0	20	2	0.	20

1									
2									
3	None	Ν	NA	NA	Ν	0	10	10	10
4	None	Ν	NA	NA	Ν	0	20	20	20
5	None	Ν	NA	NA	Ν	0	30	30	30
6	None	Ν	NA	NA	Ν	0	5	5	5
7	None	Ν	NA	NA	Ν	0	10	10	10
8 9	None	Ν	NA	NA	Ν	0	35	35	35
10	None	Ν	NA	NA	Ν	0	15	15	15
11	None	N	NA	NA	Ν	0	25	25	25
12	None	Ν	NA	NA	Ν	0	30	30	30
13	None	Ν	NA	NA	Ν	0	15	15	15
14	None	N	NA	NA	N	0	25	25	25
15	None	N	NA	NA	N	0	5	5	5
16	None	N	NA	NA	N	0	35	35	35
17	None	N	NA	NA	N	0	20	20	20
18	None	N	NA	NA	N	0	10	10	10
19	None	N	NA	NA	N	0	35	35	35
20	None	N	NA	NA	N	0	25	25	25
21	None	N	NA	NA	N	0	15	15	15
22	None	N	NA	NA	N	0	10	10	10
23	None	N	NA	NA	N	0	20	20	20
24	None	N	NA	NA	N	0	30	30	30
25	None	N	NA	NA	N	0	5	5	5
26	None	N	NA	NA	Y	10	30	20	25
27	Cold	Y	Y		8 Y	5	25	20	21.66667
28	None	N	Y		16 Y	7	25	18	22.66667
29	None	N	Y		16 Y	7	25	18	22.66667
30	None	N	Y		16 Y	7	25	18	22.66667
31 32	None	N	Y		8 Y	5	25	20	21.66667
33	Cold	Y	Y Y		8 Y 8 Y	5	25 25	20	21.66667 21.66667
34	Cold Cold	Y Y	Ϋ́		от 16 N	5 0	20	20 20	21.00007
35	None	N	Y		8 N	0	25	25	25
36	None	N	Y		8 N	0	25	25	25
37	None	N	Y		8 N	0	25	25	25 25
38	None	N	Ϋ́		24 N	0	12	12	12
39	None	N	N	•	0 N	0	24	24	24
40	None	N	Y		24 N	0	18	18	18
41	None	N	N	•	0 N	0	20	20	20
42	None	N	Y		24 N	0	30	30	30
43	None	N	Ϋ́		24 N	0	22	22	22
44	None	N	Ý		24 N	0	26	26	26
45	None	N	N		0 N	0	26	26	26
46	None	N	N		0 N	0	30	30	30
47	None	N	Y	:	24 N	0	14	14	14
48	None	Ν	Υ		24 N	0	16	16	16
49	None	Ν	Υ		12 Y	10	35	25	30
50	None	Ν	Υ		24 N	0	28	28	28
51 52	None	Ν	N		0 N	0	14	14	14
53	None	Ν	N		0 N	0	22	22	22
54	None	Ν	Υ	:	24 N	0	24	24	24
55	None	Ν	N		0 N	0	18	18	18
56	None	Ν	N		0 N	0	12	12	12
57	None	Ν	N		0 N	0	28	28	28
58	None	Ν	Υ		12 Y	10	25	15	20
59	None	Ν	N		0 N	0	16	16	16
60	None	N	Υ		12 Y	10	15	5	10

None	N	Υ		24 N	0	20	20	20
None	Ν	NA	NA	N	0	25	25	25
Cold	Υ	NA	NA	Ν	0	25	25	25
Cold	Υ	NA	NA	Ν	0	25	25	25
None	Ν	NA	NA	Ν	0	25	25	25
None	N	Υ		16 Y	5	25	20	23.33333
None	N	NA	NA	Υ	10	30	20	25
None	N	Υ		12 N	0	22	22	22
None	N	Υ		12 N	0	22	22	22
W+C	Υ	Υ		16 Y	15	30	15	25
W+C	Υ	Υ		16 Y	15	30	15	25
None	N	Υ		12 Y	6	24	18	21
None	N	Υ		12 Y	6	8	2	5
None	N	Y		12 Y	6	24	18	21
None	N	Ϋ́		12 Y	5	20	15	17.5
None	N	Y		12 Y	6	12	6	9
None	N	Ϋ́		12 Y	5	15	10	12.5
None	N	Ϋ́		12 Y	6	12	6	9
None	N	Ϋ́		12 Y	5	15	10	12.5
None	N	Ϋ́		12 Y	5	20	15	17.5
W+C	Y	Ϋ́		16 Y	15	30	15	25
W+C	Ϋ́	Ϋ́		16 Y	15	30	15	25
W+C	Ϋ́	Ϋ́		16 Y	15	30	15	25
W+C	Ϋ́	Ý		16 Y	15	30	15	25
W+C	Ϋ́	Ý		16 Y	15	30	15	25
W+C	Ϋ́	Ý		16 Y	15	30	15	25
None	N	N		0 N	0	22	22	22
None	N	N		0 N	0	20	20	20
None	N	N		0 N	0	20	20	20
Cold	Y	N		0 N	0	20	20	20
Cold	Ϋ́	Ϋ́		8 Y	10	25	15	18.33333
None	N	Ϋ́		16 N	0	24	24	24
None	N	N		0 N	0	20	20	20
None	N	N		0 N	0	20	20	20
None	N	NA	NA	Y	10	30	20	25
Cold	Y	Y	147 (12 N	0	22	22	22
None	N	Ϋ́		12 Y	8	26	18	22
Cold	Y	Ϋ́		12 Y	8	26	18	22
None	N	Ϋ́		12 Y	16	30	14	22
None	N	Ý		12 N	0	22	22	22
Cold	Y	Ϋ́		12 Y	16	30	14	22
None	N	Ý		16 N	0	22	22	22
Cold	Y	N		0 Y	10	30	20	25
None	N	N		0 Y	10	30	20	25
None	N	N		0 N	0	3	3	3
None	N	N		0 N	0	3	3	3
None	N	N		0 N	0	3	3	3
W+C	Y	Y		8 N	0	15	15	15
W+C	Ϋ́	Ϋ́		8 Y	10	15	5	8.333333
None	N	Y		12 N	0	5.3	5.3	5.3
None	N	Ϋ́		12 N 12 N	0	14.5	14.5	14.5
None	N	Ϋ́		12 N 12 N	0	26.5	26.5	26.5
None	N	Ϋ́		12 N 12 N	0	10.9	10.9	10.9
None	N	Ϋ́		12 N 12 N	0	10.9	10.9	10.9
None	N	Y		12 N	0	19.4	19.4	19.4
None	N	Y		12 N 12 N	0	16.1	16.1	16.1
140116	1.4	'		14 IN	U	10.1	10.1	10.1

1	
2	
3 4	
5	
5 6 7	
8 9	
10	
11 12	
13	
14 15	
16 17	
18	
19 20	
21	
23	
20 21 22 23 24 25	
26	
26 27 28 29	
29 30	
31	
32 33	
34 35	
36	
37 38	
39 40	
41	
42 43	
44	
45 46	
47 48	
49	
50 51	
52 53	
54	
55 56	
57 58	
59	
60	

None	Ν	Υ		12 N	0	25	25	25
None	Ν	NA	NA	Ν	0	22	22	22
None	Ν	Υ		12 Y	12	32	20	26
None	Ν	Υ		12 Y	4	8	4	6
None	Ν	Υ		12 Y	10	20	10	15
None	Ν	Υ		12 Y	15	30	15	22.5
None	Ν	Υ		12 Y	15	30	15	22.5
None	Ν	Υ		12 Y	9	15	6	10.5
None	Ν	Υ		12 N	0	5	5	5
None	Ν	Υ		12 Y	10	20	10	15
None	Ν	Υ		12 Y	10	20	10	15
None	Ν	Υ		12 Y	9	15	6	10.5
None	Ν	Υ		12 N	0	5	5	5
Cold	Υ	N		0 Y	10	25	15	20
None	Ν	Υ		14 N	0	5	5	5
Cold	Υ	N		0 Y	9	15	6	10.5
None	Ν	Υ		14 Y	9	15	6	11.25
None	Ν	Υ		14 Y	15	30	15	23.75
None	Ν	Υ		14 Y	15	35	20	28.75
Cold	Υ	N		0 Y	10	25	15	20
Cold	Υ	N		0 Y	15	30	15	22.5
None	N	Υ		14 Y	10	25	15	20.83333
Cold	Υ	N		0 Y	10	20	10	15
None	N	Υ		14 Y	10	20	10	15.83333
Cold	Υ	N		0 Y	15	35	20	27.5
None	N	Υ		12 N	0	25	25	25
None	N	Υ		12 N	0	25	25	25
None	N	Υ		12 N	0	25	25	25
Cold	Υ	Υ		12 N	0	25	25	25
None	Ν	Υ		14 Y	8	28	20	24.66667
Cold	Υ	Υ		12 N	0	17.5	17.5	17.5
Cold	Υ	Υ		12 N	0	30	30	30
None	N	Υ		12 N	0	15	15	15
None	N	Y		12 N	0	20	20	20
Cold	Υ	Υ		12 N	0	27.5	27.5	27.5
None	N	N		0 N	0	23	23	23
Cold	Υ	Y		12 N	0	12.5	12.5	12.5
Cold	Y	Y		12 N	0	5	5	5
Cold	Y	Y		12 N	0	10	10	10
Cold	Y	Y		12 N	0	22.5	22.5	22.5
None	N	Y		12 N	0	22.5	22.5	22.5
None	N	Y		12 N	0	10	10	10
None	N	Y		12 N	0	10	10	10
W+C	Y	Y		14 N	0	20	20	20
None	N	Y		12 N	0	5	5	5
None	N	Y		12 Y	10	20	10	15
None	N	Y		12 N	0	23	23	23
None	N	Y		12 N	0	10	10	10
None	N	N		0 Y	10	20	10	15
None	N	Y		12 N	0	30	30	30
Cold	Y Y	Y Y		12 N	0	20 7.5	20 7.5	20 7.5
Cold		Υ Υ		12 N 12 N	0	7.5	7.5	7.5
None	N N	Y Y		12 N 12 N	0 0	7.5 25	7.5 25	7.5 25
None	N N	Ϋ́Υ		12 N 12 N	0	∠5 5	25 5	
None None	N N	Ϋ́		12 N 12 N	0	30	30	5 30
INOTIC	IN	I		IZ IN	U	30	30	30

None	Ν	Υ		12 N		0 23	23	23
None	Ν	Υ		12 N		0 12.5	12.5	12.5
Cold	Υ	Υ		12 N		0 25	25	25
None	Ν	Υ		12 N		0 27.5	27.5	27.5
None	Ν	Υ		12 Y	1	0 20	10	15
None	Ν	Υ		12 N		0 30	30	30
None	Ν	Υ		12 N		0 5	5	5
None	Ν	Υ		12 N		0 23	23	23
None	Ν	Υ		12 N		0 23	23	23
Cold	Υ	Υ		12 N		0 15	15	15
None	Ν	Υ		12 Y	1	0 20	10	15
None	Ν	Υ		12 N		0 17.5	17.5	17.5
None	Ν	Υ		12 N		0 10	10	10
None	Ν	Υ		12 N		0 5	5	5
None	N	N		0 N		0 10	10	10
None	N	N		0 N		0 5	5	5
None	N	Y		16 N		0 24	24	24
None	N	Ϋ́		12 N		0 20	20	20
None	N	NA	NA	N		0 20	20	20
None	N	NA	NA	N		0 30	30	30
None	N	NA	NA	N		0 5	5	5
None	N	NA	NA	N		0 22	22	22
None	N	N	INA	0 N		0 21	21	21
None	N	N		0 N		0 21	21	21
None	N	N		0 N		0 21	21	21
	N	N					21	21
None		N		0 N		0 21 0 21	21	21
None	N	Y		0 N				
None	N			12 N		0 35.6	35.6	35.6
None	N	Y		12 N		0 14.9	14.9	14.9
None	N	Y		12 N		0 21.9	21.9	21.9
None	N	Y		12 N		0 16.6	16.6	16.6
None	N	Y		12 N		0 29	29	29
None	N	Y		12 N		0 19.2	19.2	19.2
None	N	Y		12 N		0 10.3	10.3	10.3
None	N	Y		12 N		0 25.5	25.5	25.5
None	N	Y		16 Y		8 24	16	21.33333
None	N	Y		16 Y		8 24	16	21.33333
None	N	Y		16 Y		8 24	16	21.33333
None	N	Y		16 Y		8 24	16	21.33333
None	N	Y		16 Y		0 25	15	21.66667
Cold	Y	Y		12 Y		5 30	25	27.5
None	N	NA	NA	N		0 22	22	22
None	N	Υ		14 Y		0 20	10	15.83333
None	N	Υ		14 Y		9 15	6	11.25
Cold	Υ	Υ		14 Y		0 20	10	15.83333
Cold	Υ	Υ		14 Y		9 15	6	11.25
W+C	Υ	Υ		14 Y		0 20	10	15.83333
W+C	Υ	Υ		14 Y		0 25	15	20.83333
Cold	Υ	Υ		14 Y		0 25	15	20.83333
None	Ν	Υ		14 Y		0 25	15	20.83333
W+C	Υ	Υ		14 Y		9 15	6	11.25
None	Ν	Υ		16 N		0 16	16	16
None	Ν	Υ		16 Y		5 21	16	19.33333
None	Ν	Υ		16 N		0 16	16	16
None	Ν	Υ		16 Y		5 21	16	19.33333
None	Ν	Υ		16 Y		6 24	18	22

1									
2									
3	Cold	Υ	Υ		16 Y	6	24	18	22
4	None	Ν	Υ		12 Y	5	22.5	17.5	20
5 6	None	Ν	Υ		12 Y	5	22.5	17.5	20
	W+C	Υ	Υ		14 N	0	20	20	20
7	W+C	Υ	Υ		14 N	0	20	20	20
8 9	W+C	Υ	Υ		14 N	0	20	20	20
10	W+C	Y	Y		14 N	0	20	20	20
11	Cold	Y	Y		24 N	0	20	20	20
12	None	N	Y		24 N	0	20	20	20
13	W+C	Y	Y		14 N	0	20	20	20
14	None	N	NA	NA	N	0	22	22	22
15	W+C	Y	Y		14 N	0	20	20	20
16	Cold	Y	Y		12 Y	8	23	15	19
17	None	N	Y		12 Y	8	23	15	19
18	Warm	Y	Y		12 Y	8	23	15	19
19	None	N	Y		12 Y	8	23	15	19
20	W+C	Y	NA	NA	Y	17	20	3	11.5
21	None	N	Y		12 N	0	23	23	23
22	None	N	Y		12 N	0	23	23	23
23	None	N	Y		12 N	0	23	23	23
24	None	N	Y		12 N	0	23	23	23
25	None	N	Y		12 Y	10	30	20	25
26	Cold	Y	Y	N I A	12 Y	10	30	20	25
27	W+C	Y	NA	NA	Y	12	15	3	9 3
28	W+C	Y	NA	NA	N	0	3	3	
29	W+C	Y	NA	NA	16 N	17 0	20		11.5
30 31	Cold	Y N	Y NA	NA	16 N N	0	24 22	24 22	24 22
32	None Cold	Y	Y	INA	16 N	0	24	24	24
33	Cold	Ϋ́	Ϋ́		16 N	0	24	24	24
34	Cold	Ϋ́	Ý		16 N	0	23	23	23
35	Cold	Ϋ́	Ý		16 N	0	23	23	23
36	None	N	Ϋ́		13 Y	10	20	10	15.41667
37	None	N	Ϋ́		13 Y	10	20	10	15.41667
38	None	N	Ϋ́		12 N	0	15	15	15
39	None	N	Ϋ́		12 Y	10	25	15	20
40	None	N	Y		12 N	0	30	30	30
41	None	N	N		0 N	0	25	25	25
42	None	Ν	Υ		12 N	0	10	10	10
43	None	Ν	Υ		12 N	0	25	25	25
44	None	Ν	Υ		12 N	0	35	35	35
45	None	Ν	Υ		12 N	0	20	20	20
46	None	Ν	Υ		12 Y	9	15	6	10.5
47 49	None	Ν	Υ		12 N	0	10	10	10
48 49	None	Ν	Υ		12 N	0	23	23	23
50	None	Ν	Υ		12 N	0	5	5	5
51	None	Ν	Υ		12 Y	10	20	10	15
52	Cold	Υ	Υ		12 N	0	23	23	23
53	None	Ν	Υ		12 Y	10	20	10	15
54	Cold	Υ	Υ		12 N	0	10	10	10
55	None	Ν	N		0 Y	10	20	10	15
56	Cold	Υ	Υ		12 Y	10	20	10	15
57	None	Ν	N		0 N	0	10	10	10
58	Cold	Υ	Υ		12 Y	10	20	10	15
59	Cold	Υ	Υ		12 N	0	10	10	10
60	None	N	N		0 N	0	23	23	23

Cold	Υ	Υ	12 N	0	23	23	23
None	Ν	Υ	12 N	0	23	23	23
None	Ν	N	0 Y	10	30	20	25
Cold	Υ	Y	12 Y	9	15	6	10.5
None	N	Ϋ́	12 Y	10	30	20	25
	N	Ϋ́	12 Y	9	15	6	10.5
None							
Cold	Y	N	0 Y	9	15	6	10.5
None	N	Y	12 N	0	23	23	23
None	N	Υ	12 Y	9	15	6	10.5
None	Ν	N	0 N	0	23	23	23
Cold	Υ	Υ	12 Y	10	30	20	25
Warm	Υ	N	0 Y	10	20	10	15
Cold	Υ	Υ	12 Y	9	15	6	10.5
None	Ν	Υ	12 N	0	10	10	10
Warm	Υ	N	0 N	0	23	23	23
Warm	Ϋ́	Y	12 N	0	23	23	23
Cold	Ϋ́	Ϋ́	12 Y	10	20	10	15
	Ϋ́						
Cold		N	0 N	0	23	23	23
None	N	N	0 Y	9	15	6	10.5
None	N	N	0 Y	10	20	10	15
Cold	Υ	N	0 N	0	10	10	10
Cold	Υ	N	0 N	0	10	10	10
Warm	Υ	N	0 Y	10	20	10	15
Cold	Υ	N	0 Y	10	20	10	15
Warm	Υ	Υ	12 Y	9	15	6	10.5
None	Ν	N	0 Y	10	30	20	25
Cold	Υ	Y	12 Y	10	30	20	25
Cold	Ϋ́	N	0 N	0	10	10	10
None	N	N	0 N	0	23	23	23
	Y	Y	12 Y		20	10	
Warm				10			15
Warm	Y	N	0 N	0	10	10	10
Warm	Y	Y	12 Y	10	30	20	25
None	N	Y	12 Y	10	20	10	15
Warm	Υ	N	0 Y	9	15	6	10.5
Warm	Υ	Υ	12 Y	9	15	6	10.5
Warm	Υ	N	0 Y	10	30	20	25
Cold	Υ	Υ	12 N	0	23	23	23
Cold	Υ	Υ	12 Y	9	15	6	10.5
Cold	Υ	N	0 Y	9	15	6	10.5
Cold	Υ	N	0 N	0	23	23	23
Warm	Ϋ́	N	0 N	0	10	10	10
Cold	Ϋ́	Y	12 N	0	23	23	23
Cold	Ϋ́	N	0 Y	9	15	6	
							10.5
None	N	Y	12 Y	10	20	10	15
Cold	Y	Y	12 N	0	10	10	10
None	N	Υ	12 N	0	23	23	23
None	Ν	Υ	12 Y	10	20	10	15
Cold	Υ	N	0 Y	10	30	20	25
None	Ν	N	0 N	0	10	10	10
Warm	Υ	N	0 Y	9	15	6	10.5
None	Ν	N	0 Y	10	20	10	15
Cold	Υ	Y	12 Y	9	15	6	10.5
Warm	Ϋ́	Ϋ́	12 Y	10	20	10	15.5
None	N	Ϋ́	12 Y	9	15	6	10.5
Cold	Y	N	0 Y	10	20	10	15.5
None	N	N	0 N	0	10	10	10

1								
2								
3 4	None	Ν	N	0 Y	9	15	6	10.5
	None	Ν	Υ	12 N	0	10	10	10
5	None	Ν	Υ	12 Y	9	15	6	10.5
6	None	Ν	Υ	12 N	0	10	10	10
7	Cold	Υ	N	0 Y	10	20	10	15
8 9	Warm	Υ	N	0 Y	10	30	20	25
	Cold	Υ	N	0 N	0	23	23	23
10	None	Ν	Υ	12 N	0	10	10	10
11	Cold	Υ	N	0 Y	10	30	20	25
12 13	Warm	Υ	Υ	12 N	0	10	10	10
14	Cold	Υ	Υ	12 N	0	10	10	10
15	Warm	Υ	Υ	12 Y	10	30	20	25
16	None	Ν	Υ	12 N	0	23	23	23
17	Cold	Υ	Υ	12 Y	10	20	10	15
18	Warm	Υ	Υ	12 N	0	10	10	10
19	Warm	Υ	N	0 N	0	23	23	23
20	Warm	Υ	Υ	12 N	0	23	23	23
21	None	Ν	Υ	12 Y	10	30	20	25
22	None	Ν	N	0 Y	9	15	6	10.5
23	W+C	Υ	NA	NA Y	12	15	3	9
24	None	N	NA	NA N	0	3	3	3
25	None	N	N	0 N	0	25	25	25
26	None	Ν	N	0 N	0	3	3	3
27	W+C	Υ	NA	NA Y	12	15	3	9
28	W+C	Υ	NA	NA Y	12	15	3	9
29	None	Ν	N	0 Y	15	25	10	17.5
30	Cold	Υ	Υ	12 Y	15	25	10	17.5
31	None	N	Υ	12 Y	15	25	10	17.5
32	None	N	Υ	12 Y	15	25	10	17.5
33	None	N	Υ	12 Y	15	25	10	17.5
34	Cold	Y	Y	12 Y	15	25	10	17.5
35	None	N	Y	12 Y	15	25	10	17.5
36	None	N	Y	12 Y	15	25	10	17.5
37	Cold	Y	Y	12 Y	15	25	10	17.5
38 39	None	N	Y	12 Y	15	25	10	17.5
40	None	N	Y	12 Y	15	25	10	17.5
41	None	N	N	0 Y	15	25	10	17.5
42	None	N	N	0 Y	15	25	10	17.5
43	None	N	N	0 Y	15	25	10	17.5
44	None	N	Y	12 Y	15	25	10	17.5
45	Cold	Y	Y	12 Y	15	25	10	17.5
46	Cold	Y	Y	12 Y	15	25 25	10	17.5
47	Cold	Y	Y	12 Y	15	25 25	10	17.5
48	Cold	Y	Y	12 Y	15	25 25	10	17.5
49	None	N	Y	12 Y	15	25 25	10	17.5
50	Cold	Y	Y	12 Y	15	25 25	10	17.5
51	None	N	N	0 Y	15	25 25	10	17.5
52	None	N	Y Y	12 Y 12 Y	15 15	25 25	10 10	17.5
53	None	N		12 Y 0 Y	15 15	25 25	10 10	17.5
54	None	N N	N Y	0 Y 12 Y	15	25 25	10	17.5 17.5
55	None	N	Y Y	12 Y 12 Y	15	25 25	10	17.5 17.5
56	None	N N	Ϋ́Υ	12 Y 12 Y	15	25 25	10	
57	None None	N N	r N	0 Y	15	25 25	10	17.5 17.5
58	None	N	Y	12 Y	15	25 25	10	17.5
59	None	N	Ϋ́	12 Y	15	25 25	10	17.5
60	NONE	1 4	•	12 1	13	20	10	17.5

None	Ν	N	0 Y	15	25	10	17.5
None	Ν	N	0 Y	15	25	10	17.5
None	N	Υ	12 Y	15	25	10	17.5
Cold	Υ	Υ	12 Y	15	25	10	17.5
None	Ν	N	0 Y	15	25	10	17.5
None	Ν	Υ	12 Y	15	25	10	17.5
Cold	Υ	Υ	12 Y	15	25	10	17.5
None	N	Y	12 Y	15	25	10	17.5
None	N	Y	12 Y	15	25	10	17.5
Cold	Y	Ϋ́	12 Y	15	25	10	17.5
None	N	Ϋ́	12 Y	15	25	10	17.5
None	N	Ϋ́	12 Y	15	25	10	17.5
None	N	Ϋ́	12 Y	15	25	10	17.5
None	N	Ϋ́	12 Y	15	25 25	10	17.5
None	N	Ϋ́	12 Y	15	25 25	10	17.5
	N	N	0 Y	15	25 25	10	17.5
None		Y	12 Y	15		10	
Cold	Y		12 Y		25		17.5
None	N	Y		15 45	25	10	17.5
None	N	Y	12 Y	15	25	10	17.5
Cold	Y	Y	12 Y	15	25	10	17.5
Cold	Y	Y	12 Y	15	25	10	17.5
Cold	Y	Y	12 Y	15	25	10	17.5
Cold	Υ	Υ	12 Y	15	25	10	17.5
None	N	Y	12 Y	15	25	10	17.5
None	N	Υ	12 Y	15	25	10	17.5
None	N	Υ	12 Y	15	25	10	17.5
None	Ν	Υ	12 Y	15	25	10	17.5
None	Ν	Υ	12 Y	15	25	10	17.5
None	Ν	N	0 Y	15	25	10	17.5
None	Ν	Υ	12 Y	15	25	10	17.5
None	Ν	Υ	12 Y	15	25	10	17.5
None	Ν	N	0 Y	15	25	10	17.5
None	Ν	Υ	12 Y	15	25	10	17.5
None	Ν	N	0 Y	15	25	10	17.5
Cold	Υ	Υ	12 Y	15	25	10	17.5
None	Ν	Υ	12 Y	15	25	10	17.5
None	Ν	N	0 Y	15	25	10	17.5
None	N	N	0 Y	15	25	10	17.5
None	Ν	Υ	12 Y	15	25	10	17.5
Cold	Υ	Υ	12 Y	15	25	10	17.5
None	Ν	N	0 Y	15	25	10	17.5
None	Ν	Υ	12 Y	15	25	10	17.5
None	N	N	0 Y	15	25	10	17.5
Cold	Υ	Υ	12 Y	15	25	10	17.5
None	N	N	0 Y	15	25	10	17.5
None	N	N	0 Y	15	25	10	17.5
Cold	Y	Y	12 Y	15	25	10	17.5
None	N	N	0 Y	15	25	10	17.5
Cold	Y	Y	12 Y	15	25	10	17.5
None	N	N	0 Y	15	25 25	10	17.5
None	N	Y	12 Y	15	25 25	10	17.5
None	N	Ϋ́	12 Y	15	25 25	10	17.5
Cold	Y	Ϋ́	12 Y	15	25 25	10	17.5 17.5
	r N	Y Y	12 Y 12 Y	15	25 25	10	17.5 17.5
None	N N		0 Y	15	25 25		
None		N Y				10 10	17.5 17.5
None	N	Y	12 Y	15	25	10	17.5

1									
2									
3	None	N	Υ		12 Y	15	25	10	17.5
4	Cold	Υ	Y		12 Y	15	25	10	17.5
5 6	None	N	Y		12 Y	15	25	10	17.5
7	None	N	Y		12 Y	15	25	10	17.5
	None	N	Y		12 Y	15	25	10	17.5
8 9	Cold	Y	Y		16 N	0	25	25	25
10	Cold	Y	Y N		16 Y	10	25	15	21.66667 25
11	None None	N N	NA NA	NA	0 N N	0	25	25	
12	None	N	NA NA	NA NA	N	0	4 4	4 4	4 4
13	None	N	NA	NA	N	0	4	4	4
14	None	N	NA	NA	N	0	4	4	4
15	None	N	NA	NA	N	0	4	4	4
16	None	N	N	147 (0 N	0	25	25	25
17	None	N	N		0 N	0	20	20	20
18	None	N	N		0 N	0	20	20	20
19 20	None	N	N		0 N	0	5	5	5
21	None	Ν	N		0 N	0	20	20	20
22	None	Ν	N		0 N	0	10	10	10
23	None	Ν	N		0 N	0	15	15	15
24	None	N	NA	NA	N	0	4	4	4
25	None	Ν	NA	NA	N	0	4	4	4
26	None	Ν	NA	NA	N	0	4	4	4
27	None	N	Υ		12 N	0	10	10	10
28	Cold	Υ	Υ		12 N	0	5	5	5
29	Cold	Υ	Y		12 Y	10	15	5	10
30	None	N	N		0 N	0	0	0	0
31	None	N	Y		12 Y	10	25	15	20
32	None	N	Y		12 Y	10	20	10	15
33 34	None	N	Y Y		12 N 12 Y	0	25 15	25	25 10
35	None Cold	N Y	Ϋ́		12 T	10	25	5 25	10 25
36	None	N	Ϋ́		12 N	0	20	20	20
37	None	N	Ϋ́		12 N	0	15	15	15
38	None	N	Ϋ́		12 N	0	5	5	5
39	Cold	Y	Ϋ́		12 N	0	15	15	15
40	None	N	Ϋ́		12 Y	10	30	20	25
41	Cold	Υ	Y		12 Y	10	30	20	25
42	Cold	Υ	Υ		12 Y	10	25	15	20
43	Cold	Υ	NA	NA	N	0	15	15	15
44	Cold	Υ	NA	NA	Ν	0	10	10	10
45 46	Cold	Υ	NA	NA	Ν	0	5	5	5
46 47	None	Ν	Υ		12 Y	10	15	5	10
47	None	Ν	Υ		12 Y	15	25	10	17.5
49	None	Ν	N		0 N	0	5	5	5
50	None	Ν	Y		12 Y	15	25	10	17.5
51	None	N	N		0 N	0	5	5	5
52	None	N	Y		12 Y	10	15	5	10
53	None	N	N		0 N	0	18.7	18.7	18.7
54	None	N	NA	NA	N	0	20	20	20
55	None	N	Y		24 N	0	20	20	20
56	None	N	N		0 N	0	15	15	15
57	None	N N	N N		0 N	0	20 25	20 25	20 25
58	None None	N N	N N		0 N 0 N	0	25 5	25 5	25 5
59 60	None	N	N N		0 N	0	10	10	10
60	INOTIC	14	14		UIN	U	10	10	10

None	Ν	N	0 N	0	20	20	20
None	Ν	N	0 N	0	20	20	20
None	N	Υ	14 Y	12	19	7	14
Cold	Y	Ϋ́	14 Y	12	19	7	14
None	N	Ϋ́	14 Y	12	19	7	14
						7	
Cold	Y	Y	14 Y	12	19		14
None	N	Y	12 N	0	15	15	15
None	N	Υ	12 N	0	15	15	15
Cold	Υ	N	0 N	0	40	40	40
Cold	Υ	N	0 N	0	10	10	10
None	N	N	0 N	0	40	40	40
None	Ν	N	0 N	0	30	30	30
Cold	Υ	N	0 Y	10	30	20	25
None	Ν	N	0 N	0	10	10	10
Cold	Υ	N	0 N	0	15	15	15
None	N	N	0 Y	10	35	25	30
Cold	Y	N	0 N	0	25	25	25
Cold	Y	N	0 Y	10	35	25	30
None	N	N	0 N	0	15	15	15
Cold	Υ	N	0 N	0	30	30	30
Cold	Υ	N	0 N	0	20	20	20
None	N	N	0 Y	10	30	20	25
None	N	N	0 N	0	25	25	25
None	Ν	Υ	8 Y	10	30	20	23.33333
None	Ν	N	0 N	0	20	20	20
Cold	Υ	N	0 N	0	24	24	24
Cold	Ϋ́	N	0 N	0	29	29	29
Cold	Ϋ́	N	0 N	0	27	27	27
	Ϋ́	N	0 N	0	15	15	15
Cold							
Cold	Y	N	0 N	0	8	8	8
Cold	Y	N	0 N	0	12	12	12
Cold	Y	N	0 N	0	21	21	21
Cold	Υ	N	0 N	0	4	4	4
None	N	Υ	16 N	0	25	25	25
W+C	Υ	NA	NA Y	17	20	3	11.5
None	Ν	N	0 N	0	23	23	23
Cold	Υ	N	0 N	0	23	23	23
Cold	Υ	Υ	12 Y	10	26	16	21
None	Ν	Υ	8 N	0	15	15	15
None	N	Y	8 N	0	20	20	20
None	N	Ϋ́	8 N	0	10	10	10
Cold	Y	N	0 Y	12	15	3	9
None	N	Y	8 N	0	30	30	30
None	N	Y	8 N	0	25	25	25
None	N	Υ	8 N	0	5	5	5
None	N	Υ	8 N	0	35	35	35
Cold	Υ	Υ	12 Y	7.6	18	10.4	14.2
Cold	Υ	Υ	12 Y	11.6	24	12.4	18.2
Cold	Υ	Υ	24 N	0	20	20	20
None	Ν	N	0 N	0	20	20	20
Cold	Υ	N	0 N	0	30	30	30
None	N	Y	24 N	0	20	20	20
Cold	Y	Ϋ́	24 N	0	25	25	25
Cold	Ϋ́	N	0 N	0	20	20	20
	Ϋ́	N	0 N	0			
Cold					20	20	20
Cold	Υ	Υ	24 N	0	20	20	20

1								
1 2								
3	Cold	Υ	Υ	24 N	0	30	30	30
4	Cold	Ϋ́	Ϋ́	24 N 24 N	0	15	15	15
5	Cold	Ϋ́	N	0 N	0	25	25	25
6	Cold	Ϋ́	N	0 N	0	20	20	20
7		Ϋ́	N	0 N		20 15	20 15	15
8	Cold	n N	Y	24 N	0	20	20	20
9	None	Y	Ϋ́	24 N 24 N	0	20		
10	Cold None	r N	r N	0 N	0 0	20	20 20	20 20
11	None	N	Y	12 N	0	23	23	23
12	Cold	Y	Ϋ́	16 Y	8	23 28		25.33333
13	None	N	Ϋ́	12 N	0	25	25	25
14	None	N	Ϋ́	12 N 12 N	0	25 25	25 25	25
15	None	N	Ϋ́	12 N 12 N	0	25 25	25 25	25
16	None	N	Ϋ́	12 N 12 N	0	25 25	25 25	25
17	None	N	Ϋ́	12 N 12 N	0	25 25	25 25	25
18	None	N	Ϋ́	12 N 12 N	0	25 25	25 25	25
19		N	Ϋ́	12 N	0	25 25	25 25	25
20	None	N N	Ϋ́Υ	12 N 12 N	0	25 25	25 25	25 25
21	None Cold	N Y	Y NA	NA N	0	25 21	25 21	25 21
22		Ϋ́	NA NA	NA N	0	21	21	21
23	Cold Cold	Ϋ́	NA NA	NA N	0	21	21	21
24	Cold	Ϋ́	NA NA	NA N	0	21	21	21
25		n N	Y	12 N	0	25	25	25
26	None	Y	n NA	NA N	0	25 21	25 21	21
27	Cold Cold	Ϋ́	NA NA			21	21	21
28	W+C	Ϋ́	NA NA		0		22	
29		Ϋ́	N N	NA NON	0 0	22 23	23	22 23
30 31	Warm	Ϋ́		0 N 0 N	0	23 10		
32	Warm	Ϋ́	N	0 N 0 Y		20	10 10	10
33	Warm	Ϋ́	N Y	12 Y	10 9	20 15	10	15 10.5
34	Warm Warm	Ϋ́	Ϋ́	12 N	0	23	6 23	23
35	Cold	Ϋ́	Ϋ́	12 N 12 Y	10	30	20	25
36	Cold	Ϋ́	N	0 Y	10	20	10	15
37	None	N	Y	12 Y	9	15	6	10.5
38	Warm	Y	N	0 Y	9	15	6	10.5
39	None	N	Y	12 Y	10	30	20	25
40	Cold	Y	N N	0 N	0	10	10	10
41	Warm	Ϋ́	N	0 Y	10	30	20	25
42	Cold	Ϋ́	Y	12 N	0	10	10	10
43	None	N	N N	0 Y	9	15	6	10.5
44	Cold	Y	N	0 Y	10	30	20	25
45	None	N	N	0 N	0	23	23	23
46	None	N	N	0 N	0	10	10	10
47	Warm	Y	Y	12 Y	10	30	20	25
48	None	N	Ϋ́	12 N	0	23	23	23
49	Warm	Y	Ϋ́	12 N 12 N	0	10	10	10
50	None	n N	Ϋ́	12 N 12 Y	10	20	10	15
51	Cold	Y	Ϋ́	12 Y	10	20	10	15
52	Warm	Ϋ́	Ϋ́	12 Y	10	20	10	15
53	None	N	N	0 Y	10	30	20	25
54	Cold	Y	N	0 Y	9	30 15	6	10.5
55	None	N	N	0 Y	10	20	10	10.5
56	Cold	Y	Y	12 Y	9	15	6	10.5
57	Cold	Ϋ́	r N	0 N	0	23	23	23
58	Cold	Ϋ́	Y	12 N	0	23	23	23
59 60	None	N	Ϋ́	12 N	0	10	10	10
00		. •	•	12 11	Ŭ	.0		

None	Ν	N	0 N	0	15	15	15
None	Ν	N	0 N	0	15	15	15
None	Ν	Υ	8 N	0	15	15	15
Cold	Υ	Y	8 N	0	15	15	15
None	N	Ý	16 Y	8	24	16	21.33333
	N	Ϋ́	16 Y		24	16	
None				8			21.33333
None	N	Y	16 Y	8	24	16	21.33333
None	N	Υ	16 Y	8	24	16	21.33333
None	Ν	Υ	16 Y	8	24	16	21.33333
None	Ν	Υ	16 Y	8	24	16	21.33333
None	Ν	Υ	16 Y	2	21	19	20.33333
None	Ν	Υ	16 Y	2	21	19	20.33333
None	Ν	Υ	12 N	0	4	4	4
None	N	Y	12 N	0	20	20	20
None	N	Ϋ́	12 N	0	15	15	15
	N	Ϋ́	12 N	0	10	10	10
None							
None	N	Y	12 N	0	4	4	4
None	N	Y	12 N	0	20	20	20
None	N	Υ	12 N	0	10	10	10
None	Ν	Υ	12 N	0	15	15	15
None	Ν	Υ	12 N	0	15	15	15
None	Ν	Υ	12 N	0	4	4	4
None	Ν	Υ	12 N	0	20	20	20
None	N	Ϋ́	12 N	Ō	10	10	10
None	N	Ý	12 Y	4	21	17	19
	N	Ϋ́	12 N	0	15	15	
None							15
None	N	Y	12 N	0	10	10	10
None	N	Y	12 N	0	20	20	20
None	N	Υ	12 N	0	4	4	4
None	Ν	Υ	24 N	0	17.5	17.5	17.5
None	Ν	N	0 N	0	17.5	17.5	17.5
None	Ν	N	0 N	0	17.5	17.5	17.5
None	Ν	Υ	24 N	0	17.5	17.5	17.5
None	Ν	Υ	8 N	0	15	15	15
None	N	Y	8 N	0	20	20	20
None	N	Ϋ́	8 N	0	20	20	20
None	N	Ý	8 N	0	5	5	5
None	N	Y	8 N	0	20	20	20
None	N	Y	8 N	0	25	25	25
Cold	Y	N	0 N	0	29	29	29
Cold	Υ	N	0 N	0	32	32	32
Cold	Υ	N	0 N	0	2	2	2
Cold	Υ	N	0 N	0	43	43	43
Cold	Υ	Ν	0 N	0	5	5	5
Cold	Υ	N	0 N	0	16	16	16
Cold	Υ	N	0 N	0	22	22	22
None	Ν	Υ	8 N	0	5	5	5
Cold	Y	N	0 N	0	26	26	26
Cold	Ϋ́	N	0 N	0	12	12	12
Cold	Y	N	0 N	0	26	26	26
W+C	Y	Y	10 Y	10	15	5	9.166667
W+C	Υ	Υ	10 Y	10	15	5	9.166667
W+C	Υ	Υ	10 Y	10	15	5	9.166667
None	Ν	Υ	12 Y	10	30	20	25
W+C	Υ	Υ	12 Y	10	30	20	25
Cold	Υ	Υ	12 Y	10	30	20	25

1	
2	
4 5	
6 7 8	
8 9	
10	
11 12	
11 12 13 14 15	
15 16	
16 17 18	
19	
20 21	
22	
20 21 22 23 24 25	
25 26	
26 27 28 29	
29 30	
31	
31 32 33 34	
34 35	
36 37	
38 39	
40	
41 42	
43 44	
45 46	
47	
48 49	
50 51	
52 53	
54 55	
56	
57 58	
59 60	

None	N	Υ		8 Y	10	30	20	23.33333
None	Ν	NA	NA	N	0	25	25	25
None	Ν	NA	NA	N	0	15	15	15
None	Ν	NA	NA	N	0	10	10	10
None	Ν	NA	NA	N	0	5	5	5
None	Ν	NA	NA	N	0	20	20	20
None	Ν	Υ		8 Y	10	30	20	23.33333
None	Ν	Υ		8 Y	10	30	20	23.33333
None	Ν	Υ		8 Y	10	30	20	23.33333
None	Ν	Υ		8 Y	10	30	20	23.33333
None	Ν	Υ		12 N	0	25	25	25
None	Ν	Υ		16 N	0	25	25	25
None	Ν	Υ		16 Y	10	25	15	21.66667
None	Ν	Υ		8 N	0	15	15	15
Cold	Υ	Υ		8 N	0	15	15	15
Cold	Υ	Υ		8 Y	10	30	20	23.33333
None	Ν	Υ		8 Y	10	30	20	23.33333
None	Ν	Υ		8 N	0	15	15	15
Cold	Υ	Υ		8 N	0	15	15	15
Cold	Υ	Υ		8 Y	10	30	20	23.33333
None	Ν	Υ		8 Y	10	30	20	23.33333
None	Ν	N		0 N	0	25	25	25
None	Ν	N		0 N	0	15	15	15
None	Ν	N		0 N	0	5	5	5
Cold	Υ	N		0 N	0	5	5	5
Cold	Υ	NA	NA	N	0	15	15	15
None	Ν	NA	NA	N	0	5	5	5
Cold	Υ	N		0 N	0	15	15	15
Cold	Υ	NA	NA	N	0	5	5	5
None	Ν	NA	NA	N	0	15	15	15
None	Ν	N		0 N	0	28	28	28
None	Ν	N		0 N	0	28	28	28
None	Ν	N		0 N	0	20	20	20
None	Ν	Υ		12 N	0	20	20	20
None	Ν	N		0 N	0	20	20	20
Cold	Υ	Υ		12 N	0	15	15	15
Cold	Υ	N		0 N	0	15	15	15
Cold	Υ	Υ		12 N	0	15	15	15
Cold	Υ	N		0 N	0	15	15	15
Cold	Υ	N		0 N	0	15	15	15
Cold	Υ	N		0 N	0	15	15	15
Cold	Υ	Υ		12 N	0	15	15	15
Cold	Υ	N		0 N	0	15	15	15
Cold	Υ	Υ		12 N	0	15	15	15
Cold	Υ	Υ		12 N	0	15	15	15
Cold	Υ	Υ		12 N	0	15	15	15
Cold	Υ	Υ		12 N	0	15	15	15
Cold	Υ	Υ		12 N	0	15	15	15
Cold	Υ	Υ		12 N	0	15	15	15
Cold	Υ	Υ		12 N	0	15	15	15
Cold	Υ	Υ		12 N	0	15	15	15
Cold	Υ	Υ		12 N	0	15	15	15
Cold	Υ	N		0 N	0	15	15	15
Cold	Υ	Υ		12 N	0	15	15	15
Cold	Υ	N		0 N	0	15	15	15
Cold	Υ	N		0 N	0	15	15	15

Cold	Υ	Υ		12 N		0	15	15	15
Cold	Y	Y		12 N		0	15	15	15
Cold	Ϋ́	N		0 N		0	15	15	15
Cold	Ϋ́	N		0 N		0	15	15	15
Cold	Y	Y		12 N		0	15	15	15
Cold	Y	Y		12 N		0	15	15	15
Cold	Υ	Υ		12 N		0	15	15	15
Cold	Υ	Υ		12 N		0	15	15	15
Cold	Υ	Υ		12 N		0	15	15	15
Cold	Υ	N		0 N		0	15	15	15
Cold	Υ	Υ		12 N		0	15	15	15
Cold	Υ	N		0 N		0	15	15	15
Cold	Υ	Υ		12 N		0	15	15	15
Cold	Y	Y		12 N		0	15	15	15
Cold	Ϋ́	N		0 N		0	15	15	15
Cold	Ϋ́	N		0 N		0	15	15	15
	Y								
Cold		N		0 N		0	15	15	15
Cold	Y	N		0 N		0	15	15	15
Cold	Υ	N		0 N		0	15	15	15
Cold	Υ	N		0 N		0	15	15	15
Cold	Υ	N		0 N		0	15	15	15
Cold	Υ	Υ		12 N		0	15	15	15
Cold	Υ	N		0 N		0	15	15	15
Cold	Υ	N		0 N		0	15	15	15
Cold	Υ	N		0 N		0	15	15	15
Cold	Y	N		0 N		0	15	15	15
Cold	Ϋ́	N		0 N		0	15	15	15
None	N	N		0 N		0	15	15	15
	N	N		0 N		0	25	25	25
None									
None	N	N		0 N		0	20	20	20
None	N	N		0 N		0	5	5	5
None	N	N		0 N		0	25	25	25
None	N	N		0 N		0	10	10	10
None	N	N		0 N		0	10	10	10
None	Ν	N		0 N		0	5	5	5
None	Ν	N		0 N		0	15	15	15
None	Ν	N		0 N		0	20	20	20
None	Ν	Υ		8 Y	1	10	30	20	23.33333
Cold	Υ	Υ		8 Y		10	30	20	23.33333
Cold	Υ	NA	NA	Ν		0	20	20	20
None	N	NA	NA	N		0	20	20	20
W+C	Y	NA	NA	N		0	20	20	20
W+C	Ϋ́	NA	NA	N		0	20	20	20
		NA NA	NA					20	
None	N			N		0	20		20
Cold	Y	NA	NA	N		0	20	20	20
Cold	Y	NA	NA	N		0	20	20	20
W+C	Υ	NA	NA	N		0	20	20	20
None	Ν	NA	NA	N		0	20	20	20
Cold	Υ	NA	NA	N		0	20	20	20
None	Ν	NA	NA	N		0	20	20	20
W+C	Υ	NA	NA	Ν		0	20	20	20
None	Ν	NA	NA	Ν		0	20	20	20
W+C	Υ	NA	NA	Ν		0	20	20	20
Cold	Ϋ́	NA	NA	N		0	20	20	20
None	N	NA	NA	N		0	20	20	20
W+C	Y	NA	NA	N		0	20	20	20
•••		1.47-7	14/-1	1 1		J	20	20	20

1 2 3 4 5 6 7 8 9 10 11 21 31 4 15 16 17 18 19 20 21 22 22 23 24 25 26 27 28 29 30 31 33 33 34 35 36 36 36 37 37 38 37 37 37 38 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38		

Warm	Υ	Y	1	6 Y	10	30	20	26.66667
Cold	Y	Ϋ́		6 Y	5		15	18.33333
Warm	Ϋ́	Ý		6 Y	5		15	18.33333
None	N	Ý		6 Y	5		15	18.33333
None	N	NA	NA '	N	0		20	20
	Y				0			
W+C		NA	NA	N			20	20
Cold	Y	Y		8 N	0		7.5	7.5
Cold	Υ	Y		8 N	0		20	20
Cold	Υ	Y		8 N	0		15	15
Cold	Υ	Υ		8 N	0		30	30
Cold	Υ	Υ		8 N	0		10	10
Cold	Υ	Υ		8 N	0	25	25	25
Cold	Υ	Υ		8 N	0	15	15	15
Cold	Υ	Υ		8 N	0	30	30	30
Cold	Υ	Υ		8 N	0	20	20	20
Cold	Υ	Υ		8 N	0		7.5	7.5
Cold	Υ	Υ		8 N	0		10	10
Cold	Y	Ϋ́		8 N	0		25	25
Cold	Ϋ́	Ý		8 N	0		10	10
Cold	Ϋ́	Ϋ́		8 N	0		20	20
	Ϋ́	Ϋ́		8 N	0		30	30
Cold								
Cold	Y	Y		8 N	0		25	25
Cold	Y	Y		8 N	0		7.5	7.5
Cold	Υ	Y		8 N	0		15	15
Cold	Υ	Υ		8 N	0		30	30
Cold	Υ	Υ		8 N	0		25	25
Cold	Υ	Υ		8 N	0		20	20
Cold	Υ	Υ		8 N	0	10	10	10
Cold	Υ	Υ		8 N	0	15	15	15
Cold	Υ	Υ		8 N	0	7.5	7.5	7.5
Cold	Υ	Υ		8 N	0		22	22
None	Ν	Υ		8 Y	10		22	25.33333
None	Ν	Υ		8 N	0		22	22
Cold	Υ	Ϋ́		8 Y	5	27	22	23.66667
Cold	Ϋ́	Ý		8 Y	15		22	27
None	N	Ϋ́		8 Y	5		22	23.66667
	N	Ϋ́		8 Y	15		22	25.00007
None	Y	Ϋ́						
Cold				8 Y	10		22	25.33333
None	N	N		0 Y	10		20	25
None	N	Y		8 Y	10		15	18.33333
None	N	Y		8 Y	5		20	21.66667
None	N	N		0 N	0		20	20
None	N	N		0 Y	5		20	22.5
None	Ν	Υ		8 N	0		20	20
None	Ν	N		0 Y	10	30	20	25
None	Ν	N		0 N	0	20	20	20
None	Ν	Υ		8 Y	10	25	15	18.33333
None	Ν	Υ		8 Y	5	25	20	21.66667
None	Ν	Υ		8 N	0		20	20
None	Ν	Υ		8 Y	10		20	23.33333
None	N	N		0 Y	10		15	20
None	N	N		0 Y	5		20	22.5
None	N	N		0 T	10		15	20
None	N	Y		8 Y	10		20	23.33333
	N	Ϋ́		6 N			25 25	25.33333
None		Ϋ́			0			
None	N	Ť	1	5 N	0	20	20	20

None	Ν	Υ		15 N	0	20	20	20
Warm	Υ	NA	NA	Ν	0	3	3	3
None	Ν	Υ		8 Y	10	30	20	23.33333
None	Ν	N		0 Y	10	25	15	20
None	Ν	Υ		16 Y	10	25	15	21.66667
None	Ν	Υ		16 N	0	15	15	15
None	Ν	Υ		16 Y	10	25	15	21.66667
None	Ν	Υ		16 N	0	25	25	25
None	Ν	Υ		14 Y	6	24	18	21.5
None	Ν	Υ		16 Y	10	30	20	26.66667
Warm	Υ	N		0 N	0	4	4	4
None	Ν	N		0 N	0	4	4	4
None	Ν	N		0 N	0	20	20	20
None	Ν	N		0 N	0	25	25	25
None	Ν	N		0 N	0	15	15	15
None	N	N		0 N	0	10	10	10
None	N	N		0 N	0	40	40	40
None	N	N		0 N	0	5	5	5
None	N	N		0 N	0	35	35	35
None	N	N		0 N	0	30	30	30
None	N	Y		_ 8 N	0	25	25	25
None	N	Ϋ́		8 N	0	20	20	20
None	N	Ý		8 N	0	10	10	10
None	N	Ý		8 N	0	30	30	30
None	N	Ý		8 N	0	15	15	15
None	N	Ý		8 N	0	35	35	35
None	N	Ý		8 N	0	5	5	5
None	N	Ý		8 N	0	20	20	20
None	N	Ϋ́		8 N	0	25	25	25
None	N	Ϋ́		8 N	0	5	5	5
None	N	Ϋ́		8 N	0	30	30	30
None	N	Ý		8 N	0	35	35	35
None	N	Ϋ́		8 N	0	10	10	10
None	N	Ϋ́		8 N	0	15	15	15
None	N	Ϋ́		8 N	0	15	15	15
None	N	Ϋ́		8 N	0	5	5	5
None	N	Ϋ́		8 N	0	25	25	25
None	N	Ϋ́		8 N	0	10	10	10
None	N	Ϋ́		8 N	0	30	30	30
None	N	Ϋ́		8 N	0	35	35	35
None	N	Ϋ́		8 N	0	20	20	20
None	N	Ϋ́		8 N	0	5	5	5
None	N	Ϋ́		8 N	0	30	30	30
None	N	Ϋ́		8 N	0	25	25	25
None	N	Ϋ́		8 N	0	15	15	15
None	N	Ϋ́		8 N	0	35	35	35
None	N	Ϋ́		8 N	0	10	10	10
None	N	Ϋ́		8 N	0	20	20	20
None	N	Ϋ́		8 Y	10	30	20	23.33333
None	N	Y		8 N	0	20	20	20.33333
		Y		8 N	0	15	15	
None	N N	Ϋ́		8 N	0	10	10	15 10
None None	N	Ϋ́		8 N	0	25		
	N N	Ϋ́		8 N	0	∠5 5	25 5	25 5
None		Ϋ́						5 35
None	N N	Ϋ́		8 N	0 0	35 30	35 30	35 30
None	N	ī		8 N	U	30	30	30

1									
2									
3	None	Ν	Υ		8 N	0	5	5	5
4	None	Ν	Υ		8 N	0	30	30	30
5	None	Ν	Υ		8 N	0	35	35	35
6	None	Ν	Υ		8 N	0	15	15	15
7	None	Ν	Υ		8 N	0	20	20	20
8	None	Ν	Υ		8 N	0	10	10	10
9	None	Ν	Υ		8 N	0	25	25	25
10	None	Ν	Υ		13 Y	10	20	10	15.41667
11	None	Ν	Υ		11 Y	10	15	5	9.583333
12	None	Ν	Υ		11 Y	10	15	5	9.583333
13	None	Ν	Υ		13 Y	10	20	10	15.41667
14	None	Ν	Υ		13 Y	10	20	10	15.41667
15	None	Ν	Υ		11 Y	10	15	5	9.583333
16	None	Ν	Υ		11 Y	10	15	5	9.583333
17	None	Ν	Υ		13 Y	10	20	10	15.41667
18	None	Ν	Υ		13 Y	10	20	10	15.41667
19	None	Ν	Υ		11 Y	10	15	5	9.583333
20 21	None	Ν	Υ		12 Y	15	30	15	22.5
22	None	N	Y		12 Y	10	20	10	15
23	None	N	Y		12 Y	9	15	6	10.5
23 24	None	N	Ϋ́		12 N	0	5	5	5
25	None	N	Ϋ́		12 Y	4	21	17	19
26	None	N	Ϋ́		16 N	0	23	23	23
27	None	N	Ϋ́		8 Y	10	30	20	23.33333
28	Cold	Y	Ý		24 N	0	20	20	20
29	None	N	Ý		24 N	0	20	20	20
30	None	N	Ý		12 Y	10	30	20	25
31	Cold	Y	N		0 Y	10	30	20	25
32	None	N	Y		12 Y	10	15	5	10
33	Cold	Y	Ý		12 Y	10	20	10	15
34	None	N	Ý		12 Y	10	15	5	10
35	None	N	Ϋ́		12 Y	10	20	10	15
36	Cold	Y	Ϋ́		12 Y	10	30	20	25
37	Cold	Ϋ́	Ϋ́		12 Y	10	25	15	20
38	None	N	Ϋ́		12 Y	10	25	15	20
39	None	N	Ϋ́		12 Y	10	25	15	20
40	Cold	Y	Ý		12 Y	10	20	10	15
41	None	N	Ϋ́		12 Y	10	30	20	25
42	Cold	Y	Ϋ́		12 Y	10	25	15	20
43	Cold	Ϋ́	Ϋ́		12 Y	10	15	5	10
44	Cold	Ϋ́	Ϋ́		12 T	10	35	25	30
45	Cold	Ϋ́	Ϋ́		12 T	10	30	20	25
46	None	N	Ϋ́		12 Y	10	35	25	30
47	Cold	Y	N		0 Y	10	30	20	25
48	Cold	Ϋ́	Y		12 Y	10	15	5	10
49	None	N	Y		12 T	10	20	10	15
50	None	N	Y		12 T	10	35	25	30
51	Cold	Y	Ϋ́		12 T 12 Y	10	35	25	30
52	None	N	N		0 Y	10	30	20	25
53	None	N	NA NA	NA	N	0	5	5	25 5
54	Warm	Y	NA NA	NA NA	N	0	5	5	5
55	Warm	Y	NA NA	NA NA	N	0	5	5	5
56	None	r N	NA NA	NA NA	N N	0	5 5	5 5	5 5
57	Cold	Y	Y	INA	12 N	0	20	20	20
58	None	r N	n NA	NA	12 N N	0		3	3
59	None	N	NA NA	NA NA	N	0	3 2	2	2
60	INOTIC	14	INA	11/7	IN	U	4	2	4

None	Ν	NA	NA	N	0	15	15	15
None	Ν	NA	NA	N	0	3	3	3
None	Ν	NA	NA	N	0	3	3	3
None	Ν	Υ		14 N	0	5	5	5
None	N	Ϋ́		14 Y	15	35	20	28.75
None	N	Ϋ́		14 Y	15	30	15	23.75
	N	Ϋ́		14 Y	9	15	6	11.25
None		Ϋ́						
None	N			14 Y	10	25	15	20.83333
None	N	Y		14 Y	10	20	10	15.83333
None	N	Υ		12 Y	13	20	7	13.5
None	Ν	Υ		12 Y	15	25	10	17.5
None	Ν	Υ		16 N	0	15	15	15
None	Ν	Υ		16 N	0	20	20	20
None	Ν	Υ		16 N	0	10	10	10
None	Ν	Υ		8 Y	10	30	20	23.33333
None	Ν	Υ		12 Y	10	12	2	7
None	N	Y		12 Y	10	33	23	28
None	N	Ϋ́		12 Y	10	26	16	21
None	N	Ϋ́		12 Y	10	19	9	14
	N	Ϋ́		12 T	10	19	9	14
None				12 T				
None	N	Y			10	12	2	7
None	N	Y		12 Y	10	33	23	28
None	N	Υ		12 Y	10	26	16	21
None	Ν	N		0 N	0	4	4	4
None	Ν	N		0 N	0	4	4	4
Cold	Υ	Υ		12 N	0	21	21	21
Cold	Υ	Υ		12 N	0	30	30	30
Cold	Υ	Υ		12 N	0	24	24	24
Cold	Υ	Υ		12 N	0	36	36	36
Cold	Υ	Υ		12 N	0	6	6	6
Cold	Υ	Υ		12 N	0	9	9	9
Cold	Y	Y		12 N	0	18	18	18
Cold	Ϋ́	Ϋ́		12 N	0	38	38	38
Cold	Ϋ́	Ϋ́		12 N	0	6	6	6
Cold	Ϋ́	Ϋ́		12 N	0	38	38	38
	Ϋ́	Ϋ́			0	3	3	3
Cold				12 N				
Cold	Y	N		0 Y	10	15	5	10
Cold	Y	Y		12 N	0	9	9	9
Cold	Y	Y		12 N	0	12	12	12
Cold	Υ	N		0 N	0	25	25	25
Cold	Υ	Υ		12 N	0	3	3	3
Cold	Υ	Υ		12 N	0	12	12	12
Cold	Υ	Υ		12 N	0	15	15	15
Cold	Υ	Υ		12 N	0	24	24	24
Cold	Υ	Υ		12 N	0	40	40	40
Cold	Υ	N		0 Y	10	15	5	10
Cold	Υ	Υ		12 N	0	18	18	18
Cold	Υ	Υ		12 N	0	21	21	21
Cold	Ϋ́	Ϋ́		12 N	0	36	36	36
Cold	Ϋ́	Ϋ́		12 N	0	40	40	40
Cold	Ϋ́	Ϋ́		12 N	0	15	15	15
	Ϋ́	Ϋ́				27		
Cold				12 N	0		27	27
Cold	Y	Y		12 N	0	27	27	27
Cold	Y	Y		12 N	0	30	30	30
Cold	Y	N		0 N	0	25	25	25
Cold	Υ	Y		12 N	0	33	33	33

1									
1 2									
3	0.11				40.11	•	00	00	00
4	Cold	Y	Y		12 N	0	33	33	33
5	None	N	Y		8 Y	10	30	20	23.33333
6	Cold	Y	Y		8 Y	10	30	20	23.33333
7	None	N	Y		8 Y	10	30	20	23.33333
8	Cold	Y	Y		8 Y	10	30	20	23.33333
9	Cold	Y	Y		8 Y	10	30	20	23.33333
10	Cold	Y	Y		8 Y	10	30	20	23.33333
11	Cold	Y	Y		8 Y	10	30	20	23.33333
12	None	N	Y		8 Y	10	30	20	23.33333
13	None	N	Y		8 Y	10	30	20	23.33333
14	None	N	Y		8 Y	10	30	20	23.33333
15	Cold	Y	Y		8 Y	10	30	20	23.33333
16	None	N	Y		8 Y	10	30	20	23.33333
17	None	N	Y		8 Y	10	30	20	23.33333
18	None	N	Y		12 Y	14	29	15	22
19	Cold	Υ	Υ		12 Y	14	29	15	22
20	None	N	Υ		12 Y	12	29	17	23
21	Cold	Υ	Υ		12 Y	12	29	17	23
22	None	N	NA	NA	N	0	23.8	23.8	23.8
23	None	N	NA	NA	N	0	33.3	33.3	33.3
24	None	N	NA	NA	N	0	33.3	33.3	33.3
25	None	N	NA	NA	N	0	18.3	18.3	18.3
26	None	N	NA	NA	N	0	23.8	23.8	23.8
27	None	N	NA	NA	N	0	16.6	16.6	16.6
28	None	N	NA	NA	N	0	29.4	29.4	29.4
29	None	N	NA	NA	N	0	16.6	16.6	16.6
30	None	N	NA	NA	N	0	20.5	20.5	20.5
31	None	N	NA	NA	N	0	20.5	20.5	20.5
32	None	N	NA	NA	N	0	25.5	25.5	25.5
33	None	N	NA	NA	N	0	27.7	27.7	27.7
34	None	N	NA	NA	N	0	31.6	31.6	31.6
35	None	N	NA	NA	N	0	25.5	25.5	25.5
36	None	N	NA	NA	N	0	22.2	22.2	22.2
37	None	N	NA	NA	N	0	22.2	22.2	22.2
38 39	None	N	NA	NA	N	0	27.7	27.7	27.7
40	None	N	NA	NA	N	0	29.4	29.4	29.4
41	None	N	NA	NA	N	0	18.3	18.3	18.3
42	None	N	NA	NA	N	0	31.6	31.6	31.6
43	None	N	Y		8 Y	5	15	10	11.66667
44	None	N	Y		8 Y	10	30	20	23.33333
45	None	N	Y		8 Y	5	15	10	11.66667
46	None	N	Y		8 Y	10	30	20	23.33333
47	Cold	Y	Y		12 N	0	20	20	20
48	None	N	Y		12 N	0	20	20	20
49	None	N	Y		14 Y	9	25	16	21.25
50	None	N	Y		8 Y	10	30	20	23.33333
51	None	N	Y		16 N	0	23	23	23
52	Cold	Y	Y		16 N	0	23	23	23
53	None	N	Y		16 Y	10	30	20	26.66667
54	None	N	Y		16 N	0	25	25	25
55	None	N	N		0 N	0	25	25	25
56	None	N	N		0 Y	10	30	20	25
57	None	N	N		0 N	0	30	30	30
58	None	N	Y		16 N	0	30	30	30
59	None	N	N		0 N	0	20	20	20
60	None	Ν	Υ		16 N	0	20	20	20

None	N	Υ	8 Y	10	30	20	23.33333
Cold	Υ	Υ	8 Y	10	30	20	23.33333
Cold	Υ	Υ	8 Y	10	15	5	8.333333
Cold	Υ	Υ	8 Y	10	15	5	8.333333
Cold	Y	Y	8 Y	10	30	20	23.33333
Cold	Ϋ́	Ϋ́	8 Y	10	30	20	23.33333
None	N	N	0 N	0	20	20	20.0000
	N	N	0 N	0	3	3	3
None		Y				2	
None	N		8 Y	33	35		13
None	N	Y	8 Y	20	20	0	6.666667
None	N	Y	8 Y	30	40	10	20
None	N	Y	8 Y	3	5	2	3
None	N	Υ	8 Y	10	10	0	3.333333
None	N	Υ	8 Y	30	35	5	15
None	N	Υ	8 Y	5	25	20	21.66667
None	N	Υ	8 N	0	0	0	0
None	N	Υ	8 N	0	35	35	35
None	N	Υ	8 Y	40	40	0	13.33333
None	Ν	Υ	8 Y	35	35	0	11.66667
None	N	Υ	8 Y	10	30	20	23.33333
None	N	Υ	8 Y	10	25	15	18.33333
None	N	Υ	8 Y	18	20	2	8
None	N	Ϋ́	8 Y	10	35	25	28.33333
None	N	Ϋ́	8 Y	15	30	15	20
None	N	Ý	8 Y	25	25	0	8.333333
None	N	Ϋ́	8 N	0	20	20	20
None	N	Ϋ́	8 N	0	40	40	40
		Y	8 Y				
None	N			15	15	0	5
None	N	Y	8 Y	5	35	30	31.66667
None	N	Y	8 Y	20	40	20	26.66667
None	N	Y	8 N	0	25	25	25
None	N	Y	8 Y	5	15	10	11.66667
None	N	Y	8 Y	5 5	10	5	6.666667
None	N	Y	8 Y		30	25	26.66667
None	N	Υ	8 Y	20	35	15	21.66667
None	N	Υ	8 Y	38	40	2	14.66667
None	N	Υ	8 Y	25	40	15	23.33333
None	N	Υ	8 Y	15	20	5	10
None	N	Υ	8 N	0	2	2	2
None	N	Υ	8 Y	35	40	5	16.66667
None	N	Υ	8 Y	10	15	5	8.333333
None	Ν	Υ	8 N	0	15	15	15
None	N	Υ	8 Y	15	40	25	30
None	N	Υ	8 Y	8	10	2	4.666667
None	N	Y	8 Y	25	35	10	18.33333
None	N	Ϋ́	8 Y	10	40	30	33.33333
None	N	Ϋ́	8 Y	28	30	2	11.33333
None	N	Ϋ́	8 Y	13	15	2	6.333333
	N	Ϋ́	8 N	0	30	30	30
None None	N	Ϋ́	8 Y	23	30 25	2	9.666667
None	N	Y	8 Y	15	25	10	15
None	N	Y	8 Y	30	30	0	10
None	N	Y	8 Y	25	30	5	13.33333
None	N	Y	8 Y	20	30	10	16.66667
None	N	Y	8 Y	5	40	35	36.66667
None	N	Υ	8 Y	10	20	10	13.33333

ruger	15 01 200
1	
2	
3	None
4	None
5	None
6	None
7 8	None
9	None
10	None
11	Cold
12	None
13	None
14	None
15	None
16	None
17	None
18	None
19	None
20	None
21	None
22	None
23	None
24	None
25	None
26	None
27	None
28	Cold None
29 30	None
31	None
32	None
33	None
34	None
35	None
36	None
37	None
38	None
39	None
40	None
41	None
42	None
43	None
44	None
45	None
46	None
47	None
48	None
49 50	None
50 51	None
51 52	None
52 53	None
54	None
55 55	None
56	None
57	None
58	None
59	None
60	None

None	N	Υ	8 Y	5	5	0	1.666667
None	N	Ϋ́	8 Y	20	25	5	11.66667
None	N	Ϋ́	8 N	0	5	5	5
None	N	Ϋ́	8 N	0	10	10	10
None	N	Ϋ́	8 Y	2	2		########
None	N	Ϋ́	8 Y	_ 15	35	20	25
None	N	Ϋ́	8 Y	5	20	15	16.66667
Cold	Y	Ϋ́	8 Y	5	25	20	21.66667
None	N	Ϋ́	15 N	0	20	20	20
None	N	Ϋ́	14 Y	4	21	17	19.33333
None	N	Ϋ́	16 N	0	15	15	15
None	N	Ϋ́	16 N	0	15	15	15
None	N	Ϋ́	8 Y	10	30	20	23.33333
None	N	Ϋ́	16 N	0	15	15	15
None	N	Ϋ́	16 N	0	15	15	15
None	N	Ϋ́	16 N	0	15	15	15
None	N	Ϋ́	16 N	0	15	15	15
None	N	Ϋ́	16 N	0	15	15	15
None	N	Ϋ́	16 N	0	15	15	15
None	N	Ϋ́	16 N	0	15	15	15
None	N	Ϋ́	16 N	0	15	15	15
None	N	Ϋ́	16 N	0	15	15	15
None	N	Ϋ́	16 N	0	15	15	15
None	N	Ϋ́	16 N	0	25	25	25
Cold	Y	Ϋ́	16 N	0	25	25	25
None	N	Ϋ́	16 N	0	15	15	15
None	N	Ϋ́	14 Y	6	24	18	21.5
None	N	Ϋ́	14 Y	6	24	18	21.5
None	N	N	0 N	0	20	20	20
None	N	N	0 N	0	20	20	20
None	N	NA	NA N	0	10	10	10
None	N	Y	24 N	0	20	20	20
None	N	Ϋ́	24 N	0	20	20	20
None	N	Ϋ́	24 N	0	20	20	20
None	N	Ϋ́	24 N	0	20	20	20
None	N	Ϋ́	12 N	0	21	21	21
None	N	Y	12 N	0	12	12	12
None	N	Y	12 N	0	18	18	18
None	N	Ϋ́	12 N	0	24	24	24
None	N	Ϋ́	12 N	0	27	27	27
None	N	Y	12 N	0	3	3	3
None	N	Y	12 N	0	30	30	30
None	N	Y	12 N	0	9	9	9
None	N	Y	12 N	0	33	33	33
None	N	Y	12 N	0	6	6	6
None	N	Y	12 N	0	15	15	15
None	N	Υ	8 Y	10	30	20	23.33333
None	N	Υ	12 N	0	15	15	15
None	N	Y	12 N	0	12	12	12
None	N	Y	12 N	0	21	21	21
None	N	Ϋ́	12 N	0	24	24	24
None	N	Ϋ́	12 N	0	33	33	33
None	N	Y	12 N	0	27	27	27
None	N	Y	12 N	0	30	30	30
None	N	Ϋ́	12 N	0	6	6	6
None	N	Ϋ́	12 N	0	3	3	3
		=	··	•	=	•	•

None	Ν	Υ	12 N	0	9	9	9
None	N	Υ	12 N	0	18	18	18
None	Ν	Υ	8 Y	10	30	20	23.33333
Cold	Υ	Υ	16 N	0	21	21	21
None	Ν	Υ	16 N	0	21	21	21
None	Ν	Υ	10 N	0	24	24	24
None	Ν	N	0 N	0	8	8	8
None	Ν	N	0 N	0	17	17	17
None	Ν	N	0 N	0	32	32	32
None	N	N	0 N	0	14	14	14
None	N	N	0 N	0	20	20	20
None	N	N	0 N	0	26	26	26
None	N	N	0 N	0	29	29	29
None	N	N	0 N	0	11	11	11
None	N	N	0 N	0	2	2	2
None	N	N	0 N	0	5	5	5
None	N	N	0 N	0	23	23	23
None	N	N	0 N	Ö	5	5	5
None	N	Y	12 Y	9	15	6	10.5
None	N	Ϋ́	12 Y	15	30	15	22.5
None	N	N	0 N	0	5	5	22.5 5
None	N	Y	12 Y	9	15	6	10.5
None	N	Ϋ́	12 T	10	25	15	20
	N	Ϋ́	12 Y	15	30	15	
None		Ϋ́		10			22.5
None	N	Ϋ́	12 Y		20	10	15
None	N		15 N	0	20	20	20
None	N	N	0 N	0	20	20	20
None	N	Y	15 N	0	20	20	20
None	N	N	0 N	0	18	18	18
None	N	Y	24 N	0	25	25	25
None	N	Y	24 N	0	35	35	35
None	N	N	0 N	0	28	28	28
None	N	Y	24 N	0	28	28	28
None	N	N	0 N	0	35	35	35
None	N	Y	24 N	0	14	14	14
None	N	Y	24 N	0	22	22	22
None	N	N	0 N	0	22	22	22
None	N	Y	24 N	0	18	18	18
None	N	N	0 N	0	25	25	25
None	N	N	0 N	0	32	32	32
None	N	N	0 N	0	14	14	14
None	N	Y	24 N	0	32	32	32
None	N	N	0 N	0	18	18	18
None	N	Y	24 N	0	18	18	18
None	N	Υ	24 N	0	14	14	14
None	N	N	0 N	0	25	25	25
None	N	N	0 N	0	35	35	35
None	N	N	0 N	0	22	22	22
None	N	Υ	24 N	0	32	32	32
None	N	N	0 N	0	14	14	14
None	Ν	Υ	24 N	0	22	22	22
None	Ν	N	0 N	0	32	32	32
None	Ν	Υ	24 N	0	25	25	25
None	Ν	Υ	24 N	0	35	35	35
None	Ν	Υ	24 N	0	28	28	28
None	Ν	N	0 N	0	28	28	28

1									
2 3	Nama	N.I.	NI		0.11	0	00	00	00
4	None	N	N		0 N	0	20	20	20
5	None	N	Y Y		16 Y 16 Y	10	25 25	15 15	21.66667 21.66667
6	None	N	Ϋ́		16 N	10 0	25 25	25	
7	None	N	r N		0 N	0	10	10	25 10
8	None None	N N	N		0 N	10	25	15	20
9	None	N	Y		16 Y	10	25 25	15	21.66667
10	None	N	N		0 N	0	15	15	15
11	None	N	Y		16 N	0	10	10	10
12	None	N	N		0 N	0	25	25	25
13	None	N	Y		16 N	0	20	20	20
14	None	N	Ϋ́		16 Y	10	25	15	21.66667
15	None	N	Ϋ́		16 N	0	15	15	15
16	None	N	Ϋ́		8 Y	10	30	20	23.33333
17	None	N	Ϋ́		16 N	0	25	25	25
18	None	N	Y		16 N	0	15	15	15
19	None	N	N		0 N	0	25	25	25
20	None	N	N		0 N	0	20	20	20
21	None	N	Y		16 Y	10	25	15	21.66667
22	None	N	Y		16 N	0	10	10	10
23 24	None	N	N		0 N	0	10	10	10
25	None	N	N		0 Y	10	25	15	20
26	None	N	Y		16 Y	10	25	15	21.66667
27	None	N	Ϋ́		16 N	0	20	20	20
28	None	N	N		0 N	0	15	15	15
29	None	N	Y		16 N	0	30	30	30
30	None	N	N		0 Y	14	30	16	23
31	None	Ν	Υ		16 N	0	16	16	16
32	None	N	Ϋ́		24 N	0	30	30	30
33	None	Ν	Υ		16 Y	14	30	16	25.33333
34	None	N	N		0 N	0	16	16	16
35	None	N	Υ		24 N	0	16	16	16
36	None	Ν	N		0 N	0	30	30	30
37	None	Ν	Υ		24 Y	14	30	16	23
38	None	Ν	NA	NA	Ν	0	4	4	4
39	None	N	NA	NA	Ν	0	4	4	4
40	None	Ν	Υ		14 N	0	28.5	28.5	28.5
41	None	Ν	Υ		18 Y	4	22	18	21
42	None	Ν	N		0 N	0	24	24	24
43	None	Ν	N		0 N	0	24	24	24
44 45	Cold	Υ	Υ		12 N	0	24	24	24
45 46	None	Ν	N		0 N	0	15	15	15
47	Cold	Υ	N		0 N	0	40	40	40
48	Cold	Υ	N		0 N	0	15	15	15
49	None	N	N		0 N	0	5	5	5
50	None	N	N		0 N	0	20	20	20
51	None	N	N		0 N	0	30	30	30
52	Cold	Y	N		0 N	0	30	30	30
53	None	N	N		0 N	0	35	35	35
54	Cold	Y	N		0 N	0	10	10	10
55	None	N	N		0 N	0	10	10	10
56	None	N	N		0 N	0	25	25	25
57	Cold	Y	N		0 N	0	5	5	5
58	Cold	Y	N		0 N	0	20	20	20
59	Cold	Y	N		0 N	0	35	35	35
60	None	N	N		0 N	0	40	40	40
ĺ									

Cold

None

None

Cold

None

Cold

None

Cold

Cold

None

None

None

C+W

W+C

None

None

None

W+C

Cold

None

None

None

W+C

W+C

None

None

W+C

None

None

None

None

W+C

W+C

None

W+C

None

None

W+C

W+C

W+C

W+C

None

None

W+C

W+C

W+C

W+C

None

W+C

None

W+C

None

None

None

W+C

None

59

Υ	N	0 N	0	25	25	25
N	Y	8 Y	10	30	20	23.33333
N	Ϋ́	16 Y	10	30	20	26.66667
Y	Ϋ́	16 Y	10	30	20	26.66667
N	Ϋ́	16 Y	10	30	20	26.66667
Y	Ϋ́	16 Y	10	30	20	26.66667
N	Ϋ́	16 Y	10	30	20	26.66667
Y	Ϋ́	16 Y	10	30	20	26.66667
Ϋ́	Ϋ́	16 Y	10	30	20	26.66667
N	Ϋ́	16 Y	10	30	20	26.66667
N	Ϋ́	12 Y	4	28	24	26
N	Ϋ́	12 Y	9	15	6	10.5
Y	Ϋ́	12 Y	9	15	6	10.5
Ϋ́	Ϋ́	12 Y	9	15	6	10.5
N	Ϋ́	12 Y	9	15	6	10.5
N	Ϋ́	8 Y	10	30	20	23.33333
N	Y	8 Y	10	30	20	23.33333
Y	Y	8 Y	10	30	20	23.33333
Y	Y	12 Y	10	20	10	15
Ν	Υ	8 Y	10	30	20	23.33333
Ν	Υ	16 N	0	25	25	25
N	Υ	12 N	0	25	25	25
Υ	N	0 Y	9	15	6	10.5
Υ	N	0 Y	15	30	15	22.5
N	Υ	12 Y	15	30	15	22.5
Ν	Υ	12 Y	15	35	20	27.5
Υ	N	0 Y	10	25	15	20
N	Ν	0 Y	10	25	15	20
N	Υ	12 Y	9	15	6	10.5
N	Υ	12 Y	10	20	10	15
N	N	0 Y	15	35	20	27.5
Υ	Υ	12 Y	15	30	15	22.5
Υ	Υ	12 Y	10	20	10	15
N	Y	12 Y	10	25	15	20
Y	Y	12 Y	15	35	20	27.5
N	N	0 Y	15	30	15	22.5
N	N	0 Y	9	15	6	10.5
Y	Y	12 Y	9	15	6	10.5
Y	N	0 Y	10	20	10	15
Y Y	Y	12 Y 0 Y	10 15	25 25	15	20 27.5
r N	N N	0 Y	15 10	35 20	20 10	27.5 15
N	N	0 Y	15	35	20	27.5
Y	Y	12 Y	10	25	15	27.5
Ϋ́	Ϋ́	12 T	15	35	20	27.5
Ϋ́	Ϋ́	12 Y	10	20	10	15
Ϋ́	N.	0 Y	9	15	6	10.5
N	N	0 Y	15	30	15	22.5
Y	N	0 Y	15	35	20	27.5
N	Y	12 Y	10	25	15	20
Y	N	0 Y	10	25	15	20
N	N	0 Y	10	25	15	20
N	N	0 Y	9	15	6	10.5
N	Y	12 Y	9	15	6	10.5
Y	N	0 Y	15	30	15	22.5
N	Υ	12 Y	15	35	20	27.5

1									
2									
3	W+C	Υ	N		0 Y	10	20	10	15
4	None	Ν	Y		12 Y	15	30	15	22.5
5	W+C	Υ	Y		12 Y	9	15	6	10.5
6	None	Ν	Υ		12 Y	10	20	10	15
7	None	Ν	N		0 Y	10	20	10	15
8	W+C	Υ	Υ		12 Y	15	30	15	22.5
9	None	Ν	Υ		0.1 N	0	26	26	26
10	None	Ν	Υ		0.1 N	0	6	6	6
11	None	Ν	Υ		0.1 N	0	28	28	28
12	None	Ν	Υ		0.1 N	0	16	16	16
13 14	None	Ν	Υ		0.1 N	0	14	14	14
15	None	Ν	Υ		0.1 N	0	10	10	10
16	None	Ν	Υ		0.1 N	0	20	20	20
17	None	Ν	Υ		0.1 N	0	18	18	18
18	None	Ν	Υ		12 N	0	18	18	18
19	None	Ν	Υ		12 N	0	24	24	24
20	Cold	Υ	Υ		12 N	0	12	12	12
21	Cold	Υ	Υ		12 N	0	24	24	24
22	Cold	Υ	Υ		12 N	0	18	18	18
23	None	Ν	Υ		12 N	0	12	12	12
24	Cold	Υ	Υ		12 Y	12	24	12	18
25	None	Ν	Υ		12 Y	12	24	12	18
26	None	Ν	Υ		24 N	0	10	10	10
27	Cold	Υ	Υ		24 N	0	13	13	13
28	Cold	Υ	Υ		24 N	0	16	16	16
29	None	Ν	Υ		24 N	0	16	16	16
30	None	N	Y		24 N	0	13	13	13
31	None	N	Y		24 N	0	20	20	20
32	Cold	Υ	Y		24 N	0	10	10	10
33	Cold	Υ	Υ		24 N	0	20	20	20
34	None	Ν	Υ		24 N	0	10	10	10
35	Cold	Υ	Υ		24 N	0	20	20	20
36	Cold	Υ	Υ		24 N	0	10	10	10
37	None	Ν	Υ		24 N	0	16	16	16
38	None	Ν	Υ		24 N	0	20	20	20
39	Cold	Υ	Υ		24 N	0	13	13	13
40	Cold	Υ	Υ		24 N	0	16	16	16
41	None	Ν	Υ		24 N	0	13	13	13
42	None	Ν	Υ		24 N	0	20	20	20
43	Cold	Υ	Υ		24 N	0	16	16	16
44	None	N	Y		24 N	0	13	13	13
45	None	Ν	Υ		24 N	0	16	16	16
46	None	N	Ý		24 N	0	10	10	10
47	Cold	Y	Ý		24 N	0	20	20	20
48	Cold	Ϋ́	Ý		24 N	0	13	13	13
49	Cold	Y	Y		24 N	0	10	10	10
50	Cold	Ϋ́	NA	NA	Y	10	15	5	10
51 52	C+W	Ϋ́	NA	NA	Ϋ́	10	15	5	10
52	Cold	Ϋ́	NA	NA	Ϋ́	10	15	5	10
53 54	C+W	Ϋ́	NA	NA	Ϋ́	10	15	5	10
54	C+W	Ϋ́	NA	NA	Ϋ́	10	15	5	10
55 56	Cold	Ϋ́	NA	NA	Ϋ́	10	15	5	10
56	C+W	Ϋ́	NA	NA	Ϋ́	10	15	5	10
57 58	Cold	Ϋ́	NA	NA	Ϋ́	10	15	5	10
58 59	None	N	Y	, .	12 N	0	20	20	20
60	None	N	Ϋ́		12 N	0	20	20	20
30		= =	-		= = =	Ţ	_3		

Cold	Υ	NA	NA	N	0	20	20	20
Cold	Υ	NA	NA	N	0	20	20	20
None	N	N		0 N	0	21	21	21
None	N	Υ		24 N	0	12	12	12
None	Ν	N		0 N	0	12	12	12
Cold	Υ	Υ		24 N	0	21	21	21
None	Ν	Υ		24 N	0	21	21	21
Cold	Υ	N		0 N	0	21	21	21
Cold	Υ	Υ		24 N	0	12	12	12
Cold	Υ	N		0 N	0	12	12	12
None	Ν	N		0 N	0	12	12	12
Cold	Υ	N		0 N	0	12	12	12
None	Ν	Υ		24 N	0	21	21	21
None	Ν	N		0 N	0	21	21	21
Cold	Υ	Υ		24 N	0	12	12	12
Cold	Υ	Υ		24 N	0	21	21	21
Cold	Υ	N		0 N	0	21	21	21
None	Ν	Υ		24 N	0	12	12	12
None	Ν	Υ		16 Y	5	25	20	23.33333
None	Ν	Υ		14 Y	5	18	13	15.91667
None	N	Υ		14 Y	5	18	13	15.91667
Cold	Υ	Υ		12 Y	5	25	20	22.5
Cold	Υ	Υ		12 Y	5	25	20	22.5
Cold	Υ	Υ		12 Y	5	25	20	22.5
None	N	Υ		0.1 N	0	10	10	10
None	N	NA	NA	N	0	20	20	20
Cold	Υ	Y		12 Y	22	25	3	14
None	Ň	Ϋ́		0.1 N	0	5	5	5
None	N	NA	NA	N	0	20	20	20
None	N	Y		0.1 N	0	25	25	25
W+C	Y	Ϋ́		12 Y	22	25	3	14
None	Ň	Ý		0.1 N	0	20	20	20
None	N	Ϋ́		0.1 N	0	15	15	15
None	N	NA	NA	N	0	20	20	20
Cold	Υ	Y		12 Y	22	25	3	14
None	Ň	Y		14 Y	5	25	20	22.91667
None	N	Υ		14 Y	5	15	10	12.91667
Cold	Υ	Ý		14 Y	5	25	20	22.91667
None	Ň	Ý		14 Y	5	20	15	17.91667
None	N	Υ		14 N	0	25	25	25
None	N	Ϋ́		14 Y	10	35	25	30.83333
None	N	Ϋ́		10 N	0	21	21	21
None	N	Ϋ́		12 N	0	20	20	20
None	N	Ϋ́		12 N	0	20	20	20
None	N	Ϋ́		12 N	0	20	20	20
None	N	Y		12 Y	10	20	10	15
None	N	Y		8 Y	10	30	20	23.33333
Cold	Y	Y		8 Y	10	30	20	23.33333
None	N	Y		8 N	0	23	23	23
Cold	Y	N		0 Y	10	30	20	25
None	N	Y		8 Y	10	30	20	23.33333
Cold	Y	Ϋ́		8 N	0	23	23	23.33333
Cold	Ϋ́	N		0 N	0	23	23	23
Cold	Ϋ́	N		0 N	10	30	20	25 25
None	N	Y		8 N	0	23	23	23
None	N	N		0 N	0	23	23	23
INOLIG	IN	IN		UIN	U	23	23	23

1	
2 3 4	
4 5	
6 7 8	
9	
10 11	
12 13 14	
15 16	
11 12 13 14 15 16 17 18 19 20	
19 20	
21 22 23 24 25 26 27 28 29 30 31 32 33 34	
24 25	
26 27	
28 29	
31 32	
33 34	
35 36	
37 38	
39 40 41	
42 43	
44 45	
46 47	
48 49 50	
51 52	
53 54	
55 56	
57 58 59	
60	

Cold	Υ	Υ		8 Y	10	30	20	23.33333
None	Ν	N		0 Y	10	30	20	25
None	Ν	N		0 N	0	23	23	23
Cold	Υ	Υ		8 N	0	23	23	23
None	Ν	N		0 Y	10	30	20	25
Cold	Υ	N		0 N	0	23	23	23
None	Ν	N		0 Y	15	18.5	3.5	11
None	Ν	Y		14 Y	15	18.5	3.5	12.25
None	Ν	N		0 Y	15	18.5	3.5	11
None	Ν	Y		14 Y	15	18.5	3.5	12.25
None	Ν	Y		0.1 N	0	20	20	20
Cold	Υ	N		0 N	0	20	20	20
None	Ν	N		0 N	0	20	20	20
Cold	Υ	Υ		0.1 N	0	20	20	20
None	Ν	N		0 Y	12	28	16	22
None	Ν	Υ		18 N	0	12	12	12
Cold	Υ	Υ		18 N	0	12	12	12
Cold	Υ	N		0 N	0	20	20	20
None	Ν	N		0 N	0	25	25	25
Cold	Υ	N		0 N	0	15	15	15
None	Ν	N		_ 0 N	0	30	30	30
None	Ν	N		0 N	0	20	20	20
None	Ν	N		0 N	0	15	15	15
None	Ν	N		0 N	0	10	10	10
Cold	Υ	N		0 N	0	30	30	30
Cold	Υ	N		0 N	0	10	10	10
Cold	Υ	N		0 N	0	25	25	25
None	Ν	N		0 N	0	20	20	20
None	Ν	N		0 N	0	30	30	30
None	N	N		0 N	0	5	5	5
None	Ν	Υ		8 Y	10	30	20	23.33333
Cold	Υ	Υ		12 Y	2	18	16	17
None	Ν	Υ		8 N	0	22	22	22
None	Ν	N		0 Y	-1	8	9	8.5
None	Ν	N		0 Y	-1	14	15	14.5
None	Ν	Υ		8 N	0	8	8	8
None	Ν	Υ		8 N	0	20	20	20
None	Ν	N		0 Y	-1	22	23	22.5
None	Ν	N		0 Y	-1	6	7	6.5
None	Ν	Υ		8 N	0	14	14	14
None	Ν	Υ		8 N	0	4	4	4
None	Ν	N		0 Y	-1	26	27	26.5
None	Ν	NA	NA	N	0	6	6	6
None	Ν	Υ		12 Y	10	21	11	16
None	Ν	Υ		12 N	0	21	21	21
None	Ν	N		0 Y	-1	10	11	10.5
None	Ν	Υ		12 Y	10	26	16	21
None	Ν	Υ		8 N	0	16	16	16
None	Ν	NA	NA	Υ	10	26	16	21
None	N	NA	NA	Ν	0	26	26	26
None	N	Υ		8 N	0	18	18	18
None	Ν	N		0 Y	-11	18	29	23.5
None	N	N		0 Y	-1	4	5	4.5
None	Ν	N		0 Y	-1	20	21	20.5
None	Ν	NA	NA	Ν	0	21	21	21
None	Ν	NA	NA	Ν	0	31	31	31

None	Ν	NA	NA	Ν	0	11	11	11
None	Ν	Υ		8 N	0	12	12	12
None	Ν	Υ		8 N	0	2	2	2
None	Ν	N		0 Y	-1	2	3	2.5
None	Ν	N		0 Y	-1	12	13	12.5
None	N	N		0 Y	-1	24	25	24.5
None	N	Υ		12 N	0	16	16	16
None	N	Ý		8 N	0	10	10	10
None	N	Ň		0 Y	-1	16	17	16.5
None	N	Y		12 Y	14	33	19	26
None	N	Y		8 N	0	26	26	26
None	N	Ϋ́		8 N	0	24	24	24
None	N	, NA	NA	N	0	16	16	16
	N	Y	INA	12 N	0	26	26	26
None		Ϋ́						
None	N		N I A	8 N	0	6	6	6
None	N	NA	NA	Υ	10	21	11	16
Cold	Y	Y		16 N	0	10	10	10
Cold	Y	Y		16 N	0	30	30	30
Cold	Υ	N		0 N	0	30	30	30
Cold	Υ	Υ		16 N	0	25	25	25
Cold	Υ	Υ		16 N	0	15	15	15
Cold	Υ	N		0 N	0	15	15	15
Cold	Υ	Υ		16 N	0	15	15	15
Cold	Υ	N		0 N	0	10	10	10
Cold	Υ	N		0 N	0	10	10	10
Cold	Υ	N		0 N	0	25	25	25
Cold	Υ	N		0 N	0	30	30	30
Cold	Υ	Υ		16 N	0	30	30	30
Cold	Ϋ́	N		0 N	0	15	15	15
Cold	Ϋ́	N		0 N	0	25	25	25
Cold	Ϋ́	Ϋ́		16 N	0	10	10	10
Cold	Ϋ́	Y		16 N	0	25	25	25
None	N	Y		12 Y		20	15	17.5
None	N	N		0 Y	5 5	20	15	17.5
None	N	NA	NA	N	0	20	20	20
	Y	NA		N	0			20
Cold			NA			20	20	
None	N	NA	NA	N	0	5	5	5
None	N	NA	NA	N	0	20	20	20
None	N	NA	NA	N	0	5	5	5
None	N	Y		24 Y	10	20	10	15
None	N	Υ		24 Y	10	20	10	15
None	N	Υ		12 N	0	15	15	15
None	N	Υ		24 Y	10	20	10	15
None	N	Υ		12 N	0	15	15	15
None	Ν	N		0 N	0	15	15	15
None	Ν	N		0 N	0	15	15	15
None	Ν	N		0 N	0	15	15	15
None	Ν	N		0 N	0	15	15	15
None	N	Υ		12 N	0	15	15	15
None	N	Υ		24 Y	10	20	10	15
None	N	Υ		24 Y	10	20	10	15
None	N	Ϋ́		24 N	0	15	15	15
None	N	Y		24 N	0	15	15	15
None	N	Y		24 N	Ö	15	15	15
None	N	N		0 N	0	15	15	15
None	N	N		0 N	0	15	15	15
140110	1 4	1.4		0 11	U	10	13	13

1								
2								
3	None	Ν	N	0 N	0	15	15	15
4	None	N	Y	12 N	0	15	15	15
5		N	Ϋ́	24 N	0	15	15	15
6	None							
7	None	N	Y	24 N	0	15	15	15
8	None	N	Υ	12 N	0	15	15	15
9	None	N	Υ	12 N	0	15	15	15
	None	Ν	Υ	24 N	0	15	15	15
10	None	Ν	Υ	24 N	0	15	15	15
11	None	Ν	N	0 N	0	15	15	15
12	None	Ν	Υ	24 Y	10	20	10	15
13	None	N	Y	24 Y	10	20	10	15
14	None	N	Ý	24 N	0	15	15	15
15			Ϋ́					
16	None	N		24 Y	10	20	10	15
17	None	N	N	0 N	0	15	15	15
18	None	N	Υ	12 N	0	15	15	15
19	None	N	Υ	24 N	0	15	15	15
20	None	Ν	Υ	24 Y	10	20	10	15
21	None	Ν	Υ	12 N	0	15	15	15
22	None	Ν	Υ	12 N	0	15	15	15
23	None	Ν	Υ	12 N	0	15	15	15
	None	N	Ý	12 N	0	25	25	25
24	Cold	Y	Ϋ́	12 N	0	25	25	25
25								
26	Cold	Y	Y	12 N	0	15	15	15
27	Cold	Υ	Y	12 N	0	25	25	25
28	Cold	Υ	Υ	12 N	0	15	15	15
29	Cold	Υ	Υ	16 Y	15	25	10	20
30	None	Ν	Υ	8 N	0	6	6	6
31	None	Ν	Υ	8 N	0	29	29	29
32	None	Ν	Υ	8 N	0	8	8	8
33	None	Ν	Υ	8 Y	10	17	7	10.33333
34	None	Ν	Υ	8 N	0	13	13	13
35	None	N	Ϋ́	8 N	0	27	27	27
36	None	N	Ϋ́	12 Y	10	21	11	16
37		N		0 Y	10	21	11	16
38	None		N					
39	None	N	N	0 Y	10	21	11	16
40	None	N	Y	12 Y	10	21	11	16
	None	N	Υ	12 N	0	16	16	16
41	Cold	Υ	Υ	14 Y	9	25	16	21.25
42	None	Ν	Υ	14 Y	9	25	16	21.25
43	Cold	Υ	Υ	14 Y	9	25	16	21.25
44	None	Ν	Υ	14 N	0	22.5	22.5	22.5
45	None	Ν	N	0 Y	10	26	16	21
46	None	N	N	0 N	0	15	15	15
47	None	N	N	0 Y	10	20	10	15
48	None	N	Y	8 N	0	15	15	15
49								
50	None	N	N	0 N	0	15	15	15
51	None	N	Y	8 N	0	10.4	10.4	10.4
52	None	N	Υ	8 Y	10	26	16	19.33333
53	None	N	Υ	8 N	0	15	15	15
54	None	Ν	Υ	8 N	0	8.6	8.6	8.6
55	None	Ν	Υ	8 Y	10	20	10	13.33333
56	None	Ν	Υ	8 N	0	24.8	24.8	24.8
57	None	N	Y	8 N	0	19.4	19.4	19.4
	None	N	Ϋ́	8 N	0	26.6	26.6	26.6
58	None	N	Ϋ́	8 N	0	21.2	21.2	21.2
59	None	N	Ϋ́	8 N	0	15.8	15.8	15.8
60	INOHE	IN	ı	O IN	U	13.0	13.0	15.6

None	Ν	Υ		8 N	0	23	23	23
None	Ν	Υ		8 N	0	12.2	12.2	12.2
None	Ν	Υ		8 Y	10	20	10	13.33333
None	Ν	Υ		8 N	0	30.2	30.2	30.2
None	Ν	Υ		8 N	0	5	5	5
None	Ν	Υ		8 N	0	28.4	28.4	28.4
None	Ν	Υ		8 N	0	14	14	14
None	Ν	Υ		8 N	0	17.6	17.6	17.6
None	Ν	Υ		8 Y	10	20	10	13.33333
None	N	Y		8 N	0	6.8	6.8	6.8
None	N	N		0 Y	10	25	15	20
Cold	Y	Y		12 Y	10	35	25	30
None	N	Ϋ́		12 N	0	25	25	25
None	N	Ϋ́		12 Y	15	35	20	27.5
None	N	N		0 Y	10	35	25	30
Cold	Y	Ϋ́		12 N	0	20	20	20
Cold	Ϋ́	Ϋ́		12 N	0	35	35	35
Cold	Ϋ́	Ϋ́		12 Y	10	15	5	10
None	N	Ϋ́		12 N	0	15	15	15
Cold	Y	Ϋ́		12 N	10	25	15	20
None	N	Ϋ́		_12 N	0	20	20	20
Cold	Y	Ϋ́		12 N	0	15	15	15
None	N	Ϋ́		12 Y	10	25	15	20
Cold	Y	Ϋ́		12 N	0	10	10	10
Cold	Ϋ́	Ϋ́		12 N	0	25	25	25
None	N	N		0 N	0	20	20	20
None	N	Y		12 Y	10	20	10	15
Cold	Y	Ϋ́		12 I 12 N	0	30	30	30
None	N	N		0 Y	10	20	10	15
None	N	N		0 N	0	35	35	35
Cold	Y	Y		12 Y	10	20	10	15
None	N	N		0 N	0	30	30	30
None	N	Y		12 N	0	35	35	35
None	N	N		0 N	0	25	25	25
None	N	N		0 N	10	30	20	25 25
Cold	Y	Y		12 Y	10	30	20	25 25
None	N	Ϋ́		12 T	10	30	20	25 25
None	N	Ϋ́		12 I 12 N	0	30	30	30
None	N	N		0 N	0	20	20	20
None	N	N		0 N	0	30	30	30
None	N	N		0 N	0	25	25	25
	N	N		0 N	0	15	15	15
None	N	N		0 N	0	5	5	5
None	N	N		0 N	0	35	35	
None				0 N				35
None	N	N			0	10	10	10
None	N	N	NIA	0 N	0	20	20	20
None	N	NA	NA	N	0	3	3	3
None	N	NA	NA	N	0	3	3	3
None	N	Y		0.1 Y	10	20	10	15
None	N	Y	N I A	0.1 Y	10	20	10	15 15
None	N	NA	NA	N	0	15	15	15
None	N	NA	NA	N	0	25	25	25 27.5
None	N	NA	NA	Y	5	30	25	27.5
None	N	NA	NA	N	0	20	20	20
None	N	NA	NA	Y	5	20	15	17.5
None	N	NA	NA	Υ	5	15	10	12.5

1									
2									
3	None	Ν	NA	NA	N	0	10	10	10
4	None	Ν	NA	NA	Υ		25	20	22.5
5	None	N	Υ		16 Y		30	20	26.66667
6 7	Cold	Υ	Υ		16 Y		30	20	26.66667
8	Cold	Y	Y		16 Y		30	20	26.66667
9	None	N	Y		16 Y		30	20	26.66667
10	Cold	Y	Y		16 Y		30	20	26.66667
11	None	N	Y	N I A	16 Y		30	20	26.66667
12	None	N	NA	NA	Y 8 Y		15 30	5	10
13	None None	N N	Y Y		0 1 14 N		22.5	20 22.5	23.33333 22.5
14	None	N	NA	NA	N		20	20	20
15	None	N	Y	14/7	24 N		18	18	18
16	None	N	Ϋ́		24 N		25	25	25
17	Cold	Y	N		0 N		25	25	25
18	None	N	Y		24 N		18	18	18
19 20	Cold	Υ	N		0 N		18	18	18
21	None	Ν	N		0 N		20	20	20
22	None	Ν	N		0 N		20	20	20
23	None	Ν	N		0 N	0	20	20	20
24	None	Ν	N		0 N	0	20	20	20
25	None	Ν	N		0 N		20	20	20
26	Cold	Υ	N		0 N		15	15	15
27	Cold	Υ	N		0 N		5	5	5
28	Cold	Υ	N		0 N		20	20	20
29	Cold	Y	Y		14 N		15	15	15
30	Cold	Y	Y		14 N		20	20	20
31	Cold	Y	N		0 Y		20	10	15
32 33	Cold	Y	Y		14 Y		20	10	15.83333
34	Cold Cold	Y Y	N Y		0 Y 14 Y		30 15	15 6	22.5 11.25
35	Cold	Y	Ϋ́		14 T		10	10	11.25
36	Cold	Ϋ́	Ϋ́		14 Y		30	15	23.75
37	Cold	Ϋ́	, N		0 Y		15	6	10.5
38	Cold	Ϋ́	Y		14 N		5	5	5
39	Cold	Ϋ́	N		0 N		10	10	10
40	None	N	Y		16 Y		18	16	17.33333
41	None	Ν	NA	NA	N		21	21	21
42	None	Ν	NA	NA	Υ		21	11	16
43	None	Ν	NA	NA	N		26	26	26
44	None	Ν	NA	NA	N	0	16	16	16
45 46	None	Ν	NA	NA	N		11	11	11
46 47	None	Ν	NA	NA	N		31	31	31
48	None	N	NA	NA	N		6	6	6
49	None	N	NA	NA	Y		26	16	21
50	None	N	NA	NA	N		31	31	31
51	None	N	NA	NA	N		26	26	26
52	None	N	NA	NA	N		16	16	16
53	None	N	NA	NA	N		11	11	11
54	None	N	NA	NA	Y		21	11	16
55	None	N N	NA	NA NA	N		21	21	21
56	None None	N N	NA NA	NA NA	N Y		6 26	6 16	6 21
57	None	N N	Y	INA	0.1 N		10	10	10
58 50	Cold	Y	Ϋ́		0.1 N		30	10	20
59 60	None	, N	Ϋ́		0.1 N		30	30	30
50			•		J •	· ·			

None	N	Υ	0.1 Y	20	30	10	20
None	N	Υ	0.1 Y	15	25	10	17.5
Cold	Υ	Υ	0.1 N	0	15	15	15
Cold	Υ	Υ	0.1 N	0	25	25	25
Cold	Ϋ́	Ϋ́	0.1 N	0	10	10	10
Cold	Ϋ́	Ý	0.1 N	Ö	30	30	30
Cold	Ϋ́	Ϋ́	0.1 Y	10	30	20	25
None	N	Ϋ́	0.1 Y	10	30	20	25
Cold	Y	Ϋ́	0.1 N	0	20	20	20
	N	Y	0.1 N	0		20	
None					20		20 17.5
Cold	Y	Y	0.1 Y	15	25	10	17.5
None	N	Y	0.1 N	0	15	15	15
None	N	Y	0.1 N	0	25	25	25
None	N	Y	24 N	0	25	25	25
None	N	N	0 N	0	25	25	25
Cold	Υ	N	0 N	0	25	25	25
Cold	Υ	Y	24 N	0	25	25	25
None	N	Υ	14 N	0	22.5	22.5	22.5
None	N	N	0 N	0	25	25	25
None	N	N	0 N	0	25	25	25
None	N	NA	NA N	0	25	25	25
None	Ν	NA	NA Y	10	30	20	25
None	Ν	NA	NA N	0	25	25	25
None	Ν	NA	NA Y	10	30	20	25
None	N	NA	NA Y	10	30	20	25
Cold	Υ	N	0 N	0	20	20	20
None	N	N	0 N	0	20	20	20
None	N	N	0 N	0	10	10	10
None	N	Υ	24 N	0	10	10	10
None	N	N	0 N	0	10	10	10
None	N	Y	24 N	0	20	20	20
None	N	Y	24 N	0	30	30	30
None	N	N	0 N	0	30	30	30
None	N	N	0 N	0	20	20	20
None	N	Y	24 N	0	30	30	30
None	N	Ϋ́	24 N	0	10	10	10
None	N	Ϋ́	24 N	0	20	20	20
None	N	N	0 N	0	20	20	20
None	N	N	0 N	0	30	30	30
None	N	N	0 N	0	20	20	20
None	N	N	0 N	0	15	15	15
	N	N	0 N 0 Y	20	25	5	15
None							
None	N	Y	0.1 N	0	30	30	30
None	N	Y	0.1 N	0	30	30	30
None	N	Y	0.1 N	0	15	15	15
None	N	N	0 Y	20	25	5	15
None	N	Y	0.1 N	0	20	20	20
None	N	N	0 N	0	30	30	30
None	N	Υ	0.1 N	0	25	25	25
None	N	N	0 N	0	20	20	20
None	N	Υ	0.1 N	0	20	20	20
None	N	Υ	0.1 Y	20	25	5	15
None	N	N	0 N	0	25	25	25
None	N	Υ	0.1 Y	20	25	5	15
None	N	N	0 N	0	15	15	15
None	N	Υ	0.1 N	0	25	25	25

1								
2								
3	None	Ν	N	0 N	0	25	25	25
4	None	Ν	N	0 N	0	30	30	30
5	None	Ν	Υ	0.1 N	0	15	15	15
6	None	Ν	Υ	8 Y	10	30	20	23.33333
7	None	N	Υ	0.1 N	0	30	30	30
8	None	N	Y	0.1 N	0	20	20	20
9	Cold	Y	N	0 N	0	18.3	18.3	18.3
10	None	N	N	0 N	0	20	20	20
11	None	N	Y	0.1 N	0	25	25	25
12	Cold	Y	N	0 N	0	29.4	29.4	29.4
13	None	N	N	0 N	0	15	15	15
14	Cold	Y	N	0 N	0	23.9	23.9	23.9
15	None	N	Y	0.1 N	0	23.9 15	15	15
16		Y		0.1 N 0 N	_			
17	Cold		N		0	12.8	12.8	12.8
18	None	N	N	0 Y	10	25	15	20
19	None	N	N	0 N	0	25	25	25
20	None	N	Y	0.1 Y	10	25	15	20
21	None	N	N	0 N	0	30	30	30
22	None	N	Υ	16 Y	10	20	10	16.66667
23	None	N	Υ	16 Y	10	20	10	16.66667
24	Cold	Υ	Υ	16 Y	10	20	10	16.66667
25	Cold	Υ	Υ	16 Y	10	20	10	16.66667
26	Cold	Υ	Υ	16 Y	10	20	10	16.66667
27	None	Ν	Υ	16 Y	10	20	10	16.66667
28	None	Ν	Υ	14 N	0	22.5	22.5	22.5
29	None	Ν	Υ	14 N	0	25	25	25
30	None	Ν	Υ	24 N	0	25	25	25
31	Cold	Υ	Υ	16 N	0	22	22	22
32	Cold	Υ	Υ	16 N	0	22	22	22
33	None	Ň	Y	16 Y	8	22	14	19.33333
34	Cold	Y	Ϋ́	16 Y	8	22	14	19.33333
35	None	N	N	0 Y	8	22	14	18
36	Cold	Y	N	0 Y	8	22	14	18
37	None	N	N	0 N	0	23	23	23
38	None	N	N	0 N	0	23	23	23
39	W+C	Y	N	0 N	0	23	23	23
40	W+C	Ϋ́	Y	8 Y	10	30	20	23.33333
41	W+C	Ϋ́	N	0 Y	10	30	20	25.55555
42	W+C W+C	Ϋ́	N	0 N	0	23	23	23
43			Y	8 Y		30	20	
44	None	N			10			23.33333
45	None	N	Y	8 Y	10	30	20	23.33333
46	None	N	N	0 Y	10	30	20	25
47	None	N	N	0 Y	10	30	20	25
48	None	N	Y	8 N	0	23	23	23
49	W+C	Y	Y	8 Y	10	30	20	23.33333
50	None	N	Y	8 N	0	23	23	23
51	W+C	Y	Y	8 N	0	23	23	23
52	W+C	Υ	N	0 Y	10	30	20	25
53	W+C	Υ	Υ	8 N	0	23	23	23
54	None	N	Υ	15 Y	10	32.8	22.8	29.05
55	None	Ν	Υ	15 Y	10	37.8	27.8	34.05
56	None	Ν	Υ	24 N	0	20	20	20
57	None	Ν	Υ	24 N	0	30	30	30
58	None	Ν	Υ	24 N	0	10	10	10
59	None	Ν	Υ	12 Y	6	24	18	21
60	None	Ν	N	0 Y	6	24	18	21

None	Ν	N		0 Y	6	24	18	21
None	Ν	Υ		12 Y	6	24	18	21
None	Ν	Υ		12 Y	2	22	20	21
None	Ν	Υ		12 Y	2	22	20	21
None	Ν	Υ		12 N	0	20	20	20
None	Ν	Υ		12 Y	2	22	20	21
None	Ν	Υ		12 Y	2	22	20	21
Cold	Υ	Υ		8 Y	10	25	15	18.33333
Warm	Υ	Υ		8 N	0	15	15	15
W+C	Υ	Υ		8 Y	10	30	20	23.33333
Warm	Υ	Υ		8 Y	10	30	20	23.33333
W+C	Υ	Υ		8 N	0	15	15	15
None	N	Ϋ́		10 N	0	24	24	24
None	N	Ϋ́		12 Y	6	28	22	25
None	N	Ý		12 Y	6	28	22	25
None	N	Ý		12 Y	6	28	22	25
None	N	Ý		12 Y	6	28	22	25
None	N	Ý		12 Y	6	28	22	25
None	N	Ϋ́		12 Y	6	28	22	25 25
None	N	Ϋ́		12 N	0	20	20	20
None	N	Ϋ́		12 N	6	28	22	25
	N	Ϋ́		12 Y	6		22	25 25
None		Ϋ́				28		
None	N			12 Y	6	28	22	25 25
None	N	Y		12 Y	6	28	22	25
None	N	Y		12 Y	6	28	22	25
None	N	Y		12 Y	6	28	22	25
None	N	Y		12 Y	6	28	22	25
None	N	Y		12 Y	6	28	22	25
None	N	Y		12 Y	6	28	22	25
None	N	Y		12 Y	6	28	22	25
None	N	Y		8 Y	5	25	20	21.66667
Cold	Y	Y		8 Y	5	25	20	21.66667
None	N	Y		12 Y	6	28	22	25
Cold	Υ	NA	NA	N	0	13	13	13
Cold	Υ	NA	NA	N	0	13	13	13
None	Ν	NA	NA	N	0	5	5	5
None	Ν	NA	NA	Υ	9.3	23.4	14.1	18.75
None	Ν	NA	NA	Υ	8	15.9	7.9	11.9
Cold	Υ	Υ		12 Y	10	30	20	25
None	Ν	Υ		12 Y	20	30	10	20
None	Ν	Υ		12 N	0	20	20	20
None	Ν	Υ		12 N	0	25	25	25
None	Ν	Y		12 Y	10	25	15	20
None	Ν	Υ		12 N	0	15	15	15
Cold	Υ	Υ		12 N	0	15	15	15
Cold	Υ	Υ		12 N	0	25	25	25
Cold	Υ	Υ		12 N	0	30	30	30
Cold	Υ	Υ		12 N	0	20	20	20
Cold	Υ	Υ		12 Y	20	30	10	20
None	Ν	Υ		12 Y	10	30	20	25
None	Ν	Υ		12 N	0	30	30	30
Cold	Υ	Y		12 Y	10	25	15	20
None	N	N		0 N	0	16	16	16
None	N	Y		12 Y	10	22	12	17
Cold	Υ	Ý		12 N	0	16	16	16
Cold	Ϋ́	Ý		12 Y	10	22	12	17
				•	-		_	

1								
2								
3	None	Ν	Υ	12 N	0	16	16	16
4	None	Ν	Υ	12 Y	10	22	12	17
5 6	Cold	Υ	Υ	12 N	0	16	16	16
	Cold	Y	Y	12 N	0	16	16	16
7	None	N	N	0 N	0	16	16	16
8	Cold	Y	N	0 Y	10	22	12	17
9	Cold	Ϋ́	N	0 N	0	16	16	16
10	Cold	Ý	N	0 N	0	16	16	16
11	None	N	Y	12 N	0	16	16	16
12	Cold	Y	N	0 Y	10	22	12	17
13	None	N	N	0 Y	10	22	12	17
14	Cold	Y	N	0 Y	10	22	12	17
15	Cold	Ϋ́	N	0 N	0	16	16	16
16	None	N	N	0 Y	10	22	12	17
17	None	N	N	0 N	0	16	16	16
18	None	N	Y	12 N	0	16	16	16
19		N	Ϋ́	12 N	10	22	12	17
20	None Cold	Y	Ϋ́	12 T 12 Y	10	22	12	17
21	Cold	Ϋ́	Ϋ́	12 Y 12 Y	10	22 22	12	17
22				0 Y		22	12	
23	None	N	N	0 Y	10			17
24	None	N	N		10	25	15	20
25	None	N	N	0 N	0	10	10	10
26	None	N	N	0 N	0	15	15	15
27	None	N	Y	12 Y	10	25	15	20
28	None	N	N	0 N	0	20	20	20
29	None	N	N	0 N	0	5	5	5
30	None	N	Y	8 Y	7	27	20	22.33333
31	None	N	Y	24 N	0	30	30	30
32	None	N	Y	24 N	0	20	20	20
33	None	N	N	0 N	0	5	5	5
34	Cold	Y	Y	24 N	0	15	15	15
35 36	Cold	Y	Y	24 N	0	5	5	5
30 37	None	N	N	0 N	0	20	20	20
38	None	N	Y	24 N	0	15	15	15
39	None	N	Y	24 N	0	10	10	10
40	Cold	Y	Y	24 N	0	25	25	25
41	None	N	N	0 N	0	25	25	25
42	None	N	Y	24 N	0	5	5	5
43	Cold	Y	Y	24 N	0	10	10	10
44	Cold	Y	Y	24 N	0	20	20	20
45	None	N	Y	24 N	0	25	25	25
46	None	N	N	0 N	0	10	10	10
47	None	N	N	0 N	0	15	15	15
48	None	N	N	0 N	0	30	30	30
49	Cold	Y	Y	24 N	0	30	30	30
50	Cold	Y	Y	12 Y	9	15	6	10.5
51	Cold	Y	Y	12 Y	9	15	6	10.5
52	Cold	Y	Y	12 N	0	22	22	22
53	None	N	Y	8 Y	5	25	20	21.66667
54	Cold	Y	Y	8 Y	5	25	20	21.66667
55	Cold	Y	Y	12 N	0	22	22	22
56	Cold	Υ	Υ	12 N	0	22	22	22
57	Cold	Y	Y	12 N	0	22	22	22
58	None	N	Y	12 Y	10	30	20	25
59	None	N	Υ	12 Y	25	35	10	22.5
60	None	Ν	Υ	12 N	0	25	25	25

Cold	Υ	Υ	12 Y	10	30	20	25
None	Ν	Υ	12 Y	10	30	20	25
None	Ν	Υ	12 Y	10	25	15	20
None	Ν	Υ	24 N	0	20	20	20
None	Ν	Υ	24 N	0	20	20	20
None	N	Y	24 N	0	20	20	20
None	N	Ϋ́	24 N	0	20	20	20
None	N	Ϋ́	24 N	0	20	20	20
Cold	Υ	Ϋ́	8 Y	5	25		21.66667
None	N	Ϋ́	8 Y	5	25	20	21.66667
None	N	Ϋ́	24 N	0	20	20	20
None	N	Ϋ́	15 Y	8	25	17	22
None	N	Ϋ́	15 Y	8	25	17	22
None	N	Ϋ́	15 Y	8	25	17	22
None	N	Ϋ́	8 N	0	15	15	15
	Y	Ϋ́	8 N	0	15	15	15
Cold							
Cold	Y	Y	8 Y	10	30		23.33333
None	N	Y	8 Y	10	30		23.33333
Cold	Υ	Y	8 Y	10	30		23.33333
None	N	Y	8 Y	10	30	20	23.33333
Cold	Υ	Υ	8 N	0	15	15	15
None	Ν	Υ	8 N	0	15	15	15
None	Ν	Υ	12 Y	10	30	20	25
None	Ν	Υ	12 Y	10	20	10	15
None	Ν	Υ	12 Y	15	30	15	22.5
Cold	Υ	Υ	12 Y	10	25	15	20
None	Ν	Υ	12 Y	10	25	15	20
None	Ν	Υ	12 N	0	5	5	5
None	Ν	Υ	12 Y	10	25	15	20
None	Ν	Υ	12 Y	9	15	6	10.5
None	Ν	NA	NA N	0	20	20	20
None	Ν	Υ	12 Y	10	20	10	15
Cold	Υ	Υ	12 Y	10	30	20	25
None	Ν	N	0 N	0	25	25	25
Cold	Υ	Υ	12 N	0	25	25	25
Cold	Y	Y	12 N	0	5	5	5
Warm	Y	Ϋ́	12 N	0	5	5	5
Warm	Ϋ́	Ϋ́	12 N	0	10	10	10
None	N	Ϋ́	12 N	0	10	10	10
None	N	Ϋ́	12 Y	15	25	10	17.5
Cold	Y	Ϋ́	12 N	0	20	20	20
None	N	N	0 N	0	15	15	15
	Y	Y	12 N	0	15	15	15
Warm							
None	N	Y	12 N	0	25 25	25 25	25 25
Warm	Y	Y	12 N	0	25	25	25
Cold	Y	Y	12 N	0	15	15	15
Warm	Y	Y	12 N	0	20	20	20
None	N	Y	12 N	0	15	15	15
Cold	Υ	Υ	12 Y	15	25	10	17.5
None	Ν	Υ	12 N	0	5	5	5
None	N	N	0 N	0	10	10	10
None	N	N	0 N	0	5	5	5
None	Ν	N	0 N	0	20	20	20
None	Ν	Υ	12 N	0	20	20	20
None	Ν	N	0 Y	15	25	10	17.5
Cold	Υ	Υ	12 N	0	10	10	10

1								
2	147			40.17	4.5	0.5	40	47.5
3 4	Warm	Y	Y	12 Y	15	25	10	17.5
	Cold	Y	Y	12 Y	10	30	20	25
6	Cold	Y	Y	12 Y	10	30	20	25
5 6 7	Cold	Y	N	0 N	0	35	35	35
8	None	N	N	0 N	0	35	35	35
9	None	N	N	0 N	0	10	10	10
10	Cold	Y	N	0 N	0	30	30	30
11	None	N Y	N	0 N	0	30	30	30
12	Cold		N	0 N	0	15	15	15
13	None	N	N	0 N	0	40	40	40
14	None	N	N	0 N	0	30	30	30
15	None	N Y	N	0 N	0	30	30	30
16	Cold		N	0 N	0	30	30	30
17	None	N	N	0 N	0	10	10	10
18	None	N	N	0 N	0	25	25	25 45
19	Cold	Y	N	0 N	0	15	15	15
20	None	N	N	0 N	0	10	10	10
21	Cold	Y	N	0 N	0	25	25	25 45
22	Cold	Y	N	0 N	0	15	15	15
23	None	N	N	0 N	0	25	25	25
24	None	N	Y	8 Y	10	30	20	23.33333
25	None	N	N	0 N	0	20	20	20
26	None	N	N	0 N		15	15	15
27	None	N	N	0 N		20	20	20
28	Cold	Y	N	0 N	0	10	10	10
29	Cold	Y	N	0 N	0	20	20	20
30	Cold	Y	N	0 N	0	35	35	35
31	Cold	Y	N	0 N	0	10	10	10
32 33	Cold	Y	N	0 N	0	25	25	25
33 34	None	N	N	0 N	0	35	35	35
35	Cold	Y	N	0 N	0 0	30	30	30
36	None	N	N	0 N		20	20 15	20
37	None	N	N	0 N	0	15 15		15 15
38	None	N	N	0 N			15	15
39	Cold	Y	N	0 N	0	35	35	35
40	Cold	Y	N	0 N	0	10	10	10
41	None	N	N	0 N	0	25 20	25	25
42	Cold	Y	N	0 N 0 N	0	20	20	20 20
43	Cold	Y	N	0 N	0	25 25	20 25	
44	Cold W+C	Y Y	N Y	8 Y	0 10	25 25	15	25
45			r N	0 Y	15	35	20	18.33333
46	None	N N	N	0 N	0	20	20	27.5 20
47	None	N	Y	12 N	0	15	15	15
48	None Cold	Y	Ϋ́	12 N 12 N	0	15	15	15
49		N	Ϋ́	12 N 12 Y	10	25	15	20
50	None		Y	12 T	10	20	10	15
51	None	N Y		0 Y	10	20	10	15
52	Warm	Y	N Y	12 Y	15	30	15	22.5
53	Warm		Ϋ́	12 T	15	30		
54	None Warm	N Y	r N	0 Y	15	35	15 20	22.5 27.5
55		Ϋ́	N N	0 Y 0 N	0	35 35	35	35
56	Cold		N N	0 N 0 Y	15	30		
57	Warm	Y N	N N	0 Y	15	30	15 15	22.5 22.5
58	None			0 Y 0 N				22.5 15
59	None None	N N	N Y	12 Y	0	15 15	15 6	10.5
60	INOILE	IN	ı	12 1	9	13	U	10.5

Warm	Υ	Υ	12 Y	15	35	20	27.5
None	Ν	N	0 N	0	25	25	25
None	Ν	Υ	12 Y	9	15	6	10.5
None	Ν	N	0 Y	9	15	6	10.5
Warm	Υ	Υ	12 Y	10	20	10	15
None	Ν	Υ	12 N	0	20	20	20
Cold	Υ	Υ	12 N	0	30	30	30
None	N	Y	12 Y	10	25	15	20
None	N	Y	12 Y	10	20	10	15
None	N	Ϋ́	12 Y	15	30	15	22.5
Warm	Y	Ý	12 Y	9	15	6	10.5
Warm	Ϋ́	Ϋ́	12 Y	10	25	15	20
Warm	Ϋ́	N	0 Y	9	15	6	10.5
Cold	Ϋ́	N	0 N	0	25	25	25
	Y	Y	12 N	0	25 35		
Cold						35	35
Cold	Y	Y	12 Y	15	35	20	27.5
Cold	Y	Y	12 Y	10	20	10	15
None	N	N	0 N	0	30	30	30
None	N	Y	12 N	0	5	5	5
None	N	Y	12 N	0	25	25	25
Cold	Υ	Υ	12 N	0	20	20	20
Cold	Υ	Υ	12 Y	10	25	15	20
Cold	Υ	N	0 N	0	20	20	20
None	Ν	Υ	12 N	0	30	30	30
None	Ν	N	0 Y	10	25	15	20
Warm	Υ	N	0 Y	10	25	15	20
Cold	Υ	N	0 N	0	30	30	30
None	Ν	Υ	12 Y	15	30	15	22.5
None	Ν	N	0 Y	10	20	10	15
Cold	Υ	N	0 N	0	15	15	15
Cold	Υ	Υ	12 Y	9	15	6	10.5
None	Ν	Υ	12 Y	10	20	10	15
None	N	Y	12 Y	15	35	20	27.5
None	N	Ý	12 Y	10	25	15	20
Cold	Y	Ý	12 Y	15	30	15	22.5
None	N	Ϋ́	12 Y	9	15	6	10.5
None	N	Ϋ́	12 N	0	35	35	35
None	N	N	0 N	0	35	35	35
	Y	Y	12 N	0	25		
Cold		Y			25 35	25	25
None	N	Ϋ́	12 Y	15		20	27.5
Cold	Y		12 Y	9	15	6	10.5
None	N	Y	12 Y	10	20	10	15
None	N	Y	12 Y	10	30	20	25
Cold	Y	Y	12 Y	10	20	10	15
None	N	Y	12 Y	10	25	15	20
Cold	Υ	Y	12 Y	10	30	20	25
Cold	Υ	Υ	12 Y	10	25	15	20
None	N	Υ	12 Y	9	15	6	10.5
None	Ν	Υ	12 Y	10	30	20	25
None	Ν	Υ	12 Y	10	35	25	30
None	Ν	Υ	12 Y	10	30	20	25
Cold	Υ	Υ	12 Y	10	35	25	30
None	Ν	Υ	12 Y	10	25	15	20
None	Ν	Υ	12 Y	10	15	5	10
None	Ν	Υ	12 Y	10	20	10	15
None	Ν	Υ	12 Y	10	10	0	5
							-

1									
2									
3	None	Ν	Υ		12 N	0	20	20	20
4	Cold	Υ	NA	NA	Υ	5	15	10	12.5
5	Cold	Υ	NA	NA	Υ	10	20	10	15
6 7	None	N	NA	NA	Υ	5	15	10	12.5
8	None	N	NA	NA	Υ	10	20	10	15
9	Cold	Y	NA	NA	Y	5	20	15	17.5
10	None	N	NA	NA	Y	5	20	15	17.5
11	Cold	Y	NA	NA	Y	10	25	15	20
12	None	N	NA	NA	Y	10	25	15	20
13	None	N N	Y Y		14 Y 14 Y	5 4	20 5	15 1	17.91667 3.333333
14	None None	N	Ϋ́		14 Y	9	15	6	11.25
15	None	N	Ϋ́		14 Y	10	20	10	15.83333
16	None	N	Ϋ́		14 Y	10	25	15	20.83333
17	None	N	Ϋ́		14 N	0	1	1	1
18	None	N	N		0 N	0	19	19	19
19 20	None	N	N		0 N	0	19	19	19
20 21	None	N	Y		12 N	0	15	15	15
22	None	N	N		0 N	0	35	35	35
23	None	Ν	N		0 N	0	15	15	15
24	None	Ν	N		0 N	0	30	30	30
25	None	Ν	Υ		12 N	0	20	20	20
26	None	Ν	Υ		12 N	0	35	35	35
27	None	N	Υ		12 N	0	30	30	30
28	None	N	Υ		12 N	0	25	25	25
29	None	N	N		0 N	0	25	25	25
30	None	N	N		0 N	0	20	20	20
31	None	N	N		0 N	0	30	30	30
32 33	None Cold	N Y	Y N		12 Y 0 Y	10 10	30 40	20 30	25 35
34	None	r N	N		0 T	0	20	20	20
35	None	N	N		0 N	0	35	35	35
36	Cold	Y	Ϋ́		12 N	0	30	30	30
37	Cold	Ϋ́	N		0 Y	10	30	20	25
38	Cold	Υ	Υ		12 Y	10	25	15	20
39	Cold	Υ	N		0 Y	10	25	15	20
40	None	Ν	N		0 N	0	25	25	25
41	None	Ν	Υ		12 N	0	25	25	25
42	Cold	Υ	N		0 N	0	35	35	35
43 44	None	Ν	Υ		12 N	0	35	35	35
45	None	N	N		0 Y	10	35	25	30
46	None	N	Υ		12 N	0	20	20	20
47	None	N	N		0 Y	10	40	30	35
48	Cold	Y	Y		12 Y	10	35	25	30
49	None	N	Y		12 Y	10	35	25	30
50	Cold	Y	Y		12 Y	10	30	20	25
51	Cold Cold	Y Y	N Y		0 N 12 N	0	20 35	20 35	20 35
52	Cold	Ϋ́	Y N		0 N	0	35 30	30	30
53	None	r N	Y		12 Y	10	40	30	35
54	Cold	Y	Ϋ́		12 N	0	25	25	25
55 56	Cold	Ϋ́	Ϋ́		12 N	10	40	30	35
56 57	None	N	Ϋ́		12 N	0	30	30	30
57 58	None	N	N		0 Y	10	25	15	20
59	Cold	Υ	N		0 N	0	25	25	25
60	Cold	Υ	N		0 Y	10	35	25	30

None	Ν	Υ	12 Y	10	25	15	20
None	Ν	N	0 Y	10	30	20	25
Cold	Υ	Υ	12 N	0	20	20	20
Cold	Υ	Υ	12 Y	10	20	10	15
None	N	Υ	12 Y	10	20	10	15
None	N	Ň	0 Y	10	15	5	10
Cold	Υ	Y	12 Y	10	25	15	20
None	N	Ň	0 Y	10	15	5	10
Cold	Υ	N	0 Y	10	25	15	20
None	N	Y	12 Y	10	20	10	15
None	N	N	0 Y	10	20	10	15
None	N	Y	12 Y	10	15	5	10
Cold	Y	Ϋ́	12 Y	10	20	10	15
Cold	Ϋ́	N	0 Y	10	20	10	15
Cold	Ϋ́	N	0 Y	10	25	15	20
None	N	Y	12 Y	10	25	15	20
Cold	Y	N	0 Y	10	15	5	10
Cold	Ϋ́	N	0 Y	10	15	5	10
Cold	Ϋ́	Y	12 Y	10	25	15	20
Cold	Ϋ́	N N	0 Y	10	20	10	15
None	, N	Y	12 Y	10	25	15	20
None	N	Ϋ́	12 Y	10	15	5	10
Cold	Y	Ϋ́	12 Y	10	15	5	10
None	N	N	0 Y	10	20	10	15
	N	N	0 Y	10	25 25	15	20
None	N	N N	0 Y	10	25 25	15	20
None	Y	Y	12 Y	10	25 15	5	10
Cold	Ϋ́	r N	0 Y	10			
Cold	r N	N N		10	25 15	15 5	20 10
None			0 Y		15 15		
None	N Y	Y N	12 Y	10 10	15 15	5 5	10
Cold	Ϋ́	N N	0 Y 0 Y				10
Cold	r N	N Y	12 Y	10	20	10 10	15 15
None				10	20 25	10 15	15 20
None	N	Y	12 Y	10	25	15	20
Cold	Y	Y	12 Y	10	15	5	10
None	N	N	0 Y	10	20	10	15
Cold	Y	Y	12 Y	10	25	15	20
Cold	Y	Y	12 Y	10	20	10	15
None	N	N	0 Y	10	25	15	20
None	N	N	0 Y	10	15 25	5	10
Cold	Y	N	0 Y	10	25	15	20
Cold	Y	N	0 Y	10	15	5	10
Cold	Y	Y	12 Y	10	20	10	15
None	N	N	0 Y	10	20	10	15
None	N	Y	12 Y	10	25	15	20
Cold	Y	Y	12 Y	10	25	15	20
Cold	Y	N	0 Y	10	20	10	15
None	N	N	0 Y	10	25	15	20
Cold	Y	Y	12 Y	10	15	5	10
None	N	Y	12 Y	10	15	5	10
None	N	Y	12 Y	10	20	10	15
None	N	Y	12 Y	10	15	5	10
Cold	Y	N	0 Y	10	25	15	20
Cold	Υ	N	0 Y	10	15	5	10
Cold	Υ	Y	12 Y	10	15	5	10
Cold	Υ	N	0 Y	10	20	10	15

1								
2								
3	None	Ν	N	0 Y	10	20	10	15
4	None	Ν	Υ	12 Y	10	20	10	15
5	None	Ν	N	0 Y	10	25	15	20
6	None	Ν	Υ	12 Y	10	25	15	20
7	Cold	Υ	Υ	12 Y	10	25	15	20
8	None	N	N	0 Y	10	15	5	10
9	Cold	Y	Y	12 Y	10	20	10	15
10	None	N	Ň	0 N	0	20	20	20
11	Cold	Y	Y	8 N	0	15	15	15
12	None	N	Ϋ́	8 N	0	15	15	15
13	Cold	Y	Ϋ́	8 N	0	20	20	20
14			Y	8 N				
15	None	N			0	20	20	20
16	None	N	N	0 N	0	16.5	16.5	16.5
17	None	N	N	0 Y	10	19	9	14
18	None	N	Y	16 Y	10	19	9	15.66667
19	Cold	Υ	Υ	16 Y	10	19	9	15.66667
20	None	N	N	0 N	0	15	15	15
21	None	Ν	N	0 N	0	15	15	15
22	Cold	Υ	N	0 N	0	15	15	15
23	Cold	Υ	N	0 N	0	25	25	25
24	None	Ν	Υ	16 N	0	15	15	15
25	None	Ν	N	0 N	0	25	25	25
26	None	Ν	Υ	16 N	0	25	25	25
27	Cold	Υ	Υ	16 N	0	25	25	25
28	Cold	Υ	N	0 N	0	22.5	22.5	22.5
29	Cold	Ϋ́	Y	16 N	0	15	15	15
30	Cold	Ý	Ϋ́	16 N	0	22.5	22.5	22.5
31	None	N	Ϋ́	16 N	0	22.5	22.5	22.5
32	None	N	N	0 N	0	22.5	22.5	22.5
33	Cold	Y	N	0 N	0	20	20	20
34	Cold	Ϋ́	N	0 N	0	20	20	20
35	Cold	Ϋ́	N	0 N	0	20	20	20
36		Y						
37	Cold		N	0 N	0	20	20	20
38	Cold	Y	N	0 N	0	20	20	20
39	Cold	Y	N	0 N	0	20	20	20
40	None	N	Y	16 Y	10	25	15	21.66667
41	None	N	Y	16 Y	10	25	15	21.66667
42	None	N	Y	24 N	0	10	10	10
43	None	N	N	0 N	0	18	18	18
44	None	N	N	0 N	0	14	14	14
45	None	N	Υ	24 N	0	22	22	22
46	None	Ν	N	0 N	0	22	22	22
47	None	Ν	Υ	24 N	0	18	18	18
48	None	Ν	N	0 N	0	10	10	10
49	None	Ν	Υ	24 N	0	14	14	14
	None	Ν	Υ	12 Y	10	20	10	15
50 51	None	Ν	Υ	12 Y	7.5	15	7.5	11.25
	None	Ν	Υ	12 Y	5	10	5	7.5
52 53	None	N	Υ	12 Y	10	25	15	20
	Cold	Υ	Y	24 N	0	17	17	17
54	None	N	Ϋ́	8 N	0	20	20	20
55	Cold	Y	Ϋ́	8 N	0	20	20	20
56 57	Cold	Ϋ́	Ϋ́	8 N	0	20	20	20
57	None	N	Ϋ́	8 N	0	20	20	20
58	Cold	Y	Ϋ́	8 N	0	20	20	20
59	None	N	Y	8 N	0	20	20	20
60	NOTIC	14	ī	O IN	U	20	20	20

None	Ν	Υ	16 Y	10	30	20	26.66667
Cold	Υ	Υ	16 Y	10	30	20	26.66667
None	Ν	Υ	8 N	0	20	20	20
Cold	Υ	Ϋ́	8 N	0	20	20	20
None	N	Ϋ́	8 N	0	20	20	20
	Y	Ϋ́	8 N	0			
Cold					20	20	20
None	N	Y	8 N	0	20	20	20
Cold	Υ	Υ	8 N	0	20	20	20
None	Ν	Υ	8 N	0	20	20	20
Cold	Υ	Υ	8 N	0	20	20	20
None	Ν	Υ	8 N	0	20	20	20
Cold	Υ	Υ	8 N	0	20	20	20
None	Ν	Υ	8 Y	10	30	20	23.33333
None	Ν	N	0 N	0	25	25	25
None	N	Y	8 Y	10	30	20	23.33333
None	N	Ϋ́	8 Y	10	30	20	23.33333
None	N	Y	8 Y	10	30	20	23.33333
None	N	Y	18 Y	6	24	18	22.5
None	Ν	N	0 N	0	10	10	10
Warm	Υ	Υ	12 N	0	25	25	25
None	Ν	Υ	12 Y	10	15	5	10
Warm	Υ	Υ	12 N	0	15	15	15
None	Ν	Υ	12 Y	10	20	10	15
None	Ν	Υ	12 Y	10	25	15	20
None	N	Y	12 N	0	15	15	15
None	N	Ϋ́	12 N	0	20	20	20
	N	Ϋ́	12 Y	10	30	20	25
None							
None	N	N	0 Y	15	35	20	27.5
Cold	Y	N	0 Y	15	35	20	27.5
None	Ν	N	0 Y	10	25	15	20
None	Ν	Υ	12 Y	10	25	15	20
None	Ν	Υ	12 Y	15	30	15	22.5
Cold	Υ	N	0 Y	10	25	15	20
None	Ν	N	0 Y	9	15	6	10.5
Cold	Υ	N	0 Y	10	20	10	15
Cold	Υ	Υ	12 Y	10	25	15	20
None	N	N	0 Y	15	30	15	22.5
Cold	Y	Y	12 Y	15	30	15	22.5
	Ϋ́	Ϋ́	12 Y	10	20	10	
Cold							15
None	N	Y	12 Y	10	20	10	15
None	N	Y	12 Y	9	15	6	10.5
None	N	Υ	12 Y	15	35	20	27.5
Cold	Υ	N	0 Y	9	15	6	10.5
Cold	Υ	Υ	12 Y	15	35	20	27.5
None	Ν	N	0 Y	10	20	10	15
Cold	Υ	N	0 Y	15	30	15	22.5
Cold	Υ	Υ	12 Y	12	22	10	16
Cold	Y	N	0 N	0	10	10	10
Cold	Ϋ́	Y	12 N	0	7	7	7
	Ϋ́		0 Y		22	10	16
Cold		N		12			
Cold	Y	Y	12 N	0	10	10	10
Cold	Υ	Υ	12 N	0	15	15	15
Cold	Υ	N	0 N	0	25	25	25
Cold	Υ	Υ	12 Y	12	22	10	16
Cold	Υ	N	0 N	0	15	15	15
Cold	Υ	Υ	12 N	0	15	15	15

1 2			
3 4 5	Cold Cold	Y Y	N Y
6 7	None None	N N	Y Y Y
8 9	None None None	N N N	Y Y
10	None	N	Y
11	Cold	Y	N
12	None	N	Y
13	Cold	Y	Y
14	None	N	N
15	None	N	N
16	Cold	Y	N
17	Cold	Y	N
18	None	N	Y
19	Cold	Y	N
20 21 22	Cold Cold	Y Y	Y Y
22 23 24	None None	N N	Y N
25	None	N	Y
26	Cold	Y	Y
27	None	N	Y
28	Cold	Y	Y
29	None	N	N
30	Cold	Y	N
31	None	N	N
32	Cold	Y	Y
33	None	N	N
34	None	N	Y
35	None	N	Y
36	Cold	Y	
37 38 39	None Cold	N Y	Y N
40	Cold	Y	Y
41	Cold	Y	N
42	None	N	N
43	None	N	N
44 45	Cold None	Y N Y	Y Y Y
46 47	Cold Cold None	Y N	N N
48	Cold	Y	N
49	None	N	Y
50	Cold	Y	N
51	None	N	N
52	None	N	Y
53	None	N	NA
54 55 56	None Cold	N Y	NA NA
57	Cold	Y	NA
58	None	N	NA
59	None	N	Y
60	None	N	N

NA

NA

NA

NA

NA

0 N	0	7	7	7
12 N	0	25	25	25
14 Y	14	18	4	12.16667
14 Y	14	18	4	12.16667
12 Y	10	25	15	20
12 Y 12 Y	10 10	15 20	5 10	10 15
12 T	10	30	20	25
0 N	0	5	5	5
24 N	0	10	10	10
24 N	0	20	20	20
0 N	0	20	20	20
0 N 0 N	0	35 25	35 25	35 25
0 N	0	35	35	35
24 N	0	25	25	25
0 N	0	10	10	10
24 N	0	35	35	35
24 N 24 N	0	25	25	25
24 N _ 0 N	0	20 10	20 10	20 10
24 N	0	5	5	5
24 N	0	5	5	5
24 N	0	35	35	35
24 N	0	10	10	10
0 N 0 N	0 0	25 20	25 20	25 20
0 N	0	5	5	5
24 N	0	20	20	20
0 N	0	20	20	20
24 N	0	25	25	25
24 N	0	35	35	35
24 N 24 N	0	35 20	35 20	35 20
0 N	0	10	10	10
24 N	0	10	10	10
0 N	0	35	35	35
0 N	0	10	10	10
0 N	0	35	35	35
24 N 24 N	0	5 5	5 5	5 5
24 N	0	25	25	25
0 N	0	5	5	5
0 N	0	25	25	25
0 N	0	20	20	20
24 N 0 N	0	10 25	10 25	10 25
0 N	0	5	5	5
24 N	0	22	22	22
N	0	5	5	5
N	0	5	5	5
Y Y	10	25 25	15 15	20
Y N	10 0	25 5	15 5	20 5
17 N	0	20	20	20
0 N	0	10	10	10

None	Ν	Υ	17 N	0	20	20 20
None	Ν	Υ	17 N	0	20	20 20
None	Ν	Υ	17 N	0	20	20 20
None	Ν	Υ	18 Y	23	29	6 23.25
None	Ν	Υ	17 Y	19	23	4 17.45833
None	Ν	Υ	17 Y	19	23	4 17.45833
None	N	Y	16 Y	17	18	1 12.33333
None	N	Y	18 Y	23	29	6 23.25
None	N	Y	16 Y	17	18	1 12.33333
None	N	Y	16 Y	17	18	1 12.33333
None	N	Ϋ́	17 Y	19	23	4 17.45833
None	N	Ϋ́	18 Y	23	29	6 23.25
None	N	Ϋ́	18 Y	23	29	6 23.25
None	N	Ϋ́	17 Y	19	23	4 17.45833
None	N	Ý	16 Y	17	18	1 12.33333
None	N	Ý	16 Y	17	18	1 12.33333
None	N	Ý	16 Y	17	18	1 12.33333
None	N	Ϋ́	18 Y	23	29	6 23.25
None	N	Ý	17 Y	19	23	4 17.45833
None	N	Ϋ́	17 Y	19	23	4 17.45833
None	N	Y	18 Y	23	29	6 23.25
Warm	Y	Y	16 Y	5	29	15 18.33333
	N	Ϋ́	10 T	19	23	4 17.45833
None		Ϋ́	16 Y			
None	N	Ϋ́		17	18	1 12.33333
None	N		16 Y	17	18	1 12.33333
None	N	Y	18 Y	23	29	6 23.25
None	N	Y	17 Y	19	23	4 17.45833
None	N	Y	16 Y	5	20	15 18.33333
None	N	Y	18 Y	23	29	6 23.25
None	N	Y	11 Y	6	24	18 20.75
None	N	N	0 N	0	25	25 25
Cold	Y	Y	8 Y	10	30	20 23.33333
None	N	Y	8 Y	10	30	20 23.33333
None	N	Y	12 N	0	18	18 18
None	N	Y	12 Y	10	12.5	2.5 7.5
None	N	Y	12 Y	10	20	10 15
None	N	Y	12 Y	10	27.5	17.5 22.5
None	N	Y	12 N	0	21	21 21
None	N	Y	12 N	0	24	24 24
None	N	Y	12 N	0	12	12 12
None	N	Y	12 Y	10	17.5	7.5 12.5
None	N	Y	12 Y	10	25	15 20
None	N	Y	12 N	0	27	27 27
None	Ν	Υ	12 Y	10	15	5 10
None	N	Υ	12 Y	10	30	20 25
None	Ν	Υ	12 Y	10	22.5	12.5 17.5
None	Ν	Υ	12 N	0	9	9 9
None	Ν	Υ	12 N	0	6	6 6
None	Ν	Υ	12 N	0	15	15 15
Cold	Υ	Υ	8 Y	10	30	20 23.33333
None	Ν	Υ	8 Y	10	30	20 23.33333
Cold	Υ	Υ	8 Y	10	30	20 23.33333
None	Ν	Υ	8 Y	10	30	20 23.33333
None	Ν	Υ	8 Y	10	30	20 23.33333
Cold	Υ	Υ	8 Y	10	30	20 23.33333
Cold	Υ	Υ	8 Y	10	30	20 23.33333

1								
2 3				0.14	40	00	00	00 00000
4	None	N	Y	8 Y	10	30	20	23.33333
5	None	N	Y	8 Y	10	30	20	23.33333
6	Cold	Y	Y	8 Y	10	30	20	23.33333
7	None	N	Y Y	12 Y 12 Y	10 10	25	15 10	20
8	None	N	Ϋ́	12 T 12 Y	10	20 30		15 25
9	None	N	Ϋ́	12 T 12 Y	10	30 15	20	
10	None	N N	Ϋ́	12 Y	10	15 15	5 5	10 10
11	None	N	Ϋ́	12 T 12 Y	10	25	5 15	20
12	None None	N	Ϋ́	12 T 12 Y	10	30	20	20 25
13	None	N	Ϋ́	12 Y	10	20	10	15
14	None	N	Ϋ́	12 Y	10	20	10	15
15		N	Ϋ́	12 Y	10	30	20	25
16	None None	N	Ϋ́	12 Y	10	15	5	10
17	None	N	Ϋ́	12 Y	10	25	15	20
18		N	N	0 N	0	25 25	25	25
19	None	N	Y	24 N	0	25 25	25	25 25
20	None	N	Ϋ́	16 N	0	20	20	20
21	None	N	Ϋ́	16 N	0	10	10	10
22	None	N	Ϋ́	16 N		15	15	15
23	None None	N	Ϋ́	16 N	0 0	5	5	5
24	None	N	Ϋ́	16 N	0	25	25	25
25	Cold	Y	n NA	NA N	0	25 15	15	15
26	None	n N	NA N	0 N	0	20	20	20
27	None	N	Y	0.1 N	0	25	25	20 25
28 29	None	N	Ϋ́	0.1 N 0.1 N	0	25 5	25 5	25 5
30	None	N	N	0.1 N	0	30	30	30
31	None	N	Y	0.1 N	0	20	20	20
32	None	N	N	0.1 N 0 N	0	15	15	15
33	None	N	Y	0.1 N	0	15	15	15
34	None	N	N	0.1 N	0	10	10	10
35	None	N	Y	0.1 N	0	10	10	10
36	None	N	N	0.1 N	0	25	25	25
37	None	N	N	0 N	0	5	5	5
38	None	N	Y	0.1 N	0	30	30	30
39	Cold	Y	Ϋ́	15 N	o 0	20	20	20
40	Cold	Ϋ́	Ϋ́	15 N	0	20	20	20
41	None	N	Ϋ́	12 Y	9	15	6	10.5
42	None	N	Ϋ́	12 N	0	5	5	5
43	None	N	Ϋ́	12 Y	10	20	10	15
44	None	N	Ϋ́	12 Y	4	5	1	3
45	Cold	Y	Ϋ́	12 N	0	7.8	7.8	7.8
46	Cold	Ϋ́	Ϋ́	12 N	0	30	30	30
47	Cold	Ϋ́	Ϋ́	12 N	0	5	5	5
48	Cold	Ϋ́	Ϋ́	12 N	0	21.7	21.7	21.7
49	Cold	Ϋ́	Ϋ́	12 N	0	27.2	27.2	27.2
50	Cold	Ϋ́	Ϋ́	12 N	0	18.9	18.9	18.9
51 52	Cold	Ϋ́	Ϋ́	12 N	0	16.1	16.1	16.1
52 53	Cold	Y	Y	12 N	0	24.4	24.4	24.4
53 54	Cold	Υ	Υ	12 N	0	13.3	13.3	13.3
54 55	Cold	Y	Y	12 N	0	10.6	10.6	10.6
56	None	N	N	0 Y	10	20	10	15
57	None	N	Υ	8 Y	10	20	10	13.33333
58	None	Ν	Υ	8 Y	10	30	20	23.33333
59	None	Ν	N	0 Y	20	30	10	20
60	None	Ν	N	0 Y	10	10	0	5

None	Ν	Υ	8 Y	10	10	0	3.333333
None	Ν	Υ	8 Y	20	30	10	16.66667
None	N	N	0 Y	10	30	20	25
None	N	NA	NA N	0	10	10	10
	N	NA	NA N	0	10	10	10
None							
None	N	NA	NA N	0	10	10	10
None	N	NA	NA N	0	10	10	10
None	N	N	0 N	0	20	20	20
None	N	Υ	24 N	0	20	20	20
None	Ν	N	0 N	0	20	20	20
Cold	Υ	Υ	16 N	0	28	28	28
None	Ν	Υ	12 N	0	20	20	20
Cold	Υ	Υ	12 Y	5	15	10	12.5
Cold	Υ	Υ	12 Y	5	35	30	32.5
Cold	Ϋ́	Ϋ́	12 Y	5	25	20	22.5
Cold	Ý	Ϋ́	12 Y	5	20	15	17.5
				0			
None	N	Y	12 N		20	20	20
Cold	Y	Y	12 Y	10	15	5	10
Cold	Υ	Υ	12 Y	10	25	15	20
None	N	Υ	12 N	0	20	20	20
None	Ν	Υ	16 N	0	22.5	22.5	22.5
None	Ν	Υ	16 N	0	12.5	12.5	12.5
None	Ν	Υ	16 N	0	25	25	25
None	Ν	Υ	16 N	0	11	11	11
Cold	Υ	Υ	16 N	0	25	25	25
None	N	Ϋ́	16 N	0	10	10	10
None	N	Ý	16 N	0	20	20	20
	N	Ϋ́	16 N	0	17.5	17.5	17.5
None							
Cold	Y	Y	16 N	0	20	20	20
Cold	Y	Y	16 N	0	12.5	12.5	12.5
Cold	Υ	Υ	16 N	0	10	10	10
Cold	Υ	Υ	16 N	0	15	15	15
None	Ν	Υ	16 N	0	15	15	15
None	Ν	Υ	16 N	0	12.5	12.5	12.5
None	Ν	Υ	16 N	0	25	25	25
Cold	Υ	Υ	16 N	0	12.5	12.5	12.5
None	Ν	Υ	16 N	0	15	15	15
None	Ν	Υ	16 N	0	20	20	20
None	N	Ϋ́	16 N	0	17.5	17.5	17.5
None	N	Ϋ́	16 N	0	10	10	10
Cold	Y	Ϋ́	16 N	0	10	10	10
		Ϋ́	16 N	0			
None	N				22.5	22.5	22.5
Cold	Y	Y	16 N	0	20	20	20
Cold	Y	Y	16 N	0	15	15	15
None	N	Υ	16 N	0	11	11	11
Cold	Υ	Υ	16 N	0	25	25	25
None	Ν	Υ	16 N	0	17.5	17.5	17.5
None	Ν	Υ	16 N	0	11	11	11
Cold	Υ	Υ	16 N	0	20	20	20
None	Ν	Υ	16 N	0	10	10	10
Cold	Y	Y	16 N	0	12.5	12.5	12.5
None	N	Ϋ́	16 N	0	20	20	20
Cold	Y	Ý	16 N	0	15	15	15
Cold	Ϋ́	Ϋ́	16 N	0	25	25	25
None	N	Ϋ́	16 N	0	12.5	12.5	12.5
None	N	Υ	16 N	0	25	25	25

1									
2									
3	Cold	Υ	Υ		16 N	0	10	10	10
4	None	Ν	Υ		16 N	0	15	15	15
5 6	None	Ν	Υ	•	16 N	0	22.5	22.5	22.5
7	None	Ν	N		0 N	0	35	35	35
8	None	Ν	N		0 N	0	25	25	25
9	None	Ν	N		0 N	0	15	15	15
10	None	Ν	N		0 N	0	35	35	35
11	None	Ν	N		0 N	0	15	15	15
12	None	Ν	N		0 N	0	25	25	25
13	None	Ν	N		0 N	0	35	35	35
14	None	Ν	N		0 N	0	25	25	25
15	None	Ν	N		0 N	0	15	15	15
16	None	Ν	N		0 N	0	15	15	15
17	None	Ν	N		0 N	0	35	35	35
18	None	N	N		0 N	0	25	25	25
19	None	Ν	N		0 N	0	15	15	15
20	None	Ν	N		0 N	0	25	25	25
21	None	Ν	N		0 N	0	35	35	35
22	None	Ν	N		0 N	0	25	25	25
23	None	Ν	N		0 N	0	35	35	35
24	None	Ν	N		0 N	0	15	15	15
25	None	Ν	Υ		18 N	0	26	26	26
26	None	Ν	Υ		18 N	0	23	23	23
27	None	Ν	Υ		18 N	0	30	30	30
28	None	Ν	Υ		12 N	0	20	20	20
29	Cold	Υ	Υ		12 Y	10	20	10	15
30	Cold	Υ	Υ		12 Y	10	25	15	20
31	None	Ν	Υ		12 N	0	20	20	20
32	Cold	Υ	Υ	•	12 Y	10	15	5	10
33	None	Ν	N		0 N	0	20	20	20
34	None	Ν	N		0 N	0	20	20	20
35	None	N	N		0 N	0	20	20	20
36	None	Ν	N		0 N	0	20	20	20
37	None	Ν	NA	NA	Ν	0	20	20	20
38	Cold	Υ	N		0 N	0	26	26	26
39	None	N	N		0 N	0	20	20	20
40	None	Ν	N		0 N	0	26	26	26
41	Cold	Υ	N		0 N	0	20	20	20
42 43	None	Ν	Υ		8 Y	10	30	20	23.33333
44	None	Ν	Υ		8 Y	10	30	20	23.33333
45	None	N	Y		8 Y	10	30	20	23.33333
46	None	N	Υ		8 Y	10	30	20	23.33333
47	None	N	Y		8 Y	10	30	20	23.33333
48	None	N	Y		8 Y	10	30	20	23.33333
49	None	N	Y		8 Y	10	30	20	23.33333
50	Cold	Υ	Y		12 Y	10	15	5	10
51	Cold	Y	Y		12 Y	10	20	10	15
52	Cold	Y	Y		12 Y	10	25	15	20
53	None	N	Y		12 N	0	20	20	20
54	None	N	Y	•	12 N	0	20	20	20
55	None	N	Υ		8 Y	10	30	20	23.33333
56	Cold	Y	Y		8 Y	15	25	10	15
57	None	N	N		0 N	0	25	25	25
58	None	N	Y		12 Y	10	30	20	25
59	None	N	Y		12 Y	10	30	20	25
60	None	N	Υ	•	12 Y	10	30	20	25

Cold	Υ	N	0 Y	10	22	12	17
Cold	Υ	Y	24 Y	10	30	20	25
None	Ν	N	0 Y	10	30	20	25
None	Ν	Υ	24 Y	10	15	5	10
None	Ν	Υ	24 Y	10	30	20	25
Cold	Υ	Υ	12 Y	10	15	5	10
Cold	Υ	Y	24 Y	10	22	12	17
Cold	Υ	Y	12 Y	10	22	12	17
Cold	Υ	Y	24 Y	10	15	5	10
None	N	N	0 Y	10	15	5	10
None	N	Υ	12 Y	10	22	12	17
None	N	Υ	24 Y	10	22	12	17
Cold	Υ	N	0 Y	10	15	5	10
None	N	N	0 Y	10	22	12	17
Cold	Υ	N	0 Y	10	30	20	25
None	N	Υ	8 N	0	15	15	15
None	Ν	Υ	8 N	0	35	35	35
None	N	Υ	8 N	0	25	25	25
None	N	Υ	8 N	0	10	10	10
None	N	Υ	8 N	0	20	20	20
None	N	N	0 N	0	5	5	5
None	N	Υ	8 Y	6	14	8	10
None	N	N	0 Y	6	14	8	11
None	N	N	0 N	0	35	35	35
None	N	N	0 N	0	10	10	10
None	N	N	0 N	0	15	15	15
None	N	Υ	8 N	0	30	30	30
None	N	N	0 N	0	8	8	8
None	N	N	0 N	0	25	25	25
None	N	N	0 N	0	30	30	30
None	N	Υ	8 N	0	8	8	8
None	N	N	0 N	0	20	20	20
None	N	Υ	8 N	0	5	5	5
None	N	Υ	24 N	0	20	20	20
Cold	Υ	Υ	24 N	0	20	20	20
Cold	Υ	Υ	24 N	0	25	25	25
Cold	Υ	Υ	24 N	0	20	20	20
Cold	Υ	Υ	24 N	0	10	10	10
Cold	Υ	Υ	24 N	0	15	15	15
Cold	Y	Y	24 N	0	10	10	10
Cold	Y	Y	24 N	0	20	20	20
Cold	Υ	Y	24 N	0	15	15	15
Cold	Y	Y	24 N	0	25	25	25
Cold	Y	NA	NA N	0	20	20	20
Cold	Y	NA	NA N	0	20	20	20
None	N	Y	12 N	0	15	15	15
None	N	N	0 N	0	1	1	1
None	N	N	0 N	0	15	15	15
Cold	Y	N	0 N	0	15	15	15
None	N	Y	12 N	0	1	1	1
Cold	Y	Y	12 N	0	15	15	15
None	N	Y	16 N	0	15	15	15
None	N	Y	8 Y	10	30		23.33333
None	N	Y	8 Y	10	30		23.33333
None	N	N	0 N	0	20	20	20
None	N	Υ	8 Y	10	30	20	23.33333

1								
2								
3 4	None	N	Y	8 Y	10	30	20	23.33333
5	None	N	Y	8 Y	10	30	20	23.33333
6	Cold	Y	Y	8 Y	10	30	20	23.33333
7	None	N	Y	24 N	0	25	25	25
8	Cold	Y	Y	8 Y	10	30	20	23.33333
9	None	N	N	0 N	0	25	25	25
10	None	N	N	0 N	0	23	23	23
11	Cold	Y	N	0 N	0	20	20	20
12	None	N	N	0 N	0	20	20	20
13	None	N	N	0 N	0	14	14	14
14	None	N	N	0 N	0	10	10	10
15	None	N	N	0 N	0	11	11	11
16	None	N	N	0 N	0	26	26	26
17	None	N	N	0 N	0	17	17	17
18	Cold	Υ	N	0 N	0	15	15	15
19	Cold	Υ	N	0 N	0	30	30	30
20	Cold	Υ	N	0 N	0	30	30	30
21	Cold	Υ	N	0 N	0	15	15	15
22	None	N	Υ	24 N	0	25	25	25
23	None	N	Υ	24 N	0	25	25	25
24	None	N	N	0 N	0	15	15	15
25	None	N	N	0 N	0	25	25	25
26	None	Ν	N	0 N	0	15	15	15
27	None	Ν	N	0 N	0	25	25	25
28	None	N	Υ	24 N	0	20	20	20
29	None	N	Υ	24 N	0	25	25	25
30	None	N	Υ	24 N	0	30	30	30
31	None	N	Υ	24 N	0	30	30	30
32	None	Ν	N	0 N	0	20	20	20
33	None	Ν	Υ	24 N	0	10	10	10
34	None	Ν	Υ	24 N	0	15	15	15
35	None	N	N	0 N	0	20	20	20
36	None	N	Υ	8 N	0	20	20	20
37	None	N	N	0 N	0	25	25	25
38	None	N	Υ	8 Y	10	30	20	23.33333
39	Cold	Υ	Υ	8 Y	10	30	20	23.33333
40	Cold	Υ	Υ	8 Y	10	30	20	23.33333
41	Cold	Υ	Υ	8 Y	10	30	20	23.33333
42	Cold	Υ	Υ	8 Y	10	30	20	23.33333
43	None	Ν	N	0 N	0	25	25	25
44	None	Ν	Υ	8 N	0	25	25	25
45 46	None	Ν	N	0 N	0	4	4	4
46 47	None	Ν	Υ	8 Y	21	25	4	11
47 48	None	Ν	N	0 Y	21	25	4	14.5
48 49	None	Ν	Υ	0.1 N	0	4	4	4
50	None	Ν	Υ	8 Y	10	30	20	23.33333
50 51	None	Ν	N	0 N	0	20	20	20
52	None	Ν	Υ	0.1 N	0	20	20	20
53	None	Ν	Υ	12 Y	4	21.5	17.5	19.5
54	None	Ν	Υ	12 Y	4	21.5	17.5	19.5
55	None	Ν	Υ	12 Y	4	21.5	17.5	19.5
56	None	Ν	Υ	12 Y	4	21.5	17.5	19.5
57	Cold	Υ	Υ	24 N	0	20	20	20
58	None	Ν	Υ	24 N	0	20	20	20
59	None	Ν	NA	NA N	0	16	16	16
60	None	Ν	NA	NA N	0	38	38	38

None	Ν	NA	NA	N	0	22	22	22
None	Ν	NA	NA	N	0	26	26	26
None	Ν	NA	NA	N	0	12	12	12
None	Ν	NA	NA	N	0	24	24	24
None	Ν	NA	NA	N	0	30	30	30
None	Ν	NA	NA	N	0	14	14	14
None	Ν	NA	NA	N	0	28	28	28
None	Ν	NA	NA	N	0	34	34	34
None	Ν	NA	NA	N	0	36	36	36
None	Ν	NA	NA	N	0	10	10	10
None	Ν	NA	NA	N	0	8	8	8
None	Ν	NA	NA	N	0	32	32	32
None	N	NA	NA	N	0	20	20	20
None	N	NA	NA	N	0	18	18	18
None	N	NA	NA	N	0	6	6	6
Cold	Y	Y		8 Y	5	15	10	11.66667
Cold	Ϋ́	Ϋ́		8 Y	10	30	20	23.33333
Cold	Ϋ́	Ϋ́		8 Y	5	15	10	11.66667
Cold	Ϋ́	Ϋ́		8 Y	10	30	20	23.33333
Cold	Ϋ́	Ϋ́		8 Y	5	15	10	11.66667
Cold	Ϋ́	Ϋ́		8 Y	10	30	20	23.33333
Cold	Y	Ϋ́		8 Y	5	15	10	
Cold	Y	Ϋ́		8 Y	10	30	20	11.66667 23.33333
	Y	Ϋ́		8 Y				
Cold	Ϋ́				10	30	20	23.33333
Cold		Y		8 Y	5	15	10	11.66667
None	N	N		0 Y	10	25	15	20
None	N	N		0 Y	10	30	20	25
None	N	N		0 Y	10	15	5	10
None	N	Y		8 Y	10	30	20	23.33333
None	N	Y		8 Y	10	25	15	18.33333
None	N	Y		8 Y	10	20	10	13.33333
None	N	N		0 Y	10	20	10	15
None	N	Y		8 Y	10	15	5	8.333333
Cold	Y	NA	NA	N	0	25	25	25
None	N	NA	NA	N	0	25	25	25
None	N	Y		24 N	0	18	18	18
None	N	N		0 N	0	18	18	18
None	N	Υ		24 N	0	14	14	14
None	N	Υ		24 N	0	18	18	18
None	N	Υ		24 N	0	24	24	24
None	N	Υ		24 N	0	30	30	30
None	N	Υ		24 N	0	35	35	35
None	N	Υ		24 N	0	24	24	24
None	Ν	Υ		24 N	0	18	18	18
None	Ν	Υ		24 N	0	18	18	18
None	Ν	Υ		24 N	0	30	30	30
None	Ν	Υ		24 N	0	35	35	35
None	Ν	N		0 N	0	18	18	18
None	Ν	Υ		24 N	0	14	14	14
Warm	Υ	Υ		12 Y	15	30	15	22.5
Warm	Υ	Υ		12 N	0	5	5	5
Warm	Υ	Υ		12 Y	10	20	10	15
Warm	Υ	Υ		12 Y	10	20	10	15
None	Ν	Υ		12 Y	10	20	10	15
Warm	Υ	Υ		12 Y	9	15	6	10.5
Warm	Υ	Υ		12 Y	10	25	15	20
					_	-	=	-

1								
2								
3	Warm	Υ	Υ	12 Y	15	35	20	27.5
4	None	N	Ϋ́	8 Y	10	30	20	23.33333
5	Cold	Y	Ϋ́	8 Y	10	30	20	23.33333
6	Cold	Ϋ́	Ϋ́	24 N	0	20	20	20
7	Cold	Υ	Υ	24 N	0	18	18	18
8	None	Ν	Υ	24 N	0	25	25	25
9	None	Ν	Υ	24 N	0	18	18	18
10	None	Ν	Υ	24 N	0	20	20	20
11 12	Cold	Υ	Υ	24 N	0	25	25	25
13	None	N	Υ	24 N	0	20	20	20
14	None	N	Υ	24 N	0	18	18	18
15	Cold	Υ	Υ	24 N	0	20	20	20
16	Cold	Υ	Y	24 N	0	18	18	18
17	Cold	Y	Y	24 N	0	25	25	25
18	None	N	Y	8 Y	10	30	20	23.33333
19	None	N	Y	24 N	0	25	25	25
20	Cold	Y	Y	8 Y	10	30	20	23.33333
21	Warm	Y	NA	NA N	0	4	4	4
22	None	N	Y	16 N	0	24	24	24
23	None	N	Y Y	16 N	0	24	24	24
24	None	N N	Ϋ́	16 Y 16 Y	14 14	24 24	10 10	19.33333 19.33333
25	None	N	Ϋ́	16 Y	22	24 24	2	16.66667
26	None None	N	Ϋ́	16 Y	14	24	10	19.33333
27 28	Cold	Y	Y	16 Y	22	24	2	16.66667
26 29	Cold	Ϋ́	N	0 Y	22	24	2	13
30	Cold	Ϋ́	N	0 Y	22	24	2	13
31	None	N	Y	16 N	0	24	24	24
32	None	N	N	0 N	0	24	24	24
33	None	N	N	0 Y	22	24	2	13
34	None	N	N	0 N	0	24	24	24
35	None	N	Υ	16 Y	22	24	2	16.66667
36	None	Ν	N	0 Y	22	24	2	13
37	Cold	Υ	Υ	16 Y	22	24	2	16.66667
38	None	Ν	N	0 N	0	24	24	24
39	None	Ν	N	0 Y	22	24	2	13
40	Cold	Υ	Υ	16 Y	22	24	2	16.66667
41	None	Ν	Υ	16 Y	22	24	2	16.66667
42	Cold	Υ	N	0 Y	22	24	2	13
43 44	None	N	N	0 N	0	5	5	5
44	None	N	N	0 N	0	15	15	15
46	None	N	N	0 N	0	10	10	10
47	None	N	N	0 N	0	25	25	25
48	None	N	N	0 N	0	30	30	30
49	None	N	N	0 N	0	20	20	20
50	None	N	N	0 N	0	15	15	15
51	None	N	N	0 N	0	10	10	10
52	None	N N	N	0 N	0	20	20	20
53	None	N N	N	0 N 0 N	0	30 25	30	30
54	None	N N	N N	0 N	0	25 5	25 5	25 5
55	None None	N N	N N	0 N	0	20	20	20
56	None	N	N	0 N	0	20 25	20 25	25
57	None	N N	N	0 N	0	10	10	10
58	None	N	N	0 N	0	5	5	5
59 60	None	N	N	0 N	0	30	30	30
30			. •	5 14	ŭ			

None	Ν	N		0 N	0	15	15	15
Cold	Υ	Υ		12 N	0	23	23	23
Cold	Υ	N		0 N	0	23	23	23
None	Ν	Υ		12 N	0	23	23	23
Cold	Υ	N		0 N	0	23	23	23
Cold	Υ	Υ		12 N	0	23	23	23
None	Ν	Υ		12 N	0	23	23	23
None	Ν	N		0 N	0	5	5	5
None	Ν	N		0 N	0	15	15	15
None	Ν	N		0 N	0	25	25	25
None	Ν	N		0 N	0	20	20	20
None	Ν	N		0 N	0	10	10	10
None	Ν	N		0 N	0	30	30	30
None	Ν	Υ		8 Y	10	30	20	23.33333
None	Ν	N		0 Y	10	30	20	25
None	Ν	Υ		16 N	0	16	16	16
None	Ν	NA	NA	N	0	9	9	9
None	Ν	NA	NA	N	0	14	14	14
None	N	NA	NA	N	0	26	26	26
None	N	NA	NA	N	0	22	22	22
None	N	NA	NA	N	0	20	20	20
None	N	NA	NA	N	0	24	24	24
None	N	NA	NA	N	0	28	28	28
None	N	NA	NA	N	0	30	30	30
None	N	NA	NA	N	0	12	12	12
None	N	NA	NA	N	0	7	7	7
None	N	NA	NA	N	0	32	32	32
None	N	NA	NA	N	0	16	16	16
None	N	NA	NA	N	0	10	10	10
None	N	NA	NA	N	0	18	18	18
None	N	Y	147 (24 N	0	22	22	22
None	N	Ϋ́		24 N	0	20	20	20
Cold	Y	Ϋ́		24 N	0	20	20	20
Cold	Ϋ́	Ý		24 N	0	20	20	20
None	N	Ϋ́		24 N	0	20	20	20
None	N	Ϋ́		8 Y	20	30	10	16.66667
None	N	NA	NA	Y	10	25	15	20
Cold	Y	Y	147 (14 Y	10	20	10	15.83333
None	N	Ϋ́		14 Y	10	15	5	10.83333
None	N	N		0 Y	10	15	5	10.00000
None	N	N		0 Y	10	30	20	25
None	N	Y		14 Y	10	20	10	15.83333
Cold	Y	N		0 Y	10	30	20	25
Cold	Ϋ́	N		0 Y	10	15	5	10
Cold	Ϋ́	N		0 Y	10	20	10	15
None	N	N		0 Y	10	20	10	15
None	N	Y		14 Y	10	30	20	25.83333
Cold	Y	Ϋ́		14 Y	10	15	5	10.83333
Cold	Ϋ́	Ϋ́		14 T	10	30	20	25.83333
None	N	NA	NA	14 1 N	0	25	25 25	25.65555
Cold	Y	Y	1 11/-1	14 Y	12	22	10	17
None	N	n NA	NA	14 T	0	25 25	25	25
None	N	NA NA	NA	N	0	25	25 25	25 25
None	N	NA NA	NA	N	0	15	15	25 15
Warm	Y	NA NA	NA	Y	10	20	10	15
None	N	NA NA	NA	ı N	0	20	20	20
INOTIE	IN	INA	INH	IN	U	20	20	20

1									
2									
4	Warm	Y	NA	NA	N	0	20	20	20
5	None	N	NA	NA	N	0	10	10	10
6	None	N	NA	NA	Y	10	20	10	15
7	Warm	Y	NA	NA	N	0	15	15	15
8	Warm	Y	NA	NA	N	0	10	10	10
9	None	N	N Y		0 N	0	25	25	25
10	None	N N	Y N		0.1 N 0 N	0	25 25	25 25	25 25
11	None None	N	N		0 N	0	25	25 25	25 25
12	None	N	Y		0.1 N	0	25	25	25
13	None	N	Ϋ́		16 Y	10	22	12	18.66667
14	None	N	N		0 Y	10	22	12	17
15	None	N	N		0 Y	4	22	18	20
16	None	N	Y		16 Y	1	22	21	21.66667
17	None	N	Ϋ́		16 Y	9	22	13	19
18	None	N	N		0 Y	7	22	15	18.5
19	None	N	Y		16 Y	9	22	13	19
20	None	N	Y		16 Y	5	22	17	20.33333
21	None	N	Y		16 Y	5	22	17	20.33333
22 23	None	N	Y		16 Y	1	22	21	21.66667
24	None	N	N		_0 Y	1	22	21	21.5
25	None	N	Y		16 N	0	22	22	22
26	None	N	N		0 Y	12	22	10	16
27	None	N	Y		16 Y	3	22	19	21
28	None	Ν	N		0 Y	3	22	19	20.5
29	None	Ν	N		0 Y	1	22	21	21.5
30	None	Ν	N		0 Y	5	22	17	19.5
31	None	Ν	Υ		16 Y	7	22	15	19.66667
32	None	Ν	N		0 Y	2	22	20	21
33	None	Ν	Υ		16 Y	5	22	17	20.33333
34	None	Ν	N		0 Y	8 3	22	14	18
35	None	Ν	Υ		16 Y		22	19	21
36	None	Ν	N		0 Y	10	22	12	17
37	None	Ν	N		0 Y	10	22	12	17
38	None	N	Υ		16 Y	4	22	18	20.66667
39	None	N	N		0 N	0	22	22	22
40	None	N	Υ		16 Y	1	22	21	21.66667
41 42	None	N	Υ		16 Y	4	22	18	20.66667
43	None	N	Υ		16 Y	8	22	14	19.33333
44	None	N	Υ		16 Y	2	22	20	21.33333
45	None	N	N		0 Y	6	22	16	19
46	None	N	Y		16 N	0	22	22	22
47	None	N	Y		16 Y	10	22	12	18.66667
48	None	N	N		0 Y	2	22	20	21
49	None	N	Y		16 Y	9	22	13	19
50	None	N	N		0 Y	6	22	16	19
51	None	N	N		0 Y	3	22	19	20.5
52	None	N	Y		16 Y	8	22	14	19.33333
53	None	N N	N Y		0 Y 16 Y	9	22 22	13 16	17.5 20
54	None	N N	Υ Υ		16 Y	4	22	18	
55	None None	N N	Ϋ́Υ		16 Y	2	22	20	20.66667 21.33333
56	None	N	r N		0 Y	8	22	14	18
57	None	N	N		0 Y	8	22	14	18
58	None	N	Y		16 N	0	22	22	22
59 60	None	N	Ϋ́		16 Y	5	22	17	20.33333
00	140110	14	•		.0 1	3		17	_0.00000

None	Ν	Υ	16 Y	9	22	13	19
None	Ν	N	0 Y	7	22	15	18.5
None	Ν	Υ	16 Y	12	22	10	18
None	Ν	Υ	16 Y	10	22	12	18.66667
None	N	Ϋ́	16 Y	2	22	20	21.33333
None	N	Ϋ́	16 Y	6	22	16	20
None	N	N	0 Y	6	22	16	19
None	N	N	0 Y	5	22	17	19.5
	N	Y	16 Y	12	22	10	18.3
None							
None	N	N	0 Y	1	22	21	21.5
None	N	N	0 Y	2	22	20	21
None	N	N	0 Y	2	22	20	21
None	N	Υ	16 Y	10	22	12	18.66667
None	N	Υ	16 Y	1	22	21	21.66667
None	N	Υ	16 Y	6	22	16	20
None	Ν	N	0 Y	4	22	18	20
None	Ν	Υ	16 Y	7	22	15	19.66667
None	Ν	Υ	16 Y	7	22	15	19.66667
None	Ν	Υ	16 Y	12	22	10	18
None	N	Ϋ́	16 Y	10	22	12	18.66667
None	N	Ϋ́	16 Y	4	22	18	20.66667
None	N	N	0 Y	3	22	19	20.5
	N	Y	16 Y	9	22	13	19
None							
None	N	N	0 Y	6	22	16	19
None	N	N	0 Y	5	22	17	19.5
None	N	Υ	16 Y	7	22	15	19.66667
None	N	Υ	16 N	0	22	22	22
None	N	N	0 Y	4	22	18	20
None	Ν	Υ	16 Y	8	22	14	19.33333
None	N	N	0 Y	1	22	21	21.5
None	N	N	0 Y	12	22	10	16
None	Ν	N	0 Y	10	22	12	17
None	Ν	N	0 Y	4	22	18	20
None	Ν	N	0 Y	7	22	15	18.5
None	Ν	Υ	16 Y	6	22	16	20
None	N	N	0 Y	9	22	13	17.5
None	N	Y	16 Y	2	22	20	21.33333
None	N	N	0 Y	8	22	14	18
None	N	N	0 Y	9	22	13	17.5
None	N	Y	16 N	0	22	22	22
	N	N	0 Y	9		13	
None					22		17.5
None	N	N	0 Y	2	22	20	21
None	N	Y	16 Y	3	22	19	21
None	N	Y	16 Y	6	22	16	20
None	N	N	0 Y	6	22	16	19
None	N	Υ	16 Y	1	22	21	21.66667
None	N	Υ	16 Y	3	22	19	21
None	Ν	Υ	16 Y	8	22	14	19.33333
None	Ν	N	0 Y	12	22	10	16
None	Ν	N	0 Y	5	22	17	19.5
None	Ν	N	0 Y	10	22	12	17
None	Ν	N	0 Y	7	22	15	18.5
None	N	Y	16 Y	8	22	14	19.33333
None	N	N	0 Y	3	22	19	20.5
None	N	Y	16 Y	3	22	19	21
None	N	N	0 Y	4	22	18	20
110116	1.4	1 1	0 1	7		10	20

1									
2									
3 4	None	N	Y		16 Y	5	22	17	20.33333
5	None	N	N		0 Y	3	22	19	20.5
6	None	N	N		0 Y	8	22	14	18
7	None	N	N		0 Y	7	22	15	18.5
8	None	N	N		0 N	0	22	22	22
9	None	N N	Y Y		16 Y 16 Y	7	22 22	15 10	19.66667 18
10	None None	N	r N		0 Y	12 1	22	21	21.5
11	None	N	Y		16 Y	2	22	20	21.33333
12	None	N	Ϋ́		16 Y	12	22	10	18
13	None	N	Ϋ́		16 Y	4	22	18	20.66667
14	None	N	N		0 Y	9	22	13	17.5
15	None	N	N		0 Y	5	22	17	19.5
16	None	N	N		0 Y	12	22	10	16
17 18	None	Ν	N		0 Y	12	22	10	16
19	None	Ν	Ν		0 N	0	22	22	22
20	None	Ν	Ν		0 N	0	22	22	22
21	None	Ν	N		0 N	0	22	22	22
22	Cold	Υ	Ν		0 Y	7	22	15	18.5
23	Cold	Υ	N		0 Y	7	22	15	18.5
24	Cold	Υ	N		0 Y	7	22	15	18.5
25	Cold	Υ	N		0 Y	7	22	15	18.5
26	None	N	Y		8 Y	5	21	16	17.66667
27	None	N	Y		8 Y	5	24	19	20.66667
28	None	N	Y		8 Y	5	33	28	29.66667
29	None	N	Y		8 Y	5	15	10	11.66667
30	None	N	Y		8 Y 8 Y	5	18	13	14.66667
31 32	None None	N N	Y Y		8 Y	5	27 36	22 31	23.66667 32.66667
33	None	N	Ϋ́		8 Y	5 5	30	25	26.66667
34	Cold	Y	Ϋ́		14 N	0	15	15	15
35	None	N	N		0 Y	5	20	15	17.5
36	None	N	Y		14 Y	5	20	15	17.91667
37	None	N	Υ		14 Y	5 17	25	8	17.91667
38	Cold	Υ	Υ		14 Y	12	22	10	17
39	None	Ν	Υ		12 Y	10	20	10	15
40	Cold	Υ	NA	NA	Ν	0	21	21	21
41	Cold	Υ	Υ		24 N	0	17	17	17
42	Cold	Υ	N		0 N	0	29	29	29
43 44	Cold	Υ	Υ		24 N	0	20	20	20
45	Cold	Υ	N		0 N	0	20	20	20
46	None	N	Y		24 N	0	20	20	20
47	Cold	Y	N		0 N	0	11	11	11
48	None	N	N		0 N	0	29	29	29
49	Cold	Y	Y		24 N	0	11	11	11
50	None	N	Y		24 N	0	14	14	14
51	Cold	Y Y	Y Y		24 N	0	23	23	23
52	Cold Cold	Ϋ́			24 N 0 N	0	29 14	29 14	29 14
53	None	Y N	N N		0 N	0	26	26	26
54	Cold	Y	Y		24 N	0	14	14	14
55	None	n N	r N		0 N	0	17	17	17
56 57	None	N	N		0 N	0	23	23	23
57 58	None	N	Y		24 N	0	17	17	17
58 59	None	N	Y		24 N	0	26	26	26
60	None	N	N		0 N	0	14	14	14

Cold	Υ	N	0 N	0	26	26	26
None	Ν	Υ	24 N	0	29	29	29
Cold	Υ	N	0 N	0	23	23	23
Cold	Υ	Υ	24 N	0	26	26	26
Cold	Υ	N	0 N	0	17	17	17
None	N	Y	24 N	0	11	11	11
None	N	N	0 N	0	29	29	29
Cold	Y	Y	24 N	0	29	29	29
Cold	Ϋ́	N	0 N	0	17	17	17
Cold	Ϋ́	N	0 N	0	20	20	20
	Ϋ́	N	0 N	0	17	17	17
Cold							
None	N	N	0 N	0	14	14	14
Cold	Y	Y	24 N	0	20	20	20
None	N	N	0 N	0	20	20	20
None	N	Υ	24 N	0	26	26	26
Cold	Υ	N	0 N	0	11	11	11
None	Ν	Υ	24 N	0	26	26	26
None	Ν	Υ	24 N	0	23	23	23
None	Ν	N	0 N	0	29	29	29
Cold	Υ	Υ	24 N	0	26	26	26
Cold	Υ	Υ	24 N	0	26	26	26
None	Ν	N	0 N	0	11	11	11
Cold	Υ	N	0 N	0	23	23	23
None	Ν	N	0 N	0	26	26	26
Cold	Υ	Y	24 N	0	23	23	23
None	N	Ϋ́	24 N	0	17	17	17
Cold	Y	Ϋ́	24 N	0	17	17	17
None	N	Ϋ́	24 N	0	17	17	17
Cold	Y	Ϋ́	24 N	0	14	14	14
	Ϋ́	N		0			
Cold			0 N		26	26	26
None	N	N	0 N	0	29	29	29
Cold	Y	Y	24 N	0	20	20	20
None	N	Y	24 N	0	14	14	14
Cold	Y	Y	24 N	0	20	20	20
None	N	Y	24 N	0	14	14	14
None	Ν	Υ	24 N	0	23	23	23
Cold	Υ	Υ	24 N	0	11	11	11
Cold	Υ	N	0 N	0	17	17	17
Cold	Υ	Υ	24 N	0	29	29	29
None	Ν	N	0 N	0	17	17	17
Cold	Υ	Υ	24 N	0	29	29	29
Cold	Υ	Υ	24 N	0	11	11	11
None	Ν	N	0 N	0	20	20	20
Cold	Υ	Υ	24 N	0	14	14	14
Cold	Ϋ́	N	0 N	0	29	29	29
Cold	Ϋ́	N	0 N	0	14	14	14
Cold	Ϋ́	N	0 N	0	23	23	23
Cold	Ý	Y	24 N	0	14	14	14
	Ϋ́			0	29		
Cold		N	0 N			29 11	29 11
Cold	Y	N	0 N	0	11	11	11
None	N	N	0 N	0	14	14	14
Cold	Y	N	0 N	0	20	20	20
None	N	Y	24 N	0	20	20	20
None	N	Y	24 N	0	11	11	11
None	N	N	0 N	0	17	17	17
Cold	Υ	Υ	24 N	0	26	26	26

1								
2								
3	None	N	Υ	24 N	0	26	26	26
4	None	N	N	0 N	0	14	14	14
5 6	None	N	N	0 N	0	23	23	23
7	Cold	Υ	N	0 N	0	26	26	26
8	None	Ν	N	0 N	0	23	23	23
9	Cold	Υ	Υ	24 N	0	23	23	23
10	Cold	Υ	N	0 N	0	26	26	26
11	None	N	Υ	24 N	0	20	20	20
12	None	Ν	Υ	24 N	0	17	17	17
13	Cold	Υ	N	0 N	0	23	23	23
14	Cold	Υ	N	0 N	0	14	14	14
15	Cold	Υ	Υ	24 N	0	17	17	17
16	Cold	Υ	N	0 N	0	11	11	11
17	None	Ν	N	0 N	0	20	20	20
18	None	Ν	Υ	24 N	0	14	14	14
19	None	Ν	N	0 N	0	11	11	11
20	Cold	Υ	N	0 N	0	14	14	14
21	None	Ν	N	0 N	0	23	23	23
22	Cold	Υ	Υ	24 N	0	11	11	11
23	None	Ν	Υ	24 N	0	23	23	23
24	None	Ν	Υ	24 N	0	11	11	11
25	Cold	Υ	Υ	24 N	0	23	23	23
26	Cold	Υ	N	0 N	0	20	20	20
27	None	Ν	N	0 N	0	26	26	26
28	None	Ν	Υ	24 N	0	29	29	29
29	Cold	Υ	Υ	24 N	0	17	17	17
30	Cold	Υ	N	0 N	0	29	29	29
31	None	Ν	N	0 N	0	11	11	11
32	None	Ν	Υ	24 N	0	20	20	20
33	None	Ν	Υ	24 N	0	29	29	29
34	None	Ν	N	0 N	0	26	26	26
35	None	Ν	Υ	24 N	0	29	29	29
36	None	Ν	N	0 N	0	17	17	17
37	None	Ν	Υ	8 Y	10	30	20	23.33333
38	None	Ν	Υ	8 Y	10	25	15	18.33333
39	Cold	Υ	Υ	12 N	0	15	15	15
40	Cold	Υ	Υ	12 N	0	12.5	12.5	12.5
41	None	Ν	Υ	12 N	0	5	5	5
42	Cold	Υ	Υ	12 N	0	10	10	10
43	None	Ν	Υ	12 N	0	15	15	15
44	Cold	Υ	Υ	12 N	0	5	5	5
45	None	Ν	Υ	12 N	0	10	10	10
46	Cold	Υ	Υ	12 N	0	7.5	7.5	7.5
47	None	Ν	Υ	12 N	0	7.5	7.5	7.5
48	Cold	Υ	Υ	12 N	0	2.5	2.5	2.5
49 50	None	Ν	Υ	12 N	0	2.5	2.5	2.5
50 51	None	N	Υ	12 N	0	12.5	12.5	12.5
51 52	Cold	Υ	Υ	12 N	0	10	10	10
52 53	Cold	Υ	Υ	12 N	0	2.5	2.5	2.5
53 54	None	N	Y	12 N	0	15	15	15
54 55	Cold	Y	Ϋ́	12 N	0	5	5	5
55 56	Cold	Ϋ́	Ϋ́	12 N	0	12.5	12.5	12.5
50 57	Cold	Ϋ́	Ϋ́	12 N	0	7.5	7.5	7.5
58	None	N	Ϋ́	12 N	0	10	10	10
56 59	None	N	Ϋ́	12 N	0	12.5	12.5	12.5
60	Cold	Y	Ϋ́	12 N	0	15	15	15
00		-	-		· ·	. 3	.3	

None	Ν	Υ		12 N	0	7.5	7.5	7.5
None	N	Ϋ́		12 N	0	5	5	5
None	N	Ϋ́		12 N	0	2.5	2.5	2.5
	Y	Ϋ́		12 N	0	15	15	15
Cold								
Cold	Y	Y		12 N	0	10	10	10
None	Ν	Υ		12 N	0	7.5	7.5	7.5
None	Ν	Υ		12 N	0	5	5	5
None	Ν	Υ		12 N	0	15	15	15
None	Ν	Υ		12 N	0	2.5	2.5	2.5
None	Ν	Υ		12 N	0	12.5	12.5	12.5
Cold	Υ	Υ		12 N	0	2.5	2.5	2.5
Cold	Υ	Υ		12 N	0	5	5	5
Cold	Ý	Ϋ́		12 N	0	7.5	7.5	7.5
None	N	Ϋ́		12 N	0	10	10	10
					0			
Cold	Y	Y		12 N		12.5	12.5	12.5
Cold	Y	Y		12 N	0	10	10	10
None	Ν	Υ		12 N	0	7.5	7.5	7.5
Cold	Υ	Υ		12 N	0	7.5	7.5	7.5
Cold	Υ	Υ		12 N	0	12.5	12.5	12.5
None	Ν	Υ		12 N	0	5	5	5
Cold	Υ	Υ		_12 N	0	15	15	15
None	Ν	Υ		12 N	0	2.5	2.5	2.5
None	N	Y		12 N	0	15	15	15
Cold	Y	Ϋ́		12 N	0	5	5	5
None	N	Ϋ́		12 N	0	12.5	12.5	12.5
Cold	Y	Y		12 N	0	2.5	2.5	2.5
None	N	Y		12 N	0	10	10	10
Cold	Υ	Υ		12 N	0	5	5	5
Cold	Υ	Υ		12 N	0	15	15	15
None	Ν	Υ		12 N	0	10	10	10
Cold	Υ	Υ		12 N	0	2.5	2.5	2.5
None	Ν	Υ		12 N	0	15	15	15
Cold	Υ	Υ		12 N	0	7.5	7.5	7.5
None	Ν	Υ		12 N	0	2.5	2.5	2.5
None	N	Ϋ́		12 N	0	12.5	12.5	12.5
None	N	Ϋ́		12 N	0	5	5	5
	Y	Ϋ́			0			
Cold				12 N		12.5	12.5	12.5
None	N	Y		12 N	0	7.5	7.5	7.5
Cold	Υ	Y		12 N	0	10	10	10
Cold	Υ	Υ		14 Y	12	22	10	17
Cold	Υ	NA	NA	Υ	10	40	30	33.33333
None	Ν	NA	NA	Υ	20	30	10	16.66667
None	Ν	NA	NA	Υ	35	35	0	11.66667
Cold	Υ	NA	NA	Υ	25	25	0	8.333333
Cold	Υ	NA	NA	N	0	25	25	25
None	Ν	NA	NA	Υ	28	30	2	11.33333
None	N	NA	NA	Ϋ́	35	40	5	16.66667
Cold	Y	NA	NA	Ϋ́	15	20	5	10.00007
Cold	Y	NA	NA	Y	5	20	15	16.66667
None	N	NA	NA	Y	10	40	30	33.33333
Cold	Y	NA	NA	Υ	15	35	20	25
None	Ν	NA	NA	Υ	5	5	0	1.666667
Cold	Υ	NA	NA	Υ	10	35	25	28.33333
Cold	Υ	NA	NA	Υ	5	35	30	31.66667
Cold	Υ	NA	NA	Υ	20	25	5	11.66667
None	Ν	NA	NA	Υ	20	40	20	26.66667
- -	-			-	-	• •	_*	

1	
2	
3	
4 5	
6 7	
7 8	
9	
10	
11 12	
12 13	
14	
15 16	
16 17	
18	
20	
21	
22	
24	
19 20 21 22 23 24 25 26	
26 27	
28	
29	
30 31	
32	
33 34	
35	
36	
37 38	
39	
40 41	
41	
43	
44 45	
46	
47	
48 49	
50	
51 52	
52 53	
54	
55 56	
57	
58	
59 60	
00	

Cold	Υ	NA	NA	Υ	33	35	2 13
None	Ν	NA	NA	N	0	2	2 2
None	Ν	NA	NA	N	0	0	0 0
Cold	Υ	NA	NA	Υ	25	40	15 23.33333
None	Ν	NA	NA	Υ	33	35	2 13
Cold	Υ	NA	NA	Υ	3	5	2 3
Cold	Υ	NA	NA	Υ	5	10	5 6.666667
Cold	Υ	NA	NA	N	0	0	0 0
None	Ν	NA	NA	N	0	40	40 40
None	Ν	NA	NA	Y	15	20	5 10
None	Ν	NA	NA	Υ	25	30	5 13.33333
Cold	Υ	NA	NA	N	0	30	30 30
None	Ν	NA	NA	Υ	10	10	0 3.333333
Cold	Υ	NA	NA	Υ	40	40	0 13.33333
None	Ν	NA	NA	Y	23	25	2 9.666667
Cold	Υ	NA	NA	Υ	5	15	10 11.66667
Cold	Υ	NA	NA	N	0	40	40 40
Cold	Υ	NA	NA	Υ	38	40	2 14.66667
None	Ν	NA	NA	Υ	25	35	10 18.33333
Cold	Υ	NA	NA	Y	2	2	0 #######
Cold	Υ	NA	NA	Y	30	30	0 10
None	Ν	NA	NA	Y	5	15	10 11.66667
Cold	Υ	NA	NA	Y	13	15	2 6.333333
None	Ν	NA	NA	N	0	5	5 5
None	Ν	NA	NA	Y	20	20	0 6.666667
None	Ν	NA	NA	Y	38	40	2 14.66667
None	Ν	NA	NA	Y	20	35	15 21.66667
Cold	Υ	NA	NA	Υ	15	15	0 5
Cold	Υ	NA	NA	Υ	10	20	10 13.33333
None	Ν	NA	NA	Υ	10	15	5 8.333333
None	Ν	NA	NA	Υ	18	20	2 8
None	Ν	NA	NA	Υ	10	35	25 28.33333
Cold	Υ	NA	NA	N	0	35	35 35
None	Ν	NA	NA	N	0	25	25 25
None	Ν	NA	NA	Υ	15	40	25 30
Cold	Υ	NA	NA	Υ	20	40	20 26.66667
Cold	Υ	NA	NA	N	0	15	15 15
Cold	Υ	NA	NA	Υ	23	25	2 9.666667
Cold	Υ	NA	NA	Υ	20	30	10 16.66667
Cold	Υ	NA	NA	Υ	5	40	35 36.66667
Cold	Υ	NA	NA	Υ	25	30	5 13.33333
Cold	Υ	NA	NA	Υ	35	40	5 16.66667
Cold	Υ	NA	NA	Υ	30	35	5 15
Cold	Υ	NA	NA	Υ	15	40	25 30
Cold	Υ	NA	NA	Υ	35	35	0 11.66667
None	Ν	NA	NA	Υ	13	15	2 6.333333
Cold	Υ	NA	NA	N	0	20	20 20
None	Ν	NA	NA	N	0	15	15 15
None	Ν	NA	NA	Υ	10	30	20 23.33333
None	Ν	NA	NA	Υ	8	10	2 4.666667
None	Ν	NA	NA	Υ	5	30	25 26.66667
None	Ν	NA	NA	N	0	35	35 35
Cold	Υ	NA	NA	Υ	10	25	15 18.33333
Cold	Υ	NA	NA	N	0	5	5 5
None	Ν	NA	NA	Υ	15	15	0 5
None	Ν	NA	NA	Υ	2	2	0 #######

None	Ν	NA	NA	Υ	30	40	10	20
None	Ν	NA	NA	Υ	5	20	15	16.66667
None	Ν	NA	NA	Υ	10	25	15	18.33333
Cold	Υ	NA	NA	N	0	10	10	10
None	Ν	NA	NA	Υ	5	10	5	6.666667
None	Ν	NA	NA	Υ	25	40	15	23.33333
None	Ν	NA	NA	Υ	5	35	30	31.66667
Cold	Υ	NA	NA	Υ	10	10	0	3.333333
None	Ν	NA	NA	Ν	0	30	30	30
Cold	Υ	NA	NA	Υ	10	15	5	8.333333
None	N	NA	NA	Υ	10	20	10	13.33333
Cold	Υ	NA	NA	Υ	28	30	2	11.33333
None	N	NA	NA	Υ	20	25	5	11.66667
Cold	Y	NA	NA	Y	15	30	15	20
Cold	Ϋ́	NA	NA	Y	20	35	15	21.66667
None	N	NA	NA	N	0	10	10	10
Cold	Y	NA	NA	Y	5	25	20	21.66667
None	N	NA	NA	Ϋ́	30	35	5	15
None	N	NA	NA	Ϋ́	15	30	15	20
None	N	NA	NA	Ϋ́	5	40	35	36.66667
	N	NA	NA	Y	25	25	0	8.333333
None	Y	NA NA		Y	25 5	25 5		
Cold			NA	Y			0	1.666667
Cold	Y	NA	NA		30	40	10	20
Cold	Y	NA	NA	Y	20	20	0	6.666667
None	N	NA	NA	Y	15	25	10	15
Cold	Y	NA	NA	Y	8	10	2	4.666667
Cold	Y	NA	NA	N	0	2	2	2
None	N	NA	NA	N	0	20	20	20
None	N	NA	NA	Y	40	40	0	13.33333
Cold	Y	NA	NA	Y	5	30	25	26.66667
None	N	NA	NA	Υ	5	25	20	21.66667
Cold	Υ	NA	NA	Υ	10	30	20	23.33333
Cold	Υ	NA	NA	Υ	18	20	2	8
None	N	NA	NA	Υ	15	35	20	25
Cold	Υ	NA	NA	Υ	25	35	10	18.33333
None	N	NA	NA	Υ	30	30	0	10
Cold	Υ	NA	NA	Υ	15	25	10	15
None	Ν	NA	NA	Υ	3	5	2	3
None	Ν	Υ		24 N	0	24	24	24
Cold	Υ	Υ		24 N	0	24	24	24
Cold	Υ	Υ		24 N	0	24	24	24
None	Ν	Υ		24 N	0	24	24	24
None	Ν	Υ		24 N	0	20	20	20
Cold	Υ	N		0 N	0	20	20	20
None	Ν	N		0 N	0	20	20	20
Cold	Υ	N		0 N	0	20	20	20
None	Ν	Υ		24 N	0	20	20	20
None	Ν	Ν		0 N	0	20	20	20
Cold	Υ	N		0 Y	5	29	24	26.5
Cold	Υ	Υ		14 Y	5	29	24	26.91667
Cold	Υ	N		0 Y	5	18	13	15.5
Cold	Υ	N		0 Y	5	29	24	26.5
Cold	Y	Y		14 Y	5	18	13	15.91667
Cold	Ϋ́	Ϋ́		14 Y	5	18	13	15.91667
Cold	Ϋ́	Ϋ́		14 Y	5	29	24	26.91667
Cold	Ϋ́	N		0 Y	5	18	13	15.5
	-				•		. 3	

1								
2								
3 4	None	N	NA	NA	Y	16	10	-6 ########
5	None	N	NA	NA	Y	8	10	2 4.666667
6	None	N	NA	NA	Y	14	10	-4 ########
7	None	N	NA	NA	Y	10	40	30 33.33333
8	None	N	NA	NA	Y	6	2	-4 -2
9	None	N N	NA NA	NA NA	Y Y	13 15	15 30	2 6.333333 15 20
10	None None	N	NA NA	NA	Ϋ́	29	25	-4 5.666667
11	None	N	NA	NA	N	0	0	0 0
12	None	N	NA	NA	N	0	35	35 35
13	None	N	NA	NA	Y	5	40	35 36.66667
14	None	N	NA	NA	Ϋ́	15	35	20 25
15	None	N	NA	NA	Ϋ́	33	35	2 13
16	None	N	NA	NA	Ϋ́	40	40	0 13.33333
17	None	N	NA	NA	Ϋ́	25	30	5 13.33333
18	None	N	NA	NA	N	0	15	15 15
19 20	None	N	NA	NA	Υ	36	30	-6 6
21	None	N	NA	NA	Υ	5	35	30 31.66667
22	None	N	NA	NA	Υ	12	10	-2 2
23	None	N	NA	NA	Υ	21	15	-6 1
24	None	Ν	NA	NA	Υ	5	15	10 11.66667
25	None	Ν	NA	NA	Υ	25	35	10 18.33333
26	None	N	NA	NA	Υ	4	0	-4 -2.66667
27	None	N	NA	NA	Υ	35	40	5 16.66667
28	None	N	NA	NA	Y	18	20	2 8
29	None	Ν	NA	NA	Υ	30	35	5 15
30	None	Ν	NA	NA	Υ	5	10	5 6.666667
31	None	Ν	NA	NA	Υ	25	25	0 8.333333
32	None	N	NA	NA	Υ	26	20	-6 2.666667
33	None	N	NA	NA	Υ	5	25	20 21.66667
34	None	N	NA	NA	Υ	23	25	2 9.666667
35	None	N	NA	NA	Y	6	0	-6 -4
36 37	None	N	NA	NA	Y	37	35	-2 10.33333
38	None	N	NA	NA	Y	20	35	15 21.66667
39	None	N	NA	NA	Y	10	25	15 18.33333
40	None	N	NA	NA	Y	3	5	2 3
41	None	N	NA	NA	N	0	20	20 20
42	None	N	NA	NA	Y	27	25	-2 7
43	None None	N N	NA NA	NA NA	Y Y	15 8	25 2	10 15 -6 -3.33333
44	None	N	NA	NA	Ϋ́	10	10	0 3.333333
45	None	N	NA	NA	N	0	2	2 2
46	None	N	NA	NA	Y	5	5	0 1.666667
47	None	N	NA	NA	Ϋ́	4	2	-2 ########
48	None	N	NA	NA	Ϋ́	2	2	0 #######
49	None	N	NA	NA	Ϋ́	5	30	25 26.66667
50	None	N	NA	NA	Ϋ́	7	5	-2 #######
51	None	N	NA	NA	Ϋ́	10	35	25 28.33333
52 52	None	N	NA	NA	Ϋ́	31	25	-6 4.333333
53 54	None	N	NA	NA	Ϋ́	20	25	5 11.66667
54 55	None	N	NA	NA	Y	20	20	0 6.666667
56	None	N	NA	NA	Υ	20	30	10 16.66667
57	None	N	NA	NA	Υ	5	20	15 16.66667
58	None	Ν	NA	NA	Υ	15	40	25 30
59	None	Ν	NA	NA	Υ	41	35	-6 7.666667
60	None	Ν	NA	NA	Υ	25	40	15 23.33333
ĺ								

None	N	NA	NA	Υ	24	20	-4	4
None	Ν	NA	NA	N	0	10	10	10
None	Ν	NA	NA	Υ	10	30	20	23.33333
None	Ν	NA	NA	N	0	5	5	5
None	Ν	NA	NA	Υ	46	40	-6	9.333333
None	Ν	NA	NA	Υ	42	40	-2	12
None	Ν	NA	NA	Υ	30	30	0	10
None	Ν	NA	NA	Υ	15	15	0	5
None	Ν	NA	NA	Υ	9	5	-4	-1
None	N	NA	NA	Υ	38	40	2	14.66667
None	N	NA	NA	Y	34	30	-4	7.333333
None	N	NA	NA	N	0	20	20	20
None	N	NA	NA	Y	5	15	10	11.66667
None	N	NA	NA	Ϋ́	25	25	0	8.333333
None	N	NA	NA	Ϋ́	10	10	0	3.333333
None	N	NA	NA	N	0	5	5	5
None	N	NA	NA	N	0	10	10	10
None	N	NA	NA	Y	15	20	5	10
None	N	NA	NA	Ϋ́	10	15	5	8.333333
None	N	NA	NA	Ϋ́	11	5	-6	-2.33333
	N	NA NA	NA NA	Y	22	20	-0 -2	5.333333
None		NA NA		Y	35	35	0	
None	N		NA					11.66667
None	N	NA	NA	Y	30	40	10	20
None	N	NA	NA		10	20	10	13.33333
None	N	NA	NA	Y	7	5	-2	#######
None	N	NA	NA	Y	18	20	2	8
None	N	NA	NA	Y	15	40	25	30
None	N	NA	NA	N	0	30	30	30
None	N	NA	NA	Y	6	0	-6	-4
None	N	NA	NA	Y	20	20	0	6.666667
None	N	NA	NA	N	0	2	2	2
None	N	NA	NA	Y	29	25	-4	5.666667
None	N	NA	NA	Y	15	25	10	15
None	N	NA	NA	Y	26	20	-6	2.666667
None	N	NA	NA	Υ	20	40	20	26.66667
None	N	NA	NA	Υ	30	40	10	20
None	N	NA	NA	N	0	30	30	30
None	N	NA	NA	Υ	11	5	-6	-2.33333
None	Ν	NA	NA	Υ	44	40	-4	10.66667
None	Ν	NA	NA	Υ	10	20	10	13.33333
None	Ν	NA	NA	Υ	17	15	-2	3.666667
None	Ν	NA	NA	Υ	39	35	-4	9
None	Ν	NA	NA	Υ	19	15	-4	2.333333
None	Ν	NA	NA	Υ	20	30	10	16.66667
None	Ν	NA	NA	Υ	25	30	5	13.33333
None	Ν	NA	NA	Υ	25	40	15	23.33333
None	Ν	NA	NA	Υ	5	30	25	26.66667
None	Ν	NA	NA	Υ	14	10	-4	########
None	N	NA	NA	Υ	10	15	5	8.333333
None	N	NA	NA	Υ	20	25	5	11.66667
None	N	NA	NA	Υ	36	30	-6	6
None	N	NA	NA	Υ	15	15	0	5
None	N	NA	NA	Υ	19	15	-4	2.333333
None	N	NA	NA	Υ	5	25	20	21.66667
None	N	NA	NA	Υ	2	0	-2	-1.33333
None	N	NA	NA	Υ	28	30	2	11.33333
-					-	-		

1									
2							_	_	
3 4	None	N	NA	NA	Y	}		-6	-3.33333
5	None	N	NA	NA	Y	42		-2	12
6	None	N	NA	NA	Y	27		-2	7
7	None	N	NA	NA	Y	22		-2	5.333333
8	None	N	NA	NA	Y	8		2	4.666667
9	None	N	NA	NA	N	(40	40
10	None	N	NA	NA	Y	10		15	18.33333
11	None	N	NA	NA	Y	6		-4	-2
12	None	N	NA	NA	Y	2′		-6 25	1
13	None	N	NA	NA	N	(25	25
14	None	N	NA	NA	Y Y	9		-2	########
15	None	N	NA	NA	Ϋ́			-4	-1
16	None	N	NA	NA	Ϋ́	28		2	11.33333
17	None	N	NA	NA		10		20	23.33333
18	None	N	NA	NA	Y Y	16		-6 2	########
19	None	N	NA	NA NA	Ϋ́	23 5		2	9.666667 1.666667
20	None	N	NA NA	NA NA	Ϋ́	13		0 2	6.333333
21	None None	N N	NA NA	NA NA	Ϋ́	24		-4	
22	None	N	NA NA	NA	Ϋ́	15 15		- 4 15	4 20
23	None	N	NA	NA	N N	(15	15
24	None	N	NA	NA	Y	44		-4	10.66667
25	None	N	NA	NA	Y	35		- 4 5	16.66667
26 27	None	N	NA	NA	Y	2		-4	-2.66667
28	None	N	NA	NA	Y	3		2	3
29	None	N	NA	NA	Ý	32		-2	8.666667
30	None	N	NA	NA	Ý			15	16.66667
31	None	N	NA	NA	Ý	40		0	13.33333
32	None	N	NA	NA	N			40	40
33	None	N	NA	NA	Y			0	########
34	None	N	NA	NA	Ϋ́	10) 40	30	33.33333
35	None	Ν	NA	NA	Υ	38		2	14.66667
36	None	Ν	NA	NA	Υ	2		-2	-1.33333
37	None	Ν	NA	NA	Υ	15	20	5	10
38	None	Ν	NA	NA	Υ	46		-6	9.333333
39	None	Ν	NA	NA	Ν	(25	25
40	None	N	NA	NA	Υ	12	10	-2	2
41	None	Ν	NA	NA	Υ	5	10	5	6.666667
42	None	Ν	NA	NA	Υ	17	7 15	-2	3.666667
43	None	Ν	NA	NA	Υ	20	40	20	26.66667
44 45	None	N	NA	NA	Υ	30		0	10
45 46	None	Ν	NA	NA	Υ	32		-2	8.666667
47	None	N	NA	NA	Ν	(0	0
48	None	N	NA	NA	Υ	3′		-6	4.333333
49	None	N	NA	NA	Υ	34		-4	7.333333
50	None	N	Υ		8 N	(15	15
51	None	N	N		0 Y	10		15	20
52	None	N	Υ		8 N	(25	25
53	None	N	Y		8 N	(15	15
54	None	N	Y		8 Y	10		15	18.33333
55	None	N	N		0 Y	10		15	20
56	None	N	Y		8 Y	10		15	18.33333
57	None	N	Y		8 N	(25	25
58	Cold	Y	Y		12 N	(21	21
59	None	N	N		0 Y	Ç		7	11.5
60	None	N	Υ		12 Y	8	3 24	16	20

Cold	Υ	N	0 Y	5	29	24	26.5
None	Ν	N	0 Y	5	29	24	26.5
None	Ν	Ν	0 Y	20	30	10	20
None	Ν	Υ	12 N	0	21	21	21
Cold	Υ	N	0 Y	8	24	16	20
None	Ν	N	0 Y	20	30	10	20
Cold	Υ	Υ	12 Y	9	16	7	11.5
Cold	Υ	N	0 Y	9	16	7	11.5
None	Ν	Υ	12 Y	9	16	7	11.5
None	Ν	Υ	12 N	0	21	21	21
Cold	Υ	Υ	12 Y	8	24	16	20
None	Ν	Υ	12 Y	5	29	24	26.5
None	Ν	N	0 Y	20	30	10	20
None	N	N	0 Y	8	24	16	20
None	N	N	0 Y	20	30	10	20
Cold	Y	Y	12 Y	5	29	24	26.5
None	N	Ϋ́	12 N	0	21	21	21
None	N	N	0 N	0	24	24	24
None	N	Y	24 N	Ö	24	24	24
None	N	Ϋ́	24 N	0	24	24	24
None	N	N	0 N	0	24	24	24
None	N	N	0 N	0	24	24	24
None	N	Y	24 N	0	24	24	24
Cold	Y	Ϋ́	14 Y	12	22	10	17
None	N	Ϋ́	24 N	0	24	24	24
None	N	N	0 N	0	24	24	24
None	N	Y	24 N	0	24 24	24	24
None	N	N	0 N	0	24 24	24	24
	N	N	0 N	0	24 24	24	24
None	N	Y	24 N		24 24	24 24	2 4 24
None None	N	Ϋ́	24 N	0	24 24	24 24	24
None	N	N	0 N	0	24 24	24	24
	N	Y	24 N	0	24 24	24	24
None		r N	0 N	0	24 24	24 24	
None	N						24
None	N	N	0 N	0	24	24	24
None	N	Y	24 N	0	24	24	24
None	N	N	0 N 24 N	0	24	24	24
None	N	Y Y		0	24	24	24
None	N		24 N	0	24	24	24
None	N	N	0 N	0	24	24	24
None	N	N	0 N	0	24	24	24
None	N	Y	24 N	0	24	24	24
Cold	Y	Y	8 Y	10	20	10	13.33333
None	N	Y	8 N	0	10	10	10
None	N	Y	8 N	0	20	20	20
None	N	Y	8 Y	10	20	10	13.33333
None	N	Y	8 Y	10	20	10	13.33333
None	N	Y	8 N	0	30	30	30
None	N	Y	8 Y	28	30	2	11.33333
None	N	Y	8 Y	18	20	2	8
None	N	Y	8 Y	10	30	20	23.33333
None	N	Y	8 Y	8	10	2	4.666667
None	N	Y	8 Y	20	30	10	16.66667
Cold	Y	Y	14 Y	12	22	10	17
None	N	Y	8 Y	8	27	19	21.66667
None	N	Υ	12 N	0	25	25	25

1								
2								
3	None	N	Υ	12 N	0	25	25	25
4	None	N	Y	12 N	0	25	25	25
5 6	None	N	Υ	12 N	0	25	25	25
7	Cold	Υ	Y	8 Y	10	25		18.33333
8	Cold	Y	Y	12 Y	8	23	15	19
9	None	N	N	0 N	0	15	15	15
10	None	N	Y	24 Y	18	27	9	18
11	None	N	Y	24 N	0	27	27	27
12	None	N	Y	24 N	0	21	21	21
13	None	N	N	0 N	0	27	27	27
14	None	N	Y	24 N	0	9	9	9
15	None	N	Y	24 N	0	15	15	15
16	None	N	Y	24 Y	12	21	9	15
17	Cold	Y	Y Y	16 Y	3	21	18	20
18	None	N		16 Y	3	21	18 10	20
19	Cold	Y	NA	NA N	0	10	10	10
20	Cold	Y	NA	NA N		25 15	25 15	25 15
21	Cold Cold	Y Y	NA NA	NA N NA N	0 0	15 20	15 20	15 20
22	Cold	Ϋ́	NA NA	NA N	0	5	20 5	20 5
23	None	N	N	0 N	0	20	20	20
24	None	N	N	0 N	0	20	20	20
25	Cold	Y	NA	NA N	0	25	25	25
26 27	None	N	NA	NA N	0	25 25	25 25	25 25
28	None	N	NA	NA N	0	25	25 25	25
29	Cold	Y	NA	NA N	0	25	25	25
30	None	N	Y	0.1 N	0	15	15	15
31	None	N	Y	0.1 N	0	38	38	38
32	None	N	Y	0.1 N	0	27	27	27
33	Cold	Y	Y	24 Y	8	24	16	20
34	None	N	Ϋ́	24 Y	8	24	16	20
35	None	Ν	Υ	0.1 N	0	32	32	32
36	None	Ν	Υ	24 Y	11	38	27	32.5
37	Cold	Υ	N	0 Y	11	38	27	32.5
38	None	Ν	N	0 Y	8	24	16	20
39	None	Ν	N	0 Y	11	38	27	32.5
40	Cold	Υ	Υ	24 Y	11	38	27	32.5
41	Cold	Υ	N	0 Y	8	24	16	20
42	None	Ν	Υ	0.1 N	0	21	21	21
43	Cold	Υ	Υ	14 Y	12	22	10	17
44 45	None	Ν	N	0 N	0	30	30	30
45 46	None	Ν	Υ	9 Y	25	25	0	9.375
47	None	Ν	N	0 Y	10	20	10	15
48	None	N	N	0 Y	20	20	0	10
49	None	N	Υ	9 Y	5	15	10	11.875
50	None	N	Y	9 N	0	30	30	30
51	None	N	Y	9 Y	15	15	0	5.625
52	None	N	N	0 Y	15	25	10	17.5
53	None	N	N	0 Y	20	30	10	20
54	None	N	N	0 Y	10	30	20	25
55	None	N	N	0 Y	5	30	25	27.5
56	None	N	Y	9 N	0	15	15	15
57	None	N	Y	9 Y	20	30 15	10 10	17.5
58	None	N	N	0 Y	5 15	15 20	10 15	12.5
59	None	N	N Y	0 Y	15 0	30	15 20	22.5
60	None	N	Ť	9 N	U	20	20	20

None	N	N	0 N	0	25	25	25
None	Ν	N	0 N	0	5	5	5
None	Ν	Υ	9 Y	5	25	20	21.875
None	Ν	Υ	9 Y	10	25	15	18.75
None	Ν	Υ	9 N	0	10	10	10
None	Ν	Υ	9 N	0	5	5	5
None	Ν	N	0 N	0	15	15	15
None	N	N	0 N	0	10	10	10
None	N	N	0 Y	25	25	0	12.5
None	N	N	0 Y	5	20	15	17.5
None	N	N	0 N	0	20	20	20
None	N	Υ	9 Y	10	30	20	23.75
None	N	Υ	9 Y	15	25	10	15.625
None	N	N	0 Y	15	15	0	7.5
None	N	Υ	9 Y	15	30	15	20.625
None	N	Υ	9 N	0	25	25	25
None	N	Υ	9 Y	5	20	15	16.875
None	N	Y	9 Y	20	20	0	7.5
None	N	Y	9 Y	10	20	10	13.75
None	N	N	0 Y	5	25	20	22.5
None	N	N	0 Y	10	25	15	20
None	N	Y	9 Y	5	30	25	26.875
None	N	Y	10 Y	11	27	16	20.58333
None	N	N	0 Y	8	10	2	6
None	N	N	0 N	0	2	2	2
None	N	Y	10 N	0	18	18	18
None	N	Y	10 N	0	2	2	2
None	N	N	0 Y	11	27	16	21.5
None	N	N	0 Y	12	16	4	10
None	N	N	0 N	0	18	18	18
None	N	Y Y	10 Y	8	10 16	2 4	5.333333
None	N		10 Y 0 N		16 25	25	9 25
None	N N	N Y	0.1 N	0	25 25	25 25	25 25
None		n NA		5	26	25	
None	N N						23.5
None None	N N	NA NA	NA Y NA Y	5 5	26 26	21 21	23.5 23.5
Cold	Y	N	0 N	0	17	17	23.5 17
None	N	Y	16 N	0	12	17	17
Cold	Y	Ϋ́	16 N	0	17	17	17
Cold	Ý	N	0 N	0	22	22	22
None	N	N	0 N	0	17	17	17
None	N	Y	16 N	0	27	27	27
Cold	Y	Ϋ́	16 N	0	27	27	27
None	N	N	0 N	Ö	22	22	22
Cold	Y	N	0 N	0	27	27	27
None	N	N	0 N	0	12	12	12
Cold	Y	Y	16 N	0	22	22	22
None	N	Ϋ́	16 N	0	17	17	17
None	N	N	0 N	0	27	27	27
None	N	Y	16 N	0	22	22	22
Cold	Y	Ϋ́	16 N	0	12	12	12
Cold	Ϋ́	N	0 N	0	12	12	12
None	N	Ϋ́	20 N	0	15	15	15
None	N	N	0 Y	12	27	15	21
None	N	N	0 Y	12	27	15	21
	-	-	- -	· -			

1									
2									
3	None	Ν	Υ		24 Y	12	27	15	21
4	None	Ν	Υ		24 Y	12	27	15	21
5 6	None	N	N		0 Y	12	27	15	21
	None	Ν	Υ		24 Y	12	27	15	21
7	Cold	Υ	Υ		12 N	0	24	24	24
8 9	None	N	Υ		12 N	0	24	24	24
	None	N	NA	NA	Ν	0	15	15	15
10	None	N	NA	NA	Ν	0	25	25	25
11	None	N	NA	NA	Ν	0	25	25	25
12	None	Ν	NA	NA	Ν	0	20	20	20
13	None	N	NA	NA	Ν	0	10	10	10
14	None	N	NA	NA	Ν	0	15	15	15
15	None	Ν	NA	NA	Ν	0	10	10	10
16 17	None	Ν	NA	NA	Ν	0	20	20	20
18	None	Ν	NA	NA	Ν	0	10	10	10
19	None	Ν	NA	NA	Ν	0	5	5	5
20	None	N	NA	NA	N	0	25	25	25
21	None	N	NA	NA	N	0	5	5	5
22	None	N	NA	NA	Ν	0	25	25	25
23	None	N	NA	NA	N	0	5	5	5
24	None	N	NA	NA	_ N	0	5	5	5
25	None	N	NA	NA	N	0	20	20	20
26	None	N	NA	NA	N	0	15	15	15
27	None	N	NA	NA	N	0	15	15	15
28	None	N	NA	NA	N	0	20	20	20
29	None	N	NA	NA	N	0	10	10	10
30	Cold	Y	Y	1471	14 Y	12	22	10	17
31	None	N	NA	NA	N	0	19	19	19
32	None	N	NA	NA	N	0	36	36	36
33	None	N	NA	NA	N	0	33	33	33
34	None	N	NA	NA	N	0	24	24	24
35	None	N	NA	NA	N	0	41	41	41
36	None	N	NA	NA	N	0	15	15	15
37	None	N	NA	NA	N	0	27	27	27
38	None	N	NA	NA	N	0	24	24	24
39	None	N	NA	NA	N	0	15	15	15
40	None	N	NA	NA	N	0	27	27	27
41	None	N	NA	NA	N	0	19	19	19
42	None	N	NA	NA	N	0	33	33	33
43	None	N	NA	NA	N	0	41	41	41
44	None	N	NA	NA	N	0	36	36	36
45	None	N	NA	NA	N	0	15	15	15
46	None	N	NA	NA	N	0	27	27	27
47	None	N	NA	NA	N	0	36	36	36
48	None	N	NA	NA	N	0	33	33	33
49	None	N	NA	NA	N	0	24	24	24
50	None	N	NA	NA	N	0	41	41	41
51	None	N	NA NA	NA NA	N	0	19	19	19
52	None	N	NA NA	NA NA	N	0	41	41	41
53	None	N	NA NA	NA NA	N N	0	36	36	36
54			NA NA	NA NA		0	36 24	24	36 24
55	None	N			N N	0	24 27		
56	None	N	NA NA	NA NA	N N			27 15	27 15
57	None	N N	NA NA	NA NA	N N	0	15 33	15 33	33
58	None		NA NA	NA NA			33 19	33 19	33 19
59	None None	N N	NA NA	NA NA	N N	0	19 27	19 27	19 27
60	INOHE	IN	INA	INA	IN	U	۷1	۷1	21

None	N	NA	NA	Ν	0	15	15	15
None	Ν	NA	NA	Ν	0	19	19	19
None	Ν	NA	NA	N	0	24	24	24
None	Ν	NA	NA	N	0	27	27	27
None	N	NA	NA	N	0	15	15	15
None	Ν	NA	NA	N	0	24	24	24
None	Ν	NA	NA	N	0	19	19	19
Cold	Υ	NA	NA	Υ	17	32	15	23.5
None	Ν	NA	NA	N	0	20	20	20
None	Ν	NA	NA	Υ	17	32	15	23.5
None	Ν	NA	NA	N	0	25	25	25
None	Ν	NA	NA	N	0	25	25	25
None	Ν	NA	NA	N	0	15	15	15
None	Ν	NA	NA	Υ	17	32	15	23.5
None	Ν	NA	NA	Ν	0	25	25	25
None	Ν	NA	NA	Ν	0	32	32	32
Cold	Υ	NA	NA	Ν	0	15	15	15
Cold	Υ	NA	NA	Ν	0	32	32	32
None	Ν	NA	NA	Ν	0	32	32	32
Cold	Υ	NA	NA	Ν	0	25	25	25
None	Ν	NA	NA	N	0	32	32	32
None	Ν	NA	NA	N	0	20	20	20
None	Ν	NA	NA	N	0	15	15	15
None	Ν	NA	NA	N	0	20	20	20
Cold	Υ	NA	NA	N	0	20	20	20
None	Ν	NA	NA	Υ	17	32	15	23.5
None	Ν	NA	NA	N	0	15	15	15
None	Ν	NA	NA	N	0	10	10	10
None	Ν	NA	NA	N	0	0	0	0
None	Ν	NA	NA	N	0	5	5	5
None	Ν	NA	NA	N	0	15	15	15
None	Ν	Υ		12 Y	5	25	20	22.5
None	Ν	N		0 Y	5	25	20	22.5
None	Ν	N		0 Y	5	25	20	22.5
None	Ν	Υ		12 Y	5	25	20	22.5
None	Ν	Υ		12 Y	5	25	20	22.5
None	Ν	N		0 Y	5	25	20	22.5
None	N	Υ		12 Y	5	25	20	22.5
None	N	N		0 Y	5	25	20	22.5
None	N	N		0 Y	5	25	20	22.5
None	N	N		0 Y	5	25	20	22.5
None	N	N		0 Y	5	25	20	22.5
None	N	Υ		12 Y	5	25	20	22.5
None	N	Υ		12 Y	5	25	20	22.5
None	N	N		0 Y	5	25	20	22.5
None	N	Υ		12 Y	5	25	20	22.5
None	N	N		0 Y	5	25	20	22.5
None	N	Y		12 Y	5	25	20	22.5
None	N	N		0 Y	5	25	20	22.5
None	N	N		0 Y	5	25	20	22.5
None	N	Y		12 Y	5	25	20	22.5
None	N	Ý		12 Y	5	25	20	22.5
None	N	N		0 Y	5	25	20	22.5
None	N	Y		12 Y	5	25	20	22.5
None	N	Ý		12 Y	5	25	20	22.5
None	N	N		0 Y	5	25	20	22.5
1 10110		1.4		J 1	5	20	20	22.0

1									
2									
3	None	N	Υ		12 Y	5	25	20	22.5
4	None	N	Y		24 N	0	30	30	30
5	None	N	Y		24 N	0	30	30	30
6 7	None	N	Y		24 N	0	25	25	25
8	None	N	Y		24 N	0	25	25	25
9	Cold	Y	Y		14 Y	12	22	10	17
10	None	N	Y		8 Y	4	32	28	29.33333
11	None	N	N		0 Y	4	32	28	30
12	None	N	N		0 Y	4	32	28	30
13	None	N	Y		8 Y	4	32	28	29.33333
14	None	N	N		0 Y	4	32	28	30
15	None	N	Y		8 Y	4	32	28	29.33333
16	None	N	Y		8 Y	4	32	28	29.33333
17	None	N	N		0 Y	4	32	28	30
18	Cold	Y	NA	NA	Y	8	25	17	21
19	None	N	NA	NA	Y	5	27	22	24.5
20	None	N	NA	NA	N	0	5	5	5
21	None	N	NA	NA	N	0	25	25	25
22	None	N	NA	NA	N	0	30	30	30
23	None	N	NA	NA	N	0	15	15	15
24	None	N	NA	NA	N	0	10	10	10
25	None	N	NA	NA	N	0	20	20	20
26	None	N	N		0 N	0	20	20	20
27	None	N	N		0 N	0	15	15	15
28	None	N	Y		24 N	0	25	25	25
29	None	N	N		0 N	0	30	30	30
30	None	N	N		0 N	0	25	25	25
31	None	N	Y		24 N	0	20	20	20
32 33	None	N	Y Y		24 N	0	30	30	30
34	None	N			24 N 0 N	0	15 20	15	15 20
35	None	N N	N Y		24 N	0 0	15	20 15	15
36	None None	N	N		0 N	0	15	15	15
37	None	N	Y		24 N	0	25	25	25
38	None	N	N		0 N	0	25	25	25 25
39	None	N	Y		24 N	0	20	20	20
40	None	N	Y		24 N	0	30	30	30
41	None	N	N		0 N	0	30	30	30
42	Cold	Y	NA	NA	N	0	25	25	25
43	Cold	Ϋ́	NA	NA	N	0	20	20	20
44	Cold	Ϋ́	NA	NA	N	0	20	20	20
45	Cold	Ϋ́	NA	NA	N	0	15	15	15
46	Cold	Ϋ́	NA	NA	N	0	15	15	15
47	Cold	Ϋ́	NA	NA	N	0	25	25	25
48	None	N	NA	NA	N	0	20	20	20
49	None	N	NA	NA	N	0	25	25	25
50	Cold	Y	Y	1 1/7	24 N	0	25	25	25 25
51	None	N	Ý		24 N	0	25	25	25
52 53	None	N	Ý		10 Y	12	30	18	23
53 54	None	N	NA	NA	N	0	24	24	24
54 55	None	N	NA	NA	N	0	24	24	24
55 56	None	N	NA	NA	N	0	25	25	25
50 57	None	N	NA	NA	N	0	20	20	20
58	None	N	NA	NA	N	0	10	10	10
59	None	N	NA	NA	N	0	15	15	15
60	None	N	N	-	0 N	0	10	10	10
	-					-	-	-	-

None	N	N		0 N	0	25	25	25
Cold	Υ	Ν		0 N	0	5	5	5
None	Ν	Ν		0 N	0	30	30	30
None	N	N		0 N	0	20	20	20
None	N	N		0 N	0	15	15	15
None	N	N		0 N	0	5	5	5
None	N	NA	NA	N	0	25	25	25
None	N	NA	NA	N	0	20	20	20
None	N	NA	NA	N	0	15	15	15
None	N	NA	NA	N	0	10	10	10
None	N	NA	NA	N	0	15	15	15
		NA	NA	N	0	10	10	10
None	N							
None	N	NA	NA	N	0	20	20	20
None	N	NA	NA	N	0	25	25	25
None	N	NA	NA	N	0	20	20	20
None	N	NA	NA	N	0	10	10	10
None	N	NA	NA	N	0	15	15	15
None	N	NA	NA	N	0	25	25	25
None	Ν	Υ		16 N	0	25	25	25
None	Ν	Υ		14 Y	8	23	15	19.66667
None	Ν	Υ		14 Y	8	23	15	19.66667
None	Ν	Υ		16 N	0	25	25	25
None	N	Υ		14 Y	8	23	15	19.66667
None	N	Υ		16 N	0	25	25	25
None	N	Ϋ́		16 N	0	25	25	25
None	N	Ϋ́		16 N	0	25	25	25
None	N	Ϋ́		14 Y	10	25	15	20.83333
None	N	Ϋ́		12 N	0	25	25	25
None	N	N		0 N	0	30	30	30
	N	N		0 N	0	30 15	15	
None				0 N	0			15
None	N	N				25	25	25
None	N	Y		24 N	0	15	15	15
None	N	Y		24 N	0	30	30	30
None	N	Y		16 N	0	25	25	25
None	N	N		0 N	0	20	20	20
None	N	Υ		24 N	0	25	25	25
None	N	Υ		24 N	0	20	20	20
None	N	NA	NA	N	0	24	24	24
None	Ν	NA	NA	N	0	24	24	24
None	Ν	NA	NA	N	0	24	24	24
None	Ν	NA	NA	N	0	24	24	24
None	Ν	Υ		12 N	0	21	21	21
None	Ν	Υ		10 Y	-4	21	25	23.33333
None	Ν	Υ		12 N	0	21	21	21
Cold	Υ	Υ		12 Y	10	20	10	15
Cold	Υ	Υ		12 Y	10	20	10	15
None	N	NA	NA	N	0	5	5	5
None	N	NA	NA	N	0	10	10	10
None	N	Y	1471	12 N	0	20	20	20
None	N	NA	NA	N	0	30	30	30
None	N	NA	NA	N	0	30 15	15	15
	N	NA NA	NA NA	N	0	35	35	35
None								
None	N	NA	NA NA	N	0	20	20	20
None	N	NA	NA	N	0	25	25	25
None	N	Υ		12 N	0	25	25	25

1	
1	
2 3	
3 4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14 15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28 29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53 54	
54 55	
55 56	
57	
58	
59	
CO	

Tamanaratuul an	ath over Co.	ensimata e Ca	ملطه منمس	
TemperatuiLen				
25	31	220	400	
25 25	31	300	400	
25 25	21	189	300	
25 25	21	141	300	
25 25	28	196	400	
25 25	28	388 132	400	
25 25	28 28	320	400 400	
5	105	96	100	
15	105	8	100	
20	105	42	100	
15	105	44	100	
25	105	88	100	
5	105	98	100	
10	105	90	100	
15	105	81	100	
25	105	81	100	
15	105	73	100	
25	105	88	100	
10	105	92	100	
20	105	92	100	
25	105	87	100	
20	28	5	50	
0	62	13	50	
20	28	38	50	
20	28	50	50	
0	62	21	50	
20	28	2	50	
20	28	49	50	
20	28	42	50	
20	28	34	50	
20	28	38	50	
20	14	212	400	
25	14	120	400	
30	14	52	400	
35	14	0	400	
10	14	240	400	
15	14	256	400	
5	14	0	400	
20	14	288	400	
25	14	216	400	
35	14	0	400	
15	14	288	400	
10	14	220	400	
5	14	0	400	
30	14	112	400	
20	15	9	90	
20	15	9	90	
5	917	250	250	
20	14	144	150	
20	15	89	90	
25	30	164	200	
25	30	176	200	
5	917	250	250	
20	14	250	250	

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	917 917 917 15 917 917 90 90 90	250 250 238 276 250 225 238 156 180 8 240	250 250 250 400 250 250 250 400 400 400 250	
5 10	90 90	56 12	400 400	
0 10	90 90	180 44	400 400	
5 0	90 90	160	400	
5	917	172 250	400 250	
20 20	14 14	19 8	60 60	
20	14	28	60	
20	14	18	60	
25 20	22 30	90 8	200 25	
20	30	9	25	
25 20	30 30	185 0	250 250	
20	30	21	100	
20 20	30 30	4 0	100 250	
25	30	2	250	
20	30	0	250	
25 20	30 30	24 6	25 25	
20	30	0	250	
20 20	30 30	2 18	250 25	
25	30	16	25	
25 20	30 30	65 19	100 25	
20	30	175	250	
20	30	5	25	
20 20	30 30	21 172	100 250	
20	30	38	50	
25 20	30 30	41 16	50 50	
25	30	152	250	
20 20	30 30	34 0	50 250	
20	30	0	250 250	
20	30	752	800	
5 10	32 32	10 20	30 30	
20	32	29	30	
20	28	105	200	

1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 45 46 47 48 49 50		
43 44 45 46 47 48		

00	00	0.4	200
20	28	64	200
20	28	145	200
20	28	148	200
20	28	170	200
20	28	195	200
20	28	164	200
20 20	28 28	189 193	200 200
20	30	760	800
20	28	193	200
20	28	107	200
20	28	180	200
20	28	119	200
20	28	180	200
20	28	178	200
5	90	344	400
5	90	356	400
10	90	20	400
15	90	12	400
10	90	140	400
0	90	368	400
0	90	372	400
0	90	360	400
5	90	268	400
20	42	558	900
10	90	20	400
15	42	486	900
20	42	513	900
25	42	522	900
25	42	405	900
0	90	312	400
30	42	117	900
10 0	90 90	36 324	400 400
25	42	252	900
15	42	612	900
5	90	160	400
5	90	256	400
20	42	513	900
20	42	612	900
20	42	369	900
15	90	8	400
25	42	369	900
25	42	180	900
5	90	44	400
0	90	280	400
15	42	315	900
10	42	234	900
15	90	12	400
0	90	380	400
0	90	344	400
5	90	384	400
0	90	364	400
5	90	384	400
10	90	40	400
5	90	360	400

20	42	162	200	
20	100	150	150	
5	42	0	200	
20	14	190	200	
30 20	42 100	0 106	200 150	
10	42	140	200	
15	45	22	120	
25	42	154	200	
25	10	148	150	
25	10	150	150	
15	100	64	150	
15	100	112	150	
15	100	0	150	
15	100	57	150	
15	100	113	150	
15	100	123	150	
15	100	122	150	
15	100 14	139 60	150	
20 20	14	64	75 75	
10	22	23	50	
20	22	3	50	
20	72	430	500	
20	30	768	800	
20	72	330	500	
20	63	2	100	
25	21	280	400	
25	35	145	200	
25	35	61	200	
20	56	0	120	
20	56	69	120	
25	42	168	250	
25 25	30 30	162 130	200 200	
25	30	118	200	
20	20	102	120	
25	30	170	200	
20	21	174	300	
15	21	8	100	
10	21	0	100	
35	21	3	100	
10	21	3	100	
35	21	50	100	
30	21	75	100	
25	21	61	100	
15	21	1	100	
15 15	21 21	0 38	100 100	
30	21	36 97	100	
25	21	95	100	
20	21	88	100	
20	21	9	100	
10	21	10	100	
15	21	0	100	
10	21	0	100	

25	21	92	100	
20	21	10	100	
25	21	50	100	
35	21	37	100	
20	21	74	100	
35	21	5	100	
30	21	71	100	
15	21	27	100	
15	21	60	100	
15	21	5	100	
30	21	97	100	
15	231	0	400	
5	231	96	400	
25	231	20	400	
20	231	156	400	
5	231	324	400	
25	231	0	400	
10	231	16	400	
15	231	272	400	
10	231	384	400	
20	231	0	400	
10	21	0	100	
20	21	10	100	
15	21	10	100	
30	21	99	100	
15	21	1	100	
35	21	75	100	
25	21	40	100	
15	21	48	100	
10	21	5	100	
30	21	87	100	
35	21	5	100	
20	21	83	100	
25	21	97	100	
15	21	0	100	
20	21	69	100	
30	21	81	100	
15	21	35	100	
30	21	49	100	
10	21	1	100	
35	21	0	100	
15	21	1	100	
25	21	23	100	
15	21	0	100	
15	21	8	100	
25	21	90	100	
35	21	0	100	
10	21	0	100	
20	21	4	100	
35	21	0	100	
15	21	30	100	
35	21	20	100	
20	21	8	100	
30	21	65 65	100	
15	21	65	100	
10	21	1	100	

,	
1	
2	
4	
6	
8	
9 10	
11 12	
13 14	
15 16	
17 18	
19	
21	
23	
24 25	
26 27	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 33 34 35 36 36 37 38 37 38 37 38 37 38 38 38 38 38 38 38 38 38 38 38 38 38	
30 31	
32 33	
34 35	
36 37	
38 39	
40 41	
42 43	
44 45	
46	
47 48	
49 50	
51 52	
53 54	
55 56	
57 58	
59 60	

25	21	43	100	
10	21	0	100	
25	21	90	100	
20	21	83	100	
15	21	0	100	
15	21	1	100	
30	21	86	100	
15	140	200	200	
35	140	150	200	
20	140	200	200	
25	140	160	200	
30	140	150	200	
5	140	182	200	
10	140	200	200	
25	140	180	200	
10	140	188	200	
15	140	192	200	
20	140	188	200	
30	140	180	200	
5	140	188	200	
35	140	176	200	
15	45	112	120	
25	45	112	120	
25	45	112	120	
20	45	112	120	
25	28	247	400	
25	28	303	400	
25	28	337	400	
25 25	21	16 157	400	
25 25	28 28	157 366	400 400	
25	28	312	400	
25	28	29	400	
25	28	357	400	
25	28	373	400	
25	28	74	400	
25	28	314	400	
25	28	102	400	
15	30	106	150	
25	28	26	400	
25	28	390	400	
25	28	163	400	
25	28	368	400	
25	28	367	400	
25	28	366	400	
25	28	348	400	
25	28	32	400	
25	28	321	400	
25	28	366	400	
25	28	390	400	
25	30	30	150	
25	28	380	400	
5	21	0	400	
25	28	375	400	
25	28	173	400	
25	28	371	400	

0.5	2.5	o	400	
25	28	347	400	
25	28	145	400	
25	28	219	400	
20	28	180	200	
25	28	126	400	
25	28	222	400	
20	28	180	200	
25	28	373 99	400	
25 25	28 21	368	400 400	
15	30	68	150	
15	30	70	150	
25	28	314	400	
25	28	66	400	
25	28	384	400	
20	28	180	200	
25	28	116	400	
25	28	296	400	
25	28	361	400	
20	28	180	200	
25	28	157	400	
25	28	324	400	
25	28	148	400	
15	30	94	150	
25	28	245	400	
25	137	37	45	
25	137	17	45	
25	137	8	45	
25	137	9	45	
25	137	36	45	
25	137	32	45	
25	16	43	150	
25	16	45 116	200	
15 25	21 21	79	125 125	
15	60	150	150	
20	60	144	150	
5	60	135	150	
15	60	72	150	
25	60	144	150	
10	60	140	150	
30	365	78	200	
20	365	2	200	
25	365	78	200	
20	365	5	200	
5	365	2	200	
20	365	2	200	
15	365	2	200	
10	365	2	200	
20	365	193	200	
25	365	74	200	
10	365	2	200	
15 15 NA	365	2	200	
15 NA 15 NA		0 0	100 100	
15 NA 15 NA		10	100	
10 11/1		10	.00	

1	
2	
3	
4 5	
6 7	
/ 8	
8	
10 11	
12	
13 14	
15	
12 13 14 15 16 17	
18	
19	
21	
19 20 21 22 23	
24	
25	
26 27	
28	
29 30	
31	
32 33	
34	
35 36	
37	
38 39	
40	
41 42	
43	
44 45	
46	
47 48	
49	
50 51	
52	
53 54	
55	
56	
57 58	
59	
60	

		_		
15 NA		0	100	
15 NA		0	100 100	
15 NA 15 NA		0 0	100	
15 NA		0	100	
15 NA 15	30	1068	1200	
20	30	0	550	
10	30	726	1100	
20	30	1001	1100	
20	30	1045	1100	
10	30	682	1100	
25	123	10	50	
15	42	0	75	
15	42	75	75	
15	42	72	75	
15	42	14	75	
15	42	0	75	
15	42	19	75	
15	42	0	75	
15	42	42	75	
15	42	0	75	
15	42	1	75	
15	42	29	75	
15 15	42	25	75 75	
15 15	42	68 0	75 75	
15 15	42 42	0	75 75	
15	42	72	75 75	
15	42	2	75 75	
15	42	0	75	
15	42	0	75	
15	42	3	75	
15	42	24	75	
15	42	38	75	
15	42	0	75	
15	42	32	75	
15	42	7	75	
15	42	0	75	
15	42	0	75	
15	42	0	75	
15 15	42	0	75 75	
15 15	42 42	67 2	75 75	
15	42	2	75 75	
15	42	0	75 75	
15	42	0	75 75	
15	42	2	75	
15	42	62	75	
15	42	0	75	
15	42	72	75	
15	42	0	75	
15	42	10	75	
15	42	2	75	
15	42	3	75	
15	42	0	75	
15	42	38	75	

15	42	0	75
15	42	0	75
15	42	0	75
15	42	5	75
15	42	0	75
15	42	65	75
15	42	29	75
15	42	1	75 75
15 15	42	0	75 75
15 15	42 42	61 0	75 75
15	42 42	44	75 75
15	42 42	40	75 75
15	42	3	75 75
15	42	16	75
15	42	37	75
15	42	10	75
15	42	3	75
15	42	0	75
15	42	58	75
15	42	35	75
15	42	0	75
15	42	61	75
15	42	70	75
15	42	59	75
15	42	8	75
15	42	22	75
15	42	0	75
15	42	0	75
15	42	0	75
15	42	1	75
15	42	0	75
15 15	42	0	75
15 15	42 42	0	75 75
15 15	42 42	0 40	75 75
15	42 42	11	
15	42	14	75 75
15	42	14	75
15	42	0	75
25	45	100	100
25	45	72	100
25	45	92	100
15	42	43	75
15	42	26	75
15	42	7	75
15	42	0	75
15	42	2	75
15	42	0	75
15	42	2	75
15	42	0	75
15	42	29	75
15	42	0	75
15	42	11	75
15	42	72	75 75
15	42	32	75

1	
2	
3	
4 5	
2	
6	
7	
6 7 8 9	
9	
10	
11	
12	
13	
14	
15	
15	
10	
17	
18	
10 11 12 13 14 15 16 17 18 19 20	
20	
20 21	
22	
22 23 24 25 26 27 28	
24	
25	
23	
20	
2/	
28	
29 30	
30	
31	
32	
33	
34	
35	
36	
50	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
58	
59	
60	

15	42	38	75	
15	42	0	75	
15	42	0	75	
15	42	0	75	
15	42	0	75	
15	42	2	75	
15	42	44	75 75	
15	42	70	75 75	
15	42	2	75 75	
15	42	37	75 75	
15	42	0	75 75	
	42 42			
15 15		40	75 75	
15	42	17	75	
15	42	0	75	
15	42	0	75	
15	42	0	75 	
15	42	68	75	
15	42	1	75	
15	42	0	75	
15	42	0	75	
15	42	0	75	
15	42	6	75	
15	42	38	75	
15	42	2	75	
15	42	0	75	
15	42	135	150	
15	56	128	150	
20 NA	١	90	100	
15	56	135	150	
15	42	142	150	
15	60	50	100	
15	60	0	100	
15	60	75	100	
25	60	80	100	
25	60	0	100	
20	28	90	100	
20	98	0	150	
20	98	4	150	
20	98	6	150	
20	98	20	150	
20	98	34	150	
20	98	38	150	
25	36	66	100	
20	9	31	56	
20	9	47	56	
20	60	4	40	
10	196	2	100	
15	196	88	100	
15 15	28	30	100	
10	28	80	100	
5 15	28 106	4 05	100	
15 5	196	85	100	
5 15	28	8	100	
15	28	33	100	
10	196	4	100	
15	28	13	100	

15 15 15 15 10 10 15 15 15 15 20 20 20 20 20 20 25 5 10 15 15 15 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10	196 28 28 28 28 28 196 28 196 28 28 196 28 28 63 63 63 63 63 63 63 63 63 63	40 50 30 0 59 73 0 95 63 0 56 0 20 30 0 118 101 0 54 115 12 0 38 91 109 48 198 198 198 198 182 182	100 100 100 100 100 100 100 100 100 100	
10 25 25 25 25 25	56 21 21 21	2 279 282 288 285	250 300 300 300 300	
25	21 21	288	300	
25 25	60 60	95 140	250 250	
25	60	155	250	
25 25	60 60	138 125	250 250	
25	60	125	250	
25 25	60 60	112 142	250 250	
25	21	288	300	
25	21	276	300	
25 25	21 21	282 291	300 300	
25 25	21	291	300	
20	63	98	150	
10	20	248	450	
25	20	450	450	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 33 34 34 35 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

10		20	243	450	
25		20	450	450	
10		20	292	450	
25		20	450	450	
20		14	116	200	
25		60	95	250	
25		60	55	250	
20		14	158	200	
15		30	41	100	
20		30	30	100	
20		30	81	100	
15		30	77	100	
15		30	73	100	
20		30	70	100	
15		30	68	100	
20		30	60	100	
10		90	112	200	
20		90	32	200	
15		90	158	200	
10		90	82	200	
15		90	150	200	
20		90	14	200	
10		28	135	150	
10		28	0	150	
10		28	136	150	
10		28	0	150	
10		28	0	150	
10		28	119	150	
25		60	55 20	250	
25		60	30	250	
25 25		60 60	12 65	250 250	
10		28	0	150	
10		28	94	150	
10		28	0	150	
10		28	111	150	
10		28	0	150	
10		28	118	150	
10		28	0	150	
10		28	38	150	
20		28	47	50	
20		28	44	50	
20		28	50	50	
15		126	21	160	
15		126	351	400	
15		126	34	400	
15		126	283	400	
15		56	0	1	
20		60	195	300	
20		60	234	300	
	NA		59	60	
25		20	39	150	
10		28	40	100	
5		28	0	100	
15		28	45	100	
20		28	10	100	

20	28	11	100	
5	28	0	100	
10	28	89	100	
25	28	0	100	
15	28	100	100	
25	28	0	100	
15	28	7	100	
15	28	100	100	
25	60	100	250	
25	60	25	250	
5	700	0	50	
20	700	40	50	
0	700	0	50	
15	700	22	50	
10	700	0	50	
25	700	2	50	
10 NA		108	120	
25	28	264	300	
25	28	285	300	
25	28	291	300	
25	28	258	300	
25	28	276	300	
25	28	243	300	
25	28	237	300	
25	28	276	300	
25	28	294	300	
25	28	288	300	
25	20	155	200	
20	35 35	100	150	
25	35 35	110 147	150	
25 20	35 35	141	150 150	
25	35	112	150	
30	35	148	150	
25	35	111	150	
30	35	141	150	
20	28	200	200	
10	28	200	200	
15	28	200	200	
5	28	184	200	
20	28	81	96	
20	28	61	96	
20	21	36	72	
20	21	17	72	
20	21	35	72	
25 NA		18	150	
25 NA		0	150	
20	48	70	100	
20	48	40	100	
20	48	40	100	
20	48	80 85	100	
20	48 48	85 40	100	
20 20	48 48	49 30	100 100	
20	46 48	30 77	100	
20	48	30	100	
	. •			

i age
1
2
3 4
5
6 7
8
9 10
11
12 13
14
15 16
17
18 19
20
21 22
23
24 25
26
27 28
29 30
31
32 33
34
35 36
37
38 39
40
41 42
43
44 45
46 47
47 48
49 50
51
52 53
54
55 56
57
58 59
J7

20	48	72	100	
20	48	40	100	
20	48	80 75	100	
20	28 28	75 59	96 96	
20 5	210	254	400	
5	210	346	400	
5	210	296	400	
5	210	344	400	
5	210	355	400	
5	210	355	400	
25	52	0	125	
10	52	116	125	
15	52	125	125	
15	52	125	125	
25	52	0	125	
20	52	119	125	
10	52	112	125	
20 15	52 120	38 106	125 150	
20	20	93	100	
20	50	53	150	
15	50	92	150	
10	50	106	150	
20	50	119	150	
10	50	137	150	
25	50	16	150	
10	50 50	122	150 150	
5 20	50 28	134 79	150 96	
20	28	60	96	
10	50	60	150	
10	50	103	150	
15	50	75	150	
25	50	18	150	
20	50	57	150	
20	50	83	150	
10	50 50	86	150 150	
5 10	50 50	97 63	150 150	
25	50 50	10	150	
15	50	56	150	
10	50	83	150	
20	50	81	150	
20	50	33	150	
10	50	90	150	
5	50	92	150	
20	84	15	26	
5 10	84 84	0	26 26	
15	84	0 0	26 26	
20	84	1	26	
20	84	105	150	
15	84	0	150	
5	84	0	150	
10	84	0	150	

20	84	2	150	
15	84	8	50	
10	84	2	50	
5	84	0	50	
20	84	44	50	
25	84	36	50	
10	14	22	150	
30	14	0	150	
20	14	0	150	
10	14	30	150	
15	14	27	150	
15 10	14 14	15 14	150	
25	14	7	150 150	
20	14	36	150	
10	14	0	150	
20	14	75	150	
25	14	76	150	
10	14	1	150	
25	14	4	150	
10	14	0	150	
15	14	24	150	
20	14	2	150	
10	14	0	150	
15	14	1	150	
25 20	14 14	74 9	150 150	
15	14	87	150	
10	14	0	150	
10	14	0	150	
20	14	0	150	
15	14	123	150	
15	14	8	150	
15	14	56	150	
20	14	25	150	
10	14	142	150	
20 NA	14	74	150	
20 NA 15	60	400 84	400 100	
15	60	64	100	
15	60	53	100	
20	28	63	96	
20	28	75	96	
15	60	29	100	
15	60	0	100	
15	60	46	100	
15	60	25	100	
15	60	5	100	
15 15	60 60	48 26	100	
15 15	60 45	26 89	100 120	
35	45 45	43	120	
25	45	85	120	
5	45	85	120	
30	45	59	120	
20	45	93	120	

3
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
4
5
6
7
8
9 10
11
12
13
14
15 16
17
18
19
20
18 19 20 21 22 23 24 25 26 27 28 29
22 23
24
25
26
27
28
30
31
32
33 34
34
35 36
36 37
38
39
40
41
42 43
44
45
46
47
48 49
50
51
52
53
54 55
55 56
57
58
59
60

10	45	96	120	
20	45	93	120	
30	45	68	120	
5	45	71	120	
10	45	100	120	
35	45	74	120	
15	45	99	120	
25	45	85	120	
30	45	78	120	
15	45	22	120	
25	45	88	120	
5	45	1	120	
35	45	67	120	
20	45	84	120	
10	45	4	120	
35	45	14	120	
25	45	64	120	
15	45	80	120	
10	45	71	120	
20	45	90	120	
30	45	57	120	
5	45	58	120	
25	21	113	120	
20	21	33	50	
25	32	67	100	
25	32	24	40	
25	32	82	100	
20	28	0	400	
20	28	212	400	
20 20	28 78	396 94	400 100	
25	61	50	60	
25	61	44	60	
25	61	54	60	
10	14	105	150	
25	14	24	150	
20	14	132	150	
20	14	38	150	
30	14	58	150	
20	14	112	150	
25	14	75	150	
25	14	15	150	
30	14	15	150	
15	14	124	150	
15	14	112	150	
30	14	118	150	
30	14	66	150	
15	14	45	150	
20	14	32	150	
25	14	92	150	
20	14	48	150	
10	14	30	150	
30	14	14	150	
20	14	140	150	
15	14	38	150	
10	14	148	150	

20	14	116	150	
25	30	144	300	
25	30	33	300	
25	30	111	300	
25	30	285	300	
25	7	150	150	
25	21	105	117	
20	91	125	144	
20	91	121	144	
25	210	64	150	
25	210	103	150	
20	33	150	150	
5	33	111	150	
20	33	120	150	
15	33	132	150	
10	33	135	150	
10	33	105	150	
10	33	30	150	
10	33	142	150	
15	33	135	150	
25	240	1	200	
25	240	1	200	
25	240	198	200	
25	240	179	200	
25	240	5	200	
25	240	178	200	
20	21	18334	19100	
20	75	11	200	
20	75	90	200	
20	75	11	200	
20	14	208	400	
25	55	26	60	
20	28	109	160	
20	28	101	160	
25	21	117	121	
20	56	107	120	
20	56	92	120	
20	56	102	120	
20	56	77	120	
20	56	86	120	
20	56	88	120	
20	34	106	150	
25	49	152	400	
25	35	152	400	
5	140	276	400	
5	140	336	400	
5	140	320	400	
15	45	20	100	
10	45 35	81	100	
5 15	35 35	0	30	
15 25	35 35	27	30	
25	35 35	30	30	
10 15	35 35	6	30	
15	35 35	20	30	
20	35 35	30	30	
15	35	28	30	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 14 24 34 44 45 46 47 48 49 50 51 52 53 54 55 65 57 58 59 60	

25	14	86	150	
20	28	77	101	
25	40	71	90	
5	40	33	90	
15	40	72	90	
20	560	0	200	
20	560	0	80	
10	560	158	200	
5	560	0	80	
15	560	40	80	
15	560	132	200	
10	560	0	80	
5	560	10	200	
20	90	150	150	
5	90	0	150	
10	90	75 108	150 150	
10 25	90 90	108	150 150	
30	90	96 14	150	
20	90	75	150	
20	90	75 75	150	
20	90	108	150	
15	90	75	150	
15	90	80	150	
25	90	20	150	
25	42	31	120	
25	42	50	120	
25	30	8	150	
25	30	46	150	
25	89	78	80	
15	30	144	150	
30	30	30	150	
15	30	69	150	
20	30	112	150	
25	30	38	150	
25	7	0	300	
10	30	150	150	
5	30	150	150	
10	30	150	150	
20	30	134	150	
20	30	116	150	
10	14	7	300	
10	14	28	300	
20	42	3	150	
5 15	56 7	11	300	
15 25	7 7	4 3	300 300	
10				
15	224 7	108 0	150 300	
30	, 14	2	300	
20	30	144	150	
5	30	150	150	
5	30	2	150	
25	30	60	150	
5	30	0	150	
30	30	6	150	
	-	•	-	

25 10 25 25 15 30 5 25 25 15 15 10 5 10 5 25 20 20 NA 30 NA	10 30 30 30 14 14 56 14 30 14 30 30 224 224 224 56 30	20 45 76 26 32 27 18 29 13 150 13 81 4 146 30 142 38 95 71 58	300 150 150 300 300 300 300 300 150 150 150 150 150 150 90	
5 NA 20 20 20 20 20 20 35 15 20 10 25 20 20 20 20 20 20 20 20 20 20 20 20 20	28 9 9 9 9 25 25 25 25 25 25 25 25 25 25 25 25 25	41 52 188 148 180 152 160 36 137 138 133 140 137 274 294 270 186 33 47 81 0 0 17 29 46 2 0 0 75 22 72 32 84 15	90 96 400 400 400 400 150 150 150 150 150 300 300 300 300 300 300 45 60 101 75 75 75 75 75 75 75 75 75 75 75 75 75	

1	
2	
3 ⊿	
5	
6	
8	
3 4 5 6 7 8 9 10	
10 11	
12	
13	
15	
16	
17 18	
19	
20	
21	
23	
24 25	
26	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	
29	
30	
31 32 33 34	
33	
34 35	
36	
37 38	
39	
40	
41 42	
43	
44 45	
46	
47	
48 49	
50	
51 52	
53	
54 55	
56	
57	
58 59	
60	

20 NA		255	300	
20	60	93	150	
20	60	50 27	150	
20 20	42 42	27 13	150 150	
20	42 42	10	150	
20	42	25	150	
20	21	15	20	
20	21	0	20	
20	42	24	150	
20	28	79	100	
20	42	0	150	
20	50	2	200	
20	50	4	200	
20	50	152	200	
20	50	0	200	
10	70	178	200	
25	14	90	200	
25	14	100	200	
25 25	14 14	158 126	200 200	
25	84	3	300	
25	84	262	300	
10	35	156	200	
5	35	156	200	
10	35	156	200	
25	42	123	300	
20	28	32	100	
25	42	60	300	
25	42	57	300	
25	42	70	150	
25	42	130	150	
15	36	270	600	
15 15	36 21	450 30	600 150	
15 20	21 21	38 142	150	
30	21	130	150	
25	21	120	150	
10	21	39	150	
25	21	138	150	
35	21	115	150	
20	21	120	150	
10	252	0	150	
10	252	120	150	
25	252	0	150	
5	252	147	150	
15	252	0	150	
25 15	28	68	150	
10	28 28	0 72	150 150	
15	14	0	150	
15	28	96	150	
10	14	2	150	
15	14	120	150	
10	14	3	150	
25	14	2	150	

25	14	24	150	
25	28	0	150	
25	14	0	150	
10	14	2	150	
25	14	0	150	
10	28	0	150	
10	14	30	150	
25 10	14 14	0 0	150	
25	14	0	150 150	
25	14	0	150	
15	14	142	150	
10	14	0	150	
10	14	0	150	
25	14	0	150	
25	14	52	150	
15	14	0	150	
25	14	0	150	
10	14	0	150	
15	14	0	150	
10	14	0	150	
10	14	0	150	
15	14	0	150	
15	14	0	150	
10	14	3	150	
25 25	14 14	3 2 0	150	
25 10	14	2	150 150	
25	14	0	150	
15	14	150	150	
10	14	0	150	
25	14	60	150	
15	14	0	150	
10	14	0	150	
10	14	8	150	
25	14	72	150	
25	14	0	150	
10	28	72	150	
10	14	0	150	
25	14	0	150	
10	14	4	150	
25 10	14 14	0	150 150	
15	14	2 3	150	
10	14	12	150	
25	14	0	150	
15	14	0	150	
25	14	0	150	
10	14	0	150	
10	14	0	150	
15	14	2	150	
10	14	90	150	
15	14	108	150	
10	14	0	150	
15	14	60	150	
10	14	0	150	

15 NA	0	250
15 NA	0	250
15 NA	176	200
15 NA	238	250
15 NA	235	250
15 NA	242	250
15 NA	0	250
15 NA	228	250
15 NA	235	250
15 NA	22	250
15 NA	80	250
15 NA	100	250
15 NA	112	250
15 NA	20	250
15 NA	218	250
15 NA		
	90	250
15 NA	112	250
15 NA	120	250
15 NA	225	250
15 NA	198	250
15 NA	28	250
15 NA	208	250
15 NA	212	250
15 NA	240	250
15 NA	125	250
15 NA	0	250
15 NA	35	250
15 NA	0	250
15 NA	45	250
15 NA	168	250
15 NA	178	250
15 NA	18	250
15 NA	0	250
15 NA	0	250
15 NA	40	250
15 NA	70	250
15 NA	0	250
15 NA	45	250 250
15 NA	0	250
15 NA	15	250
15 NA	10	250
15 NA	150	250
15 NA	215	250
15 NA	222	250
	42	
15 NA		250
15 NA	0	250
15 NA	142	250
15 NA	2	250
15 NA	85	250
15 NA	5	250
15 NA	90	250
15 NA	0	250
15 NA	225	250
15 NA	0	250
15 NA	105	250
15 NA	95	250

rage	_
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
11 12 13 14 15 16 17 18	
19	
20	
21	
21 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
31 32	
33	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

15 NA		5	250	
15 NA		0	250	
15 NA		95	250	
15 NA		40	250	
15 NA		145	250	
25 NA		80	125	
20 NA		78	125	
25 NA		6	250	
5 NA		372	400	
5 NA		304	400	
5 NA		312	400	
5 NA		272	400	
5 NA		284	400	
25	180	20	36	
20	180	74	90	
20	180	83	90	
5	180	27	36	
20	180	28	36	
10	180	23	36	
15	180	28	36	
5 NA		308	400	
5 NA		248	400	
5 NA	200	264	400	
10 5	200	0 142	150	
10	200 200	142	150 150	
0	200	142	150	
20	200	0	150	
15	200	0	150	
25	200	0	150	
10	200	0	150	
25	200	122	150	
20	200	0	150	
15	200	0	150	
5	200	75	150	
15	200	142	150	
25	200	0	150	
25	200	108	150	
20	200	135	150	
15	168	48	400	
10	168	144	400	
5	168	108	400	
10	240	1	180	
15	240	1	180	
5	240	40	180	
15	240	0	180	
5	240	132	180	
10 20	240 28	20 67	180 80	
20	28 66	56	66	
20	28	50 50	200	
20 15	180	23	36	
20	180	78	90	
25	180	17	36	
5	180	15	36	
10	180	26	36	
-	•			

20	180	63	90	
20	180	32	36	
15	21	1710	3000	
15	21	2430	3000	
15	21	1440	3000	
15	21			
		2940	3000	
15	100	8	90	
15	100	62	90	
40	42	172	400	
10	42	0	400	
40	42	0	400	
30	42	128	400	
25	42	212	400	
10	42	0	400	
15	42	52	400	
30	42	148	400	
25	42	204	400	
30	42	208	400	
15	42	0	400	
30	42	196	400	
20	42	148	400	
25	42	0	400	
25	42	116	400	
25	28	180	400	
20	42	0	400	
25	30	10	50	
30	30	0	50	
25	30	2	50	
15	30	22	50	
10	30	47	50	
10	30	35	50	
20	30	4	50	
5	30	48	50	
25	21	76	100	
10	28	156	400	
25	30	7	100	
25	30	49	100	
20 NA		10	45	
15	84	5	60	
20	84	4	60	
10	84		60	
		24		
10	70	130	200	
30	84	1	60	
25	84	2	60	
5	84	48	60	
35	84	0	60	
15	50	475	864	
20	50	389	864	
20	28	74	200	
20	28	28	200	
30	28	92	200	
20	28	26	200	
25	28	88	200	
20	28	54	200	
20	28	76	200	
20	28	76	200	

,	
1	
2	
5 4	
5	
6	
7	
8	
9 10	
11	
12	
13	
14 15	
16	
17	
18	
19	
20 21	
22	
23	
24	
25 26	
20 27	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 32 33 34 34 35 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37	
29	
30	
31	
32 33	
34	
35	
36	
37 38	
39	
40	
41	
42	
43 44	
45	
46	
47	
48	
49 50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

30	28	98	200	
15	28	64	200	
25	28	78	200	
20	28	72	200	
15	28	48	200	
20	28	0	200	
20	28	60	200	
20	28	0	200	
25	14	102	200	
25	28	3518	4200	
25	28	132	150	
25	28	2	150	
25	28	0	150	
25	28	138	150	
25	28	150	150	
25	28	0	150	
25	28	129	150	
25	28	2	150	
20	30	237	300	
20	30	252	300	
20	30	285	300	
20	30	261	300	
25	50	122	150	
20	30	177	300	
20	30	100		
20 NA			100	
		117	500	
25	14	2	150	
10 15	14	0 9	150	
15 10	14 14		150 150	
25	14	106 123	150	
25 25	14	117	150	
15		117		
	14		150	
10	14 14	86 2	150 150	
10	14			
25 10	14	0 8	150 150	
25	14	6	150 150	
10	14	120	150	
10	14	4	150	
25	14	20	150	
25	14	14	150	
10	14	4	150	
25	14	80	150	
25 25	14	105	150	
10	14	58	150	
15	14	93	150	
15	14	148	150	
15	14			
25	14 14	114 2	150 150	
25 10	14 14	4	150	
	14 14	3		
15 10			150 150	
10 25	14 14	147 14	150 150	
25 25	14 14	14 147	150	
25 10	14	147	150	
IU	14	2	150	

15 15 15 15 20 20 20 20 20 20 20 20 20 20 20 5 20 10 5 20 10 5 20 10 20 5 10 20 5 10 10 10 10 10 10 10 10 10 10 10 10 10	37 37 30 30 80 80 80 80 80 21 21 350 350 350 350 350 350 350 350 350 350	332 60 3 126 35 119 9 71 1 44 0 30 0 0 150 30 150 150 0 0 0 30 150 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	400 400 200 200 125 125 125 125 125 125 125 125	
15 20 20 5 NA 20 25 30 NA 30 NA 0 NA	60 84 84 84	79 82 45 60 96 80 24 22	100 100 100 60 100 100 25 25 25	
10 NA 25 NA 10 10 10 10 25 25 25	48 48 48 140 140	24 22 145 147 150 23 52 32	25 25 25 150 150 150 75 75	

•	ŭ	9-
1 2 3 4 5		
	,	
1 1 1 1	2 3 4 5 6 7	
1 2 2 2	8 9 0 1	
2 2 2 2	3 4 5 6 7 8	
3 3 3	9 0 1 2 3 4	
3 3 3	5 6 7 8 9	
4 4 4	.0 .1 .2 .3 .4	
4 4 5	6 7 8 9 0	
5 5 5	1 2 3 4 5 6	
5 5 5	789	

25	84	188	400	
25	133	12	30	
15	133	29	30	
10	133	26	30	
5	133	6	30	
20	133	27	30	
25	84	260	400	
25	84	152	400	
25	84	324	400	
25	84	140	400	
25	90	150	150	
25	49	0	100	
20	49	1	100	
15	42	30	200	
15	42	106	200	
25	42	114	200	
	42			
25 45		106	200	
15 15	42	0	400	
15	42	92	400	
25	42	100	400	
25	42	68	400	
25	18	27	90	
15	140	10	200	
5	140	178	200	
5	140	152	200	
15 NA		94	100	
5 NA		77	100	
15	140	164	200	
5 NA		96	100	
15 NA		11	100	
30	8	0	180	
30	8	153	180	
20 NA		110	120	
20 NA		57	120	
20 NA		86	120	
15	42	37	75	
15	42	2	75	
15	42	28	75	
15	42	0	75	
15	42	0	75	
15	42	14	75	
15	42	32	75	
15	42	0	75	
15	42	48	75	
15	42	64	75	
15	42	28	75	
15	42	8	75	
15	42	60	75	
15	42	75	75	
15	42	15	75	
15	42	60	75	
15	42	16	75	
15	42	68	75	
15	42	28	75	
15	42	0	75	
15	42	Ö	75	
	74	5	, 0	

15 15	42 42	38 71	75 75	
15 15	42 42	0 0	75 75	
15	42	0	75	
15 15	42	75	75 75	
15 15	42 42	45 32	75 75	
15	42	8	75	
15	42	2	75	
15 15	42 42	16 16	75 75	
15	42	26	75 75	
15	42	32	75	
15	42	10	75	
15 15	42 42	14 0	75 75	
15	42	6	75	
15	42	75	75	
15 15	42 42	0	75 75	
15	42 42	14	75 75	
15	42	26	75	
15	42	0	75 75	
15 15	42 42	1 14	75 75	
15	42	0	75 75	
15	15	0	200	
25	15 15	200 200	200	
20 5	15 15	200	200 200	
25	15	0	200	
10	15	0	200	
10 5	15 15	200 0	200 200	
15	15	200	200	
20	15	0	200	
25 NA 25 NA		5 6	7 7	
20	28	92	400	
20	28	0	400	
20 20	28 28	277 179	400 400	
20	28	0	400	
20	28	77	400	
20	28	28	400	
20 20	28 28	73 0	400 400	
20	28	46	400	
20	28	0	400	
20 20	28 28	31 0	400 400	
20	28	169	400	
20	28	155	400	
20	28	0	400	
20	28	281	400	

1	
2	
3	
5	
6	
/ 8	
9	
10	
11	
12	
1 <i>3</i>	
15	
6 7 8 9 10 11 12 13 14 15 16 17 18	
17	
18	
19 20	
21	
22	
22 23 24 25	
24	
25 26	
27	
26 27 28	
29	
30	
31 32	
32 33 34	
34	
35	
36 37	
38	
39	
40	
41	
42 43	
44	
45	
46	
47	
48 49	
50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

25	56	0	500	
20	56	0	500	
20	56	395	500	
20	56	0	500	
20	28	0	400	
20	28	362	400	
5	56	64	200	
20	56	114	200	
15	56	106	200	
30	56	104	200	
10	56	92	200	
25	56	110	200	
15	56	104	200	
30	56	110	200	
20	56	116	200	
5	56	86	200	
10	56	100	200	
25	56	112	200	
10	56	44	200	
20	56	48	200	
30	56	44	200	
25	56	46	200	
5	56	34	200	
15	56	42	200	
30	56	30	200	
25	56	32	200	
20	56	36	200	
10	56	26	200	
15	56	32	200	
5	56	14	200	
20	56	38	100	
25	56	16	100	
20	56	0	100	
25	56	50	100	
25	56	46	100	
25	56 56	2	100	
25	56 56	7	100	
25	56	73	100	
25	14	189	200	
20 20	14 14	180 169	200	
20	14	168 164	200 200	
20	14	162	200	
20	14	172	200	
25	14	182	200	
20	14	172	200	
20	14	190	200	
20	14	191	200	
20	14	177	200	
25	14	183	200	
20	14	179	200	
20	14	183	200	
20	14	187	200	
25	14	191	200	
25	40	75	90	
20	70	99	100	
_0	. 0	50	. 50	

20 5 25 20 20 15 20 25 5 5 20 25 15 10 40 5 35 30 25	70 336 7 42 42 42 42 42 42 32 28 112 168 26 26 26 26 26 26 26 26 26	91 120 45 1 88 29 36 30 56 385 95 10 195 107 150 61 0 0 41 1	100 150 100 100 100 100 100 100 200 200 200 20	
20	84	2	60	
10	84	13	60	
30 15	84 84	1 2	60 60	
35	84	0	60	
5	84	16	60	
20	84	11	60	
25	84	13	60	
5	84	48	60 60	
30 35	84 84	21 24	60 60	
10	84	30	60	
15	84	18	60	
15	84	1	60	
5	84	43	60	
25	84	2	60 60	
10 30	84 84	16 10	60 60	
35	84	8	60	
20	84	1	60	
5	84	60	60	
30	84	1	60	
25 15	84 84	2 3	60 60	
35	84	0	60	
10	84	26	60	
20	84	2	60	
25	7	30	100	
20 15	84	12 16	60 60	
15 10	84 84	16 24	60 60	
25	84	11	60	
5	84	48	60	
35	84	24	60	
30	84	18	60	

Page	4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	2
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	
35 36 37 38 39 40 41 42 43 44 45 46 47 48	
49 50 51 52 53 54 55 56 57 58 59	

5	84	48	60	
30	84	7	60	
35	84	6	60	
15	84	4	60	
20	84	2	60	
10	84	26	60	
25	84	2	60	
15	30	160	200	
10	30	150	200	
10 15	30 30	60 90	200	
15	30	160	200 200	
10	30	156	200	
10	30	60	200	
15	30	106	200	
15	30	118	200	
10	30	100	200	
20	280	0	120	
15	280	76	120	
10	280	106	120	
5	280	0	120	
20	28	181	200	
25	14	196	200	
25	7	32	100	
20	21	65	100	
20	21	4	100	
25	40	40	100	
25	40	79	100	
10	40	0	100	
15	40	90	100	
10	40	54 100	100	
15 25	40 40	100 95	100 100	
20	40	100	100	
20	40	97	100	
20	40	0	100	
15	40	95	100	
25	40	97	100	
20	40	97	100	
10	40	80	100	
30	40	30	100	
25	40	97	100	
30	40	97	100	
25	40	0	100	
10	40	63	100	
15	40	0	100	
30	40	0	100	
30	40	97	100	
25	40	95 84	100	
5	160	84 76	100	
5 5	160 160	76 88	100 100	
5 5	160	6	100	
20	28	180	200	
5 NA	20	200	200	
0	91	166	200	

15 5 5 5 30 25 10 20 15 15 15 20 10 25 30 20 15 5 30 20 15 5 30 25 10 25 5 30 25 5 30 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	91 77 77 336 336 336 336 336 336 336 34 34 7 168 168 168 168 168 168	0 5 4 0 0 50 0 108 75 194 166 70 60 45 28 6 41 70 52 59 0 36 75 10	200 9 9 150 150 150 150 150 200 200 100 100 100 100 100 10	
5 NA 20	42	22 63	30 150	
30 25	42 42	150 138	150 150	
35	42	0	150	
5	42	2	150	
10 20	42 42	6 30	150 150	
40	42	0	150	
5	42	0	150	
40 5	42 42	0 0	150 150	
10	42	57	150	
10	42	20	150	
10 25	42 42	10 22	150 150	
5	42	0	150	
10	42	120	150	
15 25	42 42	22 147	150 150	
40	42	0	150	
10	42	0	150	
20 20	42 42	147 148	150 150	
35	42	0	150	
40 15	42 42	0 142	150 150	
25	42	144	150	
25	42	148	150	
30 25	42 42	141 0	150 150	
35	42	146	150	

•	uş	,_	
1			
2			
4 5			
6 7			
8			
	0 1		
	2		
	4 5		
1	6 7		
1	8 9		
2	0		
2	2		
2	4 5		
2	6		
2	8		
3	0		
3	2 3 4		
3	5		
3	7		
3	9		
4 4	1		
4			
4			
	.7 .8		
	9		
5	1 2		
5	3 4		
5	5 6		
5	7 8		
5	9		

35 25 NA	42	135 174	150 200	
25 NA		194	200	
25 NA 25 NA		160 184	200 200	
25 NA 25 NA		184 170	200 200	
25 NA		180	200	
25 NA 25 NA		166 130	200 200	
25 NA 25 NA		190 146	200 200	
25 NA		144	200	
25 NA 20	28	126 36	200 400	
20 25	28 28	216 40	400 400	
25	28	232	400	
25 35	5 5	13 0	50 50	
35 20	3 5	0 30	50 50	
25	3	22	50	
15 30	3 3	6 6	50 50	
15 20	5 3	18 16	50 50	
20 25	5 5	32 12	50 50	
30	5	6	50	
30 25	3 3	2 17	50 50	
20 20	3 5	17 11	50 50	
30	3	14	50	
30 20	5 3	2 14	50 50	
30 10	5 42	0 1176	50 2400	
25 10	28 42	1776 792	2400 2400	
25	28	1992	2400	
20 20	30 30	98 0	200 200	
20 25	52 7	4 30	60 100	
25 25	30 30	0 132	150	
25	21	90	150 200	
25 25	21 21	66 46	200 200	
25 30	21 21	34 22	200 200	
30	21	34	200	
20 20	21 21	58 60	200 200	

25	30	0	200	
25	30	189	200	
10	56	88	100	
10	56	88	100	
25	56	5	100	
25	56	30	100	
20	28	0	200	
5	168	120	200	
15	28	2	100	
5	28	20	100	
20	28	10	100	
5	28	56	100	
5	28	14	100	
15	28	20	100	
20	28	81	100	
0	28	0	100	
35	28	2	100	
15	28	0	100	
10	28	0 2	100	
		77		
25	28		100	
20	28	92	100	
10	28	70	100	
30	28	46	100	
20	28	82	100	
10	28	20	100	
20	28	82	100	
40	28	0	100	
5	28	34	100	
30	28	28	100	
25	28	56	100	
25	28	72	100	
10	28	87	100	
5	28	76	100	
25	28	74	100	
	28		100	
20 15	28	80		
		0	100	
25	28	44	100	
10	28	82	100	
0	28	38	100	
15	28	0	100	
10	28	80	100	
15	28	86	100	
30	28	50	100	
5	28	67	100	
20	28	40	100	
35	28	28	100	
10	28	55	100	
5	28	68	100	
30	28	46	100	
10	28	67	100	
15	28	89	100	
10	28	10	100	
15	28	72	100	
15	28	82	100	
35	28	2	100	
15	28	91	100	

•	u	9	_	_
1				
2				
4 5				
6 7				
8				
	0 1			
1	2 3			
1 1	4 5			
	6 7			
1	8 9			
2	0			
2	2			
2	4 5			
2	6 7			
2	8.9			
3	1			
3	3			
3	4 5 6			
3	78			
3	9			
4	1			
4	3			
4	5			
4	.7 .8			
	9			
5	1			
5	3			
5	5			
5	78			
	9			

0 10 5 10 0 25 15 20 NA 20 20	28 28 28 28 28 28 28 28 42 42 40	0 79 64 86 0 52 89 130 94 98 84	100 100 100 100 100 100 200 100 100	
15	40	74	100	
25	7	54	100	
15	40	72	100	
15	40	70	100	
15	40	47	100	
15	40	59	100	
15	40	28	100	
15 15 15 15 15 25 NA	40 40 40 40 40	21 25 26 61 43 46	100 100 100 100 100 100	
25 NA 15 20 20 20 20 20	40 35 35 20 20	68 91 40 20 2000 1940	100 100 40 40 2000 2000	
10 20 20 20 20 20	14 14 14 14 14	106 192 364 380 355	200 400 400 400 400	
20	30	129	180	
10	30	128	180	
20	30	139	180	
25	30	132	180	
25	30	103	180	
5	30	94	180	
30	30	121	180	
10	30	112	180	
35	30	75	180	
5	30	96	180	
15	30	126	180	
25	34	18	20	
15	30	119	180	
10	30	137	180	
20	30	134	180	
25	30	143	180	
35	30	103	180	
25	30	134	180	
30	30	114	180	
5	30	93	180	
5	30	79	180	

20 NA 0 300 20 NA 15 300 20 35 158 1050 25 35 430 1050 35 35 0 1050 30 35 0 1050 35 35 0 1050 35 35 0 1050 15 35 578 1050 20 35 724 1050 20 35 903 1050	20 NA 15 300 20 35 158 1050 25 35 430 1050 35 35 0 1050 30 35 0 1050 30 35 126 1050 35 35 0 1050 15 35 578 1050 20 35 724 1050	20 NA 15 300 20 35 158 1050 25 35 430 1050 35 35 0 1050 30 35 0 1050 30 35 126 1050 35 35 0 1050 15 35 578 1050 20 35 724 1050 20 35 158 1050 20 35 903 1050 25 35 10 1050 30 35 158 1050 30 35 158 1050 20 35 158 1050 20 35 35 10 1050 30 35 158 1050 20 35 35 10 1050 20 35 35 158 1050 20 35 35 10 1050 20 35 158 1050 20 35 35 10 1050 20 35 262 1050	10 20 25 20 20 25 10 15 30 15 20 25 30 10 0 5 25 5 10 20 25 10 0 5 25 10 25 10 25 10 25 10 25 25 25 25 25 25 25 25 25 25 25 25 25	30 30 28 30 30 45 15 15 15 15 15 15 210 210 210 210 210 210 210	116 115 80 57 23 222 0 119 0 112 112 23 0 112 0 36 60 37 0 55 0 0 0 219	180 180 100 135 32 240 120 120 120 120 120 120 120 120 60 60 60 60 60 60 60 300	
35 35 0 1050 15 35 578 1050 20 35 724 1050 20 35 158 1050 20 35 903 1050	35 35 0 1050 15 35 578 1050 20 35 724 1050 20 35 158 1050 20 35 903 1050 25 35 10 1050 30 35 0 1050 15 35 158 1050 30 35 10 1050 20 35 0 1050 20 35 262 1050	35 35 0 1050 15 35 578 1050 20 35 724 1050 20 35 158 1050 20 35 903 1050 25 35 10 1050 30 35 0 1050 15 35 158 1050 30 35 10 1050 20 35 0 1050 20 35 262 1050 15 35 210 1050 25 35 0 1050 25 35 0 1050 20 35 0 1050 20 35 0 1050 30 35 0 1050 20 35 158 1050 30 35 0 1050 20 35 158 1050 30 35 0 1050	20 NA 20 25 35	35 35	15 158 430 0	300 1050 1050 1050	
	30 35 0 1050 15 35 158 1050 30 35 10 1050 20 35 0 1050 20 35 262 1050	30 35 0 1050 15 35 158 1050 30 35 10 1050 20 35 0 1050 20 35 262 1050 15 35 210 1050 25 35 0 1050 35 35 0 1050 20 35 0 1050 30 35 0 1050 20 35 158 1050 30 35 0 1050	30 35 15 20 20	35 35 35 35 35 35	126 0 578 724 158 903	1050 1050 1050 1050 1050 1050	

ruge
1 2
3
4
5
6 7
8
9
10
11 12
13
14
15 16
17
18
19 20
21
22
23
24 25
26
27
28 29
30
31
32 33
34
35
36
37 38
39
40
41 42
43
44
45
46 47
48
49
50 51
51 52
53
54
55 56
57
58
59

20	70	75	100	
20	18	95	100	
20	18	91	100	
25	70 70	75	100	
10	70 70	80	100	
20 20	70 20	80 400	100 400	
15	30 70	400 90	100	
10	70	80	100	
25	70	72	100	
20	70	80	100	
20	70	85	100	
15	70	85	100	
25	34	15	20	
25	70	79	100	
15	70	76	100	
25	70	58	100	
20	70	76	100	
20	70 70	85	100	
10	70 70	76	100	
10 20	70 70	70 74	100 100	
20	30	400	400	
20	70	82	100	
15	70	70	100	
30	175	12	240	
25	175	96	240	
15	175	7	240	
30	175	22	240	
25	175	118	240	
15	175 475	5	240	
15 30	175 175	53 14	240 240	
25	175	137	240	
5	180	78	80	
5	180	72	80	
30	21	18	24	
20	36	148	300	
25	21	12	45	
25	21	21	45	
25	16	182	200	
15	35	0	100	
40	35 35	30	100	
15 5	35 35	83 0	100 100	
20	35	8	100	
30	35	18	100	
30	35	98	100	
35	35	5	100	
10	35	25	100	
10	35	0	100	
25	35	48	100	
5	35 35	0	100	
20 35	35 35	92 85	100	
35 40	35 35	85 0	100 100	
40	აა	U	100	

25 33 128 150 25 15 132 165 10 28 144 150 10 28 150 150 10 28 150 150 10 28 0 150 25 28 89 100 25 30 51 60 15 7 46 50 25 34 19 20 25 6 100 100 25 12 219 300 10 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 25 14 0 150 25 14	25 25 25 25 25 25 25 25 25 25	35 34 33 33 33 33 33 33	95 20 141 150 132 142 90 144	100 20 150 150 150 150 150 150	
10 28 144 150 10 28 150 150 25 28 89 100 25 21 200 200 25 30 51 60 15 7 46 50 25 34 19 20 25 6 100 100 25 12 219 300 10 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 114 150 20 14 114 150 20 14 114 150 20 14 0 150 <t< td=""><td>25</td><td>15</td><td>132</td><td>165</td><td></td></t<>	25	15	132	165	
10 28 0 150 25 28 89 100 25 21 200 200 25 30 51 60 15 7 46 50 25 34 19 20 25 6 100 100 25 12 219 300 10 14 0 150 20 14 0 150 20 14 0 150 25 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 25 14 0 150 25 14 114 150 25 14 114 150 25 14 114 150 20 14 0 150 25 14	10	28	144	150	
25 28 89 100 25 21 200 200 25 30 51 60 15 7 46 50 25 34 19 20 25 6 100 100 25 12 219 300 10 14 0 150 20 14 0 150 20 14 0 150 25 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 21 14 0 150 25 14 0 150 25 14 0 150 25 14 0 150 20 14 114 150 20 14 14 150 20 14 14 150 25 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
25 30 51 60 15 7 46 50 25 34 19 20 25 6 100 100 25 12 219 300 10 14 0 150 20 14 0 150 20 14 0 150 25 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 25 14 0 150 25 14 0 150 25 14 0 150 25 14 0 150 20 14 114 150 20 14 0 150 20 14 0 150 20 14 0 150 10 14 0 150 20 14 114 150 25 14 0 150 25 14 0 150 25 14 130 <td< td=""><td>25</td><td></td><td></td><td></td><td></td></td<>	25				
15 7 46 50 25 34 19 20 25 6 100 100 25 12 219 300 10 14 0 150 20 14 0 150 25 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 21 14 0 150 25 14 0 150 25 14 0 150 20 14 114 150 20 14 0 150 20 14 0 150 20 14 114 150 20 14 114 150 25 14 0 150 25 14 0 150 25 <td></td> <td></td> <td></td> <td></td> <td></td>					
25 6 100 100 25 12 219 300 10 14 0 150 20 14 0 150 20 14 0 150 25 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 25 14 0 150 25 14 0 150 25 14 0 150 20 14 14 150 20 14 14 150 21 14 14 150 20 14 0 150 20 14 0 150 20 14 14 150 15 14 0 150 25 14 0 150 25 14					
25 12 219 300 10 14 0 150 20 14 0 150 20 14 0 150 25 14 0 150 20 14 0 150 20 14 0 150 10 14 0 150 25 14 0 150 25 14 0 150 25 14 0 150 20 14 114 150 20 14 14 150 20 14 0 150 20 14 0 150 10 14 14 150 20 14 114 150 20 14 114 150 25 14 0 150 25 14 0 150 25 14					
10 14 0 150 20 14 0 150 20 14 0 150 25 14 0 150 20 14 0 150 20 14 0 150 10 14 0 150 15 14 0 150 25 14 0 150 20 14 114 150 20 14 0 150 20 14 114 150 20 14 0 150 20 14 0 150 20 14 0 150 10 14 14 150 10 14 14 150 20 14 114 150 25 14 0 150 20 14 14 150 25 14 0 150 25 14 0 150 25 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
20 14 0 150 25 14 0 150 20 14 0 150 20 14 0 150 10 14 0 150 15 14 0 150 25 14 0 150 20 14 114 150 20 14 0 150 25 14 114 150 20 14 0 150 20 14 0 150 10 14 0 150 10 14 114 150 20 14 114 150 25 14 0 150 20 14 114 150 25 14 0 150 25 14 0 150 25 14 0 150 25 14 132 150 15 14 140 150 <td< td=""><td>10</td><td>14</td><td></td><td></td><td></td></td<>	10	14			
25 14 0 150 20 14 0 150 20 14 0 150 10 14 0 150 15 14 0 150 25 14 0 150 20 14 114 150 20 14 0 150 25 14 114 150 20 14 0 150 21 14 0 150 20 14 0 150 20 14 0 150 20 14 114 150 15 14 0 150 25 14 0 150 25 14 0 150 25 14 0 150 25 14 132 150 15 14 140 150 25 14 150 150 25 14 8 150 2					
20 14 0 150 20 14 0 150 10 14 0 150 15 14 0 150 25 14 0 150 20 14 114 150 20 14 0 150 25 14 114 150 20 14 0 150 21 14 0 150 20 14 0 150 20 14 114 150 15 14 0 150 20 14 114 150 25 14 0 150 25 14 0 150 25 14 0 150 25 14 132 150 15 14 140 150 25 14 132 150 15 14 140 150 20 14 0 150 <					
10 14 0 150 15 14 0 150 25 14 0 150 20 14 114 150 15 14 114 150 20 14 0 150 25 14 114 150 20 14 0 150 10 14 0 150 10 14 114 150 20 14 114 150 25 14 0 150 25 14 0 150 25 14 0 150 25 14 0 150 25 14 0 150 25 14 132 150 15 14 140 150 25 14 140 150 20 14 0 150 20 14 0 150 20 14 0 150 <	20	14	0	150	
15 14 0 150 25 14 0 150 20 14 114 150 15 14 114 150 20 14 0 150 25 14 114 150 20 14 0 150 10 14 0 150 10 14 114 150 15 14 0 150 20 14 114 150 25 14 0 150 25 14 0 150 25 14 0 150 25 14 132 150 25 14 132 150 15 14 140 150 25 14 150 150 25 14 8 150 20 14 0 150 20 14 0 150 20 14 0 150					
25 14 0 150 20 14 114 150 15 14 114 150 20 14 0 150 25 14 114 150 20 14 0 150 10 14 0 150 10 14 114 150 15 14 0 150 20 14 114 150 25 14 0 150 25 14 0 150 25 14 150 150 25 14 132 150 15 14 140 150 25 14 140 150 10 14 46 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 10 14 0 150					
15 14 114 150 20 14 0 150 25 14 114 150 20 14 0 150 10 14 0 150 10 14 114 150 15 14 0 150 20 14 114 150 25 14 0 150 25 14 0 150 25 14 150 150 25 14 132 150 15 14 140 150 25 14 132 150 15 14 140 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 10 14 0 150	25	14	0	150	
20 14 0 150 25 14 114 150 20 14 0 150 10 14 0 150 10 14 114 150 15 14 0 150 20 14 114 150 25 14 0 150 25 14 0 150 25 14 150 150 25 14 132 150 15 14 140 150 25 14 150 150 15 14 140 150 20 14 0 150 20 14 8 150 20 14 0 150 20 14 30 150 20 14 0 150 20 14 0 150 10 14 0 150 10 14 0 150					
25 14 114 150 20 14 0 150 10 14 0 150 10 14 114 150 15 14 0 150 20 14 114 150 25 14 0 150 25 14 0 150 25 14 150 150 25 14 132 150 15 14 140 150 25 14 150 150 15 14 140 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 10 14 0 150 20 14 0 150 10 14 0 150 20 14 0 150 <					
10 14 0 150 10 14 114 150 15 14 0 150 20 14 114 150 25 14 0 150 25 14 0 150 20 14 150 150 25 14 132 150 25 14 132 150 15 14 140 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 10 14 0 150 10 14 0 150 20 14 0 150 20 14 0 150 10 14 0 150 2	25	14	114	150	
10 14 114 150 15 14 0 150 20 14 114 150 25 14 0 150 25 14 0 150 20 14 150 150 25 14 132 150 15 14 140 150 10 14 46 150 20 14 0 150 20 14 8 150 20 14 30 150 20 14 0 150 20 14 0 150 20 14 0 150 10 14 0 150 10 14 0 150 20 14 0 150 10 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 2					
15 14 0 150 20 14 114 150 25 14 0 150 25 14 0 150 20 14 150 150 25 14 132 150 15 14 140 150 10 14 46 150 20 14 0 150 20 14 8 150 20 14 30 150 20 14 0 150 20 14 0 150 10 14 0 150 10 14 0 150 20 14 0 150 20 14 0 150 20 14 0 150 10 14 0 150 20 14 30 150					
25 14 0 150 15 14 0 150 25 14 0 150 20 14 150 150 25 14 132 150 15 14 140 150 10 14 46 150 20 14 0 150 20 14 8 150 20 14 30 150 20 14 0 150 20 14 0 150 10 14 0 150 10 14 0 150 20 14 30 150			0	150	
15 14 0 150 25 14 0 150 20 14 150 150 25 14 132 150 15 14 140 150 10 14 46 150 20 14 0 150 25 14 8 150 20 14 0 150 20 14 0 150 20 14 0 150 10 14 0 150 10 14 0 150 20 14 30 150					
20 14 150 150 25 14 132 150 15 14 140 150 10 14 46 150 20 14 0 150 25 14 8 150 20 14 0 150 20 14 30 150 20 14 0 150 10 14 0 150 10 14 0 150 20 14 30 150					
25 14 132 150 15 14 140 150 10 14 46 150 20 14 0 150 25 14 8 150 20 14 0 150 20 14 30 150 20 14 0 150 10 14 0 150 10 14 0 150 20 14 30 150					
15 14 140 150 10 14 46 150 20 14 0 150 25 14 8 150 20 14 0 150 20 14 30 150 20 14 0 150 10 14 0 150 10 14 0 150 20 14 30 150					
20 14 0 150 25 14 8 150 20 14 0 150 20 14 30 150 20 14 0 150 10 14 0 150 10 14 0 150 20 14 30 150	15	14	140	150	
25 14 8 150 20 14 0 150 20 14 30 150 20 14 0 150 10 14 0 150 10 14 0 150 20 14 30 150					
20 14 0 150 20 14 30 150 20 14 0 150 10 14 0 150 10 14 0 150 20 14 30 150					
20 14 0 150 10 14 0 150 10 14 0 150 20 14 30 150	20	14	0	150	
10 14 0 150 10 14 0 150 20 14 30 150					
10 14 0 150 20 14 30 150					

4		
1 2 3		
2 3 4 5 6 7 8		
6 7		
9		
10 11 12		
13 14		
15 16		
17 18 19		
20		
22 23		
24 25 26		
21 22 23 24 25 26 27 28		
29 30		
31 32 33 34		
34 35		
36 37		
38 39 40		
41 42		
43 44		
45 46 47		
48 49		
50 51 52 53		
52 53 54		
54 55 56		
57 58		
59 60		

15 20 10 15 15 20 25 5 30 15 10 20 20 20 10 20 10 20 10 20 10 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	14 14 14 14 14 14 190 90 90 90 90 90 90 90 90 90 90 90 90 9	20 0 116 0 0 150 200 184 112 372 364 320 356 384 2 2 69 105 104 22 104 15 10 50 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 4	150 150 150 150 150 400 400 400 400 400 400 150 150 150 150 50 50 50 50 50 50 50 50 50 50 50 50 5	
15 15 15 10 20 15	37 37 37 37 37 37	48 48 48 48 48	50 50 50 50 50 50	
10 10 10 10 10 10 10 20 20	30 30 30 30 30 30 54 54	75 36 34 0 0 83 79	200 200 200 200 200 200 100	

20 20 10 10 20 20 20 10 10 20 20 10 20 20 10 20 20 10 20 20 10 20 20 10 20 20 10 20 20 10 20 20 10 20 20 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	60 60 31 31 31 31 31 31 31 31 31 31 31 31 31	16 28 199 196 189 200 199 199 199 190 175 132 198 181 146 193 142 195 95 87 15 9 38 21 144 0	50 50 200 200 200 200 200 200 200 200 20	
15 5	100 28	78 102	100 200	
20	200	0	100	
25 15	28 100	118 80	200 100	
20	28	164	200	
15	28	164	200	
20	200	0	100	
15	100	95	100	
25	65	0	60	
15	65	0	60	
25	65	56	60	
20 25	65 65	0 0	60 60	
30	65	0	60	
20	30	116	120	
20	365	288	300	
20	365	264	300	
20	365	171	300	
15	28	138	250	
25 25	60	45 445	500	
25 25	60 60	445 0	500 500	
25	60	405	500	
25	60	0	500	
25	60	85	500	
25	60	50	500	
25	60	205	500	
25	60	0	500	
25	60	0	500	

,	
1	
2	
4	
5	
6	
/ 2	
9	
10	
11	
12 13	
14	
15	
16	
17 18	
19	
20	
21	
23	
24	
25	
26 27	
28	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	
30 31	
32	
32 33 34 35	
34	
35 36	
37	
38	
39 40	
41	
42	
43	
44 45	
46	
47	
48 49	
50	
51	
52	
53 54	
55	
56	
57 58	
58 59	
60	

25	60	430	500	
25	60	0	500	
25	60	Ö	500	
25	60	275	500	
25	60	0	500	
25 25	60	145	500	
10	28	117	150	
	28	146	150	
10				
10	28	147	150 150	
10	28	148	150	
20	99	8	200	
20	99	128	200	
20	99	6	200	
20	99	164	200	
20 NA		52	150	
10	28	35	100	
10	28	97	100	
20	28	93	100	
25	28	35	100	
15	28	51	100	
30	28	77	100	
20	28	6	100	
15	28	0	100	
10	28	0	100	
30	28	97	100	
10	28	0	100	
25	28	99	100	
20	40	60	60	
30	40	0	60	
5	40	0	60	
25	28	57	60	
15	28	70	100	
20	365	0	25	
10	365	13	25	
15	365	3	25	
10	365	12	25	
20	365	0	25	
20	365	0	25	
5	365	22	25	
15	365	1	25	
5		21	25 25	
	365 365			
25		0	25 500	
5	72	10	500	
15	149	24	25	
20	124	24	25	
10	365	7	25	
20	146	20	25	
15	365	0	25	
20	72	459	500	
25	72	242	500	
20	365	0	25	
25	365	0	25	
5	365	24	25	
20	365	0	25	
20	72	477	500	
30	72	3	500	

10	72	9	500	
10	365	1	25	
0	365	3	25	
0	365	21	25	
10	365	1	25 25	
25 15	365 79	0 25	25 25	
10	78 365	25 2	25 25	
15	365	0	25	
25	355	22	25	
25	365	0	25	
25	365	0	25	
15	72	243	500	
25	355	24	25	
5	365	18	25	
15	72	481	500	
10	30	12	50	
30	30	5	50	
30	30	40	50 50	
25 15	30 30	2 50	50 50	
15	30	50	50	
15	30	0	50	
10	30	12	50	
10	30	0	50	
25	30	2	50	
30	30	5	50	
30	30	40	50	
15	30	0	50	
25	30	45	50	
10	30	0	50	
25	30	45	50	
15 15	40 40	380 392	400	
20	40 20	0	400 20	
20	20	15	20	
5	150	300	300	
20	150	114	300	
5	150	300	300	
15	14	97	100	
15	14	86	100	
15	14	86	100	
15	14	95	100	
15	14	95	100	
15 15	14 14	64 16	100 100	
15	14	10	100	
15	14	49	100	
15	14	20	100	
15	14	93	100	
15	14	85	100	
15	14	100	100	
15	14	90	100	
15	14	92	100	
15	14	36	100	
15	14	32	100	

1	
2	
3	
4 5	
6	
7	
8 9	
10	
11	
12 13	
13 14	
15	
16 17	
18	
19	
20 21	
22	
23	
24 25	
26	
26 27	
28 29	
30	
31	
32 33	
34	
35	
36 37	
38	
39	
40 41	
42	
43	
44 45	
46	
47	
48 49	
50	
51 52	
52	
54	
55 56	
56	
58	
59 60	
60	

15	14	87	100	
15	14	97	100	
15	14	1	100	
15	14	93	100	
15	14	99	100	
15	14	36	100	
15	14	54	100	
15	14	82	100	
15	14	13	100	
15	14	97	100	
15	14	99	100	
15	14	93	100	
15	14	39	100	
15	14	81	100	
15	14	91	100	
15	14	64	100	
15	14	100	100	
15	14	97	100	
15	14	94	100	
15	37	4	200	
25	37	106	200	
25	37	192	200	
15 25	37	178	200	
25 15	37	196	200	
15	37	188	200	
20 5	21 21	134 0	200 50	
30	21	2	50	
10	21	5	50	
10	21	45	50	
15	21	28	50	
25	21	6	50	
15	28	88	200	
15	14	22	100	
15	28	54	200	
15	14	91	100	
15	14	40	100	
20	52	53	60	
20	52	3	60	
20	52	47	60	
20	20	4	10	
20	28	22	200	
15	21	28	150	
15	21	101	150	
15	21	136	150	
15	28	0	200	
10	28	35	50	
20	28	198	200	
15	28	84	200	
10	28	28	50	
15	21	141	150	
25	28	5	50	
20	28	23	50	
25	28	5	50	
20	28	19	50	
15	28	26	50	

25	28	20	50	
10	28	36	50	
15	28	48	50	
30	28	0	50	
5	28	0	50	
30	28	1	50	
15	28	24	50	
20	28	22	50	
15	28	50	50	
5	28	18	50	
20	28	78	100	
30	28	100	100	
25	28	4	100	
25	28	100	100	
30		98	100	
	28			
20	28	79	100	
35	28	100	100	
10	28	63	100	
15	28	4	100	
20	28	100	100	
20	28	3	100	
15	28	45	100	
20	28	81	100	
10	28	30	100	
25	28	95	100	
20	28		100	
		3		
15	28	37	100	
30	28	100	100	
15	28	37	100	
35	28	69	100	
15	28	95	100	
30	28	51	100	
35	28	58	100	
25	28	18	100	
25	28	91	100	
25	28	100	100	
25	28	100	100	
30	28	58	100	
20	365	0	50	
30	365	38	50	
25	365	50	50	
15	365	37	50	
5	365	10	50	
35	365	17	50	
10	365	9	50	
20	365	42	50	
5	200	132	150	
5	200	117	150	
15	21	294	300	
15	21	120	300	
15	18	136	150	
25	18	76	150	
25	18	16	150	
20	18	128	150	
15	18	144	150	
10	18	138	150	

. ugc
1 2
3
4 5
6
7
8 9
10
11 12
13
14
15 16
17
18 19
20
21
22 23
24
25 26
27
28
29 30
31
32 33
34
35 36
37
38 39
39 40
41
42 43
44
45 46
47
48
49 50
51
52 53
54
55 56
56 57
58
59

10	18	100	150	
20	18	135	150	
25	106	158	200	
25	106	196	200	
25	106	138	200	
25	106	110	200	
25	106	173	200	
25	106	123	200	
10 25	66 30	120 190	150 200	
20	20	6	10	
20	5	192	200	
20	14	0	100	
25	14	7	100	
25	14	95	100	
20	21	90	100	
20	14	95	100	
20 NA 20 NA		200 200	200 200	
20 NA 20 NA		168	200	
20 NA		156	200	
20 NA		72	200	
15	15	11	150	
5	15	9	150	
20	15	2	150	
15 20	15 15	150 149	150	
15	15	149	150 150	
15	15	150	150	
20	15	0	150	
10	15	150	150	
10	15	150	150	
25	15 15	148 2	150	
10 5	15 15	149	150 150	
10	15	8	150	
15 NA		152	200	
20	70	0	500	
15	70	0	500	
25	70 70	0	500	
15 10	70 70	0 253	500 500	
30	70	0	500	
5	70	3	500	
20	70	0	500	
30	70	0	500	
25	70	0	500	
15	70 70	1	500	
10 15	70 70	125 0	500 500	
20	70	0	500	
5	70	Ö	500	
20	70	0	500	
10	30	0	100	
20	30	100	100	
30	30	20	100	

20 15 15 25 10 30 25 25 20 20 15 15 25 25 25 25 25 25 25 25	30 30 30 30 30 30 30 30 30 30 30 20 20 20 20 28 28	97 86 50 71 71 84 96 98 41 0 98 0 4 0 78 57 7 23 42	100 100 100 100 100 100 100 100 100 100	
25 NA		10	50	
25 NA 25 NA		40 30	50 50	
25 NA 25 NA		30 40	50	
25	14	188	200	
20	28	19	20	
20	28	0	20	
10	35	0	200	
10 10	35 35	110 0	200 200	
20	35	200	200	
30	35	8	200	
30	35	180	200	
20	35	0	200	
30	35	186 104	200	
10 20	35 35	194 200	200 200	
20	35	116	200	
30	35	0	200	
20	14	0	400	
15	14	4	400	
15	14	36	400	
30 30	14 14	64 104	400 400	
15	14	4	400	
15	14	12	400	
20	14	44	400	
30	14	8	400	
25	14	140	400	
20 20	14 14	8 84	400 400	
15	14	172	400	
25	14	24	400	
15	14	164	400	
15	14	0	400	
25	14	140	400	

ruge	_
1	
2	
3 4	
5	
6	
7	
8	
9	
10 11	
12	
13	
14	
15	
16 17	
18	
19	
20	
21	
22 23	
23 24	
25	
26	
27	
28 29	
30	
31	
32	
33	
34 35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45	
46 47	
48	
49	
50	
51	
52 53	
53 54	
55	
56	
57	
58 59	
22	

25	14	12	400	
30	14 14	24	400	
15 25	14 30	0 300	400 400	
30 NA	30	16	400	
20 NA		68	400	
20 NA		37	75	
20 NA		4	400	
25 NA		280	400	
30 NA		36	75	
15 NA		8	400	
25 NA 15 NA		35 64	75 400	
15 NA 15 NA		38	400 75	
20 NA		28	400	
25 NA		0	400	
20 NA		348	400	
30 NA		0	400	
15	30	0	60	
15	30	20	60	
15 15	30 30	49 37	60 60	
15	30	1	60	
15	30	1	60	
20	20	7	10	
25	56	39	40	
25	90	149	160	
20	56	31	50	
20 20 NA	56	13 3	50 125	
20 NA		120	125	
20 NA		0	125	
20 NA		20	125	
25	21	50	250	
25	21	0	250	
25 25	21 21	200 250	250 250	
25	21	125	250	
25	21	112	250	
25	21	250	250	
25	21	162	250	
25	21	125	250	
25 25	21 21	2 85	250 250	
25 25	21	250	250	
25	21	200	250	
25	21	250	250	
25	21	212	250	
25	21	250	250	
30	21	18 51	60 170	
35 20	21 28	51 90	170 100	
30	28	90 66	100	
10	28	59	100	
20	14	64	320	
20	14	10	52	

20 20	14 14	46 54	228 272	
20	14	5	5	
20	14	0	5	
20	21	163	200	
20	14	0	5	
20	14	3	5	
20	14	380	400	
15	50	0	48	
25	50	12	48	
25	50	0	48	
15	50	22	48	
25	70	778	810	
25	15 15	23	25	
25 25	15 15	23	25	
25 25	15 15	24	25 25	
25 25	15 15	23 24	25 25	
25 25	15	21	25 25	
20	21	152	200	
25	15	21	25	
25	15	25	25	
25	15	23	25	
25	15	24	25	
25	15	22	25	
25	15	24	25	
25	15	20	25	
25	15	22	25	
25	15	25	25	
25	15	24	25	
20	42	1	120	
20 25	42 15	98 22	120 25	
15	21	10	80	
15	21	28	80	
5	147	0	150	
20	147	110	150	
10	147	68	150	
25	30	180	200	
20	30	0	200	
20	30	0	200	
25	30	0	200	
20	30	0	200	
15 15	30	0	200	
15 25	30 30	0 16	200 200	
30	30	60	200	
20	30	0	200	
20	30	166	200	
25	30	20	200	
30	30	0	200	
20	30	92	200	
15	42	0	60	
15	42	27	60	
15	42	5	60	
15	42	32	60	

1	
2	
2	
<i>3</i>	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
1.4	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
20	
24 20	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31	
26	
27	
28	
29	
30	
31	
32	
33	
34	
25	
33	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54 55	
56	
57	
58	
59	
60	

15	42	30	60	
15	42	15	60	
15	42	21	60	
15	42	21	60	
15	42	24	60	
15	42	24	60	
15	42	17	60	
15	42	17	60	
15	42	30	60	
15	42	0	60	
15	42	21	60	
15	42	24	60	
15	42	0	60	
15	42	21	60	
15	42	24	60	
15	42	0	60	
15	42	27	60	
15	42	24	60	
15	42	24	60	
15	42	0	60	
20	28	40	60	
10	28	60	60	
15	28	48	60	
20	28	51	60	
20	28	60	60	
5	28	19	60	
20 NA		228	400	
30	30	0	100	
20	30	5	100	
5	30	8	100	
15	30	66 54	100	
5 20	30 30	54 5	100 100	
15	30	37	100	
10	30	37	100	
25	30	17	100	
25	30	2	100	
5	30	8	100	
10	30	69	100	
20	30	30	100	
25	30	2	100	
10	30	37	100	
15	30	37	100	
30	30	0	100	
30	30	8	100	
10	50	70	80	
10	50	14	80	
20	28	132	300	
20	42	4	120	
20	42	106	120	
20	28	153	300	
20	28	147	300	
20	28 94	168 100	300	
25	84 84	109 270	120 300	
20 25	84 84	279 0	300 300	
20	04	U	300	

25	84	288	300	
25	84	0	300	
20	84	3	300	
20	21	157	200	
20	21	168	200	
20	21	173	200	
20	21	173	200	
20	21	176	200	
20	42	109	120	
20	42	9	120	
	21			
20		171 57	200	
20	21	57 54	60	
20	21	54	60	
20	21	22	60	
15	35	40	150	
15	35	21	150	
25	35	14	150	
25	35	26	150	
25	28	141	150	
25	28	118	150	
15	28	128	150	
15	28	2	150	
25	90	105	150	
15	90	75	150	
20	90	105	150	
20	60	150	150	
20	90	94	150	
5	90	0	150	
20	60	100	150	
10	90	14	150	
20 NA		336	400	
15	25	282	300	
25	21	98	100	
25	120	0	120	
25	120	76	120	
5	120	66	120	
5	120	0	120	
10	120	2	120	
10	120	0	120	
15	120	104	120	
20	120	71	120	
15	120	0	120	
15	120	0	120	
25	120	0	120	
25	120	0	120	
15	120	89	120	
20	120	0	120	
15	120	0	120	
15	120	84	120	
5	120	0	120	
10	120	1	120	
5	120	0	120	
20	120	Ö	120	
20	120	Ö	120	
15	120	103	120	
10	120	60	120	
. •			0	

	902
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
-0	

15	120	101	120	
25	21	98	100	
25	21	50	100	
35	21	12	400	
35	42	0	100	
10	21	4	400	
30	42	86	100	
30	21	296	400	
15	21	384	400	
40 30	21 21	212 376	400 400	
30	42	60	100	
30	21	332	400	
10	21	324	400	
25	21	384	400	
15	21	148	400	
10	42	0	100	
25	42	89	100	
15	42	91	100	
25	21	256	400	
25	105	155	200	
20	21	140	400	
15	42	4	100	
20	21 42	388 95	400	
10 20	42 42	90	100 100	
35	21	164	400	
10	21	376	400	
25	21	380	400	
35	21	0	400	
30	21	364	400	
20	42	30	100	
15	21	12	400	
15	21	400	400	
35	42	82	100	
10	21	36 70	400	
25 20	42 21	79 272	100	
20	21	372 276	400 400	
25	21	344	400	
20	30	180	200	
25	14	0	150	
20	14	0	150	
15	14	4	150	
15	14	138	150	
20	14	0	150	
15	14	0	150	
15	14	15	150	
20	14	68	150 150	
20	14 14	0	150 150	
25 35	14	0 20	150 150	
20	14	20 15	150	
20	14	0	150	
15	14	0	150	
10	224	0	150	

25	14	0	150	
25	14	0	150	
10	14	0	150	
10	14	0	150	
15	14		150	
		75 4.4		
20	14	14	150	
30	14	134	150	
20	14	0	150	
15	224	0	150	
20	224	0	150	
10	14	16	150	
20	14	60	150	
10	14	14	150	
25	14	38	150	
35	14	116	150	
25	14	40	150	
15	14	86	150	
30	14	0	150	
5	224	146	150	
25	14	12	150	
20	14	148	150	
20	14	76	150	
20	14	40	150	
30	14	8	150	
20	14	0	150	
20	14	38	150	
30	14	26	150	
20	14	0	150	
15	14	0	150	
15	14	78	150	
10	14	90	150	
15	14	0	150	
25	14	0	150	
20	224	0	150	
20	14	52	150	
10	14	0	150	
35	14	0	150	
35	14	0	150	
25	14	148	150	
25	14	0	150	
10	28	15	150	
15	28	12	150	
25	28	21	150	
15	28	10	150	
20			150	
	28	26		
25	28	12	150	
20	28	14	150	
10	28	10	150	
25	28	22	150	
30	28	18	150	
25	28	122	150	
30	28	14	150	
20	28	74	75	
10	28	68	75	
15	28	71	75	
5	28	45	75 75	
o o	20	40	10	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	
18 19 20 21 22 23 24 25 26 27 28 29 30	
31 32 33 34 35 36 37 38 39 40 41 42 43	
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	

20	56	80	100	
10	90	44	200	
15	90	98	200	
10	90	16	200	
15	90	98	200	
15	90	182	200	
15	90	150	200	
20	90	182	200	
20	90	180	200	
20	28	90	100	
5	364	150	150	
10	364	150	150	
15	364	150	150	
20	364	150	150	
0	364	150	150	
20	15	49	125	
20	15	115	125	
15	56	24	150	
35	56	0	150	
15	56	0	150	
30	56	4	150	
20	56	58	150	
35	56	150	150	
30	56	150	150	
25	56	124	150	
25	56	3	150	
20	56	4	150	
30	14	4	100	
25	14	6	100	
35	14	0	100	
20	14	0	100	
35	14	1	100	
30	14	6	100	
25 20	14 14	1 3	100 100	
20	14	1	100	
25	14		100	
25	14	3	100	
35	14	2	100	
35	14	3 3 2 2 6	100	
30	14	6	100	
20	14	0	100	
35	14	0	100	
30	14	74	100	
30	14	17	100	
25	14	44	100	
20	14	0	100	
35	14	15	100	
30	14	4	100	
35	14	6	100	
25	14	3	100	
35	14	15	100	
30	14	6	100	
20	14	1	100	
25	14	3	100	
30	14	7	100	

20	14	1	100
25	14	1	100
20	14	0	100
15	28	96	150
15	28	16	150
10	28	0	150
20	28	100	150
10	28	0	150
20	28	0	150
15	28	106	150
15	28	0	150
10	28	2	150
15 15	28	117	150
15	28	0	150
20	28 28	10	150
20 10	28	112	150 150
10	28	6	150
20	28	130	150
15	28	10	150
20	28	118	150
10	28	0	150
10	28	90	150
15	28	0	150
20	28	2	150
20	28	0	150
10	28	24	150
20	28	0	150
10	28	0	150
10	28	0	150
10	28	0	150
15	28	0	150
15	28	112	150
20	28	124	150
10	28	84	150
15	28	0	150
20	28	110	150
15	28	106	150
20	28	0	150
10	28	0	150
20	28	0	150
10	28	0	150
15	28	78	150
15	28	0	150
20	28	126	150
20	28	135	150
15	28	0	150
20	28	0	150
10	28	9	150
10	28	2	150
15	28	93	150
10	28	0	150
20	28	0	150
10	28	0	150
10	28	94	150
15	28	0	150

1	
2	
3	
4 5	
5 6 7	
7	
8 9	
10	
11	
12 13	
14	
15	
16 17	
18	
19	
20 21	
22	
23	
24 25	
26	
20 21 22 23 24 25 26 27 28 29	
29	
30	
31 32	
33	
34	
35 36	
37	
38	
39 40	
41	
42 43	
43 44	
45	
46 47	
48	
49	
50 51	
52	
53	
54 55	
56	
57	
58 59	
60	

15	28	0	150	
15	28	10	150	
20	28	0	150	
20	28	94	150	
20	28	140	150	
10	28	0	150	
15	28	111	150	
20	25	136	150	
15	60	196	200	
15 20	60 60	6 190	200 200	
20	60	96	200	
15	70	4	45	
15	70	20	45	
15	70	2	45	
15	70	32	45	
15	14	83	100	
15	90	27	400	
15	90	94	400	
25	90	80	400	
15	90	40	400	
25	90	194	400	
25	90	333	400	
25	90	192	400	
20 15	90 90	92 204	400 400	
20	90	199	400	
20	90	327	400	
20	90	293	400	
20	14	49	60	
20	14	20	60	
20	14	50	60	
20	14	11	60	
20	14	28	60	
20	14	44	60	
20	28	97	100	
20 10	28 21	100 148	100 150	
20	21	82	150	
15	21	38	150	
20	21	150	150	
20	21	90	150	
20	21	148	150	
10	21	2	150	
15	21	148	150	
15 NA		113	240	
10 NA		60	240	
5 NA		24	240	
20 NA	20	137	240 150	
15 20	28 28	129 316	150 400	
20	28	308	400	
20	28	340	400	
20	28	384	400	
20	28	352	400	
20	28	372	400	

25	14	133	225	
25	14	173	225	
20	28	376	400	
20	28	388	400	
20	28	376	400	
20	28	380	400	
20	28	352	400	
20	28	328	400	
20	28	380	400	
20	28	372	400	
20	28	372	400	
20	28	364	400	
25	21	261	300	
25	21	138	300	
25	21	224	300	
25	21	285	300	
25	21	231	300	
20	21	90	120	
10	14	24	50	
25	28	100	100	
10	28	84	100	
15	28	100	100	
15	28	78	100	
20	28	30	100	
15	28	50	100	
20	28	10	100	
25	28	1	100	
25	30	0	150	
25	15	51	150	
20	30	6	150	
20				
	15 15	128	150 150	
20	15 15	122	150	
20	15	122	150	
10	30	33	150	
15	15	138	150	
20	15	150	150	
20	30	10	150	
20	15	148	150	
15	15	150	150	
15	15	110	150	
10	15	116	150	
25	15	68	150	
10	15	124	150	
25	15	110	150	
15	30	30	150	
20	15	114	150	
15	42	141	150	
10	42	0	150	
5	42	125	150	
15	42	147	150	
10	42	139	150	
15	42	139	150	
25	42	16	150	
15	42	12	150	
15	42	1	150	
15	42 42	0	150	
10	44	U	150	

,	
1	
2	
4	
5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15	
10 17	
18	
19	
20	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 31 32 33 33 34 34 35 36 36 37 37 37 38 37 37 37 37 37 37 37 37 37 37 37 37 37	
22	
23 24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36 37	
38	
39	
40	
41	
42 43	
43 44	
45	
46	
47	
48	
49 50	
50 51	
52	
53	
54	
55 56	
56 57	
57 58	
59	
60	

5	42	0	150	
25	42	146	150	
10	30	184	200	
10	30	0	200	
20	28	95	100	
10	28	95	100	
15	28	100	100	
25	28	75	100	
5	14	27	150	
10	14	0	150	
20	14	123	150	
20	14	0	150	
35	14	2	150	
25	14	123	150	
35	14	38	150	
25	14	9	150	
10	14	80	150	
35 25	14 14	116 134	150 150	
20	14	6	150	
10	14	0	150	
5	14	0	150	
5	14	8	150	
35	14	52	150	
10	14	105	150	
25	14	2	150	
20	14	100	150	
5	14	0	150	
20	14	138	150	
20	14	0	150	
25	14	8	150	
35	14	104	150	
35	14	68	150	
20	14	0	150	
10	14	16	150	
10	14	66	150	
35	14	57	150	
10	14	0	150 150	
35 5	14 14	0 0	150 150	
5	14	0	150	
25	14	135	150	
5	14	2	150	
25	14	0	150	
20	14	57	150	
10	14	0	150	
25	14	82	150	
5	14	0	150	
20 NA		400	400	
5	252	42	99	
5	252	85	99	
20	30	43	99	
20	30	50	99	
5	252	0	99	
20	7	250	250	
10	14	8	50	

20 21 250 250 20 21 300 300	
20 21 300 300 20 21 300 300	
25 30 22 50	
15 30 21 50	
15 30 42 50	
10 30 24 50	
25 30 40 50	
10 30 42 50	
10 30 29 50	
15 30 30 50	
25 30 28 50	
25 30 40 50	
15 30 45 50	
10 30 45 50	
10 30 38 50 10 30 44 50	
25 30 37 50	
15 30 43 50	
15 30 45 50	
25 30 42 50	
20 30 40 50	
15 30 48 50	
10 30 48 50	
10 30 48 50	
25 30 40 50	
15 30 44 50	
20 30 18 50	
25 30 45 50 30 130 174 300	
20 130 174 200 25 21 210 300	
25 28 278 300	
25 28 247 300	
20 NA 210 300	
5 NA 210 300	
15 NA 204 300	
20 NA 231 300	
20 NA 213 300	
25 NA 207 300	
10 NA 225 300	
10 NA 207 300	
20 NA 210 300 25 NA 225 300	
10 NA 213 300	
25 NA 228 300	
15 NA 216 300	
10 NA 219 300	
5 NA 123 300	
15 NA 210 300	
25 28 273 300	
25 28 229 300	
25 28 268 300	
25 28 229 300 25 28 230 300	
25 28 239 300 25 28 284 300	
25 28 293 300	

25	28	260	300	
25	28	230	300	
25	28	207	300	
20	28	55	100	
15	28	55	100	
25	28	12	100	
10	28	39	100	
10	28	45	100	
20	28	49	100	
25	28	14	100	
15	28	84	100	
15	28	72	100	
25	28	28	100	
10	28	68	100	
20	28	59	100	
25	15	2	150	
25	15	96	150	
20	3	194	200	
10	3	180	200	
15	3	190	200	
5	3	196	200	
25	3	184	200	
15	42	736	800	
20	20	0	100	
25	20	33	100	
5	20	30	100	
30 20	20 20	0 72	100 100	
15	20	0	100	
15	20	72	100	
10	20	0	100	
10	20	39	100	
25	20	0	100	
5	20	0	100	
30	20	0	100	
20	62	34	300	
20	62	235	300	
10	294	0	150	
5	294	134	150	
15	294	0	150	
5	294	150	150	
10	20	2	150	
30	20	0	150	
5	20	0	150	
20	20	3	150	
25	20	0	150	
20	20	8	150	
15 25	20	46	150 150	
25 15	20 20	6 21	150 150	
15 10	20 20	12	150 150	
15	30	312	400	
15	30	364	400	
25	30	376	400	
20	30	328	400	
5	30	0	400	
-		•		

5	30	0	400	
15	30	384	400	
25	30	344	400	
10 10 10 10	21 21 21	186 195 268	315 315 315	
20	21	211	315	
20	20	100	100	
20	160	99	100	
20	20	94	100	
30 20 10 NA 30 NA	30 21	103 282 95 95	210 300 100 100	
20 NA 15 20 NA	180	95 48 68	100 150 150	
10 20 20 NA	180 180	40 57 69	150 150 150	
20	21	196	200	
10	21	68	200	
25	21	192	200	
10	21	48	200	
25	21	196	200	
10	21	0	200	
20	21	198	200	
15	21	192	200	
20	21	192	200	
10	21	158	200	
10	21	52	200	
15	21	182	200	
15	21	164	200	
10 25 10	21 21 21 21	46 174 156	200 200 200 200	
15	21	170	200	
20	21	166	200	
15	21	172	200	
10	21	0	200	
10	21	110	200	
20	21	176	200	
20	21	170	200	
15	21	162	200	
10	21	20	200	
25	21	174	200	
15	21	198	200	
10	21	30	200	
20	21	196	200	
10 10 10 20	21 21 21 21	0 154 196	200 200 200 200	
15	21	190	200	
25	21	192	200	
10	21	42	200	
25	21	196	200	

i age
1
2
3 4
5
6 7
8
9 10
11
12 13
14
15 16
17
18 19
20
21 22
23
24 25
26
27 28
29 30
31
32 33
34
35 36
37
38 39
40
41 42
43
44 45
46 47
47 48
49 50
51
52 53
54
55 56
57
58 59
J7

10	04	00	000	
10	21	68	200	
15	21	174	200	
20	21	194	200	
35	30	384	420	
25	30	386	420	
15	30	46	420	
35	30	361	420	
15	30	98	420	
25	30	385	420	
35	30	364	420	
25	30	390	420	
15	30	59	420	
15	30	89	420	
35	30	352	420	
25	30	392	420	
15	30	55	420	
25	30	386	420	
35	30	367	420	
25	30	387	420	
35	30	367	420	
15	30	99	420	
25	14	40	40	
25	14	12	40	
30	14	28	40	
20 NA		9	150	
15	180	6	150	
20	180	3	150	
20 NA		74	150	
10	180	3	150	
20	20	33	500	
20	20	156	500	
20	20	14	500	
20	20	58	500	
20	28	60	100	
25	28	63	150	
20	28	48	150	
25	28	57	150	
20	28	93	150	
25	21	178	200	
25 25	21	146	200	
25 25	21	131	200	
25 25	21	86	200	
25 25	21	117	200	
25 25	21	158	200	
25 25	21	147	200	
10	180	72	150	
15	180	62	150	
20 NA	180	69 74	150	
20 NA		74 72	150	
20 NA	04	72 101	150	
25	21	101	200	
15	28	410	450	
25	28	45	45	
25	30	93	100	
25	30	73	100	
25	30	61	100	

15 NA 25 NA 25 NA 25 NA 10 NA 15 NA 15 NA 16 NA 17 NA 18 NA 18 NA 19 NA 19 NA 19 NA 19 NA 10 NA 10 NA 11 NA 12 NA 11 NA 12 NA 13 NA 14 NA 15 NA 16 NA 17 NA 18 NA	42 42 42 42 42 42 42 42 42 42 42 42 42 4	54 145 43 35 144 148 130 147 146 1 0 145 65 19 61 48 37 50 0 49 42 34 41 42 43 40 6 7 49 42 34 41 42 43 40 6 7 49 42 0 38 54 168 191 186 200 200 158 200 200 158 200 100 100 46	160 160 160 160 160 150 160 150 160 160 160 160 160 50 50 50 50 50 50 50 50 50 50 50 50 50	
15				
15	14	46 96	100	
0	84	100	100	
15	14	100	100	
15	14	58	100	
25	21	328	400	
25	21	194	400	
20 25	28 27	211	400	
∠0	21	245	400	

J	
1	
2	
3	
4	
5	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
Ι/ 10	
19	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 31 32 33 34 34 35 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37	
21	
22	
23	
24	
25	
26	
27	
28	
29 20	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59	
60	

25	21	128	400	
25	21	400	400	
25	21	336	400	
25	7	95	100	
25	27	379	400	
25	7	29	100	
25	28	15	150	
20	28	150	150	
20	28	22	150	
15	28	98	150	
10	28	0	150	
10	28	38	150	
25	28	0	150	
15	28	82	150	
15	14	41	100	
30	14	92	100	
30	14	40	100	
15	14	94	100	
25 NA		2	150	
25 NA		150	150	
15	70	150	250	
25	70	35	250	
15	70 70	40	250	
25	70 70	142	250	
20	70 70	44	250	
25	70 70	51	250	
30	70 70	18	250	
30 20	70 70	18 45	250 250	
10	70	33	250	
15	70	56	250	
20	70	142	250	
20	13	292	300	
25	15	114	150	
25	21	380	400	
25	21	384	400	
25	21	104	200	
25	21	178	200	
25	21	128	200	
25	60	15	160	
25	60	50	160	
5	60	3	160	
10	60	71	160	
15	60	26	160	
5	60	27	160	
25	21	356	400	
20	5	4	200	
20	5	30	200	
20	22	23	100	
20	22	120	500	
20	22	250	500	
20	22	58	450	
20	20	32	40	
20	20	0 205	40 300	
15	40 40	295 174	300 300	
40	40	1/4	300	

20 25	40 40	294 283	300 300	
10	40	289	300	
25	40	282	300	
30	40	270	300	
15	40	291	300	
30	40	283	300	
35	40	253	300	
35 10	40 40	218 285	300 300	
10	40	273	300	
30	40	262	300	
20	40	293	300	
20	40	293	300	
5	40	5	300	
10	28	141	300	
25	28	87	300	
10	28	81	300	
25 10	28 28	18 117	300	
25	28	96	300	
10	28	99	300	
25	28	48	300	
25	28	39	300	
10	28	123	300	
20	30	212	250	
25	30	208	250	
10	30	225	250	
25	30	242 208	250	
20 15	30 30	212	250 250	
15	30	225	250	
10	30	212	250	
25	120	196	400	
25	120	192	400	
20	14	81	100	
20	14	21	100	
15	14	14	100	
20 25	14 14	100 100	100 100	
30	14	99	100	
35	14	84	100	
25	14	100	100	
20	14	59	100	
20	14	99	100	
30	14	98	100	
35	14	82	100	
20 15	14 14	10 2	100	
20	15	150	100 150	
5	15	150	150	
15	15	150	150	
15	60	123	150	
15	60	0	150	
10	15	150	150	
20	15	150	150	

3
1 2
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 33 34 35
6 7
8 9 10
11 12 13
14 15
17 18
19 20 21
22 23
25 26
27 28 29
30 31 32
33 34
36 37
38 39 40
41 42 43
44 45
46 47 48
49 50 51
52 53 54
55 56
57 58 59
60

25	15	0	150	
25	28	58	400	
25	28	168	400	
20	28	230	400	
20	28	260	400	
25	28	64	400	
20	28	69	400	
20 25	28	98 170	400	
20	28 28	178 66	400 400	
20	28	63	400	
20	28	192	400	
20	28	262	400	
25	28	92	400	
25	28	26	400	
25	28	33	400	
25	28	86	400	
5	245	184	200	
25	20	0	50	
25	20	42	50	
20	20	0	50	
20	20	50	50	
15	20	50	50	
20 15	20 20	50 4	50 50	
15	20	50	50	
15	20	50	50	
25	20	50	50	
25	20	50	50	
15	20	44	50	
25	20	0	50	
15	20	0	50	
15	20	0	50	
15	20	50	50	
25	20	36	50	
15	20	50	50	
15	20	44	50	
15 15	20 20	38 0	50 50	
15 5 NA	20	69	50 100	
15 NA		88	100	
10 NA		93	100	
25 NA		87	100	
30 NA		75	100	
20 NA		95	100	
15 NA		88	100	
10 NA		97	100	
20 NA		88	100	
30 NA		65	100	
25 NA		90	100	
5 NA		62 70	100	
20 NA		78 01	100	
25 NA 10 NA		91 92	100 100	
5 NA		92 82	100	
30 NA		72	100	
20		. –	. 55	

15 NA		94	100	
25	20	79	100	
25	20	43	100	
25	20	8	100	
25	20	12	100	
25	20	93	100	
25	20	5	100	
5 NA	20	47	100	
15 NA		65	100	
25 NA		61	100	
20 NA		71	100	
10 NA		89	100	
30 NA		52	100	
25	48	325	500	
25	48	285	500	
15	30	100	200	
10	15	237	300	
15	15	270	300	
25	15	180	300	
20	15	234	300	
20	15	258	300	
25	15	207	300	
30	15	105	300	
30	15	69	300	
10	15	270	300	
5	15	30	300	
30	15	51	300	
15	15	270	300	
10	15	270	300	
20	15	270	300	
20	10	364	450	
20	60	56	150	
20	60	108	150	
20	60	22	150	
20	60	0	150	
15	56	90	100	
20	2	48	50	
15	22	98	100	
10	22	90	100	
10	22	18	100	
25	22	90	100	
15	22	99	100	
25	22	95	100	
10	22	98	100	
15	22	91	100	
15	22	62	100	
25 10	22 22	98 98	100	
25	22	96 95	100 100	
25 25	22 14	95 97	100	
25 15	23	81	100	
25	23 14	70	100	
25 25	14	86	100	
15	21	18	300	
15	21	291	300	
20	21	12	300	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	20 10 15 15 10 25 25 25 25 25 20 NA 15 NA 20 NA
21 22 23 24 25 26 27	20 NA 20 NA 20 NA 20 NA 20 NA 15 NA 20 NA
28 29 30 31 32 33 34 35	20 NA 20 NA 20 NA 20 NA 20 NA 20 NA 20 NA 20 NA
36 37 38 39 40 41 42 43	15 NA 15 NA 20 NA 20 NA 20 NA 20 NA 20 NA
44 45 46 47 48 49 50	20 NA 20 NA 20 NA 20 NA 20 NA 20 NA 20 NA 20 NA
52 53 54 55 56 57 58 59	20 NA 15 NA 20 NA 20 NA 20 NA 20 NA 20 NA 20 NA
60	20 NA

20 10 15 15 10 25 25 25 NA	21 21 21 21 14 28 28 28 28	60 33 237 63 24 68 0 0 5 32 27 27 14 24 27 0 27 27 22 27 0 0 24 20 6 14 16 27 2 28 25 26 0 24 26 18 27 30 27 30 27 30 30 30 30 30 30 30 30 30 30 30 30 30	300 300 300 300 300 50 50 50 50 50 30 30 30 30 30 30 30 30 30 30 30 30 30	
20 NA 20 NA 20 NA		29 27	30 30	

20 NA 20 NA 20 NA 20 NA 20 NA 20 NA 20 NA 20 NA 20 NA 20 NA	27 22 27 16 24 22 0 22 26	30 30 30 30 30 30 30 30 30 30
20 NA	0	30
20 NA 20 NA	16 15	30 30
20 NA	28	30
20 NA	8	30
20 NA	22	30
20 NA	9	30
20 NA 20 NA	23 26	30 30
20 NA	29	30
20 NA	27	30
20 NA	26	30
20 NA	6	30
20 NA	24	30
20 NA 20 NA	26 0	30
20 NA	30	30
20 NA	24	30
20 NA	0	30
20 NA	29	30
20 NA 15 NA	0 27	30 30
15 NA	20	30
20 NA	22	30
20 NA	22	30
20 NA	27	30
15 NA	22	30
20 NA 20 NA	15 26	30
15 NA	0	30
20 NA	6	30
15 NA	18	30
20 NA	0	30
20 NA 20 NA	30 29	30 30
20 NA	12	30
20 NA	9	30
20 NA	27	30
20 NA	6	30
15 NA	16 26	30
20 NA 15 NA	26 22	30 30
20 NA	14	30
20 NA	26	30
20 NA	16	30
20 NA	20	30
20 NA	16	30

1	
2	
3 4	
4	
5	
6 7	
8	
9	
10	
11 12	
13	
13 14 15	
15	
16 17	
18	
19	
20	
21 22 23 24 25	
23	
24	
25	
26 27	
28	
29	
30	
31	
32 33	
34	
35	
36	
37 38	
39	
40	
41	
42 43	
44	
45	
46	
47 48	
49	
50	
51	
52 52	
53 54	
55	
56	
57	
58 59	
59 60	

20 NA		22	20	
20 NA 20 NA		22 14	30 30	
20 NA 20 NA		22 30	30 30	
20 NA		15	30	
20 NA 20 NA		20 28	30 30	
20 NA 20 NA		13 22	30 30	
20 NA		16	30	
20 NA 15 NA		29 24	30 30	
20 NA		16	30	
15 NA 15 NA		26 0	30 30	
20 NA 20 NA		15 0	30 30	
20 NA		0	30	
20 20	12 12	40 36	50 50	
20 20	12 12	28 46	50 50	
20	13	163	320	
20 30	13 13	198 51	320 320	
10	13	122	320	
15 25	13 13	141 157	320 320	
35 25	13 13	10 90	320 320	
15 15	10 25	112 0	125 100	
20	33	46	100	
20 15	25 23	106 64	150 100	
15 20	11 28	80 380	250 400	
15	50	38	40	
30 20	50 50	40 38	40 40	
20 20	50 70	40 40	40 40	
10	50	31	40	
30 10	70 50	38 32	40 40	
15 25	70 50	23 40	40 40	
30	50	40	40	
15 25	50 70	36 40	40 40	
15 15	50 70	36 32	40 40	
25	70	40	40	
15 25	70 70	26 40	40 40	
15	70	28	40	

25 30	50 70	40 40	40 40
25	50	40	40
25	50	40	40
15 10	50 70	36	40
10 30	70 70	0 0	40 40
30	50	0	40
15	50	38	40
20	85	32	40
15	85	34	40
15	70	25	40
20	85	12	40
20 25	70 70	28	40 40
10	70 85	0 7	40
25	70	0	40
25	70	0	40
30	70	0	40
25	85	2	40
25	50	8	40
10	70	32	40
25 25	85 70	18 0	40 40
25	85	4	40
15	70	2	40
15	85	16	40
15	70	18	40
15	50	38	40
25	85	0	40
30	70 50	0	40
20 15	50 70	34 27	40 40
20	85	15	40
15	70	26	40
25	70	0	40
10	50	36	40
15	85	25	40 40
30	85	0	40
15 30	70 85	0 0	40 40
10	85	7	40
20	70	0	40
15	85	8	40
30	85	0	40
15	85	9	40
25	85	5	40
15 30	85 85	30 0	40 40
10	50	38	40
15	70	36	40
20	50	36	40
20	70	8	40
10	70	24	40
15	70	14	40
25	85	0	40

1	
2	
3	
4 5	
6	
7	
8	
9	
10	
11	
12	
13	
14 15	
15 16	
16 17	
18	
19	
19 20	
21 22 23	
22	
23	
24	
25 26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	
47 48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58 59	
59 60	
JU	

25	70	2	40	
15	70	28	40	
25	70	1	40	
25	50	22	40	
25	70 - 0	0	40	
25	50 05	31	40	
25 20	85 70	5 7	40 40	
15	70 70	2	40	
25	50	39	40	
15	50	38	40	
15	50	39	40	
10	85	38	40	
20	70	22	40	
15	70	14	40	
10	70	0	40	
15	85 70	40	40	
25 10	70 85	10 36	40 40	
25	70	4	40	
10	70	4	40	
25	85	2	40	
20	85	31	40	
25	70	2	40	
30	70	0	40	
15	85	22	40	
30	50 70	2	40	
10 20	70 70	16 0	40 40	
30	70 70	0	40	
25	70	Ö	40	
30	70	0	40	
15	70	1	40	
25	14	200	200	
20	14	200	200	
15	300	0	100	
10 5	300 300	40 61	100 100	
10	300	87	100	
15	300	0	100	
5	300	80	100	
10	300	77	100	
5	300	84	100	
5	300	97	100	
0	300	62	100	
0 10	300	23	100	
10	300 300	33 74	100 100	
0	300	74 71	100	
15	300	4	100	
5	300	75	100	
10	300	79	100	
5	300	76	100	
10	300	83	100	
10	300	81	100	
15	300	4	100	

5	300	83	100	
5	300	73	100	
0	300	46	100	
15	300	9	100	
10	300	77	100	
5	300	91	100	
5	300	93	100	
15	300	10	100	
0	300	76	100	
10	300	84	100	
0	300	64	100	
5	300	71	100	
5	300	78	100	
10	300	87	100	
10	300	83	100	
10	300	96	100	
5	300	87	100	
5	300	95	100	
10	300	99	100	
5	300	69	100	
15	300	0	100	
0	300	17	100	
15	300	0	100	
5	300	97	100	
10	300	97	100	
0	300	84	100	
10	300	91	100	
5	300	97	100	
15	300	0	100	
10	300	88	100	
0	300	94	100	
15	300	0	100	
5	300	98	100	
0	300	51	100	
10	300	52	100	
5	300	90	100	
10	300	69	100	
5				
	300	91	100	
10	300	99	100	
15	23	66	100	
35	28	0	400	
15	28	0	400	
10	28	0	400	
10	28	188	400	
25	28	16	400	
10	28	0	400	
15	28	0	400	
10	28	228	400	
15	28	80	400	
35	28	0	400	
25	28	0	400	
0	28	0	400	
30	28	4	400	
30	28	0	400	
10	28	172	400	
25	28	0	400	

1	
2	
3 4	
5	
6 7	
8 9	
10	
11 12	
13	
14 15	
16 17	
18	
19 20	
21	
22	
24	
20 21 22 23 24 25 26 27	
27 28	
28 29	
30 31	
32 33	
34	
35 36	
37	
38 39	
40 41	
42	
43 44	
45 46	
47	
48 49	
50 51	
51 52	
53 54	
55	
56 57	
58 59	
60	

15	28	60	400	
0	28	0	400	
0	28	0	400	
25	28	0	400	
15	28	0	400	
5	28	320	400	
5	28	344	400	
0	28	24	400	
40	28	0	400	
10	28	32	400	
15	28	0	400	
30	28	24	400	
5	28	0	400	
15	28	0	400	
10	28	8	400	
10	28	136	400	
40	28	0	400	
15	28	0	400	
20	28	0	400	
0	28	80	400	
10	28	108	400	
10	28	80	400	
5	28	276	400	
5	28	16	400	
5	28	0	400	
15	28	0	400	
20	28	0	400	
5	28	304	400	
15	28	172	400	
10	28	8	400	
10	28	0	400	
30	28	0	400	
35 25	28	0	400	
25 30	28	0	400 400	
	28	0		
25 15	28 28	0 144	400 400	
10	28	108	400	
15	28	84	400	
35	28	0	400	
15	28	200	400	
15	28	0	400	
15	28	120	400	
30	28	0	400	
10	28	0	400	
5	28	0	400	
20	28	108	400	
15	28	0	400	
25	28	0	400	
5	28	0	400	
25	28	0	400	
35	28	0	400	
20	28	32	400	
5	28	348	400	
5	28	8	400	
0	28	0	400	

20 15 20 10 5 25 30 5 30 10 15 10 20 20 10 20	28 28 28 28 28 28 28 28 28 28 28 28 28 2	0 0 0 276 0 0 0 272 0 260 0 120 0 76 0 72	400 400 400 400 400 400 400 400
15	28	0	400
20	28	0	400
35	28	0	400
10	28	0	400
0 20	28 28	276 0	400 400
5	28	288	400
15	28	16	400
5	28	268	400
0	28	144	400
20	28	0	400
15	28	0	400
25 20	28 28	12 0	400 400
25	28	24	400
10	28	172	400
25	28	0	400
20	28	120	400
10	28	0	400
15	28	140	400
5 25	28 21	0 21	400 150
25	21	135	150
25	21	64	150
25	21	32	150
20	14	39	100
20	14	85	100
20	14	10	100
20 20	14 14	65 93	100 100
20	14	66	100
25	42	58	200
25	42	66	200
15	42	94	200
25	42	84	200
15 15	42 42	130	200
15 25	42 42	134 82	200 200
15	42	134	200

1	
2 3 4 5	
6 7 8	
9 10 11	
12 13 14 15	
15 16 17	
18 19 20	
21 22 23 24 25	
24 25 26	
26 27 28 29	
30 31 32	
33 34 35	
36 37 38	
39 40 41	
42 43 44	
45 46 47	
48 49 50	
51 52 53	
54 55 56	
57 58 59	
60	

0	28	0	400	
5	28	268	400	
0	28	0	400	
35	28	116	400	
0	28	0	400	
5	28	272	400	
20	28	328	400	
5	28	0	400	
0	28	0	400	
35	28	8	400	
35	28	8	400	
25 15	28	208 8	400 400	
15 15	28 28	0	400 400	
15	28	288	400	
15	28	348	400	
5	28	0	400	
30	28	112	400	
0	28	48	400	
Ō	28	0	400	
10	28	348	400	
20	28	156	400	
-5	28	0	400	
15	28	4	400	
10	28	284	400	
15	28	84	400	
5	28	312	400	
10	28	84	400	
5	28	0	400	
20	28	324	400	
10	28	268	400	
-5	28	0	400	
10	28	0	400	
20	28	324	400	
20	28	364	400	
5	28	236	400	
20 5	28 28	328 84	400 400	
15	28	356	400	
-5	28	0	400	
5	28	64	400	
0	28	168	400	
0	28	0	400	
0	28	0	400	
0	28	0	400	
25	28	296	400	
0	28	0	400	
30	28	184	400	
5	28	0	400	
10	28	316	400	
5	28	80	400	
15	28	332	400	
15	28	352	400	
30	28	200	400 400	
10	28	0 194	400 400	
25	28	184	400	

5 10 25 5 10 10 10 5 0 15 5 20 10 10	28 28 28 28 28 28 28 28 28 28	0 348 308 256 0 0 40 140 0 0 8 48 64 80	400 400 400 400 400 400 400 400 400 400	
10 10	28 28	76 332	400 400	
10	28	324	400	
0	28	0	400	
5	28	60	400	
10 20	28 28	8 104	400 400	
15	28	32	400	
0	28	28	400	
10	28	176	400	
30	28	8	400	
30 -5	28 28	4 0	400 400	
5	28	104	400	
0	28	16	400	
5	28	0	400	
15	28	24	400	
5 25	28 28	0 228	400 400	
20	28	40	400	
30	28	188	400	
0	28	0	400	
10	28	0	400	
15 5	28 28	360 124	400 400	
10	28	0	400	
0	28	0	400	
15	28	84	400	
15	28	200	400	
25 25	28	40 0	400 400	
0	28 28	0	400	
10	28	164	400	
10	28	144	400	
5	28	0	400	
5	28	68	400	
0 20	28 28	0 12	400 400	
0	28	0	400	
10	28	220	400	

1	
2	
3 4	
5	
6 7	
8 9	
10	
11 12	
13	
14 15	
16 17	
18	
19 20	
21	
22	
24	
20 21 22 23 24 25 26 27	
27 28	
28 29	
30 31	
32 33	
34	
35 36	
37	
38 39	
40 41	
42	
43 44	
45 46	
47	
48 49	
50 51	
51 52	
53 54	
55	
56 57	
58 59	
60	

-5	28	0	400	
10	28	12	400	
5	28	48	400	
5	28	100	400	
5	28	80	400	
40	28	0	400	
20	28	28	400	
0	28	0	400	
0	28	0	400	
25	28	16	400	
0	28	0	400	
0	28	0	400	
10	28	240	400	
25	28	4	400	
0	28	0	400	
10	28	148	400	
0	28	60	400	
5	28	168	400	
5	28	0	400	
20	28	48	400	
15	28	20	400	
10 15	28	0	400	
15	28	188	400	
-5 5	28 28	0 20	400 400	
10	28	12	400	
15	28	40	400	
15	28	12	400	
40	28	0	400	
0	28	16	400	
35	28	0	400	
15	28	24	400	
0	28	0	400	
10	28	124	400	
10	28	0	400	
25	28	288	400	
0	28	68	400	
5	28	224	400	
5	28	100	400	
25	28	8	400	
10	28	56	400	
10	28	40	400	
0	28	0	400	
5	28	0	400	
5	28	0	400	
15	28	195	200	
20	28	183	200	
25	28	194	200	
15	28	196	200	
20	28	198	200	
20	28	179 106	200	
20	28	196 104	200	
25 20 NA	28	194 168	200 300	
20 NA 10 NA		0	200	
20 NA		0	200	
~U 14/		J	200	

25 NA 20 NA 20 NA 20 NA 20 NA A 20 NA 20 NA A 20 NA 20 NA 20 NA A 20 N	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	148 10 48 249 130 117 142 144 0 45 120 24 270 0 180 134 99 0 184 214 0 0 142 53 70 0 174 0 99 237 56 235 45 4 159 3 186 269 0 0 0 186 214 159 169 179 189 189 189 189 189 189 189 18	200 200 300 200 200 200 200 200 300 200 300 200 300 3	
5	30	5	100	

1	
2	
3	
4 5	
6 7	
8 9	
10	
11	
12 13 14 15	
14	
15 16	
16 17	
18	
19 20	
21	
21 22 23	
24	
25	
26 27	
28	
29 30	
31	
32	
33 34	
25	
36 37	
38	
39	
40 41	
42	
43 44	
44	
46	
47 48	
49	
50	
51 52	
53	
54 55	
55 56	
57	
58 59	
60	

25 25 25 20 20 NA 15 20 25 20 25 10 15 15 20 20	33 33 33 12 28 60 21 21 21 90 28 60 28 28	16 10 16 160 63 0 91 102 108 12 20 49 72 372 80	20 20 200 100 120 120 120 120 120 120 12		
25 NA 25 NA 25 NA 25 NA 15 NA 40 NA 25 NA 20 20 30 NA	21 21 21	160 135 145 175 141 146 144 196 7 148 199	500 500 500 150 150 150 200 200 150 200		
30 20 30 30 20 20 NA 15 30 10	21 21 21 21 21 23 28 28 28 28	197 0 73 200 189 142 69 2 52 146 46	200 200 200 200 200 150 100 200 200 200		
10 30 5 15 20 25 25 15 15 10 20	28 28 28 28 28 28 28 28 28 28 28 28	110 36 22 156 140 110 98 94 164 104 152 84	200 200 200 200 200 200 200 200 200 200		

25 5 20 20 10 5 15 10 10 15 20 25 15 5 20 25 15 5 20 25 15 20 25 25 25 20 25 25 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	28 28 28 28 28 28 28 28 28 28 28 28 28 2	40 0 154 166 54 0 48 44 42 118 48 168 176 48 152 72 152 46 146 106 134	200 200 200 200 200 200 200 200 200 200	
20 5	30 30	70 3	100 100	
0	30	0	100	
20	30	67	100	
0	30	10	100	
20	30	58	100	
10	30	30	100	
20 5	30 30	74 29	100 100	
10	30	46	100	
25	21	5	100	
25	21	92	100	
25	21	384	400	
25	21	337	400	
25	21	289	400	
15	49	83	125	
10 15	49 49	4 87	125 125	
20	49	46	125	
15	49	2	125	
25	49	6	125	
25	49	37	125	
20	49	2	125	
25	49	24	125	
10	49 40	0	125	
20 15	49 49	61 4	125 125	
25	49	0	125	
20	49	2	125	
10	49	95	125	
10	49	86	125	
15	14	72	80	
20	28	120	300	
20	28	255	300	

1	
2	
3 4	
5	
6	
7 8	
9	
10 11	
12	
13	
14 15	
16 17	
17	
19 20	
20 21	
21 22 23	
23 24	
25	
26	
27 28	
29	
30 31	
32	
33 34	
25	
36	
37 38	
39	
40 41	
42	
43 44	
45	
46	
47 48	
49	
50 51	
52	
53 54	
55	
56	
57 58	
59	
60	

20	20	270	200	
20	28	270	300	
20	28	261	300	
20	28	270	300	
20	28	297	300	
25	30	180	200	
25	30	70	200	
15	60	156	175	
25	60	119	175	
25	60	154	175	
20	60	154	175	
10	60	112	175	
15	60	152	175	
10	60	112	175	
20	60	149	175	
10	60	149	175	
5	60	126	175	
25	60	135	175	
5	60	114	175	
25	60	135	175	
5	60	158	175	
5	60	98	175	
20	60	135	175	
15	60	131	175	
15	60	136	175	
20	60	121	175	
10	60	158	175	
15	23	79	100	
20	7	18	50 50	
35	7	31	50	
35	7	30	50	
25	7	45	50	
40	7	41	50	
15	7	8	50	
25	7	45	50	
25	7	39	50	
15	7	6	50	
25	7	41	50	
20	7	28	50	
35	7	34	50	
40	7	32	50	
35	7	37	50	
15	7	1	50	
25	7	44	50	
		22		
35	7		50	
35	7	28	50	
25	7	45	50	
40	7	16	50	
20	7	26	50	
40	7	20	50	
35	7	21	50	
25	7	44	50	
25	7	43	50	
15	7	4	50	
35	7	27	50	
20	7	23	50	
25	7	40	50	
_0	,	70	50	

15 20 25 25 25 20 25 NA 25 NA 25 NA 25 NA 25 NA 25 NA 25 NA 25 NA 25 NA 20 NA	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3 36 45 38 6 43 40 328 0 60 402 12 0 184 0 483 340 328 164 348 32 54 0 8 304 486 0 43 220 37 0 2 48 36 22 2 6 0 0 26 24 12 25 12 32 32 42 28 16 0	50 50 50 50 50 50 400 400 400 400 400 40	
20	152	32	50	
20	152	42	50	
20	152	28	50	

. ugc
1
2
3 4
5
6 7
8
9 10
11
12 13
14
15 16
17
18 19
20 21
22
23 24
25
26 27
28
29 30
31 32
33
34 35
36
37 38
39
40 41
42 43
44
45 46
47
48 49
50 51
52
53 54
55
56 57
58
59 60

20	152	46	50	
30 NA	102	0	25	
30 NA		15 15	25	
25 NA		15	25	
25 NA		0	25	
15	23	67	100	
30 NA		33	90	
30 NA		4	90	
30 NA		0	90	
30 NA		63	90	
30 NA		0	120	
30 NA		11	120	
30 NA		44	120	
30 NA		10	120	
20	157	38	75	
25 NA		250	400	
5	42	0	150	
25	42	41	150	
30	42	0	150	
15	42	6	150	
10	42	o o	150	
20	42	24	150	
20	12	8	90	
15	12	0	90	
25	12	82	90	
30	12	14	90	
25	12	14	90	
20	12	78	90	
30	12	58	90	
15	12	4	90	
20	20	76	400	
15	20	40	400	
15	20	40	400	
25	20	40	400	
25	20	40	400	
20	20	76	400	
30	20	40	400	
30	20	40	400	
25	16	54	300	
20	16	93	300	
20	16	36	300	
15	16	18	300	
15	16	87	300	
25	16	132	300	
20	28	104	150	
25	28	94	150	
25 25	20	84	100	
25 25	20	10	100	
25 25	25	77	100	
25 25	14	188	200	
25 25	14	100	200	
25 25	60	38	150	
20 20	60	68	150	
10	60	99	150	
15	60	99 75	150	
10	15			
10	15	26	120	

25 5 30 20 15 5 25 20 15 10 15 10 20 25 20 10 15 25 20 NA 20 NA 20 NA 20 NA 20 NA 25 NA 20 NA 25 NA	15 15 15 15 15 7 7 7 21 21 21 21 21 21 21	48 10 22 12 16 40 12 18 18 14 90 30 48 123 126 11 48 87 37 14 20 0 126 49	120 120 120 120 120 120 50 50 50 150 150 150 150 150 150 150 1	
25 NA 25 NA 25 NA 20 25 30 15 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 25 20 25 25 20 25 25 25 25 25 25 25 25 25 25 25 25 25	21 11 34 34 34 31 34 34 34 14 14 14 14 14 45 45 45 45 45 16	49 180 154 24 15 16 0 100 0 40 270 0 156 64 189 20 174 34 38 18 0 376 416 76 85 100 84 84 92 82 81 238	200 160 30 30 200 200 200 200 200 200 200 200	