lmię i nazwisko	Kierunek	Rok i grupa studiów
Anna Jasielec	Informatyka Techniczna	rok 1, grupa 4
Data zajęć:	Numer i temat sprawozdania:	
7.12.2022	8. Złożoność obliczeniowa	

- 1. Przebieg zajęć: Zajęcia 8. dotyczyły złożoności obliczeniowej.
 - Poznanie definicji złożoności obliczeniowej algorytmu i jej rodzajów (złożoność pamięciowa i czasowa).
 - Rodzaj danych wejściowych generuje przypadek optymistyczny, oczekiwany lub pesymistyczny.
 - Porównanie rzędów wielkości.
 - Poznanie przykładów złożoności (stała, liniowa, kwadratowa, logarytmiczna).
 - Przykładowe wyznaczanie złożoności obliczeniowej.
 - Poznanie sposobu pomiaru czasu.
 - Analiza działania sortowania bąbelkowego i quicksort.

2. Zadania:

1. a) Stwórz tablice dynamiczne liczb całkowitych o rozmiarach: 1 000, 10 000, 30 000, 60 000, 100 000. Przypisz elementom losowe wartości z zakresu od 1 do 1000.

```
Podaj rozmiar tablicy: 10
Utworzona tablica losowych wartości:
27 774 949 599 652 454 262 42 295 76
```

b) Stwórz funkcje, która posortuje daną tablicę przy użyciu wybranego algorytmu sortowania (uwzględnij: Bubble Sort, Quick Sort, Heap Sort i Selection Sort – możesz wykorzystać gotowe funkcje z google) i zmierzy czas trwania sortowania.

```
Podaj rozmiar tablicy: 10
czas sortowania: 2e-06 s
Posortowana tablica:
319 367 369 471 559 613 800 907 976 997
```

c) Zmierz czasy sortowania dla wszystkich tablic i wszystkich algorytmów. Jeśli czas trwania sortowania jest dla danego algorytmu względnie niedługi, to rozważ stworzenie dodatkowych, większych tablic dynamicznych.

```
Podaj rozmiar tablicy: 30000

Bubble Sort: 1.68312 s
Quick Sort: 0.000654 s
Heap Sort: 0.002658 s
Selection Sort: 0.300143 s
```

Rodzaje Sortowania

Elementy	Bubble Sort	Quick Sort	Heap Sort	Selection Sort
1 000	0,001465	0,000021	0,000077	0,000371
10 000	0,116789	0,000119	0,000648	0,029896
30 000	1,79623	0,001812	0,002475	0,317814
60 000	8,02395	0,003345	0,00487	0,998736
100 000	22,5757	0,005944	0,009674	2,92317
200 000		0,011849	0,016659	11,8545
500 000		0,029554	0,047655	

d) Przy wykorzystaniu pozyskanych czasów sortowania utwórz wykresy funkcji dla poszczególnych algorytmów sortowania (możesz to zrobić np. przy wykorzystaniu Excela).

2. Zadanie domowe

Napisz program, który określi czy wczytany z pliku do tablicy ciąg jest palindromem tekstowym. Podaj złożoność obliczeniową stworzonego przez siebie algorytmu.

Złożoność obliczeniowa mojego programu to n + 7.

Wnioski:

- Wiem, jak działają metody sortowania, takie jak: sortowanie bąbelkowe, quick sort, heap sort i selection sort.
- Złożoność obliczeniowa algorytmu określa, jak wydajny jest algorytm. Dzieli się ją na złożoność czasową (jak długo wykonuje się program dla n elementów) i pamięciową (ilość potrzebnej pamięci).
- Jeden problem można rozwiązać na kilka sposobów, mniej lub bardziej wydajnych.
- Do zapisu złożoności obliczeniowej używa się O.
- Umiem zmierzyć czas wykonywania się programu.
- Mierząc czas, dla różnej ilości danych wejściowych można utworzyć wykres funkcji złożoności czasowej algorytmu.
- Dla dużej ilości danych najszybciej wykonuje się sortownie quick sort.