Summary

Fredrik Meyer

March 31, 2015

1 Dimension of some cohomology groups

Group	0	1	2	3	4	5	Euler-characteristic
$H^i(X,\Omega_{\mathbb{P}^{12}}\otimes\mathscr{O}_X)$	0	1	0	167	0	0	-168
$H^i(Y, I_Y/I_Y^2)$	0	36	0	12	2	0	-46
$H^i(Y,\Omega_Y)$	0	1	12	2	0	0	-9

2 The singular locus of Y

By computing in each chart and taking closures, it can be computed that the singular locus of Y is of dimension 1, and consists of the union of projective lines:

3 Deformations of dP_6

We will need some results about deformations of the cone over dP_6 . Recall that dP_6 is the toric variety whose associated polytope is the hexagon:

This induces an embedding into \mathbb{P}^6 . Let \mathbb{P}^6 have coordinates $y_0, x_1...x_6$ (corresponding to the center and the vertices, respectively). Then the ideal of dP_6 inside \mathbb{P}^6 is given by the 2×2 -minors of the matrix

$$\begin{vmatrix} x_1 & y_0 & x_6 \\ x_2 & x_3 & y_0 \\ y_0 & x_4 & x_5 \end{vmatrix} \le 1. \tag{1}$$

The \mathbb{Z}_6 -symmetry is visible by permuting columns and rows. Since dP_6 is smooth, the only singularity of its affine cone, $C(dP_6)$, is the origin. One can compute that $T^1(C(dP_6)) = 3$, and that the versal base space splits into two components. Then one of the components is given by:

$$\begin{vmatrix} x_1 & y_0 & x_6 \\ x_2 & x_3 & y_0 - t_1 \\ y_0 - t_2 & x_4 & x_5 \end{vmatrix} \le 1.$$

There is another way to write the equations. See Figure 1. One obtains the equations for this " $2 \times 2 \times 2$ -tensor" by taking 2×2 -minors along the faces and along long diagonals.

The other component of the deformation space of $C(dP_6)$ is given by Figure 2.

It is clear that the one-dimensional component is a smoothing of $C(dP_6)$, since it can be obtained as a generic hyperplane in $C(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1)$.

Computing the discrimant locus of the two-dimensional family, we find that as long as (t_1, t_2) lies outside lines $t_1 = t_2$, $t_1 = 0$ and $t_2 = 0$, the deformation is smooth.

Remark. The union of these lines constitute the 1-dimensional rays of the fan of dP_6 . Can this be a coincidence?

Figure 1: Equations of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$.

Figure 2: Deforming $C(dP_6)$.