- 1, Problem 1.3
- (a) Let p = min (w*Txn). Show that p > 0

Since w* separates the data perpectly

L $y_n(w^{*T}x_n)$ always > 0 => ρ > 0

(b) $W^{T}(t)W^{*} > W^{T}(t-1)W^{*} + \rho$

We have: w(t) = w(t-1) + y(t-1)c(t-1)

$$\Rightarrow W^{T}(t) = \left(W(t-1) + y(t-1) \right)^{T}$$

$$\rightarrow W^{T}(t) W^{*} = (W(t-1) + y(t-1))c(t-1))^{T} W^{*}$$

=)
$$W^{T}(t)w^{*} > W^{T}(t-1)w^{*} + P$$

•
$$W^T(t)W^* > t\rho$$
 (1)

Use assume
$$W(0) = 0$$
 $\int_{0}^{\infty} 0 \times 0$ true We assume $W(0) = 0$

_ Induction: Assume (1) is true at t, need to prove (1) is true at ++1

$$w(t+1) = w(t) + y(t)x(t)$$

$$\Rightarrow w^{T}(t+1)w^{*} = (w(t) + y(t)x(t))^{T}w^{*}$$

$$= \underbrace{w^{\mathsf{T}}(t)w^{*}}_{\text{$\not$$}} + \underbrace{w^{*\mathsf{T}}(y(t)\times(t))}_{\text{$\not$$}}$$

=)
$$W^{T}(t+1)W^{*} > tp+p=p(t+1)$$

Ly true at t+1

$$: W^T(t)W^* > t\rho$$

- . Base case: t = 0Ly $||w(0)||^2 = 0 = 0R^2$ (assume w(0) = 0)
- . Induction: Assume (2) is true at t, need to prove (2) is true at t+1

$$(t+1)R^{2} = tR^{2} + R^{2} \rangle \|w(t)\|^{2} + R^{2} \rangle$$

$$R > \|x_{n}\| \rightarrow R^{2} > \|x_{n}\|^{2}$$

=)
$$(t+1)R^2$$
 > $||w(t)||^2 + ||x(t)||^2$ > $||w(t+1)||^2$
Ly $||w(t+1)||^2 \leq (t+1)R^2 \rightarrow (2)$ is true at $t+1$

(e)
$$\frac{w^{T}(t)}{\|w(t)\|}$$
 w^{*} > \sqrt{t} $\frac{\rho}{R}$

From b, we have:
$$W^{T}(t)W^{*} > W^{T}(t-1)W^{*} + P$$

Ly
$$\frac{w^{T}(t)w^{*}}{\|w(t)\|} > \frac{w^{T}(t-1)w^{*}+p}{\|w(t)\|}$$

From d, we have
$$\||w(t)\|^2 \leqslant tR^2 \rightarrow \frac{1}{\||w(t)||^2} \geqslant \frac{1}{tR^2}$$

$$\frac{1}{\|\mathbf{w}(t)\|} > \frac{1}{|\mathbf{f}|} \otimes$$

$$(\hat{A}), (\hat{B}) \rightarrow \frac{w^{T}(t)w^{*}}{||w(t)||} > \frac{t\rho}{\sqrt{t}R} = \sqrt{R}$$

•
$$t \leqslant \frac{R^2 \|\mathbf{w}^*\|^2}{p^2}$$

Assume 0 is the angle between wT(t) and w*

$$5 \cos \theta = \frac{w^{T}(t) w^{*}}{\|w^{T}(t)\| \|w^{*}\|}$$
 (1

$$=) ||w^*|| > \frac{w^{\mathsf{T}(t)}w^*}{||w^{\mathsf{T}(t)}||} > \sqrt{\mathsf{T}} \frac{\rho}{\mathsf{R}}$$

$$\Rightarrow \frac{\|\mathbf{w}^*\|^2 R^2}{\rho^2} \Rightarrow t$$

2,

I want to take this class because I am double majoring in CS and Financial Engineering which requires Machine Learning. I am planning on doing a co-op internship next Fall too so if I can take the class this semester, I can apply to more intern positions.