COMP 421: Files & Databases

Lecture 12: Joins

Announcements

Mid-term Exam on Monday Oct 20th

- \rightarrow In-class in this room.
- → Review session in class on Oct. 15th
- → Format: 5 Big Questions: Q1 will have some multiple choice, other questions mostly open response
- → Know the material, but do not focus on memorizing every minute detail, we will try and test *concepts*.
- → Know design, guarantees, runtimes of algos and data structures from lecture
- → Textbook provides many good problem with solutions for practice

Come to class Wednesday with specific questions! I will pull up slides and explain anything you want in greater detail. No questions? We'll talk about more data structures.

Last Week

Last week was data structure week!

In addition to previously discussed B+Tree...

Bloom Filters

Skip Lists

How to make these things concurrent/thread-safe

Atomic instructions (compare-and-swap)

OS-level mutexes (futex)

Reader-writer latches

Latch protocols (e.g., latch crabbing for B+Trees)

Course Progress Check-In

We are done with Access Methods!

Operator Execution

- How to translate relational operators into fast code
- Good news: one of the hard ones, sorting, we've already done
- Today: the other hard one, joins

Goal: want fast, I/O efficient operators to use when we get to query planning and execution

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

Why Do We Need To Join?

We normalize tables in a relational database to avoid unnecessary repetition of information.

We then use the **join operator** to reconstruct the original tuples without any information loss.

Join Algorithms

We will focus on performing binary joins (two tables) using **inner equijoin** algorithms.

- → These algorithms can be tweaked to support other joins.
- → Multi-way joins exist primarily in research literature (e.g., worst-case optimal joins).

In general, join algorithms work better when we can identify the smaller of the two tables

→ The optimizer will (try to) figure this out when generating the physical plan.

Query Plan

The operators are arranged in a tree.

Data flows from the leaves of the tree up towards the root.

→ We will discuss the granularity of the data movement next lecture.

The output of the root node is the result of the query.

```
SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100
```


Join Operators

Decision #1: Output

→ For each row of the join, what data is emitted to the parent operator in the query plan tree?

Decision #2: Cost Analysis Criteria

→ How to design/choose an algorithm to identify which rows to emit? SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

Operator Output

For tuple $r \in R$ and tuple $s \in S$ that match on join attributes, concatenate rand s together into a new tuple.

Output contents can vary:

- → Depends on processing model
- → Depends on storage model
- → Depends on data requirements in query

```
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100
```


Operator Output: Tuple Data

Early Materialization:

→ Copy values for the attributes in outer and inner tuples into new output tuple.

Subsequent operators in the query plan never need to go back to the base tables to get more data.

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

Operator Output: Record IDs

Late Materialization:

→ Only copy the joins keys along with the Record IDs of the matching tuples.

Ideal for column stores because the DBMS does not copy data that is not needed for the query.

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
WHERE S.value > 100

What Algorithm to Use?

Given a query that joins table R with table S, assume the DBMS has the following information those tables:

- → **M** pages in table **R**, **m** tuples in **R**
- → N pages in table S, n tuples in S

```
SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100
```

Cost Metric: # of I/Os to compute join

- → Ignore result output costs because it depends on the data and is the same for all algorithms.
- → Ignore computation / network costs (for now).
- → When sequential vs. random I/O is an issue, I'll point it out

Join Algorithms

Nested Loop Join

- → Naïve
- \rightarrow Block
- \rightarrow Index

Sort-Merge Join

Hash Join

- → Simple
- → GRACE (Externally Partitioned)
- → Hybrid

R(id, name)

id	name
600	MethodMan
200	GZA
100	Andy
300	ODB
500	RZA
700	Ghostface
400	Raekwon

id	value	cdate
100	2222	10/13/202 5
500	7777	10/13/202 5
400	6666	10/13/202 5
100	9999	10/13/202 5

Why is this algorithm bad?

		cdate	value	id
		10/10/25	2222	100
N pages		10/10/25	7777	500
n tuples		10/10/25	6666	400
		10/10/25	9999	100
	1_	10/10/25	8888	200
-				

Why is this algorithm bad?

- → Read every tuple in R
- → For every tuple in R, scans S once

Cost: $M + (m \cdot N)$

R(id, name)

name

	Ξα	Hame
	600	MethodMar
	200	GZA
M pages _	100	Andy
n tuples	300	ODB
	500	RZA
	700	Ghostface
OF	400	Raekwon

id	value	cdate		
100	2222	10/13/202		
100	2222	5		N pages
500	7777	10/13/202		n tuples
300	1111	5		" capies
400	6666	10/13/202		
700	0000	5	_	
100	9999	10/13/202		
ששו	3333	5		

Example database:

Cost Analysis:

- \rightarrow M + (m · N) = 1000 + (100000 · 500) = **50,001,000 IOs**
- \rightarrow At 0.1 ms/IO, Total time \approx 1.3 hours

What if smaller table (S) is used as the outer table?

- \rightarrow N + (n · M) = 500 + (40000 · 1000) = 40,000,500 IOs
- \rightarrow At 0.1 ms/IO, Total time \approx 1.1 hours


```
\begin{array}{c} \textbf{foreach block } B_R \in R: \\ \textbf{foreach block } B_s \in S: \\ \textbf{foreach tuple } \textbf{r} \in B_R: \\ \textbf{foreach tuple } \textbf{s} \in B_s: \\ \textbf{if } \textbf{r} \textbf{ and } \textbf{s} \textbf{ match then } \textbf{emit} \end{array}
```

All in memory!

M pages*m* tuples

S(id, value, cdate)

id	value	cdate	
100	2222	10/10/25	
500	7777	10/10/25	
400	6666	10/10/25	
100	9999	10/10/25	
200	8888	10/10/25	

N pages
n tuples

This algorithm performs fewer disk accesses.

 \rightarrow For every block in **R**, it scans **S** once.

Cost: $M + (M \cdot N)$

R(id, name)

S(id, value, cdate)

id	value	cdate	
100	2222	10/10/25	
500	7777	10/10/25	
400	6666	10/10/25	
100	9999	10/10/25	
200	8888	10/10/25	

N pagesn tuples

The smaller table should be the outer table.

Compare: $M + (M \cdot N)$ vs. $N + (N \cdot M)$

It turns out this also improves sequential I/O

id	value	cdate	Ī	
100	2222	10/10/25		
500	7777	10/10/25		N pages
400	6666	10/10/25		n tuples
100	9999	10/10/25		
200	8888	10/10/25		

What About The Buffer Pool?

R(id, name)

	id	name
	600	MethodMan
	200	GZA
	100	Andy
	300	ODB
	500	RZA
	700	Ghostface
L	400	Raekwon

S(id, value, cdate)

id	value	cdate	
100	2222	10/10/25	
500	7777	10/10/25	
400	6666	10/10/25	
100	9999	10/10/25	
200	8888	10/10/25	

N pagesn tuples

M pages **m** tuples

This algorithm uses **B-2** buffers for scanning **R**.

Cost:
$$M + (\lceil M / (B-2) \rceil \cdot N)$$

If the outer relation fits in memory (B-2>M):

- \rightarrow Cost: M + N = 1000 + 500 = 1500 I/Os
- \rightarrow At 0.1ms per I/O, Total time \approx 0.15 seconds

If we have B=102 buffer pages:

- \rightarrow Cost: $M + (\lceil M / (B-2) \rceil \cdot N) = 1000 + 10.500 = 6000 I/Os$
- → Or can switch inner/outer relations, giving us cost:

$$500 + 5.1000 = 5500 I/Os$$

 \rightarrow Total time \approx 0.55 seconds

Nested Loop Join

Why is the basic nested loop join so bad?

→ For each tuple in the outer table, we do a sequential scan to check for a match in the inner table.

Quadratic # of comparisons to find a linear number of matches

- → Lots of wasted work
- → **Idea:** Data structure / algorithm to find matches with fewer comparisons

Index Nested Loop Join

Assume the cost of each index lookup is *C* per tuple.

Cost: $M + (m \cdot C)$

	ıα	name
	600	MethodMan
	200	GZA
M pages	100	Andy
m tuples	300	ODB
	500	RZA
	700	Ghostface
ENT OF	400	Raekwon

S(id, value, cdate)

id	value	cdate	
100	2222	10/13/202 5	
500	7777	10/13/202 5	
400	6666	10/13/202 5	
100	9999	10/13/202 5	

N pagesn tuples

Index Nested Loop Join

The hidden cost of index nested loop joins: random I/O

Block nested loop join: # Disk Seeks = 2*M*

Index nested loop join: # Disk Seeks = $M + m \cdot C_{seek}$

 M pages
 600 Method

 200 GZA

 100 Andy

 300 ODB

id name
600 MethodMan
200 GZA
100 Andy
300 ODB
500 RZA
700 Ghostface
400 Raekwon

R(id, name)

S(id, value, cdate)

id	value	cdate	
100	2222	10/10/25	
500	7777	10/10/25	
400	6666	10/10/25	
100	9999	10/10/25	
200	8888	10/10/25	

N pagesn tuples

Index Nested Loop Join

Assume 0.1 ms I/Os and 4 ms see

Block nested loop join (minima)

- \rightarrow # I/Os = N + (N · M) = 500,500 I/Q
- \rightarrow # Disk Seeks = 2N = 1000 seeks
- \rightarrow Total time \approx 50 seconds + 4 seconds

Index nested loop join using a B+1rec

- \rightarrow # I/Os = N + (n · 5) = 1000 + 200,000 = 200,100 I/Os
- \rightarrow # Disk Seeks = $N + (n \cdot 5) = 200,100$ seeks
- \rightarrow Total time $\approx \approx 20$ seconds + 800 seconds = 820 seconds

Nested Loop Join Summary

Key Takeaways

- \rightarrow Pick the smaller table as the outer table.
- → Buffer as much of the outer table in memory as possible.
- \rightarrow Loop over the inner table (or use an index).

Algorithms

- → Naïve
- \rightarrow Block
- \rightarrow Index

What to improve?

Index-based method didn't "glue together" the index and the algorithm. Need to **jointly optimize** algorithm and data structure.

Sort-Merge Join

Phase #1: Sort

- \rightarrow Sort both tables on the join key(s).
- → You can use any appropriate sort algorithm
- → These phases are distinct from the sort/merge phases of an external merge sort, from the previous class

Phase #2: Merge

- → Step through the two sorted tables with cursors and emit matching tuples.
- → May need to backtrack to handle duplicates

Sort-Merge Join

R(id, name)

S(id, value, cdate)

	id	value	cdate
	100	2222	10/13/202 5
	100	9999	10/13/202 5
	200	8888	10/13/202 5
Lo		Vad u	19/13 1797
S	ort 500	7777	10/13/202 5

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

Output Buffer

R.id	R.name	S.id	S.value	S.cdate
100	Andy	100	2222	10/13/202
100	Andy	100	0000	10/13/202
200	C7 A	200	0000	10/13/202
200	C7 A	200	0000	10/13/202
400	Daglayon	200	6666	10/13/202
500	RZA	500	7777	10/13/202
300	πΔΑ	300	1111	5

Sort!

Sort-Merge Join Cost (Best Case)

```
Sort Cost (R): 2M \cdot (1 + \lceil \log_{B-1} \lceil M / B \rceil \rceil)
```

Sort Cost (S): $2N \cdot (1 + \lceil \log_{B-1} \lceil N / B \rceil \rceil)$

Merge Cost: (M + N)

Total Cost: Sort + Merge

Sort-Merge Join Cost (Best Case)

Example database:

- → Table R: M = 1000, m = 100,000
- → **Table S**: N = 500, n = 40,000

With **B**=100 buffer pages, both **R** and **S** can be sorted in two passes:

- \rightarrow Sort Cost (R) = 2000 · (1 + $\lceil \log_{99} 1000 / 100 \rceil$) = **4000 I/Os**
- \rightarrow Sort Cost (S) = 1000 · (1 + $\lceil \log_{99} 500 / 100 \rceil$) = 2000 I/Os
- \rightarrow Merge Cost = (1000 + 500) = **1500 I/Os**
- \rightarrow Total Cost = 4000 + 2000 + 1500 = **7500 I/Os**
- \rightarrow At 0.1 ms/IO, Total time \approx 0.75 seconds

Sort-Merge Join Cost (Worst Case)

The worst case for the merging phase is when the join attribute of all the tuples in both relations contains the same value.

Cost: $(M \cdot N) + (sort cost)$

When Is Sort-Merge Join Useful?

One or both tables are **already sorted** on join key. Output must be sorted on join key.

The input relations may be sorted either by an explicit sort operator, or by scanning the relation using an index on the join key.

Observation

Sort-Merge Join pros and cons:

- ✓ Used block-based layout and
- ✓ Could take advantage of buffer pool
- X Still suffered from indexing overhead
- X Still suffered from excessive random I/O

Hash join tries to avoid these issues

- ✓ Make use of blocks/buffers
- ✓ Mostly sequential I/O
- ✓ Low indexing overhead

Hash Join

Idea: Hash tuples into n buckets based on join key (e.g., id)

For $r \in R_i$ and $s \in S_j$, $h_1(r.id) \neq h_1(s.id)$, so we don't need to compare R_i to S_i

Hash Join

Idea: Hash tuples into n buckets based on join key (e.g., id)

For $r \in R_i$ and $s \in S_i$, $h_1(r.id) = h_1(s.id)$, so either we had a hash collision, or r.id = s.id

Simple Hash Join Algorithm

Phase #1: Build

- → Scan the outer relation and populate a hash table, HT, using the hash function h₁ on the join attributes.
- → We can use any hash table that we discussed before but in practice linear probing works the best.

Phase #2: Probe

 \rightarrow Scan the inner relation and use h_1 on each tuple to jump to a location in the hash table and find a matching tuple.

For starters, assume HT fits in memory on B buffers

Simple Hash Join Algorithm

Hash Joins Of Large Relations

What happens if we do not have enough memory to fit the entire hash table?

Buffer pool manager might swap out pages of HT at random

Need a principled approach to minimize I/O in this case

Partitioned Hash Join

Hash join when tables do not fit in memory.

- → **Partition Phase:** Hash both tables on the join attribute into partitions.
- → Probe Phase: Compares tuples in corresponding partitions for each table.

Sometimes called **GRACE Hash Join**.

→ Named after the GRACE <u>database</u> <u>machine</u> from Japan in the 1980s.

GRACEUniversity of Tokyo

Partitioned Hash Join (Partition Phase)

Hash R into B buckets.

Hash S into B buckets with same hash function.

Write buckets to disk when they get full.

Partitioned Hash Join Probe Phase

Partitioned Hash Join Edge Cases

Option 1: If a single join key has too many matching records that do not fit in memory, use a **block nested loop** join just for that key.

→ Avoids random I/O in exchange for sequential I/O.

Option 2: If a partition does not fit in memory, recursively partition it with a different hash function

- → Repeat as needed
- → Eventually hash join the corresponding (sub-)partitions

Recursive Partitioning

Cost Of Partitioned Hash Join

If we do not need recursive partitioning:

 \rightarrow Cost: 3(M + N)

Partition phase:

- → Read+write both tables
- \rightarrow 2(M+N) I/Os

Probe phase:

- \rightarrow Read both tables (in total, one partition at a time)
- \rightarrow M+N I/Os

Partitioned Hash Join

Example database:

- \rightarrow **M** = 1000, **m** = 100,000
- \rightarrow **N** = 500, **n** = 40,000

Cost Analysis:

- \rightarrow 3(M + N) = 3 · (1000 + 500) = 4,500 IOs
- \rightarrow At 0.1 ms/IO, Total time \approx 0.45 seconds

Hash Join Observations

The inner table can be any size.

→ Only outer table (or its partitions) need to fit in memory

If we know the size of the outer table, then we can use a static hash table.

→ Less computational overhead

If we do not know the size, then we must use a dynamic hash table or allow for overflow pages.

Join Algorithms: Summary

Algorithm IO	Cost Examp	le
Naïve Nested Loop Join M + (m	1.3 hou	rs
Block Nested Loop Join $M + (\lceil M / (B-2) \rceil)$. N) 0.55 second	ds
Index Nested Loop Join M + (n	n · C) >20 secon	ds
Sort-Merge Join M + N + (sort	cost) 0.75 second	ds
Hash Join 3 · (M	1 + N) 0.45 second	ds

Conclusion

Hashing is almost always better than sorting for operator execution.

Caveats:

- → Sorting is better on non-uniform data.
- → Sorting is better when result needs to be sorted.

Good DBMSs use many/all approaches when needed

Next Class

Midterm Review

Come with questions!

Optimization: Probe Filter

Create a probe filter (<u>Bloom Filter</u>) as the DBMS builds the hash table on the outer table in the first phase.

- → Always check the filter before probing the hash table.
- → Faster than probing hash table because the filter fits in CPU cache.

This technique is sometimes called sideways information passing.

Optimization: Hybrid Hash Join

If the keys are skewed, then the DBMS keeps the hot partition in-memory and immediately perform the comparison instead of spilling it to disk.

→ Difficult to get to work correctly. Rarely done in practice.

