

Design and Analysis of Algorithm (DAA)

Optimal Binary Search Tree)

Dr. Dayal Kumar Behera

School of Computer Engineering
KIIT Deemed to be University, Bhubaneswar, India

A tree where each node has a value, and all nodes in the left subtree of a node have smaller values, while nodes in the right subtree have larger values.

left_subtree (value) < node (value) < right_subtree (value)</pre>

Data structure for fast search, insertion, deletion.

For "n" nodes, No. of Binary Search Tree: $\frac{2n_{C_n}}{n+1}$

Let n = 3, Keys = [10, 20, 30]

No. of Binary Search Tree: $\frac{6c_3}{3+1} = 5$

No of Comparison:

The search cost of a node in a BST is proportional to its level (depth).

Whether height balanced tree is Optimal Binary Search Tree?

Consider Keys = [10, 20, 30] with search frequency = [3, 2, 5], resp.

Optimal Binary Search Tree

OBST Problem

Given:

Keys: k_1 , k_2 ..., k_n sorted in increasing order.

Probabilities: Each key k_i has a probability p_i of being accessed (search frequency).

Goal: Build a BST where the total search cost (expected search time) is minimized.

Understanding Cost in OBST

Search Cost: The search cost of a node in a BST is proportional to its level(depth).

Expected Search Cost: Assuming only successful search

$$Expected\ Cost = \sum_{i=1}^{n} p_i * level(k_i)$$

Dynamic Programming can be used to find the OBST by breaking down the problem into smaller subproblems, which are combined to obtain the final solution.

Steps:

1. Define Subproblems:

Let C[i][j] represent the minimum search cost for the subtree containing keys ki to kj.

W[i][j] is the sum of probabilities from 'i' to 'j'. $W[i][j] = \sum_{k=i}^{j} p_k$

R[i][j] stores the root of the optimal subtree containing keys ki to kj.

2. Base Case Initialization:

For single nodes (When i==j): $C[i][j] = p_i$ and R[i][i] = i

For nodes beyond the range (i.e., empty subtree): C[i][i-1] = 0

3. Recursive Formula to Compute Optimal Cost:

For each range of keys k_i to k_j (for all $j \ge i$):

$$C[i][j] = \min_{r=i \text{ to } j} \{ C[i][r-1] + C[r+1][j] + W[i][j] \}$$

Explanation: Choose each key k_r as the root, then recursively find the cost of left and right subtrees.

Add W[i][j] to account for the cumulative search cost when all nodes from i to j are in subtree.

4. Constructing the DP Table:

Fill C[i][j] in increasing order of length L = j - i + 1

For each length L compute C[i][j] for all valid i and j.

Keep track of the root in R[i][j] for each subtree to construct the Optimal BST.

5. Extract the Result:

The minimum cost of the OBST for all keys is stored in C[1][n]

Example

Keys (k_i)	10	20	30
Frequency or Probabilities (p_i)	4	2	6

Algorithm

Algorithm OBST(keys, p)


```
// Fill DP tables for increasing lengths of subtrees
for L = 2 to n do // L is the length of the subtree
  for i = 1 to n - L + 1 do // Start of the subtree
    j = i + L - 1 // End of the subtree
    // Compute W[i][j] as the sum of probabilities from i to j
    W[i][j] = W[i][j-1] + p[j]
    // Initialize C[i][j] with a large value for comparison
    C[i][i] = INF
    // Calculate the minimum cost for each possible root in the range i to j
    for r = i to j do // Try each key as the root
      cost = C[i][r-1] + C[r+1][j] + W[i][j]
      if cost < C[i][j] then
         C[i][j] = cost // Update minimum cost for this range
         R[i][j] = r // Store the root of the optimal subtree
// The minimum cost of the entire OBST is stored in C[1][n]
return C[1][n], R
```

Complexity Analysis

Time Complexity: O (n^3)

Nested loops for length and root choice.

Space Complexity: O (n^2)

for C[i][j], W[i][j], R[i][j]

Each of your actions will have an impact on your future.

Once you know
who is walking
with you on your path.
you will never
be afraid.

Thank you