Алгебра. КТ. Осенний семестр

V. Факториальные и евклидовы кольца. Кольцо многочленов

- 1. Найдите $HO\Delta(x, y)$ и его линейное представление:
 - a) x = 30, y = 18;
 - 6) x = 846, y = 246;
 - B) x = 588, y = 1960;
 - r) x = 7975, y = 2585.
- 2. Найдите НОД двух многочленов и его линейное представление:
 - a) $3x^3 2x^2 + x + 2$ in $x^2 x + 1$;
 - 6) $x^4 + x^3 3x^2 4x 1$ in $x^3 + x^2 x 1$;
 - в) $x^5 + x^4 x^3 2x 1$ и $3x^4 + 2x^3 + x^2 + 2x 2$;
 - г) $x^5 + 5x^4 + 9x^3 + 7x^2 + 5x + 3$ и $x^4 + 2x^3 + 2x^2 + x + 1$.
- 3. Найдите общие корни многочленов $x^4 + 4x^3 5x + 2$ и $2x^4 + 8x^3 + 3x^2 7x + 1$.
- 4. Докажите, что если $\frac{p}{q}$ несократимая рациональная дробь, являющася корнем многочлена f с целыми коэффициентами, то:
 - а) p делитель свободного коэффициента;
 - б) q делитель старшего коэффициента;
 - в) $p-mq\mid f(m)$ при любом целом m. В частности, $p-q\mid f(1),\ p+q\mid f(-1).$
- 5. Найдите рациональные корни многочленов:
 - a) $x^3 6x^2 + 15x 14$;
 - 6) $x^4 2x^3 8x^2 + 13x 24$;
 - B) $x^5 7x^3 12x^2 + 6x 36$;
 - r) $6x^4 + 19x^3 7x^2 26x + 12$;
 - A) $10x^4 13x^3 + 15x^2 18x 24$.
- 6. Разложите многочлен на неприводимые сомножители над полями рациональных, вещественных и комплексных чисел:
 - a) $x^4 1$;
 - б) $x^4 + 4x^3 + 11x^2 + 14x + 10$, $x_1 = -1 + i$ корень многочлена;
 - в) $x^5+x^4+x^3-x^2-x-1$, $x_1=-rac{1}{2}+irac{\sqrt{3}}{2}$ корень многочлена;

г)
$$x^4 + 6x^3 + 9x^2 + 100$$
, $x_1 = 1 + 2i$ — корень многочлена

д)
$$x^4 + 2x^2 + 4$$
;

e)
$$x^4 - 3x^2 + 9$$
;

$$x^4 - 2x^3 + 2x^2 + 38x - 39;$$

3)
$$x^5 + 2x^4 - 20x^3 - 68x^2 - 41x + 30$$
.

- 7. Докажите, что при любом натуральном n многочлен $x^{3n}+x^{n+3}-x^n-1$ делится на x^2+x+1 .
- 8.* На доске написаны многочлены $P(x)=x^2+2$ и Q(x)=x+1. Разрешается записать на доску сумму, разность или произведение любых двух из уже выписанных на доску многочленов. Может ли на доске появиться многочлен $R(x)=x^3+2$?
- 9.* Докажите неприводимость многочленов над полем рациональных чисел:
 - a) $x^{105} 9$;
 - б) $(x-a_1)(x-a_2)\dots(x-a_n)-1$, где a_1,a_2,\dots,a_n различные целые числа;
- 10.* Вычислите $\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5}$.