THEN

PY(y) =
$$\sum_{k} p_{x}(x_{k}) \cdot \frac{dx_{k}}{dy}$$

WHERE $\{x_{k}\}$ IS THE PRE-IMAGE

IF $dg \neq 0$ THEN

 dx

PY(y) = $\sum_{k} p_{x}(g_{k}'(y)) \cdot \frac{dy_{k}}{dy}$

IF g IS MONOTOND (INCREASING)

PY(y) = $p_{x}(g^{-1}(y)) \cdot \frac{dy_{k}}{dy}$

PY(y) = $p_{x}(g^{-1}(y)) \cdot \frac{dy_{k}}{dy}$

PY(y) = $p_{x}(g^{-1}(y)) \cdot \frac{dy_{k}}{dy}$

EX

 $K \sim \text{UNIF}(1, 10)$

PK(k) = $\{x_{k}\}$
 $\{x_{k}\}$
 $\{x_{k}\}$
 $\{x_{k}\}$
 $\{x_{k}\}$
 $\{x_{k}\}$
 $\{x_{k}\}$

ELSE

$$T = \frac{1}{K} \quad \text{what is } p_{T}(t) ?$$

$$g(k) = \frac{1}{K} \quad \frac{dg}{dk} = -\frac{1}{k} 2$$

$$g^{-1}(t) = \frac{1}{t}$$

$$\Rightarrow p_{T}(t) = \left(\frac{1}{9}\left(\left(-\frac{1}{K^{2}}\right)\right)\right) \quad \text{in } \leq t \leq 1$$

$$= \left(\frac{1}{9} \right) \quad K \quad \frac{1}{10} \leq t \leq 1$$

ELSÈ

$$= \begin{cases} \frac{1}{9} & \frac{1}{10} \leq t \leq 1 \\ 0 & \text{ELSE} \end{cases}$$

HETER O GEN ETTY

PS 6

$$\frac{dY}{dt} = \frac{(R-1)Y}{Y(0)} = 1$$

$$Y(t) \sim p_Y(y;t)$$

PROTUTYPIC	PS6
$X \sim p_{x}(x)$	$R \sim p_R(r)$
Y = g(X)	Y= e (R-1)t
Y~Py(y)	Y

(n 1)+

