Cavallaro, Jeffery Math 229 Homework #4

5.1.9

Let $\|\cdot\|$ be a norm on V that is derived from an inner product. Let $\vec{x}, \vec{y} \in V$ and $\vec{y} \neq 0$.

a) Show that the scalar α_0 that minimizes the value of $\|\vec{x} - \alpha \vec{y}\|$ is $\alpha_0 = \frac{\vec{x}.\vec{y}}{\|\vec{y}\|^2}$.

It is a bit easier to minimize $\|\vec{x} - \alpha \vec{y}\|^2$:

$$\begin{aligned} \left\| \vec{x} - \alpha \vec{y} \right\|^2 &= \left\langle \vec{x} - \alpha \vec{y}, \vec{x} - \alpha \vec{y} \right\rangle \\ &= \left\langle \vec{x}, \vec{x} \right\rangle - \left\langle \vec{x}, \alpha \vec{y} \right\rangle - \left\langle \alpha \vec{y}, \vec{x} \right\rangle + \left\langle \alpha \vec{y}, \alpha \vec{y} \right\rangle \\ &= \left\langle \vec{x}, \vec{x} \right\rangle - \overline{\alpha} \left\langle \vec{x}, \vec{y} \right\rangle - \alpha \left\langle \vec{y}, \vec{x} \right\rangle + \left| \alpha \right|^2 \left\langle \vec{y}, \vec{y} \right\rangle \end{aligned}$$

From complex analysis, we know that:

$$\frac{d\overline{\alpha}}{d\alpha} = 0$$

And so, by the product rule:

$$\frac{d}{d\alpha} |\alpha|^2 = \frac{d}{d\alpha} a\overline{\alpha} = \frac{d\alpha}{d\alpha} \overline{\alpha} + \alpha \frac{d\overline{\alpha}}{d\alpha} = \overline{\alpha} + 0 = \overline{\alpha}$$

We can also show that:

$$\overline{\|\vec{y}\|^2} = \overline{\langle \vec{y}, \vec{y} \rangle} = \langle \vec{y}, \vec{y} \rangle = \|\vec{y}\|^2$$

Now minimize:

$$0 - 0 - \langle \vec{y}, \vec{x} \rangle + \overline{\alpha_0} \langle \vec{y}, \vec{y} \rangle = 0$$

$$\overline{\alpha_0} \langle \vec{y}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$$

$$\overline{\alpha_0} ||\vec{y}||^2 = \langle \vec{x}, \vec{y} \rangle$$

$$\alpha_0 ||\vec{y}||^2 = \langle \vec{x}, \vec{y} \rangle$$

$$\therefore \alpha_0 = \frac{\langle \vec{x}, \vec{y} \rangle}{||\vec{y}||^2}$$

b) Show
$$\|\vec{x} - \alpha_0 \vec{y}\|^2 = \|\vec{x}\|^2 - \frac{|\langle \vec{x}, \vec{y} \rangle|^2}{\|\vec{y}\|^2}$$

From part(a) we have:

$$\begin{aligned} \left\| \vec{x} - \alpha_0 \vec{y} \right\|^2 &= \left\langle \vec{x}, \vec{x} \right\rangle - \overline{\alpha_0} \left\langle \vec{x}, \vec{y} \right\rangle - \alpha_0 \left\langle \vec{y}, \vec{x} \right\rangle + \left| \alpha_0 \right|^2 \left\langle \vec{y}, \vec{y} \right\rangle \\ &= \left\langle \vec{x}, \vec{x} \right\rangle - \overline{\left(\frac{\left\langle \vec{x}, \vec{y} \right\rangle}{\left\| \vec{y} \right\|^2} \right)} \left\langle \vec{x}, \vec{y} \right\rangle - \frac{\left\langle \vec{x}, \vec{y} \right\rangle}{\left\| \vec{y} \right\|^2} \left\langle \vec{y}, \vec{x} \right\rangle + \left| \frac{\left\langle \vec{x}, \vec{y} \right\rangle}{\left\| \vec{y} \right\|^2} \right|^2 \left\langle \vec{y}, \vec{y} \right\rangle \\ &= \left\| \vec{x} \right\|^2 - \frac{\left| \left\langle \vec{x}, \vec{y} \right\rangle \right|^2}{\left\| \vec{y} \right\|^2} - \frac{\left| \left\langle \vec{x}, \vec{y} \right\rangle \right|^2}{\left\| \vec{y} \right\|^2} + \frac{\left| \left\langle \vec{x}, \vec{y} \right\rangle \right|^2}{\left\| \vec{y} \right\|^4} \left\| \vec{y} \right\|^2 \\ &= \left\| \vec{x} \right\|^2 - 2 \frac{\left| \left\langle \vec{x}, \vec{y} \right\rangle \right|^2}{\left\| \vec{y} \right\|^2} + \frac{\left| \left\langle \vec{x}, \vec{y} \right\rangle \right|^2}{\left\| \vec{y} \right\|^2} \\ &= \left\| \vec{x} \right\|^2 - \frac{\left| \left\langle \vec{x}, \vec{y} \right\rangle \right|^2}{\left\| \vec{y} \right\|^2} \end{aligned}$$

c) Show that $\vec{x} - \alpha_0 \vec{y}$ is orthogonal to \vec{y} .

$$\langle \vec{x} - \alpha_0 \vec{y}, \vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle - \langle \alpha_0 \vec{y}, \vec{y} \rangle$$

$$= \langle \vec{x}, \vec{y} \rangle - \alpha_0 \langle \vec{y}, \vec{y} \rangle$$

$$= \langle \vec{x}, \vec{y} \rangle - \alpha_0 ||\vec{y}||^2$$

$$= \langle \vec{x}, \vec{y} \rangle - \frac{\langle \vec{x}, \vec{y} \rangle}{||\vec{y}||^2} ||\vec{y}||^2$$

$$= \langle \vec{x}, \vec{y} \rangle - \langle \vec{x}, \vec{y} \rangle$$

$$= 0$$

Therefore, $\vec{x} - \alpha_0 \vec{y}$ is orthogonal to \vec{y} .

5.2.6

If $\|\cdot\|$ is a unitary invariant norm on C^n , show that $\forall \vec{x} \in \mathbb{C}^n$:

$$\|\vec{x}\| = \|\vec{x}\|_2 \|\vec{e}_1\|$$

Explain why the Euclidean norm is the only unitary invariant norm on \mathbb{C}^n for which $\|\vec{e}_1\|=1$.

Assume $\vec{x} \in \mathbb{C}^n$ and consider the unit vector $\hat{y}_1 = \frac{\vec{x}}{\|\vec{x}\|_2}$. Using G-S, construct n-1 additional orthogonal unit vectors $\{\hat{y}_2,\ldots,\hat{y}_n\}$ and form the matrix $U=\begin{bmatrix}\hat{y}_1 & \hat{y}_2 & \ldots & \hat{y}_n\end{bmatrix}$. Since the columns of U are orthonormal, U is a unitary matrix.

Now, since the norm is unitary invariant:

$$\|\vec{e}_1\| = \|U\vec{e}_1\| = \|\hat{y}_1\| = \left\|\frac{\vec{x}}{\|\vec{x}\|_2}\right\| = \frac{1}{\|\vec{x}\|_2} \|\vec{x}\|$$

Therefore:

$$\|\vec{x}\| = \|\vec{x}\|_2 \|\vec{e}_1\|$$

So, if $\|\vec{e}_1\| = 1$ then:

$$\|\vec{x}\| = \|\vec{x}\|_2 \cdot 1 = \|\vec{x}\|_2$$

5.4.11

Let $\|\cdot\|$ be a norm on F^n where $F = \mathbb{R}$ or \mathbb{C} .

a) Show that every isometry for $\|\cdot\|$ is nonsingular.

Assume $A \in G_{\|\cdot\|}$ Assume $\lambda \in \sigma(A)$ $\|A\vec{x}\| = \|\lambda\vec{x}\| = |\lambda| \, \|\vec{x}\| = \|\vec{x}\|$ But \vec{x} is an eigenvector and thus $\vec{x} \neq \vec{0}$ Thus $|\lambda| = 1$ and so $\lambda \neq 0$

Therefore, by the IMT, A is invertible (nonsingular).

b) Prove: $G_{\|\cdot\|} \leq GL(n)$

Assume $A,B\in G_{\|\cdot\|}$ and $\vec{x}\in F^n$ A is invertible $A\in GL(n)$

Therefore $G_{\|\cdot\|} \subseteq GL(n)$.

$$B\vec{x} \in F^n$$
 $\|(AB)\vec{x}\| = \|A(B\vec{x})\| = \|B\vec{x}\| = \|\vec{x}\|$ $AB \in G_{\|\cdot\|}$

Therefore $G_{\|\cdot\|}$ is closed under the operation (composition).

$$||I_n\vec{x}|| = ||\vec{x}||$$

Therefore $I_n \in G_{\|\cdot\|}$.

Since A is invertible we have $A^{-1} \in GL(n)$

$$A^{-1}\vec{x} \in F^n$$

$$||A^{-1}\vec{x}|| = ||A(A^{-1}\vec{x})|| = ||(AA^{-1})\vec{x}|| = ||I_n\vec{x}|| = ||\vec{x}||$$

$$A^{-1} \in G_{\|\cdot\|}$$

Therefore $G_{\|\cdot\|}$ is closed under inverses.

$$\therefore G_{\|\cdot\|} \leq GL(n).$$

c) Show that if $A \in G_{\|\cdot\|}$ and $\lambda \in \sigma(A)$ then $|\lambda| = 1$.

See part (a).

d) Prove: If $A \in M_n$ is an isometry for $\|\cdot\|$ then $|\det(A)| = 1$.

By Auerbach's Theorem, A is similar to some unitary matrix $U \in M_n$:

$$A = SUS^{-1}$$

$$\det(A) = \det(SUS^{-1})$$

$$= \det(S) \det(U) \det(S^{-1})$$

$$= \det(U)$$

$$= \pm 1$$

$$\therefore |\det(A)| = 1$$

e) Prove: Any unitary generalized permutation matrix is an isometry for every k-norm and every ℓ_p norm for $1 \le p \le \infty$.

Assume that U is a generalized permutation matrix and assume $\vec{x} \in \mathbb{C}^n$. The result of $U\vec{x}$ is to permute the components of \vec{x} and multiply moved components by $e^{i\theta}$ for some $\theta \in \mathbb{R}$. Assume x_k is such a permuted component. Then:

$$|x_k e^{i\theta}| = |x_k| |e^{i\theta}| = |x_k| \cdot 1 = |x_k|$$

Thus, the absolute values of the moved components do not change, just their positions.

This does not affect the k-norm because the k-norm adds the k greatest component absolute values regardless of position. It does not affect any of the ℓ_p norms because all of the component absolute values are involved in the calculation regardless of position. Finally, it does not affect the ℓ_∞ norm because the largest component absolute value is selected regardless of position.

5.5.7

If $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ are norms on a vector space and if $\|\cdot\|$ is the norm defined by:

$$\|\vec{x}\| = \max\{\|\vec{x}\|_{\alpha}, \|\vec{x}\|_{\beta}\}$$

then show that:

$$B_{\|\cdot\|} = B_{\|\cdot\|_{\alpha}} \cap B_{\|\cdot\|_{\beta}}$$

First show that $\|\cdot\|$ is a norm by checking the four norm properties:

1). Assume $\vec{x} \in \mathbb{C}^n$

$$\begin{split} & \|\vec{x}\|_{\alpha} \geq 0 \\ & \|\vec{x}\|_{\beta} \geq 0 \\ & \max\{\|\vec{x}\|_{\alpha}, \|\vec{x}\|_{\beta}\} \geq 0 \\ & \therefore \|\vec{x}\| > 0 \end{split}$$

2). Assume $\vec{x} \in \mathbb{C}^n$

$$\begin{split} \|\vec{x}\| &= \vec{0} &\iff & \max\{\|\vec{x}\|_{\alpha}\,, \|\vec{x}\|_{\beta}\} = \vec{0} \\ &\iff & \|\vec{x}\|_{\alpha} = \vec{0} \text{ and } \|\vec{x}\|_{\beta} = \vec{0} \\ &\iff & \vec{x} = \vec{0} \end{split}$$

3). Assume $\vec{x} \in \mathbb{C}^n$ and $c \in \mathbb{C}$

$$\begin{split} \|c\vec{x}\| &= & \max\{\|c\vec{x}\|_{\alpha}\,, \|c\vec{x}\|_{\beta}\} \\ &= & \max\{|c|\, \|\vec{x}\|_{\alpha}\,, |c|\, \|c\vec{x}\|_{\beta}\} \\ &= & |c|\max\{\|\vec{x}\|_{\alpha}\,, \|c\vec{x}\|_{\beta}\} \\ &= & |c|\, \|\vec{x}\| \end{split}$$

4). Assume $\vec{x}.\vec{y} \in \mathbb{C}^n$

$$\begin{split} \|\vec{x} + \vec{y}\| &= \max\{\|\vec{x} + \vec{y}\|_{\alpha}, \|\vec{x} + \vec{y}\|_{\beta}\} \\ &\leq \max\{\|\vec{x}\|_{\alpha} + \|\vec{y}\|_{\alpha}, \|\vec{x}\|_{\beta} + \|\vec{y}\|_{\beta}\} \\ &\leq \max\{\|\vec{x}\|_{\alpha}, \|\vec{x}\|_{\beta}\} + \max\{\|\vec{y}\|_{\alpha}, \|\vec{y}\|_{\beta}\} \\ &= \|\vec{x}\| + \|\vec{y}\| \end{split}$$

Therefore $\|\cdot\|$ is a proper norm.

$$\begin{split} \vec{x} \in B_{\|\cdot\|} &\iff & \|\vec{x}\| \leq 1 \\ &\iff & \max\{\|\vec{x}\|_{\alpha}\,, \|\vec{x}\|_{\beta}\} \leq 1 \\ &\iff & \|\vec{x}\|_{\alpha} \leq 1 \text{ and } \|\vec{x}\|_{\beta} \leq 1 \\ &\iff & \vec{x} \in B_{\|\cdot\|_{\alpha}} \text{ and } \vec{x} \in B_{\|\cdot\|_{\beta}} \\ &\iff & \vec{x} \in B_{\|\cdot\|_{\alpha}} \cap B_{\|\cdot\|_{\beta}} \end{split}$$

$$\therefore B_{\|\cdot\|} = B_{\|\cdot\|_{\alpha}} \cap B_{\|\cdot\|_{\beta}}$$

5.6.24

Let $A \in M_n$. Show:

$$||A||_2 \le (\operatorname{rank} A)^{\frac{1}{2}} |||A|||_2$$

Let $r = \operatorname{rank} A$. From a previous homework problem we know:

$$\operatorname{tr}(A^*A) = \sum_{1 \le i,j} |a_{ij}|^2 = \sum_{k=1}^n \sigma_k^2$$

where σ_k are the singular values of A. And we also know from the SVD proof done in class that $\operatorname{rank} A^*A = \operatorname{rank} A =$ the number of non-zero singular values of A, and so:

$$\operatorname{tr}(A^*A) = \sum_{k=1}^r \sigma_k^2 \le \sum_{k=1}^r \sigma_1^2 = r\sigma_1^2$$

But:

$$\operatorname{tr}(A^*A) = \sum_{1 \le i, j \le n} |a_{ij}|^2 = ||A||_2^2$$

And:

$$\sigma_1 = |||A|||_2$$

And so:

$$||A||_2^2 \le (\operatorname{rank} A) |||A|||_2^2$$

Therefore:

$$||A||_2 \le (\operatorname{rank} A)^{\frac{1}{2}} |||A|||_2$$