Maxpid ★ ★ ★

C2-09

Soit le schéma suivant.

Pas de corrigé pour cet exercice.

Par ailleurs a=107.1 mm, b=80 mm, c=70 mm, d=80 mm. Le pas de la vis est de 4 mm. De plus, on note :

- ► $G_1 = B$ le centre d'inertie du solide **1**, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{R}_1}$ sa matrice d'inertie ;
- ► G_2 le centre d'inertie du solide **2** tel que $\overrightarrow{BG_2} = L\overrightarrow{x_1}$, m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\Re_2}$ sa matrice d'inertie;
- ► $G_3 = C$ le centre d'inertie du solide **3**, m_3 sa masse et $I_{G_3}(3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\mathcal{R}_3}$ sa matrice d'inertie;
- ► G_4 le centre d'inertie du solide 4 tel que $\overrightarrow{DG_4} = L_4 \overrightarrow{x_4}$, m_4 sa masse et $I_{G_4}(4) = \begin{pmatrix} A_4 & 0 & 0 \\ 0 & B_4 & 0 \\ 0 & 0 & C_4 \end{pmatrix}_{\Re_4}$ sa matrice d'inertie;.

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide 1. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{y_0}$. On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice ??.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble 1+2+3+4.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble 1+2+3+4.

Question 4 Déterminer \mathscr{E}_{c} (1+2+3+4/0).

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir .

