OKAWA Electric Design

English | Japanese

Top > Tools > Filters > Multiple Feedback High-pass Filter Design Tool

<u>disclaimer</u> <u>blog</u>

© 2004 - 2019 OKAWA Electric Design

1 of 6 10/7/19 10:13

Multiple Feedback High-pass Filter Design Tool

This page is a web application that design a multiple feedback high-pass filter. Use this utility to simulate the Transfer Function for filters at a given frequency, damping ratio ζ , Q or values of R and C. The response of the filter is displayed on graphs, showing Bode diagram, Nyquist diagram, Impulse response and Step response.

Sample calculation

Calculate the transfer function for multiple feedback high-pass filter with R and C values

Transfer function:

$$\frac{vo}{v^{i}} = \frac{-s^{2} \frac{C1}{C3}}{s^{2} + s \frac{C1 + C2 + C3}{R2C2C3} + \frac{1}{R1R2C2C3}}$$

HENDEL.COM

R1=
$$\Omega$$

Calculate the R and C values for the multiple feedback filter at a given frequency and Q factor $\,$

2 of 6 10/7/19 10:13

R2=
$$\Omega$$
 C2= F
C3= F

p:pico, n:nano, u:micro, k:kilo, M:mega

Frequency	analysis		
Bode dia	0		
Pha	ise OGro	up delay	
Nyquist	diagram		
Pole, zer	0		
Phase m	argin		
O scillati	on analysis		
Upper and le	ower frequen	cy limits:	
f1=	- f2=	[Hz]	
(frequency lin	nits are optiona	al)	

Calculate

Cut-off frequency:

$$fc = \frac{1}{2\pi\sqrt{R1R2C2C3}}$$

Transfer function:

$$\begin{split} &\frac{Vout\left(s\right)}{Vin\left(s\right)} = \frac{s^2K}{s^2 + 2\zeta\left(2\pi f_{\epsilon}\right)s + \left(2\pi f_{\epsilon}\right)^2} \\ &\mathcal{Q} = \frac{1}{2\zeta} \end{split}$$

$$K = -\frac{C1}{C3}$$

$$f_c =$$
 Hz

Gain K= -1 at $f=\infty$ Hz (K<0)

C1, C2, C3 is optional. But when setting these capacitances, C1, C2 and C3 of all are needed to give, and K setting is ignored.

Select Capacitor Sequence:

Select Resistor Sequence:	E24 🗸
Frequency analysis	`
Bode diagram Phase Group of	delay
Nyquist diagram	
Pole, zero	
Phase margin	
Oscillation analysis	

Upper and lower frequency limits:

(frequency limits are optional)

f1=

- f2=

[Hz]

Transien	t analysis	
Step re	esponse	
Impuls	se response	
O versh	noot	
Final v	value of the step response	
Simulation	ı time:	
0 -	[sec] (optional)	

Calculate

5 of 6 10/7/19 10:13

Filter tools

RC LPF **RC HPF** LR LPF

LR HPF **RLC LPF RLC HPF**

RLC BPF RLC BEF Sallen-Key LPF

3rd order Sallen-Key HPF 3rd order

SallenKeyLPF Multiple feedback SallenKeyHPF Multiple feedback

Multiple feedback

LPF 3rd order HPF 3rd order

BPF TwinT notch

Multiple feedback Multiple feedback CR-2nd order Active filter

LPF, HPF, BPF

Filter index

6 of 6 10/7/19 10:13