Position Sensing and Imitation Final Presentation

Konstantin Koslowski, Mathis Schmieder, Moksha Birk

TU Berlin
Department of Telecommunication Systems
Telecommunication Networks Group

July 29th, 2015

Introduction

Reminder: Goal Statement

■ Goal: Mimic position and motion of a plate

- Sensing: 3D MEMS attitude sensor embedded in a plate
- Communicating: Implement industrial bus
- Actuating: Rotate a plate using motors

System Specifications

Functional Overview

Figure: Diagram of the Functional Specification
Telecommunication
Networks Group

Bus

Bus specification

- EtherCAT could not be implemented due to
 - Unsuccessful compilation of the EtherCAT example on Linux
 - Problems with Ethernet NIC incompatibilities

- Using fallback option CAN
 - All nodes are BeagleBone Blacks
 - CAN controller: SN65HVD230

CAN

Bus Design

Reminder:

- Timing goal: Move plate to desired position within 1 second
- Actuation takes up to 500 ms
- Sensors report mean value every 100 ms

- Required cycle time: 100 ms
- Sensor values are periodically fed to the Controller from a buffer
- Controller computes movement commands and sends them to the drivers

Messsage ID Descriptions

Message Type	ID / Priority	Length
Motor Command	1	8 Bytes
Motor Status	2	6-8 Bytes
Sensor Command	4	6 Bytes
Sensor Data	8	6-8 Bytes

Table: Messages in the network

Message Sequence Diagram

Presentation

Review

Review

Goals:

- Overall Mimic position of a plate: √
- Sensing Read MEMS sensor data via I2C: ✓
- Communication Implement industrial bus: √ We had to use the fallback solution, CAN.
- Actuation Move plate around two axes: ✓
- Timing Move plate within 1 second: ~
 Initial movement is fast, but system might oscillate
- **Documentation** Extensive *doxygen* code documentation: ✓

Discussion

Thanks for your attention!

Questions? Ideas? Suggestions?

