Chapter 10

- 1. (a) After stage k the algorithm has generated a random permutation of 1, 2, ..., k. It then puts element k + 1 in position k + 1; randomly chooses one of the positions 1, ..., k + 1 and interchanges the element in that position with element k + 1.
 - (b) The first equality in the hint follows since the permutation given will be the permutation after insertion of element k if the previous permutation is $i_1, \ldots, i_{j-1}, i, i_j, \ldots, i_{k-2}$ and the random choice of one of the k positions of this permutation results in the choice of position j.
- 2. Integrating the density function yields that that distribution function is

$$F(x) = \frac{e^{2x}/2}{1 - e^{-2s}/2}, \quad x > 0$$

which yields that the inverse function is given by

$$F^{-1}(u) = \frac{\log(2u)/2}{-\log(2[1-u])/2} \quad \text{if } u < 12$$

Hence, we can simulate X from F by simulating a random number U and setting $X = F^{-1}(U)$.

3. The distribution function is given by

$$F(x) = \frac{x^2/4 - x + 1, \quad 2 \le x \le 3,}{x - x^2/12 - 2, \quad 3 \le x \le 6}$$

Hence, for $u \le 1/4$, $F^{-1}(u)$ is the solution of

$$x^2/4 - x + 1 = u$$

that falls in the region $2 \le x \le 3$. Similarly, for $u \ge 1/4$, $F^{-1}(u)$ is the solution of

$$x - x^2/12 - 2 = u$$

that falls in the region $3 \le x \le 6$. We can now generate X from F by generating a random number U and setting $X = F^{-1}(U)$.

4. Generate a random number U and then set $X = F^{-1}(U)$. If $U \le 1/2$ then X = 6U - 3, whereas if $U \ge 1/2$ then X is obtained by solving the quadratic $1/2 + X^2/32 = U$ in the region $0 \le X \le 4$.

150 *Chapter 10*

5. The inverse equation $F^{-1}(U) = X$ is equivalent to

or

$$1 - e^{-\alpha X^{\beta}} = U$$
$$X = \{-\log(1 - U)/\alpha\}^{1/\beta}$$

Since 1 - U has the same distribution as U we can generate from F by generating a random number U and setting $X = \{-\log(U)/\alpha\}^{1/\beta}$.

6. If $\lambda(t) = ct^n$ then the distribution function is given by

$$1 - F(t) = \exp\{-kt^{n+1}\}, t \ge 0 \text{ where } k = c/(n+1)$$

Hence, using the inverse transform method we can generate a random number U and then set X such that

$$\exp\{-kX^{n+1}\} = 1 - U$$

or

$$X = \{-\log(1 - U)/k\}^{1/(n+1)}$$

Again U can be used for 1 - U.

- 7. (a) The inverse transform method shows that $U^{1/n}$ works.
 - (b) $P\{\text{Max}U_i \le v\} = P\{U_1 \le x, ..., U_n \le x\}$ = $\prod P\{U_i \le x\}$ by independence = x^n
 - (c) Simulate *n* random numbers and use the maximum value obtained.
- 8. (a) If X_i has distribution F_i , i = 1, ..., n, then, assuming independence, F is the distribution of $\text{Max}X_i$. Hence, we can simulate from F by simulating X_i , i = 1, ..., n and setting $X = \text{Max}X_i$.
 - (b) Use the method of (a) replacing Max by Min throughout.

- 9. (a) Simulate X_i from F_i , i = 1, 2. Now generate a random number U and set X equal to X_1 if U < p and equal to X_2 if U > p.
 - (b) Note that

$$F(x) = \frac{1}{3}F_1(x) + \frac{2}{3}F_2(x)$$

where

$$F_1(x) = 1 - e^{-3x}$$
, $x > 0$, $F_2(x) = x$, $0 < x < 1$

Hence, using (a) let U_1 , U_2 , U_3 be random numbers and set

$$X = \frac{-\log(U_1)/3 \text{ if } U_3 < 1/3}{U_2 \qquad \text{if } U_3 > 1/3}$$

where the above uses that $-\log(U_1)/3$ is exponential with rate 3.

10. With $g(x) = \lambda e^{-\lambda x}$

$$\frac{f(x)}{g(x)} = \frac{2e^{-x^2/2}}{\lambda(2\pi)^{1/2}} = \frac{2}{\lambda(2\pi)^{1/2}} \exp\{-[(x-\lambda)^2 - \lambda^2]/2\}$$
$$\frac{2e^{\lambda^2/2}}{\lambda(2\pi)^{1/2}} \exp\{-(x-\lambda)^2/2\}$$

Hence, $c = 2e^{\lambda^2/2}/[\lambda(2\pi)^{1/2}]$ and simple calculus shows that this is minimized when $\lambda = 1$.

- 11. Calculus yields that the maximum value of $f(x)/g(x) = 60x^3(1-x)^2$ is attained when x = 3/5 and is thus equal to 1296/625. Hence, generate random numbers U_1 and U_2 and set $X = U_1$ if $U_2 \le 3125U_1^3(1-U_1)^2/108$. If not, repeat.
- 12. Generate random numbers $U_1, ..., U_n$, and approximate the integral by $[k(U_1) + ... + k(U_n)]/n$. This works by the law of large numbers since $E[k(U)] = \int_0^1 k(x)dx$.
- 16. $E[g(X)/f(X)] = \int [g(x)/f(x)]f(x)dx = \int g(x)dx$