THIN FILM PHENOMENA

KASTURI L. CHOPRA

Staff Scientist, Ledgemont Laboratory, Kennecott Copper Corporation Lexington, Massachusetts

Adjunct Professor of Mechanical Engineering Northeastern University Boston, Massachusetts

CONTENTS

Preface vii

TH	IN FILM	I DEPOSI	TION T	ECI	HNC	LC)GY		¥	•	•	Ŕ	40	•	•	٠	•	•
1.	Introd	luction .			Q)			•	•				į.		٠			٠
2.	Thern	nal Evapo	oration															
	2.1	General C	onside	rati	ons													
		Evaporati																
	Resistive Heating; Flash Evaporation; Arc Evaporation; Exploding-wire Technique; Laser Evaporation; RF Heating; Electron-bombardment Heating																	
					ent	H	eat	ing								-	550)	
3.	Ī		bomba	rdn				-				20					1,920	
3.	I Catho	Electron-l	bomba tering.	rdn •														
3.	Catho	Electron-l dic Sputt	bomba tering. g Proce	rdn • ess					•		2		20					
3.	Catho 3.1 S 3.2 G	Electron-l dic Sputt Sputtering	bomba tering. g Proce harge t Deposi	rdn • ess Spu t D	tter istri	ing bu	g . tio	n;(ren	it a	nd	Vo	lta	ge l	Dep	pen	d-

	3.4		
	3.5		41
			42
4.	Che	emical Methods	43
	4.1	Introduction	43
	4.2	Electrodeposition	44
		Electrolytic Deposition; Electroless Deposition; Anodic Oxi-	
		dation	
	4.3	Chemical Vapor Deposition (CVD)	46
		Pyrolysis (Thermal Decomposition); Hydrogen Reduction;	
		Halide Disproportionation; Transfer Reactions; Polymeri-	
		zation	
	4.4	Miscellaneous Methods	51
5.	Vac	cuum-deposition Apparatus	55
			55
	5.2		
6	Con	â.	67
			69
		vicinoss, , , , , , , , , , , , , , , , , , ,	,,
-	IOVA	UFCC MEACUPEMENT AND ANALYTICAL TECHNIQUES	83
IH	ICKN	1ESS MEASUREMENT AND ANALYTICAL TECHNIQUES	03
1.	Thic	ckness Measurement	83
	1.1		84
	1.2		90
	- 12		
			96
			97
	1.5		99
			105
2.			108
			108
	2.2		110
	2.3		110
		Auger-electron Spectroscopy; Field-emission, Field-ion, and	
	5. 6. 7. TH 1.	3.5 3.6 4. Che 4.1 4.2 4.3 4.4 5. Vac 5.1 5.2 6. Cor 7. App Ref THICKN 1. Thi 1.1 1.2 1.3 1.4 1.5	Magnetic Field; Assisted (Triode) Sputtering; RF Sputtering; Ion-beam Sputtering 3.5 Reactive Sputtering 3.6 Sputtering of Multicomponent Materials 4. Chemical Methods 4.1 Introduction 4.2 Electrodeposition. Electrolytic Deposition; Electroless Deposition; Anodic Oxidation 4.3 Chemical Vapor Deposition (CVD). Pyrolysis (Thermal Decomposition); Hydrogen Reduction; Halide Disproportionation; Transfer Reactions; Polymerization 4.4 Miscellaneous Methods 5. Vacuum-deposition Apparatus 5.1 Vacuum Systems 5.2 Substrate-deposition Technology. Substrate Materials; Substrate Cleaning; Uniform and Nonuniform Deposits; Masks and Connections; Multiple-film Deposition 6. Conclusions 7. Appendix References. THICKNESS MEASUREMENT AND ANALYTICAL TECHNIQUES 1. Thickness Measurement 1.1 Electrical Methods Film Resistance; Capacitance Monitors; Ionization Monitors 1.2 Microbalance Monitors Microbalance Monitors Microbalances; Quartz-crystal Monitor 1.3 Mechanical Method (Stylus) 1.4 Radiation-absorption and Radiation-emission Methods 1.5 Optical-interference Methods Photometric Method; Spectrophotometric Method; Interference Fringes; X-ray Interference Fringes 1.6 Summary of Methods 2. Analytical Techniques 2.1 Chemical Analysis 2.2 Structural Analysis 2.3 Surface Structure Optical Methods; Low-energy Electron Diffraction (LEED);

			Sputter-ion Microscopy; Reflection Electron Diffrac- tion; Replica Electron Microscopy	
		2.4	Volume Structure	1
			X-ray Diffraction; X-ray Microscopy (Topographic Methods);	
			Transmission Electron-diffraction and Electron-microscope	
			Methods	
	3.	Con	clusions	
		Refe	erences	0
IV	NII	ICI FA	ATION, GROWTH, AND STRUCTURE OF FILMS	7
			leation	
	1.			
		1.1		
		1.2	Langmuir-Frenkel Theory of Condensation 14	
		1.3	Theories of Nucleation	4
			laneous Models; Further Deductions of the Nucleation Theories	
		1.4		_
		1.4	Experimental Results	9
			tion Centers; Condensate Temperature	
	2	Cro	wth Processes	2
	2.	2.1	General Description	
		2.2	Liquid-like Coalescence	
		2.2	Experimental Observations; Coalescence Model	0
		2.3	Influence of Deposition Parameters	1
		2.5	General Aspects; Kinetic-energy Effect; Oblique Deposition;	•
			Electrostatic Effects	
	2	Son	ne Aspects of the Physical Structure of Films	2
	٥.	3011	Crystallite Size; Surface Roughness; Density of Thin Films	_
	4.	Crv	stallographic Structure of Films	a
		4.1		
		4.1	Size Effect; Surface Pseudomorphism	٠
		4.2	Disordered and Amorphous Structures	5
		7.2	Impurity Stabilization; Vapor Quenching (VQ): Codeposit	•
			Ouenching	
		4.3	Abnormal Metastable Crystalline Structures 19	9
		т.Э	Amorphous-Crystalline Transformation; Codeposit	
			Quenching of Metastable Alloys; Deposition-parameter-	
			controlled and Nucleated Metastable Structures; Pseu-	
			domorphs and Superstructures; Conclusions; Meta-	
			stabilization Mechanisms	
		4.4	Two-dimensional Superstructures	4
		4.5	Fiber Texture (Oriented Overgrowth)	
		4.6	Alloy Superlattices	
				-

	5.	Epitaxial-growth Phenomenon
		5.1 Influence of Substrate and Deposition Conditions 225
		Substrate; Substrate Temperature; Deposition Rate; Con-
		tamination; Film Thickness; Electrostatic Effects; Depo-
		sition Methods; Summary
		5.2 Theories of Epitaxy
		Royer Hypothesis; van der Merwe Theory; Brück-Engel
		Theory; Nucleation Theories; Summary
		Structural Defects in Thin Films
	7.	Concluding Remarks
		References
V	ME	CHANICAL EFFECTS IN THIN FILMS
	1.	Introduction
	2	Internal Stresses
	~	2.1 Experimental Techniques
		Bending-plate or-beam Methods; X-ray and Electron-
		diffraction Methods; Other Techniques
		2.2 Experimental Results
		Thermal Stress; Intrinsic Stress; Substrate Temperature
		Dependence; Thickness Dependence; Deposition Rate
		and Angle-of-incidence Dependence; Annealing Effects;
		Anisotropic Stresses; Stresses in Chemically Prepared
		Films
		2.3 Origin of Intrinsic Stress
		Thermal Effect; Volume Changes; Surface Layer; Surface
		Tension; Electrostatic Effects; Lattice-misfit Accommo-
		dation Model; Structural-defect Hypothesis; Crystallite-
		boundary Mismatch Model; Anisotropic Growth
	3.	Mechanical Properties
		3.1 Experimental Techniques
		High-speed Rotor; Bulge Test; Tensile Test; Electron-
		microscope Devices; Direct Measurement of Strain
		3.2 Experimental Results
		Stress-Strain Curves; Tensile Strength; Microhardness
		3.3 Origin of the Tensile-strength Effects
		Structural-defect Hypothesis; Surface Effects; Volume
		Effects; Phenomenological Approach
		3.4 Films vs. Whiskers
		3.5 Stress Relief
	4.	
		4.1 Measurement of Adhesion
		4.2 Experimental Results
		4.3 Origin of Adhesion

			Control Harden Control Advantage Annual Control		
	5.		ncluding Remarks		
		Ref	erences		323
					220
VI	EL	ECTR	RON-TRANSPORT PHENOMENA IN METAL FILMS	٠	328
	1.	Lasta	- Instinct		220
			roduction		
	2.				
		2.1		•	329
			Thermionic (Schottky) Emission; Quantum-mechanical		
			Tunneling; Activated Tunneling; Tunneling between		
			Allowed States; Tunneling via Substrate and Traps		
		2.2			
			Temperature Coefficient of Resistivity (TCR)		
		2.4			
		2.5	######################################		
	3.	Elec	ctrical Conduction in Continuous Films		
		3.1	Theories of Size Effect		
		3.2	Experimental Results		
			Thickness Dependence; Low-temperature Results; Size-eff	ect	
			Anisotropy; Magnetic Boundary Scattering; Superimposed	1	
			Films		
		3.3	Temperature Coefficient of Resistivity (TCR)	y.	365
			Theory; Experimental Results		
		3.4			368
		3.5	Field Effect		375
			Influence of Absorption and Adsorption on Con-		
		0.10	ductivity		378
		3.7	Conductivity Changes Due to Annealing		
		3.8			
	4		vanomagnetic Size Effects in Thin Films		
	ч.	4.1	(5)		390
			Longitudinal Magnetoresistance		392
					392
		4.3			200
		.526	Film Surface—HL)		396
		4.4	TO SEE FROM SEASON OF THE SEASON OF THE FORM OF THE SEASON		
			Surface—H)		398
		4.5			401
		4.6			405
		4.7	Eddy-current Size Effects		409
	5.	Trai			411
	6.	The			417
		6.1			
			Thermoelectric Power		
		6.3	Heat Transport across Film - Insulator Interface		423

xvi Contents

	7.	Concluding Remarks
		References
VII	TR	ANSPORT PHENOMENA IN SEMICONDUCTING FILMS 434
	1.	Introduction
	2.	Theoretical Considerations
		Mobility; Galvanomagnetic Surface Effects; Anisotropy Effects;
		Quantum Size Effects
	3.	Experimental Results
		3.1 Size Effects
		3.2 Transport Properties of Thick Films 444
	4.	Photoconduction in Semiconductor Films 452
		4.1 Activation Process
		4.2 Photoconductivity Mechanisms 454
		4.3 High-voltage Photovoltaic Effect 455
	5.	Field Effect - Thin-film Transistor (TFT)
	6.	Concluding Remarks
		References
VIII	TR	ANSPORT PHENOMENA IN INSULATOR FILMS
	1	Introduction
		Dielectric Properties
	2.	2.1 Thin Films
		2.2 Thick Films
		2.3 Dielectric Losses
	3	Piezoelectric Films
	4.	Electrical Conduction in Insulator Films
	7.0	4.1 Conduction Mechanisms
		4.2 Thermionic (Schottky) Emission
		4.3 Quantum-mechanical Tunneling
		Theories; Image-force Correction; Temperature-field (TF)
		Emission; Temperature Dependence; Experimental Re-
		sults; Conclusions
		4.4 Bulk-limited Conduction
		Space-charge-limited Current (SCLC) Flow; Trap and Im-
		purity Effects
		4.5 Voltage-controlled Negative Resistance (VCNR) 503
		4.6 Current-controlled Negative Resistance (CCNR) 506
		4.7 Tunnel Emission (Hot-electron Transport) 508
		4.8 Tunnel Spectroscopy
	5	Photoeffects in Tunnel Structures
	J.	5.1 Electroluminescence
		5.1 Lacetotulinieseelee

				CO	itei	113		AVII
		5.2 Photoconduction and Photoemission						
	6.	Concluding Remarks						
		References	٠			٠	•	522
IX	SUP	ERCONDUCTIVITY IN THIN FILMS					*	529
	1.	Introduction						529
	2.	Basic Concepts						530
	3.	Transition Temperature of Thin-film Superconduct						535
	٥.	3.1 Introduction						535
		3.2 Thickness Dependence				:		537
		3.3 Superconductivity-enhancement Phenomenon						539
		3.4 Mechanisms of Enhanced Superconductivity						544
		3.5 Influence of Stress				·	-	547
		3.6 Influence of Impurities			•	·		548
		3.7 Electrostatic-charge (Field) Effect			:			549
		3.8 Proximity Effects in Superimposed Films .						550
	1	Critical Magnetic Field				٠		555
	4.	4.1 Type I Films						556
					٠	٠		560
		- ^	•	*		٠		562
			٠	*	•			
	5	그게 하시는 - 프라이션에 하게 다시하고 하게 되었다면 하지만 그 보고 있는 것도 없는 그를 보고 있다.	•		٠	*		563 566
	6.	Critical Current	•	•	•	٠		
	7.					٠		572
	1.	Superconductive Tunneling	•	•	•	•	•	573
						٠	٠	576
		General; Tunneling in Superimposed Films; Ga	ipi	ess				
		Superconductivity						F00
	0	7.2 Supercurrent (Josephson) Tunneling						
		Infrared Transmission through Thin Films						586
	9.	Superconductive Thin-film Devices						
		9.1 Cryotrons						588
		Wirewound Cryotron; Crossed-film Cryotron (
		Shielded CFC; In-line Cryotron; Multicrossove	r	ry	otr	on		
		(MCC); Ferromagnetic Cryotron Configuration						
		9.2 Computer Memory Devices					•	593
		Crowe Cell; Persistor, Persistatron, and Contin	uo	us-	tılr	n		
		Memory (CFM)						1072111
		9.3 Superconducting Magnets			•			595
		9.4 Low-frequency Devices	٠	•				596
		9.5 Bolometers – Radiation Detectors			*			598
	1000	9.6 Tunnel Devices	٠	*	$\dot{\boldsymbol{x}}$			598
	10.	Concluding Remarks						599
		References						600

xviii Contents

X	FER	ROMAGNETISM IN FILMS (by M. H. Cohen) 60	8
	1.	Introduction	8
	2.	Magnetization vs. Thickness 61	0
	3.	Stoner-Wohlfarth Model (A First Approximation) 61	
	4.	Magnetic Anisotropy 61	
		4.1 Shape Anisotropy	9
		4.2 Magnetocrystalline Anisotropy 62	20
		4.3 Strain-Magnetostriction Anisotropy 62	1
		4.4 M-induced Uniaxial Anisotropy 62	2
		4.5 Oblique-incidence Uniaxial Anisotropy 62	
		4.6 Unidirectional Anisotropy 63	
		4.7 Perpendicular Anisotropy 63	
	5.	7765 - 57060	
		5.1 Anisotropy-dispersion Model 63	
		5.2 Micromagnetic Model 63	
		Hoffmann's Theory; Harte's Theory	_
	6.	Quasi-static Manifestations of Ripple	9
		6.1 Rotational Hysteresis	
		6.2 HA Domain Splitting (HA Fallback) 65	
		6.3 Initial Susceptibility 65	
		6.4 Effects of High KD/K_U	
	7.	Domain Walls	io.
		7.1 Structure of Walls 65	
		Bloch Walls; Néel Walls; Crosstie Walls; Other Wall Cal-	
		culations; Experimental Results	
		7.2 Wall Motion	:6
		Domain Nucleation and Growth; Coercive Force;	,,,
		Wall Velocity; Magnetic Viscosity; Creep; Wall	
		Streaming	
	8.	Resonance	7
	0.	8.1 Ferromagnetic Resonance	
		8.2 Spin-wave Resonance	
		8.3 Energy-loss Mechanisms	
	9.		
	٠.	9.1 Coherent Rotation Theory	
		9.2 Experimental Results	
		9.3 Interpretation	1
	10	Complex Magnetization Configurations	
	10.	10.1 M Normal to Film Plane	
		MnBi Films ($K_{\perp} < 0$); Stripe Domains ($K_{\perp} > 0$)	J
		10.2 Multilayer Films 69	ic
		Interaction Mechanisms; Domain Wall Interactions	U
		10.3 Cylindrical Films 69	0
		TO A CAMBORICAL CHIRS	เก

	11.	Measurement Techniques 699
		11.1 Microscopic Observations 699
		Bitter Technique; Kerr and Faraday Magneto-optical
		Effects; Lorentz Electron Microscopy
		11.2 Macroscopic Measurements
		Mechanical Detection (Torque Magnetometer); Flux-
		pickup Detection; Magneto-optic Detection; Magneto-
		resistive or Hall-effect Detection; Ripple-independent
		H_K Determinations
	12.	Applications
		12.1 Flat-film Memory
		12.2 Cylindrical-film Memory
		12.3 Future Developments
		References
ΧI	OPT	CAL PROPERTIES OF THIN FILMS
	1.	Introduction
	2.	Thin Film Optics
		2.1 Reflection and Transmission at an Interface 723
		2.2 Reflection and Transmission by a Single Film 724
		2.3 Anisotropic and Inhomogeneous Films
		2.4 Multilayer Films
		2.5 Optical Absorption
	3.	Optical Constants of Thin Films
		3.1 Experimental Methods
		Reflection Methods; Reflectance and Transmittance
		Methods; Interferometric Methods; Spectrophoto-
		metric Methods; Critical-angle Method; Polarimetric
		Methods (Ellipsometry); Summary
		3.2 Results on Optical Constants
		General Remarks; Metal Films; Abnormal Absorp-
		tion Phenomenon; Maxwell-Garnett Theory of
		Abnormal Absorption; Dielectric and Semicon-
		ducting Films
		3.3 Size Effects in Optical Properties
	54	Semiconductor and Dielectric Films; Metal Films
	4.	Thin Film Absorption and Photoemission Phenomena 76
		4.1 Infrared Absorption
		Optical Modes; Surface Modes
		4.2 Magneto-optical Absorption
		4.3 Plasma-resonance Absorption
		4.4 Ultraviolet Absorption
		4.) Photoemission from Metal Films /6.

XX Contents

5.	Multilay	er Opti	cal Syst	ems.							*			\times		769
		ntirefle														
	I	nhomog	eneous	Films:	Но	mog	gene	ous	Sin	gle	Fil	ms	; M	ult	i-	
	la	yer Filr	ns; Infr	ared A	ntii	efle	ctio	n C	oati	ngs	3					
	5.2 F	Reflectio	n Coati	ngs .				15						26		777
	N	letal Min	rors; A	ll-diele	ectri	ic Sy	ste	n								
	5.3 I	nterfere	nce Filt	ers .												781
	F	Reflectio	n Filter	s; Tra	nsm	issic	n Ir	iter	fere	nce	Fi	lte	rs;			
	F	rustrate	d Total	-reflec	tior	Fil	ter									
	5.4 A	bsorpta	nce and	Ther	mal	Em	ittar	ice	of (coa	ting	gs	194	12	×	785
	5.5 T	hin-film	Polariz	ers .				15		1	14					786
6.	Conclu	ling Rer	narks .					0.0						100		786
	Referer	ices .			٠					*		٠	•	19	×	787
Author In	dex 7	95														
Subject In	dex 8	327														