TÉCNICAS DE PROGRAMACIÓN AVANZADA Práctica 1

Universidad Europea Madrid Álvaro Farreny Boixader

Contenido Ejercicio 1

Ejercicio 1	3
Manteniendo los dos bucles for , realizar las modificaciones mínimas necesarias en el códi de es Neutralizada_v1 para que simplemente funcione de manera correcta	_
Tras los cambios anteriores, esNeutralizada_v1 será correcta, pero no será una versión eficiente. Se pide entonces implementar en esNeutralizada_v2 una versión más eficiente en tiempo para resolver el problema	
Implementar en esNeutralizada_DyV una versión que siga la estrategia "Divide y Vencerá para resolver el problema.	
Calcular la complejidad de las tres funciones. Aplicar los correspondientes sumatorios y reducciones para argumentar y demostrar el resultado alcanzado	5
Resta	5
esNeutralizada_v1	6
esNeutralizada_v2	7
Comparar las complejidades obtenidas, y argumentar cuál de las tres versiones sería la mejor	8
Ejercicio 2	9
Primera Parte	9
Segunda Parte	9
Ejercicio 3	.10

Ejercicio 1

Manteniendo los dos bucles **for**, realizar las modificaciones **mínimas** necesarias en el código de **es Neutralizada_v1** para que simplemente funcione de manera correcta.

```
private static int[][] resta (int[][] m1, int[][] m2){
   int[][] resultado = new int[m1.length][m1.length];
   for (int fila=0; fila < resultado.length; fila++)
        for (int col=0; col < resultado[fila].length; col++)
            resultado[fila][col] = m1[fila][col] - m2[fila][col];
   return resultado;
}</pre>
```

Tras los cambios anteriores, esNeutralizada_v1 será correcta, pero no será una versión eficiente. Se pide entonces implementar en **esNeutralizada_v2** una versión más eficiente en tiempo para resolver el problema.

Implementar en **esNeutralizada_DyV** una versión que siga la estrategia "Divide y Vencerás" para resolver el problema.

```
public static boolean esNeutralizada_DyV (int[][] m1, int[][] m2) {
         if (esIdentidad_DyV(m1) != esIdentidad_DyV(m2)) {
public static boolean esIdentidad_DyV (int[][] matriz) {
     return esIdentidad_DyV2(matriz, 0, matriz.length-1);
private static boolean esIdentidad_DyV2 (int[][] matriz, int inicio, int fin) {
     if(inicio == fin) {
    return comprobar(matriz, inicio);
} else {
   int mitad = (inicio + fin)/2;
         boolean x = esIdentidad_DyV2(matriz, inicio, mitad);
         boolean y = esIdentidad_DyV2(matriz, mitad+1, fin);
         if(x == false) {
private static boolean comprobar (int[][] matriz, int inicio){
   if(matriz[inicio][inicio] == 1) {
         for(int i=0; i<matriz.length; i++) {
   if(i!= inicio) {</pre>
                  if(matriz[inicio][i] != 0) {
     }else {
     return true;
```

No es exactamente como se debería hacer, además tiene algún error y no sale el resultado correcto pero lo que he hecho ha sido comprar si son identidad y si las dos son debería salir true y si no lo son false, pero me salen todo el rato false así que no lo se.

Calcular la complejidad de las tres funciones. Aplicar los correspondientes sumatorios y reducciones para argumentar y demostrar el resultado alcanzado.

Primero calculamos la complejidad de la función resta ya que la vamos a utilizar durante todo nuestro programa:

Resta

Función	Resultado del calculo
<pre>int[][] resultado = new int[m1.length][m1.length];</pre>	Al ser un valor que estamos calculando y
	ser una resta, cogemos un 1.
<pre>for (int col=0; col < resultado[fila].length; col++) resultado[fila][col] = m1[fila][col] - m2[fila][col];</pre>	Esto es igual a: $1 + \left(\sum_{k=0}^{n-1} 1 + 1 + 1\right) + 1$ Primero, cambiamos el sumatorio y le sumamos 1 arriba y 1 abajo
	$2 + \left(\sum_{k=1}^{n} 3\right)$
	El sumatorio de un valor constante es igual al valor que tiene encima ese sumatorio, por tanto:
	2 + (3n)
<pre>for (int fila=0; fila < resultado.length; fila++) for (int col=0; col < resultado[fila].length; col++) resultado[fila][col] = m1[fila][col] - m2[fila][col];</pre>	$1 + \left(\sum_{k=0}^{n-1} 1 + (2+3n) + 1\right) + 1$ Solucionamos primero el sumatorio y simplificamos los valores de su interior
	$2 + \left(\sum_{k=0}^{n-1} 4 + 3n\right)$
	Resolvemos el sumatorio sumando 1 arriba y 1 abajo
	$2 + \left(\sum_{k=1}^{n} 4 + 3n\right)$
	La suma de este sumatorio es lo mismo
	que: $2 + \left(\sum_{k=1}^{n} 4\right) + \left(\sum_{k=1}^{n} 3n\right)$
	$2 + 4n + 3n^2$

Una vez tenemos ya calculado el tiempo del for, calculamos el tiempo total de la función.

int[][] resultado = new	for (int fila=0; fila <	return resultado;
<pre>int[m1.length][m1.length];</pre>	resultado.length; fila++)	
1	$2 + 4n + 3n^2$	1

Por tanto, sumamos los valores y obtenemos el resultado del tiempo de ejecución y el orden

T(resta) =
$$3n^2 + 4n + 4$$
$$O(n^2)$$

Una vez calculada la función resta, pasamos a calcular el apartado a de nuestro problema, la función v1.

esNeutralizada_v1

F	<pre>if (matrizResta[fila][col] == 0) neutraliza = true; else neutraliza = false; if (matrizResta[fila][col] == 1) neutraliza = true; else neutraliza = false;</pre>	Los ifs se cogen siempre el valor máximo de tiempo de ejecución, es decir, el peor de los casos. 1 + Max (1) = 1+1 = 2 Los ifs se cogen siempre el valor máximo de tiempo de ejecución, es decir, el peor de los casos. 1 + Max (1) = 1+1 = 2
D	<pre>if (fila==col) if (matrizResta[fila][col] == 1) neutraliza = true; else neutraliza = false; else if (matrizResta[fila][col] == 0) neutraliza = true; else neutraliza = false;</pre>	Como podemos ver, ahora tenemos de nuevo un if con los dos if calculados anteriormente. Por tanto: 1+Max(t(e)+t(f)) = 1+Max (2,2) = 1+2= 3
С	<pre>if(neutraliza == true) if (fila==col) if (matrizResta[fila][col] == 1) neutraliza = true; else neutraliza = false; else if (matrizResta[fila][col] == 0) neutraliza = true; else neutraliza = false;</pre>	De nuevo, tenemos un if por tanto: 1+Max(D) = 1 + Max (3) = 1+4 = 5
В	<pre>for (int col = 0; col < m1[fila].length; col++) { if(neutraliza == true) if (fila==col) if (matrizResta[fila][col] == 1)</pre>	Calculamos el for con todo el cuerpo que tiene dentro que es nuestra C. Por tanto, obtenemos: $1 + \left(\sum_{k=0}^{n-1} 1 + (5) + 1\right) + 1$ Resolvemos el sumatorio y simplificamos su interior $2 + \left(\sum_{k=1}^{n} 7\right)$ 2+7n

```
fila < m1.length; fila++) {
0; col < m1[fila].length; col++) {</pre>
                                              Calculamos por último el ultimo for
                                              para resolver la parte central de
(fila==col)
                                              nuestra función.
    (matrizResta[fila][col] == 1)
     neutraliza = true;
                                                 1 + \left(\sum_{k=0}^{n-1} 1 + (2+7n) + 1\right) + 1
     neutraliza = false;
    (matrizResta[fila][col] == 0)
                                                        1 + \left(\sum_{k=1}^{n} 4 + 7n\right) + 1
     neutraliza = true;
     neutraliza = false;
                                              La suma de este sumatorio es lo
                                              mismo que:
                                                       2 + \left(\sum_{k=1}^{n} 4\right) + \left(\sum_{k=1}^{n} 7n\right)
                                                              2+4n+7n^2
```

Una vez tenemos ya calculado el tiempo del for, calculamos el tiempo total de la función.

boolean neutraliza =	int[][] matrizResta =	for (int fila = 0; fila <	return neutraliza;
true;	resta(m1, m2);	m1.length; fila++)	
1	$2 + 4n + 3n^2$	$2+4n+7n^2$	1

Sumamos todos los valores obtenidos:

T(esNeutraliza_v1) =
$$10n^2 + 8n + 6$$

$$O(n^2)$$

Calculamos ahora el tiempo de ejecución y el orden de la siguiente función

esNeutralizada v2

E	<pre>if (matrizResta[fila][col] != 1) return false;</pre>	Los ifs se cogen siempre el valor máximo de tiempo de ejecución, es decir, el peor de los casos. 1 + Max (1) = 1+1 = 2
D	<pre>if (matrizResta[fila][col] != 0) return false;</pre>	Los ifs se cogen siempre el valor máximo de tiempo de ejecución, es decir, el peor de los casos. 1 + Max (1) = 1+1 = 2
С	<pre>if (fila == col) { if (matrizResta[fila][col] != 1) return false; } else { if (matrizResta[fila][col] != 0) return false; }</pre>	Los ifs se cogen siempre el valor máximo de tiempo de ejecución, es decir, el peor de los casos. 1 + Max (E, D) = 1+MAX (2, 2) = 3
В	<pre>for (int col = 0; col < m1[fila].length; col++) { if (fila == col) { if (matrizResta[fila][col] != 1) return false; } else { if (matrizResta[fila][col] != 0) return false; } }//for</pre>	Calculamos el for con todo el cuerpo que tiene dentro que es nuestra C. Por tanto, obtenemos: $1 + \left(\sum_{k=0}^{n-1} 1 + (3) + 1\right) + 1$ Resolvemos el sumatorio y simplificamos su interior

		$2 + \left(\sum_{k=1}^{n} 5\right)$ 2+5n
A	<pre>for (int fila = 0; fila < ml.length; fila++) { for (int col = 0; col < ml[fila].length; col++) { if (fila == col) { if (matrizResta[fila][col] != 1)</pre>	Calculamos por último el ultimo for para resolver la parte central de nuestra función. $1 + \left(\sum_{k=0}^{n-1} 1 + (2+5n) + 1\right) + 1$ $1 + \left(\sum_{k=1}^{n} 4 + 5n\right) + 1$ La suma de este sumatorio es lo mismo que: $2 + \left(\sum_{k=1}^{n} 4\right) + \left(\sum_{k=1}^{n} 5n\right)$ $2 + 4n + 5n^2$

Una vez tenemos ya calculado el tiempo del for, calculamos el tiempo total de la función.

<pre>int[][] matrizResta = resta(m1, m2);</pre>	for (int fila = 0; fila < m1.length; fila++)	Return true
$2 + 4n + 3n^2$	$2 + 4n + 5n^2$	1

T(esNeutraliza_v2) =
$$8n^2 + 8n + 5$$
 $O(n^2)$

Comparar las complejidades obtenidas, y argumentar cuál de las tres versiones sería la mejor.

La que seria mejor en todos los casos es la de Divide y vencerás ya que gracias a ese algoritmo podemos dividir el problema en subproblemas de menor complejidad y solucionarlo todo a la vez en un menor tiempo gracias a la recursividad. Al no tener bien el ejercicio 3, no he calculado la complejidad ya que no me saldría correctamente.

Ejercicio 2

Primera Parte

Implementar una función que utilizando la estrategia de "Divide y Vencerás", determine si dos arrays de números enteros son uno el inverso del otro.

```
public static void main(String[] args) {{
    int a1 [] = {1,2,3,4,5,6,7,8,9};
    int a2 [] = {9,8,7,6,5,4,3,2,1};

    int inicioarr1 = 0;
    int finarr1 = (a1.length-1);

    int inicioarr2 = 0;
    int finarr2 = (a2.length-1);

    System.out.println(calcular(a1, a2, inicioarr1, inicioarr2, finarr1, finarr2));
}
```

```
public static boolean calcular(int arr1[], int arr2[], int i1, int i2, int f1, int f2) {
    if (arr1.length != arr2.length) { //comprobamos longitudes
        return false;
    } else if (i1==f1 && i2==f2){ // caso cuando el inicio del primero sea igual al final es decir tamaño 1:1
        return arr1[i1] == arr2[f2]; //hacemos la comparacion y si es true sera correcta y si no false
} else {
    if (arr1[i1] == arr2[f2]) { //recursividad
        return calcular(arr1, arr2, i1+1, i2, f1, f2-1);
    } else {
        return false;
    }
}
```

Segunda Parte

Calcular razonadamente su complejidad, detallando las reducciones o sumatorios necesarios para su desarrollo, y comparar el resultado con el que obtendríamos si aplicásemos una estrategia iterativa tradicional.

	CASO BASE		
Α	<pre>if (arr1.length != arr2.length) {</pre>	T(A) = T(cond)+T(cuerpo), por tanto,	
	return false;	T(A) = 1 + 1 = 2	
В	<pre>} else if (i1==f1 && i2==f2){ //</pre>	T(B) = T(cond)+T(cuerpo), por tanto,	
	<pre>return arr1[i1] == arr2[f2];</pre>	T(B) = 1 + 1 = 2	
De est	os dos ifs, cogemos el valor máximo por tanto, M	AX (A, B) = 2	
	CASO GENERAL		
С	<pre>} else { if (arr1[i1] == arr2[f2]) { //recursividad</pre>	Al ser el caso general, tenemos que	
	<pre>return calcular(arr1, arr2, i1+1, i2, f1, f2-1); } else {</pre>	obtener el valor de a,b,k.	
	return false;	A = el numero de veces que	
	}	llamamos a la función recursiva	
		dentro de nuestro cuerpo, A=1	
		B = el numero por el q sustraes el	
		problema, en nuestro caso, B=1	
		K= resolver el general como si no	
		hubiese recursividad. Por tanto,	
		obtenemos dos ifs.	
		• T(c1) = 1+1 = 2	
		• T(c2) = 1+1 = 2	
		• MAX (c1, c2) = 2	

	Por tanto, O (1) y como tenemos que obtener el valor de k, O $(1*n^0)$ > k=0
--	--

Una vez tenemos a, b, k utilizamos la fórmula para obtener la recursividad. Como a = 1, O (n^{k+1}) por lo que O(n)

Ejercicio 3

$$H(K) = H_1(K) + (c \cdot H_2(K))$$

 $H_1(K) = K \mod N$
 $H_2(K) = 3 - (K \mod 3)$

0	
1	27
2	30
3	
4	2
5	12
6	16

N=7

$$H(16) = 2 + (0 \cdot 2) = 2$$

$$H(16) = 2 + (1 \cdot 2) = 4$$

$$H(16) = 2 + (2 \cdot 2) = 6$$

$$H(12) = 5 + (0 \cdot 3) = 5$$

$$H(27) = 6 + (0 \cdot 3) = 6$$

$$H(27) = 6 + (1 \cdot 3) = 9$$

$$H(27) = 6 + (2 \cdot 3) = 12$$

$$H(27) = 6 + (3 \cdot 3) = 15$$

Si introducimos el siguiente valor, va a superar el factor de carga del 80%. Por tanto, redimensionamos la tabla para poder introducir más valores.

$$N \cdot 2 = 7 \cdot 2 = 14$$

Siguiente número primo es el 17, por lo que N=17.

Calculamos los valores y lo insertamos en la tabla:

$$H(30) = 13 + (0 \cdot 3) = 13$$

$$H(2) = 2 + (0 \cdot 1) = 2$$

$$H(16) = 16 + (0 \cdot 2) = 16$$

$$H(12) = 12 + (0 \cdot 3) = 12$$

$$H(27) = 10 + (0 \cdot 3) = 10$$

$$H(29) = 12 + (0 \cdot 1) = 12$$

$$H(29) = 12 + (1 \cdot 1) = 13$$

$$H(29) = 12 + (2 \cdot 1) = 14$$

0	
1	
2	2
3 4	
4	
5	
6	
7	
8	
9	
10	27
11	
12	12
13	30
14	29
15	
16	16