

Jeffrey Borowitz, PhD

Lecturer

Sam Nunn School of International Affairs

What are Neural Nets?

Neural Networks and "Deep Learning" (and AI?)

- In the last 10 years, neural nets have been responsible for tons of progress on a lot of Al type tasks
- Three questions:
 - How do we really know deep learning is "better"? Is it just hype?
 - How do they fit into our modelling taxonomy?
 - What makes them work so well?

Neural Networks

- A neural network is just a parametric model designed to capture strong nonlinearities.
- It is modelled on the interaction of neurons in brains
 - On the left hand side are data inputs
 - These each feed into a hidden layer of intermediate outputs
 - Depending how much flexibility you want, you could have multiple layers, and many neurons per layer
 - At each neuron, you might have something like a logistic model

$$out_i = \frac{1}{1 + \exp(\alpha + \beta x_1 + \gamma x_2 + \varepsilon_i)}$$

• At the next stage, you have logits based on these outputs:

$$final = \frac{1}{1 + \exp(a + b \cdot out_1 + c \cdot out_2 + e)}$$

Neural Networks

Neural Networks

 They allow nonlinear functions of which can spike up in different combinations of directions

Neural Network Architectures

While neurons can be logistic functions, they can be other things too and there's a lot of art in how people add/compose neural nets together.

Deep Neural Nets

Convolutional Neural Nets

Auto-Encoders

- There is a lot of text data (books, webpages, emails)
- But not a lot of it is framed as independent and dependent variables
- Autoencoders

Dropout

Avoid overfitting by randomly removing some nodes

Neural Networks: Pros and Cons

Pro:

- Neural networks can fit very nonlinear functions
- They can benefit from more data for longer than other models

Con:

- They have many degrees of freedom
- It's hard to get a neural network to converge, because there are "too many wiggles"
- Overfitting can be a problem

Neural Network: Practical Characteristics

First, people are still learning. It often helps to build "deep" networks

This means more layers between the start and the prediction

For images, a "convolutional" pattern works really well:

- Data from a group of nearby pixels goes into a single neuron
- Then that neuron's output goes to most of the places in the next level

For text, a "recurrent" pattern works well, where the output of one group feeds back to itself.

 Also, an "attention" based pattern where the previous text that matters can be selected

Lesson Summary

- A neural network is a parametric model designed to capture strong nonlinearities.
- While neurons can be logistic functions, there's a lot of art in how people add/compose neural nets together
 - Ex. Deep neural nets, convolutional neural nets
- Dropout is how you part of how you overfitting by randomly removing some nodes

