Redes Neurais Convolucionais

Hialo Muniz Carvalho

IA x Machine Learning x Deep Learning

Rede Neural FC (Fully-Connected)

Estrutura de uma Rede Neural Convolucional

Estrutura de uma Rede Neural Convolucional

- Camada de convolução
- > Filtros
- Strides (passos)
- Padding
- Camada de não-linearidade (ReLU)
- Camada de pooling
- Camada Fully-Connected (FC)

Aplicações de uma Rede Neural Convolucional

- Processamento de imagens
- Reconhecimento facial
- Detecção de objetos
- Processamento de documentos
- Natural Language Processing (NLP)

Camada de convolução

- Entrada: matriz representando a imagem e um filtro (também conhecido como kernel)
- Saída: mapa de características (feature map)
- Extração de características da imagem

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

Tipos de filtros

- Detecção de bordas
- Detecção de ângulos
- Blurring

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	6
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	3
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	Q'
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	6

Tipos de filtros

- Adiciona não-linearidade nas informações obtidas na convolução
- Melhora o tempo de processamento durante o treinamento da rede neural
- Podemos usar vários tipos de funções não-lineares, como tangente hiperbólica, sigmóide ou ReLU (Rectified Linear Unit)

Padding e strides

- Padding: Preenchimento da imagem para que o filtro seja capaz de processar a imagem como um todo
- Tipos de *padding*:
- Valid: reduz o tamanho total da imagem, sem se preocupar com o tamanho do filtro
- Same: realiza padding na entrada para que o mapa de características resultante tenha o tamanho original da entrada
- Strides (passos): tamanho do deslizamento do filtro durante a convolução

Padding e strides

• Ao final da convolução, o tamanho do mapa de características resultante é igual a:

$$((T-F+2P)/S)+1$$

Aonde:

- T é o tamanho da imagem (altura/largura)
- F é o tamanho do filtro
- P é o padding utilizado
- S é o tamanho do passo utilizado

Camada de *pooling*

- Redução de dimensionalidade
- Controle contra over-fitting
- Tipos de pooling:
- Métodos comuns de pooling:
- ➤ Max-pooling
- > Average pooling
- > Sum pooling

Camada Fully-Connected (FC)

- Responsável por aprender as características extraídas durante as etapas de convolução/pooling
- Semelhante a uma rede neural convencional
- Também conhecida como *flatten layer*

Exemplo de Rede Neural Convolucional

Referências

- https://ahmedbesbes.com/understanding-deep-convolutional-neural-networkswith-a-practical-use-case-in-tensorflow-and-keras.html
- https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
- https://medium.com/datadriveninvestor/convolutional-neural-networkse0d25a3799f6
- https://medium.com/@eternalzer0dayx/demystifying-convolutional-neural-networks-ca17bdc75559
- https://medium.com/data-science-brigade/a-diferen%C3%A7a-entreintelig%C3%AAncia-artificial-machine-learning-e-deep-learning-930b5cc2aa42
- https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
- http://cs231n.github.io/convolutional-networks/

Exercício!

