Лабораториска вежба 2

Сензорски Системи

Ведран Крстевски 152030

- 1.За лабораториската вежба 2 користев повторно Python јазик со што имплементирав 2 пакети со кои што генерирав податочни множества и алгоритми за предвидување на временски серии. Користев pyplot за вадење на графици на Линеарно Предвидување , МА(2) и МА(3). Истите ги имам представено на график и нивните рпедвидувања. Податоците кои што ги користев се за предвидување на дожд и влажност на воздух и како се поврзани истите , и од линеарното предвидување правиме МА(2) и МА(3).
- 1.1 Датасетот е мерења на влажност и дожд. На следната слика е представено истото и го читаме во Python од csv фајл.

Табела 1 Слика од податоците во чиста околина

Humidity	Chance of Rain
2.5	21
5.1	47
3.2	27
8.5	75
3.5	30
1.5	20
9.2	88
5.5	60
8.3	81
2.7	25
7.7	85
5.9	62
4.5	41
3.3	42
1.1	17
8.9	95
2.5	30
1.9	24
6.1	67
7.4	69
2.7	30
4.8	54
3.8	35
6.9	76
7.8	86

2.1 Потоа доколку симулираме линеарно предвидување, го добиваме следниов график

И ги добиваме следниве податоци ->

	Actual	Predicted
0	20	4.181818
1	27	25.045455
2	69	76.590909
3	30	16.454545
4	62	58.181818
5	35	32.409091
6	24	9.090909
7	86	81.500000
8	76	70.454545
9	17	-0.727273
10	47	48.363636
11	85	80.272727
12	42	26.272727
13	81	87.636364
14	88	98.681818
15	67	60.636364
16	30	28.727273
17	25	18.909091
18	60	53.272727
19	30	18.909091
20	75	90.090909
21	21	16.454545
22	54	44.681818

2.2 За линеарново предвидување добиваме пресметан MSE, MAE и RMS, односно предвидувањата колку одстапуваат од вистината, односно вистинските податоци доколку го поделиме множеството и користиме едно за тестирање и едно за валидирање.

Mean Absolute Error: 8.15810276679841 Mean Squared Error: 92.01598993891466 Root Mean Squared Error: 9.5924965435967

3. Користиме потоа уште 2 алгоритми MA(2) и MA(3), односно moving average со предходни 2 мерења и со 3 мерања и перформансите ги генерираме на график со цел да споредиме со линеарното предвидување.

	Humidity	Chance of Rain	SMA_WINDOW2	SMA_WINDOW3
0	2.5	21	NaN	NaN
1	5.1	47	NaN	NaN
2	3.2	27	31.7	NaN
3	8.5	75	49.7	42.5
4	3.5	30	44.0	44.8
5	1.5	20	41.7	38.0
6	9.2	88	46.0	53.2
7	5.5	60	56.0	49.5
8	8.3	81	76.3	62.2
9	2.7	25	55.3	63.5
10	7.7	85	63.7	62.8
11	5.9	62	57.3	63.2
12	4.5	41	62.7	53.2
13	3.3	42	48.3	57.5
14	1.1	17	33.3	40.5
15	8.9	95	51.3	48.8
16	2.5	30	47.3	46.0
17	1.9	24	49.7	41.5
18	6.1	67	40.3	54.0
19	7.4	69	53.3	47.5
20	2.7	30	55.3	47.5
21	4.8	54	51.0	55.0
22	3.8	35	39.7	47.0
23	6.9	76	55.0	48.8
24	7.8	86	65.7	62.8

Тука ги имаме сите мерења кои што ги имаме во податоците, и резултатите кои што се користат за прозорец со 2 и прозорец со 3 одбироци. Напомена дека имам NaN вредности бидејќи алгоритамот нема податоци за предходните мерења поради тоа внесува NaN.

4. Споредување на резултатите

Тука имаме LP(Linear Predictor) со сина боја, SMA2(Simple Moving Average 2) со портокалова боја и SMA3(Simple Moving Average 3) со зелена боја.

Можеме да заклучиме дека ако ги споредуваме овие 3 алгоритми дека големи флуктации во вредностите добиваме со линеарното предвидување, а пак во зависност од податоците и нивните вредности SM има различни вредности за различни прозорци

Со цел да се долови ефективноста на 3те алгоритми користиме уште еден плот каде што го вметнуваме и параметарот за реалните податоци, односно оние кои што се користени за тренирање на моделот за предвидување.

4.1 Предвидувањата и вистинските податоци за полесна визуелизација на проблемот.

5. Заклучок

Мислам дека за да се долови целата слика и да се предвиди нешто со поголема прецизност треба далеку повеќе податоци, гледаме дека Линеарниот Предиктор има поголема тендеција да ги следи реалните подацоти , доколку пак МА има тенденција да не флуктуира многу и да ги држи предвидувањата во ранг-от на податоците.