WSPÓŁCZESNE METODY HEURYSTYCZNE - SPRAWOZDANIE CZĄSTKOWE AGNIESZKA CZAPLICKA, BARTOSZ SOWUL

PB14 - Wykorzystanie algorytmu ewolucyjnego do doboru parametrów SVM do zadania klasyfikacji

1 Opis problemu

Celem naszego projektu jest napisanie programu w języku Python, który wykorzystuje algorytm ewolucyjny do optymalizacji parametrów *C* i *gamma SVM* do zadania klasyfikacji na zbiorach danych o 3 różnych stopniach trudności. *C* oznacza dopuszczalny koszt pomyłki modelu na danych trenujących podczas procesu uczenia, a więc pozwala kontrolować liczbę źle zaklasyfikowanych przykładów. Natomiast *gamma* jest szerokością radialnej funkcji bazowej, używanej jako jądro sieci *SVM*. Para dobieranych parametrów, czyli aktualne rozwiązanie, będzie przedstawione jako genotyp jednego osobnika w populacji.

Dane są podzielone na zbiory trenujące, stosowane do stworzenia klasyfikatorów oraz testujące, przeznaczone do oceny uzyskanego modelu. Każdy zbiór składa się ze 102 przykładów, opisanych przez 36 atrybutów o charakterze liczbowym i z przypisaną kategorią, reprezentowaną przez liczbę całkowitą z zakresu $\{-62, -61, -52, -51, -42, -41, -32, -31, -22, -21, -12, -11, 0, 11, 12, 21, 22, 31, 32, 41, 42, 51, 52, 61, 62\}$. W związku z tym, że mamy do czynienia z klasyfikacją wieloklasową, ostateczny model powstanie jako połączenie $n^*(n-1)/2$ binarnych SVM z kodowaniem one-versus-one, gdzie n oznacza liczbę kategorii, co będzie odpowiadało wprost liczebności populacji.

Opis zbiorów danych:

zbiór "tani"
Rozkład przykładów w klasach w zbiorze trenującym:

klasa	-62	-61	-52	-51	-42	-41	-32	-31	-22	-21	-12	-11
train	2	4	2	4	2	3	2	4	2	4	2	4
test	3	3	3	2	2	4	3	2	3	2	3	2

ſ	0	11	12	21	22	31	32	41	42	51	52	61	62
	13	8	2	6	2	7	2	8	3	7	2	6	1
	9	8	3	7	3	8	3	8	3	7	3	5	3

Na rys. 1.1 przedstawiony został rzut danych "tanich" trenujących i testujących na składowe główne, wyznaczone przy użyciu metody PCA przy rozróżnieniu danych w poszczególnych klasach. Na wykres a) każda klasa odpowiada innej kategorii, natomiast na

wykresie b) zbliżone kategorie zostały złączone w jedną klasę (np. -60 reprezentuje -62 i -61).

Rysunek 1.1: Zbiór tani

• zbiór "średni" Rozkład przykładów w klasach:

	klasa	-62	-61	-52	-51	-42	-41	-32	-31	-22	-21	-12	-11
ĺ	train	2	4	2	4	2	4	2	4	2	4	2	4
ĺ	test	3	3	2	3	2	3	2	3	3	2	2	3

	0	11	12	21	22	31	32	41	42	51	52	61	62
ſ	11	7	2	6	2	8	2	8	2	7	2	7	2
Ì	9	8	3	7	3	8	3	8	3	7	3	6	3

Na rys. 1.2 przedstawiony został rzut danych "średnich" trenujących i testujących na składowe główne, wyznaczone przy użyciu metody PCA przy rozróżnieniu danych w poszczególnych klasach. Na wykres a) każda klasa odpowiada innej kategorii, natomiast na wykresie b) zbliżone kategorie zostały złączone w jedną klasę (np. -60 reprezentuje -62 i -61).

Rysunek 1.2: Zbiór średni

• zbiór "drogi Rozkład przykładów w klasach:

klasa	-62	2 -6	61	-52	-51	-42	-41	-32	2 -:	31	-22	-21	-12	-11
train	2	4	4	2	4	2	4	2		4	2	4	2	4
test	3	2	2	3	2	2	3	3		2	2	3	2	3
	0	11	12	21	22	31	32	41	42	51	52	61	62	

Na rys. 1.3 przedstawiony został rzut danych "drogich" trenujących i testujących na
składowe główne, wyznaczone przy użyciu metody PCA przy rozróżnieniu danych w
poszczególnych klasach. Na wykres a) każda klasa odpowiada innej kategorii, natomiast
na wykresie b) zbliżone kategorie zostały złączone w jedną klasę (np60 reprezentuje
-62 i -61).

Dla każdego zbioru pierwsza składowa zawiera ok. 76% całkowitej wariancji, a druga ok. 15%. Analizując zobrazowane dane można zauważyć, że są one w większości rozróżnialne przy wykorzystaniu tych informacji, a najtrudniej separowalne pozostają przykłady należące do zbliżonych kategorii np. -62 i -61. Jeśli dane okażą się zbyt skomplikowane dla naszego programu, a przykładów zbyt mało dla stworzenia SVM, to posłużymy się zmniejszoną o połowę liczbą klas, jak przedstawiono na wykresach b).

Rysunek 1.3: Zbiór drogi

2 Projekt algorytmu ewolucyjnego

Definiując algorytm ewolucyjny należy wybrać:

- kodowanie, czyli sposób reprezentacji problemu,
- funkcję dopasowania,
- metodę inicjacji populacji,
- · operatory ewolucyjne,
- rodzaj selekcji (reprodukcji i sukcesji),
- kryterium stopu.

Z uwagi na fakt, że optymalizowane parametry *C* i *gamma* są liczbami rzeczywistymi, naturalnym sposobem kodowania jest reprezentacja zmiennoprzecinkowa. Przykładowy osobnik to wektor liczb, na przykład [0.87 0.44], gdzie pierwsza wartość odpowiada parametrowi *C*, a druga parameterowi *gamma*.

Wyznacznikiem jakości klasyfikatora może być dowolna metryka zaimplementowana w klasie *sklearn.metrics*. W przytoczonym niżej przykładzie użycia algorytmu na zbiorze *iris* użyto funkcji *neg log loss*. Stanowi ona funkcję oceny dopasowania danego osobnika.

Zdecydowano się na selekcję turniejową z liczbą uczestników q=4. Taka reprodukcja przebiega dwustopniowo. W każdym kroku wybierana jest najpierw podpopulacja zawierająca q osobników z populacji P^t . Wybrano wariant losowania osobników bez zwracania. Oznacza to, że q-1 najgorzej przystosowanych osobników nie będzie miało szansy na reprodukcję. Wszystkie q-elementowe kombinacje z P^t są jednakowo prawdopodobne. Następnym etapem jest przeprowadzenie turnieju, którego zwycięzcą zostaje osobnik najlepiej przystosowany. Osobnik kopiowany jest do populacji potomnej. Proces losowania osobników i rozgrywania turnieju wykonywany jest wielokrotnie, aż do zapełnienia populacji potomnej.

Zaimplementowano krzyżowanie uśredniające w wariancie alternatywnym. Uśrednianie przeprowadzane jest według schematu:

$$Y_i = X_i^1 + \xi_{U(0,1),i}(X_i^2 - X_i^1),$$

gdzie:

- X_i^1 i-ty gen chromosomu X^1 (pierwszego rodzica),
- X_i^2 i-ty gen chromosomu X^2 (drugiego rodzica),
- Y_i i-ty gen chromosomu Y (osobnika potomnego),
- $\xi_{U(0,1),i}$ zmienna losowa o rozkładzie jednostajnym.

W tym wariancie realizacja zmiennej losowej o rozkładzie jednostajnym następuje osobno dla każdego genu. Drugi osobnik potomny powstaje w następujący sposób:

$$\mathbf{Z} = \mathbf{X}^2 + \mathbf{X}^1 - \mathbf{Y}$$

Kolejnym wybranym operatorem ewolucyjnym jest operator mutacji. Mutacja przeprowadzana jest poprzez dodanie do wektora osobnika wektora będącego n-wymiarową realizacją zmiennej losowej o rozkładzie Cauchy'ego, który, w przeciwieństwie do rozkładu normalnego, pozwala na generowanie dużych wartości.

Po operacjach krzyżowania i mutacji populacja potomna uzupełniana jest o dwóch najlepszych osobników z poprzedniej generacji. Jest to sukcesja elitarna.

Kryterium stopu jest maksymalna dopuszczalna liczba iteracji. Wybór tego parametru pozostawiony jest użytkownikowi.

3 ZAŁOŻENIA IMPLEMENTACYJNE

Algorytm zaimplementowany jest w języku Python w postaci samodzielnej klasy (*class EvoAlgo*). Moduł jest kompatybilny z wersjami języka 2.7, 3.5 i nowszymi.

Do budowy algorytmu wykorzystano następujące (kolejność alfabetyczna), ogólnodostępne moduły Pythona:

- *matplotlib* biblioteka do tworzenia wykresów,
- NumPy biblioteka numeryczna,
- pathos framework ułatwiający obliczenia równoległe,
- scikit-learn biblioteka do uczenia maszynowego,
- *tqdm* moduł wyświetlający pasek postępu w terminalu.

Oprócz tego wykorzystano bibliotekę standardową języka Python, głównie strukturę danych *list* oraz kolekcję *namedtuple*.

4 Opis implementacji

Plik *evoalgo_svm.py* zawiera implementację algorytmu ewolucyjnego do doboru parametrów SVM wraz z przykładowym wywołaniem dla znanego (i niewielkiego) zbioru danych *iris*.

Zaprojektowany algorytm składa się z następujących metod:

- __init__ konstruktor, przyjmujący jako parametry: klasyfikator bazowy, rodzaj walidacji krzyżowej, ilość osobników w populacji, ilość iteracji (kryterium stopu),
- _create_individual zwraca osobnika, czyli wektor dwóch liczb zmiennoprzecinkowych,
- _*create_population* tworzy populację poprzez zapełnienie macierzy wektorami zwracanymi przez wywołanie metody _*create_individual*,
- _*get_fitness* i _*score_ind* ocenia przystosowanie danego osobnika jako średnią wyników z *k-fold CV*,
- _select_parents przeprowadza selekcję turniejową, czyli wybiera rodziców do reprodukcji,
- _crossover wykonuje krzyżowanie uśredniające w wariancie alternatywnym,
- _*mutate* wykonuje mutację poprzez dodanie wektora, który jest realizacją zmiennej losowej o rozkładzie Cauchy'ego,
- _create_next_generation tworzy nową populację, korzysta z wcześniej wymienionych metod,
- *fit* "serce" algorytmu, jedyna metoda publiczna w interfejsie klasy (w języku Python metody rozpoczynające się od znaku "_" umownie traktowane są jako prywatne, choć sam język tego nie wymusza), szuka najlepszych parametrów dla optymalizowanego algorytmu SVM.

Dodatkowo dostępne są funkcje pomocnicze:

- *get_params* zwraca wartości parametrów *C* i *gamma* najlepszego osobnika oraz wartość jego przystosowania,
- *plot* wyświetla wykres wyników w funkcji numeru generacji przedstawiający: wynik bazowy klasyfikatora, wynik średni danej generacji i wynik najlepszego osobnika w danej generacji, przy czym wynikiem jest wartość wybranej wcześniej metryki oceniającej jakość klasyfikacji,
- *plot_gen* umożliwia zobaczenie wygenerowanych osobników na wykresie dla każdej generacji. Przykładowe działanie algorytmu przedstawia załączony plik *animation.gif*, stworzony na podstawie uzyskanych (i zapisanych) wykresów dla poszczególnych generacji za pomocą polecenia *convert -delay 10 -loop 0 *.png animation.gif* w systemie Linux.