Context-Free Grammars

Example:
$$f(x) = x^3$$

$$f(x) = x^3$$

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$
 $f(x) = z * 2 = 8$

input

$$x = 2$$

output

Program memory

compute x * x

CPU

compute $x^2 * x$

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$
 $f(x) = z * 2 = 8$

input

$$x = 2$$

Program memory

$$f(x) = 8$$

output

compute
$$x * x$$

CPU

compute $x^2 * x$

Automaton

Automaton

Different Kinds of Automata

Automata are distinguished by the temporary memory

• Finite Automata: no temporary memory

· Pushdown Automata: stack

Turing Machines: random access memory

Finite Automaton

Example: Elevators, Vending Machines (small computing power)

Pushdown Automaton

Example: Compilers for Programming Languages (medium computing power)

Turing Machine

Examples: Any Algorithm

(highest computing power)

Power of Automata

Simple problems

More complex problems

Hardest problems

Finite
Automata

Pushdown Automata

Turing

Machine

Less power

More power

Solve more

computational problems

Introduction

In this lecture, we turn to *Context Free Grammars* and *Context Free Languages*.

The class of Context Free Languages is an intermediate class between the class of regular languages and the class of **Decidable** Languages (To be defined).

<u>Introduction</u>

- A *Context Free Grammar (CFG)* is a "machine" that creates a language.
- A language created by a CF grammar is called **A**Context Free Language (CFL).
- (We will show that) The class of Context Free Languages *Properly Contains* the class of Regular Languages.

Consider grammar $G_1: I \rightarrow aIb$ $I \rightarrow \varepsilon$

A CFG consists of **substitution rules** also called **productions**.

The capital letters are the variables.

One variable is designated as the start variable.

The other symbols are the *terminals*.

Consider grammar
$$G_1: I \rightarrow aIb$$

$$I \rightarrow \varepsilon$$

The grammar G_1 *generates* the language $B = \left\{ a^n b^n \mid n \geq 0 \right\}$ called *the language of* G_1 , denoted by $L(G_1)$.

The rules can be written as $I \rightarrow alb \mid \varepsilon$ (using symbol "|" as an "or")

Consider grammar G_1 :

$$I \rightarrow aIb$$

$$I \to \varepsilon$$

This is a *derivation* of the word aaabbb by G_1 : $I \Rightarrow aIb \Rightarrow aaIbb \Rightarrow aaaIbbb \Rightarrow aaabbb$

On each step, a single rule is activated. This mechanism is **nondeterministic.**

This is *a parse tree* of the word aaabbb

Each internal node of the tree is associated with a single production.

CF Grammar – A Formal Definition

- A *Context Free Grammar* is a 4-tupple (V,Σ,R,S) where:
- 1. V is a finite set called the *variables*.
- 2. \sum is a finite set, disjoint from V called the *terminals*.
- 3. R is a set of *rules*, where a rule is a variable and a string of variables and terminals, and
- 4. $S \in V$ is the **start variable**.

A Derivation – A Formal Definition

A word is a string of *terminals*.

- A *derivation* of a word w from a context free grammar $G = (V, \Sigma, R, S)$ is a sequence of strings $S = s_0 \Rightarrow s_1 \Rightarrow ... \Rightarrow s_l = w$, over $V \cup \Sigma$, where:
- 1. $s_0 = S$ is the start variable of G.
- 2. For each $1 \le i \le l$, S_i is obtained by activating a single production (rule) of G on one of the variables of S_{i-1} .

CF Grammar – A Formal Definition

A word w is in the language of grammar G, denoted by $w \in L(G)$, if there exists a derivation whose rightmost string is w.

Thus,

$$L(G) = \{ w \mid w \text{ can be derived from } G \}$$

Grammar G_2 :

$$V = \{\langle EXPR \rangle, \langle TERM \rangle, \langle FACTOR \rangle\}$$

 $\Sigma = \{a, b, +, \times, (,)\}$

Rules:

1.
$$\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle TERM \rangle | \langle TERM \rangle$$

2.
$$< TERM > \rightarrow < TERM > \times < FACTOR > \mid < FACTOR >$$

3.
$$\langle FACTOR \rangle \rightarrow (\langle EXPR \rangle) |a|b$$

$$S = \langle EXPR \rangle$$

Derivation of $(a+b)\times a$ by Grammar G_2 :

< EXPR > input

```
< EXPR >
input

rule < EXPR > \rightarrow < TERM >
```

```
< EXPR > \rightarrow < TERM >
input output

rule < EXPR > \rightarrow < TERM >
```

$$< EXPR > \rightarrow < TERM >$$
 input

$$< EXPR > \rightarrow < TERM >$$
input
$$rule < TERM > \rightarrow < TERM > \times < FACTOR >$$

input

<u>Derivation of $(a+b) \times a$ by Grammar G_2 :</u>
< EXPR >→< TERM >→< TERM > ×< FACTOR >

 $rule < TERM > \rightarrow < TERM > \times < FACTOR >$

output

<u>Derivation of $(a+b)\times a$ by Grammar G_2 :</u>

< $EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >$ input

<u>Derivation of $(a+b)\times a$ by Grammar G_2 :</u>

$$<$$
 $EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >$ input

rule $\langle FACTOR \rangle \rightarrow a$

$$< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >$$
 $\rightarrow < TERM > \times a$ input
output
rule $< FACTOR > \rightarrow a$

```
< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >
\rightarrow < TERM > \times a
input
```

```
< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >
\rightarrow < TERM > \times a
input
rule < TERM > \rightarrow < FACTOR >
```

```
< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >
\rightarrow < TERM > \times a \rightarrow < FACTOR > \times a
input output

rule < TERM > \rightarrow < FACTOR >
```

$$< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >$$
 $\rightarrow < TERM > \times a \rightarrow < FACTOR > \times a$
input

```
< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >
\rightarrow < TERM > \times a \rightarrow < FACTOR > \times a
input

rule < FACTOR > \rightarrow (< EXPR >)
```

```
< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >
\rightarrow < TERM > \times a \rightarrow < FACTOR > \times a
\rightarrow (< EXPR >) \times a \quad input
output rule < FACTOR > \rightarrow (< EXPR >)
```

```
< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >
\rightarrow < TERM > \times a \rightarrow < FACTOR > \times a
\rightarrow (< EXPR >) \times a
input
```

```
< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >
\rightarrow < TERM > \times a \rightarrow < FACTOR > \times a
\rightarrow (< EXPR >) \times a
input

rule < EXPR > \rightarrow < EXPR > + < TERM >
```

```
< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >
\rightarrow < TERM > \times a \rightarrow < FACTOR > \times a
\rightarrow (< EXPR >) \times a \rightarrow (< EXPR > + < TERM >) \times a
input
output

rule
< EXPR > \rightarrow < EXPR > + < TERM >
```

$$< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >$$
 $\rightarrow < TERM > \times a \rightarrow < FACTOR > \times a$
 $\rightarrow (< EXPR >) \times a \rightarrow (< EXPR > + < TERM >) \times a$
input

```
< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >
\rightarrow < TERM > \times a \rightarrow < FACTOR > \times a
\rightarrow (< EXPR >) \times a \rightarrow (< EXPR > + < TERM >) \times a
input

rule < EXPR > \rightarrow < TERM >
```

```
< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >
\rightarrow < TERM > \times a \rightarrow < FACTOR > \times a
\rightarrow (< EXPR >) \times a \rightarrow (< EXPR > + < TERM >) \times a
\rightarrow (< TERM > + < TERM >) \times a
output

rule < EXPR > \rightarrow < TERM >
```

```
< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >
\rightarrow < TERM > \times a \rightarrow < FACTOR > \times a
\rightarrow (< EXPR >) \times a \rightarrow (< EXPR > + < TERM >) \times a
\rightarrow (< TERM > + < TERM >) \times a
input
```

Derivation of $(a+b)\times a$ by Grammar G_2 :

```
< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >
\rightarrow < TERM > \times a \rightarrow < FACTOR > \times a
\rightarrow (< EXPR >) \times a \rightarrow (< EXPR > + < TERM >) \times a
\rightarrow (< TERM > + < TERM >) \times a
input
```

rule $< TERM > \rightarrow < FACTOR >$

```
< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >
\rightarrow < TERM > \times a \rightarrow < FACTOR > \times a
\rightarrow (< EXPR >) \times a \rightarrow (< EXPR > + < TERM >) \times a
\rightarrow (< TERM > + < TERM >) \times a
\rightarrow (< FACTOR > + < FACTOR >) \times a
output
rule < TERM > \rightarrow < FACTOR >
```

```
< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >
\rightarrow < TERM > \times a \rightarrow < FACTOR > \times a
\rightarrow (< EXPR >) \times a \rightarrow (< EXPR > + < TERM >) \times a
\rightarrow (< TERM > + < TERM >) \times a
\rightarrow (< FACTOR > + < FACTOR >) \times a
input
```

Derivation of $(a+b)\times a$ by Grammar G_2 :

$$< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >$$
 $\rightarrow < TERM > \times a \rightarrow < FACTOR > \times a$
 $\rightarrow (< EXPR >) \times a \rightarrow (< EXPR > + < TERM >) \times a$
 $\rightarrow (< TERM > + < TERM >) \times a$
 $\rightarrow (< FACTOR > + < FACTOR >) \times a$
input

rule $< FACTOR > \rightarrow a$

49

```
< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >
 \rightarrow < TERM > \times a \rightarrow < FACTOR > \times a
 \rightarrow (\langle EXPR \rangle)\times a \rightarrow (\langle EXPR \rangle + \langle TERM \rangle)\times a
  \rightarrow (< TERM > + < TERM >)× a
  \rightarrow (< FACTOR > + < FACTOR >)× a
   \rightarrow (a + \langle FACTOR \rangle) \times a
                                     rule < FACTOR > \rightarrow a
         output
```

```
< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >
 \rightarrow < TERM > \times a \rightarrow < FACTOR > \times a
 \rightarrow (< EXPR >)\times a \rightarrow (< EXPR > + < TERM >)\times a
 \rightarrow (< TERM > + < TERM >)× a
  \rightarrow (< FACTOR > + < FACTOR >)× a
   \rightarrow (a + \langle FACTOR \rangle) \times a
                input
```

```
< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >
 \rightarrow < TERM > \times a \rightarrow < FACTOR > \times a
 \rightarrow (< EXPR >)\times a \rightarrow (< EXPR > + < TERM >)\times a
 \rightarrow (< TERM > + < TERM >)× a
  \rightarrow (< FACTOR > + < FACTOR >)× a
   \rightarrow (a + \langle FACTOR \rangle) \times a
               input rule \langle FACTOR \rangle \rightarrow b
```

$$< EXPR > \rightarrow < TERM > \rightarrow < TERM > \times < FACTOR >$$
 $\rightarrow < TERM > \times a \rightarrow < FACTOR > \times a$
 $\rightarrow (< EXPR >) \times a \rightarrow (< EXPR > + < TERM >) \times a$
 $\rightarrow (< TERM > + < TERM >) \times a$
 $\rightarrow (< FACTOR > + < FACTOR >) \times a$
 $\rightarrow (a + < FACTOR >) \times a \rightarrow (a + b) \times a$

Derivation of $a + b \times a$ **by Grammar** G_2 :

$$< EXPR > \rightarrow < EXPR > + < TERM > \rightarrow$$
 $\rightarrow < TERM > + < TERM > \rightarrow < FACTOR > + < TERM >$
 $\rightarrow a + < TERM > \rightarrow a + < TERM > \times < FACTOR >$
 $\rightarrow a + < FACTOR > \times < FACTOR >$
 $\rightarrow a + b \times < FACTOR >$
 $\rightarrow a + b \times a$

Note: There is more than one derivation.

Derivation Order

Consider the following example grammar with 5 productions:

1.
$$S \to AB$$
 2. $A \to aaA$ 4. $B \to Bb$
3. $A \to \lambda$ 5. $B \to \lambda$

1.
$$S \rightarrow AB$$

1.
$$S \rightarrow AB$$
 2. $A \rightarrow aaA$ 4. $B \rightarrow Bb$

4.
$$B \rightarrow Bb$$

3.
$$A \rightarrow \lambda$$
 5. $B \rightarrow \lambda$

$$5. B \rightarrow \lambda$$

Leftmost derivation order of string aab:

At each step, we substitute the leftmost variable

1.
$$S \rightarrow AB$$

1.
$$S \rightarrow AB$$
 2. $A \rightarrow aaA$ 4. $B \rightarrow Bb$

4.
$$B \rightarrow Bb$$

3.
$$A \rightarrow \lambda$$
 5. $B \rightarrow \lambda$

5.
$$B \rightarrow \lambda$$

Rightmost derivation order of string aab:

At each step, we substitute the rightmost variable

1.
$$S \rightarrow AB$$

1.
$$S \rightarrow AB$$
 2. $A \rightarrow aaA$ 4. $B \rightarrow Bb$

$$A. B \rightarrow Bb$$

3.
$$A \rightarrow \lambda$$

$$5. B \rightarrow \lambda$$

Leftmost derivation of aab:

Rightmost derivation of aab:

Ambiguity

A string w is derived **ambiguously** in CFG *G* if it has two or more different leftmost derivations.

Grammar G is **ambiguous** if it generates some strings ambiguously.

Example4: Similar to Arith. EXPS

Grammar G_4 :

$$V = \{\langle EXPR \rangle\} \qquad \Sigma = \{a,b,+,\times,(,)\}$$

Rules:

$$\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle | \langle EXPR \rangle \times \langle EXPR \rangle$$

 $\langle EXPR \rangle \rightarrow (\langle EXPR \rangle) | a | b$

$$S = \langle EXPR \rangle$$

Grammar G_4 is ambiguous. It has different parse trees for $a + b \times a$ (shown next).

Example4: 1st Parse Tree for $a + b \times a$

Example4: 2nd Parse Tree for $a+b\times a$

Two different derivation trees may cause problems in applications which use the derivation trees:

Evaluating expressions

 In general, in compilers for programming languages

Ambiguity

Note: Some ambiguous grammars may have an unambiguous equivalent grammar.

But: There exist *inherently ambiguous grammars*, i.e. an ambiguous grammar that does not have an equivalent unambiguous one.

Converting a DFA into an equivalent CFG

- Make a variable R_i for each state q_i of DFA
- Add the rule $R_i \rightarrow aR_j$ if $\delta(q_i, a) = q_j$ is a transition in DFA
- Add the rule $R_i \to \varepsilon$ if q_i is an accept state of DFA
- Make R_0 the start variable of CFG if q_0 is the start state of DFA

Discussion

Q: From a computational point of view, how strong are context free languages?

A: Since the language $B = \{a^n b^n \mid n \ge 0\}$ is not regular and it is CF, we conclude that $CFL \not\subset RL$.

Q: Can one prove $CFL \supset RL$?

A: Yes.

Discussion

- **Q:** A language is regular if it is recognized by a DFA (or NFA). Does there exist a type of machine that characterizes CFL?
- **A:** Yes, those are the **Push-Down Automata** (Next Lecture).
- Q: Can one prove a language not to be CFL?
- **A:** Yes, by the **Pumping Lemma for CFL-s** . For example: $L = \{a^n b^n c^n \mid n \ge 0\}$ is not CFL.

Chomsky Normal Form (CNF)

A CFG is said to be in *Chomsky Normal Form* (CNF) if every production is of one of these two forms:

- 1. A -> BC (right side is two variables).
- 2. A -> a (right side is a single terminal).

In addition we permit the rule $S \rightarrow \varepsilon$, where S is the start variable.

Theorem: If L is a CFL, then L has a CFG in CNF.