```
HOMEWORK 6
Y~ N(M, o2In), MER"
A, B & Rnxh
@ Show that if ABT = Onxy, AY and BY are ind.
For Y, A, B above,
   AY~ N(AMy, AO2 INAT), BY~ N(BMy, BO2INBT)
(Proof: E(AY) = AE(Y) = AMy
    Var (AY) = E[(AY - AMy) (AY - AMY)]
                 = E[(AY-AMY) (Y-MY)TAT]
     = AE[(Y-My) (Y-My)]AT
        = A o2 In AT, and Same for BY)
If Y is as above, and ABT = 0, the joint
 distribution of AY & BY is bivariate N
To show independence of AY, BY, show that
 COV (AY, BY) = 0
(>cov (AY, BY) = E[(AY-AMy)(BY-BMy)]
     = E[A(Y-My) (Y-My)TBT]
      = A E [(Y-My)(Y-My)T] BT = A 02 BT = ABT 02 =0
So, AY and BY are independent
@ Suppose A, B are symmetric | idem potent, AB=onxn
Show YTAY, YTBY are independent.
Say 9 = YTAY, 92= YTBY and AB = ATTTB = 0
=> TTATTIBT =0, C= TTAT and D= TTBT
Making CK=(TAT)(TBT)=TABT=TT=0, SO CK=KC
say V = QTT-14, E(V) = QTT-14, (V > vector of standard normals)
Var(v) = Q^TT^-I_M = Q^TT^-TT^-T^-Q = I

so Y = TQV and Y^T = V^TQ^TT^-T

q_1 = Y^TAY = V^TQ^TT^-ATQV = V^TQ^TT^-(T^{-1}CT^{-1})TQV
   = VTQTCOV = VITEIVI , and 92=V2TE2V2
where v, is first half, 1/2 is second half of v, so 91 392 are independent
```

```
XERMAP, P=N

[1] = Y= XB+E, EN Nn(On, 02 In)
 for some non-vandom BERP
 LER<sup>nxs</sup> (full-rank design matrix), SEP
   im(L) cim(x)
E(Y)= Ly for yEIR'S
Test to E(Y)=Ly for JERS
 @ p=3, E(Yi) = Bo+B1/11 +B2/12
 Find design moutrices X. L, show that
   im(L) < im(X)
               , and x = \begin{bmatrix} 1 & x_1 & x_2 \\ 1 & x_1 & x_2 \end{bmatrix}
                                    Li Xi
(1) Ho: B2 = 0
                                  For V, 92x1 vector
                               and asim(L)
                               \Rightarrow a = \begin{bmatrix} 1_n & x_1 \end{bmatrix}_{V_2} \rightarrow a = \begin{bmatrix} 1_n & x_1 \end{bmatrix}_{V_2} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} v_1 & v_2 \end{bmatrix}_{V_2} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}
                                       V11 + × n1 V2 + × n2 0
   (essentially
                                       = Taeim (x)
     removing a term)
(ii) Ho: B1+B2 =0
                             = β0 + βc (Xi1- Xi2) + Ei
                                             V1 + V2(Xin+Xi2) 0 > a ∈ im(X)
 (terms cancel)
```

```
2, continued
(6) Hx = X(xTX) - XT , HL= L(LTL)-'LT
     SSEX = SSE when design moutrix is X
     SSEL = SSE when design moutrix is L
 F-Stat: f = (SSE_L - SSE_X)/(p-S)
                       SSEX/(n-p)
show that we can unte fas:
f = \frac{Y^{T}(H_{X} - H_{L})Y}{(p-s)}
                 YT(In-Hx)Y (n-p)
Denominator: SSEx = ZEi2 = Z(Yi-Yi)2
     = eTE = (Y- XB) (Y-XB) = YTY - 2BTXTY + BTXTXB
      = YTY - 2BT XTY + BTXTX(XTX)TXTY (Sub for B)
      = YTY- 2BT XTY + BTIXTY = YTY - YTX(XTX)-1 XTY
      Y 6H -I) TY =
 and rank (I-H)=h-P (dequees of fuedom)
    so denominator: SSEx/(n-p) = YT(I-Hx)Y/(n-p)
Numerator:
  SSEX = YT(I-HX)Y, SO SSEL = YT(I-HL)Y
 expand: YT(I-HL)Y= YTY-YTL(LTL)"LTY

SSEL-SSEx = (YTY-YTL(LTL)"LTY) - (YTY-YTX(XTX)"XTY)
       = -Y^{\mathsf{T}} L (L^{\mathsf{T}} L)^{\mathsf{T}} L^{\mathsf{T}} Y + Y^{\mathsf{T}} X (X^{\mathsf{T}} X)^{\mathsf{T}} X^{\mathsf{T}} Y
      = - 4 THLY + YTHXY = YTHXY - YTHLY = T(HX-HL)Y
and rank (Hx-HL) = (n-s)-(n-p) = -s+p= p-s
50 f = (SSE_ - SSEX)/(p-S) = YT(HX-HL)Y/(p-S)
          SSEx/(n-p) YT(In-Hx)Y/(n-p)
                                                   & idem poverx
@ Show that (Hx-HL) is symmetric and that
  (In - Hx) (Hx- HL) = Onxh
 (Hx-HL) Symmetric: (Hx-HL)^T = (Hx-HL)

(Hx-HL)^T = Hx^T - HL^T = [(x(x^Tx)^T)^T] - [(L(L^TL)^TL^T)^T]

= x[(x^Tx)^T]^T X^T - L[(L^TL)^T]^T L^T
  = \chi(\chi^{T}\chi)^{-1}\chi^{T} - L(L^{T}L)^{-1}L^{T} = H\chi^{-}H_{L}
                                                     next page
```

```
20, continued
Show that (Hx-Hz) is idempotent
(H_{x}-H_{L}) = (H_{x}-H_{L})^{2} = (H_{x}-H_{L})(H_{x}-H_{L})
   = (X(X^TX)^TX - L(L^TL)^TL^T)(X(X^TX)^TX^T - L(L^TL)^TL^T)
   = H_{x}^{2} - \chi(X^{T}X)^{-1}X^{T}L(L^{T}L)^{-1}L^{T} - L(L^{T}L)^{-1}L^{T}\chi(X^{T}X)^{-1}X^{T} + H_{L}^{2}
  = Hx - Hx HL - HLHx + HL because in (Deim(x)
   = Hx -2HL + HL = Hx - HL by properties of H
Show that (In-Hx)(Hx-HL) = Onen
(I_n - H_x)(H_x - H_L) = I_{H_x} - I_{H_L} - H_x H_x + H_x H_L
    = H_X - H_L - H_X + H_L = O_{n\times n}
Que o to prove f ~ F(p-s, h-p) when
  Ho: E(Y)= Ly, JeRs is true
From O, ABT=0 means AY and BY are
 independent, and from the results in
 (In-Hx)(Hx-HL) = (In-Hx)(Hx-HL) = 0
 so the numerator part & denominator
part: (Hx-HL)Y & (In-Hx)Y are independent
(under Ho)
Additionally, YT(Hx-HL)Y is quadratic form,
    X2 distributed with df= tr(Hx-H)
        4V(Hx-HL) = 4V(Hx)-4V(HL) = p-s
  17(In- HX)) -> +r(In- HX) = +r(In)-+r(HX) = N-6
Which tells us that under tho,
  f~ Fp-s,n-p = YT(Hx-HL)Y/p-s
                  17 (In-HX)Y/N-P
```

Have

idempotent, proof in 5

| <u> </u>                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.                                                                                                            | YER", XER" full-rank design matrix and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                               | R2 = 1 - SSE (uequess Y onto X) (= SSR )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                               | $R^2 = 1 - \frac{SSE}{SSTO}$ (regress Y onto X) (= $\frac{SSR}{SSTO}$ ).<br>$\hat{V} = h \cdot 1 \cdot 1 \cdot \hat{V}$ , $\hat{V} = h \cdot 1 \cdot 1 \cdot \hat{V}$ , and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                               | $Y_{YX} = \sum (Y_{i}^{2} - \overline{Y}) (Y_{i} - \overline{Y})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                               | √2 (√i-\$)2 √2 (4i-7)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                               | @ Use assumption In Eim (x) to show that \$ = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                               | $1_n = \begin{bmatrix} \frac{4}{7} \end{bmatrix}$ of n nows, $\epsilon$ im(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                               | L 1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                               | Show that $\hat{y} = \hat{y} \rightarrow \hat{h} + \hat{h} $ |
|                                                                                                               | tilny⇒ti cancels from both sides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                               | > Int sim(x), so Int=XV for some vectory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                               | $\rightarrow (\times \sqrt{y}) = (\times \times $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                               | $= \sqrt{1} \times \sqrt{1} \times \sqrt{1} = (1, \sqrt{1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| · ~                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| namen oo marka oo ah                                                      | next page -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| nan kanananan kananan | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                               | COLUMN TO THE TOTAL THE TOTAL THE TOTAL TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| **************************************                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                               | The sum of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u>.</u> <del>.</del>                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                               | and the second of the second o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                               | A CONTROL OF THE PROPERTY OF T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

```
3, continued

Θ Use Θ to show that Σ(Yî-YÎ)(Yi-Y) = YT(H-H 1π1π)Y

           will right ever be smaller than 03 why?
           From @, Î = Î, so we have

\[\begin{align*}
\begin{align*}
\begin{
             ue have J= 1,1,T
             Z(yi-7)(Yi-7) · Z(Yi-7)(Yi-7) = (SSR)(SSTO)
                 [L(\underline{C} \not = \underline{T})_{\perp} F] [L(\underline{C} \not = H)_{\perp} F] =
                  ト(エナーエ)ナイノ(エーナコ)イ
                   =11(H-42)(エーゲエ))
                   = ソT(HI-六HJ-六JI +(六J)2)ソ
                 = YT (H- T) - TT + TT) HJ=J and (HJ)2= HJ
                     = イナ(H-ナア)イ
            right will always be ≥0 because it's the square
             noot of ssp (always ≥0), and denominatoris
          squared so also always ≥0. So, ryy always≥0
          Show that R2 = r3,4
           Y_{\hat{Y}|Y}^2 = \sqrt{\frac{1}{2}(Y_i - \bar{Y})^2}  and from \emptyset, \hat{Y} = \bar{Y}

So (Y_{\hat{Y}|Y})^2 = (\sum (Y_i - \bar{Y})(Y_i - \bar{Y}))^2

\sum (Y_i - \bar{Y})^2 \sum (Y_i - \bar{Y})^2
             and from @, Z(Yi- Y)(Yi-Y) = YT(H-HJ)Y
                             [Y(L # -H)] =
                       = YT(H- to J)Y
                             ソブ(エーナカソ
```

## 2131 HW6

### Orly Olbum

#### Question 4

- (a) Suppose you regress steam (Y) onto fat (X1) and glycerine (X2).
- (i) Write down the model you are assuming when performing this regression (i.e. what is the mean and variance model). Provide an interpretation for the coefficients in the mean model.

```
model = lm(steam ~ fat + glycerine, data = steam)
summary(model)
```

```
##
## Call:
## lm(formula = steam ~ fat + glycerine, data = steam)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                        Max
  -2.7977 -1.0015 -0.4424
                            1.0575
                                    3.2397
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  4.625
                             2.247
                                      2.058
                                              0.0516 .
                  1.728
                             1.168
                                      1.480
                                              0.1529
## glycerine
                 -6.628
                             7.578
                                    -0.875
                                              0.3912
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.546 on 22 degrees of freedom
## Multiple R-squared: 0.1755, Adjusted R-squared: 0.1005
## F-statistic: 2.341 on 2 and 22 DF, p-value: 0.1197
```

#### summary(aov(model))

```
##
               Df Sum Sq Mean Sq F value Pr(>F)
## fat
                    9.37
                           9.370
                                    3.918 0.0604 .
                1
                    1.83
                           1.829
                                    0.765 0.3912
## glycerine
## Residuals
               22
                   52.62
                           2.392
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Signif. codes:
```

For a first order linear regression model, we assume: - the mean model is linear in both X variables - the regression function is a plane - the regression function is linear in both X variables - the association between Y and one of the X variables does not depend on the other X variable - we assume independent residuals (and normally distributed)

The fitted linear model above shows an equation of: steam = 4.625 + 1.728xfat + -6.628xglycerine, meaning for every unit increase in steam, there is a 1.728 unit increase in fat and a 6.628 unit decrease in glycerine. At alpha = 0.05, neither of these variables prove to be significant as linear predictors for steam output. This leaves us with an underfit model, because we are leaving out variable that could explain the variation in steam.

The variance model (ANOVA output) also does not show significance at alpha = 0.05, but it does show us that there is more variation due to the fat variable than the glycerine variable in steam.

(ii) In separate plots, plot e-hat as a function of Y-hat, fat and glycerine. Do you see any evidence that the mean or variance model is incorrect?

```
model.res = resid(model)
plot(steam$steam, model.res, ylab = "Residuals", xlab = "Steam", main="Residuals/Model Fit")
```

## Residuals/Model Fit



plot(steam\$fat, model.res, ylab = "Residuals", xlab = "Fat", main="Residuals/Fat")

# Residuals/Fat



# Residuals/Glycerine



The first plot shows a strong positive association between steam and the model residuals. Because the R^2 of the model is very low, this relationship indicates a potentially poor model. If the R^2 was higher, the dependent variable's variation would be explained more by the independent variables. This is not the case here. The second plot and third plots show no (obvious) association between the variables and the model residuals, indicating a correct model.

(iii) Consider the null hypothesis that the coefficients for both fat and glycerine are 0. At a significance level of alpha = 0.05, what do you conclude about these coefficients?

At alpha = 0.05, we fail to reject the hypothesis of coefficients being 0 and conclude that we do not have evidence to support fat and glycerine being significant predictors for steam.

(iv) Plot the variable "temp" against the residuals from this regression. What can you conclude from this plot?

plot(steam\$temp, model.res, ylab = "Model Residuals", xlab = "Temp", main = "Temp vs. Model Residuals")

# Temp vs. Model Residuals



We see in this plot that there is a negative association between temp and the model residuals.

(b) Now regress steam (Y) onto fat (X1), glycerine (X2) and temp (X3).

```
model2 = lm(steam ~ fat + glycerine + temp, data = steam)
summary(model2)
```

```
##
## Call:
## lm(formula = steam ~ fat + glycerine + temp, data = steam)
##
## Residuals:
##
       Min
                1Q
                                 3Q
                    Median
                                        Max
  -1.2348 -0.4116 0.1240
                            0.3744
                                    1.2979
##
##
  Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                9.514814
                           1.062969
                                       8.951 1.30e-08 ***
                0.713592
                           0.502297
                                       1.421
                                                 0.17
## fat
## glycerine
                0.330497
                           3.267694
                                       0.101
                                                 0.92
                           0.007884 -10.138 1.52e-09 ***
## temp
               -0.079928
## ---
                   0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 0.652 on 21 degrees of freedom
## Multiple R-squared: 0.8601, Adjusted R-squared: 0.8401
## F-statistic: 43.04 on 3 and 21 DF, p-value: 3.794e-09
```

#### summary(aov(model2))

```
##
               Df Sum Sq Mean Sq F value
                                            Pr(>F)
## fat
                1
                    9.37
                             9.37
                                   22.042 0.000124 ***
                    1.83
                             1.83
                                    4.304 0.050512 .
## glycerine
                1
## temp
                1
                   43.69
                           43.69 102.776 1.52e-09 ***
## Residuals
               21
                    8.93
                             0.43
## ---
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Signif. codes:
```

(i) Consider the null hypothesis that the coefficients for both fat and glycerine are 0. At a significance level of alpha = 0.05, what do you conclude about these coefficients?

From the mean model, we can see that both fat and glycerine still are not significant predictors of steam, but the variance model shows that with temp in the mix as another independent variable, fat is a significant predictor. Glycerine remains insignificant, at alpha = 0.05.

(ii) Why are the P values from this test so much smaller than those from part (a)?

The R^2 of this model has risen by a lot, indicating that the independent variables are now accounting for much more of the variation in the dependent variable (steam) than in the prior model. Because of this, the p-values will be lower, because they are dependent on the F-values, which in turn depends on the mean squared error (and therefore variance). We see that in both the mean and variance models, temp is a significant predictor for steam. A plot of the residuals for this model against steam will show no obvious association, telling us that the variation in steam is explained by the model itself (moreso than the first model).

```
model2.res = resid(model2)
plot(steam$steam, model2.res, ylab = "Residuals", xlab = "Steam", main="Residuals/Model 2 Fit")
```

# Residuals/Model 2 Fit

