Departamento de Ciência de Computadores Desenho e Análise de Algoritmos (CC211)

 1° Teste Escrito (13.11.2013) $dura ç \tilde{a}o: 2h30$ Cotação: 1+4+3, 4×1.5, 4+2

N.º		Nome	
-----	--	------	--

Considere o problema de ordenar por **ordem crescente** um vetor com n inteiros, dados nas posições $v[0], v[1], \ldots, v[n-1],$ com $n \geq 2$, e o seguinte algoritmo para o resolver.

```
Para k \leftarrow 1 até n-1 fazer
1.
2.
           x \leftarrow v[k];
           j \leftarrow k - 1;
3.
           Enquanto (j \ge 0 \land x < v[j]) fazer
4.
                  v[j+1] \leftarrow v[j];
5.
6.
                  j \leftarrow j - 1;
7.
           v[j+1] \leftarrow x;
```

a) Para a instância $v =$	[4, -5, 30, -1, 2], n = 5
qual é o estado de v , de x	e de j após a execução
do bloco 26. , para $k=3$	3?

b) Analise a complexidade temporal do algoritmo. Apresente as conclusões usando as notações Θ
O , e Ω (deve dar uma resposta elucidativa e útil). Justifique, indicando: um modelo de tempos para
instruções básicas; expressões que definem o tempo total que o algoritmo demora, no melhor e no
pior caso (e descreva casos desses); e provas de que o tempo pertence às classes que referir.

(CONTINUA, v.p.f.) 1

c) Seja $a_0, a_1, \ldots, a_{n-1}$ o estado inicial de $v[0], v[1], \ldots, v[n-1]$. Par mas que não poderá particularizar, apresente uma condição sobre o imediatamente após a execução do bloco de instruções 26. Essa con	o estado das variáveis $x, j \in v$, dição deve ser um invariante de
ciclo e crucial para a correção do algoritmo. Justifique sucintamente e diga como o usaria para concluir que o algoritmo resolve corretamente.	_
2. O algoritmo apresentado abaixo faz parte de um programa e vértices de um grafo dirigido acíclico G (ou do seu transposto G^T) podo ciclo "Enquanto", a pilha P está vazia, $GrauE[v]$ contém o grau para cada $v \in G.V$, e S é o conjunto dos $v \in G.V$ tais que $GrauE[v]$	por ordem topológica. No início de entrada do vértice v em G ,
Enquanto $(S \neq \emptyset)$ fazer	
$v \leftarrow \text{RetiraUmElemento}(S);$ Push $(P, v);$	
Para cada $w \in G.Adjs[v]$ fazer $GrauE[w] \leftarrow GrauE[w] - 1;$	
Se $GrauE[w] = 0$ então $S \leftarrow S \cup \{w\};$	
Se $(opcao = 1)$ então RESG (P) ; senão RESTRANSPG (P) ;	C.T. 1 1.
a) Escreva as funções $RESG(P)$ e $RESTRANSPG(P)$ que imprintopológica de G e de G^T . Justifique que estão corretas e indique a su	
	(CONTINUA, v.p.f.)

N.º	Nome
(co	t. 2a))
b) esse	A função Retira Umelemento (S) escolhe um elemento de S à sorte, retira-o de S e retorna valor. Por que é que é correto escolher v assim?
c)	Como é que a instrução $GrauE[w] \leftarrow GrauE[w] - 1$ contribui para a correção do algoritmo?
d)	Admita que a complexidade temporal de RetiraumElemento(S), de $S \leftarrow S \cup \{w\}$, e de $H(P,v)$ é $\Theta(1)$. O que quer isso dizer? Justifique que: para DAGs com n vértices e m ramos, a
	plexidade do algoritmo apresentado é $\Theta(n+m)$, se $G.Adjs[v]$ for uma lista ligada.
	(CONTINUA, v.p.f.)

ide	Seja $G = (V, E)$ um grafo não dirigido finito, tal que $ V = n$ e $ E = m$, e os vértices entificados por inteiros consecutivos a partir de 1. Pretendemos determinar o número de vérta componente conexa de G que tem mais vértices.	são ices
a)	Escreva (em pseudocódigo) um algoritmo com complexidade $O(m+n)$ que resolva o problem	ma.
	Escreva (em pseudocodigo) am algorismo com comprexidade o (in + in) que resorva o proble	
b)	Justifique sucintamente a correção do algoritmo que apresentou.	
	(FIA	(L)