## Міністерство освіти і науки України

# Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

#### Звіт

3 лабораторної роботи №3 з дисципліни "Алгоритми та структури даних-1. Основи алгоритмізації"

«Дослідження ітераційних циклічних алгоритмів» Варіант <u>27</u>

Виконав студент <u>ІП-11 Савенко Олексій Андрійович</u> (шифр, прізвище, ім'я, по батькові)

Перевірив <u>Мартинова О.П.</u>

( прізвище, ім'я, по батькові)

# Лабораторна робота 3 Дослідження ітераційних циклічних алгоритмів

**Мета** – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

## Варіант 27

### Індивідуальне завдання

27. Обчислити значення квадратного кореня із числа a > 0 із заданою точністю e на основі рекурентного співвідношення

$$x_{n+1} = \frac{1}{2} \cdot \left[ x_n + \frac{a}{x_n} \right], \ x_0 = \frac{a}{2},$$

де  $x_n$  – попереднє,  $x_{n+1}$  - наступне наближення до кореня. Точність обчислення вважається досягнутою, коли  $|x_{n+1} - x_n| < 10^{-5}$ .

#### Постановка завдання

Результатом розв'язку завдання  $\epsilon$  значення квадратного кореня із числа a>0, яке ми можемо отримати за рахунок використання ітераційного циклу та задання рекурентного співвідношення у ньому.

#### Математична модель

| Змінна            | Тип     | Ім'я            | Призначення   |
|-------------------|---------|-----------------|---------------|
| Число а           | Дійсний | a               | Вхідні дані   |
| Задана точність е | Дійсний | e               | Вхідні дані   |
| Перший(теперішній | Дійсний | Xn              | Проміжні дані |
| член відношення)  |         |                 |               |
| Наступний член    | Дійсний | Xn+1            | Проміжні дані |
| рекурентного      |         |                 |               |
| відношення        |         |                 |               |
| Квадратний корінь | Дійсний | Result(sqrt(a)) | Результат     |
| числа а           |         |                 |               |

Задамо значення числа а та заданої точності е, вирахуємо перший член рекурентного відношення-**Xn**(**Xn**=a/2), після цього наступний член — **Xn**+1=0.5\*[**Xn**+a/**Xn**], використаємо алгоритм основної схеми повторення дій за допомогою задання умови |**Xn**+1-**Xn**|>=e, цикл буде повторюватись до того моменту поки умова буде виконуватись, після припинення виконання умови ми отримаємо результат який виведемо через змінну **Result**(sqrt(a)).

## Псевдокод алгоритму

- Крок 1. Визначимо основні дії
- **Крок 2.** Деталізуємо дію обчислення першого члена рекурентного відношення
- **Крок 3.** Деталізуємо дію обчислення наступного члена рекурентного відношення
- Крок 4. Деталізуємо дію визначення квадратного кореня числа

# Крок 1.

#### Початок

Введення а,е

Обчислення першого члена рекурентного відношення

Обчислення наступного члена рекурентного відношення

Визначення квадратного кореня числа

Виведення Result(sqrt(a))

#### Кінець

## Крок 2.

#### Початок

Введення а,е

Xn=a/2

Обчислення наступного члена рекурентного відношення

Визначення квадратного кореня числа

Виведення Result(sqrt(a))

#### Кінець

# Крок 3.

#### Початок

Введення а,е

Xn=a/2

 $X_{n+1}=0.5*[X_{n+a}/X_{n}]$ 

Визначення квадратного кореня числа

Виведення Result(sqrt(a))

#### Кінець

# Крок 4.

#### Початок

Введення а,е

Xn=a/2

 $X_{n+1}=0.5*[X_{n+a}/X_{n}]$ 

поки |Xn+1-Xn|>=e

#### повторити

Xn=Xn+1

 $X_{n+1}=0.5*[X_{n+a}/X_{n}]$ 

# все повторити

Виведення Result(sqrt(a))

# Кінець

# Блок-схема алгоритму

# Крок 1.



Крок 2.



Крок 3.



Крок 4.



# Випробування алгоритму

| Блок                            | Дія                                        |  |
|---------------------------------|--------------------------------------------|--|
|                                 | Початок                                    |  |
| 1                               | Введення а=11 е=0.00001                    |  |
| 2                               | Xn=11/2=5.5                                |  |
| 3                               | Xn+1=0.5*[5.5+11/5.5]=3.75                 |  |
| 4 Перевірка умови ітераційного  | 3.75-5.5 = -1.75 =1.75                     |  |
| циклу  Xn+1-Xn >=e;             | 1.75>=0.00001== <b>true</b>                |  |
| 5                               | Xn=3.75                                    |  |
| 6                               | Xn+1=0.5*[3.5+11/3.5]=3.34166              |  |
| 7 Перевірка умови ітераційного  | 3.34166-3.75 =0.40833                      |  |
| циклу  Xn+1-Xn >=e;             | 0.40833>=0.00001== <b>true</b>             |  |
| 8                               | Xn=3.34166                                 |  |
| 9                               | Xn+1=0.5*[3.34166+11/3.34166]              |  |
|                                 | Xn+1=3.31671                               |  |
| 10 Перевірка умови ітераційного | 3.31671-3.34166 =0.02494                   |  |
| циклу  Xn+1-Xn >=e;             | 0.02494>=0.00001== <b>true</b>             |  |
| 11                              | Xn=3.31671                                 |  |
| 12                              | Xn+1=0.5*[3.31671+11/3.31671]              |  |
|                                 | Xn+1=3.31662                               |  |
| 13 Перевірка умови ітераційного | 3.31662-3.31671 =0.00009                   |  |
| циклу  Xn+1-Xn >=e;             | 0.00009>=0.00001== <b>true</b>             |  |
| 14                              | Xn=3.31662                                 |  |
|                                 |                                            |  |
| 15                              | Xn+1=0.5*[3.31662-11+3.31662]              |  |
|                                 | Xn+1=3.31662                               |  |
| 16 Перевірка умови ітераційного | 3.31662-3.31662 =0                         |  |
| циклу  Xn+1-Xn >=e;             | 0.00000>=0.00001== <b>false</b>            |  |
| 17                              | <b>Виведення</b> Result(sqrt(a)) = 3.31662 |  |
|                                 |                                            |  |
|                                 | Кінець                                     |  |

#### Висновок

Таким чином, я дослідив подання операторів повторення дій та набув практичних навичок їх використання під час складання циклічних програмних специфікацій. Я створив математичну модель завдання, написав покроковий псевдокод алгоритму, а також побудував блок-схеми, використавши при цьому модель алгоритму основного повторення дій. Далі провів випробовування алгоритму з початковими значеннями а=11, е = 0.00001. Визначив перший член рекурентного відношення хп = 5.5, а також наступний Xn+1=3.75, після цього використав ітераційний цикл з передумовою |Xn+1-Xn|>=e. Відбулося 4 ітерації, оскільки на 5 раз було порушено вірність умови(0.00000...>=0.00001==false) і цикл було завершено. У кінці відбулося виведення Result(sqrt(a)) = 3.31662 – значення квадратного кореня із числа а, перевіримо результат через калькулятор √11 =3.31662. Отже, під час випробування алгоритму було доведено що, я створив вірний алгоритм для знаходження кореня із числа а і його можна використовувати для вирішення завдань даного типу.