Name: Mohammed Jawed

Module: CSE 963: Computer Network 1

Roll No: 233560019 Assignment: Homework 1

Note: I have provided answers to these questions based on lecture videos, my understanding, and a thorough

review of the book "Data & Computer Communication" by William Stallings.

Q1: (10 points) Briefly explain the advantages and disadvantages of using layered architecture in computer networks.

Advantage:

- 1) Having layered architecture provide well-defined functions and tasks of each layer, even changing standard in one layer would not affect the layer above it or below it.
- 2) Troubleshooting is more efficient, as it's easy to pinpoint the problematic layer and rectify it.
- 3) In case I want to develop or modify some functionality in that case it would be easy to develop a layer without affecting while model.

Disadvantage:

- 1) It is overhead on data transmission as well as data packet because each layer has to ripe the payload or add the payload based on each layer functionality.
- 2) It introduces complexity and requires a deep understating, in my experience (who is new to this networking field), most time of the time, I forget to recall each layer's function and its effect on other layers. Remembering TCP/IP layers is somewhat easy but OSI layers is bit difficult.
- 3) I think it is necessary to mention that layered architecture introduce bit of complexity and may lead to performance degradation.

Q2: What tasks are performed by the data link layer and the transport layer?

Data link Layer:

- Facilitate Transmissions of data over the link to which the device is attached.
- It handles flow control and error control.
- It is responsible for the framing of the data received from the network layer.
- Adds MAC addresses of source and destination devices as a payload information for proper addressing within local network.

Transport layer:

- This layer provides End-to-end delivery of data b/w devices located on different networks.
- It breaks down the data into segments, e.g TCP, UDP
- Adds source and destination port numbers to the data as payload information, facilitating communication b/w specific process/services.

Q3: Draw the spectrum of the signal $s(t) = 4\sin(2\pi t) + 2\sin(6\pi t) + (8/\pi)\sin(7\pi t)$. Also identify the absolute and effective bandwidths.

Please see below Image Q3.jpeg

Q4: What is the channel capacity for a teleprinter channel with a 300-Hz bandwidth and a signal-to-noise ratio of 3 dB, where the noise is a white thermal noise?

Kindly see below Image Q4.jpeg

Q5: A digital signaling system is required to operate at 9600 bps. If the signal encodes a 4-bit word, what is the minimum required bandwidth of that channel?

Kindly see below Image Q5.jpeg

04. Given,	
B = 300 HZ	
SNR = 3dB	
un house to five C?	
who know from Channon- Hartely theorem	
C = Bloy (1+SMR) - 0	
Here to convert this to linear CNR.	se
77000 6000	
(CLD) - 10 loyin (SMR)	
CNR = 10 10 = 10	
⇒15MR = 1.995 > (2)	
Substitute ey (1) with SMR ralue(2)	
C = 300 + logo (1+1. 535)	
= 300 x loy ₂ (2.995)	
= 300 × 1.58 TC = 474.8 6PS (b)78 (Sec)	
C = 474.8 6PS (800)]	

0.5: Given C = 9600 bpSSignal livel (M) = ?

Find B (Bandwidth) = ?

and we Icnow that, $M = a^{\text{word}} = 34 = 16$.

Bosol on Farmula (My Ouist) $C = 213 \log_2 M$. $\Rightarrow C = 28 \log_3 16 = \frac{9600}{2 \times 4}$ $\Rightarrow B = 1200 \text{ H2}$