CoMa I Klausurvorbereitung / Klausurzettel

Umformungen:

$$(a+b)^2 = a^2 + 2ab + b^2$$
 $(a-b)^2 = a^2 - 2ab + b^2$ $(a+b)(a-b) = a^2 - b^2$

$$\frac{x}{\frac{1}{x^2}} = x \cdot x^2$$

$$h(x) = \frac{x+1}{x^2-1} = \frac{x+1}{(x+1)(x-1)} = \frac{1}{x-1} = (x-1)^{-1}$$

$$f(x)=\ln(x)$$
 $f'(x)=\frac{1}{x}$

$$\sqrt[n]{c} = c^{\frac{1}{n}}$$

$$x^{1/2} = \sqrt{x}$$
 $x^{-1/2} = \frac{1}{\sqrt{x}}$

$$|a| - |b| \le |a + b| \le |a| + |b|$$

$$|a|-|b| \le |a-b| \le |a|+|b|$$

$$a^m \cdot a^n = a^{m+n}$$
 $\frac{a^m}{a^n} = a^{m-n}$

$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[mn]{a} = \sqrt[m]{\sqrt[n]{a}}$$

$$\log_a b = c \Leftrightarrow a^c = b \quad \log_a a = 1 \quad \log_a 1 = 0$$

Trigonometrischer Pythagoras:

$$\sin^2(x) + \cos^2(x) = 1$$

$$\begin{split} \tan\alpha &= \frac{\sin\alpha}{\cos\alpha} & \cot\alpha = \frac{\cos\alpha}{\sin\alpha} & \tan\alpha\cot\alpha = 1 \\ 1 + \tan^2\alpha &= \frac{1}{\cos^2\alpha} & 1 + \cot^2\alpha = \frac{1}{\sin^2\alpha} \\ \sin(\alpha \pm \beta) &= \sin\alpha\cos\beta \pm \cos\alpha\sin\beta & \cos(\alpha \pm \beta) = \cos\alpha\cos\beta \pm \sin\alpha\sin\beta \end{split}$$

$$\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \pm \tan\alpha \tan\beta}$$

Aufwandsberechnung:

"Ist limes f durch g konstant, f gleich groß O(g) gilt \u03c4 ist bekannt.

Ist auch g gleich groß O(f), wird's netter, dann gilt für beide nämlich Theta! "

Komplexität:

Die Komplexität ist das Infimum der Aufwände der Algorithmen des Problems, also der kleinste Aufwand, der betrieben werden muss um ein Problem zu lösen.

Effizienz:

Aufwand des Algorithmus ≈ Komplexität des Problems $z.B.: K(P) = O(n \log n)$

Algorithmus mit Aufwand = O(2n log n) ist effizient, weil Unterscheidung nur um konstanten Faktor Algorithmus mit Aufwand = $O(n^3)$ nicht effizient.

Kondition: Eigenschaft des Problems

Kabs:

Variante	Beispiel	Ergebnis
f ist diffbar	$f(x)=x^4$	$Kabs = f'(x) = 4x^3 $
	f(x) = 2x	$Kabs \le L = 2$ 2x - 2y $= 2 x - y \le 2 x - y $
$f(x) = g \circ h(x) = g(h(x))$	$f(x) = \sin(x^2)$ $g(x) = \sin x$ $h(x) = x^2$	$Kabs_{f} \leq Kabs_{g} \cdot Kabs_{h}$ $= \cos x \cdot 2x $ $\stackrel{Resubst}{\rightarrow} = \cos(x^{2}) \cdot 2x $
	$\begin{array}{c} \underline{\text{Bsp. 2:}} \\ f(x) = \sin(x) \\ g(x) = \sin x \\ h(x) = x \end{array}$	$Kabs_{f} \leq Kabs_{g} \cdot Kabs_{h}$ $= \cos x \cdot 1$ $\stackrel{\text{Resubst}}{\rightarrow} = \cos (x) $
f ist nicht stetig in x_0	$f(x) = \frac{1}{x^3}$ $x_0 = 0$	$Kabs = \infty \text{ für } x_0 = 0$ $Kabs = \left \frac{-3}{x^4} \right $ $ f(x_0) - f(x) \le Kabs(x_0 - x)$

$$Krel = |Kabs| \cdot \frac{|x_0|}{|f(x_0)|}$$
$$f(x) = x^n \Rightarrow Krel = |n|$$

Stabilität: Eigenschaft des Algorithmus

$$\sigma_{\textit{Elementar funktion}}{=}\,1$$

Elementar-Fkt.

Fkt., wo wir zuerst x einsetzen

() vor
$$\circ$$
 vor $\cdot/\frac{\cdot}{\cdot}$ vor $+/-$

$$f(x) = g(x) + h(x) \Rightarrow \sigma_f \le 1 + \frac{|g(x)| + |h(x)|}{|g(x) + h(x)|} \cdot max \{\sigma_g, \sigma_h\}$$

$$f(x) = g(x) - h(x) \quad \Rightarrow \quad \sigma_f \leq 1 + \frac{|g(x)| + |h(x)|}{|g(x) - h(x)|} \cdot \max \{\sigma_g, \sigma_h\}$$

$$f(x) = g(x) \cdot / \frac{1}{r} h(x) \Rightarrow \sigma_f \le 1 + 2 \cdot max \{\sigma_g, \sigma_h\}$$

4)
$$f(x) = g \circ h(x) \Rightarrow \sigma_f \le 1 + Krel_g \cdot \sigma_h$$

Gesamtfehler:

 $GF \le Krel \cdot Eingabefehler + \sigma \cdot Auswertungsfehler$

 $AF \le eps = 2.2204 \cdot 10^{-16}$

A	В	С	D	Е	F	G	Н	Ι	J	K	L	M	N	О
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

Ableitungen						
Funktion	Ableitung					
Produktregel						
f(x)g(x)	f'(x)g(x)+f(x)g(x)					
Quotientenregel						
$\frac{f(x)}{g(x)}$	$\frac{f'(x)g(x)-f(x)g'(x)}{g(x)^2}$					
g(x)	$g(x)^2$					
Kettenregel						
f(g(x))	f'(g(x))g'(x)					
Potenzfunktionen						
$\frac{1}{x}$	$-\frac{1}{x^2}$					
Х						
$\frac{1}{x^2}$	$-\frac{1}{x^3}$					
7						
$x^{1/2} = \sqrt{x}$	$\frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$					
$x^{-1/2} = \frac{1}{\sqrt{x}}$	$-\frac{1}{2}x^{-3/2} = -\frac{1}{2x\sqrt{x}}$					
$x^{3/2} = x\sqrt{x}$	$\frac{3}{2}x^{1/2} = \frac{3}{2}\sqrt{x}$					
Winkelfunktionen						
sin x	COSX					
cosx	-sin x					
tan x	$\frac{1}{\cos^2 x}$					
	cos²x					
cot x	$-\frac{1}{\sin^2 x}$					
Exponentialfunktionen						
e ^x	e ^x					
e ^{kx}	k e ^{kx}					
Logarithmusfunktionen						
In x	1					
	$\frac{}{x}$					
^a log x	1					
_	x In a					