

First-order definability as a constraint on phonological structure

Adam Jardine, Rutgers University adam.jardine@rutgers.edu

Computation and representation

• In terms of string patterns, phonology is (at most) STAR-FREE (SF) (e.g., Rogers et al., 2013)

- **Hypothesis:** non-string structures should be first-order (FO-)definable from strings (with <)
- Intuitive interpretation: phonological structure does not represenent abstract information

Surface correspondence

- Long-distance consonant agreement analyzed with surface correspondence (\mathcal{R}) (Hansson, 2001, 2010; Rose and Walker, 2004)
- (1) Navajo (Sapir and Hoijer, 1967; Hansson, 2010)
 - a. **f**ì-te:**3** b. ***s**ì-te:**3** c. *[+ant][-ant] ('they (dual) are lying')
 - (1c) is a banned substructure constraint (BSC) (Jardine and Heinz, in press)
 - What are \mathcal{R} 's formal properties? (Bennett, 2013: it is an equivalence relation)

Logical definitions (I)

- **Method:** FO-transductions (Courcelle, 1994)
- Signature of a string: $\langle D; \langle P_s, P_f, P_t, P_a \rangle$

Ex.:
$$[sa ∫a]$$
 $(s)_{1}$ $(a)_{2}$ $(f)_{3}$ $(a)_{4}$

• FO of signature:

$$P_a(x) \mid x < y \mid x = y \mid \varphi \lor \psi \mid \neg \psi \mid (\forall x) [\varphi(x)]$$

Logical definitions (II)

• We define *new* relations using FO

$$[+stri](x) \stackrel{\text{def}}{=} P_{s}(x) \vee P_{J}(x)$$

• Navajo correspondence:

• FO-defined correspondence + BSCs do not exceed

Other cases

- Koyra (Hayward, 1982; McMullin and Hansson 2016)
 - a. go:tʃ-uʃ
- d. *go:t∫-us
- 'cause to pull'

- b. d3af-uf-ef:e e. *d3af-us-es:e 'let him/them frighten s.o.'
- c. fod-us
- f. *fod-uf
- 'cause to uproot'

$$\begin{split} & \mathtt{inter}(x,y,z) \overset{\mathrm{def}}{=} (x < z \land z < y) \lor (y < z \land z < x) \\ & \mathtt{int[str]}(x,y) \overset{\mathrm{def}}{=} (\forall z) \left[\left(\mathtt{inter}(x,y,z) \land \mathbf{C}(z) \right) \rightarrow \mathtt{[+stri]}(z) \right] \end{split}$$
 $x\mathcal{R}y \stackrel{\mathrm{def}}{=} x = y \vee \big([+\mathrm{stri}](x,y) \wedge \mathrm{int}[\mathrm{str}](x,y) \big)$

- Slovenian (Jurgec, 2011; McMullin and Hansson, 2016)
 - a. pozabi-f c. *pozabi-f '(you) forget'
 - b. zida-f d. *zida-f '(you) build'
- $x\mathcal{R}y \stackrel{\mathrm{def}}{=} x = y \lor ([+\mathrm{stri}](x,y) \land \mathrm{int}[\mathrm{noncor}](x,y))$
- Kikongo (Rose and Walker, 2004)
 - a. ku.ki.ni.na c. *ku.ki.ni.la 'to dance for'
 - b. ban.ti.ki.di d. *ban.ti.ki.ni 'begun'

 $\mathtt{SRole}(x,y) \stackrel{\mathsf{def}}{=} (\mathtt{onset}(x) \land \mathtt{onset}(y)) \lor (\mathtt{coda}(x) \land \mathtt{coda}(y))$

$$x\mathcal{R}y \stackrel{\text{def}}{=} x = y \lor (([+\text{voi},-\text{cont}](x,y)\lor [+\text{son},+\text{cons}](x,y)) \land \text{SRole}(x,y))$$

Discussion and comparison

- Distance insensitive & sensitive \mathcal{R} , \mathcal{R} with blocking, and \mathcal{R} conditioned on syllable role are all FO-definable
- OT-style interaction of same conditions can produce pathologies (McMullin and Hansson, 2016)

	/ ∫asasasa/	Prox	CORR[+stri]	CC-ID[-ant]
				i
	a. ∫asasasa		*** *!* *	1
Х	b. sasasasa	*!* *		I I I
	c. sasasa		** **	

- Above \mathcal{R} is provably not FO
- FO structure + BSCs like *Tier-based Strictly Local* (TSL) (Heinz et al., 2011, et. seq.), but more expressive—Kikongo not TSL
- Other kinds of structure appear FO-definable:
 - Autosegmental representations (Jardine, 2017)
 - Syllable structure (Strother-Garcia, ms.)
 - Feet (?) (Rogers et al., 2013)

Acknowledgements & References

Acknowledgements

Many thanks to Jeff Heinz, Kristina Strother-Garcia and the students of a Rutgers U. seminar on computation and phonological representation (Eileen Blum, Nick Danis, Luca Iacoponi, and Hazel Mitchley).

Select References

Courcelle, B. (1994). Monadic second-order definable graph transductions: a survey. Theoretical Computer Science, 126:53-75.

Jardine, A. (2017). On the logical complexity of autosegmental representations. In Proceedings of MoL 15, pages 22–35. ACL.

McMullin, K. and Hansson, G. O. (2016). Long-distance phonotactics as Tier-Based Strictly 2-Local languages. In Proceedings of AMP 2015. LSA.

Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., and Wibel, S. (2013). Cognitive and sub-regular complexity. In Formal Grammar, volume 8036 of Lecture Notes in Computer Science, pages 90-108. Springer.

Strother-Garcia, K. (2017). Imdlawn Tashlhiyt Berber syllabification is quantifierfree. Unpublished manuscript, University of Delaware.