Activation bunchion 1) Threshold bunction (binary on step bunction) Trucor false oach rents ne ong! 2) Sigmoid Junction (Binary sigmoid) burden OL 0.5 LD $6(x) = \frac{1}{1 + e^{-x}}$ Range (0,1). 3 Ramp runchion Limac (0,00) > Olp=i/p gor tre values 4= { x, x,0 > 01p=11r or 0, x<0 > 01pr-ve i/p 3) Bipalar Sigmoid runction $Y = f(x) = \frac{1 - e^{-x}}{1 + e^{-x}}$ Range = (-1, +1) f(x) is continuous at a point x= a i3 i) continuous $eyof(x)=x^2$ fc= >c3 f(a) exists;

 $\lim_{x \to a} f(x) = f(a)$

Scanned with CamScanner

f(x)=1x

Neural Network Assakitschare Mc-Culloch pitts model

Farliest neural network model. The input of this model could be gither 0 or 1.

It has a threshold bunction as an activation bun. The app to the model PS 1 13 the input to the

threshold junction is greater than or equal to a given threshold value, else o.

The signal

Threshold

Summation

function

Simple Mc-culloch-pitts model can be used to design a logical operation.

function

input

input

X, X2 Ysum Yout

O O O O

O I I I

I O I

I I I

I I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I

0

$$x_1+x_2=\sum_{i=1}^2 w_i x_i \geqslant 2$$

OR Junction	OR	Trunction
-------------	----	-----------

ジュこい 2 こ 1			1	
_	x_i	x_{z}	Yswn 1	Yout
OR 1 du oc tien	0	0	Yswn 1	O
R Junction	0	1	1	0
51	ι	0	1 2	0
a, ysup?	ι	1	2	1
7, 1 - \	0			

$$x_1 + x_2 = 1$$

= $w_1 x_1 + w_2 x_2 = Z w_1 x_1 > 1$

Truth Table

α_i	1 x2 1	Ysun	your
0	0	0	0
0	\ ,	1	
1	0	1	
1	1	2	1

BOR gade function with 3 inputs Actual 0/p Predicted 0/p Yout x_1 .0 O \circ 0 0 0 0 2 0 0 Ö D 0 D 9 D ∑ wisci≥1 (1) x1 + w2x2+w3x3 >1 $\omega_1 = \omega_2 = \omega_3 = 1$ (0,0,0) (1,0,1)

$$X_1$$
 X_2 $X_1 \times X_2$ $X_1 \times X_1$ $X_1 \times X_2$ $X_1 \times X_2$ $X_1 \times X_2$ $X_1 \times X_1$ $X_1 \times X_2$ $X_1 \times X_2$ $X_1 \times X_1$ X_1

Limitations of Mcculloch - pitts model

1) only binary inputs and outputs are allowed

2) No learning 15 possible

3) Manual adjustment of weights & Hireshold.

WI=1.2 Wz=0.G Threshold =1

A=0, B=0 & Takget=0

wixi = 0x1-2 +0x0.6=0

This is not greater than the threshold on 1

So the off is = 0.

2) A=0, B=1 Target 0

(O)X1 = 0×1-2+1×0.6 = 0.6

not greater than threshold . so 0/10=0

3) A=1; B=0 Target =0

mixi = 1 x 1.2 + 0.0.6 = 1.2

1.2 is greater than the threshold of

so O/P is = 1 but target is o

target \$ 0/p : weights are moderand

w: = w: + n(t-0) 2;

w, = 1.2 + 0.5 (0-1) 1 = 0.7

ω₂ = 0.6 + 0.5 (0-1) 0 = 0.6

new weights wi= 0.7 w2=0.6

Scanned with CamScanner