STAT5003

Week 13: Review and Final Exam

Dr. Justin Wishart

Review

Review: Methods we have learnt

- Regression
 - Multiple linear regression
 - Univariate smoothing (nonlinear) regression
- Clustering and higher dimensional viz
 - Hierarchical clustering
 - K-means clustering
 - PCA
 - ∘ t-SNE

- MDS
- Classification
 - Logistic regression
 - LDA
 - ∘ kNN
 - SVM
 - Random forests
 - Boosting trees.

Multiple regression

$$Y=eta_0+eta_1X_1+\cdots+eta_pX_p+arepsilon$$

Find coefficients to minimize the total sum of squares of the residuals

Local regression (smoothing)

A typical model in this case is

$$Y_i = f(x_i) + \varepsilon$$

ullet The function f is some smooth function (differentiable.)

Density estimation

• Maximum Likelihood approach

$$f(x_1,x_2,\ldots,x_n| heta)$$

• Reformulate as

$$L(oldsymbol{ heta}|oldsymbol{x}) = \prod_{i=1}^n f(x_i| heta)
ightsquigarrow \mathcal{L}(oldsymbol{ heta}|oldsymbol{x}) = \log_e L(oldsymbol{ heta}|oldsymbol{x}) = \sum_{i=1}^n \log_e f(x_i| heta)$$

Kernel density estimation

• Smooths the data with a chosen hyperparameter (bandwidth) to estimate the density.

$$\widehat{f}\left(x
ight)=rac{1}{nh}\sum_{i=1}^{n}K\left(rac{x-X_{i}}{h}
ight)$$

Principal Components Analysis (PCA)

• Find linear combinations of variables that maximise the variability

PCA and t-SNE

Logistic Regression model

- ullet Model the mean non-linearly $\mathbb{E} Y = oldsymbol{X} oldsymbol{eta} = \mu$
- $ullet \ \logigg(rac{p}{1-p}igg) = oldsymbol{X}eta$
- ullet Solve for p gives

$$egin{aligned} \circ \ p = P(Y=1|oldsymbol{x}) = rac{1}{1+\exp(-oldsymbol{X}oldsymbol{eta})} \end{aligned}$$

Linear Discriminant Analysis (LDA)

$$p_k(x) = extbf{ extit{P}}(Y = k | X = x) = rac{\pi_k f_k(x)}{\sum_{\ell=1}^K \pi_\ell f_\ell(x)}$$

Posterior: The probability of classifying observation to group k given it has features x

Prior: The prior probability of an observation in general belonging to group k

• $f_k(x) = P(X = x | Y = k)$ is the density function for feature x given it's in group k

Cross validation

- Fitting model to entire dataset can overfit the data and not perform well on new data
- Split data into training and tests sets to alleviate this and find the right bias/variance trade-off.

Bootstrap

• Simulate related data (sampling with replacement) and examine statistical performance on all the re-sampled data.

Support Vector Machines (SVM)

• Find the best hyperplane or boundary to separate data into classes.

Missing Data

- Remove missing data (complete cases)
- Single Imputation
- Multiple imputation
- Expert knowledge of reasons for missing data.

Basic decision trees

• Partition space into rectangular regions that minimise loss in predictions.

Bagging trees and random forests

- Use bootstrap technique to create resampled trees and average the result.
- $\widehat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \widehat{f}_{*b}(x)$
- Random forests do further subsampling of predictors at split to improve model

Boosting

- Fit tree to residuals and learn slowly
- Slowly improve the fit in areas where the model doesn't perform well.
- Some boosting algorithms discussed
 - AdaBoost
 - Stochastic gradient boosting
 - XGBoost

Feature Selection

- Best subset selection.
- Forward selection.
- Backward selection.
- Choose model that minimises test error
 - Directly via test set
 - Indirectly via penalised criterion.

Ridge Regression and Lasso

- Constrained optimisation techniques that minimise the squares with different constraints.
- Lasso has the extra benefit of feature selection as a free bonus.

$$egin{aligned} \min_{m{beta}} \sum_{i=1}^n (Y_i - eta_0 - \sum_{j=1}^p eta_j X_{ij})^2 & ext{ subject to } & \sum_{j=1}^p |eta_j| \leq s. \ \min_{m{beta}} \sum_{i=1}^n (Y_i - eta_0 - \sum_{j=1}^p eta_j X_{ij})^2 & ext{ subject to } & \sum_{j=1}^p eta_j^2 \leq s. \end{aligned}$$

Monte Carlo Methods

• Repeated simulation to estimate the full distribution and summary values.

$$\mathbb{E} g(X) = \int g(t) f(t) \, dt pprox rac{1}{N} \sum_{i=1}^N g(X_i)$$

- Exploits law of large numbers.
- Can sample from f if inverse of F(x) exists
 - \circ Can generate $X \sim f$ as: $X = F^{-1}(U)$
- Acceptance rejection method to handle more difficult distributions.

Markov Chain Monte Carlo

- Big use in modelling Bayesian methods.
- Simulates a process (random variable that changes over time)
- Simulate new point based off the current point.
- Can estimate even more complex distributions that in Monte Carlo methods.

Methods and metrics to evaluate models

- Sensitivity and specificity
- Accuracy
- Residual sum of squares (for regression)
- ROC curves and AUC
- K-fold cross-validation

Exam Format

Exam format

- Two hour written exam (conducted online)
- 9 Multiple choice questions
 - Questions have two correct answers.
 - You need to select the correct answer(s) to get a mark.
- Some short answer question.
 - Some data context given
 - Some individual short answer subquestions given on each data context.
- Two longer answer questions.

Topics covered

- Everything in the lectures/labs from weeks 1 to 11
 - Except any topic that was marked as not examinable
- Writing code is not tested.
 - There will be some questions on interpretting R outputs.
- You should understand how the algorithms work and be able to sketch out the key steps in pseudo code.

Example multiple choice question

Which of the following method(s) is/are unsupervised learning methods?

A. K-means clustering B. Logistic regression C. Random forest D. Support vector machines

Example short answer question

- a. Explain how the parameters are estimated in simple least squares regression.
- b. Explain a scenario where simple linear regression is not appropriate.
- c. Compute the predicted weight for a person that is 160cm tall and compute the residual of the first person in the table below.

$\overline{}$				
\mathbf{V}		50 11	າ	0.0634X
1	$\overline{}$	90.41	4 +	0.0034A

X: Height (cm)	Y: Weight (kg)
160.0	60
170.2	77
172.0	62
	160.0 170.2

Example long answer question

• Describe the Markov Chain Monte Carlo procedure. You may use pseudo code as part of your answer.