

Cooperative Memory Network for Personalized Task-oriented Dialogue Systems with Incomplete User Profiles

Jiahuan Pei, Pengjie Ren*, Maarten de Rijke

University of Amsterdam, {j.pei, m.derijke}@uva.nl Shandong University*, renpengjie@sdu.edu.cn

April 12-23, 2021

Overview

- Introduction
 - 1.1 Motivation
 - 1.2 Task: Personalized TDS with incomplete user profiles
 - 1.3 Research Questions
- 2 Method
 - 2.1 Architecture
 - 2.2 Dynamic Pipeline
 - 2.3 Multiple hop CoMemNN
 - 2.4 Training Loss
- Setup
 Setup
- Main Results
- 6 Analysis
- **6** Conclusion

2/18

1.1 Motivation

User profiles are usually incomplete with lots of missing values

- 1 not everyone is willing to expose their profiles due to privacy concerns; and
- ② user profiles involve too many aspects (e.g., gender, age, tastes), which makes it impossible to collect all these information.

1.2 Task: Personalized TDS with incomplete user profiles

Dialogue context $(u, D_t, X_t^u) \Longrightarrow$ an appropriate response $y_t = X_t^s$ from candidates.

 X_t^u User utterance at turn t.

 X_t^s System response at turn t.

 D_t Dialogue history at turn t.

u A user profile in the form of $\{(a_i, v_i)\}_{i=1}^m$, v_i is a candidate value of i-th attribute a_i .

Note: it is impossible to enumerate all candidate values in a user profile!

1.3 Research Questions

- How well does CoMemNN perform? Does it significantly and continuously outperform state-of-the-art methods?
- What are the effects of different components in CoMemNN?
- O Do different profile attributes contribute differently?

2.1 Architecture

2.2 Dynamic Pipeline

2.3 Multiple hop CoMemNN


```
Input: turn t, user u_1, profile \mathbf{p}_1, dialogue history \mathbf{H}_t, query \mathbf{q}_t, response candidates
                           \{\mathbf{r}_1,\ldots,\mathbf{r}_{|Y|}\}, max hop HopN, (k-1) neighbors
        Output: A index \mathbf{y}_t of next response; An one-hot vector \tilde{\mathbf{p}}_t^1 presenting the enriched profile.
   1 \{u_2, \ldots, u_k\} \leftarrow \text{Search}(\mathbf{p}_1, k-1):
                                                                                                                                                                                                                             ⊳ MI
  \mathbf{M}_{k}^{P} \leftarrow [\mathbf{p}_{1}, \dots, \mathbf{p}_{k}]:
  3 \mathbf{M}_{t}^{D} \leftarrow [\mathbf{h}_{t}^{1}, \dots, \mathbf{h}_{t}^{k}]; \mathbf{h}_{t}^{i} \leftarrow (\tilde{q}_{t}, \mathbf{H}_{t}^{i}), i \in [1, k]; \tilde{\mathbf{q}}_{t} \leftarrow \mathbf{q}_{t};
  4 while hop < HopN do
             \tilde{\mathbf{M}}_{+}^{D} \leftarrow \mathbf{M}_{+}^{D} \colon \tilde{\mathbf{M}}_{+}^{P} \leftarrow \mathbf{M}_{+}^{P} :
                                                                                                                                                                                                                             ⊳ MU
   6 \mathbf{M}_{t}^{D} \leftarrow \tilde{\mathbf{M}}_{t}^{D};
  7 \mid \mathbf{M}_{t}^{P} \leftarrow \Gamma(\tilde{\mathbf{M}}_{t}^{P}, \tilde{\mathbf{M}}_{t}^{D});
  8 \mathbf{m}_{t}^{D} \leftarrow \mathbf{M}_{t}^{D} : \tilde{\mathbf{g}}_{t} \leftarrow \tilde{\mathbf{g}}_{t} + \mathbf{m}_{t}^{D} :

▷ MR.

  9 \mathbf{m}_{\star}^{P} \leftarrow \mathbf{M}_{\star}^{P} : \tilde{\mathbf{a}} \leftarrow \tilde{\mathbf{a}}_{t} + \mathbf{m}_{\star}^{P} :
10 end
11 \tilde{\mathbf{y}}_t \leftarrow \operatorname{Softmax}(\tilde{\mathbf{q}}_t^T \mathbf{r}_1 + \mathbf{b}_1, \dots, \tilde{\mathbf{q}}_t^T \mathbf{r}_{|\mathcal{V}|} + \mathbf{b}_{|\mathcal{V}|});
                                                                                                                                                                                                                          ▷ DRS
12 y_t \leftarrow \operatorname{Argmax}_i(\tilde{\mathbf{y}}_t);
13 \tilde{\mathbf{p}}_t^1 \leftarrow \text{PiecewiseArgmax}(\mathbf{m}_t^P)
```

2.4 Training Loss

• Cross entropy loss of Dialogue Response Selection (DRS)

$$\mathcal{L}_{\mathsf{drs}}(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|Y|} \mathbf{y}_j \log \hat{\mathbf{y}}_j$$
 (1)

Loss of User Profile Enrichment (UPE)

$$\mathcal{L}_{\mathsf{UPE}}(\theta) = -\frac{1}{N_2} \sum_{i=1}^{N_2} (p_i - \tilde{p}_i), \tag{2}$$

In total,

$$\mathcal{L}(\theta) = \lambda \mathcal{L}_{drs}(\theta) + (1 - \lambda)\mathcal{L}_{crp}(\theta)$$
(3)

3.1 Dataset

- Personalized bAbl dialog dataset.
 - Four user profile attributes (gender, age, dietary preference, favorite food)
 - Statistics: a large version with 12,000 dialogues and a small version with 1,000 dialogues for train/dev/test, respectively. Vocabulary size is 14, 819 and candidate response size is 43, 863.
- Simulation of the incomplete profile with various degrees. Randomly discard some values in a user profile with probabilities of [0%, 10%, 30%, 50%, 70%, 90%, 100%].

3.2 Evaluation

Performance:

- Response Selection Accuracy (RSA): the fraction of correct responses out of all candidate responses.
- Profile Enrichment Accuracy (PEA): we define this metric as the fraction of correct profile values out of all discarded profile values.

Stability: Given a list of evaluation values $[z_1, \ldots, z_{N+1}]$, either RSA or PEA, σ is computed as follows:

$$\sigma(\mathbf{z}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\mathbf{z}_i - \bar{\mathbf{z}})^2},$$

$$\mathbf{z} = [z_2 - z_1, \dots, z_{N+1} - z_N],$$
(4)

where \bar{z} is the mean of the values in performance difference list z.

4.1 Results without discarding user profiles

	Small Set (%)	Large Set (%)
MemNN	77.74	85.10
Split MemNN	78.10	87.28
Retrieval MemNN	83.94	87.33
Personalized MemNN	88.07	95.33
NPMemNN	87.91	97.49
CoMemNN	91.13*	98.13*

- **MemNN**. Profile as the first user utterance + standard MemNN model.
- **Split MemNN**. Profile MemNN + dialogue MemNN.
- **Retrieval MemNN**. Encoder-encoder MemNN + Response Candidates Retrieval.
- Personalized MemNN. MemNN (current user profile, current dialogue history, dialogue history of all users with the same gender and age, user bias towards different KB entries).
- **NPMemNN**. Our implementation. Dialogue history from nearest (k-1) neighbors.

4.2 Results with different profile discard ratios

Discard Ratio	0%	10%	30%	50%	70%	90%	100%
NPMemNN CoMemNN	87.91 91.13 *	86.11 89.90 *	86.56 88.69 *	85.79 87.80 *	83.93 86.35 *	84.08 84.83 *	84.83 82.85
Small Set/Diff.	3.22	3.79	2.13	2.01	2.42	0.75	-1.98
NPMemNN CoMemNN	97.49 98.13 *	97.01 97.94 *	96.05 97.68 *	95.52 97.53 *	95.40 96.98 *	90.96 96.63 *	90.50 92.73 *
Large Set/Diff.	0.64	0.93	1.63	2.01	1.58	5.67	2.23

- CoMemNN significantly outperforms NPMemNN on both datasets.
- CoMemNN steadily decreases with the increase of the profile discard ratio.
- Model stability: NPMemNN has higher deviations; CoMemNN is more stable.

5.1 Ablation study on Profile Enrichment Accuracy (PEA)

	10%	30%	50%	70%	90%	100%
CoMemNN	99.99	99.93	99.82	99.83	99.38	98.98
-PEL	85.71 (\14.28)	87.85 (\12.08)	91.34 (↓8.48)	89.19 (\10.64)	90.04 (\$\dagge 9.34)	90.60 (\\dagger*8.38)
-NP	99.87 (\doldon 0.12)	99.85 (\\doldo\)0.08)	99.24 (\doldar-0.58)	99.15 (\\dot0.68)	99.13 (\doldo.25)	98.86 (\daggerup 0.12)
-NP-CP	98.89 (\1.10)	99.09 (\10.84)	99.16 $(\downarrow 0.66)$	99.20 (\10.63)	99.14 (\(\psi 0.23 \))	98.92 (\psi.06)
-ND	99.72 (\doldon0.26)	99.87 (\psi.06)	99.80 (\(\psi 0.02 \))	99.46 (\(\psi 0.37 \)	98.72 (\(\psi 0.66 \))	97.23 (\1.75)
-ND-CD	99.99 (0.00)	99.86 (\(\psi 0.07 \)	99.68 (\(\psi 0.14 \)	99.69 (\10.14)	99.19 (\(\dagger 0.19 \)	34.78 (\(\dagger 64.2 \)
-ND-NP	99.09 (↓0.90)	98.98 (↓0.95)	97.95 (\1.87)	97.69 (\12.14)	97.06 (\12.32)	97.23 (\1.75)

- PEL: Profile Enrichment Loss.
- Input of UPE: Neighbor Profile (NP); Current Profile (CP); Neighbor Dialogue (ND); Current Dialogue (CD).

5.2 Ablation study on Response Selection Accuracy (RSA)

	0%	10%	30%	50%	70%	90%	100%
CoMemNN	91.13	89.90	88.69	87.80	86.35	84.83	82.85
-PEL -PEL-UPE	, ,	, ,	, ,	87.18 (\doldar-0.62) 85.79 (\doldar-2.01)	, ,	, ,	, ,
-ND -ND-CD	86.60 (\dagger4.53) 90.91 (\dagger0.22) 87.70 (\dagger3.43)	86.10 (\dagger3.80) 87.33 (\dagger2.57) 90.44 (\dagger0.54)	84.56 (\dagger*4.13) 89.06 (\dagger*0.37) 85.79 (\dagger*2.90)	85.26 (\\dagge 2.54) 83.53 (\\dagge 4.27) 87.49 (\\dagge 0.31) 84.90 (\\dagge 2.90) 87.38 (\\dagge 0.42)	82.48 (\J3.87) 86.59 (\footnote{0.24}) 83.56 (\J2.79)	81.95 (\\ 2.88) 85.38 (\(\gamma 0.55\) 82.57 (\\ 2.26)	81.35 (\1.50) 85.41 (\2.56) 85.38 (\2.53)

- PEL: Profile Enrichment Loss.
- UPE: User Profile Enrichment module.
- Input of UPE: Neighbor Profile (NP); Current Profile (CP); Neighbor Dialogue (ND);
 Current Dialogue (CD).

5.3 Effect of different profile attributes

Discard	none	gender	age	dietary	favorite	all		
gender	/	93.05	91.94	88.86	91.95			
age	/	/	92.26	89.37	91.04	/		
dietary	/	/	/	86.74	86.42	/		
favorite	/	/	/	/	90.25	/		
Remain	<u>82.85</u>	87.46	87.93	90.57	87.37	91.13		
RSA (Diff.)								
CoMemNN /wo neighbors 90.34								
CoMemNN /wo neighbors-gender 88.25 (\$\dagge 2.09)								
CoMemNN /wo neighbors-age 85.62 (\.4.7)								
CoMemNN /wo neighbors-gender-age 83.73 (\$\daggered{6.61}\)								

- Each attribute works well in isolation.
- Different types of attributes depend on each other differently.

6 Conclusion

Contribution:

- ▶ A novel, practical task, i.e., personalized Task-oriented Dialogue System (TDS) with incomplete user profiles.
- A CoMemNN model with cooperative interactive modules, which can enrich user profiles gradually as dialogues go on, and to promote response selection based on enriched profiles simultaneously.
- Extensive experiments to demonstrate that CoMemNN significantly outperforms SOTA methods especially in incomplete user profile settings.
- Limitation: CoMemNN is tested on the only available personalized TDS dataset PbAbl.
- **Future work**: Experiment on more datasets and explore whether we can further improve the performance by leveraging non-personalized TDS datasets.

Thanks for your attention!

- Paper: Jiahuan Pei, Pengjie Ren, Maarten de Rijke. "A Cooperative Memory Network for Personalized Task-oriented Dialogue Systems with Incomplete User Profiles". In Proceedings of the 30th The Web Conference 2021 (WWW '21)
- Email: j.pei@uva.nl
- Code: https://github.com/Jiahuan-Pei/CoMemNN