Derivadas e integrales

Ultima modificación:4 de mayo de 2004

Reglas de derivadas

1)
$$(f(x)\pm g(x))=f'(x)\pm g'(x)$$

2)
$$(\mathbf{k} \cdot \mathbf{f}(\mathbf{x}))' = \mathbf{k} \cdot \mathbf{f}'(\mathbf{x})$$

3)
$$(f(x)\cdot g(x))'=f'(x)\cdot g(x)+f(x)\cdot g'(x)$$

4)
$$\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$$

Tabla de derivadas

x = incógnita; k = constante; u,v,w = expresión mas compleja / funciones

k'=0	sen x'=cos x
x'=1	$\cos x' = -\sin x$
$k \cdot x' = k$	$(k \cdot u)' = k \cdot u'$
$(u^n)' = n \cdot u^{n-1} \cdot u'$	$ \ln u' = \frac{1}{u} \cdot u' $
$x^{n} = n x^{n-1}$	$\tan x' = \frac{1}{\cos^2 x} = \sec^2 x$
$e^{x_1}=e^x$	$\arcsin x' = \frac{1}{\sqrt{1-x^2}}$
$k^{x_1} = k^x \cdot \ln k$	$\arccos x' = \frac{-1}{\sqrt{1-x^2}}$
$\ln x' = \frac{1}{x}$	$\arctan x' = \frac{1}{x^2 + 1}$
$\log_{a} x' = \frac{1}{x \cdot \ln a}$	$u \cdot v \cdot w' = u'vw + uv'w + uvw'$
$e^{u}'=e^{u}\cdot u'$	$\frac{1}{u} = \frac{-1}{u^2} \cdot u'$
$\sqrt{\mathbf{x}}' = \frac{1}{2\sqrt{\mathbf{x}}}$	$\frac{u}{v} = \frac{u'v - uv'}{v^2}$

Tabla de Integrales

$\int x^a dx = \frac{x^{a+1}}{a+1} a \neq -1$	$\int dx = x$
$\int k dx = k x \text{(las constantes "salen")}$	$\int \frac{1}{x} dx = \ln x \text{(idem x^-1)}$
$\int k f(x) dx = k \int f(x) dx \text{(constantes "salen")}$	$\int e^{kx} dx = \frac{e^{kx}}{k} + c$
$\int a^x dx = \frac{a^x}{\ln a}$	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$
$\int x^{-1} dx = \ln x $	$\int e^x dx = e^x$
$\int \ln x dx = x \ln x - x$	$\int \sin x dx = -\cos x$
$\int \cos x dx = \sin x$	$\int \tan x dx = \ln \sec x $
$\int \cot x dx = -\ln \csc x = \ln \sin x $	$\int \sec x dx = \ln \sec x + \tan x $
$\int \csc x dx = -\ln \csc x + \cot x = \ln \csc x - \cot x $	$\int \frac{dx}{\cos^2 x} = tg x$
$\int \frac{dx}{\sin^2 x} dx = -\cot g x$	$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x$
$\int \frac{-1}{\sqrt{1-x^2}} dx = \arccos x$	$\int \frac{1}{1+x^2} dx = \operatorname{arctg} x$

Integración por partes: $d(uv)=u\cdot dv+v\cdot du \Rightarrow u\cdot dv=d(uv)-v\cdot du \Rightarrow \int u\cdot dv=uv-\int v\cdot du$ (criterio **ilpet**)

Integración por fracciones simples: grado Q > P

factorear Q en sus raíces, luego igualar P(x) a A1,A2, etc ; y averiguar A1, etc usando los valores de las raíces de Q

$$\frac{p(x)}{q(x)} = \frac{p(x)}{a(x-x_1)...(x-x_n)} = \frac{A_1}{x-x_1} + \frac{A_2}{x-x_2} + ... + \frac{A_n}{x-x_n}$$
 Si grado P > Q ==> P(x)/Q(x) ==> integral resultado + {integral (resto / Q(x)) } <- y aplicar método a este termino

<u>Integral impropia H</u>ay convergente y divergente.

 $\lim_{b\to\infty} {}_a \int^b \frac{dx}{x^2}$ Si da un numero, la integral es convergente, y converge a ese numero. Si da infinito, es divergente.

Curvas de nivel de un campo escalar

Conjunto de nivel K: $C_k(f) = \{(x,y) \in Df : f(x,y) = k\}$ "Es el conjunto de todos los x e y que al "entrar" a f, son iguales a k"

Cónicas:

 $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ <u>Elipse</u>

Hipérbola Si x es +, las ramas se apoyan en el eje x, sino, en el eje y.
$$\frac{+(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \quad \text{o} \quad \frac{-(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

Parábola $(x-h)^2=2\cdot p\cdot (y-k)$ o $(y-k)^2=2\cdot p\cdot (x-h)$