Subjectul D. Optica

Nr. item	Soluţie/Rezolvare
III.a.	
	• $W = N \cdot h \cdot \nu$ • $\nu = c / \lambda$
	$\bullet \ \ \nu = c/\lambda$
	Rezultat final: $N \cong 2.5 \cdot 10^{20}$ fotoni sunt emişi în fiecare secundă
b.	
	• $L_{\text{ex}} = h \cdot c / \lambda_0$
	Rezultat final: $\lambda_0 \cong 5.21 \cdot 10^{-7} \ m = 521 \ nm$
C.	
	 h · c / λ = L_{ex} + E_C E_C = e · U_S
	\bullet $E_C = e \cdot U_S$
	Rezultat final: $U_S = \frac{h \cdot \frac{c}{\lambda} - L_{ex}}{e} = 0.1V$
d.	
	$\bullet \ h \cdot v = L_{ex} + E_C; \ h \cdot v_1 = L_{ex} + E_{C1}$
	• $h \cdot v = L_{ex} + E_C$; $h \cdot v_1 = L_{ex} + E_{C1}$ • $E_{C1} = 6 \cdot E_C / 5$ • $E_C = e \cdot U_S \cong 0.16 \cdot 10^{-19} J$
	Rezultat final: $\Delta v = \frac{E_C}{5 \cdot h} \cong 4.8 \cdot 10^{12} Hz$