# Electromagnetism 2

Dominik Szablonski

March 13, 2025

# Contents

| 1        | Sou | arces of Radiation                                           | 4  |
|----------|-----|--------------------------------------------------------------|----|
|          | 1.1 | Charges                                                      | 4  |
|          |     | 1.1.1 Stationary Charges                                     | 4  |
|          |     |                                                              | 4  |
|          | 1.2 |                                                              | 5  |
|          |     | 1.2.1 Statics                                                | 5  |
|          |     | 1.2.2 Time-Dependent case                                    | 5  |
|          | 1.3 |                                                              | 5  |
|          | 1.0 | · · · · · · · · · · · · · · · · · · ·                        | 5  |
|          |     |                                                              | 7  |
|          |     |                                                              | 7  |
|          | 1 / |                                                              |    |
|          | 1.4 |                                                              | 7  |
|          |     |                                                              | 8  |
|          | 1.5 | Half-Wave Antenna                                            | 8  |
| <b>2</b> | Rad | diation in Matter 1                                          | O  |
| 4        | 2.1 | Maxwell's Equations in a Medium                              |    |
|          | 2.1 | 2.1.1 Electrics                                              |    |
|          |     | 2.1.2 Magnetics                                              |    |
|          |     | · · · · · · · · · · · · · · · · · · ·                        |    |
|          | 0.0 | · · · · · · · · · · · · · · · · · · ·                        |    |
|          | 2.2 | Plane Waves in Lossy Media                                   |    |
|          | 2.0 | 2.2.1 Source-Free Lossy Media                                |    |
|          | 2.3 | Waves in Dielectrics                                         |    |
|          |     |                                                              | 2  |
|          | 2.4 | Waves in Conductors                                          |    |
|          |     |                                                              | 3  |
|          |     |                                                              | 3  |
|          | 2.5 | Waves in Plasmas                                             | .4 |
|          |     | 2.5.1 The Drude Model                                        | .4 |
|          |     | 2.5.2 Drude Model with Collisions                            | .5 |
| _        |     |                                                              |    |
| 3        |     | dection and Refraction 1                                     |    |
|          | 3.1 | Maxwell's Equations and Boundary Conditions                  |    |
|          |     | 3.1.1 Transverse Component of Electric Field                 |    |
|          |     | 3.1.2 Normal (to interfacing surface) component of ${\bf D}$ |    |
|          |     | 3.1.3 Transverse component of $\mathbf{H}$                   |    |
|          |     |                                                              | 8  |
|          | 3.2 | v                                                            | 9  |
|          |     | 3.2.1 Transmission and Reflection Coefficients               | 9  |
|          | 3.3 | Reflection and Normal Incidence From a Conductor             | 20 |
|          | 3.4 | Oblique Incidence                                            | 20 |
|          |     |                                                              | 20 |
|          |     |                                                              | 20 |
|          |     | •                                                            | 22 |
|          |     | 1                                                            | 22 |
|          |     |                                                              | )3 |

| CONTENTS | 3 |  |
|----------|---|--|
|          |   |  |

| 4            | Pola | Polarisation                    |    |  |  |  |  |  |
|--------------|------|---------------------------------|----|--|--|--|--|--|
|              | 4.1  | States of Polarisation          | 24 |  |  |  |  |  |
|              |      | 4.1.1 Linear Polarisation       | 24 |  |  |  |  |  |
|              |      | 4.1.2 Circular Polarisation     | 24 |  |  |  |  |  |
|              | 4.2  | Mechanisms of Polarisation      | 24 |  |  |  |  |  |
|              |      | 4.2.1 Polarisation by Dichroism | 25 |  |  |  |  |  |
| $\mathbf{A}$ | Rev  | vision Equations                | 26 |  |  |  |  |  |
|              |      | Potentials                      |    |  |  |  |  |  |
|              |      | Gauges                          |    |  |  |  |  |  |
|              | A.3  | Vector Identities               | 27 |  |  |  |  |  |
|              | A.4  | EM Waves                        | 27 |  |  |  |  |  |

# Chapter 1

# Sources of Radiation

Radiation is the phenomenon of energy being transported to an observer. Radiation must be disconnected from its source. Plane electromagnetic waves satisfy conditions of being radiation, and are thus known as free fields. The source of electromagnetic radiation must be charges as those generate the electric and magnetic fields. However, electromagnetic radiation is only generated through accelerating charges. For a free field, there must be locations where radiation propagates while  $\rho = 0$ .

### 1.1 Charges

#### 1.1.1 Stationary Charges

For a stationary charge, we can write,

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \frac{q(\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} \propto \frac{1}{|\mathbf{r} - \mathbf{r}'|^2}$$
 
$$\mathbf{B} = 0$$
 (1.1)

We can clearly see that a stationary charge cannot radiate as it has no component in **b**. Furthermore, the energy flow varies as  $\mathbf{1}r^2$ , which require  $\mathbf{E} \propto \frac{1}{r}$  and  $\mathbf{B} \propto \frac{1}{r}$  which neither field satisfies.

#### 1.1.2 Charges with Uniform Velocity

We can perform a Lorentz boost in the case of a moving charge,

$$\mathbf{E}(\mathbf{r}) = \frac{q}{4\pi\varepsilon_0} \frac{1 - \beta^2}{(1 - \beta^2 \sin^2 \theta)} \frac{\hat{\mathbf{r}}}{|\mathbf{r}|^2}.$$
 (1.2)

We find that the electric flux still varies as  $\frac{1}{r^2}$ , thus cannot. Furthermore, we can move into the charge's rest frame where it still varies as  $\frac{1}{r^2}$ . This is the case as charge is both a conserved and Lorentz invariant quantity.

We could also make the an argument using the Biot-Savarte law,

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{q\mathbf{v} \times \hat{\mathbf{r}}}{|\mathbf{r}|^2} \tag{1.3}$$

which still varies as  $\frac{1}{x^2}$ . Thus, we require acceleration of the charge for radiation to occur.

The reason we require that the electric field and magnetic field be proportional to 1/r is because of energy conservation. Let us recall that

$$\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B} \tag{1.4}$$

thus  $S \propto EB$ . We require,

$$\int S \cdot d\mathbf{A} = \text{Constant} \tag{1.5}$$

for energy conservation. Since  $dA \propto r^2$ , we require  $S \propto 1/r^2$ , and thus  $E, B \propto 1/r$ .



Figure 1.1

#### 1.2 Retarded Potentials

If we recall eqs. (A.6) and (A.7) of the sourced potentials, we can analyse more closely the static and dynamic cases to gain more insight into radiation phenomena.

#### 1.2.1 Statics

In the static case, we clearly see that we recover Poisson's equation, which we can solve trivially.

#### 1.2.2 Time-Dependent case

In the time dependent case, we require that the electric field propagates at the speed of light c. Thus, we wish to obtain a scalar potential  $\phi(\mathbf{r},t)$  sue to a volume of charge  $\rho dV'$  at  $\mathbf{r}'$ . We must use the charge density which existed in that volume at an earlier time  $\tau$ ,

$$\tau = t - \frac{|\mathbf{r} - \mathbf{r}'|}{c} \tag{1.6}$$

where  $\frac{|\mathbf{r} - \mathbf{r}'|}{c}$  is the time taken for information of travel from  $\mathbf{r}'$  to  $\mathbf{r}$ . We can call  $\tau$  the retarded time. We can thus write down the retarded potentials,

$$\phi(\mathbf{r},t) = \frac{1}{4\pi\varepsilon_0} \int_V \frac{\rho(\mathbf{r}',\tau)}{|\mathbf{r} - \mathbf{r}'|} \, dV'$$
(1.7)

$$\mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int_V \frac{\mathbf{J}(\mathbf{r}',\tau)}{|\mathbf{r} - \mathbf{r}'|} \, dV'$$
(1.8)

### 1.3 Radiation from an accelerated charge

#### 1.3.1 Displaced point charge

Consider figure 1.1, initially at rest at point P in free space. It is given a sudden impulse and undergoes a sudden acceleration a over a short time  $\Delta t$ , such that when the charge reaches Q it is moving at a constant velocity  $u = a\Delta t << c$ . If we consider the observer at a far away distance r, they will still see the charge at its original, stationary position. In order to see the charge move, the observer must wait a



Figure 1.2

time t = r/c. In this time, there must be a boundary where the field configurations move from the old stationary state to the moving state. This boundary will have a width  $c\Delta t$  and will must move away from the charge's location at a speed c.

Let us recall that  $\nabla \cdot \mathbf{E} = 0$ , so there can be no discontinuities in the field lines generated by the charge. The boundary thus presents itself as a *kink* in the electric field lines, as shown in figure 1.1. This is a component of  $\mathbf{E}$  which is not radial.

Let us now consider the observer looking at the charge at some angle  $\theta$  while it undergoes its final motion, reaching a position ut. Let us note that the boundary of observing the charge's motion is

$$r = ct. (1.9)$$

According to the observer, the charge appears at  $u_{\parallel}t$  parallel to their line of sight and  $u_{\perp}t$  perpendicular to their line of sight. We can then relate these to the parallel and perpendicular components of the kink  $E_{\parallel}$  and  $E_{\perp}$ ,

$$\frac{E_{\perp}}{E_{\parallel}} = \frac{u_{\perp}t}{c\Delta t}.\tag{1.10}$$

If we note that  $u_{\perp} = a_{\perp} \Delta t$ , we can write,

$$E_{\perp} = E_{\parallel} \frac{a_{\perp} r}{c^2}.\tag{1.11}$$

Furthermore, since the charge's field is radial, we can say,

$$E_{\parallel} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \tag{1.12}$$

so we can write,

$$E_{\perp} = \frac{1}{4\pi\varepsilon_0} \frac{qa_{\perp}}{c^2 r}.\tag{1.13}$$

Let us summarise what we have found using this thought experiment,

1. The field  $E_{\perp} \propto 1/r$  in the kink region.



Figure 1.3

- 2. Recalling equation (A.11), we see  $B_{\perp} = E_{\perp}/c$  in the kink region.
- 3. The magnitude of the Poynting vector  $\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B}$  is,  $S \propto EB \propto 1/r^2$

which satisfy our conditions for radiation.

#### 1.3.2 Radiation pattern from a displaced point charge

We wish to now consider the electric field and the power flux (Poynting vector) as time dependent functions, noting that we will require using the retarded time. By noting that  $a_{\perp} = a \sin \theta$ , we can simply write,

$$|\mathbf{E}(\mathbf{r},t)| = \frac{1}{4\pi\varepsilon_0} \frac{q|\mathbf{a}\left(t - \frac{r}{c}\right)|\sin\theta}{c^2 r}.$$
(1.14)

Then, we can write the Poynting vector as,

$$|\mathbf{S}(\mathbf{r},t)| = \frac{1}{16\pi^2 \varepsilon_0} \frac{q^2 |\mathbf{a}^2 \left(t - \frac{r}{c}\right)| \sin^2 \theta}{c^3 r^2}.$$
 (1.15)

#### 1.3.3 Total Power Radiated

The Poynting vector is the directional energy flux per unit area, per unit time. Thus, to find the power radiated, we simply compute the integral,

$$P(t) = \oint \mathbf{S} \cdot d\mathbf{A} = \int_0^{2\pi} \int_0^{\pi} Sr^2 \sin\theta \, d\theta \, d\phi.$$
 (1.16)

Substituting expression (1.15), we obtain Larmor's formula,

$$P(t) = \frac{q^2 \left[ a \left( t - \frac{r}{c} \right) \right]^2}{6\pi\varepsilon_0 c^3} \,. \tag{1.17}$$

## 1.4 Radiation from an Oscillating Electric Dipole

Consider an oscillating dipole, with charges separated by a length l and oscillating along the z axis. From Larmor's formula,  $P(t) \propto (qa(\tau))^2$ . We can approximate the oscillating charges as a charge distribution with charge per unit length  $\mu$  and length l. We can write,

$$qa(\tau) = \mu la(\tau)$$

$$= \mu \frac{\mathrm{d}v}{\mathrm{d}\tau} l$$

$$= l \frac{\mathrm{d}(\mu v(\tau))}{\mathrm{d}\tau}$$
(1.18)

where we find  $\mu v(\tau)$  to have units of current, i.e.,  $[\mu v(\tau)] = [A]$ . We can represent this as a current,

$$\mu v(\tau) = I(\tau) = I_0 \cos \omega t \tag{1.19}$$



Figure 1.4

where  $I_0$  and  $\omega$  are the corresponding amplitude and angular frequency of oscillation. Thus, we can write  $qa(\tau)$  as,

$$qa(\tau) = -\omega L I_0 \sin(\omega t - kr). \tag{1.20}$$

By substitution, we can find the corresponding electric and magnetic fields,

$$E_{\perp} = \frac{I_0 l \sin \theta}{4\pi \varepsilon_0 r c^2} \omega \sin(\omega t - kr) \qquad B_{\perp} = \frac{I_0 l \sin \theta}{4\pi \varepsilon_0 r c^3} \omega \sin(\omega t - kr)$$
 (1.21)

and the corresponding power emitted is,

$$P = \left[\frac{l^2 \omega^2}{6\pi \varepsilon c^3}\right] I_0 \sin^2(\omega t - kr). \tag{1.22}$$

#### 1.4.1 Radiation Resistance

If we recall the formula  $P = I^2 R$ , we find that we can extract a resistance from equation (1.22). This is known as the *radiation resistance*, given by,

$$R_{\rm rad} = \frac{l^2 \omega^2}{6\pi\varepsilon c^3} \tag{1.23}$$

#### 1.5 Half-Wave Antenna

Let us consider a more realistic antenna, as in figure 1.4. This is a centre fed, thin, straight antenna of length l. The solution for the current distribution of this antenna can be obtained from Maxwell's equations, whose solution is,

$$I(z) = I_0 \sin\left(m\pi\left(\frac{|z|}{l} + \frac{1}{2}\right)\right) \tag{1.24}$$

where m is an integer. We can integrate the Hertzian dipole over the length of the antenna in order to obtain an expression for the electric field, we have

$$dE = \frac{I(z) dz \sin \theta}{4\pi\epsilon_0 rc^2} \omega \sin(\omega t - kr). \tag{1.25}$$

Before we integrate this, we must consider the phase  $\omega t - kr$ . We find that there will be a time-lag of  $\Delta t \frac{z \cos \theta}{c}$ , with a resultant lag in phase of  $kz \cos \theta$ . Furthermore, we can approximate  $r \approx R - z \cos \theta$ , thus our integral becomes,

$$E = \frac{\omega \sin \theta}{4\pi\varepsilon_0 Rc^2} \int_{-l/2}^{l/2} I(z) \sin(\omega t - kR + kz \cos \theta) dz$$
 (1.26)

and computing this,

$$E = \frac{I_0 l}{4\pi\varepsilon_0 R c^2} \left[ \frac{2 \cos\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta} \right] \omega \sin\left(\omega t - kR\right). \tag{1.27}$$

We wish to then find the time-averaged poynting vector, computed by  $\langle S \rangle = \frac{1}{\mu_0} \langle \mathbf{E} \times \mathbf{B} \rangle$ , which we find to be,

$$\langle S \rangle = \frac{I_0^2}{8\pi^2 \mu_0 \varepsilon_0^2 R^2 c^3} \frac{\cos^2\left(\frac{\pi}{2}\cos\theta\right)}{\sin^2\theta}.$$
 (1.28)

We can then compute the time average of the power radiated by  $\langle P \rangle = \oint \langle S \rangle \, \mathrm{d}A$ , which requires us to compute,

$$\langle P \rangle = \frac{I_0^2}{4\pi\mu_0 \varepsilon_0^2 R^2 c^3} \int_0^{\pi} \frac{\cos^2\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta} d\theta \tag{1.29}$$

We then find,

$$\langle P \rangle \simeq 1.22 \frac{I_0^2}{r\pi\varepsilon_0 c} \simeq 0.194 Z_0 I_{\rm rms}^2$$
 (1.30)

where we define  $Z_0 = \frac{1}{\varepsilon_0 c} = \sqrt{\frac{\mu_0}{\varepsilon}}$  and  $I_{\rm rms} = \frac{I_0^2}{2}.$ 

# Chapter 2

# Radiation in Matter

### 2.1 Maxwell's Equations in a Medium

Let us recall electromagnetic fields in materials.

#### 2.1.1 Electrics

The  $\mathbf{P}$  field is the dipole moment per unit volume, and describes bound charges, such that,

$$\nabla \cdot \mathbf{P} = \rho_b \qquad \qquad \mathbf{P} \cdot \hat{\mathbf{n}} = \sigma_b \tag{2.1}$$

where b indicates a bound charge, and  $\sigma_b$  is the bound surface charge. The total charge is composed of bound charge and free charge, such that  $\rho = \rho_b + \rho_f$ . We can then define the **D** field, such that,

$$\nabla \cdot \mathbf{D} = \rho_f \tag{2.2}$$

for linear dielectrics, and,

$$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} = \epsilon_0 \epsilon_r \mathbf{E} \tag{2.3}$$

where  $\epsilon_r = 1 + \chi_E$ .

#### 2.1.2 Magnetics

In magnetics, materials can have different types of magnetism:

- Paramagnetism: Magnetisation parallel to B, dipoles align with H.
- Diamagnetism: Magnetisation is antiparallel with B, dipoles anti-align with H.
- $\bullet$  Ferromagnetism: Magnetisation is retained even after **B** is removed, regions of dipoles align together with **H**.

We can define the magnetisation M as the magnetic dipole moment per unit volume, from which we can obtain the bound and surface currents,

$$\mathbf{j}_b = \mathbf{\nabla} \times \mathbf{M} \qquad \mathbf{K}_b = \mathbf{M} \times \hat{\mathbf{n}}. \tag{2.4}$$

We can then define a H field for free currents such that,

$$\nabla \times \mathbf{H} = \mathbf{J}_f \tag{2.5}$$

where,

$$\mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M} = \frac{1}{\chi_M} \mathbf{M} = \frac{1}{\mu_0 \mu_r} \mathbf{B}.$$
 (2.6)

#### 2.1.3 Time dependent case

$$\nabla \cdot \mathbf{D} = \rho_f \qquad \qquad \nabla \cdot \mathbf{B} = 0 \tag{2.7}$$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{j}_f$$
  $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$  (2.8)

### 2.2 Plane Waves in Lossy Media

Consider electromagnetic waves travelling in the z direction such that,

$$\mathbf{E} = (E_x, 0, 0)$$
  $E_x = E_0 e^{i(\omega t - kz)}$  (2.9)

$$\mathbf{B} = (0, B_y, 0) B_y = B_0 e^{i(\omega t - kz)} (2.10)$$

Considering Faraday's law, we get,

$$-ikE_0e^{i(\omega t - kz)} = -i\omega B_0e^{i(\omega t - kz)}$$
(2.11)

and thus,

$$\frac{B_0}{E_0} = \frac{k}{\omega}. (2.12)$$

Recalling Ohm's law  $\mathbf{J} = \sigma \mathbf{E}$  where  $\sigma$  is the conductivity, and Ampere's law, we obtain,

$$k^2 = \frac{\omega^2}{c^2} \epsilon_r \mu_r - i\omega \mu_r \mu_0 \sigma \tag{2.13}$$

which is the dispersion relation for a linear, isotropic, dielectric medium. We see that this expression is complex, and reduces to the vacuum condition under vacuum.

#### 2.2.1 Source-Free Lossy Media

Let us consider a conducting media with dielectric properties and free current  $\mathbf{J}_f$ . Using Ampere's law,

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}_{f}$$

$$= i\omega \epsilon_{0} \epsilon_{r} \mathbf{E} + \sigma \mathbf{E}$$

$$= (i\omega \epsilon_{0} \epsilon_{r} + \sigma) \mathbf{E}$$

$$= i\omega (\epsilon_{0} \epsilon_{r} + \frac{\sigma}{i\omega}) \mathbf{E}.$$
(2.14)

We can then define the *complex permittivity*.

$$\epsilon_c = \epsilon_0 \epsilon_r - \frac{i\sigma}{\omega} \tag{2.15}$$

which we apply to conducting media. In the case of complex media, Ampere's law becomes  $\nabla \times \mathbf{H} = i\omega\epsilon_c \mathbf{E}$ , but otherwise, we simply replace  $\epsilon_0\epsilon_r$  with  $\epsilon_c$  to retrieve Maxwell's equations for conducting media. We can then write down the source free Maxwell's equations,

$$\nabla \times \mathbf{E} = -i\omega \mu \mathbf{H} \qquad \qquad \nabla \times \mathbf{H} = i\omega \epsilon \mathbf{E} \qquad (2.16)$$

$$\nabla \cdot \mathbf{E} = 0 \qquad \nabla \cdot \mathbf{H} = 0. \tag{2.17}$$

By considering  $\nabla \times \nabla \times \mathbf{E}$  we can derive the Helmholtz equation of electromagnetism.

$$\nabla^2 \mathbf{E} + \omega^2 \mu \epsilon \mathbf{E} = 0 \tag{2.18}$$

where we often parametrise  $k_c^2 = \omega^2 \mu \epsilon$ .

#### Transmission line theory

We define the transmission line constant as,

$$\gamma = ik_c = i\omega\sqrt{\mu\epsilon_c} \tag{2.19}$$

which can be written in a general form,

$$\gamma = \alpha + i\beta \tag{2.20}$$

since its a complex number. We can then rewrite the Helmholtz equation as,

$$\nabla^2 \mathbf{E} - \gamma^2 \mathbf{E} = 0 \tag{2.21}$$

from which we find that the electric field has a form,

$$\mathbf{E} = E_0 e^{i\omega t} e^{-\alpha z} e^{-i\beta z} \tag{2.22}$$

where  $e^{i\omega t}$  represents the oscillatory time dependence,  $e^{-\alpha z}$  represents exponential attenuation, and  $e^{-i\beta z}$  is a phase factor.

### 2.3 Waves in Dielectrics

In a dielectric  $\mu_R \approx 1$  and  $\sigma \approx 0$ . Furthermore, the electrons will have bound electrons which will have spring-like forces holding them together in the dielectric. We can then model their motion as a forced-damped oscillator,

$$\ddot{\mathbf{x}} + \beta \dot{\mathbf{x}} + \omega \mathbf{x} = \frac{q}{m} \mathbf{E} \tag{2.23}$$

where  $\beta$  is a damping constant. The solution to this equation is then,

$$\mathbf{x} = \frac{\frac{q}{m}}{(\omega_0^2 - \omega^2) + i\beta\omega} \mathbf{E} \tag{2.24}$$

where  $\omega_0$  is the natural frequency of the electron. We know that the dipole moment of a single particle is given by  $\mathbf{p} = q\mathbf{x}$ , thus,

$$\mathbf{p} = \frac{\frac{q^2}{m}}{(\omega_0^2 - \omega^2) + i\beta\omega} \mathbf{E}.$$
 (2.25)

The total magnetic moment will be given by a weighted sum of individual magnetic moments of each electron  $\mathbf{P} = \sum_{n=1}^{N} f_{i}\mathbf{p}_{i}$ , so,

$$\mathbf{P} = \sum_{j} \frac{N f_j \left(\frac{q^2}{m}\right)}{(\omega_j^2 - \omega^2) + i\beta\omega} = \chi_E \epsilon_0 \mathbf{E}.$$
 (2.26)

We can then write out the electric susceptibility, as well as rationalising the expression,

$$\chi_E = \frac{q^2}{m\epsilon_0} \sum_j \frac{Nf_j(\omega_j^2 - \omega^2) - iNf_j\omega\beta}{(\omega_j^2 + \omega^2) + \omega^2\beta^2}$$
(2.27)

from which we see we are able to extract the real and imaginary part of the electric susceptibility,  $\chi_E = \chi_R + i\chi_I$ .

#### 2.3.1 Refractive Index of Gasses

In a gas, we can write the refractive index as.

$$n \simeq \sqrt{\epsilon_r}$$
 (2.28)

and given that  $\epsilon_r = 1 + \chi_E$  and  $n = \sqrt{1 + \chi_E} \approx 1 + \frac{\chi_E}{2}$  by binomial expansion, given  $\chi_E$  is small, the refractive index is given by,

$$n = 1 + \frac{\chi_R}{2} - i\frac{\chi_I}{2} \tag{2.29}$$

from which we can define the real and imaginary refractive indexes,

$$n_R = 1 + \frac{\chi_R}{2}$$
  $n_I = \frac{\chi_I}{2}$ . (2.30)

In figure 2.1, we visualise the real and imaginary parts of the refractive index for a given  $\omega_0$ . We describe observations below,

- 1.  $\omega = \omega_0$ , refractive index is purely real, so we get maximum power transfer.
- 2.  $n_r > 1$ ,  $\frac{dn}{d\omega} > 1$ ;
- 3.  $|\Gamma| < n_r, \frac{dn}{dn} < 1;$
- 4.  $n_r < 1, \frac{dn}{du} > 0;$ 
  - 1 and 3 are known as the *normal dispersion regions* and 2 is known as the *anomalous dispersion region*.
- 5. In the limit  $\omega \to 0$ , we find,

$$n_R \to 1 + \frac{q^2 N f_i}{2m\epsilon_0 \omega_j^2} \qquad n_I \to 0; \tag{2.31}$$

- 6.  $n=c/v_p,\,v_p=\omega/k,\,n=ck/\omega,\,$  and for some frequencies n<1, in which case  $\omega/k>c$ 
  - However,  $\frac{d\omega}{dk} < c$  always.



Figure 2.1: The real and complex parts of permittivity for a a single resonant frequency  $\omega_0$ . In a dielectric there may be many such frequencies, which we label  $\omega_j$ .

### 2.4 Waves in Conductors

Metals and semiconductors have a lattice of fixed ions and electron gas, which are almost freely moving. Therefore, an external **E** field creates a current. We can the use Ohm's law  $\mathbf{J} = \sigma \mathbf{E}$ . We can rewrite the dispersion relation in equation (2.13) as,

$$k_c = k_0 \sqrt{\mu_r \epsilon_r} \sqrt{1 - i \frac{\sigma}{\epsilon_r \epsilon_0 \omega}}$$
 (2.32)

#### 2.4.1 Poor Conductors

In poor conductors, we have that  $\frac{\sigma}{\epsilon_r \epsilon_0 \omega} \ll 1$ , so we can perform a Taylor expansion on equation (2.32),

$$k_c \approx k_0 \sqrt{\mu_r \epsilon_r} (1 - \frac{i}{2} \frac{\sigma}{\epsilon_r \epsilon_0 \omega}).$$
 (2.33)

Let us consider the modulus of the imaginary part of  $k_c$ ,

$$|k_I| = \frac{\omega}{c} \sqrt{\mu_r \epsilon_r} \frac{\sigma}{2\epsilon_r \epsilon_0} = \frac{\sigma}{2} \sqrt{\frac{\mu_r \mu_0}{\epsilon_r \epsilon_0}}$$
 (2.34)

from which we can define the skin depth.

$$\delta = \frac{1}{|k_I|} = \frac{2}{\sigma} \sqrt{\frac{\epsilon_r \epsilon_0}{\mu_r \mu_0}}.$$
 (2.35)

Let us recall the wavelength of light is given by,

$$\lambda = \frac{2\pi}{\lambda} = \frac{2\pi c}{\omega} \frac{1}{\sqrt{\epsilon_r \mu_r}}.$$
 (2.36)

We are then interested in the ratio of the wavelength and skin depth, i.e., what fraction of the wavelength the wave can penetrate,

$$\frac{\delta}{\lambda} = \frac{\omega}{\pi \sigma} \epsilon_r \epsilon_0 \tag{2.37}$$

and for a poor conductor, we find  $\delta/\lambda \ll 1$ . Therefore, an EM field can penetrate many wavelengths through a poor conductor before it decays.

#### 2.4.2 Good Conductors

We now expect,  $\frac{\sigma}{\omega \epsilon_0 \epsilon_r} >> 1$ . The dispersion relation (2.13) now reduces to,

$$k_{c} = \sqrt{\mu_{r}\epsilon_{r}} \sqrt{\frac{\omega\sigma}{\epsilon_{r}\epsilon_{0}}} \sqrt{\epsilon_{0}\mu_{0}} \underbrace{(-i)^{1/2}}_{\frac{1}{\sqrt{2}}(1-i)}$$

$$= \sqrt{\frac{\mu_{r}\mu_{0}\sigma\omega}{2}} (1-i)$$
(2.38)

and thus,

$$\delta = \sqrt{\frac{2}{\mu_r \mu_0 \sigma \omega}} \qquad \lambda = \frac{2\pi}{k_R} = 2\pi \delta \tag{2.39}$$

so,

$$\frac{\sigma}{\lambda} = \frac{1}{2\pi} \sim 0.16 \tag{2.40}$$

so most of the wave is absorbed by a good conductor. Furthermore, if we calculate,

$$\frac{B}{E} \sim \frac{k}{\omega} = \sqrt{\frac{\mu_r \mu_0 \sigma}{\omega}} \underbrace{\frac{1}{\sqrt{2}} (1 - i)}_{e^{-i\frac{\pi}{4}}}$$
(2.41)

so the magnetic and electric field have a phase difference of 45° in a conductor.

#### 2.5 Waves in Plasmas

In a plasma, we have free electrons moving in the presence of stationary positive and neutral ions. We will consider the motion of the electrons in a plasma.

#### 2.5.1 The Drude Model

We will consider the collisions in the plasma to be elastic. Since the electrons are also unbound, our equation of motion becomes,

$$-e\mathbf{E} = m\frac{\mathrm{d}^2\mathbf{x}}{\mathrm{d}t^2} = -k\mathbf{x}.$$
 (2.42)

We have that  $\omega = \sqrt{k/m} \implies k = \omega^2 m$ , so,

$$-e\mathbf{E} = -\omega^2 m\mathbf{x} \implies \mathbf{x} = \frac{e}{m\omega^2} \mathbf{E}$$
 (2.43)

which is the electron displacement. Such a displacement causes a dipole moment,

$$\mathbf{p} = -e\mathbf{x} \tag{2.44}$$

and polarisation,

$$\mathbf{P} = n\mathbf{p} = -\frac{Ne^2}{m\omega^2}\mathbf{E} \tag{2.45}$$

from which we ca obtain our  $\mathbf{D}$  field,

$$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} = \epsilon_0 \left( 1 - \frac{Ne^2}{m\omega^2 \epsilon_0} \right) \mathbf{E}$$
 (2.46)

and thus we have found an equivalent  $\epsilon_r$  for plasma. We can further define a plasma frequency,

$$\omega_p^2 = \frac{Ne^2}{m\epsilon_0} \tag{2.47}$$

so that,

$$\mathbf{D} = \epsilon_0 \left( 1 - \frac{\omega_p^2}{\omega^2} \right) \mathbf{E}. \tag{2.48}$$

Collisions give rise to an average velocity of electrons, and this mechanism will cause a damping term in the equation of motion. If we consider  $\gamma_c$  to be the collision frequency and  $\tau_c = 1/\gamma_c$  to be the collision time, we can obtain a current by,

$$\mathbf{J} = \omega_0 \mathbf{E} = -Ne\mathbf{v}_{\text{drift}} \tag{2.49}$$

where we can define,

$$\mathbf{v}_{\text{drift}} = -\frac{e\mathbf{E}}{m} \frac{1}{\gamma_c} \qquad \qquad \sigma_0 = \frac{Ne^2}{m} \frac{1}{\gamma_c} = \frac{\epsilon_0 \omega_p^2}{\gamma_c}. \tag{2.50}$$

#### 2.5.2 Drude Model with Collisions

Let us now consider inelastic collisions in a plasma. We add a damping term  $\beta$  to our equation of motion,

$$m\ddot{\mathbf{x}} + m\beta\dot{\mathbf{x}} = -e\mathbf{E}_0 e^{i\omega t} \tag{2.51}$$

from which we obtain a displacement,

$$\mathbf{x} = \frac{-\frac{e}{m}}{-\omega^2 + i\omega\beta} \mathbf{E}_0 e^{i\omega t} \tag{2.52}$$

and velocity,

$$\dot{x} = \frac{-ie\frac{\omega}{m}}{-\omega^2 + i\omega\beta} \mathbf{E}_0 e^{i\omega t} \tag{2.53}$$

We will then have a current,

$$\mathbf{J} = \sigma(\omega)\mathbf{E} = -Ne\dot{x} \tag{2.54}$$

such that,

$$\sigma(\omega) = \frac{\sigma_0}{1 + i\frac{\omega}{\gamma_c}} \tag{2.55}$$

where we define the DC conductivity,

$$\sigma_0 = \frac{Ne^2}{m} \frac{1}{\gamma_c}. (2.56)$$

Let us investigate the permittivity. Using  $\mathbf{P} = N(-e)\mathbf{x}$  from the Drude model, we find,

$$\chi_E = \frac{Ne^2}{\epsilon_0 m} \frac{1}{-\omega^2 + i\gamma_c \omega} \tag{2.57}$$

and  $\epsilon_r = 1 + \chi_E$  so,

$$\epsilon_r = 1 + \frac{\omega_p^2}{-\omega^2 + i\gamma_c\omega}. (2.58)$$

#### Low frequency waves in plasma

If we consider  $\omega \ll \gamma_c$ , we reduce equation (2.58) to,

$$\epsilon_r = 1 + \frac{\sigma_0}{i\omega\epsilon_0} \simeq -i\frac{\sigma_0}{\omega\epsilon_0}.$$
 (2.59)

The refractive index is then,

$$n = \sqrt{\epsilon_r} = \sqrt{\frac{\sigma_0}{\omega \epsilon_0}} \sqrt{-i} = \sqrt{\frac{\sigma_0}{2\omega \epsilon_0}} (1 - i)$$
 (2.60)

so we find  $n_R = n_I$ . We then find the skin depth to be,

$$\sigma = \sqrt{\frac{2}{\mu_0 \sigma_0 \omega}}. (2.61)$$

#### High frequency waves in plasma

For a high frequency wave,  $\omega >> \gamma_c$ , we find,

$$\epsilon_r \simeq 1 - \frac{\omega_p^2}{\omega^2}.\tag{2.62}$$

We can then extract the dispersion relation for a plasma,

$$\omega^2 = k^2 c^2 + \omega_p^2 \tag{2.63}$$

$$k = \pm \frac{1}{c} \left( \omega^2 + \omega_p^2 \right)^{\frac{1}{2}} \tag{2.64}$$

we then find that  $\epsilon_r$  is real no matter the value of  $\omega$ , EM waves travel through plasmas as if through vacuum. Let us consider some limiting situations with frequency,

- 1.  $\omega = \omega_p \implies k = 0$ , and we find,  $k \to 0 \implies v_p \to \infty$  and  $v_g \to 0$ , so the wave ceases to propagate.
- $2. \ \omega >> \omega_p$
- 3.  $\omega << \omega_p$ , we find that k is purely imaginary and described by,

$$kc = -i\sqrt{\omega_p^2 - \omega^2} \tag{2.65}$$

and the electromagnetic wave undergoes an exponential decay.

# Chapter 3

# Reflection and Refraction

### 3.1 Maxwell's Equations and Boundary Conditions

We will consider the boundary conditions for  $\mathbf{H}, \mathbf{B}, \mathbf{E}$ , and  $\mathbf{D}$  by Maxwell's equations.

#### 3.1.1 Transverse Component of Electric Field



Figure 3.1

Let us consider a setup as in figure 3.1, where an electric field is travelling through a material with  $\epsilon = \epsilon_1$  and  $\mu = \mu_1$  incident on the surface of a material with  $\epsilon = \epsilon_2$  and  $\mu = \mu_2$ . Let us consider Ampere's law over a loop C with width  $\Delta W$  and height  $\Delta H$ ,

$$\oint_{C} \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial}{\partial t} \oint \mathbf{B} \cdot d\mathbf{S}$$
(3.1)

which we can evaluate,

$$E_{2\perp}\Delta W - E_{1\perp}\Delta W + E_{1\parallel}\frac{\Delta H}{2} - E_{1\parallel}\frac{\Delta H}{2} + E_{2\parallel}\frac{\Delta H}{2} - E_{2\parallel}\frac{\Delta H}{2} = -\frac{\partial B}{\partial t}\Delta H$$

$$\Longrightarrow E_{2\perp} - E_{1\perp} = -\frac{\partial B}{\partial t}\Delta H.$$
(3.2)

At the boundary, we take  $\Delta H \rightarrow 0$ , so,

$$E_{2\perp} = E_{1\perp} \tag{3.3}$$

$$\frac{D_{2\perp}}{\epsilon_2} = \frac{D_{1\perp}}{\epsilon_1}. (3.4)$$



Figure 3.2

#### 3.1.2 Normal (to interfacing surface) component of D

Let us consider a setup as in figure 3.2, where we have a **D** travelling through a material with  $\epsilon = \epsilon_1$  and  $\mu = \mu_1$  incident on the surface of a material with  $\epsilon = \epsilon_2$  and  $\mu = \mu_2$ . We will consider Gauss' law, considering a cylinder of length  $\Delta W$  and end surfaces of area  $\Delta S$ ,

$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = Q. \tag{3.5}$$

As we take  $\Delta W \to 0$ , the volume charge approaches a surface charge. We have that  $\mathbf{a}_{1\perp} = -\mathbf{a}_{2\perp}$ , so, for a surface charge density  $\rho_S$ ,

$$\mathbf{a}_{2\perp} \cdot (\mathbf{D}_1 - \mathbf{D}_2) \Delta S = \rho_S \Delta S$$

$$\Longrightarrow D_{1\parallel} - D_{2\parallel} = \rho_S$$
(3.6)

so the normal component of the electric field is discontinuous across the boundary.

#### 3.1.3 Transverse component of H

We will consider a similar setup to what we did for the transverse component of  $\mathbf{E}$ , but we will now consider the following equation,

$$\oint_{C} \mathbf{H} \cdot d\mathbf{l} = \oint \mathbf{J} \cdot dS + \frac{\partial}{\partial t} \oint_{S} \mathbf{D} \cdot d\mathbf{S}$$

$$\Longrightarrow H_{2\perp} - H_{2\perp} = J\Delta H + \frac{\partial D}{\partial t} \Delta H$$
(3.7)

where, in the limit  $\Delta H \to 0$ ,  $J\Delta H \to J_z$  which is the sheet current, and  $\frac{\partial D}{\partial t}\Delta H \to 0$ . We thus have,

$$H_{2\perp} - H_{2\perp} = J_z. (3.8)$$

#### 3.1.4 Normal of B

We can consider a similar setup to D, considering Gauss' law for magnetic fields,

$$\oint \mathbf{B} \cdot d\mathbf{S} = 0$$

$$\implies \mathbf{a}_{2\perp} \cdot (\mathbf{B}_1 - \mathbf{B}_2) \Delta S = 0$$

$$\implies B_{1\parallel} = B_{2\parallel} \implies \hat{\mathbf{n}} \cdot \mathbf{B} = 0$$
(3.9)

so the normal of **B** is continuous across the boundary.

## 3.2 Reflection at Normal Incidence at a Plane Dielectric Boundary

If we consider a a plane wave travelling from one medium  $(\epsilon_1, \mu_1)$  into another medium  $(\epsilon_2, \mu_2)$ , we can write down the magnetic and electric components which are incident, reflected, and transmitted at the boundary,

$$E_i = E_{i_0} e^{i(\omega t - kz)}$$

$$B_i = B_{i_0} e^{i(\omega t - kz)}$$

$$(3.10)$$

$$E_r = -E_{r_0}e^{i(\omega t + kz)}$$

$$B_r = B_{r_0}e^{i(\omega t + kz)}$$
(3.11)

$$E_t = E_{t_0} e^{i(\omega t - kz)}$$

$$B_t = B_{t_0} e^{i(\omega t - kz)}$$

$$(3.12)$$

We wish to find the ratios between the incoming wave and the reflected and transmitted waves. Let us consider the mediums to be intercepting along the x-axis, and that the boundary is charge and current free. By equations (3.3) and (3.8), we obtain,

$$E_{i_0} - E_{r_0} = E_{t_0} (3.13)$$

$$\frac{B_{i_0}}{\mu_1} + \frac{B_{r_0}}{\mu_1} = \frac{B_{t_0}}{\mu_2}. (3.14)$$

We have that,  $B = E/v = E\sqrt{\epsilon_0\epsilon_r\mu_0\mu_r} \implies B/\mu_r = E\sqrt{\epsilon_0\epsilon_r\mu_0\mu_r}\frac{1}{\mu_r} = \frac{1}{c}\sqrt{\frac{\epsilon_r}{\mu_r}}E$ ,  $\mu_1 = \mu_2 = 0$  in a dielectric, and  $\sqrt{\epsilon_1} = n_1$  and  $\sqrt{\epsilon_2} = n_2$ , so

$$\sqrt{\epsilon_1} E_{i_0} + \sqrt{\epsilon_1} E_{r_0} = \sqrt{\epsilon_2} E_{t_0}$$

$$\Rightarrow n_1(E_{i_0} + E_{r_0}) = n_2 E_{t_0}$$

$$\Rightarrow \left[ \frac{E_{r_0}}{E_{i_0}} = \frac{n_2 - n_1}{n_1 + n_2} \right]$$
(3.15)

which is the reflection ratio. By using equation (3.13) to write  $E_{r_0}$  in terms of  $E_{t_0}$ , we find,

$$\left| \frac{E_{t_0}}{E_{i_0}} = \frac{2n_1}{n_1 + n_2} \right| \tag{3.16}$$

which is known as the transmission ratio. These ratios hold for B in the exact same way.

#### 3.2.1 Transmission and Reflection Coefficients

To be able to consider the transmission and reflection coefficients, we have to consider the incident, reflected, and transmitted Poynting vector. We must first consider the average incident Poynting vector. This is given by,

$$\langle S_i \rangle = \frac{1}{\mu_0} \langle \mathbf{E} \times \mathbf{B} \rangle = \frac{1}{\mu_0} E_i B_i$$
 (3.17)

this then implies that  $\langle S \rangle S \propto E n^2$  generally. We can then say that,

$$\langle S_r \rangle \propto \left(\frac{n_2 - n_1}{n_1 + n_2}\right)^2 n_1 \tag{3.18}$$

$$\langle S_t \rangle \propto \left(\frac{2n_1}{n_1 + n_2}\right)^2 n_2 \tag{3.19}$$

$$\langle S_i \rangle \propto n_1 \tag{3.20}$$

thus,

$$\mathcal{T} = \frac{4n_1n_2}{(n_1 + n_2)^2} \tag{3.21}$$

$$\mathcal{R} = \left(\frac{n_2 - n_1}{n_1 + n_2}\right)^2 \tag{3.22}$$

which are the transmission and reflection coefficients, respectively.

### 3.3 Reflection and Normal Incidence From a Conductor

For a good conductor, we have that  $\sigma >> 1$ . We can write the refractive index in the conductor medium is,

$$n_2 = \sqrt{\epsilon_r} = \sqrt{-i\frac{\sigma}{\omega\epsilon_0}} = \sqrt{\frac{\sigma}{2\omega\epsilon_0}} (1 - i)$$
 (3.23)

### 3.4 Oblique Incidence



Figure 3.3: The wavevectors  $\mathbf{k}_i$ ,  $\mathbf{k_r}$  and  $\mathbf{k}_t$  all lie in the same plane, i.e., the plane of incidence.

#### 3.4.1 Snell's Law

Consider a wave incident on a surface as in figure 3.3. Let us consider the electric field,

$$E_i = E_{i_0} e^{i(\omega t - \mathbf{k}_i \cdot \mathbf{r})} \qquad E_r = E_{r_0} e^{i(\omega t - \mathbf{k}_r \cdot \mathbf{r})} \qquad E_t = E_{t_0} e^{i(\omega t - \mathbf{k}_t \cdot \mathbf{r})}$$
(3.24)

At the boundary, z = 0, the waves all have the same phase,

$$\mathbf{k}_{i} \cdot \mathbf{r} \bigg|_{z=0} = \mathbf{k}_{r} \cdot \mathbf{r} \bigg|_{z=0} = \mathbf{k}_{t} \cdot \mathbf{r} \bigg|_{z=0}$$

$$(3.25)$$

and thus, at z = 0,

$$K_{i_x} x = k_{r_x} x = k_{t_x} x. (3.26)$$

Furthermore,

$$k_{i_{r}} = k_{i} \sin \theta_{i}, \tag{3.27}$$

$$k_{r_x} = k_r \sin \theta_r, \tag{3.28}$$

$$k_{t_x} = k_t \sin \theta_t. \tag{3.29}$$

Due to the nature of reflection,  $\theta_i = \theta_r$ . Recall that  $k = n \frac{\omega}{c}$ , so,

$$n_1 \sin \theta_i = n_2 \sin \theta_t \tag{3.30}$$

and we have obtained Snell's law.

#### 3.4.2 Oblique Incidence of Polarised Light

Let us now consider light with different polarisations. We will consider S-polarised light (the S stands for the German word for perpendicular) and P-polarised light (P stands for parallel).



(a) S-polarised oblique incidence (wave per- (b) P-polarised oblique incidence (wave par-pendicular to plane of incidence).

Figure 3.4: The directions of the electric and magnetic field components for S-polarised and P-polarised light.

#### S-polarised light

Considering S-polarised light first, we have that  $E_t$  and  $H_t$  are continuous, provided there is no current and we are not considering a perfect conductor. We then have that,

$$E_{i_0} - E_{r_0} = E_{t_0}, (3.31)$$

$$H_i \cos \theta_i + H_i \cos \theta_r = H_t \cos \theta_t. \tag{3.32}$$

Recall that  $H = n \frac{E}{c}$ , so, from boundary condition (3.32),

$$n_1 E_{i_0} \cos \theta_i + n_2 E_{r_0} \underbrace{\cos \theta_r}_{\cos \theta_i} = n_2 \underbrace{E_{t_0}}_{(3.31)} \cos \theta_t,$$
 (3.33)

and rearranging,

$$\frac{E_{r_0}}{E_{i_0}} = -\frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t}.$$
(3.34)

By Snell's law, defining  $n = n_2/n_1$ , we can write down the reflection coefficient of an S-polarised wave,

$$\rho_{\perp} \equiv \left| \frac{E_{r_0}}{E_{i_0}} \right| = \left| \frac{\cos \theta_i - \sqrt{n^2 - \sin^2 \theta_i}}{\cos \theta_i + \sqrt{n^2 + \sin^2 \theta_i}} \right| \tag{3.35}$$

and the corresponding transmission coefficient is given by,

$$\tau_{\perp} = \left| \frac{E_{t_0}}{E_{i_0}} \right| = 1 - \rho_{\perp}. \tag{3.36}$$

#### P-polarised light

We still have  $E_t$  and  $H_t$  being continuous, and we have,

$$E_i \cos \theta_i - E_{r_0} \cos \theta_i = E_t \cos \theta_t, \tag{3.37}$$

$$B_{i_0} + B_{r_0} = B_{t_0}. (3.38)$$

Recall  $B = n \frac{E}{c}$ ,

$$n_1 E_{i_0} + n_1 E_{r_0} = n_2 E_{t_0} (3.39)$$

$$E_{t_0} = \frac{n_1}{n_2} (E_{i_0} + E_{r_0}). \tag{3.40}$$

We can then write,

$$E_{i_0}\cos\theta_i - E_{r_0}\cos\theta_r = \frac{n_2}{n_1}(E_{i_0} + E_{r_0})\cos\theta_t \tag{3.41}$$

and rearranging,

$$\frac{E_{r_0}}{E_{i_0}} = \frac{n_2 \cos \theta_i - n_1 \cos \theta_t}{n_2 \cos \theta_i + n_1 \cos \theta_t}.$$
 (3.42)

Now using the same tick as before, we find the reflection coefficient of a P-polarised wave,

$$\rho_{\parallel} = \left| \frac{E_{r_0}}{E_{i_0}} \right| = \left| \frac{n^2 \cos \theta_i - \sqrt{n^2 - \sin^2 \theta_i}}{n^2 \cos \theta_i + \sqrt{n^2 - \sin^2 \theta_i}} \right|$$
(3.43)

and the corresponding transmission coefficient is given by,

$$\tau_{\parallel} = \left| \frac{E_{t_0}}{E_{i_0}} \right| = 1 - \rho_{\parallel}$$
(3.44)

#### 3.4.3 Fresnel's Equations

We define the impedance of free space as,

$$Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} = \frac{E}{H}. ag{3.45}$$

We can define the impedance of a material by,

$$Z = \frac{Z_0}{n}. (3.46)$$

We can then write the reflection coefficients of S and P polarised light in terms of impedance of the materials to obtain Fresnel's equations.

Fresnel Equations 
$$\rho_{\perp} = \frac{Z_2 \cos \theta_i - Z_1 \cos \theta_1}{Z_2 \cos \theta_i + Z_1 + \cos \theta_t}$$

$$\rho_{\parallel} = \frac{Z_1 \cos \theta_i - Z_2 \cos \theta_t}{Z_1 \cos \theta_i + Z_2 \cos \theta_t}$$

$$(3.47)$$

#### 3.4.4 Brewster Angle

For P-polarised light, we have that,

$$n^{2} \cos \theta_{i} = \sqrt{n^{2} - \sin^{2} \theta_{i}}$$

$$n^{4} \cos \theta_{i} = n^{2} - \sin^{2} \theta_{i}$$

$$= n^{2} - 1 + \cos^{2} \theta_{i}$$

$$(n^{4} - 1) \cos^{2} \theta_{i} = n^{2} - 1$$

$$\cos \theta_{i} = \frac{1}{\sqrt{1 + n^{2}}} \implies n^{2} = \frac{\sin^{2} \theta_{i}}{\cos^{2} \theta_{i}} \implies n = \tan \theta_{i}$$

$$(3.49)$$

so, we can define the Brewster angle,

$$\theta_b = \arctan(n) \tag{3.50}$$

which is the angle where only the perpendicular component of randomly polarised light is reflected from a surface.

#### 3.4.5 Total Internal Reflection

Total internal reflection occurs when light travels from a dense material to a rare material  $(n_1 > n_2)$ , and is incident at an angle  $\theta_c$  such that the transmitted angle is 90°. So, by Snell's law, the critical angle is,

$$\theta_c = \arcsin(n). \tag{3.51}$$

For angles greater than the critical angle, we find that the Fresnel equations become complex. The perpendicular coefficient is given by

$$\rho_{\perp} = \frac{A + iB}{A - iB} \tag{3.52}$$

and we fin that the reflected intensity ratio is,

$$R_{\perp} = \left| \frac{A + iB}{A - iB} \right|^2 = 1 \tag{3.53}$$

i.e., the wave is totally reflected. However, even though the wave is totally reflected, some of the wave is still transmitted. We can write the transmitted angle as,

$$\cos \theta_t = \pm i \sqrt{\left(\frac{\sin \theta_t}{\sin \theta_i}\right)^2 - 1} = \pm iQ. \tag{3.54}$$

The transmitted wave is then,

$$E_{t} = E_{0}e^{i(\omega t - \mathbf{k} \cdot \mathbf{r})}$$

$$= E_{0}e^{i\omega t}e^{-ik_{x}\sin\theta_{t}}e^{-ik_{2}z\cos\theta_{t}}$$

$$= E_{0}e^{i\omega t}e^{-ik_{z}x\sin\theta_{t}}e^{-k_{z}zQ}.$$
(3.55)

We can then define a skin depth,

$$\delta = \frac{1}{k_z Q}.\tag{3.56}$$

#### Frustrated Total Reflection



Figure 3.5

If a wave is travelling in a materials such that it goes dense  $\rightarrow$  rare  $\rightarrow$  dense, as in figure 3.5. For a thin enough rare material, the evanescent wave can propagate through to the second dense material.

# Chapter 4

# Polarisation

#### 4.1 States of Polarisation

We can resolve any plane polarised wave into its orthogonal components,

$$\mathbf{E}_{\mathbf{x}} = \hat{\mathbf{i}} E_{0_x} \cos(\omega t - kz) \qquad \qquad \mathbf{E}_{\mathbf{y}} = \hat{\mathbf{j}} E_{0_y} \cos(\omega t - kz + \Delta \phi) \qquad (4.1)$$

$$\mathbf{E}(z,t) = \mathbf{E}_x(z,t) + \mathbf{E}_y(z,t) \tag{4.2}$$

From this we will base different types of polarisations.

#### 4.1.1 Linear Polarisation

We have 2 forms of linear polarisation,

• If  $\Delta \phi = \pm 2m\pi, m \in \mathbb{Z}$ , the components are said to be "in phase".

$$\mathbf{E}(z,t) = (\mathbf{\hat{i}}E_{0_x} + \mathbf{\hat{j}}E_{0_y})\cos(\omega t - kz)$$
(4.3)

• If  $\Delta \phi = \pm m\phi$ , the components are said to be 180° out of phase.

$$\mathbf{E}(z,t) = (\mathbf{\hat{i}}E_{0_x} - \mathbf{\hat{j}}E_{0_y})\cos(\omega t - kz) \tag{4.4}$$

#### 4.1.2 Circular Polarisation

Consider  $E_0 = E_{0_y} = E_{0_x}$ ,

• If  $\Delta \phi = -\frac{\pi}{2} + 2m\pi$ , the wave is said to be right circularly polarised, and the wave rotates counter clockwise (looking at the source),

$$\mathbf{E}(z,t) = E_0(\hat{\mathbf{i}}\cos(\omega t - kz) + \hat{\mathbf{j}}\sin(\omega t - kz)). \tag{4.5}$$

• If  $\Delta \phi = \frac{\pi}{2} + 2m\pi$ , the light is said to be left circularly polarised, and the wave rotates clockwise,

$$\mathbf{E}(z,t) = E_0(\hat{\mathbf{i}}\cos(\omega t - kz) - \hat{\mathbf{j}}\sin(\omega t - kz)). \tag{4.6}$$

In the case of  $E_{0_x} \neq E_{0_y}$ , the light is elliptically polarised.

#### 4.2 Mechanisms of Polarisation

The intensity of a wave is given by,

$$I = \langle S \rangle = \frac{1}{2} \varepsilon_0 c E^2. \tag{4.7}$$

For randomly polarised light with original intensity  $I(\theta)$  and an intensity post-polarisation  $I(\theta)$  where  $\theta$  is the angle between the transmission axis, the relationship between the two intensities are given by Malus's law,

$$I(\theta) = I(0)\cos^2\theta. \tag{4.8}$$

Below we talk about different mechanisms of polarisation.

### 4.2.1 Polarisation by Dichroism

This mechanism works by selectively absorbing 1 component of randomly polarised light.

- Consists of a material with long, aligned molecules.
- ullet Component of the  ${f E}$  vector along the long axis excites molecules and gets absorbed.
- Polarisation of the wave is then along the other axis.
- The transmitted field component is  $E_0 \cos \theta$  where  $\theta$  is the angle between the pass axis.

# Appendix A

# **Revision Equations**

#### **A.1 Potentials**

#### Static Electric Potential

$$\mathbf{E} = -\nabla \phi \tag{A.1}$$

$$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0} \tag{A.2}$$

### Static Magnetic Potential

$$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A} \tag{A.3}$$

$$-\mathbf{\nabla} \times \mathbf{B} = \nabla^2 \mathbf{A} = -\mu_0 \mathbf{J} \tag{A.4}$$

if we choose,

$$\mathbf{A} \to \mathbf{A} + \nabla \psi \qquad \qquad \nabla \cdot \mathbf{A} = 0. \tag{A.5}$$

$$\nabla^2 \mathbf{A} - \mu_0 \varepsilon_0 \frac{\partial \mathbf{A}}{\partial t} = -\mu_0 \mathbf{J} \tag{A.6}$$

$$\nabla^{2}\mathbf{A} - \mu_{0}\varepsilon_{0}\frac{\partial\mathbf{A}}{\partial t} = -\mu_{0}\mathbf{J}$$

$$\nabla^{2}\phi - \mu_{0}\varepsilon_{0}\frac{\partial\phi}{\partial t} = -\frac{\rho}{\varepsilon_{0}}$$
(A.6)

#### **A.2** Gauges

#### Coloumb Gauge

$$\nabla \cdot \mathbf{A} = 0 \tag{A.8}$$

### Lorenz Gauge

$$\nabla \cdot \mathbf{A} + \frac{1}{c^2} \frac{\partial \phi}{\partial t} = 0 \tag{A.9}$$

# A.3 Vector Identities

Laplacian of a Vector

$$\nabla \times \nabla \times \mathbf{A} = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$
 (A.10)

### A.4 EM Waves

Relation between 
$${\bf E}$$
 and  ${\bf B}$ 

$$\mathbf{B} = \frac{1}{c}\hat{\mathbf{k}} \times \mathbf{E}.\tag{A.11}$$