EE4011 Continuous Assessment 2007/8

Simulation of a Power Amplifier (PA) Circuit in Microwave Office

Background

The purpose of this assignment is to develop familiarity with an industry standard simulation tool for RF design by simulating a sample Power Amplifier (PA) circuit. The simulation tool is Microwave Office (MWO) from AWR for which 20 licenses are available for use in the CAD laboratory of The Electrical & Electronic Engineering Department, UCC.

Documentation and the Power Amplifier Circuit

directory \Denovo\public\EE_4011\MWO The network contains extensive documentation for Microwave Office including a users guide (MWO_AO_2007UserGuide[1].pdf) and "getting started" guide a (GettingStarted[1].pdf). The simulator setup for a particular simulation or graph can be found by consulting these pdf files. Most simulation approaches for power amplifiers are described in Chapter 6 of the getting started guide "Using The Nonlinear Simulator" but some analysis and graphical options will require other sections of the getting started, the users guide, or the other guides to be consulted. The circuit to be used for this assignment is the BJT power amplifier circuit with input and output matching networks as described on page 6-20 and onwards in the getting started guide.

Although power amplifiers have not been specifically discussed in class, this circuit is a single-transistor amplifier and it behaves like the amplifiers seen in class. Some of the matching elements are based on transmission line segments instead of the lumped-element matching networks studied in class but these can be treated as "black box" elements for this assignment. The simulation of the power amplifier circuit relies heavily on a simulation approach known as harmonic balance. This is an efficient simulation technique for the analysis of circuits under steady-state periodic excitation. Again, although harmonic balance has not been discussed in class, it is a very common simulation approach for the analysis of non-linear RF circuits and can also be treated as a "black box" simulation engine for the purposes of this assignment.

Assignment Elements

- 1. Work through every step of chapter 6 of the getting started guide in the order presented and save the resulting schematics and simulation graphs. It is important not to skip any part of chapter 6 because the elements of the amplifier are added one by one from start to finish in this chapter.
- 2. By consulting the available documentation perform the following extra analyses on the power amplifier circuit:
 - (i) For a single tone input with frequency 2.2GHz show the output spectrum at port 2 and the voltage waveforms at the base and collector terminals of the transistor, if the input power is set to -10dBm.
 - (ii) Repeat (i) for input powers of 0dBm and 25dBm.
 - (iii) Determine the P1dB point of the circuit using an appropriate single tone input power sweep for an input frequency of 2.2GHz.
 - (iv) Determine the efficiency of the amplifier circuit for the same input conditions as in (iii).

- (v) Use the "tuner" tool to determine the influence of a +/- 150mV variation of the DC base bias on the circuit performance.
- (vi) Use the "optimizer" tool to determine the optimum base bias voltage to give the best efficiency for an input frequency of 2.2 GHz for power levels between -10dBm and 10dBm.
- (vii) Consult any of the RF texts mentioned in class or elsewhere to identify an alternative RF amplifier architecture to the one used here, implement this in Microwave Office and perform basic simulations of the circuit operation.
- 3. Prepare a report of 15 to 20 pages (using 11 or 12 point font) summarising the simulations performed with appropriate graphs and comments on how you interpret the results of the simulations and how these relate to what has been covered in class. Indicate the total time you needed to complete these tasks. Finally, comment on what you have learned through this assignment and give your opinion of Microwave Office and the assignment in general, with suggestions for improvement. While grading will be performed on the printed reports, students are also asked to submit an electronic copy of the reports and the simulator files used to generate the simulations by email to Dr. McCarthy.
- 4. Deadline: Wednesday 19th March, 2008, 12pm. Hand in to Ralph O'Flaherty's Office (Room 1.21).

Notes:

Students may co-operate to build up familiarity with Microwave Office and to get the basic PA circuit schematic simulating properly. However, each student is required to develop an individual competence for using Microwave Office and is expected to write and submit an individual report, which is to be written by the student on their own and in the student's own words. Students are encouraged to consult textbooks or other sources for further information on PA design. Such sources of information should be clearly referenced. Students are reminded of UCC's policy on plagiarism as outlined in the Examinations and Student Records document: http://www.ucc.ie/en/SupportandAdministration/PoliciesandProcedures/Examinations and Student Records Registration/UCCPlagiarismPolicy/

Past students who have used Microwave Office have stressed the importance of taking time to go through the Getting Started Guide and returning to it if problems are encountered. They have also stressed that for some simulations it is necessary to consult the Users Guide.

Past students have commented on the fact that Microwave Office generates many windows so be sure to look in the full workspace of Microwave Office when you are trying to find a simulation result. They have also indicated that the Microwave Office help menus are indeed very helpful.

In previous years, most students have reported that it has taken between 4 and 6 hours to complete the simulation aspects of the assignment and this has been followed by 4 to 6 hours writing the report. But the times have varied widely from student to student so it is important to start the assignment as soon as possible to complete it by the due date.

There are 25 students registered to take EE4011 in 2007/8, but there are only 20 licences for Microwave Office in the CAD laboratory. It is therefore important to spread the work out over a few days rather than rely on one marathon session on the day before the deadline.

Guidelines for Assessment of EE4011 PA Simulation Reports

	Excellent	Very Good	Good	Satisfactory	Unsatisfactory
D 4	>70% Professional-	60-69%	50-59%	40-49%	<40%
Report		Same as good	Same as	Between	Report not submitted
Organization and	style report with	but with even	satisfactory	the	or very short.
Presentation	excellent	better clarity	but with clear	suggested	Poor quality graphs.
(200/: -1-4:)	organisation,	and	introduction,	length with	Poor structure.
(20% weighting)	readability and	organisation	body, &	clear	
	graphics.	including	conclusion	graphs, text	
		references, table of	and flows well from one	and page	
			section to	numbers.	
		contents, etc.			
Circuit	Extensive nonce	Same as good	another. All of the	Most of the	Most of the magnined
Simulations/	Extensive range of simulations	but with	required	required	Most of the required simulations have not
Knowledge of	incorporating but	additional	simulations	simulations	been performed or
MWO	extending beyond	simulations	have been	have been	presented in graphical
IVIVVO	the core	demonstrating	performed	performed	form indicating a
(30% weighting)	requirements	deeper	and discussed	and	weak working
(30% Weighting)	indicating a deep	knowledge of	indicating a	discussed.	knowledge of MWO.
	working	MWO and the	good working	discussed.	knowledge of WWO.
	knowledge of	PA.	knowledge of		
	MWO.	111.	MWO		
Comments on	Comments	A very good	Comments	Short	No comments or only
simulations and	indicate a deep	understanding	indicate good	comments	very short comments
relationship to	understanding of	of the circuits	understanding	indicating	are provided.
lectures	the links between	and related	of the	the student	
	the circuit	simulations is	characteristics	understands	
(30% weighting)	operation and the	apparent and	being	what is	
	simulation results	a clear effort	simulated and	being	
	and a strong link	has been	a link to the	simulated.	
	is established	made to link	lectures is		
	between the	the discussion	recognized.		
	assignment and	to the lecture			
	the lectures.	material.			
Appraisal/	A comprehensive	Clear	The appraisal	A short	No appraisal or
Reflection	appraisal of the	opinions	gives clear	appraisal is	reflection is
	assignment and	about the	opinions	presented	presented.
(20% weighting)	MWO is	assignment	about the	outlining	
	presented.	and MWO are	assignment	what has	
	Learning	presented.	and MWO	been	
	achievements are	Learning	and .	learned.	
	clearly	outcomes are	recognizes		
	acknowledged	recognized	what has been		
	and a range of	and some	learned by		
	suggestions for	suggestions	doing the		
	improvement are made.	for	assignment.		
	made.	improvement			
		are presented.			

Dr. Kevin McCarthy,
Department of Electrical and Electronic Engineering,
UCC,
27/2/2008