Sampling Distribution and Test of a Single Parameter in the Linear Regression Model Econometrics

Péter Elek

Properties of the OLS Estimator

• The OLS estimator is:

$$\hat{\beta}_j = \frac{\sum_{i=1}^n \hat{r}_{ji} y_i}{\sum_{i=1}^n \hat{r}_{ji}^2} = \beta_1 + \frac{\sum_{i=1}^n \hat{r}_{ji} u_i}{\sum_{i=1}^n \hat{r}_{ji}^2}.$$

- So far: $E(\hat{\beta}_j) = \beta_j$ and $Var(\beta_j \mid \mathbf{X}) = \frac{\sigma_u^2}{n*\hat{Var}(x_j)*(1-R_j^2)}$
 - if heteroskedasticity, a robust variance formula applies in large samples
- Since OLS is unbiased and $Var(\hat{\beta}_j \mid \mathbf{X}) \sim K/n \to 0$ as $n \to \infty$, hence $\hat{\beta}_j$ is a consistent estimator of β_j .

Asymptotic Normality of the OLS Estimator

• $\hat{\beta}_j - \beta_j$ is a (weighted) sum of the u_i error terms. It follows from the Central Limit Theorem that as $n \to \infty$ $\hat{\beta}_j$ is approximately normally distributed:

$$\hat{\beta}_j \mid \mathbf{X} \overset{\mathrm{A}}{\sim} N(\beta_j, Var(\hat{\beta}_j \mid \mathbf{X}))$$

Hence

$$rac{\hat{eta}_j - eta_j}{\mathsf{SE}(\hat{eta}_j)} \stackrel{\mathrm{A}}{\sim} \mathsf{N}(0,1).$$

- Here we assume large samples and assumptions (1)-(4).
- Homoskedasticity is not assumed. Under heteroskedasticity, robust SE is used.

Simulation of the Sampling Distribution of $\hat{\beta}_j$ for Different Sample Sizes

Large Sample Confidence Interval for β_j

ullet In large samples the 1-lpha confidence interval is

$$\hat{eta}_j \pm z_{1-lpha/2} * SE(\hat{eta}_j)$$

- where $z_{1-\alpha/2}$ is the $1-\alpha/2$ quantile of N(0,1).
- Example: the 95% CI is

$$\hat{eta}_j \pm 1.96 * SE(\hat{eta}_j).$$

• t-distribution appears in small samples, but we do not discuss it.

Test of $\beta_i = 0$

- $H_0: \beta_j = 0$, $H_1: \beta_j \neq 0$ (two-sided alternative)
 - Most often, a two-sided alternative is recommended if a single parameter is tested
- Under H_0 , in large samples,

$$t = rac{\hat{eta}_j}{SE(\hat{eta}_j)} \stackrel{ ext{A}}{\sim} N(0,1).$$

• Thus we reject H_0 at significance level α if

$$|t|>z_{1-\alpha/2}$$

- Example: we reject H_0 at the 5% level of significance if |z| > 1.96.
- Large-sample *p*-value of the test is $2*(1-\Phi(|z|))$ where $\Phi(.)$ is the cdf of N(0,1).
- t-distribution appears in small samples, but we do not discuss it.

Test of $\beta_i = b$

- $H_0: \beta_i = b$
- $H_1: \beta_i \neq b$ (two-sided alternative)
- Under H_0 , in large samples,

$$t = rac{\hat{eta}_j - b}{\mathsf{SE}(\hat{eta}_j)} \overset{\mathrm{A}}{\sim} \mathsf{N}(0,1).$$

• Thus we reject H_0 at significance level α if

$$|t| > z_{1-\alpha/2}$$

- Example: we reject H_0 at the 5% level of significance if |z| > 1.96.
- p-value of the test is given as $2*(1-\Phi(|z|))$ where $\Phi(.)$ is the cdf of N(0,1).

Example

Dep. var: birth weight (gr)	(1) (bwghtgr \sim cigs)	(2) (bwghtgr \sim cigs $+$ faminc)
Intercept	3395.53*** (16.23)	3316.22*** (29.74)
cigarettes per day	-14.57***	-13.14***
family income (\$1000)	(2.57) —	(2.60) 2.63***
		(0.83)
R^2	0.0227	0.0298
N	1388	1388

- Source: Wooldridge bwght data
- ullet Standard errors in parentheses, *** : p < 0.01

