Machine Learning - Prescriptive Modeling

Clustering Cities Using the KMeans Model

How can we group cities based on sales performance to uncover patterns for better sales strategy?

1. Overview

In a competitive business environment where sales performance can vary significantly across locations, understanding geographic sales patterns is critical for strategic planning. This project leverages KMeans Clustering, a machine learning technique, to segment cities based on their Total Sales and Units Purchased. By grouping similar-performing cities, the analysis provides actionable insights that can shape targeted marketing strategies, resource allocation, and performance improvement initiatives. The result is a visual and data-driven framework to support smarter, more localized business decisions.

2. Goal

- To group cities into distinct clusters based on their total sales revenue and units purchased.
- To identify underlying patterns in city-level sales performance.
- To visualize city clusters and explore performance similarities or differences.
- To provide data-driven recommendations for refining sales strategy, resource distribution, and market penetration.

3. Business Challenge

- Inconsistent sales performance across multiple cities with limited understanding of the root causes.
- Difficulty in prioritizing regions for sales efforts and investment.
- Inefficient marketing and sales allocation, leading to suboptimal ROI.
- Lack of segmentation intelligence for customized regional strategies.

4. Methodology

- Data Preparation: Cleaned and grouped city-level sales and purchase data from the dataset.
- Feature Selection: Focused on Total Sales and Units Purchased as key performance

indicators.

- Modeling: Applied KMeans Clustering to categorize cities into 3 distinct performance clusters.
- Visualization: Developed a scatter plot to represent cluster assignments with intuitive color mapping.
- Insight Reporting: Created a summary table to present each city's cluster, sales, and purchase volume.
- Strategic Interpretation: Used clustering output to recommend targeted actions for high, mid, and low-performing cities.

Let's take a deep dive into the data

Import necessary libraries

```
In [11]: import pandas as pd
import os
import glob

In [12]: folder_path = r"C:\Monthly_Sales"

# Retrieve all CSV files from the folder using glob
all_files = glob.glob(os.path.join(folder_path, "*.csv"))

# All CSV files combined as one DataFrame
all_data = pd.concat([pd.read_csv(file) for file in all_files], ignore_index=True)

# Merged DataFrame saved into a new CSV
output_file = os.path.join(folder_path, "all_data.csv")
all_data.to_csv(output_file, index=False)
print("All files integrated into:", output_file)
```

All files integrated into: C:\Monthly_Sales\all_data.csv

Load the updated DataFrame

```
In [14]: # Skip Blank Rows if present in the dataset

df = pd.read_csv(r'C:\Monthly_Sales\all_data.csv', skip_blank_lines=True)
    df.head()
```

Out[14]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address
	0	175667	iPhone	1	700.0	04/24/24 19:12	135 Meadow St, Boston, MA 02215
	1	175668	AA Batteries (4- pack)	1	5.84	04/20/24 13:45	592 4th St, San Francisco, CA 94016
	2	175669	AA Batteries (4- pack)	1	5.84	04/28/24 09:17	632 Park St, Dallas, TX 75001
	3	175670	AA Batteries (4- pack)	2	5.84	04/23/24 14:06	131 Pine St, San Francisco, CA 94016
	4	175671	Samsung Odyssey Monitor	1	409.99	04/23/24 12:13	836 Forest St, Boston, MA 02215

Data Cleaning Process

Thoroughly clean and standardize the data to eliminate errors, ensure consistency, and build a solid foundation for meaningful insights.

Find and remove rows with NaN values

```
In [17]: df.isna().sum()
Out[17]: Order ID
                              24640
          Product Name
                              24640
          Units Purchased
                              24642
          Unit Price
                              24642
          Order Date
                              24643
          Delivery Address
                              24644
          dtype: int64
         # If Nan value is present in Order ID and Unit Purchased, it will be impossible to
         # Therefore, drop Nan values in Order ID and Units Purchased.
         df.dropna(subset=['Order ID', 'Units Purchased'], inplace=True)
         # Check if Nan value is present
         df.isna().sum()
Out[18]: Order ID
                              0
          Product Name
          Units Purchased
          Unit Price
                              0
          Order Date
                              1
          Delivery Address
          dtype: int64
In [19]: # Further check if any NaN values or blank rows are present
```

```
blank_rows_na = df[df.isnull().any(axis=1)]
blank_rows_na
```

Out[19]:

•		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address
	2195228	Charging Cable	1	14.95	05/24/24 07:04	852 Hickory St, San Francisco, CA 94016	NaN
	3001506	150766	iPhone	1	7	NaN	NaN

Find and remove rows with duplicate values

```
In [21]: # Find duplicate values
         df.duplicated()
Out[21]: 0
                     False
                     False
                     False
          3
                     False
                     False
          9489202
                      True
          9489203
                      True
          9489204
                      True
          9489205
                      True
          9489206
                      True
          Length: 9464565, dtype: bool
In [22]: # Check again for duplicated values
         df.drop_duplicates(inplace = True)
         # Check again for duplicated values
         df.duplicated()
Out[22]: 0
                     False
          1
                     False
                     False
          3
                     False
                     False
          172530
                     False
          2195228
                     False
          3001506
                     False
          6370083
                     False
          6403571
                     False
          Length: 171546, dtype: bool
```

Verify and fix incorrect data types in the dataset

```
In [24]: # check for data types
         df.dtypes
Out[24]: Order ID
                             object
         Product Name
                             object
         Units Purchased object
         Unit Price
                             object
         Order Date
                             object
                             object
         Delivery Address
         dtype: object
         Fix incorrect data types
In [26]: | df['Order Date'] = pd.to_datetime(df['Order Date'], format='%m/%d/%y %H:%M', errors
         df['Units Purchased'] = pd. to_numeric(df['Units Purchased'], errors='coerce')
         df['Unit Price'] = pd. to_numeric(df['Unit Price'], errors='coerce')
In [27]: # Verify the presence of NaN values remaining in the columns as a result of using e
         df.isna().sum()
Out[27]: Order ID
                             0
         Product Name
         Units Purchased
                             1
         Unit Price
         Order Date
                             3
         Delivery Address
         dtype: int64
In [28]: df = df.dropna()
```

Change the data type to optimize memory usage (Optional)

```
In [30]: df['Order ID'] = pd.to_numeric(df['Order ID'], downcast='integer')
    df['Product Name'] = df['Product Name'].astype('category')
    df['Units Purchased'] = df['Units Purchased']. astype('int8')
    df['Unit Price'] = pd.to_numeric(df['Unit Price'], downcast='float')
    df['Delivery Address'] = df['Delivery Address'].astype('category')
```

Expand the dataset with supplementary columns

```
In [32]: # Add City column

def city(address):
    return address.split(",")[1].strip(" ")

def state_abbrev(address):
    return address.split(",")[2].split(" ")[1]
```

```
df['City'] = df['Delivery Address'].apply(lambda x: f"{city(x)} ({state\_abbrev(x)})
```

Out[32]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	City
	0	175667	iPhone	1	700.00000	2024-04-24 19:12:00	135 Meadow St, Boston, MA 02215	Boston (MA)
	1	175668	AA Batteries (4-pack)	1	5.84000	2024-04-20 13:45:00	592 4th St, San Francisco, CA 94016	San Francisco (CA)
	2	175669	AA Batteries (4-pack)	1	5.84000	2024-04-28 09:17:00	632 Park St, Dallas, TX 75001	Dallas (TX)
	3	175670	AA Batteries (4-pack)	2	5.84000	2024-04-23 14:06:00	131 Pine St, San Francisco, CA 94016	San Francisco (CA)
	4	175671	Samsung Odyssey Monitor	1	409.98999	2024-04-23 12:13:00	836 Forest St, Boston, MA 02215	Boston (MA)
In [33]:	df		l Sales colur Sales'] = df		chased'] *	df['Unit Pri	ce']	

```
at.nead()
```

Out[33]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	City	Total Sales
	0	175667	iPhone	1	700.00000	2024-04-24 19:12:00	135 Meadow St, Boston, MA 02215	Boston (MA)	700.00000
	1	175668	AA Batteries (4-pack)	1	5.84000	2024-04-20 13:45:00	592 4th St, San Francisco, CA 94016	San Francisco (CA)	5.84000
	2	175669	AA Batteries (4-pack)	1	5.84000	2024-04-28 09:17:00	632 Park St, Dallas, TX 75001	Dallas (TX)	5.84000
	3	175670	AA Batteries (4-pack)	2	5.84000	2024-04-23 14:06:00	131 Pine St, San Francisco, CA 94016	San Francisco (CA)	11.68000
	4	175671	Samsung Odyssey Monitor	1	409.98999	2024-04-23 12:13:00	836 Forest St, Boston, MA 02215	Boston (MA)	409.98999

Format Unit Price and Total Sales to 2 decimal places

```
In [35]: df['Unit Price'] = df['Unit Price'].apply(lambda x: "%.2f" % x)

df['Total Sales'] = df['Total Sales'].apply(lambda x: "%.2f" % x)

df.head()
```

7 of 13

df

Out[35]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	City	Total Sales	
	0	175667	iPhone	1	700.00	2024-04-24 19:12:00	135 Meadow St, Boston, MA 02215	Boston (MA)	700.00	
	1	175668	AA Batteries (4-pack)	1	5.84	2024-04-20 13:45:00	592 4th St, San Francisco, CA 94016	San Francisco (CA)	5.84	
	2	175669	AA Batteries (4-pack)	1	5.84	2024-04-28 09:17:00	632 Park St, Dallas, TX 75001	Dallas (TX)	5.84	
	3	175670	AA Batteries (4-pack)	2	5.84	2024-04-23 14:06:00	131 Pine St, San Francisco, CA 94016	San Francisco (CA)	11.68	
	4	175671	Samsung Odyssey Monitor	1	409.99	2024-04-23 12:13:00	836 Forest St, Boston, MA 02215	Boston (MA)	409.99	
[n [36]:	df	['Unit Pr	rice'] = pd	_	(df['Un	it Price']) otal Sales'])			
n [37]:	df	.dtypes								
Out[37]:	Pr Ur Ur Or De Ci	Order ID int32 Product Name category Units Purchased int8 Unit Price float64 Order Date datetime64[ns] Delivery Address category City object Total Sales float64 dtype: object								
	Organize Data by Order Date Chronologically and Reindex									
[n [39]:	df	= df.sor	rt_values(b	y = 'Order	Date')					
			set_index(d		•					

8 of 13

Out[39]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	City	Total Sales
	0	160155	Alienware Monitor	1	400.99	2024-01-01 05:04:00	765 Ridge St, Portland, OR 97035	Portland (OR)	400.99
	1	151041	AAA Batteries (4- pack)	1	4.99	2024-01-01 05:04:00	964 Lakeview St, Atlanta, GA 30301	Atlanta (GA)	4.99
	2	146765	AAA Batteries (4- pack)	1	4.99	2024-01-01 05:20:00	546 10th St, San Francisco, CA 94016	San Francisco (CA)	4.99
	3	145617	Amana Washing Machine	1	600.00	2024-01-01 05:24:00	961 Meadow St, Portland, OR 97035	Portland (OR)	600.00
	4	156535	iPhone	1	700.00	2024-01-01 05:45:00	451 Elm St, Los Angeles, CA 90001	Los Angeles (CA)	700.00
	•••		•••	•••			•••		
1715	i38	297748	iPhone	1	700.00	2025-01-01 02:37:00	258 Forest St, Los Angeles, CA 90001	Los Angeles (CA)	700.00
1715	539	284606	Bose SoundSport Headphones	1	99.99	2025-01-01 02:50:00	211 Johnson St, Boston, MA 02215	Boston (MA)	99.99
1715	540	302330	AA Batteries (4-pack)	1	5.84	2025-01-01 03:03:00	665 6th St, San Francisco, CA 94016	San Francisco (CA)	5.84
1715	541	284711	AA Batteries (4-pack)	1	5.84	2025-01-01 03:19:00	250 8th St, San Francisco, CA 94016	San Francisco (CA)	5.84

9 of 13

	Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	City	Total Sales
171542	303626	USB-C Charging Cable	3	11.95	2025-01-01 04:43:00		Dallas (TX)	35.85

171543 rows × 8 columns

Replace 'Boston (\rA)' with 'Boston (MA)'

```
In [41]: import re

df['City'] = df['City'].str.replace(r'Boston\s+\(\rA\)', 'Boston (MA)', regex=True
```

Plot City Clustering using KMeans

```
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
from sklearn.cluster import KMeans
# Deep copy to avoid modifying the original DataFrame
df_cluster = df.copy(deep=True)
# Cluster Cities based on total sales
city_sales_data = df_cluster.groupby('City').agg({'Total Sales': 'sum', 'Units Purch'
city_sales_data.columns = city_sales_data.columns.str.strip()
city_sales_data['City'] = city_sales_data['City'].astype(str).str.replace(r'[\r\n\t
# KMeans clustering
kmeans = KMeans(n_clusters=3, random_state=42)
city_sales_data['Cluster'] = kmeans.fit_predict(city_sales_data[['Total Sales', 'Un
fig, ax = plt.subplots(figsize=(12, 8))
# Scatter plot
df_scatter = ax.scatter(
    city_sales_data['Total Sales'],
   city_sales_data['Units Purchased'],
   c=city_sales_data['Cluster'],
    cmap='viridis',
    s=100,
    edgecolor='black'
# Axis labels and formatting
ax.set_xlabel('Total Sales in USD ($)', labelpad=20)
ax.set_ylabel('Units Purchased')
ax.set_title('City Clustering')
ax.grid(linewidth=0.2)
```

```
ax.xaxis.set_major_formatter(FuncFormatter(lambda x, _: f'{x:,.0f}'))
# Legend
handles, _ = df_scatter.legend_elements()
ax.legend(handles, [f'Cluster {i}' for i in range(len(handles))], title='Clusters')
# Prepare table data
table_data = city_sales_data[['Cluster', 'City', 'Units Purchased', 'Total Sales']]
table_data['Units Purchased'] = table_data['Units Purchased'].apply(lambda x: f'{x:
table_data['Total Sales'] = table_data['Total Sales'].apply(lambda x: f'${x:,.0f}')
cell_text = table_data.values.tolist()
columns = table_data.columns.tolist()
table = plt.table(
   cellText=cell_text,
   colLabels=columns,
   loc='bottom',
   cellLoc='center',
    bbox=[0.0, -0.6, 1, 0.4] # Lowered the table further
table.auto_set_font_size(False)
table.set_fontsize(10)
plt.subplots_adjust(left=0.1, bottom=0.10)
plt.show()
```


Total Sales in USD (\$)

Cluster	City	Units Purchased	Total Sales
0	Atlanta (GA)	14,561	\$3,145,310
0	Austin (TX)	9,878	\$2,178,729
0	Boston (MA)	19,769	\$4,166,658
0	Dallas (TX)	14,800	\$3,193,629
2	Los Angeles (CA)	29,229	\$6,343,771
2	New York City (NY)	24,476	\$5,200,781
0	Portland (ME)	2,541	\$541,532
0	Portland (OR)	9,700	\$2,053,174
1	San Francisco (CA)	44,368	\$9,391,882
0	Seattle (WA)	14,704	\$3,114,139

Key Insights and Strategic Recommendations

1. Cluster 0 – High Sales & High Volume Cities

Interpretation:

- Cities in this cluster show strong performance in both revenue and unit sales.
- Indicates high demand, strong customer base, and effective local execution.

Strategic Recommendations:

- Double down on success: Increase inventory levels, staffing, and marketing budget.
- Introduce loyalty programs to retain high-value customers.
- Launch premium products or upsell/cross-sell strategies, these cities are more likely to adopt.

• Consider using these cities as benchmarks or pilots for new product launches.

2. Cluster 1 – Moderate Sales & Moderate Volume Cities

Interpretation:

- These cities perform reasonably well but have room for growth.
- Represents stable markets with potential to be moved into the high-performing cluster.

Strategic Recommendations:

- Localized promotions to drive awareness and increase repeat purchases.
- Sales training or incentive programs to boost performance.
- Monitor customer behavior and competitor activity.

3. Cluster 2 – Low Sales & Low Volume Cities

Interpretation:

- Underperforming regions with low revenue and low units sold.
- Maybe an indication of market saturation, low demand, or ineffective sales presence.

Strategic Recommendations:

- Cost-efficiency measures: Evaluate whether continued investment is justified.
- Reassess market potential: Are these markets viable with a different strategy?