МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа № 1 по дисциплине «Методики машинного обучения»

Тема: «Разведочный анализ данных. Исследование и визуализация данных.»

Егоров С.А. ФИО подпись 2020 г.
Гапанюк Ю.Е.
""2020 г.

Москва - 2020

Цель лабораторной работы

Изучить различные методы визуализация данных. Построить основные графики, входящие в этап разведочного анализа данных. Корреляционный анализ данных. Формирование выводов о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель.

Реализация задания

```
In [13]: #Подлючаем библиотеки для анализа
            import numpy as np
            import pandas as pd
            import seaborn as sns
            import matplotlib.pyplot as plt
            %matplotlib inline
            sns.set(style="ticks")
  In [ ]: #Подлючаем данные
            data = pd.read_csv('wine.data', sep=",")
 In [15]: # Разменость датасета
            total_count = data.shape
            print('Bcero строк: {}'.format(total_count[0]))
print('Bcero колонок: {}'.format(total_count[1]))
            Всего строк: 178
            Всего колонок: 14
 In [16]: # Список колонок с типами данных
            data.dtypes
 Out[16]: class
            Alcohol
Malic acid
                                                 float64
float64
                                                 float64
            Alcalinity of ash
                                                float64
            Magnesium
                                                   int64
                                                 float64
float64
            Total phenols
            Flavanoids
            Nonflavanoid phenols
                                                 float64
            Proanthocyanins
                                                 float64
            Color intensity
            Hue
                                                 float64
            OD280/OD315 of diluted wines
                                                float64
            Proline
dtype: object
                                                   int64
In [12]: #Выведем первые 5 строк data.head()
Out[12]:
                                                                                                                           Color Hue
                                                                                                                                       OD280/OD315 of
                                             Alcalinity Magnesium
                                                                       Total
                                                                                          Nonflavanoid
                                                                                                      Proanthocyanins
               class Alcohol
                                                                            Flavanoids
                                                                                                                                                       Proline
                                     Ash
                                acid
                                                                    phenols
                                                                                              phenols
                                                                                                                        intensity
                                                                                                                                           diluted wines
                                                                       2.80
            0 1 14.23
                               1.71 2.43
                                                 15.6
                                                                                   3.06
                                                                                                  0.28
                                                                                                                           5.64 1.04
                                                                                                                                                  3.92
                                                              127
                                                                                                                  2.29
                                                                                                                                                          1065
                      13.20
                                1.78 2.14
                                                                       2.65
                                                                                   2.76
                                                                                                  0.26
                                                                                                                  1.28
                                                                                                                            4.38 1.05
                                                  11.2
                                                              100
                                                                                                                                                   3.40
                                                                                                                                                          1050
              1 13.16 2.36 2.67
                                                 18.6
                                                              101
                                                                       2.80
                                                                                   3.24
                                                                                                  0.30
                                                                                                                  2.81
                                                                                                                           5.68 1.03
                                                                                                                                                  3.17
                                                                                                                                                          1185
                      14.37
                                1.95 2.50
                                                                       3.85
                                                              113
            4 1 13.24 2.59 2.87
                                                              118
                                                                                                                            4.32 1.04
           for col in data.columns:
    temp_null_count = data[data[col].isnull()].shape[0]
               print('{} - {}'.format(col, temp_null_count))
           class - 0
Alcohol - 0
           Malic acid - 0
           Ash - 0
           Alcalinity of ash - 0
           Magnesium - 0
Total phenols - 0
           Flavanoids - 0
           Nonflavanoid phenols - 0
           Proanthocyanins - 0
           Color intensity - 0
Hue - 0
           OD280/OD315 of diluted wines - 0
           Proline - 0
```

Out[18]:

	class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyanins	Color intensity	Hu
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.00000
mean	1.938202	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	0.361854	1.590899	5.058090	0.95744
std	0.775035	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	0.124453	0.572359	2.318286	0.22857
min	1.000000	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	0.410000	1.280000	0.48000
25%	1.000000	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	0.270000	1.250000	3.220000	0.78250
50%	2.000000	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	0.340000	1.555000	4.690000	0.96500
75%	3.000000	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	0.437500	1.950000	6.200000	1.12000
max	3.000000	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	0.660000	3.580000	13.000000	1.71000
4)

In [19]: #Проведем корреляционный анализ data.corr()

Out[19]:

	class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyanins	Color intensity	Hue
class	1.000000	-0.328222	0.437776	-0.049643	0.517859	-0.209179	-0.719163	-0.847498	0.489109	-0.499130	0.265668	-0.617369
Alcohol	-0.328222	1.000000	0.094397	0.211545	-0.310235	0.270798	0.289101	0.236815	-0.155929	0.136698	0.546364	-0.071747
Malic acid	0.437776	0.094397	1.000000	0.164045	0.288500	-0.054575	-0.335167	-0.411007	0.292977	-0.220746	0.248985	-0.561296
Ash	-0.049643	0.211545	0.164045	1.000000	0.443367	0.286587	0.128980	0.115077	0.186230	0.009652	0.258887	-0.074667
Alcalinity of ash	0.517859	-0.310235	0.288500	0.443367	1.000000	-0.083333	-0.321113	-0.351370	0.361922	-0.197327	0.018732	-0.273955
Magnesium	-0.209179	0.270798	-0.054575	0.286587	-0.083333	1.000000	0.214401	0.195784	-0.256294	0.236441	0.199950	0.055398
Total phenols	-0.719163	0.289101	-0.335167	0.128980	-0.321113	0.214401	1.000000	0.864564	-0.449935	0.612413	-0.055136	0.433681
Flavanoids	-0.847498	0.236815	-0.411007	0.115077	-0.351370	0.195784	0.864564	1.000000	-0.537900	0.652692	-0.172379	0.543479
Nonflavanoid	0.489109	-0.155929	0.292977	0.186230	0.361922	-0.256294	-0.449935	-0.537900	1.000000	-0.365845	0.139057	-0.262640

In [22]: #Диаграмма рассеивания
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='OD280/OD315 of diluted wines', y='Flavanoids', data=data)

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x25ac9066940>

In [26]: #Диаграмма рассеивания + гистограмма sns.jointplot(x='OD280/OD315 of diluted wines', y='Flavanoids', data=data, kind="hex")

Out[26]: <seaborn.axisgrid.JointGrid at 0x25ac90816d8>

In [27]: #"Парные диаграммы" sns.pairplot(data)

Out[27]: <seaborn.axisgrid.PairGrid at 0x25ac994f7f0>


```
In [28]: # Распределение параметра 'Flavanoids' сгруппированные по 'OD280/OD315 of diluted wines'. sns.violinplot(x='OD280/OD315 of diluted wines', y='Flavanoids', data=data)
```

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x25ad129eeb8>

In [37]: # Треугольный вариант матрицы корреляции
mask = np.zeros_like(data.corr(), dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
f, ax = plt.subplots(figsize=(15, 10))
sns.heatmap(data.corr(), mask=mask,cmap='YlGnBu', annot=True, fmt='.3f',) -0.055 -0.083 -0.209 -0.335 -0.321 Total phenols - -0.719 -0.411 -0.351 0.865 Flavanoids - -0.847 0.00 Nonflavanoid phenols --0.156 -0.256 -0.450 -0.538 -0.221 0.010 -0.197 -0.366 Proanthocyanins - -0.499 -0.25 0.546 -0.172 0.139 0.019 -0.055 -0.025 Hue - -0.617 -0.072 -0.561 -0.075 -0.274 -0.263 -0.522 OD280/OD315 of diluted wines - -0.788 -0.369 0.004 -0.277 -0.503 -0.429 - -0 75 =