Nome:	Matrícula:

2ª Prova - MTM1018 - T 14 10 de Julho de 2018

1.		
2.		
3.		
\sum		

Coloque o nome em todas as folhas. É proibido usar calculadora ou similares. Respostas sem justificativas ou que não incluam os cálculos necessários não serão consideradas.

Questão 1. (4pts)

- a) Defina, como visto em aula, o que significa dizer que uma função $T \colon \mathbb{V} \to \mathbb{W}$ é uma transformação linear (t.l.).
- b) A função $d: \mathbb{R}^4 \to \mathbb{R}$ dada por $d(x_1, y_1, x_2, y_2) = | \substack{x_1 \ y_1 \ y_2} |$ é transformação linear? Se for, represente a função através da multiplicação por uma matriz.
- c) Para vetores do \mathbb{R}^3 fixados V=(1,2,3) e W=(1,-2,1), a função $f\colon \mathbb{R}^3\to\mathbb{R}$ dada por $f(x,y,z)=\left|\begin{smallmatrix} x&y&z\\1&2&3\\1&-2&1 \end{smallmatrix}\right|$ é transformação linear? Se for, represente a função através da multiplicação por uma matriz.
- d) Enuncie o teorema do núcleo e da imagem para uma transformação linear $T: \mathbb{R}^4 \to \mathbb{R}$.
- e) Dê um exemplo de uma transformação linear que seja sobrejetiva e não seja injetiva. E vice-versa, dê um exemplo de uma transformação linear que seja injetiva e não seja sobrejetiva.

Questão 2. (4pts) Considere a matriz

$$A = \begin{bmatrix} 0 & -1 & -1 & -1 \\ -1 & 0 & -1 & -1 \\ -1 & -1 & 0 & -1 \\ -1 & -1 & -1 & 0 \end{bmatrix}$$

- a) Encontre o polinômio característico $p_A(\lambda)$ de A. Decomponha este polinômio como produto de fatores lineares escrevendo $p_A(\lambda) = (\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3)(\lambda \lambda_4)$ (*Dica:* Pode usar que este polinômio tem uma raiz de multiplicidade exatamente 3 para agilizar as contas). Quais são os autovalores de A?
- b) Encontre bases ON para os autoespaços. ($Sugest\~ao$: Não precisa detalhar escalonamento. É <u>obrigatório</u> usar o processo de Gram-Schmidt modificado para obter vetores sem frações. Normalize depois.)
- c) Quais são as matrizes P ortogonal e D diagonal tais que $P^tAP = D$?
- d) O que significa dizer que uma matriz é ortogonal? Além de definir, enuncie pelo menos uma propriedade da matriz ortogonal.
- e) Justifique que para n um inteiro positivo, se $B = Q^{-1}AQ$, então $B^n = Q^{-1}A^nQ$ (Sugestão: Faça para n = 2, 3 e justifique o que acontecerá em geral (ou use indução)). Use isto para calcular A^{2018} , para a matriz A do enunciado.

Questão 3. (2pts) Responda VERDADEIRO ou FALSO, com uma breve justificativa:

- i-() Se V e W são dois vetores unitários de \mathbb{R}^n , então pela desigualdade de Cauchy-Schwarz tem-se $|V\cdot W|\geq 1$.
- ii-() Se V e W são dois vetores ortogonais, então $\|V+W\|^2 = \|V\|^2 + \|W\|^2$;
- iii-() As matrizes $\begin{bmatrix} 2 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 2 \end{bmatrix}$ e $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ são semelhantes;
- iv-() Se A é uma matriz diagonalizável e invertível, então sua inversa é diagonalizável.