COMS W4733: Computational Aspects of Robotics

Lecture 3: Forward Kinematics

Instructor: Tony Dear

Homogeneous Transformations

- Break complex transformations down into multiple elementary transformations.
- Draw intermediate frames and compose elementary transformations together.
- The same transformation can often be achieved in several different ways.
- Pay attention to sub/superscripts!
- A_i^j : Pose of frame i relative to frame j

Manipulators

- Open-chain manipulators
- Fixed at a base; end-effector (e.g. gripper) at the end
- Series of *links* (rigid bodies) connected by *joints*
- Each joint is a single DOF, described by a joint variable
- Joint variables go from 1 to n
- Link constants go from 0 to n
- Joint i moves link i (link 0 does not move)

Joint Representations

- Joints encode constraints on relative link motions
- Typically only allow rotation about or translation in one specific direction

Revolute joints

Prismatic joints

$$q_i = \begin{cases} \theta_i & \text{if joint } i \text{ is revolute} \\ d_i & \text{if joint } i \text{ is prismatic} \end{cases}$$

Forward Kinematics

- Description of the end-effect pose as function of the joint variables
 - We'll later consider the harder inverse problem
- Kinematics does not consider forces, torques, and mass (dynamics)
- Ex: Planar RR arm
 - Joints: $(q_1, q_2)^T = (\theta_1, \theta_2)^T$
 - End-effector pose: $(x, y, \phi)^T$

$$x = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2)$$

$$y = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2)$$

$$\phi = \theta_1 + \theta_2$$

Coordinate Transformations

$$A_1^0 = \begin{bmatrix} c_1 & -s_1 & 0 \\ s_1 & c_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad A_2^1 = \begin{bmatrix} 1 & 0 & l_1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A_2^1 = \begin{bmatrix} 1 & 0 & t_1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A_3^2 = \begin{bmatrix} c_2 & -s_2 & 0 \\ s_2 & c_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad A_4^3 = \begin{bmatrix} 1 & 0 & l_2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_4^3 = \begin{bmatrix} 1 & 0 & l_2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$c_i = \cos \theta_i$$

$$s_i = \sin \theta_i$$

$$A_4^0 = A_1^0 A_2^1 A_3^2 A_4^3$$

Describes movement of end-effector with respect to the base

Coordinate Transformations

$$A_4^0 = A_1^0 A_2^1 A_3^2 A_4^3$$

$$A_1^0 = \begin{bmatrix} c_1 & -s_1 & 0 \\ s_1 & c_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad A_2^1 = \begin{bmatrix} 1 & 0 & l_1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad A_3^2 = \begin{bmatrix} c_2 & -s_2 & 0 \\ s_2 & c_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad A_4^3 = \begin{bmatrix} 1 & 0 & l_2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\boldsymbol{A}_{4}^{0} = \begin{bmatrix} \cos(\theta_{1} + \theta_{2}) & -\sin(\theta_{1} + \theta_{2}) & l_{1}\cos\theta_{1} + l_{2}\cos(\theta_{1} + \theta_{2}) \\ \sin(\theta_{1} + \theta_{2}) & \cos(\theta_{1} + \theta_{2}) & l_{1}\sin\theta_{1} + l_{2}\sin(\theta_{1} + \theta_{2}) \\ 0 & 0 & 1 \end{bmatrix}$$

Denavit-Hartenberg Convention

- Forward kinematics describe end effector relative to base frame
- No specification about intermediate frames
- DH convention is a universal language for describing any open chain
- Systematically summarizes each individual transformation with 4 parameters
- Two steps: Assign frames, then derive **DH parameters**

Frame Assignment

- Assign one frame per joint to satisfy the following:
 - z_i along rotation axis (revolute) or translation axis (prismatic) of joint i+1
 - O_i (origin) minimizes distance between z_{i-1} and z_i
 - x_i intersects and is perpendicular to z_{i-1}
 - y_i chosen to make frame right-handed

Example: z axes

- Step 0: Identify and label all joints and links
 - Links go from 0 to n; joints go from 1 to n. Joint i moves link i!
 - Label joint variables as either θ_i (revolute) or d_i (prismatic)
- Step 1: Place z_0 through z_{n-1} axes along joint axes
 - Positive along direction of positive displacement
- θ_1 and θ_2 revolute, z_0 and z_1 out of the plane
- d_3 prismatic, z_2 pointing upward
- θ_4 revolute, z_3 pointing rightward

Example: Assigning Frame Origins

- Step 2: Locate origin of each coordinate frame
 - Base frame 0: Coincide origin O_0 with the first joint
 - Other frames: Choose O_i to minimize distance from O_{i-1}
- If z_{i-1} and z_i do not intersect, use their common normal
- Otherwise, use their intersection
- z_0 and z_1 parallel; O_1 in the plane
- z_1 and z_2 are skew; O_2 on common normal
- z_2 and z_3 intersect; O_3 on intersection

Example: *x* axes

- Step 3: x_i intersects and is perpendicular to z_{i-1}
 - Usually have choice of two opposite directions
 - Try to choose a convenient direction and minimize frame transformations
- Arbitrarily choose x_0 pointing right
- x_1 points to the right, perpendicular to z_0
- x_2 points to the right, perpendicular to z_1
- x_3 must go into (or come out of) the plane

Tool Frame

- Last frame (frame *n*) typically goes on the end-effector
- Place origin O_n on center of gripper and align z_n with z_{n-1}
- Choose x_n so that it intersects z_{n-1}

Denavit-Hartenberg Parameters

- Our frame definition ensures that each transformation between frame O_i and O_{i-1} can be summarized by the same four parameters!
 - Rotate about z_{i-1} by θ_i (joint angle) and translate along z_{i-1} by d_i (link offset)
 - Translate along x_i by a_i (link length) and rotate about x_i by α_i (link twist)

Forward Kinematic Map

- Our frame definition ensures that each transformation between frame O_i and O_{i-1} can be summarized by the same four parameters!
 - Rotate about z_{i-1} by θ_i (joint angle) and translate along z_{i-1} by d_i (link offset)
 - Translate along x_i by a_i (link length) and rotate about x_i by α_i (link twist)

$$A_{i}^{i-1} = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 1 \end{bmatrix}$$

• Overall forward kinematic map then found as $T_n^0 = A_1^0 A_2^1 \cdots A_{n-1}^{n-2} A_n^{n-1}$

Example: DH Parameters

- Instead of carrying around a bunch of homogeneous transform matrices, we can summarize a manipulator's configuration with a table of 4n parameters
 - Rotate about z_{i-1} by θ_i (joint angle) and translate along z_{i-1} by d_i (link offset)
 - Translate along x_i by a_i (link length) and rotate about x_i by α_i (link twist)

Link	a_i	α_i	d_i	θ_i
1	l_1	0	0	$ heta_1$
2	n_2	-90	0	θ_2
3	0	90	$m_2 + d_3$	90
4	0	0	l_4	θ_4

Example: DH Parameters

- Each row has exactly one joint variable, either revolute or prismatic
- Row i corresponds to a homogeneous transformation between frames i-1 and i
- Composition of all n transformations gets us the FK map

Link	a_i	α_i	d_i	θ_i
1	l_1	0	0	$ heta_1$
2	n_2	-90	0	θ_2
3	0	90	$m_2 + d_3$	90
4	0	0	l_4	θ_4

$$T_4^0 = \begin{bmatrix} c_1 & -s_1 & 0 & l_1c_1 \\ s_1 & c_1 & 0 & l_1s_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} c_2 & 0 & -s_2 & n_2c_2 \\ s_2 & 0 & c_2 & n_2s_2 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \times \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & m_2 + d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} c_4 & -s_4 & 0 & 0 \\ s_4 & c_4 & 0 & 0 \\ 0 & 0 & 1 & l_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Considerations

- FK map $T_n^0 = \begin{bmatrix} R_n^0 & o_n^0 \\ o^T & 1 \end{bmatrix}$ provides both position o_n^0 and orientation R_n^0 of end-effector
- Sometimes only require o_n^0 : simply extract right column from matrix
- T_n^0 depends only on definition of base and end-effector frames
- Possible to define different intermediate frames
- Sometimes may be helpful to draw manipulator in an easier reference configuration

