

COMPUTER VISION SYSTEMS

Professor: Rubén Alvarez

- Why I'm tacking this course?
- From which career am I?
- In which programming languages I know to program?
- Something good that happened in online classes?
- Something bad that happened in online classes? (without names)

INTRODUCTION TO COMPUTER VISION

COMPUTER VISION

CONTENT

- History of Computer Vision
- What is Computer Vision?
- Areas in Computer Vision
- Optics
- Mathematics necessary

"Everything human beings can imagine; nature has already created..."

Albert Einstein.

WHAT IS COMPUTER VISION?

• Humans use our eyes and our brains to see and visually perceive the world around us. Computer Vision is the science that aims to provide a similar, if not better, capability to a machine or computer.

WHO IS THIS GUY?

Alexander Sawchuk 1973

WHO IS SHE?

November 1972

HISTOGRAM

WHAT DO I NEED TO KNOW?

- Image Processing
- Geometric Optics
- Electromagnetic Optics
- Data Science
 - Data Engineering, Data Analysis, Data Visualization
- Signal Processing
- ..

WHAT DO I NEED TO KNOW?

- Image Processing
- Geometric Optics
- Electromagnetic Optics
- Data Science
 - Data Engineering, Data Analysis, Data Visualization
- Signal Processing
- ...

LINEAR FILTERS

GAUSSIAN FILTER

Aproximación discreta de un filtro 2D Gaussiano :

Suma ponderada, los pixels centrales son más importantes que los pixels de los bordes

$$G(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} e^{-\frac{1}{2}\left(\frac{x^2}{\sigma_x} + \frac{y^2}{\sigma_y}\right)}$$

$$g_3 = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

$$g_5 = \frac{1}{246} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$$

MEAN FILTER

$\frac{1}{9}$ ×	1	1	1
	1	1	1
	1	1	1

WHAT DO I NEED TO KNOW?

- Image Processing
- Geometric Optics
- Electromagnetic Optics
- Data Science
 - Data Engineering, Data Analysis, Data Visualization
- Signal Processing
- **.**..

FERMAT PRINCIPLE

• The light travels between two points P_0 and P_1 following the path that takes the shortest time.

REFLECTION LAW

REFLECTION LAW EXAMPLE

What is the length of the smaller vertical flat mirror in which a full-body person can be seen and where should it be located?

SNELL'S LAW OR REFRACTION

REFRACTIVE INDEXES

Material	Index of Refraction (n)	
Vacuum	1.000	
Air	1.000277	
Water	1.333333	
Ice	1.31	
Glass	About 1.5	
Diamond	2.417	

SNELL'S LAW OR REFRACTION

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

- A fish sees the sun at an angle of 60 degrees to the surface of the water. What is the actual angle of the sun over the horizon?
- The water refractive index is no. 1.33

WHAT DO I NEED TO KNOW?

- Image Processing
- Geometric Optics
- Electromagnetic Optics
- Data Science
 - Data Engineering, Data Analysis, Data Visualization
- Signal Processing
- **.**..

MECHANICAL WAVEVS ELECTROMAGNETIC WAVE

WHAT DO I NEED TO KNOW?

- Image Processing
- Geometric Optics
- Electromagnetic Optics
- Data Science
 - Data Engineering, Data Analysis, Data Visualization
- Signal Processing
- **-** ...

MACHINE LEARNING IS IMPORTANT?

IN COMPUTER VISION?

WHAT KIND OF SIGNAL DO YOU THINK IT IS?

HUG HERR

MACHINE LEARNING AND COMPUTER VISION

[Courtesy of Dean Pomerleau]

Presented clip

Clip reconstructed from brain activity

WHAT IS A CNN?

CONVOLUTIONAL NEURAL NETWORK

WE CAN USE CNN ONLY IN IMAGES?

WE CAN USE CNN ONLY IN IMAGES?

AN IMAGE IS A 2D SIGNAL

HOW MANY AREAS COMPUTER VISION HAS?

COMPUTER VISION AREAS

- I. Optics and 3D Reconstruction
- 2. Image Processing
- 3. Object Recognition (ML/DL)

- I. Optics and 3D Reconstruction
- 2. Image Processing
- 3. Object Recognition (ML/DL)

OPTICS AND 3D RECONSTRUCTION

- I. Optics and 3D Reconstruction
- 2. Image Processing
- 3. Object Recognition (ML/DL)

IMAGE PROCESSING

- I. Optics and 3D Reconstruction
- 2. Image Processing
- 3. Object Recognition (ML/DL)

OBJECT RECOGNITION

SEGMENTATION

(c) Semantic segmentation

(d) Instance segmentation

STYLETRANSFER

VIDEO GAMES

VIDEO GAMES

What I cannot build, I do not understand.

– Richard Feynmann

Questions?