1 номера

1 тип - l_p

2 тип - $L_p([a,b])$

2)
$$||u|| = (\int |u(t)|^3 dt)^{\frac{1}{3}} \le 1$$

 $||f||u|| = |\int |u(t)|^3 dt| \le \int |u(t^{\frac{1}{6}})|t^2 dt| = \int |t^{\frac{1}{6}} = 5| = \int |u(s)| \cdot 6 \int |u(s)|^3 ds \le \int |u$

тип - C([a,b]) с синусами(косинусами)

4 тип - С([a,b]) с суммой (ржомба)

		-			ŀ	F	ŀ	ŀ					4	7	u	П			F		L	L	L	L	F	ļ	F	1	1	Ŧ		1			H
	ŧ	:	C	(7	0	4	1)	+	>	R		-	ŀ	1	1	(.)	-	90		× (+	5)	1	0	+	4	- 8	3×	(6)		F	
1)		V	1H	6	11	10	oc.	25					ŀ									E	E		l										
É	ŧ	(4:		4-	B	3)		-	-	1	4	×	(t	3) }	9	+	P	4	(+ 1	3)	+)	0	+ -	-	8 (6	× (6)	+ 3	4(6)
=		h	0	Х	(1	5)	+	9	9	+	4	B			3	(+	5)	+	3	14	+	8	6	X	6)	+	81	3	3(6)	=	
		8	t	(×)		+	B	+	(7)																		F	-		ŀ		
2)		C) t	X	2 H	u	37.6	21	-11-	0	c	24	5	Ė	ļ	1				3	×	(+) 4	1	3			-	F	F	I	ł			
	1	t	(×	1	F	VI	-	SI	1F			50	X)		1	٢.)	t		1+	+	8	×	(6)		=							
	=		su	9	1			+	9	9	+		-	٥	1		-			su	P	1	4	0	0		- 4	3	=						
12	¥		Sy	P			10	5	+	7	8		=	İ	8	1	5		,	^			+	(۸)	1	4	8	1	0		-			
			(20	00	H	,,	n	el	11	10	c	26	-		90	5	6												F	F	ŀ	F		
3)		Po	3	50	18	0	e				9	34	H	Kı	41	10	01	10	u			H		,	0	1		-	y			2 ×			
			+	=		+,		+	f	2			2	9 6	2			t'					()	<u></u>	()	+	9	7+							
3.1)		P	aδ	0	20	e	-		c		4								2		0														
		ť		72	+	j	×	(+					+	İ	(3	2														-			
		3	a	ue	H	0		ļ	-				F			-															F	F	F		
I		+	12	11	S		-	+	=	S	2	(4	9	=	CA	2	7)_																
		4			4	3	5	=	0	3	2	9:	5	F		-					_							-1				L			0
Œ	>	1	×	(5	3	3	2	1	5	2'	,	4:	25	1		-		× (3)_	5 :	5	9	ds		=	1	×	(3)	1	1.10	30	- =
	- 1	0				. 5	0		-						-																-	-	4	-	
1	5	×	(3)	9	11	5																												1
	1/	0	1	S	0	1	=	1		+	0	PH	٥	3	-	0	1		vo	···	0 11		11	-	8	01	m	οū		6	50	Pu	iai	ųч	11)
	V.	-	-	_/1	0)	-	-	V C	,	-	10	-)	-		-	0				1										-	F		
3.	2)		Pe	δ	0	~	ae	u	-		C		+	1																		-			

2 номера♡

1 тип (найти ортогональную проекцию)

2 тип (вычислить расстояние от точки)

	2 THN	
4, ([0]1])	(x,y) = [x(+)y(+)e	64 94
Castricians b	accessance do mo	strai gar- e go
wokecz8a A	= { x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	e 151 x (+) d+ = 0 9
1) A = { x ∈ 6,		
youosue:	e 1st 4 c 6+ - pazru	ca A or (xy) cu
2) 9-9 =	(, e + T) e + E	
(ye=1)= j	-10+ e+ e+ d+ =	e d+ =
= 3 0 =	e ³ -1	
(e = e =) =)	10 g t et g g g g	dt = 20 0 =
= 20	0	
$ = \frac{(e^{2}-1)20}{3(e^{20}-1)} $	e 4t	
3) Uzuyem ch	arophoe mpouzeege	rue (y-g, y-g):
$(y - \hat{g}; y - \hat{g}) = $	$\frac{20(e^3-1)}{3(e^2-1)}e^{\frac{4+}{3}}\left(\frac{20(e^3-1)}{3(e^2-1)}\right)$	e d+ =
$= \frac{1}{3(e^{20}-1)}$	2 141 6t dt =	
= /20(e ³ -1)	20+ 1+ = (20(e3-1)	2 e20+ 1
3 (e ³⁰ -1)) 0	3 (e ²⁰ -1)	20 0 =
= (20 (e 5 -1))	$e^{20} - 1 = \frac{20}{9} (e^{20})$	-1)
4) Bepeu J	on speakingy were	
1(3-3, 3-3) =	20 (e 3-1)2 = 2/5	(e3-1) - ombet.

3 номера

1 Тип - обобщенные функции

$$\int_{0}^{\infty} u(t) = \frac{u}{\sin \pi} \exp\left(-\frac{u^{2}(t+6.4)^{2}}{14}\right)$$

$$\int_{0}^{\infty} \frac{u}{\sin \pi} \exp\left(-\frac{u^{2}(t+6.4)^{2}}{14}\right) e^{(t)} dt = \left[\frac{s}{t} = \frac{u}{t} - 6.4\right] = \frac{1}{t}$$

$$\int_{0}^{\infty} \frac{v}{\sin \pi} \exp\left(-\frac{u^{2}(t+6.4)^{2}}{14}\right) e^{(t)} dt = \left[\frac{s}{t} = \frac{u}{t} - 6.4\right] = \frac{1}{t}$$

$$\int_{0}^{\infty} \frac{v}{\sin \pi} \exp\left(-\frac{s^{2}}{14}\right) ds = \frac{v}{t} \exp\left(-\frac{s^{2}}{t}\right)$$

$$\int_{0}^{\infty} \frac{v}{\sin \pi} \exp\left(-\frac{s^{2}}{t}\right) = C$$

$$f_n(t) = \frac{n}{\sqrt{14\pi}} e^{-\frac{n^2(t+6.4)^2}{14}}.$$

$$f_{n}(\gamma) = \inf_{t \in \mathbb{R}^{n}} f_{n}(t) \varphi(t) dt = \int_{-\infty}^{n} \frac{1}{\sqrt{14\pi}} e^{-\frac{n^{2}(14\pi)^{2}}{14\pi}} \varphi(t) dt =$$

Пусть $f_n \colon A \to \mathbb{R}$ для всех $n \in \mathbb{N}$ измерима на A. Тако

 $ycmb\ f_n\colon A o \mathbb{R}\ orange beex\ n\in \mathbb{N}\ uзмерима\ na\ A.\ s$ ыполнены условия

- $f_n \xrightarrow{n.6.} f$ na A,
- •• $|f_n(t)| \leqslant g(t), t \in I$
- $\int_A g(t)d\mu < \infty$.

 $Tor \partial a \int_A f_n d\mu \xrightarrow{n \to \infty} \int_A f d\mu$

$$= \left\{ \frac{1}{\sqrt{1+64}} \right\} = \left\{ \frac{1}{\sqrt{1+64}} \right$$

$$\frac{1}{\sqrt{2\pi}} = \frac{5\pi}{2} \varphi(\frac{5\sqrt{3}}{\sqrt{n}} - 64) \xrightarrow{n \to \infty} \frac{1}{\sqrt{2\pi}} = \frac{5\pi}{2} \cdot \varphi(-64)$$

$$\frac{1}{\sqrt{2\pi}} = \frac{5\pi}{2} \varphi(\frac{5\sqrt{3}}{\sqrt{n}} - 64) = \frac{5\pi}{2} \cdot \frac{1}{\sqrt{2\pi}} = \frac{5\pi}{2} \cdot \frac{1}{\sqrt{n}} = \frac{5\pi}{2} \cdot$$

T. k. R > 0 : 4(t) = 0, |t| > R, Sup |4(t)| = max |4(t)| = 0

2 Тип - обобщенные функции

3 Тип - C([a,b]) сильная, слабая сходимость

4 Тип - $L_p([a,b])$ сильная, слабая сходимость

4 номера

1 Тип - сходимость последовательности

2 Тип - сопряженный

```
Dokazaro, imo oneparop A: l, -> l, aBA-ce mineù.
   ныш и отраниленными построить сопраж к нему
   oneparas a Borne mizo ropmy.
                           A_{x} = (-6x, -3x_{2}, -6x_{3}, -3x_{4}, ...)
  ) x = (x, x, x, x, ...)
      A \times = (-6 \times , -3 \times , -6 \times _3 - 5 \times _4 ) \dots )
  1.1) Nuneumoczo:
        A(6x+By) = (-66x - 36x2 - 6By, -3By2; ") =
   = h (-6x - 3x, ...) + p (-6y, -3y, ...) =
   = & A(x) + BA(y) => muneinoui
  1.2) Ограниченность
       ||x|| \in ||x|| = ||x|| ||x|||^{1/2} 
  11 A x 11 = 11 (-6x, - 3x, -6x, -3x, ...) 11 =
 = || (-6x, -6x_3; ...) + (-3x_2; -3x_4; ...) || =
= || (|-6x, |^2 + |-6x_3|^2 + ...) || + (|-3x_2|^2 + |-3x_4|^2 + ...) || =
\leq 6 \left( \sum_{k=1}^{\infty} ||x_k||^2 \right)^{1/2} + 3 \left( \sum_{k=1}^{\infty} ||x_k||^2 \right)^{1/2} \leq 6 + 3 = 9 = > 0
 2) lugeur compat. onepamop u Beviuca Hopmy:

(f,x) = 2 x h fk, rge h = 1-6, npu k - Heriez Holix

k=1 k=1 k k k , rge h = 2-3, npu k - temholix
G = (-61, -31, -61, -31, -61, -31, -(nopuy or Hee)
||A_{\times}|| = \left(\frac{\sum |3 \times k|^2}{\sum |6 \times k|^2}\right)^{1/2} =
=(9+36)^{1/2}=45 - ombet
```

3 Тип - спектр

 Доказать, что оператор A: C([0; 3]) → C([0; 3]) является линейным и ограниченным, построить его резлольвенту и вычислить спектр.

$$(Ax)(t) = \int_{3}^{3} 3x(s)ds.$$

$$(Ax)(t) = \int_{4}^{3} (Ax)(t)ds.$$

$$(Ax)(t) = \int_{4}^{3} (Ax)(s)ds.$$

$$(Ax)(t) = \int_{4}^{3} 3x(s)ds.$$

$$(Ax)(t) = \int_{4}^{3} 3x(s)$$

 \mathbb{R}^{2} Построим резольвенту A. Для этого решим относительно $x \in C([0;3])$ уравнение

$$(A - \lambda I)x = y,$$

$$\int_{0}^{t} \Im x(s)ds - \lambda x(t) = y(t).$$

Предположим, что $x,y\in C^1([0;\Im])$ и сведём полученное интегральное уравнение к задаче Коши:

$$\begin{cases} 3x(t) - \lambda x'(t) = y'(t), \\ -\lambda x(0) = y(0), \end{cases} \begin{cases} \frac{x'(t) - \frac{3}{\lambda}x(t) = \frac{1}{\lambda}y'(t), \\ x(0) = \frac{1}{\lambda}y(0), \end{cases}$$

$$x_{\text{ОДНородн.}}(t) = C e^{+\frac{3}{\lambda}t} \implies \underline{x(t) = C(t)} e^{+\frac{3}{\lambda}t},$$

$$\begin{cases} C'(t) e^{+\frac{3}{\lambda}t} + C(t) \frac{3}{\lambda} t e^{+\frac{3}{\lambda}t} + \frac{3}{\lambda} C(t) e^{+\frac{\lambda}{\lambda}t} = \frac{4}{\lambda} y'(t), & C'(t) = \frac{1}{\lambda} y'(t) e^{\frac{3}{\lambda}t}, \\ C(0) e^{+\frac{3}{\lambda}\cdot 0} = \frac{-1}{\lambda} y(0), & C(0) = \frac{1}{\lambda} y(0), \end{cases}$$

=> cry 2 hypromil
we supremented