Equation

$$\frac{dC_i}{dt_{tot}} = \begin{cases} \frac{\frac{dC_i}{dt_{bgc}} + \frac{dC_i}{dt_{hyd}}}{\frac{dC_i}{dt_{bgc}}} & \text{if species is dissolved or suspended in water column} \\ \frac{dC_i}{dt_{bgc}} & \text{if species is attached or sedimented onto bed surface} \end{cases}$$

$$\frac{2}{dt} \frac{dC_i}{dt}_{hyd} = L_i - Q * [C_i]$$

3 dDIC/dt =

 $WEA_{DIC} + DOC_MINERALIZATION + POC_{terre}_MINERALIZATION + POC_{auto}_MINERALIZATION + SEDOC_{terre}_MINERALIZATION + SEDOC_{auto}_MINERALIZATION + ALG_RESPIRATION + ALG_PRIMARY_PRODUCTION - ALG_benth_PRIMARY_PRODUCTION - DIC_ATMOSPHERIC_EXCHANGE$

- 4 $DIC_ATMOSPHERIC_EXCHANGE = k_{air} * (CO_{2water} CO_{2atmosphere})$
- 5 $k_{air} = k_{600} / (600/Sc_T)^{-0.5}$ $k_{air_floodplains} = (k_{600} / (600/Sc_T)^{-0.5}) * F_{high_veg} * F_{u10_veg} + (k_{600} / (600/Sc_T)^{-0.5}) * (1-F_{high_veg})$
- $6 Sc_T = 1911.1 118.11T + 3.4527T^2 0.04132T^3$
- 7 $k_{600} = \begin{cases} a_1 + b_1 \bar{\mathbf{u}}_{10} & if \ stream \ width > 100 \ meters \\ a_2 + b_2 * v & if \ stream \ width < 100 \ meters \end{cases}$
- 8 $dDOC/dt = SRO_{DOC} + WAS_{DOC} + ALG_EXCRETION + ALG_{benth}_EXCRETION DOC MINERALIZATION$
- 9 $dPOC_{terre}/dt = LIT_{POC} + SOI_{POC} + SEDOC_{terre}$ _INSTREAM_EROSION POC_{terre} _SEDIMENTATION POC_{terre} _MINERALIZATION
- 10 dPOC_{anto}/dt =
 ALG_C_MORTALITY + ALG_C_benth_MORTALITY+
 SEDOC_{anto}_INSTREAM_EROSION POC_{anto}_SEDIMENTATION POC_{anto}_MINERALIZATION
- 11 dSEDOC_{terre}/dt =
 POC_{terre}_SEDIMENTATION SEDOC_{terre}_INSTREAM_EROSION SEDOC_{terre}_
 MINERALIZATION SEDOC_{terre}_BURIAL
- 12 $dSEDOC_{auto}/dt =$

POCauto_SEDIMENTATION - SEDOCauto_INSTREAM_EROSION - SEDOCauto_MINERALIZATION - SEDOCauto_BURLAL

- $\Phi_{ero_tot} = k_{ero} * (SED_{tot}/A) / (k_{sed} + SED_{tot}/A) * S * v * A$
- $SED_{tot} = SEDIM + SEDOM_{terre} + SEDOM_{auto}$
- $SEDOM_{terre} = SEDOC_{terre} / f_{C_SEDOC_{terre}} * MM_{C}$
- $SEDOM_{auto} = SEDOC_{auto} / f_{C_SEDOCauto} * MM_{C}$
- $SEDOC_{terre}$ _INSTREAM_EROSION = $(SEDOC_{terre} / SED_{tot}) * \Phi_{ero_tot}$ $SEDOC_{auto}$ _INSTREAM_EROSION = $(SEDOC_{auto} / SED_{tot}) * \Phi_{ero_tot}$
- $POC_{terre}_SEDIMENTATION = vsed_{POC_{terre}} / D * POC_{terre}$ $POC_{auto}_SEDIMENTATION = vsed_{POC_{auto}} / D * POC_{auto}$
- $DOC_MINERALIZATION = f_{min}(T) * k_{DOCmin} * DOC$
- POC_{terre} _MINERALIZATION = $f_{min}(T) * k_{POC_{terre}}$ _min * POC_{terre} POC_{auto} _MINERALIZATION = $f_{min}(T) * k_{POC_{auto}}$ _min * POC_{auto}
- $SEDOC_{terre}$ _MINERALIZATION = $f_{min}(T) * k_{SEDOC_{terre}}$ _min * $SEDOC_{terre}$ $SEDOC_{auto}$ _MINERALIZATION = $f_{min}(T) * k_{SEDOC_{auto}}$ _min * $SEDOC_{auto}$
- $f_{min}(T) = \exp\left(\frac{T T_{ref}}{10}\right) \ln(Q10)$ $f(T) = e^{\frac{(T_{opt} - T)^2}{\sigma^2}}$
- $SEDOC_{terre}$ _BURIAL = $k_{burial} * SEDOC_{terre}$ $SEDOC_{auto}$ _BURIAL = $k_{burial} * SEDOC_{auto}$
- $dALG/dt = ALG_PRIMARY_PRODUCTION ALG_RESPIRATION ALG_MORTALITY ALG_EXCRETION$
- $dALG_{benth}/dt = ALG_{benth}_PRIMARY_PRODUCTION ALG_{benth}_RESPIRATION ALG_{benth}_MORTALITY ALG_{benth}_EXCRETION$
- $26 \quad ALG_PRIMARY_PRODUCTION = f_{ALG_pp}(T) * ALG_{I_lim} * ALG_{DIC_lim} * k_{ALG_pp} * ALG$
- ALG_{benth} _PRIMARY_PRODUCTION = $f_{ALG_{benth}}$ _pp(T) * ALG_{benth} _lim * ALG_{benth} _DIC_lim * $k_{ALG_{benth}}$ _pp * ALG_{benth}

28
$$ALG_RESPIRATION = f_{ALG_resp}(T) * k_{ALG_resp} * ALG_C$$

29
$$ALG_{benth_RESPIRATION} = f_{ALG_{benth_resp}}(T) * k_{ALG_{benth_resp}} * ALG_{benth}$$

30
$$ALG_EXCRETION = f_{ALG_excr}(T) * k_{ALG_excr} * ALG$$

31
$$ALG_{benth}$$
 $EXCRETION = f_{ALGbenth}$ $_{excr}(T) * k_{ALGbenth}$ $_{excr} * ALG_{benth}$

32
$$ALG_MORTALITY = (f_{ALG_mort}(T) * k_{ALG_mort}) + (f_{ALG_mort}(T) * k_{ALG_mort}) * (1+vf) * ALG$$

33
$$ALG_{benth_MORTALITY} = (f_{ALGbenth_mort}(T) * k_{ALGbenth_mort}) + (f_{ALGbenth_mort}(T) * k_{ALGbenth_mort}) * (1+vf) * ALG_{benth}$$

$$ALG_{DIC_lim} = \frac{[DIC]}{k_{DIC} + [DIC]}$$

35
$$I_0(MOY,lat) = \frac{\int_0^t I_0(t,lat)dt}{HPM}$$

36
$$I_lim(MOY,lat) = \begin{cases} \frac{I_z}{\left(I_z + k_{I_{ALG}}C_{benth}\right)} & for ALG_{benth} \\ \frac{\int_0^z I_0(MOY,lat)}{\left(\int_0^z I_0(MOY,lat) + k_{I_{ALG}}C\right)} & for ALG \end{cases}$$

37
$$I_z = I_0(MOY, lat) * e^{-\eta_{tot} * z}$$

38
$$\eta_{tot} = \eta_{water} + \eta_{POCterre} * [POC_{terre}] + \eta_{POCauto} * [POC_{auto}] + \eta_{ALG} * [ALG] + \eta_{DOC} * [DOC] + \eta_{PIM} * [PIM]$$

39
$$I_0(t, lat) = \theta_s(t, lat) * tt * I_{solar_constant}$$

41
$$\delta(t) = 23.45 * \pi/180 * \sin(2\pi * (284 + DOY(t))/362.5)$$

42
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 ... + \beta_n X_n + e$$

43
$$SRC_i = \beta_i \frac{\sigma_{X_i}}{\sigma_Y}$$