Software Testing, Quality Assurance and Maintenance	Winter 2025
Lecture 5c — January 28, 2025	
Patrick Lam	version 1

Here's a proof of semantic equivalence between $s_1 = \mathsf{skip}$; S and $s_2 = S$. From page 11 of the L05 notes, we have:

 s_1 and s_2 are semantically equivalent if $\forall q. \langle s_1, q \rangle \Downarrow q_1$ and $\langle s_2, q \rangle \Downarrow q_2$ implies $q_1 = q_2$.

So, if we take any q, and let q' satisfy $\langle S, q \rangle \Downarrow q'$ for that q', then we have to show that $\langle \text{skip} ; S, q \rangle \Downarrow q'$ also. (If q' doesn't exist, because S doesn't terminate, then there is no proof obligation).

The composition rule says:

$$\frac{\langle s_1,q\rangle \Downarrow q'' \quad \langle s_2,q\rangle \Downarrow q'}{\langle s_1 \; ; \; s_2,q\rangle \Downarrow q'}$$

and the skip rule says:

$$\langle \mathsf{skip}, q \rangle \Downarrow q$$

Applying the rule for skip gives us $\langle \mathsf{skip}, q \rangle \Downarrow q$. We observe that the premises for the composition rule hold, if we substitute $s_1 = \mathsf{skip}$, q'' = q, and $s_2 = S$. We thus have the conclusion

$$\langle \mathsf{skip} ; S, q \rangle \Downarrow q',$$

as required.