Lecture 6 Projectors

Fang Zhu

November 8, 2023

1 Prerequisite

2 Solutions

2.1 Exercise 6.1

Proof. Since ${\bf P}$ is an orthogonal projector, then we have ${\bf P}^2={\bf P}$ and ${\bf P}^\star={\bf P},$ hence

$$(I - 2P)^*(I - 2P) = I - 2P^* - 2P + 4P^*P = 0,$$
 (1)

which means that ${\pmb I}-2{\pmb P}$ is unitary. A geometric interpretation is given by Figure 1.

Figure 1: Geometric interpretation of I - 2P.

2.2 Exercise 6.2

We begin by considering the matrix F defined by

$$\boldsymbol{F} = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 1 & \cdots & 0 & 0 \end{pmatrix},$$

where F is a permutation matrix that reverses the order of the basis vectors. Consequently, we define

$$m{E} = rac{m{I} + m{F}}{2} = egin{pmatrix} rac{1}{2} & 0 & \cdots & 0 & rac{1}{2} \\ 0 & rac{1}{2} & \cdots & rac{1}{2} & 0 \\ dots & dots & \ddots & dots & dots \\ 0 & \cdots & 1 & \cdots & 0 \\ dots & dots & dots & \ddots & dots \\ rac{1}{2} & \cdots & 0 & 0 & rac{1}{2} \end{pmatrix},$$

where I is the identity matrix. Observing that F is its own inverse, i.e., $F^2 = I$, and that the adjoint of a matrix is equal to its conjugate transpose, we deduce that the adjoint of E, denoted E^* , satisfies

$$m{E}^{\star} = \left(rac{m{I} + m{F}}{2}
ight)^{\star} = m{E},$$

since both I and F are real and symmetric, and thus equal to their own adjoints. Next, we compute E^2 as follows:

$$E^2 = \left(\frac{I+F}{2}\right)^2 = \frac{I+2F+F^2}{4} = \frac{2I+2F}{4} = \frac{I+F}{2} = E.$$

Hence, $E^2 = E$, which implies that E is idempotent. Additionally, since for any vector v, the equality $\langle Ev, v \rangle = \langle v, Ev \rangle$ holds, where $\langle \cdot, \cdot \rangle$ denotes the inner product, it follows that E is self-adjoint. Combining the idempotence and self-adjointness of E, we conclude that E is an orthogonal projector.

2.3 Exercise 5.3

Suppose that A is full rank. This implies that A has n non-zero singular values. Consequently, the matrix A^*A , where A^* denotes the conjugate transpose of A, has n non-zero eigenvalues $\lambda_1, \ldots, \lambda_n$. The determinant of A^*A is then given by the product of its eigenvalues:

$$\det(\mathbf{A}^*\mathbf{A}) = \prod_{i=1}^n \lambda_i \neq 0,$$

which indicates that A^*A is non-singular.

For the "only if" part of the proof, we invoke the singular value decomposition (SVD). Since A^*A is non-singular, it follows from Theorem 5.2 that

$$range(\mathbf{A}) = \langle \mathbf{u}_1, \dots, \mathbf{u}_n \rangle,$$

where the u_i are left singular vectors of A^*A . This space is *n*-dimensional, which confirms that the matrix A is indeed full rank.

2.4 Exercise 6.4 (a)

We first compute \boldsymbol{P} as

$$m{P} = m{A} (m{A}^{\star} m{A})^{-1} m{A}^{\star} = egin{pmatrix} rac{1}{2} & 0 & rac{1}{2} \ 0 & 1 & 0 \ rac{1}{2} & 0 & rac{1}{2} \end{pmatrix}$$

then

$$P\begin{pmatrix}1\\2\\3\end{pmatrix}=\begin{pmatrix}2\\2\\2\end{pmatrix}.$$

2.5 Exercise 6.4(b)

We first compute \boldsymbol{P} as

$$P = B(B^*B)^{-1}B^* = \begin{pmatrix} \frac{5}{6} & \frac{1}{3} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{6} & -\frac{1}{3} & \frac{5}{6} \end{pmatrix}$$

then

$$P\begin{pmatrix}1\\2\\3\end{pmatrix} = \begin{pmatrix}2\\0\\2\end{pmatrix}.$$

2.6 Exercise 6.5

We first show that $\|P\|_2 \ge 1$. Suppose that there exists a matrix P such that $\|P\|_2 < 1$, then we know that the largest singular value σ_{max} of P is less than 1 then

$$|\det(\mathbf{P}^2)| = |\det(\mathbf{P})^2| = |\prod_i \sigma_i^2| < |\prod_i \sigma_i| = |\det(\mathbf{P})|$$
 (2)

then $P^2 \neq P$, which is contradicted with that the matrix P is a projector, and hence we conclude that $||P||_2 \geq 1$. Suppose that the SVD of P are $P = U\Sigma V^*$, then if ||P|| = 1, then by (2), we can get that all the singular values of P are 1, i.e., Σ is the identity matrix and hence $P^* =$