

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

NOVEMBER 2011

POSSIBLE ANSWERS

MARKS: 150

This memorandum consists of 22 pages.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum.
- Assuming answers/values in order to solve a problem is not acceptable.

1.1	Median = 42	√answer
		(1)
1.2	Lower quartile = 32 Upper quartile = 46 Inter quartile range = 46 - 32 = 14 Answer only: FULL MARKS	✓ lower quartile ✓ upper quartile ✓ answer (3)
1.3	27 32 42 46	✓ box-and- whisker with a median ✓ skewness ✓ indicating 5 number summary 27; 32; 42; 46; 62 or correct scale (3)
1.4	There is a greater spread of scores to the right of the median (42). OR	✓ greater spread ✓ right of median (42) (2)
	There is a greater spread of scores in the top 50%.	✓ greater spread ✓ top 50% (2)
	OR	
	The spread of the scores on the left hand side of the median is closer to each other.	✓ spread closer ✓ left of median (2)
	OR	
	The greatest spread of scores lies between Q ₃ and the maximum value.	✓ greater spread ✓ between Q ₃ and max (2)
	 Note: Description about the spread based on the box-and-whisker diagram must be accepted. If it is indicated that it is skewed to the left because the mean is less than the median: full marks 	[9]

3

NSC -

QUESTION 2

2.1	Mean = $\frac{\sum_{i=1}^{n} x_i}{n} = \frac{580}{8} = 72.5$	Answer only: FULL MARKS	✓ 580 ✓ answer	(2)
	Note: If rounded off to 73: 1 mark			
2.2	Standard deviation (σ) = 2,78 (2,7838821 Note : If rounded off to 2,8: 1 mark	81)	√√ answer	(2)
2.3	\therefore 2 golfers' scores lie outside 1 standard de The interval for 1 standard deviation of the r (72,5-2,78;72,5+2,78) = (69,72;75,28)		✓ interval ✓ number	(2) [6]

3.1	30	√ 30	
			(1)
3.2	Linear, the points seem to form a straight line.	√ linear	
		✓ reason	
			(2)
3.3	The greater the number of hours spent watching TV, the lower the	√ deduction	
	test scores		(1)
	OR		
	The less time a person spends watching TV, the higher the test		
	score.		
	OR		
	Negative correlation between the variables		
	OR		
	Indirect relationship between the variables		
3.4	60 marks. (Accept 50 -70 marks)	✓✓ deduction	
			(2)
			[6]

4.1	TIME	FREQUENCY	CUMULATIVE FREQUENCY	One mark for every two correct
	1 ≤ t < 3	3	3	cumulative
	$3 \le t < 5$	6	9	frequency values
	5 ≤ t < 7	7	16	
	7 ≤ t < 9	8	24	(0)
	9 ≤ t < 11	5	29	(3)
	11 ≤ t <13	1	30	
	Note: Only cumulative	frequency column – f	ùll marks	
4.2	Cumulative Freque	ency Graph of time taken	to answer	
4.3	35 30 30 25 20 15 10 5 0 0 3	6 9 Time (in minutes)	12 15	✓ upper limit ✓ cumulative frequency (at least 4 of 6 y- values correctly plotted) ✓ grounding at (1;0) ✓ shape (not joined by a ruler; smooth curve) (4)
	approximately 5 learners Approximate percentage	(Accept 6)		✓ 16,67% (2) [9]
	Note: If using 9 learners and application of the state of			[2]

$$5.1 m_{PQ} \times m_{QR} = -1$$

$$\left(\frac{a-0}{4+4}\right)\left(\frac{a-0}{4-6}\right) = -1$$

$$\left(\frac{a}{8}\right)\left(\frac{a}{-2}\right) = -1$$

$$\frac{a^2}{-16} = -1$$

$$a^2 = 16$$

$$a = \pm 4$$

a = 4; since a > 0

OR

$$PQ^{2} + QR^{2} = PR^{2}$$

 $(8^{2} + a^{2}) + (a^{2} + 2^{2}) = 10^{2}$

$$\therefore 2a^2 = 32$$

$$\therefore \quad \alpha^2 = 16$$

$$\therefore a = 4$$

OR

Let A be the midpoint of diagonal PR.

Then
$$A(\frac{-4+6}{2}; \frac{0+0}{2}) = A(1; 0)$$
.

AQ = AR (diagonals equal and bisect each other) $AQ^2 = AR^2$

$$AO^2 = AR^2$$

$$(1-4)^2 + (0-a)^2 = 5^2$$

$$9 + a^2 = 25$$

$$a^2 = 16$$

$$a = 4$$

Note:

If candidate uses a = 4 at the beginning, then zero marks.

$$\checkmark \frac{a-0}{4+4}$$
 or $\frac{a}{8}$

$$\sqrt{\frac{a-0}{4-6}}$$
 or $\frac{a}{-2}$

√ using gradient of perpendicular lines

$$\checkmark a^2 = 16$$

(4)

(4)

√using Pythagoras $\sqrt{(8^2 + a^2)}$ $(a^2 + 2^2)$ $\sqrt{10^2}$

$$\sqrt{10^2}$$

$$\sqrt{a^2} = 16$$

 \checkmark (1; 0) is centre

$$\checkmark$$
 AQ = AR

$$\sqrt{3^2 + a^2} = 5^2$$

$$\checkmark a^2 = 16$$

(4)

NSC

		NBC	
5.2	Equation of line SR:		
	$m_{PQ} = \frac{4-0}{4-(-4)} = \frac{1}{2}$		$ \sqrt{m_{PQ}} = \frac{1}{2} $
	$m_{SR} = m_{PQ} = \frac{1}{2}$	PQ SR	
	$y - y_1 = m(x - x_1)$		
	$y - y_1 = m(x - x_1)$ $y - 0 = \frac{1}{2}(x - 6)$		✓ substitution of m and (6; 0)
	$y = \frac{1}{2}x - 3$		standard form (4)
		OR	

$m_{PQ} = \frac{1}{2}$ $m_{PQ} = m_{SR} = \frac{1}{2}$ $PQ \mid SR $ $v = \frac{1}{2}x + C$	$\checkmark m_{PQ} = \frac{1}{2}$ $\checkmark m_{SR} = \frac{1}{2}$
$0 = \left(\frac{1}{2}\right)\left(\frac{6}{1}\right) + c$ $-3 = c$	✓ substitution of m and (6; 0) ✓ standard form
OR	
$m_{RS} = \frac{0+4}{6+2} = \frac{1}{2}$	$\checkmark S(-2;-4)$ $\checkmark m_{SR} = \frac{1}{2}$
$\therefore y = \frac{1}{2}x - 3$	✓ substitution of m and (-2; -4) ✓ standard form (4)
Eq. of RS: $y = \frac{1}{2}x - 3$ Eq. of SP: $y - 0 = -2(x + 4)$ $\therefore \frac{1}{2}x - 3 = -2(x + 4)$ Answer only: FULL MARKS	$\sqrt{m} = -2$ $\sqrt{\text{eq. of SP}}$ $\sqrt{\text{value of } x}$
$\therefore x = -2$ $y = -4$ OR	✓ value of y (4)
	$m_{PQ} = m_{SR} = \frac{1}{2} \qquad PQ \mid\mid SR$ $y = \frac{1}{2}x + c$ $0 = \left(\frac{1}{2}\right)\left(\frac{6}{1}\right) + c$ $-3 = c$ $y = \frac{1}{2}x - 3$ OR $S(-2; -4) \text{(translation)}$ $m_{RS} = \frac{0+4}{6+2} = \frac{1}{2}$ $\therefore y + 4 = \frac{1}{2}(x+2)$ $\therefore y = \frac{1}{2}x - 3$ Eq. of RS: $y = \frac{1}{2}x - 3$ Eq. of SP: $y - 0 = -2(x+4)$ $\therefore \frac{1}{2}x - 3 = -2(x+4)$ $\therefore x = -2$ $y = -4$ Answer only: FULL MARKS

NSC

Midpoint PR =
$$M\left(\frac{-4+6}{2}; \frac{0+0}{2}\right) = (1; 0)$$

Let S(x; y). Then since M(1; 0) is this, the midpoint of QS is:

$$\frac{x_1 + x_2}{2} = 1$$

$$\therefore \frac{x+4}{2} = 1$$

$$x+4=2$$

$$x = -2$$

$$y_1 + y_2 = 0$$

$$\frac{y+4}{2} = 0$$

$$y+4=0$$

$$y=-4$$

 $(\cdot, 4)$ to R(6, 0) also sends P(-4, 0) t

The translation that sends Q(4; 4) to R(6; 0) also sends P(-4; 0) to S. (6:0) = (4+2:4-4)

OR

(6; 0) =
$$(4 + 2; 4 - 4)$$

 \therefore S = $(-4 + 2; 0 - 4) = (-2; -4)$

OR

The translation that sends Q(4 ; 4) to P(-4 ; 0) also sends R(6 ; 0) to S.

$$(-4; 0) = (4 - 8; 4 - 4)$$

 $\therefore S = (6 - 8; 0 - 4) = (-2; -4)$

OR

$$m_{PQ} = m_{SR}$$

$$\frac{1}{2} = \frac{y}{x - 6}$$

$$2y = x - 6 \qquad (1)$$

 $m_{\scriptscriptstyle PS} = m_{\scriptscriptstyle SR}$

$$\frac{y}{x+4} = \frac{4}{-2}$$
$$-2y = 4x + 16 \quad (2)$$

(1) + (2) : 0 = 5x + 10

$$x = -2$$

PR = 6 - (-4)

=10

5 4

Substitute : 2y = -2 - 6 = -8

$$y = -4$$

OR

Answer only: FULL MARKS

 $PR^2 = (6+4)^2 + (0-0)^2$

$$PR = 10$$

 $\sqrt{\frac{x+4}{2}} = 1$

$$\sqrt{\frac{y+4}{2}} = 0$$

 \checkmark value of x

 \checkmark value of y

(4)

(4)

(4)

√ method

 $\sqrt{2}$ or x+2

 $\sqrt{-4}$ or y-4

√ answer

√ method

 $\sqrt{-8}$ or x-8

 $\sqrt{-4}$ or y-4

√ answer

✓ equations using the gradient

✓ adding the equations

✓ value of x ✓ value of y

(4)

√ 6-(-4) √ 10

(2)

✓ substitution in correct formula ✓ 10

5.5	midpoint PR= $(\frac{6+(-4)}{2}; \frac{0+0}{2}) = (1; 0)$	√ midpoint
	radius of circle = $\frac{1}{2}$ PR = 5 units Answer only: FULL MARKS	✓ radius
	$\therefore (x-1)^2 + (y-0)^2 = 5^2$ $(x-1)^2 + y^2 = 25$	✓ eq. of circle in correct form
5.6	$(x-1)^2 + y^2 = 25$	(3)
	substitute Q(4; 4): LHS = $(4-1)^2 + 4^2$ = 25	✓ substitute Q(4;4)
	= RHS	✓ LHS = RHS
	Q is a point on the circle Note:	(2)
	If substitute point into equation resulting in 25 = 25: 1 mark No conclusion: 1 mark	
	OR	
	Distance from centre (1; 0) to Q(4; 4)	
	∴ Q is a point on circle, r = 5 OR	
	PR is the diameter of circle PQR therefore Q lies on circle $(P\hat{Q}R = 90^{\circ})$	$ ✓ diameter ✓ P\hat{Q}R = 90^{\circ} (2)$
	OR	
	$(4-1)^2 + y^2 = 25$ $y^2 = 16$	$\sqrt{\text{substitute } x = 4}$
	$\therefore y = 4$ $\therefore Q \text{ is a point on the circle}$	
	OR	
	$(x-1)^2 + 4^2 = 25$	
	$(x-1)^2 = 9$ $x-1=3$	✓ substitute $y = 4$ ✓ conclusion (2)
	x = 4	
	∴ Q is a point on the circle	
5.7	P needs to shift at least 4 units to the right and S needs to shift at least 4 units up for the image of PQRS in first quadrant.	$\sqrt{k} = 4$ $\sqrt{l} = 4$
	.: minimum value of k is 4 and minimum value of l is 4 .: minimum value of $k + l$ is 8 Answer only: FULL MARKS	
	Note : No CA mark applies in 5.7 if k and l are not minimums.	

6.1	$x_C = x_B = -1$	\checkmark value of x
	$y_C = y_B + 5 = 6$	\checkmark value of y
	$\therefore C(-1;6)$	(2)
6.2	$BA \perp CA \text{ (tangent } \perp \text{ radius)}$	✓ BA⊥CA or
	\therefore CA ² = BC ² – AB ² (Pythagoras)	$\hat{BAC} = 90^{\circ}$
	$=(5)^2-(\sqrt{20})^2=5$	✓ substitution into
	$\therefore CA = \sqrt{5} \text{ or } 2,24 \text{ units}$	Pythagoras
	011	√ answer
		(3)
6.3	$\tan \theta = \frac{\sqrt{5}}{\sqrt{20}} = \frac{\sqrt{5}}{2\sqrt{5}} = \frac{1}{2}$	✓ tan ratio (in any
	$\frac{1}{\sqrt{20}} = \frac{1}{\sqrt{20}} = \frac{1}{2\sqrt{5}} = \frac{1}{2}$	form)
		(1)
6.4	$m_{DC} \times m_{AB} = -1$	$\checkmark m_{DC} \times m_{AB} = -1$
	m = top 0 = 1	$\sqrt{m_{DC}} = \tan \theta = \frac{1}{2}$
	$m_{DC} = \tan \theta = \frac{1}{2}$	$m_{DC} = \tan \theta = \frac{1}{2}$
	_ 1	
	$m_{DC} = \frac{1}{2}$	
	$m_{AB} = -2$	(2)

OR

OR

NSC-6.5 Eq. of DC: $y-6=\frac{1}{2}(x+1)$ $y = \frac{1}{2}x + \frac{13}{2}$ Eq. of AB: y - 1 = -2(x + 1)y = -2x - 1

$$y = -2x - 1$$

$$-2x - 1 = \frac{1}{2}x + \frac{13}{2}$$

$$-\frac{5}{2}x = \frac{15}{2}$$

$$x = -3$$

$$y = -2(-3) - 1$$

$$y = -2(-3) -$$

$$y = 5$$

$$\therefore A (-3; 5)$$

Eq. of DC: $y-6=\frac{1}{2}(x+1)$ $y = \frac{1}{2}x + \frac{13}{2}$ Eq. of AB: y - 1 = -2(x + 1)

$$y = -2x - 1$$
At A:

$$x - 2(-2x - 1) + 13 = 0$$

$$x + 4x + 2 + 13 = 0$$

$$5x = -15$$

$$x = -3$$
and
$$y = -2(-3) - 1 = 5$$

A(-3;5)

Answer only: (-3;5): 1 mark

DC: subst m and (-1; 6)√ eq. of DC

√ eq. of AB

√ equating equations

 \checkmark value of x \checkmark value of y

(6)

✓ DC: subst m and (-1; 6)√ eq. of DC

√subt m and (-1;1)√ eq. of AB

 \checkmark value of x \checkmark value of y

(6)

Eq. of DC: $y-6=\frac{1}{2}(x+1)$ $y = \frac{1}{2}x + \frac{13}{2}$ Eq. of circle: $(x+1)^2 + (y-1)^2 = 20$

 $(x+1)^2 + (\frac{1}{2}x + \frac{13}{2} - 1)^2 = 20$

 $(x + 1)^2 + (\frac{1}{2}x + \frac{11}{2})^2 = 20$

 $1\frac{1}{4}x^2 + \frac{15}{2}x + 11\frac{1}{4} = 0$

 $x^{2} + 6x + 9 = 0$ $(x+3)^{2} = 0$

 $\therefore x = -3$

 $y = \frac{1}{2}(-3) + \frac{13}{2} = 5$

 $\therefore A(-3;5)$

 \checkmark DC: subst mand (-1;6)✓ eq. of DC

√ substitution

 $\sqrt{x^2 + 6x + 9} = 0$

 \checkmark value of x

 \checkmark value of v

(6)

OR

NSC -

Draw AE \perp BC $\cos\theta = \frac{2\sqrt{5}}{5} = \frac{AE}{\sqrt{5}} = \frac{BE}{2\sqrt{5}}$ $\therefore AE = \frac{2 \times 5}{5} = 2$ $BE = \frac{4 \times 5}{5} = 4$ $x_A = -1 - AE = -1 - 2 = -3$ $\therefore y_A = 1 + BE = 4 + 1 = 5$

 $\therefore A(-3;5)$

OR

$$(x+1)^{2} + (y-1)^{2} = 20 (1)$$

$$y = -2x - 1 (2)$$

$$(x+1)^{2} + (-2x - 2)^{2} = 20$$

$$x^{2} + 2x + 1 + 4x^{2} + 8x + 4 - 20 = 0$$

$$5x^{2} + 10x - 15 = 0$$

$$(x+3)(x-1) = 0$$

$$x = -3 or x \neq 1$$
subst (1) in (2)
$$\therefore y = 5$$

√ subst m and (-1;1)√eq of AB √eq of circle

✓ substation

 \checkmark value of x

 \checkmark value of y(6)

OR

Equation AC: $y = \frac{1}{2}x + 6\frac{1}{2}$

$$\tan\theta = \frac{1}{2}$$

$$\theta = 26,57^{\circ}$$

$$AP = \sqrt{5}\cos 26,57^{\circ}$$

$$AP = 2$$

$$CP = \sqrt{5} \sin 26,57^{\circ}$$

$$CP = 1$$

$$\therefore x = -1 - 2 = -3$$

$$y = 6 - 1 = 5$$

$$A(-3;5)$$

$$\checkmark \theta = 26,57^{\circ}$$

$$AP = \sqrt{5}\cos 26,57^{\circ}$$

$$\checkmark AP = 2$$

$$\checkmark CP = 1$$

 \checkmark value of x

$$\checkmark$$
 value of y

(6)

(5)

6.6 Area $\triangle ABC = \frac{1}{2}(\sqrt{5})(\sqrt{20}) = 5$

Eqn. of DC is
$$y = \frac{1}{2}x + \frac{13}{2}$$

Therefore OF =
$$\frac{13}{2}$$
 and OD = 13.

Area
$$\triangle ODF = \frac{1}{2} \left(\frac{13}{2} \right) (13) = \frac{169}{4}$$

Area
$$\triangle ABC$$
: Area $\triangle ODF = 5 : \frac{169}{4} = 20 : 169$

OR

$$DF^2 = 13^2 + (\frac{13}{2})^2 = \frac{845}{4}$$

$$DF = \frac{13.\sqrt{5}}{2}$$

$$DF = \frac{13.\sqrt{5}}{2}$$

$$\frac{\Delta ABC}{\Delta ODF} = \frac{\frac{1}{2}(5)(\sqrt{20})\sin\theta}{\frac{1}{2}(13)(\frac{13.\sqrt{5}}{2})\sin\theta}$$
$$= \frac{20}{169}$$

$$\checkmark \frac{1}{2}(\sqrt{5})(\sqrt{20})$$

$$\checkmark OF = \frac{13}{2}$$

$$\checkmark$$
 OD = 13

$$\sqrt{\frac{1}{2}} \left(\frac{13}{2} \right) (13)$$

 $\sqrt{=13^2}$

$$+(\frac{13}{2})^2 = \frac{845}{4}$$

$$\checkmark DF = \frac{13.\sqrt{5}}{2}$$

$$\checkmark \frac{1}{2}(5)(\sqrt{20})\sin\theta$$

$$\sqrt{\frac{1}{2}(13)(\frac{13.\sqrt{5}}{2})\sin\theta}$$

 \checkmark answer (5)

OR	
\triangle ODF is an enlargement of \triangle ABC ∴ area \triangle ABC : area \triangle ODF = AB ² : OD ² = 20 : OD ²	✓ enlargement
1 12	$AB^2:OD^2 = 20:OD^2$
$x_D = -13$ OD = 13 \therefore area \triangle ABC : area \triangle ODF = AB ² : OD ² = 20 : 169	$\sqrt{-13}$ $\sqrt{\text{answer}}$ (5)
	[19]

QUESTION 7

7.1	$(x;y) \rightarrow (x+4;y) \rightarrow (-x-4;-y)$	$\sqrt{x}+4$
	OR	✓ y
	$(x;y) \rightarrow (-x-4;-y)$	$\sqrt{-x-4}$
		√ - <i>y</i>
		(4)
7.2	New centre = $(-2; -5)$	√ (-2; -5)
	$(x+2)^2 + (y+5)^2 = 16$	$\sqrt{(x+2)^2+(y+5)^2}$
	$x^2 + 4x + 4 + y^2 + 10y + 25 - 16 = 0$	V 16
		✓ simplification
	$x^2 + y^2 + 4x + 10y + 13 = 0$	(4)
		[8]

QUESTION 8

8.1	Rotation of 90° anticlockwise about the origin.	✓ rotation 90° ✓ anticlockwise (2)
	OR	
	Rotation of 270° clockwise about the origin.	✓ rotation 270°
		✓ clockwise (2)
	Note: if reflection of 90 anticlockwise: 0 marks	
8.2	D(5; -4)	√ 4
	D'(4;5)	√ 5
		(2)
8.3	G (-7; -6)	√ -7
		√ -6
		(2)
8.4	Area ABCD = $5 \times 2 = 10$ square units	✓ area ABCD = 10
		✓ area MNRP
	Area MNRP = $10 \times \left(\frac{3}{2}\right)^2 = \frac{45}{2}$	45
	(2) 2	$=\frac{45}{2}$
	A ADCD A ADDD	
	Area ABCD × Area MNRP	
	$= 10 \times \frac{9}{4} \times 10$	
	· ·	✓ 225
	$= 225 \text{ (units)}^4$	(3)
	2.7	
1	OR	1

Copyright reserved

Product =
$$\left(\frac{3}{2}\right)^2 \times (\text{area ABCD})^2$$

$$= \frac{9}{4} \times (5 \times 2)^2$$

$$= 225 \text{ (units)}^4$$
Note: CA will apply if $\left(\frac{3}{2}\right)^2$ used in calculation.

(3)
[9]

Widthernation 2	NSC -	DBE/November 2011
	NSC - OR $ \frac{\cos 100^{\circ} \times \tan^{2} 120^{\circ}}{\sin (-10^{\circ})} $ $ = \frac{(-\cos 80^{\circ})(-\tan 60^{\circ})^{2}}{(-\sin 10^{\circ})} $ $ = \frac{(-\sin 10^{\circ}) \times ((-\sqrt{3})^{2})}{(-\sin 10^{\circ})} $ $ = 3 $ OR	$ \begin{array}{c} \checkmark -\cos 80^{\circ} \\ \checkmark -\sin 10^{\circ} \\ \checkmark -\tan 60^{\circ} \\ \checkmark -\sqrt{3} \\ \checkmark \cos 80^{\circ} = \sin \\ 10^{\circ} \\ \checkmark 3 \end{array} $ (6)
	$\frac{\cos 100^{\circ}}{\sin(-10^{\circ})} \times \tan^{2} 120^{\circ}$ $= \frac{\cos(90^{\circ} + 10^{\circ})}{-\sin(10^{\circ})} \times \tan^{2} 60^{\circ}$ $= \frac{-\sin 10^{\circ}}{-\sin 10^{\circ}} \times (\sqrt{3})^{2}$ $= 3$	
	Q O R M(a; b)	<i>x</i>

9.3	9.3.1	$r = 5$ $\sin R\hat{O}P = \frac{3}{5} = 0.6$		√ 5 √ ratio	
		5	•		(2)
	9.3.2	RÔP =36,87°		✓ 36,869° ✓ 143,13°	
		$Q\hat{O}P = 180^{\circ} - 36,869^{\circ}$ $Q\hat{O}P = 143,13^{\circ}$	Answer only: Full Marks		(2)

	NSC	<u> </u>	
9.3.3	$x_m = x \cos \theta + y \sin \theta$ $a = 4 \cos 115^\circ + 3 \sin 115^\circ$ $a = 1,03$	Note: Penalise 1 mark for rounding incorrectly Note: If incorrect angle is used in the <i>x</i> - formula: 1 mark	formula very substitution of values values values values (3)
	Rotation of 115° clockwise $x_m = x \cos \theta - y \sin \theta$ $a = 4 \cos 245^\circ - 3 \sin 245^\circ$ $a = 1,03$	OR = 245° anticlockwise OR	✓ formula ✓ substitution of values ✓ $a = 1,03$ (3)
	$\tan P \hat{O}R = \frac{3}{4}$ $P \hat{O}R = 36,86^{\circ}$ $M \hat{O}R = 78,13^{\circ}$ $\cos M \hat{O}R = \frac{a}{5}$ $a = 5 \cos 78,13^{\circ}$ $a = 1,03$		$ √ 36,86^{\circ} $ $ √ \cos \text{ ratio} $ $ √ a = 1,03 $ (3)
			[18]

10.1	$f(225^\circ) = 2$ $\therefore a \tan 225^\circ = 2$ $\therefore a = 2$ g(0) = 4 $\therefore b \cos 0^\circ = 4$ $\therefore b = 4$ Answer only: Full marks	✓ substitution ✓ $a = 2$ ✓ substitution ✓ $b = 4$	
			(4)
10.2	Minimum value of $g(x) + 2 = -4 + 2 = -2$ Answer only: Full marks	√-4 √-2	(2)
10.3	Period = $\frac{180^{\circ}}{\frac{1}{2}}$ = 360° Answer only: Full marks	$\sqrt{\frac{180^{\circ}}{\frac{1}{2}}}$ $\sqrt{360^{\circ}}$	(2)

17

NoC -	
$\overline{ heta})$	
)	$\sqrt{2}\tan\theta = 4\cos\theta$
$2\tan (180^{\circ} - \theta) = -2\tan \theta$	$\checkmark 2 \tan (180^{\circ} - \theta)$
· · · · · · · · · · · · · · · · · · ·	$=-2\tan\theta$
$\cos \theta$ at P	$\checkmark 4\cos(180^{\circ} - \theta)$
$-4\cos\theta$	$= -4\cos\theta$
$-\theta) = 4\cos(180^{\circ} - \theta) \text{ at } Q$	$\sqrt{2} \tan (180^{\circ} - \theta)$
	$= 4\cos(180^{\circ} - \theta)$ (4)
OP	
OK	
9	
	✓ equation
	equation
,	
$a^2 \theta$)	
-2 = 0	
$\frac{1-4(2)(-2)}{4}$	
7	$\sqrt{\sin\theta} = 0.78077$
128,67°	√51,33°
inate of Q is 180° - $x_{\rm p}$	√ 128,67° (4)
. Р	[12]
	θ) $2\tan (180^{\circ} - \theta) = -2\tan \theta$ $4\cos(180^{\circ} - \theta) = -4\cos \theta$ $\cos \theta$ at P $(x - 4\cos \theta) = (180^{\circ} - \theta)$ at Q OR θ θ θ θ θ θ θ θ

11.2	$AC^2 = 5^2 + 5^2 - 2(5)(5)\cos 50^\circ$		✓ use of cosine
	$AC^2 = 17,86061952$		rule
			✓ substitution
	AC = 4,23 units	OR	√ answer
		OK	(3)
	$\hat{A} = \hat{C} = 65^{\circ}$ (angles opposing 65° sin 50°	site equal sides)	✓ use of sine
	$\frac{\sin 65^{\circ}}{5} = \frac{\sin 50^{\circ}}{AC}$		rule
			✓substitution
	$AC = \frac{5\sin 50^{\circ}}{\sin 65^{\circ}}$		√ answer
	= 4,23 units		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
		OR	
	$\frac{1}{2}(AC)$		√sketch/diagram
	$\sin 25^\circ = \frac{\frac{1}{2}(AC)}{5}$	В	1
			$\frac{1}{2}AC$
	$AC = 2(5) \sin 25^{\circ}$ = 4,23 units	25° 25°	$\sqrt{\sin 25^\circ} = \frac{\frac{1}{2}AC}{5}$
	= 4,25 ums	5	
			$\sqrt{\text{answer}}$ (3)
		$A \xrightarrow{65^{\circ}} 65^{\circ}$	
		OR	
	$\frac{1}{-}(AC)$		
	$\cos 65^\circ = \frac{\frac{1}{2}(AC)}{5}$		
	7		√sketch/diagram
	$AC = 2(5)\cos 65^{\circ}$		$\int_{C} \frac{1}{2} (AC)$
	AC = 4,23 units		$\checkmark \cos 65^\circ = \frac{2}{5}$
110			✓answer (3)
11.3	$\tan 25^\circ = \frac{CF}{AC}$		√ ratio
	$\therefore CF = 4,23 \times \tan 25^{\circ}$		✓ CF as subject
			√ answer
	$\therefore CF = 1,97 u \text{nits}$		(3)
		OR	
	$\frac{FC}{\sin 25^\circ} = \frac{4,23}{\sin 65^\circ}$		✓ sine rule
			✓ FC as subject
	$FC = \frac{4,23\sin 25^{\circ}}{\sin 65^{\circ}}$		√ answer
	= 1,97 units		(3)
	1		1

12.1	$\sin(360^{\circ} + 90^{\circ} + r - \alpha)$	
12.1	$LHS = \frac{\sin(360^{\circ} + 90^{\circ} + x - \alpha)}{\cos(\alpha - x)}$	✓ subtracting 360°
		$\sqrt{\cos(x-\alpha)}$
	$=\frac{\sin(90^\circ + x - \alpha)}{\cos(\alpha - x)}$	
	$=\frac{\cos(x-\alpha)}{\cos(\alpha-x)}$	((
		$\sqrt{\cos(\alpha-x)}$
	$=\frac{\cos(\alpha-x)}{\cos(\alpha-x)}$	(3)
	$\cos(\alpha - x)$	
	=1	
	OR	
	$\sin[90^{\circ} - (\alpha - r)]$	
	$LHS = \frac{\sin[90^{\circ} - (\alpha - x)]}{\cos(\alpha - x)}$	✓ subtracting 360°
		✓ writing as
	$=\frac{\cos(\alpha-x)}{\cos(\alpha-x)}$	90° - $(\alpha - x)$
	=1	$\sqrt{\cos(\alpha-x)}$
	= RHS	(3)
12.2	$\cos 2x = 1 - 3\cos x$	√
	$2\cos^2 x - 1 = 1 - 3\cos x$	$\cos 2x = 2\cos^2 x - 1$
	$2\cos^2 x + 3\cos x - 2 = 0$	✓ factorisation
	$(2\cos x - 1)(\cos x + 2) = 0$	$\sqrt{\cos x} = \frac{1}{2}$
	1	4
	$\cos x = \frac{1}{2} \qquad \text{or } \cos x = -2$ n/a	√ 60° √ 300°
		√ + k.360°
	$x = 60^{\circ} + \text{k.360}^{\circ}$; $k \in Z$ or $x = 300^{\circ} + \text{k.360}^{\circ}$; $k \in Z$	$\sqrt{k} \in Z$ (7)
	OR	
	$x = \pm 60^{\circ} + \text{k.360}^{\circ} \; ; \text{k} \in Z$	
12.3.1	LHS:	
	$\sin A \cos B - \cos A \sin B$	
	$\frac{1}{\sin B \cos B}$	✓ writing as single
	$=\frac{\sin(A-B)}{\sin(A-B)}$	fraction
	$\sin B \cos B$	✓ comp. angle expansion
	$RHS = \frac{2\sin(A - B)}{2\sin B\cos B}$	✓ comp. angle
1	$2\sin B\cos B$	expansion
	$=\frac{\sin(A-B)}{\sin(B-B)}$	✓ simplification
	$= \frac{\sin(A-B)}{\sin B \cos B}$ = LHS	

 $\frac{NSC -}{OR}$

LHS: $\frac{\sin A \cos B - \cos A \sin B}{\sin B \cos B}$ $= \frac{\sin(A - B)}{\sin B \cos B}$ $= \frac{2\sin(A - B)}{2\sin B \cos B}$ $= \frac{2\sin(A - B)}{\sin 2B}$ = RHS

✓ writing as single fraction ✓ comp. angle expansion ✓ mult. by 2 ✓ comp. angle expansion

(4)

OR

$$RHS = \frac{2\sin(A - B)}{\sin 2B}$$

$$= \frac{2(\sin A \cos B - \cos A \sin B)}{2\sin B \cos B}$$

$$= \frac{\sin A \cos B - \cos A \sin B}{\sin B \cos B}$$

$$= \frac{\sin A \cos B}{\sin B \cos B} - \frac{\cos A \sin B}{\sin B \cos B}$$

$$= \frac{\sin A}{\sin B} - \frac{\cos A}{\cos B}$$

$$= LHS$$

✓ expansion
✓ expansion
✓ divide by 2
✓ write as separate fractions

(4)

12.3.2(a)	12.3.2(a)	A = 5B	\(\(\tau_{\text{none}} \cdot \)
	12.3.2(a)		✓ recognising A = 5B
$ = \frac{4 \sin 2B}{\sin 2B} = \frac{4 \sin 2B \cos 2B}{\sin 2B} = 4 \cos 2B $ $ = \frac{4 \sin 5B}{\sin 2B} - \frac{\cos 5B}{\cos B} = 4 \cos 2B $ $ = \frac{\sin 5B}{\cos B} - \frac{\cos 5B}{\cos B} = \frac{\sin 5B \cos B}{\sin B \cos B} = \frac{\sin (5B - B)}{\sin B \cos B} = \frac{\sin 4B}{\frac{1}{2}(2) \sin B \cos B} = \frac{\sin 4B}{\frac{1}{2} \sin 2B} = 4 \cos 2B $ $ = \frac{2 \sin 2B \cos 2B}{\frac{1}{2} \sin 2B} = 4 \cos 2B $ $ = \frac{1}{\sin 18^{\circ}} - 0 = 4 \cos 36^{\circ} $ $ \therefore \frac{1}{\sin 18^{\circ}} = 4 \cos 36^{\circ} $ $ \therefore \frac{1}{\sin 18^{\circ}} = 4 \cos 36^{\circ} $ $ \therefore \frac{1}{\sin 18^{\circ}} = 4 (1 - 2 \sin^{2} 18^{\circ}) $ $ \therefore \frac{1}{a} = 4(1 - 2 a^{2}) $ $ \therefore 1 = 4a - 8a^{3} $ $ \therefore 8a^{3} - 4a + 1 = 0 $ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^{3} - 4x + 1 = 0$ $ (4) $			
			1
$\frac{\sin 5B}{\sin B} = \frac{4\cos 2B}{\sin 2B}$ $= 4\cos 2B$ OR $\frac{\sin 5B}{\sin B} = \frac{\cos 5B}{\cos B}$ $= \frac{\sin 5B \cos B - \cos 5B \sin B}{\sin B \cos B}$ $= \frac{\sin (5B - B)}{\sin B \cos B}$ $= \frac{\sin 4B}{2}(2) \sin B \cos B$ $= \frac{2\sin 2B \cos 2B}{\frac{1}{2} \sin 2B}$ $= 4\cos 2B$ $12.3.2(b) B = 18^{\circ}$ $\frac{\sin 90^{\circ}}{\sin 18^{\circ}} - \frac{\cos 90^{\circ}}{\cos 18^{\circ}} = 4\cos 2(18)^{\circ}$ $\frac{1}{\sin 18^{\circ}} - 0 = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^{\circ} 18^{\circ})$ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2a^{\circ})$ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2a^{\circ})$ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2a^{\circ})$ $\frac{1}{\sin 18^{\circ}} = 4\cos 8a^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2a^{\circ})$ $\frac{1}{\sin 18^{\circ}} = 4\cos 8a^{\circ}$ $\frac{1}{\sin 18^$		$\sin 2B$	1
		$4\sin 2B\cos 2B$	2011 25 000 25
OR $\frac{\sin 5B}{\sin B} - \frac{\cos 5B}{\cos B} = \frac{\sin 5B \cos B - \cos 5B \sin B}{\sin B \cos B} = \frac{\sin 5B \cos B}{\sin B \cos B} = \frac{\sin 4B}{\frac{1}{2}(2)\sin B \cos B} = \frac{\sin 4B}{\frac{1}{2}\sin 2B} = \frac{2\sin 2B \cos 2B}{\frac{1}{2}\sin 2B} = 4\cos 2B$ $12.3.2(b) B = 18^{\circ} \\ \frac{\sin 90^{\circ}}{\sin 18^{\circ}} - \frac{\cos 90^{\circ}}{\cos 18^{\circ}} = 4\cos 36^{\circ} \\ \frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $12.3.2(c) Let \sin 18^{\circ} = a \\ \frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^{2} 18^{\circ}) \\ \frac{1}{\sin 18^{\circ}} = 4(1 - 2a^{2}) \\ \frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ} $ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2a^{2}) \\ \frac{1}{\sin 18^{\circ}} = 3\cos 10\cos 10\cos 10\cos 10\cos 10\cos 10\cos 10\cos 10\cos 10\cos 10$		$-\frac{1}{\sin 2B}$	
OR $\frac{\sin 5B}{\sin B} - \frac{\cos 5B}{\cos B}$ $= \frac{\sin 5B - \cos 5B}{\sin B \cos B}$ $= \frac{\sin 5B - \cos 5B}{\sin B \cos B}$ $= \frac{\sin (5B - B)}{\sin B \cos B}$ $= \frac{1}{2}(2)\sin B \cos B$ $= \frac{2 \sin 2B \cos 2B}{\frac{1}{2} \sin 2B}$ $= 4 \cos 2B$ $= \frac{1}{2} \sin \frac{1}{2} \sin \frac{1}{2} \cos $		$=4\cos 2B$	
OR $\frac{\sin 5B}{\sin B} - \frac{\cos 5B}{\cos B}$ $= \frac{\sin 5B - \cos 5B}{\sin B \cos B}$ $= \frac{\sin 5B - \cos 5B}{\sin B \cos B}$ $= \frac{\sin (5B - B)}{\sin B \cos B}$ $= \frac{1}{2}(2)\sin B \cos B$ $= \frac{2 \sin 2B \cos 2B}{\frac{1}{2} \sin 2B}$ $= 4 \cos 2B$ $= \frac{1}{2} \sin \frac{1}{2} \sin \frac{1}{2} \cos $			(3)
$\frac{\sin B}{\sin B} - \frac{\cos B}{\cos B} = \frac{\sin 5B \cos B - \cos 5B \sin B}{\sin B \cos B} = \frac{\sin 5B \cos B}{\sin B \cos B} = \frac{\sin 5B - B}{\sin B \cos B} = \frac{\sin 4B}{\frac{1}{2}(2) \sin B \cos B} = \frac{1}{\frac{1}{2}(2) \sin B \cos B} = \frac{2 \sin 2B \cos 2B}{\frac{1}{2} \sin 2B} = 4 \cos 2B$ $= 4 \cos 2B$ $12.3.2(b) B = 18^{\circ} \\ \frac{\sin 90^{\circ}}{\sin 18^{\circ}} - \frac{\cos 90^{\circ}}{\cos 18^{\circ}} = 4 \cos 2(18)^{\circ} \\ \frac{1}{\sin 18^{\circ}} - 0 = 4 \cos 36^{\circ} \\ \frac{1}{\sin 18^{\circ}} = 4 \cos 36^{\circ}$ $12.3.2(c) Let \sin 18^{\circ} = a \\ \frac{1}{\sin 18^{\circ}} = 4 \cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^{2} 18^{\circ}) \\ \frac{1}{\sin 18^{\circ}} = 4(1 - 2a^{2}) \\ \frac{1}{\sin 18^{\circ}} = 4 \cos 36^{\circ} = 1 - 2\sin^{2} 18^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2a^{2}) \\ \frac{1}{\sin 18^{\circ}} = 4 \cos 36^{\circ} = 1 - 2\sin^{2} 18^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2a^{2}) \\ \frac{1}{\sin 18^{\circ}} = 4(1 - 2a^{2}) \\ \frac{1}{\cos 18^{\circ}} = 4(1 - 2a^$		OR	
$ = \frac{\sin 5B \cos B - \cos 5B \sin B}{\sin B \cos B} $ $ = \frac{\sin (5B - B)}{\sin B \cos B} $ $ = \frac{\sin 4B}{\frac{1}{2}(2) \sin B \cos B} $ $ = \frac{2 \sin 2B \cos 2B}{\frac{1}{2} \sin 2B} $ $ = 4 \cos 2B $ $ = \frac{1}{\sin 18^{\circ}} - \frac{\cos 90^{\circ}}{\cos 18^{\circ}} = 4 \cos 2(18)^{\circ} $ $ \therefore \frac{1}{\sin 18^{\circ}} - 0 = 4 \cos 36^{\circ} $ $ \therefore \frac{1}{\sin 18^{\circ}} = 4 \cos 36^{\circ} $ $ \frac{1}{\sin 18^{\circ}} = 4(1 - 2 \sin^{2} 18^{\circ}) $ $ \therefore \frac{1}{a} = 4(1 - 2a^{2}) $ $ \therefore 1 = 4a - 8a^{3} $ $ \therefore 8a^{3} - 4a + 1 = 0 $ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^{3} - 4x + 1 = 0$ $ \forall \text{ writing as single fraction} $ $ \forall \sin 4B $ $ = 2 \sin 2B \cos 2B $ $ \forall \text{ compound angle in denominator} $ $ \forall \text{ recognising B} = 18^{\circ} $ $ \forall \text{ substituting B} = 18^{\circ} $ $ \forall \text{ simplify} $ $ \forall \sin 18^{\circ} = a $ $ \forall \cos 36^{\circ} $ $ = 1 - 2 \sin^{2} 18^{\circ} $ $ \forall \text{ substitution of } a $ $ \forall \sin 18^{\circ} = a $ $ \forall \cos 36^{\circ} $ $ = 1 - 2 \sin^{2} 18^{\circ} $ $ \forall \text{ substitution of } a $		$\sin 5B \cos 5B$	
$ = \frac{\sin 5B \cos B - \cos 5B \sin B}{\sin B \cos B} $ $ = \frac{\sin (5B - B)}{\sin B \cos B} $ $ = \frac{\sin 4B}{\frac{1}{2}(2) \sin B \cos B} $ $ = \frac{2 \sin 2B \cos 2B}{\frac{1}{2} \sin 2B} $ $ = 4 \cos 2B $ $ = \frac{1}{\sin 18^{\circ}} - \frac{\cos 90^{\circ}}{\cos 18^{\circ}} = 4 \cos 2(18)^{\circ} $ $ \therefore \frac{1}{\sin 18^{\circ}} - 0 = 4 \cos 36^{\circ} $ $ \therefore \frac{1}{\sin 18^{\circ}} = 4 \cos 36^{\circ} $ $ \frac{1}{\sin 18^{\circ}} = 4(1 - 2 \sin^{2} 18^{\circ}) $ $ \therefore \frac{1}{a} = 4(1 - 2a^{2}) $ $ \therefore 1 = 4a - 8a^{3} $ $ \therefore 8a^{3} - 4a + 1 = 0 $ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^{3} - 4x + 1 = 0$ $ \forall \text{ writing as single fraction} $ $ \forall \sin 4B $ $ = 2 \sin 2B \cos 2B $ $ \forall \text{ compound angle in denominator} $ $ \forall \text{ recognising B} = 18^{\circ} $ $ \forall \text{ substituting B} = 18^{\circ} $ $ \forall \text{ simplify} $ $ \forall \sin 18^{\circ} = a $ $ \forall \cos 36^{\circ} $ $ = 1 - 2 \sin^{2} 18^{\circ} $ $ \forall \text{ substitution of } a $ $ \forall \sin 18^{\circ} = a $ $ \forall \cos 36^{\circ} $ $ = 1 - 2 \sin^{2} 18^{\circ} $ $ \forall \text{ substitution of } a $		$\frac{1}{\sin B} = \frac{1}{\cos B}$	
$= \frac{\sin(5B-B)}{\sin B \cos B}$ $= \frac{\sin 4B}{\frac{1}{2}(2)\sin B \cos B}$ $= \frac{2\sin 2B \cos 2B}{\frac{1}{2}\sin 2B}$ $= 4\cos 2B$ $= \frac{\sin 90^{\circ}}{\sin 18^{\circ}} - \frac{\cos 90^{\circ}}{\cos 18^{\circ}} = 4\cos 36^{\circ}$ $\therefore \frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4(1-2\sin^2 18^{\circ})$ $\therefore \frac{1}{\sin 18^{\circ}} = 4(1-2a^2)$ $\therefore 1 = 4a - 8a^3$ $\therefore 8a^3 - 4a + 1 = 0$ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^3 - 4x + 1 = 0$ $\forall \text{ writing as single fraction}$ $\forall \sin 4B$ $= 2\sin 2B \cos 2B$ $\forall \text{ compound angle in denominator}$ $\Rightarrow \text{ recognising}$ $B = 18^{\circ}$ $\forall \text{ substituting}$ $B = 18^{\circ}$ $\forall \text{ substituting}$ $B = 18^{\circ}$ $\forall \text{ simplify}$ $\Rightarrow \text{ simplify}$ $\Rightarrow \sin 18^{\circ} = a$ $\forall \cos 36^{\circ}$ $= 1 - 2\sin^2 18^{\circ}$ $\Rightarrow \text{ substitution of } a$ $\Rightarrow \text{ simplification}$ (4)			
$\frac{1}{\sin B \cos B} = \frac{\sin AB}{\frac{1}{2}(2) \sin B \cos B} = \frac{2 \sin 2B \cos 2B}{\frac{1}{2} \sin 2B} = \frac{2 \sin 2B \cos 2B}{\frac{1}{2} \sin 2B} = 4 \cos 2B$ $\frac{12.3.2(b)}{\sin 18^{\circ}} = \frac{1}{\cos 18^{\circ}} = 4 \cos 2(18)^{\circ}$ $\frac{1}{\sin 18^{\circ}} = -0 = 4 \cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4 \cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4 \cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4 (1 - 2 \sin^{2} 18^{\circ})$ $\frac{1}{\sin 18^{\circ}} = 4 (1 - 2a^{\circ})$ $\frac{1}{\cos 18^{\circ}} = 4a \cos 3a^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4 (1 - 2a^{\circ})$ $\frac{1}{\sin 18^{\circ}} = 4a \cos 3a^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4a \cos$			
			fraction
$= \frac{\frac{1}{2}(2)\sin B \cos B}{\frac{1}{2}\sin 2B}$ $= \frac{2\sin 2B \cos 2B}{\frac{1}{2}\sin 2B}$ $= 4\cos 2B$ $= \frac{\sin 90^{\circ}}{\sin 18^{\circ}} - \frac{\cos 90^{\circ}}{\cos 18^{\circ}} = 4\cos 2(18)^{\circ}$ $\therefore \frac{1}{\sin 18^{\circ}} = 0 = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4(1-2\sin^{2}18^{\circ})$ $\therefore \frac{1}{a} = 4(1-2a^{2})$ $\therefore 1 = 4a - 8a^{3}$ $\therefore 8a^{3} - 4a + 1 = 0$ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^{3} - 4x + 1 = 0$ $= 2\sin 2B \cos 2B$ $\Rightarrow \cot 2B$		$=\frac{\sin 4B}{\cos \theta}$	
$ = \frac{2 \sin 2B \cos 2B}{\frac{1}{2} \sin 2B} $ $= 4 \cos 2B $ $ = 4 \cos 2B $ $ (3) $ $ 12.3.2(b) B = 18^{\circ} $ $ \frac{\sin 90^{\circ}}{\sin 18^{\circ}} - \frac{\cos 90^{\circ}}{\cos 18^{\circ}} = 4 \cos 2(18)^{\circ} $ $ \therefore \frac{1}{\sin 18^{\circ}} - 0 = 4 \cos 36^{\circ} $ $ \therefore \frac{1}{\sin 18^{\circ}} = 4 \cos 36^{\circ} $ $ \frac{1}{\sin 18^{\circ}} = 4 \cos 36^{\circ} $ $ \frac{1}{\sin 18^{\circ}} = 4(1 - 2 \sin^{2} 18^{\circ}) $ $ \therefore \frac{1}{a} = 4(1 - 2a^{2}) $ $ \therefore 1 = 4a - 8a^{3} $ $ \therefore 8a^{3} - 4a + 1 = 0 $ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^{3} - 4x + 1 = 0 $ $ (4) $		$\frac{1}{2}(2)\sin B\cos B$	1
$\frac{1}{2} \sin 2B$ $= 4 \cos 2B$ 12.3.2(b) B = 18°			$= 2\sin 2B \cos 2B$
$\frac{1}{2} \sin 2B$ $= 4 \cos 2B$ 12.3.2(b) B = 18°		$2\sin 2B\cos 2B$	
		1	Vaamnaund angla
		$\frac{-\sin 2D}{2}$	
12.3.2(b) $B = 18^{\circ}$ $\frac{\sin 90^{\circ}}{\sin 18^{\circ}} - \frac{\cos 90^{\circ}}{\cos 18^{\circ}} = 4\cos 2(18)^{\circ}$ $\therefore \frac{1}{\sin 18^{\circ}} - 0 = 4\cos 36^{\circ}$ $\therefore \frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ 12.3.2(c) Let $\sin 18^{\circ} = a$ $\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^{2} 18^{\circ})$ $\therefore \frac{1}{a} = 4(1 - 2a^{2})$ $\therefore 1 = 4a - 8a^{3}$ $\therefore 8a^{3} - 4a + 1 = 0$ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^{3} - 4x + 1 = 0$ (4)		$=4\cos 2B$	in denominator
12.3.2(b) $B = 18^{\circ}$ $\frac{\sin 90^{\circ}}{\sin 18^{\circ}} - \frac{\cos 90^{\circ}}{\cos 18^{\circ}} = 4\cos 2(18)^{\circ}$ $\frac{1}{\sin 18^{\circ}} - 0 = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4(1-2\sin^2 18^{\circ})$ $\frac{1}{\sin 18^{\circ}} = 4(1-2a^2)$ $\frac{1}{\cos 18^{\circ}} = 4(1-2a^2)$ $\frac{1}$		1000 20	
12.3.2(b) $B = 18^{\circ}$ $\frac{\sin 90^{\circ}}{\sin 18^{\circ}} - \frac{\cos 90^{\circ}}{\cos 18^{\circ}} = 4\cos 2(18)^{\circ}$ $\frac{1}{\sin 18^{\circ}} - 0 = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4(1-2\sin^2 18^{\circ})$ $\frac{1}{\sin 18^{\circ}} = 4(1-2a^2)$ $\frac{1}{\cos 18^{\circ}} = 4(1-2a^2)$ $\frac{1}$			(3)
$\frac{\sin 90^{\circ}}{\sin 18^{\circ}} - \frac{\cos 90^{\circ}}{\cos 18^{\circ}} = 4\cos 2(18)^{\circ}$ $\frac{1}{\sin 18^{\circ}} - 0 = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^{2} 18^{\circ})$ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2a^{2})$ $\frac{1}{\cos 18^{\circ}} = 4(1 - 2a^{2})$ $$	12.3.2(b)	B = 18°	
$\frac{1}{\sin 18^{\circ}} - \frac{1}{\cos 18^{\circ}} = 4\cos 2(18)^{\circ}$ $\therefore \frac{1}{\sin 18^{\circ}} - 0 = 4\cos 36^{\circ}$ $\therefore \frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^{2} 18^{\circ})$ $\therefore \frac{1}{a} = 4(1 - 2a^{2})$ $\therefore 1 = 4a - 8a^{3}$ $\therefore 8a^{3} - 4a + 1 = 0$ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^{3} - 4x + 1 = 0$ (4)			
$ \frac{1}{\sin 18^{\circ}} - 0 = 4\cos 36^{\circ} $ $ \frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ} $ 12.3.2(c) Let $\sin 18^{\circ} = a$ $ \frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ} $ $ \frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^{2} 18^{\circ}) $ $ \frac{1}{\sin 18^{\circ}} = 4(1 - 2a^{2}) $ $ \therefore \frac{1}{a} = 4(1 - 2a^{2}) $ $ \therefore 1 = 4a - 8a^{3} $ $ \therefore 8a^{3} - 4a + 1 = 0 $ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^{3} - 4x + 1 = 0$ $ (4) $		$\frac{\sin 18^{\circ}}{\sin 18^{\circ}} - \frac{\cos 18^{\circ}}{\cos 18^{\circ}} = 4\cos 2(18)^{\circ}$	
$ \frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ} $ 12.3.2(c) Let $\sin 18^{\circ} = a$ $ \frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ} $ $ \frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^{2} 18^{\circ}) $ $ \frac{1}{\sin 18^{\circ}} = 4(1 - 2a^{2}) $ $ \therefore 1 = 4a - 8a^{3} $ $ \therefore 8a^{3} - 4a + 1 = 0 $ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^{3} - 4x + 1 = 0$ (4)		1	
$ \frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ} $ 12.3.2(c) Let $\sin 18^{\circ} = a$ $ \frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ} $ $ \frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^{2} 18^{\circ}) $ $ \frac{1}{\sin 18^{\circ}} = 4(1 - 2a^{2}) $ $ \therefore 1 = 4a - 8a^{3} $ $ \therefore 8a^{3} - 4a + 1 = 0 $ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^{3} - 4x + 1 = 0$ (4)		$\therefore \frac{1}{\sin 10^{\circ}} - 0 = 4\cos 36^{\circ}$	l .
12.3.2(c) Let $\sin 18^{\circ} = a$ $\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^{2} 18^{\circ})$ $\therefore \frac{1}{a} = 4(1 - 2a^{2})$ $\therefore 1 = 4a - 8a^{3}$ $\therefore 8a^{3} - 4a + 1 = 0$ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^{3} - 4x + 1 = 0$ (4)			•
12.3.2(c) Let $\sin 18^{\circ} = a$ $\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^{2} 18^{\circ})$ $\therefore \frac{1}{a} = 4(1 - 2a^{2})$ $\therefore 1 = 4a - 8a^{3}$ $\therefore 8a^{3} - 4a + 1 = 0$ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^{3} - 4x + 1 = 0$ (4)		$\therefore \frac{1}{1} = 4\cos 36^{\circ}$	
12.3.2(c) Let $\sin 18^\circ = a$ $\frac{1}{\sin 18^\circ} = 4\cos 36^\circ$ $\frac{1}{\sin 18^\circ} = 4(1 - 2\sin^2 18^\circ)$ $\therefore \frac{1}{a} = 4(1 - 2a^2)$ $\therefore 1 = 4a - 8a^3$ $\therefore 8a^3 - 4a + 1 = 0$ Hence $\sin 18^\circ$ is a solution of $\therefore 8x^3 - 4x + 1 = 0$ (4)		sin 18°	(3)
$\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^{2} 18^{\circ})$ $\therefore \frac{1}{a} = 4(1 - 2a^{2})$ $\therefore 1 = 4a - 8a^{3}$ $\therefore 8a^{3} - 4a + 1 = 0$ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^{3} - 4x + 1 = 0$ (4)			
$\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^{2} 18^{\circ})$ $\therefore \frac{1}{a} = 4(1 - 2a^{2})$ $\therefore 1 = 4a - 8a^{3}$ $\therefore 8a^{3} - 4a + 1 = 0$ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^{3} - 4x + 1 = 0$ (4)	12.3.2(c)	Let $\sin 18^\circ = a$	
$\frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^{2} 18^{\circ})$ $\therefore \frac{1}{a} = 4(1 - 2a^{2})$ $\therefore 1 = 4a - 8a^{3}$ $\therefore 8a^{3} - 4a + 1 = 0$ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^{3} - 4x + 1 = 0$ (4)		$\frac{1}{1} = 4\cos 36^{\circ}$	1
$\frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^{2} 18^{\circ})$ $\therefore \frac{1}{a} = 4(1 - 2a^{2})$ $\therefore 1 = 4a - 8a^{3}$ $\therefore 8a^{3} - 4a + 1 = 0$ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^{3} - 4x + 1 = 0$ (4)		sin 18°	
$\therefore \frac{1}{a} = 4(1 - 2a^2)$ $\therefore 1 = 4a - 8a^3$ $\therefore 8a^3 - 4a + 1 = 0$ Hence $\sin 18^\circ$ is a solution of $\therefore 8x^3 - 4x + 1 = 0$ (4)		$\frac{1}{1}$ - 4(1 2 sin 2 18°)	
$\therefore \frac{1}{a} = 4(1 - 2a^2)$ $\therefore 1 = 4a - 8a^3$ $\therefore 8a^3 - 4a + 1 = 0$ Hence $\sin 18^\circ$ is a solution of $\therefore 8x^3 - 4x + 1 = 0$ (4)		$\frac{1}{\sin 18^\circ} = 4(1-2\sin 18^\circ)$	1
$\therefore 1 = 4a - 8a^3$ $\therefore 8a^3 - 4a + 1 = 0$ Hence $\sin 18^\circ$ is a solution of $\therefore 8x^3 - 4x + 1 = 0$ (4)			✓ simplification
$\therefore 1 = 4a - 8a^3$ $\therefore 8a^3 - 4a + 1 = 0$ Hence $\sin 18^\circ$ is a solution of $\therefore 8x^3 - 4x + 1 = 0$ (4)		$\therefore -=4(1-2a^{2})$	
$\therefore 8a^3 - 4a + 1 = 0$ Hence $\sin 18^\circ$ is a solution of $\therefore 8x^3 - 4x + 1 = 0$ (4)		1	
Hence $\sin 18^\circ$ is a solution of $\therefore 8x^3 - 4x + 1 = 0$			
			(4)
OR		1101100 Shift 0 18 & Solution of 8x - 4x + 1 - 0	
		OR	
			1

		
	NSC -	
$\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$		
sin 18°		
$\frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^2 18^{\circ})$		
sin 18°		
1		

 $\frac{1}{\sin 18^\circ} = 4 - 8\sin^2 18^\circ$

 $8(\sin 18^\circ)^3 - 4(\sin 18) + 1 = 0$

Hence $\sin 18^\circ$ is a solution of $\therefore 8x^3 - 4x + 1 = 0$

√ cos 36°

 $= 1 - 2\sin^2 18^\circ$

✓ simplification

✓ equation i.t.o

sin 18°

✓ replacing $\sin 18^\circ = x$

(4) [24]

Note: substituting $x = \sin 18^{\circ}$ into $8x^{3} - 4x + 1$ using a calculator showing equal to 0: 0 marks

TOTAL: 150