SWAT

Generated by Doxygen 1.8.16

1 SWAT	1
2 Modules Index	7
2.1 Modules List	7
3 Data Type Index	9
3.1 Data Types List	9
4 File Index	11
4.1 File List	11
5 Module Documentation	13
5.1 parm Module Reference	13
5.1.1 Detailed Description	63
5.1.2 Variable Documentation	
5.1.2.1 igropt	64
6 Data Type Documentation	65
6.1 parm::ascrv Interface Reference	65
6.2 parm::atri Interface Reference	
6.3 parm::aunif Interface Reference	
6.4 parm::dstn1 Interface Reference	
6.5 parm::ee Interface Reference	
6.6 parm::expo Interface Reference	
6.7 parm::fcgd Interface Reference	
6.8 parm::HQDAV Interface Reference	67
6.9 parm::layersplit Interface Reference	67
6.10 parm::ndenit Interface Reference	67
6.11 parm::qman Interface Reference	67
6.12 parm::regres Interface Reference	68
6.13 parm::rsedaa Interface Reference	68
6.14 parm::tair Interface Reference	68
6.15 parm::theta Interface Reference	68
6.16 parm::vbl Interface Reference	68
7 File Documentation	69
7.1 allocate_parms.f90 File Reference	69
7.1.1 Detailed Description	69
7.2 ascrv.f90 File Reference	69
7.2.1 Detailed Description	69
7.3 aunif.f90 File Reference	
7.3.1 Detailed Description	70
7.4 caps.f90 File Reference	70
7.4.1 Detailed Description	71

Index	77
Bibliography	75
7.12.1 Detailed Description	74
7.12 simulate.f90 File Reference	74
7.11.1 Detailed Description	74
7.11 readwwq.f90 File Reference	73
7.10.1 Detailed Description	73
7.10 readfile.f90 File Reference	73
7.9.1 Detailed Description	73
7.9 readfcst.f90 File Reference	73
7.8.1 Detailed Description	73
7.8 readbsn.f90 File Reference	72
7.7.2.1 main()	72
7.7.2 Function/Subroutine Documentation	72
7.7.1 Detailed Description	72
7.7 main.f90 File Reference	72
7.6.1 Detailed Description	72
7.6 getallo.f90 File Reference	71
7.5.1 Detailed Description	71
7.5 gcycl.f90 File Reference	71

Chapter 1

SWAT

An updated SWAT 2012 revision 670 code

Objectives

- Standard indentation and translation to Fortran 90 by using findent. See the translate-fortran90.pl perl script file (:heavy_check_mark:)
- Exhaustive use of the "implicit none" directive to detect bad variable usage (:heavy_check_mark:)
- Generate a GNU Make makefile and compile with GNU GFortran. See the gernerate-makefile.pl perl script file (:heavy_check_mark:)
- Remove non-used variables and format labels (:heavy_check_mark:)
- Detect and solve all uninitialized variables (:heavy_check_mark: :construction:, some proposed solutions could be incorrect)
- Remove unneeded variable initializations (:heavy check mark:) as:

```
j=0 ! this line is not necessary j=ihru
```

- · Remove redundant code (:heavy_check_mark:)
- Exhaustive use of the "parameter" directive on constants (:heavy_check_mark:)
- Generate a detailed list of issues detected in the original code (:heavy_check_mark:, see at the end of this README)
- Remove obsolete commented code (:x:)
- Update variable descriptions in comments (:construction:, a lot of work)
- Standardize comments by using Doxygen style in order to generate documentation. See at latex/refman.pdf (:construction:, a lot of work)

2 SWAT

Required tools

- GFortran (to compile the source code)
- · Make (to build the executable file)
- Perl (optional: to execute the perl scripts to update the makefile or to translate original files to Fortran 90)
- Findent (optional: to translate original files to Fortran 90 with a standard indentation)
- Doxygen (optional: to generate a reference programming manual from source code)
- Tex Live or MikTex (optional: to generate a reference programming manual from source code)
- On Microsoft Windows systems you have to install MSYS2 and the required utilities (GFortran and Make). You can follow detailed instructions in install-unix

Instructions to generate Fortran 90 style code from original code

In order to generate Fortran 90 style code with standard indentation from original code you have to type on a UNIX type terminal (you need Perl and Findent):

\$ perl translate-fortran90.pl

Instructions to generate an initial GNU make Makefile

Type on the UNIX type terminal, when translated the original code to Fortran 90 style (you need Perl):

\$ perl generate-makefile.pl

Instructions to generate an executable to test

Type on the UNIX type terminal (you need GFortran and Make)

· In UNIX type operative systems:

\$ make

• In a MSYS2 terminal in Microsoft Windows:

\$ EXE=".exe" LDFLAGS="-static" make

• Cross-compiling a 32 bits Microsoft Windows executable in a UNIX type operative system:

\$ prefix="i686-w64-mingw32-" EXE=".exe" LDFLAGS="-static" make

· Cross-compiling a 64 bits Microsoft Windows executable in a UNIX type operative system:

\$ prefix="x86_64-w64-mingw32-" EXE=".exe" LDFLAGS="-static" make

Instructions to generate an optimized executable file

Type on the UNIX type terminal (you need GFortran and Make)

· In UNIX type operative systems:

```
$ CFLAGS="-march=native -flto" LDFLAGS="-flto" make strip
```

In a MSYS2 terminal in Microsoft Windows:

```
$ EXE=".exe" CFLAGS="-flto" LDFLAGS="-flto -static" make strip
```

· Cross-compiling a 32 bits Microsoft Windows executable in a UNIX type operative system:

```
$ prefix="i686-w64-mingw32-" EXE=".exe" CFLAGS="-flto" LDFLAGS="-flto -static" make strip
```

Cross-compiling a 64 bits Microsoft Windows executable in a UNIX type operative system:

```
$ prefix="x86\ 64-w64-mingw32-" EXE=".exe" CFLAGS="-flto" LDFLAGS="-flto -static" make strip
```

Instructions to generate a reference programming manual from source code

Type on the UNIX type terminal (you need Doxygen and TeX Live or MiKTeX):

- \$ doxygen
- \$ cd latex
- \$ make

The reference programming manual file latex/refman.pdf is generated from source code in PDF format

Issues in the original source code

This is a list of possible issues detected in the original source code. These issues have been mostly detected by the GFortran compiler warnings. Some of them could not arise because the logic of the variables is not possible.

- · In biofilm.f:
 - "dcoef" is used but not initialized. dcoef=3 as in watqual.f? Then, I propose at beginning: real*8, parameter :: dcoef = 3.
- · In bmp_ri_pond.f:
 - "qseep" and "qet" could be used not initialized at lines 133 and 134. However the problem only arises for nstep<1
- In bmp_sand_filter.f:
 - "sed\ removed" at line 342 could be used not initialized if sfsedstdev<=0
- In bpm_sed_pond.f:
 - bmp_sed _pond seems to be bmp_sed_pond at line 186

4 SWAT

- In bmp_wet_pond.f:
 - "hvol" could be used not initialized in "ext\ dpth" subroutine at line 267 in first bucle iteration
- · In clicon.f:
 - "tmxbsb", "tmnbsb", "rbsb", "rstpbsb", "rhdbsb", "rabsb", "rmxbsb", "daylbsb", "fradbsb" and "u10bsb" could be used not initialized at 186-207 lines
- · In conapply.f:
 - "k" and "kk" could be used not initialized at 121-122 lines if iday_pest(j) /=ipst_freq(j) and curyr>nyskip
- · In confert.f:
 - "ifrt" seems to be "it" at line 214
- · In curno.f:
 - "smxold" could be used not initialized if cn1 (h) <=1.e-6 and curyr/=0 at line 96
- · In drains.f:
 - "nlayer" could be used not initialized at line 23. However, the problem only arises if it is not set in the previous bucle (mlyr <= 1 or $sol_z(j1, j) <= 0$)
- · In etact.f:
 - "sev" could be used not initialized at line 286 if dep>=esd and ly==2
- · In filter.f:
 - "remove21" seems to be "remove2" at line 316
- · In grass wway.f:
 - "sf_depth" and "sf_sed" could be used not initialized at lines 133 and 137 if $sf_area>0$ and $sf_\leftrightarrow area<=1.e-6$
- · In hhnoqual.f:
 - "algon" seems to be "algcon" at line 190
- · In hhwatqual.f
 - "orgnpin" seems to be "orgpin" at line 278
 - thour=1.0 at line 377 overwrites previous "thour" calculation. It is wrong
- · In hmeas.f:
 - "rhdbsb" could be used not initialized at line 84
- In killop.f:
 - "ff1" and "ff2" are used but not initialized at lines 167 and 267. They are set in harvkillop.f file (lines 257-258). They have to be included in modparm.f to share harvkillop.f values? or they have to be redefined as in harvkillop.f?
- In NCsed leach.f90:
 - "perc\ clyr" could be used not initialized at line 221 if sol nly (i) <2
- In nrain.f:
 - "no2pcp" seems to be "no3pcp" at line 72
- In pmeas.f:

- "rbsb" could be used not initialized at line 143
- "flag" could be used not initialized if 'a==' 'at line 210
- "rainsb" could be used not initialized, however only ifnstep<=0`
- In pminrl2.f:
 - at line 95 a comma is necessary between "base" and "vara"
 - "ssp" could be used not initialized at line 196 if $xx \le 1.e-6$
- · In pothole.f:
 - "solp_tileo" could be used not initialized at line 593 if $pot_vol(j) \le 1.e-6$ or $potvol_{\leftarrow} tile \le 1.e-6$
- · In potholehr.f:
 - "potflow" seems to be "potflwo" at line 447
- · In readatmodep.f:
 - momax=12*nbyr is defined at line 65 but not used. It has to be "mo_max"? but then, it overwrites the file read
- In readops.f:
 - year = 0. seems to be iyear = 0 at line 98
 - "mg13" seems to be "mgt13" at line 206
- In readpnd.f:
 - "vselsetlpnd" seems to be "velsetlpnd" at line 279
- · In readru.f:
 - "tck" is used but not initialized at line 79
- · In readsepticbz.f:
 - **–** at line 135 4. e-8 seems to be 4.e-8
- In rewind_init.f:
 - "orig_tnylda" is used but not initialized at line 174
- · In routels.f:
 - "dstor" is used but not initialized at line 134. It has to be calculated as in watbal.f? or as in the commented line 109?
 - "latgout" and "gwgout" could be used not initialized at lines 142-143
- In rtbact.f:
 - "netwtr" could be used not initialized at line 124, however only if nstep<1
- In rthpest.f:
 - thour=1.0 at line 183 overwrites previous "thour" calculation. It is wrong
 - "frsol" and "frsrb" could be used not initialized at lines 289-290 if hrtwtr(ii) > 0.001 and hrtwtr(ii) / (idt*60) <= 0.01
- In rtpest.f:
 - tday=1.0 at line 180 overwrites previous "tday" calculation. It is wrong
- In sched_mgt.f:
 - < = seems to be <= at 202 line

6 SWAT

- "husc" and "igrow" at lines 264-265 are used but not initialized. "husc" has to be phu_op (iop, ihru) has in readmgt.f? "igrow" has to be igro (ihru) has in readmgt.f?

- · In smeas.f:
 - "rabsb" could be used not initialized at line 86
- · In sweep.f:
 - "fr_curb" is used but not initialized at line 56. It has to be added to modparm.f to share result with sched_mgt.f? or it has to be mgt5op (nop (ihru), ihru) as in sched_mgt.f?
- · In tmeas.f:
 - "tmxbsb" and "tmnbsb" could be used not initialized at lines 109-110
- · In transfer.f:
 - "ratio", "xx" and "ratio1" could be used not initialized at lines 236, 239 and 241 if ihout==2
- · In wmeas.f:
 - "u10bsb" could be used not initialized at line 85
- In zero0.f:
 - "sol_sumn03" seems to be "sol_sumno3" at line 508
- In zero_urbn.f:
 - "stp_stagdis" seems to be "dtp_stagdis" at line 84
 - "subdr_kg" seems to be "subdr_km" at line 149
 - "spl_eros" is not defined at line 21, it could be "eros_spl"?

Chapter 2

Modules Index

2.1 Modules List

Here is a list of all documented modules with brief descriptions:	

parm

Main module contatining the global variables	 13

8 Modules Index

Chapter 3

Data Type Index

3.1 Data Types List

Here are the data types with brief descriptions:

parm::ascrv	65
parm::atri	65
parm::aunif	65
parm::dstn1	66
parm::ee	66
parm::expo	66
parm::fcgd	66
parm::HQDAV	67
parm::layersplit	67
parm::ndenit	67
parm::qman	67
parm::regres	68
parm::rsedaa	68
parm::tair	68
parm::theta	68
parm:v/bl	68

10 Data Type Index

Chapter 4

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

allocate_	_parms.t90	
	This subroutine allocates array sizes	69
ascrv.f90		
	This subroutine computes shape parameters x5 and x6 for the S curve equation	69
aunif.f90		
	This function generates random numbers ranging from 0.0 to 1.0	70
caps.f90		
	This subroutine reads the input and output names given in file.cio and converts all capital letters	
	to lowercase letters	70
gcycl.f90		
	This subroutine initializes the random number seeds. If the user desires a different set of random	
	numbers for each simulation run, the random number generator is used to reset the values of the	
	seeds	71
getallo.f9		
	This subroutine calculates the number of HRUs, subbasins, etc. in the simulation. These values	
	are used to allocate array sizes	71
main.f90		70
roodboo	This is the main program that reads input, calls the main simulation model, and writes output .	72
readbsn.		
	This subroutine reads data from the basin input file (.bsn). This file contains information related to processes modeled or defined at the watershed level	72
readfcst.	•	12
readicst.	This subroutine reads the HRU forecast weather generator parameters from the .cst file	73
readfile.f	· · · · · · · · · · · · · · · · · · ·	/ (
readille.i	This subroutine opens the main input and output files and reads watershed information from the	
	file.cio	73
readwwo		,
	This subroutine reads the watershed stream water quality input data (.wwq file) and initializes	
	the QUAL2E variables which apply to the entire watershed	73
simulate.	****	
- 3	This subroutine contains the loops governing the modeling of processes in the watershed	74

12 File Index

Chapter 5

Module Documentation

5.1 parm Module Reference

main module contatining the global variables

Data Types

- · interface ascrv
- · interface atri
- · interface aunif
- interface dstn1
- interface ee
- interface expo
- interface fcgd
- interface HQDAV
- · interface layersplit
- interface ndenit
- interface qman
- interface regres
- · interface rsedaa
- interface tair
- · interface theta
- interface vbl

Variables

- integer, parameter mvaro = 33

 max number of variables routed through the reach
- integer, parameter mhruo = 79

max number of variables in output.hru

- integer, parameter mrcho = 62
 - max number of variables in reach file
- integer, parameter msubo = 24
 - max number of variables in output.sub
- integer, parameter mstdo = 113

max number of variables summarized in output.std

- integer, parameter motot = 600
- · integer icalen
- real *8 prf bsn

Basinwide peak rate adjustment factor for sediment routing in the channel. Allows impact of peak flow rate on sediment routing and channel reshaping to be taken into account.

- real *8 co2 x2
- real *8 co2 x
- real *8, dimension(:), allocatable alph_e
- real *8, dimension(:), allocatable cdn

denitrification exponential rate coefficient

real *8, dimension(:), allocatable nperco

nitrate percolation coefficient (0-1)

0:concentration of nitrate in surface runoff is zero

1:percolate has same concentration of nitrate as surface runoff

real *8, dimension(:), allocatable surlag

Surface runoff lag time. This parameter is needed in subbasins where the time of concentration is greater than 1 day. SURLAG is used to create a "storage" for surface runoff to allow the runoff to take longer than 1 day to reach the subbasin outlet (days)

- real *8, dimension(:), allocatable co_p
- real *8, dimension(:), allocatable cmn

rate factor for humus mineralization on active organic N

real *8, dimension(:), allocatable phoskd

Phosphorus soil partitioning coefficient. Ratio of soluble phosphorus in surface layer to soluble phosphorus in runoff.

real *8, dimension(:), allocatable psp

Phosphorus availibility index. The fraction of fertilizer P remaining in labile pool after initial rapid phase of P sorption.

real *8, dimension(:), allocatable sdnco

denitrification threshold: fraction of field capacity triggering denitrification

real *8 r2adj bsn

basinwide retention parameter adjustment factor (greater than 1)

- real *8 yield
- real *8 burn_frlb
- real *8 pst_kg
- real *8 vieldgrn
- real *8 yieldbms
- real *8 yieldtbr
- real *8 yieldn
- real *8 yieldp
- real *8 hi bms
- real *8 hi_rsd
- real *8 yieldrsd
- real *8, dimension(:), allocatable I_k1
- real *8, dimension(:), allocatable I_k2
- real *8, dimension(:), allocatable I_lambda
- real *8, dimension(:), allocatable I beta
- real *8, dimension(:), allocatable I gama
- real *8, dimension(:), allocatable I_harea
- real *8, dimension(:), allocatable I_vleng
- real *8, dimension(:), allocatable I_vslope
- real *8, dimension(:), allocatable I_ktc
- real *8, dimension(:), allocatable biofilm_mumax
- real *8, dimension(:), allocatable biofilm_kinv
- real *8, dimension(:), allocatable biofilm klw
- real *8, dimension(:), allocatable biofilm_kla

- real *8, dimension(:), allocatable biofilm_cdet
- real *8, dimension(:), allocatable biofilm_bm
- real *8, dimension(:,:), allocatable hru_rufr
- real *8, dimension(:,:), allocatable daru_km
- real *8, dimension(:,:), allocatable ru_k
- real *8, dimension(:,:), allocatable ru_c
- real *8, dimension(:,:), allocatable ru_eiq
- real *8, dimension(:,:), allocatable ru_ovsl
- real *8, dimension(:,:), allocatable ru_a
- real *8, dimension(:,:), allocatable ru_ovs
- real *8, dimension(:,:), allocatable ru_ktc
- real *8, dimension(:), allocatable gwq_ru
- real *8, dimension(:), allocatable qdayout
- integer, dimension(:), allocatable ils2
- integer, dimension(:), allocatable ils2flag
- · integer iru
- · integer mru
- · integer irch
- · integer isub
- · integer idum
- integer mhyd_bsn
- · integer ipest
- · integer ils_nofig
- · integer mhru1
- integer, dimension(:), allocatable mhyd1
- · integer, dimension(:), allocatable irtun
- real *8 wshd_sepno3
- real *8 wshd sepnh3
- real *8 wshd_seporgn
- real *8 wshd_sepfon
- real *8 wshd_seporgp
- real *8 wshd_sepfop
- real *8 wshd_sepsolp
- real *8 wshd_sepbod
- real *8 wshd_sepmm
- integer, dimension(:), allocatable isep_hru
- real *8 fixco

nitrogen fixation coefficient

real *8 nfixmx

maximum daily n-fixation (kg/ha)

real *8 res_stlr_co

reservoir sediment settling coefficient

real *8 rsd_covco

residue cover factor for computing frac of cover

real *8 vcrit

critical velocity

- real *8 wshd sw
- real *8 wshd_snob
- real *8 wshd_pndfr
- real *8 wshd pndv
- real *8 wshd_pndsed
- real *8 percop

pesticide percolation coefficient (0-1)

0: concentration of pesticide in surface runoff is zero

1: percolate has same concentration of pesticide as surface runoff

- real *8 wshd_wetfr
- real *8 wshd_resfr
- real *8 wshd_resha
- real *8 wshd pndha
- real *8 wshd_fminp
- real *8 wshd_ftotn
- real *8 wshd_fnh3
- real *8 wshd_fno3
- real *8 wshd_forgn
- real *8 wshd_forgp
- real *8 wshd_ftotp
- real *8 wshd_yldn
- real *8 wshd_yldp
- real *8 wshd fixn
- real *8 wshd_pup
- real *8 wshd wstrs
- real *8 wshd_nstrs
- real *8 wshd_pstrs
- real *8 wshd_tstrs
- real *8 wshd_astrs
- real *8 ffcb

initial soil water content expressed as a fraction of field capacity

- real *8 wshd hmn
- real *8 wshd rwn
- real *8 wshd_hmp
- real *8 wshd_rmn
- real *8 wshd_dnit
- real *8 wdpq

die-off factor for persistent bacteria in soil solution (1/day)

- real *8 wshd rmp
- real *8 wshd_voln
- real *8 wshd nitn
- real *8 wshd_pas
- real *8 wshd_pal
- real *8 wof_p

wash off fraction for persistent bacteria on foliage during a rainfall event

- real *8 wshd_plch
- real *8 wshd_raino3
- real *8 ressedc
- · real *8 basno3f
- · real *8 basorgnf
- real *8 wshd_pinlet
- real *8 wshd_ptile
- real *8 sftmp

Snowfall temperature (deg C)

real *8 smfmn

Minimum melt rate for snow during year (Dec. 21) where deg C refers to the air temperature. (mm/deg C/day)

real *8 smfmx

Maximum melt rate for snow during year (June 21) where deg C refers to the air temperature. SMFMX and SM FMN allow the rate of snow melt to vary through the year. These parameters are accounting for the impact of soil temperature on snow melt. (mm/deg C/day)

real *8 smtmp

Snow melt base temperature. Mean air temperature at which snow melt will occur. (deg C)

real *8 wgpq

growth factor for persistent bacteria in soil solution (1/day)

- real *8 basminpf
- real *8 basorgpf
- real *8 wdlpq

die-off factor for less persistent bacteria in soil solution (1/day)

- real *8 wshd_resv
- real *8 wshd_ressed
- real *8 basno3i
- · real *8 basorgni
- real *8 basminpi
- real *8 wdps

die-off factor for persistent bacteria adsorbed to soil particles (1/day)

real *8 wglpq

growth factor for less persistent bacteria in soil solution (1/day)

- real *8 basorgpi
- · real *8 peakr
- real *8 pndsedin
- real *8 sw excess
- · real *8 albday
- real *8 timp

Snow pack temperature lag factor (0-1)

1 = no lag (snow pack temp=current day air temp) as the lag factor goes to zero, the snow pack's temperature will be less influenced by the current day's air temperature.

- real *8 wtabelo
- real *8 tilep
- real *8 wt_shall
- real *8 sq_rto
- real *8 tloss
- real *8 inflpcp
- real *8 snomlt
- real *8 snofall
- real *8 fixn
- · real *8 qtile
- real *8 crk
- real *8 latlyr
- real *8 pndloss
- real *8 wetloss
- real *8 potloss
- real *8 Ipndloss
- real *8 lwetloss
- real *8 sedrch
- real *8 fertn
- · real *8 sol rd
- real *8 cfertn
- real *8 cfertp
- real *8 sepday
- real *8 bioday
- real *8 sepcrk
- real *8 sepcrktot
- real *8 fertno3
- · real *8 fertnh3

- · real *8 fertorgn
- real *8 fertsolp
- real *8 fertorgp
- real *8 wgps

growth factor for persistent bacteria adsorbed to soil particles (1/day)

- real *8 fertp
- real *8 grazn
- real *8 grazp
- real *8 soxy
- real *8 qdfr
- real *8 sdti
- real *8 rtwtr
- real *8 ressa
- real *8 wdlps

die-off factor for less persistent bacteria absorbed to soil particles (1/day)

real *8 wglps

growth factor for less persistent bacteria adsorbed to soil particles (1/day)

- · real *8 rttime
- real *8 rchdep
- real *8 rtevp
- real *8 rttlc
- real *8 da_km
- real *8 resflwi
- real *8 wdprch

die-off factor for persistent bacteria in streams (1/day)

- real *8 resflwo
- real *8 respcp
- real *8 resev
- real *8 ressep
- real *8 ressedi
- real *8 ressedo
- real *8 dtot
- real *8 pperco_bsn

phosphorus percolation coefficient. Ratio of soluble phosphorus in surface to soluble phosphorus in percolate

• real *8 nperco_bsn

basin nitrate percolation coefficient (0-1)

0:concentration of nitrate in surface runoff is zero

1:percolate has same concentration of nitrate as surface runoff

real *8 rsdco

residue decomposition coefficient. The fraction of residue which will decompose in a day assuming optimal moisture, temperature, C:N ratio, and C:P ratio

- real *8 phoskd_bsn
- real *8 voltot
- real *8 msk x

weighting factor controling relative importance of inflow rate and outflow rate in determining storage on reach

- real *8 volcrmin
- real *8 bactkdq

bacteria soil partitioning coefficient. Ratio of solution bacteria in surface layer to solution bacteria in runoff soluble and sorbed phase in surface runoff.

real *8 wdpf

die-off factor for persistent bacteria on foliage (1/day)

- real *8 uno3d
- real *8 canev
- real *8 usle

- real *8 rcn
- real *8 surlag_bsn
- real *8 precipday
- real *8 thbact

temperature adjustment factor for bacteria die-off/growth

real *8 wlpq20

overall rate change for less persistent bacteria in soil solution (1/day)

real *8 wlps20

overall rate change for less persistent bacteria adsorbed to soil particles (1/day)

real *8 wpq20

overall rate change for persistent bacteria in soil solution (1/day)

real *8 wps20

overall rate change for persistent bacteria adsorbed to soil particles (1/day)

- real *8 bactrop
- real *8 bactsedp
- real *8 wgpf

growth factor for persistent bacteria on foliage (1/day)

- real *8 bactlchp
- real *8 bactlchlp
- real *8 enratio
- real *8 wetpcp
- real *8 pndpcp
- real *8 wetsep
- real *8 pndsep
- real *8 wetev
- real *8 pndev
- real *8 pndsedo
- real *8 wetsedo
- real *8 pndflwi
- real *8 wetflwi
- real *8 pndflwo
- real *8 wetflwo
- real *8 wetsedi
- real *8 da_ha
- real *8 vpd
- · real *8 evlai

leaf area index at which no evaporation occurs. This variable is used in ponded HRUs where evaporation from the water surface is restricted by the plant canopy cover. Evaporation from the water surface equals potential ET when LAI = 0 and decreased linearly to O when LAI = EVLAI

real *8 evrch

Reach evaporation adjustment factor. Evaporation from the reach is multiplied by EVRCH. This variable was created to limit the evaporation predicted in arid regions.

real *8 wdlpf

die-off factor for less persistent bacteria on foliage (1/day)

- real *8 bactrolp
- real *8 bactsedlp
- real *8 pet_day
- real *8 ep_day
- real *8 adj pkr

peak rate adjustment factor in the subbasin. Used in the MUSLE equation to account for impact of peak flow on erosion.

• real *8 n_updis

nitrogen uptake distribution parameter. This parameter controls the amount of nitrogen removed from the different soil layer layers by the plant. In particular, this parameter allows the amount of nitrogen removed from the surface layer via plant uptake to be controlled. While the relationship between UBN and N removed from the surface layer is affected by the depth of the soil profile, in general, as UBN increases the amount of N removed from the surface layer relative to the amount removed from the entire profile increases

real *8 nactfr

nitrogen active pool fraction. The fraction of organic nitrogen in the active pool.

real *8 p_updis

phosphorus uptake distribution parameter This parameter controls the amount of phosphorus removed from the different soil layers by the plant. In particular, this parameter allows the amount of phosphorus removed from the surface layer via plant uptake to be controlled. While the relationship between UBP and P uptake from the surface layer is affected by the depth of the soil profile, in general, as UBP increases the amount of P removed from the surface layer relative to the amount removed from the entire profile increases

- real *8 snoev
- real *8 sno3up
- real *8 reactw
- real *8 sdiegropq
- real *8 sdiegrolpq
- real *8 sdiegrops
- real *8 sdiegrolps
- real *8 es_day
- real *8 wof lp

wash off fraction for less persistent bacteria on foliage during a rainfall event

- real *8 sbactrop
- real *8 sbactrolp
- real *8 sbactsedp
- real *8 sbactsedlp
- real *8 ep_max
- real *8 sbactlchp
- real *8 sbactlchlp
- real *8 psp_bsn
- real *8 rchwtr
- real *8 resuspst
- real *8 setIpst
- real *8 bsprev
- real *8 bssprev
- real *8 spadyo
- real *8 spadyev
- real *8 spadysp
- real *8 spadyrfv
- real *8 spadyosp
- real *8 qday
- real *8 usle_ei
- real *8 al5
- real *8 pndsedc
- real *8 no3pcp
- real *8 rcharea
- real *8 volatpst
- real *8 ubw

water uptake distribution parameter. This parameter controls the amount of water removed from the different soil layers by the plant. In particular, this parameter allows the amount of water removed from the surface layer via plant uptake to be controlled. While the relationship between UBW and H2O removed from the surface layer is affected by the depth of the soil profile, in general, as UBW increases the amount of water removed from the surface layer relative to the amount removed from the entire profile increases

real *8 uobn

nitrogen uptake normalization parameter. This variable normalizes the nitrogen uptake so that the model can easily verify that upake from the different soil layers sums to 1.0

real *8 uobp

phosphorus uptake normalization parameter. This variable normalizes the phosphorus uptake so that the model can easily verify that uptake from the different soil layers sums to 1.0

real *8 uobw

water uptake normalization parameter. This variable normalizes the water uptake so that the model can easily verify that uptake from the different soil layers sums to 1.0

real *8 wglpf

growth factor for less persistent bacteria on foliage (1/day)

- real *8 wetsedc
- real *8 respesti
- real *8 rcor

correction coefficient for generated rainfall to ensure that the annual means for generated and observed values are comparable (needed only if IDIST=1)

real *8 rexp

value of exponent for mixed exponential rainfall distribution (needed only if IDIST=1)

real *8 snocov1

1st shape parameter for snow cover equation. This parameter is determined by solving the equation for 50% snow cover

real *8 snocov2

2nd shape parameter for snow cover equation. This parameter is determined by solving the equation for 95% snow cover

real *8 snocovmx

Minimum snow water content that corresponds to 100% snow cover. If the snow water content is less than SNOC← OVMX, then a certain percentage of the ground will be bare (mm H2O)

- real *8 lyrtile
- real *8 lyrtilex
- real *8 sno50cov

Fraction of SNOCOVMX that corresponds to 50% snow cover. SWAT assumes a nonlinear relationship between snow water and snow cover.

real *8 ai0

ratio of chlorophyll-a to algal biomass (ug chla/mg alg)

real *8 ai1

fraction of algal biomass that is nitrogen (mg N/mg alg)

real *8 ai2

fraction of algal biomass that is phosphorus (mg P/mg alg)

real *8 ai3

the rate of oxygen production per unit of algal photosynthesis (mg O2/mg alg)

real *8 ai4

the rate of oxygen uptake per unit of algae respiration (mg O2/mg alg)

real *8 ai5

the rate of oxygen uptake per unit of NH3 nitrogen oxidation (mg O2/mg N)

real *8 ai6

the rate of oxygen uptake per unit of NO2 nitrogen oxidation (mg O2/mg N)

real *8 rhoq

algal respiration rate (1/day or 1/hr)

real *8 tfact

fraction of solar radiation computed in the temperature heat balance that is photosynthetically active

real *8 k_l

half-saturation coefficient for light (MJ/(m2*hr))

real *8 k n

michaelis-menton half-saturation constant for nitrogen (mg N/L)

real *8 k_p

michaelis-menton half saturation constant for phosphorus (mg P/L)

real *8 lambda0

non-algal portion of the light extinction coefficient (1/m)

real *8 lambda1

linear algal self-shading coefficient (1/(m*ug chla/L))

· real *8 lambda2

nonlinear algal self-shading coefficient ((1/m)(ug chla/L)**(-2/3))

real *8 mumax

maximum specific algal growth rate (1/day or 1/hr)

real *8 p_n

algal preference factor for ammonia

- real *8 rnum1
- real *8 autop
- real *8 auton
- real *8 etday
- · real *8 hmntl
- real *8 rwntl
- real *8 hmptl
- real *8 rmn2tl
- real *8 rmptl
- real *8 wdntl
- real *8 cmn bsn
- real *8 rmp1tl
- real *8 roctl
- real *8 gwseep
- real *8 revapday
- real *8 reswtr
- real *8 wdlprch

die-off factor for less persistent bacteria in streams (1/day)

real *8 wdpres

die-off factor for persistent bacteria in reservoirs (1/day)

- real *8 bury
- real *8 difus
- real *8 reactb
- real *8 solpesto
- · real *8 petmeas
- real *8 wdlpres

die-off factor for less persistent bacteria in reservoirs (1/day)

- · real *8 sorpesto
- real *8 spcon_bsn
- real *8 spexp bsn
- · real *8 solpesti
- real *8 sorpesti
- real *8 msk co1

calibration coefficient to control impact of the storage time constant for the reach at bankfull depth (phi(10,:) upon the storage time constant for the reach used in the Muskingum flow method

real *8 msk_co2

calibration coefficient to control impact of the storage time constant for the reach at 0.1 bankfull depth (phi(13,:) upon the storage time constant for the reach used in the Muskingum flow method

- real *8 snoprev
- real *8 swprev
- real *8 shallstp

- · real *8 deepstp
- real *8 ressolpo
- · real *8 resorgno
- real *8 resorgpo
- real *8 resno3o
- real *8 reschlao
- real *8 resno2o
- real *8 resnh3o
- real *8 qdbank
- real *8 potpcpmm
- real *8 potevmm
- real *8 potsepmm
- real *8 potflwo
- · real *8 bactminlp

Threshold detection level for less persistent bacteria. When bacteria levels drop to this amount the model considers bacteria in the soil to be insignificant and sets the levels to zero (cfu/m^2 2)

real *8 bactminp

Threshold detection level for persistent bacteria. When bacteria levels drop to this amount the model considers bacteria in the soil to be insignificant and sets the levels to zero (cfu/m^2)

real *8 trnsrch

fraction of transmission losses from main channel that enter deep aquifer

real *8 wp20p_plt

overall rate change for persistent bacteria on foliage (1/day)

- real *8 potsedo
- real *8 pest_sol
- real *8 bact_swf

fraction of manure containing active colony forming units (cfu)

real *8 bactmx

bacteria percolation coefficient. Ratio of solution bacteria in surface layer to solution bacteria in percolate

· real *8 cncoef

plant ET curve number coefficient

real *8 wp20lp_plt

overall rate change for less persistent bacteria on foliage (1/day)

- real *8 cdn bsn
- real *8 sdnco_bsn
- · real *8 bactmin
- real *8 cn froz

drainge coefficient (mm day -1)

real *8 dorm_hr

time threshold used to define dormant (hours)

real *8 smxco

adjustment factor for max curve number s factor (0-1)

real *8 tb_adj

adjustment factor for subdaily unit hydrograph basetime

real *8 chla_subco

regional adjustment on sub chla_a loading (fraction)

real *8 depimp bsn

depth to impervious layer. Used to model perched water tables in all HRUs in watershed (mm)

real *8 ddrain_bsn

depth to the sub-surface drain (mm)

real *8 tdrain_bsn

time to drain soil to field capacity (hours)

```
real *8 gdrain_bsnreal *8 rch_sanreal *8 rch_sil
```

real *8 rch_cla

real *8 rch_sag

real *8 rch_lag

real *8 rch_gra

• real *8 hlife_ngw_bsn

Half-life of nitrogen in groundwater? (days)

real *8 ch opco bsn

• real *8 ch onco bsn

real *8 decr_min

Minimum daily residue decay.

real *8 rcn sub bsn

Concentration of nitrogen in the rainfall (mg/kg)

- real *8 bc1_bsn
- real *8 bc2_bsn
- real *8 bc3_bsn
- real *8 bc4 bsn
- real *8 anion_excl_bsn
- real *8, dimension(:), allocatable wat_tbl
- real *8, dimension(:), allocatable sol_swpwt
- real *8, dimension(:,:), allocatable vwt
- real *8 re bsn

Effective radius of drains (range 3.0 - 40.0) (mm)

• real *8 sdrain bsn

Distance bewtween two drain or tile tubes (range 7600.0 - 30000.0) (mm)

- real *8 sstmaxd_bsn
- real *8 drain_co_bsn

Drainage coeffcient (range 10.0 - 51.0) (mm-day-1)

• real *8 latksatf bsn

Multiplication factor to determine lateral ksat from SWAT ksat input value for HRU (range 0.01 - 4.0)

real *8 pc bsn

Pump capacity (def val = 1.042 mm h-1 or 25 mm day-1) (mm h-1)

- · integer i_subhw
- · integer imgt
- · integer idlast
- integer iwtr
- integer ifrttyp
- integer mo_atmo
- integer mo_atmo1
- integer ifirstatmo
- integer iyr_atmo
- integer iyr_atmo1
- · integer matmo
- integer mch

maximum number of channels

· integer mcr

maximum number of crops grown per year

integer mcrdb

max number of lu/lc defined in crop.dat

· integer mfcst

maximum number of forecast stations

· integer mfdb

max number of fertilizers in fert.dat

· integer mhru

maximum number of HRUs in watershed

· integer mhyd

maximum number of hydrograph nodes

· integer mpdb

max number of pesticides in pest.dat

integer mrg

max number of rainfall/temp gages

· integer mcut

maximum number of cuttings per year

integer mgr

maximum number of grazings per year

· integer mnr

max number of years of rotation

• integer myr

max number of years of simulation

integer isubwq

subbasin water quality code

0 do not calculate algae/CBOD 1 calculate algae/CBOD drainmod tile equations

- · integer ffcst
- integer isproj

special project code: 1 test rewind (run simulation twice)

integer nbyr

number of calendar years simulated

· integer irte

water routing method: 0 variable storage method 1 Muskingum method

- integer nhru
- · integer mo
- · integer immo
- · integer nrch
- integer nres
- integer i_mo
- integer wndsim

wind speed input code

1 measured data read for each subbasin

2 data simulated for each subbasin

- · integer icode
- · integer ihout
- · integer inum1
- · integer inum2
- integer inum3
- integer inum4
- · integer ihru
- · integer icfac

icfac = 0 for C-factor calculation using Cmin (as described in manual) = 1 for new C-factor calculation from RUSLE (no minimum needed)

- integer inum5
- integer inum6

- · integer inum7
- · integer inum8
- · integer mrech

maximum number of rechour files

· integer nrgage

number of raingage files

· integer nrgfil

number of rain gages per file

integer nrtot

total number of rain gages

· integer ntgage

number of temperature gage files

· integer ntgfil

number of temperature gages per file

· integer nttot

total number of temperature gages

· integer tmpsim

temperature input code

1 measured data read for each subbasin

2 data simulated for each subbasin

· integer icrk

crack flow code

1: compute flow in cracks

· integer irtpest

number of pesticide to be routed through the watershed

integer igropt

Qual2E option for calculating the local specific growth rate of algae

1: multiplicative.

• integer lao

Qual2E light averaging option. Qual2E defines four light averaging options. The only option currently available in SWAT is #2.

- integer npmx
- · integer curyr
- integer iihru
- integer itdrn

tile drainage equations flag/code

1 simulate tile flow using subroutine drains(wt_shall)

0 simulate tile flow using subroutine origtile(wt_shall,d)

• integer iwtdn

water table depth algorithms flag/code

1 simulate wt_shall using subroutine new water table depth routine

0 simulate wt_shall using subroutine original water table depth routine

integer ismax

maximum depressional storage selection flag/code

0 = static depressional storage

1 = dynamic storage based on tillage and cumulative rainfall

· integer iroutunit

not being implemented in this version drainmod tile equations

- integer ires_nut
- integer iclb

auto-calibration flag

integer mrecc

maximum number of reccnst files

integer mrecd

maximum number of recday files

· integer mrecm

maximum number of recmon files

integer mtil

max number of tillage types in till.dat

· integer mudb

maximum number of urban land types in urban.dat

· integer idist

rainfall distribution code 0 for skewed normal dist

1 for mixed exponential distribution

integer mrecy

maximum number of recyear files

· integer nyskip

number of years to not print output

· integer slrsim

solar radiation input code

1 measured data read for each subbasin

2 data simulated for each subbasin

· integer ideg

channel degredation code

1: compute channel degredation (downcutting and widening)

· integer ievent

rainfall/runoff code

0 daily rainfall/curve number technique 1 sub-daily rainfall/Green&Ampt/hourly routing 3 sub-daily rainfall/ \leftarrow Green&Ampt/hourly routing

· integer ipet

code for potential ET method

0 Priestley-Taylor method

1 Penman/Monteith method

2 Hargreaves method

3 read in daily potential ET data

- · integer iopera
- integer idaf

beginning day of simulation (julian date)

· integer idal

ending day of simulation (julian date)

· integer rhsim

relative humidity input code

1 measured data read for each subbasin

2 data simulated for each subbasin

- integer id1
- · integer leapyr
- integer mo_chk
- integer nhtot

number of relative humidity records in file

· integer nstot

number of solar radiation records in file

integer nwtot

number of wind speed records in file

- · integer ifirsts
- · integer ifirsth
- · integer ifirstw

- · integer icst
- integer ilog

streamflow print code

· integer itotr

number of output variables printed (output.rch)

integer iyr

beginning year of simulation (year)

integer iwq

stream water quality code

0 do not model stream water quality

1 model stream water quality (QUAL2E & pesticide transformations)

• integer i

forecast region number (none)

- · integer iskip
- · integer ifirstpet
- · integer iprp

print code for output.pst file 0 do not print pesticide output

1 print pesticide output

· integer itotb

number of output variables printed (output.sub)

integer itots

number of output variables printed (output.hru)

· integer itoth

number of HRUs printed (output.hru/output.wtr)

· integer pcpsim

rainfall input code

1 measured data read for each subbasin

2 data simulated for each subbasin

- · integer nd 30
- · integer iops
- · integer iphr
- · integer isto
- · integer isol
- integer fcstcycles

number of times forecast period is simulated (using different weather generator seeds each time)

integer fcstday

beginning date of forecast period (julian date)

integer fcstyr

beginning year of forecast period

integer iscen

scenarios counter

- · integer subtot
- · integer ogen
- integer mapp

maximum number of applications

integer mlyr

maximum number of soil layers

· integer mpst

max number of pesticides used in wshed

integer mres

maximum number of reservoirs

• integer msub

maximum number of subbasins

· integer igen

random number generator code:

0: use default numbers

1: generate new numbers in every simulation

· integer iprint

print code: 0=monthly, 1=daily, 2=annual

- integer iida
- · integer icn

CN method flag (for testing alternative method):

0 use traditional SWAT method which bases CN on soil moisture

1 use alternative method which bases CN on plant ET.

· integer ised det

max half-hour rainfall fraction calc option:

0 generate max half-hour rainfall fraction from triangular distribution

1 use monthly mean max half-hour rainfall fraction

- · integer fcstcnt
- · integer mtran
- · integer idtill
- integer, dimension(100) ida_lup
- integer, dimension(100) iyr_lup
- integer no lup
- · integer no_up
- · integer nostep
- character(len=8) date

date simulation is performed where leftmost eight characters are set to a value of yyyymmdd, where yyyy is the year, mm is the month and dd is the day

• character(len=10) time

time simulation is performed where leftmost ten characters are set to a value of hhmmss.sss, where hh is the hour, mm is the minutes and ss.sss is the seconds and milliseconds

• character(len=5) zone

time difference with respect to Coordinated Universal Time (ie Greenwich Mean Time)

character(len=80) prog

SWAT program header string.

• character(len=13) calfile

name of file containing calibration parameters

character(len=13) rhfile

relative humidity file name (.hmd)

• character(len=13) slrfile

solar radiation file name (.slr)

character(len=13) wndfile

wind speed file name (.wnd)

• character(len=13) petfile

potential ET file name (.pet)

- character(len=13) atmofile
- character(len=13) lucfile
- character(len=13) septdb

name of septic tank database file (septwq1.dat)

- character(len=13) dpd_file
- character(len=13) wpd_file
- character(len=13) rib_file
- character(len=13) sfb file
- character(len=13) lid_file

integer, dimension(9) idg

array location of random number seed used for a given process

- · integer, dimension(:), allocatable ifirstr
- · integer, dimension(:), allocatable ifirsthr
- integer, dimension(8) values

values(1): year simulation is performed

values(2): month simulation is performed

values(3): day in month simulation is performed

values(4): time difference with respect to Coordinated Universal Time (ie Greenwich Mean Time)

values(5): hour simulation is performed

values(6): minute simulation is performed

values(7): second simulation is performed

values(8): millisecond simulation is performed

integer, dimension(13) ndays

julian date for last day of preceding month (where the array location is the number of the month) The dates are for leap years (julian date)

- integer, dimension(13) ndays_noleap
- integer, dimension(13) ndays_leap
- · integer mapex
- real *8, dimension(:), allocatable flodaya
- real *8, dimension(:), allocatable seddaya
- real *8, dimension(:), allocatable orgndaya
- real *8, dimension(:), allocatable orgpdaya
- real *8, dimension(:), allocatable no3daya
- real *8, dimension(:), allocatable minpdaya
- real *8, dimension(:), allocatable hi_targ

index target of cover defined at planting

- real *8, dimension(:), allocatable bio_targ
- real *8, dimension(:), allocatable tnyld
- · integer, dimension(:), allocatable idapa
- integer, dimension(:), allocatable iypa
- · integer, dimension(:), allocatable ifirsta
- integer, dimension(100) mo_transb
- · integer, dimension(100) mo_transe
- integer, dimension(100) ih_tran
- · integer msdb
- integer iseptic
- real *8, dimension(:), allocatable sptqs
- real *8, dimension(:), allocatable percp
- real *8, dimension(:), allocatable **sptbodconcs**
- real *8, dimension(:), allocatable spttssconcs
- real *8, dimension(:), allocatable spttnconcs
- real *8, dimension(:), allocatable **sptnh4concs**
- real *8, dimension(:), allocatable sptno3concs
- real *8, dimension(:), allocatable sptno2concs
- real *8, dimension(:), allocatable **sptorgnconcs**
- real *8, dimension(:), allocatable spttpconcs
- real *8, dimension(:), allocatable sptminps
- real *8, dimension(:), allocatable sptorgps
- real *8, dimension(:), allocatable sptfcolis
- real *8, dimension(:), allocatable failyr
- real *8, dimension(:), allocatable qstemm
- real *8, dimension(:), allocatable bio_amn
- real *8, dimension(:), allocatable bio bod
- real *8, dimension(:), allocatable biom

- real *8, dimension(:), allocatable rbiom
- real *8, dimension(:), allocatable fcoli
- real *8, dimension(:), allocatable bio_ntr
- real *8, dimension(:), allocatable bz_perc
- real *8, dimension(:), allocatable plgm
- real *8, dimension(:), allocatable sep_cap
- real *8, dimension(:), allocatable bz area
- real *8, dimension(:), allocatable bz_z
- real *8, dimension(:), allocatable bz_thk
- real *8, dimension(:), allocatable bio bd
- real *8, dimension(:), allocatable cmup_kgh
- real *8, dimension(:), allocatable cmtot_kgh
- real *8, dimension(:), allocatable coeff_bod_dc
- real *8, dimension(:), allocatable coeff_bod_conv
- real *8, dimension(:), allocatable coeff_fc1
- real *8, dimension(:), allocatable coeff fc2
- real *8, dimension(:), allocatable coeff_fecal
- real *8, dimension(:), allocatable coeff_plq
- real *8, dimension(:), allocatable coeff_mrt
- real *8, dimension(:), allocatable coeff_rsp
- real *8, dimension(:), allocatable coeff_slg1
- real *8, dimension(:), allocatable coeff_slg2
- real *8, dimension(:), allocatable coeff nitr
- real *8, dimension(:), allocatable coeff_denitr
- real *8, dimension(:), allocatable coeff pdistrb
- real *8, dimension(:), allocatable coeff_solpslp
- real *8, dimension(:), allocatable coeff_solpintc
- real *8, dimension(:), allocatable coeff psorpmax
- integer, dimension(:), allocatable i_sep
- integer, dimension(:), allocatable isep_typ
- integer, dimension(:), allocatable isep_opt
- integer, dimension(:), allocatable sep_tsincefail
- integer, dimension(:), allocatable isep_tfail
- integer, dimension(:), allocatable isep_iyr
- integer, dimension(:), allocatable sep strm dist
- integer, dimension(:), allocatable sep_den
- real *8, dimension(:), allocatable sol_sumno3
- real *8, dimension(:), allocatable sol_sumsolp
- real *8, dimension(:), allocatable strsw_sum
- real *8, dimension(:), allocatable strstmp_sum
- real *8, dimension(:), allocatable strsn sum
- real *8, dimension(:), allocatable strsp_sum
- real *8, dimension(:), allocatable strsa sum
- real *8, dimension(:), allocatable spill_hru
- real *8, dimension(:), allocatable tile_out
- real *8, dimension(:), allocatable hru in
- real *8, dimension(:), allocatable spill_precip
- real *8, dimension(:), allocatable pot_seep
- real *8, dimension(:), allocatable pot_evap
- real *8, dimension(:), allocatable pot_sedin
- real *8, dimension(:), allocatable pot_solp
- real *8, dimension(:), allocatable pot solpi
- real *8, dimension(:), allocatable pot_orgp
- real *8, dimension(:), allocatable pot_orgpi
- real *8, dimension(:), allocatable pot_orgn

- real *8, dimension(:), allocatable pot_orgni
- real *8, dimension(:), allocatable pot mps
- real *8, dimension(:), allocatable pot_mpsi
- real *8, dimension(:), allocatable pot_mpa
- real *8, dimension(:), allocatable pot_mpai
- real *8, dimension(:), allocatable pot_no3i
- real *8, dimension(:), allocatable precip in
- real *8, dimension(:), allocatable tile_sedo
- real *8, dimension(:), allocatable tile_no3o
- real *8, dimension(:), allocatable tile solpo
- real *8, dimension(:), allocatable tile orgno
- real *8, dimension(:), allocatable tile orgpo
- real *8, dimension(:), allocatable tile_minpso
- real *8, dimension(:), allocatable tile_minpao
- · integer ia_b
- integer ihumus
- integer itemp
- · integer isnow
- integer, dimension(41) icolrsv
- integer, dimension(mhruo) icols
- integer, dimension(mrcho) icolr
- integer, dimension(msubo) icolb
- integer, dimension(46) ipdvar

output variable codes for output.rch file

• integer, dimension(mhruo) ipdvas

output varaible codes for output.hru file

• integer, dimension(msubo) ipdvab

output variable codes for output.sub file

• integer, dimension(:), allocatable ipdhru

HRUs whose output information will be printed to the output.hru and output.wtr files.

- real *8, dimension(mstdo) wshddayo
- real *8, dimension(mstdo) wshdmono
- real *8, dimension(mstdo) wshdyro
- real *8, dimension(16) fcstaao
- real *8, dimension(mstdo) wshdaao
- real *8, dimension(:,:), allocatable wpstdayo
- real *8, dimension(:,:), allocatable wpstmono
- real *8, dimension(:,:), allocatable wpstyro
- real *8, dimension(:,:), allocatable yldkg
- real *8, dimension(:,:), allocatable bio_hv
- real *8, dimension(:,:), allocatable wpstaao
- real *8, dimension(:,:), allocatable rchmono
- real *8, dimension(:,:), allocatable rchyro
- real *8, dimension(:,:), allocatable rchaao
- real *8, dimension(:,:), allocatable rchdy
- real *8, dimension(:,:), allocatable hrumono
- real *8, dimension(:,:), allocatable hruyro
- real *8, dimension(:,:), allocatable hruaao
- real *8, dimension(:,:), allocatable submono
- real *8, dimension(:,:), allocatable subyro
- real *8, dimension(:,:), allocatable subaao
- real *8, dimension(:,:), allocatable resoutm
- real *8, dimension(:.:), allocatable resouty
- real *8, dimension(:,:), allocatable resouta

real *8, dimension(12, 8) wshd_aamon
 real *8, dimension(:,:), allocatable wtrmon
 real *8, dimension(:,:), allocatable wtryr

```
• real *8, dimension(:,:), allocatable wtraa

    real *8, dimension(:,:), allocatable sub smfmx

    real *8, dimension(:,:), allocatable sub_smfmn

    real *8, dimension(:,:,:), allocatable hrupstd

  real *8, dimension(:,:,:), allocatable hrupsta
• real *8, dimension(:,:,:), allocatable hrupstm

    real *8, dimension(:...:), allocatable hrupsty

· integer, dimension(:), allocatable ifirstt

    integer, dimension(:), allocatable ifirstpcp

    integer, dimension(:), allocatable elevp

• integer, dimension(:), allocatable elevt
 real *8, dimension(:,:), allocatable ftmpmn
      avg monthly minimum air temperature (deg C)

    real *8, dimension(:,:), allocatable ftmpmx

      avg monthly maximum air temperature (deg C)

    real *8, dimension(:,:), allocatable ftmpstdmn

      standard deviation for avg monthly minimum air temperature (deg C)

    real *8, dimension(:,:), allocatable ftmpstdmx

      standard deviation for avg monthly maximum air temperature (deg C)

    real *8, dimension(:,:,:), allocatable fpcp_stat

      fpcp_stat(:,1,:): average amount of precipitation falling in one day for the month (mm/day)
      fpcp_stat(:,2,:): standard deviation for the average daily precipitation (mm/day)
      fpcp_stat(:,3,:): skew coefficient for the average daily precipitationa (none)

    real *8, dimension(:,:,:), allocatable fpr w

      fpr_w(1,:,:): probability of wet day after dry day in month (none)
      fpr_w(2,:,:): probability of wet day after wet day in month (none)
      fpr_w(3,:,:): proportion of wet days in the month (none)

    real *8, dimension(:), allocatable flwin

    real *8, dimension(:), allocatable flwout

  real *8, dimension(:), allocatable bankst

    real *8, dimension(:), allocatable ch_wi

    real *8, dimension(:), allocatable ch d

    real *8, dimension(:), allocatable ch onco

      channel organic n concentration (ppm)

    real *8, dimension(:), allocatable ch_opco

      channel organic p concentration (ppm)
real *8, dimension(:), allocatable ch_orgn
  real *8, dimension(:), allocatable ch orap
  real *8, dimension(:), allocatable drift

    real *8, dimension(:), allocatable rch_dox

    real *8, dimension(:), allocatable rch_bactp

    real *8, dimension(:), allocatable alpha bnk

    real *8, dimension(:), allocatable alpha bnke

    real *8, dimension(:), allocatable disolvp

    real *8, dimension(:), allocatable algae

    real *8, dimension(:), allocatable sedst

• real *8, dimension(:), allocatable rchstor
  real *8, dimension(:), allocatable organicn

    real *8, dimension(:), allocatable organicp

    real *8, dimension(:), allocatable chlora

 real *8, dimension(:), allocatable nitraten
```

- real *8, dimension(:), allocatable **nitriten**
- real *8, dimension(:), allocatable ch li
- real *8, dimension(:), allocatable ch_si
- real *8, dimension(:), allocatable ch_bnk_san
- real *8, dimension(:), allocatable ch bnk sil
- real *8, dimension(:), allocatable ch_bnk_cla
- real *8, dimension(:), allocatable ch bnk gra
- real *8, dimension(:), allocatable ch_bed_san
- real *8, dimension(:), allocatable ch bed sil
- real *8, dimension(:), allocatable ch bed cla
- real *8, dimension(:), allocatable ch bed gra
- real *8, dimension(:), allocatable depfp
- real *8, dimension(:), allocatable depsanfp
- real *8, dimension(:), allocatable depsilfp
- real *8, dimension(:), allocatable depclafp
- real *8, dimension(:), allocatable depsagfp
- real *8, dimension(:), allocatable deplagfp
- real *8, dimension(:), allocatable depch
- real *8, dimension(:), allocatable depsanch
- real *8, dimension(:), allocatable depsilch
- real *8, dimension(:), allocatable depclach
- real *8, dimension(:), allocatable depsagch
- real *8, dimension(:), allocatable deplagch
- real *8, dimension(:), allocatable depgrach
- real *8, dimension(:), allocatable depgrafp
- real *8, dimension(:), allocatable grast
- real *8, dimension(:), allocatable depprch
- real *8, dimension(:), allocatable depprfp
- real *8, dimension(:), allocatable prf
- real *8, dimension(:), allocatable r2adj
- real *8, dimension(:), allocatable spcon

linear parameter for calculating sediment reentrained in channel sediment routing

real *8, dimension(:), allocatable spexp

exponent parameter for calculating sediment reentrained in channel sediment routing

- real *8, dimension(:), allocatable sanst
- real *8, dimension(:), allocatable silst
- real *8, dimension(:), allocatable clast
- real *8, dimension(:), allocatable sagst
- real *8, dimension(:), allocatable lagst
- real *8, dimension(:), allocatable pot san
- real *8, dimension(:), allocatable pot sil
- real *8, dimension(:), allocatable pot_cla
- real *8, dimension(:), allocatable pot_sag
- real *8, dimension(:), allocatable pot_lag
- real *8, dimension(:), allocatable potsani
- real *8, dimension(:), allocatable potsili
- real *8, dimension(:), allocatable potclai
- real *8, dimension(:), allocatable potsagi
- real *8, dimension(:), allocatable potlagi
- real *8, dimension(:), allocatable sanyld
- real *8, dimension(:), allocatable silyld
- real *8, dimension(:), allocatable clayId
- real *8, dimension(:), allocatable sagyId
- real *8, dimension(:), allocatable lagyld

- real *8, dimension(:), allocatable grayId
- real *8, dimension(:), allocatable res_san
- real *8, dimension(:), allocatable res_sil
- · real *8, dimension(:), allocatable res_cla
- real *8, dimension(:), allocatable res sag
- real *8, dimension(:), allocatable res_lag
- real *8, dimension(:), allocatable res_gra
- real *8, dimension(:), allocatable pnd_san
- real *8, dimension(:), allocatable pnd_sil
- real *8, dimension(:), allocatable pnd_cla
- real *8, dimension(:), allocatable pnd_sag
- real *8, dimension(:), allocatable pnd_lag
- real *8, dimension(:), allocatable wet_san
- real #0, differision(.), allocatable wet_sal
- real *8, dimension(:), allocatable wet_sil
- real *8, dimension(:), allocatable wet_cla
- real *8, dimension(:), allocatable wet_lag
- real *8, dimension(:), allocatable wet_sag
- real *8 ressano
- real *8 ressilo
- real *8 resclao
- · real *8 ressago
- real *8 reslago
- real *8 resgrao
- real *8 ressani
- real *8 ressili
- real *8 resclai
- real *8 ressagi
- real *8 reslagi
- real *8 resgrai
- real *8 potsano
- real *8 potsilo
- real *8 potclao
- real *8 potsago
- real *8 potlago
- real *8 pndsanin
- real *8 pndsilin
- real *8 pndclain
- real *8 pndsagin
- real *8 pndlagin
- real *8 pndsano
- real *8 pndsiloreal *8 pndclao
- real *8 pndsago
- real *8 pndlago
- real *8, dimension(:), allocatable ch_di
- real *8, dimension(:), allocatable ch_erod
- real *8, dimension(:), allocatable ch 12
- real *8, dimension(:), allocatable ch_cov
- real *8, dimension(:), allocatable ch_cov1
- real *8, dimension(:), allocatable ch_cov2
- real *8, dimension(:), allocatable ch bnk bd
- real *8, dimension(:), allocatable ch_bed_bd
- real *8, dimension(:), allocatable ch_bnk_kd
- real *8, dimension(:), allocatable ch_bed_kd
- real *8, dimension(:), allocatable ch_bnk_d50

```
• real *8, dimension(:), allocatable ch_bed_d50
```

- real *8, dimension(:), allocatable tc_bed
- real *8, dimension(:), allocatable tc bnk
- integer, dimension(:), allocatable ch_eqn
- real *8, dimension(:), allocatable chpst_conc
- real *8, dimension(:), allocatable chpst_rea
- real *8, dimension(:), allocatable chpst_vol
- real *8, dimension(:), allocatable chpst_koc
- real *8, dimension(:), allocatable chpst_stl
- real *8, dimension(:), allocatable chpst_rsp
- real *8, dimension(:), allocatable chpst mix
- real *8, dimension(:), allocatable sedpst conc
- real *8, dimension(:), allocatable ch_wdr
- real *8, dimension(:), allocatable sedpst_rea
- real *8, dimension(:), allocatable sedpst_bry
- real *8, dimension(:), allocatable sedpst_act
- real *8, dimension(:), allocatable rch_cbod
- real *8, dimension(:), allocatable rch_bactlp
- real *8, dimension(:), allocatable chside
- real *8, dimension(:), allocatable rs1
- real *8, dimension(:), allocatable rs2
- real *8, dimension(:), allocatable rs3
- real *8, dimension(:), allocatable rs4
- real *8, dimension(:), allocatable rs5
- real *8, dimension(:), allocatable rs6
- real *8, dimension(:), allocatable rs7
- real *8, dimension(:), allocatable rk1
- real *8, dimension(:), allocatable rk2
- real *8, dimension(:), allocatable rk3
- · real *8, dimension(:), allocatable rk4
- real *8, dimension(:), allocatable rk5
- real *8, dimension(:), allocatable bc1

rate constant for biological oxidation of NH3 to NO2 in reach at 20 deg C (1/hr)

- real *8, dimension(:), allocatable bc2
 - rate constant for biological oxidation of NO2 to NO3 in reach at 20 deg C (1/hr)
- real *8, dimension(:), allocatable bc3
 - rate constant for hydrolysis of organic N to ammonia in reach at 20 deg C (1/hr)
- real *8, dimension(:), allocatable bc4

rate constant for the decay of organic P to dissolved P in reach at 20 deg C (1/hr)

- real *8, dimension(:), allocatable rk6
- real *8, dimension(:), allocatable ammonian
- real *8, dimension(:), allocatable orig_sedpstconc
- real *8, dimension(:,:), allocatable wurch
- · integer, dimension(:), allocatable icanal
- · integer, dimension(:), allocatable itb
- real *8, dimension(:), allocatable ch_revap
- real *8, dimension(:), allocatable dep_chan
- real *8, dimension(:), allocatable harg_petco
- real *8, dimension(:), allocatable subfr_nowtr
- real *8, dimension(:), allocatable cncoef_sub
- real *8, dimension(:), allocatable dr_sub

- real *8, dimension(:), allocatable wcklsp
- real *8, dimension(:), allocatable sub_fr
- real *8, dimension(:), allocatable sub_minp
- · real *8, dimension(:), allocatable sub_sw
- real *8, dimension(:), allocatable sub_sumfc
- real *8, dimension(:), allocatable sub_gwno3
- real *8, dimension(:), allocatable sub gwsolp
- real *8, dimension(:), allocatable sub_km
- real *8, dimension(:), allocatable sub_tc
- real *8, dimension(:), allocatable wlat
- real *8, dimension(:), allocatable sub_pet
- real *8, dimension(:), allocatable co2
- real *8, dimension(:), allocatable welev
- real *8, dimension(:), allocatable sub_orgn
- real *8, dimension(:), allocatable sub_orgp
- real *8, dimension(:), allocatable sub bd
- real *8, dimension(:), allocatable sub_wtmp
- real *8, dimension(:), allocatable sub_sedpa
- real *8, dimension(:), allocatable sub_sedps
- real *8, dimension(:), allocatable sub_minpa
- real *8, dimension(:), allocatable sub_minps
- real *8, dimension(:), allocatable daylmn
- real *8, dimension(:), allocatable latcos
- · real *8, dimension(:), allocatable latsin
- real *8, dimension(:), allocatable phutot
- real *8, dimension(:), allocatable tlaps
- real *8, dimension(:), allocatable plaps
- real *8, dimension(:), allocatable tmp_an
- real *8, dimension(:), allocatable sub_precip
- · real *8, dimension(:), allocatable pcpdays
- real *8, dimension(:), allocatable rcn_sub
- real *8, dimension(:), allocatable rammo sub
- real *8, dimension(:), allocatable atmo_day
- real *8, dimension(:), allocatable sub_snom
- real *8, dimension(:), allocatable sub_qd
- real *8, dimension(:), allocatable sub_sedy
- real *8, dimension(:), allocatable sub_tran
- real *8, dimension(:), allocatable sub_no3
- real *8, dimension(:), allocatable sub_latno3
- real *8, dimension(:,:), allocatable sub_smtmp
- real *8, dimension(:,:), allocatable sub timp
- real *8, dimension(:,:), allocatable sub_sftmp
- real *8, dimension(:), allocatable sub_tileno3
- real *8, dimension(:), allocatable sub_solp
- real *8, dimension(:), allocatable sub_subp
 real *8, dimension(:), allocatable sub_etday
- real *8, dimension(:), allocatable sub wyld
- real *8, dimension(:), allocatable sub_surfq
- real *8, dimension(:), allocatable sub_elev
- · real *8, dimension(:), allocatable qird
- real *8, dimension(:), allocatable sub_gwq
- real *8, dimension(:), allocatable sub_sep
- real *8, dimension(:), allocatable sub_chl
- real *8, dimension(:), allocatable sub_cbod
- real *8, dimension(:), allocatable sub_dox

- real *8, dimension(:), allocatable sub solpst
- real *8, dimension(:), allocatable sub sorpst
- real *8, dimension(:), allocatable sub_yorgn
- real *8, dimension(:), allocatable sub_yorgp
- real *8, dimension(:), allocatable sub bactp
- real *8, dimension(:), allocatable sub_bactlp
- real *8, dimension(:), allocatable sub lat
- real *8, dimension(:), allocatable sub_latq
- real *8, dimension(:), allocatable sub_gwq_d
- real *8, dimension(:), allocatable sub_tileq
- real *8, dimension(:), allocatable sub vaptile
- real *8, dimension(:), allocatable **sub_dsan**
- real *8, dimension(:), allocatable sub dsil
- real *8, dimension(:), allocatable sub dcla
- real *8, dimension(:), allocatable sub_dsag
- real *8, dimension(:), allocatable sub dlag
- real *8 vap tile
- real *8, dimension(:), allocatable wnan
- real *8, dimension(:,:), allocatable sol_stpwt
- real *8, dimension(:,:), allocatable sub pst
- real *8, dimension(:,:), allocatable sub_hhqd
- real *8, dimension(:,:), allocatable sub hhwtmp
- real *8, dimension(:,:), allocatable rfinc
- real *8, dimension(:,:), allocatable tmpinc
- real *8, dimension(:,:), allocatable radinc
- real *8, dimension(:,:), allocatable huminc
- real *8, dimension(:,:), allocatable wndav
- real *8, dimension(:,:), allocatable ch_k
- real *8, dimension(:,:), allocatable elevb
- real *8, dimension(:,:), allocatable elevb fr
- real *8, dimension(:,:), allocatable dewpt
- real *8, dimension(:,:), allocatable ch_w
- real *8, dimension(:,:), allocatable **ch_s**
- real *8, dimension(:,:), allocatable ch_n
- real *8, dimension(:,:), allocatable amp_r
 real *8, dimension(:.:), allocatable solarav
- real *8, dimension(:,:), allocatable solarav
 real *8, dimension(:,:), allocatable tmpstdmx
- real *8, dimension(:,:), allocatable tmpstdmn
- real *0, differision(.,.), allocatable timpst
- real *8, dimension(:,:), allocatable pcf
- real *8, dimension(:,:), allocatable tmpmn
- real *8, dimension(:,:), allocatable tmpmx
- real *8, dimension(:,:), allocatable otmpstdmn
- real *8, dimension(:,:), allocatable otmpmn
- real *8, dimension(:,:), allocatable otmpmx
- real *8, dimension(:,:), allocatable otmpstdmx
- real *8, dimension(:,:), allocatable ch_erodmo
- real *8, dimension(:,:), allocatable uh
- real *8, dimension(:,:), allocatable hqdsave
- real *8, dimension(:,:), allocatable hsdsave
- real *8, dimension(:,:,:), allocatable pr_w
- real *8, dimension(:,:,:), allocatable pcp_stat
- real *8, dimension(:,:,:), allocatable opr_w
- real *8, dimension(:,:,:), allocatable opcp_stat
- · integer, dimension(:), allocatable hrutot
- integer, dimension(:), allocatable hru1

- integer, dimension(:), allocatable ireg
- integer, dimension(:), allocatable isgage
- integer, dimension(:), allocatable ihgage
- integer, dimension(:), allocatable iwgage
- integer, dimension(:), allocatable irgage
- integer, dimension(:), allocatable itgage
- integer, dimension(:), allocatable subgis
- integer, dimension(:), allocatable fcst_reg
- integer, dimension(:), allocatable irelh
- real *8, dimension(:,:), allocatable sol_aorgn
- real *8, dimension(:,:), allocatable sol_tmp
- real *8, dimension(:,:), allocatable sol_fon
- real *8, dimension(:,:), allocatable sol_awc
- real *8, dimension(:,:), allocatable sol_prk
- real *8, dimension(:,:), allocatable volcr
- real *8, dimension(:,:), allocatable pperco sub

subbasin phosphorus percolation coefficient. Ratio of soluble phosphorus in surface to soluble phosphorus in percolate

- real *8, dimension(:,:), allocatable sol_actp
- real *8, dimension(:,:), allocatable sol_stap
- real *8, dimension(:,:), allocatable conv_wt
- real *8, dimension(:,:), allocatable sol_solp
- real *8, dimension(:,:), allocatable sol_ul
- real *8, dimension(:,:), allocatable sol_fc
- real *8, dimension(:.:), allocatable crdep
- real *8, dimension(:,:), allocatable sol z
- real *8, dimension(:,:), allocatable sol_up
- real *8, dimension(:,:), allocatable sol_bd
- real *8, dimension(:,:), allocatable sol_st
- real *8, dimension(:,:), allocatable flat
- real *8, dimension(:,:), allocatable sol nh3
- real *8, dimension(:,:), allocatable sol_hk
- real *8, dimension(:,:), allocatable sol clay
- real *8, dimension(:,:), allocatable sol_ec
- real *8, dimension(:,:), allocatable sol_orgn
- real *8, dimension(:,:), allocatable sol_por
- real *8, dimension(:,:), allocatable sol_wp
- real *8, dimension(:,:), allocatable sol_orgp
- real *8, dimension(:,:), allocatable sol hum
- real *8, dimension(:,:), allocatable sol_wpmm
- real *8, dimension(:,:), allocatable sol_k
- real *8, dimension(:,:), allocatable sol_cbn
- real *8, dimension(:,:), allocatable sol_no3
- real *8, dimension(:,:), allocatable sol_rsd
- real *8, dimension(:,:), allocatable sol_fop
- real *8, dimension(:,:), allocatable sol_silt
- real *8, dimension(:,:), allocatable sol_sand
- real *8, dimension(:,:), allocatable sol_rock
- real *8, dimension(:,:), allocatable orig_solno3
- real *8, dimension(:,:), allocatable orig_solorgn
- real *8, dimension(:,:), allocatable orig_solsolp
- real *8, dimension(:,:), allocatable orig_solorgp
- real *8, dimension(:,:), allocatable orig_soltmp
- real *8, dimension(:,:), allocatable orig_solrsd

- real *8, dimension(:,:), allocatable orig_solfop
- real *8, dimension(:,:), allocatable orig_solfon
- real *8, dimension(:,:), allocatable orig_solaorgn
- real *8, dimension(:,:), allocatable orig_solst
- real *8, dimension(:,:), allocatable orig_solactp
- real *8, dimension(:,:), allocatable orig_solstap
- real *8, dimension(:,:), allocatable orig volcr
- real *8, dimension(:,:), allocatable conk
- real *8, dimension(:,:,:), allocatable sol_pst
- real *8, dimension(:,:,:), allocatable sol_kp
- real *8, dimension(:,:,:), allocatable orig_solpst
- real *8, dimension(:), allocatable velsetlr
- real *8, dimension(:), allocatable velsetlp
- real *8, dimension(:), allocatable br1
- real *8, dimension(:), allocatable res_k
- real *8, dimension(:), allocatable lkpst_conc
- real *8, dimension(:), allocatable evrsv
- real *8, dimension(:), allocatable res evol
- real *8, dimension(:), allocatable res_pvol
- real *8, dimension(:), allocatable res vol
- real *8, dimension(:), allocatable res_psa
- real *8, dimension(:), allocatable lkpst rea
- real *8, dimension(:), allocatable lkpst vol
- real *8, dimension(:), allocatable br2
- real *8, dimension(:), allocatable res rr
- real *8, dimension(:), allocatable res_sed
- real *8, dimension(:), allocatable lkpst koc
- real *8, dimension(:), allocatable Ikpst stl
- real *8, dimension(:), allocatable lkpst_rsp
- real *8, dimension(:), allocatable lkpst_mix
- real *8, dimension(:), allocatable lkspst_conc
- real *8, dimension(:), allocatable lkspst_rea
- real *8, dimension(:), allocatable theta_n
- real *8, dimension(:), allocatable theta_p
- real *8, dimension(:), allocatable con_nirr
- real *8, dimension(:), allocatable con_pirr
- real *8, dimension(:), allocatable lkspst_bry
- real *8, dimension(:), allocatable lkspst_act
- real *8, dimension(:), allocatable sed_stlr
- real *8, dimension(7) resdata
- real *8, dimension(:), allocatable wurtnf
- real *8, dimension(:), allocatable res_nsed
- real *8, dimension(:), allocatable chlar
- real *8, dimension(:), allocatable res_orgn
- real *8, dimension(:), allocatable res orgp
- real *8, dimension(:), allocatable res no3
- real *8, dimension(:), allocatable res_solp
- real *8, dimension(:), allocatable res_chla
- real *8, dimension(:), allocatable res_seci
- real *8, dimension(:), allocatable res_esa
- · real *8, dimension(:), allocatable seccir
- real *8, dimension(:), allocatable res_no2
- real *8, dimension(:), allocatable res_nh3
- real *8, dimension(:), allocatable res_bactp
- real *8, dimension(:), allocatable res bactlp

- real *8, dimension(:), allocatable oflowmn_fps real *8, dimension(:), allocatable starg_fps • real *8, dimension(:), allocatable weirc • real *8, dimension(:), allocatable weirk real *8, dimension(:), allocatable weirw real *8, dimension(:), allocatable acoef real *8, dimension(:), allocatable bcoef
- real *8, dimension(:), allocatable ccoef real *8, dimension(:), allocatable orig_resvol
- real *8, dimension(:), allocatable orig_ressed
- real *8, dimension(:), allocatable orig_lkpstconc
- real *8, dimension(:), allocatable orig lkspstconc real *8, dimension(:), allocatable orig_ressolp
- real *8, dimension(:), allocatable orig resorgp
- real *8, dimension(:), allocatable orig_resno3
- real *8, dimension(:), allocatable orig resno2
- real *8, dimension(:), allocatable orig_resnh3
- real *8, dimension(:), allocatable orig_resorgn
- real *8, dimension(:,:), allocatable starg
- real *8, dimension(:,:), allocatable oflowmx
- real *8, dimension(:,:), allocatable oflowmn
- real *8, dimension(:,:), allocatable psetIr
- real *8, dimension(:,:), allocatable nsetIr
- real *8, dimension(:,:), allocatable wuresn
- real *8, dimension(:,:,:), allocatable res_out
- integer, dimension(:), allocatable ires1
- integer, dimension(:), allocatable ires2
- integer, dimension(:), allocatable res sub
- integer, dimension(:), allocatable iresco
- integer, dimension(:), allocatable mores
- integer, dimension(:), allocatable iyres
- integer, dimension(:), allocatable iflod1r
- integer, dimension(:), allocatable iflod2r
- integer, dimension(:), allocatable ndtargr
- real *8, dimension(:), allocatable skoc
- real *8, dimension(:), allocatable ap_ef
- real *8, dimension(:), allocatable decay f
- real *8, dimension(:), allocatable hlife_f
- real *8, dimension(:), allocatable hlife s
- real *8, dimension(:), allocatable decay s
- real *8, dimension(:), allocatable pst_wsol
- real *8, dimension(:), allocatable pst_wof
- real *8, dimension(:), allocatable irramt
- real *8, dimension(:), allocatable phusw
- real *8, dimension(:), allocatable phusw nocrop
- integer, dimension(:), allocatable pstflg

flag for types of pesticide used in watershed array location is pesticide ID number

- 0: pesticide not used
- 1: pesticide used
- integer, dimension(:), allocatable nope
- integer, dimension(:), allocatable nop
- integer, dimension(:), allocatable yr skip
- integer, dimension(:), allocatable isweep
- integer, dimension(:), allocatable icrmx
- integer, dimension(:), allocatable nopmx

- integer, dimension(:,:), allocatable mgtop
- integer, dimension(:,:), allocatable idop
- integer, dimension(:,:), allocatable mgt1iop
- integer, dimension(:,:), allocatable mgt2iop
- integer, dimension(:,:), allocatable mgt3iop
- real *8, dimension(:,:), allocatable mgt4op
- real *8, dimension(:,:), allocatable mgt5op
- real *8, dimension(:,:), allocatable mgt6op
- real *8, dimension(:,:), allocatable mgt7op
- real *8, dimension(:,:), allocatable mgt8op
- real *8, dimension(:,:), allocatable mgt9op
- real *8, dimension(:,:), allocatable mgt10iop
- real *8, dimension(:,:), allocatable phu_op
- real *8, dimension(:), allocatable wac21
- real *8, dimension(:), allocatable wac22
- real *8, dimension(:), allocatable cnvld
- real *8, dimension(:), allocatable rsdco_pl
- real *8, dimension(:), allocatable wsvf
- real *8, dimension(:), allocatable leaf1
- real *8, dimension(:), allocatable leaf2
- real *8, dimension(:), allocatable alai_min
- real *8, dimension(:), allocatable t base
- real *8, dimension(:), allocatable t opt
- real *8, dimension(:), allocatable hvsti
- real *8, dimension(:), allocatable bio e
- real *8, dimension(:), allocatable vpd2
- real *8, dimension(:), allocatable gsi
- real *8, dimension(:), allocatable chtmx
- real *8. dimension(:), allocatable wavp
- real *8, dimension(:), allocatable cvm
- real *8, dimension(:), allocatable blai
- real *8, dimension(:), allocatable dlai
- real *8, dimension(:), allocatable rdmx
- real *8, dimension(:), allocatable cpvld
- real *8, dimension(:), allocatable bio_leaf
- real *8, dimension(:), allocatable bio n1
- real *8, dimension(:), allocatable bio_n2 real *8, dimension(:), allocatable bio_p1
- real *8, dimension(:), allocatable bio_p2
- real *8, dimension(:), allocatable bmx_trees
- real *8, dimension(:), allocatable ext coef
- real *8, dimension(:), allocatable bm_dieoff
- real *8, dimension(:), allocatable rsr1
- real *8, dimension(:), allocatable rsr2
- real *8, dimension(:,:), allocatable pltnfr
- real *8, dimension(:,:), allocatable pltpfr
- integer, dimension(:), allocatable idc
- integer, dimension(:), allocatable mat_yrs
- real *8, dimension(:), allocatable forgn
- real *8, dimension(:), allocatable forgp
- real *8, dimension(:), allocatable fminn
- real *8, dimension(:), allocatable bactpdb
- real *8, dimension(:), allocatable fminp
- real *8, dimension(:), allocatable fnh3n
- real *8, dimension(:), allocatable bactlpdb

- real *8, dimension(:), allocatable bactkddb
- character(len=8), dimension(200) fertnm
- real *8, dimension(:), allocatable fimp
- real *8, dimension(:), allocatable curbden
- real *8, dimension(:), allocatable urbcoef
- real *8, dimension(:), allocatable dirtmx
- real *8, dimension(:), allocatable thalf
- real *8, dimension(:), allocatable tnconc
- real *8, dimension(:), allocatable tpconc
- real *8, dimension(:), allocatable tno3conc
- real *8, dimension(:), allocatable fcimp
- real *8, dimension(:), allocatable urbcn2
- real *8 sweepeff
- real *8 frt_kg
- real *8 pst_dep
- real *8 fr_curb
- real *8, dimension(:), allocatable ranrns_hru
- integer, dimension(:), allocatable itill
- real *8, dimension(:), allocatable effmix
- real *8, dimension(:), allocatable deptil
- real *8, dimension(:), allocatable ranrns
- character(len=8), dimension(550) tillnm
- real *8, dimension(:), allocatable rnum1s
- real *8, dimension(:), allocatable hyd_dakm
- real *8, dimension(:,:), allocatable varoute
- real *8, dimension(:,:), allocatable shyd
- real *8, dimension(:,:), allocatable vartran
- real *8, dimension(:,:,:), allocatable **hhvaroute**
- integer, dimension(:), allocatable icodes
- · integer, dimension(:), allocatable ihouts
- · integer, dimension(:), allocatable inum1s
- · integer, dimension(:), allocatable inum2s
- integer, dimension(:), allocatable inum3s
- integer, dimension(:), allocatable inum4s
- integer, dimension(:), allocatable inum5s
- integer, dimension(:), allocatable inum6s
- integer, dimension(:), allocatable inum7s
 integer, dimension(:), allocatable inum8s
- integer, dimension(:), allocatable subed
- character(len=10), dimension(:), allocatable recmonps
- character(len=10), dimension(:), allocatable recenstps
- character(len=5), dimension(:), allocatable subnum
- character(len=4), dimension(:), allocatable hruno
- real *8, dimension(:), allocatable grwat_n
- real *8, dimension(:), allocatable grwat_i
- real *8, dimension(:), allocatable grwat_l
- real *8, dimension(:), allocatable grwat_w
- real *8, dimension(:), allocatable grwat_d
- real *8, dimension(:), allocatable grwat_s
- real *8, dimension(:), allocatable grwat_spcon
- real *8, dimension(:), allocatable tc_gwat
- real *8, dimension(:), allocatable pot_volmm
- real *8, dimension(:), allocatable pot_tilemm
- real *8, dimension(:), allocatable pot_volxmm
- real *8, dimension(:), allocatable pot_fr

- real *8, dimension(:), allocatable pot tile
- real *8, dimension(:), allocatable pot_vol
- real *8, dimension(:), allocatable potsa
- real *8, dimension(:), allocatable pot_volx
- real *8, dimension(:), allocatable potflwi
- real *8, dimension(:), allocatable potsedi
- real *8, dimension(:), allocatable wfsh
- real *8, dimension(:), allocatable pot_nsed
- real *8, dimension(:), allocatable pot no3l
- real *8, dimension(:), allocatable newrti
- real *8, dimension(:), allocatable gwno3
- real *8, dimension(:), allocatable pot_sed
- real *8, dimension(:), allocatable pot_no3
- real *8, dimension(:), allocatable fsred
- real *8, dimension(:), allocatable tmpavp
- real *8, dimension(:), allocatable evpot
- real *8, dimension(:), allocatable dis_stream
- real *8, dimension(:), allocatable pot_solpl
- real *8, dimension(:), allocatable sed_con
- real *8, dimension(:), allocatable orgn_con
- real *8, dimension(:), allocatable orgp_con
- real *8, dimension(:), allocatable soln_con
- real *8, dimension(:), allocatable solp con
- real *8, dimension(:), allocatable pot_k
- real *8, dimension(:), allocatable n_reduc
- real *8, dimension(:), allocatable n lag
- real *8, dimension(:), allocatable n_ln
- real *8, dimension(:), allocatable n_Inco
- integer, dimension(:), allocatable ioper
- · integer, dimension(:), allocatable ngrwat
- real *8, dimension(:), allocatable filterw
- real *8, dimension(:), allocatable sumix
- real *8, dimension(:), allocatable usle_ls
- real *8, dimension(:), allocatable phuacc
- real *8, dimension(:), allocatable epco

plant water uptake compensation factor (0-1)

- real *8, dimension(:), allocatable esco
 - soil evaporation compensation factor (0-1)
- real *8, dimension(:), allocatable slsubbsn
- real *8, dimension(:), allocatable hru slp
- real *8, dimension(:), allocatable erorgn
- real *8, dimension(:), allocatable erorgp
- real *8, dimension(:), allocatable biomix
- real *8, dimension(:), allocatable pnd_seci
- real *8, dimension(:), allocatable flowmin
- real *8, dimension(:), allocatable divmax
- real *8, dimension(:), allocatable canmx
- real *8, dimension(:), allocatable usle_p
- real *8, dimension(:), allocatable lat_sed
- real *8, dimension(:), allocatable rch_dakm
- real *8, dimension(:), allocatable pnd_no3s
- real *8, dimension(:), allocatable cn1
- real *8, dimension(:), allocatable cn2
- real *8, dimension(:), allocatable lat ttime

- · real *8, dimension(:), allocatable flowfr
- real *8, dimension(:), allocatable sol_zmx
- real *8, dimension(:), allocatable tile_ttime
- real *8, dimension(:), allocatable slsoil
- real *8, dimension(:), allocatable sed_stl
- real *8, dimension(:), allocatable gwminp
- real *8, dimension(:), allocatable sol_cov
- real *8, dimension(:), allocatable yldanu
- real *8, dimension(:), allocatable pnd_solp
- real *8, dimension(:), allocatable pnd_no3
- real *8, dimension(:), allocatable ov_n
- real *8, dimension(:), allocatable driftco
- real *8, dimension(:), allocatable pnd_orgp
- real *8, dimension(:), allocatable pnd_orgn
- real *8, dimension(:), allocatable cn3
- real *8, dimension(:), allocatable twlpnd
- real *8, dimension(:), allocatable twlwet
- real *8, dimension(:), allocatable sol_sumul
- real *8, dimension(:), allocatable pnd_chla
- real *8, dimension(:), allocatable hru_fr
- real *8, dimension(:), allocatable bio_ms
- real *8, dimension(:), allocatable sol_alb
- real *8, dimension(:), allocatable strsw
- real *8, dimension(:), allocatable hru_km
- real *8, dimension(:), allocatable pnd_fr
- real *8, dimension(:), allocatable pnd_psa
- real *8, dimension(:), allocatable pnd_pvol
- real *8, dimension(:), allocatable pnd_k
- real *8, dimension(:), allocatable pnd_esa
- · real *8, dimension(:), allocatable pnd_evol
- real *8, dimension(:), allocatable pnd_vol
- real *8, dimension(:), allocatable yldaa
- real *8, dimension(:), allocatable pnd_sed
- real *8, dimension(:), allocatable pnd_nsed
- real *8, dimension(:), allocatable strsa
- real *8, dimension(:), allocatable dep_imp
- real *8, dimension(:), allocatable evpnd
- real *8, dimension(:), allocatable evwet
 real *8, dimension(:), allocatable wet_fr
- real *8, dimension(:), allocatable wet_nsa
- real *8, dimension(:), allocatable wet nvol
- real #0, dimension(.), anocatable wet_nv
- real *8, dimension(:), allocatable wet_k
- integer, dimension(:), allocatable iwetgw
- integer, dimension(:), allocatable **iwetile**
- real *8, dimension(:), allocatable wet_mxsa
- real *8, dimension(:), allocatable wet_mxvol
- real *8, dimension(:), allocatable wet_vol
- real *8, dimension(:), allocatable wet_sed
- real *8, dimension(:), allocatable wet_nsed
- real *8, dimension(:), allocatable smx
- real *8, dimension(:), allocatable sci
- real *8, dimension(:), allocatable bp1
- real *8, dimension(:), allocatable bp2
- real *8, dimension(:), allocatable bw1
- real *8, dimension(:), allocatable bw2

- real *8, dimension(:), allocatable bactpq
- real *8, dimension(:), allocatable bactp_plt
- real *8, dimension(:), allocatable bactlp_plt
- real *8, dimension(:), allocatable cnday
- real *8, dimension(:), allocatable bactlpg
- real *8, dimension(:), allocatable auto_eff
- real *8, dimension(:), allocatable sol sw
- real *8, dimension(:), allocatable secciw
- real *8, dimension(:), allocatable bactps
- real *8, dimension(:), allocatable bactlps
- real *8, dimension(:), allocatable tmpav
- real *8, dimension(:), allocatable chlaw
- real *8, dimension(:), allocatable subp
- real *8, dimension(:), allocatable sno_hru
- real *8, dimension(:), allocatable hru_ra
- real *8, dimension(:), allocatable wet orgn
- real *8, dimension(:), allocatable tmx
- real *8, dimension(:), allocatable tmn
- real *8, dimension(:), allocatable rsdin
- real *8, dimension(:), allocatable tmp hi
- real *8, dimension(:), allocatable tmp_lo
- real *8, dimension(:), allocatable rwt
- real *8, dimension(:), allocatable olai
- real *8, dimension(:), allocatable usle_k
- real *8, dimension(:), allocatable tconc
- real *8, dimension(:), allocatable hru_rmx
- real *8, dimension(:), allocatable usle_cfac
- real *8, dimension(:), allocatable usle eifac
- real *8, dimension(:), allocatable anano3
- real *8, dimension(:), allocatable aird
- real *8, dimension(:), allocatable t ov
- real *8, dimension(:), allocatable sol_sumfc
- real *8, dimension(:), allocatable sol_avpor
- real *8, dimension(:), allocatable usle_mult
- real *8, dimension(:), allocatable wet_orgp
- real *8, dimension(:), allocatable aairr
- real *8, dimension(:), allocatable cht
- real *8, dimension(:), allocatable u10
- · real *8, dimension(:), allocatable rhd
- real *8, dimension(:), allocatable shallirr
- real *8, dimension(:), allocatable deepirr
- real *8, dimension(:), allocatable lai_aamx
- real *8, dimension(:), allocatable canstor
- · real *8, dimension(:), allocatable ovrlnd
- real *8, dimension(:), allocatable ch | 11
- real *8, dimension(:), allocatable wet_no3
- real *8, dimension(:), allocatable irr_mx
- · real *8, dimension(:), allocatable auto_wstr
- real *8, dimension(:), allocatable cfrt_id
- real *8, dimension(:), allocatable cfrt_kg
- real *8, dimension(:), allocatable cpst_id
- real *8, dimension(:), allocatable cpst kg
- real *8, dimension(:), allocatable irr_asq
- real *8, dimension(:), allocatable irr_eff
- real *8, dimension(:), allocatable irrsq

- real *8, dimension(:), allocatable irrefm
- · real *8, dimension(:), allocatable irrsalt
- · real *8, dimension(:), allocatable bio eat
- real *8, dimension(:), allocatable bio_trmp
- integer, dimension(:), allocatable ifrt_freq
- integer, dimension(:), allocatable ipst_freq
- integer, dimension(:), allocatable irr_noa
- integer, dimension(:), allocatable irr_sc
- · integer, dimension(:), allocatable irr_no
- · integer, dimension(:), allocatable imp_trig
- integer, dimension(:), allocatable fert_days
- integer, dimension(:), allocatable irr_sca
- integer, dimension(:), allocatable pest_days
- · integer, dimension(:), allocatable idplt
- integer, dimension(:), allocatable wstrs_id
- real *8, dimension(:,:), allocatable bio_aahv
- real *8, dimension(:), allocatable cumei
- real *8, dimension(:), allocatable cumeira
- real *8, dimension(:), allocatable cumrt
- real *8, dimension(:), allocatable cumrai
- real *8, dimension(:), allocatable wet_solp
- real *8, dimension(:), allocatable wet_no3s
- real *8, dimension(:), allocatable wet_chla
- real *8, dimension(:), allocatable wet_seci
- real *8, dimension(:), allocatable pnd_no3g
- real *8, dimension(:), allocatable pstsol
- real *8, dimension(:), allocatable gwht
- real *8, dimension(:), allocatable delay
- real *8, dimension(:), allocatable gw_q
- real *8, dimension(:), allocatable pnd_solpg
- real *8, dimension(:), allocatable alpha bf
- real *8, dimension(:), allocatable alpha_bfe
- real *8, dimension(:), allocatable gw_spyld
- real *8, dimension(:), allocatable alpha_bf_d
- real *8, dimension(:), allocatable alpha_bfe_d
- real *8, dimension(:), allocatable gw_qdeep
- real *8, dimension(:), allocatable gw_delaye
- real *8, dimension(:), allocatable gw_revap
- real *8, dimension(:), allocatable rchrg_dp
- real *8, dimension(:), allocatable anion_excl

fraction of porosity from which anions are excluded

- real *8, dimension(:), allocatable revapmn
- · real *8, dimension(:), allocatable rchrg
- real *8, dimension(:), allocatable ffc
- real *8, dimension(:), allocatable bio_min
- real *8, dimension(:), allocatable surgsolp
- real *8, dimension(:), allocatable cklsp
- real *8, dimension(:), allocatable deepst
- real *8, dimension(:), allocatable shallst
- real *8, dimension(:), allocatable wet_solpg
- real *8, dimension(:), allocatable rchrg_src
- real *8, dimension(:), allocatable wet_no3g
- real *8, dimension(:), allocatable sol_avbd
- real *8, dimension(:), allocatable trapeff

- real *8, dimension(:), allocatable gwqmn
- real *8, dimension(:), allocatable tdrain
- real *8, dimension(:), allocatable ppInt
- real *8, dimension(:), allocatable snotmp
- real *8, dimension(:), allocatable gdrain

drain tile lag time (hours)

- real *8, dimension(:), allocatable ddrain
- real *8, dimension(:), allocatable sol_crk
- real *8, dimension(:), allocatable dayl
- real *8, dimension(:), allocatable brt
- real *8, dimension(:), allocatable sstmaxd

static maximum depressional storage; read from .sdr (mm)

- real *8, dimension(:), allocatable ddrain_hru
- real *8, dimension(:), allocatable re
- real *8, dimension(:), allocatable sdrain
- real *8, dimension(:), allocatable stmaxd
- real *8, dimension(:), allocatable drain_co
- real *8, dimension(:), allocatable pc
- real *8, dimension(:), allocatable latksatf
- real *8, dimension(:), allocatable twash
- real *8, dimension(:), allocatable rnd2
- real *8, dimension(:), allocatable rnd3
- real *8, dimension(:), allocatable sol_cnsw
- real *8, dimension(:), allocatable doxq
- real *8, dimension(:), allocatable rnd8
- real *8, dimension(:), allocatable rnd9
- real *8, dimension(:), allocatable percn
- real *8, dimension(:), allocatable sol_sumwp
- real *8, dimension(:), allocatable tauton
- real *8, dimension(:), allocatable tautop
- real *8, dimension(:), allocatable cbodu
- real *8, dimension(:), allocatable chl_a
- real *8, dimension(:), allocatable qdr
- real *8, dimension(:), allocatable **tfertn**
- real *8, dimension(:), allocatable tfertp
- real *8, dimension(:), allocatable tgrazn
- real *8, dimension(:), allocatable tgrazp
- real *8, dimension(:), allocatable latno3
- real *8, dimension(:), allocatable latq
- real *8, dimension(:), allocatable minpgw
- real *8, dimension(:), allocatable no3gw
- real *8, dimension(:), allocatable **npInt**
- real *8, dimension(:), allocatable tileq
- · real *8, dimension(:), allocatable tileno3
- real *8, dimension(:), allocatable sedminpa
- real *8, dimension(:), allocatable sedminps
- · real *8, dimension(:), allocatable sedorgn
- real *8, dimension(:), allocatable sedorgp
- real *8, dimension(:), allocatable sedyld
- real *8, dimension(:), allocatable sepbtm
- real *8, dimension(:), allocatable strsn
- real *8, dimension(:), allocatable strsp
- real *8, dimension(:), allocatable strstmp
- real *8, dimension(:), allocatable surfq

- real *8, dimension(:), allocatable surqno3
- real *8, dimension(:), allocatable tcfrtn
- real *8, dimension(:), allocatable tcfrtp
- real *8, dimension(:), allocatable hru_ha
- real *8, dimension(:), allocatable hru_dafr
- real *8, dimension(:), allocatable drydep_no3
- real *8, dimension(:), allocatable drydep nh4
- real *8, dimension(:), allocatable phubase
- real *8, dimension(:), allocatable bio_yrms
- real *8, dimension(:), allocatable hvstiadj
- real *8, dimension(:), allocatable laimxfr
- real *8, dimension(:), allocatable laiday
- real *8, dimension(:), allocatable **chlap**
- real *8, dimension(:), allocatable pnd_psed
 real *8, dimension(:), allocatable wet_psed
- real *8, dimension(:), allocatable seccip
- real *8, dimension(:), allocatable plantn
- real *8, dimension(:), allocatable plt_et
- real *8, dimension(:), allocatable plt_pet
- real *8, dimension(:), allocatable plantp
- real *8, dimension(:), allocatable bio_aams
- real *8, dimension(:), allocatable bio_aamx
- real *8, dimension(:), allocatable lai yrmx
- real *8, dimension(:), allocatable dormhr
- real *8, dimension(:), allocatable lat_pst
- real *8, dimension(:), allocatable orig_snohru
- real *8, dimension(:), allocatable orig_potvol
- real *8, dimension(:), allocatable fld_fr
- real *8, dimension(:), allocatable orig_alai
- · real *8, dimension(:), allocatable orig_bioms
- real *8, dimension(:), allocatable pltfr_n
- real *8, dimension(:), allocatable orig phuacc
- real *8, dimension(:), allocatable orig_sumix
- real *8, dimension(:), allocatable pltfr_p
- real *8, dimension(:), allocatable orig_phu
- real *8, dimension(:), allocatable phu_plt
- real *8, dimension(:), allocatable orig_shallst
- real *8, dimension(:), allocatable orig_deepst
- real *8, dimension(:), allocatable orig_pndvol
- real *8, dimension(:), allocatable orig pndsed
- real *8, dimension(:), allocatable rip fr
- real *8, dimension(:), allocatable orig_pndno3
- real *8, dimension(:), allocatable orig_pndsolp
- real *8, dimension(:), allocatable orig_pndorgn
- real *8, dimension(:), allocatable orig_pndorgp
- real *8, dimension(:), allocatable orig_wetvol
- real *8, dimension(:), allocatable orig_wetsed
- real *8, dimension(:), allocatable orig_wetno3
- real *8, dimension(:), allocatable orig_wetsolp
- real *8, dimension(:), allocatable orig_wetorgn
 real *8, dimension(:), allocatable orig_wetorgp
- real *8, dimension(:), allocatable orig_solcov
- real *8, dimension(:), allocatable orig_solsw
- real *8, dimension(:), allocatable orig_potno3
- real *8, dimension(:), allocatable orig_potsed

- real *8, dimension(:), allocatable wtab
- real *8, dimension(:), allocatable wtab mn
- real *8, dimension(:), allocatable wtab_mx
- real *8, dimension(:), allocatable shallst n
- real *8, dimension(:), allocatable gw nloss
- real *8, dimension(:), allocatable rchrg_n
- real *8, dimension(:), allocatable det_san
- real *8, dimension(:), allocatable det_sil
- real *8, dimension(:), allocatable det_cla
- real *8, dimension(:), allocatable det sag
- real *8, dimension(:), allocatable det lag
- real *8, dimension(:), allocatable tnylda
- real *8, dimension(:), allocatable afrt_surface
- real *8 frt_surface
- real *8, dimension(:), allocatable auto_nyr
- real *8, dimension(:), allocatable auto_napp
- real *8, dimension(:), allocatable manure_kg
- real *8, dimension(:), allocatable auto_nstrs
- real *8, dimension(:,:), allocatable rcn_mo
- real *8, dimension(:,:), allocatable rammo_mo
- real *8, dimension(:,:), allocatable drydep_no3_mo
- real *8, dimension(:,:), allocatable drydep_nh4_mo
- real *8, dimension(:), allocatable rcn d
- real *8, dimension(:), allocatable rammo_d
- real *8, dimension(:), allocatable drydep_no3_d
- real *8, dimension(:), allocatable drydep_nh4_d
- real *8, dimension(:,:), allocatable yldn
- real *8, dimension(:,:), allocatable gwati
- real *8, dimension(:,:), allocatable gwatn
- real *8, dimension(:,:), allocatable gwatl
- real *8, dimension(:,:), allocatable gwatw
- real *8, dimension(:,:), allocatable gwatd
- real *8, dimension(:,:), allocatable gwatveg
- real *8, dimension(:,:), allocatable gwata
- real *8, dimension(:,:), allocatable gwats
- real *8, dimension(:,:), allocatable gwatspcon
- real *8, dimension(:,:), allocatable rfqeo_30d
- real *8, dimension(:,:), allocatable eo_30d
- real *8, dimension(:,:), allocatable wgncur
- real *8, dimension(:,:), allocatable wgnold
- real *8, dimension(:,:), allocatable wrt
- real *8, dimension(:,:), allocatable psetlp
- real *8, dimension(:,:), allocatable zdb
- real *8, dimension(:,:), allocatable pst_surq
- real *8, dimension(:,:), allocatable pst_enr
- real *8, dimension(:,:), allocatable plt_pst
- real *8, dimension(:,:), allocatable pst_sed
- real *8, dimension(:,:), allocatable psetlw
- real *8, dimension(:,:), allocatable pcpband
- real *8, dimension(:,:), allocatable wupnd
- real *8, dimension(:,:), allocatable tavband
- real *8, dimension(:,:), allocatable phi
- real *8, dimension(:,:), allocatable wat phi
- real *8, dimension(:,:), allocatable wushal
- real *8, dimension(:,:), allocatable wudeep

- real *8, dimension(:,:), allocatable tmnband
- real *8, dimension(:,:), allocatable snoeb
- real *8, dimension(:,:), allocatable nsetlw
- real *8, dimension(:,:), allocatable snotmpeb
- real *8, dimension(:,:), allocatable bss
- real *8, dimension(:,:), allocatable surf_bs
- real *8, dimension(:,:), allocatable tmxband
- real *8, dimension(:,:), allocatable nsetlp
- real *8, dimension(:,:), allocatable rainsub
- real *8, dimension(:,:), allocatable frad
- real *8, dimension(:), allocatable rstpbsb
- real *8, dimension(:,:), allocatable orig_snoeb
- real *8, dimension(:,:), allocatable orig_pltpst
- real *8, dimension(:,:), allocatable terr_p
- real *8, dimension(:,:), allocatable terr_cn
- real *8, dimension(:,:), allocatable terr_sl
- real *8, dimension(:,:), allocatable drain_d
- real *8, dimension(:,:), allocatable drain_t
- real *8, dimension(:,:), allocatable drain_g
- real *8, dimension(:,:), allocatable drain_idep
- real *8, dimension(:,:), allocatable cont_cn
- real *8, dimension(:,:), allocatable cont p
- real *8, dimension(:,:), allocatable filt w
- real *8, dimension(:,:), allocatable strip_n
- real *8, dimension(:,:), allocatable strip cn
- real *8, dimension(:,:), allocatable strip_c
- real *8, dimension(:,:), allocatable strip_p
- real *8, dimension(:,:), allocatable fire cn
- real *8, dimension(:,:), allocatable cropno upd
- real *8, dimension(:,:), allocatable hi_upd
- real *8, dimension(:,:), allocatable laimx_upd
- real *8, dimension(:,:,:), allocatable pst_lag
- real *8, dimension(:,:,:), allocatable phug
- · integer, dimension(:), allocatable nrelease
- integer, dimension(:), allocatable swtrg
- integer, dimension(:), allocatable hrupest
- integer, dimension(:), allocatable nro
- integer, dimension(:), allocatable **nrot**
- integer, dimension(:), allocatable nfert
- · integer, dimension(:), allocatable igro
- integer, dimension(:), allocatable nair
- integer, dimension(:), allocatable ipnd1
- · integer, dimension(:), allocatable ipnd2
- integer, dimension(:), allocatable nirr
- integer, dimension(:), allocatable iflod1
- integer, dimension(:), allocatable iflod2
- integer, dimension(:), allocatable ndtarg
- integer, dimension(:), allocatable iafrttyp
- integer, dimension(:), allocatable nstress
- integer, dimension(:), allocatable igrotree
- integer, dimension(:), allocatable grz days
- · integer, dimension(:), allocatable nmgt
- integer, dimension(:), allocatable icr
- integer, dimension(:), allocatable ncut
- integer, dimension(:), allocatable nsweep

- integer, dimension(:), allocatable nafert
- · integer, dimension(:), allocatable irn
- · integer, dimension(:), allocatable irrno
- integer, dimension(:), allocatable sol_nly
- integer, dimension(:), allocatable npcp
- integer, dimension(:), allocatable igrz
- integer, dimension(:), allocatable ndeat
- · integer, dimension(:), allocatable ngr
- integer, dimension(:), allocatable ncf
- · integer, dimension(:), allocatable idorm
- integer, dimension(:), allocatable urblu
- integer, dimension(:), allocatable hru_sub
- · integer, dimension(:), allocatable Idrain
- integer, dimension(:), allocatable hru_seq
- · integer, dimension(:), allocatable iurban
- integer, dimension(:), allocatable iday fert
- · integer, dimension(:), allocatable icfrt
- integer, dimension(:), allocatable ndcfrt
- · integer, dimension(:), allocatable irip
- · integer, dimension(:), allocatable ifld
- integer, dimension(:), allocatable hrugis
- integer, dimension(:), allocatable orig_igro
- integer, dimension(:), allocatable ntil
- · integer, dimension(:), allocatable irrsc
- integer, dimension(:), allocatable iwatable
- integer, dimension(:), allocatable curyr_mat
- integer, dimension(:), allocatable ncpest
- integer, dimension(:), allocatable icpst
- integer, dimension(:), allocatable ndcpst
- integer, dimension(:), allocatable iday_pest
- integer, dimension(:), allocatable irr_flag
- integer, dimension(:), allocatable irra_flag
- integer, dimension(:,:), allocatable rndseed

random number generator seed. The seeds in the array are used to generate random numbers for the following purposes:

- (1) wet/dry day probability
- (2) solar radiation
- (3) precipitation
- (4) USLE rainfall erosion index
- (5) wind speed
- (6) 0.5 hr rainfall fraction
- (7) relative humidity
- (8) maximum temperature
- (9) minimum temperature
- (10) generate new random numbers
- integer, dimension(:,:), allocatable iterr
- integer, dimension(:,:), allocatable iyterr
- integer, dimension(:,:), allocatable itdrain
- integer, dimension(:,:), allocatable iydrain
- integer, dimension(:,:), allocatable ncrops
- integer, dimension(:), allocatable manure_id
- integer, dimension(:,:), allocatable mgt_sdr
- integer, dimension(:,:), allocatable idplrot
- integer, dimension(:,:), allocatable icont
- integer, dimension(:,:), allocatable iycont
- integer, dimension(:,:), allocatable ifilt

- integer, dimension(:,:), allocatable iyfilt
- integer, dimension(:,:), allocatable istrip
- integer, dimension(:,:), allocatable iystrip
- integer, dimension(:,:), allocatable iopday
- integer, dimension(:,:), allocatable iopyr
- integer, dimension(:,:), allocatable mgt_ops
- real *8, dimension(:), allocatable wshd_pstap
- real *8, dimension(:), allocatable wshd_pstdg
- integer, dimension(12) ndmo
- · integer, dimension(:), allocatable npno
- · integer, dimension(:), allocatable mcrhru
- character(len=13), dimension(18) rfile

rainfall file names (.pcp)

• character(len=13), dimension(18) tfile

temperature file names (.tmp)

- character(len=4), dimension(1000) urbname
- character(len=1), dimension(:), allocatable hydgrp
- character(len=1), dimension(:), allocatable kirr
- character(len=16), dimension(:), allocatable snam
- character(len=17), dimension(300) pname
- character(len=13), dimension(79) heds
- character(len=13), dimension(24) hedb
- character(len=13), dimension(46) hedr
- character(len=13), dimension(41) hedrsv
- · character(len=13), dimension(40) hedwtr
- character(len=4), dimension(60) title

description lines in file.cio (1st 3 lines)

- character(len=4), dimension(5000) cpnm
- character(len=17), dimension(50) fname
- real *8, dimension(:,:,:), allocatable flomon
- real *8, dimension(:,:,:), allocatable solpstmon
- real *8, dimension(:,:,:), allocatable srbpstmon
- real *8, dimension(:,:,:), allocatable sedmon
- real *8, dimension(:,:,:), allocatable orgnmon
- real *8, dimension(:,:,:), allocatable orgpmon
- real *8, dimension(:,:,:), allocatable no3mon
- real *8, dimension(:,:,:), allocatable minpmon
- real *8, dimension(:,:,:), allocatable nh3mon
- real *8, dimension(:,:,:), allocatable no2mon
- real *8, dimension(:,:,:), allocatable **bactpmon**
- real *8, dimension(:,:,:), allocatable bactlpmon
- real *8, dimension(:,:,:), allocatable cmtl1mon
- real *8, dimension(:,:,:), allocatable cmtl2mon
- real *8, dimension(:,:,:), allocatable cmtl3mon
- real *8, dimension(:,:,:), allocatable chlamon
- real *8, dimension(:,:,:), allocatable disoxmon
- real *8, dimension(:,:,:), allocatable cbodmon
- real *8, dimension(:,:), allocatable floyr
- real *8, dimension(:,:), allocatable sedyr
- real *8, dimension(:,:), allocatable orgnyr
- real *8, dimension(:,:), allocatable orgpyr
- real *8, dimension(:,:), allocatable no3yr
- real *8, dimension(:,:), allocatable minpyr
- real *8, dimension(:,:), allocatable nh3yr

- real *8, dimension(:,:), allocatable no2yr
- real *8, dimension(:,:), allocatable bactpyr
- real *8, dimension(:,:), allocatable bactlpyr
- real *8, dimension(:,:), allocatable cmtl1yr
- real *8, dimension(:,:), allocatable cmtl2yr
- real *8, dimension(:,:), allocatable cmtl3yr
- real *8, dimension(:,:), allocatable chlayr
- real *8, dimension(:,:), allocatable disoxyr
- real *8, dimension(:,:), allocatable cbodyr
- real *8, dimension(:,:), allocatable solpstyr
- real *8, dimension(:,:), allocatable srbpstyr
- real *8, dimension(:,:), allocatable sol_mc
- real *8, dimension(:,:), allocatable sol mn
- real *8, dimension(:,:), allocatable sol_mp
- real *8, dimension(:), allocatable flocnst
- real *8, dimension(:), allocatable sedcnst
- real *8, dimension(:), allocatable orgncnst
- real *8, dimension(:), allocatable orgpcnst
- real *8, dimension(:), allocatable no3cnst
- real *8, dimension(:), allocatable minpcnst
- real *8, dimension(:), allocatable nh3cnst
- real *8, dimension(:), allocatable no2cnst
- real *8, dimension(:), allocatable bactpcnst
- real *8, dimension(:), allocatable cmtl1cnst
- real *8, dimension(:), allocatable cmtl2cnst
- real *8, dimension(:), allocatable bactlpcnst
- real *8, dimension(:), allocatable cmtl3cnst
- real *8, dimension(:), allocatable chlacnst
- real *8, dimension(:), allocatable disoxcnst
- real *8, dimension(:), allocatable cbodcnst
- real *8, dimension(:), allocatable solpstcnst
- real *8, dimension(:), allocatable srbpstcnst
- integer nstep

max number of time steps per day

integer idt

length of time step used to report precipitation data for sub-daily modeling (minutes)

- real *8, dimension(:), allocatable hrtwtr
- real *8, dimension(:), allocatable hhstor
- real *8, dimension(:), allocatable hdepth
- real *8, dimension(:), allocatable hsdti
- real *8, dimension(:), allocatable hrchwtr
- real *8, dimension(:), allocatable halgae
- real *8, dimension(:), allocatable horgn
- real *8, dimension(:), allocatable hnh4
- real *8, dimension(:), allocatable hno2
- real *8, dimension(:), allocatable hno3
- real *8, dimension(:), allocatable horgp
- real *8, dimension(:), allocatable hsolp
- real *8, dimension(:), allocatable hbod
- real *8, dimension(:), allocatable hdisox
- real *8, dimension(:), allocatable hchla
- real *8, dimension(:), allocatable hsedyld
- real *8, dimension(:), allocatable hsedst
- real *8, dimension(:), allocatable hharea

• real *8, dimension(:), allocatable hsolpst • real *8, dimension(:), allocatable hsorpst real *8, dimension(:), allocatable hhqday • real *8, dimension(:), allocatable precipdt real *8, dimension(:), allocatable hhtime • real *8, dimension(:), allocatable hbactp real *8, dimension(:), allocatable hbactlp integer, dimension(10) ivar_orig • real *8, dimension(10) rvar_orig · integer nsave number of save commands in .fig file integer nauto · integer iatmodep • real *8, dimension(:), allocatable wattemp • real *8, dimension(:), allocatable lkpst_mass real *8, dimension(:), allocatable lkspst_mass real *8, dimension(:), allocatable vel_chan real *8, dimension(:), allocatable vfscon real *8, dimension(:), allocatable vfsratio • real *8, dimension(:), allocatable vfsch • real *8, dimension(:), allocatable vfsi real *8, dimension(:,:), allocatable filter i real *8, dimension(:,:), allocatable filter_ratio • real *8, dimension(:,:), allocatable filter_con real *8, dimension(:,:), allocatable filter_ch • real *8, dimension(:,:), allocatable sol_n · integer cswat = 0 Static soil carbon (old mineralization routines) = 1 C-FARM one carbon pool model = 2 Century model real *8, dimension(:,:), allocatable sol_bdp • real *8, dimension(:,:), allocatable tillagef real *8, dimension(:), allocatable rtfr • real *8, dimension(:), allocatable stsol_rd integer urban flag integer dorm_flag real *8 bf_flg · real *8 iabstr real *8, dimension(:), allocatable ubnrunoff real *8, dimension(:), allocatable ubntss real *8, dimension(:,:), allocatable sub ubnrunoff real *8, dimension(:,:), allocatable sub_ubntss real *8, dimension(:,:), allocatable ovrlnd_dt real *8, dimension(:,:,:), allocatable hhsurf_bs · integer iuh unit hydrograph method: 1=triangular UH; 2=gamma funtion UH; integer sed_ch channel routing for HOURLY; 0=Bagnold; 2=Brownlie; 3=Yang; real *8 eros expo an exponent in the overland flow erosion equation ranges 1.5-3.0 real *8 eros spl coefficient of splash erosion varing 0.9-3.1 real *8 rill mult

Multiplier to USLE K for soil susceptible to rill erosion, range 0.5-2.0.

- real *8 sedprev
- real *8 c factor
- real *8 ch d50

median particle diameter of channel bed (mm)

real *8 sig g

geometric standard deviation of particle sizes for the main channel. Mean air temperature at which precipitation is equally likely to be rain as snow/freezing rain.

real *8 uhalpha

alpha coefficient for estimating unit hydrograph using a gamma function (*.bsn)

- real *8 abstinit
- real *8 abstmax
- real *8, dimension(:,:), allocatable hhsedy
- real *8, dimension(:,:), allocatable sub_subp_dt
- real *8, dimension(:,:), allocatable sub hhsedy
- real *8, dimension(:,:), allocatable sub_atmp
- real *8, dimension(:), allocatable rhy
- real *8, dimension(:), allocatable init_abstrc
- real *8, dimension(:), allocatable dratio
- real *8, dimension(:), allocatable hrtevp
- real *8, dimension(:), allocatable hrttlc
- real *8, dimension(:,:,:), allocatable rchhr
- real *8, dimension(:), allocatable hhresflwi
- real *8, dimension(:), allocatable hhresflwo
- real *8, dimension(:), allocatable hhressedi
- real *8, dimension(:), allocatable hhressedo
- character(len=4), dimension(:), allocatable lu_nodrain
- integer, dimension(:), allocatable bmpdrain
- real *8, dimension(:), allocatable sub_cn2
- real *8, dimension(:), allocatable sub ha urb
- real *8, dimension(:), allocatable bmp_recharge
- real *8, dimension(:), allocatable sub_ha_imp
- real *8, dimension(:), allocatable subdr_km
- real *8, dimension(:), allocatable subdr_ickm
- real *8, dimension(:,:), allocatable sf_im
- real *8, dimension(:,:), allocatable sf_iy
- real *8, dimension(:,:), allocatable sp_sa
- real *8, dimension(:,:), allocatable sp_pvol
- real *8, dimension(:,:), allocatable sp_pd
- real *8, dimension(:,:), allocatable sp_sedi
- real *8, dimension(:,:), allocatable sp sede
- real *8, dimension(:,:), allocatable ft_sa
- real *8, dimension(:,:), allocatable ft_fsa
- real *8, dimension(:,:), allocatable ft_dep
- real *8, dimension(:,:), allocatable ft_h
- real *8, dimension(:,:), allocatable ft_pd
- real *8, dimension(:,:), allocatable ft k
- real *8, dimension(:,:), allocatable ft_dp
- real *8, dimension(:,:), allocatable ft_dc
- real *8, dimension(:,:), allocatable ft_por
- real *8, dimension(:,:), allocatable tss den
- real *8, dimension(:,:), allocatable ft_alp
- real *8, dimension(:,:), allocatable sf_fr
- real *8, dimension(:,:), allocatable sp qi
- real *8, dimension(:,:), allocatable sp_k

- real *8, dimension(:,:), allocatable ft_qpnd
- real *8, dimension(:,:), allocatable sp_dp
- real *8, dimension(:,:), allocatable ft_qsw
- real *8, dimension(:,:), allocatable ft_qin
- real *8, dimension(:,:), allocatable ft qout
- real *8, dimension(:,:), allocatable ft_sedpnd
- real *8, dimension(:,:), allocatable sp bpw
- real *8, dimension(:,:), allocatable ft_bpw
- real *8, dimension(:,:), allocatable ft_sed_cumul
- real *8, dimension(:,:), allocatable sp sed cumul
- · integer, dimension(:), allocatable num_sf
- integer, dimension(:,:), allocatable sf_typ
- integer, dimension(:,:), allocatable sf_dim
- integer, dimension(:,:), allocatable ft_qfg
- integer, dimension(:,:), allocatable sp_qfg
- integer, dimension(:.:), allocatable sf ptp
- integer, dimension(:,:), allocatable ft fc
- real *8 sfsedmean
- real *8 sfsedstdev
- integer, dimension(:), allocatable dtp_subnum
- integer, dimension(:), allocatable dtp_imo
- integer, dimension(:), allocatable dtp iyr
- integer, dimension(:), allocatable dtp numweir
- integer, dimension(:), allocatable dtp_numstage
- integer, dimension(:), allocatable dtp stagdis
- integer, dimension(:), allocatable dtp_reltype
- · integer, dimension(:), allocatable dtp onoff
- real *8, dimension(:), allocatable cf
- real *8, dimension(:), allocatable cfh
- real *8, dimension(:), allocatable cfdec
- real *8, dimension(:), allocatable lat orgn
- real *8, dimension(:), allocatable lat_orgp
- integer, dimension(:,:), allocatable dtp_weirtype
- integer, dimension(:,:), allocatable dtp weirdim
- real *8, dimension(:), allocatable dtp_evrsv
- real *8, dimension(:), allocatable dtp_inflvol
- real *8, dimension(:), allocatable dtp_totwrwid
- real *8, dimension(:), allocatable dtp_lwratio
- real *8, dimension(:), allocatable dtp_wdep • real *8, dimension(:), allocatable dtp_totdep
- real *8, dimension(:), allocatable dtp watdepact
- real *8, dimension(:), allocatable dtp_outflow
- real *8, dimension(:), allocatable dtp totrel
- real *8, dimension(:), allocatable dtp_backoff
- real *8, dimension(:), allocatable dtp_seep_sa
- real *8, dimension(:), allocatable dtp evap sa
- real *8, dimension(:), allocatable dtp pet day
- real *8, dimension(:), allocatable dtp_pcpvol
- real *8, dimension(:), allocatable dtp_seepvol
- real *8, dimension(:), allocatable dtp_evapvol
- real *8, dimension(:), allocatable dtp_flowin
- real *8, dimension(:), allocatable dtp backup length
- real *8, dimension(:), allocatable dtp_intcept
- real *8, dimension(:), allocatable dtp_expont
- real *8, dimension(:), allocatable dtp_coef1

- real *8, dimension(:), allocatable dtp coef2
- real *8, dimension(:), allocatable dtp coef3
- real *8, dimension(:), allocatable dtp_dummy1
- real *8, dimension(:), allocatable dtp dummy2
- real *8, dimension(:), allocatable dtp dummy3
- real *8, dimension(:), allocatable dtp_ivol
- real *8, dimension(:), allocatable dtp ised
- integer, dimension(:,:), allocatable so_res_flag
- integer, dimension(:,:), allocatable ro bmp flag
- real *8, dimension(:,:), allocatable sol_watp
- real *8, dimension(:,:), allocatable sol_solp_pre
- real *8, dimension(:,:), allocatable psp_store
- real *8, dimension(:,:), allocatable ssp_store
- real *8, dimension(:,:), allocatable so_res
- real *8, dimension(:,:), allocatable sol_cal
- real *8, dimension(:.:), allocatable sol ph
- integer sol p model
- integer, dimension(:,:), allocatable a days
- integer, dimension(:,:), allocatable b days
- real *8, dimension(:), allocatable harv min
- real *8, dimension(:), allocatable fstap
- real *8, dimension(:), allocatable min res
- real *8, dimension(:,:), allocatable ro bmp flo
- real *8, dimension(:,:), allocatable ro_bmp_sed
- real *8, dimension(:,:), allocatable ro bmp bac
- real *8, dimension(:,:), allocatable ro_bmp_pp
- real *8, dimension(:,:), allocatable ro bmp sp
- real *8, dimension(:,:), allocatable ro bmp pn
- real *8, dimension(:,:), allocatable ro bmp sn
- real *8, dimension(:,:), allocatable ro bmp flos
- real *8, dimension(:,:), allocatable ro bmp seds
- real *8, dimension(:,:), allocatable ro bmp bacs
- real *8, dimension(:,:), allocatable ro_bmp_pps
- real *8, dimension(:,:), allocatable ro bmp sps
- real *8, dimension(:,:), allocatable ro bmp pns real *8, dimension(:,:), allocatable ro bmp sns
- real *8, dimension(:,:), allocatable ro bmp flot
- real *8, dimension(:,:), allocatable ro_bmp_sedt
- real *8, dimension(:,:), allocatable ro_bmp_bact
- real *8, dimension(:,:), allocatable ro bmp ppt
- real *8, dimension(:,:), allocatable ro bmp spt
- real *8, dimension(:,:), allocatable ro_bmp_pnt
- real *8, dimension(:,:), allocatable ro bmp snt
- real *8, dimension(:), allocatable bmp_flo
- real *8, dimension(:), allocatable bmp sed real *8, dimension(:), allocatable bmp bac
- real *8, dimension(:), allocatable bmp pp real *8, dimension(:), allocatable bmp sp
- real *8, dimension(:), allocatable bmp_pn
- real *8, dimension(:), allocatable bmp_sn
- real *8, dimension(:), allocatable bmp_flag
- real *8, dimension(:), allocatable bmp flos real *8, dimension(:), allocatable bmp seds
- real *8, dimension(:), allocatable bmp bacs
- real *8, dimension(:), allocatable bmp_pps

- real *8, dimension(:), allocatable bmp_sps
- real *8, dimension(:), allocatable bmp_pns
- real *8, dimension(:), allocatable bmp_sns
- real *8, dimension(:), allocatable bmp_flot
- real *8, dimension(:), allocatable bmp_sedt
- real *8, dimension(:), allocatable bmp_bact
- real *8, dimension(:), allocatable bmp_ppt
- real *8, dimension(:), allocatable bmp_spt
- real *8, dimension(:), allocatable bmp_pnt
- real *8, dimension(:), allocatable bmp_snt
- real *8, dimension(:,:), allocatable dtp_wdratio
- real *8, dimension(:,:), allocatable dtp_depweir
- real *8, dimension(:,:), allocatable dtp_diaweir
- real *8, dimension(:,:), allocatable dtp_retperd
- real *8, dimension(:,:), allocatable dtp_pcpret
- real *8, dimension(:.:), allocatable dtp cdis
- real *8, dimension(:,:), allocatable dtp_flowrate
- real *8, dimension(:,:), allocatable dtp_wrwid
- real *8, dimension(:,:), allocatable dtp_addon
- real *8, dimension(:), allocatable ri_subkm
- real *8, dimension(:), allocatable ri_totpvol
- real *8, dimension(:), allocatable irmmdt
- real *8, dimension(:,:), allocatable ri_sed
- real *8, dimension(:,:), allocatable ri_fr
- real *8, dimension(:,:), allocatable ri_dim
- real *8, dimension(:,:), allocatable ri_im
- real *8, dimension(:,:), allocatable ri_iy
- real *8, dimension(:,:), allocatable ri_sa
- real *8, dimension(:,:), allocatable ri_vol
- real *8, dimension(:,:), allocatable ri_qi
- real *8, dimension(:,:), allocatable ri_k
 real *8, dimension(:,:), allocatable ri_dd
- real *8, dimension(:,:), allocatable ri_evrsv
- real *8, dimension(:,:), allocatable ri dep
- real *8, dimension(:,:), allocatable ri_ndt
- real *8, dimension(:,:), allocatable ri_pmpvol
- real *8, dimension(:,:), allocatable ri_sed_cumul
- real *8, dimension(:,:), allocatable hrnopcp
- real *8, dimension(:,:), allocatable ri_qloss
- real *8, dimension(:,:), allocatable ri_pumpv
- real *8, dimension(:,:), allocatable ri sedi
- character(len=4), dimension(:,:), allocatable ri_nirr
- integer, dimension(:), allocatable num_ri
- · integer, dimension(:), allocatable ri_luflg
- integer, dimension(:), allocatable num noirr
- integer, dimension(:), allocatable wtp subnum
- · integer, dimension(:), allocatable wtp onoff
- integer, dimension(:), allocatable wtp_imo
- integer, dimension(:), allocatable wtp_iyr
- · integer, dimension(:), allocatable wtp_dim
- · integer, dimension(:), allocatable wtp_stagdis
- integer, dimension(:), allocatable wtp_sdtype
- real *8, dimension(:), allocatable wtp_pvol
- real *8, dimension(:), allocatable wtp_pdepth
- real *8, dimension(:), allocatable wtp_sdslope

- real *8, dimension(:), allocatable wtp lenwdth
- real *8, dimension(:), allocatable wtp extdepth
- · real *8, dimension(:), allocatable wtp_hydeff
- real *8, dimension(:), allocatable wtp evrsv
- real *8, dimension(:), allocatable wtp_sdintc
- real *8, dimension(:), allocatable wtp_sdexp
- real *8, dimension(:), allocatable wtp sdc1
- real *8, dimension(:), allocatable wtp_sdc2
- real *8, dimension(:), allocatable wtp sdc3
- real *8, dimension(:), allocatable wtp_pdia
- real *8, dimension(:), allocatable wtp plen
- real *8, dimension(:), allocatable wtp_pmann
- real *8, dimension(:), allocatable wtp_ploss
- real *8, dimension(:), allocatable wtp_k
- real *8, dimension(:), allocatable wtp_dp
- real *8, dimension(:), allocatable wtp_sedi
- real *8, dimension(:), allocatable wtp_sede
- real *8, dimension(:), allocatable wtp_qi
- real *8 bio_init
- real *8 lai init
- real *8 cnop
- real *8 hi ovr
- real *8 harveff
- real *8 frac harvk
- real *8 lid_vgcl
- real *8 lid_vgcm
- real *8 lid_qsurf_total
- real *8 lid farea sum
- real *8, dimension(:,:), allocatable lid_cuminf_last
- real *8, dimension(:,:), allocatable lid sw last
- real *8, dimension(:,:), allocatable interval_last
- real *8, dimension(:,:), allocatable lid f last
- real *8, dimension(:,:), allocatable lid_cumr_last
- real *8, dimension(:,:), allocatable lid_str_last
- real *8, dimension(:,:), allocatable lid_farea
- real *8, dimension(:,:), allocatable lid_qsurf
- real *8, dimension(:,:), allocatable lid_sw_add
- real *8, dimension(:,:), allocatable lid_cumqperc_last
- real *8, dimension(:,:), allocatable lid_cumirr_last
- real *8, dimension(:,:), allocatable lid_excum_last
- integer, dimension(:,:), allocatable gr onoff
- integer, dimension(:,:), allocatable gr_imo
- integer, dimension(:,:), allocatable gr_iyr
- real *8, dimension(:,:), allocatable gr_farea
- real *8, dimension(:,:), allocatable gr solop
- real *8, dimension(:,:), allocatable gr etcoef
- real *8, dimension(:,:), allocatable gr fc
- real *8, dimension(:,:), allocatable gr_wp
- real *8, dimension(:,:), allocatable gr_ksat
- real *8, dimension(:,:), allocatable gr_por
- real *8, dimension(:,:), allocatable gr_hydeff
- real *8, dimension(:,:), allocatable gr_soldpt
- real *8, dimension(:,:), allocatable gr_dummy1
- real *8, dimension(:,:), allocatable gr dummy2
- real *8, dimension(:,:), allocatable gr_dummy3

- real *8, dimension(:,:), allocatable gr_dummy4
- real *8, dimension(:,:), allocatable gr_dummy5
- integer, dimension(:,:), allocatable rg_onoff
- integer, dimension(:,:), allocatable rg_imo
- integer, dimension(:,:), allocatable rg_iyr
- real *8, dimension(:,:), allocatable rg_farea
- real *8, dimension(:,:), allocatable rg solop
- real *8, dimension(:,:), allocatable rg_etcoef
- real *8, dimension(:,:), allocatable rg fc
- real *8, dimension(:,:), allocatable rg_wp
- real *8, dimension(:,:), allocatable rg_ksat
- real *8, dimension(:,:), allocatable rg_por
- real *8, dimension(:,:), allocatable rg_hydeff
- real *8, dimension(:,:), allocatable rg soldpt
- real *8, dimension(:,:), allocatable rg_dimop
- real *8, dimension(:.:), allocatable rg sarea
- real *8, dimension(:,:), allocatable rg_vol
- real *8, dimension(:,:), allocatable rq sth
- real *8, dimension(:,:), allocatable rg_sdia
- real *8, dimension(:,:), allocatable rg bdia
- real *8, dimension(:,:), allocatable rg_sts
- real *8, dimension(:,:), allocatable rg_orifice
- real *8, dimension(:,:), allocatable rg_oheight
- real *8, dimension(:,:), allocatable rg_odia
- real *8, dimension(:,:), allocatable rg dummy1
- real *8, dimension(:,:), allocatable rg_dummy2
- real *8, dimension(:,:), allocatable rg dummy3
- real *8, dimension(:,:), allocatable rg_dummy4
- real *8, dimension(:,:), allocatable rg_dummy5
- integer, dimension(:,:), allocatable cs_onoff
- integer, dimension(:,:), allocatable cs_imo
- integer, dimension(:,:), allocatable cs_iyr
- integer, dimension(:,:), allocatable cs_grcon
- real *8, dimension(:,:), allocatable cs_farea
- real *8, dimension(:,:), allocatable cs_vol
- real *8, dimension(:,:), allocatable cs_rdepth
- real *8, dimension(:,:), allocatable cs_dummy1
 real *8, dimension(:,:), allocatable cs_dummy2
- real *8, dimension(:,:), allocatable cs_dummy3
- real *8, dimension(:,:), allocatable cs_dummy4
- real *8, dimension(:,:), allocatable cs dummy5
- integer, dimension(:,:), allocatable **pv_onoff**
- integer, dimension(:,:), allocatable pv imo
- integer, dimension(:,:), allocatable pv_iyr
- integer, dimension(:,:), allocatable pv solop
- real *8, dimension(:,:), allocatable pv grvdep
- real *8, dimension(:,:), allocatable pv grvpor
- real *8, dimension(:,:), allocatable pv_farea
- real *8, dimension(:,:), allocatable pv_drcoef
- real *8, dimension(:,:), allocatable pv_fc
- real *8, dimension(:,:), allocatable pv wp
- real *8, dimension(:,:), allocatable pv_ksat
- real *8, dimension(:,:), allocatable pv_por
- real *8, dimension(:,:), allocatable pv_hydeff
- real *8, dimension(:,:), allocatable pv_soldpt

- real *8, dimension(:,:), allocatable pv_dummy1
- real *8, dimension(:,:), allocatable pv dummy2
- real *8, dimension(:,:), allocatable pv_dummy3
- real *8, dimension(:,:), allocatable pv_dummy4
- real *8, dimension(:,:), allocatable pv dummy5
- integer, dimension(:,:), allocatable lid_onoff
- real *8, dimension(:,:), allocatable sol bmc
- real *8, dimension(:,:), allocatable sol_bmn
- real *8, dimension(:,:), allocatable sol hsc
- real *8, dimension(:,:), allocatable sol_hsn
- real *8, dimension(:,:), allocatable sol_hpc
- real *8, dimension(:,:), allocatable sol hpn
- real *8, dimension(:,:), allocatable sol Im
- real *8, dimension(:,:), allocatable sol_lmc
- real *8, dimension(:,:), allocatable sol_lmn
- real *8, dimension(:.:), allocatable sol Is
- real *8, dimension(:,:), allocatable sol_lsl
- real *8, dimension(:.:), allocatable sol lsc
- real *8, dimension(:,:), allocatable sol_lsn
- real *8, dimension(:,:), allocatable sol rnmn
- real *8, dimension(:,:), allocatable sol_lslc
- real *8, dimension(:,:), allocatable sol Islnc
- real *8, dimension(:,:), allocatable sol rspc
- real *8, dimension(:,:), allocatable sol_woc
- real *8, dimension(:,:), allocatable sol won
- Teal *0, differsion(.,.), anocatable 301_wo
- real *8, dimension(:,:), allocatable sol_hp
- real *8, dimension(:,:), allocatable sol_hs
- real *8, dimension(:,:), allocatable sol_bm
- real *8, dimension(:,:), allocatable sol_cac
- real *8, dimension(:,:), allocatable sol_cec
- real *8, dimension(:,:), allocatable sol_percc
- real *8, dimension(:,:), allocatable sol_latc
- real *8, dimension(:), allocatable sedc_d
- real *8, dimension(:), allocatable surfqc_d
- real *8, dimension(:), allocatable latc_d
- real *8, dimension(:), allocatable percc_d
 real *8, dimension(:), allocatable foc d
- real *8, dimension(:), allocatable nppc d
- real *8, dimension(:), allocatable rsdc_d
- real *8, dimension(:), allocatable grainc d
- real *8, dimension(:), allocatable stoverc d
- real *8, dimension(:), allocatable soc_d
- real *8, dimension(:), allocatable rspc_d
- real *8, dimension(:), allocatable emitc_d
- real *8, dimension(:), allocatable sub_sedc_d
- real *8, dimension(:), allocatable sub_surfqc_d
- real *8, dimension(:), allocatable sub latc d
- real *8, dimension(:), allocatable sub_percc_d
- real *8, dimension(:), allocatable sub_foc_d
- real *8, dimension(:), allocatable sub_nppc_d
- real *8, dimension(:), allocatable sub_rsdc_d
- real *8, dimension(:), allocatable sub_grainc_d
- real *8, dimension(:), allocatable sub_stoverc_d
- real *8, dimension(:), allocatable sub_emitc_d
- real *8, dimension(:), allocatable sub_soc_d

- real *8, dimension(:), allocatable sub_rspc_d
- real *8, dimension(:), allocatable sedc_m
- real *8, dimension(:), allocatable surfqc_m
- real *8, dimension(:), allocatable latc_m
- real *8, dimension(:), allocatable percc_m
- real *8, dimension(:), allocatable foc_m
- real *8, dimension(:), allocatable nppc_m
- real *8, dimension(:), allocatable rsdc_m
- real *8, dimension(:), allocatable grainc_m
- real *8, dimension(:), allocatable stoverc_m
- real *8, dimension(:), allocatable emitc_m
- real *8, dimension(:), allocatable soc_m
- real *8, dimension(:), allocatable rspc_m
- real *8, dimension(:), allocatable sedc_a
- real *8, dimension(:), allocatable surfqc_a
- real *8, dimension(:), allocatable latc_a
- real *8, dimension(:), allocatable percc_a
- real *8, dimension(:), allocatable foc a
- real *8, dimension(:), allocatable nppc a
- real *8, dimension(:), allocatable rsdc_a
- real *8, dimension(:), allocatable grainc_a
- real *8, dimension(:), allocatable stoverc_a
- real *8, dimension(:), allocatable emitc_a
- real *8, dimension(:), allocatable soc a
- real *8, dimension(:), allocatable rspc_a
- integer, dimension(:), allocatable tillage_switch
- real *8, dimension(:), allocatable tillage_depth
- integer, dimension(:), allocatable tillage_days
- real *8, dimension(:), allocatable tillage_factor
- real *8 dthy

time interval for subdaily routing

- integer, dimension(4) ihx
- integer, dimension(:), allocatable nhy
- real *8, dimension(:), allocatable rchx
- real *8, dimension(:), allocatable rcss
- real *8, dimension(:), allocatable qcap
- real *8, dimension(:), allocatable chxa
- real *8, dimension(:), allocatable chxp
- real *8, dimension(:,:,:), allocatable qhy
- real *8 ff1
- real *8 ff2

5.1.1 Detailed Description

main module contatining the global variables

Author

modified by Javier Burguete Tolosa

5.1.2 Variable Documentation

5.1.2.1 igropt

integer parm::igropt

Qual2E option for calculating the local specific growth rate of algae 1: multiplicative.

$$u = mumax\,fll\,fnn\,fpp$$

2: limiting nutrient

$$u = mumax fll \min(fnn, fpp)$$

3: harmonic mean

$$u = mumax \, fll \, \frac{2}{\frac{1}{fnn} + \frac{1}{fpp}}$$

Chapter 6

Data Type Documentation

6.1 parm::ascrv Interface Reference

Public Member Functions

• subroutine **ascrv** (x1, x2, x3, x4, x5, x6)

The documentation for this interface was generated from the following file:

• modparm.f90

6.2 parm::atri Interface Reference

Public Member Functions

• real *8 function atri (at1, at2, at3, at4i)

The documentation for this interface was generated from the following file:

· modparm.f90

6.3 parm::aunif Interface Reference

Public Member Functions

• real *8 function aunif (x1)

The documentation for this interface was generated from the following file:

modparm.f90

6.4 parm::dstn1 Interface Reference

Public Member Functions

• real *8 function dstn1 (rn1, rn2)

The documentation for this interface was generated from the following file:

· modparm.f90

6.5 parm::ee Interface Reference

Public Member Functions

• real *8 function ee (tk)

The documentation for this interface was generated from the following file:

· modparm.f90

6.6 parm::expo Interface Reference

Public Member Functions

• real *8 function expo (xx)

The documentation for this interface was generated from the following file:

• modparm.f90

6.7 parm::fcgd Interface Reference

Public Member Functions

• real *8 function fcgd (xx)

The documentation for this interface was generated from the following file:

modparm.f90

6.8 parm::HQDAV Interface Reference

Public Member Functions

• subroutine hqdav (A, CBW, QQ, SSS, ZCH, ZX, CHW, FPW, jrch)

The documentation for this interface was generated from the following file:

· modparm.f90

6.9 parm::layersplit Interface Reference

Public Member Functions

subroutine layersplit (dep_new)

The documentation for this interface was generated from the following file:

· modparm.f90

6.10 parm::ndenit Interface Reference

Public Member Functions

• subroutine **ndenit** (k, j, cdg, wdn, void)

The documentation for this interface was generated from the following file:

· modparm.f90

6.11 parm::qman Interface Reference

Public Member Functions

real *8 function qman (x1, x2, x3, x4)

The documentation for this interface was generated from the following file:

modparm.f90

6.12 parm::regres Interface Reference

Public Member Functions

• real *8 function regres (k)

The documentation for this interface was generated from the following file:

· modparm.f90

6.13 parm::rsedaa Interface Reference

Public Member Functions

· subroutine rsedaa (years)

The documentation for this interface was generated from the following file:

· modparm.f90

6.14 parm::tair Interface Reference

Public Member Functions

• real *8 function tair (hr, jj)

The documentation for this interface was generated from the following file:

· modparm.f90

6.15 parm::theta Interface Reference

Public Member Functions

• real *8 function theta (r20, thk, tmp)

The documentation for this interface was generated from the following file:

· modparm.f90

6.16 parm::vbl Interface Reference

Public Member Functions

• subroutine vbl (evx, spx, pp, qin, ox, vx1, vy, yi, yo, ysx, vf, vyf, aha)

The documentation for this interface was generated from the following file:

· modparm.f90

Chapter 7

File Documentation

7.1 allocate_parms.f90 File Reference

this subroutine allocates array sizes

Functions/Subroutines

· subroutine allocate_parms

7.1.1 Detailed Description

this subroutine allocates array sizes

Author

modified by Javier Burguete

7.2 ascrv.f90 File Reference

this subroutine computes shape parameters x5 and x6 for the S curve equation

Functions/Subroutines

• subroutine **ascrv** (x1, x2, x3, x4, x5, x6)

7.2.1 Detailed Description

this subroutine computes shape parameters x5 and x6 for the S curve equation

Author

modified by Javier Burguete this subroutine computes shape parameters x5 and x6 for the S curve equation

$$x = \frac{y}{y + \exp(x5 + x6y)}$$

given 2 (x,y) points along the curve. x5 is determined by solving the equation with x and y values measured around the midpoint of the curve (approx. 50% of the maximum value for x) and x6 is determined by solving the equation with x and y values measured close to one of the endpoints of the curve (100% of the maximum value for x). This subroutine is called from readbsn.f90 and readplant.f90

70 File Documentation

Parameters

in	x1	value for x in the above equation for first datapoint, x1 should be close to 0.5 (the midpoint of the curve)
in	x2	value for x in the above equation for second datapoint, x2 should be close to 0.0 or 1.0
in	хЗ	value for y in the above equation corresponding to x1
in	x4	value for y in the above equation corresponding to x2
out	х5	1st shape parameter for S curve equation characterizing the midpoint of the curve
out	х6	2nd shape parameter for S curve equation characterizing the regions close to the endpoints of
		the curve

7.3 aunif.f90 File Reference

This function generates random numbers ranging from 0.0 to 1.0.

Functions/Subroutines

• real *8 function aunif (x1)

7.3.1 Detailed Description

This function generates random numbers ranging from 0.0 to 1.0.

Author

modified by Javier Burguete

Parameters

 \mid x1 \mid random number generator seed (integer) where 0 < x1 < 2147483647

Returns

random number ranging from 0.0 to 1.0

In the process of calculating the random number, the seed (x1) is set to a new value. This function implements the prime-modulus generator

$$xi = 16807 xi \mod (2^{31} - 1)$$

using code which ensures that no intermediate result uses more than 31 bits. The theory behind the code is summarized in [1]

7.4 caps.f90 File Reference

this subroutine reads the input and output names given in file.cio and converts all capital letters to lowercase letters.

Functions/Subroutines

• subroutine caps (file_name)

7.4.1 Detailed Description

this subroutine reads the input and output names given in file.cio and converts all capital letters to lowercase letters.

Author

modified by Javier Burguete

Parameters

ĺ

7.5 gcycl.f90 File Reference

This subroutine initializes the random number seeds. If the user desires a different set of random numbers for each simulation run, the random number generator is used to reset the values of the seeds.

Functions/Subroutines

subroutine gcycl

7.5.1 Detailed Description

This subroutine initializes the random number seeds. If the user desires a different set of random numbers for each simulation run, the random number generator is used to reset the values of the seeds.

Author

modified by Javier Burguete

7.6 getallo.f90 File Reference

This subroutine calculates the number of HRUs, subbasins, etc. in the simulation. These values are used to allocate array sizes.

Functions/Subroutines

subroutine getallo

72 File Documentation

7.6.1 Detailed Description

This subroutine calculates the number of HRUs, subbasins, etc. in the simulation. These values are used to allocate array sizes.

Author

modified by Javier Burguete

7.7 main.f90 File Reference

this is the main program that reads input, calls the main simulation model, and writes output.

Functions/Subroutines

· program main

this is the main program that reads input, calls the main simulation model, and writes output.

7.7.1 Detailed Description

this is the main program that reads input, calls the main simulation model, and writes output.

7.7.2 Function/Subroutine Documentation

7.7.2.1 main()

```
program main ( )
```

this is the main program that reads input, calls the main simulation model, and writes output.

Author

modified by Javier Burguete Tolosa

7.8 readbsn.f90 File Reference

this subroutine reads data from the basin input file (.bsn). This file contains information related to processes modeled or defined at the watershed level

Functions/Subroutines

· subroutine readbsn

7.8.1 Detailed Description

this subroutine reads data from the basin input file (.bsn). This file contains information related to processes modeled or defined at the watershed level

Author

modified by Javier Burguete

7.9 readfcst.f90 File Reference

this subroutine reads the HRU forecast weather generator parameters from the .cst file

Functions/Subroutines

· subroutine readfcst

7.9.1 Detailed Description

this subroutine reads the HRU forecast weather generator parameters from the .cst file

Author

modified by Javier Burguete

7.10 readfile.f90 File Reference

this subroutine opens the main input and output files and reads watershed information from the file.cio

Functions/Subroutines

· subroutine readfile

7.10.1 Detailed Description

this subroutine opens the main input and output files and reads watershed information from the file.cio

Author

modified by Javier Burguete

7.11 readwwq.f90 File Reference

this subroutine reads the watershed stream water quality input data (.wwq file) and initializes the QUAL2E variables which apply to the entire watershed

74 File Documentation

Functions/Subroutines

• subroutine readwwq

7.11.1 Detailed Description

this subroutine reads the watershed stream water quality input data (.wwq file) and initializes the QUAL2E variables which apply to the entire watershed

Author

modified by Javier Burguete

7.12 simulate.f90 File Reference

this subroutine contains the loops governing the modeling of processes in the watershed

Functions/Subroutines

· subroutine simulate

7.12.1 Detailed Description

this subroutine contains the loops governing the modeling of processes in the watershed

Author

modified by Javier Burguete

Bibliography

[1] P Bratley, B L Fox, and L E Schrage. A Guide to Simulation. Springer-Verlag, New York, USA, 1983. 70

76 BIBLIOGRAPHY

Index

```
allocate_parms.f90, 69
ascrv.f90, 69
aunif.f90, 70
caps.f90, 70
gcycl.f90, 71
getallo.f90, 71
igropt
    parm, 63
main
    main.f90, 72
main.f90, 72
    main, 72
parm, 13
    igropt, 63
parm::ascrv, 65
parm::atri, 65
parm::aunif, 65
parm::dstn1, 66
parm::ee, 66
parm::expo, 66
parm::fcgd, 66
parm::HQDAV, 67
parm::layersplit, 67
parm::ndenit, 67
parm::qman, 67
parm::regres, 68
parm::rsedaa, 68
parm::tair, 68
parm::theta, 68
parm::vbl, 68
readbsn.f90, 72
readfcst.f90, 73
readfile.f90, 73
readwwq.f90, 73
```

simulate.f90, 74