Integration

Richardson Extrapolation and Romberg Integration

Ashley Gannon

Fall 2020

Richardson extrapolation methods improve the results of numerical integration by using two estimates of an integral to compute a third, more accurate approximation.

Richardson extrapolation methods improve the results of numerical integration by using two estimates of an integral to compute a third, more accurate approximation.

We'll do examples involving successive iterates of the Trapezoidal Rule.

Richardson extrapolation methods improve the results of numerical integration by using two estimates of an integral to compute a third, more accurate approximation.

We'll do examples involving successive iterates of the Trapezoidal Rule.

We can represent the error of the Trapezoidal rule by

$$I = I(h) + E(h)$$

where I is the exact integral, I(h) is the integral approximation using the Trapezoidal rule, and E(h) is the truncation error

$$E\cong -\frac{b-a}{12}h^2\overline{f}^{\prime\prime}$$

when h = (b - a)/n.

If we make two seperate estimates using segment sizes \textit{h}_1 and \textit{h}_2 , we can rewrite

$$I = I(h) + E(h)$$

as

$$I(h_1) + E(h_1) = I(h_2) + E(h_2)$$

If we make two seperate estimates using segment sizes h_1 and h_2 , we can rewrite

$$I=I(h)+E(h)$$

as

$$I(h_1) + E(h_1) = I(h_2) + E(h_2)$$

If we assume that $\overline{f}^{\prime\prime}$ is constant for any h, we have the relation

$$\frac{E(h_1)}{E(h_2)} \cong \frac{-\frac{b-a}{12}h_1^2\overline{f}''}{-\frac{b-a}{12}h_2^2\overline{f}''} \cong \frac{h_1^2}{h_2^2}$$

If we make two seperate estimates using segment sizes h_1 and h_2 , we can rewrite

$$I=I(h)+E(h)$$

as

$$I(h_1) + E(h_1) = I(h_2) + E(h_2)$$

If we assume that \overline{f}'' is constant for any h, we have the relation

$$\frac{E(h_1)}{E(h_2)} \cong \frac{-\frac{b-a}{12}h_1^2\bar{f}''}{-\frac{b-a}{12}h_2^2\bar{f}''} \cong \frac{h_1^2}{h_2^2}$$

Solving for $E(h_1)$,

$$E(h_1) = E(h_2) \frac{h_1^2}{h_2^2}$$

If we make two seperate estimates using segment sizes h_1 and h_2 , we can rewrite

$$I = I(h) + E(h)$$

as

$$I(h_1) + E(h_1) = I(h_2) + E(h_2)$$

If we assume that $\overline{f}^{"}$ is constant for any h, we have the relation

$$\frac{E(h_1)}{E(h_2)} \cong \frac{-\frac{b-a}{12}h_1^2\bar{f}''}{-\frac{b-a}{12}h_2^2\bar{f}''} \cong \frac{h_1^2}{h_2^2}$$

Solving for $E(h_1)$,

$$E(h_1) = E(h_2) \frac{h_1^2}{h_2^2}$$

Which we can plug back into the above equation so that the integral approximate is only dependent on $E(h_2)$.

$$I(h_1) + E(h_2) \frac{h_1^2}{h_2^2} = I(h_2) + E(h_2)$$

If we make two seperate estimates using segment sizes h_1 and h_2 , we can rewrite

$$I = I(h) + E(h)$$

as

$$I(h_1) + E(h_1) = I(h_2) + E(h_2)$$

If we assume that $\overline{f}^{\prime\prime}$ is constant for any h, we have the relation

$$\frac{E(h_1)}{E(h_2)} \cong \frac{-\frac{b-a}{12}h_1^2\overline{t}''}{-\frac{b-a}{12}h_2^2\overline{t}''} \cong \frac{h_1^2}{h_2^2}$$

Solving for $E(h_1)$,

$$E(h_1) = E(h_2) \frac{h_1^2}{h_2^2}$$

Which we can plug back into the above equation so that the integral approximate is only dependent on $E(h_2)$.

$$I(h_1) + E(h_2) \frac{h_1^2}{h_2^2} = I(h_2) + E(h_2)$$

Solving for $E(h_2)$ we have

$$E(h_2) = \frac{I(h_1) - I(h_2)}{1 - \frac{h_1^2}{h_2^2}}$$

Since we are interested in the best approximate for the integral, we will use $% \left\{ 1,2,...,n\right\}$

$$I=I(h_2)+E(h_2)$$

Since we are interested in the best approximate for the integral, we will use

$$I=I(h_2)+E(h_2)$$

We can substitute the error we found in the previous slide into this equation to yield

$$I = I(h_2) + \frac{I(h_1) - I(h_2)}{1 - \frac{h_1^2}{h_2^2}}$$

Since we are interested in the best approximate for the integral, we will use

$$I=I(h_2)+E(h_2)$$

We can substitute the error we found in the previous slide into this equation to yield

$$I = I(h_2) + \frac{I(h_1) - I(h_2)}{1 - \frac{h_1^2}{h_2^2}}$$

The error of this approximate is now $\mathcal{O}(h^4)$, compared to each iteration of the Trapezoidal rule $\mathcal{O}(h^2)$. (Raltson and Rabinowitz, 1978)

Since we are interested in the best approximate for the integral, we will use

$$I=I(h_2)+E(h_2)$$

We can substitute the error we found in the previous slide into this equation to yield

$$I = I(h_2) + \frac{I(h_1) - I(h_2)}{1 - \frac{h_1^2}{h_2^2}}$$

The error of this approximate is now $\mathcal{O}(h^4)$, compared to each iteration of the Trapezoidal rule $\mathcal{O}(h^2)$. (Raltson and Rabinowitz, 1978)

For the special case where the interval is halved, $h_2 = h_1/2 = \frac{b-a}{2n}$, we can simplify our approximate to be

$$I = I(h_2) + \frac{I(h_1) - I(h_2)}{1 - \frac{h_1^2}{(h_1/2)^2}} = I(h_2) + \frac{I(h_1) - I(h_2)}{1 - 4} = I(h_2) + \frac{I(h_2)}{3} - \frac{I(h_1)}{3}$$
$$= \frac{4}{3}I(h_2) - \frac{1}{3}I(h_1)$$

Use Richardson Extrapolation to evaluate the integral of $f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$ from a = 0 to b = 0.8.

Use Richardson Extrapolation to evaluate the integral of $f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$ from a = 0 to b = 0.8.

First we will use the trapezoid rule on one segment

$$h = (0.8 - 0)/1 = 0.8$$

 $f(0.8) = 0.232, \quad f(0) = 0.2$

$$I \approx h \frac{f(a) + f(b)}{2} = 0.8 * \frac{0.232 + 0.2}{2}$$

= 0.1728

Use Richardson Extrapolation to evaluate the integral of $f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$ from a = 0 to b = 0.8.

First we will use the trapezoid rule on one segment

$$h = (0.8 - 0)/1 = 0.8$$

$$f(0.8) = 0.232, \quad f(0) = 0.2$$

$$I \approx h \frac{f(a) + f(b)}{2} = 0.8 * \frac{0.232 + 0.2}{2}$$

$$= 0.1728$$

Next we will halve the interval h = (0.8 - 0)/2 = 0.4, and apply the Trapezoidal rule

$$I \approx h \frac{f(x_0) + f(x_1)}{2} + h \frac{f(x_1) + f(x_2)}{2}$$
$$= 0.4 \frac{0.2 + 2.456}{2} + 0.4 \frac{2.456 + f(0.232)}{2}$$
$$= 1.0688$$

Use Richardson Extrapolation to evaluate the integral of $f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$ from a = 0 to b = 0.8.

Now we can plug these values into our integral approximate

$$I = \frac{4}{3}I(h_2) - \frac{1}{3}I(h_1)$$
$$= \frac{4}{3}1.0688 - \frac{1}{3}0.1728$$
$$\approx 1.367467$$

Which is closer to the true value, 1.640533 than either Trapezoidal rule approximate.

18 / 29

Ashley Gannon Lecture 22 Fall 2020

In the same manner, we can use estimates for 2 and 4 segments.

For 4 segments

$$h = (0.8 - 0)/4 = 0.2$$

 $x_0 = 0,$ $x_1 = 0.2,$ $x_2 = 0.4,$
 $x_3 = 0.6,$ $x_4 = 0.8$

Plugging these values into our trapezoid rule,

$$I \approx \frac{h}{2}(f(x_0) + f(x_4)) + h \sum_{i=2}^{4} f(x_i) = 1.4848$$

In the same manner, we can use estimates for 2 and 4 segments.

For 4 segments

$$h = (0.8 - 0)/4 = 0.2$$

 $x_0 = 0,$ $x_1 = 0.2,$ $x_2 = 0.4,$
 $x_3 = 0.6,$ $x_4 = 0.8$

Plugging these values into our trapezoid rule,

$$I \approx \frac{h}{2}(f(x_0) + f(x_4)) + h \sum_{i=2}^{4} f(x_i) = 1.4848$$

Substituting this and the two segment approximate into

$$I = \frac{4}{3}1.4848 - \frac{1}{3}1.0688$$
$$\approx 1.623467$$

Which is even more accurate than the last approximation.

These two improved integrals can, in turn, be combined to yield an even better value with $\mathcal{O}(h^6)$. For the special case where the original trapezoidal estimates are based on successive halving of the step size, the equation used for $\mathcal{O}(h^6)$ accuracy is

$$I = \frac{16}{15}I_m - \frac{1}{15}I_I$$

where the I_m is the more accurate estimate, I_l is the less accurate estimate.

These two improved integrals can, in turn, be combined to yield an even better value with $\mathcal{O}(h^6)$. For the special case where the original trapezoidal estimates are based on successive halving of the step size, the equation used for $\mathcal{O}(h^6)$ accuracy is

$$I = \frac{16}{15}I_m - \frac{1}{15}I_I$$

where the I_m is the more accurate estimate, I_l is the less accurate estimate.

For our example, we have

$$I = \frac{16}{15}(1.623467) - \frac{1}{15}(1.367467)$$
$$= 1.640533$$

Which is the exact integral.

Notice the coefficients for

$$I=\frac{4}{3}I_m-\frac{1}{3}I_I$$

and

$$I = \frac{16}{15} I_m - \frac{1}{15} I_I$$

add to 1.

You may think of these coefficients as weights. We place a larger weight on the more accurate integral approximation.

Notice the coefficients for

$$I=\frac{4}{3}I_m-\frac{1}{3}I_I$$

and

$$I = \frac{16}{15} I_m - \frac{1}{15} I_I$$

add to 1.

You may think of these coefficients as weights. We place a larger weight on the more accurate integral approximation.

If we let k = 1, 2, ...n correspond to the order of accuracy where

$$\begin{array}{c|cc} k & L \\ \hline 1 & \mathcal{O}(h^2) \\ 2 & \mathcal{O}(h^4) \\ 3 & \mathcal{O}(h^6) \\ \vdots & \vdots \\ n & \mathcal{O}(h^{2n}) \end{array}$$

Notice the coefficients for

$$I=\frac{4}{3}I_m-\frac{1}{3}I_I$$

and

$$I = \frac{16}{15}I_m - \frac{1}{15}I_I$$

add to 1.

You may think of these coefficients as weights. We place a larger weight on the more accurate integral approximation.

If we let k = 1, 2, ...n correspond to the order of accuracy where

$$\begin{array}{c|c} k & L \\ \hline 1 & \mathcal{O}(h^2) \\ 2 & \mathcal{O}(h^4) \\ 3 & \mathcal{O}(h^6) \\ \vdots & \vdots \\ \end{array}$$

We can generalize the form of our integral approximate to be

$$I_k = \frac{4^{k-1}I_{m,k-1} - I_{J,k-1}}{4^{k-1} - 1}$$

Notice the coefficients for

$$I=\frac{4}{3}I_m-\frac{1}{3}I_I$$

and

$$I = \frac{16}{15}I_m - \frac{1}{15}I_I$$

add to 1.

You may think of these coefficients as weights. We place a larger weight on the more accurate integral approximation.

If we let k = 1, 2, ...n correspond to the order of accuracy where

$$\begin{array}{c|c} k & L \\ \hline 1 & \mathcal{O}(h^2) \\ 2 & \mathcal{O}(h^4) \\ 3 & \mathcal{O}(h^6) \\ \vdots & \vdots \\ n & \mathcal{O}(h^{2n}) \end{array}$$

We can generalize the form of our integral approximate to be

$$I_k = \frac{4^{k-1}I_{m,k-1} - I_{l,k-1}}{4^{k-1} - 1}$$

Applying this function iteratively is known as *Romberg Integration*. This method has the error

$$E_a = \left| \frac{I_k - I_{m,k-1}}{I_k} \right|$$

We can generalize the form of our integral approximate to be

$$I_k = \frac{4^{k-1}I_{m,k-1} - I_{l,k-1}}{4^{k-1} - 1}$$

Applying this function iteratively is known as Romberg Integration

Graphical depiction of the sequence of integral estimates generated using Romberg integration. (a) First iteration, (b) second iteration, (c) third iteration.

$O(h^2)$	$O(h^4)$	$O(h^6)$	$O(h^8)$
0.172800 ———————————————————————————————————	1.367467		
0.172800 1.068800 (b) 1.484800	1.367467	1.640533	
0.172800 1.068800 1.484800 (c) 1.600800	1.367467 1.623467 1.639467	1.640533 1.640533	1.640533

$\mathcal{O}(h^4)$ Romberg Method Pseudocode

Download the TrapezoidalRule.cpp file from Canvas. We are going to modify it to contain the Romberg Method pseudocode.

```
define function that takes in a, b, and tol
declare/define error
declare/define n = 1
declare/define Il = TrapezoidalRule(a,b,n)
declare/define Ik = 0, Im = 0
declare/define k = 2

loop while error is greater than the tolerance
   update n for next trapezoid rule call, n*=2
   Find Im by calling Trapezoidal rule for new n,
   Im = TrapezoidalRule(a,b,n)
   Compute Ik = (pow(4,k-1)*Im-Il)/(pow(4,k-1)-1)
```

Compute the error = abs((Ik-Im)/Ik)

Update Il = Im

