PROBLEMAS DE MATEMÁTICA DISCRETA

Lista 0 - Revisões de Conjuntos e Funções

- 0.1 Considere o conjunto $A = \{x \in \mathbb{Z} : x^2 < 16\}$ e $B = \{1, 3, a, b, 7\}$
 - (a) Descreva em extensão os conjuntos A, $A \cap B$, $A \cup B$, $A \setminus B$, $B \setminus A$ e $A \Delta B$.
 - (b) Quantos elementos tem cada um dos conjuntos da alínea anterior?
 - (c) Considere os conjuntos $A^2 = A \times A$, B^2 , $A \times B$ e $B \times A$. Determine as suas cardinalidades. A quais destes conjuntos pertencem os pares (-8,a), (3,a), (3,7), (3,3), (2,3) e (a,-2)?
- 0.2 Indique o número de elementos de cada um dos sequintes conjuntos:
 - (a) \emptyset , $\{\emptyset\}$
 - (b) $\{n \in \mathbb{N} : n = 2k + 1 \text{ para algum } k \in \mathbb{Z}\} \cap [100]$
 - (c) {palavras de 3 letras só com vogais}
 - (d) $\{n \in \mathbb{Z} : n = \pm \sqrt{k}, k \in [50]\}$
- 0.3 Se A e B são conjuntos com |A|=4 e |B|=7 o que pode dizer sobre:
 - (a) $|A|^2$, $|A^2|$, $|A \times B|$?
 - (b) $|A \cap B|$, $|A \cup B|$ e $|A \Delta B|$?
 - (c) $|\mathcal{P}(A)|$ e $|\mathcal{P}_i(A)|$ para $i = 0, \dots, 4$?
- 0.4 Seja $a \in \mathbb{N}$. O conjunto de todos os múltiplos inteiros de a denota-se por $a\mathbb{Z}$:

$$a\mathbb{Z} := \{an : n \in \mathbb{Z}\}.$$

Diga, justificando, se as seguintes afirmações são verdadeiras ou falsas:

- (a) $7 \in 2\mathbb{Z}$
- (b) $-10 \in 2\mathbb{Z}$
- (c) $2\mathbb{Z} \cap 3\mathbb{Z} = 6\mathbb{Z}$
- (d) $2\mathbb{Z} \cup 3\mathbb{Z} = \mathbb{Z}$
- (e) $6\mathbb{Z} \subset 3\mathbb{Z}$
- (f) $3\mathbb{Z} \setminus 2\mathbb{Z} = \{3 + 6k : k \in \mathbb{Z}\}$
- (q) $ab\mathbb{Z} \subset a\mathbb{Z}$, para quaisquer $a,b \in \mathbb{N}$
- 0.5 Se A e B são conjuntos com |A|=5 e |B|=8, diga quais das seguintes afirmações são verdadeiras ou falsas:
 - (a) Não existe nenhuma aplicação injectiva de B para A.
 - (b) Qualquer aplicação $A \rightarrow B$ é injectiva.
 - (c) Existe uma aplicação $A \rightarrow B$ injectiva.
 - (d) Existe uma aplicação $A \rightarrow B$ sobrejectiva.
 - (e) Qualquer aplicação $B \to A$ é sobrejectiva.
- 0.6 Sejam $f: A \to B$ e $g: B \to C$ duas aplicações. Mostre que:
 - (a) Se f e g são injectivas, $g \circ f$ também o é.

- (b) Se f e g são sobrejectivas, $g \circ f$ também o é.
- 0.7 Seja $f: X \to Y$ uma função entre X e Y e sejam $Z, W \subset Y$. Prove que
 - (a) $f^{-1}(Z \cap W) = f^{-1}(Z) \cap f^{-1}(W)$;
 - (b) $f^{-1}(Z \cup W) = f^{-1}(Z) \cup f^{-1}(W)$.
- 0.8 Dados conjuntos A, B e C, mostre que $A \times (B \cap C) = (A \times B) \cap (A \times C)$. Indique se a igualdade $A \times (B \cup C) = (A \times B) \cup (A \times C)$ é válida.
- 0.9 Considere as seguintes expressões de funções f(x) := 3x 2; g(x) := |x|; $h(x) := x^3$; $j(x) = \cos x$.
 - (a) Se considerarmos $f,g,h:\mathbb{Z}\to\mathbb{Z}$, quais são injectivas, sobrejectivas, e bijectivas?
 - (b) Responda à mesma questão, considerando agora que $f, g, h, j : \mathbb{R} \to \mathbb{R}$?
- 0.10 (a) Dê exemplos de subconjuntos diferentes $A,B\subset\mathbb{Z}$, e uma função $g:A\to B$ bijectiva.
 - (b) Dado $a \in \mathbb{N}$ (arbitrário) encontre uma bijeção entre \mathbb{Z} e $a\mathbb{Z}$.
- 0.11 Dê exemplos de uma função em cada uma das condições:
 - (a) $f: \mathbb{Z} \to \mathbb{N}$ injectiva mas não sobrejectiva;
 - (b) $g: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ sobrejectiva mas não injectiva;
 - (c) $h: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q}$ bijectiva.
- 0.12 Denotamos por Y^n o produto cartesiano de Y por si próprio $n \in \mathbb{N}$ vezes, e por $\mathcal{F}(X,Y)$, o conjunto das funções de X em Y. Seja X um conjunto finito de cardinal |X|. Determine uma bijecção natural entre $\mathcal{F}(X,Y)$ e o conjunto $Y^{|X|}$.
- 0.13 Considere, no conjunto dos seres humanos, as relações \rightarrow e \land definidas por:
 - $x \rightarrow y$, sempre que x é pai de y;
 - $x \wedge y$, sempre que x é irmão gémeo de y, ou x = y.
 - (a) Para a relação \rightarrow indique se alguma das propriedades reflexiva, simétrica ou transitiva se verifica.
 - (b) Mostre que ∧ é uma relação de equivalência.
- 0.14 Seja \equiv_3 uma relação definida em $\mathbb Z$ da seguinte forma:

$$a \equiv_3 b$$
 se e só se $a - b \in 3\mathbb{Z}$

Mostre que \equiv_3 é uma relação de equivalência. Quantas classes de equivalência existem?

0.15 Seja $A=\{1,2,\cdots,n\}$ e considere a seguinte relação \sim definida no conjunto $A^2=A\times A$, por $(a,b)\sim(c,d)$ se e só se (a,b)=(c,d) ou (a,b)=(d,c). Mostre que \sim é uma relação de equivalência. Quantas classes de equivalência existem?