UNIVERSITÉ NATIONALE DU VIETNAM À HANOÏ

Institut de la Francophonie pour l'Innovation

Apprentissage automatique

Option : Systèmes Intelligents et Multimédia (SIM)

Promotion: 22

TP1 : KNN et arbre de décision TP2 : Perceptron

Rédigé par :
KINDA Zakaria
ZONGO Sylvain
KADIMA Olivier Kalombo
OUBDA Raphael Nicolas Wendyam

Enseignant:

Dr VU Thi Huong Giang

Année académique : 2018 - 2019

Table des matières

1	Intr	roducti	ion	1
2	\mathbf{TP}	1 : K p	plus proche voisin (KNN) et 1rbre de décision	2
	2.1	Classe	ement des individus en utilisant 1NN et 3NN	2
		2.1.1	Implémentation manuelle	2
		2.1.2	Tableau récapitulatif des résultats	3
	2.2	Implé	mentaion de l'algorithme KNN	4
		2.2.1	Fonctionnement du programme	4
		2.2.2	Matrice de confusion	5
	2.3	Démo	nstration du théorème	6
	2.4	Arbre	de décision	6
		2.4.1	Construction de l'arbre de décision	6
		2.4.2	Calcul des entropies	7
		2.4.3	Les entropies après la première itération	7
		2.4.4	Les entropies après la deuxième itération	9
		2.4.5	Construction de l'arbre de décision	12
		2.4.6	Classification de ces individus grâce aux règles extraites	12
	2.5	Explic	quer pourquoi l'ensemble d'arbres de décision améliore la prédiction d'un seul	13
	2.6	Démo	ntrer que le Bagging de k-plus proche voisin n'améliore pas le comportement	
		d'un s	eul	13
3	TP	2: Per	ceptron	15
	3.1	Exerci	ice 1	15
	3.2	Exerci	ice 2	16
	3.3	Exerci	ice 4 : Impléméntation des reseaux de neurones avec Keras	17
		3.3.1	Nombre d'itérations=1000 et pas d'apprentissage = $0.5 \dots \dots$	18
		3.3.2	Nombre d'itérations=30 et pas d'apprentissage = $0.3 \ldots \ldots$	18
		3.3.3	Nombre d'itérations=10 et pas d'apprentissage = $0.5 \dots \dots \dots$	19
		3.3.4	Nombre d'itérations=100000 et pas d'apprentissage = 0.5	19
	3.4	Tablea	au récapitulatif	20
4	Cor	nclusio	n	21

Table des figures

1	Formule de Manhatta	2
2	Résultats 1NN et 3NN pour la classe 1	2
3	Résultats 1NN et 3NN pour la classe 2	3
4	Résultats 1NN et 3NN pour la classe 3	3
5	Résultat 1NN et 3NN pour la classe 4	3
6	Tableau récapitulatif	4
7	Base d'apprentissage	6
8	Formule de l'entropie	7
9	Entropie outlook	7
10	Tableau pour le calcul de l'entropie température	8
11	Entropie de la température	8
12	Entropie de l'humidité	8
13	Entropie de windy	9
14	Racine de l'arbre de décision	9
15	Données de la deuxième itération	10
16	Entropie windy	10
17	Entropie température	11
18	Entropie humidité	11
19	Arbre de décision	12
20	Tableau de classification des individus	13
21	Schéma d'explication pour l'amélioration de la prédiction	13
22	Schéma d'illustration de Baggin	14
23	fonction de perte	15

1 Introduction

En ce qui concerne l'apprentissage automatique, plusieurs définitions existent. Cependant nous allons le définir en ces termes : "L'apprentissage est un ensemble de mécanismes menant à l'acquisition de savoir-faire, de savoirs ou de connaissances ". Le but de ce premier TP est de faire une classification manuelle et automatique en utilisant deux algorithmes d'apprentissage supervisé notamment le plus proche voisin et l'arbre de décision. Pour la partie automatique, nous avons choisi d'utiliser le langage de programmation Python3. Dans ce présent rapport, nous allons présenter d'abord la méthode de K plus proches voisins, partie dans laquelle, nous allons classer manuellement de nouveaux individus, après nous allons présenter notre programme qui permet de faire un classement automatique. Ensuite, dans la seconde partie, nous parlerons de la méthode de l'arbre de décision notamment la construction de l'arbre, la définition des règles de déduction et le classement de nouveaux individus.

2 TP1: K plus proche voisin (KNN) et 1rbre de décision

2.1 Classement des individus en utilisant 1NN et 3NN

2.1.1 Implémentation manuelle

Dans cette étape nous allons déterminer les individus les plus proches parmi d'autres individus. Avant d'effectuer ces calculs nous avons effectué les calculs des distances entre chaque individu à prédire et tous les individus de la base déjà classés. Nous allons donc utiliser la formule de de Manhatta pour le calcul de la distance. Cette distance utilise la formule ci-dessous avec valeur de q=1.

$$d(u,v) = \sqrt[q]{(|u_1 - v_1|^q + |u_2 - v_2|^q + ... + |u_n - v_n|^q)}$$

FIGURE 1 – Formule de Manhatta

Par suite, nous rangeons les valeurs obtenues par ordre croissant (du plus petit au plus grand) afin d'identifier les plus petites distances :

- Pour 1NN, nous retenons la classe du premier élément le plus proche;
- Pour 3NN, nous retenons la classe majoritaire parmi les trois premiers éléments.

X1	X2	Classe 1NN	Classe 3NN	Distance L1	Xl	X2	Class
0,55	0,364	1	1	0,058	0,606	0,366	1
				0,092	0,488	0,334	1
				0,106	0,478	0,398	1
				0,12	0,542	0,252	1
				0,192	0,506	0,512	0
				0,192	0,428	0,294	1
				0,298	0,376	0,488	0
				0,392	0,394	0,6	0
				0,418	0,312	0,544	0
				0,512	0,298	0,624	0

Figure 2 – Résultats 1NN et 3NN pour la classe 1

Xl	X2	Classe 1NN	Classe 3NN		0	Distance L1	X1	X2	Class
0,558	0,47	0	1			0,094	0,506	0,512	0
						0,152	0,606	0,366	1
						0,152	0,478	0,398	1
						0,2	0,376	0,488	0
						0,206	0,488	0,334	1
						0,234	0,542	0,252	1
						0,294	0,394	0,6	0
						0,306	0,428	0,294	1
						0,32	0,312	0,544	0
						0,414	0,298	0,624	0

Figure 3 – Résultats 1NN et 3NN pour la classe 2

X1	X2	Classe 1NN	Classe 3NN	Distance L	1 X1	X2	Class
0,456	0,45	1	0		0,074 0,478	0,398	1
					0,112 0,50	0,512	0
					0,118 0,370	0,488	0
					0,148 0,48	0,334	1
					0,184 0,42	0,294	1
					0,212 0,394	1 0,6	0
					0,234 0,60	0,366	1
					0,238 0,31	0,544	0
					0,284 0,54	0,252	1
					0,332 0,29	0,624	0

Figure 4 – Résultats 1NN et 3NN pour la classe 3

Xl		X2	Classe 1NN	Classe 3NN		Distance L1	Xl	X2	Class
	0,45	0,57	0	0		0,086	0,394	0,6	0
						0,114	0,506	0,512	0
						0,156	0,376	0,488	0
						0,164	0,312	0,544	0
						0,2	0,478	0,398	1
						0,206	0,298	0,624	0
						0,274	0,488	0,334	1
						0,298	0,428	0,294	1
						0,36	0,606	0,366	1
						0,41	0,542	0,252	1

Figure 5 – Résultat 1NN et 3NN pour la classe 4

2.1.2 Tableau récapitulatif des résultats

Le tableau ci-dessous présente les résultats obtenu à travers le calcul des distances.

X1	X2	Classe 1NN	Classe 3NN
0,55	0,364	1	1
0,558	0,47	0	1
0,456	0,45	1	0
0,45	0,57	0	0

FIGURE 6 - Tableau récapitulatif

2.2 Implémentaion de l'algorithme KNN

2.2.1 Fonctionnement du programme

Le programme prend en entrée :

- Une base d'image d'apprentissage
- Une base de test
- le paramètre K (Les K éléments les plus proches)

En sortie le programmes donne :

- Le taux de prédiction de chaque classe
- Le nombre de K éléments plus proches

Nous avons par la suite fait varier le paramètre K pour trouver la meilleure valeur de K qui donne la meilleure prédiction des classes.

2.2.2 Matrice de confusion

• Classification avec K=6

Avec K=6 nous remarquons que 2 éléments ont été mal classés dans la classe 2.0 et pour bien illustrer cette erreur nous l'avons encadré en rouge.

• Classification avec K=3

Avec K=3 nous remarquons que l'erreur précédente a été corrigée et pour bien illustrer cette correction nous l'avons encadrée en rouge. Les 2 éléments qui étaient mal classés dans la classe 2.0 sont maintenant bien classés.

2.3 Démonstration du théorème

Pour un suffisamment grand ensemble d'apprentissage de taille m, le taux d'erreur de 1NN est inférieure à deux fois le taux d'erreur minimal obtenu par la classification bayésienne. Soit R le taux d'erreur de 1NN et R* celui de Bayes. Par définition, on a :

$$\begin{split} R &= E[2(X)(1-(X))] = 2E[\min(X), 1-(X)\max(X), 1-(X)] \\ \text{en posant :} \\ \min(X), 1-(X) &= r*(X)etE(r*(X)) = R* \\ \text{on obtient les développements ci-après :} \\ R &= 2E[r*(X)(1-r*(X))] \\ &= 2E[r*(X)-r*2(X)] \\ &= 2E[r*(X)-r*2(X) + R*2-R*2+2R*r*(X)-2R*r*(X)] \\ &= 2E[r*(X)+R*2-2R*r*(x)-(r*(X)-R*)2] \\ &= 2E[r*(X)+R*2-2R*r*(x)-var(r*(X))] \\ \text{Or } 2E[r*(X)+R*2-2R*r*(x)-var(r*(X))] \\ 2(E[r*(X)]+E[R*2]-2E[R*r*(x)]) &= 2(R*+R*2-2R*2) \end{split}$$

Parconsquent $R= 2 R^* (1 - R^*)$

2.4 Arbre de décision

2.4.1 Construction de l'arbre de décision

La construction de l'arbre de décision va se faire à partir d'un ensemble d'apprentissage qui permettra de prédire la pratique du golf. La base de données est constituée de 5 variables et de 14 instances. Le tableau ci-dessous présente la base de données utilisée.

Outlook	Temperature	Humidity	Windy	Class
sunny	85	85	false	Don't Play
sunny	80	90	true	Don't Play
overcast	83	78	false	Play
rain	70	96	false	Play
rain	68	80	false	Play
rain	65	70	true	Don't Play
overcast	64	65	true	Play
sunny	72	95	false	Don't Play
sunny	69	70	false	Play
rain	75	80	false	Play
sunny	75	70	true	Play
overcast	72	90	true	Play
overcast	81	75	false	Play
rain	71	80	true	Don't Play

Figure 7 - Base d'apprentissage

2.4.2 Calcul des entropies

Nous allons calculer d'abord les entropies et les gains et choisissons l'attribut qui aura le gain le plus élevé comme racine de l'arbre de décision. Le calcul de l'entropie s'effectue en appliquant la formule ci-dessous.

$$H = -\sum_{i} p_{i} (\log_{2} p_{i})$$

FIGURE 8 - Formule de l'entropie

2.4.3 Les entropies après la première itération

Le calcul de la première itération nous permettra de déterminer la racine de notre arbre de décision

• Entropie de Outlook

	play	dontPlay	Nombre	Infos
Outlook/Sunny	2	3	5	0,970950594
Outlook/Rain	3	2	5	0,970950594
Outlook/Overcast	4	0	4	0
			H(Outlook)	0,693536139
			gain(Ouotlook)	0,24674982

FIGURE 9 – Entropie outlook

Pour le calcul de l'entropie de outlook, nous obtenons comme résultat de l'opération H(outlook)=0,6935

• Entropie Température

Pour le calcul de l'entropie de la température, nous faisons un trie croissant sur la base, afin de classer les valeurs de la température par ordre croissant, en fonction de la classe, pour faciliter le découpage par intervalle, donc le calcul de l'entropie. Lorsque nous faisons le trie nous obtenons le tableau ci-dessous

Outlook	Temperature	Humidity	Windy	Class
overcast	64	65	true	Play
rain	65	70	true	Don't Play
rain	68	80	false	Play
sunny	69	70	false	Play
rain	70	96	false	Play
rain	71	80	true	Don't Play
sunny	72	95	false	Don't Play
overcast	72	90	true	Play
rain	75	80	false	Play
sunny	75	70	true	Play
sunny	80	90	true	Don't Play
overcast	81	75	false	Play
overcast	83	78	false	Play
sunny	85	85	false	Don't Play

Figure 10 – Tableau pour le calcul de l'entropie température

Après le calcul des entropies de la température en fonction des intervalles, nous prenons la plus petite entropie. Nous obtenons donc le résultat suivant.

	play	dontplay	Nombre	infos
Temperature/=<83	9	4	13	0,89049164
Temperature/>83	0	1	1	0
			Entropie Moyenne	0,826885094
			gain(Temperature)	0,113400864

Figure 11 – Entropie de la température

• Entropie de l'humidité

Dans le calcul de l'entropie de l'humidité, nous effectuons la même procédure que celle de la température, nous obtenons alors le résultat suivant.

	play	dontplay	Nombre	infos
Humidity/=<65	1	0	1	0
Humidity/>65	8	5	13	0,961236605
			Entropie moyenne	0,892576847
			gain(Humidity)	0,047709111

Figure 12 – Entropie de l'humidité

• Entropie Windy

Pour le calcul de l'entropie de windy, nous effectuons le trie sur la variable et nous calculons

l'entropie en découpant les différentes instance de la variable. Nous obtenons ainsi le résultat ci-dessous.

		Nombre	infos
3	3	6	1
6	2	8	0,811278124
		Entropie Moyenne	0,892158928
		gain(Windy)	0,04812703
	6		6 2 8 Entropie Moyenne gain(Windy)

Figure 13 - Entropie de windy

Après le calcul des entropies de la première itération nous obtenons outlook comme la racine de notre arbre de décision comme le présente la figure ci-dessous.

FIGURE 14 - Racine de l'arbre de décision

2.4.4 Les entropies après la deuxième itération

Dans le calcul de la première itération, nous avons déterminé la racine de l'arbre de décision pour la suite de la construction de l'arbre, nous allons calculer les entropies des variables température, humidité et windy. A cet effet dans cette deuxième itération et calcul des entropies en ignorant l'attribut Outlook qui a été choisi comme RACINE DE L'ARBRE après. Nous allons donc Commencer par ordonner les individus de l'attribut Outlook et considérons seulement ceux qui ne sont pas directement reliés à une classe(entropie =! 0).

Outlook	Temperature	Humidity	Windy	Class
sunny	85	85	false	Don't Play
sunny	80	90	true	Don't Play
overcast	83	78	false	Play
rain	70	96	false	Play
rain	68	80	false	Play
rain	65	70	true	Don't Play
overcast	64	65	true	Play
sunny	72	95	false	Don't Play
sunny	69	70	false	Play
rain	75	80	false	Play
sunny	75	70	true	Play
overcast	72	90	true	Play
overcast	81	75	false	Play
rain	71	80	true	Don't Play

Figure 15 – Données de la deuxième itération

• Entropie de Windy

	Extraction des indivus rain et tri par Windy			
	Temperature	Humidity	Windy	Class
rain	70	96	false	Play
rain	68	80	false	Play
rain	75	80	false	Play
rain	65	70	true	Don't Play
rain	71	80	true	Don't Play
Calcul de l'entro	pie Windy			
	play	dontplay	nombre	infos
Windy/false	3	0	3	0
Windy/true	0	2	2	0
			Entropie moyenne	0

Figure 16 - Entropie windy

• Entropie de la température

Extractio	n des indivus	et tri par ter	mperature		
	Temperature	Humidity	Windy	Class	
sunny	69	70	false	Play	
sunny	72	95	false	Don't Play	
sunny	75	70	true	Play	
sunny	80	90	true	Don't Play	
sunny	85	85	false	Don't Play	
	play	dontplay	nombre	infos	
temp/<=75	2	1	3	0,918295834	
temp/<=75	0	2	2	0	
			Entropie moyenne	0,5509775	

Figure 17 – Entropie température

• Entropie de humidité

Extraction	des individ	us et tri par H	lumidity	
	Temperature	Humidity	Windy	Class
sunny	69	70	false	Play
sunny	75	70	true	Play
sunny	85	85	false	Don't Play
sunny	80	90	true	Don't Play
sunny	72	95	false	Don't Play
Calcul de l'entrop	ie de Humidity			
	play	dontplay	nombre	infos
Humidity/<=70	2	0	2	0
Humidity/>70	0	3	3	0
			Entropie moyenne	0

Figure 18 – Entropie humidité

Après calcul de l'entropie de Température, Humidity et Windy en éliminant l'attribut Outlook, nous obtenons :

H(Windy)=0 suivant (rain)

H(Humidy)=0 suivant (sunny)

H(Temperature)=0,55

Nous pouvons conclure que la température n'a pas assez d'influence sur la prédiction de la pratique de Golf par conséquent l'attribut Température peut être ignoré.

2.4.5 Construction de l'arbre de décision

La construction de l'arbre de décision se fait en utilisant les entropies ou les gains. En utilisant l'entropie, nous construction l'arbre en tenant compte de la valeur minimale des entropies. Cependant en utilisant les gains nous choisissons la valeur maximale des différents gains. Nous obtenons alors l'arbre de décision ci-dessous.

FIGURE 19 - Arbre de décision

De cet arbre nous pouvons extraire les règles de décision suivante :

- Si (Outlook=Overcast) alors Golf = play;
- Si (Outlook=Rain) et (Windy=false) alors Golf = play;
- Si (Outlook=Rain) et (Windy=true) alors Golf = dontplay;
- Si (Outlook=Sunny) et (Humidity<=70) alors Golf = play;
- Si (Outlook=Sunny) et (Humidity > 70) alors Golf= dontplay.

2.4.6 Classification de ces individus grâce aux règles extraites

Pour la classification des individus, nous allons utiliser les règles extraites de l'arbre de decision ci-dessous. Nous obtenons alors le résultat suivant.

Outlook	Temperature	Humidity	Windy	Class	Règle
overcast	63	70	false	play	a
rain	73	90	true	play	С
sunny	70	73	true	dontplay	е

Figure 20 - Tableau de classification des individus

2.5 Expliquer pourquoi l'ensemble d'arbres de décision améliore la prédiction d'un seul

Lorsque nous avons un seul arbre la variance est plus élevée que si nous avons plusieurs arbres la variance de l'ensemble est obtenue en faisant la moyenne des variances de tous les arbres ce qui réduire la variance permet d'améliorer la prédiction d'un seul. Nous pouvons illustrer cette amélioration avec le diagramme suivant :

Figure 21 – Schéma d'explication pour l'amélioration de la prédiction

2.6 Démontrer que le Bagging de k-plus proche voisin n'améliore pas le comportement d'un seul

Le bagging est une méthode ensembliste, illustrons le fonctionnement de cette méthode par le diagramme suivant :

classification: $\hat{y}(x) = \text{vote-majoritaire } \{\hat{y}_1(x), \dots, \hat{y}_T(x)\}$

Figure 22 - Schéma d'illustration de Baggin

Il consiste à sous-échantillonner le training set et de faire générer à l'algorithme voulu un modèle pour chaque sous-échantillon. On obtient ainsi un ensemble de modèles dont il convient de faire la moyenne (lorsqu'il s'agit d'une régression) ou de faire voter (pour une classification) les différentes prédictions. L'utilisation du Bagging est adaptée aux algorithmes à forte variance, complexes ou instables pour améliorer leur performance (réseaux neuronaux, arbres de décision pour la classification ou la régression...), mais il peut également dégrader les qualités pour des algorithmes plus stables (k plus proches voisins avec k grand, régression linéaire. Aussi le résultat obtenu avec le KNN n'est reste la même avec le bagging, donc nous pouvons conclure qu'un bagging du KNN détériorera la stabilité du KNN.

3 TP2: Perceptron

L'objectif de ce TP est d'implémenter dans un premier temps un reseau de neurone avec une seule couche(percetron) et dans un second temps avec multi-couches à l'aide de TensorFlow et Keras.

3.1 Exercice 1

A partir cette équation W1.X1 + W2.X2 + b = 0 obtenue à partir du schéma ci-dessus nous allons suivre les étapes suivantes pour l'implémentation de perceptron.

- Construction du graphe
- Implémentation de la fonction de perte

La formule ci-dessous est la fonction de perte.

$$loss = \sum_{i=1}^{m} (y^{(i)} - predict^{(i)})^2$$

FIGURE 23 - fonction de perte

- Entrainer le perceptron avec notre jeune de données
- Enfin prédire la sortie du modèle

Comme indiqué sur le schéma ci-dessous le programme prend en entrée :

- les entrées x1 et x2
- les poids w1 et w2
- b

Ainsi avec ces entrées il pourra prédire la sortie y(i) qui est une classe (0 ou 1) comme suit :

```
prediction = [[0]

[1]

[1]

[1]]

W1 = 5.1203914

W2 = 5.1205163

b = -2.3015034
```

Comme demandé dans l'énoncé nous avons construit une droite avec le perceptron et une autre avec le SVM représenté par la figure ci-dessous :

```
5.1205163
-2.3015034
 1.00
 0.75
 0.50
 0.25
                                                                               Classe
 0.00
-0.25
-0.50
-0.75
          0.0
                      0.2
                                   0.4
                                               0.6
                                                           0.8
                                                                        1.0
```

- Droite Blue : Séparation avec Perceptron
 Le perceptron cherche uniquement une droite permettant de séparer les deux classes sans aucune contrainte
- Droite Rouge : Séparation avec SVM SVM sépare au mieux les deux classes car il cherche la droite optimale entre les deux classes

3.2 Exercice 2

Les entrées du programmes sont :

- nom fichier de la base d'apprentissage
- nom fichier de la base de test
- h (le pas d'apprentissage)

• maxit (le nombre d'itérations)

Nous avons ici utilisé la base de données SPAM, nous avons d'abord divisé la base de données en données d'apprentissage et test.

```
EXERCICE 2 AVEC LE DATASET SPAM
Entrer le nombre d'itération:23
prediction = [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [-1.53076706e+01]
 [-8.02687912e+01]
 [-1.13070946e+02]
 [-8.43851395e+01]
 [-1.11484432e+00]
 [-1.07625360e+01]
 [-1.07025051e+01]
 [-5.60209312e+01]
 [-4.34789276e+00]
 [-1.16831390e+02]
 [-3.01222305e+01]
 [-6.80912638e+00]
 [-1.48345874e+03]
 [-1.84721152e+04]
 [-1.31568781e+05]]
b = -428.2864
```

Nous obtenons des résultats peu satisfaisant car les données ne sont pas linéaires et nous avons utilisé un perceptron simple ce qui explique bien le fait que les prédictions sont mauvaises .

3.3 Exercice 4 : Impléméntation des reseaux de neurones avec Keras

Entrainons le réseau et calculons l'exactitude (accuracy) du modèle sur l'ensemble d'apprentissage.

Nous avos fait varier le nombre d'itérations et le pas d'apprentissage afin de trouver ceux qui permet de donner les meilleures prédictions.

3.3.1 Nombre d'itérations=1000 et pas d'apprentissage = 0.5

```
APPRENTISSAGE AVEC KERAS
Entrer le nombre d'itération: 1000
Entrer le pas: 0.5
Epoch 1/1000
4/4 [======
    Epoch 2/1000
4/4 [======
     ==========] - 0s 860us/step - loss: 0.6417 - acc: 1.0000
Epoch 3/1000
Epoch 4/1000
    4/4 [======
Epoch 5/1000
Epoch 6/1000
Epoch 7/1000
Epoch 8/1000
Epoch 995/1000
Epoch 996/1000
Epoch 997/1000
Epoch 998/1000
Epoch 999/1000
Epoch 1000/1000
[array([[-1.04339 ],
  [ 0.9918884]], dtype=float32), array([0.], dtype=float32)]
```

3.3.2 Nombre d'itérations=30 et pas d'apprentissage = 0.3

=====> APPRENTISSAGE AVEC KERAS <======

Entrer le nombre d'itération: 30

3.3.3 Nombre d'itérations=10 et pas d'apprentissage = 0.5

```
APPRENTISSAGE AVEC KERAS
======>
             <======
Entrer le nombre d'itération: 10
Entrer le pas: 0.5
Epoch 1/10
     Epoch 2/10
   Epoch 4/10
4/4 [=====
Epoch 5/10
     Epoch 7/10
4/4 [=====
   Epoch 8/10
4/4 [=====
Epoch 9/10
  Epoch 10/10
      =========] - 0s 1ms/step - loss: 0.6538 - acc: 0.7500
```

3.3.4 Nombre d'itérations=100000 et pas d'apprentissage = 0.5

```
Epoch 99993/100000
4/4 [=================] - Os 914us/step - loss: 9.3998e-04 - acc: 1.0000
Epoch 99994/100000
Epoch 99995/100000
Epoch 99996/100000
Epoch 99997/100000
Epoch 99998/100000
Epoch 99999/100000
Epoch 100000/100000
4/4 [========================] - Os 2ms/step - loss: 9.3989e-04 - acc: 1.0000
[array([[ 0.08484232],
   [-1.2711526 ]], dtype=float32), array([0.], dtype=float32)]
```

3.4 Tableau récapitulatif

Nous avons regroupé la variation des différents paramètres dans un tableau afin de mieux comprendre l'influence de ces variables sur le taux d'erreur et l'accuracy

Nombre d'itérations	pas d'apprentissage	loss	accurracy
1000	0.5	0.0839	1.000
30	0.3	0.3760	1.000
10	0.5	0.6538	0.7500
100000	0.5	9.3989e-04	0.10000

Table 1 - Tableau comparatif

Pour le même pas d'apprentissage nous remarquons que plus le nombre d'itérations augmente moins est le taux d'erreurs. C'est le cas des itérations 1000, 10 et 100000 avec le même pas d'apprentissage 0.5.

4 Conclusion

Dans ce premier TP il s'agissait de mettre en œuvre l'apprentissage supervisé pour prédire la classification des individus avec les méthodes de k plus proches voisins et l'arbre de décision. A cet effet, nous avons conçu un programme en Python pour nous permettre de faire cette prédiction. Notre programme prend en entrée les bases d'apprentissage et de test, le nombre de voisins et la distance de calcul. En sortie. Il fournit la matrice de confusion et le taux de bon classement. Lors des expérimentations, nous avons constaté que le choix du k, nombre de voisins relève surtout d'un savoir-faire spécialisé. Aussi, la distance euclidienne offre en général de meilleurs taux que celle de Manhattan.

Le but de ce deuxième TP était de mettre en œuvre l'apprentissage supervisé pour prédire la classification des individus avec les méthodes de réseaux de neurones et les Séparateurs à Vaste Marge (SVM). Ce programme a été implémenté en utilisant le langage python. Nous avons dans un premier temps implémenté le perceptron simple puis le perceptron multicouche et l'implémentation avec keras. Notre programme prend en entrée les bases d'apprentissage et de test, le nombre de voisins et la distance de calcul et en sortie, il fournit la matrice de confusion et le taux de bon classement.

En somme, nous pouvons dire que ces travaux pratiques (1 et 2) ont été très bénéfique et nous ont permis d'avoir une meilleure compréhension de l'apprentissage automatique notamment les méthodes kNN, l'arbre de décision, les réseaux de neurones et les SVM.