The group G is isomorphic to the group labelled by [72, 15] in the Small Groups library. Ordinary character table of $G \cong ((C2 \times C2) : C9) : C2$:

	1a	3a	2a	9a	9b	9c	2b	6a	4a
χ_1	1	1	1	1	1	1	1	1	1
χ_2	1	1	-1	1	1	1	1	1	-1
χ_3	2	2	0	-1	-1	-1	2	2	0
χ_4	2	-1	0	$E(9)^4 + E(9)^5$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	$E(9)^2 + E(9)^7$	2	-1	0
χ_5	2	-1	0	$E(9)^2 + E(9)^7$	$E(9)^4 + E(9)^5$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	2	-1	0
χ_6	2	-1	0	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	$E(9)^2 + E(9)^7$	$E(9)^4 + E(9)^5$	2	-1	0
χ_7	3	3	-1	0	0	0	-1	-1	1
χ_8	3	3	1	0	0	0	-1	-1	-1
χ_9	6	-3	0	0	0	0	-2	1	0

Trivial source character table of $G\cong ((\operatorname{C2} \times \operatorname{C2}) : \operatorname{C9}) : \operatorname{C2}$ at p=3:

Normalisers N_i	N_1				N_2				N_3	
p-subgroups of G up to conjugacy in G	P_1				P_2			P_3		
Representatives $n_j \in N_i$		2a	2b	4a	1a	2a	2b	4a	1a	2a
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	9	1	-3	-1	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	9	-1	-3	1	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	9	1	9	1	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	9	-1	9	-1	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	3	1	-1	-1	3	1	-1	-1	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	-1	-1	1	3	-1	-1	1	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	-1	3	-1	3	-1	3	-1	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	1	3	1	3	1	3	1	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	-1	1	-1	1	-1	1	-1	1	-1
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	1

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(5, 7, 10)(6, 9, 12)(8, 11, 13)]) \cong C3$

 $P_3 = Group([(5,7,10)(6,9,12)(8,11,13),(2,4,3)(5,11,9,7,13,12,10,8,6)]) \cong C9$

 $\begin{array}{l} N_1 = Group([(2,3)(6,11)(7,10)(8,9)(12,13),(2,3,4)(5,6,8,10,12,13,7,9,11),(5,7,10)(6,9,12)(8,11,13),(1,2)(3,4),(1,3)(2,4)]) \cong ((\operatorname{C2} \times \operatorname{C2}) : \operatorname{C9}) : \operatorname{C2} \\ N_2 = Group([(2,3)(6,11)(7,10)(8,9)(12,13),(2,3,4)(5,6,8,10,12,13,7,9,11),(5,7,10)(6,9,12)(8,11,13),(1,2)(3,4),(1,3)(2,4)]) \cong ((\operatorname{C2} \times \operatorname{C2}) : \operatorname{C9}) : \operatorname{C2} \\ N_3 = Group([(2,4,3)(5,11,9,7,13,12,10,8,6),(3,4)(5,13)(6,12)(7,11)(8,10),(5,7,10)(6,9,12)(8,11,13)]) \cong \operatorname{D18} \end{array}$