

Visio-Linguistic Brain Encoding

August 13, 2022 COLING 2022

Subba Reddy Oota^{1,2}, Jashn Arora², Vijay Rowtula², Manish Gupta^{2,3}, Bapi Raju Surampudi²

¹Inria Bordeaux France, ²IIIT-Hyderabad, ³Microsoft India

What is fMRI?

(Bird)

Concept + Picture

A vision-language task in the scanner

Brain Encoding vs Decoding

Haiguang Wen et al, 2017

What is Brain Encoding?

Stimulus **Models** Internal Neural Representation Hidden unit activations

What is Brain Encoding?

Schrimpf et al. 2021 fMRI

What is Brain Encoding?

Schrimpf et al. 2021

Most popular models are Transformers

Transformer language models

Vision Transformer (ViT)

Multi-modal Transformer

Brain encoding for single-mode stimuli: Vision

Brain-Score: Which Artificial Neural Network for Object Recognition is most Brain-Like?

Martin Schrimpf^{*,1,2}, Jonas Kubilius^{*,3,4}, Ha Hong⁵, Najib J. Majaj⁶, Rishi Rajalingham¹, Elias B. Issa⁷, Kohitij Kar^{1,3}, Pouya Bashivan^{1,3}, Jonathan Prescott-Roy¹, Kailyn Schmidt¹, Daniel L. K. Yamins^{8,9}, and James J. DiCarlo^{1,2,3}

Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence

Martin Schrimpf,^{1,2,3} Jonas Kubilius,^{2,4,5} Michael J. Lee,^{1,2} N. Apurva Ratan Murty,^{1,2,3} Robert Ajemian,^{1,2}

and James J. Carrell 1921

1Department of E

2McGovern Institi
3Center for Brain:
4Brain and Cogni
The intel
5Three Thirds, Vil
works (A
ternal ne

SUMMAR

are most A potentially intelligence a experimental the next step:

primate

Neural Taskonomy: Inferring the Similarity of Task-Derived Representations from Brain Activity

Aria Y. Wang Carnegie Mellon University ariawang@cmu.edu Michael J. Tarr
Carnegie Mellon University
michaeltarr@cmu.edu

Leila Wehbe
Carnegie Mellon University
lwehbe@cmu.edu

Abstract

Convolutional neural networks (CNNs) trained for object classification have been widely used to account for visually-driven neural responses in both human and primate brains. However, because of the generality and complexity of object classification, despite the effectiveness of CNNs in predicting brain activity, it is

Brain encoding for single-mode stimuli: Text

The neural architecture of language: Integrative modeling converges on predictive processing

Linking artificial and human neural representations of language

Jon Gauthier and Roger P. Levy

Massachusetts Institute of Technology
Department of Brain and Cognitive Sciences

jon@gauthiers.net, rplevy@mit.edu

Abstract

Na

a De

Mas

Con

The

wit

bra ma

this

ani tak

pro

mo

What information from an act of sentence understanding is robustly represented in the human brain? We investigate this question by comparing sentence encoding models on a brain decoding task, where the sentence that an

theories of language understanding, many are specified at too high a level of analysis to plausibly map onto neural structures without serious further revision (Poeppel, 2012).

Studies which draw on these high-level representations must therefore also assume some link

Transformer language models (BERT, XLM, GPT,...)

Can image-based and multi-model Transformers accurately perform fMRI encoding?

Models used: Multi-Modal Transformers

Models used: Image Transformers

Dosovitskiy et al. 2021, Hangbo et al. 2021, Touvron et al. 2021

Models used: CNNs

VGGNET

InceptionV2

RESNET50

Simonyan et al. 2014, He et al. 2016, Szegedy et al. 2017, Tan et 2019

Dataset Details

Evaluation Metrics: 2V2 and Pearson

2V2 Accuracy

 $\begin{aligned} 2\text{V2 Accuracy} &= \\ \frac{1}{N_{C_2}} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} I[\{cosD(Y_i, \hat{Y}_i) + cosD(Y_j, \hat{Y}_j)\} \\ &< \{cosD(Y_i, \hat{Y}_j) + cosD(Y_j, \hat{Y}_i)\}] \end{aligned}$ Cosine distance

Toneva et al. 2020

Encoding performance (BOLD5000)

Encoding performance (Periera)

Model size vs Efficacy

Single Stream vs Dual Stream

	Models compared	PPA	LOC	EarlyVis	OPA	RSC
Dual Stream	(CLIP)	0.095	0.134	0.083	0.139	0.082
	LXMERT	0.106	0.142	0.102	0.146	0.087
	VisualBERT	0.141	0.187	0.128	0.188	0.12
	Vilbert	0.057	0.078	0.052	0.087	0.045

Single Stream

Is Linguistic Information Important in Multi-Modal Transformers?

Correct
Image-Text pairs

Randomize
Image-Text pairs

	Models compared	PPA	LOC	EarlyVis	OPA	RSC
	CLIP	0.095	0.134	0.083	0.139	0.082
	LXMERT	0.106	0.142	0.102	0.146	0.087
	VisualBERT	0.141	0.187	0.128	0.188	0.12
	ViLBERT	0.057	0.078	0.052	0.087	0.045
	CLIP-Random	0.020	0.024	0.033	0.031	0.002
	LXMERT-Random	0.035	0.041	0.035	0.049	0.029
	VisualBERT-Random	0.072	0.102	0.062	0.109	0.060
	ViLBERT-Random	0.018	0.011	0.013	0.017	0.017

Does Language Influence Vision?

Collaborators

Subba Reddy Oota

Jashn Arora

Vijay Rowtula

Manish Gupta

Bapi Raju Surampudi