Stress Detection using Machine learning.

Literature Survey:

Sr.	Title of Paper	Name of Authors	Published	Remarks
No.			year	
1	Automated stress detection using wearable sensors and Machine learning – A review	Shruthi GedamSanchitha Paul	2020	Algorithms/Models/classifiers used and their accuracy: 1. Linear BayesNormal classifier -80%. 2. Fuzzy logic algoritm-72%. 3. Regression Model-81%. 4. Artificial Neural Networks -79.94%.
2.	Machine learning & IOT for prediction and detection of stress.	Mr.Purnendu Shekhar pandey	2017	5. SVM classifier-68%. Algorithms/Models/classifiers used and their accuracy: 1. Logistic Regression Train Accuracy -100% Test Accuracy - 66% 2. SVM(Support vector Machine) Train Accuracy -97% Test Accuracy -68% 3. VF-15 Algorithm Test Accuracy -62 % 4. Naives Bayes Test Accuracy -50%
3.	A Decision Tree optimized SVM Model for stress detection using Bio signals.	 Alana paul cruz Aravind pradeep Kavali Riya shivasanker Krishanaveni k.S 	2020	Algorithms/Models/classifiers used and their accuracy: 1. Cubic SVM with Gaussion kernel-92.6%. 2. Tree optimized SVM- 96.3%.
4.	Stress Detection with Machine learning using Multimodal physiological data	Pramod BobadeVani.M	2020	Algorithms/Models/classifiers used and their accuracy: 1. KNN – 74.71(three class),87.92%(binary class) 2. SVM-81.65(three class),93.20%(binary class) 3. ANN-84.32%(three class),95.21%(binary class)

5.	Stress detection using deep neural networks	RushellZhandong	2020	Algorithms/Models/classifiers used and their accuracy: 1. A Deep 1D convulutional neural network – 99.80%. 2. A Deep multilayer perceptron neural network.
				network .