SEMCOG-UrbanSim Bi-weekly

Areas of work

- 1. Iterating on regionally-estimated specifications, conducting runs, and comparing loss scores / case-study indicators with runs 4036
 - a. Diagnosing Households and Employment distribution Issues on run 4074
 - b. Setting up Template-based model estimations and Runs
 - Estimating HLCMs without unplaced households and demolished/redeveloped buildings
- 2. Setting up calibration script to calibrate each location choice submodel, with the official forecast as the target

Other work related to project: Pandana performance diagnosing (colleagues Federico and Sam M.)

- https://github.com/UDST/pandana/tree/enhancement/optimize-string-comparisons
- Working on **v0.4.2** release with optimizations

Comparison

	SPECIFICATIONS				
	REGIONAL	LARGE AREA CONTROL	REGIONAL	LARGE AREA CONTROL	
zones	3,522,233	947,148	1,523,257	1,167,831	
large_areas	36,552	1,294	122,736	199	
cities	495,160	472,554	547,454	261,910	
counties	40,603	1,407	137,888	217	

3 vs 4 (Regional vs large-area controlled models)

6 vs 7 (Regional vs largearea controlled models)

- LARGE-AREA CONTROLLED MODELS SHOW DECREASE OF MSE IN ALL GEOGRAPHIES
- The most relevant improvements are shown in the Large-area and the county-level

Comparison

	SAMPLING-UNIT					
	BUILDING-LEVEL	UNIT-LEVEL	BUILDING-LEVEL	UNIT-LEVEL	BUILDING- LEVEL	UNIT-LEVEL
zones	1,167,831	555,068	3,522,233	1,317,909	3,522,233	496,055
large_areas	199	201	36,552	32,943	36,552	34,152
cities	261,910	296,566	495,160	495,681	495,160	500,153
counties	217	218	40,603	36,500	40,603	37,746
	7 vs 7B (building-level vs unit-		3 vs 3B (building	g-level vs unit-	3 vs 3C (buil	ding-level vs

- level models) level models) unit-level models)
- The biggest improvements using Unit-level LCMS are shown in the zone-level
- The employment location choice model seem to have a better performance when estimating at a building level in all geographies except zones.
- MSE in cities increase with Unit-Level models, specifically with ELCM unit-level.
- At the city level, variables such as: hh size > 4 p, hh age > 65 and jobs in sector 8, 9, 14 and 16 have a higher MSE when estimating with unit-level

RUN 4074

CLIENT RUN 4074 SEMCOG AS IS WITH LARGE AREA CONTROL and UNIT LEVEL HLCMS AND ELCMS - CLUSTERING VARS

	Mean MSE	
zones	271,060	
large_areas	70	
cities	57,055	
counties	77	

1 - RUN 4036

	Overall MSE		
zones	1,612,099		
large_areas	68		
cities	140,845		
counties	75		

%: MSE(4074) -MSE(4036) / MSE(4036)

% Improvement in Run 4074

- Unit-level Improvement on a zone and city-level. But, poor indicators in pop age and hh size =3.
- Large-Areas con counties indicators does not change or benefit from unit-level sampling.
- Very poor performance on residential units count in all geographic levels in run 4074 compared to run 4036.
- Run 4074 shows poor performance in job spaces for large-areas and counties

RUN 4074

CLIENT RUN 4074 SEMCOG AS IS WITH				
LARGE AREA CONTROL and UNIT LEVEL				
HLCMS AND ELCMS - CLUSTERING VARS				
Mean MSE				
zones 271,060				
large_areas 70				
cities 57,055				
counties 77				

	Building-Level	Unit-Level	
	BUILDING-LEVEL	UNIT-LEVEL	
zones	1,167,831	555,068	
large_areas	199	201	
cities	261,910	296,566	
counties	217	218	

Run 7

Large-Area Price Models

Regional Price Models

- Unit-level Improvement on a zone. However, poor indicators in pop age and hh size =3.
- For cities Unit-level sampling shows poor indicator in job sectors (again!)
- Large-Area price models show improvement over Regional price models

RUN 4074: HLCM Diagnosis

- Dearborn (cityid=1025)(large_Area_id = 3), a community with large HHsize and large immigrant population is losing population substantially. The situation is worse than SEMCOG asis scenario. Same is the case with many older but stable communities Troy (2270), Dearborn Heights (1030). Communities like West Bloomfield (2285), Southfield (2250) are developing at much slower pace than they should. All these are very desirable communities with good access to amenities, high property values.
- On the flip side, growing communities, ones that are on the fringes of these stable communities and are now are considered suburban communities, saw good growth in last 5 year, are growing at a much faster rate compared to the asis scenario. eg. Macomb Twp (3060), Lyon Twp (2145), Canton (1020), Van Buren Twp (1200) Huron Twp (1105).
- From the initial glance through, it appears that the model is moving people from older communities to these growing communities.

RUN 4074: HLCM Diagnosis

- Transition Models: Annual Control Totals: Households and Population
- Relocation Model: relocation probabilities by income and age of head.
- Distribution of Data in the base year
- Hlcm variables

RUN 4074: Households Diagnosis

CONTROL TOTALS: HOUSEHOLDS AND POPULATION

	year indicator	perc_growth_2045
LARGE AREA 3	total households	11.366618
	total population	6.802737

RUN 4074: Households Diagnosis

INCOME CONTROL TOTALS LARGE AREA ID 3

		perc_growtn_204
	income_min	
total_number_of_households	income_1	12.802332
	income_2	9.013210
	income_3	4.178268
	income 4	0.36099

RUN 4074: HLCM Diagnosis

HH SIZE CONTROL TOTALS LARGE AREA ID 3

		perc growth 2045
	persons_min	
total_number_of_households	size_1	12.354830
	size_2	8.334554
	size_3	2.399077
	size 4p	0.094885

RUN 4074: Households Diagnosis

RACE ID CONTROL TOTALS LARGE AREA ID 3

	perc_growtn_2045
race_id	
1	-1.322635
2	26.944355
3	53.877315
4	65.334875
	1 2 3

RUN 4074: Households Diagnosis

AGE OF HEAD CONTROL TOTALS LARGE AREA ID 3

		perc_growth_2045
	age_of_head_min	
total_number_of_households	bt25_35	-3.875781
	bt35_65	-2.645849
	gt65	37.592639
	lt18	-11.188071

RUN 4074: HLCM Diagnosis

RELOCATION TOTALS

ANNUAL CONTROL TOTALS IN LARGE AREA 3:

- Increase of low income households
- Increment of Elderly population and decrease of all other ages
- Increase of races 3 and 4, small decrease of race 1
- No increase of large HH sizes, Increase of households with one person

RELOCATION MODEL:

- •
- HH with age under 25 have higher prob of relocating
- Low Income HH have higher prob of relocating

RUN 4074: Dearborn Diagnosis

Base Data: HLCM

Base Year Data


```
1: 'income quartile ==1 & persons <=2 & age of head >= 65',
2: 'income quartile ==1 & persons <=2 & age of head >= 35 & age of head < 65',
3: 'income quartile ==1 & persons <=2 & age of head < 35',
4: 'income quartile ==1 & persons > 2 & age of head >= 65',
5: 'income quartile ==1 & persons > 2 & age of head >=35 & age of head < 65',
6: 'income quartile ==1 & persons > 2 & age of head < 35',
7: 'income quartile in [2,3] & persons <=2 & age of head >= 65',
8: 'income quartile in [2,3] & persons <=2 & age of head >= 35 & age of head < 65
9: 'income quartile in [2,3] & persons <=2 & age of head < 35',
   'income quartile in [2,3] & persons > 2 & age of head >= 65',
11: 'income quartile in [2,3] & persons > 2 & age of head >= 35 & age of head < 65
12: 'income quartile in [2,3] & persons > 2 & age of head < 35',
13: 'income quartile ==4 & persons <=2 & age of head >= 65',
14: 'income quartile ==4 & persons <=2 & age of head >= 35 & age of head < 65',
15: 'income quartile ==4 & persons <=2 & age_of_head < 35',
16: 'income quartile ==4 & persons > 2 & age of head >= 65',
17: 'income quartile ==4 & persons > 2 & age of head >= 35 & age of head < 65',
18: 'income quartile ==4 & persons > 2 & age of head < 35'}
```


Dearborn have higher HH types: 17, 11, 8, 7, 5 and 1. These means middle aged/elderly households, lower income hh, large hh sizes

RUN 4074: HLCM Variables

LOW INCOME HOUSEHOLDS:

st_zones_prop_income_1

LARGE SIZE HOUSEHOLDS:

st_zones_mean_hh_size

HIGH INCOME HOUSEHOLDS:

- st_zones_z_total_jobs
- st_zones_prop_income_4

ELDERLY AGE OF HEAD HOUSEHOLDS:

st_zones_mean_age_of_head

RUN 4074: Employment Issues

%: MSE(4074) -MSE(4036) / MSE(4036)

Mean MSE	retail_buildi ngs	financial_buil dings	office_buildi ngs	hospital_b uildings	industrial_buil dings
zones	23%	2%	-3%	-100%	12%
large_areas	-42%	128%	-73%	-100%	-78%
cities	35%	-33%	194%	-100%	-1%
counties	-45%	447%	-24%	-100%	-78%

Mean MSE	job_space s	jobs
zones	16%	-89%
large_areas	804%	0%
cities	-55%	77%
counties	2276%	0%

	Mean MSE	jobs_se ctor10	jobs_se ctor11	jobs_sec tor12	jobs_se ctor14	jobs_se ctor16	jobs_se ctor17	jobs_se ctor2	jobs_se ctor3	jobs_se ctor4	jobs_se ctor5	jobs_se ctor6	jobs_se ctor8	jobs_se ctor9
L	zones	-86%	-48%	-1%	-81%	-97%	-99%	-66%	-69%	-88%	-82%	-90%	-84%	-98%
li	arge_areas	0%	-0%	-0%	-0%	0%	0%	0%	-0%	-0%	0%	-0%	-0%	-0%
L	cities	-32%	-92%	9%	-53%	-74%	-24%	-52%	-49%	75%	-44%	86%	140%	-76%
	counties	0%	0%	-0%	0%	0%		-0%	-0%	0%	-0%	0%	-0%	0%

HLCM: RE-ESTIMATION

Estimating HLCMs without unplaced households and demolished/redeveloped buildings.

After running the transition, relocation and developer models.

Calibration- conceptual framing

- 1. Here's the data on changes over time I actually observed
- 2. What should the parameters of the simulator have been to match the observed data on changes over time?

- Instead of asking which parameter values were most likely to generate a cross-sectional dataset
- Instead ask which parameter values were most likely to generate some longitudinal outcome

Calibration update

- HLCM calibration loop extended to all large areas, not just Oakland County
- Next step: Instead of running test simulation just within Oakland County, run test simulation region-wide with the newly calibrated HLCM coeffs for all large areas