Final project

Norbert Eke

David Rowswell

Aalisha Lakdawala

Intro: Data set

- Spam emails classification
- Objective: minimise the false positive classifications.
- Data set: 4601 emails with content frequencies
- Data source: UCI Machine Learning repository

Methodology & results

1	Hierarchical clustering (single linkage)	39.38 %
2	Hierarchical clustering (average linkage)	39.38 %
3	Hierarchical clustering (complete linkage) 39.38 %	
4	knn Classification 18.6 %	
5	K-means clustering 36.4 %	
6	LDA cross validation 11.8 %	
7	LDA	11.0 %
8	QDA	17.12671 %
9	QDA cross validation	16.90937 %
10	Logistic regression	[8.1; 10.5; 7.7] %
11	Artificial Neural Network	[7.7; 6.6; 7.0; 7.6; 6.4; 6.7] %
12	Principle Component Analysis	14.9098 %
13	Bagging	5.23 %
14	Random forrest	4.75 %
15	Classification Trees	9.90%
16	Multiple Linear Regression wo/ interactions	12.10 %
17	Multiple Linear Regression w/ interactions	22.00 %

Logistic regression

- Classification into groups instead of the continuous scale from 0-N
- Misclassification rate: 6.8%
- Results are too big to be shown here but are attached in the appendix

Bagging

- Mtry = 57
- Misclassification = 5.24%
- Since bagging is an average of models, it loses its interpretability but it does have good end result classification.

Random Forests

- Set mtry to default
- Decreases variance and increases stability
- Misclassification rate: 4.75%

trainRF

Classification Tree splits Misclassification % = 9.90 %

0 = non-spam e-mails and 1 = spam emails

Principle Component Analysis

First principle component loadings:

```
> pcaSpam <- prcomp(spam[,-58], scale.=TRUE)</pre>
> round(pcaSpam$rotation[,1], 2)
            word_freg_make
                                      word_freq_address
                                                                      word_freq_all
                                                   -0.01
                                                                      word_freq_over
              word_freq_3d
                                          word_freq_our
                      -0.01
                                                   -0.04
                                     word_freq_internet
          word_freq_remove
                                                                     word_freq_order
            word_freq_mail
                      -0.02
          word_freq_people
                                                                word_freq_addresses
                                       word_freq_report
                      -0.04
                                                                    word_freq_email
            word_freq_free
                                     word_freq_business
                      -0.04
                                                                               -0.02
             word_freq_you
                                       word_freq_credit
                                                                     word_freq_your
                      -0.08
                                                   -0.03
                                                                                -0.08
            word_freq_font
                                          word_freq_000
                                                                     word_freq_money
                      -0.01
                                                   -0.05
              word_freq_hp
                                          word_freq_hpl
                                                                   word_freq_george
                       0.21
                                                                                0.04
             word_freq_650
                                          word_freq_lab
                                                                      word_freq_labs
                       0.28
                                                    0.22
                                                                                0.30
                                          word_freq_857
          word_freq_telnet
                                                                      word_freq_data
                       0.31
                                                    0.35
             word_freq_415
                                           word_freq_85
                                                               word_freq_technology
                       0.35
                                                                                0.32
            word_freq_1999
                                        word_freq_parts
                                                                        word_freq_pm
          word_freq_direct
                                           word_freq_cs
                                                                  word_freq_meeting
                       0.32
                                                    0.01
                                                                                0.02
        word_freq_original
                                      word_freq_project
                                                                        word_freq_re
                                                    0.01
                       0.07
                                                                                0.01
             word_freq_edu
                                        word_freq_table
                                                               word_freq_conference
                       0.00
                                                    0.00
       char_freq_semicolon
                                 char_freq_roundBracket
                                                            char_freq_squareBracket
                       0.00
                                                                                0.02
 char_freq_exclamationMark
                                   char_freq_dollarsign
                                                                   char_freq_hashtag
                            capital_run_length_longest
                                                           capital_run_length_total
capital_run_length_average
                                                   -0.03
                      -0.02
                                                                               -0.04
```

The word frequencies make sense, since the emails are Hewlett-Packard Internal-only Technical Reports.

Artificial Neural Networks

- nnSpam <- neuralnet(formula, data=train, linear.output = FALSE, hidden=40)
- nnresults <- compute(nnSpam, test[,-58])
- table(testDecision, nnresults\$net.result>0.5)

Neutral Network Result

Misclassification %	Hidden =	Misclassification %	Hidden =
7.7	5	6.7	c(12,11)
6.6	10	8.9	c(18,17)
7.0	20	8.7	c(20,10)
7.6	30	7.6	c(20,15)
7.0	35	7.5	c(20,18)
6.9	36	6.9	c(25,13)
6.4	37	7.6	c(25,15)
8.1	38	8.3	c(20,20)
6.7	39	8.5	c(25,20)
6.4	40	8.2	c(10,10,5)
7.1	45	8.1	c(10,10,10)
6.7	50	8.5	c(15,10,5)
6.8	c(7,7)	7.9	c(15,10,10)
7.3	c(10,10)	7.7	c(15,15,10)
7.4	c(15,10)	7.0	c(15,15,15)
6.7	c(15,15)	9.0	c(20,10,10)
7.8	c(13,13)	7.6	c(20,15,10)
7.4	c(11,11)	9.9	c(20,15,15)

Conclusion

- Bagging, random Forests, Neural networks & Logistic regression worked the best
- Misclassification error can be brought down to 4.75%