Hough transform

16-385 Computer Vision Spring 2020, Lecture 4

Course announcements

- Homework 1 posted on course website.
 - Due on February 5th at 23:59.
 - This homework is in Matlab.
- First theory quiz will be posted tonight and will be due on February 3rd, at 23:59.
- From here on, all office hours will be at Smith Hall 200.
 - Conference room next to the second floor restrooms.

Overview of today's lecture

Leftover from lecture 3:

- Frequency-domain filtering.
- Revisiting sampling.

New in lecture 4:

- Finding boundaries.
- Line fitting.
- Line parameterizations.
- Hough transform.
- Hough circles.
- Some applications.

Slide credits

Most of these slides were adapted from:

Kris Kitani (15-463, Fall 2016).

Some slides were inspired or taken from:

- Fredo Durand (MIT).
- James Hays (Georgia Tech).

Finding boundaries

Lines are hard to find

Noisy edge image Incomplete boundaries

Applications

Autonomous Vehicles (lane line detection)

Autonomous Vehicles (semantic scene segmentation)

tissue engineering (blood vessel counting)

behavioral genetics (earthworm contours)

0.5 mm

Ventral

side

Worm frame

79%

Head

Computational Photography (image inpainting)

Line fitting

Line fitting

Given: Many (x_i, y_i) pairs

Find: Parameters (m,c)

Minimize: Average square distance:

$$E = \sum_{i} \frac{(y_i - mx_i - c)^2}{N}$$

Line fitting

Given: Many (x_i, y_i) pairs

Find: Parameters (m,c)

Minimize: Average square distance:

$$E = \sum_{i} \frac{(y_i - mx_i - c)^2}{N}$$

Using:

$$\frac{\partial E}{\partial m} = 0 \quad \& \quad \frac{\partial E}{\partial c} = 0$$

Note:

$$\overline{y} = \frac{\sum_{i} y_{i}}{N} \qquad \overline{x} = \frac{\sum_{i} x_{i}}{N}$$

$$c = \overline{y} - m \overline{x}$$

$$m = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2}$$

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

Line fitting is easily setup as a maximum likelihood problem ... but choice of model is important

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

What optimization are we solving here?

Problems with noise

Model fitting is difficult because...

- Extraneous data: clutter or multiple models
 - We do not know what is part of the model?
 - Can we pull out models with a few parts from much larger amounts of background clutter?
- Missing data: only some parts of model are present
- Noise
- Cost:
 - It is not feasible to check all combinations of features by fitting a model to each possible subset

So what can we do?

Line parameterizations

Slope intercept form

$$y=mx+b$$

Slope y-intercept

Slope intercept form

Double intercept form

$$rac{x}{a} + rac{y}{b} = 1$$
 x-intercept y-intercept

Double intercept form

$$rac{x}{a} + rac{y}{b} = 1$$
 x-intercept y-intercept

Derivation:

(Similar slope) $\dfrac{y-b}{x-0}=\dfrac{0-y}{a-x}$ b ya+yx-ba+bx=-yx ya+bx=ba $\dfrac{y}{b}+\dfrac{x}{a}=1$

Normal Form

$$x\cos\theta + y\sin\theta = \rho$$

Normal Form

$$x\cos\theta + y\sin\theta = \rho$$

Derivation:

$$\cos\theta = \frac{\rho}{a} \to a = \frac{\rho}{\cos\theta}$$

$$\sin\theta = \frac{\rho}{b} \to b = \frac{\rho}{\sin\theta}$$
 plug into:
$$\frac{x}{a} + \frac{y}{b} = 1$$

$$x\cos\theta + y\sin\theta = \rho$$

Hough transform

Hough transform

- Generic framework for detecting a parametric model
- Edges don't have to be connected
- Lines can be occluded
- Key idea: edges vote for the possible models

Image space

a line becomes a point

Image space

Parameter space

What would a point in image space become in parameter space?

a point becomes a line

Image space

Parameter space

two points become ?

Image space

Parameter space

two points become ?

Image space

Parameter space

three points become ?

Image space

Parameter space

three points become ?

Image space

Parameter space

four points become ?

Image space

Parameter space

four points become ?

Image space

Parameter space

How would you find the best fitting line?

Is this method robust to measurement noise?

Is this method robust to outliers?

Line Detection by Hough Transform

Algorithm:

- 1. Quantize Parameter Space (m,c)
- 2. Create Accumulator Array A(m,c)
- 3. Set $A(m,c) = 0 \quad \forall m,c$
- 4. For each image edge (x_i, y_i) For each element in A(m,c)If (m,c) lies on the line: $c = -x_i m + y_i$ Increment A(m,c) = A(m,c) + 1
- 5. Find local maxima in A(m,c)

A(m,c)

Problems with parameterization

How big does the accumulator need to be for the parameterization (m,c)?

A(m,c)

1						1	
	1				1		
		1		1			
			2				
		1		1			
	1				1		
1						1	

Problems with parameterization

How big does the accumulator need to be for the parameterization (m,c)?

A(m,c)

The space of m is huge! The space of c is huge!

$$-\infty \leq m \leq \infty$$

$$-\infty \leq c \leq \infty$$

Better Parameterization

Use normal form:

$$x\cos\theta + y\sin\theta = \rho$$

Given points (x_i, y_i) find (ρ, θ)

Hough Space Sinusoid

$$0 \le \theta \le 2\pi$$

$$0 \le \rho \le \rho_{\text{max}}$$

(Finite Accumulator Array Size)

a point becomes?

Image space

Parameter space

a point becomes a wave

Image space

Parameter space

$$x\cos\theta + y\sin\theta = \rho$$

Parameter space

$$x\cos\theta + y\sin\theta = \rho$$

Parameter space

$$x\cos\theta + y\sin\theta = \rho$$

-2
-1
-2
-3
-4
-0.25π 0.5π 0.75π

Image space

Parameter space

$$x\cos\theta + y\sin\theta = \rho$$

Image space

Parameter space

$$x\cos\theta + y\sin\theta = \rho$$

a line becomes a point

Image space

Parameter space

a line becomes a point

$$x\cos\theta + y\sin\theta = \rho$$

Wait ...why is rho negative?

Image space

Parameter space

$$x\cos\theta + y\sin\theta = \rho$$

a line becomes a point

Image space

Parameter space

There are two ways to write the same line:

Positive rho version:

$$x\cos\theta + y\sin\theta = \rho$$

Negative rho version:

$$x\cos(\theta + \pi) + y\sin(\theta + \pi) = -\rho$$

Recall:

$$\sin(\theta) = -\sin(\theta + \pi)$$

$$\cos(\theta) = -\cos(\theta + \pi)$$

$$x\cos\theta + y\sin\theta = \rho$$

a line becomes a point

Image space

Parameter space

Image space

Parameter space

Parameter space

Image space

Parameter space

Implementation

- 1. Initialize accumulator H to all zeros
- 2. For each edge point (x,y) in the image For $\theta = 0$ to 180 $\rho = x \cos \theta + y \sin \theta$ $H(\theta, \rho) = H(\theta, \rho) + 1$ end end
- 3. Find the value(s) of (θ, ρ) where $H(\theta, \rho)$ is a local maximum
- 4. The detected line in the image is given by $\rho = x \cos \theta + y \sin \theta$

NOTE: Watch your coordinates. Image origin is top left!

Image space

Votes

Basic shapes

(in parameter space)

can you guess the shape?

Basic shapes

(in parameter space)

line

Basic shapes

(in parameter space)

line rectangle

Basic shapes

(in parameter space)

line rectangle circle

Basic Shapes

More complex image

In practice, measurements are noisy...

Too much noise ...

Effects of noise level

Number of votes for a line of 20 points with increasing noise

More noise, fewer votes (in the right bin)

Effect of noise points

More noise, more votes (in the wrong bin)

Real-world example

Original

Edges

parameter space

Hough Lines

Hough Circles

Let's assume radius known

$$(x-a)^2+(y-b)^2=r^2 \qquad \qquad (x-a)^2+(y-b)^2=r^2$$

What is the dimension of the parameter space?

$$(x-a)^2+(y-b)^2=r^2$$

parameters

Image space

Parameter space

What does a point in image space correspond to in parameter space?

parameters variables

parameters

parameters

parameters $(x-a)^2 + (y-b)^2 = r^2$ variables

What if radius is unknown?

$$(x-a)^2 + (y-b)^2 = r^2 \qquad (x-a)^2 + (y-b)^2 = r^2$$
variables

parameters
$$(x-a)^2 + (y-b)^2 = r^2$$
variables

What if radius is unknown?

$$(x-a)^2+(y-b)^2=r^2 \qquad \qquad (x-a)^2+(y-b)^2=r^2$$
 variables

If radius is not known: 3D Hough Space!

Use Accumulator array A(a,b,r)

Surface shape in Hough space is complicated

Using Gradient Information

Gradient information can save lot of computation:

Edge Location
$$(x_i, y_i)$$

Edge Direction Φ_i

Assume radius is known:

$$a = x - r \cos \phi$$
$$b = y - r \sin \phi$$

$$b = y - r \sin \phi$$

Need to increment only one point in accumulator!

parameters variables

parameters $(x-a)^2 + (y-b)^2 = r^2$

variables

The Hough transform ...

Deals with occlusion well?

Detects multiple instances?

Robust to noise?

Good computational complexity?

Easy to set parameters?

Can you use Hough Transforms for other objects, beyond lines and circles?

Do you have to use edge detectors to vote in Hough Space?

Application of Hough transforms

Detecting shape features

F. Jurie and C. Schmid, Scale-invariant shape features for recognition of object categories, CVPR 2004

Original images

Laplacian circles

Hough-like circles

Which feature detector is more consistent?

Robustness to scale and clutter

Object detection

Index displacements by "visual codeword"

visual codeword with displacement vectors

training image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,

ECCV Workshop on Statistical Learning in Computer Vision 2004

References

Basic reading:

• Szeliski textbook, Sections 4.2, 4.3.