Advanced Web Analytics: Harnessing the Predictive Power

Lesson 1: Introduction to Analytics

Lesson 1.1: What is Predictive Analytics + CRISP/DM

Lesson 1.2: Data Problems in Predictive Analytics

Outline: Lesson 1.1: What is Predictive Analytics + CRISP-DM Model

- Definition and Benefits of PA
- Other Technologies
 - Machine Learning, Data Mining, Predictive Analytics
- Classification Algorithm
- Supervised versus Unsupervised Modeling
- Supervised modeling Goals
 - Classification, Estimation
- Supervised Learning Techniques
- Data
- Model Development and Deployment
- CRISP-DM Model
- Summary

- Predictive Analytics is a Business Intelligence Technology that provides
 - Predictive Score for each customer
 - This score represents the probability that they will respond to certain offer

What is Predictive Analytics?

- Predictive Score will predict the customer behavior - chances that that customer will
 - Click on an ad
 - Respond to this offer
 - Cancel their subscription
 - Turn product B for their next purchase
 - Any other behavior relevant to your business

Benefits of Predictive Analytics

- Predictive Analytics turn
 - Uncertainty about the future into
 - Usable probability
- Learning from the data
 - And Using that knowledge to action

Benefits of Predictive Analytics

- Better risk management
 - During the transactions
 - Not after the fact
- Managing complex tradeoffs
- Discovering unexpected patterns
- Better management of uncertainty

Other Technologies

- Machine Learning
 - Machine learns from the corporate data
 - Machines finds something new
- Data Mining
 - Data has many patterns
 - Data mining allows us to see those patterns
- Predictive Analytics
 - Giving a predictive score to each customer for a certain offer

What is a Classification Algorithm

- Bunch of input data
- Need to decide in which bin each of the data falls in

Predictive Modeling Terms

Supervised Learning -- Predictive Models

Predictive Analytics Goals: Supervised Learning

- Supervised Learning
 - Known answer exists as a column in the data
 - Two types: estimation and classification
- Classification
 - Yes/No decisions, or multivalue discrete decisions
 - –Ex: Is the transaction fraudulent?
- Estimation
 - Continuous value output
 - -Ex: What is the price we expect Apple stock to be tomorrow?

Common Techniques Used in Predictive Modeling:

- Regression linear, logistic.
 Regularization, ridge,
 recursive partitioning
 - The most common statistical technique used in predictive analytics
 - Measures correlations between the variable to be predicted and several other variables.

Common Techniques Used in Predictive Modeling:

Clustering

- Uses: segmentation of customers, identification of similar products, identification of disease or crime locations, etc.
- Does not require a variable to be predicted, but several unrelated variables can be used as input.

Common Techniques Used in Predictive Modeling:

- ARIMA for time series
 - Uses: forecasting revenue in future quarters
- Simulations
 - Uses: for complex systems, such as weather forecasting, online ad campaign performance
- Naive Bayes
 - Uses: deciding whether an email belongs in a spam folder
- Decision Trees / Random Forest
- Neural Networks

Which Technique is the Best?

- Why do we consider many different techniques?
- Which one is the best?
- No one technique is the best
- All depends upon the data
- Some technique will work better on some data

Hierarchy of Data Analysis

CRM Prediction
PREDICTIVE
ANALYTICS

Advanced Analytics

Foundation Analytics Segmentation: Recency, Frequency, Monetary

Performance reporting and sales forecasting: OLAP: Online Analytical Processing

Aggregate Data with Data Warehousing

Data

- Customer Profile
 - Address, age, income gender etc.
- Customer Behavior
 - Purchase history of all customers
 - Personal Income
 - Campaign: customer responded or not
 - How many times that person visited the website
- Data (External)
 - Demographic Data
 - Address (zip code), age, gender, email address etc.

Data

- 90% of a successful outcome is contingent on having good data. What does "good" mean in this context?
 - Reliable the effects can be reproduced. Contrary example: Using sales data from March-April to predict November-December data.
 - Valid the data measures what you want it to measure. Contrary example: Number of page visits shows how popular the page is. How well a job candidate does on a brainteaser indicates whether he will be a good hire.
 - Other data issues are small.

Data Problems

- Missing Data
- Sparse Data
- Inaccurate data
- Data Preparation is needed before building a model

1

Model Development and Deployment

Model Development **Training Data**

Modeling Tools

Predictive Model

Model Verification

Test Data

Predictive Model

Verification of Model

Model Deployment

Real World Data

Predictive Model

Prediction Response

Problems in Building Model Memorizing the Training Data

- We cannot memorize the training data
 - Training Data cannot become a look-up table
- There are too many possibilities
 - Every customer is unique
- Instead of memorizing the training data
 - We need to build the generic model
- Find a Model that holds in general
 - Consistent
 - Accurate

Deploy to Take Business Action

Predicted Response

Business Logic

Business Actions

Mail a solicitation

Suggest a cross-sell option

Retain with a promotion

Example-1

- Whether a customer will renew a subscription
- Predictor variables
 - Rural or urban
 - Monthly usage of website
 - New feature exploration of the website
- Result
 - If customer is rural & monthly usage is high
 - Customer will renew
 - If customer is urban & new feature exploration is high
 - Customer will not renew

- Customer who buys product A
 - Are likely to buy product B
- Deployment would be
 - Strategy 1
 - Send those customers a coupon of \$x to buy B
 - Strategy 2
 - Do not send them a coupon
 - Because they would buy it anyway. Why loose
 \$x of revenues off those customers

Difference between Forecasting and Predictive Analytics

- Forecasting
 - In 2Q this year we sold 120 units
 - In 3Q this year we will sell 140 units
- Predictive Analytics
 - Provides an individual score to every customer which indicates the chances that that customer will behave in a certain way

CRISP-DM Process Model

- www.crisp-dm.org
- CRoss Industry Standard Process for Data Mining

The word Data Mining can be interchanged with Predictive Analytics.

CRISP-DM Process Model

- Step #1
 - Start with business understanding of what you want to do with data mining
- Step #2
 - Interactions between business understanding and data understanding
- Step #3
 - Data preparation
 - Interactions between data preparation and modeling
- Step #4
 - Interactions between model evaluation and business understanding
- Step #5
 - Deployment of Model
- Step #6
 - Results achieved from PA should be compared with the business understanding

CRISP-DM Step 4: Modeling Steps

- Select techniques
 - Supervised / unsupervised
 - Target variable type
- How to select models?
- Model specifications
 - Learning parameters, stop rules
- Model interpretation

Summary: Lesson 1.1: What is Predictive Analytics + CRISP-DM Model

- Definition and Benefits of PA
- Other Technologies
 - Machine Learning, Data Mining, Predictive Analytics
- Classification Algorithm
- Supervised versus Unsupervised Modeling
- Supervised modeling Goals
 - Classification, Estimation
- Supervised Learning Techniques
- Data
- Model Development and Deployment
- CRISP-DM Model
- Summary

