Álgebra Lineal - Parcial 1 Soluciones

Victoria Eugenia Torroja Rubio

21/1/2025

Solución 1. Dos matrices que funcionan son A y la propia identidad, I. Ahora vamos a demostrar que

$$L = \{ X \in \mathcal{M}_{2 \times 2} \left(\mathbb{K} \right) : AX = XA \}$$

es un subespacio vectorial. Para ello, vemos que es parte estable. Si $X, Y \in L$,

$$(X + Y) A = XA + YA = AX + AY = A(X + Y).$$

Así, $X + Y \in L$. Similarmente, si $a \in \mathbb{K}$ y $X \in L$,

$$(aA) X = aAX = aXA = X (aA)$$
.

Así, $aA \in L$. Ahora vamos a calcular la dimensión de L. Sea $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in L$ con $a, b, c, d \in \mathbb{K}$. Entonces, tenemos que

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 2 & 1 & -2 & 0 \end{pmatrix} = \begin{pmatrix} 2a - 2b & a \\ 2c - 2d & c \end{pmatrix}.$$

$$\begin{pmatrix} 2 & 1 & -2 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 2a+c & 2b+d \\ -2a & -2b \end{pmatrix}.$$

Como AX = XA, hacemos un sistema de ecuaciones y obtenemos que las ecuaciones de L son:

$$\begin{cases} c = -2b \\ a = 2b + d \end{cases}.$$

Así, un sistema de generadores de L será $\left\{\begin{pmatrix} 2 & 1 \\ -2 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right\}$. Como son liniealmente independientes, forman una base de L, por lo que $\dim(L)=2$.

Solución 2. (i) Sin pérdida de generalidad, si $L_1 \subset L_2$, entonces $L_1 \cup L_2 = L_2 \in \mathcal{L}(V)$.

- (ii) Supongamos que $L_1 \not\subset L_2$ y $L_2 \not\subset L_1$. Entonces, existe $\vec{x} \in L_1$ con $\vec{x} \not\in L_2$ e $\vec{y} \in L_2$ con $\vec{y} \not\in L_1$. Así, $\vec{x}, \vec{y} \in L_1 \cup L_2$. Si $\vec{x} + \vec{y} \in L_1 \cup L_2$:
 - Si $\vec{x} + \vec{y} = \vec{l} \in L_1$, entonces $\vec{y} \in L_1$. Esto es una contradicción.
 - Si $\vec{x} + \vec{y} = \vec{l} \in L_2$, entonces $\vec{x} \in L_2$. Esto es una contradicción.

Así, debe ser que $L_1 \subset L_2$ o $L_2 \subset L_1$.

Solución 3. Tenemos la aplicación

$$f(x, y, z) = (x - 2y - 2z, -x + z, x - y - 2z).$$

Vamos a comprobar que es lineal. Si $\vec{x}, \vec{y} \in \mathbb{R}^3$,

$$f(\vec{x} + \vec{y}) = f(x_1 + y_1, x_2 + y_2, x_3 + y_3)$$

$$= ((x_1 + y_1) - 2(x_2 + y_2) - 2(x_3 + y_3), -(x_1 + y_1) + (x_3 + y_3), (x_1 + y_1) - (x_2 + y_2) - 2(x_3 + y_3))$$

$$= f(\vec{x}) + f(\vec{y}).$$

Similarmente, si $a \in \mathbb{R}$ y $\vec{x} \in \mathbb{R}^3$,

$$f(a\vec{x}) = f(ax_1, ax_2, ax_3)$$

= $(ax_1 - 2ax_2 - 2ax_3, -ax_1 + ax_3, ax_1 - ax_2 - 2ax_3)$
= $af(\vec{x})$.

Para ver que es simetría, basta con ver que $f^2 = id_V$. Esto se puede demostrar comprobando que $A^2 = I$. Para calcular la base y dirección, se puede hacer con matrices o con la fórmula de la aplicación. Sea L_1 la base y L_2 la dirección. Tenemos que

$$L_1 = \operatorname{Im}(f + id_V), \quad L_2 = \operatorname{Ker}(f + id_V).$$

Además,

$$(f + id_V)(\vec{x}) = (2x - 2y - 2z, -x + y + z, x - y - z)$$
$$= x(2, -1, 1) + y(-2, 1, -1) + z(-2, 1, -1).$$

Así tenemos que un sistema de generadores de L_1 será $\{(2, -1, 1)\}$. Por tanto, es base y dim $(L_1) = 1$. Para calcular L_2 , tenemos el sistema de ecuaciones

$$\begin{cases} 2x - 2y - 2z = 0 \\ -x + y + z = 0 \end{cases} \Rightarrow x - y - z = 0.$$
$$\begin{cases} x - y - z = 0 \end{cases}$$

Si $\vec{x} \in L_2$,

$$(x, y, z) = (x, y, x - y) = x(1, 0, 1) + y(0, 1, -1).$$

Así, un sistema de generadores de L_2 será $\{(1,0,1),(0,1,-1)\}$. Como son linealmente independientes, se trata de una base. Tenemos que $L_1 \oplus L_2 = \mathbb{R}^3$. Así, la unión de las bases que hemos calculado antes forma una base de \mathbb{R}^3 . Además, si $L_1 = L(\{\vec{u}_1\})$ y $L_2 = L(\{\vec{u}_2,\vec{u}_3\})$, tenemos que

$$f(\vec{u}_1) = \vec{u}_1, \quad f(\vec{u}_2) = -\vec{u}_2, \quad f(\vec{u}_3) = -\vec{u}_3.$$

Este apartado también se puede hacer con sistema de ecuaciones.

Solución 4. Tenemos que

$$\lambda_1(p(x)) = \int_0^1 p(x) dx, \quad \lambda_2(p(x)) = \int_0^2 p(x) dx.$$

Vamos a calcular las coordenadas de $\{\lambda_1, \lambda_2\}$ en la base dual de la canónica $B^* = \{\sigma_1, \sigma_2\}$. Tenemos que

$$\lambda_1(1) = \int_0^1 dx = 1, \quad \lambda_1(x) = \int_0^1 x \, dx = \frac{1}{2}$$

$$\lambda_2(1) = \int_0^2 dx = 2, \quad \lambda_2(x) = \int_0^2 x \, dx = 2.$$

Tenemos que $\lambda_1 = \left(1, \frac{1}{2}\right)_{B^*}$ y $\lambda_2 = (2, 2)_{B^*}$. Como dim $(V) = \dim(V^*) = 2$ y se trata de dos vectores linealmente independientes, forman una base de V^* . Ahora vamos a calcular la base de la que es dual. Sea $p_1(x) = a + bx$ tal que

$$\lambda_1(p_1(x)) = \int_0^1 p_1(x) \ dx = a + \frac{b}{2} = 1$$

$$\lambda_2(p_1(x)) = \int_0^2 p_1(x) \ dx = \int_0^2 p_1(x) \ dx = 2a + 2b = 0.$$

Así, tenemos que b = -2 y a = 2. Similarmente, sea $p_2(x) = a + bx$ tal que

$$\lambda_1 (p_2 (x)) = \int_0^1 p_2 (x) dx = a + \frac{b}{2} = 0$$

$$\lambda_2 (p_2 (x)) = \int_0^2 p_2 (x) dx = \int_0^2 p_1 (x) dx = 2a + 2b = 1.$$

Así, tenemos que b = 1 y $a = -\frac{1}{2}$. Así, tenemos que

$$p_1(x) = 2 - 2x, \quad p_1(x) = -\frac{1}{2} + x.$$