

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-2019 EXAMINATION

Subject Name: Basic Mathematics Model Answer Subject Code: 22103

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answers	Marking Scheme
1.		Attempt any FIVE of the following:	10
	a)	Find the value of x if $\log_3(x+6) = 2$	02
	Ans	$\log_3(x+6) = 2$	
		$\therefore x + 6 = 3^2$	1
		$\therefore x + 6 = 9$	
		$\therefore x = 3$	1
	b)	Find the area of triangle whose vertices are $(-3,1),(1,-3)$ and $(2,3)$.	02
	Ans	Let $(x_1, y_1) = (-3,1), (x_2, y_2) = (1,-3)$ and $(x_3, y_3) = (2,3)$	
		$A = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ $\begin{vmatrix} -3 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$	
		$\therefore A = \frac{1}{2} \begin{vmatrix} -3 & 1 & 1 \\ 1 & -3 & 1 \\ 2 & 3 & 1 \end{vmatrix}$	1
		$\therefore A = \frac{1}{2} \left[-3(-3-3) - 1(1-2) + 1(3+6) \right]$	
		$\therefore A = 14$	1
	c)	Without using calculator, find the value of $\cos(-765^{\circ})$	02
	Ans	$\cos\left(-765^{\circ}\right) = \cos\left(765^{\circ}\right)$	1/2
		$=\cos\left(8\times90+45\right)$	7.2

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103
--	--------------	---------------	-------

Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	c)	$\cos\left(-765^{\circ}\right) = \cos 45^{\circ}$	1
		$=\frac{1}{\sqrt{2}}$ or 0.707	1/2
	d)	Find the length of the longest pole that can be placed in a room 12 m long 9 m broad and 8 m h	igh. 02
	Ans	Let $L = 12 \text{ m}$, $B = 9 \text{ m}$, $H = 8 \text{ m}$	
		Longest pole = Length of diagonal $= \sqrt{L^2 + B^2 + H^2}$	
		$=\sqrt{(12)^2+(9)^2+(8)^2}$	1
		=17 m	1
	e)	Find the volume of the sphere whose surface area is 616 sq.m.	02
	Ans	Surface area = 616	
		$4\pi r^2 = 616$	1/2
		$\therefore r^2 = \frac{616}{4\pi} = 49.02$	
		r = 7.001	1/
		$Volume = \frac{4}{3}\pi r^3$	1/2
		$=\frac{4}{3}\pi(7.001)^3$	1/2
		=1437.37	
			1/2
	f)	If mean is 82 and standard deviation is 7, find the coefficient of variance.	02
	Ans	Coefficient of variation = $\frac{\sigma}{x} \times 100$	
		Coefficient of variation = $\frac{7}{82} \times 100$	1
		82 = 8.537	1
	g)	Find range and coefficient of range for the data:	02
		3, 7,11,2,16,17,22,20,19	
	Ans	Range = $L-S$	1/
		=22-2	1/2

Sub	ject Na	ame: Basic Mathematics <u>Model Answer</u> Subjection	ct Code:	22103
Q. No.	Sub Q.N.	Answers		Marking Scheme
1.	g)	∴ Range = 20		1/2
		Coefficient of range = $\frac{L-S}{L+S}$		
				1/2
		$=\frac{22-2}{22+2}$		
		= 0.833		1/2
2.		Attempt any THREE of the following:		12
	a)	If $A = \begin{bmatrix} -2 & 0 & 2 \\ 3 & 4 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 \\ 3 & 5 \\ 0 & 2 \end{bmatrix}$ whether AB is singular or non singular matrix		04
	Ans	$AB = \begin{bmatrix} -2 & 0 & 2 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 5 \\ 0 & 2 \end{bmatrix}$		
		$= \begin{bmatrix} -4 & 2 \\ 18 & 33 \end{bmatrix}$		2
		Consider $ AB = \begin{vmatrix} -4 & 2 \\ 18 & 33 \end{vmatrix}$		
		=-132-36		1
		= -168 ≠ 0 ∴ AB is non singular matrix		1
		The is non-singular matrix		1
	b)	Resolve into partial fraction: $\frac{2x+3}{x^2-2x-3}$		04
	Ans	$\frac{2x+3}{x^2-2x-3} = \frac{2x+3}{(x-3)(x+1)}$		
		$=\frac{A}{\left(x-3\right)}+\frac{B}{\left(x+1\right)}$		1
		$\therefore 2x+3=A(x+1)+B(x-3)$		
		Put $x = -1$		
		$\therefore -2+3=B(-1-3)$		
		$\therefore B = -\frac{1}{4}$		1
L	1	1		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Sub	Subject Name: Basic Mathematics <u>Model Answer</u> Subject Code:		22103
Q. No.	Sub Q. N.	Answers	Marking Scheme
2.	b)	Put $x = 3$ $\therefore 2(3) + 3 = A(3+1)$ $\therefore A = \frac{9}{4}$ $\frac{2x+3}{x^2 - 2x - 3} = \frac{\frac{9}{4}}{(x-3)} + \frac{-\frac{1}{4}}{(x+1)}$	1 1
	c)	The voltages in an circuit are related by following equations: $V_1 + V_2 + V_3 = 9$; $V_1 - V_2 + V_3 = 3$; $V_1 + V_2 - V_3 = 1$. Find V_1 , V_2 and V_3 by using Cramer's rule	04
	Ans	$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 1(1-1)-1(-1-1)+1(1+1) = 4$ $D_{V_1} = \begin{vmatrix} 9 & 1 & 1 \\ 3 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 9(1-1)-1(-3-1)+1(3+1) = 8$	1
		$\begin{vmatrix} 1 & 1 & -1 \\ \vdots V_1 &= \frac{D_{V_1}}{D} &= \frac{8}{4} = 2 \\ D_{V_2} &= \begin{vmatrix} 1 & 9 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 1(-3-1)-9(-1-1)+1(1-3)=12$	1
		$V_2 = \frac{D_{V_2}}{D} = \frac{12}{4} = 3$ $D_{V_3} = \begin{vmatrix} 1 & 1 & 9 \\ 1 & -1 & 3 \\ 1 & 1 & 1 \end{vmatrix} = 1(-1-3)-1(1-3)+9(1+1)=16$	1
		$\therefore V_3 = \frac{D_{V_3}}{D} = \frac{16}{4} = 4$	1
	d)	Compute standard deviation for the following data: 1,2,3,4,5,6,7	04

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
2.	d)		
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1
		x_i^2	
		Mean $\bar{x} = \frac{\sum x_i}{n} = \frac{28}{7} = 4$	1
		S.D. = $\sigma = \sqrt{\frac{\sum x_i^2}{n} - \left(\frac{\pi}{x}\right)^2}$ $\therefore \sigma = \sqrt{\frac{140}{7} - \left(4\right)^2}$	1
		$\therefore \sigma = \sqrt{\frac{140}{7} - \left(4\right)^2}$	1
		$\therefore \sigma = 2$	1
3.		Attempt any THREE of the following:	12
	a)	Simplify:	04
		$\frac{\cos^2\left(180^0-\theta\right)}{\sin\left(-\theta\right)} + \frac{\cos^2\left(270^0+\theta\right)}{\sin\left(180+\theta\right)}$	
	Ans	$\cos^2(180^0 - \theta) = (-\cos\theta)^2 = \cos^2\theta$	1/2
		$\cos^2\left(270^0 + \theta\right) = \sin^2\theta$	1/2
		$\sin(-\theta) = -\sin\theta$	1/2
		$\sin(180 + \theta) = -\sin\theta$	1/2
		$\therefore \frac{\cos^2\left(180^0 - \theta\right)}{\sin\left(-\theta\right)} + \frac{\cos^2\left(270^0 + \theta\right)}{\sin\left(180 + \theta\right)}$	
		$=\frac{\cos^2\theta}{-\sin\theta} + \frac{\sin^2\theta}{-\sin\theta}$	1/2
		$=\frac{\cos^2\theta + \sin^2\theta}{\cos^2\theta + \sin^2\theta}$	1/2
		$-\sin\theta$	r
		$=\frac{1}{-\sin\theta}$	1/2
		$=-\cos ec\theta$	1/2
	b)	Prove that:	04
		$1 + \tan \theta \cdot \tan 2\theta = \sec 2\theta$	

Sub	Subject Name: Basic Mathematics <u>Model Answer</u> Subject Code:		22103
Q. No.	Sub Q. N.	Answers	Marking Scheme
3.	b)	$1 + \tan \theta . \tan 2\theta$	
	Ans	$=1+\frac{\sin\theta}{\cos\theta}\frac{\sin 2\theta}{\cos 2\theta}$	
		$=\frac{\cos\theta\cos2\theta+\sin\theta\sin2\theta}{\sin\theta\cos\theta}$	1/2
		$\cos\theta\cos2\theta$	1
		$=\frac{\cos(\theta-2\theta)}{\cos\theta\cos2\theta}$	
		$\cos(-\theta)$	1/2
		$=\frac{1}{\cos\theta\cos2\theta}$	
		$=\frac{\cos\theta}{}$	
		$\cos\theta\cos2\theta$	
		$=\frac{1}{\cos 2\theta}$	1
		$= \sec 2\theta$	1
	c)	Prove that $\frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \cos 5A + \cos 6A} = \tan 5A$	04
	A a	$\sin 4A + \sin 5A + \sin 6A$	
	Ans	$\cos 4A + \cos 5A + \cos 6A$	
		$= \frac{\left(\sin 4A + \sin 6A\right) + \sin 5A}{\left(\cos 4A + \cos 6A\right) + \cos 5A}$	
		$= \frac{2\sin\left(\frac{4A+6A}{2}\right)\cos\left(\frac{4A-6A}{2}\right)+\sin 5A}{2\cos\left(\frac{4A+6A}{2}\right)\cos\left(\frac{4A-6A}{2}\right)+\cos 5A}$	2
		$2\sin 5A\cos(-A) + \sin 5A$	
		$= \frac{1}{2\cos 5A\cos(-A) + \cos 5A}$	1
		$=\frac{\sin 5A(2\cos(-A)+1)}{\cos 5A(2\cos(-A)+1)}$	
		$\cos 5A \left(2\cos\left(-A\right)+1\right)$	
		$= \tan 5A$	1
	d)	Prove that:	-
		$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$	04
			Do so C of 10

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	d) Ans	$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)$ $= \tan^{-1}\left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \left(\frac{1}{2}\right)\left(\frac{1}{3}\right)}\right)$ $= \tan^{-1}(1)$ $= \frac{\pi}{4}$	2 1 1
4.		Attempt any THREE of the following:	12
	a) Ans	If $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$ verify $(AB)^T = B^T A^T$ $AB = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$ $AB = \begin{bmatrix} 1+4-0 & 0+2-1 & 0+0-3 \\ 3+0+0 & 0+0+2 & 0+0+6 \\ 4+10+0 & 0+5+0 & 0+0+0 \end{bmatrix}$	04
		$AB = \begin{bmatrix} 5 & 1 & -3 \\ 3 & 2 & 6 \\ 14 & 5 & 0 \end{bmatrix}$	1

	Ans	(2) (3)	
		$= \tan^{-1} \left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \left(\frac{1}{2}\right)\left(\frac{1}{3}\right)} \right)$	2
		$= \tan^{-1}(1)$	1
			1
		$=\frac{\pi}{4}$	
4.		Attempt any THREE of the following:	12
		$\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	04
	a)	If $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$ verify $(AB)^T = B^T A^T$	
	Ans	$\begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \end{bmatrix}$	
	AllS	$AB = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$	
		$AB = \begin{bmatrix} 1+4-0 & 0+2-1 & 0+0-3 \\ 3+0+0 & 0+0+2 & 0+0+6 \end{bmatrix}$	
		$\begin{bmatrix} 4+10+0 & 0+5+0 & 0+0+0 \end{bmatrix}$	
		$AB = \begin{bmatrix} 5 & 1 & -3 \\ 3 & 2 & 6 \\ 14 & 5 & 0 \end{bmatrix}$	1
		$\therefore (AB)^T = \begin{bmatrix} 5 & 3 & 14 \\ 1 & 2 & 5 \end{bmatrix}$	1/2
			1
		$\begin{bmatrix} B^T A^T = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 3 & 4 \\ 2 & 0 & 5 \\ -1 & 2 & 0 \end{bmatrix}$	_
		$\begin{vmatrix} 0 & 0 & 3 & -1 & 2 & 0 \end{vmatrix}$	
		$\therefore B^{T} A^{T} = \begin{bmatrix} 1+4-0 & 3+0+0 & 4+10+0 \\ 0+2-1 & 0+0+2 & 0+5+0 \end{bmatrix}$	
		$\begin{bmatrix} 0+0-3 & 0+0+6 & 0+0+0 \end{bmatrix}$	
		_	- (40

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER-2019 EXAMINATION

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	a)	$\therefore B^T A^T = \begin{bmatrix} 5 & 3 & 14 \\ 1 & 2 & 5 \\ -3 & 6 & 0 \end{bmatrix}$	1 1/2
		$\therefore \left(AB\right)^T = B^T A^T$	/2
	b)	Resolve in to partial fraction:	04
		$\frac{3x-2}{(x+2)(x^2+4)}$	1/2
	Ans	$\frac{3x-2}{(x+2)(x^2+4)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+4}$	/2
		$\therefore 3x - 2 = (x^2 + 4)A + (x + 2)(Bx + C)$	
		Put $x = -2$	
		$\therefore 3(-2)-2=\left(\left(-2\right)^2+4\right)A$	
		$\therefore -8 = 8A$	1
		$\therefore A = -1$ Put $x = 0$	
		$\therefore -2 = 4A + 2C$	
		$\therefore -2 = 4(-1) + 2C$	
		$\therefore 2 = 2C$	1
		$\therefore C = 1$	1
		Put $x = 1$	

 $\therefore 3(1) - 2 = ((1)^2 + 4)A + (1+2)(B(1) + C)$

 $\therefore 1 = 5A + 3B + 3C$

 $\therefore 3 = 3B$

 $\therefore B = 1$

 $\therefore 1 = 5(-1) + 3B + 3(1)$

 $\therefore \frac{3x-2}{(x+2)(x^2+4)} = \frac{-1}{x+2} + \frac{x+1}{x^2+4}$

Subject Name: Basic Mathematics		me: Basic Mathematics	Model Answer	Subject Code: 22103
\sim	C 1			3.6 11

Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	c)	Without using calculator, prove that $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 60^{\circ} \cdot \cos 80^{\circ} = \frac{1}{16}$	04
	Ans	$\cos 20^{\circ}.\cos 40^{\circ}.\cos 60^{\circ}.\cos 80^{\circ}$	
		$=\frac{1}{2}(2\cos 20^{\circ}\cos 40^{\circ}).(\frac{1}{2})\cos 80^{\circ}$	1/2
			1/2
		$= \frac{1}{4} \left[\cos \left(20^{\circ} + 40^{\circ} \right) + \cos \left(20^{\circ} - 40^{\circ} \right) \right] \cos 80^{\circ}$	
		$=\frac{1}{4}\left[\cos(60^\circ)+\cos(-20^\circ)\right]\cos 80^\circ$	
		$= \frac{1}{4} \left[\frac{1}{2} \cos 80^{\circ} + \cos 20^{\circ} \cos 80^{\circ} \right]$	1/2
		$= \frac{1}{4} \left[\frac{1}{2} \cos 80^{\circ} + \frac{1}{2} \left(2 \cos 20^{\circ} \cos 80^{\circ} \right) \right]$	1/2
		$= \frac{1}{8} \left[\cos 80^{\circ} + \cos \left(20^{\circ} + 80^{\circ} \right) + \cos \left(20^{\circ} - 80^{\circ} \right) \right]$	1/2
		$=\frac{1}{8}\left[\cos 80^{\circ} + \cos\left(100^{\circ}\right) + \cos\left(-60^{\circ}\right)\right]$	
		$= \frac{1}{8} \left[\cos 80^{\circ} + \cos \left(180 - 80^{\circ} \right) + \frac{1}{2} \right]$	1/2
		$=\frac{1}{8}\left[\cos 80^{\circ} - \cos \left(80^{\circ}\right) + \frac{1}{2}\right]$	1/2
		$=\frac{1}{16}$	1/2
	d)	Prove that:	04
		$\tan A \cdot \tan \left(60 - A \right) \cdot \tan \left(60 + A \right) = \tan 3A$	V I
	Ans	$\tan A \cdot \tan \left(60 - A\right) \cdot \tan \left(60 + A\right)$ $= \tan A \cdot \frac{\tan 60 - \tan A}{\tan 60 + \tan A} \cdot \frac{\tan 60 + \tan A}{\tan 60 + \tan A}$	1
		$1+\tan 60 \tan A 1 - \tan 60 \tan A$	
		$= \tan A \cdot \left(\frac{\sqrt{3} - \tan A}{1 + \sqrt{3} \tan A}\right) \left(\frac{\sqrt{3} + \tan A}{1 - \sqrt{3} \tan A}\right)$	1
		$= \tan A \cdot \left(\frac{3 - \tan^2 A}{1 - 3\tan^2 A} \right)$	1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	d)	$= \left(\frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}\right)$ $= \tan 3A$	1
	e)	If $\angle A$ and $\angle B$ are obtuse angles and $\sin A = \frac{12}{13}$, $\cos B = \frac{-4}{5}$, find $\cos (A + B)$	04
	Ans	$\sin A = \frac{12}{13}, \cos B = \frac{-4}{5}$	
		$\cos^{2} A = 1 - \sin^{2} A$ $= 1 - \left(\frac{12}{13}\right)^{2}$ $= 1 - \frac{144}{169} = \frac{25}{169}$ $\cos A = \pm \frac{5}{13}$ $\therefore \cos A = -\frac{5}{13} (\angle A \text{ is obtuse angle})$ $\sin^{2} B = 1 - \cos^{2} B$ $= 1 - \left(-\frac{4}{5}\right)^{2}$ $\sin^{2} B = 1 - \frac{16}{25} = \frac{9}{25}$	1
		$\sin B = \pm \frac{3}{5}$ $\sin B = \pm \frac{3}{5}$ $\sin B = \frac{3}{5} \qquad (\angle B \text{ is obtuse angle})$ $\cos (A + B) = \cos A \cdot \cos B - \sin A \cdot \sin B$ $= \left(-\frac{5}{13}\right) \times \left(-\frac{4}{5}\right) - \left(\frac{12}{13}\right) \times \left(\frac{3}{5}\right)$	1
		$ = -\left(-\frac{13}{13}\right)^{\wedge} \left(-\frac{5}{5}\right)^{-} \left(\frac{13}{13}\right)^{\wedge} \left(\frac{5}{5}\right) $ $ = -\frac{16}{65}$	-

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER- 2019 EXAMINATION

Subject Name: Basic Mathematics Model Answer Subject Code: 22103

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
5.		Attempt any TWO of the following:	12
	a)	Attempt the following:	06
	(i)	Find length of perpendicular from the point $P(2,5)$ on the line $2x+3y-6=0$	03
	Ans	$d = \left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $	
		$p = \left \frac{2(2) + 3(5) - 6}{\sqrt{(2)^2 + (3)^2}} \right $ $p = \frac{13}{\sqrt{13}} \text{or } \sqrt{13} \text{or } 3.61$	2
		$p = \frac{13}{\sqrt{13}}$ or $\sqrt{13}$ or 3.61	1
	a) ii)	Find the equation of the line passing through $(2,3)$ and having slope 5 units	03
	Ans	Point $(x_1, y_1) = (2,3)$ and slope $m = 5$	
		Equation of line is,	
		$y - y_1 = m(x - x_1)$	
		$\therefore y-3=5(x-2)$	1
		$\therefore y - 3 = 5x - 10$ $\therefore 5x - y - 7 = 0$	1
		$\therefore 5x - y - 7 = 0$	1
	b)	Attempt the following:	06
	i)	Find the equation of the line passing through the point $(2,3)$ and perpendicular to the line	03
		3x - 5y = 6	
	Ans	Point $(x_1, y_1) = (2,3)$	
		Slope of the line $3x - 5y - 6 = 0$ is,	
		$m = -\frac{a}{b} = -\frac{3}{-5} = \frac{3}{5}$	1/2
		b −5 5 ∴ Slope of the required line is,	
			1/2
		$m' = -\frac{1}{m} = -\frac{5}{3}$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

Sub	oject Na	ame: Basic Mathematics <u>Model Answer</u> Subject Cod	e: 2	22103
Q. No.	Sub Q.N.	Answers		Marking Scheme
5.	b)i)	∴ equation is,		
	Ans	$y - y_1 = m'(x - x_1)$		
		$\therefore y-3=-\frac{5}{3}(x-2)$		1
		$\therefore 3y - 9 = -5x + 10$		
		$\therefore 5x + 3y - 19 = 0$		1
	b)ii)	Find the acute angle between the lines $3x - y = 4$, $2x + y = 3$.		03
	Ans	For $3x - y = 4$		
		slope $m_1 = -\frac{a}{b} = -\frac{3}{-1} = 3$		1/2
		For $2x + y = 3$		
		slope $m_2 = -\frac{a}{b} = -\frac{2}{1} = -2$		1/2
		$\therefore \tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $		
		$\therefore \tan \theta = \left \frac{3 - (-2)}{1 + 3 \times (-2)} \right $		1
		$\therefore \tan \theta = 1$		
		$\therefore \theta = \tan^{-1}(1)$		1
		$\therefore \theta = \frac{\pi}{4}$		
	c)	Attempt the following:		06
	i)	A cylinder has hemispherical ends having radius 14 cm and height 50 cm. Find the total st	ırface	03
		area	iiiacc	
	Ans	Given $r = 14$ cm and $h = 50$ cm		
		Total surface area = Curved Surface area of Cylinder + Surface area of two hemisphere		
		$\therefore A = 2\pi r h + 2\left(2\pi r^2\right) = 2\pi r \left(h + 2r\right)$		
		$=2\pi(14)[50+2(14)]$		2
		$=2184\pi$ or 6861.24		1
			D:	age 12 of 18

Subj	ject Name: Basic Mathematics	Model Answer	Subject Code:	22103
\cap	Sub			Marking

Q. No.	Sub Q.N.					Ansv	/ers					Marking Scheme
5.	c)(ii)		A solid right circular cone of radius 2 m and height 27 m melted and recasted into a sphere.								03	
			Find the volume and surface area of the sphere.									
	Ans	Volun	ne of right circular	cone	$=\frac{1}{3}\pi r^2 h$	h						
				:	$=\frac{1}{3}\pi(2$	$)^{2}(27)$						
					-	or 113	.04					1
		Volun	ne of sphere = Volu	ime of	right ci	rcular co	$ne = 36\pi$					
		Volun	the of sphere $=\frac{4}{3}\pi$	r^3								
		∴36π	$=\frac{4}{3}\pi r^3$									
		$\therefore r^3 =$										1
		$\therefore r = 3$	3									1
		∴ Surf	ace area of the sph									
				$=4\pi$	$(3)^2$							
				= 36.	π or	113.04						1
6.		Attem	pt any TWO of th	e foll	owing:							12
	a)	Find t	he mean, standard	deviati	ion and	coefficie	nt of varianc	e of the fo	ollowing	data:		06
			Class Int	erval	0-10	10-2	0 20-30	30-40	40-50			
			Freque	ncv	14	23	27	21	15			
	Ans		Treque					21	10			
		[Class Interval	v	f	fx	$x_i - a$	$a \mid f_A$	12	c 12		
			0-10	$\frac{x_i}{5}$	f_i 14	$\frac{f_i x_i}{70}$	$d_i = \frac{x_i - a_i}{h}$		d_i^2	$\frac{f_i d_i^2}{56}$		
								-28				
			10-20	15	23	345	-1	-23	1	23		2
			20-30	25	27	675	0	0	0	0		3
			30-40	35	21	735	1	21	1	21		
			40-50	45	15	675	2	30	4	60		
					100	2500		0		160		

Sub	ject Na	me: Basic M	athematics		Mode	Answer		Subje	ect Code:	2210)3
Q. No.	Sub Q.N.				Ans	wers				Mark Schei	_
6.	a)	Mean $\bar{x} = \sum_{n=0}^{\infty} S.D. = \sigma = 0$	$\frac{\sum f_i x_i}{N} = \frac{250}{100}$ $\sqrt{\frac{\sum f_i d_i^2}{N}} - \left(\frac{1}{N}\right)$	$\frac{0}{N} = 25$ $\left(\frac{\sum f_i d_i}{N}\right)^2 \times \frac{1}{N}$	< h					1	
			2.64		12.64					1	
		Coefficient	of variance	$V = \frac{\sigma}{x} \times 100$	$0 = \frac{12.64}{25} \times 1$ $= 50.56$	00				1	
		<u>OR</u>									
			Class Interval	X_i	f_i	$f_i x_i$	x_i^2	$f_i x_i^2$			
			0-10	5	14	70	25	350			
			10-20	15	23	345	225	5175			
			20-30	25	27	675	625	16875		3	
			30-40	35	21	735	1225	25725			
			40-50	45	15	675	2025	30375			
					100	2500		78500			
		Mean $\bar{x} = \frac{1}{2}$ S.D. $\sigma = \sqrt{\frac{2}{2}}$ $= \sqrt{\frac{2}{2}}$		2						1	
		$\sigma = 12$								1	

${\bf MAHARASHTRA\ STATE\ BOARD\ OF\ TECHNICAL\ EDUCATION}$

(Autonomous) /JEC - 27001 - 2013 Cer

(ISO/IEC - 27001 - 2013 Certified)

Sub	ject Na	me: Basic Mathem	atics		Mode	el Ans	<u>wer</u>			Subject Code:	2	22103
Q. No.	Sub Q.N.											Marking Scheme
6.	a)	Coefficient of vari	\mathcal{X}	$\frac{64}{25} \times 100$)							1
	b)	Attempt the follow	ing:									06
	i)	Calculate the range	e and coef	ficient o	f range fi	om th	e follo	owing o	data:			03
		Marks	10-19	20-29	30-39	40-	_	50-59	60-69			
		No. of students	6	10	16	1	4	8	4			
	Ans	Marks	9.5-19.5	19.5-29	.5 29.5	-39.5	39.5-	-49.5	49.5-59.5	59.5-69.5		
		No. of students	6	10	1		1		8	4		1
		Range = $L-S$ = $69.5-9.5$ = 60 Coefficient of range	$ge = \frac{L - S}{L + S}$ $= \frac{69.5}{L + S}$	$\frac{-9.5}{+9.5}$								1
	b)ii)	The two set of observed	ervations	are giver	below:	·						03
					Set I	Set I	Ι					
						$\bar{x} = 4$	8.75					
					<i>σ</i> =7.3	σ =8	3.35					
		Which of two set is	s more co	nsistent?				_1				

Subject Name: Basic Mathematics	Model Answer	Subject Code: 22103
--	---------------------	---------------------

Q. No.	Sub Q.N.	Answers	Marking Scheme
6.	b)	For Set I:	
	ii)	Coefficient of variance $=\frac{\sigma}{=} \times 100$	
	Ans	$=\frac{x}{7.3}\times100$	
		= 8.848	1
		For Set II:	
		Coefficient of variance $=\frac{\sigma}{x} \times 100$	
		$=\frac{8.35}{48.75} \times 100$	1
		= 17.128	1
		Set I is more consistent	1
	c)	Solve the following equations by matrix inversion method:	06
		x + y + z = 3	
		3x - 2y + 3z = 4	
		5x + 5y + z = 11	
	Ans	Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & -2 & 3 \\ 5 & 5 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 3 \\ 4 \\ 11 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$	
		1 1 1	
		$\begin{vmatrix} A = \begin{vmatrix} 3 & -2 & 3 \\ 5 & 5 & 1 \end{vmatrix}$	
		A = 1(-2-15)-1(3-15)+1(15+10)	1
		$\therefore A = 20 \neq 0$	
		$\therefore A^{-1}$ exists	
		$ \begin{bmatrix} -2 & 3 & 3 & 3 & 3 & -2 \\ 5 & 1 & 5 & 1 & 5 & 5 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} $	
		Matrix of minors = $\begin{bmatrix} \begin{vmatrix} -2 & 3 & 3 & 3 & 3 & -2 \\ 5 & 1 & 5 & 1 & 5 & 5 \end{vmatrix} \\ \begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 5 & 1 & 5 & 1 & 5 & 5 \end{vmatrix} \\ \begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ -2 & 3 & 3 & 3 & 3 & -2 \end{vmatrix} \end{bmatrix}$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-2019 EXAMINATION

Subject Name: Basic Mathematics

Model Answer

Subject Code: 22103

Sub	ject Ival	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
6.	c)	Matrix of minors = $\begin{bmatrix} -17 & -12 & 25 \\ -4 & -4 & 0 \\ 5 & 0 & -5 \end{bmatrix}$ Matrix of cofactors = $\begin{bmatrix} -17 & 12 & 25 \\ 4 & -4 & 0 \\ 5 & 0 & -5 \end{bmatrix}$	1
		OR $C_{11} = + \begin{vmatrix} -2 & 3 \\ 5 & 1 \end{vmatrix} = -2 - 15 = -17, \ C_{12} = - \begin{vmatrix} 3 & 3 \\ 5 & 1 \end{vmatrix} = - (3 - 15) = 12, \ C_{13} = + \begin{vmatrix} 3 & -2 \\ 5 & 5 \end{vmatrix} = 15 + 10 = 25$ $C_{21} = - \begin{vmatrix} 1 & 1 \\ 5 & 1 \end{vmatrix} = - (1 - 5) = 4, \ C_{22} = + \begin{vmatrix} 1 & 1 \\ 5 & 1 \end{vmatrix} = 1 - 5 = -4, \ C_{23} = - \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} = - (5 - 5) = 0$ $C_{31} = + \begin{vmatrix} 1 & 1 \\ -2 & 3 \end{vmatrix} = 3 + 2 = 5, \ C_{32} = - \begin{vmatrix} 1 & 1 \\ 3 & 3 \end{vmatrix} = - (3 - 3) = 0, \ C_{33} = \begin{vmatrix} 1 & 1 \\ 3 & -2 \end{vmatrix} = -2 - 3 = -5$	1
		Matrix of cofactors = $\begin{bmatrix} -17 & 12 & 25 \\ 4 & -4 & 0 \\ 5 & 0 & -5 \end{bmatrix}$	1
		$Adj.A = \begin{bmatrix} -17 & 4 & 5 \\ 12 & -4 & 0 \\ 25 & 0 & -5 \end{bmatrix}$	1/2
		$A^{-1} = \frac{1}{ A } A \text{dj.} A$ $\therefore A^{-1} = \frac{1}{20} \begin{bmatrix} -17 & 4 & 5 \\ 12 & -4 & 0 \\ 25 & 0 & -5 \end{bmatrix}$ $\therefore X = A^{-1} B$	1
		$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{20} \begin{bmatrix} -17 & 4 & 5 \\ 12 & -4 & 0 \\ 25 & 0 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 11 \end{bmatrix}$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{20} \begin{bmatrix} -51 + 16 + 55 \\ 36 - 16 + 0 \\ 75 + 0 - 55 \end{bmatrix}$	1/2

Sub	ject Na	Name: Basic Mathematics <u>Model Answer</u> Subject	Code:	22103
Q. No.	Sub Q. N.	Answers		Marking Scheme
6.	c)	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 20 \\ 20 \\ 20 \end{bmatrix}$ $\therefore x = 1, y = 1, z = 1$		1
		Important Note In the solution of the question paper, wherever possible all the possible alternative m solution are given for the sake of convenience. Still student may follow a method other given herein. In such case, first see whether the method falls within the scope of the cur and then only give appropriate marks in accordance with the scheme of marking.	than th	ne