Model-Parallel Deep Learning Efficient DL, Episode VI '24

Yandex Research

Dealing with large models Model-Parallel Deep Learning Efficient DL, Episode III '22

Yandex Research

Recap: large models

Image Classification ImageNet Machine Translation average over WMT

Source: https://arxiv.org/abs/1811.06965

Recap: Ring allreduce

Bonus quest: you can only send data between adjacent gpus

Ring topology

Image: graphcore ipu server

Answer & more: tinyurl.com/ring-allreduce-blog

Recap: All-Reduce SGD

arxiv.org/abs/1706.02677

Idea: get rid of the host, each gpu runs its own computation Q: why will weights be equal after such step?

Recap: Decentralized SGD

Gossip (communication): https://tinyurl.com/boyd-gossip-2006 Gossip outperforms All-Reduce: https://tinyurl.com/can-dsgd-outperform

Q: What if a model is larger than GPU? easy mode: cannot fit the right batch size hard mode: cannot fit a single sample expert mode: not even parameters!

Q: What if a model is larger than GPU? easy mode: cannot fit the right batch size hard mode: cannot fit a single sample expert mode: not even parameters!

Q: What if a model is larger than GPU? easy mode: cannot fit the right batch size

hard mode: cannot fit a single sample expert mode: not even parameters!

Solution: accumulate grads from several training batches

```
[ ] 1 optimizer.zero_grad()
2 for i in range(B):
3   loss = model(**next_batch())
4   (loss / B).backward()
5 optimizer.step()
```

Q: What if a model is larger than GPU? easy mode: cannot fit the right batch size hard mode: cannot fit one training sample expert mode: not even parameters!

aka rematerialization

Paper (DL): arxiv.org/pdf/1604.06174.pdf

Normal backprop

Paper (DL): arxiv.org/pdf/1604.06174.pdf

Full rematerialization

Paper (DL): arxiv.org/pdf/1604.06174.pdf

Single checkpoint

checkpoint

Paper (DL): arxiv.org/pdf/1604.06174.pdf

Single checkpoint

Paper (DL): arxiv.org/pdf/1604.06174.pdf

easy mode: cannot fit batch size 1 expert mode: not even parameters!

Model-parallel training

Model-parallel training

Pipelining

GPipe: arxiv.org/abs/1811.06965 – good starting point, *not* the 1st paper

Idea: split data into micro-batches and form a pipeline (right)

model size: O(n)

Gradients

throughput: O(n) – with caveats

Pipelining

GPipe: arxiv.org/abs/1811.06965 – good starting point, *not* the 1st paper

Idea: split data into micro-batches and form a pipeline (right)

model size: O(n)

Gradients

throughput: O(n) – with caveats

Q: Even faster?

Pipeline-parallel training

PipeDream: arxiv.org/abs/1806.03377

Idea: apply gradients with every microbatch for maximum throughput

Also neat:

- Automatically partition layers to GPUs via dynamic programming
- Store k past weight versions to reduce gradient staleness
- Aims at high latency

Tensor-parallel training

Q: find AllReduce op here

Q: find AllReduce op here

</Model-parallel>

- + model larger than GPU
- + faster for small
- * typical size: 2-8 gpus
- model partitioning is tricky tensor parallelism is easier, but requires ultra low latency
- latency is critical, go buy nvlink except for PipeDream
- often combined with gradient checkpointing

Tutorials:

- Simple pipelining in PyTorch tinyurl.com/pytorch-pipelining
- Distributed model-parallel with torch RPC https://tinyurl.com/torch-rpc
- Automatic tensor parallelism pip install tensor_parallel

</Model-parallel>

- + model larger than GPU
- + faster for small
- * typical size: 2-8 gpus
- model partitioning is tricky tensor parallelism is easier, but requires ultra low latency
- latency is critical, go buy nvlink except for PipeDream
- often combined with gradient checkpointing

Tutorials:

- Simple pipelining in PyTorch tinyurl.com/pytorch-pipelining
- Distributed model-parallel with torch RPC https://tinyurl.com/torch-rpc
- Automatic tensor parallelism pip install tensor parallel

Q: what if you have 1024 GPUs, but the model fits on 8?

</Model-parallel>

- + model larger than GPU
- + faster for small
- * typical size: 2-8 gpus
- model partitioning is tricky tensor parallelism is easier, but requires ultra low latency
- latency is critical, go buy nvlink except for PipeDream
- often combined with gradient checkpointing

Tutorials:

- Simple pipelining in PyTorch tinyurl.com/pytorch-pipelining
- Distributed model-parallel with torch RPC https://tinyurl.com/torch-rpc
- Automatic tensor parallelism pip install tensor parallel

Large-scale training: combine model- and data-parallel

[after the break: movies! cool video]

How 'bout a short break?

Case study: DeepSpeed

Source: microsoft

L2L: https://arxiv.org/abs/2002.05645

EPS with L2L execution

- Initialize all layers on CPU
- Move k layers at a time to GPU
- Remove layers after computation
- Fetch k+1-st layer while k-th runs
- Still 20-50% overhead

L2L: https://arxiv.org/abs/2002.05645

Метнор	UBATCH SIZE	DEVICE BATCH SIZE	#Layer	#PARAMETERS	MEMORY (GB)
BASELINE	2 2	2	24	300 MILLION	9.23
BASELINE		2	48	600 MILLION	OOM
L2L-STASH ON GPU	64	64	24	300 MILLION	5.22
L2L-STASH ON GPU	64	64	48	600 MILLION	6.76
L2L-STASH ON GPU	64	64	96	1.2 BILLION	9.83
L2L-STASH ON CPU	64	64	24	300 MILLION	3.69
L2L-STASH ON CPU	64	64	96	1.2 BILLION	3.69
L2L-STASH ON CPU	64	64	384	4.8 BILLION	3.69

- Offload in parallel with computation
- Use gradient checkpointing
- Delayed parameter update

- Offload in parallel with computation
- Use gradient checkpointing
- Delayed parameter update

Figure 6: Delayed parameter update during the training process.

- Offload in parallel with computation
- Use gradient checkpointing
- Delayed parameter update

DeepSpeed / ZeRO

ZeRO: https://arxiv.org/pdf/1910.02054v3.pdf

- Combines sharded DPP and offload
- ... and some tensor parallelism
- ... and a ton of hacks

DeepSpeed Inference

Paper: https://arxiv.org/abs/2207.00032

- Same techniques, but for inference
- Offloading, tensor- & pipeline-parallel
- ... and a ton of hacks

</ZeRO>

Multi-GPU strategies:

- * Pipeline model-parallel allocate layers on different GPUs
- * Sharded data-parallel split optimizer state and/or parameters

Single GPU strategies:

- * Small model gradient checkpointing & virtual batch
- * Large model optimizer state sharding (keep parameters on GPU)

Implementations:

- DeepSpeed— sharded DP, offload, tensor parallelism, active development
 - Offload https://www.deepspeed.ai/news/2021/03/07/zero3-offload.html
- FSDP most of DeepSpeed features with native PyTorch API
- Model-specific implementations— https://github.com/NVIDIA/Megatron-LM

If we have time...

(if not, finish here)

Petals

https://petals.ml

TL;DR: you can run 100B+ models over the internet, BitTorrent style

```
from petals import DistributedBloomForCausalLM
model = DistributedBloomForCausalLM.from pretrained("bigscience/bloom-petals", tuning mode="ptune",
# Embeddings & prompts are on your device, BLOOM blocks are distributed across the Internet
inputs = tokenizer("A cat sat", return tensors="pt")["input ids"]
outputs = model.generate(inputs, max_new_tokens=5)
print(tokenizer.decode(outputs[0])) # A cat sat on a mat...
# Fine-tuning (updates only prompts or adapters hosted locally)
optimizer = torch.optim.AdamW(model.parameters())
for input_ids, labels in data_loader:
    outputs = model.forward(input_ids)
    loss = cross_entropy(outputs.logits, labels)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```

If we have time... (if not, skip)

Expert Parallelism

Sparsely gated MoE: https://arxiv.org/pdf/1701.06538.pdf

MoE Variant: Switch Transformer

Switch: https://arxiv.org/pdf/2101.03961.pdf

Terminology

- Experts: Split across devices, each having their own unique parameters. Perform standard feedforward computation.
- Expert Capacity: Batch size of each expert. Calculated as
- (tokens_per_batch / num_experts) * capacity_factor
- Capacity Factor: Used when calculating expert capacity. Expert capacity allows more buffer to help mitigate token overflow during routing.

MoE Variant: Switch Transformer

Switch: https://arxiv.org/pdf/2101.03961.pdf

MLM pre-training objective [BERT-like]

MoE Variant: Switch Transformer

Switch: https://arxiv.org/pdf/2101.03961.pdf

Pre-training vs downstream quality

source: https://sites.google.com/view/icml-2022-big-model

source: https://sites.google.com/view/icml-2022-big-model

Classic view

Data parallelism

Model parallelism

New view (this tutorial)

Inter-op parallelism

Intra-op parallelism

source: https://sites.google.com/view/icml-2022-big-model

Data parallelism

Model parallelism

source: https://sites.google.com/view/icml-2022-big-model

Data and model parallelism

- Two pillars: data and model.
- Variation of the second of the
- ? "Model parallelism" is vague.
- ? The view creates ambiguity for methods that neither partitions data nor the model computation.

New: Inter-op and Intra-op parallelism.

- Two pillars: computational graph and device cluster
- This view is based on their computing characteristics.
- This view facilitates the development of new parallelism methods.

source: https://sites.google.com/view/icml-2022-big-model

$$egin{aligned} heta^{(t+1)} &= fig(heta^{(t)},\,
abla_Lig(heta^{(t)},\, D^{(t)}ig)ig) \ L &= ext{MSE}(w_2 \cdot ext{ReLU}(w_1x),\, y) \quad heta = \{w_1,w_2\},\, D = \{(x,y)\} \ f(heta,
abla_L) &= heta -
abla_L \end{aligned}$$

Operator / its output tensor → Data flowing direction

source: https://sites.google.com/view/icml-2022-big-model

Compute graph

Device cluster

source: https://sites.google.com/view/icml-2022-big-model

Q: How to partition the graph on the device cluster?

source: https://sites.google.com/view/icml-2022-big-model

Strategy 1

Strategy 2

Strategy 3

Strategy 4

source: https://sites.google.com/view/icml-2022-big-model

Device 1

Device 2

Q: have you seen S1/2/3/4 before?

Strategy 1

Strategy 2

Strategy 3

Strategy 4

source: https://sites.google.com/view/icml-2022-big-model

Pipeline MP

Tensor-parallel v1

DP with offloading or PS

Tensor-parallel v2

source: https://sites.google.com/view/icml-2022-big-model

Tensor-parallel v2

source: https://sites.google.com/view/icml-2022-big-model

Device 1

Inter-op parallelism

Trade-off

	Inter-operator Parallelism	Intra-operator Parallelism
Communication	Less	More
Device Idle Time	More	Less

Intra-op parallelism

source: https://sites.google.com/view/icml-2022-big-model

RL-based partitioning

https://people.csail.mit.edu/hongzi/content/publications/placeto-neurips19.pdf

State: Device assignment plan for a computational graph.

Action: Modify the device assignment of a node.

Reward: Latency difference between the new and old placements.

Trained with **policy gradient** algorithm.

Optimization-based partitioning

https://arxiv.org/abs/2006.16423

min

Integer Linear Programming:

Variable: Decision variable vector for each operator, representing device assignment.

Minimize: Maximum finishing time of all operators.

Constraint: Execution dependency & memory capacity of each device.

TotalLatency $\sum_{i=0}^k x_{vi} = 1$ s.t. subgraph $\{v \in V : x_{vi} = 1\}$ is contiguous $M \geq \sum_{v} m_v \cdot x_{vi}$ $CommIn_{ui} \ge x_{vi} - x_{ui}$ $CommOut_{ui} \geq x_{ui} - x_{vi}$ $TotalLatency \geq Latency$ $SubgraphStart_i \geq Latency_v \cdot CommIn_{vi}$ $\text{SubgraphFinish}_i = \text{SubgraphStart}_i + \sum_{v} \text{CommIn}_{vi} \cdot c_v$ $+\sum_{v} x_{vi} \cdot p_v^{\mathrm{acc}} + \sum_{v} \mathrm{CommOut}_{vi} \cdot c_v$ Latency_v $\geq x_{v0} \cdot p_v^{\text{cpu}}$ Latency, $\geq x_{v0} \cdot p_v^{\text{cpu}} + \text{Latency}_u$ $Latency_v \geq x_{vi} \cdot SubgraphFinish_i$ $x_{vi} \in \{0, 1\}$

https://arxiv.org/abs/2201.12023

Whole Search Space

Alpa Hierarchical Space

https://arxiv.org/abs/2201.12023

https://arxiv.org/abs/2201.12023

More details of each pass:

https://sites.google.com/view/icml-2022-big-model

https://arxiv.org/abs/2201.12023

Not the first algorithm for auto-parallelism... but the first one that is usable* (* - most of the time)

(benchmarks on AWS V100)

GPT (up to 39B)

Match specialized manual systems.

GShard MoE (up to 70B)

Outperform the manual baseline by up to 8x.

Wide-ResNet (up to 13B)

Generalize to models without manual plans.

https://arxiv.org/abs/2201.12023

Not the first algorithm for auto-parallelism... but the first one that is usable* (*-most of the time)

```
# Define the training step. The body of this function is the same as the
# ``train step`` above. The only difference is to decorate it with
# ``alpa.paralellize``.
@alpa.parallelize auto best strategy
def alpa_train_step(state, batch):
    def loss_func(params):
        out = state.apply_fn(params, batch["x"])
       loss = jnp.mean((out - batch["y"])**2)
        return loss works in jax
    grads = jax.grad(loss_func)(state.params)
    new_state = state.apply_gradients(grads=grads)
    return new state
# Test correctness
actual_state = alpa_train_step(state, batch)
assert allclose(expected state.params, actual state.params, atol=5e-3)
```

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect

16GB model and optimizer, 128GB activations (batch 32) → ???

</le>

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect

16GB model and optimizer, 128GB activations (batch 32) → grad accumulation

16GB model and optimizer, 16GB activations (batch 1) - ???

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect

16GB model and optimizer, 128GB activations (batch 32) → grad accumulation

16GB model and optimizer, 16GB activations (batch 1) → grad checkpointing

32GB model and optimizer, 1GB activations \rightarrow ???

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect 16GB model and optimizer, 128GB activations (batch 32) → **grad accumulation** 16GB model and optimizer, 16GB activations (batch 1) → **grad checkpointing** 32GB model and optimizer, 1GB activations → **it depends...**

DDP + offloading | FSDP (ZeRO) | Pipeline-parallel | Tensor-parallel

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect 16GB model and optimizer, 128GB activations (batch 32) → **grad accumulation** 16GB model and optimizer, 16GB activations (batch 1) → **grad checkpointing** 32GB model and optimizer, 1GB activations → **it depends...**

DDP + offloading | FSDP (ZeRO) | Pipeline-parallel | Tensor-parallel | e.g. if too few GPUs | for other methods

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect 16GB model and optimizer, 128GB activations (batch 32) → **grad accumulation** 16GB model and optimizer, 16GB activations (batch 1) → **grad checkpointing** 32GB model and optimizer, 1GB activations → **it depends...**

DDP + offloading | FSDP (ZeRO) | Pipeline-parallel | Tensor-parallel
 e.g. if too few GPUs no custom model code, best for large batches

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect 16GB model and optimizer, 128GB activations (batch 32) → **grad accumulation** 16GB model and optimizer, 16GB activations (batch 1) → **grad checkpointing**

DDP + offloading | FSDP (ZeRO) | Pipeline-parallel | Tensor-parallel

32GB model and optimizer, 1GB activations \rightarrow it depends...

e.g. if too few GPUs for other methods

no custom model code, communication-efficient best for large batches sequential model

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect

16GB model and optimizer, 128GB activations (batch 32) → grad accumulation

16GB model and optimizer, 16GB activations (batch 1) → grad checkpointing

32GB model and optimizer, 1GB activations → it depends...

DDP + offloading | FSDP (ZeRO) | Pipeline-parallel | Tensor-parallel

e.g. if too few GPUs no custom model code, communication-efficient minimal latency for other methods best for large batches sequential model non-symmetric model

Mix and match: TP within one server, minimal PP between servers, DDP between groups Parallel code: manual (e.g. Megatron-LM) vs automated (alpa, FSDP, tensor_parallel) Unconventional hardware: hivemind, petals, varuna, etc

Example configuration:

Several GPU w/ 24GB memory | 128GB system memory | 16GBps interconnect 16GB model and optimizer, 128GB activations (batch 32) → **grad accumulation** 16GB model and optimizer, 16GB activations (batch 1) → **grad checkpointing**

32GB model and optimizer, 1GB activations → it depends...

If the model does not fit, you can also quantize it into submission! (more on model compression in a future lecture)

That's all Folks.