Électrocinétique – chapitre 5

TD entraînement : oscillateurs harmonique et amorti

Oscillateur à deux ressorts

Un mobile supposé ponctuel de masse m est astreint à glisser le long d'une tige horizontale de direction (Ox). Ce mobile est relié par deux ressort linéaires à deux points fixes A et B. On le repère par sa position OM = x.

Les deux ressorts sont identiques : même constante de raideur k et même longueur au repos ℓ_0 . Dans la position d'équilibre du système, les longueurs des ressorts sont identiques et valent $\ell_{\rm eq}$ et le mobile se trouve à l'origine O de l'axe. On se place dans le référentiel terrestre (lié au sol), considérée comme galiléen. À t=0, le mobile est abandonné sans vitesse initiale d'une position $x_0 \neq 0$

- 1) Dans un premier temps, on néglige tout frottement.
 - a) Établir l'équation différentielle vérifiée par x(t).
 - b) Montrer que le système constitue un oscillateur harmonique dont on précisera la pulsation ω_0 et la période T_0 propres en fonction de k et m.
 - c) Donner l'expression de x(t) en tenant compte des conditions initiales.
- 2) En fait il existe entre le mobile et la tige un frottement de type visqueux linéaire, la force de frottement s'exprime $\vec{F} = -\alpha \vec{v}$ (avec $\alpha > 0$ et \vec{v} la vitesse de la masse m dans le référentiel terrestre).
 - a) Établir l'équation différentielle vérifiée par x(t). On posera $h = \frac{\alpha}{m}$.
 - b) Montrer que lorsque $\alpha < 2^{3/2}\sqrt{km}$, le mouvement comporte des oscillations amorties. Donner l'expression de x(t) en tenant compte des conditions initiales et exprimer la pseudo-période T en fonction de ω_0 et h.

Décrément logarithmique électrique

On étudie la réponse u(t) à un échelon de tension e(t) tel que $\begin{cases} e(t<0)=0\\ e(t\geq 0)=E \end{cases}$ dans le circuit ci-dessous.

- 2
- 1) Déterminer la valeur u_{∞} vers laquelle tend u(t) lorsque $t \longrightarrow \infty$.
- 2) Montrer que $\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + 2\lambda \frac{\mathrm{d}u}{\mathrm{d}t} + {\omega_0}^2 u = {\omega_0}^2 u_{\infty}$. Exprimer λ et ω_0 en fonction de L, C, R_1 et R_2 .
- 3) On observe à l'oscilloscope la courbe u(t) ci-contre, avec 1 V/div de calibre vertical.
 - a) Déterminer la valeur numérique de la pseudo-période ${\cal T}.$
 - b) Déterminer la valeur numérique du décrément logarithmique

- 4) Exprimer u(t) en fonction de u_{∞} , ω_0 , λ et t (sans chercher à déterminer les constantes d'intégration).
- 5) Déterminer la relation entre δ , λ et T. En déduire la valeur numérique de λ .
- 6) Sachant que $R_1=200\,\Omega,\,R_2=5\,\mathrm{k}\Omega$ et $L=500\,\mathrm{mH},\,\mathrm{déterminer}$ la valeur de C.

* [III]

Décrément logarithmique mécanique

Une masse m est accrochée à un ressort de raideur $k=10\,\mathrm{N\cdot m^{-1}}$ et de longueur à vide $\ell_0=10\,\mathrm{cm}$, 2 fixé au point O. En plus de son poids et de la force de rappel du ressort, la masse est soumise à une force de frottement fluide $\overrightarrow{F}=-\alpha\,\overrightarrow{v}$. Un capteur fournit l'évolution de $u(t)=z(t)-z_\mathrm{eq}$ au court du temps.

- 1) Établir l'équation d'évolution de z(t). Quelle est la position d'équilibre z_{eq} de la masse? En déduire une équation satisfaite par u(t).
- 2) Exprimer la pulsation propre ω_0 et le facteur de qualité Q en fonction des données du problème.
- 3) Résoudre l'équation différentielle. Exprimer la pseudo-période T en fonction de $T_0 = \frac{2\pi}{\omega_0}$ et de Q.
- 4) Montrer que le décrément logarithmique δ , défini par

$$\delta = \frac{1}{n} \ln \left(\frac{u(t) - u_{\text{eq}}}{u(t + nT) - u_{\text{eq}}} \right)$$

est indépendant du temps.

- 5) Comparer les données expérimentales à l'affirmation précédente. Commenter.
- 6) Estimer à l'aide des données expérimentales le facteur de qualité Q et la pseudo-pulsation ω .
- 7) En déduire les valeurs de m et α .