Fahrzeugmechatronik I Aktoren

Prof. Dr.-Ing. Steffen Müller M. Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Grundgleichungen hydraulischer Wandler Translatorische Energiewandlung

Grundgleichungen hydraulischer Wandler Mathematisches Modell des Schubmotors

Grundgleichungen hydraulischer Wandler Rotatorische Energiewandlung

Grundgleichungen hydraulischer Wandler Rotatorische Energiewandlung

Grundgleichungen hydraulischer Wandler Rotatorische Energiewandlung

Grundgleichungen hydraulischer Wandler Mathematisches Modell des Drehmotors

Grundgleichungen hydraulischer Wandler Wirkungsgrad der rotator. Energiewandlung

Grundgleichungen hydraulischer Wandler Kompressibilität des Fluids (hydr. Kapazität)

Grundgleichungen hydraulischer Wandler Kompressibilität des Fluids

Grundgleichungen hydraulischer Steller Durchflussgesetz bei Ventilquerschnitten

Beispiel: Schieberventil

Seite 12

Grundgleichungen hydraulischer Steller Durchflussgesetz der Blende

Seite 13

Grundgleichungen hydraulischer Steller Durchflussgesetz der Drossel

Ausführungsformen hydraulischer Wandler Pumpen / Motoren (Verdrängereinheiten)

Schematische Darstellung	Merkmale	Ausfüh- rung	Schluck- volumen in cm ³	Drehzahl- bereich in min -1	Arbeits- druck in bar
Schrägscheiben- motor	universell einsetzbar, sehr guter Wirkungsgrad, Wirkungsgrad in weiten Bereichen, von Druck, Drehzahl und Drehmoment wenig abhängig, für hohe Anforderungen geeignet, typischer Schnellläufer	Konstant- motor Verstell- motor	25 – 800	750 – 8000	400
Schrägachsenmotor	wie Schrägscheibenmotor, für niedrige Drehzahlen geeignet, hohes Anfahrmoment	Konstant- motor Verstell- motor	25 – 800	- 8000	400
Taumelscheiben- motor	universell einsetzbar, sehr guter Wirkungsgrad, nicht so hohe Drehzahlen wegen der Unwucht der Taumelscheibe möglich	Konstant- motor	- 100	- 3000	100
Radialkolbenmotor (innenbeaufschlagt)	universell einsetzbar, sehr guter Wirkungsgrad, für hohe Anforderungen geeignet	Konstant- motor Verstell- motor	5 – 7000	500 – 3000	350

Schrägachsenmotor

Taumelscheibenmotor

Ausführungsformen hydraulischer Wandler Pumpen / Motoren (Verdrängereinheiten)

Schematische Darstellung	Merkmale	Ausfüh- rung	Schluck- volumen in cm ³	Drehzahl- bereich in min -1	Arbeits- druck in bar
Radialkolbenmotor (außenbeaufschlagt)	universell einsetzbar, sehr guter Wirkungsgrad, besonders für kleine Drehzahlen und hohe Drehmomente geeignet, typischer Langsamläufer	Konstant- motor Verstell- motor	5 – 7000	- 2000	200
Flügelzellenmotor	mittlerer Leistungsbereich, geräuscharm	Konstant- motor Verstell- motor	5 – 2000	- 3000	200
Zahnradmotor	mittlerer Leistungsbereich, einfache Bauweise, Wirkungsgrad in weiten Bereichen von Druck, Drehzahl und Drehmoment unabhängig	Konstant- motor	5 – 300	200 – 3000	280
Zahnringmotor	geräuscharm, mittlerer Leistungsbereich, für kleine Drehzahlen und hohe Drehmomente geeignet	Konstant- motor	50 – 900	10 – 1000	250

Flügelzellenmotor

Zahnringmotor

Ausführungsformen hydraulischer Steller Ventile

Seite 17

Ausführungsformen hydraulischer Steller Ventile

Beispiel: 3/2-Wegeventil

Seite 18

Ausführungsformen hydraulischer Steller Ventile

Beispiel: 4/3-Wegeventil

Ausführungsformen hydraulischer Steller Ventile

Seite 20

Vielen Dank für Ihre Aufmerksamkeit!