Data Mining für Technische Anwendungen – Hauptkomponentenanalyse

PD Dr.-Ing. habil. Sven Tomforde Prof. Dr. Bernhard Sick

Universität Kassel Fachbereich Elektrotechnik / Informatik Fachgebiet "Intelligent Embedded Systems"

WS 2017/2018

Worum geht es?

Datentransformation

Aus der Definition von KDD: Datenreduktion und Datenprojektion mit dem Ziel der Verdichtung relevanter Informationen in einer geringeren Zahl von Variablen (Dimensionsreduktion) und Identifikation relevanter Attribute (Merkmalsselektion)

Agenda

- Motivation und Grundlagen
- Beispiel
- Abschließende Bemerkungen

Motivation und Grundlagen

Motivation – 1

- **gegeben:** ein Datensatz X mit Mustern $x_1, x_2, ..., x_N$; die Muster sind D-dimensional, d. h., es gibt D Merkmale.
- **gesucht:** ein Datensatz \mathbf{Y} mit Mustern $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_M$; die Muster sind ebenfalls D-dimensional, d. h., es gibt D Merkmale, und $|\mathbf{X}| = |\mathbf{Y}|, \ N = M$;

Der Informationsgehalt ist der gleiche wie im Datensatz X, aber: der Informationsgehalt des Datensatzes Y ist gespeichert in den ersten, wenigen Merkmalen (Dimensionen).

Man spricht hier auch von Meta-Merkmalen.

• Hauptkomponentenanalyse: eine Methode, einen solchen Datensatz zu finden.

Motivation – 2

Was heißt Informationsgehalt?

• Annahme: hoher Informationsgehalt entspricht hoher Varianz!

Hauptziel der Hauptkomponentenanalyse:

• **Dimensionsreduktion:** es können weniger wichtige Dimensionen weggelassen werden, d. h., die Zahl D' der Meta-Merkmale im transformierten Datensatz ist $D' \ll D$.

Motivation – 3

Nutzen der Hauptkomponentenanalyse.

- **Zeitersparnis**: durch Einsatz von DM-Algorithmen auf reduzierten Datensätzen.
- Merkmalsselektion: sehr einfach durch Wahl der wichtigsten Meta-Merkmale.
- Verständnis: besseres Erkennen von Strukturen in Daten z. B. durch Visualisierung des Datensatzes im Raum der zwei oder drei wichtigsten Meta-Merkmale.

Andere Namen für Hauptkomponentenanalyse:

• Principal Component Analysis (PCA), Hotelling Transformation, Karhunen-Loève-Transformation, ...

Grundlagen – 1

Um einen Datensatz zu transformieren, wird zunächst das $\it arithmetische Mittel$ jedes Merkmals $\it i$ gebildet:

$$\mu_i := \frac{1}{N} \sum_{n=1}^{N} x_{in}$$

Anstelle der originalen Muster werden dann die mittelwertbereinigten Muster weiter verwendet, d. h.,

$$\forall_{n=1...N} \forall_{i=1...D} : x'_{in} = x_{in} - \mu_i.$$

Oder auch mit

$$oldsymbol{\mu} := \left(egin{array}{c} \mu_1 \ \mu_2 \ \dots \ \mu_D \end{array}
ight),$$

 $\pmb{\mu} - \mathbf{x}_n$ für $n=1,2,\cdots,N$. Dies entspricht geometrisch einer Translation (Verschiebung) der Daten.

8 / 31

Beispiel zu Grundlagen – 1

Die blauen Punkte stellen den Originaldatensatz dar, mit den arithmetischen Mitteln $\mu_1=1,2$ und $\mu_2=3$. Die roten Datenpunkte stellen den Originaldatensatz nach Translation dar.

Grundlagen – 2

Die *empirische Varianz* eines Merkmals *i* ist dann:

$$\sigma_i^2 := \frac{1}{N-1} \sum_{n=1}^N x'_{in}^2$$

Somit ist die *empirische Standardabweichung* des Merkmals *i*:

$$\sigma_i := \sqrt{\sigma_i^2}$$

Grundlagen - 3

Benötigt wird auch die Kovarianz zweier Merkmale i und j:

$$s_{ij} := \frac{1}{N-1} \sum_{n=1}^{N} x'_{in} \cdot x'_{jn}$$

Eine Kovarianz s_{ii} (also eines Merkmals mit sich selbst) ist natürlich wieder die Varianz. Außerdem gilt $s_{ij}=s_{ji}$.

Grundlagen – 4

Die Kovarianz wird immer paarweise, d. h., für zwei Merkmale berechnet.

Bei D-dimensionalen Daten gibt es $\frac{D!}{(D-2)!\cdot 2!}$ viele Kovarianzen.

Schreibt man die Kovarianzen in eine Matrix C

$$\mathbf{C} := \begin{pmatrix} s_{11} & s_{12} & \dots & s_{1D} \\ s_{21} & s_{22} & \dots & s_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ s_{D1} & s_{D2} & \dots & s_{DD} \end{pmatrix},$$

so ist diese Matrix symmetrisch. In der Diagonalen stehen die Varianzen der Merkmale.

Grundlagen - 5

Ein Eigenvektor \mathbf{v} einer solchen Matrix \mathbf{C} ist ein D-dimensionaler Vektor, für den gilt:

$$\mathbf{C} \cdot \mathbf{v} = \lambda \cdot \mathbf{v}.$$

Dabei heißt $\lambda \in \mathbb{R}$ Eigenwert zum Eigenvektor \mathbf{v} .

Es gilt:

- C hat D Eigenvektoren $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_D$ mit den entsprechenden Eigenwerten $\lambda_1, \lambda_2, \dots, \lambda_D$.
- Ohne Beschränkung der Allgemeinheit gelte für $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_D$: $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_D$.
- Die Eigenvektoren stehen senkrecht aufeinander, d. h., sie sind orthogonal zueinander.
- Vielfache eines Eigenvektors sind auch Eigenvektoren, wir verwenden diejenigen, die auf die Länge 1 normiert sind.

Grundlagen – 6

Wichtigste Eigenschaft der Eigenvektoren:

- Der Eigenvektor mit dem höchsten Eigenwert gibt die Richtung an, in der der Datensatz die höchste Varianz aufweist.
- Der Eigenvektor mit dem zweithöchsten Eigenwert gibt eine dazu orthogonale Richtung an, in der der Datensatz die zweithöchste Varianz aufweist.
- usw.

Die Varianzen werden durch die jeweiligen Eigenwerte beschrieben!!!

Varianz → Informationsgehalt!

Grundlagen – 7

Wie bekommt man Eigenwerte und Eigenvektoren?

Mathematische Bibliotheken für verschiedene Programmiersprachen bieten numerisch stabile Verfahren, die meist bereits längennormierte Eigenvektoren mit Eigenwerten liefern.

Grundlagen - 8

Als nächstes wird eine bestimmte Zahl $D' \leq D$ von Eigenvektoren zur Transformation der Daten ausgewählt:

• Alle Eigenvektoren (D'=D) werden gewählt, wenn das Ziel der Hauptkomponentenanalyse z. B. eine Hauptachsentransformation zur Dekorrelation der Daten ist.

In diesem Fall werden die mittelwertbereinigten Muster folgendermaßen transformiert:

$$\mathbf{y}_k = egin{pmatrix} \mathbf{v}_1^{\mathrm{T}} \\ \mathbf{v}_2^{\mathrm{T}} \\ \vdots \\ \mathbf{v}_D^{\mathrm{T}} \end{pmatrix} \mathbf{x}_k'.$$

Dies entspricht einer Rotation der Daten.

Grundlagen - 9

• Eine geringere Zahl von Eigenvektoren (meist $D' \ll D$) wird gewählt, wenn das Ziel der Hauptkomponentenanalyse eine Datenreduktion ist.

In diesem Fall werden die mittelwertbereinigten Muster folgendermaßen transformiert:

$$\mathbf{y}_k = egin{pmatrix} \mathbf{v}_1^{\mathrm{T}} \ \mathbf{v}_2^{\mathrm{T}} \ dots \ \mathbf{v}_{D'}^{\mathrm{T}} \end{pmatrix} \mathbf{x}_k'.$$

Die transformierten Muster y_k haben also nur D' Dimensionen.

Grundlagen – 10

Eine Rücktransformation der Daten ist möglich (z. B. üblich in der Bildverarbeitung, wo PCA u. a. zur Datenkompression eingesetzt wird), für $D^\prime < D$ allerdings nur mit Informationsverlust.

Beispiel

Zweidimensionaler Datensatz:

Muster	Merkmal 1	Merkmal 2
\mathbf{x}_1	2.5	2.4
\mathbf{x}_2	0.5	0.7
\mathbf{x}_3	2.2	2.9
x_4	1.9	2.2
\mathbf{x}_5	3.1	3.0
\mathbf{x}_6	2.3	2.7
\mathbf{x}_7	2.0	1.6
\mathbf{x}_8	1.0	1.1
\mathbf{x}_9	1.5	1.6
\mathbf{x}_{10}	1.1	0.9
	1	

In jeder Dimension wird der Mittelwert von den Daten abgezogen.

Der Mittelwert der transformierten Daten ist dann 0.

\mathbf{x}_1'	0.69	0.49
\mathbf{x}_2'	-1.31	-1.21
\mathbf{x}_3'	0.39	0.99
\mathbf{x}_4'	0.09	0.29
\mathbf{x}_5'	1.29	1.09
\mathbf{x}_6'	0.49	0.79
\mathbf{x}_7'	0.19	-0.31
\mathbf{x}_8'	-0.81	-0.81
\mathbf{x}_9'	-0.31	-0.31
\mathbf{x}_{10}'	-0.71	-1.01

Anschließend wird die Kovarianzmatrix berechnet:

$$\mathbf{C} = \left(\begin{array}{cc} 0.617 & 0.615 \\ 0.615 & 0.717 \end{array} \right)$$

Da die Elemente abseits der Diagonalen positiv sind, besteht ein positiver Zusammenhang zwischen den beiden Merkmalen (vgl. Korrelationskoeffizient).

Die Eigenwerte und Eigenvektoren der Matrix C sind:

$$\mathbf{v}_1 = \begin{pmatrix} -0.678 \\ -0.735 \end{pmatrix} \text{ mit } \lambda_1 = 1.284$$

$$\mathbf{v}_2 = \begin{pmatrix} -0.735\\ 0.678 \end{pmatrix} \text{ mit } \lambda_2 = 0.049$$

Die Eigenvektoren haben Länge Eins und stehen senkrecht aufeinander; \mathbf{v}_1 (höherer Eigenwert) beschreibt die erste Hauptkomponente, \mathbf{v}_2 die zweite.

Vom Mittelwert ausgehend ist hier jeder Eigenvektor in beide Richtungen gezeichnet; Länge entspricht dem Eigenwert.

Transformation der Daten unter Verwendung beider Eigenvektoren:

\mathbf{y}_1	-0.828	-0.175
\mathbf{y}_2	1.778	0.143
\mathbf{y}_3	-0.992	0.384
\mathbf{y}_4	-0.274	0.130
\mathbf{y}_5	-1.676	-0.209
\mathbf{y}_6	-0.913	0.175
\mathbf{y}_7	0.099	-0.350
\mathbf{y}_8	1.145	0.046
\mathbf{y}_9	0.438	0.018
\mathbf{y}_{10}	1.224	-0.163

Transformation der Daten unter Verwendung des Eigenvektors mit dem höheren Eigenwert:

```
-0.828
 \mathbf{y}_1
              1.778
 \mathbf{y}_2
            -0.992
 \mathbf{y}_3
            -0.274
 \mathbf{y}_4
            -1.676
 \mathbf{y}_5
            -0.913
 \mathbf{y}_6
              0.099
 \mathbf{y}_7
              1.145
 y<sub>8</sub>
              0.438
 yο
              1.224
\mathbf{y}_{10}
```

... entspricht natürlich der ersten Spalte in der Tabelle der vorausgehenden Folie!!!

Rücktransformation dieser Daten zeigt den Informationsverlust! (+: Rücktransformierte Daten, * Originaldatensatz)

(Entspricht Projektion der Daten auf die durch die erste Hauptkomponente beschriebene Achse.)

Abschließende Bemerkungen

Auswahl von Hauptkomponenten

Nach welchen Kriterien wird eine geeignete Zahl D^\prime von Hauptkomponenten zur Datenreduktion bestimmt?

- Die Summe der Eigenwerte der wichtigsten D' Eigenvektoren sollte einen gewissen Anteil (z. B. mindestens 0.75) an der Summe aller D Eigenwerte ausmachen.
- Dimensionen werden weggelassen, wenn die Eigenwerte der entsprechenden Eigenvektoren geringer als der Durchschnitt aller Eigenwerte sind.
- Die Eigenwerte werden entsprechend der absteigenden Wichtigkeit der Eigenvektoren dargestellt. Wird diese Kurve an einer Stelle signifikant flacher, so werden die entsprechenden Dimensionen weggelassen (sog. Ellbogen- oder Kniekriterium).
- ...

Veranschaulichung

Beispiele:

Applet

```
(http://www.cs.mcgill.ca/~sqrt/dimr/dimreduction.html)
```


Ende

Noch Fragen zum Thema Hauptkomponentenanalyse?

