Question Number	Answer		Mark
4(a)(i)	Any TWO from:		
	Measure multiple oscillations and divide by the number of oscillations	(1)	
	Use a (fiducial) marker	(1)	
	Allow the oscillations to settle		
	Or Start timing after a number of oscillations	(1)	2
4(a)(ii)	Mean $T = 0.68$ (s)	(1)	
	Calculation using half range shown		
	Or Calculation of furthest from mean shown	(1)	
		` /	
	Uncertainty in $T = 0.02$ (s) decimal places consistent with mean	(1)	3
	Example of calculation		
	Mean $T = \frac{(3.43+3.36+3.28+3.49)s}{5\times4} = \frac{13.56s}{20} = 0.678 = 0.68 (s)$		
	Uncertainty = $\frac{3.49s - 3.28s}{5 \times 2} = \frac{0.21}{10} = 0.021 = 0.02$ (s)		
4 (b)	Vernier calipers will have resolution of 0.1 mm		
	Or Vernier calipers will have an uncertainty of 0.05 mm	(1)	
	So the percentage uncertainty is 0.25 % which is small	(1)	2
	[Do not accept precision or accuracy for resolution]		
	Example of calculation		
	%U in Vernier calipers = $\frac{0.05 \text{mm}}{20 \text{mm}} \times 100 = 0.25 \%$		

4(c)(i) Use of
$$T = \sqrt{\frac{16\pi m}{\sigma^{2}\rho g}}$$
 (1) $\rho = 1190 \text{ (kg m}^{3})$ (1) $\rho = \frac{16\pi m}{D^{2}T^{2}g} = \frac{16\pi \times 48.95 \times 10^{-3} \text{ kg}}{(2.38 \times 10^{-2} \text{m})^{2} \times (0.61 \text{s})^{2} \times 9.81 \text{ ms}^{-2}} = \frac{2.46 \text{ kg}}{2.67 \times 10^{-3} \text{ m}^{3}} = 1190 \text{ (kg m}^{3})$ (1) Uses $2 \times \% \text{U in } D$ [Allow $2 \times \frac{4d}{d}$] (1) Uses $2 \times \% \text{U in } T$ [Allow $2 \times \frac{4d}{d}$] (1) Uses $2 \times \% \text{U in } T$ [Allow $2 \times \frac{4d}{d}$] (1) Uses $2 \times \% \text{U in } T$ [Allow $2 \times \frac{4d}{d}$] (1) Uses $2 \times \% \text{U in } T$ [Allow $2 \times \frac{4d}{d}$] (1) Use $2 \times \% \text{U in } T$ [Allow $2 \times \frac{4d}{d}$] (1) Calculation $\% \text{U in } \rho = 2 \times \frac{0.015}{0.618} \times 100 = 0.84 \%$ %U in $\rho = 2 \times \frac{0.015}{0.618} \times 100 = 3.28 \%$ %U in $\rho = 0.84 \% + 3.28 \% = 4.12 \%$ OR

Calculation of U in ρ using half range shown (1) $\% \text{U in } \rho = 4.1 (\%)$ Accept 3 sig figs (1) 3

Example of calculation Maximum $\rho = \frac{16\pi m}{D^{2}T^{2}g} = \frac{16\pi \times 48.95 \times 10^{-3} \text{ kg}}{(2.37 \times 10^{-2} \text{m})^{3} \times (0.603)^{3} \times 9.81 \text{ms}^{-2}} = \frac{2.46 \text{ kg}}{1.98 \times 10^{-3} \text{ m}^{3}} = 1242 \text{ (kg m}^{3})$ Minimum $\rho = \frac{16\pi m}{D^{2}T^{2}g} = \frac{16\pi \times 48.95 \times 10^{-3} \text{ kg}}{(2.39 \times 10^{-2} \text{m})^{2} \times (0.623)^{2} \times 9.81 \text{ms}^{-2}} = \frac{2.46 \text{ kg}}{2.15 \times 10^{-3} \text{ m}^{3}} = 1144 \text{ (kg m}^{3})$ U in $\rho = \frac{49 \text{ (kg m}^{3})}{194 \text{ kgm}^{-3}} \times 100 = 4.1 (\%)$

4(c)(iii) EITHER

(1)

Correct value of relevant limit of calculated density using %U (e.c.f. (c)(i), (c)(ii))

(1)

Conclusion based on comparison of limit to density of glycerol

MP2 dependent MP1

Example of calculation

Upper limit of $\rho = 1190 \times (1 + 0.041) = 1239$ (kg m⁻³)

As the upper limit is lower than 1260 kg m^{-3} then the liquid may not be glycerol.

['Show that' value gives upper limit $\rho = 1200 \times (1 + 0.04) = 1248 \text{ (kg m}^{-3})$]

OR

(1)

Correct calculation of %D shown

(e.c.f. (c)(i), (c)(ii))

(1)

Conclusion based on comparison of %D and %U

MP2 dependent MP1

Example of calculation

%D =
$$\frac{(1260-1190)\text{kgm}^{-3}}{1260\text{kgm}^{-3}} \times 100 = 5.6 \%$$

As % D for greater than the %U then the liquid may not be glycerol.

['Show that' value gives %D = $\frac{(1260-1200)\text{kgm}^{-3}}{1260\text{kgm}^{-3}} \times 100 = 4.8 \%$]

OR

(1)

(1) 2

Correct value of relevant limit using uncertainties in D and T

Conclusion based on comparison of limit to density of glycerol

MP2 dependent MP1

Example of calculation

Upper limit of
$$\rho = \frac{16\pi m}{D^2 T^2 g} = \frac{16\pi \times 48.95 \times 10^{-3} \text{ kg}}{(2.37 \times 10^{-2} \text{m})^2 \times (0.60 \text{s})^2 \times 9.81 \text{ms}^{-2}} = \frac{2.46 \text{ kg}}{1.98 \times 10^{-3} \text{ m}^3}$$
$$= 1242 \text{ (kg m}^3)$$

As the upper limit is lower than 1260 kg m^{-3} then the liquid may not be glycerol.