FIT5186 Examples from Lecture 3

Example

XOR Classification:

(one of many that will work)

• CLASS output = 1 \square CLASS output = 0

TEST:

If
$$x_1 = 1$$
 and $x_2 = 1$ then $output1 = 1$, $output2 = 1$ so $output3 = 0$

If
$$x_1 = 1$$
 and $x_2 = 0$ then $output1 = 1$, $output2 = 0$ so $output3 = 1$

If
$$x_1 = 0$$
 and $x_2 = 1$ then $output1 = 1$, $output2 = 0$ so $output3 = 1$

If
$$x_1 = 0$$
 and $x_2 = 0$ then $output1 = 0$, $output2 = 0$ so $output3 = 0$

O.K. So it classifies!

But why?

And how do we determine the weights?

1

$$o_3 = 1 \implies \text{CLASS } 1$$

$$o_3 = 0 \implies \text{CLASS } 2$$

At Perceptron #1: $x_1 + x_2 - 0.5 = 0$

At Perceptron #2: $x_1 + x_2 - 1.5 = 0$

At Perceptron #3: $o_1 - o_2 - 0.5 = 0$

The outputs of the hidden neurons help to partially classify the data (ie. they discover that points B & D trigger identical "firings"). The final classification (once the data has been linearly separated) occurs in the output layer.

2