

	Relationenmodell: Definitionen	
Definition:		
Gegeben se	i eine Menge von Wertebereichen primitiver Datentypen	
{D1,, Dr	n}, die als "Domains" bezeichnet werden.	
Eine Relati	on R ist ein Paar $R = (s,v)$ mit	
• einem Sch	nema s = {A1,, An}, das aus einer Menge von	
Attribute	n (Attributnamen) besteht und	
für jedes	Attribut Ai einen Domain dom(Ai) ∈ {D1,, Dm} festleg	t,
 und einer 	Ausprägung (Wert) $v \subseteq dom(A1) \times dom(A2) \times \times dom(A2)$	A
Schema un	d Ausprägung von R werden mit $sch(r)$ und $val(R)$ bezeich	ne
	Häufige Schreibweise für Relationenschemata:	
	R (A1,, An)	
	Bücher (ISBN, Autor, Titel,)	
	Kunden (KNr, Name, Stadt,)	
Informationssyste	me SS2004	-4

Kund	en		Beisp	ie	eldate	nl	bank ((1)	•
KNr	Name		Stadt		Saldo		Rabatt		
1	Lauer		Merzig		-1080.00)	0.10		
2	Schnei	der	Homburg	g	-800.00		0.20		
3	Kirsch		Homburg	g	0.00		0.10		
4	Schulz		Merzig		0.00		0.10		
5	Becker		Dillinger	n	0.00		0.05		
6	Meier		Saarloui	s	-3800.00)	0.05		Produkte
	PNr	Be	z	G	ewicht	P	reis	Lagerort	Vorrat
	1	Paj	oier	2	.000	2	0.00	Homburg	10000
	2	Pla	tte	1	.000	2	500.00	Saarbrücken	400
	3	Dr	ucker	5	.000	2	00.00	Merzig	200
	4	Bil	dschirm	5	.000	3	000.00	Merzig	80
	5	Dis	sketten	0	.500	2	0.00	Homburg	5000
	6	Ma	ius	0	.250	1	00.00	Homburg	200
	7	Sp	eicher	0	.100	2	00.00	Saarbrücken	2000
Inform	nationssysteme SS200-			_		_			5-5

estellun	estellungen Beispieldatenbank (2)							
BestNr	Monat	Tag	KNr	PNr	Menge	Summe	Status	
1	7	16	1	1	100	1800.00	bezahlt	
2	7	21	1	1	100	1800.00	bezahlt	
3	9	30	1	2	4	9000.00	bezahlt	
4	9	30	1	3	1	1800.00	bezahlt	
5	9	30	1	4	10	27000.00	bezahlt	
6	10	15	1	5	50	900.00	bezahlt	
7	10	28	1	6	2	180.00	geliefert	
8	11	2	1	7	5	900.00	neu	
9	10	26	2	1	100	1600.00	bezahlt	
10	11	2	2	5	50	800.00	neu	
11	9	28	3	5	50	900.00	bezahlt	
12	10	28	3	7	10	1800.00	bezahlt	
13	4	15	4	1	50	900.00	bezahlt	
14	5	31	6	1	200	3800.00	bezahlt	
15	6	30	6	7	10	1900.00	geliefert	
16	7	31	6	1	100	1900.00	geliefert	

Einschränkungen der "1. Normalform"

Studenten

Name	Fach	•••	Systemkenntnisse
Meier	Informatik		{Oracle, mySQL, PHP}
Schmidt	Informatik		{Java, Oracle}
Kunz	Informatik		{Oracle}
Müller	Mathematik		Ø

ist im ("flachen") Relationenmodell nicht erlaubt!

Repräsentation in "1. Normalform"

Studenten

Name	Fach	 Systemkenntnis
Meier	Informatik	Oracle
Meier	Informatik	mySQL
Meier	Informatik	PHP
Schmidt	Informatik	Java
Schmidt	Informatik	Oracle
Kunz	Informatik	Oracle
Müller	Mathematik	

oder besser:

Studenten

Studenten		
Name	Fachbereich	
Meier	Informatik	
Schmidt	Informatik	
Kunz	Informatik	
Müller	Mathematik	

Kenntnisse

Name	Systemkenntnis
Meier	Oracle
Meier	mySQL
Meier	PHP
Schmidt	Java
Schmidt	Oracle
Kunz	Oracle

Integritätsbedingungen des Relationenmodells (1)

Definitionen:

Eine Attributmenge $K \subseteq sch(R)$ einer Relation R heißt *Schlüsselkandidat* wenn zu jedem Zeitpunkt für je zwei Tupel t1, t2 ∈ val(R) gelten muß: $t1.K = t2.K \implies t1 = t2$

und wenn es keine echte Teilmenge von K gibt, die diese Eigenschaft hat (Dabei bedeutet t1.K = t2.K: $\forall A \in K$: t1.A = t2.A.)

Ein Attribut einer Relation R, das in mind. einem Schlüsselkandidaten vorkommt, heißt Schlüsselattribut.

Der Primärschlüssel einer Relation ist ein Schlüsselkandidat, der explizit ausgewählt wird.

Attributmenge $F \subseteq sch(S)$ einer Relation S ist ein *Fremdschlüssel* in S, wenn es eine Relation R gibt, in der F Primärschlüssel ist.

Ein Attribut A eines Tupels t hat einen Nullwert, wenn der Wert t.A undefiniert oder unbekannt ist.

Integritätsbedingungen des Relationenmodells (2)

Primärschlüsselbedingung (Entity Integrity):

Für jede Relation muß ein Primärschlüssel festgelegt sein. Der Primärschlüssel eines Tupels darf niemals den Nullwert annehmen.

Fremdschlüsselbedingung (Referential Integrity):

Für jeden Wert eines Fremdschlüssels in einer Relation R muß in den referenzierten Relationen jeweils ein Tupel mit demselben Wert als Primärschlüssel existieren, oder der Wert des Fremdschlüssels muß der Nullwert sein.

Integritätsbedingungen des Relationenmodells (2)

Primärschlüsselbedingung (Entity Integrity):

Für jede Relation muß ein Primärschlüssel festgelegt sein. Der Primärschlüssel eines Tupels darf niemals den Nullwert annehmen.

Fremdschlüsselbedingung (Referential Integrity):

Für jeden Wert eines Fremdschlüssels in einer Relation R muß in den referenzierten Relationen jeweils ein Tupel mit demselben Wert als Primärschlüssel existieren, oder der Wert des Fremdschlüssels muß der Nullwert sein.

5.2 Relationenalgebra (RA)

Eine Operation der RA hat eine oder mehrere Relationen als Operanden und liefert eine Relation als Ergebnis. (Abgeschlossenheit der Algebra)

Mengenoperationen:

Für zwei Relationen R, S mit sch(R) = sch(S) sind die üblichen Mengenoperationen definiert:

- Vereinigung (Union) R∪S:
- $sch(R \cup S) = sch(R)$
- $val(R {\cup} S) = \{t \mid t \in val(R) \lor t \in val(S)\}$
- Durchschnitt (Intersection) R∩S:
- $sch(R \cap S) = sch(R)$ $\operatorname{val}(R {\cap} S) = \{t \mid t \in \operatorname{val}(R) \land t \in \operatorname{val}(S)\}$
- Differenz (Difference) R S:

sch(R-S) = sch(R)

 $val(R - S) = \{t \mid t \in val(R) \land t \not\in val(S)\}$

Selektion und Projektion

Selektion \sigma (Filterung, Auswahl von Zeilen einer Tabelle): Das Resultat einer Selektion $\sigma[F](R)$ auf einer Relation R ist: $sch(\sigma[F](R)) = sch(R)$

 $val(\sigma[F](R)) = \{t \mid t \in R \land F(t)\}\$

Die Menge der möglichen Filterformeln F ist:

- 1) Für Attr. A, B von R mit dom(A)=dom(B), Konstanten $c \in dom(A)$ und Vergleichsoperationen $\theta \in \{=, \neq, <, >, \leq, \geq\}$ sind $A \theta B$ und $A \theta c$ zulässige Filterbedingungen.
- Falls F1 und F2 zulässige Filterbedingungen sind, dann sind auch $F1 \wedge F2$, $F1 \vee F2$, $\neg F1$ und (F1) zulässig.
- 3) Nur die von 1) und 2) erzeugten Filterbedingungen sind zulässig.

Projektion π (Auswahl von Spalten einer Tabelle):

Sei $A \subseteq sch(R)$. Das Resultat einer Projektion $\pi[A](R)$ ist:

 $sch(\pi[A](R)) = A$

 $val(\pi[A](R)) = \{t \mid \exists \ r \in val(R): t.A = r.A\}$

Beispiele Selektion

1) Finde alle Homburger Kunden. $\rightarrow \sigma$ [Stadt='Homburg'] (Kunden)

KNr	Name	Stadt	Saldo	Rabatt
2	Schneider	Homburg	-800.00	0.20
3	Kirsch	Homburg	0.00	0.10

2) Finde alle Homburger Kunden, die einen Rabatt von mind. 15 % haben $\rightarrow \sigma[Stadt='Homburg' \land Rabatt >= 0.15]$ (Kunden)

KNr	Name	Stadt	Saldo	Rabatt
2	Schneider	Homburg	-800.00	0.20

Beispiele Projektion

1) Gib alle Produktbezeichnungen aus. $\rightarrow \pi[Bez]$ (Produkte)

Papier Platte Drucker Bildschirm Disketten Speicher

2) Gib alle Lagerorte von Produkten aus. $\rightarrow \pi[Lagerort]$ (Produkte)

Lagerort Homburg Saarbrücken Merzig

(Natural) Join |x| und Zuweisung

(Natural) Join |x| (Natürlicher Verbund

von Relationen über gleiche Attributnamen und Attributwerte):

Das Resultat von R $|\times|$ S mit A=sch(R) und B=sch(S) ist:

 $sch(R \mid x \mid S) = sch(R) \cup sch(S)$

 $val(R \mid \times \mid S) = \{t \mid \exists \ r \in val(R) \ \exists \ s \in val(S) : t.A = r.A \land t.B = s.B\}$

Zuweisung:

Seien R, S Relationen mit $sch(R)=\{A1, ..., An\}$ und $sch(S)=\{B1, ..., Bn\}$, so daß für alle i gilt: dom(Ai)=dom(Bi).

Die Zuweisung R := S bedeutet: val(R) = val(S).

Ausführlicher schreibt man auch R(A1, ..., An) := S(B1, ..., Bn).

Für Ausdrücke E1, ..., En, die über B1, ..., Bn und k-stelligen Operatoren $\psi \colon dom(B_{i1}) \; x \; \dots \; x \; dom(B_{ik}) \to D \; mit \; skalarem \; Resultat \; im \; Bereich \; W$ bedeutet R(A1, ..., An) := S(E1, ..., En):

 $val(R) = \{t \mid es \text{ gibt } s \in val(S) \text{ und } t.Ai = Ei(s) \text{ für alle } i\},\$ wobei der Wertebereich von Ei gleich dom(Ai) sein muß.

Beispiele für Join

1) Alle Bestellungen zusammen mit den dazugehörigen Produktdaten. \rightarrow Bestellungen $|\times|$ Produkt

2) R |×| S

R	
R1	J
a	1
b	2
С	2
d	3

R1	J	S1
b	2	w
b	2	x
с	2	w
с	2	x
d	3	y

Kartesisches Produkt und Division

Kartesisches Produkt x:

Seien R, S Relationen mit Schemata A=sch(R) und B=sch(S).

Sei A' ein Schema, bei dem alle Ai, die auch in B vorkommen, unbenann sind in R.Ai, und sei B' ein analoges Schema mit Attributnamen S.Ai. Das Resultat von $R \times S$ ist:

 $sch(R \times S) = A' \cup B'$

 $val(R \times S) = \{t \mid \exists \ r \in val(R) \ \exists \ s \in val(S): \ t.A' = r.A \ und \ t.B' = s.B\}$

Seien R, S Relationen mit A=sch(R) und B=sch(S), so daß $B \subset A$. Das Resultat der Division R ÷ S ist:

 $sch(R \div S) = A - B = Q$

 $val(R \div S) = \{t \mid \forall \ s \in val(S) \ \exists \ r \in val(R) \colon r.B = s.B \land t = r.Q\}$ Intuitive Bedeutung: ein Tupel t ist in $R \div S$ genau dann, wenn

für alle S-Tupel s ein Tupel <t,s> in R enthalten ist.

Satz: Für R(A,B,C), T(A,B), S(C) mit $R=T\times S$ gilt: $R\div S=T$.

Beispiel Division

Kundennummern derjenigen Kunden, die alle überhaupt lieferbaren Produkte irgendwann bestellt haben

 $\rightarrow \pi[KNr,PNr] \; (Bestellungen) \div \pi[PNr] \; (Produkte)$

Rückführung Division auf andere Operationen

Satz:

Seien R und S Relationen mit A=sch(R) und B=sch(S) mit A \supset B, und se Q=sch(R) - sch(S). Es gilt (bis auf Umbenennungen von Attributen): $R \div S = \pi[Q](R) - \pi[Q]$ ($\pi[Q](R) \times S$) - R)

Beweisskizze (kanonisches Beispiel):

 $R := \pi[KNr, PNr]$ (Bestellungen)

 $S := \pi[PNr] (Produkte)$

 $T1 := \pi[KNr](R) \times S$ alle überhaupt möglichen Bestellungen

T2 := T1 - R potentiell mögliche,

aber nicht erfolgte Bestellungen

 $T3 := \pi[KNr]$ (T2) Kunden, die nicht alle Prod. bestellt haben $T4 := \pi[KNr]$ (R) - T3 Kunden, die alle Produkte bestellt haben

θ-Join

θ-Join:

Seien R, S Relationen mit $sch(R) \cap sch(S) = \emptyset$. Seien $A \subseteq sch(R)$ und $B \subseteq sch(S)$, und sei θ eine der Operationen $=, \neq, <, >, \leq, \geq$. Das Resultat des θ -Joins R $| \times | [A \theta B] S$ ist:

 $\begin{array}{l} sch(R \mid \times \mid [A \; \theta \; B] \; S) = sch(R \; \times \; S) = sch(R) \; \cup \; sch(S) \\ val(R \mid \times \mid [A \; \theta \; B] \; S) = val(\sigma[A \; \theta \; B](R \; \times \; S)) \end{array}$

Beispiele:

1) alle Kunden, die an einem Lagerort wohnen.

→ π[KNr, Name, Stadt, ...] (Kunden |×|[Stadt=Lagerort] Produkte)
2) alle bisherigen Bestellungen, die den momentanen Vorrat erschöpfen würden.

 \rightarrow B(BestNr, KNr,B.PNr, ...) := Bestellungen(BestNr, KNr, PNr, ...) π [BestNr, ...] (B |×|[B.PNr=PNr ∧ Menge >= Vorrat] Produkte)

alle Paare von Kunden, die in derselben Stadt wohnen.
 → K1(K1.KNr, K1.Name, ...) := Kunden(KNr, Name, ...)

K2(K2.KNr, K2.Name, ...) := Kunden(KNr, Name, ...) π[K1.KNr, K2.KNr]

 $(K1 |\times| [K1.Stadt=K2.Stadt \wedge K1.KNr < K2.KNr] K2)$

Outer Joins

Seien R, S Relationen mit A=sch(R), B=sch(S) und J=sch(R) \cap sch(S). Bezeichne ferner ω den Nullwert.

Das Resultat des Outer Joins R |*| S ist:

 $sch (R \mid * \mid S) = sch (R) \cup sch (S)$

 $\operatorname{val}\left(R\mid^{*}\mid S\right)=\operatorname{val}\left(R\mid\times\mid S\right)\cup$

 $\begin{cases} t | \exists \ r \in val \ (R) : t.A = r.A \land \neg \ (\exists \ s \in val \ (S) : t.J = s.J) \land t.(B - J) = \omega \ \} \cup \\ \{t | \exists \ s \in val \ (S) : t.B = s.B \land \neg \ (\exists \ r \in val \ (R) : t.J = r.J) \land t.(A - J) = \omega \ \}. \end{cases}$

Left Outer Join:

 $sch\ (R\parallel^*\mid S) = sch\ (R) \cup sch\ (S)$

 $\operatorname{val}(R \parallel * \mid S) = \operatorname{val}(R \mid \times \mid S) \cup$

 $\{t \mid \exists \ r \in val\ (R) : t.A = r.A \land \neg\ (\exists \ s \in val\ (S) : t.J = s.J) \land t.(B - J) = \omega\ \}$

Right Outer Join:

 $\operatorname{sch}(R \mid * \parallel S) = \operatorname{sch}(R) \cup \operatorname{sch}(S)$

 $val\ (R\mid ^{\ast }\mid \mid S)=val\ (R\mid \times \mid S)\cup$

 $\{t \mid \exists \ s \in val \ (S) : t.B = s.B \land \neg \ (\exists \ r \in val \ (R) : t.J = r.J) \land t.(A-J) = \omega \}.$ Informations systems \$25004

Beispiel Outer Join

Gib alle Kunden mit 5 % Rabatt zusammen mit ihren Bestellungen aus, und zwar auch, wenn für einen Kunden gar keine Bestellungen vorliegen. σ [Rabatt = 0.05] (Kunden |*| Bestellungen)

KNr	Name	Stadt	Saldo	Rabatt	BestNr	
5	Becker	Dillingen	0.00	0.05	ω	
6	Meier	Saarlouis	-3800.00	0.05	14	
6	Meier	Saarlouis	-3800.00	0.05	15	
6	Meier	Saarlouis	-3800.00	0.05	16	

Informationssysteme SS200

Äquivalenzregeln ("Rechenregeln") der RA

Kommutativitätsregeln:

1) $\pi[R1]$ $\sigma[P]$ $(R) = \sigma[P]$ $\pi[R1]$ (R) falls P nur R1-Attribute enthält 2) R |x| S = S |x| R

Assoziativitätsregeln:

3) R |x| (S |x| T) = (R |x| S) |x| T

Idempotenzregeln:

4) $\pi[R1]$ ($\pi[R2]$ (R)) = $\pi[R1]$ (R) falls $R1 \subseteq R2$

5) $\sigma[P1] (\sigma[P2] (R)) = \sigma[P1 \land P2] (R)$

Distributivitätsregeln:

6) $\pi[R1] (R \cup S) = \pi[R1](R) \cup \pi[R1](S)$

7) $\sigma[P] (R \cup S) = \sigma[P](R) \cup \sigma[P](S)$

8) $\sigma[P]$ ($R | x | S = \sigma[P](R) | x | S$ falls P nur R-Attribute enthält 9) $\pi[R1,S1](R | x | S) = \pi[R1](R) | x | \pi[S1](S)$ falls Joinattribute $\subseteq R1 \cup S1$ 10) $R | x | (S \cup T) = (R | x | S) \cup (R | x | T)$

Invertierungsregeln:

11) $\pi[\operatorname{sch}(R)]$ (R ||* | S)=R

 $1) \pi[\mathrm{scn}(\mathbf{R})] (\mathbf{R} \parallel^* \mid \mathbf{S}) = \mathbf{I}$

Äquivalenzregeln ("Rechenregeln") der RA

Kommutativitätsregeln:

1) $\pi[R1] \sigma[P] (R) = \sigma[P] \pi[R1] (R)$ falls P nur R1-Attribute enthält 2) R |x| S = S |x| R

Assoziativitätsregeln:

3) R |x| (S |x| T) = (R |x| S) |x| T

Idempotenzregeln:

4) $\pi[R1]$ ($\pi[R2]$ (R)) = $\pi[R1]$ (R) falls $R1 \subseteq R2$

5) $\sigma[P1] (\sigma[P2] (R)) = \sigma[P1 \land P2] (R)$

Distributivitätsregeln:

6) $\pi[R1]$ ($R \cup S$) = $\pi[R1](R) \cup \pi[R1](S)$

7) $\sigma[P]$ ($R \cup S$) = $\sigma[P](R) \cup \sigma[P](S)$

8) $\sigma[P]$ (R |x| S) = $\sigma[P](R)$ |x| S falls P nur R-Attribute enthält 9) $\pi[R1,S1](R | x | S) = \pi[R1](R) | x | \pi[S1](S)$ falls Joinattribute $\subseteq R1 \cup S1$

10) R |x| (S \cup T) = (R |x| S) \cup (R |x| T)

Invertierungsregeln:

11) $\pi[sch(R)] (R ||*| S)=R$

Ausdrucksmächtigkeit der RA

Die Menge der relationenalgebraischen Ausdrücke über einer Menge von Relationen R1, ..., Rn ist wie folgt definiert:

- (i) R1, ..., Rn sind Ausdrücke.
- (ii) Wenn R, S, T, Q Ausdrücke sind, F eine Filterformel über sch(R) is $A \subseteq sch(R)$, $sch(S)=sch(T \text{ und } sch(R) \supset sch(Q) \text{ gilt, dann sind}$ $\sigma[F](R), \pi[A](R), R |x| S, R x S, R |*| S, S \cap T, S \cup T, S - T, R \div Q$ auch Ausdrücke.
- (iii) Nur die von (i) und (ii) erzeugten Ausdrücke sind RA-Ausdrücke.

 \times,π,σ,\cup und - bilden eine minimale Menge von Operationen, mit denen sich alle Operationen der RA ausdrücken lassen.

Eine Anfragesprache heißt relational vollständig, wenn sich damit alle Anfragen der (minimalen) Relationenalgebra ausdrücken lassen.

5.3 Erweiterte Relationenalgebra

Definition:

Eine Multimenge (engl. multiset, bag) M über einer Grundmenge G ist eine Abbildung M: $G \rightarrow N_0$.

M(x) wird als die Häufigkeit von x in M bezeichnet.

Definition:

Eine Multirelation R ist ein Paar R = (s,v) mit einem Schema s = {A1, ..., An} und einer Ausprägung v, die eine Multimenge über $dom(A1) \times ... \times dom(An)$ ist.

Beispiel:

Name	Stadt	Rabatt	
Lauer	Merzig	0.10	
Schneider	Homburg	0.20	
Schneider	Homburg	0.20	
Schulz	Merzig	0.10	
Schulz	Merzig	0.05	
Meier	Saarlouis	0.05	

eine Multirelation R in eine Relation $\chi(R)$ mit: val $(\chi(R)) = \{t \mid R(t) > 0\}.$

Die Funktion χ konvertiert

Operationen auf Multimengen und -relationen

Für Multirelationen R, S mit sch(R) = sch(S) sind:

Vereinigung $R \cup_{+} S$:

 $sch(\bar{R \cup_{+} S)} = sch(R), \quad val(R \cup_{+} S) = t \mapsto R(t) + S(t)$

Durchschnitt $R \cap_+ S$:

 $\operatorname{sch}(R \cap_+ S) = \operatorname{sch}(R), \quad \operatorname{val}(R \cap_+ S) = t \mapsto \min(R(t), S(t))$ **Differenz** $R -_+ S$:

 $\operatorname{sch}(R_{-+}S) = \operatorname{sch}(R), \quad \operatorname{val}(R_{-+}S) = t \mapsto R(t) - S(t) \text{ falls } R(t) \ge S(t), 0 \text{ sons}$

Das Resultat der **Selektion** σ_+ [F](R) auf einer Multirelation R ist: $\operatorname{sch}(\sigma_{\perp}[F](R)) = \operatorname{sch}(R),$

 $val(\sigma_+[F](R)) = t \mapsto R(t) \text{ falls } R(t) \land F(t), 0 \text{ sonst}$

Das Resultat der **Projektion** π_+ [A](R) auf einer Multirelation R mit $A \subseteq sch(R)$ ist:

 $sch(\pi, [A](R)) = A$.

 $val(\pi_+[A](R)) = t \mapsto \Sigma \{R(r) \mid r \in val(R) \text{ und } r.A = t.A\}$

Aggregation und Gruppierung

Aggregation α_+ (Zusammenfassen von Zeilen einer Tabelle): Sei $A \in sch(R)$ und sei f eine Funktion, die Multimengen über dom(A) in einen Wertebereich W abbildet (z.B. max, min, sum, count, median). Das Resultat der Aggregation α_+ [A,f](R) auf der Multirelation R ist: $sch(\alpha, [A,f](R)) = A' mit dom(A')=W$ $val(\alpha_{_+}[A,f](R)) = f(\pi_{_+}[A](R))$

Gruppierung γ₊ (Zusammenfassen von Äquivalenzklassen von Zeilen): Sei $X \subseteq sch(R)$, $A \in sch(R)$, und sei f eine Funktion, die Multimengen über dom(A) in einen Wertebereich W abbildet.

Das Resultat einer Gruppierung γ_+ [X,A,f](R) auf der Multirelation R ist: $sch(\gamma_+[X,A,f](R)) = X \cup \{A'\} mit dom(A')=W$

 $val(\gamma_{_+}\left[X,A,f\right]\!(R)) = \{\ t \mid es\ gibt\ eine\ \ddot{A}quivalenzklasse\ G\ von$ $\pi_{_{+}}[X](R)$ unter der Wertegleichheit und t.X ist der Wert der Tupel in G und t.A' = $f(\pi_{\perp}[A](G))$ }

Beispielanfragen auf Multirelationen (1)

PNr	Bez	Gewicht	Preis	Lagerort	Vorrat
1	Papier	2.000	20.00	Homburg	10000
2	Platte	1.000	2500.00	Saarbrücken	400
3	Drucker	5.000	2000.00	Merzig	200
4	Bildschirm	5.000	3000.00	Merzig	80
5	Disketten	0.500	20.00	Homburg	5000
6	Maus	0.250	100.00	Homburg	200
7	Speicher	0.100	200.00	Saarbrücken	2000

1) Produkte unter 50 DM sowie deren Lagerorte und Preise: $\sigma_{\perp}[Preis < 50.00](\pi_{\perp}[Lagerort, Preis](Produkte))$

Lagerort Preis Hinturg 2000 2000

Gesantvorrat

2) Gesamtstückzahl (aller Produkte) über alle Lager:

 $Resultat(Gesamtvorrat):=\alpha_{\perp}[Vorrat,sum](Produkte)$

17880

Beispielanfragen auf Multirelationen (2)

3) Bestimme für jedes Lager die Gesamtstückzahl aller dort gelagerten Produkte: Resultat (Lagerort, Gesamtvorrat) := γ_+ [{Lagerort}, Vorrat, sum](Produkte)

Lagerort	Gesamtvorrat
Homburg	15200
Saarbrücken	2400
Merzig	280

4) Bestimme für jedes Lager die Gesamtkapitalbindung (Stückzahl * Preis) aller dort gelagerten Produkte:

Lagerort	Kapitalbindung
Homburg	320 000
Saarbrücken	1 400 000
Merzig	640 000

 $P1 := \pi_{+}$ [Lagerort, Preis, Vorrat] (Produkte) P2 (Lagerort, Wert) := P1(Lagerort, Preis*Vorrat) Resultat (Lagerort, Kapitalbindung) := γ_+ [{Lagerort}, Wert, sum](P2)

Weitere Erweiterungen der RA

Transitive Hülle R+ einer binären Relation R:

Sei R(A, B) eine binäre Relation mit dom(A)=dom(B).

Das Resultat der transitiven Hülle R⁺ ist:

 $sch(R^+) = sch(R)$

 $val(R^+)$ ist die kleinste Menge, für die gilt: für jedes $r \in R$ gilt $r \in R^+$ und

(ii) $\label{eq:continuous_equation} \text{f\"{u}r} \ t \! \in \! R^+ \text{und } r \! \in \! R \ \text{mit } t.B \! = \! r.A \ \text{gilt } (t.A,\!r.B) \in R^+$

Beispiel: Flugverbindungen := (π [Abflugort, Zielort] (Flüge))+

FlugNr	Abflugort	Zielort	
LH58	Frankfurt	Chicago	
AA371	Chicago	Phoenix	
DA77	Phoenix	Yuma	
AA70	Frankfurt	Dallas	
AA351	Dallas	Phoenix	
UA111	Chicago	Dallas	

Flugverbindungen	
Abflugort	Zielort
Frankfurt	Chicago
Frankfurt	Dallas
Frankfurt	Phoenix
Frankfurt	Yuma