

Cartan-Kähler Theory and Applications to Local Isometric and Conformal Embedding

Nabil Kahouadji

Abstract

The goal of this lecture is to give a brief introduction to Cartan-Kähler's theory. As examples to the application of this theory, we choose the local isometric and conformal embedding. We provide lots of details and explanations of the calculation and the tools used¹.

1 Cartan's Structure Equations

Let $\xi = (E, \pi, M)$ be a vector bundle. Denote $(\mathfrak{X}(M), [,])$ the Lie algebra of vector fields on M and $\Gamma(E)$ the moduli space of cross-sections of the vector bundle E .

1.1 Connection on a vector bundle

A connection on a vector bundle E is a choice of complement of vertical vector fields on E . A connection induces a covariant differential operator ∇ on E . A covariant derivative ∇ on a vector bundle E is a way to "differentiate" bundle sections along tangent vectors and it is sometimes called a connection.

Definition 1.1.1. *A connection on a vector bundle E is a linear operator defined as follows:*

$$\begin{aligned}\nabla : \mathfrak{X}(M) \times \Gamma(E) &\longrightarrow \Gamma(E) \\ (X, S) &\longmapsto \nabla_X S\end{aligned}$$

¹See the Master Thesis [7] on which the lecture is based

satisfying

$$\begin{aligned}\nabla_{(X_1+X_2)}S &= \nabla_{X_1}S + \nabla_{X_2}S, & \nabla_{(fX)}S &= f\nabla_XS \\ \nabla_X(S_1+S_2) &= \nabla_XS_1 + \nabla_XS_2, & \nabla_X(fS) &= X(f)S + f\nabla_XS \\ \forall X, X_1, X_2, Y, Y_1, Y_2 \in \mathfrak{X}(M) \text{ and } \forall S, S_1, S_2 \in \Gamma(E).\end{aligned}$$

1.1.1 Curvature of a Connection

Definition 1.1.2. *The curvature of a connection ∇ is a vector valued 2-form*

$$\begin{aligned}\mathcal{R} : \mathfrak{X}(M) \times \mathfrak{X}(M) \times \Gamma(E) &\longrightarrow \Gamma(E) \\ X, Y, S &\longmapsto \mathcal{R}(X, Y)S\end{aligned}$$

$$\text{defined by } \mathcal{R}(X, Y)S = ([\nabla_X, \nabla_Y] - \nabla_{[X, Y]})S$$

Theorem 1.1. *For any f, g and h smooth functions on M , $S \in \Gamma(E)$ a section of ξ and $X, Y \in \mathfrak{X}(M)$ two tangent vector fields of M , we have*

$$\mathcal{R}(fX, gY)(hS) = fgh\mathcal{R}(X, Y)S \quad (1)$$

1.1.2 Connection and Curvature Forms

Let $\xi = (E, \pi, M)$ be a vector bundle over a smooth manifold M with an r -dimensional vector space E as a standard fiber. Let ∇ be a connection on ξ and \mathcal{R} its curvature. We denote by \mathcal{U} an open set of M .

Definition 1.1.3. *A set of r local sections $S = (S_1, S_2, \dots, S_r)$ of ξ is called a frame field (or a moving frame) if $\forall p \in \mathcal{U}$, $S(p) = (S_1(p), S_2(p), \dots, S_r(p))$ form a basis of the fiber E_p over p .*

Let $S = (S_1, S_2, \dots, S_r)$ be a frame field, ∇ a connection on ξ and $X \in \mathfrak{X}(M)$ a tangent vector field on M . Then $\nabla_X S_j$ is another section of ξ and it can be expressed in the frame field S as follows:

$$\nabla_X S_j = \sum_{i=1}^r \omega_{ij}(X) S_i \quad (2)$$

where $\omega_{ij} \in \mathcal{A}^1(M)$ are differential 1-forms² on M and $\omega_{ij}(X)$ are smooth functions on M .

² $\mathcal{A}^k(M)$ denote the set of differential k -form on M (we choose this notation instead of the standard notation $\Omega^k(M)$ to not mix with the curvature form).

Definition 1.1.4. *The $r \times r$ matrix $\omega = (\omega_{ij})$ is called the connection 1-form of ∇ .*

The connection ∇ is completely determined by the matrix $\omega = (\omega_{ij})$. Conversely, a matrix of differential 1-forms on M determines a connection (in a non-invariant way depending on the choice of the moving frame).

Let $X, Y \in \mathfrak{X}(M)$ two tangent vector fields. Then $\mathcal{R}(X, Y)S_j$ are sections of ξ , and can be expressed on the frame field S as follows:

$$\mathcal{R}(X, Y)S_j = \sum_{i=1}^r \Omega_{ij}(X, Y)S_i \quad (3)$$

where $\Omega_{ij} \in \mathcal{A}^2(M)$ are differential 2-forms on M and $\Omega_{ij}(X, Y)$ are smooth functions on M .

Definition 1.1.5. *The $r \times r$ matrix $\Omega = (\Omega_{ij})$ whose entries are differential 2-forms, is called the curvature 2-form of the connection ∇ .*

We state the following theorem³ that gives the relation between the connection 1-form ω and the curvature 2-form Ω .

Theorem 1.2.

$$d\omega + \omega \wedge \omega = \Omega \quad (\text{matrix form}) \quad (4)$$

or

$$d\omega_{ij} + \sum_{k=1}^m \omega_{ik} \wedge \omega_{kj} = \Omega_{ij} \quad (\text{on components}) \quad (5)$$

1.2 The Induced Connection

Let $\xi = (E, \pi, M)$ and $\xi' = (E', \pi', M)$ be two vector bundles on M . Consider a map $f : M \rightarrow M$ and denote $\tilde{f} : E \rightarrow E'$ the associated bundle map i.e. (f, \tilde{f}) satisfies the following commutative diagramme:

$$\begin{array}{ccc} E & \xrightarrow{\tilde{f}} & E' \\ \pi \downarrow & & \downarrow \pi' \\ M & \xrightarrow{f} & M \end{array}$$

³In the tangent bundle case, this theorem gives Cartan's second equation, as we will see later.

If ∇' is a connection on E' , the vector bundle morphism induces a pull-back connection on E

$$\nabla = \tilde{f}^* \nabla' \quad (6)$$

such that for any $S' \in \Gamma(E')$ and $X \in \mathfrak{X}(M)$, $\nabla_X(\tilde{f}^* S') = (\tilde{f}^* \nabla')_X(\tilde{f}^* S')$ where $f_{*,p} : T_p M \longrightarrow T_{f(p)} M$ is the linear tangent map.

We can also induce a connection on ξ by another way. The connection ∇' is completely determined by the matrix of differential 1-forms $\omega' = (\omega'_{ij})$, and we define ∇ by the matrix ω whose entries ω_{ij} are the pull-back of ω'_{ij} by \tilde{f} , i.e. $\omega = \tilde{f}^* \omega'$.

The pull back commute with the exterior differentiation and with the exterior product⁴, so, the curvature 2-form Ω of ∇ is the pull back of the curvature 2-form of ∇' , i.e. $\Omega = \tilde{f}^* \Omega'$.

1.3 Metric Connection

Let $\xi = (E, \pi, M)$ be a vector bundle. We denote by ∇ a connection on ξ determined by a matrix of 1-forms ω . Let Ω be the associated curvature 2-form and g a Riemannian metric on ξ (i.e. a positively-defined scalar product on each fiber).

Definition 1.3.1. ∇ is a connection on ξ compatible with the metric g (or a metric connection) if ∇ satisfies to the following property (Leibniz's identity):

$$\begin{aligned} \nabla_X(g(S_1, S_2)) &= g(\nabla_X S_1, S_2) + g(S_1 \nabla_X S_2) \\ \forall S_1, S_2 \in \Gamma(E), \text{ and } \forall X \in \mathfrak{X}(M) \end{aligned} \quad (7)$$

Proposition 1.3.1. Let $S = (S_1, S_2, \dots, S_n)$ be an orthonormal frame field with respect to g , i.e. $g_p(S_i, S_j) = \delta_{ij}$ for all $p \in \mathcal{U}$, $i, j = 1, \dots, r$, then the matrix of 1-forms ω associated to S and the curvature matrix of 2-form are both skew-symmetric.

⁴ $d(f^* \alpha) = f^*(d\alpha)$ and $f^*(\alpha \wedge \beta) = f^*(\alpha) \wedge f^*(\beta)$ for all $\alpha, \beta \in \mathcal{A}(M)$.

1.4 Tangent Bundle Case

1.4.1 Torsion of a Connexion on a Tangent Bundle

Let us consider now, a local frame field $S = (S_1, \dots, S_m)$ over $\mathcal{U} \subset M$ where $S_i \in \mathfrak{X}(\mathcal{U})$ are local tangent vectors fields (i.e. local sections of the tangent bundle such that for all $p \in \mathcal{U}$, $(S_1(p), \dots, S_m(p))$ forms a basis of the tangent vector space of M).

Definition 1.4.1. *If S is a local orthonormal frame field, the associated coframe field $\eta = (\eta_1, \dots, \eta_m)$ is a local frame field of 1-forms, such that for all $p \in \mathcal{U}$, $\eta_i(p)(S_j) = \delta_{ij}$.*

We define then a differential 2-form Θ as follows:

$$d\eta + \omega \wedge \eta = \Theta \quad (8)$$

Definition 1.4.2. Θ is called the torsion 2-form of ∇ .

Proposition 1.4.1. *On a tangent bundle, the four forms η, ω, Θ and Ω are connected by the following equations*

$$d\Theta + \omega \wedge \Theta = \Omega \wedge \eta \quad (9)$$

and

$$d\Omega = \Omega \wedge \omega - \omega \wedge \Omega \quad (10)$$

The equation (10) is the expression of the Bianchi identity via the connection 1-form and the curvature 2-form. Equation (10) is also valid on an arbitrary vector bundle.

1.4.2 Cartan's Structure Equations

Let (M, g) be an m -dimensional Riemannian manifold. Let $\eta = (\eta_1, \eta_2, \dots, \eta_m)$ an orthonormed coframe field on M ($\eta_j \in \mathcal{A}^1(M)$). According to equations (8), (5) and the proposition 1.3.1, we establish the Cartan structure equations:

$$\begin{cases} d\eta_i + \sum_{j=1}^m \omega_{ij} \wedge \eta_j = 0 & \text{(torsion-free)} \\ d\omega_{ij} + \sum_{k=1}^m \omega_{ik} \wedge \omega_{kj} = \Omega_{ij} \end{cases} \quad (11)$$

where the matrix (ω_{ij}) is the Lévi-Civita connection 1-form (free torsion connection which is compatible with the riemannian metric g). Because η is an orthonormed coframe field, (ω_{ij}) is skew-symmetric (proposition 1.3.1.). (Ω_{ij}) is the curvature 2-form matrix of the riemannian connection $(\Omega_{ij} = \frac{1}{2} \sum_{k,l=1}^m \mathcal{R}_{ijkl} \eta_k \wedge \eta_l)$.

1.5 The Cartan Lemma

We end this section with a technical lemma, which is easy to establish and at the same time rich applications . This lemma will not only be useful for isometric embedding problem, but also for many calculus in differential geometry.

Lemma 1.5.1. *Let M be an m -dimensional manifold. $\omega_1, \omega_2, \dots, \omega_r$ a set of linearly independent differential 1-forms ($r \leq n$) and $\theta_1, \theta_2, \dots, \theta_r$ differential 1-forms such that*

$$\sum_{i=1}^r \theta_i \wedge \omega_i = 0 \quad (12)$$

then there exists r^2 functions h_{ij} in $\mathcal{C}^1(M)$ such that

$$\theta_i = \sum_{j=1}^r h_{ij} \omega_j \quad \text{with } h_{ij} = h_{ji}. \quad (13)$$

2 Exterior Differential Systems and Ideals

2.1 Exterior Differential Systems

Denote $\mathcal{A}(M)$ the space of smooth differential forms⁵ on M .

Definition 2.1.1. *An exterior differential system is a finite set of differential forms $I = \{\omega_1, \omega_2, \dots, \omega_k\} \subset \mathcal{A}(M)$ for which there is a set of equations $\{\omega_i = 0 | \omega_i \in I\}$.*

such that one can write the exterior differential system as follow:

$$\begin{cases} \omega_1 = 0 \\ \omega_2 = 0 \\ \vdots \\ \omega_k = 0 \end{cases}$$

⁵This is a graded algebra under the wedge product.

Definition 2.1.2. An exterior differential system $I \subset \mathcal{A}(M)$ is said to be Pffafian if I contains only differential 1-forms, i.e. $I \subset \mathcal{A}^1(M)$.

2.2 Exterior Ideals

Definition 2.2.1. Let $\mathcal{I} \subset \mathcal{A}(M)$ a set of differentiable forms. \mathcal{I} is an exterior ideal if:

1. The exterior product of any differential form of \mathcal{I} by a differential form of $\mathcal{A}(M)$ belong to \mathcal{I} .
2. The sum of any two differential forms of the same degree belonging to \mathcal{I} , belong also to \mathcal{I} .

Definition 2.2.2. Let $I \subset \mathcal{A}(M)$ an exterior differential system. The exterior ideal generated by I is the smallest exterior ideal containing I .

2.3 Exterior Differential Ideals

Definition 2.3.1. Let $\mathcal{I} \subset \mathcal{A}(M)$ a set of differentiable forms. \mathcal{I} is an exterior differential ideal if \mathcal{I} is an exterior ideal closed under the exterior differentiation, i.e. $\forall \omega \in \mathcal{I}, d\omega \in \mathcal{I}$ (we can also write $d\mathcal{I} \subset \mathcal{I}$).

Definition 2.3.2. Let $I \subset \mathcal{A}(M)$ an exterior differential system. The exterior differential ideal generated by I is the smallest exterior differential ideal containing I .

2.4 Closed Exterior Differential Systems

Definition 2.4.1. An exterior differential system $I \subset \mathcal{A}(M)$ is said closed if the exterior differentiation of any form of I , belong to the exterior ideal generated by I .

Proposition 2.4.1. An exterior differential system I is closed if and only if the exterior differential ideal generated by I is equal to the exterior ideal generated by I . In particular, $I \cup dI$ is closed .

2.5 Solutions of an Exterior Differential System

Definition 2.5.1. Let $I \subset \mathcal{A}(M)$ be an exterior differential system and N a sub-manifold of M . N is an integral manifold of I if $i^*\omega = 0, \forall \omega \in I$, where i is an embedding $i : N \longrightarrow M$.

3 Introduction to Cartan-Kähler Theory

We consider in this section, an m -dimensional real manifold M and $\mathcal{I} \subset \mathcal{A}(M)$ an exterior differential ideal on M .

3.1 Integral Elements

Definition 3.1.1. Let $z \in M$ and $E \subset T_z M$ a linear subspace of $T_z M$. E is an integral element of \mathcal{I} if $\varphi_E = 0$ for all $\varphi \in \mathcal{I}$. We denote by $\mathcal{V}_p(\mathcal{I})$ the set of p -dimensional integral elements of \mathcal{I} .

Definition 3.1.2. N is an integral manifold of \mathcal{I} if and only if each tangent space of N is an integral element of \mathcal{I} .

Proposition 3.1.1. If E is a p -dimensional integral element of \mathcal{I} , then every subspace of E are also integral elements of \mathcal{I} .

We denote by $\mathcal{I}_p = \mathcal{I} \cap \mathcal{A}^p(M)$ the set of differential p -forms of \mathcal{I} .

Proposition 3.1.2. $\mathcal{V}_p(\mathcal{I}) = \{E \in G_p(TM) | \varphi_E = 0 \text{ for all } \varphi \in \mathcal{I}_p\}$

Definition 3.1.3. Let E an integral element of \mathcal{I} . Let $\{e_1, e_2, \dots, e_p\}$ a basis of $E \subset T_z M$. The polar space of E , denoted by $H(E)$, is the vector space defined as follow:

$$H(E) = \{v \in T_z M | \varphi(v, e_1, e_2, \dots, e_p) = 0 \text{ for all } \varphi \in \mathcal{I}_{p+1}\}. \quad (14)$$

Notice that $E \subset H(E)$. This implies that a differential form is alternate. The polar space plays an important role in exterior differential system theory as we shall see in the following proposition.

Proposition 3.1.3. Let $E \in \mathcal{V}_p(\mathcal{I})$ be an p -dimensional integral element of \mathcal{I} . A $(p+1)$ -dimensional vector space $E^+ \subset T_z M$ which contains E is an integral element of \mathcal{I} if and only if $E^+ \subset H(E)$.

In order to check if a given p -dimensional integral element of an exterior differential ideal \mathcal{I} is contained in a $(p+1)$ -dimensional integral element of \mathcal{I} , we introduce the following function $r : \mathcal{V}_p(\mathcal{I}) \rightarrow \mathbb{Z}$, $r(E) = \dim H(E) - (p+1)$ is a relative integer, $\forall E \in \mathcal{V}_p(\mathcal{I})$.

Notice that $r(E) \geq 1$. If $r(E) = -1$, then E is contained in any $(p+1)$ -dimensional integral element of \mathcal{I} .

3.1.1 Kähler-Ordinary and Kähler-Regular Integral Elements

Let Δ a differential n -form on a m -dimensional manifold M . Let⁶ $G_n(TM, \Delta) = \{E \in G_n(TM) / \Delta_E \neq 0\}$. We denote by $\mathcal{V}_n(\mathcal{I}, \Delta) = \mathcal{V}_n(\mathcal{I}) \cap G_n(TM, \Delta)$ the set of integral elements of \mathcal{I} on which $\Delta_E \neq 0$.

Definition 3.1.4. An integral element $E \in \mathcal{V}_n(\mathcal{I})$ is called Kähler-ordinary if there exists a differential n -form Δ such that $\Delta_E \neq 0$. Moreover, if the function r is locally constant in some neighborhood of E , then E is said Kähler-regular.

3.1.2 Integral Flags, Ordinary and Regular Integral Elements

Definition 3.1.5. An integral flag of \mathcal{I} on $z \in M$ of length n is a sequence of integral elements E_k of \mathcal{I} : $(0)_z \subset E_1 \subset E_2 \subset \dots \subset E_n \subset T_z M$.

Definition 3.1.6. Let I be an exterior differential system on M . An integral element $E \in \mathcal{V}(I)$ is said ordinary if its base point $z \in M$ is an ordinary zero of $I_0 = I \cap \mathcal{A}^0(M)$ and if there exists an integral flag $(0)_z \subset E_1 \subset E_2 \subset \dots \subset E_n = E \subset T_z M$ where the E_k , $k = 1, \dots, (n-1)$ are Kähler-regular integral elements. Moreover, if E is Kähler-regular, then E is said regular.

3.2 Cartan's Test

Theorem 3.1. (Cartan's test)

Let $\mathcal{I} \subset \mathcal{A}^*(M)$ be an exterior ideal which does not contain 0-forms (functions on M). Let $(0)_z \subset E_1 \subset E_2 \subset \dots \subset E_n \subset T_z M$ be an integral flag of \mathcal{I} . For any $k < n$, we denote by c_k the codimension of the polar space $H(E_k)$ in $T_z M$. Then $\mathcal{V}_n(\mathcal{I}) \subset G_n(TM)$ is at least of $c_0 + c_1 + \dots + c_{n-1}$ codimension at E_n . Moreover, E_n is an ordinary integral flag if and only if E_n has a neighborhood U in $G_n(TM)$ such that $\mathcal{V}_n(\mathcal{I}) \cap U$ is a manifold of $c_0 + c_1 + \dots + c_{n-1}$ codimension in U .

Proof. See [1], page 74. □

Proposition 3.2.1. Let $\mathcal{I} \cap \mathcal{A}^*(M)$ an exterior ideal which do not contains 0-forms. Let $E \in \mathcal{V}_n(\mathcal{I})$ be an integral element of \mathcal{I} at the point $z \in M$. Let $\omega_1, \omega_2, \dots, \omega_n, \pi_1, \pi_2, \dots, \pi_s$ (where $s = \dim M - n$) be a coframe in a open neighborhood of $z \in M$ such that $E = \{v \in T_z M / \pi_a(v) = 0 \text{ for all } a = 1, \dots, s\}$. For all $p \leq n$, we define $E_p = \{v \in E | \omega_k(v) = 0 \text{ for all } k > p\}$. Let $\{\varphi_1, \varphi_2, \dots, \varphi_r\}$ be the set of differential forms which generate the exterior

⁶ $G_n(TM)$ is the Grassmannian of TM , i.e. the set of n -dimensional subspace of TM .

ideal \mathcal{I} , where φ_ρ is of $(d_\rho + 1)$ degree.

For all ρ , there exists an expansion

$$\varphi_\rho = \sum_{|J|=d_\rho} \pi_\rho^J \wedge \omega_J + \tilde{\varphi}_\rho \quad (15)$$

where the 1-forms π_ρ^J are linear combinations of the forms π and the terms $\tilde{\varphi}_\rho$ are, either of degree 2 or more on π , or vanish at z .

moreover, we have

$$H(E_p) = \{v \in T_z M \mid \pi_\rho^J(v) = 0 \text{ for all } \rho \text{ and } \sup J \leq p\} \quad (16)$$

In particular, for the integral flag $(0)_z \subset E_1 \subset E_2 \subset \dots \subset E_n \cap T_z M$ de \mathcal{I} , c_p correspond to the number of linear independent forms $\{\pi_\rho^J|_z \text{ such that } \sup J \leq p\}$.

Proof. See [1], page 80. \square

3.3 Cartan-Kähler's Theorem

The following theorem is a generalization of the well-known Frobenius's theorem.

Theorem 3.2. (*Cartan-Kähler*)

Let $\mathcal{I} \subset \mathcal{A}^*(M)$ be a real analytic exterior differential ideal. Let $P \subset M$ a p -dimensional connected real analytic Kähler-Regular integral manifold of \mathcal{I} .

Suppose that $r = r(P) \geq 0$. Let $R \subset M$ be a real analytic submanifold of M of codimension r which contains P and such that $T_x R$ and $H(T_x P)$ are transversals in $T_x M$ for all $x \in P \subset M$.

There exists a $(p+1)$ -dimensional connected real analytic integral manifold X of \mathcal{I} , such that $P \subset X \subset R$. X is unique in the sense that another integral manifold of \mathcal{I} having the stated properties, coincides with X on a open neighborhood of P .

Proof. See [1], page 82. \square

The analicity condition of the exterior differential ideal is crucial because of the requirements in the Cauchy-Kowalewski theorem used in the proof of the Cartan-Kähler theorem.

Cartan-Kähler's theorem has an important corollary. Actually, this corollary is often more used than the theorem and it is sometimes called *the Cartan-Kähler theorem*.

Corollary 3.3.1. (*Cartan-Kähler*)

Let \mathcal{I} be an analytic exterior differential ideal on a manifold M . If $E \subset T_z M$ is an ordinary integral element of \mathcal{I} , there exists an integral manifold of \mathcal{I} passing through z and having E as a tangent space at the point z .

4 Local Isometric Embedding Problem

We shall state and prove the Burstin-Cartan-Janet-Schlaefli's theorem concerning local isometric embedding of a real analytic Riemannian manifold. The names of the mathematicians are given in alphabetic order. Schlaefli in his paper in 1871 [8] conjectured that an m -dimensional Riemannian manifold can always be, locally, embedded in an $N = \frac{1}{2}m(m+1)$ dimensional Euclidean space. In 1926, Janet [6] proved the result for the dimension 2 by resolving a differential system and explain how we get the result in the general case. In 1927, Élie Cartan [3] gave the complete proof of the result. His method is based on his theory of involutive Pfaffian system. Later in 1931, Burstin [2] generalized Janet's method and obtained the result in the general case.

The proof that we shall give is inspired by Cartan's paper [3], the Bryant, Chern, Gardner, Goldschmidt et Griffiths's book [1] and the Griffiths et Jensen's book [4].

4.1 The Burstin-Cartan-Janet-Schlaefli theorem

Theorem 4.1. (*Burstin 1931-Cartan 1927-Janet 1926-Schlaefli 1871*)

Every m -dimensional real analytic Riemannian manifold can be locally embedded isometrically in an $\frac{m(m+1)}{2}$ -dimensional Euclidean space.

4.2 Proof of Burstin-Cartan-Janet-Schlaefli's theorem

Steps of the proof of theorem 4.1.

1. We shall write down the Cartan structure equations for an m -dimensional real analytic Riemannian manifold M .
2. We shall define a subbundle $\mathcal{F}_m(\mathbb{E}^N)$ of the bundle $\mathcal{F}(\mathbb{E}^N)$ of the Euclidean space \mathbb{E}^N , then shall write down the Cartan structure equations for the subbundle $\mathcal{F}_m(\mathbb{E}^N)$.
3. Given an exterior differential system I_0 on $M \times \mathcal{F}_m(\mathbb{E}^N)$, which is not close, we shall prove Claim 4.2.2, which proves that the existence of a

local isometric embedding of M is the existence of an m -dimensional integral manifold of I_0 .

4. We will extend this differential system to obtain a closed one. In the process of extension, we will get new equations (the Gauss equation (equ. 29)). We will also show that a closed exterior differential system \tilde{I} with fewer 1-forms than I , will generate the same differential ideal that the one generated by I if the Gauss's equation is satisfied.
5. We establish the lemma 4.2.1., that ensure that the Gauss equations is a surjective submersion. We shall obtain a submanifold with a known dimension.
6. Given the closed exterior differential ideal,, we shall prove the existence of an ordinary integral element by using claim 3.2.1 and the Cartan test. Finally, the Cartan-Kahler theorem ensure then the existence of an integral manifold and lead us to conclude..

Step 1:

Let (M, g) be an m -dimensional real analytic Riemannian manifold, where g is a Riemannian metric, i.e. a covariant symmetric positive defined 2-tensor, such that at a given point p of M , g_p in a orthonormed basis reduce to the identity matrix. However in a open neighborhood of p , the matrix of g can not always be the identity but it can always be reduced to diagonal matrix:

$$g = g_{11}dx^1 \otimes dx^1 + g_{22}dx^2 \otimes dx^2 + \cdots + g_{mm}dx^m \otimes dx^m \quad (17)$$

where the terms g_{ii} are positive functions such that $g_{ii} = 1$ at p . We denote than $\eta_i = \sqrt{g_{ii}}dx^i$. g can be written as follows:

$$g = \eta_1 \otimes \eta_1 + \eta_2 \otimes \eta_2 + \cdots + \eta_m \otimes \eta_m \quad (18)$$

$\eta = (\eta_1, \eta_2, \dots, \eta_m)$ is than a orthonormal coframe in the neighborhood of $p \in M$. We can establish the Cartan's structure equations:

Cartan's structure equations on M :

$$\begin{cases} d\eta_i + \sum_{j=1}^m \eta_{ij} \wedge \eta_j = 0 & \text{(torsion-free)} \\ d\eta_{ij} + \sum_{k=1}^m \eta_{ik} \wedge \eta_{kj} = \Omega_{ij} \end{cases} \quad (19)$$

where (η_{ij}) is the matrix of 1-form of the Lévi-Civita's connection on M (a torsion-free connection compatible with the metric g). Ω_{ij} is the curvature 2-form of the connection.

Step 2:

Let \mathbb{E}^N be an N -dimensional Euclidean space (for the moment, $N > m$) endowed with the usual scalar product ε_N . Let us consider $\mathcal{F}(\mathbb{E}^N)$ a positively-oriented orthonormal frame bundle on \mathbb{E}^N . In what follows, we will not work on the entire bundle $\mathcal{F}(\mathbb{E}^N)$, but on a quotient. An element in $\mathcal{F}_m(\mathbb{E}^N)$ has the form $(x; e_1, e_2, \dots, e_m)$, where $x \in \mathbb{E}^N$ and (e_1, e_2, \dots, e_m) is a positively-oriented orthonormal set of vectors in \mathbb{E}^N . We can consider $\mathcal{F}_m(\mathbb{E}^N)$ as follows: among all the positively-oriented orthonormal frames of $\mathcal{F}(\mathbb{E}^N)$, we take the frames such that the first m elements form a positively-oriented orthonormal set of vectors, then we take the m first vectors of these frames. So, $\mathcal{F}_m(\mathbb{E}^N)$ is diffeomorphic to $\mathbb{E}^N \times \frac{SO(N)}{SO(N-m)}$.

Proposition 4.2.1.

$$\dim \mathcal{F}_m(\mathbb{E}^N) = N(m+1) - \frac{m(m+1)}{2} \quad (20)$$

We define on $\mathcal{F}(\mathbb{E}^N)$ a set of 1-forms as follows⁷:

$$\omega_\mu = e_\mu dx \quad \text{and} \quad \omega_{\mu\nu} = e_\mu de_\nu = -e_\nu de_\mu = -\omega_{\nu\mu} \quad (21)$$

So $(\omega_1, \omega_2, \dots, \omega_m, \omega_{m+1}, \dots, \omega_N)$ form an orthonormal coframe of $\mathcal{F}(\mathbb{E}^N)$. Then the Cartan structure equations on $\mathcal{F}_m(\mathbb{E}^N)$ are:

$$\begin{cases} d\omega_\mu + \sum_{\nu=1}^N \omega_{\mu\nu} \wedge \omega_\nu = 0 & (\text{torsion-free}) \\ d\omega_{\mu\nu} + \sum_{\lambda=1}^N \omega_{\mu\lambda} \wedge \omega_{\lambda\nu} = 0 & (\text{flat curvature}) \end{cases} \quad (22)$$

Notice that $(\omega_{\mu\nu})$ is the $N \times N$ skew-symmetric matrix connection form of the Lévi-Civita connection on \mathbb{E}^N .

⁷The indices i, j and k vary from 1 to m , the indexes a, b and c vary from $m+1$ to N and the indexes μ, ν and λ vary from 1 to N .

Step 3:

Let consider the product manifold $M \times \mathcal{F}_m(\mathbb{E}^N)$. Let \mathcal{I}_0 be the exterior ideal on $M \times \mathcal{F}_m(\mathbb{E}^N)$ generated by the Pffafian system $I_0 = \{(\omega_i - \eta_i), \omega_a\}$.

Proposition 4.2.2. *Every m -dimensional integral manifold of \mathcal{I}_0 on which the form $\Delta = \omega_1 \wedge \cdots \wedge \omega_m$ does not vanish is locally the graph of a function $f : M \rightarrow \mathcal{F}_m(\mathbb{E}^N)$ having the property that $u = x \circ f : M \rightarrow \mathbb{E}^N$ is a local isometric embedding⁸.*

$$\begin{array}{ccc} M & \xrightarrow{f} & \mathcal{F}_m(\mathbb{E}^N) \\ & \searrow u & \downarrow x \\ & & \mathbb{E}^N \end{array}$$

Step 4:

According to proposition 4.2.2., the existence of an integral manifold of \mathcal{I}_0 for which Δ is non zero, is a necessary condition for the existence of a local isometric embedding. However, the theorems and the results that we discussed deal with closed exterior differential system. Therefore it is natural to add to the Pffafian system I_0 the exterior differentiation of each 1-form. We obtain so a closed exterior differential system: $I_0 \cup dI_0$. When we compute the exterior differentiation of $(\omega_i - \eta_i)$, we remark new differential forms and an interesting result,

$$d(\omega_i - \eta_i) = - \sum_{j=1}^m (\omega_{ij} - \eta_{ij}) \wedge \omega_i = 0 \quad (23)$$

By Cartan's lemma, $\omega_{ij} - \eta_{ij} = \sum_{k=1}^m h_{ijk} \omega_k$, with $h_{ijk} = h_{ikj} = -h_{jik}$. With the symmetry and the skew-symmetry of the functions h_{ijk} , we conclude that h_{ijk} are zero and so, $\omega_{ij} - \eta_{ij} = 0$. This result has a geometric interpretation: $\omega_{ij} - \eta_{ij} = 0$ implies that $f^*(\omega_{ij}) = \eta_{ij}$ where f is the function of proposition 4.2.2, which means that the pull-back of Lévi-Civita connection by an isometric embedding is the Lévi-Civita connection on M .

So, we extend the exterior differential I_0 and we obtain an exterior differential system on $M \times \mathcal{F}_m(\mathbb{E}^N)$ $I_1 = \{(\omega_i -$

⁸Conversely, each local isometric embedding $u : M \rightarrow \mathbb{E}^N$ come uniquely from this construction.

$\eta_i)_{i=1,\dots,m}, (\omega_a)_{a=m+1,\dots,N}, (\omega_{ij} - \eta_{ij})_{1 \leq i < j \leq m}\}$. In order to have a closed one, we add the exterior differentiation of each form and we get $I = I_1 \cup dI_1$. We denote \mathcal{I} the exterior differential ideal generated by $I = \{(\omega_i - \eta_i), \omega_a, (\omega_{ij} - \eta_{ij}), d(\omega_i - \eta_i), d\omega_a, d(\omega_{ij} - \eta_{ij})\}$.

Instead of looking for integral manifold of \mathcal{I}_0 , we will look for the existence of an integral manifold of \mathcal{I} .

From the structure equations stated earlier, we obtain the following system:

$$\begin{cases} d(\omega_i - \eta_i) \equiv 0 \quad \text{mod } I_1 \\ d\omega_a \equiv - \sum_{i=1}^m \omega_{ai} \wedge \omega_i \quad \text{mod } I_1 \\ d(\omega_{ij} - \eta_{ij}) \equiv \sum_{a=m+1}^N \omega_{ai} \wedge \omega_{aj} - \Omega_{ij} \quad \text{mod } I_1 \end{cases} \quad (24)$$

On \mathbb{X} , the integral manifold of \mathbb{X} , $\omega_a = 0$, so $d\omega_a = 0$ too. We conclude that $\sum_{i=1}^m \omega_{ai} \wedge \omega_i = 0$. The Cartan lemma (lemma 1.5.1., page 300) ensures the

existence of m^2 functions h_{aij} such that $\omega_{ai} = \sum_{j=1}^m h_{aij} \omega_j$ where $h_{aij} = h_{aji}$.

We can write then: $\omega_{ai} - \sum_{j=1}^m h_{aij} \omega_j = 0$ on \mathbb{X} .

However, nothing lead us to think that this equality will be true outside \mathbb{X} . We define then the differential 1-form π_{ai} on $M \times \mathcal{F}_m(\mathbb{E}^N)$ as follows

$$\pi_{ai} = \omega_{ai} - \sum_{j=1}^m h_{aij} \omega_j \quad (25)$$

Consider now, the last equation of the system (24)

$$d(\omega_{ij} - \eta_{ij}) \equiv \sum_{a=m+1}^N \omega_{ai} \wedge \omega_{aj} - \Omega_{ij} \quad \text{mod } I \quad (26)$$

On \mathbb{X} , $\omega_{ij} - \eta_{ij} = 0$, so $d(\omega_{ij} - \eta_{ij}) = 0$. restricted to \mathbb{X} , (26) becomes

$$\sum_{a=m+1}^N \omega_{ai} \wedge \omega_{aj} = \Omega_{ij}. \quad (27)$$

Using (25), we can write (27) as follows

$$\text{On } \mathbb{X} : \quad \Omega_{ij} = \sum_{k,l=1}^m \left(\sum_{a=m+1}^N (h_{aik}h_{ajl} - h_{ail}h_{ajk}) \right) \omega_k \otimes \omega_l \quad (28)$$

from $\Omega_{ij} = \sum_{k,l=1}^m \mathcal{R}_{ijkl} \eta_k \otimes \eta_l = \sum_{k,l=1}^m \mathcal{R}_{ijkl} \omega_k \otimes \omega_l$, we conclude that

$$\sum_{a=m+1}^N (h_{aik}h_{ajl} - h_{ail}h_{ajk}) = \mathcal{R}_{ijkl} \quad (29)$$

Equation (29) is called the Gauss equation.

We see that the exterior differential system $\tilde{I} = \{(\omega_i - \eta_i), \omega_a, (\omega_{ij} - \eta_{ij}), \pi_{ai}\}$ when the Gauss's equation is satisfied, generates the exterior differential ideal \mathcal{I} . Actually, the 1-forms $(\omega_i - \eta_i)$ and ω_a belong to I and to \tilde{I} . The 1-forms $(\omega_{ij} - \eta_{ij}) = 0$. This implies that $d(\omega_i - \eta_i) = 0$. The 1-forms $\pi_{ai} = 0$, so $d\omega_a = 0$. From the Gauss equation, $d(\omega_{ij} - \eta_{ij}) = 0$. Looking for integral elements of I is equivalent to looking for integral elements of \tilde{I} for which the Gauss equation is satisfied. We shall proceed this in the following steps. Moreover, \tilde{I} contains less differential 1-form than the exterior differential system I .

Step 5:

The functions h_{aik} are symmetric in their two last indeces. If we consider an $(N-m)$ -dimensional euclidean space \mathcal{W} , then the matrix (h_{aik}) can be viewed as a symmetric element of $\mathbb{R}^m (i, j = 1, \dots, m)$ taking value in \mathcal{W} , i.e. $(h_{aik}) \in \mathcal{W} \otimes S^2(\mathbb{R}^m)$. Notice that $\dim \mathcal{W} \otimes S^2(\mathbb{R}^m) = (N-m) \frac{m(m+1)}{2}$.

Proposition 4.2.3. *Let \mathcal{K}_m the set of Riemannian curvature tensors \mathcal{R} such that:*

1. $\mathcal{R}_{ijkl} = \mathcal{R}_{klji}$.
2. $\mathcal{R}_{ijkl} = -\mathcal{R}_{jikl}$.
3. $\mathcal{R}_{ijkl} + \mathcal{R}_{kijl} + \mathcal{R}_{jkil} = 0$.

where the indeces i, j, k and l vary from 1 to m . Then

$$\dim \mathcal{K}_m = \frac{m^2(m^2 - 1)}{12} \quad (30)$$

Lemma 4.2.1. Suppose that $r = N - m \geq \frac{m(m-1)}{2}$. Let $\mathcal{H} \subset \mathcal{W} \otimes S^2(\mathbb{R}^m)$ an open set containing the elements $h = (h_{ij})$ such that the vectors $\{h_{ij} | 1 \leq i \leq j \leq m-1\}$ are linearly independent as elements of \mathcal{W} . The map $\gamma : \mathcal{H} \rightarrow \mathcal{K}_m$ that for $h \in \mathcal{H}$ associate $\gamma(h) \in \mathcal{K}_m$ such that $(\gamma(h))_{ijkl} = \sum_{a=m+1}^N h_{aik}h_{ajl} - h_{ail}h_{ajk}$, is a surjective submersion.

Step 6: The existence of an m -dimensional ordinary integral element

Let \mathcal{I} the exterior ideal of $M \times \mathcal{F}_m(\mathbb{E}^N)$ generated by $s = N(m+1) - \frac{m(m+1)}{2}$ 1-forms:

$$\underbrace{\{(\omega_i - \eta_i)_{i=1,\dots,m}\}}_m, \underbrace{\{(\omega_a)_{a=m+1,\dots,N}\}}_{N-m}, \underbrace{\{(\omega_{ij} - \eta_{ij})_{1 \leq i < j \leq m}\}}_{\frac{m(m-1)}{2}}, \underbrace{\{(\pi_{ai})_{i=1,\dots,m, a=m+1,\dots,N}\}}_{(N-m)m}$$

Let $\mathcal{Z} = \{(x, \Upsilon, h) \in M \times \mathcal{F}_m(\mathbb{E}^N) \times \mathcal{H} | \gamma(h) = \mathcal{R}(x)\}$. \mathcal{Z} is a submanifold (the fiber of \mathcal{R} by a submersion. The surjectivity of γ ensure that $\mathcal{Z} \neq \emptyset$). So,

$$\begin{aligned} \dim \mathcal{Z} &= \dim M + \dim \mathcal{F}_m(\mathbb{E}^N) + \dim \mathcal{H} - \dim \mathcal{K}_m \\ &= \underbrace{m}_{\dim M} + \underbrace{N(m+1) - \frac{m(m+1)}{2}}_{\dim \mathcal{F}_m(\mathbb{E}^N)} + \underbrace{(N-m)\frac{m(m+1)}{2}}_{\dim \mathcal{H}} - \underbrace{\frac{m^2(m^2-1)}{12}}_{\dim \mathcal{K}_m} \end{aligned} \quad (31)$$

We define the map $\Phi : \mathcal{Z} \rightarrow \mathcal{V}_m(\mathcal{I}, \Delta)$ that associate to (x, Υ, h) the m -plane at (x, Υ) annihilated by the 1-forms that generate \mathcal{I} (the exterior differential system \tilde{I}). The map Φ is an embedding and so $\Phi(\mathcal{Z})$ is a submanifold of $\mathcal{V}_m(\mathcal{I}, \Delta)$. We will show that $\Phi(\mathcal{Z})$ contains only ordinary integral elements. In the proof, we will use the proposition 3.2.1.

Let $(x, \Upsilon, h) \in \mathcal{Z}$ be a point. Let denote $E = \Phi(x, \Upsilon, h)$ the integral element defined as follows: $E = \{v \in T_{(x, \Upsilon)}(M \times \mathcal{F}_m(\mathbb{E}^N)) | (\omega_i - \eta_i)(v) = \omega_a(v) = (\omega_{ij} - \eta_{ij})(v) = \pi_{ai}(v) = 0\}$.

E is an m -dimensional integral element. As a matter of fact, s is the number of differential forms that generate the ideal \mathcal{I} and

$$\dim(M \times \mathcal{F}_m(\mathbb{E}^N)) - m = N(m+1) - \frac{m(m+1)}{2} = s.$$

We will apply word by word the proposition 3.2.1. Let \mathcal{I} the exterior ideal of $M \times \mathcal{F}_m(\mathbb{E}^N)$ defined above⁹. This ideal does not contain 0-forms. $E \in \mathcal{V}_m(\mathcal{I})$ at $(x, \Upsilon) \in M \times \mathcal{F}_m(\mathbb{E}^N)$. Let $\omega_i, (\omega_i - \eta_i), \omega_a, (\omega_{ij} - \eta_{ij}), \pi_{ai}$ be a coframe¹⁰ of $M \times \mathcal{F}_m(\mathbb{E}^N)$ in the neighborhood of (x, Υ) such that¹¹ $E = \{v \in T_{x,\Upsilon}(M \times \mathcal{F}_m(\mathbb{E}^N)) \mid (\omega_i - \eta_i)(v) = \omega_a(v) = (\omega_{ij} - \eta_{ij})(v) = \pi_{ai}(v) = 0\}$.

For $p \leq m$, we define the p -dimensional integral element¹² $E_p = \{x \in E \mid \omega_k(v) = 0 \text{ pour tout } k > p\}$ ¹³. We obtain so, an integral flag $(0)_{(x,\Upsilon)} = E_0 \subset E_1 \subset E_2 \subset \dots \subset E_m \subset T_{(x,\Upsilon)}(M \times \mathcal{F}_m(\mathbb{E}^N))$. We remind that $I = \underbrace{\{(\omega_i - \eta_i), \omega_a, (\omega_{ij} - \eta_{ij})\}}_{\text{differential 1-forms}} \cup \underbrace{\{d(\omega_i - \eta_i), d\omega_a, d(\omega_{ij} - \eta_{ij})\}}_{\text{differential 2-forms}}$.

By computing $d(\omega_i - \eta_j)$, $d\omega_a$ and $d(\omega_{ij} - \eta_{ij})$, we shall find the differential forms that are linear combinations of the forms which generate \mathcal{I} .¹⁴

After simple calculations, we find that

$$d\omega_a \equiv - \sum_{i=1}^m \pi_{ai} \wedge \omega_i \quad (32)$$

and

$$d(\omega_{ij} - \eta_{ij}) = \underbrace{\sum_{a=m+1}^N \pi_{ai} \wedge \pi_{aj}}_{\blacklozenge} + \sum_{k=1}^m \left(\sum_{a=m+1}^N h_{ajk} \pi_{ai} - h_{aik} \pi_{aj} \right) \wedge \omega_k \quad (33)$$

the term (\blacklozenge) is quadratic in π_{ai} and vanishes on \mathbb{X} .¹⁵

⁹ $M \times \mathcal{F}_m(\mathbb{E}^N)$ play the role of the manifold "M" in the proposition. 3.2.1.

¹⁰ There is $m+s = \dim(M \times \mathcal{F}_m(\mathbb{E}^N))$ 1-forms.

¹¹ the $(\omega_i)_{i=1,\dots,m}$ play the role of " $\omega_1, \omega_2, \dots, \omega_n$ ". the $(\omega_i - \eta_i), \omega_a, (\omega_{ij} - \eta_{ij}), \pi_{ai}$ play the role of " π_s " in the proposition 3.2.1.

¹² the exterior differential system I play the role of $\{\varphi_1, \varphi_2, \dots, \varphi_r\}$ in the proposition 3.2.1.

¹³ $E_p \in \mathcal{V}_p(\mathcal{I}, \Delta)$ Because it is annihilated by $s+m-p$ differential 1-forms .

¹⁴ the forms that play the role of π_ρ^J in the proposition 3.2.1.

¹⁵ (\blacklozenge) play the role of $\tilde{\varphi}_\rho$ in the proposition 3.2.1.

According to proposition 3.2.1., c_p represente the number of linear independent differential 1-forms.

The differential 1-forms	The indexes	Number of linear independent 1-forms
$\omega_i - \eta_i$	$1 \leq i \leq m$	m
ω_a	$m + 1 \leq a \leq N$	$N - m$
$\omega_{ij} - \eta_{ij}$	$1 \leq i < j \leq m$	$\frac{m(m-1)}{2}$
π_{ai}	$1 \leq i \leq p,$ $m + 1 \leq a \leq N$	$(N - m)p$
$\sum_{a=m+1}^N (h_{aik}\pi_{aj} - h_{ajk}\pi_{ai})$	$1 \leq k \leq p,$ $1 \leq i \leq j \leq m$	$p\frac{(m-p)(m-p-1)}{2} + \frac{p(p+1)}{2}(m-p)$

Finally, by the sum of the number of linear independent 1-forms of the above table, c_p is the codimension of $H(E_p)$ in $G_m(T(M \times \mathcal{F}_m \mathbb{E}^N))$ defined earlier, and is equal to:

$$c_p = N + \frac{m(m-1)}{2} + (N-m)p + \frac{mp(m-p)}{2} \quad (34)$$

so,

$$\sum_{p=0}^{m-1} c_p = \frac{Nm(m+1)}{2} + \frac{m^2(m^2-1)}{12}. \quad (35)$$

To apply the proposition 3.2.1 and show that E is an m -dimensional ordinary integral element, we need just to compute the codimension of $\Phi(\mathcal{Z})$ in $G_m(\mathcal{I}, \Delta)$.

Let \mathfrak{U} an open set of $\mathcal{F}_m(\mathbb{E}^N)$. So, $\dim(M \times \mathfrak{U}) = N(m-1) - \frac{m(m+1)}{2} + m$. We remid that if E is an n -dimensional euclidean space, then the space of all p -planes of E ($G_p(E)$), with $p < n$, is of $p(n-p)$ dimension. Let $(x, \Upsilon) \in M \times \mathfrak{U}$,

$$\begin{aligned}
\dim G_m(T(M \times \mathfrak{U})) &= \dim G_m(T_{(x,\Upsilon)}(M \times \mathfrak{U})) + \dim(M \times \mathfrak{U}) \\
&= m \underbrace{\left(N(m+1) - \frac{m(m+1)}{2} + m - m \right)}_{\dim T_{(x,\Upsilon)}(M \times \mathfrak{U}) = \dim(M \times \mathfrak{U})} + \underbrace{N(m+1) - \frac{m(m+1)}{2} + m}_{\dim(M \times \mathfrak{U})} \\
&= m \left(N(m+1) - \frac{m(m+1)}{2} \right) + N(m+1) - \frac{m(m+1)}{2} + m
\end{aligned}$$

Since that Φ is an embedding, $\dim \Phi(\mathcal{Z}) = \dim \mathcal{Z}$, so

$$\begin{aligned}
\dim G_m(T(M \times \mathfrak{U})) - \dim \Phi(\mathcal{Z}) &= \\
\underbrace{Nm(m+1) - \frac{m^2(m+1)}{2} + N(m+1) - \frac{m(m+1)}{2} + m}_{\dim G_m(T(M \times \mathfrak{U}))} \\
&\quad - \underbrace{-m - N(m+1) + \frac{m(m+1)}{2} - \frac{Nm(m+1)}{2} + \frac{m^2(m+1)}{2} + \frac{m^2(m^2-1)}{12}}_{\dim \Phi(\mathcal{Z})} \\
&= \frac{Nm(m+1)}{2} + \frac{m^2(m^2-1)}{12}
\end{aligned}$$

We conclude that the codimension of $\Phi(\mathcal{Z})$ in $G_m(T(M \times \mathfrak{U}))$ is equal to $c_0 + c_1 + \dots + c_{m-1}$. By the Cartan's test, $E \in \mathcal{V}_m(\mathcal{I}, \Omega)$ is an ordinary integral element of \mathcal{I} . The Cartan-Kähler theorem (Corollary 3.3.1.) ensure the existence of an integral manifold \mathbb{X} passing through (x, Υ) and having E as a tangent space at (x, Υ) .

$E \in \mathcal{V}_m(\mathcal{I}, \Omega)$, In particular, $E \in \mathcal{V}_m(\mathcal{I}_0, \Omega)$. By the proposition 4.2.2., there exists an isometric embedding of (M, g) in $(\mathbb{E}^N, \varepsilon_N)$.

5 Local Conformal Embedding Problem

Definition 5.0.1. Let (M, g) and (N, h) be two real analytic Riemannian manifolds of dimension m and n respectively. Let f be a map from M to N . Then f is a conformal embedding from (M, g) to (N, h) if:

1. f is a local diffeomorphism;

2. $f^*h = Sg$, where $S : M \rightarrow \mathbb{R}^+$ is a strictly positive function on M .

Theorem 5.1. (Jacobowitch-Moore [5])

If $\dim N = n \geq \frac{1}{2}m(m+1) - 1$, then each point $p \in M$ admit a neighborhood on M which can be conformally embedded in N .

Jacobowitch and Moore gave two different proofs of this result; one is based on Janet's method and the second on Cartan's method which is close to the proof of Burstin-Cartan-Janet-Schlaefli theorem that we gave.

Roughly speaking, we consider $\mathcal{F}(M) \times \mathcal{F}(N) \times \mathbb{R}^m \times \mathbb{R}_*^+$ and we look for integral manifolds of $I_0 = \{\omega_i - S\eta_i, \omega_a\}$ (the forms are defined as on the previous section). Similarly, we can extend the exterior differential system to obtain a closed one. We lead the details of the proof for the reader who should take care of S when he apply the exterior differentiation cause it's a function. When the new exterior differential system is involutive, we look for ordinary integral element and so conclude. (see [5]).

References

- [1] R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt, and P.A. Griffiths. *Exterior Differential Systems*, volume 18. Springer-Verlag, New York, 1991.
- [2] C. Burstin. Ein Beitrag zum Problem der Einbettung der riemann'schen Räume in euklidischen Räumen. *Mathematicheskii Sbornik*, 38 (1931):74–85.
- [3] É. Cartan. Sur la possibilité de plonger un espace Riemannien donné dans un espace Euclidien. *Annales de la Société Polonaise de Mathématique* (1927), 1–7.
- [4] P.A. Griffiths and G.R. Jensen. *Differential Systems and Isometric Embeddings*. Annals of Mathematics Studies, Princeton University Press, New Jersey, 1987.
- [5] H. Jacobowitch and J.D. Moore. The Cartan-Janet theorem for conformal embedding. *Indiana University Mathematics Journal*, (1937) 187–203.
- [6] M. Janet. Sur la possibilité de plonger un espace Riemannien donné dans un espace Euclidien. *Annales de la Société Polonaise de Mathématique* (1926), 38–43.

- [7] N. Kahouadji. Les systèmes différentiels extérieurs et plongements isométriques. Master's thesis, Université Pierre et Marie CURIE, 2006.
- [8] L. Schlaefli. Nota alla memoria del signor Beltrami "sugli spazii di curvatura costante". *Annali di Mathematica Pura ed Applicata*, 2 (1871), 176–193.