Seminár z algoritmizácie a programovania 1

Martin Bobák Ústav informatiky Slovenská akadémia vied

Obsah prednášky

1. Prvočísla

Spätná väzba:

https://forms.gle/iKbuLdF6xDtNSEDP8

Prvočísla

Prvočísla

Definícia: Prvočíslo je prirodzené číslo, ktoré je väčšie ako 1, a ktorého jedinými deliteľmi (v množine prirodzených čísiel) sú 1 a ono samé.

- 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, ...
- nekonečne veľa
- špeciálnym prípadom prvočísiel sú tzv. Mersennove prvočísla, ktoré sa dajú zapísať v tvare $n = 2^p - 1$, kde p je taktiež prvočíslo.

Ostatné čísla, vznikajú (je ich možné rozložiť) ako súčiny viacerých prvočísiel, a nazývajú sa zložené čísla.

- Výnimku tvoria čísla 0 a 1, ktoré nie sú prvočísla, pričom ich neoznačujeme ani ako zložené čísla.
- Každé prirodzené číslo väčšie než 1, je možné jednoznačne rozložiť na súčin prvočísiel jediným spôsobom (pri ich zoradení podľa veľkosti) napr.: 78 = 2 * 3 * 13 153 = 3 * 3 * 17

$$153 = 3 * 3 * 17$$

Testovanie prvočísiel

- najjednoduchším riešením je testovanie deliteľnosti čísla n, postupne číslami i = 2, 3, 4, 5, 6, 7, floor(sqrt(n)).
 - operátor MODULO (v jazyku C je reprezentovaný symbolom %), vyjadrujúci zvyšok po celočíselnom delení.
 - ak je splnená podmienka if (n % i == 0), potom dané číslo rozhodne nemôže byť prvočíslo. Cyklus s premennou i teda môže byť prerušený, a ďalšie testovanie deliteľnosti čísla n nie je potrebné.
 - naopak, v prípade ak táto podmienka nie je splnená, napr. pre i = 3, ešte to neznamená že n je to prvočíslo. Je nutné testovať deliteľnosť až po i = floor(sqrt(n)).
 - Až po prejdení celého tohto rozsahu, v prípade ak žiadny zvyšok nie je rovný 0, môžeme s určitosťou tvrdiť, že dané číslo je prvočíslo.
 - Časová náročnosť/zložitosť takéhoto prístupu je O(n/2) = O(n).

Testovanie prvočísiel Rekurzívne

```
int isPrime(int n, int i)
if (n < 2)
   return 0;
 if (n < 4)
   return 1;
 if ((n\%i == 0) \&\& (i > 1))
   return 0;
 if (i < 2)
   return 1;
 return isPrime(n, i-1);
```

Testovanie prvočísiel

- pravdepodobnostné metódy.
 - tieto metódy sú výrazne rýchlejšie, obzvlášť pre vysoké čisla, avšak ich nevýhodou je, že nedávajú vždy správny výsledok (je však vysoká pravdepodobnosť, že je výsledok správny).
 - vychádzajú z teórie čísiel, numerickej matematiky ako aj rôznych pokročilejších štatistických vlastností prvočísiel.

Hromadné vyhľadávanie prvočísiel

- vyhľadávať všetky prvočísla od 2 do stanovenej hranice, je výrazne efektívnejšie použitie algoritmu - určitého typu sita na hľadanie prvočísiel (sieve for prime numbers).
 - Najznámejšie sú 3 takéto algoritmy (Eratostenovo sito, Atkinovo sito, Sundaramovo sito).
- najrozšírenejším je Eratostenovo sito
 - testované čísla sú spracovávané hromadne
 - algoritmus je možné implementovať bez použitia operácie násobenia, delenia a modula (iba s jedným použítím odmocniny, aj to mimo cyklu)
 - časová zložitosť algoritmu: O(n.log(log(n)))

- 1. Zoznam obsahuje všetky čísla v rozsahu 2 po N
- 2. Odoberieme prvé číslo zo zoznamu a označíme ho ako prvočíslo
- 3. Odoberieme zo zoznamu všetky násobky práve odobratého prvočísla
- 4. Pokračujeme opäť bodom 2, pokiaľ ostávajú nejaké čísla
 - stačí ísť po floor (sqrt (N))

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Prime numbers

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Prime numbers

2 3

2020/2021

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Prime numbers

2 3 5

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Prime numbers

2 3 5

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Prime numbers

2 3 5 7 11

Prime numbers

2	3	5	7
11	13	17	19
23	29	31	37
41	43	47	53
59	61	67	71
73	79	83	89
97	101	103	107
109	113		

Zdroje

[1] en.wikipedia.org

Ďakujem vám za pozornosť!

Spätná väzba:

https://forms.gle/iKbuLdF6xDtNSEDP8

