Example 4.2: Strong Duality fails!

Background:

- 1. Strong Duality usually holds for (most) convex problems.
- 2. Slater's condition says that if there exists an $x \in D$ which is **strictly feasible** $(\exists x \in D, f_i(x) < 0, \forall i)$ for inequality constraints, it is a sufficient condition for strong duality.

Problem:

minimize
$$e^{-x}$$

subject to $\frac{x^2}{y^3} \le 0$;
 $y > 0$.

• Assumption: $\lim_{x\to\infty,y\to\infty}\frac{x^2}{y^3}=0$ or y goes to ∞ faster than x.

Question:

- Is it a convex problem? It it is, find the optimal value.
- Slater's condition is satisfied or not?
- Derive Lagrange dual problem, and find optimal solution λ^* and the dual optimal value d^* . Can you point out the optimal duality gap?

Hints:

• Using assumption to find the optimal value of dual problem.

Answer 4.2:

- 1. The objective function e^{-x} is convex, since $(e^{-x})'' = (-e^{-x})' = e^{-x} > 0$, $\forall x \in \mathbb{R}$. The feasible set can be reduced to $\{x = 0, y > 0\}$ and also a convex set. The optimal value of primal problem is achieved when $x = 0, p^* = e^{-0} = 1$.
- 2. If (x,y) is feasible, then $x^2 \leq 0$, hence x=0. In other words, the feasible region is $\{(0,y)|y>0\}$. Slater's condition says there exists a (x,y) strictly feasible point such that $\frac{x^2}{y^3} < 0$, but it is impossible. So Slater's fails in this case.

3. We have Lagrange dual function as

$$L(\lambda, (x, y)) = e^{-x} + \lambda \frac{x^2}{y^3}$$

$$\tag{41}$$

Then

$$g(\lambda) = inf_{(x,y):y>0}e^{-x} + \lambda \frac{x^2}{y^3} = 0$$
 (42)

For all $x, e^{-x} \to 0$ when $x \to \infty$ is the min value of first term.

The second term achieves min value zero when $x\to\infty$ and $y\to\infty$ because of the assumption $\lim_{x\to\infty,y\to\infty}\frac{x^2}{y^3}=0$

Hence, dual problem becomes

$$\label{eq:local_equation} \begin{split} & \underset{\lambda}{\text{maximize}} & & 0 \\ & \text{subject to} & & \lambda \geq 0. \end{split}$$

Therefore, $d^* = 0$. Duality gap is $p^* - d^* = 1$.