PAT-NO:

JP405182679A

DOCUMENT-IDENTIFIER: JP 05182679 A

TITLE:

COLLECTOR FOR FUEL CELL AND FUEL CELL USING THIS

COLLECTOR

PUBN-DATE:

July 23, 1993

INVENTOR-INFORMATION: NAME KATO, HIDEO OKAMOTO, TAKAFUMI BABA, ICHIRO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

HONDA MOTOR CO LTD

N/A

APPL-NO:

JP03358053

APPL-DATE:

December 27, 1991

INT-CL (IPC): H01M008/02

ABSTRACT:

PURPOSE: To provide smallness in internal resistance and excellence in corrosion resistance and further to improve hydrogen adsorbing power by coating a surface of a collector with a metal excellent in conductivity and corrosion resistance.

CONSTITUTION: A fuel cell has an electrolyte film, positive electrode and a negative electrode 20 in both sides of the film, collector 30 in the outside of the electrode 20 and a collector terminal 40 brought into contact with this collector as a single cell. Here, a surface of the collector 3 consisting of porous carbon sintered material or the like is coated with a metal of platinum, gold, iridium, etc., excellent in conductivity and corrosion resistance to about 0.05 to 2μm by a spattering method or the like. In this way, a sum of contact resistances between the collector 30 and the terminal 40 and between the collector and an electrode and resistance of the collector 30 itself is reduced to about 1/2. Since a metal is advanced into an interface of the collector and a catalytic layer, also hydrogen adsorbing power is improved.

11/2/06, EAST Version: 2.1.0.14

COPYRIGHT: (C)1993,JPO&Japio

(19)日本国特許庁 (JP)

(12) 公開特許公報(A) (11)特許出願公開番号

特開平5-182679

(43)公開日 平成5年(1993)7月23日

(51)Int.Cl.⁵

識別記号 广内整理番号 2

FΙ

技術表示箇所

H 0 1 M 8/02

Z 9062-4K

審査請求 未請求 請求項の数3(全 3 頁)

(21)出願番号

特願平3-358053

(22)出願日

平成3年(1991)12月27日

(71)出願人 000005326

本田技研工業株式会社

東京都港区南青山二丁目1番1号

(72)発明者 加藤 英男

埼玉県和光市中央一丁目4番1号 株式会

社本田技術研究所内

(72)発明者 岡本 隆文

埼玉県和光市中央一丁目4番1号 株式会

社本田技術研究所内

(72)発明者 馬場 一郎

埼玉県和光市中央一丁目4番1号 株式会

社本田技術研究所内

(74)代理人 弁理士 白井 重隆

(54) 【発明の名称 】 燃料電池用集電体およびそれを用いた燃料電池

(57)【要約】

【構成】 集電体の表面に、導電性と耐蝕性に優れる金 属をコーティングした集電体。

【効果】 接触抵抗が低減し、内部抵抗の低減された電 池が得られる。また、集電体の耐蝕性が向上する。さら に、集電体と触媒層界面での水素吸着能の向上が図れ、 電池の性能が向上する。

1

【特許請求の範囲】

【請求項1】 集電体の表面に導電性と耐蝕性に優れる 金属をコーティングしてなる燃料電池用集電体。

【請求項2】 金属が、白金、金、イリジウム、ロジウ ム、ルテニウムおよびパラジウムの群から選ばれた少な くとも1種である請求項1記載の集電体。

【請求項3】 請求項1記載の集電体を用いた燃料電 池。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、内部抵抗を低減できる 燃料電池用集電体およびこの集電体を用いた燃料電池に 関する。

[0002]

【従来の技術】燃料電池の斜視構成図を図1に示す。符 号10は、電解質膜でその両側に設けられたアノードお よびカソードの電極20からなる単位電池が集電体30 に挟まれ、それぞれの集電体に集電端子40接続され、 1つのセルが構成され、このセルがセパレータを介して 積層されている。なお、符号50はフッ素ゴム (例え ば、デュポン社製バイトン)からなる〇リング、符号6 0はフッ素ゴム (例えば、デュポン社製バイトン) から なる平型パッキング、符号70はステンレス(例えば、 SUS304)製のホルダー、符号80は端子である。 各集電体上で燃料ガス(例えば、水素)と酸化剤ガス (例えば、酸素)との酸化還元反応が起こるようにする ため、集電体にはガスの流路用溝が形成されていること が多い。

【0003】反応ガスは、燃料ガスと酸化剤ガスからな り、集電体の流路から供給され、このような反応ガスの 30 供給の結果、電気化学的反応の進行にともない電子が発 生し、この電子を外部回路から取り出すことにより、電 気エネルギーを発生する。

【0004】このときに、集電体と電極および集電体と 集電端子間に、接触抵抗があり、これが燃料電池全体の 内部抵抗を大きくしてしまう原因となる。また、この集 電体は、燃料ガス、酸化剤ガスにさらされるので、耐蝕 性に優れたものでなければならないが、従来のものでは この点で不充分である。一方、電極と集電体界面での水 素吸着能の向上は、電池の性能向上につながるが、従 来、これに効果のあるような試みはなされていない。

[0005]

【発明が解決しようとする課題】本発明は、以上のよう な従来の技術を背景になされたものであり、内部抵抗を 小さくでき、耐蝕性に優れ、かつ水素吸着能が向上した 集電体およびこの集電体を用いた燃料電池を提供するも のである。

[0006]

【課題を解決するための手段】本発明は、集電体の表面 に導電性と耐蝕性に優れる金属をコーティングしてなる 50 多孔質カーボン板からなる集電体に、白金をスパッタリ

2 燃料電池用集電体、およびこの集電体を用いた燃料電池 を提供するものである。

【0007】本発明において、集電体の材質および形状 などは、特に限定されるものではないが、例えば多孔質 炭素焼結体、カーボンペーパー、カーボンクロスなどが 好ましい。また、コーティングに供される金属として は、導電性と耐蝕性に優れるものが用いられるが、白 金、金、イリジウム、ロジウム、ルテニウム、パラジウ ムが挙げられ、これらを単独あるいは2種以上組み合わ 10 せて用いられる。

【0008】コーティングの方法としては、スパッタリ ング法、蒸着法、あるいはメッキ法などが挙げられ、こ のようにしてコーティングすることにより、金属膜が集 電体表面に密着して形成される。金属層の厚みは、〇. 05~2µm程度が好ましい。

【0009】このようにして金属をコーティングされた 集電体は、導電性、耐蝕性に優れた金属を用いているの で、内部抵抗を小さくすることができ、耐蝕性にも優れ る。また、集電体と触媒層の界面に金属が入り込むた 20 め、水素吸着能も向上する。

【0010】次に、本発明の燃料電池は、上記のような 集電体を用いたことを特徴とし、電解質膜、その両側に 正極と負極、さらに正極、負極の外側に集電体およびこ れと接して集電端子を1つのセルとして有する。本発明 の燃料電池としては、例えば図1に示す燃料電池の集電 体を本発明の集電体に置き換えたものを挙げることがで きる。そして、通常、このセルは、セパレータを介して 積層される。

【0011】なお、本発明において、電解質膜として は、固体高分子電解質膜を用いると効果的である。この 固体高分子電解質膜としては、ポリパーフルオロスルフ ォニック酸などが好ましい。また、電解質膜の膜厚は、 おおよそ50~200 μm程度である。本発明の燃料電 池は、集電体が導電および耐蝕性に優れる金属でコーテ ィングされていることが特徴であり、これにより接触抵 抗が低減され、耐蝕性に優れているのであり、この特徴 が生かされているものであれば、上述の例に限定される ものではなく、どのような形式の燃料電池でもよい。

【0012】本発明においては、集電体表面に導電性お よび耐蝕性に優れる金属をコーティングしているので、 集電体と電極および集電体と集電体端子間の接触面での 接触抵抗を低減することができ、電池の内部抵抗を小さ くすることができ、また耐蝕性の向上も図ることができ る。さらに、集電体と電極の界面に金属が入り込み、こ れにより水素吸着能を向上させることができる。

【0013】以下に実施例を挙げ、本発明を説明する が、本発明はこれらの実施例に限定されるものではな 41.

実施例1

11/2/06, EAST Version: 2.1.0.14

3

ングにより厚み 0.1μmになるようにコーティングした。この集電体を用い、図2に示すようなセルを組み、発電を行った。なお、図2において、各符号は図1と同様であり、符号10は電解質膜、符号20は電極、符号30は集電体、符号40は集電体端子であり、また符号90はこの集電体30にコーティングされた金属コーティング膜である。

【0014】このとき、集電体-集電端子間、および集電体-電極間の接触抵抗と集電体自身の抵抗の和(以下、単に「抵抗」と記す)Rは、R= $(V_1 - V_2)$ 10 Aで表される。そこで、コーティングしたときの抵抗をR1、コーティングしないときの抵抗をR2とし、電流密度を考えてR1/R2を測定した。結果を図3に示す。図3より、集電体に金属をコーティングすることにより、抵抗が1/2程度に減少することが分かる。【0015】

【発明の効果】本発明の集電体は、導電性と耐触性に優れた金属をコーティングしているため、耐触性が向上し、内部抵抗を小さくすることでき、さらには集電体ー触媒層界面における水素吸着能を向上ことができる。

4

【図面の簡単な説明】

- 【図1】燃料電池の斜視構成図である。
- 【図2】実施例1で用いられるセルの断面図である。
- 【図3】実施例1における測定結果を示すグラフである。

10 【符号の説明】

- 10 電解質膜
- 20 電極
- 30 集電体
- 40 集電端子
- 90 金属コーティング膜

【図1】

【図2】

【図3】

