物理笔记 (精简)

Copyright © 2024 Simon

质心: 质心是由质点系质量分布决定的一个几何点: $r_c = rac{\int r dm}{\int dm}$

常见质心:

- 半圆环 距离圆心的距离为 $y=rac{2R}{\pi}$
- 半圆盘 距离圆心的距离为 $y=rac{4R}{3\pi}$
- 半球 距离球心的距离为 $z=rac{3R}{8}$
- 半球壳 距离球心的距离为 $z=rac{R}{2}$

转动惯量

$$J=\int r^2dm$$

特殊记忆:

- ①转轴过中心垂直于棒 $J=rac{1}{12}ml^2$
- ②转轴过端点垂直于棒 $J=rac{1}{3}ml^2$
- ③圆盘绕中心轴线 $J=rac{1}{2}mR^2$
- ④薄圆环绕中心轴线 $J=mR^2$
- ⑤细圆环绕切线 $J=rac{3}{2}mR^2$ (少见,比较难)
- ⑥实球体绕直径 $J=rac{2}{5}mR^2$
- ⑦薄球壳绕直径 $J=rac{2}{3}mR^2$
- 2.平行轴定理与垂直轴定理

$$J=J_c+md^2$$

• 3.角动量与力矩 角动量:

$$L = r \times p$$

大小为 $|L|=|r||p|\sin heta$

定轴刚体: (w为角速度)

$$L = Jw$$

力矩:

$$M = r imes F$$

转动定律: (α 是角加速度, 就是 $\frac{\omega}{t}$)

$$M = J\alpha$$

• 转动中的动能

$$E_k=rac{1}{2}J\omega^2$$

其中J是刚体的转动惯量, ω 是刚体转动的角速度。

总结一下

	质点的直线运动 (刚体的平动)	刚体的定轴转动
基本量	力 F ,质量 m 牛顿第二定律 $F=ma$	力矩M,转动惯量 J 转动定律 $M=Jlpha$
动量相关	动量 $p=mv$,冲量 $dI=Fdt$ 动量定理 $Fdt=dp=d(mv)$	角动量 $L=J\omega$,冲量矩 Md t 角动量定理 Md t $=dL=d(J\omega)$
守恒定律	动量守恒定律: $\sum mv =$ 常量守恒条件: 合外力为零	角动量守恒定律: $\sum J\omega =$ 常量守恒条件: 合外力矩为零
动能与功	平动动能 $\dfrac{mv^2}{2}$ 力的功 $dA=Fdr$ 动能定理 $\int Fdr=\dfrac{1}{2}mv^2-\dfrac{1}{2}mv_0^2$	转动动能 $\dfrac{J\omega^2}{2}$ 力矩的功 $dA=Md heta$ 动能定理 $\int Md heta=\dfrac{1}{2}J\omega^2-\dfrac{1}{2}J\omega_0^2$

• 流体

$$S_1v_1=S_2v_2$$

(S为截面积v为流速)

$$p+rac{1}{2}
ho v^2+
ho gh=Q$$

(p为压力,ho为密度)

狭义相对论 $E=mc^2$