第一类积分方程的正则化方法

- 1. 正则化策略 (正则化方法): 对于线性积分算子 (紧算子) $K: X \to Y$, Kx = y, $\dim X = \infty$. 近似已知 $y \approx y^{\delta}$ 即 $||y y^{\delta}|| \le \delta$, 求解 $Kx^{\delta} = y^{\delta}$. 由于 K^{-1} 无界, 所以用有界线性算子族 $R_{\alpha} \approx K^{-1}$, 其中 $\alpha > 0$ 为 参数, R_{α} 称为正则化算子. 有界线性算子族 R_{α} 称为一个正则化策略. $R_{\alpha}: Y \to X$, $\alpha > 0$, 满足 $\lim_{\alpha \to 0} R_{\alpha}Kx = x$, $\forall x$ (即 $R_{\alpha}K$ 逐点收敛于 I);
 - (a) $\exists \alpha_j, s.t. ||R_{\alpha_j}|| \to \infty, j \to \infty;$
 - (b) $R_{\alpha}K$ 不一致收敛于 I;
- 2. Young 不等式: $||f + g||_p \le ||f||_1 \cdot ||g||_p$, $1 \le p \le 2$;
- 3. 例题: 取 $\alpha = h$, 中心差分 $R_h y(t) := \begin{cases} \frac{1}{h} \left[4y(t + \frac{h}{2}) y(t + h) 3y(t) \right] & 0 < t < \frac{h}{2} \\ \frac{1}{h} \left[y(t + \frac{h}{2}) y(t \frac{h}{2}) \right] & \frac{h}{2} \le t \le 1 \frac{h}{2}, \\ \frac{1}{h} \left[3y(t) y(t h) 4y(t \frac{h}{2}) \right] & 1 \frac{h}{2} < t \le 1 \end{cases}$ 证明 R_h 就是一个正则化策略. 即证明:
 - (a) $||R_hK||_{L^2(0,1)} \leq C$, 即 R_hK 一致有界; $R_hy(t) = \frac{1}{h} \int_{t-\frac{h}{2}}^{t+\frac{h}{2}} y'(s) ds = \frac{1}{h} \int_{-\frac{h}{2}}^{\frac{h}{2}} y'(r+t) dr$, 其中 s := r+t; $||R_hy(t)||_{L^2(\frac{h}{2},1-\frac{h}{2})}^2 = \int_{\frac{h}{2}}^{1-\frac{h}{2}} |R_hy(t)|^2 dt = \frac{1}{h^2} \int_{\frac{h}{2}}^{1-\frac{h}{2}} \left[\int_{-\frac{h}{2}}^{\frac{h}{2}} y'(r+t) dr \right]^2 dt \leq \frac{1}{h^2} \int_{\frac{h}{2}}^{1-\frac{h}{2}} ||y'||_{L^2(0,1)}^2 \cdot \left(\int_{-\frac{h}{2}}^{\frac{h}{2}} ds \right)^2 dt = \int_{\frac{h}{2}}^{1-\frac{h}{2}} dt \cdot ||y'||_{L^2(0,1)}^2 \leq ||y'||_{L^2(0,1)};$ 所以 $||R_hKx||_{L^2(0,1)} = ||R_hy(t)||_{L^2(0,1)} \leq ||y'||_{L^2(0,1)}$, 即
 - (b) $||R_{\alpha}Kx x||_{L^{2}(0,1)} \to 0$, 即逐点收敛;

 R_hK 一致有界. 其他区间同理;

曲 Tylor 公式:
$$y(t\pm\frac{h}{2}) = y(t)\pm\frac{h}{2}y'(t)+\frac{1}{2}\frac{h^2}{4}y''(t)+\frac{1}{2}\frac{h^2}{4}y''(t)+\frac{1}{2}\int_0^{\frac{h}{2}}s^2y'''(t\pm\frac{h}{2}-s)ds;$$
 得: $R_hy(t)-y'(t)=\frac{1}{2h}\int_0^{\frac{h}{2}}s^2\left[y'''(t+\frac{h}{2}-s)-y'''(t-\frac{h}{2}-s)\right]ds\leq \frac{1}{2h}\left(\int_0^{\frac{h}{2}}s^2ds\right)\cdot 2||y'''||_{L^2(0,1)}$
$$\int_{\frac{h}{2}}^{1-\frac{h}{2}}|R_hy(t)-y'(t)|^2dt\leq \frac{1}{h^2}\int_{\frac{h}{2}}^{1-\frac{h}{2}}\left(\int_0^{\frac{h}{2}}s^2ds\right)^2\cdot ||y'''||_{L^2(0,1)}^2dt=\frac{h^4}{24^2}||y'''||_{L^2(0,1)}^2$$

所以 $||R_h y - y'||_{L^2(0,1)} = ||R_\alpha K x - x||_{L^2(0,1)} \le C_1 ||x''(t)||_{L^2(0,1)} h^2 \le C_1 E h^2$, 当 $h \to 0$ 时 $||R_h y - y'||_{L^2(0,1)} \to 0$. 其他区间同理;

- 4. 例题: 对于 $Kx = \int_0^t x(s)ds$, $K: L_0^2(0,1) \to L^2(0,1)$, $L_0^2(0,1) = \{z \in L^2(0,1): \int_0^1 z(s)ds = 0\}$. Gauss 核 $\psi_\alpha(t) = \frac{1}{\alpha\sqrt{\pi}}e^{-\frac{t^2}{\alpha^2}}$, $\int_{-\infty}^{+\infty}\psi_\alpha(t)dt = 1$, $||\psi_\alpha'||_{L^1} = \frac{2}{\alpha\sqrt{\pi}}$. 定义 $\psi_\alpha * y := \int_{-\infty}^{+\infty}\psi_\alpha(t-s)y(s)ds = \int_{-\infty}^{+\infty}\psi_\alpha(s)y(t-s)ds$, 由 Young 不等式 $||\psi_\alpha * y||_{L^2} \le ||\psi_\alpha||_{L^1} \cdot ||y||_{L^2} = ||y||_{L^2}$ 知卷积算 子是一致有界算子. 证明 K 是一个正则化策略:
 - (a) 准备知识: $||\psi_{\alpha} * z z||_{L^{2}} \to 0$, $\alpha \to 0$, $z \in L^{2}(0,1)$, $||\psi_{\alpha} * z z||_{L^{2}(\mathbb{R})} \leq \sqrt{2}\alpha||z'||_{L^{2}(0,1)}$; β 定义 $\mathcal{F}z(t) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} z(s)e^{-ist}ds$, 则 $\mathcal{F}z'(t) = (-it)\mathcal{F}z(t)$; $||\psi_{\alpha} * z z||_{L^{2}(\mathbb{R})} = ||\mathcal{F}(\psi_{\alpha} * z) \mathcal{F}(z)||_{L^{2}(\mathbb{R})} = ||[\sqrt{2\pi}\mathcal{F}(\psi_{\alpha}) 1]\mathcal{F}(z)||_{L^{2}(\mathbb{R})} = ||\psi_{\alpha}(t)it\mathcal{F}(z')||_{L^{2}(\mathbb{R})}$; $\psi_{\alpha}(t) = \frac{1}{it}(1 e^{-\frac{\alpha^{2}t^{2}}{4}})$ 所以 $||\psi_{\alpha} * z z||_{L^{2}(\mathbb{R})} = ||\psi_{\alpha}\mathcal{F}(z')||_{L^{2}} \leq ||\psi_{\alpha}||_{\infty} \cdot ||z'||_{L^{2}(0,1)}$;
 - (b) 证明:

$$\begin{split} &||R_{\alpha}y||_{L^{2}(0,1)} \leq \left\{ \int_{0}^{1} \left[(\psi_{\alpha}' * y)(t) - \int_{0}^{1} (\psi_{\alpha}' * y)(s) ds \right]^{2} dt \right\}^{\frac{1}{2}} \leq \\ &2||\psi_{\alpha}'||_{L^{1}(\mathbb{R})} \cdot ||y||_{L^{2}(0,1)} \leq \frac{4}{\alpha\sqrt{\pi}} ||y||_{L^{2}(0,1)}; \\ &\mathbb{R} \ y = Kx, ||R_{\alpha}Kx||_{L^{2}(0,1)} \leq 2||\psi_{\alpha}*x(t)||_{L^{2}(0,1)} \leq 2||\psi_{\alpha}||_{L^{2}(\mathbb{R})} \cdot \\ &||x(t)||_{L^{2}(0,1)} = 2||x(t)||_{L^{2}(0,1)}, \mathbb{M} \ ||R_{\alpha}Kx||_{L^{2}(0,1)} \leq 2||x(t)||_{L^{2}(0,1)}, \\ &\mathbb{P} \ R_{\alpha}K - \mathfrak{P} \mathcal{F}; \\ &R_{\alpha}Kx(t) - x(t) = \psi_{\alpha} * x(t) - \int_{0}^{1} (\psi_{\alpha} * x) ds - x(t) = (\psi_{\alpha} * x)(t) - x(t) - \int_{0}^{1} [(\psi_{\alpha} * x)(s) - x(s)] ds, &\mathbb{H} \ \mathbb{K} \ ||R_{\alpha}Kx - x||_{L^{2}(0,1)} \leq 2||\psi_{\alpha} * x(t) - x(t)||_{L^{2}(0,1)} \leq 2\sqrt{2}\alpha||x'||_{L^{2}(0,1)}; \end{split}$$

- 5. 设线性紧算子 K 的滤波函数 $q(\alpha, \mu)$ 满足: (1). $|q(\alpha, \mu)| \leq 1, 0 < \mu < ||K||$; (2). $\exists C(\alpha)$, s.t. $|q(\alpha, \mu)| \leq C(\alpha)\mu$, $\forall \mu$; (3). $\lim_{\alpha \to 0} q(\alpha, \mu) = 1$, $\forall \mu$. 则 $R_{\alpha}: Y \to X$, $R_{\alpha}y := \sum_{j=1}^{\infty} \frac{q(\alpha, \mu)}{\mu_{j}}(y, y_{j})x_{j}$, $y \in Y$ 是一个正则化策略, 且 $||R_{\alpha}|| \leq C(\alpha)$;
 - (a) 其中 (μ_i, x_i, y_i) 是算子 R_α 的奇异系;
- 6. 引理: 对于 Hilbert 空间 $X, Y, \exists \hat{x} \in X, s.t. ||K\hat{x} y|| \le ||Kx y||, x \in X$ 等价于 $K^*K\hat{x} = K^*y$ (法方程);

- 7. Tikhonov 正则化方法: 求解 Tikhonov 泛函的极小问题;
 - (a) Tikhonov 泛函: 对于线性紧算子 $K: X \to Y$, $\alpha > 0$, $J_{\alpha}(x) = ||Kx y||^2 + \alpha ||x||^2$;
 - (b) $J_{\alpha}(x)$ 的极小值问题有唯一解 x^{α} ;
 - (c) 极小化 x^{α} 是法方程 $\alpha x^{\alpha} + K^*Kx^{\alpha} = K^*y$ 的唯一解;
- 8. 定义 $R_{\alpha} := (\alpha I + K^*K)^{-1}K^*$, 对于线性紧算子 $K: X \to Y$, 有
 - (a) $\alpha I + K^*K$ 有有界逆,则 R_{α} 是正则化策略. $||R_{\alpha}|| \leq \frac{1}{2\sqrt{\alpha}}, R_{\alpha}y^{\delta}$ 满足 $(\alpha I + K^*K)x^{\alpha,\delta} = K^*y^{\delta}$. 当 $\alpha(\delta) \to 0, \delta \to 0, \frac{\delta^2}{\alpha(\delta)} \to 0$ 时, $\alpha(\delta)$ 是容许的;
 - (b) $x = K^*z \in K^*(Y)$, $\mathbbm{1} \alpha(\delta) = c \frac{\delta}{E} \mathbbm{1}$, $||x^{\alpha,\delta} x|| \le \frac{1}{2} (\frac{1}{\sqrt{c}} + \sqrt{c}) \sqrt{\delta E}$;
 - (c) $x = K^*Kz \in K^*K(x)$, $\mathbb{R} \alpha(\delta) = c(\frac{\delta}{E})^{\frac{2}{3}}$ \mathbb{H} , $||x^{\alpha,\delta} x|| \le (\frac{1}{2\sqrt{c}} + c)E^{\frac{1}{3}}\delta^{\frac{2}{3}}$;
- 9. Landeweber 迭代: 对于 Kx = y, $x = x aK^*Kx + aK^*y = (I aK^*K)x + aK^*y$, a > 0. 即迭代格式 $\begin{cases} x^0 = 0 \\ x^m = (I aK^*K)x^{m-1} + aK^*y & m = 1, 2... \end{cases}$
 - (a) 设 $\psi: X \to R$, $\psi(x) = \frac{1}{2}||Kx y||^2$, 则 $\psi(x)$ 的 Frechet 导数 $\psi'(z)x = Re(Kz y, Kx) = Re(K^*(Kz y), x)$, $xz \in X$. 因此, $\psi'(z)$ 可以由 $K^*(Kz y)$ 得到, 即 Landweber 迭代 $x^m = x^{m-1} aK^*(Kx^{m-1} y)$;
- 10. 已知线性紧算子 $K: X \to Y$, 取 $\alpha = \frac{1}{m}$, 则 R_m 就是正则化策略, 且 $||R_m|| \le C(\alpha) = \sqrt{\frac{\alpha}{\alpha}} = \sqrt{am}$;
 - (a) $m(\delta) \to 0, (\delta \to 0)$, 且 $\frac{\delta^2}{\alpha(\delta)} \to 0$, 则 $m(\delta)$ 是容许的;