FORM	PTO-139	90 (Modified) U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE	ATTORNEY'S DOCKET NUMBER						
(KL.	TRANSMITTAL LETTER TO THE UNITED STATES 221519US0PCT								
	DESIGNATED/ELECTED OFFICE (DO/EO/US) U.S. APPLICATION NO. (IF KNOWN, SEE 37 CFR								
	CONCERNING A FILING UNDER 35 U.S.C. 371								
INTE	INTERNATIONAL APPLICATION NO. INTERNATIONAL FILING DATE PRIORITY DATE CLAIMED								
		PCT/JP00/06913 4 October 2000	4 October 1999 (earliest)						
		INVENTION FOR HEAT RESISTANT ENZYMES OF AMINO ACID BIOSYNT.	TIETTE DATIMAN DEDINED EDOM						
		OPHILIC CORYNEFORM BACTERIA	MEHC I AHWAI DEMVED PROM						
APPL	ICAN'	IT(S) FOR DO/EO/US							
		RANO et al.							
Appl	icant l	herewith submits to the United States Designated/Elected Office (DO/EO/US) th	e following items and other information:						
1.	\boxtimes	This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.							
2.		This is a SECOND or SUBSEQUENT submission of items concerning a filing	g under 35 U.S.C. 371.						
3.	\boxtimes	This is an express request to begin national examination procedures (35 U.S.C. (9) and (24) indicated below.	. 371(f)). The submission must include itens (5), (6),						
4.	\boxtimes	The US has been elected by the expiration of 19 months from the priority date	(Article 31).						
5.	\boxtimes	A copy of the International Application as filed (35 U.S.C. 371 (c) (2))							
1		a. is attached hereto (required only if not communicated by the Internat	tional Bureau).						
		b. 🛮 has been communicated by the International Bureau.	•						
ł		c. \square is not required, as the application was filed in the United States Recei	iving Office (RO/US).						
6.	\boxtimes								
		a. 🗵 is attached hereto.							
		b. \square has been previously submitted under 35 U.S.C. 154(d)(4).							
7.	\boxtimes	Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371 (c)(3))							
		a. are attached hereto (required only if not communicated by the Interna	ational Bureau).						
		b. have been communicated by the International Bureau.							
		c. have not been made; however, the time limit for making such amendments has NOT expired.							
,		d. An English language translation of the arrendments to the plains under BCT.	(1.10.05H5.0.37H,)(2))						
8. 9.	⋈	An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)). An oath or declaration of the inventor(s) (35 U.S.C. 371 (c)(4)).							
9. 10.		An English language translation of the annexes to the International Preliminary Examination Report under PCT							
l.,	П	Article 36 (35 U.S.C. 371 (c)(5)).							
11. 12.	∐ ⊠	A copy of the International Preliminary Examination Report (PCT/IPEA/409).							
		A copy of the International Search Report (PCT/ISA/210).							
	ems 1	13 to 20 below concern document(s) or information included:							
13. 14.		An Information Disclosure Statement under 37 CFR 1.97 and 1.98.	- 141 07 CED 2 20 1 2 21 is included						
14. 15.		An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included. A FIRST preliminary amendment.							
16.		A FIRST preliminary amendment. A SECOND or SUBSEQUENT preliminary amendment.							
17.		A substitute specification.							
18.		A change of power of attorney and/or address letter.							
19.		A computer-readable form of the sequence listing in accordance with PCT Rule 13ter.2 and 35 U.S.C. 1.821 - 1.825.							
20.		A second copy of the published international application under 35 U.S.C. 154(d)(4).							
21.		A second copy of the English language translation of the international application under 35 U.S.C. 154(d)(4).							
22.		Certificate of Mailing by Express Mail							
23.	\boxtimes	Other items or information:	•						
1		Notice of Priority/ Form PTO-1449							
		PCT/IB/304/ Drawings (15 sheets) PCT/IB/308/ Sequence Listing (123 sheets)							

U.S. APPLICATION NO. (IF KNOWN, SEE 37 CFR INTERNATIONAL APPLICATION NO. PCT/JP00/06913									ATTORNEY'S DOCKET NUMBER 221519US0PCT								
24. The following fees are submitted:.									CAI	LCULATION	s	PTO USE ONLY					
BASIC	BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5)) :																
⊠																	
	The state of the s																
	- A CONTRACTOR OF THE PROPERTY																
									E BASI					<u> </u>	\$890.00		
Surcha months	rge of \$ s from th	130.00 ne earli	for fu	aimed	prior	ity da	ate (37 C	laratio	on later than .492 (e)).		20		30	<u> </u>	\$0.00		
CL	AIMS			NUI	MBER	FIL	ED	4		R EXTRA		RATE			01.000.00		
Total c	laims				80		20 =		60				8.00	├	\$1,080.00	_	
_	dependent ciams 32 3									4.00	 	\$2,436.00	_	<u> </u>			
Multip	le Deper	ndent (Claims	s (che		•		E A 1	DOVE C	AT CIT		TONE	<u>-</u>	├	\$280.00 \$4,686.00	-	
	1:	1-:		11 a=+i:					BOVE C					 	\$4,000.00	┢	
re	Applicant claims small entity status. See 37 CFR 1.27). The fees indicated above are reduced by 1/2. \$0.00																
							•			S	U B T	ГОТА	[_ =	ļ	\$4,686.00		
Proces months	Processing fee of \$130.00 for furnishing the English translation later than																
					-			r	OTAL I	NATION	IAI	FEE	=		\$4,686.00		
Fee for	recording	ng the y an ap	enclos opropr	sed as	signm over s	ent (3 heet (37 CFR (37 CFR	1.21(3.28	h)). The as , 3.31) (ch	signment m	ust b	e e).			\$0.00		
TOTAL FEES ENCLOSED = \$4,686.00																	
										Amount to be: \$ refunded							
															charged	\$	
a.																	
b.	b. Please charge my Deposit Account No in the amount of to cover the above fees. A duplicate copy of this sheet is enclosed.									above fees.							
c. The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 15-0030 A duplicate copy of this sheet is enclosed.																	
d. Fees are to be charged to a credit card. WARNING: Information on this form may become public. Credit card																	
information should not be included on this form. Provide credit card information and authorization on PTO-2038. NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR																	
1.137(a) or (b)) must be filed and granted to restore the application to pending status.																	
SEND	SEND ALL CORRESPONDENCE TO:																
Surinder Sachar SIGNATURE Registration No. 34,423																	
Norman F. Oblo								blon	lon								
								NAME									
				22	85	0					24,618						
						_					REGISTRATION NUMBER						
							٠					DATE	<u> </u>	p/i1	3 200	2	·
												DATE					

10/089057

Docket No.221519US0PCT

IN THE UNITED STATES PATENT & TRADEMARK OFFICE

IN RE APPLICATION OF:

: ATTN: BOX SEQUENCE

SEIKO HIRANO ET AL

:

SERIAL NO. 10/089,057

•

FILED:APRIL 03, 2002

:

FOR:GENES FOR HEAT RESISTANT ENZYMES OF AMINO ACID BIOSYNTHETIC PATHWAY DERIVED FROM THERMOPHILIC CORYNEFORM BACTERIA

PRELIMINARY AMENDMENT AND STATEMENT

ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

SIR:

Responsive to the Office Communication dated July 17, 2002, Applicants submit a substitute Sequence Listing and a corresponding computer-readable Sequence Listing.

IN THE SPECIFICATION

Please amend the specification as follows.

Page 111 (Abstract), after the last line, beginning on a new page, please replace the original Sequence Listing with the substitute Sequence Listing attached hereto.

REMARKS

Applicants have now submitted a substitute Sequence Listing and a corresponding computer-readable Sequence Listing. The sequence information recorded in the corresponding computer-readable Sequence Listing is identical to the paper copy of the substitute Sequence Listing. Support for all of the sequences listed in the substitute Sequence Listing is found in the present application as originally filed. No new matter is believed to have been introduced by the submission of the substitute Sequence Listing and the corresponding computer-readable Sequence Listing.

Applicants submit that the present application is ready for examination on the merits.

Early notice to this effect is earnestly solicited.

Respectfully submitted,

OBLON, SPIVAK, McCLELLAND, MAJER & NEUSTADT, P.C.

Norman F. Oblon Attorney of Record Registration No. 24,618

Daniel J. Pereira, Ph.D. Registration No. 45,518

22850

(703) 413-3000

10089057.040302

15/pm

10/089057 JC13 Rec'd PCT/PTO 03 APR 2002

1

Specification

Genes for Heat resistant Enzymes of Amino Acid
Biosynthetic Pathway Derived from Thermophilic
Coryneform Bacteria

Technical Field

5

10

20

25

The present invention relates to heat resistant enzyme genes, in particular, genes for enzymes of biosynthetic pathway and uptake system of L-amino acids such as L-glutamic acid, of *Corynebacterium* thermoaminogenes, which is a thermophilic coryneform bacterium.

15 Background Art

The current main stream of the production of Lamino acids such as L-glutamic acid is the fermentative
production utilizing coryneform bacteria. As for the
fermentative production of L-amino acids, it has been
attempted to reduce the cost based on breeding of
strains with superior productivity and development of
fermentation techniques. Although conventional attempts
for realizing the cost reduction were mainly directed to
achieving higher yield, energy required for cooling the
fermentation heat generated during the culture cannot be
ignored in addition to the raw material as the factors
concerning the fermentation cost. That is, as for usual

microorganisms used for the fermentation, the temperature of the medium rises due to fermentation heat generated by the microorganism themselves during the fermentation, and hence enzymes required for the fermentation may be inactivated or the productive bacteria may be killed. Therefore, it is necessary to cool the medium during the fermentation. Accordingly, in order to reduce the cooling cost, fermentation at high temperatures has been studied for many years. Moreover, if high temperature fermentation becomes possible, the reaction rate may also be improved. However, as for the L-amino acid fermentation, effective high temperature culture has not been realized so far.

5

10

15

20

Corynebacterium thermoaminogenes is a bacterium classified into coryneform bacteria like Corynebacterium glutamicum (Brevibacterium lactofermentum), which is commonly used for the fermentation of L-amino acids.

However, it shows the optimum growth temperature of 37-43°C, which is higher than that of Corynebacterium glutamicum, i.e., 30-35°C, and shows the optimum temperature for L-glutamic acid production of 42-45°C, which is considerably shifted to the high temperature region (Japanese Patent Laid-open (Kokai) No. 63-240779/1988).

25 Meanwhile, there have been developed techniques for enhancing L-amino acid producing ability of
Corynebacterium and Brevibacterium bacteria by

introducing a gene coding for an L-amino acid synthesis system enzyme derived from Escherichia coli or Corynebacterium glutamicum into them. Examples of such an enzyme include, for example, citrate synthase (Japanese Patent Publication (Kokoku) No. 7-121228/1995), which is an enzyme of the L-glutamic acid biosynthetic pathway, glutamate dehydrogenase (Japanese Patent Laidopen No. 61-268185/1986), isocitrate dehydrogenase, aconitate hydratase (Japanese Patent Laid-open No. 63-214189) and so forth.

However, any L-amino acid biosynthesis enzymes and genes coding for them derived from thermophilic coryneform bacteria have not been reported.

15 <u>Disclosure of the Invention</u>

5

10

20

25

An object of the present invention is to provide genes coding for enzymes derived from Corynebacterium thermoaminogenes, preferably enzymes that function at a temperature higher than those of Corynebacterium glutamicum.

The inventors of the present invention extensively studied in order to achieve the aforementioned object. As a result, they successfully isolated genes coding for enzymes of the amino acid biosynthetic pathway of Corynebacterium thermoaminogenes, or genes coding for proteins involved in the uptake of amino acids into cells, and thus achieved the present invention.

That is, the present invention provides the followings.

5

20

- (1) A protein having the amino acid sequence of SEQ ID NO: 2 or the amino acid sequence of SEQ ID NO: 2 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has isocitrate lyase activity and shows 30% or more of residual activity after a heat treatment at 50°C for 5 minutes.
- 10 (2) A protein having the amino acid sequence of SEQ ID NO: 4 or the amino acid sequence of SEQ ID NO: 4 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which is involved in acyl Co-A carboxylase activity derived from Corynebacterium thermoaminogenes.
 - (3) A protein having the amino acid sequence of SEQ ID NO: 6 or the amino acid sequence of SEQ ID NO: 6 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has DtsR activity derived from Corynebacterium thermoaminogenes.
 - (4) A protein having the amino acid sequence of SEQ ID NO: 8 or the amino acid sequence of SEQ ID NO: 8 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has DtsR activity derived from Corynebacterium thermoaminogenes.

(5) A protein having the amino acid sequence of SEQ ID NO: 10 or the amino acid sequence of SEQ ID NO: 10 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which shows phosphofructokinase activity at 60°C in an equivalent or higher degree compared with the activity at 30°C.

5

25

- (6) A protein having the amino acid sequence of SEQ ID NO: 94 or the amino acid sequence of SEQ ID NO: 94 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has activity for imparting sucrose assimilating ability to Corynebacterium thermoaminogenes.
- (7) A protein having any one of the amino acid sequences

 of SEQ ID NOS: 17-20 or the amino acid sequence of any
 one of SEQ ID NOS: 17-20 including substitution,
 deletion, insertion, addition or inversion of one or
 several amino acids residues, which has a function
 involved in glutamic acid uptake and derived from

 Corynebacterium thermoaminogenes.
 - (8) A protein having the amino acid sequence of SEQ ID NO: 22 or the amino acid sequence of SEQ ID NO: 22 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has pyruvate dehydrogenase activity derived from
 - (9) A protein having the amino acid sequence of SEQ ID

Corynebacterium thermoaminogenes.

NO: 24 or the amino acid sequence of SEQ ID NO: 24 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has pyruvate carboxylase activity derived from Corynebacterium thermoaminogenes.

5

10

20

- (10) A protein having the amino acid sequence of SEQ ID NO: 26 or the amino acid sequence of SEQ ID NO: 26 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has phosphoenolpyruvate carboxylase activity and shows 50% or more of residual activity after a heat treatment at 45°C for 5 minutes.
- (11) A protein having the amino acid sequence of SEQ ID NO: 28 or the amino acid sequence of SEQ ID NO: 28 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has aconitase activity and shows 30% or more of residual activity after a heat treatment at 50°C for 3 minutes.
 - (12) A protein having the amino acid sequence of SEQ ID NO: 30 or the amino acid sequence of SEQ ID NO: 30 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has isocitrate dehydrogenase activity and shows 50% or more of residual activity after a heat treatment at 45°C for 10 minutes.
 - (13) A protein having the amino acid sequence of SEQ ID NO: 32 or the amino acid sequence of SEQ ID NO: 32

including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has dihydrolipoamide dehydrogenase activity derived from Corynebacterium thermoaminogenes.

- 5 (14) A protein having the amino acid sequence of SEQ ID NO: 34 or the amino acid sequence of SEQ ID NO: 34 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has 2-oxoglutarate dehydrogenase activity and shows 30% or more of residual activity after a heat treatment at 50°C for 10 minutes.
 - (15) A protein having the amino acid sequence of SEQ ID NO: 80 in Sequence Listing or the amino acid sequence of SEQ ID NO: 80 including substitution, deletion,
- insertion, addition or inversion of one or several amino acids residues, which shows glutamate dehydrogenase activity at 42°C in an equivalent or higher degree compared with the activity at 37°C.
- (16) A protein having the amino acid sequence of SEQ ID NO: 90 in Sequence Listing or the amino acid sequence of SEQ ID NO: 90 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which shows citrate synthase activity at 37°C in an equivalent or higher degree compared with the activity at 23°C.
 - (17) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 2 or the amino acid sequence

of SEQ ID NO: 2 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having isocitrate lyase activity.

(18) The DNA according to (17), which is a DNA defined in the following (al) or (bl):

(al) a DNA which comprises the nucleotide sequence of SEQ ID NO: 1 in Sequence Listing,

5

10

15

20

- (b1) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 1 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having isocitrate lyase activity.
 - (19) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 4 or the amino acid sequence of SEQ ID NO: 4 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and involved in acyl Co-A carboxylase activity.
- (20) The DNA according to (19), which is a DNA defined in the following (a2) or (b2):
 - (a2) a DNA which comprises the nucleotide sequence of SEQ ID NO: 3 in Sequence Listing,
 - (b2) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 3 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein involved in acyl Co-A carboxylase activity.

- (21) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 6 or the amino acid sequence of SEQ ID NO: 6 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having DtsR activity.
- (22) The DNA according to (21), which is a DNA defined in the following (a3) or (b3):

- (a3) a DNA which comprises the nucleotide sequence of SEQ ID NO: 5 in Sequence Listing,
- 10 (b3) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 5 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having DtsR activity.
- 15 (23) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 8 or the amino acid sequence of SEQ ID NO: 8 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having DtsR activity.
- 20 (24) The DNA according to (23), which is a DNA defined in the following (a4) or (b4):
 - (a4) a DNA which comprises the nucleotide sequence of SEQ ID NO: 7 in Sequence Listing,
- (b4) a DNA which is hybridizable with the

 nucleotide sequence of SEQ ID NO: 7 in Sequence Listing
 or a primer prepared based on the nucleotide sequence
 under a stringent condition, and codes for a protein

having DtsR activity.

5

15

- (25) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 10 or the amino acid sequence of SEQ ID NO: 10 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having phosphofructokinase activity.
- (26) The DNA according to (25), which is a DNA defined in the following (a5) or (b5):
- 10 (a5) a DNA which comprises the nucleotide sequence of SEQ ID NO: 9 in Sequence Listing,
 - (b5) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 9 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having phosphofructokinase activity.
 - (27) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 93 or the amino acid sequence of SEQ ID NO: 93 including substitution, deletion, insertion, addition or inversion of one or
 - several amino acids residues, and having invertase activity.
 - (28) The DNA according to (27), which is a DNA defined in the following (a6) or (b6):
- 25 (a6) a DNA which comprises the nucleotide sequence of SEQ ID NO: 93 in Sequence Listing,
 - (b6) a DNA which is hybridizable with the

nucleotide sequence of SEQ ID NO: 93 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having invertase activity.

- 5 (29) A DNA which codes for a protein having any one of the amino acid sequences of SEQ ID NOS: 17-20 or the amino acid sequence of any one of SEQ ID NOS: 17-20 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having a function involved in glutamic acid uptake.

 (30) The DNA according to (29), which is a DNA defined in the following (a7) or (b7):
 - (a7) a DNA which comprises the nucleotide sequence of SEQ ID NO: 16 in Sequence Listing,
- 15 (b7) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 16 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having a function involved in glutamic acid uptake.

 20 (31) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 22 or the amino acid sequence of SEQ ID NO: 22 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having pyruvate
 - (32) The DNA according to (31), which is a DNA defined in the following (a8) or (b8):

dehydrogenase activity.

- (a8) a DNA which comprises the nucleotide sequence of SEQ ID NO: 21 in Sequence Listing,
- (b8) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 21 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having pyruvate dehydrogenase activity.

5

10

20

- (33) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 24 or the amino acid sequence of SEQ ID NO: 24 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having pyruvate carboxylase activity.
- (34) A DNA according to (33), which is a DNA defined in the following (a9) or (b9):
 - (a9) a DNA which comprises the nucleotide sequence of SEO ID NO: 23 in Sequence Listing,
 - (b9) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 23 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having pyruvate carboxylase activity.
 - (35) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 26 or the amino acid sequence of SEQ ID NO: 26 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having

phosphoenolpyruvate carboxylase activity.

5

10

15

20

- (36) The DNA according to (35), which is a DNA defined in the following (al0) or (bl0):
- (a10) a DNA which comprises the nucleotide sequence of SEQ ID NO: 25 in Sequence Listing,
- (b10) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 25 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having phosphoenolpyruvate carboxylase activity.

 (37) A DNA which codes for a protein having the amino
- acid sequence of SEQ ID NO: 28 or the amino acid sequence of SEQ ID NO: 28 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having aconitase activity.
 - (38) The DNA according to (37), which is a DNA defined in the following (all) or (bll):
- (all) a DNA which comprises the nucleotide sequence of SEQ ID NO: 27 in Sequence Listing,
- (b11) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 27 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having aconitase activity.
- (39) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 30 or the amino acid

sequence of SEQ ID NO: 30 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having isocitrate dehydrogenase activity.

- 5 (40) The DNA according to (39), which is a DNA defined in the following (a12) or (b12):
 - (al2) a DNA which comprises the nucleotide sequence of SEQ ID NO: 27 in Sequence Listing,
- (b12) a DNA which is hybridizable with the

 nucleotide sequence of SEQ ID NO: 27 in Sequence Listing
 or a primer prepared based on the nucleotide sequence
 under a stringent condition, and codes for a protein
 having isocitrate dehydrogenase activity.
- (41) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 32 or the amino acid sequence of SEQ ID NO: 32 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having dihydrolipoamide dehydrogenase activity.
- 20 (42) The DNA according to (41), which is a DNA defined in the following (al3) or (bl3):
 - (a13) a DNA which comprises the nucleotide sequence of SEQ ID NO: 31 in Sequence Listing,
- (b13) a DNA which is hybridizable with the

 nucleotide sequence of SEQ ID NO: 31 in Sequence Listing
 or a primer prepared based on the nucleotide sequence
 under a stringent condition, and codes for a protein

having dihydrolipoamide dehydrogenase activity.

- (43) A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 34 or the amino acid sequence of SEQ ID NO: 34 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having 2-oxoglutarate dehydrogenase activity.
- (44) The DNA according to (43), which is a DNA defined in the following (a14) or (b14):
- 10 (al4) a DNA which comprises the nucleotide sequence of SEQ ID NO: 33 in Sequence Listing,

5

15

(b14) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 33 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having 2-oxoglutarate dehydrogenase activity.

(45) A DNA which codes for a protein having the amino

- acid sequence of SEQ ID NO: 80 in Sequence Listing or the amino acid sequence of SEQ ID NO: 80 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and showing glutamate dehydrogenase activity at 42°C in an equivalent or higher degree compared with the activity at 37°C.
- 25 (46) The DNA according to (45), which is a DNA defined in the following (al5) or (bl5):
 - (al5) a DNA which comprises the nucleotide

sequence of SEQ ID NO: 79 in Sequence Listing,

5

20

- (b15) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 79 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein showing glutamate dehydrogenase activity at 42°C in an equivalent or higher degree compared with the activity at 37°C.
- (47) A DNA which codes for a protein having the amino

 10 acid sequence of SEQ ID NO: 90 in Sequence Listing or
 the amino acid sequence of SEQ ID NO: 90 including
 substitution, deletion, insertion, addition or inversion
 of one or several amino acids residues, and showing
 citrate synthase activity at 37°C in an equivalent or

 15 higher degree compared with the activity at 23°C.

 (48) The DNA according to (47), which is a DNA defined
 in the following (a16) or (b16):
 - (al6) a DNA which comprises the nucleotide sequence of SEQ ID NO: 89 in Sequence Listing,
 - (b16) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 89 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein showing citrate synthase activity at 37°C in an equivalent or higher degree compared with the activity at 23°C.
 - (49) A method for producing L-amino acid, which

comprises culturing a microorganism introduced with a DNA according to any one of (17) to (48) in a medium to produce and accumulate L-amino acid in the medium, and collecting the L-amino acid from the medium.

The term "DNA of the present invention" is used hereinafter for referring to either one or all of the aforementioned DNAs.

Hereafter, the present invention will be explained in detail.

The nucleotide sequences of the DNA of the present invention, names of the genes, and the proteins encoded by the DNA of the present invention are shown in Table 1.

Table 1

		1 1toin (abbreviation)						
Nucleotide	Name of	Encoded protein (abbreviation)						
sequence	gene	(707)						
SEQ ID NO: 1	aceA	Isocitrate lyase (ICL)						
SEQ ID NO: 3	accBC	acyl Co-A carboxylase BC subunit DTSR1 protein DTSR2 protein						
SEO ID NO: 5	dtsR1							
SEQ ID NO: 7	dtsR2							
SEO ID NO: 9	pfk	Phosphofructokinase						
SEQ ID NOS:	-							
11, 13, 15, 93	scrB	Invertase						
SEQ ID NO: 16	gluABCD	glutamic acid uptake system pyruvate dehydrogenase						
SEO ID NO: 21	pdhA							
SEO ID NO: 23	pc	pyruvate carboxylase						
SEO ID NO: 25	ppc	phosphoenolpyruvate carboxylase						
SEO ID NO: 27	acn	aconitase						
SEO ID NO: 29	icd	isocitrate dehydrogenase						
SEO ID NO: 31	1pd	dihydrolipoamide dehydrogenase						
SEQ ID NO: 33	odhA	2-oxoglutarate dehydrogenase glutamate dehydrogenase						
SEO ID NO: 79	gdh							
SEO ID NO: 89	gltA	citrate synthase						

The open reading frames (ORFs) of SEQ ID NOS: 3, 23, 25, 31 and 33 and the fourth ORF of SEQ ID NO: 16 all start from GTG. Although the amino acids encoded by these GTG are indicated as valine in Sequence Listing, they may be methionine.

5

10

15

The sequence of SEQ ID NO: 16 contains four ORFs, which correspond to gluA, gluB, gluC and gluD in this order from the 5' end side.

The aforementioned DNA sequences were isolated from chromosomal DNA of the Corynebacterium thermoaminogenes AJ12310 strain (FERM BP-1542). However, the DNA sequences shown in SEQ ID NOS: 11 and 13 were isolated from Corynebacterium thermoaminogenes AJ12340 strain (FERM BP-1539) and AJ12309 strain (FERM BP-1541),

respectively, which had invertase activity and sucrose assimilating property, because the AJ12310 strain did not have invertase activity and sucrose assimilating property, and the *scrB* gene isolated from the strain had not any open reading frame.

5

10

15

20

25

The Corynebacterium thermoaminogenes AJ12310
strain (also referred to as YS-314 strain) and AJ12309
strain (also referred to as YS-155 strain) were
deposited at the National Institute of Bioscience and
Human-Technology, Agency of Industrial Science and
Technology, Ministry of International Trade and Industry
(postal code: 305-8566, 1-3, Higashi 1-chome, Tsukubashi, Ibaraki-ken, Japan) on March 13, 1987 and given
deposition numbers of FERM P-9246 and FERM P-9245,
respectively. Then, they were transferred to
international depositions under the provisions of the
Budapest Treaty on October 27, 1987, and given
deposition numbers of FERM BP-1542 and FERM BP-1541,
respectively.

The AJ12340 strain (also referred to as YS-40 strain) was deposited at the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry (postal code: 305-8566, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan) on March 10, 1987 and given a deposition number of FERM P-9277. Then, it was transferred to an international deposition under

the provisions of the Budapest Treaty on October 27, 1987, and given a deposition number of FERM BP-1539.

The nucleotide sequences shown in SEQ ID NOS: 11, 13 and 15 are partial sequences of scrB, and the sequences of SEQ ID NOS: 11 and 13 code for partial amino acid sequences of invertase shown in SEQ ID NOS: 12 and 14.

5

10

15

20

25

A DNA sequence containing a partial fragment of a target gene can be obtained by comparing already reported nucleotide sequences for the target gene of various microorganisms such as Brevibacterium lactofermentum to select a region containing a wellconserved nucleotide sequence, and carrying out PCR using primers designed based on the nucleotide sequence of the region and chromosomal DNA of Corynebacterium thermoaminogenes as a template. Further, by performing hybridization using the obtained DNA fragment or a probe prepared based on the sequence of the fragment to screen a chromosomal DNA library of Corynebacterium thermoaminogenes, a DNA fragment containing the gene in its full length can be obtained. A DNA fragment containing the gene in its full length can also be obtained by performing genome walking using the obtained partial fragment of the gene. The genome walking can be carried out by using a commercially available kit, for example, TaKaRa LA PCR in vitro Cloning Kit (produced by Takara Shuzo).

For example, a partial sequence of DNA coding for glutamate dehydrogenase (henceforth the DNA is also referred to as "gdh", and the enzyme is also referred to as "GDH") can be obtained from chromosomal DNA of Corynebacterium thermoaminogenes such as the Corynebacterium thermoaminogenes AJ12310 strain by PCR (polymerase chain reaction) using the chromosomal DNA as a template and primers having the nucleotide sequences shown in SEQ ID NOS: 77 and 78 of Sequence Listing. Further, by performing genome walking using the obtained partial fragment, the whole gdh gene can be obtained.

5

10

15

20

25

Further, a partial sequence of DNA coding for citrate synthase (henceforth the DNA is also referred to as "gltA", and the enzyme is also referred to as "CS") can be obtained from chromosomal DNA of Corynebacterium thermoaminogenes such as the Corynebacterium thermoaminogenes AJ12310 strain by PCR (polymerase chain reaction) using the chromosomal DNA as a template and primers having the nucleotide sequences shown in SEQ ID NOS: 83 and 84 of Sequence Listing. Further, by performing genome walking using the obtained partial fragment, the whole gltA gene can be obtained.

The nucleotide sequences of the aforementioned primers were designed based on a nucleotide sequence in a region containing a well-conserved nucleotide sequence among the already reported gdh genes or gltA genes of various microorganisms, which region was found by

comparison of the genes.

5

10

15

20

As for DNA sequences coding for the other enzymes, partial fragments coding for those enzymes can be similarly obtained by using the primers mentioned in Table 1, and the genes in full length can be obtained by using the obtained partial fragments.

While the DNA of the present invention was obtained as described above, it can also be obtained from a chromosomal DNA library of Corynebacterium thermoaminogenes by hybridization using an oligonucleotide prepared based on the nucleotide sequences of the DNA of the present invention as a probe.

Methods for preparation of chromosomal DNA, construction of chromosomal DNA library, hybridization, PCR, preparation of plasmid DNA, digestion and ligation of DNA, transformation and so forth are described in Sambrook, J., Fritsch, E.F., Maniatis, T., Molecular Cloning, Cold Spring Harbor Laboratory Press, 1.21 (1989). Further, genome walking can be performed by using a commercially available kit, for example, TakaRa LA PCR in vitro Cloning Kit (produced by Takara Shuzo).

Specific methods for obtaining the DNA of the present invention will be explained hereafter.

First, chromosomal DNA of Corynebacterium

thermoaminogenes is digested with a suitable restriction enzyme, for example, Sau3AI, and fractionated by agarose gel electrophoresis to obtain a DNA fragment of about 4

to 6 kb. The obtained DNA fragment is inserted into a cloning vector such as pHSG399, and *Escherichia coli* is transformed with the obtained recombinant plasmid to produce a plasmid library of the chromosomal DNA.

5

10

15

20

25

Separately, primers are produced for use in selecting a clone containing a target gene from a plasmid library by PCR. These primers are designed based on conserved amino acid regions from various microorganisms corresponding to the gene of interest. In the design of primers, a plurality of primer sets are designed considering the codon usage of coryneform bacteria.

Then, in order to investigate propriety of the produced primers, PCR is performed by using these primers and chromosomal DNA of Corynebacterium thermoaminogenes as a template. Further, PCR is performed by using primers from which an amplification fragment has been obtained as primers for screening and a recombinant plasmid prepared from the plasmid library as a template to select a clone containing the target DNA fragment. This operation can be quickly carried out by performing the PCR for every batch including several tens of transformant strains as primary screening and performing colony PCR for the batch with which an amplification fragment was obtained as secondary screening. The fragment lengths of the amplified genes

are shown in Tables 2 to 7.

5

10

15

20

25

If a transformant selected as described above contains a target gene is confirmed by preparing a recombinant DNA from the transformant selected as described above, determining the nucleotide sequence of the inserted fragment by the dideoxy termination method, and comparing the nucleotide sequence with a known gene sequence.

When the obtained DNA fragment contains a part of the target gene, the deleted part is obtained by genome walking.

The DNA of the present invention may code for a protein including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, so long as the encoded protein has its original function. The number meant by the term "several" may vary depending on positions in the three-dimensional structure of protein or kinds of amino acid residues. However, in general, such a protein preferably shows homology of 30 to 40% or more, more preferably 55 to 65% or more, with respect to a corresponding whole amino acid sequence of the protein. More specifically, the term "several" means a number of 2 to several hundreds, preferably 2 to several tens, more preferably 2 to 10.

Nucleotide and amino acid sequence were analyzed by, for exmaple, the method developed by Lipman and

Peason (Science, 227, 1435-1441, 1985) by using commercially available softoware such as Genetyx-Mac computer program (Software Development Co., Tokyo, Japan).

5

10

15

20

25

GDH may be one showing homology of 40 to 80% or more, preferably 80 to 90% or more, for the total amino acid sequence constituting GDH, and showing GDH activity at 42°C equivalent to or higher than the activity at 37°C. In this case, the term "several" means a number of 2 to 30, preferably 2 to 50, more preferably 2 to 10.

CS may be one showing homology of 40 to 80% or more, preferably 80 to 90% or more, for the total amino acid sequence constituting CS, and showing CS activity at 37°C equivalent to or higher than the activity at 23°C. In this case, the term "several" means a number of 2 to 300, preferably 2 to 50, more preferably 2 to 10.

A DNA, which codes for the substantially same protein as the original protein as described above, can be obtained by, for example, modifying the nucleotide sequence, for example, by means of the site-directed mutagenesis so that one or more amino acid residues at a specific site should involve substitution, deletion, insertion, addition or inversion. A DNA modified as described above may also be obtained by a conventionally known mutation treatment. The mutation treatment includes a method for treating DNA coding for a target gene in vitro, for example, with hydroxylamine, and a

method for treating a microorganism, for example, a bacterium belonging to the genus *Escherichia*, harboring DNA coding for the target gene with ultraviolet irradiation or a mutating agent usually used for the mutation treatment such as N-methyl-N'-nitro-N-nitrosoguanidine (NTG) and nitrous acid.

5

10

15

20

25

The substitution, deletion, insertion, addition, or inversion of nucleotides as described above also includes mutant or variant that naturally occurs due to the difference of strains of Corynebacterium thermoaminogenes or the like.

A DNA coding for substantially the same protein as the original protein can be obtained by expressing DNA having a mutation in an appropriate cell, and investigating activity or function of the expressed product protein. The DNA coding for substantially the same protein as the original protein can also be obtained by, for example, isolating a DNA which is hybridizable with a DNA having each of the nucleotide sequences of the sequences of which sequence numbers are mentioned in Table 1 or a coding region thereof, or a probe designed based on the nucleotide sequence under a stringent condition, and which codes for a protein having the activity originally possessed by the protein, from DNA coding for a protein having a mutation or from a cell harboring it. The activity preferably means each enzymatic activity at 42°C for GDH or 37°C for CS.

The aforementioned probe can be prepared from a DNA having any one of the nucleotide sequences of which sequence numbers are shown in Table 1 or a DNA having any one of the nucleotide sequences by PCR using suitable primers.

5

10

15

20

25

The "stringent condition" referred to herein is a condition under which so-called specific hybrid is formed, and non-specific hybrid is not formed. It is difficult to clearly express this condition by using any numerical value. However, for example, the stringent condition includes a condition under which DNAs having high homology, for example, DNAs having homology of not less than 50% are hybridized with each other, and DNAs having homology lower than the above are not hybridized with each other. Alternatively, the stringent condition is exemplified by a condition under which DNAs are hybridized with each other at a salt concentration corresponding to an ordinary condition of washing in Southern hybridization, i.e., 60°C, 1 x SSC, 0.1% SDS, preferably 0.1 x SSC, 0.1% SDS.

The gene, which is hybridizable under the condition as described above, includes those having a stop codon generated in the gene, and those having no activity due to mutation of active site. However, such genes can be easily removed by ligating the genes with a commercially available activity expression vector, and measuring the activity or function.

A protein corresponding to each DNA of the present invention can be produced by expressing the DNA in a suitable host-vector system.

5

10

15

20

25

As the host used for the expression of a gene, there can be mentioned various prokaryotic cells including Brevibacterium lactofermentum (Corynebacterium glutamicum), coryneform bacteria such as Corynebacterium thermoaminogenes, Escherichia coli, Bacillus subtilis and so forth, and various eucaryocytic cells including Saccharomyces cerevisiae, animal cells and plant cells. Among these, prokaryotic cells, in particular, coryneform bacteria and Escherichia coli are preferred.

If the DNA of the present invention is ligated to a vector DNA autonomously replicable in cells of Escherichia coli and/or coryneform bacteria and so forth to form a recombinant DNA, and this recombinant DNA is introduced into an Escherichia coli cell, the subsequent procedure becomes easy. The vector autonomously replicable in Escherichia coli cells is preferably a plasmid vector autonomously replicable in the host cell, and examples thereof include pUC19, pUC18, pBR322, pHSG299, pHSG399, pHSG398, RSF1010 and so forth.

As the vector autonomously replicable in coryneform bacterium cells, there can be mentioned pAM330 (refer to Japanese Patent Laid-open No. 58-67699/1983), pHM1519 (refer to Japanese Patent Laid-open No. 58-77895/1983) and so forth. Moreover, if a DNA

fragment having an ability to make a plasmid autonomously replicable in coryneform bacteria is taken out from these vectors and inserted into the aforementioned vectors for *Escherichia coli*, they can be used as a so-called shuttle vector autonomously replicable in both of *Escherichia coli* and coryneform bacteria.

5

10

25

Examples of such a shuttle vector include those mentioned below. There are also indicated microorganisms that harbor each vector, and accession numbers thereof at international depositories are shown in the parentheses, respectively.

pAJ655 Escherichia coli AJ11882 (FERM BP-136)

Corynebacterium glutamicum SR8201 (ATCC39135)

pAJ1844 Escherichia coli AJ11883 (FERM BP-137)

Corynebacterium glutamicum SR8202 (ATCC39136)

pAJ611 Escherichia coli AJ11884 (FERM BP-138)

pAJ3148 Corynebacterium glutamicum SR8203 (ATCC39137)

pAJ440 Bacillus subtilis AJ11901 (FERM BP-140)

20 pHC4 Escherichia coli AJ12617 (FERM BP-3532)

In order to prepare a recombinant DNA by ligating the DNA of the present invention and a vector that functions in coryneform bacteria, the vector is digested with a restriction enzyme that provides an end corresponding to an end of the DNA of the present invention. The ligation is normally attained by using a

ligase such as T4 DNA ligase.

5

10

15

20

25

To introduce the recombinant DNA prepared as described above into a host such as coryneform bacteria, any known transformation methods that have hitherto been reported can be employed. For instance, employable are a method of treating recipient cells with calcium chloride so as to increase the permeability for DNA, which has been reported for Escherichia coli K-12 (Mandel, M. and Higa, A., J. Mol. Biol., 53, 159 (1970)), and a method of preparing competent cells from cells which are at the growth phase followed by introducing the DNA thereinto, which has been reported for Bacillus subtilis (Duncan, C.H., Wilson, G.A. and Young, F.E., Gene, 1, 153 (1977)). In addition to these, also employable is a method of making DNA-recipient cells into protoplasts or spheroplasts, which can easily take up recombinant DNA, followed by introducing the recombinant DNA into the cells, which is known to be applicable to Bacillus subtilis, actinomycetes and yeasts (Chang, S. and Choen, S.N., Molec. Gen. Genet., 168, 111 (1979); Bibb, M.J., Ward, J.M. and Hopwood, O.A., Nature, 274, 398 (1978); Hinnen, A., Hicks, J.B. and Fink, G.R., Proc. Natl. Sci. USA, 75, 1929 (1978)). The transformation of coryneform bacteria can be effectively performed by the electric pulse method (refer to Japanese Patent Laid-open No. 2-207791).

As for the transformation of thermophilic

coryneform bacteria such as Corynebacterium thermoaminogenes, it can be efficiently performed by treating cells with an agent that changes the structure of cell walls of the host cells, and applying an electric pulse to a solution containing DNA and the cells of which structure of the cell walls have been changed. The aforementioned agent is an agent that can change the structure of cell walls so that the cells can uptake the DNA when an electric pulse is applied to a solution containing the cells treated with the agent and the DNA (henceforth also referred to as a "cell wall treatment agent"). Examples of such an agent include agents that inhibit normal synthesis of bacterial cell wall and agents that lyse bacterial cell walls. Specific examples thereof include lysozyme, penicillin G, glycine and so forth.

5

10

15

20

25

Those cell wall treatment agents may be used each alone, or two or more kinds of them may be used in combination. Among the aforementioned agents, lysozyme and penicillin G are preferred, and lysozyme is particularly preferred.

Furthermore, the transformation of *Corynebacterium* thermoaminogenes can also be performed by applying an electric pulse to a solution containing DNA and the host cells of which cell walls has been weakened by a physical method such as ultrasonication (*FEMS* Microbiology Letters, 151, 135-138 (1987)).

In order to efficiently express a gene contained in the DNA of the present invention, a promoter that functions in the host cell such as lac, trp and P_L may be ligated upstream from the coding region of the gene. If a vector containing a promoter is used as the vector, ligation of each gene, vector and promoter can be attained by one step.

5

10

The proteins of the present invention, which can be produced as described above, can be purified as required from a cell extract or medium by using usual methods for purifying enzymes such as ion exchange chromatography, gel filtration chromatography, adsorption chromatography, salting out and solvent precipitation.

15 It is expected that the proteins of the present invention are excellent in thermal stability or exhibit higher activity at high temperatures compared with the corresponding proteins of Corynebacterium glutamicum and so forth. For example, GDH of Brevibacterium

20 lactofermentum shows the highest GDH specific activity around 37°C, and the activity is markedly reduced around 42°C. However, GDH of the present invention shows at 42°C the GDH activity equivalent to or higher than the activity at 37°C. In a preferred embodiment, GDH of the present invention shows the highest specific activity around 42°C, and shows the activity even at 45°C.

The GDH activity can be measured by, for example,

adding the enzyme to 100 mM Tris-HCl (pH 8.0), 20 mM NH₄Cl, 10 mM sodium α -ketoglutarate, 0.25 mM NADPH, and determining change of absorbance at 340 nm (Molecular Microbiology 6, 317-326 (1992)).

5

10

15

20

25

Further, CS of Brevibacterium lactofermentum shows the highest CS specific activity around 23°C, and the activity is markedly reduced around 33°C. To the contrary, CS of the present invention shows at 37°C the CS activity equivalent to or higher than the activity at 23°C. In a preferred embodiment, CS of the present invention shows reaction temperature-dependently higher activity up to around 37°C, and shows, even at 40°C, about 40% of the activity with respect to the activity at 37°C.

The CS activity can be measured by, for example, the method described in Methods in Enzymol., 13, 3-11 (1969).

Further, other proteins of the present invention typically have the following characteristics. The isocitrate lyase has 30% or more of residual activity after a heat treatment at 50°C for 5 minutes. The phosphofructokinase has, at 60°C, the activity equivalent to or higher than the activity at 30°C. The phosphoenolpyruvate carboxylase has 50% or more of residual activity after a heat treatment at 45°C for 5 minutes. The aconitase has 30% or more of residual activity after a heat treatment at 50°C for 3 minutes.

The isocitrate dehydrogenase has 50% or more of residual activity after a heat treatment at 45°C for 10 minutes. The 2-oxoglutarate dehydrogenase has 30% or more of residual activity after a heat treatment at 50°C for 10 minutes.

5

10

15

20

25

The proteins of the present invention can also be obtained from cell extracts of Corynebacterium thermoaminogenes such as the Corynebacterium thermoaminogenes AJ12310 strain by using each activity as an index and usual purification methods for purifying enzymes such as ion exchange chromatography, gel filtration chromatography, adsorption chromatography, salting out and solvent precipitation.

Among the DNA of the present invention, pfk, pdhA, pc, ppc, acn, icd, gdh and gltA (names of the enzymes encoded by these are shown in Table 1) can be introduced into L-amino acid production bacteria such as coryneform bacteria to enhance their L-amino acid producing ability. It is also expected that coryneform bacteria introduced with the DNA of the present invention become possible to produce L-amino acid at a temperature higher than usual. The L-amino acid includes L-glutamic acid, L-aspartic acid, L-lysine, L-arginine, L-proline, L-glutamine and so forth.

For example, it is expected that L-glutamic acid production bacteria such as coryneform bacteria

introduced with the gdh gene or gltA gene come to be able to produce L-glutamic acid at a temperature higher than usual. Further, although CS of Brevibacterium lactofermentum may not fully function at a usual culture temperature, for example, 31.5°C, the activity can be enhanced by introducing the gltA gene of the present invention.

5

10

15

20

Further, dtsR1 and dtsR2 are genes that code for proteins imparting resistance to surfactant to coryneform bacteria (DTSR protein), and coryneform L-glutamic acid producing bacteria of which these genes are disrupted produce a marked amount of L-glutamic acid even under a condition where biotin is present in such an amount that a wild strain becomes to be substantially unable to produce L-glutamic acid. Further, if dtsR1 and dtsR2 genes of coryneform L-glutamic acid producing bacteria having L-lysine producing ability are amplified, the bacteria are imparted with an ability to produce a marked amount of L-lysine (WO95/23224, Japanese Patent Laid-open (Kokai) No. 10-234371/1998).

The scrB gene can be used for improvement of coryneform bacteria for use in the production of L-amino acids by using coryneform bacteria in a medium containing sucrose.

By deleting aceA, accBC, lpd or odhA of L-glutamic acid producing coryneform bacteria and so forth, their

L-glutamic acid productivity can be enhanced. Further, gluABCD is a gene cluster of the L-glutamic acid uptake system, and by deleting one to four of gluA, gluB, gluC and gluD in coryneform L-glutamic acid producing bacteria, the amount of L-glutamic acid accumulated in the medium can be increased. aceA, accBC, lpd, odhA and gluABCD of the present invention can be used for disruption of these genes on chromosome.

5

10

15

20

25

The medium used for producing L-amino acids by utilizing a microorganism introduced with the DNA of the present invention may be a usual medium that contains a carbon source, a nitrogen source, inorganic ions and other organic trace nutrients as required. As the carbon source, there can be used hydrocarbons such as glucose, lactose, galactose, fructose, sucrose, blackstrap molasses and starch hydrolysate; alcohols such as ethanol and inositol; or organic acids such as acetic acid, fumaric acid, citric acid and succinic acid.

As the nitrogen source, there can be used inorganic ammonium salts such as ammonium sulfate, ammonium nitrate, ammonium chloride, ammonium phosphate and ammonium acetate, ammonia, organic nitrogen such as peptone, meat extract, yeast extract, corn steep liquor and soybean hydrolysate, ammonia gas, aqueous ammonia and so forth.

As the inorganic ions (or sources thereof), added is a small amount of potassium phosphate, magnesium

sulfate, iron ions, manganese ions and so forth. As for the organic trace nutrients, it is desirable to add required substances such as vitamin B_1 , yeast extract and so forth in a suitable amount as required.

The culture is preferably performed under an aerobic condition attained by shaking, stirring for aeration or the like for 16 to 72 hours. The culture temperature is controlled to be at 30°C to 47°C, and pH is controlled to be 5 to 9 during the culture. As for the culture temperature, the culture may be performed at a temperature suitable for culture of a microorganism not introduced with the DNA of the present invention or a temperature higher than that. For adjustment of pH, inorganic or organic acidic or alkaline substances, ammonia gas and so forth can be used.

Collection of L-amino acids from fermentation broth can be attained by a combination of known methods such as techniques utilizing ion exchange resin, precipitation, crystallization and so forth depending on the kind of the L-amino acids.

Brief Explanation of the Drawings

5

10

15

20

25

Fig. 1 shows variation with temperature in activity of glutamate dehydrogenases derived from the Corynebacterium thermoaminogenes AJ12310 strain and the Brevibacterium lactofermentum 2256 strain.

Fig. 2 shows thermal stability of glutamate

dehydrogenases derived from the AJ12310 strain and the 2256 strain.

Fig. 3 shows variation with temperature in activity of citrate synthases derived from the AJ12310 strain and the 2256 strain.

Fig. 4 shows thermal stability of citrate synthases derived from the AJ12310 strain and the 2256 strain.

Fig. 5 shows variation with temperature in

10 activity of isocitrate lyases derived from the AJ12310 strain and the 2256 strain.

5

15

20

Fig. 6 shows thermal stability of isocitrate lyases derived from the AJ12310 strain and the 2256 strain.

Fig. 7 shows variation with temperature in activity of phosphofructokinases derived from the AJ12310 strain and the 2256 strain.

Fig. 8 shows thermal stability of phosphofructokinases derived from the AJ12310 strain and the 2256 strain.

Fig. 9 shows variation with temperature in activity of phosphoenolpyruvate carboxylases derived from the AJ12310 strain and the 2256 strain.

Fig. 10 shows thermal stability of

phosphoenolpyruvate carboxylases derived from the

AJ12310 strain and the 2256 strain.

Fig. 11 shows variation with temperature in

activity of aconitases derived from the AJ12310 strain and the 2256 strain.

Fig. 12 shows thermal stability of aconitases derived from the AJ12310 strain and the 2256 strain.

5

10

20

25

Fig. 13 shows variation with temperature in activity of isocitrate dehydrogenases derived from the AJ12310 strain and the 2256 strain.

Fig. 14 shows thermal stability of isocitrate dehydrogenases derived from the AJ12310 strain and the 2256 strain.

Fig. 15 shows thermal stability of 2-oxoglutarate dehydrogenases derived from the AJ12310 strain and the 2256 strain.

Fig. 16 shows construction of plasmid pSCR155

15 carrying scrB gene.

Fig. 17 shows construction of plasmid pPDHA-2 carrying pdhA gene.

Fig. 18 shows L-glutamic acid productivity of a pdhA gene-amplified strain: (a) 37°C and (b) 44°C.

Fig. 19 shows is construction of a plasmid pICD-4 carrying icd gene.

Fig. 20 shows L-glutamic acid productivity of an icd gene-amplified strain: (a) 37°C and (b) 44°C.

Fig. 21 shows construction of plasmids pHSG299YGDH and pYGDH.

Fig. 22 shows construction of plasmids pHSG299YCS and pYCS.

Best Mode for Carrying out the Invention

Hereafter, the present invention will be further specifically explained with reference to the following examples.

Example 1

5

<1> Production of plasmid library of Corynebacterium
thermoaminogenes

10 The Corynebacterium thermoaminogenes AJ12310 strain was cultured in CM2B liquid medium (1 q/dl of yeast extract (produced by Difco), 1 g/dl of polypeptone (produced by Nippon Seiyaku), 0.5 q/dl of NaCl, 10 μ q/dl of biotin, pH 7.0 (adjusted with KOH)) at 37°C for 15 15 hours, and its chromosomal DNA was prepared from the 10 ml of the medium by using a chromosomal DNA extraction kit (Bacterial Genome DNA Purification Kit (produced by Advanced Genetic Technologies)). The obtained DNA was partially digested with a restriction enzyme Sau3AI, and subjected to 0.8% agarose gel electrophoresis to 20 fractionate the DNA. Then, a band corresponding to a DNA fragment of about 4 to 6 kb was excised from the gel, and a DNA fragment of the objective size was obtained by using a DNA gel extraction kit (GIBCO BRL, Concert™ 25 Rapid Gel Extraction System).

The plasmid pHSG399 (produced by Takara Shuzo) was fully digested with BamHI, and its end was

dephosphorylated by using alkaline phosphatase (CIAP; produced by Takara Shuzo). This vector fragment and the aforementioned chromosomal DNA fragment were ligated by using a DNA ligation kit produced by Takara Shuzo, and Escherichia coli JM109 was the transformed with the obtained recombinant vector. Selection of transformants was performed on LB agar medium (containing 1.5 g/dl of agar) containing 30 μ g/ml of chloramphenicol, 0.04 mg/ml of IPTG (isopropyl- β -D-thiogalactopyranoside) and 0.04 mg/ml of X-Gal (5-bromo-4-chloro-3-indolyl- β -D-qalactoside) to obtain about 4000 white colonies.

5

10

15

20

25

<2> Design of primers for amplification of each gene Primers for use in selection of a clone containing each target gene by PCR from the plasmid library obtained above were designed. The target genes were mentioned above.

The primers were designed based on a known gene sequence of coryneform bacteria, i.e., its sequence of a region where conservation at the amino acid level was observed when compared with corresponding genes of other microorganisms. Considering the codon usage of coryneform bacteria, a plurality of primer sets were designed for each gene.

To examine propriety of the prepared primers, PCR was performed by using these primers and chromosomal DNA of the Corynebacterium thermoaminogenes AJ12310 strain

as a template to amplify each gene fragment. As a result, when the PCR was performed by using the primers shown in the upper rows of Tables 2 to 7 under the conditions indicated as "PCR conditions for obtaining partial fragment" in the tables, an amplified fragment was observed for all of the genes. The parenthesized numbers after the primer sequences indicate the sequence numbers in Sequence Listing. These primers were used as primers for screening mentioned below.

٠.	i
<	ì
	•

	T B	Table 2	
Gene	асед	accBC	dtsRl
5'→3'Primer	CCTCTACCCAGCGAACTCCG (35) CATCCACCCGGCTACGGCT (37)		ACGGCCCAGCCCTGACCGAC (39)
3'→5'Primer	CIGCCIIGAACICACGGIIC (36)	CGGTGACTGGTGTTCCACC (38)	AGCAGCGCCCATGACGGCGA (40)
PCR conditions for	94°C, 5 min	94°C, 5 min	94°C, 5 min
obtaining partial			
fragment and PCR	98°C, 5 sec	98°C, 5 sec	98°C, 5 sec
conditions for	66°C, 2 sec, 30 cycles	66°C, 2 sec, 30 cycles	66°C, 2 sec, 30 cycles
ָּהָ בְּהַ בְּהַבְּהַ בְּהַבְּהַ בְּהַבְּהַבְּהַ בְּהַבְּהַבְּהַבְּהַבְּהַבְּהַבְּהַבְּהַ	Z-Tad	Z-Taq	Z-Taq
w	of 94°C, 7 min	94°C, 7 min	94°C, 7 min
colony PCR			
	91°C, 30 sec	91°C, 30 sec	91°C, 30 sec
	55°C, 1 sec	55°C, 1 sec	55°C, 1 sec
	72°C, 2.5 min, 30 cycles	72°C, 2.5 min, 30 cycles	72°C, 2.5 min, 30 cycles
	Ex-Tag	Ex-Tag	Ex-Taq
Amplified fragment	824bp	673bp	805bp

		Table 3	
	dtsR2	pfk	scrB
5'→3'Primer	ACGGCCCAGCCCTGACCGAC (41)	CTGACCGAC (41) CGTCATCCGAGGAATCGTCC (43) GGNCGHYTBAAYGAYCC	GGNCGHYTBAAYGAYCC (45)
3'→5'Primer	AGCAGCGCCATGACGGCGA (42)	CGTGGCGCCCATGACCTCC (44)	TGACGGCGA (42) CGTGGCGGCCCATGACCTCC (44) GGRCATICCCACATALAGGCCCATGACCTCC
PCR conditions for 94°C, 5 min	94°C, 5 min	94°C, 5 min	94°C, 5 min
obtaining partial fragment and PCR conditions for	98°C, 5 sec 66°C, 2 sec, 30 cycles	98°C, 5 sec 66°C, 2 sec, 30 cycles Z-Tad	98°C, 5 sec 50°C, 10 sec 72°C, 20 sec, 40 cycles
screening	ρ' Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β	1	Z-Taq
	1	o4°C 7 min	94°C, 7 min
Conditions of	94°C, / min		
colony PCR	91°C, 30 sec	91°C 30 sec	91°C, 30 sec
	55°C, 1 sec	55°C 1 sec	55°C, 1 sec
		72°C 2.5 min 30 cycles	72°C, 2.5 min, 30 cycles
	Ex-Tag	Ex-Tag	Ex-Taq
			5.00bp
Amplified fragment	t 805bp	472bp	1

Table 4

_	Table 4			
Gene	gluABCD	pdhA		
5'→3'Primer	CCATCCGGATCCGGCAAGTC (47)	ACTGTGTCCATGGGTCTTGGCCC (49)		
3'→5'Primer	AATCCCATCTCGTGGGTAAC (48)	CGCTGGAATCCGAACATCGA (50)		
PCR	94°C, 5 min	94°C, 5 min		
conditions				
for obtaining	98°C, 5 sec	98°C, 5 sec		
partial	50°C, 10 sec	50°C, 10 sec		
fragment	72°C, 20 sec, 30 cycles	72°C, 20 sec, 30 cycles		
	Z-Taq	Z-Taq		
Amplified 500bp		1200bp		
fragment				
Conditions	94°C, 5 min	94°C, 5 min		
for screening				
PCR and	94°C, 30 sec	94°C, 30 sec		
colony PCR	50°C, 1 min	50°C, 1 min		
	72°C, 2 min, 30 cycles	72°C, 2 min, 30 cycles		
	EX-Taq	EX-Taq		

Table 5

	Table 5	
Gene	pc	ppc
5'→3'Primer	GGCGCAACCTACGACGTTGCAATGCG (51)	GGTTCCTGGATTGGTGGAGA(53)
3'→5'Primer	TGGCCGCCTGGGATCTCGTG (52)	CCGCCATCCTTGTTGGAATC(54)
PCR	94°C, 5 min	94°C 5 min
conditions		
for	98°C, 5 sec	98°C 5 sec
obtaining	55°C, 80 sec 30 cycles	50°C 5 sec
partial	Z-Taq	72°C 10 sec 30 cycles
fragment		Z-Taq
Amplified	781bp	1000bp
fragment		
Conditions	94°C, 5 min	94°C, 5 min
for		
screening	98°C, 5 sec	98°C, 5 sec
PCR	55°C, 80 sec 30 cycles	50°C, 5 sec
	Z-Taq	72°C, 10 sec, 30 cycles
		Z-Taq
Conditions	94°C, 5 min, 1 cycles	94°C, 5 min
for colony		
PCR	98°C, 5 sec	98°C, 5 sec
	55°C, 80 sec, 50 cycles	50°C, 10 sec
	Z-Taq	72°C, 20 sec, 50 cycles
		Z-Taq

	ے
	a
,	c
•	σ

Gene acn icd 5. →3.Primer GTIGGIACIGAYTCSCATAC (55) GACATTTCACTCGCTGGAC (55) PCR GCIGGAGAIATGTGRTCIGT (56) CCGTACTTCTAGCCTTCTG (55) PCR GCIGGAGAIATGTGRTCIGT (56) CCGTACTTCTAGCCTTCTG (55) PCR conditions for obtaining 96°C, 20 sec 98°C, 5 sec 98°C, 5 sec 98°C, 2 min, 30 cycles 7-Tag Amplified 1500bp 1500bp 1500bp fragment 1500bp 1500bp fragment 1500bp Conditions Same as above Same as above PCR and colony PCR Screening PCR Screening PCR Screening PCR S·→3.Primer 3.→5.Primer 3.→5.Primer			Table	
3'Primer GTIGGIACIGAYTCSCATAC (55) 5'Primer GCIGGAGAIATGTGRTCIGT (56) 1tions obtaining 96°C, 20 sec ial 45°C, 1 min ment 68°C, 2 min, 30 cycles EX-Tag EX-Tag ified 1500bp itions screening Same as above and ony PCR sening PCR 3'Primer 5'Primer	Gene	acn	icd	lpd
5'Primer GCIGGAGAIATGTGRTCIGT (56) 1tions obtaining 96°C, 20 sec ial 45°C, 1 min ment 68°C, 2 min, 30 cycles EX-Tag Ified 1500bp ment litions screening Same as above and ony PCR sening PCR 3'Primer 5'Primer		GTIGGIACIGAYTCSCATAC (55)	GACATTICACICGCIGGACG (57) AICAICGCAACCGGITC	ATCATCGCAACCGGTTC (59)
itions obtaining 94°C, 1 min itions obtaining 96°C, 20 sec ial 45°C, 1 min ment 68°C, 2 min, 30 cycles EX-Tag EX-Tag ment litied litions screening same as above sening PCR		GCIGGAGAIATGTGRTCIGT (56)	CCGTACTCTTCAGCCTTCTG (58) CGTCACCGATGGCGTAAAT	CGTCACCGATGGCGTAAAT (60)
96°C, 20 sec 45°C, 1 min 68°C, 2 min, 30 cycles EX-Taq 1500bp Same as above Sar		94°C, 1 min	94°C, 5 min	94°C, 5 min
96°C, 20 sec 45°C, 1 min 68°C, 2 min, 30 cycles EX-Tag 1500bp Same as above Sar	conditions			
45°C, 1 min 68°C, 2 min, 30 cycles EX-Tag 1500bp Same as above Sar	for obtaining	96°C, 20 sec		98°C, 5 sec
t 68°C, 2 min, 30 cycles Z-Tag ed	partial	45°C, 1 min	55°C, 80 sec, 30 cycles	
ing Same as above Same as PCR	נו	68°C, 2 min, 30 cycles	Z-Taq	72°C, 20 sec, 30 cycles
ing Same as above Same as PCR		EX-Taq		Z-Tag
ing Same as above Same as PCR	Amplified	1500bp	1500bp	500bp
ing Same as above Same as PCR	fragment			
ing Same as above Same as PCR	Conditions			94°C, 5 min
PCR and colony PCR Screening PCR 5'→3'Primer 3'→5'Primer	for screening		as	•
colony PCR Screening PCR 5'→3'Primer 3'→5'Primer	PCR and			94°C, 30 sec
Screening PCR 5'→3'Primer 3'→5'Primer	colony PCR			l min
Screening PCR 5'→3'Primer 3'→5'Primer	T			72°C, 1 min, 30 cycles
Screening PCR 5'→3'Primer 3'→5'Primer				Ex-Tag
5'→3'Primer 3'→5'Primer	Screening PCR			K K () E () C
3'→5'Primer	5'→3'Primer			TACGAGGAGCAGAICCICAG
	3'→5'Primer			(63)
				TTGACGCCGGTGTTCTCCAG
				(64)

,	_		
ι	כ	L	
		1	Ī
•	_	-	۱

Γ	T										
	Lpd	65) S1:CGTACTCTTCAGCCTTCTG(67) S1:ATCATCGCAACCGGTTC (69) (66) S2:TCGTCCTTGTTCCACATC (68) S2:TACGAGGAGCAGATCCTCAA(70)		HindIII	94°C, 1 min	94°C, 30 sec	57°C, 2 min 72°C, 1 min, 30 cycles	LA-Taq			
Table 6 (Cont.)	icd	S1:CCGTACTCTTCAGCCTTCTG(67) S1:ATCATCGCAACCGGTTC S2:TCGTCCTTGTTCCACATC (68) S2:TACGAGGAGCAGATCCT	TTCACC(71) S1:TCCGATGTCATCATCGAC (73) TGAACC(72) S2:ATGTGGAACAAGGACGAC (74)	Sali(N') Psti(C')	94°C, 1 min	94°C, 30 sec	57°C, 2 min 72°C, 2.5 min, 30 cycles	LA-Tag			
L	acn	S1:GGTGAAGCTAAGTAGTTAGC 65) 8	S1:GCTAACTACTTAGCTTCACC(71) 8	PstI(N') HindIII(C')	N' 94°C, 1 min	94°C, 30 sec	30 cycles	LA-Taq C' 94°C, 1 min	94°C, 30 sec	57°C, 2 min 72°C, 2.5 min, 30	cycles LA-Taq
	Gene	LA cloning (N')	3 →3 FILMEL LA Cloning (C') 5'→3'Primer	Restrictione	Conditions	for LA clonina	n .				

Table 7

	Table
Gene	odhA
5'→3'Primer	ACACCGTGGTCGCCTCAACG (61)
3'→5'Primer	TGCTAACCCGTCCCACCTGG (62)
PCR conditions	94°C, 5 min
for obtaining	
partial fragment	98°C, 5 sec
	66°C, 2 sec, 30 cycles
	Z-Taq
Amplified	1306bp
fragment	
LA cloning (N')	S1:GTACATATTGTCGTTAGAACGCGTAATACGACTCA(75)
5'→3'Primer	S2:CGTTAGAACGCGTAATACGACTCACTATAGGGAGA(76)
Restriction	XbaI
Conditions for	First time 94°C, 30 sec
LA cloning	55°C, 2 min
	72°C, 1 min 30 cycles
	LA-Taq
	Second time 94°C, 1 min
	98°C, 20 sec
	68°C, 15 min, 30 cycles
	72°C 10 min
	LA-Taq

<3> Screening of plasmid library by PCR

5

10

15

20

25

A clone containing a target gene was selected from the plasmid library by PCR. Sixty colonies were picked up from each plasmid library, and replicated onto two LB agar medium plates. The 60 colonies of each plate were combined, inoculated to a test tube containing 4 ml of LB liquid medium and cultured for 15 hours. Then, a plasmid mixture was respectively obtained by using a plasmid DNA extraction kit produced by Promega. By using this plasmid mixture as a template and primers for screening prepared for each target gene, PCR was performed with the conditions shown as "conditions for screening PCR" in each table to select a clone from which a DNA fragment of the same size as that obtained by PCR using chromosomal DNA as a template had been amplified.

The nucleotide sequence of the amplified DNA fragment was determined by using a Big Dye dye terminator cycle sequencing kit produced by Perkin-Elmer, and investigating its homology to known gene information to determine if the target gene was obtained or not.

As for *lpd*, since any DNA fragment was not amplified with the primers produced in <2>, other primers for screening were prepared based on the determined nucleotide sequence.

<4> Selection of clone harboring target gene by colony

PCR

5

10

15

20

25

By using a plate that was an origin of a plasmid mixture for which amplification of the target gene fragment was confirmed, colony PCR was performed to select a clone containing the gene fragment. The colony PCR was performed with the conditions shown in Tables 2-7.

Plasmid DNA was collected from a selected transformant and the nucleotide sequence of the inserted DNA fragment was determined. When the full length of the target gene was not inserted in the inserted DNA fragment, and a upstream region, downstream region or the both were deleted, primers were prepared based on the determined nucleotide sequence, with which a gene fragment comprising the nucleotide sequence of the target gene in its full length was obtained by using TaKaRa LA PCR in vitro Cloning Kit (Takara Shuzo). Then, its nucleotide sequence was determined.

The outline of LA PCR cloning was as follows. Two kinds of primers each having one of the nucleotide sequences of two regions of the inserted DNA fragment were produced. Chromosomal DNA of Corynebacterium thermoaminogenes AJ12310 strain was digested with various restriction enzymes, and ligated to a cassette primer corresponding to each of the restriction enzymes. By using this as a template, PCR was performed with a primer (S1) corresponding to a position distant from the

deletion region and a cassette primer (C1) corresponding to a position outside the cassette primer among the prepared primers. Then, another PCR was performed with a primer (S2) corresponding to a position near the deletion region and a cassette primer (C2) corresponding to a position inside the cassette primer among the prepared primers. In this way, a DNA fragment containing the deleted region was obtained. By ligating the obtained DNA fragment with the already obtained DNA fragment, a DNA fragment containing the target gene in full length could be obtained. Since 5' end of the cassette did not have a phosphate group, a nick was formed at the ligation site of the 3' end of the DNA fragment and the 5' end of the cassette. Therefore, the DNA synthesis from the primer C1 stopped at this ligation site in the first PCR, and thus non-specific amplification did not occur. Therefore, specific amplification could be attained.

5

10

15

20

25

The primers and the reaction conditions used for the LA PCR cloning are shown in Tables 2-7. In the tables, the primers mentioned with "(N')" are primers used for the cloning of an upstream deleted portion, and the primers mentioned with "(C')" are primers used for the cloning of a downstream deleted portion. PCR was performed twice according to the instruction attached to the LA PCR cloning kit. Among the primers mentioned in the tables, the primers (S1) used for the first reaction

are shown in the upper row, and the primers (S2) used for the second reaction are shown in the lower row.

The nucleotide sequences of the DNA fragments containing each gene obtained as described above were determined in the same manner as mentioned above. Those nucleotide sequences and amino acid sequences that can be encoded by those nucleotide sequences are shown in SEQ ID NOS: 1-34. The sequences shown with the sequence numbers are summarized in Explanation of Sequence Listing mentioned hereinafter.

As for scrB, any open reading frame was not found. Since the Corynebacterium thermoaminogenes AJ12310 strain did not have the invertase activity and did not have sucrose assimilating property, an scrB gene fragment was obtained in a similar manner from Corynebacterium thermoaminogenes AJ12340 and AJ12309 strains having the sucrose assimilating property. As a result, a DNA fragment having an open reading frame was obtained from the both strains.

20

25

5

10

15

Example 2: Acquisition of gdh and gltA gene
<1> Investigation of GDH activity of Corynebacterium
thermoaminogenes

Cells of a wild strain of Corynebacterium

thermoaminogenes, the AJ12310 strain, was grown on CM-2B

agar medium (1 g/dl of yeast extract (produced by Difco),

1 g/dl of polypeptone (produced by Nippon Seiyaku), 0.5

g/dl of NaCl, 10 μ g/dl of biotin, 1.5 g/dl of agar, adjusted to pH 7.0 with KOH). The cells were inoculated to a 500-ml volume flask containing 20 ml of a medium for flask having the following composition and cultured at 37°C for 17 hours (until the residual sugar reached about 1 g/dl).

Similarly, cells of the 2256 strain (ATCC13869) of Brevibacterium lactofermentum grown on CM-2B agar medium were cultured at 31.5°C for 17 hours.

10

5

[Medium for flask]

Glucose

3 g/dl

KH₂PO₄

0.1 g/dl

MqSO₄·H₂O

0.04 g/dl

15 FeSO₄·7H₂O

1 mg/dl

MnSO₄·4H₂O

1 mg/dl

Vitamin B,-HCl

 $200 \mu g/L$

Biotin

 $50 \mu g/L$

 $(NH_4)_2SO_4$

1.5 g/dl

20 Soybean protein hydrolysis solution 48 mg/dl (Memeno (T-N))

CaCO₃ (Official regent) 5 g/dl (separately sterilized)
pH 8.0 (adjusted with KOH)

25 About 1 ml of the above culture medium was centrifuged at 1000 rpm for 1 minute to remove CaCO3, and the cells were washed twice with 200 mM K-phosphate

buffer (pH 6.9) and suspended in 300 μ l of the same buffer. The obtained cell suspension was sonicated for 5 minutes to disrupt the cells, centrifuged at 1000 rpm for 30 minutes to obtain a crude enzyme solution as the supernatant.

5

10

15

20

25

The optimum reaction temperature and the thermal stability of GDH activity were investigated using the aforementioned crude enzyme solution. The measurement of GDH activity was performed by adding the crude enzyme solution to a reaction mixture (100 mM Tris-HCl (pH 8.0), 20 mM NH₄Cl, 10 mM sodium α -ketoglutarate, 0.25 mM NADPH) and measuring change of absorbance at 340 nm. The protein concentration of the crude enzyme solution was quantified by the Bradford method (Bio-Rad Protein Assay Kit was used) using bovine serum albumin as the standard through measurement of absorbance at 595 nm. The absorbance was measured by using HITACHI U-2000 (produced by Hitachi).

The GDH activity measured at various reaction temperatures is shown in Fig. 1. While the ATCC13869 strain showed the highest specific activity of GDH around 37°C and the activity markedly decreased around 42°C, the AJ12310 strain showed the highest specific activity around 42°C and it showed the activity even at 45°C.

Then, the thermal stability of GDH was investigated. The crude enzyme solution was left at

65°C for 0 to 30 minutes before the reaction, and then the enzyme activity was measured at 30°C. The results are shown in Fig. 2. As clearly seen from the results, while GDH of the ATCC13869 strain was inactivated by the heat treatment for 5 minutes, GDH of the AJ12310 strain maintained the activity even after the heat treatment for 30 minutes. In addition, the crude enzyme solution of the AJ12310 strain showed substantially no change in the GDH activity even after the heat treatment at 65°C for 90 minutes (data are not shown).

5

10

15

20

25

<2> Examination of CS activity of Corynebacterium
thermoaminogenes

The optimum reaction temperature and thermal stability of CS were investigated by using crude enzyme solutions prepared from the cells of the Corynebacterium thermoaminogenes AJ12310 strain and the Brevibacterium lactofermentum ATCC13869 strain in the same manner as in Example 1. The measurement of CS activity was performed by adding each crude enzyme solution to a reaction mixture (100 mM Tris-HCl (pH 8.0), 0.1 mM DTNB (5,5'-dithiobis-(2-nitrobenzoic acid)), 200 mM sodium L-glutamate, 0.3 mM acetyl CoA), and measuring change of the absorbance at 412 nm.

The CS activity measured at various reaction temperatures is shown in Fig. 3. The ATCC13869 strain showed the highest specific activity of CS around 23°C

and the activity markedly decreased around 33°C. However, the AJ12310 strain showed high specific activity in a reaction temperature-dependent manner up to around 37°C and it showed the activity even at 40°C in a degree corresponding to about 40% of the activity at 37°C.

Then, thermal stability of CS was investigated. The crude enzyme solution was left at 33-55°C for 5 minutes before the reaction, and then the enzyme activity was measured at 30°C. The results are shown in Fig. 4. Whereas CS of the ATCC13869 strain was inactivated by the heat treatment at 35-40°C, CS of the AJ12310 strain maintained about 40% of the activity even after the heat treatment at 50°C.

15

20

25

10

5

<3> Acquisition of gdh gene of Corynebacterium
thermoaminogenes

The already reported nucleotide sequences of gdh gene of various microorganisms were compared. A region in which nucleotide sequences were well conserved was selected, and primers having the nucleotide sequences shown in SEQ ID NOS: 77 and 78 were prepared based on the nucleotide sequence of the region.

PCR was performed by using chromosomal DNA

prepared from the Corynebacterium thermoaminogenes

AJ12310 strain using Bacterial Genome DNA Purification

Kit (produced by Advanced Genetic Technologies) as a

template and the aforementioned primers. Based on the obtained DNA fragment, genome walking was performed by using TaKaRa LA PCR in vitro Cloning Kit (produced by Takara Shuzo) to obtain the whole gdh gene, of which whole nucleotide sequence was determined. The result is shown in SEQ ID NO: 79. Further, the amino acid sequence deduced from this nucleotide sequence is shown in SEQ ID NO: 80.

The gdh gene of the Brevibacterium lactofermentum ATCC13869 strain was obtained in a similar manner, and its nucleotide sequence was determined. The result is shown in SEQ ID NO: 81. The amino acid sequence encoded by this nucleotide sequence is shown in SEQ ID NO: 82.

Homology was investigated for the nucleotide sequences of the gdh gene and the amino acid sequences of GDH of the Corynebacterium thermoaminogenes AJ12310 strain and the Brevibacterium lactofermentum ATCC13869 strain determined as described above, and the known gdh gene and amino acid sequence of GDH of the Corynebacterium glutamicum (C. glutamicum) ATCC13032 strain (Molecular Microbiology 6, 317-326 (1992)). The results are shown in Table 8 (for nucleotide sequences) and Table 9 (for amino acid sequences).

5

10

15

20

Table 8: Homology of nucleotide sequences of various qdh genes

	ATCC13869	ATCC13032	AJ12310
ATCC13869	_	94.5%	82.4%
ATCC13032	-	-	78.1%
AJ12310	-	-	_

Table 9: Homology of amino acid sequences of

various GDH

5

10

15

20

	ATCC13869	ATCC13032	AJ12310
ATCC13869	_	90.8%	91.7%
ATCC13032	-	_	83.4%
AJ12310	-	-	_

<4> Acquisition of gltA gene of Corynebacterium thermoaminogenes

The already reported nucleotide sequences of gltA gene of various microorganisms were compared. A region in which nucleotide sequences were well conserved was selected, and primers having the nucleotide sequences shown in SEQ ID NOS: 83 and 84 were prepared based on the nucleotide sequence of the region.

PCR was performed by using chromosomal DNA
prepared from the Corynebacterium thermoaminogenes
AJ12310 strain (FERM BP-1542) using Bacterial Genome DNA
Purification Kit (produced by Advanced Genetic
Technologies) as a template and the aforementioned
primers 7 and 8, and the nucleotide sequence of the
amplified nucleotide sequence of about 0.9 kb was
determined.

On the basis of the obtained nucleotide sequence of gltA gene of Corynebacterium glutamicum (Microbiol., 140, 1817-1828 (1994)), the primers of SEQ ID NOS: 85, 86, 87 and 88 were prepared. PCR was performed in a manner similar to the above by using chromosomal DNA of AJ12310 as a template and the primers of SEQ ID NOS: 85, 86, 87 and 88, and the nucleotide sequence of the amplified DNA fragment was specified to determine the whole nucleotide sequence of the gltA gene. The result is shown in SEQ ID NO: 89. Further, an amino acid sequence expected from this nucleotide sequence is shown in SEO ID NO: 90.

5

10

15

20

25

The gltA gene of the Brevibacterium lactofermentum 2256 strain was obtained in a similar manner, and its nucleotide sequence was determined. The result is shown in SEQ ID NO: 91. The amino acid sequence encoded by this nucleotide sequence is shown in SEQ ID NO: 92.

Homology was investigated for the nucleotide sequences of the gltA gene and the amino acid sequences of CS of the Corynebacterium thermoaminogenes AJ12310 strain and the Brevibacterium lactofermentum ATCC13032 strain determined as described above, and the known gltA gene and amino acid sequence of CS of the Corynebacterium glutamicum ATCC13032 strain (Microbiol., 140, 1817-1828 (1994)). The results are shown in Table 10 (for nucleotide sequences) and Table 11 (for amino acid sequences).

Table 10: Homology of nucleotide sequences of various gltA genes

	ATCC13869	ATCC13032	AJ12310
ATCC13869	-	99.5%	85.7%
ATCC13032	_	-	85.6%
AJ12310	_	_	

5 Table 11: Homology of amino acid sequences of various CS

10

15

	ATCC13869	ATCC13032	AJ12310
ATCC13869	_	99.3%	92.1%
ATCC13032	-	-	92.1%
AJ12310	_	_	_

Example 3: Acquisition of scrB gene of Corynebacterium thermoaminogenes

Since an scrB gene fragment was obtained from the Corynebacterium thermoaminogenes AJ12309 strain as shown in Example 1, it was attempted to obtain the total sequence of the gene. First, a partial fragment was obtained in the same manner as in Example 1 using the primers shown in SEQ ID NO: 45 and SEQ ID NO: 46. These primers were synthesized based on the scrB sequence of the Brevibacterium lactofermentum 2256 strain (Japanese Patent Laid-open No. 08-196280/1996).

Separately, chromosomal DNA was prepared from the AJ12309 strain by using Bacterial Genome DNA Purification Kit (Advanced Genetic Technologies Corp.). Sterilized water was added to 0.5 μg of this chromosomal

DNA, 50 pmol each of the aforementioned primers, 4 μ l of dNTP mixture (2.5 mM each), 5 μ l of 10 x Z-Taq Buffer (Takara Shuzo) and 2 U of Z-Taq (Takara Shuzo) to prepare a PCR reaction mixture in a total volume of 50 μ l. PCR was performed with a cycle of denaturation at 98°C for 5 seconds, association at 50°C for 10 seconds and extension reaction at 72°C for 20 seconds, which was repeated for 30 cycles, by using the above reaction mixture and a thermal cycler GeneAmp PCR System 9600 (PE) to amplify a partial fragment of scrB of about 600 bp.

5

10

15

20

25

Then, the total sequence of scrB was determined by using an LA PCR in vitro Cloning Kit (Takara Shuzo). All of the procedure was performed in accordance with the protocol attached to the LA PCR in vitro Cloning Kit. Based on the obtained partial sequence, primers shown in SEO ID NOS: 97, 98, 99 and 100 were synthesized. For the first PCR reaction for sequencing an upstream region, the primers shown in SEQ ID NOS: 95 and 97 and chromosomal DNA of AJ12309 strain digested with EcoT141 as a template DNA were used. For the second PCR reaction, the primers shown in SEQ ID NOS: 96 and 98 were used. For the first PCR reaction for sequencing a downstream region, the primers shown in SEQ ID NOS: 95 and 99 and chromosomal DNA of AJ12309 strain digested with SalI (Takara Shuzo) as a template DNA were used. For the second PCR reaction, the primers shown in SEQ ID

NOS: 96 and 100 were used. By the above procedure, a sequence of a full length of 1656 bp containing ORF of scrB was determined. This nucleotide sequence is shown in SEQ ID NO: 93, and a deduced amino acid sequence is shown in SEQ ID NO: 94.

Example 4: Examination of thermal stability of isocitrate lyase, phosphofructokinase, phosphoenolpyruvate carboxylase, aconitase, isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase

Thermal stability was investigated for the following enzymes derived from Corynebacterium thermoaminogenes. In this Example, protein concentrations were measured by the Bradford method (Bio-Rad Protein Assay Kit was used) using bovine serum albumin as a standard protein. Further, measurement of absorbance was performed by using HITACHI U-2000 (Hitachi) unless otherwise indicated.

20 <1> Isocitrate lyase

5

10

15

25

Thermal stability of activity of isocitrate lyase (henceforth also referred to as "ICL") derived from the Corynebacterium thermoaminogenes AJ12310 strain and ICL derived from the Brevibacterium lactofermentum 2256 strain (ATCC13869) was investigated. For the activity measurement, used were cells of which culture in a medium having the composition mentioned in Table 2 was

terminated before all of the carbon source was completely consumed. The method of the activity measurement was one described in Dieter J. Reinscheid et al., J. Bacteriol., 176 (12), 3474 (1994). Specifically, the cells were washed with 50 mM Tris buffer (pH 7.3), suspended in the same buffer, and disrupted by sonication (INSONATOR 201M produced by KUBOTA was used, 200 W, 5 minutes). After the sonication, the suspension was centrifuged (13000 x g, 30 minutes) to remove undisrupted cells to prepare a crude enzyme solution.

5

10

15

20

25

The crude enzyme solution was added to a reaction system containing 50 mM MOPS-NaOH (pH 7.3), 5 mM dithiothreitol, 15 mM MgCl₂, 1 mM EDTA, 5 mM D-threo-isocitrate, 0.2 mM NADH and 18 U of LDH (lactate dehydrogenase), and absorbance at 340 nm at various temperatures (30, 40, 50, 60 or 70°C) was measured by a Hitachi spectrophotometer U-3210. The measurement results for various reaction temperatures were shown in Fig. 5. Further, the crude enzyme solution was pretreated at 50°C (pretreatment time: 5 minutes or 15 minutes), and the activity was measured at 37°C. The results are shown in Fig. 6.

As a result, ICL of the AJ12310 strain showed the maximum activity at 60°C, whereas ICL of the 2256 strain showed the maximum activity around 50°C. Further, while ICL of the 2256 strain was completely inactivated after the pretreatment for 5 minutes, ICL of the AJ12310

strain maintained half of the activity after the pretreatment for 5 minutes. Thus, the stability of ICL of the AJ12310 strain at high temperatures was confirmed.

Table 12 Composition of medium for ICL activity measurement

Component	Concentration
$(NH_4)_2SO_4$	5 g/l
Urea	5 g/l
KH ₂ PO ₄	0.5 g/l
K ₂ HPO ₄	0.5 g/l
MOPS	20.9 g/l
MgSO ₄ ·7H ₂ O	0.25 g/l
CaCl ₂ ·7H ₂ O	10 mM
CuSO ₄ ·7H ₂ O	0.2 mg/l
Biotin	0.2 mg/l
MnSO ₄ ·7H ₂ O	10 mg/l
FeSO ₄ ·7H ₂ O	10 mg/l
ZnSO ₄ ·7H ₂ O	1 mg/l
Acetic acid	4 %

<2> Phosphofructokinase

5

phosphofructokinase (henceforth also referred to as
"PKF") derived from the Corynebacterium thermoaminogenes
AJ12310 strain and PKF derived from the Brevibacterium
lactofermentum 2256 strain was investigated. For the
activity measurement, used were cells of which culture
in a medium having the composition mentioned in Table 13
was terminated before all of the saccharide was
completely consumed. The method of the activity
measurement was one described in Michiko Mori et al.,

Agric. Biol. Chem., 51 (10), 2671 (1994). Specifically, the cells were washed with 0.1 M Tris buffer (pH 7.5), suspended in the same buffer, and disrupted by sonication (INSONATOR 201M produced by KUBOTA was used, 200 W, 5 minutes). After the sonication, the suspension was centrifuged (13000 x g, 30 minutes) to remove undisrupted cells to obtain a crude enzyme solution.

5

10

15

20

25

The crude enzyme solution was added to a reaction system containing 100 mM Tris buffer (pH 7.5), 0.2 mM NADH, 10 mM MgCl₂, 2 mM NH₄Cl, 10 mM KCl, 0.2 mM phosphoenolpyruvic acid, 6.4 mM fructose-6-phosphate, 1 mM ATP and 40 µg of LDH/PK (pyruvate kinase), and absorbance at 340 nm was measured at various temperatures (30, 40, 50, 60 or 70°C) by a Hitachi spectrophotometer U-3210. The measurement results for various reaction temperatures were shown in Fig. 7. Further, the crude enzyme solution was pretreated at 50°C (pretreatment time: 1, 3, 5 or 10 minutes), and the activity was measured at 37°C. The results are shown in Fig. 8.

As a result, PKF of the AJ12310 strain showed the maximum activity around 50°C, whereas PKF of the 2256 strain showed the maximum activity around 30°C. Thus, it was confirmed that the optimum temperature of PKF of the AJ12310 strain resided in a high temperature region.

Table 13 Composition of medium for PFK activity measurement

Component	Concentration
Polypeptone	20 g/l
Yeast extract	20 g/l
Sodium chloride	5 g/l
Glucose	20 g/l

<3> Phosphoenolpyruvate carboxylase

5

10

15

20

Thermal stability of activity of phosphoenolpyruvate carboxylase (henceforth also referred to as "PEPC") derived from the *Corynebacterium thermoaminogenes* AJ12310 strain and PEPC of the Brevibacterium lactofermentum 2256 strain was examined.

Cells of the AJ12310 strain grown on CM-2B agar medium were inoculated to a 500-ml volume flask containing 20 ml of a medium for flask (8 g/dl of Glucose, 0.1 g/dl of KH₂PO₄, 0.04 g/dl of MgSO₄·H₂O, 1 mg/dl of FeSO₄·7H₂O, 5 mg/dl of MnSO₄·4H₂O, 3 g/dl of (NH₄)₂SO₄, 48 mg/dl of TN (soybean protein hydrolysis solution), 200 μ g/L of vitamin B₁, 300 μ g/L of biotin, 50 μ l/l of GD-113 (antifoaming agent), 5 g/dl of CaCO₃ (Official regent, separately sterilized), pH 8.0 (adjusted with KOH)), and cultured at 37°C. Cells of the 2256 strain grown on CM-2B agar medium were similarly cultured at 31.5°C.

The above culture broth in which the cells were grown to the logarithmic growth phase was centrifuged at 1000 rpm for 1 minute to remove CaCO3, and the cells

were washed 3 times with washing buffer (100 mM Tris/HCl pH 8.0, 10 mM MgSO₄, 1 mM DTT, 20% glycerol), sonicated to disrupt the cells, and centrifuged at 15 krpm for 10 minutes to remove cell debris. The supernatant was further centrifuged at 60 krpm for 1 hour to obtain a crude enzyme solution as the supernatant.

5

10

15

20

25

By using the above crude enzyme solution, optimum reaction temperature and thermal stability of the PEPC activity were investigated. The measurement of PEPC activity was performed by adding the crude enzyme solution to a reaction mixture (100 mM Tris/ $\rm H_2SO_4$ (pH 8.5), 5 mM phosphoenolpyruvic acid, 10 mM KHCO₃, 0.1 mM acetyl-CoA, 0.15 mM NADH, 10 mM MgSO₄, 10 U of malate dehydrogenase, 0.1 mM DTT), and measuring change of the absorbance at 340 nm in 800 μl of reaction volume.

The PEPC activity measured at various reaction temperatures is shown in Fig. 9. While the activity of the 2256 strain markedly decreased at 40°C, the AJ12310 strain showed substantially no decrease of the activity even at 40°C.

Then, the thermal stability of PEPC was investigated. The crude enzyme solution was left at 45°C for 0-20 minutes before the reaction, and then the enzyme activity was measured at 20°C. The results are shown in Fig. 10. As clearly seen from the results, whereas the PEPC activity of the 2256 strain was substantially lost after the heat treatment for 10

minutes, PEPC of the AJ12310 strain maintained the activity even after the heat treatment for 20 minutes.

These results demonstrated the stability of PEPC of the AJ12310 strain at a high temperature.

5

10

15

20

<4> Aconitase

Aconitase (henceforth also referred to as "ACN") derived from the *Corynebacterium thermoaminogenes*AJ12310 strain and ACN derived from the *Brevibacterium lactofermentum* 2256 strain were measured, and thermal stability thereof was examined.

Cells of the AJ12310 strain grown on CM-2B agar medium were inoculated to a 500-ml volume flask containing 20 ml of a medium for flask having the same composition as mentioned in <3>, and cultured at 37°C. Cells of the 2256 strain grown on CM-2B agar medium were similarly cultured at 31.5°C.

The above culture broth in which the cells were grown to the logarithmic growth phase was centrifuged at 1000 rpm for 1 minute to remove CaCO₃, and the cells were washed 3 times with 50 mM Tris/HCl pH 7.5, sonicated to disrupt the cells, and centrifuged at 15 krpm for 10 minutes to obtain a crude enzyme solution as the supernatant.

By using the above crude enzyme solution, optimum reaction temperature and thermal stability of ACN activity were investigated. The measurement of ACN

activity was performed by adding the crude enzyme solution to a reaction mixture (20 mM Tris/HCl (pH7.5), 50 mM NaCl, 20 mM isocitrate 3Na), and measuring change of the absorbance at 240 nm in 800 μ l of reaction volume.

The ACN activity measured at various reaction temperatures is shown in Fig. 11. The AJ12310 strain showed higher activity at a higher temperature compared with the 2256 strain.

Then, the thermal stability of ACN was investigated. The crude enzyme solution was left at 50°C for 0-15 minutes before the reaction, and then the enzyme activity was measured at 30°C. The results are shown in Fig. 12. As clearly seen from the results, ACN of the AJ12310 strain showed less activity decrease due to the heat treatment compared with ACN of the 2256 strain.

These results demonstrated the stability of ACN of the AJ12310 strain at a high temperature.

20 <5> Isocitrate dehydrogenase

5

10

15

25

Thermal stability of activity of isocitrate dehydrogenase (henceforth also referred to as "ICDH") derived from the Corynebacterium thermoaminogenes

AJ12310 strain and ICDH derived from the Brevibacterium lactofermentum 2256 strain was examined.

Cells of the AJ12310 strain grown on CM-2B agar medium were inoculated to a 500-ml volume flask

containing 20 ml of a medium for flask having the same composition as mentioned in <3>, and cultured at 37°C.

Cells of the 2256 strain grown on CM-2B agar medium were similarly cultured at 31.5°C.

The above culture broth in which the cells were grown to the logarithmic growth phase was centrifuged at 1000 rpm for 1 minute to remove CaCO₃, and the cells were washed 3 times with 50 mM Tris/HCl pH 7.5, sonicated to disrupt the cells, and centrifuged at 15 krpm for 10 minutes to obtain a crude enzyme solution as the supernatant.

5

10

15

20

25

By using the above crude enzyme solution, optimum reaction temperature and thermal stability of ICDH activity were investigated. The measurement of ICDH activity was performed by adding the crude enzyme solution to a reaction mixture (35 mM Tris/HCl, 0.35 mM EDTA (pH 7.5), 1.5 mM MnSO₄, 0.1 mM NADP, 1.3 mM isocitrate 3Na), and measuring change of the absorbance at 340 nm in 800 μ l of reaction volume.

The ICDH activity measured at various reaction temperatures is shown in Fig. 13. While the activity of the 2256 strain markedly decreased at 70°C, substantially no activity decrease was observed even at 70°C for the AJ12310 strain.

Then, the thermal stability of ICDH was investigated. The crude enzyme solution was left at $45\,^{\circ}\text{C}$ for 0-15 minutes before the reaction, and then the

enzyme activity was measured at 30°C. The results are shown in Fig. 14. As clearly seen from the results, while only about 15% of residual activity was observed after the heat treatment for 15 minutes for the 2256 strain, about 60% of residual ICDH activity was observed for the AJ12310 strain.

These results demonstrated the stability of ICDH of the AJ12310 strain at a high temperature.

10 <6> 2-Oxoglutarate dehydrogenase

5

15

20

25

2-Oxoglutarate dehydrogenase (henceforth also referred to as "ODHC") derived from the Corynebacterium thermoaminogenes AJ12310 strain and ODHC derived from the Brevibacterium lactofermentum 2256 strain were measured, and thermal stability thereof was examined.

For the activity measurement, used were cells of which culture in a medium having the composition mentioned in Table 14 was terminated before all of the saccharide was completely consumed. The method of the activity measurement was one described in Isamu Shiio et al., Agric. Biol. Chem., 44 (8), 1897 (1980).

Specifically, the cells were washed with 0.2% potassium chloride, suspended in 100 mM TES-NaOH (pH 7.5), 30% glycerol solution, and disrupted by sonication (INSONATOR 201M produced by KUBOTA was used, 200 W, 5 minutes). After the disruption by sonication, the suspension was centrifuged (13000 x q, 30 minutes) to

remove undisrupted cells, and subjected to gel filtration using the same buffer and Sephadex-G25 to prepare a crude enzyme solution.

The crude enzyme solution was added to a reaction

system containing 100 mM TES-NaOH (pH 7.7), 5 mM MgCl₂,

0.2 mM Coenzyme A, 0.3 mM cocarboxylase, 1 mM α
ketoglutaric acid, 3 mM L-cysteine and 1 mM

acetylpyridine-adenine dinucleotide, and absorbance at

365 nm was measured at various temperatures (30, 40, 50,

60 or 70°C) by a Hitachi spectrophotometer U-3210. The

crude enzyme solution was pretreated at 50°C

(pretreatment time: 1, 3, 5 or 10 minutes), and the

activity was measured at 37°C. The results are shown in

Fig. 15.

As a result, while ODHC of the 2256 strain was completely inactivated by the pretreatment for 10 minutes, ODHC of the AJ12310 strain showed substantially constant activity irrespective of the pretreatment time, and thus its stability against high temperature treatment was confirmed.

15

20

Table 14 Composition of medium for ODHC activity measurement

Component	Concentration		
Glucose	80 g/l		
KH ₂ PO ₄	1 g/l		
MgSO ₄ ·7H ₂ O	0.4 g/l		
FeSO ₄ ·7H ₂ O	0.01 g/l		
MnSO ₄ ·7H ₂ O	0.05 g/l		
$(NH_4)_2SO_4$	30 g/l		
Soybean protein hydrolysate	480 mg/l		
Thiamin hydrochloride	200 μg/l		
Biotin	300 μg/l		

Example 5: Impartation of sucrose assimilating ability by gene transfer of scrB gene

5

10

Since the Corynebacterium thermoaminogenes AJ12310 strain did not have invertase activity and sucrose assimilating property, it was investigated if sucrose assimilating ability could be imparted to it by transferring the scrB gene of the AJ12309 strain to the strain.

<1> Production of plasmid carrying scrB derived from
Corynebacterium thermoaminogenes AJ12309 strain

To obtain an scrB gene fragment, the primers shown in SEQ ID NOS: 101 and 102 were synthesized, of which both ends were ligated with SmaI sequences, based on the nucleotide sequence shown in SEQ ID NO: 93. Sterilized water was added to 0.5 μ g of chromosomal DNA of the 12309 strain, 50 pmol each of the aforementioned

oligonucleotides, 4 μ l of dNTP mixture (2.5 mM each), 5 μ l of 10 x Pyrobest Buffer (Takara Shuzo) and 2 U of Pyrobest polymerase (Takara Shuzo) to prepare a PCR reaction mixture in a total volume of 50 μ l. PCR was performed with a cycle of denaturation at 98°C for 10 seconds, association at 55°C for 30 seconds and extension reaction at 72°C for 2 minutes, which was repeated for 30 cycles, by using the above reaction mixture and a thermal cycler GeneAmp PCR System 9600 (PE) to amplify a fragment of about 1.7 kb containing scrB ORF.

5

10

15

20

25

Then, the above amplified fragment was digested with SmaI (Takara Shuzo), and ligated to plasmid pSAC4 containing a dephosphorylated replication origin functioning in coryneform bacteria, which had been digested with SmaI, to prepare pSCR155. The construction of pSCR155 is shown in Fig. 16. pSAC4 was produced as follows. In order to make the vector for Escherichia coli pHSG399 (Takara Shuzo) autonomously replicable in coryneform bacteria, the replication origin (Japanese Patent Laid-open No. 5-7491/1993) derived from the already obtained plasmid pHM1519 autonomously replicable in coryneform bacteria (Miwa, k.et al., Agric. Biol. Chem., 48 (1984) 2901-2903) was introduced into it. Specifically, pHM1519 was digested with restriction enzymes BamHI and KpnI, and the obtained fragment containing the replication origin was blunt-ended by using a Blunting kit produced by Takara Shuzo and inserted into pHSG399 at the SalI site by using an SalI linker (produced by Takara Shuzo) to obtain pSAC4.

5

10

15

20

25

<2> Transfer of plasmid carrying scrB gene into AJ12310 strain

pSCR155 produced above and plasmid pSSM30BS (Japanese Patent Laid-open No. 08-196280/1996) carrying the scrB gene derived from Brevibacterium lactofermentum were introduced into the Corynebacterium thermoaminogenes AJ12310 strain. The transformation was performed according to the following procedure. The cells were inoculated to CM-2B medium containing 20% sucrose in such an amount that OD_{660} of the medium should become 0.1, and cultured at 37°C with shaking until the OD_{660} become 0.3. Lysozyme was added to the medium at a concentration of 100 μ g/ml, and the cells were further cultured for 2 hours. The cells were washed three times with 20% sucrose, suspended in 20% sucrose, added with the plasmid collected from Escherichia coli JM110, mixed sufficiently, and applied with an electric pulse (18 kV/cm, 300 msec) to be introduced with the DNA. After the cells were subjected to restoration culture overnight in CM-2B medium containing 20% sucrose, transformants were selected on CM-2B agar medium containing 5 μ g/ml of chloramphenicol. Specifically,

the transformation was performed by the electric pulse method (Japanese Patent Laid-open No. 12-204236/2000, and the selection of transformants was performed on CM2B plate medium containing 5 µg/ml of chloramphenicol at 37°C. As a result, any transformant harboring the plasmid pSSM30BS carrying scrB derived from Brevibacterium lactofermentum was not obtained, but only a transformant harboring the plasmid pSCR155 carrying scrB derived from Corynebacterium thermoaminogenes was obtained. This strain was designated as AJ12310/pSCR155.

5

10

15

20

<3> Evaluation of culture of AJ12310/pSCR155 strain using sucrose as sugar source.

AJ12310/pSCR155 prepared above was inoculated to a medium having the composition shown in Table 15, and cultured at 37°C for 22 hours with shaking. The absorbance (OD) and residual sugar (RS) of the medium were measured after the culture. The results are shown in Table 16. As a result, it was confirmed that, while the AJ12310 strain could not assimilate sucrose and hence could not grow, the scrB gene introduced strain, the AJ12310/pSCR155 strain, became to be able to assimilate sucrose.

Medium composition Concentration Sucrose 60 g/l KH,PO $1 \, g/1$ $0.4 \, g/1$ MgSO₄·7H₂O $0.01 \, g/1$ FeSO₄·7H₂O $0.01 \, q/1$ $MnSO_4 \cdot 7H_2O$ (NH₄)₂SO₄30 g/1Soybean protein 480 mg/l hydrolysate Thiamin $200 \mu g/1$ hydrochloride Biotin $300 \mu g/1$

Table 15 Medium composition

Table 16 Result of sucrose culture

l	OD (x 51)	RS (g/l)
2256	1.292	0.00
AJ12310	0.058	60.00
AJ12310/pSCR155	1.571	0.84

Example 6: L-glutamic acid production by pdhA geneamplified strain

5

10

15

<1> Construction of plasmid pPDHA-2 carrying pdhA

The pdhA gene derived from the Corynebacterium thermoaminogenes AJ12310 strain was obtained by screening of a plasmid library. Specifically, PCR was performed with the conditions shown in Example 1, Table 4, using a plasmid library mixture as a template, and a clone p21A was selected, from which a DNA fragment of the same size is amplified as obtained in PCR using chromosomal DNA as a template. The DNA sequence of this plasmid was determined to confirm that the full length of pdhA was contained in it.

p21A was digested with XbaI and KpnI to excise a DNA fragment of 4 kb containing the full length of the pdhA gene and a promoter region. This DNA fragment containing the pdhA gene was inserted into the XbaI and KpnI sites of pHSG299 (Takara Shuzo). Then, this 5 plasmid was digested with XbaI, and a fragment obtained by digesting pXK4 with XbaI was inserted to prepare pPDHA-2. The construction process of pPDHA-2 is shown in Fig. 17. A DNA Ligation Kit Ver.2 (Takara Shuzo) was used for the ligation reaction, and Escherichia coli 10 JM109 strain (Takara Shuzo) was used as the host of genetic manipulation. The aforementioned pXK4 was produced as follows. A shuttle vector pHK4 for coryneform bacteria and Escherichia coli (Japanese Patent Laid-open No. 5-7491/1993) was digested with restriction enzymes BamHI and KpnI to obtain a DNA fragment containing the replication origin, and the obtained fragment was blunt-ended by using a DNA blunting kit (Blunting Kit produced by Takara Shuzo), ligated to an XbaI linker (produced by Takara Shuzo) and inserted into pHSG299 at the XbaI site to obtain the plasmid pKX4.

15

20

25

<2> Transfer of plasmid carrying pdhA gene into AJ12310 strain

The plasmid pPDHA-2 produced above was introduced into the Corynebacterium thermoaminogenes AJ12310 strain to prepare a pdhA gene-amplified strain. The transformation was performed in the same manner as Example 5, and a transformant was selected on CM-2B agar medium containing 25 μ g/ml kanamycin to obtain AJ12310/pPDHA-2 strain.

5

10

15

20

25

<3> L-glutamic acid production by pdhA-amplified strain The AJ12310 strain and the pdhA gene-amplified strain obtained above, AJ12310/pPDHA-2 strain, both of which were grown on CM-2B agar medium, were each inoculated to a 500-ml volume flask containing 20 ml of a medium for seed culture flask shown in Table 17, and cultured at 37°C with shaking until glucose was completely consumed. 2 ml of this culture broth was inoculated into 500 ml-volume flask containing 20 ml of a medium for main culture flask shown in Table 17, and cultured as main culture at 37°C and 44°C. The main culture was continued until glucose was completely consumed. After the culture, OD_{620} of the medium and accumulated amount of L-glutamic acid were measured to examine the effect of the gene amplification on the cell formation and production of glutamic acid. measurement of OD was performed by using a spectrophotometer HITACHI U-2000 (Hitachi), and Lglutamic acid concentration was measured by using a glutamic acid analyzer AS-210 (Asahi Chemical Industry). The results are shown in Fig. 18.

The pdhA gene-amplified strain, AJ12310/pPDHA-2 strain, showed increased L-glutamic acid accumulation and increased OD compared with the AJ12310 strain, and thus it became clear that the amplification of the pdhA gene was effective for L-glutamic acid production.

5

Table 17 Medium for evaluation of pdhA-amplified strain

Medium composition	Seed culture	Main culture		
Sucrose	30 g/l	60 g/l		
KH ₂ PO ₄	1 g/l	1 g/l		
MgSO₄·7H₂O	0.4 g/l	0.4 g/l		
FeSO ₄ ·7H ₂ O	0.01 g/l	0.01 g/l		
MnSO ₄ ·7H ₂ O	0.01 g/l	0.01 g/l		
$(NH_4)_2SO_4$	15 g/l	30 g/l		
Soybean protein hydrolysate	480 mg/l	480 mg/l		
Thiamin hydrochloride	200 μg/l	200 μg/l		
Biotin	$10 \mu g/1$			
AZ-20R (anti- foaming agent)	20 μg/l	20 μg/l		
CaCO ₃ (separately sterilized)	50 g/L	50 g/L		
pH 8.0 (adjusted with KOH)				

Example 7: L-glutamic acid production by icd geneamplified strain

<1> Construction of plasmid pICD-4 carrying icd derived
from Corynebacterium thermoaminogenes AJ12310 strain

Based on the *icd* gene sequence of the AJ12310

15 strain shown in SEQ ID NO: 29, the primers shown in SEQ

ID NO: 103 and SEQ ID NO: 104 were synthesized. A *Bgl*II

site was introduced into 5' end of the both primers.

Separately, genomic DNA of the Corynebacterium thermoaminogenes AJ12310 strain was prepared by using a Genomic DNA Purif. Kit (Edge BioSystems). Sterilized water was added to the genome DNA as a template, 100 pmol each of the aforementioned primers, 8 μ l of dNTP mixture (2.5 mM each), 10 μ l of 10 x Pyrobest Buffer II (Takara Shuzo) and 2.5 U of Pyrobest polymerase (Takara Shuzo) to prepare a PCR reaction mixture in a total volume of 100 μ l. PCR was performed with a cycle of denaturation at 98°C for 10 seconds, association at 55°C for 1 minute and extension reaction at 72°C for 4 minutes, which was repeated for 30 cycles, by using the above reaction mixture and a thermal cycler TP240 (Takara Shuzo) to amplify a DNA fragment of about 3.3 kb containing the icd gene and its promoter.

5

10

15

20

25

Then, this DNA fragment containing the *icd* gene was digested with *Bgl*II, and ligated to pHSG299 (Takara Shuzo) at the *Bam*HI site. This plasmid was then treated with *Xba*I, and a fragment obtained by digesting pXK4 with *Xba*I was inserted into the plasmid to construct pICD-4. The construction procedure of pICD-4 is shown in Fig. 19. A DNA Ligation Kit Ver.2 (Takara Shuzo) was used for the ligation reaction, and *Escherichia coli* JM109 strain (Takara Shuzo) was used as the host of genetic manipulation.

<2> Transfer of plasmid carrying icd gene into AJ12310

strain

5

The plasmid pICD-4 produced above was introduced into the Corynebacterium thermoaminogenes AJ12310 strain to prepare an icd gene-amplified strain. The transformation was performed in the same manner as Example 5, and a transformant was selected on CM-2B agar medium containing 25 μ g/ml kanamycin to obtain AJ12310/pICD-4 strain.

Culture evaluation was performed for the AJ12310 strain and the *icd*-amplified strain thereof,
AJ12310/pICD, by the culture method described in Example
6. The results are shown in Fig. 20. The *icd* geneamplified strain AJ12310/pICD-4 strain showed increased
L-glutamic acid accumulation and increased OD compared with the AJ12310 strain, and thus it became clear that the amplification of the *icd* gene was effective for L-

20

25

Example 8: L-glutamic acid production by gdh geneamplified strain

glutamic acid production.

<1> Construction of plasmid carrying gdh derived from
Corynebacterium thermoaminogenes AJ12310 strain

Based on the *gdh* gene sequence of the AJ12310 strain shown in SEQ ID NO: 79, the primers shown in SEQ ID NO: 105 and SEQ ID NO: 106 were synthesized.

Sep

arately, chromosomal DNA of the AJ12310 strain was prepared by using a Bacterial Genome DNA Purification Kit (Advanced Genetic Technologies Corp.). Sterilized 5 water was added to 0.5 μg of this chromosomal DNA, 10 pmol each of the aforementioned oligonucleotides, 8 μ l of dNTP mixture (2.5 mM each), 5 μ l of 10 x LA Tag Buffer (Takara Shuzo) and 2 U of LA Tag (Takara Shuzo) to prepare a PCR reaction mixture in a total volume of 10 50 μ l. PCR was performed with a cycle of denaturation at 94°C for 30 seconds, association at 55°C for 1 second and extension reaction at 72°C for 3 minutes, which was repeated for 30 cycles, by using the above reaction mixture and a thermal cycler TP240 (Takara Shuzo) to amplify a DNA fragment of about 2 kb containing the qdh gene and its promoter. The obtained amplified fragment was digested with PstI (Takara Shuzo), mixed with pHSG299 (Takara Shuzo) fully digested with PstI and ligated to it. A DNA Ligation Kit Ver.2 produced by Takara Shuzo was used for the ligation reaction. After the ligation, competent cells of Escherichia coli JM109 (produced by Takara Shuzo) were transformed with the ligation product, plated on L medium (10 g/l of Bactotrypton, 5 g/l of Bacto-yeast extract, 5 g/l of NaCl, 15 g/l of agar, pH 7.2) containing 10 $\mu g/ml$ of IPTG (isopropyl- β -D-thiogalactopyranoside), 40 μ g/ml of X-Gal $(5-bromo-4-chloro-3-indolyl-\beta-D-galactoside)$ and 40

15

20

25

 μ g/ml of chloramphenicol, and cultured overnight. The emerged white colonies were picked up and subjected to single colony separation to obtain transformants.

. 5

10

15

20

25

Plasmids were prepared from the transformants by the alkali method (Text for Bioengineering Experiments, Edited by the Society for Bioscience and Bioengineering, Japan, p.105, Baifukan, 1992) and their restriction maps were prepared. A plasmid having a restriction map equivalent to that shown in Fig. 21 was designated as pHSG299YGDH.

A replication origin that functions in coryneform bacteria was introduced into this pHSG299YGDH.

Specifically, pXC4 was digested with a restriction enzyme XbaI to obtain a fragment containing a replication origin derived from pHM1519, and it was mixed with pHSG299YGDH fully digested with XbaI and ligated to it. Plasmids were prepared in the same manner as above and a plasmid having a restriction map equivalent to that shown in Fig. 21 was designated as pYGDH. pXC4 was constructed in the same manner as that for pXK4 mentioned in Example 6 except that pHSG399 (Cmr) was used instead of pHSG299.

<2> Transfer of plasmid carrying gdh gene into AJ12310
 The plasmid produced above was introduced into the
 Corynebacterium thermoaminogenes AJ12310 strain to
 prepare a gdh gene-amplified strain. The transformation

was performed in the same manner as Example 5, and a transformant was selected on CM-2B agar medium containing 25 μ g/ml kanamycin at 31°C to obtain AJ12310/pYGDH.

<3> L-glutamic acid production by gdh-amplified strain

5

10

15

20

25

The AJ12310 strain and the qdh gene-amplified strain obtained above, AJ12310/pYGDH strain, both of which were grown on CM-2B agar medium, were each inoculated to a 500-ml volume flask containing 20 ml of a medium for seed culture flask shown in Table 18, and cultured at 37°C with shaking until glucose was completely consumed. 2 ml of this culture broth was inoculated into 500 ml-volume flask containing 20 ml of a medium for main culture flask shown in Table 19, and cultured as main culture at 37°C and 44°C. The main culture was continued until glucose was completely consumed. After completion of the culture, OD 620 of the medium and accumulated amount of L-glutamic acid were measured to examine the effect of the gene amplification on the cell formation and production of glutamic acid. The measurement of OD was performed by using a spectrophotometer HITACHI U-2000 (Hitachi), and Lglutamic acid concentration was measured by using a glutamic acid analyzer AS-210 (Asahi Chemical Industry).

Table 18 Composition of medium

for seed culture

Medium composition	Concentration			
Glucose	30 g/l			
Ammonium sulfate	15 g/l			
KH ₂ PO ₄	1 g/l			
MgSO ₄ ·7H ₂ O	0.4 g/l			
FeSO ₄ ·7H ₂ O	0.01 g/l			
MnSO ₄ ·7H ₂ O	0.01 g/l			
Soybean protein	0.48 g/l			
hydrolysate	0.10 9, -			
Thiamin	200 μg/l			
hydrochloride				
Biotin	$10 \mu g/1$			
AZ20R	0.02 ml/l			
CaCO, (separately	1 q/L			
sterilized)				
pH 8.0 (adjusted with KOH)				

Table 19 Composition of medium

for main culture

Medium composition	Concentration		
Glucose	60 g/l		
Ammonium sulfate	30 g/l		
KH ₂ PO ₄	1 g/l		
MgSO ₄ ·7H ₂ O	0.4 g/l		
FeSO ₄ ·7H ₂ O	0.01 g/l		
MnSO ₄ ·7H ₂ O	0.01 g/l		
Soybean protein	0.48 g/l		
hydrolysate	0010 g,		
Thiamin	200 μg/l		
hydrochloride			
AZ20R	0.02 ml/l		
CaCO, (separately	1 g/L		
sterilized)			
PH 8.0 (adjusted with	KOH)		

The results of the culture are shown in Table 20 and Table 21. At 37°C , the gdh-amplified strain showed higher saccharide consuming rate, better growth and

5

higher attained OD compared with the parent strain, the AJ12310 strain. Moreover, both of the L-glutamic acid accumulation and the yield were markedly improved, i.e., 5-7%, at 37°C. Also at 44°C, the yield was improved, and the attained OD increased. On the other hand, it was confirmed that accumulation of α -ketoglutaric acid was decreased in the gdh-amplified strain. These results demonstrate that the amplification of gdh is effective for improvement in L-glutamic acid yield and reduction of byproduct.

Table 20 Culture result of gdh-amplified strain (37°C)

	OD ₆₂₀ (51x)	L-Glu accumulation (g/dl)	L-Glu yield (%)	α-KG (mg/dl)
AJ12310	0.58	1.74	30.7	53.9
AJ12310/PYGDH	0.65	2.23	39.3	4.1

Table 21 Culture result of gdh-amplified strain (44°C)

	OD ₆₂₀	L-Glu	L-Glu yield
	(51x)	accumulation	(%)
		(g/dl)	
AJ12310	0.63	1.70	26.7
AJ12310/pYGDH	0.71	1.79	27.8

15

20

5

10

Example 9: L-glutamic acid production by gltA geneamplified strain

<1> Construction of plasmid carrying gltA gene derived
from Corynebacterium thermoaminogenes

Based on the gltA gene sequence of the AJ12310 strain shown in SEQ ID NO: 89, the primers shown in SEQ

ID NO: 107 and SEQ ID NO: 108 were synthesized.

Separately, chromosomal DNA of the AJ12310 strain was prepared by using a Bacterial Genome DNA Purification Kit (Advanced Genetic Technologies Corp.). 5 Sterilized water was added to 0.5 μ g of this chromosomal DNA, 10 pmol each of the aforementioned oligonucleotides, 8 μ l of dNTP mixture (2.5 mM each), 10 μ l of 10 x Pyrobest-Taq Buffer (Takara Shuzo) and 2 U of Pyrobest Taq (Takara Shuzo) to prepare a PCR reaction mixture in a total volume of 100 μ l. PCR was performed with a 10 cycle of denaturation at 94°C for 30 seconds, association at 45°C for 30 seconds and extension reaction at 72°C for 3 minutes, which was repeated for 30 cycles, by using the above reaction mixture and a thermal cycler TP240 (Takara Shuzo) to amplify a DNA 15 fragment of about 2 kb containing the gltA gene and its promoter. The obtained amplified fragment was digested with KpnI (Takara Shuzo), mixed with pHSG299 (Takara Shuzo) fully digested with KpnI and ligated to it. A DNA Ligation Kit Ver.2 produced by Takara Shuzo was used 20 for the ligation reaction. After the ligation, competent cells of Escherichia coli JM109 (produced by Takara Shuzo) were transformed with the ligation product, plated on L medium (10 g/l of Bacto-trypton, 5 g/l of Bacto-yeast extract, 5 q/l of NaCl, 15 q/l of agar, pH 7.2) containing 10 μ g/ml of IPTG (isopropyl- β -Dthiogalactopyranoside), 40 μ g/ml of X-Gal (5-bromo-4-

25

chloro-3-indolyl- β -D-galactoside) and 40 μ g/ml of chloramphenicol, and cultured overnight. The emerged white colonies were picked up and subjected to single colony separation to obtain transformants.

5

10

15

20

Plasmids were prepared from the transformants by the alkali method (Text for Bioengineering Experiments, Edited by the Society for Bioscience and Bioengineering, Japan, p.105, Baifukan, 1992) and their restriction maps were prepared. A plasmid having a restriction map equivalent to that shown in Fig. 22 was designated as pHSG299YCS.

A replication origin that is replicable in coryneform bacteria was introduced into this pHSG299YCS. Specifically, pXC4 was digested with a restriction enzyme XbaI to obtain a fragment containing a replication origin derived from pHM1519, and it was mixed with pHSG299YCS fully digested with XbaI and ligated to it. Plasmids were prepared in the same manner as above and a plasmid having a restriction map equivalent to that shown in Fig. 22 was designated as pYCS.

<2> Transfer of plasmid carrying gltA gene into AJ12310
strain

The plasmid produced above was introduced into the Corynebacterium thermoaminogenes AJ12310 strain to prepare a gltA gene-amplified strain. The

transformation was performed in the same manner as Example 5, and a transformant was selected on CM-2B agar medium containing 25 $\mu g/ml$ kanamycin to obtain AJ12310/pYCS.

5

10

15

<3> L-glutamic acid production by gltA-amplified strain

The AJ12310 strain and the gltA gene-amplified strain obtained above, AJ12310/pYCS strain, both of which were grown on CM-2B agar medium, were cultured in the same manner as in Example 8. The results of the culture are shown in Table 22 and Table 23. Both at the culture temperatures, 37°C and 44°C, the CS-enhanced strain showed improved glutamic acid accumulation compared with the parent strain. Further, the gltA-amplified strain showed decreased L-aspartic acid and L-lysine, which are synthesized from oxaloacetic acid.

These results demonstrate that the amplification of gltA is effective for improvement of L-glutamic acid yield and reduction of byproduct.

20

Table 22 Culture result of gltA-amplified strain (37°C)

	L-Glu	Yield	L-Asp	L-Lys
	accumulation	****	accumulation	accumulation
	(q/dl)	(%)	(mg/dl)	(mg/dl)
AJ12310	1.79	31.9	11.8	11.0
AJ12310/pYCS	2.04	36.5	8.1	7.3

Table 23 Culture result of gltA-amplified strain (44°C)

	OD	L-Glu	Yield	L-Asp	L-Lys
		accumulation	(%)	accumulation	Accumulation
		(g/dl)		(mg/dl)	(mg/dl)
AJ12310	0.58	1.38	21.8	23.3	29.2
AJ12310/pYCS	0.65	1.84	28.8	14.1	17.2

[Explanation of Sequence Listing]

SEQ ID NO: 1: aceA, nucleotide sequence

SEQ ID NO: 2: aceA, amino acid sequence

SEQ ID NO: 3: accBC, nucleotide sequence

SEQ ID NO: 4: accBC, amino acid sequence

SEQ ID NO: 5: dtsR1, nucleotide sequence

SEQ ID NO: 6: dtsR1, amino acid sequence

SEQ ID NO: 7: dtsR2, nucleotide sequence

SEQ ID NO: 8: dtsR2, amino acid sequence

SEQ ID NO: 9: pfk, nucleotide sequence

SEQ ID NO: 10: pfk, amino acid sequence

SEQ ID NO: 11: scrB (AJ12340), nucleotide sequence

SEQ ID NO: 12: scrB (AJ12340), amino acid sequence

SEQ ID NO: 13: scrB (AJ12309), nucleotide sequence

SEQ ID NO: 14: scrB (AJ12309), amino acid sequence

SEQ ID NO: 15: scrB (AJ12310), nucleotide sequence

SEQ ID NO: 16: gluABCD, nucleotide sequence

SEQ ID NO: 17: gluABCD, amino acid sequence

SEQ ID NO: 18: gluABCD, amino acid sequence

SEQ ID NO: 19: gluABCD, amino acid sequence

SEQ ID NO: 20: gluABCD, amino acid sequence

SEQ ID NO: 21: pdhA, nucleotide sequence

SEQ ID NO: 22: pdhA, amino acid sequence SEQ ID NO: 23: pc, nucleotide sequence SEQ ID NO: 24: pc, amino acid sequence SEQ ID NO: 25: ppc, nucleotide sequence SEQ ID NO: 26: ppc, amino acid sequence SEQ ID NO: 27: acn, nucleotide sequence SEQ ID NO: 28: acn, amino acid sequence SEQ ID NO: 29: icd, nucleotide sequence SEQ ID NO: 30: icd, amino acid sequence lpd, nucleotide sequence SEQ ID NO: 31: SEQ ID NO: 32: 1pd, amino acid sequence SEQ ID NO: 33: odhA, nucleotide sequence SEQ ID NO: 34: odhA, amino acid sequence gdh (AJ12310), nucleotide sequence SEQ ID NO: 79: gdh (AJ12310), amino acid sequence SEQ ID NO: 80: gdh (2256), nucleotide sequence SEQ ID NO: 81: qdh (2256), amino acid sequence SEO ID NO: 82: SEQ ID NO: 89: gltA (AJ12310), nucleotide sequence SEQ ID NO: 90: gltA (AJ12310), amino acid sequence SEQ ID NO: 91: gltA (2256), nucleotide sequence SEQ ID NO: 92: gltA (2256), amino acid sequence SEQ ID NO: 93: scrB (AJ12309), nucleotide sequence scrB (AJ12309), amino acid sequence SEQ ID NO: 94:

Industrial Applicability

According to the present invention, genes coding

for enzymes of amino acid biosynthetic pathway derived from Corynebacterium thermoaminogenes, or genes coding for proteins involved in the amino acid uptake into cells.

The genes of the present invention can be utilized for the production of the aforementioned enzymes or proteins, or the breeding of amino acid producing bacteria.

What is claimed is:

- 1. A protein having the amino acid sequence of SEQ ID NO: 2 or the amino acid sequence of SEQ ID NO: 2 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has isocitrate lyase activity and shows 30% or more of residual activity after a heat treatment at 50°C for 5 minutes.
- 2. A protein having the amino acid sequence of SEQ ID NO: 4 or the amino acid sequence of SEQ ID NO: 4 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which is involved in acyl Co-A carboxylase activity and is derived from *Corynebacterium thermoaminogenes*.
- 3. A protein having the amino acid sequence of SEQ ID NO: 6 or the amino acid sequence of SEQ ID NO: 6 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has DtsR activity and is derived from *Corynebacterium thermoaminogenes*.
- 4. A protein having the amino acid sequence of SEQ ID NO: 8 or the amino acid sequence of SEQ ID NO: 8

including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has DtsR activity and is derived from *Corynebacterium thermoaminogenes*.

- 5. A protein having the amino acid sequence of SEQ ID NO: 10 or the amino acid sequence of SEQ ID NO: 10 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which shows phosphofructokinase activity at 60°C in an equivalent or higher degree compared with the activity at 30°C.
- 6. A protein having the amino acid sequence of SEQ ID NO: 94 or the amino acid sequence of SEQ ID NO: 94 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has activity for imparting sucrose assimilating ability to Corynebacterium thermoaminogenes.
- 7. A protein having any one of the amino acid sequences of SEQ ID NOS: 17-20 or the amino acid sequence of any one of SEQ ID NOS: 17-20 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has a function involved in glutamic acid uptake and is derived from Corynebacterium thermoaminogenes.

- 8. A protein having the amino acid sequence of SEQ ID NO: 22 or the amino acid sequence of SEQ ID NO: 22 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has pyruvate dehydrogenase activity and is derived from Corynebacterium thermoaminogenes.
- 9. A protein having the amino acid sequence of SEQ ID NO: 24 or the amino acid sequence of SEQ ID NO: 24 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has pyruvate carboxylase activity and is derived from *Corynebacterium thermoaminogenes*.
- 10. A protein having the amino acid sequence of SEQ ID NO: 26 or the amino acid sequence of SEQ ID NO: 26 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has phosphoenolpyruvate carboxylase activity and shows 50% or more of residual activity after a heat treatment at 45°C for 5 minutes.
- 11. A protein having the amino acid sequence of SEQ ID NO: 28 or the amino acid sequence of SEQ ID NO: 28 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues,

which has aconitase activity and shows 30% or more of residual activity after a heat treatment at 50°C for 3 minutes.

- 12. A protein having the amino acid sequence of SEQ ID NO: 30 or the amino acid sequence of SEQ ID NO: 30 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has isocitrate dehydrogenase activity and shows 50% or more of residual activity after a heat treatment at 45°C for 10 minutes.
- 13. A protein having the amino acid sequence of SEQ ID NO: 32 or the amino acid sequence of SEQ ID NO: 32 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has dihydrolipoamide dehydrogenase activity and is derived from *Corynebacterium thermoaminogenes*.
- 14. A protein having the amino acid sequence of SEQ ID NO: 34 or the amino acid sequence of SEQ ID NO: 34 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which has 2-oxoglutarate dehydrogenase activity and shows 30% or more of residual activity after a heat treatment at 50°C for 10 minutes.

- 15. A protein having the amino acid sequence of SEQ ID NO: 80 in Sequence Listing or the amino acid sequence of SEQ ID NO: 80 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which shows glutamate dehydrogenase activity at 42°C in an equivalent or higher degree compared with the activity at 37°C.
- 16. A protein having the amino acid sequence of SEQ ID NO: 90 in Sequence Listing or the amino acid sequence of SEQ ID NO: 90 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, which shows citrate synthase activity at 37°C in an equivalent or higher degree compared with the activity at 23°C.
- 17. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 2 or the amino acid sequence of SEQ ID NO: 2 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having isocitrate lyase activity.
- 18. The DNA according to Claim 17, which is a DNA defined in the following (a1) or (b1):
- (al) a DNA which comprises the nucleotide sequence of SEQ ID NO: 1 in Sequence Listing,

100

- (b1) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 1 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having isocitrate lyase activity.
- 19. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 4 or the amino acid sequence of SEQ ID NO: 4 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and involved in acyl Co-A carboxylase activity.
- 20. The DNA according to Claim 19, which is a DNA defined in the following (a2) or (b2):
- (a2) a DNA which comprises the nucleotide sequence of SEQ ID NO: 3 in Sequence Listing,
- (b2) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 3 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein involved in acyl Co-A carboxylase activity.
- 21. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 6 or the amino acid sequence of SEQ ID NO: 6 including substitution, deletion, insertion, addition or inversion of one or

several amino acids residues, and having DtsR activity.

- 22. The DNA according to Claim 21, which is a DNA defined in the following (a3) or (b3):
- (a3) a DNA which comprises the nucleotide sequence of SEQ ID NO: 5 in Sequence Listing,
- (b3) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 5 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having DtsR activity.
- 23. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 8 or the amino acid sequence of SEQ ID NO: 8 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having DtsR activity.
- 24. The DNA according to Claim 23, which is a DNA defined in the following (a4) or (b4):
- (a4) a DNA which comprises the nucleotide sequence of SEQ ID NO: 7 in Sequence Listing,
- (b4) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 7 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having DtsR activity.

- 25. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 10 or the amino acid sequence of SEQ ID NO: 10 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having phosphofructokinase activity.
- 26. The DNA according to Claim 25, which is a DNA defined in the following (a5) or (b5):
- (a5) a DNA which comprises the nucleotide sequence of SEQ ID NO: 9 in Sequence Listing,
- (b5) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 9 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having phosphofructokinase activity.
- 27. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 93 or the amino acid sequence of SEQ ID NO: 93 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having invertase activity.
- 28. The DNA according to Claim 27, which is a DNA defined in the following (a6) or (b6):

- (a6) a DNA which comprises the nucleotide sequence of SEQ ID NO: 93 in Sequence Listing,
- (b6) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 93 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having invertase activity.
- 29. A DNA which codes for a protein having any one of the amino acid sequences of SEQ ID NOS: 17-20 or the amino acid sequence of any one of SEQ ID NOS: 17-20 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having a function involved in glutamic acid uptake.
- 30. The DNA according to Claim 29, which is a DNA defined in the following (a7) or (b7):
- (a7) a DNA which comprises the nucleotide sequence of SEQ ID NO: 16 in Sequence Listing,
- (b7) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 16 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having a function involved in glutamic acid uptake.
- 31. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 22 or the amino acid

104

sequence of SEQ ID NO: 22 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having pyruvate dehydrogenase activity.

- 32. The DNA according to Claim 31, which is a DNA defined in the following (a8) or (b8):
- (a8) a DNA which comprises the nucleotide sequence of SEQ ID NO: 21 in Sequence Listing,
- (b8) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 21 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having pyruvate dehydrogenase activity.
- 33. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 24 or the amino acid sequence of SEQ ID NO: 24 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having pyruvate carboxylase activity.
- 34. A DNA according to Claim 33, which is a DNA defined in the following (a9) or (b9):
- (a9) a DNA which comprises the nucleotide sequence of SEQ ID NO: 23 in Sequence Listing,
 - (b9) a DNA which is hybridizable with the

nucleotide sequence of SEQ ID NO: 23 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having pyruvate carboxylase activity.

- 35. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 26 or the amino acid sequence of SEQ ID NO: 26 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having phosphoenolpyruvate carboxylase activity.
- 36. The DNA according to Claim 35, which is a DNA defined in the following (al0) or (b10):
- (a10) a DNA which comprises the nucleotide sequence of SEQ ID NO: 25 in Sequence Listing,
- (b10) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 25 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having phosphoenolpyruvate carboxylase activity.
- 37. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 28 or the amino acid sequence of SEQ ID NO: 28 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having aconitase

activity.

- 38. The DNA according to Claim 37, which is a DNA defined in the following (all) or (bl1):
- (all) a DNA which comprises the nucleotide sequence of SEQ ID NO: 27 in Sequence Listing,
- (b11) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 27 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having aconitase activity.
- 39. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 30 or the amino acid sequence of SEQ ID NO: 30 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having isocitrate dehydrogenase activity.
- 40. The DNA according to Claim 39, which is a DNA defined in the following (a12) or (b12):
- (a12) a DNA which comprises the nucleotide sequence of SEQ ID NO: 27 in Sequence Listing,
- (b12) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 27 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein

having isocitrate dehydrogenase activity.

- 41. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 32 or the amino acid sequence of SEQ ID NO: 32 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having dihydrolipoamide dehydrogenase activity.
- 42. The DNA according to Claim 41, which is a DNA defined in the following (al3) or (bl3):
- (a13) a DNA which comprises the nucleotide sequence of SEQ ID NO: 31 in Sequence Listing,
- (b13) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 31 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having dihydrolipoamide dehydrogenase activity.
- 43. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 34 or the amino acid sequence of SEQ ID NO: 34 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and having 2-oxoglutarate dehydrogenase activity.
 - 44. The DNA according to Claim 43, which is a

108

DNA defined in the following (a14) or (b14):

- (a14) a DNA which comprises the nucleotide sequence of SEQ ID NO: 33 in Sequence Listing,
- (b14) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 33 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein having 2-oxoglutarate dehydrogenase activity.
- 45. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 80 in Sequence Listing or the amino acid sequence of SEQ ID NO: 80 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and showing glutamate dehydrogenase activity at 42°C in an equivalent or higher degree compared with the activity at 37°C.
- 46. The DNA according to Claim 45, which is a DNA defined in the following (a15) or (b15):
- (a15) a DNA which comprises the nucleotide sequence of SEQ ID NO: 79 in Sequence Listing,
- (b15) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 79 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein showing glutamate dehydrogenase activity at 42°C in an

equivalent or higher degree compared with the activity at 37°C.

- 47. A DNA which codes for a protein having the amino acid sequence of SEQ ID NO: 90 in Sequence Listing or the amino acid sequence of SEQ ID NO: 90 including substitution, deletion, insertion, addition or inversion of one or several amino acids residues, and showing citrate synthase activity at 37°C in an equivalent or higher degree compared with the activity at 23°C.
- 48. The DNA according to Claims 47, which is a DNA defined in the following (a16) or (b16):
- (a16) a DNA which comprises the nucleotide sequence of SEQ ID NO: 89 in Sequence Listing,
- (b16) a DNA which is hybridizable with the nucleotide sequence of SEQ ID NO: 89 in Sequence Listing or a primer prepared based on the nucleotide sequence under a stringent condition, and codes for a protein showing citrate synthase activity at 37°C in an equivalent or higher degree compared with the activity at 23°C.
- 49. A method for producing L-amino acid, which comprises culturing a microorganism introduced with a DNA according to any one of Claims 17 to 48 in a medium to produce and accumulate L-amino acid in the medium,

110

and collecting the L-amino acid from the medium.

111

ABSTRACT

A plurality of primer sets are designed based on a region where conservation at the amino acid level is observed among various microorganisms for known gene sequences corresponding to a gene coding for an enzyme of the L-amino acid biosynthetic pathway derived from Corynebacterium thermoaminogenes, preferably an enzyme that functions at a higher temperature compared with that of Corynebacterium glutamicum. PCR is performed by using the primers and chromosomal DNA of Corynebacterium thermoaminogenes as a template. The primers with which an amplification fragment has been obtained are used as primers for screening to select a clone containing a target DNA fragment from a plasmid library of chromosomal DNA of Corynebacterium thermoaminogenes.

OBLON ET AL (703) 413-3000 DOCKET #221519US SHEET / OF 15

Fig. 1

Fig. 2

OBLON ET AL (703) 413-3000 DOCKET #22/5/9 US SHEET 2 OF 15

Fig. 3

Fig. 4

OBLON ET AL (703) 413-3000 DOCKET #221519 US SHEET 3 OF 15

Fig. 5

Fig. 6

OBLON ET AL (703) 413-3000 DOCKET #22/5/9 US SHEET 4 OF 15

Fig. 7

Fig. 8

OBLON ET AL (703) 413-3000 DOCKET #_221519 US SHEET 5 OF 15

Fig. 9

Fig. 10

OBLON ET AL (703) 413-3000 DOCKET # 221519 US SHEET 6 OF 15

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

OBLON ET AL (703) 413-3000 DOCKET #22 1519 US_SHEET_9_OF/5

Fig. 16

Fig. 17

OBLON ET AL (703) 413-3000 DOCKET #22 1519 US SHEET // OF /5

Fig. 18

OBLON ET AL (703) 413-3000 DOCKET # 22 15 19 US SHEET 12 OF 15

Fig. 19

OBLON ET AL (703) 413-3000 DOCKET #<u>221519 US</u> SHEET 13 OF 15

Fig. 20

Fig. 21

Fig. 22

Beclaration, Hower Of Attorney and Hetition

Page 1 of 5

WE (I) the undersigned inventor(s), hereby declare(s) that:

My residence, post office address and citizenship are as stated below next to my name,

We (I) believe that we are (I am) the original, first, and joint (sole) invertor(s) of the subject matter which is claimed and for which a patent is sought on the invention entitled

GENES FOR HEAT RESISTANT ENZYMES OF AMINO ACI DERIVED FROM THERMOPHILIC CORYNEFORM BACTERIA		IC PATHWAY	
the specification of which			
☐ is attached hereto.			
□ was filed on	as		
Application Serial No.	·		
and amended on		÷	
was filed as PCT international application			
Number <u>PCT/JP 00/06913</u>			
on <u>October 4, 2000</u>	. ,		
and was amended under PCT Article 19			
on	(if applicable).		
	•		

- We (I) hereby state that we (I) have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.
- We (I) acknowledge the duty to disclose information known to be material to the patentability of this application as defined in Section 1.56 of Title 37 Code of Federal Regulations.
- We (I) hereby claim foreign priority benefits under 35 U.S.C. § 119(a)-(d) or § 365(b) of any foreign application(s) for patent or inventor's certificate, or § 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed. Prior Foreign Application(s)

Application No.	Country	Day/Month/Year	Prior Clain	
11-282716	Japan	04/10/1999	Yes	□ No
11-311147	Japan	01/11/1999	💆 Yes	□ No
2000–120687	Japan	21/04/2000	🛱 Yes	□ No
			□ Yes	□ No
47				- 10

					Page 2 of 5 Declaration	
We (I) hereby cla pplication(s) listed	nim the benefit under Titl below.	le 35, United States	s Code, § 119(e) of any United		
	(Application Numb	per)	(Filing D	ate)		
	(Application Numb	per)	(Filing D	ate)	•	
PCT International ach of the claims on the manner pronformation which	aim the benefit under 35 application designating the first application is not discovided by the first parais material to patentabilition application and the nation and the material to patentabilities.	he United States, lisclosed in the prio graph of 35 U.S. ty as defined in 37	isted below an r United States C. § 112, I ac CFR § 1.56 wh	d, insofar as the or PCT Intern cknowledge the tich became av:	e subject matter of artional application e duty to disclose allable between the	
Application S	erial No.	Filing Date			nding, patented, andoned)	
	<u> </u>		· ·			
			· .			
					-	
Registration Number 31,451; Ti 32,884; Martin M. Richard L. Treanor Goolkasian, Regist Registration Number of substitute Office connected the to the firm of OBL is: Fourth Floor, 1: We (I) declare the made on information knowledge that with under Section 1001	ther 29,004; William E per 30,073; Robert F. Gruimothy R. Schwartz, Registration Number 26,142; Nor 36,160; and Richard L. tion and revocation, to prerewith; and we (I) hereby the construction of the construction of the construction of the construction of the construction and belief are believed in the construction of the Uniter application or any patent	use, Registration Nistration Number 35,745; Refe,379; Steven P. W. Marc R. Labgold, I. Chinn, Registrationsecute this applies request that all elements of the like so made and States Code and	Number 27,295 32,171; Stepher Robert W. Have the Month of Number 34 ication and to correspondence NEUSTAD irginia 22202. own knowled urther that the tree punishable	g Jean-Paul Lavin G. Baxter, Resistration Number 34,651; 305; our (my) transact all buse regarding this I, P.C., whose I are true and the see statements to by fine or imposed.	alleye, Registration egistration Number in Number 33,893; ber 32,829; John T. William J. Healey, attorneys, with full siness in the Patent application be sent Post Office Address I that all statements were made with the risonment, or both,	
Seiko HIRANC)					
NAME OF FIRST		Res	· •	wasalri - ahi	Kanagawa Ji	
	SOLE INVENTOR	-	idence: Ka	.wasaki-Siii	· · · · · · · · · · · · · · · · · · ·	apan
Sail	SOLE INVENTOR		idence: Ka	wdsaki-SiiI	, managawa, s	apar
Signature of Inven			idence: Ka izen of: J		J.	apar
	Virano	Cit:		apan) <u>Indiagona</u> , 5	apar PX
	Virano	Cit: Pos	izen of: J t Office A	apan .ddress:	, Fermentatio	
	Virano	Cit: Pos c/o	izen of: J t Office A Ajinomoto	apan ddress: Co., Inc.	J'	74

210-8681 Japan

Page 4 of 5 Declaration Eiichiro KIMURA Residence: Kawasaki-shi, Kanagawa, Japan NAME OF SECOND JOINT INVENTOR Citizen of: Japan Post Office Address: Signature of Inventor c/o Ajinomoto Co., Inc., Fermentation & Biotechnology Laboratories, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa March 19, 2002 210-8681 Japan Date Residence: Kawasaki-shi, Kanagawa, Japan Tsuyoshi OSUMI NAME OF THIRD JOINT INVENTOR TPL Citizen of: Japan Post Office Address: c/o Ajinomoto Co., Inc., Fermentation & Biotechnology Laboratories, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa March 19, 2002 210-8681 Japan Date Kazuhiko MATSUI Residence: Kawasaki-shi, Kanagawa, Japan OF FOURTH JOINT INVENTOR Citizen of: Japan Post Office Address: Signature of Inventor c/o Ajinomoto Co., Inc., Fermentation & Biotechnology Laboratories, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa March 19, 2002 210-8681 Japan Date) Yoshio KAWAHARA Residence: Kawasaki-shi, Kanagawa, Japan NAME OF FIFTH JOINT INVENTOR who Kaushun Citizen of: Japan

Post Office Address:

210-8681 Japan

c/o Ajinomoto Co., Inc., Fermentation &

Kawasaki-ku, Kawasaki-shi, Kanagawa

Biotechnology Laboratories, 1-1, Suzuki-cho.

Date

March 19, 2002

ingiĝosz auguzoa

1/95

Page 3 of 5 Declaration Gen NONAKA Residence: Kawasaki-shi, Kanagawa, Japan NAME OF SIXTH JOINT INVENTOR Citizen of: Japan Post Office Address: Signature of Inventor c/o Ajinomoto Co., Inc., Fermentation & Biotechnology Laboratories, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa March 19, 2002 210-8681 Japan Date Residence: Kawasaki-shi, Kanagawa, Japan Yumi MATSUZAKI NAME OF SEVENTH JOINT INVENTOR Citizen of: Japan Signature of Inventor Post Office Address: c/o Ajinomoto Co., Inc., Fermentation & Biotechnology Laboratories, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681 Japan March 19, 2002 Date Residence: Kawasaki-shi, Kanagawa, Japan Naoki AKIYOSHI NAME OF EIGHTH JOINT INVENTOR Citizen of: Japan Post Office Address: Signature of Inventor c/o Ajinomoto Co., Inc., Fermentation & Biotechnology Laboratories, 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681 Japan March 19, 2002 Date Kanae NAKAMURA Ho Chiminh City, Vietnam Residence: NAME OF NINTH JOINT INVENTOR MX Citizen of: Japan Post Office Address: Signature of Inventor 902 Stanford Court 8A, Nguyen Binh Khiem Street District 1, HO CHIMINH City, Vietnam, March 12, 2002

Date

Osamu KURAHASHI	Page 5 of 5 Declaration
NAME OF TENTH JOINT INVENTOR	Residence: Kawasaki-shi, Kanagawa, Japan
	TOV
- Samu Kunchezh	Citizen of: Japan
Signature of Inventor	Post Office Address:
	c/o Ajinomoto Co., Inc., Fermentation &
	Biotechnology Laboratories, 1-1, Suzuki-cl Kawasaki-ku, Kawasaki
March 19, 2002	Kawasaki-ku, Kawasaki-shi, Kanagawa
Date	210-8681 Japan
() Tsuyoshi NAKAMATSU	Residence: Tokyo, Japan
NAME OF ELEVENTH JOINT INVENT	OD DATE OF THE PARTY OF THE PAR
COINT INVENT	TOV
To wasting	Citizen of: Japan
TSuyo Shi NakamaTSu Signature of Inventor	Post Office Address:
Signature of Inventor	c/o Tokyo Denki ri-
	c/o Tokyo Denki University, Department of Materials Science
March 10 2002	of Materials Science and Engineering, 2-2, Nishiki-cho, Kanda, Chiyoda-ku,
March 18, 2002 Date	Tokyo 101-0054 Japan
n	- Capan
Shinichi SUGIMOTO	Posid
NAME OF THE LEGIT TO THE	Residence: Kawasaki-shi, Kanagawa, Japan
NAME OF TWELFTH JOINT INVENTOR	
	JPX
Juli Gynto	Citizen of: Japan
Signature of Inventor	Post Office Address:
	c/o Ajinomoto Co., Inc., Fermentation &
Mounds 10 0000	biotechnology Laboratories, 1-1 Suzuki -
March 19, 2002	Mawasaki-ku, Kawasaki-shi Kapaga
Date	210-8681 Japan
NAME OF THE PARTY	
NAME OF THIRTEENTH JOINT INVENTO	DR
	•

Date

JC13 Rec'd PCT/PTO 0 3 APR 2002

1/123

SEQUENCE LISTING

```
<110> Ajinomoto Co., Inc.
<120 Genes for Heat resistant Enzymes of Amino Acid
      Biosynthetic Pathway Derived from Thermophilic
      Coryneform Bacteria
<130> OP1072B691SM
<140>
<141> 2000-10-04
<150> JP 11-282716
<151> 1999-10-04
<150> JP 11-311147
<151> 1999-11-01
<150> JP 2000-120687
<151> 2000-04-21
<160> 108
<170> PatentIn Ver. 2.0
<210> 1
<211> 1980
<212> DNA
<213> Corynebacterium thermoaminogenes
<220>
<221> CDS
<222> (577)..(1869)
<400> 1
tgcattccac cgacggtcac gcgttcggtc ttgtcagcgg cgtcaatctg ctgatggttc 60
atgcaaagct ccttcgaagc aagagatcgg gtgtgtgcgg gcacctatcg ggggaagccc 120
tcgctgcgcc ccagggggag ctggcgatgt gaccaggtta agtgataacc atcaccttgc 180
caatgggtit gcgaactita ccgtgacgct accccgctt tigitigatc acaccagctc 240
gaaggeigte gettiteega agatgeaegi gaagtggeaa ateetigeea eeegaggitt 300
```

tcccagtaca aacgtactag tgatgaggat cacggggaac attgtggaga ttgcactttg 360

caatat	caatattige aaaaggggig actaeceeg egeaaaactt aaaaaeceaa ateegiigae														420
ggaccca															
ctcacca															
cgcctta															594
Cgccii	icag c	agto	iccac	16 40	16446	sigui	, , , ,						Gly		001
									1	561	71311	141	5	1111	
					,				_			0.00		0.00	619
cca cg															642
Pro Arg	g Thr	Ala	Gln	Glu	He	GIn		Asp	Trp	Asp	ınr		Pro	Arg	
		10					15					20			
tgg aa	gga	atc	acc	cgc	gac	tac	acc	gct	gag	cag	gta	gct	gag	ctc	690
Trp Asi	ıGly	He	Thr	Arg	Asp	Туr	Thr	Ala	Glu	Gln	Val	Ala	Glu	Leu	
	25					30					35				
cag gg	agc	gtc	gtc	gag	gag	cac	acc	ctc	gca	aag	cgc	ggc	gcc	gag	738
Gin Gly															
40					45					50	_				
atc ct		an t	aca	orf f		gca	σασ	gge	gar		tac	atc	aac	gca	786
Ile Lei															
	HID	ASP	Ald		361	на	Giu	Uly	65	Мэр	1 y 1	110	11511	70	
55				60							art o	a or t	G 0 0		834
ctg gg															004
Leu Gl	/ Ala	Leu		Gly	Asn	GIn	Ala		GIN	GIN	vai	Arg		GIY	
			75					80					85		0.00
ctg aa															882
Leu Ly	Ala	Val	Tyr	Leu	Ser	Gly	Trp	Gln	Val	Ala	Gly	Asp	Ala	Asn	
		90					95					100			
ctc gc	ggt	cac	acc	tac	ссс	gac	cag	tcc	ctg	tac	ccg	gcg	aac	tcc	930
Leu Al															
Dea mi	105					110					115				
gtc cc		σff	σtc	cat	ՐԾՐ		аас	aac	gca	ctg	ctg	cgc	gcc	gat	978
Val Pr															
		v a ı	va i	MIE	125	110	поп	11311	nia	130	БСС	*** 6	711 a	пор	
12								100	a t a		0.00	taa	c t c	ate	1026
gag at															1020
Glu Il	e Ala	Arg	Val		Gly	Asp	ınr	26 L		ASD	ASII	Пр	Leu		
135				140					145		*			150	1071
ccg at															1074
Pro II	e Val	Ala	Asp	Gly	Glu	Ala	Gly	Phe	Gly	Gly	Ala	Leu	Asn	Val	
			155					160					165		
tac ga	g ctc	cag	aag	ggc	atg	a t c	асс	gct	ggt	gcc	gca	ggc	асс	сас	1122
Tyr Gl															
.,. 01		170		,	•	-	175					180			
tgg ga.			cic	or t	tee	gag		аар	føt	ggc	cac		ggt	ggc	1170
Trp Gl															• •
HP GI		UIII	ren	піа	361	190	гуз	נעם	∪ y 3	GIY	195	L C U	Ory	013	
	185	. 1							0.00	0.00		000	100	G C C	1218
aag gt	ccc	агс	ccg	acc	cag	cag	сас	aıc	cgc	acc	cig	aac	ıcc	gee	1410

Lys	Val 200	Leu	He	Pro	Thr	Gln 205	Gln	His	lle	Arg	Thr 210	Leu	Asn	Ser	Ala	
cgc	ctg	gca	gct	gac	gtg	gcc	aac	acc	ccg	acc	gtc	gtc	atc	gcc	cgc	1266
													Пе			
215	LCu	nia	711 0	пор	220	,,,,				225					230	
	G 0 0	ac a	aaa	acc		a.c.c	cta	atc	acc		σat	g f f	gat	gag		1314
													Asp			
Inr	ASP	АТа	GIU		на	1 11 1	Leu	110	240	561	изр	141	пор	245	1116	
				235						~~~	~ n ~	aa o	100		0.1.0	1362
													tac			1004
Asp	Arg	Pro		11e	Inr	Gly	GIU		Inr	Ala	GIU	Gly	Tyr	Iyi	піз	
			250					255					260			1.410
													tcc			1410
Val	Lys	Pro	Gly	Leu	Glu	Pro	Cys	He	Ala	Arg	Ala		Ser	Tyr	Ala	
		265					270					275				
ссс	tac	gca	gac	atg	atc	tgg	atg	gag	асс	ggc	acc	cct	gac	ctc	gag	1458
Pro	Туг	Ala	Asp	Met	lle	Trp	Met	Glu	Thr	Gly	Thr	Pro	Asp	Leu	Glu	
	280					285					290					
ctg		aag	aag	ttc	gcc	gag	ggc	gtc	cgc	agc	gag	ttc	ccg	gac	cag	1506
													Pro			
295	/11 G	L) S	11,0		300		4-3		. 0	305				_	310	
	ctg	tee	tac	aac		tee	ccg	tee	t t c		199	tct	gca	cac		1554
													Ala			
Leu	Leu	261	1 y 1	315	Суз	561	110	501	320	71511	116	501		325	Boa	
	~~~	~~~	an a		ac t	224	ttc	ഭാന		gaa	cto	a a t	gcc		σσc	1602
																1002
Glu	Ala	ASP		116	Ala	LyS	rne		Ly5	GIU	Ltu	Uly	Ala 340	mc t	Uly	
		.• .	330					335				4.0.0			t 0.0	1650
	_												ctc			1650
Phe	Lys		Gln	Phe	He	Thr		Ala	Gly	Phe	HIS		Leu	ASI	ıyr	
		345					350					355				
													atg			1698
Gly	Met	Phe	Asp	Leu	Ala	Туг	Gly	Туг	Ala	Arg	Glu	Gly	Met	Pro	Ala	
	360					365					370					
ttc	gtc	gac	ctg	cag	aac	cgt	gag	t, $t$ $c$	aag	gca	gct	gag	gag	cgc	ggc	1746
													Glu			
375		•			380					385					390	
	acc	gcc	gtc	aag		cag	cgt	gag	gtc	ggc	gcc	ggc	tac	ttc	gac	1794
													Туr			
1110	1 11 1	MIG	7 4 1	395	1113	0111	6	oru	400	01,		0.5	- 3 -	405		
	a t a	<i>α</i> .α.α	200		at t	ora e	cca	320		tcc	acc	acc	gcg		aag	1842
																1012
ınr	116	ата		1111	val	wsb	110		SEI	9E1	1 11 1	1 11 1	Ala 420	ьÇu	гуз	
			410		1	_		415	+ ~ -	~ o o =	0.00	a t ~ c		or t		1 0 0 0
									ıag	gaac	cac	ciga	tgcg	βı		1889
Gly	Ser	Thr	Glu	Glu	Cys	GIn	Phe	HIS								

425 430 gccgtatggc ctgacggcac cgccctccc tttgcactcc agtactcctt tgtgcacatc 1949 ggccatctcc acaccgcgcg ccccgccacc t  $\langle 210 \rangle 2$ <211> 431 <212> PRT <213> Corynebacterium thermoaminogenes <400> 2 Met Ser Asn Val Gly Thr Pro Arg Thr Ala Gln Glu Ile Gln Gln Asp Trp Asp Thr Asn Pro Arg Trp Asn Gly Ile Thr Arg Asp Tyr Thr Ala 25 Glu Gln Val Ala Glu Leu Gln Gly Ser Val Val Glu Glu His Thr Leu 40 35 Ala Lys Arg Gly Ala Glu Ile Leu Trp Asp Ala Val Ser Ala Glu Gly 55 60 Asp Asp Tyr Ile Asn Ala Leu Gly Ala Leu Thr Gly Asn Gln Ala Val Gln Gln Val Arg Ala Gly Leu Lys Ala Val Tyr Leu Ser Gly Trp Gln 90 85 Val Ala Gly Asp Ala Asn Leu Ala Gly His Thr Tyr Pro Asp Gln Ser 105 Leu Tyr Pro Ala Asn Ser Val Pro Asn Val Val Arg Arg Ile Asn Asn 120 125 Ala Leu Leu Arg Ala Asp Glu Ile Ala Arg Val Glu Gly Asp Thr Ser 130 135 Val Asp Asn Trp Leu Val Pro Ile Val Ala Asp Gly Glu Ala Gly Phe 155 150 Gly Gly Ala Leu Asn Val Tyr Glu Leu Gln Lys Gly Met Ile Thr Ala 170 165 Gly Ala Ala Gly Thr His Trp Glu Asp Gln Leu Ala Ser Glu Lys Lys 185 Cys Gly His Leu Gly Gly Lys Val Leu Ile Pro Thr Gln Gln His Ile 205 200 Arg Thr Leu Asn Ser Ala Arg Leu Ala Ala Asp Val Ala Asn Thr Pro 220 215 Thr Val Val Ile Ala Arg Thr Asp Ala Glu Ala Ala Thr Leu Ile Thr 235 230 Ser Asp Val Asp Glu Arg Asp Arg Pro Phe Ile Thr Gly Glu Arg Thr 250 245

Ala Glu Gly Tyr Tyr His Val Lys Pro Gly Leu Glu Pro Cys Ile Ala

260 265 270 Arg Ala Lys Ser Tyr Ala Pro Tyr Ala Asp Met Ile Trp Met Glu Thr 275 280 285 Gly Thr Pro Asp Leu Glu Leu Ala Lys Lys Phe Ala Glu Gly Val Arg 295 300 Ser Glu Phe Pro Asp Gln Leu Leu Ser Tyr Asn Cys Ser Pro Ser Phe 310 315 Asn Trp Ser Ala His Leu Glu Ala Asp Glu Ile Ala Lys Phe Gln Lys 330 325 335 Glu Leu Gly Ala Met Gly Phe Lys Phe Gln Phe Ile Thr Leu Ala Gly 340 345 Phe His Ser Leu Asn Tyr Gly Met Phe Asp Leu Ala Tyr Gly Tyr Ala 355 360 365 Arg Glu Gly Met Pro Ala Phe Val Asp Leu Gln Asn Arg Glu Phe Lys 375 380 Ala Ala Glu Glu Arg Gly Phe Thr Ala Val Lys His Gln Arg Glu Val 390 395 385 Gly Ala Gly Tyr Phe Asp Thr Ile Ala Thr Thr Val Asp Pro Asn Ser 405 410 Ser Thr Thr Ala Leu Lys Gly Ser Thr Glu Glu Cys Gln Phe His 420 425 430 <210> 3 <211> 2381 <212> DNA <213> Corynebacterium thermoaminogenes

<220>

<221> CDS

 $\langle 222 \rangle$  (577)...(2349)

#### <400> 3

agcaggeegt gitgeegaac ggeaacitee geageegeaa ggagaiegag gaggigiaei 60 cgcaccicaa cccigccgag gacaccgigg igiacigccg cgigggigac cgcgcggccc 120 acacciggii egigiigaag laccigcigg ggiiigaaaa egicegcaac laigaeggii 180 cctggtccga gtggggcaac atggtgcgca tgcccatcgt ccagggtgat gagccgggct 240 cactetagte accoeggggt caceteectg gteaceeecg tacceteecg ggtacaceee 300 ggggacgggg tgtgaccigg atcicccctg catgtggaca ccgggaaact ttgcctggga 360 aalgaccale caglacegta algeggglat gllaaegegg leacagggla caccagaale 420 cggatcgtct aaccccctta gcgggattcg ctaaaagatc accgagttag tgtgcaagaa 480 taatgctgat cgcaggggca ctgtcatacg ctgtcatgca gtcaatgaac agtgcggtgc 540 totgtogtga agaaaatcaa aaccaggagg glitta gig toa gio gag acc agg 594 Val Ser Val Glu Thr Arg

											1				5	
aag	ato	ac	c aa	ig gt	a ct	t gto	c gc	c aac	cg	t gg	t ga	a at	c go	aat	c cat	642
Lys	He	e Th	r Ly	's Va 0	l Le	u Val	l Ala	a Asr	ı Ar	g Gl	y Gl	u Il	e Al	a Il	e Arg	012
gtt	ttc	cg			a cg	g gat	gas	15		e ee	o to	t ~+	2	0	c tac	
Val	Phe	Arg	g Al	a Al	a Ars	z Asn	Gli	. Glv	, ai,	c gc o ∆le	נוני מיצים	r Va	c gc	c gi	c tac l Tyr	690
		25	)				30					3	5			
gcg	gag	CCE	g ga	c gc	a ga	gcc	cct	ttc	gto	gag	g ta	t gc	c ga	t ga	g gcc	738
Ala	GIU	Pro	) As	p Ala	a Asp	Ala	Pro	Phe	Val	Glu	т Ту	r Ala	a As	p Gl	u Ala	.00
	40					45					50	0				
Pho	gca	CIC	gg	l gg	cae	act	tcc	gca	gag	tco	t a	c cte	gt	c at	t gac	786
55	Ald	Leu	GI	y GIS	/ GID	lhr	Ser	Ala	Glu			r Lei	ı Va	1 11	e Asp	
	atc	ati	σαι	r ore	60		000			65					70	
Lys	lle	He	Asr	) Ala	Ala	Aro	lue	Sor	ggı	gca	ga(	get	gt	c ca	c ccc S Pro	834
·				75	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6	Lys	361	80		ASL	) Ala	ı vaı			
ggc 1	tac	ggc	t t c	ctc	gcc	gag	aac	gcc			gci	даа	gri	85 orta	) Pate	000
Gly T	ſуr	$\operatorname{Gl} y$	Phe	Leu	Ala	Glu	Asn	Ala	Asp	Phe	Ala	Glu	Ala	Val	lle	882
			90					95					100	)		
aac g	gag	ggc	clg	atc	t gg	atc	gga	cca	tcc	cct	gag	tcc	a t c	cgt	tcc	930
Asn G	ılu	GIY	Leu	He	Trp	He	Gly	Pro	Ser	Pro	Glu	Ser	Пe	Arg	Ser	
ctco		105	220	art e	0.00		110					115				
ctc g Leu G	١٧	Asn	Lvs	Val	Thr	gca	Cgc Ara	cac	alc	gcc	aac	aac	gcc	aac	gca	978
1	20	р	2,0		1111	125	ΛIΒ	піз	116	ATA	130	Asn	Ala	Asn	Ala	
ccg a	tg :	gca	ccg	ggc	acc		gag	cct	gtr	аао	190	ar c	ac t	a n a	~ 4 4	1000
Pro M	et i	Ala	Pro	Gly	Thr	Lys	Glu.	Pro '	Val	Lvs	Asn	Ala	Ala	Glu	gıı Vəl	1026
135					140					145					150	
gtc g	СС	ttc	gcc	gag	gag	ttc į	ggt	ctc	ссс	atc	gcc	atc	aag	gct	acc	1074
Val A	la F	Phe.	Ala	Glu	Glu	Phe (	Gly 1	Leu 1	Pro	Пе	Ala	He	Lys	Ala	Ala	
				155					160					165		
ttc gg	gi E	gge :	ggc	gga	cgt	ggc a	ilg a	aag g	gtc	gcc	tac	gag	atg	gac	gag	1122
Phe Gl	ıy u	rry (	170	GIY	Arg (	зіу М	iei i	ys \	al.	Ala	Tyr	Glu		Asp	Glu	
gtc gc	:c g			ttc	<b>៤</b> ១១ :			75		~~~			180			
Val Al	a A	sp I	Leu :	Phe (	gua Glu S	cc g Cer A	la T	ice c	gi j	gag ,	gcc Ala	acc	gcc	gcc	ttc	1170
	1	85				1	90	111 7	116 (	Jiu 1		195	Ата	Ага	Phe	
ggt cg	t g	gt g	gag	tgc	ttc g			gc t	ac (	etg s	zac	ааб	ማ ር ር	cac	Cac	1910
Gly Ar	g G	ly G	lu (	Cys F	he V	al G	lu A	rg T	yr I	.eu A	as!	Lvs	Ala	Arø	Hic	1218
20	U				2	05				2	210					
gtc ga.	g g	ca c	ag g	gic a	itc g	cc g	ac a	ag c	ac g	ggc a	ac.	gtt :	gtg	gtc	gcc	1266
val GI	u A.	la G	In V	al I	le A	la As	sp L	ys H	is G	lly A	sn '	Val	Val	Val	Ala	
215				2	20				2	25					230	



7/123	$\varphi$
ggt acc cgt gac tgc tcc ctg cag cgt cgt ttc cag aag ctc Gly Thr Arg Asp Cys Ser Leu Gln Arg Arg Phe Gln Lys Leu 235 240	Val Glu
gag gca ccg gca ccg ttc ctc acc gat gag cag cgt gac cgc Glu Ala Pro Ala Pro Phe Leu Thr Asp Glu Gln Arg Asp Arg 250	atc cac 1362 Ile His
Ser Ser Ala Lys Ala Ile Cys Arg Glu Ala Gly Tyr Tyr Gly 265 275	Ala Gly
acc gtg gag tac ctg gtc ggt tcc gac gga ctg atc tcc ttc Thr Val Glu Tyr Leu Val Gly Ser Asp Gly Leu Ile Ser Phe 280 285 290	Leu Glu
gic aac acc cgc ctg cag gtg gag cac ccc gtc acc gag gag Val Asn Thr Arg Leu Gln Val Glu His Pro Val Thr Glu Glu 295 300 305	Thr Thr
ggc atc gac ctg gtg cgc gag atg ttc cgc atc gcc gag ggc Gly Ile Asp Leu Val Arg Glu Met Phe Arg Ile Ala Glu Gly 315 320	Ala Glu
ctc tcc atc aag gag gac ccg acc cca cgc ggc cac gcc ttc. Leu Ser Ile Lys Glu Asp Pro Thr Pro Arg Gly His Ala Phe (330 335 340	Glu Phe
cgc atc aac ggc gag gac gca ggc tcc aac ttc atg ccc gca c Arg Ile Asn Gly Glu Asp Ala Gly Ser Asn Phe Met Pro Ala F 345 350 355	Pro Gly
aag atc acc cgc tac cgt gag ccc gcc ggc ccg ggt gtc cgc a Lys Ile Thr Arg Tyr Arg Glu Pro Ala Gly Pro Gly Val Arg M 360 365 370	let Asp
tcc ggc gtl gtc gag ggt tcc gag atc tcc ggc cag ttc gac t Ser Gly Val Val Glu Gly Ser Glu Ile Ser Gly Gln Phe Asp S 375 380 385	er Met
ctg gcc aag ctg atc gtc tgg ggc cag acc cgt gag cag gcc c Leu Ala Lys Leu Ile Val Trp Gly Gln Thr Arg Glu Gln Ala Lo 395 400 40	eu Glu
cgt tcc cgt cgt gcg ctc ggc gag tac atc gtc gag ggc atg co Arg Ser Arg Arg Ala Leu Gly Glu Tyr Ile Val Glu Gly Met Pr 410 415 420	o Thr
gtc atc ccg ttc cac tcc cac atc gtc tcc aac ccg gca ttc gt Val Ile Pro Phe His Ser His Ile Val Ser Asn Pro Ala Phe Va 425 430 435	l Gly
gac ggc gag ggc ttc gag gtc tac acc aag tgg atc gag gag gt Asp Gly Glu Gly Phe Glu Val Tyr Thr Lys Trp Ile Glu Glu Va 440 445 450	l Trp
gac aac ccg atc gag ccg ttc gtc gat gca gcc gac ctc gac ga	c gag 1986

								٠,	0							
Asp 455	Asn	Pro	He	Glu	Pro 460	Phe	Val	Asp	Ala	Ala 465	Asp	Leu	Asp	Asp	Glu 470	
	aag	acc	ccg	tcg	cag	aag	gtc	atc	gtc		a t c	gac	ggc	cgc		2034
					Gln											
gtc	gag	gtg	gct	ctc	ccg	ggc	gac	ctc	gct	ctc	ggc	ggt	ggc	gca	ggt	2082
Val	Glu	Val	Ala 490	Leu	Pro	Gly	Asp	Leu 495	Ala	Leu	Gly	Gly	Gly 500	Ala	Gly	
gcc	gcc	aag	aag	aag	ccg	aag	aag	cgt	cgc	gca	ggt	ggc	gcc	aag	gcc	2130
Ala	Ala	Lys 505	Lys	Lys	Pro	Lys	Lys 510	Arg	Arg	Ala	Gly	Gly 515	Ala	Lys	Ala	
ggt	gţc	t c c	ggt	gac	tcc	gtc	gca	gcc	ccg	atg	cag	ggc	асс	gtc	atc	2178
Gly	Val 520	Ser	Gly	Asp	Ser	Val 525	Ala	Ala	Pro	Met	G1n 530	Gly	Thr	Val	lle	
aag	gtc	aac	gtt	gag	gac	ggc	gcc	gag	gtc	tcc	gag	ggt	gac	acc	gtc	2226
	Val	Asn	Val	Glu	Asp	Gly	Ala	Glu	Val		Glu	Gly	Asp	Thr		
535					540					545					550	0051
					atg											2274
				555	Met				560					565		
					ggt											2322
			570		Gly			575					580		Thr	
	-				ctg				taa	tccc	ttc	aggga	aacag	ga		2369
Lys	Gly		Val	Leu	Leu	Glu		Lys								
cago	eccte	585 gtt 6	: t				590						٠.			2381
<210	)> 4															
	> 59															
	PR															
		ryne	bact	eriu	ım th	iermo	amin	ioger	ies							
<400				m.		_			_		_					
Val 1	Ser	Val	Glu	Thr 5	Arg	Lys	lle	Thr	Lys 10	Val	Leu	Val	Ala	Asn 15	Arg	
Gly	Glu	He	Ala 20	He	Arg	Val	Phe	Arg 25	Ala	Ala	Arg	Asp	Glu 30	Gly	He	
Ala	Ser	Val 35	Ala	Val	Tyr	Ala	Glu 40	Pro	Asp	Ala	Asp	Ala 45	Pro	Phe	Val	
Glu	Туг 50	Ala	Asp	Glu	Ala	Phe 55	Ala	Leu	Gly	Gly	G l n 60	Thr	Ser	Ala	Glu	
Ser		Leu	Val	He	Asp		He	He	Asp	Ala	Ala	Arg	Lys	Ser	Gly	

65					70					75					80
		Ala	Val	His	Pro						Ala	Glu	Asn	Ala	
	-			85				-	90					95	•
Phe	Ala	Glu	Ala	Val	He	Asn	Glu							Pro	Ser
			100										110		
Pro	Glu			Arg	Ser	Leu							Arg	His	He
Λĺο	Aen	115		A e n	Ala	Pro	120 Met			Cly		125	Glu	Dro	Val
Ala	130				nια				110		140	Lys	010	110	vai
Lys					Val							Phe	Gly	Leu	Pro
145	_				150					155					160
He	Ala	He	Lys	Ala	Ala	Phe	$Gl_{y}$	Gly	Gly	Gly	Arg	Gly	Met	Lys	Val
				165					170					175	
Ala	Tyr	Glu			Glu									Thr	Arg
Clu	A La	Thr	180		Phe			185		Cve			190	Ara	Tur
GIU	Ala	195			1 11 6					Cys		205	O I u	ЛIВ	1 y 1
Leu	Asp				His								Asp	Lys	His
	210										220		-	-	
Gly	Asn	Val	Val	Val	Ala						Ser	Leu	Gln	Arg	Arg
225					230										240
Phe	Gln	Lys	Leu		Glu										Glu
Cin	1 = ~	Aan	Ara	245	His	Sor					Ha			255	A 1 a
GIII	AIG	изр	260		1113			265		піа			270	Olu	nia
Gly	Tyr	Tyr			Gly									Asp	Gly
•	-	275					280					285			
Leu	ΙΙe	Ser	Phe	Leu	Glu							Val	Glu	His	Pro
	290		~ •			295			_		300	٠.			
					Thr										
305			Cly		Glu								Thr		320
116	Ala	Giu	Oly	325	oru	LCu	561	110	330	oru	ИЗΡ	110	1 11 1	335	MIG
Glv	His	Ala	Phe		Phe	Arg	He	Asn		Glu	Asp	Ala	Gly		Asn
_			340					345					350		
Phe	Met	Pro	Ala	Pro	Gly	Lys	He	Thr	Arg	Tyr	Arg	Glu	Pro	Ala	Gly
		355					360					365			
Pro		Val	Arg	Met	Asp		Gly	Val	Val	Glu		Ser	Glu	He	Ser
C1	370	Dh.o	Aan	C 0 m	Mai	375	410	Luc	I 0.11	Ilo	380	Т = г	C1	Cln	ть
385	GIN	rne	ASP	ser	Me t 390	ren	ніа	LУS	rea	395	v d i	rrp	GIY	GIII	1nr 400
	Gln	Gln	Ala	Len	Glu	Arg	Ser	Arg	Arg		Leu	Glv	Glu	Tvr	
0		- · · ·		405		0		0	410					415	

								10,	123							
Val	Glu	Gly	Met 420	Pro	Thr	Val	He	Pro 425	Phe	His	Ser	His	11e 430	Val	Ser	
Asn	Pro	Ala 435	Phe	Val	Gly	Asp	Gly 440	Glu	Gly	Phe	Glu	Val 445	Tyr	Thr	Lys	
Trp	Ile 450	Glu	Glu	Val	Trp	Asp 455	Asn	Pro	lle	Glu	Pro 460	Phe	Val	Asp	Ala	
Ala 465	Asp	Leu	Asp	Asp	Glu 470	Glu	Lys	Thr	Pro	Ser 475	Gln	Lys	Val	He	Val 480	
Glu	He	Asp	Gly	Arg 485	Arg	Val	Glu	Val	Ala 490	Leu	Pro	Gly	Asp	Leu 495	Ala	
	-	Gly	500					505					510			
		Gly 515					520					525				
	530	Gly				535					540					
545					550					555					Asn 560	
				565					570					575	Ala	
Ala	Gly	Glu	Gly 580	Val	Thr	Lys	Gly	G1n 585	Val	Leu	Leu	Glu	11e 590	Lys		
<210		0.0														
	> 21															
	?> DN ?> Co	ия Эгупе	ebac t	eriu	ım th	ermo	amir	oger	ies							
		·														
<220																
	> cr		(10	\ C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \												
<222	?> (3	339).	. (19	(67)												
<400																
-															ccatge	
		_													ggcggg	120
															tccgag	180
															catget	240
															atgatt	300
gıgg	gacga	ild C		RRRI	a UE	guld	iccal		adda						ca cct er Pro	<i>აა</i> 0

tig att gac gtc gct aac ctg cca gac atc aac acc acc gcc ggc aag

Leu Ile Asp Val Ala Asn Leu Pro Asp Ile Asn Thr Thr Ala Gly Lys

1

404

			10					15					20			
atc	gcc	gac	ctg	aag	gcc	cgc	cgg	gcg	gaa	gcc	cac	ttc	ссс	atg	ggt	452
Ile	Ala	Asp 25	Leu	Lys	Ala	Arg	Arg 30	Ala	Glu	Ala	His	Phe 35	Pro	Met	Gly	
_						gtc										500
Glu	Lys 40	Ala	Val	Glu	Lys	Val 45	His	Ala	Ala	Asn	Arg 50	Leu	Thr	Ala	Arg	
-	_		_		_	ctc	_									548
GIu 55	Arg	Leu	Asp	Tyr	Leu 60	Leu	Asp	Glu	Gly	Ser 65	Phe	He	Glu	Thr	Asp 70	
-						асс										596
Gln	Leu	Ala	Arg	His 75	Arg	Thr	Thr	Ala	Phe 80	Gly	Leu	Gly	Asn	Lys 85	Arg	
ccg	gcc	acc	gac	ggc	atc	gtc	acc	ggc	t gg	ggc	асс	atc	gac	ggc	cgc	644
Pro	Ala	Thr	Asp 90	Gly	He	Val	Thr	Gly 95	Trp	Gly	Thr	He	Asp 100	Gly	Arg	
						cag										692
Glu	Val	Cys 105	lle	Phe	Ser	Gln	Asp 110	Gly	Thr	Val	Phe	G1y 115	Gly	Ala	Leu	
	_					aag										740
Gly	Glu 120	Val	Tyr	Gly	Glu	Lys 125	Met	He	Lys	He	Met 130	Glu	Leu	Ala	He	
						atc										788
	Thr	Gly	Arg	Pro		He	Gly	Leu	Tyr		Gly	Ala	Gly	Ala		
135					140					145	,				150	0.0.0
						tcc									tat	836
				155		Ser			160					165		0.0.
-						ggc										884
			170			Gly		175					180			
						aac										932
		185				Asn	190					195				
						асс										980
Val	Va I 200	Met	Val	Asp	Lys	Thr 205	Ser	Lys	Met	Phe	Val 210	Thr	Gly	Pro	Asp	
						ggc										1028
Val 215	lle	Lys	Thr	Val	Thr 220	Gly	Glu	Glu	He	Thr 225	Gln	Glu	Glu	Leu	Gly 230	
	gca	асс	асс	cac		gtc	асс	gcċ	ggc		tcc	cac	tac	acc		1076
						Val								Thr		
				235					240					245		

			gag Glu	Glu				Trp					He			1124
0.4.00		t 0.0	250		0.07.0	taa	t o o	255		a ta	~ · · ·	an a	260	~~~	~~~	1170
_			aac													1172
Leu	PTO	265	Asn	ASII	Alg	261	270	Ala	PIO	Yaı	GIU	275	rne	42h	GIU	
a a a	asc		ggc	afc	acc	നമന		atc	200	acc	ora t		cta	220	cta	1220
-			Gly													1220
oru	280	GIY	Oly	110	nia	285	11511	110	1 11 1	nια	290	пэр	LCu	гуз	Ltu	
gat		afc	atc	ccg	gat		gcc	acc	gtg	ccc		gat	gic	cgc	gac	1268
-	_		He													.550
295					300					305	- • -			0	310	
	atc	cag	tgc	ctg		gac	gac	ggt	gag	tac	ctg	gag	atc	cag	gcc	1316
Val	He	Gln	Cys	Leu	Thr	Asp	Asp	Gly	Glu	Туг	Leu	Glu	He	Gln	Ala	
				315					320					325		
gac	cga	gcc	gag	aat	gtc	gtc	a t c	$\operatorname{gc} c$	ttc	ggc	cgc	a t c	gag	ggc	cag	1364
Asp	Arg	Ala	Glu	Asn	Val	Val	He	Ala	Phe	Gly	Arg	He	Glu	Gly	Gln	
			330					335					340			
															ctg	1412
Ser	Val		Phe	Val	Ala	Asn		Pro	Thr	Gln	Phe		Gly	Cys	Leu	
		345					350			, .	,	355				
_			tcc													1460
ASP	360	ASD	Ser	261	GIU	365	Ala	Ala	Arg	Pne	370	Arg	1111	Cys	ASD	
arce		220	atc	cca	ate		ator	ctt	ate	asc		ccc	gge	t t c	cic	1508
_			lle													1000
375	1110	11311	110	110	380	rui	met	LCu	741	385	, (1)	110	Ory	1110	390	
	ggt	gcc	ggc	cag		tac	ggc	ggc	atc		cgt	cgt	ggc	gcc		1556
			Gly													
	•			395		·			400					405	•	
ctg	ctc	tac	gcc	tac	ggt	gag	gcc	acc	gtc	ccg	aag	atc	асс	gtg	асс	1604
Leu	Leu	Tyr	Ala	Tyr	Gly	Glu	Ala	Thr	Val	Pro	Lys	He	Thr	Val	Thr	
			410					415					420			
atg	cgc	aag	$\operatorname{gc} c$	tac	ggc	ggt	gcg	tac	tgt	gic	atg	gga	t c c	aag	ggt	1652
Met	Arg	Lys	Ala	Tyr	Gly	Gly		Туr	Cys	Val	Met		Ser	Lys	Gly	
		425					430					435				
-	-		gac			-	_		_		-			_	_	1700
Leu	-	Ala	Asp	He	Asn		Ala	Trp	Pro	Thr		GIn	He	Ala	Val	
. ,	440			<b></b>		445		4.1.	o 4 -	4	450		and	. 4		1740
_	-	-	gcc			-									-	1748
	υΙУ	A 1 a	Ala	оту	460	val	UIII	гие	116	19F	Arg	Lys	GIU	Leu		
455	ac t	ora f	gcc	gan		cta	a a c	200	ate		cfa	gee	cam	too	470	1796
gcc	gui	gaı	gul	aag	55 L	CIB	gat	act	SIL	800	CIB	BUU	cag	100	ııc	1130

									-							
Ala	Ala	Asp	Ala	Lys 475		Leu	Asp	Thr	Val 480		Leu	Ala	Gln	Ser 485	Phe	
σασ	cat	σασ	tac			cac	afσ	ctc			tac	cta	aca		asa	1844
																1044
GIU	AIg	Giu	490		ASP	піз	Met	495	ASII	PIO	Tyr	Leu	500	на	GIU	
cgt	ggc	ctc	atc	gac	gçg	gtg	atc	ctg	ccg	t c c	gag	acc	cgt	ggc	cag	1892
Arg	Gly	Leu	He	Asp	Ala	Val	He	Leu	Pro	Ser	Glu	Thr	Arg	Gly	Gln	
		505					510					515				
atc	gca	cgc	aac	ctg	cgt	ctg	ctc	aag	cac	aag	aat	gtc	tcc	cgc	cct	1940
He	Ala	Arg	Asn	Leu	Arg	Leu	Leu	Lvs	His	Lvs	Asn	Val	Ser	Arg	Pro	
	520	0				525				- •	530					
gcc	cgc	aag	cac	ggc	aac	atg	cca	ctg	t a a	gcac	ccg g	gace	cacco	сс		1987
	Arg									0		30-2				
535		Бу	11.15	0.,	540	1.10 0	110	Dou								
		cgc	ассс	acgg		tttg	ctgg	c ag	gtgc	gggc	gcts	gtgcs	gtt.	ttcc	gcgcct	2047
									-		-				gcgcca	
	cccc						64.6	0 64			*6*6	,	•60	5000,	308004	2128
acı	COCC	. 55	, , gu	accc	15 0											2120
<b>&lt;91</b>	0> 6															
	1> 5	<i>1</i> 2														
-																
	2> P1			: .		L										
< Z I	3> C	oryn	ebac	terit	um ti	nermo	oamıı	nogei	nes							
Z40	0> 6															
		Ho	Sor	Sar	Dro	Lou	Ho	Acn	Val	Ala	Acn	Lou	Dro	Acn	Ha	
	1 11 1	116	261	5	110	Leu	116	нзр		ніа	Asn	ren	110	45p	116	
1	T1	Th	A 1 a	_	T	I l a	A I	1	10	1	41.	۸ م	۸ ــ		01	
ASI	1 11 1	Inr		GIY	Lys	116	Ala		Leu	Lys	Ala	Arg		Ala	GIU	
			20			<b>.</b> .		25			_		30			
Ala	His		Pro	Met	Gly	Glu		Ala	Val	Glu	Lys		His	Ala	Ala	
		35					40					45				
Asn	Arg	Leu	Thr	Ala	Arg	Glu	Arg	Leu	Asp	Туг	Leu	Leu	Asp	Glu	Gly	
	50					55					60					
Ser	Phe	He	Glu	Thr	Asp	Gln	Leu	Ala	Arg	His	Arg	Thr	Thr	Ala	Phe	
65					70					75					80	
	Leu	Glv	Asn	Lvs	Arg	Pro	Ala	Thr	Asp	Glv	He	Val	Thr	Glv		
01,	200	0.,		85				• • • •	90	0.,				95		
Clv	Thr	ماا	Asn		Δισ	Glu	Val	Cvs		Phe	Ser	Gln	Asn		Thr	
Gry	1 11 1	110	100	Oly	шь	Olu	7 (1)	105	110	THE	SCI,	OIII	110	Gry	1 11 1	
W - 1	D1	C 1		A 1	Lan	C1	C1		Т	C1	C 1	I		11.	T	
vai	rne		ыу	нта	reu	ыу		vai	ıyr	ыу	Glu		меі	116	ГÀЗ	
		115					120	۵.		T.		125	0.			
He		Glu	Leu	Ala	He		Thr	Gly	Arg	Pro	Leu	He	Gly	Leu	Туг	
	130					135					140					
											Val					

1 4 5					150					155					160
145					Tyr		Δen	ماآ	Cln			Clv	Val	ماآ	
				165					170					175	
Gln	He	Ser	Val 180		Met					Gly			Ala 190	Tyr	Gly
Pro	Ala	Leu			Phe								-	Lys	Met
		195					200					205			
Phe	Val 210	Thr	Gly	Pro	Asp	Val 215		Lys		Val	Thr 220	Gly	Glu	Glu	He
Thr		Glu	Glu	Leu	Gly	Gly				His	Met	Val	Thr	Ala	Gly
225					230					235					240
Asn	Ser	His	Tyr	Thr 245	Val			Asp			Ala			Trp 255	Val
Gln	Asp	Leu	Ile	Ser	Phe					Asn	Arg	Ser	Tyr	Ala	Pro
			260					265					270		
Val	Glu		Phe	Asp	Glu	Glu		Gly	Gly	He	Ala		Asn	He	Thr
4.1	4	275	1	1	Lau	A 0	280	Tla	Ila	D = 0	Aan	285	A 1 a	Th =	Val
Ala	ASP 290	ASP	Leu	Lys	Leu	295		116			300	261	Ala	1111	vai
Pro		Asp	Val	Arg	Asp							Asp	Asp	Glv	GIn
305	1 9 1	пор		8	310			0111					110 p	0.,	320
	Leu	Glu	He	Gln	Ala	Asp	Arg	Ala	Glu		Val	Val	He	Ala	
				325					330					335	
Gly	Arg	He	Glu		GIn				Phe	Val	Ala	Asn		Pro	Thr
			340										350		
Gln	Phe	Ala 355	Gly	Cys	Leu	Asp	11e 360	Asp	Ser	Ser	Glu	Lys 365	Ala	Ala	Arg
Phe	Val	Arg	Thr	Cys	Asp	Ala	Phe	Asn	He	Pro	He	Val	Met	Leu	Val
	370					375					380				
					Leu										
385					390										400
Leu	Arg	Arg	GIY		Lys	Leu	Leu	lyr		ıyr	Gly	GIU	Ala	1nr 415	vai
Dro	Luc	Ila	Thr	405 Val	Thr	Mot	Ara	Lve	410	Tur	Clv	Glv	Δla		Cve
110	r à 2	116	420	v a 1	1 11 1	MCi	лід	425	МΙα	Lyi	Oly	Ory	430	1 y 1	Суз
Val	Met	Glv		Lvs	Gly	Leu	Glv		Asp	He	Asn	Leu		Trp	Pro
	ino t	435		2,0		200	440					445		,-	
Thr	Ala		He	Ala	Val	Met		Ala	Ala	Gly	Ala	Val	Gln	Phe	He
	450					455					460				
Tyr	Arg	Lys	Glu	Leu	Met	Ala	Ala	Asp	Ala	Lys	Gly	Leu	Asp	Thr	Val
465					470					475					480
Ala	Leu	Ala	Gln		Phe	Glu	Arg	Glu		Glu	Asp	His	Met		Asn
				485					490					495	

500 505 510	ı Pro													
Ser Glu Thr Arg Gly Gln Ile Ala Arg Asn Leu Arg Leu Leu Ly 515 520 525	: His													
Lys Asn Val Ser Arg Pro Ala Arg Lys His Gly Asn Met Pro Let 530 535 540	1 .													
<210> 7 <211> 2076 <212> DNA <213> Corynebacterium thermoaminogenes														
<220>														
<221> CDS <222> (412)(2022)														
<400> 7														
acgeeeggee eccigeeetg tgatgegate tgeggatgtg atetgegeee geg														
	-													
ccctggttga accctgccac ataccctgag tcgcacctgg gtggggtcac tttccacctc 120 acggggggga ggaggtcaca taggccatac gctgcacttt tgatgaagtg tgggcagatc 180 gaccgggcaa atctgggaaa taaggggcct ggtgaactag cattcccctt agcgaagggt 240 gagcatcgcg gaccccgca tgtcccaacc ggtcgtaaat tcatgtgccg ccacagtccc 300 ctcaccaggg gatcggaacc agcccagcct gattccgcg tgacggacct caccgtgaac 360 aagtccccgc attactcaca gaactcacac caggatttag actaagaaac c atg act 417 Met Thr														
10.1	et Thr 1													
gca gca acg aca gca cci gat cig acc acc acc gcc ggc aaa ci	l gcg 465													
gca gca acg aca gca cct gat ctg acc acc acc gcc ggc aaa ctc Ala Ala Thr Thr Ala Pro Asp Leu Thr Thr Thr Ala Gly Lys Leu	l gcg 465													
gca gca acg aca gca cci gat cig acc acc acc gcc ggc aaa ci Ala Ala Thr Thr Ala Pro Asp Leu Thr Thr Thr Ala Gly Lys Leu 5 10 15	l gcg 465 Ala													
gca gca acg aca gca cct gat ctg acc acc acc gcc ggc aaa ct Ala Ala Thr Thr Ala Pro Asp Leu Thr Thr Thr Ala Gly Lys Leu 5 10 15 gat ctc cgc gcc cgc ctt tcc gag acc cag gcc ccc atg ggt cag	1 gcg 465 i Ala													
gca gca acg aca gca cci gat cig acc acc acc gcc ggc aaa ci Ala Ala Thr Thr Ala Pro Asp Leu Thr Thr Thr Ala Gly Lys Leu 5 10 15	1 gcg 465 i Ala													
gca gca acg aca gca cct gat ctg acc acc acc gcc ggc aaa ct Ala Ala Thr Thr Ala Pro Asp Leu Thr Thr Thr Ala Gly Lys Leu 5 10 15 gat ctc cgc gcc cgc ctt tcc gag acc cag gcc ccc atg ggt cag Asp Leu Arg Ala Arg Leu Ser Glu Thr Gln Ala Pro Met Gly Glu	ggcg 465 Ala ggcc 513													
gca gca acg aca gca cct gat ctg acc acc acc gcc ggc aaa cta Ala Ala Thr Thr Ala Pro Asp Leu Thr Thr Thr Ala Gly Lys Leu 5 10 15 gat ctc cgc gcc cgc ctt tcc gag acc cag gcc ccc atg ggt cag Asp Leu Arg Ala Arg Leu Ser Glu Thr Gln Ala Pro Met Gly Glu 20 25 30	1													
gca gca acg aca gca cct gat ctg acc acc acc gcc ggc aaa cta Ala Ala Thr Thr Ala Pro Asp Leu Thr Thr Thr Ala Gly Lys Leu 5 10 15  gat ctc cgc gcc cgc ctt tcc gag acc cag gcc ccc atg ggt cag Asp Leu Arg Ala Arg Leu Ser Glu Thr Gln Ala Pro Met Gly Glu 20 25 30  tcc gtg gag aag gtg cac gag gca ggg aag acc gca cgc gca cgc gag Ser Val Glu Lys Val His Glu Ala Gly Lys Lys Thr Ala Arg Glu 35 40 45	1													
gca gca acg aca gca cct gat ctg acc acc acc gcc ggc aaa ctg Ala Ala Thr Thr Ala Pro Asp Leu Thr Thr Thr Ala Gly Lys Leg 5 10 15  gat ctc cgc gcc cgc ctt tcc gag acc cag gcc ccc atg ggt cag Asp Leu Arg Ala Arg Leu Ser Glu Thr Gln Ala Pro Met Gly Gln 20 25 30  tcc gtg gag aag gtg cac gag gca ggg aag aag acc gca gca cgc gag Ser Val Glu Lys Val His Glu Ala Gly Lys Lys Thr Ala Arg Glu 35 40 45  atc gag tac ctg ctc gat gag ggc tcc ttc gtt gag gtc gat gcc	1 gcg 465 1 Ala 2 gcc 513 2 Ala 3 cgc 561 4 Arg 50 2 ctc 609													
gca gca acg aca gca cct gat ctg acc acc acc gcc ggc aaa ctg Ala Ala Thr Thr Ala Pro Asp Leu Thr Thr Thr Ala Gly Lys Leg 5 10 15  gat ctc cgc gcc cgc ctt tcc gag acc cag gcc ccc atg ggt cag Asp Leu Arg Ala Arg Leu Ser Glu Thr Gln Ala Pro Met Gly Gln 20 25 30  tcc gtg gag aag gtg cac gag gca ggg aag aag acc gca cgc gag Ser Val Glu Lys Val His Glu Ala Gly Lys Lys Thr Ala Arg Glu 35 40 45  atc gag tac ctg ctc gat gag ggc tcc ttc gtt gag gtc gat gcc Ile Glu Tyr Leu Leu Asp Glu Gly Ser Phe Val Glu Val Asp Ala	g gcg 465 Ala g gcc 513 Ala g cgc 561 Arg 50 ctc 609 Leu													
gca gca acg aca gca cct gat ctg acc acc acc gcc ggc aaa ctg Ala Ala Thr Thr Ala Pro Asp Leu Thr Thr Thr Ala Gly Lys Leg 5 10 15  gat ctc cgc gcc cgc ctt tcc gag acc cag gcc ccc atg ggt cag Asp Leu Arg Ala Arg Leu Ser Glu Thr Gln Ala Pro Met Gly Glu 20 25 30  tcc gtg gag aag gtg cac gag gca ggg aag aag acc gca cgc gag Ser Val Glu Lys Val His Glu Ala Gly Lys Lys Thr Ala Arg Glu 35 40 45  atc gag tac ctg ctc gat gag ggc tcc ttc gtt gag gtc gat gcc Ile Glu Tyr Leu Leu Asp Glu Gly Ser Phe Val Glu Val Asp Ala 55 60	g gcg 465 Ala g gcc 513 Ala g cgc 561 Arg 50 c ctc 609 Leu													
gca gca acg aca gca cct gat ctg acc acc acc gcc ggc aaa ctg Ala Ala Thr Thr Ala Pro Asp Leu Thr Thr Thr Ala Gly Lys Leg 5 10 15  gat ctc cgc gcc cgc ctt tcc gag acc cag gcc ccc atg ggt cag Asp Leu Arg Ala Arg Leu Ser Glu Thr Gln Ala Pro Met Gly Gln 20 25 30  tcc gtg gag aag gtg cac gag gca ggg aag aag acc gca cgc gag Ser Val Glu Lys Val His Glu Ala Gly Lys Lys Thr Ala Arg Glu 35 40 45  atc gag tac ctg ctc gat gag ggc tcc ttc gtt gag gtc gat gcc Ile Glu Tyr Leu Leu Asp Glu Gly Ser Phe Val Glu Val Asp Ala	g gcg 465 Ala g gcc 513 Ala g cgc 561 Arg 50 ctc 609 Leu g gtc 657													
gca gca acg aca gca cct gat ctg acc acc acc gcc ggc aaa cta Ala Ala Thr Thr Ala Pro Asp Leu Thr Thr Thr Ala Gly Lys Lea Sat ctc cgc gcc gcc cgc ctt tcc gag acc cag gcc ccc atg ggt cag Asp Leu Arg Ala Arg Leu Ser Glu Thr Gln Ala Pro Met Gly Gla Ccc gtg gag aag gtg cac gag gca ggg aag aag acc gtg gag aag acc ggg aag acc ggg aag acc gc gca cgc gcc cgc gag Ser Val Glu Lys Val His Glu Ala Gly Lys Lys Thr Ala Arg Gla 35  40  45  45  46  47  48  48  49  49  40  45  40  45  40  45  46  46  46  46  46  47  48  48  48  48  48  48  48  48  48	g gcg 465 Ala g gcc 513 Ala g cgc 561 Arg 50 ctc 609 Leu g gtc 657													
gca gca acg aca gca cct gat ctg acc acc acc gcc ggc aaa cta Ala Ala Thr Thr Ala Pro Asp Leu Thr Thr Thr Ala Gly Lys Leu 5	1 gcg 465 1 Ala 513 2 gcc 513 2 Ala 561 3 Arg 50 4 Ctc 609 4 Leu 657 7 Val 705													

		85					90					95				
_	_		tcc													753
Cys	Val 100	Phe	Ser	GIn	Asp	G1y 105	Ala	He	Phe	Gly	Gly 110	Ala	Leu	Gly	Glu	
gtc		ggc	gag	aag	atc		aag	atc	atg	gac		gcc	atc	aag	acc	801
_			Glu													
115					120					125					130	
	-		ctc													849
Gly	Val	Pro	Leu		Gly	He	Asn	Glu		Ala	Gly	Ala	Arg		Gln	
~~~	G.G.O.	art t	ort o	135	e f a	aac	o f a	too	140	ana	a t o	+ + c	tae	145	0.0.0	9n7
			gtc Val													897
Olu	Uly	7 4 1	150	501	Leu	Oly	LCu	155	501	OIII	110	THE	160	mg	nsn	
acc	cag	gca	tcc	ggt	gtc	atc	cca		atc	tcc	ctc	atc		ggi	gcc	945
Thr	Gln	Ala	Ser	Gly	Val	He	Pro	Gln	He	Ser	Leu	He	Met	Gly	Ala	
		165					170					175				
_	_		ggc							_		_				993
Суѕ		Gfy	Gly	HIS	Vai		Ser	Pro	Ala	Leu		Asp	Phe	He	He	
ata	180	σac	aag	acc	tee	185	atσ.	ttc	atc	acc	190	ccc	gar	σίσ	afc	1041
		_	Lys													1041
195			_,_		200	_,_				205		_ , _			210	
	acc	gtc	асс	ggc	gag	gag	gtc	асс	cag	gag	gaa	ctg	ggt	ggt	gcc	1089
Lys	Thr	Val	Thr	Gly	Glu	Glu	Val	Thr	Gln	Glu	Glu	Leu	Gly	Gly	Ala	
				215					220					225		
			aig													1137
Tyr	lhr	HIS	Me t 230	Ala	GIN	ser	GIY	1nr 235	ser	HIS	ГУГ	inr	A1a 240	Ala	Asp	
gac	tee	σat	gcc	cic	gac	too	σtc		σασ	ctø	øtc	agr		ctø	cca	1185
~		_	Ala													1100
		245			•		250					255	•			
tcc	aac	aac	cgt	gcg	gag	асс	сса	cgc	cag	gac	gcc	gac	atc	atg	gtg	1233
Ser		Asn	Arg	Ala	Glu	Thr	Pro	Arg	Gln	Asp		Asp	Ile	Met	Val	
	260					265					270					
			aag													1281
-	Ser	He	Lys	6111	Asn 280	11e	Inr	61 H	ınr	285	Leu	GIU	Leu	ASP		
275	atc		gat	tee		aac	caσ	ccσ	tac		ato	яяб	øяс	ote	290	1329
			Asp													1023
~~~		<b>.</b>	1-	295		<b></b>			300			<b>J</b>		305		
acc	cgc	a t c	gtc	gat	gal	gcc	gag	t t c	1 1 c	gag	a t c	cag	gag	ggt	tac	1377
Thr	Arg	Ile	Val	Asp.	Asp	Ala	Glu	Phe	Phe	Glu	He	Gln		Gly	Туг	
			310					315					320			

_					tgc											1425
Ala	Glu		11e	lle	Cys	Gly		Ala	Arg	Val	Glu		Arg	Ala	Val	
		325					330					335				4.50
		_			cag											1473
Gly		Val	Ala	Asn	Gln		Met	GIn	Phe	Ala		Cys	Leu	Asp	He	
	340					345					350					
_	_				gcc											1521
•	Ala	Ser	Glu	Lys	Ala	Ala	Arg	Phe	He		Thr	Cys	Asp	Ala		
355					360					365					370	
					gag											1569
Asn	He	Pro	He		Glu	Leu	Val	Asp		Pro	Gly	Phe	Leu		Gly	
				375					380					385		
асс	aac	cag	gag	ttc	gac	ggc	atc	atc	cgt	cgc	ggc	gcg	aag	ctg	ctc	1617
Thr	Asn	Gln	Glu	Phe	Asp	Gly	Пe	He	Arg	Arg	Gly	Ala	Lys	Leu	Leu	
			390					395					400			
tac	$\operatorname{gc} \operatorname{c}$	tac	gcc	gag	gcc	acc	gtc	ggc	aag	atc	acc	gtg	atc	acc	cgc	1665
Tyr	Ala	Туr	Ala	Glu	Ala	Thr	Val	Gly	Lys	Пе	Thr	Val	He	Thr	Arg	
		405					410					415				
aag	t c c	t a c	ggc	ggt	gcc	t a c	tgc	gţg	atg	ggc	tcc	aag	gac	atg	ggt	1713
Lys	Ser	Tyr	Gly	Gly	Ala	Туr	Cys	Val	Met	Gly	Ser	Lys	Asp	Met	Gly	
	420					425					430					
gcg	gac	ctc	gtc	ttc	gca	t gg	ccc	acc	gcg	cag	a t c	gcc	gtc	atg	ggt	1761
Ala	Asp	Leu	Val	Phe	Ala	Trp	Pro	Thr	Ala	Gln	He	Ala	Val	Met	Gly	
435					440					445					450	
gcc	tcc	ggt	gcc	gtc	ggc	t t c	a t c	tac	cgc	aag	gag	$c\iotac$	aag	cag	gct	1809
Ala	Ser	Gly	Ala	Val	Gly	Phe	He	Tyr	Arg	Lys	Glu	Leu	Lys	Gln	Ala	
				455					460					465		
gca	gcg	gcc	ggc	gag	gat	gtc	acc	gcg	ctg	atg	aag	aag	tac	gag	cag	1857
Ala	Ala	Ala	Gly	Glu	Asp	Val	Thr	Ala	Leu	Met	Lys	Lys	Туг	Glu	Gln	
			470					475					480			
gag	tac	gag	gag	acc	ctg	gtc	aac	ccg	tac	atg	gct	gca	gag	cgt	ggc	1905
					Leu											
	- 2	485					490					495				
tac	gtc		gcc	gtc	atc	сса	сса	tcc	gag	асс	cgt	ggt	cag	atc	a t c	1953
	_				He											
.,.	500	7.00				505		~ · · ·			510	3				
gag		ctg	cgt	ctg	сіс		cgc	aag	gtg	gtc		gtc	ccg	gcc	aag	2001
					Leu											2001
515		<u> </u>	0	20 u	520		6		, u i	525	11511	,		u	530	
	cac	gg t	aac	atc	ccg	cto	taaa	ı e e ø f	cf f		rtees	rσ c:	accae	· øዮ r c		2052
					Pro		ıuuc				,,,,,,	,	u (	-0008	>	5006
гуз	1113	оту		535	. 10	LCU										
an an	י אינייני				rc to	rt c										2076
gaga	iaggi	, , , , ,	gill	guag	gc tg	, ι υ										2010

<210> 8  $\langle 211 \rangle 537$  $\langle 212 \rangle$  PRT <213> Corynebacterium thermoaminogenes <400> 8 Met Thr Ala Ala Thr Thr Ala Pro Asp Leu Thr Thr Ala Gly Lys 10 Leu Ala Asp Leu Arg Ala Arg Leu Ser Glu Thr Gln Ala Pro Met Gly 25 Gln Ala Ser Val Glu Lys Val His Glu Ala Gly Lys Lys Thr Ala Arg 35 40 Glu Arg Ile Glu Tyr Leu Leu Asp Glu Gly Ser Phe Val Glu Val Asp 55 60 Ala Leu Ala Arg His Arg Ser Lys Asn Phe Gly Leu Asp Ser Lys Arg Pro Val Thr Asp Gly Val Val Thr Gly Tyr Gly Thr Ile Asp Gly Arg 90 85 Lys Val Cys Val Phe Ser Gln Asp Gly Ala lle Phe Gly Gly Ala Leu 105 Gly Glu Val Tyr Gly Glu Lys Ile Val Lys Ile Met Asp Leu Ala Ile 120 125 115 Lys Thr Gly Val Pro Leu Ile Gly Ile Asn Glu Gly Ala Gly Ala Arg 135 lle Gin Glu Gly Val Val Ser Leu Gly Leu Tyr Ser Gln Ile Phe Tyr 150 155 Arg Asn Thr Gln Ala Ser Gly Val Ile Pro Gln Ile Ser Leu Ile Met 165 170 Gly Ala Cys Ala Gly Gly His Val Tyr Ser Pro Ala Leu Thr Asp Phe 190 180 185 lle lle Met Val Asp Lys Thr Ser Lys Met Phe Ile Thr Gly Pro Asp 205 200 Val lle Lys Thr Val Thr Gly Glu Glu Val Thr Gln Glu Glu Leu Gly 215 220 Gly Ala Tyr Thr His Met Ala Gln Ser Gly Thr Ser His Tyr Thr Ala 240 225 230 235 Ala Asp Asp Ser Asp Ala Leu Asp Trp Val Arg Glu Leu Val Ser Tyr 245 250 Leu Pro Ser Asn Asn Arg Ala Glu Thr Pro Arg Gin Asp Ala Asp Ile 260 265 270 Met Val Gly Ser lle Lys Glu Asn Ile Thr Glu Thr Asp Leu Glu Leu 285 275 280

```
Asp Thr Leu Ile Pro Asp Ser Pro Asn Gln Pro Tyr Asp Met Lys Asp
                                              300
                         295
Val lle Thr Arg lle Val Asp Asp Ala Glu Phe Phe Glu lle Gln Glu
                                          315
                     310
Gly Tyr Ala Glu Asn Ile Ile Cys Gly Phe Ala Arg Val Glu Gly Arg
                 325
                                      330
                                                           335
Ala Val Gly Ile Val Ala Asn Gln Pro Met Gln Phe Ala Gly Cys Leu
                                  345
                                                       350
             340
Asp Ile Lys Ala Ser Glu Lys Ala Ala Arg Phe Ile Arg Thr Cys Asp
        355
                             360
                                                   365
Ala Phe Asn Ile Pro Ile Ile Glu Leu Val Asp Val Pro Gly Phe Leu
    370
                         375
                                              380
Pro Gly Thr Asn Gln Glu Phe Asp Gly Ile Ile Arg Arg Gly Ala Lys
                     390
                                          395
Leu Leu Tyr Ala Tyr Ala Glu Ala Thr Val Gly Lys Ile Thr Val Ile
                 405
                                      410
                                                           415
Thr Arg Lys Ser Tyr Gly Gly Ala Tyr Cys Val Met Gly Ser Lys Asp
                                  425
                                                       430
Met Gly Ala Asp Leu Val Phe Ala Trp Pro Thr Ala Gln Ile Ala Val
                             440
Met Gly Ala Ser Gly Ala Val Gly Phe Ile Tyr Arg Lys Glu Leu Lys
    450
                         455
                                              460
Gin Ala Ala Ala Gly Glu Asp Val Thr Ala Leu Met Lys Lys Tyr
                     470
                                          475
Glu Gln Glu Tyr Glu Glu Thr Leu Val Asn Pro Tyr Met Ala Ala Glu
                485
                                      490
Arg Gly Tyr Val Asp Ala Val Ile Pro Pro Ser Glu Thr Arg Gly Gln
            500
                                 505
                                                       510
lle Ile Glu Gly Leu Arg Leu Leu Asp Arg Lys Val Val Asn Val Pro
                             520
        515
Ala Lys Lys His Gly Asn Ile Pro Leu
    530
                         535
\langle 210 \rangle 9
<211> 1643
<212> DNA
<213> Corynebacterium thermoaminogenes
<220>
\langle 221 \rangle CDS
<222> (326)..(1363)
```

<400> 9

agcgcgccgg	cagccacca	g tgggatcg	tg cccagcgga	c ggatgccgga	ttcacggcgg 60
tcagccaccc	gccgatgag	a ccigcago	ga caacggtgg	c ggtgctgacc	tggtcagcgt 120
ctttgagttt	catatccat	g tcagacag	tc taaccactc	t ctccgacgcg	teegaacatg 180
ctggggtggc	ggacaccat	g tccgttcg	gg cgttgccc	g acgggggaaa	atcgcaggca 240
gatgtgtccg	atgtgggat	a aacccacc	gg ttcgggcgt	g tettegggat	caatggcaca 300
gcattaaccg	tgtgggggg	t ttaat at	g gga gcc at	g cga att gc	c act ctc 352
				t Arg Ile Ala	
			1	5	204
acg tca ggo	ggc gac	tgc ccc gg	a ctc aat gc	t gtc atc agg	g gga atc 400
Thr Ser Gly	Gly Asp	Cys Pro Gly	V Leu Asn Al	a Val Ile Arg	Glv He
10		15	20		25
gtc cgt acc	gca agt a	at gaa tto	ggt tcc ac	c gtc gtg ggt	
Val Arg Thr	Ala Ser A	Asn Glu Phe	e Gly Ser Th	r Val Val Gly	Tvr Gln
	30		35		40
gac ggc tgg	gag ggc (	tg ctg gcg		t gtt cag cto	
Asp Gly Trp	Glu Gly I	eu Leu Ala	Asp Arg Arg	g Val Gln Leu	Tyr Asn
	45		50	55	
gat gag gac	atc gac c	gc atc ctg	ctc cgc gg	gga aca atc	
Asp Glu Asp	Ile Asp A	rg Ile Leu	Leu Arg Gly	Gly Thr Ile	Len Gly
60		65		70	neu diy
acc ggt cgt	ctc cac c	cc gac aag	ttc aga gco	gga atc gac	cag gtc 592
Thr Gly Arg	Leu His P	ro Asp Lys	Phe Arg Ala	Gly Ile Asp	Gln Val
75		80	0 111 2	85	orn var
aag gcg aat	ctc gcc g	at gcg gga	att gac gca	ctc atc ccg	atc ggt 640
Lys Ala Asn	Leu Ala A	sp Ala Gly	Ile Asp Ala	Leu Ile Pro	lle Glv
90		95	100		105
ggc gag ggc	acc ctc a	ag gga gcg	aag tgg ctc	gcc gac aac	
Gly Glu Gly	Thr Leu L	s Gly Ala	Lvs Trp Leu	Ala Asp Asn	Gly 11e
	110	•	115	ma nop non	120
ccc gtg gtc	ggt gtc co	eg aaa acc		gat gic aac	
Pro Val Val	Gly Val Pa	o Lys Thr	Ile Asp Asn	Asp Val Asn	Glv Thr
	125		130	135	017 1111
gat ttc acc	ttc ggt ti	c gat tcc		gtg gcc acc	gac gcc 784
Asp Phe Thr	Phe Gly Ph	e Asp Ser	Ala Val Ser	Val Ala Thr	Ash Ala
140	·	145		150	nsp nia
atc gac cgg	ctg cac ac		gaa tee cae	aac cgt gtg	atg atc 832
Ile Asp Arg	Leu His Th	r Thr Ala	Glu Ser His	Asn Arg Val	Met IIa
155		160	ora cor mrs	165	met 11e
	atg ggc cg		ggt tgg atc	gca ctg cat	acc aga 990
Val Glu Val	Met Glv Ar	g His Val	Gly Trn lle	Ala Leu His	gcc ggc 880
170	17		180	ma Lea IIIS	185
				gag gtg ccc	
Met Ala Glv	GIv Ala Hi	s Tvr Thr	Val Ile Pro	Glu Val Pro	ttc gac 928
iiid Oif	illu III	o iji llil	ar ric tio	GIU VAI PTO	rne ASD

				190					195					200	)	
a t c	tcg	gag	atc	tgc	aag	cgt	atg	gaa	cgt	cgc	tto	cag	atg	ggg	gag	976
He	Ser	Glu	He	Cys	Lys	Arg	Met	Glu	Arg	Arg	Phe	Gln	Met	Glv	Glu	010
			205					210	)				215			
aag	tac	ggc	a t c	a t c	gtc	gtc	gcg	gag	ggt	gcc	ctg	ссс	aag	gag	gga	1024
Lys	Tyr	Gly	Ile	He	Val	Val	Ala	Glu	Gly	Ala	Leu	Pro	Lys	Glu	Gly	
		220					225					230				
acc	atg	gag	ctg	cgt	gag	ggg	gag	gtg	gat	cag	ttc	ggt	cac	aag	acc	1072
Thr	Met	Glu	Leu	Arg	Glu	Gly	Glu	Val	Asp	Gln	Phe	Gly	His	Lys	Thr	
	235					240					245					
ttc	acc	ggc	atc	ggc	cag	cag	a t c	gcc	gac	gag	gtg	cac	agg	cgt	ctg	1120
Phe	Thr	Gly	He	Gly	Gln	Gln	He	Ala	Asp	Glu	Val	His	Arg	Arg	Leu	
250					255					260					265	
ggt	cat	gat	gtc	cgc	acc	acg	gtc	ctg	ggc	cat	atc	cag	cgt	ggt	ggc	1168
Gly	His	Asp	Val	Arg	Thr	Thr	Val	Leu	Gly	His	He	Gln	Arg	Gly	Gly	
				270					275					280		
acc	ссс	acc	gcc	ttc	gac	cgt	gtc	ctg	gcc	асс	cgg	tac	ggt	gtc	cgc	1216
Thr	Pro	Thr	Ala	Phe	Asp	Arg	Val	Leu	Ala	Thr	Arg	Tyr	Gly	Val	Arg	
			285					290					295			
gcc	gcg	cgt	gcc	tgc	cac	gag	ggt	cag	t t c	aac	асс	gtg	gtc	gcg	ctc	1264
Ala	Ala	Arg	Ala	Cys	His	Glu	Gly	Gln	Phe	Asn	Thr	Val	Val	Ala	Leu	
		300					305					310				
aag	ggg	gag	cgc	atc	cgg	alg	atc	tcc	ttc	gat	gag	gcc	glg	ggc	acc	1312
Lys	Gly	Glu	Arg	lle.	Arg	Met	Ile :	Ser	Phe	Asp	Glu	Ala	Val	Gly	Thr	
	315					320					325					
ctg	aag	aag	gtg	ccg	atg	gaa	cgc	t gg	gţg	a c c	gcc	cag	gct	alg	ttc	1360
Leu	Lys	Lys	Val 1	Pro 1	Met	Glu 1	Arg (	Ггр	Val	Thr	Ala	Gln	Ala	Met	Phe	
330					335					340					345	
gg t Gly	tagt	cagg	cc go	catte	cccg	gtt	ccgcg	3 C C C	gcg	gggc	cgg	gttt	tttc	a t		1413
gccc	cgga	ac a	catce	ggtai	t gaa	aatcg	gtga	tat	gcat	tac	ttga	cggg	ga a	gtøø	gggat	1473
ccgt	cacc	tc go	cgltg	gtcca	a ac	tacag	gccc	gca	gege	ctg	cggg	aatt	ct t	casa	caatc	1533
cgcc.	gatto	cc cc	cggcc	cgto	CCE	gicgo	cgt	cca	accg	cag	taca	atci	go f	ggnr	cgccg	1593
ggat	tatga	ag ac	ccggt	atco	gco	cggt	cgt	gga	cgag	ttc	ggtc	ccgc	gg		-00	1643
								-				. 0 - 1				1010
/210°	\ 10															

<210> 10

<211> 346

<212> PRT

<213> Corynebacterium thermoaminogenes

<400> 10

Met Gly Ala Met Arg Ile Ala Thr Leu Thr Ser Gly Gly Asp Cys Pro 1 5 10 15

Gly	Leu	Asn	Ala 20	Val	lle	Arg	Gly	Ile 25	Val	Arg	Thr	Ala	Ser 30	Asn	Glu
Phe	Gly.	Ser 35	Thr	Val	Val	Gly	Tyr 40		Asp			Glu 45	Gly	Leu	Leu
	50	Arg				55					60				
65					70		Leu			75					80
				85			Gln		90					95	
			100				He	105					110		
		115					Gly 120					125			
	130					135	Gly Asp				140				
145					150					155					160
				165			Met		170					175	
			180				Ala	185					190		
		195					200					205			Arg
	210					215	Gly				220				
225					230					235					Gly- 240
				245					250					255	
			260					265					270		Thr
		275					280					285			Arg
	290	)				295					300				Glu
305	;				310					315	•				320 Met
H	e Ser			325					330	)	Lys	Val	Pro	Me t 335	Glu
Arg	g Trp	val	Thr 340		Gln	Ala	Met	Phe 345		•					

<21	0> 1 1> 4 2> D	98														
<21	3> C	oryn	ebac	teri	um t	herm	oami	noge	nes							
	1> C	DS 1)	(498	)												
<40	0> 1	1														
							ttc Phe									48
							ttg Leu									96
_		-	ссс				tac Tyr 40	ccg					gac			144
		tat					gta Val					acg				192
	tac					aaa	att He				cgc					240
aac					gag		cca Pro			ctg					cat	288
				aaa			ctt Leu		gac					ggl	ttt Phe	336
_			t a c				atg Met 120	atc					gat			384
		gtt					cgc Arg					ggt				432
	tac					ctt	gaa Glu				ttc					480
асс		gac Asp			gac											498

<210> 12 <211> 166  $\langle 212 \rangle$  PRT <213> Corynebacterium thermoaminogenes <400> 12 Tyr Tyr Gln His Asp Pro Gly Phe Pro Phe Ala Pro Lys Arg Thr Gly 5 1 Trp Ala His Thr Thr Pro Leu Thr Gly Pro Gln Arg Leu Gln Trp 20 25 Thr His Leu Pro Asp Ala Leu Tyr Pro Asp Val Ser Tyr Asp Leu Asp 40 Gly Cys Tyr Ser Gly Gly Ala Val Phe Ser Asp Gly Thr Leu Lys Leu 60 55 Phe Tyr Thr Gly Asn Arg Lys Ile Asp Gly Lys Arg Arg Ala Thr Gln 70 Asn Leu Val Glu Val Glu Asp Pro Thr Gly Leu Met Gly Gly Ile His 90 85 Arg Arg Ser Pro Lys Asn Pro Leu lle Asp Gly Pro Ala Ser Gly Phe 105 Thr Pro His Tyr Arg Asp Pro Met Ile Ser Pro Asp Gly Asp Gly Trp 120 125 Lys Met Val Leu Gly Ala Gln Arg Glu Asn Leu Thr Gly Ala Ala Val 135 140 Leu Tyr Arg Ser Ala Asp Leu Glu Asn Trp Glu Phe Ser Gly Glu Ile 150 155 Thr Phe Asp Leu Ser Asp 165 <210> 13 <211> 479 <212> DNA <213> Corynebacterium thermoaminogenes <220> <221> CDS ⟨222⟩ (1).. (477) <400> 13 tac tac cag cac gat cca ggt tic ccc tic gca cca aag cgc acc ggc Tyr Tyr Gln His Asp Pro Gly Phe Pro Phe Ala Pro Lys Arg Thr Gly 10 1 5

									0							
tgg	gct	cac	acc	acc	acg	ccg	ttg	acc	gga	ccg	cag	cga	ttg	cag	tgg	96
Trp	Ala	His	Thr	Thr	Thr	Pro	Leu	Thr	Gly	Pro	Gln	Arg	Leu	Gln	Trp	
			20					25					30			
acg	cac	ctg	ccc	gac	gc t	ctt	tac	ccg	gat	gca	tcc	t a t	gac	ctg	gat	144
Thr	His	Leu	Pro	Asp	Ala	Leu	Tyr	Pro	Asp	Ala	Ser	Туг	Asp	Leu	Asp	
		35					40					45				
gga	tgc	tat	t c c	ggt	gga	gcc	gta	ttt	ac t	gac	ggc	a c a	ctt	aaa	ctt	192
Gly	Cys	Туr	Ser	Gly	Gly	Ala	Val	Phe	Thr	Asp	Gly	Thr	Leu	Lys	Leu	
	50					55					60					
t t c	tac	асс	ggc	aac	cta	aaa	att	gac	ggc	aag	cgc	cgc	gcc	асс	caa	240
Phe	Туг	Thr	Gly	Asn		Lys	He	Asp	Gly	Lys	Arg	Arg	Ala	Thr	Gln	
65					70					75					80	
	ctc															288
Asn	Leu	Val	Glu		Glu	Asp	Pro	Thr		Leu	Met	Gly	Gly		His	
				85					90					95		
-	cgt															336
Arg	Arg	Ser		Lys	Asn	Pro	Leu		Asp	Gly	Pro	Ala		Gly	Phe	
			100					105					110			004
	ссс			_	_		_		_		_					384
Thr	Pro		Tyr	Arg	Asp	Pro		He	Ser	Pro	Asp		Asp	Gly	Trp	
		115					120					125				400
	atg															432
Lys	Met	val	Leu	Gly	Ala		Arg	GIU	Asn	Leu		GIY	Ala	Ala	vai	
	130		4			135			1		140	4		~~~		470
	tac														aı	479
	Туг	Arg	ser	ınr		Leu	GIU	ASI	1 F D		rne	ser	GIY	GIU		
145					150					155						
Z910	)\ 1 <i>4</i>															
	)> 14  > 15															
	1/ 10 2/ PR					-										
	3> Cc		ahac t	ariu	ım th	ormo	amin	ngar	201							
7410	)/ ((	) i y ii t	Suaci	CIIU	1111 [11	i C i iii C	) (I II I I I	lugui	ics							
Z 4 O C	)> 14															
	Туг		His	Asn	Pro	Glv	Phe	Pro	Phe	Ala	Pro	Ivs	Arg	Thr	Glv	
ı yı	1 y 1	0111	1113	7.3 p	110	Oly	THE	110	10	711 ti	110	БуЗ	111 6	15	019	
	Ala	Hic	Thr		Thr	pro	Len	Thr		Pro	Gla	Arσ	Len		Trp	
11b	πια	1113	20	1111	1111	110	Lca	25		110	GIII	W P	30	0111	110	
Thr	His	Len		Asn	Ala	Leu	Tvr			Ala	Ser	Tvr		Len	Asp	
1 11 1	0 1 1 1	35	110	, 10 p	, 1 I U	Doa	40	. 10	.10 p	. s . u	501	45	p	20u		
Glv	Cys		Ser	Glv	Glv	Ala		Phe	Thr	Asn	Glv		Len	Lvs	Leu	
JIY	50		~ 0 ,	J.,	J. J	55		- 110			60		204	2,0	200	
Phe	Tyr	Thr	Glv	Asn	Leu		He	Asp	Glv	Lvs		Arg	Ala	Thr	Gln	
	1 7 1		J . J		U G	_, 0	0		~ . ,	, 5	0	6			J	

```
70
                                          75
                                                               80
 65
Asn Leu Val Glu Val Glu Asp Pro Thr Gly Leu Met Gly Gly Ile His
                  85
                                      90
                                                           95
Arg Arg Ser Pro Lys Asn Pro Leu Ile Asp Gly Pro Ala Ser Gly Phe
            100
                                 105
Thr Pro His Tyr Arg Asp Pro Met Ile Ser Pro Asp Gly Asp Gly Trp
                             120
        115
Lys Met Val Leu Gly Ala Gln Arg Glu Asn Leu Thr Gly Ala Ala Val
    130
                         135
                                             140
Leu Tyr Arg Ser Thr Asp Leu Glu Asn Trp Glu Phe Ser Gly Glu
                     150
                                         155
145
<210> 15
<211> 490
<212> DNA
(213) Corynebacterium thermoaminogenes
<400> 15
attitaatgg ataitatcia tattitatca ataitatcci tatgcaccig aatggggacc 60
aatgcattgg ggacacgcac gtagtaaaga titagticat tgggaaacat taccgattgc 120
tttagaacct ggagatgaag aagaaaaatg gttgtttctc tggtacaggt atagtcaaag 180
atgataagtt gtatttattt tatacaggic accattatta taatgacgat gatcccgatc 240
attitiggca aaatcaaaat atggcttata gigaagatgg cattcattit caaaaatata 300
aacaaaatge aateatteet acceeacetg aagataatae acateactte agagateeaa 360
aggtatggga acatecatgg ettattatta catgatagta ggtagteaaa atgatagaga 420
attaggacgi attatettat ateglietga ggattialag aggggaalie iggleetgag 480
                                                                     490
atcaatccaa
<210> 16
<211> 4254
<212> DNA
<213 Corynebacterium thermoaminogenes
<220>
<221> CDS
<222> (637)..(1362)
<220>
<221> CDS
\langle 222 \rangle (1434). (2315)
<220>
<221> CDS
<222> (2432).. (3115)
```

```
<220>
<221> CDS
<222> (3235).. (4065)
<400> 16
tracggraded cagattaccc agtgtgccgt agagargetg atreggratic tracgcaccg 60
cgcaggtgit gaagacgatg agatcagggg tgtcaccctc ccccgccgcg gtgtaaccgg 120
cctcctcgag cagaccggag agacgctcgg aatcgtggac gttcatctgg cagccgaagg 180
tacgcacctc ataggtgcgg gcagtggtgc cctcccggtt cccccgcgcc gggagggtgt 240
cggcggggig gtccgggtgg galggalggg tgltcatcig gigggtatca alcigcigcg 300
tcacgggagg taatigiaic ggccgcgggc acccigacat aaacgiccga tccagaggaa 360
cgcaaccccg tggagtgtcg cagccatgca ggttgggcaa caccgtaacg gaacctagca 420
gagtggtagg attgactica cattettiac ciattgaget attgataaaa teegggegga 480
aatggaaate acceecacaa ateaceecaa etgacetgtg gaaagggega gaaateeagg 540
gaaatteatt teaaaalgga eteaateaca ggalllacee cacalgacee aacatteett 600
tatgctatcc ccatgacgca gaccacaaat cacccg atg atc aag atg acg ggg
                                        Met Ile Lys Met Thr Gly
                                          1
                                                           5
gig cag aag tic lic gat gac lic cag gcc cig acc gat atc aat cit
                                                                   702
Val Gin Lys Phe Phe Asp Asp Phe Gin Ala Leu Thr Asp Ile Asn Leu
             10
                                 15
                                                      20
gag gic ccc gcg gga cag gic gil gil cic ggc ccg icc ggl tcc
                                                                   750
Glu Val Pro Ala Gly Gln Val Val Val Leu Gly Pro Ser Gly Ser
         25
                             30
gga aag icg acg cig igc cgc acc aic aac cgc cic gaa acc aic gag
                                                                   798
Gly Lys Ser Thr Leu Cys Arg Thr Ile Asn Arg Leu Glu Thr Ile Glu
     40
                         45
                                             50
gag gga acc alc gag atc gat gga aaa clg cll ccg gag gag ggc aag
                                                                   846
Glu Gly Thr Ile Glu Ile Asp Gly Lys Leu Leu Pro Glu Glu Gly Lys
                     60
                                         65
gac ctg gcc aag alc cgl gcc gac gtg ggc atg gtg ttc cag tct ttc
                                                                   894
Asp Leu Ala Lys lie Arg Ala Asp Val Gly Met Val Phe Gln Ser Phe
                 75
                                     80
aac ctc ttc ccc cac ctc acc atc aag gac aat gtc acc ctc ggc ccg
                                                                   942
Asn Leu Phe Pro His Leu Thr Ile Lys Asp Asn Val Thr Leu Gly Pro
             90
                                 95
                                                                   990
aig aag gic cgg aag aig aag icc gag gcc aai gag gig gcc aig
Met Lys Val Arg Lys Met Lys Lys Ser Glu Ala Asn Glu Val Ala Met
                            110
aag ctg ttg gaa cgc gtc ggc atc gcc aac cag gcc gag aaa tac ccg
                                                                   1038
Lys Leu Leu Glu Arg Val Gly Ile Ala Asn Gln Ala Glu Lys Tyr Pro
    120
                        125
                                            130
gca cag cic icg ggc ggg cag cag cag cgc gig gcc aic gcc cgc gca
                                                                  1086
```

Ala 135	G l.n	Leu	Ser	Gly	Gly 140	Gln	Gln	Gln	Arg	Val 145	Ala	He	Ala	Arg	Ala 150	
cta	თით	atg	аас	ссс		atc	atg	ctt	ttc	gac	gaa	c c a	асс	tcc	gcc	1134
Lou	Ala	Met	Asn	Pro	Lvs	Lle	Met	Leu	Phe	Asp	Glu	Pro	Thr	Ser	Ala	
Leu	лια	mc t	71511	155	13,5				160	•				165		
a t a	or n. c	ссс	σάσ		gic	aac	gag	gtt.		gac	gtc	atg	gcg	agt	ctg	1182
100	Aan	Pro	Cli	Met	Val	Asn	Glu	Val	Len	Asp	Val	Met	Ala	Ser	Leu	
Leu	ASP	110	170	met	v a i	non.	Oru	175	500				180			
,	~	gaa		a for	a c c	ator	σtσ		σtc	асс	cac	gag		ggt	ttc	1230
gcc	aag	Glu	Clu	Mot	Thr	Mot	Val	Cvs	Val	Thr	His	Glu	Met	Glv	Phe	
Ата	Lys		Gly	MCt	1 11 1	mc i	190	O y S	141	****	1110	195		3		
		185 agg	~~~	a a a	an c	cat		eta	ttc	atσ	tet		aac	gcc	atc	1278
gca	cgc	agg Arg	gcc	Ala	Aan	Ara	Val	Lou	Phe	Met	Ser	Asn	Glv	Ala	He	
Ala		Arg	Ala	Ala	ASP		V d 1	Leu	1110	MCi	210	пэр	013	711 a	110	
	200					205		4 4 0	+ + a	0.00		cca	caa	200	gac	1326
gtc	gag	gac	tcc	gac	ccg	gag	acc	Dha	Dha	The	Aan	Dro	Cln	Thr	Aen	1020
	Glu	Asp	Ser	Asp		Glu	ınr	Pne	Рпе		ASII	rio	GIII	1 11 1	230	
215					220					225		اسم		0.00	230	1372
cgg	gcg	aag	gat	ttc	ctg	ggc	aag	atc	cic	gcc	cac	tga	cctc	CCC		1312
Arg	Ala	Lys	Asp		Leu	Gly	Lys	He		Ala	HIS					
				235					240						o good .	1429
t c a	ctct	gtg	teca	actc	CC C	cgct	ggcc	a aaa	atca.	gcga	cca	igac	caa	cagg	agcar	c 1432
a a	tg t	cg ca	ac as	aa c	gc a	tg t	tc a	cc ca	gi c	ic g	cc g	ca g	cc a	.cc a	ge ge	a 1481
									Y	A	1 . 1	1 ~ 1	I o T	hr C	or Ali	n
M	et S			ys A	rg Me	et Pl			rg L	eu A	la A			hr S	er Ala	1
		2	45				2	50				2	55			a
gct	gtt	2 c t c	45 gcc	ggc	atc	acc	2 c t c	50 acc	gcc	tgt	ggt	2 gat	55 t c c	gag	ggt	1529
gct	gtt	2	45 gcc	ggc	atc	acc Thr	2 c t c	50 acc	gcc	tgt	ggt Gly	2 gat	55 t c c	gag	ggt	a
gc t Al a	gtt Val 260	ctc Leu	45 gcc Ala	ggc Gly	atc Ile	acc Thr 265	2 ctc Leu	50 acc Thr	gcc Ala	tgt Cys	ggt Gly 270	2 gat Asp	55 tcc Ser	gag Glu	gg t Gly	1529
gct Ala	gtt Val 260 gac	ctc Leu	gcc Ala	ggc Gly ctc	atc Ile	acc Thr 265 gcc	2 ctc Leu atc	50 acc Thr gaa	gcc Ala	tgt Cys ggc	ggt Gly 270 aat	gat Asp	55 tcc Ser acc	gag Glu atc	ggt Gly ggc	a
gct Ala	gtt Val 260 gac	ctc Leu	gcc Ala	ggc Gly ctc	atc Ile	acc Thr 265 gcc	2 ctc Leu atc	50 acc Thr gaa	gcc Ala	tgt Cys ggc Gly	ggt Gly 270 aat Asn	gat Asp	55 tcc Ser acc	gag Glu atc	ggt Gly ggc Gly	1529
gct Ala ggt Gly 275	gtt Val 260 gac Asp	ctc Leu ggt Gly	gcc Ala ctg Leu	ggc Gly ctc Leu	atc Ile gcc Ala 280	acc Thr 265 gcc Ala	2 ctc Leu atc Ile	50 acc Thr gaa Glu	gcc Ala aat Asn	tgt Cys ggc Gly 285	ggt Gly 270 aat Asn	gat Asp gtc Val	55 tcc Ser acc Thr	gag Glu atc	ggt Gly ggc Gly 290	1529 1577
gct Ala ggt Gly 275	gtt Val 260 gac Asp	ctc Leu ggt Gly	gcc Ala ctg Leu	ggc Gly ctc Leu	atc Ile gcc Ala 280 ccg	acc Thr 265 gcc Ala	2 ctc Leu atc Ile	50 acc Thr gaa Glu gga	gcc Ala aat Asn	tgt Cys ggc Gly 285	ggt Gly 270 aat Asn	gat Asp gtc Val	55 tcc Ser acc Thr	gag Glu atc	ggt Gly ggc Gly 290 tcc	1529
gct Ala ggt Gly 275	gtt Val 260 gac Asp	ctc Leu ggt Gly	gcc Ala ctg Leu	ggc Gly ctc Leu	atc Ile gcc Ala 280 ccg	acc Thr 265 gcc Ala	2 ctc Leu atc Ile	50 acc Thr gaa Glu gga	gcc Ala aat Asn	tgt Cys ggc Gly 285	ggt Gly 270 aat Asn	gat Asp gtc Val	55 tcc Ser acc Thr	gag Glu atc Ile aat	ggt Gly ggc Gly 290 tcc Ser	1529 1577
gct Ala ggt Gly 275 acc Thr	gtt Val 260 gac Asp aag Lys	ctc Leu ggt Gly tac	gcc Ala ctg Leu gat Asp	ggc Gly ctc Leu cag Gln 295	atc Ile gcc Ala 280 ccg Pro	acc Thr 265 gcc Ala gg1 Gly	2 ctc Leu atc Ile ctg Leu	50 acc Thr gaa Glu gga Gly	gcc Ala aat Asn ctg Leu	tgt Cys ggc Gly 285 cgt Arg	ggt Gly 270 aat Asn aac	gat Asp gtc Val ccg Pro	55 tcc Ser acc Thr gac Asp	gag Glu atc Ile aat Asn 305	ggt Gly ggc Gly 290 tcc Ser	1529 1577 1625
gct Ala ggt Gly 275 acc Thr	gtt Val 260 gac Asp aag Lys	ctc Leu ggt Gly tac	gcc Ala ctg Leu gat Asp	ggc Gly ctc Leu cag Gln 295	atc Ile gcc Ala 280 ccg Pro	acc Thr 265 gcc Ala gg1 Gly	2 ctc Leu atc Ile ctg Leu	50 acc Thr gaa Glu gga Gly	gcc Ala aat Asn ctg Leu	tgt Cys ggc Gly 285 cgt Arg	ggt Gly 270 aat Asn aac	gat Asp gtc Val ccg Pro	55 tcc Ser acc Thr gac Asp	gag Glu atc Ile aat Asn 305	ggt Gly ggc Gly 290 tcc Ser	1529 1577
gct Ala ggt Gly 275 acc Thr	gtt Val 260 gac Asp aag Lys	ctc Leu ggt Gly tac Tyr	gcc Ala ctg Leu gat Asp	ggc Gly ctc Leu cag Gln 295 gat	atc Ile gcc Ala 280 ccg Pro	acc Thr 265 gcc Ala ggi Gly	ctc Leu atc Ile ctg Leu	50 acc Thr gaa Glu gga Gly	gcc Ala aat Asn ctg Leu 300 cag	tgt Cys ggc Gly 285 cgt Arg	ggt Gly 270 aat Asn aac Asn	gat Asp gtc Val ccg Pro	55 tcc Ser acc Thr gac Asr	gag Glu atc Ile aat Asn 305	ggt Gly ggc Gly 290 tcc Ser	1529 1577 1625
gct Ala ggt Gly 275 acc Thr	gtt Val 260 gac Asp aag Lys	ctc Leu ggt Gly tac Tyr	gcc Ala ctg Leu gat Asp ctg Leu	ggc Gly ctc Leu cag Gln 295 gat	atc Ile gcc Ala 280 ccg Pro	acc Thr 265 gcc Ala ggi Gly	ctc Leu atc Ile ctg Leu	50 acc Thr gaa Glu gga Gly	gcc Ala aat Asn ctg Leu 300 cag	tgt Cys ggc Gly 285 cgt Arg	ggt Gly 270 aat Asn aac Asn	gat Asp gtc Val ccg Pro	55 tcc Ser acc Thr gac Asr	gag Glu catc lle aat Asn 305 tcc	ggt Gly ggc Gly 290 tcc Ser	1529 1577 1625
gct Ala ggt Gly 275 acc Thr	gtt Val 260 gac Asp aag Lys	ctc Leu ggt Gly tac Tyr	gcc Ala ctg Leu gat Asp ctg Leu 310	ggc Gly ctc Leu cag Gln 295 gat Asp	atc Ile gcc Ala 280 ccg Pro	acc Thr 265 gcc Ala ggt Gly gac Asp	ctc Leu atc Ile ctg Leu gtc Val	50 acc Thr gaa Glu gga Gly gcg Ala 315	gcc Ala aat Asn ctg Leu 300 cag Gln	tgt Cys ggc Gly 285 cgt Arg	ggt Gly 270 aat Asn aac Asn	gat Asp gtc Val ccg Pro	55 tcc Ser acc Thr gac Asr aac Asr	gag Glu atc Ile aat Asn 305 ctcc Ser	ggt Gly ggc Gly 290 tcc Ser	1529 1577 1625
gct Ala ggt Gly 275 acc Thr	gtt Val 260 gac Asp aag Lys ser	ctc Leu ggt Gly tac Tyr gga Gly	gcc Ala ctg Leu gat Asp ctg Leu 310	ggc Gly ctc Leu cag Gln 295 gat Asp	atc Ile gcc Ala 280 ccg Pro gtc Val	acc Thr 265 gcc Ala ggt Gly gac Asp	ctc Leu atc Ile ctg Leu gtc Val	50 acc Thr gaa Glu gga Gly gcg Ala 315 ccc	gcc Ala aat Asn ctg Leu 300 cag Gln	tgt Cys ggc Gly 285 cgt Arg tac Tyr	ggt Gly 270 aat Asn aac Asn gtg Val	gat Asp gtc Val ccg Pro Val	55 tcc Ser acc Thr gac Asr aac Asr 320 g cgc	gag Glu atc Ile aat Asn 305 tcc Ser	ggt Gly ggc Gly 290 tcc Ser atc	1529 1577 1625
gct Ala ggt Gly 275 acc Thr	gtt Val 260 gac Asp aag Lys ser	ctc Leu ggt Gly tac Tyr gga Gly gac Asp	gcc Ala ctg Leu gat Asp ctg Leu 310	ggc Gly ctc Leu cag Gln 295 gat Asp	atc Ile gcc Ala 280 ccg Pro gtc Val	acc Thr 265 gcc Ala ggt Gly gac Asp	ctc Leu atc Ile ctg Leu gtc Val	50 acc Thr gaa Glu gga Gly gcg Ala 315 ccc Pro	gcc Ala aat Asn ctg Leu 300 cag Gln	tgt Cys ggc Gly 285 cgt Arg tac Tyr	ggt Gly 270 aat Asn aac Asn gtg Val	gat Asp gtc Val ccg Pro Val	55 tcc Ser acc Thr gac Asr 320 g cgc Arg	gag Glu atc Ile aat Asn 305 tcc Ser	ggt Gly ggc Gly 290 tcc Ser	1529 1577 1625
gct Ala ggt Gly 275 acc Thr atg Met	gtt Val 260 gac Asp aag Lys ser ser	ctc Leu ggt Gly tac Tyr gga Gly gac Asp	gcc Ala ctg Leu gat Asp ctg Leu 310 aac	ggc Gly ctc Leu cag Gln 295 gat Asp	atc Ile gcc Ala 280 ccg Pro gtc Val	acc Thr 265 gcc Ala ggt Gly gac Asp	ctc Leu atc Ile ctg Leu gtc Val cac His	50 acc Thr gaa Glu gga Gly gcg Ala 315 ccc Pro	gcc Ala aat Asn ctg Leu 300 cag Gln acc	tgt Cys ggc Gly 285 cgt Arg tac Tyr	ggt Gly 270 aat Asn aac Asn yal	gat Asp gtc Val ccg Pro Val tgs	55 tcc Ser acc Thr acc Asr 32( g cgc Arr	gag Glu atc Ile aat Asn 305 c tcc Ser C gag	ggt Gly ggc Gly 290 tcc Ser atc Ile	1529 1577 1625
gct Ala ggt Gly 275 acc Thr atg Met	gtt Val 260 gac Asp aag Lys ser gat Asp	ctc Leu ggt Gly tac Tyr gga Gly gac Asp 325	gcc Ala ctg Leu gat Asp ctg Leu 310 aac Asn	ggc Gly ctc Leu cag Gln 295 gat Asp	atc Ile gcc Ala 280 ccg Pro gtc Val tgg Trp	acc Thr 265 gcc Ala ggt Gly gac Asp gat Asp	ctc Leu atc Ile ctg Leu gtc Val cac His 330 ctc	50 acc Thr gaa Glu gga Gly gcg Ala 315 ccc Pro	gcc Ala aat Asn ctg Leu 300 cag Gln acc Thr	tgt Cys ggc Gly 285 cgt Arg tac Tyr gtg Val	ggt Gly 270 aat Asn aac Asn val ggaa Glu	gat Asp gtc Val ccg Pro Val tgg Trp 335 gag	55 tcc Ser acc Thr acc Asr aac Asr cg cg g g g g g g g g g g g g g g g g	gag Glu catc lle caat Asn 305 ctcc Ser cgag	ggt Gly ggc Gly 290 tcc Ser atc Ile	1529 1577 1625 1673
gct Ala ggt Gly 275 acc Thr atg Met	gtt Val 260 gac Asp aag Lys ser gat Asp	ctc Leu ggt Gly tac Tyr gga Gly gac Asp 325 gcc	gcc Ala ctg Leu gat Asp ctg Leu 310 aac Asn	ggc Gly ctc Leu cag Gln 295 gat Asp	atc Ile gcc Ala 280 ccg Pro gtc Val tgg Trp	acc Thr 265 gcc Ala ggt Gly gac Asp gat Asp	ctc Leu atc Ile ctg Leu gtc Val cac His 330 ctc Leu	50 acc Thr gaa Glu gga Gly gcg Ala 315 ccc Pro	gcc Ala aat Asn ctg Leu 300 cag Gln acc Thr	tgt Cys ggc Gly 285 cgt Arg tac Tyr gtg Val	ggt Gly 270 aat Asn aac Asn gtg Val gaa Glu ggt	gat Asp gtc Val ccg Pro Val tgg Trp 335 gag	55 tcc Ser acc Thr acc Asr aac Asr cg cg g g g g g g g g g g g g g g g g	gag Glu catc lle caat Asn 305 ctcc Ser cgag	ggt Gly ggc Gly 290 tcc Ser atc Ile	1529 1577 1625 1673
gct Ala ggt Gly 275 acc Thr atg Met	gtt Val 260 gac Asp aag Lys ser ser Asp	ctc Leu ggt Gly tac Tyr gga Gly gac Asp 325 gcc Ala	gcc Ala ctg Leu gat Asp ctg Leu 310 aac Asn cag	ggc Gly ctc Leu cag Gln 295 gat Asp ggt Gly cgc Arg	atc Ile gcc Ala 280 ccg Pro gtc Val tgg Trp	acc Thr 265 gcc Ala ggt Gly gac Asp gat Asp acc Thr 345	ctc Leu atc Ile ctg Leu gtc Val cac His 330 ctc Leu	50 acc Thr gaa Glu gga Gly gcg Ala 315 ccc Pro	gcc Ala aat Asn ctg Leu 300 cag Gln acc Thr	tgt Cys ggc Gly 285 cgt Arg tac Tyr gtg Val	ggt Gly 270 aat Asn aac Asn gtg Val gaa Glu ggt	gat Asp gtc Val ccg Pro Val tgg Trp 335 gag	55 tcc Ser acc Thr acc Asr 32( g cgc Arr g cgc Va	gag Glu catc lle caat Asn 305 ctcc gag g Glu g gal	ggt Gly ggc Gly 290 tcc Ser atc Ile	1529 1577 1625 1673

Пе	Ala	Ala	Thr	Туг	Ser	Ile	Asn	Pro	Gly	Arg	Ser	Glu	Ser	Val	Asn	
355					360					365					370	
ttc	ggt	gga	сса	tac	c.tc	ctc	acc	cac	cag	gcc	ctc	ctg	gtc	cgc	gag	1865
Phe	Gly	Gly	Pro	Tyr	Leu	Leu	Thr	His	Gln	Ala	Leu	Leu	Val	Arg	Glu	
				375					380					385		
gac	gat	gac	cgc	atc	cag	acc	ctc	gag	gac	ctc	gat	gac	ggc	ctg	atc	1913
Asp	Asp	Asp	Arg	He	Gln	Thr	Leu	Glu	Asp	Leu	Asp	Asp	Gly	Leu	He	
			390					395					400			
ctg	tgt	tcc	gţţ	acc	gga	t c c	acc	ccc	gcc	cag	aag	gtc	aag	gat	gtc	1961
Leu	Cys	Ser	Val	Thr	Gly	Ser	Thr	Pro	Ala	Gln	Lys		Lys	Asp	Val	
		405					410					415				0000
ctc	ссс	ggc	gtc	cag	ctg	cag	gaa	tac	gac	acc	tac	tcc	tcc	tgt	gtg	2009
Leu	Pro	Gly	Val	Gln	Leu	Gln	Glu	Туr	Asp	Thr		Ser	Ser	Cys	Val	
	420					425					430					
gag	gca	ctg	agc	cag	ggc	aac	gtc	gat	gca	atg	acc	асс	gac	gcc	acc	2057
Glu	Ala	Leu	Ser	Gln	Gly	Asn	Val	Asp	Ala	Met	Thr	Thr	Asp	Ala	Thr	
435					440					445					450	0105
a t c	ctc	ttc	ggc	tac	gcg	cag	cag	cgc	gaa	ggt	gaa	ttc	cgc	gtc	gtg	2105
He	Leu	Phe	Gly	Tyr	Ala	Gln	Gln	Arg	Glu	Gly	Glu	Phe	Arg	Val	Val	
				455					460					465		
gag	atg	gaa	cag	gac	ggc	gag	ccg	ttc	acc	aat	gag	tac	tac	ggc	atc	2153
Glu	Met	Glu	Gln	Asp	Gly	Glu	Pro		Thr	Asn	Glu	Туг	Tyr	Gly	He	
			470					475					480			0.001
ggt	atc	асс	aag	gat	gac	acc	gaa	gcc	асс	gat	gcg	atc	aac	gca	gcg	2201
Gly	Ile	Thr	Lys	Asp	Asp	Thr		Ala	Thr	Asp	Ala			Ala	Ala	
		485					490					495				0040
ttg	gag	cgt	atg	tac	gcc	gac	ggt	tcc	ttc	cag	cgt	ttc	ctc	acc	gag	2249
Leu	Glu	Arg	Met	Туг	Ala		Gly	Ser	Phe	Gln			Leu	lhr	Glu	
	500					505					510					0007
aac	c t c	ggc	gag	gat	tcc	cag	gtt	gtc	cag	gag	ggg	acc	cce	ggt	gac	2297
Asn	Leu	Gly	Glu	Asp		Gln	Val	Val	Gln	Glu	i Gly	Thr	Pro	Gly	Asp	
515					520					525					530	9945
			ctg			tga	cctg	acg	gggc	cgaa	icg (	cccga	itgag	gC		2345
Leu	Ser	Phe	Leu	Asp	Glu											
				535											4	. 9405
atg	cgtg	gcc	cccg	catc	cc g	gggt	gcca	c go	atca	itcac	ctt	lcaco	cact	gate	ecctad	2405
cgt	t c c t	tac	cgag	gaga	aa t	tccc	c at	g ag	gt ac	a 11	la ta	gg go	cg ga	it Ci	lg ggt	2458
							Мe	t S€	er Th			rp Al	la As	sp Le	eu Gly	
										54					545	0500
ссв	tca	ctc	cta	ссс	gca	ttc	tgg	gte	g aca	ato	c ca	a cto	c acc	gto	ctat	2506
Pro	Ser	Leu	Leu			Phe	Trp	Val			e Gli	n Lei	ı Thi	· Va	Tyr	
				550					555					560		9554
tcc	gcc	atc	gga	tcc	atg	a t c	cto	gg	aco	cato	c ct	c ac	c gc	cata	g agg	2554

Ser Ala lle Gly Ser Met II e Leu Gly Thr II e Leu Thr Ala Met Arg										-							
See	Ser	Ala	He			Met	He	Leu			He	Leu	Thr		Met	Arg	
Val	gtg	tcc	ccg			atc	ċtg	cgc	-		tee	acc	gcc		atc	aac	2602
Second   S			Pro					Arg					Ala	Tyr			2002
The   Val   Arg   Arg   Arg   Arg   Arg   Arg   Arg   Cle   Cle	იით	atc		aac	acc	cca	cto		rto	σtσ	atc	cto			fcć	ttc	2650
S95																	2000
Gly Leu Tyr Gln Asn Leu Gly Leu Thr Leu Ala Gly Arg Asp Ser Ser 610  acc tit ctg gcc gat aac aac tit cgg ctc gcg ggg ctc ggg gig ctc ggg tit at ac ac ac tit ctg gcc gat aac aac tit cgg ctg gig ctc ggg tit at ac 2746  Thr Phe Leu Ala Asp Asn Asn Phe Arg Leu Ala Val Leu Gly Phe Ile 630  ctg tac acc tcc gcc tit gii gcg gaa tca ctc cgg tca ggc atc aac 2794  Leu Tyr Thr Ser Ala Phe Val Ala Glu Ser Leu Arg Ser Gly Ile Asn 655  acc gig cac tic ggg cag gcg gag cc gcc gcc gcc gcc gcc		595					600					605					0.000
610																	2698
Acc		Leu	iyr	GIN	Asn		Gly	Leu	ınr	Leu		Gly	Arg	Asp	Ser		
The Phe Leu Ala Asp Asp Asp Asp Phe Arg Leu Ala Val Leu Gly Phe 11e 630					~ · ·							4		~~~	44		9746
City   Tack   Ser   Ala   Phe   Val   Ala   Glu   Ser   Leu   Arg   Ser   Gly   He   Ash																	2740
Color   Colo	1111	rne	Leu	AId		ASII	ASII	rne	Alg		Ala	Vai	Leu	біу		116	
Tyr	a t a	t a a	0.00	tee		110	att	aca	<b>~</b> ~ ~ ~		o t c	e a a	ten	aaa		0.00	9704
1																	2134
2842   1	Leu	1 y 1	1 11 1		пта	THE	7 4 1	лια		361	Leu	MIG	361		110	дзп	
The Figure   The	асс	σtσ	cac		ggg	cag	grg	рад		acc	<b>്</b> മമ	tre	ctø		ctc	ggt	2842
1																	2012
11											0			~ . ,	200	0.,	
Phe   Ser   Asp   Ile   Phe   Arg   Ser   Ile   Ile   Phe   Pro   Gin   Ala   Val   Arg   Ala	ttc	agt		atc	ttc	cgg	tcc		atc	ttc	ссс	cag		gtg	cgi	gcc	2890
2938																	
Ala lle lle lle Pro Leu Gly Asn Thr Leu lle Ala Leu Thr Lys Asn Thr 690  acg atc gcg tcc gtg atc ggc gtc ggt gag gcc lcg ctg ctg atg aag 2986  Thr lle Ala Ser Val lle Gly Val Gly Glu Ala Ser Leu Leu Met Lys 710  tcc acg att gaa aat cat gcc aac atg ctc ttc gtc gtg tic gcc atc 3034  Ser Thr lle Glu Asn His Ala Asn Met Leu Phe Val Val Phe Ala lle 725  tic gcc gtc ggc ttc atg atc ctc acc ctc ccc atg ggg ctt 3082  Phe Ala Val Gly Phe Met lle Leu Thr Leu Pro Met Gly Leu Gly Leu 740  gga aaa ctc gct gag aaa atg gcg gtg aag aaa ltg gcg gtg ly Lys Leu Ala Glu Lys Met Ala Val Lys Lys 755  gcaacagtcc tclacgacgc ccccggccc cggggacgca ggg ggg gg ggg agt gtl ctc 3195  atcgccaca ccccggccc cccggcccc cggggacgca ggg ggg		675					680					685					
690	gcc	atc	a t c	ccg	ctg	ggc	aac	асс	ctc	atc	gcc	ctg	асс	aag	aac	acc	2938
acg alc gcg tcc gtg atc ggc gtc ggl gag gcc lcg ctg ctg atg aag 2986  Thr lle Ala Ser Val lle Gly Val Gly Glu Ala Ser Leu Leu Met Lys 710 720  tcc acg all gaa aat cat gcc aac alg clc tic gtc gtg tic gcc atc 3034  Ser Thr lle Glu Asn His Ala Asn Met Leu Phe Val Val Phe Ala lle 725 730 735  tic gcc gtc ggc ttc atg atc ctc acc ctc ccc atg ggc ctt 3082  Phe Ala Val Gly Phe Met lle Leu Thr Leu Pro Met Gly Leu Gly Leu 740 745 750  gga aaa ctc gct gag aaa atg gcg gtg aag aaa taatgtcctc ctccgtacgc 3135  Gly Lys Leu Ala Glu Lys Met Ala Val Lys Lys 755 760  gcaacagtcc tctacgacgc ccccggcccc cggggacgca ggtccaacac catcatcacc 3195  atcgccacca ccctggtgc agtgccgtc ctgttctgg gtg ggc agt gli ctc 3249  Val Gly Ser Val Leu 765	Ala	He	He	Pro	Leu	Gly	Asn	Thr	Leu	He	Ala	Leu	Thr	Lys	Asn	Thr	
Thr   11e   Ala   Ser   Val   11e   Gly   Val   Gly   Glu   Ala   Ser   Leu   Leu   Met   Lys   710   720	690					695					700					705	
Total   Tota																	2986
tec acg att gaa aat cat gee aac atg ete tie gie gig tie gee ate 3034 Ser Thr Ile Glu Asn His Ala Asn Met Leu Phe Val Val Phe Ala Ile 725 730 735  tie gee gie gge tie atg ate ete ace ete ee atg gge etg ggg ett 3082 Phe Ala Val Gly Phe Met Ile Leu Thr Leu Pro Met Gly Leu Gly Leu 740 745 750  gga aaa ete get gag aaa atg geg gig aag aaa taatgteete eteegaege 3135 Gly Lys Leu Ala Glu Lys Met Ala Val Lys Lys 755 760  geaacagtee tetacgaege eeeegeeee egggaegea ggteaacae eateateaee 3195 ategeeaee e eeetggigge agtggeegte etgtietigg gig gge agt git ete Val Gly Ser Val Leu 765	Thr	He	Ala	Ser		He	Gly	Val	Gly		Ala	Ser	Leu	Leu		Lys	
Ser Thr Ile Glu Asn His Ala Asn Met Leu Phe Val Val Phe Ala Ile 725 730 735  tic gcc gtc ggc ttc atg atc ctc acc ctc ccc atg ggc ctg ggg ctt 3082  Phe Ala Val Gly Phe Met Ile Leu Thr Leu Pro Met Gly Leu Gly Leu 740 745 750  gga aaa ctc gct gag aaa atg gcg gtg aag aaa taatgtctc ctccgtacgc 3135  Gly Lys Leu Ala Glu Lys Met Ala Val Lys Lys 755 760  gcaacagtcc tctacgacgc ccccggcccc cggggacgca ggtccaacac catcatcacc 3195  atcgccacca ccctggtggc agtggccgtc ctgttctgg gtg ggc agt gtt ctc Val Gly Ser Val Leu 765																	
tic gcc gtc ggc tic atg atc ctc acc ctc ccc atg ggc ctg ggg ctt 3082  Phe Ala Val Gly Phe Met Ile Leu Thr Leu Pro Met Gly Leu Gly Leu 745 750  gga aaa ctc gct gag aaa atg gcg gtg aag aaa taatgtcctc ctccgtacgc 3135  Gly Lys Leu Ala Glu Lys Met Ala Val Lys Lys 755 760  gcaacagtcc tctacgacgc ccccggcccc cggggacgca ggtccaacac catcatcacc 3195  atcgccacca ccctggtggc agtggccgtc ctgttctgg gtg ggc agt gtt ctc 3249  Val Gly Ser Val Leu 765		_		-													3034
tic gcc gtc ggc ttc atg atc ctc acc ctc ccc atg ggc ctg ggg ctt 3082  Phe Ala Val Gly Phe Met Ile Leu Thr Leu Pro Met Gly Leu Gly Leu 740 745 750  gga aaa ctc gct gag aaa atg gcg gtg aag aaa taatgtcctc ctccgtacgc 3135  Gly Lys Leu Ala Glu Lys Met Ala Val Lys Lys 755 760  gcaacagtcc tctacgacgc ccccggcccc cggggacgca ggtccaacac catcatcacc 3195  atcgccacca ccctggtggc agtggccgtc ctgttctgg gtg ggc agt gtt ctc 3249  Val Gly Ser Val Leu 765	Ser	Thr	He		Asn	HIS	Ala	Asn		Leu	Phe	Val	Vai		Ala	He	
Phe Ala Val Gly Phe Met Ile Leu Thr Leu Pro Met Gly Leu Gly Leu 740 745 750  gga aaa ctc gct gag aaa atg gcg gtg aag aaa taatgtcctc ctccgtacgc 3135 Gly Lys Leu Ala Glu Lys Met Ala Val Lys Lys 755 760  gcaacagtcc tctacgacgc ccccggcccc cggggacgca ggtccaacac catcatcacc 3195 atcgccacca ccctggtggc agtggccgtc ctgttctgg gtg ggc agt gtt ctc 3249  Val Gly Ser Val Leu 765						- 4		_ 1 _		_ 4 _						_ 4 4	0000
gga aaa ctc gct gag aaa atg gcg gtg aag aaa taatgtcctc ctccgtacgc 3135 Gly Lys Leu Ala Glu Lys Met Ala Val Lys Lys 755 760 gcaacagtcc tctacgacgc ccccggcccc cggggacgca ggtccaacac catcatcacc 3195 atcgccacca ccctggtggc agtggccgtc ctgttctgg gtg ggc agt gtt ctc 3249 Val Gly Ser Val Leu 765																	3082
gga aaa ctc gct gag aaa atg gcg gtg aag aaa taatgtcctc ctccgtacgc 3135 Gly Lys Leu Ala Glu Lys Met Ala Val Lys Lys 755 760 gcaacagtcc tctacgacgc ccccggcccc cggggacgca ggtccaacac catcatcacc 3195 atcgccacca ccctggtggc agtggccgtc ctgttctgg gtg ggc agt gtt ctc 3249 Val Gly Ser Val Leu 765	Pne	Ата		Gry	rne	меι	116		1 D L	Leu	Pro	меι		Leu	GIY	Leu	
Gly Lys Leu Ala Glu Lys Met Ala Val Lys Lys 755 760  gcaacagtcc tctacgacgc ccccggcccc cggggacgca ggtccaacac catcatcacc 3195 atcgccacca ccctggtggc agtggccgtc ctgttctgg gtg ggc agt gtt ctc 3249  Val Gly Ser Val Leu 765	a.a.o			an t	an a	0.00	n t cr		a t a	0.00	0.00	tant		110	atoo	71 0 0 G C	2125
755 760 gcaacagtcc tctacgacgc ccccggcccc cggggacgca ggtccaacac catcatcacc 3195 atcgccacca ccctggtggc agtggccgtc ctgttctgg gtg ggc agt gtt ctc 3249 Val Gly Ser Val Leu 765												laal	igiti			glacge	3133
atcgccacca ccctggtggc agtggccgtc ctgttctgg gtg ggc agt gtt ctc 3249  Val Gly Ser Val Leu 765	-	-	Leu	Ala	GIU	Lys		ліа	val	LyS	LYS						
Val Gly Ser Val Leu 765	gcaa	cagt	cc t	ctac	gace	c cc	ccgg	cccc	cgg	ggac	gca	ggto	caac	cac (	catea	atcacc	3195
765	atcg	ссас	ca c	cctg	gtgg	c ag	gtggc	cgto	cte	gttct	gg g	gtg g	ggc a	ngt g	gtt	etc	3249
													Sly S	Ser V	Val I	eu	
	cag	gaa	aac	ggc	cag	11g	gac	ggc	gac	aaa			ccg	ttc	ctc	gat	3297

Gln Gln Asn Gly Asn Gly Gln Leu Asp Gly Asp Lys Trp Thr Pro Pro Pro Control																	
Pro		Glu	Asn	Gly	Gln			Gly	Asp	Lys			Pro	Phe	Leu		
Pro		саб	acc	tos	7 acc			ctt	cta	CCC			fσσ	σσα	200		2215
A					Thr	Thr				Pro	Gly				Thr		0040
Lys		~~~	<i>T</i> 0 0	e a to				a + +	a t a			o f o	o t m	~~~		a + ~	2202
Ctc   ggg	_															_	3393
Color	Lys	Ala	Ala			ser	116	Leu			Leu	11e	met		lhr	Leu	
Second   S	ctc	ggg	ctc	gga	cgc	atc	tcc	gaa	atc	cgg	ctc	ctg	cgc	tgg	ttc	tgc	3441
ggg atc         atc         atc         ggg acc         tic         cgl gcc         atc         cgg gtg cg gtg         ctc         ctc         ctc         cgg gtg         ctc         ctc         ctc         deu         leu         leu         leu         leu         leu         met         ctc         gcg         3537           atc         tic         gcc         tic         tic         gcc         tic         gcg         tic         gcd         tic         gcg         ggg         tic         gcg         ggg         tic         tic         ggg         tic         tic         ggg         tic         ggg         tic         tic         tic         ggg         ggg         ti	Leu	Gly	Leu	Gly	Arg	He	Ser	Glu	He	Arg	Leu	Leu	Arg	Trp	Phe	Cys	
Signature   Sign													_			-	
Signature   Sign	ggg	atc	atc	atc	gag	acc	ttc	cgt	gcc	atc	ccg	gtg	ctg	atc	ctc	aig	3489
Sa5																	
State   Stat	(			• • •	• • •			8	u				200		204		
The   Phe   Phe   Phe   Ala   Tyr   Gln   Leu   Phe   Phe   Ala   Arg   Tyr   Gln   Leu   Val   Pro   Ser   Arg   S65   Arg   Arg   S65   Arg   Arg   S65   Arg   Arg   S65   Arg   Arg	atc		grr	tat	cag	ttø		gcc	cot	tac	cag		øtt	cca	tca	r or	3537
Second   S			_													_	0001
cag         ctg         gcc         gcg         gtg         gtc         ttc         gcc         atc         atc         gtg         ttc         gtc         gtc         gtc         gtc         atc         atc         atc         acc         agc         gtc         ttc         gtc         gtc <td></td> <td>1 116</td> <td>ΛIα</td> <td>1 9 1</td> <td>UIII</td> <td></td> <td>1110</td> <td>ліа</td> <td>лıg</td> <td>1 y 1</td> <td></td> <td>Leu</td> <td>vai</td> <td>110</td> <td>361</td> <td>-</td> <td></td>		1 116	ΛIα	1 9 1	UIII		1110	ліа	лıg	1 y 1		Leu	vai	110	361	-	
See   Color   Color		a t ar	g a a	1 1 0	g a a		ari a	art a	110	a a t		0.0.0		t n.a			2505
State   Stat	_	_	_				_	-					_				5565
Ser         Val         Ile         Ala         Glu         Ile         Leu         Arg         Ser         Gly         Ile         Ala         Ser         Leu         Pro         Lys           gga         cag         cag         gga         gcg         gcg         gcg         cig         gcg         gcg         cag         gcg         dig         dig         cag         cag         gcg         dig         dig         cag         cag         gcg         dig	GIN	Leu	Ага	Рие		Ala	vai	val	rne		Leu	INT	мет	IУГ		GIY	
885         Section of the color of the	t c c	gtc	a t c	gcc	gag	atc	ctt	aga	tcg	ggt	a t c	gcc	t c c	clg	ccg	aag	3633
Second   S	Ser	Val	He	Ala	Glu	He	Leu	Arg	Ser	Gly	He	Ala	Ser	Leu	Pro	Lys	
Cly         Gly         Arg         Glu         Ala         Ala         Leu         Gly         Met         Ser         Thr         Arg         Glu         Arg         Arg         Glu         Arg         Glu         Arg         Arg         Glu         Arg         Arg <td></td> <td></td> <td></td> <td>885</td> <td></td> <td></td> <td></td> <td></td> <td>890</td> <td></td> <td></td> <td></td> <td></td> <td>895</td> <td></td> <td></td> <td></td>				885					890					895			
Seconda   Seco	gga	cag	cgt	gag	gcg	gcg	atc	gcc	ctg	ggc	atg	t c a	acc	cgc	cag	асс	3681
1 c c c c c c c c c c c c c c c c c c c	Gly	Gln	Arg	Glu	Ala	Ala	He	Ala	Leu	Gly	Met	Ser	Thr	Arg	Gln	Thr	
Thr Trp Ser IIe Leu Leu Pro GIn Ala Val Ala Ala Met Leu Pro Ala 915			900					905					910				
Thr Trp Ser IIe Leu Leu Pro GIn Ala Val Ala Ala Met Leu Pro Ala 915	acc	tgg	tcg	atc	ctg	ctc	ссс	cag	gcg	gtg	gca	gcg	atg	ctg	ссс	gcc	3729
Signature   Sign																	
Leu       11e       Ala       Gln       Met       Val       Ile       Ala       Leu       Lys       Asp       Ser       Ala       Leu       Gly       Tyr         930		_															
Leu       11e       Ala       Gln       Met       Val       Ile       Ala       Leu       Lys       Asp       Ser       Ala       Leu       Gly       Tyr         930	ctg	atc	gcg	cag	atg	gtc	atc	gcg	ctg	aag	gac	tcc	gcc	ctc	ggt	tac	3777
930	-		_													Tyr	
cag         atc         ggt         tat         atc         gag         gta         gta         cgc         tcc         ggt         atc         cag         tcc         3825           Gln         11e         Gly         Tyr         11e         Glu         Val         Val         Arg         Ser         Gly         11e         Gln         Ser         Ala         Ser         960         960         960         960         3873         3873         797         11e         Ala         Ala         Ser         955         8tc         Gcg         gtc         gcg         gcg         gtc         gcg         gcg <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										•							
Gln lle Gly Tyr lle Glu Val Val Arg Ser Gly lle Gln Ser Ala Ser 950		atc	ggt	tat	atc		gtg	gta	cgc	tee		atc	cag	tee	gca		3825
Str   Str																	0020
gtc       aac       cgg       aac       tac       ctg       gct       gcg       gtg       g	0111	110	01,	1 , 1		Oru	741		111 6		Oly	110	0111	001		OC I	
Val       Asn       Arg       Asn       Tyr       Leu       Ala       Ala       Leu       Ala       Val       Val       Ala       Val       Ile       Met         atc       ctg       atc       sca       ctg       3921         Ile       Leu       Ile       Asn       Phe       Ala       Leu       Thr       Ala       Leu       Ala       Ctg       acg       ctg       sca       acg       ctg       acg       sca       acg	orte	220	caa	3 2 C		cta	ac t	occ.	ctc		αtσ	atr	aca	ate		a for	2872
1   1   2   3   3   3   3   3   3   3   3   3																	3013
<pre>Ile Leu Ile Asn Phe Ala Leu Thr Ala Leu Ala Glu Arg Ile Gln Arg</pre>	vai	ASII	Alg		1 y 1	reu	Ald	Ala		Ala	Val	val	Ala		116	met	
980 985 990 cag ctg cgt gcc gga cgt gcc cgc agg aac att gtg gca aag gtg ccc 3969	atc	ctg	a t c	aac	ttc	gca	ctg	асс	gca	ctg	gca	gag	cgt	atc	cag	cgt	3921
cag ctg cgt gcc gga cgt gcc cgc agg aac att gtg gca aag gtg ccc 3969	He	Leu	He	Asn	Phe	Ala	Leu	Thr	Ala	Leu	Ala	Glu	Arg	Пe	Gln	Arg	
			980					985					990				
	cag	ctg	cgt	gcc	gga	cgt	gcc	cgc	agg	aac	att	gtg	gca	aag	gtg	ссс	3969

	995					1000				1	1005					
gag	gaa	ссс	gat	cag	ggc	ctg	gat	acc	aag	gac	aat	gtg	aac	gtg	gat	4017
Glu	Glu	Pro	Asp	Gln	Gly	Leu	Asp	Thr	Lys	Asp	Asn	Val	Asn	Val	Asp	
1010	)				1015					1020				]	1025	
tgg	cac	gat	ссс	gat	tac	aag	gaa	gtc	aaa	cac	ccg	gga	ccg	tca	ttc	4065
Trp	His	Asp	Pro	Asp	Туг	Lys	Glu	Val	Lys	His	Pro	Gly	Pro	Ser	Phe	
				1030				i	1035					1040		
tga	cagg	tcc	ctgg	atcc	cc g	ctgc	ggtca	a gga	aggc	gggt	gca	acaa	tga	agtc	cggctg	4125
ccca	agat	gtc	t ggg:	gcag	cc g	gact	ttgt	g gca	agat	caat	get	gacta	gag	gtcc	tcgatg	4185
cgc	tcate	cga i	gagc	ctcc	cg g	gcca	ggtc	c ato	cgac	atac	ccg	eggg	gaa	tccad	cgacgg	4245
	agtg															4254
J																
<210	)> 1'	7														
	1> 24	•														
<212	2> PI	RT														
		oryn	ebac	teri	um tl	hermo	amir	noger	ne s							
<400	)> 17	7														
			Met	Thr	Gly	Val	Gln	Lys	Phe	Phe	Asp	Asp	Phe	Gln	Ala	
1				5					10					15		
Leu	Thr	Asp	He	Asn	Leu	Glu	Val	Pro	Ala	Gly	Gln	Val	Val	Val	Val	
			20					25					30			
Leu	Gly	Pro	Ser	Gly	Ser	Gly	Lys	Ser	Thr	Leu	Cys	Arg	Thr	He	Asn	
		35					40					45				
Arg	Leu	Glu	Thr	He	Glu	Glu	Gly	Thr	Ιlе	Glu	Ιlе	Asp	Gly	Lys	Leu	
	50					55					60					
Leu	Pro	Glu	Glu	Gly	Lys	Asp	Leu	Ala	Lys	He	Arg	Ala	Asp	Val	Gly	
65			1		70					75					80	
Met	Val	Phe	Gln	Ser	Phe	Asn	Leu	Phe	Pro	His	Leu	Thr	He	Lys	Asp	
				85					90					95		
Asn	Val	Thr	Leu	Gly	Pro	Met	Lys	Val	Arg	Lys	Met	Lys	Lys	Ser	Glu	
			100					105					110			
Ala	Asn	Glu	Val	Ala	Met	Lys	Leu	Leu	Glu	Arg	Val	Gly	He	Ala	Asn	
		115					120					125				
Gln	Ala	Glu	Lys	Tyr	Pro	Ala	Gln	Leu	Ser	Gly	Gly	Gln	Gln	Gln	Arg	
	130					135					140					
Val	Ala	Hle	Ala	Arg	Ala	Leu	Ala	Met	Asn	Pro	Lys	He	Met	Leu	Phe	
145					150					155					160	
	Glu	Pro	Thr	Ser		Leu	Asp	Pro			Val	Asn	Glu	Val	Leu	
•				165			•		170					175		
Asp	Val	Met	Ala		Leu	Ala	Lys	Glu	Gly	Met	Thr	Met	Val	Cys	Val	
- 1-			180					185					190			
Thr	His	Glu		Gly	Phe	Ala	Arg	Arg	Ala	Ala	Asp	Arg	Val	Leu	Phe	
1 11 1	22.1.0	J. 4		5					_			9				

								00	, 120						
		195					200					205			
Met	Ser 210	Asp	Gly	Ala	Ile	Val 215		Asp	Ser	Asp	Pro 220		Thr	Phe	Phe
225		Pro	Gln	Thr	Asp 230		Ala	Lys	Asp	Phe 235	Leu	Gly	Lys	Ile	Leu 240
<b>791</b> 1	0> 1	R													
	1> 2														
	2> P														
<21	3> C	oryn	ebac	teri	um t	herm	oami	noge	nes						
		_													
	0> 1		T	۸	M - 4	D	Th	۸	Ι΄	<b>41</b> -	A 1 -	A 1 -	ጥե	C	A 1
me i	Ser	HIS	Lys	Arg 5		Pne	1 II T	Arg	Leu 10	Ala	Ага	Ala	Thr	5er 15	Ala
	Val	Len	Ala			Thr	Leu	Thr		Cvs	Glv	Asn	Ser		Giv
mu	7 (1)	БСС	20	01,	110		БСС	25	71 T G	O,S	0.7	,	30	0.0	O.T.
Gly	Asp	Gly		Leu	Ala	Ala	He		Asn	Gly	Asn	Val	Thr	He	Gly
		35					40					45			
Thr		Tyr	Asp	Gln	Pro		Leu	Gly	Leu	Arg		Pro	Asp	Asn	Ser
	50					55					60	••		0	
	Ser	Gly	Leu	Asp		Asp	Val	Ala	GIn		Val	Val	Asn	Ser	
65	Acn	Acn	Acn	Cly	70 Trp	Aen	Ніс	Dro	Thr	75 Val	Clu	Trn	Arg	Glu	80 Thr
Ala	M2 b	АЗР	изп	85	пр	nsp	1113	110	90	vai	Olu	пр	AIG	95	1 11 1
Pro	Ser	Ala	Gln		Glu	Thr	Leu	He		Asn	Gly	Glu	Val		Met
			100					105					110		
He	Ala	Ala	Thr	Туг	Ser	Ile	Asn	Pro	Gly	Arg	Ser	Glu	Ser	Val	Asn
		115					120					125			
Phe	•	Gly	Pro	Tyr	Leu		Thr	His	GIn	Ala		Leu	Val	Arg	Glu
	130	A = ==	A == ~	110	Cla	135	Lou	C1.,	Aan	Lon	140	100	Clar	Lan	110
	ASP	ASP	Arg	116	150	1111	Leu	GIU	ASD	155	ASP	АЗР	Gly	Leu	160
145 Leu	Cvs	Ser	Val	Thr		Ser	Thr	Pro	Ala		Lvs	Val	Lys	Asp	
БСС		001	,	165	0.,	201			170	<b></b>	2,0	,	2,0	175	
Leu	Pro	Gly	Val		Leu	Gln	Glu	Туг		Thr	Tyr	Ser	Ser		Val
			180					185					190		
Glu	Ala	Leu	Ser	Gln	Gly	Asn	Val	Asp	Ala	Met	Thr	Thr	Asp	Ala	Thr
		195					200					205			
He		Phe	Gly	Туг	Ala		GIn	Arg	Glu	Gly		Phe	Arg	Val	Val
C1	210 Mot	Clo	Cln	A c n	Cly	215	Dro	Dha	Th +	Acn	220	Tyr	Тъ-	Clu	I I o
G1u 225	меι	GIÜ	GIII	азр	230	olu	r10	rne	1111	235	GIU	IYI	Туг	GIY	240
440					400					400					670

34/123 Gly Ile Thr Lys Asp Asp Thr Glu Ala Thr Asp Ala Ile Asn Ala Ala Leu Glu Arg Met Tyr Ala Asp Gly Ser Phe Gln Arg Phe Leu Thr Glu Asn Leu Gly Glu Asp Ser Gln Val Val Gln Glu Gly Thr Pro Gly Asp Leu Ser Phe Leu Asp Glu  $\langle 210 \rangle 19$ <211> 228 <212> PRT <213> Corynebacterium thermoaminogenes

<400> 19

Met Ser Thr Leu Trp Ala Asp Leu Gly Pro Ser Leu Leu Pro Ala Phe Trp Val Thr Ile Gln Leu Thr Val Tyr Ser Ala Ile Gly Ser Met Ile Leu Gly Thr Ile Leu Thr Ala Met Arg Val Ser Pro Val Lys Ile Leu Arg Ser Ile Ser Thr Ala Tyr Ile Asn Thr Val Arg Asn Thr Pro Leu Thr Leu Val Ile Leu Phe Cys Ser Phe Gly Leu Tyr Gln Asn Leu Gly Leu Thr Leu Ala Gly Arg Asp Ser Ser Thr Phe Leu Ala Asp Asn Asn Phe Arg Leu Ala Val Leu Gly Phe Ile Leu Tyr Thr Ser Ala Phe Val Ala Glu Ser Leu Arg Ser Gly Ile Asn Thr Val His Phe Gly Gln Ala Glu Ala Ala Arg Ser Leu Gly Leu Gly Phe Ser Asp Ile Phe Arg Ser lle Ile Phe Pro Gln Ala Val Arg Ala Ala Ile Ile Pro Leu Gly Asn Thr Leu Ile Ala Leu Thr Lys Asn Thr Thr Ile Ala Ser Val Ile Gly Val Gly Glu Ala Ser Leu Leu Met Lys Ser Thr Ile Glu Asn His Ala Asn Met Leu Phe Val Val Phe Ala Ile Phe Ala Val Gly Phe Met Ile Leu Thr Leu Pro Met Gly Leu Gly Leu Gly Lys Leu Ala Glu Lys Met 

Ala Val Lys Lys 225 <210> 20 <211> 277 <212> PRT (213) Corynebacterium thermoaminogenes <400> 20 Val Gly Ser Val Leu Gln Glu Asn Gly Gln Leu Asp Gly Asp Lys Trp Thr Pro Phe Leu Asp Pro Gln Thr Trp Thr Thr Tyr Leu Leu Pro Gly 25 Leu Trp Gly Thr Leu Lys Ala Ala Val Ala Ser Ile Leu Leu Ala Leu 35 lle Met Gly Thr Leu Leu Gly Leu Gly Arg lle Ser Glu Ile Arg Leu 55 Leu Arg Trp Phe Cys Gly Ile Ile Ile Glu Thr Phe Arg Ala Ile Pro 75 Val Leu lle Leu Met lle Phe Ala Tyr Gln Leu Phe Ala Arg Tyr Gln Leu Val Pro Ser Arg Gln Leu Ala Phe Ala Ala Val Val Phe Gly Leu 105 Thr Met Tyr Asn Gly Ser Val Ile Ala Glu Ile Leu Arg Ser Gly Ile 120 115 125 Ala Ser Leu Pro Lys Gly Gln Arg Glu Ala Ala Ile Ala Leu Gly Met 130 135 140 Ser Thr Arg Gln Thr Thr Trp Ser Ile Leu Leu Pro Gln Ala Val Ala 150 155 Ala Met Leu Pro Ala Leu Ile Ala Gin Met Val Ile Ala Leu Lys Asp 170 175 165 Ser Ala Leu Gly Tyr Gln Ile Gly Tyr Ile Glu Val Val Arg Ser Gly 185 lle Gln Ser Ala Ser Val Asn Arg Asn Tyr Leu Ala Ala Leu Ala Val 200 195 Vai Ala Val lle Met lle Leu lle Asn Phe Ala Leu Thr Ala Leu Ala 210 215 Glu Arg Ile Gln Arg Gln Leu Arg Ala Gly Arg Ala Arg Arg Asn Ile 230 235 Val Ala Lys Val Pro Glu Glu Pro Asp Gln Gly Leu Asp Thr Lys Asp 245 250 Asn Val Asn Val Asp Trp His Asp Pro Asp Tyr Lys Glu Val Lys His 270 260 265

Pro Gly Pro Ser Phe 275

```
<210> 21
<211> 3598
<212> DNA
<213> Corynebacterium thermoaminogenes
<220>
<221> CDS
\langle 222 \rangle (454)...(3222)
<400> 21
agcacggcca aacatgagag aaacttcaca ttttgaattt cccctttcct gcatatggaa 60
aaccgccggt gacacccctg ccatttgggc ageteeece accteaceat gtecaeattt 120
tecataatgt ggeetgtaac accettggge teaaggette eaegeeceae egggaecete 180
atcagcaggi gaaacagacc ciccigcaai gciitgitaa aaagaaccgc cciitgigcg 240
taiccitgig icaatigige gegeacigee accageiite cicaggatig aacaeggieg 300
ggaaatcete ceeggatace etgeaegeee caceteecae acegaeaceg geggggaggg 360
ccgggcacgi titcagcigc gggtgatgga agcggtcgcc ggtcccccgg tcgcataaac 420
gaaatgaaaa acattccaac aggaggtgtg gaa atg gcc gat caa gca aaa ctt
                                      Met Ala Asp Gln Ala Lys Leu
                                        1
                                                        5
ggt ggc aaa ccc aca gat gac acc aac ttc gcg atg atc cgt gat ggc
                                                                    522
Gly Gly Lys Pro Thr Asp Asp Thr Asn Phe Ala Met Ile Arg Asp Gly
         10
                              15
                                                  20
gtt gca tot tat itg aac gac too gac cog gag gag acc aag gag tgg
                                                                    570
Val Ala Ser Tyr Leu Asn Asp Ser Asp Pro Glu Glu Thr Lys Glu Trp
                         30
                                              35
     25
atg gac tee eta gae ggt eta etg eag gat tee tet eeg gag ege gee
                                                                    618
Met Asp Ser Leu Asp Gly Leu Leu Gln Asp Ser Ser Pro Glu Arg Ala
                     45
                                          50
 40
cgt tac ctg atg ctg cgc ctg ctg gag cgg gca tcc gcc aag cgt gtc
                                                                    666
Arg Tyr Leu Met Leu Arg Leu Leu Glu Arg Ala Ser Ala Lys Arg Val
                 60
                                     65
cca cig ccc ccg aig acg icc acc gai tac gic aac acc aic ccc aca
                                                                    714
Pro Leu Pro Pro Met Thr Ser Thr Asp Tyr Val Asn Thr Ile Pro Thr
                                 80
tcc aig gag ccc gat tlc ccg ggt gat gag gag aig gag aag cgc tac
                                                                    762
Ser Mei Glu Pro Asp Phe Pro Gly Asp Glu Glu Met Glu Lys Arg Tyr
                             95
         90
                                                 100
cgc cgc tgg atg cgc tgg aac gcc gcc atc atg gtg cac cgt gcc cag
                                                                   810
Arg Arg Trp Met Arg Trp Asn Ala Ala Ile Met Val His Arg Ala Gln
                        110
cgc ccg gga alc ggl glg ggl ggg cac atc lcc acc tac gcc ggc gcc
                                                                   858
```

_	Pro	Gly	lle	Gly		Gly	Gly	His	Ile		Thr	Tyr	Ala	Gly		
120					125					130					135	000
				gag												906
Ага	Pro	Leu	1 y 1	Glu 140	vai	GIY	rne	ASII	145	rne	rne	Alg	Gly	150	изр	
cac	cca	gg f	gge	ggt	gac	cag	gtc	ttc		cag	ggt	cac	gaa.		ccg	954
				Gly												001
	110	0.,	155	,				160					165			
ggc	atg	tac	gcc	cgc	gcc	ttc	ctc	gag	ggc	cgt	ctc	acc	gag	agc	gat	1002
Gly	Met	Туr	Ala	Arg	Ala	Phe	Leu	Glu	Gly	Arg	Leu	Thr	$Gl_{\mu}u$	Ser	Asp	
		170					175					180				
-				cgc												1050
Leu		Ser	Phe	Arg	Gln		Val	Ser	Tyr	Glu		Gly	Gly	He	Pro	
	185					190	,				195					1000
				ccg												1098
Ser 200	ТУГ	PFO	піѕ	Pro	205	GIY	meı	PIO	ASD	210	пр	GIU	rne	FIU	215	
	tee	a t o	σσε	ctc		ccc	ato	σat	grr		tac	cag	aca	cgc		1146
_		_		Leu												1110
,	501		0.,	220	0.,				225		- 3 -			230		
aac	cgc	tac	ctg	cac	aac	cgt	ggc	a t c	aag	gac	асс	tcg	gag	cag	cac	1194
Asn	Arg	Tyr	Leu	His	Asn	Arg	Gly	He	Lys	Asp	Thr	Ser	Glu	Gln	His	
			235		•			240					245			
_	_			ctc												1242
Val	Trp		Phe	Leu	Gly	Asp		Glu	Met	Asp	Glu		Glu	Ser	Arg	
		250					255			_ 4		260			440	1900
				cag Gln												1290
GIY	265	He	піз	GIII	Ald	270	Leu	ASII	ASII	Leu	275	ASII	Leu	1 11 1	1116	
gtg		aac	tgc	aac	ctg		cgt	ctt	gat	ggc		gtc	cgc	ggt	aac	1338
				Asn												
280					285					290					295	
acc	aag	a t c	atc	cag	gaa	ctc	gag	tcc	ttc	ttc	cgt	ggt	gcc	ggc	t gg	1386
Thr	Lys	He	He	Gln	Glu	Leu	Glu	Ser	Phe	Phe	Arg	Gly	Ala	Gly	Trp	
				300					305					310		
	-			gtc												1434
Ser	Val	He		Val	He	Trp	Gly		Glu	Trp	Asp	Glu		Leu	Glu	
			315		A	- 4 4	d	320	- t -			200	325	100	~~~	1 4 0 9
-				ggt												1482
LYS	ASP	330	нδр	Gly	nid	Leu	335	GIU	rai	MCI	Noll	340	1 11 1	201	ush	
ggt	gar		cag	асс	ttc	ลลฐ		aat	gac	ggi	gcc		gtc	cgi	gag	1530
				Thr												- 7 0 0
-	•	-														

	345					350					355					
сас	ttc	ttc	ggc	cgt	gac	ссс	cgc	acc	ctc	aag	ctc	gtc	gag	gac	atg	1578
His	Phe	Phe	Gly	Arg	Asp	Pro	Arg	Thr	Leu	Lys	Leu	Val	Glu	Asp	Met	
360					365					370					375	
acc	gac	gag	gag	atc	tgg	aag	ctg	ссс	cgt	ggt	ggc	cat	gac	tac	cgt	1626
Thr	Asp	Glu	Glu	Ile	qıT	Lys	Leu	Pro	Arg	Gly	Gly	His	Asp	Tyr	Arg	
				380					385					390		
aag	gtc	tac	gcc	gcc	tac	aag	cgt	gcg	ctg	gag	acc	aag	gac	cgc	ccg	1674
Lys	Val	Туr	Ala	Ala	Tyr	Lys	Arg	Ala	Leu	Glu	Thr	Lys	Asp	Arg	Pro	
			395					400					405			
асс	gtc	a t t	ctc	gcc	cat	acc	a t c	aag	ggc	tac	ggc	ctg	ggc	cac	aac	1722
Thr	Val	He	Leu	Ala	His	Thr	He	Lys	Gly	Tyr	Gly	Leu	Gly	His	Asn	
		410					415					420				
ttc	gag	ggc	cgc	aac	gcg	acc	cac	cag	atg	aag	aag	ctg	a c c	ctg	gat	1770
Phe		Gly	Arg	Asn	Ala		His	Gln	Met	Lys		Leu	Thr	Leu	Asp	
	425					430					435					
_	-						aag									1818
Asp	Leu	Lys	Leu	Phe		Asp	Lys	Gln	Gly		Pro	He	Thr	Asp		
440					445					450					455	
-							ctg									1866
Glu	Leu	Glu	Lys		Pro	Tyr	Leu	Pro		Туг	Tyr	His	Pro		Glu	
				460		,			465					470		
-	_						atg									1914
Asp	Ala	Pro		He	Lys	Туг	Met		Glu	Arg	Arg	GIn		Leu	Gly	
			475					480					485			1000
							gag									1962
Gly	Phe		Pro	Glu	Arg	Arg	Glu	Lys	ıyr	GIU	Pro		GIN	vai	Pro	
	, .	490		_ 4		4	495			4	4	500				0010
_	_	_					gtg									2010
Pro		ASD	Lys	Leu	Arg		Val	Arg	Lys	Gly		GIY	Lys	GIII	GIII	
~ t ~	505	0.00	0.0.0	n t a	<i>aaa</i>	510	a ta	a cr t	0.00	110	515	a	o t o	e ta	0.00	2050
-							gtg									2058
	Ата	1 11 1	1 11 1	Met		1 11 1	Val	Alg	1111	530	L y S	GIU	Leu	meı	535	
520			a for	g 0 0	525	0.00	t t or	at a	0.0.0		o t o	aca	an t	an a		2106
_							ttg									2100
ASP	Lys	W211	Leu	540	изр	Arg	Leu	Val	545	116	116	110	азр	550	ніа	
0.00	0.0.0	110	aac		or a.c.	tee	t gg	110		200	c t a	222	ate		226	2154
							Trp									2134
MIR	1 11 1	1116	555	Leu	nsp	301	H	560	110	1 11 1	LUU	гуз	565	1 9 1	11 S II	
cca	020	aa t		220	tac	ata	ccg		gac	cat	gac	cic		cto	tee	2202
							Pro									2202
110	1112	570	UIH	пэн	1 y 1	, a 1	575	1 4 1	ush	1113	изр	580	nuc t	LCu	561	
		010					010					000				

			gcc												-	2250
1 9 1	585		Ala	. гу	мэр	590		116	rea	піз	595	GIY	116	ASII	Giu	
gcc	ggt	tcc	gtg	gca	tcg	ttt	atc	gcc	gcc	gga	acc	tcc	tac	gcc	acc	2298
Ala	Gly	Ser	Val	Ala	Ser	Phe	He	Ala	Ala	Gly	Thr	Ser	Tyr	Ala	Thr	
600					605					610			•		615	
	gge	σασ	gcc	ato			rto	tac	atc		tar	tro	ato	ffc		2346
			Ala													2040
1113	Gly	Olu	лια	620		110	LCu	. I y I	625	1116	1 9 1	261	Met	630	Gly	
ttc	cag	cgc	асс	ggt	gac	ggc	atc	tgg	gcc	gca	gcc	gac	cag	atg	acg	2394
			Thr													
			635	•	•			640					645			
cgt	ggt	ttc	ctc	ctg	ggc	gcc	асс	gcc	ggt	cgc	acc	acc	ctg	acc	ggt	2442
Arg	Gly	Phe	Leu	Leu	Gly	Ala	Thr	Ala	Gly	Arg	Thr	Thr	Leu	Thr	Gly	
		650					655					660				
gag	ggc	ctc	cag	cac	atg	gat	ggc	cac	tcc	ccg	atc	ctg	gcc	t c c	acc	2490
Glu	Gly	Leu	Gln	His	Met	Asp	Gly	His	Ser	Pro	He	Leu	Ala	Ser	Thr	
	665					670					675					
aac	ccc	ggt	gig	gag	асс	tat	gac	ccg,	gcg	ttc	tcc	tac	gag	atc	gcg	2538
Asn	Pro	Gly	Val	Glu	Thr	Туr	Asp	Pro	Ala	Phe	Ser	Туr	Glu	He	Ala	
680					685					690					695	
cac	ctg	gtc	сас	cgc	ggc	atc	gac	cgc	atg	tac	gga	ccg	ggc	aag	ggt	2586
His	Leu	Val	His	Arg	Gly	He	Asp	Arg	Met	Tyr	Gly	Pro	Gly	Lys	GIv	
				700	_		•		705	•			•	710	,	
gag	aat	gtc	atc	tac	tac	ctc	acc	atc		aac	gag	cca	асс		cag	2634
-			He											_		
			715	•				720	•				725			
ccg	gct	gag	c c t	gag	gat	ctg	gac	gtc	gag	ggc	ctg	cac	aag	ggc	atc	2682
_	_		Pro			_	_				_		_			-,
110		730	• • •			200	735		0.0	0.,	200	740	2,5	0.,	110	
tac	cfc		gac	aag	gee	gee		ggt	gag	ggr	caf		gee	tro	atc.	2730
			Asp													2100
1 9 1	745	1 y 1	лзр	Буз	nia	750	oru.	Oly	Olu	Oly	755	oru	ліа	501	116	
ctg	gcc	tcc	ggc	atc	ggc	atg	cag	tgg	gca	ctg	cgc	gcc	cgt	gac	atc	2778
Leu	Ala	Ser	Gly	He	Gly	Met	Gln	Trp	Ala	Leu	Arg	Ala	Arg	Asp	He	
760					765					770				•	775	
	9C.C	gag	gat	tac	ggc	atc	cgt	gcc	aac	atc	11c	tcc	gcc	acc		2826
			Asp													2020
ьcu	111 U	0 I U	пор	780	OIY		6	111 U	785		1110	001	111 U	790	001	
taa	ata	asa	ctg			gae	aat	ac.c		cat	220	eta	ana		cta	2874
																4014
1 I, D	val	GIU	Leu 795	АТА	AIB	42h	огу	800	AIB	Arg	ASII	rea	61u 805	BIA	Leu	
cgc	aac	ссд	ggi	gcg	gat	gtc	ggt		gca	ttc	gtg	acc		cag	ctg	2922
J -	-	_			-	-			-	-						

								10,	120							
Arg	Asn	Pro 810	Gly	Ala	Asp	Val	Gly 815	Glu	Ala	Phe	Val	Thr 820	Thr	Gln	Leu	
aag	aag	ggt	tcc	ggc	ссс	tac	gtc	gcg	gtg	tcc	gac	ttc	gcg	acc	gac	2970
														Thr		
	825					830					835					
ctg	ccg	aac	cag	a t c	cgc	gag	tgg	gtt	ccc	ggt	gac	tac	a t c	gtc	ctc	3018
Leu	Pro	Asn	Gln	lle	Arg	Glu	Trp	Val	Pro	Gly	Asp	Tyr	He	Val	Leu	
840					845					850					855	
ggt	gcc	gac	ggc	t t c	ggt	ttc	tcc	gat	acc	cgt	ccg	gca	gcc	cgt	cgt	3066
Gly	Ala	Asp	Gly	Phe	Gly	Phe	Ser	Asp	Thr	Arg	Pro	Ala	Ala	Arg	Arg	
				860					865					870		
														cgc		3114
Tyr	Phe	Asn		Asp	Ala	Glu	Ser		Val	Val	Ala	Val		Arg	Gly	
			875					880					885			0.4.0.0
														gcg		3162
Leu	Val		Glu	Gly	Val	He		Ala	Ser	vai	Ala		HIS	Ala	Ala	
		890					895					900	4			0010
														ccg		3210
GIU	905	1 y I	Lys	ren	261	910		1 11 1	Ala	PIO	915	vai	ASP	Pro	ASP	
aca		atc	σασ	taga	icctg			ᲥᲛ୯ᲬᲔ	12 22	acad		י ספו		trar		3262
		lle		rubi	10012	, ( ,	1510	54080	ia ac	iucut		, 600		icac		0202
920	. 10		014													
	ltgag	gg g	ggcg	gggg	gt gt	gete	cgtti	t acg	gegg	ggta	cagg	gggg	gta	tcago	ccage	3322
															tcccgc	
															tgcatc	
atga	lgag	gc g	gtta	accca	ıg go	ggat	agco	: tgt	tcca	itgt	tgtg	gggtg	gac (	catga	agggtg	3502
gtca	gttt	gc c	gtco	ctcga	ic ga	tcti	ctcg	gglo	aggg	gtgg	tgad	cagi	itc a	ggcto	cgctgg	3562
gggl	ccag	gg c	ggce	ggtgt	gtt	cgto	gaga	ago	atg							3598
<210	> 22															
	> 92															
<212																
<213	> Co	ryne	bact	eriu	m th	ermo	amin	ogen	es							
<400	> 99															
			Gln	Ala	Lvs	Len	GLv	Glv	Lvs	Pro	Thr	Asn	Asn	Thr	Asn	
1	,,, u	.10 P	V 1 11	5 · · · · · · · · · · · · · · · · · · ·	~,0	C G	~ . ,	~.,	10	0				15		
•	Ala	Met	He	•	Asp	Glv	Val	Ala		Tyr	Leu	Asn	Asp	Ser	Asp	
			20	0	- r	- 2		25		<b>J</b> -			30		~ P	
Pro	Glu	Glu		Lys	Glu	Тгр	Met		Ser	Leu	Asp	Gly		Leu	Gln	
		35				-	40					45				
									_		_					

Asp Ser Ser Pro Glu Arg Ala Arg Tyr Leu Met Leu Arg Leu Leu Glu

	50					55					60				
Arg 65	Ala	Ser	Ala	Lys	Arg 70		Pro	Leu	Pro	Pro 75	Met	Thr	Ser	Thr	Asp 80
Tyr	Val	Asn	Thr	lle 85		Thr			G I u 90		Asp	Phe	Pro	Gly 95	Asp
Glu	Glu	Met	G I u 100	Lys					Trp			Trp	Asn 110		Ala
He	Met	Val 115	His		Ala	Gln	Arg 120	Pro			Gly	Val 125		Gly	His
He	Ser 130	Thr	Tyr	Ala	Gly	Ala 135	Ala	Pro		Туr	Glu 140		Gly	Phe	Asn
			Arg	Gly	Lys 150	Asp	His	Pro	Gly		Gly		Gln		Phe
145 Phe	Gln	Gly	His	Ala 165	Ser	Pro		Met	Tyr	Ala					
Gly	Arg	Leu	Thr 180	Glu			Leu					Gln	Glu 190		Ser
Tyr	Glu	Gly 195	Gly					Tyr	Pro			His 205		Met	Pro
Asp	Phe 210		Glu	Phe			Val		Met				Pro	Met	Asp
Ala 225		Туг	Gln							Leu 235		Asn	Arg	Gly	Ile 240
	Asp	Thr	Ser	G1u 245	Gln	His			Ala 250	Phe	Leu			Gly 255	
Met	Asp	Glu	Pro 260												Asn
Asn	Leu	Asp 275	Asn	Leu	Thr	Phe	Val 280		Asn	Cys	Asn	Leu 285		Arg	Leu
Asp	Gly 290	Pro	Val	_	_		Thr	_	He				Leu	Glu	Ser
Phe 305			Gly									lle	Trp	Gly	Arg 320
	Trp	Asp	Glu	Leu 325		Glu	Lys	Asp	G1n 330		Gly	Ala	Leu	Val 335	
Val	Met	Asn	Asn 340		Ser	Asp	Gly	Asp 345		Gln	Thr	Phe	Lys 350		Asn
Asp	Gly	Ala 355	Tyr	Val	Arg	Glu	His 360		Phe	Gly	Arg	Asp 365		Arg	Thr
Leu	Lys 370		Val	Glu	Asp	Met		Asp	Glu	Glu	11e 380		Lys	Leu	Pro
Arg 385		Gly	His	Asp	Туг 390		Lys	Val	Tyr	Ala 395		Туг	Lys	Arg	Ala 400

Leu	Glu	Thr	Lys		Arg	Pro	Thr	Val		Leu	Ala	His	Thr		Lys
				405					410					415	
Gly	Tyr	Gly	Leu	Gly	His	Asn	Phe	Glu	Gly	Arg	Asn	Ala	Thr	His	Gln
			420					425					430		
Met	Lys	Lys	Leu	Thr	Leu	Asp	Asp	Leu	Lys	Leu	Phe	Arg	Asp	Lys	Gln
		435					440					445			
Glv	Len			Thr	Asp	Glu	Glu	Len	Glu	Lvs	Asp	Pro	Tvr	Leu	Pro
01,	450					455				- 3	460		- • -		
Dro		Туг	Ніс	Dro	Gly		Aen	Λla	Pro	Clu		Luc	Tur	Met	Lve
		1 9 1	1112	110					110		110	Буз	1 9 1	mc i	480
465			0.1		4.70		0.1		T	475	0.1	A =	<b>A</b>	01.	
Glu	Arg	Arg	GIn		Leu	Gly	Gly	Pne		Pro	GIU	Arg	Arg		Lys
				485					490					495	-
Туг	Glu	Pro	Leu	Gln	Val	Pro	Pro	Leu	Asp	Lys	Leu	Arg	Ser	Val	Arg
			500					505					510		
Lys	Gly	Ser	Gly	Lys	Gln	Gln	Val	Ala	Thr	Thr	Met	Ala	Thr	Val	Arg
		515					520					525			
Thr	Phe	Lvs	Glu	Leu	Met	Arg	Asp	Lys	Asn	Leu	Ala	Asp	Arg	Leu	Val
• • • •	530					535		_ •			540	•			
Pro		lle	Pro	Asp	Glu		Arø	Thr	Phe	Glv		Asn	Ser	Trn	Phe
545	110	110	110	пор	550	AT G	111 6	1 11 1	1 110	555	БСС	пор	001	116	560
	Th =	Lau	Lvo	110	Tyr	Acn	Dro	Uic	Cly		Aen	Tur	Val	Dro	
PTO	1 11 1	Leu	LYS		1 y 1	ASII	110	1112		GIII	MSII	1 y 1	v a i	575	V GL 1
				565		0	m.		570	A 1 -	I	A	C1		T 1 =
Asp	HIS	Asp		меі	Leu	5er	lyr		64 U	АТа	Lys	ASP		GIN	116
			580					585					590		
Leu	His	Glu	Gly	He	Asn	Glu	Ala	Gly	Ser	Val	Ala		Phe	He	Ala
		595					600					605			
Ala	Gly	Thr	Ser	Туr	Ala	Thr	His	Gly	Glu	Ala	Met	He	Pro	Leu	Туг
	610					615					620				
He	Phe	Tyr	Ser	Met	Phe	Gly	Phe	Gln	Arg.	Thr	Gly	Asp	Gly	He	Trp
625		-			630					635					640
	Ala	Ala	Asn	GIn	Met	Thr	Arg	Glv	Phe		Leu	Glv	Ala	Thr	
n i u	ma	mu	Пор	645	in C t		6	01,	650	200	Dog	0.,		655	,,,,
C 15.	۸	ть -	Thr		Thr	Clu	Clu	C1u		Cln	Иic	Mat	Aen		Иiе
біу	Arg	HIL		Leu	Thr	Gly	GIU		Leu	GIII	1113	mei		Gly	1112
	_		660			<b></b>	_	665	0.1		0.1	m ı	670		n
Ser	Pro		Leu	Ala	Ser	Thr		Pro	Gly	Val	Glu		lyr	Asp	Pro
		675					680					685			
Ala	Phe	Ser	Туr	Glu	He	Ala	His	Leu	Val	His	Arg	Gly	Пlе	Asp	Arg
	690					695					700				
Met	Tyr	Gly	Pro	Gly	Lys	Gly	Glu	Asn	Val	He	Tyr	Туr	Leu	Thr	He
705	-	•		-	710	-				715					720
	Asn	Glu	Pro	Thr	Pro	GIn	Pro	Ala	Glii		Gln	Asd	Len	Asp	
1 7 1	11011	010		725	1.0	· · · · ·			730					735	
Cla	Clu	Lou	Hic		Gly	Ha	Tur	[ pii		Asn	Lve	Ala	Ala		Glv
$\sigma_{1}u$	GIY	Leu	1115	гуу	$\sigma$ 1 y	116	ıyı	rcu	1 y 1	ush	цуб	ma	nia	oru	OIA

```
740
                                                      750
                                  745
 Glu Gly His Glu Ala Ser Ile Leu Ala Ser Gly Ile Gly Met Gln Trp
                              760
                                                  765
          755
 Ala Leu Arg Ala Arg Asp Ile Leu Ala Glu Asp Tyr Gly Ile Arg Ala
                          775
                                              780
 Asn Ile Phe Ser Ala Thr Ser Trp Val Glu Leu Ala Arg Asp Gly Ala
                      790
                                          795
 Arg Arg Asn Leu Glu Ala Leu Arg Asn Pro Gly Ala Asp Val Gly Glu
                  805
                                      810
 Ala Phe Val Thr Thr Gln Leu Lys Lys Gly Ser Gly Pro Tyr Val Ala
              820
                                  825
 Val Ser Asp Phe Ala Thr Asp Leu Pro Asn Gln Ile Arg Glu Trp Val
         835
                              840
                                                  845
 Pro Gly Asp Tyr Ile Val Leu Gly Ala Asp Gly Phe Gly Phe Ser Asp
     850
                          855
                                              860
 Thr Arg Pro Ala Ala Arg Arg Tyr Phe Asn Ile Asp Ala Glu Ser Ile
                      870
                                          875
 Val Val Ala Val Leu Arg Gly Leu Val Arg Glu Gly Val Ile Asp Ala
                 885
                                      890
 Ser Val Ala Ala His Ala Ala Glu Lys Tyr Lys Leu Ser Asp Pro Thr
                                                      910
             900
                                  905
 Ala Pro Gln Val Asp Pro Asp Ala Pro Ile Glu
         915
                              920
 <210> 23
 <211> 4013
 <212> DNA
 <213 Corynebacterium thermoaminogenes
 <220>
 <221> CDS
 <222> (319)..(3735)
 <400> 23
 gicciillig caaatictgc aaagigggla gaggicagal gicagcaggi cggiccgatt 60 -
 tetgtaggaa agtggageeg ligggggeaa cattaacett ceecetggga tgtagetaaa 120
 cggcaatggg ggtctcgggc ggggggcatt cttttcacgg caaggtggtg aaattccgca 180
 ggicactece eggeeggegg tagagaaegg agegaaaaeg gaaageaata egiggittie 240
 eggactggcc gitacgatgi icigaagagi gactgccatc acccaacagg etggiceleg 300
 tegaaaggaa caaaaact gig git aca aca aca eec tee acg eig eeg geg
                                                                     351
                     Val Val Thr Thr Pro Ser Thr Leu Pro Ala
                                        5
                                                                     399
tic aaa aag atc cig gig gcc aac cga ggi gaa alc gcg gig cga gca
```

Phe	Lys	Lys	11e 15	Leu	Val	Ala	Asn	Arg 20	Gly	Glu	He	Ala	Val 25	Arg	Ala	
t t c	cgc	gcc	gcc	tac	gag	acc	ggg	gcc	gca	acc	gtg	gcc	atc	tac	ссс	447
														Tyr		
ითთ	σασ		cøt	ppc	tee	ttc		cgc	tee	ttc	gcc		gag	gcg	øtø	495
-														Ala		
	45					50					55					5.40
														att		543
_	He	Gly	Thr	Glu		Ser	Pro	Val	Lys		Туr	Leu	Asp	He		
60					65					70					75	
gag	atc.	atc	aac	gcc	gcc	aag	aag	gtg	aaa	gcg	gac	gcg	gtc	tac	ccg	591
Glu	He	He	Asn		Ala	Lys	Lys	Val		Ala	Asp	Ala	Val	Туг	Pro	
				80					85					90		
ggg	tat	ggt	ttc	ctt	tcg	gaa	aat	gcc	cag	ctc	gcg	cgt	gaa	tgc	gcg	639
Gly	Туr	Gly	Phe	Leu	Ser	Glu	Asn	Ala	Gln	Leu	Ala	Arg	Glu	Cys	Ala	
			95					100					105			
gag	aac	ggc	att	асс	t t c	a t c	ggt	ccc	асс	ccg	gag	gţg	ctc	gac	ctc	687
Glu	Asn	Gly	He	Thr	Phe	He	Gly	Pro	Thr	Pro	Glu	Val	Leu	Asp	Leu	
		110					115					120				
acg	ggc	gac	aag	t c c	aag	gct	gtg	t c c	gcc	gcg	aag	aag	gcc	ggg	ctg	735
Thr	Gly	Asp	Lys	Ser	Lys	Ala	Val	Ser	Ala	Ala	Lys	Lys	Ala	Gly	Leu	
	125					130					135					
ccg	gtg	ctg	gcg	gaa	tcc	асс	ссс	agc	асс	gac	a t c	gat	gag	atc	gtc	783
Pro	Val	Leu	Ala	Glu	Ser	Thr	Pro	Ser	Thr	Asp	He	Asp	Glu	He	Val	
140					145					150					155	
aag	agt	gcc	gag	ggg	cag	асс	tac	ccg	atc	ttc	gtc	aag	gcc	gtc	gca	831
_														Val		
				160					165					170		
ggt	ggt	ggc	ggg	cgt	ggt	atg	cgg	ttc	gtc	gag	aag	ссс	gag	gac	ctg	879
														Asp		
		•	175					180					185			
cgt	gag	ctg		agg	gag	gcc	tcc	cgc	gag	gcg	gag	gcc	gct	ttc	ggt	927
														Phe		
6	0.14	190		(,	• • •		195					200				
gac	gga		gic	fac	gic	gaa		gcc	gtg	atc	aaa	ССС	cag	cac	atc	975
-														His		
МЭР	205	DCI		.,.	,	210	6	,,,,			215			••••		
gag	gtg	cag	atc	ctc	ggt	gat	сас	асс	ggc	gat	gtc	a t c	cac	ctg	tat	1023
Glu	Val	Gln	He	Leu	Gly	Asp	His	Thr	Gly	Asp	Val	He	His	Leu	Tyr	
220					225					230					235	
gaa	cgc	gac	tgt	tcc	ctg	cag	cgc	cgc	cac	cag	aag	gtc	gtg	gag	atc	1071
														Glu		
	_															

				240					245					250		
gca	cct	gcc	cag	cac	ctc	gac	ccg	gag	ctg	cgc	gac	cgc	atc	tgt	gcc	1119
Ala	Pro	Ala		His	Leu	Asp	Pro		Leu	Arg	Asp	Arg		Cys	Ala	
		t	255		1 ~ 0		100	260	~~	t 0.0	000	~~~	265	a à a		1167
_	-		_	ttc Phe	_						_		_			1167
АЗР	Nia	270	ьуз	1110	Суз	Lys	275	110	Gry	1 9 1	OIII	280	πια	Ory	1111	
gtg	gag	ttc	ctc	gtc	gac	gag	gcg	ggc	aac	сас	gtc	ttc	att	gag	atg	1215
Val	Glu	Phe	Leu	Val	Asp	Glu	Ala	Gly	Asn	His	Val	Phe	Ιlе	Glu	Met	
	285					290					295					
				cag												1263
	Pro	Arg	He	Gln		Glu	His	Thr	Val		Glu	Glu	Val	Thr		
300	~~~	a t a	ata	0.00	305	0.00	n t or	0.0.0	a t a	310	<b></b>	a a t	g 0 0	0.0.0	315	1311
_	-			aag Lys												1911
vai	лър	LCu	141	320	ma	0111	mc t	1113	325	ma	Mid	Ory	Mid	330	Lcu	
aag	gaa	ctg	ggc	ctg	acc	cag	gac	aag		acc	acc	cac	ggt		gcc	1359
_	_	-		Leu												
			335					340					345			
ctg	cag	tgc	cgc	atc	acc	acg	gag	gac	ccg	tcc	aac	aac	ttc	cgg	ccc	1407
Leu	Gln		Arg	He	Thr	Thr		Asp	Pro	Ser	Asn		Phe	Arg	Pro	
		350					355					360				
~				atc												1455
Asp	1nr 365	GIY	vai	He	Inr	370	1 У Г	Arg	261	PTO	375	GIY	Ala	Gry	vaı	
cat		gac	σσc	gca	σcc		ctc	gge	σσc	σασ		acc	σca	cat	itc	1503
_		_		Ala												1000
380	Leu	пор	0.,	,,, u	385	0111	Воц	013	0.,	390					395	
	tcc	atg	ctg	gtc		atg	асс	tgc	cgc	ggt	t c c	gat	ttc	gag	acc	1551
Asp	Ser	Met	Leu	Val	Lys	Met	Thr	Cys	Arg	Gly	Ser	Asp	Phe	Glu	Thr	
				400					405					410		
_				gcc												1599
Ala	Val	Ser		Ala	Gln	Arg	Ala		Ala	Glu	Phe	Asn		Ser	Gly	
			415					420			_ 4		425			1.6.47
				atc												1647
vai	ATA	430	ASII	He	ыу	rne	435	Arg	Ala	Leu	Leu	440	GIU	Glu	ASP	
ttc	acc		agg	cgc	atc	gar		gge	ttc	aic	pgr		cac	cag	cac	1695
				Arg												1000
1 110	445	2,5	0	0		450		3			455				_	
ctg		cag	gcc	сса	ccg	gcc	gac	gat	gag	cag	ggg	cgg	atc	ctg	gaa	1743
Leu	Leu	Gln	Ala	Pro	Pro	Ala	Asp	Asp	Glu	Gln	Glу	Arg	Пe	Leu	Glu	
460					465					470					475	

# SCANNED, #_

10,722	
and ato ace ato age and and collected get but the	1791
tac ctg gcg gat gtc acc gtg dao das Fro His Gly Glu Arg Pro Glu Tyr Leu Ala Asp Val Thr Val Asn Lys Pro His Gly Glu Arg Pro Glu 490	
400	
t and oth day and oth coo gag gtg gag aac atc cog cig	1839
aca gcc cgt ccg ata gag adg crg coo Glu Val Glu Asn Ile Pro Leu Thr Ala Arg Pro Ile Glu Lys Leu Pro Glu Val Glu Asn Ile Pro Leu	
500	
the age age edg ctg ang ctc ggc ccg gag ggt itc	1887
cca cgc ggc icc cgc gat cgc ctg ddg odd Pro Arg Gly Ser Arg Asp Arg Leu Lys Gln Leu Gly Pro Glu Gly Phe	
A 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
old acc gar gar gar gcc ctg gcc gtc acc gac acc acc	1935
gcc cgc gat cig cgc gaa cag gat goo old Val Thr Asp Thr Thr Ala Arg Asp Leu Arg Glu Gln Asp Ala Leu Ala Val Thr Asp Thr Thr	
530	
525	1983
ttc cgc gat gcc cac cag tcc cro org god Phe Arg Asp Ala His Gln Ser Leu Leu Ala Thr Arg Val Arg Ser Phe	
E X E 300	
540 gran and and are gir gra and cir acc ccc gag cig	2031
gcg ctg acc ccg gcg gcg cgc gcc gcc gcc gcc gc	
5 f f f	
and tag age ggt gcc acc tac gac gtg gcc atg cgc	2079
ctg tcg gtg gag gcc tgg ggc ggt gcc act Leu Ser Val Glu Ala Trp Gly Gly Ala Thr Tyr Asp Val Ala Met Arg	
500	
and and tog gra cgc ctg gat gag ctg cgt gag gcg	2127
tic cic tic gag gai ccg igg gcd ogo oig Phe Leu Phe Glu Asp Pro Trp Ala Arg Leu Asp Glu Leu Arg Glu Ala	
745	0.55
trace at car at ctg ctg cgt ggt cgc aac acc gtc	2175
atg ccg aat gtg aac atc cag atg ctg otg of Met Leu Arg Gly Arg Asn Thr Val	
610	
the and got the gig ten egg geg itt gig dag gag	2223
The Dro Tyr Pro Ash Sel Val Cys Alg Mid The	
<i>C</i> 9 E U D U	
ozu	2271
gcc gcc aag icc ggi gig gac atc tto og.  Ala Ala Lys Ser Gly Val Asp Ile Phe Arg Ile Phe Asp Ala Leu Asn 650	
CAO 1940	
and age age at gac gc gt ctg gag acc gg	2319
gac atc tcc cag and cgc ccg gcc atc gas Val Leu Glu Thr Gly Asp Ile Ser Gln Met Arg Pro Ala Ile Asp Ala Val Leu Glu Thr Gly	
001	
ger at a god at g gog tac too ggt gac otg too aat	2367
acc agt git gcc gag git gct atg gcg tao for Go Asp Leu Ser Asn Thr Ser Val Ala Glu Val Ala Met Ala Tyr Ser Gly Asp Leu Ser Asn	
5 D D D D D D D D D D D D D D D D D D D	
670  670  670  670  670  670  670  670	2415
ccg ggg gag aag cic tac acc ctg gac tac tac tac es Pro Gly Glu Lys Leu Tyr Thr Leu Asp Tyr Tyr Leu Asn Leu Ala Glu	
E NO	
685 690 cag atc gtc gac icc ggt gca cac atc cig gcc atc aag gac atg gcc	2463
cag atc gtc gac icc ggi gca cac are org gos and	

G1n 700	Ile	Val	Asp	Ser	Gly 705	Ala	His	He	Leu	Ala 710	Ile	Lys	Asp	Met	Ala 715	
ggc	ctg Leu	ctg Leu	cgc Arg	Arg	gcc Ala	gcg Ala	gcg Ala	ccc Pro	aaa Lys 725	ctg Leu	gtc Val	acc Thr	gcc Ala	ctg Leu 730	cgc Arg	2511
		ttc Phe	Asp					Val	cac				Thr	gcc		2559
ggt Gly	cag Gln	ctg Leu	735 gcc Ala	acc Thr	tac Tyr	ctg Leu	Ala	740 gcc Ala	gcc Ala	aac Asn	gcc Ala	Gly	745 gcc Ala	gat Asp	gcc Ala	2607
gtc Val	gac Asp	750 gcc Ala	gcc Ala	tcc Ser	gca Ala	ccc Pro	755 ctg Leu	tcc Ser	ggt Gly	acc Thr	Thr	760 tcc Ser	cag Gln	ccg Pro	teg Ser	2655
atg Met	765 tcc Ser	gct Ala	ctg Leu	gtt Val	gcc Ala	770 gcg Ala	ttt Phe	gcg Ala	cac His	Thr	775 cga Arg	cgc Arg	gac Asp	acc Thr	Gly	2703
780 ctc Leu	aac Asn	ctg Leu	cag Gln	gcc Ala	785 gtc Val	tcc Ser	gac Asp	ctg Leu	gaa Glu	790 ccg Pro	tac Tyr	tgg Trp	gag Glu	Ala	795 glc Val	2751
cgc Arg	gga Gly	ctg Leu	tac Tyr	800 ctg Leu	ccg Pro	ttt Phe	gaa Glu	t c c Se r	805 ggc Gly	acc Thr	ccg Pro	ggc Gly	ccg Pro	810 acc Thr	gga Gly	2799
cgc	gtt	tac Tyr	815 cgc	cac	gag	atc	ссс	820 ggc	ggt	cag	ctg	tcc	825 aac	ctg	cgt	2847
gcc	cag	830	gtt	gca	ċtg	ggt	835 ctg	gcc	gac	cgc	t t c	840 gag	ctc	atc	gag	2895
gac	845 tac		gcg	gcc	gtc	850 aac	gag	atg	ctg	ggt	855 cgt	ccg	acc	aag	gtc	2943
860 acc	ccg	t c c Ser	tcc	aag	865 gtt	gtc	ggt	gac	ctc	870 gca	ctg	сас	ctc	gtc	875 gg t	2991
gcc	ggt	gtg	agc	880 ccg	gag	gat	ttc	gcc	885 gcc	gat	ccg	cag	aag	890 tac	gac	3039
atc	ссс	gat	895 tcg	gtc	átc	gcc	t t c	900 ctc	cgc	ggc	gaa	ctg	905 ggt	acc	Asp	3087
ссс	ggt	910 ggc	tgg	ссс	gaa	ccg	915 ctg	cgc	acc	cgt	gca	920 ctc	gag	g ggt	Pro	3135
Pro	Gly	Gly	Trp	Pro	Glu	Pro	Leu	Arg	Thr	Arg	Ala	Leu	Glu	Gly	Arg	

925	93	0	935	
tcc cag ggt a	ag gcc ccg ct	g gcg gag atc c	cc gcc gag gag cag gcc 31	83
			ro Ala Glu Glu Gln Ala	
940	945		50 955	
	cc gat gat tc	c gcg gag cgt c		231
			rg Gly Thr Leu Asn Arg	
-	960	965	970	
ctg ctg ttc c	cg aag ccg ac	c gag gag ttc c	tt gag cac cgt cgc cgc 32	279
Leu Leu Phe P	ro Lys Pro Th	r Glu Glu Phe Lo	eu Glu His Arg Arg Arg	
9	75	980	985	
ttc ggc aac a	cc tcc gcc ct	g gat gac cgc g	ag ttc ttc tac ggc ttg 33	327
Phe Gly Asn T	hr Ser Ala Lei	a Asp Asp Arg G	lu Phe Phe Tyr Gly Leu	
990		995	1000	
aag gag gga c	gt gag gag ct	g atc cga ctg a	cc ggt gtg tcc acc ccg 33	375
Lys Glu Gly A	rg Glu Glu Lei	ı Ile Arg Leu Tl	or Gly Val Ser Thr Pro	
1005	1010	)	1015	
atg gtg gtc c	gc ctg gat gcg	g gtg tcc gaa co	eg gat gac aaa ggc atg = 34	23
Met Val Val A	rg Leu Asp Ala	a Val Ser Glu Pi	o Asp Asp Lys Gly Met	
1020	1025	103	1035	
cgc aac gtg g	tg gtc aac gto	c aac ggc cag a	to cgc ccg atc aag gtg 34	71
Arg Asn Val V	al Val Asn Val	Asn Gly Gln I	e Arg Pro Ile Lys Val	
	1040	1045	1050	
cgc gac cgt t	cc gtg gag tco	e gtc. acc gcc ac	cc gcg gag aag gcc gat 35	19
Arg Asp Arg S	er Val Glu Sei	· Val Thr Ala Th	ır Ala Glu Lys Ala Asp	
10	55	1060	1065	
gcc acc aac a	ag ggc cat gto	e gee gea eea t	c gcc ggt gtg gtc acc 35	67
Ala Thr Asn L	ys Gly His Val	Ala Ala Pro Ph	ie Ala Gly Val Val Thr	
1070		1075	1080	
gtg acc gtc g	cc gag ggt gat	gag atc aag go	et ggc gac gcc gtg gcc 36	15
Val Thr Val A	la Glu Gly Asp	Glu Ile Lys Al	a Gly Asp Ala Val Ala	
1085	1090	•	1095	
atc att gag g	cc atg aag atg	g gag gcc acc at	c acc gcg cct gtc gac 36	63
Ile Ile Glu A	la Met Lys Met	Glu Ala Thr II	e Thr Ala Pro Val Asp	
1100	1105	111	0 1115	
ggt gtc atc ga	ac cgc gtc gtg	gig ccc gcc gc	cc acc aag gtc gag ggc 37	11
Gly Val Ile As	sp Arg Val Val	Val Pro Ala Al	a Thr Lys Val Glu Gly	
	1120	1125	1130	
ggc gac cic a	tc gtg gtc gtg	tcc tagcgactga	gagccacaac ccgtcccggg 37	65
Gly Asp Leu Il		Ser		
113				
tgccttgtta tca	aacctccc cctga	tgatg tictcaggg	g gaggetetae gtaceteace 38	25
gigacggigc aig	gtatateg teetg	ctgga gagaatgct	c caggiaggaa cgccaaccac 38	85
cccactccgt gat	igicccgi gciga	tecca ggeaggeeg	g tiggaaagaa aaaccagiga-39	45

4013

#### 49/123

tggaacggcc atcggacagc gagacggaac caagcgtcat cggctccggt agagcggtga 4005

gga	gcct	g									٠				
<21	0> 2 1> 1 2> P	139													
•	•		ebac	teri	um t	herm	oami	noge	nes						
<40	0> 2	4													
Val 1	Val	Thr	Thr	Thr 5		Ser	Thr	Leu	Pro 10		Phe	Lys	Lys	Ile 15	Leu
Val	Ala	Asn	Arg 20		Glu	He	Ala	Val 25		Ala	Phe	Arg	Ala 30	Ala	Туг
Glu	Thr	Gly 35		Ala	Thr	Val	Ala 40	He	Tyr	Pro	Arg	Glu 45	Asp	Arg	Gly
Ser	Phe 50	His	Arg	Ser	Phe	Ala 55		Glu	Ala	Val	Arg 60	Ile	Gly	Thr	Glu
Gly 65	Ser	Pro	Val	Lys	Ala 70	Туг	Leu	Asp	He	Asp 75	Glu	lle	He	Asn	Ala 80
Ala	Lys	Lys	Val	Lys 85	Ala	Asp	Ala	Val	Туг 90	Pro	Gly	Tyr	Gly	Phe 95	Leu
Ser	Glu	Asn	Ala 100	Gln	Leu	Ala	Arg	Glu 105	Cys	Ala	Glu	Asn	Gly 110	He	Thr
Phe	He	Gly 115	Pro	Thr	Pro	Glu	Val 120	Leu	Asp	Leu	Thr	Gly 125	Asp	Lys	Ser
Lys	Ala 130		Ser	Ala	Ala	Lys 135		Ala	Gly	Leu	Pro 140	Val	Leu	Ala	Glu
Ser 145		Pro	Ser	Thr	Asp 150		Asp	Glu	He	Val 155		Ser	Ala	Glu	Gly 160
	Thr	Туг	Pro	Ile 165		Val	Lys	Ala	Val 170		Gly	Gly	Gly	Gly 175	
Gly	Met	Arg	Phe 180		Glu	Lys	Pro	Glu 185		Leu	Arg	Glu	Leu 190		Arg
Glu	Ala	Ser 195		Glu	Ala	Glu	Ala 200		Phe	Gly	Asp	Gly 205	Ser	Val	Туг
Val	G1 u 210		Ala	Val	He	Lys 215	Pro	Gln	His	He	Glu 220	Val	Gln	lle	Leu
Gly 225		His	Thr	Gly	Asp 230		He	His	Leu	Туг 235		Arg	Asp	Cys	Ser 240
	Gln	Arg	Arg	His 245		Lys	Val	Val	Glu 250		Ala	Pro	Ala	Gln 255	
Leu	Asp	Pro	Glu 260		Arg	Asp	Arg	Ile 265		Ala	Asp	Ala	Val 270		Phe
Cys	Lys	Ser		Gly	Tyr	Gln	Gly		Gly	Thr	Val	Glu	Phe	Leu	Val

		275					280					285			
Asp	Glu		Gly	Asn	His	Val	Phe	He	Glu	Met	Asn	Pro	Arg	He	Gln
•	290					295					300				
Val	Glu	His	Thr	Val	Thr	Glu	Glu	Val	Thr	Ser	Val	Asp	Leu	Val	Lys
305					310					315					320
Ala	Gln	Met	His	Leu	Ala	Ala	Gly	Ala		Leu	Lys	Glu	Leu	Gly	Leu
				325					330					335	
Thr	Gln	Asp	Lys	He	Thr	Thr	His		Ala	Ala	Leu	Gln	Cys	Arg	He
			340					345				mı.	350	w	T 1
Thr	Thr		Asp	Pro	Ser	Asn				Pro	Asp	Inr	GIY	vaı	116
		355		0	ъ	<b>0.1</b>	360	A 1 .		W = 1	A = ~	365	Aan	Cly	Alo
Thr		Туг	Arg	Ser	Pro					vai	380	Leu	ASD	GIY	на
	370	<b>T</b> .	01	C1	Cl.,	375	The			Dho		Sor	Met	Len	Val
	GIn	Leu	Gly	GIY	390		1111			395	nsp	361	mcı	LCu	400
385	Mat	Thr	Cys	Ara							Ala	Val	Ser	Arg	
Lys	meı	1 11 1	Cys	405			Азр		410	1111	7114			415	
Cln	Δισ	Ala	Leu												He
0111	міб	MIG	420		0.0			425					430		
Glv	Phe	Leu	Arg						Glu	Asp	Phe	Thr	Lys	Arg	Arg
	1	435					440								
He	Asp	Thr	Gly	Phe	He	Gly	Ser	His	Gln	His	Leu	Leu	Gln	Ala	Pro
	450					455					460				
Pro	Ala	Asp	Asp	Glu	Gln	Gly							Ala	Asp	Val
465					470									ъ.	480
Thr	Val	Asn	Lys		His	Gly			Pro	Glu	Thr	Ala	Arg	Pro	He
				485					490		ъ	۸	C 1	495	A == ~
Glu	Lys	Leu		Glu	Val	Glu	Asn	11e						sei	Arg
		·	500	6.1	т.	C.1	D = 0	505				۸ra			Δrσ
	Arg	Leu	Lys	GIN	Leu	GIY	F10	Glu	GIY	THE	ліа	525	изр	LCu	Arg
		515	Ala	Lou	Λla	Val	Thr	Aen	Thr	Thr	Phe	Arø	Asn	Ala	His
			Ala	Leu	Ala	535	1 11 1	лэр	1 11 1	1 11 1	540	111 6	пор	711 0	****
Cln	530		Len	Δla	Thr		Val	Arg	Ser	Phe			Thr	Pro	Ala
545		LCu	LCu	Mid	550	1116	, 4.1	6	501	555					560
Δla	Arσ	Ala	Val	Ala		Leu	Thr	Pro	Glu		Leu	Ser	Val	Glu	Ala
AId	1115	, 1 1 U		565	_,,			_	570					575	
Trp	Glv	Glv	Ala		Туr	Asp	Val	Ala	Met	Arg	Phe	Leu	Phe	Glu	Asp
	,		580		-			585					590	)	
Pro	Trp	Ala	Arg	Leu	Asp	Glu	Leu	Arg	Glu	Ala	Met	Pro	Asn	Val	Asn
		595					600					605			
He	Gln	Met	Leu	Leu	Arg	Gly	Arg	Asn	Thr	Val			Thr	Pro	Tyr
	610					615					620	)			

													_	_	
Pro	Asp	Ser	Val	Cys	Arg	Ala	Phe	Val	Gln	Glu	Ala	Ala	Lys	Ser	
625					630					635					640
Val	Asp	Ile	Phe	Arg	Ile	Phe	Asp	Ala	Leu	Asn	Asp	He	Ser	Gln	Met
				645									•	655	
Arg	Pro	Ala	He	Asp	Ala	Val	Leu	Glu	Thr	Gly	Thr	Ser	Val	Ala	Glu
******			660										670		
Val	Λla	Met								Asn			Glu	Lvs	Leu
vai	Міа	675	mu	1 9 1	001	Oly	680	БСС	501			685		_,_	
σ	ть		Aan	Tur	Тъгъ	Lon		Lou	Ala	Glu	Cln		Val	Asn	Ser
ТУГ		Leu	ASP	1 y 1	1 y 1		ASII	Leu	ліа	Olu	700	110	,	пор	501
	690		<b>.</b> 1	,	4.1	695	r	<b>A</b>	Max	4 1 a		Lau	Lan	Ara	A = 0
Gly	Ala	His	He	Leu		11e	Lys	Asp	меі	Ala	GIY	Leu	reu	AIg	
705					710				_	715		0.1	D.1		720
Ala	Ala	Ala	Pro	Lys	Leu	Val	Thr	Ala		Arg	Arg	Glu	Phe		Leu
				725					730					735	
Pro	Val	His	Val	His	Thr	His	Asp	Thr	Ala	Gly	Gly	Gln	Leu	Ala	Thr
			740					745					750		
Tvr	Leu	Ala	Ala	Ala	Asn	Ala	Gly	Ala	Asp	Ala	Val	Asp	Ala	Ala	Ser
•		755					760			•		765			
Ala	Pro						Ser			Ser	Met	Ser	Ala	Leu	Val
mu	770	Воц		,		775					780				
Λla		Phe	Ala	His	Thr					Gly		Asn	Leu	Gln	Ala
	лια	THE	nra	1113	790		6	пор		795					800
785	C	A = =	Lau	Clu		Tur	Trn	Cln	Λla	Val	Δrσ	Glv	Len	Tvr	
vaı	ser	ASP	Leu			1 y 1				vai		GIY	LCu	815	Dea
_		0.1	0	805								Val	Tur		Цie
Pro	Phe	Glu		біу	Inr	Pro	GIY		1 11 1	Gly	AIg	Val		nig	1113
			820			_		825			. 1	C 1	830	37 - 1	A 1
Glu	He	Pro	Gly	Gly	GIn	Leu				Arg	Ala		Ala	vaı	Ala
		835					840					845	_		
Leu	Gly	Leu	Ala	Asp	Arg	Phe	Glu	Leu	He	Glu	Asp	Туг	Туг	Ala	Ala
	850					855					860				
Val	Asn	Glu	Met	Leu	Gly	Arg	Pro	Thr	Lys	Val	Thr	Pro	Ser	Ser	Lys
865					870					875					880
	Val	Glv	Asp	Leu	Ala	Leu	His	Leu	Val	Gly	Ala	Gly	Val	Ser	Pro
	,		•	885					890					895	
Clu	Asn	Phe	Ala		Asp	Pro	Gln	Lvs		Asp	He	Pro	Asp	Ser	Val
Ulu	nsp	1116	900	mu	пор	1.0	0111	905	2 3 2				910		
т1.	41 a	Dha		Ara	Clu	Clu	Lau		Thr	Pro	Pro	Glv		Trn	Pro
116	Ala		Leu	AIg	Gry	GIU		Gry	1 11 1	110	110	925		111	110
	_	915		m ı		. 1	920	01	C1	۸	Can			Lvc	۸la
Glu		Leu	Arg	Thr	Arg		Leu	GIU	ыу	Arg			Gly	L y S	Ald
	930					935	_		۵.		940			0	
Pro	Leu	Ala	Glu	He		Ala	Glu	Glu	GIn	Ala	HIS	Leu	Asp	Ser	
945					950					955				_	960
Asp	Ser	Ala	Glu	Arg	Arg	Gly	Thr	Leu	Asn	Arg	Leu	Leu	Phe	Pro	Lys

965	970	975
Pro Thr Glu Glu Phe Leu Glu H	is Arg Arg Arg Phe Gly Asi	n Thr Ser
980	985 996	)
Ala Leu Asp Asp Arg Glu Phe Pl	ne Tyr Gly Leu Lys Glu Gly	y Arg Glu
995 100	1005	
Glu Leu Ile Arg Leu Thr Gly Va	al Ser Thr Pro Met Val Va	l Arg Leu
1010 1015	1020	
Asp Ala Val Ser Glu Pro Asp As		l Val Val
025 1030	1035	1040
Asn Val Asn Gly Gln Ile Arg Pi		
1045	1050	1055
Glu Ser Val Thr Ala Thr Ala Gl		
1060	1065 1070	
His Val Ala Ala Pro Phe Ala Gl 1075 108		Ala Giu
Gly Asp Glu Ile Lys Ala Gly As		ı Ala Mot
1090 1095	1100	i Ala met
Lys Met Glu Ala Thr Ile Thr Al		Asp Arg
105 1110	1115	1120
Val Val Val Pro Ala Ala Thr Ly		
1125	1130	1135
Val Val Ser		
<210> 25		
<211> 3306		
<212> DNA		
<213> Corynebacterium thermoam	inogenes	
(000)		
<220>		
<221> CDS <222> (64) (2820)		
(222) (04) (2820)		
<400> 25		
gatcaaccia agccaggaga atccggcg	ggg eggtttetae ttetacagga	getgaacece 60
acc gtg aat gaa ctt ctc cgt ga		
Val Asn Glu Leu Leu Arg As		
1 5	10	15
ctg ggc gag gtg atc tcc gag ca		c gaa ctg 156
Leu Gly Glu Val Ile Ser Glu Gl		
20	25	30
gtt gaa cgc gcc cgc cgg acc tc	c ttc gac atc gcc aag gga	a cgc gcg 204
Val Glu Arg Ala Arg Arg Thr Se		

			35					40					45			
gag	atg	gac		ctg	gtg	gag	gtg	ttc	gct	ggc	atc	gac	ccg	gag	gac	252
													Pro			
		50					55					60				
gcc	acg	ссс	gtg	gcc	cga	gcc	t t c	acc	cat	t t c	gcc	ctg	ttg	gcc	aac	300
Ala	Thr	Pro	Val	Ala	Arg	Ala	Phe	Thr	His	Phe	Ala	Leu	Leu	Ala	Asn	
	65					70					75					
ctc	gcg	gag	gat	ttg	cat	gac	gca	gcc	cag	cgg	gaa	cag	gcc	ctg	aac	348
Leu	Ala	Glu	Asp	Leu	His	Asp	Ala	Ala	Gln	Arg	Glu	Gln	Ala	Leu		
80					85					90					95	
_							-						tgg			396
Ser	Gly	Glu	Pro	Ala	Pro	Asp	Ser	Thr		Glu	Ala	Thr	Trp		Lys	
				100					105					110		
													gtg			444
Leu	Asp	Asp		Gly	Val	Gly	Ser		Glu	Val	Ala	Ala	Val	He	Arg	
			115					120					125			400
													gaa			492
Asn	Ala		Val	Ala	Pro	Val		Thr	Ala	HIS	Pro		Glu	Inr	Arg	
		130					135			,		140	- 4	_ 4		E 4 0
													ctg			540
Arg		Thr	Val	Phe	Asp		Gin	Lys	HIS	11e		Ala	Leu	мет	GI-U	
	145			- 4 -	_ 4	150	- 4				155	200	0.00	aaa	taa	588
													acc			000
	Arg	HIS	Leu	Leu		ATA	Leu	Pro	1111	170	АТа	Alg	Thr	GIH	175	
160	_ 4		~~~	a <b>t</b> a	165	0.07.0	0.00	a t a	aaa		caa	atc	aca	atc		636
													acg Thr			000
Lys	Leu	ASP	ASP	180	GIU	AIg	ASII	116	185	AIG	AIG	110	Thr	190	LCu	
taa		0.00	GC C		ate	eat	ata	acc		ccc	cac	aic	gag		σασ	684
													Glu			001
пр	GIII	1 11 1	195	LCu	110	МБ	141	200	шь	110	,,,,,	110	205	пор	014	
atc	σασ	ort f		ctø	cgc	tac	tac		ctc	agc	ctg	ttg	gcc	gag	atc	732
													Ala			
741	oru	210	Oly	БСС	111 6	.,.	215	Буб	Бос	501	200	220				
ccc	cac		aat	cat	gat	gtg		gtg	gaa	ctg	gcc	cgg	cgt	ttc	ggc	780
	-												Arg			
110	225	110	110			230			•		235		_		-	
ggg		atc	ссс	acc	acg		atg	gtc	agg	ccg	gga	tcc	tgg	atc	ggc	828
													Trp			
240					245				J	250	-				255	
	gac	cat	gat	ggc		ссс	ttc	gtc	асс	gcg	gag	ac t	gtc	асс	t a c	876
													Val			
			-	260					265					270		

								~ 4 ~		0.00	t n a	tac	atc	വര	caa	924
			cgg													324
Ala	Inr	HIS	Arg	Ala	Ala	GIU	1111	280	Leu	ГЛЭ	1 y 1	1 9 1	285	Буз	0111	
		~~~	275 c t g	an n	000	an n	ctc		ctd	tec	gac	ითთ		a.a.c	gtc	972
			Leu													012
Leu	HIS		Leu	GIU	піз	Giu	295	261	Leu	561	пор	300	mc i	71511	,	
		290	gag	a t a	a cr t	at a		ac c	a a t	acc	gge		aat	gac	atg	1020
																1020
ile		ASP	Glu	Leu	Alg	31.0	Leu	Ala	изр	ΛIα	315	OIII	11511	пор	me t	
	305		~ t t	or n. f			tac	o a a	caa	acc		cac	ggr	atσ	cat	1068
ccc	agc	cgg	gtt	gat	gaa	Dro	Tur	Ara	V E G	Ala	Ilo	Hie	Clv	Met	Aro	1000
	ser	Arg	Val	ASP	325	rio	1 9 1	AIG	AIG	330	110	1113	Oly	me i	335	
320		a 1 a	ctg	α.o.o.		200	GC C	acc	e ta		σσt	σασ	gag	gcg		1116
ggc	cgg	alg	Leu	gcc	The	alg The	Ala	Ala	Lan		Clv	Glu	Glu	Ala	Val	1110
GIY	Arg	меι	Leu	340	1 11 1	1 11 1	на	πια	345	110	013	014	014	350		
	~~~	0.00	t gg		224	200	tte	aca		tat	acc	gat	асс		gag	1164
gag	ggc	acc The	Trp	Dha	Luc	Thr	Dho	Thr	Pro	Tyr	Thr	Asn	Thr	His	Glu	
Glu	ыу	1 11 1	355	1116	гуз	1 11 1	1110	360	110	1 9 1	1 11 1	пор	365		0.0	
+ + 0	0.00	e are	gac	ctc	σat	atc	σtσ		aa t	tcc	ctg	aga		tcc	cgg	1212
			Asp													
rne	L y S	370	лэр	LCu	пор	110	375	пор	013	501	200	380			0	
an t	anc		a t c	gee	σat	gar		ctg	gcc	atg	ctg		tcg	gcc	ctg	1260
Acn	Acn	ع ا	lle	Ala	Asn	Asn	Arg	Len	Ala	Met	Leu	Arg	Ser	Ala	Leu	
Asp	385	110	110	ma	пър	390	mi P	Deu	,,, a		395	,				
aac		ttc	ggg	ttc	аас		tac	tcc	cig	gat		cgc	cag	aat	tcc	1308
			Gly													
400	501	THE	013	1 11 0	405	Вса	.,.		2.0	410					415	
	σσt	ttc	gag	gai		ctc	асс	gaa	ttg		gcc	acc	gcc	cag	acc	1356
Aen	Glv	Phe	Glu	Asp	Val	Leu	Thr	Glu	Leu	Phe	Ala	Thr	Ala	Gln	Thr	
пэр	Ory	1110	0.4	420		200			425					430		
σασ	ลลฮ	aac	tac		ggg	ttg	acg	gag		gag	aag	ctg	gac	ctg	ctg	1404
Clu	Ivs	Asn	Tyr	Arg	Glv	Leu	Thr	Glu	Ala	Glu	Lys	Leu	Asp	Leu	Leu	
oru	Цуб	11011	435	0	.,			440			-		445			
atc	cac	gaa		agc	aca	ССС	cgc		ctc	atc	ccg	сас	ggg	gac	ccg	1452
			Leu													
110	111 6	450	200				455					460				
gac	tac		gag	gcc	acc	aac		gaa	ctg	ggg	att	ttt	tcg	aag	gcc	1500
Asn	Tvr	Ser	Glu	Ala	Thr	Asn	Arg	Glu	Leu	Gly	He	Phe	Ser	Lys	Ala	
MSP	465	001	0			470	0				475					
grø		gcc	gtg	cgt	aaa		ggt	cct	ctc	atg			cac	tgc	a t c	1548
Ala	Glii	Ala	Val	Arg	Lvs	Phe	Glv	Pro	Leu	Met	Val	Pro	His	Cys	Ile	
480		u		0	485		3			490					495	
		atg	gcc	tet		gtc	acg	gac	atc	ctc	gaa	ccg	atg	gtg	ctg	1596
aic		~ . 0	500			<u> </u>	- 0					_	_			

Ile	Ser	Met	Ala	Ser 500	Ser	Val	Thr	Asp	11e 505	Leu	Glu	Pro	Met	Val 510	Leu	
ctc	ааσ	gag	ttc		ctg	atc	cgg	gcc	aac	ggg	aag	aac	ccg	acg	ggc	1644
Lau	Luc	Glu	Phe	Clv	Len	lle	Arø	Ala	Asn	Glv	Lvs	Asn	Pro	Thr	Gly	
			515					520					525			1.600
agc	gtc	gac	gtg	atc	ccg	ctg	ttc	gag	acg	atc	gat	gac	ctc	cag	cgi	1692
Ser	Val	Asp	Val	Ile	Pro	Leu	Phe	Glu	Thr	Ile	Asp		Leu	Gln	Arg	
		530					535					540				
ggc	gcg	ggc	atc	ctg	gag	gaa	ttg	tgg	gac	atc	gac	ctc	tac	cgc	aat	1740
Glv	Ala	Gly	He	Leu	Glu	Glu	Leu	Trp	Asp	Ιlе	Asp	Leu	Туr	Arg	Asn	
0.,	545					550					555					
tac		gag	cag	cgg	gac	aac	gtc	cag	gag	gtc	atg	ctg	ggg	tat	tcc	1788
Tur	Len	Glu	Gln	Arg	Asp	Asn	Val	Gln	Glu	Val	Met	Leu	Gly	Tyr	Ser	
560	LCu	oru	0111	111.6	565	71011				570					575	
300	+ 0.0	aac	മരന	asc		σσσ	tac	ttc	gcc		aac	tgg	gcg	ctt	tac	1836
gac	Con	Asn	Luc	Acn	Clu	Clv	Tyr	Phe	Ala	Ala	Asn	Trn	Ala	Leu	Туг	
ASP	261	ASII	ГЛЭ		Gly	оту	1 y 1	inc	585	711 0	71011	116		590	- 3 -	
				580		~ t ^	~ 0 0	a t a		caa	aac	cat	aat		аад	1884
gac	gcg	gag	tta	cgc	cig	gic	gaa	Lau	Cuc	Ara	Cly	Ara	Aen	Val	aag Lve	1001
Asp	Ala	Glu		Arg	Leu	vaı	GIU		Cys	Aig	Gry	AIG	605	va i	Lys	
			595					600		~ t ~	~~*	o or t		a a t	aac	1932
ctc	cgt	ctc	ttc	cac	ggl	cgı	ggı	ggc	acg	gig	ggı	Cgi	ggu	gg i	Clu	1302
Leu	Arg	Leu	Phe	HIS	Gly	Arg		GIY	ınr	vai	ыту	Arg	GIY	Gly	Gly	
		610					615					620	_1_			1000
ccc	t c c	tat	gat	gcg	atc	ctg	gcc	cag	ссс	aag	ggc	gcg	gıc	cgg	ggı	1980
Pro	Ser	Туr	Asp	Ala	He	Leu	Ala	Gln	Pro	Lys	Gly	Ala	Val	Arg	Gly	
	625					630					635					
gcg	gtg	cgg	gtg	ac t	gaa	cag	ggc	gag	atc	a t c	tcc	gcg	aag	tac	ggt	2028
Ala	Val	Arg	Val	Thr	Glu	Gln	Gly	Glu	Ile	Пlе	Ser	Ala	Lys	Туг	Gly	
640					645					650					655	
aac	ccg	gat	acg	gca	cgc	cgc	aac	ctt	gag	gçc	ctg	gtg	tcc	gcg	acg	2076
Asn	Pro	Asp	Thr	Ala	Arg	Arg	Asn	Leu	Glu	Ala	Leu	Val	Ser	Ala	Thr	
				660					665					670		
cto	σησ	gca	teg		ctg	gat	gat	gtg	gaa	ctg	ссс	aat	cgg	gaa	cgc	2124
Lau	Clu	Δla	Ser	Len	Len	Asn	Asp	Val	Glu	Leu	Pro	Asn	Arg	Glu	Arg	
Leu	Giu	nia	675	LCu	Dea	710 6		680					685			
~~~	0.00	. a a c		ator	aaa	σασ	atc		gag	ttg	agc	tto	cgo	agg	taç	2172
geg	cac	Clas	Ilo	Mot	655 Clu	Clu	Ila	Car	Clu	Leu	, ago	Phe	Are	Arg	Tyr	
Ala	HIS		116	Met	GIY	Giu	695	361	Olu	LCu	. 501	700		, ,,, 6		
		690						~~~		o f a				900	· cao	2220
tca	tca	ctg	glc	cat	gag	gat	CCC	gga	nic	11.	. cag . ci∽	, ial	Dha	. acc	cag Gln	<i>L L L</i> 0
Ser			val	HIS	Glu		Pro	ыу	rne	116			1 11 6	. 1111	Gln	
	705					710					715		4			9960
tcc	асс	ссс	ctg	cag	gag	atc	gga	tcc	ctc	aac	alc	ggt		cga 	CCC	2268
Ser	Thr	Pro	Leu	Gln	Glu	He	Gly	Ser	Leu	Asn	ille	GIY	ser	Arg	g Pro	

720					725					730					735	
	t c a	cgt	aaa	cag	acc	aac	acg	gtg	gag		ctg	cgt	gcc	atc		2316
Ser	Ser	Arg	Lys	Gln	Thr	Asn	Thr	Val	Glu	Asp	Leu	Arg	Ala	Ile	Pro	
				740		•			745					750		
	gtg															2364
Trp	Val	Leu		Trp	Ser	Gln	Ser		Val	Met	Leu	Pro		Trp	Phe	
			755					760					765			'.
	gtg															2412
Gly	Val		ınr	Ala	Leu	Arg		Irp	11e	GIY	Glu		GIU	Gly	Ala	
a c a	gag	770	atc	aca	a a a	c t a	775	ara a	ctc	226	caa	780	taa	cca	t f c	2460
	Glu															2400
піа	785	ть		Mid	O I u	790	OTH	oru	LCu	11511	795	СуЗ	пр	110	THE	
ttc	acc	teg	gtg	ctg	gac		atg	gcc	cag	gtg		agc	aag	gcg	gaa	2508
	Thr															
800		•			805					810			-		815	
ctg	cgc	ctg	gcc	agg	ttg	tac	gcc	gat	c t c	a t c	ccg	gat	cgc	gag	gtg	2556
Leu	Arg	Leu	Ala	Arg	Leu	Tyr	Ala	Asp	Leu	He	Pro	Asp	Arg	Glu	Val	
				820					825					830		
	gac															2604
Ala	Asp	Arg		Туг	Glu	Thr	He		Gly	Glu	Tyr	Phe		Thr	Lys	
			835					840					845			0.050
	atg															2652
GIU	Met	Рпе 850	Cys	Inr	116	1 11 1	855	ser	GIN	ASD	Leu	860	ASD	ASP	АЅП	
c c a	gcg		aca	cas	tea	ata		a or t	caa	ttc	cca		cta	cta	CCG	2700
	Ala															2100
110	865	Dea	71 T G	111.6	bei	870	6	001	111 6	Tire	875	1 9 1	Leu	Leu	110	
ctc	aat	gtc	atc	cag	gtg		atg	atg	cgc	cgg		cgg	tcc	ggt	gat	2748
	Asn															
880					885					890					895	
gag	ggc	acg	gct	gtc	сса	cgt	aat	a t c	cgc	ctg	acc	atg	aat	gga	ttg	2796
Glu	Gly	Thr	Ala	Val	Pro	Arg	Asn	He	Arg	Leu	Thr	Met	Asn	Gly	Leu	
				900					905					910		
	_	_				_		tagg	gcgc	ca g	gacgo	CCCE	gg ga	acco	egcac	2850
Ser	Thr			Arg	Asn	Ser	Gly									
			915				,				r					0.010
_															cttaa	
															cagcg	3030
_															gcctct	
															catco	
_															tigca	
ubbl	5,40		. 450	4001	. u i	J	Juug	800	.000	J	~000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		0210

		caccggt titaaac gaaaata gigcai	ctat tgaccgatag aaacacct	gc 3270 3306
<210> 26 <211> 919 <212> PRT <213> Coryne	ebacterium the	rmoaminogenes		
<400> 26				
	Leu Leu Arg As	sp Asp Ile Arg 10	Tyr Leu Gly Arg Ile Leu 15	
Gly Glu Val	Ile Ser Glu G 20	In Glu Gly His 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Glu Arg Ala 35	Arg Arg Thr So	er Phe Asp Ile 40	Ala Lys Gly Arg Ala Glu 45	
Met Asp Ser 50		al Phe Ala Gly 55	Ile Asp Pro Glu Asp Ala 60	
Thr Pro Val 65	Ala Arg Ala-Pi 70	ne Thr His Phe	Ala Leu Leu Ala Asn Leu 75 80	
	85	90	Glu Gln Ala Leu Asn Ser 95	
	Ala Pro Asp Se 100	er Thr Leu Glu 105	Ala Thr Trp Val Lys Leu 110	
Asp Asp Ala 115	Gly Val Gly Se	er Gly Glu Val 120	Ala Ala Val Ile Arg Asn 125	
Ala Leu Val 130	Ala Pro Val Le 13		Pro Thr Glu Thr Arg Arg 140	
145	150		Thr Ala Leu Met Glu Glu 155 160	
	165	170	Ala Arg Thr Gln Ser Lys 175	
	180	185	Arg Ile Thr Ile Leu Trp 190	
195		200	Arg Ile Glu Asp Glu Val	
210	21	5	Leu Leu Ala Glu Ile Pro 220	
225	230		Ala Arg Arg Phe Gly Gly 235 240	
	245	250	Gly Ser Trp Ile Gly Gly 255	
	Gly Asn Pro Ph 260	e Val Thr Ala 265	Glu Thr Val Thr Tyr Ala 270	

Thr	His	Arg 275		a Ala	a Glu	Thr	Val 280		Lys	Tyr	Tyr	Val 285	Lys	Gln	Leu
His	Ala 290		ı Gli	ı His	s Glu	Leu 295	ı Ser		Ser	Asp	Arg 300	Met	Asn	Val	He
Ser 305		Glu	ı Lei	ı Arg	y Val 310		ıAla	Asp	Ala	Gly 315		Asn	Asp	Met	Pro 320
Ser	Arg	y Val	Ası	Glu 325		Tyr	Arg	Arg	Ala 330		His	Gly	Met	Arg 335	Gly
Arg	Met	Leu	1 Ala 340		Thr	Ala	Ala	Leu 345		Gly	Glu	Glu	Ala 350	Val	Glu
Gly	Thr	7rp 355		e Lys	Thr	Phe	Thr 360		Tyr	Thr	Asp	Thr 365	His	Glu	Phe
Lys	Arg 370		Lev	ı Asp	Ile	Val 375		Gly	Ser	Leu	Arg 380	Met	Ser	Arg	Asp
385					390					395			Ala		400
				405					410				Asn	415	
Gly	Phe	Glu	Asp 420		Leu	Thr	Glu	Leu 425	Phe	Ala	Thr	Ala	G1n 430	Thr	Glu
		435					440					445	Leu		
	450					455					460		Asp		
465					470					475			Lys	*	480
				485					490				Cys	11e 495	He
			500		Val			505					510	Leu	
Lys	Glu	Phe 515	Gly	Leu	Ile	Arg	Ala 520	Asn	Gly	Lys	Asn	Pro 525	Thr	Gly	Ser
Val	Asp 530	Val	He	Pro	Leu	Phe 535	Glu	Thr	He	Asp	Asp 540	Leu	Gln	Arg	Gly
Ala 545	Gly	He	Leu	Glu	Glu 550	Leu	Trp	Asp	He	Asp 555	Leu	Туг	Arg	Asn	Tyr 560
Leu	Glu	Gln	Arg	Asp 565	Asn	Val	Gln	Glu	Val 570	Met	Leu	Gly	Tyr	Ser 575	Asp
Ser	Asn	Lys	Asp 580	Gly	Gly	Tyr	Phe	Ala 585	Ala	Asn	Trp	Ala	Leu 590	Туг	Asp
Ala	Glu	Leu 595	Arg	Leu	Val	Glu	Leu 600	Cys	Arg	Gly	Arg	Asn 605	Val	Lys	Leu
Arg	Leu	Phe	His	Gly	Arg	Gly	Gly	Thr	Val	Gly	Arg	Gly	Gly	Gly	Pro

	610					615					620				
Ser	Tyr								Lys	Gly	Ala	Val	Arg	Gly	Ala
625															640
Val	Arg	Val	Thr			Gly	Glu	Пe			Ala	Lys	Туг		Asn
_				645				0.1	650		77 1	a		655	•
Pro	Asp	Thr											Ala	Thr	Leu
C1	A 1 -	C	660		100			665			Aan		670	A r. ~	Ala
GIU	Ala	5er 675	Leu	Leu	ASP	ASD	680	GIU	Leu	P10	ASII	685	Glu	AIg	Ala
Иic	Cln		Met	Glv	Glu	He		Glu	Len	ra2	Phe		Arg	Tyr	Ser
1113	690	110	MCt	Oly	Olu	695			LÇ u		700	МБ	ть	1 9 1	501
Ser		Val	His	Glu	Asp							Phe	Thr	Gln	Ser
705	200				710					715	. •				720
	Pro	Leu	Gln	Glu	He	Gly	Ser	Leu	Asn	He	Gly	Ser	Arg	Pro	Ser
				725					730					735	
Ser	Arg	Lys	Gln	Thr	Asn	Thr	Val	Glu	Asp	Leu	Arg	Ala	He	Pro	Trp
			740					745					750		
Val	Leu		Trp	Ser	Gln	Ser		Val	Met	Leu	Pro		Trp	Phe	Gly
		755				٥,	760		0.1	0.1	0.1	765	0.1		
Val		Thr	Ala									Glu	Gly	Ala	Ala
C1	770	Ila	1 l a		Lau	775			Acn		780	Trn	Dro	Dho	Dho
785	Arg	116	Ald	GTU	790		Glu		ASII	795	Cys	пр	Pro	rne	800
	Ser	Val	Len	Asn					Val		Ser	Lvs	Ala	Glu	
1 11 1	DCI	, 4 1	Lou	805			711 U			1.10 1	501	Буб	,,, d	815	Deu
Arg	Leu	Ala	Arg							Pro	Asp	Arg	Glu		Ala
			820		-		-	825					830		
Asp	Arg	He	Tyr	Glu	Thr	Ιlе	Phe	Gly	Glu	Tyr	Phe	Leu	Thr	Lys	Glu
		835					840					845			
													Asp	Asn	Pro
	000														
	Leu	Ala	Arg	Ser		Arg	Ser	Arg	Phe		Tyr	Leu	Leu	Pro	
865			0.1	• •	870					875		0	0.1		880
Asn	Val	He	GIn		Glu	Met	Met	Arg		Туг	Arg	Ser	Gly		Glu
C1	Th	1 l a	Val	885 Dra	Ana	Aan	Ho	1 = 0	890	The	Mat	Aon	C 1 w	895	C o r
GIY	1111	AId	900	LIU	MIR	W2 II	116	905	reu	1 11 1	met	W211	Gly 910	ren	261
Thr	Δla	Len	Arg	Açn	Ser	GLv		300					210		
1111	/11 a	915	111 P	11011	501	O i y									

<210> 27

<211> 3907

<212> DNA

<213> Corynebacterium thermoaminogenes

<220> <221> CDS <222> (686)..(3388) <400> 27 attacticas cigacicase aacaticsia tiassiatse aaacaacati issiicsita 60 aatccaagta gtatggttaa agtaacttgg ggtattgctc aagcacttat cgcctttgta 120

ttattattag ctggtggcgg agatggaact aaagctctca acgcaattca gagtgccgct 180 attattagtg cgtttccatt ctcctttgtc gtcatattaa tgatgatcag tttctacaaa 240 gatgetaata aagaaegtaa attettagga ttaacattaa egeetaataa acacagatta 300 gaagaatacg ttaaatatca acaagaggat tacgaatctg atattitaga aaaacgtgaa 360 tctagacgta atcgtgaaag agaagaataa ttgaatgaaa tatctactat aatggtgggt 420 ttaaagetat caacaattii giigalaget attittaigi ilcaaacata taaalallat 480

ttacttgcga Itgataacca ttctcaatta ataaaaataa cttatagtac aaatgcgtta 540 taataagtti tacttatact accigattaa aaalgcgaaa igaaaaaiga ccccittata 600

tacctataca gitgigiteg aaaacatata ataatacaat ilaactaagg catataaata 660 tatagaaatt caagggggat atcaa atg gct tct aat ttt aaa gaa aca gcg Met Ala Ser Asn Phe Lys Glu Thr Ala

1

aag aaa caa tit gat tia aat ggc caa tca tac acg tac tat gat tia 760 Lys Lys Gln Phe Asp Leu Asn Gly Gln Ser Tyr Thr Tyr Tyr Asp Leu 10 15 20

aaa tca tta gaa gaa caa ggt tta act aaa att tca aag tta cct tat 808 Lys Ser Leu Glu Glu Gln Gly Leu Thr Lys Ile Ser Lys Leu Pro Tyr

40 30 35

tca atc cgt gta tta cta gaa tca gtg tta cgt cag gaa gat gat ttt 856 Ser Ile Arg Val Leu Leu Glu Ser Val Leu Arg Gln Glu Asp Asp Phe 50 45

904 gia att act gat gat cac att aaa caa tta gca gaa tii ggc aaa aaa Val Ile Thr Asp Asp His Ile Lys Gln Leu Ala Glu Phe Gly Lys Lys

60 65 ggt aac gaa ggt gaa gta cct ttc aaa cca tct cga gtt att tta caa 952 Gly Asn Glu Gly Glu Val Pro Phe Lys Pro Ser Arg Val Ile Leu Gln

80 85

gac ttc act ggt gta cca gca gta gtt gac tta gcg tct tta cgt aaa 1000 Asp Phe Thr Gly Val Pro Ala Val Val Asp Leu Ala Ser Leu Arg Lys

100 90 95

gca atg aat gat gti ggi ggg gat att aat aaa att aac cci gaa gta 1048 Ala Met Asn Asp Val Gly Gly Asp Ile Asn Lys Ile Asn Pro Glu Val

115 120 110

1096 cca git gac tia git all gac cac ici gia caa gia gal agi tai gci

Pro	Val	Asp	Leu 125	Val	Ile	Asp	His	Ser 130	Val	Gln	Val	Asp	Ser 135	Tyr	Ala	
aat	cca	gat	gca	t t a	caa	cgt	aac	atg	aaa	t t a	gaa	ttt	gaa	cgt	aac	1144
				Leu												
tet	σαα		tac	caa	ttc	tta		t gg	gca	aca	aaa		ttt	gat	aac	1192
	_			Gln												
	155					160					165					1940
				сса												1240
Туг	Asn	Ala	Val	Pro	Pro	Ala	Thr	Gly	He		His	GIn	Val	Asn		
170					175					180					185	
gaa	tac	t t a	gcg	a a t	gtt	gta	cat	gtt	cgt	gac	gtt	gac	gga	gaa	caa	1288
Glu	Туг	Leu	Ala	Asn	Val	Val	His	Val	Arg	Asp	Val	Asp	Gly	Glu	Gln	
				190					195					200		
ac t	gct	ttc	сса	gat	aca	t t a	gtt	ggt	ac t	gac	tca	cat	ac t	aca	atg	1336
				Asp												
	,,,,		205					210		•			215			
211	2 2 C	o o t		σσ t	σta	tta	ggt		ggt	gic	ggc	ggt		gaa	gc t	1384
				Gly												
		220	•				225					230				
				t t a												1432
Glu	Ala	Gly	Met	Leu	Gly	Gln	Pro	Ser	Tyr	Phe	Pro	He	Pro	Glu	Val	
	235					240					245					
att	ggt	gtt	aaa	t t a	agt	aat	gaa	t t a	сса	caa	ggt	t c a	a c a	gca	ac t	1480
He	Gly	Val	Lys	Leu	Ser	Asn	Glu	Leu	Pro	Gln	Gly	Ser	Thr	Ala	Thr	
250					255					260					265	
	tta	gca	t t a	cgt	gta	act	gaa	gag	tta	cgt	aaa	cgt	ggt	gta	gta	1528
				Arg												
пор	БСС		200	270					275	Ü	·		_	280		
ggt	aaa	ttc	gtt	gag	ttc	ttt	ggt	cct	ggt	gta	a c a	aac	tta	сса	tta	1576
Glv	Lys	Phe	Val	Glu	Phe	Phe	Gly	Pro	Gly	Val	Thr	Asn	Leu	Pro	Leu	
•	-		285					290					295			
get	gac	cgt	gca	a c a	a t t	gcg	aac	atg	gcg	cct	gaa	tat	ggt	gca	act	1624
_				Thr												
ni u	пор	300	711 G		1.0	711 G	305					310	•			
tort	aa t		ttc	сса	σtt	σat		σαα	tea	ctt	ааа		atø	aaa	tta	1672
_																10.2
Cys	315	гие	rne	Pro	val	320	GIU	GIU	SEI	rcn	325	1 y 1	мет	ьys	LCU	
ac t	ggl	cgl	aaa	gat	gat	cat	a t t	gca	cta	gta	aaa	gaa	tat	tta	caa	1720
Thr	Gly	Arg	Lys	Asp	Asp	His	He	Ala	Leu	Val	Lys	Glu	Туг	Leu	Gln	
330					335					340					345	
	aat	aat	atg	ttc	ttc	caa	gtt	gaa	aat	gaa	gat	cct	gaa	tat	act	1768
				Phe												

				350					355					360		
gaa	gtg	att	gat		gat	tta	tct	aca		caa	gct	tct	t t a	tca	ggt	1816
Glu	Val	He	Asp	Leu	Asp	Leu	Ser	Thr	Val	Gln	Ala	Ser	Leu	Ser	Gly	
0.0			365					370					375			
cca	aaa	cgt	сса	caa	gʻa t	tta	atc	t t c	t t a	agt	gac	atg	aaa	ac t	gaa	1864
	Lys															
		380					385					390				
ttc	gaa	aaa	t c a	gtt	a c a	gca	cca	gc t	ggt	aac	caa	ggt	cac	ggt	t t a	1912
Phe	Glu	Lys	Ser	Val	Thr	Ala	Pro	Ala	Gly	Asn		Gly	His	Gly	Leu	
	395					400					405					
	gaa															1960
Asp	Glu	Ser	Glu	Phe		Lys	Lys	Ala	Glu		Lys	Phe	Asn	Asp		
410					415					420					425	9000
	ac t															2008
Arg	Thr	Ser	Thr		Lys	Thr	Gly	Asp		Ala	He	Ala	Ala		Inr	
				430					435	4			~~~	440	110	2056
tca	tgt	aca	aat	aca	tct	aac	CCI	. tac	gii	alg	lla	ggı	gca	ggı	Lou	2056
Ser	Cys	Thr		Ihr	Ser	Asn	Pro		vaı	меι	Leu	GIY	455	біу	Leu	
			445	~~~		~~~	0.00	450	110	222	at a	cct		tat	σta	2104
gta	gct Ala	aaa	aaa	gca	all	gaa	Luc	Cly	Lau	Luc	Val	Pro	Asn	Tvr	Val	2104
vaı	Ala	460	Г У З	на	116	GIU	465	Gly	LCu	Гуз	141	470	ПОР	1 7 1	,	
0.0.0	act		tta	gra	cca	ggt		ааа	gli	gtt	ac t		tat	tta	aga	2152
lve	Thr	Ser	Len	Ala	Pro	Glv	Ser	Lvs	Val	Val	Thr	Gly	Tyr	Leu	Arg	
Буз	475	501	БСС	711 4	,	480	201				485					
gat	tca	ggt	tta	caa	gaa		ctt	gat	gac	tta	ggt	ttc	aac	tta	gtt	2200
	Ser															
490					495					500					505	
	t a t	ggt	tgt	aca	ac t	tgt	a t c	ggt	aac	t c a	ggt	сса	t t a	t t a	cct	2248
	Туг															
				510					515					520		
gaa	a t t	gaa	aaa	gca	gta	gct	gac	gaa	gat	t t a	t t a	gta	act	t c t	gta	2296
Glu	He	Glu	Lys	Ala	Val	Ala	Asp	Glu	Asp	Leu	Leu	Val	Thr	Ser	Val	
			525					530					535			
ctt	t c t	ggt	aac	cgt	aac	ttt	gaa	ggt	cgt	a t c	cat	ccg	tta	gtt	aaa	2344
Leu	Ser	Gly	Asn	Arg	Asn	Phe	Glu	Gly	Arg	He	His		Leu	Val	Lys	
		540					545					550				
	aac															2392
Ala	Asn		Leu	Ala	Ser		Gln	Leu	Val	Val			Ala	Leu	Ala	
	555					560		٠			565			A 4	0.00	9440
gga	acg	gtt	gat	atc	gat	tta	cac	aat	gaa	CCI	alc	ggt	aaa	ggt	aaa	2440
	Thr	Val	Asp	He		Leu	HIS	Asn	Glu			ьιу	LУS	ыу		
570					575					580					585	

_		_			tac											2488
Asp	Gly	Glu	Asp	Val 590	Tyr	Leu	Lys	Asp	11e 595	Trp	Pro	Ser	He	Lys 600	Glu	
gtt	gca	gac	ac t		gat	agt	gtc	gta		сса	gaa	t t a	t t c		gaa	2536
_	_				Asp											
			605					610					615			
_					tac											2584
Glu	Tyr	A1a 620	Asn	vaı	Tyr	GIU	Asn 625	Asn	GIU	меі	rp	AS n 630	GIU	116	ASP	
gtt	ac t		gca	cca	tta	tat		ttc	gat	сса	aat		ac t	tat	a t t	2632
_					Leu									Tyr	He	
	635					640					645					
					ttc											2680
	Asn	Pro	Ser	Phe	Phe	GIn	Gly	Leu	Ser		Glu	Pro	Gly	Thr		
650	cca	i i a	222	σat	655 t t a	cat	att	a t o	ororf	660	fff	σσf	σat	tra	665	2728
					Leu											2120
oru		200	2, ~	670	200	6			675	_,		3		680		
a c a	ac t	gac	сас	att	tct	сса	gca	ggt	gcg	a t c	ggt	aaa	gat	aca	c c a	2776
Thr	Thr	Asp	His	He	Ser	Pro	Ala	Gly	Ala	Пe	Gly	Lys		Thr	Pro	
			685					690					695			0004
-					tta											2824
ALa	Gry	700	1 9 1	Leu	Leu	АЗР	705	АЗР	Val	110	116	710	Gru	THE	V211	
tet	tat		tca	aga	cgt	ggt		cat	gaa	gta	atg		cgt	ggt	ac t	2872
					Arg											
	715					720					725					
	_				att											2920
	Ala	Asn	He	Arg	He	Lys	Asn	GIn	Leu		Pro	Gly	Thr	Glu		
730		0.00	202	tat	735 tgg	cct	202	an n	a a a	740	a l o	cci	atc	tet	745	2968
					Trp											2300
Oly	1110	1111	1111	750	тър	110	1 11 1	oru	755	110	nic t	110	110	760	пор	
gca	gct	atg	aga	tac	aaa	gaa	a a t	ggt	act	ggt	t t a	gc t	gtt	t t a	gct	3016
Ala	Ala	Met		Туг	Lуs	Glu	Asn		Thr	Gly	Leu	Ala		Leu	Ala	
			765	,				770					775			
					atg											3064
ыу	ASII	780	1 y 1	OIY	Met	υΙУ	5er 785	261	MIR	V2h	11 b	790	міа	L y S	огу	
act	аас		tta	ggt	gtt	aaa		gtt	att	gca	caa		tat	gaa	cgt	3112
					Val											
	795					800					805					
a t c	cat	cgt	t c a	aac	t t a	gta	alg	atg	ggt	gta	tta	сса	t t a	caa	ttt	3160

								64,	/123							
He	His	Arg	Ser	Asn	Leu	Val	Met	Met	Gly	Val	Leu	Pro	Leu	Gln	Phe	
810		0			815					820					825	
	caa	ggt	gag	tca	gc t	gat	tct	cta	ggt	t t a	gaa	ggt	aaa	gaa	gaa	3208
			Glu													
				830					835					840		
			gat													3256
He	Ser	Val	Asp	Пе	Asp	Glu	Asn		Lys	Pro	His	Asp		Val	Thr	
			845					850					855			0004
gtt	cat	gct	aaa	aaa	gaa	aac	gga	gaa	gtt	gtt	gat	ttt	gaa	gca	atg	3304
Val	His		Lys	Lys	Glu	Asn		Glu	Val	Val	Asp		Glu	Ala	Met	
		860					865					870		ara t	a a t	2250
gtt	cgt	ttc	gat	tca	tta	gta	gaa	tta	gal	lai	lai	cgi	cat	ggı	ggı	3352
Val		Phe	Asp	Ser	Leu		GIU	Leu	ASP	lyľ	885	AIg	п12	GIY	Gly	
	875		a t a	a t n	t t o	880	0.0.0	222	112	ac t		taa	teac	aat		3398
			atg Met									ιαα	i cac	aaı		
890	Leu	GIII	MET	vai	895	nig	изп	Lys	. LCu	900	0111					
	actt	ttø:	acagi	lgcta		gttta	aggt	t ag	cact		tit	talg	cta .	aact	atatat	3458
gta	atgt	taa	tagt	laags	ga a	ggat	t gga	ctt	aaat	gatt	tat	agtt	tga	ctga	aattga	3518
acca	aaga	tat (caaga	agaca	ag a	t a a a a	atgg	g cg	tgat	ttat	cat	ggca	att	atgc	aacatg	3578
gtt	tgaar	gta	gcgcg	gtaca	ag a	ttaca	atta	g aa	aact	agga	ttt	agtt	atg	ctga	tatgga	3638
															aatttt	3698
															ttctgt	3758
															tgagtt	3818
aat	ttgt	atg	aaago	etga	ta c	cttt	agac	c aa	ttag	atta	gat	cgtt	a t t	tctc	agattg	3878
gca	tgaa	асс	tatag	gtaaa	ag t	tgaag	gctt									3907
	0> 23															
-	1> 90															
-	2> Pl		,		. 1	i .	. .									
<21	3> C	oryn	ebaci	erii	ım tl	nermo	oam 11	noge	пеѕ							
/10	0 \ 0	0														
< 40	0> 2	ŏ														

Met Ala Ser Asn Phe Lys Glu Thr Ala Lys Lys Gln Phe Asp Leu Asn

Gly Gln Ser Tyr Thr Tyr Tyr Asp Leu Lys Ser Leu Glu Glu Gln Gly

Leu Thr Lys Ile Ser Lys Leu Pro Tyr Ser Ile Arg Val Leu Leu Glu Ser Val Leu Arg Gln Glu Asp Asp Phe Val Ile Thr Asp Asp His Ile

Lys Gln Leu Ala Glu Phe Gly Lys Lys Gly Asn Glu Gly Glu Val Pro

Phe	Lys	Pro	Ser	Arg 85				Gln					Val		Ala
Val	Val	Asp	Leu 100										Val 110		Gly
Asp	Ile	Asn 115	Lys		Asn			V a 1		Val		Leu 125	Val	He	Asp
His	Ser 130											Ala	Leu	Gln	Arg
Asn 145		Lys	Leu	Glu	Phe 150	Glu		Asn		Glu 155	Arg	Tyr	Gln	Phe	Leu 160
	Trp	Ala	Thr	Lys 165						Asn	Ala	Val	Pro	Pro 175	Ala
Thr	Gly	Ile	Val 180	His	Gln		Asn	Leu 185	Glu	Tyr	Leu	Ala	Asn 190	Val	Val
His	Val	Arg 195					G1u 200		Thr		Phe		Asp	Thr	Leu
Val	Gly 210			Ser		Thr 215				Asn	Gly 220	He	Gly	Val	Leu
Gly 225	Trp	Gly		Gly				Ala			Gly	Met	Leu	Gly	Gln 240
Pro	Ser	Туг	Phe	Pro 245		Pro			11e 250		Val	Lys	Leu	Ser 255	Asn
Glu	Leu	Pro	Gln 260	Gly			Ala		Asp	Leu	Ala	Leu	Arg 270	Val	Thr
Glu	Glu	Leu 275		Lys	Arg	Gly	Val 280		Gly	Lys	Phe	Val 285	Glu	Phe	Phe
Gly	Pro 290	Gly	Val		Asn	Leu 295		Leu			Arg 300	Ala	Thr	He	Ala
Asn 305	Met		Pro	Glu	Туг 310	Gly	Ala	Thr	Cys	Gly 315		Phe	Pro	Val	Asp 320
Glu	Glu	Ser	Leu	Lys 325		Met	Lys	Leu	Thr 330		Arg	Lys	Asp	Asp 335	His
He	Ala	Leu	Val 340		Glu	Туг	Leu	Gln 345		Asn	Asn	Met	Phe 350		Gln
Val	Glu	Asn 355	Glu	Asp	Pro	Glu	Tyr 360		Glu	Val	He	Asp 365	Leu	Asp	Leu
Ser	Thr	Val		Ala	Ser	Leu 375	Ser		Pro	Lys	Arg 380		Gln	Asp	Leu
I I e	Phe	Leu	Ser	Asp	Met 390			Glu	Phe	Glu 395		Ser	Val	Thr	Ala 400
Pro	Ala	Gly	Asn	Gln 405		His	Gly	Leu	Asp 410	Glu		Glu	Phe	Asp 415	
Lys	Ala	Glu	He		Phe	Asn	Asp	Gly			Ser	Thr	Met	Lys	Thr

			420					425					430		
Glv	Asp	Val	Ala										Thr	Ser	Asn
OIJ.	Mop	435					440								
Pro	Tyr		Met	Leu	Gly	Ala	Gly	Leu	Val	Ala	Lys	Lys	Ala	He	Glu
	450					455					460				
Lys	Gly	Leu	Lys	Val	Pro	Asp	Tyr	Val	Lys	Thr	Ser	Leu	Ala	Pro	Gly
465					470					475			0.1		480
Ser	Lys	Val	Val											GIU	ıyr
				485	70.1			17. 1	490		Clar	Cus	The	495	Cuc
Leu	Asp	Asp	Leu						GIY	lyr	GIY	Cys	510	1 11 1	СуЗ
	0.1		500 Ser	C1	Dno	Lou	Lau	505 Pro						Val	Ala
11e	Gly						520			110		525	n i u	,	711 G
Aan	Clu	515	Leu	Leu	Val	Thr							Arg	Asn	Phe
АЗР			Leu								540		J		
Gln			He								Tyr	Leu	Ala	Ser	Pro
545					550					555					560
Gln	Leu	Val	Val	Ala	Tyr	Ala	Leu	Ala	Gly	Thr	Val	Asp	He	Asp	Leu
				565					570					575	
His	Asn	Glu	Pro	Ile	Gly	Lys	Gly	Lys	Asp	Gly	Glu	Asp	Val	Туг	Leu
			580										•	۸	C
Lys	Asp		Trp										vaı	ASP	ser
		595			T			Clu	Clas	Тур	Ala	605	Val	Tyr	Glin
Val			Pro			Pne	Leu	GIU	Glu	1 y 1	620	ASII	vai	Iyi	Giu
A = =	610		Met									Ala	Pro	Leu	Tvr
625			MCI					пэр			пор	71. 0			640
Asn	Phe		Pro								Pro	Ser	Phe	Phe	Gln
Мэр	1110	110 P	110	645										655	
Glv	Leu	Ser	Lys		Pro	Gly	Thr	He	Glu	Pro	Leu	Lys	Asp	Leu	Arg
2			660					665					670		
· He	Met	Gly	Lys	Phe	Gly	Asp	Ser	Val	Thr	Thr	Asp	His	He	Ser	Pro
		675					680					685			
Ala	Gly	Ala	Ile	Gly	Lys			Рго	Ala	Gly		Tyr	Leu	Leu	Asp
	690					695					700	0		A	C 1
His	Asp	Val	Pro	He		Glu	Phe	Asn	Ser			Ser	Arg	Arg	
705					710		0.1	m i	D1 -	715		Ilo	A = 0	110	720
Asn	His	Glu	Val		val	Arg	Gly	ınr			АЅП	116	AIG	735	гур
	01.	1	Ala	725	Clar	ТЬь	Clu	Cly	730		Thr	Thr	Tur		Pro
Asn	GIN	Leu	740	rro	ыу	1111	oid	745		1 116	1 11 1	1 11 1	750		110
Th -	C 1 11	Clu		Mei	Pro	He	Tvr			Ala	Met	Arg			Glu
1 11 1	oru	755		1110 (110	760					765		-	

Asn		Thr	Gly	Leu	Ala		Leu	Ala	Gly	Asn		Туг	Gly	Met	Gly	
	770					775	_		m.1		780	T	C 1	V a l	I *** 0	
Ser	Ser	Arg	Asp	Trp		Ala	Lys	Gly	Thr	Asn	Leu	Leu	GIY	Val	LYS	
785					790	_		_		795		0	۸	I	800	
Thr	Val	He	Ala		Ser	Tyr	Glu	Arg		HIS	Arg	ser	ASII	Leu	чат	
				805					810	0.1	0.1	0.1	0	815	A	
Met	Met	Gly		Leu	Pro	Leu	GIn		Lys	GIn	Gly	GIU		Ala	ASP	
			820					825			** 1		830	A	C.1	
Ser	Leu	Gly	Leu	Glu	Gly	Lys		Glu	He	Ser	Val		He	Asp	GIU	
		835					840					845		0.1		
Asn	Val	Lys	Pro	His	Asp		Val	Thr	Val	His		Lys	Lуs	Glu	Asn	
	850					855					860		_	_		
Gly	Glu	Val	Val	Asp	Phe	Glu	Ala	Met	Val		Phe	Asp	Ser	Leu	Val	
865					870					875					880	
Glu	Leu	Asp	Туг	Туr	Arg	His	Gly	Gly	He	Leu	Gln	Met	Val	beu	Arg	
				885					890					895		
Asn	Lys	Leu	Ala	Gln												
			900													-
<21	0> 2	9														
<21	1> 3	006														
<21	2> D	NA														
<21	3> C	oryn	ebac	teri	um t	herm	o ami	noge	nes							
<22	<0>															
	1> C	DS														
		328)	(2	514)												
,	-,															
<40	0> 2	9														
gtc	gacg	acg	аасс	сссс	ас с	gccg	aacc	a gc	cgcc	gatc	t gg	tgtg	ggga	gaca	cccgg	g 60
ttc	teet	ccc	1 ggg	tgaa	ca g	gtgc	caca	а сс	ccgt	ссса	aca	ggca	cac	ctac	cactg	g 120
ate	geeg	σσσ	agag	cage	at g	gtca	cacg	c ct	gcgg	cgtg	ccc	tggt	gaa	ggat	cacgg	c 180
cta	gove.	ost	coca	gg t g	ge a	tica	tggg	t ta	ttgg	aggo	agg	gagt	ggc	cate	gagggg	t 240
ton	tate	gu i ac t	tece	toao	oo t	ccgc	agge	g 19	cctc	ассс	tgt	atto	ttg	atag	gttgaa	c 300
ıga	caro	gui	2021	1949	ац ц РР г	agac	te a	too	rct a	ag a	itc a	itc 1	gg a	acc c	gc ac	c 354
aaa	agag	000	acai	aaca	ag g	agac	ic a	et A	la I	vs I	le I	le 1	rn 1	hr A	rg Th	r
							111	1	iiu L	, y 5 1	10 1	5	.,			-
			0.00	a t c	ctc	are co		t a c	tro	r cta	т аяс	•	r gta	gto	gag	402
gac	gaa	gca	nes	Tan	Lan	RIP	all Th≖	тин	Car	, ULE 1 DII	, uue Ive	Pro	yal Yal	Val	Glu	102
		АТА	110	ren		Ald	1 11 1	ıyı	261	20		, 110	, rui		25	
10					15		0 + 0	<i>a</i> .e.c	r orto				יפים י	t ata		450
gct	itc	gcc	gcc	acc	gcg	ggc	alc	gas	RIE	, gae	, all Th:	. Ar	, 5a , Aer	tato Lle	Ser	100
Ala	Phe	Ala	Ala		Ala	ьіу	116	GIU			1 1111	A1 8	5 1101	۱۱ ر ۱۸	e Ser	
				30					35)				4 (,	

ctc	gcc	ggt	cgc	a t c	ctc	gca	cag	t t c	gcg	gac	cag	ctc	ccc	gag	gag	498
Leu	Ala	Gly	Arg	Пе	Leu	Ala	Gln		Ala	Asp	Gln	Leu	Pro	Glu	Glu	
			45					50					55			
													gct			546
Gln	Lys		Ser	Asp	Ala	Leu		Glu	Leu	Gly	Glu		Ala	Lys	Thr	
		60					65					70	,	ı		E 0.4
	_												tcc			594
Pro		Ala	Asn	He	He		Leu	Pro	Asn	He		Ala	Ser	vaı	Pro	
	75		_ 1		4_	8.0			0.00	<i>a</i>	85	aaa	100	an e	c t a	642
													tac			042
	Leu	Lys	Ala	Ага		Lys	GIU	Leu	GIII	100	GIII	GTY	Туг	изр	105	
90		4.0.0	~~~	an t	95	0.00	an o	o or c	tac		ac t	ate	atc	aac		690
													atc He			. 0 0 0
Pro	GIU	1 y 1	Giu	110	на	ГАЗ	изр	лгg	115	лια	πα	, a i	110	120	001	
226	ate	220	cca		ctø	cgc	gag	ppr		fcc	gac	cgc	cgc		ccg	738
													Arg			
ASII	7 (1.1	11511	125	,	БСС	6	0.4	130			,		135			
gtg	gcc	ġţġ		aac	ttc	gtg	aag		ttc	ссс	cac	cgc	atg	ggc	gag	786
													Met			
		140	•				145					150				
t gg	tcc	gcc	gac	tcc	aag	acc	aac	gtt	gcc	асс	atg	ggt	gcc	gac	gac	834
Trp	Ser	Ala	Asp	Ser	Lys	Thr	Asn	Val	Ala	Thr	Met	Gly	Ala	Asp	Asp	
	155					160					165					
													gac			882
Phe	Arg	Ser	Asn	Glu	Lys	Ser	Val	He	Met		Glu	Ala	Asp	Thr		•
170					175					180					185	
													ctc			930
Val	Пe	Lys	His		Ala	Ala	Asp	Gly		Glu	Thr	Val	Leu		Asp	
				190			٠		195					200	4	0.7.0
															tcc	978
Ser	Leu	Pro		Leu	Lys	Gly	Glu		He	Asp	GIY	Inr	Phe	116	ser	
			205					210	~~~	0.00	ort o	0.0.0	215	or or or	226	1026
															aag	1020
Ala	Lys		Leu	ASP	Ala	rne	225	Leu	ASP	GIII	V d I	230	Arg	ΑΙα	ГЛЗ	
		220	a t a	a t a	110	100		cac	a for	220	acc		ato	atσ	ааσ	1074
													atg Met			1011
GIU		σιу	116	Leu	1116	240	ліа	1113	m C t	цуз	245	1 11 1	m C t	met	LJ U	
a t c	235	a a c	cca	atc	atc		ggr	cac	atc	gic		gaa	tac	ttc	gcc	1122
													Tyr			
250	561	пор	110	110	255	1110	013	0		260	3		- , -		265	
	σtr	tac	gca	cag		ggt	gag	cag	ctg		gcc	gcc	ggc	ctc		1170
gai	510	iuc	8 c u	Oub		00'	040	0	6		0.55	J - 2	000			- · -

Asp	Val	Tyr	Ala	Gln 270	Туг	Gly	Glu	Gln	Leu 275	Leu	Ala	Ala	Gly	Leu 280	Asn	
ggt	gag	aac	ggt	ctc	gcc	gcc	atc	tac	gcc	ggc	ctg	gac	aag	ctg	gac	1218
Gly	Glu	Asn	Gly	Leu	Ala	Ala	Ile	Tyr	Ala	Gly	Leu	Asp	Lys	Leu	Asp	
			285					290					295			
							gcc									1266
Asn	Gly		Glu	He	Lys	Ala	Ala	Phe	Asp	Lys	Gly		Glu	Glu	Gly	
		300					305					310				1014
	_														cat	1314
Pro	-	Leu	Ala	met	Vai		Ser	Ala	Lys	GIY		Inr	АЅП	Leu	HIS	
4	315	t a a	ora t	a t e	n t c	320	gac	000	tee	a t cr	325	acc	a t o	atc	cac	1362
							Asp									1002
330	rio	361	Ash	vai	335	110	лър	пια	561	340	110	Mid	met	110	345	
	tcc	σσε	аад	atø		аас	aag	gac	gac		асс	cag	gat	gcc		1410
							Lys									
	501	0.,	2,5	350	1		_, _		355				•	360		
gct	gtc	atc	ccg	gac	tcc	tcc	tac	gcc	ggt	gtc	tac	cag	асс	gtc	atc	1458
_	_						Tyr									
			365					370					375			
gag	gac	tgc	cgc	aag	aat	ggc	gcc	t t c	gat	ccg	асс	acc	atg	ggc	асс	1506
Glu	Asp	Cys	Arg	Lys	Asn	Gly	Ala	Phe	Asp	Pro	Thr		Met	Gly	Thr	
		380					385					390				
_							gca									1554
Val		Asn	Val	Gly	Leu		Ala	GIn	Lys	Ala		Glu	lyr	Gly	Ser	
	395			110	o ar t	400	an a	~ a a	or n. o	a a a	405	art a	caa	ate	ate	1602
							gag Glu									1002
410	АЗР	Lys	1 11 1	1110	415	116	Ulu	лια	лэр	420	ьуз	1 4 1	0111	, a i	425	
	tee	aac	ggt	gat		ctc	a t c	gag	cac		gig	gag	aag	ggc		1650
_							He									
717 G				430					435	•			-	440	•	
atc	t gg	cgc	gcc	tgc	cag	acc	aag	gac	gcc	ccg	a t c	cag	gac	t gg	gtc	1698
							Lys									
			445					450					455			
aag	ctg	gct	gtc	aac	cgc	gca	cgt	ctc	tcc	ggc	atg	ccc	gct	gţg	ttc.	1746
Lys	Leu	Ala	Val	Asn	Arg	Ala	Arg	Leu	Ser	Gly	Met	Pro	Ala	Val	Phe	
		460			,		465					470				
							cac									1794
Trp		Asp	Pro	Ala	Arg		His	Asp	Arg	Asn		Thr	Thr	Leu	Val	
	475		,			480					485				_ 4	1040
-							gac									1842
GIU	Lys	ıуr	Leu	ата	ASP	nis	Asp	1111	GIU	ыу	reu	ASD	116	GIII	116	

490					495					500					505	
ctc	tcc	ссс	gtc	gag	gcc	асс	cag	cac	gcc	atc	gac	cgc	a t c	cgc	cgc	1890
Leu	Ser	Pro	Val	Glu	Ala	Thr	Gln	His	Ala	Ile	Asp	Arg	Ile	Arg	Arg	
				510					515	,	4	4	~~ ^	520	0.00	1020
ggc	gag	gac	acc	atc	tcc	gtc	acc	ggt	aac	gic	cig	cgt	gac	Tur	Aen	1938
Gly	Glu	Asp	Thr 525	He	Ser	vaı	ınr	530	ASII	vai	Leu	Arg	535	1 y 1	лы	
0.00	an 0	ctc		ccσ	atc	ctc	gag		ggc	асс	tee	gcc		atg	ctc	1986
Thr	A en	Leu	Phe	Pro	He	Leu	Glu	Leu	Glv	Thr	Ser	Ala	Lys	Met	Leu	
1111	nsp	540	THE	110	110	B o u	545	201				550				
tcc	gtc		сса	ctg	atg	gcc	ggc	ggt	gga	ctc	t t c	gag	асс	ggt	gcc	2034
Ser	Val	Val	Pro	Leu	Met	Ala	Gly	Gly	Gly	Leu	Phe	Glu	Thr	Gly	Ala	
	555					560					565					0000
ggt	ggc	t c c	gcc	ccg	aag	cac	gtc	cag	cag	gtc	atc	gag	gaa	aac	cac	2082
	Gly	Ser	Ala	Pro		His	Val	Gln	GIn		He	Glu	GIU	Asn	HIS	
570			ı		575					580	a t or	aa a	ana	100	585	2130
ctg	cgc	tgg	gat	tcc	cic	ggl	gag	llC	cig	gcc	Lou	gcc Ala	Clu	Ser	Phe	2130
Leu	Arg	Trp	ASP	590	Leu	Gly	GIU	rne	595	на	Leu	Ala	oru	600	THE	
e cre	cac	σασ	ctc		acc	cgc	aac	aac		aag	gcc	ggt	gtc		gcc	2178
Aro	His	Glu	Leu	Asn	Thr	Arg	Asn	Asn	Thr	Lys	Ala	Gly	Val	Leu	Ala	
111.6	1115	0.4	605			0		610					615			
gat	gcc	ctg	gac	cgt	gcg	acc	gag	aag	ctc	$c\ t\ c$	aac	gag	gag	aag	tcc	2226
Asp	Ala	Leu	Asp	Arg	Ala	Thr	Glu	Lys	Leu	Leu	Asn	Glu	Glu	Lys	Ser	
		620					625					630				0.077.4
ccg	tcc	cgc	aag	gtc	ggc	gag	atc	gac	aac	cgt	ggt	tcc	cac	11C	lgg T	2274
Pro		Arg	Lys	Val	Gly		He	Asp	Asn	Arg		Ser	HIS	rne	TTD	
	635			t	g 0 0	640	an n	e t a	acc	220	645	acc	σασ	gac	grr	2322
cig	gcc	acc	Tyr	Trn	Ala	ga i Aen	Clu	Len	Ala	Asn	Gln	acc Thr	Glu	Asp	Ala	5055
650	Ala	1 11 1	1 9 1	пр	655	лзр	Olu	LCu	ATG	660		1111	0.0		665	
	ctø	get	gag	асс		gcc	cct	gtc	gcc			ctg	aac	aac	cag	2370
Glu	Leu	Ala	Glu	Thr	Phe	Ala	Pro	Val.	Äla	Glu	Ala	Leu	Asn	Asn	Gln	
014	Dou			670					675					680		
gct	gcc	gac	a t c	gac	gca	gca	ctc	a t c	ggt	gag	cag	ggc	aag	cct	glc	2418
Ala	Ala	Asp	Ile	Asp	Ala	Ala	Leu	He	Gly	Glu	Gln	Gly	Lys	Pro	Val	
			685					690					695			0.400
gac	ctg	ggt	ggc	tac	tac	gca	CCC	tcc	gat	gag	aag	acc	tcc	gcg	alc	2466
Asp	Leu		Gly	Туг	Туг	Ala		Ser	Asp	Glu	Lys	Thr	2 e r	Ата	rre	
		700	4 -	~~-	<i>a.</i>	44~	705	<i>a</i>	2 1 2	210	an c	710	cta	മമന	ааσ	2514
atg	cgc	ccg	gig	gcc	gca	Dho	aac Aen	gag	مان ماز	کا ته مال	- gat	Ser	Len	Lvs	aag Lvs	2017
met		110	vаl	Ald	Ald	720	W2 II	GIU	116	116	725		Leu	БуЗ	L J 3	
	715					1 4 0										

```
taaccccttc tccggagccg acagccgacg gccacgctcc cccgcccacg ggggatcgtg 2574
gccgtcggcc gtttctggca ctggagtgaa cacttcggtg ataatggtga gatgaacagc 2634
ccccgtgtcc ccgccatcct gtccgccgtt tccgccgtgg gtctgatcgc tgcgctgggc 2694
acccccgttg ccgtcgcaga caccatcacc gcggacaccg accgggaaac ctgcgtggcc 2754
agccagaatg acaactccag cgtgatcagg ttctgggatg acctggaggc cgatgtccgt 2814
gagcagcgcc tgaccgaact ggatgcacag gaccccggcc tcaagaacga catcgaggcc 2874
ttcatcgccg aggacccggt agccccctcc gcagccgatc tccagagacg gctggatgca 2934
aatgacgccg gtgagggcct ggccatgctg ctacctgaat cccgcaccga ccccgaggtg 2994
                                                                   3006
gtggacctgc ag
<210> 30
<211> 729
<212> PRT
<213> Corynebacterium thermoaminogenes
<400> 30
Met Ala Lys Ile Ile Trp Thr Arg Thr Asp Glu Ala Pro Leu Leu Ala
                                      10
  1
Thr Tyr Ser Leu Lys Pro Val Val Glu Ala Phe Ala Ala Thr Ala Gly
                                  25
             20
lle Glu Val Glu Thr Arg Asp Ile Ser Leu Ala Gly Arg Ile Leu Ala
                                                  45
                             40
         35
Gln Phe Ala Asp Gln Leu Pro Glu Glu Gln Lys Val Ser Asp Ala Leu
     50
                         55
Ala Glu Leu Gly Glu Leu Ala Lys Thr Pro Glu Ala Asn Ile Ile Lys
                                          75
                     70
Leu Pro Asn Ile Ser Ala Ser Val Pro Gln Leu Lys Ala Ala Val Lys
                                      90
                 85
Glu Leu Gln Glu Gln Gly Tyr Asp Leu Pro Glu Tyr Glu Asp Ala Lys
                                                     110
                                 105
Asp Arg Tyr Ala Ala Val Ile Gly Ser Asn Val Asn Pro Val Leu Arg
                                                 125
        115
                             120
Glu Gly Asn Ser Asp Arg Arg Ala Pro Val Ala Val Lys Asn Phe Val
                                             140
                        135
    130
Lys Lys Phe Pro His Arg Met Gly Glu Trp Ser Ala Asp Ser Lys Thr
                                         155
                    150
Asn Val Ala Thr Met Gly Ala Asp Asp Phe Arg Ser Asn Glu Lys Ser
                                     170
                165
Val Ile Met Asp Glu Ala Asp Thr Val Val Ile Lys His Val Ala Ala
                                                     190
                                 185
            180
Asp Gly Thr Glu Thr Val Leu Lys Asp Ser Leu Pro Leu Leu Lys Gly
                             200
```

Glu Val Ile Asp Gly Thr Phe Ile Ser Ala Lys Ala Leu Asp Ala Phe

	210		•					•							
Leu	Leu	Asp	Gln	Val	Lys	Arg	Ala	Lys	Glu		Gly	Ile	Leu	Phe	
225					230					235					240
Ala	His	Met	Lys		Thr	Met	Met	Lys				Pro	He		Phe
				245					250				0.1	255	0 1
Gly	His	Ile		Arg	Ala	Туг	Phe					Ala		Tyr	Gly
			260					265		0.1		0.1	270	4.3	. 1
Glu	Gln		Leu	Ala	Ala	Gly		Asn	Gly	Glu	Asn		Leu	Ala	Ala
	_	275	0.1				280			01	41.	285	Ila	Lena	4 l a
He	Tyr	Ala	Gly	Leu	Asp		Leu	Asp	Asn	GIY		GIU	116	Lys	Ala
	290		T	C1	Ι	295	Cl.,	Class	Dma	1 a n	300	A 1 o	Mat	Val	Aon
	Phe	ASP	Lys	GIY						315			Met		320
305	Ala	T ** 0	Clv	Ho	310			Иiс							
ser	Ala	L y S	GIY	325		VSII			330	110		изр	7 4 1	335	110
Aen	Ala	Sor	Met									Lvs	Met		Asn
лзр	лια	501	340	110	mu	mor.	110				.0.1		350		
Ivs	Asp	Asp		Thr	Gln	Asp	Ala							Ser	Ser
Буб	пор	355	0				360					365	-		
Tvr	Ala		Val	Tyr	Gln	Thr				Asp	Cys	Arg	Lys	Asn	Gly
- 3 -	370	•		·		375					380				
Ala	Phe	Asp	Pro	Thr	Thr	Met	Gly	Thr	Val	Pro	Asn	Val	Gly	Leu	Met
385					390					395					400
Ala	Gln	Lys	Ala	Glu	Glu	Tyr	Gly	Ser	His	Asp	Lys	Thr	Phe	Arg	He
				405										415	
Glu	Ala	Asp	Gly	Lys	Val	Gln	Val		Ala	Ser	Asn	Gly		Val	Leu
			420					425					430		
He	Glu		Asp	Val	Glu	Lys		Asp	He	Trp	Arg		Суs	Gln	Thr
		435							_			445			
Lys	Asp	Ala	Pro	He	Gln			Val					Asn	Arg	Ala
	450		6.1		ъ	455		T) 1			460		A 1 =	۸	A 1 -
_	Leu	Ser	Gly	Met		Ala	vai	Phe	lrp		Asp	Pro	Ala	Arg	
465			4	I	470	ТЪ	Y	W = 1	C1	475	Т	Lou	4 l o	Aon	480
His	Asp	Arg	Asn		ınr	ınr	Leu	vaı		Lys	ГУГ	Leu	Ala		нтѕ
	TI.	C1	Class	485	100	Ilo	Cln	Ha	490	C 0. #	Dro	Val	Clu	495	Thr
Asp	Thr	G I U		Leu	ASP	116	GIII		Leu	sei	PIO	Val	510	Ald	1 11 1
C I	ш	A L a	500	Acr	A r. cr	Ho	Ara	505	Cly	Clu	Acn	Thr		Sar	Val
Gin	His		116	ASP	AIg	116	520	AIg	GIY	Glu	W2 b	525	116	361	va i
ть -	Gly	515	Val	Lou	Ara	Aen		Aen	Thr	Asn	Len		Pro	lle	Leu
1111	530	W2 II	vai	ren	итВ	535	1 9 1	11311	1 11 1	nsp	540	Inc	110	110	LCU
Clu	Leu	Gly	Thr	Ser	Ala		Met	Len	Ser	Val		Pro	Len	Met	Ala
545	ren	GIY	1 11 1	561	550	Lys	m C t	ьси	561	555	, a 1	110	Lcu	met	560
040					000					000					000

```
Gly Gly Gly Leu Phe Glu Thr Gly Ala Gly Gly Ser Ala Pro Lys His
                                                         575
                565
                                     570
Val Gln Gln Val Ile Glu Glu Asn His Leu Arg Trp Asp Ser Leu Gly
                                                     590
                                 585
Glu Phe Leu Ala Leu Ala Glu Ser Phe Arg His Glu Leu Asn Thr Arg
                             600
                                                 605
Asn Asn Thr Lys Ala Gly Val Leu Ala Asp Ala Leu Asp Arg Ala Thr
                         615
                                             620
    610
Glu Lys Leu Leu Asn Glu Glu Lys Ser Pro Ser Arg Lys Val Gly Glu
                                         635
625
                    630
lle Asp Asn Arg Gly Ser His Phe Trp Leu Ala Thr Tyr Trp Ala Asp
                                     650
                645
Glu Leu Ala Asn Gln Thr Glu Asp Ala Glu Leu Ala Glu Thr Phe Ala
                                                     670
                                 665
Pro Val Ala Glu Ala Leu Asn Asn Gln Ala Ala Asp Ile Asp Ala Ala
                                                 685
        675
                             680
Leu Ile Gly Glu Gln Gly Lys Pro Val Asp Leu Gly Gly Tyr Tyr Ala
    690
                         695
                                             700
Pro Ser Asp Glu Lys Thr Ser Ala Ile Met Arg Pro Val Ala Ala Phe
                                         715
                                                              720
                    710
Asn Glu Ile Ile Asp Ser Leu Lys Lys
                725
<210> 31
<211> 2322
<212> DNA
<213> Corynebacterium thermoaminogenes
<220>
\langle 221 \rangle CDS
(222) (806)..(2212)
<400> 31
ggtaccccca cgtaccctag gccatcacag caatttttac atcggatatt ttaggtgtgc 60
tcataacgic citaigaati icgcagitai tagitattia aatagagaat caaactccga 120
cctagcctct gccgatgcta aaagtcagct gaccccttgg ggcgcttcat ttgaaactgc 180
gaccaagete atgaatgege gaaageattt ceattataag ggtaagetgt aagaatagtg 240
ggagaaaatg ticagicgig tictaacica citgagaaat tccattitic igggciictc 300
tcaaatagat taagtggccc gtatgctgga titctagaat atttagaagc gcgccaactc 360
atgattatgt attgtataag cctcaaagac cgaatagatt actaacattt aagtggacca 420
gagcgitaga agcitigiag agigcicati ccitgcigac ggcaagggii tcciaccaig 480
agatagateg geagatagti ggtttgtaaa aattittaag gaeggteege aatgteaatt 540
```

cttgaacaga tcatcttctt catcaacacc atcttgggtt atggtctgca cgctggttct 600

teer	gc t t c	ca g	gcaao	ectt	tc to	cacao	gato	ggo	ctgt	tct	aggo	ctaa	itt	ggtaa	taagg	660
															ttcgg	720
															atgct	780
atg	ccgaa	aca o	gta	ttgt	ig aa	aatc	gtg	ac t	gaa	cat	tat	gac	gta	gta	gta	832
4.0	0						Val	Thr	Glu	His	Туr	Asp	Val	Val	Val	
							1				5					·
ctc	gga	gct	ggc	ссс	ggt	ggc	tat	gtc	tcc	gcc	atc	cgc	gcc	gcg	cag	880
Len	Glv	Ala	Glv	Pro	Gly	Gly	Tyr	Val	Ser	Ala	He	Arg	Ala	Ala	Gln	
10	0.1				15					20					25	
	ggt	aag	aaa	gtt	gcg	gtt	atc	gag	aag	cag	tac	tgg	gga	ggt	gtc	928
														Gly		
200		_ •	-	30					35					40		
fgc	ctg	aat	gtg	ggt	tgt	atc	cca	tct	aag	gcg	ttg	atc	aag	aac	gct	976
Cvs	Leu	Asn	Val	Gly	Cys	He	Pro	Ser	Lys	Ala	Leu	Ιle	Lys	Asn	Ala	
0,0	200		45	-	-			50					55			
gag	atc	gcc		atc	ttc	aac	cat	gag	aag	aag	acc	t t c	ggc	atc	aac	1024
Glu	He	Ala	His	Ile	Phe	Asn	His	Glu	Lys	Lys	Thr	Phe	Gly	He	Asn	
014	• • •	60					65					70		•		
ggc	gag		acc	ttc	aac	tac	gag	gat	gcc	cac	aag	cgt	tcc	cgt	ggt	1072
Glv	Glu	Val	Thr	Phe	Asn	Tyr	Glu	Asp	Ala	His	Lys	Arg	Ser	Arg	Gly	
0.,	75					80					85					
gtc	tcc	gac	aag	a t c	g.t c	ggc	ggt	gtt	cac	tac	ttg	atg	aag	aag	aac	1120
														Lys		
90					95					100					105	
	atc	acc	gag	atc	gac	ggt	ttc	ggc	acc	ttc	aag	gat	gcc	aag	acc	1168
Lvs	Hle	Thr	Glu	He	Asp	Gly	Phe	Gly	Thr	Phe	Lys	Asp	Ala	Lys	Thr	
_ •				110					115					120		
atc	gag	gtg	асс	gat	ggt	aag	gat	gcc	ggc	aag	acc	gtc	асс	ttc	gat	1216
														Phe		
	•		125					130					135			
gac	t gc	atc	atc	gcc	acc	ggt	tcc	gtg	gtc	aac	tcc	$c\ t\ c$	cgt	ggt	gtt	1264
														Gly		
•	-	140					145					150				
gag	ttc	tcc	gag	aac	gtg	gtc	t c c	tac	gag	gag	cag	a t c	ctc	aac	ccg	1312
Glu	Phe	Ser	Glu	Asn	Val	Val	Ser	Туг	Glu	Glu	Gln	Ile	Leu	Asn	Pro	
	155					160					165					
gtg		cct	aag	aag	atg	gtc	atc	gtc	ggt	ggc	ggc	gcc	atc	ggt	atg	1360
														Gly		
170					175					180					185	
		gcc	tac	gtt	ctg	ggc	aac	tac	ggt	gtg	gac	gta	acc	ctc	atc	1408
														Leu		
				190					195					200		
						1.			~ o ~	gat	0.00	an a	or to	- 100	000	1456

Glu	Phe	Met	Asp 205	Arg	Val	Leu	Pro	Asn 210	Glu	Asp	Pro	Glu	Val 215	Ser	Lys	
σtt	atc	gcc	aag	gcc	tac	aag	aag	atg	ggc	atc	aag	ctc	ctc	ccg	ggc	1504
Val	Ile	Ala 220	Lys	Ala	Tyr	Lys	Lys 225	Met	Gly	He	Lys	Leu 230	Leu	Pro	Gly	
	ac a		acc	grg	øtø	cgc		aat	ggc	gat	tcc	gtt	gag	gtc	gat	1552
uic	Ala	Thr	Thr	Ala	Val	Aro	Asn	Asn	Glv	Asp	Ser	Val	Glu	Val	Asp	
	235					240					245					1.000
tac	cag	aag	aag	ggc	tcg	gac	aag	асс	gag	acc	atc	acc	gic	gac	cgı	1600
Tyr	Gln	Lys	Lys	Gly		Asp	Lys	Thr	Glu		He	Thr	vaı	Asp	Arg	
250					255					260					265	1.6.4.0
gtt	ctt	atc	t c c	gtc	ggc	ttc	cgc	сса	cgc	gtc	gag	ggc	ttc	ggc	ctg	1648
Val	Leu	Ile	Ser	Val	Gly	Phe	Arg	Pro		Val	Glu	Gly	Phe	Gly	Leu	
				270					275					280		
gag	aac	acc	ggc	gtc	aag	ctc	acc	gaa	cgc	ggt	gcc	atc	gac	att	gat	1696
Glu	Asn	Thr	Gly	Val	Lys	Leu	Thr	Glu	Arg	Gly	Ala	He	Asp	Пlе	Asp	
			285					290					295			
gag	cat	atg	cgc	acc	aac	gtc	gac	ggc	a t c	tac	gcc	atc	ggt	gac	gtc	1744
Glu	His	Met	Arg	Thr	Asn	Val	Asp	Gly	He	Туг	Ala	He	Gly	Asp	Val	
		300					305					310				
acc	gcc	aag	ctg	cag	ctg	gca	cac	gtc	gcc	gag	gca	cag	ggc	att	gtc	1792
Thr	Ala	Lys	Leu	Gln	Leu	Ala	His	Val	Ala	Glu	Ala	Gln	Gly	He	Val	
	315					320					325					
gcc	gcc	gag	a c a	ctc	gcc	ggc	gca	gaa	асс	cag	асс	ctg	ggc	gac	t a c	1840
Ala	Ala	Glu	Thr	Leu	Ala	Gly	Ala	Glu	Thr	Gln	Thr	Leu	Gly	Asp	Туг	
330					335					340					345	
atg	atg	atg	ccg	cgt	gcc	асс	t t c	tgc	aac	сса	cag	gtt	gcc	tcc	ttc	1888
Met	Met	Met	Pro	Arg	Ala	Thr	Phe	Cys	Asn	Pro	Gln	Val	Ala	Ser	Phe	
				350					355					360		
ggt	tac	acc	gag	gag	cag	gcc	aag	gag	aag	tgg	ccg	gat	cga	gag	atc	1936
Glv	Tvr	Thr	Glu	Glu	Gln	Ala	Lys	Glu	Lуs	Trp	Pro	Asp	Arg	Glu	Ile	
,	- 2		365					370					375			
aag	gtg	tcc	tcc	t t c	ccg	ttc	tcc	gcg	aac	ggc	aag	gcc	gto	ggc ggc	ctg	1984
Lvs	Val	Ser	Ser	Phe	Pro	Phe	Ser	Ala	Asn	Gly	Lуs	Ala	Val	Gly	Leu	
Буб		380					385					390				
or t	gag		gat	ggt	ttc	gcc	aag	atc	gtc	gcc	gac	gct	gag	g ttc	ggt	2032
Δla	Glu	Thr	Asp	Glv	Phe	Ala	Lvs	He	Val	Ala	Asp	Ala	Glu	Phe	Gly	
MIG	395		710 P	V.,	0	400	_,_				405					
σαα			ggt	ggc	cac		gtc	ggt	gcc	aac	gcc	tcc	gag	cte	ctc	2080
Clii	Len	Len	Glv	Glv	His	He	Val	Glv	Ala	Asn	Āla	Ser	Glu	ı Leu	Leu	
410		ДCu	013	~ . 3	415					420					425	
330	രാവ	eta	gtø	ctø		сае	aac	į gg	gat			acc	gag	g gag	g atc	2128
aac	gag gag	Lau	Val	Len	Ala	Gln	Acn	Trn	Asn	Leu	Thr	Thr	Gli	ıGlu	Ile	
ASII	ษาน	レビロ	v a i	LCU	nia	OIH	11011	ı i þ	1.0 p	200						

	420			435		440
	430		000 000		and det ate	
-					gag gct gtc Glu Ala Val	
Ser Arg Ser	445	116 1115	450	rea ser	455	Lys Glu
act acc cac		aac ggc		atc aac	ttc taaatcc	egt 2222
Ala Ala His						,61 2222
460	Gry var	Mon dry	465	TIC MSH	The	
	caaateee	ct caccga		nteggtga	ggggatttc	tcatgcacgt 2282
aaaatcataa					888841111	2322
addatoataa		00	3,,,0====			
<210> 32						
<211> 469						
<212> PRT						
<213> Coryn	ebacterii	um thermo	oaminoger	ne s		
<400> 32						
Val Thr Glu	His Tyr	Asp Val	Val Val	Leu Gly	Ala Gly Pro	
1	5			10		15
Tyr Val Ser		Arg Ala		Leu Gly	Lys Lys Val	Ala Val
	20		25		30	0 11
· · · · · · · · · · · · · · · · · · ·	Gln Tyr	Trp Gly		Cys Leu	Asn Val Gly	Cys Ile
35			40	01 11	45	D1 . A
	Ala Leu		Asn Ala	Glu lle	Ala His Ile	rne Asn
50	T Th.	55	Ilo Agr	Clar Clar	60	Aon Tur
	Lys IIII	70	ire Asii	75	Val Thr Phe	80
65	Uie Ive		Ara Cly		Asp Lys Ile	
GIU ASP ATA	NIS LYS	Alg Sel	Alg Gly	90	ASP LYS IIC	95
Cly Val His		Met Ive	Ive Asn		Thr Glu Ile	
Gry var mis	100	MCI Lys	105	Lys iic	110	Mop Oly
Phe Cly Thr		Asp Ala		He Glu	Val Thr Asp	Glv Lvs
115	The Byb	nop ma	120		125	
	Lvs Thr	Val Thr		Asp Cys	Ile Ile Ala	Thr Gly
130		135	• :		140	
	Asn Ser		Gly Val	Glu Phe	Ser Glu Asn	Val Val
145		150		155		160
	Glu Gln	Ile Leu	Asn Pro	Val Ala	Pro Lys Lys	Met Val
	165			170		175
lle Val Gly	Gly Gly	Ala Ile	Gly Met	Glu Phe	Ala Tyr Val	Leu Gly
	180		185		190	
Asn Tyr Gly	Val Asp	Val Thr	Leu Ile	Glu Phe	Met Asp Arg	Val Leu
195			200		205	
Pro Asn Glu	Asp Pro	Glu Val	Ser Lys	Val Ile	Ala Lys Ala	Tyr Lys

		210					215					220				
	Lys 225	Met	Gly	He	Lys	Leu 230		Pro	Gly	His	Ala 235		Thr	Ala	Val	Arg 240
	Asp	Asn	Gly	Asp	Ser 245		Glu	Val	Asp	Туг 250		Lys	Lys	Gly	Ser 255	Asp
	Lys	Thr	Glu	Thr 260	He		Val	Asp	Arg 265	Val		He	Ser	Val 270		Phe
	Arg	Pro	Arg 275			Gly	Phe	Gly 280	Leu		Asn	Thr	Gly 285		Lys	Leu
	Thr	Glu 290	Arg	Gly	Ala	He	Asp 295			Glu	His	Met 300		Thr	Asn	Val
	Asp 305		He	Tyr	Ala	Ile 310	Gly	Asp	Val	Thr	Ala 315		Leu	Gln	Leu	Ala 320
		Val	Ala	Glu	Ala 325	Gln			Val	Ala 330		Glu	Thr	Leu	Ala 335	
	Ala	Glu	Thr	Gln 340	Thr	Leu	Gly	Asp	Tyr 345		Met	Met	Pro	Arg 350		Thr
	Phe	Cys	Asn 355	Pro	Gln	Val	Ala	Ser 360		Gly	Туг	Thr	Glu 365		Gln	Ala
	Lys	Glu 370	Lys	Trp	Pro	Asp	Arg 375		Ile	Lys	Val	Ser 380		Phe	Pro	Phe
	Ser 385	Ala	Asn	Gly	Lys	Ala 390	Val	Gly	Leu	Ala	Glu 395	Thr	Asp	Gly	Phe	Ala 400
	Lys	He	Val	Ala	Asp 405	Ala	Glu	Phe	Gly	Glu 410	Leu	Leu	Gly	Gly	His 415	He.
	Val	Gly	Ala	Asn 420	Ala	Ser	Glu	Leu	Leu 425	Asn	Glu	Leu	Val	Leu 430	Ala	Gln
	Asn	Trp	Asp 435	Leu	Thr	Thr	Glu	Glu 440	He	Ser	Arg	Ser	Val 445	His	He	His
]	Pro	Thr 450	Leu	Ser	Glu	Ala	Val 455	Lys	Glu	Ala	Ala	His 460	Gly	Val	Asn	Gly
	His 465	Met	I le	Asn	Phe											
•	<210)> 33	}									•				
		> 40												-		
		2> DN 3> Co	va Oryne	bact	eriu	ım th	ermo	ami n	ogen	ies						
	(220		v C													٠
		> CE > (2)S (50).	. (39	51)											

<400> 33 ccggatcatc gtggttgacg ggggacgtat catcgaggat ggttcccacg atgaacttct 60 gggagcgaat ggaacctacg caacaatgtg gcatttagta gggtgacagg atattttagg 120 aaagactigi taccaaaagg igciaatact ggggigciag giccccgcga ccggaaccag 180 cgitacagig galaaaataa agcccatita gaacccicaa caagcaagga aaagaggcga 240 gtacctgcc gtg agc agc gct agt act ttc ggc cag aac gcg tgg ctg gtg 291 Val Ser Ser Ala Ser Thr Phe Gly Gln Asn Ala Trp Leu Val 5 gat gag atg tic cag cag tic aag aag gac ccc cag tcc gig gac aag 339 Asp Glu Met Phe Gln Gln Phe Lys Lys Asp Pro Gln Ser Val Asp Lys 25 20 15 gaa tgg aga gag ctc ttc gag tct cag ggg ggt ccc cag gct gaa aag 387 Glu Trp Arg Glu Leu Phe Glu Ser Gln Gly Gly Pro Gln Ala Glu Lys 40 35 get acc ecc gec acc ecc gaa gec aag aag gea get teg teg eag tec 435 Ala Thr Pro Ala Thr Pro Glu Ala Lys Lys Ala Ala Ser Ser Gln Ser 50 60 55 tca act tcc gga cag tcc acc gcc aag gct gcc cct gcc gcc aag acc 483 Ser Thr Ser Gly Gln Ser Thr Ala Lys Ala Ala Pro Ala Ala Lys Thr 70 65 531 gca ccg gcc tct gcg cca gcc aag gct gcc cct gtt aag caa aac cag Ala Pro Ala Ser Ala Pro Ala Lys Ala Ala Pro Val Lys Gln Asn Gln 85 90 gcg tcc aag cct gcc aag aag gcc aag gag tcc ccc ctg tcc aag cca 579 Ala Ser Lys Pro Ala Lys Lys Ala Lys Glu Ser Pro Leu Ser Lys Pro 100 105 gct gcc atg cct gag ccg gga acc acc cca ctc agg ggc atc ttc aag 627 Ala Ala Met Pro Glu Pro Gly Thr Thr Pro Leu Arg Gly Ile Phe Lys 115 120 675 tec ate gee aag aac atg gae ete tee ete gag gtg eee ace gee ace Ser Ile Ala Lys Asn Met Asp Leu Ser Leu Glu Val Pro Thr Ala Thr 130 135 tee gie ege gae aig eee geg ege eie aig tie gag aac ege gee aig 723 Ser Val Arg Asp Met Pro Ala Arg Leu Met Phe Glu Asn Arg Ala Met 150 155 145 gtc aac gac cag ctc aag cgc acc cgt ggc ggc aag atc tcc ttc acc 771 Val Asn Asp Gln Leu Lys Arg Thr Arg Gly Gly Lys Ile Ser Phe Thr 165 170 160 819 cac atc atc ggc tac gcc atg gtg aag gct gtc atg gca cac ccg gac His Ile Ile Gly Tyr Ala Met Val Lys Ala Val Met Ala His Pro Asp 175 180 185 190 atg aac aac tee tat gae ate gte gae gge aag eeg tee etg gte gte 867 Met Asn Asn Ser Tyr Asp Ile Val Asp Gly Lys Pro Ser Leu Val Val

				195)				200					205		
ccg	gag	cac	atc	aac	cto	ggc	ctg	gcc	atc	gac	ctc	ссс	cag	aag	gac	915
Pro	Glu	His	Ile	Asn	Leu	Gly	Leu	Ala	lle	Asp	Leu	Pro	Gln	Lys	Asp	
			210					215					220			
ggc	tcc	cgt	gcc	ctc	gtg	gtc	gcc	gcc	a t c	aag	gaa	acc	gag	aag	atg	963
Gly	Ser	Arg	: Ala	Leu	Val	Val	Ala	Ala	Ile	Lys	Glu	Thr	Glu	Lys	Met	
		225					230					235				
			cag													1011
Thr		Ser	Gln	Phe	Leu			Туг	Glu	Asp			Ala	Arg	Ser	
	240					245					250					
															tcc	1059
	Val	Gly	Lys	Leu			Asp	Asp	Туг		Gly	Val	Thr	He		
255				4	260					265					270	1100
			ccg													1107
Leu	INT	ASI	Pro		GIY	116	ыу	ınr		HIS	ser	116	Pro	_	Leu	
200	220	aac	e a cr	275	200	ato	a f c	aa t	280	aa t	100	n t a	anc	285	0.00	1155
			cag Gln													1155
1 11 1	Lys	Uly	290	Oly	1.11.1	110	110	295	vai	оту	361	MCt	300	1 y 1	110	
grr	gag	ttc	cag	ggt	gee	tee	gag		cat	ctc	gcc	gag		ggi	σtσ	1203
			Gln													1200
	0.4	305	· · · ·	0.,		201	310	Пор	6	Dou	a	315	Bou	0.7	,	
ggc	aag		gtc	асс	atc	acc		acc	tac	gat	cac		gtc	atc	cag	1251
			Val												-	
	320					325					330					
ggc	gcg	gaa	t c c	ggt	gag	t t c	ctg	cgc	асс	atg	tcc	cag	ctg	ctc	gtg	1299
Gly	Ala	Glu	Ser	Gly	Glu	Phe	Leu	Arg	Thr	Met	Ser	Gln	Leu	Leu	Val	
335					340					345					350	
-	-		t t c								_		_			1347
Asp	Asp	Ala	Phe		Asp	His	Пе	Phe			Met	Asn	Val	Pro	Tyr	
				355					360					365		
	_		cgc											_	_	1395
Thr	Pro	Met	Arg	Trp	Ala	Gln	Asp		Pro	Asn	Thr	Gly		Asp	Lys	
			370					375					380			
			gtc													1443
Asn	Thr		Val	meı	GIn	Leu		Glu	Ala	Туг	Arg		Arg	Gly	HIS,	
		385					390		4	- 4 -		395				1.40.1
			gac													1491
Leu	400	иıд	Asp	1111	ASII	405	ren	110	111	vai	410	110	ыу	met	011	
ato		cre t	cac	cat	asc		a a c	ato		200		aac	cto	200	e t a	1520
			cac His													1539
415	110	пэр	1113	шБ	420	LCU	nsp	116	oru	425	1113	оту	LUU	1 11 1	430	
110					120					160					700	

		ctg														1587
Trp	Asp	Leu	Asp	Arg 435	ınr	Pne	HIS	vai	440	GIY	rne	GIY	Gly	445	VI u	
асс	atg	асс	ctg	cgc	gag	gtg	ctc	agc	cgc	ctc	cgc	gcc	gcc	tac	acc	1635
Thr	Met	Thr	Leu	Arg	Glu	Val	Leu	Ser	Arg	Leu	Arg	Ala	Ala	Туг	Thr	
			450					455					460			
ctc	aag	gtc	ggc	t c c	gag	tac	асс	cac	a t c	c t c	gac	cgc	gat	gag	cgc	1683
Leu	Lys	Val	Gly	Ser	Glu	Туr	Thr	His	Пe	Leu	Asp	Arg	Asp	Glu	Arg	
		465					470					475				
асс	tgg	ctg	cag	gac	cgc	$c\ t\ c$	gag	gcc	ggt	atg	ccc	aag	ссс	acc	gcc	1731
Thr	Trp	Leu	Gln	Asp	Arg	Leu	Glu	Ala	Gly	Met		Lys	Pro	Thr	Ala	
	480					485					490					
gcc	gag	cag	aag	tac	a t c	ctg	cag	aag	ctc	aac	gcc	gcc	gag	gca	ttc	1779
Ala	Glu	Gln	Lys	Туr	Ιlе	Leu	Gln	Lys	Leu		Ala	Ala	Glu	Ala	Phe	
495					500					505					510	
gag	aac	ttc	ctg	cag	acc	aag	tac	gtc	ggc	cag	aag	cgt	ttc	tcc	ctc	1827
Glu	Asn	Phe	Leu	Gln	Thr	Lys	Tyr	Val		Gln	Lys	Arg	Phe		Leu	
				515					520					525		
gag	ggt	gcc	gag	t c a	ctg	a t c	ccg	ctg	atg	gac	tcc	gcc	atc	gac	acc	1875
Glu	Gly	Ala	Glu	Ser	Leu	He	Pro		Met	Asp	Ser	Ala		Asp	Thr	
			530					535					540			
gcc	gca	ggc	cag	ggc	ctt	gac	gag	gtc	gtc	atc	ggc	atg	ссс	cac	cgt	1923
Ala	Ala	Gly	Gln	Gly	Leu	Asp		Val	Val	Пlе	Gly		Pro	His	Arg	
		545					550					555				1071
															tcg	1971
Gly	Arg	Leu	Asn	Val	Leu		Asn	He	Val	Gly		Pro	Leu	Ala	Ser	
	560					565					570					0010
a t c	t t c	aac	gag	t t c	gag	ggc	cag	atg	gag	cag	ggc	cag	atc	ggt	ggc	2019
He	Phe	Asn	Glu	Phe		Gly	Gln	Met	Glu		Gly	GIn	He	Gly		
575					580					585					590	9067
tcc	ggt	gac	gtg	aag	tac	cac	ctc	ggt	tcc	gag	ggc	acc	cac	cig	cag	2067
Ser	Gly	Asp	Val		Туг	His	Leu	Gly		Glu	Gly	lhr	HIS		GIN	
				595					600					605		0115
atg	ttc	ggc	gac	ggc	gag	atc	aag	gtc	tcc	ctc	acc	gcc	aac	ССС	tcc	2115
Met	Phe	Gly		Gly	Glu	Пe	Lys		Ser	Leu	Thr	Ala		Pro	Ser	
			610					615					620			0160
cac	ctc	gag	gcc	gtc	aac	ccg	gtc	gtg	gag	ggc	atc	gtc	cgc	gcc	aag	2163
His	Leu	Glu	Ala	Val	Asn	Pro		Val	Glu	Gly	He			Ala	Lys	
		625					630					635				0011
cag	gac	a t c	ctg	gac	aag	ggc	ccg	gac	ggc	tac	acc	gtc	gtc	ccg	ctg	2211
Gln	Asp	Пlе	Leu	Asp	Lys		Pro	Asp	Gly	Туг			Val	Pro	Leu	
	640					645					650					0050
ctg	c t c	cac	ggt	gac	gcc	gcc	ttc	gcc	ggc	ctg	ggc	atc	gtg	ссс	gag	2259

									, -								
Le:	u Le 5	u H	is G	ly A	sp A	la A 60	la P	he A	la G		eu G 65	ју	He	Va	l Pr	o Glu 670	
ac	c at	c a	ас с	tc g	ca g	сс с	tg c	gt g	gt t			rte o	o o t	σσι	ര മറ	c atc	9907
Th	r II	e As	sn L	eu A	la A	la L	en A	rø G	lvT	ur A	ar 5 en V	al (55;	661	ι αι , Τα	r Ile	2307
				6	75		<i>.</i>	. 6 0		ут д. 80	sp v	aı (JIY	613			
cac	c at	c gi	Ծ Ծ			ac c	a m a	to a							68	c tcc	
His	: 11	e Va	il V	al A	en A	ac co en Cl	n I	ic g	gt i In Di	ic a	cc a	CC a	acc	300	g ga	c tcc	2355
111	, 11	. , .	li V	ui 7. 90	зи д	311 61	11 1			16 11	nr I.	nr 1	hr			Ser	
200	• • •	t ta			20 1.				95					700)		
Cor	, (g . 1 + /	, ic	r M	ig Co	10 li	10 g(c a	cc ga	ac (gc go	cc a	ag g	gc c	tto	gg	t tgc	2403
361	M 1 8	3 SE	יו ואונ יר	et ni	18 19	/r Al	a II	r As	sp Cy	s Al	a L	ys A	la	Phe	Gly	Cys	
		70					71						15				
goo	gig	3 11	C Ca	ac gi	ic aa	ic gg	i ga	ic ga	ic co	c ga	lg go	ct g	gtg	gtc	tgg	ggtc	2451
Pro	Val	l Ph	е ні	s Va	II As	n Gl	y As	p As	p Pr	o Gl	u Al	la V	al	Val	Trp	Val	
	720)				72	5				73	30					
ggc	cag	ct	g go	c ac	c ga	g ta	с св	t cg	c cg	c tt	c gg	gc a	ag	gat	gto	ttc	2499
Gly	Gln	Le	u Al	a Th	r Gl	u Ty	r Ar	g Ar	g Ar	g Ph	e Gl	y L	ys .	Asp	Val	Phe	
735					74	0				74	5					750	
a t c	gac	c t	c at	c tg	c ta	c cg	c ct	g cg	c gg	с са	c aa	ic g	ag	gc t	gat	gac	2547
He	Asp	Le	u II	е Су	s Ty	r Ar	g Le	u Ar	g Gl	у Ні	s As	n G	lu	Ala	Asn	Asp	2011
				75	5				76						765	710 p	
сса	t c c	a t s	g ac	с са	g cc	g aag	gat	g ta	c ga	g ct	gat	c a	c c a	ggc	rgr	gac	2595
Pro	Ser	Me	t Th	r Gl	n Pr	o Lys	s Me	t Ty	r Gl	u Le	u II	e Ti	hr (Glv	Aro	Asn	2000
			77	0				77				0 11		780	111 6	пор	
tcc	gtg	cgi	gc	c ac	c ta	c acc	gas			r cti	ი თთ	·r r			mac	o t o	9649
Ser	Val	Arg	, Ala	a Thi	r Tv:	r Thi	Gli	1 Asi	n Tei	ı Tei	1 GI	.υ Δ.	sie ra (1 1 w	Acn	Lou	2643
		785					790		, LC	ı LC	1 01	y A1		3 I Y	42h	Leu	
tcc	ссс			c gco	eag	g gcc			co	່ ຕາ				*0.0	222		0.001
Ser	Pro	Glu	Asr) Ala	. Gli	ı Ala	Val	Val	. USI	z gal	Dh.	. II:	1 (E	340	cag	alg	2691
	800				. 010	805		741	NI E	y vot			S P.	12 b	GIN	меі	
gaa		øtø	tto	. aac							810						
Glu	Ser	Val	Phe	, auc	Clu	gtc	aae	gaa Cl.	l gc(gge	: aaa	g aa	ig c	ag	cct	gat	2739
815	561	• a 1	The	_ A311	010	Val	LyS	GIU	Ala			s Ly	's G	ln	Pro	Asp	
	000		~~~		820		,			825						830	
gag	Cag	acc	ggc	alc	acc	ggt	tcc	cag	gaa	cte	aco	c cg	;1 g	gc	ctg	gac	2787
Glu	GIN	ınr	GIY	116	lhr	Gly	Ser	Gln	Glu	Leu	Thi	r Ar	g G	lу	Leu	Asp	
				835					840						845		
acc	aac	atc	acc	cgc	gag	gaa	ctg	gtc	gaa	ctc	ggo	са	g g	СС	ttc	gtc	2835
Thr	Asn	He	Thr	Arg	Glu	Glu	Leu	Val	Glu	Leu	Gly	/ G1	n A	l a	Phe	Val	
			850					855					8	60			
aac	acc	сса	gag	ggc	ttc	асс	tac	cac	сса	cgt	gtg	gc	ас	cg.	gtg	gcc	2883
Asn '	Thr	Pro	Glu	Gly	Phe	Thr	Tyr	His	Pro	Arg	Val	Αl	a P	ro '	Val	Ala	2000
		865					870			J		87		-	~·	u	
aag a	aag	cgt	gcc	gag	tcc	gtc	acc	gag	ggt	ggr	atr			σσ (or a	taa	2931
Lys I	ys .	Arg	Ala	Glu	Ser	Val	Thr	Glu	Glv	Glv	He	Acı	о га 5 Ті	56 8 rn 1	ala Ala	166 Trn	4 J J J
		,		_			1	o i u	O 1 9	O i y	110	1131	<i>y</i> 11	rh t	110	пþ	

	880					885					890					
aac		ctc	atc	acc	ttc		tcc	ctg	gcc	асс		ggc	agg	ctg	gtc	2979
Clv	Clu	Leu	He	Ala	Phe	Glv	Ser	Leu	Ala	Thr	Ser	Gly	Arg	Leu	Val	
895	Olu	LCu	110	u	900	01,	~ ~ .			905		-	_		910	
	ctc	gcc	gg†	gag		tee	cgc	cgt	ggt		ttc	acc	cag	cgt	cac	3027
Δrσ	Len	Ala	Glv	Glu	Asp	Ser	Arg	Arg	Glv	Thr	Phe	Thr	GIn	Arg	His	
шь	Вса	111 a	0.1	915		- '	Ü		920					925		
gcc	gtg	gcc	atc		ccg	aac	acc	gcc	gag	gag	ttc	aac	ccg	сtс	cac	3075
Ala	Val	Ala	He	Asp	Pro	Asn	Thr	Ala	Glu	Glu	Phe	Asn	Pro	Leu	His	
			930	-				935					940			
gag	ctg	gca	cag	gcc	aag	ggc	ggc	ggc	aag	ttc	c t c	gtc	tac	aac	t c c	3123
Glu	Leu	Ala	Gln	Ala	Lys	Gly	Gly	Gly	Lys	Phe	Leu	Val	Tyr	Asn	Ser	
		945					950					955				
gcg	ctg	асс	gag	tac	gcg	ggt	atg	ggc	t t c	gaa	tac	ggc	tac	tcc	gtg	3171
Ala	Leu	Thr	Glu	Tyr	Ala	Gly	Met	Gly	Phe	Glu	Туr	Gly	Tyr	Ser	Val	
	960					965					970					
ggc	aac	ccg	gac	gcc	gtg	gtg	tcc	t gg	gag	gca	cag	ttc	ggt	gac	ttc	3219
Gly	Asn	Pro	Asp	Ala	Val	Val	Ser	Trp	Glu		Gln	Phe	Gly	Asp		
975					980					985					990	0005
gcc	aac	ggt	gca	cag	асс	a t c	a t c	gat	gag	tac	atc	tcc	tcc	ggt	gag	3267
Ala	Asn	Gly	Ala	Gln	Thr	He	He			Tyr	He	Ser			Glu	
				995					1000					1005	4	2215
gcc	aag	t gg	ggc	cag	acc	tcc	tcg	gtc	atc	ctg	ctg	cig	CCC	cac	ggı	3315
Ala	Lys	Trp		Gln	Thr	Ser			He	Leu	Leu			HIS	GIY	
			1010					1015					1020			2262
		ggc														3363
Туг		Gly	GIn	Gly	Pro			Ser	Ser	Ala			Giu	Arg	rne	
		1025					1030			0.1.0		1035	e e a	3.0.0	200	3411
ctg	cag	ctg	ıgc	gcc	gag	ggı	Con	alg	acc	alc	Ala	Cln	Dro	Thr	Thr	0411
		Leu	Cys	Ala					1111		1050	GIII	110	1 11 1	1 11 1	
	1040			44.5		1045			o or t			cta	aac	22σ	atσ	3459
															atg Met	0103
		Asn	IУГ			Leu	Leu	AI g		1065	ліа	Ltu	Oly		1070	
105			~ + ~		1060	110	200	0.00			ato	cto	e ore			3507
		ccg Pro													aag Lvs	0001
Lys	Arg	PTO		1075	V d I	rne	1 11 1		1080	501	me t	LCu		1085	LJS	
~~~	~~ ^	0.00			cca	man	നമന			σασ	σtc	acc			aag	3555
		Thr														0000
АIā	AId		1090	піа	110	oru		1095	1 11 1	JIU	, u 1		1100		_, _	
100	a ta			ora f	cca	aac			gat	grr	ton				aag	3603
201	g i g	Ile	Aen	Aen	Pro	Asn	Val	Ala	Asn	Ala	Ser	Lvs	Val	Lvs	Lys	
361		1105	пэр	nsp	110		1110	,,,u	пор	7.1 G		1115		_ , ~	<b>,</b> -	
		1100					0					0				

atc atg ctg tgc tcc ggc aag atc tac tac gaa ctg gcc aag cgc aag 3	651
lle Met Leu Cys Ser Gly Lys Ile Tyr Tyr Glu Leu Ala Lys Arg Lys	
1120 1125 1130	
	699
Glu Lys Asp Asn Arg Asp Asp Ile Ala Ile Val Arg Ile Glu Met Leu	
1135 1140 1145 1150	
	3747
	141
His Pro Ile Pro Phe Asn Arg Leu Arg Asp Ala Phe Asp Gly Tyr Pro	
1155 1160 1165	
	3795
Asn Ala Glu Glu lle Leu Phe Val Gln Asp Glu Pro Ala Asn Gln Gly	
1170 1175 1180	
gcc tgg ccg ttc tac cag gag cac ctg ccc aac ctc atc gag ggc atg = 3	8843
Ala Trp Pro Phe Tyr Gln Glu His Leu Pro Asn Leu Ile Glu Gly Met	
1185 1190 1195	
ctc ccg atg cgt cgc atc tcg cgc cgt tcc cag tcc tcg act gcg acc 3	8891
Leu Pro Met Arg Arg Ile Ser Arg Arg Ser Gln Ser Ser Thr Ala Thr	
1200 1205 1210	
	939
Gly Ile Ala Lys Val His Thr Ile Glu Gln Gln Lys Leu Leu Asp Asp	
	991
Ala Phe Asn Ala	
Ala Phe Asn Ala acccittaga igcgggcggg giiiigciii gccigcalag gcgalaalai icalalacac 4	051
Ala Phe Asn Ala accetttaga tgegggeggg gttttgettt geetgeatag gegataatat teatataeae 4	
Ala Phe Asn Ala acccittaga igcgggcggg giiiigciii gccigcalag gcgalaalai icalalacac 4	051
Ala Phe Asn Ala acccittaga igcgggcggg giiiigciii gccigcalag gcgalaalai icalalacac 4	051
Ala Phe Asn Ala accetttaga tgegggeggg gttttgettt geetgeatag gegataatat teatataeae 4 ecateaegtt taagiteige ailitggaleg igegageale eeggt 4	051
Ala Phe Asn Ala accetttaga tgegggeggg gttttgettt geetgealag gegalaatat teatalaeae 4 ceateaegtt taagitetge atttggaleg tgegageale eeggt 4 <210> 34	051
Ala Phe Asn Ala accetttaga tgegggeggg gttttgettt geetgeatag gegataatat teatataeae 4 ecateaegtt taagttetge atttggateg tgegageate eeggt 4 <210> 34 <211> 1234	051
Ala Phe Asn Ala accetttaga tgegggeggg gttttgettt geetgeatag gegataatat teatataeae 4 ceateaegtt taagttetge atttggateg tgegageate eeggt 4  <210> 34 <211> 1234 <212> PRT	051
Ala Phe Asn Ala accetttaga tgegggeggg gttttgettt geetgeatag gegataatat teatataeae 4 ceateaegtt taagttetge atttggateg tgegageate eeggt 4  <210> 34 <211> 1234 <212> PRT <213> Corynebacterium thermoaminogenes	051
Ala Phe Asn Ala accetttaga tgegggeggg gttttgettt geetgeatag gegataatat teatataeae 4 ceateaegit taagitetge atttggateg tgegageate eeggt 4  <210> 34 <211> 1234 <212> PRT <213> Corynebacterium thermoaminogenes <400> 34	051
Ala Phe Asn Ala accetttaga tgegggeggg gttttgettt geetgeatag gegataatat teatataeae 4 ceateaegtt taagttetge atttggateg tgegageate eeggt 4  <210> 34 <211> 1234 <212> PRT <213> Corynebacterium thermoaminogenes  <400> 34  Val Ser Ser Ala Ser Thr Phe Gly Gln Asn Ala Trp Leu Val Asp Glu	051
Ala Phe Asn Ala accetttaga tgegggeggg gttttgettt geetgeatag gegataatat teatataeae 4 ceateaegtt taagttetge atttggateg tgegageate eeggt 4  <210> 34 <211> 1234 <212> PRT <213> Corynebacterium thermoaminogenes  <400> 34  Val Ser Ser Ala Ser Thr Phe Gly Gln Asn Ala Trp Leu Val Asp Glu  1 5 10 15	051
Ala Phe Asn Ala accetttaga tgegggeggg gttttgettt geetgeatag gegataatat teatataeae 4 ceateaegtt taagttetge atttggateg tgegageate eeggt 4  <210> 34 <211> 1234 <212> PRT <213> Corynebacterium thermoaminogenes  <400> 34  Val Ser Ser Ala Ser Thr Phe Gly Gln Asn Ala Trp Leu Val Asp Glu  1 5 10 15  Met Phe Gln Gln Phe Lys Lys Asp Pro Gln Ser Val Asp Lys Glu Trp	051
Ala Phe Asn Ala accctitaga tgcgggcggg gttttgcttt gcctgcatag gcgataatat tcatatacac 4 ccatcacgtt taagttctgc atttggatcg tgcgagcatc ccggt 4  <210> 34 <211> 1234 <212> PRT <213> Corynebacterium thermoaminogenes  <400> 34  Val Ser Ser Ala Ser Thr Phe Gly Gln Asn Ala Trp Leu Val Asp Glu  1 5 10 15  Met Phe Gln Gln Phe Lys Lys Asp Pro Gln Ser Val Asp Lys Glu Trp 20 25 30	051
Ala Phe Asn Ala accetttaga tgegggeggg gttttgettt geetgeatag gegataatat teatataeae 4 ceateaegtt taagttetge atttggateg tgegageate eegt 4  <210>34 <211>1234 <212> PRT <213> Corynebacterium thermoaminogenes  <400>34  Val Ser Ser Ala Ser Thr Phe Gly Gln Asn Ala Trp Leu Val Asp Glu  1 5 10 15  Met Phe Gln Gln Phe Lys Lys Asp Pro Gln Ser Val Asp Lys Glu Trp 20 25 30  Arg Glu Leu Phe Glu Ser Gln Gly Gly Pro Gln Ala Glu Lys Ala Thr	051
Ala Phe Asn Ala accetttaga tgcgggcggg gttttgettt gcctgcatag gcgataatat teatatacae 4 ccateacgtt taagttetge atttggateg tgcgagcate eeggt 4  <210>34 <211>1234 <212> PRT <213> Corynebacterium thermoaminogenes  <400>34  Val Ser Ser Ala Ser Thr Phe Gly Gln Asn Ala Trp Leu Val Asp Glu  1 5 10 15  Met Phe Gln Gln Phe Lys Lys Asp Pro Gln Ser Val Asp Lys Glu Trp  20 25 30  Arg Glu Leu Phe Glu Ser Gln Gly Gly Pro Gln Ala Glu Lys Ala Thr  35 40 45	051
Ala Phe Asn Ala accetttaga tgegggeggg gttttgettt geetgeatag gegataatat teatataeae 4 ceateaegtt taagttetge atttggateg tgegageate eeggt 4  <210>34 <211>1234 <212> PRT <213> Corynebacterium thermoaminogenes  <400>34  Val Ser Ser Ala Ser Thr Phe Gly Gln Asn Ala Trp Leu Val Asp Glu  1	051
Ala Phe Asn Ala accctitaga tgcgggcggg gttttgcttt gcctgcatag gcgataatat tcatatacac 4 ccatcacgtt taagttctgc atttggatcg tgcgagcatc ccggt 4  <210>34 <211>1234 <212> PRT <213> Corynebacterium thermoaminogenes  <400>34  Val Ser Ser Ala Ser Thr Phe Gly Gln Asn Ala Trp Leu Val Asp Glu  1 5 10 15  Met Phe Gln Gln Phe Lys Lys Asp Pro Gln Ser Val Asp Lys Glu Trp 20 25 30  Arg Glu Leu Phe Glu Ser Gln Gly Gly Pro Gln Ala Glu Lys Ala Thr 35 40 45  Pro Ala Thr Pro Glu Ala Lys Lys Ala Ala Ser Ser Gln Ser Ser Thr 50 55 60	051
Ala Phe Asn Ala accetttaga tgegggeggg gttttgettt geetgeatag gegataatat teatataeae 4 ceateaegtt taagttetge atttggateg tgegageate eeggt 4  <210>34 <211>1234 <212> PRT <213> Corynebacterium thermoaminogenes  <400>34  Val Ser Ser Ala Ser Thr Phe Gly Gln Asn Ala Trp Leu Val Asp Glu  1	051
Ala Phe Asn Ala accctitaga tgcgggcggg gttttgcttt gcctgcatag gcgataatat tcatatacac 4 ccatcacgtt taagttctgc atttggatcg tgcgagcatc ccggt 4  <210>34 <211>1234 <212> PRT <213> Corynebacterium thermoaminogenes  <400>34  Val Ser Ser Ala Ser Thr Phe Gly Gln Asn Ala Trp Leu Val Asp Glu  1 5 10 15  Met Phe Gln Gln Phe Lys Lys Asp Pro Gln Ser Val Asp Lys Glu Trp 20 25 30  Arg Glu Leu Phe Glu Ser Gln Gly Gly Pro Gln Ala Glu Lys Ala Thr 35 40 45  Pro Ala Thr Pro Glu Ala Lys Lys Ala Ala Ser Ser Gln Ser Ser Thr 50 55 60	051
Ala Phe Asn Ala accctitaga tgcgggcggg gttttgcttt gcctgcatag gcgataatat tcatatacac 4 ccatcacgti taagttctgc atttggatcg tgcgagcatc ccggt 4  <210> 34 <211> 1234 <212> PRT <213> Corynebacterium thermoaminogenes  <400> 34  Val Ser Ser Ala Ser Thr Phe Gly Gln Asn Ala Trp Leu Val Asp Glu	051

				85					90					95	
Lys	Pro	Ala	Lys	Lys						Leu	Ser	Lys	Pro	Ala	Ala
			100					105					110		
Met	Pro		Pro	Gly	Thr	Thr							Lys	Ser	He
	_	115				0	120		., ,			125	mı.	0	** 1
Ala	Lys 130	Asn	Met	Asp	Leu	Ser 135	Leu	Glu	Val	Pro	Thr 140	Ala	Thr	Ser	Val
Arg 145	Asp	Met	Pro	Ala					Glu			Ala		Val	Asn 160
	Gln	Leu	Lys	Arg 165	Thr	Arg		Gly		Ile		Phe	Thr	His 175	He
Ile	Gly	Tyr	Ala 180		Val	Lys	Ala	Val 185						Met	Asn
Asn	Ser	Туг		He	Val	Asp	Gly		Pro	Ser	Leu	Val		Pro	Glu
		195	-			•						205			
His	Ile 210	Asn	Leu	Gly	Leu	Ala 215	He	Asp.	Leu	Pro	GIn 220	Lys	Asp	Gly	Ser
Arg	Ala	Leu	Val	Val	Ala	Ala	He	Lys	Glu	Thr	Glu	Lys	Met	Thr	Phe
225					230					235					240
Ser	Gln	Phe	Leu	Glu 245	Ala	Туг	Glu	Asp	Val 250	Val	Ala	Arg	Ser	Arg 255	Val
Gly	Lys	Leu	Thr 260		Asp			Gln 265			Thr		Ser 270	Leu	Thr
Asn	Pro	Gly 275			Gly		Arg 280			He	Pro		Leu	Thr	Lys
Gly	Gln 290	Gly	Thr	Ile	He	Gly 295	Val	Gly	Ser	Met	Asp 300	Туг	Pro	Ala	Glu
Phe		Gly	Ala	Ser	Glu		Arg	Leu	Ala	Glu		Gly	Val	Gly	Lys
305					310					315					320
Leu	Val	Thr	He						His 330					Gly 335	
Glu	Ser	Gly	Glu 340	Phe	Leu	Arg	Thr	Met 345	Ser	Gln	Leu	Leu	Val 350	Asp	Asp
Ala	Phe	Trp 355		His	Ile	Phe	Glu 360		Met	Asn	Val	Pro 365	Туг	Thr	Pro
Met	Arg 370		Ala	Gln	Asp	Leu 375		Asn	Thr	Gly	Val 380		Lys	Asn	Thr
Årg		Met	Gln	Leu			Ala	Tyr	Arg			Gly	His	Leu	
385					390	_	_			395			_		400
Ala	Asp	Thr	Asn	Pro 405	Leu	Pro	Trp	Val	Gln 410	Pro	Gly	Met	Pro	Val 415	Pro
Asp	His	Arg	Asp 420	Leu	Asp	lle	Glu	Thr 425	His	Gly	Leu	Thr	Leu 430	Trp	Asp

Leu	Asp	Arg 435		Phe	His	Val	Gly 440		Phe			Lys 445	Glu	Thr	Met
Thr	Leu 450	Arg	Glu	val	Leu	Ser 455						Туг	Thr	Leu	Lys
Val 465	Gİy	Ser	Glu	Tyr	Thr 470			Leu		Arg 475		Glu	Arg	Thr	Trp 480
Leu	Gln	Asp	Arg	Leu 485		Ala	Gly	Met	Pro 490		Pro	Thr	Ala	Ala 495	Glu
Gln	Lys	Туг	Ile 500		Gln	Lys	Leu	Asn 505		Ala		Ala	Phe 510	Glu	Asn
Phe	Leu	Gln 515	Thr	Lys	Туг	Val	Gly 520		Lys	Arg	Phe	Ser 525	Leu	Glu	Gly
Ala	Glu 530	Ser	Leu	He	Pro	Leu 535		Asp	Ser	Ala	11e 540	Asp	Thr	Ala	Ala
Gly 545	Gln	Gly	Leu	Asp	Glu 550		Val		Gly	Met 555	Pro	His	Arg	Gly	Arg 560
Leu	Asn	Val	Leu	Phe 565		He	Val	Gly	Lys 570	Pro	Leu	Ala	Ser	Ile 575	Phe
Asn	Glu	Phe	Glu 580		Gln	Met	Glu	Gln 585		Gln		Gly	Gly 590	Ser	Gly
Asp	Val	Lys 595	Tyr	His	Leu	Gly	Ser 600		Gly	Thr	His	Leu 605	Gln	Met	Phe
Gly	Asp 610	Gly	Glu	He	Lys	Val 615		Leu	Thr	Ala	As n 620	Pro	Ser	His	Leu
Glu 625	Ala	Val	Asn	Pro	Val 630	Val	Glu	Gly	Ile	Val 635	Arg	Ala	Lys	Gln	Asp 640
He	Leu	Asp	Lys	Gly 645		Asp			Thr 650		Val		Leu	Leu 655	Leu
His	Gly	Asp	Ala 660	Ala	Phe	Ala	Gly	Leu 665	Gly	He	Val	Pro	Glu 670	Thr	He
Asn	Leu	Ala 675	Ala	Leu	Arg	Gly	Tyr 680	Asp	Val	Gly	Gly	Thr 685	He	His	Ile
Val	Val 690	Asn	Asn	Gln	He	Gly 695	Phe	Thr	Thr	Thr	Pro 700	Asp	Ser	Ser	Arg
Ser 705	Met	His	Tyr	Ala	Thr 710	Asp	Cys	Ala	Lys	Ala 715	Phe	Gly	Cys	Pro	Val 720
Phe	His	Val	Asn	Gly 725	Asp	Asp	Pro	Glu	Ala 730	Val	Val	Trp	Val	Gly 735	Gln
Leu	Ala	Thr	Glu 740	Туг	Arg	Arg	Arg	Phe 745	Gly	Lys	Asp	Val	Phe 750	lle	Asp
Leu	lle	Cys 755	Tyr	Arg	Leu	Arg	Gly 760	His	Asn	Glu	Ala	Asp 765	Asp	Pro	Ser
Met	Thr		Pro	Lys	Met	Tyr	Glu	Leu	He	Thr	Gly	Arg	Asp	Ser	Val

	770					775					780				
Arg	Ala		Туr									Asp	Leu	Ser	Pro
785										795					800
Glu	Asp	Ala	Glu												Ser
17 - 1	Dh.a	Aan	C 1 11	805			4 l a					Dwo		815	Clm
vaı	Рпе	ASI	Glu 820	vai	Lys	GIU	ATA	825	Lys	Lys	GIII	Pro	830	GIU	GIN
Thr	Glv	He	Thr	Glv	Ser	Gln	Gln		Thr	Arg	Glv	Len		Thr	Asn
1111	Oly	835			501							845	пор	1111	71011
Ile	Thr		Glu									Phe	Val	Asn	Thr
	850					855					860			,	
Pro	Glu	Gly	Phe	Thr							Pro	Val	Ala	Lys	
865				., .	870		0.1			875	<b></b>		<i>m</i>		880
Arg	Ala	Glu	Ser	Va I 885			Gly					Ala		G1y 895	Glu
Len	He	Ala	Phe												Len
БСС			900	0.,	501	Lou	,,, u	905		0.,			910	6	Вси
Ala	Gly	Glu	Asp	Ser	Arg	Arg	Gly	Thr					His	Ala	Val
		915					920					925			
Ala		Asp	Pro	Asn	Thr		Glu	Glu	Phe	Asn		Leu	His	Glu	Leu
	930			0.1	0.1	935	•	D.1		** 1	940		0		
	GIn	Ala	Lys												Leu 960
945 Thr	Glu	Tvr	Ala				Phe					Ser			
1 11 1	O I u	1 9 1	/// u	965			The					001		975	11511
Pro	Asp	Ala	Val							Phe	Gly	Asp	Phe		Asn
			980					985					990		
Gly	Ala		Thr										Glu	Ala	Lys
_					a		000					005	0.1	m	0.1
			Thr										Gly	Туг	Glu
			Pro										Pho	Lau	Cln
025	GIII	Gry	110		030	261	261	АТа		035	GIU	MIG	1116		040
	Cvs	Ala	Glu			Met	Thr	lle.			Pro	Thr	Thr		
Boa	0,0			045					050					1055	
Asn	Туг	Phe	His	Leu	Leu	Arg	Arg	His	Ala	Leu	Gly	Lys	Met	Lys	Arg
			060										070		
Pro			Val	Phe	Thr			Ser	Met	Leu			Lys	Ala	Ala
ጥኒ		075	D = -	C1	C 1		080	C1	Val	ፕե		085	1	C	No 1
	Ser 090	нта	Pro	ษาน		гле 095	1111	olu			100	rne	LУS	261	val
		Asp	Pro	Asn			Asp	Ala				Lvs	Lvs	He	Met
105					110		~ p			115		_,_	_, _		120

Leu Cys Ser Gly Lys Ile Tyr Tyr Glu Leu Ala Lys Arg Lys Glu Lys 1125 1130 1135	
1150	
Asp Asn Arg Asp Asp Ile Ala Ile Val Arg Ile Glu Met Leu His Pro 1140 1145 1150	
Ile Pro Phe Asn Arg Leu Arg Asp Ala Phe Asp Gly Tyr Pro Asn Ala	
1155 1160 1165	
Glu Glu Ile Leu Phe Val Gln Asp Glu Pro Ala Asn Gln Gly Ala Trp	
1170 1175 1180	
Pro Phe Tyr Gln Glu His Leu Pro Asn Leu Ile Glu Gly Met Leu Pro	
185 1190 1195 1200	
Met Arg Arg Ile Ser Arg Arg Ser Gln Ser Ser Thr Ala Thr Gly Ile	
1205 1210 1215	
Ala Lys Val His Thr Ile Glu Gln Gln Lys Leu Leu Asp Asp Ala Phe	
4000	
1250	
Asn Ala	
Z010\ 05	
<210> 35	
$\langle 211 \rangle 20$	
<212> DNA	
<213> Artificial Sequence	
(2.2.2)	
(220)	
<223> Description of Artificial Sequence: primer for aceA	
(400) 05	
<400> 35	20
cctctaccca gcgaactccg	, 0
$\langle 210 \rangle$ 36	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer for aceA	
<400> 36	
ctgccttgaa ctcacggttc 2	20
<210> 37	
<211> 20	
<212> DNA	
<213> Artificial Sequence	

<220> <223> Description of Artificial Sequence: primer for accBC	
<400> 37 catccacccc ggctacggct	20
<210> 38 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer for accBC	
<400> 38 cggtgactgg gtgttccacc	20
<210> 39 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer for dtsR1	
<400> 39 acggcccagc cctgaccgac	20
<210> 40 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer for dtsR1	
<400> 40 agcagcgccc atgacggcga	20
<210> 41 <211> 20 <212> DNA <213> Artificial Sequence	

<b>&lt;220&gt;</b>	
<223> Description of Artificial Sequence: primer for dtsR2	
<400> 41	
acggcccagc cctgaccgac	20
<210> 42	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer for dtsR2	
<400> 42	
agcagcgccc atgacggcga	20
<210> 43	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer for pfk	
<400> 43	
cgtcatccga ggaatcgtcc	20
<210> 44	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: primer for pfk	
<400> 44	
cgtggcggcc catgacctcc	21
<210> 45	
<211> 17	
<212> DNA	

<213> Artificial Sequence	
⟨220⟩	
<223> Description of Artificial Sequence: primer for scrB	
⟨220⟩	
<221> UNSURE	
<pre>&lt;222&gt; (3) &lt;223&gt; n=a or g or c or t</pre>	
<400> 45	
ggncghytba aygaycc	17
⟨210⟩ 46	
<211> 20 <212> DNA	
<pre>&lt;212/ DNA &lt;213&gt; Artificial Sequence</pre>	
<220>	
<223> Description of Artificial Sequence: primer for scrB	
<220>	
<pre>&lt;221&gt; UNSURE</pre>	
$\langle 222 \rangle$ (18) $\langle 223 \rangle$ n=a or g or c or t	
<400> 46	
ggreayteec acatriance	20
<210> 47	
<211> 20	
<212> DNA <213> Artificial Sequence	
213/ Altificial Sequence	
<220>	
<pre>&lt;223&gt; Description of Artificial Sequence: primer for gluABCD</pre>	
<400> 47	
ccatccggat ccggcaagtc	20
<210> 48	
<211> 20 (213) DV4	
<212> DNA	

<213> Artificial Sequence	
<220><223> Description of Artificial Sequence: primer for gluABCD	
<400> 48 aatcccatct cgtgggtaac	20
<210> 49 <211> 23 <212> DNA	
<213> Artificial Sequence	
<220><223> Description of Artificial Sequence: primer for pdhA	
<400> 49 actgtgtcca tgggtcttgg ccc	23
<210> 50 <211> 20 <212> DNA <213> Artificial Sequence	
<220><223> Description of Artificial Sequence: primer for pdhA	
<400> 50 cgctggaatccgaacatcga	20
<210> 51 <211> 26 <212> DNA <213> Artificial Sequence	
$\ensuremath{\langle 220 \rangle}\xspace$ $\ensuremath{\langle 223 \rangle}\xspace$ Description of Artificial Sequence: primer for pc	
<400> 51 ggcgcaacct acgacgttgc aatgcg	26
<210> 52 211 20	

<212> DNA					
<pre>&lt;212&gt; ban &lt;213&gt; Artificial Sequence</pre>					
(213) Altificial Sequence					
Z000\					
<220>	C	:	r		
<223> Description of Artificial	Sequence:	primer	101	рс	
<400> 52					
tggccgcctg ggatctcgtg					20
<210> 53					
<211> 20					
<212> DNA					
<213> Artificial Sequence					
(210)					
<220>					
<pre>&lt;223&gt; Description of Artificial</pre>	Sequence:	nrimer	for	nnc	
(220) Description of Mithierar	ocquence.	primer	101	ppc	
<400> 53					
					20
ggitccigga tiggiggaga					20
(0.4.0) 5.4					
<210> 54					
<211> 20					
<212> DNA					
<213> Artificial Sequence					
<220>					
<223> Description of Artificial	Sequence:	primer	for	ppc	
<400> 54					
ccgccatcct tgttggaatc					20
<210> 55					
<211> 20					
<211> 20 <212> DNA					
<213> Artificial Sequence					
(0.00)					
<220>			•		
<223> Description of Artificial	Sequence:	primer	101	acn	
<220>					
<221> UNSURE					
<222> (3, 6, 9)					
⟨223⟩ n=inosine					

<400> 55 gtnggnacng aytcscatac	20
<210> 56 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer for acn	
<220> <221> UNSURE <222> (3, 9, 18) <223> n=inosine	
<400> 56 genggagana tgtgrtengt	20
<210> 57 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer for icd	
<400> 57 gacatticac tcgctggacg	20
<210> 58 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer for icd	
<400> 58 ccgtactctt cagccttctg	20
<210> 59	

<211>	17		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Description of Artificial	Sequence: primer for	r lpd
<400>	·		
atcat	cgcaa ccggttc		17
(0.1.0)			
<210>			
<211>			
<212>			$\sigma$
<213>	Artificial Sequence		
(0.0.0)	et en		
<220>		· · · · · · · · · · · · · · · · · · ·	. 1]
⟨223⟩	Description of Artificial	Sequence: primer 101	r ipa
<400>	60		
	ccgat ggcgtaaat		19
og i ca	cogur ggogradar	A	10
<210>	61	•	
<211>			
<212>			
	Artificial Sequence		
<220>			
<223>	Description of Artificial	Sequence: primer for	odhA
<400>			
acacca	gtggt cgcctcaacg		20
<210>	£ 9		
$\langle 211 \rangle$			
<212>			
\413 <i>/</i>	Artificial Sequence		
<220>			
	Description of Artificial	Sequence: primer for	- odh A
100/		or action of primor lor	
<400>	62		
	acceg teccacetgg		20

<210> 63 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer for screening PCR of lpd <400> 63 20 tacgaggagc agatcctcaa <210> 64 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer for screening PCR of lpd <400> 64 ttgacgccgg tgttctccag 20 <210> 65 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer for LA cloning of acn <400> 65 20 ggtgaagcta aglagtlagc <210> 66 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer for

### LA cloning of acn

<400>	66				
agcta	ctaaa cctgcacc				18
<210>	67				
<211>	20				
<212>					
	Artificial Sequence				
(210)	Altificial Sequence				
<220>					
	Description of Artificial	Soguence:	nrimor	for	
\440/		sequence.	biimei	101	
	LA cloning of icd				
(400)	0.7				
<400>					
ccgta	ctett cagecticig				67
				•	
<210>					
<211>	18				
<212>	DNA				
<213>	Artificial Sequence				
<220>					
<223>	Description of Artificial	Sequence:	primer	for	
	LA cloning of icd				
<400>	68				
	ctigt tocacate				18
					• •
<210>	69				
<211>					
				•	
<212>					
<213>	Artificial Sequence				
( <b>)</b>					
<220>		_		_	
<223>	Description of Artificial	Sequence:	primer	for	
	LA cloning of lpd				
<400>	69				
atcato	gcaa ccggttc				17
<210>	70				
<211>	20				

<212> <213>	DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence: primer for LA cloning of 1pd	
<400> tacgag		20
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: primer for LA cloning of acn	
<400> gctaa	71 ctact tagcttcacc	20
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: primer for LA cloning of acn	
<400> gaacc	72 aggaa ctattgaacc	20
<210><211><211><212><213>	18	
<220> <223>	Description of Artificial Sequence: primer for	

<400> 73		
tecgatgica teategae		18
•		
<210> 74		
<211> 18		7
<212> DNA		
<213> Artificial Sequ	ience	
<220>		
<223 Description of	Artificial Sequence: primer for	
LA cloning of i		
In oloning of	, 0 0	
/400\ 74		
<400> 74		1.0
atgtggaaca aggacgac		18
<210> 75		
<211>. 35		
<212> DNA		•
<213> Artificial Sequ	ience	
(210) Militieral bego		
Z220\		
<220>	A 1: f: : 1 C	
	Artificial Sequence: primer for	
LA cloning of o	odhA	
<400> 75		
gtacatattg tcgttagaac	gcgtaatacg actca	35
<210> 76		
<211> 35		
<212> DNA		
<213> Artificial Sequ	ence	
<2.20>		
<223> Description of	Artificial Sequence: primer for	
LA cloning of o		•
<400> 76		
	atanatatag ggaga	35
cgttagaacg cgtaatacga	cicaciatag ggaga	১১
<210> 77		
<211> 32		
<212> DNA		-

<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer for amplifying gdh gene	
<400> 77 gcgcctgcag gtccgagggt gtgcgttcgg ca	32
<210> 78 <211> 32 <212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer for amplifying gdh gene	
<400> 78 gcgcctgcag ccaccagga tgccctcaacc ag	32
<210> 79 <211> 1344 <212> DNA <213> Corynebacterium thermoaminogenes	
<220> <221> CDS <222> (1) (1341)	
<400> 79	
atg act gta gat gag cag gtc tcc aac tac tac gac atg ctg ctg ac Met Thr Val Asp Glu Gln Val Ser Asn Tyr Tyr Asp Met Leu Leu Ly	ag 48 /S
cgc aac gcc ggg gaa cct gag ttc cac cag gct gtc gcg gag gtt c Arg Asn Ala Gly Glu Pro Glu Phe His Gln Ala Val Ala Glu Val Lo	tc 96 eu
gaa tot otg aag ato gio otg gag aag gao oog oac tac goo gac ta Glu Ser Leu Lys Ile Val Leu Glu Lys Asp Pro His Tyr Ala Asp Ty	ac 144 yr
ggt ctg atc cag cgt ctc tgc gaa ccg gaa cgc cag ctg atc ttc c	gt 192

Gly	Leu 50	Ile	Gln	Arg	Leu	Cys 55		Pro	Glu	Arg	Gln 60	Leu	He	Phe	Arg	
gtg	ссс	igg	gtg	gat	gac	aac	ggt	cag	gtg	cac	gtc	aac	cgt	ggt	ttc	240
-			Val													
65		•		•	70					75			. 0		80	
	gtc	cag	ttc	aac	tcc	gca	ctc	ggc	ccg	tac	aag	ggt	ggt	ctg		288
_			Phe													
6	,	01		85				,	90	,	-,-		3	95	*** 0	
11c	cac	ссс	tcc		aac	ctc	ggc	atc		aag	ttc	ctc	ggc		gag	336
			Ser	_									-		_	
1110	1110	110	100	,		200	0.,	105		2,0		200	110		0.0	
cag	atc	ttc	aag	aac	tcc	ctc	асс		ctg	ccg	atc	ggt		ggc	aag	384
_			Lys													
0111	110	115	2,5			200	120	0.,	Dod		•••	125	0.,	~ . ,	2,0	
oo t	gg t		gac	ffc	gac	CCB		ggc	ลลฮ	tee	gag		gag	atc	atø	432
			Asp													102
Oly	130	501	пор	1110	пор	135	DyS	Oly	Dys	DCI	140	БСС	O I u	110	me t	
cac		tor	cag	tee	ttc		асс	σασ	cto	cac		cac	atc	gge	σασ	480
-		_	Gln						_							100
145	1 11 C	Cys	0111	501	150	mer	1111	Olu	LCu	155	шь	1113	110	Oly	160	
	caa	σat	gtc	cca		ggt	gac	atc	gga		ggt	gge	cgc	gag		528
			Val													020
1 y 1	ME	пор	7 (4.1	165	71 T G	019	пор	110	170	, 41	Oly	019	шь	175	110	
aa t	tac	ctc	ttc		cac	tac	cac	cøt		gee	aac	cag	cac		tcc	576
			Phe													010
Oly	1 9 1	LCu	180	Oly	1113	1 9 1	111 6	185	Leu	niu	71511	0111	190	014	501	
aa i	ata	ctc	acc	σσc	aao		cto		100	o o t	σσt	tcc	_	ote	coc	624
	_		Thr													041
Oly	vai	195	1 11 1	Oly	Буз	Oly	200	1111	116	Oly	Oly	205	LCu	, a i	VI P	
300	σασ		асс	gge	110	ggr		otc	tac	tte	otc		σασ	atσ	atc	672
			Thr													012
1 11 1	210	ma	1 11 1	Oly	THE	215	1111,	, a 1	1 9 1	inc	220	0111	Oiu	me t	110	
330		σαα	ggg	σασ	a c c		σ ១ σ	aac	ааσ	ааσ		atc	ote	100	σσt	720
	_		Gly				_		_						-	120
225	міа	Ulu	Gly	Olu	230	LCu	oru	Oly	гуз	235	141	110	v a 1	501	240	
	aac	226	gtg	acc		tac	ar c	atc	c a cr		ata	cag	ora a	cta		768
			Val													100
261	Gly	ASII	vai	245	1 11 1	1 y 1	на	116	250	. L у З	Yaı	GIH	Giu	255°	Gly	
a.o.a	or i i	art a	at c		110	100	ara c	tee		a a a	taa	at c	100		0.00	016
		-	gtc													816
Ата	val	val	Val	огу	rne	Set	ияр		36 L	σιу	пр	VdI		1111	r10	
- 0 -	c= c= 1	~ f f	260	~ t ~	~ ~ ~	0.0~	a t ==	265	~~~	0.1.0	.0.0 ~	ar	270	0 ~ 4	0.074	001
		_	gac													864
Asn	Gly	vaı	Asp	v a i	Ala	LУS	Lеи	Arg	6 I U	116	LУS	61U	v a I	Arg	Arg	

	275					280					285				
gca cg			tcc	tac	gcc		gag	gtg	gag	ggt	gcg	gag	tac	cac	912
Ala Ar	g Val	Ser	Ser	Tyr	Ala	Asp	Glu	Val	Glu	G l.y	Ala	Glu	Tyr	His	
29	00				295					300					
acc ga															960
Thr As	sp Gly	Ser	Ιlе		Asp	Leu	Thr	Ala		He	Ala	Leu	Pro		
305				310					315					320	
gcc ac															1008
Ala Th	ır Gln	Asn		Leu	Asp	Gly	Asp		Ala	Arg	lhr	Leu		Asp	
			325	~ + ~	~~~	~~~	~~~	330		0.1.0	000	t o o	335	0.00	1056
aac gg Asn Gl	_														100,0
ASII GI	у суѕ	340	rne	Val	Ата	Glu	345	Ala	ASII	Met	110	350	1 11 1	110	
gag go	c atc		gtc	ttc	cgt	gag		ggt	gtt	ctc	ttc		ccg	ggc	1104
Glu Al															
0.4	355					360		-			365	•			
aag go	t gcc	aac	gcc	ggt	ggc	gtg	gcc	асс	t c c	gcc	ctg	gag	atg	cag	1152
Lys Al	a Ala	Asn	Ala	Gly	Gly	Val	Ala	Thr	Ser	Ala	Leu	Glu	Met	Gln	
37	0				375					380					
cag aa	_														1200
Gln As	n Ala	Ser	Arg		Ser	Trp	Ser	Phe		Tyr	Thr	Asp	Glu		
385				390					395					400	1940
ctc ca															1248
Leu Hi	s Arg	116	ме і 405	Lys	ASII	116	rne	410	ser	Cys	Ala	ASP	415	Ala	
aag ga	a tac	aac		നമന	22σ	9 <b>9</b> C	tac		ote	o o t	grg	аас		grr	1296
Lys Gl															1230
Lys Gi	ulyi	420	1115	oru	L,S	71011	425		, α ,	0.,	u	430			
gga tt	c aag		gtc	gct	gac	gcc		ctc	gcc	cag	ggt		atc	t a a	1344
Gly Ph															
	435					440					445				
<210>	80														
<211>															
<212>															
<213>	Coryn	ebac	tern	ım tr	nermo	amır	iogei	1es							
<400>	80														
Met Th		Asp	Glu	Gln	Val	Ser	Asn	Tyr	Туг	Asp	Met	Leu	Leu	Lys	
1		•	5					10	-	-			15	-	
Arg As	n Ala	Gly		Pro	Glu	Phe	His	Gln	Ala	Val	Ala	Glu	Val	Leu	
		20					25					30			
Glu Se	er Leu	Lys	He	Val	Leu	Glu	Lys	Asp	Pro	His	Tyr	Ala	Asp	Tyr	

		35					40					45			
Gly	Leu 50	Ile	Gln	Arg	Leu	Cys 55	Glu	Pro	Glu	Arg	Gln 60	Leu	He	Phe	Arg
Val 65	Pro	Trp	Val	Asp	Asp 70	Asn	Gly	Gln	Val	His 75	Val	Asn	Arg	Gly	Phe 80
	Val	Gln	Phe	Asn 85	Ser		Leu		Pro 90	Tyr	Lys	Gly	Gly	Leu 95	Årg
Phe	His	Pro	Ser 100		Asn		Gly		Val	Lys	Phe	Leu	Gly 110	Phe	Glu
Gln	Ile	Phe		Asn	Ser	Leu	Thr 120		Leu	Pro	lle	Gly 125	Gly	Gly	Lys
Gly	Gly 130		Asp	Phe	Asp	Pro 135		Gly	Lys	Ser	Glu 140		Glu	Ile	Met
Arg 145		Cys	Gln	Ser	Phe 150		Thr	Glu	Leu	His 155		His	lle	Gly	Glu 160
	Arg	Asp	Val	Pro 165		Gly	Asp	He	Gly 170	Val	Gly	Gly	Arg	Glu 175	
Gly	Туг	Leu	Phe 180		His	Tyr	Arg	Arg 185	Leu			Gln	His 190		Ser
Gly	Val	Leu 195		Gly	Lys	Gly	Leu 200	Thr	Trp			Ser 205	Leu	Val	Arg
Thr	Glu 210		Thr	Gly	Phe	Gly 215		Val				Gln	Glu	Met	lle
Lys 225		Glu	Gly	Glu	Thr 230				Lys	Lys 235	Val	He	Val	Ser	Gly 240
	Gly	Asn	Val	Ala 245		Tyr	Ala	He	Gln 250			Gln	Glu	Leu 255	Gly
Ala	Val	Val	Val 260		Phe	Ser	Asp	Ser 265					Ser 270		Pro
Asn	Gly	Val 275		Val	Ala	Lys	Leu 280		Glu	He	Lys		Val	Arg	Arg
Ala	Arg 290		Ser	Ser	Tyr	Ala 295		Glu	Val	Glu	Gly 300		Glu	Tyr	His
Thr 305		Gly	Ser	He	Trp 310		Leu	Thr	Ala	Asp 315		Ala	Leu	Pro	Cys 320
	Thr	Gln	Asn	Glu 325		Asp	Gly	Asp	Asn 330		Arg	Thr	Leu	Ala 335	
Àsn	Gly	Cys	Arg 340		Val	Ala	Glu	Gly 345		Asn	Met	Pro	Ser 350		Pro
Glu	Ala			Val	Phe	Arg	Glu 360		Gly	Val	Leu	Phe 365	Gly	Pro	Gly
Lys	Ala 370	355 Ala	Asn	Ala	Gly	Gly 375		Ala	Thr	Ser	Ala 380		Glu	Met	Gln

385 Leu His Arg	390 Ile Met Lys As 405 Gly His Glu Ly 420	n Ile Phe Lys 410 s Asn Tyr Val 425	Glu Tyr Thr As 395 Ser Cys Ala As Val Gly Ala As Ala Gln Gly Va 445	400 p Thr Ala 415 n Ile Ala
<210> 81 <211> 1344 <212> DNA <213> Breviba	acterium lacto	fermentum		
<220> <221> CDS <222> (1)(	1341)			
			tac gac atg ct Tyr Asp Met Le	
cgc aat gct s	ggc gag cct g	a ttt cac cag	gca gtg gca ga Ala Val Ala Gl	ng git itg 96
	aag atc gtc c		cct cat tac go Pro His Tyr Al 45	
		s Glu Pro Glu	cgt cag ctc at Arg Gln Leu II	
			cac glc aac cg His Val Asn An 75	g Gly Phe 80
			tac aag ggc gg Tyr Lys Gly G	
Phe His Pro			aag ttc ctg gg Lys Phe Leu G	
			cca atc ggt gg Pro Ile Gly G 125	

ggt	gga	tcc	gac	t t c	gac	cct	aag	ggc	aag	tcc	gat	ctg	gaa	a t c	atg	432
Gly	Gly	Ser	Asp	Phe	Asp	Pro	Lys	Gly	Lys	Ser	Asp	Leu	Glu	Пe	Met	
	130					135					140					
												cac				480
Arg	Phe	Cys	Gln	Ser	Phe	Met	Thr	Glu	Leu	His	Arg	His	Пe	Gly		
145					150					155					160	
tac	cgc	gac	gtt	cct	gca	ggt	gac	a t c	gga	gtt	ggt	ggc	cgc	gag	a t c	528
Tyr	Arg	Asp	Val	Pro	Ala	Gly	Asp	He	Gly	Val	Gly	Gly	Arg	Glu	Ιle	
				165					170					175		
												cag				576
Gly	Tyr	Leu	Phe	Gly	His	Tyr	Arg	Arg	Met	Ala	Asn	Gln		Glu	Ser	
			180					185					190			
ggc	gtt	ttg	acc	ggt	aag	ggc	ctg	acc	tgg	ggt	gga	tcc	ctg	gtc	cgc	624
Gly	Val	Leu	Thr	Gly	Lys	Gly	Leu	Thr	Trp	Gly	Gly	Ser	Leu	Val	Arg	
		195					200					205				0.50
асс	gag	gca	ac t	ggc	tac	ggc	tgc	gtt	tac	ttc	gtg	agt	gaa	atg	atc	672
Thr	Glu	Ala	Thr	Gly	Tyr		Cys	Val	Туг	Phe		Ser	Glu	Met	He	
	210					215					220					7.00
aag	gc t	aag	ggc	gag	agc	atc	agc	ggc	cag	aag	atc	atc	gtt	tcc	ggt	720
Lys	Ala	Lys	Gly	Glu	Ser	He	Ser	Gly	Gln		He	He	Val	Ser	Gly	
225					230					235					240	7.00
tcc	ggc	aac	gta	gca	acc	tac	gcg	att	gaa	aag	gct	cag	gaa	CIC	ggc	768
Ser	Gly	Asn	Val		Thr	Tyr	Ala	He		Lys	Ala	Gln	GIU	Leu	Gly	
				245					250			_4.4		255	aat	016
gca	acc	gtt	att	ggt	ttc	lcc	gat	tcc	agc	ggl	ιgg	gtt	Cal	acc	Dro	816
Ala	Thr	Val		Gly	Phe	Ser	Asp		Ser	Gly	Irp	Val		Inr	P10	
			260					265					270	0.77	200	061
aac	ggc	gtt	gac	gtg	gct	aag	ctc	cgc	gaa	alc	aag	gaa	gii	Ara	Ogc Ara	864
Asn	Gly		Asp	Val	Ala	Lys		Arg	GIU	116	Lys	Glu	v a i	AIR	AIG	
		275					280				arar a	285	200	120	0.00	912
gca	cgc	gta	tcc	gtg	tac	gcc	gac	gaa	all	gaa	ggt	gla	The	Tur	сас ціс	314
Ala		Val	Ser	vai	lyr		ASP	GIU	116	GIU		Ala	1 11,1	1 y 1	1113	
	290					295	1			~ o t	300		o t t	cet	tat	960
асс	gac	ggt	tcc	atc	ιgg	gal	cic	aag	l gc	gat	att	gct	Lou	Dro	Cue	300
	Asp	Gly	Ser	He		Asp	Leu	Lys	Cys			Ala	Leu	110	320	
305					310			~~~	0.00	315		· net	ctt	ore a		1008
gca	act	cag	aac	gag	CIC	aac	ggc	gag	aac	ger	luc	act	Lou	Ala	Acn	1000
Ala	Thr	GIn	Asn		Leu	АЅП	Gly	GIU			L y S	Thr	Leu	335	лэр	
				325				~~~	330		n t a	cot	t c c		cct	1056
aac	ggc	tgc	cgt	IIC	gii	gcl	gaa	ggc	geg	Acr	alg Mot	cct	الال عمار	The	Pro	1000
Asn	Gly	Cys		rne	val	ата	GIU		AId	W2 []	MEI	110	350		Pro	
			340		4.4.	لسم	~~~	345	OT C. C.	a f a	0.00				gge	1104
gag	gct	gtt	gag	gtc	llc	сgl	gag	cgc	gac	aic	ugu		gga	. ild	ggc	1104

Glu	Ala	Val 355	Glu	Val	Phe	Arg	Glu 360	Arg	Asp	Ile	Arg	Phe 365	Gly	Pro	Gly	
	Ala	gct Ala				Gly										1152
		gct Ala									tac					1200
385		4	. 4 .		390	0.0.0	ota	110	0.00	395	tat	ac a	aaa	200	400	1248
		gtg Val														
		tat Tyr														1296
		aag Lys 435	aag					atg							taa	1344
<21 <21	0> 83 1> 44 2> P1 3> B1	47	oac t e	erium	n lac	ctofe	ermei	n tum								
(2.	-, -															
	0> 8:	2					0 -									
<40 Me t	0> 8:	2 Val		Glu						Tyr	Asp	Met	Leu	Leu 15	Lys	
<40 Met	0> 8: Thr		Asp	Glu 5	Gln	Val	Ser	Asn	10					15		
<40 Met 1 Arg	0> 8: Thr Asn	Val Ala Leu	Asp Gly 20	Glu 5 Glu	Gln Pro	Val Glu	Ser. Phe Glu	Asn His 25	10 Gln	Ala	Val	Ala	Glu 30	15 Val	Leu	
<40 Met 1 Arg	0> 83 Thr Asn Ser	Val Ala	Asp Gly 20 Lys	Glu 5 Glu Ile	Gln Pro Val	Val Glu Leu	Ser Phe Glu 40	Asn His 25 Lys	10 Gln Asp	Ala Pro	Val His	Ala Tyr 45	Glu 30 Ala	15 Val Asp	Leu Tyr	
<40 Met 1 Arg Glu Gly	0> 83 Thr Asn Ser Leu 50	Val Ala Leu 35	Asp Gly 20 Lys Gln	Glu 5 Glu Ile Arg	Gln Pro Val Leu	Val Glu Leu Cys 55	Ser. Phe Glu 40 Glu	Asn His 25 Lys Pro	10 Gln Asp Glu	Ala Pro Arg	Val His Gln 60	Ala Tyr 45 Leu	Glu 30 Ala Ile	15 Val Asp Phe	Leu Tyr Arg	
<400 Met 1 Arg Glu Gly Val 65	0> 83 Thr Asn Ser Leu 50 Pro	Val Ala Leu 35 Ile	Asp Gly 20 Lys Gln Val	Glu 5 Glu Ile Arg	Gln Pro Val Leu Asp	Val Glu Leu Cys 55 Gln	Ser-Phe Glu 40 Glu Gly	Asn His 25 Lys Pro Gln	10 Gln Asp Glu Val	Ala Pro Arg His 75	Val His Gln 60 Val	Ala Tyr 45 Leu Asn	Glu 30 Ala Ile Arg	15 Val Asp Phe Gly	Leu Tyr Arg Phe	
<400 Met 1 Arg Glu Gly Val 65 Arg Phe	0> 83 Thr Asn Ser Leu 50 Pro Val	Val Ala Leu 35 Ile Trp Gln Pro	Asp Gly 20 Lys Gln Val Phe Ser 100	Glu 5 Glu Ile Arg Asp Asn 85 Val	Gln Pro Val Leu Asp 70 Ser Asn	Val Glu Leu Cys 55 Gln Ala Leu	Ser. Phe Glu 40 Glu Gly Leu Gly	Asn His 25 Lys Pro Gln Gly Hle 105	10 Gln Asp Glu Val Pro 90 Val	Ala Pro Arg His 75 Tyr Lys	Val His Gln 60 Val Lys Phe	Ala Tyr 45 Leu Asn Gly Leu	Glu 30 Ala Ile Arg Gly Gly 110	15 Val Asp Phe Gly Leu 95 Phe	Leu Tyr Arg Phe 80 Arg	
<400 Met     I Arg Glu Gly Val     65 Arg Phe Gln	0> 83 Thr Asn Ser Leu 50 Pro Val His	Val Ala Leu 35 Ile Trp Gln Pro Phe 115	Asp Gly 20 Lys Gln Val Phe Ser 100 Lys	Glu 5 Glu 11e Arg Asp Asn 85 Val	Gln Pro Val Leu Asp 70 Ser Asn	Val Glu Leu Cys 55 Gln Ala Leu	Ser. Phe Glu 40 Glu Gly Leu Gly Thr 120	Asn His 25 Lys Pro Gln Gly Hle 105 Gly	10 Gln Asp Glu Val Pro 90 Val Leu	Ala Pro Arg His 75 Tyr Lys Pro	Val His Gln 60 Val Lys Phe Ile	Ala Tyr 45 Leu Asn Gly Leu Gly 125	Glu 30 Ala Ile Arg Gly Gly 110 Gly	15 Val Asp Phe Gly Leu 95 Phe Gly	Leu Tyr Arg Phe 80 Arg Glu Lys	
<400 Met     I Arg Glu Gly Val     65 Arg Phe Gln	0> 83 Thr Asn Ser Leu 50 Pro Val His	Val Ala Leu 35 Ile Trp Gln Pro Phe	Asp Gly 20 Lys Gln Val Phe Ser 100 Lys	Glu 5 Glu 11e Arg Asp Asn 85 Val	Gln Pro Val Leu Asp 70 Ser Asn	Val Glu Leu Cys 55 Gln Ala Leu	Ser. Phe Glu 40 Glu Gly Leu Gly Thr 120	Asn His 25 Lys Pro Gln Gly Hle 105 Gly	10 Gln Asp Glu Val Pro 90 Val Leu	Ala Pro Arg His 75 Tyr Lys Pro	Val His Gln 60 Val Lys Phe Ile	Ala Tyr 45 Leu Asn Gly Leu Gly 125	Glu 30 Ala Ile Arg Gly Gly 110 Gly	15 Val Asp Phe Gly Leu 95 Phe Gly	Leu Tyr Arg Phe 80 Arg Glu Lys	

145					150					155					160
Tyr	Arg	Asp	Val	Pro 165	Ala	Gly	Asp	He	Gly 170		Gly		Arg	Glu 175	He
Gly	Туг	Leu	Phe 180	Gly	His	Tyr	Arg	Arg 185	Met	Ala	Asn	Gln	His 190	Glu	Ser
Gly	Val	Leu 195	Thr	Gly	Lys	Gly	Leu 200	Thr	Trp	Gly	Gly	Ser 205	Leu	Val	Arg
Thr	Glu 210	Ala	Thr	Gly	Tyr	Gly 215	Cys	Val	Туг	Phe	Val 220	Ser	Glu	Met	Ile
Lys 225	Ala	Lys	Gly	Glu	Ser 230	Ile	Ser	Gly	Gln	Lys 235	Ile	lle	Val	Ser	Gly 240
	Gly	Asn	Val	Ala 245		Tyr	Ala	He	Glu 250		Ala	Gln	Glu	Leu 255	Gly
Ala	Thr	Val	Ile 260	Gly	Phe	Ser	Asp	Ser 265	Ser	Gly	Trp	Val	His 270	Thr	Pro
Asn	Gly	Val 275	Asp	Val	Ala	Lys	Leu 280	Arg	Glu	He	Lys	Glu 285	Val	Arg	Arg
Ala	Arg 290	Val	Ser	Val	Tyr	Ala 295	Asp	Glu	He	Glu	Gly 300	Ala	Thr	Tyr	His
Thr 305	Asp	Gly	Ser	He	Trp 310	Asp	Leu	Lys	Cys	Asp 315	lle	Ala	Leu	Pro	Cys 320
Ala	Thr	Gln	Asn	Glu 325	Leu	Asn	Gly	Glu	As n 330	Ala	Lys	Thr	Leu	Ala 335	Asp
Asn	Gly	Cys	Arg 340	Phe	Val	Ala	Glu	Gly 345		Asn		Pro	Ser 350	Thr	Pro
Glu	Ala	Val 355	Glu	Val	Phe	Arg	Glu 360	Arg	Asp	He	Arg	Phe 365	Gly	Pro	Gly
Lys	Ala 370	Ala	Asn	Ala	Gly	Gly 375	Val	Ala	Thr	Ser	Ala 380	Leu	Glu	Met	Gln
Gln 385	Asn	Ala	Ser	Arg	Asp 390	Ser	Trp	Ser	Phe	G1u 395	Tyr	Thr	Asp	Glu	Arg 400
Leu	Gln	Val	He	Met 405	Lys	Asn	He	Phe	Lys 410	Thr	Cys	Ala	Glu	Thr 415	Ala
Ala	Glu	Туг	Gly 420	His	Glu	Asn	Asp	Tyr 425	Val	Val	Gly	Ala	Asn 430	He	Ala
Gly	Phe	Lys 435		Val	Ala	Asp	Ala 440		Leu	Ala	Gln	Gly 445	Val	He	

<210> 83

<211> 20

<212> DNA

<220> <223>	Description of Artificial Sequence:primer for amplifying gltA gene	
<222>	misc_feature	
<400> aagato	83 cacnt acategaygg	20
<210><211><211><212>	20	
<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence:primer for amplifying gltA gene	
<400> tagaag	84 gtcta cgttcgggta	20
<210> <211> <212>	21	
<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence:primer for amplifying gltA gene	
<400> gtcgac	85 caata gcctgaatct g	21
<210> <211> <212>	21	

<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence:primer for amplifying gltA gene	
<400> cggtg	86 gaacc ggtgctgaca t	21
<210><211><211><212>	21	
<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence:primer for amplifying gltA gene	
<400> gggtg	87 ggga attcggtcatg t	21 6
<210> <211> <212>	21	
<213>	Artificial Sequence	
<220><223>	Description of Artificial Sequence:primer for amplifying gltA gene	
<400> tgtcg	88 tagcc gcggtagcgc a	21
<210><211><211><212><213>	1293	
<220><221><222>	CDS (1)(1290)	

	> 89															4.0
		t c t														48
Val	Ala	Ser	Asp	_	Asn	Lys	Ala	Val		HIS	Tyr	Pro	Gly		GIU	
1				5	,				10					15	4 .	0.0
		atg														96
Phe	Glu	Met		Пe	Lys	Gln	Ala		Glu	Gly	Asn	Ser		Val	11e	
			20					25					.30			1 4 4
		aag														144
Leu	Gly	Lys	Met	Leu	Ser	Glu		Gly	Leu	Val	Thr		Asp	Pro	Gly	
		35					40					45				100
		agc														192
Туг	Val	Ser	Thr	Gly	Ser	Thr	Glu	Ser	Lys	He		Туг	He	Asp	Gly	
	50					55					60					0.40
		ggc														240
Asp	Ala	Gly	Ιlе	Leu		Tyr	Arg	Gly	Tyr		He	Ala	Asp	Leu		
65					70					75					80	
		gcc														288
Glu	Asn	Ala	Thr	Phe	Asn	Glu	Val	Ser		Leu	Leu	He	Lys		Glu	
				85					90					95		
		асс														336
Leu	Pro	Thr	Pro	Glu	Glu	Leu	His		Phe	Asn	Asp	Glu		Arg	His	
			100					105					110			
		ctg														384
His	Thr	Leu	Leu	Asp	Glu	Asp	Phe	Lys	Ser	Gln	Phe		Val	Phe	Pro	
		115					120					125				
cgc	gat	gcc	cac	ccg	atg	gcc	acc	ctg	gcc	tcc	tcg	gtt	aac	atc	ctc	432
Arg	Asp	Ala	His	Pro	Met	Ala	Thr	Leu	Ala	Ser	Ser	Val	Asn	Ιlе	Leu	
	130					135					140					
		tac														480
Ser	Thr	Туr	Tyr	Gln	Asp	Gln	Leu	Asp	Pro	Leu	Asp	Glu	Ala	Gln	Leu	
145					150					155					160	
gac	aag	gca	acc	gtc	cgc	ctg	atg	gcg	aag	gtt	ccg	atg	ctg	gct	gca	528
Asp	Lys	Ala	Thr	Val	Arg	Leu	Met	Ala	Lys	Val	Pro	Met	Leu	Ala	Ala	
				165					170					175		
tac	gca	cac	cgt	gcc	cgc	aag	ggt	gcg	ccg	tac	atg	tac	ccg	gac	aac	576
		His														
· ·			180					185					190			
tcc	ctc	aat	gcc	cgt	gag	aac	ttc	ctg	cgc	atg	atg	ttc	ggt	tac	ccg	624
		Asn														
		195		_			200					205				
acc	gag	ccg	tac	gag	gtt	gat	ccg	atc	atg	gtc	aaa	gcc	ctc	gac	aag	672
		Pro														
1 11 1	u		- 2 -					-								

	210					215					220					
ctg		a t c	ctg	cac	gca		cac	gag	cag	aac	tgc	tcc	a c c	tcc	ac t	720
Leu	Leu	lle	Leu	His	Āla	Asp	His	Glu	Gln	Asn	Cys	Ser	Thr	Ser	Thr	
225					230					235					240	
gtc	cgc	atg	a t c	ggc	$\mathfrak{t}cc$	gcg	cag	gcg	aac	atg	ttc	gţc	tcc	atc	gcc	768
Val	Arg	Met	Ile	Gly	Ser	Ala	Gln	Ala		Met	Phe	Val	Ser	Ile	Ala	
				245					250					255		016
ggc	ggc	a t c	aac	gca	ctc	tcc	ggc	ccg	ctg	cac	ggt	ggc	gcc	aac	cag	816
Gly	Gly	lle		Ala	Leu	Ser	Gly		Leu	HIS	Gly	GIY	Ala	ASII	GIII	
			260					265				~~~	270	anc	aca	864
gct	gtc	ctc	gag	atg	ctc	gag	gag	alc	gca	gcc	Acr	Cly	Glv	Acn.	g Ca Ala	004
Ala	Val	Leu	GIU	меі	Leu	GIU	280	116	Ala	Ala	ASII	285	GIY	пор	MIG	
		275 t t c	o t a	226	car	ata		aac	ааσ	σασ	ลลฮ		gtc	cgc	ctc	912
acc	gac	Phe	Mat	Acn	Δrσ	Val	Lve	Asn	Ivs	Glu	Lvs	Glv	Val	Arg	Leu	
1111	290	rne	MET	пзп	MIG	295	Гуз	ASII	Буб	0.0	300	01,		0		
atσ		ttc	gga	cac	cgc		tac	aag	aac	tac	gat	ccg	cgt	gça	gcc	960
Met	Glv	Phe	Glv	His	Arg	Val	Туг	Lys	Asn	Tyr	Asp	Pro	Arg	Ala	Ala	
305	0.,	-,	- •		310					315					320	
atc	gtc	aag	gac	асс	gcc	cac	gag	a t c	ctc	gag	cac	ctc	ggt	ggc	gac	1008
He	Val	Lys	Asp	Thr	Ala	His	Glu	Ile	Leu	Glu	His	Leu	Gly	Gly	Asp	
				325					330					335		1056
сса	сţg	ctg	gat	ctg	gc t	ctc	aag	ctg	gaa	gaa	atc	gca	ctc	aac	gac	1056
Pro	Leu	Leu		Leu	Ala	Leu	Lys		Glu	Glu	He	Ala		Asn	ASP	
			340					345				<i>a</i>	350	100	200	1104
gat	tac	ttc	atc	tcc	cgc	aag	ctg	tac	ccg	aac	gig	gac	Dha	Tur	acc Thr	1104
Asp	Tyr	Phe	He	Ser	Arg	Lys	360	1 y r	PTO	ASII	v a i	365	1 11 6	1 y 1	1111	
		355	100	0.00	acc	a t cr		ttc	ccσ	acg	gac		ffc	acc	gtc	1152
ggc	cig	lle	Tur	Ara	Ala	Met	Glv	Phe	Pro	Thr	Asp	Phe	Phe	Thr	Val	
Gly	370	116	1 y 1	MIG	Ala	375	013	inc	110	1	380					
cta		σcc	afc	ggc	cgc		ccg	ggc	tgg	atc	gcc	cac	tac	cgc	gag	1200
Len	Phe	Ala	He	Glv	Arg	Leu	Pro	Gly	Trp	He	Ala	His	Tyr	Arg	Glu	
385		111 0	• • •		390					395					400	
		gcc	gat	ccg	ggc	gcc	aag	atc	aac	cgt	c c t	cgc	cag	atc	tac	1248
Gln	Leu	Ala	Asp	Pro	Gly	Ala	Lys	He	Asn	Arg	Pro	Arg	Gln	He	Tyr	
				405					410					415		
асс	ggt	gag	асс	gca	cgc	aag	atc	atc	ссс	cgc	gaa	gag	cgc	tag		1293
Thr	Gly	Glu		Ala	Arg	Lys	He			Arg	Glu	Glu				
			420					425					430			

<210> 90 <211> 430

<212> PRT <213 Corynebacterium thermoaminogenes <400> 90 Val Ala Ser Asp Asn Asn Lys Ala Val Leu His Tyr Pro Gly Gly Glu Phe Glu Met Gly Ile Lys Gln Ala Thr Glu Gly Asn Ser Gly Val Ile 20 25 Leu Gly Lys Met Leu Ser Glu Thr Gly Leu Val Thr Phe Asp Pro Gly 40 Tyr Val Ser Thr Gly Ser Thr Glu Ser Lys Ile Thr Tyr Ile Asp Gly 55 60 Asp Ala Gly Ile Leu Arg Tyr Arg Gly Tyr Asp Ile Ala Asp Leu Ala 65 Glu Asn Ala Thr Phe Asn Glu Val Ser Tyr Leu Leu Ile Lys Gly Glu Leu Pro Thr Pro Glu Glu Leu His Lys Phe Asn Asp Glu Ile Arg His 100 105 110 His Thr Leu Leu Asp Glu Asp Phe Lys Ser Gln Phe Asn Val Phe Pro 120 Arg Asp Ala His Pro Met Ala Thr Leu Ala Ser Ser Val Asn Ile Leu 140 135 Ser Thr Tyr Tyr Gln Asp Gln Leu Asp Pro Leu Asp Glu Ala Gln Leu 150 155 145 160 Asp Lys Ala Thr Val Arg Leu Met Ala Lys Val Pro Met Leu Ala Ala 165 170 Tyr Ala His Arg Ala Arg Lys Gly Ala Pro Tyr Met Tyr Pro Asp Asn 180 185 Ser Leu Asn Ala Arg Glu Asn Phe Leu Arg Met Met Phe Gly Tyr Pro 195 205 200 Thr Glu Pro Tyr Glu Val Asp Pro Ile Met Val Lys Ala Leu Asp Lys 220 215 Leu Leu Ile Leu His Ala Asp His Glu Gln Asn Cys Ser Thr Ser Thr 225 230 235 240 Val Arg Met Ile Gly Ser Ala Gln Ala Asn Met Phe Val Ser Ile Ala 245 250 Gly Gly Ile Asn Ala Leu Ser Gly Pro Leu His Gly Gly Ala Asn Gln 265 Ala Val Leu Glu Met Leu Glu Glu Ile Ala Ala Asn Gly Gly Asp Ala 275 280 285 Thr Asp Phe Met Asn Arg Val Lys Asn Lys Glu Lys Gly Val Arg Leu

295

Met Gly Phe Gly His Arg Val Tyr Lys Asn Tyr Asp Pro Arg Ala Ala

											•					
305					310					315					320	
lle	Val	Lys	Asp	Thr 325	Ala	His	Glu	He	Leu 330	Glu	His	Leu	Gly	Gly 335	Asp	
Pro	Leu	Leu	Asp 340	Leu	Ala	Leu	Lys	Leu 345	Glu	Glu	He	Ala	Leu 350	Asn	Asp	
Asp	Tyr	Phe 355		Ser	Arg	Lys	Leu 360	Tyr	Pro	Asn	Val	Asp 365	Phe	Tyr	Thr	
Gly	Leu 370	Tle	Tyr	Arg	Ala	Me t 375		Phe	Pro	Thr	Asp 380		Phe	Thr	Val	
Leu 385		Ala	lle	Gly	Arg 390		Pro	Gly	Trp	Ile 395		His	Tyr	Arg	Glu 400	
	Leu	Ala	Asp	Pro 405		Ala	Lys	He	Asn 410		Pro	Arg	Gln	11e 415		
Thr	Gly	Glu	Thr 420		Arg	Lys	He	Ile 425		Arg	Glu	Glu	Arg 430	110		
			420					420					400			
<211 <212	0> 91 1> 13 2> DM	314 NA														
<213	3> B1	revit	pacte	eriu	n lac	ctofe	ermei	ntum								
<220 <221	)>  > CI	)S														
		1)	(131)	1)												
/ A O (	)> 91	1														
		gaa	agg	gat	atc	gtg	gct	act	gat	aac	aac	aag	gct	gtc	clg	48
		Glu														
	tac	ссс	ggt	ggc	gag	ttc	gaa	atg	gac	atc	a t c	gag	gct	t c t	gag	96
His	Tyr	Pro	Gly 20	Gly	Glu	Phe	Glu	Met 25	Asp	He	He	Glu	Ala 30	Ser	Glu	
ggt	aac	aac	ggt	gtt	gtc	ctg	ggc	aag	atg	ctg	t c t	gag	ac t	gga	ctg	144
Gly	Asn	Asn 35	Gly	Val	Val	Leu	Gly 40	Lys	Met	Leu	Ser	Glu 45	Thr	Gly	Leu	
		t t t														192
He	Thr 50	Phe	Asp	Pro	Gly	Туг 55	Val	Ser	Thr	Gly	Ser 60	Thr	Glu	Ser	Lys	
		tac														240
	Thr	Tyr	He	Asp		Asp	Ala	Gly	He		Arg	Tyr	Arg	Gly		
65	ata	gct	നാ i	cta	70	<b>ന</b> മന	g g f	acc	acc	75	аас	σασ	gtt	1ct	80 tac	288
		Ala														200
				~ ~ ~											-	

				85					90					95		
cta	ctt	atc	aac	ggt	gaa	cta	сса	acc	сса	gat	gag	c t't	cac	aag	t t t	336
														Lys		
			100					105					110			
aac	gac	gag	a t t	cgc	cac	cac	acc	ctt	ctg	gac	gag	gac	t t c	aag	tcc	384
Asn	Asp	Glu	Ile	Arg	His	His	Thr	Leu	Leu	Asp	Glu	Asp	Phe	Lys	Ser	
		115					120					125				
														ttg		432
Gln	Phe	Asn	Va ļ	Phe	Pro	Arg	Asp	Ala	His	Pro		Ala	Thr	Leu	Ala	
	130					135					140					
														aac		480
Ser	Ser	Val	Asn	He		Ser	Thr	Tyr	Туг		Asp	GIn	Leu	Asn		
145					150					155		٠			160	F 0 0
														gca		528
Leu	Asp	Glu	Ala		Leu	Asp	Lys	Ala		Val	Arg	Leu	меі	Ala	Lys	
				165					170				~~+	175	0.01	576
														gct		576
Val	Pro	Met		Ala	Ala	lyr	Ala		Arg	ATA	Arg	Lys	190	Ala	F10.	
,			180				0.1.0	185	a o a	c a t	ana	226		ctg	cac	624
				gac												024
Туг	мет		PTO	ASP	ASII	sei	200	ASII	Ala	AIG	Giu	205	THE	Leu	МБ	
o t a	a for	195	aa t	tac	cca	3 C C		cca	tac	gag	atc		сса	atc	atg	672
														He		0.2
wei	210	THE	Uly	1 9 1	110	215	O I u	110	1 9 1	0.4	220					
ate		or t	ctø	gac	ลลช		ctc	atc	ctg	cac		gac	cac	gag	cag	720
														Glu		
225	Буз	mu	Боч	110 6	230	204	200			235		•			240	
	tgc	tcc	асс	tcc		gtt	cgt	atg	atc	ggt	tcc	gca	cag	gcc	aac	768
														Ala		
7.0.	0,0			245					250					255		
atg	ttt	gtc	tcc	atc	gct	ggt	ggc	atc	aac	gct	ctg	tcc	ggc	c c a	ctg	816
														Pro		
			260					265					270			
cac	ggt	ggc	gca	aac	cag	gct	gtt	ctg	gag	atg	c t c	gaa	gac	atc	aag	864
														He		
		275					280					285				
														aag		912
Asn	Asn	His	Gly	Gly	Asp	Ala	Thr	Ala	Phe	Met	Asn	Lys	Val	Lys	Asn	
	290					295					300					
aag	gaa	gac	ggc	gtc	cgc	ctc	atg	ggc	t t c	gga	сас	cgc	gtt	tac	aag	960
Lys	Glu	Asp	Gly	Val	Arg	Leu	Met	Gly	Phe		His	Arg	Val	Туг		
305					310					315					320	

aac 1																1008
Asn 7	Гуг	Asp	Pro		Ala	Ala	He	Val		Glu	Thr	Ala	His		He	
				325					330					335		1056
ctc g																1056
Leu (	5 I U	HIS		GIY	GIY	ASP	ASD		Leu	ASP	Leu	Ата	350	Lys	ren	
~~~	~~ á	0 + +	340	a t a	an t	an t	an t	345	tto	ato	too	cac		ctc	tac ·	1104
gaa g Glu (_															1104
GIU	JIU	355	Ala	Leu	Aid	v 2 h	360	1 9 1	1116	116	361	365	Lys	LCu	1 y 1	
ccg a	9 9 C		σac	ttc	tac	acc		ctø	atc	tac	cgc		atg	gge	ttc	1152
Pro A																1102
	370	141	ИЗР	1110	1 9 1	375	Oly	LCu	110	1 9 1	380	711 a	11300	01,	1110	
cca a		gac	ttc	ttc	асс		ttg	ttc	gca	atc		cgt	ctg	сса	gga	1200
Pro 7																
385		ПОР			390					395	•	Ü			400	
tgg a	atc	gct	cac	tac	cgc	gag	cag	ctc	ggt	gca	gca	ggc	aac	aag	atc	1248
Trp 1																
•				405					410		2			415		
aac (cgc	сса	cgc	cag	gtc	tac	асс	ggc	aag	gaa	tcc	cgc	aag	ttg	gtt	1296
Asn A	Arg	Pro	Arg	Gln	Val	Tyr	Thr	Gly	Lys	Glu	Ser	Arg	Lys	Leu	Val	
			420					425					430			
cct	cgc	gag	gag	cgc	t a a											1314
Pro A	Arg	Glu	Glu	Arg												
		435														
<210>																
<211)																
<212					,	, ,		,								
<213>	> Br	evit	acte	eriun	a lac	21016	ermei	ıtum						•		
/400\	\ 0.0	,														
<400)			A. r. cr	Acn	Ho	Val	Ala	The	Acn	Aen	Acn	Luc	ΛΙα	Val	Lou	
Met F	rne	Glu	Alg	ASP 5	116	Val	Ald	1 11 1	10	ASII	ASII	ГАЗ	Ala	15	Leu	
l His 7	Гъгъ	Dro	Cly		Clu	Dho	Clu	Mot		ماآ	He	Glu	Δla		Clu	
пізі	ГУІ	F10	20	Gly	Giu	rne	Glu	ме і 25	nsh	116	116	o i u	30	561	Gru	
Gly A	1 e n	Aen		Val	Val	الم آ	Glv		Met	Len	Ser	GLu		Glv	Len	
Gly F	7511	35	Uly	141	vai	Ltu	40	Lys	mei	LCu	561	45	1 11 1	Oly	Lcu	
He T	lh r		Asn	Pro	Glv	Tvr		Ser	Thr	Glv	Ser		Glu	Ser	Lvs	
116 1	50	1110	Hab	0	JIY	55	, u 1	501	1 11 1	0.,	60		o ru		٠, ٠	
Ile 1		Tvr	He	Asp	Glv		Ala	Glv	He	Leu		Tvr	Arg	GIv	Tvr	
65		1 3 1	1.0		70			~ . <u>,</u>	0	75	0				80	
Asp I	He	Ala	Asp	Leu		Glu	Asn	Ala	Thr		Asn	Glu	Val	Ser		
,			, -	85			- **		90	-				95	-	
				-												

			100					105					His 110		
		115					120					125	Phe		
Gln	Phe 130	Asn	Val	Phe	Pro	Arg 135		Ala		Pro	Me t 140	Ala	Thr	Leu	Ala
Ser 145	Ser	Val	Asn	He	Leu 150	Ser	Thr	Tyr	Tyr	Gln 155	Asp	Gln	Leu	Asn	Pro 160
				165					170				Met	175	
			180		Ala	Tyr	Ala	His 185	Arg				Gly 190		
Tyr		195					200					205	Phe		
Met	210		Gly	Tyr	Pro	Thr 215					220		Pro		
225					230					235			His		240
				245					250					255	
			260					265	•				Gly 270		
		275					280					285	Asp		
	290					295					300				Asn
305					310					315					Lys 320
				325					330				His	335	
			340					345					350		Leu
		355					360					365			Tyr
	370					375					380				Phe
385					390					395					Gly 400
				405					410					415	
Asn	Arg	Pro	Arg 420	Gln	Val	Tyr	Thr	Gly 425		Glu	Ser	Arg	Lys 430	Leu	Val
Pro	Arg	Glu	Glu	Arg											

435

<210> 93 <211> 1656 <212> DNA <213> Corynebacterium thermoaminogenes <220> <221> CDS <222> (309)..(1595) <400> 93 acgcccgatt cttcaacact atcgaagagg tcccaaccca cgcgttgacc cagggcttgg 60 gtacttigic ccgcgcgcaa aatatcgigi iggiggcaac iggccaagga aaagcagaca 120 gccatccgcg gaactgtgga aggtccagtg actgcttctt gcccaggttc cattctgcaa 180 atgcacaaca acgccaccat catcgttgat gaagcagcag catccaagct gaaaaatgct 240 gaccattacc gtctcatgga gcaattaaag ctgcgctaga aacaaaaagg aaagtactgt 300 gigggget aig cac aca gaa ett tee agt tig ege eet geg tae eat gig 350 Met His Thr Glu Leu Ser Ser Leu Arg Pro Ala Tyr His Val act cct ccg cag ggc aga ctc aat gat ccc aat gga atg tac gtc gat 398 Thr Pro Pro Gln Gly Arg Leu Asn Asp Pro Asn Gly Met Tyr Val Asp 15 20 25 gga gat acc ctc cac gtc tac tac cag cac gat cca ggt ttc ccc ttc 446 Gly Asp Thr Leu His Val Tyr Tyr Gln His Asp Pro Gly Phe Pro Phe 35 40 gca cca aag cgc acc ggt tgg gct cac acc acc acg ccg ttg acc gga 494 Ala Pro Lys Arg Thr Gly Trp Ala His Thr Thr Pro Leu Thr Gly 50 55 ccg cag cga ttg cag tgg acg cac ctg ccc gat gct ctt tac ccg gat 542 Pro Gln Arg Leu Gln Trp Thr His Leu Pro Asp Ala Leu Tyr Pro Asp 75 70 590 gta tcc tat gac ctg gat gga tgc tat tcc ggc gga gcc gta ttt tct Val Ser Tyr Asp Leu Asp Gly Cys Tyr Ser Gly Gly Ala Val Phe Ser 90 85 80 638 gac ggc acg cil aaa cil lic lac acc ggc aac cga aaa all gac ggc Asp Gly Thr Leu Lys Leu Phe Tyr Thr Gly Asn Arg Lys Ile Asp Gly 100 105 95 aag cgc cgc gcc acc caa aac ctc gtc gaa gtc gag gac cca act ggg 686 Lys Arg Arg Ala Thr Gln Asn Leu Val Glu Val Glu Asp Pro Thr Gly 120 125 115 ctg atg ggc ggc att cat cgc cgc tcg cct aaa aat ccg ctl atc gac 734 Leu Met Gly Gly Ile His Arg Arg Ser Pro Lys Asn Pro Leu Ile Asp

			130					135					140			
gga	ссс	gcc	agc	ggt	ttt	acg	ссс	cac	tac	cgc	gat	$\varepsilon\varepsilonc$	atg	a t c	agc	782
Gly	Pro	Ala	Ser	Gly	Phe	Thr		His	Tyr	Arg	Asp		Met	Ile	Ser	
4		145	or o t	aa t	taa	000	150	art t	o f f	aaa	are t	155	cac	gaa	220	830
	_	ggg Gly														
110	160	Ory	пор	Oly	пр	165	MC t	141	БСС	Ory	170	0111	6	O L G		
ctc	асс	ggt	gca	gcg	gtt	c t a	tac	cgc	tcg	gca	gat	c t t	gaa	aac	tgg	878
Leu	Thr	Gly	Ala	Ala	Val	Leu	Tyr	Arg	Ser		Asp	Leu	Glu	Asn		
175					180					185				,	190	0.0.0
		tcc														926
Glu	Phe	Ser	GIY	195	11e	Inr	rne	ASP	200	sei	ASP	на	GIII	205	Gly	
101	acc	c c t	gat		gtt	c c t	ggc	ggc		atg	igg	gaa	tgc		aac	974
	_	Pro			-											
			210					215					220			
		acg														1022
Leu	Phe	Thr	Leu	Arg	Asp	Glu		Thr	Gly	Glu	Asp		Asp	Val	Leu	
		225			~~~		230	o or t	a t a	an t	an t	235	at t	201	0.00	1070
		tgt Cys														1010
116	240	Суз	110	0111	Oly	245	пор	MIE,	110	пор	250	014	, α 1	1 11 1		
tac		agc	tct	gac	cag		gga	tat	gtc	gtc	ggc	aag	ctt	gaa	gaa	1118
Туг	Ala	Ser	Ser	Asp	Gln	Cys	Gly	Tyr	Val	Val	Gly	Lys	Leu	Glu		
255					260					265					270	
		ttc														1166
Thr	Thr	Phe	Arg		Leu	Arg	Gly	Phe	Ser 280	GIU	Leu	ASP	rne	285	HIS	
maa	110	tac	σcσ	275	саσ	σ11	gca	gtc		ggt	tee	gat	acc		ctt	1214
		Tyr														
0.0	1	- 3 -	290					295					300			
gtg	ggc	tgg	atg	gga	ttg	cct	gca	cag	gat	gat	сас	сса	a c a	gtt	gcg	1262
Val	Gly	Trp	Met	Gly	Leu	Pro	Ala	Gln	Asp	Asp	His		Thr	Val	Ala	
		305					310					315			4.4	1010
		gga														1310
GIn	320	Gly	llb	vai	HIS	325	Leu	1111	vai	PIO	330	AIG	Leu	1115	Leu	
cøf		cat	aca	atc	tat		gag	ctt	ctt	ctc		gaa	ggg	gag	tcg	1358
		His														
335					340					345					350	
		ac t														1406
Gly	Val.	Thr	Arg		Val	Leu	Gly	Ser		Pro	Val	Arg	Val		He	
				355					360					365		

cga gac aat gtt	tcc ctc gag	tgg gat ggt gtc	cgg ttg tct gtg gat	1454
Arg Asp Asn Val	Ser Leu Glu	Trp Asp Gly Val	Arg Leu Ser Val Asp	
370		375	380	
	cat cat ata		cct ggc gaa tta gtg	1502
				1005
	HIR HIR VAL		Pro Gly Glu Leu Val	
385		390	395	
			gca ggt cat ggc cag	1550
Ile Ala Asp Asp	Asn Thr Ala	lle Glu lle Thr	Ala Gly His Gly Gln	
400	405		410	
	ttc cgc acc	ttc aaa ggt gac	act att gag aga	1595
			Thr Ile Glu Arg	
	420	425		
415			toottoggoo entagettan	1655
taagtcataa aaaa	gggcci icigig	ggegg allglacaaa	tacttcgcaa aatcccttga	
t				1656
<210> 94				
<211> 429	•			
<212> PRT				
<213> Corynebac	torium thermo	naminogenes		
\213/ Colynebac	terrum therme	ami nogenes		
Z400\ 04				
<400> 94	I C C	Lou Ang Dro Alo	Tur Vic Val Thr Dro	
Met His Int Glu			Tyr His Val Thr Pro	
1	5	10	15	
Pro Gln Gly Arg	Leu Asn Asp	Pro Asn Gly Met	Tyr Val Asp Gly Asp	
20		25	30	
Thr Leu His Val	Tyr Tyr Gln	His Asp Pro Gly	Phe Pro Phe Ala Pro	
35		40	45	
	Tro Ala His	Thr Thr Thr Pro	Leu Thr Gly Pro Gln	
50	55		60	
		Dro Aon Ala Lou		
Arg Leu Gin Irp			Tyr Pro Asp Val Ser	
65	70	75		
Tyr Asp Leu Asp	Gly Cys Tyr	Ser Gly Gly Ala	Val Phe Ser Asp Gly	
	85	90	95	
Thr Leu Lys Leu	Phe Tyr Thr	Gly Asn Arg Lys	lle Asp Gly Lys Arg	
100		105	110	
	Acn Lou Val		Pro Thr Gly Leu Met	
	ASII LEU Yai			
115		120	125	
Gly Gly Ile His		Pro Lys Asn Pro	Leu lle Asp Gly Pro	
130	135		140	
Ala Ser Gly Phe	Thr Pro His	Tyr Arg Asp Pro	Met Ile Ser Pro Asp	
145	150	155	160	
			Arg Glu Asn Leu Thr	
Oly Map Oly Tip	165	170	175	
	100	110	110	

Gly	Ala	Ala	Val 180	Leu	Tyr		Ser	Ala 185	Asp	Leu		Asn	Trp-	Glu	Phe
Ser	Gly	Glu 195		Thr	Phe				Asp			Pro 205	Gly	Ser	Ala
Pro	Asp 210		Val	Pro	Gly	Gly 215		Met	Trp	Glu	Cys 220	Pro	Asn	Leu	Phe
Thr 225		Arg	Asp	Glu	Lys 230	Thr	Gly	Glu	Asp	Leu 235	Asp	Val	Leu	Ile	Phe 240
	Pro	Gln	Gly	Leu 245	Asp	Arg	He	Asp	Asp 250	Glu		Thr	His	Tyr 255	Ala
Ser	Ser	Asp	Gln 260	Cys	Gly	Tyr	Val	Val 265	Gly	Lys	Leu	Glu	Glu 270	Thr	Thr
Phe	Arg	Val 275	Leu	Arg	Gly	Phe	Ser 280	Glu	Leu	Asp	Phe	Gly 285	His	Glu	Phe
Tyr	Ala 290	Pro	Gln	Val	Ala	Val 295	Asn	Gly	Ser	Asp	Ala 300	Trp	Leu	Val	Gly
Trp 305	Met	Gly	Leu	Pro	Ala 310	Gln	Asp	Asp	His	Pro 315	Thr	Val	Ala	Gln	Glu 320
Gly	Trp	Val	His	Cys 325	Leu	Thr	Val	Pro	Arg 330	Arg	Leu	His	Leu	Arg 335	Asn
His	Ala	He	Туг 340	Gln	Glu	Leu	Leu	Leu 345	Pro	Glu	Gly	Glu	Ser 350	Gly	Val
Thr	Arg	Ser 355	Val	Leu	Gly	Ser	Glu 360	Pro	Val	Arg	Val	Asp 365	He	Arg	Asp
Asn	Val 370	Ser	Leu	Glu	Trp	Asp 375	Gly	Val	Arg	Leu	Ser 380	Val	Asp	Arg	Asp
Gly 385	Asp	Arg	Arg	Val	Ala 390	Glu	Val	Lys	Pro	Gly 395	Glu	Leu	Val	He	Ala 400
Asp	Asp	Asn	Thr	Ala 405	He	Glu	He	Thr	Ala 410	Gly	His	Gly	Gln	Val 415	Ser
Phe	Ala	Phe	Arg 420	Thr	Phe	Lys	Gly	Asp 425	Thr	He	Glu	Arg			

<210> 95

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<pre><400> 95 gtacatattg tcgttagaac gcgtaatacg actca</pre>	35
<210> 96 <211> 35 <212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer for amplifying scrB gene	
<400> 96 cgttagaacg cgtaatacga ctcactatag ggaga	35
<210> 97 <211> 30 <212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer for LA cloning of scrB	
<400> 97 gtaaagagcg tcgggcaggt gcgtccactg	30
<210> 98 <211> 30 <212> DNA	
<213> Artificial Sequence	-
<220> <223> Description of Artificial Sequence:primer for LA cloning of scrB	
<400> 98 ggtgtgagcc cagccggtgc gctttggtgc	30
<210> 99	

<211> <212>		
<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence:primer for LA cloning of scrB	
<400> atcago		30
<210><211><211><211>	30	
<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence:primer for LA cloning of scrB gene	
<400> ggtgca		30
<210><211><211><212>	32	
<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence:primer for amplifying scrB gene	
<400> ggcccg		32
<210><211><211><211>	32	
<213>	Artificial Sequence	

<220> <223>	Description of Artificial Sequence:primer amplifying scrB gene	for	
<400> ggcccg	102 gggga tcaagggatt tigcgaagta ti		32
<210><211><211><212>	30		
<213>	Artificial Sequence		
<220> <223>	Description of Artificial Sequence:primer amplifying icd gene	for	
<400> gaaga	103 totot atgaccagog catcaagotg		30
<210><211><211><212>	30		
<213>	Artificial Sequence		
<220> <223>	Description of Artificial Sequence:primer amplifying icd gene	for	
<400> gaaga	104 totgg toatoccaga acctgatoac		30
<210><211><211><212>	32		
<213>	Artificial Sequence		
<220> <223>	Description of Artificial Sequence:primer amplifying gdh gene	for	

<400> 105 gcgcctgcag gtccgagggt gtgcgttcgg ca	32
<210> 106 <211> 32 <212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer for amplifying gdh gene	
<400> 106	
gcgcctgcag gcaccaggat gccctcaacc ag	32
<210> 107 <211> 30 <212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer for amplifying gltA gene	
<400> 107 ggggtaccga tcactataac cccacagcac	30
<210> 108 <211> 30 <212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer for amplifying gltA gene	
<400> 108 ggggtaccct ggctgatctg aactaggcgc	30