

Forelesning i Fysikk 6.

Magnetiske Felt og Magnetiske krefter

Hans Jakob Rivertz IDI-avdeling-kalvskinnet 19. november 2019

Plan

Mål for timen

Magnetisme

Magnetiske felt og feltlinjer

Magnetisk fluks

Ladde partikler i bevegelse i magnetiske felt

Anvendelser med ladde partikler i bevegelse

Magnetisk kraft på strømførende leder

Krefter og kraftmoment på strømsløyfer og Likestømsmotorer

Hall-effekten

Mål for timen

- Kjenne til magnetiske krefter felt og feltlinjer.
- Kjenne til hvordan ladde patikler beveger seg i elektrisk felt.
- Kjenne til hva magnetisme kan brukes til.
- Kunne regne ut kraften fra et magnetfelt på en strømførende leder.
- Kjenne prinsippene bak en likestrømsmotor.
- Kjenne til Hall-effekten

Oversikt

Mål for timen

Magnetisme

Magnetiske felt og feltlinjer

Magnetisk fluks

Ladde partikler i bevegelse i magnetiske felt

Anvendelser med ladde partikler i bevegelse

Magnetisk kraft på strømførende leder

Krefter og kraftmoment på strømsløyfer og Likestømsmotorer

Hall-effekter

Magnetisme

- Magnetisete biter av jern ble oppdaget for minst 2500 år siden ved byen **Magnesia**.
- Disse var såkalte permanente magneter.
- Permanente magneter tiltrekker og frastøter andre permanente magneter alt etter hvordan de snus mot hverandre.
- Permanente magneter tiltrekker også umagnetisk jern.

Krefter mellom permanente magneter

Figur: Like poler frastøter hverandre

Figur: Ulike poler tiltrekker hverandre

Deling av magneter og monopoler

Det er aldri blitt påvist magnetiske monopoler. Om man deler en magnet i to blir den til to magneter.

Figur: Oppdeling av magneter gir to mindre magneter.

Magnetisme og elektrisitet

Lenge trodde man at magnetisme og elektrisitet ikke hadde noe med hverandre å gjøre.

Dette forsøket ble gjort i fysikkforelesninger. Strømmen i lederen til høyre ga ikke synlig utslag på magnetnålen.

Ørsteds oppdagelse

Oversikt

Mål for timen

Magnetisme

Magnetiske felt og feltlinjer

Magnetisk fluks

Ladde partikler i bevegelse i magnetiske felt

Anvendelser med ladde partikler i bevegelse

Magnetisk kraft på strømførende leder

Krefter og kraftmoment på strømsløyfer og Likestømsmotorer

Hall-effekter

Magnetiske feltlinjer

Kompassnålene peker langs feltlinjene.

Feltlinjene rundt en leder

Magnetisk felt

Det magnetiske feltet beskrives som et vektorfelt **B**, det vil si i hvert punkt (x, y, z) er det en vektor

$$\mathbf{B}(x,y,z,t)$$
. Ued tiden \mathbf{t} .

- \bullet Retningen til ${\bf B}$ er i samme retning som feltlinjene (Den veien de røde pilene peker.)
- Feltet er stekere når linjene er tette og svakere der det er mer rom mellom linjene.

Magnetisk felt

- Lengden på pilene angir styrken på **B**-feltet.
- Feltet er tegnet i kun utvalgte punkter.
- Sammenhengen mellom feltstyrke og krefter på ladninger er ikke som for elektrisk felt.

Feltet rundt en spole

Figuren under viser magnetfeltet rundt en spole i et plan som deler spolen i to på langs. (Korte vektorer er tegnet lengre enn de er.)

En spole er en elektrisk leder som er kveilet opp på en sylinder.

Oversikt

Mål for timen

Magnetisme

Magnetiske felt og feltlinjer

Magnetisk fluks

Ladde partikler i bevegelse i magnetiske felt

Anvendelser med ladde partikler i bevegelse

Magnetisk kraft på strømførende leder

Krefter og kraftmoment på strømsløyfer og Likestømsmotorer

Hall-effekter

Magnetisk fluks

Magnetisk felt kalles ofte for **magnetisk flusktetthet**. Vi måler flusktetthet i Tesla, [T]. Fluks måles i Weber [Wb]. Det er flere måter vi kan beskrive magnetisk fluks.

- Den magnetisk fluksen igjennom et areal A angir hvor mange feltlinjer som går igjennom arealet.
- \bullet Om arealet Aer er lite og ${\bf B}$ står normalt på Aså er den magnetiske fluksen gjennom Alik

$$\Phi_{\mathbf{B}} = A \cdot B.$$

• Om arealet A er er lite og vinkelen mellom ${\bf B}$ og normalen til A er θ så er den magnetiske fluksen gjennom A lik

$$\Phi_{\mathbf{B}} = A \cdot B \cdot \cos \theta.$$

Magnetisk fluks

$$\hat{\mathbf{n}} = [a, b, c]$$

$$\alpha^2 + b^2 + c^2 = 1$$

$$\Phi_{\mathbf{B}} = AB\cos\theta = A\mathbf{\hat{n}} \cdot \mathbf{\overline{B}}.$$

Oversikt

Mål for timen

Magnetisme

Magnetiske felt og feltlinjer

Magnetisk fluks

Ladde partikler i bevegelse i magnetiske felt

Anvendelser med ladde partikler i bevegelse

Magnetisk kraft på strømførende leder

Krefter og kraftmoment på strømsløyfer og Likestømsmotorer

Hall-effekter

Ingen magnetisk kraft på ladning i bevegelse parallelt med feltet

og partikkelen er null grader.

Magnetiske krefter på ladninger i bevegelse

Kraften fra et magnetfelt på en ladning i bevegelse er

- Proposjonal med magnetfeltets styrke.
- Proposjonal med ladningens absolutte størrelse
- Proposjonal med farten til ladningen
- Proposjonal med sinus til vinkelen mellom farten og magnetfeltet.

Forige site
$$\sin \theta = 0$$
.
 $\theta = 180^{\circ}$, $\theta = 0^{\circ}$ du forten en
parallell med noonet fettet

Magnetiske krefter på ladning i bevegelse, vektorform

Kraften som virker på en ladning qmed hastighet ${\bf v}$ i et magnetfelt ${\bf B}$ er lik

Retningen til **F** er bestemt ved "**Høyrehåndsregelen**" som vist i figuren til høyre.

Magnetiske enheters relasjoner til andre SI-enheter

Vi skriver om enhetene for flukstetthet **B** og fluks Φ_B .

 \bullet Fra formelen $F=|q|vB\sin\phi$ fås

$$1T = 1 N s/C m$$

= $1 N/A m$
= $1 Wb/m^2$. $\boxed{\Phi_{\mathcal{B}} = \overrightarrow{\mathcal{B}} \cdot \overrightarrow{\mathcal{H}} \cdot \mathcal{A}}$

• Fra den spesielle formelen for fluks $\Phi_B = A \cdot B \cos \theta$, fås at

$$\begin{split} 1\,\mathrm{Wb} &= 1\,\mathrm{N}\,\mathrm{m}/\mathrm{A} \\ &= 1\,\mathrm{J}/\mathrm{A} \\ &= 1\,\mathrm{V}\,\mathrm{s}. \end{split}$$

Eksempel på ladning i bevegelse i uniformt magnetfelt

Et magnetfelt er **uniformt** i et område hvis det har samme retning og størrelse i området. En ladet partikkel som har hastighet vinkelrett på et uniformt magnetfelt beveger seg i en sirkelbane med radius.

$$R = \frac{mv}{qB}.$$

Posisjon $(x(t), y(t)) = R(\cos \omega t, \sin \omega t)$.

Hastighet $(x'(t), y'(t)) = R\omega(-\sin \omega t, \cos \omega t)$. Fart $v = R\omega$.

Akselerasjons vektor $(x''(t), y''(t)) = -R\omega^2(\cos \omega t, \sin \omega t).$

Akselerasjon i sirkelbevegelse $a=R\omega^2=v^2/R$

Løser følgende for R:

$$qvB = F = ma = mv^2/R.$$

Måling av magnetisk felt

Vi kan bruke formelen $\mathbf{F} = q \mathbf{v} \times \mathbf{B}$ til å måle magnetfelt. Den gule boksen sender ut en stråle av elektroner med konstant hastighet v. Elektronene lager et lyspunkt på den grønne fluoriserende skjermen. Lyspunktet er i midten når strålen er parallell med feltet. Vrir man 90 grader vil vi kunne lese av størrelsen til B.

Oversikt

Mål for timen

Magnetisme

Magnetiske felt og feltlinjer

Magnetisk fluks

Ladde partikler i bevegelse i magnetiske felt

Anvendelser med ladde partikler i bevegelse

Magnetisk kraft på strømførende leder

Krefter og kraftmoment på strømsløyfer og Likestømsmotorer

Hall-effekter

Anvendelser av ladde partikler i bevegelse

Massespektroskop (Eksperiment for å veie atomer.)

- Først akselereres en ladet parikkel i et elektrisk potensial.
- Så sorteres de med ønsket hastighet i et kombinert uniformt elektrisk felt og uniformt magnetfelt.

$$F_E = qE_0, F_B = qvB_0.$$

Partiklene med farten $v = E_0/B_0$ farer rett frem.

ullet Så bøyes partikkelstrålen i et uniformt magnetfelt. Vi måler radiusen R til banen og finner massen

$$m = \frac{R q B}{v}$$

Eksempel

Atomer av karbon ioniseres slik at de har ladning $-1\,e$. Ionene aksellereres til $300000\,\mathrm{m/s}$. Magnetfeltet i massespektroskopet er $B=0.100\,\mathrm{T}$ og radius måles til $43.5\,\mathrm{cm}$. Hvilken isotop er det snakk om?

$$M = \frac{KqB}{v} = \frac{43.5.10^{-2} m \cdot 1.603.10^{-19} C \cdot 0.1 T}{3.10^{5} m/s} =$$

Oversikt

Mål for timen

Magnetisme

Magnetiske felt og feltlinjer

Magnetisk fluks

Ladde partikler i bevegelse i magnetiske felt

Anvendelser med ladde partikler i bevegelse

Magnetisk kraft på strømførende leder

Krefter og kraftmoment på strømsløyfer og Likestømsmotorer Hall-effekten

Kraft fra magnetfelt på strømførende leder.

Benevningen for magnetfelt er Tesla, T. Formelen $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$ gir at

$$N = C Tm/s = AmT.$$

Det vil si: **Strøm** ganger **lengde** ganger **magnetfelt**, eller

$$F = ILB$$
. $10 = 14 \text{ mT}$
 $T = \frac{N}{2}$

Formelen er riktig men fremgangsmåte er ikke 100% god. Ålikevel virker denne måten å finne formler på overraskende ofte. metoden kalles **dimensjonsanalyse** og er god til komme på formeler.

Kraft fra magnetfelt på strømførende leder.

Gitt en rett leder som er har lengde L og som fører strømmen I og at denne lederen befinner seg i et magnetfelt ${\bf B}$. La ${\bf L}$ være en vektor med lengde L og retning i strømmens retning i lederen. Da er kraften som virker på lederen lik

$$\mathbf{F} = I \mathbf{L} \times \mathbf{B}.$$

Kraften som virker på lederen er summen av kraften på hvert enkelt-elektron i lederen.

Utleding av formelen for kraft på strømførende leder.

Fra forelesning 4 hadde vi

$$I = n|q|v_dA$$

der n
 er antall frie elektroner per kubikkmeter, v_d er drifthastighet,
 q er ladningen til elektronet og A er lederens tverrsnitt. La
 L være lengden til lederen. Da er

$$I \mathbf{L} = (nLA)q\mathbf{v}_d = N \, q \, \mathbf{v}_d$$

 $\operatorname{der} N$ er antall frie elektroner i lederen. Da er

$$I \mathbf{L} \times \mathbf{B} = N q \mathbf{v}_d \times \mathbf{B} = \mathbf{F}.$$

Eksempel

En leder som ligger i øst-vest retning har lengde $L=10.0\,\mathrm{cm}$ leder en strøm på $I=2.3\,\mathrm{A}$ i retning øst. Et magnet felt har retning nord-vest og styrke $B=1.43\,\mathrm{T}$. Finn kraften fra magnetfeltet på lederen. Hvilken retning virker kraften.

Oversikt

Mål for timen

Magnetisme

Magnetiske felt og feltlinjer

Magnetisk fluks

Ladde partikler i bevegelse i magnetiske felt

Anvendelser med ladde partikler i bevegelse

Magnetisk kraft på strømførende leder

Krefter og kraftmoment på strømsløyfer og Likestømsmotorer

Hall-effekter

Kraftmoment på strømførende sløyfe i magnetfelt.

Kraftmomentet på sløyfen er definert ved arm ganger kraft. I dette tilfellet er det to krefter og to armer:

$$\tau = 2\mathbf{a} \times \mathbf{F}$$

Prinsippet bak likestømsmotorer

Ved å sørge for at strømmen snur ved hver halve omdreining av sløyfen i forige foil vil kraftmomentet ha samme retning hele tiden. Det gjør at sløyfen dreier samme retning hele tiden.

Oversikt

Mål for timen

Magnetisme

Magnetiske felt og feltlinjer

Magnetisk fluks

Ladde partikler i bevegelse i magnetiske felt

Anvendelser med ladde partikler i bevegelse

Magnetisk kraft på strømførende leder

Krefter og kraftmoment på strømsløyfer og Likestømsmotorer

Hall-effekten

Hall-effekten

I et matall er det elektroner som beveger seg. Atomkjernene holder seg i ro. I en såkalt p-type leder er det (hull) en slags positive "partikler" beveger seg mellom atomene. Det finnes et eksperiment som kan teste ut dette. Det bygger på Hall-effekten.

Prinsippet bak Hall-effekten

Uansett hvilken ladning ladningsbærerene i en leder har vil de påvirkes av kraften

$$\frac{1}{N}I\mathbf{L} \times \mathbf{B}$$

der N er frie ladningsbærerer i lederen. De vil da bevege seg i kraftens retning med mindre en motsatt rettet like stor elektrisk kraft virker. Ved likevekt vil det være overskudd av ladningsbærere på den siden av lederen kraften virker.

Negativ ladningsbærer:

Positiv ladningsbærer:

Måling av tetthet av frie elektroner.

Vi kan bruke halleffekten til å måle antall frie elektroner. Stabilitet oppstår når

$$qE + qv_dB = 0$$

Strømtet
theten er $J = nqv_d$ Vi får da formelen

$$n = \frac{JB}{Eq}$$