

DISPOSITIVOS SEMICONDUCTORES ${\it Tema~2}$ Evaluación Parcial ${\it 12~de~julio~de~2022}$

Nombre y apellido:			
Padrón: Turno:	N° de ex	2 102 022	

- ullet Es condición necesaria para aprobar el parcial que al menos el $60\,\%$ de cada ejercicio esté correctamente planteado.
- Se considerará: La claridad y síntesis conceptual de las respuestas y justificaciones, los detalles de los gráficos/circuitos, la exactitud de los resultados numéricos.
- Cada uno de los dos ejercicios debe estar resuelto en hojas independientes.

Calificación:

Constantes: $m_0 = 9.1 \times 10^{-31} \,\mathrm{kg}; k = 1.38 \times 10^{-23} \,\mathrm{J \, K^{-1}}; h = 6.62 \times 10^{-34} \,\mathrm{J \, s}; q = 1.6 \times 10^{-19} \,\mathrm{C}; \epsilon_{\mathrm{r,SiO}_2} = 3.9; \epsilon_{\mathrm{r,Si}} = 11.7; \epsilon_0 = 88.5 \,\mathrm{fF \, cm^{-1}}.$

1) a) Se desea construir un dispositivo semiconductor usando como substrato aquel material de la tabla que posea la mayor resistividad a temperatura ambiente (300 K). Sabiendo que luego del proceso de purificación de la materia prima se obtiene un nivel de impurezas aceptoras de $1 \times 10^{12} \, \mathrm{cm}^{-3}$ para los dos materiales, calcular los valores de resistividad y determinar el material más adecuado para utilizar como substrato.

	$E_{\rm g}~({\rm eV})$	m_{n}^*/m_0	$m_{ m p}^*/m_0$	$\mu_{\rm n}~({\rm cm}^2/({\rm Vs}))$	$\mu_{\rm p}~({\rm cm}^2/({\rm Vs}))$	$N_{\rm A}~({\rm cm}^{-3})$
Ge	0.67	0.12	0.30	3900	1900	1×10^{12}
GaAs	1.42	0.07	0.50	8800	400	1×10^{12}

- b) Se dispone de un arreglo serie compuesto por una fuente de tensión, un resistor $(1 \,\mathrm{k}\Omega)$ y por dos diodos $(D_1 \,\mathrm{y} \,D_2)$. Los diodos están basados en una juntura PN y poseen idéntica geometría pero fueron fabricados con materiales semiconductores diferentes, por lo tanto, tienen corrientes de saturación distintas $(I_{s1} = 9 \times I_{s2} \,\mathrm{y}$ del orden de los picoampere). Conocidos los MÓDULOS de las caídas de tensión $|V_{D1}| = 5.94 \,\mathrm{V} \,\mathrm{y} \,|V_{D2}| = 59.6 \,\mathrm{mV}$, determinar cuál diodo se encuentra directa y cuál en inversa y calcular el valor de la fuente de tensión. Dibujar los circuitos y gráficos necesarios para el análisis, y justificar todos los pasos.
- 2) a) Dado el circuito de la figura y los siguientes datos: $V_T = 1 \, \text{V}$; $k = \mu C'_{\text{ox}} \frac{W}{L} = 2 \, \text{mA V}^{-2}$; $\lambda = 0.04 \, \text{V}^{-1}$ y $V_{\text{DD}} = 5 \, \text{V}$.
 - I) Escribir la ecuación de la corriente del transistor para los distintos regímenes de operación.
 - II) Dibujar la curva de salida para $V_{\rm GS} \in \{1,5;2,0;2,5\} \rm V$ y $0 < V_{\rm DS} < 5 \, \rm V.$
 - III) En el mismo par de ejes agregar la recta de carga para $R_{\rm D}=2\,{\rm k}\Omega$ y marcar los 3 puntos de trabajo. A partir del gráfico y de manera aproximada indicar los valores de trabajo de $I_{\rm DQ}$ y $V_{\rm DSQ}$.
 - IV) En el mismo par de ejes del punto anterior agregar la recta de carga correspondiente a la $R_{\text{D-max}}$ y $V_{GS}=2.5\,\text{V}$, tal que el transistor se encuentre en saturación. Indicar el valor de la resistencia.

- b) Se tiene un transistor MOSFET de canal P con $\mu_{\rm p}=400\,{\rm cm^2\,V^{-1}\,s^{-1}}$, $C'_{\rm ox}=100\,{\rm nF\,cm^{-2}}$, $W=20\,{\rm \mu m}$, $L=1\,{\rm \mu m}$, $V_{\rm T}=-0.71\,{\rm V}$ y $\lambda=0\,{\rm V^{-1}}$. Además considerar poly-silicio fuertemente dopado tipo N y el dopaje del sustrato $N_{\rm D}=3.10\times10^{16}\,{\rm cm^{-3}}$. El transistor está polarizado con una corriente $I_{\rm D}=-2\,{\rm mA}$ y una tensión $V_{\rm DS}=-2.5\,{\rm V}$. En estas condiciones:
 - I) Dibujar el modelo de pequeña señal a frecuencias medias para el transistor considerando $V_{BS} = 0$. Indicar las ecuaciones para calcular los parámetros del modelo y hallar los valores.
 - II) Calcular el incremento de corriente que se produce en $i_{\rm c}(t)$ (entrante al dispositivo) al variar simultáneamente 1 mV la tensión $v_{\rm gs}$ y -10 mV la tensión $v_{\rm ds}$.