

ECON 310 - MACROECONOMIC THEORY

Instructor: Dr. Juergen Jung

Towson University

Disclaimer

These lecture notes are customized for Intermediate Macroeconomics 310 course at Towson University. They are not guaranteed to be error-free. Comments and corrections are greatly appreciated. They are derived from the Powerpoint©slides from online resources provided by Pearson Addison-Wesley. The URL is: http://www.aw-bc.com/williamson

These lecture notes are meant as complement to the textbook and not a substitute. They are created for pedagogical purposes to provide a link to the textbook. These notes can be distributed with prior permission. This version compiled September 7, 2016.

Chapter 2: Measurement

- Understand basic issues concerning measurement of key macroeconomic variables
- 2 Need understanding of variables to understand the important role they play in economic models
- Measuring GDP
- 4 Nominal and real GDP and price indices
- 5 Savings, wealth and capital
- 6 Labor market measurement

Measurement: A Review

- Gross Domestic Product (GDP): dollar value of final output produced during a given period of time domestically.
- In the United States (US) measured quarterly as part of National Income and Product Accounts (NIPA).
- Three approaches:
- Product sum of all the value-added in the economy (do not count intermediate goods).
- 2 Expenditure total spending on all final goods and services in the economy (do not count intermediate goods).
- 3 Income add up all incomes received by economic agents contribution to production.

GDP	С	I	G	NX
\$18,000	\$12,300	\$3,000	\$3,312	-\$630

The Circular Flow Model of Income and Output Spending (\$) (=GDP) Product Markets Goods and Services Purchased Flows of Goods and Services Firms

Flows of Dollars

Factor Markets

Inputs for

Production

Wages, Rent, Interest

and Profits (\$) (=GDP)

Labor, Land, Capital

and Entrepreneurship

Income (\$) (=GDP)

Copyright @ 2002 by Thomson Learning, Inc.

Firm, Government and Household Sector

Table 2.1 Co	Coconut Producer	
Total Revenue	\$20 million	
Wages	\$5 million	
Interest on Loan	\$0.5 million	
Taxes	\$1.5 million	

Table 2.2	Restaurant	
Total Reveni	ue	\$30 million
Cost of Coconuts		\$12 million
Wages		\$4 million
Taxes		\$3 million

Table 2.3	After-Tax Profits	
Coconut Producer		\$13 million
Restaurant		\$11 million

Table 2.4	Government
Tax Revenue	\$5.5 million
Wages	\$5.5 million

Table 2.5 Consumers	
Wage Income	\$14.5 million
Interest Income	\$0.5 million
Taxes	\$1 million
Profits Distributed to Producers	\$24 million

GDP Using the Product Approach

Table 2.6 GDP Using the Prod	uct Approach
Value added - coconuts	\$20 million
Value added - restaurant food	\$18 million
Value added - government	\$5.5 million
GDP	\$43.5 million

GDP Using the Expenditure Approach

Table 2.7	GDP Using the Expenditure Approach		
Consumption	on	\$38 million	
Investment		0	
Government Expenditures		\$5.5 million	
Net Exports		0	
GDP		\$43.5 million	

GDP Using the Income Approach

Table 2.8	GDP Using	the	Income	Approac	h
-----------	-----------	-----	--------	---------	---

Wage Income \$14.5 million
After-tax profits \$24 million
Interest Income \$0.5 million
Taxes \$4.5 million
GDP \$43.5 million

Extensions

- Production of 13 million coconuts (instead of 10) and storing the additional 3 million
- Restaurant imports 2 million coconuts from other islands for \$2.00 each and all of the coconuts are used in the Restaurant

U.S. GDP: Key Components

Component of GDP	\$Billions	% of GDP
GDP	15,094.0	100.0
Consumption	10, 726.0	71.1
Durables	1, 162.9	7.7
Nondurables	2, 483.7	16.4
Services	7,079.4	46.9
Investment	1,916.2	12.7
Fixed Investment	1,870.0	12.4
Nonresidential	1,532.5	10.2
Residential	337.5	2.2
Inventory Investment	46.3	0.3
Net Exports	-578.7	-3.8
Exports	2,085.5	13.8
Imports	2,664.2	17.7
Government Expenditures	3,030.6	20.1
Federal Defense	824.9	5.5
Federal Nondefense	407.9	2.7
State and Local	1,797.7	11.9

An Example of Nominal and Real GDP

Table 2.10 Data for Real GDP Example				
	Apples	Oranges		
Quantity in Year 1	$Q_1^a = 50$	$Q_1^0 = 100$		
Price in Year 1	$P_1^a = 1.00	$P_1^0 = \$0.80$		
Quantity in Year 2	$Q_2^a = 80$	$Q_2^0 = 120$		
Price in Year 2	$P_2^a = 1.25	$P_2^0 = 1.60		

An Example: Nominal GDP

- Period 1 nominal GDP is $GDP_1 = P_1^a Q_1^a + P_1^o Q_1^o = (1.x50) + (.8x100) = 130.$
- Period 2 nominal GDP is $GDP_2 = P_2^a Q_2^a + P_2^o Q_2^o = (1.25 \times 80) + (1.6 \times 120) = 292.$
- Percentage growth in nominal GDP from 1 to 2 is : $\frac{GDP_2 GDP_1}{GDP_1} \times 100 = 125$ percent

An Example: Real GDP

- Setting period 1 real GDP as period 1 nominal GDP $RGDP_1 = GDP_1 = 130$.
- Holding prices constant in period 1 prices $RGDP_2 = P_1^a Q_2^a + P_1^o Q_2^o = (1.x80) + (.8x120) = 176.$
- Percentage growth in real GDP from 1 to 2 is : $\frac{RGDP_2 GDP_1}{RGDP_1} x 100 = \frac{176}{130} 1 = 35.4 \text{ percent}$
- Holding prices constant in period 2 prices, real GDP in period 1 is $RGDP_1 = P_2^a Q_1^a + P_2^o Q_1^o = (1.25 \times 50) + (1.6 \times 100) = 222.5$

Chain-weighted Measure

■ Chain-weighted ratio of real GDP between two periods is:

$$g_c = (g_1)^{.5}(g_2)^{.5}$$

 $g_c = (RGDP_2^1/RGDP_1^1)^{.5}(RGDP_2^2/RDGP_1^2)^{5.} = 1.333$

- This is a geometric average between consecutive ratios, each using either base year.
- So period 2 real GDP in period 1 dollars is $GDP_1 \times g_c = 130 \times 1.333 = 173.29$
- Or period 1 real GDP in period 2 dollars is $GDP_2 \div g_c = 292 \div 1.333 = 219.05$

Figure 1: Nominal and Chain-Weighted GDP

Measures of Aggregate Price Level

■ General Price Level (P-GDP)

Implicit GDP price deflator =
$$\frac{\text{Nominal GDP}}{\text{Real GDP}} * 100$$

Consumer Price Index (CPI)

$$CPI = \frac{Price_{current} * Quantity_{base}}{Price_{base} * Quantity_{base}} * 100$$

 \blacksquare $\mathrm{CPI}_1 = 100$ and $\mathrm{CPI}_2 = \frac{222.5}{130} = 171.2$

Measures of Aggregate Price Level (cont.)

Table 2.11 Implicit GDP Price Deflators, Example					
	Year 1	Year 2	% Increase		
Year 1 = base year	100	165.9	65.9		
Year 2 = base year	58.4	100	71.2		
Chain-weighting	100	168.5	68.5		

Figure 2: Inflation using CPI and GDP deflator

Figure 3: Price Level, CPI vs. GDP deflator

Figure 4: The Relative Price of Housing in the United States

Stocks vs. Flows

■ Private disposable Income (Y^d)

$$Y^d = Y + NFP + TR + INT - T$$

- NFP = Net Factor Payments,
- TR = Transfers from Govt to Private sector,
- INT=interest on govt debt,
- T = Taxes
- Private savings (S^p) is then:

$$S^p = Y^d - C = Y + NFP + TR + INT - T - C$$

• Government savings (S^g) :

$$S^g = T - TR - INT - G$$

• If $S^g < 0$ then it is a deficit.

Stocks vs. Flows (cont.)

National savings:

$$S = S^p + S^g = Y + NFP - C - G$$

but Y = C + I + G + NX so substitute into S:

$$S = S^p + S^g = C + I + G + NX + NFP - C - G$$

 $S = I + NX + NFP$

Current Account (CA) = NFP + NX so that:

$$S = I + CA$$

• Investment adds to the nation's capital stock:

$$K_t = (1 - \delta)K_{t-1} + I_{t-1}$$

• Quantity of claims on foreigners in existence in the US is a stock: $B_t = (1 - \delta)K_{t-1} + CA_{t-1}$

Who is Unemployed?

- Jack having lost his job in a car factory
- 15 year old Mike going to High school
- Homemakers
- Undergrad student at TU looking for a summer job in June
- Person who is serving in the army
- Uncle Bob working 10 hours per month at the local library
- Ski instructor in June in Colorado

Unemployment: Labor Force and Unemployment

Population

Labor Force Participation Rate in 2015

■ The labor force participation rate is the fraction of the population that is over 16 years of age that is in the labor force

labor force participation rate =
$$\frac{\text{labor force}}{\text{population} \ge 16}$$

- The labor force participation rate for this year was 62.8%
- Thee unemployment rate was 5.5%

Four Types of Unemployment

- Frictional Unemployment
 - Joblessness between jobs.
 - Entering or reentering the labor market.
- 2 Seasonal Unemployment
 - Joblessness related to seasonal factors
- 3 Structural Unemployment
 - Mismatches between workers' skills and employers' requirements
 - Mismatches between workers' locations and employers' location.
- 4 Cyclical Unemployment
 - Joblessness arising from changes in production over the business cycle

Question Revisited: Who is Unemployed?

- Jack having lost his job in a car factory
- 15 year old Mike going to High school
- Homemakers
- Undergrad student at TU looking for a summer job in June
- Person who is serving in the army
- Uncle Bob working 10 hours per month at the local library
- Ski instructor in June in Colorado

Unemployment Rates around the World

Alternative Measures of Unemployment

