ZEOLITE SSZ-53

This application is a continuation-in-part of Serial No. 09/584,187, filed May 31, 2000.

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to new crystalline zeolite SSZ-53, a method for preparing SSZ-53 using a selected group of phenylcycloalkyltrimethyl ammonium cations as templating agents, and processes employing SSZ-53 as a catalyst.

10

15

20

25

5

State of the Art

Because of their unique sieving characteristics, as well as their catalytic properties, crystalline molecular sieves and zeolites are especially useful in applications such as hydrocarbon conversion, gas drying and separation. Although many different crystalline molecular sieves have been disclosed, there is a continuing need for new zeolites with desirable properties for gas separation and drying, hydrocarbon and chemical conversions, and other applications. New zeolites may contain novel internal pore architectures, providing enhanced selectivities in these processes.

Crystalline aluminosilicates are usually prepared from aqueous reaction mixtures containing alkali or alkaline earth metal oxides, silica, and alumina. Crystalline borosilicates are usually prepared under similar reaction conditions except that boron is used in place of aluminum. By varying the synthesis conditions and the composition of the reaction mixture, different zeolites can often be formed.

SUMMARY OF THE INVENTION

The present invention is directed to a family of crystalline molecular sieves with unique properties, referred to herein as "zeolite SSZ-53" or simply "SSZ-53".

Preferably, SSZ-53 is obtained in its silicate, aluminosilicate, titanosilicate, vanadosilicate or borosilicate form. The term "silicate" refers to a zeolite having a high mole ratio of silicon oxide relative to aluminum oxide, preferably a mole ratio greater than 400. As used herein, the term "aluminosilicate" refers to a zeolite containing both alumina and silica and the term "borosilicate" refers to a zeolite containing oxides of both boron and silicon.

In accordance with this invention, there is also provided a zeolite having a mole ratio greater than about 20 of an oxide of a first tetravalent element to an oxide of a second tetravalent element different from said first tetravalent element, trivalent element, pentavalent element or mixture thereof and having, after calcination, the X-ray diffraction lines of Table II.

15

20

Further, in accordance with this invention, there is provided a zeolite having a mole ratio greater than about 20 of an oxide selected from silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide, vanadium oxide and mixtures thereof and having, after calcination, the X-ray diffraction lines of Table II below.

The present invention further provides such a zeolite having a composition, as synthesized and in the anhydrous state, in terms of mole ratios as follows:

 YO_2/W_cO_d 20-150 $M_{2/n}/YO_2$ 0.01-0.03 $Q/YO_20.02 - 0.05$

5

10

15

20

wherein Y is silicon, germanium or a mixture thereof; W is aluminum, gallium, iron, boron, titanium (potentially included as mixtures), indium, vanadium (potentially included as mixtures), or mixtures thereof; c is 1 or 2; d is 2 when c is 1 (i.e., W is tetravalent) or d is 3 or 5 when c is 2 (i.e., d is 3 when W is trivalent or 5 when W is pentavalent); M is an alkali metal cation, alkaline earth metal cation or mixtures thereof; n is the valence of M (i.e., 1 or 2); and Q is at least one phenylcycloalkylmethyl ammonium cation.

In accordance with this invention, there is also provided a zeolite prepared by thermally treating a zeolite having a mole ratio of an oxide selected from silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide, vanadium oxide and mixtures thereof greater than about 20 at a temperature of from about 200 C to about 800 C, the thus-prepared zeolite having the X-ray diffraction lines of Table II. The present invention also includes this thus-prepared zeolite which is predominantly in the hydrogen form, which is prepared by ion exchanging with an acid or with a solution of an ammonium salt followed by a second calcination.

Also provided in accordance with the present invention is a method of preparing a crystalline material comprising an oxide of a first tetravalent element and an oxide of a second tetravalent element which is different from said first tetravalent element, trivalent element, pentavalent element or mixture thereof, said method

comprising contacting under crystallization conditions sources of said oxides and a templating agent comprising a phenylcycloalkylmethyl ammonium cation.

- The present invention additionally provides a process for converting

 hydrocarbons comprising contacting a hydrocarbonaceous feed at hydrocarbon
 converting conditions with a catalyst comprising the zeolite of this invention. The
 zeolite may be predominantly in the hydrogen form. It may also be substantially
 free of acidity.
- Further provided by the present invention is a hydrocracking process comprising contacting a hydrocarbon feedstock under hydrocracking conditions with a catalyst comprising the zeolite of this invention, preferably predominantly in the hydrogen form.
- This invention also includes a dewaxing process comprising contacting a hydrocarbon feedstock under dewaxing conditions with a catalyst comprising the zeolite of this invention, preferably predominantly in the hydrogen form.
- The present invention also includes a process for improving the viscosity index of a dewaxed product of waxy hydrocarbon feeds comprising contacting the waxy hydrocarbon feed under isomerization dewaxing conditions with a catalyst comprising the zeolite of this invention, preferably predominantly in the hydrogen form.
- The present invention further includes a process for producing a C₂₀+ lube oil from a C₂₀+ olefin feed comprising isomerizing said olefin feed under isomerization conditions over a catalyst comprising at least one Group VIII metal and the zeolite of this invention. The zeolite may be predominantly in the hydrogen form.

In accordance with this invention, there is also provided a process for catalytically dewaxing a hydrocarbon oil feedstock boiling above about 350 F and containing straight chain and slightly branched chain hydrocarbons comprising contacting said hydrocarbon oil feedstock in the presence of added hydrogen gas at a hydrogen pressure of about 15-3000psi with a catalyst comprising at least one Group VIII metal and the zeolite of this invention, preferably predominantly in the hydrogen form. The catalyst may be a layered catalyst comprising a first layer comprising at least one Group VIII metal and the zeolite of this invention, and a second layer comprising an aluminosilicate zeolite which is more shape selective than the zeolite of said first layer.

Also included in the present invention is a process for preparing a lubricating oil which comprises hydrocracking in a hydrocracking zone a hydrocarbonaceous feedstock to obtain an effluent comprising a hydrocracked oil, and catalytically dewaxing said effluent comprising hydrocracked oil at a temperature of at least about 400 F and at a pressure of from about 15 psig to about 3000 psig in the presence of added hydrogen gas with a catalyst comprising at least one Group VIII metal and the zeolite of this invention. The zeolite may be predominantly in the hydrogen form.

20

25

5

10

15

Further included in this invention is a process for isomerization dewaxing a raffinate comprising contacting said raffinate in the presence of added hydrogen with a catalyst comprising at least one Group VIII metal and the zeolite of this invention. The raffinate may be bright stock, and the zeolite may be predominantly in the hydrogen form.

Also included in this invention is a process for increasing the octane of a hydrocarbon feedstock to produce a product having an increased aromatics content comprising contacting a hydrocarbonaceous feedstock which comprises

normal and slightly branched hydrocarbons having a boiling range above about 40 C and less than about 200 C, under aromatic conversion conditions with a catalyst comprising the zeolite of this invention made substantially free of acidity by neutralizing said zeolite with a basic metal. Also provided in this invention is such a process wherein the zeolite contains a Group VIII metal component.

5

10

15

20

25

Also provided by the present invention is a catalytic cracking process comprising contacting a hydrocarbon feedstock in a reaction zone under catalytic cracking conditions in the absence of added hydrogen with a catalyst comprising the zeolite of this invention, preferably predominantly in the hydrogen form. Also included in this invention is such a catalytic cracking process wherein the catalyst additionally comprises a large pore crystalline cracking component.

This invention further provides an isomerization process for isomerizing C₄ to C₇ hydrocarbons, comprising contacting a feed having normal and slightly branched C₄ to C₇ hydrocarbons under isomerizing conditions with a catalyst comprising the zeolite of this invention, preferably predominantly in the hydrogen form. The zeolite may be impregnated with at least one Group VIII metal, preferably platinum. The catalyst may be calcined in a steam/air mixture at an elevated temperature after impregnation of the Group VIII metal.

Also provided by the present invention is a process for alkylating an aromatic hydrocarbon which comprises contacting under alkylation conditions at least a molar excess of an aromatic hydrocarbon with a C_2 to C_{20} olefin under at least partial liquid phase conditions and in the presence of a catalyst comprising the zeolite of this invention, preferably predominantly in the hydrogen form. The olefin may be a C_2 to C_4 olefin, and the aromatic hydrocarbon and olefin may be present in a molar ratio of about 4:1 to about 20:1, respectively. The aromatic

hydrocarbon may be selected from the group consisting of benzene, toluene, ethylbenzene, xylene, or mixtures thereof.

Further provided in accordance with this invention is a process for transalkylating
an aromatic hydrocarbon which comprises contacting under transalkylating
conditions an aromatic hydrocarbon with a polyalkyl aromatic hydrocarbon under
at least partial liquid phase conditions and in the presence of a catalyst
comprising the zeolite of this invention, preferably predominantly in the hydrogen
form. The aromatic hydrocarbon and the polyalkyl aromatic hydrocarbon may be
present in a molar ratio of from about 1:1 to about 25:1, respectively.

The aromatic hydrocarbon may be selected from the group consisting of benzene, toluene, ethylbenzene, xylene, or mixtures thereof, and the polyalkyl aromatic hydrocarbon may be a dialkylbenzene.

15

Further provided by this invention is a process to convert paraffins to aromatics which comprises contacting paraffins under conditions which cause paraffins to convert to aromatics with a catalyst comprising the zeolite of this invention, said catalyst comprising gallium, zinc, or a compound of gallium or zinc.

20

In accordance with this invention, there is also provided a process for isomerizing olefins comprising contacting said olefin under conditions which cause isomerization of the olefin with a catalyst comprising the zeolite of this invention.

25 Further provided in accordance with this invention is a process for isomerizing an isomerization feed comprising an aromatic C₈ stream of xylene isomers or mixtures of xylene isomers and ethylbenzene, wherein a more nearly equilibrium ratio of ortho-, meta- and para-xylenes is obtained, said process comprising

contacting said feed under isomerization conditions with a catalyst comprising the zeolite of this invention.

The present invention further provides a process for oligomerizing olefins
comprising contacting an olefin feed under oligomerization conditions with a
catalyst comprising the zeolite of this invention.

10

15

20

This invention also provides a process for converting lower alcohols and other oxygenated hydrocarbons comprising contacting said lower alcohol or other oxygenated hydrocarbon with a catalyst comprising the zeolite of this invention under conditions to produce liquid products. This invention also provides a process for converting synthesis gas to mainly liquid hydrocarbons by compositing the zeolite of this invention with a Fischer-Tropsch catalyst in an intimate mixture and operating the composite under conditions which would normally yield mainly wax with the FT component alone, as with high-alpha cobalt catalysts at 200 C-250 C, or mainly light olefins with the FT component alone, as with low-alpha iron catalysts at 250 C-300 C.

This invention also provides a process for converting synthesis gas to mainly liquid hydrocarbons by compositing the zeolite of this invention with a methanol synthesis catalyst in an intimate mixture and operating the composite under conditions where the methanol catalyst alone would produce mainly methanol with low yields per pass due to equilibrium constraints.

Also provided by the present invention is an improved process for the reduction of oxides of nitrogen contained in a gas stream in the presence of oxygen wherein said process comprises contacting the gas stream with a zeolite, the improvement comprising using as the zeolite a zeolite having a mole ratio greater than about 20 of an oxide of a first tetravalent element to an oxide of a second

tetravalent element different from said first tetravalent element, trivalent element, pentavalent element or mixture thereof and having, after calcination, the X-ray diffraction lines of Table II. The zeolite may contain a metal or metal ions (such as cobalt, copper or mixtures thereof) capable of catalyzing the reduction of the oxides of nitrogen, and may be conducted in the presence of a stoichiometric excess of oxygen. In a preferred embodiment, the gas stream is the exhaust stream of an internal combustion engine.

DETAILED DESCRIPTION OF THE INVENTION

10

15

20

5

The present invention comprises a family of crystalline, large pore zeolites designated herein "zeolite SSZ-53" or simply "SSZ-53". As used herein, the term "large pore" means having an average pore size diameter greater than about 6.0 Angstroms, preferably from about 6.5 Angstroms to about 7.5 Angstroms.

In preparing SSZ-53 zeolites, a phenylcycloalkylmethyl ammonium cation is used as a crystallization template. In general, SSZ-53 is prepared by contacting an active source of one or more oxides selected from the group consisting of monovalent element oxides, divalent element oxides, trivalent element oxides, and tetravalent element oxides with the phenylcycloalkylmethyl ammonium cations templating agents.

SSZ-53 is prepared from a reaction mixture having the composition shown in Table A below.

TABLE A

Reaction Mixture

TypicalPreferred YO_2/W_aO_b 20-15035-60 $OH-/YO_2$ 0.1-0.500.2-0.3 Q/YO_2 0.05-0.50.1-0.2

5

where Y, W, Q, M and n are as defined above, and a is 1 or 2, and b is 2 when a is 1 (i.e., W is tetravalent) and b is 3 when a is 2 (i.e., W is trivalent).

0.02 - 0.4

25-80

0.1 - 0.25

30-45

In practice, SSZ-53 is prepared by a process comprising:

 $M_{2/n}/YO_2$

H₂O/YO₂

- 15 (a) preparing an aqueous solution containing sources of at least one oxide capable of forming a crystalline molecular sieve and a phenylcycloalkylmethyl ammonium cation having an anionic counterion which is not detrimental to the formation of SSZ-53;
- 20 (b) maintaining the aqueous solution under conditions sufficient to form crystals of SSZ-53; and
 - (c) recovering the crystals of SSZ-53.
- 25 Accordingly, SSZ-53 may comprise the crystalline material and the templating agent in combination with metallic and non-metallic oxides bonded in tetrahedral coordination through shared oxygen atoms to form a cross-linked three dimensional crystal structure. The metallic and non-metallic oxides comprise one or a combination of oxides of a first tetravalent element(s), and one or a

combination of a second tetravalent element(s) different from the first tetravalent element(s), trivalent element(s), pentavalent element(s) or mixture thereof. The first tetravalent element(s) is preferably selected from the group consisting of silicon, germanium and combinations thereof. More preferably, the first tetravalent element is silicon. The second tetravalent element (which is different from the first tetravalent element), trivalent element and pentavalent element is preferably selected from the group consisting of aluminum, gallium, iron, boron, titanium, indium, vanadium and combinations thereof. More preferably, the second trivalent or tetravalent element is aluminum or boron.

10

15

20

25

- 5

Typical sources of aluminum oxide for the reaction mixture include aluminates, alumina, aluminum colloids, aluminum oxide coated on silica sol, hydrated alumina gels such as Al(OH)₃ and aluminum compounds such as AlCl₃ and Al₂(SO₄)₃. Typical sources of silicon oxide include silicates, silica hydrogel, silicic acid, fumed silica, colloidal silica, tetra-alkyl orthosilicates, and silica hydroxides. Boron, as well as gallium, germanium, titanium, indium, vanadium and iron, can be added in forms corresponding to their aluminum and silicon counterparts.

A source zeolite reagent may provide a source of aluminum or boron. In most cases, the source zeolite also provides a source of silica. The source zeolite in its dealuminated or deboronated form may also be used as a source of silica, with additional silicon added using, for example, the conventional sources listed above. Use of a source zeolite reagent as a source of alumina for the present process is more completely described in U.S. Patent No. 5,225,179, issued July 6, 1993 to Nakagawa entitled "Method of Making Molecular Sieves", the disclosure of which is incorporated herein by reference.

Typically, an alkali metal hydroxide and/or an alkaline earth metal hydroxide, such as the hydroxide of sodium, potassium, lithium, cesium, rubidium, calcium,

and magnesium, is used in the reaction mixture; however, this component can be omitted so long as the equivalent basicity is maintained. The templating agent may be used to provide hydroxide ion. Thus, it may be beneficial to ion exchange, for example, the halide for hydroxide ion, thereby reducing or eliminating the alkali metal hydroxide quantity required. The alkali metal cation or alkaline earth cation may be part of the as-synthesized crystalline oxide material, in order to balance valence electron charges therein.

The reaction mixture is maintained at an elevated temperature until the crystals of the SSZ-53 zeolite are formed. The hydrothermal crystallization is usually conducted under autogenous pressure, at a temperature between 100 C and 200 C, preferably between 135 C and 160 C. The crystallization period is typically greater than 1 day and preferably from about 3 days to about 20 days.

15 Preferably, the zeolite is prepared using mild stirring or agitation.

During the hydrothermal crystallization step, the SSZ-53 crystals can be allowed to nucleate spontaneously from the reaction mixture. The use of SSZ-53 crystals as seed material can be advantageous in decreasing the time necessary for complete crystallization to occur. In addition, seeding can lead to an increased purity of the product obtained by promoting the nucleation and/or formation of SSZ-53 over any undesired phases. When used as seeds, SSZ-53 crystals are added in an amount between 0.1 and 10% of the weight of silica used in the reaction mixture.

25

20

5

10

Once the zeolite crystals have formed, the solid product is separated from the reaction mixture by standard mechanical separation techniques such as filtration. The crystals are water-washed and then dried, e.g., at 90 C to 150 C for from 8

to 24 hours, to obtain the as-synthesized SSZ-53 zeolite crystals. The drying step can be performed at atmospheric pressure or under vacuum.

SSZ-53, as prepared, has a mole ratio of an oxide selected from silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide, vanadium oxide and mixtures thereof greater than about 20; and has the X-ray diffraction lines of Table I below. SSZ-53 further has a composition, as-synthesized and in the anhydrous state, in terms of mole ratios, shown in Table B below.

TABLE B
As Synthesized SSZ-53

	As-Synthe	As-Synthesized SSZ-33	
	YO ₂ /W _c O _d	20-150	
15	$M_{2/n}/YO_2$	0.01-0.03	
	Q/YO ₂	0.02-0.05	

where Y, W, c, d, M and Q are as defined above.

SSZ-53 can be made essentially aluminum free, i.e., having a silica to alumina mole ratio of ∞. A method of increasing the mole ratio of silica to alumina is by using standard acid leaching or chelating treatments. However, essentially aluminum-free SSZ-53 can be synthesized directly using essentially aluminum-free silicon sources as the main tetrahedral metal oxide component, if boron is also present. SSZ-53 can also be prepared directly as either an aluminosilicate or a borosilicate.

Lower silica to alumina ratios may also be obtained by using methods which insert aluminum into the crystalline framework. For example, aluminum insertion

may occur by thermal treatment of the zeolite in combination with an alumina binder or dissolved source of alumina. Such procedures are described in U.S. Patent No. 4,559,315, issued on December 17, 1985 to Chang et al.

It is believed that SSZ-53 is comprised of a new framework structure or topology which is characterized by its X-ray diffraction pattern. SSZ-53 zeolites, as-synthesized, have a crystalline structure whose X-ray powder diffraction pattern exhibit the characteristic lines shown in Table I and is thereby distinguished from other known zeolites.

10

TABLE I
As-Synthesized SSZ-53

2 Theta ^(a)	<u>d</u>	Relative Intensity (b)
6.65	13.3	VS
8.3	10.6	S
17.75	4.99	S
19.8	4.48	S
21.2	4.19	VS
23.05	3.85	W
25.3	3.52	M
35.8	2.51	M

^(a) ±0.15

15

The X-ray patterns provided are based on a relative intensity scale in which the strongest line in the X-ray pattern is assigned a value of 100: W(weak) is less than 20; M(medium) is between 20 and 40; S(strong) is between 40 and 60; VS(very strong) is greater than 60.

After calcination, the SSZ-53 zeolites have a crystalline structure whose X-ray powder diffraction pattern include the characteristic lines shown in Table II:

		TABLE II	
5		Calcined SSZ-53	
	2 Theta ^(a)	<u>d</u>	Relative Intensity
	6.65	13.3	VS
	8.3	10.6	S
	17.75	4.99	M
	19,7	4.50	М
	21.0	4.23	M
	23.0	3.86	W
	25.15 °	3.544	W
	35.6	2.52	W

In addition to the peaks in Tables I and II, there are peaks at 2 theta 22.0 and 21.6. These peaks may be partially overlapped with the peak at 2 theta 21.0, or appear as shoulders. Thus, the peaks at 2 theta 22.0 and 21.6 may be difficult to locate, especially if the SSZ-53 has a small crystal size.

 $^{(a)} \pm 0.15$

The X-ray powder diffraction patterns were determined by standard techniques.

The radiation was the K-alpha/doublet of copper. The peak heights and the positions, as a function of 2Theta where Theta is the Bragg angle, were read from the relative intensities of the peaks, and d, the interplanar spacing in Angstroms corresponding to the recorded lines, can be calculated.

The variation in the scattering angle (two theta) measurements, due to instrument error and to differences between individual samples, is estimated at ±0.20 degrees.

The X-ray diffraction pattern of Table I is representative of "as-synthesized" or "as-made" SSZ-53 zeolites. Minor variations in the diffraction pattern can result from variations in the silica-to-alumina or silica-to-boron mole ratio of the particular sample due to changes in lattice constants. In addition, sufficiently small crystals will affect the shape and intensity of peaks, leading to significant peak broadening.

Representative peaks from the X-ray diffraction pattern of calcined SSZ-53 are shown in Table II. Calcination can also result in changes in the intensities of the peaks as compared to patterns of the "as-made" material, as well as minor shifts in the diffraction pattern. The zeolite produced by exchanging the metal or other cations present in the zeolite with various other cations (such as H⁺ or NH₄⁺) yields essentially the same diffraction pattern, although again, there may be minor shifts in the interplanar spacing and variations in the relative intensities of the peaks. Notwithstanding these minor perturbations, the basic crystal lattice remains unchanged by these treatments.

15

20

Crystalline SSZ-53 can be used as-synthesized, but preferably will be thermally treated (calcined). Usually, it is desirable to remove the alkali metal cation by ion exchange and replace it with hydrogen, ammonium, or any desired metal ion.

The zeolite can be leached with chelating agents, e.g., EDTA or dilute acid solutions, to increase the silica to alumina mole ratio. The zeolite can also be steamed; steaming helps stabilize the crystalline lattice to attack from acids.

The zeolite can be used in intimate combination with hydrogenating components, such as tungsten, vanadium molybdenum, rhenium, nickel cobalt, chromium, manganese, or a noble metal, such as palladium or platinum, for those applications in which a hydrogenation-dehydrogenation function is desired.

5

10

Metals may also be introduced into the zeolite by replacing some of the cations in the zeolite with metal cations via standard ion exchange techniques (see, for example, U.S. Patent Nos. 3,140,249 issued July 7, 1964 to Plank et al.; 3,140,251 issued July 7, 1964 to Plank et al.; and 3,140,253 issued July 7, 1964 to Plank et al.). Typical replacing cations can include metal cations, e.g., rare earth, Group IA, Group IIA and Group VIII metals, as well as their mixtures. Of the replacing metallic cations, cations of metals such as rare earth, Mn, Ca, Mg, Zn, Cd, Pt, Pd, Ni, Co, Ti, Al, Sn, and Fe are particularly preferred.

The hydrogen, ammonium, and metal components can be ion-exchanged into the SSZ-53. The zeolite can also be impregnated with the metals, or the metals can be physically and intimately admixed with the zeolite using standard methods known to the art.

Typical ion-exchange techniques involve contacting the synthetic zeolite with a solution containing a salt of the desired replacing cation or cations. Although a wide variety of salts can be employed, chlorides and other halides, acetates, nitrates, and sulfates are particularly preferred. The zeolite is usually calcined prior to the ion-exchange procedure to remove the organic matter present in the channels and on the surface, since this results in a more effective ion exchange. Representative ion exchange techniques are disclosed in a wide variety of patents including U.S. Patent Nos. 3,140,249 issued on July 7, 1964 to Plank et al.; 3,140,251 issued on July 7, 1964 to Plank et al.; and 3,140,253 issued on July 7, 1964 to Plank et al.

Following contact with the salt solution of the desired replacing cation, the zeolite is typically washed with water and dried at temperatures ranging from 65 C to about 200 C. After washing, the zeolite can be calcined in air or inert gas at temperatures ranging from about 200 C to about 800 C for periods of time ranging from 1 to 48 hours, or more, to produce a catalytically active product especially useful in hydrocarbon conversion processes.

Regardless of the cations present in the synthesized form of SSZ-53, the spatial arrangement of the atoms which form the basic crystal lattice of the zeolite remains essentially unchanged.

SSZ-53 can be formed into a wide variety of physical shapes. Generally speaking, the zeolite can be in the form of a powder, a granule, or a molded product, such as extrudate having a particle size sufficient to pass through a 2-mesh (Tyler) screen and be retained on a 400-mesh (Tyler) screen. In cases where the catalyst is molded, such as by extrusion with an organic binder, the aluminosilicate can be extruded before drying, or dried or partially dried and then extruded.

20

25

15

5

SSZ-53 can be composited with other materials resistant to the temperatures and other conditions employed in organic conversion processes. Such matrix materials include active and inactive materials and synthetic or naturally occurring zeolites as well as inorganic materials such as clays, silica and metal oxides. Examples of such materials and the manner in which they can be used are disclosed in U.S. Patent No.4,910,006, issued May 20, 1990 to Zones et al., and U.S. Patent No. 5,316,753, issued May 31, 1994 to Nakagawa, both of which are incorporated by reference herein in their entirety.

Hydrocarbon Conversion Processes

SSZ-53 zeolites are useful in hydrocarbon conversion reactions. Hydrocarbon conversion reactions are chemical and catalytic processes in which carbon 5 containing compounds are changed to different carbon containing compounds. Examples of hydrocarbon conversion reactions in which SSZ-53 are expected to be useful include hydrocracking, dewaxing, catalytic cracking and olefin and aromatics formation reactions. The catalysts are also expected to be useful in other petroleum refining and hydrocarbon conversion reactions such as 10 isomerizing n-paraffins and naphthenes, polymerizing and oligomerizing olefinic or acetylenic compounds such as isobutylene and butene-1, reforming, isomerizing polyalkyl substituted aromatics (e.g., m-xylene), and disproportionating aromatics (e.g., toluene) to provide mixtures of benzene, xylenes and higher methylbenzenes and oxidation reactions. Also included are 15 rearrangement reactions to make various naphthalene derivatives. The SSZ-53 catalysts may have high selectivity, and under hydrocarbon conversion conditions can provide a high percentage of desired products relative to total products.

SSZ-53 zeolites can be used in processing hydrocarbonaceous feedstocks.
 Hydrocarbonaceous feedstocks contain carbon compounds and can be from many different sources, such as virgin petroleum fractions, recycle petroleum fractions, shale oil, liquefied coal, tar sand oil, synthetic paraffins from NAO, recycled plastic feedstocks and, in general, can be any carbon containing
 feedstock susceptible to zeolitic catalytic reactions. Depending on the type of processing the hydrocarbonaceous feed is to undergo, the feed can contain metal or be free of metals; it can also have high or low nitrogen or sulfur impurities. It can be appreciated, however, that in general processing will be

more efficient (and the catalyst more active) the lower the metal, nitrogen, and sulfur content of the feedstock.

The conversion of hydrocarbonaceous feeds can take place in any convenient mode, for example, in fluidized bed, moving bed, or fixed bed reactors depending on the types of process desired. The formulation of the catalyst particles will vary depending on the conversion process and method of operation.

5

Other reactions which can be performed using the catalyst of this invention

containing a metal, e.g., a Group VIII metal such platinum, include hydrogenation-dehydrogenation reactions, denitrogenation and desulfurization reactions.

The following Table III indicates typical reaction conditions which may be
employed when using catalysts comprising SSZ-53 in the hydrocarbon
conversion reactions of this invention. Preferred conditions are indicated in
parentheses.

Table III

l able III				
Process	Temp., C	Pressure	LHSV	
Hydrocracking	175-485	0.5-350 bar	0.1-30	
Dewaxing	200-475	15-3000 psig	0.1-20	
	(250-450)	(200-3000)	(0.2-10)	
Aromatics formation	400-600	atm10 bar	0.1-15	
	(480-550)			
Cat. cracking	127-885	subatm¹	0.5-50	
		(atm5 atm.)		
Oligomerization	232-649 ²	0.1-50 atm. ^{2,3}	$0.2-50^2$	
-	10-232 ⁴	· -	0.05-205	
	$(27-204)^4$	•	(0.1-10) ⁵	
Paraffins to aromatics	100-700	0-1000 psig	0.5-405	
Condensation of alcohols	260-538	0.5-1000 psig	0.5-505	
Isomerization	93-538	50-1000 psig	1-10	
,	(204-315)		(1-4)	
Xylene isomerization	260-593 ²	0.5-50 atm. ²	0.1-100 ⁵	
	$(315-566)^2$	(1-5 atm) ²	(0.5-50) ⁵	
	38-3714	1-200 atm.4	0.5-50	
Liquid Phase Alkylation			0.5 to 50 ⁵	
of Aromatics by Small Olefins	37-315	50-1000 psig		

Several hundred atmospheres
 Gas phase reaction
 Hydrocarbon partial pressure
 Liquid phase reaction
 WHSV

Other reaction conditions and parameters are provided below.

Hydrocracking

Using a catalyst which comprises SSZ-53, preferably predominantly in the hydrogen form, and a hydrogenation promoter, heavy petroleum residual feedstocks, cyclic stocks and other hydrocrackate charge stocks can be hydrocracked using the process conditions and catalyst components disclosed in the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753.

The hydrocracking catalysts contain an effective amount of at least one 10 hydrogenation component of the type commonly employed in hydrocracking catalysts. The hydrogenation component is generally selected from the group of hydrogenation catalysts consisting of one or more metals of Group VIB and Group VIII, including the salts, complexes and solutions containing such. The hydrogenation catalyst is preferably selected from the group of metals, salts and complexes thereof of the group consisting of at least one of platinum, palladium, rhodium, iridium, ruthenium and mixtures thereof or the group consisting of at least one of nickel, molybdenum, cobalt, tungsten, titanium, chromium and mixtures thereof. Reference to the catalytically active metal or metals is intended to encompass such metal or metals in the elemental state or in some form such as an oxide, sulfide, halide, carboxylate and the like. The hydrogenation catalyst is present in an effective amount to provide the hydrogenation function of the hydrocracking catalyst, and preferably in the range of from 0.05 to 25% by weight.

25 Dewaxing

5

15

20

SSZ-53, preferably predominantly in the hydrogen form, can be used to dewax hydrocarbonaceous feeds by selectively removing straight chain paraffins. Typically, the viscosity index of the dewaxed product is improved (compared to the waxy feed) when the waxy feed is contacted with SSZ-53 under isomerization dewaxing conditions.

10

15

20

25

The catalytic dewaxing conditions are dependent in large measure on the feed used and upon the desired pour point. Hydrogen is preferably present in the reaction zone during the catalytic dewaxing process. The hydrogen to feed ratio is typically between about 500 and about 30,000 SCF/bbl (standard cubic feet per barrel), preferably about 1000 to about 20,000 SCF/bbl. Generally, hydrogen will be separated from the product and recycled to the reaction zone. Typical feedstocks include light gas oil, heavy gas oils and reduced crudes boiling above about 350 F.

A typical dewaxing process is the catalytic dewaxing of a hydrocarbon oil feedstock boiling above about 350 F and containing straight chain and slightly branched chain hydrocarbons by contacting the hydrocarbon oil feedstock in the presence of added hydrogen gas at a hydrogen pressure of about 15-3000 psi with a catalyst comprising SSZ-53 and at least one Group VIII metal.

The SSZ-53 hydrodewaxing catalyst may optionally contain a hydrogenation component of the type commonly employed in dewaxing catalysts. See the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 for examples of these hydrogenation components.

The hydrogenation component is present in an effective amount to provide an effective hydrodewaxing and hydroisomerization catalyst preferably in the range of from about 0.05 to 5% by weight. The catalyst may be run in such a mode to increase isodewaxing at the expense of cracking reactions.

The feed may be hydrocracked, followed by dewaxing. This type of two-stage process and typical hydrocracking conditions are described in U.S. Patent No.

4,921,594, issued May 1, 1990 to Miller, which is incorporated herein by reference in its entirety.

5

10

15

20

25

SSZ-53 may also be utilized as a dewaxing catalyst in the form of a layered catalyst. That is, the catalyst comprises a first layer comprising zeolite SSZ-53 and at least one Group VIII metal, and a second layer comprising an aluminosilicate zeolite which is more shape selective than zeolite SSZ-53. The use of layered catalysts is disclosed in U.S. Patent No. 5,149,421, issued September 22, 1992 to Miller, which is incorporated by reference herein in its entirety. The layering may also include a bed of SSZ-53 layered with a non-zeolitic component designed for either hydrocracking or hydrofinishing.

SSZ-53 may also be used to dewax raffinates, including bright stock, under conditions such as those disclosed in U. S. Patent No. 4,181,598, issued January 1, 1980 to Gillespie et al., which is incorporated by reference herein in its entirety.

It is often desirable to use mild hydrogenation (sometimes referred to as hydrofinishing) to produce more stable dewaxed products. The hydrofinishing step can be performed either before or after the dewaxing step, and preferably after. Hydrofinishing is typically conducted at temperatures ranging from about 190 C to about 340 C at pressures from about 400 psig to about 3000 psig at space velocities (LHSV) between about 0.1 and 20 and a hydrogen recycle rate of about 400 to 1500 SCF/bbl. The hydrogenation catalyst employed must be active enough not only to hydrogenate the olefins, diolefins and color bodies which may be present, but also to reduce the aromatic content. Suitable hydrogenation catalyst are disclosed in U. S. Patent No. 4,921,594, issued May 1, 1990 to Miller, which is incorporated by reference herein in its entirety. The hydrofinishing step is beneficial in preparing an acceptably stable product

(e.g., a lubricating oil) since dewaxed products prepared from hydrocracked stocks tend to be unstable to air and light and tend to form sludges spontaneously and quickly.

Lube oil may be prepared using SSZ-53. For example, a C₂₀+ lube oil may be made by isomerizing a C₂₀+ olefin feed over a catalyst comprising SSZ-53 in the hydrogen form and at least one Group VIII metal. Alternatively, the lubricating oil may be made by hydrocracking in a hydrocracking zone a hydrocarbonaceous feedstock to obtain an effluent comprising a hydrocracked oil, and catalytically dewaxing the effluent at a temperature of at least about 400 F and at a pressure of from about 15 psig to about 3000 psig in the presence of added hydrogen gas with a catalyst comprising SSZ-53 in the hydrogen form and at least one Group VIII metal.

Aromatics Formation

15

20

SSZ-53 can be used to convert light straight run naphthas and similar mixtures to highly aromatic mixtures. Thus, normal and slightly branched chained hydrocarbons, preferably having a boiling range above about 40 C and less than about 200 C, can be converted to products having a substantial higher octane aromatics content by contacting the hydrocarbon feed with a catalyst comprising SSZ-53. It is also possible to convert heavier feeds into BTX or naphthalene derivatives of value using a catalyst comprising SSZ-53.

The conversion catalyst preferably contains a Group VIII metal compound to have sufficient activity for commercial use. By Group VIII metal compound as used herein is meant the metal itself or a compound thereof. The Group VIII noble metals and their compounds, platinum, palladium, and iridium, or combinations thereof can be used. Rhenium or tin or a mixture thereof may also

be used in conjunction with the Group VIII metal compound and preferably a noble metal compound. The most preferred metal is platinum. The amount of Group VIII metal present in the conversion catalyst should be within the normal range of use in reforming catalysts, from about 0.05 to 2.0 weight percent, preferably 0.2 to 0.8weight percent.

5

10

25

It is critical to the selective production of aromatics in useful quantities that the conversion catalyst be substantially free of acidity, for example, by neutralizing the zeolite with a basic metal, e.g., alkali metal, compound. Methods for rendering the catalyst free of acidity are known in the art. See the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 for a description of such methods.

The preferred alkali metals are sodium, potassium, rubidium and cesium. The zeolite itself can be substantially free of acidity only at very high silica:alumina mole ratios.

Catalytic Cracking

20 Hydrocarbon cracking stocks can be catalytically cracked in the absence of hydrogen using SSZ-53, preferably predominantly in the hydrogen form.

When SSZ-53 is used as a catalytic cracking catalyst in the absence of hydrogen, the catalyst may be employed in conjunction with traditional cracking catalysts, e.g., any aluminosilicate heretofore employed as a component in cracking catalysts. Typically, these are large pore, crystalline aluminosilicates. Examples of these traditional cracking catalysts are disclosed in the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No 5,316,753. When a traditional cracking catalyst (TC) component is employed, the relative

weight ratio of the TC to the SSZ-53 is generally between about 1:10 and about 500:1, desirably between about 1:10 and about 200:1, preferably between about 1:2 and about 50:1, and most preferably is between about 1:1 and about 20:1. The novel zeolite and/or the traditional cracking component may be further ion exchanged with rare earth ions to modify selectivity.

The cracking catalysts are typically employed with an inorganic oxide matrix component. See the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 for examples of such matrix components.

10

15

5

Isomerization

The present catalyst is highly active and highly selective for isomerizing C₄ to C₇ hydrocarbons. The activity means that the catalyst can operate at relatively low temperature which thermodynamically favors highly branched paraffins. Consequently, the catalyst can produce a high octane product. The high selectivity means that a relatively high liquid yield can be achieved when the catalyst is run at a high octane.

The present process comprises contacting the isomerization catalyst, i.e., a catalyst comprising SSZ-53 in the hydrogen form, with a hydrocarbon feed under isomerization conditions. The feed is preferably a light straight run fraction, boiling within the range of 30 F to 250 F and preferably from 60 F to 200 F. Preferably, the hydrocarbon feed for the process comprises a substantial amount of C₄ to C₇ normal and slightly branched low octane hydrocarbons, more preferably C₅ and C₆ hydrocarbons.
It is preferable to carry out the isomerization reaction in the presence of

hydrogen. Preferably, hydrogen is added to give a hydrogen to hydrocarbon ratio (H_2/HC) of between 0.5 and 10 H_2/HC , more preferably between 1 and

8 H₂/HC. See the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 for a further discussion of isomerization process conditions.

A low sulfur feed is especially preferred in the present process. The feed preferably contains less than 10 ppm, more preferably less than 1 ppm, and most preferably less than 0.1 ppm sulfur. In the case of a feed which is not already low in sulfur, acceptable levels can be reached by hydrogenating the feed in a presaturation zone with a hydrogenating catalyst which is resistant to sulfur poisoning. See the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 for a further discussion of this hydrodesulfurization process.

5

15

20

25

It is preferable to limit the nitrogen level and the water content of the feed.

Catalysts and processes which are suitable for these purposes are known to those skilled in the art.

After a period of operation, the catalyst can become deactivated by sulfur or coke. See the aforementioned U.S. Patent No. 4,910,006 and U.S. Patent No. 5,316,753 for a further discussion of methods of removing this sulfur and coke, and of regenerating the catalyst.

The conversion catalyst preferably contains a Group VIII metal compound to have sufficient activity for commercial use. By Group VIII metal compound as used herein is meant the metal itself or a compound thereof. The Group VIII noble metals and their compounds, platinum, palladium, and iridium, or combinations thereof can be used. Rhenium and tin may also be used in conjunction with the noble metal. The most preferred metal is platinum. The amount of Group VIII metal present in the conversion catalyst should be within

the normal range of use in isomerizing catalysts, from about 0.05 to 2.0 weight percent, preferably 0.2 to 0.8 weight percent.

Alkylation and Transalkylation

5

SSZ-53 can be used in a process for the alkylation or transalkylation of an aromatic hydrocarbon. The process comprises contacting the aromatic hydrocarbon with a C₂ to C₁₆ olefin alkylating agent or a polyalkyl aromatic hydrocarbon transalkylating agent, under at least partial liquid phase conditions. and in the presence of a catalyst comprising SSZ-53.

10

SSZ-53 can also be used for removing benzene from gasoline by alkylating the benzene as described above and removing the alkylated product from the gasoline.

15

For high catalytic activity, the SSZ-53 zeolite should be predominantly in its hydrogen ion form. It is preferred that, after calcination, at least 80% of the cation sites are occupied by hydrogen ions and/or rare earth ions.

20 Examples of suitable aromatic hydrocarbon feedstocks which may be alkylated or transalkylated by the process of the invention include aromatic compounds such as benzene, toluene and xylene. The preferred aromatic hydrocarbon is benzene. There may be occasions where naphthalene derivatives such as dimethylnaphthalene may be desirable. Mixtures of aromatic hydrocarbons may 25 also be employed.

Suitable olefins for the alkylation of the aromatic hydrocarbon are those containing 2 to 20 carbon atoms, preferably 2 to 4 carbon atoms, such as ethylene, propylene, butene-1, trans-butene-2 and cis-butene-2, or mixtures thereof. There may be instances where pentenes are desirable. The preferred olefins are ethylene and propylene. Longer chain alpha olefins may be used as well.

When transalkylation is desired, the transalkylating agent is a polyalkyl aromatic hydrocarbon containing two or more alkyl groups that each may have from 2 to about 4 carbon atoms. For example, suitable polyalkyl aromatic hydrocarbons include di-, tri- and tetra-alkyl aromatic hydrocarbons, such as diethylbenzene, triethylbenzene, diethylmethylbenzene (diethyltoluene), di-isopropylbenzene, di-isopropyltoluene, dibutylbenzene, and the like. Preferred polyalkyl aromatic hydrocarbons are the dialkyl benzenes. A particularly preferred polyalkyl aromatic hydrocarbon is di-isopropylbenzene.

When alkylation is the process conducted, reaction conditions are as follows.

The aromatic hydrocarbon feed should be present in stoichiometric excess. It is preferred that molar ratio of aromatics to olefins be greater than four-to-one to prevent rapid catalyst fouling. The reaction temperature may range from 100 F to 600 F, preferably 250 F to 450 F. The reaction pressure should be sufficient to maintain at least a partial liquid phase in order to retard catalyst fouling. This is typically 50 psig to 1000 psig depending on the feedstock and reaction temperature. Contact time may range from 10 seconds to 10 hours, but is usually from 5 minutes to an hour. The weight hourly space velocity (WHSV), in terms of grams (pounds) of aromatic hydrocarbon and olefin per gram (pound) of catalyst per hour, is generally within the range of about 0.5 to 50.

25

20

15

When transalkylation is the process conducted, the molar ratio of aromatic hydrocarbon will generally range from about 1:1 to 25:1, and preferably from about 2:1 to 20:1. The reaction temperature may range from about 100 F to 600 F, but it is preferably about 250 F to 450 F. The reaction pressure should be

sufficient to maintain at least a partial liquid phase, typically in the range of about 50 psig to 1000 psig, preferably 300 psig to 600 psig. The weight hourly space velocity will range from about 0.1 to 10. U.S. Patent No. 5,082,990 issued on January 21, 1992 to Hsieh et al. describes such processes and is incorporated herein by reference.

Conversion of Paraffins to Aromatics

SSZ-53 can be used to convert light gas C₂-C₆ paraffins to higher molecular weight hydrocarbons including aromatic compounds. Preferably, the zeolite will contain a catalyst metal or metal oxide wherein said metal is selected from the group consisting of Groups IB, IIB, VIII and IIIA of the Periodic Table. Preferably, the metal is gallium, niobium, indium or zinc in the range of from about 0.05 to 5% by weight.

15

20

25

10

5

Xylene Isomerization

SSZ-53 may also be useful in a process for isomerizing one or more xylene isomers in a C₈ aromatic feed to obtain ortho-, meta-, and para-xylene in a ratio approaching the equilibrium value. In particular, xylene isomerization is used in conjunction with a separate process to manufacture para-xylene. For example, a portion of the para-xylene in a mixed C₈ aromatics stream may be recovered by crystallization and centrifugation. The mother liquor from the crystallizer is then reacted under xylene isomerization conditions to restore ortho-, meta- and para-xylenes to a near equilibrium ratio. At the same time, part of the ethylbenzene in the mother liquor is converted to xylenes or to products which are easily separated by filtration. The isomerate is blended with fresh feed and the combined stream is distilled to remove heavy and light by-products. The resultant C₈ aromatics stream is then sent to the crystallizer to repeat the cycle.

Optionally, isomerization in the vapor phase is conducted in the presence of 3.0 to 30.0 moles of hydrogen per mole of alkylbenzene (e.g., ethylbenzene). If hydrogen is used, the catalyst should comprise about 0.1 to 2.0 wt. % of a hydrogenation/dehydrogenation component selected from Group VIII (of the Periodic Table) metal component, especially platinum or nickel. By Group VIII metal component is meant the metals and their compounds such as oxides and sulfides.

Optionally, the isomerization feed may contain 10 to 90 wt. % of a diluent such as toluene, trimethylbenzene, naphthenes or paraffins.

Oligomerization

15 It is expected that SSZ-53 can also be used to oligomerize straight and branched chain olefins having from about 2 to 21 carbon atoms and preferably 2-5 carbon atoms. The oligomers which are the products of the process are medium to heavy olefins which are useful for both fuels, i.e., gasoline or a gasoline blending stock and chemicals.

20

The oligomerization process comprises contacting the olefin feedstock in the gaseous or liquid phase with a catalyst comprising SSZ-53.

The zeolite can have the original cations associated therewith replaced by a wide variety of other cations according to techniques well known in the art. Typical cations would include hydrogen, ammonium and metal cations including mixtures of the same. Of the replacing metallic cations, particular preference is given to cations of metals such as rare earth metals, manganese, calcium, as well as metals of Group II of the Periodic Table, e.g., zinc, and Group VIII of the Periodic

Table, e.g., nickel. One of the prime requisites is that the zeolite have a fairly low aromatization activity, i.e., in which the amount of aromatics produced is not more than about 20% by weight. This is accomplished by using a zeolite with controlled acid activity [alpha value] of from about 0.1 to about 120, preferably from about 0.1 to about 100, as measured by its ability to crack n-hexane.

Alpha values are defined by a standard test known in the art, e.g., as shown in U.S. Patent No. 3,960,978 issued on June 1, 1976 to Givens et al. which is incorporated totally herein by reference. If required, such zeolites may be obtained by steaming, by use in a conversion process or by any other method which may occur to one skilled in this art.

Condensation of Alcohols

SSZ-53 can be used to condense lower aliphatic alcohols having 1 to 10 carbon atoms to a gasoline boiling point hydrocarbon product comprising mixed aliphatic and aromatic hydrocarbon. The process disclosed in U.S. Patent No. 3,894,107, issued July 8, 1975 to Butter et al., describes the process conditions used in this process, which patent is incorporated totally herein by reference.

20

25

· 10

The catalyst may be in the hydrogen form or may be base exchanged or impregnated to contain ammonium or a metal cation complement, preferably in the range of from about 0.05 to 5% by weight. The metal cations that may be present include any of the metals of the Groups I through VIII of the Periodic Table. However, in the case of Group IA metals, the cation content should in no case be so large as to effectively inactivate the catalyst, nor should the exchange be such as to eliminate all acidity. There may be other processes involving treatment of oxygenated substrates where a basic catalyst is desired.

Other Uses for SSZ-53

SSZ-53 can also be used as an adsorbent with high selectivities based on molecular sieve behavior and also based upon preferential hydrocarbon packing within the pores.

SSZ-53 may also be used for the catalytic reduction of the oxides of nitrogen in a gas stream. Typically, the gas stream also contains oxygen, often a stoichiometric excess thereof. Also, the SSZ-53 may contain a metal or metal ions within or on it which are capable of catalyzing the reduction of the nitrogen oxides. Examples of such metals or metal ions include copper, cobalt and mixtures thereof.

One example of such a process for the catalytic reduction of oxides of nitrogen in the presence of a zeolite is disclosed in U.S. Patent No. 4,297,328, issued October 27, 1981 to Ritscher et al., which is incorporated by reference herein. There, the catalytic process is the combustion of carbon monoxide and hydrocarbons and the catalytic reduction of the oxides of nitrogen contained in a gas stream, such as the exhaust gas from an internal combustion engine. The zeolite used is metal ion-exchanged, doped or loaded sufficiently so as to provide an effective amount of catalytic copper metal or copper ions within or on the zeolite. In addition, the process is conducted in an excess of oxidant, e.g., oxygen.

25 EXAMPLES

5

10

15

20

The following examples demonstrate but do not limit the present invention.

Index of Examples

Example 1: Preparation of Template A, B, C, D, and E.

Example 2-5: Preparation of borosilicate SSZ-53 having a >30 SiO_2/B_2O_3 ratio with Templates A, B, C, and D.

Example 6: Preparation of Aluminosilicate SSZ-53 having a >30

SiO₂/Al₂O₃ ratio with Template E.

Example 7: Seeded Preparation of SSZ-53.

Example 8: Preparation of Borosilicate SSZ-53 at Varying

 SiO_2/B_2O_3 ratios.

10 Example 9: Calcination of Borosilicate SSZ-53.

5

Example 10: Making Al-SSZ-53 from B-SSZ-53.

Example 11: Calcination of Al-SSZ-53

Example 12: NH₄ Exchange of Aluminosilicate SSZ-53

Example 13: N₂ Micropore Volume.

15 Example 14: Constraint Index Determination.

Example 15: Hydrocracking of n-Hexadecane.

The templating agents indicated in Table IV below are used in these examples.

20 TABLE IV

N,N,N-trimethyl-[1-(4-fluorophenyl)cyclopentyl]methyl ammonium hydroxide

(Template A)

N,N,N-trimethyl-[1-(3-fluorophenyl)cyclopentyl]methyl ammonium hydroxide (Template B)

5

N,N,N-trimethyl-[1-(2-fluorophenyl)cyclopentyl]methyl ammonium hydroxide (Template C)

10

N,N,N-trimethyl-1-phenylcyclohexyl methyl ammonium hydroxide (Template D)

N,N,N-trimethyl-1-phenylcyclopentyl methyl ammonium hydroxide (Template E)

5

Example 1 shows synthesis of the structure-directing agents.

Example 1

Synthesis of N,N,N-trimethyl-[1-(4-fluorophenyl)cyclopentyl]methyl ammonium cation (Template A)

10

15

20

25

The structure directing agents A, B, C, D and E were prepared according to the procedure described below for the synthesis of N,N,N-trimethyl-[1-(4-fluorophenyl)cyclopentyl]methyl ammonium cation (Template A). The synthesis of N,N,N-trimethyl-[1-(4-fluorophenyl)cyclopentyl]methyl ammonium cation (A) is a representative example. In a 2 Liter volume three-necked round bottom reaction flask equipped with a mechanical stirrer and reflux condenser with a drying tube, 15 grams (0.4 mole) of lithium aluminum hydride (95% purity; Aldrich) were suspended in 400 ml anhydrous tetrahydrofuran (THF; Aldrich) and stirred at room temperature for 15 minutes. The dark gray suspension was cooled down to 0 C by means of an ice-bath. To the suspension 25 gm (0.132 mole) of 1-(4-fluoruphenyl)cyclopentylcarbonitrile (ACROS ORGANICS) in 50 ml anhydrous THF were added drop wise via an addition funnel. Once the addition was completed, the ice bath was replaced with a heating mantle, and the reaction mixture was refluxed over night. The reaction mixture was cooled down

to 0 C (ice-bath) and diluted with 500-ml ethyl ether. The reaction was worked up by adding 60 ml of 15% w/w aqueous solution of NaOH drop wise (via an addition funnel) with vigorous stirring. Then, 15ml water was added and the reaction was allowed to stir for an additional 30 minutes and then allowed to settle. The milky solution quickly turned into a colorless liquid layer and a fine white powder, which precipitate to the bottom of the flask. The reaction mixture was filtered and the solids were thoroughly rinsed with ethyl ether. The ether filtrates were combined and dried over MgSO₄, filtered and concentrated to give 24.5 grams of colorless oil whose ¹H-NMR and ¹³C-NMR data were acceptable for the expected amine; [1-(4-fluorophenyl)cyclopentyl]methyl amine.

Quaternization: The obtained [1-(4-fluorophenyl)cyclopentyl]methyl amine. (24 gm; 0.124 mole) was dissolved in 300ml methanol (ACS reagent). To this solution, 38 gm (0.375 mole) of KHCO₃ and 80gm (0.56 mole) of methyl iodide were added and the resulting mixture was stirred at room temperature for 48 hrs and then was heated at reflux for 6 hrs. The resulting cloudy solution was concentrated under reduced pressure on a rotary evaporator to give a white solid material. The solids were rinsed several times with chloroform and filtered after each rinse. All the rinses were combined and concentrated to give a white powder whose NMR data were agreeable for the desired quaternary ammonium iodide salt. The reaction afforded 40.5gm (90% yield) of the product. Recrystallization of the powder from isopropyl alcohol gave 38gm of pure N,N,N,-trimethyl-[1-(4-fluorophenyl)cyclopentyl]methyl ammonium iodide salt as shinny white flakes.

Ion Exchange: The obtained N,N,N-trimethyl-[1-(4-fluorophenyl)cyclopentyl] methyl ammonium iodide salt (37gm; 0.1mol) was dissolved in 120ml water in a 500-ml volume plastic bottle. To the solution, 130 gm of Ion-Exchange Resin (BIO RAD[®]) AG1-X8 ion exchange resin, hydroxide form) were added and the

mixture was stirred at room temperature overnight. The mixture was filtered and the solids were rinsed with additional 80ml of water. The original filtrate and the rinse were combined and a small aliquot was titrated with 0.1N HCl to indicate the presence of 95mmol hydroxide (95mmol template A) in the solution. The synthetic scheme described above is depicted in Scheme 1 below.

5

Scheme 1

The synthetic procedure described above was also used to prepare templates B, C, D and E from the starting nitriles 1-(3-fluorophenyl)cyclopentylcarbonitrile, 1-(2-fluorophenyl)cyclopentylcarbonitrile, 1-phenylcyclohexylcarbonitrile, and 1-phenylcyclopentylcarbonitrile, respectively.

Example 2-5 Preparation of Borosilicate SSZ-53 Starting $SiO_2/B_2O_3 = 46$

5 Table V below summarizes the crystallization experiments and data for the different templating agents A, B, C, and D used in the synthesis of SSZ-53. In a typical run, 3 mmol of the templating agent, 1.2 mmol of NaOH, 0.16 mmol of sodium borate decahydrate (Na₂B₄O₇.10H₂O) and 14.8 mmol of SiO₂ (0.9 gm of CABOSIL-M-5) were mixed in 11.25 gm of de-ionized water (625 mmol) in a 23 10 cc Teflon liner. The components were thoroughly mixed in the liner and the resulting gel was capped off and placed in a Parr reactor and heated in an oven at 160 C while rotating at 43 rpm. The reaction was monitored by checking the gel's pH, and by looking for crystal formation using Scanning Electron Microscopy (SEM) every six days. The reaction is usually completed within 12-21 days. The resulting reaction mixture is then filtered through a fritted-glass 15 funnel, and the collected solids are washed several times with water (a total of 1litre) and allowed to air-dry over night. The solid product is further dried in an oven at 120 C for 1 hour. The typical yield is 80-90% (based on the starting solid mass). The product is then analyzed and characterized by SEM and 20 powder XRD.

Table V

Example	Cation	SiO ₂ /B ₂ O ₃	SiO ₂ /-OH	SiO₂/Na	H ₂ O/SiO ₂	Time(days)	Product
2	Α	46	3.5	9.7	42	18	SSZ-53
3	В	46	3.5	9.7	42	18	SSZ-53
4	С	46	3.5	9.7	42	21	SSZ-53
5	D	46	3.5	9.6	42	12	SSZ-53

Analysis by XRD shows the product to be SSZ-53. The XRD data appears in Table VI below (the XRD data shown in table VI is for the sample of Example 2).

TABLE VI

Two Theta(deg.)	d-spacing (Å)	Intensity I/I _o
5.15	17.15	2
6.65	13.28	100
7.75	11.40	2
8.30	10.64	63
9.75	9.064	2
13.55	6.530	12
15.70	5.640	2
16.25	5.450	8
16.70	5.304	6
17.55	5.049	20
17.75	4.993	33
18:35	4.831	3
19.30	4.595	6
19.75	4.492	23
21.15	4.197	66
21.60	4.111	12
22.00	4.037	39
22.45	3.957	6
23.00	3.864	12
23.20	3.831	4
23.45	3.791	9
24.45	3.638	8
25.25	3.524	30
25.85	3.444	9
26.25	3.392	4
26.60	3.348	7
26.90	3.312	14
27.40	3.252	20
27.90	3.195	6
29.15	3.061	8
29.75	3.001	6
30.90	2.892	5
31.30	2.855	4
32.15	2.782	3
32.80	2.728	4
34.10	2.627	2
34.35	2.609	3
35.15	2.551	2
35.75	2.510	16

36.40	2.466	5
37.35	2.406	4

Example 6 Preparation of Aluminosilicate SSZ-53 Starting SiO₂/Al₂O₃ = 70 With Template E

5

To a solution of N,N,N-trimethyl-(1-Phenylcyclopentyl)methyl ammonium hydroxide (~3 mmol; 7.5 gm of 0.40 molar Template E solution) and 0.75 mmol NaOH (0.75 gm of 1 N aqueous solution) in a 23 cc Teflon cup, a 0.25 gm of sodium-Y zeolite (Union Carbide's LZ-210) and 0.75 gm of CABOSIL-M-5 (SiO₂) 10 were added, consecutively. The mixture was thoroughly stirred and the resulting gel was capped off and placed in a Parr reactor and heated in an oven at 160 C while rotating at 43 rpm. The reaction was monitored by checking the gel's pH, and by looking for crystal formation using Scanning Electron Microscopy (SEM) at six days intervals. The reaction was completed after heating at the 15 temperature described above (while rotating at 43 rpm)) for 12 days. The reaction mixture appeared as a paste, which was crystalline by SEM analysis. The paste was diluted with de ionized water and filtered through a fritted-glass funnel. The resulting solid was washed generously with water and allowed to air-dry over night to yield 1.0 gm of a fine white powder. The material was found to be SSZ-53 by XRD. A trace amount of unconverted LZ-210 was also present 20 in the powder as indicated by XRD

Example 7 Seeded Preparation of Borosilicate SSZ-53

25

The reactions described in examples 2-5 (Table II) were repeated, with the exception of seeding with 0.05 gram of SSZ-53 crystals. In this case, SSZ-53 was obtained in 6-8 days.

Example 8 Preparation of Borosilicate SSZ-53 at varying SiO₂/B₂O₃ Ratios

5

10

Three mmol of a solution of Template A (6.67 grams, 0.45 mmol OH/g) is mixed with 1.2 grams of 1.0 N NaOH and 4.15 grams of water. Sodium borate decahydrate (0.01-0.12 gram) is added to this solution and stirred until all of the solids have dissolved. Cabosil-M-5 fumed silica (0.9 gram) is then added to the solution and the resulting mixture is heated at 160 C and rotated at 43 rpm for 12-30 days. The products of each of the reactions was filtered, washed, dried and determined by XRD analysis.

The data presented in Table VII below is obtained from attempts aimed at making SSZ-53 (borosilicate) at different SiO₂/B₂O₃ ratios while keeping the ratio of SiO₂ to other reagents constant using Templates A as the structure-directing agent.

Table VII*

20

15

SiO ₂ /B ₂ O ₃	XRD results
282	Cristobalite (major), SSZ-53 (minor)
141	Cristobalite (major), SSZ-53 (minor)
94	SSZ-53
70.5	SSZ-53
56	SSZ-53
47	SSZ-53
40.25	SSZ-53
35.25	SSZ-53
31.3	SSZ-53
28.2	SSZ-53
25.5	SSZ-53
23.5	SSZ-53

* SiO₂/OH for all runs was 3.5; SiO₂/Na for all runs was 12.3 and H₂O/SiO₂ for all runs was 42.

The data presented in Table VIII below is obtained from attempts aimed at making SSZ-53 (borosilicate) at different SiO₂/B₂O₃ ratios while keeping the ratio of SiO₂ to other reagents constant using Templates E as the structure-directing agent.

Table VIII

10

5

SiO ₂ /B ₂ O ₃	XRD results	
282	Cristobalite	
141	Cristobalite	
94	Cristobalite, SSZ-53 (trace)	
70.5	Cristobalite, SSZ-53 (minor)	
56	SSZ-53	
47	SSZ-53	
40.25	SSZ-53	
35.25	SSZ-53	
31.3	SSZ-53	
28.2	SSZ-53	
25.5	SSZ-53	
23.5	SSZ-53	

* SiO₂/OH for all runs was 3.5; SiO₂/Na for all runs was 12.3 and H₂O/SiO₂ for all runs was 42.

15

20

Example 9 Calcination of B-SSZ-53

The material from Examples 2-5 (the product of each example were calcined separately) is calcined in the following manner. A thin bed of material is heated in a muffle furnace from room temperature to 120 C at a rate of 1 C per minute

and held at 120 C for three hours. The temperature is then ramped up to 540 C at the same rate and held at this temperature for 5 hours, after which it is increased to 594 C and held there for another 5 hours. A nitrogen stream with a slight bleed of air is passed over the zeolite at a rate of 20 standard cubic feet per minute during heating. The X-ray diffraction data for the calcined product from example 2 is provided in Table IX below.

TAB	L	Ε	ı	Χ

		*
2 Theta	<u>d</u>	<u> / ₀ x 100</u>
5.15	17.15	5
6.60	13 .38	100
8.25	10.71	57
9.75	9.064	3
15.65	5.6 58	2
16.25	5.450	2
17.75	4.993	12
18.25	4.857	2
19.25	4.607	4
19.70	4.503	12
21.00	4.227	18
21.50	4.130	9
21.95	4.046	5
22.95	3.872	5
24.45	3 .638	1
25.15	3.538	6
25.80	3.450	1
26.30	3.386	1
26.90	3.312	3
27.25	3.270	3
27.65	3.224	3 2 2 2 2 1
29.15	3.061	2
29.65	3.011	2
30.90	2.892	2
32.85	2.724	1
34.20	2.620	1
35.15	2.551	1
35.60 ·	2.520	4
36.30	2.473	1

Example 10 Making Al-SSZ-53 from B-SSZ-53

The Boron-SSZ-53 (the product of each of the examples 2-5 were treated individually and were not combined) was treated with aluminum nitrate (Al(NO₃)₃.9H₂O) to exchange the boron in the framework of the zeolite with aluminum to make the more acidic version Al-SSZ-53. The product of Examples 2-5, after being calcined as in Example 9, was heated in an oven at 95 C in a 1.0 molar solution of Al(NO₃)₃.9 H₂O (25 ml/ 1 g of zeolite) overnight. The mixture was then filtered, treated with dilute HCl and thoroughly rinsed with water. The collected solid was then rinsed with 0.1 N HCl to remove any excess of aluminum nitrate and washed again with water. The solids were air-dried overnight and calcined at 540 C for 5 hrs to give the H⁺ form of the more acidic version of SSZ-53.

15

10

5

Example 11 Calcination of Al-SSZ-53

The procedure described in Example 10 is followed on the product from 20 Example 4, with the exception that the calcination was performed in a 50/50 mixture of air and nitrogen stream.

Example 12 NH₄ Exchange

25

lon exchange of calcined SSZ-53 material (prepared in Example 9) was performed using NH₄NO₃ to convert the zeolite from its Na⁺ form to the NH₄⁺ form, and, ultimately, the H⁺ form. Typically, the same mass of NH₄NO₃ as zeolite is slurried in water at a ratio of 25-50:1 water to zeolite. The exchange

solution is heated at 95 C for 2 hours and then filtered. This procedure can be repeated up to three times. Following the final exchange, the zeolite is washed several times with water and dried. This NH₄⁺ form of SSZ-53 can then be converted to the H⁺ form by calcination (as described in Example 9) to 540 C.

5

Example 13 N₂ Micropore Volume

The H $^+$ form of the products of Example 2 after a treatment as in examples 9, 10 and 12 was subjected to a surface area and micropore volume analysis using N $_2$ as adsorbate and via the BET method. The surface area of the zeolitic material is 416 m 2 /g and the micropore volume is 0.17 cc/g, thus exhibiting considerable void volume.

15

20

25

10

Example 14 Constraint Index Determination

The hydrogen form of the Al-SSZ-53 zeolite of Example 2 (after treatment according to Examples 9, 10, and 12) was pelletized at 2-3 KPSI, crushed and meshed to 20-40, and then >0.50 gram was calcined at about 540 C in air for four hours and cooled in a desiccator. A 0.56 g sample was packed into a 1/4" OD stainless steel tube with alundum on both sides of the zeolite bed. A Lindburg furnace was used to heat the reactor tube. Helium was introduced into the reactor tube at 9.4 cc/min and atmospheric pressure. The reactor was heated to about 427 C, and a 50/50 (w/w) feed of n-hexane and 3-methylpentane was introduced into the reactor at a rate of 8 I/min. Feed delivery was made via an ISCO pump. Direct sampling into a gas chromatograph begins after 10 minutes of feed introduction. The Constraint Index value was calculated from the gas chromatographic data using methods

known in the art, and was found to be 0.73. At 427 C and 10 minutes on-stream, feed conversion was >99%. At 40 minutes the conversion was 64%. At 70 minutes it was 36% and at 100 minutes it was 22%.

SSZ-53 has very high cracking activity, indicative of strongly acidic sites. In addition, the catalyst has good stability. The C.I. of 0.73 shows almost no preference for cracking the branched alkane (3-methylpentane) over the linear n-hexane, which is behavior typical of large-pore zeolites.

10

15

20

25

Example 15 Hydrocracking of n-Hexadecane

The product of Examples 5 was treated as in Examples 9, 10, and 12. Then a sample was slurried in water and the pH of the slurry was adjusted to a pH of ~10 with dilute ammonium hydroxide. To the slurry was added a solution of Pd(NH₃)₄(NO₃)₂ at a concentration which would provide 0.5 wt. % Pd with respect to the dry weight of the zeolite sample if all the Pd exchanges onto the zeolite. This slurry was stirred for 48 hours at room temperature. After cooling, the slurry was filtered through a glass frit, washed with de-ionized water, and dried at room temperature. The catalyst was then calcined slowly up to 900 F in air and held there for three hours.

The calcined catalyst was pelletized in a Carver Press and crushed to yield particles with a 20/40 mesh size range. Sized catalyst (0.5 g) was packed into a 1/4" OD tubing reactor in a micro unit for n-hexadecane hydroconversion. Table X gives the run conditions and the products data for the hydrocracking test on n-hexadecane. After the catalyst was tested with n-hexadecane, it was titrated using a solution of butyl amine in hexane. The temperature was increased and the conversion and product data evaluated again under titrated conditions. The

results shown in Table X show that SSZ-53 is effective as a hydrocracking catalyst.

Table X

<u>T</u>	able X	
Temperature	276°C (528 F)	303°C (578 F)
	97.8-101.3	167.6-170.1
Time-on-Stream (hrs.)	1.55	1.55
WHSV	1200	1200
PSIG	No	Yes
Titrated?	93.4	92.3
n-16, % Conversion	70.7	70.5
Hydrocracking Conversion, %		22.4
Isomerization Selectivity, %	18.2	77.6
Crack. Selectivity, %	81.90	12.3
C ₄ -, %	12.0	
C ₅ /C ₄	5.4	5.2
C ₅ +C ₆ /C ₅ , %	29.67	28.97
DMB/MP	0.12	0.11
DMB/nC ₆	0.55	0.42
	6.71	5.96
C ₄ -C ₁₃ I/N		