AFGRL

20200045 김건우

Contents

- Introduction
- Related Work
- Problem Statement
- Preliminary(BYOL)
- Proposed Method(AFGRL)
- Experiments
- Conclusion
- Implement

Introduction

- 최근 self-supervised learning분야에서 큰 성공 -> Graph에 적용?
- 그러나 Graph의 경우 semantic info(의미적 정보), structural info(구조적 정보)를 모두 포함

Introduction

- 따라서 graph에 대한 augmentation은 info를 해칠 수 있다.
- 더 나아가 augmentation-based contrastive methods는 hyperparameter 에 의존적이며
- 많은 negative samples이 필요함

- Augmentation-free 하면서도 negative sample이 필요하지 않는 새로운 self-supervised learning framework
- AFGRL(Augmentation-Free Graph Representation Learning)

Related Work

Contrastive Methods on Graphs

문제점 : sampling bias, large amount of negative samples, high computational and memory costs BGRL은 sampling bias issue는 해결하였으나 여전히 augmentation에 관한 문제가 존재

Augmentations on Graphs

문제점 : 보편적인 augmentations는 없음(parameter에 의존적), domain information이 효과적인 augmentation에 도움되나 항상 적용 가능하지는 않음

Problem Statement

• Graph G에 대해 X(feature matrix), A(adjacency matrix)가 주어 졌을 때, node embedding H = f(X, A) 를 생성하는 **인코더 f(·)** 를 학습하는 것

Preliminary(BYOL)

Preliminary(BYOL)

[BYOL^o] loss function symmetrization]

$$\theta \leftarrow \text{optimizer}(\theta, \nabla_{\theta} \mathcal{L}_{\theta, \xi}^{\text{BYOL}}, \eta),$$

 $\xi \leftarrow \tau \xi + (1 - \tau)\theta,$

(exponential moving average)

$$\mathcal{L}_{\theta,\xi} \triangleq \left\| \overline{q_{\theta}}(z_{\theta}) - \overline{z}_{\xi}' \right\|_{2}^{2} = 2 - 2 \cdot \frac{\langle q_{\theta}(z_{\theta}), z_{\xi}' \rangle}{\left\| q_{\theta}(z_{\theta}) \right\|_{2} \cdot \left\| z_{\xi}' \right\|_{2}}$$

(MSE with I2 norm)

- BYOL을 그래프에 적용: BGRL
- 장점: Negative sample 불필요, 큰 graph에 적용 가능
- 한계점: augmentation scheme에 의존, 다양한 downstream task에 대해 각각의 hyperparameters를 선택해야 함

		Comp.	Photo	CS	Physics
Node	BGRL	-4.00%	-1.06%	-0.20%	-0.69%
Classi.	GCA	-19.18%	-5.48%	-0.27%	OOM
Node	BGRL	-11.57%	-13.30%	-0.78%	-6.46%
Clust.	GCA	-26.28%	-23.27%	-1.64%	OOM

 f_{θ} : 노드 임베딩 H^{θ} 생성, update by gradient descent

 f_{ξ} : 노드 임베딩 H^{ξ} 생성, update by EMA of f_{θ}

P_i: real positive

 q_{θ} : predictor(H^{θ} to Z^{θ})

$$sim(v_i, v_j) = rac{\mathbf{h}_i^{ heta} \cdot \mathbf{h}_j^{\xi}}{\|\mathbf{h}_i^{ heta}\| \|\mathbf{h}_j^{\xi}\|}, orall v_j \in \mathcal{V}$$
 for B_i(k-nn)

Capturing Local Structural Information $(B \cap N)$

Capturing Global Semantics $(B \cap C)$

$$P = (B \cap N) \cup (B \cap C)$$

$$\mathbf{P}_i = (\mathbf{B}_i \cap \mathbf{N}_i) \cup (\mathbf{B}_i \cap \mathbf{C}_i)$$

$$\mathcal{L}_{ heta,\xi} = -rac{1}{N} \sum_{i=1}^{N} \sum_{v_j \in \mathbf{P}_i} rac{\mathbf{z}_i^{ heta} \mathbf{h}_j^{\xi op}}{\left\| \mathbf{z}_i^{ heta}
ight\| \left\| \mathbf{h}_j^{\xi}
ight\|}, \quad ext{Query node과 P 사이의 cosine distance를 최소화하며 학습$$

Experiments

Performance on node classification

	WikiCS	Computers	Photo	Co.CS	Co.Physics
Sup. GCN	77.19 ± 0.12	86.51 ± 0.54	92.42 ± 0.22	93.03 ± 0.31	95.65 ± 0.16
Raw feats.	71.98 ± 0.00	73.81 ± 0.00	78.53 ± 0.00	90.37 ± 0.00	93.58 ± 0.00
node2vec	71.79 ± 0.05	84.39 ± 0.08	89.67 ± 0.12	85.08 ± 0.03	91.19 ± 0.04
DeepWalk	74.35 ± 0.06	85.68 ± 0.06	89.44 ± 0.11	84.61 ± 0.22	91.77 ± 0.15
DW + feats.	77.21 ± 0.03	86.28 ± 0.07	90.05 ± 0.08	87.70 ± 0.04	94.90 ± 0.09
DGI	75.35 ± 0.14	83.95 ± 0.47	91.61 ± 0.22	92.15 ± 0.63	94.51 ± 0.52
GMI	74.85 ± 0.08	82.21 ± 0.31	90.68 ± 0.17	OOM	OOM
MVGRL	77.52 ± 0.08	87.52 ± 0.11	91.74 ± 0.07	92.11 ± 0.12	95.33 ± 0.03
GRACE	77.97 ± 0.63	86.50 ± 0.33	92.46 ± 0.18	92.17 ± 0.04	OOM
GCA	77.94 ± 0.67	87.32 ± 0.50	92.39 ± 0.33	92.84 ± 0.15	OOM
BGRL	76.86 ± 0.74	89.69 ± 0.37	93.07 ± 0.38	92.59 ± 0.14	95.48 ± 0.08
AFGRL	77.62 ± 0.49	89.88 ± 0.33	93.22 ± 0.28	93.27 ± 0.17	95.69 ± 0.10

Augmentation parameters 조정이 필요한 모델보다 AFGRL이 전반적으로 뛰어난 성능을 보임

Experiments

Performance on node clustering

		GRACE	GCA	BGRL	AFGRL
WikiCS	NMI	0.4282	0.3373	0.3969	0.4132
WIKICS	Hom.	0.4423	0.3525	0.4156	0.4307
Computers	NMI	0.4793	0.5278	0.5364	0.5520
Computers	Hom.	0.5222	0.5816	0.5869	0.6040
Photo	NMI	0.6513	0.6443	0.6841	0.6563
Filoto	Hom.	0.6657	0.6575	0.7004	0.6743
Co.CS	NMI	0.7562	0.7620	0.7732	0.7859
Co.Cs	Hom.	0.7909	0.7965	0.8041	0.8161
Co.Physics	NMI	OOM	OOM	0.5568	0.7289
Co.Filysics	Hom.	OOM	OOM	0.6018	0.7354

Performance on similarity search

		GRACE	GCA	BGRL	AFGRL
WikiCS	Sim@5	0.7754	0.7786	0.7739	0.7811
WIKICS	Sim@10	0.7645	0.7673	0.7617	0.7660
Computars	Sim@5	0.8738	0.8826	0.8947	0.8966
Computers	Sim@10	0.8643	0.8742	0.8855	0.8890
Photo	Sim@5	0.9155	0.9112	0.9245	0.9236
Photo	Sim@10	0.9106	0.9052	0.9195	0.9173
Co.CS	Sim@5	0.9104	0.9126	0.9112	0.9180
Co.Cs	Sim@10	0.9059	0.9100	0.9086	0.9142
Co.Physics	Sim@5	OOM	OOM	0.9504	0.9525
	Sim@10	OOM	OOM	0.9464	0.9486

AFGRL은 global information도 포함하기 때문에 node clustering/ similarity search 에서 좋은 성능을 보임

Experiments-Ablation Studies

Real Positive를 선택하는 방법에 따른 성능의 차이를 볼 수 있다.

- Local+Global인 경우가 가장 효과적
- Local보다는 Global을 고려하는 것이 더 효과적
- Adj matrix가 sparse한 경우에도 AFGRL이 효과적

Experiments-Visualization

GCA에 비해 AFGRL이 더 tightly(단단히) 하게 그룹화가 되어있음

Conclusion

- AFGRL은 그래프에 대한 self-supervised learning framework
- Augmentation, negative sample이 필요하지 않음
- local structural information + global semantics information을 통해 real positive를 결정
- Hyper parameter에 민감하지 않으며 다양한 downstream work 에 적용가능(성능 역시 뛰어남)

Implement

```
ass AFGRL(nn.Module):
                                                                                                                                  ↑ ↓ © 目 ☆ 뎼
    self.teacher_ema_updater = EMA(args.mad, args.epochs)
    self.topk = args.topk
    self.teacher encoder = None
def update moving average(self):
```

My Experiments-Ablation Studies

	AFGRL	local	global
computers	88.3156	88.3156	88.3156
wikics	74.6032	74.5912	74.5989

1.전반적으로 논문에서의 값보다 성능은 좋지 않았음

2.Wikics 데이터의 경우 논문에서와 같이 AFGRL>global>local순서로 성능이 좋았음

3.Computers 데이터의 경우 성능의 차이가 없었음