PAM

Ana Karen Martínez Marín

2022-06-01

PARTITION AROUND MEDOIDS (PAM)

INTRODUCCIÓN

Para esta práctica se utilizó la base de datos precargada en R **state.x77**. Pero ahora se le apricará el método PAM.

Librerías a utilizar

```
library(cluster)
```

Matriz de datos.

```
X<-as.data.frame(state.x77)
colnames(X)

## [1] "Population" "Income" "Illiteracy" "Life Exp" "Murder"
## [6] "HS Grad" "Frost" "Area"</pre>
```

Transformación de datos

1.- Transformacion de las variables x1,x3 y x8 utilizando la función de logaritmo.

```
X[,1]<-log(X[,1])
colnames(X)[1]<-"Log-Population"

X[,3]<-log(X[,3])
colnames(X)[3]<-"Log-Illiteracy"

X[,8]<-log(X[,8])
colnames(X)[8]<-"Log-Area"</pre>
```

Metodo PAM

1.- Separacion de filas y columnas.

```
dim(X)
## [1] 50 8
n<-dim(X)[1]
p<-dim(X)[2]</pre>
```

2.- Estandarizacion univariante.

X.s<-scale(X)</pre>

3.- Aplicacion del algoritmo

pam.3<-pam(X.s,3)

4.- Clusters

cl.pam<-pam.3\$clustering
cl.pam</pre>

##	Alabama	Alaska	Arizona	Arkansas	California
##	1	2	1	1	3
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	2	2	3	1	1
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	2	2	3	3	2
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	2	1	1	2	3
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	3	3	2	1	3
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	Montana	NCDIabka	Novada	New Hampbhile	New belbey
##	4011tana 2	2	2	2	3
	New Mexico	2	North Carolina	North Dakota	3 Ohio
##	2	2	2	2	3
## ##	2	2	2 North Carolina 1	2 North Dakota 2	3
## ## ##	New Mexico	New York 3	2 North Carolina 1	2 North Dakota 2	3 Ohio 3
## ## ##	New Mexico	New York 3	2 North Carolina 1	2 North Dakota 2	3 Ohio 3 South Carolina 1
## ## ## ##	2 New Mexico 1 Oklahoma 3	New York 3 Oregon 2	2 North Carolina 1 Pennsylvania 3	North Dakota 2 Rhode Island 2	3 Ohio 3 South Carolina 1
## ## ## ## ##	2 New Mexico 1 Oklahoma 3	New York 3 Oregon 2 Tennessee	2 North Carolina 1 Pennsylvania 3	North Dakota 2 Rhode Island 2 Utah	South Carolina Vermont 2

5.- Scatter plot de la matriz con los grupos

```
col.cluster<-c("blue","red","green")[cl.pam]
pairs(X.s, col=col.cluster, main="PAM", pch=21)</pre>
```


Visualizacion con Componentes Principales

clusplot(X.s,cl.pam)

CLUSPLOT(X.s)

These two components explain 62.5 % of the point variability.

CLUSPLOT(X.s)

These two components explain 62.5 % of the point variability.

Silhouette

Representación gráfica de la eficacia de clasificación de una observación dentro de un grupo.

1.- Generación de los cálculos:

```
dist.Euc<-dist(X.s, method = "euclidean")
Sil.pam<-silhouette(cl.pam, dist.Euc)</pre>
```

2.- Generación del gráfico:

Silhouette for PAM

Average silhouette width: 0.22