IN THE CLAIMS:

- 1. (Cancelled).
- 2. (Currently Amended) The communication device of claim 1, A communication device comprising:

a capacitive element and an inductive element arranged as a matching circuit, the matching circuit having an impedance;

a ferro-electric material positioned to adjust a value that is a member of the group consisting of a capacitance value of the capacitive element and an inductance value of the inductive element;

a control line operably connected to the ferro-electric material;

a control source electrically connected to the control line, the control source configured to transmit a control signal on the control line;

wherein the ferro-electric material, responsive to the control signal, adjusts the value to change the impedance of the matching circuit; and

wherein the quality factor of the matching circuit, when operated in a temperature range between about -50 degrees Celsius and 100 degrees Celsius, is greater than about 80 in a frequency range between 0.25 GHz and 7.0 GHz.

3. (Currently Amended) The communication device of claim + 2, wherein the quality factor, when operated in a temperature range between about -50 degrees Celsius and 100 degrees Celsius, is greater than about 80 in a frequency range between about 0.8 GHz and 7.0 GHz.

TO:USPTO

Attorncy Docket No.: UTL 00004

- 4. (Currently Amended) The communication device of claim + 2, wherein the quality factor, when operated in a temperature range between about -50 degrees Celsius and 100 degrees Celsius, is greater than about 80 in a frequency range between about 0.25 GHz and 2.5 GHz.
- 5. (Currently Amended) The communication device of claim $\frac{1}{2}$, wherein the quality factor, when operated in a temperature range between about -50 degrees Celsius and 100 degrees Celsius, is greater than about 80 in a frequency range between about 0.8 GHz and 2.5 GHz.
- 6. (Currently Amended) The communication device of claim 1 2, wherein the quality factor, when operated in a temperature range between about -50 degrees Celsius and 100 degrees Celsius, is greater than about 180 in a frequency range between 0.25 GHz and 7.0 GHz.
- 7. (Currently Amended) The communication device of claim ½ 2, wherein the quality factor, when operated in a temperature range between about -50 degrees Celsius and 100 degrees Celsius, is greater than about 180 in a frequency range between about 0.8 GHz and 2.5 GHz.
- 8. (Currently Amended) The communication device of claim ± 2 , wherein the quality factor, when operated in a temperature range between about -50 degrees Celsius and 100 degrees Celsius, is greater than about 80 for a capacitance in a range between about 0.3 pF and 3.0 pF.

- 9. (Currently Amended) The communication device of claim 1 2, wherein the quality factor, when operated in a temperature range between about -50 degrees Celsius and 100 degrees Celsius, is greater than about 80 for a capacitance in a range between about 0.5 pF and 1.0 pF.
- 10. (Currently Amended) The communication device of claim ± 2 , wherein the quality factor, when operated in a temperature range between about -50 degrees Celsius and 100 degrees Celsius, is greater than about 180 for a capacitance in a range between about 0.3 pF and 3.0 pF.
- 11. (Currently Amended) The communication device of claim ± 2, wherein the quality factor, when operated in a temperature range between about -50 degrees Celsius and 100 degrees Celsius, is greater than about 180 for a capacitance in a range between about 0.5 pF and 1.0 pF.
- 12. (Previously Presented) A communication device comprising:
 - a capacitive element and an inductive element arranged as a matching circuit, the matching circuit having an impedance;
 - a ferro-electric material positioned to adjust a value that is a member of the group consisting of a capacitance value of the capacitive element and an inductance value of the inductive element;
 - a control line operably connected to the ferro-electric material;
 - a control source electrically connected to the control line, the control source configured to transmit a control signal on the control line;

wherein:

the ferro-electric material, responsive to the control signal, adjusts the value to change the impedance of the matching circuit, and the control signal comprises a direct current voltage;

the control source is coupled to a band select signal, the band select signal comprising a signal identifying a band in which the matching circuit is to operate; and

the control source comprises:

a lookup table comprising a number representing the direct current voltage value corresponding to the band in which the matching circuit is to operate; and

a voltage source for generating the direct current voltage responsive to the number representing the direct current voltage value.

13. (Previously Presented) A communication device comprising:

a capacitive element and an inductive element arranged as a matching circuit, the matching circuit having an impedance;

a ferro-electric material positioned to adjust a value that is a member of the group consisting of a capacitance value of the capacitive element and an inductance value of the inductive element;

a control line operably connected to the ferro-electric material:

a control source electrically connected to the control line, the control source configured to transmit a control signal on the control line;

wherein the ferro-electric material, responsive to the control signal, adjusts the value to change the impedance of the matching circuit, and

TO: USPTO

wherein the control source comprises a power detector which detects a power level of an RF signal and varies the control signal responsive to the power level of the RF signal.

14-23. (Cancelled).

24. (Previously Presented) A communication device comprising:

> a capacitive element and an inductive element arranged as a matching circuit, the matching circuit having an impedance;

a ferro-electric material positioned to adjust a value that is a member of the group consisting of a capacitance value of the capacitive element and an inductance value of the inductive element;

a control line operably connected to the ferro-electric material;

a control source electrically connected to the control line, the control source configured to transmit a control signal on the control line;

an antenna coupled to a first port of the matching circuit; and a duplexer coupled to a second port of the matching circuit, and wherein the ferro-electric material, responsive to the control signal, adjusts the value to change the impedance of the matching circuit.

- 25. (Previously Presented) A communication device comprising:
 - a capacitive element and an inductive element arranged as a matching circuit, the matching circuit having an impedance;
 - a ferro-electric material positioned to adjust a value that is a member of the

group consisting of a capacitance value of the capacitive element and an inductance value of the inductive element;

a control line operably connected to the ferro-electric material;

a control source electrically connected to the control line, the control_source configured to transmit a control signal on the control line;

an antenna coupled to a first port of the matching circuit; and
a diplexer coupled to a second port of the matching circuit, and
wherein the ferro-electric material, responsive to the control signal, adjusts the value to
change the impedance of the matching circuit.