MIEInf 8 de janeiro de 2018 [duração 2h]

Cálculo

Teste 2

Nome Completo Número

JUSTIFIQUE CUIDADOSAMENTE TODAS AS SUAS RESPOSTAS

GRUPO I

RESOLVER NO ENUNCIADO

1. (2 valores) Atente no seguinte esboço gráfico de $y = \operatorname{sen} x^2$, entre 0 e $\sqrt{2\pi}$.

(a) Ordene por ordem decrescente $\int_0^{\sqrt{\pi}} \sin x^2 dx$ e $\int_{0}^{\sqrt{2\pi}} \sin x^2 \, dx.$

(b) Exprima, usando uma expressão integral, o valor da área -1 sombreada da figura.

GRUPO II

RESOLVER NA FOLHA DE TESTE

- **1.** (2 valores) Calcule $\int x \operatorname{arctg} x^2 dx$.
- 2. (4 valores) Estude, calculando o valor se for esse o caso, os seguintes integrais

(a)
$$\int_0^3 \frac{dx}{1+e^x}$$
, fazendo $t=e^x$; (b) $\int_0^1 \frac{dt}{\sqrt{t+5}}$.

(b)
$$\int_{-5}^{1} \frac{dt}{\sqrt{t+5}}$$
.

- 3. (2 valores) As curvas definidas por $y = \operatorname{sen} x$ e $y = \cos x$ cruzam-se infinitas vezes. o valor da área da região limitada por essas curvas, entre duas interseções consecutivas?
- **4.** (4 valores) Estude as seguintes séries:

(a)
$$\sum_{n=1}^{+\infty} \frac{1}{n^2 + 2}$$

(b)
$$\sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^2}$$

(6 valores) Qual o valor lógico (Verdadeiro ou Falso) de cada uma das seguintes afirmações?

- 1. $\lim_{x\to 0} \frac{x}{x + \cos x} = 1.$
- **2.** Se $1 + 2x + x^2 + (x 4)^3$ é o polinómio de Taylor da função $f : \mathbb{R} \longrightarrow \mathbb{R}$, de ordem 3 e em torno do ponto 4, então $1 + 2x + x^2$ é o correspondente polinómio de Taylor de ordem 2.
- **3.** Se $a \neq 0$, então $\int \operatorname{sen}(ax+b) dx = -\frac{1}{a} \cos(ax+b)$.
- **4.** Sejam I=[2,6] e $\mathcal P$ uma partição de I em n subintervalos com a mesma amplitude Δx . Se n=10, então $\Delta x=\frac{1}{10}$.
- **5.** Se $\int_0^{+\infty} f(x) dx$ e $\int_0^{+\infty} g(x) dx$ divergem ambos, então $\int_0^{+\infty} [f(x) + g(x)] dx$ também diverge.
- **6.** A série $5 10 + 20 40 + 80 \cdots$ é geométrica.