Dolbeault Theorem and de Rham Theorem

David Gu

Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

September 17, 2023

Definition (Fine Sheaf)

Suppose S is a sheaf on a Riemann surface M, $W = \{W_{\alpha}\}$ is a local finite open cover, if $\phi_{\alpha} : S \to S$ is a sheaf homomorphism, satisfying

- ① for any α , there is a closed set $K_{\alpha} \subset W_{\alpha}$, such that when $p \notin K_{\alpha}$, $\phi_{\alpha}|_{S_p} = 0$;

then we call $\{\phi_{\alpha}\}$ is a partition of unity belonging to the open cover \mathcal{W} . If for any local finite open cover, there is a partition of unity satisfying the above conditions, then \mathcal{S} is called a fine sheaf.

Any open cover of a Riemann surface has local finite subdivision, for each local finite open cover $\mathcal{W}=\{W_{\alpha}\}$, there is a partition of unity $\{f_{\alpha}\}$ associated with \mathcal{W} , namely the support of the smooth function f_{α} is inside W_{α} , and the summation of f_{α} 's is 1.

The sheaves of smooth function, p-forms, (p, q)-forms, L-valued (p, q)-forms are fine sheaves.

Consider L-valued p-form sheaf $\mathcal{S}^p(L)$, $\phi_\alpha: \mathcal{S}^p(L) \to \mathcal{S}^p(L)$ is

$$\phi_{\alpha}\left(\left[\sum_{i}\omega_{i}\otimes s_{i}\right]_{p}\right)=\left[\sum_{i}f_{\alpha}\omega_{i}\otimes s_{i}\right]_{p},$$

 ω_i is a local *p*-form, s_i is the local section of L, $\{\phi_\alpha\}$ is the partition of the unity of $\mathcal{S}^p(L)$ associated with the open cover \mathcal{W} .

The sheaves of holomorphic functions, holomorphic sections of holomorphic line bundle are not fine sheaves.

Theorem (Fine Sheaf)

If S is a fine sheaf, then $H^q(M; S) = 0$, $\forall q \geq 1$.

Proof.

Suppose $\mathcal{U}=\{U_{\alpha}\}$ is a locally finite open cover. Suppose $f\in C^1(\mathcal{U};\mathcal{S})$, $\delta f=0$, we want to show $\exists g\in C^0(\mathcal{U};\mathcal{S})$, such that $f=\delta g$. In fact, assume $\{\phi_{\alpha}\}$ is the partition of unity of \mathcal{S} associated with \mathcal{U} , define $g\in C^0(\mathcal{U};\mathcal{S})$ as follows:

$$g(U_{lpha}) = \sum_{\gamma} \phi_{\gamma} \circ (f(U_{\gamma}, U_{lpha})).$$

where $\phi_{\gamma} \circ (f(U_{\gamma}, U_{\alpha}))$ are in $\Gamma(S, U_{\gamma} \cap U_{\alpha})$, and extended by zero to an element in $\Gamma(S, U_{\alpha})$.

Continued.

We have

$$\begin{split} \delta g(U_{\alpha}, U_{\beta}) &= g(U_{\beta}) - g(U_{\alpha}) \\ &= \sum_{\gamma} [\phi_{\gamma} \circ (f(U_{\gamma}, U_{\beta})) - \phi_{\gamma} \circ (f(U_{\gamma}, U_{\alpha}))] \\ &= \sum_{\gamma} \phi_{\gamma} [f(U_{\gamma}, U_{\beta}) - f(U_{\gamma}, U_{\alpha})] \\ &= \sum_{\gamma} \circ (f(U_{\alpha}, U_{\beta})) \\ &= f(U_{\alpha}, U_{\beta}). \end{split}$$

Hence $f = \delta g$, $H^1(\mathcal{U}, \mathcal{S}) = 0$. Therefore $H^1(M, \mathcal{S}) = 0$.

Fine Sheaf Decomposition

Definition (Fine Sheaf Decomposition)

Suppose S is a sheaf on a Riemann surface M. If there are fine sheaves $\{S_i\}_{i\geq 0}$ and exact sequence of sheaf homomorphisms

$$0 \rightarrow S \rightarrow S_0 \xrightarrow{d_0} S_1 \xrightarrow{d_1} S_2 \xrightarrow{d_2} \cdots$$

Fine Sheaf Decomposition

Theorem (de Rham)

Suppose ${\cal S}$ is a sheaf on the Riemann surface M, if ${\cal S}$ has a fine sheaf decomposition

$$0 \rightarrow \ S \rightarrow \ S_0 \xrightarrow{d_0} \mathcal{S}_1 \xrightarrow{d_1} \mathcal{S}_2 \xrightarrow{d_2} \cdots$$

and the induced homomorphism sequence is

$$0 \to \Gamma(\mathcal{S}) \to \Gamma(\mathcal{S}_0) \xrightarrow{d_0^*} \Gamma(\mathcal{S}_1) \xrightarrow{d_1^*} \Gamma(\mathcal{S}_2) \xrightarrow{d_2^*} \cdots$$

then there are group isomorphisms

$$H^q(M;\mathcal{S})\cong rac{\mathit{Ker}\ d_q^*}{\mathit{Img}\ d_{q-1}^*},\quad orall q\geq 1.$$

Proof.

Let $Z_p = \text{Ker } d_p$, we have the short exact sequence of sheaves,

$$0 \to \ S \to \ S_0 \xrightarrow{d_0} Z_1 \xrightarrow{d_1} 0$$

By short-long theorem, we have

(i)
$$0 \to H^0(\mathcal{S}) \to H^0(\mathcal{S}_0) \xrightarrow{d_0^*} H^0(\mathcal{Z}_1)$$

 $\xrightarrow{\delta_0^*} H^1(\mathcal{S}) \to H^1(\mathcal{S}_0) \xrightarrow{d_0^*} H^1(\mathcal{Z}_1)$
 $\xrightarrow{\delta_1^*} H^2(\mathcal{S}) \to H^2(\mathcal{S}_0) \xrightarrow{d_0^*} H^2(\mathcal{Z}_1) \cdots$

Since S_0 is a fine sheaf, $H^1(S_0) = 0$, $H^2(S_0) = 0$, we have

(a)
$$0 \to \Gamma(\mathcal{S}) \to \Gamma(\mathcal{S}_0) \xrightarrow{d_0^*} \Gamma(Z_1) \xrightarrow{\delta_0^*} H^1(M;\mathcal{S}) \to 0$$

(b)
$$0 = H^p(M; S_0) \xrightarrow{d_0^*} H^p(M; \mathcal{Z}_1) \xrightarrow{\delta_1^*} H^{p+1}(M; S) \to 0$$

continued.

From the exact sequence:

(a)
$$0 \to \Gamma(\mathcal{S}) \to \Gamma(\mathcal{S}_0) \xrightarrow{d_0^*} \Gamma(Z_1) \xrightarrow{\delta_0^*} H^1(M;\mathcal{S}) \to 0$$

The last map is surjective, hence

$$H^1(M;\mathcal{S})\cong \mathrm{Img}\delta_0^*\cong \Gamma(Z_1)/\mathrm{Ker}\delta_0^*\cong \Gamma(Z_1)/\mathrm{Img}d_0^*=\overline{\left[\mathrm{Ker}d_1^*/\mathrm{Img}d_0^*
ight]}.$$

From the exact sequence:

(b)
$$0 = H^1(M; S_0) \xrightarrow{d_0^*} H^1(M; Z_1) \xrightarrow{\delta_1^*} H^2(M; S) \to 0$$

We have

(c)
$$H^{p+1}(M; S) \cong H^p(M; \mathcal{Z}_1)$$
 $p \ge 2$

Proof.

We have the short exact sequence of sheaves,

$$0 \to Z_p \xrightarrow{i} S_p \xrightarrow{d_p} Z_{p+1} \to 0, \quad p \ge 1$$

By short-long theorem, we have

(ii)
$$0 \to H^0(\mathcal{Z}_p) \xrightarrow{i^*} H^0(\mathcal{S}_p) \xrightarrow{d_p^*} H^0(\mathcal{Z}_{p+1})$$

 $\xrightarrow{\delta_0^*} H^1(\mathcal{Z}_p) \xrightarrow{i^*} H^1(\mathcal{S}_p) \xrightarrow{d_p^*} H^1(\mathcal{Z}_{p+1})$
 $\xrightarrow{\delta_1^*} H^2(\mathcal{Z}_p) \xrightarrow{i^*} H^2(\mathcal{S}_p) \xrightarrow{d_p^*} H^2(\mathcal{Z}_{p+1}) \cdots$

Since S_p is a fine sheaf, $H^1(S_p) = 0$, we have

$$(d) \quad 0 \to \Gamma(\mathcal{Z}_1) \to \Gamma(\mathcal{S}_1) \xrightarrow{d_1^*} \Gamma(\mathcal{Z}_2) \xrightarrow{\delta^*} H^1(M; \mathcal{Z}_1) \to 0$$

(e)
$$0 \xrightarrow{d_p^*} H^k(\mathcal{Z}_{p+1}) \xrightarrow{\delta_1^*} H^{k+1}(\mathcal{Z}_p) \xrightarrow{i^*} 0, \quad \forall k \geq 1.$$

continued.

From the exact sequence

$$(d)\quad 0\to \Gamma(\mathcal{Z}_1)\to \Gamma(\mathcal{S}_1)\xrightarrow{d_1^*}\Gamma(\mathcal{Z}_2)\xrightarrow{\delta^*}H^1(M;\mathcal{Z}_1)\to 0$$

We have

$$H^1(M; \mathcal{Z}_1) \cong \Gamma(\mathcal{Z}_2)/\mathrm{Img}\ d_1^* = \mathrm{Ker}\ d_2^*/\mathrm{Img}\ d_1^*.$$

Hence from (c)

$$H^2(M;\mathcal{S}) = H^1(M;\mathcal{Z}_1) \cong \boxed{\operatorname{\mathsf{Ker}}\ d_2^*/{\operatorname{\mathsf{Img}}\ d_1^*}}.$$

continued.

From the exact sequence

$$(e) \quad 0 \to H^k(\mathcal{Z}_{p+1}) \xrightarrow{\delta_1^*} H^{k+1}(\mathcal{Z}_p) \xrightarrow{i^*} 0 \quad \forall k \geq 1,$$

We have $H^k(\mathcal{Z}_{p+1})\cong H^{k+1}(\mathcal{Z}_p)$. From

(c)
$$H^p(\mathcal{S}) \cong H^{p-1}(\mathcal{Z}_1)$$
 $p \geq 2$

we have $H^p(\mathcal{S}) \cong H^{p-1}(\mathcal{Z}_1) \cong H^{p-2}(\mathcal{Z}_2) \cdots \cong H^1(\mathcal{Z}_{p-1})$,

$$(ii) \ 0 \to H^0(\mathcal{Z}_{p-1}) \xrightarrow{i^*} H^0(\mathcal{S}_{p-1}) \xrightarrow{d_{p-1}^*} H^0(\mathcal{Z}_p) \xrightarrow{\delta_0^*} H^1(\mathcal{Z}_{p-1}) \xrightarrow{i^*} H^1(\mathcal{S}_p)$$

$$H^p(\mathcal{S})\cong H^1(\mathcal{Z}_{p-1})\cong \operatorname{Img}\delta_0^*=rac{\Gamma(\mathcal{Z}_p)}{\operatorname{Ker}\delta_0^*}=rac{\Gamma(\mathcal{Z}_p)}{\operatorname{Img}d_{p-1}^*}= \boxed{rac{\operatorname{Ker}d_p^*}{\operatorname{Img}d_{p-1}^*}}.$$

Dolbeault Cohomology

Dolbeault Cohomology

Definition (Dolbeault Cohomology Group)

The differential operator $\bar{\partial}:A^{p,q}\to A^{p,q+1}$, $\bar{\partial}^2=0$, define the (p,q) degree Dolbeault cohomology group

$$\mathit{H}^{\mathit{p},q}_{\bar{\partial}} = \{\omega \in \mathit{A}^{\mathit{p},q} | \bar{\partial}\omega = 0\} / \{\bar{\partial}\eta | \eta \in \mathit{A}^{\mathit{p},q-1}\}$$

Dolbeault Lemma

Lemma

Suppose f is a smooth function defined on $\mathbb C$ with compact support, then there is a smooth function g on $\mathbb C$, such that $\bar\partial g=f$.

Proof.

$$\bar{\partial}z^{-1}=\delta(0)$$
, so

$$g(w) = f(z) * \frac{1}{z} = \frac{1}{2\pi\sqrt{-1}} \int_{\mathbb{C}} \frac{f(z)}{z - w} dz \wedge d\bar{z}.$$

Dolbeault Lemma

Lemma

Suppose M is a Riemann surface, ω is a (p,q) form on an open set U, $q \geq 1$. For any point $p \in U$, there is an open neighborhood $V \subset U$, and (p,q-1) form η on V, such that $\omega = \bar{\partial} \eta$.

Proof.

Assume $M=\mathbb{C}$, p is the origin. We only consider $\omega=hd\bar{z}$ and $\omega=hdz\wedge d\bar{z}$. Choose smooth cutoff function ϕ near the origin, in the neighborhood of the origin, $\phi\equiv 1$, and on the boundary of U is zero. Let $f=\phi\cdot h$, f is treated as a smooth function on \mathbb{C} with compact support, there is a function g, such that $\bar{\partial}g=f$, near the origin

$$\bar{\partial} \mathbf{g} = \mathbf{f} \mathbf{d} \bar{\mathbf{z}} = \phi \cdot \mathbf{h} \mathbf{d} \bar{\mathbf{z}} = \mathbf{h} \mathbf{d} \bar{\mathbf{z}}.$$

Theorem (Dolbeault)

On a Riemann surface M, the following cohomology groups are isomorphic

$$H^1(M;\mathcal{O})\cong H^{0,1}_{\bar\partial}(M), \quad H^1(M;\Omega^1)\cong H^{1,1}_{\bar\partial}(M).$$

Proof.

By Dolbeault lemma, $\bar{\partial}_0: \mathcal{S}^0 \to \mathcal{S}^{0,1}$ is surjective, the inclusion map $i: \mathcal{O} \to \mathcal{S}^0$ is injective, so we obtain the short exact sequence

$$0 \to \mathcal{O} \to \mathcal{S}^0 \xrightarrow{\bar{\partial}_0} \mathcal{S}^{0,1} \xrightarrow{\bar{\partial}_1} 0,$$

where \mathcal{O} is the holomorphic function sheaf. By de Rham theorem,

$$H^1(M;\mathcal{O})=\mathit{Ker}ar{\partial}_1/\mathit{Img}ar{\partial}_0=H^{0,1}_{\bar{\partial}}(M).$$

continued.

By Dolbeault lemma, $\bar{\partial}: \mathcal{S}^{0,1} \to \mathcal{S}^{1,1}$ is surjective, the inclusion map $i: \Omega^1 \to \mathcal{S}^{1,0}$ is injective, so we obtain the short exact sequence

$$0 \to \Omega^1 \to \mathcal{S}^{1,0} \xrightarrow{\bar{\partial}_0} \mathcal{S}^{1,1} \xrightarrow{\bar{\partial}_1} 0,$$

where Ω^1 is the holomorphic 1-form sheaf. By de Rham theorem,

$$H^1(M;\Omega^1)=Ker\bar{\partial}_1/Img\bar{\partial}_0=H^{1,1}_{\bar{\partial}}(M).$$

 $\Omega^0(L)$ is the sheaf of holomorphic section of L; Ω^1 is the sheaf of L-valued (1,0)-form; $\mathcal{S}^{p,q}(L)$ is the sheaf of L-valued smooth (p,q)-form.

Definition (L-valued (p, q) form)

For $p \in M$, in the neighborhood of p,

$$\omega = \sum_{i} \omega_{i} \otimes s_{i} = \sum_{i} \omega_{i} s_{i},$$

 ω_i is a local (p,q)-form, s_i is the local holomorphic section of L. Holomorphic line bundle L has local trivialization, s is a holomorphic section non-zero everywhere, each s_i can be represented as $s_i = f_i s$, where f_i is a local smooth function, namely

$$\sum_{i} \omega_{i} s_{i} = \sum_{i} f_{i} \omega_{i} s = \omega s.$$

Definition ($\bar{\partial}$ operator)

The operator $\bar{\partial}: \mathcal{S}^{p,q}(L) \to \mathcal{S}^{p,q+1}(L)$

$$\bar{\partial}\left(\sum_{i}\omega_{i}s_{i}\right)=\bar{\partial}\left(\sum_{i}f_{i}\omega_{i}s\right)=(\bar{\partial}\omega)s.$$

Suppose t is another local holomorphic section no-zero everywhere, and omega $s=\eta t$. Then there is a holomorphic function f, such that $t=f\cdot s$, then $\omega=f\eta$,

$$(\bar{\partial}\omega)s = (\bar{\partial}f\eta)s = (\bar{\partial}f\cdot\eta + f\bar{\partial}\eta)s = f(\bar{\partial}\eta)s = (\bar{\partial}\eta)t.$$

Theorem (Dolbeault)

Suppose L is a holomorphic line bundle on a Riemann surface M, then the following cohomology group isomorphisms hold: $\forall p, q \geq 0$,

$$H^q(M, \Omega^p(L)) \cong rac{\{ar{\partial}\text{-closed L-valued } (p, q) \text{ form}\}}{\{ar{\partial}\text{-exact L-valued } (p, q) \text{ form}\}}$$

particularly, when p + q > 2 $H^q(M, \Omega^p(L)) = 0$.

Example

By the short exact sequence,

$$0 \to \Omega^0(L) \to \mathcal{S}^0(L) \xrightarrow{\bar{\partial}} \mathcal{S}^{0,1}(L) \to 0,$$

By de Rham theorem, we obtain

$$H^1(M,\Omega^0(L))\cong rac{\{ar{\partial} ext{-closed L-valued }(0,1) ext{ form}\}}{\{ar{\partial} ext{-exact L-valued }(0,1) ext{ form}\}}$$

Example

By the short exact sequence,

$$0 \to \Omega^1(L) o \mathcal{S}^{1,0}(L) \overset{\bar{\partial}}{ o} \mathcal{S}^{1,1}(L) o 0,$$

By de Rham theorem, we obtain

$$H^1(M,\Omega^1(L))\cong rac{\{ar{\partial} ext{-closed L-valued }(1,1) ext{ form}\}}{\{ar{\partial} ext{-exact L-valued }(1,1) ext{ form}\}}$$

when p + q > 2, then a (p, q)-form must be zero.