8086 Memory Interfacing

Memory Interfacing (Chip Identification)

Two memory elements: EPROM and RAM

For EPROM: IC 27XX, 27XXX

For RAM: IC 61XX, 61XXX, 62XXX, 62XX

IC 2716

16 => memory size in bits 16 kbits of memory size

Memory size = 16kbits / 8 = 2kB = 2k x 1B = 2x 2^10 x 1B Data lines = 8 bits Address lines = log (base 2) 2^11 = 11 bits

Memory Interfacing (Chip Identification)

```
RAM IC 6264
64 kilobits => memory size
M.S = 64/8 = 8kB = 8x2^10 \times 1B = 2^13 \times 8
m = 13, n = 8
where m is number of address lines
       n is number of data lines
IC 27128 => EPROM
Memory size = 128 \text{ kilobits} = 128/8 \text{ kB} = 16 \text{ kB}
16 \text{ kB} = 16 \times 2^{10} \times 18 = 2^{14} \times 8
m = 14, n = 8
where m is number of address lines
       n is number of data lines
```

8086 Memory Organization

- ☐ The memory address space of the 8086-based microcomputers has different logical and physical **organizations**.
- Logically, memory is implemented as a single 1M × 8 memory bank. The byte-wide storage locations are assigned consecutive addresses over the range from 00000H through FFFFH
- **Physically,** memory is implemented as two independent 512 Kbyte banks: the low (even) bank and the high (odd) bank.

(a) Logical memory organization, and (b) Physical memory organization (high and low memory banks) of the 8086 microprocessor.

Memory Interfacing(Odd and Even Bank)

8086 MP

```
AL = 20 \Rightarrow 2^20 = 1M
```

DL = 16 (Lower order data lines : D0-D7) => even memory bank (Higher order data lines: D8-D15) => odd memory bank

Total memory size = 1MB

Two separate memory banks: Even bank and Odd bank

Even bank: Contains all the memory addresses which are **even** in number 00000 H, 00002 H, 00004 H....., FFFFEH

Odd bank: Contains all the memory addresses which are **odd** in number 00001H, 00003H, 00005H,....., FFFFFH

Bank Selection

To distinguish between odd and even bytes, the CPU provides a signal called BHE' (bus high enable).

BHE' and A0 are used to select the odd and even byte, as shown in the table below :

BHE'	Α0	Bank selection
0	0	Both the bank (16 bit data transfer)
0	1	data transfer from odd bank (8 bit data transfer)
1	0	data transfer from even bank (8 bit data transfer)
1	1	no data transfer (none of the banks are selected)

Memory Interfacing(Odd and Even Bank)

```
A0 and BHE' (Bus High Enable) = 0 => odd bank is selected
Address lines: A19 A18..... A1 A0
A0 = 0 => Even Bank is selected
0 => 000
2 => 010
4 => 100
6 => 110
8=> 1000
1 => 001
3 => 011
5 => 101
7 => 111
9 => 1001
```

• Interface microprocessor 8086 with two numbers of IC-27512 chip.

```
Soln:
Given:
8086 MP,
2 nos of IC 27512 (EPROM)
Memory size : 512 kilobits => 512/8 = 64kB = 2^16 \times 8
AL = 16, DL = 8
Even bank (A0 = 0)
starting address:
final address:
Odd bank (A0 = 1)
starting address:
final address:
```


Even bank (A0 = 0) starting address: E0000H final address: FFFFEH

Odd bank (A0 = 1) starting address: E0001H final address: FFFFH

• Interface 16k * 8 memory locations for microprocessor 8086. The starting of the microprocessor is C0000H.

Soln:

Given:

8086 MP

Number of memory locations: 16k x 8 => odd bank + even bank

Starting address: C0000H

Odd bank: 8k x 8 => 2^13 x 8 => 13 address lines (A0-A12)

Even bank: 8k x 8 => 2^13 x 8 => 13 address lines (A0-12)

Starting address of EB = C0000H Final address of EB = C3FFEH

Starting address of OB = C0001H Final address of OB = C3FFFH

- Interface 16k 8 memory locations for microprocessor 8086 using Multi-input NAND gate. The starting of the microprocessor is C0000H.
- 1st step: same as previous solution.

Now, the fixed line inputs are

A19	A18	A17	A16	A15	A14
1	1	0	0	0	0

2nd step:

Interface two 4KX8 EPROM and two 4KX8 RAM chips with 8086.

Solution:

- Capacity of ROM for 2 Chips = 4K X 8 X 2 = 8K X 8 = 8KB
- Consider, Ending Address of ROM = FFFFF H
- Now, Size = 8KB = 2³ X 2¹⁰ = 2¹³
 So, 0000 0001 1111 1111 1111 = 01FFF H
- Now, Starting Address of ROM = FFFFF H 01FFF H = FE000 H
- Again consider, Starting Address of RAM = 00000 H
- For $4KB = 2^2X2^10 = 2^12$
- So, Address Lines = A1 A12
- A0=Bank Selection

											EV	en ban	K												
		A19	A18	Α	17	A16	A15	A14	A13	A12	A11	A10	A9	A8		A7	A6	A 5	A4	A3	/	A2	A1	A0	
RAM1	Starting Address	()	0	0	0		0	0	0	0	0	0	0	0		0	0	0	0	0	0	()	0 00000 H
TV-NIVI I	Ending Address	()	0	0	0		0	0	0	1	1	1	1	1		1	1	1	1	1	1	•	A0 0 1 0 1	0 01FFE H
											00	D BAN	<												
DAMO	Starting Address	()	0	0	0		0	0	0	0	0	0	0	0		0	0	0	0	0	0	()	1 00001 H
RAM2	Ending Address	()	0	0	0		0	0	0	1	1	1	1	1		1	1	1	1	1	1	•		1 01FFF H
											EV	en ban	K												
ROM1	Starting Address	1		1	1	1		1	1	1	0	0	0	0	0		0	0	0	0	0	0	()	0 FE000 H
KUWI	Ending Address	1		1	1	1		1	1	1	1	1	1	1	1		1	1	1	1	1	1	•		0 FFFFE H
											00	D BAN	<												
DOMO	Starting Address	1		1	1	1		1	1	1	0	0	0	0	0		0	0	0	0	0	0	()	1 FE001 H
ROM2	Ending Address	1		1	1	1		1	1	1	1	1	1	1	1		1	1	1	1	1	1	•		1 FFFFF H

Interface 32KB ROM using 8 KB ROM and 32KB RAM using 16 KB chips with 8086.

Solution:

- Required number of ROM = 32/8 = 4
- Required number of RAM = 32/16 = 2
- So, we need four 8KB ROM and two 16 KB RAM chips for interfacing
- Consider, Ending Address of ROM = FFFFF H
- Now, Size = 32KB = 2^5 X 2^10 = 2^15
 So, 0000 0111 1111 1111 1111 = 07FFF H
- Now, Starting Address of ROM = FFFFF H 07FFF H = F8000 H
- Again consider, Starting Address of RAM = 00000 H
- For $16KB = 2^4X2^10 = 2^14$
- So, Address Lines = A1 A14
- A0=Bank Selection

										EV	EN BA	ANK													
		A19	A18	A17	A16	A15	A14	A13	A12	A11	A1	10	A9	A8	A7	A6		A5	A4	A3	A2	2 A1	,	A0	
RAM1	Starting Address	0	0	0	(0 0	() ()	0	0	0		0	0	0	0	0	()	0	0	0	(00000 H
KAWI	Ending Address	0	0	0	(0 0	1	1 1		1	1	1		1	1	1	1	1	1		1	1	1	C	07FFE H
										٥١	DD BA	MK													
										- 01	חט טר	MAIX													
RAM2	Starting Address					0 0) ()	0	0	0	1	0	0	0	0	0	()	0	0	0	1	00001 H
10 11112	Ending Address	0	0	0	(0 0	1	1		1	1	1		1	1	1	1	1	1		1	1	1	1	07FFF H
										EV	EN BA	ANK											_		
DOM	Starting Address	1	1	1	1	1 1	() ()	0	0	0		0	0	0	0	0	()	0	0	0	(F8000 H
ROM1	Ending Address	1	1	1	1	1 1	() 1		1	1	1		1	1	1	1	1	1		1	1	1	(FBFFE H
										0[DD BA	NK		_											
ROM2	Starting Address	1	1	1	1	1 1	() ()	0	0	0		0	0	0	0	0	()	0	0	0	1	F8001 H
KUIVIZ	Ending Address	1	1	1	1	1 1	() 1		1	1	1		1	1	1	1	1	1		1	1	1	1	FBFFF H
										EV	EN BA	ANK													
ROM3	Starting Address	1	1	1	1	1 1	1	1 0)	0	0	0		0	0	0	0	0	()	0	0	0	(FC000 H
ROMS	Ending Address		1	1	1	1 1	1	1 1		1	1	1		1	1	1	1	1	1		1	1	1	(FFFFE H
										0[DD BA	NK													
ROM4	Starting Address	1	1	1	1	1 1	1	1 0)	0	0	0		0	0	0	0	0	()	0	0	0	1	FC001 H
TOW4	Ending Address	1	1	1	1	1 1	1	1 1		1	1	1		1	1	1	1	1	1		1	1	1	1	FFFFF H