	C. Anderson (ULLA Dept of Mathetics)
	Fields institute mini-course: Lecture Z
	n n
	dimension reduction.
	111 to 1
	Charles Riggs
	Schroedingor - Poisson.
	proviouse or infinite.
	or infinite.
(0)	Determine of such that in transverse
	directions.
	$\Delta_{x} \phi_{D} = - \rho_{D} \qquad \phi_{D}(x,y,z_{A}) = g_{A}(x,y) \qquad \phi_{D}(x,y,z_{B}) = g_{B}(x,y)$
)
(1)	Determine ダ(文), pe(文) so that
	$\triangle_{k}\ddot{\varphi} = - ge \qquad \mathring{\beta}_{[x,y,\overline{z}_{A})} = 0 \qquad \mathring{\phi}_{[x,y,\overline{z}_{R})} = 0$
	· ·
	$\left[\Delta_{m} + \left[\hat{\varphi} + \Phi_{p} + \Phi_{R} \right] \right] \psi_{j} = \lambda_{j} \psi_{j}$
	Pe(文) = 2 対 (文) (文) (大) (大) (大) (大) (大) (大) (大) (大) (大) (大
	^5 < Et
∨ √	<u>~</u>
	The tasks required involve solving 3D Poisson equations and for eigenvolves
	and eigenfunctions of a 3D operator. For some problems, notably mose
	where the potential applied to the gates is uniform or only depends
	on one coordinate, e.g. galx,y) = galx) galx,y) = galx)
	one can reduce the dimensionality of the tasks to only involve
	1D or 2D work. For such boundary conditions one can create solutions

of the 3D problem by combining analytic solutions with

20 or 1D numerical solutions,

Assume privodic with demain site l. ; $t \left(\frac{h^2}{h_B} \right) \frac{y}{2m_r} \frac{1}{y}$; $t \left(\frac{h^2}{h^2} \right) \frac{x}{2m_r} \frac{1}{y}$ Stree eigenfunctions of (x) are $\beta(y) = e$ (x) = e (x)

 $\frac{\partial}{\partial x} \cdot t, = \left(\frac{\partial^2}{\partial x}(x) \partial x(x)\right) \left(\frac{\partial^2}{\partial x}(x) \partial x(x)\right) \left(\frac{\partial^2}{\partial x}(x) \partial x(x)\right) = \cos(x) \partial x + \cos(x) \partial x + \cos(x)$ of 2,

of ge is only a function of Z, e.g. ge = pe(Z).

Computation of ge(2)?

Compute eigenvolves and eigenvectors of

$$\left(-\frac{1}{2}\frac{1}{42}\left(\frac{1}{M_{r(2)}}\frac{1}{42}\right) + \phi(2)\right) \alpha_{p}(2) = \lambda_{p}\alpha_{p}(2)$$

RIMIS, T(x)5 unit L' noum

In the limit as the periodic domain size L I as, one finds by recognizing the sum as an approximation to an integral, and carrying out the Integration that

$$\int_{P} e(2) = 2 \frac{2}{\lambda_{p}} \left(\frac{\lambda_{p}}{\lambda_{p}} (2) \lambda_{p}(2) \cdot \left[\frac{1}{2\pi \hbar^{2}} M_{r}(2) \right] \left(E_{f} - \lambda_{p} \right) \right)$$

"density of states"

of If constant 9.4,98, pp only a function of Z, and the transverse domain is periodic or infinite >> ID Senroedinger equation.

The set of equations for \$\phi\$ and \$\rmathcal{P} e constitute the ID Schroedinger-Poisson equations.

(0) Determine of (2) so that

$$\frac{d\chi(7)}{d7}\frac{d}{d9}D = -\rho_0(7) \quad d_0(z_A) = g_A \quad d_0(z_B) = g_B$$

(1) Determine \$ (7), pe(2) so that

$$\frac{1}{A7} \times (7) \stackrel{?}{=} \stackrel{?}{=} - \stackrel{?}{=} (7) \stackrel{?}{\neq} (7) = 0 \qquad \stackrel{?}{\neq} (7) = 0$$

$$-\frac{1}{2}\frac{d}{dz}\frac{d}{m(2)}\frac{d}{dz}\frac{d(2)}{r} = \lambda_{p}d(2) \qquad \forall (2_{A}) = d(2_{B}) = 0$$

Contributions of transverse

ergan functions.

so only ID tasks for the solution of a SD problem.

The ID Schroedinger-Poisson is not obtained by averaging over the transverse directions, as is often used in dimension reduction. The chimensian reduction occurs because we are using a solution that combines on analytic solution with the numerical solution.

If g_{x} , g_{g} are only functions of x (or of y), and $g_{g}(x,y,z) = g_{g}(x,z)$ Then one can devive the 2D Schroedinger-Poisson equations by combining a 2D numerical solution with a ID analytic solution,

Building up simulation capability.	
1D Puisson	1 D Servoe dinger
3D Schroedmar-Poisson & 1D Eigensys	
+	
2D analytics	らんかるい
ZD Poisson	· J 2D Sehroedinger
3D Sinvoedinger - Puissun & 2D Eigensyst	rm J Poisson.
+	, . .
ID analytic s	o Jution.
SP Poisson	
3D Sinvoedinger - Puissun M 3D Eigensyst	Γ¢/ / Λ\
D " 5p	Puisson
Density Functional Theory (PFT) 3D	Eigen sy stem
Harton - Foot	
Hartree-Fock.	SP Poisson
Full Configuration Interaction (FCI)	3D Eigensystem
using Slater determinant basis.	
1D? Useful for mony problems	
Executes quickly	
A good place to stort learning about non	nevica techniques
·	
ZD? ID = ZD, the numerical methods change	a bit.
30? Typically one uses the some methods as 20, b	

primarily with computational efficiency.