### **BCB 731:**

## Defense Against the Dark Arts



Optimist: A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy

October 30th, 2023



### A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy

Marta Łuksza<sup>1</sup>, Nadeem Riaz<sup>2,3</sup>, Vladimir Makarov<sup>3,4</sup>, Vinod P. Balachandran<sup>5,6,7</sup>, Matthew D. Hellmann<sup>7,8,9</sup>, Alexander Solovyov<sup>10,11,12,13</sup>, Naiyer A. Rizvi<sup>14</sup>, Taha Merghoub<sup>7,15</sup>, Arnold J. Levine<sup>1</sup>, Timothy A. Chan<sup>2,3,4,7</sup>, Jedd D. Wolchok<sup>7,8,15,16</sup> & Benjamin D. Greenbaum<sup>10,11,12,13</sup>

The NEW ENGLAND JOURNAL of MEDICINE

#### ORIGINAL ARTICLE

#### Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma

Alexandra Snyder, M.D., Vladimir Makarov, M.D., Taha Merghoub, Ph.D., Jianda Yuan, M.D., Ph.D., Jesse M. Zaretsky, B.S., Alexis Desrichard, Ph.D., Logan A. Walsh, Ph.D., Michael A. Postow, M.D., Phillip Wong, Ph.D., Teresa S. Ho, B.S., Travis J. Hollmann, M.D., Ph.D., Cameron Bruggeman, M.A., Kasthuri Kannan, Ph.D., Yanyun Li, M.D., Ph.D., Ceyhan Elipenahli, B.S., Cailian Liu, M.D., Christopher T. Harbison, Ph.D., Lisu Wang, M.D., Antoni Ribas, M.D., Ph.D., Jedd D. Wolchok, M.D., Ph.D., and Timothy A. Chan, M.D., Ph.D

# Background

## TMB predicts response to checkpoint blockade (Wood et al. 2020)



AUC by Burden and Cancer Type

| Cancer type | N   | TMB1  | TMB2  | TMB1*HLA | NB    | М     | Α     | T     | M*A   | M*T   | A*T   | M*A*T |
|-------------|-----|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|
| All         | 431 | 0.572 | 0.555 | 0.571    | 0.568 | 0.547 | 0.567 | 0.563 | 0.547 | 0.534 | 0.563 | 0.534 |
| Melanoma    | 302 | 0.582 | 0.560 | 0.587    | 0.572 | 0.550 | 0.572 | 0.558 | 0.550 | 0.529 | 0.558 | 0.529 |
| RCC         | 57  | 0.477 | 0.533 | 0.509    | 0.549 | 0.563 | 0.556 | 0.552 | 0.563 | 0.459 | 0.552 | 0.459 |
| NSCLC       | 34  | 0.726 | 0.722 | 0.736    | 0.760 | 0.740 | 0.760 | 0.677 | 0.740 | 0.694 | 0.677 | 0.694 |

# Snyder et al. (2014) shows TMB predicts outlier response to aCTLA-4



## Data: Snyder et al. 2014

#### Table 1.

The NEW ENGLAND IOURNAL of MEDICINE

#### ORIGINAL ARTICLE

### Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma

Alexandra Snyder, M.D., Vladimir Makarov, M.D., Taha Merghoub, Ph.D., Jianda Yuan, M.D., Ph.D., Jesse M. Zaretsky, B.S., Alexis Desrichard, Ph.D., Logan A. Walsh, Ph.D., Michael A. Postow, M.D., Phillip Wong, Ph.D., Teresa S. Ho, B.S., Travis J. Hollmann, M.D., Ph.D., Cameron Bruggeman, M.A., Kasthuri Kannan, Ph.D., Yanyun Li, M.D., Ph.D., Ceyhan Elipenahli, B.S., Cailian Liu, M.D., Christopher T. Harbison, Ph.D., Lisu Wang, M.D., Antoni Ribas, M.D., Ph.D., Jedd D. Wolchok, M.D., Ph.D., and Timothy A. Chan, M.D., Ph.D.

#### Patient samples

All analyzed samples were collected in accordance with local Internal Review Board policies as described in ref. 8 and summarized in Table 1. Thirty-four patients had tumor samples collected prior to initiating CTLA-4 blockade, and 30 patients had samples collected after initiating CTLA-4 blockade. Clinical benefit was defined as progression-free survival lasting for greater than 24 weeks after initiation of therapy (Online Data File 1). Nine discordant lesions were present, where overall patient benefit did not match individual tumor progression. See Table 1 for details about this patient cohort.

#### Cohort summary

| Group       | Benefit           | No benefit      | Discordant        |  |  |
|-------------|-------------------|-----------------|-------------------|--|--|
| N           | 27                | 28              | 9                 |  |  |
| % Cutaneous | 20/27             | 19/28           | 5/9               |  |  |
| os          | 3.7 (1.6–7.3)     | 0.8 (0.2–2.7)   | 4 (1.7–7.9)       |  |  |
| Age         | 65 (33–81)        | 58.5 (18–79)    | 68 (40–90)        |  |  |
| Mutations   | 611 (165–3,394)   | 321 (6–1,816)   | 549 (93–1,336)    |  |  |
| Neoantigens | 1,388 (209–6,502) | 714.5 (3–4,510) | 1,048 (197–2,584) |  |  |

NOTE: Features of tumors from patients with clinical benefit, no benefit, or in which a discordant lesion was resected. Abbreviation: OS, overall survival.

### Data: Van Allen et al. (2015)

## Genomic correlates of response to CTLA-4 blockade in metastatic melanoma

Eliezer M. Van Allen, <sup>1,2,3\*</sup> Diana Miao, <sup>1,2\*</sup> Bastian Schilling, <sup>4,5\*</sup> Sachet A. Shukla, <sup>1,2</sup> Christian Blank, <sup>6</sup> Lisa Zimmer, <sup>4,5</sup> Antje Sucker, <sup>4,5</sup> Uwe Hillen, <sup>4,5</sup> Marnix H. Geukes Foppen, <sup>6</sup> Simone M. Goldinger, <sup>7</sup> Jochen Utikal, <sup>5,8,9</sup> Jessica C. Hassel, <sup>10</sup> Benjamin Weide, <sup>11</sup> Katharina C. Kaehler, <sup>12</sup> Carmen Loquai, <sup>13</sup> Peter Mohr, <sup>14</sup> Ralf Gutzmer, <sup>15</sup> Reinhard Dummer, <sup>7</sup> Stacey Gabriel, <sup>2</sup> Catherine J. Wu, <sup>1,2</sup> Dirk Schadendorf, <sup>4,5</sup>† Levi A. Garraway<sup>1,2,3</sup>†





## Data: Rizvi et al. (2015)

# Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer

Naiyer A. Rizvi, <sup>1,2\*†</sup> Matthew D. Hellmann, <sup>1,2\*</sup> Alexandra Snyder, <sup>1,2,3\*</sup> Pia Kvistborg, <sup>4</sup> Vladimir Makarov, <sup>3</sup> Jonathan J. Havel, <sup>3</sup> William Lee, <sup>5</sup> Jianda Yuan, <sup>6</sup> Phillip Wong, <sup>6</sup> Teresa S. Ho, <sup>6</sup> Martin L. Miller, <sup>7</sup> Natasha Rekhtman, <sup>8</sup> Andre L. Moreira, <sup>8</sup> Fawzia Ibrahim, <sup>1</sup> Cameron Bruggeman, <sup>9</sup> Billel Gasmi, <sup>10</sup> Roberta Zappasodi, <sup>10</sup> Yuka Maeda, <sup>10</sup> Chris Sander, <sup>7</sup> Edward B. Garon, <sup>11</sup> Taha Merghoub, <sup>1,10</sup> Jedd D. Wolchok, <sup>1,2,10</sup> Ton N. Schumacher, <sup>4</sup> Timothy A. Chan<sup>2,3,5</sup>‡





Fig. S1. Exome analysis pipeline.

 $H\big(\mathbf{Y}_{t+1}\big|\hat{\mathbf{Y}}_{t+1}\big) = \sum_{\boldsymbol{x}} Y_{\boldsymbol{v}}(t+1) \log \big[Y_{\boldsymbol{v}}(t+1)\big/\hat{Y}_{\boldsymbol{v}}(t+1)\big] \qquad \frac{p}{p_0} \sim \exp \Big[\sum_{t} \Delta \mathcal{H}(t)\Big] \Delta \mathcal{H}(t) = \tilde{\boldsymbol{m}}(t) \big[-H\big(\mathbf{Y}_{t+1}\big|\hat{\mathbf{Y}}_{t+1}\big) + H\big(\mathbf{Y}_{t+1}|\mathbf{Y}_{t}\big)\Big]$  $\frac{\hat{N}_{\epsilon}(t+1)}{\hat{N}(t+1)} = \frac{1}{\hat{N}(t+1)} \sum_{i:t} N_{i}(t) \exp[f_{i} - \epsilon C(\mathbf{a}_{i}, \mathbf{a}_{v})]$ Physicists predict pathogen fitness

doi:10.1038/nature13087

### A predictive fitness model for influenza

Marta Łuksza1,2 & Michael Lässig1

The seasonal human influenza A/H3N2 virus undergoes rapid evolution, which produces significant year-to-year sequence turnover in the population of circulating strains. Adaptive mutations respond to human immune challenge

outside the epitopes. We infer both fitness components for the strains circulating in a given year, using population-genetic data of all previous strains. From fitness and frequency of each strain, we predict the frequency of its descendent strains in the following year. This fitness model maps the adaptive history of influenza A and suggests a principled method for vaccine selection. Our results call for a more comprehensive epidemiology of influenza and other fast-evolving pathogens that integrates antigenic phenotypes with other viral functions coupled by genetic linkage.

$$\hat{X}(t+1,s) = \sum_{i=1}^{n} \lambda H_i(t;\sigma^*(t)) D^*(\sigma^*(t)) D^*(s,t) = \sum_{i=1}^{n} \lambda H_i(t;\sigma^*(t)) D^*(s,t) D^*(s,t)$$

$$\Delta \mathcal{H}_{\text{tot}} = \sum_{t} \Delta \mathcal{H} \Big( t; \sigma_{\text{ep}}^{*}(t), D_{0}^{*}, \sigma_{\text{ne}}^{*}, \lambda^{*}(t) \Big)$$

$$\hat{X}_{\nu}(t+1, \epsilon) = \sum_{i:\nu, t} x_{i} \exp[f_{i}(\epsilon=0) - \epsilon C(\mathbf{a}_{i}, \mathbf{a}_{\nu}) + C_{0}$$

$$\bar{\Phi} \Big( \tilde{\mathbf{Y}}, t+1 \Big) = \sum_{t} \Phi_{\nu}(t) \tilde{\mathbf{Y}}_{\nu}$$

$$\Big( \sigma_{\text{ep}}^{*}(t), \lambda^{*}(t) \Big) = \arg \max_{\sigma_{\text{ep}}, \lambda} \sum_{t'=t-8} \Delta \mathcal{H}(t'; \sigma_{\text{ep}}, D_{0}^{*}, \sigma_{\text{ne}}^{*}, \lambda)$$

$$\overrightarrow{\rho_{i,\nu}} = \frac{1}{n} \sum_{\kappa=1}^{n} \widecheck{\epsilon}_{i,\nu}^{(\kappa)} \quad \text{with } \widecheck{\epsilon}_{i,\nu}^{(\kappa)} = \begin{cases} 1 & \text{if } i \in \widecheck{\mathcal{S}}_{\nu}^{(\kappa)} \\ 0 & \text{otherwise} \end{cases}$$

1 if 
$$i \in \widetilde{\mathcal{S}}_{\nu}^{(\kappa)}$$

$$\begin{pmatrix} 66 \text{ G} \\ 241 \text{ D} \end{pmatrix} \int \frac{99 \text{ K}}{202 \text{ G}} dt$$

$$\begin{pmatrix} 99 \text{ K} \\ 202 \text{ G} \\ 218 \text{ I} \\ 238 \text{ RI} \end{pmatrix}$$

$$\mathbf{a}_i, \mathbf{a}_v) + \mathcal{C}_0$$

(402 G)

$$\sigma_{
m ep},\! D_0^*,\! \sigma_{
m ne}^*,\! \lambda ig)$$

(546 A)

$$-\bar{\Phi}(t)]^2 = \operatorname{Var} F(t)$$

Var 
$$\Phi(t) = \sum_{\nu \in K(t)}^{b_{ep, K}} Y_{\nu}(t) [\Phi_{\nu}(t) - \bar{\Phi}(t)]^{2} = \text{Var } F(t)$$

$$\bar{\Phi}(t+1) = \sum_{\nu \in K(t)} \Phi_{\nu}(t) Y_{\nu}(t+1)$$

Winter 2002-03

Marked clade:

Winter 2001-02

 $\hat{Y}_{\nu}(t+1) = \sum_{i \in S(t)} \widecheck{\rho}_{i,\nu} x_i \exp(f_i)$  for  $\nu \in K(t)$ 

 $x_i = \frac{1}{z_{\epsilon}(t)} \left[ \frac{m_i}{m(t)} + \frac{\epsilon}{m_{\nu(i,\nu)}(t)} \right]$ 

$$\hat{C}_{\nu}(t+1) = \sum_{i \neq i} x_i \exp(f_i) C(\mathbf{a}_i,$$

$$f_i^{\text{lin}} = \sigma_{\text{ep}} D_{\text{ep}}(\mathbf{a}_i, \mathbf{a}^*(t)) - \sigma_{\text{ne}} D_{\text{ne}}(\mathbf{a}_i, \mathbf{a}_i^*)$$

$$F_{v}(t) = \log \frac{\hat{Y}_{v}(t+1)}{Y_{v}(t)} \quad \overset{\breve{\mathcal{S}}_{v}^{(\kappa)}(t) = \breve{\mathcal{S}}_{v}^{(\kappa)} \cap \mathcal{S}(t) \quad \text{for } v \in K(t)}{V = \frac{1}{\Delta t} \sum_{t} \sum_{v \in V(t)} Y_{v}(t) [F_{v}(t) - \bar{F}(t)]^{2}}$$

 $\Delta \mathcal{H}(t) = \tilde{m}(t) \sum_{\nu} Y_{\nu}(t+1)F_{\nu}(t)$ 

$$f_{i}(\epsilon) = f_{i}(\epsilon = 0) - \epsilon C(\mathbf{a}_{i}, \mathbf{a}_{v}) + C_{0}(\epsilon)$$

$$\mathcal{Y}(\Phi, t) = \int d\Phi Y_{v}(t) \delta(\Phi - \Phi_{v}(t))$$

 $\Delta \mathcal{H}_{\text{tot}} = \sum_{i} \Delta \mathcal{H} \Big( t; \sigma_{\text{ep}}^{*}(t), D_{0}^{*}, \sigma_{\text{ne}}^{*}, \lambda^{*}(t) \Big)$ 

## Łuksza pathogen fitness model

Our prediction is based on frequency and fitness data that depend only on information actually available at a given point in time. Consider a clade v containing a set of strains i with frequencies  $x_i$  in a given season t. The observed frequency of that clade in season t, which is denoted as  $X_v(t)$ , is simply the sum of these strain frequencies,  $X_v(t) = \sum_{i:v,t} x_i$ . This sum is defined as an average over strain trees, as detailed in Methods. Each strain has a Malthusian fitness or growth rate  $f_i$  (measured in units of 1/year), which is to be specified by our model. Given these initial data, we predict the frequency of that clade in the season 1 year later,

$$\hat{X}_{v}(t+1) = \sum_{i:v:t} x_{i} \exp(f_{i})$$
(1)

Non-epitope mutations are predominantly under negative selection<sup>9</sup>, because they affect protein stability and other conserved molecular functions<sup>13,14</sup>. Here we describe these effects by a simple mutational-load model: each strain incurs a fitness cost  $\mathcal{L}(\mathbf{a}_i)$  that is the cumulative effect of recent non-epitope amino acid changes, which occur in its ancestral lineage in the current season (Methods).

Together we obtain a strain fitness of the form

$$f_i = f_0 - \mathcal{L}(\mathbf{a}_i) - \sum_{j: t_j < t_i} x_j \, \mathcal{C}(\mathbf{a}_i, \mathbf{a}_j)$$
 (2)

with a constant  $f_0$  ensuring the correct normalization of strain frequencies (Methods). Importantly, this strain-based model goes beyond a fitness model for individual mutations: it counts each new beneficial or



**Prediction of cross-immunity.** Another aggregate variable suitable for predictions is the average cross-immunity between a given strain  $\nu$  and the circulating strains in a given season,

$$C_{\nu}(t) \equiv \sum_{i,t} x_i C(\mathbf{a}_i, \mathbf{a}_{\nu}) \tag{24}$$

Our model predicts the expected average cross-immunity in season t + 1,

$$\hat{C}_{\nu}(t+1) = \sum_{i:t} x_i \exp(f_i) C(\mathbf{a}_i, \mathbf{a}_{\nu})$$
 (25)

### Tumor clonal structure



https://doi.org/10.1038/s41467-020-16546-5

**OPEN** 

The genomic and epigenomic evolutionary history of papillary renal cell carcinomas

## "Drivers", clonality, allele frequency

#### Modeling the subclonal evolution of cancer cell populations

Diego Chowell<sup>1,2,‡</sup>, James Napier<sup>3</sup>, Rohan Gupta<sup>3</sup>, Karen S. Anderson<sup>2,4</sup>, Carlo C. Malev<sup>2,4,5,6,\*</sup>, and Melissa A. Wilson Savres<sup>2,4,7,\*</sup>



Figure 1.
Branching evolutionary process of cancer. Schematic representation of the process developed to simulate the subclonal evolution of cancer is presented below. For details of the process and assumptions, see main Quick Guide to Equations and Assumptions.



# PhyloWGS: reconstructing cancer phylogenies from sequencing data

Deshwar et al. Genome Biology (2015) 16:35 DOI 10.1186/s13059-015-0602-8



#### **METHOD**

Open Access

## PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors

Amit G Deshwar<sup>1</sup>, Shankar Vembu<sup>2</sup>, Christina K Yung<sup>3</sup>, Gun Ho Jang<sup>3</sup>, Lincoln Stein<sup>3,5</sup> and Ouaid Morris<sup>1,2,4,5\*</sup>

#### Abstract

Tumors often contain multiple subpopulations of cancerous cells defined by distinct somatic mutations. We describe a new method, PhyloWGS, which can be applied to whole-genome sequencing data from one or more tumor samples to reconstruct complete genotypes of these subpopulations based on variant allele frequencies (VAFs) of point mutations and population frequencies of structural variations. We introduce a principled phylogenic correction for VAFs in loci affected by copy number alterations and we show that this correction greatly improves subclonal reconstruction compared to existing methods. PhyloWGS is free, open-source software, available at https://github.com/morrislab/phylowgs.

# PhyloWGS: identifying sub-clones by allele fraction clustering



inference (iiii). SSM, simple somatic mutation; VAF, variant allelic frequency.

# PhyloWGS: adjusting for tumor "purity" / normal "contamination"



## PhyloWGS: adjusting for copy number changes



**Figure 3 Changes to VAF caused by CNVs with different phylogenetic relationships.** CNV, copy number variation; SSM, simple somatic mutation; VAF, variant allelic frequency.

# The Paper

# Let's apply the pathogen fitness model to tumor phylogenies

## A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy

Marta Łuksza<sup>1</sup>, Nadeem Riaz<sup>2,3</sup>, Vladimir Makarov<sup>3,4</sup>, Vinod P. Balachandran<sup>5,6,7</sup>, Matthew D. Hellmann<sup>7,8,9</sup>, Alexander Solovyov<sup>10,11,12,13</sup>, Naiyer A. Rizvi<sup>14</sup>, Taha Merghoub<sup>7,15,16</sup>, Arnold J. Levine<sup>1</sup>, Timothy A. Chan<sup>2,3,4,7</sup>, Jedd D. Wolchok<sup>7,8,15,16</sup> & Benjamin D. Greenbaum<sup>10,11,12,13</sup>

$$n(\tau) = \sum_{\alpha} X_{\alpha} \exp(F_{\alpha}\tau)$$

We propose a fitness model of tumour–immune interactions as a general mathematical framework to describe the evolutionary dynamics of cancer cell populations under checkpoint blockade immunotherapy and provide a proof of concept for its utility (Fig. 1). Analogous fitness models based on immune interactions have been successfully applied to human influenza<sup>7</sup>, HIV<sup>8</sup> and chronic viral infections<sup>9</sup>. Checkpoint blockade exposes cancer cells to strong immune pressure on their neoantigens, reducing their reproductive success. Our model predicts the evolutionary dynamics of a cancer cell population after a finite time under such pressure. We compute  $n(\tau)$ , the predicted future effective size of a cancer cell population in a tumour relative to its effective size at the start of therapy. The size is a weighted sum over all of the genetic clones of a tumour (Fig. 1a and Methods),

$$n(\tau) = \sum_{\alpha} X_{\alpha} \exp(F_{\alpha}\tau) \tag{1}$$

### Basic idea

- Use PhyloWGS to infer clones and their evolutionary relationship from tumor + normal DNA sequencing
- Define immune fitness of each sub-clone in terms of predicted neoantigens



## Fitness ~= immunogenicity of dominant neoantigen in the clone

(Fig. 1b and Methods). Here we model the fitness of a given clone  $\alpha$  by the recognition potential of its dominant neoantigen,

$$F_{\alpha} = -\max_{i \in \text{ clone } \alpha} (A_i \times R_i) \tag{2}$$

### Recognition potential: "R" and "A"

$$n(\tau) = \sum_{\alpha} X_{\alpha} \exp \left(-\max_{i \in \text{ clone } \alpha} (A_i \times R_i) \tau\right)$$
 (5)

$$A = K_{\rm d}^{\rm WT} / K_{\rm d}^{\rm MT} \tag{7}$$

$$R = Z(k)^{-1} \sum_{e \in \text{IEDB}} \exp(-k(a - |\boldsymbol{s}, \boldsymbol{e}|))$$
(10)

### Predicted tumor sizes



### Survival stratified by fitness



## Homework

### Data

| Sample | Months     | Status |  |  |                                          |
|--------|------------|--------|--|--|------------------------------------------|
| Pat02  | 53.6547357 | 0      |  |  |                                          |
| Pat03  | 3.28766763 | 1      |  |  |                                          |
| Pat04  | 32.4492795 | 0      |  |  |                                          |
| Pat06  | 5.29314488 | 1      |  |  |                                          |
| Pat08  | 4.60273468 | 1      |  |  |                                          |
| Pat100 | 11.8356035 | 1      |  |  |                                          |
| Pat101 | 9.46848277 | 1      |  |  |                                          |
| Pat103 | 34.4547568 | 1      |  |  |                                          |
| Pat104 | 7.79177228 | 1      |  |  |                                          |
| Pat106 | 8.21916908 | 1      |  |  |                                          |
| Pat109 | 2.72876413 | 1      |  |  |                                          |
| Pat11  | 25.9725743 | 0      |  |  |                                          |
| Pat110 | 10.5205364 | 1      |  |  |                                          |
| Pat113 | 9.89587957 | 1      |  |  |                                          |
| Pat115 | 4.76711806 | 1      |  |  |                                          |
| Pat117 | 30.0492821 | 0      |  |  |                                          |
| Pat118 | 10.2903997 | 1      |  |  |                                          |
| Pat119 | 26.5643545 | 0      |  |  |                                          |
| Pat121 | 4.01095451 | 1      |  |  | la l |
| Pat123 | 28.0438049 | 1      |  |  |                                          |
| Pat124 | 4.79999474 | 1      |  |  |                                          |
| Pat126 | 21.0739495 | 0      |  |  |                                          |
| Pat127 | 10.9150565 | 1      |  |  |                                          |
| Pat128 | 3.71506442 | 1      |  |  |                                          |
| Pat129 | 17.7205285 | 0      |  |  |                                          |
| Pat13  | 24.0657271 | 1      |  |  |                                          |
| Pat130 | 1.47945043 | 1      |  |  |                                          |
| Pat131 | 8.44930581 | 1      |  |  |                                          |
| Pat132 | 22.2246332 | 0      |  |  |                                          |
| Pat133 | 17.8191586 | 1      |  |  |                                          |
| Pat135 | 2.66301078 | 1      |  |  |                                          |
| Pat138 | 48.5917276 | 1      |  |  |                                          |
| Pat139 | 3 25479095 | 1      |  |  |                                          |

|     | Α  | В             | С       | D               | E          | F         | G        | Н        | 1           | j            | K            |
|-----|----|---------------|---------|-----------------|------------|-----------|----------|----------|-------------|--------------|--------------|
| ID  |    | MUTATION_     | Sample  | WT.Peptide      | MT.Peptide | MT.Allele | WT.Score | MT.Score | HLA         |              |              |
|     | 1  | 1_44084332    | AL4602  | RGTETCGLI       | RVTETCGLI  | C1502     | 1208     | 124      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 2  | 1_56990069    | AL4602  | IGRLRPHFL       | IVRLRPHFL  | B0801     | 305      | 165      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 3  | 1_152192039   | AL4602  | SSNGPHGSV       | SSNVPHGSV  | C1502     | 73       | 210      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 4  | 1_15822729    | AL4602  | ALWFRKRCF       | ALWFRKLCF  | A3201     | 547      | 284      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 5  | 1_15941037    | AL4602  | NTREHDQLI       | NSREHDQLI  | C1502     | 41       | 42       | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 6  | 1_15950577    | AL4602  | MKRKNFTEV       | MKRKNFTEL  | B0801     | 258      | 63       | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 7  | 1_23134964    | AL4602  | HTLTFFING       | HTLTFFINW  | A3201     | 11745    | 59       | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 8  | 1_24836727    | AL4602  | RAFMKILGK       | RALMKILGK  | A0301     | 36       | 89       | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 9  | 1_24836727    | AL4602  | EVTRAFMKI       | EVTRALMKI  | C1502     | 241      | 327      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 10 | 10_73579374   | AL4602  | LTVHVTQPK       | LTVHMTQPK  | A0301     | 442      | 460      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 11 | 11_2064826    | AL4602  | KVVYFTATF       | KVVYFMATF  | A3201     | 5        | 11       | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 12 | 11_2064826    | AL4602  | VYFTATFPY       | VYFMATFPY  | C0702     | 162      | 220      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 13 | 11_2064826    | AL4602  | TSGKVVYFT       | TSGKVVYFM  | C1502     | 8765     | 430      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 14 | 11_55322010   | AL4602  | NVQEIVFVV       | NVHEIVFVV  | C1502     | 341      | 222      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 15 | 11_5611444    | AL4602  | ALKRTLTNR       | ALKRTFTNR  | A0301     | 670      | 359      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 16 | 11_5611444    | AL4602  | RTLTNRFKI       | RTFTNRFKI  | A3201     | 36       | 14       | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 17 | 11_5611444    | AL4602  | LTNRFKIPI       | FTNRFKIPI  | A3201     | 104      | 377      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 18 | 11_5611444    | AL4602  | RTLTNRFKI       | RTFTNRFKI  | C1502     | 136      | 154      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 19 | 11_5611444    | AL4602  | LTNRFKIPI       | FTNRFKIPI  | C1502     | 148      | 78       | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 20 | 11_6313776    | AL4602  | ISIPLDSNM       | ISIQLDSNM  | C1502     | 310      | 452      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 21 | 11_82878199   | AL4602  | QVDEHSKPP       | QVDEHSKPL  | C1502     | 17298    | 178      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 22 | 12_4662254    | AL4602  | VKVKSPVEK       | VMVKSPVEK  | A0301     | 19358    | 89       | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 23 | 12_4662254    | AL4602  | KVKSPVEKK       | MVKSPVEKK  | A0301     | 99       | 155      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 24 | 12_9334662    | AL4602  | IARMFIFAI       | NARMFIFAI  | B0801     | 667      | 145      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 25 | 12_2100797    | AL4602  | ALSFSYIAK       | VLSFSYIAK  | A0301     | 27       | 24       | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 26 | 12_2100797    | AL4602  | KMFLAALSF       | KMFLAVLSF  | A3201     | 4        | 3        | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 27 | 12_2100797    | AL4602  | LAALSFSYI       | LAVLSFSYI  | B5101     | 295      | 282      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 28 | 12_2105140    | AL4602  | <b>AMGFQSMV</b> | ATGFQSMVI  | A3201     | 75       | 125      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 29 | 12_2105140    | AL4602  | LAMGFQSM        | LATGFQSMV  | C1502     | 49       | 181      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 30 | 12_2105140    | AL4602  | AMGFQSMV        | ATGFQSMVI  | C1502     | 2826     | 79       | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 31 | 12_2539828    | AL4602  | VVGAGGVGI       | VVGASGVG   | A0301     | 410      | 217      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 32 | 12_5282062    | AL4602  | LSGEGVSPV       | LSGEVVSPV  | C1502     | 771      | 238      | A0301,A3201 | ,B0801,B5101 | ,C0702,C1502 |
|     | 22 | 12 5282062    | Δ1.4602 | GVSPVNISV       | VVSPV/NISV | C1502     | 2091     | 364      | Δ0301 Δ3201 | R0801 R5101  | C0702 C1502  |
| - 1 | V  | anAllen et al | . Snyo  | ler et al.      | Rizvi et a | l. +      |          |          |             |              |              |

## #Fin #