

CIS 530—Advanced Data Mining

7- Similarity and Distance

Thomas W Gyeera, Assistant Professor Computer and Information Science University of Massachusetts Dartmouth

Similarity and Distance

- For many different problems we need to quantify how close two objects are.
- Examples:
 - For an item bought by a customer, find other similar items
 - Group together the customers of site so that similar customers are shown the same ad.
 - Group together web documents so that you can separate the ones that talk about politics and the ones that talk about sports.
 - Find all the near-duplicate mirrored web documents.
 - Find credit card transactions that are very different from previous transactions.
- To solve these problems, we need a definition of similarity, or distance.
 - The definition depends on the type of data that we have

Similarity

- Numerical measure of how alike two data objects are.
 - A function that maps pairs of objects to real values
 - Higher when objects are more alike.
- Often falls in the range [0,1], sometimes in [-1,1]
- Desirable properties for similarity
 - 1. s(p, q) = 1 (or maximum similarity) only if p = q. (Identity)
 - 2. s(p, q) = s(q, p) for all p and q. (Symmetry)

Similarity between sets

Consider the following documents

apple releases new ipod apple releases new ipad

new apple pie recipe

Which ones are more similar?

How would you quantify their similarity?

Similarity: Intersection

Number of words in common

apple releases new ipod apple releases new ipad

new apple pie recipe

- Sim(D,D) = 3, Sim(D,D) = Sim(D,D) = 2
- What about this document?

Vefa releases new book with apple pie recipes

• Sim(D,D) = Sim(D,D) = 3

Jaccard Similarity

- •The Jaccard similarity (Jaccard coefficient) of two sets S_1 , S_2 is the size of their intersection divided by the size of their union.
 - •JSim $(C_1, C_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$.

3 in intersection. 8 in union. Jaccard similarity = 3/8

- •Extreme behavior:
 - \bullet JSim(X,Y) = 1, iff X = Y
 - •JSim(X,Y) = 0 iff X,Y have not elements in common
- JSim is symmetric

Similarity: Intersection

Number of words in common

apple releases new ipod

apple releases new ipad

new apple pie recipe Vefa releases new book with apple pie recipes

- \bullet JSim(D,D) = 3/5
- •JSim(D,D) = JSim(D,D) = 2/6
- •JSim(\mathbb{D} , \mathbb{D}) = JSim(\mathbb{D} , \mathbb{D}) = 3/9

Similarity between vectors

Documents (and sets in general) can also be represented as vectors

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	30	60	0	0
D2	0	0	10	20

How do we measure the similarity of two vectors?

How well are the two vectors aligned?

Example

document	Apple	Microsoft	Obama	Election
D1	1/3	2/3	0	0
D2	1/3	2/3	0	0
D2	0	0	1/3	2/3

Documents D1, D2 are in the "same direction"

Document D3 is orthogonal to these two

Cosine Similarity

Figure 2.16. Geometric illustration of the cosine measure.

- Sim(X,Y) = cos(X,Y): The cosine of the angle between X and Y
- If the vectors are aligned (correlated) angle is zero degrees and cos(X,Y)=1
- If the vectors are orthogonal (no common coordinates) angle is 90 degrees and cos(X,Y) = 0
- Cosine is commonly used for comparing documents, where we assume that the vectors are normalized by the document length.

Cosine Similarity - math

• If d_1 and d_2 are two vectors, then

$$\cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||,$$

where ● indicates vector dot product and || d || is the length of vector d.

Example:

$$d_1 = 3205000200$$

$$d_2 = 1000000102$$

$$d_1 \cdot d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||d_1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||d_2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{0.5} = (6)^{0.5} = 2.245$$

$$\cos(d_1, d_2) = .3150$$

Similarity between vectors

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	30	60	0	0
D2	0	0	10	20

$$cos(D1,D2) = 1$$

 $cos(D1,D3) = cos(D2,D3) = 0$

Distance

- Numerical measure of how different two data objects are
 - A function that maps pairs of objects to real values
 - · Lower when objects are more alike
- Minimum distance is 0, when comparing an object with itself.
- Upper limit varies

Distance Metric

- A distance function d is a distance metric if it is a function from pairs of objects to real numbers such that:
 - 1. $d(x,y) \ge 0$. (non-negativity)
 - 2. d(x,y) = 0 iff x = y. (identity)
 - 3. d(x,y) = d(y,x). (symmetry)
 - 4. $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality).

Distances for real vectors

- Vectors and
- L_p norms or Minkowski distance:

• L₂ norm: Euclidean distance:

• L₁ norm: Manhattan distance:

- L norm:
 - The limit of L_p as p goes to infinity.

Example of Distances

L-norm:

Example

Green: All points y at distance $L_1(x,y) = r$ from point x

Blue: All points y at distance $L_2(x,y) = r$ from point x

Red: All points y at distance L(x,y) = r from point x

L_p distances for sets

- We can apply all the L_p distances to the cases of sets of attributes, with or without counts, if we represent the sets as vectors
 - E.g., a transaction is a 0/1 vector
 - E.g., a document is a vector of counts.

Similarities into distances

Jaccard distance:

Jaccard Distance is a metric

Cosine distance:

Cosine distance is a metric

Why Jaccard Distance is a Distance Metric?

- JDist(x,x) = 0
 - since JSim(x,x) = 1
- JDist(x,y) = JDist(y,x)
 - by symmetry of intersection
- $JDist(x,y) \ge 0$
 - since intersection of x,y cannot be bigger than the union.
- Triangle inequality:
 - Follows from the fact that JSim(x,y) is the probability of randomly selected element from the union of x and y to belong to the intersection

Hamming Distance

- Hamming distance is the number of positions in which bitvectors differ.
- Example
 - $p_1 = 10101$, $p_2 = 10011$, $d(p_1, p_2) = 2$ because the bit-vectors differ in the 3rd and 4th positions, the L₁ norm for the binary vectors
- Hamming distance between two vectors of categorical attributes is the number of positions in which they differ.
- Example:
 - x = (married, low income, cheat), y = (single, low income, not cheat),
 d(x,y) = 2

Why Hamming Distance is a Distance Metric?

- d(x,x) = 0 since no positions differ.
- d(x,y) = d(y,x) by symmetry of "different from."
- $d(x,y) \ge 0$ since strings cannot differ in a negative number of positions.
- Triangle inequality: changing x to z and then to y is one way to change x to y.
- For binary vectors if follows from the fact that L₁ norm is a metric

Distance between strings

How do we define similarity between strings?

weird wierd intelligent unintelligent Athena Athina

 Important for recognizing and correcting typing errors and analyzing DNA sequences.

Edit Distance for strings

- The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other.
- Example: x = abcde; y = bcduve.
 - Turn x into y by deleting a, then inserting u and v after d.
 - Edit distance = 3.
- Minimum number of operations can be computed using dynamic programming
- Common distance measure for comparing DNA sequences

Why Edit Distance is a Distance Metric?

- d(x,x) = 0 because 0 edits suffice.
- d(x,y) = d(y,x) because insert/delete are inverses of each other.
- $d(x,y) \ge 0$: no notion of negative edits.
- Triangle inequality: changing x to z and then to y is one way to change x to y. The minimum is no more than that

Variant Edit Distances

- Allow insert, delete, and mutate.
 - Change one character into another.
- Minimum number of inserts, deletes, and mutates also forms a distance measure.
- Same for any set of operations on strings.
 - Example: substring reversal or block transposition OK for DNA sequences
 - Example: character transposition is used for spelling

Distances between distributions

We can view a document as a distribution over the words

document	Apple	Microsoft	Obama	Election
D1	0.35	0.5	0.1	0.05
D2	0.4	0.4	0.1	0.1
D2	0.05	0.05	0.6	0.3

- KL-divergence (Kullback-Leibler) for distributions P,Q
- KL-divergence is asymmetric. We can make it symmetric by taking the average of both sides
- JS-divergence (Jensen-Shannon)

+