Shattuckite

需求文档

SHADOC-002,SDP, 第五组

版本 0.0-21-g0159584

表 1: 版本变更历史

版本	提交日期	主要编制人	审核人	版本说明
----	------	-------	-----	------

Contents:

1	概述		3
	1.1	基本的原则	3
	1.2	需求与产品	3
	1.3	需求文档的边界	4
	1.4	需求挖掘	4
	1.5	分析方法	4
2	面向	用户的需求建模	4
	2.1	概述	4
	2.2	用户画像	6
	2.3	用例	7
3	面向	数据的需求建模	31
	3.1	概述	31
	3.2	数据类型	32
	3.3	数据产生	33
	3.4	数据流转	34
	3.5	数据持久化	35

1 概述

本节讨论关于需求分析的元 (Meta) 信息或是方法论。

1.1 基本的原则

需求分析必须满足以下两个目标:

- 1. 清楚的描述客户需要什么
- 2. 为之后的设计工作奠定基础

1.2 需求与产品

在代码未交付前,产品存在吗?

产品是存在的,不过并不是以代码的形式存在,而是以思想的形式存在。每一个程序,在首次在计算机上运行前,肯定在客户的脑袋里运行过无数次了。

"需求"和"产品"是同构的, 开发团队最终递交的产品,

不过是换了一种计算机能够理解的方式来表达用户的需求。

需求就是运行在客户大脑的程序,产品就是运行在计算机上的程序。开发团队的工作就是把需求"翻译"成产品。

1.3 需求文档的边界

从需求到产品,是一个逐渐逼近的过程。开发团队会对从客户处得到的信息进行连续的处理和加工;而这种处理和加工是分阶段的。不同阶段,处理和加工的产物不同。终极产物自然是"产品",而中间产物则包括各种各样的文档。

当团队成员打开 IDE 输入代码时, 毋庸置疑, 我们正处于编码阶段。但是, 我们该如何划分"需求分析"和"设计"这两个阶段?《需求分析》文档和《设计文档》的边界在哪儿?

我们将以是否涉及计算机和电子信息工程专业知识,来作为《需求分析》文档和《设计文档》的边界。也就是在撰写本文档的过程中,我们会尽量避免出现那些无法向没有 EECS 学科背景客户解释的信息,而是用严谨的自然语言描述客户的需求,并尽量使这种描述是易于进行后续的加工处理的。

1.4 需求挖掘

[#TODO 此处添加需求挖掘的过程,表述一下我们将如何从用户处获取信息]

1.5 分析方法

本团队会从用户和数据两个维度对需求进行建模。

我们将分别在[#TODO 需要添加交叉引用]和[#TODO]详细讨论这两种分析方法的具体实践。

2 面向用户的需求建模

2.1 概述

面向用户的需求分析是对用户本身进行建模以及对用户提供信息的初次加工。

标准化用例

为了规范化文档的撰写,方便使用自动化工具处理文档,我们将使用标准化用例的方式对从不同用处获得的需求进行记录.

标准化用例将以 场景为基本单位进行记录。一条记录应当包含以下字段

用例名称

Key	name
类型	string

用简短的语言概述该用例。原则上该字段

- 1. 使用一个动宾短语
- 2. 不出现主语
- 一但用例的名称确定,将不能修改。

参与用户

Key	user
类型	string[]

记录在本用例中,与系统产生交互的用户。

由于可能会有多个用户同系统交互, 所以使用列表类型存储数据。

标识相同的用户在列表中多次出现,会被认为是逻辑上同属一类但物理独立的用户。在分析系统的权限 问题时可能会出现这种情况。

参与用户能且仅能是在用户画像 一节中明确定义过的用户。

场景

Key	scene
类型	string

使用自然语言描述用户使用软件时的场景。该字段应当是若干句子的集合,描述用户

- 1. Where 身处何处?
- 2. Which 使用何种设备与系统进行交互?
- 3. How 用户如何与系统交互?(用户进行何种操作?)
- 4. Why 交互的动机是什么?
- 5. What 期望得到的结果是什么?

此外,该字段中可以补充对参与用户角色的描述。

异常

Key	exception	
类型	[[string,string,string]]	

描述用户无法得到期望的结果时的情况。

用一个三元组列表存储该字段。一个三元组表示一个异常,三个元素分别为异常描述和异常原因及异常 反馈。

异常列表内可能会出现异常描述相同但异常原因不同的项。

前提场景

Key	prerequisites	
类型	string[]	

描述触发本场景的充分条件。该字段是用例名称 列表, 其中的值必须被明确定义过。

2.2 用户画像

本项目的用户包括 普通用户, 普通工程人员, "开发人员 "及课程教授。本小节将对每一种用户分别讨论用户:

- 1. 特点
- 2. 诉求
- 3. 会与系统的何部分产生交互
- 4. 需求提交方法

普通用户

普通用户是本软件的最终使用者。普通用户没有任何 EE&CS 专业知识背景, 仅仅能够与手机和计算机进行基本的交互 (例如填写并提交表单, 通过 GUI 访问程序页面等)。普通用户主要关注:

- 1. 系统易于使用, 易于配置
- 2. 系统出错率低(或是系统出错后可以在不被察觉的情况下修复)

普通用户会和系统的终端产生交互。系统的全部在用户眼中只是手机或电脑上的 GUI 程序。

由于用户的特点,普通用户仅能够使用模糊的自然语言描述理想中的系统该如何工作。我们需要通过访谈或是问卷的方式,获取普通用户的需求数据,并对这些数据进行整理与建模,然后记录为标准化用例。在本项目的开发中,会让文档撰写人员扮演普通用户的角色,然后自问自答。

普通工程人员

普通工程人员是在软件分销商或系统集成商的工作人员。根据经验来看,中小型城市的工程人员,并不总具有 EE&CS 专业背景知识;相对普通用户,他们能够付出更多的时间来学习系统的使用与配置,他们接受使用更难于使用的接口以提高工作效率。这类用户主要关注:

- 1. 操作文档是否完善
- 2. 开发团队是否有完善的错误管理机制及错误修复的速度
- 3. 用于管理系统的接口效率是否足够高
- 4. 系统的部署过程是否足够简单

普通工程人员的需求是具有明确的目标导向的,他们会使用严谨的自然语言描述自己的需求。我们可以通过访谈或是问卷的方式,获取普通工程人员的需求数据,然后在确保可实现性的情况下对信息稍作加工整理,记录为标准化用例。

在本项目的开发中,会让不参与编码工作的团队成员充当普通工程人员的角色尝试为假想的用户部署本系统,提出新的需求并直接记录为标准化用例。

开发人员

开发人员是开发团队之外,有兴趣为项目贡献代码或是想要修改该系统以适应额外需求的人员。开发人员拥有专业知识背景,且具有完全理解系统工作原理的能力。开发人员主要关注:

- 1. 测试代码是否完善
- 2. 系统的架构是否合理
- 3. API 文档是否完善
- 4. 代码质量

开发人员的需求将由开发团队本身, 在进行项目开发的过程种进行整理与记录。

课程教授

课程教授是特殊的用户,是本项目名义上的委托人(甲方)。课程教授将主要关注

- 1. 开发进度是否满足要求
- 2. 文档完善程度
- 3. 功能的完成度
- 4. 开发团队的管理与组织

课程教授的需求将通过开发任务说明的相关文档来获取。由于课程教授的需求已经被合理的组织且记录在了《软件工程-嵌入式方向-大作业考核说明》这一文档中,因此,本文档将不讨论这一特殊用户的需求。

2.3 用例

用例: 登陆控制程序

表 2: 用例: 登陆控制程序基本情况

用例名称	登陆控制程序
用例识别码	ec727f448a4e
参与用户	普通用户
前提场景	无

用例场景

用户位于任何位置,使用手机或计算机访问控制程序。程序弹出登陆页面,并检查用户是否曾经选择保存账号或密码,如果保存,则直接使用保存的账号和密码进行鉴权;否则,提示用户输入账号和密码后进行鉴权。登陆成功后,用户应该看到程序跳转到了控制程序主页面。

表 3: 用例: 登陆控制程序异常处理

异常描述	异常原因	异常处理
无法登陆	服务器未响应	使用文字提示网络错误
无法登陆	账号或密码错误	使用文字提示登陆信息错误

用例: 概览系统情况

表 4: 用例: 概览系统情况基本情况

用例名称	概览系统情况
用例识别码	03704fbfe7a9
参与用户	普通用户
前提场景	登陆控制程序

用例场景

用户位于控制程序主页面。用户浏览主页面获取当前系统的运行状况,信息包括

- 1. 系统的工作状态
- 2. 当前未处理事件

主页拥有导航至其他页面按钮, 其他页面包括

- 1. 监控数据
- 2. 历史事件
- 3. 管理设备
- 4. 操作执行器
- 5. 用户详情

表 5: 用例: 概览系统情况异常处理

异常描述	异常原因	异常处理
无法登陆	服务器未响应	使用文字提示网络错误

用例: 处理未处理事件

表 6: 用例: 处理未处理事件基本情况

用例名称	处理未处理事件
用例识别码	5f089bad3ffa
参与用户	普通用户
前提场景	概览系统情况

用例场景

用户处理主页面中的未处理事件用户可将事件设置为已处理事件处理后将不再主页面中显示控制程序记录处理人账号和处理时间用户点击 [历史事件] 按钮,查看已处理事件

表 7: 用例: 处理未处理事件异常处理

异常描述	异常原因	异常处理
处理失败	服务器未响应	使用文字提示网络错误
处理失败	事件已处理	使用文字提示事件已经处理

用例: 查看监控数据

表 8: 用例: 查看监控数据基本情况

用例名称	查看监控数据
用例识别码	d81bc6d3bf68
参与用户	普通用户
前提场景	概览系统情况

用例场景

监控数据包含两种类型: 当前监控数据与历史监控数据,用户选择查看类型监控数据页面拥有返回至主页面的按钮。

表 9: 用例: 查看监控数据异常处理

异常描述	异常原因	异常处理
无	无	无

用例: 实时监控数据

表 10: 用例: 实时监控数据基本情况

用例名称	实时监控数据
用例识别码	c9ac09442d0c
参与用户	普通用户
前提场景	查看监控数据

用例场景

实时监控数据表现形式是折线图,用户添加传感器使传感器数据表现在折线图中,用户移除传感器使传感器数据不在折线图中,实时监控数据页面拥有返回至[查看监控数据]的按钮。

异常处理

表 11: 用例: 实时监控数据异常处理

异常描述	异常原因	异常处理
无法连接	服务器未响应	使用文字提示网络错误

UML 用例图表示

用例: 历史监控数据

表 12: 用例: 历史监控数据基本情况

用例名称	历史监控数据
用例识别码	c273b9099be0
参与用户	普通用户
前提场景	查看监控数据

用例场景

历史控数据默认表现形式是表格,表格的一组数据包含一个时间点所有传感器数据,用户可以通过操作使历史数据以折线图呈现,用户可以删除历史监控数据历史监控数据页面拥有返回至[查看监控数据]的按钮。

异常处理

表 13: 用例: 历史监控数据异常处理

异常描述	异常原因	异常处理
无法连接	服务器未响应	使用文字提示网络错误

UML 用例图表示

用例: 查看历史事件

表 14: 用例: 查看历史事件基本情况

用例名称	查看历史事件
用例识别码	bd1f74826e94
参与用户	普通用户
前提场景	概览系统情况

用例场景

用户位于任何位置,使用手机或 计算机访问控制程序并已经完成登陆进入历史事件页面。用户希望从历史事件页面获取并编辑系统的历史监控数据,用户希望获得的历史事件信息包括

1. 事件时间

- 2. 事件描述
- 3. 事件处理用户

用户希望能够删除历史事件数据。历史事件页面拥有返回至主页面的按钮。

异常处理

表 15: 用例: 查看历史事件异常处理

异常描述	异常原因	异常处理
获取失败	服务器未响应	使用文字提示网络错误

UML 用例图表示

用例: 管理设备

表 16: 用例: 管理设备基本情况

用例名称	管理设备
用例识别码	2 d9 e5 c0 107 ee
参与用户	普通用户
前提场景	概览系统情况

用例场景

管理设备包含三种类型操作:管理事件、管理传感器、管理执行器用户选择操作类型管理设备页面拥有返回至主页面的按钮。

异常处理

表 17: 用例: 管理设备异常处理

异常描述	异常原因	异常处理
无	无	无

UML 用例图表示

用例: 管理事件

表 18: 用例: 管理事件基本情况

用例名称	管理事件
用例识别码	fde861aa03f1
参与用户	普通用户
前提场景	管理设备

用例场景

页面呈现系统中的所有事件,用户可以删除/新建事件,管理事件页面拥有返回至[管理设备]的按钮。

表 19: 用例: 管理事件异常处理

异常描述	异常原因	异常处理
无	无	无

用例: 新建事件

表 20: 用例: 新建事件基本情况

用例名称	新建事件
用例识别码	$8\mathrm{b}92\mathrm{d}286\mathrm{b}0\mathrm{c}1$
参与用户	普通用户
前提场景	管理事件

用例场景

页面呈现系统中所有设备,用户选取并设置若干台设备确定事件逻辑程序自动记录新事件的设置时间和用户,设定事件页面拥有返回至[管理设备]的按钮。

异常处理

表 21: 用例: 新建事件异常处理

异常描述	异常原因	异常处理
无	无	无

UML 用例图表示

用例: 管理执行器

表 22: 用例: 管理执行器基本情况

用例名称	管理执行器
用例识别码	bfa46d71b838
参与用户	普通用户
前提场景	管理设备

用例场景

页面呈现系统中的所有执行器,执行器划分方式有两种:按所在区域划分和按类型划分用户通过勾选方式管理一台或多台执行器管理执行器页面拥有返回至[管理设备]的按钮。

表 23: 用例: 管理执行器异常处理

异常描述	异常原因	异常处理
无	无	无

用例: 管理传感器

表 24: 用例: 管理传感器基本情况

用例名称	管理传感器
用例识别码	1282 d045064 e
参与用户	普通用户
前提场景	管理设备

用例场景

页面呈现系统中的所有传感器,传感器划分方式有两种:按所在区域划分和按类型划分用户通过勾选方式管理一台或多台传感器管理传感器页面拥有返回至[管理设备]的按钮。

异常处理

表 25: 用例: 管理传感器异常处理

异常描述	异常原因	异常处理
无	无	无

UML 用例图表示

用例: 操作执行器

表 26: 用例: 操作执行器基本情况

用例名称	操作执行器
用例识别码	82b0f64106fd
参与用户	普通用户
前提场景	概览系统情况

用例场景

页面呈现系统中所有的执行器,执行器划分方式有两种:按所在区域划分和按类型划分,用户点击执行器将得到该执行器拥有的操作,用户点击相关操作可远程控制执行器,操作执行器页面拥有返回至主页面的按钮。

表 27: 用例: 操作执行器异常处理

异常描述	异常原因	异常处理
无	无	无

用例: 查看用户信息

表 28: 用例: 查看用户信息基本情况

用例名称	查看用户信息
用例识别码	d47ce1dcc9c1
参与用户	普通用户
前提场景	概览系统情况

用例场景

用户获取并编辑当前系统的用户信息,包括

- 1. 获取并编辑当前账号的用户信息,信息指账号/密码,编辑指修改密码/注销账户
- 2. 获取当前系统中其他用户的信息, 仅指账号
- 3. 反馈意见与建议
- 4. 注销登录

用户信息页面拥有返回至主页面的按钮

表 29: 用例: 查看用户信息异常处理

异常描述	异常原因	异常处理
修改失败	服务器未响应	使用文字提示网络错误
获取失败	服务器未响应	使用文字提示网络错误

用例: 修改账号密码

表 30: 用例: 修改账号密码基本情况

用例名称	修改账号密码
用例识别码	3187771a6b5b
参与用户	普通用户
前提场景	查看用户信息

用例场景

用户希望修改自己账号的密码修改密码需要输入现有密码修改密码成功则返回登陆界面拥有返回至用户信息页面的按钮

异常处理

表 31: 用例: 修改账号密码异常处理

异常描述	异常原因	异常处理
修改失败	服务器未响应	使用文字提示网络错误
修改失败	密码错误	使用文字提示密码错误

UML 用例图表示

用例: 反馈信息

表 32: 用例: 反馈信息基本情况

用例名称	反馈信息
用例识别码	a595d4fe7d6b
参与用户	普通用户
前提场景	查看用户信息

用例场景

用户反馈意见与建议给开发方拥有返回至用户信息页面的按钮

表 33: 用例: 反馈信息异常处理

异常描述	异常原因	异常处理
提交失败	服务器未响应	使用文字提示网络错误

用例: 查看系统用户

表 34: 用例: 查看系统用户基本情况

用例名称	查看系统用户
用例识别码	b0eb6e4945a3
参与用户	普通用户
前提场景	查看用户信息

用例场景

用户获取家庭中其他用户账号拥有返回至用户信息页面的按钮

异常处理

表 35: 用例: 查看系统用户异常处理

异常描述	异常原因	异常处理
查看失败	服务器未响应	使用文字提示网络错误

UML 用例图表示

3 面向数据的需求建模

3.1 概述

基于数据的需求建模将聚焦于以下问题

- 数据分类
- 数据产生
- 数据流转

• 数据持久化

此外需要注明,本节讨论的数据为用户数据。用户数据可以直接被用户感知,与用户产生交互。系统中存在用户可直接访问的,用于对用户数据进行增/删/改/查的接口。

3.2 数据类型

系统应当至少处理,存储两种 用户数据,包括业务数据 和配置数据

业务数据

业务数据是和系统所提供的功能相关的数据。包括(但不限于)以下几类数据:

传感器数据

温度/湿度/空气质量等传感器采集到的物理量。

音视频数据

安防摄像头采集到的音视频二进制码流。

执行器数据

执行器的状态。例如电磁继电器触点的开关状态、线性导轨的位置等。

事件

事件是一种特殊数据, 当满足某些特定条件后会被触发。事件在逻辑上由物理设备 (例如传感器, 执行器等) 产生。事件是主动产生的。

命令

命令是一种特殊数据,命令可能由系统或者用户发出。

命令可以是主动产生的(由程序逻辑产生),也可以是被动产生(由用户操作产生)的。

引入命令的原因是为了使用户能够控制系统中的执行器。

配置数据

配置数据是和系统工作方式相关的数据。

采样率

对于类似于温度/湿度/空气质量传感器等以固定间隔产生时间离散数据的装置,用户应当可以配置其产生两个数据的间隔。

事件触发条件

设备触发事件的条件。举例说明,用户应当可以配置当某一温度传感器的温度高于或低于设定阈值的时候,该传感器产生一个事件。

事件回调

特定事件触发后应当采取的动作。

持久化策略

储存数据的方式。对于传感器,用户可能希望数据库获取新数据的频率低于数据产生的频率,以在保证 实时性的前提下减少存储负担。

对于音视频数据,用户可能只希望保留某一时段的记录文件。

账户数据

系统应当支持多用户管理。用户的基本数据,例如用户名,密码,用户,权限等,应当被合理的存储。

QΑ

命令和事件有什么不同

事件 描述系统状态变化, 重点是 发生了何种变化; 命令 描述一个操作, 重点是 想要系统如何变化

命令和配置数据有什么不同

命令 是暂时性的, 在命令被接收设备处理后就不再生效; 配置数据 是持久性的, 在下次更改配置前, 当前配置始终生效。

3.3 数据产生

数据产生的方式

数据可能持续或随机的产生。

持续产生

持续指数据以预设的规则,以一定的时间间隔,有规律的产生。业务数据 中提到的传感器数据 和音视频数据 均可被认为是持续产生的数据。

随机产生

随机指数据产生的时间不确定。业务数据 中提到的执行器数据 命令 事件 及所有的配置数据 均是随机产生的数据。

数据的具体来源

数据主要来源于

- 1. 终端设备
- 2. 系统本身
- 3. 交互界面

终端设备数据源

终端设备需要能够产生业务数据 中的

- 1. 传感器数据
- 2. 音视频数据
- 3. 执行器数据

系统本身数据源

终端设备数据源 产生的数据在系统中流转时,系统会对这些数据进行分析,并产生新的数据。

系统本身需要能够产生业务数据 中的

- 1. 命令
- 2. 事件

交互界面数据源

交互界面需要能够产生业务数据 中的命令 以及所有的配置数据.

3.4 数据流转

数据源产生的数据需要在系统中流转。

数据流转容量

为了方便讨论。我们暂时将整套系统抽象成

- 1. 硬件终端
- 2. 云端
- 3. 交互终端

三部分。并将硬件终端和交互终端与云端进行数据交互的操作称为 请求

并发请求

可能同时会有若干终端向云端发起请求。系统应该具有处理并发请求的能力。当系统需要同时处理多个请求时,应当使用类似于消息队列的机制,以保证

- 1. 请求可以按照顺序, 依次被处理
- 2. 避免数据冲突

请求处理速度

当请求的平均大小一定时,系统处理请求的速度。系统应该每秒种至少处理 1000 个请求。

数据流转的可靠性

系统应该保证正确处理每个请求,不会发生数据丢失的情况。

3.5 数据持久化

数据持久化方式

系统应该为不同的数据类型提供不同的持久化方式。

数据库持久化

针对业务数据 中的传感器数据,及所有的配置数据,应当提供口接口,实现数据在数据库中的持久化。

文件系统持久化

针对音视频数据,应当实现数据在文件系统中持久化。

数据持久化的可扩展性

当系统中的数据总量超过现有硬件的容量时,系统应该能够方便的通过增加硬件以实现更多数据的存储。