Homework 1

Corey Mostero

Student ID: 256652

Force Statics

1	Boo	k																					
	1.1	-																					
	1.2	5.6 .																					
	1.3	5.62				•									•						٠		
	1.4	5.64				•						•						•			•		
	1.5	5.79		•		•	•	•		٠	•	•	•		•	•	٠	•	•		•	•	
2	Lab	Man	uel																				
	2.1	270 .																					
	2.2	273 .																					
	2.3	274 .																					
	2.4	287 .																					
	2.5	290 .																					
	_	_																					
1	В	ook																					
1.	1 5	5.2																					
(;	a)																						
													`	\sum	F	y	=	0					
	$\sum_{T_{\text{wall, b}} - w_b = 0} F_y = 0$																						
	$T_{ m wall,\;b}=w_b$																						
$T_{ m wall,\ b}=w_b$																							
											L	_	wa.	11,									
(1	o)																						
											$\sum_{i=1}^{n}$		$F_{y}^{(}$	b_1) =	= ()						
									′	T_{b_2}	2,6		- <i>u</i>	v_{b_1}	=	= ()						
												′	T_{b_2}	$_{2},b_{1}$	=	= 1	v_b	1					
											>	_	$F_{i}^{(}$	$[b_2]$) =	= ()						
									′					v_{b}									
	$T_{b_1,b_2} = w_{b_2}$																						
									T_{b}	$_2,b$	1 -	+ ′	T_{b_1}	$,b_2$	2 =	= 1	v_b	1 .	+	w_b	2		
	wh	nere																					

 $\begin{array}{c} 3 \\ 4 \\ 5 \end{array}$

 $\mathbf{5}$

5

5

 $T_{b_1,b_2} = T_{b_2,b_1} \& w_{b_1} = w_{b_2}$

T+T=w+w 2T=2w T=w

$$T = w$$

(c)

$$\sum_{} F_y^{(b_1)} = 0$$

$$T_{b_2,b_1} - w = 0$$

$$T_{b_2,b_1} = w$$

$$\sum_{} F_y^{(b_2)} = 0$$

$$T_{b_1,b_2} - w = 0$$

$$T_{b_1,b_2} = w$$

 $\quad \text{where} \quad$

$$T_{b_1,b_2} = T_{b_2,b_1}$$

$$T + T = w + w$$

$$2T = 2w$$

$$T = w$$

$$T = w$$

1.2 5.6

$$b = \mathrm{ball}$$

$$m = 3620\,\mathrm{kg}$$

$$\theta_{T_B,\hat{y}} = 40^\circ$$

(a)

$$T_B = ?$$

$$\cos(\theta) = \frac{m_b g}{T_B}$$

$$T_B = \frac{m_b g}{\cos(\theta)}$$

$$= \frac{3620 \text{ kg} \cdot 10 \text{ m s}^{-2}}{\cos(40^\circ)}$$

$$T_B = 47.255.7 \text{ N}$$

$$T_B = 47.3 \times 10^3 \text{ N}$$

$$T_{A} = ?$$

$$\theta_{T_{B},\hat{x}} = ?$$

$$\theta_{T_{B},\hat{x}} = 90^{\circ} - \theta_{T_{B},\hat{y}}$$

$$= 90^{\circ} - 40^{\circ}$$

$$\theta_{T_{B},\hat{x}} = 50^{\circ}$$

$$\cos(\theta_{T_{B},\hat{x}}) = \frac{T_{B_{x}}}{T_{B}}$$

$$T_{B_{x}} = (T_{B})\cos(\theta_{T_{B},\hat{x}})$$

$$= (47.3 \times 10^{3} \text{ N})\cos(50^{\circ})$$

$$T_{B_{x}} = 30403.9 \text{ N}$$

$$\sum F_{x}^{(b)} = 0$$

$$T_{B_{x}} - T_{A} = 0$$

$$T_{A} = T_{B_{x}}$$

$$T_{A} = 30403.9 \text{ N}$$

$$T_{A} = 30403.9 \text{ N}$$

$1.3 \quad 5.62$

$$T_{r,p_1} = ?$$
 $T_{w,p_1} = ?$
 $w = m_w g$
 $T_{p_2,p_1} = ?$
 $T_{r,p_2} = ?$
 $\vec{F} = ?$

Based on the free body diagrams, it can be concluded that

$$T_{r,p_1} = T_{p_2,p_1} = \vec{F} \tag{1}$$

as they share a common rope.

Therefore the forces of p_1 in the \hat{y} direction can be found as

$$\sum_{t} F_y^{(p_1)} = 0$$

$$T_{r,p_1} + T_{p_2,p_1} - T_{w,p_1} = 0$$

$$T_{w,p_1} = 2T$$

Finding $T_{p_1,w}$ from the free body diagram of the weight

$$\sum F_y^{\text{(weight)}} = 0$$
$$T_{p_1,w} - w = 0$$
$$T_{p_1,w} = w$$

In order to withhold Newton's third law, the combined tension of T_{r,p_1} and T_{p_2,p_1} must equal T_{w,p_1} (as shown in Equation 1)

$$2T = T_{w,p_1}$$
$$= w$$
$$T = \frac{w}{2}$$

It can therefore be concluded that (according to (1)) \vec{F} must equal T, finding the magnitude in terms of w

$$\vec{F} = T = \frac{w}{2}$$

- 1.4 5.64
- $1.5 \quad 5.79$
- 2 Lab Manuel
- 2.1 270
- 2.2 273
- 2.3 274
- 2.4 287
- 2.5 290