

17.12.2004

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日 2004年 3月31日
Date of Application:

出願番号 特願2004-107135
Application Number:
[ST. 10/C]: [JP 2004-107135]

出願人 日本製紙株式会社
Applicant(s):

2005年 2月 4日

特許庁長官
Commissioner,
Japan Patent Office

小川

洋清

出証番号 出証特2005-3006903

【書類名】 特許願
【整理番号】 040672
【提出日】 平成16年 3月31日
【あて先】 特許庁長官 殿
【国際特許分類】 D21H
【発明者】
【住所又は居所】 東京都北区王子5丁目21番1号 日本製紙株式会社 技術研究所内
【氏名】 大平 由紀子
【発明者】
【住所又は居所】 東京都北区王子5丁目21番1号 日本製紙株式会社 技術研究所内
【氏名】 畠山 清
【発明者】
【住所又は居所】 東京都北区王子5丁目21番1号 日本製紙株式会社 技術研究所内
【氏名】 二艘木 秀昭
【発明者】
【住所又は居所】 東京都北区王子5丁目21番1号 日本製紙株式会社 技術研究所内
【氏名】 森井 博一
【特許出願人】
【識別番号】 000183484
【氏名又は名称】 日本製紙株式会社
【代理人】
【識別番号】 100089705
【住所又は居所】 東京都千代田区大手町二丁目2番1号 新大手町ビル206区
ユアサハラ法律特許事務所
【弁理士】
【氏名又は名称】 社本 一夫
【電話番号】 03-3270-6641
【ファクシミリ番号】 03-3246-0233
【選任した代理人】
【識別番号】 100076691
【弁理士】
【氏名又は名称】 増井 忠式
【選任した代理人】
【識別番号】 100075270
【弁理士】
【氏名又は名称】 小林 泰
【選任した代理人】
【識別番号】 100080137
【弁理士】
【氏名又は名称】 千葉 昭男
【選任した代理人】
【識別番号】 100096013
【弁理士】
【氏名又は名称】 富田 博行

【選任した代理人】

【識別番号】 100077506

【弁理士】

【氏名又は名称】 戸水 辰男

【先の出願に基づく優先権主張】

【出願番号】 特願2003-354997

【出願日】 平成15年10月15日

【手数料の表示】

【予納台帳番号】 051806

【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】 明細書 1

【物件名】 要約書 1

【包括委任状番号】 9709947

【書類名】特許請求の範囲**【請求項1】**

原紙に顔料と接着剤を主成分とするキャスト塗工層を設け、湿潤状態にある該キャスト塗工層を加熱された鏡面ドラム面に圧接、乾燥して仕上げるキャスト塗工紙において、前記キャスト塗工層は、体積基準で0.4～4.2μmの範囲にある粒子が65%以上含まれる粒度分布を有するカオリンを無機顔料100重量部当たり50重量部以上含有し、プラスチックピグメントを含有することを特徴とするキャスト塗工紙。

【請求項2】

前記プラスチックピグメントは、無機顔料100重量部に対して5～50重量含有することを特徴する請求項1に記載のキャスト塗工紙。

【請求項3】

原紙に、顔料と接着剤を主成分とする塗工液を塗工して塗工層を形成させ、湿潤状態の前記塗工層を乾燥した後、再湿潤により可塑化して加熱された鏡面ドラム面に圧接、乾燥して仕上げたキャスト塗工層を形成したキャスト塗工紙の製造方法において、前記塗工液は、体積基準で0.4～4.2μmの範囲にある粒子が65%以上含まれる粒度分布を有するカオリンを無機顔料100重量部当たり50重量部以上含有し、プラスチックピグメントを含有することを特徴とするキャスト塗工紙の製造方法。

【請求項4】

前記再湿潤前のJIS-P8142に準拠した白紙光沢度が70%以上であること特徴とする請求項3に記載のキャスト塗工紙の製造方法。

【書類名】明細書

【発明の名称】キャスト塗工紙及びその製造方法

【技術分野】

【0001】

本発明は、原紙に顔料と接着剤を主成分とするキャスト塗工層を設け、該キャスト塗工層が湿潤状態にある間に加熱された鏡面ドラム面（キャストドラム）に圧接、乾燥して仕上げるキャスト塗工紙及びその製造方法に関するものである。

【背景技術】

【0002】

キャスト塗工紙と呼ばれる強光沢塗工紙は、原紙の表面に顔料および接着剤を主成分とする水性塗料を塗工してキャスト塗工層を設け、塗工層が湿潤状態にある段階で、キャスト塗工層を加熱された金属製の鏡面ドラムに圧着し、乾燥することにより製造されている。

【0003】

このキャスト塗工紙の製造方法としては、湿潤状態の塗工層を直接加熱された鏡面ドラム面に圧接して光沢仕上げするウェットキャスト法、湿潤状態の塗工層をゲル状態にして加熱された鏡面ドラム面に圧接して光沢仕上げするゲル化キャスト法、湿潤状態の塗工層を一旦乾燥した後、再湿潤により可塑化して加熱された鏡面ドラム面に圧接するリウェットキャスト法等が知られている。

【0004】

これらのキャスト塗工紙製造法はいずれもキャスト塗工層が湿潤または可塑状態にあるうちに加熱された鏡面ドラム面に圧接、乾燥させることで共通している。ただし、キャスト塗工層の可塑状態の違いにより操業性および得られるキャストコート紙の品質において、それぞれ以下のような欠点がある。ウェットキャスト法では、キャスト塗工層の粘性が低く、鏡面ドラム面の温度を100℃以上にすると塗工液が沸騰し塗工層が破壊されるため、鏡面ドラム面の温度を100℃以上とすることはできない。キャスト加工前の乾燥工程がなく、乾燥負荷も大きいため、低速度での操業を余儀なくされているのが現状である。

【0005】

ゲル化キャスト法ではキャスト塗工層がゲル化されているため、鏡面ドラム面の温度を100℃以上とすることが可能である。しかしながら、やはりキャスト加工前の乾燥工程がなく、乾燥負荷が大きいため、キャスト塗工層中に含まれる多量の水分を、鏡面ドラム接触時にスムーズに原紙層中に移行させて蒸発除去する必要があり、また塗工層のゲル化の度合いを調節することも難しく、このためあまり高速でキャスト加工を行うと白紙光沢等の品質が低下する。

【0006】

リウェットキャスト法ではキャスト加工前にキャスト塗工層が一旦乾燥されるため、鏡面ドラム面の温度を90～180℃まで上げることが可能である。しかし、ウェットキャスト法、ゲル化キャスト法と比較して、キャスト塗工層の可塑性が低いため、高速でキャスト加工した場合、キャスト塗工層表面のピンホール、密着ムラ等のいわゆるキャスト面の不良が発生しやすくなる欠点がある。

【0007】

さらに、キャストコート紙の品質面において、一般に白紙光沢と比較して、印刷光沢が劣っており、全面印刷した印刷物の場合、白紙光沢から期待されるほどの印刷光沢が得られず、更なる印刷光沢の向上やキャスト面感の改善が要望されている。

【0008】

このような問題点を解決するために種々の方法が提案されている。例えば、キャスト塗工層中にプラスチックピグメントと最低増膜温度が0℃未満のラテックスを配合する方法が提案されている（特許文献1参照）。この方法で得られたキャストコート紙は白紙光沢に優れるものの印刷光沢は大きく低下している。また、キャスト塗工層中の顔料の粒度分

布を規定する方法が提案されている（特許文献2参照）。この方法で得られたキャストコート紙の印刷光沢は従来品と比較して改善されているが、それでも白紙光沢に対して低く、キャスト面感にも劣るものであった。

【特許文献1】特開平4-146294号公報

【特許文献2】特開平10-18197号公報

【発明の開示】

【発明が解決しようとする課題】

【0009】

このような状況を鑑み、本発明の課題は、キャスト面の面感、白紙光沢及び印刷適性に優れ、かつ生産性の高いキャストコート紙を提供することである。

【課題を解決するための手段】

【0010】

本発明者らは各種キャストコート紙製造法のこれらの欠点を解消するために鋭意検討した結果、キャスト塗工層の処方に工夫を加えることにより問題を解決することに成功し、本発明を完成させた。

【0011】

すなわち、本発明は、原紙に顔料と接着剤を主成分とするキャスト塗工層を設け、湿潤状態にある該キャスト用塗工層を加熱された鏡面ドラム面に圧接、乾燥して仕上げるキャスト塗工紙において、前記キャスト塗工層が、粒径0.4～4.2μmの粒子が体積基準で65%以上含まれるカオリンを無機顔料100重量部当たり50重量部以上含有し、有機顔料であるプラスチックピグメントを含有したキャスト塗工層を設けることにより、キャストコート紙表面の面感や白紙光沢度に優れ、印刷光沢度が白紙光沢度よりも高く印刷適性に優れるキャスト塗工紙を得られるものである。また原紙に、顔料と接着剤を主成分とする塗工液を塗工して塗工層を形成させ、湿潤状態の前記塗工層を乾燥した後、再湿潤により可塑化して加熱ドラム面に圧接、乾燥して仕上げたキャスト塗工層を形成したキャスト塗工紙の製造方法において、前記塗工液は、体積基準で0.4～4.2μmの範囲にある粒子が65%以上含まれる粒度分布を有するカオリンを無機顔料100重量部当たり50重量部以上含有し、プラスチックピグメントを含有することを特徴とするキャスト塗工紙の製造方法により、キャスト面の面感、白紙光沢度、印刷適性に優れ、かつ塗工適性に優れ高効率で生産しうることを見出した。本発明において、本発明が所望する効果が得られる原因は必ずしも明らかではないが、次のように推定される。一般的な塗工組成物用無機顔料は、微細な粒子や粗大な粒子が混合されているため、粒径分布が広い。粒子径が同一な球粒子で構成される単分散の場合、粒子の充填率は粒子径に依存せず同一であるが、多分散、例えば二種類の異なる粒子径を持つ球の混合系では、粒子の充填密度は大きい粒子径と小さい粒子形の比、および二種類の粒子の混合比率等に依存し、粒子径の比（小粒子の粒子径／大粒子の粒子径の値）が小さいほど充填率は高くなる。したがって、粒度分布の狭い顔料からなる塗工層は粒度分布の広いものに比べて顔料粒子の充填率が低くなり、塗工層の空隙が大きくなり、透気性が良化する。また、プラスチックピグメントが塗工層中の顔料同士の間に入り込み空隙ができることにより塗工層全体の透気性が良化すると考えられ、リウェット法によるキャスト加工時の水分の除去がスムーズに行われ、高効率で生産しうると考えられる。一方、本発明の粒度分布の狭いカオリンとプラスチックピグメントを併用することにより、塗工層は顔料粒子の充填率が低く、つまり、原紙の被覆性が向上する。この結果、白紙光沢度が向上し、また、印刷インキのビヒケルが吸収しにくいため、印刷光沢度が向上するものと考えられる。プラスチックピグメントはキャスト加工を行うことによりキャストドラムの熱によりさらに原紙の被覆性が上がるため、白紙光沢度よりも印刷光沢度が高くなると推察される。また、本発明においては、再湿潤液でリウェットする前の塗工層をカンレンダー等を用いて平滑化処理することにより、白紙光沢度、印刷光沢度等が向上する。

【発明の効果】

【0012】

本発明により、キャスト面の面感に優れ、白紙光沢度が高く、白紙光沢度よりも高い印刷光沢度が得られ、印刷適性に優れたキャスト塗工紙が得られる。また、塗工速度が速く、生産性に優れるキャスト塗工紙を製造することができる。

【発明を実施するための最良の形態】

【0013】

本発明においては、原紙に特定の顔料と接着剤を主成分とする塗工層を設け、湿潤状態の該塗工層を加熱された鏡面ドラム面に圧接、乾燥して仕上げてキャスト塗工紙を製造するものである。

【0014】

本発明のキャスト塗工用原紙には、通常のパルプ、填料等が配合される。本発明において原紙に配合されるパルプの種類等は特に限定されない。例えば、広葉樹クラフトパルプ（以下、LBKPとする）、針葉樹クラフトパルプ（以下、NBKPとする）サーモメカニカルパルプ、碎木パルプ、古紙パルプ等が使用される。また、原紙に配合される填料としては、重質炭酸カルシウム、軽質炭酸カルシウム、カオリン、クレー、タルク、水和珪酸、ホワイトカーボン、酸化チタン、合成樹脂填料などの公知の填料を使用することができる。填料の使用量は、パルプ重量あたり、6重量%以上が好ましい。さらに必要に応じて、硫酸バンド、サイズ剤、紙力増強剤、歩留まり向上剤、着色顔料、染料、消泡剤などを含有してもよい。原紙の抄紙方法については特に限定されるものではなく、トップワイヤー等を含む長網マシン、丸網マシン等を用いて、酸性抄紙、中性抄紙、アルカリ性抄紙方式で抄紙した原紙のいずれであってもよく、もちろん、メカニカルパルプを含む中質原紙も使用できる。さらに表面強度やサイズ性の向上の目的で、原紙に水溶性高分子を主成分とする表面処理剤の塗布を行ってもよい。水溶性高分子としては、酸化澱粉、ヒドロキシエチルエーテル化澱粉、酵素変性澱粉、ポリアクリルアミド、ポリビニルアルコール等の、表面処理剤として通常使用されるものを単独、あるいはこれらの混合物を使用することができる。また、表面処理剤の中には、水溶性高分子のほかに耐水化、表面強度向上を目的とした紙力増強剤やサイズ性付与を目的とした外添サイズ剤を添加することができる。表面処理剤は2ロールサイズプレスコーティング、ゲートロールコーティング、ブレードメタリングサイズプレスコーティング、ロッドメタリングサイズプレスコーティング、およびシムサイズ等のフィルム転写型ロールコーティング等の塗工機によって塗布することができる。また、本発明においては、表面処理剤の塗布の他に、一般の塗工紙に使用される顔料と接着剤を含む塗工液を上記塗工機を用いて塗工した原紙、または上記表面処理剤を塗布乾燥した後に、更にブレードコーティング、ロールコーティング、エアナイフコーティング等を用いて塗工した原紙もキャスト塗工用の原紙として使用することができる。その場合の塗工量片面当たり乾燥重量で5～30g/m²程度が望ましい。さらに、必要に応じてこの予備塗工した原紙をスーパーカレンダー、ソフトカレンダー等の平滑化処理を前以って施しておくことができる。

【0015】

キャスト塗工原紙としては、一般の塗工紙に用いられる坪量が30～200g/m²程度を用いることができるが、好ましくは50～180g/m²である。

本発明において、キャスト塗工層に設ける顔料としては、体積基準で0.4～4.2μmの範囲にある粒子が65%以上含まれる粒度分布を有するカオリンを無機顔料100重量部当たり50重量部以上、好ましくは60重量部以上、さらに好ましくは70重量部以上である。また、プラスチックピグメントを含有する必要があり、含有量は好ましくは無機顔料100重量部に対して5～50重量部であり、より好ましくは10～45重量部、更に好ましくは20～45重量部含有することである。本発明に用いるプラスチックピグメントは、密実型、中空型、または、コア/シェル構造を持つプラスチックピグメント等を必要に応じて、単独、または2種類以上混合して使用することができる。密実型のプラスチックピグメントの配合量は、無機顔料100重量部に対して10～50重量部が好ましく、より好ましくは20～45重量部である。また、中空型のプラスチックピグメントの配合量は、無機顔料100重量部に対して5～25重量部が好ましく、より好ましくは

10～23重量部である。プラスチックピグメントの構成重合体成分としては、好ましくは、ステレンおよび／または、メチルメタアクリレート等のモノマーを主成分として、必要に応じて、これらと共に重合可能な他のモノマーが用いられる。この共重合可能なモノマーとしては、例えば、 α -メチルスチレン、クロロスチレンやジメチルスチレン等のオレフィン系芳香族系モノマー、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸グリシル、(メタ)アクリル酸ニトリル等のモノオレフィン系モノマーおよび、酢酸ビニル等のモノマーがある。また、必要に応じて、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、スマール酸、クロトン酸等の、オレフィン系不飽和カルボン酸モノマー類、ヒドロキシエチル、メタアクリル酸ヒドロキシエチル、アクリル酸ヒドロキシプロピル等の、オレフィン系不飽和ヒドロキシモノマー類、アクリルアミド、メタアクリルアミド、N-メチロールアクリルアミド、N-メトキシメチルアクリルアミド、N-メトキシメチルメタアクリルアミド等の、オレフィン系不飽和アミドモノマー類、ジビニルベンゼンのごとき、二両体ビニルモノマー等を少なくとも一種または二種以上の組み合わせで用いることができる。これらのモノマーは例示であり、この他にも共重合可能なモノマーであれば使用することができる。本発明において使用するプラスチックピグメントは、通気性や表面強度の低下を招かない、レーザー回折／散乱式粒度分布測定器を用いて測定した平均粒径が0.1～1.5 μm のものを配合することが好ましく、より好ましくは平均粒径が0.1～1.0 μm 、更に好ましくは0.1～0.6 μm のものを配合する。

【0016】

また、塗工紙用に従来から用いられている、上記以外のカオリン、クレー、デラミネーテッドクレー、重質炭酸カルシウム、軽質炭酸カルシウム、タルク、二酸化チタン、硫酸バリウム、硫酸カルシウム、酸化亜鉛、ケイ酸、ケイ酸塩、コロイダルシリカ、サテンホワイトなどの無機顔料などを、必要に応じて1種類以上を選択して使用できる。

【0017】

キャスト塗工層に使用する接着剤は、特に限定されるものではなく、塗工紙用に従来から用いられているスチレン・ブタジエン系、スチレン・アクリル系、エチレン・酢酸ビニル系、ブタジエン・メチルメタクリレート系、酢酸ビニル・ブチルアクリレート系等の各種共重合体およびポリビニルアルコール、無水マレイン酸共重合体、アクリル酸・メチルメタクリレート系共重合体等の合成系接着剤、カゼイン、大豆蛋白、合成蛋白の蛋白質類、酸化澱粉、陽性澱粉、尿素リン酸エステル化澱粉、ヒドロキシエチルエーテル化澱粉などのエーテル化澱粉、デキストリンなどの澱粉類、カルボキシエチルセルロース、ヒドロキシエチルセルロースまたはヒドロキシメチルセルロースなどのセルロース誘導体などの通常の塗工紙接着剤1種類以上を適宜選択して使用される。これらの接着剤は無機顔料100重量部あたり5～50重量部、より好ましくは5～30重量部程度の範囲で使用される。

【0018】

また、キャスト塗工層中には上記の顔料と接着剤の他に、塩化ナトリウム、塩化アンモニウム、塩化亜鉛、塩化マグネシウム、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウム、硫酸亜鉛、硫酸マグネシウム、硝酸アンモニウム、第一磷酸ナトリウム、磷酸アンモニウム、磷酸カルシウム、ポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム、蟻酸ナトリウム、蟻酸アンモニウム、酢酸ナトリウム、酢酸カリウム、モノクロル酸ナトリウム、マロン酸ナトリウム、酒石酸ナトリウム、酒石酸カリウム、クエン酸ナトリウム、クエン酸カリウム、乳酸ナトリウム、グルコン酸ナトリウム、アジピン酸ナトリウム、ジオクチルスルホハク酸ナトリウム等の無機酸や有機酸のアンモニウム塩や金属塩類、メチルアミン、ジエタノールアミン、ジエチレントリアミン、ジイソプロピルアミン等の各種添加剤を適宜使用することができる。さらに助剤として必要に応じて、分散剤、増粘剤、保水剤、消泡剤、着色剤、離型剤、流動変性剤、耐水化剤、防腐剤、印刷適性向上剤など、通常の塗工紙用塗料組成物に配合される各種助剤が適宜使用される。

【0019】

調整されたキャスト塗料組成物を原紙に塗工するための方法としては、2ロールサイズプレスコーティングや、ゲートロールコーティング、およびプレードメタリングサイズプレスコーティングやロッドメタリングサイズプレスコーティング、シムサイザー、JFサイザー等のフィルム転写型ロールコーティングや、フラデッドニップ/プレードコーティング、ジェットファウンテン/プレードコーティング、ショートドウェルタイムアプリケート式コーティングの他、プレードの替わりにグループドロッド、プレーンロッド等を用いたロッドメタリングコーティングや、エアナイフコーティング、カーテンコーティングまたはダイコーティング等の公知のコーティングにより塗工することができ、塗工量は、原紙の片面あたり5~30g/m²が好ましく、より好ましくは10~20g/m²である。塗工後は湿潤状態のままでキャスト仕上げする直接法、湿潤状態の塗工層を凝固してキャスト仕上げする凝固法、湿潤状態の塗工層を一旦乾燥して、再湿潤液で塗工層を再湿潤してキャスト仕上げするリウェット法が用いられるが、品質及び操業面でリウェット法が優れている。湿潤塗工層を乾燥させる方法としては、例えば上記加熱シリンダ、加熱熱風エアドライヤ、ガスヒータードライヤ、電気ヒータードライヤ、赤外線ヒータードライヤ等の各種方式のドライヤを単独あるいは組み合わせて用いる。塗工紙の乾燥程度は、原紙の種類、塗被組成物の種類等によって異なるが、一般に紙水分として約1~10%の範囲であり、約2~7%の範囲に乾燥するのが望ましい。本発明においては、乾燥された塗工層をそのままリウェット法でキャスト仕上げしても良いが、白紙光沢、平滑性向上、および印刷光沢度向上等のため、乾燥された塗工紙を平滑化などの表面処理することが好ましく、表面処理の方法としては弾性にコットンロールを用いたスーパーカレンダーや、弾性ロールに合成樹脂ロールを用いたソフトニップカレンダー、ブラシ掛け等公知の表面処理装置を用いることができる。特に、再湿潤前の塗工紙の光沢度を70% (75°) 以上にすることにより、白紙光沢度や印刷光沢度等の品質を向上する。

【0020】

本発明においては、加熱された鏡面ドラムに圧接して高光沢を得るキャスト仕上げにおいては、特に鏡面ドラムの温度が100°C以上である様なキャスト法に於いて、その作用効果が顕著に現れる。

【0021】

なお、再湿潤液については、特に限定されるものではなく、例えばポリエチレンエマルジョン、脂肪酸石鹼、ステアリン酸カルシウム、マイクロクリスタリンワックス、界面活性剤、ロート油等の離型剤を0.01~3重量%程度含有した水溶液、エマルジョン等通常の再湿潤液が用いられる。また、アルカリやヘキサメタリン酸ソーダ等のリン酸塩、尿素、有機酸等を乾燥塗工層の可塑化を促進させるために併用することも勿論可能である。

【実施例】

【0022】

以下に実施例をあげて、本発明を具体的に説明するが、本発明はそれらに限定されるものではない。また、例中の部および%は特に断らない限り、それぞれ重量部および重量%を示す。得られたキャストコート紙について、以下に示すような評価法に基づいて試験を行った。

〈評価方法〉

(顔料の体積粒度分布測定) レーザー回折/散乱式粒度分布測定器(マルバーン(株)製、機器名:マスター サイザー S)を用いて、粒子の体積粒度分布を測定し、0.4μmから4.2μmの範囲に該当する粒子のパーセントを算出した。

(坪量) JIS P 8124:1998に従った。

(密度) JIS P 8118:1998に従った。

(キャスト面感) JIS K 7105に準じて、スガ試験機株式会社製写像性測定器:ICM-ITを用いて、入射光角度60°、幅2mmの条件でキャスト面を測定した。

(白紙光沢度) JIS P 8142:1998に準じて、75°光沢度、キャスト面を20°光沢度を測定した。

(王研透気度) JAPAN Tappi No. 5 王研透気度試験機で測定した。

(印刷光沢度) R I - I I 型印刷試験機を用い、東洋インキ製造株式会社製枚葉プロセスインキ(商品名:TKハイエロー紅 MZ)を0.30cc使用して印刷を行い、一昼夜放置後、得られた印刷物の表面を測定光の角度を20°とした他はJ I S P 8142:1998に従って測定した。

(キャスト塗工操業性) キャストコート紙を実施例にしたがって生産した場合、キャストコート紙のキャストドラムへの貼りつきやキャストコート紙のドラムピックなどが発生するか否かで判定した。

○…キャストドラムへの貼りつきやキャストコート紙のドラムピックなどがまったく発生しない

△…キャストドラムへの貼りつきやキャストコート紙のドラムピックが発生する

×…キャストドラムへの貼りつきやキャストコート紙のドラムピックなどが発生し、良好な品質のキャストコート紙を生産することができない

[実施例1]

製紙用パルプとして化学パルプを100部、填料として軽質炭酸カルシウム12部含有する坪量100g/m²の原紙に、顔料としてブラジル産カオリン(商品名:カピムDG/リオカピム社製、体積分布粒径0.4~4.2μm:71.7%)100部、密実プラスチックピグメント(商品名:V-1004/日本ゼオン製、平均粒径0.32μm、ガラス転移温度85℃)30部からなる顔料に、分散剤としてポリアクリル酸ソーダ0.1部、バインダーとしてスチレン-ブタジエン共重合体ラテックス(以下SBRと略す)13.5部、澱粉3.5部を加え、さらに水を加えて固形分濃度60%に調整した塗工液を塗工量が片面あたり12g/m²となるように、ブレードコーナーで両面を塗工、乾燥し、この後、スーパーカレンダによる表面処理を行った。

【0023】

このようにして得た塗工紙をリウェット液(ヘキサメタリン酸ナトリウム0.5%濃度)によって塗工層表面を再湿潤した後、フォーミングロールとキャストドラムによって形成されるプレスニップに通紙し、速度100m/min、表面温度105℃のキャストドラムに圧接、乾燥した後、ストリップオフロールでキャストドラムから離型することによってリウェットキャスト方式によるキャスト塗工紙を得た。

[実施例2]

塗工液に含まれる顔料として、ブラジル産カオリン(商品名:カピムDG/リオカピム社製、体積分布粒径0.4~4.2μm:71.7%)100部、密実プラスチックピグメント(商品名:V-1004/日本ゼオン製、平均粒径0.32μm、ガラス転移温度85℃)22部とした以外は、実施例1と同様の方法でキャスト塗工紙を得た。

[実施例3]

塗工液に含まれる顔料として、ブラジル産カオリン(商品名:カピムDG/リオカピム社製、体積分布粒径0.4~4.2μm:71.7%)100部、中空プラスチックピグメント(商品名:HP-1055/Rohm&Haas Company社製、平均粒径1.0μm、空隙率55%、ガラス転移温度105℃)15部とした以外は、実施例1と同様の方法でキャスト塗工紙を得た。

[比較例1]

塗工液に含まれる顔料として、ブラジル産カオリン(商品名:カピムDG/リオカピム社製、体積分布粒径0.4~4.2μm:71.7%)100部のみとし、密実プラスチックピグメントを加えなかった以外は、実施例1と同様の方法でキャスト塗工紙を得た。

[比較例2]

塗工液に含まれる顔料として、アメリカ産カオリン(商品名:ウルトラホワイト90/EMC社製、体積分布粒径0.4~4.2μm:59.8%)100部、密実プラスチックピグメント(商品名:V-1004/日本ゼオン製、平均粒径0.32μm、ガラス転移温度85℃)30部とした以外は、実施例1と同様の方法でキャスト塗工紙を得た。

[比較例3]

塗工液に含まれる顔料として、ブラジル産カオリン(商品名:カピムDG/リオカピム

社製、体積分布粒径0.4~4.2 μm ：71.7%）45部、アメリカ産カオリン（商品名：ウルトラホワイト90／EMC社製、体積分布粒径0.4~4.2 μm ：59.8%）55部、密実プラスチックピグメント（商品名：V-1004／日本ゼオン製、平均粒径0.32 μm 、ガラス転移温度85℃）30部とした以外は、実施例1と同様の方法でキャスト塗工紙を得た。

【0024】

結果を表1に示した。

【0025】

【表1】

表1

		実施例1	実施例2	実施例3	比較例1	比較例2	比較例3
無機顔料	カピムDG	100	100	100	100	—	45
	ウルトラホワイト90	—	—	—	—	100	55
有機顔料	V-1004	30	22	—	—	30	30
	HP-1055	—	—	15	—	—	—
再湿潤前白紙光沢(75°)(%)		74	72	73	50	69	68
写像性(%)		87	85	83	32	70	78
白紙光沢 20°(%)		45	40	37	16	40	41
印刷光沢 20°(%)		50	45	42	15	33	30
キャスト塗工操業性		○	○	○	○	×	△

【書類名】要約書

【要約】

【課題】 本発明の課題は、白紙光沢、印刷適性に優れ、かつ生産性に優れたキャストコート紙及びその製造方法を提供する。

【解決手段】 原紙に顔料と接着剤を主成分とするキャスト塗工層を設け、湿潤状態にある該キャスト塗工層を加熱された鏡面ドラム面に圧接、乾燥して仕上げるキャスト塗工紙において、前記キャスト塗工層は、体積基準で0.4～4.2 μm の範囲にある粒子が65%以上含まれる粒度分布を有するカオリンを無機顔料100重量部当たり50重量部以上含有し、プラスチックピグメントを含有することを特徴とするキャスト塗工紙及びその製造方法。

【選択図】 なし

認定・付加情報

特許出願の番号	特願2004-107135
受付番号	50400548514
書類名	特許願
担当官	第六担当上席 0095
作成日	平成16年 4月 5日

<認定情報・付加情報>

【特許出願人】

【識別番号】	000183484
【住所又は居所】	東京都北区王子1丁目4番1号
【氏名又は名称】	日本製紙株式会社
【代理人】	申請人
【識別番号】	100089705
【住所又は居所】	東京都千代田区大手町二丁目2番1号 新大手町 ビル206区 ユアサハラ法律特許事務所
【氏名又は名称】	社本 一夫

【選任した代理人】

【識別番号】	100076691
【住所又は居所】	東京都千代田区大手町二丁目2番1号 新大手町 ビル206区 ユアサハラ法律特許事務所
【氏名又は名称】	増井 忠式

【選任した代理人】

【識別番号】	100075270
【住所又は居所】	東京都千代田区大手町二丁目2番1号 新大手町 ビル206区 ユアサハラ法律特許事務所
【氏名又は名称】	小林 泰

【選任した代理人】

【識別番号】	100080137
【住所又は居所】	東京都千代田区大手町二丁目2番1号 新大手町 ビル206区 ユアサハラ法律特許事務所
【氏名又は名称】	千葉 昭男

【選任した代理人】

【識別番号】	100096013
【住所又は居所】	東京都千代田区大手町二丁目2番1号 新大手町 ビル206区 ユアサハラ法律特許事務所
【氏名又は名称】	富田 博行

【選任した代理人】

【識別番号】 100077506

【住所又は居所】 東京都千代田区大手町二丁目2番1号 新大手町
ビル206区 ユアサハラ法律特許事務所

【氏名又は名称】 戸水 辰男

特願 2004-107135

出願人履歴情報

識別番号

[000183484]

1. 変更年月日

[変更理由]

住 所

氏 名

1993年 4月 7日

名称変更

東京都北区王子1丁目4番1号

日本製紙株式会社