Final Exam CS 302

Name:

NSHE ID:

Question 1:

What's the time complexity of the below operations:

```
(a). for (let i = 0; i < n; i ++){
	for (let j = 0; j < m; j++){
		cout << i << " " << j;}}
```

```
(b). for (int i = n; i > 0; i=i/2){ 
 for (int j = 0; j< n; j++){ 
 cout << "hello"; }}
```

Question 2:

What's the pre-order, in-order traversal of the below tree?

Question 3:

Insert below into a AVL tree. Please write down each step of rotation to make it an AVL tree. Insert: 50, 25, 75, 20, 90, 70, 100, 95

Question 4:

Please indicate the computational complex of the below list-based priority queue.

	insertItem	removeMin	minKey	minElement
Unsorted list				
implementation				
sorted list				
implementation				

Question 5:

Given the below list-data, implement a selection sort for the priority queue.

		Sequence S	Priority Queue P
Input		(7, 4, 8, 2, 5, 3, 9)	0
Phase 1:			
	(a)		
	(b)		
	(g)		
Phase 2:			
	(a)		
	(b)		
	(c)		
	(d)		
	(e)		
	(f)		
	(g)		

Question 6:

Is it a binary heap? Why or why not?

Question 7:

implement removeMin() for the below binary heap

Question 8:

implement insert() for the below binary heap: insert a node with value 3.

Question 9:

fill out each step in the three parts: current node, queue, and visited, for implementing breadth first search for traversing a graph

Current node: A

Queue: Visited: