$n\bar{x}^2$ ) Gemittelte Summe der quadrati- 2 Wahrscheinlichkeitsrechnung Hilfszettel zur Klausur von JD., Seite 1 von 2 schen Abweichung vom Mittelwert BeschreibendeStatistik 1.4.3 Stichprobenstandardabweichungebnisse eines Experiments 1.1 Begriffe R:sd(x)ment von  $\Omega$ 

1.1.2 Schließende/Induktive Sta-Aus beobachtete Daten werden Schlüsse gezogen und diese im Rahmen vorgegeungsparameter. bener Modelle der Wahrscheinlichkeits-1.7 Chebyshev theorie bewertet.

#### 1.1.3 Grundgesamtheit $\Omega$ : Grundgesamtheit $\omega$ :Element oder Ob-

jekt der Grundgesamtheit diskret(<30

Ausprägungen), stetig(≥30 Ausprägun-

der

gen), univariat(p=1), mulivariat(p>1)

Statistik

schaulich gemacht.

1.2 Lagemaße 1.2.1 Modalwerte  $x_{mod}$ Am häufigsten auftretende Ausprägun-

gen (insbesondere bei qualitativen Merkmalen)

#### 1.2.2 Mittelwert R:mean(x)

ten. Empfindlich gegemüber Ausreißern.  $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$ 1.3 Median

Schwerpunkt

R:median(x)Liegt in der Mitt der sortierten Daten  $x_i$ . Unempfindlich gegenüber Ausreißern.

 $\frac{\alpha_{n+1}}{2}$ , falls n ungerade  $\frac{1}{2}(x_{\frac{n}{2}} + x_{\frac{n}{2}+1})$ , falls n gerade

### 1.4 Streuungsmaße 1.4.1 Spannweite

 $\max x_i$  -  $\min x_i$ 

## 1.4.2 Stichprbenverians $s^2$

R:var(x)Verschiebungssatz:  $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}^2) = \frac{1}{n-1} (\sum_{i=1}^{n} x_i^2 - y = mx + t \text{ mit } m = r \cdot \frac{s_y}{s_x} \text{ und } t = \overline{y} - m \cdot \overline{x}$ 

 $s = \sqrt{s}$  Streuungsmaß mit gleicher Einheit wie beobachteten Daten  $x_i.\bar{x}$  minimiert 1.1.1 Beschreibende/Deskriptive die "quadratische Verlustfunktionöder die Varianz gibt das Minimum der Feh-Beobachtete Daten werden durch geeiglerquadrate an. nete statistische Kennzahlen charakteri-1.5 p-Quantile siert und durch geeignete Grafiken an-R:quantile(x,p). Teilt die sortierten Da- Schnitt  $E \cap F$ : Ereignis E und Ereignis F

#### ten $x_i$ ca. im Verhältnis p: (1-p) d.h. $\hat{F}(x_p) \approx p$ 1. Quartil = 0.25-Quantil; Median = 0.5-Quantil; 3. Quartil = 0.75-Quartil; 1.6 Interquartilsabstand I $I = x_{0.75} - x_{0.25}$ . Ist ein weiterer Streu- 2.2 De Morgan'schen Regeln

#### $\frac{N(S_k)}{n} > 1 - \frac{1}{k^2}$ , für alle $k \ge 1 \overline{x}$ der Durchschnitt, s > 0 die Stichproben-Standardabweichung von Beobachtungswerten $x_1,...,x_n$ . Sei $S_k = \{i, 1 \le i \le n : |x_i - \overline{x}| < k \cdot s\}$ ; Für eine beliebige Zahl $k \ge 1$ liegen mehr als $100 \cdot (1 - \frac{1}{L^2})$ Prozent der Daten im Intervall von $\bar{x} - ks$ bis $\overline{x} + ks$ . **Speziell:**Für k = 2 liegen mehr als 75% der Daten im 2s-Bereich um $\bar{x}$ . Für

k=3 liegen mehr als 89% der Daten im

3s-Bereich um  $\overline{x}$ . **Komplement Formulie**-

rung:  $\overline{S}_k = \{i | |x_i - \overline{x}| \ge k \cdot s\}; \frac{N(S_k)}{n} \le \frac{1}{k^2};$ Die Ungleichheit lifert nur eine sehr grobe Abschätzung, ist aber unabhängig von der Verteilung der Daten. Empirische Regeln 68% der Daten im Bereich um  $\overline{x} \pm s$ . 95% um  $\overline{x} \pm 2s$ . 99.7% um  $\overline{x} \pm 3s$ . 1.8 Korrelation Grafische Zusammenhang zwischen multivariaten Daten y und y durch ein Streudiagramm. Kennzahlen zur Unter-

### 1.8.1 Empirische Kovarians

 $\frac{1}{n-1}(\sum_{i=1}^{n}(x_iy_i-n\overline{xy}))$ 

suchung des Zusammenhangs:

1.8.2 Empirische Korrellationsko-

R:cov(x, y);  $s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) =$ 

#### R:cor(x, x); $r = \frac{s_{xy}}{s_x x_y}$ ; Näherungsweise lin. Zusammenhang zw. x und y, falls $|\mathbf{r}| \approx 1$ .

## 1.8.3 Regressionsgerade y

## 2.1 Begriffe

Ø heißt unmögliches Ereignis

Ereignis  $E_i$ tritt ein.

 $E_1 \cup E_2 = E_1 \cap E_2$ 

 $\overline{E_1 \cap E_2} = \overline{E}_1 \cup \overline{E}_2$ 

2.3 Wahrscheinlichkeit

 $0 \le P(E) \le 1$ ;  $P(\Omega) = 1$ ;

**Ergebnisraum**  $\Omega$ : Menge aller möglichen

**Elementarereignis**  $\omega \in \Omega$ : einzelnes Ele-**Ereignis** $E \subseteq \Omega$ : beliebige Teilmenge des

Ergebnisraums  $\Omega$  heißt sicheres Ereignis,

**Vereinigung**  $E \cup F$ : Ereignis E oder Ereignis F treten ein.  $\bigcup_{i=1}^{n} E_i$ : mindestens ein  $\bigcap_{i=1}^n E_i$  alle Ereignisse  $E_i$  treten ein. **Gegenereignis**  $\overline{E} = \Omega / E$ : Ereignis E tritt nicht ein (Komplement von E) **Disjunkte Ereignisse**E und F:  $E \cap F = \emptyset$ 

## 2.6.1 Satz 2.2 $P(\bigcup_{i=1}^{\infty}) = \sum_{i=1}^{\infty} P(E_i)$ , falls $E_i \cap E_j = \emptyset$

#### 2.3.1 Satz 2.1 $P(\overline{E}) = 1 - P(E)$ $P(E \cup F) = P(E) + P(F) - P(E \cap F)$ (Übungsaufgabe!!! Ergänzen)

#### Zufallsexperimente mit n gleich wahr-Elementarereignissen.

2.4 Laplace-Experiment

Dann berechnet sich die Wahrscheinlichkeit P(E) für  $E \subseteq \Omega$  aus:  $P(E) = \frac{AnzahlderfrEgnstigenEreignisse}{AnzahldermglichenEreignisse}$ 

#### 2.5 Kombinatorik 2.5.1 Allgmeines Zählprinzip

 $\frac{\textit{MchtigkeitvonE}}{\textit{Mchtigkeitvon}\Omega} = \frac{|E|}{\Omega} \textbf{text}$ 

Anzahl der Möglihckeiten für ein kstufiges Zufallsexperiment mit  $n_i$  Varianten im i-ten Schritt:  $n_1 \cdot n_2 \cdot ... \cdot n_k$ 

#### 2.5.2 Permutationen

Anzahl einer n-elementigen Menge nmaliges Ziehen ohne Zurücklgen mit Beachtung der Reihenfolge: n unterscheid**bare Elemente**:  $n! = n \cdot (n-1) t ext b f ... 2 \cdot 1$ k Klassen mit je  $n_i$  nicht unterscheidbaren Elementen  $n = sum_k^{i=1} n_i$ :  $\frac{n!}{n_1! \cdot n_2! \cdot n_k!}$ 

ohne Zurücklegen =  $k \le n$ . mit Zurücklegen = k > n möglich. mit Beachtung der Reihenfolge, ohne Zurücklegen:  $\frac{n!}{(n-k)!}$ 

mengen einer n-elementigen

Menge k-maliges Ziehen aus

einer n-elementigen Menge

2.5.3 Anzahl k-elementigen Teil- 2.6.4 Formel von Bayes

ohne Beachtung der Reihenfolge, ohne **Zurücklegen**:  $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ mit Beachtung der Reihenfolge, mit Zurücklegen: nk

ohne Beachtung der Reihenfolge, mit Zurücklegen  $\binom{n+k-1}{k}$ 2.6 Bedingte Wahrscheinlichkeit

 $P(E|F) = P_F(E) = \frac{|E \cap F|}{|F|} = \frac{P(E \cap F))}{P(F)}$ 

# $P(E \cap F) = P(E|F) \cdot P(F)$ $P(E \cap F) = P(F|E) \cdot P(E)$



## 2.6.2 Satz der totalen Wahrschein-

Sei  $\Omega = \bigcup_{i=1}^n E_i$  mit  $E_i \cap E_j = \emptyset$  für  $i \neq j$ d.h. die Ereignisse bilde eine disjunkte Zerlegung bzw. eine Partition von  $\Omega$ . Somit gilt:  $P(F) = \sum_{i=1}^{n} P(F \cap E_i) = \sum_{i=1}^{n} P(F|E_i)$ . Summe der Äste des Wahrscheinlichkeitsbaums zu allen Schnitten  $F \cap E_i$ 

#### 2.6.3 Vierfeldertafel $P(F) = P(F \cap E) + P(F \cap \overline{E})$

 $P(\overline{F}) = P(\overline{F} \cap E) + P(\overline{F} \cap E)$ E E P(TAE) P(TAE) P(T)

 $P(\bar{\epsilon}) P(\bar{\epsilon}) 1$ **Satz 2.2**  $P(E \cap F)P(E)$ .  $P(F|E) = P(F) \cdot P(E|F)$  **Tafel**  $= P(F) - P(F \cap F)$ 

 $\overline{E}$ ) =  $P(E) - P(\overline{F} \cap E)$ ;  $P(\overline{F}|E) = 1 - P(F|E)$ 

Hilfreich, wenn man man  $P(F|E_i)$  kennt, aber nicht  $P(E_k|F)$  Satz 2.4  $P(E_k|F) =$ 

 $P(F|E_k) \cdot P(E_k)$  $P(F|E_i) \cdot P(E_i)$ **Nur Nenner!**P(F) aus dem Satz der tota-

len Wahrscheinlichkeit.

2.6.5 Stochastische Unabhängig-

## **Uebung** Die Ereignisse E und F heißen

(stochastisch) unabhängig, wenn die Information über das Eintreten des einen Ereignisses die Wahrscheinlichkeit für das Eintreten des anderen Ereignisses nicht ändert, d.h. falls  $P(E|F) = P(E)oderP(E \cap F) = P(E) \cdot P(F)$ Es gilt Falls die Ereignisse E, F unabhän-

gig sind, dann sind auch:

 $\overline{E}$ ,  $\overline{F}$  unabhängig **Bemerkung** Stochastische Unabhängigkeit be-

deutet nicht notwendigerweise eine kausale Abhängigkeit Veranschaulichung mit Venn Dia-

P(E) = 1 = P(E(7) gramm stock unabhanging P(E)= 1 < P(EIF) •  $A, B \neq \emptyset$  und  $A \cap B = \emptyset$  $P(A \cap B) \stackrel{?}{=} P(A) \cdot P(B)$  $\emptyset \neq P(A) \cdot P(B)$  da P(A) > 0 und => A, B stochastisch abhängig

### 3 Zufallsvariable

 $\omega \mapsto X(\omega) = \text{heißt Zufalls variable (ZV). x}$ ∈ R. heißt Realisation der ZV X. • Diskrete ZV:  $X(\Omega) = x_1, ..., x_2 (n \in$  $\mathbb{N}$ ); z.B. X = "Augensumme beim

Abbildung des abstrakte Ergebnisraums

 $\Omega$  auf  $\mathbb{R}$ . Eine Abbildung  $X:\Omega\to\mathbb{R}$ ,

• Stetige ZV:  $X(\Omega) \subseteq \mathbb{R}$ ; "z.B. Körpergröße eines Menschen"

### 3.1 Verteilungsfunktion