The USINDE is addressing the need for moderate-energy proton dosimetry

- ^{nat}Nb(p,x)⁹⁰Mo is a desirable dosimetry standard for > 40 MeV protons.
- Only 1 measurement exists, with 3 points for 40 MeV $\langle E_n \rangle < 100$ MeV*.
- We measured the cross section for 40 MeV $< E_p < 90$ MeV at LANSCE-IPF, and have extracted 31 additional cross sections in the process:
 - natNb(p,x): 82Rb,83Sr,85mY,85Y,86Y,86Zr,87Zr,87mY,87Y,88Y,88Zr,89mNb,89Nb,89Zr,90Mo,90Nb,91mNb,92mNb,93mMo
 - natCu(p,x): 51Cr,529Mn,54Mn,55Co,56Co,56Ni,57Co,57Ni,58mCo,589Co,59Fe,60Co,61Cu,62Zn,64Cu,65Zn

* Measurement and simulation of the cross sections for nuclide production in 93Nb and natNi targets irradiated with 0.04- to 2.6-GeV protons » Yu.E.Titarenko (2011)

moderate-energy proton dosimetry

- $^{\text{nat}}$ Nb(p,x) 90 Mo is a desirable dosimetry standard for > 40 MeV protons.
- Only 1 measurement exists, with 3 points for 40 MeV $\langle E_p \langle$ 100 MeV*.
- We measured the cross section for 40 MeV $< E_{\rho} <$ 90 MeV at LANSCE-IPF, and

Nuclear Science

Measurements @ LANL - Nb(p,x)

