Learning Meters of Arabic and English poems

With Recurrent Neural Networks

Prof. Waleed A. YOUSEF

The Team

June 18, 2018

Computer Science department Faulty of Computers and Information, Helwan University

Table of contents

- 1. Introduction
- 2. Literature Review
- 3. Datasets
- 4. Methodology
- 5. Results

Introduction

Hello, Arabic

فقولُ رسولِ الله أزكى وأشرحُ

ودعْ عنك آراءَ الرجالِ وقولَهم

But ... What is poetry?

General Definition:

 Poetry is a piece of writing or speaking, which MUST follow specific Patterns.

Example, English verse:

That time of year thou mayst in me behold

To detect poems' meters, we need to learn those **Patterns**.

العَرُوض Arabic Prosody

• Foot التفعيلة: is a sequence of vowels and consonants.

Feet	Scansion		
فَعُولُنْ	0/0//		
فَاعِلُنْ	0//0/		
مُسْتَفْعِلُنْ	0//0/0/		
مَفاعِيلُنْ	0/0/0//		
مَفْعُولاَتَ	0//0///		
فَاعِلاَتُنْ	0/0//0/		
مُفَاعَلَتُنْ	0///0//		
مُتَفَاعِلُنْ	0//0///		

العَرُوضِ Arabic Prosody

Arabic Patterns/Meters :بحور الشعر

• Meter البحر: is a sequence of feet.

Meter Name	Meter feet combination
al-Wafeer	مُفَاعَلَتُن مُفَاعَلَتُن فَعُولُن
$al ext{-} Taweel$	فَعُوْلُنْ مَفَاْعِيْلُنْ فَعُوْلُنْ مَفَاْعِلُنْ
:	i i
$al ext{-}Moktadib$	مَفْعُوْلاتُ مُسْتَفْعِلُنْ مُسْتَفْعِلُن
$al ext{-}Modar'e$	مَفَأْعِيْلُنْ فَاْعِلاتُنْ مَفَاْعِيْلُنْ

Arabic Prosody, example!

:بحر الوافر From

```
ویسْأَل فیْ الْحواْدث ذوْ صواْبِ
ویساًل فل حوادث ذو صوابن
////// //// //// /////
مفاْعلتنْ فعوْلنْ فعوْلنْ
```

English Prosody

English Meters Building Blocks:

- Syllables: /'worte/=/'wor/+/te(r)/.
 - stressed + unstressed.
- Foot: is a combination of stressed and unstressed syllables.

Feet	Stresses Combination		
Iamb	×/		
Trochee	/x		
Dactyl	/××		
Anapest	××/		
Pyrrhic	××		
Amphibrach	×/×		
Spondee	//		

Meter: is repeating a foot n times; where $n \in [1, 8]$.

English Patterns

Iambic pentameter verse:

Literature Review

Detecting Arabic poems' Meters

Abuata and Al-Omari:

- Five-step Algorithm
 - 1. Getting the input, carrying full diacritics.
 - 2. Metrical scansion rules are applied to the Arud writing. 0/0/...
 - 3. Grouping zero and ones to feet تفعيلات.
 - 4. A class is assigned to the input.
- **Results**: 82.2% of 417 verses.

Alnagdawi et al, similar approach; Context-Free Grammar; 75% correctly classed from 128.

example!

```
ويسْأَل فَيْ الْحواْدِث ذَوْ صَواْبِ
ويسأَل فل حوادث ذو صَوابن
///// 0///0// ماْعلتنْ فعوْلنْ
مفاْعلتنْ مفاْعلتنْ فعوْلنْ
```

Abuata and Al-Omari && Alnagdawi et al; Problems

Issues;

- A huge constrain. Diacritics are a must.
- Converting the text into pronounced text is probabilistic.
 - اثبات الحروف المحذوفة خطاً •
 - التصرف في التقاء الساكنين •

Tanasescu et al.

Binary Classification; Metric or Free-Verse:

• verses are represented as vectors of statistical features.

Datasets

Datasets

Arabic Dataset:

Datasets

English Dataset:

Methodology

Which Network!

- **Pattern**: is a sequance of characters.
- Unlike feedforward neural networks, RNNs can use their internal state (memory) to process sequences of inputs.

Rolled Rnn unit

RNN, Architectures

• Two variants of unidirectional recurrent units.

RNN, Architectures

Unidirectional & Bidirectional RNN:

Data Representation

An Issue:

- Diacritics are standalone characters!
 - مَرْحَبًا len ≠ مرحبا
 - We have represented the letter and its diacritic as a one character.

Benefits:

- 1. Verse's length is fixed, regardless the diacritic states.
- 2. Saving more space, by shorten the length of full diacritic verses.
- 3. Models can be tested on both diacritic or non-diacritic data.

Encoding Techniques

- 1. One-Hot
- 2. Binary
- 3. Two-Hot (new technique)

One-Hot

One-Hot Vector: from 37×1 to 181×1

181 is the number of all combination between letters and diacritics. $181 = 36 + 36 \times 4 + 1$

One-Hot, example

Binary

Let n be the vector length. $n = \lceil \log_2 l \rceil \ l \in \{181, 28\}$

Two-Hot

Space Comparison

Results

Arabi Results

#	data size	encoding	diacritic	archit.	f1
1	full data	two-hot	Yes	7L, 50U, 0	95.79%
2	full data	two-hot	No	7L,50U,0	95.43%
3	full data	binary	Yes	7L, 81U, 0	95.51%
4	full data	binary	No	10L,30U,0	93.2%
5	full data	one-hot	Yes	7L,50U,1	95.32%
6	full data	one-hot	No	7L,82U,0	93.94%
7	eliminated	two-hot	Yes	7L, 81U, 1	95.88%
8	eliminated	two-hot	No	4L,50U,1	96.29%
9	eliminated	binary	Yes	7L, 81U, 1	94.87%
10	eliminated	binary	No	4L,82U,0	96.38%
11	eliminated	one-hot	Yes	7L,75U,0	95.65%
12	eliminated	one-hot	No	7L,50U,0	95.04%

English Results

id	encoding	cell type	f1 test
1	one-hot	GRU	81.35%
2	one-hot	LSTM	80.34%
3	binary	LSTM	75.43%
4	binary	GRU	75.04%

Encoding Effect

Binary Encoding Problem

Questions?