LC 20: Détermination de constantes d'équilibre

Niveau: CPGE

Prérequis:

- Thermodynamique
- Thermochimie, Loi de Hess
- Quotient réactionnel
- Dosage

- Loi de Kohlrausch
- Acide/Base
- Solubilité
- Complexation

$$4Fe_3O_{4(s)} + O_{2(g)} \rightleftharpoons 6Fe_2O_{3(s)}$$

Données à 300 K:

	$Fe_3O_{4(S)}$	$Fe_2O_{3(s)}$	$O_{2(g)}$
$\Delta_f H^0 (kJ.mol^{-1})$	-1120	-830	
$S_m^0(J.K^{-1}.mol^{-1})$	150	90	200

$$\left(\frac{\sigma}{\lambda_{CH_3COO}^{0} + \lambda_{H_3O}^{0}}\right)^2 = K_A c^0 \left(c_i - \frac{\sigma}{\lambda_{CH_3COO}^{0} + \lambda_{H_3O}^{0}}\right)$$

$$\left(\frac{\sigma}{\lambda_{CH_3COO}^{0} + \lambda_{H_3O}^{0}}\right)^{2} = K_A c^{0} \left(c_i - \frac{\sigma}{\lambda_{CH_3COO}^{0} + \lambda_{H_3O}^{0}}\right)$$

$$\left(\frac{\sigma}{\lambda_{CH_{3}COO^{-}}^{0} + \lambda_{H_{3}O^{+}}^{0}}\right)^{2} = K_{A}c^{0}\left(c_{i} - \frac{\sigma}{\lambda_{CH_{3}COO^{-}}^{0} + \lambda_{H_{3}O^{+}}^{0}}\right)$$
pente

Mesure de la conductivité pour différentes concentrations initiales en CH3COOH Echelle en concentration initiale c_i CH₃COOH mS/cm $0.01 \ mol. \ L^{-1}$ $0.03 \ mol. \ L^{-1}$ $0.05 \ mol. \ L^{-1}$ $0.10 \ mol. \ L^{-1}$ $0.30 \ mol. \ L^{-1}$

Protocole: pKs de l'acide benzoïque

Protocole : pKs de l'acide benzoïque

Protocole: pKs de l'acide benzoïque

Protocole : pKs de l'acide benzoïque

III. Détermination de la constante de solubilité du solide $Al(OH)_3$ et la constante de formation du complexe $Al(OH)_4$

Titrage par suivi pH-métrique des ions Al³⁺ par NaOH

Données:

- Concentration de la soude, C_b : C_b = 0,5 mol/L
- Concentration de Al^{3+} (et H^+) dans le bécher, C_0 : $C_0 = 0.02 \text{ mol/L}$
- Volume du mélange du bécher, V_0 :

$$V_0 = 90 \text{mL}$$

$$Al(OH)_{3(s)} \rightleftharpoons Al^{3+}_{(aq)} + 3HO^{-}_{(aq)}$$
 de constante K_s

$$Al(OH)_{3\,(s)} \rightleftharpoons Al^{3+}{}_{(aq)} + 3\ HO^{-}{}_{(aq)}$$
 de constante K_S + $Al^{3+}{}_{(aq)} + 4\ HO^{-}{}_{(aq)} \rightleftharpoons Al(OH)^{-}_{4\,(aq)}$ de constante β_4

$$Al(OH)_{3(s)} \rightleftharpoons Al^{3+}_{(aq)} + 3HO^{-}_{(aq)}$$
 de constante K_{s}
+
 $Al^{3+}_{(aq)} + 4HO^{-}_{(aq)} \rightleftharpoons Al(OH)^{-}_{4(aq)}$ de constante β_{4}
=
 $Al(OH)_{3(s)} + HO^{-}_{(aq)} \rightleftharpoons Al(OH)^{-}_{4(aq)}$

$$Al(OH)_{3(s)} \rightleftharpoons Al^{3+}_{(aq)} + 3HO^{-}_{(aq)}$$
 de constante K_{S}
+
 $Al^{3+}_{(aq)} + 4HO^{-}_{(aq)} \rightleftharpoons Al(OH)^{-}_{4(aq)}$ de constante β_{4}

$$Al(OH)_{3(s)} + HO^{-}_{(aq)} \rightleftharpoons Al(OH)_{4(aq)}^{-}$$
 de constante $\beta_4 K_S$

Fonctionnement sonde du conductimètre

Schéma d'une cellule conductimétrique.

•
$$G = \frac{I}{U}$$
 en S

• $\sigma = G \times k$ avec k constante de cellule en cm^{-1}

Fonctionnement électrode de verre du pH-mètre

$$\Delta E = a(pH_{\epsilon ch} - pH_{r \epsilon f}) + b$$

Autre méthode pour déterminer Ka(CH3COOH/CH3COO-): Titrage par suivi pH-métrique avec soude

