# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

62-100420

(43) Date of publication of application: 09.05.1987

(51)Int.CI.

CO1G 49/06

(21)Application number: 60-242543

(71)Applicant: TODA KOGYO CORP

KOSAKA YASUO

OKUYAMA KIKUO

(22)Date of filing:

28.10.1985

(72)Inventor: KOSAKA YASUO

OKUYAMA KIKUO

TODA KOJI HORIISHI NANAO

# (54) PRODUCTION OF ULTRAFINE GRAIN POWDER OF HIGH-PURITY HEMATITE

(57) Abstract:

PURPOSE: To produce ultrafine grain powder having ≤500Å mean diameter of high-purity hematite by hydrolyzing β-diketone iron complex.

CONSTITUTION:  $\beta$ -diketone iron complex is introduced to the inside of a gasifying chamber wherein an inert gas such as gaseous N2 is passed and heated at 100W180° C and gasified. Both steam of this  $\beta$ -diketone iron complex and steam are introduced into a reaction furnace and allowed to react in a vapor phase in a temp. range of 500W900° C to hydrolyze  $\beta$ -diketone iron complex. In such a way, ultrafine grain powder of high-purity hematite is produced.

# **LEGAL STATUS**

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

#### 平5-57213公 報(B2) ⑫特 許

®Int. Cl. 5

識別記号

庁内整理番号

C 01 G 49/06

Α 9151 - 4G

Date of publication of potent Aug. 23, 1993

発明の数 2 (全4頁)

高純度へマタイト超微粒子粉末及びその製造方法 69発明の名称

Publication of Application No.

昭60-242543 20特 顋

69公 開 昭62-100420

22出 願 昭60(1985)10月28日 43昭62(1987)5月9日

大阪府堺市茶山台3丁目34番10号 保 雄 @発 明 者 向 阪

大阪府堺市大野芝町23番地 府大宅舎 3-84号 喜久夫 奥山 **@**発 明 者

広島県広島市西区井口2丁目9番15号 @発 明 者 戸  $\mathbf{H}$ 浩 次

広島県広島市東区牛田東3丁目29番5号 @発 明 七生 塀 石 者

広島県広島市西区横川新町7番1号 ①出 願 戸田工業株式会社 人

大阪府堺市茶山台3丁目34番10号 勿出 顧 人 向 阪 保 雄

喜 久 夫 大阪府堺市大野芝町23番地 府大宅舎3-84号 顧 人 奥山 @出

新居田 知 生 審 査 官

1

# 切特許請求の範囲

1 β-ジケトン鉄錯体を加水分解して得られる 平均径500Å以下の高純度へマタイト超微粒子粉 末。

中500℃~900℃の温度範囲で反応して上記βージ ケトン鉄錯体を加水分解することによりヘマタイ ト超微粒子を生成させることを特徴とする高純度 ヘマタイト超微粒子粉末の製造方法。

# 発明の詳細な説明

# 〔産業上の利用分野〕

本発明は、βージケトン鉄錯体を加水分解して 得られる平均径500 A以下の高純度へマタイト超 微粒子粉末及びその製造方法に関するものであ

本発明に係る高純度へマタイト超微粒子粉末の **キな用途は、フエライト用原料粉末、塗料用顔料** 粉末及び、ゴム・プラスチツク用着色剤、触媒等 である。

# 〔従来の技術〕

ヘマタイト粒子粉末は、フエライト用原料粉末 として現在広く使用されている。

即ち、フエライトは、ヘマタイト粒子粉末等の 主原料とBa、Sr若しくはPb化合物等、又は、

2

Zn、Mn、Ni、Mg、若しくはCu化合物等の副 原料とを混合し、加熱焼成、粉砕することにより 製造されている。

また、ヘマタイト粒子粉末は、赤色を呈してい 2 βージケトン鉄錯体の蒸気と水蒸気とを気相 5 る為、顔料とピヒクルとを混合して塗料を製造す る際の塗料用顔料粉末として広く使用されてお り、殊に、500 & 以下の超微粒子は紫外線吸収効 果並びに透明性を発現する等の特徴がある為、紫 外線吸収フイルム用透明性顔料粉末として使用さ 10 れており、更に、ゴム・プラスチックに混練・分 散して着色剤としても使用されている。

> 更に、ヘマタイト粒子粉末は、触媒としても使 用されている。

上記した通り、ヘマタイト粒子粉末は、様々の 15 分野で使用されているが、いずれの分野において も共通して要求されるヘマタイト粒子粉末の特性 は、粒度の微細化と純度が高いことである。

即ち、フェライトの製造にあたつては、主原料 であるヘマタイト粒子の粒度が微細化すればする 20 程、原料の均一混合が可能となり、その結果、フ エライト化反応の進行が容易となり、また、ヘマ タイト粒子の純度が高ければ高い程、最終製品で あるフェライトの性能は向上する。

この事実は、例えば、粉体工学第7巻第8号

(1970年) 第46頁の「フエライト化反応は粒度が 小さいほど反応性は増大する。」なる記載、及び、 特公昭49-15360号公報の「……酸化第2鉄(へ マタイト) 中には……不純物が蓄積され、高性能 マンガン。亜鉛系或いはマンガン。マグネシウム 系等の複合フエライトには全く使用が出来ず… …」なる記載からも明らかである。

次に、塗料の製造においては塗料化に際して、 ゴム・プラスチックの製造においては混練に際し 10 ねた結果、本発明に到達したのである。 てヘマタイト粒子粉末を均一、且つ、容易に分散 させることが必要であり、その為には、出来るだ け微細なヘマタイト粒子粉末が要求される。ま た、ヘマタイト粒子中の不純物が多くなる程、ヘ 褐色又は、赤紫色に変化する為、純度の高いこと が要求される。

更に、ヘマタイト粒子を触媒として使用するに 際しては、粒子が微細化すればする程、また、純 度が高くなればなる程、触媒活性が向上する。

従来、ヘマタイト粒子粉末の製造法としては、 第一鉄塩水溶液とアルカリとを反応させて得られ た水酸化第一鉄を含む反応水溶液に酸素含有ガス を通気することにより、水溶液中から出発原料と してのマグネタイト粒子を生成させ、次いで、該 25 マグネタイト粒子粉末を空気中で加熱する方法が 知られている。

# [発明が解決しようとする問題点]

粒度が微細であり、且つ、純度の高いヘマタイ あるが、上記した通りの公知方法による場合に は、反応条件により、種々の粒度を有するマグネ タイト粒子を生成させることができるが、その大 きさは10000~1000A程度であり、1000A程度以 ある。従つて、水溶液中から生成したマグネタイ ト粒子を空気中で加熱して得られるヘマタイト粒 子もその大きさは、10000~1000 A程度であり、 1000 A程度以下、特に500 A以下のヘマタイト粒 子を得ることは非常に困難である。

また、公知方法による場合には、原料である第 一鉄塩水溶液がMn、Si等の不純物を含有してい る為、水溶液中から生成するマグネタイト粒子は 一般に4.0~1.0重量%の不純物を含有しており、

このマグネタイト粒子を空気中で加熱して得られ るヘマタイト粒子も当然4.0~1.0重量%の不純物 を含有するものとなる。

そこで、粒度が微細であり、且つ、純度の高い 化小型化を要求される磁性体、特に、ソフト系の 5 ヘマタイト粒子粉末を得る為の技術手段の確立が 強く要望されている。

# - [問題点を解決する為の手段]

本発明者は、粒度が微細であり、且つ、純度の 高いヘマタイト粒子粉末を得るべく種々検討を重

即ち、本発明は、 $\beta$  - ジケトン鉄錯体を加水分 解して得られる平均径500Å以下の高純度へマタ イト超微粒子粉末及びβージケトン鉄錯体の蒸気 と水蒸気とを気相中500℃~900℃の温度範囲で反 マタイト粒子の色調は不鮮明となり、赤色から赤 15 応して上記βージケトン鉄錯体を加水分解するこ とによりヘマタイト超微粒子を生成させることよ りなる高純度へマタイト超微粒子粉末の製造方法 である。

#### 〔作用〕

先ず、本発明において最も重要な点は、βージ 20 ケトン鉄錯体の蒸気と水蒸気とを気相中で反応さ せた場合には、粒度の微細な、殊に、500 Å以下 の超微粒子であり、且つ、純度の高いヘマタイト 微粒子粉末が得られる点である。

本発明においては、鉄原料として蒸気となりや すいβージケトン鉄錯体を用い、且つ、βージケ トン鉄錯体の蒸気と水蒸気との気相中における反 応であることに起因して、水溶液中での反応に比 べ、短時間裡に反応が生起し、また、ヘマタイト ト粒子粉末は、現在最も要求されているところで 30 中の不純物含量として一般に重視されているSi、 Mn、Al、Ca及びこれらを含む酸化物等の化合物 は高沸点である為、本発明の反応に寄与すること なくそのまま原料βージケトン鉄錯体中に残存 し、しかも、工程中からの不純物の混入が防止さ 下のマグネタイト粒子を生成させることは困難で 35 れることによつて、粒度が微細な、殊に、500Å 以下の超微粒子であり、且つ、純度の高いヘマタ イト微粒子粉末を得ている。

> 次に、本発明実施にあたつての諸条件について 述べる。

本発明におけるβージケトン鉄錯体としては、 鉄アセチルアセトナート等が使用できる。本発明 における $\beta$  ージケトン鉄錯体の蒸気は、 $\beta$  ージケ トン鉄錯体をN2ガス等の不活性ガスを通じた気 化器内に入れ、100~180℃で加熱して気化させる

5

ことにより得られる。気化器内に不活性ガスを通 じるのは、βージケトン鉄錯体とO<sub>2</sub>又はH<sub>2</sub>Oと の反応が生起するのを防止する為である。

加熱温度は、100~180℃である。温度が高くな の蒸気濃度が高くなる為、生成へマタイト粒子の 粒度は大きくなる傾向にある。

温度が100℃未満である場合には、βージケト ン鉄錯体の蒸気濃度が非常に低くなり、ヘマタイ ト粒子を効率的に生成することができない。

温度が180℃を越える場合には、βージケトン 鉄錯体が熱分解し、蒸気の発生が困難となり、ま た、不純物が混入しやすくなる。

本発明における水蒸気は、水の飽和器を50~70 ℃に加熱し、これにN2ガス等の不活性ガスをキ 15 ヤリアガスとして吹き込むことにより得られる。

50℃未満である場合には、水蒸気の濃度が低く なり、βージケトン鉄錯体の加水分解反応が不充 分となる。

つてBージケトン鉄錯体の加水分解反応が激しく なる為、生成ヘマタイト粒子相互間において凝集 が生起しやすくなる。

本発明における気相中における反応は、βージ ケトン鉄錯体の蒸気と水蒸気とを500~900℃に加 25 熱した反応炉に導入することにより行う。

反応炉への導入は、βージケトン鉄錯体の蒸気 と水蒸気の両者を別々に導入しても、又は、両者 を混合した後に導入しても良い。

の蒸気の流量及び水蒸気の流量により調整するこ とが出来る。反応蒸気濃度が高くなると生成へマ タイトの粒度が大きくなる傾向にある。生成する ヘマタイト粒子の粒度を考慮すれば、βージケト ン鉄錯体の蒸気の流量は、50~1500元/分、水蒸 35 気の流量は、50~300元/分が望ましい。本発明 の気相中における反応温度は、500~900℃であ る。

500℃未満である場合には、β-ジケトン鉄錯 体の加水分解反応が十分生起しない。

900℃を越える場合には、生成へマタイト粒子 相互間で焼結が生起しやすくなる。

#### 〔実施例〕

次に、実施例により本発明を説明する。

6

尚、以下の実施例における粒子の平均径は電子 顕微鏡写真から測定した数値で示した。

また、粒子中のFeは、「螢光X線分析装置 3063M型」(理学電機工業製)を使用し、JIS る程、気化速度が速くなり、β-ジケトン鉄錯体 5 K0119-1979の「けい光X線分析通則」に従つ て、螢光X線分析を行うことにより測定した。 実施例 1

> 鉄アセチルアセトナート (Fe(C<sub>2</sub>H<sub>7</sub>O<sub>2</sub>)<sub>3</sub>) 2 g を流量500ml/分の窒素ガスを通じた気化器に 10 入れた後、温度110℃に加熱して、上記アセチル アセトナートの蒸気を生成した。

別に、水の飽和器を50℃に加熱し、この飽和器 内に流量300ml/分の窒素ガスを吹き込むことに より、水蒸気同伴ガスとした。

上記アセチルアセトナートの蒸気と上記水蒸気 同伴ガスとを連続的に混合して反応炉に導き、 500℃で加熱した。

得られた粒子粉末は、X線回折の結果、ヘマタ イト相から成り立つており、図1の電子顕微鏡写 70℃を越える場合には、水蒸気の濃度が高くな 20 真 (×30000) によれば、平均径70Åの超微粒子 であつた。また、このヘマタイト粒子粉末の Fe<sub>2</sub>O<sub>3</sub>分は99.80重量%であり、不純物の少ないも のであつた。

#### 実施例 2

鉄アセチルアセトナート [Fe(C<sub>2</sub>H<sub>7</sub>O<sub>2</sub>)<sub>3</sub>] 2 g を流量500ml/分の窒素ガスを通じた気化器に 入れた後、温度120℃に加熱して、上記アセチル アセトナートの蒸気を牛成した。

別に、水の飽和器を60℃に加熱し、この飽和器 より、水蒸気同伴ガスとした。

> 上記アセチルアセトナートの蒸気と上記水蒸気 同伴ガスとを連続的に混合して反応炉に導き、 700℃で加熱した。

> 得られた粒子粉末は、X線回折の結果、ヘマタ イト相から成り立つており、電子顕微鏡観察の結 果、平均径200Åの超微粒子であつた。また、こ のヘマタイト粒子粉末のFe<sub>2</sub>O<sub>3</sub>分は99.65重量%で あり、不純物の少ないものであつた。

# 40 実施例 3

鉄アセチルアセトナート〔Fe(C2H7O2)3〕2 g を流量500ml/分の窒素ガスを通じた気化器に 入れた後、温度140℃に加熱して、上記アセチル アセトナートの蒸気を生成した。

別に、水の飽和器を60℃に加熱し、この飽和器 内に流量300元/分の窒素ガスを含むことにより、 水蒸気同伴ガスとした。

上記アセチルアセトナートの蒸気と上記水蒸気 900℃で加熱した。

得られた粒子粉末は、X線回折の結果、ヘマタ イト相から成り立つており、電子顕微鏡写真観察 の結果、平均径350Åの超微粒子であった。また、 であり、不純物の少ないものであつた。 〔効果〕

8

本発明に係るヘマタイト粒子粉末は、前出実施 例に示した通り、粒度の微細な、殊に、500Å以 下の超微粒子であり、且つ、純度の高いものであ るから、フエライト用原料粉末、塗料用顔料粉 同伴ガスとを連続的に混合して反応炉に導き、 5 末、殊に、紫外線吸収フイルム用透明性顔料粉末 及びゴム・プラスチツク用着色剤、触媒として好 適である。

# 図面の簡単な説明

図1は、実施例1で得られたヘマタイト超微粒 このヘマタイト粒子粉末のFe₂O₃分は99.55重量% 10 子粉末の粒子構造を示す電子顕微鏡写真 (× 30000) である。

図



(X30000)