Multilevel Monte Carlo Solvers for Linear Systems

Stuart Slattery, Thomas Evans, Steven Hamilton

slatterysr@ornl.gov

Oak Ridge National Laboratory

April 9, 2014

Hardware-Based Motivation

- Modern hardware is moving in two directions (Kogge,2011):
 - Lightweight machines
 - Heterogeneous machines
 - Both characterized by low power and high concurrency
- Some issues:
 - Higher potential for both soft and hard failures (DOE,2012)
 - Memory restrictions are expected with a continued decrease in memory/FLOPS
- Potential resolution from Monte Carlo:
 - Soft failures buried within the tally variance
 - Hard failures mitigated by replication
 - Memory savings over conventional methods

Monte Carlo Methods for Discrete Linear Systems

- First proposed by J. Von Neumann and S.M. Ulam in the 1940's
- Earliest published reference in 1950 (Forsythe,1950)
- General lack of publications on applications
- Plagued by slow convergence $\approx \frac{1}{\sqrt{N}}$
- Modern work yielded new applications (Evans,2009) (Evans,2013)

Monte Carlo Synthetic-Acceleration

MCSA Iteration

$$\mathbf{r}^{k} = \mathbf{b} - \mathbf{A}\mathbf{x}^{k}$$
 $\mathbf{x}^{k+1/2} = \mathbf{x}^{k} + \mathbf{r}^{k}$
 $\mathbf{r}^{k+1/2} = \mathbf{b} - \mathbf{A}\mathbf{x}^{k+1/2}$
 $\hat{\mathbf{A}}\delta\mathbf{x}^{k+1/2} = \mathbf{r}^{k+1/2}$
 $\mathbf{x}^{k+1} = \mathbf{x}^{k+1/2} + \delta\mathbf{x}^{k+1/2}$

- Neumann-Ulam methods bound by the Central Limit Theorem
- Build on Sequential Monte Carlo method (Halton,1962)
- Neumann-Ulam Monte Carlo solver computes the correction
- Decouples MC error from solution error, exponential convergence

Monte Carlo Linear Solver Preliminaries

Split the linear operator

$$\mathbf{A}\mathbf{x} = \mathbf{b} \quad \rightarrow \quad \mathbf{x} = \mathbf{H}\mathbf{x} + \mathbf{b}$$

$$\mathbf{H} = \mathbf{I} - \mathbf{A}$$

Generate the Neumann series

$$A^{-1} = (I - H)^{-1} = \sum_{k=0}^{\infty} H^k$$

• Require $\rho(\mathbf{H}) < 1$ for convergence

$$\mathbf{A}^{-1}\mathbf{b} = \sum_{k=0}^{\infty} \mathbf{H}^k \mathbf{b} = \mathbf{x}$$

Monte Carlo Linear Solver Preliminaries

Expand the Neumann series

$$x_i = \sum_{k=0}^{\infty} \sum_{i_1}^{N} \sum_{i_2}^{N} \dots \sum_{i_k}^{N} h_{i,i_1} h_{i_1,i_2} \dots h_{i_{k-1},i_k} b_{i_k}$$

Define a sequence of state transitions

$$\nu = i \rightarrow i_1 \rightarrow \cdots \rightarrow i_{k-1} \rightarrow i_k$$

• Define the Neumann-Ulam decomposition¹

$$\boldsymbol{H}=\boldsymbol{P}\circ\boldsymbol{W}$$

¹The Hadamard product $\mathbf{A} = \mathbf{B} \circ \mathbf{C}$ is defined element-wise as $a_{ij} = b_{ij}c_{ij}$.

Direct Method

• Compute row-normalized transition probabilities and weights

$$p_{ij} = \frac{|h_{ij}|}{\sum_j |h_{ij}|}, \ w_{ij} = \frac{h_{ij}}{p_{ij}}$$

Generate an expectation value for the solution

$$W_m = w_{i,i_1} w_{i_1,i_2} \cdots w_{i_{m-1},i_m}$$

 $X_{\nu}(i_0 = i) = \sum_{m=0}^{k} W_m b_{i_m}$

Direct Method

Compute the probability of a particular random walk permutation

$$P_{\nu} = p_{i,i_1} p_{i_1,i_2} \cdots p_{i_{k-1},i_k}$$

Generate the estimator

$$E\{X(i_0=i)\}=\sum_{\nu}P_{\nu}X_{\nu}$$

Check that we recover the exact solution

$$E\{X(i_0=i)\} = \sum_{k=0}^{\infty} \sum_{i_1}^{N} \sum_{i_2}^{N} \dots \sum_{i_k}^{N} p_{i,i_1} p_{i_1,i_2} \dots p_{i_{k-1},i_k} w_{i,i_1} w_{i_1,i_2} \dots w_{i_{k-1},i_k} b_{i_k}$$

$$= x_i$$

Evolution of a Solution

Figure: Poisson Problem. Distributed source of 1.0 in the domain.

Figure : Direct solution to Poisson Equation. $1\times 10^0\ total\ histories.$

Figure : Direct solution to Poisson Equation. 1×10^1 total histories.

Figure : Direct solution to Poisson Equation. 1×10^2 total histories.

Figure : Direct solution to Poisson Equation. 1×10^3 total histories.

Adjoint Method

Solve the adjoint linear system

$$\boldsymbol{A}^T\boldsymbol{y}=\boldsymbol{d}$$

$$\mathbf{y} = \mathbf{H}^T \mathbf{y} + \mathbf{d}$$

Set the adjoint constraint

$$\langle \mathbf{A}^T \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{A} \mathbf{y} \rangle$$

$$\langle \mathbf{x}, \mathbf{d} \rangle = \langle \mathbf{y}, \mathbf{b} \rangle$$

Adjoint Method

Generate the Neumann series for the adjoint operator

$$\mathbf{y} = (\mathbf{I} - \mathbf{H}^T)^{-1} \mathbf{d} = \sum_{k=0}^{\infty} (\mathbf{H}^T)^k \mathbf{d}$$

Expand the series

$$y_i = \sum_{k=0}^{\infty} \sum_{i_1}^{N} \sum_{i_2}^{N} \dots \sum_{i_k}^{N} h_{i_k, i_{k-1}} \dots h_{i_2, i_1} h_{i_1, i} d_{i_k}$$

• Pick another constraint to yield the original solution

$$\mathbf{d} = \boldsymbol{\delta}_i, \ \langle \mathbf{y}, \mathbf{b} \rangle = \langle \mathbf{x}, \boldsymbol{\delta}_i \rangle = x_i$$

Adjoint Method

Use the adjoint Neumann-Ulam decomposition

$$\mathbf{H}^T = \mathbf{P} \circ \mathbf{W}$$

$$p_{ij} = \frac{|h_{ji}|}{\sum_j |h_{ji}|}, \ w_{ij} = \frac{h_{ji}}{p_{ij}}$$

• Build the estimator and expectation value

$$X_{\nu} = \sum_{m=0}^{k} W_{m} \delta_{i,i_{m}}$$

$$E\{X_j\} = \sum_{k=0}^{\infty} \sum_{i_1}^{N} \sum_{i_2}^{N} \dots \sum_{i_k}^{N} b_{i_0} h_{i_0, i_1} h_{i_1, i_2} \dots h_{i_{k-1}, i_k} \delta_{i_k, j}$$

$$= x_i$$

Figure : Adjoint solution to Poisson Equation. 1×10^0 total histories.

Figure : Adjoint solution to Poisson Equation. $1\times 10^1\ total$ histories.

Figure : Adjoint solution to Poisson Equation. 1×10^2 total histories.

Figure : Adjoint solution to Poisson Equation. 1×10^3 total histories.

Figure : Adjoint solution to Poisson Equation. 1×10^4 total histories.

Figure : Adjoint solution to Poisson Equation. 1×10^5 total histories.

Figure : Adjoint solution to Poisson Equation. 1×10^6 total histories.

Figure : Adjoint solution to Poisson Equation. 1×10^7 total histories.

Model Problem

Choose a simple homogeneous problem with Dirichlet conditions:

$$\nabla^2 x = 0, \ \mathbf{x}_1 = 0, \ \mathbf{x}_N = 0$$

Second order finite difference:

$$(\nabla \mathbf{u})_i = \frac{\mathbf{u}_{i-1} - 2\mathbf{u}_i + \mathbf{u}_{i+1}}{h^2}$$

Monte Carlo requires $\rho(\mathbf{H})$ - scale by the diagonal:

$$\mathbf{M}^{-1}\mathbf{A}\mathbf{x} = \mathbf{0}$$

Choose initial guess to be some Fourier mode

$$\mathbf{x}_{i}^{0} = \sin\left(\frac{ik\pi}{N}\right)$$

Error Analysis

Figure: Convergence of Richardson's iteration. Better for larger wave numbers.

Figure : Convergence of the adjoint Monte Carlo method. Better for smaller wave numbers.

- A multilevel scheme means larger errors at coarser levels
- More samples required at the coarser levels
- Potential reduction in run time if the coarse level problems are fast

Error Analysis

Figure : k = 1.

Figure : k = 10.

Wave Number	Time per History (s)
1	1
5	0.85
10	0.83

Table: Normalized average time per history.

- $\sigma(A)$ dictates the characteristics of the Markov chain
- Random walks are shorter for larger k
- N dictates the convergence of the Monte Carlo method
- More samples required to resolve fine structures

Multilevel Monte Carlo Methods

- Formalized for integral equations (Heinrich, 2001)
- Expanded for time-dependent finance calculations (Giles, 2008)
- Recent work includes Bayesian inference techniques for stochastic PDEs in ground water flow (Cliffe,2011) (Teckentrup,2013)
- Idea is to leverage multigrid ideas to reduce variance

Multilevel Expectation

Start first with the standard Monte Carlo estimator for the solution vector:

$$\hat{\mathbf{x}} = \frac{1}{N} \sum_{m=1}^{N} x^m$$

Consider L levels with level 0 the finest L the coarsest:

$$E(\mathbf{x}_0) = E(\mathbf{x}_L) + E(\mathbf{x}_{L-1} - \mathbf{x}_L) + E(\mathbf{x}_{L-2} - \mathbf{x}_{L-1}) + \dots + E(\mathbf{x}_0 - \mathbf{x}_1)$$

Reduce to a sum:

$$\hat{\mathbf{y}}_{l} = \frac{1}{N_{l}} \sum_{m=1}^{N_{l}} (x_{l}^{m} - x_{l+1}^{m})$$

Multilevel Expectation

Build a correction estimator for a given level *l*:

$$\hat{\mathbf{y}}_{l} = \frac{1}{N_{l}} \sum_{m=1}^{N_{l}} (x_{l}^{m} - x_{l+1}^{m})$$

Leaving a final multilevel estimator of:

$$\hat{\mathbf{x}} = \sum_{l=0}^{L} \hat{\mathbf{y}}_{l}$$

Critical observation: x_l^m and x_{l+1}^m must be constructed from the same Markov chain

Constructing Multilevel Estimates

Define a prolongation operator, P_I , and a restriction operator, R_I , with variational conditions:

$$\mathbf{R} = c\mathbf{P}^T$$

$$\mathbf{A}_{l+1} = \mathbf{R}_l \mathbf{A}_l \mathbf{P}_l$$

Use to build the multilevel estimate:

$$E(\mathbf{x}_{l}-\mathbf{x}_{l+1})=\left(\mathbf{I}-\mathbf{P}_{l}\mathbf{R}_{l}\right)\hat{\mathbf{x}}_{l}$$

where $\hat{\mathbf{x}}_{l}$ is constructed from the standard adjoint estimator at level l

Number of samples at each level should be determined from the estimated variance. For simplicity:

$$N_I = 2^{-3(L-I)/2} N$$

Multilevel Monte Carlo Solver

Algorithm 1 Multilevel Monte Carlo Method

```
1: for | = 0... L do
          \mathbf{P}_I = P(\mathbf{A}_I) {Build the prolongation and restriction operators for
           the Ith level.
        \mathbf{R}_{l} = c \mathbf{P}_{l}^{T}
 3:
      \mathbf{r}_I = \mathbf{b}_I - \mathbf{A}_I \mathbf{x}_I^0 {Build the I^{th} level residual.}
        \mathbf{d}_{I} = \hat{\mathbf{A}}_{I}^{-1}\mathbf{r}_{I} {Solve the I^{th} level problem with adjoint Monte Carlo}
 5:
      if |\cdot| = | then
 6:
 7:
               \mathbf{d}_I = (\mathbf{I} - \mathbf{P}_I \mathbf{R}_I) \mathbf{d}_I {Apply the multilevel tally}
               \mathbf{A}_{l+1} = \mathbf{R}_l \mathbf{A}_l \mathbf{P}_l {Construct the next level.}
 8:
              x_{l+1}^{0} = R_{l}x_{l}^{0}
 9:
10:
            \mathbf{b}_{l+1} = \mathbf{R}_l \mathbf{b}_l
           end if
11:
12: end for
13: for | = L...1 do
          \mathbf{d}_{l-1} = \mathbf{d}_{l-1} + \mathbf{P}_l \mathbf{d}_l {Collapse the tallies to the finest grid}
15: end for
16: \mathbf{x} = \mathbf{x}^0 + \mathbf{d}_0
```

Numerical Experiments

- Solve the model problem on grid size 1024 and N = 10,000
- Geometric multigrid operators from Briggs' multigrid tutorial, M=2
- Algebraic multigrid operators from ML, $M \approx 3$

Measure performance with a figure of merit:

$$\textit{FOM} = \frac{1}{||\mathbf{e}||_{\infty}^2 T}$$

Geometric Multigrid Results

Levels	Samples	e ∞	Time (s)	RFOM
1	10,000	0.022	119.1	1
2	13,535	0.026	72.0	1.14
3	14,785	0.035	33.2	1.38
4	15,226	0.039	13.7	2.63
5	15,382	0.027	5.5	13.86
6	15,437	0.036	2.3	19.21
7	15,456	0.045	0.98	28.00
8	15,462	0.081	0.41	20.66
9	15,464	0.267	0.17	11.72

Table : k = 1.

Levels	Samples	e ∞	Time (s)	RFOM
1	10,000	0.668	101.6	1
2	13,535	0.381	60.0	5.21
3	14,785	0.396	28.0	10.34
4	15,226	0.599	11.9	10.64
5	15,382	0.638	4.7	23.60
6	15,437	1.052	1.8	23.15
7	15,456	1.070	0.67	59.16
8	15,462	1.180	0.23	144.10
9	15,464	2.130	0.10	99.95

Table : k = 5.

Levels	Samples	e ∞	Time (s)	RFOM
1	10,000	1.81	98.6	1
2	13,535	1.67	59.6	1.94
3	14,785	2.41	27.1	2.05
4	15,226	3.20	11.5	2.74
5	15,382	1.85	4.93	19.14
6	15,437	3.89	1.95	10.95
7	15,456	3.79	0.78	28.68
8	15,462	7.08	0.30	21.62
9	15,464	11.7	0.11	21.45

Table : k = 10.

- There is a limit to the number of levels
- Too few samples on the fine grid drive up the error

Algebraic Multigrid Results

Levels	Samples	e ∞	Time (s)	RFOM
1	10,000	0.022	119.1	1
2	11,924	0.037	31.9	1.28
3	12,294	0.055	7.6	2.40
4	12,365	0.051	1.8	11.76
5	12,378	0.094	0.5	12.01

Table : k = 1.

Levels	Samples	e ∞	Time (s)	RFOM
1	10,000	0.668	101.6	1
2	11,924	0.834	30.8	2.12
3	12,294	1.140	7.5	4.63
4	12,365	0.975	1.6	29.09
5	12,378	2.240	0.4	25.10

Table : k = 5.

Levels	Samples	e ∞	Time (s)	RFOM
1	10,000	1.81	98.6	1
2	11,924	2.33	30.0	1.99
3	12,294	3.19	7.6	4.20
4	12,365	3.31	1.8	16.29
5	12,378	9.98	0.5	7.21

Table : k = 10.

- Algebraic operators are also effective
- $M \approx 3$ is an ad hoc estimate
 - need variance estimates instead

Summary

- Multilevel Monte Carlo methods can be an effective variance reduction technique by reducing the computation time needed to reach a particular error
- More formal analysis of convergence in the context of linear systems is required
- For large problems, density of A_I for coarse levels increases computational complexity of the Monte Carlo - consider non-Galerkin and sparsification approaches
- Future work includes addition of variance estimation to properly select N_I

Acknowledgments

This work was sponsored by the U.S. Department of Energy Office of Advanced Scientific Computing Research (ASCR). *MCREX:* Using Monte Carlo algorithms to achieve resiliency and performance at scale for linear and non-linear solver applications

This work has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy.