

Appl. No. 09/744,267
 Docket No. CM1882
 Amdt. Dated March 23, 2009
 Reply to Office Action Dated December 23, 2008
 Customer No. 27752

RECEIVED
 CENTRAL FAX CENTER

MAR 23 2009

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently amended) A fabric care composition comprising:
 - i)- from 5% to 10% of a nitrogen containing dye fixing agent,
 - ii)- from 0.001 % to 20 % of a scum reducing agent comprising a polyoxyalkylene alkyl amine surface active agent having the formula

Wherein R is selected from C7-C21 linear alkyl, C7-C21 branched alkyl, C7-C21 linear alkenyl, C7-C21 branched alkenyl, and mixtures thereof, R¹ is ethylene, R² is selected from C3-C4 linear alkyl, C3-C4 branched alkyl, 1, 2 propylene, and mixtures thereof, and
iii)- a polyamino-functional polymer wherein said polymer comprises a polyamine backbone corresponding to the formula:

having a polyamine formula V_(n+1)W_mY_nZ or a polyamine backbone corresponding to the formula:

having a polyamine formula V_(n-k+1)W_mY_nY'_kZ, wherein k is less than or equal to n, said polyamine backbone has a molecular weight greater than 200 daltons, wherein

- i) V units are terminal units having the formula:

Appl. No. 09/744,267

Docket No. CM1882

Amdt. Dated March 23, 2009

Reply to Office Action Dated December 23, 2008

Customer No. 27752

ii) W units are backbone units having the formula:

iii) Y units are branching units having the formula:

iv) Y' units are branch point for a backbone or branch ring having the formula:

v) Z units are terminal units having the formula:

wherein backbone linking R units are selected from the group consisting of C₂-C₁₂ alkylene, C₄-C₁₂ alkenylene, C₃-C₁₂ hydroxyalkylene, C₄-C₁₂ dihydroxy-alkylene, C₈-C₁₂ dialkylarylene, -(R¹O)_xR¹-, -(R¹O)_xR⁵(OR¹)_x-, -(CH₂CH(OR²)CH₂O)_z(R¹O)_yR¹(OCH₂CH(OR²)CH₂)_w-, -C(O)(R⁴)_tC(O)-, -CH₂CH(OR²)CH₂-, and mixtures thereof; wherein R¹ is selected from the group consisting of C₂-C₆ alkylene and mixtures thereof; R² is selected from the group consisting of hydrogen, -(R¹O)_xB, and mixtures thereof; R⁴ is selected from the group consisting of C₁-C₁₂ alkylene, C₄-C₁₂ alkenylene, C₈-C₁₂ arylalkylene, C₆-C₁₀ arylene, and mixtures thereof; R⁵ is selected from the group consisting of C₁-C₁₂ alkylene, C₃-C₁₂ hydroxyalkylene, C₄-C₁₂ dihydroxy-alkylene, C₈-C₁₂ dialkylarylene, -C(O)-, -C(O)NHR⁶NHC(O)-, -R¹(OR¹)-, -C(O)(R⁴)_tC(O)-, -CH₂CH(OH)CH₂-, -CH₂CH(OH)CH₂O(R¹O)_yR¹OCH₂CH(OH)CH₂-, and mixtures thereof; R⁶ is selected

Appl. No. 09/744,267

Docket No. CM1882

Amdt. Dated March 23, 2009

Reply to Office Action Dated December 23, 2008

Customer No. 27752

from the group consisting of C₂-C₁₂ alkylene or C₆-C₁₂ arylene; R' units are selected from the group consisting of hydrogen, C₁-C₂₂ alkyl, C₃-C₂₂ alkenyl, C₇-C₂₂ arylalkyl, C₂-C₂₂ hydroxyalkyl, -(CH₂)_pCO₂M, -(CH₂)_qSO₃M, -CH(CH₂CO₂M)CO₂M, -(CH₂)_pPO₃M, -(R¹O)_xB, -C(O)R³, and mixtures thereof; B is selected from the group consisting of hydrogen, C₁-C₆ alkyl, -(CH₂)_qSO₃M, -(CH₂)_pCO₂M, -(CH₂)_q(CHSO₃M)CH₂SO₃M, -(CH₂)_q(CHSO₂M)CH₂SO₃M, -(CH₂)_pPO₃M, -PO₃M, and mixtures thereof; R³ is selected from the group consisting of C₁-C₁₈ alkyl, C₇-C₁₂ arylalkyl, C₇-C₁₂ alkyl substituted aryl, C₆-C₁₂ aryl, and mixtures thereof; M is hydrogen or a water soluble cation in sufficient amount to satisfy charge balance; X is a water soluble anion; m has the value from 2 to 700; n has the value from 0 to 350; p has the value from 1 to 6, q has the value from 0 to 6; r has the value of 0 or 1; w has the value 0 or 1; x has the value from 1 to 100; y has the value from 0 to 100; z has the value 0 or 1, wherein the weight ratio of scum reducing agent to the sum of the polyamino-functional polymer and the dye fixing agents is from 0.05:1 to 2:1.

2. (Cancelled)

3. (Cancelled)

4. (Previously Presented) A composition according to Claim 1, wherein the polyoxyalkylene alkyl amine surface active agent has the formula:

wherein R is selected from C₇-C₂₁ linear alkyl, C₇-C₂₁ branched alkyl, C₇-C₂₁ linear alkenyl, C₇-C₂₁ branched alkenyl, and mixtures thereof; R¹ is ethylene; R² is selected from C₃-C₄ linear alkyl, C₃-C₄ branched alkyl, and mixtures thereof; R³ is selected from hydrogen, C₁-C₄ linear alkyl, C₃-C₄ branched alkyl, and mixtures thereof; R⁴ is selected from hydrogen, C₁-C₄ linear alkyl, C₃-C₄ branched alkyl, and mixtures thereof; A is

 — N — (R5) —

Appl. No. 09/744,267

Docket No. CM1882

Amdt. Dated March 23, 2009

Reply to Office Action Dated December 23, 2008

Customer No. 27752

R⁵ is selected from -[(R¹O)_x(R²O)_y] unit, C₁-C₁₆ linear alkyl, C₁-C₁₆ branched alkyl, C₁-C₁₆ linear alkenyl, C₁-C₁₆ branched alkenyl, and mixtures thereof; wherein the index m is 1 or 2, the index n is 0 or 1, provided that when m is equal to 1, n is equal to 1; and when m is 2 n is 0; wherein the index x is from 0 to about 50, preferably from 1 to 25, wherein the index y is from 0 to about 10; wherein the index q is 0 or 1.

5. (Previously Presented) A composition according to Claim 4, wherein said index x is from 1 to 25.

6. (Previously Presented) A composition according to Claim 5, wherein said index m is equal to 2 and n is equal to 0.

7. (Cancelled)

8. (Previously Presented) A composition according to Claim 7, wherein said dye fixing agent is a cellulose reactive dye fixing agent.

9.-14. (Cancelled)

15. (Previously Presented) A composition according to Claim 1, wherein the weight ratio of the scum reducing agent to the sum of the polyamino-functional polymer and dye fixing agent is from 0.1:1 to 1:1.

16. (Previously Presented) A composition according to Claim 1, further comprising an ease of formulation solvent having a ClogP of from about 0.15 to about 0.64.

17. (Previously Presented) A composition according to Claim 16, wherein the ease of formulation solvent is selected from the group consisting of: mono-ols, C₆ diols, C₇ diols, octanediol isomers, butanediol derivatives, trimethylpentanediol isomers, ethylmethylpentanediol isomers, propyl pentanediol isomers, dimethylhexanediol isomers, ethylhexanediol isomers, methylheptanediol isomers, octanediol isomers, nonanediol

Appl. No. 09/744,267
Docket No. CM1882
Amdt. Dated March 23, 2009
Reply to Office Action Dated December 23, 2008
Customer No. 27752

isomers, alkyl glyceryl ethers, di(hydroxy alkyl) ethers, and aryl glyceryl ethers, aromatic glyceryl ethers, alicyclic diols and derivatives, C3C7 diol alkoxylated derivatives, aromatic diols, and unsaturated diols.

18. (Previously Presented) A composition according to Claim 16, wherein the ease of formulation solvent is selected from the group consisting of 1,2-Hexanediol, 2-Ethyl-1,3-hexanediol and 2,2,4-Trimethyl-1,3-pentanediol.

19. (Previously Presented) A composition according to Claim 16, wherein said ease of formulation solvent comprises an asymmetric solvent.

20. (Previously Presented) A composition according to Claim 19, wherein the composition is essentially clear.

21. (New) A composition according to Claim 1, wherein the R² of the polyoxyalkylene alkyl amine surface active agent is a 1,2-prolylene.

22. (New) A composition according to Claim 1, wherein the polyoxyalkylene alkyl amine surface active agent comprises a ratio of R¹ to R² from about 4 to about 12 ethylene units to about 1 to about 4 1,2-prolylene units.