

Mixed effect model for the spatiotemporal analysis of longitudinal manifold value data

Stéphanie Allassonnière

with J.B. Schiratti, O. Colliot and S. Durrleman

Université Paris Descartes & Ecole Polytechnique

Computational Anatomy

- Represent and analyse geometrical elements upon which deformations can act
- Describe the observed objects as geometrical variations of one or several representative elements
- Quantify this variability inside a population

Deformable template model from Grenander

- How does the deformation act?
- What is a representative element?
- How to quantify the geometrical variability?

Computational Anatomy

Important issues in atlas estimation:

- Register any new data in the « coordinates » of the reference shape:
 - Transport the available information from the representative element
 - « Registration » penalised as a function of its « normality »
- Quantify anatomical structure variability in different sub-groups

Targetted applications:

- Pathology effects
- Classification of new patients
- Early diagnostic

Computational Anatomy

One solution:

- Quantify the distance between observations using deformations
- Provide a statistical model to approximate the generation of the observed population from the atlas
- Propose a statistical learning algorithm
- Optimise the numerical estimation

- First model:
 - One observation per subject
 - Image or shape (viewed as currents)
 - Deformations either linearized or diffeomorphic
 - Homogeneous or heterogeneous populations (mixture models)

Normal distribution with full covariance matrix

For 1≼ i ≼ n subjects,

Template

- Grey level images
- Probability maps

Deformation

- Linearised
- Diffeomorphic

- T1
- DWIs
- fMRL
- T1+fMRI

$$y_i \sim \mathcal{N}(I_0 \circ \phi_i^{-1}, \sigma^2 Id)$$

$$\phi_i = f(\beta_i)$$

deterministic parametrisation

Mixtures of all these models

For $1 \le i \le n$ subjects,

Normal distribution with full covariance matrix

First model:

- One observation per subject
- Image or shape (viewed as currents)
- Deformations either linearized or diffeomorphic
- Homogeneous or heterogeneous populations (mixture models)

> Limitations

- One observation per subject
- Corresponding acquistion time

Longitudinal Data Analysis

- Longitudinal model:
 - Several observation per subject
 - Image, shape, etc
 - Atlas = representative trajectory and population variability

Longitudinal Data Analysis

How to learn representative trajectories of data changes from longitudinal data?

Temporal marker of progression (e.g. time since drug injection, seeding, birth, etc..)

Regression (e.g. compare measurements at same time-point)

Lineary mixed vallagets medels [Laird&Ware'82, Diggle et al., Fitzmaurice et al.1

No temporal marker of progression (e.g. in aging, neurodegenerative diseases, etc..)

Learning spatiotemporal **distribution** of trajectories Find temporal correspondences Compare data at

corresponding stages of progression

Needs to disentangle mardiffeteralgeindata (normal Leas die an postitive Dynamicks of appeasurement changes

Statistical model inclinding:

in:

- a representative trajectory of data changes spatiotemporal variations
 - measurement values
 - pace of measurement changes
- Orthogonality condition ensures identifiability (unique space/ time decomposition)
- Time is not a covariate but a random variable Space-shift

$$v_i = (A_1 | \dots | A_K) s_i$$
$$A_k \perp v_0$$

 (p_0,t_0,v_0) and $(\sigma_{\alpha}^2,\sigma_{\tau}^2,A_1,...A_K)$ Fixed effects:

$$y_{ij} = T_i(\psi_i(t)) + \varepsilon_{ij}$$

$$T_i(t) = \operatorname{Exp}_{T_0(t)}(\operatorname{P}_{t_0,t}^{T_0}(v_i))$$

$$T_0(t) = \operatorname{Exp}_{p_0,t_0}(v_0)(t)$$

$$\psi_i(t) = t_0 + \alpha_i(t - t_0 - \tau_i)$$

$$\alpha_i \sim \log \mathcal{N}(0, \sigma_{\alpha}^2)$$

$$\tau_i \sim \mathcal{N}(0, \sigma_{\tau}^2)$$

$$v_i = (A_1 | \dots | A_K) s_i$$

$$A_k \perp v_0$$

$$(p_0, t_0, v_0)$$

$$(\sigma_{\alpha}^2, \sigma_{\tau}^2, A_1, \dots A_K)$$

Submanifold value observations

Parallel curve

Representative trajectory

Linear time reparametrization

Hidden random variables:

Acceleration factor
Time shift
Space shift

Parameters:

Mean trajectory parametrization and prior parameter

Comparison with previous work:

Interest: Parallel transport keep invariant the structure of the distribution, but updated it in time

•The straight line mode $\mathbb{M}=\mathbb{R}$

$$y_{ij} = (\overline{a} \times a_i)(t_{i,j} \underbrace{-t_0 - \tau_i}) + \overline{b} + \varepsilon_{i,j}$$

Time at which measurement of the ith subject reaches \bar{b}

$$y_{ij} = (\overline{a} \times a_i)(t_{i,j} - t_0) + b + b_i + \varepsilon_{i,j}$$

Measurement of the ith subject at time t₀

- •The logistic curve mode $M =]0,1[, g(p)(u,v) = \frac{uv}{p^2(1-p)^2}]$
 - Geodesic are logistic curves

$$\gamma_0(t) = 1 + \frac{(1 - p_0)/p_0}{\exp\left(-\frac{v_0}{p_0(1 - p_0)}(t - t_0)\right)} \qquad y_{ij} = \gamma_0 \left(t_0 + \alpha_i(t - t_0 - \tau_i)\right) + \varepsilon_{ij}$$

- •It is *not* equivalent to a linear model on the logit of the observations (i.e. the Riemannian log at $p_0 = 0.5$), since p_0 is estimated
- •If we fix $p_0 = 0.5$ in our model \rightarrow end up with our previous linear case (different from Laird&Ware)

•The propagation model
$$\mathbb{M}=]0,1[^N,\ g(p)(u,v)=\sum_{k=1}^N \frac{u_kv_k}{p_k^2(1-p_k)^2}$$

- Geodesics are logistic curves in each coordinate
- •Parametric family of geodesics seen as a model of propagation of an effect

$$\gamma_{\delta}(t) = \left(\gamma_0(t), \gamma_0(t - \delta_1), \dots, \gamma_0(t - \delta_{N-1})\right)$$

•The parallel curve in the direction of the space-shift v_i writes

$$\left(\gamma_{0}\left(t+\frac{v_{i,1}}{v_{0}}\right),\gamma_{0}\left(t-\delta_{1}+\frac{v_{i,2}}{v_{0}}\right),...,\gamma_{0}\left(t-\delta_{N-1}+\frac{v_{i,N}}{v_{0}}\right)\right)$$

à The parallel change coordinates

he effect onset across

Parameter Estimation

$$y = (y_1, ..., y_N), z = (z_1, ...z_N), \theta = (\sigma_z^2, \sigma_\varepsilon^2, A_1, ..., A_K, p_0, t_0, v_0)$$

•Maximum Likelihood:

$$max_{\theta} p(y|\theta) = \int p(y, z|\theta) dz$$

•EM:
$$\theta_{k+1} = argmax_{\theta} \sum_{i=1}^{N} \int \log \left(\underbrace{p(y_i, z_i | \theta)}_{p(y_i | z_i, \theta) p(z_i | \theta)} \right) p(z_i | y_i, \theta_k) dz_i$$

Distribution from the curved exponential family

$$\log p(y_i, z_i | \theta) = \phi(\theta)^T S(y_i, z_i) - \log(C(\theta))$$

$$\theta_{k+1} = argmax_{\theta} \left\{ \phi(\theta)^T \sum_{i=1}^N \int S(y_i, z_i) p(z_i | y_i, \theta_k) dz_i - N \log(C(\theta)) \right\}$$

Parameter Estimation: stochastic algorithm

•SA-EM: replaces integration by one simulation of the hidden variable: $\mathsf{from}_{z_i|y_i,\, heta_k)}$ sample $z_{i,k+1}$ and a stochastic approximation of the sufficient statistics

$$\overline{S}_{k+1} = (1 - \Delta_k)\overline{S}_k + \Delta_k \left(\frac{1}{N} \sum_{i=1}^N S(y_i, z_{i,k+1}) \right)$$

Maximization step (unchanged)

$$\theta_{k+1} = argmax_{\theta} \left\{ \phi(\theta)^T \overline{S}_{k+1} - \log(C(\theta)) \right\}$$

- •MCMC-SAEM: replaces sampling by a single Markov Chain step
 - •For each coordinate p (Gibbs sampler) sample $\sum_{i=1}^{p} p(z_{i}^{p}|z_{i}^{q\neq p},\theta)$

$$\begin{array}{ll} \bullet \mathsf{Set} \ \ z_{i,k+1}^p = \tilde{z}_i^p & \mathsf{with probability} \underbrace{p(y_i | \tilde{z}_i, \theta)}_{p(y_i | z_i, \theta)} \\ \bullet \ \ z_{i,k+1}^p = z_{i,k}^p & \mathsf{otherwise} \\ \end{array}$$

•
$$z_{i,l+1}^p = z_{i,l}^p$$
 otherwise

Parameter Estimation: stochastic algorithm

Theoretical properties of the sampler:

Under mild conditions:

- Drift property
- Small set
- Geometric ergodicity uniformly on any compact set of the parameters

Theoretical properties of the estimation algorithm:

- a.s. convergence towards the MAP estimator
- Normal asymptotic behaviour: spe e^{1/Δ_k}
- Normal asymptotoc behaviour with optimal speed with averaging sequeheesk

- Neuropsychological testsADAS-Gog from ADNI
- •248 subjects who converted from MCI to AD
- •6 time-points per subjects on average (min 3, max 11)
- *Data points $y_{ij} \in]0,1[^4]$ with propagation logistic model

concentration

praxis

language

praxis —— concentration

memory ——language

Variability in the **relative timing** and **ordering** of the events

Model of diffusion tensors

- Geodesic in the Riemannian manifold of positive definite matrices
- Parallel transport the tensors
- Reprearamtrize in time
- Sample this curse

Model of diffusion tensors

- Synthetic data not generated from the model but imitating a non smooth evolution
- 100 subjects
- 5 time points in average

Model of diffusion tensors

Fitting the model to a new patient

Comparison AD vs Controls

Comparison MCI vs Controls

Computational comparisons

- Comparison of: MCMC-SAEM STAN MONOLIX
 - Number of iterations:
 - MCMC-SAEM: 1 000 000 (6s / 1 000 iterations)
 - STAN: 15 000 (25min / 1 000 iterations)
 - MONOLIX: 20 000 (3,5 min / 1 000 iterations)

Computational comparisons

Comparison of: MCMC-SAEM - STAN - MONOLIX

True values	p_0	t_0	v	'o	σ_{ξ}		$\mid \sigma_{ au} \mid$		σ			
	0.24	70	70 0.0		0.5		7		0.01			
	p_0	t_0		v_0			σ_{ξ}		$\sigma_{ au}$		σ	
MCMC-SAEM	0.23	69.9)3	0.0317			0.52		6.75		0.01	
STAN	p_0		0	v_0			σ_{ξ}		$\sigma_{ au}$		σ	
	0.218	68.	68.66		0.0305		0.53		6.73		0.098	
Monolix	p_0	t_0		v_0	v_0		σ_{ξ}		$\sigma_{ au}$		σ	
	0.37	71.6	5 (0.040	06	0.52		6.8		0.	01	

Conclusion

- Generic statistical model to learn spatiotemporal distribution of trajectories on manifolds:
 - Calibrated on longitudinal data sets using MCMC-SAEM
 - Automatically finds temporal correspondences among similar events that may happen at different age/time
 - Estimates the variability of the data at the corresponding events
- It allows us to position disease progression within the life and history of the patient

Future work:

 Derive instances of the model for more complex manifoldvalued data (e.g. spatially distributed data, shape data, etc..)

Thank you!

