Chemistry Lecture #90: Arrhenius, Bronsted-Lowry, and Lewis Theories of Acids & Bases

The Arrhenius model of acids says that an acid is a substance that contains hydrogen and ionizes to produce hydrogen ions in aqueous solutions. For example, HCl gas would be an acid since it ionizes in water to produce H⁺.

$$HCl(g) \xrightarrow{water} H^{\dagger}(aq) + Cl^{\dagger}(aq)$$

The Arrhenius model of bases says that a base is a substance that contains a hydroxide group and dissociates to produce OH⁻ in aqueous solution. For example, NaOH would be a base since it dissociates in water to produce OH⁻.

NaOH (s)
$$\xrightarrow{\text{water}}$$
 Na⁺(aq) + OH⁻ (aq)

The Arrhenius model is not the only definition for an acid and base. You need to be aware of two other models: the Bronsted-Lowry model and the Lewis model.

The Bronsted-Lowry model states that an acid is a hydrogen ion donor. A base is a hydrogen ion acceptor. For example, when NH₃ and water are mixed, water will act as an acid and donate a hydrogen ion to the NH₃.

$$H_2O$$
 + NH_3 \longrightarrow OH^- + NH_4^+ acid base conjugate conjugate donates H^+ accepts H^+ base acid

Notice that if the reaction goes in reverse, NH_4^+ could donate H^+ and OH^- could accept it. Since NH_4^+ and OH^- are on the right side of the arrows, we'll call them the conjugate acid and base.

After an acid donates its H^+ , it becomes a conjugate base. After a base accepts an H^+ , it becomes a conjugate acid.

Here's another reaction:

$$HCI$$
 + H_2O \longrightarrow CI^- + H_3O^+ acid base conjugate conjugate donates H^+ accepts H^+ base acid

In this reaction, H_2O accepts the H^+ , so it acts as a base. H_2O can either donate or accept a hydrogen ion; it can be an acid or a base. A substance that can act as an acid or a base is said to be amphoteric.

The Lewis model of acids and bases states that a base is a substance that can donate a pair of electrons to the formation of a covalent bond. An acid is a substance that can accept a pair of electrons to form the covalent bond.

For example, OH⁻ has a pair of electrons that are accessible. A hydrogen ion, H⁺, can accept these electrons and form a covalent bond.

$$H^{+} + \left[: O - H \right]^{-} \longrightarrow O.$$

 OH^- donates the electrons and is the base. H^+ accepts the electrons and is the acid.

In another example, OH can donate electrons to CO2 and form a covalent bond between the two.

In this reaction, the OH^- is the base and the CO_2 is the acid. This is how carbon dioxide gas is removed from the atmosphere in space ships. Carbon dioxide passes through a filter that contains LiOH. The carbon dioxide bonds with the OH^- and the resulting bicarbonate ion remains in the filter, thus removing CO_2 from the air.