HISTOPATHOLOGIC CANCER DETECTION

https://www.kaggle.com/c/histopathologic-cancer-detection

DATA STRUCTURE AND PIPELINE

```
#Preview the total number of files provided and the train_labels.csv
print('Train Files =',len(os.listdir(train)), 'Validation Files =',len(os.listdir(test)))
labels.head()

Train Files = 220025 Validation Files = 57458

id label

0 f38a6374c348f90b587e046aac6079959adf3835 0

1 c18f2d887b7ae4f6742ee445113fa1aef383ed77 1

2 755db6279dae599ebb4d39a9123cce439965282d 0

3 bc3f0c64fb968ff4a8bd33af6971ecae77c75e08 0

4 068aba587a4950175d04c680d38943fd488d6a9d 0
```

```
#Build a single dataframe that includes each of the images unique id, file path, and corrosponding label (1,0)
df = pd.DataFrame({'path': glob(os.path.join(train,'*.tif'))})
df['id'] = df.path.map(lambda x: x.split('\\')[1].split(".")[0])
df_data = df.merge(labels, on = 'id')
df_data.head()
```

	path	id	label
0	D:/Kaggle/Cancer Detection/histopathologic-can	00001b2b5609af42ab0ab276dd4cd41c3e7745b5	1
1	D:/Kaggle/Cancer Detection/histopathologic-can	000020de2aa6193f4c160e398a8edea95b1da598	0
2	D:/Kaggle/Cancer Detection/histopathologic-can	00004aab08381d25d315384d646f5ce413ea24b1	0
3	D:/Kaggle/Cancer Detection/histopathologic-can	0000d563d5cfafc4e68acb7c9829258a298d9b6a	0
4	D:/Kaggle/Cancer Detection/histopathologic-can	0000da768d06b879e5754c43e2298ce48726f722	1

```
df_data.groupby('label').id.nunique()
label
0 130908
1 89117
Name: id, dtype: int64
```

Naive Assumption = 40%

Conceptualize and Build our Model

0	0	0	0	0	0	•
0	156	155	156	158	158	
0	153	154	157	159	159	
0	149	151	155	158	159	
0	146	146	149	153	158	
0	145	143	143	148	158	·
		1				

0	0	0	0	0	0	
0	167	166	167	169	169	
0	164	165	168	170	170	
0	160	162	166	169	170	
0	156	156	159	163	168	
0	155	153	153	158	168	
		74				

0	0	0	0	0	0	
0	163	162	163	165	165	
0	160	161	164	166	166	
0	156	158	162	165	166	
0	155	155	158	162	167	
0	154	152	152	157	167	

Image Dimensions 96x96x3

Input Channel #1 (Red)

-1	-1	1
0	1	-1
0	1	1

Kernel Channel #2

0	1	1
0	1	0
1	-1	1

Kernel Channel #3

$$164 + 1 = -25$$

Bias = 1

Output -25

Feature Map

Source http://machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

```
kernel size = (3,3) #Height and Width of the convolution window.
pool size= (2,2) #Size of the max pooling windows
first filters = 32
second filters = 64
third filters = 128
dropout conv = 0.3
dropout dense = 0.3
model = Sequential()
model.add(Conv2D(first_filters, kernel_size, activation = 'relu', input_shape = (96, 96, 3)))
model.add(Conv2D(first_filters, kernel_size, activation = 'relu'))
model.add(MaxPool2D(pool size = pool size))
model.add(Dropout(dropout conv))
model.add(Conv2D(second filters, kernel size, activation = 'relu'))
model.add(Conv2D(second filters, kernel size, activation = 'relu'))
model.add(MaxPool2D(pool size = pool size))
model.add(Dropout(dropout conv))
model.add(Conv2D(third filters, kernel size, activation ='relu'))
model.add(Conv2D(third filters, kernel size, activation = 'relu'))
model.add(Conv2D(third filters, kernel size, activation = 'relu'))
model.add(MaxPool2D(pool size = pool size))
model.add(Dropout(dropout conv))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(dropout dense))
model.add(Dense(1, activation = "sigmoid"))
model.summary()
```


Model Validation

	precision	recall	f1-score	support
a_no_tumor_tissue	0.96	0.95	0.95	8000
b_has_tumor_tissue	0.95	0.96	0.95	8000
micro avg	0.95	0.95	0.95	16000
macro avg	0.95	0.95	0.95	16000
weighted avg	0.95	0.95	0.95	16000

REFERENCES

• Stanford CNN Overview - http://cs231n.github.io/convolutional-networks/

Public Kernel Referenced - https://www.kaggle.com/vbookshelf/cnn-how-to-use-160-000-images-without-crashing

Keras Documentation - https://keras.io/