Escola de Engenharia Elétrica, Mecânica e de Computação Universidade Federal de Goiás

Laboratório de Microprocessadores e Microcontroladores

Experimento 1 Introdução ao Microcontrolador 8051

Alunos:	Matrícula:	

Prof. Dr. José Wilson Lima Nerys

Goiânia, 1° semestre de 2019

SUMÁRIO

1	Intr	odução ao Microcontrolador 8051	3
	1.1	Características Gerais do 8051	3
	1.2	Os Registradores de Funções Especiais	6
	1.3	Instruções Básicas Gerais do 8051	7
	1.4	Instruções de Comparação, Decisão e de Desvio	9
	1.5	Operações com bit	10
	1.6	Diretivas de Programação	10
	1.7	O Simulador Digital e o Kit Didático	11
	1.8	Teclado	12
	1.9	Conjunto de LEDs	13
2	Tar	efas do Experimento 1	14
	2.1	Tarefa 1 – Uso de um Simulador Digital	14
	2.2	Tarefa 2 – Uso do Simulador Proteus ou Equivalente	15
	2.3	Tarefa 3 – Uso do Kit Didático	16
	2.4	Tarefa 4 – Uso do Teclado por Varredura – Mapeamento	17
	2.5	Tarefa 5 – Uso do Teclado para Produzir Efeitos sobre os Leds	19
	2.6	Tarefa 6 – Revisão	20

1 Introdução ao Microcontrolador 8051

1.1 Características Gerais do 8051

A pinagem do microcontrolador básico de 40 pinos da família 8051 é mostrada na Fig. 1.1, que mostra também o componente de 20 pinos.

O componente básico de 40 pinos contém 2 contadores/temporizadores, 4 portas paralelas de 8 bits, 2 fontes externas de interrupção e 3 internas, uma porta serial com um canal de entrada e outro de saída, memória RAM e memória ROM. O componente de 20 pinos diferencia-se, basicamente, por ter apenas duas portas de entrada/saída (portas P1 e P3).

Fig. 1.1 – Pinagem dos microcontroladores de 40 pinos e 20 pinos da família 8051.

A Fig. 1.2 mostra o circuito mínimo necessário para acionamento de um LED através do pino 0 da porta P2. O driver constituído de um transistor e um dois resistores é necessário para o acionamento do LED através do microcontrolador de 40 pinos porque a capacidade de corrente desse componente é muito pequena. De acordo com o datasheet do componente AT89S52, a capacidade de corrente por pino de cada porta é de 10 mA e por porta de 8 pinos é de 15 mA para as portas P1, P2 e P3 e 26 mA para a porta P0.

Por outro lado, a capacidade de corrente do componente de 20 pinos é maior. De acordo com o datasheet do componente AT89C2051, a capacidade por pino é de 20 mA e a capacidade total para todos pinos é de 80 mA. Assim, o LED pode ser acionado diretamente, apenas com o resistor de 330 ohms para limitar a corrente, como mostrado na Fig. 1.2.

Fig. 1.2 - Sistema mínimo para acionamento de um LED

A Fig. 1.3 mostra o diagrama de blocos de um microcontrolador básico da família 8051.

Fig. 1.3 – Diagrama de blocos de microcontrolador básico da família 8051

Destaca-se a memória RAM, Fig. 1.4, onde estão presentes os registradores utilizados nas instruções e onde há uma área reservada para os Registradores Especiais, tais como os registradores das portas P0 a P3 e os registradores TMOD e IE, de configuração dos temporizadores e das interrupções, respectivamente.

Fig. 1.4 – Memórias RAM interna

A Fig. 1.5 detalha a parte baixa da memória RAM, onde estão presentes 4 conjuntos de 8 registradores cada um, uma região de memória que pode ser acessada por bit e por byte e uma região de memória que pode ser acessada apenas por byte.

Fig. 1.5 – Detalhes da Parte baixa da memória RAM interna

1.2 Os Registradores de Funções Especiais

A Tabela 1 mostra os principais **Registradores Especiais**, que ficam localizados na região de **80h** a **FF h** da memória RAM. Os registradores dessa região, com endereços de final **0** ou **8**, são endereçáveis por byte ou por bit. Os demais, apenas por byte.

Deve ser enfatizado que os registradores especiais ocupam os endereços de **80h** a **FFh**, que coincide com os 128 bytes superiores da RAM interna dos microcontroladores xxx2. A diferença entre o acesso aos Registradores especiais e a parte superior da RAM interna é o tipo de endereçamento. Os *registros especiais* são acessados sempre por *endereçamento direto*, enquanto a parte superior da *RAM interna* é acessada somente por *endereçamento indireto*.

Tabela 1: Principais Registradores Especiais

Registrador	Mnemônico	Endereço		Endereços individuais dos Bits e denominações de alguns bits				ções		
Latch da Porta 0	P0	80 H	87	86	85	84	83	82	81	80
Apontador de Pilha	SP	81 H								
Apontador de Dados	DPTR	82H – 83H								
LSB do Apontador de Dados	DPL	82 H								
MSB do Apontador de Dados	DPH	83 H								
Controle de Energia	PCON	87 H	SMOD							
Controle do Contador/Temporizador	TCON	88 H	8F	8E	8D	8C	8B	8A	89	88
			TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
Controle do Modo do Temporizador/ Contador	TMOD	89 H	G1	C/T1	M11	M01	G0	C/T0	M10	M00
LSB do Temporizador/Contador 0	TL0	8A H								
LSB do Temporizador/Contador 1	TL1	8B H								
MSB do Temporizador/Contador 0	TH0	8C H								
MSB do Temporizador/Contador 1	TH1	8D H								
Latch da Porta 1	P1	90 H	97	96	95	94	93	92	91	90
Controle da Porta Serial	SCON	98 H	9F	9E	9D	9C	9B	9A	99	98
			SM1	SM2	SM3	REN	TB8	RB8	TI	RI
Porta de Dados Seriais	SBUF	99 H								
Latch da Porta 2	P2	A0 H	A7	A6	A5	A4	A3	A2	A1	A0
Habilitador de Interrupção	ΙE	A8 H	AF	AE	AD	AC	AB	AA	A9	A8
			EA			ES	ET1	EX1	ET0	EX0
Latch da Porta 3	Р3	B0 H	В7	B6	B5	B4	В3	B2	B1	В0
Controle de Prioridade da Interrup.	IP	B8 H	BF	BE	BD	BC	BB	BA	В9	B8
						PS	PT1	PX1	PT0	PX0
Registrador de Estado do Programa	PSW	D0 H	D7	D6	D5	D4	D3	D2	D1	D0
			CY	AC	F0	RS1	RS0	OV		P
Acumulador	ACC ou A	E0 H	E7	E6	E5	E4	E3	E2	E1	E0
Registrador B	В	F0 H	F7	F6	F5	F4	F3	F2	F1	F0

O **PSW** (**P**rogram **S**tatus **W**ord) é o registrador especial que contém as Flags e também os bits RS1 e RS0, usados para selecionar o banco de registradores (ver Tabela 2). Este registrador é endereçável por bit. As flags do microcontrolador 8051 são: flag de carry (CY), flag auxiliar de carry (AC), flag de uso geral (F0), flag de overflow (OV) e flag de paridade (P).

PSW	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	CY	AC	F0	RS1	RS0	0V		P

Tabela 2 – Seleção do banco de registradores

RS1	RS0	Banco Selecionado
0	0	0
0	1	1
1	0	2
1	1	3

A Tabela 3 apresenta os valores iniciais dos registradores especiais após o Reset. Observar que as portas de entrada/saída assumem nível lógico alto e o apontador de pilha assume o valor 07h.

Tabela 3 – Valores dos registradores especiais após o Reset

Registro	Valor	Registro	Valor
PC	0000h	TCON	00h
A	00h	TH0	00h
В	00h	TL0	00h
PSW	00h	TH1	00h
SP	07h	TL1	00h
DPTR	0000h	SCON	00h
P0 - P3	FFh	SBUF	Indeterminado
IP	xxx00000b	PCON(NMOS)	0xxxxxxxb
IE	0xx00000b	PCON(CMOS)	0xxx0000b
TMOD	00h		

1.3 Instruções Básicas Gerais do 8051

As instruções do 8051 podem ser digitadas em maiúsculas ou minúsculas. A seguir são mostradas algumas dessas instruções, com exemplos. O símbolo "#" é necessário para diferenciar dado de registrador. Os dados seguidos de "H" ou "h" estão no sistema hexadecimal; os dados seguidos de "B" ou "b" estão em binário e os dados sem nenhuma indicação estão no sistema decimal. Os termos "DIRETO", "dir" e "dir2" significam referência ao endereço do registrador, ao invés de seu nome. O termo "REG" corresponde a Registrador, podendo ser de R0 a R7.

Instrução	Descrição e exemplos			
MOV A,#DADO	Carrega o acumulador com o valor de "dado".			
	MOV A,#25 → Carrega acumulador com valor decimal 25 (19 hexadecimal)			
	MOV A,#15H → Carrega acumulador com valor hexadecimal 15H			
	MOV A,#01011001b → Carrega acumulador com o binário equivalente a 59H			
MOV A,DIRETO	Copia no acumulador o conteúdo do registrador cujo endereço é "direto".			
	MOV A,15H → Copia no acumulador o conteúdo do registrador R5 (15H), do banco 2.			
MOV A,REG	Copia no acumulador o conteúdo do registrador "reg", sendo reg = R0, R1,, R7, do			
	banco de registradores que estiver ativo.			
	MOV A,R6 → Copia no acumulador o conteúdo do registrador R6.			
MOV dir2,dir1	Copia no registrador cujo endereço é "dir2" o conteúdo do registrador cujo endereço é			
	"dir1".			
	MOV 02H,05H → Copia em R2 (02H) o conteúdo do registrador R5 (05).			

Instrução	Descrição e exemplos
MOV R0,#20H MOV @R0,#55H	Carrega registrador R0 com valor 20h Copia o valor 55h na posição apontada pelo registrador R0, ou seja, endereço 20H, que é a primeira posição acima do banco de registradores.
MOV DPTR,#200H MOVC A,@A+DPTR	Carrega registrador de 16 bits "dptr" com valor 200H Carrega acumulador com o conteúdo da posição apontada por "a + dptr". Se, por exemplo, A = 04H, então carrega acumulador com o conteúdo da posição 204H.
MOV DPTR,#200H MOVX @DPTR,A	Carrega registrador de 16 bits "dptr" com valor 200H Envia o conteúdo do acumulador para a posição externa 200H, apontada pelo DPTR
ADD A,REG	Adiciona o conteúdo do registrador "reg" ao conteúdo do acumulador. ADD A,R1 → Se A = 07 H e R1 = 03 H, então, após a instrução, a = 0AH.
ADD A,DIRETO	Adiciona o conteúdo do registrador de endereço "direto" ao conteúdo do acumulador: A = A + (direto) ADD A,10H → Se A = 07 H e 10H = 03 H, então, após a instrução, A = 0AH.
ADD A,#DADO	Adiciona ao conteúdo do acumulador o valor "dado": A = A + dado ADD A,#04h → Se a = 07 H, então, após a instrução, A = 0BH.
ADD A,@Rn	Adiciona ao conteúdo do acumulador o conteúdo da posição apontada por Rn. A = A + ((Rn)). MOV R0,#20h ADD A,@R0 → Se A = 07 H e registrador 20H = #03H, então, após a instrução, A = 0AH.
SUBB A,#DADO	Subtrai o conteúdo do acumulador do "DADO". A = A – DADO. SUBB A,#05H → Se A = 07 H, então, após a instrução, A = 02 H.
RL A	Rotaciona o conteúdo do acumulador para a esquerda (rotate left). Por exemplo, se originalmente A= 21 H (0010 0001b), após a instrução, tem-se: A = 42 H (0100 0010b).
RR A	Rotaciona o conteúdo do acumulador para a direita (rotate right). Por exemplo, se originalmente A= 8C H (1000 1100b), após a instrução, tem: A = 46 H (0100 0110b).
INC REG	Incrementa conteúdo do registrador "reg". Por exemplo, se R1 = 05H, então <i>INC R1</i> resulta em R1 = 06 H.
DEC REG	Decrementa conteúdo do registrador "reg". Por exemplo, se R2 = 0B H, então <i>DEC R2</i> resulta em R2 = 0A H.
CPL A	Complementa o conteúdo do acumulador. Por exemplo, se originalmente, A = 55 H, então, após a instrução, A = AA H.
SWAP A	Faz a troca dos nibbles do acumulador, ou seja, o nibble mais significativo passa a ocupar os quatro primeiros bits do acumulador e o nibble menos significativo passa a ocupar os quatro últimos bits. Por exemplo, se originalmente, A = 35 H, após a instrução, A = 53 H.
DA A	Faz o ajuste decimal do acumulador. Adiciona "6" ao dígito que esteja no intervalo de A a F. Por exemplo, se originalmente A = 7A H, após a instrução torna-se A = 80 H.
MUL AB	Multiplica o conteúdo de A pelo conteúdo de B. O resultado está em B A. O resultado da multiplicação é um número de 16 bits, por isso precisa de dois registradores para o resultado. MUL AB → se A = 25 H e B = 30 H, após a instrução, tem-se: B = 06 H e A = F0 H, pois o resultado da multiplicação é: 6F0 H

Instrução	Descrição e exemplos
DIVAD	Divide o conteúdo de A pelo conteúdo de B. A recebe o quociente e B o resto.
DIV AB	DIV AB \rightarrow se A = CA H (202) e B = 19 H (25), após a instrução, tem-se: A = 08 H
	e B = 02, pois a divisão em decimal (202/25) resulta em quociente 8 e resto 2.
ANL A,#DADO	Faz uma operação AND entre acumulador e DADO. A = A (AND) DADO.
ANL A, #DADO	ANL A,#0FH → se originalmente A = 35 H, após a instrução torna-se: A = 05H.
ORL A,#DADO	Faz uma operação OR entre o acumulador e DADO. A = A (OR) DADO.
ORE 11, II DI IDO	ORL A,#20H → se originalmente A = 07 H, após a instrução torna-se: A = 27 H.

1.4 Instruções de Comparação, Decisão e de Desvio

As instruções desta seção são de desvio incondicional e desvio que depende do estado de flags.

Instrução	Descrição e exemplos
SJMP DESVIO	Desvio incondicional curto (Short Jump) relativo. Pula até 127 bytes para a frente e até 128 bytes para trás.
AJMP DESVIO	Instrução de desvio para distâncias correspondentes a até 2048 bytes. Endereço de 11 bits.
LJMP DESVIO	Desvio incondicional longo, para qualquer posição da memória de programa. Endereço de 16 bits.
JNZ DESVIO	Instrução de desvio condicional: Jump IF Not Zero. Pula para "desvio" se a operação anterior não resultar em zero. Verifica automaticamente a flag de zero.
LCALL SUBROT	Chamada de subrotina. Desvia para o endereço onde a subrotina está localizada. Ao encontrar a instrução RET, retorna para a instrução que vem logo após a chamada de subrotina.
JC DESVIO	Desvio condicional para a posição indicada por "desvio". Desvia se a flag de CARRY estiver setada.
JNC DESVIO	Desvio condicional para a posição indicada por "desvio". Desvia se a flag de CARRY não estiver setada.
DJNZ REG,DESVIO	Decrementa registrador "reg" e pula para a posição "desvio" se o resultado não for zero. É uma combinação das instruções "DEC" e "JNZ" do microprocessador 8085. MOV R5,#10 V1: DJNZ R5,V1 → O registrador R5 é decrementado até tornar-se zero
	Compara conteúdo do acumulador com "dado" e pula para a posição "V1" se não forem
CJNE A,#DADO,V1	iguais. MOV A,#00H V1: INC A CJNE A,#20H,V1 → Compara o conteúdo de A com 20 hexadecimal e, caso não seja igual pula para V1 para incrementar A. Quando for igual, pula para a próxima linha.

A diferença entre LJMP e SJMP é que a primeira instrução se refere a um endereço de 16 bits e é codificada em 3 bytes: o opcode e os dois bytes de endereço. A instrução SJMP é codificada em 2 bytes sendo o segundo byte o valor que deve ser adicionado à posição atual do apontador de programa PC, para determinar o endereço de desvio. O exemplo a seguir mostra um programa e sua codificação, com as instruções SJMP e LJMP. No programa mostrado o código de SJMP V1 é 8009, onde 80H é o opcode da instrução e 09H é o valor que deve ser adicionado ao contador de programa PC para indicar a próxima instrução a ser executada. Após a execução de SJMP V1 o valor de PC é 0037H. Adicionando 09H chega-se a 0040H, endereço da instrução ADD A,#53H.

O código da instrução **LJMP INICIO** é **020030**, onde **02H** é o opcode da instrução e **0030H** é o endereço de desvio, ou seja, a posição de início do programa, para execução da instrução MOV A,#35H.

Endereço	Codificação	Rótulo	Mnemônico
			ORG 00H
0000	020030		LJMP INICIO
			ORG 30H
0030	7435	INICIO:	MOV A,#35H
0032	75F045		MOV B,#45H
0035	8009		SJMP V1
0037			
			ORG 40H
0040	2453	V1:	ADD A,#53H
0042	020030		LJMP INICIO
			END

1.5 Operações com bit

As instruções mostradas a seguir são algumas das instruções usadas nas operações com bit, ao invés de byte. O bit pode ser de um registrador especial (daqueles que permitem controle individual por bit) ou da região da memória RAM que vai do endereço 20H até 2FH.

Instrução	Descrição e exemplos
	Desvia para a posição "desvio", caso o "bit" esteja setado.
JB BIT,DESVIO	JB LIGADO,DESLIGA → Se o bit <i>ligado</i> = 1, então o programa desvia para a posição
	"deliga".
	Desvia para "desvio", caso o "bit" NÃO esteja setado.
JNB BIT,DESVIO	JNB LIGADO,LIGA \rightarrow Se o bit <i>ligado</i> = 0, então o programa desvia para a posição
	"liga".
SETB BIT	Seta o "bit".
SETE DIT	SETB LIGADO → Torna o bit "ligado" igual a 1.
CLR BIT	Limpa o "bit"
CLK DII	CLR LIGADO → Torna o bit "ligado" igual a zero

1.6 Diretivas de Programação

Durante a programação em assembly, são necessárias algumas informações para o compilador. Essas informações não são compiladas, mas apenas informam sobre variáveis, sobre posicionamento na memória e sobre dados. As principais diretivas são dadas a seguir:

org *endereço* → Informa ao compilador o endereço onde deve ser armazenada a próxima instrução.

Exemplo:

org 30 H

mov sp,#2Fh → Esta instrução será armazenada na posição 30 H da memória ROM.

variável **equ** ender. reg. → informa ao compilador que a "variável" equivale ao registrador cujo endereço é "ender. reg". Exemplo:

velocidade equ 05H → Esta diretiva diz ao compilador que as operações com a variável "velocidade" equivalem às operações com o registrador R5 do banco 0 (endereço do registrador: 05 H). Por exemplo: mov velocidade,#52H equivale à instrução mov R5,#52H.

variável **bit** ender. bit → informa ao compilador que a "variável" é do tipo bit e será armazenada no endereço dado por "ender.bit".

Exemplo:

sentido bit 00H \rightarrow Esta diretiva diz ao compilador que a variável "sentido" é do tipo bit e será armazenada no endereço 00H da região acima dos bancos de registradores. O endereço do **bit 00H** corresponde ao primeiro endereço dessa região, ou seja, posição **20.0H**.

db byte → Esta diretiva diz ao compilador que o byte a seguir é um dado e não uma instrução.

Exemplo:

db 45H → O valor 45H é tratado como um dado, não como uma instrução.

1.7 O Simulador Digital e o Kit Didático

A edição, compilação e simulação dos programas desenvolvidos para o 8051 tem sido realizada utilizando o simulador MCU 8051, cuja tela inicial é mostrada na Fig. 1.6. A compilação gera arquivos com as extensões ".hex", e ".lst", além de outras extensões. O arquivo ".hex" é usado simulação usando o Proteus e na gravação do microcontrolador usado no Kit Didático.

O Kit Didático complementa os simuladores. Ele consiste de uma plataforma mínima com um microcontrolador, um teclado, um conjunto de 8 LEDs, um módulo de comunicação serial e conectores dando acesso às portas P0, P1, P2 e P3, de modo que módulos diversos podem ser conectados. Já estão prontos os seguintes módulos: módulo de motor de passo; módulo de motor de corrente contínua; módulo de relés e sensor de presença; módulo de display LCD e módulo de conversores AD e DA. A Figura 1.7 mostra um diagrama do kit.

Fig. 1.6 – Tela inicial do simulador MCU 8051

Fig. 1.7 - Esquemático com os componentes do Kit didático

O kit didático necessita de um módulo de gravação em separado. O módulo usado é o ChipMax2. O programa usado para gravação no ChipMax2 é o MaxLoader, cuja tela inicial é mostrada na Fig. 1.8.

Fig. 1.8 – Tela inicial do programa MaxLoader

1.8 Teclado

Um dos módulos já disponíveis no kit didático é o Teclado de 16 dígitos. As conexões do teclado são mostradas na Fig. 1.9. As teclas são conectadas na forma de uma matriz 4 x 4. As linhas 1 a 4 são conectadas, respectivamente aos pinos P2.7, P2.6, P2.5 e P2.4. As colunas 1 a 4 são conectadas, respectivamente aos pinos P2.3, P2.2, P2.1 e P2.0. Embora seja possível utilizar um driver para o Teclado, tipo 74HC922, utiliza-se aqui o princípio de varredura com o teclado. Nesse procedimento, todos os pinos da porta P2 estão, inicialmente, em nível lógico alto. Assim, por exemplo, coloca-se a Linha L1 em nível lógico baixo (L1=0), através da instrução CLR L1 e verifica-se (varredura) o estado das colunas C1 a C4, através das instruções "JB C1, desvioC1", até "JB C4, desvioC4".

Verifica-se, incialmente, a coluna C1. Se ela estiver em nível lógico baixo, significa que a tecla "1" foi pressionada e o processamento desvia para a linha seguinte, onde executa-se o que se deseja

quando a tecla "1" for pressionada. Se C1 estiver em nível lógico alto, desvia para "desvioC1", para verificar as outras colunas, de C2 a C4.

Fig. 1.9 - Teclado do kit didático

Dessa forma, a varredura completa do teclado é feita colocando-se cada linha em nível lógico baixo, uma a uma, as linhas L1 a L4 e verificando, uma a uma, o estado das colunas C1 a C4.

1.9 Conjunto de LEDs

A capacidade de corrente do microcontrolador 8051 de 40 pinos não é suficiente para acionar diretamente um LED, cuja corrente prevista está em torno de 10 mA. Assim, é utilizado o drive ULN2803, mostrado na Fig. 1.10.

Fig. 1.10 - drive ULN2803 para o motor de passo

Os 8 LEDs são, portanto, conectados à porta P1 através do drive ULN2803.

2 Tarefas do Experimento 1

2.1 Tarefa 1 – Uso de um Simulador Digital

Passo 1: Inicialize o simulador MCU 8051 e digite o programa mostrado na Tabela 2.1 Pode ser com letras maiúsculas ou minúsculas. Não há necessidade de digitar os comentários após o sinal de ";".

Talas 1 . 2	1	0-4-				$D1 \Omega$
Tabela 2.	1 -	Ollua	uuauraua	по	omo	T 1.U

Rótulo	Mnemônico	Comentários
	ORG 00H	; Diretiva que "diz" ao compilador o endereço da próxima instrução
	LJMP ONDA	; Pula para o endereço " ONDA "
	ORG 30H	; Diretiva que "diz" ao compilador o endereço da próxima instrução
ONDA:	CPL P1.0	; Complementa o pino 0 da porta P1
	MOV R0,#50	; Carrega o registrador R0 com o valor decimal 50
	DJNZ R0,\$; Decrementa o registrador R0 até ele zerar. O desvio é para a própria instrução
	SJMP ONDA	; Desvia para o endereço " ONDA "
	END	; Encerra o programa

Passo 2: Pressione o botão de "**Salvar**" e escolha um nome para o programa (automaticamente o programa terá extensão ".asm"). Em seguida pressione o ícone de "**Compilar**".

Passo 3: Veja o procedimento para simular o programa. A Fig. 2.1 mostra um instante da simulação usando o programa MCU 8051. Observe o **pino 0 da porta P1**, em destaque. Ela estará mudando de 0 para 1 e 1 para 0 em uma frequência constante, que é definida pelo atraso de tempo correspondente a R0 = 50. O resultado é uma onda quadrada no pino P1.0.

Fig. 2.1 – Visão de um instante durante a simulação com o MCU 8051

Passo 4: Complete a Tabela 2.2 para calcular o período e a frequência da onda quadrada resultante no pino P1.0. A frequência do cristal oscilador é de 11,0592 MHz e, consequentemente, o período do ciclo de máquina ($T = 12/f_{clock}$) é 1,085 µs.

Tabela 2.2 - Cálculo do período da onda quadrada no pino P1.0

T in ha	T.,	Tempo de cada ciclo	Número de ciclos de	Qtde de execuções	Tempo total
Linha Instrução	Instrução	de máquina	máquina da instrução	de cada instrução	da execução
1	ONDA: CPL P1.0	1,085 µs	1	1	1,085 µs
2	MOV R0,#50	1,085 µs	1		
3	DJNZ R0,\$	1,085 µs	2		
4	SJMP ONDA	1,085 µs	2		
	Tempo que corresponde a meio período da onda quadrada (execução da linha 1 à linha 4)				
	Período da onda quadrada (cada duas execuções da linha 1 à linha 4)				
	Frequência da onda quadrada				

Passo 5: Preencha a Tabela 2.3 com os valores calculados:

Tabela 2.3 - Valores calculados para período e frequência

Valor de R0 (decimal)	Período calculado (µs)	Frequência calculada (kHz)
50	-	-

2.2 Tarefa 2 – Uso do Simulador Proteus ou Equivalente

Passo 1: Encerre a simulação no MCU 8051 e inicialize o "Kit Didático Virtual" (Fig. 2.2), desenvolvido no programa "**Proteus**". Esse programa deverá ser usado aqui para visualizar a onda quadrada gerada no pino P1.0. O osciloscópio digital do Proteus deve ser usado para mostrar a onda quadrada no pino P1.0 do microcontrolador. Utilize o canal A do osciloscópio.

Fig. 2.2 – Tela inicial do Simulador Proteus

Passo 2: "Click" duas vezes em cima do microcontrolador para abrir a janela que permitirá carregar o programa correspondente à onda quadrada. Defina a frequência de clock para 11.0592 MHz e carregue o programa, no formato ".hex", através da janela "Program File", em destaque na Fig. 2.3.

Fig. 2.3 – Janela onde a frequência é definida e o programa ".hex" é carregado

Passo 3: Colocar o programa em funcionamento e observar a onda quadrada no osciloscópio (Fig. 2.4). Meça o período da onda com o auxílio de cursores e preencha a Tabela 2.4.

Tabela 2.4 - Valores medidos no Proteus

Valor de R0 (decimal)	Período medido (µs)	Frequência do sinal (kHz)
50		

Fig. 2.4 – Onda quadrada no osciloscópio do Proteus

2.3 Tarefa 3 – Uso do Kit Didático

O microcontrolador deverá ser gravado através de uma gravadora separada do Kit. Os passos para gravação e execução do programa no kit são dados a seguir. A gravadora disponível hoje é a **ChipMax2**.

- **Passo 1**: Inicialize o programa "**MaxLoader**", usado para gravação do programa no microcontrolador. Na sequência, apague o programa presente no microcontrolador, carregue o programa ".hex" a ser gravado e use o ícone "prog" para transferir o programa. Alternativamente, após carregar o programa, use o ícone "**auto**".
- **Passo 2**: Recoloque o microcontrolador no kit didático e use o osciloscópio digital para registrar a onda quadrada no pino P1.0.
- **Passo 3**: Anote na Tabela 2.5 o período e a frequência da onda para R0 = 50. Anote também os valores encontrados através de cálculo (seção 2.1) e através do simulador Proteus (seção 2.2).

Obs.: A frequência do cristal oscilador do kit didático é de 11,0592 MHz.

Tabela 2.5 - Valores medidos no kit didático e no Proteus e calculados na seção 2.1 (R0 = 50)

	Valores Calculados	Valores do Simulador Didático (Proteus)	Valores do Kit Real
Período (µs)			
Frequência (kHz)			

2.4 Tarefa 4 – Uso do Teclado por Varredura – Mapeamento

Passo 1: Digite e compile no simulador MCU 8051 o programa da Tabela 2.6. Não é necessário digitar os comentários.

Obs. A instrução **JB bit, endereço** é uma operação com bit que verifica se o "bit" está setado (nível lógico alto); se o "bit" estiver setado, desvia para o "endereço". Caso contrário, desvia para a próxima linha.

Tabela 2.6: Mapeamento do Teclado, conectado à porta P2

Rótulo	Mnemônico	Comentário		
	L1 EQU P2.7	; Linha L1 equivale ao pino P2.7		
	L2 EQU P2.6	; Linha L2 equivale ao pino P2.6		
	L3 EQU P2.5	; Linha L3 equivale ao pino P2.5		
	L4 EQU P2.4	; Linha L4 equivale ao pino P2.4		
	C1 EQU P2.3	; Coluna C1 equivale ao pino P2.3		
	C2 EQU P2.2	; Coluna C2 equivale ao pino P2.2		
	C3 EQU P2.1	; Coluna C3 equivale ao pino P2.1		
	C4 EQU P2.0	; Coluna C4 equivale ao pino P2.0		
	ORG 00H	; A instrução a seguir está no endereço 00H		
	LJMP INICIO			
	ORG 30H	; A instrução a seguir está no endereço 30H		
INICIO:	MOV SP,#2FH	; O apontador de pilha assume o valor 2FH		
			1	
LINHA_L1:	CLR L1	; Faz L1 = 0 (Limpa Linha L1 ≡ Habilita Linha L1)	4	
	SETB L2	; Faz L2 = 1	Parte 1	
	SETB L3	; Faz $L3 = 1$		
	SETB L4	; Faz L4 = 1		
C11:	JB C1, C21	; Verifica se C1 = 1. Se C1 = 1, desvia para C21	<u> </u>	
C11.	MOV P1,#30H	; Se C1 = 0, mostra em P1 (Leds) o valor $30H$	Parte 2	
	1410 4 1 1,113011	, Se et = 0, mostra em i i (Leas) o varoi sori		
C21:	JB C2, C31	; Verifica se $C2 = 1$. Se $C2 = 1$, desvia para $C31$	D . 2	
	MOV P1,#31H	; Se C2 = 0, mostra em P1 (Leds) o valor 31H	Parte 2	
C31:	JB C3, C41	; Verifica se C3 = 1. Se C3 = 1, desvia para C41	Parte 2	
	MOV P1,#32H	; Se $C3 = 0$, mostra em P1 (Leds) o valor 32H	raite 2	
C41:	JB C4, LINHA_L2	; Verifica se C4 = 1. Se C4 = 1, desvia para LINHA_L2	Parte 2	
	MOV P1,#33H	; Se C4 = 0, mostra em P1 (Leds) o valor 33H		
LINILA LO	CETD I 1	. F I 1 1		
LINHA_L2:	SETB L1	; Faz L1 = 1	Donto 1	
	CLR L2	; Faz L2 = 0 (Limpa Linha L2 ≡ Habilita Linha L2)	Parte 1	
	SETB L3	; Faz L3 = 1		

	SETB L4	; Faz L4 = 1	
C12:	JB C1, C22	; Verifica se C1 = 1. Se C1 = 1, desvia para C22	
C12.	MOV P1,#34H	; Se C1 = 0, mostra em P1 (Leds) o valor 34H	
	νιον 11,π3411	, Se C1 – 0, mostra cm 1 1 (Leas) o varor 3411	
C22:	JB C2, C32	; Verifica se C2 = 1. Se C2 = 1, desvia para C32	
	MOV P1,#35H	; Se C2 = 0, mostra em P1 (Leds) o valor 35H	
C32:	JB C3, C42	; Verifica se C3 = 1. Se C3 = 1, desvia para C42	
<u>C32.</u>	MOV P1,#36H	; Se $C3 = 0$, mostra em P1 (Leds) o valor 36H	
C42:	JB C4, LINHA_L3	; Verifica se C4 = 1. Se C4 = 1, desvia para LINHA_L3	
	MOV P1,#37H	; Se C4 = 0, mostra em P1 (Leds) o valor 37H	
LINHA_L3:	SETB L1	; Faz L1 = 1	
	SETB L2	; Faz L2 = 1	
	CLR L3	; Faz L3 = 0 (Limpa Linha L3 = Habilita Linha L3)	Parte 1
	SETB L4	; Faz L4 = 1	
	SETE E.	,182.1	
C13:	JB C1, C23	; Verifica se C1 = 1. Se C1 = 1, desvia para C23	
	MOV P1,#38H	; Se C1 = 0, mostra em P1 (Leds) o valor 38H	
C23:	JB C2, C33	; Verifica se $C2 = 1$. Se $C2 = 1$, desvia para $C33$	
	MOV P1,#39H	; Se $C2 = 0$, mostra em P1 (Leds) o valor 39H	
	1410 4 1 1,113511	, 50 C2 = 0, mostia cm 1 1 (Eccis) 0 valor 5711	
C33:	JB C3, C43	; Verifica se C3 = 1. Se C3 = 1, desvia para C43	
	MOV P1,#41H	; Se C3 = 0, mostra em P1 (Leds) o valor 41H (ASCII da le	tra A)
C43:	JB C4, LINHA_L4	; Verifica se C4 = 1. Se C4 = 1, desvia para LINHA_L4	
	MOV P1,#42H	; Se C4 = 0, mostra em P1 (Leds) o valor 42H (ASCII da le	tra B)
LINHA L4:	CETD I 1	. E I 1 1	
LINHA_L4:	SETB L1	; Faz L1 = 1	
	SETB L2	; Faz L2 = 1	Parte 1
	SETB L3 CLR L4	; Faz L3 = 1 ; Faz L4 = 0 (Limpa Linha L4 = Habilita Linha L4)	
		, · · · · · · · · · · · · · · · · ·	
C14:	JB C1, C24	; Verifica se C1 = 1. Se C1 = 1, desvia para C24	
	MOV P1,#43H	; Se C1 = 0, mostra em P1 (Leds) o valor 43H (ASCII da le	tra C)
C24:	JB C2, C34	; Verifica se $C2 = 1$. Se $C2 = 1$, desvia para $C34$	
02	MOV P1,#44H	; Se $C2 = 0$, mostra em P1 (Leds) o valor 44H (ASCII da le	tra D)
- C24	ID C2 C44	Weifer at C2 1 6- C2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
C34:	JB C3, C44	; Verifica se C3 = 1. Se C3 = 1, desvia para C44	ton E
	MOV P1,#45H	; Se C3 = 0, mostra em P1 (Leds) o valor 45H (ASCII da le	ura E)
C44:	JB C4, V1	; Verifica se C4 = 1. Se C4 = 1, desvia para V1	
	MOV P1,#46H	; Se C4 = 0, mostra em P1 (Leds) o valor 46H (ASCII da le	tra F)
V1:	LJMP LINHA_L1	; Volta para a LINHA_L1	
V 1:	LIMIT LINHA_LI	, vona para a Linna_Li	
	END		
			_

Passo 2: Use o simulador do Kit Didático e o Kit Didático real para executar o programa da Tabela 2.6 e observar a operação do programa. Pressione uma a uma as teclas do Teclado e verifique o resultado nos LEDs.

Qual a finalidade das Partes 1?

Qual a finalidade das Partes 2?

2.5 Tarefa 5 – Uso do Teclado para Produzir Efeitos sobre os Leds

Passo 1: Digite e compile no simulador MCU 8051 o programa da Tabela 2.7 e Simule no Simulador do Kit Didático.

Obs.: A instrução **CJNE R7,#dado8, endereço** compara o conteúdo do registrador R7 com o dado de 8 bits "dado8"; se eles **NÃO forem iguais**, desvia para "endereço". Se eles forem iguais, desvia para a próxima linha.

Tabela 2.7: Efeitos sobre os LEDs na porta P1, usando o Teclado, conectado à porta P2

Ondons		Mnamânias
Ordem	Rótulo	Mnemônico
1		L1 EQU P2.7
2		C1 EQU P2.3
3		C2 EQU P2.2
4		C3 EQU P2.1
5		
6		ORG 00H
7		LJMP INICIO
8		
9		ORG 30H
10	INICIO:	MOV SP,#2FH
11		MOV A,#01H
12	V0:	LCALL TECLADO
13		
14		CJNE R7,#01H,V1
15		SJMP DIREITA
16		
17	V1:	CJNE R7,#02H,V4
18		SJMP ESQUERDA
19		
20	V4:	CJNE R7,#03H,V0
21		SJMP ALTERNA
22		
23	DIREITA:	MOV P1,A
24		RR A
25		LCALL ATRASO
26		LJMP V0
27		
28		
29		

30 ESQUERDA: MOV P1,A 31 RL A 32 LCALL ATRASO 33 LJMP V0 34 35 ALTERNA: MOV P1,#55H 36 LCALL ATRASO 37 MOV P1,#0AAH 38 LCALL ATRASO 39 LJMP V0 40 41 TECLADO: CLR L1 42 JB C1, C12 43 MOV R7,#01H 44 C12: JB C2, C13 45 MOV R7,#02H 46 C13: JB C3,SAI 47 MOV R7,#03H 48 SAI: SETB L1 49 RET 50 51 ATRASO: MOV R0,#10 52 V3: MOV R1,#100 53 V2: MOV R2,#200 54 DJNZ R2,\$ 55 DJNZ R1,V2 56 DJNZ R0,V3 8ET 57 8ET	Ordem	Rótulo	Mnemônico
CALL ATRASO LJMP V0 33 LJMP V0 34 35 ALTERNA: MOV P1,#55H 36 LCALL ATRASO MOV P1,#0AAH 38 LCALL ATRASO LJMP V0 40 41 TECLADO: CLR L1 42 JB C1, C12 43 MOV R7,#01H 44 C12: JB C2, C13 MOV R7,#02H 46 C13: JB C3,SAI 47 MOV R7,#03H SAI: SETB L1 49 RET 50 51 ATRASO: MOV R0,#10 52 V3: MOV R1,#100 53 V2: MOV R2,#200 54 DJNZ R2,\$ DJNZ R1,V2 56 DJNZ R0,V3 RET		ESQUERDA:	
33	31		RL A
34 35 ALTERNA: MOV P1,#55H 36 LCALL ATRASO 37 MOV P1,#0AAH 38 LCALL ATRASO 39 LJMP V0 40 41 TECLADO: CLR L1 42 JB C1, C12 43 MOV R7,#01H 44 C12: JB C2, C13 45 MOV R7,#02H 46 C13: JB C3,SAI 47 MOV R7,#03H 48 SAI: SETB L1 49 RET 50 51 ATRASO: MOV R0,#10 52 V3: MOV R1,#100 53 V2: MOV R2,#200 54 DJNZ R2,\$ 55 DJNZ R1,V2 56 DJNZ R0,V3 8ET			LCALL ATRASO
35 ALTERNA: MOV P1,#55H 36 LCALL ATRASO 37 MOV P1,#0AAH 38 LCALL ATRASO 39 LJMP V0 40 LJMP V0 41 TECLADO: CLR L1 42 JB C1, C12 43 MOV R7,#01H 44 C12: JB C2, C13 45 MOV R7,#02H 46 C13: JB C3,SAI 47 MOV R7,#03H 48 SAI: SETB L1 49 RET 50 51 ATRASO: MOV R0,#10 52 V3: MOV R1,#100 53 V2: MOV R2,#200 54 DJNZ R2,\$ 55 DJNZ R1,V2 56 DJNZ R0,V3 RET			LJMP V0
36			
37	35	ALTERNA:	MOV P1,#55H
38	36		LCALL ATRASO
39	37		MOV P1,#0AAH
40 41 TECLADO: CLR L1 42 JB C1, C12 43 MOV R7,#01H 44 C12: JB C2, C13 45 MOV R7,#02H 46 C13: JB C3,SAI 47 MOV R7,#03H 48 SAI: SETB L1 49 RET 50 51 ATRASO: MOV R0,#10 52 V3: MOV R1,#100 53 V2: MOV R2,#200 54 DJNZ R2,\$ 55 DJNZ R1,V2 56 DJNZ R0,V3 8ET	38		LCALL ATRASO
41 TECLADO: CLR L1 42 JB C1, C12 43 MOV R7,#01H 44 C12: JB C2, C13 45 MOV R7,#02H 46 C13: JB C3,SAI 47 MOV R7,#03H 48 SAI: SETB L1 49 RET 50 51 ATRASO: MOV R0,#10 52 V3: MOV R1,#100 53 V2: MOV R2,#200 54 DJNZ R2,\$ 55 DJNZ R1,V2 56 DJNZ R0,V3 8ET	39		LJMP V0
42 JB C1, C12 43 MOV R7,#01H 44 C12: JB C2, C13 45 MOV R7,#02H 46 C13: JB C3,SAI 47 MOV R7,#03H 48 SAI: SETB L1 49 RET 50 S1 51 ATRASO: MOV R0,#10 52 V3: MOV R1,#100 53 V2: MOV R2,#200 54 DJNZ R2,\$ 55 DJNZ R1,V2 56 DJNZ R0,V3 57 RET	40		
43	41	TECLADO:	CLR L1
44 C12: JB C2, C13 45 MOV R7,#02H 46 C13: JB C3,SAI 47 MOV R7,#03H 48 SAI: SETB L1 49 RET 50 51 ATRASO: MOV R0,#10 52 V3: MOV R1,#100 53 V2: MOV R2,#200 54 DJNZ R2,\$ 55 DJNZ R1,V2 56 DJNZ R0,V3 57 RET	42		JB C1, C12
45 MOV R7,#02H 46 C13: JB C3,SAI 47 MOV R7,#03H 48 SAI: SETB L1 49 RET 50 51 ATRASO: MOV R0,#10 52 V3: MOV R1,#100 53 V2: MOV R2,#200 54 DJNZ R2,\$ 55 DJNZ R1,V2 56 DJNZ R0,V3 57 RET	43		MOV R7,#01H
46 C13: JB C3,SAI 47 MOV R7,#03H 48 SAI: SETB L1 49 RET 50 51 ATRASO: MOV R0,#10 52 V3: MOV R1,#100 53 V2: MOV R2,#200 54 DJNZ R2,\$ 55 DJNZ R1,V2 56 DJNZ R0,V3 RET	44	C12:	JB C2, C13
47 MOV R7,#03H 48 SAI: SETB L1 49 RET 50 51 ATRASO: MOV R0,#10 52 V3: MOV R1,#100 53 V2: MOV R2,#200 54 DJNZ R2,\$ 55 DJNZ R1,V2 56 DJNZ R0,V3 8ET	45		MOV R7,#02H
48 SAI: SETB L1 49 RET 50 51 ATRASO: MOV R0,#10 52 V3: MOV R1,#100 53 V2: MOV R2,#200 54 DJNZ R2,\$ 55 DJNZ R1,V2 56 DJNZ R0,V3 57 RET	46	C13:	JB C3,SAI
49 RET 50 51 ATRASO: MOV R0,#10 52 V3: MOV R1,#100 53 V2: MOV R2,#200 54 DJNZ R2,\$ 55 DJNZ R1,V2 56 DJNZ R0,V3 57 RET	47		MOV R7,#03H
50 51 ATRASO: MOV R0,#10 52 V3: MOV R1,#100 53 V2: MOV R2,#200 54 DJNZ R2,\$ DJNZ R1,V2 56 DJNZ R0,V3 FT RET	48	SAI:	SETB L1
51 ATRASO: MOV R0,#10 52 V3: MOV R1,#100 53 V2: MOV R2,#200 54 DJNZ R2,\$ 55 DJNZ R1,V2 56 DJNZ R0,V3 57 RET	49		RET
52 V3: MOV R1,#100 53 V2: MOV R2,#200 54 DJNZ R2,\$ 55 DJNZ R1,V2 56 DJNZ R0,V3 57 RET	50		
53 V2: MOV R2,#200 54 DJNZ R2,\$ 55 DJNZ R1,V2 56 DJNZ R0,V3 57 RET	51	ATRASO:	MOV R0,#10
54 DJNZ R2,\$ 55 DJNZ R1,V2 56 DJNZ R0,V3 57 RET		V3:	MOV R1,#100
55 DJNZ R1,V2 56 DJNZ R0,V3 57 RET	53	V2:	MOV R2,#200
56 DJNZ R0,V3 57 RET	54		DJNZ R2,\$
57 RET	55		DJNZ R1,V2
	56		DJNZ R0,V3
58 END	57		RET
	58		END

Passo 2: Grave o programa da Tabela 2.7 no microcontrolador do kit didático e verifique o funcionamento do programa.

SJMP V2

ORG 30H

JB C1, C24

RR A

RL A

SETB L1

CLR L1

LJMP INICIO

CJNE R7,#02H,V4

O que ocorre qua	ndo a tecla 1 é pressionada?
O que ocorre qua	ndo a tecla 2 é pressionada?
O que ocorre qua	ndo a tecla 3 é pressionada?
	visão e cada um dos comandos dados na Tabela 2.8. los comandos utilizados ao longo do experimento
Comandos/diretivas	Função
MOV R0,#10	
MOV A,#0FH	
MOV P1,A	
CPL P1.0	
LCALL ATRASO	
DJNZ R1,\$	
DJNZ R0,V1	
RET	

Av. Universitária, n. 1488 - Quadra 86 - Bloco A - 3º piso 74605-010 - Setor Leste Universitário - Goiânia - Goiás - Brasil – Telefone/Fax: (62) 3209-6292. Fone Prof. José Wilson: (62) 3209-6420 – página internet: www.emc.ufg.br/~jwilson