Learning to Rank for Freshness and Relevance

Na Dai

Milad Shokouhi

Brian D.Davison

Presented by Avi Eini

Outline

► Introduction to Temporal IR and it's challenges

Background

► CS-DAC (Criteria-Sensitive Ranking Divide And Conquer)

Experiments and conclusion

<u>Introduction</u>

- What is temporal IR?
 - A sub-field of IR focusing in retrieving search result for a queries with a temporal characteristics.
 - ► For example: News search , Ipad , "US open"
- What are the challenges temporal IR dealing with?
 - Freshness VS Relevance
 - Temporal Features

Freshness vs Relevance

Relevance

- Quantify the topical matchability between query and web-pages or documents
- Well-studied measure

Freshness

- an actual page contents reflects new information (for which query?)
- Recency of page maintenance (with respect to the time point of generating ranking lists)
- Are the above two definitions of Freshness are the same?

The challenge

Acquiring a LTR ranker consider both Freshness and Relevance as an optimization goal

Pairwise learning to rank

- Given a query and a pair of associated documents, if one is more relevant than other, then
 it is boosted in the training process to get higher rank
- Query-type information ignored

Query-dependent loss/ranking

- Query-dependent ranking (K-Nearest Neighbor, Geng et al.)
- Query-dependent loss- learning multiple ranking functions and query categorization (Bian et al.)

• Problems:

- Query categorization may not be available
- Categorization may not be fine-grained

DAC - Divide And Conquer for ranking

The DAC ranking framework can be summarized in three main steps:

1.Identifying ranking-sensitive query categories

queries are categorized according to their ranking characteristics and ranking features discriminativity (Divide step)

2.Learning topic-specified ranking models via minimizing a global risk

Training of multiple ranking models (one for each cluster) by a unified learning method, while each query contribute to a specific ranker according to it's belonging to the cluster

3. Running each unseen query against all ranking models

At last, each unseen query is submitted to all ranking models and a weighted combination is used to merge the final results

Multiple Criteria Ranking

Training ranking models for multiple criteria beyond relevance, such as diversity efficiency

Dong et al.'s work

- Consider Freshness in instance labeling for training effective learning models.
- Demote the relevance labels of stale pages
- Show significant <u>improvements</u> in both Relevance and Freshness

In this paper

- Generating hybrid labels for documents based on their Relevance and Freshness
- Multi-Criteria ranking model in DAC framework

Temporal signals for ranking

temporal signals captures the dynamics of the queries ,web-pages ,hyperlinks in order to improve search quality

Typically, temporal signals are complementing the content-based matching scheme

- Profiling query temporal characteristics
- Emphasizing documents whose temporal characteristics are close to the query's temporal profile

Other works incorporated the dynamics of the content changes into document language model

CS-DAC

A ranking framework incorporates the balance between relevance and freshness into training customized rankers that optimize both freshness and relevance

A typical ranking function f with ω parameters takes a query-document feature vector X as input and produces ranking scores of documents.

$$\hat{\mathbf{y}} = f(\mathbf{X}, \omega)$$

The goal is to find a ranking model f^* that that takes query-document feature vectors as input, and produces a document ranking as accurate as possible

$$f^* = \arg\min_{f} \sum_{q} \mathcal{L}(f(\mathbf{X}_q, \omega), \mathbf{y}_q) = \arg\min_{f} \sum_{q} \mathcal{L}(\hat{\mathbf{y}}_q, \mathbf{y}_q)$$

CS-DAC Framework

As mentioned before, in DAC framework we cluster queries based on their feature representation and separate rankers are trained with each cluster simultaneously

Each ranker f_i^* is learned via:

$$f_i^* = \arg\min_{f_i} \sum_{q \in \mathcal{Q}} \mathcal{I}(q, i) \mathcal{L}_i(\hat{\mathbf{y}}_q, \mathbf{y}_q)$$

 $\mathcal Q$ - Training query set

 $\mathcal{I}(q,i)$ - Importance of query q with respect to the i^{th} ranking model

 $\mathcal{L}(\hat{\mathbf{y}}_q, \mathbf{y}_q)$ - Loss function

To account for relevance and freshness simultaneously, they propose to use hybrid labels that are generated based on freshness and relevance judgments

The hybrid labels is based on a weighted harmonic mean function which maps relevance and freshness grades to a single equivalent numerical score $\widetilde{y}_{q,d}$

$$\widetilde{y}_{q,d,i} = \frac{(1+\beta_i^2) \cdot y_{q,d}^R \cdot y_{q,d}^F}{y_{q,d}^R + \beta_i^2 \cdot y_{q,d}^F}$$

 $y_{q,d}^R$ -Relevance grade on the query document pair < q, d>

 $y_{q,d}^F$ -Freshness grade on the query document pair < q,d>

 β_i -Parameter for setting the trade-off between relevance and freshness

Allowing different values of β for rankers means that each query-document pair may affect the pairwise learning of each ranker differently Therefore they suggest to factorize query-document pair importance as follows

$$f_i^* = \arg\min_{f_i} \sum_{q \in \mathcal{Q}} \mathcal{I}(q, i) \times \sum_{\langle d_1, d_2 \rangle \in \mathcal{D}_q} \mathcal{U}'(q, i, d_1, d_2) \mathcal{L}_i\left(\left[\begin{array}{c} \hat{y}_{q, d_1, i} \\ \hat{y}_{q, d_2, i} \end{array}\right], \left[\begin{array}{c} \widetilde{y}_{q, d_1, i} \\ \widetilde{y}_{q, d_2, i} \end{array}\right]\right)$$

 \mathcal{D}_q - set of preferential query-documents pair with respect to query q $\mathcal{U}'(q,i,d_1,d_2)$ - importance of $<\!d_1,d_2>$ in training for query q with respect to the i^{th} ranking model

For simplicity, we assume $< q, d_1 >$ and $< q, d_2 >$ are independent, and so factorize the importance of the preferential pair $\mathcal{U}'(q, i, d_1, d_2)$ as follows.

$$\mathcal{U}'(q, i, d_1, d_2) = \mathcal{U}(q, i, d_1) \cdot \mathcal{U}(q, i, d_2)$$

where $\mathcal{U}(q,i,d_1)$ is the importance of query-document pair $< q,d_1>$ in training for query q with respect to the i^{th} ranking model

Is the Independence assumption holds?

Ensemble ranking

Given an unseen query q_0 :

- 1. profile its query characteristics
- 2. calculate its distances to the centroids of existing query clusters $c_1, c_2, \dots c_n$.
- 3. score the trained ranking functions according to the normalized distance between the query and their corresponding clusters, given by:

$$W_i = \frac{\mathcal{I}(q', i)}{\sum_{i'=1}^n \mathcal{I}(q', i')}$$

4. The query q' is run against all n rankers and the final result produced according to the ensemble ranking of their outputs:

$$\theta_{q'} = \sum_{i=1}^{n} W_i f_i^*(\mathbf{X}_{q'}, \omega_i)$$

Query importance (I)

The $\mathcal{I}(q,i)$ values provide a Binomial distribution over each of criteria-sensitive query clusters, and specify the importance of different ranking functions. Gaussian Mixture model (GMM) was used as soft k-means clustering to group queries into clusters.

The importance of a query to cluster is given by:

$$\mathcal{I}(q, i) = 1 - \frac{\|\mathbf{p}_q - \mathbf{c}_i\|^2}{\max_{q' \in \mathcal{Q}} \|\mathbf{p}_{q'} - \mathbf{c}_i\|^2}$$

 p_q - Feature vector of query

 c_i - Centroid of the cluster

Document importance (U)

- In pairwise learning to rank methods, the importance of a document with label y during training depends on the number of times it is compared to other documents with different labels
- In our model, because of the parameter β , we might have unequal labels coming from the same initial label for different rankers \longrightarrow **problem**

To over this problem, they suggest a factorization component \mathcal{U} which estimate the importance of a query-document pair by the <u>likelihood of visiting that label</u>

$$\mathcal{U}(q, i, d) = \frac{\sum_{q' \in \mathcal{Q}} N(q', i, \mathbf{y}_{q, d}) \cdot N(q', i, \neg \mathbf{y}_{q, d})}{\sum_{\mathbf{y'} \in \mathcal{Y}_i} \sum_{q' \in \mathcal{Q}} N(q', i, \mathbf{y'}) \cdot N(q, i, \neg \mathbf{y'})}$$

 \mathcal{Y}_i - Space of labels for ranker q $N(q, i, \mathbf{y})$ - number of documents with label \mathbf{y} $N(q, i, \neg \mathbf{y})$ - number of documents without label \mathbf{y}

- ▶ Document importance (*u*)
 - Problems:
 - 1. additional inter-label dependencies may arise from comparing common labels
 - 2. Overemphasizing certain documents inevitably introduces bias in ranking
 - · Solution: smoothing documents importance values by using Random Walk approach
 - 1. Define $\mathcal{U}(q,i,d)$ as $w(\mathbf{y}_{q,d})$
 - 2.Construct a fully-connected $w(\mathbf{y})$ bipartite graph G(V, E) which each node v is a unique hybrid label y associated with $w(\mathbf{y})$ and e is associated with the number of times the labels were compared during training.
 - 3. Perform a random walk where at each step, the random walk surfer jumps to random node with probability d or follows some connected

- $\qquad \qquad \mathsf{Loss} \; \mathsf{function} \, (\mathcal{L})$
 - RankSVM:

$$\underset{\omega,\xi_{q,i,j}}{\arg\min} \frac{1}{2} \|\omega\|^2 + C \sum_{q,i,j} \xi_{q,i,j} \quad \text{subject to} \quad \forall y_i^q \succeq y_j^q : \quad \omega^T X_i^q \geq \omega^T X_j^q + 1 - \xi_{q,i,j}, \\ \forall_q \forall_i \forall_j : \qquad \qquad \xi_{q,i,j} \geq 0$$

 $\xi_{q,i,j}$ - Non-negative slack variable

 ${\cal C}$ - Parameter for setting trade-off between training error and margin size

 X_i^q - Query-document feature-vector

 $y_i^q \succeq y_j^q$ - notation for implying document i is ranked higher than document j with respect to query q

Modified RankSVM (with respect to CS-DAC):

$$\arg\min_{\omega_{i},\xi_{q,j,k}} \frac{1}{2} \|\omega_{i}\|^{2} + C \sum_{q,j,k} \xi_{q,j,k} \quad subject \ to, \quad \forall \widetilde{y}_{q,j,i} \succeq \widetilde{y}_{q,k,i} : \mathcal{I}(q,i)\mathcal{U}(q,i,j)\omega_{i}^{T}X_{j}^{q} \\ \geq \mathcal{I}(q,i)\mathcal{U}(q,i,k)\omega_{i}^{T}X_{k}^{q} + 1 - \xi_{q,j,k}, \\ \forall_{q}\forall_{i}\forall_{j} : \quad \xi_{q,i,j} \geq 0$$

Evaluation metric

Hybrid NDCG

hybrid NDCG extends the commonly used evaluation metric NDCG to take hybrid labels for evaluation.

Formally, hybrid NDCG defined as below:

hybrid NDCG(n) =
$$Z_n \sum_{j=1}^n \frac{2^{(\gamma \mathbf{y}_R + (1-\gamma)\mathbf{y}_F)} - 1}{\log_2(j+1)}$$

 ${\it Z}_n$ - Oracle discounted cumulative gain in cut-off $\it n$

 \mathbf{y}_{R^+} - Relevance label

 \mathbf{y}_F - Freshness label

 γ - Parameter specifying the trade-off between Freshness and Relevance

Data

- ▶ 158 million unique URLs and 12 billion links , January 2000 to December 2007
- One snapshot per month (88 totally)
- Remove pages with less than 5 snapshots and kept 3.8 million pages and 435 million links

Queries

- 90 temporal queries sampled from "Google Trends"
- 90 non-temporal queries sampled from MSN query log

Judgments and Metrices

- ► Freshness and Relevance was judged in scale of 0-4 separately
- ► Freshness and Relevance were evaluated by hybrid NDCG

- Ranking features
 - Non-temporal features

include several commonly used text-similarity scores such as BM25 and language modeling computed over different fields of documents, and link-based static features

Table 1: Non-temporal ranking features used by RankSVM in the CS-DAC framework and baseline methods. Body, title, heading and anchor-text fields are respectively represented by B, T, H and A.

Feature name	Feature description	Feature name	Feature Description
Okapi(B)	Okapi BM25 score [25] for body-text.	RQT(B)	Ratio of covered terms in body-text.
RQT(H)	Ratio of covered terms in heading-text.	LM.JM(B)	body-text language modeling (Jelinek-Mercer) score [31].
LM.Dir(B)	Body-text language modeling (Dirichlet) score [31].	RQT(T)	Ratio of covered terms in title-text.
InNum	Number of inlinks.	TF(B)	Term frequency in body-text.
AvgNTF(B)	Average normalized TF in body-text.	LM.JM(T)	title-text language modeling (Jelinek-Mercer) score
STFIDF(H)	Sum of term TFIDF in heading-text.	NumQT(A)	Number of covered terms in anchor-text.
MaxNTF(B)	Maximum normalized TF in body-text.	PR	PageRank score [4].
AvgNTF(T)	Avgerage normalized TF for title-text.	LM.Dir(T)	title-text language modeling (Dirichlet) score.
MxTFIDF(T)	Maximum term TFIDF in title-text.	MaxNTF(T)	Maximum normalized TF in title-text.
LM.Dir(H)	heading-text language modeling (Dirichlet) score	MaxTF(T)	Maximum query term frequency in title-text.
ATFIDF(T)	Average term TFIDF in title-text.	AvgTF(T)	Average query term frequency in title-text.
SumTF(T)	Sum of term frequency in title-text.	LM.JM(H)	heading-text language modeling (Jelinek-Mercer) score.
L(B)	Body-text length.	AvgTF(H)	Average query term frequency in heading-text.
SumTF(H)	Sum of term frequency in heading-text.		

Ranking features

- ► <u>Temporal features</u>
 - Measuring the changes in content documents (e.g. TF-IDF) and construct a time-series for different document labels (body ,heading, etc.)
 - Use STL (seasonal-trend decomposition) to decompose each time-series into three components:

$$STL(\tau) = \mathcal{T}_{\tau} + \mathcal{S}_{\tau} + \mathcal{R}_{\tau}$$

- (\mathcal{T}) -Trend
- (\mathcal{S}) -Seasonal
- (\mathcal{R}) -Reminder

- Ranking features
 - Temporal features

Feature name	Feature description
Slp(au)	Slope of trend component T_{τ} .
$Amp(\tau)$	Amplitude of seasonal component S_{τ} .
$Rp(\tau)$	Relative position in S_{τ} .
$Cs(\tau)$	Confidence of seasonality.
$Cr(\tau)$	Confidence of regularity.
TPR	Timed PageRank [30].

- ▶ The slope of the trend component captures the <u>speed</u> of the content changes
- ▶ The amplitude of seasonal component captures the scale of the content changes

- Query clustering features
 - The query importance features (\mathcal{I}) are used to cluster queries and assign the weights in each corresponding ranking function
 - 1. First, a reference ranker (BM25) used to make an initial retrieval
 - 2. The k first document (15) are gathered
 - Average value of each Ranking feature is computed and the final mean value is the clustering feature
 - 4. The feature importance is computed by training a reference RankSVM model for hybrid NDCG on the training dataset

Baseline methods

- ► <u>SinR-</u> single RankSVM ranker with all features
- SepR separate RankSVM rankers for temporal and non-temporal queries (assuming that the type of the query is well-known)
- Over-Weighting model -combines Relevance and Freshness labeled data to a single ranker and over-weighting training pairs of the criterion with fewer labels.

$$\arg\min_{\omega,\xi_{q,i,j}} \frac{1}{2} \|\omega\|^2 + C \sum_{q,i,j} \xi_{q,i,j} \quad \text{subject to} \quad \forall y_i^q \succeq y_j^q : \quad \left\{ \begin{array}{l} \frac{\alpha}{N_T} \omega^T X_i^q \geq \frac{\alpha}{N_T} \omega^T X_j^q + 1 - \xi_{q,i,j} & q \in \mathcal{Q}_T \\ \frac{1-\alpha}{N_N} \omega^T X_i^q \geq \frac{1-\alpha}{N_N} \omega^T X_j^q + 1 - \xi_{q,i,j} & q \in \mathcal{Q}_N \end{array} \right.$$

$$\forall_q \forall_i \forall_j : \qquad \qquad \xi_{q,i,j} \geq 0$$

 TopicalSVM - trains all rankers using global loss function but doesn't factorize the querydocument importance (as CS-DAC)

- Baseline investigation
 - ► Run baselines techniques optimized for different goals
 - ▶ pick the best preforming baselines and compare the against CS-DAC
- Performance analysis for experimental baslines
 - ▶ The baselines methods were trained for one of four optimization goals:
 - 1. Relevance- using Relevance label only
 - 2. <u>Freshness</u> using Freshness label only
 - 3. <u>Hybrid</u> using hybrid labels
 - 4. <u>Demoted</u> rescored Relevance labels according to their outdate time

Non-temporal queries

(b) Freshness labels (\mathbf{y}^F)

Consequences

- 1. When evaluating on Relevance labels it is more effective to optimize over for Relevance
- 2. The methods optimized fir demoted and hybrid label consistently outperform over others
- 3. SinR has overall poorest performance, where the other methods show similar effectiveness

Temporal queries

Consequences

- 1. Less variation in performance compared to the non-temporal queries
- 2. SinR has overall poorest performance, where the other methods show similar effectiveness

As a result from the baselines investigation, was performed another experiment know comparing SepR, TopicalSVM AND Over-weighted methods to CS-DAC with and without factor $\ensuremath{\mathcal{U}}$

Comparative performance on Freshness

	Temporal Queries (Google Trends)			
	NDCF1	NDCF3	NDCF5	NDCF10
SepR	0.378	0.360	0.372	0.408
TopicalSVM	0.365	0.355	0.365	0.402
Over-weighting	0.340	0.348	0.363	0.404
CS-DAC	0.398‡	0.364	0.376	0.411
$CS\text{-}DAC(\mathcal{U})$	<u>0.416</u> †§‡	<u>0.379</u> ‡	0.388	0.400

	Non-Temporal Queries (MSN logs)			
	NDCF1	NDCF3	NDCF5	NDCF10
SepR	0.348	0.411	0.434	0.475
TopicalSVM	0.355	0.408	0.430	0.485
Over-weighting	0.335	0.408	0.434	0.480
CS-DAC	0.427†§‡	0.454†§‡	0.473†§‡	0.510§‡
$CS\text{-}DAC(\mathcal{U})$	<u>0.452</u> †§‡	<u>0.466</u> †§‡	<u>0.488</u> †§‡	0.527†§‡

Comparative performance on Relevance

	Temporal Queries (Google Trends)			
	NDCG1	NDCG3	NDCG5	NDCG10
SepR	0.373	0.359	0.375	0.411
TopicalSVM	0.342	0.354	0.365	0.408
Over-weighting	0.355	0.351	0.368	0.411
CS-DAC	0.385	0.365	0.377	0.417
$CS\text{-}DAC(\mathcal{U})$	<u>0.401</u> †‡	0.375	0.389	0.426†
	Non-Temporal Queries (MSN logs)			
	NDCG1	NDCG3	NDCG5	NDCG10
SepR	0.481	0.517	0.532	0.562
TopicalSVM	0.490	0.508	0.521	0.566
Over-weighting	0.476	0.510	0.538	0.570
CS-DAC	0.493	0.520	0.541	0.574
$CS\text{-}DAC(\mathcal{U})$	0.509	0.522	0.541	0.574

Parameter analysis

Smoothing query-document importance

original query-document importance values can be smoothed by random walk, where the probability d of random jumping can be tuned during training and validation.

(a) Temporal queries

(b) Non-temporal queries

Parameter analysis

Hybrid labels for evaluation

► The (almost) monotonic grow in the non-temporal queries graph may caused by the fact that generally relevance based NDCG values are greater than those computed on the freshness labels

Parameter analysis

Feature analysis

► <u>Temporal features</u>

- The confidence value for the seasonality and regularity of STL decomposition were generally more effective.
- Features that was generated out the time-series decomposition of changes in the anchortext and inlinks were more successful than those similarly produced based on other fields

Non-temporal features

 BM25 and language modeling scores had the highest weights and were most effective when computed over the body and title text