

Due: 11:59 pm on Nov 26, 2024

## Problem 1 (40 pts)

A plane wave of angular frequency  $\omega$  and wave number  $|\mathbf{K}|$  propagates in a neutral, homogeneous, anisotropic, non-conducting medium with  $\mu = 1$ .

- 1. Show that **H** is orthogonal to **E**, **D** and **K**, and also that **D** and **H** are transverse but **E** is not.
- 2. Let  $D_k = \sum_{l=1}^3 \varepsilon_{kl} E_l$ , where  $\varepsilon_{kl}$  is a real symmetric tensor. Choose the principal axes of  $\varepsilon_{kl}$  as a coordinate system  $(D_k = \varepsilon_k E_k; k = 1, 2, 3)$ . Define  $\mathbf{K} = K\hat{S}$ , where the components of the unit vector  $\hat{S}$  along the principal axes are  $S_1, S_2$ , and  $S_3$ . If  $V = \omega/K$  and  $V_j = c/\sqrt{\varepsilon_j}$ , show that the components of  $\mathbf{E}$  satisfy

$$S_j \sum_{i=1}^{3} S_i E_i + (\frac{V^2}{V_j^2} - 1) E_j = 0.$$

Write down the equation for the phase velocity V in terms of  $\hat{S}$  and  $V_j$ . Show that this equation has two finite roots for  $V^2$ , corresponding to two distinct modes of propagation in the direction  $\hat{S}$ .

## Problem 2 (30 pts)

Four identical coherent monochromatic wave sources A, B, C and D produce waves of the same wavelength  $\lambda$ . Two receivers  $R_1$ , and  $R_2$  are at great (but equal) distances from B.

- 1. Which receiver picks up the greater signal?
- 2. Which receiver, if any, picks up the greater signal if source B is turned off?
- 3. if source D is turned off?
- 4. Which receiver can tell which source, B or D, has been turned off?





## Problem 3 (30 pts)

In a region of empty space, the magnetic field (in Gaussian units) is described by

$$\mathbf{B} = B_0 e^{ax} \mathbf{\hat{e}_z} \sin \omega,$$

where  $\omega = ky - \omega t$ .

- 1. Calculate **E**.
- 2. Find the speed of propagation v of this field.
- 3. Is it possible to generate such a field? If so, how?