

MCTA023-17 – Segurança de Dados

Professora: Denise Goya

Prática 01 – Criptografia Simétrica e Confidencialidade: cifras de bloco e modos de operação de cifras

Baixe e extraia para uma pasta local os arquivos de **SD_lab1_cifras_javascripts.zip**, anexo à atividade

Resolva as questões abaixo. Submeta suas respostas individualmente no Tidia.

I) Sobre o **DES** (Data Encryption Standard), execute o simulador disponível em *JavaScriptDESExample.htm* e responda as questões a seguir:

1.	Cifre algo com DES e observe a saída; mude 1 bit apenas na mensagem de entrada e cifre novamente usando a mesma chave. Quantos bytes foram alterados na saída em
	·
	relação à anterior? Pode-se tirar alguma conclusão sobre
_	o que foi observado?
2.	Observe a evolução do algoritmo passo-a-passo no quadro "Details". Quantas
	execuções da Função de Feistel (f) são efetuadas?
_	Quantas execuções de f ocorrem quando se escolhe Triple DES?
3.	Qual é o tamanho da chave em bits, nessa implementação do Triple DES?
	Observe que a chave não tem o mesmo tamanho da especificação vista em sala de
	aula; qual é mais segura e por quê?
4.	Veja que nesse mesmo link, logo abaixo do quadro "Details", há um resumo da
	descrição do DES (How DES Works). Em linhas gerais, em que partes do algoritmo são
	aplicados os conceitos de Confusão e de Difusão, para aumento da entropia do texto
	cifrado?
5.	Esse simulador do DES foi escrito em Javascript; exiba o código no próprio navegador.
	Em que vetor (variável do tipo array) são guardadas as diferentes chaves usadas em
	cada rodada da Função de Feistel (f)? Quantas chaves derivadas são
	geradas para a execução do DES simples?
6.	Para observar o comportamento do DES em uma única iteração, insira uma sequência
	de 8 zeros (em ASCII "0") como mensagem de entrada. Cifre. Em "Details",
	imediatamente antes de iniciar o Round1, L[0] e R[0] guardam os 8 zeros da entrada,
	com uma permutação inicial. Percentualmente, quantos bits em L[0] e R[0] são iguais a
	0 e 1? Imediatamente antes de iniciar o <i>Round2</i> , L[1] e R[1]
	guardam a mensagem original processada apenas uma vez com Feistel. Qual é o
	percentual de bits 0 e 1 nesse instante? Uma cifra forte, após
	cada iteração, gera um estado intermediário em que cerca de 50% dos bits são iguais a
	zero, independentemente da entrada e da chave. Isso ocorre com o DES? Que
	conclusão você tira a respeito disso?

	re o AES (Advanced Encryption Standard), execute o simulador disponível em riptAESExample.htm e responda as questões a seguir:
1.	Faça alguns testes para cifrar e decifrar com o AES. Veja o pseudo-código nesta mesma página (textos <i>Encryption Algorithm</i> e <i>AES Decryption</i>). Observe que para cifrar há um laço de repetição com 10 passos, enquanto para decifrar, o laço é de 9 passos. Em sua opinião, estão corretos esses pseudo-códigos? Justifique.
2.	Qual é a função do vetor w nessa implementação?
-	re os modos de operação de cifra de bloco, execute o simulador disponível em riptAES-ChainExample.htm e responda as questões a seguir:
1.	Insira duas diferentes mensagens de 16 caracteres (128 bits) em <i>Message Part 1</i> e <i>Message Part 2</i> . Observe os textos cifrados nos modos <i>Electronic Codebook</i> (ECB) e <i>Cipher Block Chaining</i> (CBC). Os dois modos de operação produziram alguma semelhança na saída? Explique o motivo.
2.	Repita o teste anterior para mensagens iguais (<i>Message Part 1 = Message Part 2</i>), para os mesmos dois modos de operação. O que é observado e o que se pode concluir?
3.	A implementação dos modos ECB e CBC nesse Javascript não faz <i>Padding</i> , o que é necessário se fazer numa aplicação real. O que é <i>Padding</i> e como se pode perceber que esse Javascript não o faz?
4.	Teste o modo de operação <i>Output Feedback</i> para mensagens de tamanhos menores que 16 caracteres. Por que funciona e o que se pode concluir? (veja a descrição dos modos de operação nessa mesma página) O AES com o modo <i>Output Feedback</i> poderia substituir uma cifra de fluxo?
	Para que tipo de aplicação seria mais vantajoso usar cifra de fluxo e porquê?
	Para que tipo de aplicação seria mais vantajoso usar AES com <i>Output Feedback</i> e porquê?
5.	Localize nessa página observações a respeito do vetor de inicialização IV. Quais são as considerações de segurança feitas e suas justificativas?