Необходимо при помощи алгоритма Прима для заданного множества выводов конструктивных элементов (КЭ) определить минимальное связанное дерево и его дриму $P \in \mathcal{A}$ при условии, что каждый вывод должен иметь не более трех соединений с примыкающими к нему проводниками, т.е. $\rho(m_i) \leq 3$.

Исходная принципиальная схема представлена на рисунке A.1. Исходный печатный узел представлен на рисунке 1.1а.

Рисунок 1.1 — Трассировка печатного узла: а) исходная трассировка; б) трассировка шины земли при помощи алгоритма Прима

Для трассировки выбрана шина земли (выделенный проводник на рисунке 1.1a), которая соединяет между собой 6 конструктивных элементов (DD2, X1, DD1, C3, C2, R1). Координаты соединяемых выводов представлены в таблице 1.1 (центр координат в левом нижнем угле печатного узла, шаг сетки 1 мм).

Таблица 1.1 – Координаты	выволов конструктивных	с элементов для трассировки

	Ордината	
	70	
10	85	
10	110	
25	117	
	115	
29	106	
	Абецисса 30 10 10 25 25 25	

Длина трассируемого между выводами i и j КЭ проводника, направление которого может изменяться только ортогонально, определяется выражением (1.1).

$$d_{ij} = |x_i - x_j| + |y_i - y_j|, (1.1)$$

где x_i, x_j – абсцессы выводов конструктивных элементов i и j соответственно; y_i, y_j – ординаты выводов конструктивных элементов i и j соответственно.

Сформированная матрица расстояний между выводами конструктивных элементов представлена в таблице 1.2.

Таблица 1.2 – Матрица расстояний между выводами КЭ

Гаолица 1.2 — Матрица расстоянии между выведение							
	DD2.10	X1.2	DD1.20	C3.1	C2.1	R1.2	
DD2.10	0	35	60	52	50	37	
X1.2	35	0	25	47	45	40	
DD1.20	60	25	0	22	20	23	
C3.1	52	47	22	0	2	15	
C2.1	50	45	20	2	0	13	
D1.2	37	40	23	15	13	0	
N1.2	31	THE RESERVE OF THE PERSON NAMED IN				Marie Waller	

Началом алгоритма Прима является трассировка соединения минимальной длины. Минимальному положительному значению длины (2 мм) в матрице расстояний (Таблица 1.2) соответствует соединение между выводами СЗ.1 и С.2, с которого и стартовал алгоритм Прима. Процесс трассировки шины земли (от элемента СЗ) рассматриваемого печатного узла представлен в таблице 1.3. Результат трассировки представлен на рисунке 1.16.

711		Расстояние	Комментарий		
Шаг	Ближайший КЭ	Расстоянис	(22) 1 ((22) - 1	700	Water Comment
1	C2	2	$\rho(C3) = 1, \rho(C2) = 1$		
2	D1	13	$\rho(C2) = 2, \rho(R1) = 1$	1200	10.0
2	K1	20	$\rho(C2) = 3, \rho(DD1) = 1$		- Arra
3	DD1	20	$\rho(DD1) = 2, \rho(X1) = 1$		N I AT
4	X1	25	$\rho(DD1) = 2, \rho(X1) = 1$		
5	DD2	35	$\rho(X1) = 2, \rho(DD2) = 1$		
	KCC	95			