Sri Lanka Institute of Advanced Technological Education

Final Project Report Gas Leakage Alert & Call System

Advanced Technological Institute – Anuradhapura

Supervisor : Mrs. W.A.S Wickramasingha

Name : P.L Vithanage

Course : Higher National Diploma in Information Technology

Reg : ANU/IT/2022/F/57

ACKNOWLEDGEMENT

I would like to express my gratitude to my supervisor, Ms. W.A.S Wickramasingha, for her invaluable guidance and support throughout this project. I also extend my thanks to the faculty of the Sri Lanka Institute of Advanced Technological Education for providing the resources and knowledge necessary to complete this work.

ABSTRACT

This project aims to develop an IoT-based Gas Leak Alert and Call System to enhance safety in households and industrial settings. The system detects gas leaks in real-time using sensors, sends instant alerts to users via mobile notifications, and triggers automated emergency calls to predefined contacts. The solution integrates hardware components (Arduino Uno, GSM SIM900C module, gas sensor) and software (Arduino IDE, C programming) to address the limitations of traditional gas leak detection methods. The system was tested for reliability, accuracy, and responsiveness, demonstrating its potential to reduce gas-related accidents in Sri Lanka.

TABLE OF CONTENT

ACKNOWLEDGEMENT	i
ABSTRACT	ii
TABLE OF CONTENT	iii
LIST OF FIGURES	v
LIST OF TABLES	vi
LIST OF ABBREVIATIONS	vii
CHAPTER 1	1
1.0 Introduction	1
1.1 Background	1
1.2 Problem Definition	1
1.3 Aim and Objectives	1
1.4 Scope	1
CHAPTER 2	2
2.0 System Analysis	2
2.1 Requirements Gathering	2
2.2 Current System Limitations	2
2.3 Software Requirements Specification (SRS)	2
2.4 Use-Case Diagram	3
2.4.0 Use-Case Descriptions	4
2.4.1 Use Case 01	4
2.4.2 Use Case 02	5
2.4.3 Use Case 03	6
2.4.4 Use Case 04	7
CHAPTER 3	8
3.0 System Design	8
3.1 Architecture	8
3.2 Data Flow	8
3.3 Class Diagram	8
3.4 Activity Diagram	9
3.5 Sequence Diagram	10

CHAPTER 4	11
4.0 Development, Testing, and Implementation	11
4.1 Development	
4.2 Testing	
4.2.1 Test Case	12
CHAPTER 5	13
5.0 Evaluation and Conclusion	13
5.1 Achievements	13
5.2 Limitations	13
5.3 Future Work	13
5.4 Conclusion	13
References	14

LIST OF FIGURES

Figure 01: Use Case Diagram	3
Figure 02: Use Case 01	4
Figure 03: Use Case 02	5
Figure 04: Use Case 03	6
Figure 05: Use Case 04	7
Figure 06: Class Diagram	8
Figure 07: Activity Diagram	9
Figure 08:Sequence Diagram	10

LIST OF TABLES

Table 1: Use Case Description 01	4
Table 2:Use Case Description 02	5
Table 3:Use Case Description 03	6
Table 4:Use Case Description 04	7
Table 5:Test Case	12

LIST OF ABBREVIATIONS

IoT: Internet of Things

LPG: Liquefied Petroleum Gas

GSM: Global System for Mobile Communications

1.0 Introduction

1.1 Background

Gas leaks pose significant safety risks in Sri Lanka, especially in urban and industrial areas. Incidents like the 2022 Colombo restaurant explosion highlight the urgent need for advanced detection systems. Traditional methods lack real-time monitoring and remote alerts, delaying emergency responses.

1.2 Problem Definition

The current gas leak detection systems in Sri Lanka are standalone devices with no IoT integration, leading to delayed alerts and inefficient emergency responses.

1.3 Aim and Objectives

Aim

Develop an IoT-based system for real-time gas leak detection, instant alerts, and automated emergency calls.

Objectives:

Detect gas leaks using sensors.

Send alerts via mobile notifications.

Automate calls to emergency contacts.

Ensure cost-effectiveness.

1.4 Scope

The system targets households and small industries using LPG. It does not cover large-scale industrial gas monitoring.

2.0 System Analysis

2.1 Requirements Gathering

- User Surveys: Interviews with homeowners and restaurant managers revealed dissatisfaction with existing detectors.
- Past Data Review: Analysis of gas-related accidents in Sri Lanka (e.g., 2022 Colombo incident).

2.2 Current System Limitations

- No real-time alerts.
- Lack of IoT integration.
- Manual emergency calls.

2.3 Software Requirements Specification (SRS)

Hardware: Arduino Uno, GSM SIM900, MQ 07 Gas Sensor.

Software: Arduino IDE, C programming.

Functional Requirements:

- Detect gas leaks.
- Send SMS alerts.
- Trigger automated calls.

2.4 Use-Case Diagram

Figure 01: Use Case Diagram

2.4.0 Use-Case Descriptions

2.4.1 Use Case 01

Figure 02: Use Case 01

Use Case 1					
Use Case Name	Detect Gas Leak				
Actor	Gas Sensor (MQ-7)				
Overview	The gas sensor detects hazardous gas levels and sends an analog signal				
	to the microcontroller				
Pre-Conditions	Gas sensor is powered and calibrated				
	Microcontroller is operational				
Description	1.Gas sensor continuously monitors the environment				
	2.If gas concentration exceeds a threshold, it sends an analog signal to				
	the microcontroller.				
Alternative flows	Description:				
	1.If the sensor fails, the system logs an error (if debugging is enabled)				
	2.If gas is below threshold, no action is taken.				
Additional Descriptions	Sensor type:MQ-7 (for LPG, smoke, propane)				
Post condition	Microcontroller receives the gas leak signal for further processing.				

Table 1: Use Case Description 01

2.4.2 Use Case 02

Figure 03: Use Case 02

Use case 02					
Use Case Name	Process Signal				
Actor	Microcontroller				
Overview	The Arduino processes the gas sensor's signal to determine if an alert is needed.				
Pre-Conditions	1.Gas sensor has sent a valid signal.				
	2.ADC (Analog-to-Digital Converter) is functional.				
Description	1. Arduino reads the analog signal.				
	2.Compares it against a predefined threshold.				
	3.If exceeded, triggers alert actions (LCD, LED, GSM).				
Alternative flows	Description:				
	1.If signal is noisy, apply software filtering (e.g., moving average).				
	2.If ADC fails, system resets or alerts hardware error.				
Additional Descriptions	Averaging multiple readings for stability.				
Post condition	Microcontroller confirms gas leak and proceeds to alert outputs.				

Table 2:Use Case Description 02

2.4.3 Use Case 03

Figure 04: Use Case 03

Use case 03	
Use Case Name	Display Alert on LCD
Actor	Arduino Output (LED)
Overview	Visual alerts nearby users of a gas leak.
Pre-Conditions	1.Microcontroller confirms gas leak.
	2.LED is connected.
Description	Arduino turns on red LED.
	2.Continues until gas levels normalize or reset.
Alternative flows	Description:
	If buzzer fails, blink LED rapidly.
Additional Descriptions	LED Patterns: Slow Blink
Post condition	Users are alerted via sound/light.

Table 3:Use Case Description 03

2.4.4 Use Case 04

Figure 05: Use Case 04

Use case 04						
Use Case Name	Send SMS Alert and Call					
Actor	GSM Module (SIM900)					
Overview	The GSM module sends an emergency SMS and call to a predefined phone number.					
Pre-Conditions	1.GSM module is powered and connected to a network. 2.Microcontroller triggers an alert.					
Description	1.Arduino sends AT commands to GSM.2.GSM module sends "WARNING: Gas Leak Detected!" to the registered number.					
Alternative flows	Description: 1.If SMS fails, retry 3 times. 2.If no network, log error and trigger LED.					
Additional Descriptions	GSM Module: Sim900 GPRS/GSM shield with Antenna					
Post condition	User receives a Call and SMS about the gas leak.					

Table 4:Use Case Description 04

3.0 System Design

3.1 Architecture

- Hardware Layer: Sensors and Arduino.
- Communication Layer: GSM module.
- Application Layer: Alert and call logic.

3.2 Data Flow

1. Gas sensor detects leak \rightarrow Arduino processes data \rightarrow GSM sends alert/call.

3.3 Class Diagram

Figure 06: Class Diagram

3.4 Activity Diagram

Figure 07: Activity Diagram

3.5 Sequence Diagram

Figure 08:Sequence Diagram

4.0 Development, Testing, and Implementation

4.1 Development

Tools Used: Arduino IDE, C language.

Challenges: GSM module connectivity issues (resolved with antenna adjustments)

4.2 Testing

4.2.1 Test Case

Test Case Gas	Laskasa Datas		Test Case ID GasAlert-1A				
	em Test	etion – Alert	Test Priority High		gh		
-		N GSM					
	System powered ON, GSM module connected, Gas senso		·		System reset after test		
_	orated	Gas scrisor	108	Post-Requisite System reset and		and test	
	Taleu						
Test Execution Steps:							
`Serial No Action	Inputs	Expected Out	put	Actual Outpo	ut	Test	Test
	inputs	Zinpected out	Pur	Tretaur Surp		Result	Comments
Power ON the system	N/A	Power LED turns On, sys initializes	Power LED on, Serial monitor logs shows bootup		S	Pass	System boot verified
Simulate gas	Apply	Serial monitor Serial monitor	Serial monitor			C - 1-44-1	
2 leakage (use to	st test gas	logs: Gas Lea	ak	logs: Gas Leak Detected		Pass	Gas detected
gas)	to sensor	Detected					verified
		Serial monito	or	Serial monitor	or		
Send alert		logs: Send S	MS	logs: Send S	MS		SMS
message (SMS	N/A	to 076108800	05,	to 0761088005,		Pass	detection
message (Sivi		received: "Ga	as	received "Ga	as		verified
		Leak Detecte	ed"!	Leak Detecte	ed"!		
		Serial monito	or	Serial monit			
Simulate an	Simulate an logs: Calling			Pass	Call detection		
incoming call		0761088005,		0761088003			verified
		Received cal					
		Serial monito	or	Serial moni	tor		Call
5 End the call	N/A	logs: "Call		logs: "Call		Pass	terminated
		ended"		ended"			verified

Table 5:Test Case

5.0 Evaluation and Conclusion

5.1 Achievements

- Real-time detection and alerts achieved.
- Automated calls functional.

5.2 Limitations

- Limited to LPG (not compatible with natural gas).
- Requires stable GSM network.

5.3 Future Work

- Integrate Wi-Fi for dual connectivity.
- Expand to industrial-scale monitoring.
- When the call ringing emergency sound will hear

5.4 Conclusion

The project successfully addresses gas leak safety concerns in Sri Lanka. Its costeffectiveness and scalability make it viable for widespread adoption.

References