Universidad Nacional de Río Negro Física III B - 2018

Unidad 02

Clase U02 C03 - 08

Fecha 12 Abr 2018

Cont Ejercicio calor latente y Ciclos

Cátedra Asorey

Web github.com/asoreyh/unrn-f3b

YouTube https://goo.gl/nNhGCZ

Contenidos: Termodinámica, alias F3B, alias F4A

Trabajo en el pizarrón

Trabajamos con ejercicio de calor latente Guía O2

Nueva transformación

- Vimos transformaciones a P=cte (isobara) y V=cte (isocora)
 - Isobara:

•
$$\Delta U = a/2 n R \Delta T$$

•
$$Q = \Delta U + W$$

socora:

•
$$Q = C_V n \Delta T$$

•
$$Q = \Delta U$$

- ¿Cómo será una expansión isotérmica?
 - Baño térmico (p. ej.: Atmósfera, Océano, ...)
 - Reservorio de calor a una temperatura T dada
 - Puede ceder o absorber calor sin que T se vea afectada
 - Un sistema en contacto con un baño → evolución isotérmica

Transformación Isotérmica, T=cte

Si $T = \text{cte pV} = nRT \rightarrow p V = \text{cte}$

Abr 12, 2

En resumen.... II

Isobara:

- W = p ∆V
- $\Delta U = (z/2) n R \Delta T$
- $Q = \Delta U + W$

Isoterma:

- W = n R T ln (V_f / V_i)
- ∆U = O
- $Q = \Delta U + W \rightarrow Q = W$

• socora:

- W = O
- $Q = C_V n \Delta T$
- $Q = \Delta U$

Adiabática

 Próximamente en los mejores cines de su barrio

Último caso: No hay intercambio de calor

- No hay intercambio de calor con el medio
 - Recipiente muy aislado (calorímetro); ó
 - Transformación muy rápida (abriendo una Coca Cola)
- En este caso: Q = O ← Transformación Adiabática
- Q = $\Delta U + W \rightarrow O = \Delta U + W \rightarrow W = -\Delta U$
- En una expansión adiabática, el trabajo se realiza a costa de la energía interna del gas
- Expansión adiabática → Brusco descenso de T
 Y viceversa: en una compresión adiabática, todo el trabajo se convierte en energía interna (Zonda)

Adiabáticas vs isotermas

Trabajo adiabático

Según el primer principio y teniendo en cuenta Q=0:

$$W = -\Delta U \rightarrow W = -\frac{z}{2} nR \Delta T \rightarrow W = -\frac{z}{2} nR (T_f - T_i)$$

$$W = -\frac{z}{2} (P_f V_f - P_i V_i)$$

$$W = -\left(\frac{P_f V_f - P_i V_i}{\gamma - 1}\right)$$

En resumen.... Il

Isobara:

- W = $p \Delta V$
- $\Delta U = (z/2) n R \Delta T$
- $Q = \Delta U + W$

Isoterma:

- W = n R T ln (V_f / V_i)
- ∆U = O
- $Q = \Delta U + W \rightarrow Q = W$

• socora:

- W = O
- $Q = C_V n \Delta T$
- $Q = \Delta U$

Adiabática

- W = $-\Delta U$
- $\Delta U = (z/2) n R \Delta T$
- $Q = O \rightarrow W = -\Delta U$

Sucesión de transformaciones

Cuadro de estados

Estado	р	V	Т	n
A 1	p _A	V _A	T _A	n _A
B. 2	$p_B = 3p_A$	V _B =V _A	T _B	n _A
C 3	p _c =p _A	V _c	$T_{c}=T_{B}$	n _A
$\rightarrow A$	p _A	V _A	T _A	n _A

- Identificar los datos en el problema
- Determinar datos faltantes con las transformaciones
- Calcular datos faltantes con ec. de estado → pV=nRT

Cuadro de transformaciones

Transf	Q	W	ΔU
1: isocora	= ΔU	0	=(a/2) n R ($T_B - T_A$)
2: isoterma	= W	=nRT In(V _C /V _A)	0
3: isobara	= ∆U+W	$=P(V_A-V_C)$	=(a/2) n R (T_A - T_C)

- Identificar aquellos valores que no cambian en cada transformación
- Dejar el calor Q para el final (evita confusiones)
- En un ciclo ∆U_{total} = O ← El gas vuelve a su estado inicial U_f = U_i