母平均

機械学習

川田恵介 (keisukekawata@iss.u-tokyo.ac.jp)

Table of contents

1		キーワード	2
	1.1	例	2
	1.2	過学習/過剰適合	2
2		母分布	3
	2.1	データ分析の根本問題と解決策	3
	2.2	解決策: 母集団とサンプリング	3
	2.3	解決策: 評価	3
	2.4	解決策: 評価	4
	2.5	解決策: モデル推定	4
	2.6	予測の誤差	4
	2.7	最善の予測	4
	2.8	数值例	5
	2.9	数値例: データ (100 事例)	5
	2.10	数値例: 想像上の母平均の追記	6
	2.11	数値例: OLS との比較	6
	2.12	数値例: OLS との比較	7
	2.13	性質	7
	2.14	数値例: 事例数の増加	7
	2.15	数值例: 30	8
	2.16	数值例: 300	8
	2.17	数值例: 3000	9
	2.18	数值例: 30000	9
	2.19	性質	10
	2.20	過学習/過剰適合	10
	2 21	宝敞への示唆	10

1 キーワード

- 過学習/過剰適合
- 推定されたモデルが、事例と過剰に適合してしまう (事例から過度に学び過ぎてしまう) 現象
 - 矛盾して聞こえるが、データ分析において最も注意すべき
 - その理由とともに必ず理解を!!!

1.1 例

• Price を Size (とその 11 乗まで) で OLS 推定すると?

1.2 過学習/過剰適合

- モデルを複雑化すると、データ上の平均に予測値が必ず近づく
 - データとの矛盾は減る
- 予測性能は悪化しうる!!!

2 母分布

- データ分析における論点整理のために、母分布を導入
 - 機械学習/統計学/計量経済学、全ての分野で用いられており、今後の講義や自学で学ぶ際に必須
 - なぜ"単純すぎる"経済モデルが実用的な場面があるのか、を理解する上でも重要
 - * 直接観察できない概念であり、人間の想像力に依拠

2.1 データ分析の根本問題と解決策

- 同じ社会や市場を対象にしたとしても、研究者によって
 - 異なる予測モデルを推定する
 - モデルについて異なる評価を下す
 - * どんなモデルもまぐれあたりする可能性がある
- 解決策: 全研究者共通の正答と各人の回答を分離

2.2 解決策: 母集団とサンプリング

- 評価に用いる事例 (テストデータ) は、仮想的な集団 (母集団) からランダムに選ばれたデータから、さらにランダムに選ばれた考える
 - 母集団全体を用いた評価やモデルが正答
 - 自身のデータから計算された評価やモデルが、各人の回答
- 現実においては、自身の回答しかわからないので、正答は誰も知らない
 - 高校までの勉強とは決定的に異なる

2.3 解決策: 評価

- 正答: あるモデルの予測値 f(X) と Yとの乖離を、母集団において計算 $(Y-f(X))^2$ の母集団における平均値
- 回答: 自身のテストデータ上で、上記を計算

2.4 解決策: 評価

- 理論的性質を用いて、評価の信頼性を議論
- 大数の法則: テストデータの事例数が十分あれば、回答 (データ上での評価) と正答 (母集団上での評価) は十分に近い値となる
 - データ全体の2割程度をテストに割くのが一般的
 - * 誤差の範囲も計算できる(後述)

2.5 解決策: モデル推定

- 想定: モデル推定に用いるデータ (訓練データ) も、評価に用いるデータと同じ母集団からランダムに選ばれているとする
- 最善の予測 (正答) と完璧な予測を区別できる
 - 「最善の予測に近い予測を生み出す」をガイドラインとして、推定方法を評価できる

2.6 予測の誤差

- 予測誤差: $Y \underbrace{f(X)}_{\text{予測值}}$
- 完璧な予測は以下を要求: 全ての事例について

$$f(X) = Y$$

- X内で個人差があれば、不可能
 - $-X = \{$ 年齢、学歴、性別 $\}$ から Y =賃金 を完璧に予測するためには、「同じ年齢、学歴、性別であれば、賃金が全く同じ社会」が前提だが、ありえない

2.7 最善の予測

- 最善のモデル = $(Y \underbrace{f(X)})^2$ の母集団における平均値を最小化するモデル $_{\overline{Y}$ 測値
 - 動機: まぐれあたりではなく、平均的に上手くいく予測モデルを採用したい
- 母集団を直接活動できれば、その平均値 (母平均) が最善の予測モデル

2.8 数值例

- Yの平均値 = X^2 もし X < 0.4 ならば
- Yの平均値 = $X^2 + 2$ もし X >= 0.4 ならば

2.9 数値例: データ (100 事例)

colour • データ上の平均

2.10 数値例: 想像上の母平均の追記

• 厳重注意: 青点は、想像上の存在

2.11 **数値例**: OLS との比較

2.12 **数値例**: OLS との比較

colour

- データ上の平均
- 推定値
- 母平均

2.13 性質

- 限られた事例数 (N=100) では、
 - **平均値は実用的ではない:** データ上の平均値と母平均は、大きく乖離している
 - **複雑なモデルも実用的ではない:** データ上の平均値に近づいており、母平均から乖離している
- 単純なモデルは実用的: $Y \sim X$ の OLS 推定結果は、母平均に近い
 - 問題点もある: "0.4 でジャンプする" という性質を捉えられない

2.14 数値例: 事例数の増加

- 以上は事例数が少ないことにも起因
 - 300/3000/30000 事例まで増やすと?

2.15 数値例: 30

colour

- データ上の平均
- ━ 推定値
- 母平均

2.16 数値例: 300

colour

- データ上の平均
- ━ 推定値
- 母平均

2.17 数値例: 3000

colour

- データ上の平均
- 推定値
- 母平均

2.18 数値例: 30000

colour

- データ上の平均
- ━ 推定値
- 母平均

2.19 性質

- 事例数が増えると、複雑なモデルが実用的になる
 - 母平均とデータ上の平均が近づくので
 - "複雑な OLS" も、母平均に近づく
- 単純な OLS の予測精度は頭打ち
 - 母平均の乖離が、ほとんど変化しない
- 複雑なモデルの予測力が上がる!!!

2.20 過学習/過剰適合

- 事例数が少ないと、データ上の平均と母平均は大きく乖離する
 - 複雑なモデルはデータ上の平均に近いが、母平均から乖離する
 - * 最善の予測モデル (母平均) を推定するという目標に対して、(データへの)過剰適合/(データから) 過学習
- 事例数が増えると、過学習/過剰適合は緩和

2.21 実戦への示唆

- 事例数が多ければ複雑なモデルを推定できるが、少なければ単純なモデルで妥協する必要がある
- "推定するモデルの複雑さを適切に変えるべき"
 - 具体的には?
 - * かつては人力で頑張っていたが、難しい
 - * 次のスライドでは、データ主導のアプローチ (LASSO) を紹介