Stochastic Processes UCSD ECE 250 Midterm Instructor: Behrouz Touri

Distributing of this exam without the consent of the instructor is prohibited, as this exam is protected by copyright laws.

- 1. Determine whether each of the following statements is True or False. If True, prove it, if False, provide a counterexample.
 - (a) Consider the probability space $(\Omega, \mathcal{F}, \mathbf{P}(\cdot))$. Let $X, Y : \Omega \to \mathbb{R}$, be such that X + Y is a random variable. Then X, Y are random variables on this probability space.
 - (b) If A_1, A_2, \ldots are events such that $\mathbf{P}(A_n \text{ i.o.}) = 0$, then $\sum_{n=1}^{\infty} \mathbf{P}(A_n) < \infty$.
 - (c) If \mathcal{F}_1 and \mathcal{F}_2 are both σ -algebras on a sample space Ω , then $\mathcal{F}_1 \cup \mathcal{F}_2$ is a σ -algebra on Ω .
- 2. Let Θ be a uniformly distributed random variable over $[0, 2\pi]$. Let

$$R = \begin{cases} \cos(\Theta) & \text{if } \Theta \ge \frac{\pi}{3} \\ 0 & \text{otherwise} \end{cases}.$$

- (a) Find the Cumulative Distribution Function (CDF) of R.
- (b) Is R a continuous or a discrete random variable?
- (c) Find $\mathbb{E}[\cdot]$.
- 3. For each of the following processes, determine whether the **partial sum sequence** $S_k = \sum_{i=1}^k X_i$ converges almost surely or not, i.e., $\lim_{k\to\infty} S_k$ exists almost surely or not.
 - (a) $\{X_k\}$ is an independent process such that X_k takes three values $-k, 0, k^k$ with

$$\mathbf{P}(X_k = k^k) = \mathbf{P}(X_k = -k) = \frac{1}{2k^2}$$

and
$$\mathbf{P}(X_k = 0) = 1 - \frac{1}{k^2}$$
.

- (b) $\{X_k\}$ is given by $X_k = \frac{Y_k 1}{k}$ where $\{Y_k\}$ is an i.i.d. Gaussian random process with $Y_k \sim \mathcal{N}(0, 1)$ (i.e., a Gaussian with zero mean and unit variance).
- 4. Three players P1, P2, and P3 taking turns on flipping a fair coin (starting from P1, then P2, then P3, and then P1 again, etc.). The person who gets the first head is the winner.
 - (a) Let Ω be the set of all the binary sequences of the form $1,01,001,0001,\ldots$ Provide the set of events \mathcal{F} and a probability measure $\mathbf{P}(\cdot)$, such that the probability space $(\Omega, \mathcal{F}, \mathbf{P}(\cdot))$ models this experiment.
 - (b) Determine the event B where P2 is winning and find P(B).
 - (c) Let A be the event that P1 is winning. Is A and B independent?