Private Information Retrieval

Linear homomorphism turns out to be a useful property for building cryptosystems that can do operations on encrypted data

Today, we will be looking at querying remote databases without revealing what we are searching for

- Suppose a server holds an N bit database $D \in \mathbb{Z}_2^N$
- A user has an index i and wants to discover D_i without revealing i to the server

Private Information Retrieval Scheme

A PIR scheme is a triple of randomized algorithms (Query, Answer, Reconstruct) that meet the following properties, where N is the length of the database:

- Correctness: for any index i, database D, and security parameter n, the probability of Reconstruct(Answer(D, qu), st) is at least $1 \operatorname{negl}(n)$ where (qu, st) are given by Query(n, i)
- **Security**: for any two indices i, j, the queries corresponding to i and j are are computationally indistinguishable
- ullet **Succintness**: The total bit length of the client's query and the server's answer is less than N
 - \circ That is, the total number of bits communicated is smaller than N
 - This is to rule out trivial schemes where the user downloads the whole database

Square-Root PIR

Key idea is that the server will represent its N bit database as a matrix $D \in \mathbb{Z}_2^{\sqrt{N} imes \sqrt{N}}$

- ullet The user wants to read bits at 2D locations (i,j)
- Assume we are given a linearly-homomorphic encryption scheme (Gen, Enc, Dec)

Protocol:

- Query(n,(i,j)):
 - $\circ \;\;$ Build the unit vector u_j that consists of all 0s except for a single 1 at position j
 - Sample a secret sk with Gen(n)
 - Output the query vector $\mathbf{qu} \leftarrow \mathrm{Enc}(\mathbf{sk}, u_j)$ along with client-held state $\mathbf{st} \leftarrow (\mathbf{sk}, i)$
- Answer(D, qu):
 - Output the answer vector $\mathbf{ans} \leftarrow D \cdot \mathbf{qu}$
- Reconstruct(ans, st):
 - Decrypt the answer vector as $v \leftarrow \mathrm{Dec}(\mathrm{sk}, \mathrm{ans})$
 - \circ Parse the client-held state (sk, i)
 - \circ Output the i th entry of v

Note that Query will run on the client, not the server

• The server is only in charge of addressing Answer

Correctness:

- ullet If the encryption scheme is linearly homomorphic, we have that ans is:
 - $\circ \ D \cdot \mathrm{Query}(n,(i,j)) = D \cdot \mathrm{enc}(\mathrm{sk},u_j) = \mathrm{Enc}(\mathrm{sk},D \cdot u_j)$
 - \circ Decoding and getting the i th bit will then get D_{ij}

Security:

• Follows from the CPA-security of the encryption scheme

Succintness:

ullet Query consists of \sqrt{N} ciphertexts, as does the output of Answer

Naive Implementation

We attempt to implement with the secret key encryption scheme from LWE

- Query:
 - \circ We build the unit vector u_j as described above
 - We sample:
 - lacksquare A random matrix $A \in \mathbb{Z}_q^{\sqrt{N} imes n}$
 - lacksquare A secret key vector $s \in \mathbb{Z}_q^n$
 - lacksquare A random error vector $e \in \chi^{\sqrt{N}}$
 - Output:
 - Query: $(A, A \cdot a + e + |q/2| \cdot u_j)$
 - Client-held state: (s, i)
- Answer:
 - \circ Parse the query as (A,b)
 - \circ Output the answer $(D \cdot A, D \cdot b)$
- Reconstruct:
 - \circ Parse the client-held state as (s,i)
 - \circ Parse the answer as (H, c)
 - \circ Compute $v = c H \cdot s$
 - \circ Round the i th entry of v to the nearest multiple of $\lfloor q/2
 floor$ and divide by $\lfloor q/2
 floor$

In practice we use:

- $n \approx 1024$
- $q \approx 2^{16}$
- ullet Total communication cost would be $10^4 \cdot \sqrt{N}$ bits

Optimizations

- ullet We can use the same A matrix as long as we use a random s and e each time
 - \circ We can even use A as a public parameter known to all users
 - \circ The A matrix now no longer needs to be sent around
- The server can precompute $D \cdot A$
- ullet The user can prefetch the value of $D\cdot A$

These make the communication size independent of n

• The PIR scheme now uses $\log q \cdot \sqrt{N}$ bits, which is around $16\sqrt{N}$ bits