最小二乗法

山内 仁喬

2021年2月13日

1 線形最小二乗法

次のようなn組みのデータのあてはめ問題を考える:

観測点:
$$t_1, t_2, \ldots, t_n$$
 (1)

測定値:
$$f_1, f_2, \ldots, f_n$$
 (2)

測定値の分散:
$$\sigma_1, \sigma_2, \ldots, \sigma_n$$
 (3)

測定の誤差 $(分散)\sigma_i^2$ は、測定値 f_i の信頼性を表す尺度として考えることができる。このデータを、ある一次独立な関数系

$$\phi_1(t), \ \phi_2(t), \ \dots, \ \phi_m(t) \tag{4}$$

の一次結合

$$f(t) = \sum_{j=0}^{m} x_j \phi_j(t) \tag{5}$$

によってあてはめる。この形の f(t) は $\{\phi_j(t)\}$ に関して線形であるから、線形モデルと呼ばれる。一次独立な関数系として、単項式

$$\phi_j(t) = t^{j-1} \tag{6}$$

が最も広く採用されている。

最小二乗法は、

$$S(x_1, x_2, \dots, x_m) = \sum_{i=1}^{n} \frac{[f_i - f(t_i)]^2}{\sigma_i^2}$$
 (7)

$$= \sum_{i=1}^{n} \frac{[f_i - \sum_{j=1}^{n} x_j \phi_j(t_i)]^2}{\sigma_i^2}$$
 (8)

を最小にすることによって、未知係数 $x_1,\ \dots,\ x_m$ の組みを決定する方法である。S を最小にする条件は、

$$\frac{\partial S}{\partial x_k} = 0, \quad k = 1, 2, \dots, m \tag{9}$$

によって与えられるので、

$$\sum_{i=1}^{n} \frac{[f_i - \sum_{j=1}^{n} x_j \phi_j(t_i)] \phi_k(t_i)}{\sigma_i^2}, \quad k = 1, 2, \dots, m$$
(10)

とかける。ここでi, j成分が

$$A_{ij} = \frac{\phi_j(t_j)}{\sigma_i}, \quad (i = 1, 2, \dots, n, \ j = 1, 2, \dots, m)$$
 (11)

で定義される $n \times m$ 行列を導入する。この A_{ij} はヤコビアン行列あるいは計画行列と呼ばれている。このとき、式 (10) は

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\phi_j(t_i)}{\sigma_i} \frac{\phi_k(t_i)}{\sigma_i} = \sum_{j=1}^{n} \frac{\phi_k(t_i)}{\sigma_i} \frac{f_i}{\sigma_i}$$
(12)

$$\to \sum_{j=1}^{m} \left(\sum_{i=1}^{n} A_{ik} A_{ij} \right) x_j = \sum_{i=1}^{n} A_{ik} \frac{f_i}{\sigma_i}, \quad (k = 1, 2, \dots, m)$$
 (13)

となる。さらに

$$b_i = \frac{f_i}{\sigma_i}, \quad (i = 1, 2, \dots, n)$$

$$\tag{14}$$

を第i成分にもつベクトル b、 x_j を第j成分にもつベクトルをx とおくと、式 (13) は次のようにかける:

$$A^t A \boldsymbol{x} = A^t \boldsymbol{b} \tag{15}$$

ここで、 A^t は行列 A の転置である。これを正規方程式という。この方程式を解けば、未知係数 x_i を求めることができる。

1.1 単純な多項式 $\phi_i(t)=t^{j-1}$ の場合

単純な多項式 $\phi_i(t) = t^{j-1}$ を用いた、最小二乗法を考える。

$$f(t) = \sum_{j=1}^{m} x_j t^{j-1} = x_1 + x_2 t + \dots + x_m t^{m-1},$$
(16)

$$A_{ij} = \frac{t_i^{j-1}}{\sigma_i},\tag{17}$$

$$A_{ik} = \frac{t_i^{k-1}}{\sigma_i},\tag{18}$$

$$b_i = \frac{f_i}{\sigma_i} \tag{19}$$

であるので、式 (13) に代入すると、

$$\sum_{j=1}^{m} \left(\sum_{i=1}^{n} \frac{t_i^{k-1}}{\sigma_i} \frac{t_i^{j-1}}{\sigma_i} \right) x_j = \sum_{i=1}^{n} \frac{t_i^{k-1}}{\sigma_i} \frac{f_i}{\sigma_i}$$
 (20)

を得る。行列形式で愚直に書くと、

$$\begin{bmatrix} \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} t_{i}^{0} t_{i}^{0} & \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} t_{i}^{0} t_{i}^{1} & \cdots & \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} t_{i}^{0} t_{i}^{m-1} \\ \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} t_{i}^{1} t_{i}^{0} & \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} t_{i}^{1} t_{i}^{1} & \cdots & \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} t_{i}^{1} t_{i}^{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} t_{i}^{m} t_{i}^{0} & \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} t_{i}^{m} t_{i}^{1} & \cdots & \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} t_{i}^{m} t_{i}^{m-1} \end{bmatrix} \begin{bmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{m} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} f_{i} \\ \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} f_{i} t_{i} \\ \vdots \\ \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} f_{i} t_{i} \end{bmatrix}$$

$$(21)$$

となる。左辺の左の行列について、

$$\mathbf{D} = \begin{bmatrix} \sum_{i=1}^{n} \frac{1}{\sigma_i^2} t_i^0 & \sum_{i=1}^{n} \frac{1}{\sigma_i^2} t_i^1 & \cdots & \sum_{i=1}^{n} \frac{1}{\sigma_i^2} t_i^{m-1} \\ \sum_{i=1}^{n} \frac{1}{\sigma_i^2} t_i^1 & \sum_{i=1}^{n} \frac{1}{\sigma_i^2} t_i^2 & \cdots & \sum_{i=1}^{n} \frac{1}{\sigma_i^2} t_i^{m} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} \frac{1}{\sigma_i^2} t_i^{m-1} & \sum_{i=1}^{n} \frac{1}{\sigma_i^2} t_i^{m} & \cdots & \sum_{i=1}^{n} \frac{1}{\sigma_i^2} t_i^{2m-1} \end{bmatrix}$$
(22)

と置くと、正規方程式は

$$\begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_m \end{bmatrix} = \mathbf{D}^{-1} \begin{bmatrix} \sum_{i=1}^n \frac{1}{\sigma_i^2} f_i \\ \sum_{i=1}^n \frac{1}{\sigma_i^2} f_i t_i \\ \vdots \\ \sum_{i=1}^n \frac{1}{\sigma_i^2} f_i t_i^{m-1} \end{bmatrix}$$
(23)

$$= \begin{bmatrix} D_{11}^{-1} & D_{12}^{-1} & \dots & D_{1m}^{-1} \\ D_{21}^{-1} & D_{22}^{-1} & \dots & D_{2m}^{-1} \\ \vdots & \vdots & \ddots & \vdots \\ D_{m1}^{-1} & D_{m2}^{-1} & \dots & D_{mm}^{-1} \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{n} \frac{1}{\sigma_i^2} f_i \\ \sum_{i=1}^{n} \frac{1}{\sigma_i^2} f_i t_i \\ \vdots \\ \sum_{i=1}^{n} \frac{1}{\sigma_i^2} f_i t_i^{m-1} \end{bmatrix}$$

$$(24)$$

$$= \begin{bmatrix} D_{11}^{-1} \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} f_{i} + D_{12}^{-1} \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} f_{i} t_{i} + \dots + D_{1m}^{-1} \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} f_{i} t_{i}^{m-1} \\ D_{21}^{-1} \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} f_{i} + D_{22}^{-1} \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} f_{i} t_{i} + \dots + D_{2m}^{-1} \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} f_{i} t_{i}^{m-1} \\ \vdots \\ D_{m1}^{-1} \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} f_{i} + D_{m2}^{-1} \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} f_{i} t_{i} + \dots + D_{mm}^{-1} \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} f_{i} t_{i}^{m-1} \end{bmatrix}$$

$$(25)$$

のように解くことができる。また、係数の誤差は、

$$\sigma_{xk} = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial x_k}{\partial f_i} \sigma_i\right)^2} \tag{26}$$

であるので、式(25)を用いると具体的に

$$\sigma_{xk} = \sqrt{\sum_{i=1}^{n} \left(\sum_{j=1}^{m} D_{kj}^{-1} \frac{1}{\sigma_i} t_i^{j-1}\right)^2}$$
 (27)

と計算される。

1.2 具体例: 一次関数 $f(t) = x_0 t + x_1$ で最小二乗法

一次関数 $f(t)=x_0t+x_1$ で最小二乗法を実行するときの、具体的な未知係数と誤差の表式を見ていく。行列 (22) を具体的に計算すると、

$$\boldsymbol{D} = \begin{bmatrix} \sum_{i=1}^{n} \frac{1}{\sigma_i^2} & \sum_{i=1}^{n} \frac{1}{\sigma_i^2} t_i \\ \sum_{i=1}^{n} \frac{1}{\sigma_i^2} t_i & \sum_{i=1}^{n} \frac{1}{\sigma_i^2} t_i^2 \end{bmatrix} \equiv \begin{bmatrix} \sum_{i=1}^{n} w_i & \sum_{i=1}^{n} w_i t_i \\ \sum_{i=1}^{n} w_i t_i & \sum_{i=1}^{n} w_i t_i^2 \end{bmatrix}$$
(28)

なので、逆行列は

$$D^{-1} = \frac{1}{\Delta} \begin{bmatrix} \sum_{i=1}^{n} w_i t_i^2 & \sum_{i=1}^{n} w_i t_i \\ \sum_{i=1}^{n} w_i t_i & \sum_{i=1}^{n} w_i t_i^2 \end{bmatrix}$$
(29)

$$\Delta \equiv \left(\sum_{i=1}^{n} w_i\right) \left(\sum_{i=1}^{n} w_i t_i^2\right) - \left(\sum_{i=1}^{n} w_i t_i\right)^2 \tag{30}$$

と計算される。ここで、 $w_i=1/\sigma_i^2$ とおいた。したがって、未知係数は

$$x_0 = \frac{\left(\sum_{i=1}^n w_i t_i^2\right) \left(\sum_{i=1}^n w_i f_i\right) - \left(\sum_{i=1}^n w_i t_i\right) \left(\sum_{i=1}^n w_i t_i f_i\right)}{\Delta}$$
(31)

$$x_1 = \frac{\left(\sum_{i=1}^n w_i\right)\left(\sum_{i=1}^n w_i t_i f_i\right) - \left(\sum_{i=1}^n w_i t_i\right)\left(\sum_{i=1}^n w_i f_i\right)}{\Delta}$$
(32)

と計算される。

続いて、係数の誤差を求めていく。 x_0 の誤差は、

$$\sigma_{x_0} = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial x_0}{\partial f_i} \sigma_i\right)^2} \tag{33}$$

である。以下、具体的に計算をしていく:

$$\frac{\partial x_0}{\partial f_i} \sigma_i = \frac{1}{\Delta} \left[\left(\sum_{i=1}^n w_i t_i^2 \right) w_i - \left(\sum_{i=1}^n w_i t_i \right) w_i t_i \right] \sigma_i$$
(34)

$$\left(\frac{\partial x_0}{\partial f_i}\sigma_i\right)^2 = \frac{1}{\Delta^2} \left[\left(\sum_{i=1}^n w_i t_i^2\right)^2 w_i^2 + \left(\sum_{i=1}^n w_i t_i\right)^2 w_i^2 t_i^2 - 2\left(\sum_{i=1}^n w_i t_i^2\right) \left(\sum_{i=1}^n w_i t_i\right) w_i^2 t_i \right] \sigma_i^2 \qquad (35)$$

$$= \frac{1}{\Delta^2} \left[\left(\sum_{i=1}^n w_i t_i^2 \right)^2 w_i + \left(\sum_{i=1}^n w_i t_i \right)^2 w_i t_i^2 - 2 \left(\sum_{i=1}^n w_i t_i^2 \right) \left(\sum_{i=1}^n w_i t_i \right) w_i t_i \right]$$
(36)

最後の式変形には、 $w_i = 1/\sigma_i^2$ であることを用いた。さらに、i について和をとると、

$$\sum_{i=1}^{n} \left(\frac{\partial x_0}{\partial f_i} \sigma_i \right)^2$$

$$= \frac{1}{\Delta^2} \left[\left(\sum_{i=1}^{n} w_i t_i^2 \right)^2 \left(\sum_{i=1}^{n} w_i \right) + \left(\sum_{i=1}^{n} w_i t_i \right)^2 \left(\sum_{i=1}^{n} w_i t_i^2 \right) - 2 \left(\sum_{i=1}^{n} w_i t_i^2 \right) \left(\sum_{i=1}^{n} w_i t_i \right)^2 \right]$$

$$= \frac{1}{\Delta^2} \left[\left(\sum_{i=1}^{n} w_i t_i^2 \right)^2 \left(\sum_{i=1}^{n} w_i \right) - \left(\sum_{i=1}^{n} w_i t_i \right)^2 \left(\sum_{i=1}^{n} w_i t_i^2 \right) \right]$$

$$= \frac{\sum_{i=1}^{n} w_i t_i^2}{\Delta^2} \left[\left(\sum_{i=1}^{n} w_i t_i^2 \right) \left(\sum_{i=1}^{n} w_i \right) - \left(\sum_{i=1}^{n} w_i t_i \right)^2 \right]$$

$$= \frac{\sum_{i=1}^{n} w_i t_i^2}{\Delta^2}$$
(37)

したがって、 x_0 の誤差は、

$$\sigma_{x_0} = \sqrt{\frac{\sum_{i=1}^n w_i t_i^2}{\Delta^2}} \tag{38}$$

である。

同様にして、 x_1 の誤差、

$$\sigma_{x_1} = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial x_1}{\partial f_i} \sigma_i\right)^2} \tag{39}$$

を計算する。

$$\frac{\partial x_1}{\partial f_i} \sigma_i = \frac{1}{\Delta} \left[\left(\sum_{i=1}^n w_i \right) w_i t_i - \left(\sum_{i=1}^n w_i t_i \right) w_i \right] \sigma_i \tag{40}$$

$$\left(\frac{\partial x_1}{\partial f_i}\sigma_i\right)^2 = \frac{1}{\Delta^2} \left[\left(\sum_{i=1}^n w_i\right)^2 w_i^2 t_i^2 + \left(\sum_{i=1}^n w_i t_i\right)^2 w_i^2 - 2\left(\sum_{i=1}^n w_i\right) \left(\sum_{i=1}^n w_i t_i\right) w_i^2 t_i \right] \sigma_i^2 \tag{41}$$

$$= \frac{1}{\Delta^2} \left[\left(\sum_{i=1}^n w_i \right)^2 w_i t_i^2 + \left(\sum_{i=1}^n w_i t_i \right)^2 w_i - 2 \left(\sum_{i=1}^n w_i \right) \left(\sum_{i=1}^n w_i t_i \right) w_i t_i \right]$$
(42)

最後の式変形には、 $w_i = 1/\sigma_i^2$ であることを用いた。i について和をとると、

$$\sum_{i=1}^{n} \left(\frac{\partial x_1}{\partial f_i} \sigma_i \right)^2$$

$$= \frac{1}{\Delta^2} \left[\left(\sum_{i=1}^{n} w_i \right)^2 \left(\sum_{i=1}^{n} w_i t_i^2 \right) + \left(\sum_{i=1}^{n} w_i t_i \right)^2 \left(\sum_{i=1}^{n} w_i \right) - 2 \left(\sum_{i=1}^{n} w_i \right) \left(\sum_{i=1}^{n} w_i t_i \right) \left(\sum_{i=1}^{n} w_i t_i \right) \right]$$

$$= \frac{\sum_{i=1}^{n} w_i}{\Delta^2} \left[\left(\sum_{i=1}^{2} w_i \right) \left(\sum_{i=1}^{2} w_i t_i^2 \right) - \left(\sum_{i=1}^{2} w_i t_i \right)^2 \right]$$

$$= \frac{\sum_{i=1}^{n} w_i}{\Delta}$$
(43)

したがって、 x_1 の誤差は、

$$\sigma_{x_1} = \sqrt{\frac{\sum_{i=1}^n w_i}{\Delta}} \tag{44}$$

である。