For M1: Y = XB + E, $E \sim N(0, \sigma^2 I)$ Consider constraint $\Lambda'B = D$ with $\Lambda' = P'X \Rightarrow P'XB = D$.

Show that B'x' MMP XB = 0 iff 1/B = 0.

" \leftarrow $\Lambda'\beta = P'X\beta = P'MX\beta = \emptyset$.

More defails \Rightarrow XB \in C(MP) $^+$ \Rightarrow B'X' Mmp XB = B'X' \varnothing = \varnothing

Given U s.t. $C(U) = C(\Lambda)^{\perp}$, $\beta \in C(U)$ and $Y = X\beta + E = XUS + E$ for some \emptyset . XU can be re-written as X_1 , where $X = [X_1 \mid X_2]$ and $C(X_1) \subset C(X)$. $X\beta = XUS \in C(MP)^{\perp}$.

Therefore, $C(MP) = C(XU)_{C(N)}^{\perp} = C(X_1)_{C(N)}^{\perp} = C(M-M_1)$

 $XB \in C(MP)^{\perp} = XB \in C(M-M_1)^{\perp} \Rightarrow Yg \in C(M-M_1), XB.g = \emptyset$

 $\beta'x'M_{MP}X\beta = \beta'x'(M-M_1)X\beta = \emptyset$

B'x'Mmp XB = 0

 M_{MP} is projection matrix onto C(MP), so $BX'(M_{MP})'M_{MP}XB = \emptyset$

⇒ (MMPXB) MMPXB = Ø → MMPXB = Ø ⇒ MP(PMP) PM XB = Ø

=> MP(P'MP) P'XB = \$ AP(P'MP) 1'B = \$

> 1/B= 0