Álgebra Lineal para Computación (MA-2405)

Tiempo: 2 horas 10 minutos Total: 29 puntos II Semestre 2014

Tercer Examen Parcial

Instrucciones: Esta es una prueba de desarrollo, por lo tanto, debe presentar todos los pasos necesarios o procedimientos que le permitieron obtener cada una de las respuestas. Trabaje en forma ordenada, clara y utilice bolígrafo para resolver el examen. No son procedentes la apelaciones que se realicen sobre exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono móvil.

- 1. Sea $T: P_1 \to \mathbb{R}^2$ una tranformación lineal que satisface que $T(x+1) = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ y que $T(2x+3) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Determine el criterio T(ax+b). (4 puntos)
- 2. Considere $T \in L(\mathbb{R}^3, \mathcal{M}_2)$ tal que $T(x, y, z) = \begin{pmatrix} y 2x & 2x y \\ 0 & 3z \end{pmatrix}$.
 - (a) Obtenga el núcleo y la imagen de T. (4 puntos)
 - (b) Calcule el rango y la nulidad de T. (2 puntos)
 - (c) Determine si T es inyectiva y si T es sobreyectiva. (2 puntos)
- 3. Considere la transformación lineal $T: P_1 \to \mathbb{R}^2$ tal que $T(ax+b) = \begin{pmatrix} 3a+2b \\ 2a+b \end{pmatrix}$. Si se sabe que T es un isomorfismo, calcule el criterio de T^{-1} . (3 puntos)
- 4. Sea $T \in L(P_2, \mathbb{R}^2)$, cuyo criterio es $T(ax^2 + bx + c) = \begin{pmatrix} a + 2b c \\ 3a 2c \end{pmatrix}$. Considere $B_1 = \{x^2 + 1, x 2, 3\}$ base de P_2 , y $B_2 = \left\{\begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \end{pmatrix}\right\}$ como base de \mathbb{R}^2 .
 - (a) Calcule la matriz de representación de T en las bases B_1 y B_2 . (3 puntos)
 - (b) Si $[w]_{B_1} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$, utilice la matriz de la parte a), para calcular T(w).

(2 puntos)

- 5. Sea $T \in L(V, W)$. Pruebe que T es inyectiva si y solo si $Nu(T) = \{0\}$. (4 puntos)
- 6. Considere la matriz $A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$
 - (a) Calcule el polinomio característico y los valores propios de A. (3 puntos)
 - (b) Determine una base de E_{-1} . (2 puntos)