Lista 2 - estymacja i elimacja trendu

Analiza szeregów czasowych

Karol Pustelnik 249828 i Jan Solarz

2021-03-02

Spis treści

1	Wstępne przekształcenie danych	2
2	Nieparametryczna estymacja trendu 2.1 Różnicowanie	4 4 6 9 10
	2.5 Podsumowanie	13 13
	Wstępna identyfikacja modelu Bibliografia	13 13

```
losuj.dekade <- function(album)
{
   set.seed(album)
   dekady <- seq(from=30, to=70, by=10)
   sample(dekady, 1)
}
# Przykłady
losuj.dekade(249828 + 243889)</pre>
```

[1] 40

1 Wstępne przekształcenie danych

Na początku zastosujemy transformacje Boxa z automatycznie dobranym parametrem lambda

Box.test(szereg.ts) #test białoszumowosci przed zastosotwaniem róznicowania

```
##
## Box-Pierce test
##
## data: szereg.ts
## X-squared = 2977.5, df = 1, p-value < 2.2e-16
## transformacj - p<0,05 zatem występuje statystycznie istotna korelacja
lambda<-BoxCox.lambda(szereg.ts) #wyznaczam najlepsza lambde do trasnformacji
szereg.ts.log<-BoxCox(szereg.ts, lambda = lambda) # trasnformuje szereg dla
#danej lambdy</pre>
```

2 Nieparametryczna estymacja trendu

2.1 Różnicowanie

Dla naszych danych zastosujemy różnicowanie z opóźnieniem 1.

autoplot(szereg.ts.log)

szereg.diff<-diff(szereg.ts,diffrences =1)#róznicuje szereg z opóxnienem 1
#i różnicą 1 #testuję czy mamy biały szum
autoplot(szereg.diff)</pre>

Box.test(szereg.diff)#testuję czy mamy biały szum - p>0,05 -

```
##
## Box-Pierce test
##
## data: szereg.diff
## X-squared = 0.91411, df = 1, p-value = 0.339
#nie ma podstaw do odrzucenia hipotezy zerowej -
#raczej mamy do czynienia z białym szumem.
# Ztem dla różnicowania
```

2.1.1 Wnioski

• Po zróżnicowaniu z opóźnienieniem 1 dostalismy szereg stacjnonarny - test białoszumowości nie nakazuje odrzucenia hipotezy zerowej. Z wykresu widać, że otrzymaliśmy porządany efekt. Zatem dalej nie kontynuujemy różnicowania

Wygładzanie metodą ruchomej średniej

Zastosujemy metode wygładzania ruchomą średnią dla różnych parametrów q i porównamy otrzymane wyniki.

```
ma.3 <- ma(szereg.ts, order = 3, centre = TRUE)</pre>
ma.15 <- ma(szereg.ts, order = 15)</pre>
ma.33 <- ma(szereg.ts, order = 33)</pre>
dane.ma <- ts.union(szereg.ts, ma.3, ma.15, ma.33)</pre>
autoplot(dane.ma, main="Symetryczna ruchoma średnia", lwd=.75)
```

Symetryczna ruchoma średnia


```
resid.ma.3 <- szereg.ts-ma.3 #Uwaga na NA!
ggtsdisplay(resid.ma.3)
```


resid.ma.15 <- szereg.ts-ma.15 #Uwaga na NA!
ggtsdisplay(resid.ma.15)</pre>

resid.ma.33 <- szereg.ts-ma.33 #Uwaga na NA!
ggtsdisplay(resid.ma.33)</pre>

2.2.1 Wnioski

- Wraz ze wrostem parametru q (order = 2q+1) rośnie poziom wygładzenia
- Samo wygładzenie nie jest satysfkcjonujące praktycznie nie zauważalne.

2.3 Wygładzanie filtrem Spencera

Zastosujemy teraz alternatywną metodę wygłądzania ruchomą średnią - uwzględniając wagi dla obserwacji. Tutaj parametr q jest ustawiony na 7 (order =15).

```
library(signal)
szereg.spencer<-spencer(szereg.ts)

dane.sp <- ts.union(szereg.ts, szereg.spencer)
autoplot(dane.sp,lwd=0.75)</pre>
```


2.3.1 Wnioski

• Poziom wygładzenia jest mniejszy od najlepszego wygładzenia dla poprzedniej metody.

2.4 Wygładzanie wykładnicze

Kolejną metodą estymacji trendu jest wygładzanie wykładnicze. Zaprezentujemy wyniki dla różnych parametrów alfa.

2.4.1 Wnioski

- Wyniki dla różnych alf się praktycznie nie różnią.
- Nie dostaliśmy satysfkcjonującego wygładzenia.

length(szereg.ts)

```
## [1] 2988
```

```
x<-seq(1,2988,1)
szereg.n.w.5<-ksmooth(x, szereg.ts, bandwidth = 5)
szereg.n.w.15<-ksmooth(x, szereg.ts, bandwidth = 15)
szereg.n.w.50<-ksmooth(x, szereg.ts, bandwidth = 50)
dane <- ts.union(szereg.ts, szereg.n.w.5$y,szereg.n.w.15$y,szereg.n.w.50$y)
autoplot(dane,lwd=0.75)</pre>
```


2.4.2 Wnioski

- Dla szerszego okna dostaliśmy bardziej wygłądzony wykres. Nadal nie jest on satysfkcjonujący ciężko odczytać trend
- Wyniki są podobne jak dla metody ruchomej średniej

2.5 Podsumowanie

Nasze dane nie nadają się najlepiej do estymacji trendu, ponieważ jest on praktycznie nie zauważalny. Pomimo tego, najlepiej poradziły sobie metody:

- ruchomej średniej,
- jądrowa estymacja Nadaraya-Watsona.

Jeśli chodzi o eliminację "trendu" z naszych danych, to róznicowanie z opóźnieniem 1 dało nam porządany biały szum.

3 Parametryczna estymacja trendu

4 Wstępna identyfikacja modelu

5 Bibliografia

Literatura

- [1] Dr. Adam Zagdański, Analiza szeregów czasowych, semestr letni 2021
- [2] Robert H. Shumway, David S. Stoffer, *Time Series Analysis and Its Applications*, Springer 3rd Edition.