2018年度 春定期末試験問題・解答

試験実施日 2019 年 1月22日 1時限

出題者記入欄

試験科目名_数学 II-J		出題者名	佐藤 弘康
試 験 時 間 <u>60</u> 分	平常授業	目 火 曜日	1時限
持ち込みについて 団	小川	可、不可のいずれかに 持ち込み可のものを○	
教科書 ・ 参考書 ・ ノート その他 ((手書きのみ	・コピーも可)。)	・辞書
本紙以外に必要とする用紙	解答用紙_	0 枚 計算	用紙 0 枚
通信欄 正規分布表を別途配布する.			

受験者記入欄

学 科	学 年		学	籍	番	号		氏	名	
		1								

採点者記入欄

	31.7.11 H HZ; 11/13
採点欄	評価

- 1 次の文章中の空欄 (1) ~ (10) に入る適切な言葉を (ア) \sim (\mathcal{F}) の中から選びなさい(ただし、1 つの選択肢が ただ1つだけの空欄に当てはまるとは限らないことに注 意せよ). また,空欄 (a)~(e) に入る適切な式を書きな さい.
 - 1回の試行で、ある事象 A が起こる確率を p とす る. この試行をn 回独立に試行したとき,A がk 回 起こる回数 X は確率変数となる. この確率分布を 二項分布といい, B(n,p) で表す. B(n,p) の期待値 は (a) で、分散は (b) である.
 - X が二項分布 B(n,p) に従うとき, n が十分大き いとき, X は近似的に (1) 分布に従う. これを (2) の定理という.
 - $X_1, X_2, \ldots X_n$ を互いに独立で、同じ確率分布に従 う確率変数とする. このとき, n が十分大きければ,

$$\bar{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$$

は近似的に (3) 分布に従う. これを (4) 定 理という. 各 X_i の期待値が μ で分散が σ^2 のとき, \bar{X} の期待値は| (c) | で、分散は| (d) | である.

• 確率変数 X の期待値を μ , 標準偏差を σ とすると き、任意の $\lambda > 1$ に対し、

$$P(|X - \mu| \ge \lambda \sigma) \le \frac{1}{\lambda^2}$$

が成り立つ. これを (5) の定理という. また, 余 事象の確率を考えることにより、上の不等式は

$$P(|X - \mu| < \lambda \sigma) >$$
 (e)

と同値であることがわかる.

- 調査対象である集団 (集合) Ⅱ と, Ⅱ の各要素の特 性 X の組 (Π, X) を母集団という. この X は確率 変数として確率分布する. この確率分布を といい, X の期待値を | (7) | , 分散を | (8) いう、
- Π の全ての要素に対して, X を調べることを という. しかし, Π が非常に大きな集団であったり, 無限である場合は (9) は不可能である. II か ら選ばれた n 個の要素の X の組 (x_1, x_2, \ldots, x_n) から (Π, X) 全体の情報を得る (推定する) ことを, (10) | という.

(解答欄)

- (a)~(e) に入る適切な式を書きなさい.
- (a)
- (b)
- (c)
- (d)
- (e)

(1) \sim (10) に入る最も適切な言葉を下の**(ア)** \sim **(チ)**か ら選びなさい.

- (1) (2)
- (3)(4)
- (5)(6)
- (7)(8)
- (9)(10)

(選択肢)

- (ア) 正規 **(イ)** ポアソン **(ウ)** チェビシェフ
- **(工)** ラプラス (オ) 中心極限
- (力) 標本調査 (+) 全数調査 (ク) 国勢調査
- (ケ) 標本 (コ)標本抽出 (サ) 母平均
- (シ) 母分散 (ス) 不偏分散 (セ) 標本分散
- (ソ) 母集団 (夕) 数標識 (チ) 母集団分布

2	次の確率の値を求めなさい.ただし, Z は標準正規分布に従う確率変数とし, X は期待値 $\mu=150$,分散 $\sigma^2=16$ の正規分布に従う確率変数とする.	3 表と裏の出る確率が同じである硬貨を 4000 回投げるときに、表が出る回数を <i>X</i> とする. このとき、次の問に答えなさい.	
	(1) $P(-0.97 \le Z \le 0)$	(1) X は確率変数と考えられる. X の期待値と分散の値を答えなさい.	
	(2) $P(0.51 \le Z \le 2.22)$		
		(2) X が近似的に正規分布に従うとして, 表の出る回数が 2019 回以下となる確率を求めなさい.	9
	(3) $P(147.4 \le X \le 162.4)$		
	$(4) P(X \le 141.4)$		

- 4 ある大学の学生 40 人を無作為に選び、1 週間にテレビを何時間視るかを聞いたところ、平均 18.2 時間、標準偏差5.4 時間だった.大学生の 1 週間にテレビを視る時間 X が標準偏差 $\sigma=5.4$ 時間の正規分布に従うと考え、平均視聴時間 μ の信頼度 95% と 99% の信頼区間をそれぞれ求めなさい.
- **5** 一定量の砂糖を袋につめる機械がある。この機械は袋につめる砂糖の重さが、 $\mu=100~{\rm g}$ 、 $\sigma=5~{\rm g}$ の正規分布に従うよう調整されている。機械が正しく調整されているか確かめるため、9 個の袋を無作為に抽出して測ったら、平均値x が $102.4~{\rm g}$ であった。この機械は正しく調整されているか、有意水準5% で検定しなさい。