Laboratorio di Fisica

Docenti: Prof. A. Garfagnini - Prof. M. Lunardon Corso di Laurea in Fisica Canale 1 A-L Anno Accademico 2020/2021

ESPERIENZA DI LABORATORIO

Amplificatori Operazionali

OBIETTIVO DELL'ESPERIENZA

Verificare la linearità di un amplificatore operazionale. Misurare l'amplificazione di un circuito con amplificatore operazionale. Misurare la frequenza di taglio di un circuito derivatore con amplificatore operazionale.

Turno T2

LAI NICOLÒ
1193976
nicolo.lai@studenti.unipd.it

1 Strumentazione e Componenti

- Oscilloscopio (Tektronix TBS1102B): Lo strumento presenta un'accuratezza sul guadagno verticale pari al 3% del valore letto (errore massimo) ed è generalmente il contributo più significativo. L'incertezza di guadagno sui tempi si assume trascurabile. L'accuratezza che tiene conto degli effetti di risoluzione e imprecisione della traccia è di 1/10 di divisione su tutta la scala di lettura (errore massimo), uguale sia per le tensioni sia per i tempi.
- Generatore di funzioni (Tektronix AFG1022)
- Alimentatore di tensione continua: Lo strumento presenta due uscite con erogazione di tensione tra 0 e 20 V e un'uscita con erogazione fissata a 5 V
- Multimetro digitale (Metrix MTX3292): Si riporta l'accuratezza dello strumento, per misure di resistenza e di capacità, relativa unicamente ai fondoscala utilizzati nell'esperienza.

Accuratezza Metrix MTX3292			
F.S.	Precisione	Risoluzione	
$1~\mathrm{k}\Omega$	0.10%+8	$0.01~\Omega$	
$10~\mathrm{k}\Omega$	0.07%+8	$0.1~\Omega$	
$100~\mathrm{k}\Omega$	0.07%+8	$1~\Omega$	
$1000~\mathrm{pF}$	2.5%+15	1 pF	

Tabella 1: Per i fondoscala indicati si riportano la precisione (contributo di scala in percentuale e contributo di lettura sul digit meno significativo) e la risoluzione dello strumento.

• Componenti circuitali (Resistori e Condensatori): Si riportano i valori delle resistenze e capacità utilizzate per l'assemblamento dei circuiti utilizzati nel corso dell'esperienza, misurate direttamente con il multimetro digitale Metrix.

Resistori e Condensatori			
Resistenza	Valore	F.S.	
R_f	$(82.46\pm0.03)\mathrm{k}\Omega$	$100\mathrm{k}\Omega$	
R_1	$(8.089\pm0.003)\mathrm{k}\Omega$	$10\mathrm{k}\Omega$	
R_3	$\left(46.54\pm0.05\right)\Omega$	$1\mathrm{k}\Omega$	
Capacità	Valore	F.S.	
C_1	$(977\pm17)\mathrm{pF}$	$1000\mathrm{pF}$	

Tabella 2: In tabella si indicano le componenti circuitali (resistori e capacità) utilizzando delle label specifiche per ciascuna di esse: questa notazione è costante nel corso dell'esperienza.

- Circuito integrato TL082C (Due Amplificatori Operazionali): essendo gli amplificatori operazionali delle componenti circuitali attive, esse devono essere alimentate. Si utilizza dunque il generatore di tensione continua con $V_+ = V_{cc} = +15 \,\mathrm{V}$ e $V_- = V_{ee} = -15 \,\mathrm{V}$ per l'alimentazione dell'amplificatore operazionale utilizzato nell'esperienza. Nel corso di quest'ultima, si assume un comportamento ideale dell'amplificatore operazionale, ovvero che il polo invertente ed il polo non invertente si trovino allo stesso potenziale.
- Scheda Arduino Due

2 Amplificatore Operazionale Invertente

Breve introduzione

2.1 Configurazione Sperimentale

Si inizia assemblando il seguente circuito, utilizzando le resistenze R_f , R_1 , R_3 e l'amplificatore operazionale. La resistenza R_g rappresenta la resistenza interna del generatore, non nulla in quanto ci si trova in condizioni di non idealità.

Figura 1: In figura è rappresentato lo schema del circuito assemblato in laboratorio.

Il segnale viene prelevato nei punti IN e OUT evidenziati nello schema in Figura 1 (e verrà in seguito richiamato rispettivamente come $V_{\rm in}$ e $V_{\rm out}$) utilizzando due sonde con fattore di attenuazione 10X. Nel canale CH1 dell'oscilloscopio viene visualizzato il segnale in ingresso $V_{\rm in}$, mentre il segnale in uscita $V_{\rm out}$ è prelevato dalla sonda collegata al canale CH2. Per entrambi i canali viene impostata l'attenuazione sonda 10X, in modo da visualizzare nel display il segnale non attenuato. Il generatore di funzioni viene poi configurato in modalità "50 Ohm", in modo che l'impedenza d'uscita del generatore corrisponda con $R_3 \approx 50\Omega$. Così facendo, ci si aspetta di trovare una tensione in ingresso $V_{\rm in}$ in accordo con la tensione nominale erogata dal generatore. Si imposta infine il generatore di funzioni in modo da erogare un segnale di tipo sinusoidale con frequenza $f_{\rm gen} = 1\,{\rm kHz}$ e di ampiezza variabile.

2.2 Acquisizione Misure