BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, HYDERABAD CAMPUS FIRST SEMESTER 2019-2020

Course Handout for Advanced Chemical Engineering Thermodynamics

Date: 1/8/2019

Course No. : CHE G622

Course Title : Advanced Chemical Engineering Thermodynamics

Instructor-in-Charge: I SREEDHAR

1. Course Description: Review of basic undergraduate concepts in thermodynamics including Legendre transformations and Maxwell's relations, Phase equilibria in multi-component and multiphase systems, Chemical Equilibrium, Statistical Thermodynamics

2. Scope & Objective:

The objective of this course is to learn how to apply thermodynamics to phenomena and processes of interest to chemical engineers. The content is advanced and based on prior knowledge of courses taken at the undergraduate level. This course aims to provide further depth with major focus on phase equilibrium thermodynamics. Solving phase equilibria problems involves general computational techniques that have widespread application in other areas of engineering. Another objective of this course is to provide experience in fitting mathematical models to experimental data, using phase equilibria calculations. A small part of the course is devoted to statistical mechanics and its relation to thermodynamics.

Learning objectives:

At the end of the course student will be able to

- Apply the principles of thermodynamics for the energy requirements , feasibility of the processes and predict reaction equilibria
- Predict the phase behavior and properties of multicomponent system.
- Use tools such as ASPEN for solving calculations useful in thermodynamics.

3.Text Book (TB):

J. M. Smith, H. C. Van Ness and M. M. Abbott, "Introduction to Chemical Engineering Thermodynamics", MGHFSE, 7th Edition

Reference Books: (RB)

RB1: Y. V. C. Rao, "Chemical Engineering Thermodynamics", Universities Press, 1997

RB2: R. P. Rastogi & R. R. Mishra, "An Introduction to Chemical Thermodynamics", Vikas Publishing House Pvt. Ltd., 6th Revised Edition (1995)

RB2: John M. Prausnitz; Rüdiger N. Lichtenthaler; Edmundo Gomes de Azevedo, "Molecular Thermodynamics of Fluid Phase Equilibria", Prentice Hall, 3rd Edition

4. Course Plan:

Lecture	Learning		
Lecture	Objectives	Topics to be covered	Reference
No.	o Djecci ves	ropies to ac core. cu	Kerer ente
1 – 2	Introduction	Review of Basics, First Law of Thermodynamics, Second Law of Thermodynamics Entropy, Entropy	Chap. 1,2,3,4 TB/Lecture
		balance and Reversibility, Third Law of Thermodynamics	notes / Chap 1,2, 5 T2
	Equations of state		
	(EOS),, Generalized		Chap. 6.6, 6.7
3	Correlations for	Equations of State, Generalized correlations for	TB / Chap 3
	PVT behaviour	gases and liquids (Review only)	T2
	1 VI Bellavioui	Fundamental Property relations, Equilibrium,	
	Thermodynamic	Review of	GI 6.70
4 – 5	Properties of Fluids	Maxwell equations	Chap. 6 T2
		Legendre Transformations, Thermodynamic potentials,	
6 - 8	Thermodynamic	Criteria for equilbrium, Energy minimum and	Chap. 6 RB1/
0-8	Potentials	maximum	Chap 7. TB
		principle	
	Stability of	Stability critoria Application of equilibrium and	Chan 7 TD /
9 – 10	Thermodynamic	Stability criteria, Application of equilibrium and	Chap. 7 TB /
		stability criteria to equation of state	Chap. 10 RB1
	systems		
		Thermodynamic description of mixtures, review of	
11 – 12	Multi-component	partial molar property, Chemical potential, Generalized	Chap. 8 TB /
	mixtures	Generalized	Chap. 9 RB1
		Gibbs-Duhem Equations	
		Criteria for phase equilibrium in multi-component	
13 – 15	Multi-component mixtures	systems, Criteria for chemical equilibrium and combined chemical and phase equilibrium	Chap. 8 / TB

		Review of fugacity and estimation of fugacity	
16 - 17	Gibbs energy	and fugacity coefficient for pure gas, Fugacity co- efficient of	Chap. 7/9 TB /
	calculations		Chap 9 RB1
		species in mixture	
18 – 19	Gibbs energy calculations for real	Mixing rules, Estimation of pure component fugacity for	Chap. 9 TB /
		real gas mixtures	Chap 9 RB1
	gas mixtures		
ı	Gibbs energy		
20 24		Lewis Randall rule, Excess properties, concept of	Chap. 9 TB /
20 – 21	calculations for	activity coefficient, Gibbs Duhem relation	Chap 11 RB1
	solutions	activity coefficient, Globs Dunein relation	Спартткы
	Gibbs energy		
			Chap. 9 TB /
22 – 24	calculations for	Correlative activity coefficient models	·
			Chap 11 RB1
	solutions	5 1 (1)/15 (2)/15 (1	
	Vapor-Liquid	Fundamental VLE equation, VLE at low and moderate	Chap. 10 TB /
25 – 26	Tapor Erquio		
	Equilibrium	pressures (review only), Azeotropic system	Chap 12 RB1
	Vapor-Liquid	Multi-component VLE, Thermodynamic consistency	Chap. 10 TB /
27 – 28	Equilibrium	test of VLE data, Descriptive VLE	Chap 12 RB1
	Equilibrium	The solubility of gas in a liquid, Vapour liquid-	C1147 12 1101
29 - 30	Other Fluid – Fluid	liquid equilibrium & Liquid-Liquid equilibrium, solid liquid	Chap. 11 TB/
	equilibria	'	Chap 14 T2
	·	equilibrium	-
		Review of multi-reaction Stoichiometry, standard Gibbs	
	Chemical Reaction	free energy change and Equilibrium constant, vant' Hoff	Chap. 13 TB /
31	Equilibria (review)	equation, Relation between equilibrium constants and	Chap 14 RB1
	Chamical Desertion	species activities at equilibrium	Char 12 TD /
	Chemical Reaction	Homogeneous gas and liquid phase reactions	Chap. 13 TB /

32 – 34		Equilibrium with simultaneous reactions, Heterogeneous	
	Equilibria		Chap 14 RB1
		reactions	
		Introduction, Quantum mechanical aspects, Role of	
	Statistical		Chap. 6 RB2 /
35 – 36		statistical mechanics, Thermodynamic probability,	
	Thermodynamics		Lecture notes
		Probability and entropy	
37-39	Statistical Thermodynamics	Molecular basis of residual entropy, Boltzmann's Distribution Law, Partition function and expressions for	Chap. 6 RB2 /Lecture notes
37-39	Intermodynamics	the same	Hotes
	Statistical	Thermodynamic properties in terms of partition	Chap. 6 RB2 /
40 – 42	Thermodynamics	functions, Partition functions of polyatomic	
		molecules	Lecture notes

Plan for Lab experiments

Experiment No	Lab name	Experiment Name	
Expt-1	CAD LAB	Introduction to Aspen Plus property	
Expt 2	CAD LAB	Introduction to data models	
Expt-3	CAD LAB	Flash Calculation in Aspen Plus	
Expt-4	CAD LAB	Heat of vaporization using Aspen plus	
Expt-5	CAD LAB	Steam engine simulation with Aspen Plus	
Expt-6	CAD LAB	Maximum Fill up in Propane Tanks with Aspen Plus – Using calculator block	
Expt-7	CAD LAB	Usage ASPEN calculator block to perfom custom calculations	
Expt-8	CAD LAB	Txy examples with Aspen Plus	
Expt-9	CAD LAB	Txy in VLLE system	
Expt-10	CAD LAB	PT envelope in Aspen Plus	
Expt-11	CAD LAB	Retrograde Behavior Illustrated with Aspen Plus	

Expt 12	CAD LAB	Thermodynamic Equilibrium with Sensitivity

4. Evaluation Scheme:

Component	Duration	Weightage	Date & Time	Remarks
Mid Sem Tests	90 min	30%		СВ
			03/10,11.00 12.30 PM	
Lab		20%		ОВ
1 Seminar+ 1 Project		20%		ОВ
Comprehensive Exam	3 hours	30 %	09/12 AN	CB/OB

- **5. Chamber Consultation Hours:** To be announced in the class.
- **6. Notice:** Notices will be put on CMS
- **7.** Make-up will be granted for genuine cases only. Prior permission of IC is compulsory.
- **8. Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge CHE G622