All sets will be connected unless said otherwise.

Schwarz Reflection 1

Schwarz reflection is a way to analytically continue a function.

Theorem 1.1 (Schwarz reflection): thm:schwarz-reflection Suppose Ω is an open set symmetric about the real axis. Let $\Omega^+ = \Omega \cap \{z : \Im z > 0\}$ and similarly for Ω^0, Ω^- . Suppose $f^+, f^$ are holomorphic on Ω^+ and Ω^- , can be *continuously* extended to Ω^0 , and are equal there.

Then the pasting f of f^+ , f^- is holomorphic.

Proof. We use Morera's Theorem. By splitting, we just have to consider curves (or triangles) one of whose edges are on the real axis. Use continuity to move the path upwards/downwards slightly.

The following special case is useful.

Corollary 1.2: Let Ω, Ω^{\pm} be as above. Suppose f is holomorphic on Ω^{+} and real on Ω^{0} . Then f can be analytically continued to Ω .

Proof. Let
$$f^- = \overline{f(\overline{z})}$$
 in Schwarz reflection 1.1.

Schwarz's lemma 2

Let D be the open disc.

Lemma 2.1 (Schwarz): lem:schwarz Let f be a map $D \to D$ with f(0) = 0. If either f'(0) = 1 or $\sup_{z \in D} |f(z)| = 1$, then f(z) = cz for some |c| = 1.

We can use this to find Aut(D).

Lemma 2.2: lem:autD The automorphism of D are in the form

$$f(z) = e^{i\theta} \underbrace{\frac{\alpha - z}{1 - \overline{\alpha}z}}_{:=\psi_{\alpha}}$$

for $\alpha \in D$. Here, $\frac{\alpha - z}{1 - \overline{\alpha}z}$ is an involution switching 0, α , and $z \mapsto e^{i\theta}z$ is a rotation by θ . The automorphisms of \mathcal{H} are in the form $z \mapsto \frac{az + b}{cz + d}$ with $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{R})$. We have $\operatorname{Aut}(D) \cong \operatorname{Aut}(\mathcal{H}) \cong \operatorname{SL}_2(\mathbb{R}).$

Proof of Lemma 2.1. By the maximal modulus principle, $\left|\frac{f(z)}{z}\right| \leq 1$ inside the disc. (Consider the circle C_r , and let $r \to 1^-$. This is necessary because f many not be defined on ∂D .) If equality is attained anywhere, then $\frac{f(x)}{x}$ is constant. Proof of Lemma 2.2. Suppose $f \in \operatorname{Aut}(D)$ sends α to 0. Then f is the composition of $\frac{\alpha-z}{1-\overline{\alpha}z}$ and an automorphism fixing 0.

To get the automorphisms of \mathcal{H} , conjugate by the isomorphism between D and \mathcal{H} .

$$D \underbrace{\sum_{\substack{i-z\\ i+z}}^{i\frac{1-z}{1+z}}}_{} \mathcal{H}$$

The rest is calculation.

Tip: How to remember/think about the maps?

1. On the boundary, the map $\mathcal{H} \to D$ is given by $\tan \theta \mapsto \cos 2\theta + i \sin 2\theta$. By trig identities, this is $\frac{1-z^2}{1+z^2} + \frac{2zi}{1+z^2} = \frac{i-z}{i+z}$.

3 On complex analytic maps

Theorem 3.1 (Open mapping theorem): thurtont If f is holomorpic on Ω and $\forall z \in \Omega, f'(z) \neq 0$, then f is open.

Moreover, $f'(z_0) \neq 0$ iff f is injective in some open set around z_0 .

Proof. Use Rouché's Theorem on $f(z) \approx f'(z_0)(z-z_0) + f(z_0)$ to show there is exactly 1 solution to f(z) = y for y close to $f(z_0)$. Thus the image of an open is open.

For the second part, use Rouché on $f \approx f(z_0) + a_k(z - z_0)^k$.

Lemma 3.2: If $f: U \to V$ satisfies $\forall z \in U, f'(z) \neq 0$ and is bijective, then the inverse map is holomorphic.

Proof. We can certainly define f^{-1} . Theorem 3.1 shows it's continuous. The standard calculation shows that $(f^{-1})'(f(z)) = \frac{1}{f'(z)}$, which is defined.

Define a biholomorphic map to be $f:U\to V$ that is bijective holomorphic with $\forall z\in U, f'(z)\neq 0$.

4 Normal families

Say a property holds compact-locally if it holds for every compact subset.

Theorem 4.1 (Arzela-Ascoli): thm:arzela-ascoli

1. Suppose $X \subseteq \mathbb{R}^n$ is compact. A closed and bounded equicontinuous family of functions in C(X) is compact. In other words, if \mathcal{F} is an infinite family of pointwise bounded equicontinuous functions in C(X), then any sequence in \mathcal{F} has a uniformly convergent subsequence.

2. The same is true of any open set U, if we ask these conditions hold compact-locally. (Define **normal** to mean every sequence has a subsequence converging compact-locally.)

Proof. See Real Analysis notes. For (2) diagonalize over an exhaustion by compact subsets (e.g., in \mathbb{R}^n).

In the $\mathbb C$ world, much looser criteria force $\mathcal F$ to be an family of pointwise bounded equicontinuous functions.

Theorem 4.2 (Montel): thm:montel If \mathcal{F} is compact-locally uniformly bounded, then \mathcal{F} is compact-locally equicontinuous and hence normal.

Counterexample for \mathbb{R} : $\sin(nx)$.

Proof. One way to show good continuity/limit/boundedness properties in complex analysis is to use the integral representation. Given K, for points $|x-y|<\varepsilon_1$, write $f(x)=\frac{1}{2\pi}\int_{C_{\varepsilon_2}}\frac{f(z)}{z-x}\,dz$ over a circle containing x,y. Now bound the difference f(x)-f(y) uniformly $\to 0$ in terms of $\sup_{z\in K,f\in\mathcal{F}}f$ as $\varepsilon_1\to 0$.

Now use Arzela-Ascoli 4.1.

We'll take \mathcal{F} to be an injective family of functions below, so we'll want this to be preserved under limit.

Lemma 4.3: lem:inj-conv (Pr. 8.3.5) If Ω is a connected open subset, f_n are injective, and $f_n \to f$ compact-locally uniformly, then f is injective or constant.

Proof. Idea: we can count the number of solutions of $f_n(z) - w$ using a holomorphic function. By convergence, the number of solutions must stay constant.

Suppose f(0) = 0 is a problem point, WLOG $f_n(0) = 0$. Just use $\frac{1}{2\pi i} \int_{\gamma} \frac{f'_n}{f_n} dz$.

5 Riemann Mapping Theorem

Theorem 5.1: All proper simply connected open set in \mathbb{C} are isomorphic (complex analytically).

It suffices to prove that if Ω is a simply connected open set then there is a biholomorphism $f:\Omega\to D.$

Proof. 1. Construct an injective map $f: \Omega \to D$ with $f' \neq 0$ and with 0 in the image.

- (a) Find $f_1: \Omega \to \Omega_1$ where Ω_1 avoids an open set around a point. Let $f_1 = \ln(x a)$ where $a \notin \Omega$; this is well-defined because Ω is simply connected. Note $w \in f(\Omega)$ implies $w + 2\pi i \notin \overline{f(\Omega)}$. (To see it's not in the closure, note otherwise (because f is open) there is a point close by with $w', w' + 2\pi i \in f(\Omega)$, contradiction. Alternatively, replace 2 by $2 + \varepsilon$ so this argument is unnecessary.)
- (b) Now Ω_1 avoids an open set around β . Let $f_2 = \frac{1}{z-\beta}$; $f_2(\Omega_1)$ is bounded in norm.

- (c) Translate and dilate so it fits in the unit disc and includes 0.
- 2. We can now assume $0 \in \Omega \subseteq D$. Recast the existence problem as a maximization problem. Consider $\mathcal{F} := \{f : \Omega \to D : f \text{ injective, } f' \neq 0\}$, and $s = \sup_{f \in \mathcal{F}} |f'(0)|$. Claim 1: The maximum is attained. Claim 2: f attaining the maximum is an isomorphism $\Omega \to D$.

Proof of Claim 1: \mathcal{F} is uniformly bounded so normal by Theorem 4.2. Thus there exists a subsequence $f_n \to f$ with $f'_n(0) \to s$. In the real world, this is not enough to say f'(0) = s. In the complex world it is, because we can express f'_n again in terms of f_n using the integral representation, and just use uniform convergence of the f_n . We have $f \in \mathcal{F}$ by Lemma 4.3 (f can't be constant because $f'(0) \neq 0$.)

3. Proof of Claim 2: Otherwise (if f is not surjective) we exhibit g with larger |g'(0)|. Idea: If f is not surjective, write

$$f = \Phi \circ F$$

where $|\Phi'(0)| < 1$ (proved using Schwarz's lemma 2.1) forcing |F'(0)| > |f'(0)|. (Use chain rule.)

If Φ is a map $D \to D$ that is not injective, it can't be in the form cz, |c| = 1, so by Schwarz must have $|\Phi'(0)| < 1$. Thus we let F be a function whose inverse is multivalued on D but that is injective on Ω . Use the square root!

BWOC, let $\alpha \notin f(\Omega)$. $F = \psi_{\sqrt{\alpha}} \circ \sqrt{\circ \psi_{\alpha}} \circ f$ and let Φ be the inverse $\psi_{\sqrt{\alpha}} \circ \sqrt{\circ \psi_{\alpha}}$. This gives $F \in \mathcal{F}$ with |F'(0)| larger, contradiction.

6 Schwarz-Christoffel formula