

Immunoprecipitation Protocol

BioLegend, Inc.

Abstract

Citation: BioLegend, Inc. Immunoprecipitation Protocol. protocols.io

dx.doi.org/10.17504/protocols.io.eyvbfw6

Published: 27 May 2016

Guidelines

Application Notes:

Immunoprecipitation is a procedure by which proteins or peptides that react specifically with an antibody are removed from solution and examined for quantity or physical characteristics. Immunoprecipitation can also be used to "enrich" a protein population prior to Western Blotting. For example, one can perform immunoprecipitation with a pan-specific antibody against a protein of interest followed by Western blotting with a modification-specific antibody (such as a

phospho-specific antibody or an acetylation-specific antibody).

Tips:

- 1. The choice of lysis buffer depends on the location of the protein (membrane, cytosolic, nuclear).
- 2. Immunoprecipitates allowed to incubate overnight may have a higher background than ones processed for shorter periods of time due to time-dependent aggregation or denaturation of cellular proteins.
- 3. Always use an isotype-matched irrelevant control antibody (monoclonal) or same-species serum from a non-immunized animal to remove non-specific antibody binding in cellular lysates.

Solutions and Reagents:

1X Cell Lysis Buffer:

25 mM Tris-HCl, pH 7.5 1 μ g/ml aprotinin 150 mM NaCl 1 mM Na $_3$ PO $_4$ 0.1% Triton X-100 1 mM PMSF 2 mM EDTA 5 mM NaF 1 μ g/ml leupeptin 3 mM Na $_4$ P $_2$ O $_4$

5X SDS sample Buffer:

312.5 mM Tris-HCl (pH 6.8) 10% SDS (w/v)

250 mM DTT

50% Glycerol

0.05% Bromophenol Blue (w/v)

Use at 1X

10X SDS Running Buffer:

Dissolve 144 g of Glycine, 30 g of Tris base and 10 g SDS in 800 ml of distilled H2O.

Add distilled H2O to 1 liter

Use at 1X

Transfer Buffer:

2.25 g Tris base

10.5 g Glycine 1 g SDS

200 ml Methanol

Add distilled water to 1.0 L

Protocol

Preparation of antibody-protein G agarose beads

Step 1.

Wash protein G agarose beads with cell lysis buffer by pulsing in a microcentrifuge tube (two minutes at 5,000 rpm).

© DURATION

00:02:00

Preparation of antibody-protein G agarose beads

Step 2.

Aspirate and discard supernatant.

Preparation of antibody-protein G agarose beads

Step 3.

Wash the beads with celllysis buffer (1/3).

Preparation of antibody-protein G agarose beads

Step 4.

Wash the beads with celllysis buffer (2/3).

Preparation of antibody-protein G agarose beads

Step 5.

Wash the beads with celllysis buffer (3/3).

Preparation of antibody-protein G agarose beads

Step 6.

Adjust antibody concentration to 5-10 μ g/ml in PBS and transfer 500 μ l of diluted antibody to 5-10 μ l of agarose beads for each sample.

Preparation of antibody-protein G agarose beads

Step 7.

Place the antibody-protein G agarose mix on a shaker and rotate at 4°C for one hour.

O DURATION

01:00:00

Preparation of antibody-protein G agarose beads

Step 8.

Spin down the protein G beads for two minutes at 5,000 rpm and wash the antibody-beads three times with cell lysis buffer.

© DURATION

00:02:00

Preparation of cell extract

Step 9.

Collect cells and centrifuge at 1200 rpm for 5 minutes at 4°C.

O DURATION

00:05:00

Preparation of cell extract

Step 10.

Discard the supernatant and immediately add 800 μ l of ice-cold lysis buffer to the cells and vortex, then incubate for 30 minutes on ice.

O DURATION

00:30:00

Preparation of cell extract

Step 11.

Freeze and thaw the samples with dry ice for two more cycles or sonicate for 15 seconds to ensure the full release of the proteins from the cells.

O DURATION

00:00:15

Preparation of cell extract

Step 12.

Spin lysates at 14,000 rpm in a pre-cooled centrifuge for 10 minutes and keep the supernatant.

O DURATION

00:10:00

Immunoprecipitation

Step 13.

Adjust the protein concentration of the supernatant to 1-2 mg/ml with lysis buffer.

Immunoprecipitation

Step 14.

Mix 100-500 μ l of cell extract with antibody-protein G agarose and rotate the samples at 4°C for about two hours.

© DURATION

02:00:00

Immunoprecipitation

Step 15.

Collect the agarose beads by pulsing in a microcentrifuge tube (two minutes at 5,000 rpm, 4°C).

© DURATION

00:02:00

Immunoprecipitation

Step 16.

Aspirate and discard the supernatant.

Immunoprecipitation

Step 17.

Wash the beads with ice-cold cell lysis buffer (1/3).

Immunoprecipitation

Step 18.

Wash the beads with ice-cold cell lysis buffer (2/3).

Immunoprecipitation

Step 19.

Wash the beads with ice-cold cell lysis buffer (3/3).

Immunoprecipitation

Step 20.

After the final wash, remove the supernatant and add 20 µl of 2X SDS sample buffer.

Immunoprecipitation

Step 21.

Boil for 5 minutes at 95°C.

© DURATION

00:05:00

Immunoprecipitation

Step 22.

Spin down the beads at maximum speed in a microcentrifuge for 5 minutes at room temperature.

O DURATION

00:05:00

Immunoprecipitation

Step 23.

Carefully pipette off the supernatant.

Immunoprecipitation

Step 24.

Load 30 μ l of sample in each well of a 1.5 mm thick gel. Run the gel according tomanufacturer's recommendations and continue with immunoblotting using <u>BioLegend's Western Blotting protocol</u> (alternately, radiolabeled proteins prepared from target cells can be used to directly visualize the immunoprecipitated protein).