Franklin Hu, Sunil Pedapudi CS 194-10 Machine Learning Fall 2011 Assignment 5

- 1. Conjugate priors
  - (a)
  - (b) Given the geometric distribution

$$P(X_i = k|\theta) = (1 - \theta)^{k-1} \cdot \theta$$

and the beta distribution

$$\beta(\theta|a,b) = \alpha \theta^{a-1} (1-\theta)^{b-1}$$

we prove that the beta distribution is the conjugate prior for a likelihood with a geometric distribution.

$$P(\theta|X) = P(\theta) \cdot P(X|\theta)$$

$$= \alpha \cdot \theta^{a-1} \cdot (1-\theta)^{b-1} \cdot (1-\theta)^{k-1} \cdot \theta$$

$$= \alpha \cdot \theta^a \cdot (1-\theta)^{b+k-2}$$

$$= \beta(\theta|a+1, b+k-1)$$

The posterior has the form of a beta distribution so therefore the beta distribution is the conjugate prior for the geometric distribution.

The update procedure for a beta posterior simply involves updating the a and b parameters

$$a_{N+1} \leftarrow a_N + 1$$
$$b_{N+1} \leftarrow b_N + k - 1$$

- 2. Bayesian Naive Bayes
- 3. Logistic regression for credit scoring
  - (a) The data structure we chose for logistic regression is simply a class that keeps a set of weights for each of the features, has an update method for updating the weights, and draws predictions using the logit function

Probability = 
$$\frac{1}{1 + e^{-w^T x}}$$

(b) The likelihood is

$$L(w) = \frac{1}{1 + e^{-yw^T x}}$$
 log likelihood = 
$$\log \frac{1}{1 + e^{-yw^T x}}$$
 = 
$$-\log(1 + e^{-yw^T x})$$

negative log likelihood =  $\log(1 + e^{-yw^Tx})$ 

Now we compute the gradient of the negative log likelihood

$$\nabla \log(1 + e^{-yw^T x}) = \nabla \log\left(\frac{e^{yw^T x} + 1}{e^{yw^T x}}\right)$$

$$= \nabla\left(\log(e^{yw^T x} + 1) - \log(e^{yw^T x})\right)$$

$$= \left(\frac{1}{e^{yw^T x} + 1} \cdot e^{yw^T x} \cdot -yx_i\right) - \left(\frac{1}{e^{yw^T x}} \cdot e^{yw^T x} \cdot -yx_i\right)$$

$$= yx_i - yx_i \cdot \frac{e^{yw^T x}}{e^{yw^T x} + 1}$$

$$= yx_i - yx_i \cdot \left(\frac{e^{yw^T x} + 1}{e^{yw^T x}}\right)^{-1}$$

$$= yx_i - yx_i \cdot (1 + e^{-yw^T x})^{-1}$$

$$= yx_i \left(1 - \frac{1}{1 + e^{-yw^T x}}\right)$$

Therefore our update rule is simply

$$\begin{aligned} w_{i+1} &= w_i + \alpha \cdot \nabla L \\ &= w_i + \alpha \cdot y x_i \cdot \left( 1 - \frac{1}{1 + e^{-yw^T x}} \right) \end{aligned}$$