用于路面质量测量和乘车舒适性的移动检测系统的开发

Development of Mobile Application for Measuring Vehicle Ride Comfort and Road Surface Quality

Content

Part One 项目背景介绍 已有研究综述

Part Two

Part Three 项目研究内容 结论与展望

Part Four

项目背景介绍

道路质量问题的危害

影响驾驶舒适度

研究表明一定频率段下的振动会引起人类的不适,而道路质量问题会造成驾驶时汽车的振动,而这一振动会影响驾驶的舒适度。

增加汽车损耗

道路质量问题会加剧轮胎的磨损和汽油的 消耗,其引起的振动也会加剧汽车机械部件 的损坏,降低其使用寿命。

引发交通安全问题

严重的道路质量问题如较大的坑洞等会影响正常驾驶,从而引发交通交通事故等安全问题,甚至危害生命。

提高道路运营成本

除了对于道路的维修费用,对道路状况的 定期检测也是一项巨大的支出。

项目背景介绍

传统道路质量检测

成本高,效率低!

已有研究综述

技术与可行性

舒适度研究

加速度数据的意义

数据处理方法

- ●人体对振动的不同反应阈 值以及车辆对振动的响应;
- ●车辆的结构和部件材质、 发动机和座椅的位置以及车 速都会影响座椅的振动,即 驾驶舒适度;
- —Ride quality of passenger cars: an overview on the research trends
- —Evaluation of Whole-BodyVibration and Ride Comfort in a Passenger Car

- ●搭载传感器的汽车行驶中 的产生的加速度数据是可重 复的;
- ●加速度数值检测结果与路 面平滑度近似,即加速度数 值可作为路面平滑度结果;
- —Probe Vehicles Used to Measure Road Ride Quality

- ●根据准确性和假阳性选择 合适的报警阈值范围;
- ●通过支持向量机、聚类等 方式进行数据分析;
- ●通过标签和数据训练,结 合GPS排除如减速带、关门 等造成的异常数据;
- —Automated sensing system
 for monitoring of road surface
 quality by mobile devices
 —The Pothole Patrol: Using
 a Mobile Sensor Network for
 Road Surface Monitoring

己有研究综述

检测手段与实验

实地测试结果

- ●不同道路状况下的路面的平整 度不同, 驾驶人的舒适度也不同;
- ●车速的不同会影响对路面质量 的检测结果;

检测手段的改进:

- ●探测车可搭载加速度传感器与GPS系 统收集路面信息;
- ●利用部分车辆自带的传感器进行检测;
- ●利用手机带有的加速度计和GPS检测;

实验设计:

- ●四轴实验装置的设计,以测试振动效 果,模拟人体反应;
- 利用出租车携带检测设备在特定道路 进行质量检查测试;

项目研究内容

数据收集——智能手机APP

功能整合:

记录加速度数据;位置跟踪。

设备兼容:

采用react-native语言,兼容安卓与IOS。

代码效率:

剔除无用功能,降低设备损耗。

APP界面

项目研究内容

3m width, error of 2.57m.

5m width, error of 16.27m

实验设计

初步自行车测试:

减速带作为路面异常状况

可控实验室测试:

两部设备同时记录一组路面状况

车内测试:

设备限定状况不同,测试同一组路面信息

结论与展望

实验结果与结论

实验一

根据加速度数据的峰值显示可推断加速度计的可行性; 定位精度存在误差但在可接受范围内。

实验二

加速度计精度有限且存在一定的误差,且使用前需关闭手机界面的自动旋转功能。

实验三

手机位置的固定与否对测试结果的影响,前者更加方便,灵敏度更高但不确定因素更多;后者数据统一,可信度高。相比之下手机固定效果更好。

结论与展望

改进方向

将不同手机上传的数据区分开来

应用程序的耗电 量过大,应想办 法减小电量使用 数据在离线状态 下的保存

减小不同手机对 同一位置测定的 结果误差 分析模型存在改进空间,数据处理费时太长

2019 THANKYOU