A Clustering Approach to detect Dependencies between Test Cases

Table of Contents

- Introduction
- Assignment Description
- Assumptions
- Method
- Results
- Analysis of Results
- Discussion & Improvements
- Q&A

Introduction

Assignment Description

Ground Truth

TC	DependsOn
TC0000	TC0001
TC0000	TC0002
TC0001	TC0002
TC0018	TC0019
TC0018	TC0020
:	:
• 3	1.4

Data as 64-dimensional vectors

TC	d_0	d_1	•••	d_{63}
TC0000	1.3540313243865967	-0.3458509147167206		-0.526816725730896
TC0001	1.1611902713775635	-0.2490767240524292		-0.6400560736656189
TC0002	1.0486541986465454	-0.11896729469299316		-0.48657703399658203
	343			*6
		:		:

Aim: Find the best algorithm to cluster the high dimensional feature vectors

How: Evaluate performance of different clustering methods through evaluation metrics

Assumptions

 Not-overlapping clustering

Bidirectional dependencies

Assumptions

 Transitive Dependencies within GT Clusters

 Each TC must be assigned to one and only one cluster
 specific for K-Means

Method

- 1. Import High Dimensional Data
- Format GT to get clusters accordingly to Assumptions
- 3. Compute Indep List
- If wanted, perform PCA to maintain 80% variability
- 5. Run Clustering Algorithm
- 6. Compute Result Matrix
- 7. Evaluate results

Performance Analysis

```
Algorithm 5 Detection of TP and FN pairwise instances
Data: Results matrix and formatted Ground Truth GT.csv
Result: TP and FN
initialization to 0 for TP and FN
for every TC do
   for every line in GT. csv do
      if TC is in line then
         for every element in line do
            if element != TC and element > TC then
                if they have same label in Results different from -1 then
                 TP += 1
                else
                 |FN += 1|
                end
            end
         end
      end
   end
end
```

Performance Analysis (Cont'd)

```
Algorithm 6 Detection of FP pairwise instances
Data: Results matrix & formatted Ground Truth GT.csv & Indep list
Result: FP
initialisation to 0 for FP
for every pair of TCs i,j do
   if j > i then
      if i,j have same label in Result & this label is not -1 then
          for each line in GT. csv do
             if i is in the line but j not then
              | FP += 1 |
             end
          end
      end
   end
for every pair of TCs i,j do
   if j > i then
      if i,j have same label in Result & this label is not -1 then
          if i & j are both in Indep then
          | FP += 1
          end
      end
   end
```

Performance Analysis (Cont'd)

Pairwise labeling

- Not ordered combinations w/o repetition
- ">" condition to avoid double counting
- TP + FN fixed sum

$$TP + FN = \sum_{i=1}^{NR} \binom{n_i}{2}$$

• TN = N - (TP + FN + FP)

$$N = \binom{1748}{2} = 1526878$$

-1 labeling → valid only for HDBSCAN

PCA Procedure

- Linear increasing rate
- 80% variability → 44 components.

Parameter Selection

K-Means

• K = {400,600,800,1000,1200}

HDBSCAN

- <u>Distance</u>: Canberra, Manhattan, Euclidean & Minkowski (p=4)
- Alpha: distance tuning parameter \rightarrow a = {0.75,1.0,1.2}
- Min Cluster Size: MCS = {2,3}
- Cluster Selection Method: granularity of clusters → {eom,leaf}

Manhattan (p=1)

Euclidean (p=2)

Minkowski (p=4)

Results - Tables

K-Means

Without PCA

K	Recall	Precision	F-measure		
400	0.093	0.036	0.052		
600	0.156	0.313	0.216		
800	0.176	0.009	0.016		
1000	0.165	0.007	0.013		
1200	0.189	0.008	0.015		

With PCA

K	Recall	Precision	F-measure		
400	0.086	0.187	0.118		
600	0.155	0.310	0.207		
800	0.171	0.008	0.016		
1000	0.189	0.008	0.015		
1200	0.170	0.474	0.250		

HDBSCAN

Without PCA

Distance Alpha		ance Alpha Min Cluster Size Clu		Recall	Precision	F-measure	
Canberra	0,75 & 1,0	2	eom	0,261	0,269	0,265	
Canberra	0,75 & 1,0	2	leaf	0,223	0,301	0,256	
Canberra	0,75	3	leaf	0,280	0,252	0,265	
Euclidean	0,75 & 1,0	2	leaf	0,233	0,449	0,307	
Euclidean	0,75	3	eom	0,305	0,315	0,310	
Euclidean	1,2	3	eom	0,957	0,002	0,005	
Euclidean	0,75	3	leaf	0,290	0,391	0,333	
Manhattan	0,75 & 1,0	2	eom	0,243	0,323	0,277	
Manhattan	1,2	2	eom	0,217	0,444	0,292	
Manhattan	1,2	2	leaf	0,201	0,627	0,304	
Manhattan	0,75	3	eom	0,296	0,325	0,309	
Manhattan	1,0	3	eom	0,256	0,394	0,310	
Manhattan	0,75	3	leaf	0,270	0,405	0,324	
Minkowski	0,75 & 1,0	2	leaf	0,233	0,449	0,307	
Minkowski	0,75	3	eom	0,305	0,315	0,310	
Minkowski	1,2	3	eom	0,957	0,002	0,005	
Minkowski	0,75	3	leaf	0,290	0,391	0,333	

With PCA

Distance	Alpha	Min Cluster Size	Cluster Selection Method	Recall	Precision	F-measure
Canberra	0.75 & 1.0 & 1.2	2	eom	0.254	0.290	0.271
Canberra	0.75 & 1.0 & 1.2	2	leaf	0.227	0.278	0.250
Euclidean	0.75 & 1.0 & 1.2	2	eom	0.244	0.377	0.296
Euclidean	0.75 & 1.0 & 1.2	3	eom	0.997	0.002	0.003
Manhattan	0.75 & 1.0 & 1.2	2	eom	0.238	0.431	0.306
Manhattan	0.75 & 1.0 & 1.2	3	eom	0.999	0.002	0.003
Manhattan	0.75 & 1.0 & 1.2	2	leaf	0.184	0.391	0.250
Minkowski	0.75 & 1.0 & 1.2	2	eom	0.244	0.377	0.296
Minkowski	0.75 & 1.0 & 1.2	3	eom	0.997	0.002	0.003

Results - K-means

K-means without PCA

K-means with PCA

Results - HDBSCAN

HDBSCAN (alpha = 1, MinClusterSize = 2) Without PCA

HDBSCAN (alpha =1 MinClusterSize = 2) With PCA

Analysis - K-Means

Generally weaker results

- Advantages
 - Relatively fast iteration

- Disadvantages
 - To be run over more iterations
 - Offsets speed advantage over HDBSCAN
 - Value of Clusters must be known beforehand
 - Only ideal for capturing 'globular'/spherical clusters
 - Poorer performance in capturing clusters of varying variance
 - Does not separate outliers/noise/independent data

Analysis - HDBSCAN

- Generally More Reliable
 - More consistent, better results
 - Separate outliers/noise/independent data
 - More parameters can be changed
 - Does not need multiple instances
 - Global Optimum found
 - Reproducible by external parties

Considerations

 Still does not capture large clusters in its entirety

Analysis - is PCA good?

- Different parameters → different behaviour
- K-Means:
 - K=600 worsening using PCA
 - K=1200 improvement using PCA
- HDBSCAN:
 - Canberra [2,eom] → improvement using PCA
 - Canberra [2,leaf] → worsening using PCA
 - Manhattan[2,eom] → best results in PCA
 - More degenerate cases
- Best K-Means F-Measure if using PCA
- Best HDBSCAN F-Measure if not using PCA

It depends on:

- Parameters
- Requirements

Discussion & Improvements

- Limitations of Current Algorithms
 - Non-overlapping Clusters
 - Highly Restrictive in Clustering

- Direct/Directional Dependencies not Shown
 - Further Processing Required

- Limitations of Performance Metric
 - Precision & Recall equal weightage
 - May be different in reality

- Effect of True Negatives is ignored
 - Only TP, FP, and FN taken into consideration

- Size of Positive/Negative allocations in clustering not considered
 - Size of dependent/independent results may skew performance metrics

Discussion & Improvements (Cont'd)

- Use of other algorithms
 - o Fuzzy C-Means
 - "Upgrade" from K-Means
 - Degree of membership into clusters
 - More flexible than

K-Means/HDBSCAN

- Subspace Clustering Methods
 - Forms clusters in data's subspaces
 - 'Noise' from irrelevant dimensions removed/ignored
 - SUBCLU, CLIQUE, DOC, MAFIA

- Use of other metrics/indexes
 - \circ F_{β} Scores Different weightage of Precision/Recall

Distance	PCA	Alpha	MCS/K	CSM	F ₁ Score	F _{0,5} Score	F ₂ Score
K-Means	Yes	N.A.	1200	N.A.	0,250	0,349	0,195
Minkowski	No	0.75	3	leaf	0.333	0,366	0,306
Manhattan	No	1,2	2	leaf	0,304	0,440	0,233
Manhattan	Yes	1,0	2	eom	0,306	0,371	0,261
Minkowski	No	0,75	3	eom	0,310	0,313	0,306
Canberra	Yes	1,0	2	eom	0,271	0,282	0,260

 Matthew's Correlation Coefficient (MCC) -Prioritises True Positives and True Negatives equally

Distance	PCA	Alpha	MCS/K	CSM	TP	FP	FN	TN	F ₁ Score	MCC Score
K-Means	Yes	N.A.	1200	N.A.	264	293	1.289	1.525.560	0,250	0,283
Minkowski	No	0.75	3	leaf	451	703	1.102	1.524.622	0.333	0,484
Manhattan	No	1,2	2	leaf	312	186	1.241	1.525.139	0,304	0,335
Manhattan	Yes	1,0	2	eom	369	488	1.184	1.524.837	0,306	0,396
Minkowski	No	0,75	3	eom	473	1.027	1.080	1.524.298	0,310	0,507
Canberra	Yes	1,0	2	eom	394	963	1.159	1.524.362	0,271	0,422

Q&A and some very intuitive plots

Dim1 (5.2%)

HDBSCAN

