Selected Solutions of Numerical Linear Algebra

Fang Zhu

August 23, 2022

Contents

Ι	Fundamental	5
1	Matrix Vector Multiplication	7
	1.1 Prerequisite	8
	1.2 Solutions	8
2	Orthogonal Vectors and Matrices	11
	2.1 Prerequisite	12
	2.2 Solutions	13
3	Norms	17
	3.1 Prerequisite	18
	3.2 Solutions	19

4 CONTENTS

Part I Fundamental

Lecture 1. Matrix Vector Multiplication

1.1 Prerequisite

todo...

1.2 Solutions

1.3 *Proof.* We denote a non-singular matrix \mathbf{R} as

$$\boldsymbol{R} = \left(\begin{array}{ccc} r_{11} & \cdots & r_{1m} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & r_{mm} \end{array} \right),$$

it is clear that $r_{ii} \neq 0$, otherwise R is singular. Since R is non-singular, we assume that

$$m{I} = (m{e}_1, m{e}_2, \cdots, m{e}_m) = (m{a}_1, m{a}_2, \cdots, m{a}_n) \left(egin{array}{ccc} r_{11} & \cdots & r_{1m} \ dots & \ddots & dots \ 0 & \cdots & r_{mm} \end{array}
ight)$$

where $(\boldsymbol{a}_1, \dots, \boldsymbol{a}_n) = \boldsymbol{R}^{-1}$. To show \boldsymbol{R}^{-1} is upper-triangular, we work by induction. To begin with, we have $\boldsymbol{e}_1 = r_{11}\boldsymbol{a}_1$ and hence $\boldsymbol{a}_1 = r_{11}^{-1}\boldsymbol{e}_1$ has zero entries except the first one. For convenience, we denote by \mathbb{C}_k^m the column space

$$\mathbb{C}_k^m = \{ \boldsymbol{v} = (v_1, \cdots, v_k, 0, \cdots, 0)^T, v_i \neq 0 \ (1 \le i \le k) \},$$

Then

$$\mathbb{C}_1^m \subset \mathbb{C}_2^m \cdots \mathbb{C}_m^m = \mathbb{C}^m.$$

We have shown that $a_1 \in \mathbb{C}^m(1)$, assume that for any $k \leq s$, we have that $\mathbf{a}_k \in \mathbb{C}_k^m$. Then by equation Page 8, (1.8), we have

$$\boldsymbol{e}_{s+1} = \sum_{k=1}^{m} \boldsymbol{a}_k r_{k,s+1}.$$

Note that $r_{k,s+1} = 0$, $\forall k > s+1$, then

$$\sum_{k=1}^{m} a_k r_{k,s+1} = \sum_{k=1}^{s} a_k r_{k,s+1} + a_{s+1} r_{s+1,s+1} = e_{s+1},$$

Therefore

$$a_{s+1} = r_{s+1,s+1}^{-1}(\mathbf{e}_{s+1} - \sum_{k=1}^{s} a_k r_{k,s+1}) \in \mathbb{C}_{s+1}^m$$

By induction, we have proved that $a_k \in \mathbb{C}_k^m$ for $1 \leq k \leq m$, which is equivalent to the fact that \mathbb{R}^{-1} is upper-triangular.

1.4(a) *Proof.* Denote the column vectors $(c_1, \dots, c_n)^T$, $(d_1, \dots, d_n)^T$ by notations \boldsymbol{c} and \boldsymbol{d} , let \boldsymbol{F} be the matrix whose (i,j) entry is $f_j(i)$. Then, the given condition can be rephrased as: ForAll $\boldsymbol{d} \in \mathbb{C}^8$, there must exist a vector \boldsymbol{c} such that $\boldsymbol{F}\boldsymbol{c} = \boldsymbol{d}$. This means that

$$\operatorname{range}\{\boldsymbol{F}\} = \mathbb{C}^8,$$

which implies that ${\pmb F}$ has full rank by theorem 1.3. Furthermore, ${\pmb F}$ is non-singular. Therefore

$$\boldsymbol{c} = \boldsymbol{F}^{-1} \boldsymbol{d}$$

and hence d determines c uniquely.

1.4(b) The given condition can be reformatted as

$$Ad = c$$
.

Note that $c = F^{-1}d$, then

$$Ad = c = F^{-1}d,$$

then we have

$$(\mathbf{F}\mathbf{A} - \mathbf{I})\mathbf{d} = \mathbf{0},$$

note that this equation above is true for any $d \in \mathbb{C}^8$, then FA - I must be zero matrix, which is FA = I. Hence the i, j entry of A^{-1} is the i, j entry of F we defined in (a).

Lecture 2. Orthogonal Vectors and Matrices

2.1 Prerequisite

Before giving the solutions, I would like to prove some basic conclusions about this lecture

Lemma 2.1. Given an non-singular matrix A, then A^{-1} is unique

Proof. Suppose that we have two inverse matrices C and B w.r.t A. By the definition of inverse.

$$B = BI = B(AC) = (BA)C = IC = C$$

and hence we can conclude that B = C.

Lemma 2.2. Given an non-singular matrix $A \in \mathbb{R}^{m \times m}$, its hermitian conjugate A^* is also non-singular.

Proof.

$$A^{-1}A = AA^{-1} = I$$
.

We can apply the hermitian conjugate to both sides of the equation above:

$$A^*(A^{-1})^* = (A^{-1})^*A^* = I$$

Hence we can get that A^* is non-singular.

Lemma 2.3. Give a non-singular matrix A and its hermitian conjugate A^* , we have

$$({\pmb A}^*)^{-1} = ({\pmb A}^{-1})^*$$

Proof. By lemma 2.2, A^* is non-singular and it's clear that the inverse is $(A^{-1})^*$. However, we can get that $(A^*)^{-1}$ is also the inverse of A^* by definition. Futher, by lemma 2.1, we have

$$(\mathbf{A}^*)^{-1} = (\mathbf{A}^{-1})^*$$

which is exactly what we need to prove.

Lemma 2.4. Given two pure imaginary number di, bi, then

$$(1 - di)(1 - bi) \neq 0.$$

Proof. LHS equals

$$1 - bd - (b+d)i, \tag{*}$$

if $(\star) = 0$, then we have

$$1 - bd = 0$$
$$b + d = 0,$$

which means that

$$-b^2 = 1$$
.

since $b \in \mathbb{R}$, the equation above cannot be true, and hence $(1-di)(1-bi) \neq 0$. \square

2.2 Solutions

2.1 *Proof.* Without loss of generality, we assume that \boldsymbol{A} is upper-triangular. By the ex. 1.3, we can conclude that \boldsymbol{A}^{-1} is also upper-triangular. It is clear that $\boldsymbol{A}^* = \boldsymbol{A}^{-1}$ since \boldsymbol{A} is unitary. Then \boldsymbol{A}^* is also an upper-triangular matrix, which is

$$\boldsymbol{A}_{i,j}^{\star} = \bar{a}_{ji} = a_{ij} = 0, \quad (\forall i > j),$$

Hence, the matrix \boldsymbol{A} is diagonal. The same follows if \boldsymbol{A} is lower-triangular.

2.3 (a) Let \boldsymbol{x} be an eigenvector of matrix \boldsymbol{A} w.r.t. the eigenvalue λ , then

$$Ax = \lambda x$$
.

multiplying both sides by x^* , we get that

$$x^* A x = \lambda x^* x = \lambda ||x||^2, \tag{\spadesuit}$$

then

$$\lambda = \frac{\boldsymbol{x}^{\star}\boldsymbol{A}\boldsymbol{x}}{\|\boldsymbol{x}\|^2} = \frac{\boldsymbol{x}^{\star}\boldsymbol{A}^{\star}\boldsymbol{x}}{\|\boldsymbol{x}\|^2} = \frac{(\boldsymbol{x}^{\star}\boldsymbol{A}\boldsymbol{x})^{\star}}{\|\boldsymbol{x}\|^2} = \bar{\lambda},$$

which means that λ is real.

2.3 (b) Let x_1, x_2 be two eigenvectors of the hermitian matrix A. Denote λ_k the eigenvalue w.r.t $x_k (k = 1, 2)$, where $\lambda_1 \neq \lambda_2$, then

$$\lambda_2 \mathbf{x}_1^{\star} \mathbf{x}_2 = \mathbf{x}_1^{\star} \mathbf{A} \mathbf{x}_2,$$
$$\lambda_1 \mathbf{x}_2^{\star} \mathbf{x}_1 = \mathbf{x}_2^{\star} \mathbf{A} \mathbf{x}_1.$$

Note that A is hermitian, we can get that

$$\lambda_2 x_1^{\star} x_2 = x_1^{\star} A x_2 = x_1^{\star} A^{\star} x_2 = (x_2^{\star} A x_1)^{\star} = \lambda_1^{\star} x_1^{\star} x_2,$$

then

$$(\lambda_2 - \lambda_1^{\star}) \boldsymbol{x}_1^{\star} \boldsymbol{x}_2 = 0 \Rightarrow \boldsymbol{x}_1^{\star} \boldsymbol{x}_2 = 0,$$

which is exactly what we need to prove.

2.4 Let λ be an eigenvalue of \mathbf{A} , and \mathbf{x} be the eigenvector w.r.t λ , then we have $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ and $\|\mathbf{A}\mathbf{x}\|_2^2 = \|\lambda \mathbf{x}\|$, which is

$$x^*A^*Ax = x^*\|\lambda^*\lambda\|x.$$

Since \boldsymbol{A} is unitary, then

$$x^{\star}A^{\star}Ax = x^{\star}Ix = x^{\star}\|\lambda\|_2^2x.$$

Furthermore,

$$x_1^2 + x_2^2 + \dots + x_n^2 = \|\lambda\|_2^2 (x_1^2 + x_2^2 + \dots + x_n^2),$$

it follows that $\|\lambda\|_2^2 = 1$ since \boldsymbol{x} is non-zero vector.

2.5(a) Let x be an eigenvector of matrix S w.r.t. the eigenvalue λ , then

$$Sx = \lambda x$$
.

By the equation $ex. 2.3(\spadesuit)$, we have

$$\lambda = \frac{\boldsymbol{x}^{\star}\boldsymbol{S}\boldsymbol{x}}{\|\boldsymbol{x}\|^2} = \frac{\boldsymbol{x}^{\star}(-\boldsymbol{S}^{\star})\boldsymbol{x}}{\|\boldsymbol{x}\|^2} = \frac{-(\boldsymbol{x}^{\star}\boldsymbol{S}\boldsymbol{x})^{\star}}{\|\boldsymbol{x}\|^2} = -\bar{\lambda},$$

then we can get that $\lambda + \bar{\lambda} = 0$, which means that λ is purely imaginary.

2.5(b) Assume that λ is the eigenvalue of S, it follows that $1 - \lambda$ is the eigenvalue of 1 - S. Since λ is purely imaginary number, then by Lemma 2.1.4, we have

$$\det(1 - \mathbf{S}) = \prod_{i=1}^{n} (1 - \lambda_i) \neq 0,$$

where $\lambda_i, i \in \{1, 2, \dots, n\}$ are eigenvalues of S. Hence we can conclude that 1 - S is non-singular.

2.5(c) Assume that $\mathbf{Q} = (\mathbf{I} - \mathbf{S})^{-1}(\mathbf{I} + \mathbf{S})$, then we have

$$QQ^* = (I - S)^{-1}(I + S)(I + S^*) ((I + S)^{-1})^*,$$

by Lemma 2.1.3, we can get that

$$egin{aligned} m{Q}m{Q}^{\star} &= (m{I}-m{S})^{-1}(m{I}+m{S})(m{I}-m{S})\left((m{I}-m{S})^{-1}
ight)^{\star} \ &= (m{I}-m{S})^{-1}(m{I}+m{S})(m{I}-m{S})(m{I}+m{S})^{-1} \ &= (m{I}-m{S})^{-1}(m{I}-m{S})(m{I}+m{S})(m{I}+m{S})^{-1} \ &= m{I}. \end{aligned}$$

Hence, we can conclude that $(1 - S)^{-1}(1 - S)$ is unitary.

2.6 *Proof.* If **A** is singular, there exists a vector $\mathbf{x} \in \mathbb{C} \setminus \{0\}$ such that

$$Ax = x + uv^*x = 0,$$

then $x = -u(v^*x)$ where v^*u is scalar. Let $x = tu(t \in \mathbb{R})$, then we can get that

$$t\mathbf{u} + \mathbf{u}(\mathbf{v}^*t\mathbf{u}) = t\mathbf{u}(1 + \mathbf{v}^*\mathbf{u}) = 0,$$

It follows that $\mathbf{v}^*\mathbf{u} = -1$ since $\mathbf{x} = t\mathbf{u} \neq 0$. Assume that $\alpha = -1/(1 + \mathbf{v}^*\mathbf{u})$, then

$$(\boldsymbol{I} + \boldsymbol{u}\boldsymbol{v}^{\star})(\boldsymbol{I} + \alpha \boldsymbol{u}\boldsymbol{v}^{\star}) = \boldsymbol{I}.$$

Note that we have shown that $v^*u = -1$ is a necessary condition of A is singular. For suffciency, we assume that $v^*u = -1$. Then for any $t \in \mathbb{C} \setminus \{0\}$, we have

$$\mathbf{A}\mathbf{u} = t\mathbf{u} + \mathbf{u}\mathbf{v}^{\star}t\mathbf{u} = t\mathbf{u} + t\mathbf{u}(\mathbf{v}^{\star}\mathbf{u}) = 0.$$

which implies that A is singular. Combined, we conclude that A is singular iff. $v^*u = -1$. In this case,

$$\text{null}(\boldsymbol{A}) = \{t\boldsymbol{u}, t \in \mathbb{R}\},\$$

the linear subspace spanned by u.

2.7 *Proof.* We can verify that H_{k+1} is Hadamard matrix directly,

$$\begin{aligned} \boldsymbol{H}_{k+1}^T \boldsymbol{H}_{k+1} &= \left(\begin{array}{cc} \boldsymbol{H}_k^T & \boldsymbol{H}_k^T \\ \boldsymbol{H}_k^T & -\boldsymbol{H}_k^T \end{array} \right) \left(\begin{array}{cc} \boldsymbol{H}_k & \boldsymbol{H}_k \\ \boldsymbol{H}_k & -\boldsymbol{H}_k \end{array} \right) \\ &= \left(\begin{array}{cc} \boldsymbol{H}_k^T \boldsymbol{H}_k + \boldsymbol{H}_k^T \boldsymbol{H}_k & \boldsymbol{H}_k^T \boldsymbol{H}_k - \boldsymbol{H}_k^T \boldsymbol{H}_k \\ \boldsymbol{H}_k^T \boldsymbol{H}_k - \boldsymbol{H}_k^T \boldsymbol{H}_k & \boldsymbol{H}_k^T \boldsymbol{H}_k + \boldsymbol{H}_k^T \boldsymbol{H}_k \end{array} \right) \\ &= \left(\begin{array}{cc} 2\boldsymbol{H}_k^T \boldsymbol{H}_k & \boldsymbol{0} \\ \boldsymbol{0} & 2\boldsymbol{H}_k^T \boldsymbol{H}_k \end{array} \right) \\ &= \left(\begin{array}{cc} 2\boldsymbol{I}_k & \boldsymbol{0} \\ \boldsymbol{0} & 2\boldsymbol{I}_k \end{array} \right) \\ &= 2\boldsymbol{c} \cdot \boldsymbol{I}_{2k}. \end{aligned}$$

Then we can get that $\boldsymbol{H}_{k+1}^T = 2c\boldsymbol{H}_{k+1}^{-1}$. Note that the entries of \boldsymbol{H}_{k+1} are also all ± 1 by the recursion formula. Hence \boldsymbol{H}_{k+1} is also a Hadamard matrix.

Lecture 3. Norms

3.1 Prerequisite

Definition 3.1 (Vector Norm). A norm is a function $\|\cdot\|: \mathbb{C}^m \to \mathbb{R}$ that assigns a real-valued length to each vector. In order to conform to a reasonable notion of length, a norm must satisfy the following three conditions. For all vectors x and y and for all scalars $\alpha \in \mathbb{C}$,

- (1) $||x|| \ge 0$ and ||x|| = 0 only if x = 0,
- $(2) ||x+y|| \le ||x|| + ||y||,$
- (3) $\|\alpha x\| = |\alpha| \|x\|$.

Lemma 3.1. Given a permutation matrix $\mathbf{P} \in \mathcal{M}_{\mathbf{m} \times \mathbf{n}}$, and a vector $\mathbf{x} \in \mathbb{C}^n$, then

$$||Px||_p = ||x||_p.$$

Proof. By the definition of vector norm, we can get that

$$\|\boldsymbol{x}\|_{p} = \begin{cases} \left(\sum_{i=1}^{m} |x_{i}|^{p}\right)^{\frac{1}{p}}\right), & 1 \leq p < \infty; \\ \max_{i} \{x_{i}\}, & p = \infty. \end{cases}$$

It is clear that $\|x\|_p$ won't be changed after permutation of entries. Therefore, for any permutation matrix P,

$$\|\boldsymbol{P}\boldsymbol{x}\|_p = \|\boldsymbol{x}\|_p,$$

which is what we need to prove.

Corollary 3.1. Given matrix $A \in \mathcal{M}_{m \times n}$ and two permutation matrix $P \in \mathcal{M}_{m \times m}$, $Q \in \mathcal{M}_{n \times n}$. Then,

$$||PAQ||_p = ||A||_p.$$

Proof. By the definition of induced norm, we can get that the LHS equals

$$LHS = \|\boldsymbol{A}\|_{p} = \sup_{x} \frac{\|\boldsymbol{A}x\|_{p}}{\|x\|_{p}} = \sup_{x} \frac{\|\boldsymbol{A}\boldsymbol{Q}x\|_{p}}{\|\boldsymbol{Q}x\|_{p}} = \sup_{x} \frac{\|\boldsymbol{A}\boldsymbol{Q}x\|_{p}}{\|x\|_{p}} = \|\boldsymbol{A}\boldsymbol{Q}\|_{p},$$

Futhermore, the RHS equals

$$RHS = \|PAQ\|_p = \sup_x \frac{\|PAQx\|_p}{\|x\|_p} = \sup_x \frac{\|AQx\|_p}{\|x\|_p} = \|AQ\|_p = LHS,$$

which is we need to prove.

3.2 Solutions

3.1 By equation (3.3), we can get that

$$\|\boldsymbol{x}\|_{\boldsymbol{W}} = \|\boldsymbol{W}\boldsymbol{x}\|,$$

where $\|\cdot\|$ is a vector norm. It is clear that $\|\cdot\|_{\mathbf{W}}$ meets (2), (3) of the vector norm's definition. Furthermore, we assume that

$$\boldsymbol{W}\boldsymbol{x} = \boldsymbol{0}.\tag{\star}$$

Since W is non-singular, (\star) is true iif. x = 0. Then $||x||_{W} = ||Wx|| \ge 0$, and ||x|| = 0 iif. ||x|| = 0, which meets condition (1) of vector norm's definition. Hence, we can conclude that $||\cdot||_{W}$ is a vector norm.

3.2 Let λ be the eigenvalue of \boldsymbol{A} and \boldsymbol{x} be the eigenvector w.r.t. λ , then

$$\mathbf{A}x = \lambda x,\tag{\star}$$

where $x \neq 0$. We can concentrate m's x as a matrix X with m columns, which is

$$(x, x, \cdots, x) = \boldsymbol{X} \in \mathbb{R}^{m \times n}$$

By (\star) , we can get that

$$A(x, x, \dots, x) = AX = \lambda X, \tag{\spadesuit}$$

Implement the norm on both sides of (\spadesuit) , then

$$\|\lambda X\| = |\lambda| \|X\| = \|AX\| \le \|A\| \|X\|,$$

Note that $X \neq 0$ and hence $|\lambda| \leq ||A||$ for any eigenvalue λ of A. Therefore

$$\rho(\mathbf{A}) = \max\{\lambda\} \le \|\mathbf{A}\|.$$

which is exactly we want to prove.