Analyse de sentiment par réseaux neuronaux réccurents

Bertrand Rondepierre & Thomas Moreau

Télécom paristech - MDI343

13 mai 2014

Overview

- 1 Analyse de sentiment
 - Les objectifs
- 2 L'apprentissage du model
- Les résultats
- Auto encoder

Les Objectifs

- Catégoriser l'opinion général exprimer par une phrase
- Plusieurs niveaux (analyse binaire / fine)
- Représenter la phrase dans un espace propre qui permettre de mettre en lumière l'opinion qu'elle contient
- Généré des phrases?

Le Stanford Tree bank

- 11 855 critiques de film
- Labels et structure de la phrase sous forme d'arbre
 ⇒ Possibilité d'analyse fine à chaque noeuds

FIGURE: "Extreme Ops" exceeds expectations.

Le model

- Classique : Bag of words
- N'analyse pas la structure de la phrase (négation, expression)
 This movie was actually neither that funny, nor super witty.
- L'idée est d'utiliser la structure d'arbre pour predire le sentiment de la phrase.
- On cherche aussi a optimiser la représentation des mots

Fonction de cout

•
$$E = \sum_{\text{phrase nodes}} t_i \log y_i$$
.

- Dans le papier, met les labels en dimension 5
 ⇒ suppose equi distance entre les labels
- Notre approche : regression et attribution d'un label avec une frontière fixe.

Apprentissage

Calcul du gradient par back propagation

$$\frac{\partial E}{\partial \theta} = \frac{t_i}{y_i} F'(y_i) \left[\frac{\partial W}{\partial \theta} x_{i-1} + \frac{\partial V}{\partial \theta} x_{i-1} x_{i-1}^T + (2Vx_{i-1} + W) \frac{\partial x_{i-1}}{\partial \theta} \right]$$

- Notre model implémente Ada-grad
 Principe est de réduire le learning rate des poids qui ont déja beaucoup été updaté.
- Autre solution : Rms prop
 - \Rightarrow On tune le learning rate en fonction de la dynamique du gradient.

Paramètre

• Learning rate, mini batch size, regularisation

FIGURE: Courbe d'apprentisssage en Cross validation pour le learning rate, la taille du mini batch et le facteur de régularisation

Apprentissage

FIGURE: Courbe d'apprentisssage pour AdaGrad (gauche) et Rprop (droite)

Resultat de Classification

	Fine		Binaire	
	All node	Root	All nodes	Root
Socher	80.7	45.7	87.6	85.4
Notre modèle	79.7	42.2	86.6	90.6

FIGURE: Matrice de confusion (gauche) Noeuds (droite) Root

Resultat de Classification

REgression

FIGURE: Precision de notre regression (log scale)

Representation apprise - Mots

FIGURE: PCA de la representation des mots en dimension 2. (gauche) PCA sur modèle 30D (droite) modèle 2D

Representation apprise - N-grams

 $\label{eq:Figure:PCA} \textbf{Figure: PCA de la representation des mots en dimension 2 pour le modèle 30d}$

Auto encoder?

- L'idée est que l'on combine mal les représentations.
- Auto encoder optimize la reconstruction
 ⇒ Meilleur prise en compte de l'information?
- L'idée du modèle est

So far...

- Back propagation découle de celle de notre modèle précédent
- Ajout d'une dimension pour le sampling
- Pour le moment, pas de structure, mais du sentiment.

Question?