CG1111 Engineering Principles and Practice I

Tutorial for Week 4

DC Circuit Principles – Thevenin Equivalent Circuits

1. Consider a battery with its circuit shown in the figure below.

- (i) If $V_1 = V_2 = 12$ V, $R_1 = 0.15$ Ω , $R_2 = 0.28$ Ω , find the Thevenin equivalent circuit as seen by the load R_L .
- (ii) If the load $R_L = 2.5 \Omega$, find the load current I_L , and the voltage across the load R_L .
- (iii) Is the load voltage higher or lower compared to the cases where the load were to be powered by just battery 1 or battery 2 alone?

Ans: (i)
$$V_T = 12 \text{ V}$$
, $R_T = 0.098 \Omega$, (ii) $I_L = 4.62 \text{A}$, 11.5 V, (iii) higher

2. Find the Thevenin equivalent circuit as seen across node A and node B for the figure below.

Ans: $V_T = 3 \text{ V}$, $R_T = 2 \Omega$

3. For the Thevenin equivalent circuit shown below, derive the value of R_L that causes maximum power transfer from the source to the load R_L .

Thevenin equivalent circuit

Ans: $R_L = R_T$

4. For the circuit shown in the figure below, determine the value of the load resistance R_L to be placed across the nodes **a** and **b**, in order for the load to draw maximum power. What is the value of this maximum power that the load R_L consumes?

Ans: $R_L = 1.5 \Omega$, $P_{max} = 0.67 W$