$Energy\ Systems-I$

 $\begin{array}{c} Instructor: \, Santanu \,\, De \\ NL-302, \,\, Northern \,\, Lab \\ Ph: \, 6478, \,\, Email: \,\, \underline{sde@iitk.ac.in} \\ Office \,\, hour: \,\, W \,\, 5:30-6:30 \,\, p.m. \,\, or \,\, by \,\, appointment \end{array}$

Course Website: https://piazza.com/iitk.ac.in/firstsemester2017/me301a

Course Overview

Class Schedule

Day	Monday	Friday 11:00AM to 11:50 AM		
Time	11:00AM to 11:50 AM			
Venue	L-3	L-3		

Marks Distribution

Total Marks	Distribution				
Attendance	5%				
4 HWs	10%				
4 Announced Quizzes	15%				
Mid Semester Exam	25%				
End Semester Exam	45%				

ME 301 Energy Systems-1

Course Content

- Fuels and combustion: stoichiometry, enthalpy of formation, enthalpy of reaction, adiabatic flame temperature, chemical equilibrium, chemical kinetics, quasi steady state assumption, partial equilibrium
- Internal Combustion Engine: Classifications, Real Cycles, Combustion, Emissions, Performance and Testing.
- Power Plant Technology: Rankine cycle, reheat, regeneration, supercritical cycle, binary and combined cycles, equipment in a power plant, non-conventional/renewable power plants, energy storage.
- Refrigeration and Air-conditioning Systems: reverse Carnot cycle, vapor compression refrigeration cycle, cascading, multi-staging, absorption refrigeration cycle, air conditioning, dew point, WBT, psychometric processes, winter and summer air conditioning, applications

Recommended Books

- SR Turns Introduction to Combustion
- Heywood Internal Combustion Engines
- P K Nag Power Plant Engineering
- * CP Arora Refrigeration and air- conditioning

Additional resource materials: Will be supplied from time to time in the class/ course website. Questions may be asked from these materials.

ME 301

Energy Systems-1

Introduction of Energy

- Energy creates the power to drive tools and machines, to process materials into manufactured products and to create structures.
- Power is generated from nonrenewable energy sources such as coal, oil, and gas, or can be generated from natural resources such as geothermal, solar, and gravitational energies.
- Energy can be defined as the capacity or ability to do the work. Any physical activity in this world is caused due to the flow of energy in one form to another form.
- The combination of energy and matter make up the universe. Matter is substance, and energy is the mover of substance.

Historical Overview of Energy

- The word energy derives from the Greek word en-ergon, which means "activity". It is also defined as the 'in-work' or 'work content'.
- Energy is subject to the law of conservation. According to this law, energy can neither be created (produced) nor destroyed by itself. It can only be transformed.
- The concept of energy emerged out of the idea of vis viva (living force), which Gottfried Leibniz defined as the product of the mass of an object and its velocity squared; he believed that total vis viva was conserved.

ME 301

Classification of Energy

Energy sources are broadly classified into three types:

(1) On the basis of usability of energy

- (a) Primary Resources: Available resources in raw form as petroleum, uranium etc.
- (b) Intermediate Resources: Modified form of primary resources that can not be directly used
- (c) <u>Secondary Resources</u>: End user form of energy that can be directly utilized as electrical energy, thermal energy etc.

(2) On the basis of traditional Use

- (a) Conventional Energy: Traditionally used energy resources as fossil fuels, nuclear.
- (b) Non Conventional Energy: Other than conventional resources as solar, wind , hydro, etc.

(3) Based on availability

- (a) <u>Renewable Energy</u>: It is the energy obtained from the repetitive currents of energy occurring in the natural environment.
- (b) Non-renewable Energy: It is energy obtained from static deposits of any sources that remains bound unless exploited by human interaction. (These are available as reserves or deposits)

ME 301

Energy Systems-1

Forms of Energy

- All forms of energy are related.
- $\ \, \mbox{\Large \ \ } \ \,$ Each form can be converted into any other form.
- Most important is that one can not create or destroy energy, one can only change its form.
- The ability of energy to do useful functions is realized, when energy is converted from one form to another via an energy conversion device.

ME 301

				Energy Conversi	on Matrix				
FROM TO ⇒	Thermal	Mechanical	Acoustical	Chemical	Electrical & Magnetic	Electromagnetic Radiation	Nuclear	Elastic	Gravitational
Thermal	Heat exchangers Thermal conduction	Steam turbine Heat engines Wind Radiometer		Endothermic reaction "Cold packs"	Thermo- electric effect Thermionic emission	Thermocouple Incandescence	Thermionic emission		Convection Hot air balloor Popcorn
Mechanical	Refrigerator Heat pump Brakes	Gear box			Wind turbine Generator Microphone	X-ray tube		Wishbone Inflating a balloon	Pendelum B-ball pop fly
Chemical	Furnace Combustion Exothermic reaction "Hot packs"	Combustion engines Muscle action Dynamite	Chemical explosion	Glycolysis ADP to ATP AMP to ADP	Fuel cell Chemical battery	Bio - luminescence Chemical lasers Fireflies Glowsticks		Combustion expanding gas	Rocket
Electrical & Magnetic	Electric heater Toaster	Motor Thunder		Electrolysis Electro- plating Rechargeable batteries	Transformer	Lamp LED Radio broadcast		Electrostriction Magneto- striction	Elevator
Electromagnetic Radiation	Solar collector Microwave oven	Photoelectric effect		Plants Photography Sunburn	Solar cell	Photo- luminescence			Microwave popcorn
Nuclear	Nuclear bomb Fission reactor	Nuclear bomb	Nuclear bomb	Nuclear bomb	Nuclear bomb Nuclear generator	Nuclear bomb Stars	Nuclear bomb Breeder reactor		Nuclear propulsion
Elastic	Compression of gas refrigerator	Spring driven wristwatch Bow & arrow			Peizo-electric effect	Peizo- luminescence		Newton's cradle	Trampoline Toaster
Gravitational	Contraction of a protostar	Flowing water Pendelum			Hydropower		Formation of a neutron star	diving board	One period of satellite orbit

Fossil Fuels: Introduction

- Fossil fuels are formed by natural processes such as anaerobic decomposition of buried dead organisms. The age of the organisms and their resulting fossil fuels is typically millions of years, and sometimes exceeds 650 million years.
- Crude Oil contains many hydrocarbons which are fraction recrystalized at different temperatures.
- In oil refineries, diesel, kerosene and gasoline is distilled from the crude oil which are the basic fossil fuels used in industries and vehicles.
- ❖ Fossil fuels contain high percentages of carbon. General formula of fossil fuel can be given as C_xH_yO_z.
- Most of the world's energy is derived from Fossil Fuels. Fossil fuels are the 85% of the world commercial energy.
- - ✓ Transportation (26.5%)
 - ✓ Industrial (32.5%)
 - ✓ Residential/Commercial (41.0%)
 - ✓ Electrical Power (40.7%)
- Top three sources of Fossil fuels are:
 - (a) Oil: Liquid form of non renewable fuel (Crude oil)
 - (b) Coal: Solid form of non renewable fuel
 - (c) Natural Gas: Gaseous form of non renewable fuel

ME 301

Why is this such a big deal environmentally?

- ❖ Fossil fuels have to be extracted from the Earth or the Ocean; often there are environmental consequences from extracting fossil fuels (e.g. strip mining, oil spills, etc.)
- Fossil fuels are pollutants, especially crude oil. Major oil leaks create an environmental/economic/political nightmare.
- Burning fossil fuels releases greenhouse gases (CO2, Methane, etc.), which have been associated with global climate change.
- Burning fossil fuels releases several pollutants:
 - ✓ Coal burning releases sulfates in the air that produce acid rain
 - ✓ Burning of gasoline releases CO2, volatile organic compounds, nitric oxides, and ozone.

Increased demand of renewable fuels and its consumption

ME 301

Energy Systems-1

(i. (a)

Renewable Energy Resources: Solution of energy crisis

- Renewable energy uses energy sources that are continually replenished by nature—the sun, the wind, water, the Earth's heat, and plants.
- ❖ The renewable energy is ready to harnessed, inexhaustible and more importantly it is clean alternative to fossil fuel.
- Today we primarily use fossil fuels but we have a limited supply of these fuels on the Earth. We are using them much more rapidly than they are being created. Eventually, they will run out.
- Burning of fossil fuel, such as coal, oil and natural gas will cause green house effect, rise in sea effect, impact on our ecosystem and agriculture production, and most commonly pollutants into atmosphere.

Advantages

- > Available in unlimited extent.
- > Very low operational cost.
- > Very low maintenance cost.
- > They cause no or very little pollution

Disadvantages

- > High capital cost.
- > Low output in terms of power and efficiency.
- $\,\succ\,$ Conveyance from one place to other is difficult.
- Storage is difficult.

ME 301

