Weekly Report

Prepared by: Huy Quang Nguyen

Date: 19/09/2025

Paper: Avian-Inspired Grasping for Quadrotor Micro UAVs

• Justin Thomas, Joe Polin, Koushil Sreenath, Vijay Kumar University of Pennsylvania (2013)

Accomplishments

- Mục tiêu: phát triển quadrotor MAV có khả năng grasping tốc độ cao, lấy cảm hứng từ đại bàng săn mồi.
- Động học: mô hình trong mặt phẳng x-z, trạng thái gồm (x_q,z_q,θ,β) .
- **Differential Flatness**: hệ là *differentially flat* với flat outputs:

$$y = egin{bmatrix} x_q & z_q & eta \end{bmatrix}^T$$

• Từ $y,\dot{y},\ddot{y},\ldots$ có thể khôi phục toàn bộ trạng thái và đầu vào.

Trajectory Planning

- ullet Bài toán: tìm quỹ đạo (x_q,z_q,eta) mượt, thỏa mãn động học.
- Ràng buộc:
 - \circ Vị trí đầu/cuối cố định, với $\dot{y}=\ddot{y}=0$.
 - Tại thời điểm pickup: gripper phải hướng thẳng vào mục tiêu.
- Dùng differential flatness để lập kế hoạch trực tiếp trên flat outputs.

Minimum-Snap Trajectory

• Ý tưởng: chọn quỹ đạo minimum-snap.

$$J = \sum_{i=1}^3 \int_{t_0}^{t_f} ig(y_i^{(4)}(t)ig)^2 dt$$

Quadratic Programming (QP)

Position

FIGURE 5. Desired quadrotor position trajectories overlayed with experimental results. The planned pickup time is t = 2s.

Angle

FIGURE 6. Desired β and θ trajectories overlayed with experimenall results. The planned pickup time is t = 2s.

Control

FIGURE 7. A block diagram of the controller used for experiments. A superscript "d" denotes a desired or nominal value (computed using the flatness property).

2-loop control

- Outer loop
 - Điều khiển trục (x) (vị trí ngang).
 - Công thức:

$$egin{aligned} heta_c &= \sin^{-1}ig(k_{px}(x_q^d-x_q)+k_{dx}(\dot{x}_q^d-\dot{x}_q)ig)+ heta^d \end{aligned}$$

- Thành phần:
 - \circ Feedback PD theo x và \dot{x} .
 - \circ **Feedforward** $heta^d$ từ planner.

2-loop control

- Outer loop
 - Điều khiển trục (z) (độ cao).
 - Công thức:

$$u_{1c} = k_{pz}(z_q^d - z_q) + k_{dz}(\dot{z}_q^d - \dot{z}_q) + u_1^d$$

- Thành phần:
 - \circ Feedback PD theo z và \dot{z} .
 - \circ **Feedforward** u_1^d từ planner.

2-loop control

- Inner loop
 - \circ Điều khiển attitude (góc nghiêng θ).
 - Công thức:

$$u_{3c} = k_{p heta}(heta_c - heta) + k_{d heta}(\dot{ heta}^d - \dot{ heta}) + u_3^d$$

- Thành phần:
 - \circ Feedback PD theo θ , $\dot{\theta}$.
 - \circ **Feedforward** u_3^d từ planner.

Result

- Quadrotor (500g) + gripper (158g).
- Thử nghiệm với mục tiêu hình trụ (27g).
- Kết quả:
 - Thành công 100% ở vận tốc 2 m/s (5/5 lần).
 - ∘ Thành công cả ở **3 m/s** (≈ 9 body lengths/s).

Result

FIGURE 9. A comparison of the nondimensionalized x positions of the quadrotor claw and the eagle claw. The lowest point on z is considered to be the pickup point and is denoted by the vertical line. The eagle claw has a slower relative velocity at pickup than our claw when the quadrotor body speed is 2 m/s.

FIGURE 10. A comparison of the nondimensionalized *z* positions of the quadrotor and the eagle claw. The vertical line indicates the pickup time.

Result

FIGURE 11. A still image comparison between the eagle (extracted from [4]) and the quadrotor for a trajectory with the quadrotor moving at 3 m/s (9 body lengths / second) at pickup. See [21] for a video of the grasping.