

L78LxxAB L78LxxAC - L78LxxC

Positive voltage regulators

Features

- Output current up to 100 mA
- Output voltages of 3.3; 5; 6; 8; 9; 10; 12; 15; 18; 24 V
- Thermal overload protection
- Short circuit protection
- No external components are required
- Available in either ± 5% (AC) or ± 10% (C) selection

Description

The L78Lxx series of three-terminal positive regulators employ internal current limiting and thermal shutdown, making them essentially indestructible. If adequate heat-sink is provided, they can deliver up to 100 mA output current. They are intended as fixed voltage regulators in a wide range of applications including local or oncard regulation for elimination of noise and distribution problems associated with single-point regulation.

In addition, they can be used with power pass elements to make high-current voltage regulators. The L78Lxx series used as Zener diode/resistor combination replacement, offers an effective output impedance improvement of typically two orders of magnitude, along with lower quiescent current and lower noise.

Table 1. Device summary

	Part numbers								
L78L33C	L78L08AC	L78L15C							
L78L33AC	L78L08AB	L78L15AC							
L78L33AB	L78L09C	L78L15AB							
L78L05C	L78L09AC	L78L18C							
L78L05AC	L78L09AB	L78L18AC							
L78L05AB	L78L10AC	L78L24C							
L78L06AC	L78L12C	L78L24AC							
L78L06AB	L78L12AC	L78L24AB							
L78L08C	L78L12AB								

Contents

1	Diagram 3
2	Pin configuration4
3	Maximum ratings
4	Electrical characteristics 6
5	Typical performance
6	Typical application
7	Package mechanical data 20
8	Order codes
9	Revision history

1 Diagram

Figure 1. Schematic diagram

2 Pin configuration

Figure 2. Pin connection (top view, bottom view for TO-92)

Figure 3. Test circuits

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter		Value	Unit
		V _O = 3.3 to 9 V	30	
VI	DC Input voltage	V _O = 12 to 15 V	35	٧
		V _O = 18 to 24 V	40	
Io	Output current		100	mA
P _D	Power dissipation		Internally limited (1)	mW
T _{STG}	Storage temperature range		-65 to 150	°C
т	Operating junction temperature range	for L78L00AC	0 to 150	°C
T _{OP}	Operating junction temperature range for L78L00AB		-40 to 125	

Our SO-8 package used for voltage regulators is modified internally to have pins 2, 3, 6 and 7 electrically communed to the
die attach flag. This particular frame decreases the total thermal resistance of the package and increases its ability to
dissipate power when an appropriate area of copper on the printed circuit board is available for heat-sinking. The external
dimensions are the same as for the standard SO-8.

Table 3. Thermal data

Symbol	Parameter	SO-8	TO-92	SOT-89	Unit
R _{thJC}	Thermal resistance junction-case. (max)	20		15	°C/W
R _{thJA}	Thermal resistance junction-ambient. (max)	55 ⁽¹⁾	200	55 ⁽¹⁾	°C/W

^{1.} Considering 6 cm² of copper Board heat-sink.

4 Electrical characteristics

Refer to the test circuits, T_J = 0 to 125 °C, I_O = 40 mA, C_I = 0.33 $\mu F,\,C_O$ = 0.1 μF unless otherwise specified.

Table 4. Electrical characteristics of L78L33C (V_I = 8.3 V)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	3.036	3.3	3.564	V
V-	Output voltage	$I_O = 1$ to 40 mA, $V_I = 5.3$ to 20 V	2.97		3.63	V
V _O	Output voltage	$I_O = 1 \text{ to } 70 \text{ mA}, V_I = 8.3 \text{ V}$	2.97		3.63	V
ΔV _O	/ Line very letion	$V_I = 5.3$ to 20 V, $T_J = 25$ °C			150	mV
740	Line regulation	$V_{I} = 6.3 \text{ to } 20 \text{ V}, T_{J} = 25 ^{\circ}\text{C}$			100	111 V
A\/ -	ΔV _O Load regulation	I_O = 1 to 100 mA, T_J = 25 °C			60	mV
740		$I_O = 1$ to 40 mA, $T_J = 25$ °C			30	1117
	Quiescent current	T _J = 25 °C			6	mA
I _d	Quiescent current	T _J = 125 °C			5.5	mA
AI.	Quiescent current change	I _O = 1 to 40 mA			0.2	mA
Δl _d	Quiescent current change	V _I = 6.3 to 20 V			1.5	ША
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		40		μV
SVR	Supply voltage rejection	$V_I = 6.3$ to 16.3 V, f = 120 Hz $I_O = 40$ mA, $T_J = 25$ °C	41	49		dB
V _d	Dropout voltage			1.7		V

Table 5. Electrical characteristics of L78L05C ($V_I = 10 \text{ V}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	4.6	5	5.4	٧
V.	Output voltage	I _O = 1 to 40 mA, V _I = 7 to 20 V	4.5		5.5	V
V _O	Output voltage	$I_{O} = 1 \text{ to } 70 \text{ mA}, V_{I} = 10 \text{ V}$	4.5		5.5	V
ΔV_{O}	Line regulation	$V_{I} = 8.5 \text{ to } 20 \text{ V}, T_{J} = 25 ^{\circ}\text{C}$			200	mV
ΔνΟ	Line regulation	V _I = 9 to 20 V, T _J = 25 °C			150	IIIV
ΔV_{O}	Coad regulation	I_O = 1 to 100 mA, T_J = 25 °C			60	mV
70		I_O = 1 to 40 mA, T_J = 25 °C			30	1110
1.	Quiescent current	T _J = 25 °C			6	mA
I _d	Quiescent current	T _J = 125 °C			5.5	mA
A1 .	Quiescent current change	I _O = 1 to 40 mA			0.2	mA
Δl _d	Quiescent current change	V _I = 8 to 20 V			1.5	ША
eN	Output noise voltage	B =10 Hz to 100 kHz, T_J = 25 °C		40		μV
SVR	Supply voltage rejection	V _I = 9 to 20 V, f = 120 Hz I _O = 40 mA, T _J = 25 °C	40	49		dB
V_d	Dropout voltage			1.7		٧

Table 6. Electrical characteristics of L78L08C ($V_I = 14 \text{ V}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	7.36	8	8.64	V
\/	Output voltage	I _O = 1 to 40 mA, V _I = 8.5 to 20 V	7.2		8.8	V
V _O	Output voltage	I _O = 1 to 70 mA, V _I = 12 V	7.2		8.8	V
41/		V _I = 8.5 to 20 V, T _J = 25 °C			200	mV
ΔV_{O}	Line regulation	V _I = 9 to 20 V, T _J = 25 °C			150	IIIV
4)/	V _O Load regulation	I _O = 1 to 100 mA, T _J = 25 °C			80	mV
ΔνΟ		I _O = 1 to 40 mA, T _J = 25 °C			40	IIIV
1	Quiescent current	T _J = 25 °C			6	mA
I _d	Quiescent current	T _J = 125 °C			5.5	mA
Al	Quippoent ourrent change	I _O = 1 to 40 mA			0.2	mA
$\Delta l_{\sf d}$	Quiescent current change	V _I = 8 to 20 V			1.5	IIIA
eN	Output noise voltage	B =10 Hz to 100 kHz, T_J = 25 °C		60		μV
SVR	Supply voltage rejection	V _I = 9 to 20 V, f = 120 Hz I _O = 40 mA, T _J = 25 °C	36	45		dB
V _d	Dropout voltage			1.7		V

Table 7. Electrical characteristics of L78L09C (V_I = 15 V)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	8.28	9	9.72	V
W	Output voltage	I _O = 1 to 40 mA, V _I = 11.5 to 23 V	8.1		9.9	V
V _O	Output voltage	I _O = 1 to 70 mA, V _I = 15 V	8.1		9.9	V
۸۱/-	Line regulation	V _I = 11.5 to 23 V, T _J = 25 °C			250	mV
ΔV_{O}	Line regulation	V _I = 12 to 23 V, T _J = 25 °C			200	IIIV
41/	Load regulation	I_O = 1 to 100 mA, T_J = 25 °C			80	mV
ΔV_{O}		I_O = 1 to 40 mA, T_J = 25 °C			40	111 V
1.	Quiescent current	T _J = 25 °C			6	mA
I _d	Quiescent current	T _J = 125 °C			5.5	mA
A1 .	Quiescent current change	I _O = 1 to 40 mA			0.2	mA
ΔI_d	Quiescent current change	V _I = 12 to 23 V			1.5	ША
eN	Output noise voltage	B =10 Hz to 100 kHz, $T_J = 25$ °C		70		μV
SVR	Supply voltage rejection	V_{I} = 12 to 23 V, f = 120 Hz I_{O} = 40 mA, T_{J} = 25 °C	36	44		dB
V _d	Dropout voltage			1.7		٧

Table 8. Electrical characteristics of L78L10C (V_I = 16 V)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	9.2	10	10.8	V
V	Output voltage	$I_O = 1$ to 40 mA, $V_I = 12.5$ to 23 V	9		11	V
V _O	Output voltage	I _O = 1 to 70 mA, V _I = 16 V	9		11	V
AV.	AV Line regulation	$V_{I} = 12.5 \text{ to } 23 \text{ V}, T_{J} = 25 ^{\circ}\text{C}$			230	mV
ΔV _O	Line regulation	V _I = 13 to 23 V, T _J = 25 °C			170	IIIV
4)/	ΔV _O Load regulation	I_O = 1 to 100 mA, T_J = 25 °C			80	mV
ΔνΟ		I _O = 1 to 40 mA, T _J = 25 °C			40	IIIV
	Quiescent current	T _J = 25 °C			6	mA
I _d		T _J = 125 °C			5.5	mA
Al	Quiescent current change	I _O = 1 to 40 mA			0.1	mA
Δl _d	Quiescent current change	V _I = 13 to 23 V			1.5	IIIA
eN	Output noise voltage	B =10Hz to 100kHz, T_J = 25 °C		60		μV
SVR	Supply voltage rejection	V _I = 14 to 23 V, f = 120Hz I _O = 40 mA, T _J = 25 °C	37	45		dB
V _d	Dropout voltage			1.7		V

Table 9. Electrical characteristics of L78L12C (V_I = 19 V)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	11.1	12	12.9	٧
V	Output voltage	I _O = 1 to 40 mA, V _I = 14.5 to 27 V	10.8		13.2	V
V _O	Output voltage	I _O = 1 to 70 mA, V _I = 19 V	10.8		13.2	V
ΔV _O	Line regulation	V_I = 14.5 to 27 V, T_J = 25 °C			250	mV
700	Line regulation	V_I = 16 to 27 V, T_J = 25 °C			200	IIIV
AV/ .	Load regulation	I_O = 1 to 100 mA, T_J = 25 °C			100	mV
ΔV _O	Load regulation	I_O = 1 to 40 mA, T_J = 25 °C			50	IIIV
_	Quiescent current	T _J = 25 °C			6.5	mA
I _d	Quiescent current	T _J = 125 °C			6	mA
41	Quiescent current change	I _O = 1 to 40 mA			0.2	mA
Δl _d	Quiescent current change	V _I = 16 to 27 V			1.5	IIIA
eN	Output noise voltage	B =10 Hz to 100 kHz, T_J = 25 °C		80		μV
SVR	Supply voltage rejection	$V_I = 15 \text{ to } 25 \text{ V, f} = 120 \text{ Hz}$ $I_O = 40 \text{ mA, T}_J = 25 ^{\circ}\text{C}$	36	42	_	dB
V_{d}	Dropout voltage			1.7		V

Table 10. Electrical characteristics of L78L15C ($V_I = 23 \text{ V}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	13.8	15	16.2	V
V.	Output voltage	I _O = 1 to 40 mA, V _I = 17.5 to 30 V	13.5		16.5	V
V _O	Output voltage	$I_{O} = 1 \text{ to } 70 \text{ mA}, V_{I} = 23 \text{ V}$	13.5		16.5	V
AV/	V Line regulation	V _I = 17.5 to 30 V, T _J = 25 °C			300	mV
ΔV _O	Line regulation	$V_I = 20 \text{ to } 30 \text{ V}, T_J = 25 ^{\circ}\text{C}$			250	1117
۸۷۰	Load regulation	I_O = 1 to 100 mA, T_J = 25 °C			150	mV
ΔV _O	Load regulation	$I_O = 1$ to 40 mA, $T_J = 25$ °C			75	1117
	Quiocoopt current	T _J = 25 °C			6.5	mA
I _d	Quiescent current	Quiescent current T _J = 125 °C			6	mA
Al	Quiescent current change	I _O = 1 to 40 mA			0.2	mA
Δl _d	Quiescent current change	V _I = 20 to 30 V			1.5	IIIA
eN	Output noise voltage	B =10 Hz to 100 kHz, T_J = 25 °C		90		μV
SVR	Supply voltage rejection	V_I = 18.5 to 28.5 V, f = 120 Hz I_O = 40 mA, T_J = 25 °C	33	39		dB
V _d	Dropout voltage			1.7		٧

Table 11. Electrical characteristics of L78L18C ($V_I = 27 \text{ V}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	16.6	18	19.4	٧
V	Output voltage	I _O = 1 to 40 mA, V _I = 22 to 33 V	16.2		19.8	V
V _O	Output voltage	I _O = 1 to 70 mA, V _I = 27 V	16.2		19.8	V
ΔV_{O}	Line regulation	$V_I = 22$ to 33 V, $T_J = 25$ °C			320	mV
700	Line regulation	$V_I = 22$ to 33 V, $T_J = 25$ °C			270	1117
۸\/ .	Coad regulation	I_O = 1 to 100 mA, T_J = 25 °C			170	mV
70		I_O = 1 to 40 mA, T_J = 25 °C			85	1110
I _d	Quiescent current	T _J = 25 °C			6.5	mA
' d	Quiescent current	T _J = 125 °C			6	mA
A1 .	Quiescent current change	I _O = 1 to 40 mA			0.2	mA
Δl _d	Quiescent current change	V _I = 23 to 33 V			1.5	ш
eN	Output noise voltage	B =10 Hz to 100 kHz, T_J = 25 °C		120		μV
SVR	Supply voltage rejection	V_{I} = 23 to 33 V, f = 120 Hz I_{O} = 40 mA, T_{J} = 25 °C	32	38		dB
V_d	Dropout voltage			1.7		٧

Table 12. Electrical characteristics of L78L24C ($V_I = 33 \text{ V}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	22.1	24	25.9	V
V	Output voltage	I _O = 1 to 40 mA, V _I = 27 to 38 V	21.6		26.4	V
v O	V _O Output voltage	$I_O = 1 \text{ to } 70 \text{ mA}, V_I = 33 \text{ V}$	21.6		26.4	V
AV/ .	Line regulation	V _I = 27 to 38 V, T _J = 25 °C			350	mV
ΔV_{O}	Line regulation	V _I = 28 to 38 V, T _J = 25 °C			300	IIIV
AV/ .	Load regulation	I_O = 1 to 100 mA, T_J = 25 °C			200	mV
ΔV_{O}		$I_O = 1 \text{ to } 40 \text{ mA}, T_J = 25 \text{ °C}$			100	IIIV
ı	Quiescent current	T _J = 25 °C			6.5	mA
I _d	Quiescent current	T _J = 125 °C			6	mA
41	Quiescent current change	I _O = 1 to 40 mA			0.2	mA
ΔI_d	Quiescent current change	V _I = 28 to 38 V			1.5	IIIA
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		200		μV
SVR	Supply voltage rejection	$V_I = 29 \text{ to } 35 \text{ V}, f = 120 \text{ Hz}$ $I_O = 40 \text{ mA}, T_J = 25 ^{\circ}\text{C}$	30	37		dB
V_{d}	Dropout voltage			1.7		V

 T_J = 0 to 125 °C for L78L33AC, T_J = -40 to 125 °C for L78L33AB.

Table 13. Electrical characteristics of L78L33AB and L78L33AC ($V_1 = 8.3 \text{ V}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	3.168	3.3	3.432	V
V-	Output voltage	$I_O = 1$ to 40 mA, $V_I = 5.3$ to 20 V	3.135		3.465	V
V _O	Output voltage	$I_O = 1$ to 70 mA, $V_I = 8.3 \text{ V}$	3.135		3.465	V
A\/ -	ΔV_{O} Line regulation	$V_I = 5.3$ to 20 V, $T_J = 25$ °C			150	mV
ΔνΟ	Line regulation	V _I = 6.3 to 20 V, T _J = 25 °C			100	111 V
A\/ -	ΔV _O Load regulation	I_O = 1 to 100 mA, T_J = 25 °C			60	mV
ΔVO		I_O = 1 to 40 mA, T_J = 25 °C			30	111 V
1.	Out a sent summer	T _J = 25 °C			6	mA
I _d	Quiescent current	T _J = 125 °C			5.5	mA
Al	Quiescent current change	I _O = 1 to 40 mA			0.1	mA
Δl _d	Quiescent current change	V _I = 6.3 to 20 V			1.5	ША
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		40		μV
SVR	Supply voltage rejection	$V_I = 6.3 \text{ to } 16.3 \text{ V, f} = 120 \text{ Hz}$ $I_O = 40 \text{ mA, T}_J = 25 ^{\circ}\text{C}$	41	49		dB
V _d	Dropout voltage			1.7		V

 T_J = 0 to 125 °C for L78L05AC, T_J = -40 to 125 °C for L78L05AB.

Table 14. Electrical characteristics of L78L05AB and L78L05AC ($V_I = 10 \text{ V}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	4.8	5	5.2	V
V	V _O Output voltage	I _O = 1 to 40 mA, V _I = 7 to 20 V	4.75		5.25	V
V _O	Output voltage	I _O = 1 to 70 mA, V _I = 10 V	4.75		5.25	V
4)/	\\\. Line regulation	V _I = 7 to 20 V, T _J = 25 °C			150	mV
ΔV_{O}	Line regulation	V _I = 8 to 20 V, T _J = 25 °C			100	IIIV
4)/	Coad regulation	I_O = 1 to 100 mA, T_J = 25 °C			60	m\/
ΔV_{O}		I _O = 1 to 40 mA, T _J = 25 °C			30	mV
	Quiescent current	T _J = 25 °C			6	mA
I _d	Quiescent current	T _J = 125 °C			5.5	mA
Al	Quiescent current change	I _O = 1 to 40 mA			0.1	mA
$\Delta l_{\sf d}$	Quiescent current change	V _I = 8 to 20 V			1.5	IIIA
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		40		μV
SVR	Supply voltage rejection	V _I = 8 to 18 V, f = 120 Hz I _O = 40 mA, T _J = 25 °C	41	49		dB
V _d	Dropout voltage			1.7		V

 T_J = 0 to 125 °C for L78L06AC, T_J = -40 to 125 °C for L78L06AB.

Table 15. Electrical characteristics of L78L06AB and L78L06AC ($V_I = 12 \text{ V}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	5.76	6	6.24	V
V-	V _O Output voltage	$I_O = 1$ to 40 mA, $V_I = 8.5$ to 20 V	5.7		6.3	V
V _O	Output voltage	I _O = 1 to 70 mA, V _I = 12 V	5.7		6.3	V
A\/ -	ΔV_{O} Line regulation	$V_I = 8.5$ to 20 V, $T_J = 25$ °C			150	mV
ΔV _O	Line regulation	V _I = 9 to 20 V, T _J = 25 °C			100	IIIV
A\/ -	/ _O Load regulation	I_O = 1 to 100 mA, T_J = 25 °C			60	mV
ΔV _O		I_O = 1 to 40 mA, T_J = 25 °C			30	IIIV
	0.:	T _J = 25 °C			6	mA
I _d	Quiescent current	T _J = 125 °C			5.5	mA
Al	Quiescent current change	I _O = 1 to 40 mA			0.1	mΛ
ΔI_{d}	Quiescent current change	V _I = 9 to 20 V	V _I = 9 to 20 V	1.5	mA	
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		50		μV
SVR	Supply voltage rejection	V _I = 9 to 20 V, f = 120 Hz I _O = 40 mA, T _J = 25 °C	39	46		dB
V _d	Dropout voltage			1.7		V

 T_J = 0 to 125 °C for L78L08AC, T_J = -40 to 125 °C for L78L08AB.

Table 16. Electrical characteristics of L78L08AB and L78L08AC ($V_1 = 14 \text{ V}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	7.68	8	8.32	V
V-	Output voltage	$I_O = 1$ to 40 mA, $V_I = 10.5$ to 23 V	7.6		8.4	V
V _O	Output voltage	I _O = 1 to 70 mA, V _I = 14 V	7.6		8.4	V
A\/ -	ΔV_{Ω} Line regulation	$V_{I} = 10.5 \text{ to } 23 \text{ V}, T_{J} = 25 ^{\circ}\text{C}$			175	mV
ΔV _O	Line regulation	$V_I = 11$ to 23 V, $T_J = 25$ °C			125	IIIV
4)/	ΔV _O Load regulation	I_O = 1 to 100 mA, T_J = 25 °C			80	mV
ΔνΟ		I_O = 1 to 40 mA, T_J = 25 °C			40	IIIV
	Quiescent current	T _J = 25 °C			6	mA
I _d	Quiescent current	T _J = 125 °C			5.5	mA
Al	Quiescent current change	I _O = 1 to 40 mA			0.1	mA
ΔI_{d}	Quiescent current change	V _I = 11 to 23 V			1.5	IIIA
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		60		μV
SVR	Supply voltage rejection	V_I = 12 to 23 V, f = 120 Hz I_O = 40 mA, T_J = 25 °C	37	45		dB
V _d	Dropout voltage			1.7		V

 T_J = 0 to 125 °C for L78L09AC, T_J = -40 to 125 °C for L78L09AB.

Table 17. Electrical characteristics of L78L09AB and L78L09AC ($V_I = 15 \text{ V}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	8.64	9	9.36	V
V-	V _O Output voltage	I _O = 1 to 40 mA, V _I = 11.5 to 23 V	8.55		9.45	V
VO	Output voltage	$I_{O} = 1 \text{ to } 70 \text{ mA}, V_{I} = 15 \text{ V}$	8.55		9.45	V
A\/ -	ΔV_{Ω} Line regulation	V _I = 11.5 to 23 V, T _J = 25 °C			225	mV
ΔV _O	Line regulation	V _I = 12 to 23 V, T _J = 25 °C			150	IIIV
۸۷/	Coad regulation	I_O = 1 to 100 mA, T_J = 25 °C			80	mV
ΔVO		I_O = 1 to 40 mA, T_J = 25 °C		40	40	1117
	0.:	T _J = 25 °C			6	mA
I _d	Quiescent current	T _J = 125 °C			5.5	mA
Al	Quiescent current change	I _O = 1 to 40 mA			0.1	mA
ΔI_{d}	Quiescent current change	V _I = 12 to 23 V			1.5	IIIA
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		70		μV
SVR	Supply voltage rejection	V _I = 12 to 23 V, f = 120 Hz I _O = 40 mA, T _J = 25 °C	37	44		dB
V _d	Dropout voltage			1.7		V

 T_J = 0 to 125 °C for L78L10AC, T_J = -40 to 125 °C for L78L10AB.

Table 18. Electrical characteristics of L78L10AC (V_I = 16 V)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	9.6	10	10.4	V
V	Output voltage	I _O = 1 to 40 mA, V _I = 12.5 to 23 V	9.5		10.5	V
V _O	Output voltage	I _O = 1 to 70 mA, V _I = 16 V	9.5		10.5	V
AV.	Line regulation	V _I = 12.5 to 23 V, T _J = 25 °C			230	mV
ΔV _O	Line regulation	V _I = 13 to 23 V, T _J = 25 °C			170	IIIV
41/	Load regulation	I_O = 1 to 100 mA, T_J = 25 °C			80	mV
ΔνΟ	ΔV _O Load regulation	I _O = 1 to 40 mA, T _J = 25 °C			40	IIIV
ı	Quiescent current	T _J = 25 °C			6	mA
I _d	Quiescent current	T _J = 125 °C			5.5	mA
Al	Quiescent current change	I _O = 1 to 40 mA			0.1	mA
Δl _d	Quiescent current change	V _I = 13 to 23 V			1.5	IIIA
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		60		μV
SVR	Supply voltage rejection	$V_I = 14 \text{ to } 23 \text{ V, f} = 120 \text{ Hz}$ $I_O = 40 \text{ mA, T}_J = 25 \text{ °C}$	37	45		dB
V_{d}	Dropout voltage			1.7		V

 T_J = 0 to 125 °C for L78L12AC, T_J = -40 to 125 °C for L78L12AB.

Table 19. Electrical characteristics of L78L12AB and L78L12AC ($V_I = 19 \text{ V}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	11.5	12	12.5	V
W	Output voltage	I _O = 1 to 40 mA, V _I = 14.5 to 27 V	11.4		12.6	V
V _O	Output voltage	I _O = 1 to 70 mA, V _I = 19 V	11.4		12.6	V
ΔV _O	/O Line regulation	$V_{I} = 14.5 \text{ to } 27 \text{ V}, T_{J} = 25 ^{\circ}\text{C}$			250	mV
ΔVO		V _I = 16 to 27 V, T _J = 25 °C			200	111 V
A\/ -	Load regulation	I_O = 1 to 100 mA, T_J = 25 °C			100	mV
ΔV _O	Load regulation	I_O = 1 to 40 mA, T_J = 25 °C			50	111 V
1.	Quiescent current	T _J = 25 °C			6.5	mA
I _d	Quiescent current	T _J = 125 °C			6	mA
Δ1.	Quiescent current change	I _O = 1 to 40 mA			0.1	mA
$\Delta l_{\sf d}$	Quiescent current change	V _I = 16 to 27 V			1.5	шА
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		80		μV
SVR	Supply voltage rejection	$V_I = 15 \text{ to } 25 \text{ V}, f = 120 \text{ Hz}$ $I_O = 40 \text{ mA}, T_J = 25 ^{\circ}\text{C}$	37	42		dB
V _d	Dropout voltage			1.7		V

 T_J = 0 to 125 °C for L78L15AC, T_J = -40 to 125 °C for L78L15AB.

Table 20. Electrical characteristics of L78L15AB and L78L15AC ($V_1 = 23 \text{ V}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	14.4	15	15.6	V
V.	Output voltage	I _O = 1 to 40 mA, V _I = 17.5 to 30 V	14.25		15.75	V
V _O	Output voltage	I _O = 1 to 70 mA, V _I = 23 V	14.25		15.75	V
A\/ .	Line regulation	V _I = 17.5 to 30 V, T _J = 25 °C			300	mV
ΔV _O		V _I = 20 to 30 V, T _J = 25 °C			250	IIIV
4)/	Load regulation	I_O = 1 to 100 mA, T_J = 25 °C			150	mV
ΔV _O	Load regulation	I _O = 1 to 40 mA, T _J = 25 °C			75	IIIV
1	Quiescent current	T _J = 25 °C			6.5	mA
I _d	Quiescent current	T _J = 125 °C			6	mA
Al	Quiescent current change	I _O = 1 to 40 mA			0.1	mA
Δl_d	Quiescent current change	V _I = 20 to 30 V			1.5	IIIA
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		90		μV
SVR	Supply voltage rejection	$V_I = 18.5 \text{ to } 28.5 \text{ V, f} = 120 \text{ Hz}$ $I_O = 40 \text{ mA, T}_J = 25 \text{ °C}$	34	39		dB
V _d	Dropout voltage			1.7		V

 T_J = 0 to 125 °C for L78L18AC, T_J = -40 to 125 °C for L78L18AB.

Table 21. Electrical characteristics of L78L18AC ($V_I = 27 \text{ V}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	17.3	18	18.7	V
V-	Output voltage	I _O = 1 to 40 mA, V _I = 22 to 33 V	17.1		18.9	V
V _O	Output voltage	$I_O = 1 \text{ to } 70 \text{ mA}, V_I = 27 \text{ V}$	17.1		18.9	V
۸۷۰	Line regulation	V _I = 22 to 33 V, T _J = 25 °C			320	mV
ΔV _O	Line regulation	V _I = 22 to 33 V, T _J = 25 °C			270	IIIV
4)/	Load regulation	I_O = 1 to 100 mA, T_J = 25 °C			170	mV
ΔV _O		I _O = 1 to 40 mA, T _J = 25 °C		85	111 V	
	Quiescent current	T _J = 25 °C			6.5	mA
I _d	Quiescent current	T _J = 125 °C			6	mA
Al	Quiescent current change	I _O = 1 to 40 mA			0.1	mA
ΔI_{d}	Quiescent current change	V _I = 23 to 33 V			1.5	ША
eN	Output noise voltage	B =10 Hz to 100 kHz, T_J = 25 °C		120		μV
SVR	Supply voltage rejection	V _I = 23 to 33 V, f = 120 Hz I _O = 40 mA, T _J = 25 °C	33	38		dB
V _d	Dropout voltage			1.7		V

 T_J = 0 to 125 °C for L78L24AC, T_J = -40 to 125 °C for L78L24AB.

Table 22. Electrical characteristics of L78L24AB and L78L24AC ($V_I = 33 \text{ V}$)

Symbol	Parameter	Test conditions		Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	23	24	25	V
V-	Output voltage	$I_O = 1$ to 40 mA, $V_I = 27$ to 38 V	22.8		25.2	V
V _O	Output voltage	$I_{O} = 1 \text{ to } 70 \text{ mA}, V_{I} = 33 \text{ V}$	22.8		25.2	V
A\/ .	V _O Line regulation	$V_I = 27$ to 38 V, $T_J = 25$ °C			350	mV
ΔV _O	Line regulation	$V_I = 28$ to 38 V, $T_J = 25$ °C			300	IIIV
4)/	Coad regulation	I_O = 1 to 100 mA, T_J = 25 °C			200	mV
ΔV _O		$I_{O} = 1$ to 40 mA, T _J	I _O = 1 to 40 mA, T _J = 25 °C			100
	Quiescent current	T _J = 25 °C			6.5	mA
I _d	Quiescent current	T _J = 125 °C			6	mA
Al	Quiescent current change	I _O = 1 to 40 mA			0.1	mA
ΔI_{d}	Quiescent current change	V _I = 28 to 38 V			1.5	IIIA
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		200		μV
SVR	Supply voltage rejection	$V_I = 29 \text{ to } 33 \text{ V, f} = 120 \text{ Hz}$ $I_O = 40 \text{ mA, T}_J = 25 \text{ °C}$	31	37		dB
V _d	Dropout voltage			1.7		V

5 Typical performance

Figure 4. L78L05/12 output voltage vs. ambient temperature

Figure 5. L78L05/12/24 load characteristics

Figure 6. L78L05/12/24 thermal shutdown

Figure 7. L78L05/12 quiescent current vs. output current

Figure 8. L78L05 quiescent current vs. input Figure 9. L78L05/12/24 output characteristics voltage

Figure 10. L78L05/12/24 ripple rejection

Figure 11. L78L05 dropout characteristics

Figure 12. L78Lxx short circuit output current

6 Typical application

Figure 13. High output current short circuit protected

Figure 14. Edit boost circuit

Figure 15. Current regulator

577

Figure 16. Adjustable output regulator

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

SO-8 mechanical data

Dim.		mm.		inch.			
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	1.35		1.75	0.053		0.069	
A1	0.10		0.25	0.04		0.010	
A2	1.10		1.65	0.043		0.065	
В	0.33		0.51	0.013		0.020	
С	0.19		0.25	0.007		0.010	
D	4.80		5.00	0.189		0.197	
E	3.80		4.00	0.150		0.157	
е		1.27			0.050		
Н	5.80		6.20	0.228		0.244	
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
k		•	8° (n	nax.)	•	•	
ddd			0.1			0.04	

SOT-89 mechanical data

Dim.	mm.			mils.		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	1.4		1.6	55.1		63.0
В	0.44		0.56	17.3		22.0
B1	0.36		0.48	14.2		18.9
С	0.35		0.44	13.8		17.3
C1	0.35		0.44	13.8		17.3
D	4.4		4.6	173.2		181.1
D1	1.62		1.83	63.8		72.0
E	2.29		2.6	90.2		102.4
е	1.42		1.57	55.9		61.8
e1	2.92		3.07	115.0		120.9
Н	3.94		4.25	155.1		167.3
L	0.89		1.2	35.0		47.2

TO-92 mechanical data

Dim.	mm.			mils.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.32		4.95	170.1		194.9
b	0.36		0.51	14.2		20.1
D	4.45		4.95	175.2		194.9
E	3.30		3.94	129.9		155.1
е	2.41		2.67	94.9		105.1
e1	1.14		1.40	44.9		55.1
L	12.7		15.49	500.0		609.8
R	2.16		2.41	85.0		94.9
S1	0.92		1.52	36.2		59.8
W	0.41		0.56	16.1		22.0
α		5°			5°	

Tape & reel SO-8 mechanical data

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	8.1		8.5	0.319		0.335
Во	5.5		5.9	0.216		0.232
Ko	2.1		2.3	0.082		0.090
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

Tape & reel SOT-89 mechanical data

Dim.	mm.			inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	4.70	4.80	4.90	0.185	0.189	0.193
Во	4.30	4.40	4.50	0.169	0.173	0.177
Ko	1.70	1.80	1.90	0.067	0.071	0.075
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	7.9	8.0	8.1	0.311	0.315	0.319

Dim.	mm.			inch.			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
A1		4.80			0.189		
Т		3.80			0.150		
T1		1.60			0.063		
T2		2.30			0.091		
d		0.48			0.019		
P0	12.5		12.9	0.492		0.508	
P2	5.65		7.05	0.222		0.278	
F1, F2	2.44	2.54	2.94	0.096	0.100	0.116	
delta H		±2			0.079		
W	17.5	18.00	19.0	0.689	0.709	0.748	
W0	5.7		6.3	0.224		0.248	
W1	8.5		9.25	0.335		0.364	
W2		0.50			0.20		
Н		18.50	18.70		0.728	0.726	
H0	15.50		16.50	0.610		0.650	
H1		25.00			0.984		
D0	3.8		4.2	0.150		0.165	
t		0.90			0.035		
L1		3			0.118		
delta P		±1			0.039		
u		50			1.968		
Ф1		360			14.173		
Ф2		30			1.181		

8 Order codes

Table 23. Order codes

Dout mumb our		Packages		Outrout welltages
Part numbers	SO-8	TO92 (BAG) ⁽¹⁾	SOT-89	Output voltages
L78L33C	L78L33CD-TR			3.3 V
L78L33AC	L78L33ACD13TR	L78L33ACZ	L78L33ACUTR	3.3 V
L78L33AB	L78L33ABD-TR	L78L33ABZ	L78L33ABUTR	3.3 V
L78L05C	L78L05CD13TR	L78L05CZ		5 V
L78L05AC	L78L05ACD13TR	L78L05ACZ	L78L05ACUTR	5 V
L78L05AB	L78L05ABD13TR	L78L05ABZ	L78L05ABUTR	5 V
L78L06AC	L78L06ACD13TR	L78L06ACZ	L78L06ACUTR	6 V
L78L06AB	L78L06ABD13TR	L78L06ABZ	L78L06ABUTR	6 V
L78L08C	L78L08CD13TR			8 V
L78L08AC	L78L08ACD13TR	L78L08ACZ	L78L08ACUTR	8 V
L78L08AB	L78L08ABD13TR	L78L08ABZ	L78L08ABUTR	8 V
L78L09C	L78L09CD13TR			9 V
L78L09AC	L78L09ACD13TR	L78L09ACZ	L78L09ACUTR	9 V
L78L09AB	L78L09ABD13TR	L78L09ABZ	L78L09ABUTR	9 V
L78L10AC			L78L10ACUTR	10 V
L78L12C	L78L12CD13TR			12 V
L78L12AC	L78L12ACD13TR	L78L12ACZ	L78L12ACUTR	12 V
L78L12AB	L78L12ABD-TR	L78L12ABZ	L78L12ABUTR	12 V
L78L15C	L78L15CD-TR			15 V
L78L15AC	L78L15ACD13TR	L78L15ACZ	L78L15ACUTR	15 V
L78L15AB		L78L15ABZ	L78L15ABUTR	15 V
L78L18C	L78L18CD13TR			18 V
L78L18AC	L78L18ACD13TR		L78L18ACUTR	18 V
L78L24C	L78L24CD-TR			24 V
L78L24AC	L78L24ACD-TR	L78L24ACZ	L78L24ACUTR	24 V
L78L24AB	L78L24ABD13TR	L78L24ABZ		24 V

Available in Ammopak with the suffix "-AP" or in tape and reel with the suffix "TR". Please note that in these cases pins are shaped according to tape and reel specifications.

9 Revision history

Table 24. Document revision history

Date	Revision	Changes
14-Mar-2005	9	Add tape and reel for TO-92.
15-Mar-2005	10	Add note on Table 3.
23-Dec-2005	11	Mistake on ordering Table in header.
12-Sep-2006	12	Order codes updated.
07-Jun-2007	13	Order codes updated.
18-Sep-2007	14	Added <i>Table 1</i> in cover page.
15-Jul-2008	15	Modified: Table 1 on page 1 and Table 23 on page 27.
18-Aug-2008	16	Modified Figure 12 on page 17.
03-Apr-2009	17	Added: R _{thJA} value for SOT-89 <i>Table 3 on page 5</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

