

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

### ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3 «ОБРАБОТКА РАЗРЕЖЕННЫХ МАТРИЦ»

Студент Ковалец Кирилл

Группа ИУ7 – 33Б

#### Описание условия задачи

Разреженная (содержащая много нулей) матрица хранится в форме 3-х объектов:

- вектор A содержит значения ненулевых элементов;
- вектор  $J\!A$  содержит номера столбцов для элементов вектора A;
- связный список IA, в элементе Nk которого находится номер компонент

в A и JA, с которых начинается описание строки Nk матрицы A.

- 1. Смоделировать операцию умножения матрицы и вектора-столбца, хранящихся в этой форме, с получением результата в той же форме.
- 2. Произвести операцию умножения, применяя стандартный алгоритм работы с матрицами.
- 3. Сравнить время выполнения операций и объем памяти при использовании этих 2-х алгоритмов при различном проценте заполнения матриц.

#### Описание технического задания

#### Входные данные:

Номер команды, отвечающий за определённое действие.

#### Команды:

- 1. Смоделировать операцию умножения матрицы и вектора-столбца, хранящихся в особой форме, с получением результата в той же форме.
- 2. Произвести операцию умножения, применяя стандартный алгоритм работы с матрицами.
- 3. Сравнить время выполнения операций и объем памяти при использовании этих 2-х алгоритмов при различном проценте заполнения матриц.
- 0. Выйти из программы.

#### Выходные данные:

- 1. Матрица, полученная после умножения исходной матрицы на вектор столбец, в стандартной или особой форме;
- 2. Результат сравнения 2-х алгоритмов умножения матриц по времени и памяти.

#### Обращение к программе:

Запускается через терминал командой make run

#### Сообщения при аварийных ситуациях:

- 1. Не удалось прочитать номер команды;
- 2. Номер команды должен быть  $\ge 0$  и  $\le 3$ ;
- 3. Не удалось прочитать метод заполнения матрицы;
- 4. Метод заполнения матрицы число от 1 до 3;
- 5. Не удалось прочитать процент заполнения матрицы;
- 6. Процент заполнения матрицы число от 1 до 100;
- 7. Не удалось прочитать кол-во строк матрицы;
- 8. Превышено максимальное кол-во строк матрицы;
- 9. Кол-во строк матрицы должно быть больше 0;
- 10. Не удалось прочитать кол-во столбцов матрицы;
- 11. Превышено максимальное кол-во столбцов матрицы;
- 12. Кол-во столбцов матрицы должно быть больше 0;
- 13. Не удалось прочитать элемент матрицы;
- 14. Не удалось прочитать кол-во ненулевых элементов матрицы;
- 15.Кол-во ненулевых элементов матрицы число от 1 до (кол-во элементов матрицы);
- 16. Этот элемент уже задан;
- 17. Не удалось выделить память мод матрицу;
- 18. Не удалось выделить память мод массив ненулевых элементов;
- 19. Не удалось выделить память мод массив, содержащий номера столбцов ненулевых элементов;
- 20. Не удалось выделить память под связный список.

### Описание структуры данных

matrix\_t - структура, содержащая информацию об обычной записи матрицы.

```
typedef struct matrix
{
    int **matrix;
    int numb_rows;
    int numb_columns;
} matrix t;
```

### Поля структуры:

1) int \*\*matrix — указатель на указатель на int (матрица, в которой хранятся переменные типа int);

- 2) int numb\_rows кол-во строк матрицы;
- 3) int numb\_columns кол-во столбцов матрицы.

**special\_matrix\_t** - структура, содержащая информацию об особой записи матрицы.

```
typedef struct special_matrix
{
    int *vector_a;
    int *vector_ja;
    int *linked_list;
    int numb_rows;
    int numb_columns;
    int numb_non_zero_elem;
} special_matrix_t;
```

#### Поля структуры:

- 1) int \*vector\_a массив, содержащий ненулевые элементы матрицы типа int;
- 2) int \*vector\_ja массив, содержащий номера столбцов ненулевых элементов матрицы;
- 3) int \*linked\_list связный список, содержащий номера ненулевых элементов матрицы, с которых начинается строка;
- 4) int numb\_rows кол-во строк матрицы;
- 5) int numb\_columns кол-во столбцов матрицы.
- 6) int numb\_non\_zero\_elem кол-во ненулевых элементов матрицы.

### Описание алгоритма

- 1. Выводится меню программы (каждой команде присвоен номер);
- 2. Пользователь вводит номер команды, который отвечает за определённое действие;
- 3. Ввод осуществляется до того момента, пока не будет введён 0, являющийся признаком выхода из программы.

### Набор тестов

| №  | Название теста                                                                       | Входные данные                                                      | Результат                                            |
|----|--------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|
| 1  | Номер команды - число                                                                | k                                                                   | Не удалось прочитать номер команды                   |
| 2  | Номер команды >= 0 и <=3                                                             | 5                                                                   | Номер команды должен<br>быть >= 0 и <= 3             |
| 3  | Кол-во строк в матрице – число                                                       | k 3                                                                 | Не удалось прочитать кол-во строк матрицы            |
| 4  | Кол-во столбцов в матрице – число                                                    | 3 k                                                                 | Не удалось прочитать кол-во столбцов матрицы         |
| 5  | Максимальное кол-во строк<br>в матрице - 1000                                        | 1001 1                                                              | Превышено максимальное кол-во строк матрицы          |
| 6  | Максимальное кол-во<br>столбцов в матрице - 1000                                     | 1 1001                                                              | Превышено максимальное кол-во столбцов матрицы       |
| 7  | Кол-во строк в матрице >0                                                            | 0 5                                                                 | Кол-во строк матрицы должно быть больше 0            |
| 8  | Кол-во столбцов в матрице >0                                                         | 5 0                                                                 | Кол-во столбцов матрицы должно быть больше 0         |
| 9  | Метод заполнения матрицы, хранящейся в особой форме - число от 1 до 2                | 3                                                                   | Метод заполнения матрицы - число от 1 до 2           |
| 10 | Кол-во ненулевых элементов матрицы не должно превышать кол-во всех элементов матрицы | 10<br>(матрица 3х3)                                                 | Кол-во ненулевых элементов матрицы - число от 1 до 9 |
| 11 | Кол-во ненулевых элементов матрицы >0                                                | 0<br>(матрица 3х3)                                                  | Кол-во ненулевых элементов матрицы - число от 1 до 9 |
| 12 | Элемент матрицы - число                                                              | k 1 1<br>(При заполнении<br>вручную ненулевых<br>элементов матрицы) | Не удалось прочитать элемент матрицы                 |
| 13 | Номер строки матрицы -                                                               | 1 k 1                                                               | Не удалось прочитать                                 |

|    | число                                                                                        | (При заполнении вручную ненулевых элементов матрицы)       | номер строки элемента<br>матрицы                    |
|----|----------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|
| 14 | Номер столбца матрицы – число                                                                | 1 1 k (При заполнении вручную ненулевых элементов матрицы) | Не удалось прочитать номер столбца элемента матрицы |
| 15 | Номер строки элемента матрицы не должен превышать кол-во строк в ней и быть >0               | 1 0 1<br>(матрица 3х3)                                     | Номер строки матрицы - число от 1 до 3              |
| 16 | Номер столбца элемента матрицы не должен превышать кол-во столбцов в ней и быть >0           | 1 1 4<br>(матрица 3x3)                                     | Номер столбца матрицы - число от 1 до 3             |
| 17 | Процент заполнения матрицы - число от 1 до 100                                               | 200<br>(При автозаполнении<br>матрицы)                     | Процент заполнения матрицы - число от 1 до 100      |
| 18 | Метод заполнения обычной матрицы - число от 1 до 3                                           | 4                                                          | Метод заполнения матрицы - число от 1 до 3          |
| 19 | Перемножение обычной матрицы на вектор столбец (ввод всех элементов)                         | 1 0 0<br>0 1 0<br>0 0 1                                    | 1<br>2<br>3                                         |
| 20 | Перемножение обычной матрицы (3х3) на вектор столбец (3х1) (ввод только ненулевых элементов) | 2 1 1<br>2 2 2<br>2 3 3<br>5 2 1<br>7 3 1                  | 0<br>10<br>14                                       |
| 21 | Перемножение обычной матрицы на вектор столбец (автозаполнение)                              | Размер матрицы – 3х3<br>Процент заполнения – 50%           | 0 -5 3<br>0 0 0<br>-3 3 0<br>0<br>-3<br>0           |

| 22 | Перемножение особой матрицы (3х3 с 5-ю ненулевыми элементами) на вектор столбец (3х1 с 3 ненулевыми элементами) (заполнение вручную)                     | 1 1 1<br>1 1 2<br>1 1 3<br>2 2 2<br>2 3 3<br>1 1 1<br>2 2 1<br>3 3 1 | 15<br>0<br>-9<br>Массив из ненулевых<br>элементов матрицы:<br>6 4 6<br>Массив из номеров<br>столбцов ненулевых<br>элементов матрицы:<br>1 1 1<br>Связный список:<br>1 2 3 4 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23 | Перемножение особой матрицы на вектор столбец (автозаполнение)                                                                                           | Размер матрицы — 3х3<br>Процент заполнения — 50%                     | Исходная матрица:  3 -1 -3 5  1 2 3 3  1 3 4 5  Вектор:  3  1  1 1 2 2  Результат:  -3  1  1 2 2 2                                                                          |
| 24 | Вывести результаты сравнения времени выполнения операций и объёма памяти при использовании этих 2-х алгоритмов при различном проценте заполнения матриц. | Команда 3                                                            | Вывод результатов сравнения двух алгоритмов перемножения матриц                                                                                                             |
| 25 | Выход из программы                                                                                                                                       | Команда 0                                                            | Выход из программы                                                                                                                                                          |

### Оценка эффективности

Сортировка каждой таблицы будет измеряться в тактах процессора (процессор со средней частотой 2.3gHz).

Матрица и вектор столбец будут заполнены случайными числами.

### Сравнение времени умножения

### При 10% заполнения

| Размер  | Матрица в особой форме | Обычная матрица |
|---------|------------------------|-----------------|
| 10x10   | 1946                   | 2266            |
| 50x50   | 3879                   | 21961           |
| 100x100 | 10448                  | 69456           |

### При 25% заполнения

| Размер  | Матрица в особой форме | Обычная матрица |
|---------|------------------------|-----------------|
| 10x10   | 1036                   | 777             |
| 50x50   | 6573                   | 18035           |
| 100x100 | 22799                  | 71959           |

### При 50% заполнения

| Размер  | Матрица в особой форме | Обычная матрица |
|---------|------------------------|-----------------|
| 10x10   | 1427                   | 889             |
| 50x50   | 13395                  | 15699           |
| 100x100 | 40190                  | 68870           |

### При 75 % заполнения

| Размер  | Матрица в особой форме | Обычная матрица |
|---------|------------------------|-----------------|
| 10x10   | 1598                   | 888             |
| 50x50   | 21870                  | 18346           |
| 100x100 | 65639                  | 78630           |

### При 100 % заполнения

| Размер  | Матрица в особой форме | Обычная матрица |
|---------|------------------------|-----------------|
| 10x10   | 1683                   | 799             |
| 50x50   | 20156                  | 18516           |
| 100x100 | 77333                  | 67962           |

### Сравнение затрат на память под исходную матрицу (в байтах)

### При 10% заполнения

| Размер  | Матрица в особой форме | Обычная матрица |
|---------|------------------------|-----------------|
| 10x10   | 124                    | 400             |
| 50x50   | 2204                   | 10000           |
| 100x100 | 8404                   | 40000           |

### При 25% заполнения

| Размер  | Матрица в особой форме | Обычная матрица |
|---------|------------------------|-----------------|
| 10x10   | 244                    | 400             |
| 50x50   | 5204                   | 10000           |
| 100x100 | 20404                  | 40000           |

### При 50% заполнения

| Размер  | Матрица в особой форме | Обычная матрица |
|---------|------------------------|-----------------|
| 10x10   | 444                    | 400             |
| 50x50   | 10204                  | 10000           |
| 100x100 | 40404                  | 40000           |

### При 75 % заполнения

| Размер  | Матрица в особой форме | Обычная матрица |
|---------|------------------------|-----------------|
| 10x10   | 644                    | 400             |
| 50x50   | 15204                  | 10000           |
| 100x100 | 60404                  | 40000           |

#### При 100 % заполнения

| Размер  | Матрица в особой форме | Обычная матрица |
|---------|------------------------|-----------------|
| 10x10   | 844                    | 400             |
| 50x50   | 20204                  | 10000           |
| 100x100 | 80404                  | 40000           |

#### Ответы на контрольные вопросы

## 1. Что такое разреженная матрица, какие схемы хранения таких матриц Вы знаете?

Разреженная матрица — это матрица, содержащая большое количество нулей.

Схемы хранения матрицы:

- связанная схема хранения;
- кольцевая связанная схема хранения;
- двунаправленные стеки и очереди;
- диагональная схема хранения;
- строчной формат;
- столбцовый формат.

# 2. Каким образом и сколько памяти выделяется под хранение разреженной и обычной матрицы?

Под обычную матрицу выделяется память (в байтах), равная кол-во строк матрицы, умноженному на кол-во её столбцов, а также на размер типа данных её элементов.

Для разреженной матрицы количество байт памяти завит от способа её хранения. В случае хранения её в особой форме необходимо три списка. Размеры двух вычисляются как произведение кол-ва ненулевых элементов матрицы на размер типа данных её элементов. Размер третьего — как произведение кол-ва строк матрицы + 1 на размер типа данных её элементов.

### 3. Каков принцип обработки разреженной матрицы?

При обработке разреженной матрицы мы работаем только с ненулевыми элементами. Тогда количество операций будет пропорционально количеству ненулевых элементов.

# 4. В каком случае для матриц эффективнее применять стандартные алгоритмы обработки матриц? От чего это зависит?

Эффективнее применять стандартные алгоритмы при большом количестве ненулевых элементов. А если заранее известно, что ненулевых элементов в матрице немного относительно их общего количества, то лучше применять способы работы с разреженными матрицами.

#### Вывод

Алгоритмы работы с разреженной матрицей эффективны только в том случае, если количество ненулывых элементов в матрице мало. Это хорошо видно при больших размерах матрицы (100х100). В этом случае только при заполнении свыше 75% алгоритм для работы с разреженной матрицей работает дольше обычного. Если взять матрицу малого размера (10х10), то особый алгоритм медленнее уже при 25% заполнения матрицы. Выходит, что для быстроты алгоритма работы с разряженными матрицами кроме кол-ва ненулевых элементов матрицы также важен её размер.

Затраты по памяти алгоритма для разряженной матрицы превышают затраты обычного алгоритма при 50% заполнения матрицы, а при 100% превосходят уже в два раза.

Алгоритм для работы с разряженными матрицами имеет свои преимущества и недостатки в сравнении с обычным. Каждый из них подходит для своих задач.