Data Structure

Course Overview

Shin Hong

Mar 3, 2020

- •33 students
- I instructor: Shin Hong
 - hongshin@handong.edu / http://hongshin.github.io / OH 313
- 3+ teaching assistants
 - Hyerin Leem hyerinleem@handong.edu (coordinating TA)

Course Overview

Data Structure

Course Objectives

- Understand the principles of fundamental algorithms
 - study frequent structures of computational problems
 - understand key ideas in scientific solutions
 - study each set of algorithms related with a certain data structure
- Build essential background/skills for pursing a degree in CS
 - understanding foundational concepts/ideas of computer science
 - learning how to read technical description
 - practice writing computational solutions in programming languages

Course Overview

Data Structure

Course Materials

- Course website: http://github.com/hongshin/DataStructure/wiki
- Textbooks
 - I. Fundamentals of Data Structures in C by Horowitz et al.
 - Data Structure and Algorithm Analysis, C++ version of Edition 3.2 by Clifford A. Shaffer

http://people.cs.vt.edu/~shaffer/Book/

- Programming Labs
 - There will be 8 to 10 programming lab sessions at the Friday meeting
 - In each lab session, you are given 2 or 3 programming problems to solve within the lab session
 - Two students will work together at each lab session
 - basically you will have a new partner in every lab session

Course Overview

Data Structure

Topics and Schedule (tentative)

Date	Торіс	Date	Торіс
Mar 3 ,Tue	course introduction	Apr 28,Tue	sorting (1/3)
Mar 6, Fri	linked list	May 1, Fri	* lab 4
Mar 10, Tue	stack	May 5, Tue	** national holiday
Mar 13, Fri	queue	May 8, Fri	sorting (2/3)
Mar 17, Tue	doubly-linked list	May 12, Tue	sorting (3/3)
Mar 20, Fri	tree (1/2)	May 15, Fri	* lab 5
Mar 24, Tue	tree (2/2)	May 19, Tue	hashing
Mar 27, Fri	heap	May 22, Fri	* lab 6
Mar 31,Tue	disjoint set	May 26, Tue	priority queue
Apr 3, Fri	* lab	May 29, Fri	* lab 7
Apr 7,Tue	graph (1/3)	June 2, Tue	AVL tree (1/2)
Apr 10, Fri	* lab 2	June 5, Fri	* lab 8
Apr 14, Tue	graph (2/3)	June 9, Tue	AVL tree (2/2)
Apr 17, Fri	* lab 3	June 12, Fri	* lab 9
Apr 21, Tue	graph (3/3)	June 16, Tue	** final exam (TBD)
Apr 24, Fri	** midterm exam: 4-6 PM	June 19, Fri	

Course Overview

Data Structure

Study Guidelines

- Read, read and read textbook
 - read regularly
 - never move on once you face a unknown word or sentence
 - use your hands to repeat examples
 - memorize definitions
 - peruse stories in boxes
 - never expect that all materials will be covered at the meeting
- Solve exercise problems by yourself
 - read the problem sentence carefully
 - write down an answer completely, and never stop at a middle
 - do have a group study
- Try best to think together (discuss) at meetings
 - participate or lose the time

Course overview

Data Structure

Programming Labs

- •We will have 8 to 10 programming labs
 - it will be held as 3-hour class at Friday
 - it involves programming tasks
 - each student need to bring his/her own laptop
- Programming tasks
 - Two students work as a team.
 - You will have a new random partner at each lab
 - Each team is asked to complete I to 3 problems in 3 hours
 - Only one laptop is allowed for each team
 - Online system will be used for automated grading

Course Overview

Data Structure

Class Policies

https://github.com/hongshin/DataStructure/wiki/Class-Policies

Course overview

Data Structure

Ground Rules

- Primary, students study course subjects by reading textbooks and taking the tasks given at programming labs
 - the primary purpose of a meeting is for having discussions
- •Students are expected to spend at least 8 hours in a week by themselves for following up 4 hour meetings of the week
 - 8 hours excluding the time for homework and meetings
- Given programming tasks, figuring out their obligations is a crucial task to accomplish
- In team work, all team members must thoroughly understand all parts of their results
 - each member may take a part, and must study all aspects together

Course overview

Data Structure

Grading

- Proportion of final score attributes
 - Meeting attendance: 3%
 - Discussion (class contribution): 5% (+3%)
 - Midterm exam: 25%
 - including programming test
 - Final exam: 30%
 - including programming test
 - Programming lab: 32%
 - Homework: 5%
- Grading proportion

```
(A : B : C+D+F) = (20-30\% : 40-60\% : 10-30\%)
```

- Professor to the rescue
 - I4th week
 - for those who are suspected to get D or fails by 8+ absences
 - by open make-up classes or give extra homework

Course Overview

Data Structure

Optional Assignment

- Deadline: 11:59 PM, June 27 (Sat)
- Task
 - -write an essay after reading one of the recommended books (that you have not read before)
 - -the essay should span over at least 5 pages
 - -you should give your genuine ideas that associate the book with the topics learned in the course
- Credit: upto 3 points are added to the grading score
 - -grading proportion: (A: B: C) = (20-30%: 30-50%: 30-50%)

Course overview

Data Structure

List of Recommended Books

- 컴퓨터 과학이 여는 세상, 이광근 (written in Korean)
- Once Upon an Algorithm by Martin Erwig (only English version will be counted)
- Algorithms to Live By: The Computer Science of Human Decision by Brian Christian et al.
- Code:The Hidden Language of Computer Hardware and Software by Charles Petzold (Code: 하드웨어와 소프트웨어에 숨어 있는 언어)
- Automate This: How Algorithms Came To Rule Our World by Christopher Steiner
- Grokking Algorithms: An Illustrated Guide for Programmers and Other Curious People by Aditya
 Bhargava
- Programming Pearls, 2/e, John Bentley (생각하는 프로그래밍)
- From Mathematics to Genetic Programming by Stepanov and Rose (알고리즘 산책: 수학에서 제네릭 프로그래밍까지)
- Godel, Escher, Bach: An Eternal Golden Braid by Douglas Hofstadter (괴델, 에셔, 바흐: 영원한 황금 노끈)
 - acceptable even if you cover only Part I (GEB)
- 튜링&괴델: 추상적 사유의 위대한 힘 (written in Korean)
- Godel's Proof by Ernest Nagel et al., (괴델의 증명)

Course Overview

Data Structure