WE CLAIM:

1. A fluorinated polyol having the structure of formula (IV)

(IV)
$$R^{13} \xrightarrow{R^{14}} R^{14}$$

$$R^{2} \xrightarrow{R^{6A}} R^{5}$$

wherein:

 R^1 is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, and substituted C_1 - C_{24} alkoxy;

 R^2 , R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, and further wherein any two of R^1 , R^2 , R^3 , R^4 , and R^5 may be taken together to form a ring;

 R^{6A} is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino;

 R^{7A} is C_1 - C_{24} alkyl or substituted C_1 - C_{24} alkyl, and further wherein R^{6A} and R^{7A} may be taken together to form a ring, with the proviso that at least one of R^{6A} and R^{7A} is fluorinated; and

one of R¹³ and R¹⁴ is hydroxyl and the other is selected from hydrogen and hydroxyl.

2. The fluorinated polyol of claim 1, wherein:

 R^{1} is selected from hydrogen, C_{1} - C_{12} alkyl, C_{1} - C_{12} hydroxyalkyl, fluorinated C_{1} - C_{12} alkyl, fluorinated C_{1} - C_{12} alkyl substituted with a protected hydroxyl group, and C_{1} - C_{12} alkoxy;

 R^2 is selected from hydrogen, C_1 - C_{12} alkyl and substituted C_1 - C_{12} alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl, fluorinated C_1 - C_{12} hydroxyalkyl, and fluorinated C_1 - C_{12} alkyl substituted with a protected hydroxyl group, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_3 - C_{30} alicyclic group;

 R^{6A} is selected from hydrogen, C_1 - C_{12} alkyl, and C_1 - C_{12} haloalkyl; R^{7A} is C_1 - C_{12} alkyl or C_1 - C_{12} haloalkyl; and one of R^{13} and R^{14} is hydroxyl and the other is hydrogen.

3. The fluorinated polyol of claim 2, wherein:

 R^1 is selected from hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, and fluorinated hydroxyalkyl having the structure - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_6 aliphatic, R^8 is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^9 is fluorinated C_1 - C_8 alkyl;

R² is hydrogen or C₁-C₈ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_8 alkyl, and fluorinated hydroxyalkyl having the structure - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_6 aliphatic, R^{8A} is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^{9A} is

fluorinated C_1 - C_8 alkyl, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_3 - C_{18} alicyclic group;

 R^{6A} is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl; and R^{7A} is C_1 - C_8 alkyl or fluorinated C_1 - C_8 alkyl.

4. The fluorinated polyol of claim 3, wherein:

 R^1 is selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, and - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_4 aliphatic, R^8 is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^9 is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl;

R² is hydrogen or C₁-C₄ alkyl;

.

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_4 alkyl, and - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_4 aliphatic, R^{8A} is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^{9A} is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_5 - C_{14} alicyclic group;

 R^{6A} is selected from hydrogen, C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl; and

 R^{7A} is selected from C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl.

5. The fluorinated polyol of claim 4, wherein R^{6A} and R^{7A} are both trifluoromethyl.

- 6. The fluorinated polyol of claim 4, wherein one of R^{6A} and R^{7A} is methyl and the other is trifluoromethyl.
 - 7. The fluorinated polyol of claim 4, wherein:

R² and R³ are taken together to form a C₃-C₃₀ alicyclic group;

R¹³ is hydrogen; and

R¹⁴ is hydroxyl.

1, 1 1, 1 1

8. The fluorinated polyol of claim 7, wherein:

R¹ is hydrogen; and

R² and R³ are taken together to form a C₃-C₁₈ alicyclic group.

9. The fluorinated polyol of claim 8, wherein:

R² and R³ are taken together to form a C₅-C₁₄ alicyclic group.

- 10. The fluorinated polyol of claim 11, wherein R⁴ and R⁵ are hydrogen.
- 11. The fluorinated polyol of claim 4, wherein:

R² and R³ are taken together to form a C₃-C₃₀ alicyclic group;

R¹³ is hydroxyl; and

R¹⁴ is hydrogen.

12. The fluorinated polyol of claim 11, wherein:

R1 is hydrogen; and

R² and R³ are taken together to form a C₃-C₁₈ alicyclic group.

13. The fluorinated polyol of claim 12, wherein:

 R^2 and R^3 are taken together to form a C_5 - C_{14} alicyclic group.

- 14. The fluorinated polyol of claim 13, wherein R⁴ and R⁵ are hydrogen.
- 15. A fluoroalkanol-substituted α,β -unsaturated ester having the structure of formula

(V)

wherein:

 R^1 is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, and substituted C_1 - C_{24} alkoxy;

 R^2 , R3, R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, and further wherein any two of R^1 , R^2 , R^3 , R^4 , and R^5 may be taken together to form a ring;

 R^{6A} is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino;

 R^{7A} is C_1 - C_{24} alkyl or substituted C_1 - C_{24} alkyl, and further wherein R^{6A} and R^{7A} may be taken together to form a ring, with the proviso that at least one of R^{6A} and R^{7A} is fluorinated; and

one of R¹⁵ and R¹⁶ is hydrogen, and the other has the structure of formula (VI)

(VI)
$$R^{18}$$

in which R^{17} is selected from hydrogen, fluoro, C_1 - C_4 alkyl, fluorinated C_1 - C_4 alkyl, - CH_2 -COOH, - CF_2 -COOH, - CH_2 - $COOR^{20}$, and - CF_2 - $COOR^{20}$, R^{18} is hydrogen or fluoro, R^{19} is hydrogen, fluoro, or -COOH, and R^{20} is a nonhydrogen substituent.

16. The fluoroalkanol-substituted α,β-unsaturated ester of claim 15, wherein:

 R^1 is selected from hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl, fluorinated C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl substituted with a protected hydroxyl group, and C_1 - C_{12} alkoxy;

 R^2 is selected from hydrogen, $C_1\hbox{-} C_{12}$ alkyl and substituted $C_1\hbox{-} C_{12}$ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl, fluorinated C_1 - C_{12} hydroxyalkyl, and fluorinated C_1 - C_{12} alkyl substituted with a protected hydroxyl group, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_3 - C_{30} alicyclic group;

 R^{6A} is selected from hydrogen, C_1 - C_{12} alkyl, and C_1 - C_{12} haloalkyl;

 R^{7A} is C_1 - C_{12} alkyl or C_1 - C_{12} haloalkyl;

R¹⁷ is selected from hydrogen, fluoro, methyl, trifluoromethyl, -CH₂-COOH, and -CH₂-COOR²⁰;

 R^{18} and R^{19} are independently selected from hydrogen and fluoro; and R^{20} is selected from C_1 - C_{12} alkyl and substituted C_1 - C_{12} alkyl.

17. The fluoroalkanol-substituted α,β-unsaturated ester of claim 16, wherein:

 R^1 is selected from hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, and fluorinated hydroxyalkyl having the structure - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_6 aliphatic, R^8 is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^9 is fluorinated C_1 - C_8 alkyl;

 R^2 is hydrogen or C_1 - C_8 alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_8 alkyl, and fluorinated hydroxyalkyl having the structure - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_6 aliphatic, R^{8A} is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^{9A} is fluorinated C_1 - C_8 alkyl, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_3 - C_{18} alicyclic group;

 R^{6A} is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl; R^{7A} is C_1 - C_8 alkyl or fluorinated C_1 - C_8 alkyl; R^{17} is selected from hydrogen and methyl; and R^{18} and R^{19} are hydrogen.

18. The fluoroalkanol-substituted α,β -unsaturated ester of claim 17, wherein:

 R^1 is selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, and - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_4 aliphatic, R^8 is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^9 is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl;

 R^2 is hydrogen or C_1 - C_4 alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_4 alkyl, and - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_4 aliphatic, R^{8A} is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^{9A} is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_5 - C_{14} alicyclic group;

 R^{6A} is selected from hydrogen, C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl; and

 R^{7A} is selected from C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl.

- 19. The fluoroalkanol-substituted α,β -unsaturated ester of claim 17 wherein R^2 and R^3 are taken together to form a C_3 - C_{18} alicyclic group.
- 20. The fluoroalkanol-substituted α,β -unsaturated ester of claim 18, wherein R^2 and R^3 are taken together to form a C_5 - C_{14} alicyclic group.
- 21. The fluoroalkanol-substituted α,β -unsaturated ester of claim 18, wherein R^4 and R^5 are hydrogen.
- 22. The fluoroalkanol-substituted α,β -unsaturated ester of claim 19, wherein R^4 and R^5 are hydrogen.
- 23. The fluoroalkanol-substituted α,β -unsaturated ester of claim 20, wherein R^4 and R^5 are hydrogen.
- 24. The fluoroalkanol-substituted α,β -unsaturated ester of claim 18, wherein R^{6A} and R^{7A} are both trifluoromethyl.
- 25. The fluoroalkanol-substituted α,β -unsaturated ester of claim 18, wherein one of R^{6A} and R^{7A} is methyl and the other is trifluoromethyl.

Carlotta and a

26. The fluoroalkanol-substituted α,β -unsaturated ester of claim 15, wherein R¹⁵ is hydrogen and R¹⁶ has the structure of formula (VI)

(VI)
$$R^{18}$$

27. The fluoroalkanol-substituted α,β -unsaturated ester of claim 15, wherein R¹⁵ has the structure of formula (VI)

(VI)
$$R^{18}$$

and R¹⁶ is hydrogen.

28. A fluoroalkanol-substituted α,β -unsaturated ester having the structure of formula

(VII)
$$R^{21} R^{22}$$
HO R^{23}
 R^{24}
 R^{25}
 R^{26}
 R^{26}

wherein:

 R^{21} is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, and substituted C_1 - C_{24} alkoxy;

 R^{22} is selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, or may be taken together with R^{21} to form a ring;

one of R²³ and R²⁶ is hydrogen, and the other has the structure of formula (VI)

(VI)
$$R^{18}$$
 R^{19}

wherein R^{17} is selected from hydrogen, fluoro, C_1 - C_4 alkyl, fluorinated C_1 - C_4 alkyl, -CH₂-COOH, -CF₂-COOH, -CH₂-COOR²⁰, and -CF₂-COOR²⁰, R^{18} is hydrogen or fluoro, R^{19} is hydrogen, fluoro, or -COOH, and R^{20} is a nonhydrogen substituent;

 R^{24} and R^{25} are selected from hydrogen, C_1 - C_{24} alkyl and substituted C_1 - C_{24} alkyl, or may be taken together to form a ring;

 R^{27} is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino, and R^{30} is C_1 - C_{24} alkyl or substituted C_1 - C_{24} alkyl, with the proviso that at least one of R^{27} and R^{30} is fluorinated; and

 R^{28} and R^{29} are independently selected from hydrogen, fluoro, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, or may be taken together to form a ring.

29. The fluoroalkanol-substituted α,β -unsaturated ester of claim 28, wherein:

 R^{17} is selected from hydrogen, fluoro, methyl, trifluoromethyl, -CH₂-COOH, and -CH₂-COOR²⁰;

R¹⁸ and R¹⁹ are independently selected from hydrogen and fluoro;

 R^{20} is selected from C_1 - C_{12} alkyl and substituted C_1 - C_{12} alkyl;

 R^{21} is selected from hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl, fluorinated C_1 - C_{12} alkyl substituted with a protected hydroxyl group, and C_1 - C_{12} alkoxy;

 R^{22} is selected from hydrogen, C_1 - C_{12} alkyl and substituted C_1 - C_{12} alkyl;

 R^{24} and R^{25} are selected from hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl, fluorinated C_1 - C_{12} alkyl substituted with a protected hydroxyl group, and C_1 - C_{12} alkoxy, or may be taken together to form a C_3 - C_{30} alicyclic group;

R²⁷ is selected from hydrogen, C₁-C₁₂ alkyl, and C₁-C₁₂ haloalkyl;

 R^{28} and R^{29} are independently selected from hydrogen, fluoro, C_1 - C_{12} alkyl, and substituted C_1 - C_{12} alkyl; and

 R^{30} is C_1 - C_{12} alkyl or C_1 - C_{12} haloalkyl.

30. The fluoroalkanol-substituted α , β -unsaturated ester of claim 29, wherein:

R¹⁷ is selected from hydrogen and methyl;

R¹⁸ and R¹⁹ are hydrogen;

garan kanalan ar

 R^{21} is selected from hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, and fluorinated hydroxyalkyl having the structure - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_6 aliphatic, R^8 is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^9 is fluorinated C_1 - C_8 alkyl;

R²² is hydrogen or C₁-C₈ alkyl;

granda in the contract of the

 R^{24} and R^{25} are independently selected from hydrogen, C_1 - C_8 alkyl, and fluorinated hydroxyalkyl having the structure - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_6 aliphatic, R^{8A} is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^{9A} is fluorinated C_1 - C_8 alkyl;

 R^{27} is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl; and R^{30} is C_1 - C_8 alkyl or fluorinated C_1 - C_8 alkyl.

31. The fluoroalkanol-substituted α,β -unsaturated ester of claim 30, wherein:

 R^{21} is selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, and - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_4 aliphatic, R^8 is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^9 is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl;

R²² is hydrogen or C₁-C₄ alkyl;

 R^{27} is selected from hydrogen, C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl; and

 R^{30} is selected from C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl.

- 32. The fluoroalkanol-substituted α,β -unsaturated ester of claim 31, wherein R^{23} and R^{26} are both trifluoromethyl.
- 33. The fluoroalkanol -substituted α,β -unsaturated ester of claim 31, wherein one of R^{23} and R^{26} is methyl and the other is trifluoromethyl.
- 34. The fluoroalkanol-substituted α,β -unsaturated ester of claim 28, wherein R^{27} is hydrogen and R^{30} has the structure of formula (VI)

35. The fluoroalkanol-substituted α,β -unsaturated ester of claim 28, wherein R^{27} has the structure of formula (VI)

(VI)
$$R^{18}$$

and R³⁰ is hydrogen.

36. A fluoroalkanol-substituted α,β -unsaturated ester having the structure of formula (VIII)

wherein:

garan tagaran k

 R^{31} and R^{32} are independently selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino, with the proviso that at least one of R^{31} and R^{32} is fluorinated, and further wherein R^{31} and R^{32} may be taken together to form a fluorinated alicyclic group;

R³⁹ and R⁴⁰ are independently selected from hydrogen, C₁-C₂₄ alkyl, substituted C₁-C₂₄ alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C₁-C₂₄ alkyl, substituted C₁-C₂₄ alkyl, amino, C₁-C₂₄ alkylamino, or di(C₁-C₂₄ alkyl)amino, with the proviso that at least one of R³⁹ and R⁴⁰ is fluorinated and further wherein R³⁹ and R⁴⁰ may be taken together to form an alicyclic group;

 R^{33} , R^{34} , R^{35} , R^{36} , R^{37} , and R^{38} are selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, and further wherein any two of R^{33} , R^{34} , R^{35} , R^{36} , R^{37} , and R^{38} may be taken together to form a ring, with the proviso that one of R^{36} and R^{37} is hydrogen, and the other has the structure of formula (VI)

wherein R¹⁷ is selected from hydrogen, fluoro, C₁-C₄ alkyl, fluorinated C₁-C₄ alkyl, -CH₂-COOH, -CF₂-COOH, -CH₂-COOR²⁰, and -CF₂-COOR²⁰, R¹⁸ is hydrogen or fluoro, R¹⁹ is hydrogen, fluoro, or -COOH, and R²⁰ is a nonhydrogen substituent;

 R^{38} is selected from hydrogen, C_1 - C_{24} alkyl and substituted C_1 - C_{24} alkyl, or may be taken together with R^{35} to form an alicyclic group; and

 R^{39} is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino, and R^{40} is C_1 - C_{24} alkyl or substituted C_1 - C_{24} alkyl, with the proviso that at least one of R^{39} and R^{40} is fluorinated.

37. The fluoroalkanol-substituted α,β -unsaturated ester of claim 36, wherein:

 R^{17} is selected from hydrogen, fluoro, methyl, trifluoromethyl, -CH₂-COOH, and -CH₂-COOR²⁰;

R¹⁸ and R¹⁹ are independently selected from hydrogen and fluoro;

 R^{20} is selected from C_1 - C_{12} alkyl and substituted C_1 - C_{12} alkyl;

 R^{31} and R^{32} are independently selected from hydrogen, fluoro, C_1 - C_{12} alkyl, and substituted C_1 - C_{12} alkyl;

 R^{33} is selected from hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl, fluorinated C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl substituted with a protected hydroxyl group, and C_1 - C_{12} alkoxy;

 R^{34} , R^{35} , and R^{38} are independently selected from hydrogen, C_1 - C_{12} alkyl, and substituted C_1 - C_{12} alkyl;

 R^{39} is selected from hydrogen, C_1 - C_{12} alkyl, and C_1 - C_{12} haloalkyl; and R^{40} is C_1 - C_{12} alkyl or C_1 - C_{12} haloalkyl.

38. The fluoroalkanol-substituted α,β -unsaturated ester of claim 37, wherein:

R¹⁷ is selected from hydrogen and methyl;

R¹⁸ and R¹⁹ are hydrogen;

 R^{33} is selected from hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, and fluorinated hydroxyalkyl having the structure - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_6 aliphatic, R^8 is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^9 is fluorinated C_1 - C_8 alkyl;

 R^{34} , R^{35} , and R^{38} are independently selected from hydrogen and C_1 - C_8 alkyl; R^{39} is selected from hydrogen, C_1 - C_8 alkyl, fluorinated C_1 - C_8 alkyl, and carboxy; and R^{40} is C_1 - C_8 alkyl or fluorinated C_1 - C_8 alkyl.

39. The fluoroalkanol-substituted α,β -unsaturated ester of claim 30, wherein:

 R^{33} is selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, and $-(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_4 aliphatic, R^8 is selected from hydrogen, methyl,

trifluoromethyl, difluoromethyl, and fluoromethyl, and R⁹ is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl;

R³⁴, R³⁵, and R³⁸ are independently selected from hydrogen and C₁-C₄ alkyl;

 R^{39} is selected from hydrogen, C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl; and

 R^{40} is selected from C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl.

- 40. The fluoroalkanol-substituted α,β -unsaturated ester of claim 40, wherein R^{39} and R^{40} are both trifluoromethyl.
- 41. The fluoroalkanol-substituted α,β -unsaturated ester of claim 39, wherein one of R^{39} and R^{40} is methyl and the other is trifluoromethyl.
- 42. The fluoroalkanol-substituted α,β -unsaturated ester of claim 36, wherein R^{36} is hydrogen and R^{37} has the structure of formula (VI)

$$(VI) \qquad \qquad Q \qquad \qquad R^{18} \qquad \qquad R^{19} \qquad \qquad R^{19$$

43. The fluoroalkanol-substituted α,β -unsaturated ester of claim 36, wherein R^{36} has the structure of formula (VI)

and R³⁷ is hydrogen.

44. A fluoroalkanol-substituted α,β -unsaturated ester having the structure of formula

(IX) OH
$$R^{52}$$
 R^{53} R^{50} R^{51} R^{48} R^{46} R^{48} R^{46} R^{49} OH

wherein:

 R^{41} , R^{42} , R^{48} , R^{49} , R^{52} , and R^{53} are independently selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino, with the provisos that (a) at least one of R^{41} and R^{42} , (b) at least one of R^{48} and R^{49} , and (c) at least one of R^{51} and R^{52} is fluorinated; and

 R^{43} , R^{44} , R^{46} , R^{47} , R^{50} , and R^{51} are independently selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, and further wherein any two of R^{43} , R^{44} , R^{46} , R^{47} , R^{50} , and R^{51} may be taken together to form an alicyclic group, with the proviso that one of R^{45} and R^{46} is hydrogen, and the other has the structure of formula (VI)

wherein R^{17} is selected from hydrogen, fluoro, C_1 - C_4 alkyl, fluorinated C_1 - C_4 alkyl, - CH_2 -COOH, - CF_2 -COOH, - CF_2 - $COOR^{20}$, and - CF_2 - $COOR^{20}$, R^{18} is hydrogen or fluoro, R^{19} is hydrogen, fluoro, or -COOH, and R^{20} is a nonhydrogen substituent.

45. A method for synthesizing a fluorinated polyol having the structure of formula (IV)

(IV)
$$R^{13} \xrightarrow{R^{14}} R^{14}$$

$$R^{2} \xrightarrow{R^{6A}} R^{5}$$

wherein

 R^1 is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, and substituted C_1 - C_{24} alkoxy,

 R^2 , R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, and further wherein any two of R^1 , R^2 , R^3 , R^4 , and R^5 may be taken together to form an alicyclic group,

 R^{6A} is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino,

 R^{7A} is C_1 - C_{24} alkyl or substituted C_1 - C_{24} alkyl, and further wherein R^{6A} and R^{7A} may be taken together to form a ring, with the proviso that at least one of R^{6A} and R^{7A} is fluorinated, and

one of R¹³ and R¹⁴ is hydroxyl and the other is selected from hydrogen and hydroxyl, the method comprising admixing an alkene fluoroalkanol having the structure of formula (III)

(III)
$$\begin{array}{c}
R_{1}^{1} \\
R_{2}^{2} \\
R_{5}^{6A}
\end{array}$$

with a substituted or unsubstituted borane to provide a reaction mixture, and thereafter adding aqueous base and hydrogen peroxide to the reaction mixture.

- 46. The method of claim 45, wherein the borane has the structure BHR⁵⁴R⁵⁵ in which R^{54} and R^{55} are independently selected from hydrogen, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkoxy, substituted C_1 - C_{24} alkoxy, or wherein R^{54} and R^{55} may be taken together to form an alicyclic group.
- 47. The method of claim 46, wherein R^{54} and R^{55} are independently selected from hydrogen, chloro, C_1 - C_{12} alkyl, substituted C_1 - C_{12} alkoxy, and substituted C_1 - C_{12} alkoxy.
- 48. The method of claim 47, wherein the hydrogen peroxide is added to the reaction mixture following addition of the aqueous base.
 - 49. The method of claim 45, wherein:

garan (garan sa

 R^1 is selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, and - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_4 aliphatic, R^8 is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^9 is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl;

 R^2 is hydrogen or C_1 - C_4 alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_4 alkyl, and - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_4 aliphatic, R^{8A} is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^{9A} is selected from methyl,

trifluoromethyl, difluoromethyl, and fluoromethyl, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_5 - C_{12} alicyclic group;

 R^6 is selected from hydrogen, C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl; and

 R^7 is selected from C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl.

50. A method for synthesizing a fluoroalkanol-substituted α,β -unsaturated ester from a fluorinated polyol having the structure of formula (IV)

(IV)
$$R^{13} \xrightarrow{R^{14}} R^{14}$$

$$R^{13} \xrightarrow{R^{14}} R^{14}$$

$$R^{6A} \xrightarrow{R^{6}} R^{5}$$

wherein

 R^1 is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, and substituted C_1 - C_{24} alkoxy,

 R^2 , R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, and further wherein any two of R^1 , R^2 , R^3 , R^4 , and R^5 may be taken together to form an alicyclic group,

 R^{6A} is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino,

 R^{7A} is C_1 - C_{24} alkyl or substituted C_1 - C_{24} alkyl, and further wherein R^{6A} and R^{7A} may be taken together to form a ring, with the proviso that at least one of R^{6A} and R^{7A} is fluorinated, and

one of R¹³ and R¹⁴ is hydroxyl and the other is selected from hydrogen and hydroxyl, the method comprising:

contacting the fluorinated polyol with an acylation reagent selected from acyl chlorides of the formula $Cl-(CO)-CR^{17}=CR^{18}R^{19}$ and anhydrides of the formula $O[(CO)-CR^{17}=CR^{18}R^{19}]_2$ under reaction conditions effective to result in esterification of a hydroxyl group present at R^{13} , R^{14} , or at both R^{13} and R^{14} , to provide an -O-(CO)- $CR^{17}=CR^{18}R^{19}$ substituent, wherein R^{17} is selected from hydrogen, fluoro, C_1-C_4 alkyl, fluorinated C_1-C_4 alkyl, $-CH_2-COOH$, $-CF_2-COOH$, $-CH_2-COOR^{20}$, and $-CF_2-COOR^{20}$, R^{18} is hydrogen or fluoro, R^{19} is hydrogen, fluoro, or -COOH, and R^{20} is a nonhydrogen substituent.

- 51. The method of claim 50, wherein prior to admixture of the fluorinated polyol with the acylation reagent, the fluorinated polyol is treated with a deprotonating base.
 - 52. The method of claim 51, wherein:

 R^1 is selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, and - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_4 aliphatic, R^8 is selected from hydrogen, methyl,

garage and a

trifluoromethyl, difluoromethyl, and fluoromethyl, and R⁹ is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl;

R² is hydrogen or C₁-C₄ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_4 alkyl, and - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_4 aliphatic, R^{8A} is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^{9A} is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_5 - C_{12} alicyclic group;

 R^{6A} is selected from hydrogen, C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl; and

 R^{7A} is selected from C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl.

- 53. The method of claim 51, wherein the acylation reagent is an acyl chloride of the formula $Cl-(CO)-CR^{17}=CR^{18}R^{19}$.
- 54. The method of claim 53, wherein R^{17} is selected from hydrogen, fluoro, methyl, trifluoromethyl, -CH₂-COOH, and -CH₂-COOR²⁰, R^{18} and R^{19} are independently selected from hydrogen and fluoro, and R^{20} is selected from C_1 - C_{12} alkyl and substituted C_1 - C_{12} alkyl.
- 55. The method of claim 51, wherein the acylation reagent is an anhydride of the formula O[(CO)-CR¹⁷=CR¹⁸R¹⁹]₂.

- 56. The method of claim 55, wherein R^{17} is selected from hydrogen, fluoro, methyl, trifluoromethyl, -CH₂-COOH, and -CH₂-COOR²⁰, R^{18} and R^{19} are independently selected from hydrogen and fluoro, and R^{20} is selected from C_1 - C_{12} alkyl and substituted C_1 - C_{12} alkyl.
- 57. A method for synthesizing a fluoroalkanol-substituted α,β -unsaturated ester, comprising:
 - (a) synthesizing a fluorinated polyol having the structure of formula (IV)

(IV)
$$R^{13} \xrightarrow{R^{14}} R^{14}$$

$$R^{2} \xrightarrow{R^{6A}} R^{5}$$

$$R^{6A} \xrightarrow{R^{7A}} R^{7A}$$

wherein

 R^1 is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, and substituted C_1 - C_{24} alkoxy,

 R^2 , R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, and further wherein any two of R^1 , R^2 , R^3 , R^4 , and R^5 may be taken together to form a ring,

 R^{6A} is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino,

 R^{7A} is C_1 - C_{24} alkyl or substituted C_1 - C_{24} alkyl, with the proviso that at least one of R^{6A} and R^{7A} is fluorinated, and

one of R¹³ and R¹⁴ is hydroxyl and the other is selected from hydrogen and hydroxyl, by admixing an alkene fluoroalkanol having the structure of formula (III)

(III)
$$R^{1}$$

$$R^{2}$$

$$R^{6A}$$

$$R^{6A}$$

$$R^{7A}$$

with a substituted or unsubstituted borane to provide a reaction mixture, and thereafter adding aqueous base and hydrogen peroxide, to the reaction mixture; and

- (b) contacting the fluoroalkanol with an acylation reagent selected from acyl chlorides of the formula Cl-(CO)-CR¹⁷=CR¹⁸R¹⁹ and anhydrides of the formula O[(CO)-CR¹⁷=CR¹⁸R¹⁹]₂ under reaction conditions effective to result in esterification of a hydroxyl group present at R¹³, R¹⁴, or at both R¹³ and R¹⁴, to provide a -O-(CO)-CR¹⁷=CR¹⁸R¹⁹ substituent, wherein R¹⁷ is selected from hydrogen, fluoro, C₁-C₄ alkyl, fluorinated C₁-C₄ alkyl, -CH₂-COOH, -CF₂-COOH, -CH₂-COOR²⁰, and -CF₂-COOR²⁰, R¹⁸ is hydrogen or fluoro, R¹⁹ is hydrogen, fluoro, or -COOH, and R²⁰ is a nonhydrogen substituent.
- 58. The method of claim 57, further comprising isolating the fluoroalkanol prior to (b).

- 59. The method of claim 57, wherein the borane has the structure BHR⁵⁴R⁵⁵ in which R^{54} and R^{55} are independently selected from hydrogen, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, substituted C_1 - C_{24} alkoxy, or wherein R^{54} and R^{55} may be taken together to form an alicyclic group.
- 60. The method of claim 59, wherein R^{54} and R^{55} are independently selected from hydrogen, chloro, C_1 - C_{12} alkyl, substituted C_1 - C_{12} alkoxy, and substituted C_1 - C_{12} alkoxy.
- 61. The method of claim 60, wherein the hydrogen peroxide is added to the reaction mixture following addition of the aqueous base.
 - 62. The method of claim 57, wherein:

 R^1 is selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, and - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_4 aliphatic, R^8 is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^9 is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl;

R² is hydrogen or C₁-C₄ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_4 alkyl, and - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_4 aliphatic, R^{8A} is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^{9A} is selected from methyl,

trifluoromethyl, difluoromethyl, and fluoromethyl, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_5 - C_{12} alicyclic group;

 R^{6A} is selected from hydrogen, C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl; and

 R^{7A} is selected from C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl.

- 63. The method of claim 58, wherein following isolation of the fluoroalkanol and prior to admixture of the fluoroalkanol with the acylation reagent, the isolated fluoroalkanol is treated with a deprotonating base.
 - 64. The method of claim 63, wherein:

 R^1 is selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, and - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_4 aliphatic, R^8 is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^9 is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl;

 R^2 is hydrogen or C_1 - C_4 alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_4 alkyl, and - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_4 aliphatic, R^{8A} is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^{9A} is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and further wherein any two of R^1 , R^3 , R^4 , and R^5 may be taken together to form a C_5 - C_{12} alicyclic group;

 R^{6A} is selected from hydrogen, C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl; and

 R^{7A} is selected from C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl.

- 65. The method of claim 57, wherein the acylation reagent is acyl chloride of the formula $Cl-(CO)-CR^{17}=CR^{18}R^{19}$.
- 66. The method of claim 65, wherein R^{17} is selected from hydrogen, fluoro, methyl, trifluoromethyl, -CH₂-COOH, and -CH₂-COOR²⁰, R^{18} and R^{19} are independently selected from hydrogen and fluoro, and R^{20} is selected from C_1 - C_{12} alkyl and substituted C_1 - C_{12} alkyl.
- 67. The method of claim 57, wherein the acylation reagent is an anhydride of the formula O[(CO)-CR¹⁷=CR¹⁸R¹⁹]₂.
- 68. The method of claim 67, wherein R^{17} is selected from hydrogen, fluoro, methyl, trifluoromethyl, -CH₂-COOH, and -CH₂-COOR²⁰, R^{18} and R^{19} are independently selected from hydrogen and fluoro, and R^{20} is selected from C_1 - C_{12} alkyl and substituted C_1 - C_{12} alkyl.
- 69. A method for synthesizing a fluoroalkanol-substituted α , β -unsaturated ester, the method comprising:

- (a) contacting (i) an olefinic reactant directly substituted on an olefinic carbon atom with a substituted or unsubstituted methyl group with (ii) a fluorinated carbonyl compound under reaction conditions and for a time period effective to allow addition of the olefinic reactant to the carbonyl carbon of the fluorinated carbonyl compound, thereby providing an alkene fluoroalkanol;
- (b) hydroxylating the alkene functionality in the alkene fluoroalkanol by subjecting the alkene fluoroalkanol to a hydroboration reaction, thereby providing a saturated fluoroalkanol containing at least one additional hydroxyl group;
- (c) acylating the additional hydroxyl group by contacting the saturated fluoroalkanol with an acylation reagent selected from acyl chlorides and anhydrides under esterification conditions.
 - 70. A fluorinated polyol selected from the group consisting of:

$$OH$$
 CF_3
 OH
 CF_3
 OH
 CF_3
 OH
 CF_3

$$F_3$$
C OH CF_3

$$H_3CO$$
 CF_3
 CF_3
 CF_3

71. A fluoroalkanol-substituted α,β -unsaturated esters selected from the group consisting of

$$H_3CO$$
 CF_3
 CF_3
 CF_3

CF₃

$$H_3$$
CO CF_3 CF_3

and

72. A fluorinated polyol having the structure of formula (VIIA)

(VIIA)
$$R^{21} R^{22}$$
 $R^{23A} R^{24}$ $R^{25} R^{26A}$ wherein:

 R^{21} is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, and substituted C_1 - C_{24} alkoxy;

 R^{22} is selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, or may be taken together with R^{21} to form a ring;

one of R²³ and R²⁶ is hydrogen, and the other is hydroxyl;

 R^{24} and R^{25} are selected from hydrogen, C_1 - C_{24} alkyl and substituted C_1 - C_{24} alkyl, or may be taken together to form a ring;

 R^{27} is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino, and R^{30} is C_1 - C_{24} alkyl or substituted C_1 - C_{24} alkyl, with the proviso that at least one of R^{27} and R^{30} is fluorinated; and

 R^{28} and R^{29} are independently selected from hydrogen, fluoro, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, or may be taken together to form a ring.

73. A fluorinated polyol having the structure of formula (VIIIA)

(VIIIA)
$$R^{31}$$
 R^{32} R^{35} R^{36A} R^{39} R^{40} OH

wherein:

 R^{31} and R^{32} are independently selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino, with the proviso that at least one of R^{31} and R^{32} is fluorinated, and further wherein R^{31} and R^{32} may be taken together to form a fluorinated alicyclic group;

 R^{39} and R^{40} are independently selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino, with the proviso that at least one of R^{39} and R^{40} is fluorinated and further wherein R^{39} and R^{40} may be taken together to form an alicyclic group;

 R^{33} , R^{34} , R^{35} , R^{36} , R^{37} , and R^{38} are selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, and further wherein any two of R^{33} , R^{34} , R^{35} , R^{36} , R^{37} , and R^{38} may be taken together to form a ring, with the proviso that one of R^{36} and R^{37} is hydrogen, and the other is hydroxyl;

 R^{38} is selected from hydrogen, C_1 - C_{24} alkyl and substituted C_1 - C_{24} alkyl, or may be taken together with R^{35} to form an alicyclic group; and

 R^{39} is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino, and R^{40} is C_1 - C_{24} alkyl or substituted C_1 - C_{24} alkyl, with the proviso that at least one of R^{39} and R^{40} is fluorinated.

74. A fluorinated polyol having the structure of formula (IXA)

(IXA)
$$R^{52}$$
 R^{53} R^{50} R^{51} R^{48} R^{46A} R^{48} R^{46A} R^{49} OH

wherein:

 R^{41} , R^{42} , R^{48} , R^{49} , R^{52} , and R^{53} are independently selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino, with the provisos that (a) at least one of R^{41} and R^{42} , (b) at least one of R^{48} and R^{49} , and (c) at least one of R^{51} and R^{52} is fluorinated; and

 R^{43} , R^{44} , R^{46A} , R^{47} , R^{50} , and R^{51} are independently selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, and further wherein any two of R^{43} , R^{44} , R^{46A} , R^{47} , R^{50} ,

and R^{51} may be taken together to form an alicyclic group, with the proviso that one of R^{45A} and R^{46A} is hydrogen, and the other is hydroxyl.