รหัสวิชา 72 ความถนัดทางวิทยาศาสตร์ (PAT 2)

หมวดวิชา ฟิสิกส์

แบบปรนัย 4 ตัวเลือก เลือก 1 คำตอบที่ถูกต้องที่สุด จำนวน 29 ข้อ

ค่าคงตัวต่าง ๆ ต่อไปนี้ใช้ประกอบการคำนวณในข้อที่เกี่ยวข้อง

$$g = 9.8 \text{ m/s}^2$$
 $c = 1.6 \times 10^{-19} \text{ C}$ $h = 6.6 \times 10^{-34} \text{ J} \cdot \text{s}$ $G = 6.67 \times 10^{-11} \text{ m}^3 \left(\text{kg} \cdot \text{s}^2 \right)$ $e = 3.0 \times 10^8 \text{ m/s}$ $\pi = 3.14$ $k_B = 1.38 \times 10^{-23} \text{ J/K}$ $R = 8.31 \text{ J/(mol} \cdot \text{K)}$ $\sqrt{2} = 1.414$ $\sqrt{3} = 1.732$ $\sqrt{5} = 2.236$ $\sqrt{7} = 2.646$ $\ln 2 = 0.693$ $\log 2 = 0.3010$ $\ln 3 = 1.099$ $\log 3 = 0.477$ $\log 5 = 1.609$

ข้อ 1. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

รถยนต์ 2 คันแล่นอยู่บนถนนตรงในทิศทางเดียวกัน ถ้าระยะห่างระหว่างรถสองคันนี้เพิ่มขึ้น ในอัตราเร็วคงที่ ข้อใดถูก

- 1) รถทั้งสองคันมีความเร็วคงตัวเท่ากัน
- 2) รถคันหน้ามีความเร่งคงตัว แต่รถคันหลังมีความเร็วคงตัว
- 3) รถทั้งสองคันมีความเร่งคงตัวเท่ากัน และมีความเร็วต้นเท่ากัน
- 4) รถคันหน้ามีความเร็วคงตัว แต่รถคันหลังมีความเร็วลดลงอย่างสม่ำเสมอ
- 5) รถทั้งสองคันมีความเร่งคงตัวเท่ากัน แต่รถคันหน้ามีความเร็วเริ่มต้นมากกว่ารถคันหลัง

ข้อ 2.[ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

รถยนต์คันหนึ่งเคลื่อนที่เป็นระยะทาง $60~{\rm km}$ ด้วยอัตราเร็วเฉลี่ย $40~{\rm km/hr}$ และเคลื่อนที่อีก $100~{\rm km}$ ด้วยอัตราเร็วเฉลี่ย $100~{\rm km/hr}$ อัตราเร็วเฉลี่ยของรถยนต์คันนี้เมื่อเคลื่อนที่เป็นระยะ ทาง $160~{\rm km}$ เท่ากับกี่กิโลเมตร / ชั่วโมง

,	1)	40		2)	64		3)	70
---	----	----	--	----	----	--	----	----

ข้อ 3. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

พิจารณาการเคลื่อนที่แบบโพรเจกไทล์ของวัตถุ ดังรูป

ข้อใดกล่าวถูกต้องเกี่ยวกับวัตถุที่ตำแหน่ง A (ไม่คิดแรงต้านอากาศ)

- 1) ความเร็วและความเร่งเท่ากับศูนย์
- 2) มีความเร็วและความเร่งในแนวดิ่ง
- 3) ความเร็วเท่ากับศูนย์ แต่ความเร่งไม่เท่ากับศูนย์
- 4) มีความเร็วในแนวระดับ แต่ความเร่งเท่ากับศูนย์
- 5) มีความเร็วในแนวระดับ แต่ความเร่งมีทิศชี้ลงในแนวดิ่ง

ข้อ 4.[ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

วัตถุก้อนหนึ่งวางอยู่บนพื้นระดับที่ไม่มีความเสียดทาน เมื่อออกแรงคงตัว F กระทำต่อวัตถุ ในแนวขนานกับพื้นข้อใดถูก

- 1) วัตถุจะเคลื่อนที่ด้วยความเร็วคงตัว
- 2) วัตถุจะมีความเร่งเสมอแม้เมื่อหยุดให้แรง F
- 3) วัตถุจะเริ่มเคลื่อนที่เมื่อแรง F มากกว่าน้ำหนักของวัตถุ
- 4) วัตถุจะมีความเร่งตราบเท่าที่ยังให้แรง F กระทำกับวัตถุ
- 5) วัตถุจะมีความเร่งในขณะที่เปลี่ยนจากหยุดนิ่งเป็นเคลื่อนที่เท่านั้น

ข้อ 5. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

ก้องมีมวล 70 กิโลกรัม แก้วมีมวล 50 กิโลกรัม เริ่มต้นทั้งสองคนต่างอยู่นิ่งและจับอยู่ที่ปลาย เชือกเบาแต่ละด้านซึ่งยาว 5 เมตร ก้องออกแรงคงตัวสาวเชือกเข้าหาตัวเองจนทั้งสองพบกันใน ที่สุด ถ้าทั้งสองอยู่บนพื้นที่ลื่นมาก ๆ ข้อใดถูก

- 1) ก้องมีขนาดความเร่งน้อยกว่าแก้ว
- 2) แก้วเป็นฝ่ายเคลื่อนที่เข้าหาก้องซึ่งอยู่นิ่ง
- 3) ทั้งสองพบกันด้วยขนาดความเร็วที่เท่ากัน
- 4) งานเนื่องจากแรงดึงเชือกของทั้งสองคนเท่ากัน
- 5) มีการอนุรักษ์โมเมนตัมและพลังงานจลน์ของทั้งสองคน

ข้อ 6. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

วัตถ 2 ก้อนเกิดการชนกันใน 1 มิติโดยมีปริมาณต่าง ๆ เป็นดังตาราง

	·	
มวล	ความเร็วก่อนชน	ความเร็วหลังชน
ก้อนที่หนึ่ง 2 kg	3 m/s ไปทางขาว	2 m/s ไปทางขาว
ก้อนที่หนึ่ง 4 kg	1.5 m/s ไปทางขาว	2 m/s ไปทางขาว

การชมนี้เป็นแบบใด

1)	. 9
1	การระเบด

- 2) การชนแบบยืดหยุ่น
- 3) การชนแบบยืดหยุ่นสมบูรณ์
- 4) การชนแบบไม่ยืดหยุ่น
- 5) การชนแบบไม่ยืดหยุ่นสมบูรณ์

ข้อ 7. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

วัตถุมวล 1 กิโลกรัมเคลื่อนที่เข้าชนสปริงที่วางตัวในแนวระดับบนพื้นลื่น ทำให้สปริงหดเป็น ระยะ 0.1 เมตร จากนั้นแรงสปริงจะดีดวัตถุให้กลับออกไป พบว่าวัตถุมีอัตราเร็ว 1 เมตร / วินาที ณ ตำแหน่งที่สปริงไม่ยืดไม่หดค่าคงตัวของสปริงตัวนี้เป็นกี่นิวตัน / เมตร

1) 5

2) 50

3) 98

4) 100

5) 196

ข้อ8.[ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

สำหรับวัตถุที่เคลื่อนที่แบบวงกลมด้วยอัตราเร็วคงตัว ถ้ามวลเพิ่มเป็น 2 เท่า แต่อัตราเร็วลดเหลือ ครึ่งหนึ่ง แรงสู่ศูนย์กลางจะเปลี่ยนแปลงอย่างไร

1) เท่าเดิม

- 2) ลดลงครึ่งหนึ่ง
- 3) ลดเหลือหนึ่งในสิ่

- 4) เพิ่มเป็น 2 เท่า
- 5) เพิ่มเป็น 4 เท่า

ข้อ 9. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

วัตถุมวล 2 กิโลกรัม วางนิ่งอยู่บนพื้นระดับที่ไม่มีความเสียดทาน ออกแรงคงตัวขนาด 4 นิวตัน กระทำกับวัตถุทำให้เคลื่อนที่เป็นระยะทาง 5 เมตร ข้อใดถูก

- 1) วัตถุเคลื่อนที่ด้วยความเร่งโดยมีพลังงานจลน์เพิ่มขึ้น 20 จูล
- 2) วัตถุเคลื่อนที่ด้วยความเร่งโดยมีพลังงานจลน์เพิ่มขึ้น 40 จูล
- 3) วัตถุเคลื่อนที่ด้วยความเร็วคงตัวโดยมีพลังงานจลน์เพิ่มขึ้น 20 จูล
- 4) วัตถุเคลื่อนที่ด้วยความเร็วคงตัวโดยมีพลังงานจลน์เพิ่มขึ้น 40 จูล
- 5) วัตถุเคลื่อนที่ด้วยความเร็วคงตัวโดยมีพลังงานจลน์คงตัว 20 จูล

ข้อ10. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

นักเรียนคนที่หนึ่งวิ่งด้วยอัตราเร็วค่าหนึ่งไถลตัวลงบนพื้นฝืดและหยุดเมื่อไถลไปเป็นระยะทาง ${f d}$ โดยงานเนื่องจากแรงเสียดทานเท่ากับ ${f W}$ นักเรียนคนที่สองมีมวลเท่ากับคนแรกวิ่งมาด้วยอัตราเร็ว เท่ากันไถลไปบนพื้นฝืดเช่นเดียวกันแต่หยุด เมื่อไถลไปได้ ${f d}/2$ งานเนื่องจากแรงเสียดทานในกรณีของนักเรียนคนที่สองเป็นเท่าใด

1) W

2) W/2

3) W/4

4) 2W

5) 4W

ข้อ 11. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

อัตราเร็วเสียงในตัวกลางชนิดหนึ่งเท่ากับ 2×10^3 เมตร / วินาที ถ้าความสัมพันธ์ระหว่างการกระจัด ของตัวกลาง (ไมโครเมตร) และเวลา (มิลลิวินาที) เป็นดังรูป

คลื่นในตัวกลางนี้มีความยาวคลื่นกี่เมตร

1) 2

2) 4

3) 1000

4) 2000

5) 4000

ข้อ 12. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

พิจารณาการกลิ้งโดยไม่ไถลของวงแหวนบางและทรงกระบอกตันบนพื้นระดับที่ไม่มีความเสียดทาน ถ้าทั้งสองมีมวล รัศมี และพลังงานจลน์เท่ากัน ข้อใดถูก

- 1) วงแหวนบางมีอัตราเร็วเชิงมุมมากกว่า
- 2) ทรงกระบอกตันมีอัตราเร็วเชิงมุมมากกว่า
- 3) ทั้งสองมีอัตราเร็วเชิงมุมเท่ากัน
- 4) ทั้งสองมีอัตราเร็วเชิงเส้นเท่ากัน
- 5) ทั้งสองมีอัตราเร็วเชิงมุมเท่ากัน แต่อัตราเร็วเชิงเส้นไม่เท่ากัน

ข้อ 13. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

เมื่อสังเกตคลื่นตามขวางขบวนหนึ่งพบว่ามีคลื่น 3 ลูกในช่วงความยาว 3 เมตร โดยคลื่นแต่ละลูก ใช้เวลาในการเคลื่อนที่ผ่านช่วงความยาวนี้ 0.15 วินาที อนุภาคบนคลื่นจะเปลี่ยนจากสันคลื่น เป็นท้องคลื่นที่อยู่ติดกันในเวลากี่วินาที

1) 0.013

2) 0.025

3) 0.038

4) 0.050

5) 0.075

ข้อ 14. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

เมื่อเราเดินเข้าหากระจกโค้งเว้าครึ่งทรงกลมจากระยะไกลมาก เราจะเห็นการเปลี่ยนแปลงของภาพ เราเป็นลำดับอย่างไร

ก. จดภาพ

- ข. ภาพขนาดใหญ่ หัวกลับ
- ค. ภาพขนาดใหญ่ หัวตั้ง
- ง. ภาพขนาดเล็ก หัวกลับ
- จ. ภาพขนาดเล็ก หัวตั้ง
- ฉ. ภาพขนาดเท่าตัวเรา หัวกลับ
- ช. ภาพขนาดเท่าตัวเรา หัวตั้ง
- $1) \qquad n \rightarrow a \rightarrow v \rightarrow p \rightarrow v \rightarrow v$
- $2) \quad n \to v \to P \to v \to v \to v$
- 3) $n \rightarrow p \rightarrow v \rightarrow v \rightarrow a \rightarrow v$
- 4) $n \rightarrow v \rightarrow v \rightarrow v \rightarrow v \rightarrow e$
- 5) $n \rightarrow v \rightarrow a \rightarrow v \rightarrow p \rightarrow v$

ข้อ 15. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

คนตาบอดสีน้ำเงิน จะเห็นไฟสัญญาณจราจรสีใดเพี้ยน

- 1) สีแดงเท่านั้น
- 2) สีเหลืองเท่านั้น
- 3) สีเขียวเท่านั้น

- 4) สีแดงและสีเหลือง
- 5) ไม่มีสีใดเพี้ยน

ข้อ16. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

เหตุใดพนักงานการไฟฟ้าที่จะขึ้นไปนั่งทำงานอยู่บนสายไฟเปลือยซึ่งมีแรงดันไฟฟ้าสูง 220 kV ซึ่งพาดอยู่บนเสาส่งไฟฟ้าแรงสูง จำเป็นต้องสวมชุดที่ทอจากลวดโลหะ (ชุดดังกล่าวจะต้องป้องกันทุกส่วนของร่างกายไม่ให้สัมผัสกับสายไฟ)

- 1) เพื่อให้ประจุไฟฟ้าไม่ไหลเข้าสู่ร่างกาย
- 2) เพื่อให้ชุดมีความแข็งแรง ไม่ขาดง่ายจากการสปาร์คของไฟ
- 3) เพื่อให้กระแสไฟฟ้าไหลผ่านร่างกายโดยสะดวก เพราะชุดดังกล่าวมีความต้านทานต่ำมาก
- 4) เพื่อให้เกิดการเหนี่ยวนำทางไฟฟ้าซึ่งจะทำให้ชุดดังกล่าวมีความต้านทานทางไฟฟ้าสูงมาก
- 5) เพื่อให้ความต่างศักย์ระหว่างมือทั้งสองข้างเท่ากับแรงดันไฟฟ้าของสายส่งจึงจะทำให้ไม่เกิด กระแสไฟฟ้าไหลเข้าร่างกาย

ข้อ 17. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

ลวดโลหะสองเส้นทำจากวัสดุเดียวกัน แต่เส้นหนึ่งมีความต้านทานเป็นสองเท่าของอีกเส้นหนึ่ง เมื่อนำลวดทั้งสองไปต่อกับเซลล์ไฟฟ้าเหมือนกัน ปริมาณใดในลวดทั้งสองที่เท่ากัน

1) กระแสไฟฟ้า

- 2) อัตราเร็วลอยเลื่อน
- 3) ความหนาแน่นพาหะ
- 4) อัตราส่วนความยาวต่อพื้นที่หน้าตัด
- 5) ปริมาณประจุลบที่เคลื่อนที่ผ่านพื้นที่หน้าตัดต่อหนึ่งหน่วยเวลา

ข้อ 18. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

วงจรไฟฟ้าหนึ่งมีตัวต้านทาน $1\,\mathrm{k}\Omega$ ต่อกันแหล่งจ่ายไฟ $1\,\mathrm{V}$ ถ้าเรานำแอมมิเตอร์ที่มีความต้านทาน ภายในรวมทั้งสิ้น $100\,\Omega$ วัดกระแสไฟฟ้าในวงจรนี้ แอมมิเตอร์จะอ่านกระแสไฟฟ้าได้กี่ มิลลิแคมแปร์

1) 0.5

2) 0.9

3) 1.0

4) 1.1

5) 2.0

ข้อ 19. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

ข้อใดกล่าวถูกต้องเกี่ยวกับตัวเก็บประจุที่ต่ออยู่กับแหล่งกำเนิดไฟฟ้ากระแสสลับที่ความถี่หนึ่ง ๆ และตัวเก็บประจุกำลังทำงานในสภาพที่เป็นปกติ

- 1) ค่าความจุมีค่าคงตัว
- 2) ความต่างศักย์ตกคร่อมตัวเก็บประจุมีค่าคงตัว
- 3) กระแสไฟฟ้าที่ไหลผ่านตัวเก็บประจุมีค่าคงตัว
- 4) ประจุไฟฟ้ากระโดดข้ามช่องว่างภายในตัวเก็บประจุ เกิดเป็นกระแสไฟฟ้า
- 5) ความต่างศักย์ตกคร่อมตัวเก็บประจุกระแสไฟฟ้าที่ผ่านตัวเก็บประจุมีเฟสต่างกัน $180\,$ องศา

ข้อ 20. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

คลื่นแม่เหล็กไฟฟ้าหนึ่งกำลังแผ่ไปทางทิศตะวันออกโดยที่ตำแหน่งหนึ่งมีสนามไฟฟ้าพุ่งไปใน ทิศเหนือ ที่ตำแหน่งดังกล่าว ณ เวลานั้นทิศของสนามแม่เหล็กเป็นอย่างไร

1) พุ่งขึ้น

2) พุ่งลง

3) ชี้ไปทางทิศใต้

4) ชี้ไปทางทิศตะวันตก

5) ชี้ไปทางทิศตะวันออก

ข้อ 21. เ ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560 1

หลอดไพทอทที่ติดอย่บนลำตัวเครื่องบินมีลักษณะเป็นท่อปลายแหลม ใช้วัดอัตราเร็วของอากาศ เทียบกับเครื่องบิน หลอดดังกล่าวประกอบด้วยท่อทรงกระบอกสองอันซ้อนกัน โดยปลายด้านหน้า เชื่อมติดกันเป็นปลายแหลมและเจาะรุที่ทรงกระบอกนอกดังรูป เมื่อเครื่องบินเคลื่อนที่ อากาศจะไหล เข้าปะทะปลายท่อและเบนออกไปด้านข้างผ่านรูปที่เจาะไว้ (แต่ไม่ได้เข้าไปในรู) ดังนั้น อากาศที่ บริเวณ \mathbf{P}_1 และ \mathbf{P}_2 จึงเป็นอากาศที่นิ่งแต่มีค่าแตกต่างกัน ที่ปลายทรงกระบอกตัวในติดตั้งตัววัดผล ต่างความดันไว้ซึ่งใช้คำนวณหาอัตราเร็วของอากาศ

สมการข้อใดเขียนได้ถูกต้อง กำหนดให้ P_1 และ P_2 เป็นความดันของทั้งสองบริเวณ ho เป็นความ หนาแน่นอากาศ \mathbf{v} เป็นอัตราเร็วของอากาศเทียบกับท่อไพทอท และ \mathbf{h} เป็นระดับความสูงเครื่องบินเทียบ ก้าเระดับบ้ำทะเล

1)
$$P_1 - P_2 = \frac{1}{2}\rho v^2$$
 2) $P_2 - P_1 = \frac{1}{2}\rho v^2$ 3) $P_1 - P_2 = \frac{1}{2}\rho v^2 + \rho gh$ 4) $P_2 - P_1 = \frac{1}{2}\rho v^2 + \rho gh$ 5) ไม่มีข้อใดถูกต้อง

ข้อ 22. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

กฎข้อที่ 1 ของอุณหภูมิพลศาสตร์คือ $Q = \Delta U + W$ ค่า $Q, \Delta U, W$ ของก๊าซที่อยู่เหนือของเหลว ในขวดโซดาแช่เย็นเมื่อฝาถูกเปิดออกอย่างรวดเร็ว จะเป็นเช่นใด

1)
$$Q = 0$$
, $\Delta U > 0$ $W < 0$ 2) $Q = 0$, $\Delta U < 0$ $W > 0$

5)
$$Q < 0$$
, $\Delta U < 0$ $W = 0$

ข้อ 23. Γ ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560 Γ

เหตุใดกล้องจุลทรรศน์อิเล็กตรอนจึงมีกำลังขยายสูงกว่ากล้องจุลทรรศน์แบบทั่วไปที่ใช้แสง

- 1) เพราะใช้อิเล็กตรอนที่มีโมเมนตัมสูงกว่าแสง
- 2) เพราะใช้อิเล็กตรอนที่มีความสว่างมากกว่าแสง
- เพราะใช้อิเล็กตรอนที่มีความยาวคลื่นที่สั้นกว่าแสง
- 4) เพราะใช้อิเล็กตรอนที่มีสมบัติเชิงควอนตัมมากกว่าแสง
- เพราะใช้อิเล็กตรอนที่ให้สมบัติการแทรกสอดและเลี้ยวเบนเช่นเดียวกับแสง 5)

ข้อ 24. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

ในการทดลองเพื่อศึกษาปรากฏการณ์โฟโตอิเล็กทริก ความต่างศักย์ระหว่างขั้วแอโนดและแคโทด จะถูกปรับ เพื่อนำไปสู่การทราบค่าของปริมาณใด

- 1) ความถี่ต่ำสุดของแสงที่จะทำให้เกิดโฟโตอิเล็กตรอน
- 2) ความถี่สูงสุดของแสงที่จะทำให้เกิดโฟโตอิเล็กตรอน
- 3) กระแสไฟฟ้าที่ไหลในหลอดโฟโตอิเล็กทริก
- 4) พลังงานจลน์ต่ำสุดของโฟโตอิเล็กตรอน
- 5) พลังงานจลน์สูงสุดของโฟโตอิเล็กตรอน

ข้อ 25.[ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

นักเรียนคนหนึ่งวัดความยาวด้านของสามเหลี่ยมรูปหนึ่งโดยใช้เครื่องมือวัดที่ต่างกันได้ผลดังนี้ 12.30 cm 4.567 cm และ 8.901 cm

เขาควรบันทึกความยาวรอบรูปของสามเหลี่ยมรูปนี้อย่างไรตามหลักเลขนัยสำคัญ

1) 26 cm

2) 25.8 cm

(3) 26.0 cm

- 4) 25.77 cm
- 5) 25.768 cm

ข้อ 26. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

ข้อใดถูกเกี่ยวกับภาพถ่ายเอกซเรย์ของกระดูกซี่โครง

- 1) เกิดจากการกระเจิงของรังสีเอกซ์
- 2) เกิดจากการหักเหของรังสีเอกซ์ผ่านกระดูกซี่โครง
- 3) เกิดจากการแทรกสอดของรังสีเอกซ์ผ่านกระดูกซี่โครง
- 4) เกิดจากการขวางกั้นรังสีเอกซ์โดยกระดูกซี่โครง คล้ายกับการเกิดเงา
- 5) เกิดจากการเลี้ยวเบนของรังสีเอกซ์โดยกระดูกซี่โครงทำหน้าที่เป็นเกรตติง

ข้อ 27. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

อนุภาคประจุไฟฟ้าบวก 2 อนุภาค อยู่ในสนามไฟฟ้าสม่ำเสมอ ดังรูป

ทิศของแรงไฟฟ้าที่กระทำต่ออนุภาคทางด้านซ้ายมือน่าจะเป็นเช่นดัน

1) 1

2) ↓

3) ∠

4)

5) -

ข้อ 28.[ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

วัตถุทรงกลมลูกหนึ่ง เมื่อนำไปลอยในน้ำ พบว่า จมลงไป 50% ของปริมาตรวัตถุ แต่เมื่อนำไปลอยในของเหลวชนิดหนึ่ง พบว่า จมลงไป 40% ของปริมาตรวัตถุ ความหนาแน่นของ ของเหลวนี้เป็นกี่กิโลกรัม / ลูกบาศก์เมตร

1) 500

2) 625

3) 833

4) 1000

5) 1250

ข้อ 29. [ข้อสอบเข้ามหาวิทยาลัย / PAT 2 มี.ค. 2560]

มะลิกำลังเล่นชิงช้าอยู่ในสนามเด็กเล่น ในจังหวัดที่ชิงช้าอยู่ที่ตำแหน่ง**ต่ำสุด** (อยู่ในแนวดิ่งพอดี)
ความเร่งของมะลิมีทิศอย่างไร

- 1) ชี้ไปข้างหน้า
- 2) ชี้ไปข้างหลัง
- 3) ชี้ขึ้นด้านบน

- 4) ชี้ลงด้านล่าง
- 5) ไม่มีความเร่งจึงไม่มีทิศ

เฉลยข้อสอบ PAT 2

ข้อ 1.เฉลยข้อ 5

รถยนต์ 2 คันแล่นอยู่บนถนนตรงในทิศทางเดียวกัน ถ้าระยะห่างระหว่างรถสองคันนี้เพิ่มขึ้น ในอัตราเร็วคงที่ ข้อใดถก

∴ จะได้
$$\frac{\Delta s}{t} = \Delta u$$
 คันหน้าความเร็วต้นมากกว่าคันหลัง Δu ค่า Δs ผล $u_1 > u_2$ บวก ระยะห่างเพิ่มขึ้นสม่ำเสมอ $u_1 = u_2$ ศูนย์ ระยะห่างเท่าเดิมตลอด $u_1 < u_2$ ลบ ระยะห่างลดลงสม่ำเสมอ

ข้อ 2.เฉลยข้อ 2

รถยนต์คันหนึ่งเคลื่อนที่เป็นระยะทาง $60~{
m km}$ ด้วยอัตราเร็วเฉลี่ย $40~{
m km/hr}$ และเคลื่อนที่อีก $100~{
m km}$ ด้วยอัตราเร็วเฉลี่ย $100~{
m km/hr}$ อัตราเร็วเฉลี่ยของรถยนต์คันนี้เมื่อเคลื่อนที่เป็นระยะ ทาง $160~{
m km}$ เท่ากับกี่กิโลเมตร / ชั่วโมง

$$V = \frac{S_1 + S_2}{\frac{S_1}{V_1} + \frac{S_2}{V_1}} = \frac{60 + 100}{\frac{60}{40} + \frac{100}{100}} = \frac{160}{2.5} = 64$$

ข้อ 3.เฉลยข้อ 5

1.1 แรงและความเร่ง โพรเจคไทล์มีแรงกระทำคงที่คือ น้ำหนัก mg แรงมีทิศลงในแนวดิ่ง โพรเจคไทล์มีความเร่งคงที่ คือ $g=10~\text{m/s}^2$ ความเร่งมีทิศลงในแนวดิ่ง 1.2 ความเร็ว แนวดิ่ง ความเร็วเปลี่ยนทุกๆวินาที = g=10~m/s ขณะเคลื่อนที่ขึ้น ความเร็วจะลดลงวินาทีละ 10 m/s ขณะเคลื่อนที่ลง ความเร็วจะเพิ่มขึ้นวินาทีละ 10 m/s ที่จุดสูงสุด ความเร็วแนวดิ่ง $\mathbf{v}_y=\mathbf{o}$

แนวราบ ความเร็วคงที่ ${f u}_x$ เท่ากันทุกขณะเวลา เพราะไม่มีแรงแนวราบกระทำ ความเร็วโพรเจคไตล์ขณะใดๆ เป็นความเร็วลัพธ์ของความเร็วแนวราบกับแนวดิ่ง ความเร็วโพรเจคไตล์ที่จุดสูงสุด แนวดิ่ง ${f v}_y={f o}$ ความเร็วโพรเจคไตล์ที่จุดสูงสุด ${f u}_x={f v}_x$ ความเร็วแนวราบ

ตัวเลือกข้อ 1) ความเร็วและความเร่งเท่ากับศูนย์

ผิดที่จุดสูงสุดความเร็วในแนวราบไม่เป็นศูนย์แต่แนวดิ่งเป็นศูนย์ และความเร่งไม่เป็นศุนย์ **ตัวเลือกข้อ** 2) มีความเร็วและความเร่งในแนวดิ่ง

ผิดที่จุดสูงสุดความเร็วในแนวราบดิ่งเป็นศูนย์ ความเร่งไม่เป็นศูนย์

ตัวเลือกข้อ 3) ความเร็วเท่ากับศูนย์ แต่ความเร่งไม่เท่ากับศูนย์

ผิดที่จุดสูงสุดความเร็วในแนวราบไม่เป็นศูนย์แต่แนวดิ่งเป็นศูนย์ และความเร่งไม่เป็นศุนย์

ตัวเลือกข้อ 4) มีความเร็วในแนวระดับ แต่ความเร่งเท่ากับศูนย์

ผิดที่จุดสูงสุดความเร็วในแนวราบไม่เป็นศูนย์แต่แนวดิ่งเป็นศูนย์ และความเร่งไม่เป็นศุนย์

ตัวเลือกข้อ 5) มีความเร็วในแนวระดับ แต่ความเร่งมีทิศขึ้นชี้ลงในแนวดิ่ง ถูก

ข้อ 4.เฉลยข้อ 4

ตัวเลือกข้อ 1) วัตถุจะเคลื่อนที่ด้วยความเร็วคงตัว

ผิด ความเร็วคงตัวความเร่งเป็นศูนย์แปลว่าไม่มีแรงมากระทำต่อวัตถุ

ตัวเลือกข้อ 2) วัตถุจะมีความเร่งเสมอแม้เมื่อหยุดให้แรง F

ผิด ถ้าไม่ออกแรงกระทำวัตถุจะไม่มีความเร่ง

ตัวเลือกข้อ 3) วัตถุจะเริ่มเคลื่อนที่เมื่อแรง F มากกว่าน้ำหนักของวัตถุ

ผิด วัตถุวางอยู่บนพื้นระดับที่ไม่มีความเสียดทานน้ำหนักของวัตถุไม่ส่งผล ต่อแรงที่กระทำ

ตัวเลือกข้อ 4) วัตถุจะมีความเร่งตราบเท่าที่ยังให้แรง $\, F \,$ กระทำกับวัตถุ

ถูก ตามกฎข้อที่ 2 ของนิวตัน

ตัวเลือกข้อ 5) วัตถุจะมีความเร่งในขณะที่เปลี่ยนจากหยุดนิ่งเป็นเคลื่อนที่เท่านั้น

ผิด วัตถุจะมีความเร่งเสมอเมื่อมีแรงมากระต่อวัตถุให้เคลื่อนที่

ตามกฎข้อที่ 2 ของนิวตัน

ข้อ 5.เฉลยข้อ 1

ก้องมีมวล 70 กิโลกรัม แก้วมีมวล 50 กิโลกรัม เริ่มต้นทั้งสองคนต่างอยู่นิ่งและจับอยู่ที่ปลาย เชือกเบาแต่ละด้านซึ่งยาว 5 เมตร ก้องออกแรงคงตัวสาวเชือกเข้าหาตัวเองจนทั้งสองพบกันใน ที่สุด ถ้าทั้งสองอยู่บนพื้นที่ลื่นมาก ๆ ข้อใดถูก

เมื่อก้องดึงเชือกจะทำให้เกิดแรงตึงเชือกดึงก้องคือ $F_{_1}$ และเกิดแรงตึงเชือก ดึงแก้วด้วยคือ $F_{_2}$ ซึ่งเป็นแรงตึงในเชือกเส้นเดียวกัน ดังนั้น $F_{_1}=F_{_2}$ เมื่อมีแรงต้องมีความเร่งจาก

$$F=ma$$

$$a=rac{F}{m}$$
 แรง F ที่ดึงก้องและแก้วเท่านั้น $\left(F_{1}=F_{2}
ight)$ \therefore a $lpha$ $rac{1}{m}$ ก้องมวลมากดังนั้น ความเร่งน้อย

.. ก้องมีความเร่งน้อยกว่าแก้ว

ตัวเลือกข้อ 1) ก้องมีขนาดความเร่งน้อยกว่าแก้ว

ถูกเพราะก้องมีมวลมากกว่าทำให้เคลื่อนที่ช้ากว่าจึงมีความเร่งน้อย

ตัวเลือกข้อ 2) แก้วเป็นฝ่ายเคลื่อนที่เข้าหาก้องซึ่งอยู่นิ่ง

ผิด ต่างคนต่างเคลื่อนที่เข้าหากันโดยแก้วจะเคลื่อนที่มาได้ระยะมากกว่าแก้ว

ตัวเลือกข้อ 3) ทั้งสองพบกันด้วยขนาดความเร็วที่เท่ากัน

ผิด ทั้งสองคนพบกันด้วยขนาดความเร็วที่ต่างกันเพราะมวลไม่เท่ากัน

ตัวเลือกข้อ 4) งานเนื่องจากแรงดึงเชือกของทั้งสองคนเท่ากัน

ผิด งานเนื่องจากแรงดึงเชือกของทั้งสองคนไม่เท่ากันเพราะระยะการเคคลื่อนที่ทั้งสองคนไม่เท่ากัน **ตัวเลือกข้อ** 5) มีการอนุรักษ์โมเมนตัมและพลังงานจลน์ของทั้งสองคน

ผิด มีการอนุรักษ์โมเมนตัมตามกฎอนุรักษ์โมเมนตัม แต่พลังงานจลน์รวมก่อนและหลังไม่เท่ากัน

ข้อ 6.เฉลยข้อ 4

การชน (Collision) ในโมเมนตัมจะแยกพิจารณาเป็น 3 กรณี ดังนี้

- 1. ชนแบบยืดหยุ่นโดยสมบูรณ์ การชนแบบนี้จะต้องมี
 - ก. โมเมนตัมรวมคงที่ คือ ΣP ก่อนชน = ΣP หลังชน
 - ข. พลังงานจลน์รวมคงที่ คือ ΣE_{κ} ก่อนชน = ΣE_{κ} หลังชน
- 2. **ชนแบบไม่ยืดหยุ่น** การชนแบบนี้จะต้องมี
 - ก. โมเมนตัมรวมคงที่ คือ ΣP ก่อนชน = ΣP หลังชน
- แต่ ข. พลังงานจลน์รวมไม่คงที่ โดย ΣE_{κ} ก่อนชน > ΣE_{κ} หลังชน
- 3. ชนแบบระเบิด การชนแบบนี้จะต้องมี
 - ก. โมเมนตัมรวมคงที่ คือ ΣP ก่อนชน = ΣP หลังชน

แต่ ข. พลังงานจลน์รวมไม่คงที่ โดย ΣE_K ก่อนชน $< \Sigma E_K$ หลังชน การชนแบบยืดหยุ่น (สมบูรณ์) หมายถึง การชนที่ไม่มีการสูญเสียพลังงานจลน์ของระบบ การชนแบบไม่ยืดหยุ่น หมายถึง การชนที่มีการสูญเสียพลังงานจลน์ของระบบ การชนแบบไม่ยืดหยุ่นสมบูรณ์ หมายถึง การชนแบบไม่ยืดหยุ่นที่มีการสูญเสียพลังงานจลน์มาก ซึ่งเป็น การชนที่ภายหลังชนวัตถุติดไปด้วยกัน

หมายเหตุ การชนทุกแบบถ้าไม่มีแรงลัพธ์ภายนอก จะเป็นไปตามกฎอนุรักษ์โมเมนตัมเสมอไม่ว่าจะชนแบบ ยืดหย่นหรือไม่

วัตถ 2 ก้อนเกิดการชนกันใน 1 มิติโดยมีปริมาณต่าง ๆ เป็นดังตาราง

มวล	ความเร็วก่อนชน	ความเร็วหลังชน
ก้อนที่หนึ่ง 2 kg	3 m/s ไปทางขาว	2 m/s ไปทางขาว
ก้อนที่หนึ่ง 4 kg	1.5 m/s ไปทางขาว	2 m/s ไปทางขาว

การชนนี้เป็นแบบใด

ก่อนชน
$$\sum E_k = \frac{1}{2} m_1 u_1^2 + \frac{1}{2} m_2 u_2^2 = \frac{1}{2} (2) (3)^2 + \frac{1}{2} (4) (1.5)^2 = 13.5$$
 หลังชน $\sum E_k = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} (2) (2)^2 + \frac{1}{2} (4) (2)^2 = 12$

ข้อ 7.เฉลยข้อ 4

วัตถุมวล 1 กิโลกรัมเคลื่อนที่เข้าชนสปริงที่วางตัวในแนวระดับบนพื้นลื่น ทำให้สปริงหดเป็น ระยะ 0.1 เมตร จากนั้นแรงสปริงจะดีดวัตถุให้กลับออกไป พบว่าวัตถุมีอัตราเร็ว 1 เมตร / วินาที ณ ตำแหน่งที่สปริงไม่ยืดไม่หดค่าคงตัวของสปริงตัวนี้เป็นกี่นิวตัน / เมตร

ข้อ 8.เฉลยข้อ 2

สำหรับวัตถุที่เคลื่อนที่แบบวงกลมด้วยอัตราเร็วคงตัว ถ้ามวลเพิ่มเป็น 2 เท่า แต่อัตราเร็วลดเหลือ ครึ่งหนึ่ง แรงสู่ศูนย์กลางจะเปลี่ยนแปลงอย่างไร

$$F_{1} = \frac{m_{1}v_{1}^{2}}{R_{1}} \qquad \mathbf{1}$$

$$F_{2} = \frac{m_{2}v_{2}^{2}}{R_{2}} \qquad \mathbf{2}$$

$$\frac{F_{1}}{F_{2}} = \frac{m_{1}v_{1}^{2}}{R_{1}} / \frac{m_{2}v_{2}^{2}}{R_{2}} = \frac{m_{1}v_{1}^{2}R_{2}}{m_{2}v_{2}^{2}R_{1}} = \frac{m_{1}v_{1}^{2}}{m_{2}v_{2}^{2}} = \frac{(1)(2)^{2}}{(2)(1)^{2}} = 2$$

$$F_{2} = \frac{1}{2}F_{1}$$

ข้อ 9.เฉลยข้อ 1

วัตถุมวล 2 กิโลกรัม วางนิ่งอยู่บนพื้นระดับที่ไม่มีความเสียดทาน ออกแรงคงตัวขนาด 4 นิวตัน กระทำกับวัตถุทำให้เคลื่อนที่เป็นระยะทาง 5 เมตร ข้อใดถูก

วัตถุมวล 2 กิโลกรัม วางนิ่งอยู่บนพื้นระดับที่ไม่มีความเสียดทาน ออกแรงคงตัวขนาด 4 นิวตันกระทำกับวัตถุทำให้เคลื่อนที่เป็นระยะทาง 5 เมตร ข

$$W = FS = 4 \times 5 = 20 J$$

ข้อ 10.เฉลยข้อ 2

นักเรียนคนที่หนึ่งวิ่งด้วยอัตราเร็วค่าหนึ่งไถลตัวลงบนพื้นฝืดและหยุดเมื่อไถลไปเป็นระยะทาง d

โดยงานเนื่องจากแรงเสียดทานเท่ากับ W นักเรียนคนที่สองมีมวลเท่ากับคนแรกวิ่งมาด้วยอัตราเร็ว เท่ากันไถลไปบนพื้นฝืดเช่นเดียวกันแต่หยุด เมื่อไถลไปได้ d/2

งานเนื่องจากแรงเสียดทานในกรณีของนักเรียนคนที่สองเป็นเท่าใด

นักเรียนคนที่หนึ่งวิ่งด้วยอัตราเร็วค่าหนึ่งไถลตัวลงบนพื้นฝืดและหยุดเมื่อไถลไปเป็นระยะทาง d

โดยงานเนื่องจากแรงเสียดทานเท่ากับ W

$$W_1 = -f_1 d_1$$

นักเรียนคนที่สองมีมวลเท่ากับคนแรกวิ่งมาด้วยอัตราเร็วเท่ากันไถลไปบนพื้นฝืดเช่นเดียวกันแต่หยุด เมื่อไถลไป ได้ d/2

$$W_{2} = -f_{1}S_{2} \qquad$$

$$\frac{W_{1}}{W_{2}} = \frac{-f_{1}S_{1}}{-f_{2}S_{2}} = \frac{d}{d/2} = 2$$

$$\frac{W}{W_{2}} = 2$$

$$W_{2} = \frac{W}{2}$$

ข้อ 11.เฉลยข้อ 4

อัตราเร็วเสียงในตัวกลางชนิดหนึ่งเท่ากับ 2×10^3 เมตร / วินาที ถ้าความสัมพันธ์ระหว่างการกระจัด ของตัวกลาง (ไมโครเมตร) และเวลา (มิลลิวินาที) เป็นดังรูป

คลื่นในตัวกลางนี้มีความยาวคลื่นกี่เมตร

สูตร
$$V=rac{s}{t}=rac{\lambda}{T}=f\lambda$$

$$V=rac{\lambda}{T}$$

$$\lambda = VT = 2 \times 10^3 \times 2 \times 10^{-3} = 4$$

ข้อ 12.เฉลยข้อ 2

พิจารณาการกลิ้งโดยไม่ไถลของวงแหวนบางและทรงกระบอกตันบนพื้นระดับที่ไม่มีความเสียดทานถ้า ทั้งสองมีมวล รัศมี และพลังงานจลน์เท่ากัน

ข้อ 13.เฉลยข้อ 2

เมื่อสังเกตคลื่นตามขวางขบวนหนึ่งพบว่ามีคลื่น 3 ลูกในช่วงความยาว 3 เมตร โดยคลื่นแต่ละลูก ใช้เวลาในการเคลื่อนที่ผ่านช่วงความยาวนี้ 0.15 วินาที อนุภาคบนคลื่นจะเปลี่ยนจากสันคลื่น เป็นท้องคลื่นที่อยู่ติดกันในเวลากี่วินาที

ଶ୍ମମ
$$V = \frac{s}{t} = \frac{\lambda}{T} = f\lambda$$

คาบ (T) เวลาที่คลื่นสั่นได้ 1 รอบ หรือ เวลาที่คลื่นเคลื่อนที่ได้ 1 ลูก ความยาวคลื่น (λ) ระยะทางที่คลื่นเคลื่อนที่ได้ 1 รอบ หรือ 1 ลูกคลื่น ระยะจากสันคลื่นถึงสันคลื่น หรือท้องคลื่นถึงท้องคลื่น ที่อยู่ถัดกัน

เมื่อสังเกตคลื่นตามขวางขบวนหนึ่งพบว่ามีคลื่น 3 ลูกในช่วงความยาว 3 เมตร

จะได้
$$3\lambda = 3$$

$$\lambda = \frac{3}{3} = 1 \, \mathrm{m}$$
 จากสูตร
$$V = \frac{S}{t} = \frac{3}{0.15} = 20$$

$$\mathrm{จากสูตร} \qquad V = \frac{\lambda}{T}$$

$$\mathrm{จะได้} \ T = \frac{\lambda}{V} = \frac{1}{20} = 0.05$$

อนุภาคบนคลื่นจะเปลี่ยนจากสันคลื่น เป็นท้องคลื่นที่อยู่ติดกันในเวลากี่วินาที

$$\frac{\mathrm{T}}{2} = \frac{\lambda}{\mathrm{V}} = \frac{1}{20} = \frac{0.05}{2} = 0.025$$
 วินาที

ข้อ 14.เฉลยข้อ 5

หากเราฉายแสงที่มีรังสีขนานกับเส้นแกนมุขสำคัญมาตกกระทบกระเว้า แสงสะท้อนของรังสีขนาน เหล่านั้น จะไปตัดกันที่จุดโฟกัสระยะห่างจากใจกลางกระจกถึงจุด F เรียกว่า

เมื่อเราเดินเข้าหากระจกโค้งเว้าครึ่งทรงกลมจากระยะไกลมาก เราจะเห็นการเปลี่ยนแปลงของภาพ เราเป็นลำดับอย่างไร

- ก. จุดภาพ
- ค. ภาพขนาดใหญ่ หัวตั้ง
- จ. ภาพขนาดเล็ก หัวตั้ง
- ช. ภาพขนาดเท่าตัวเรา หัวตั้ง
- ข. ภาพขนาดใหญ่ หัวกลับ
 - ง. ภาพขนาดเล็ก หัวกลับ
 - ฉ. ภาพขนาดเท่าตัวเรา หัวกลับ

วาดกราฟปกติที่เคยเรียนมาก็จะได้คำตอบ

 $5) \qquad n \rightarrow q \rightarrow a \rightarrow q \rightarrow q \rightarrow q$

ข้อ 15.เฉลยข้อ 5

แสงสี มี 3 ตัว คือ R G B

 เมื่อ
 R+G+B=W R+G=W

 R+B= ม่วงแดง
 G+B= น้ำเงินเขียว

ในดวงตาคนจะมีเซลล์ประสาทรูปกรวยซึ่งมีความไวต่อแสงสี 3 สี คือ สีแดง สีเขียว สีน้ำเงิน เราเรียก 3 สีนี้ว่า แสงสีปฐมภูมิ และเมื่อเรานำแสงสีปฐมภูมิมาผสมกันจะทำให้เกิดเป็นแสงสี ต่าง ๆ เกิดขึ้นดังภาพข้างต้นอาการตาบอดสีเกิดจากความผิดปกติของเซลล์ประสาทรูปกรวยชนิดใด ชนิดหนึ่ง หรือมากกว่ามีความบกพร่อง จะทำให้มองเห็นสีแตกต่างจากคนปกติ เช่น คนตาบอดสีน้ำเงินเกิด จากเซลล์

รูปกรวยที่ไวต่อแสงสีน้ำเงิน ผิดปกติ ทำให้ไม่สามารถรับรู้สีน้ำเงิน รวมถึงแสงสีที่เกิดจากการผสม ของสีน้ำเงิน (ม่วง, น้ำเงินเขียว) สำหรับไฟจราจรนั้น มีสีแดง เหลือง เขียว <u>ซึ่งเป็นสีที่ไม่ได้</u> <u>เกิดจากการผสมของแสงสีน้ำเงิน</u> ดังนั้น คนตาบอดสีน้ำเงินจะสามารถมองเห็นไฟจราจร ได้ปกติไม่มีเพี้ยน

ข้อ 16.เฉลยข้อ 1

เหตุใดพนักงานการไฟฟ้าที่จะขึ้นไปนั่งทำงานอยู่บนสายไฟเปลือยซึ่งมีแรงดันไฟฟ้าสูง 220 kV ซึ่งพาดอยู่บนเสาส่งไฟฟ้าแรงสูง จำเป็นต้องสวมชุดที่ทอจากลวดโลหะ ชุดที่พนักงานไฟฟ้าสวมใส่เป็นชุดตัวนำไฟฟ้าที่ทอจากเส้นใยสเตนเลส ทำหน้าที่เหมือน "กฎฟาราเดย์" คือ จะทำให้สนามไฟฟ้าภายในชุดเท่ากับศูนย์ จึงไม่มีกระแสไฟฟ้าไหล สู่ร่างกายภายในชุดได้

ข้อ 17.เฉลยข้อ 3

ลวดโลหะสองเส้นทำจากวัสดุเดียวกัน แต่เส้นหนึ่งมีความต้านทานเป็นสองเท่าของอีกเส้นหนึ่ง
เมื่อนำลวดทั้งสองไปต่อกับเซลล์ไฟฟ้าเหมือนกัน ปริมาณใดในลวดทั้งสองที่เท่ากัน
กระแสในเส้นลวดตัวนำ I = nevA

เมื่อ I = กระแสไฟฟ้า

n = ความหนาแน่นของอิเล็กตรอนอิสระ(อิเล็กตรอนอิสระ = พาหะ)

e = ประจุของอิเล็กตรอน

v = อัตราเร็วลอยเลื่อนของอิเล็กตรอน

A = พื้นที่หน้าตัดของเส้นลวด

เส้นลวดวัสดุชนิดเดียวกันความหนาแน่นของอิเล็กตรอนอิสระ ต้องเท่ากัน

ข้อ 18.เฉลยข้อ 2

วงจรไฟฟ้าอย่างง่าย

$$I = \frac{E}{R + r}$$

E = แรงเคลื่อนไฟฟ้ารวม (V)

R = ความต้านทานรวมภายนอก (Ω)

 \mathbf{r} = ความต้านทานรวมภายใน $\left(\mathbf{\Omega} \right)$

I = nselassulusvas (A)

วงจรไฟฟ้าหนึ่งมีตัวต้านทาน $1\,\mathrm{k}\Omega$ ต่อกันแหล่งจ่ายไฟ $1\,\mathrm{V}$ ถ้าเรานำแอมมิเตอร์ที่มีความต้านทานภายใน รวมทั้งสิ้น $100\,\Omega$ วัดกระแสไฟฟ้าในวงจรนี้ แอมมิเตอร์จะอ่านกระแสไฟฟ้าได้กี่มิลลิแอมแปร์

$$1k\Omega$$
 100Ω

แอมมิเตอร์

 $V=1\ V$
 $V=IR$
 $1=I(1000+100)$
 $I=\frac{1}{1100}=0.0009=9\times10^{-4}=0.9\times10^{-3}A=0.9\text{mA}$

ข้อ 19.เฉลยข้อ 1

ข้อใดกล่าวถูกต้องเกี่ยวกับตัวเก็บประจุที่ต่ออยู่กับแหล่งกำเนิดไฟฟ้ากระแสสลับที่ความถี่หนึ่ง ๆ และตัวเก็บประจุกำลังทำงานในสภาพที่เป็นปกติ

ตัวเลือกข้อ 1) ค่าความจุมีค่าคงตัว

ถูก ค่าความจุด $\left(\mathrm{C}
ight)$ เป็นค่าคงที่ของตัวเก็บประจุ

ตัวเลือกข้อ 2)ความต่างศักย์ตกคร่อมตัวเก็บประจุมีค่าคงตัว

ผิด
$$V_{_{\rm C}} = V_{_{\rm m}} \sin \omega t$$
 , $i_{_{\rm C}} = I_{_{\rm m}} \cos \omega t$ เปลี่ยนแปลงลักษณะกราฟ

ตัวเลือกข้อ 3) กระแสไฟฟ้าที่ไหลผ่านตัวเก็บประจุมีค่าคงตัว

กระแสไฟฟ้าเปลี่ยนตามกราฟ

ผิด ความต่างศักย์และกระแสในวงจรกระแสสลับจะเปลี่ยนแปลงตลอดเวลาไม่คงที่

ตัวเลือกข้อ 4) ประจุไฟฟ้ากระโดดข้ามช่องว่างภายในตัวเก็บประจุ เกิดเป็นกระแสไฟฟ้า

ผิด ประจุไฟฟ้าไม่กระโดดข้ามช่องว่างภายในตัวเก็บประจุ เกิดเป็นกระแสไฟฟ้า เป็นแค่สัญญาลักษณ์เท่านั้น ช่องว่างระหว่างตัวเก็บประจุเป็นสุญญากาศ **ตัวเลือกข้อ** 5) ความต่างศักย์ตกคร่อมตัวเก็บประจุกระแสไฟฟ้าที่ผ่านตัวเก็บประจุมีเฟสต่างกัน 180 องศา ความต่างศักย์ตกคร่อมตัวเก็บประจุกระแสไฟฟ้าที่ผ่านตัวเก็บประจุมีเฟสต่างกัน 90° องศา

ผิด V และ I ที่ตัวเก็บประจุมีเฟสต่างกัน 90° . นำ V อยู่ 90° ,

ข้อ 20.เฉลยข้อ 1

แมกซ์เวลล์ได้รวบรวมกฏต่างๆที่เกี่ยวกับคลื่นแม่เหล็กไฟฟ้า มาสรุปเป็นทฤษฎีโดยนำเสนอในรูปของ สมการคณิตศาสตร์ ซึ่งแมกเวลล์ใช้ทำนายว่า สนามไฟฟ้าที่เปลี่ยนแปลงตามเวลาทำให้เกิดสนามแม่เหล็กและ ในขณะเดียวกันสนามแม่เหล็กที่เปลี่ยนแปลงตามเวลาก็ทำให้เกิดสนามไฟฟ้าด้วย โดยทิศสนามแม่เหล็กและ สนามไฟฟ้าต่างก็มีทิศตั้งฉากกัน และแมกเวลล์

สรุปสมบัติคลื่นแม่เหล็กไฟฟ้า ได้ดังนี้

- 1. สนามไฟฟ้า \bar{L} และสนามแม่เหล็ก \bar{L} มีทิศตั้งฉากซึ่งกันและกันและตั้งฉากกับทิศการเคลื่อนที่ของ คลื่นแม่เหล็กไฟฟ้าจึงเป็นคลื่นตามขวาง
- 2. สนามไฟฟ้า \bar{L} และสนามแม่เหล็ก \bar{L} เป็นฟังชันรูปไซน์ และสนามทั้งสองจะเปลี่ยนแปลงตามเวลา ด้วยความถี่เดียวกันและเฟสตรงกันถ้าสนามไฟฟ้าเป็นศูนย์ สนามแม่เหล็กก็เป็นศูนย์ด้วยมีค่าสูงสุด และต่ำสุด พร้อมกัน
- 3. ประจุไฟฟ้าเมื่อเคลื่อนที่ด้วยความเร่ง จะปลดปล่อยคลื่นแม่เหล็กไฟฟ้าออกมารอบการเคลื่อนที่ของ ประจุนั้น

คลื่นแม่เหล็กไฟฟ้าหนึ่งกำลังแผ่ไปทางทิศตะวันออกโดยที่ตำแหน่งหนึ่งมีสนามไฟฟ้าพุ่งไปใน

ทิศเหนือ ที่ตำแหน่งดังกล่าว ณ เวลานั้นทิศของสนามแม่เหล็กเป็นอย่างไร

ทิศของ $\Delta_{\mathbf{L}}^{-},\,\Delta_{\mathbf{L}}^{-},\,\overline{\mathbf{v}}$ เป็นไปตามกฎมือขวาโดยนิ้วโป้งชี้ทิศการเคลื่อนที่ $\left(\overline{\mathbf{v}}\right)$ นิ้วทั้งสี่ชี้ทิศสนามไฟฟ้า

 $\left(\Delta \overrightarrow{\mathbf{L}}_{J}\right)$ กำมือสี่นิ้วจะหมุนมาหาทิศสนามแม่เหล็ก $\left(\Delta \overrightarrow{\mathbf{L}}_{J}\right)$

จากกฎมือขวา เมื่อ V ทิศตะวันออก (นิ้วโป้ง) $\Delta_{\bf L}^{-}$ ทิศเหนือ (นิ้วทั้งสี่) เมื่อกำนิ้วทั้งสี่ลงมาจะได้ทิศ $\Delta_{\bf L}^{-}$ พู่งขึ้นออกจากหน้ากระดาษ

ข้อ 21.เฉลยข้อ 1

หลอดไพทอทที่ติดอยู่บนลำตัวเครื่องบินมีลักษณะเป็นท่อปลายแหลม ใช้วัดอัตราเร็วของอากาศ เทียบกับเครื่องบิน หลอดดังกล่าวประกอบด้วยท่อทรงกระบอกสองอันซ้อนกัน โดยปลายด้านหน้า เชื่อมติดกันเป็นปลายแหลมและเจาะรุที่ทรงกระบอกนอกดังรูป เมื่อเครื่องบินเคลื่อนที่ อากาศจะไหล เข้าปะทะปลายท่อและเบนออกไปด้านข้างผ่านรูปที่เจาะไว้ (แต่ไม่ได้เข้าไปในรู) ดังนั้น อากาศที่ บริเวณ P_1 และ P_2 จึงเป็นอากาศที่นิ่งแต่มีค่าแตกต่างกัน ที่ปลายทรงกระบอกตัวในติดตั้งตัววัดผล ต่างความดันไว้ซึ่งใช้คำนวณหาอัตราเร็วของอากาศ

สมการข้อใดเขียนได้ถูกต้อง กำหนดให้ P_1 และ P_2 เป็นความดันของทั้งสองบริเวณ ho เป็นความหนาแน่นอากาศ \mathbf{v} เป็นอัตราเร็วของอากาศเทียบกับท่อไพทอท และ \mathbf{h} เป็นระดับความสูงเครื่องบินเทียบกับระดับน้ำทะเล

$$P_1+rac{1}{2}
ho v_1^2+
ho gh=P_2+rac{1}{2}
ho v_2^2+
ho gh$$
 อยู่ในระดับความสูงเดียวกัน
$$P_1+0+
ho gh=P_2+rac{1}{2}
ho v_2^2+
ho gh$$
 $P_1-P_2=rac{1}{2}
ho v_2^2$ $P_1-P_2=rac{1}{2}
ho v_2^2$

หลักของแบร์นูลลี

กล่าวว่า " เมื่อของไหลเคลื่อนที่ในแนวระดับ หากอัตราเร็วมีค่าเพิ่มขึ้น ความดันใน ของเหลวจะลดลงและเมื่ออัตราเร็วลดลงความดันในของเหลวจะเพิ่มขึ้น "

สมการของแบร์นูลลี

เนื่องจาก " ผลรวมความดัน พลังงานจลน์ต่อปริมาตร และ พลังงานศักย์ต่อปริมาตร ทุกๆ จุดภายในท่อที่ของไหล ไหลผ่านจะมีค่าคงที่ "

$$\begin{split} &P_1 + \rho g h_1 + \frac{1}{2} \rho {v_1}^2 = \text{Pa} \hat{\mathcal{V}} \\ &P_1 + \rho g h_1 + \frac{1}{2} \rho {v_1}^2 = P_2 + \rho g h_2 + \frac{1}{2} \rho v_2^2 \end{split}$$

เมื่อ P_1 , P_2 คือ ความดันของเหลวในท่อ ณ. จุดที่ 1 และ จุดที่ 2 ตามลำดับ (N/m²)

 v_1 , v_2 คือ อัตราเร็วของไหล ณ.จุดที่ 1 และ จุดที่ 2 ตามลำดับ (m/s)

 h_1 , h_2 คือ ความสูงจากพื้นถึงจุดศูนย์กลางท่อที่ 1 และ จุดที่ 2 ตามลำดับ (m)

ho คือ ความหนาแน่นของของเหลว (kg / m³)

ข้อ 22.เฉลยข้อ 2

<u>สรุป</u>

- 1. พลังงานภายในระบบ (U) คือ พลังงานรวมของโมเลกุลของแก๊สทุกตัวในขอบเขตที่กำลังพิจารณา สำหรับแก๊สอุดมคติ (Ideal gas) พลังงานภายในเป็นพลังงานจลน์เพียงอย่างเดียว
- 2. พลังงานภายในระบบขึ้นอยู่กับจำนวนของโมเลกุลและอุณหภูมิ
- 3. กฎข้อที่ 1 ของ Thermodynamics มีสมการคือ $\Delta Q = \Delta W + \Delta U$
- 4. Adiabatic process เป็นกระบวนการทาง Thermodynamics ที่เกิดขึ้นโดยที่ไม่มีความร้อนไหลเข้า หรือไหลออกจากระบบ เช่น กระบอกสูบในเครื่องยนต์
- 5. Isochoric process เป็นกระบวนการที่เกิดขึ้นโดยปริมาตรคงที่ ความดัน และอุณหภูมิเปลี่ยน เนื่องจากมีความร้อนไหลเข้าไปในระบบ เช่น การต้มน้ำให้เดือดในภาชนะเปิด
- 6. สรุปเครื่องหมาย ของ $\Delta \cup$ และ $\Delta {\sf W}$

	เครื่องหมาย	
Δ Q	ความร้อนไหลเข้าสู่ระบบ	+
ΔQ	ความร้อนไหลออกจากระบบ	-
Δυ	พลังงานภายในระบบที่เพิ่มขึ้น	+
Δυ	พลังงานภายในระบบที่ลดลง	-
Λw	งานที่ทำโดยระบบ	+
ΔVV	งานที่ให้กับระบบ	-

ข้อ 23.เฉลยข้อ 3 ตารางเปรียบเทียบกล้องจุลทรรศน์แบบใช้แสงและกล้องจุลทรรศน์อิเล็กตรอน

สิ่งเปรียบเทียบ	กล้องจุลทรรศน์แบบใช้แสง	กล้องจุลทรรศน์อิเล็กตรอน
ตัวกลางที่ใช้ส่องผ่านวัตถุ	ลำแสงธรรมดา	ลำอิเล็กตรอน
เลนส์ในตัวกล้อง	เลนส์แก้ว	เลนส์แม่เหล็กไฟฟ้า
ตัวกล้อง	มือากาศ	สุญญากาศ
เลนส์รวมแสง	เลนส์แก้ว	เลนส์แม่เหล็กไฟฟ้า
ระบบถ่ายเทความร้อน	ไม่ต้องใช้	ใช้น้ำ
ภาพที่ได้	ภาพเสมือนหัวกลับ	ภาพจริงปรากฏบนจอรับภาพ
เซลล์ที่ใช้ศึกษา	มีชีวิตหรือตายแล้ว	ตายแล้ว
กำลังขยายสูงสุด	1,000 เท่า	500,000 เท่า
ขนาดวัตถุเล็กสุด	0.2 ไมโครเมตร	0.0005 ไมโครเมตร

2.กล้องจุลทรรศน์อิเล็กตรอน (Electron Microscope) ใช้ลำอิเล็กตรอน ซึ่งมองไม่เห็นด้วยตาเปล่าแทนแสง สว่างที่มองเห็น และใช้เลนส์แม่เหล็กไฟฟ้าแทนเลนส์แก้ว ใช้ลำอิเล็กตรอนจากปืนยิงผ่านเลนส์แม่เหล็กไฟฟ้า เพื่อให้เกิดภาพบนจอรับภาพ มีกำลังขยายสูงกว่ากล้องจุลทรรศน์แบบใช้แสง แบ่งเป็น
2.1กล้องจุลทรรศน์อิเล็กตรอนชนิดส่องผ่าน (Transmission Electron Microscope) สามารถมองเห็น องค์ประกอบภายในของเซลล์ได้ชัดเจน มีกำลังขยายสูงมาก

2.2กล้องจุลทรรศน์อิเล็กตรอนชนิดส่องกราด (Scanning Electron Microscope) ใช้ศึกษารูปร่างโครงสร้าง และพิ้งผิวของเซลล์ภายงอก ไม่เห็บองค์ประกอบด้างใน

ข้อ 24.เฉลยข้อ 5

หากต้องการทดลองหาพลังงานจลน์ของอิเล็กตรอนให้ต่อความต่างศักย์ที่เหมาะสม โดยต่อ ขั้วลบเข้ากับอาโนด ขั้วบวกเข้ากับคาโทด เมื่อใช้ความต่างศักย์เหมาะสม อิเล็กตรอนอันมีประจุลบ เมื่อเข้าใกล้ ขั้วลบ จะเกิดแรงต้านทำให้อิเล็กตรอนหยุดนิ่งแล้วจะเปลี่ยนพลังงานจลน์ให้กลายเป็นพลังงานศักย์ไฟฟ้า ความ ต่างศักย์ที่ใช้หยุดอิเล็กตรอน เรียก ความต่างศักย์. (Vo)

ข้อ 25.เฉลยข้อ 4

นักเรียนคนหนึ่งวัดความยาวด้านของสามเหลี่ยมรูปหนึ่งโดยใช้เครื่องมือวัดที่ต่างกันได้ผลดังนี้

12.30 cm 4.567 cm และ 8.901 cm

เขาควรบันทึกความยาวรอบรูปของสามเหลี่ยมรูปนี้อย่างไรตามหลักเลขนัยสำคัญ

$$12.30 + 4.567 + 8.901 = 25.7680$$

การบวก และลบ เลขนัยสำคัญ

วิธีการ "ให้บวกลบตามปกติ แต่ผลลัพธ์ที่ได้ต้องมีจำนวนทศนิยม เท่ากับจำนวน ทศนิยม ของตัวตั้งที่มีจำนวนทศนิยมน้อยที่สุด"

ตอบ 25.77 cm

ข้อ 26.เฉลยข้อ 5

รังสีเอกซ์มี 2 ลักษณะ คือ

- 1. รังสีเอกซ์ต่อเนื่อง เกิดจากการที่อิเล็กตรอนที่ยิงเข้าไปที่เป้าโลหะถูกหน่วง แล้วปล่อยคลื่นแม่เหล็กไฟฟ้าออกมา คลื่นแม่เหล็กไฟฟ้าสั้นสุดเกิดเมื่อพลังงานจลน์ทั้งหมดของ อิเล็กตรอนกลายเป็นพลังงานของโฟตอนรังสีเอกซ์
 - 2. รังสีเอกซ์ลักษณะเฉพาะ มีเฉพาะบางความยาวคลื่น ขึ้นกับชนิดของเป้า เกิด

จากการที่อิเล็กตรอนที่ยิงไปที่อะตอมของเป้าไปชนอิเล็กตรอนวงในสุดของอะตอมของเป้าให้หลุด
ออกไป อิเล็กตรอนชั้นนอกจึงลดระดับพลังงานลงมาพร้อมทั้งแผ่รังสีเอกซ์ออกมา
รังสีเอกซ์ (X-ray) มีความยาวคลื่น 0.01-1 นาโนเมตร มีแหล่งกำเนิดในธรรมชาติมาจากดวงอาทิตย์
เราใช้รังสีเอกซ์ในทางการแพทย์ เพื่อส่องผ่านเซลล์เนื้อเยื่อ แต่ถ้าร่างกายได้รับรังสีนี้มากๆ ก็จะเป็นอันตราย

- ใช้ตรวจสอบรอยร้าวของส่วนประกอบสิ่งก่อสร้าง
- ใช้ตรวจหาอาวุธหรือระเบิดในกระเป๋าเดินทางบริเวณด่านตรวจคนเข้าเมือง
- ใช้ตรวจดุอวัยวะภายในและใช้รักษาโรคมะเร็งหรือใช้ในการศึกษาการจัดเรียงตัวของอะตอมในผลึก

ข้อ 27.เฉลยข้อ 3

อนุภาคประจุไฟฟ้าบวก 2 อนุภาค อยู่ในสนามไฟฟ้าสม่ำเสมอ ดังรูป

ทิศของแรงไฟฟ้าที่กระทำต่ออนุภาคทางด้านซ้ายมือน่าจะเป็นเช่นดัน

วาดรูปหาแรงลัพธีที่กระทำกับประจุบวกด้านว้ายมือ

ข้อ 28.เฉลยข้อ 5

วัตถุทรงกลมลูกหนึ่ง เมื่อนำไปลอยในน้ำ พบว่า จมลงไป 50% ของปริมาตรวัตถุ แต่เมื่อนำ ไปลอยในของเหลวชนิดหนึ่ง พบว่า จมลงไป 40% ของปริมาตรวัตถุ ความหนาแน่นของ ของเหลวนี้เป็นกี่กิโลกรัม / ลูกบาศก์เมตร

วัตถุทรงกลมลูกหนึ่ง เมื่อนำไป**ลอยในน้ำ** พบว่า จมลงไป 50% ของปริมาตรวัตถุ

 $mg = F_{\rm p}$ สมดูล

แต่เมื่อนำไปลอยใน**ของเหลว**ชนิดหนึ่ง พบว่า จมลงไป 40% ของปริมาตรวัตถุ ความหนาแน่นของ ของเหลวนี้เป็นกี่กิโลกรัม / ลูกบาศก์เมตร

$$mg = F_{\rm B}$$
 สมดุล ho รัตถุ V รัตถุ $=
ho$ เพลว $V_{\rm PM}$ $(500)(100) =
ho$ เพลว $V_{\rm PM}$ $(500)(100) =
ho$ เพลว (40)

$$ho_{\,_{\text{เหลว}}} = \frac{(100)500}{40} = 1250\,$$
กี่กิโลกรัม / ลูกบาศก์เมตร

ข้อ 29.เฉลยข้อ 4

มะลิกำลังเล่นชิงช้าอยู่ในสนามเด็กเล่น ในจังหวัดที่ชิงช้าอยู่ที่ตำแหน่ง**ต่ำสุด** (อยู่ในแนวดิ่งพอดี) ความเร่งของมะลิมีทิศชี้ลงด้านล่าง