Python ICPC Cheatsheet

Comprehensive Reference for Competitive Programming October 31, 2025

Contents

1	Inp	nput/Output													
2	Bas	Basic Data Structures													
	2.1	List Operations	5												
	2.2	Deque (Double-ended Queue)	5												
	2.3	Heap (Priority Queue)	6												
	2.4	Dictionary & Counter	6												
	2.5	Set Operations	7												
3	String Operations														
	3.1	KMP Pattern Matching	8												
	3.2	Z-Algorithm	9												
	3.3	Rabin-Karp (Rolling Hash)	10												
4	Mat	Mathematics													
	4.1	Basic Math Operations	11												
	4.2	Combinatorics	11												
5	Number Theory														
	5.1	Modular Arithmetic	13												
	5.2	Sieve of Eratosthenes	13												
	5.3	Prime Factorization	13												
	5.4	Chinese Remainder Theorem	14												
	5.5	Euler's Totient Function	14												
	5.6	Fast Exponentiation with Matrix	15												
6	Graph Algorithms														
	6.1	Graph Representation	16												
	6.2	BFS (Breadth-First Search)	16												
	6.3	DFS (Depth-First Search)	17												
	6.4	Strongly Connected Components (SCC)	19												
	6.5	Bridges and Articulation Points	19												
	6.6	Lowest Common Ancestor (LCA)	20												
7	Shortest Path Algorithms														
	7.1	Dijkstra's Algorithm	22												
	7.2	Bellman-Ford Algorithm	23												
	7.3	Floyd-Warshall Algorithm	23												

	7.4	Minim	num Sp	annin	ıg Tr∈	e .					•	 •	 •	 		 				23
		7.4.1	Krusl	kal's A	Algori	ithm	ı .							 		 				23
		7.4.2	Prim	's Algo	orithi	m .							 •	 		 				24
8	Top	ologica	al Sor	\mathbf{t}																26
	8.1	Kahn'	s Algo	rithm	(BFS	S-ba	sed) .						 		 		 		26
	8.2	DFS-b	pased 7	Topolo	gical	Sor	t .							 		 				26
9	Uni	on-Fin	nd (Di	sjoint	t Set	Un	ion	ι)												28
10	Bina	ary Se	arch																	30
	10.1	Templ	late for	Find	ing F	irst_{i}	/Las	st P	ositi	ion			 •	 		 				30
11	Dyn	amic	Progr	amm	ing															32
	11.1	Longe	st Incr	easing	g Sub	sequ	ienc	e .						 		 				32
	11.2	$0/1~\mathrm{K}$	napsac	k										 		 			•	33
	11.3	Edit I	Distanc	e (Lev	vensh	tein	Dis	stan	ce).					 		 				33
	11.4	Longe	st Con	ımon	Subse	eque	ence	(L(CS)					 		 		 		34
	11.5	Coin (Change	·										 		 		 		34
		Palind	_																	35
		Subset				_														35
f 12	Arr	ay Tec	chniqu	es																37
	12.1	Prefix	Sum											 		 				37
	12.2	Differe	ence A	rray										 		 				37
	12.3	Sliding	g Wind	low .										 		 				38
13	Adv	anced	Data	Stru	.ctur	es														39
	13.1	Segme	ent Tre	e										 		 		 		39
	13.2	Fenwi	ck Tree	e (Bin	ary I	ndex	xed	Tree	e) .					 		 				40
		Trie (1																		40
14	Bit	Manip	pulatio	on																42
15	Mat	rix O _l	perati	ons																44
	15.1	Matrix	x Mult	iplicat	tion									 		 				44
		Matrix																		44
16	Mis	cellan	eous 1	lips																46
	16.1	Pytho	n-Spec	ific O	ptimi	izati	ons							 		 				46
	16.2	Useful	l Libra	ries .										 		 				46
	16.3	Comm	non Pa	tterns										 		 				46
	16.4	Comm	non Pit	falls										 		 				47
	16.5	Time	Compl	exity [Refer	ence	е.							 		 				48

17 Computational Geometry												
	17.1	Basic Geometry	49									
	17.2	Convex Hull	49									
	17.3	Point in Polygon	50									
	17.4	Closest Pair of Points	51									

1 Input/Output

Description: Efficient input/output is crucial in competitive programming, especially for problems with large datasets. Using sys.stdin.readline is significantly faster than the default input() function.

```
# Fast I/O - Essential for large inputs
   import sys
   input = sys.stdin.readline
   # Read single integer
5
   n = int(input())
   # Read multiple integers on one line
8
   a, b = map(int, input().split())
9
10
   # Read array of integers
11
   arr = list(map(int, input().split()))
12
13
   # Read strings (strip to remove trailing newline)
14
   s = input().strip()
15
   words = input().split()
16
17
   # Multiple test cases pattern
18
   t = int(input())
19
   for _ in range(t):
20
        # process each test case
21
22
   # Print without newline
23
   print(x, end=' ')
24
25
   # Formatted output with precision
26
   print(f"{x:.6f}") # 6 decimal places
```

2 Basic Data Structures

2.1 List Operations

Description: Python lists are dynamic arrays with O(1) amortized append and O(n) insert/delete at arbitrary positions.

```
# Initialize lists
   arr = [0] * n # n zeros
   matrix = [[0] * m for _ in range(n)] # Correct way!
3
4
   # List comprehension - concise and efficient
5
   squares = [x**2 for x in range(n)]
   evens = [x \text{ for } x \text{ in arr if } x \% 2 == 0]
   \# Sorting - O(n \log n)
9
   arr.sort() # in-place, modifies arr
   arr.sort(reverse=True) # descending
   arr.sort(key=lambda x: (x[0], -x[1]))
12
                                           # custom
13
   sorted_arr = sorted(arr) # returns new list
14
   # Binary search in sorted array
15
   from bisect import bisect_left, bisect_right
16
   idx = bisect_left(arr, x) # leftmost position
   idx = bisect_right(arr, x) # rightmost position
18
19
   # Common operations
20
                  # O(1) amortized
   arr.append(x)
21
   arr.pop()
                     \# O(1) - remove last
22
                     # O(n) - remove first (slow!)
23
   arr.pop(0)
   arr.reverse()
                      # O(n) - in-place
24
                      # O(n) - count occurrences
   arr.count(x)
25
                      # O(n) - first occurrence
   arr.index(x)
```

2.2 Deque (Double-ended Queue)

Description: Deque provides O(1) append and pop from both ends, making it ideal for sliding window problems and implementing queues/stacks efficiently.

```
from collections import deque
   dq = deque()
2
   # O(1) operations on both ends
4
   dq.append(x)
                   # add to right
5
   dq.appendleft(x)
                       # add to left
6
                       # remove from right
7
   dq.pop()
   dq.popleft()
                       # remove from left
9
   # Sliding window maximum - O(n)
   # Maintains decreasing order of elements
   def sliding_max(arr, k):
12
       dq = deque() # stores indices
13
       result = []
14
       for i in range(len(arr)):
16
            # Remove indices outside window
17
           while dq and dq[0] < i - k + 1:
18
                dq.popleft()
19
20
            # Remove smaller elements (not useful)
21
           while dq and arr[dq[-1]] < arr[i]:</pre>
22
```

```
dq.pop()

dq.append(i)

if i >= k - 1:
    result.append(arr[dq[0]])

return result

dq.pop()

dq.append(i)

if i >= k - 1:
    result.append(arr[dq[0]])
```

2.3 Heap (Priority Queue)

Description: Python's heapq implements a min-heap. For max-heap, negate values. Useful for finding k-th largest/smallest, Dijkstra's algorithm, and scheduling problems.

```
import heapq
2
   # Min heap (default)
3
   heap = []
                                    \# O(\log n)
   heapq.heappush(heap, x)
   min_val = heapq.heappop(heap) # O(log n)
6
   min_val = heap[0]
                                    # 0(1) peek
   # Max heap - negate values
9
   heapq.heappush(heap, -x)
10
   max_val = -heapq.heappop(heap)
12
   # Convert list to heap in-place - O(n)
13
   heapq.heapify(arr)
14
   # K largest/smallest - O(n log k)
16
17
   k_largest = heapq.nlargest(k, arr)
   k_smallest = heapq.nsmallest(k, arr)
18
19
   # Custom comparator using tuples
20
21
   # Compares first element, then second, etc.
   heapq.heappush(heap, (priority, item))
```

2.4 Dictionary & Counter

Description: Hash maps with O(1) average case insert/lookup. Counter is specialized for counting occurrences.

```
from collections import defaultdict, Counter
2
   # defaultdict - provides default value
   graph = defaultdict(list) # empty list default
   count = defaultdict(int)
                               # 0 default
5
   # Counter - count elements efficiently
   cnt = Counter(arr)
8
   cnt['x'] += 1
9
   most_common = cnt.most_common(k) # k most frequent
10
11
   # Dictionary operations
12
   d = \{\}
13
   d.get(key, default_val)
14
   d.setdefault(key, default_val)
15
   for k, v in d.items():
16
       pass
17
```

2.5 Set Operations

Description: Hash sets provide O(1) membership testing and set operations.

```
s = set()
                     # 0(1)
   s.add(x)
                  # O(1), KeyError if not exists
# O(1), no error if not exists
   s.remove(x)
3
   s.discard(x)
4
5
   \# Set operations - all O(n)
6
7
   a | b # union
   a & b # intersection
   a - b # difference
9
   a ^ b # symmetric difference
10
11
   # Ordered set workaround
12
13 from collections import OrderedDict
oset = OrderedDict.fromkeys([])
```

3 String Operations

Description: Strings in Python are immutable. For building strings, use list and join for O(n) complexity instead of repeated concatenation which is $O(n^2)$.

```
# Common string methods
   s.lower(), s.upper()
   s.strip()
               # remove whitespace both ends
3
   s.lstrip() # remove left whitespace
4
   s.rstrip() # remove right whitespace
   s.split(delimiter)
   delimiter.join(list)
   s.replace(old, new)
   s.startswith(prefix)
9
   s.endswith(suffix)
10
   s.isdigit(), s.isalpha(), s.isalnum()
11
   # String building - EFFICIENT O(n)
13
   result = []
14
   for x in data:
15
       result.append(str(x))
16
   s = ''.join(result)
18
   \# String concatenation - SLOW O(n^2)
19
   # s = ""
20
   # for x in data:
21
        s += str(x) \# Don't do this!
22
23
   # ASCII values
24
   ord('a') # 97
25
   chr(97)
             # 'a'
26
27
   # String to character array (for mutations)
28
   chars = list(s)
   chars[0] = 'x'
30
   s = ''.join(chars)
31
```

3.1 KMP Pattern Matching

Description: Find all occurrences of pattern in text. Time: O(n+m).

```
def kmp_search(text, pattern):
        # Build LPS (Longest Proper Prefix which is Suffix)
2
        def build_lps(pattern):
3
            m = len(pattern)
4
            lps = [0] * m
            length = 0 # Length of previous longest prefix
6
            i = 1
            while i < m:</pre>
                if pattern[i] == pattern[length]:
10
                     length += 1
                    lps[i] = length
                     i += 1
13
                else:
14
                     if length != 0:
                         length = lps[length - 1]
16
                     else:
17
                         lps[i] = 0
18
                         i += 1
19
20
```

```
return lps
21
22
        n, m = len(text), len(pattern)
23
        lps = build_lps(pattern)
24
25
        matches = []
26
        i = j = 0 # Indices for text and pattern
27
28
        while i < n:
29
            if text[i] == pattern[j]:
30
                 i += 1
31
                 j += 1
32
33
            if j == m:
34
                 matches.append(i - j)
35
                 j = lps[j - 1]
36
            elif i < n and text[i] != pattern[j]:</pre>
37
                 if j != 0:
                     j = lps[j - 1]
39
                 else:
40
                     i += 1
41
42
        return matches
43
```

3.2 Z-Algorithm

Description: Compute Z-array where Z[i] = length of longest substring starting from i that matches prefix. Time: O(n).

```
def z_algorithm(s):
       n = len(s)
2
       z = [0] * n
       1, r = 0, 0
       for i in range(1, n):
6
            if i <= r:
                z[i] = \min(r - i + 1, z[i - 1])
            while i + z[i] < n and s[z[i]] == s[i + z[i]]:
                z[i] += 1
            if i + z[i] - 1 > r:
13
                1, r = i, i + z[i] - 1
14
16
       return z
17
   # Pattern matching using Z-algorithm
18
   def z_search(text, pattern):
19
        # Concatenate pattern + $ + text
20
       s = pattern + '$' + text
21
       z = z_{algorithm}(s)
22
23
       matches = []
24
       m = len(pattern)
25
26
       for i in range(m + 1, len(s)):
27
            if z[i] == m:
28
                matches.append(i - m - 1)
29
30
       return matches
31
```

3.3 Rabin-Karp (Rolling Hash)

Description: Fast pattern matching using hashing. Average: O(n+m), Worst: O(nm).

```
def rabin_karp(text, pattern):
       MOD = 10**9 + 7
       BASE = 31 # Prime base for hashing
3
4
       n, m = len(text), len(pattern)
5
       if m > n:
6
           return []
       # Compute hash of pattern
9
       pattern_hash = 0
10
       power = 1
       for i in range(m):
           pattern_hash = (pattern_hash * BASE +
13
                            ord(pattern[i])) % MOD
14
            if i < m - 1:</pre>
                power = (power * BASE) % MOD
16
       # Rolling hash
18
       text_hash = 0
19
       matches = []
20
21
       for i in range(n):
22
            # Add new character
23
            text_hash = (text_hash * BASE +
24
                         ord(text[i])) % MOD
26
            # Remove old character if window full
            if i >= m:
28
                text_hash = (text_hash -
29
30
                             ord(text[i - m]) * power) % MOD
                text_hash = (text_hash + MOD) % MOD
31
32
            # Check match
33
            if i >= m - 1 and text_hash == pattern_hash:
34
                # Verify actual match (avoid hash collision)
35
                if text[i - m + 1:i + 1] == pattern:
36
                    matches.append(i - m + 1)
37
38
       return matches
39
```

4 Mathematics

4.1 Basic Math Operations

```
import math
2
   # Common functions
3
   math.ceil(x), math.floor(x)
   math.gcd(a, b)
                    # Greatest common divisor
5
                        # Python 3.9+
   math.lcm(a, b)
6
   math.sqrt(x)
   math.log(x), math.log2(x), math.log10(x)
9
   # Powers
   x ** y
11
   pow(x, y, mod) # (x^y) % mod - efficient modular exp
12
   # Infinity
14
   float('inf'), float('-inf')
15
16
   # Custom GCD using Euclidean algorithm - O(log min(a,b))
17
   def gcd(a, b):
18
       while b:
19
            a, b = b, a \% b
20
       return a
21
22
23
   def lcm(a, b):
       return a * b // gcd(a, b)
24
```

4.2 Combinatorics

Description: Compute combinations and permutations. For modular arithmetic, compute factorial arrays and use modular inverse.

```
from math import factorial, comb, perm
1
2
   # nCr (combinations) - "n choose r"
3
   comb(n, r) # Built-in Python 3.8+
4
5
   # nPr (permutations)
6
   perm(n, r) # Built-in Python 3.8+
   # Manual nCr implementation
9
   def ncr(n, r):
11
       if r > n: return 0
       r = min(r, n - r) # Optimization: C(n,r) = C(n,n-r)
12
       num = den = 1
       for i in range(r):
14
           num *= (n - i)
           den *= (i + 1)
16
       return num // den
17
18
   # Precompute factorials with modulo
19
   MOD = 10**9 + 7
20
   def modfact(n):
21
       fact = [1] * (n + 1)
22
       for i in range(1, n + 1):
23
           fact[i] = fact[i-1] * i % MOD
24
       return fact
25
26
   # Modular combination using precomputed factorials
```

```
# First precompute inverse factorials
   def compute_inv_factorials(n, mod):
29
       fact = modfact(n)
30
31
       inv_fact = [1] * (n + 1)
       inv_fact[n] = pow(fact[n], mod - 2, mod)
32
       for i in range(n - 1, -1, -1):
33
           inv_fact[i] = inv_fact[i + 1] * (i + 1) % mod
34
       return fact, inv_fact
35
36
   def modcomb(n, r, fact, inv_fact, mod):
37
       if r > n or r < 0: return 0
38
       return fact[n] * inv_fact[r] % mod * inv_fact[n-r] % mod
39
```

5 Number Theory

Description: Essential algorithms for problems involving primes, modular arithmetic, and divisibility.

5.1 Modular Arithmetic

```
# Modular inverse using Fermat's Little Theorem
   # Only works when mod is prime
2
   \# a^{(-1)} = a^{(mod-2)} \pmod{p}
   def modinv(a, mod):
       return pow(a, mod - 2, mod)
5
6
   # Extended Euclidean Algorithm
   # Returns (gcd, x, y) where ax + by = gcd(a,b)
   # Can find modular inverse for any coprime a, mod
9
   def extgcd(a, b):
10
       if b == 0:
11
12
           return a, 1, 0
       g, x1, y1 = extgcd(b, a % b)
13
       x = y1
14
       y = x1 - (a // b) * y1
15
       return g, x, y
```

5.2 Sieve of Eratosthenes

Description: Find all primes up to n in O(n log log n) time. Memory: O(n).

```
def sieve(n):
       is_prime = [True] * (n + 1)
2
       is_prime[0] = is_prime[1] = False
4
       for i in range(2, int(n**0.5) + 1):
           if is_prime[i]:
6
                # Mark multiples as composite
                for j in range(i*i, n + 1, i):
                    is_prime[j] = False
       return is_prime
   # Get list of primes
13
   primes = [i for i in range(n+1) if is_prime[i]]
14
```

5.3 Prime Factorization

Description: Decompose n into prime factors in O(sqrt(n)) time.

```
def factorize(n):
       factors = []
       d = 2
4
       # Check divisors up to sqrt(n)
5
       while d * d \le n:
6
            while n % d == 0:
                factors.append(d)
                n //= d
9
            d += 1
10
11
       # If n > 1, it's a prime factor
       if n > 1:
            factors.append(n)
14
15
```

```
return factors
16
17
   # Get prime factors with counts
   from collections import Counter
19
   def prime_factor_counts(n):
20
        return Counter(factorize(n))
21
22
   # Count divisors
23
   def count_divisors(n):
24
        count = 0
25
        i = 1
26
        while i * i <= n:
27
            if n % i == 0:
28
                count += 1 if i * i == n else 2
29
            i += 1
30
        return count
31
32
   # Sum of divisors
34
   def sum_divisors(n):
        total = 0
35
        i = 1
36
        while i * i <= n:
37
            if n % i == 0:
38
                total += i
39
                 if i != n // i:
40
                     total += n // i
41
            i += 1
42
        return total
43
```

5.4 Chinese Remainder Theorem

Description: Solve system of congruences x a (mod m), x a (mod m), ... Time: O(n log M) where M is product of moduli.

```
def chinese_remainder(remainders, moduli):
       # Solve x remainders[i] (mod moduli[i])
2
       # Assumes moduli are pairwise coprime
4
       def extgcd(a, b):
            if b == 0:
6
                return a, 1, 0
            g, x1, y1 = extgcd(b, a \% b)
            return g, y1, x1 - (a // b) * y1
9
10
       total = 0
11
       prod = 1
       for m in moduli:
14
            prod *= m
15
       for r, m in zip(remainders, moduli):
16
            p = prod // m
17
            _{-}, inv, _{-} = extgcd(p, m)
            total += r * inv * p
19
20
       return total % prod
21
```

5.5 Euler's Totient Function

Description: (n) = count of numbers n coprime to n. Time: O(n).

```
def euler_phi(n):
1
       result = n
2
       p = 2
4
       while p * p \le n:
5
            if n % p == 0:
6
                # Remove factor p
                while n \% p == 0:
                    n //= p
9
                # Multiply by (1 - 1/p)
10
                result -= result // p
11
            p += 1
12
13
       if n > 1:
14
            result -= result // n
15
16
       return result
17
   # Phi for range [1, n] using sieve
19
   def phi_sieve(n):
20
       phi = list(range(n + 1)) # phi[i] = i initially
21
22
       for i in range(2, n + 1):
23
            if phi[i] == i: # i is prime
24
                for j in range(i, n + 1, i):
25
                    phi[j] -= phi[j] // i
26
27
       return phi
28
```

5.6 Fast Exponentiation with Matrix

Description: Already covered in matrix section, but useful pattern.

```
# Modular exponentiation
   def mod_exp(base, exp, mod):
2
       result = 1
3
       base %= mod
4
       while exp > 0:
           if exp & 1:
                result = (result * base) % mod
8
           base = (base * base) % mod
9
10
           exp >>= 1
11
       return result
```

6 Graph Algorithms

6.1 Graph Representation

Description: Adjacency list is most common for sparse graphs. Use defaultdict for convenience.

```
from collections import defaultdict, deque

# Unweighted graph
graph = defaultdict(list)

for _ in range(m):
    u, v = map(int, input().split())
    graph[u].append(v)
    graph[v].append(u) # for undirected

# Weighted graph - store (neighbor, weight) tuples
graph[u].append((v, weight))
```

6.2 BFS (Breadth-First Search)

Description: Explores graph level by level. Finds shortest path in unweighted graphs. Time: O(V+E), Space: O(V).

```
def bfs(graph, start):
       visited = set([start])
2
        queue = deque([start])
        dist = {start: 0}
        while queue:
            node = queue.popleft()
            for neighbor in graph[node]:
9
                if neighbor not in visited:
                     visited.add(neighbor)
                     queue.append(neighbor)
                     dist[neighbor] = dist[node] + 1
13
        return dist
16
   # Grid BFS - common in maze/path problems
17
   def grid_bfs(grid, start):
18
       n, m = len(grid), len(grid[0])
19
       visited = [[False] * m for _ in range(n)]
20
       queue = deque([start])
       visited[start[0]][start[1]] = True
22
23
        # 4 directions: right, down, left, up
24
        dirs = [(0,1), (1,0), (0,-1), (-1,0)]
25
26
        while queue:
27
            x, y = queue.popleft()
28
            for dx, dy in dirs:
                nx, ny = x + dx, y + dy
31
32
                # Check bounds and validity
33
                if (0 \le nx \le n \text{ and } 0 \le ny \le m
34
                     and not visited[nx][ny]
35
                     and grid[nx][ny] != '#'):
36
37
                     visited[nx][ny] = True
38
```

6.3 DFS (Depth-First Search)

Description: Explores as far as possible along each branch. Used for connectivity, cycles, topological sort. Time: O(V+E), Space: O(V).

```
# Recursive DFS
   def dfs(graph, node, visited):
2
        visited.add(node)
        for neighbor in graph[node]:
            if neighbor not in visited:
6
                dfs(graph, neighbor, visited)
   # Iterative DFS using stack
9
   def dfs_iterative(graph, start):
       visited = set()
        stack = [start]
12
        while stack:
14
            node = stack.pop()
16
            if node not in visited:
                visited.add(node)
                for neighbor in graph[node]:
20
                     if neighbor not in visited:
21
                         stack.append(neighbor)
22
23
   # Cycle detection in undirected graph
24
   def has_cycle(graph, n):
25
        visited = [False] * n
26
27
        def dfs(node, parent):
            visited[node] = True
29
30
            for neighbor in graph[node]:
31
                if not visited[neighbor]:
                     if dfs(neighbor, node):
33
                         return True
                # Back edge to non-parent = cycle
35
                elif neighbor != parent:
36
                    return True
37
38
            return False
39
40
        # Check all components
41
        for i in range(n):
            if not visited[i]:
43
                if dfs(i, -1):
44
                    return True
45
46
        return False
47
48
   # Cycle detection in directed graph
49
   def has_cycle_directed(graph, n):
50
        WHITE, GRAY, BLACK = 0, 1, 2
        color = [WHITE] * n
53
54
        def dfs(node):
```

```
color[node] = GRAY
55
56
             for neighbor in graph[node]:
                 if color[neighbor] == GRAY:
58
                     return True # Back edge = cycle
59
                 if color[neighbor] == WHITE:
60
                     if dfs(neighbor):
61
                          return True
62
63
             color[node] = BLACK
64
             return False
65
66
        for i in range(n):
67
             if color[i] == WHITE:
68
                 if dfs(i):
70
                     return True
        return False
71
73
    # Connected components count
74
    def count_components(graph, n):
        visited = [False] * n
75
        count = 0
76
77
        def dfs(node):
78
             visited[node] = True
79
             for neighbor in graph[node]:
                 if not visited[neighbor]:
81
                     dfs(neighbor)
82
83
        for i in range(n):
84
             if not visited[i]:
85
                 dfs(i)
86
                 count += 1
87
88
        return count
89
90
    # Bipartite check (2-coloring)
91
    def is_bipartite(graph, n):
92
        color = [-1] * n
93
94
        def bfs(start):
95
             from collections import deque
96
             queue = deque([start])
97
             color[start] = 0
98
99
             while queue:
100
                 node = queue.popleft()
101
102
                 for neighbor in graph[node]:
103
                      if color[neighbor] == -1:
104
                          color[neighbor] = 1 - color[node]
                          queue.append(neighbor)
106
                     elif color[neighbor] == color[node]:
107
                          return False
108
             return True
110
111
        for i in range(n):
112
             if color[i] == -1:
113
                 if not bfs(i):
114
                     return False
115
```

```
return True
```

6.4 Strongly Connected Components (SCC)

Description: Find all SCCs in directed graph using Tarjan's algorithm. Time: O(V+E).

```
def tarjan_scc(graph, n):
       index_counter = [0]
       stack = []
       lowlink = [0] * n
       index = [0] * n
       on_stack = [False] * n
6
       index_initialized = [False] * n
       sccs = []
       def strongconnect(v):
            index[v] = index_counter[0]
            lowlink[v] = index_counter[0]
12
            index_counter[0] += 1
            index_initialized[v] = True
14
            stack.append(v)
            on_stack[v] = True
16
            for w in graph[v]:
                if not index_initialized[w]:
                    strongconnect(w)
20
                    lowlink[v] = min(lowlink[v], lowlink[w])
21
                elif on_stack[w]:
22
                    lowlink[v] = min(lowlink[v], index[w])
23
24
            if lowlink[v] == index[v]:
                scc = []
                while True:
27
                    w = stack.pop()
28
                    on_stack[w] = False
29
30
                    scc.append(w)
                    if w == v:
31
                        break
                sccs.append(scc)
33
       for v in range(n):
35
            if not index_initialized[v]:
36
                strongconnect(v)
37
38
       return sccs
39
```

6.5 Bridges and Articulation Points

Description: Find critical edges (bridges) and vertices (articulation points). Time: O(V+E).

```
def find_bridges(graph, n):
    visited = [False] * n
    disc = [0] * n
    low = [0] * n
    parent = [-1] * n
    time = [0]
    bridges = []

def dfs(u):
    visited[u] = True
```

```
disc[u] = low[u] = time[0]
            time[0] += 1
13
            for v in graph[u]:
14
                 if not visited[v]:
                     parent[v] = u
16
                     dfs(v)
17
                     low[u] = min(low[u], low[v])
18
19
                     # Bridge condition
20
                     if low[v] > disc[u]:
21
                         bridges.append((u, v))
22
                 elif v != parent[u]:
                     low[u] = min(low[u], disc[v])
24
25
        for i in range(n):
26
            if not visited[i]:
27
                 dfs(i)
29
        return bridges
30
31
   def find_articulation_points(graph, n):
32
        visited = [False] * n
33
        disc = [0] * n
34
        low = [0] * n
35
        parent = [-1] * n
36
        time = [0]
37
        ap = set()
38
39
        def dfs(u):
40
            children = 0
41
            visited[u] = True
42
            disc[u] = low[u] = time[0]
43
            time[0] += 1
44
45
            for v in graph[u]:
46
                 if not visited[v]:
47
                     children += 1
48
                     parent[v] = u
49
                     dfs(v)
50
                     low[u] = min(low[u], low[v])
51
52
                     # Articulation point conditions
                     if parent[u] == -1 and children > 1:
54
55
                         ap.add(u)
                     if parent[u] != -1 and low[v] >= disc[u]:
56
                         ap.add(u)
57
                 elif v != parent[u]:
58
                     low[u] = min(low[u], disc[v])
59
60
        for i in range(n):
61
            if not visited[i]:
62
                dfs(i)
63
64
        return list(ap)
65
```

6.6 Lowest Common Ancestor (LCA)

Description: Find LCA of two nodes in a tree. Binary lifting preprocessing: $O(n \log n)$, Query: $O(\log n)$.

```
class LCA:
       def __init__(self, graph, root, n):
2
            self.n = n
3
            self.LOG = 20 \# log2(n) + 1
            self.parent = [[-1] * self.LOG for _ in range(n)]
            self.depth = [0] * n
6
            # DFS to set parent and depth
8
            visited = [False] * n
9
            def dfs(node, par, d):
                visited[node] = True
12
                self.parent[node][0] = par
13
                self.depth[node] = d
14
                for neighbor in graph[node]:
16
                    if not visited[neighbor]:
18
                         dfs(neighbor, node, d + 1)
19
            dfs(root, -1, 0)
20
            # Binary lifting preprocessing
            for j in range(1, self.LOG):
                for i in range(n):
24
                    if self.parent[i][j-1] != -1:
                         self.parent[i][j] = self.parent[
26
                             self.parent[i][j-1]][j-1]
27
28
        def lca(self, u, v):
29
            # Make u deeper
            if self.depth[u] < self.depth[v]:</pre>
31
                u, v = v, u
32
33
34
            # Bring u to same level as v
            diff = self.depth[u] - self.depth[v]
35
            for i in range(self.LOG):
36
                if (diff >> i) & 1:
37
38
                    u = self.parent[u][i]
39
            if u == v:
40
41
                return u
42
            # Binary search for LCA
43
            for i in range(self.LOG - 1, -1, -1):
44
                if self.parent[u][i] != self.parent[v][i]:
                    u = self.parent[u][i]
46
                    v = self.parent[v][i]
47
48
49
            return self.parent[u][0]
50
        def dist(self, u, v):
            # Distance between two nodes
            1 = self.lca(u, v)
53
            return self.depth[u] + self.depth[v] - 2 * self.depth[l]
54
```

7 Shortest Path Algorithms

7.1 Dijkstra's Algorithm

Description: Finds shortest paths from a source to all vertices in weighted graphs with non-negative edges. Time: $O((V+E) \log V)$ with heap.

```
import heapq
   def dijkstra(graph, start, n):
3
       # Initialize distances to infinity
4
       dist = [float('inf')] * n
       dist[start] = 0
       # Min heap: (distance, node)
       heap = [(0, start)]
       while heap:
            d, node = heapq.heappop(heap)
13
            # Skip if already processed with better distance
14
            if d > dist[node]:
                continue
16
            # Relax edges
            for neighbor, weight in graph[node]:
                new_dist = dist[node] + weight
20
21
                if new_dist < dist[neighbor]:</pre>
22
                    dist[neighbor] = new_dist
23
                    heapq.heappush(heap, (new_dist, neighbor))
24
25
       return dist
26
27
   # Path reconstruction
28
   def dijkstra_with_path(graph, start, n):
29
       dist = [float('inf')] * n
30
       parent = [-1] * n
31
       dist[start] = 0
32
       heap = [(0, start)]
33
34
       while heap:
35
            d, node = heapq.heappop(heap)
36
            if d > dist[node]:
37
                continue
38
39
            for neighbor, weight in graph[node]:
40
                new_dist = dist[node] + weight
41
                if new_dist < dist[neighbor]:</pre>
42
                    dist[neighbor] = new_dist
43
                    parent[neighbor] = node
44
45
                    heapq.heappush(heap, (new_dist, neighbor))
46
       return dist, parent
47
   def reconstruct_path(parent, target):
49
       path = []
50
       while target != -1:
            path.append(target)
            target = parent[target]
53
       return path[::-1]
54
```

7.2 Bellman-Ford Algorithm

Description: Finds shortest paths with negative edges. Detects negative cycles. Time: O(VE).

```
def bellman_ford(edges, n, start):
       \# edges = [(u, v, weight), ...]
       dist = [float('inf')] * n
3
       dist[start] = 0
4
       # Relax edges n-1 times
6
       for _ in range(n - 1):
           for u, v, w in edges:
                if dist[u] != float('inf') and \
                   dist[u] + w < dist[v]:</pre>
                    dist[v] = dist[u] + w
11
       # Check for negative cycles
       for u, v, w in edges:
14
           if dist[u] != float('inf') and \
               dist[u] + w < dist[v]:
16
                return None # Negative cycle exists
18
       return dist
19
```

7.3 Floyd-Warshall Algorithm

Description: All-pairs shortest paths. Works with negative edges (no negative cycles). Time: $O(V^3)$.

```
def floyd_warshall(n, edges):
        # Initialize distance matrix
2
        dist = [[float('inf')] * n for _ in range(n)]
        for i in range(n):
            dist[i][i] = 0
       for u, v, w in edges:
8
            dist[u][v] = min(dist[u][v], w)
9
        # Dynamic programming
        for k in range(n): # Intermediate vertex
            for i in range(n):
13
                for j in range(n):
                    dist[i][j] = min(dist[i][j],
                                     dist[i][k] + dist[k][j])
16
17
       return dist
18
19
   # Check for negative cycle
20
   def has_negative_cycle(dist, n):
21
        for i in range(n):
22
            if dist[i][i] < 0:</pre>
23
                return True
24
25
       return False
```

7.4 Minimum Spanning Tree

7.4.1 Kruskal's Algorithm

Description: MST using Union-Find. Sort edges by weight. Time: O(E log E).

```
def kruskal(n, edges):
```

```
\# edges = [(weight, u, v), ...]
        edges.sort() # Sort by weight
       uf = UnionFind(n)
5
       mst_weight = 0
6
       mst_edges = []
       for weight, u, v in edges:
9
            if uf.union(u, v):
                mst_weight += weight
                mst_edges.append((u, v, weight))
       return mst_weight, mst_edges
14
15
   class UnionFind:
16
       def __init__(self, n):
17
            self.parent = list(range(n))
18
            self.rank = [0] * n
19
20
        def find(self, x):
21
            if self.parent[x] != x:
22
                self.parent[x] = self.find(self.parent[x])
23
            return self.parent[x]
24
25
        def union(self, x, y):
26
            px, py = self.find(x), self.find(y)
            if px == py:
28
                return False
29
            if self.rank[px] < self.rank[py]:</pre>
30
31
                px, py = py, px
            self.parent[py] = px
32
            if self.rank[px] == self.rank[py]:
33
                self.rank[px] += 1
34
            return True
```

7.4.2 Prim's Algorithm

Description: MST using heap. Good for dense graphs. Time: O(E log V).

```
import heapq
   def prim(graph, n):
3
       \# graph[u] = [(v, weight), ...]
       visited = [False] * n
       min_heap = [(0, 0)] # (weight, node)
6
       mst\_weight = 0
       while min_heap:
            weight, u = heapq.heappop(min_heap)
10
            if visited[u]:
12
                continue
13
14
            visited[u] = True
            mst_weight += weight
16
17
            for v, w in graph[u]:
18
                if not visited[v]:
19
                    heapq.heappush(min_heap, (w, v))
20
21
```

8 Topological Sort

Description: Linear ordering of vertices in a DAG (Directed Acyclic Graph) such that for every edge $u \rightarrow v$, u comes before v. Used for task scheduling, course prerequisites, build systems. Time: O(V+E).

8.1 Kahn's Algorithm (BFS-based)

Advantages: Detects cycles, can process nodes level by level.

```
from collections import deque
3
   def topo_sort(graph, n):
       # Count incoming edges for each node
4
       indegree = [0] * n
5
       for u in range(n):
6
           for v in graph[u]:
                indegree[v] += 1
       # Start with nodes having no dependencies
       queue = deque([i for i in range(n)
                       if indegree[i] == 0])
       result = []
13
14
       while queue:
           node = queue.popleft()
16
           result.append(node)
18
            # Remove this node from graph
           for neighbor in graph[node]:
20
                indegree[neighbor] -= 1
21
22
                # If neighbor has no more dependencies
23
                if indegree[neighbor] == 0:
24
                    queue.append(neighbor)
25
26
       # If not all nodes processed, cycle exists
27
       return result if len(result) == n else []
28
```

8.2 DFS-based Topological Sort

Advantages: Simpler code, uses less space.

```
def topo_dfs(graph, n):
       visited = [False] * n
2
       stack = []
       def dfs(node):
           visited[node] = True
            # Visit all neighbors first
           for neighbor in graph[node]:
9
                if not visited[neighbor]:
10
                    dfs(neighbor)
            # Add to stack after visiting all descendants
13
           stack.append(node)
14
       # Process all components
16
       for i in range(n):
17
           if not visited[i]:
18
                dfs(i)
19
```

```
20
21 # Reverse stack gives topological order
22 return stack[::-1]
```

9 Union-Find (Disjoint Set Union)

Description: Efficiently tracks disjoint sets and supports union and find operations. Used for Kruskal's MST, connected components, cycle detection. Time: $O(\alpha(n)) \approx O(1)$ per operation with path compression and union by rank.

Applications:

- Kruskal's minimum spanning tree
- Detecting cycles in undirected graphs
- Finding connected components
- Network connectivity problems

```
class UnionFind:
       def __init__(self, n):
2
            # Each node is its own parent initially
            self.parent = list(range(n))
            # Rank for union by rank optimization
            self.rank = [0] * n
6
       def find(self, x):
            # Path compression: point directly to root
9
            if self.parent[x] != x:
                self.parent[x] = self.find(self.parent[x])
            return self.parent[x]
12
       def union(self, x, y):
14
            # Find roots
            px, py = self.find(x), self.find(y)
16
17
            # Already in same set
            if px == py:
                return False
20
21
            # Union by rank: attach smaller tree under larger
22
            if self.rank[px] < self.rank[py]:</pre>
23
24
                px, py = py, px
25
            self.parent[py] = px
26
            # Increase rank if trees had equal rank
28
            if self.rank[px] == self.rank[py]:
                self.rank[px] += 1
30
31
            return True
33
       def connected(self, x, y):
            return self.find(x) == self.find(y)
35
36
       # Count number of disjoint sets
37
       def count_sets(self):
38
            return len(set(self.find(i)
39
                       for i in range(len(self.parent))))
40
41
   # Example: Detect cycle in undirected graph
42
   def has_cycle_uf(edges, n):
43
       uf = UnionFind(n)
44
       for u, v in edges:
45
```

```
if uf.connected(u, v):
return True # Cycle found
uf.union(u, v)
return False
```

10 Binary Search

Description: Search in $O(\log n)$ time. Works on monotonic functions (sorted arrays, or functions where condition transitions from false to true exactly once).

10.1 Template for Finding First/Last Position

```
# Find FIRST position where check(mid) is True
   def binary_search_first(left, right, check):
2
        while left < right:</pre>
            mid = (left + right) // 2
            if check(mid):
6
                right = mid # Could be answer, search left
            else:
                left = mid + 1  # Not answer, search right
9
        return left
11
12
   # Find LAST position where check(mid) is True
   def binary_search_last(left, right, check):
14
        while left < right:</pre>
            mid = (left + right + 1) // 2 # Round up!
16
            if check(mid):
                left = mid # Could be answer, search right
20
                right = mid - 1 # Not answer, search left
21
22
        return left
23
24
   # Example: Integer square root
25
   def sqrt_binary(n):
26
        left, right = 0, n
27
28
        while left < right:</pre>
29
            mid = (left + right + 1) // 2
30
31
            if mid * mid <= n:</pre>
32
                left = mid # mid might be answer
33
            else:
34
                right = mid - 1
35
36
        return left
37
38
   # Binary search on answer - common pattern
39
   def min_days_to_make_bouquets(bloomDay, m, k):
40
        # Can we make m bouquets in 'days' days?
41
        def can_make(days):
            bouquets = consecutive = 0
43
            for bloom in bloomDay:
44
                if bloom <= days:</pre>
45
                     consecutive += 1
46
                     if consecutive == k:
47
                         bouquets += 1
48
                         consecutive = 0
49
                else:
50
                     consecutive = 0
51
            return bouquets >= m
53
54
        if len(bloomDay) < m * k:</pre>
```

```
return -1

# Binary search on number of days

return binary_search_first(

min(bloomDay), max(bloomDay), can_make)
```

11 Dynamic Programming

Description: Solve problems by breaking them into overlapping subproblems. Store results to avoid recomputation.

11.1 Longest Increasing Subsequence

Description: Find length of longest strictly increasing subsequence. Time: O(n log n) using binary search.

```
def lis(arr):
       from bisect import bisect_left
2
3
        # dp[i] = smallest ending value of LIS of length i+1
        dp = []
5
6
       for x in arr:
            # Find position to place x
            idx = bisect_left(dp, x)
            if idx == len(dp):
                dp.append(x) # Extend LIS
            else:
13
                              # Better ending for this length
                dp[idx] = x
14
       return len(dp)
16
17
   # LIS with actual sequence
18
   def lis_with_sequence(arr):
19
       from bisect import bisect_left
20
21
       n = len(arr)
22
       dp = []
23
        parent = [-1] * n
24
       dp_idx = [] # indices in dp
25
26
       for i, x in enumerate(arr):
27
            idx = bisect_left(dp, x)
28
29
            if idx == len(dp):
30
                dp.append(x)
                dp_idx.append(i)
            else:
33
                dp[idx] = x
34
                dp_idx[idx] = i
35
36
            if idx > 0:
37
                parent[i] = dp_idx[idx - 1]
38
39
        # Reconstruct sequence
40
        result = []
41
        idx = dp_idx[-1]
42
43
        while idx != -1:
            result.append(arr[idx])
44
            idx = parent[idx]
45
46
        return result[::-1]
```

$11.2 \quad 0/1 \text{ Knapsack}$

Description: Maximum value with weight capacity. Each item can be taken 0 or 1 time. Time: $O(n \times capacity)$, Space: $O(n \times capacity)$.

```
def knapsack(weights, values, capacity):
       n = len(weights)
2
        # dp[i][w] = max value using first i items,
                     weight \le w
        dp = [[0] * (capacity + 1) for _ in range(n + 1)]
       for i in range(1, n + 1):
            for w in range(capacity + 1):
8
                # Don't take item i-1
9
                dp[i][w] = dp[i-1][w]
11
                # Take item i-1 if it fits
                if weights[i-1] <= w:</pre>
13
                    dp[i][w] = max(
                         dp[i][w],
                         dp[i-1][w - weights[i-1]] + values[i-1]
16
17
18
       return dp[n][capacity]
19
20
   # Space-optimized O(capacity)
21
   def knapsack_optimized(weights, values, capacity):
22
        dp = [0] * (capacity + 1)
23
24
        for i in range(len(weights)):
25
            # Iterate backwards to avoid using updated values
26
            for w in range(capacity, weights[i] - 1, -1):
27
                dp[w] = max(dp[w],
28
                            dp[w - weights[i]] + values[i])
29
30
        return dp[capacity]
31
```

11.3 Edit Distance (Levenshtein Distance)

Description: Minimum operations (insert, delete, replace) to transform s1 to s2. Time: $O(m \times n)$, Space: $O(m \times n)$.

```
def edit_dist(s1, s2):
       m, n = len(s1), len(s2)
2
       # dp[i][j] = edit \ distance \ of \ s1[:i] \ and \ s2[:j]
       dp = [[0] * (n + 1) for _ in range(m + 1)]
       # Base cases: empty string transformations
6
       for i in range(m + 1):
           dp[i][0] = i  # Delete all
       for j in range(n + 1):
           dp[0][j] = j \# Insert all
       for i in range(1, m + 1):
12
           for j in range(1, n + 1):
                if s1[i-1] == s2[j-1]:
14
                    # Characters match, no operation needed
                    dp[i][j] = dp[i-1][j-1]
16
                else:
                    dp[i][j] = 1 + min(
18
                                          # Delete from s1
19
                        dp[i-1][j],
```

```
dp[i][j-1], # Insert into s1
dp[i-1][j-1] # Replace in s1

22
)

return dp[m][n]
```

11.4 Longest Common Subsequence (LCS)

Description: Longest subsequence common to two sequences. Time: $O(m \times n)$.

```
def lcs(s1, s2):
       m, n = len(s1), len(s2)
2
       dp = [[0] * (n + 1) for _ in range(m + 1)]
       for i in range(1, m + 1):
            for j in range(1, n + 1):
6
                if s1[i-1] == s2[j-1]:
                    dp[i][j] = dp[i-1][j-1] + 1
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])
       return dp[m][n]
12
13
   # Reconstruct LCS
14
   def lcs_string(s1, s2):
       m, n = len(s1), len(s2)
       dp = [[0] * (n + 1) for _ in range(m + 1)]
17
18
       for i in range(1, m + 1):
19
            for j in range(1, n + 1):
20
                if s1[i-1] == s2[j-1]:
21
                    dp[i][j] = dp[i-1][j-1] + 1
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])
24
25
        # Backtrack
26
        result = []
27
        i, j = m, n
28
        while i > 0 and j > 0:
29
            if s1[i-1] == s2[j-1]:
30
                result.append(s1[i-1])
                i -= 1
32
                j -= 1
33
            elif dp[i-1][j] > dp[i][j-1]:
34
                i -= 1
35
            else:
36
                j -= 1
37
38
        return ''.join(reversed(result))
```

11.5 Coin Change

Description: Minimum coins to make amount, or count ways. Time: O(n×amount).

```
# Minimum coins
def coin_change_min(coins, amount):
    dp = [float('inf')] * (amount + 1)
    dp[0] = 0

for coin in coins:
    for i in range(coin, amount + 1):
```

```
dp[i] = min(dp[i], dp[i - coin] + 1)
8
9
       return dp[amount] if dp[amount] != float('inf') else -1
10
   # Count ways
   def coin_change_ways(coins, amount):
13
       dp = [0] * (amount + 1)
14
       dp[0] = 1
16
       for coin in coins:
           for i in range(coin, amount + 1):
                dp[i] += dp[i - coin]
19
20
       return dp[amount]
21
```

11.6 Palindrome Partitioning

Description: Minimum cuts to partition string into palindromes. Time: $O(n^2)$.

```
def min_palindrome_partition(s):
       n = len(s)
2
        # is_pal[i][j] = True \ if \ s[i:j+1] \ is \ palindrome
        is_pal = [[False] * n for _ in range(n)]
        # Every single character is palindrome
        for i in range(n):
            is_pal[i][i] = True
9
10
        # Check all substrings
        for length in range(2, n + 1):
            for i in range(n - length + 1):
13
                j = i + length - 1
                if s[i] == s[j]:
                    is_pal[i][j] = (length == 2 or
                                     is_pal[i+1][j-1])
17
18
        \# dp[i] = min cuts for s[0:i+1]
19
        dp = [float('inf')] * n
20
21
        for i in range(n):
            if is_pal[0][i]:
23
                dp[i] = 0
24
            else:
25
                for j in range(i):
26
                    if is_pal[j+1][i]:
27
                         dp[i] = min(dp[i], dp[j] + 1)
28
29
        return dp[n-1]
```

11.7 Subset Sum

Description: Check if subset sums to target. Time: $O(n \times sum)$.

```
def subset_sum(arr, target):
    n = len(arr)
    dp = [[False] * (target + 1) for _ in range(n + 1)]

# Base case: sum 0 is always achievable
for i in range(n + 1):
    dp[i][0] = True
```

```
8
       for i in range(1, n + 1):
9
           for s in range(target + 1):
10
                # Don't take arr[i-1]
11
                dp[i][s] = dp[i-1][s]
12
13
                # Take arr[i-1] if possible
                if s >= arr[i-1]:
15
                    dp[i][s] = dp[i][s] or dp[i-1][s - arr[i-1]]
16
       return dp[n][target]
18
19
   # Space optimized
20
   def subset_sum_optimized(arr, target):
21
       dp = [False] * (target + 1)
22
       dp[0] = True
23
24
       for num in arr:
            for s in range(target, num - 1, -1):
26
                dp[s] = dp[s] or dp[s - num]
27
28
       return dp[target]
29
```

12 Array Techniques

12.1 Prefix Sum

Description: Precompute cumulative sums for O(1) range queries. Time: O(n) preprocessing, O(1) query.

```
# 1D prefix sum
   prefix = [0] * (n + 1)
   for i in range(n):
3
       prefix[i + 1] = prefix[i] + arr[i]
4
   # Range sum query [l, r] inclusive
   range_sum = prefix[r + 1] - prefix[1]
   # 2D prefix sum - for rectangle sum queries
9
   def build_2d_prefix(matrix):
       n, m = len(matrix), len(matrix[0])
       prefix = [[0] * (m + 1) for _ in range(n + 1)]
13
       for i in range(1, n + 1):
14
           for j in range(1, m + 1):
                prefix[i][j] = (matrix[i-1][j-1] +
16
                               prefix[i-1][j] +
                                prefix[i][j-1] -
18
                               prefix[i-1][j-1])
20
       return prefix
21
22
   # Rectangle sum from (x1,y1) to (x2,y2) inclusive
23
   def rect_sum(prefix, x1, y1, x2, y2):
24
       return (prefix[x2+1][y2+1] -
25
                prefix[x1][y2+1] -
26
                prefix[x2+1][y1] +
27
                prefix[x1][y1])
28
```

12.2 Difference Array

Description: Efficiently perform range updates. O(1) per update, O(n) to reconstruct.

```
# Initialize difference array
   diff = [0] * (n + 1)
2
   # Add 'val' to range [l, r]
   def range_update(diff, l, r, val):
       diff[1] += val
6
       diff[r + 1] -= val
   # After all updates, reconstruct array
9
   def reconstruct(diff):
10
       result = []
       current = 0
12
       for i in range(len(diff) - 1):
13
           current += diff[i]
14
           result.append(current)
       return result
16
17
   # Example: Multiple range updates
18
   diff = [0] * (n + 1)
19
   for 1, r, val in updates:
20
21
       range_update(diff, 1, r, val)
```

```
2 | final_array = reconstruct(diff)
```

12.3 Sliding Window

Description: Maintain a window of elements while traversing. Time: O(n).

```
# Fixed size window
   def max_sum_window(arr, k):
       window_sum = sum(arr[:k])
       max_sum = window_sum
4
       # Slide window: add right, remove left
6
       for i in range(k, len(arr)):
            window_sum += arr[i] - arr[i - k]
            max_sum = max(max_sum, window_sum)
       return max_sum
   # Variable size window - two pointers
   def min_subarray_sum_geq_target(arr, target):
14
       left = 0
       current_sum = 0
16
       min_len = float('inf')
17
18
       for right in range(len(arr)):
19
            current_sum += arr[right]
20
21
            # Shrink window while condition holds
22
            while current_sum >= target:
23
                min_len = min(min_len, right - left + 1)
24
                current_sum -= arr[left]
26
                left += 1
27
       return min_len if min_len != float('inf') else 0
28
29
   # Longest substring with at most k distinct chars
30
   def longest_k_distinct(s, k):
31
       from collections import defaultdict
32
       left = 0
34
       char_count = defaultdict(int)
35
       max_len = 0
36
37
       for right in range(len(s)):
38
            char_count[s[right]] += 1
39
40
            # Shrink if too many distinct
41
            while len(char_count) > k:
42
                char_count[s[left]] -= 1
43
                if char_count[s[left]] == 0:
44
                    del char_count[s[left]]
45
                left += 1
46
47
            max_len = max(max_len, right - left + 1)
49
       return max_len
50
```

13 Advanced Data Structures

13.1 Segment Tree

Description: Supports range queries and point updates in O(log n). Can be modified for range updates with lazy propagation.

```
class SegmentTree:
2
        def __init__(self, arr):
            self.n = len(arr)
3
            # Tree size: 4n is safe upper bound
4
            self.tree = [0] * (4 * self.n)
            self.build(arr, 0, 0, self.n - 1)
        def build(self, arr, node, start, end):
            if start == end:
                # Leaf node
                self.tree[node] = arr[start]
            else:
                mid = (start + end) // 2
13
                # Build left and right subtrees
14
                self.build(arr, 2*node+1, start, mid)
                self.build(arr, 2*node+2, mid+1, end)
16
                # Combine results (sum in this case)
                self.tree[node] = (self.tree[2*node+1] +
18
                                   self.tree[2*node+2])
20
        def update(self, node, start, end, idx, val):
21
            if start == end:
22
                # Leaf node - update value
23
                self.tree[node] = val
24
            else:
                mid = (start + end) // 2
26
                if idx <= mid:</pre>
27
                     # Update left subtree
28
                    self.update(2*node+1, start, mid, idx, val)
29
                else:
30
                     # Update right subtree
31
                     self.update(2*node+2, mid+1, end, idx, val)
33
                # Recompute parent
                self.tree[node] = (self.tree[2*node+1] +
34
                                   self.tree[2*node+2])
35
36
        def query(self, node, start, end, l, r):
37
            # No overlap
38
            if r < start or end < 1:</pre>
39
                return 0
40
41
            # Complete overlap
42
            if 1 <= start and end <= r:</pre>
43
                return self.tree[node]
44
45
            # Partial overlap
46
            mid = (start + end) // 2
47
            left_sum = self.query(2*node+1, start, mid, 1, r)
            right_sum = self.query(2*node+2, mid+1, end, 1, r)
49
            return left_sum + right_sum
50
        # Public interface
        def update_val(self, idx, val):
            self.update(0, 0, self.n-1, idx, val)
54
```

```
def range_sum(self, l, r):
return self.query(0, 0, self.n-1, l, r)
```

13.2 Fenwick Tree (Binary Indexed Tree)

Description: Simpler than segment tree, supports prefix sum and point updates in O(log n). More space efficient.

```
class FenwickTree:
       def __init__(self, n):
2
            self.n = n
            # 1-indexed for easier implementation
            self.tree = [0] * (n + 1)
6
        def update(self, i, delta):
            \# Add delta to position i (1-indexed)
            while i <= self.n:</pre>
                self.tree[i] += delta
                # Move to next node: add LSB
                i += i & (-i)
13
        def query(self, i):
14
            # Get prefix sum up to i (1-indexed)
            s = 0
16
            while i > 0:
17
                s += self.tree[i]
18
                # Move to parent: remove LSB
19
                i -= i & (-i)
21
            return s
        def range_query(self, l, r):
            # Sum from l to r (1-indexed)
24
25
            return self.query(r) - self.query(l - 1)
26
   # Usage example
27
   bit = FenwickTree(n)
   for i, val in enumerate(arr, 1):
29
        bit.update(i, val)
30
31
   # Range sum [l, r] (1-indexed)
32
   result = bit.range_query(1, r)
33
```

13.3 Trie (Prefix Tree)

Description: Tree for storing strings, enables fast prefix searches. Time: O(m) for operations where m is string length.

```
class TrieNode:
       def __init__(self):
           self.children = {} # char -> TrieNode
3
           self.is_end = False # End of word marker
5
   class Trie:
6
       def __init__(self):
           self.root = TrieNode()
8
9
       def insert(self, word):
           # Insert word - O(len(word))
           node = self.root
12
```

```
for char in word:
13
                if char not in node.children:
14
                    node.children[char] = TrieNode()
                node = node.children[char]
16
            node.is_end = True
17
18
       def search(self, word):
19
            # Exact word search - O(len(word))
20
            node = self.root
21
            for char in word:
22
                if char not in node.children:
23
                    return False
24
                node = node.children[char]
            return node.is_end
26
27
       def starts_with(self, prefix):
28
            # Prefix search - O(len(prefix))
29
            node = self.root
31
            for char in prefix:
                if char not in node.children:
32
                    return False
33
                node = node.children[char]
34
35
            return True
36
        # Find all words with given prefix
37
       def words_with_prefix(self, prefix):
            node = self.root
39
            for char in prefix:
40
                if char not in node.children:
41
42
                    return []
                node = node.children[char]
43
44
            # DFS to collect all words
45
            words = []
46
            def dfs(n, path):
47
                if n.is_end:
48
                    words.append(prefix + path)
49
                for char, child in n.children.items():
50
                    dfs(child, path + char)
51
52
            dfs(node, "")
53
            return words
```

14 Bit Manipulation

Description: Efficient operations using bitwise operators. Useful for sets, flags, and optimization.

```
# Check if i-th bit (O-indexed) is set
   is\_set = (n >> i) & 1
2
   # Set i-th bit to 1
4
   n = (1 << i)
5
   # Clear i-th bit (set to 0)
7
   n &= ~(1 << i)
8
9
   # Toggle i-th bit
10
   n = (1 << i)
11
   # Count set bits (popcount)
13
   count = bin(n).count('1')
14
   count = n.bit_count() # Python 3.10+
16
   # Get lowest set bit
17
   lsb = n & -n # Also n & (~n + 1)
18
19
   # Remove lowest set bit
20
   n \&= (n - 1)
21
22
   # Check if power of 2
23
   is_pow2 = n > 0 and (n & (n - 1)) == 0
24
25
   # Check if power of 4
26
   is_pow4 = n > 0 and (n & (n-1)) == 0 and (n & 0x555555555) != 0
27
28
   # Iterate over all subsets of set represented by mask
29
   mask = (1 << n) - 1 # All bits set
30
   submask = mask
31
   while submask > 0:
32
        # Process submask
33
        submask = (submask - 1) & mask
34
35
   \# Iterate through all k-bit masks
36
   def iterate_k_bits(n, k):
38
       mask = (1 << k) - 1
       while mask < (1 << n):
39
            # Process mask
40
            yield mask
41
            # Gosper's hack
42
            c = mask & -mask
43
            r = mask + c
44
            mask = (((r ^mask) >> 2) // c) | r
45
46
   # XOR properties
47
   \# a \cap a = 0 (number XOR itself is 0)
48
   \# a \cap 0 = a \text{ (number XOR 0 is itself)}
   # XOR is commutative and associative
50
   # Find unique element when all others appear twice:
51
   def find_unique(arr):
       result = 0
53
       for x in arr:
54
            result ^= x
55
       return result
56
57
```

```
# Subset enumeration
   n = 5 # Number of elements
59
   for mask in range(1 << n):</pre>
60
61
       subset = [i for i in range(n) if mask & (1 << i)]</pre>
        # Process subset
62
63
   # Check parity (odd/even number of 1s)
64
   def parity(n):
65
       count = 0
66
        while n:
67
            count ^= 1
68
            n &= n - 1
69
       return count # 1 if odd, O if even
70
71
   # Swap two numbers without temp variable
72
73
   a, b = 5, 10
   a ^= b
74
75 b ^= a
   a ^= b
76
   # Now a=10, b=5
```

15 Matrix Operations

Description: Matrix operations for DP optimization, graph algorithms, and recurrence relations.

15.1 Matrix Multiplication

```
# Standard\ matrix\ multiplication\ -\ O(n^3)
   def matmul(A, B):
2
       n, m, p = len(A), len(A[0]), len(B[0])
3
       C = [[0] * p for _ in range(n)]
       for i in range(n):
            for j in range(p):
                for k in range(m):
                    C[i][j] += A[i][k] * B[k][j]
       return C
12
   # With modulo
13
   def matmul_mod(A, B, mod):
14
       n = len(A)
       C = [[0] * n for _ in range(n)]
16
17
       for i in range(n):
18
            for j in range(n):
19
                for k in range(n):
                    C[i][j] = (C[i][j] +
21
                               A[i][k] * B[k][j]) % mod
22
23
       return C
```

15.2 Matrix Exponentiation

Description: Compute M^n in $O(k^3 \log n)$ where k is matrix dimension. Used for solving linear recurrences efficiently.

```
def matpow(M, n, mod):
       size = len(M)
2
       # Identity matrix
       result = [[1 if i==j else 0
                   for j in range(size)]
6
                  for i in range(size)]
       # Binary exponentiation
9
       while n > 0:
10
            if n & 1:
                result = matmul_mod(result, M, mod)
           M = matmul_mod(M, M, mod)
            n >>= 1
14
       return result
16
17
   # Example: Fibonacci using matrix exponentiation
18
   \# F(n) = [[1,1],[1,0]]^n
19
   def fibonacci(n, mod):
20
       if n == 0: return 0
21
       if n == 1: return 1
22
23
       M = [[1, 1], [1, 0]]
24
25
       result = matpow(M, n - 1, mod)
```

```
return result[0][0]
26
2.7
   # Linear recurrence: a(n) = c1*a(n-1) + c2*a(n-2) + ...
28
   # Build transition matrix and use matrix exponentiation
29
   def linear_recurrence(coeffs, init, n, mod):
30
       k = len(coeffs)
31
32
       # Transition matrix
33
       # [a(n), a(n-1), ..., a(n-k+1)]
34
       M = [[0] * k for _ in range(k)]
35
       M[0] = coeffs # First row
       for i in range(1, k):
37
            M[i][i-1] = 1 # Identity for shifting
38
39
       # Initial state vector
40
       state = init[::-1] # Reverse order
41
42
       if n < k:
43
           return init[n]
44
45
       \# M^{(n-k+1)}
46
       result_matrix = matpow(M, n - k + 1, mod)
47
48
       # Multiply with initial state
49
       result = 0
50
       for i in range(k):
            result = (result + result_matrix[0][i] * state[i]) % mod
52
       return result
54
55
   # Example: Tribonacci T(n) = T(n-1) + T(n-2) + T(n-3)
56
   def tribonacci(n, mod):
57
       if n == 0: return 0
58
       if n == 1 or n == 2: return 1
59
60
       coeffs = [1, 1, 1]
61
       init = [0, 1, 1]
62
       return linear_recurrence(coeffs, init, n, mod)
63
```

16 Miscellaneous Tips

16.1 Python-Specific Optimizations

```
# Fast input for large datasets
   import sys
2
   input = sys.stdin.readline
3
   # Increase recursion limit for deep DFS/DP
   sys.setrecursionlimit(10**6)
6
   # Threading for higher stack limit (CAUTION: use carefully)
8
   import threading
9
   threading.stack_size(2**26) # 64MB
10
   sys.setrecursionlimit(2**20)
12
   # Deep copy (be careful with performance)
13
   from copy import deepcopy
14
   new_list = deepcopy(old_list)
16
   # Fast output (for printing large results)
17
   import sys
18
   print = sys.stdout.write # Only use for string output
```

16.2 Useful Libraries

```
# Iterator tools - powerful combinations
   from itertools import *
2
3
   # permutations(iterable, r) - all r-length permutations
   perms = list(permutations([1,2,3], 2))
5
   # [(1,2), (1,3), (2,1), (2,3), (3,1), (3,2)]
   # combinations(iterable, r) - r-length combinations
8
   combs = list(combinations([1,2,3], 2))
9
   # [(1,2), (1,3), (2,3)]
10
11
   # product - cartesian product
12
   prod = list(product([1,2], ['a','b']))
13
   \# [(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b')]
14
16
   # accumulate - running totals
   acc = list(accumulate([1,2,3,4]))
17
   # [1, 3, 6, 10]
18
19
   # chain - flatten iterables
20
   chained = list(chain([1,2], [3,4]))
21
   # [1, 2, 3, 4]
```

16.3 Common Patterns

```
# Lambda sorting with multiple keys
arr.sort(key=lambda x: (-x[0], x[1]))
# Sort by first desc, then second asc

# All/Any - short-circuit evaluation
all(x > 0 for x in arr) # True if all positive
any(x > 0 for x in arr) # True if any positive
# Zip - parallel iteration
```

```
for a, b in zip(list1, list2):
10
       pass
11
12
   # Enumerate - index and value
13
   for i, val in enumerate(arr):
14
       print(f"arr[{i}] = {val}")
15
16
   # Custom comparison function
17
   from functools import cmp_to_key
18
19
   def compare(a, b):
20
       # Return -1 if a < b, 0 if equal, 1 if a > b
21
       if a + b > b + a:
22
           return -1
23
       return 1
24
25
   arr.sort(key=cmp_to_key(compare))
26
27
   # DefaultDict with lambda
28
   from collections import defaultdict
29
   d = defaultdict(lambda: float('inf'))
30
31
   # Multiple assignment
32
   a, b = b, a # Swap
33
   a, *rest, b = [1,2,3,4,5] # a=1, rest=[2,3,4], b=5
34
```

16.4 Common Pitfalls

```
# Integer division - floors toward negative infinity
                    # 2
   print(7 // 3)
   print(-7 // 3)
                   # -3 (not -2!)
3
4
   # For ceiling division toward zero:
5
   def div_ceil(a, b):
6
       return -(-a // b)
7
   # Modulo with negative numbers
9
   print((-5) % 3) # 1 (not -2!)
10
   print(5 % -3)
                     # -1
11
12
   # List multiplication creates references!
13
   matrix = [[0] * m] * n # WRONG! All rows same object
14
   matrix[0][0] = 1
                           # Changes all rows!
15
16
   # Correct way
17
   matrix = [[0] * m for _ in range(n)]
18
19
   # Float comparison - don't use ==
20
   a, b = 0.1 + 0.2, 0.3
21
   print(a == b) # False!
22
23
   # Use epsilon comparison
24
   eps = 1e-9
25
   print(abs(a - b) < eps) # True</pre>
26
27
   # String immutability
2.8
   s = "abc"
29
   # s[0] = 'd' # ERROR!
   s = 'd' + s[1:] # OK
31
32
```

```
# For many string mutations, use list
33
   chars = list(s)
34
   chars[0] = 'd'
   s = ''.join(chars)
36
37
   # Mutable default arguments - dangerous!
38
   def func(arr=[]):
                       # WRONG!
39
       arr.append(1)
40
       return arr
41
42
   # Each call modifies same list
43
   print(func()) # [1]
44
   print(func()) # [1, 1]
45
46
   # Correct way
47
   def func(arr=None):
48
       if arr is None:
49
            arr = []
50
51
       arr.append(1)
       return arr
52
53
   # Generator expressions save memory
54
   sum(x*x for x in range(10**6)) # Memory efficient
55
56
   sum([x*x for x in range(10**6)]) # Creates full list
57
   # Ternary operator
59
   x = a if condition else b
60
61
   # Dictionary get with default
62
   count = d.get(key, 0) + 1
63
64
   # Matrix rotation 90 degrees clockwise
65
   def rotate_90(matrix):
66
       return [list(row) for row in zip(*matrix[::-1])]
67
68
   # Matrix transpose
69
   def transpose(matrix):
70
       return [list(row) for row in zip(*matrix)]
```

16.5 Time Complexity Reference

```
# Common time complexities for n = 10^6:
   # O(1), O(\log n): instant
   # O(n): ~1 second
   # O(n log n): ~1-2 seconds
   # O(n sqrt(n)): ~30 seconds (risky)
   # O(n^2): TLE for n > 10^4
6
   # O(2^n): TLE for n > 20
7
   # O(n!): TLE for n > 11
9
   # Input size guidelines:
10
          12: O(n!)
   # n
11
           20: O(2^n)
   # n
12
           500: O(n^3)
13
   # n
          5000: O(n^2)
14
   # n
          10^6: O(n \log n)
15
   \# n
          10^8: O(n)
   # n > 10^8: O(\log n) or O(1)
```

17 Computational Geometry

17.1 Basic Geometry

Description: Fundamental geometric operations for 2D points.

```
import math
   # Point operations
3
   def dist(p1, p2):
        # Euclidean distance
       return math.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)
6
   def cross_product(0, A, B):
8
9
       # Cross product of vectors OA and OB
       # Positive: counter-clockwise
       # Negative: clockwise
       # Zero: collinear
12
       return (A[0] - O[0]) * (B[1] - O[1]) - \
13
               (A[1] - O[1]) * (B[0] - O[0])
14
16
   def dot_product(A, B, C, D):
       # Dot product of vectors AB and CD
17
       return (B[0] - A[0]) * (D[0] - C[0]) + \
18
               (B[1] - A[1]) * (D[1] - C[1])
19
20
   # Check if point is on segment
21
   def on_segment(p, q, r):
22
       \# Check if q lies on segment pr
23
       return (q[0] \le max(p[0], r[0]) and
24
                q[0] >= min(p[0], r[0]) and
25
                q[1] \le \max(p[1], r[1]) and
26
                q[1] >= min(p[1], r[1]))
27
   # Segment intersection
29
   def segments_intersect(p1, q1, p2, q2):
30
       o1 = cross_product(p1, q1, p2)
31
       o2 = cross_product(p1, q1, q2)
       o3 = cross_product(p2, q2, p1)
33
       o4 = cross_product(p2, q2, q1)
34
35
        # General case
37
       if o1 * o2 < 0 and o3 * o4 < 0:
            return True
38
39
        # Special cases (collinear)
40
       if o1 == 0 and on_segment(p1, p2, q1):
41
            return True
42
       if o2 == 0 and on_segment(p1, q2, q1):
43
            return True
44
       if o3 == 0 and on_segment(p2, p1, q2):
45
            return True
46
47
       if o4 == 0 and on_segment(p2, q1, q2):
48
            return True
49
       return False
```

17.2 Convex Hull

Description: Find convex hull using Graham's scan. Time: O(n log n).

```
def convex_hull(points):
1
        # Graham's scan algorithm
2
        points = sorted(points) # Sort by x, then y
4
        if len(points) <= 2:</pre>
5
            return points
6
        # Build lower hull
        lower = []
9
        for p in points:
10
            while (len(lower) >= 2 and
                    cross_product(lower[-2], lower[-1], p) <= 0):</pre>
                 lower.pop()
            lower.append(p)
14
15
        # Build upper hull
16
        upper = []
17
        for p in reversed(points):
            while (len(upper) >= 2 and
19
                    cross_product(upper[-2], upper[-1], p) <= 0):</pre>
20
                upper.pop()
21
            upper.append(p)
22
23
        # Remove last point (duplicate of first)
24
        return lower[:-1] + upper[:-1]
26
    # Convex hull area
27
   def polygon_area(points):
28
        # Shoelace formula
29
30
        n = len(points)
        area = 0
31
32
        for i in range(n):
33
34
            j = (i + 1) \% n
            area += points[i][0] * points[j][1]
            area -= points[j][0] * points[i][1]
36
37
        return abs(area) / 2
```

17.3 Point in Polygon

Description: Check if point is inside polygon. Time: O(n).

```
def point_in_polygon(point, polygon):
2
       # Ray casting algorithm
       x, y = point
       n = len(polygon)
       inside = False
       p1x, p1y = polygon[0]
       for i in range(1, n + 1):
8
            p2x, p2y = polygon[i % n]
9
10
            if y > min(p1y, p2y):
                if y \le max(p1y, p2y):
                    if x \le max(p1x, p2x):
13
                         if p1y != p2y:
14
                             xinters = (y - p1y) * (p2x - p1x) / 
                                        (p2y - p1y) + p1x
16
17
18
                         if p1x == p2x or x <= xinters:</pre>
```

```
inside = not inside

plx, ply = p2x, p2y

return inside
```

17.4 Closest Pair of Points

Description: Find closest pair using divide and conquer. Time: O(n log n).

```
def closest_pair(points):
       points_sorted_x = sorted(points, key=lambda p: p[0])
2
       points_sorted_y = sorted(points, key=lambda p: p[1])
3
       def closest_recursive(px, py):
            n = len(px)
            # Base case: brute force
            if n <= 3:
9
                min_dist = float('inf')
10
                for i in range(n):
                    for j in range(i + 1, n):
                         min_dist = min(min_dist, dist(px[i], px[j]))
13
                return min_dist
14
            # Divide
16
17
            mid = n // 2
            midpoint = px[mid]
19
            pyl = [p for p in py if p[0] <= midpoint[0]]</pre>
20
            pyr = [p for p in py if p[0] > midpoint[0]]
21
22
            # Conquer
23
            dl = closest_recursive(px[:mid], pyl)
24
            dr = closest_recursive(px[mid:], pyr)
25
            d = \min(dl, dr)
26
27
            # Combine: check strip
28
            strip = [p for p in py if abs(p[0] - midpoint[0]) < d]</pre>
30
            for i in range(len(strip)):
31
                j = i + 1
32
                while j < len(strip) and strip[j][1] - strip[i][1] < d:</pre>
33
                    d = min(d, dist(strip[i], strip[j]))
34
                     j += 1
35
36
            return d
38
       return closest_recursive(points_sorted_x, points_sorted_y)
39
```

18 Network Flow

18.1 Maximum Flow - Edmonds-Karp (BFS-based Ford-Fulkerson)

Description: Find maximum flow from source to sink. Time: O(VE²).

```
from collections import deque, defaultdict
   def max_flow(graph, source, sink, n):
3
        \# graph[u][v] = capacity from u to v
        # Build residual graph
        residual = defaultdict(lambda: defaultdict(int))
6
       for u in graph:
            for v in graph[u]:
8
                residual[u][v] = graph[u][v]
9
10
       def bfs_path():
            \# Find augmenting path using BFS
            parent = {source: None}
13
            visited = {source}
14
            queue = deque([source])
16
            while queue:
                u = queue.popleft()
18
19
                if u == sink:
20
                    # Reconstruct path
21
                    path = []
22
                    while parent[u] is not None:
23
                         path.append((parent[u], u))
24
                         u = parent[u]
25
                    return path[::-1]
26
27
                for v in range(n):
                    if v not in visited and residual[u][v] > 0:
29
                         visited.add(v)
30
                         parent[v] = u
31
                         queue.append(v)
33
            return None
34
35
       max_flow_value = 0
37
        # Find augmenting paths
38
        while True:
39
            path = bfs_path()
40
            if path is None:
41
                break
42
43
            # Find minimum capacity along path
44
            flow = min(residual[u][v] for u, v in path)
45
46
            # Update residual graph
47
48
            for u, v in path:
                residual[u][v] -= flow
49
                residual[v][u] += flow
50
            max_flow_value += flow
53
       return max_flow_value
54
```

```
# Example usage
56
   \# graph[u][v] = capacity
57
   graph = defaultdict(lambda: defaultdict(int))
   graph[0][1] = 10
59
   graph[0][2] = 10
60
   graph[1][3] = 4
61
   graph[1][4] = 8
   graph[2][4] = 9
63
   graph[3][5] = 10
64
   graph[4][3] = 6
65
   graph[4][5] = 10
66
67
   n = 6 # Number of nodes
68
   result = max_flow(graph, 0, 5, n)
69
```

18.2 Dinic's Algorithm (Faster)

Description: Faster max flow using level graph and blocking flow. Time: $O(V^2E)$.

```
from collections import deque, defaultdict
2
   class Dinic:
       def __init__(self, n):
4
            self.n = n
            self.graph = defaultdict(lambda: defaultdict(int))
6
        def add_edge(self, u, v, cap):
8
            self.graph[u][v] += cap
9
10
        def bfs(self, source, sink):
            # Build level graph
12
            level = [-1] * self.n
            level[source] = 0
            queue = deque([source])
            while queue:
17
                u = queue.popleft()
18
19
                for v in range(self.n):
20
                     if level[v] == -1 and self.graph[u][v] > 0:
21
                         level[v] = level[u] + 1
                         queue.append(v)
23
24
            return level if level[sink] != -1 else None
25
26
        def dfs(self, u, sink, pushed, level, start):
27
            if u == sink:
28
                return pushed
29
            while start[u] < self.n:</pre>
31
                v = start[u]
32
33
                if (level[v] == level[u] + 1 and
34
                    self.graph[u][v] > 0):
35
36
                    flow = self.dfs(v, sink,
37
                                     min(pushed, self.graph[u][v]),
38
                                     level, start)
39
40
                    if flow > 0:
41
42
                         self.graph[u][v] -= flow
```

```
self.graph[v][u] += flow
43
                         return flow
44
                 start[u] += 1
46
47
            return 0
48
49
        def max_flow(self, source, sink):
50
            flow = 0
            while True:
                 level = self.bfs(source, sink)
54
                 if level is None:
                     break
56
57
                 start = [0] * self.n
58
                 while True:
60
61
                     pushed = self.dfs(source, sink, float('inf'),
                                        level, start)
62
                     if pushed == 0:
63
                         break
64
                     flow += pushed
65
66
            return flow
67
```

18.3 Min Cut

Description: Find minimum cut after computing max flow.

```
def min_cut(graph, source, n, residual):
       # After running max_flow, residual graph is available
       # Min cut = set of reachable nodes from source
       visited = [False] * n
       queue = deque([source])
       visited[source] = True
       while queue:
           u = queue.popleft()
9
           for v in range(n):
                if not visited[v] and residual[u][v] > 0:
                    visited[v] = True
                    queue.append(v)
14
       # Cut edges
15
       cut_edges = []
16
       for u in range(n):
17
           if visited[u]:
               for v in range(n):
                    if not visited[v] and graph[u][v] > 0:
20
                        cut_edges.append((u, v))
21
22
       return cut_edges
```

18.4 Bipartite Matching

Description: Maximum matching in bipartite graph using flow.

```
def max_bipartite_matching(left_size, right_size, edges):
    # edges = [(left_node, right_node), ...]
    # Add source (0) and sink (left_size + right_size + 1)
```

```
4
       n = left\_size + right\_size + 2
5
       source = 0
6
       sink = n - 1
8
       graph = defaultdict(lambda: defaultdict(int))
9
10
       # Source to left nodes
11
       for i in range(1, left_size + 1):
12
            graph[source][i] = 1
13
14
       # Left to right edges
15
       for 1, r in edges:
16
            graph[l + 1][left\_size + r + 1] = 1
17
18
       # Right nodes to sink
19
       for i in range(1, right_size + 1):
20
            graph[left_size + i][sink] = 1
21
22
       return max_flow(graph, source, sink, n)
23
```