## Теоретические домашние задания

Математическая логика, ИТМО, М3232-М3239, осень 2023 года

## Задание №1. Знакомство с исчислением высказываний.

Справочное изложение теории, частично разобранной на лекции.

Определение 1. Аксиомой является любая формула исчисления высказываний, которая может быть получена из следующих схем аксиом:

- $\alpha \to \beta \to \alpha$
- $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$ (2)
- (3) $\alpha \to \beta \to \alpha \& \beta$
- (4)  $\alpha \& \beta \to \alpha$
- (5) $\alpha \& \beta \to \beta$
- (6) $\alpha \to \alpha \vee \beta$
- (7) $\beta \to \alpha \vee \beta$
- $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$  $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$  $\neg \neg \alpha \to \alpha$ (8)
- (9)
- (10)

Определение 2. Выводом из гипотез  $\gamma_1, \ldots, \gamma_n$  назовём конечную непустую последовательность высказываний  $\delta_1,\ldots,\delta_t$ , для каждого из которых выполнено хотя бы что-то из списка:

- 1. высказывание является аксиомой;
- 2. высказывание получается из предыдущих по правилу Modus Ponens (то есть, для высказывания  $\delta_i$ найдутся такие  $\delta_j$  и  $\delta_k$ , что j, k < i и  $\delta_k \equiv \delta_j \rightarrow \delta_i$ );
- 3. высказывание является гипотезой (то есть, является одной из формул  $\gamma_1,\ldots,\gamma_n$ ).

Определение 3. Будем говорить, что формула  $\alpha$  выводится (доказывается) из гипотез  $\gamma_1, \ldots, \gamma_n$  (и записывать это как  $\gamma_1, \ldots, \gamma_n \vdash \alpha$ ), если существует такой вывод из гипотез  $\gamma_1, \ldots, \gamma_n$ , что последней формулой которого является формула  $\alpha$ .

Заметим, что доказательство формулы  $\alpha$  — это вывод формулы  $\alpha$  из пустого множества гипотез. При решении заданий вам может потребоваться теорема о дедукции (будет доказана на второй лекции):

**Теорема 1.**  $\gamma_1, \ldots, \gamma_n, \alpha \vdash \beta$  тогда и только тогда, когда  $\gamma_1, \ldots, \gamma_n \vdash \alpha \rightarrow \beta$ .

Пример использования: пусть необходимо доказать  $\vdash A \to A$ — то есть доказать существование вывода формулы  $A \to A$  (заметьте, так поставленное условие не требует этот вывод предъявлять, только доказать его существование). Тогда заметим, что последовательность из одной формулы A доказывает  $A \vdash A$ . Далее, по теореме о дедукции, отсюда следует и  $\vdash A \to A$  (то есть, вывода формулы  $A \to A$ , не использующего гипотезы).

- 1. Докажите:
  - (a)  $\vdash (A \to A \to B) \to (A \to B)$
  - (b)  $\vdash \neg (A \& \neg A)$
  - (c)  $\vdash A \& B \rightarrow B \& A$
  - (d)  $\vdash A \lor B \to B \lor A$
  - (e)  $A \& \neg A \vdash B$
- 2. Докажите:
  - (a)  $\vdash A \rightarrow \neg \neg A$
  - (b)  $\neg A, B \vdash \neg (A \& B)$
  - (c)  $\neg A, \neg B \vdash \neg (A \lor B)$
  - (d)  $A, \neg B \vdash \neg (A \rightarrow B)$
  - (e)  $\neg A, B \vdash A \rightarrow B$
- 3. Докажите:

- (a)  $\vdash (A \rightarrow B) \rightarrow (B \rightarrow C) \rightarrow (A \rightarrow C)$
- (b)  $\vdash (A \to B) \to (\neg B \to \neg A)$  (правило контрапозиции)
- (c)  $\vdash \neg (\neg A \& \neg B) \rightarrow (A \lor B)$  (вариант I закона де Моргана)
- (d)  $\vdash (\neg A \lor \neg B) \rightarrow \neg (A \& B)$  (II закон де Моргана)
- (e)  $\vdash (A \rightarrow B) \rightarrow (\neg A \lor B)$
- (f)  $\vdash A \& B \rightarrow A \lor B$
- $(g) \vdash ((A \rightarrow B) \rightarrow A) \rightarrow A$  (закон Пирса)
- (h)  $\vdash A \lor \neg A$
- $(i) \vdash (A \& B \to C) \to (A \to B \to C)$
- $(j) \vdash (A \rightarrow B \rightarrow C) \rightarrow (A \& B \rightarrow C)$
- $(k) \vdash (A \rightarrow B) \lor (B \rightarrow A)$
- (l)  $\vdash (A \rightarrow B) \lor (B \rightarrow C) \lor (C \rightarrow A)$
- 4. Даны высказывания  $\alpha$  и  $\beta$ , причём  $\vdash \alpha \to \beta$  и  $\not\vdash \beta \to \alpha$ . Укажите способ построения высказывания  $\gamma$ , такого, что  $\vdash \alpha \to \gamma$  и  $\vdash \gamma \to \beta$ , причём  $\not\vdash \gamma \to \alpha$  и  $\not\vdash \beta \to \gamma$ .
- 5. Покажите, что если  $\alpha \vdash \beta$  и  $\neg \alpha \vdash \beta$ , то  $\vdash \beta$ .