```
import numpy as np
import pandas as pd
```

▼ Differences in Differences

Luyi Huang and Joao Mansur

```
df = pd.read_csv(
    "https://github.com/nickeubank/MIDS_Data/blob/master/UDS_arrest_data.csv?raw=true")
df.head()
```

	YEAR	COUNTY	VIOLENT	F_DRUGOFF	total_population
0	1980	Alameda County	4504	3569	1105379.0
1	1981	Alameda County	4699	3926	1122759.3
2	1982	Alameda County	4389	4436	1140139.6
3	1983	Alameda County	4500	5086	1157519.9
4	1984	Alameda County	3714	5878	1174900.2

The unit of observation is the statistics for a year in a county including violent crime arrests, felony drug arrests, and total population. All CA counties are being tracked from 1980 to 2018.

▼ Exercise 2

```
a = df[(df.YEAR==2007)|(df.YEAR==2008)|(df.YEAR==2009)]
a["average_rate"]=df.F_DRUGOFF/df.total_population
    /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: SettingWithCopyWarning:
```

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user" """Entry point for launching an IPython kernel.

a.head()

0	UNTY	۷	IOLENT	I	F_DRUGOFF	tota	al_pop	oulation	ave	rage_r	ate
)(ounty		4443		6071		1	490312.0		0.004	074
)(ounty		4336		5893		1	496965.0		0.003	937
)(ounty		4318		5749		1	503618.0		0.003	823
)(ounty		8		1			1184.9		0.000	844
)(ounty		4		4			1181.6		0.003	385

median=pd.DataFrame(a.groupby("YEAR")['average_rate'].median())
median.columns=['Median_Rate']
median.reset_index()

	YEAR	Median_Rate
0	2007	0.003385
1	2008	0.003041
2	2009	0.002748

a=a.merge(median, left_on='YEAR', right_on='YEAR')

a.head()

	YEAR	COUNTY	VIOLENT	F_DRUGOFF	total_population	average_rate	Median_Rat
0	2007	Alameda County	4443	6071	1490312.0	0.004074	0.00338
1	2007	Alpine County	8	1	1184.9	0.000844	0.00338
2	2007	Amador County	93	111	37193.7	0.002984	0.00338
3	2007	Butte County	743	642	214951.3	0.002987	0.00338
4	2007	Calaveras County	193	157	44070.8	0.003562	0.00338

county=a.COUNTY.unique().tolist()
set=pd.DataFrame(county)
set.columns=['COUNTY']

```
set['treated']=0
for i in county:
    if any(a.loc[a['COUNTY'] == i]['average_rate']>a.loc[a['COUNTY'] ==i]['Median_Rate']) is Fa
        set['treated'][set.COUNTY==i]=0
    else:
        set['treated'][set.COUNTY==i]=1

a=a.merge(set, left_on='COUNTY', right_on='COUNTY')

a.loc[a['COUNTY'] == 'Butte County']
```

	YEAR	COUNTY	VIOLENT	F_DRUGOFF	total_population	average_rate	Median_Rate
9	2007	Butte County	743	642	214951.3	0.002987	0.003385
10	2008	Butte County	656	581	216634.2	0.002682	0.003041
11	2009	Butte County	641	542	218317.1	0.002483	0.002748

- Exercise 3

a['vio_rate']=a.VIOLENT/a.total_population*100000
a.head()

	YEAR	COUNTY	VIOLENT	F_DRUGOFF	total_population	average_rate	Median_Rate	trea
0	2007	Alameda County	4443	6071	1490312.0	0.004074	0.003385	
1	2008	Alameda County	4336	5893	1496965.0	0.003937	0.003041	
2	2009	Alameda County	4318	5749	1503618.0	0.003823	0.002748	
		Alnine						

▼ Exercise 4

```
post = df[(df.YEAR==2016)|(df.YEAR==2017)|(df.YEAR==2018)]
pre=a
post['vio_rate']=post.VIOLENT*100000/post.total_population
post['average_rate']=post.F_DRUGOFF/post.total_population
post=post.merge(set, left_on='COUNTY', right_on='COUNTY')
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

```
Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user
This is separate from the ipykernel package so we can avoid doing imports until /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user after removing the cwd from sys.path.

post.head()

	YEAR	COUNTY	VIOLENT	F_DRUGOFF	total_population	vio_rate	average_rate
0	2016	Alameda County	3513	1762	1510271.0	232.607261	0.001167
1	2017	Alameda County	3965	1279	1510271.0	262.535664	0.000847
2	2018	Alameda County	4132	1062	1510271.0	273.593282	0.000703
3	2016	Alpine County	5	0	1175.0	425.531915	0.000000
4	2017	Alpine County	3	2	1175.0	255.319149	0.001702

post.groupby('treated')['vio_rate'].mean()

treated

0 281.6064741 391.966602

Name: vio_rate, dtype: float64

pre.groupby('treated')['vio_rate'].mean()

treated

0 299.3368021 418.332955

Name: vio_rate, dtype: float64

#Difference for treated (391.966602-418.332955)

-26.366353000000004

#Diff in Diff 391.96-418.33-(281.61-299.34)

-8.640000000000043

The change in violent arrest rates for our treated group was a decrease of 26.37 crimes per 100k population. Our DinD estimator was only -8.63. [Please ignore the weird decimals after the ones provided]

If we only do the pre-post comparison, we will omit the fact that the violent rate in the untreated group actually increases after 2010, showing a simple comparison would have overestimated the effect.

→ Exercise 5

```
all = df[(df.YEAR==2016)|(df.YEAR==2017)|(df.YEAR==2018)|(df.YEAR==2007)|(df.YEAR==2008)|(df.
all=all.merge(set, left_on='COUNTY', right_on='COUNTY')
all['vio_rate']=all.VIOLENT*100000/all.total_population
all['average_rate']=all.F_DRUGOFF/all.total_population
```

all.head()

	YEAR	COUNTY	VIOLENT	F_DRUGOFF	total_population	treated	vio_rate	aver
0	2007	Alameda County	4443	6071	1490312.0	1	298.125493	
1	2008	Alameda County	4336	5893	1496965.0	1	289.652731	
2	2009	Alameda County	4318	5749	1503618.0	1	287.174003	
3	2016	Alameda County	3513	1762	1510271.0	1	232.607261	
4	2017	Alameda County	3965	1279	1510271.0	1	262.535664	

```
all['indict_year']=all["YEAR"].apply(lambda x : 0 if x<2010 else 1)
all['interaction']=all['indict_year']*all['treated']
all.head()</pre>
```

	YEAR	COUNTY	VIOLENT	F_DRUGOFF	total_population	treated	vio_rate	average_rat
0	2007	Alameda County	4443	6071	1490312.0	1	298.125493	0.00407
1	2008	Alameda County	4336	5893	1496965.0	1	289.652731	0.00393
2	2009	Alameda County	4318	5749	1503618.0	1	287.174003	0.00382
		Alameda						

```
model = smf.ols('vio_rate ~ indict_year+treated+interaction', all,missing="drop").fit()
fe_groups = all.copy()
for i in ['indict_year', 'treated', 'vio_rate','interaction']:
    fe_groups = fe_groups[pd.notnull(fe_groups[i])]
model.get_robustcov_results(cov_type="cluster", groups=fe_groups["COUNTY"],missing="drop").su
```

OLS Regression Results

R-squared: Dep. Variable: 0.255 vio rate OLS Model: Adj. R-squared: 0.249 Method: **Least Squares** F-statistic: 15.50 Date: Thu, 04 Mar 2021 **Prob (F-statistic):** 1.73e-07 Time: 03:42:45 Log-Likelihood: -2086.1

No. Observations: 348 **AIC:** 4180. **Df Residuals:** 344 **BIC:** 4196.

Df Model: 3 **Covariance Type:** cluster

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 Intercept
 299.3368
 15.635
 19.145
 0.000
 268.028
 330.646

 indict_year
 -17.7303
 8.903
 -1.992
 0.051
 -35.557
 0.097

 treated
 118.9962
 22.044
 5.398
 0.000
 74.853
 163.139

 interaction
 -8.6360
 16.749
 -0.516
 0.608
 -42.175
 24.903

 Omnibus:
 14.883
 Durbin-Watson:
 0.779

 Prob(Omnibus):
 0.001
 Jarque-Bera (JB):
 15.638

 Skew:
 0.510
 Prob(JB):
 0.000402

 Kurtosis:
 3.192
 Cond. No.
 7.87

Notes:

[1] Standard Errors are robust to cluster correlation (cluster)

The result we get for the interaction term is equal to the Difference in Difference value we calculated manually in the previous exercise.

This means that interaction terms with two indicator variables function like a Difference in Difference comparison. It expresses the change in condition when both indicators are active.

▼ Exercise 6

```
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')

df = pd.read_csv(
    "https://github.com/nickeubank/MIDS_Data/blob/master/UDS_arrest_data.csv?raw=true")
check=df[((df.YEAR<=2009)&(df.YEAR >=2000))]((df.YEAR<=2018)&(df.YEAR >=2016))]
```

```
check=check.merge(set, left_on='COUNTY', right_on='COUNTY')
check['indict_year']=check["YEAR"].apply(lambda x : 0 if x<=2009 else 1)</pre>
check["vio rate"]=check.VIOLENT*100000/check.total population
treat=check[check.treated==1]
control=check[check.treated==0]
tre=pd.DataFrame(treat.groupby("YEAR")['vio rate'].mean())
tre.columns=['vio_rate']
tre=tre.reset index()
tre['indict_year']=tre["YEAR"].apply(lambda x : 0 if x<=2009 else 1)</pre>
ctr=pd.DataFrame(control.groupby("YEAR")['vio_rate'].mean())
ctr.columns=['vio rate']
ctr=ctr.reset_index()
ctr['indict_year']=ctr["YEAR"].apply(lambda x : 0 if x<=2009 else 1)</pre>
import seaborn as sns
sns.scatterplot(x="YEAR", y="vio_rate", data=tre, hue="indict_year", palette=['green','red'])
sns.scatterplot(x="YEAR", y="vio_rate", data=ctr, hue="indict_year")
```


We get more confident about the same parallel assumption. We can see that the tread between control group and treated group is almost the same.

→ Exercise 7

```
all=all.set_index(['COUNTY','YEAR'])
```

		VIOLENT	F_DRUGOFF	total_population	treated	vio_rate	average_rate
COUNTY	YEAR						
Alameda	2007	4443	6071	1490312.0	1	298.125493	0.004074
County	2008	4336	5893	1496965.0	1	289.652731	0.003937
	2009	4318	5749	1503618.0	1	287.174003	0.003823
	2016	3513	1762	1510271.0	1	232.607261	0.001167
	2017	3965	1279	1510271.0	1	262.535664	0.000847
Yuba	2008	375	214	69767.8	1	537.497241	0.003067
County	2009	354	211	70961.4	1	498.862762	0.002973
	2016	491	154	72155.0	1	680.479523	0.002134
	2017	464	121	72155.0	1	643.060079	0.001677
	2018	391	164	72155.0	1	541.888989	0.002273

348 rows × 8 columns

from linearmodels import PanelOLS
mod = PanelOLS.from_formula('vio_rate ~EntityEffects+TimeEffects+indict_year', data=all
)
mod.fit(cov_type='clustered', cluster_entity=True)

PanelOLS Estimation Summary

Dep. Variable:vio_rateR-squared:0.0000Estimator:PanelOLSR-squared (Between):-0.0769No. Observations:348R-squared (Within):0.0448Date:Thu, Mar 04 2021R-squared (Overall):-0.0745

Time: 03:48:43 Log-likelihood -1858.9

Cay Estimatory Chiefored

From the result, since the same trend assumption is satisfied and coeffcients in each regression(DID calculation, fixed effects regression) are negative, we can say that the marijuana legalization reduced violent crime.

May Obe: 6 0000 E statistic (robust): 1 4650 20

Time periods: 6 Distribution: F(1,284)

 Avg Obs:
 58.000

 Min Obs:
 58.000

 Max Obs:
 58.000

Parameter Estimates

Parameter Std. Err. T-stat P-value Lower CI Upper CI indict_year -29.304 2.421e+15 -1.21e-14 1.0000 -4.766e+15 4.766e+15

F-test for Poolability: 17.884

P-value: 0.0000

Distribution: F(62,284)

Included effects: Entity, Time

id: 0x7f6406f23050