МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

	Лаборатор	на №5		
з курсу «Розробка	мобільних	застосувань	під .	Android»

 Прийняв:
 Виконала:

 Орленко С. П.
 студентка групи ІП-21

Гордич О. Ю.

ЛАБОРАТОРНА РОБОТА № 5

ДОСЛІДЖЕННЯ РОБОТИ З ВБУДОВАНИМИ ДАТЧИКАМИ

Мета роботи: ознайомитись з можливостями вбудованих датчиків мобільних пристроїв та дослідити способи їх використання для збору та обробки даних.

ЗАВДАННЯ

БАЗОВЕ (10/20 балів). Написати програму під платформу Андроїд, яка має інтерфейс для виведення даних з обраного вбудованого датчика (тип обирається самостійно, можна відслідковувати зміни значень і з декількох датчиків).

Опис функціоналу програми:

У створеному додатку реалізовано взаємодію з **двома типами сенсорів Android-пристрою**:

- 1. **Датчик освітленості (Light Sensor)** дозволяє вимірювати рівень освітлення в люксах.
- 2. **Сенсор орієнтації (Orientation Sensor)** надає значення азимута, нахилу і обертання пристрою у просторі.

Архітектура програми:

- MainActivity.kt:
 - о Головна активність програми.
 - Використовує ViewPager2 та TabLayout для перемикання між вкладками.
 - о Містить два фрагменти:
 - LightFragment (вкладка "Light")
 - OrientationFragment (вкладка "Orientation")

• LightFragment.kt:

- Реалізує обробку даних з датчика освітленості (Sensor.TYPE_LIGHT).
- о Виводить назву сенсора та поточний рівень освітлення.

• OrientationFragment.kt:

- о Взаємодіє з сенсором орієнтації (Sensor.TYPE ORIENTATION).
- Виводить назву сенсора та поточні значення: азимут, кут нахилу (pitch), обертання (roll).

Використані бібліотеки та компоненти Android SDK:

Компонент Призначення

android.hardware.SensorManager Клас для доступу до датчиків пристрою

android.hardware.Sensor Представляє фізичний сенсор

android.hardware.SensorEventListener Інтерфейс для отримання подій з сенсорів

Життєвий цикл роботи з сенсорами:

- 1. **onViewCreated():** Отримання сенсора через SensorManager та ініціалізація елементів інтерфейсу.
- 2. **onResume():** Реєстрація слухача подій сенсора.
- 3. onSensorChanged(): Обробка нових значень і оновлення інтерфейсу.
- 4. **onPause**(): Відключення слухача при призупиненні активності.

Тестування програми:

Висновок:

Програма демонструє базову взаємодію з вбудованими сенсорами Android-пристрою. За допомогою бібліотек Android SDK реалізовано отримання та виведення значень сенсорів у реальному часі. Архітектура з використанням Fragment та ViewPager2 забезпечує зручну навігацію та масштабованість інтерфейсу.

КОНТРОЛЬНІ ПИТАННЯ

1. Наведіть приклади вбудованих датчиків та величини які з них можна зчитати.

Датчик	Тип (Sensor.TYPE_*)	Величини	
Акселерометр	ерометр TYPE_ACCELEROMETER		
		X, Y, Z (B M/ c^2)	
Гіроскоп	TYPE_GYROSCOPE	Кутові швидкості	
		обертання по X, Y, Z	
		(рад/с)	
Магнітометр (компас)	TYPE_MAGNETIC_FIELD	Напруженість	
		магнітного поля по	
		X, Y, Z (в мк T л)	
Датчик освітлення	TYPE_LIGHT	Рівень освітленості	
		(в люксах)	
Орієнтаційний сенсор	TYPE_ORIENTATION	Азимут, нахил	
(deprecated, замінюється на		(pitch), обертання	
обчислення з акселерометра		(roll)	
+ магнітометра)			
Датчик тиску	TYPE_PRESSURE	Атмосферний тиск (в	
		гПа)	
Датчик температури	TYPE_AMBIENT_TEMPERATURE	Температура	
		навколишнього	
		середовища (в °С)	
Датчик наближення	TYPE_PROXIMITY	Відстань до об'єкта	
		(в см)	
Датчик положення	TYPE_ROTATION_VECTOR Орієнтація прист		
(Rotation Vector)		у вигляді	
		кватерніонів	

- 2. Наведіть особливості роботи з вбудованими датчиками.
- Доступ через SensorManager: Для взаємодії з датчиками необхідно отримати екземпляр системного сервісу SensorManager.
- Отримання переліку доступних датчиків: Можна отримати список усіх датчиків певного типу або всіх наявних на пристрої.
- Реєстрація слухачів (SensorEventListener): Щоб отримувати дані від датчика, потрібно зареєструвати слухача, який реалізує інтерфейс SensorEventListener та його методи onSensorChanged() (викликається при зміні значення датчика) та onAccuracyChanged() (викликається при зміні точності датчика).

- **Нерегулярність подій:** Події від датчиків надходять асинхронно і нерегулярно, залежно від швидкості зміни фізичної величини та встановленої частоти оновлення.
- **Різна доступність на пристроях:** Набір вбудованих датчиків може суттєво відрізнятися залежно від моделі та виробника пристрою. Перед використанням датчика слід перевіряти його наявність.
- **Енергоспоживання:** Активне використання деяких датчиків може призводити до значного споживання заряду батареї. Важливо скасовувати реєстрацію слухачів у методі onPause() Activity або Fragment, коли вони більше не потрібні.
- Точність та затримка: Датчики мають різну точність і підтримують різні рівні затримки при отриманні даних (SENSOR_DELAY_NORMAL, SENSOR_DELAY_UI, SENSOR_DELAY_GAME, SENSOR_DELAY_FASTEST). Вибір затримки впливає на частоту оновлення даних та енергоспоживання.
- Системні дозволи (для деяких датчиків): Хоча більшість поширених датчиків не потребують спеціальних дозволів, деякі (наприклад, датчики серцевого ритму) можуть вимагати оголошення відповідних дозволів у AndroidManifest.xml та отримання їх від користувача.
- **Отримання значень:** Дані датчиків передаються у вигляді об'єкта SensorEvent, а самі значення зберігаються у масиві values. Кількість та значення елементів у цьому масиві залежать від типу датчика.
- Застарілі датчики: Деякі датчики, такі як TYPE_ORIENTATION, вважаються застарілими, і Google рекомендує використовувати новіші альтернативи для отримання більш точних та стабільних даних.