Lecture-7

Sushrut Tadwalkar; 55554711

January 22, 2024

Quotes of the day: Dr. Joshua Zahl 01/22/2024

No quotes today:(

Theorem: Properties of the Riemann-Stieltjes integral (Baby Rudin 6.12)

Let $\alpha:[a,b]\to\mathbb{R}$ be monotonically increasing, and $f,f_1,f_2:[a,b]\to\mathbb{R}$ be functions satisfying $f,f_1,f_2\in\mathcal{R}_{\alpha}[a,b]$.

- a) Linearity: $f_1+f_2\in\mathcal{R}_{\alpha}[a,b]$ and $\int_a^b(f_1+f_2)\,d\alpha=\int_a^bf_1\,d\alpha+\int_a^bf_2\,d\alpha.$ For $c\in\mathbb{R},\,cf\in\mathcal{R}_{\alpha}[a,b]$ and $\int_a^bcf\,d\alpha=c\int_a^bf\,d\alpha.$
- b) Weak positivity/non-negativity: If $f(x) \ge 0$ for all $x \in [a,b]$, then $\int_a^b f \, d\alpha \ge 0$.

If
$$f_1(x) \leq f_2(x)$$
 for all $x \in [a,b]$, then $\int_a^b f_1 \, d\alpha \leq \int_a^b f_2 \, d\alpha$.

c) For $c \in [a,b], f \in \mathcal{R}_{\alpha}[a,c]$ and $f \in \mathcal{R}_{\alpha}[c,b]$, and

$$\int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha = \int_{a}^{b} f \, d\alpha.$$

- d) Boundedness: If $|f| \leq M$, then $\left| \int_a^b f \, d\alpha \right| \leq M \, (\alpha(b) \alpha(a)).$
- e) Let $\alpha_1, \alpha_2 : [a,b] \to \mathbb{R}$ br monotone increasing, and $f : [a,b] \to \mathbb{R}$ satisfying $f \in \mathcal{R}_{\alpha_1}[a,b]$ and $f \in \mathcal{R}_{\alpha_2}[a,b]$. Then, $f \in \mathcal{R}_{\alpha_1+\alpha_2}[a,b]$, and

$$\int_a^b f \, d(\alpha_1 + \alpha_2) = \int_a^b f \, d\alpha_1 + \int_a^b f \, d\alpha_2.$$

If
$$c \in \mathbb{R}$$
, $f \in \mathcal{R}_{c\alpha_1}[a, b]$, and $\int_a^b f d(c\alpha_1) = c \int_a^b f d\alpha_1$.

Proof. The proof is given on page 128 of Baby Rudin; it's not very involved, so can be treated as an exercise as well. \Box

Recall $\mathcal{C}\left([a,b]\right)$, the space of continuous functions $f:[a,b]\to\mathbb{R}$. Define $\|f\|_{\mathcal{C}([a,b])}=\sup_{x\in[a,b]}|f(x)|$. Hence, the

1

metric is $d(f,g) = \|f - g\|_{\mathcal{C}([a,b])}$. We say that the pair $\left(\mathcal{C}\left([a,b]\right), \|\cdot\|_{\mathcal{C}([a,b])}\right)$ is a normed vector space.

Property a) of theorem 6.12 says: If $\alpha : [a,b] \to \mathbb{R}$ is monotone increasing, then the function $T(f) = \int_a^b f \, d\alpha$ is a linear function from the vector space $\mathcal{C}([a,b])$ to \mathbb{R} . Hence,

$$T(f+g) = T(f) + T(g)$$
$$T(cf) = cT(f).$$

Property d) says that T is bounded, i.e., $|T(f)| \le (\alpha(b) - \alpha(a)) ||f||_{\mathcal{C}([a,b])}$.

Notation 1. People sometimes write Tf instead of T(f), however it's the same thing. For example, in linear algebra, we write Mv where M is a matrix and v is a vector, but this is technically M(v).

Property b) says that T is non-negative, i.e., if $f \in \mathcal{C}([a,b])$ with $f(x) \geq 0$ for all $x \in [a,b]$. Then $Tf \geq 0$.

In functional analysis (MATH 421), and more generally in Physics, we want to study linear functions whose domain is $\mathcal{C}([a,b])$ (or more general), and whose co-domain is \mathbb{R} (or more often \mathbb{C}). Functions of this type are called "linear operators" or "linear functionals".

Theorem: Riesz Representation Theorem 1.0

Let $T:\mathcal{C}\left([a,b]\right)\to\mathbb{R}$ be linear, bounded, and non-negative. Then, there exists a unique monotone increasing $\alpha:[a,b]\to\mathbb{R}$, such that $Tf=\int_a^bf\,d\alpha$.

We want to find a better version of the theorem where we can drop the non-negative hypothesis:

Theorem: Riesz Representation Theorem 2.0

Let $T:\mathcal{C}\left([a,b]\right)\to\mathbb{R}$ be linear and bounded. Then, there exist two monotone increasing functions $\alpha,\beta:[a,b]\to\mathbb{R}$ such that

$$T(f) = \int_a^b f \, d\alpha - \int_a^b f \, d\beta = \int_a^b f \, d(\alpha - \beta).$$

Note (Extension of the definition of the Riemann-Stieltjes integral). Note that for monotone increasing α , β , $\alpha - \beta$ is not necessarily monotonically increasing, so we would have to change the definition of the Riemann-Stieltjes integral from monotonically increasing α to α that is the difference of monotonically increasing functions. However, we don't really need to get into that since we can just write it as the first equality shown above.