TEC-101

B. TECH. (FIRST SEMESTER) MID SEMESTER EXAMINATION, 2022

BASIC ELECTRONICS ENGINEERING

Time: 11/2 Hours /

Maximum Marks: 50

- Note: (i) Answer all the questions by choosing any *one* of the sub-questions.
 - (ii) Each sub-question carries 10 marks.
- 1. (a) Explain formation of energy bands in a solid crystal. Differentiate conductor, semiconductor and insulator based on energy band diagram.

Calculate the drift current produced in anintrinsic Ge semiconductor having area of cross section 2 cm² and length 0.4 mm, if concentration of free electron is 2×10^{19} /m³ and a battery of 2 volts is

applied across its length. Given that mobility of free electrons and holes are $0.36 \text{ m}^2/\text{V-sec}$ and $0.17 \text{ m}^2/\text{V-sec}$ respectively. (CO2)

OR

(b) Briefly explain drift current and diffusion current in semiconductors. An intrinsic semiconductor (Si) is doped with a donor type impurity such that there is one impurity atom on 10^6 atoms of semiconductor. The total concentration of semiconductor is $5 \times 10^{22}/\text{m}^3$ and intrinsic concentration in $2.5 \times 10^{12}/\text{m}^3$.

Calculate:

(CO2)

- (i) Resulting donor atom concentration
- (ii) Resulting electron concentration
- (iii) Resulting hole concentration
- (a) Define mobility and drift velocity. Prove that conductivity of a conductor is given by o' = μne. A small concentration of minority carries is injected into a

homogeneous semiconductor crystal at one point. An electric field of 10 V/cm is applied across the crystal and this moves the minority carries a distance of 1 cm in 20 μ sec. Determine mobility (in cm²/v-sec). (CO2)

OR

(b) With the help of circuit diagram and suitable graph, explain the working of pn-junction diode in reverse bias mode.

A Si diode has reverse saturation current of 2.5 μ A at room temperature. Determine forward voltage to obtain a forward current of 10 mA. (CO2)

- 3. (a) Perform the following: (CO1)
 - (i) $(7653.21)_8 = (?)_2 = (?)_{16} = (?)_{10}$
 - (ii) $(56543)_7 + (53214)_7 (3264)_8 = (?)_7$
 - (iii) If $(211)_x = (152)_8$, find the value of base x.

OR

- (b) (i) Express F (A, B, C) = (A'C)+ (ABC') + (A'B') in canonical SOP form. (CO1)
 - (ii) Simplify the following functions using Boolean rules:

$$\overline{A + \overline{AB} + \overline{AB}} + \overline{A + \overline{B}}$$

$$F = (A + C) (AD + AD) + AC + C$$

$$A + AB + AB^{2}C$$

4. (a) (i) Subtract (FBD9.E3)₁₆ – (A2C.A)₁₆ by 1's and 2's complement method.

 $(111\ 101)_{0} \times (111)_{0} = (2)_{0}$

- (ii) $(111.101)_2 \times (111)_2 = (?)_2$ OR
- (b) (i) Realize EX-NOR gate by NAND gate only.
 - (ii) Derive the minimized Boolean expression for output X for given digital circuit. (CO1)

5. (a) Minimize the following by K map and realize the minimized function by (i) Basic gates (ii) NAND gate only (iii) NOR gate only.

F (A, B, C, D) =
$$\pi$$
(0, 1, 3, 5, 7, 8, 9, 11, 13, 14, 15) (CO1)

OR

(b) For the given truth table, express output Y in minimized SOP and minimized POS form: (CO1)

A	В	С	Y
0	0	0	0
0	0	1	0
0	1.	0	0
0	1	1	-1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1