6.581/20.482

LECTURE 25: INFERENCE & STATISTICS

TUESDAY 16 MAY 2006

BAYESIAN NETWORK ANALYSIS

 can only be applied to a directed acyclic graph

Example. Cloudy	P	C) T F	5
Rainy Sprinkler wet grass P(RIC)	P(S)	IT	F 0.9
C T F T 0.8 0.2 P(F 0.2 0.8 R	WIS.R)	T	F
T F	T	0.99	0.01
T	F	0.0	1.0

W=T

The chain for probability $P(G,S,R,W) = P(C) \cdot P(S|C) \cdot P(R|S,C) \cdot P(W|R,S,C)$ current

model

topology

BAYES THEOREM: P(A,B)=P(AAB) P(AAB)=P(A)P(BIA)=P(B)P(AIB)

$$P(S=T|W=T) = \frac{P(S=T,W=T)}{P(W=T)} = \frac{\sum_{C,R} P(C,S=T,R,W=T)}{P(W=T)} = 0.4298$$

$$P(R=T|W=T) = \frac{P(R=T,W=T)}{P(W=T)} = \frac{\sum_{C,S} P(C,S,R=T,W=T)}{P(W=T)} = 0.7079$$

P(W=T)= 0.6471

Experiments give P(Data)
Models can produce P(Data|Model)
What we want to compare P(Model|Data)

P(Model|Data) = P(Data|Model)P(Model)
P(Data)
Score: = log P(Model: |Data)
Prior Maria

= log P(Data | Model;) + log P(Model;) - log P(Data)

Sachs, Gifford, Jaakkola, Sorger, & Lauffenburger
http://www.stke.org/cgi/content/full/sigtrans;2002/148/p.
stimulates (cue) — fibronectin (fn)

(Focal Adhesion Kinase

© Extracellular Signal-related kinase Experiment was carried out twice

MALES A	30010	
Mo: Cue © P	Pata Set I Data Set.	IL (fold-change
M1: Cue > F>E	MO: -50.5 (2154) - 60.8	(1700)
M2: CUE-E-E	M1: -42.8 * (1) -58.0	(104)
M3: CUEST	M2: -43.2 (a) -57.6	(73)
	M3: -44.3 (4) -55.6	(10)
M4: CUELOES	M4: -44.3 (1) -53.4*	(1)

Simulation of Reaction Kinetics:

Continuous vs Stochastic

Alternative framework

Think about dynamics as:

1) System remains unchanged for time to
2) System will change by a single
chemical reaction, to

Let P(z,u) SC = probability that y at time t will evolve such that no reaction occurs in (t++z), but that the next reaction occurs in (t+z,t+z+sz) and, it is Reaction u = reaction probability density discrete list

of reactions

=B(2)-and2
probability probability that
that maiting
time is 2

Probability that

H is shown that $P(z,\mu) = a_{\mu}e^{-a_{0}z}$ for $0 \le z < \infty$ where $a_{\mu} \ge 1,...,M$? $a_{0} = \sum_{i=1}^{M} a_{i}$ individual reaction proponsities

au=huCu reaction rate
of collision types

DT Gillespie J. Physchem 81.2340-61 (1977 J. Physchem 115.1716-33 (2001)

Pick 2 random numbers $R_1 & R_2$ uniformly on [0,1] Select μ such that $T = \frac{1}{a_0} \ln \frac{1}{R_1}$ $\sum_{i=1}^{n} a_i < R_2 a_i < \sum_{i=1}^{n} a_i$

reaction I M particles

100 particles

100 particles

time

6.581J / 20.482J
Foundations of Algorithms and Computational Techniques in Systems Biology Professor Bruce Tidor
Professor Jacob K. White