工 业 大 学 试 卷(A)

共1页第1页

2016~2017 学年第 二 学期

课程代码 1400071B

课程名称_线性代数_ 学分__2.5_ 课程性质:必修☑、选修□、限修□ 考试形式:开卷□、闭卷☑

专业班级(教学班)

考试日期 2017年5月2日8:00-10:00 命题教师 集体

系 (所或教研室) 主任审批签名

一、填空题(每小题 4 分, 共 20 分)

1. 已知
$$|A| = \begin{vmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & 2 & 3 & 4 \end{vmatrix}$$
 , 设 $A_{4j}(j=1,2,3,4)$ 是 $|A|$ 中元素 a_{4j} 的代数余子式,则

 $A_{41} + A_{42} + A_{43} + A_{44} =$.

- 2. 已知三阶方阵 A 满足 |A|=0, |A-E|=0 及 |2A+E|=0,且 A 与 B 相似,则 |B+E|= ______.
- 3. 设 $A = \begin{bmatrix} 4 & t & 3 \\ 2 & 1 & 1 \end{bmatrix}$, $B \neq O$, 且AB = O, 则 t =______.
- 4. 设 α_1 , α_2 , α_3 为Ax = 0的基础解系,则 $\lambda \alpha_1 \alpha_2$, $\alpha_3 \alpha_3$, $\alpha_3 \alpha_4$ 也是Ax = 0的基础解系的充要条
- 5. 当t 值取______时,二次型 $f(x_1,x_2,x_3) = 5x_1^2 + x_2^2 + tx_3^2 + 4x_1x_2 2x_1x_3 2x_2x_3$ 是正定的.

二、选择题(每小题4分,共20分)

- 1. 下列说法**错误**的是 ().
- (A) 若向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,则其中任意两个向量线性无关
- (B) 若向量组 $\alpha_1, \alpha_2, \alpha_3$ 中任意两个向量线性无关,则向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关
- (C) 向量组 $\alpha_1 \alpha_2$, $\alpha_2 \alpha_3$, $\alpha_3 \alpha_1$ 线性相关
- (D) 若向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,则向量组 $\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3$ 也线性无关
- 2. 设A, B 均为n阶方阵,则下列关系正确的有()个.
 - $(I) AA^* = A^*A$

(II) $(AB)^T = B^T A^T$

(D) 4

- (III) $(A+B)^2 = A^2 + 2AB + B^2$
- (IV) $(A+E)(A-E) = A^2 E$

- (A) 1
- (B) 2
- (C) 3
- 3. 已知 β_1 , β_2 , 为非齐次线性方程组 Ax = b 的两个不同的解, α_1 , α_2 是对应的齐次线性方程组 Ax = 0的基础解系, k_1,k_2 为任意常数,则方程组Ax = b的通解是(
 - (A) $k_1 \alpha_1 + k_2 \alpha_2 + \frac{1}{2} (\beta_2 \beta_1)$
 - (B) $k_1(\alpha_1 + \alpha_2) + k_2(\alpha_1 \alpha_2) + \frac{1}{4}\beta_1 + \frac{3}{4}\beta_2$
 - (C) $k_1(\alpha_1 \alpha_2) + k_2(\alpha_2 \alpha_1) + \frac{1}{2}(\beta_1 + \beta_2)$ (D) $k_1\alpha_1 + k_2(\beta_2 \beta_1)$
- 4. 已知 ξ_1 , ξ_2 是齐次线性方程组 $(A-\lambda E)x=0$ 的两个不同解向量,则下列向量中,必是A的对应于特征 值 λ 的特征向量为().
 - $(A) \boldsymbol{\xi}_1$

- (B) $\boldsymbol{\xi}_{1}$ (C) $\boldsymbol{\xi}_{1} + \boldsymbol{\xi}_{2}$ (D) $\boldsymbol{\xi}_{1} \boldsymbol{\xi}_{3}$

- $0 \quad a \quad -2$ $(1 \ 0 \ 0)$ 5. 已知矩阵 $A = \begin{bmatrix} a & 4 & 4 \end{bmatrix}$ (a 为整数) 与 $B = \begin{bmatrix} 0 & 6 & 0 \end{bmatrix}$ 相似,则a 及b 的值分别为($(-2 \ 4 \ -3)$ $\begin{pmatrix} 0 & 0 & b \end{pmatrix}$
 - (A) a = 2, b = -6 (B) a = 0, b = -6 (C) a = -2, b = 6 (D) a = 0, b = -3

三、(10 分) 设向量组
$$\alpha_1=\begin{pmatrix}1\\2\\-1\\3\end{pmatrix}$$
, $\alpha_2=\begin{pmatrix}0\\1\\2\\-1\end{pmatrix}$, $\alpha_3=\begin{pmatrix}3\\7\\-1\\8\end{pmatrix}$, $\alpha_4=\begin{pmatrix}-1\\0\\5\\-5\end{pmatrix}$, 求此向量组的秩及一个极大线

性无关组,并将其余向量用这个极大线性无关组线性表示.

四、(10分)设三阶方阵A,B满足关系式 $A^{-1}BA = 6A + BA$,求矩阵B,其中 $A = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{-4} \end{bmatrix}$.

五、(14分) 已知线性方程组 $\{x_1 - x_3 = 1,$ $x_1 + ax_2 + x_3 = b$.

- (1) 常数 \mathbf{a} , \mathbf{b} 取何值时,方程组无解、有唯一解、有无穷多解?
- (2) 当方程组有无穷多解时,求出其通解.

六、(8分) 设A为三阶实对称矩阵,特征值是0,1,-1,而 $\lambda_2=1$ 和 $\lambda_3=-1$ 的特征向量分别是

$$p_2 = \begin{pmatrix} 0 \\ 2a - 1 \\ 1 \end{pmatrix}$$
, $p_3 = \begin{pmatrix} a \\ 1 \\ 1 - 3a \end{pmatrix}$. (1) 求 a 的值; (2) 求矩阵 $A \otimes A^{100}$.

七、(14分) 已知二次型 $f(x_1,x_2,x_3) = (1-a)x_1^2 + (1-a)x_2^2 + 2x_3^2 + 2(1+a)x_1x_2$,的秩为 2.

- (1) 求**a**的值;
- (2) 求化二次型 $f(x_1,x_2,x_3)$ 为标准形的正交变换,并指出方程 $f(x_1,x_2,x_3)=1$ 表示何种二次曲面.

八、 $(4 \, \mathcal{G})$ 已知 A = A - E 均为正定矩阵,判定 $E - A^{-1}$ 是否为正定矩阵? 说明理由.