

4528 - Schedule Pairs of Jobs

Asia - Hsinchu - 2009/2010

In a factory, there are n pairs of jobs, (p_i, q_i) , i = 1, 2, ..., n, to be scheduled. Each job, p_i or q_i , needs 1 unit of time to process. All the jobs p_i , i = 1, 2, ..., n, must be scheduled before of all the jobs q_i , i = 1, 2, ..., n. The order among the jobs p_i , i = 1, 2, ..., n, as well as the order among the jobs q_i , i = 1, 2, ..., n, is not important. However, it is required that the time between p_i and q_i , measured from the starting time of p_i to the starting time of q_i , should be at most d_i , for i = 1, 2, ..., n.

Given a sequence of n positive integers d_1 , d_2 ,..., d_n , we want to know whether these n pairs of jobs can be scheduled in the time interval [0, 2n] or not. We say that the problem is solvable if the n pairs of jobs can be scheduled in a time interval of length 2n units, in such a way that the time between p_i and q_i is at most d_i , for i = 1, 2,..., n.

For example, for n = 3, the sequence 1, 3, 5 is solvable, since we can schedule these 3 pairs of jobs as follows:

The sequence 3, 3, 4, 6 is also solvable, since we can schedule the jobs in the following way:

In this problem, you are going to design a computer program to schedule pairs of jobs with the above constraints.

Technical Specification

Assume that n < 16, and each $d_i < 2^{31}$. For simplicity, assume that $d_1 \le d_2 \le \dots \le d_n$, $\sum_{i=1}^k d_i \ge k^2$ for $1 \le k$ < n, and $\sum_{i=1}^n d_i = n^2$. Note that, in this case, if the problem is solvable then the time between each pair of jobs (p_i, q_i) is exactly d_i .

If the solution is not unique, try to schedule the jobs so that the job q_i with smaller index is finished as early as possible. For example, let the input requirements be 3 3 4 6. Then print out the solution p4 p1 p2 p3 q1 q2 q4 q3.

Input

Input file contains a set of test cases. Each test case contains a positive integer n, followed by n integers d_i , 1-i-n. The last test case is followed by a line containing only one integer 0.

Output

Print the job in ascending order of their starting time. Print one line for each test case and for readability print a space before each ``p" and ``q". If the pairs of jobs cannot be scheduled, then print the message ``no solution" in that line.

Sample Input

Sample Output

```
p3 p2 p1 q1 q2 q3
p4 p1 p2 p3 q1 q2 q4 q3
no solution
```

Hsinchu 2009-2010