

Using JupyterLab

JupyterLab,用起来!

特别适合探究式学习,代码、绘图、脚本、公式...

教育不是为生活做准备;教育就是生活本身。

Education is not a preparation for life; education is life itself.

—— 约翰·杜威 (John Dewey) | 美国著名哲学家、教育家、心理学家 | 1859 ~ 1952

- ◀ ax.plot wireframe() 用于在三维子图 ax 上绘制网格曲
- ◀ fig.add_subplot(projection='3d') 用于在图形对象 fig 上添加一个三维子图
- matplotlib.pyplot.figure() 用于创建一个新的图形窗口或画布,用于绘制各种数据可视化图表
- ◀ matplotlib.pyplot.grid() 在当前图表中添加网格线
- matplotlib.pyplot.plot() 绘制折线图
- matplotlib.pyplot.scatter() 绘制散点图
- matplotlib.pyplot.subplot() 用于在一个图表中创建一个子图,并指定子图的位置或排列方式
- matplotlib.pyplot.subplots() 创建一个包含多个子图的图表,返回一个包含图表对象和子图对象的元组
- matplotlib.pyplot.title() 设置当前图表的标题,等价于 ax.set title()
- matplotlib.pyplot.xlabel() 设置当前图表 x 轴的标签, 等价于 ax.set xlabel()
- ◀ matplotlib.pyplot.xlim() 设置当前图表 x 轴显示范围,等价于 ax.set_xlim() 或 ax.set_xbound()
- matplotlib.pyplot.xticks() 设置当前图表 x 轴刻度位置,等价于 ax.set_xticks()
- matplotlib.pyplot.ylabel() 设置当前图表 y 轴的标签, 等价于 ax.set_ylabel()
- ◀ matplotlib.pyplot.ylim() 设置当前图表 y 轴显示范围,等价于 ax.set ylim() 或 ax.set ybound()
- matplotlib.pyplot.yticks() 设置当前图表 y 轴刻度位置, 等价于 ax.set yticks()
- ◀ numpy.arange() 生成一个包含给定范围内等间隔的数值的数组
- ◀ numpy.linspace() 生成在指定范围内均匀间隔的数值,并返回一个数组
- numpy.meshgrid() 用于生成多维网格化数据
- ◀ plotly.express.data.iris() 从 Plotly 库里加载鸢尾花数据集
- ◀ plotly.express.scatter() 绘制可交互的散点图
- ◀ plotly.graph objects.Figure() 用于创建一个新的图形对象,用于绘制各种交互式数据可视化图表
- ◀ plotly.graph_objects.Surface() 绘制可交互的网格曲面
- ✓ seaborn.scatterplot() 绘制散点图

3.1 啥是 JupyterLab?

JupyterLab 集合"浏览器 + 编程 + 文档 + 绘图 + 多媒体 + 发布"众多功能与一身。"鸢尾花书"不同场合反复提过,对于初学者,哪怕是有开发经验的读者来说,JupyterLab 相当于是"实验室",特别适合探究式学习。

目前《数学要素》、《可视之美》中,几乎所有的代码都是用 JupyterLab 写的。如果大家对 JupyterLab 反馈正面,其他分册也会考虑提供 Jupyter Notebook 配套文件。

这一话题将和大家聊一聊如何使用 JupyterLab。

▲ 注意,本节不求"事无巨细"地介绍 JupyterLab,而是要全景地浏览 JupyterLab 的主要功能,保证"够用就好",以便大家轻装上阵。

对于 JupyterLab 的外观、窗口布局等细节问题,这个话题就不展开了,大家如果有需要可以很容易搜索到结果。当大家对 JupyterLab 熟悉之后,建议大家了解如何用 JupyterLab 的 debug 功能。此外,很多开发者专门针对 JupyterLab 开发各种小插件,很多插件的确能提高工作效率,也建议大家自行了解。

大家 JupyterLab 用熟之后,会发现这一章最重要的内容就一个--快捷键。

什么是 JupyterLab?

JupyterLab 是一个交互式开发环境,可以让用户创建和共享 Jupyter 笔记本、代码、数据和文档。它是 Jupyter Notebook 的升级版本,提供了更强大的功能和更直观的用户界面。JupyterLab 支持多种语言,包括 Python、R、Julia 和 Scala 等。它还提供了多个面向数据科学的扩展,如 JupyterLab Git、JupyterLab LaTeX 和 JupyterLab Debugger 等,使得数据科学家和开发人员可以更加高效地进行数据分析、机器学习和模型开发等工作。JupyterLab 的主要特点包括:基于 web 的用户界面,可以让用户同时在一个界面中管理多个笔记本和文件。支持多种文件格式,包括 Jupyter 笔记本、Markdown 文档、Python 脚本和 CSV 文件等。可以通过拖放和分栏等方式来组织和管理笔记本和文件。提供了一组内置的编辑器、终端、文件浏览器和输出查看器等工具。可以通过扩展系统来扩展和定制 JupyterLab 的功能。

3.2 使用 JupyterLab: 立刻用起来

新建 Notebook

大家首先通过 Anaconda Navigator (上一节内容) 打开 JupyterLab。

如图 1 所示,不管点击 A 或 B 都会看到 C 这个图标,点击 C 就会生成一个 Notebook。此外,新建 Notebook前,点击图 1 中 D,我们可以改变文件路径。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

图 1. 新建 Notebook

如图 2 所示, Notebook 界面的有很多板块。

图 2. JupyterLab 中新建 Notebook 界面

JupyterLab 中的 cell 是什么?

在 JupyterLab 中,Cell(单元格)是指一个包含代码或文本的矩形区域,它是用户编写和执行代码、编写文本和渲染 Markdown 的基本单位。Cell 可以包含多种类型的内容,包括代码、Markdown、LaTeX 公式等。JupyterLab 中的 Cell 可以通过交互式的方式进行编辑和执行。例如,在 Code Cell 中,用户可以编写 Python 代码,并使用 Shift+Enter 快捷键执行代码并显示结果;在 Markdown Cell 中,用户可以使用 Markdown 语法编写文本,并使用 Shift+Enter 快捷键渲染 Markdown 文本。JupyterLab 中的 Cell 还支持多种交互式扩展,例如使用 IPython Magic 命令、使用自动完成、代码补全和代码调试等。Cell 也可以被复制、剪切、粘贴、移动和删除,使得用户可以轻松地组织和管理笔记本中的内容。

对于初学者,大家先注意以下四点。

- ▶ 图 2 中的 A 对应的是 Notebook 默认的名字。右键可以对文件进行各种操作,比如重命名、剪切、 复制、粘贴、删除等等。
- ▶ 图 2 中的 B 是 Notebook 中第一个 cell。在 Notebook 里,一个基本的代码块被称作一个 cell。注意,一个 Notebook 可以有若干 cell;而一个 cell 理论上可以有无数行代码。
- ▶ 图 2 中的 C 对应的是 cell 的几个常见操作──复制并向下粘贴、向上、向下、向上加 cell、向下加 cell、删除 cell。
- ▶ 图 2 中的 D 对应的操作──保存文件、向下加 cell、剪切 cell、复制 cell、粘贴 cell、运行当前 cell 后移动 (或创建) 到下一个 cell、停止运行、重启 kernel、重启重跑所有 cell、code/markdown 转换。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

图 3. C 对应的是 cell 的几个常见操作

图 4. D 对应的是 cell 的几个常见操作

JupyterLab 中的 kernel 是什么?

JupyterLab 中,内核(kernel)是指与特定编程语言交互的后台进程,它负责编译和执行用户在 JupyterLab 中编写的代码,并返回执行结果。内核与 JupyterLab 之间通过一种称为"Jupyter 协议"的通信协议进行交互。打开一个新的 notebook 或 console 时,JupyterLab 会自动启动一个内核,这个内核将与该 notebook 或 console 中编写的代码进行交互。在 notebook 或 console 中编写代码,并使用内核来执行它们。内核还可以保存笔记本中的变量和状态,使得大家可以在多个代码单元格之间共享变量和状态。JupyterLab 支持多种编程语言的内核,可以在启动 notebook 或 console 时选择要使用的内核。例如,如果想使用 Python 内核,可以选择"Python 3"内核。一旦选择了内核,JupyterLab 将与该内核建立连接,并使用它来执行该 notebook 或 console 中编写的代码。如果希望在 notebook 或 console 中使用其他语言的内核,需要先安装并配置这些内核。

代码 vs 文本

Jupyter 的 cell 常用两种状态一代码、文本。文本也叫 markdown。两种状态之间可以相互转换。

顾名思义,代码状态的 cell 中的内容会被视为"代码",# 开头的部分会被视作为"注释"

文本 markdown 状态下,整个 cell 的内容可以是文本/Latex 公式/超链接/图片等等,这个 cell 不会被当成代码执行。图 4 中的"code/markdown"选项可以帮助我们在两种 cell 状态切换。

我们常在 JupyterLab 中敲入各种 Latex 公式,本书后续将会见缝插针地讲解如何用 Latex 写各种公式。

多数时候为了提高切换效率,我们通常使用快捷键。下面介绍 JupyterLab 中常用的快捷键。

本节配套的 Jupyter Notebook 文件 Bk1_Ch3_01.ipynb 向大家展示如何在 Jupyter Notebook 中进行探究式学习。本节配套的微课视频会逐 cell 讲解这个 Notebook 文件。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

JupyterLab 中的 markdown 是什么?

在 JupyterLab 中,Markdown 是一种轻量级标记语言,可以用于编写文档、笔记和报告等。通过使用 Markdown 语法,用户可以在 JupyterLab 中轻松地创建格式化文本、插入图片、添加链接、创建列表等。Markdown 语法非常简单,易于学习和使用。例如,使用 Markdown 语法,用户可以使用井号(#)来创建标题,使用"-"或"*"符号加上空格来创建 bullet list,使用双星号(**)来加粗文本,使用单星号(*)来斜体文本等。用户可以在 Markdown 单元格中编写 Markdown 语法,然后使用 Shift+Enter 键来渲染 Markdown 文本。JupyterLab 中的 Markdown 支持 LaTeX 语法,用户可以使用 LaTeX 语法来插入数学公式,从而方便地创建数学笔记和报告。

Markdown 元素

在本章配套的 Jupyter Notebook 文件中大家可以看到,在 markdown 中,我们可以创建文本、标题、公式等等格式、元素丰富的文档。

表 1 总结了 markdown 中各种常用元素。

Markdown 元素	介绍
# Level 1 Header	一级标题; 1 个井号 (hash) # 后紧跟一个半角空格
## Level 2 Header	二级标题; 2 个井号相连 ##, 后紧跟一个半角空格
### Level 3 Header	三级标题; 3 个井号相连 ###, 后紧跟一个半角空格
#### Level 4 Header	四级标题;4个井号相连 ####,后紧跟一个半角空格
##### Level 5 Header	五级标题; 5 个井号相连 #####, 后紧跟一个半角空格
<h1> Level 1 Header </h1>	HTML 语句呈现分级标题
<h2> Level 2 Header </h2>	
<h3> Level 3 Header </h3>	
<h4> Level 4 Header </h4>	
<h5> Level 5 Header </h5>	
 colored text	指定颜色渲染文本
italic text	文字倾斜;第一个星号 (asterisk) *之后、第二个星号 *之前没有空格
italic text	文字倾斜;第一个下划线 (underscore) _ 之后、第二个下划线_之前没有空格;下划线是英文状态下输入的半角字符
italic text	文字倾斜
bold text	文字加粗;第一对星号**之后、第二对星号**之前没有空格
bold text	文字加粗
bold text	文字加粗

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

bond text	文字加粗;第一对下划线之后、第二对下划线之前没
	有空格
bold and italic text	文字加粗倾斜
bold and italic text	
<pre> bold and italic text </pre>	
~~Scratch this~~	划去
Scratch this	
***	画一条横向分割线;有4种方法:3个星号,3个连字符
	(hyphen),3 个下划线,或 <hr/>
<hr/>	
* bullet point 1	项目符号;星号之后有一个半角空格
* bullet point 2	
- bullet point 1	项目符号;连字符之后有一个半角空格
- bullet point 2	
- bullet point 1	分级项目符号
- bullet point 1.1	第2级:4个空格,跟着一个下划线,再跟1个空格
- bullet point 1.1.1	第3级:8个空格,跟着一个下划线,再跟1个空格
- bullet point 1.1.2	
- bullet point 1.2	
1. bullet point	编号;数字后有一个半角句点 . 紧跟着一个空格
2. bullet point	
	项目符号
item 1	
item 2	
item 3	
<01>	自动编号
item 1	
item 2	
item 3	
- [x] Done	可以用来区分已做事项和未做任务事项
- [] To Do	
paragraph 1 paragraph 2	分行符号; 也可以用两个半角空格分行

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

成队归用于八字面版社所有,唱勿简用,引用谓注明面风。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

>paragraph 1	分段符号
paragraph 2	
> Quote	一段引用文本
> Quote level 1	分级引用
>> Quote level 2	
>>> Quote level 3	
<pre>\$\pi\$</pre>	插入符号、公式
\$\$\pi\$\$	居中插入符号、公式
col 1 col 2 col 3	表格;:-:代表居中对齐;:-左对齐;-:右对齐
1 A a	
2 B b	
*	直接显示星号 *
Repos [link](https://github.com/Visualize-ML).	超链接
~~~python	在 Markdown 中展示 Python 代码,~是波浪号
<pre>print('Python is fun!')</pre>	(tilde),下一节会介绍这些常用键盘符号 
~~~	

魔法命令

%cd

%timeit

在 JupyterLab 中,**魔法命令** (magic command) 是特殊的命令,以一个百分号 (%) 或两个百分号 (%%) 开头,用于在 Jupyter Notebook 中执行一些特殊的操作或提供额外的功能。这些命令可以方便地控制代码的执行方式、访问系统信息以及进行其他一些有用的操作。一些常用的 JupyterLab 魔法命令。

一个百分号 (%) 开头的叫**行魔法命令** (line magic),是只针对当前行生效的方法;两个百分号 (%%)开头的叫**单元格魔法** (cell magic),对当前整个代码输入框 cell 生效。

魔法命令 	描述
%lsmagic	列表查看所有的魔法命令
%lsmagic?	在任何魔法命令后加半角?,查看特定魔法命令用法
%magic	详细说明所有魔法命令用法

表 2. JupyterLab 中常用魔法命令

统计 (多次运行算均值和标准差) 某行代码的运行时间, 比如

import numpy as np

切换工作目录

T++ /T/

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

	%timeit data = np.random.uniform(0,1,10000)
%%time	用于记录该 cell 运行的时间,比如如下矩阵乘法运算 %%time import numpy as np A = np.random.uniform(0,1,(1000,1000)) B = np.random.uniform(0,1,(1000,1000)) C = A @ B
%pip	执行 pip 命令,比如 %pip install numpy
%conda	执行 conda 命令
%who	调出所有的全局变量。如下用法可以找到特定类型的变量 who str who dict who float who list
%%writefile	将某个单元格代码写入并保存在某个文档中,比如 %%writefile C:\Users\james\Desktop\test\test.txt import numpy as np A = np.random.uniform(0,1,(1000,1000)) B = np.random.uniform(0,1,(1000,1000)) C = A @ B
%pwd	打印当前工作目录
%run python_file.py	执行当前文件夹中的.py 文件

3.3 快捷键:这一章可能最有用的内容

建议大家使用快捷键 (shortcuts, keyboard shortcuts)完成常见 cell 操作。 JupyterLab 的快捷键分成两种状态: a) 编辑模式; b) 命令模式。

编辑模式,允许大家向 cell 中敲入代码或 markdown 文本。表 3 总结编辑模式下常用快捷键。为 了帮助大家识别这些快捷键组合,图 5 给出标准键盘主键盘上各个按键的位置。

图 5. 标准键盘, Mac 的 command 对应 ctrl

命令模式, 单击 **esc** 进入命令模式, 这时可以通过键盘键入命令快捷键。表 4 总结命令模式下常用快捷键。

▲ 注意,表格中的加号 + 表示"一起按下",不是让大家按加号键。加号 + 前后的按键没有先后顺序。

表 3 和表 4 两个表格中都是常用默认快捷键。如果大家对某个快捷键组合不满意,可以自行修改。特别是需要在多个 IDE 之间转换时,由于不同 IDE 的默认快捷键不同,一般都会将常用快捷键统一设置成自己习惯的组合。

JupyterLab 中修改快捷键的路径为 Settings \rightarrow Advanced Settings Editor (或 esc \rightarrow ctrl + ,) \rightarrow 搜索 Keyboard Shortcuts。

▲ 注意,不建议初学者修改默认快捷键。除非大家需要跨 IDE 编程,比如并用 JupyterLab 和 PyCharm,或者并用 JupyterLab 和 Spyder,则可以通过修改快捷键,保证不同 IDE 中快捷键一致,这样更顺手。

快捷键组合	功能
esc	进入"命令"模式;鼠标左键单击任何 cell 返回,或单击 enter 返回编辑模式
ctrl + M	进入"命令"模式
ctrl + \$	保存;尽管 JupyterLab 会自动保存,建议大家还是要养成边写边存的好习惯
shift + enter	执行 + 跳转;运行当前 cell 中的代码,光标跳转到下— cell
ctrl + enter	执行;运行当前 cell 中的代码
alt + enter	执行 + 创建 cell; 运行当前 cell 中的代码,并在下方创建一个新 cell
$\operatorname{ctrl} + \operatorname{shift} + \odot$	分割;在光标所在位置将代码/文本分割成两个 cells
ctrl + /	注释/撤销注释;对所在行,或选中行进行注释/撤销注释操作
ctrl + [向左缩进;行首减四个空格
ctrl + 1	向右缩进;行首加四个空格
ctrl + A	全选; 全选当前 cell 内容

表 3. 编辑模式, 常用快捷键

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$\overline{\text{ctrl}} + \mathbb{Z}$	撤销;撤销上一个键盘操作
$\operatorname{ctrl} + \operatorname{shift} + \operatorname{\mathbb{Z}}$	重做:恢复刚才撤销命令对应操作,相当于"撤销撤销"
$\overline{ctrl} + \mathbb{C}$	复制; 复制选中的代码或文本
ctrl + X	剪切;剪切选中的代码或文本
$\overline{ctrl} + \overline{V}$	粘贴;粘贴复制/剪切的代码或文本
$\overline{\text{ctrl}} + \overline{\text{F}}$	查询;实际上就是浏览器的搜索
home	跳到某一行开头
end	跳到某一行结尾
$\overline{\text{ctrl}} + \overline{\text{home}}$	跳到多行 cell 第一行开头
$\operatorname{ctrl} + \operatorname{end}$	跳到多行 cell 最后一行结尾
tab	代码补齐;忘记函数拼写时,可以给出前一两个字母,按 tab 键得到提示
shift + tab	对键入的函数提供帮助文档
ctrl + ®	展开/关闭左侧 sidebar

表 4. 命令模式, 常用快捷键

快捷键组合	功能
esc	编辑模式下,进入"命令"模式;鼠标左键单击任何 cell 返回,或单击 enter 返回编辑模式
esc → M	在按下 esc 进入编辑模式后,将当前 cell 从代码 markdown 转成文本
esc → Y	将当前 cell 从文本 markdown 转成代码
enter	从命令模式进入编辑模式,或者鼠标左键单击任何 cell
esc → A	插入;在当前 cell 上方插入新 cell
esc → B	插入;在当前 cell 下方插入新 cell
esc → ① → ①	删除;在按下 esc 进入编辑模式后,连续按两下 D,删除当前 cell
esc → ① → ①	重启 kernel;在按下 esc 进入编辑模式后,连续按两下零 0,重启 kernel
esc → ctrl + ®	展开/关闭左侧 sidebar
esc → ctrl + A	选中所有 cells
esc → shift + ♠	选中当前和上方 cell,不断按 shift + ▲不断选中更上一层 cell
esc \rightarrow shift $+$ \bigcirc	选中当前和下方 cell,不断按 shift + ▼不断选中更下一层 cell
shift + M	合并;将所有选中的 cells 合并;如果没有多选 cell,则将当前 cell 和下方 cell 合并
shift + enter	执行 + 跳转;运行当前 cell 中的代码,光标跳转到下一 cell;和编辑模式一致
ctrl + (enter)	执行;运行当前 cell 中的代码;和编辑模式一致
alt + (enter)	执行 + 创建 cell; 运行当前 cell 中的代码, 并在下方创建一个新 cell; 和编辑模式一致
esc → 1	一级标题,等同于 markdown 状态下 #
esc → ②	二级标题,等同于 markdown 状态下 ##
esc → ③	三级标题,等同于 markdown 状态下 ###,以此类推

表 5 总结了键盘上常用的中英文名称,它们会帮助大家阅读各种技术手册以及工作交流。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

表 5. 键盘上常用按键中英文名称

按键	名称	按键	名称
#	井号 (pound, hash, number sign)	@	at符号 (at sign, address sign)
?	问号 (question mark)	~	波浪号 (tilde)
Esc	退出键 (escape key)	`	重音符 (grave accent,
Tab	制表符 (tab key)	Spacebar	空格键 (spacebar, space key)
!	感叹号 (exclamation mark)	,	单引号 (single quotation mark)
	句点 (period, dot, full stop)	и	双引号 (double quotation mark)
,	逗号 (comma)	;	分号 (semicolon)
<	小于 (less than sign)	:	冒号 (colon)
	左尖括号 (left/open angle bracket)		
>	大于 (greater than sign)	/	正斜杠 (forward slash)
	右尖括号 (right/closed angle bracket)		除号 (division sign)
I	竖线 (pipe, vertical bar)	\	反斜杠 (backslash)
[左方括号 (left/open bracket)	(左圆括号 (left/open parenthesis)
]	右方括号 (right/closed bracket))	左圆括号 (right/closed parenthesis)
{	左大括号 (left/open curly bracket)	=	等号 (equal sign)
}	右大括号 (right/closed curly bracket)	+	加号 (plus sign)
*	星号 (asterisk, star)	-	连字符(hyphen)
			减号 (minus sign)
%	百分号 (percent, percentage sign)	-	下划线 (underscore)
&	与号 (ampersand, and symbol)	۸	音调符号 (caret, circumflex, hat)

3.4 什么是 LaTeX?

LaTeX 是一种用于排版科学和技术文档的系统。根据官网介绍,LaTeX 的正确发音为 Lah-tech 或 Lay-tech。

与常见的字处理软件不同,LaTeX 使用纯文本文件作为输入,并通过预定义的命令和语法描述文档结构和格式。LaTeX 可以处理复杂的数学公式、表格、图表和引用,并提供高级功能如自动编号和交叉引用。

LaTeX 是开源的,可在多个操作系统上运行,并有丰富的扩展包和模板可供使用。LaTeX 被广泛应用于学术界和科技领域。通过使用 LaTeX,用户可以轻松创建高质量、规范的学术论文、期刊文章和演示文稿。

本章不会讲怎么用 LaTeX 写论文,仅仅介绍如何在 Jupyter Notebook 的 markdown 中嵌入 Latex 数学符号、各类常用公式,比如图 6、图 7 两个例子。

LaTeX 更像是编程,比如图 6 中,\begin{bmatrix}代表左侧方括号 [, \end{bmatrix}代表右侧方括号。\cdots 代表水平省略号,\vdots 代表竖直省略号,\ddots 代表对角省略号。

再比如图 7 中, -{\frac {1}{2} 为分式, 第 1 个 {} 内为分子, 第 2 个 {} 内为分母。 \left(代表左括号, \right) 代表右括号。\sqrt 代表根号。LaTeX 语句非常直观, 很容易理解, 本章后文不再逐一讲解 LaTeX 语句。

▲ 注意,在 JupyterLab markdown 单元格中,要在文本中 inline 插入一个简单的公式,需要用使用左右 \$ (半角) 将公式括起来,比如\$E=mc^2\$。要让公式单独一行需要用左右 \$\$ 将公式括起来,比如\$\$E=mc^2\$。

本章如下内容,建议大家现用现学,千万别死记硬背;如果现在用不到的话,可以跳过不看。

```
a $$A_{m\times n} =
b \begin{bmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{bmatrix}$

e \left( \text{Pmatrix} \)

A_m \( = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\displace & \cdots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{bmatrix}$

\text{Pmatrix}
\]

A_m \( = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
\displace & \displace & \dots & \dots & \dots \\
\displace & \dots & \dots & \dots & \dots & \dots \\
\displace & \dots & \dots & \dots & \dots & \dots & \dots \\
\displace & \dots & \dots & \dots & \dots & \dots \\
\displace & \dots & \dots & \dots & \dots & \dots \\
\displace & \dots & \dots & \dots & \dots & \dots & \dots \\
\displace & \dots & \dots & \dots & \dots & \dots & \dots \\
\displace & \dots & \dots & \dots & \dots & \dots & \dots \\
\displace & \dots \\
\displace & \dots \\
\displace & \dots \\
\displace & \dots & \dot
```

3.5 字母和符号

字母样式

英文中常用字母样式主要有: 正体 aA (regular)、粗体 Aa (bold)、斜体 Aa (italic)、粗体斜体 Aa (bold italic)、无衬线体 (sans-serif)、衬线体 (serif)、花体 (calligraphy)、上标 Aa (superscript)、下标 Aa (subscript)_o

无衬线体是指在字母末端没有装饰性衬线,如图8(a)所示。无衬线体字体的设计更加简洁,直接, 没有额外的装饰。

无衬线体常常被用于数字屏幕上,比如计算机屏幕、手机、平板电脑等,因为在低分辨率的显示条 件下,无衬线体更容易阅读。常用的无衬线体字体有 Arial、Roboto 等。本书图片注释文字很多便采用 Roboto。Roboto 是 Google 开源字体。

衬线体是指在字母末端有装饰性衬线的字体,如图8(b)所示。这些图8(c)所示小线条使得衬线体在 打印和长段落文字中更易于阅读。它们在印刷物、书籍、报纸等传统媒体中广泛使用。最常见的衬线字 体莫过于 Times New Roman。鸢尾花书中大量使用 Times New Roman,特别是在公式中。

lacktriangle注意,ISO 标准推荐向量、矩阵记号采用粗体、斜体、衬线体,比如 $m{a}$ 、 $m{b}$ 、 $m{x}$ 、 $m{A}$ 、 $m{B}$ 、 $m{X}$ 。鸢尾 花书采用这一样式。

此外,还必须要提到编程中常用的另外一种字体——等宽字体 (monospaced font, Mono)。在 Mono 字体中,每个字符(包括字母、数字、标点符号、空格等)都占据相同的水平宽度,这使得每列字符在视 觉上都保持对齐, 使得排版看起来整齐和规整。

在编程中需要对齐代码,使其易于阅读和维护,因此 Mono 字体在代码编辑器中得到广泛应用。最 常见的 Mono 字体为 Courier New。鸢尾花书很多地方也会采用 Courier New。

本书读者顺序读到此处应该非常熟悉本书代码(图9)这种 Mono 字体,它就是 Google 开源字体 Roboto Mono Light。Roboto Mono Light 是无衬线等宽字体。

图 8. 比较无衬线体、衬线体,图片改编自 Wikipedia

AaBbCc OoXxYy IiLlMmNn 1234567890+>< (){}[]@-#%!/\

图 9. 等宽字体 Roboto Mono Light

LaTeX	样式	说明
\$ {AaBbCc} \$	AaBbCc	斜体,大部分数学符号、表达式
<pre>\$ \mathrm {AaBbCc} \$</pre>	AaBbCc	正体,公式中的单位或文字
<pre>\$ \mathbf {AaBbCc} \$</pre>	AaBbCc	粗体,向量、矩阵
<pre>\$ \boldsymbol {AaBbCc} \$</pre>	AaBbCc	粗体、斜体,向量、矩阵
<pre>\$ \mathtt {AaBbCc} \$</pre>	AaBbCc	等宽字体,常用于代码
<pre>\$ \mathcal {ABCDEF} \$</pre>	ABCDEF	花体,用于表示数学中的集合、代数结构、算子
\$ \mathbb {CRQZN} \$	CRQZN	黑板粗体 (blackboard bold),常用来表达各种集合
\$\text {Aa Bb Cc}\$	Aa Bb Cc	用来写公式中的文字
<pre>\$\mathrm{d}x\$</pre>	dx	ISO 规定导数符号 d 为正体
<pre>\$\operatorname{T}\$</pre>	T	运算符

表 7. 各种字母英文读法

英文字母	英文表达
	· . 1
A	capital a, cap a, upper case a
a	small a, lower case a
A	italic capital a, italic cap a
а	italic a
A	boldface capital a, bold cap a
a	boldface a, bold small a
A	bold italic cap a
а	bold italic small a
A	Gothic capital a

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

a	Gothic a
A	script capital a
a	script a

标记

数学符号、表达式中还常用各种特殊标记 (accent),表 8 总结常用特殊标记。

LaTex	数学表达	英文读法
<pre>\$x'\$ \$x^{\prime}\$</pre>	x'	x prime
\$x''\$	x"	x double prime
<pre>\$\overrightarrow{AB}\$</pre>	\overrightarrow{AB}	a vector pointing from A to B
<pre>\$\underline{x}\$</pre>	<u>x</u>	x underline
\$\hat{x}\$	\hat{x}	x hat
\$\bar{x}\$	\overline{x}	x bar
\$\dot{x}\$	ż	x dot
<pre>\$\tilde{x}\$</pre>	\tilde{x}	x tilde
\$x_i\$	x_i	x subscript i, x sub i
\$x^i\$	x^{i}	x to the n, x to the nth, x to the n-th power x raised to the n-th power
<pre>\$\ddot{x}\$</pre>	ÿ	x double dot
\$x^*\$	<i>x</i> *	x star, x super asterisk
\$x\dagger\$	x†	x dagger
\$x\ddagger\$	<i>x</i> ‡	x double dagger
<pre>\${\color{red}x}\$</pre>	x	red x

希腊字母

表 9 总结常用大小写希腊字母,表 10 给出常用作变量的希腊字母。比如,鸢尾花书《统计至简》就会用到 9 。

表 9. 希腊字母,大小写

小写	LaTeX	大写	LaTeX	英文拼写	英文发音
α	\$\alpha\$	A	\$A\$	alpha	/ˈælfə/
β	\$\beta\$	В	\$B\$	beta	/'beɪtə/
γ	\$\gamma\$	Γ	\$\Gamma\$	gamma	/ˈgæmə/
δ	\$\delta\$	Δ	\$\Delta\$	delta	/'deltə/
3	<pre>\$\epsilon\$</pre>	Е	\$E\$	epsilon	/'epsɪlɑ:n/

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

	4	_	1-1		
ζ	\$\zeta\$	Z	\$Z\$	zeta	/ˈziːtə/
η	\$\eta\$	Н	\$H\$	eta	/ˈiːtə/
θ	\$\theta\$	Θ	\$\Theta\$	theta	/ˈθiːtə/
ı	\$\iota\$	I	\$1\$	iota	/ar'outə/
κ	\$\kappa\$	K	\$K\$	kappa	/ˈkæpə/
λ	\$\lambda\$	Λ	\$\Lambda\$	lambda	/ˈlæmdə/
μ	\$\mu\$	M	\$M\$	mu	/mju:/
v	\$\nu\$	N	\$N\$	nu	/nju:/
ξ	\$\xi\$	Ξ	\$\Xi\$	xi	/ksaɪ/ 或 /zaɪ/ 或 /gzaɪ/
0	\$\omicron\$	0	\$0\$	omicron	/ˈaːməkraːn/
π	\$\pi\$	П	\$\Pi\$	pi	/paɪ/
ρ	\$\rho\$	P	\$P\$	rho	/rou/
σ	\$\sigma\$	Σ	\$\Sigma\$	sigma	/ˈsɪgmə/
τ	\$\tau\$	T	\$T\$	tau	/taʊ/
υ	<pre>\$\upsilon\$</pre>	Y	\$Y\$	upsilon	/'upsila:n/
φ	\$\phi\$	Φ	\$\Phi\$	phi	/faɪ/
χ	\$\chi\$	X	\$X\$	chi	/kaɪ/
Ψ	\$\psi\$	Ψ	\$\Psi\$	psi	/saɪ/
ω	\$\omega\$	Ω	\$\Omega\$	omega	/oʊˈmegə/

表 10. 希腊字母,变量

LaTeX	样式	LaTeX	样式
\$\vartheta\$	9	\$\varrho\$	Q
\$\varkappa\$	×	\$\varphi\$	φ
\$\varpi\$	σ	<pre>\$\varepsilon\$</pre>	ε
\$\varsigma\$	S		

常用符号

表11总结常用符号。

此外,请大家注意区分: - **不间断连字符** (nonbreaking hyphen)、- **减号** (minus sign)、- **短破折号** (en dash)、- **长破折号** (em dash)、_ **下划线** (underscore)、/ **前斜线** (forward slash)、\ **反斜线** (backward slash, backslash, reverse slash)、| 竖线 (vertical bar, pipe)。

表 11. 常用符号

LaTex	数学符号	英文读法	中文表达
<pre>\$\times\$</pre>	×	multiplies, times	乘
\$\div\$	÷	divided by	除以
<pre>\$\otimes\$</pre>	\otimes	tensor product	张量积
\$(\$	(open parenthesis, left parenthesis, open round bracket,	左圆括号

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

		left round bracket	
\$)\$		close parenthesis, right	 右圆括号
/)	parenthesis, close round	
		bracket, right round bracket	
\$[\$	[open square bracket, left square bracket	左方括号
\$]\$]	close square bracket, right square bracket	右方括号
\$\{\$	{	open brace, left brace, open curly bracket, left curly bracket	左大括号
\$\}\$	}	close brace, right brace, close curly bracket, right curly bracket	右大括号
\$\pm\$	<u>±</u>	plus or minus	正负号
\$\mp\$	Ŧ	minus or plus	负正号
\$<\$	<	less than	小于
\$\leq\$	<u>≤</u>	less than or equal to	小于等于
\$\11\$	«	much less than	远小于
\$>\$	>	greater than	大于号
\$\geq\$	≥	greater than or equal to	大于等于
\$\gg\$	>>	much greater than	远大于
\$=\$	=	equals, is equal to	等于
<pre>\$\equiv\$</pre>	≡	is identical to	完全相等
<pre>\$\approx\$</pre>	≈	is approximately equal to	约等于
<pre>\$\propto\$</pre>	œ	proportional to	正比于
<pre>\$\partial\$</pre>	ð	partial derivative	偏导
\$\nab1a\$	∇	del, nabla	梯度算子
\$\infty\$	∞	infinity	无穷
\$\neq\$	≠	does not equal, is not equal to	不等于
<pre>\$\parallel\$</pre>	I	parallel	平行
<pre>\$\perp\$</pre>		perpendicular to	垂直
\$\angle\$		angle	角度
<pre>\$\triangle\$</pre>	Δ	triangle	三角形
\$\square\$		square	正方形
\$\sim\$	~	similar	相似
<pre>\$\exists\$</pre>	3	there exists	存在
\$\forall\$	\forall	for all	任意
\$\subset\$	_	is proper subset of	真子集
\$\subseteq\$	⊆	is subset of	子集
<pre>\$\varnothing\$</pre>	Ø	empty set	空集
\$\supset\$	\supset	is proper superset of	真超集
\$\supseteq\$	⊇	is superset of	超集

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

成队归用于八字面版社所有,唱勿简用,引用谓注明面风。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

	I		,
\$\cap\$	\cap	intersection	交集
\$\cup\$	\supset	union	并集
\$\in\$	€	is member of	属于
<pre>\$\notin\$</pre>	∉	is not member of	不属于
\$ \N\$	N	set of natural numbers	自然数集合
\$\Z\$	\mathbb{Z}	set of integers	整数集合
<pre>\$\rightarrow\$</pre>	\rightarrow	arrow to the right	向右箭头
<pre>\$\leftarrow\$</pre>	←	arrow to the left	向左箭头
<pre>\$\mapsto\$</pre>	\mapsto	maps to	映射
<pre>\$\implies\$</pre>	\Rightarrow	implies	推出
\$\uparrow\$	↑	arrow pointing up, upward arrow	向上箭头
\$\Uparrow\$	Î	arrow pointing up, upward arrow	向上箭头
\$\downarrow\$	\	arrow pointing down, downward arrow	向下箭头
\$\Downarrow\$	\Downarrow	arrow pointing down, downward arrow	向下箭头
<pre>\$\therefore\$</pre>	<i>:</i> .	therefore sign	所以
\$\because\$::	because sign	因为
\$\star\$	*	asterisk, star, pointer	星号
\$!\$!	exclamation mark, factorial	叹号, 阶乘
\$ x \$	x	absolute value of x	绝对值
<pre>\$\lfloor x \rfloor\$</pre>		the floor of x	向下取整
\$\lceil x \rceil\$	$\lceil x \rceil$	the ceiling of x	向上取整
\$x!\$	<i>x</i> !	x factorial	阶乘

3.6 用 LaTex 写公式

代数

表 12~表 17 总结了一些常用的 LaTeX 代数表达式,请大家自行学习。

表 12. 几个有关多项式的数学表达; Bk1_Ch3_03.ipynb

LaTeX	数学表达
$x^{2}-y^{2} = \left(x+y\right)\left(x-y\right)$	$x^{2} - y^{2} = (x + y)(x - y)$
$a_{n}x^{n}+a_{n-1}x^{n-1}+\dotsb + a_{2}x^{2} + a_{1}x + a_{0}$	$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$
\$\sum_{k=0}^{n}a_{k}x^{k}\$	$\sum_{k=0}^{n} a_k x^k$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

\$ ax^{2}+bx+c=0\ (a\neq 0) \$	$ax^2 + bx + c = 0 \ (a \neq 0)$

LaTeX	数学表达
	$\sqrt[n]{a^m} = (a^m)^{1/n} = a^{m/n} = (a^{1/n})^m = (\sqrt[n]{a})^n$
\$\left({\sqrt {1-x^{2}}}\right)^{2}\$	$\left(\sqrt{1-x^2}\right)^2$

LaTeX	数学表达
\$\frac {1}{x+1}+{\frac {1}{x-1}}={\frac {2x}{x^{2}-1}}\$	$\frac{1}{x+1} + \frac{1}{x-1} = \frac{2x}{x^2 - 1}$
$x_{1,2}={\frac{-b\pm {\left\{ b^{2}-4ac \right\}}}{2a}}$	$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

LaTeX	数学表达
$f(x)=ax^{2}+bx+c\sim{\text{with }}\sim a,b,c\in \mathbb{R}$, \ a\neq 0\$	$f(x) = ax^2 + bx + c$ with $a,b,c \in \mathbb{R}, a \neq 0$
$f(x_1, x_2) = x_1^2 + x_2^2 + 2x_1x_2$	$f(x_1, x_2) = x_1^2 + x_2^2 + 2x_1x_2$
\$\log_{b}(xy)=\log_{b}x+\log_{b}y\$	$\log_b(xy) = \log_b x + \log_b y$
<pre>\$\ln(xy)=\ln x+\ln y{\text{ for }} x>0 {\text{ and }} y>0\$</pre>	ln(xy) = ln x + ln y for x > 0 and y > 0
<pre>\$f(x)=a\exp \left(-{\frac {(x- b)^{2}}{2c^{2}}}\right)\$</pre>	$f(x) = a \exp\left(-\frac{(x-b)^2}{2c^2}\right)$

LaTeX	数学表达
\$\sin ^{2}\theta +\cos ^{2}\theta =1\$	$\sin^2\theta + \cos^2\theta = 1$
<pre>\$\sin 2\theta =2\sin \theta \cos \theta\$</pre>	$\sin 2\theta = 2\sin \theta \cos \theta$
<pre>\$\sin(\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta\$</pre>	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$

成权归有平人字面版在所有,有勿向用,引用有压切面处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

LaTeX	数学表达
	$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \dots$
<pre>\$ \left(\sum _{i=0}^{n}a_{i}\right)\left(\sum _{j=0}^{n}b_{j}\right)=\sum _{i=0}^{n}\sum _{j=0}^{n}a_{i}b_{j}\$</pre>	$\left(\sum_{i=0}^{n} a_i\right) \left(\sum_{j=0}^{n} b_j\right) = \sum_{i=0}^{n} \sum_{j=0}^{n} a_i b_j$
$\label{lim_{n}} $\exp(x) = \lim_{n\to\infty} \int_{n}^{n} \int_$	$\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n$
$\frac{mathrm{d}}{mathrm{d}x} \exp(f(x)) = f'(x) \exp(f(x))$	$\frac{\mathrm{d}}{\mathrm{d}x}\exp(f(x)) = f'(x)\exp(f(x))$
$\int_{a}^{a}^{b}f(x) \mathrm {d} x$	$\int_{a}^{b} f(x) \mathrm{d}x$
<pre>\$\int _{-\infty }^{\infty }\exp(- x^{2})\mathrm{d}x={\sqrt {\mathrm{\pi} }}\$</pre>	$\int_{-\infty}^{\infty} \exp(-x^2) \mathrm{d}x = \sqrt{\pi}$
<pre>\$\int _{-\infty }^{\infty }\int _{- \infty }^{\infty } \exp \left({- \left(x^{2}+y^{2}\right)} \right) {\mathrm{d}x} {\mathrm{d}y} = \pi\$</pre>	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp(-(x^2 + y^2)) dx dy = \pi$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\frac{\partial^2 f}{\partial x^2} = f_{xx}'' = \partial_{xx} f = \partial_x^2 f$
<pre>\${\frac {\partial ^{2}f}{\partial y \partial x}}={\frac {\partial }{\partial y}}\left({\frac {\partial f}{\partial x}}\right)=f''_{xy}\$</pre>	$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = f''_{xy}$

线性代数

表 18 和表 19 总结了一些常用的 LaTeX 线性代数相关表达式, 请大家自行学习。

LaTeX	数学表达
	$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = [a_1 \ a_2 \ a_3]^{\mathrm{T}}$
$\alpha_{1}^{2}+a_{2}^{2}+a_{3}^{2}$	$\ \boldsymbol{a}\ = \sqrt{a_1^2 + a_2^2 + a_3^2}$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有, 请勿商用, 引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

$\ \$ \mathbf {a} \cdot \mathbf {b} = a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3}\$	$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$
<pre>\$\mathbf {a} \cdot \mathbf {b} =\left\ \mathbf {a} \right\ \left\ \mathbf {b} \right\ \cos \theta \$</pre>	$\boldsymbol{a} \cdot \boldsymbol{b} = \ \boldsymbol{a}\ \ \boldsymbol{b}\ \cos \theta$
	$\parallel \mathbf{x} \parallel_p = \left(\sum_{i=1}^n \left \mathbf{x}_i \right ^p \right)^{1/p}$

LaTeX	数学表达
<pre>\$\mathbf {A} = {\begin{bmatrix} 1 & 2\\ 3 & 4 \\ 5 & 6 \end{bmatrix}}\$</pre>	$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$
<pre>\$\mathbf {A} ={\begin{bmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{bmatrix}}\$</pre>	$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm} \end{bmatrix}$
<pre>\$\left(\mathbf {A} +\mathbf {B} \right)^{\operatorname {T} }=\mathbf {A} ^{\operatorname {T} }+\mathbf {B} ^{\operatorname {T} }\$</pre>	$(\boldsymbol{A} + \boldsymbol{B})^{\mathrm{T}} = \boldsymbol{A}^{\mathrm{T}} + \boldsymbol{B}^{\mathrm{T}}$
<pre>\$\left(\mathbf {AB} \right)^{\operatorname {T} }=\mathbf {B} ^{\operatorname {T} }\mathbf {A} ^{\operatorname {T} }\$</pre>	$(AB)^{T} = B^{T}A^{T}$
<pre>\$ \left(\mathbf {A} ^{\operatorname} {T} }\right)^{-1}=\left(\mathbf {A} ^{-1}\right)^{\operatorname {T} }\$</pre>	$\left(\boldsymbol{A}^{\mathrm{T}}\right)^{-1} = \left(\boldsymbol{A}^{-1}\right)^{\mathrm{T}}$
<pre>\$\mathbf {u} \otimes \mathbf {v} = \mathbf {u} \mathbf {v} ^ {\operatorname} {T}} = {\begin{bmatrix}u_{1} \ u_{2} \\ u_{3} \ u_{4} \end{bmatrix}} {\begin{bmatrix} v_{1}&v_{2}&v_{3}\\end{bmatrix} = {\begin{bmatrix} u_{1}v_{1} & u_{1}v_{2} & u_{1}v_{3} \\ u_{2}v_{1} & u_{2}v_{2} & u_{2}v_{3} \\ u_{3}v_{1} & u_{4}v_{2} & u_{3}v_{3} \\ u_{4}v_{1} & u_{4}v_{2} & u_{4}v_{3} \\ u_{4}v_{1} & u_{4}v_{2} & u_{4}v_{3} \\ end{bmatrix}}\$</pre>	$\boldsymbol{u} \otimes \boldsymbol{v} = \boldsymbol{u} \boldsymbol{v}^{\mathrm{T}} = \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{bmatrix} \begin{bmatrix} v_{1} & v_{2} & v_{3} \end{bmatrix} = \begin{bmatrix} u_{1}v_{1} & u_{1}v_{2} & u_{1}v_{3} \\ u_{2}v_{1} & u_{2}v_{2} & u_{2}v_{3} \\ u_{3}v_{1} & u_{3}v_{2} & u_{3}v_{3} \\ u_{4}v_{1} & u_{4}v_{2} & u_{4}v_{3} \end{bmatrix}$
<pre>\$\det {\begin{bmatrix} a & b \\ c & d \end{bmatrix}} = ad-bc\$</pre>	$\det\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$

概率统计

表 20 总结了一些常用的 LaTeX 概率统计相关表达式,请大家自行学习。

LaTeX	数学表达
<pre>\$\Pr(A\vert B)={\frac {\Pr(B\vert A)\Pr(A)}{\Pr(B)}}\$</pre>	$Pr(A \mid B) = \frac{Pr(B \mid A)Pr(A)}{Pr(B)}$
<pre>\$ f_{X\vert Y=y}(x)={\frac {f_{X,Y}(x,y)}{f_{Y}(y)}}\$</pre>	$f_{X Y=y}(x) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$
$\sigma \{x^2\}$ (X) = \operatorname {E} \left[X^{2}\right]-\operatorname {E} [X]^{2}\$	$var(X) = E[X^2] - E[X]^2$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$var(aX + bY) = a^{2} var(X) + b^{2} var(Y) + 2ab cov(X, Y)$
<pre>\$\operatorname {E} [X]=\int _{- \infty }^{\infty }xf_{X}(x) \operatorname {d}x\$</pre>	$E[X] = \int_{-\infty}^{\infty} x f_X(x) \mathrm{d} x$
\$ X\sim N(\mu ,\sigma ^{2})\$	$X \sim N(\mu, \sigma^2)$
<pre>\$\frac {\exp \left(-{\frac {1}{2}}\left({\mathbf {x} }-{\boldsymbol {\mu }}\right)^{\mathrm {T} }{\boldsymbol {\sigma }}^{-1}\left({\mathbf {x} }- {\boldsymbol {\mu }}\right)\right)}{\sqrt {(2\pi)^{k} {\boldsymbol {\Sigma }} }}\$</pre>	$\frac{\exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)}{\sqrt{(2\pi)^{k} \boldsymbol{\Sigma} }}$

请大家完成如下题目。

- Q1. 请大家从零开始复刻 Bk1_Ch3_01.ipynb,并在创建 Jupyter Notebook 文档的过程使用快捷键。
- Q2. 请大家在 JupyterLab 中复刻本章介绍的各种 LaTeX 公式。
- * 这道题目很基础,本书不给答案。

JupyterLab 是鸢尾花书自主探究学习的利器,请大家务必熟练掌握。可以这样理解,JupyterLab 相当于"实验室",可以做实验,也可以写图文并茂、可运行、可交互的报告,可以和其他人交流自己的成果。

JupyterLab 特别适合探索性分析、快速原型设计、实验;但是,对于项目开发、测试、维度,则需要用 Spyder、PyCharm、Visual Studio 等 IDE。

本书第 34 章将专门介绍 Spyder,第 35、36 两章用 Spyder 和 Streamlit 搭建机器学习应用 App。本书 其余章节则都使用 JupyterLab 作为编程 IDE。

下面,我们进入本书下一版块,开始 Python 语法学习。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466