САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт прикладной математики и механики

Высшая школа прикладной математики и вычислительной физики

Отчет по курсовой работе по дисциплине

«Вычислительные комплексы»
Тема: Мода распределения интервальной выборки.
Мультимодальный случай.

Выполнил студент: Смирнова Дарья группа: 5030102/80201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2022 г.

Содержание

	Страни	ца
1	Постановка задачи	3
2	Теория	3
	2.1 Мода интервальной выборки	3
	2.2 Мультимодальный случай	3
	2.3 Алгоритм нахождения моды в одномодальном случае.	4
	2.4 Нахождение моды в многомодальном случае	4
3	Реализация	5
4	Результаты	5
5	Обсуждение	7

Список иллюстраций

	Страни	ца
1	Интервальная выборка	5
2	Частоты пересечений интервалов C	6
3	Две моды интервальной выборки	7
4	Частоты пересечений интервалов с несколькими локаль-	
	ными экстремумами рядом	8
5	Две моды интервальной выборки около значения $+5$	8

1 Постановка задачи

- 1. Сгенерировать интервальную выборку из 20 интервалов с двумя модами
- 2. Найти две моды выборки
- 3. Визуализировать результаты

2 Теория

2.1 Мода интервальной выборки

Распространим понятие моды и для работы с интервальными данными: модой интервальной выборки назовём совокупность интервалов пересечения наибольших совместных подвыборок выборки.

2.2 Мультимодальный случай

Мы сталкиваемся с мультимодальным случаем, когда в выборке находится несколько совместных подвыборок максимальной длины. В таком случае мода является мультиинтервалом.

При этом естественно говорить о наличии нескольких мод в случае, когда меджу двумя модами есть непустой промежуток с меньшей длиной совместной подвыборки (в точечном случае это означает, что мода отвечает локальному экстремуму)

2.3 Алгоритм нахождения моды в одномодальном случае

```
Алгоритм 1 Нахождение моды интервальной выборки
Условия: Х - интервальная выборка
Результат: М - мода интервальной выборки \mu - частота моды
  \mathbf{I} \leftarrow \cup X
  Если I \neq \emptyset тогда
       M, \mu \leftarrow \mathbf{I}, |X|
   иначе
       C \leftarrow \varnothing
       Выполнить для всех x \in X выполнять
           C \leftarrow C \cup \{\overline{x}, x\}
       Конец цикла
       C \leftarrow \operatorname{sort}(C)
       Цикл i = \overline{0, |C|-1} выполнять
           \mu_i \leftarrow \text{intersectNum}([c_i, c_{i+1}], X)
       Конец цикла
       \mu \leftarrow \max \mu_i
       M \leftarrow \cup ([c_j, c_{j+1}], j = \operatorname{argmax} \mu_i)
   Конец условия
  Возвратить M, \mu
```

2.4 Нахождение моды в многомодальном случае

Возьмем часть алгоритма для поиска одной моды: вычисляем частоты пересечения с исходной выборкой смоделированных интервалов $[c_i, c_{i+1}]$. Теперь мы имеем точечную выборку, у которой можно искать моду способами классической статистики: моде отвечает интервал с наибольшим числом μ_i .

Пусть пользователь исходя из природы данных и анализа указывает количество мод m, которое он предполагает увидеть. По выборке $\{\mu_i\}$ находи индексы локальных максимумов и сортируем их по убыванию значения экстремума. Выбираем m индексов из списка индексов отсортированных максимумов, интервалы, соответствующие этим индексам добавляем в результат.

3 Реализация

Лабораторная работа выполнена средствами языка python с использованием библиотек:

- 1. scipy
- 2. numpy
- 3. matplotlib

4 Результаты

Для генерации выборки были выбрана смесь двух нормальных распределений N(-5,1), N(5,1) с вероятностями по 0.5 для выбора центров интервалов выборки. Радиусы интервалов выборки получали как случайные величины, распределенные равномерно U(0.3,0.8). Полученная интервальная выборка проиллюстрирована ниже, где координата у выбрана произвольным образом для лучшего восприятия.

Рис. 1: Интервальная выборка

Рис. 2: Частоты пересечений интервалов C

После получения интервалов, соответствующих выборке C алгоритма рассчитаны соответствующие μ . При этом мы изначально "сглаживаем" интервалы из C: объединяются соседние интервалы с равными значениями μ . На графике изображены интервалы с подписанными внизу значниями частот μ_i .

По интервалам, сообщающим локальные максимумы и имеющим наибольшие значения экстремума, строим мультиинтервал, который является ответом, исходя из количества мод, которые указал пользователь (в нашем случае 2).

Рис. 3: Две моды интервальной выборки

5 Обсуждение

Данный алгоритм для одной моды применим всегда, для нескольких мод показывает хорошие результаты на выборках, у которых наибольшие локальные экстремумы частот пересечений (или в точечном случае плотности вероятности) соответствуют модам. Можно сгенерировать выборку, у которой вблизи одного пика будет несколько локальных экстремумов, величина которых будет больше экстремума частот, соответствующих второму явному пику выборки:

Рис. 4: Частоты пересечений интервалов с несколькими локальными экстремумами рядом

Рис. 5: Две моды интервальной выборки около значения +5

Примечание

С кодом работы можно ознакомиться по ссылке: https://github.com/DariaWelt/IntAnalysis