Teoría de números enteros

Oromion

11 de enero del 2018

Capítulo 1

Divisibilidad

Definición 1. Un entero b es divisible por un entero a, no cero, si existe un entero x tal que b = ax y se escribe a $a \mid b$. En el caso en que b no sea divisible por a se escribe $a \nmid b$.

Teorema 1. Sean $\{a, b, c, x, y\} \subset \mathbb{Z}$, las siguientes proposiciones son verdaderas:

(1) Si $a \mid b$, entonces $a \mid bc$ para cualquier entero c.

Prueba:

De la definición (1) se sigue que existe algún entero m tal que $b = a \cdot m$. Ahora, sea $c \in \mathbb{Z}$ fijo y arbitrario. Así, el número $bc = a \cdot m(c)$ y de (1) existe un entero d = m(c) tal que $b = a \cdot d$, por lo tanto $a \mid bc$.

(2) $Si\ a \mid b\ y\ b \mid c$, entonces $a \mid c$.

Prueba:

De la definición (1) se sigue que existen los entero m_1 y m_2 tales que $b = a \cdot m_1$ y $c = b \cdot m_2$. Pero c es igual a $b \cdot m_2 = (a \cdot m_1) \cdot m_2 = a \cdot (m_1 \cdot m_2)$, es decir, existe un entero $m_3 = m_1 \cdot m_2$ tal que $c = a \cdot m_3$, por lo tanto, de (1) $a \mid c$.

(3) Si $a \mid (b_1, b_2, ..., b_n)$ para algún $n \in \mathbb{N}$, entonces $a \mid \sum_{j=1}^n b_j x_j$ para cualesquiera x_j .

Prueba:

De la definición (1) se sigue que existen n números m_1, m_2, \ldots, m_n tales que $b_j = a \cdot m_j$ cuando $j \in \{1, 2, \ldots, n\}$.

(4) Si $a \mid b \mid a$, entonces $a = \pm b$.

Prueba: