

Strukturbestemmelse: Kjernemagnetisk resonans (NMR)

KJM 1110 - Mats Tilset

)

NMR -

kjernemagnetisk resonans

UNIVERSITETET I OSLO

Kjernespinn er grunnlaget for

- Medisinske anvendelser (MR-analyser, imaging)
- Kjemiske anvendelser (NMR spektroskopi) – strukturoppklaring av alt fra små molekyler til makromolekyler

Kjernespinn

- Mange (men ikke alle) atomkjerner oppfører seg som om de spinner rundt sin egen akse
 - ¹H, ¹³C, ³¹P, ¹⁹F...
- Siden de er elektrisk ladde, vil de oppføre seg som magneter og kan vekselvirke med et påtrykt magnetfelt B₀

I fravær av et påtrykt magnetfelt er spinnaksene tilfeldig orientert

I nærvær av et påtrykt magnetfelt \mathbf{B}_0 kan spinnaksene være orientert parallelt (mest stabilt) eller antiparallelt (minst stabilt) i forhold til \mathbf{B}_0

Spinn-flipp

- Kjernespinnet kan flippes fra parallell til antiparallell orientering ved elektromagnetisk bestråling
- Flipping skjer ved resonansfrekvensen v, som samsvarer med energiforskjellen ΔE mellom parallell og antiparallell tilstand gjennom relasjonen $\Delta E = hv$ (h = Plancks konstant)
- Resonansfrekvensen er proporsjonal med styrken av det påtrykte magnetfeltet B₀
- Resonansfrekvensen kan måles med høy presisjon (frekvensen avhenger av instrumentet; oftest 200-800 MHz på moderne instrumenter, tilsvarende ca. 10⁻⁴ kJ/mol)

NMR-absorbsjoner

- NMR har fått kolossal nytteverdi, bl.a. fordi
 - Forskjellige typer ¹H kjerner absorberer (er i resonans) ved forskjellige frekvenser
 - Forskjellige typer ¹³C kjerner absorberer ved forskjellige frekvenser
- Kjemisk forskjellige kjerner gir forskjellige signaler, og NMRspekteret kan fortelle oss om
 - Antall kjemisk forskjellige hydrogenatomer i forbindelsen (¹H NMR)
 - Antall kjemisk forskjellige karbonatomer i forbindelsen (¹³C NMR)
- Elektronskyen rundt atomkjernen "skjermer" kjernen mot det påtrykte ytre magnetfeltet
 - Forskjellig skjerming i forskjellige kjemiske omgivelser gir forskjeller i resonansfrekvenser
 - Mindre effektiv skjerming (elektronfattige omgivelser) fører til resonans ved høyere frekvens
 - Mer effektiv skjerming (elektronrike omgivelser) fører til resonans ved lavere frekvens

NMR-absorbsjoner

NMR-instrumentet

8

9

Kjemiske skift

Absorbsjonsfrekvensen (resonansfrekvensen) uttrykkes helst i form av "kjemisk skift", δ

¹H NMR: δ 0-10 ppm vs. TMS for de fleste organiske forbindelser

¹³C NMR: δ 0-220 ppm vs. TMS for de fleste organiske forbindelser

Kjemisk skift

- NMR-instrumenter finnes med forskjellig styrke på magnetfeltet og opererer derfor ved forskjellige frekvenser
- For at resonansene til en gitt forbindelse skal kunne gis uavhengig av instrumentet, rapporteres resonansene relativt til instrumentets egenfrekvens
- Skalaen for kjemiske skift defineres ved

$$\delta = \frac{v_{\text{prøve}} - v_{\text{intern standard}} \text{ (Hz)}}{v_{\text{instrument}} \text{ (MHz)}} \quad \text{(med enhet ppm, parts per million)}$$

• For ¹H og ¹³C NMR er den interne standarden tetrametylsilan, (CH₃)₄Si (TMS

Eksempler – ¹³C NMR

Kjemisk skift-skalaen i ¹H NMR

Viktig:

Det vi "ser" i ¹H NMR er *selve* ¹H *kjernene* (*protonene*), ikke bindingene!

12

Integralet (arealet) av signalet: "Protontelling"

- I ¹H NMR spektra er arealet under et signal proporsjonalt med antall protoner som gir opphav til signalet
- NB i ¹³C NMR gjelder som oftest ikke denne relasjonen!

Splitting: Spinn-spinn kobling

- Ekstra oppsplitting av signalene observeres ofte i ¹H NMR
- Oppsplittingen ses dersom nabo-C til det observerte H-atomet også bærer på H-atomer
- Denne spinn-spinn koblingen gir informasjon om antall nabo-H'er gjennom "n+1-regelen" der n = antall H på nabo-C
 - singlett dublett triplett kvartett... multiplett

Opphav til spinn-spinn kobling

Quartet due to coupling with —CH₃

Triplet due to coupling with — CH₂Br

Intensiteter i multiplettene

Antall nabo-H	Multiplett	Intensitetsforhold
0	Singlett	1
1	Dublett	1:1
2	Triplett	1:2:1
3	Kvartett	1:3:3:1
4	Kvintett	1:4:6:4:1
5	Sekstett	1:5:10:10:5:1
6	Septett	1:6:15:20:15:6:1

Pascals trekant

Regler for spinn-spinn kobling

1. Kjemisk ekvivalente protoner splitter ikke hverandre!

 Signalet til et proton med n ekvivalente naboprotoner kobles til en multiplett med n+1 topper, skilt fra hverandre med en koblingskonstant på J Hz ("n+1-regelen").

3. To grupper av protoner som er koblet til hverandre har like stor koblingskonstanten *J*.

Eksempel med spinn-spinn kobling

Oppsummering av NMR

¹H NMR

- Antall signaler gir antall kjemisk forskjellige H'er
- Kjemiske skift gir info om plassering av H'ene / funksjonelle grupper i nabolaget til H'ene
- Arealet under signalene gir info om antall H'er av hvert slag
- Koblinger gir info om antall H'er på nabo-C

13C NMR

- Antall signaler gir antall kjemisk forskjellige C'er
- Kjemiske skift gir info om funksjonelle grupper på C-atomet eller i dets nærmeste nabolag

Eksempel: En aromatisk forbindelse

