# **Customer Segmentation with K-Means**

#### **Import Libraries**

```
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score
from tabulate import tabulate
from prettytable import PrettyTable
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
```

#### **Load Dataset**

df = pd.read\_csv(r'C:\Users\Saba\Documents\Semester - 04\Itauma\Directories\Machine\_Learning

```
df.shape
```

(3900, 19)

The dataset contains 3,900 records with 19 columns.

#### Display Columns and data types

```
# Get columns and their data types
columns = df.columns
data_types = df.dtypes
# Create a DataFrame for better formatting
```

```
summary_df = pd.DataFrame({'Column Name': columns, 'Data Type': data_types})
# Print the summary in a beautiful table format
print(tabulate(summary_df, headers='keys', tablefmt='psql', showindex=False))
```

| +                        | ++        |
|--------------------------|-----------|
| Column Name              | Data Type |
|                          | +         |
| Customer ID              | int64     |
| Age                      | int64     |
| Gender                   | object    |
| Item Purchased           | object    |
| Category                 | object    |
| Purchase Amount (USD)    | int64     |
| Location                 | object    |
| Size                     | object    |
| Color                    | object    |
| Season                   | object    |
| Review Rating            | float64   |
| Subscription Status      | object    |
| Payment Method           | object    |
| Shipping Type            | object    |
| Discount Applied         | object    |
| Promo Code Used          | object    |
| Previous Purchases       | int64     |
| Preferred Payment Method | object    |
| Frequency of Purchases   | object    |
| +                        | ++        |

# Below are the key features:

- Customer ID: Unique identifier for each customer.
- Age: Customer's age.
- Gender: Customer's gender.
- Item Purchased: Type of item bought.
- Category: Product category (e.g., Clothing, Footwear).
- Purchase Amount (USD): Total amount spent.
- Location: Customer's location.

- Previous Purchases: Number of prior purchases.
- Frequency of Purchases: Purchase frequency (e.g., Weekly, Fortnightly, Annually).

#### df.describe()

|                      | Customer ID | Age         | Purchase Amount (USD) | Review Rating | Previous Purchases |
|----------------------|-------------|-------------|-----------------------|---------------|--------------------|
| count                | 3900.000000 | 3900.000000 | 3900.000000           | 3900.000000   | 3900.000000        |
| mean                 | 1950.500000 | 44.068462   | 59.764359             | 3.749949      | 25.351538          |
| $\operatorname{std}$ | 1125.977353 | 15.207589   | 23.685392             | 0.716223      | 14.447125          |
| $\min$               | 1.000000    | 18.000000   | 20.000000             | 2.500000      | 1.000000           |
| 25%                  | 975.750000  | 31.000000   | 39.000000             | 3.100000      | 13.000000          |
| 50%                  | 1950.500000 | 44.000000   | 60.000000             | 3.700000      | 25.000000          |
| 75%                  | 2925.250000 | 57.000000   | 81.000000             | 4.400000      | 38.000000          |
| max                  | 3900.000000 | 70.000000   | 100.000000            | 5.000000      | 50.000000          |

- The data describes a customer base of **3900** individuals with an average age of **44** and an age range from **18 to 70**.
- The **Review Rating** ranges from 2.5 to 5, with an average of about 3.75, suggesting that customers generally rate their experience positively but with some room for improvement.
- The average number of **Previous Purchases** per customer is approximately 25, indicating frequent shopping behavior among the customers.
- Count indicates the number of non-null entries in each column. For instance, there are 3900 entries for Customer ID, Age, Review Rating, and Previous Purchases.
- **Mean** is the average value for each column. For example, the average Age of customers is approximately 44.07 years, while the average Review Rating is about 3.75.
- Std (Standard Deviation) measures the amount of variation or dispersion of a set of values. A higher standard deviation indicates that the values are spread out over a wider range. For example, the standard deviation of Age is about 15.21, indicating that ages vary significantly from the mean.
- Min is the minimum value in each column. For example, the youngest customer is 18 years old.
- 25% (First Quartile) is the value below which 25% of the data falls. For Age, 25% of the customers are 31 years old or younger.
- 50% (Median) is the middle value when the data is sorted. For Age, the median is 44 years, meaning half of the customers are older than this age.

- 75% (Third Quartile) is the value below which 75% of the data falls. For example, 75% of customers are 57 years old or younger.
- Max is the maximum value in each column. For Age, the oldest customer is 70 years old.

# df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3900 entries, 0 to 3899 Data columns (total 19 columns):

| #    | Column                    | Non-Null Count | Dtype   |
|------|---------------------------|----------------|---------|
| 0    | Customer ID               | 3900 non-null  | int64   |
| 1    | Age                       | 3900 non-null  | int64   |
| 2    | Gender                    | 3900 non-null  | object  |
| 3    | Item Purchased            | 3900 non-null  | object  |
| 4    | Category                  | 3900 non-null  | object  |
| 5    | Purchase Amount (USD)     | 3900 non-null  | int64   |
| 6    | Location                  | 3900 non-null  | object  |
| 7    | Size                      | 3900 non-null  | object  |
| 8    | Color                     | 3900 non-null  | object  |
| 9    | Season                    | 3900 non-null  | object  |
| 10   | Review Rating             | 3900 non-null  | float64 |
| 11   | Subscription Status       | 3900 non-null  | object  |
| 12   | Payment Method            | 3900 non-null  | object  |
| 13   | Shipping Type             | 3900 non-null  | object  |
| 14   | Discount Applied          | 3900 non-null  | object  |
| 15   | Promo Code Used           | 3900 non-null  | object  |
| 16   | Previous Purchases        | 3900 non-null  | int64   |
| 17   | Preferred Payment Method  | 3900 non-null  | object  |
| 18   | Frequency of Purchases    | 3900 non-null  | object  |
| dtyp | es: float64(1), int64(4), | object(14)     |         |
|      | E70 0. I/D                |                |         |

memory usage: 579.0+ KB

- Column lists each column in the DataFrame, along with its index number (from 0 to 18).
- Non-Null Count indicates how many non-null (non-missing) values are present in each column. In this case, all columns have 3900 non-null entries, meaning there are no missing values in the dataset.
- Each column has an associated data type:

- int64 is the Integer type, used for numeric data. Columns like Customer ID, Age, Purchase Amount (USD), and Previous Purchases are of this type.
- float64 is the Floating-point number, used for decimal values. In this case, Review Rating is a float.
- **object** is typically used for text or mixed data types. Many columns (like Gender, Item Purchased, Category, etc.) are of this type, indicating they contain categorical data.

# 1. Data Preprocessing

## **Encode categorical variable:**

```
# Encode categorical variable if needed (e.g., 'Frequency of Purchases')
freq_encoder = LabelEncoder()
df['Frequency of Purchases'] = freq_encoder.fit_transform(df['Frequency of Purchases'])
```

#### **Drop missing values**

```
# Drop any rows with missing values
df.dropna(inplace=True)
```

# **Identify missing values:**

```
df.isnull().sum()
```

| Customer ID           | 0 |
|-----------------------|---|
| Age                   | 0 |
| Gender                | 0 |
| Item Purchased        | 0 |
| Category              | 0 |
| Purchase Amount (USD) | 0 |
| Location              | 0 |
| Size                  | 0 |
| Color                 | 0 |
| Season                | 0 |
| Review Rating         | 0 |
| Subscription Status   | 0 |
| Payment Method        | 0 |
| Shipping Type         | 0 |
|                       |   |

```
Discount Applied 0
Promo Code Used 0
Previous Purchases 0
Preferred Payment Method 0
Frequency of Purchases 0
```

dtype: int64

All columns show 0, indicating that there are no missing values in any of the columns of the DataFrame. So we don't have to handle any null values in this analysis.

# To see the first five rows.

```
df.head()
```

|   | Customer ID | Age | Gender | Item Purchased | Category | Purchase Amount (USD) | Location      | $\mathbf{S}$ |
|---|-------------|-----|--------|----------------|----------|-----------------------|---------------|--------------|
| 0 | 1           | 55  | Male   | Blouse         | Clothing | 53                    | Kentucky      | L            |
| 1 | 2           | 19  | Male   | Sweater        | Clothing | 64                    | Maine         | L            |
| 2 | 3           | 50  | Male   | Jeans          | Clothing | 73                    | Massachusetts | S            |
| 3 | 4           | 21  | Male   | Sandals        | Footwear | 90                    | Rhode Island  | Ν            |
| 4 | 5           | 45  | Male   | Blouse         | Clothing | 49                    | Oregon        | N            |

# Select features for clustering

```
# Select features for clustering
features = ['Age', 'Purchase Amount (USD)', 'Previous Purchases', 'Frequency of Purchases']
X = df[features]
```

DataFrame X is typically used in clustering algorithms, such as K-Means, DBSCAN, or Hierarchical Clustering, to group similar customers based on their characteristics.

# Standardize the features

```
# Standardize the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

# 2. K-Means Clustering (Jain, 2010)

```
# Elbow method to determine the optimal number of clusters for K-Means
wcss = [] # Within-cluster sum of squares
for k in range(1, 11): # Trying different values of k
    kmeans = KMeans(n_clusters=k, random_state=42)
   kmeans.fit(X scaled)
    wcss.append(kmeans.inertia_)
# Plot the Elbow curve
plt.figure(figsize=(10, 10))
plt.plot(range(1, 11), wcss, marker='o', color='b')
plt.title('Elbow Method for K-Means')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('WCSS')
plt.grid(True)
plt.show()
# Optimal k from Elbow plot (for example, let's assume it's 3)
optimal_k = 3
kmeans = KMeans(n_clusters=optimal_k, random_state=42)
kmeans_labels = kmeans.fit_predict(X_scaled)
# Adding K-Means cluster labels to the DataFrame
df['KMeans_Cluster'] = kmeans_labels
# Evaluating K-Means Clustering with silhouette score
kmeans_silhouette = silhouette_score(X_scaled, kmeans_labels)
print(f"K-Means Silhouette Score: {kmeans_silhouette:.4f}")
```



#### K-Means Silhouette Score: 0.1758

The plot shows a downward trend in WCSS as the number of clusters increases. This indicates that as you increase the number of clusters, the WCSS decreases, meaning the clusters become more compact.

The elbow appears to be around k=3 or k=4, this is where the reduction in WCSS starts to diminish significantly.

k=3 or k=4 is the optimal number of clusters. Choosing a higher number of clusters example k=5 to 10 results in only a small reduction in WCSS, indicating that the additional clusters do not provide substantial improvements in clustering quality.

# 3. Applying Clustering

# **DBSCAN Clustering**

```
# Applying DBSCAN clustering
dbscan = DBSCAN(eps=0.5, min_samples=5) # Adjust eps and min_samples as needed
dbscan_labels = dbscan.fit_predict(X_scaled)

# Adding DBSCAN cluster labels to the DataFrame
df['DBSCAN_Cluster'] = dbscan_labels

# Evaluating DBSCAN clustering with silhouette score (ignoring noise points: label -1)
dbscan_silhouette = silhouette_score(X_scaled[df['DBSCAN_Cluster'] != -1], dbscan_labels[df[print(f"DBSCAN_Silhouette Score (excluding noise): {dbscan_silhouette:.4f}")
```

DBSCAN Silhouette Score (excluding noise): -0.1691

## **Hierarchical Clustering**

```
## Hierarchical Clustering ##
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import silhouette_score

# Applying Agglomerative (Hierarchical) clustering
hierarchical = AgglomerativeClustering(n_clusters=optimal_k, metric='euclidean', linkage='wat
hierarchical_labels = hierarchical.fit_predict(X_scaled)

# Adding Hierarchical cluster labels to the DataFrame
df['Hierarchical_Cluster'] = hierarchical_labels

# Evaluating Hierarchical Clustering with silhouette score
hierarchical_silhouette = silhouette_score(X_scaled, hierarchical_labels)
print(f"Hierarchical Clustering Silhouette Score: {hierarchical_silhouette:.4f}")
```

Hierarchical Clustering Silhouette Score: 0.1287

A Silhouette Score of 0.1287 is relatively low, suggesting that the clusters formed by the hierarchical clustering algorithm are not well-separated. This score indicates that there is a significant overlap between the clusters, and the samples within clusters are not as distinct from samples in other clusters as one might desire. Since the score is positive, it implies that, on average, the samples are assigned to the correct clusters, but the degree of separation is weak.

A Silhouette Score of 0.1287 for hierarchical clustering indicates that the clusters are not well-defined. So we explored alternative clustering methods to improve the clustering quality and achieve better segment separation.

#### **PCA** for Visualization

```
print(X_scaled.shape)
print(X_scaled[:5]) # Show the first 5 rows
(3900, 4)
[[ 0.71891344 -0.28562864 -0.78583067 0.01257477]
 [-1.64862924 0.17885219 -1.61655226 0.01257477]
 [ 0.39008807  0.55888195 -0.16278948  1.51384863]
 [-1.51709909 1.27671595 1.63710729 1.51384863]
 [ 0.0612627 -0.45453076 0.39102491 -1.48869909]]
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
print(X_pca.shape)
print(X_pca[:5]) # Show the first 5 rows of PCA output
(3900, 2)
[[-0.05809075 -0.47854117]
 [-1.91591641 -0.48884786]
 [ 0.85250637  0.17897073]
 [ 0.85227551 1.31006259]
 [-0.46909905 0.01835147]]
df['KMeans_Cluster'] = kmeans_labels
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
```

```
## PCA for Visualization ##
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
# Add PCA components to DataFrame
df['PCA1'] = X_pca[:, 0]
df['PCA2'] = X_pca[:, 1]
# Check if PCA columns are added correctly
print(df[['PCA1', 'PCA2']].head())
# Scatter plot of the PCA components colored by K-Means clusters
plt.figure(figsize=(12, 6))
scatter = plt.scatter(df['PCA1'], df['PCA2'], c=df['KMeans_Cluster'], cmap='viridis', alpha=
plt.title('PCA of Clusters after K-Means Clustering')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
# Create a legend
legend1 = plt.legend(*scatter.legend_elements(), title="Clusters")
# Show grid
plt.grid(True)
# Display the plot
plt.show()
       PCA1
                 PCA2
```

```
PCA1 PCA2
0 -0.058091 -0.478541
1 -1.915916 -0.488848
2 0.852506 0.178971
3 0.852276 1.310063
4 -0.469099 0.018351
```



# K-Means

```
# K-Means
plt.subplot(1, 3, 1)
sns.scatterplot(x='PCA1', y='PCA2', hue='KMeans_Cluster', data=df, palette='viridis', legender
plt.title('K-Means Clustering')
```

Text(0.5, 1.0, 'K-Means Clustering')



# **DBSCAN**

```
from sklearn.cluster import DBSCAN

# Applying DBSCAN
dbscan = DBSCAN(eps=0.5, min_samples=5)  # Adjust eps and min_samples as needed
df['DBSCAN_Cluster'] = dbscan.fit_predict(X_scaled)

# Check the unique values in DBSCAN_Cluster
print(df['DBSCAN_Cluster'].unique())
```

[0 1 2 3 4 5 6 -1 7 9 8 11 10]

print(df.head()) # Check the first few rows to see if DBSCAN\_Cluster exists

```
Customer ID Age Gender Item Purchased Category Purchase Amount (USD)
0
            1
               55
                    Male
                                Blouse Clothing
                                                                    53
            2
               19
                    Male
                                Sweater Clothing
                                                                    64
1
2
            3 50 Male
                                                                    73
                                  Jeans Clothing
            4
                                Sandals Footwear
                                                                    90
3
               21
                    Male
4
            5
               45
                    Male
                                 Blouse Clothing
                                                                    49
```

```
0
        Kentucky
                            Gray
                                  Winter
                                                              Yes
                    L
1
           Maine
                    L
                                   Winter
                                                              Yes
                          Maroon
2 Massachusetts
                                   Spring
                    S
                          Maroon
                                                              Yes
3
    Rhode Island
                                                              Yes
                    Μ
                           Maroon
                                  Spring
          Oregon
                    M Turquoise Spring
                                                              Yes
  Promo Code Used Previous Purchases Preferred Payment Method \
0
              Yes
                                   14
                                                          Venmo
1
                                    2
                                                           Cash
              Yes
2
              Yes
                                   23
                                                   Credit Card
3
                                                         PayPal
              Yes
                                   49
4
              Yes
                                   31
                                                         PayPal
  Frequency of Purchases KMeans_Cluster DBSCAN_Cluster Hierarchical_Cluster
0
                       3
                                       2
                                                        0
                                                                             0
                       3
                                       2
                                                        0
                                                                             0
1
2
                       6
                                       1
                                                        1
                                                                             0
3
                       6
                                       1
                                                        1
                                                                             0
                                       0
4
                       0
                                                        2
                                                                             1
       PCA1
                 PCA2
0 -0.058091 -0.478541
1 -1.915916 -0.488848
   0.852506 0.178971
3 0.852276 1.310063
4 -0.469099 0.018351
[5 rows x 24 columns]
plt.subplot(1, 3, 2)
sns.scatterplot(x='PCA1', y='PCA2', hue='DBSCAN_Cluster', data=df, palette='deep', legend='f'
plt.title('DBSCAN Clustering')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.grid(True)
```

Discount Applied \

Location Size

Color Season

## **DBSCAN Clustering** DBSCAN\_Cluster -1 0 Principal Component 2 1 1 2 3 0 4 5 6 -17 8 -29 10 $-2.5 \bullet 0.11$ 5 Principal Component 1

0

55

Male

```
from sklearn.cluster import DBSCAN
import seaborn as sns
import matplotlib.pyplot as plt
# Applying DBSCAN
dbscan = DBSCAN(eps=0.5, min_samples=5) # Adjust as needed
df['DBSCAN_Cluster'] = dbscan.fit_predict(X_scaled)
# Check if DBSCAN_Cluster column exists
print(df.head()) # Check the DataFrame
# Plotting DBSCAN Clusters
plt.subplot(1, 3, 2)
sns.scatterplot(x='PCA1', y='PCA2', hue='DBSCAN_Cluster', data=df, palette='deep', legend='f'
plt.title('DBSCAN Clustering')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.grid(True)
plt.show()
```

Customer ID Age Gender Item Purchased Category Purchase Amount (USD)

Blouse Clothing

53

```
64
1
              2
                  19
                        Male
                                     Sweater Clothing
2
              3
                  50
                        Male
                                       Jeans Clothing
                                                                               73
3
              4
                  21
                        Male
                                     Sandals Footwear
                                                                               90
4
              5
                  45
                        Male
                                      Blouse Clothing
                                                                               49
        Location Size
                             Color Season
                                                   Discount Applied \
                                              . . .
        Kentucky
0
                              Gray
                                    Winter
                                                                 Yes
            Maine
                                     Winter
                                                                 Yes
1
                     L
                            Maroon
                                              . . .
2
  Massachusetts
                     S
                            Maroon
                                    Spring
                                                                 Yes
                                             . . .
3
    Rhode Island
                                                                 Yes
                     Μ
                            Maroon
                                     Spring
4
           Oregon
                         Turquoise
                                                                 Yes
                     Μ
                                     Spring
  Promo Code Used Previous Purchases Preferred Payment Method
                                                             Venmo
0
               Yes
                                     14
1
               Yes
                                      2
                                                              Cash
2
                                                      Credit Card
               Yes
                                     23
3
               Yes
                                     49
                                                            PayPal
4
                                     31
                                                            PayPal
               Yes
  {\tt Frequency\ of\ Purchases\ KMeans\_Cluster\ DBSCAN\_Cluster\ Hierarchical\_Cluster}
                                         2
0
                         3
                                                           0
                         3
                                         2
1
                                                           0
                                                                                  0
2
                         6
                                         1
                                                           1
                                                                                  0
3
                         6
                                         1
                                                           1
                                                                                  0
4
                         0
                                         0
                                                           2
                                                                                  1
```

PCA1 PCA2
0 -0.058091 -0.478541
1 -1.915916 -0.488848
2 0.852506 0.178971
3 0.852276 1.310063
4 -0.469099 0.018351

[5 rows x 24 columns]



#### **Hierarchical Clustering**

```
import matplotlib.pyplot as plt
import seaborn as sns
# Increase the figure size
plt.figure(figsize=(18, 6)) # Change the size as needed
# First subplot for K-Means
plt.subplot(1, 3, 1)
sns.scatterplot(x='PCA1', y='PCA2', hue='KMeans_Cluster', data=df, palette='deep', legend='f'
plt.title('K-Means Clustering')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.grid(True)
# Second subplot for DBSCAN
plt.subplot(1, 3, 2)
sns.scatterplot(x='PCA1', y='PCA2', hue='DBSCAN_Cluster', data=df, palette='deep', legend='f'
plt.title('DBSCAN Clustering')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
```

```
plt.grid(True)

# Third subplot for Hierarchical Clustering
plt.subplot(1, 3, 3)
sns.scatterplot(x='PCA1', y='PCA2', hue='Hierarchical_Cluster', data=df, palette='plasma', left plt.title('Hierarchical Clustering')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.grid(True)

# Adjusting layout to prevent overlapping
plt.subplots_adjust(wspace=0.3) # Adjust horizontal space between subplots

# Show the plots
plt.tight_layout()
plt.show()
```



#### 4. Analyze Results

# **Insights Interpretation**

```
# Select numeric columns and perform clustering analysis based on the mean for
numeric_cols = df.select_dtypes(include='number')
cluster_analysis_numeric = numeric_cols.groupby(df['KMeans_Cluster']).mean()

# Display the numeric cluster analysis result
print(cluster_analysis_numeric)

# For categorical columns, calculate the mode for each cluster
```

```
categorical_cols = df.select_dtypes(include='object')
cluster_analysis_categorical = categorical_cols.groupby(df['KMeans_Cluster']).agg(lambda x:
# Display the categorical cluster analysis result
print(cluster_analysis_categorical)
Customer ID Age Purchase Amount (USD) Review Rating
```

| VM Clt                  | Customer ID   | Age        | e Purchase Amount  | (USD)    | Review Rating | \ |
|-------------------------|---------------|------------|--------------------|----------|---------------|---|
| KMeans_Cluster          | 1903.842059   | 43 904887  | 7 64               | 691099   | 3.759948      |   |
| 1                       | 1946.875085   |            |                    | 039375   | 3.739919      |   |
| 2                       | 1996.409055   |            |                    | 640125   | 3.752537      |   |
| 2                       | 1990.409000   | 72.012430  | ) 59.              | 040125   | 3.102031      |   |
|                         | Previous Pur  | chases Fi  | requency of Purcha | ses KMe  | ans Cluster \ |   |
| KMeans_Cluster          |               |            | 1 3                |          | _ `           |   |
| 0                       | 39.           | 035777     | 1.781              | .850     | 0.0           |   |
| 1                       |               | 124915     | 5.038              |          | 1.0           |   |
| 2                       |               | 220141     | 1.669              |          | 2.0           |   |
|                         |               |            |                    |          |               |   |
|                         | DBSCAN_Clust  | er Hiera   | chical_Cluster     | PCA1     | PCA2          |   |
| KMeans_Cluster          | _             |            | _                  |          |               |   |
| 0                       | 3.1448        | 52         | 1.335079 0         | .230915  | 0.627143      |   |
| 1                       | 2.5254        | 58         | 0.107264 0         | .688521  | -0.326989     |   |
| 2                       | 3.2209        | 21         | 1.188134 -0        | .998298  | -0.185052     |   |
|                         | Gender Item P | urchased   | Category Locati    | on Size  | Color Season  | \ |
| KMeans_Cluster          |               |            |                    |          |               |   |
| 0                       | Male          | Jewelry    | Clothing Alaba     | ma M     | Cyan Winter   |   |
| 1                       | Male          | Pants      | Clothing Louisia   | ına M    | Black Spring  |   |
| 2                       | Male          | Belt       | Clothing New Yo    | ork M    | Olive Fall    |   |
|                         |               |            |                    |          |               |   |
|                         | Subscription  | Status Pay | ment Method Ship   | ping Typ | e \           |   |
| KMeans_Cluster          |               |            |                    | _        |               |   |
| 0                       |               | No         | Cash               | Expres   |               |   |
| 1                       |               | No         |                    | Shippin  | 0             |   |
| 2                       |               | No         | Credit Card Nex    | t Day Ai | r             |   |
|                         | Discount Appl | ied Promo  | Code Used Preferr  | ed Payme | nt Method     |   |
| ${\tt KMeans\_Cluster}$ |               |            |                    |          |               |   |
| 0                       |               | No         | No                 |          | PayPal        |   |
| 1                       |               | No         | No                 |          | Cash          |   |
| 2                       |               | No         | No                 |          | PayPal        |   |

#### **Analyse Clusters**

# 1. K-Means Cluster Analysis:

```
# Grouping by KMeans Cluster and calculating mean for each feature
kmeans_analysis = df.groupby('KMeans_Cluster')[features].mean()
print("K-Means Cluster Analysis:\n", kmeans_analysis)
```

#### K-Means Cluster Analysis:

|                | ٨٣٥          | Dunahaga Amaun       | - (IIGD) | Dwarri ana Dumahagaa | \ |
|----------------|--------------|----------------------|----------|----------------------|---|
|                | Age          | Purchase Amoun       | נ (עאט)  | Previous Purchases   | \ |
| KMeans_Cluster |              |                      |          |                      |   |
| 0              | 43.904887    | 64.                  | 691099   | 39.035777            |   |
| 1              | 45.983707    | 56.                  | 039375   | 26.124915            |   |
| 2              | 42.012490    | 59.0                 | 640125   | 12.220141            |   |
|                | Frequency of | · Purchases          |          |                      |   |
|                | rroquency or | . I di ciidbob       |          |                      |   |
| KMeans Cluster |              |                      |          |                      |   |
| KMeans_Cluster |              |                      |          |                      |   |
| KMeans_Cluster |              | 1.781850             |          |                      |   |
| <del>-</del>   |              | 1.781850<br>5.038697 |          |                      |   |
| <del>-</del>   |              |                      |          |                      |   |

# **Cluster 0 (Budget-Conscious Shoppers):**

Younger age group, lower purchase amounts, high frequency of purchases.

Implement frequent promotional campaigns and loyalty discounts to encourage repeat purchases. Use platforms like Instagram and TikTok for targeted ads, showcasing budget-friendly products. Send personalized emails with special offers based on past purchase behavior.

# **Cluster 1 (High-Value Customers):**

Older age group, high purchase amounts, fewer purchases.

Create exclusive loyalty programs that offer rewards, discounts, or VIP experiences. Use personalized recommendations and high-end product offerings to appeal to their purchasing behavior. Implement a dedicated customer service approach to enhance loyalty.

# Cluster 2 (Occasional Shoppers):

Mixed age group, average purchase amounts, low frequency of purchases.

Design campaigns to win back inactive customers, such as limited-time offers or special events. Create engaging content that highlights product benefits and trends to stimulate interest. Use retargeting strategies based on previous interactions with the brand to increase conversion rates.

# 2. DBSCAN Cluster Analysis:

# Grouping by DBSCAN Cluster and calculating mean for each feature, ignoring noise (-1) dbscan\_analysis = df[df['DBSCAN\_Cluster'] != -1].groupby('DBSCAN\_Cluster')[features].mean() print("DBSCAN Cluster Analysis:\n", dbscan\_analysis)

# DBSCAN Cluster Analysis:

|                | Age       | Purchase Amount | (USD) | Previous Purchases | \ |
|----------------|-----------|-----------------|-------|--------------------|---|
| DBSCAN_Cluster |           |                 |       |                    |   |
| 0              | 43.577220 | 58.4            | 09266 | 25.208494          |   |
| 1              | 44.326214 | 58.7            | 51456 | 25.920388          |   |
| 2              | 44.912656 | 60.5            | 34759 | 24.677362          |   |
| 3              | 44.425373 | 59.1            | 10075 | 27.628731          |   |
| 4              | 43.027933 | 60.8            | 90130 | 24.653631          |   |
| 5              | 44.707930 | 59.3            | 96518 | 25.044487          |   |
| 6              | 42.950178 | 60.4            | 43060 | 25.024911          |   |
| 7              | 24.500000 | 23.0            | 00000 | 36.000000          |   |
| 8              | 68.714286 | 24.1            | 42857 | 15.571429          |   |
| 9              | 21.000000 | 49.3            | 33333 | 46.666667          |   |
| 10             | 25.000000 | 98.3            | 33333 | 42.000000          |   |
| 11             | 63.750000 | 90.2            | 50000 | 3.125000           |   |

# Frequency of Purchases

| DBSCAN_Cluster |     |
|----------------|-----|
| 0              | 3.0 |
| 1              | 6.0 |
| 2              | 0.0 |
| 3              | 5.0 |
| 4              | 1.0 |
| 5              | 4.0 |
| 6              | 2.0 |
| 7              | 4.0 |
| 8              | 2.0 |
|                |     |

| 9  | 4.0 |
|----|-----|
| 10 | 3.0 |
| 11 | 5.0 |

## 3. Hierarchical Cluster Analysis:

# Grouping by Hierarchical Cluster and calculating mean for each feature
hierarchical\_analysis = df.groupby('Hierarchical\_Cluster')[features].mean()
print("Hierarchical Cluster Analysis:\n", hierarchical\_analysis)

#### Hierarchical Cluster Analysis:

|                      | J           |                 |            |                             |
|----------------------|-------------|-----------------|------------|-----------------------------|
|                      | Age         | Purchase Amount | (USD) Prev | vious Purchases $\setminus$ |
| Hierarchical_Cluster |             |                 |            |                             |
| 0                    | 43.358201   | 55.66           | 5387       | 24.612178                   |
| 1                    | 56.538136   | 74.29           | 4492       | 24.621822                   |
| 2                    | 34.821712   | 54.25           | 3310       | 27.149162                   |
|                      | Frequency o | of Purchases    |            |                             |
| Hierarchical_Cluster |             |                 |            |                             |
| 0                    |             | 4.564454        |            |                             |
| 1                    |             | 1.872881        |            |                             |
| 2                    |             | 1.335393        |            |                             |
|                      |             |                 |            |                             |

# 5. Suggestion for marketing strategies (Kotler & Keller, 2016):

- Launch tailored marketing campaigns based on the identified strategies for each segment.
- Utilize different marketing channels (email, social media, etc.) based on the segment's characteristics.
- Track key performance indicators (KPIs) for each campaign, such as conversion rates, customer retention, and engagement levels.
- Adjust strategies as necessary based on feedback and performance data.

#### **Conclusion:**

By understanding the characteristics of each customer segment, businesses can create targeted marketing strategies that resonate with their specific needs and behaviors. This approach will not only enhance customer satisfaction but also increases the effectiveness of marketing efforts, ultimately leading to improved business outcomes.

# References:

# 1. Reference on Clustering Techniques:

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. *Pattern Recognition Letters*, 31(8), 651-666. https://doi.org/10.1016/j.patrec.2009.09.011

# 2. Reference on Marketing Strategies:

Kotler, P., & Keller, K. L. (2016). Marketing management (15th ed.). Pearson.