# The Eyring–Kramers Law for Extinction Time of Contact Process on Stars

Younghun Jo Seoul National University

2024 KMS Annual Meeting October 25, 2024

- G = (V, E) (locally) finite connected graph
- $\lambda > 0$  infection rate
- Configurations of the contact process:  $\eta \in \{0,1\}^V$

For 
$$x \in V$$
,  $\eta(x) = \begin{cases} 0 & x \text{ is healthy} \\ 1 & x \text{ is infected} \end{cases}$ 

 $\bullet$  Abuse of notation: identify  $\eta$  with  $\{x \in V: \eta(x) = 1\}$ 



- G = (V, E) (locally) finite connected graph
- $\lambda > 0$  infection rate
- Configurations of the contact process:  $\eta \in \{0,1\}^V$  For  $x \in V$ ,  $\eta(x) = \begin{cases} 0 & x \text{ is } \textit{healthy} \\ 1 & x \text{ is } \textit{infected} \end{cases}$
- $\bullet$  Abuse of notation: identify  $\eta$  with  $\{x \in V: \eta(x) = 1\}$



- G = (V, E) (locally) finite connected graph
- $\lambda > 0$  infection rate
- Configurations of the contact process:  $\eta \in \{0,1\}^V$

For 
$$x \in V$$
,  $\eta(x) = \begin{cases} 0 & x \text{ is healthy} \\ 1 & x \text{ is infected} \end{cases}$ 

• Abuse of notation: identify  $\eta$  with  $\{x \in V : \eta(x) = 1\}$ 



- G = (V, E) (locally) finite connected graph
- $\lambda > 0$  infection rate
- $\bullet$  Configurations of the contact process:  $\eta \in \{0,1\}^V$

For 
$$x \in V$$
,  $\eta(x) = \begin{cases} 0 & x \text{ is healthy} \\ 1 & x \text{ is infected} \end{cases}$ 

 $\bullet$  Abuse of notation: identify  $\eta$  with  $\{x \in V: \eta(x) = 1\}$ 



• The all-healthy state  $\eta = \emptyset$  is the unique absorbing state.

October 25, 2024

## Metastability of contact processes

The extinction time of the contact process is

$$\tau_G = \inf\{t \ge 0 : \eta_t = \emptyset\}.$$

**Q.** Fix a (increasing) sequence of graphs  $(G_N)_{N\geq 1}$ , and study the growth of  $au_{G_N}$ .

## Finite-volume phase transition for boxes ('84-'99)

On  $\mathbb{Z}_N^d = [1, N]^d$  with free boundary, we have

$$au_{\mathbb{Z}_N^d} \sim egin{cases} \log |\mathbb{Z}_N^d| & \text{if } \lambda < \lambda_c, \\ \exp \left( c_{\lambda} |\mathbb{Z}_N^d| \right) & \text{if } \lambda > \lambda_c \end{cases}$$

where |G| denotes the number of vertices.

The latter case is a clear demonstration of the metastable behavior.



## Metastability of contact processes

More generally, the following theorem holds.

## Theorem (MMYV '16, SV '17)

Suppose that  $\lambda > 0$  is sufficiently large.

(a) For all D > 0, there exists  $c = c(\lambda, D)$  such that

$$\mathbb{E}\tau_G \ge \exp(c|G|)$$
 for all  $G$  with degrees  $\le D$ .

(b) For all  $\varepsilon > 0$ , there exists  $c = c(\lambda, \varepsilon)$  such that

$$\mathbb{E}\tau_G \ge \exp\Bigl(c \cdot \frac{|G|}{(\log |G|)^{1+\varepsilon}}\Bigr)$$
 for all  $G$ .

- $(2) \ \frac{1}{N} \log \mathbb{E} \tau_N \longrightarrow c$  (Large-deviation principle)
- $\begin{tabular}{ll} \hline (3) & $\mathbb{E} au_N \simeq f(N) e^{cN}$ & (Eyring-Kramers law) \\ \hline \end{tabular}$

- $\begin{tabular}{ll} \hline @ & \frac{1}{N} \log \mathbb{E} \tau_N \longrightarrow c \\ \hline & & \end{tabular} \end{tabular} \begin{tabular}{ll} (\mathsf{Large-deviation\ principle}) \\ \hline \end{tabular}$
- $\begin{tabular}{ll} \hline (3) & $\mathbb{E} au_N \simeq f(N) e^{cN}$ & (Eyring-Kramers law) \\ \hline \end{tabular}$ 
  - 1 holds for graphs of uniformly bounded degree. (MMYV '16)

- ①  $\mathbb{E}\tau_N \ge \exp(cN)$  (Metastability)
- $\begin{tabular}{ll} \hline @ & \frac{1}{N} \log \mathbb{E} \tau_N \longrightarrow c \\ \hline & & \end{tabular} \end{tabular} \begin{tabular}{ll} (\mathsf{Large-deviation\ principle}) \\ \hline \end{tabular}$
- $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} \end{tabular} & \end{tabular} \begin{tabular}{ll} \end{tabular} \begin{tabular}{ll}$ 
  - 1 holds for graphs of uniformly bounded degree. (MMYV '16)
  - ② holds for  $\mathbb{Z}_N^d$  with free boundary. (Mountford '99) However, ② is open for even  $\mathbb{Z}_N^d$  with periodic boundary.

- $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} \end{tabular} & \end{tabular} \begin{tabular}{ll} \end{tabular} \begin{tabular}{ll}$ 
  - 1 holds for graphs of uniformly bounded degree. (MMYV '16)
  - ② holds for  $\mathbb{Z}_N^d$  with free boundary. (Mountford '99) However, ② is open for even  $\mathbb{Z}_N^d$  with periodic boundary.
  - ② holds for a variety of random graph models. (Shapira-Valesin '21)
  - ③ is open only except for two cases.
    - 1. The triviality: complete graph  $K_N$
    - 2. Main Result: star graph  $S_N$  (J. '24)



## Contact process on stars

Let  $S_N$  be the star graph with one hub and N leaves.



Why do we study star graphs?

- It is a natural model for studying epidemic hubs.
- It serves as a building block within larger graph structures.

## Contact process on stars

All leaves are homogenous, so we reduce to a random walk on the ladder graph:

$$(o_t, n_t) = (\mathsf{hub} \ \mathsf{state}, \#\mathsf{infected} \ \mathsf{leaves}) \in \{0, 1\} \times [0, N].$$



Transition rates for the contact process on a star

## Main result

## Eyring-Kramers law (J. '24)

Let  $S_N$  be the star graph with one hub and N leaves. Then, we have

$$\mathbb{E}\tau_{S_N} \simeq \kappa_{\lambda} N^{-\frac{1}{1+2\lambda}} \left( \frac{(1+\lambda)^2}{1+2\lambda} \right)^N.$$

In particular, we have

$$\frac{1}{N}\log \mathbb{E}\tau_{S_N} \xrightarrow{N\to\infty} c_{\lambda} = 2\log(1+\lambda) - \log(1+2\lambda).$$

#### Main ingredients:

- Special function theory for precise estimation of quasi-stationary measure
- The potential theoretic approach to metastability of non-reversible processes

These methodologies have not previously been used in the study of the contact process.

# Quasi-stationary distribution

The stationary measure of the process is the Dirac mass at the all-healthy state. To apply potential theory, we add supplementary transition rates from  $\emptyset$ .

# Quasi-stationary distribution

The stationary measure of the process is the Dirac mass at the all-healthy state. To apply potential theory, we add supplementary transition rates from  $\emptyset$ .

- Natural choice: rate proportional to the stationary measure of the process conditioned on the non-extinction.
  - $\implies$  Hard to compute in general.

# Quasi-stationary distribution

The stationary measure of the process is the Dirac mass at the all-healthy state. To apply potential theory, we add supplementary transition rates from  $\emptyset$ .

- Natural choice: rate proportional to the stationary measure of the process conditioned on the non-extinction.
  - ⇒ Hard to compute in general.
- We add a regeneration at the hub:  $(0,0) \xrightarrow{\alpha} (1,0)$ . Or equivalently, we consider the process restricted to the non-extinction.

A closed form solution for the quasi-stationary measure  $\mu$  is due to (Cator–Mieghem '13).

## Precise asymptotics for quasi-stationary measure

Using special function theory and refined Laplace's method, we compute:



Uniform asymptotic behavior of the quasi-stationary measure  $\mu$ 

# Potential theoretic approach

A precise framework for quantifying metastability metrics (e.g.  $\mathbb{E} \tau$ ) in terms of potential theoretic terms (e.g. capacity, equilibrium potential) was established in (BEGK '01, '04), and then extended to non-reversible settings recently.

#### Hitting time formula for non-reversible process

$$\mathbb{E}_x \tau_y = \frac{1}{\operatorname{cap}(x, y)} \sum_z h_{x, y}^{\dagger}(z) \mu(z).$$

Precise asymptotics for the quasi-stationary measure

- ⇒ Good test functions/flows approximating the harmonic functions/flows
- ⇒ Sharp estimates for capacity and potential (via variational principles)

