

## Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

#### ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА ПРОГРАММНАЯ ИНЖЕНЕРИЯ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

#### ОТЧЕТ

По лабораторной работе № \_\_7\_\_

| Название:   | «Исследование полевых транзисторов» |
|-------------|-------------------------------------|
| Дисциплина: | Основы электроники                  |
|             |                                     |

| Студент       | ИУ7-35Б                   | А. В. Толмачев |
|---------------|---------------------------|----------------|
| ·             | (Группа)                  | (И.О. Фамилия) |
| Преподаватель | Оглоблин Дмитрий Игоревич |                |

Москва, 2022

#### Pjfet 2N5021; NMOS IRF530; PMOS IRF9530;

#### 1. Соберем схему



#### 2. Настройки для построения графиков



#### 3. Передаточные характеристики PJFET



#### 4. Определим напряжение и токи

Іст =-5.9 мА – начальный ток стока



U = 2.84 B – напряжение затвора, при котором запирается транзистор

#### **Оотсечки** = 3.2B



5. Рассчитаем максимальную крутизну по формуле

Smax = 2\*Ihau/Uotc = 2\*5.9mA/3.2B = 3.7mA/B

6. Построим график производной и определим максимальную крутизну по нему





=> Smax = 2 \* 1.9 = 3.8 mA/B

#### 7. Определим выходную характеристику



#### 8. Построение схемы для Nmos



#### 9. Получение передаточных характеристик





#### 10. Определение напряжения

#### U = 3.8B – напряжение открытия Nmos



#### 11. Построение выходных характеристик



#### Jfet как усилитель

(Эту схему собирал в вузе на другой версии microcup, поэтому на скринах внешний вид компонентов немного отличается)









Коэффициент усиления по напряжению: 2.3/0.4= 5.7

#### Эксперимент 8

#### Инвентор на основе КМОП ключа

#### 1. Построение схемы



#### 2. Моделирование по времени





#### 3. Расчет задержки

#### t = (7 HC + 54 HC)/2 = 30.5 HC





#### 4. Изменение схемы



#### 5. Получение передаточной характеристики





#### 5. Анализ тока и напряжения

#### Максимальный ток: 3.5А



#### Транзисторы открываются при 3.2В и 6.5В



Транзисторы из задания условно комплементарны, поэтому характеристики отличаются от идеальных

### 1. Стенд для исследования работы логического элемента 2И-НЕ на полевых транзисторах NMOS и PMOS



#### 2. Анализ по времени



Схема работает неудовлетворительно из-за недостаточного для срабатывания уровня входного сигнала

#### Для согласования уровней сигнала введем DToA





#### И-Не

| Вход 1 | Вход 2 | Выход |
|--------|--------|-------|
| 0      | 0      | 1     |
| 1      | 0      | 1     |
| 0      | 1      | 1     |
| 1      | 1      | 0     |

#### Эксперимент 9

#### 1. Построение схемы



