傅里叶级数-实数到复平面的映射

```
ln[ \circ ] := f[x_] := x + I Sin[x];
                        L·L正弦
         ParametricPlot[ReIm[f[x]], \{x, 0, 4\pi\}]
                             工部虚部列表
Out[ • ]=
          1.0 F
          0.5
         -0.5
         -1.0
         n = 30;
         cn = Table \left[ \frac{1}{2\pi} \underbrace{Integrate[f[x] Exp[-Ikx], \{x, -\pi, \pi\}], \{k, -n, n\}}_{\text{L指} \cdots \text{L虚数单位}} \right]
         p = Sum[cn[r] Exp[(r-n-1) It], \{r, 2n+1\}];
                          指数形式
                                             虚数单位
         ParametricPlot[ReIm@p, \{t, 0, 2\pi\}]
         绘制参数图
                             上实部虚部列表
Out[ • ]=
                                         1.0
                                         0.5
                                         -0.5
                                        -1.0
```

将上面过程包装到函数

In[*]:= fourierSeriesPlot[f_, n_] :=

Block
$$\left[\{ cn \}, cn = Table \left[\frac{1}{2\pi} \underbrace{Integrate[(x+If) Exp[-kIx], \{x, -\pi, \pi\}], \{k, -n, n\} \right]}_{\text{L} b};$$
 上表格 $\left[\frac{1}{2\pi} \underbrace{Integrate[(x+If) Exp[-kIx], \{x, -\pi, \pi\}], \{k, -n, n\} \right]}_{\text{L} b};$

fourierSeriesPlot[Sin[x], 25]

正弦

使用内置函数计算傅里叶级数

将实函数f当作复平面上的复函数x+If,再计算其n阶傅里叶级数并绘图

In[@]:= fsPlotComplex[f_, n_] :=

fsPlotComplex[Sin[x], 25]

正弦

Out[•]=

计算实函数的傅里叶级数并绘图

 $lo[\cdot] = fsPlot[f_, n_] := Plot[Evaluate@FourierSeries[f, x, 6], {x, -2 \pi, 2 \pi}]$

fsPlot[Sin[x],25] 上正弦

Out[•]=

上面第一个是在复数域绘图, 第二个是在实数域绘图

再看看函数: x/2

fsPlotComplex[x/2,5]
fsPlot[x/2,5]

Out[•]=

Out[•]=

两者彷佛在某个地方表现相反,为什么呢?

其实这再次体现了之前的一个认识,从复数域观察和从实数域观察是从两个垂直的视角观察,

看到的是3D空间的两个投影。

2 1 4 6

从某种角度看,类似与信号的时域和频域的关系,把x当作时间参数。

看看其他函数在实数域计算傅里叶级数的图形

In[@]:= fsPlotComplex[x^2, 25]

Out[•]=

|In[o]:= fsPlotComplex[Exp[x], 25] |指数形式

Out[•]=

Out[•]=

In[@]:= fsPlotComplex[Log[x], 10]

对数

Out[•]=

Out[•]=

