Definition of Group

1.1

Write a careful proof that every group is the group of isomorphisms of a groupoid. In particular, every group is the group of automorphisms of some object in some category

Proof. Let G be a group, we define a category \mathbb{C} as follows:

- $Obj(C) = \{*\}$
- $\operatorname{Hom}(*,*) = \{g \mid g \in G\}$

We prove the fore-defined structure does form a category:

• Composition of Morphisms There is a function as follows:

$$\operatorname{Hom}(*,*) \times \operatorname{Hom}(*,*) \to \operatorname{Hom}(*,*)$$

 $(q,h) \mapsto qh$

This composition law explicitly satisfies associativity.

• **Identity** $1_G \in \text{Hom}(*,*)$ is the identity.

Also, for any $g \in \text{Hom}(*,*)$, there exists $g^{-1} \in \text{Hom}(*,*)$ such that $gg^{-1} = g^{-1}g = 1_G$. Thus, every morphism in Hom(*,*) is an isomorphism and \mathbf{C} is a groupoid.

1.4

Suppose that $g^2 = e$ for all elements g of a group G; prove that G is commutative.

Proof. For any $g, h \in G$, we have:

$$gh = g^{-1}h^{-1} = (hg)^{-1} = hg$$

Which indicates G is commutative

1.7

Prove Corollary 1.11:

Let g be an element of finite order, and let $N \in \mathbb{Z}$. Then:

$$g^N = e \Leftrightarrow N \text{ is a multiple of } |g|$$

Proof. (\Rightarrow) According to Lemma1.10

 (\Leftarrow)

$$g^N = (g^{|g|})^{\frac{N}{|g|}} = (e_G)^{\frac{N}{|g|}} = e_G$$

1.8

Let G be a finite **abelian** group, with exactly one element f of order 2. Prove that $\prod_{g \in G} g = f$

Proof. Since G is abelian, the product of all elements of G is well-defined, that is to say, the results is irrelevant to the multiplication order.

Thus, we have:

$$\prod_{g \in G} g = (a_1 a_1^{-1})(a_2 a_2^{-1}) \cdots (a_n a_n^{-1}) f e_G = f$$

Note The original problem has no abelian condition, which is a false proposition: Consider $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$, which is a non-commutative group and only -1 has an order of 2. However, the product of all elements in Q_8 may generate different results:

$$1ijk(-1)(-i)(-j)(-k) = 1$$

$$1i(-i)j(-j)k(-k)(-1) = -1$$

1.9

Let G be a finite group, of order n, and let m be the number of elements $g \in G$ of order exactly 2. Prove that n-m is odd. Deduce that if n is even then G necessarily contains elements of order 2.

Proof. All elements can be make pair with its inverse, thus:

$$G = \bigcup \{a_i, a_i^{-1}\}$$

For those elements which have order greater than 2, a_i and a_i^{-1} are different. Thus we have: n = m + 2k + 1 where k is the number of pair where element has order greate than 2.

This shows that n - m = 2k + 1 is an odd value. If n is even, then m is certainly greater than 0, meaning there are elements has order equals to 2.

1.11

Prove that for all g, h in a group G, |gh| = |hg|

Proof. We prove that for $n \in \mathbb{N}^+$, $(gh)^n = e \iff (hg)^n = e$

$$(gh)^{n} = e \iff (gh)(gh) \cdots (gh) = e$$

$$\iff g(hg)^{n-1}h = e$$

$$\iff (hg)^{n-1}h = g^{-1}$$

$$\iff (hg)^{n} = e$$

Thus we have: $|hg| \mid |gh|$ and $|gh| \mid |hg|$, indicating |gh| = |hg|

1.12

In the group of invertible 2×2 matrices, consider

$$g = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad , \quad h = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$

Verify that |g| = 4, |h| = 3, and $|gh| = \infty$

Proof. It is easy to show that $g^2 = -I$, thus |g| = 4. For h we have:

$$h^2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad , \quad h^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Thus, |h| = 3. $gh = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, it's not hard to verify that $(gh)^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ (By induction), which indicates gh has no finite order.

Note If g and h are commutative, then $|gh| \leq lcm(|g|, |h|)$. However, for a non-commutative group, there is no general result for the order of gh.

1.14

prove that if g and h commute, and gcd(|g|, |h|) = 1, then |gh| = |g||h|

Proof. If $(gh)^t = e, t \in \mathbb{N}^+$ then: $g^t = h^{-t}$. We have:

$$g^{t|h|} = h^{-t|h|} = e \Rightarrow |g| \mid t|h| \Rightarrow |g| \mid t$$

since gcd(|g|, |h|) = 1. Also, $|h| \mid t$ and $|g||h| \mid t$ because gcd(|g|, |h|) = 1. Note that $(gh)^{|g||h|} = e$ we have: $|gh| \mid |g||h|$. By the above fact, we have $|g||h| \mid |gh|$. Thus we have: |gh| = |g||h|.

Examples of groups

2.1

One can associate an $n \times n$ matrix M_{σ} with a permutation $\sigma \in S_n$, by letting the entry at $(i, \sigma(i))$ be 1, and letting all other entries be 0. For example, the matrix corresponding to the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \in S_3$$

would be

$$M_{\sigma} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Prove that, with this notation,

$$M_{\sigma\tau} = M_{\sigma}M_{\tau}$$

for all $\sigma, \tau \in S_n$, where the product on the right is the ordinary product of matrices.

Proof.

$$M_{\sigma}M_{\tau}(i,j) = \sum_{k=1}^{n} M_{\sigma}(i,k)M_{\tau}(k,j)$$
$$= \sum_{\substack{1 \le k \le n \\ \sigma(i) = k, \tau(k) = j}} 1$$

Only when $\tau \circ \sigma(i) = j$ would makes this item equals to 1, thus $M_{\sigma}M_{\tau}(i,j) = M_{\sigma\tau}(i,j)$. It's done.

2.2

Prove that if $d \leq n$, then S_n contains elements of order d.

Proof. The permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \cdots & d-1 & d & d+1 & \cdots & n \\ 2 & 3 & 4 & \cdots & d & 1 & d+1 & \cdots & n \end{pmatrix}$$

is obviously an element has an order of d.

2.6

For every positive integer n construct a group containing two elements g, h such that |g| = 2, |h| = 2, and |gh| = n.

Proof. D_{2n} satisfies this condition.

2.7

Find all elements of D_{2n} that commute with every other element.

2.12

Prove that there are no integers a, b, c such that $a^2 + b^2 = 3c^2$.

Proof. Let (a, b, c) be the smallest tuple that satisfies $a^2 + b^2 = 3c^2$ then we have:

$$a^2 + b^2 = [0]_3$$

There is only one possible way to achive this: $a = [0]_3$, $b = [0]_3$. Let a = 3a', b = 3b' then we have: $3(a'^2 + b'^2) = c^2$, indicating $c = [0]_3$. Let c = 3c' would incur $a'^2 + b'^2 = 3c'^2$ and we have a solution (a', b', c') which is smaller than (a, b, c), a contradiction.

2.13

Prove that if gcd(m, n) = 1, then there exist integers a and b such that

$$am + bn = 1$$

Conversely, prove that if am + bn = 1 for some integers a and b, then gcd(m, n) = 1

Proof. $[m]_n$ is an generator of $\mathbb{Z}/n\mathbb{Z}$. Thus, there exists some positive integer a such that: $a[m]_n = [1]_n$, i.e $[am]_n = [1]_n$. Further, we have: am - 1 = b'n for some $b' \in \mathbb{N}$. which is: am - b'n = 1, Let b = -b', the equation holds.

If there are a, b such that am + bn = 1 then gcd(m, n) is a divisor of left side, thus a divisor of 1. Then gcd(m, n) has to be 1.

2.15

Let n > 0 be an odd integer.

- Prove that if gcd(m, n) = 1, then gcd(2m + n, 2n) = 1.
- Prove that if gcd(r, 2n) = 1, then $gcd(\frac{r+n}{2}, n) = 1$
- Conclude that the function $[m]_n \to [2m+n]_{2n}$ is a bijection between $(\mathbb{Z}/n\mathbb{Z})^*$ and $(\mathbb{Z}/2n\mathbb{Z})^*$

The number $\phi(n)$ of elements of $(\mathbb{Z}/n\mathbb{Z})^*$ is Euler's ϕ -function. The reader has just proved that if n is odd, then $\phi(2n) = \phi(n)$. Much more general formulas will be given later on (cf. Exercise V.6.8)

- Proof. (1) Let $d = \gcd(2m + n, 2n)$ then $d \mid 2(2m + n) 2n$, which is $d \mid 4m$. Thus: $d \mid \gcd(4m, 2n)$. Note that $\gcd(m, n) = 1$, then $\gcd(4m, 2n) = 2\gcd(2m, n) = 2$. Thus d = 1 or d = 2. Note that 2m + n is odd, then d = 1.
- (2) Let $d = \gcd(\frac{r+n}{2}, n)$, then $d \mid 2 \times \frac{r+n}{2} n$, that is $d \mid r$. Then $d \mid n$ indicates $d \mid r$, n. Thus d = 1.
- (3) According to (1), gcd(m, n) = 1 indicates mboxgcd(2m + n, 2n) = 1, thus the element $[2m + n]_{2n} \in (\mathbb{Z}/2n\mathbb{Z})^*$. Next we will verify that this function is well-defined.

If $[m_1]_n = [m_2]_n$ then $n \mid (m_2 - m_1) \Rightarrow 2n \mid (2m_2 - 2m_1) \Rightarrow 2n \mid ((2m_2 + n) - (2m_1 + n))$. Thus, $[2m_2 + n]_{2n} = [2m_1 + n]_{2n}$. This indicates the function is well-defined.

If $[2m_1 + n]_{2n} = [2m_2 + n]_{2n}$ then we have $2n \mid ((2m_2 + n) - (2m_1 + n))$, which is $2n \mid 2(m_2 - m_1)$, and further $n \mid (m_2 - m_1)$, indicating $[m_2]_n = [m_1]_n$. Thus, this function is injective.

For any $[2m+n]_{2n} \in (\mathbb{Z}/2n\mathbb{Z})^*$, we have $f([m]_n) = [2m+n]_{2n}$. According to (2), $\gcd(\frac{2m+n+n}{2},n) = 1$, which is $\gcd(m+n,n) = 1 \Rightarrow \gcd(m,n) = 1$. Thus, $[m]_n \in (\mathbb{Z}/n\mathbb{Z})^*$ and f is surjective.

In conclusion, f is both injective and surjective, thus bijective.

The Category Grp

3.3

Show that if G, H are abelian groups, then $G \times H$ satisfies the universal property for coproducts in \mathbf{Ab}

Proof. Let τ_G and τ_H satisfies $\tau_G(g) = (g, 0_H)$ and $\tau_H(h) = (0_G, h)$. We have to show that the following commutative graph exists:

We define f as follows:

$$f: G \times H \to A, \quad (g,h) \mapsto f_G(g) + f_H(h)$$

We show that f is an homomorphism:

$$f((g_1, h_1) + (g_2, h_2)) = f((g_1 + g_2, h_1 + h_2)) = f_G(g_1 + g_2) + f_H(h_1 + h_2)$$

$$= f_G(g_1) + f_G(g_2) + f_H(h_1) + f_H(h_2)$$

$$= (f_G g_1 + f_H(h_1)) + (f_G g_2 + f_H(h_2))$$

$$= f(g_1, h_1) + f(g_2, h_2)$$

And we show that f is unique. if f' satisfies the above commutative diagram, then we have:

$$f'(g,h) = f'(g,0_H) + f'(0_G,h) = f'(\tau_G(g)) + f'(\tau_H(h))$$

= $(f'\tau_G)(g) + (f'\tau_H)(h)$
= $f_G(g) + f_H(h) = f(g,h)$

Thus, f is unique. And by the definition of coproduct, $G \times H$ is the coproduct of G and H in category \mathbf{Ab} .

3.4

Let G, H be groups, and assume that $G \cong H \times G$. Can you conclude that H is trivial.

Solution No, H might be non-trivial group. The following example:

$$2\mathbb{Z} \times \mathbb{Z}_2 \cong \mathbb{Z} \cong \mathbb{Z}_2$$

indicates that $H=\mathbb{Z}_2$ is not a trivial group. We construct homomorphims as follows:

$$f: 2\mathbb{Z} \times \mathbb{Z}_2 \longrightarrow \mathbb{Z}$$

([a], 2k) \mapsto 2k + a, a = 0, 1

Then it is easy to verify that f is bijective. $\forall x = ([a], 2k_1), y = ([b], 2k_2).$

$$f(x+y) = f([a+b], 2k_1 + 2k_2) = 2k_1 + 2k_2 + (a+b) = f(x) + f(y)$$

Thus, f is an homomorphim, therefore, $2\mathbb{Z} \times \mathbb{Z}_2 \cong \mathbb{Z}$. The right part, $2\mathbb{Z} \cong \mathbb{Z}$ is trivial.

3.5

Prove that \mathbb{Q} is not the direct product of two nontrivial groups

Proof. Proof by contradiction, say \mathbb{Q} is the direct product of two groups $\mathbb{Q} \cong G \times H$, say that G is nontrivial. We prove that π_G is injective by proving no other element is mapped to be 0_G except for $0 \in \mathbb{Q}$

Suppose that $\pi_G\left(\frac{m}{n}\right) = 0_G$. We have: $\pi_G(m) = n\pi_G(m) = nm\pi_G(1) = 0_G$. Thus $\pi_G(1) = 0_G$. Which means $\pi_G(\mathbb{Z}) = \{0_G\}$.

Thus, for any $\frac{a}{b} \in \mathbb{Q}$, we have: $0_G = \pi_G(a) = b\pi_G(\frac{a}{b}) \Rightarrow \pi_G(\frac{a}{b}) = 0_G$, which means $\pi_G(\mathbb{Q}) = \{0_G\}$. Note that π_G is surjective and G is nontrivial, we have above assumption failed, that is to say, no element $\frac{a}{b}$ satisfies $\pi_G(\frac{a}{b}) = 0_G$, which means π_G is injective.

Thus H must be trivial, otherwise, $\pi_G(g_1, h_1) = g_1 = \pi_G(g_1, h_2)$ indicates that π_G is not injective.

3.6

Consider the product of the cyclic groups C_2 , C_3 : $C_2 \times C_3$. By Exercise 3.3, this group is a coproduct of C_2 and C_3 in **Ab**. Show that it is not a coproduct of C_2 and C_3 in **Grp**, as follows:

• find injective homomorphisms $C_2 \to S_3$, $C_3 \to S_3$;

- arguing by contradiction, assume that $C_2 \times C_3$ is a coproduct of C_2, C_3 , and deduce that there would be a group homomorphism $C_2 \times C_3 \to S_3$ with certain properties;
- show that there is no such homomorphism

Proof. The injective homomorphism is:

$$f_{C_2}: C_2 \to S_3$$

$$[0]_2 \mapsto \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, [1]_2 \mapsto \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

and

$$f_{C_3}: C_3 \to S_3$$

$$[0]_3 \mapsto \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, [1]_3 \mapsto \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, [2]_3 \mapsto \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix},$$

According to the definition of coproduct, the following diagram holds

$$C_{2} \xrightarrow{\tau_{C_{2}}} C_{2} \times C_{3} \xleftarrow{\tau_{C_{3}}} C_{3}$$

The homomorphism $f: C_2 \times C_3 \to S_3$ satisfies $f\tau_{C_2} = f_{C_2}$ and $f\tau_{C_3} = f_{C_3}$. We prove that such f does not exist: We write $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ and $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ as a and b for simplicity: thus we must have:

$$f([0]_2, [0]_3) = \mathbf{1}_{S_3}, f([1]_2, [0]_3) = a, f([0]_2, [1]_3) = b, f([0]_2, [1]_3) = b^2$$

And we have:

$$ab = f([1]_2, [0]_3) + f([0]_2, [1]_3) = f([1]_2, [1]_3)$$

and

$$(ab)(ab) = f([1]_2, [1]_3)f([1]_2, [1]_3) = f([0]_2, [2]_3) = b^2$$

This indicates $abab = b^2 \Rightarrow ba = a^{-1}b = ab$. However, $ab = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $ba = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ thus $ab \neq ba$. Then such f does not exist. We assert that $C_2 \times C_3$ is not the coproduct of C_2 and C_3 in category **Grp**.

Group Homomorphisms

4.1

Check that the function π_m^n defined in 4.1 is well-defined, and makes the diagram commute. Verify that it is a group homomorphism. Why is the hypothesis $m \mid n$ necessary?

Proof. π_m^n is well-defined: if $[a_1]_n = [a_2]_n$ then $n \mid a_1 - a_2$, thus $m \mid a_1 - a_2$ as $m \mid n$. We have $[a_1]_m = [a_2]_m$ and $\pi_m^n([a_1]_n) = \pi_m^n([a_2]_n)$. The function has nothing to do with the representators. This is a homomorphism because:

$$\pi_m^n([a]_n + [b]_n) = \pi_m^n([a+b]_n) = [a+b]_m = [a]_m + [b]_m = \pi_m^n([a]_n) + \pi_m^n([b]_n)$$

The hypothesis $m \mid n$ is necessary because if $m \nmid n$ we may fail to show that pi_m^n is well-defined. One example is to use m = 4, n = 3. Then π_m^n is not well-defined, we have:

$$\pi_3^4([12]_4) = [12]_3 = [0]_3;$$

 $\pi_3^4([8]_4) = [8]_3 = [2]_3 \neq [0]_3$

4.2

Show that the homomorphism $\pi_2^4 \times \pi_2^4 : C_4 \to C_2 \times C_2$ is not an isomorphism. In fact, is there any nontrivial isomorphism $C_4 \to C_2 \times C_2$?

Solution No, there is no such isomorphism between C_4 and $C_2 \times C_2$. The reason is that C_4 has one element of order 4, which is $[1]_4$, however, each element of $C_2 \times C_2$ has order 1 or 2.

4.3

Prove that a group of order n is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ if and only if it contains an element of order n.

Proof. (\Rightarrow) If group G with order of n is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ then G must have an element of order n, which is $f^{-1}([1]_n)$. Here f is the isomorphism from G to $\mathbb{Z}/n\mathbb{Z}$.

 (\Leftarrow) If group G with order n has an element with order of n,say g Then $\langle g \rangle = G$. We define the homomorphism $f \colon G \to \mathbb{Z}/n\mathbb{Z}$ as follows: $g^k \mapsto [k]_n$. It is obvious to see that f is an isomorphism.

4.4

Prove that no two of the groups $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$ are isomorphic to one another. Can you decide whether $(\mathbb{R}, +)$, $(\mathbb{C}, +)$ are isomorphic to one another.

Proof. $(\mathbb{Z}, +)$ and $(\mathbb{Q}, +)$ are not isomorphic to $(\mathbb{R}, +)$ because they even do not have the same cardinality.

$$(\mathbb{Z},+)\ncong(\mathbb{Q},+)$$
:

Suppose f is an isomorphism from $(\mathbb{Z},+)$ to $(\mathbb{Q},+)$, let $f(1)=g\in\mathbb{Q}$. Then we have \mathbb{Q} is generated by g as $\frac{a}{b}=f(n)=nf(1)=ng$ for some n. Let $g=\frac{a}{b}$ and a,b relatively prime, then have: $\frac{na}{b}=\frac{1}{p}$. We have: pna=b. note that $\gcd(a,b)=1$, then we must have a=1. And np=b. We pick p a prime that is relatively prime to b. Then np=b can not be true. \square

4.5

Prove that the groups $(\mathbb{R} \setminus \{0\}, \times)$ and $(\mathbb{C} \setminus \{0\}, \times)$ are not isomorphic.

Proof. If $(\mathbb{R} \setminus \{0\}, \times)$ is isomorphic to $(\mathbb{C} \setminus \{0\}, \times)$ let the isomorphism be f, and let f(1) = 1 and let $f(\mathbf{i}) = g$ Consider f(-1), we have:

$$f(-1)^2 = f((-1)^2) = f(1) = 1$$

Then we have f(-1) = 1 or f(-1) = -1, note that f is an isomorphism, we must have f(-1) = -1. Further we have: $f(\mathbf{i})^2 = f(\mathbf{i}^2) = f(-1) = -1$. However, no such element in \mathbb{R} makes this true. Thus, we have show that $(\mathbb{R} \setminus \{0\}, \times) \ncong (\mathbb{C} \setminus \{0\}, \times)$.

4.6

We have seen that $(\mathbb{R}, +)$ and $(\mathbb{R}^{>0}, \times)$ are isomorphic (Example 4.4). Are the groups $(\mathbb{Q}, +)$ and $(\mathbb{Q}^{>0}, \times)$ isomorphic?

Solution

4.7

Let G be a group. Prove that the function $G \to G$ defined by $g \mapsto g^{-1}$ is a homomorphism if and only if G is abelian. Prove that $g \mapsto g^2$ is a homomorphism if and only if G is abelian.

Proof. $g \mapsto g^{-1}$ is an homomorphism iff f(ab) = f(a)f(b) holds for any $a, b \in G$. This is true if and only if $a^{-1}b^{-1} = b^{-1}a^{-1}$ for any $a, b \in G$. And $a^{-1}b^{-1} = b^{-1}a^{-1} \iff ba = ab$ by taking inverse at both sides. Thus we have $g \mapsto g^{-1}$ if and only if G is abelian.

 $g \mapsto g^2$ is an homomorphism iff f(ab) = f(a)f(b) holds for any $a, b \in G$. This is true if and only if $(ab)(ab) = a^2b^2 \iff ab = ba$ for any $a, b \in G$. \square

4.8

Let G be a group, and $g \in G$. Prove that the function $\gamma_g : G \to G$ defined by $(\forall a \in G) : \gamma_g(a) = gag^{-1}$ is an automorphism of G. (The automorphisms γ_g are called 'inner' automorphisms of G.) Prove that the function $G \to \operatorname{Aut}(G)$ defined by $g \to \gamma_g$ is a homomorphism. Prove that this homomorphism is trivial if and only if G is abelian.

Proof. First we show that γ_a is an homomorphism: for any $a, b \in G$ we have:

$$\gamma_q(ab) = g(ab)g^{-1} = (gag^{-1})(gbg^{-1}) = \gamma_q(a)\gamma_q(b)$$

Thus γ_g is an homomorphism. γ_g has an inverse: $\gamma_{g^{-1}}$. We have: $\gamma_g \gamma_{g^{-1}}(a) = \gamma_g (g^{-1}ag) = g(g^{-1}ag)g^{-1} = a$ for any $a \in G$. Thus, $\gamma_g \gamma_{g^{-1}} = I_G$. Similarly, $\gamma_{g^{-1}} \gamma_g = I_G$. Thus γ_g has inverse and therefore a bijection, this indicates γ_g is an isomorphism.

Let $f: G \to \operatorname{Aut}(G), g \to \gamma_g$ be the function mentioned above. We shall prove that this function is actually an homomorphism: $f(ab) = \gamma_{ab}$ and we have: $\gamma_{ab}(g) = (ab)^{-1}gab = b^{-1}(a^{-1}ga)b = \gamma_a \circ \gamma_b(g)$ for all $g \in G$. Thus we have $f(ab) = \gamma_{ab} = \gamma_a \circ \gamma_b = f(a)f(b)$. Therefore f is an homomorphism. If G is abelian then all $f(g) = \gamma_g = I_G$, thus is trivial.

4.9

Prove that if m, n are positive integers such that gcd(m, n) = 1, then $C_{mn} \cong C_m \times C_n$.

Proof. The homomorphism $\pi_m^{mn} \times \pi_n^{mn} : C_{mn} \to C_m \times C_n$ is defined as follows:

$$[a]_{mn} \mapsto ([a]_m, [a]_n)$$

and is an homomorphism as π_m^{mn} and π_n^{mn} are homomorphisms. We shall show that this function is bijection. First it is injective: if $f([a]_{mn}) = f([b]_{mn})$ then $([a]_m, [a]_n) = ([b]_m, [b]_n)$ which means: $m \mid a - b$ and $n \mid a - b$. Further we

have $mn \mid a-b$ because gcd(m,n) = 1. Thus $[a]_{mn} = [b]_{mn}$ and this indicates f is injective.

For surjective property, note that gcd(m,n) = 1 indicates there exist some x, y such that xm - ny = 1. Then we have x satisfies xm = ny + 1, we call $\mathbf{x} = [xm]_{mn}$, we have $f(\mathbf{x}) = ([0]_m, [1]_n)$. Similarly, we will have such \mathbf{y} satisfying $f(\mathbf{y}) = ([1]_m, [0]_n)$. For any $([a]_m, [b]_n) \in C_m \times C_n$ we have: $([a]_m, [b]_n) = ([a]_m, [0]_n) + ([0]_m, [b]_n) = af(\mathbf{x}) + bf(\mathbf{y}) = f(a\mathbf{x} + b\mathbf{y})$. Thus f is surjective and f is bijective.

In conclusion, we have f to be group homomorphism and bijection. Thus f is a group isomorphism.

4.10

Let $p \neq q$ be odd prime integers; show that $(\mathbb{Z}/pq\mathbb{Z})^*$ is not cyclic.

Proof. Suppose that $(\mathbb{Z}/pq\mathbb{Z})^*$ is cyclic. Then we have the order of

4.11

In due time we will prove the easy fact that if p is a prime integer then the equation $x^d = 1$ can have at most d solutions in $\mathbb{Z}/p\mathbb{Z}$. Assume this fact, and prove that the multiplicative group $G = (\mathbb{Z}/p\mathbb{Z})^*$ is cyclic

Proof. Let the maximum order of elements in $(\mathbb{Z}/p\mathbb{Z})^*$ be d, we show that d must be p.

If $d \leq p-2$, say g has order d, then for every element $h \in (\mathbb{Z}/p\mathbb{Z})^*$ we have $|h| \mid d$. Otherwise, the element gh will have order of $\operatorname{lcm}(|h|, d) > d$, contradicts the assumption that d is the maximum order.

Thus we have $g^d = 1$ for every element in $\mathbb{Z}/p\mathbb{Z}$, which means $x^d = 1$ has p-1 solutions, controdicts the assumption. Thus, we have d = p-1 and $\mathbb{Z}/p\mathbb{Z}$ is cyclic.

NOTE This proof can not be used to proof a general $(\mathbb{Z}/n\mathbb{Z})^*$, $n \in \mathbb{N}^+$ is cyclic(though this proposition is false). The assumption $x^d = 1$ has at most d solutions is constrainted within $\mathbb{Z}/p\mathbb{Z}$, not generalized group.

4.14

Prove that the order of the group of automorphisms of a cyclic group C_n is the number of positive integers r < n that are relatively prime to n.

Proof. C_n is generated by $[1]_n$, so any automorphism from C_n to C_n is determined by the image of $[1]_n$. To make this homomorphim f bijective, we must make $f([1]_n)$ also be a generator. Thus the number of elements in $\operatorname{Aut}_{\mathbf{Grp}}(C_n)$ is determined by the number of generators in C_n , which is the number of positive number that is relatively prime to n. We formally prove this as followed:

Let $f \in \text{Aut}_{\mathbf{Grp}}(C_n)$, consider $f([1]_n)$. Notice that f is isomorphism, thus we have $|f([1]_n)|$ has order n(proposition 4.8), thus $|f([1]_n)|$ is relatively prime to $n(\text{The representator of }f([1]_n))$.

On the contrary, if $[m]_n, \gcd(m, n) = 1$, we define $f([1]_n) = [m]_n$, it derives an isomorphism from C_n to C_n . Thus, we have established a map from $\operatorname{Aut}_{\mathbf{Grp}}(C_n)$ to the set of numbers that are relatively prime to n, denoted as S. This map is injective as each f maps $[1]_n$ to different elements in S, and is surjective by the construction described above. Thus, it is bijection and they have the same cardinality.

4.15

Compute the group of automorphisms of $(\mathbb{Z}, +)$. Prove that if p is prime, then $\operatorname{Aut}_{\mathbf{Grp}}(C_p) \cong C_{p-1}$. (Use Exercise 4.11.)

Proof. There are only two elements in $\operatorname{Aut}_{\mathbf{Grp}}(\mathbb{Z},+)$: The identity and the isomorphism that maps 1 to -1.

To prove $\operatorname{Aut}_{\mathbf{Grp}}(C_p) \cong C_{p-1}$, we show that $\operatorname{Aut}_{\mathbf{Grp}}(C_p) \cong (\mathbb{Z}/p\mathbb{Z})^*$ and leverage the result of exercise 4.11.

The proof of exercise 4.14 shows that there is a bijection from $\operatorname{Aut}_{\mathbf{Grp}}(C_p)$ to $(\mathbb{Z}/p\mathbb{Z})^*$ by $[m]_n \mapsto f_{[m]_n}, \gcd(m,n) = 1$, where $f_{[m]_n}$ is the automorphism derived by $f_{[m]_n}([1]_n) = [m]_n$. We show that this map, namely ϕ is an homomorphim:

$$\phi([m_1]_n \times [m_2]_n) = \phi([m_1 m_2]_n) = f_{[m_1 m_2]_n} = f_{[m_1]_n} \circ f_{[m_2]_n}$$

The last = is true by checking the image of $[1]_n$ under $f_{[m_1m_2]_n}$ and $f_{[m_1]_n} \circ f_{[m_2]_n}$ In conclusion, we have the map ϕ is both a homomorphim and bijection. Thus, $\operatorname{Aut}_{\mathbf{Grp}}(C_p) \cong (\mathbb{Z}/p\mathbb{Z})^* \cong C_{p-1}$.

4.16

Prove Wilson's theorem: a positive integer p is prime if and only if

$$(p-1)! \equiv -1 \mod p$$

Proof. (\Rightarrow) If p is a prime, then $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic, let $g \in \mathbb{Z}/p\mathbb{Z})^*$ be the elements with order p-1, then we have:

$$(p-1)! \equiv gg^2 \dots g^{p-1} \equiv g^{\frac{p(p-1)}{2}} \mod p$$

Note that we have $g^{p-1} \equiv 1 \mod p$ and $g^{\frac{p-1}{2}} \equiv -1 \mod n$ because the order of g is exactly p-1. We have:

$$g^{\frac{p(p-1)}{2}} = g^{\frac{(p-1)^2}{2}} g^{\frac{p-1}{2}} \equiv g^{\frac{p-1}{2}} \equiv -1 \mod p$$

The proof is done.

(\Leftarrow) Suppose p is not a prime and d is a divisor of p. Then we have: $(p-1)! \equiv -1 \mod d$. However, d < p indicates $d \mid d!$ and $d! \mid (p-1)!$, thus we have: $(p-1)! \equiv 0 \mod d$, a contradiction.

5. Free Group

5.1

Does the category \mathscr{F}^A defined in 5.2 have final objects? If so, what are they.

Solution It has, the object (G, j) where G is trivial group and j is a setfunction satisfies: $a \mapsto 1_G, \forall a \in A$ is a final object in \mathscr{F}^A . It's obvious that any other object in this category has a morphism to this object, namely the trivial homomorphim. Note that final object in a category is the same up to isomorphism, thus, these are all possible final objects.

5.2

5.3

Use the universal property of free groups to prove that the map $j: A \to F(A)$ is injective, for all sets A.

Proof. The universal property indicates that the following commutative diagram holds for any objects (G, j_2) :

Specifically, let j_1 be injective set-function, we must have $j_1 = \varphi \circ j$, the fact that j_1 is injective indicates j is injective. The difficulty is to show that such j_1 and G exists.

5.5

Verify explicitly that $H^{\oplus A}$ is a group.

Proof. $H^{\oplus A}$ is a subset of H^A that consists of set-functions only has finitely many "non-zero" images. For $\alpha_1, \alpha_2 \in H^{\oplus A}$, we have $\alpha_1 + \alpha_2 \in H^A$ by defining:

$$(\alpha_1 + \alpha_2)(a) = \alpha_1(a) + \alpha_2(a)$$

Note that α_1 and α_2 has at most finitely many non-zero images, thus $\alpha_1 + \alpha_2$ has only finitely many non-zero images. Further, we have the zero element: $\mathbf{0}: a \mapsto 0_H$ and addition inverse: $-\alpha: a \mapsto -\alpha(a)$. Thus $H^{\oplus A}$ is a group. The commutativaty of H also indicates that $H^{\oplus A}$ is an abelian group. \square

5.6

Prove that the group $F(\{x,y\})$ (visualized in Example 5.3) is a coproduct $\mathbb{Z} * \mathbb{Z}$ of \mathbb{Z} by itself in the category **Grp**.

Proof. There is a explicit proof to show that $F(\{x,y\})$ is the coproduct of \mathbb{Z} and \mathbb{Z} : We have the following diagram:

 ι_1 and ι_2 are homomorphims derived by defining $\iota_1(1) = x$ and $\iota_2(1) = y$. Then for any other group G and f_1, f_2 we have to prove the next diagram holds:

Define φ such that $\varphi(x) = f_1(1)$ and $\varphi(y) = f_2(1)$. Then we have such φ is a homomorphim and is unique. Thus, the free group on $\{x,y\}$ is a coproduct of \mathbb{Z} and \mathbb{Z} .

5.7

Extend the result of Exercise 5.6 to free groups $F(\{x_1,\ldots,x_n\})$ and to free abelian groups $F^{ab}(\{x_1,\ldots,x_n\})$

Solution The Extended result is that: $F(\{x_1, \ldots, x_n\})$ is the coproduct of n \mathbb{Z} in category **Grp** and is a coproduct of n \mathbb{Z} in category Ab.

5.8

Still more generally, prove that $F(A \sqcup B) = F(A) * F(B)$ and that $F^{ab}(A \sqcup B) = F^{ab}(A) \oplus F^{ab}(B)$ for all sets A, B.

Proof. We will only prove the fact that $F(A \sqcup B) = F(A) * F(B)$. In this question, we can only use the universal property. To prove that $F(A \sqcup B)$ is the coproduct of F(A) and F(B), we first construct the "injection" homomorphim: Here is the diagram:

$$A \xrightarrow{i_{A}} F(A)$$

$$\downarrow^{\iota_{A}} \qquad \downarrow^{I_{F(A)}}$$

$$A \sqcup B \xrightarrow{i_{A \sqcup B}} F(A \sqcup B)$$

$$\iota_{B} \uparrow \qquad \downarrow^{I_{F(B)}} \downarrow$$

$$B \xrightarrow{i_{B}} F(B)$$

Note that the set-function $i_{A \sqcup B} \circ \iota_A$ (or $i_{A \sqcup B} \iota_B$) is a function from A (or B) to $F(A \sqcup B)$, according to the universal property of F(A), there exists a

unique homomorphim $I_{F(A)}$ (or $I_{F(B)}$) such that $I_{F(A)} \circ i_A = i_{A \sqcup B} \circ i_A$ and $I_{F(B)} \circ i_B = i_{A \sqcup B} \circ i_B$. We prove that $(F(A \sqcup B), I_{F(A)}, I_{F(B)})$ is a coproduct of F(A) and F(B).

Say G is another group with homomorphim $f_{F(A)}: F(A) \to G$ and $f_{F(B)}: F(B) \to G$. Then we have:

$$A \xrightarrow{i_A} F(A)$$

$$\downarrow^{\iota_A} \qquad \downarrow^{f_{F(A)}}$$

$$A \sqcup B \xrightarrow{f} G$$

$$\iota_B \uparrow \qquad f_{F(B)} \uparrow$$

$$B \xrightarrow{i_B} F(B)$$

Note that $A \sqcup B$ is a coproduct of A and B, then there is a set function f such that $f \circ \iota_A = f_{F(A)} \circ i_A$ and $f \circ \iota_B = f_{F(B)} \circ i_B$.

According to the universal property of $F(A \sqcup B)$, there exists some φ such that the following diagram commutes:

$$A \sqcup B \xrightarrow{i_{A \sqcup B}} F(A \sqcup B)$$

$$\downarrow^{\varphi}$$

$$G$$

We have to prove that $f_{F(A)} = \varphi \circ I_{F(A)}$ and $f_{F(A)} = \varphi \circ I_{F(B)}$ and such φ is unique. We only prove that $f_{F(A)} = \varphi \circ I_{F(A)}$ due to similarity.

Note that $I_{F(A)} \circ i_A = i_{A \sqcup B} \circ \iota_A$, we have: $\varphi \circ I_{F(A)} \circ i_A = \varphi \circ i_{A \sqcup B} \circ \iota_A = (\varphi \circ i_{A \sqcup B}) \circ \iota_A = f \circ \iota_A = f_{F(A)} \circ i_A$ that is $(\varphi \circ I_{F(A)}) \circ i_A = f_{F(A)} \circ i_A$.

In the following diagram:

According to the universal property of F(A), we must have: $\varphi \circ I_{F(A)} = f_{F(A)}$ due to the uniqueness. To prove the uniqueness of φ , we assume that φ' satisfies $\varphi' \circ I_{F(A)} = f_{F(A)}(\text{same for } B)$, we have $\varphi' \circ I_{F(A)} \circ i_A = f_{F(A)} \circ i_A$. The left side equals to $\varphi' \circ (i_{A \sqcup B} \circ \iota_A)$, thus we have: $(\varphi' \circ i_{A \sqcup B}) \circ \iota_A = f_{F(A)} \circ i_A$. According to the universal property of $A \sqcup B$, we have $f = \varphi' \circ i_{A \sqcup B} \Rightarrow \varphi \circ i_{A \sqcup B} = \varphi' \circ i_{A \sqcup B}$. And we are done.

6. Subgroups

6.2

Prove that the set of 2×2 matrices

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$

with a, b, d in \mathbb{C} is a subgroup of $GL_2(\mathbb{C})$. More generally, prove that the set of $n \times n$ complex matrices $(a_{ij})_{1 \leq i,j \leq n}$ with $a_{ij} = 0$ for i > j, and $a_{11} \cdots a_{nn} \neq 0$, is a subgroup of $GL_n(\mathbb{C})$. (These matrices are called 'upper triangular', for evident reasons.)

Proof. Let A denote the set compries matrix described in this question, then for any $a, b \in A$, we have:

$$ab^{-1} = \begin{pmatrix} a_1 & b_1 \\ 0 & d_1 \end{pmatrix} \times \frac{1}{ad} \begin{pmatrix} d_2 & -b_2 \\ 0 & a_2 \end{pmatrix} = \frac{1}{ad} \begin{pmatrix} a_1d_2 & b_1a_2 - a_1b_2 \\ 0 & d_1a_2 \end{pmatrix}$$

And $(a_1d_2)(d_1a_2) = (a_1d_1)(a_2d_2) \neq 0$. Thus we have $ab^{-1} \in A$ and A is a subgroup of $GL_2(\mathbb{C})$.

For a more general case, we show that the multiplication of two 'upper triangular' matrix is still 'upper triangular' and the inverse of an 'upper trivial' matrix is still upper trivial.

If A and B are 'upper triangular' matrixes, then for AB we have:

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

For i > j, note that:

$$a_{ik}b_{kj} = \begin{cases} 0, a_{ik} = 0, i > k \\ 0, b_{kj} = 0, k \ge i > j \end{cases}$$

Thus, we have $(AB)_{ij} = 0$ for i > j. This indicates that AB is still 'upper triangular'.

For the second proposition, we induct on n: for n = 2, the case is proved above; Let's assume this proposition is held for n = k, and for n = k + 1, for any 'upper triangular' matrix, it could be written as:

$$B = \begin{pmatrix} a_{11} & B_{1 \times k} \\ \mathbf{0}_{k \times 1} & T_{k \times k} \end{pmatrix}$$

where $a_{11} \neq 0$ and $T_{k \times k}$ is an 'upper triangular' matrix of order n. We have its inverse as:

$$B^{-1} = \begin{pmatrix} a_{11}^{-1} & -a_{11}^{-1} B_{1 \times k} T_{k \times k}^{-1} \\ \mathbf{0}_{k \times 1} & T_{k \times k}^{-1} \end{pmatrix}$$

According to the assumption that $T_{k\times k}^{-1}$ is an 'upper triangular', we have B^{-1} is also 'upper triangular'.

With above two propositions, for any $a, b \in A_n$, we have ab^{-1} is still an 'upper triangular' matrix, thus $ab^{-1} \in A_n$ and the proof is done.

6.3

Prove that every matrix in $SU_2(\mathbb{C})$ may be written in the form

$$\begin{pmatrix} a+bi & c+di \\ -c+di & a-bi \end{pmatrix}$$

where $a, b, c, d \in \mathbb{R}$ and $a^2 + b^2 + c^2 + d^2 = 1$. (Thus, $SU_2(\mathbb{C})$ may be realized as a three-dimensional sphere embedded in \mathbb{R}^4 ; in particular, it is simply connected.)

Proof. Let $M \in SU_2(\mathbb{C})$ and

$$M = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$$

. We have

$$\begin{pmatrix} x & y \\ z & w \end{pmatrix} \begin{pmatrix} \overline{x} & \overline{z} \\ \overline{y} & \overline{w} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \overline{x} & \overline{z} \\ \overline{y} & \overline{w} \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix}$$

That means:

$$\begin{cases} x\overline{z} + y\overline{w} = 0 \\ z\overline{x} + w\overline{y} = 0 \\ \overline{x}y + \overline{z}w = 0 \\ \overline{y}x + \overline{w}z = 0 \end{cases}$$

6.5

Let G be a commutative group, and let n > 0 be an integer. Prove that $\{g^n \mid g \in G\}$ is a subgroup of G. Prove that this is not necessarily the case if G is not commutative

Proof. For any $a, b \in G$, we have $a = g^n, b = h^n$ for some $g, h \in G$, and $b^{-1} = (h^{-1})^n$. Thus:

$$ab^{-1} = g^n(h^{-1})^n = (gh^{-1})^n$$

Note that $gh^{-1} \in G$, thus $ab^{-1} \in \{g^n \mid g \in G\}$, which means this group is a subgroup of G. An counter example of the latter assertion would be the permutation group S_4 and let n = 2.

6.7

Show that inner automorphisms (cf. Exercise 4.8) form a subgroup of Aut(G); this subgroup is denoted Inn(G). Prove that Inn(G) is cyclic if and only if Inn(G) is trivial if and only if G is abelian

Proof. For $\gamma_a, \gamma_b \in \text{Inn}(G)$, we have $\gamma_a \gamma_b^{-1} = \gamma_{ab^{-1}} \in \text{Inn}(G)$. Thus it is a subgroup of Aut(G).

Inn(G) is trivial is obviously equavialent to the fact that G is abelian. If Inn(G) is cyclic, then there exists some $a \in G$ such that for any $g \in G$, there exists some $n \in \mathbb{N}^+$ such that $\gamma_{a^n} = \gamma_g$, this indicates $gag^{-1} = a^naa^{-n} = a$ and thus $ga = ag, \forall g \in G$. Thus we have $\forall \gamma_g \in \text{Inn}(G), \ \gamma_g = \gamma_{a^m}$ and $\forall x \in G, \gamma_{a^m}(x) = x$, thus $\gamma_g = \text{Id}_G$. The proof is done.

6.9

Prove that every finitely generated subgroup of $\mathbb Q$ is cyclic. Prove that $\mathbb Q$ is not finitely generated

Proof. Let H < G be a finitely generated subgroup and $H = \langle a_1, a_2, ..., a_n \rangle$. We induct on n to prove that H is cyclic:

- (1) If n = 1 then we have $F(\{a_1\})$ to be cyclic, thus $H = \varphi(F(\{a_1\}))$ is also cyclic
- (2) Assume for n this holds, consider n+1. Since $H'=\langle a_1,a_2,...,a_n\rangle$ is cyclic, there exits some $q\in\mathbb{Q}$ such that $H'=\langle q\rangle$, Consider a_{n+1} and q, let's

say a_{n+1} and q both has the form: $q = \frac{s}{t}, a_{n+1} = \frac{s'}{t}$. Consider $q' = \gcd(s, s')$

and we will have both q and a_{n+1} be multiple $\frac{q'}{t}$. Note that $\gcd(\frac{s}{q'}, \frac{s'}{q'}) = 1$.

We will have $x, y \in \mathbb{N}$ such that $\frac{xs}{q'} + \frac{ys'}{q'} = 1$, by multiplying $\frac{q'}{t}$ at both sides:

$$\frac{q'}{t} = \frac{xs}{t} + \frac{ys'}{t}$$

This means: $\frac{q'}{t} \in \langle a_1, a_2, ..., a_{n+1} \rangle$ and it's obviously that each element can be expressed as multiple of $\frac{q'}{t}$. Thus the proposition is true for the case of n+1.

In conclusion, we have proved that any finitely generated subgroup of $\mathbb Q$ is cyclic.

 \mathbb{Q} is not finitely generated as \mathbb{Q} is not cyclic.

6.10

The set of 2×2 matrices with integer entries and determinant 1 is denoted $SL_2(\mathbb{Z})$:

$$\operatorname{SL}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid \text{ such that } a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

Prove that $SL_2(\mathbb{Z})$ is generated by the matrices:

$$s = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad t = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Proof. Using induction, we have $t^a = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$, $a \in \mathbb{N}$ and $s^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, $s^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

6.12

Let m, n be positive integers, and consider the subgroup $\langle m, n \rangle$ of \mathbb{Z} they generate. By Proposition 6.9, $\langle m, n \rangle = d\mathbb{Z}$ for some positive integer d. What is d, in relation to m, n?

Proof. Since $\langle m, n \rangle = d\mathbb{Z}$, there exits some $x, y \in \mathbb{N}$ such that xm + yn = d. Thus we have $gcd(m, n) \mid d$. On the contrary, note that $m \in d\mathbb{Z}$ and $n \in d\mathbb{Z}$, thus we have $d \mid m$ and $d \mid n$, which indicates $d \mid gcd(m, n)$. Thus we have $gcd(m, n) = d\mathbb{Z}$.