Evaluating Machine Learning Approaches for Personality Recognition

Classifying Authors as Neurotic or Calm from Text

Introduction (1 of 1)

- Objective
 - Explore methods for classifying authors as "neurotic" or "calm" based on their writing
- Datasets
 - MyPersonality (train)
 - Essays (test)
- Methods
 - Evaluate different vectorizers (e.g., one-hot, term frequency, TF-IDF)
 - Evaluate different classifiers (e.g., SVM, k-NN, random forest, gradient boosting)
 - Grid search to optimize parameters

Background (1 of 2)

Label	Sample						
	MyPersonality						
Calm	Was stuck between reality and a dreamunpleasant. Let's go to Italia~~ Is going back to the homeland "Oh my God dude, doing 5 tomorrow is going to feel like sex!"						
Neurotic	Just bought a cute pair of purple pumps :) Not yet - going to movies tonight is sick in bed. Coughing like and old hag and looking decidedly ropey						
	Essays						
Calm	Well, I feel good about the fact that I am getting this assignment done well before it is due. Today is one of those days that I feel really motivated to do my homework						
Neurotic	Well, right now I just woke up from a mid-day nap. It's sort of weird, but ever since I moved to Texas, I have had problems concentrating on things						

Background (2 of 2)

- Openness
 - Insightful
 - Unimaginative
- Conscientiousness
 - Organized
 - o Careless
- Extraversion
 - o Sociable
 - Shy
- Agreeableness
 - Friendly
 - $\circ \quad \ \, Uncooperative$
- Neuroticism
 - o Neurotic
 - o Calm

Methods (1 of 2)

Pipeline														
Vectorizer						Classifier								
One-hot			Term frequency		TF-IDF		SVM		k-NN		Random Forest	Gradient Boosting		
N-gram	Max DF	Min DF	N-gram	Max DF	Min DF	N-gram	Max DF	Min DF	Regularization	Kernel	Neighbors	Metric		Max depth

Methods (2 of 2)

- One-hot
 - N-gram (unigrams, bigrams)
 - o Max DF (1.0, 0.5)
 - o Min DF (1, 2)
- Term frequency
 - N-gram (unigrams, bigrams)
 - o Max DF (1.0, 0.5)
 - o Min DF (1, 2)
- TF-IDF
 - N-gram (unigrams, bigrams)
 - \circ Max DF (1.0, 0.5)
 - \circ Min DF (1, 2)

- SVM
 - Regularization (0.01, 0.1, 1, 10, 100)
 - Kernel (linear, RBF)
- k-NN
 - \circ Neighbors (1, 3, 5, 7, 9)
 - Metric (Euclidean, cosine)
- Random forest
 - \circ None:-)
- Gradient boosting
 - \circ Max depth (1, 2, 3, 4, 5)

Results (1 of 3)

- One-hot
 - $0.50 \pm 0.02 \text{ SD}$
 - o 0.48-0.51 IQR
- Term frequency
 - \circ 0.50 ± 0.03 SD
 - o 0.48-0.52 IQR
- TF-IDF
 - \circ 0.50 ± 0.02 SD
 - \circ 0.50-0.51 IQR

Results (2 of 3)

• SVM

- $0.50 \pm 0.02 \text{ SD}$
- o 0.50-0.51 IQR

• k-NN

- \circ 0.51 ± 0.02 SD
- o 0.49-0.52 IQR

• Random forest

- $0.52 \pm 0.01 \text{ SD}$
- \circ 0.51-0.53 IQR

• Gradient boosting

- \circ 0.47 ± 0.02 SD
- \circ 0.46-0.49 IQR

Results (3 of 3)

	TF-IDF Vectorizer		k-NN Classifier			
N-gram	Max DF	Min DF	k	Metric		
Bigrams	0.5	2	9	Euclidean		

Label	Precision	Recall	F1-Score	Support
Calm	0.51	0.47	0.49	1235
Neurotic	0.51	0.55	0.53	1233
Accuracy			0.51	2468
Macro Average	0.51	0.51	0.51	2468
Weighted Average	0.51	0.51	0.51	2468

Discussion (1 of 2)

• SVM

- Consistent results with term frequency vectorizer (unigrams/bigrams)
- Best with linear kernel, and regularization strength of 10

k-NN

- Best overall performance with TF-IDF or term frequency
- Optimal with 9 neighbors (TF-IDF) and 3 neighbors (term frequency)

• Random Forest

- Stable but underperformed compared to k-NN and SVM
- TF-IDF with bigrams slightly improved results

Gradient Boosting

• Higher variability and lower performance than other models

Discussion (2 of 2)

• Comparison

- Mohammad et al. got an accuracy of 0.57 with SVM and external resources
- Iacobelli et al. got an accuracy of 0.56 using Naïve Bayes
- Markovic et al. got an F1-score of 0.90 with SVM and boosting, using a larger feature set

Limitations

- LIWC, MRC, or Twitter Hashtag Lexicon could improve analysis
- A larger, balanced dataset would improve performance
- Adding demographics or other features could yield richer patterns
- Word embeddings or deep learning could improve semantic understanding

Conclusion (1 of 1)

- Objective
 - Explore machine learning models for personality recognition from text
- Methods
 - Grid search of vectorizers (one-hot, term frequency, TF-IDF) and classifiers (SVM, k-NN, random forest, gradient boosting)
- Key Findings
 - k-NN with TF-IDF achieved competitive results with an F1-score of 0.51
- Improvement
 - Incorporating external resources, increasing feature space, and using larger dataset could enhance accuracy
- Future Work
 - Word embeddings, deep learning, and multimodal data could improve model performance and semantic understanding

References

Celli, F., Pianesi, F., Stillwell, D., & Kosinski, M. (2013). Workshop on computational personality recognition: Shared task. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 7, No. 2, pp. 2-5).