HOJA 5

a)
$$f_n(x) = \exp(-nx^2)$$
 en $[-1,1]$
 $f_n(x) \longrightarrow \begin{cases} 1 & \text{si } x = 0 \\ 0 & \text{si } 0 < |x| \le 1 \end{cases} \xrightarrow{\text{def.}} f(x)$
 $f_n(0) = 1 \quad \forall n$

Si $x \ne 0$, $-nx^2 \longrightarrow -\infty \Longrightarrow f_n(x) \longrightarrow 0$

c'fn vnif. f?

- Respuesta rapida: NO, porque las f_n son continuas pero el limite f(x) no es continua en x=0.
- Norma infinito: $\|f_n f\|_{\infty} \ge \frac{?}{ \text{indep. de } n}$ Si $x \neq 0$ $|f_n(x) - f(x)| = f(x)$. En $x = \frac{1}{\sqrt{n}} \rightarrow nx^2 = 1 \Longrightarrow$

$$\Rightarrow f(4/n) = e^{-1} = \frac{1}{e} \quad \text{if } n = 1/n$$

f) $f_n(x) = x^{-n} e^x$ en $(4, \infty)$ $f_n(x) \xrightarrow{n \to \infty} 0 \stackrel{\text{def}}{=} f(x)$ recordar: $x^n \longrightarrow \infty$ si x > 1ci $f_n \xrightarrow{\text{unif}} f$? $= \|f_n - f\|_{\infty} = \|f_n\|_{\infty}$

para n fijo:
$$\lim_{x\to\infty} x^{-n}e^{x} = \infty$$
 => $\|f_n\|_{\infty} = \infty$

If $n = \sqrt{\frac{1}{2}} = \sqrt{\frac{1}{2}$

$$x^{-n}e^{x} < \varepsilon \implies -n\log(x) + x < \log(\varepsilon) \implies n\log x > x - \log \varepsilon \implies x - \log \varepsilon$$

 \Rightarrow $n \ge \frac{x - \log \varepsilon}{\log x}$ Se necesitaria $N(\varepsilon) \ge \frac{x - \log \varepsilon}{\log x}$ $\xrightarrow{x \to \infty}$

 $\frac{Z.1}{f_n(x)} = n^2 \times e^{-1/x}$ en [0,1] a) -pp > ?? -wif. > ?? 070: para x=0 $f_n(0)=0$ $\forall n \Rightarrow f_n(0) \to 0$ $n^2 \times e^{-nx^2} \xrightarrow[n \to \infty]{(*)} 0$ (x fijo) $x \neq 0$ $n^2 \times e^{-nx^2} \xrightarrow[n \to \infty]{} 0$ (exponential crece mucho mas) $f_n = 0$ Razon: $||f_n - f||_{\infty} = ||f_n||_{\infty}$ no converge a 0 mando $n \to \infty$ Si $x = \sqrt{\frac{1}{n}} \implies f_n\left(\frac{1}{\sqrt{n}}\right) = n^2 \frac{1}{\sqrt{n}} e^{-1} = \frac{n^{3/2}}{e}$, e.d., $\|f_n\|_{\infty} = \sup_{x \in [0,1]} |f_n(x)| \implies f_n\left(\frac{1}{\sqrt{n}}\right) \implies \|f_n\|_{\infty} \ge \frac{n^{3/2}}{e}$ que converge a ∞ cuando $n \rightarrow$ (*) $\sqrt{n} \times = y \longrightarrow n^2 \times^4 = y^4 \longrightarrow n^2 \times = \frac{y}{x^3}$ $n^2xe^{-nx^2}=\frac{y^4e^{-y^2}}{x^3}$, ahora $n\to\infty$ Lim $y''e^{-y^2} = 0$ Oso todo esto no es necesario, basta de un que exp() (rece + rápido que polo b) Ver que lim $\int_{n\to\infty}^{\infty} \int_{0}^{1} f_n = \infty$ $\int_{0}^{\infty} \frac{d}{dx}(e^{-nx^2}) = -2nxe^{-nx^2}$ $\int_{0}^{n} x e^{-nx^{2}} dx = \frac{-n}{2} \left(e^{-nx^{2}} \right) \Big]_{0}^{1} = \cdots = \lim_{n \to \infty} \lim_{n \to \infty} \dots = \infty$ Fin ProblemA cambio variable $\sqrt{n} \times = u$: $\int_{0}^{\sqrt{N}} n^{3/2} u e^{-u^2} \frac{du}{\sqrt{n}} = n \int_{0}^{\sqrt{u}} u e^{-u^2} du$ ue du explicitam.

le du es finite calcular explicitam. Pazon: $ue^{-u^2} \le \frac{C}{u^2}$ si $u \ge 4$ (e.d. $u^3e^{-u^2} \le C$ si $u \ge 4$) e.d., $u^3e^{-u^2} \le c$ si $u \ge 4$ | No! In tendria que converger uniformemente!)= ise podria intercambiar lim of for por Johnson for = Joseph = 0?

lim $u^3e^{-1} = 0 \implies \exists R \text{ fal que } u^3e^{-u^2} \leq 1 \text{ st } u \geqslant R$ En [1,R] $u^2e^{-u^2}$ es continua => está acotada => $u^2e^{-u^2} \in K$ $=> u^2 e^{-u^2} \le K+1$ si u > 1 $=> \int_{a}^{\infty} \frac{1}{u^2} du$ finita Dicho esto y como hemos comentado, en este caso se puede calcular $\int_{-\infty}^{\infty} n^2 x e^{-nx^2} dx$ y ver que $\longrightarrow \infty$. en Topos) tal que existen lim son for y sof pero 14.1 fr mig. f no coinciden. Observación: $\int_{0}^{\infty} (f_{n} - f) = \int_{0}^{\infty} f_{n} - \int_{0}^{\infty} f$ $\rightarrow 0 \iff \text{buscar } f_{n}$ tal que $f_n \rightarrow 0$ pero $\int_{0}^{\infty} f_n \rightarrow 0$. fn n 2n $\int_{1}^{\infty} f_{n} = \overline{area} \left(\frac{1}{n} \right) = \frac{4}{2}$ $\int_{0}^{\infty} f_{n} \xrightarrow{n \to \infty} \frac{4}{2} \left(f_{n} \xrightarrow{pp} 0 \right)$ fn(x) = 0 a partir de n => x Razion: ||fn-f|| = ||fn|| = = = = = 0 $\int_{0} f = \int_{0}^{\infty} 0 = 0$ lim for # Solimin

5.
$$f_n(x) = \cos^{2n}(\pi x)$$
, $x \in \mathbb{R}$

a) $c^{2n} f_n(x) = \cos^{2n}(\pi x)$, $e^{2n} f_n(x)$
 $cos(\pi x)^{2n} f_n(x)$
 $e^{2n} f_n(x)$

caso 2: Si $x \notin \mathbb{Q}$, entonces $K \mid x \in \mathbb{Z}$ sea cual

Sea K. $f_n(k|x) \equiv 0 \implies \lim_{x \to \infty} = 0 \implies \lim_{x \to \infty} = 0$

6.
$$f_n = x^2 + \frac{1}{n}$$
, $g_n = \frac{1}{nx}$ [1, ∞)

a) Demostrar que
$$f_n$$
, g_n convergen unif.
 $f_n = \frac{1}{vwif} \times x^2 = f(x)$ ($\|f_n - f\|_{\infty} = \frac{1}{n} \longrightarrow 0$)

$$g_n \longrightarrow 0$$
 $\frac{1}{nx} \leq \frac{1}{n} \leq x \geq 1 \Rightarrow ||g_n||_{\infty} = \frac{1}{n} \longrightarrow 0.$

Pero
$$f_n g_n \xrightarrow{\text{var}} h_n = f_n g_n = \frac{x^2 + \frac{4}{n}}{nx} = \frac{nx^2 + 1}{n^2x} \xrightarrow{PP} 0$$

pero no lo hace unif. : (ogenos $x = \frac{1}{n} \implies h_n(\frac{4}{n}) = \frac{\frac{1}{n} + 1}{1} \implies 1$

b)
$$f_n = \frac{1}{\sqrt{n}} f = x^2$$
 pero $f_n = \frac{1}{\sqrt{n}} f^2$ (parecido apartado anterior) $f_n^2 - f^2 = \frac{2x^2}{n} + \frac{1}{n^2} = \frac{1}{\sqrt{n}} f_n^2$

$$f_{n}(x) = \frac{x}{1+nx^{2}} \qquad f_{n}(x) = \frac{x}{1+nx^{2}} \qquad$$

$$f_n(x) \xrightarrow{pp} 0$$
 | $f_n(x) = 0$ | $f_n(x) = 0$ | $f_n(x) = 0$ | $f_n(x) \to 0$ | $f_n(x) \to 0$ | $f_n(x) \to 0$ | $f_n(x) = 0$ |

$$\varepsilon > 0$$
 $\longrightarrow \alpha = \varepsilon$ $\longrightarrow n \ge N(\varepsilon) = \frac{1}{\varepsilon^2}$

all
$$x' + a(t)x = 0$$

all es continua y periódica (de periodo T)

Demostrar que si $x(t)$ es solución, $y(t) \stackrel{\text{def}}{=} x(t+T)$ también lo es.

 $y'(t) = x'(t+T) = -a(t+T) \cdot x(t+T) \implies y'(t) + a(t)y(t) = 0$
 $x \text{ sol} \quad a(t) \quad y(t) \quad y'(t)$

porque

all es periódica

Demostrar que
$$\exists C$$
, constante, tal que $\times (t+T) = C \times (t)$
 $\underline{CASO 1} : \times (t) = 0 \implies \times (t+T) = 0 \implies \text{cualquier } C \text{ vale}$
 $\underline{CASO 2} : \times (0) \neq 0$

Sabemos que X(t+T) es solución con valor X(T) en t=0 con $C=\frac{X(T)}{X(0)}$.

$$C \times (t)$$
 es solucion con valor $\frac{\chi(\tau)}{\chi(0)} \chi(0) = \chi(\tau)$ en $t = 0$
Por unicidad $\chi(t+\tau) = C \times (\tau)$ $\left(C = \frac{\chi(\tau)}{\chi(0)}\right)$

Observación:
$$\chi(0) = 0$$
 $\stackrel{\text{unic.}}{\Longrightarrow} \chi(t) \equiv 0$

Indicaciones:
$$x' = a(t)x + b(t)$$
 arb peniodicas de peniodo T
a) $x(0) = x(T) \implies x(t)$ es solución peniodica $(x(t+T) = x(t))$
 $x(t) = e^{\int_0^t a(s)ds} \int_0^t (t+1)^{-t} b(s) e^{\int_0^s a(u)du} ds$

b)
$$r < 0 \implies$$
 cualquier solución $x(t)$ "converge" a $x > 0$ $x(t) - x > 0$

$$y(t) \stackrel{\text{def.}}{=} x(t) - x_0(t)$$
 es solución de la homogénea, e.d., $y' = ry \implies y(t) = y(0) e^{rt}$, e.d., $|y(t)| = |y(0)| e^{rt} \xrightarrow[r<0]{} 0$

donde rER, r=0 y b(t) peniddice 40.(*)x' = rx + b(t)de periodo T. r<0 $F: \mathbb{R} \longrightarrow \mathbb{R}$ donde $\times (t, \xi)$ es la solución de $5 \mapsto \times (T, \xi)$ \otimes con $\times (0) = \overline{3}$ $\Rightarrow e^{-rt} \times (\theta - e^{-rs}) = \int_{0}^{t} e^{-rs} b(s) ds$ $x(t) = \overline{3}e^{-rt} + e^{rt}\int_{0}^{t} e^{-rs} b(s) ds \Rightarrow$ $\Rightarrow \times (t) = \frac{3}{5}e^{-rt} + e^{rt} \int_{0}^{t} e^{-rs} b(s) ds$ Si G es x' = g(t)x + b(t) y G es una primitiva de g, por ejemplo stg(s) ds $(e^{-G(t)}x(t))' = e^{-G(t)}x' - g(t)e^{-G(t)}x = e^{-G(t)}(x'-gx) =$ = e - G(4) b(4) Lipschitz enx y unif. ent F(t,x) = rx + b(t)es vnif. Lipschitz $\left|\frac{\partial F}{\partial x}\right| = |F| = \text{const} \implies F: [a,b] \times \mathbb{R} \longrightarrow \mathbb{R}$ $\Rightarrow \exists !$ en [a,b] $\forall a,b \Rightarrow \exists !$ en $f \in \mathbb{R}$. Jemostrar que F tiene un único punto fijo Kazon Vamos a ver que F es contractiva: $F(\bar{3}) = \times (T, \bar{3}) = \bar{3}e^{iT} + \int_{0}^{1} e^{r(\tau-s)}b(s) ds$

 $\begin{cases}
h \in C^{1} & \text{ev} (-1,1) \\
h_{n}(x) & \text{vnif} \end{cases} |x|$

(no lo ha hecho)

