NI P ASSIGNMENT

NAME: Dadireddy Jahnavi ROLL NO: B190181EC BATCH: ECE-A

Write the python code for sentiment analysis for the following dataset. Do the required pre-processing - stemming, punctuation removal, term frequency etc. - (whichever required). Then design a classifier to categorize the reviews / texts using logistic regression and naive bayes classifier. Also generate required plots and confusion matrix.

1) Use the twitter data from the nltk library in python

BASIC IMPORTS (MODULES AND DATA)

```
In [16]:
          # importing modules
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import nltk
          from nltk.corpus import twitter samples
          # importing twitter data using nltk
          # downloads sample twitter dataset.
          nltk.download('twitter_samples')
          # download the stopwords for the process tweet function
          nltk.download('stopwords')
          import re
                                                    # library for regular expression operations
                                                    # for string operations
          import string
                                                   # module for stop words that come with NLTK
          from nltk.corpus import stopwords
          from nltk.stem import PorterStemmer
                                                    # module for stemmina
          from nltk.tokenize import TweetTokenizer # module for tokenizing strings
         [nltk data] Downloading package twitter samples to
                        /home/kary/nltk data..
         [nltk data]
                       Package twitter_samples is already up-to-date!
         [nltk data]
         [nltk_data] Downloading package stopwords to /home/kary/nltk_data...
         [nltk_data] Package stopwords is already up-to-date!
```

FUNCTIONS

PRE-PROCESSING

```
In [17]:
          def process_tweet(tweet):
              #Remove old style retweet text "RT"
              tweet2 = re.sub(r'^RT[\s]','', tweet)
              #Remove hyperlinks
              tweet2 = re.sub(r'https?:\/\.*[\r\n]*','', tweet2)
              #Remove hastags
              #Only removing the hash # sign from the word
              tweet2 = re.sub(r'\#', '', tweet2)
              # instantiate tokenizer class
              tokenizer = TweetTokenizer(preserve_case=False,
                                                                  strip handles=True, reduce len=True)
              # tokenize tweets
              tweet_tokens = tokenizer.tokenize(tweet2)
              #Import the english stop words list from NLTK
              stopwords_english = stopwords.words('english')
              #Creating a list of words without stopwords
              tweets clean = []
              for word in tweet tokens:
                  if word not in stopwords_english and word not in string.punctuation:
                      tweets_clean.append(word)
              #Instantiate stemming class
              stemmer = PorterStemmer()
              #Creating a list of stems of words in tweet
              tweets stem = []
              for word in tweets clean:
                  stem_word = stemmer.stem(word)
                  tweets_stem.append(stem_word)
              return tweets stem
```

FREQUENCY GENERATING FUNCTION

```
def build_freqs(tweets, ys):
    yslist = np.squeeze(ys).tolist()

freqs = {}
    for y, tweet in zip(yslist, tweets):
        for word in process_tweet(tweet):
            pair = (word, y)
            freqs[pair] = freqs.get(pair, 0) + 1
return freqs
```

SIGMOID FUNCTION

```
In [19]:
    def sigmoid(z):
        # calculate the sigmoid of z
        h = 1/(1 + np.exp(-z))
        return h
```

COST FUNCTION AND GRADIENT DESCENT

```
In [20]:
    def gradientDescent(x, y, theta, alpha, num_iters):
        m = len(x)

    for i in range(0, num_iters):
        # get z, the dot product of x and theta
        z = np.dot(x,theta)

        # get the sigmoid of z
        h = sigmoid(z)

        # calculate the cost function
        J = (-1/m)*(np.dot(y.T,np.log(h)) + np.dot((1-y).T,np.log(1-h)))

        # update the weights theta
        theta = theta - (alpha/m)*np.dot(x.T, h-y)

J = float(J)
    return J, theta
```

EXTRACTING TWEETS

```
In [21]:
          def extract_features(tweet, freqs):
              # process_tweet tokenizes, stems, and removes stopwords
              word_l = process_tweet(tweet)
              # 3 elements in the form of a 1 x 3 vector
              x = np.zeros((1, 3))
              #bias term is set to 1
              x[0,0] = 1
              # loop through each word in the list of words
              for word in word 1:
                   # increment the word count for the positive label 1
                  x[0,1] \leftarrow freqs.get((word,1),0)
                   # increment the word count for the negative label 0
                  x[0,2] \leftarrow freqs.get((word,0),0)
              assert(x.shape == (1, 3))
               return x
```

TEST LOGISTIC REGRESSION

```
def predict_tweet(tweet, freqs, theta):
    # extract the features of the tweet and store it into x
    x = extract_features(tweet, freqs)

# make the prediction using x and theta
    z = np.dot(x,theta)
    y_pred = sigmoid(z)

return y_pred
```

```
def test_logistic_regression(test_x, test_y, freqs, theta):
    # the list for storing predictions
   y hat = []
    for tweet in test_x:
        # get the label prediction for the tweet
       y_pred = predict_tweet(tweet, freqs, theta)
        if y pred > 0.5:
            # append 1.0 to the list
            y_hat.append(1)
        else:
            # append 0 to the list
            y_hat.append(0)
# With the above implementation, y hat is a list, but test y is (m,1) array
    # convert both to one-dimensional arrays in order to compare them using the '==' operator
   y_hat = np.array(y_hat)
    test_y = test_y.reshape(-1)
   accuracy = np.sum((test_y == y_hat).astype(int))/len(test_x)
    return accuracy
```

TRAIN NAIVE BAYES

```
In [23]:
          def train naive bayes(freqs, train x, train y):
              loglikelihood = {}
              logprior = 0
              # calculate V, the number of unique words in the vocabulary
              vocab = set([pair[0] for pair in freqs.keys()])
              V = len(vocab)
              # calculate N_pos and N_neg
              N pos = N neg = 0
              for pair in freqs.keys():
                  # if the label is positive (greater than zero)
                  if pair[1] > 0:
                      # Increment the number of positive words by the count for this (word, label) pair
                      N pos += freqs.get(pair, 1)
                  # else, the label is negative
                       # increment the number of negative words by the count for this (word, label) pair
                      N_neg += freqs.get(pair, 1)
              # Calculate D, the number of documents
              D = len(train y)
              # Calculate D pos, the number of positive documents (*hint: use sum(<np array>))
              D_pos = sum(train_y)
              # Calculate D neg, the number of negative documents (*hint: compute using D and D pos)
              D \text{ neg} = D-D \text{ pos}
              # Calculate logprior
              logprior = np.log(D pos) - np.log(D neg)
               # For each word in the vocabulary...
              for word in vocab:
                  # get the positive and negative frequency of the word
                  freq_pos = freqs.get((word, 1),0)
                  freq_neg = freqs.get((word, 0),0)
                  # calculate the probability that each word is positive, and negative
                  p_w_pos = (freq_pos + 1)/(N_pos + V)
                  p_w_neg = (freq_neg + 1)/(N_neg + V)
                  # calculate the log likelihood of the word
                  loglikelihood[word] = np.log(p_w_pos/p_w_neg)
              return logprior, loglikelihood
          # logprior, loglikelihood = train naive bayes(freqs, train x, train y)
```

TEST NAIVE BAYES

```
In [24]:
          def naive_bayes_predict(tweet, logprior, loglikelihood):
              # process the tweet to get a list of words
              word l = process tweet(tweet)
              # initialize probability to zero
              p = 0
              # add the logprior
              p += logprior
              for word in word l:
              # check if the word exists in the loglikelihood dictionary
                  if word in loglikelihood:
                      # add the log likelihood of that word to the probability
                      p += loglikelihood[word]
              return p
          def test_naive_bayes(test_x, test_y, logprior, loglikelihood):
              accuracy = 0 # return this properly
              y hats = []
              for tweet in test x:
                  # if the prediction is > 0
```

```
if naive_bayes_predict(tweet, logprior, loglikelihood) > 0:
    # the predicted class is 1
    y_hat_i = 1
else:
    # otherwise the predicted class is 0
    y_hat_i = 0
# append the predicted class to the list y_hats
    y_hats.append(y_hat_i)

# error is the average of the absolute values of the differences between y_hats and test_y
error = np.mean(np.absolute(y_hats - test_y))
# Accuracy is 1 minus the error
accuracy = 1 - error
return accuracy
```

SPLITTING THE DATA

```
In [25]:
# select the set of positive and negative tweets
all_positive_tweets = twitter_samples.strings('positive_tweets.json')
all_negative_tweets = twitter_samples.strings('negative_tweets.json')
tweets = all_positive_tweets + all_negative_tweets

# make a numpy array representing labels of the tweets
labels = np.append(np.ones((len(all_positive_tweets))), np.zeros((len(all_negative_tweets))))

# split the data into two pieces, one for training and one for testing (validation set)
test_pos = all_positive_tweets[4000:]
train_pos = all_positive_tweets[4000:]
train_neg = all_negative_tweets[4000:]
train_neg = all_negative_tweets[4000]
train_x = train_pos + train_neg
test_x = test_pos + test_neg

# combine positive and negative labels
train_y = np.append(np.ones((len(train_pos), 1)), np.zeros((len(train_neg), 1)), axis=0)
test_y = np.append(np.ones((len(test_pos), 1)), np.zeros((len(test_neg), 1)), axis=0)
```

TRAINING YOUR MODEL

```
In [26]: # create frequency dictionary
    freqs = build_freqs(tweets, labels)

# collect the features 'x' and stack them into a matrix 'X'
    X = np.zeros((len(train_x), 3))
    for i in range(len(train_x)):
        X[i, :]= extract_features(train_x[i], freqs)
    # training labels corresponding to X
    Y = train_y
    # Apply gradient descent
    J, theta = gradientDescent(X, Y, np.zeros((3, 1)), le-9, 1500)
    print(f"The cost after training is {J:.8f}.")
    print(f"The resulting vector of weights is {[round(t, 8) for t in np.squeeze(theta)]}")
```

The cost after training is 0.19513844. The resulting vector of weights is $[7e-08,\ 0.00054223,\ -0.00054312]$

VISUALIZING TWEETS

```
In [27]: # Plot the samples using columns 1 and 2 of the matrix
fig, ax = plt.subplots(figsize = (10, 8))

colors = ['red', 'green']

# Color based on the sentiment Y
ax.scatter(X[:,1], X[:,2], c=[colors[int(k)] for k in Y], s = 0.1) # Plot a dot for each pair of words
plt.xlabel("Positive")
plt.ylabel("Negative")
```

Out[27]: Text(0, 0.5, 'Negative')

```
25000 -
```

```
10000 - 10000 - 15000 20000 25000 30000 Positive
```

```
In [28]:
          # Equation for the separation plane
          def neg(theta, pos):
              return (-theta[0] - pos * theta[1]) / theta[2]
          fig, ax = plt.subplots(figsize = (10, 8))
          colors = ['red', 'green']
          # Color base on the sentiment Y
          ax.scatter(X[:,1], X[:,2], c=[colors[int(k)] for k in Y], s = 0.1) # Plot a dot for each pair of words
          plt.xlabel("Positive")
          plt.ylabel("Negative")
          # Now lets represent the logistic regression model in this chart.
          maxpos = np.max(X[:,1])
                                            # max value in x-axis
          # Plot a gray line that divides the 2 areas.
          ax.plot([0, maxpos], [neg(theta, 0), neg(theta, maxpos)], color = 'gray')
          plt.show()
```


LOGISTIC REGRESSION

```
test_accuracy = test_logistic_regression(test_x, test_y, freqs, theta)
print(f"Logistic regression model's accuracy = {test_accuracy:.4f}")
```

Logistic regression model's accuracy = 0.9965

NAIVE BAYES CLASSIFIER

```
logprior_naive, loglikelihood_naive = train_naive_bayes(freqs, train_x, train_y)
test_acc_naive = test_naive_bayes(test_x, test_y, logprior_naive, loglikelihood_naive)
print(f"Naive bayes classifier's accuracy = {test_acc_naive:.4f}")
```

Naive bayes classifier's accuracy = 0.5000