Aplicação de redes neurais artificiais para predição de paleotemperaturas com base em amostras de foraminíferos

Marinara Rübenich Fumagalli¹ Orientador: Joaquim Vinicius Carvalho Assunção²

> ¹Curso de Sistemas de Informação ²Departamento de Computação Aplicada Universidade Federal de Santa Maria

> > 22 de maio de 2019

Roteiro

Introdução

Revisão Bibliográfica

Metodologia

Resultados

Referências

Roteiro

Introdução

Introdução

Revisão Bibliográfica

Metodologia

Resultados

Referências

Introdução Revisão Bibliográfica Metodologia Resultados Referência:

Introdução

- Foraminíferos
 - Necessidade de reconstituir paleoambientes
 - Prever temperaturas futuras
 - Excelentes bioindicadores
- Redes Neurais Artificiais
 - Necessidade de Máquinas autônomas e capazes de aprenderem sozinhas
 - Inteligência Artificial (Artificial Intelligence)
 - Aprendizagem de Máquina (Machine Learning)
 - Ela pode ser treinada e descobrir a saída mais próxima da realidade

Objetivo Geral e Específicos

- Objetivo Geral
 - O objetivo é ilustrar a eficiência das redes neurais na estimativa de paleotemperaturas
- Objetivos Específicos
 - Pesquisar, entender e implementar uma rede neural artificial;
 - Ajustar os pesos dos atributos de entrada (advindo do arquvivo de amostras de foraminíferos) para maior precisão da RNA;
 - Aplicar o algoritmo de retropropagação resiliente aos atributos;
 - ► Treinar e testar a RNA, esta deve aprender e retornar com boa
 - Criar uma aplicação web completa e acessível ao usuário;
 - Exibir de gráficos e estatísticas referentes aos resultados.

exatidão as paleotemperaturas

Roteiro

Introdução

Revisão Bibliográfica

Metodologia

Resultados

Referências

Foraminíferos

- Protistas unicelulares marinhos
 - ▶ Reino Chromista, infrarreino Rizharia, filo Retaria e subfilo Foraminifera
- Capacidade altamente evolutiva
- Excelentes indicadores:
 - Paleoecológicos
 - Bioestratigráficos
 - Paleoclimáticos
- Podem ser:
 - Bentônicos
 - Hábito Infaunal
 - Hábito Epifaunal
 - Planctônicos

Exemplos de Foraminíferos

Figura: Exemplos de foraminíferos bentônicos e planctônicos.

P = Planctônico

B = Bentônico

Fonte: (UNIVERSITY COLLEGE LONDON, 2012).

Foraminíferos

Coleta de Amostras

- Extração de Sedimentos
- Testemunhos
- Etapas

Predição de Paleotemperaturas

> Análise das Testas (carapaças)

Redes Neurais Artificiais

- ► Abordagem inclusa na Aprendizagem de Máquina (Machine Learning)
- Baseadas nas conexões e modo de aprendizagem do cérebro humano

Arquiteturas

- Divididas em 3 partes:
 - Camada de Entrada
 - Camadas Ocultas
 - Camada de Saída
- Arquitetura de Camada Simples
 - Única camada de Neurônios
 - Não possui camadas Ocultas
- Arquitetura Multicamadas
 - Uma ou mais camadas de Neurônios
 - Possui camadas Ocultas
 - Para problemas complexos

Exemplos de Arquiteturas

Camada Simples

Figura: Exemplo de RNA de uma única camada.

Fonte: (SILVA; SPATTI; FLAUZINO, 2010).

Multicamadas

Figura: Exemplo de RNA de múltiplas camadas.

Fonte: (SILVA; SPATTI; FLAUZINO, 2010).

Neurônio Biológico vs Neurônio Artificial

- Neurônio Biológico:
 - Operam paralelamente processando e transmitindo informações
 - Conduzem impulsos nervosos
 - ► Três partes:
 - Dendritos
 - Axônios
 - Corpo celular
- Neurônio Artificial
 - Opera com cálculos matemáticos
 - Comparação:
 - Entradas (Dendritos)
 - Saídas (Axônios)
 - Pesos (sinapses)

Neurônio Biológico

Figura: Exemplo de Neurônio Biológico.

Fonte: Página do site Só Biologia.3

³Em: </https://www.sobiologia.com.br/conteudos/ FisiologiaAnimal/nervoso2.php>. Acesso em abr. 2019.

Neurônio Artificial

Figura: Exemplo de Neurônio Artifical.

Fonte: Adaptado de (HAYKIN, 2001).

Funções de Ativação

- Baseadas em diferentes funções matemáticas
- ► Limitam a saída em um intervalo entre [0, 1]
- Ativam, ou não, um determinado neurônio
 - ▶ Resultado = 1: Ativar
 - Resultado = 0: Não Ativar

Exemplos de Funções de Ativação

► Função Degrau

$$\varphi(u) = \begin{cases} 1 & \text{se } u \ge 0 \\ 0 & \text{se } u < 0 \end{cases} \tag{1}$$

Figura: Gráfico da função Degrau

Fonte: Adaptado de (SILVA; SPATTI; FLAUZINO, 2010).

Exemplos de Funções de Ativação (Continuação

► Função Sigmoidal

$$\varphi(u) = 1 + \frac{1}{1 + e^{-\beta \cdot u}} \tag{2}$$

onde β é uma constante real.

Figura: Gráfico da função Sigmoidal

Fonte: Adaptado de (SILVA: SPATTI: FLAUZINO, 2010).

Roteiro

Introdução

Revisão Bibliográfica

Metodologia

Resultados

Referências

Motivação

- Mudanças climáticas no Planeta ao longo dos anos
 - Possui Ciclos recorrentes
 - Possibilita conhecer temperaturas do passado
 - Possibilita predizer temperaturas do futuro
- Foraminíferos são excelentes indicadores paleoclimáticos
- Redes Neurais Artificiais são excelentes ferramentas para predições

Seleção dos Atributos de Entrada

- Upload de um arquivo contendo a densidade de foraminíferos encontrados
 - ▶ .xlsx
 - .CSV
- Definição das variáveis de entrada e da classe pelo usuário

Ferramentas Utilizadas

- Linguagem R
 - Pacote neuralnet
 - ▶ Permite treinar redes neurais de forma flexível
 - Pacote Shiny
 - Permite a criação de aplicações web
 - Lado do usuário (user side)
 - Lado do servidor (server side)

Roteiro

Introdução

Revisão Bibliográfica

Metodologia

Resultados

Referências

O que já existe

- Campo para upload do arquivo
- Exibição do dataset
- Botão para criar a Rede Neural
- Exibição das predições feitas pela Rede
- Exibição gráfica da Rede criada
- Estatísticas da Rede
- Possibilidade de download dos resultados obtidos

O que ainda precisa ser feito

- Definir conteúdos que faltam na aba 'Ájuda'
- Aperfeiçoar os pesos dos atributos
 - Melhora a precisão da Rede Neural
- Melhorar o layout
- Incluir mais estatísticas e gráficos
- Corrigir defeitos

Capturas de Tela da Aplicação

Figura: Upload e exibição dos dados e seleção dos atributos de entrada.

Capturas de Tela da Aplicação (Continuação)

Figura: Visualização da rede neural criada pela aplicação web.

Fonte: Captura de tela realizada pela autora no dia 15 de maio de 2019.

Capturas de Tela da Aplicação (Continuação)

Figura: Estatísticas da rede neural criada e download dos resultados.

Download:

Fonte: Captura de tela realizada pela autora no dia 15 de maio de 2019.

Roteiro

Referências

Referências

Marinara Rübenich Fumagalli

- ARARIPE, R. V. C. d. et al. Caracterização da fauna de foraminíferos bentônicos da plataformacontinental de Itamaracá, PE Brasil. Estudos Geológicos, Laboratório de Paleontologia doDepartamento de Geologia, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, v. 26, n. 2, p. 91–107, 2016.
- BJÖRN, A. M.; NORDLUND, U. Application of artificial neurla networks to paleoceano-graphic data. Palaeogeography, palaeoclimatology, papaleoecology, Elsevier Science B. V.,v. 136, n. 1-4, p. 359–373, 1997.
- CAMPOS, E. J. D. O papel do oceano nas mudanças climáticas globais. Revista USP, n. 103,p. 55–66, 2014.
- CARVALHO, A. C. P. de L. F.; BRAGA, A. de P.; LUDERMIR, T. B. Fundamentos de redesneurais artificiais. Rio de Janeiro: Imprinta Gráfica e Editora. 1998. 246 p.
- CARVALHO, A. C. P. de L. F.; BRAGA, A. de P.; LUDERMIR, T. B. Redes neurais artificiais: teorias e aplicações. 2. ed., 1ª reimpressão. ed. Rio de Janeiro:Livros Técnicos e Científicos Editora, 2012. 226 p.
- CERENTINI, A.Identificação do glaucoma em imagens do fundo olho utilizando aprendi-zagem profunda. 2018. 84 f. Dissertação (Mestrado em Ciência da Computação) — Universi-dade Federal de Santa Maria, Santa Maria. 2018.
- CUSHMAN, J. A.Foraminifera: their classification and economic use. 4. ed. Cambridge: Harvard University Printing Office, 1948. 605 p.
- EEROLA, T. T. Mudanças climáticas globais: passado, presente e futuro. Fórum de ecologia. Instituto de Ecologia Política, Universidade do Estado de Santa Catarina., 2003.
- FACELI, K. et al.Inteligência Artificial: uma abordagem de aprendizado de máquina. Riode Janeiro: Livros Técnicos e Científicos Editora, 2011. 378 p.
- FARIA, G. R. de.Biodiversidade de foraminíferos bentônicos e planctônicos da plataformacontinental da região de Cabo Frio RJ, Brasil. 2011. 74 f. Monografia (Monografia) Curso de Bacharelado em Ciências Biológicas. Universidade Federal Fluminense. Rio de Janeiro. 2011.

Referências

Referências (Continuação)

Marinara Rübenich Fumagalli

- FRITSCH, S.; GUENTHER, F.; GUENTHER, M. F. Package 'neuralnet'. Training of NeuralNetworks, 2019.
- GURNEY, K.An introduction to Neural Networks. Sound Parkway: CRC Press, 1997. 232 p.
- HAYKIN, S. S.Redes Neurais: princípios e práticas. 2. ed., 1^a reimpressão. ed. Porto Alegre:Artmed Editora, 2001, 900 p. Tradução de Paulo M. Engel.
- HAYWARD. B.W.: LE COZE, F.; GROSS, O.World Foraminifera Database. World Registerof Marine Species (WoRMS), 2019. Acesso em 30 abr. 2019. Disponível em: ihttp://www.marinespecies.org/foraminifera/;.
- HESEMANN, M.; OTTWAY, B.; LEGOINHA, P. The foraminifera.eu project. a paleoinforma-tics bridge between science and community.Comunicações Geológicas, Laboratório Nacionalde Energia e Geologia, v. 101, n. 1 (SI), p. 447-450, 2014.
- KOVÁCS. Z. L. O cérebro e sua mente: uma introdução à Neurociência Computacional.São Paulo: Livraria Triângulo Editora, 1997, 214 p.
- KOVÁCS, Z. L. Redes Neurais Artificiais fundamentos e aplicações: um texto básico. 4. ed. SãoPaulo: Editora Livraria da Física, 2006. 174 p.
- LOESCHE, C.: SARI, S. T.Redes Neurais Artificiais: fundamenos e modelos. Blumenau:Editora da FURB. 1996. 166 p.
- MANKTELOW, M. History of taxonomy.Lecture from Dept. of Systematic Biology, Upp-sala University, v. 29. 2010.
- NUNES, F. C.; BOAS, G. d. S. V.; SILVA, E. F. da. Mudanças climáticas e seus reflexos napaisagem do quaternário: primeiras reflexões.Embrapa Solos-Documentos (INFOTECA-E).Rio de Janeiro: Embrapa Solos, 2012., 2012.
- Painel Brasileiro de Mudancas Climáticas. Informações paleoclimáticas brasileiras. In: Base Científica das Mudanças Climáticas. Rio de Janeiro: PMBC, 2014. cap. 4, p. 130.
- PEREIRA, A. G.Aplicação de evolução estrutural e paramétrica de redes neurais dinâmicas na melhoria de desempenho de métodos de assimilação de dados. 2011, 58 f. Mono-grafia (Trabalho de Conclusão de Curso) — Curso de Graduação em Ciência da Computação Universidade Federal de Santa Maria, Santa Maria, 2011.

Referências (Continuação)

- PETRÓ, S. M. Guia para classificação de foraminíferos planctônicos recentes. Porto Alegre:IGEO/UFRGS, 2009. 218 p.
- PETRÓ, S. M. Evolução paleoceanográfica e estratigrafia isotópica com foraminíferosplanctônicos no quaternário tardio da Bacia de Campos. 2013. 60 f. Dissertação (Mestradoem Geociências) — Universidade Federal do Rio Grande do Sul, Porto Alegre, 2013.
- PETRÓ, S. M. Introdução ao estudo dos foraminíferos. Porto Alegre: IGEO/UFRGS, 2018. 218 p.
- PETRÓ, S. M.; PIVEL M. A. G.; COIMBRA, J. C.Foraminíferos planctônicos do Quaternário do Atlântico Sul: elaboração de um banco de dados fotográfico, taxonômico, bioestratigráfico e ecológico. Porto Alegre: Laboratório de Microfósseis Calcários, 2018. Acesso em 09 abr. 2019. Disponível em: jhttps://www.ufrgs.br/microfosseis/microfosseis/foraminíferos/¿.
- RUGGIERO, M. A. et al. Correction: A higher level classification of all living organisms. Plosone, Public Library of Science, v. 10, n. 6, p. e0130114, 2015.
- SAAD, C. S. Aplicação de um modelo de redes neurais à programação da produção. Boletim Técnico da Escola Politécnica da USP, Departamento de Engenharia da Produção, BT/048, v. 3, n. 5, p. 1–24, 1998.
- SILVA, I. N. da; SPATTI, D. H.; FLAUZINO, R. A. Redes Neurais Artificiais: para engenharia e ciências aplicadas. São Paulo: Artliber Editora, 2010. 399 p.
- TAFNER, M. A.; XEREZ, M. de; FILHO, I. W. R. Redes Neurais Artificiais: introdução eprincípios de neurocomputação. Blumenau: Editora FURB e Editora Eko, 1995. 199 p.
- UNIVERSIDADE DE SÃO PAULO.Continuidade. São Paulo: Instituto de Matemática e Es-tatística, 2000. Acesso em 13 mai. 2019. Disponível em: ¡http://ecalculo.if.usp.br/derivadas/popups/continuidade.htm¿.
- UNIVERSITY COLLEGE LONDON. Foraminifera. Gower Street: Postgraduate Unit of Mi-cropalaeontology, Department of Earth Sciences, 2002. Acesso em 25 abr. 2019. Disponívelem: ¡https://www.ucl.ac.uk/GeolSci/micropal/foram.html¿.
- ZUCON, M. H. et al. Microfósseis. In:.Paleontologia Geral. São Cristovão: Universidade Federal de Sergipe / CESAD, 2011. p. 55–67.
- ZUUR, A. F.; IENO, E. N.; MEESTERS, E. H. W. G.A beginner's guide to R. New York: Springer Science+Business Media, 2009. 218 p.

Aplicação de redes neurais artificiais para predição de paleotemperaturas com base em amostras de foraminíferos

Marinara Rübenich Fumagalli¹ Orientador: Joaquim Vinicius Carvalho Assunção²

> ¹Curso de Sistemas de Informação ²Departamento de Computação Aplicada Universidade Federal de Santa Maria

> > 22 de maio de 2019

