m3pm16l19.tex

Lecture 19. 26.2.20123

3. Analytic continuation of ζ .

In Euler's summation formula (I.9), take $f(x) = 1/x^s$. Then

$$\sum_{n=1}^{\infty} f(x) = \sum_{1}^{\infty} 1/n^{s} = \zeta(s),$$

$$\int_{1}^{\infty} f(x)dx = \int_{1}^{\infty} dx/x^{s} = 1/(s-1) \qquad (Re \ s > 1),$$

and I.9 gives

$$\zeta(s) = \frac{1}{s-1} + 1 - s \int_{1}^{\infty} \frac{x - [x]}{x^{s+1}} dx. \tag{*}$$

As $0 \le x - [x] < 1$, the Dirichlet integral (see II.1)

$$\int_{1}^{\infty} \frac{x - [x]}{x^{s+1}} dx$$

converges, to I(s) say, for $s = \sigma + it$, $\sigma > 0$, and $|I(s)| \le 1/\sigma$. As in II.1, I(.) is holomorphic, and

$$I'(s) = -\int_1^\infty \frac{(x - [x])\log x}{r^{s+1}} dx.$$

Using (*) to extend $\zeta(s)$ from $Re\ s > 1$ to $Re\ s > 0$:

Theorem. The function $\zeta(s)$ defined by (*) is holomorphic in $Re\ s > 0$ except for a simple pole of residue 1 at 1:

$$\zeta(s) = \frac{1}{s-1} + 1 + r_1(s), \qquad |r_1(s)| \le |s|/\sigma.$$

$$\zeta'(s) = -\frac{1}{(s-1)^2} - \int_1^\infty \frac{x - [x]}{x^{s+1}} dx + s \int_1^\infty \frac{(x - [x]) \log x}{x^{s+1}} dx.$$

Cor.

$$\zeta(s) = \frac{1}{s-1} + 1 + r_1^*(s), \quad |r_1(s)| = -s \int_1^\infty \frac{(x - [x] - \frac{1}{2})}{x^{s+1}} dx, \qquad |r_1^*(s)| \le |s|/(2\sigma).$$

Proof. Replace x - [x] by $x - [x] - \frac{1}{2}$ (or use version (ii) of Euler's summation formula, I.9). //

The integral here converges for $Re \ s > -1$, so the Cor. can be used to continue ζ analytically to $Re \ s > -1$. Repeated integration by parts can be used to continue analytically further to $Re \ s > -2, -3, \ldots, -n, \ldots$, and so to the whole complex plane. This involves the *Euler-Maclaurin sum formula*. See e.g. G. H. HARDY, *Divergent Series*, OUP, 1949, §13.10 Th. 245.

A better way to continue ζ is via the functional equation (III.10)

$$\zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \sin \frac{1}{2} \pi s \ \zeta(1-s)$$
 (FE)

(Riemann, 1859) – but we shall not need this to prove PNT.

Cor.

$$\zeta(s) - \frac{1}{s-1} \to \gamma \qquad (s \to 1).$$

Proof. By (*),

$$\zeta(s) - \frac{1}{s-1} \to 1 - \int_1^\infty \frac{x - [x]}{x^2} dx \qquad (s \to 1)$$
$$= \gamma \qquad \text{(by I.9)}. \tag{} //$$

So ζ can be expanded about s=1:

$$\zeta(s) = \frac{1}{s-1} + \gamma + \sum_{n=1}^{\infty} c_n (s-1)^n; \qquad \zeta'(s) = -\frac{1}{(s-1)^2} + c_1 \sum_{n=1}^{\infty} n c_n (s-1)^{n-1}.$$

Also $\zeta(s) = g(s)/(s-1)$, g holomorphic (actually, entire). So

$$\frac{1}{\zeta(s)} = \frac{s-1}{g(s)}, \qquad \zeta'(s) = \frac{g'(s)}{s-1} - \frac{g(s)}{(s-1)^2},$$
$$\frac{\zeta'(s)}{\zeta(s)} = \frac{g'(s)}{g(s)} - \frac{1}{s-1} = -\frac{1}{s-1} + a_0 + a_1(s-1) + \dots, \text{say}.$$

Cor.

$$\frac{\zeta'(s)}{\zeta(s)} = -\frac{1}{s-1} + \gamma + a_1(s-1) + \dots$$

Proof. $(\zeta'/\zeta).\zeta = \zeta'$. Multiply up and equate coefficients of 1/(s-1). This gives $-\gamma + a_0 = 0$. So $a_0 = \gamma$. //