Отчёт по лабораторной работе

Лабораторная работа №4

Серегин Денис Алексеевич

Содержание

Задание)
			6
Теор	еоретическое введение		7
Выполнение лабораторной работы			8
4.1	Выпо.	лнение в Julia	8
	4.1.1	Колебания гармонического осциллятора без затуханий и без	
		действий внешней силы	8
	4.1.2	Полученные графики	10
	4.1.3	<u> </u>	
			11
	4.1.4	Полученный графики	11
	4.1.5	Колебания гармонического осциллятора с затуханием и под	
		действием внешней силы	12
	4.1.6	Полученный графики	12
4.2	Выпо.	лнение в Openmodelica	13
	4.2.1		
			13
			15
	4.2.3	Колебания гармонического осциллятора с затуханием и без	
			16
			16
	4.2.5		
			17
	4.2.6	Полученные графики	18
Выв	оды		20
Список литературы			
	Зада Теор Вып 4.1	Задание Теоретичес Выполнени 4.1 Выполнени 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 Выводы	Теоретическое введение Выполнение лабораторной работы 4.1 Выполнение в Julia

Список иллюстраций

4.1	Графики решений и фазового портрета	1
		12
		13
4.4	Листинг программы	14
4.5	Настройки симуляции	15
4.6	График решений	15
4.7	График фазового портрета	15
4.8	Листинг программы	16
4.9	График решений	17
4.10	График фазового портрета	17
4.11	Листинг программы	18
4.12	График решений	18
4.13	График фазового портрета	19

Список таблиц

1 Цель работы

При помощи Julia и Openmodelica построить фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев.

2 Задание

Вариант №6

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев

1. Колебания гармонического осциллятора без затуханий и без действий внешней силы:

$$\ddot{x} + 8x = 0$$

2. Колебания гармонического осциллятора с затуханием и без действий внешней силы:

$$\ddot{x} + 4\dot{x} + 3x = 0$$

3. Колебания гармонического осциллятора с затуханием и под действием внешней силы:

$$\ddot{x} + 3\dot{x} + 8x = \sin(\frac{t}{2})$$

На интервале $t \in [0;45]$ с шагом 0.05 и начальными условиями: $x_0 = -1, y_0 = 0$

3 Теоретическое введение

В лабораторной работе исследуется уравнение свободных колебаний гармонического осциллятора, которое имеет следующий вид:

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = 0$$

где x – переменная, описывающая состояние системы (смещение грузика, заряд конденсатора и т.д.), γ – параметр, характеризующий потери энергии (трение в механической системе, сопротивление в контуре), ω_0 – собственная частота колебаний, t – время.

$$\ddot{x} = \frac{\partial^2 x}{\partial t^2}, \dot{x} = \frac{\partial x}{\partial t}$$

Подробнее в [1]

4 Выполнение лабораторной работы

4.1 Выполнение в Julia

4.1.1 Колебания гармонического осциллятора без затуханий и без действий внешней силы

На языке Julia я описал систему дифференциальных уравнений, по которой затем построил график решений и график фазового портрета для каждого из трёх случаев.

```
begin
```

```
import Pkg
Pkg.activate()
using DifferentialEquations
using LaTeXStrings
import Plots
end

function F!(du, u, p, t)
du[1] = u[2]
du[2] = -9u[1]
end
```

```
begin
    u_0 = [-1.0, 0.0]
    T = (0.0, 45.0)
    prob = ODEProblem(F!, u_0, T)
end
sol = solve(prob, saveat=0.1)
begin
    Time = sol.t
    const X = Float64[]
    const Y = Float64[]
    for u in sol.u
        x, y = u
        push!(X, x)
        push!(Y, y)
    end
    X, Y
end
begin
    fig = Plots.plot(
        layout=(1,2),
        dpi=150,
        grid=:xy,
        gridcolor=:black,
        gridwidth=1,
        background_color=:antiquewhite,
        size=(800, 400),
        plot_title="Графики",
```

```
)
Plots.plot!(
    fig[1],
    Time,
    [X Y],
    xlabel=L"$t$",
    ylabel=L"$x(t)$, $y(t)$",
    color=[ :red :blue ],
    label=[L"$x(t)$" L"$y(t)$"]
)
Plots.plot!(
    fig[2],
    Χ,
    Υ,
    color=:green,
    xlabel=L"$x(t)$",
    ylabel=L"$y(t)$",
    label="Фазовый портер"
)
```

4.1.2 Полученные графики

end

В результате работы программы получились следующие графики. По фазовому портрету можно заметить, что система не теряет энергию

(рис. 4.1).

Рис. 4.1: Графики решений и фазового портрета

4.1.3 Колебания гармонического осциллятора с затуханием и без действий внешней силы

Для создания этой модели, изменим систему уравнений

4.1.4 Полученный графики

В результате получаем два графика (рис. 4.2).

Рис. 4.2: Графики решений и фазового портрета

4.1.5 Колебания гармонического осциллятора с затуханием и под действием внешней силы

Для создания этой модели, изменим систему уравнений

4.1.6 Полученный графики

В результате получаем два графика (рис. 4.3).

Рис. 4.3: Графики решений и фазового портрета

4.2 Выполнение в Openmodelica

4.2.1 Колебания гармонического осциллятора без затуханий и без действий внешней силы

Написал код для моделей в программе OMEdit. (рис. 4.4)

```
1  model lab4
2  Real x;
3  Real y;
4  initial equation
5  x = -1
6  y = 0
7  equation
8  der(x) = y;
9  der(y) = -8*x
10  end lab4;
```

Рис. 4.4: Листинг программы

Далее запустил симуляцию со следующими настройками. (рис. 4.5)

Рис. 4.5: Настройки симуляции

4.2.2 Полученные графики

После симуляции получаем два графика. (рис. 4.7) (рис. ??)

Рис. 4.6: График решений

Рис. 4.7: График фазового портрета

4.2.3 Колебания гармонического осциллятора с затуханием и без действий внешней силы

Написал код для моделей в программе OMEdit. (рис. 4.8)

```
1  model lab4
2  Real x;
3  Real y;
4  initial equation
5  x = -1
6  y = 0
7  equation
8  der(x) = y;
9  der(y) = -4*y - 3*x;
10  end lab4;
```

Рис. 4.8: Листинг программы

Далее запустил симуляцию с предыдущими настройками

4.2.4 Полученные графики

После симуляции получаем два графика. (рис. 4.9) (рис. 4.10)

Рис. 4.9: График решений

Рис. 4.10: График фазового портрета

4.2.5 Колебания гармонического осциллятора с затуханием и под воздействием внешней силы

Написал код для моделей в программе OMEdit. (рис. 4.11)

```
model lab4
 1
    Real x;
 2
 3
    Real y;
    Real t = time;
 4
    initial equation
 5
    x = -1
 6
    y = 0
 7
    equation
 8
   der(x) = y;
    der(y) = -3*y - 6*x + sin(t/2);
10
    end lab4;
11
```

Рис. 4.11: Листинг программы

Далее запустил симуляцию с предыдущими настройками

4.2.6 Полученные графики

После симуляции получаем два графика. (рис. 4.12) (рис. 4.13)

Рис. 4.12: График решений

Рис. 4.13: График фазового портрета

5 Выводы

В результате работы мне удалось построить графики решений и фазовых портретов для всех трёх случаев в обоих средах.

Список литературы