Chapter 11

TRIGONOMETRIC FUNCTIONS & THEIR GRAPHS

DOMAIN AND RNAGE OF TRIGONOMETRIC FUNCTION

Function	Domain	Range
$y = \sin x$	R	$-1 \le y \le 1$
$y = \cos x$	R	$-1 \le y \le 1$
$y = \tan x$	$\forall x \in \Re, \text{ but } x \neq (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$	R
$y = \cot x$	$\forall \ x \in \Re, \ \text{but} \ \ x \neq n \ \pi, \ \ n \in z$	\Re
$y = \sec x$	$\forall x \in \Re, \text{ but } x \neq (2n+1) \pi/2, n \in Z$	$y \ge 1$ or $y \le -1$
$y = \csc x$	$\forall \ x \in \Re, \ but \ \ x \neq n\pi, \ \ n \in Z$	$y \ge 1$ or $y \le -1$

Period

Period of a trigonometric function is the smallest +ve number which, when added to the original circular measure of the angle, given the same value of the function.

Formula to Find Period

$$f(x) = f(x + P)$$

Standard Periods

$$\sin x = 2 \pi$$

$$\cos x = 2 \pi$$

$$\sec x = 2 \pi$$

$$\csc x = 2 \pi$$

$$\csc x = 2 \pi$$

EXERCISE 11.1

Find the periods of the following functions:

Q.1 sin 3 x (Lahore Board 2005)

Solution:

Given function is sin 3 x

Since period of sin is 2π

Therefore f(x) = f(x + P)

 $\sin 3 x = \sin (3x + 2\pi)$

$$\sin 3 x = \sin 3 \left(x + \frac{2 \pi}{3} \right)$$

Thus period of $\sin 3 x$ is $\frac{2 \pi}{3}$

$Q.2 \cos 2 x$

Solution:

Given function is cos 2 x

Since period of cos is 2π

Therefore f(x) = f(x + P)

 $\cos 2 x = \cos (2x + 2\pi)$

 $\cos 2x = \cos 2 (x + \pi)$

Thus period of $\cos 2x$ is π .

Q.3 tan 4 x (Gujranwala Board 2007)

Solution:

Given function is tan 4 x

Since period of $\tan x$ is π

Therefore f(x) = f(x + P)

 $tan 4 x = tan (4x + \pi)$

$$\tan 4 x = \tan 4 \left(x + \frac{\pi}{4} \right)$$

Thus period of $\tan 4 x$ is $\frac{\pi}{4}$.

Q.4 $\cot \frac{x}{2}$

Solution:

Given function is $\cot \frac{x}{2}$

Since period of cot is π

Therefore f(x) = f(x + P)

$$\cot \frac{x}{2} = \cot \left(\frac{x}{2} + \pi \right)$$

$$\cot \frac{x}{2} = \cot \frac{1}{2} (x + 2 \pi)$$

Thus period of $\cot \frac{x}{2}$ is 2π

Q.5 $\sin \frac{x}{3}$ (Lahore Board 2006)

Solution:

Given function is $\sin \frac{x}{3}$

Since period of sin is 2π

Therefore f(x) = f(x + P)

$$\sin\frac{x}{3} = \sin\left(\frac{x}{3} + 2\pi\right)$$

$$\sin\frac{x}{3} = \sin\frac{1}{3}(x + 6\pi)$$

Thus period of $\sin \frac{x}{3}$ is 6π

Q.6 $\csc \frac{x}{4}$

Solution:

Given function is $\csc \frac{x}{4}$

Since period of cosec is 2π

Therefore f(x) = f(x + P)

$$\csc \frac{x}{4} = \csc \left(\frac{x}{4} + 2 \pi \right)$$

$$\csc\frac{x}{4} = \csc\frac{1}{4}(x + 8\pi)$$

Thus period of $\csc \frac{x}{4}$ is 8π

Q.7 $\sin \frac{x}{5}$ (Lahore Board 2010)

Solution:

Given function is $\sin \frac{x}{5}$

Since period of $\sin x$ is 2π

Therefore f(x) = f(x + P)

$$\sin\frac{x}{5} = \sin\left(\frac{x}{5} + 2\pi\right)$$

$$\sin\frac{x}{5} = \sin\frac{1}{5}(x + 10\pi)$$

Thus period of $\,\sin\frac{x}{5}\,$ is $\,10\,\pi$

Q.8 $\cos \frac{x}{6}$

Solution:

Given function is $\cos \frac{x}{6}$

Since period of $\cos x$ is 2π

$$f(x) = f(x + P)$$

Therefore
$$\cos \frac{x}{6} = \cos \left(\frac{x}{6} + 2 \pi \right) = \cos \frac{1}{6} (x + 12\pi)$$

Thus period of $\cos \frac{x}{6}$ is 12π

Q.9 $\tan \frac{x}{7}$

Solution:

Given function is $\tan \frac{x}{7}$

Since period of $\tan x$ is π

$$f(x) = f(x + P)$$

Therefore
$$\tan \frac{x}{7} = \tan \left(\frac{x}{7} + \pi \right)$$

$$\tan\frac{x}{7} = \tan\frac{1}{7}(x + 7\pi)$$

Thus period of $\tan \frac{x}{7}$ is 7π

Q.10 cot 8 x

Solution:

Given function is cot 8 x

Since period of $\cot x$ is π

$$f(x) = f(x + P)$$

Therefore $\cot 8 x = \cot (8x + \pi)$

$$\cot 8 x = \cot 8 \left(x + \frac{\pi}{8} \right)$$

Thus period of $\cot 8 x$ is $\frac{\pi}{8}$

Q.11 sec 9 x

Solution:

Given function is sec 9 x

Since period of sec x is 2π

$$f(x) = f(x + P)$$

Therefore $\sec 9 x = \sec (9x + 2\pi)$

$$\sec 9 x = \sec 9 \left(x + \frac{2 \pi}{9} \right)$$

Thus period of $\sec 9 x$ is $\frac{2 \pi}{9}$

Q.12 cosec 10 x

Solution:

Given function is cosec 10 x

Since period of cosec x is 2π

$$f(x) = f(x + P)$$

Therefore $\csc 10 x = \csc (10x + 2\pi)$

$$cosec 10 x = cosec 10 \left(x + \frac{2 \pi}{10} \right)$$

Thus period of cosec 10 x is $\frac{\pi}{5}$

Q.13 3 sin x

Solution:

Given function is 3 sin x

Since period of $\sin x$ is 2π

$$f(x) = f(x + P)$$

Therefore $3 \sin x = 3 \sin (x + 2\pi)$

Thus period of $3 \sin x$ is 2π .

Q.14 2 cos x

Solution:

Given function is 2 cos x

Since period of $\cos x$ is 2π

$$f(x) = f(x + P)$$

Therefore $2 \cos x = 2 \cos (x + 2\pi)$

Thus period of $2 \cos x$ is 2π

Q.15 $3 \cos \frac{x}{5}$ (Lahore Board 2008)

Solution:

Given function is $3 \cos \frac{x}{5}$

Since period of $\cos x$ is 2π

$$f(x) = f(x + P)$$

Therefore
$$3\cos\frac{x}{5} = 3\cos\left(\frac{x}{5} + 2\pi\right)$$

$$3\cos\frac{x}{5} = 3\cos\frac{1}{5}(x + 10\pi)$$

Thus period of $3\cos\frac{x}{5}$ is 10π .