

Exercises - Section 4: Lecture 12 – Creating Subscripted Variables – Solutions - Part 3

For each of the following descriptions, create the necessary notation and Python code for the data and/or variables.

DESCRIPTION	MATH	GUROBIPY
1. The height of each person	h_i for each person i	P = 100 # Number of
(data)		people
	NOTE: Of course, you can	h = [get_height(p) for p
	choose whatever letter you	in range(P)]
	want for the data and the	
	subscript. Here, I chose h for	NOTE: The function
	height, but you could've used	get_height() is assumed to
	a (as the first letter of the	have been defined elsewhere in your
	alphabet) or some other	Python code. Similar assumptions
	letter; similarly, I chose i to be	are made in the other answers
	the subscript for people, but	below.
	you could've used p for	
	"people", or any other letter.	
	This note applies for every	
	other exercise as well.	
2. The weight of each person	w_i	w = [get_weight(p) for p
(data)		in range(P)]
3. The height and weight of	h_i , w_i for each person i	h = [get_height(p) for p
each person (data)		in range(P)]
	or	w = [get_weight(p) for p
		in range(P)]
	a_{ij} where i is the person and	
	j is the attribute number (for	
	example, j=1 is height and	
	j=2 is weight).	
	NOTE: The second version is	
	easier for quickly writing	
	Python code to read a matrix	
	of data, but it's harder to	
	keep track of which attribute	
	number means which thing.	
4. The height of each person	h_{it} for each person i and each	h = { (p, get_age(p)):
at each age (ages 1, 2, 3,)	age t	get_height(p) for p in
(data)		range(P)}

	Here, the subscripts are i for	
	the person and t for the age	
	(time) of the measurement.	
5. The distance between	d_{ij} for each pair of cities i and	$d = \{(i,j):$
every pair of the largest 50	j	<pre>get_distance(i,j) for i</pre>
cities in the United States		in cities for j in cities
(data)	NOTE: Notice that because	if j!=i}
(data)		
	distance is symmetric, the	NOTE: The phrase if j!=i
	distance from city i to city j is	means that no data is recorded from
	the same as the distance from	a city to itself (e.g, the distance from
	city j to city i , so $d_{ij} = d_{ji}$.	New York to New York). If your data
		1
		included values of 0 for those
		distances, then you could remove
		the "if" phrase.
6. Cost per share of each	c_i for each investment i	c=[get_investment(i) for
investment (data)		i in investments]
7. Amount of money invested	a_i for each investment i	a=[get amount(i) for i in
in each investment (data)	·	investments]
8. Amount of money invested	x_i for each investment i	m = gp.Model()
in each investment (variable)		x=m.addVars(investments,
in each investment (variable)	NOTE: The answers to this	lb=0, name="x")
	question and the previous	
	question could be the same; I	
	used different letters only	
	because of the tradition of	
	starting data with $lpha$ and	
	variables with x . The	
	practical difference between	
	the two is that when the	
	amount of money invested is	
	data, it's something that the	
	optimization model can't	
	suggest changes to – the	
	value just is what it is	
	(perhaps that money was	
	invested in the past) – but	
	when it's a variable, the	
	optimization model can	
	suggest what value the	
	variable should have (perhaps	
	as a suggestion for how to	
	invest money going forward).	
9. Number of sweatshirts	x_s for each size s	x = m.addVars(size, lb=0,
purchased (variable) if size is	78 101 Cuch 312C 3	ub=len(size),
	Hara s is the subscript for	vtype=GRB.INTEGER,
the only important attribute	Here, s is the subscript for	name="x")
	the size, with different values	

10. Number of sweatshirts purchased of each color (variable)	of s for small, medium, large, etc. $x_c ext{ for each color } c ext{ } $	NOTE: GRB. INTEGER means that the variable is required to take an integer value (it's not possible to purchase a fraction of a sweatshirt). x = m.addVars (colors, lb=0, ub=len(colors), vtype=GRB.INTEGER,
(variable)	the color, with different values of c for green, red, blue, etc.	name="x")
11. Number of sweatshirts purchased of each color and size (variable), if both attributes are important (for example,	x_{sc} for each size s and each color c Now, there are two subscripts, one for size and one for color, so x_{sc} is the number of sweatshirts of size s and color c purchased.	<pre>k=[(s,c) for s in size for c in color] x=m.addVars(k, lb=0, ub=len(colors)*len(size), vtype=GRB.INTEGER, name="x")</pre>
12. An airline wants to hire flight attendants who live in each city. The airline will then assign each flight attendant to a daily schedule	In the following solution, the subscript i represents the city. Data: m_i for all cities i	<pre>m = [get_m(i) for i in cities] x = m.addVars(cities, name="x")</pre>
that allows the flight attendant to return home each evening. Specify notation and Python code for	Variables: x_i for all cities i	<pre>m.addConstrs((x[i] >= m[i] for i in cities), name="lb")</pre>
(1) data showing the minimum number of flight attendants the airline needs	Constraints: $x_i \ge m_i$ for all cities i	NOTE: An alternative way to write the constraint in gurobipy is:
to hire in each city, (2) a variable for the number of flight attendants the airline will hire in each city, and (3) a		<pre>for i in cities: m.addConstr(x[i] >= m[i], name=f"lb{i}")</pre>
constraint to require the airline to hire enough flight attendants in each city.		In this alternative writing, each constraint is added separately.
13. An airline wants to hire flight attendants who prefer to work on each aircraft type (Boeing 747, Airbus A380,	Now, the subscript <i>i</i> represents the aircraft type. Data:	NOTE: Notice that this solution is exactly the same as for #12 except the set of cities is replaced by the set of aircraft types.
etc.). The airline will then assign each flight attendant to a daily schedule that allows the flight attendant to	m_i for all aircraft types i Variables: x_i for all aircraft types i	<pre>m = [get_m(i) for i in aircraft]</pre>

work on the preferred aircraft. Specify notation and Python code for (1) data showing the minimum number of flight attendants the airline needs to hire for each aircraft type, (2) a variable for the number of flight attendants the airline will hire for each aircraft type, and (3) a constraint to require the airline to hire enough flight attendants for each aircraft type.

Constraints:

 $x_i \ge m_i$ for all aircraft types

x = m.addVars(aircraft,
name="x")

m.addConstrs((x[i] >=
m[i] for i in aircraft),
name="lb")

NOTE: An alternative way to write the constraint in gurobipy is:

for i in aircraft:
 m.addConstr(x[i] >=
m[i], name=f"lb{i}")

In this alternative writing, each constraint is added separately.

14. An airline wants to hire flight attendants who live in each city and who prefer to work on each aircraft type that the airline operates in that city. The airline will then assign each flight attendant to a daily schedule that allows the flight attendant to work on the preferred aircraft and return home each evening. Specify notation and Python code for (1) data showing the minimum number of flight attendants the airline needs to hire in each city for each aircraft type, (2) a variable for the number of flight attendants the airline will hire in each city for each aircraft type, and (3) a constraint to require the airline to hire enough flight attendants in each city for each aircraft type.

Now, two subscripts are required. Below, i will represent the city and j will represent the aircraft type (you could use other letters).

Data:

 m_{ij} for all cities i and aircraft types j

Variables:

 x_{ij} for all cities i and aircraft types j

Constraints:

 $x_{ij} \ge m_{ij}$ for all cities i and aircraft types j

NOTE: It's also fine to switch the order of the subscripts and put the subscript for aircraft type first, as long as the change is consistent:

Data:

 m_{ji} for all aircraft types j and cities i

m = {(i,j): get_m(i,j)
for i in cities for j in
aircraft}

x = m.addVars(m,
name="x")

m.addConstrs((x[i,j] >=
m[i,j] for i in cities
for j in aircraft),
name="lb")

or

for i in cities:
 for j in aircraft:
 m.addConstr(x[i,j] >=
m[i,j])

	Variables:	
	x_{ji} for all aircraft types j and	
	cities i	
	Constantinto	
	Constraints:	
	$x_{ji} \ge m_{ji}$ for all aircraft	
15. Cost of hiring a flight	types j and cities i c_i for all cities i	c = [get_c(i) for i in
attendant in each city (data;	ci for all cities t	cities
can be different from city to		
city because the cost of living		
in each city is different)		
16. Cost of hiring a flight	c_{ij} for all cities i and aircraft	$c = \{(i,j): get c(i,j)\}$
attendant who prefers each	types j	for i in cities for j in
aircraft type, in each city	,, ,	aircraft}
17. Total cost of hiring all		S = gp.quicksum(c[i,j] *
flight attendants, assuming	$\sum_{i}\sum_{j}c_{ij}x_{ij}$	x[i,j] for i in cities
cost differs both by aircraft	i = j	for j in aircraft)
type and by home city		
18. Total cost of hiring all	$\sum_{i} c_i x_i$	S = gp.quicksum(c[i] *
flight attendants, if only city	$\frac{\sum_{i}^{i}}{i}$	x[i] for i in cities)
is taken into account for		
hiring and cost	/	
19. Total cost of hiring all		<pre>S = gp.quicksum(c[i] * x[i,j] for i in cities</pre>
flight attendants, if both city and aircraft type are	$\sum_{i} \left(c_{i} \sum_{i} x_{ij} \right)$	for j in aircraft)
important for hiring but cost	, , ,	
depends only on home city	or	or
aspends only on home only	$\sum \sum_{c \in r}$	
	$\sum_{i}\sum_{i}c_{i}x_{ij}$	S = gp.quicksum(c[i] *
	i j	<pre>gp.quicksum(x[i,j] for j in aircraft) for i in</pre>
	NOTE: In either of these two	cities)
	solutions, the variable has	
	two subscripts but the cost	NOTE: In either of these two
	only requires one, because it	solutions, the variable has two
	only depends on the flight	subscripts but the cost only requires
	attendant's home city.	one, because it only depends on the
	Compare with #20, where	flight attendant's home city.
	the cost depends on both city	Compare with #20, where the cost
	and aircraft type.	depends on both city and aircraft
		type.
20. Total cost of hiring all	$\nabla \nabla$	S = gp.quicksum(c[i,j] *
flight attendants, if both city	$\sum \sum c_{ij}x_{ij}$	x[i,j] for i in cities for j in aircraft)
and aircraft type are	i j	LOT) IN ATTOLATO,
important for hiring, and cost		

depends on both city and aircraft type	NOTE: Now there's only one possible solution; because the cost depends on both city and aircraft type (two subscripts), it has to be within the second sum. Compare with #19, where the cost only depends on city.	NOTE: Now there's only one possible solution; because the cost depends on both city and aircraft type (two subscripts), it has to be within the second sum. Compare with #19, where the cost only depends on city, not aircraft type.
	the cost only depends on city, not aircraft type.	type.

In the next set of exercises, think about which parts of the description are relevant, and write the math and gurobipy code including only relevant factors. Different people might have slightly different answers here depending on how you envision the situation; the important thing is to get used to thinking about what features might be relevant, just like one might consider in determining features to use in a data science model.

DESCRIPTION	MATH	GUROBIPY
21. Cost of hiring a flight	c_{ijk} for all cities i and aircraft	$c = \{(i,j,k):$
attendant who prefers each	types j and Spanish abilities k	get_c(i,j,k) for i in
aircraft type and does or		cities for j in
doesn't speak Spanish, in each	NOTE: The new subscript k, for	aircraft_type for k
city (assume all three factors	being Spanish-speaking, will	in Spanish}
are relevant)	either be 0 (no) or 1 (yes), or	
	"N" (no) or "Y" (yes), or	
	something similar; whatever is	
	used, it'll have just two values	
	unless there are more than two	
	categories for which the cost	
	might be different – for	
	example, if the cost for "not at	
	all", "some, but not fluent", and	
	"fluent" can all be different.	
22. Cost of hiring a flight	c_{ij} for all cities i and aircraft	c = {(i,j):
attendant who prefers each	types j	<pre>get_c(i,j) for i in cities for j in</pre>
aircraft type and does or		aircraft}
doesn't speak Spanish, in each	If the last subscript's values	diffially
city, if Spanish-speaking ability	would be irrelevant, there's no	
is not relevant for any costs or	need to include it.	
constraints or decisions in the		
model		
23. Cost of hiring a flight	c_{ij} for all cities i and aircraft	$c = \{(i,j): \\ cot c(i,j): \\ for i in$
attendant who prefers each	types j	<pre>get_c(i,j) for i in cities for j in</pre>
aircraft type, has each hair		aircraft}
color, is each different height,	Assuming that hair color,	
speaks or doesn't speak Ancient	height, Ancient Greek fluency,	

Greek, and does or doesn't have a pet dog, in each city	and dog ownership are irrelevant for this planning question, there's no need to include subscripts for them.	
24. Cost of hiring a flight attendant who prefers each aircraft type, wants to work each different number of hours per week (from 30 to 60), has each hair color, does or doesn't have a pet dog, speaks or doesn't speak Spanish (relevant), in each city	c_{ijhs} for all cities i and aircraft types j and hours h and Spanish abilities s A reasonable assumption is that pets and hair color are not relevant, but the other attributes might be.	<pre>c = {(i,j,h,s): get_c(i,j,h,s) for i in cities for j in aircraft_type for h in hours for s in Spanish}</pre>

NOTES:		

This is an open education course, and we encourage faculty and students to use the exercises and materials included to help meet educational and instructional goals. Gurobi Optimization, LLC ("Gurobi") is the owner of the content (all right, title, and interest) of this course ("Content"). Content is not designed or intended for commercial use or for the sale of courses. Gurobi makes this Content available at no cost for educational and instructional use via faculty and student download and use of Content in courses offered at your institution/organization; provided that such use does not scale or otherwise result in the use of Content for monetary gain including in any other online course. Content is offered as-is and all risk of use resides with you. Gurobi makes no warranties or guarantees of a particular outcome and accepts no liability, direct, consequential, or otherwise, arising from the access to or use of the course and Content contained in it.