Satisfiability Checking 10 Summary I

Prof. Dr. Erika Ábrahám

RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems

WS 22/23

Outline

- 1 Propositional logic, theories, normal forms
- 2 DPLL+CDCL SAT solving
- 3 Eager SMT-solving: Equality logic with uninterpreted functions
 - From UF to EQ: Ackermann's reduction
 - From EQ to SAT: The Sparse method
- Eager SMT solving: Finite-precision bit-vector arithmetic

10 Summary I

- 1 Propositional logic, theories, normal forms
- 2 DPLL+CDCL SAT solving
- 3 Eager SMT-solving: Equality logic with uninterpreted functions
 - From UF to EQ: Ackermann's reduction
 - From EQ to SAT: The Sparse method
- 4 Eager SMT solving: Finite-precision bit-vector arithmetic

Propositional logic: Syntax

Abstract grammar:

$$\varphi := AP \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

with $AP \in AP$.

Syntactic sugar:

```
\begin{array}{cccc}
\bot & := (a \land \neg a) \\
\top & := (a \lor \neg a)
\end{array}

( \varphi_1 \lor \varphi_2 ) := \neg((\neg \varphi_1) \land (\neg \varphi_2))

( \varphi_1 \to \varphi_2 ) := ((\neg \varphi_1) \lor \varphi_2)

( \varphi_1 \leftrightarrow \varphi_2 ) := ((\varphi_1 \to \varphi_2) \land (\varphi_2 \to \varphi_1))

( \varphi_1 \bigoplus \varphi_2 ) := (\varphi_1 \leftrightarrow (\neg \varphi_2))
```

Propositional logic: Semantics

- Structures for predicate logic:
 - Domain: $\mathbb{B} = \{0, 1\}$
 - Interpretation: assignment $\alpha: AP \to \{0,1\}$ Assign: set of all assignments Equivalently: $\alpha \in 2^{AP}$ or $\alpha \in \{0,1\}^{AP}$
- Semantics: $\models \subseteq (Assign \times Formula)$ is defined recursively:

```
\begin{array}{ll} \alpha & \models p & \text{iff } \alpha(p) = \text{true} \\ \alpha & \models \neg \varphi & \text{iff } \alpha \not\models \varphi \\ \alpha & \models \varphi_1 \land \varphi_2 & \text{iff } \alpha & \models \varphi_1 \text{ and } \alpha \models \varphi_2 \end{array}
```

$$\begin{array}{lll} \alpha & \models \varphi_1 \lor \varphi_2 & \text{iff } \alpha & \models \varphi_1 \text{ or } \alpha & \models \varphi_2 \\ \alpha & \models \varphi_1 \to \varphi_2 & \text{iff } \alpha & \models \varphi_1 \text{ implies } \alpha & \models \varphi_2 \\ \alpha & \models \varphi_1 \leftrightarrow \varphi_2 & \text{iff } \alpha & \models \varphi_2 \text{ iff } \alpha & \models \varphi_2 \\ \alpha & \models \varphi_1 \bigoplus \varphi_2 & \text{iff } \alpha & \models \varphi_2 \text{ iff } \alpha & \not\models \varphi_2 \end{array}$$

Logic extensions: Theories

Propositional logic	(v \ / v	۱ ۸ ۱	$(\neg x \lor y)$	١
Propositional logic	$(x \lor y)$	<i>)</i> /	$(\neg x \lor y)$	

Equality
$$(x = y \land y \neq z) \rightarrow (x \neq z)$$

Uninterpreted functions
$$(F(x) = F(y) \land y = z) \rightarrow F(x) = F(z)$$

Linear real/integer arithmetic
$$2x + y > 0 \land x + y \le 0$$

$$2x = 1$$

Real algebra
$$x^2 + 2xy + y^2 < 0$$

Normal forms

Negation Normal Form (NNF) Arbitrarily nested disjunctions and conjunctions over atomic constraints and their negation.

Disjunctive Normal Form (DNF) Disjunction of conjunctions of literals.

 $\bigvee_i \bigwedge_j \ell_{i,j}$

Conjunctive Normal Form (CNF) Conjunction of disjunctions of literals. $\Lambda : V \cap \mathcal{C}$

 $\bigwedge_i \bigvee_j \ell_{i,j}$

Converting to CNF: Tseitin's encoding

Formula:

$$\phi = (a \to (b \land c))$$

Gate encodings:

$$(h_1 \leftrightarrow (a \rightarrow h_2)) \land (h_2 \leftrightarrow (b \land c)) \land (h_1)$$

Each gate encoding has a CNF representation with 3 or 4 clauses.

The parse tree:

10 Summary I

- 1 Propositional logic, theories, normal forms
- 2 DPLL+CDCL SAT solving
- 3 Eager SMT-solving: Equality logic with uninterpreted functions
 - From UF to EQ: Ackermann's reduction
 - From EQ to SAT: The Sparse method
- 4 Eager SMT solving: Finite-precision bit-vector arithmetic

Clause status under partial assignments

■ Given a partial assignment, a clause can be

Satisfied: at least one literal is true

Unsatisfied: all literals are false

 \rightarrow conflict

Unit: one literal is unassigned, the remaining literals are false

→ propagation

Unresolved: all other cases

■ Example: $C = (x_1 \lor x_2 \lor x_3)$

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	С
1	0		satisfied
0	0	0	unsatisfied
0	0		unit
	0		unresolved

The basic DPLL+CDCL SAT algorithm

Implication graph

Conflict resolution

The resolution inference rule for CNF:

$$\frac{\left(\textit{I} \lor \textit{I}_1 \lor \textit{I}_2 \lor ... \lor \textit{I}_n\right) \quad \left(\neg \textit{I} \lor \textit{I}_1' \lor ... \lor \textit{I}_m'\right)}{\left(\textit{I}_1 \lor ... \lor \textit{I}_n \lor \textit{I}_1' \lor ... \lor \textit{I}_m'\right)} \text{ Resolution}$$

Example:

$$\frac{(a \lor b) \quad (\neg a \lor c)}{(b \lor c)}$$

- Resolution is a sound and complete inference system for CNF.
- The input formula is unsatisfiable iff there exists a proof of the empty clause.

Conflict resolution and non-chronological backtracking

Apply resolution up in the implication tree until a UIP (Unique Implication Point) has been reached:

- Backtrack to the second largest decision level in the conflict clause.
- This resolves the conflict and triggers an implication by the new conflict clause.

Decision heuristics - VSIDS

VSIDS(Variable State Independent Decaying Sum)

- 1 Each variable has an activity initialized to 0.
- 2 When resolution gets applied to a clause, the activities of its literals are increased.
- 3 Decision: The unassigned variable with the highest activity is chosen.
- 4 Periodically, all the activities are divided by a constant.

10 Summary I

- 1 Propositional logic, theories, normal forms
- 2 DPLL+CDCL SAT solving
- 3 Eager SMT-solving: Equality logic with uninterpreted functions
 - From UF to EQ: Ackermann's reduction
 - From EQ to SAT: The Sparse method
- 4 Eager SMT solving: Finite-precision bit-vector arithmetic

Equality logic with uninterpreted functions

We extend propositional logic with

- equalities and
- uninterpreted functions (UFs).

Syntax:

- variables x over an arbitrary domain D,
- constants c from the same domain D.
- function symbols F for functions of the type $D^n \to D$, and
- equality as predicate symbol.

```
Terms: t := c \mid x \mid F(t,...,t)
Formulas: \varphi := t = t \mid (\varphi \wedge \varphi) \mid (\neg \varphi)
```

Semantics: straightforward

From UF to EQ: Ackermann's reduction

- Input: φ^{UF}
- Output: Satisfiability-equivalent φ^{EQ} without UF

Algorithm

- 1 Let $\varphi_{flat} := \varphi^{UF}$ and $Inst = \emptyset$.
- **2** While φ contains some UF:

Choose UF-instanz $F(t_1, \ldots, t_n)$ in φ_{flat} with UF-free arguments.

Choose fresh (theory) variable F_i .

Replace each occurrence of $F(t_1, \ldots, t_n)$ in φ_{flat} by F_i .

Add $(F(t_1,\ldots,t_n),F_i)$ to Inst.

- **3** Let $\varphi_{cong} := true$.
- 4 While $Inst \neq \emptyset$:

Choose and remove some $(F(t_1, \ldots, t_n), F_i)$ from *Inst.*

 $\varphi_{cong} := \varphi_{cong} \wedge \bigwedge_{(F(t'_1, \dots, t'_n), F_i) \in Inst} ((\bigwedge_{k=1}^n t_k = t'_k) \to F_i = F_j).$

5 Return $\varphi_{flat} \wedge \varphi_{cong}$.

From EQ to SAT: The Sparse method

- Input: Equality logic formula φ^E
- Output: Satisfiability-equivalent propositional logic formula φ^{EQ}

Algorithm

- **1** Construct φ_{sk} by replacing each equality $t_i = t_j$ in φ^{EQ} by a fresh Boolean variable $e_{i,j}$.
- 2 Construct the non-polar E-graph $G^{E}(\varphi^{EQ})$ for φ^{EQ} .
- 3 Make $G^E(\varphi^{EQ})$ chordal.
- 4 $\varphi_{trans} = true$.
- **5** For each triangle $(e_{i,j}, e_{j,k}, e_{k,i})$ in $G^E(\varphi^{EQ})$:

$$arphi_{ ext{trans}} := arphi_{ ext{trans}} \qquad \wedge \ (e_{i,j} \wedge e_{j,k})
ightarrow e_{k,i} \ \wedge \ (e_{i,j} \wedge e_{i,k})
ightarrow e_{j,k} \ \wedge \ (e_{i,k} \wedge e_{i,k})
ightarrow e_{i,i}$$

6 Return $\varphi_{sk} \wedge \varphi_{trans}$.

10 Summary I

- 1 Propositional logic, theories, normal forms
- 2 DPLL+CDCL SAT solving
- 3 Eager SMT-solving: Equality logic with uninterpreted functions
 - From UF to EQ: Ackermann's reduction
 - From EQ to SAT: The Sparse method
- 4 Eager SMT solving: Finite-precision bit-vector arithmetic

Finite-precision bit-vector arithmetic: Syntax

Abstract grammar:

```
formula ::= formula ∨ formula | ¬formula | atom
atom ::= boolId | term[constant] | term rel term
rel ::= = | <
term ::= constant | theoryId | \sim term |
           term op term | atom?term:term |
           term[constant:constant] | ext(term)
       ::= + | - | · | / |
op
           << | >> | & | | | | 0
```

 $\sim x$: bit-wise negation of x ext(x): sign- or zero-extension of x x << d: left-shift with distance $d \times y$: concatenation of x and y

Finite-precision bit-vector arithmetic: Semantics

First for variables and constants:

Definition (Bit-vector)

A bit-vector x of length ℓ is a function

$$x: \{0, \dots, \ell-1\} \to \{0, 1\}$$
.

Notation: x_i for x(i), and graphically:

$$\begin{bmatrix} x_{\ell-1} & x_{\ell-2} & \dots & x_2 & x_1 & x_0 \end{bmatrix}$$

Binary encoding: $||x_{[\ell]II}|| := \sum_{i=0}^{\ell-1} x_i \cdot 2^i$

Two's complement: $||x_{[\ell],S}|| := -2^{\ell-1} \cdot x_{\ell-1} + \sum_{i=0}^{\ell-2} x_i \cdot 2^i$

Notation: e.g. $x_{[32]S}$

Finite-precision bit-vector arithmetic: Semantics

Arithmetic expressions: e.g.

$$[a_{[\ell]U} +_{[\ell]U} b_{[\ell]U}] = ([a_{[\ell]U}] + [b_{[\ell]U}]) \mod 2^{\ell}$$

Relational operators: e.g.

$$\llbracket a_{[\ell]U} \ < \ b_{[\ell]U} \rrbracket = true \iff \llbracket a_{[\ell]U} \rrbracket \ < \ \llbracket b_{[\ell]U} \rrbracket$$

■ Logical bit-wise operators: using λ -terms, e.g. for bit-wise or:

$$bv_or := \lambda x. \ \lambda y. \ \lambda i \in \{0, \dots, \ell - 1\}. \ x_i \lor y_i$$

Finite-precision bit-vector arithmetic: Propositional encoding

Propositional skeleton + constraints for meaning of sub-expressions

- Arithmetic operators: modulo 2^{ℓ} computations! \sim Boolean circuit model + Tseitin (see next slide)
- Relational operators: exercise.
- Logical bit-wise operators:

$$a\mid_{[\ell]} b \text{ with } \mu(a\mid_{[\ell]} b)_i = c_i \qquad \rightsquigarrow \qquad \bigwedge_{i=0}^{\ell-1} \left(c_i \Leftrightarrow (a_i \vee b_i)\right)$$

Encoding a + b for bits

```
a b i
| | | |
| FA
| o s
```

```
Full adder:

o \equiv (a+b+i) \text{ div } 2 \equiv (a \land b) \lor (a \land i) \lor (b \land i)

s \equiv (a+b+i) \text{ mod } 2 \equiv a \oplus b \oplus i
```

$$o: \quad (a \lor b \lor \neg o) \land (a \lor \neg b \lor i \lor \neg o) \land (a \lor \neg b \lor \neg i \lor o) \land (\neg a \lor b \lor i \lor \neg o) \land (\neg a \lor \neg b \lor \neg i \lor o) \land (\neg a \lor \neg b \lor i \lor \neg s) \land (\neg a \lor \neg b \lor i \lor \neg s) \land (\neg a \lor \neg b \lor \neg i \lor \neg s) \land (\neg a \lor \neg b \lor i \lor \neg s) \land (\neg a \lor \neg b \lor i \lor \neg s) \land (\neg a \lor \neg b \lor \neg$$

Number of clauses: 6 + 8 = 14

Encoding a + b for bit-vectors

Carry chain adder:

Adds 2ℓ variables and 14ℓ clauses.