

Time Series Models & Databases Applied Machine & Deep Learning (190.015)

Univ.-Prof. Dr. Elmar Rueckert

Telefon: +43 3842 402 - 1901

Email: teaching@ai-lab.science

WO AUS FORSCHUNG ZUKUNFT WIRD

Chair of Cyber-Physical-Systems

1st Week:

Legend

	Quizz on ML	Online Quizz using https://tweedback.de
0.00	Course Content Presentation	Using google slides, etc.
	15 min Break	Breaks to recover or to continue programming
	Organisation & Instructions	Using google slides, etc.
	Practical Exercise	Using online tools, our JupyterHub, etc.
	Latest Research	State-of-the-art research

	MON	TUE	WED	THUR	FRI
	02.10.2023	03.10.2023	04.10.2023	05.10.2023	06.10.2023
Topic	Intro to ML Organisation	Neural Networks	Representation Learning	Robot Learning	AML Projects
9 am	,				
:15					
:30 :45					
10 am) i				
:15	Quizz on ML	Quizz on Neural Nets	Introduction to Deep		Quizz on AML
:30 :45	Introduction to ML	Introduction to Multi- Layer-Perceptrons	Representation Learning		Project Topic Presentations
11 am	15 min Break	15 min Break	JupyterHub NB on		Fresentations
:15	Statistics, Model	Handout on Neural	Rep. Learning		Team Ass., Git Repos
:30	Validation, Figures & Evaluations	Networks using playground.tensorflow	30 min Break		& Wiki Instructions
:45	Evaluations	playground.tensornow			AML Summary
12 pm :15	30 min Lunch Break	30 min Lunch Break	Curiosity (MLPs), Imagination (Dreamer)	Quizz on Robotics	
:30	Course Organisation &	Introduction to CNNs	and Information	Introduction to Robot Learning	
:45	Grading		(Empowerment)		
1 pm	15 min Break	15 min Break	Quizz Summary		
:15	Python Programming	JupyterHub NB on MLPs CNNs		15 min Break	
:30 :45	with our JupyterHub		8	Handout on Robot	
2.00	Quizz Summary	Quizz Summary		Learning (Model Learning & RL)	
2 pm :15				15 min Break	
:30				Introduction to Mobile	
:45				Robotics & SLAM	
3 pm				JupyterHub NB on	
:15				Path Planning	
:30 :45				Quizz Summary	
.45					

Outlook of this lecture

- An introduction to Probabilistic Time Series Models
 - Single Time Step Model
 - Multi Time step Model
- Some Applications in Research
- Let's implement Databases in Jupyter Hub

Probabilistic Time-Series Models (L8) Machine Learning (190.012)

Univ.-Prof. Dr. Elmar Rueckert1

¹teaching@ai-lab.science, Montanuniversität Leoben, Austria

June 3, 2022

Chair of Cyber-Physical-Systems

For more details, please have a look at these slides: https://cloud.cps.unileoben.ac.at/index.php/s/YTNm PbgsSbTFdsZ.

Definition of Time Series

Time series are defined as a series of data points indexed or listed in time order.

Slides on Time Series by Prof. Rueckert.

Time Series Data

Definition: A trajectory is a vector of time series data of any type (e.g., joint angles, forces, Cartesian coordinates, or inhomogeneous mixtures)!

Consider *D* as vector with $D = \{y_1, y_2, ..., y_T\}$ representing 1-dimensional time series data with the time indices t=1...T!

Time Series Data

Attention: Individual dimensions (e.g. the x and y Cartesian coord.) are organized in a sequential order where first the complete dimension one is stored!

For multiple trajectories (e.g., recordings), we define D as vector with $D = \{y_{1,1}, y_{2,1}, ..., y_{T,1}, y_{2,1}, ..., y_{T,n}\}$, where n denotes the number of trajectories!

Single-time step Model

Well that are our simple probabilistic regression models, summarized here!

2 Steps:

Ridge Regression Maximum A-Posteriori
$$m{w} = (m{A}^T m{A} + \lambda m{I})^{-1} m{A}^T m{y}$$
 $m{w} = (m{A}^T m{A} + \sigma^2 \lambda m{I})^{-1} m{A}^T m{y}$

1. Learning p(w) = $N(w|\mu_{w|y}, \Sigma_{w|y})$

$$\mu_{w|y} = \sum_{j=1}^{n} \mathbf{w}_{j}$$
 $\Sigma_{w|y} = \text{cov}([w_{1}, ..., w_{n}])$

2 Steps:

- 1. Learning $p(w) = N(w|\mu_{w|v}, \Sigma_{w|v})$
- 2. Prediction y* = ?

The Marginal distribution is defined as:

$$p(A) = \sum_{b} p(A|B) p(B=b) \dots$$
 for discrete distributions

$$p(a) = \int_b p(a|b) p(b) db \dots$$
 for continuous distributions

$$p(y^*) = \int_w p(y^*|w) p(w) dw = \int_w N(A w, \dots) N(w^*, \Sigma_{w|v}) dw$$

$$p(y^*|x^*, X, w) = \int \mathcal{N}(y^*|\phi(x^*)^T w, \sigma_y^2) \mathcal{N}(w|\mu_{w|y}, \Sigma_{w|y}) dw.$$

Marginal or predictive distribution

Likelihood

prior

Multi-time step Model

For simplicity, we consider only 1-dimensional time series data!

$$D = \{y_{1,1}, y_{2,1}, ..., y_{T,1}, y_{2,1}, ..., y_{T,n}\},\$$

where n denotes the number of trajectories!

The Model (the likelihood):

$$p(y_t|\boldsymbol{w}) = \mathcal{N}(y_t|\boldsymbol{\phi}_t^T\boldsymbol{w}, \sigma_y^2)$$

The Model (the likelihood):

$$p(y_t|\boldsymbol{w}) = \mathcal{N}(y_t|\boldsymbol{\phi}_t^T\boldsymbol{w}, \sigma_y^2)$$

The Basis Functions (our model assumption):

$$\phi_t: \mathbb{R}^1 \to \mathbb{R}^M$$

per time-step & per feature i:

$$\phi_t^i = \exp^{\{-\frac{1}{2h}(z_t - c_i)^2\}}$$

per time-step over M features:

$$\boldsymbol{\phi}_t = \frac{1}{\sum_{i=1}^{M} \phi_t^i} [\phi_t^1, \phi_t^2, \dots, \phi_t^M]$$

Figure 4.5: Shown are five *normalized* basis functions arranged in the movement phase interval [0, 1].

The model can be used to represent any non-linear function, see the next slide!

A basis functions

The Multi-time Step Model

$$p(\boldsymbol{\tau}_{j}|\boldsymbol{w}) = \prod_{t=1}^{T} p(y_{t,j}|\boldsymbol{w}),$$

$$= \prod_{t=1}^{T} \mathcal{N}(y_{t,j}|\boldsymbol{\phi}_{t}^{T}\boldsymbol{w}, \sigma_{y}^{2}),$$

$$= \mathcal{N}(\boldsymbol{\tau}_{j}|\boldsymbol{A}\boldsymbol{w}, \sigma_{y}^{2}\boldsymbol{I}).$$

$$A = [\phi_1, \phi_2, \dots, \phi_T]^T \in \mathbb{R}^{T \times M}$$

$$\mathbf{w}_{LS}^j = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{\tau}_j$$

<u>Assumption:</u> i.i.d. time series data samples!

$$\mathcal{N}(a|\mu_1,\sigma_1) \,\, \mathcal{N}(b|\mu_2,\sigma_2) = \\ \mathcal{N}\left(\left[\begin{array}{c} a \\ b \end{array}\right] | \left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right], \left[\begin{array}{cc} \sigma_1 & 0 \\ 0 & \sigma_2 \end{array}\right]\right)$$

Attention: Individual dimensions (e.g. the x and y Cartesian coord.) are organized in a sequential order where first the complete dimension one is stored, see Slide 5!

Multi-time Step Model

$$p(\boldsymbol{\tau}_{j}|\boldsymbol{w}) = \prod_{t=1}^{T} p(y_{t,j}|\boldsymbol{w}),$$

$$= \prod_{t=1}^{T} \mathcal{N}(y_{t,j}|\boldsymbol{\phi}_{t}^{T}\boldsymbol{w}, \sigma_{y}^{2}),$$

$$= \mathcal{N}(\boldsymbol{\tau}_{j}|\boldsymbol{A}\boldsymbol{w}, \sigma_{y}^{2}\boldsymbol{I}).$$

$$A = [\boldsymbol{\phi}_1, \boldsymbol{\phi}_2, \dots, \boldsymbol{\phi}_T]^T \in \mathbb{R}^{T \times M}$$

$$\mathbf{w}_{LS}^j = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \boldsymbol{\tau}_j$$

Predictions with the multi-time step model

$$p(\tau) = \int \mathcal{N}(\tau | Aw, \sigma_y^2 I) \, \mathcal{N}(w | \mu_{w|y}, \Sigma_{w|y}) \, dw,$$
$$= \mathcal{N}(\tau | A\mu_{w|y}, \sigma_y^2 I + A\Sigma_{w|y} A^T).$$

$$\mu_{w|y} = \frac{1}{n} \sum_{j=1}^{n} w^j$$
 and,

$$\Sigma_{w|y} = \frac{1}{n-1} \sum_{j=1}^{n} (w^{j} - \mu_{w|y}) (w^{j} - \mu_{w|y})^{T}$$

Conditional Rule to predict future time series data points, see page 31 in the script:

$$p(a|b) = N(x_a|u_a + \sum_{ab} \sum_{bb}^{-1} (b - u_b), \sum_{aa} \sum_{ab} \sum_{bb}^{-1} \sum_{ba}^{\top})$$

Conditional Rule to predict future time series data points, see page 31 in the script:

$$p(a|b) = N(x_a|u_a + \sum_{ab} \sum_{bb}^{-1} (b - u_b), \sum_{aa} \sum_{ab} \sum_{bb}^{-1} \sum_{ba}^{\top})$$

$$p(\boldsymbol{\tau}^{o}) = N(\boldsymbol{\tau}^{o} \mid A^{o} \boldsymbol{\mu}_{w|o}, \ \sigma_{y}^{2} \boldsymbol{I} + A^{o} \boldsymbol{\Sigma}_{w|o} A^{oT}).$$

$$\boldsymbol{\mu}_{w|o} = \boldsymbol{\mu}_{w|y} + \boldsymbol{L}(\boldsymbol{o} - A^{o} \boldsymbol{\mu}_{w|y}) \text{ and },$$

$$\boldsymbol{\Sigma}_{w|o} = \boldsymbol{\Sigma}_{w|y} - \boldsymbol{L} A^{o} \boldsymbol{\Sigma}_{w|y} \text{ and },$$

$$\boldsymbol{L} = \boldsymbol{\Sigma}_{w|y} A^{oT} (\sigma_{o} \boldsymbol{I} + A^{o} \boldsymbol{\Sigma}_{w|y} A^{oT})^{-1}$$

A reformulated version using definitions of <u>the matrix</u> cookbook.

Multi-dimensional multi-time step models

$$A = [\phi_1, \phi_2, \dots, \phi_T]^T \in \mathbb{R}^{T \times M}$$
 $w_{LS}^j = (A^T A)^{-1} A^T \tau_j$
 $A \in \mathbb{R}^{TD \times MD}$ for D -dimensional data $w \in \mathbb{R}^{MD}$

<u>Attention:</u> Individual dimensions (e.g. the x and y Cartesian coord.) are organized in a sequential order where first the <u>complete dimension</u> one is stored!

<u>Assumption:</u> The model captures the correlation between the multiple dimensions through the covariance matrix $\Sigma_{w|y}$. This implies a local linear relationship between the individual dimensions.

Enough Theory - Some Applications

When a single primitive is not sufficient

Rueckert, Elmar; Mundo, Jan; Paraschos, Alexandros; Peters, Jan; Neumann, Gerhard. Extracting Low-Dimensional Control Variables for Movement Primitives. Proceedings of the International Conference on Robotics and Automation (ICRA), 2015.

Gaussian Mixture Model as Prior

$$p(\boldsymbol{w}^{[i]}) = \sum_{k=1}^{K} \pi_k \mathcal{N}\left(\boldsymbol{w}^{[i]} \boldsymbol{b}_k\right) \underbrace{\boldsymbol{M}_k \boldsymbol{h}_k^{[i]}}_{\text{K mixture components}} \alpha^{-1} \boldsymbol{I}\right) \text{ projection matrix M and low-dim. latent variables h}}_{\text{K mixture components}}$$

$$\begin{split} \boldsymbol{\mu}_{\boldsymbol{w}^{[i]}} = & \boldsymbol{\Sigma}_{\boldsymbol{w}^{[i]}} \left(\boldsymbol{\beta} \boldsymbol{\Psi}_{1:T}^{[i]}^{T} \boldsymbol{y}_{1:T}^{[i]} + \right. \\ & \left. \sum_{k=1}^{K} \bar{\alpha}_{k} \boldsymbol{\mu}_{\boldsymbol{z}_{k}^{[i]}} \left(\boldsymbol{\mu}_{\boldsymbol{b}_{k}} + \bar{\boldsymbol{M}}_{k} \boldsymbol{\mu}_{\boldsymbol{h}_{k}^{[i]}} \right) \right), \\ \boldsymbol{\Sigma}_{\boldsymbol{w}^{[i]}} = & \left(\boldsymbol{\beta} \boldsymbol{\Psi}_{1:T}^{[i]}^{T} \boldsymbol{\Psi}_{1:T}^{[i]} + \sum_{k=1}^{K} \bar{\alpha}_{k} \boldsymbol{\mu}_{\boldsymbol{z}_{k}^{[i]}} \boldsymbol{I} \right)^{-1} \end{split}$$

Rueckert, Elmar; Mundo, Jan; Paraschos, Alexandros; Peters, Jan; Neumann, Gerhard. Extracting Low-Dimensional Control Variables for Movement Primitives. Proceedings of the International Conference on Robotics and Automation (ICRA), 2015.

K=1 example: projection matrix M and low-dim. latent variables h

$$p(oldsymbol{w}^{[i]}) = \sum_{k=1}^K \pi_k \mathcal{N}\left(oldsymbol{w}^{[i]} \Big| oldsymbol{b}_k + oldsymbol{M}_k oldsymbol{h}_k^{[i]}, lpha^{-1} oldsymbol{I}
ight)$$

K=2 example: projection matrix M and low-dim. latent variables h

Conditioning

Combination and Blending

Paraschos, Alexandros; Daniel, Christian; Peters, Jan; Neumann, Gerhard. Probabilistic Movement Primitives, Advances in Neural Information Processing Systems (NIPS), MIT Press, 2013.

Multiplication $p(\mathbf{w}_o^{\text{angle}}|\mathbf{o}) p(\mathbf{w}_o^{\text{distance}}|\mathbf{o})$

Paraschos, A.; Daniel, C.; Peters, J.; Neumann, G. (2018). <u>Using Probabilistic Movement Primitives in Robotics</u>, *Autonomous Robots (AURO)*, **42**, **3**, pp.529-551.

Summary of Time Series & Databases

- An introduction to Probabilistic Time Series Models
 - Single Time Step Model
 - Multi Time step Model
- Some Applications in Research
- Let's implement Databases in Jupyter Hub

$$p(\boldsymbol{\tau}_{j}|\boldsymbol{w}) = \prod_{t=1}^{T} p(y_{t,j}|\boldsymbol{w}),$$

$$= \prod_{t=1}^{T} \mathcal{N}(y_{t,j}|\boldsymbol{\phi}_{t}^{T}\boldsymbol{w}, \sigma_{y}^{2}),$$

$$= \mathcal{N}(\boldsymbol{\tau}_{j}|\boldsymbol{A}\boldsymbol{w}, \sigma_{y}^{2}\boldsymbol{I}).$$

Thank you for your attention!

Visit our Youtube Channel:

https://youtube.com/@CPSAustria

Phone: +43 3842 402 – **1901** (Sekretariat CPS)

Email: cps@unileoben.ac.at

Web: https://cps.unileoben.ac.at

Disclaimer: The lecture notes posted on this website are for personal use only. The material is intended for educational purposes only. Reproduction of the material for any purposes other than what is intended is prohibited. The content is to be used for educational and non-commercial purposes only and is not to be changed, altered, or used for any commercial endeavor without the express written permission of Professor Rueckert.