Lecture 22

Game Theory: Simplex Method

22.1 Simplex Method

Let us consider the 3 x 3 matrix

	_B1	B2	В3
A1	a ₁₁	a_{12}	a ₁₃
A2	a ₂₁	a_{22}	a ₂₃
A3	_ a ₃₁	a ₃₂	a ₃₃

As per the assumptions, A always attempts to choose the set of strategies with the non-zero probabilities say p_1 , p_2 , p_3 where $p_1 + p_2 + p_3 = 1$ that maximizes his minimum expected gain.

Similarly B would choose the set of strategies with the non-zero probabilities say q_1 , q_2 , q_3 where $q_1 + q_2 + q_3 = 1$ that minimizes his maximum expected loss.

Step 1

Find the minimax and maximin value from the given matrix

Step 2

The objective of A is to maximize the value, which is equivalent to minimizing the value 1/V. The LPP is written as

Min
$$1/V = p_1/V + p_2/V + p_3/V$$

and constraints ≥ 1

It is written as

Min
$$1/V = x_1 + x_2 + x_3$$

and constraints ≥ 1

Similarly for B, we get the LPP as the dual of the above LPP

Max
$$1/V = Y_1 + Y_2 + Y_3$$

and constraints ≤ 1
Where $Y_1 = q_1/V$, $Y_2 = q_2/V$, $Y_3 = q_3/V$

Step 3

Solve the LPP by using simplex table and obtain the best strategy for the players

Example 1

Solve by Simplex method

Solution

We can infer that $2 \le V \le 3$. Hence it can be concluded that the value of the game lies between 2 and 3 and the V > 0.

LPP

$$\begin{aligned} \text{Max } 1/V &= Y_1 + Y_2 + Y_3 \\ \text{Subject to} \\ 3Y_1 - 2Y_2 + 4Y_3 &\leq 1 \\ -1Y_1 + 4Y_2 + 2Y_3 &\leq 1 \\ 2Y_1 + 2Y_2 + 6Y_3 &\leq 1 \\ Y_1, Y_2, Y_3 &\geq 0 \end{aligned}$$

SLPP

$$\begin{aligned} \text{Max } 1/\text{V} &= Y_1 + Y_2 + Y_3 + 0s_1 + 0s_2 + 0s_3 \\ \text{Subject to} \\ 3Y_1 - 2Y_2 + 4Y_3 + s_1 &= 1 \\ -1Y_1 + 4Y_2 + 2Y_3 + s_2 &= 1 \\ 2Y_1 + 2Y_2 + 6Y_3 + s_3 &= 1 \\ Y_1, Y_2, Y_3, s_1, s_2, s_3 &\geq 0 \end{aligned}$$

		$C_i \rightarrow$	1	1	1	0	0	0	
Basic Variables	C_B	Y_B	\mathbf{Y}_1	Y_2	\mathbf{Y}_3	S_1	S_2	S_3	$\begin{array}{c} \text{Min Ratio} \\ \text{Y}_{\text{B}} / \text{Y}_{\text{K}} \end{array}$
S_1	0	1	3	-2	4	1	0	0	1/3→
S_2	0	1	-1	4	2	0	1	0	-
S_3	0	1	2	2	6	0	0	1	1/2
			↑						
	1/V	=0	-1	-1	-1	0	0	0	
Y_1	1	1/3	1	-2/3	4/3	1/3	0	0	-
S_2	0	4/3	0	10/3	10/3	1/3	1	0	2/5
S_3	0	1/3	0	10/3	10/3	-2/3	0	1	1/10→
				1					
	1/V	=1/3	0	-5/3	1/3	1/3	0	0	
Y_1	1	2/5	1	0	2	1/5	0	1/5	
S_2	0	1	0	0	0	1	1	-1	
\mathbf{Y}_2	1	1/10	0	1	1	-1/5	0	3/10	
	1/V	= 1/2	0	0	2	0	0	1/2	

$$1/V = 1/2$$
$$V = 2$$

$$v_1 = 2/5 * 2 = 4/5$$

$$y_1 = 2/5 * 2 = 4/5$$

 $y_2 = 1/10 * 2 = 1/5$

$$y_3 = 0 * 2 = 0$$

$$x_1 = 0*2 = 0$$

$$x_2 = 0*2 = 0$$

$$x_3 = 1/2*2 = 1$$

$$S_{\lambda} = (0, 0, 1)$$

$$S_A = (0, 0, 1)$$

 $S_B = (4/5, 1/5, 0)$

$$Value = 2$$

Example 2

Solution

$$\begin{array}{c|cccc}
 & & & & & & & & \\
 & & & & & & & & \\
 & 1 & & -1 & & -1 & & -1 \\
 & -1 & & -1 & & 3 & & -1 \\
 & -1 & & 2 & & -1 & & -1 \\
 & & 1 & & 2 & & 3
\end{array}$$

 $\begin{aligned} & Maximin = -1 \\ & Minimax = 1 \end{aligned}$

We can infer that $-1 \le V \le 1$

Since maximin value is -1, it is possible that value of the game may be negative or zero, thus the constant 'C' is added to all the elements of matrix which is at least equal to the negative of maximin.

Let C = 1, add this value to all the elements of the matrix. The resultant matrix is

LPP

$$\begin{aligned} \text{Max } 1/V &= Y_1 + Y_2 + Y_3 \\ \text{Subject to} \\ & 2Y_1 + 0Y_2 + 0Y_3 \leq 1 \\ & 0Y_1 + 0Y_2 + 4Y_3 \leq 1 \\ & 0Y_1 + 3Y_2 + 0Y_3 \leq 1 \\ & Y_1, Y_2, Y_3 \geq 0 \end{aligned}$$

$$\begin{aligned} \text{Max } 1/\text{V} &= \text{Y}_1 + \text{Y}_2 + \text{Y}_3 + 0\text{s}_1 + 0\text{s}_2 + 0\text{s}_3 \\ \text{Subject to} \\ & 2\text{Y}_1 + 0\text{Y}_2 + 0\text{Y}_3 + \text{s}_1 = 1 \\ & 0\text{Y}_1 + 0\text{Y}_2 + 4\text{Y}_3 + \text{s}_2 = 1 \\ & 0\text{Y}_1 + 3\text{Y}_2 + 0\text{Y}_3 + \text{s}_3 = 1 \\ & \text{Y}_1, \text{Y}_2, \text{Y}_3, \text{s}_1, \text{s}_2, \text{s}_3 \ge 0 \end{aligned}$$

		$C_i \rightarrow$	1	1	1	0	0	0	
Basic Variables	C_{B}	Y_{B}	Y_1	\mathbf{Y}_2	Y_3	S_1	S_2	S_3	$\begin{array}{c} \text{Min Ratio} \\ \text{Y}_{\text{B}} / \text{Y}_{\text{K}} \end{array}$
S_1	0	1	2	0	0	1	0	0	1/2→
S_2	0	1	$\overline{0}$	0	4	0	1	0	-
S_3	0	1	0	3	0	0	0	1	-
			↑						
	1/\	V = 0	-1	-1	-1	0	0	0	
Y_1	1	1/2	1	0	0	1/2	0	0	-
S_2	0	1	0	0	4	0	1	0	-
S_3	0	1	0	3	0	0	0	1	1/3→
				↑					
	1/V	=1/2	0	-1	-1	1/2	0	0	
\mathbf{Y}_1	1	1/2	1	0	0	1/2	0	0	-
S_2	0	1	0	0	4	0	1	0	1/4→
Y_2	1	1/3	0	1	$\overline{0}$	0	0	1/3	-
					1				
	1/V	= 5/6	0	0	-1	1/2	0	1/3	
\mathbf{Y}_1	1	1/2	1	0	0	1/2	0	0	
\mathbf{Y}_3	1	1/4	0	0	1	0	1/4	0	
Y_2	1	1/3	0	1	0	0	0	1/3	
	1/V =	=13/12	0	0	0	1/2	1/4	1/3	

$$1/V = 13/12$$

V = 12/13

$$y_1 = 1/2 * 12/13 = 6/13$$

$$y_2 = 1/3 * 12/13 = 4/13$$

$$y_3 = 1/4 * 12/13 = 3/13$$

$$x_1 = 1/2 * 12/13 = 6/13$$

$$x_2 = 1/4 * 12/13 = 3/13$$

$$x_3 = 1/3 * 12/13 = 4/13$$

$$S_A = (6/13, 3/13, 4/13)$$

$$S_B = (6/13, 4/13, 3/13)$$

Value =
$$12/13 - C = 12/13 - 1 = -1/13$$