Hidden Markov Models

Mitch Marcus
CIS 421/521

An NLP task– Determining Part of Speech Tags

 Given a text, assign each token its correct part of speech (POS) tag, given its context and a list of possible POS tags for each word type

Word	POS listing in Brown Corpus		
heat	noun	verb	
oil	noun		
in	prep	noun	adv
a	det	noun	noun-proper
large	adj	noun	adv
pot	noun		

What is POS tagging good for?

Speech synthesis:

How to pronounce "lead"?

INsult inSULT

OBject obJECT

OVERflow overFLOW

DIScount disCOUNT

CONtent content

Machine Translation

translations of nouns and verbs are different

Stemming for search

- Knowing a word is a V tells you it gets past tense, participles, etc.
- Can search for "walk", can get "walked", "walking,...

Equivalent Problem in Bioinformatics

- From a sequence of amino acids (primary structure):
 ATCPLELLLD
- Infer secondary structure (features of the 3D structure, like helices, sheets, etc.): HHHBBBBBBC..

Figure from:

http://www.particlesciences.com/news/technical-briefs/2009/protein-structure.html

Methods to Determine Part of Speech Tags

- The Old Solution: Depth First search.
 - If each of n word tokens has k tags on average, try the k^n combinations until one works.
- Machine Learning Solutions: Automatically learn Part of Speech (POS) assignment.
 - The best techniques achieve 97+% accuracy per word on new materials,
 - —given a POS-tagged training corpus of 10⁶ tokens
 - —with 3% inconsistency in the training corpus
 - —on a set of ~40 POS tags (Penn Treebank Tag Set)

Statistical Approaches: Idea 1

Simply assign each word its most likely POS.

Success rate: 91%!

Word	POS listings in Brown				
heat	noun/89	verb/5			
oil	noun/87				
in	prep/20731	noun/1	adv/462		
а	det/22943	noun/50	noun-proper/30		
large	adj/354	noun/2	adv/5		
pot	noun/27				

Statistical Approaches: Idea 2

For a string of words

$$W = w_1 w_2 w_3 \dots w_n$$

find the string of POS tags

$$T = t_1 t_2 t_3 \dots t_n$$

which maximizes P(T|W)

• i.e., the most likely POS tag t_i for each word w_i given its surrounding context

The Sparse Data Problem ...

A Simple, *Impossible* Approach to Compute P(T|W):

- 1. Find all instances of the string "heat oil in a large pot" in a *tagged* training corpus
- 2. Pick the most common tag assignment for that string.

One more time: A BOYEC Estimate of What Works

What parameters can we estimate with a million words of hand tagged training data?

 Assume the best case: a distribution of 5000 words and 40 part of speech tags with a distribution not far from uniform

Event	Count	Estimate Quality?
tags	40	Excellent (
tag bigrams	1600	Excellent (
tag trigrams	64,000	OK
tag 4-grams	2.5M	Poor
words	5000	Very Good
word bigrams	25M	Poor
word x tag pairs	200,000	OK 🛑

We can get reasonable estimates of

- Tag bigrams
- Word x tag pairs

Review: Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later (e.g. ASR, MT)
- In the running for most important AI equation!

Bayes Rule plus Markov Assumptions yields a practical POS tagger!

I. By Bayes Rule
$$P(T \mid W) = \frac{P(W \mid T) * P(T)}{P(W)}$$

where
$$W = w_1 w_2 w_3 ... w_n$$
, $T = t_1 t_2 t_3 ... t_n$

II. So we want to find

$$\arg \max_{T} P(T \mid W) = \arg \max_{T} P(W \mid T) * P(T)$$

III. To compute P(W|T):

Use the chain rule + a Markov assumption (like last time!!)

IV. To compute P(T):

Use the chain rule + a slightly different Markov assumption

II. Compute P(T) just like P(W) last lecture

I. By the chain rule,

$$P(T) = P(t_1) * P(t_2 | t_1) * P(t_3 | t_1t_2) * ... * P(t_n | t_1...t_{n-1})$$

II. Applying the 1st order Markov Assumption

$$P(T) = P(t_1) * P(t_2 | t_1) * P(t_3 | t_2) * ... * P(t_n | t_{n-1})$$

III. To compute P(W|T):

- I. Assume that the words w_i are conditionally independent given the tag sequence $T=t_1t_2...t_n$: $P(W \mid T) = \prod_{i=1}^n P(w_i \mid T)$
- II. Applying a zeroth-order Markov Assumption:

$$P(w_i \mid T) = P(w_i \mid t_i)$$
 by which
$$P(W \mid T) = \prod_{i=1}^n P(w_i \mid t_i)$$

So, for a given string $W = w_1 w_2 w_3 ... w_{n_1}$ the tagger needs to find the string of tags T which maximizes

$$P(T) * P(W|T) = P(t_1) * P(t_2|t_1) * P(t_3|t_2) * \dots * P(t_n|t_{n-1}) * P(w_1|t_1) * P(w_2|t_2) * \dots * P(w_n|t_n)$$

Training and Performance

 To estimate the parameters of this model, given an annotated training corpus use the MLE:

To estimate $P(t_i|t_{i-1})$:

$$\frac{Count(t_{i-1}t_i)}{Count(t_{i-1})}$$

To estimate $P(w_i|t_i)$:

$$\frac{Count(w_i \text{ tagged } t_i)}{Count(\text{ all words tagged } t_i)}$$

- Because many of these counts are small, smoothing is necessary for best results...
- Such taggers typically achieve about 95-96% correct tagging, for the standard 40-tag POS set.
- A few tricks for unknown words increase accuracy to 97%.

Hidden Markov Models

This model is an instance of a Hidden Markov Model. Viewed graphically:

Viewed as a generator, an HMM:

- ullet Starts in some initial state t_1 with probability $\pi(t_1)$,
- ullet On each move goes from state t_i to state t_j according to transition probability $a(t_i,t_j)$.
- ullet At each state t_i , it emits a symbol w_k according to the emit probabilities $b(t_i, w_k)$.

Summary: Recognition using an HMM

By Bayes Rule

$$P(T \mid W) = \frac{P(T) * P(W \mid T)}{P(W)}$$

II. We select the Tag sequence T that maximizes P(T|W):

$$\operatorname{arg\,max}_{T} P(T \mid W)$$

$$= \arg \max_{T=t_1t_2...t_n} P(T) * P(W \mid T)$$

$$= \arg \max_{T=t_1t_2...t_n} \pi(t_1) * \prod_{i=1}^{n-1} a(t_i, t_{i+1}) * \prod_{i=1}^n b(t_i, w_i)$$

Practical Tagging using HMMs

- Finding this maximum can be done using an exponential search through all strings for T.
- However, there is a linear time solution using dynamic programming called Viterbi decoding.

The three basic HMM problems

(These slides follow the classic formulation by Ferguson, as published by Rabiner and Juang, as adapted by Manning and Schutze.

Note the change in notation from the last lecture!!)

Parameters of an HMM

- States: A set of states $S=s_1, \dots s_n$
- Transition probabilities: $A = a_{1,1}, a_{1,2}, ..., a_{n,n}$ Each $a_{i,j}$ represents the probability of transitioning from state s_i to s_j .
- *Emission probabilities:* a set B of functions of the form $b_i(o_t)$ which is the probability of observation o_t being emitted by s_i
- Initial state distribution: π_i is the probability that s_i is a start state

The Three Basic HMM Problems

- Problem 1 (Evaluation): Given the observation sequence $O=o_1,...,o_T$ and an HMM model $\lambda=(A,B,\pi)$, how do we compute the probability of O given the model?
- **Problem 2** (**Decoding**): Given the observation sequence O and an HMM model A, how do we find the state sequence that best explains the observations?
- Problem 3 (Learning): How do we adjust the model parameters $\lambda = (A,B,\pi)$, to maximize $P(O \mid \lambda)$?

Problem 1: Probability of an Observation Sequence

- Q: What is $P(O \mid \lambda)$?
- A: the sum of the probabilities of all possible state sequences in the HMM.
- Naïve computation is very expensive. Given T observations and N states, there are $N^{\rm T}$ possible state sequences.
 - (for *T*=10 and *N*=10, 10 billion different paths!!)
- Solution: linear time dynamic programming!

The Crucial Data Structure: The Trellis

Forward Probabilities: a

• For a given HMM λ , for some time t, what is the probability that the partial observation $o_1 \dots o_t$ has been generated and that the state at time t is i?

$$\alpha_t(i) = P(o_1 \dots o_t, q_t = s_i \mid \lambda)$$

• Forward algorithm computes $\alpha_t(i)$ 0 < i < N, 0 < t < T in time $0(N^2T)$ using the trellis

Forward Algorithm: Induction step

$$\alpha_{t}(j) = \left[\sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij}\right] b_{j}(o_{t})$$

Forward Algorithm

• Initialization (probability that o_1 has been generated and that the state is i at time t=1:

$$\alpha_1(i) = \pi_i b_i(o_1) \quad 1 \le i \le N$$

• Induction:

$$\alpha_t(j) = \left[\sum_{i=1}^N \alpha_{t-1}(i)a_{ij}\right]b_j(o_t) \quad 2 \le t \le T, \quad 1 \le j \le N$$

• Termination:

$$P(O \mid \lambda) = \sum_{i=1}^{N} \alpha_{T}(i)$$

Forward Algorithm Complexity

- Naïve approach requires exponential time to evaluate all N^T state sequences
- Forward algorithm using dynamic programming takes $O(N^2T)$ computations

Problem 2: Decoding

- The Forward algorithm gives the sum of all paths through an HMM efficiently.
- Here, we want to find the highest probability path.
- We want to find the state sequence $Q=q_1...q_T$, such that

$$Q = \underset{Q'}{\operatorname{argmax}} P(Q' | O, \lambda)$$

Viterbi Algorithm: Recursion step

 Just like the Forward algorithm, but instead of summing over transitions from incoming states, compute the maximum

• Forward:

$$\alpha_{t}(j) = \left[\sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij}\right] b_{j}(o_{t})$$

Viterbi Recursion:

$$\delta_{t}(j) = \left[\max_{1 \leq i \leq N} \delta_{t-1}(i) a_{ij} \right] b_{j}(o_{t})$$

Core Idea of Viterbi Algorithm

Not quite what we want....

Viterbi recursion computes the maximum probability to state j at time t given that the partial observation o₁ ... o_t has been generated

$$\delta_{t}(j) = \left[\max_{1 \leq i \leq N} \delta_{t-1}(i) a_{ij} \right] b_{j}(o_{t})$$

- But we want the path itself that gives the maximum probability
- Solution:
 - 1. Keep backpointers
 - 2. Find $\arg \max_{j} \delta_{T}(j)$, i.e. the most probable final state
 - 3. Chase backpointers from state j at time T to find state sequence (backwards)

Viterbi Algorithm (For Notes)

- Initialization: $\delta_1(i) = \pi_i b_i(o_1)$ $1 \le i \le N$
- Induction:

$$\delta_{t}(j) = \left[\max_{1 \leq i \leq N} \delta_{t-1}(i) a_{ij} \right] b_{j}(o_{t})$$

$$2 \leq t \leq T, 1 \leq j \leq N$$

$$\psi_{t}(j) = \left[\arg\max_{1 \leq i \leq N} \delta_{t-1}(i) a_{ij} \right] \text{ (Backpointers)}$$

- Termination: $q_T^* = \underset{1 \le i \le N}{\operatorname{argmax}} \delta_T(i)$ (Final state!)
- Backpointer path: $q_t^* = \psi_{t+1}(q_{t+1}^*)$ t = T-1,...,1