Análisis de Sistemas de Potencia I/A: Certamen 2

1er Sergio Camilo Rojas

Departamento de Ingeniería Eléctrica Universidad Técnica Federico Santa María Valparaíso, Chile sergio.camilo@sansano.usm.cl

I. Introducción

Se requiere analizar un sistema de potencia para trenes eléctricos que incluye una barra, una línea de transmisión de 100 km y un tren. El análisis incluye calcular la variación de tensión, límites de estabilidad y métodos de compensación reactiva para garantizar un funcionamiento eficiente del sistema.

Fig. 1. Esquema del problema.

II. FORMULACIÓN MATEMÁTICA DEL PROBLEMA

Para abordar el problema planteado, considerando que la mayor parte del trayecto del tren, la distancia hasta el emisor será menor de 100 [km] se considera el modelo de linea corta para el planteamiento y posterior resolución del problema.

$$\begin{bmatrix} 22500 \angle \alpha \\ Is \end{bmatrix} = \begin{bmatrix} 1 & x \cdot (0, 1005 + 0, 3475j) \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} Vr \\ Ir \end{bmatrix}$$
 (1)

III. VARIACIÓN DE LA MAGNITUD DE TENSIÓN

Con la matriz planteada y sabiendo la potencia que consume el tren se procede a plantear la ecuación para encontrar el modulo de Vr.

$$22500 \angle \alpha = 1 \cdot Vr \angle 0 + x \cdot (0, 1005 + 0, 3475j) \cdot \frac{5 \cdot 10^6}{Vr \angle 0} \tag{2}$$

2^{do} Alan Rodríguez Ayala

Departamento de Ingeniería Eléctrica Universidad Técnica Federico Santa María Valparaíso, Chile alan.rodriguez@sansano.usm.cl

Elevando modulo, parte real e imaginaria al cuadrado y despejando Vr la ecuación queda de la siguiente manera:

$$(506, 26 \cdot 10^6 - 1005 \cdot 10^3 \cdot x) \cdot Vr^2 + 2,7664 \cdot 10^{12} \cdot x^2 = 0$$
 (3)

Por lo cual la variación de la magnitud decae a medida que se aumenta la distancia hasta un valor de 17168,8 [v] para 100 [km]

IV. ESTABILIDAD TEÓRICA

Considerando una linea corta, sin pérdidas y FP = 1 se plantea la ecuación para encontrar la estabilidad.

$$\widehat{P}_r = \frac{\left|Vs\right|^2}{2 \cdot 0,347 \cdot x}$$

El límite máximo esta dado cuando la distancia es mínima y el limite mínimo cuando la distancia es máxima.

$$\widehat{P}_{1[km]} \simeq 729, 5 \ [\text{Mw}] \ \text{y} \ \widehat{P}_{100[km]} \simeq 7,295 \ [\text{Mw}]$$
 V. Compensación shunt

A. Método alternativo

Los inconvenientes son que incrementa la complejidad del sistema, posibles problemas de resonancia, mayor costo y mantenimiento. Método alternativo: Instalación de bancos de capacitores en puntos estratégicos a lo largo de la línea de transmisión

B. Compensación dinámica

Se utilizo el método de compensación de reactivos analizando carga baja, agregando la compensación shunt a la matriz de admitancia (1), para luego calcular la capacitancia por la longitud de la linea ya teniendo anteriormente $V_r(x)$, así teniendo tensión nominal en la toda la linea.

Fig. 2. Valor de capacitancia para compensación shunt según distancia.