

SPSS Seminar

Forschungsgruppe Informatik im Gesundheitswesen

Zentrum für Multimedia und IT-Anwendungen (ZeMIT)

Jens Hüsers M.A.

Forschungsgruppe Informatik im Gesundheitswesen

Tel.: 0541 / 969-7064

Fax: 0541 / 969-2971

J.Huesers@hs-osnabrueck.de

Aublauf des Seminars

Hochschule Osnabrück
University of Applied Sciences

- 1. Einführung
- 2. Dateneingabe und Variablendefinition (ggf. Wiederholung des Variablenbegriffs)
- 4. Transformationen (Klassenbildung)
- 5. Variablenberechnung (Summenbildung)
- 6. Fälle auswählen
- 7. Häufigkeitstabellen
- 8. Diagramme
- 9. Maße der zentralen Tendenz und Dispersionsmaße
- 10. Zusammenhangsmaße
- 11. Konfidenz-Intervall

Seminarinformation			
Titel:	SPSS - Erstellung von Online-Umfragen und Erstauswertung		
Inhalte:	 Überblick über den Funktionsumfang von SPSS Definieren von Variablen Import / Erfassen von Daten Funktionsumfang deskriptive Statistik – Berechnen von Kennzahlen Erstellen von einfachen Tabellen Erstellen von einfachen Diagrammen 		
Vorkenntnisse:	Vorkenntnisse in der Benutzung von PCs und Windows sowie Grundkenntnisse deskriptiver Statistik erforderlich. (Es werden keine Statistikkenntnisse vermittelt.)		
Veranstalter:	wiconnect e.V Alumniverein der Fakultät WiSo Rückfragen an <u>alumni@wi.hs-osnabrueck.de</u>		

Einführung

Warum SPSS?

- SPSS gibt es seit über 40 Jahren.
- SPSS ist eins der am häufigsten genutzten Datenanalysesysteme.
- Vergleichsweise intuitiv, Alternativen sind STATA, R oder SAS.
- Wird angewendet in den meisten Institutionen, die sich mit der Auswertung und Darstellung von Daten befassen wie z.B.:
- Universitäten, Hochschulen, allg. Forschungseinrichtungen z.B.: Soziologie, Politikwissenschaft, Psychologie, Betriebswirtschaftslehre, Medizin, Geographie, Geschichtswissenschaften, Pädagogik, ...
- Private Wirtschaftsunternehmen z.B.: AUDI, Henkel, Otto-Versand, ...
- Öffentlichen Verwaltungen z.B.: Bundesagentur für Arbeit, Bundeskriminalamt, ...

Einführung

Anwendung Forschungsprozesses

Problemformulierung, Problembenennung, Theorie- und Hypothesenbildung

Konzeptualisierung

- Operationalisierungsvorgang
- Konstruktion des Erhebungsinstruments
- Festlegung der Stichprobe
- Festlegung des Forschungsdesigns
- Pretest

Limesurvey, bzw. andere Tools zur Erstellung von Onlinefragebögen (z.B. Unipark).

Datenerhebung, -aufbereitung, -analyse Interpretation und Publikation

SPSS, bzw. andere Datenanalyseprogramme (z.B. STATA).

Öffnen des Programms

→ Programme → SPSS Statistics

Variablendefinition: Variablen-Labels, Werte-Labels, Fehlende Werte

Öffnen eines bestehenden Datensatzes aus (bspw. aus Limesurvey, etc.)

Der Dateneditor – Variablen und Datenansicht

Die **Menüpunkte** zum Bearbeiten der Variablen, Daten und zur Erstellung von Statistiken, sind im Dateneditor, Viewer und Syntax-Editor verfügbar!

Datenansicht: Darstellung des Datensatzes mit einzelnen Fällen und Variablen.

Variablenansicht: Darstellung und Bearbeitungsmenü von Variablenattributen wie Datentyp (Skalenniveau), Variablenund Wertelabels.

Der Viewer – Ergebnisausgabe

- Der Viewer erscheint immer, sobald Sie Variablen umkodieren, den Datensatz speichern oder sich Ergebnisse ausgeben lassen.
- In vielen Fällen können Sie den Viewer ohne abzuspeichern schließen.
- Für die Dokumentation von Variablentransformationen (Umkodierung, etc.) und für die Ergebnisdokumentation sollten Sie den Viewer mit gut nachvollziehbaren Notationen speichern.

Hochschule Osnabrück University of Applied Sciences

Syntax

Öffne über: → Datei → Neu → Syntax

Was sind Variablen und welche Unterscheidungsmöglichkeiten gibt es?

"Ein Variable bezeichnet ein Merkmal oder eine Eigenschaft"

- **1. Merkmalsträgern** → bspw. der Kunde, Krankenhaus
- 2. Variablen (bzw. Merkmal oder Merkmalsdimensionen) → bspw. das Alter (des Kunden)
- 3. Ausprägungen von Variablen (bzw. Kategorien, Merkmalsausprägungen) → 5 Jahre

Grundsätzlich...

...das Beherrschen der Variablendefinition und der Dateneingabe ist die Basis für alle Arbeiten mit SPSS!!!

Name

Jede Variable benötigt einen eindeutigen Namen

SPSS vergibt automatisch Namen und ergänzt mit fortlaufender, fünfstelliger Nummer (VAR00001, VAR00002, ...)

Regeln:

- Maximal 64 Zeichen
- Beginnen mit A-Z, @, #, \$
- Dürfen nicht mit Leerzeichen oder enden
- # xxx sind Hilfsvariablen
- \$_xxx sind Systemvariablen

Hochschule Osnabrück
University of Applied Sciences

Komma, Punkt, wiss.
Notation, Datum, Dollar und spezielle Währung sind Varianten numerischer Variablen.

Typ String: immer dann wenn es sich um eine Texteingabe nicht standardisierter Daten handelt (z.B. PLZ, Telefonnummer) Anzahl der Zeichen festlegen

"Numerisch" und "String" sind die am häufigsten vorkommenden Typen.

Variablen- und Wertelabel

Ein Variablenlabel beschreibt die inhaltliche Bedeutung der Variable (max. 255 Zeichen) und kommt insb. in der Ergebnisausgabe als Tabellenbzw. Abbildungsüberschrift (im Viewer) zur Geltung.

Wertelabels: "Etikettierung" der Merkmalsausprägung nominal oder ordinal skalierter Werte.

1 = JA:

2 = NEIN

1 = zufrieden

2 = neutral

3 = unzufrieden

Button zum Wechseln von Werten und Label in der Datenansicht

Fehlende Werte

Hochschule Osnabrück
University of Applied Sciences

Falls ein Proband zu einer Frage keine Angaben macht oder die Angabe als bei einer Prüfung als ungültig identifiziert wurde, muss SPSS mit dem fehlenden Wert in der entsprechende Variable "umgehen" können.

SPSS kennt systemdefinierte fehlende Werte (system missing values) und benutzerdefinierte Fehlende Werte (user missing values).

User Missing Value: Nehmen Sie einen Wert, der in der Empirie als Merkmalsausprägung nicht vorkommt, bspw. -999, -777, ...

Wertelabels: Für fehlende Werte können auch Wertelabel Vergeben werden.

Bspw.: -999 = ungültig/fehlend

Fehlende Werte

Statistiken

Geschlecht

Ν	Gültia	13
	Fehlend	2

Geschlecht									
		Häufigkeit	Prozent	Gültige Prozente	Kumulierte Prozente				
Gültig	Weiblich	8	53,3	61,5	61,5				
	Männlich	5	33,3	38,5	100,0				
	Gesamt	13	86,7	100,0					
Fehlend	-999	2	13,3						
Gesamt		15	100,0						

Messniveau (reine Signalfunktion)

Hochschule Osnabrück
University of Applied Sciences

Nominal: Gleich / Ungleich.

- männlich = 1, weiblich = 2
- rot = 22; gelb = 28, blau = 1212
- Geschlecht, Familienstand, etc.

Ordinal: Gleich / Ungleich und Ausdruck einer Rangfolge aber keine Äquidistanz zwischen den Werten

- Schulnoten
- Wettkampfplatzierungen
- Subjektive Einschätzungen aller Art

Metrisch: Gleich / Ungleich <u>und</u> Ausdruck einer Rangfolge <u>und</u> Äquidistanz zwischen den Werten.

- Längen- und Gewichtsmaße,
- Geldeinheiten
- Zeitskalen

Übersicht gültiger Testverfahren

Aufgabe 1 - Erstellung einer Rohwertabelle

Fall1		Fall 2		Fall 3	
Alter: Geschlecht: Stadt: Lieblingsfarbe: Punktzahl:	25 Weiblich Osnabrück Grün 60	Alter: Geschlecht: Stadt: Lieblingsfarbe: Punktzahl:	18 Männlich Bielefeld Blau 84	Alter: Geschlecht: Stadt: Lieblingsfarbe: Punktzahl:	18 Weiblich Bielefeld Blau 56
Fall 4		Fall 5		Fall 6	
Alter: Geschlecht: Stadt: Lieblingsfarbe: Punktzahl:	- Weiblich Melle Rot 35	Alter: Geschlecht: Stadt: Lieblingsfarbe: Punktzahl:	33 Männlich Bielefeld - 75	Alter: Geschlecht: Stadt: Lieblingsfarbe: Punktzahl:	18 Weiblich Bielefeld Gelb 0

Mögliche Lösung für Aufgabe 1

Variablenansicht

Name	Тур	Spaltenf	Dezimal	Variablenlabel	Wertelabels	Fehlende W	Spalten	Ausrichtung	Messniveau	Rolle
V1_1_Alter	Numerisch	8	0	Alter der Teilnehmer	Keine	-999	8	■ Rechts	🔗 Skala	→ Eingabe
V1_2_Geschlecht	Numerisch	8	0	Geschlecht der Teilnehmer	{0, Weiblich	-999	8	■ Rechts	& Nominal	ゝ Eingabe
V1_3_Ort	String	20	0	Wohnort der Teilnehmer	Keine	Keine	8	Links	& Nominal	ゝ Eingabe
V2_1_Lieblingsfarbe	Numerisch	8	0	Lieblingsfarbe der Teilnehmer	{1, Grün}	-999	8	■ Rechts	Nominal	ゝ Eingabe
V2_2_Punktzahl	Numerisch	8	0	Punktzahl der Teilnehmer	Keine	-999	8	■ Rechts		→ Eingabe

Datensicht

V1_1_Alter	V1_2_Geschl echt	V1_3_Ort	V2_1_Lieblin gsfarbe	V2_2_Punktz ahl
25	Weiblich	Osnabrück	~	
18	Männlich	Bielefeld	Grün	-
18	Weiblich	Bielefeld	Blau	-
-999	Weiblich	Melle	Rot	
33	Männlich	Bielefeld	Gelb	
18	Weiblich	Bielefeld	-	
28	Weiblich	Melle		
-999	Männlich	Münster		
54	Männlich	Melle		
			-	

Aufgabe 2 – Marktanalyse im Kleidungshandel

Bitte ergänzen Sie die Variablenbeschreibung!

Mögliche Lösung für Aufgabe 2

Datenaufbereitung

Dateneingabe

tinyurl.com/spss-bsp

Maße der zentralen Tendenz - Lageparameter

- Geben über bestimmte Eigenschaften eines Datenkollektivs oder einer Verteilung zusammenfassende Auskunft
- Aus einer Vielzahl von Einzelwerten werden einige wenige Werte gebildet
- Maße der zentralen Tendenz
 - Modalwert: am häufigsten vorkommende Wert einer Verteilung. Wahrscheinlichster Wert bei zufälliger Ziehung. Grafische Darstellung über Histogramm.
 Lediglich Nominalskalenniveau erforderlich.
 - Medianwert: Wert, von dem die übrigen Werte im Durchschnitt am wenigsten abweichen.
 Teilt eine Verteilung in zwei Hälften. → Rangfolge bilden: bei ungerader Anzahl von Fällen der mittlere Wert. Ansonsten numerisches Mittel der beiden mittleren Zahlen.
 Ordinalskalenniveau erforderlich.
 - Arithmetisches Mittel (Mittelwert): Gebräuchlichstes Maß der zentralen Tendenz.
 Summe aller Werte dividiert durch die Anzahl der Fälle (n). Summe der Quadrierten Abweichungen zum Mittelwert ist minimal.
 Metrisches Skalenniveau erforderlich.

Dispersionsmaße - Streuungsmaße

Dispersionsmaße

- Variationsbreite: Gibt Größe des Bereichs an, in dem die Messwerte liegen.
- → Differenz zwischen Größtem und kleinsten Wert
- Varianz: Wichtigstes Dispersionsmaß.
- → Summe der quadrierten Abweichungen aller Messwerte vom Arithmetischen Mittel dividiert durch die Anzahl aller Messwerte minus Eins. Metrisches Skalenniveau notwendig.

$$\hat{\sigma}_{x}^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$
Varianz

Beschreibende Statistik

- Deskriptive Statistik ist ein Verfahren zur Beschreibung von Zahlen durch andere Zahlen
- Viele Daten werden durch wenige Kennwerte beschrieben

Berechnung der Häufigkeiten

Berechnung von Häufigkeiten

Statistiken

Kundenzufriedenheit mit dem Se

N	Gültig	148
	Fehlend	2
Mitte	wert	5,66
Medi	an	6,00
Moda	alwert	7
Bere	ich	9
Minir	num	1
Maxii	mum	10

Aufgabe 3 - Häufigkeitstabellen

Geben Sie an, wie die Ausprägungen in der Variable "Geschlecht" und "Kleidungsgröße" verteilt sind

Lösung Aufgabe 3 - Häufigkeitstabellen

Häufigkeitstabellen:

Geschlecht (0 - männlich, 1 - weiblich)

		Häufigkeit	Prozent	Gültige Prozent	Kumulative Prozente
Gültig	männlich	82	54,7	54,7	54,7
	weiblich	68	45,3	45,3	100,0
	Gesamtsumme	150	100,0	100,0	

Kundenzufriedenheit mit dem Service von 1 bis 10

		Häufigkeit	Prozent	Gültige Prozent	Kumulative Prozente
Gültig	1	4	2,7	2,7	2,7
	2	5	3,3	3,4	6,1
	3	21	14,0	14,2	20,3
	4	21	14,0	14,2	34,5
	5	21	14,0	14,2	48,6
	6	17	11,3	11,5	60,1
	7	23	15,3	15,5	75,7
	8	21	14,0	14,2	89,9
	9	10	6,7	6,8	96,6
	10	5	3,3	3,4	100,0
	Gesamtsumme	148	98,7	100,0	
Fehlend	-999	2	1,3		
Gesamtsı	ımme	150	100,0		

Datenaufbereitung

Klassenbildung

Wenn Sie ein aussagekräftiges Diagramm für die Verteilung eines Merkmals erstellen wollen, dieses aber viele (ungleiche) Werte ausweist, eignet sich die Klassierung zur Datenaggregation.

Transformieren: Umkodieren von Variablen (bspw. um zu aggregieren)

Aufgabe 4

Transformieren Sie die Variable "Zufriedenheit" in eine neue gruppierte Variable z.B. "Zufriedenheit_gruppiert"

Zufriedenheit	Gruppiert
1-3	Geringe Zufriedenheit
4 – 7	Mittlere Zufriedenheit
8 – 10	Hohe Zufriedenheit

Lösung zur Aufgabe 4

1. Rekodierung

Lösung zur Aufgabe 4

2. Neue Variable benennen

Erforderlich um die Umkodierung auszuführen

3. Wertelabels benennen

Weitere Transformationen - Summenbildung

V1_Fehltage_ AbtA	V2_Fehltage_ AbtB
33	23
15	2
68	34
1	5
19	145
34	34
24	15
44	26
31	44
3	23
2	15
19	26
23	35
12	37
23	3

Die Verrechnung von Variablen funktioniert über "Variable berechnen"

Aufgabe 4 - Weitere Transformationen

Rechnen Sie die Körpergröße (momentan in cm) in Meter um und passen Sie die Variablenbeschreibung in der Variablenansicht an

$$K\"{o}rperl\"{a}nge\ in\ m = rac{K\"{o}rperl\"{a}nge\ in\ cm}{100}$$

Berechnen Sie den Body Maß Index für die Kunden

$$BMI = \frac{K\"{o}rpergewicht\ in\ kg}{K\"{o}rperl\"{a}nge\ in\ m^2}$$

Lösung Aufgabe 4 - Weitere Transformationen

Umrechnen der Körpergröße:

Lösung Aufgabe 4 - Weitere Transformationen

Berechnen des BMI:

Fälle auswählen

Sollen Variablen nach den Ausprägungen einer anderen Variable gefiltert werden, bspw. nur männliche Teilnehmer, so funktioniert das über "Fälle auswählen".

	Kunden_ID	Geschlecht
43	43	(
44	44	(
45	45	(
46	46	(
47	47	(
48	48	(
49	49	(
50	50	1
51	51	(
52	52	(
53	53	(
_54	54	1
55	55	(
56	56	(
57	57	(
58	58	(
_59	59	1
_60	60	1
61	61	(
62	62	(
63	63	1

Quantitative Methoden | SPSS |

Aufgabe 5 - Fälle auswählen

Wählen Sie für aus dem aktuellen Datensatz nur die Kunden mit der Größe **S** aus!

Lösung Aufgabe 5 - Fälle auswählen

Wählen Sie die Kunden mit der Kleidergröße S aus

Kreisdiagramm zumeist bei Variablen mit nur zwei Ausprägungen

Aufgabe 6 - Diagramme

Bilden Sie passende Diagramme für die Variablen "Körpergröße" und "Zufriedenheit_gruppiert" um die Häufigkeiten zu visualisieren.

Lösung Aufgabe 6 - Diagramme

Excel Grafiken

Zu Präsentationszwecken Übertragung in Excel empfehlenswert...

VERTEILUNG DER KLEIDERGRÖßE

Berechnung von Mittelwerten und Konfidenz-Intervallen

"Analysieren"→ "Deskriptive Statistiken" → "Explorative Datenanalyse".

Dort die interessierende Variable als abhängige Variable wählen und unter "Statistiken" die Ausgabe eines 95%igen Konfidenzintervalls bestimmen

Berechnung von Konfidenz-Intervallen

Explorative Datenanalyse

[DatenSet1] C:\Users\Lab4Apps\Desktop\Lehre\WiConnect\SPSS-Seminar_JDL\

Verarbeitete Fälle

	Fälle					
	Gü	ltig	Fehl	end	Gesamt	
	N	Prozent	Z	Prozent	N	Prozent
Alter	28	93,3%	2	6,7%	30	100,0%

	Deskriptive Statistik		
		Statistik	Standardfehle r
Alter	Mittelwert	23,43	,906
	95% Konfidenzintervall Untergrenze	21,57	
	des Mittelwerts Obergrenze	25,29	<i>)</i>
	5% getrimmtes Mittel	23,21	
	Median	22,00	
	Varianz	22,995	
	Standardabweichung	4,795	
	Minimum	17	
	Maximum	34	
	Spannweite	17	
	Interquartilbereich	7	
	Schiefe	,872	,441
	Kurtosis	-,362	,858

Berechnung von Konfidenz-Intervallen

Sie können für eine numerische Variable einen Vertrauensbereich für den **Erwartungswert** berechnen. Der **Erwartungswert** ist eine (Ihnen unbekannte) Kenngröße der Grundgesamtheit, das **arithmetische Mittel** ist eine (Ihnen bekannt) Kenngröße der Stichprobe.

Der Vertrauensbereich enthält einen unbekannten Parameter μ , hier den Erwartungswert, einer Verteilung mit einer Sicherheit von z.B. 95% und Einer entsprechenden Irrtumswahrscheinlichkeit von α 5%.

Das berechnete Konfidenz-Intervall enthält den wahren Schätzer mit großer Wahrscheinlichkeit...

Aufgabe 6 - Berechnung statistischer Kennwerte

- a) Lassen Sie sich jeweils eine Häufigkeitstabelle für die Variablen "Kleiderungröße".
- b) Bestimmen Sie Mittelwert, sowie Variationsbreite (Spannweite) und die Standardabweichung des Umsatz in Euro.
- c) Welches Diagramm bietet sich zur Visualisierung an?
- d) Erzielen zufriedenere Kunden einen höheren Umsatz? (Arbeiten Sie mit der Funktion "Analyse" -> "explorative Datenanalyse" und nutzen Sie die Faktorliste

Lösung Aufgabe 7 a + b + c

Kleidergröße (S, M oder L)

a)

		Häufigkeit	Prozent	Gültige Prozent	Kumulative Prozente
Gültig	S	32	21,3	21,3	21,3
1	М	70	46,7	46,7	68,0
1	L	48	32,0	32,0	100,0
	Gesamtsumme	150	100,0	100,0	

Deskriptive Statistiken

b)

	N	Minimum	Maximum	Mittelwert	Standardabw eichung
Umsatz pro Monat in Euro	146	28,73	182,20	111,2769	31,73382
Gültige Anzahl (listenweise)	146				

c)

Lösung Aufgabe 7 d

Deskriptive Statistik

		Deskriptive Statistik			04
	Die Zufriedenheit mit den k	(undenservice in drei Gruppe	n	Statistik	Standardfehle r
Umsatz pro Monat in Euro	geringe Zufriedenheit (1-	Mittelwert	88,6823	2,85154	
	3)	95 % Konfidenzintervall	Untergrenze	82,8503	
		für Mittelwert	Obergrenze	94,5144	
		5% getrimmter Mittelwert		89,4519	
		Median		90,1050	
		Varianz		243,938	
		Standardabweichung		15,61851	
		Minimum		48,13	
		Maximum		112,84	
		Bereich		64,71	
		Interquartilbereich		21,63	
		Schiefe		-,670	,42
		Kurtosis		,068	,83
	mittlere Zufriedenheit (4-	Mittelwert		108,5379	3,7942
	7)	95 % Konfidenzintervall	Untergrenze	100,9827	
		für Mittelwert	Obergrenze	116,0932	
		5% getrimmter Mittelwert		108,8406	
		Median		112,3800	
		Varianz		1122,897	
		Standardabweichung		33,50965	
		Minimum		28,73	
		Maximum		182,20	
		Bereich		153,47	
		Interquartilbereich		50,42	
		Schiefe		-,098	.27
		Kurtosis		-,598	,53
	hohe Zufriedenheit (8-10)	Mittelwert		137,4267	2,9167
		95 % Konfidenzintervall	Untergrenze	131,5053	
		für Mittelwert	Obergrenze	143,3480	
		5% getrimmter Mittelwert		136,4360	
		Median		129,8050	
		Varianz		306,268	
		Standardabweichung		17,50050	
		Minimum		113,82	
		Maximum		181,67	
		Bereich		67,85	
		Interquartilbereich		22,97	
		Schiefe		,967	,39
		Kurtosis		,213	,76

Umsatz pro Monat in Euro

Die Zufriedenheit mit den Kundenservice in drei Gruppen

SPSS Zugriff über den Virtual Desktop der HS Osnabrück

Eine komplette Anleitung für den SPSS Zugriff ist <u>hier</u> verfügbar

Die HS besitzt eine Campuslizenz für SPSS

Mit SPSS kann auf allen Rechnern der HS gearbeitet werden (am Campus)

Von zu Hause kann über den <u>Virtual</u>
<u>Desktop</u> mit der Benutzer Kennung
zugegriffen werden

Bei Fragen zum Virtual Desktop bitte an wenden an folgende Email: support@edvsz.hs-osnabrueck.de

Empfehlungen Weiterführende Literatur

In der Bibliothek an der Hochschule verfügbar

Im <u>Springerlink</u> der HS als PDF verfügbar

Internetauftritt mit Beispieldaten und Übungen

Weiterführender Teil ebenfalls im Springerlink verfügbar

Methodenberatung

→ KONTAKT

Jan-David Liebe, M.A. Sedanstraße 1 (S1)

Tel.: 0541 / 969 - 3252

eMail: j.liebe@hs-osnabrueck.de

Homepage: http://www.wiso.hs-osnabrueck.de/zemit.html

Weiterführende Literatur und Handbücher

Hochschule Osnabrück
University of Applied Sciences

Bühl, A., SPSS 20, Einführung in die moderne Datenanalyse, 13. Auflage, München 2012.

Brosius, F., SPSS 20 für Dummies, Wiley-VCH Verlag, 2012.

Brosius, F., SPSS 19, Verlagsgruppe Hültig Jehle Rehm, Heidelberg 2011.

Akremi, L./Baur, N./Fromm, S., Datenanalyse mit SPSS für Fortgeschrittene, 3. Auflage, Wiesbaden 2011.

Fromm, S., Datenanalyse mit SPSS für Fortgeschrittene 2: Multivariate Verfahren für Querschnittsdaten, Wiesbaden 2010.

Backhaus, K./ Erichson, B./ Plinke, W./ Weiber, R. (Hg.), Multivariate Analysemethoden. Eine anwendungsorientierte Einführung, 13. Auflage, Berlin 2011.

Janssen, J./Laatz, W., Statistische Datenanalyse mit SPSS für Windows, Berlin 2010.

Sarstedt, M./ Schütz, T.,/ Raithel, S., IBM SPSS Syntax - Eine anwendungsorientierte Einführung. 2. Auflage, Vahlen Verlag, München 2010.

Hatzinger, R./Nagel, H., PASW Statistics: Statistische Methoden und Fallbeispiele, München 2009.