Solutions to Introduction to Analytic Number Theory

Susam Pal

Contents

1	The Fundamental Theorem of Arithmetic	2
5	Congruences	7
A	Lemmas	14

Chapter 1

The Fundamental Theorem of Arithmetic

In these exercises lower case latin letters a, b, c, \ldots, x, y, z represent integers. Prove each of the statements in Exercises 1.1 through 1.6.

Exercise 1.1. If (a,b) = 1 and if $c \mid a$ and $d \mid b$, then (c,d) = 1.

Example. Let a = 6 and b = 35, so we have (a, b) = (6, 35) = 1. Let c = 2 and d = 5. We see that $2 \mid 6$ and $5 \mid 35$ and indeed (2, 5) = 1.

Another example. Let a=0 and b=1. Let c=2 and d=1. We see that $c\mid a$ and $d\mid b$ and indeed (c,d)=1.

Proof. Let (c, d) = g. Since $g \mid c$ and $c \mid a$, by the transitive property of divisibility in Theorem 1.1 (b), $g \mid a$. Similarly, $g \mid b$. By the definition of gcd in section 1.3, we know that every common divisor of a and b divides (a, b), therefore $g \mid 1$. Since the only nonnegative integer that divides 1 is 1 itself, g = 1.

Another proof. Since (a, b) = 1, by Theorem 1.2 and the definition of gcd in section 1.3, we know that there are integers x and y such

that ax + by = 1. Since $c \mid a$ and $d \mid b$, we have a = cm and b = dn. Therefore c(mx) + d(ny) = (cm)x + (dn)y = ax + by = 1. This implies (c, d) = 1.

Exercise 1.2. If (a, b) = (a, c) = 1, then (a, bc) = 1.

Example. Let a = 35, b = 6, and c = 14, so we have (a, b) = (35, 6) = 1 and (35, 14) = 1. Indeed (a, bc) = (35, 84) = 1.

Proof. We assume (a,bc) > 1 and obtain a contradiction. Since (a,bc) > 1, from the fundamental theorem of arithmetic show in Theorem 1.10, we know that there is a prime p such that $p \mid (a,bc)$. By the definition of gcd in section 1.3, we know that $p \mid a$ and $p \mid bc$. If $p \mid bc$, from Thereom 1.9 we know that $p \mid b$ or $p \mid c$. If $p \mid a$ and $p \mid b$, from the definition of gcd we know that $p \mid (a,b)$. But (a,b) = 1. Since the only nonnegative integer that divides 1 is 1 itself, we have obtained a contradiction. If $p \mid a$ and $p \mid c$, we obtain a contradiction similarly. Thus (a,bc) = 1.

Another proof. This proof avoids the use of the fundamental theorem of arithmetic. Let d=(a,bc). We will first show that (d,b)=1 and then conclude later that d=1. Let (d,b)=e. Since $e\mid d$ and $d\mid a$, by the transitive property of divisibility in Theorem 1.1 (b), we get $e\mid a$. Since $e\mid a$ and $e\mid b$, by the definition of gcd and Theorem 1.3 (c), we get $e\mid (a,b)=1$. Since $e\geq 0$ by the definition of gcd and since the only nonnegative integer that divides 1 is 1 itself, e=1, i.e., (d,b)=1. Since $d\mid bc$ and (d,b)=1, by Thereom 1.5, we get $d\mid c$. Since $d\mid a$ and $d\mid c$, from the definition of gcd, we get $d\mid (a,c)=1$. Thus d=1.

Yet another proof. This is a simple proof that depends only on the properties of gcd shown in section 1.3. Since (a, b) = 1 and (a, c) = 1, there exist integers x_1, y_1, x_2 , and y_2 such that

$$ax_1 + by_1 = 1,$$

$$ax_2 + cy_2 = 1.$$

Therefore
$$(ax_1 + by_1)(ax_2 + cy_2) = 1$$

 $\iff a(ax_1x_2 + cx_1y_2 + by_1x_2) + bc(y_1y_2) = 1$. Therefore (a, bc) = 1.

Exercise 1.3. If (a, b) = 1, then $(a^n, b^k) = 1$ for all $n \le 1, k \le 1$.

Proof. We assume $(a^n, b^n) > 1$ and obtain a contradiction. Since $(a^n, b^n) > 1$, from the fundamental theorem of arithmetic shown in Theorem 1.10, we know that there is a prime p such that $p \mid (a^n, b^n)$. Since $p \mid a^n$, from Theorem 1.9 we know that $p \mid a$. Similarly, we know that $p \mid b$. Since $p \mid a$ and $p \mid b$, from the definition of gcd in section 1.3, we get $p \mid (a, b) = 1$. This is a contradiction because the only nonnegative integer that divides 1 is 1 itself.

Exercise 1.4. If (a,b) = 1, then (a+b,a-b) is either 1 or 2.

Proof. Let d=(a+b,a-b). If a+b and a-b are relatively prime, then d=1. If they are not relatively prime, then d>1. Then by the fundamental theorem of arithmetic shown in Theorem 1.10, there is a prime p such that $p \mid d$. From the definition of gcd in section 1.3, we get $p \mid (a+b)$ and $p \mid (a-b)$. From the linearity property of divisibility in Theorem 1.1 (c), we get $p \mid 2a$ and $p \mid 2b$. Now there are two cases to consider: $p \mid 2$ and $p \nmid 2$. If $p \mid 2$, p=2 because the only prime that divides 2 is 2 itself. If $p \nmid 2$, by Theorem 1.8, we have (p,2)=1. If $p \mid 2a$ and (p,2)=1, then by Euclid's lemma shown in Theorem 1.5, we have $p \mid a$. We can similarly show that if $p \nmid 2$, then $p \mid b$. Thus by the definition of gcd, we get $p \mid (a,b)=1$. Since the only positive integer that divides 1 is 1 itself, we have obtained a contradiction. Therefore, if d>1, the only prime p such that $p \mid d$ is p=2. Thus d=2. We have shown that d=1 or d=2. □

Another proof. This is a simpler proof that depends only on the properties of gcd. Since (a,b) = 1, from the definition of gcd in

section 1.3, we know that there are integers x and y such that ax + by = 1. Therefore,

$$(a+b)(x+y) + (a-b)(x-y) = 2(ax+by) = 2.$$

Thus from the linearity property in Theorem 1.1 (c), we know that $(a+b,a-b) \mid 2$. Now from the comparison property in Theorem 1.1 (i), we know that $(a+b,a-b) \leq 2$.

Exercise 1.5. If (a, b) = 1, then $(a + b, a^2 - ab + b^2)$ is either 1 or 3.

Proof. Let $d = (a + b, a^2 - ab + b^2)$. If (a + b) and $a^2 - ab + b^2$ are relatively prime, then d=1. If they are not relatively prime, then d > 1. Then by the fundamental theorem of arithmetic in Theorem 1.10, there is a prime p such that $p \mid d$. From the definition of gcd in section 1.3, we get $p \mid (a+b)$ and $p \mid (a^2-ab+b^2)$. From the linearity property of divisibility in Theorem 1.1 (c), we get $p \mid (a+b)^2 - (a^2 - ab + b^2) = 3ab$. Thus from Theorem 1.9, $p \mid 3$ or $p \mid a$ or $p \mid b$. If $p \mid a$, since $p \mid (a+b)$, using the linearity property of divisibility again, we see that $p \mid b$. But then by properties of gcd, $p \mid (a,b) = 1$. This is a contradiction, since the only positive integer that divides 1 is 1 itself. Therefore we conclude that $p \nmid a$. We can show similarly that $p \nmid b$. Thus we are left with only $p \mid 3$. Using the contrapositive of Theorem 1.9, we conclude that $p \nmid ab$. Thus using Theorem 1.8, we conclude that (p, ab) = 1. Since $p \mid 3ab$, using Euclid's Lemma in Theorem 1.5, we get $p \mid 3$. Thus p = 3. Therefore if d > 1, the only prime p such that $p \mid d$ is p = 3. We have shownt that d = 1 or d = 3.

Exercise 1.6. If (a, b) = 1 and $d \mid (a + b)$, then (a, d) = (b, d) = 1.

Example. Let a=5 and b=7. Thus a+b=12. We see that $2 \mid 12$ and indeed (2,5)=(2,7)=1. We can pick any other divisor of d of 12 and indeed (d,5)=(d,7)=1 holds.

CHAPTER 1. THE FUNDAMENTAL THEOREM OF ARITHMETIC6

Proof. Let g = (a, d). By the definition of gcd in section 1.3, $g \mid a$ and $g \mid d$. Since $g \mid d$ and $d \mid (a + b)$, using the transitive property of divisibility in Theorem 1.1 (b), we get $g \mid (a + b)$. Since $g \mid a$ and $g \mid (a + b)$, using the linearity property of divisibility in Theorem 1.1 (c), we get $g \mid b$. Since $g \mid a$ and $g \mid b$, using the property of gcd, we get $g \mid (a, b) = 1$. But the only nonnegative integer that divides 1 is 1 itself, therefore, g = 1. Therefore, (a, d) = 1. We can similarly show that (b, d) = 1.

Exercise 1.7. A rational number a/b with (a,b) = 1 is called a reduced fraction. If the sum of two reduced fractions in an integer, say (a/b) + (c/d) = n, prove that |-b| = |d|.

Proof. Since (a/b) + (c/d) = n, we get ad + bc = nbd. Thus ad = b(nd - c). This shows that $b \mid ad$. Since $b \mid ad$ and (a, b) = 1, from Euclid's lemma in Theorem 1.5 we get, $b \mid d$. We can similarly show that $d \mid bc$ and thus $d \mid b$. Since $b \mid d$ and $d \mid b$, from Theorem 1.1 (i), we get |d| = |b|.

Exercise 1.8. An integer is called *squarefree* if it is not divisible by the square of any prime. Prove that for every $n \ge 1$ there exist uniquely determined a > 0 and b > 0 such that $n = a^2b$, where b is squarefree.

Proof. TODO

Chapter 5

Congruences

Exercise 5.1. Let S be a set of n integers (not necessarily distinct). Prove that some nonempty subset of S has a sum which is divisible by n.

Proof. Let $S = \{s_1, s_2, \dots, s_n\}$. Let us define r_k such that

$$s_1 + s_2 + \dots + s_k \equiv r_k \pmod{n}$$

where $0 \le r_k < n$. Theorem 1.14 guarantees that such r_k exists for k = 1, 2, ..., n. Now consider the set

$$R = \{r_1, r_2, \dots, r_n\}.$$

Either there exists r_m in R such that $r_m \equiv 0 \pmod{n}$ or no such r_m exists. If such an r_m exists, then $n \mid r_m$. If no such r_m exists then $1 \leq r_k < n$ for each r_k in R. Therefore each of the n elements in R can have one of n-1 values. By pigeonhole principle, there are at least two elements in R must have the same value. Let $r_i = r_j$ where j > i. Then $r_j - r_i = s_{i+1} + \dots + s_j \equiv 0 \pmod{n}$.

Exercise 5.2. Prove that $5n^3 + 7n^5 \equiv 0 \pmod{12}$ for all integers n.

Proof. Let $f(n) = 5n^3 + 7n^5$. If $f(k) \equiv 0 \pmod{12}$ where k is an integer such that $0 \le k < 12$, then by Theorem 5.2 (b), $f(n) \equiv 0 \pmod{12}$ for all $n \equiv k \pmod{12}$. We can verify that $f(k) \equiv 0 \pmod{12}$ for $k = 0, 1, \ldots, 11$. Thus $f(n) \equiv 0 \pmod{12}$ for all $k = 0, 1, \ldots, 11$. By theorem Theorem 5.10 (c), $f(n) \equiv 0 \pmod{12}$ for all integers n.

Another proof. Since $7 \equiv -5 \pmod{12}$, using 5.2 (a) we get

$$5n^3 + 7n^5 \equiv 5n^3 - 5n^5 \pmod{12}.$$

Now we want to solve

$$5n^3 - 5n^5 \equiv 0 \pmod{12}.$$

The above congruence can be rewritten as

$$5n^3(1+n)(1-n) \equiv 0 \pmod{12}$$
.

We can verify that this congruence holds good for $n \equiv k \pmod{3}$ for k = 0, 1, 2 and $n \equiv k \pmod{4}$ for k = 0, 1, 2, 3. Thus the congruence holds good for $n \equiv k \pmod{12}$ for $k = 0, 1, 2, \ldots, 11$.

Exercise 5.3 (a). Find all positive integers n for which $n^{13} \equiv n \pmod{1365}$.

Solution. Since $1365 = 3 \cdot 5 \cdot 7 \cdot 13$, we want to find all positive integers n such that $n^{13} \equiv n \pmod{3 \cdot 5 \cdot 7 \cdot 13}$. Using the Little Fermat Theorem from Theorem 5.19, we find that:

- For all integers n, $n^{13} = (n^3)^3 \cdot n^3 \cdot n \equiv n \cdot n \cdot n \equiv n^3 \equiv n \pmod{3}$.
- For all integers n, $n^{13} = (n^5)^2 \cdot n^3 \equiv n^2 \cdot n^3 \equiv n^5 \equiv n \pmod{5}$.
- For all integers $n, n^{13} = n^7 \cdot n^6 \equiv n \cdot n^6 \equiv n^7 \equiv n \pmod{7}$.
- For all integers n, $n^{13} \equiv n \pmod{13}$.

Since 3, 5, 7, and 13 are relatively prime in pairs, we conclude that $n^{13} \equiv n \pmod{1365}$ for all integers n.

Exercise 5.3 (b). Find all positive integers n for which $n^{17} \equiv n \pmod{4080}$.

Solution. Since $4080 = 16 \cdot 3 \cdot 5 \cdot 17$, we want to find all positive integers n such that $n^{17} \equiv n \pmod{16 \cdot 3 \cdot 5 \cdot 17}$. Using the Little Fermat Theorem from Theorem 5.19, we get:

- For all integers n, $n^{17} = (n^3)^3 \cdot (n^3)^2 \cdot n^2 \equiv n \cdot n^2 \cdot n^2 \equiv n^3 \cdot n^2 \equiv n \cdot n^2 \equiv n^3 \equiv n \pmod{3}$.
- For all integers n, $n^{17} = (n^5)^3 \cdot n^2 \equiv n^3 \cdot n^2 \equiv n^5 \equiv n \pmod{5}$.
- For all integers $n, n^{17} \equiv n \pmod{17}$.

We can verify that $n^{17} \equiv n \pmod{16}$ if and only if $n \equiv k \pmod{16}$ where $k \in \{0, 1, 3, 5, 7, 9, 11, 13, 15\}$. Since 16, 3, 5, and 17 are relatively prime in pairs, we conclude that $n^{17} \equiv n \pmod{13}$ for all integers $n \equiv k \pmod{16}$ where $k \in \{0, 1, 3, 5, 7, 9, 11, 13, 15\}$.

Exercise 5.4 (a). Prove that $\varphi(n) \equiv 2 \pmod{4}$ when n = 4 and when $n = p^a$, where p is a prime, $p \equiv 3 \pmod{4}$.

Proof. If n=4, $\varphi(n)=\varphi(2^2)=2^2-2=2\equiv 2\pmod 4$. We used Theorem 2.5 in this computation. Let $a\geq 1$ because $\varphi(p^0)=1\not\equiv 2\pmod 4$. If $n=p^a$, where p is prime, $p\equiv 3\pmod 4$, $\varphi(n)=\varphi(p^a)=p^a-p^{a-1}\equiv 3^a-3^{a-1}\pmod 4$. Note that

$$3^a \equiv 1 \pmod{4}$$
 if a is even,
 $3^a \equiv 3 \pmod{4}$ if a is odd.

Thus

$$3^a - 3^{a-1} \equiv 3 - 1 \equiv 2 \pmod{4}$$
 if a is even, $3^a - 3^{a-1} \equiv 1 - 3 \equiv -2 \equiv 2 \pmod{4}$ if a is odd.

We have shown that $\varphi(n) \equiv 2 \pmod{4}$ when p is a prime such that $p \equiv 3 \pmod{4}$.

Exercise 5.4 (b). Find all n for which $\varphi(n) \equiv 2 \pmod{4}$.

Solution. Let us consider the following sets:

- Let $S_1 = \{1\}$.
- Let $S_2 = \{n \mid n = 2^a\}$ for integer $a \ge 1$.
- Let $S_3 = \{n \mid n = p^a m\}$ for prime $p \equiv 1 \pmod{4}$, integers $a \geq 1, m \geq 1, (p, m) = 1$.
- Let $S_4 = \{n \mid n = p^a q^b m\}$ for primes $p \equiv q \equiv 3 \pmod{4}$, $p \neq q$, integers $a \geq 1$, $b \geq 1$, $m \geq 1$, (p, m) = (q, m) = 1, and (p', m) = 1 for all primes $p' \equiv 1 \pmod{4}$.
- Let $S_5 = \{n \mid n = p^a 2^b\}$ for prime $p \equiv 3 \pmod{4}$ and integers a > 1, b > 1.
- Let $S_6 = \{n \mid n = p^a\}$ for prime $p \equiv 3 \pmod{4}$ and integer a > 1.

We now show that every integer n belongs to one of the above sets. First note that every integer has an odd prime factor or it does not. Now consider the following cases:

- If n does not have an odd prime factor, $n \in S_1 \cup S_2$.
- If n has an odd prime factor, the factor is either of the form 4k + 1 or of the form 4k + 3 where k is an integer.
 - If n has an odd prime factor of the form 4k + 1, $n \in S_3$.
 - If n has an odd prime factor but none of the factors is of the form 4k+1, then all its odd prime factors must be of the form 4k+3. For such an n, either only a single prime of the form 4k+3 divides n or multiple distinct primes of the form 4k+3 divide n.

- * If multiple distinct primes of the form 4k + 3 divide $n, n \in S_4$.
- * If only a single prime of the form 4k + 3 divides n, consider that either $2 \mid n$ or $2 \nmid n$.
 - · If only a single prime of the form 4k + 3 divides n and $2 \mid n, n \in S_5$.
 - If only a single prime of the form 4k + 3 divides n and $2 \nmid n$, $n \in S_6$.

We have shown that $S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5 \cup S_6$ is the set of all integers. We will now find all integers n for which $\varphi(n) \equiv 2 \pmod{4}$.

- If $n \in S_1$, i.e., if n = 1, then $\varphi(n) = 1 \not\equiv 2 \pmod{4}$.
- If $n \in S_2$, i.e., if $n = 2^a$ for integer $a \ge 1$, then $\varphi(n) \equiv 2^{a-1} \pmod{4}$. Thus $\varphi(n) = 2 \pmod{4}$ if and only if a = 2, i.e., n = 4.
- If $n \in S_3$, i.e., if $n = p^a m$ for prime $p \equiv 1 \pmod{4}$, integers $a \geq 1$, $m \geq 1$, (p,m) = 1, then $\varphi(n) = \varphi(p^a)\varphi(m) = (p^a p^{a-1})\varphi(m) \equiv (1-1)\varphi(m) \equiv 0 \pmod{4}$.
- If $n \in S_4$, i.e., if $n = p^a q^b m$ for primes $p \equiv q \equiv 3 \pmod{4}$, $p \neq q$, integers $a \geq 1$, $b \geq 1$, $m \geq 1$, (p,m) = (q,m) = 1, and (p',m) = 1 for all primes $p' \equiv 1 \pmod{4}$, then $\varphi(n) = \varphi(p^a)\varphi(q^b)\varphi(m)$. In the solution to part (a) of this exercise problem we have shown that $\varphi(p^a) \equiv 2 \pmod{4}$ when prime $p \equiv 3 \pmod{4}$ and integer $a \geq 1$. Thus $\varphi(n) \equiv 2 \cdot 2 \cdot \varphi(m) \equiv 0 \not\equiv 2 \pmod{4}$.
- If $n \in S_5$, i.e., if $n = p^a 2^b$ for prime $p \equiv 3 \pmod{4}$ and integers $a \ge 1$, $b \ge 1$, then $\varphi(n) = \varphi(p^a)\varphi(2^b) \equiv 2 \cdot 2^{b-1} \equiv 2^b \pmod{4}$. Thus $\varphi(n) \equiv 2 \pmod{4}$ if and only if b = 1, i.e., $n = 2p^a$.
- If $n \in S_6$, i.e., if $n = p^a$ for prime $p \equiv 3 \pmod{4}$ and integer $a \geq 1$, then $\varphi(n) = \varphi(p^a) \equiv 2 \pmod{4}$ as shown in the solution to Exercise 5.4 (a).

We have shown that $\varphi(n) \equiv 2 \pmod{4}$ if and only if n = 4 or $n = p^a$ or $n = 2p^a$ for prime p and integer $a \ge 1$.

Exercise 5.5. A yardstick is divided into inches is again divided into 70 equal parts. Prove that among the four shortest divisions two have left endpoints corresponding to 1 and 19 inches. What are the right endpoints of the other two?

Solution. TODO

Exercise 5.6. Find all x which simultaneously satisfy the system of congruences

$$x \equiv 1 \pmod{3}, \qquad x \equiv 2 \pmod{4}, \qquad x \equiv 3 \pmod{5}.$$

Solution. From the Chinese remainder theorem shown in Theorem 5.26, we know that there is a unique solution moddulo $3 \cdot 4 \cdot 5 = 60$. Using the method described in the proof of Theorem 5.26, we define the following variables:

$$m_1 = 3,$$
 $b_1 = 1,$ $M_1 = 4 \cdot 5 = 20,$ $M'_1 = 2,$ $m_2 = 4,$ $b_2 = 2,$ $M_2 = 3 \cdot 5 = 15,$ $M'_2 = 3,$ $m_3 = 5,$ $b_3 = 3,$ $M_3 = 3 \cdot 4 = 12,$ $M'_3 = 3.$

Now we obtain the solution as follows:

$$x = b_1 M_1 M_1' + b_2 M_2 M_2' + b_3 M_3 M_3'$$

$$= 1 \cdot 20 \cdot 2 + 2 \cdot 15 \cdot 3 + 3 \cdot 12 \cdot 3$$

$$= 40 + 90 + 108$$

$$= 238 \equiv 58 \pmod{60}.$$

Exercise 5.7. Prove the converse of Wilson's theorem: If $(n-1)! + 1 \equiv 0 \pmod{n}$, then n is prime if n > 1.

Proof. We assume n is composite and obtain a contradiction. If n is composite, then n=cd for some integers c and d where $1 < c \le d < n$. Since $d \mid n$ and $n \mid (n-1)!+1 \equiv 0$, from the transitive property of divisibility shown in Theorem 1.1 (b), we get $d \mid (n-1)!+1$. Since 1 < d < n, $d \mid (n-1)!$. Since $d \mid (n-1)!+1$ and $d \mid (n-1)!$, from the linearity property of divisibility shown in Theorem 1.1 (d), we get $d \mid 1$. Now from the comparison property of divisibility shown in Theorem 1.1 (i), we get $d \le 1$. This is a contradiction since d > 1.

Exercise 5.8. Find all positive integers n for which (n-1)! + 1 is a power of n.

Proof. If $(n-1)!+1=n^k$ for some integer $k \ge 1$, then $n \mid (n-1)!+1$. By the converse of Wilson's theorem in Exercise 5.7, n is prime. Therefore let n=p for some prime p. Thus $(p-1)!+1=p^k$. Subtracting 1 from both sides and dividing both sides by (p-1), we get

$$(p-2)! = \frac{p^k - 1}{p-1}. (1)$$

Now

$$\frac{p^{k}-1}{p-1} = p^{k-1} + p^{k-2} + \dots + p+1$$

$$= (p^{k-1}-1) + (p^{k-2}-2) + \dots + (p-1) + k$$

$$= (p-1)(p^{k-2} + \dots + 1) + (p-1)(p^{k-3} + \dots + 1) + \dots + (p-1) + k.$$

Therefore

$$\frac{p^k - 1}{p - 1} \equiv k \pmod{p - 1}.$$
 (2)

From (1) and (2) we get

$$(p-1)! \equiv k \pmod{p-1}.$$

Appendix A

Lemmas

This appendix presents some interesting results in the form of lemmas. These lemmas are used in some of the solutions.

Lemma 1. The greatest common divisor (gcd) of a and b is the smallest positive integer that can be written as ax + by where a, b, x, and y are integers such that either $a \neq 0$ or $b \neq 0$.

Proof. Let d = (a, b). From the properties of gcd we know that $d \ge 0$ and in fact d = 0 if and only if a = b = 0. Since we have either a or b as nonzero, d > 0. From the properties of gcd, we know that d can be written as ax + by. We will now show that d is the smallest such integer that can be written as ax + by.

Assume there exists an integer d' such that 0 < d' < d and d' = ax + by for some integers x and y. Then $d \mid d'$ by the linearity property of divisibility. Since $d \mid d'$ and $d' \neq 0$, we get $|d| \leq |d'|$ by the comparison property of divisibility. Since $d \geq 0$ and d' > 0, the previous inequality is equivalent to $d \leq d'$. This contradicts our assumption that d' < d.

Lemma 2. If $(a, b_1) = (a, b_2) = \cdots = (a, b_n) = 1$, then $(a, b_1b_2 \cdots b_n) = 1$ where a, b_1, b_2, \ldots, b_n are integers.

Proof. We use induction on n. If n=2, the lemma is true by Exercise 1.2. Assume that the lemma is true for n-1. Therefore $(a,b_1b_2\cdots b_{n-1})=1$. Since $(a,b_1b_2\cdots b_{n-1})=(a,b_n)=1$, by Exercise 1.2 we get $(a,b_1b_2\cdots b_n)=1$.

Lemma 3. If (a,b) = 1, $a \mid c$, and $b \mid c$, then $ab \mid c$ where a, b, and c are integers.

Proof. Since $a \mid c$, we have c = ak for some integer k. Since $b \mid c$, we have $b \mid ak$. Since $b \mid ak$ and (b,a) = 1, by Euclid's lemma we get $b \mid k$. Using the multiplication property of divisibility, we get $ab \mid ak$, i.e., $ab \mid c$.

Lemma 4. If a_1, a_2, \ldots, a_n are relatively prime in pairs, $a_1 \mid c$, $a_2 \mid c$, ..., $a_n \mid c$, then $a_1 a_2 \cdots a_n \mid c$ where a_1, a_2, \ldots, a_n , and c are integers.

Proof. We use induction on n. If n=2, this lemma is true by Lemma ?? of Appendix. Let $A=a_1a_2\cdots a_{n-1}$. Assume that this lemma is true for n-1. Therefore $A\mid c$. Since $(a_n,a_1)=(a_n,a_2)=\cdots=(a_n,a_{n-1})=1$, using Lemma ?? of Appendix we get $(A,a_n)=1$. Since $(A,a_n)=1$, $A\mid c$, and $a_n\mid c$, using the previous lemma we get $Aa_n\mid c$.

Lemma 5. Let m_1, m_2, \ldots, m_r are positive integers, relatively prime in pairs. If

$$x \equiv a \pmod{m_1},$$

 $x \equiv a \pmod{m_2},$
 \vdots
 $x \equiv a \pmod{m_r},$

then $x \equiv a \pmod{m_1 m_2 \cdots m_r}$.

Proof. We have $m_1 \mid (x-a), m_2 \mid (x-a), \ldots, m_r \mid (x-a)$, where m_1, m_2, \ldots, m_r are relatively prime in pairs. Therefore, by the previous lemma, we get $m_1 m_2 \cdots m_r \mid (x-a)$, i.e., $x \equiv a \pmod{m_1 m_2 \cdots m_r}$.

Lemma 6. If n is composite and n > 4, then $n \mid (n-1)!$.

Proof. If n is composite either n is a square of a prime or it isn't. If $n=p^2$ where p is prime, since n>4, we get p>2. Thus $p^2-2p-1=2\geq 3^2-2\cdot 3-1>0$, so we get $p^2-1>2p$. Therefore $(n-1)!=(p^2-1)!=1\cdot 2\cdot 3\cdot 4\cdot 5\cdots p\cdots 2p\cdots (2p-1)\cdots (p^2-1)$. Thus $p^2\mid (n-1)!$ or equivalently $n\mid (n-1)!$.

If $n \neq p^2$ for all primes p, then n = cd for some integers c and d such that 1 < c < d < n. Thus $(n-1)! = 1 \cdot 2 \cdots c \cdots d \cdots (n-1)$. Thus $cd \mid n$ or equivalently $n \mid (n-1)!$.