Imitation Learning with Sinkhorn Distances

Georgios Papagiannis¹ and Yunpeng Li²
¹Imperial College London and ²University of Surrey

ECML PKDD 2022 Grenoble, France

September, 2022

Imperial College London

Reinforcement learning (RL)

Standard Markov Decision Process

Often reward is unavailable or hard to define

Often reward is unavailable or hard to define

▶ Instead, **learn** from demonstrations

Often reward is unavailable or hard to define

- ► Instead, **learn** from demonstrations
- Inverse RL: Explicitly infer reward, optimize with RL (ill posed, computationally expensive)

Often reward is unavailable or hard to define

- Instead, learn from demonstrations
- Inverse RL: Explicitly infer reward, optimize with RL (ill posed, computationally expensive)
- ► Imitation learning: Learn from demonstration directly, without explicit reward inference

Demonstrator policy π_E with occupancy measure ρ_{π_E} :

Demonstrator policy π_E with occupancy measure ρ_{π_E} :

Learner policy π with occupancy measure ρ_{π} :

Demonstrator policy π_E with occupancy measure ρ_{π_E} :

Learner policy π with occupancy measure ρ_{π} :

lacktriangle Measure similarity with metric $\mathcal{D}(
ho_\pi,
ho_{\pi_E})$

Objective: Find π such that $\mathcal{D}(\rho_{\pi}, \rho_{\pi_E})$ is minimized.

Objective: Find π such that $\mathcal{D}(\rho_{\pi}, \rho_{\pi_E})$ is minimized.

The distribution of state-action pairs of the **demonstrator** and the **learner** policies are the **same**, hence the learner has **imitated** the expert

Supervised learning: Behaviour Cloning (BC)

- Supervised learning: Behaviour Cloning (BC)
- ► Kullback-Leibler Divergence: Adversarial Inverse RL (AIRL)¹

¹Fu et al., "Learning Robust Rewards with Adversarial Inverse Reinforcement Learning", ICLR 2018

- Supervised learning: Behaviour Cloning (BC)
- Kullback-Leibler Divergence: Adversarial Inverse RL (AIRL)¹
- ► Jensen-Shannon divergence: Generative Adversarial Imitation Learning (GAIL)²

¹Fu et al., "Learning Robust Rewards with Adversarial Inverse Reinforcement Learning", ICLR 2018

²Ho and Ermon , "Generative adversarial imitation learning", NIPS 2016

- Supervised learning: Behaviour Cloning (BC)
- Kullback-Leibler Divergence: Adversarial Inverse RL (AIRL)¹
- ► Jensen-Shannon divergence: Generative Adversarial Imitation Learning (GAIL)²
- ightharpoonup ... and any f-divergence³

¹Fu et al., "Learning Robust Rewards with Adversarial Inverse Reinforcement Learning", ICLR 2018

²Ho and Ermon , "Generative adversarial imitation learning", NIPS 2016

³Ghasemipour et al., "A Divergence Minimization Perspective on Imitation Learning", CORL 2019

- Supervised learning: Behaviour Cloning (BC)
- Kullback-Leibler Divergence: Adversarial Inverse RL (AIRL)¹
- ▶ Jensen-Shannon divergence: Generative Adversarial Imitation Learning (GAIL)²
- ightharpoonup ... and any $f-{\rm divergence}^3$
- ▶ Dual Wasserstein: Wassertein Adversarial Imitation Learning⁴

 $^{^{1}\}text{Fu}$ et al., "Learning Robust Rewards with Adversarial Inverse Reinforcement Learning", ICLR 2018

²Ho and Ermon , "Generative adversarial imitation learning", NIPS 2016

³Ghasemipour et al., "A Divergence Minimization Perspective on Imitation Learning", CORL 2019

⁴Xiao et al., "Wasserstein Adversarial Imitation Learning", arXiv 2019

- Supervised learning: Behaviour Cloning (BC)
- Kullback-Leibler Divergence: Adversarial Inverse RL (AIRL)¹
- ▶ Jensen-Shannon divergence: Generative Adversarial Imitation Learning (GAIL)²
- ightharpoonup ... and any f-divergence³
- Dual Wasserstein: Wassertein Adversarial Imitation Learning⁴
- Bounded Wasserstein: Primal Wasserstein Imitation Learning⁵

 $^{^{1}\}text{Fu}$ et al., "Learning Robust Rewards with Adversarial Inverse Reinforcement Learning", ICLR 2018

²Ho and Ermon , "Generative adversarial imitation learning", NIPS 2016

 $^{^3}$ Ghasemipour et al., "A Divergence Minimization Perspective on Imitation Learning", CORL 2019

⁴Xiao et al., "Wasserstein Adversarial Imitation Learning", arXiv 2019

⁵Dadashi et al., "Primal Wasserstein Imitation Learning", ICLR 2021

Limitations:

▶ Do not account for the distributions' metric space

- ▶ Do not account for the distributions' metric space
- Not robust to disjoint measures

- ▶ Do not account for the distributions' metric space
- ► Not robust to disjoint measures
- ► Often solved with generative adversarial training, inheriting its disadvantages such as training instability

- ▶ Do not account for the distributions' metric space
- ► Not robust to disjoint measures
- Often solved with generative adversarial training, inheriting its disadvantages such as training instability
- Intractable

- ▶ Do not account for the distributions' metric space
- ► Not robust to disjoint measures
- Often solved with generative adversarial training, inheriting its disadvantages such as training instability
- Intractable
- Locally Optimal

Wasserstein Distance

Given two probability measures p,q, the k-Wasserstein distance calculates the minimal transportation cost of moving measure p to measure q:

$$\mathcal{W}(\rho_{\pi}, \rho_{\pi_E})_c = \left(\inf_{\zeta \in \Omega(p,q)} \int c(x,y)^k d\zeta(x,y)\right)^{\frac{1}{k}}$$

where ζ corresponds to the optimal transport plan and $\Omega(p,q)$ the set of all joint distributions whose marginals correspond to p and q.

⁶Villani. "Optimal Transport: old and new", volume 338, Springer Science & Business Media, 2008

Sinkhorn Distance⁷

$$\mathcal{W}_{s}^{\beta}(\rho_{\pi}, \rho_{\pi_{E}})_{c} = \inf_{\zeta_{\beta} \in \Omega_{\beta}(p,q)} \mathbb{E}_{x,y \sim \zeta_{\beta}} \left[c(x,y) \right]$$

where $\Omega_{\beta}(p,q)$ denotes the set of all joint distributions in $\Omega(p,q)$ with entropy of at least $\mathcal{H}(p) + \mathcal{H}(q) - \beta$.

⁷Cuturi. "Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances", NIPS 2013

Sinkhorn Distance⁷

$$\mathcal{W}_{s}^{\beta}(\rho_{\pi}, \rho_{\pi_{E}})_{c} = \inf_{\zeta_{\beta} \in \Omega_{\beta}(p,q)} \mathbb{E}_{x,y \sim \zeta_{\beta}} \left[c(x,y) \right]$$

where $\Omega_{\beta}(p,q)$ denotes the set of all joint distributions in $\Omega(p,q)$ with entropy of at least $\mathcal{H}(p) + \mathcal{H}(q) - \beta$.

- Accounts for the distributions' metric space
- Is robust to disjoint measures
- ► Improves training stability

- ▶ Tractable
- Globally Optimal

⁷Cuturi. "Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances", NIPS 2013

Sinkhorn Distance in Imitation Learning

Sinkhorn Distance in Imitation Learning

Sample Transport Cost:

Sinkhorn Distance in Imitation Learning

Sample Transport Cost:

$$v_c \; (\underbrace{(s_{z}, a_{z})}_{s_{z}, a_{z}} \sim
ho_{\pi} \;) = \sum_{(s_{z}, a)} c \; (\underbrace{(s_{z}, a_{z})}_{s_{z}, a_{z}}, \underbrace{(s_{z}, a_{z})}_{s_{z}, a_{z}}) \; \zeta_{\beta} \; \underbrace{(s_{z}, a_{z})}_{optimal \; Transport \; Plan}$$

Sinkhorn Imitation Learning (SIL)

 $-v_{c_w}$ per sample reward proxy in reinforcement learning

Sinkhorn Imitation Learning (SIL)

 $-v_{c_w}$ per sample reward proxy in reinforcement learning

SIL's Optimization Objective:

$$\min_{\pi} \max_{w} \mathcal{W}_{s}^{\beta}(\rho_{\pi}, \rho_{\pi_{E}})_{c_{w}}$$

- lacktriangle Cost learned using a neural network (NN) parameterized by w
- Cosine distance between the output of the NN for each state-action pair

Sinkhorn Imitation Learning (SIL) Algorithm

Repeat to convergence:

Step 1: Optimize w parameterised as a NN to maximize $\mathcal{W}_s^{\beta}(\rho_{\pi}, \rho_{\pi_E})_{c_w}$ Step 2: Optimise π to minimize $\mathcal{W}_s^{\beta}(\rho_{\pi}, \rho_{\pi_E})_{c_w}$ using $-v_{c_w}$ as reward and any on-policy reinforcement learning (RL) algorithm

Results Overview

 Successful imitation learning with various numbers of demonstrations

Results Overview

Best performance on each experiment against benchmarks

Environments	Trajectories	вс	GAIL	AIRL	SIL		Trajectories	вс	GAIL	AIRL	SIL
Hopper-v2	2	×	×	/	×	Ant-v2	4	×	×	×	✓
	4	×	×	✓	×		8	×	×	×	✓
	8	×	×	✓	×		16	×	×	×	✓
	16	×	×	~	×		32	×	×	/	×
	32	×	~	×	×	Humanoid-v2	8	/	×	×	×
HalfCheetah-v2	2	×	×	×	~		16	×	×	×	/
	4	×	×	×	~		32	×	~	×	×
	8	×	×	×	~						
	16	×	/	×	×						
	32	×	×	×	\checkmark						
Walker2d-v2	2	×	×	~	×						
	4	×	×	~	×						
	8	×	×	~	×						
	16	×	×	/	×						
	32	×	×	~	×						
	2	~	~	~	1						

► SIL performs SOTA against benchmarks on some environments; on par on the rest

SIL as a regularized maximum entropy Inverse RL framework

- Previous derivation of SIL is the most intuitive.
- ► SIL can also be derived by regularizing the objective of the maximum entropy Inverse Reinforcement Learning framework.
- Proof of the derivation available in the paper.

Summary

- Formulated Imitation learning as minimization of the Sinkhorn Distance.
- ▶ Proposed Sinkhorn Imitation Learning, SIL, a new Imitation learning method that minimizes the Sinkhorn Distance between occuppancy measures, is tractable and bypasses the drawbacks of f-divergence formulations.
- Derived and proved how SIL falls under the regularized maximum entropy Inverse RL frame.
- Obtained competitive or better performance on popular on-policy RL benchmarks.