

Levi King, Markus Dickinson Indiana University

Overview

- ▶ Goal: Evaluate semantic accuracy of non-native speaker (NNS) responses to picture description task (PDT)
- ▶ Compare to gold standard (GS) of native speaker (NS) responses

Past Approach

- 1. Dependency parse NNS responses & GS
- 2. Use custom rules to extract and lemmatize verb-subject-object triple for each response
- 3. Attempt to match NNS triple to GS triples

Past Limitations

- 1. GS is small
- 2. NNS responses show more variation than NS responses
- 3. Matching exact triples is restrictive (no partial matching)
 - $kick(boy, ball) \neq kick(boy, football)$

Upshot: low coverage (50.8%)

Current Approach

Generalize methods by:

- 1. Representing responses as lists of dependencies
- 2. Scoring NNS response representation according to how closely it resembles GS representation partial matching: subj_boy_kick + obj_ball_kick vs. subj_boy_kick + obj_football_kick

Data

Picture Description Task (PDT)

- ▶ 10 items (2 photos, 8 drawings) depicting transitive events
- ▶ PDT elicits natural productions but constrains form & content

Participants

- ▶ 39 NNSs, intermediate/advanced English; 390 sentences
- Arabic, Chinese, Japanese, Korean, Spanish, Kurdish, Polish, Portugese
- ▶ 14 NSs; 140 sentences

Generalizing the Methods

- In the sections below, we explain the system parameter settings. The first two are closely related to generalizing the methods to overcome a limited GS, handle a wider range of sentence types (beyond transitives), and better reflect similarity to the GS.
 - ▶ Response Representation: By moving to a "bag of dependencies" approach, we loosen the strict evaluation from *covered/not covered*; partial dependencies further loosen matching.
 - ▶ Response Scoring: Averaging response term scores or calculating cosine distances allows for gradable rather than binary response scoring.

Response Representation

Responses are dependency parsed and treated as a list of *terms*, which are dependencies in one of the formats below (l, d, h = label, dependent, head; x = placeholder):

- ▶ ldh: subj_boy_kick
- xdh: x_boy_kick
- ▶ lxh: subj_x_kick
- ▶ ldx: subj_boy_x
- ► xdx: x_boy_x

Response Scoring

Scoring responses involves:

- Weighting terms (dependencies)
- ▶ Scoring responses: comparing weighted NNS terms with weighted GS terms
 - Frequency Average (FA):
 - ▶ Weight: NNS terms assigned GS term frequencies
 - ▶ Response score: average of NNS term scores
 - ► Tf-idf Average (TA):
 - ▶ Weight: NNS terms assigned tf-idf scores based on GS frequencies
 - Response score: average of NNS term scores
 - ► Frequency Cosine (FC):
 - ▶ Weight: NNS & GS term frequencies are calculated
 - ▶ Response score: cosine distance between NNS & GS term scores
 - ► Tf-idf Cosine (TC):
 - ▶ Weighting: NNS & GS tf-idf values are calculated
 - ▶ Response score: cosine distance between NNS & GS term scores

Reference Corpus

TA and TC require a reference corpus for deriving tf-idf scores. We experimented with two:

- Brown Corpus (B)
- ▶ Wall Street Journal Corpus (W)

NNS Source

We experiment with two forms of the NNS responses:

- ► NNSO: Original, uncorrected form
- ▶ NNSLM: Language Model autocorrected form

System Evaluation

- 1. Manually annotate responses; unacceptable responses are "errors"
- 2. Use each combination of parameters to produce a scored, ranked list of responses (Table 1)

 Good parameter settings should rank good responses near GS and errors far from GS
- 3. Evaluate and rank parameter settings by (mean) average precision ((M)AP) (Table 3)
- ▶ Also evaluate settings by non-normalized error score, which better illustrates differences in difficulty of PDT items (used in Figure 2)
- 4. Evaluate individual parameter values by MAP (Table 2)

	R	5	Sentence	E		
	1	1.000	she is hurting.	1	1.5	
		1.000	man mull bird	1	1.5	
	3	0.996	the man is hurting duck.	1	3.0	
	4	0.990	he is hurting the bird.	1	3.0	
	11	0.865	the man is trying to hurt a bird	1	11.0	
	12	0.856	a man hunted a bird.	0	0.0	
	17	0.775	the bird not shot dead.	1	17.0	
	18	0.706	he shot at the bird	0	0.0	
	19	0.669	a bird is shot by a un	1	19.0	
	20	0.646	646 the old man shooting the birds			
	37	0.086	the old man shot a bird.	0	0.0	
	38	0.084	a old man shot a bird.	0	0.0	
	39	0.058	a man shot a bird	0	0.0	
	Total Raw Score (not normalized) 17 169					
	Average Precision 0.7508					
L						

Table 1: Excerpt of rankings for Item 10 from the best system setting ($TC_B_NNSLM_Idh$) based on average precision scores. R: rank; S: sentence score; E: error; V: rank value.

Results

Approach		Term Form		Ref. Corp. (TA/TC)		NNS Source	
0.51577	TC	xdh	0.51810	Brown	0.51534	NNSLM	0.51937
0.50780	FC	ldh	0.51677	WSJ	0.50798	NNSO	0.49699
0.50755	TA	lxh	0.51350				
0.49464	FA	xdx	0.49901				
		ldx	0.49352				

Table 2: Approaches and parameters ranked by mean average precision for all 10 PDT items.

- ▶ Best approach: **TC**
- ightharpoonup TC > FC, TA > FA:
- tf-idf weighting > frequency weighting
- ► TC&FC > TA&FA:
- cosine distance > weight averaging
- ► Term form: xdh, ldh, lxh > xdx, ldx
- ► Importance of heads (h): with short transitive responses, verbs are salient (subj/obj head)
- ▶ Reference corpus: **Brown** > **WSJ**
- ► Content & style of responses more like **Brown**
- ► NNS source: NNSLM > NNSO
- More errors in NNSLM forms, inflating MAP values: use non-normalized scores? (see paper)

		0
1	0.5534	$TC_B_NNSLM_lxh$
2	0.5445	$TA_B_NNSLM_lxh$
3	0.5435	$TC_W_NNSLM_lxh$
4	0.5422	$TC_B_NNSLM_xdh$
5	0.5368	$TC_B_NNSLM_Idh$
56	0.4816	$TA_B_NNSO_xdx$
57	0.4796	$FA_na_NNSLM_ldx$
58	0.4769	$FC_na_NNSO_lxh$
59	0.4721	$TA_W_NNSO_xdx$
60	0.4530	$FA_na_NNSO_lxh$

Settings

Rank MAP

Table 3: Based on Mean Average Precision, the five best and five worst settings across all 10 PDT items.

Future Directions: Clustering Items By Features

We used hierarchical clustering to explore for patterns among the items and parameters.

Set-up: cluster PDT items using features from response (e.g., type/token counts for terms) & features from system performance (i.e., average error score for parameter setting).

Goal: new PDT items could be placed into known clusters via response features & optimal parameter settings for that cluster could be applied automatically

Figure 1: PDT items clustered by type and token counts of all NS, NNSO and NNSLM responses.

Figure 2: PDT items clustered by parameter performance.