IITI SOC (Design and Modelling)

PS 1: Design, Finite Element Analysis and Optimization of an Automotive Suspension System using Python

Team Details:

- Davinderpal Singh
- Nishant Bhalani
- Sumit Sarkar

Why We Chose....??

Double Wishbone Suspension

Push Rod Mechanism

- Improved Handling and Stability
- Camber Control
- Independent Wheel Movement
- Customization and Tuning
- Adjustability

- Enhanced Suspension Tuning
- Improved Weight Distribution
- Lesser Unsprung Weight
- Enhanced Performance

This is reference CAD model from which we took inspiration and estimate dimensions.

REFERNCE DESIGN

INITIAL DESIGN

It was our rough idea of design because
This model did not match with the actual
design of suspension system, which thing we
rectified in our model.

FINAL DESIGN

REFERNCE DESIGN

This is our design having approximate dimension as of reference design including knuckle connecting links and piston of suspension.

INITIAL DESIGN

FINAL DESIGN

In this design, we found some errors such as knuckle was thin, and some problem in ball joint was there.

COMPLETE SUSENSION

INITIAL DESIGN

FINAL DESIGN

COMPLETE SUSENSION

In this, we replaced simple coilover damper suspension with push rod mechanism after conversation with mentors.

☐ ASSUMPTIONS:

Model is assumed to be static and linear. Joints are assumed to be frictionless.

Mass of car (Alfa Romeo Giulia)= 1400 kg

Point G is COG Forces:

□ FBD OF
CAR

N1= 4000 N N2=3000 N

3.	Front Track	1.5 m
4.	Rear Track	1.8 m
5.	Center of Gravity(x ,y)	(2.23m, 0.75m)
6.	Vehicle Width	1.8 meters
7.	Vehicle Height	1.4 meters
8.	Total Vehicle Length	4.14 meters
9.	Wheel Base	3.5 meters
	N1	N2
235.99 cm 75.725 cm		
2	1.5 m 2m	

1400 kg

4:3

Sr. No.

Property

Vehicle Mass

Mass Distribution

Material	Component
Aermet-100	1.Nut Bold 2.Spring 3.Push Rod 4.Lower A- Arm Bracket
Low Alloy Steel- 4140	1.Knuckle2. A-Arm3.Damper4.Rods

☐ Materials Used

Centre of Gravity

NO. OF ELEMENTS= 1,57,584 NO. OF NODES=3,48,870

Why we chose hexadominant (quadrilateral) Meshing?

- ☐ Accuracy and Convergence
- ☐ element Quality
- ☐ Mesh Density and Size
- ☐ Solver Efficiency

Deformation(Max.)= 6.97 mm

Factor of Safety(Min.)= 1.0009

To Increase the Factor of Safety, Material of Lower-Arm Bracket changed to Aermet-100, dimensions of bracket increased by 10% and diameter of holes increased to increase the factor of safety.

As expected, FOS(min.) increased to 1.6841

REFERENCES:

Design Reference

Vehicle Dynamic Course