TP2 – File d'attente

Considérons une file d'attente Memoryless inter-arrival/Memoryless service times/One server (M/M/1).

Des clients se présentent à un guichet unique, les temps entre les arrivées successives sont des v.a.i.i.d. $(X_i)_{i\geq 1}$ de loi exponentielle de paramètre λ . Les clients sont servis un par un, dans leur ordre d'arrivée dans la file d'attente. Les temps de service $(Y_i)_{i\geq 1}$ sont des v.a.i.i.d. de loi exponentielle de paramètre μ . Un client reste dans la file pendant qu'il se fait servir, puis s'en va. On dit alors que la file est de type FIFO (first in first out).

I. Mise en forme et saturation

- 1. Exprimer les quantités suivantes:
 - N_t^P , nombre de clients qui se sont présentés dans la file avant l'instant t;
 - T_n , instant où le n-ième client commence à se faire servir (donner une expression de T_n en fonction de T_{n-1} et des quantités précédemment introduites);

 - N_t^R , nombre de clients restant dans la file à l'instant t (celui étant en train d'être servi compris);
- 2. En remarquant que $T_n \ge \sum_{i=1}^{n-1} Y_i$, montrer que si $\mu < \lambda$, alors il y a saturation de la file d'attente: presque-sûrement

$$\lim_{t \to +\infty} N_t^R = +\infty.$$

II. Simulation d'une loi exponentielle

On rappelle que la loi exponentielle de paramètre $\lambda > 0$ est la mesure de probabilité sur \mathbb{R} de densité $f(x) = \lambda \exp(-\lambda x) \mathbf{1}_{\mathbb{R}_+}(x)$.

- 1. Ecrire une fonction exponentielle1(a) qui prend en entrée le paramètre a de la loi exponentielle et dont la sortie est une variable aléatoire de loi exponentielle de paramètre λ .
- 2. Ecrire une fonction exponentielle2(a,n) qui prend en entrée le paramètre a de la loi exponentielle et dont la sortie est un n-uplet de v.a.i.i.d. de loi exponentielle de paramètre λ .
- 3. Tracer, sur un même graphique, la densité de la loi exponentielle de paramètre 1 et l'histogramme d'un *n*-échantillon de cette loi. On veillera à choisir judicieusement le nombre de classes de l'histogramme et la taille de l'échantillon.

III. Simulation en tant que processus de renouvellement

Dans cette partie, nous allons simuler la file d'attente sans utiliser les propriétés particulières des lois exponentielles.

- 1. Ecrire une fonction donnees(lambda,mu,T) qui prend en entrée les paramètres λ et μ des lois exponentielles des temps inter-arrivées et des temps de service et un instant T et rend en sortie deux vecteurs: l'un collectant les instants d'arrivée des clients dans l'intervalle [0,T], l'autre les durées de service des clients correspondants. La taille de ces deux vecteurs en sortie est aléatoire. Quelle est sa loi ?
- 2. Ecrire une fonction clientspresentes (lambda, T) qui prend en entrée le paramètre λ de la loi exponentielle des temps inter-arrivées et un instant T, et rend en sortie une réalisation de $t \mapsto N_t^P$ sur [0,T] (évolution du nombre de clients dans la file entre 0 et T). Illustrer graphiquement la loi des grands nombres pour le processus de renouvellement $(N_t^P)_{t>0}$.
- 3. Ecrire une fonction clientsrestants (lambda, mu, T) qui prend en entrée les paramètres λ et μ des lois exponentielles des temps inter-arrivées et des temps de service et un instant T, et rend en sortie une réalisation de $t \mapsto N_t^R$ sur [0, T].
- 4. Donner quelques illustrations graphiques et illustrer graphiquement le phénomène de saturation.

IV. Propriété sans mémoire et minimum de deux variables exponentielles

Soit X et Y deux variables aléatoires indépendantes de lois exponentielles de paramètres respectifs λ et μ . On note $T = \min(X, Y)$.

- 1. Montrer que pour tous $s, t \ge 0$, $\mathbb{P}(X > s + t | X > t) = \mathbb{P}(X > s)$. On dit que la loi exponentielle est sans mémoire.
- 2. Calculer $\mathbb{E}(X)$.
- 3. Montrer que $\mathbb{P}(X=Y)=0$, $\mathbb{P}(X\leq Y)=\frac{\lambda}{\lambda+\mu}$ et $\mathbb{P}(Y\leq X)=\frac{\mu}{\lambda+\mu}$.
- 4. Montrer que T suit la loi exponentielle de paramètre $\lambda + \mu$. On pourra utiliser la fonction de répartition.
- 5. Montrer que pour tout $s, t \geq 0$,

$$\mathbb{P}(\{T \ge t\} \cap \{X \le Y\} \cap \{Y - T \ge s\}) = \mathbb{P}(T \ge t)\mathbb{P}(X \le Y)\mathbb{P}(Y \ge s).$$

6. Montrer que la loi de X-T conditionnée à $\{Y \leq X\}$ est la loi exponentielle de paramètre λ . On pourra utiliser la fonction de répartition conditionnelle $\mathbb{P}(X-T\geq t|Y\leq X)$. Quelle est la loi de Y-T conditionnée à $\{Y\geq X\}$?

V. Simulation en tant que chaîne de Markov à temps continu

Le fait que les $(X_i)_{i\geq 1}$ et les $(Y_i)_{i\geq 1}$ sont des v.a.i de lois exponentielles donnent des propriétés supplémentaires au processus, basées sur les propriétés démontrées dans la partie IV.

On note $Z_0 = 0$ et $(Z_n)_{n \ge 1}$ la suite des instants où il se passe quelque chose (arrivée d'un client dans la file, ou sortie d'un client parce qu'il a été servi). On admet que

• Si au temps Z_n , il y a $N_{Z_n}^R = 0$ client dans la file, alors le prochain événement sera l'arrivée d'un nouveau client dans la file: $Z_{n+1} - Z_n$ suit une loi exponentielle de paramètre λ , indépendante de tout ce qui s'est passé avant Z_n , et

$$N_{Z_{n+1}}^{R} = 1.$$

• Si au temps Z_n , il y a $N_{Z_n}^R = i > 0$ clients dans la file, alors le prochain événement est soit une nouvelle arrivée, soit le départ du client qui était en train d'être traité. Donc, $Z_{n+1} - Z_n$ est le minimum de deux variables aléatoires indépendantes de lois exponentielles, l'une de paramètre λ et l'autre de paramètre μ , indépendantes de tout ce qui s'est passé avant Z_n , donc $Z_{n+1} - Z_n$ suit une loi exponentielle de paramètre $\lambda + \mu$, et

avec probabilité
$$\frac{\lambda}{\lambda+\mu}$$
, $N_{Z_{n+1}}^R=N_{Z_n}^R+1$; avec probabilité $\frac{\mu}{\lambda+\mu}$, $N_{Z_{n+1}}^R=N_{Z_n}^R-1$.

Autrement dit, le processus $(V_n)_{n\geq 0}=(N_{Z_n}^R)_{n\geq 0}$ est une chaîne de Markov classique, à valeur dans $\mathbb N$. Ceci permet de décomposer la simulation en deux temps: on simule la chaîne $(V_n)_{n\geq 0}$ comme une chaîne de Markov classique, et pour retrouver le temps continu, on simule indépendamment les longueurs des intervalles:

- si $N_{Z_n}^R=0$ alors $Z_{n+1}-Z_n$ suit une loi exponentielle de paramètre λ ;
- si $N_{Z_n}^R > 0$ alors $Z_{n+1} Z_n$ suit une loi exponentielle de paramètre $\lambda + \mu$.

a. Etude théorique de la chaîne de Markov induite $(V_n)_{n\geq 0}$

- 1. Donner les probabilités de transition de la chaîne $(V_n)_{n\geq 0}$. Vérifier que la chaîne est irréductible.
- 2. On suppose que $\lambda < \mu$. Montrer qu'il existe une unique probabilité stationnaire $\pi = (\pi_n)_{n \geq 0}$ et la calculer. Calculer

$$\sum_{i=0}^{+\infty} i\pi_i.$$

3. A l'aide du théorème ergodique, montrer que les limites suivantes existent presque sûrement et calculer les limites:

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=0}^{n} V_i \text{ et } \lim_{n \to +\infty} \frac{1}{n} \sum_{i=0}^{n} \mathbf{1}_{\{V_i = 0\}}.$$

b. Simulation de la chaîne de Markov induite

- 1. On pose $p = \frac{\lambda}{\lambda + \mu}$. Ecrire une fonction suivant(p,i) qui simule un pas de la chaîne de Markov $(V_n)_{n \geq 0}$ partant de l'état i.
- 2. Tracer des trajectoires de cette chaîne de Markov, et illustrer graphiquement les deux limites précédentes.