Lecture 2.3: Matrix product

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

Matrix-vector product

Consider a linear map $L:\mathbb{R}^m\to\mathbb{R}^n$ and its associated matrix $\widetilde{L}\in\mathbb{R}^{n\times m}.$

Question: Can we use the matrix \widetilde{L} to compute the image L(x) of a vector $x \in \mathbb{R}^m$?

Proposition

For all $x \in \mathbb{R}^m$ coordinates of $L(x) \in \mathbb{R}^n$ are given by the formula:

$$(L(x))_i = \sum_{j=1}^m \widetilde{L}_{i,j} x_j$$
 for all $i \in \{1, \dots, n\}$.

Visualizing the formula

$$(L(x))_i = \sum_{j=1}^m \widetilde{L}_{i,j} x_j = \widetilde{L}_{i,1} x_1 + \widetilde{L}_{i,2} x_2 + \dots + \widetilde{L}_{i,m} x_m$$

Justification of the formula

$$(L(x))_i = \sum_{j=1}^m \widetilde{L}_{i,j} x_j = \widetilde{L}_{i,1} x_1 + \widetilde{L}_{i,2} x_2 + \dots + \widetilde{L}_{i,m} x_m$$

Matrix-vector product

- We have seen: linear map → matrix
- ightharpoonup We will see now: matrix ightharpoonup linear map

Definition

The linear map associated to a matrix $\widetilde{L} \in \mathbb{R}^{n \times m}$ is the map

$$\begin{array}{cccc} L: & \mathbb{R}^m & \to & \mathbb{R}^n \\ & x & \mapsto & \widetilde{L}x \end{array}$$

where the "matrix-vector" product $\widetilde{L}x\in\mathbb{R}^n$ is defined by

$$(\widetilde{L}x)_i = \sum_{j=1}^m \widetilde{L}_{i,j} x_j$$
 for all $i \in \{1, \dots, n\}$.

Remark: for all $x \in \mathbb{R}^m$, $L(x) = \widetilde{L}x$.

Matrix product

Let $L \in \mathbb{R}^{n \times m}$ and $M \in \mathbb{R}^{m \times k}$.

Definition - Proposition

- The matrix product LM is the $n \times k$ matrix of the linear map $L \circ M$.
- Its coefficients are given by the formula:

$$(LM)_{i,j} = \sum_{\ell=1}^m L_{i,\ell} M_{\ell,j}$$
 for all $1 \le i \le n, \quad 1 \le j \le k.$

Visualizing the formula

$$(LM)_{i,j} = \sum_{\ell=1}^{m} L_{i,\ell} M_{\ell,j} = L_{i,1} M_{1,j} + \dots + L_{i,m} M_{m,j}$$