UFRGS – INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT01168 - 2023/1 - Turma C Prova da área IIA

1 - 3	4	5	Total

Nome:	Cartão:	Turma:	

Regras Gerais:

- $\bullet\,$ Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- $\bullet~$ Justifique to do procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Identidades:				
$\operatorname{sen}(x) = \frac{e^{ix} - e^{-ix}}{2i}$	$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$			
$\operatorname{senh}(x) = \frac{e^x - e^{-x}}{2}$	$\cosh(x) = \frac{e^x + e^{-x}}{2}$			
$(a+b)^n = \sum_{j=0}^{\infty} \binom{n}{j} a^{n-j} b^j, \binom{n}{j} = \frac{n!}{j!(n-j)!}$				
$\operatorname{sen}(x+y) = \operatorname{sen}(x)\operatorname{cos}(y) + \operatorname{sen}(y)\operatorname{cos}(x)$				
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$				

Propriedades:

1	Linearidade	$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{L}\left\{f(t)\right\} + \beta \mathcal{L}\left\{g(t)\right\}$
2	Transformada da derivada	$\mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f(t)\right\} - f(0)$ $\mathcal{L}\left\{f''(t)\right\} = s^2\mathcal{L}\left\{f(t)\right\} - sf(0) - f'(0)$
3	Deslocamento no eixo s	$\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$
4	Deslocamento no eixo t	$\mathcal{L}\left\{u(t-a)f(t-a)\right\} = e^{-as}F(s)$ $\mathcal{L}\left\{u(t-a)\right\} = \frac{e^{-as}}{s}$
5	Transformada da integral	$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}$
6	Filtragem da Delta de Dirac	$\int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a)$
7	Transformada da Delta de Dirac	$\mathcal{L}\left\{\delta(t-a)\right\} = e^{-as}$
8	Teorema da Convolução	$\mathcal{L}\left\{(f*g)(t)\right\} = F(s)G(s),$ onde $(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$
9	Transformada de funções periódicas	$\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-s\tau} f(\tau) d\tau$
10	Derivada da transformada	$\mathcal{L}\left\{tf(t)\right\} = -\frac{dF(s)}{ds}$
11	Integral da transformada	$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\hat{s})d\hat{s}$

Séries:

Series:
$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 \dots, -1 < x < 1$
$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n = x + 2x^2 + 3x^3 + \dots, -1 < x < 1$
$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, -\infty < x < \infty$
$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, -1 < x < 1$
$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, -1 < x < 1$
$sen(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
$\operatorname{senh}(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
$(1+x)^m = 1 + \sum_{n=1}^{\infty} \frac{m(m-1)\cdots(m-n+1)}{n!} x^n,$
$-1 < x < 1, m \neq 0, 1, 2, \dots$

Funções especiais:

Função Gamma	$\Gamma(k) = \int_0^\infty x^{k-1} e^{-x} dx$
Propriedade da Função Gamma	$\Gamma(k+1) = k\Gamma(k), k > 0$ $\Gamma(n+1) = n!, n \in \mathbb{N}$
Função de Bessel modificada de ordem ν	$I_{\nu}(x) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+\nu+1)} \left(\frac{x}{2}\right)^{2m+\nu}$
Função de Bessel de ordem 0	$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!^2} \left(\frac{x}{2}\right)^{2m}$
Integral seno	$\operatorname{Si}(t) = \int_0^t \frac{\operatorname{sen}(x)}{x} dx$

Integrais:

Integrais:
$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2}(\lambda x - 1) + C$
$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$
$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$
$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$
$\int x \operatorname{sen}(\lambda x) dx = \frac{\operatorname{sen}(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^{2}} + C$
$\int e^{\lambda x} \operatorname{sen}(w x) dx = \frac{e^{\lambda x} (\lambda \operatorname{sen}(w x) - w \cos(w x))}{\lambda^2 + w^2}$

Tabela de transformadas de Laplace	Tabela d	e trans	formadas	de	Laplace
------------------------------------	----------	---------	----------	----	---------

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tabel	a de transformadas de Lapiace:	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$F(s) = \mathcal{L}\{f(t)\}$	$J(t) = \mathcal{L} - \{F(s)\}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	$\frac{1}{s^n}$, $(n = 1, 2, 3,)$	·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	$\frac{1}{\sqrt{s}}$,	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	$\frac{1}{s^{\frac{3}{2}}},$	$2\sqrt{\frac{t}{\pi}}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6		$\frac{t^{k-1}}{\Gamma(k)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	$\frac{1}{s-a}$	e^{at}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8		te^{at}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	$\frac{1}{(s-a)^n}$, $(n=1,2,3)$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	$\frac{1}{(s-a)^k}, \qquad (k>0)$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	$\frac{s}{(s-a)(s-b)}, \qquad (a \neq b)$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13		$\frac{1}{w}\operatorname{sen}(wt)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	$\frac{s}{s^2 + w^2}$	$\cos(wt)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15		$\frac{1}{a}\operatorname{senh}(at)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	$\frac{s}{s^2 - a^2}$	$\cosh(at)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	$\frac{1}{(s-a)^2 + w^2}$	$\frac{1}{w}e^{at}\operatorname{sen}(wt)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	$\frac{s-a}{(s-a)^2 + w^2}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	1	$\frac{1}{w^2}(1-\cos(wt))$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	1	$\frac{1}{w^3}(wt - \operatorname{sen}(wt))$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	$\frac{1}{(s^2+w^2)^2}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22		$\frac{t}{2w}\operatorname{sen}(wt)$
$(a^{2} \neq b^{2})$ $\frac{1}{(s^{4} + 4a^{4})}$ $\frac{1}{(s^{4} + 4a^{4})}$ $\frac{1}{4a^{3}}[\operatorname{sen}(at) \operatorname{cosh}(at) - \operatorname{cos}(at) \operatorname{senh}(at)]$ 26 $\frac{s}{(s^{4} + 4a^{4})}$ $\frac{1}{2a^{2}} \operatorname{sen}(at) \operatorname{senh}(at))$ 27 $\frac{1}{(s^{4} - a^{4})}$ $\frac{1}{2a^{3}}(\operatorname{senh}(at) - \operatorname{sen}(at))$	23	$\frac{s^2}{(s^2+w^2)^2}$	$\frac{1}{2w}(\operatorname{sen}(wt) + wt \cos(wt))$
$-\cos(at) \operatorname{senh}(at)]$ $26 \qquad \frac{s}{(s^4 + 4a^4)} \qquad \frac{1}{2a^2} \operatorname{sen}(at) \operatorname{senh}(at))$ $27 \qquad \frac{1}{(s^4 - a^4)} \qquad \frac{1}{2a^3} (\operatorname{senh}(at) - \operatorname{sen}(at))$	24		$\frac{1}{b^2 - a^2}(\cos(at) - \cos(bt))$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	$\frac{1}{(s^4 + 4a^4)}$	100
$\frac{1}{(s^4 - a^4)} \qquad \frac{1}{2a^3} (\operatorname{senh}(at) - \operatorname{sen}(at))$	26	$\frac{s}{(s^4 + 4a^4)}$	1
	27	1	
	28	$\frac{s}{(s^4 - a^4)}$	$\frac{1}{2a^2}(\cosh(at) - \cos(at))$

	$F(s) = \mathcal{L}\{f(t)\}\$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
29	$\sqrt{s-a} - \sqrt{s-b}$	$\frac{1}{2\sqrt{\pi t^3}}(e^{bt} - e^{at})$
30	$\frac{1}{\sqrt{s+a}\sqrt{s+b}}$	$e^{\frac{-(a+b)t}{2}}I_0\left(\frac{a-b}{2}t\right)$
31	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$
32	$\frac{s}{(s-a)^{\frac{3}{2}}}$	$\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$
33	$\frac{1}{(s^2 - a^2)^k}, \qquad (k > 0)$	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-\frac{1}{2}} I_{k-\frac{1}{2}}(at)$
34	$\frac{1}{s}e^{-\frac{k}{s}}, \qquad (k>0)$	$J_0(2\sqrt{kt})$
35	$\frac{1}{\sqrt{s}}e^{-\frac{k}{s}}$ $\frac{1}{\frac{3}{2}}e^{\frac{k}{s}}$	$\frac{1}{\sqrt{\pi t}}\cos(2\sqrt{kt})$
36	$\frac{1}{s^{\frac{3}{2}}}e^{rac{k}{s}}$	$\frac{1}{\sqrt{\pi t}} \operatorname{senh}(2\sqrt{kt})$
37	$e^{-k\sqrt{s}}, \qquad (k>0)$	$\frac{k}{2\sqrt{\pi t^3}}e^{-\frac{k^2}{4t}}$
38	$rac{1}{s} \ln(s)$	$-\ln(t) - \gamma, \qquad (\gamma \approx 0, 5772)$
39	$\ln\left(\frac{s-a}{s-b}\right)$	$\frac{1}{t}\left(e^{bt}-e^{at}\right)$
40	$\ln\left(\frac{s^2 + w^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cos(wt)\right)$
41	$\ln\left(\frac{s^2 - a^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cosh(at)\right)$
42	$\tan^{-1}\left(\frac{w}{s}\right)$	$\frac{1}{t}\operatorname{sen}(wt)$
43	$\frac{1}{s}\cot^{-1}(s)$	$\mathrm{Si}\left(t ight)$
		Onda quadrada
44	$\frac{1}{s} \tanh\left(\frac{as}{2}\right)$	$f(t) = \begin{cases} 1, & 0 < t < a \\ -1, & a < t < 2a \end{cases}$
		f(t+2a) = f(t), t > 0
		Onda triangular
45	$\frac{1}{as^2}\tanh\left(\frac{as}{2}\right)$	$f(t) = \begin{cases} \frac{t}{a}, & 0 < t < a \\ -\frac{t}{a} + 2, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
		D. C.C. L.
46	$\frac{w}{(s^2+w^2)\left(1-e^{-\frac{\pi}{w}s}\right)}$	Retificador de meia onda $f(t) = \begin{cases} sen(wt), & 0 < t < \frac{\pi}{w} \\ 0, & \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases}$ $f\left(t + \frac{2\pi}{w}\right) = f(t), t > 0$
47	$\frac{w}{s^2 + w^2} \coth\left(\frac{\pi s}{2w}\right)$	Retificador de onda completa $f(t) = \operatorname{sen}(wt) $
48	$\frac{1}{as^2} - \frac{e^{-as}}{s\left(1 - e^{-as}\right)}$	Onda dente de serra $f(t) = \frac{t}{a}, \qquad 0 < t < a$ $f(t) = f(t-a), t > a$

• Questão 1 (0.5 cada item) Considere a função f(t) dada por:

$$f(t) = u(t) + tu(t-1) + g(t)u(t-2)$$

Sabe-se que f(t) é dada por partes como:

$$f(t) = \begin{cases} f_1(t), & 0 < t < 1, \\ f_2(t), & 1 < t < 2, \\ 2, & t > 2. \end{cases}$$

Em que $f_1(t)$ e $f_2(t)$ são funções definidas nos respectivos intervalos e g(t) está definida para $t \ge 0$. Marque as alternativas que apresentam expressões para $f_2(t)$, g(t), $\int_0^4 f(t)^2 dt$ e $F(s) := \mathcal{L}\{f(t)\}$.

$$(\) \ f_{2}(t) = t \qquad (\) \ g(t) = 1 \qquad (\) \ f(s) = \frac{s + e^{-s} - e^{-2s}}{s}$$

$$(\) \ f_{2}(t) = t - 1 \qquad (\) \ g(t) = 2$$

$$(\) \ f_{2}(t) = t + 1 \qquad (\) \ g(t) = t - 1$$

$$(\) \ f_{2}(t) = 1 - t \qquad (\) \ g(t) = t - 1$$

$$(\) \ f_{2}(t) = 1 - t \qquad (\) \ g(t) = t + 1$$

$$(\) \ N.D.A. \qquad (x) \ g(t) = 1 - t \qquad (x) \ g(t) = 1 - t \qquad (x) \ F(s) = \frac{s + e^{-s} - e^{-2s}}{s^{2}}$$

$$(\) \ F(s) = \frac{s + e^{-s} - e^{-2s}}{s^{2}}$$

$$(\) \ F(s) = \frac{s + e^{-s} - e^{-2s}}{s^{2}}$$

$$(\) \ F(s) = \frac{s + e^{-s} - e^{-2s}}{s^{2}}$$

$$(\) \ F(s) = \frac{s + e^{-s} + (s - 1)e^{-2s}}{s^{2}}$$

Solução: Observe que, para t > 2, todas as Heavisides valem 1. Logo, para t > 2

$$f(t) = 1 + t + g(t) = 2.$$

Portanto, g(t) = 1 - t. No intervalo 1 < t < 2, temos u(t) = 1, u(t - 1) = 1 e u(t - 2) = 0. Logo, $f_2(t) = 1 + t$. De maneira análoga, calculamos $f_1(t) = 1$.

Escrevemos

$$f(t) = u(t) + tu(t-1) + (1-t)u(t-2)$$

= $u(t) + (t-1)u(t-1) + u(t-1) - (t-2)u(t-2) - u(t-2)$

e usamos a propriedade da translação para obter

$$F(s) = \frac{1}{s} + \frac{e^{-s}}{s^2} + \frac{e^{-s}}{s} - \frac{e^{-2s}}{s^2} - \frac{e^{-2s}}{s}$$
$$= \frac{s + (1+s)e^{-s} - (1+s)e^{-2s}}{s^2}$$

Também,

$$f(t)^{2} = \begin{cases} 1, & 0 < t < 1, \\ (1+t)^{2}, & 1 < t < 2, \\ 4, & t > 2. \end{cases}$$

Logo,

$$\int_0^3 f(t)^2 dt = \int_0^1 f(t)^2 dt + \int_1^2 f(t)^2 dt + \int_2^3 f(t)^2 dt$$

$$= \int_0^1 1 dt + \int_1^2 (1+t)^2 dt + \int_2^3 4 dt$$

$$= 1 + \left[\frac{(1+t)^3}{3} \right]_1^2 + 4$$

$$= 1 + \left(\frac{3^3 - 2^3}{3} \right) + 4$$

$$= \frac{3 + 19 + 12}{3} = \frac{34}{3}.$$

• Questão 2 (0.5 cada item) Seja $\alpha = \ln(2)$, $f(t) = u(t - \alpha) - u(t - 3\alpha)$ e x(t) satisfaz o problema:

$$ax(t) + \int_0^t x(\tau)d\tau = af(t)$$

Assinale as alternativas que apresentam o valor de $x(2\alpha)$ e a valor do salto dado por $\lim_{t\to 3\alpha+} x(t) - \lim_{t\to 3\alpha-} x(t)$, respectivamente. $x(2\alpha) \qquad \qquad \lim_{t\to 3\alpha-} x(t) - \lim_{t\to 3\alpha-} x(t)$

$$x(2\alpha) \qquad \lim_{t \to 3\alpha +} x(t) - \lim_{t \to 3\alpha -} x(t)$$

$$() 2^{-2a^{-1}} \qquad () 2$$

$$(x) 2^{-a^{-1}} \qquad (x) -1$$

$$() 1 \qquad (x) -1$$

$$() 2^{a^{-1}} \qquad () -2$$

$$() 2^{2a^{-1}} \qquad () -3$$

Solução:

$$\begin{pmatrix} a + \frac{1}{s} \end{pmatrix} X(s) = \frac{a}{s} \left(e^{-\alpha s} - e^{-3\alpha s} \right)
\left(s + \frac{1}{a} \right) X(s) = \left(e^{-\alpha s} - e^{-3\alpha s} \right)
X(s) = \frac{1}{s + a^{-1}} \left(e^{-\alpha s} - e^{-3\alpha s} \right)
x(t) = e^{-a^{-1}(t-\alpha)} u(t-\alpha) - e^{-a^{-1}(t-3\alpha)} u(t-3\alpha)
x(2\alpha) = e^{-a^{-1}\alpha}$$

$$\lim_{t \to 3\alpha +} x(t) - \lim_{t \to 3\alpha -} x(t) = -1$$

• Questão 3 (0.5 cada item) Considere a função f(t) dada pela expressão:

$$f(t) = \begin{cases} 1 - t^2, & 0 \le t < 1\\ 0, & 1 \le t < 3\\ 2, & t \ge 3 \end{cases}$$

Assinale abaixo expressões em termos das funções Delta de Dirac e Heavisides para f(t) e g(t) = f'(t)e expressões para as transformadas de Laplace $F(s) = \mathcal{L}\{f(t)\}\$ e $G(s) = \mathcal{L}\{g(t)\}\$ = $\mathcal{L}\{f'(t)\}\$. g(t) = f'(t)f(t)

()
$$(1-t^2)u(t-1) + (1+t^2)u(t-3)$$
 () $\delta(t) - tu(t) + tu(t-1) + \delta(t-3)$

()
$$(1-t^2)u(t) + 2u(t-3)$$
 () $\delta(t) + 2tu(t) - 2tu(t-1)$

$$(x) (1-t^2)u(t) + (t^2-1)u(t-1) + 2u(t-3)$$
 $(b) \delta(t) - 2tu(t) + 2tu(t-1)$

()
$$(1-t^2)u(t) - (t^2-1)u(t-1) + 2u(t-3)$$
 (x) $\delta(t) - 2tu(t) + 2tu(t-1) + 2\delta(t-3)$

()
$$(1-t^2)u(t-1) + (t^2-1)u(t-3)$$
 () $\delta(t) - 2tu(t) + 2\delta(t-3)$

$$F(s) = \mathcal{L}\{f(t)\}$$

$$G(s) = \mathcal{L}\{g(t)\} = \mathcal{L}\{f'(t)\}:$$

$$() \frac{s^2 - 2 + 2(1+s)e^{-s} + 2s^2e^{-3s}}{s^2}$$

$$() \frac{s - 2 + 2(1+s)e^{-s} - 2s^2e^{-3s}}{s^3}$$

$$(\) \ \frac{s^2-2+2(1+s)e^{-s}+2s^2e^{-3s}}{s} \qquad \qquad (\) \ \frac{s^2-2+2(1+s)e^{-s}+2s^2e^{-3s}}{s^3}$$

(x)
$$\frac{s^2 - 2 + 2(1+s)e^{-s} + 2s^2e^{-3s}}{s^3}$$
 () $\frac{s^2 - 2 + 2(1+s)e^{-s} + 2s^2e^{-3s}}{s}$

$$() \frac{s-2+2(1+s)e^{-s}-2s^2e^{-3s}}{s^2}$$

$$() \frac{s-2+2(1+s)e^{-s}-2s^2e^{-3s}}{s^2}$$

()
$$\frac{s-2+2(1+s)e^{-s}-2s^2e^{-3s}}{s^3}$$
 (x) $\frac{s^2-2+2(1+s)e^{-s}+2s^2e^{-3s}}{s^2}$ Solução: Dada a função

$$f(t) = \begin{cases} 1 - t^2, & 0 \le t < 1 \\ 0, & 1 \le t < 3 \\ 2, & t > 3 \end{cases}$$

escrevemos da esquerda para a direita em termos de Heavisides:

$$f(t) = (1 - t^{2})u(t) + (t^{2} - 1)u(t - 1) + 2u(t - 3)$$

$$= u(t) - t^{2}u(t) + (t^{2} - 2t + 1 + 2t - 1 - 1)u(t - 1) + 2u(t - 3)$$

$$= u(t) - t^{2}u(t) + (t - 1)^{2}u(t - 1) + 2(t - 1)u(t - 1) + 2u(t - 3).$$

Calculamos a Transformada de Laplace usando a propriedade do deslocamento em t:

$$F(s) = \frac{1}{s} - \frac{2}{s^3} + \frac{2e^{-s}}{s^3} + 2\frac{e^{-s}}{s^2} + 2\frac{e^{-3s}}{s}$$
$$= \frac{s^2 - 2 + 2(1+s)e^{-s} + 2s^2e^{-3s}}{s^3}.$$

A derivada formal de f(t) é dada por

$$f'(t) = (1 - t^2)\delta(t) - 2tu(t) + (t^2 - 1)\delta(t - 1) + 2tu(t - 1) + 2\delta(t - 3)$$

= $\delta(t) - 2tu(t) + 2tu(t - 1) + 2\delta(t - 3)$
= $\delta(t) - 2tu(t) + 2(t - 1)u(t - 1) + 2u(t - 1) + 2\delta(t - 3)$

e a transformada de Laplace é dada por A derivada formal de f(t) é dada por

$$\mathcal{L}\{f'(t)\} = 1 - \frac{2}{s^2} + \frac{2e^{-s}}{s^2} + \frac{2e^{-s}}{s} + 2e^{-3s}$$
$$= \frac{s^2 - 2 + 2(1+s)e^{-s} + 2s^2e^{-3s}}{s^2}$$

ullet Questão 4 (0.5 cada item + 1.0 pelos gráficos e tabela, todo desenvolvimento é avaliado.) Considere o problema:

$$\frac{1}{\ln(3)}y'(t) + y(t) = 1 + u(t-1), \qquad 0 \le t \le 2$$

$$y(0) = y_0$$

$$y(2) = 2$$

Assinale as alternativas corretas, complete a tabela e trace os gráficos de y(t) e y'(t), indicando eixos e valores notáveis. Use $\sqrt{7} \approx 1,4$.

- , - , - , - , - , - , - , - , - , - ,				
		t	y(t)	y'(t)
$(x) y(1/2) + y(3/2) = 3 + \sqrt{3}$	() 1	1/2	$1+\sqrt{3}$	$\ln(3)\sqrt{3}$
$() y(1/2) + y(3/2) = 3 - \sqrt{3}$	$(\)\ y_0 = 1$	1/2	1 + V 3	111(3) V 3
() $y(1/2) + y(3/2) = \frac{3 - \sqrt{3}}{3}$	() $y_0 = 2$ () $y_0 = 3$	$\lim_{t\to 1-}$	2	ln(3)
() $y(1/2) + y(3/2) = \frac{3+\sqrt{3}}{3}$	$(x) y_0 = 4$ (N.D.A.	$\lim_{t \to 1+}$	2	0
() N.D.A.	() 22	3/2	2	0

Solução:

$$sY(s) - y_0 + \ln(3)Y(s) = \ln(3) \left[\frac{1}{s} + \frac{e^{-s}}{s} \right]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

Portanto:

$$y(t) = y_0 3^{-t} + (1 - 3^{-t}) + u(t - 1)(1 - 3^{1-t})$$
 Vemos que $y(2) = y_0 3^{-2} + (1 - 3^{-2}) + (1 - 3^{-1}) = \frac{y_0 + 14}{9}$, pelo que:
$$y_0 = 4.$$

Finalmente, temos:

$$y(t) = 1 + 3^{1-t} + u(t-1)(1-3^{1-t})$$
 Assim $y(1/2) = 1 + 3^{1/2}$ e $y(3/2) = 1 + 3^{-1/2} + (1-3^{-1/2}) = 2$ Além disso:
$$y'(t) = -\ln(3)3^{1-t} + \delta(t-1)(1-3^{1-t}) + u(t-1)\ln(3)3^{1-t} = [1 - u(t-1)]\ln(3)3^{1-t}$$

• Questão 5 (3.0 pontos) A temperatura numa sala climatizada evolui no tempo conforme o seguinte modelo simplificado:

$$\frac{dv(t)}{dt} = -\lambda(v(t) - v_{amb}) + q(t) \tag{1}$$

onde v(t) representa a temperatura medida, v_{amb} é temperatura ambiente, q(t) é a potência de um aquecedor e λ é uma constante relacionada às trocas de calor. Suponha também que a temperatura é regulada por um sistema de controle automático que procura ajustar a potência q(t) de forma que a temperatura medida se mantenha próxima de zero grau Celcius. O sistema de controle automático é regido pela seguinte equação:

$$q(t) = -\epsilon \frac{dq(t)}{dt} - K_p v(t) - K_d \frac{dv(t)}{dt}$$
(2)

Considere $\epsilon = 1/2$, $K_p = 4$, $K_d = 2$, $\lambda = 2$, $v_{amb} = -10$, v(0) = 0, q(0) = -1

- a) (1.0) Encontre $V(s) := \mathcal{L}\{v(t)\}$. Expresse como uma função racional cujo demoninador é um polinônio cúbico
- b) (1.0) Encontre v(t).
- c) (1.0) Calcule $v_{\infty} := \lim_{t \to \infty} v(t)$ e $q_{\infty} := \lim_{t \to \infty} q(t)$.

Obs: Copie suas respostas finais abaixo. O desenvolvimento também será avaliado.

$$V(s) = -\frac{21s + 40}{s(s+2)(s+6)} = -\frac{21s + 40}{s(s^2 + 8s + 12)}$$

$$v(t) = -\frac{10}{3} - \frac{1}{4}e^{-2t} + \frac{43}{12}e^{-6t} = \frac{-40 - 3e^{-2t} + 43e^{-6t}}{12}$$

$$v_{\infty} = -\frac{10}{3}$$

$$q_{\infty} = \frac{40}{3}$$

Solução:

Da segunda equação, temos:

$$Q(s) = -\frac{1}{2}(sQ(s)+1) - 4V(s) - 2sV(s)$$

$$\left(\frac{1}{2}s+1\right)Q(s) = -\frac{1}{2} - (2s+4)V(s)$$

$$(s+2)Q(s) = -1 - 4(s+2)V(s)$$

Da primeira equação, temos:

$$sV(s) = -2\left(V(s) + \frac{10}{s}\right) + Q(s)$$
$$(s+2)V(s) = -\frac{20}{s} + Q(s)$$
$$(s+2)^{2}V(s) = -\frac{20(s+2)}{s} + (s+2)Q(s)$$

Substituindo uma equação na outra, temos:

$$(s+2)^{2}V(s) = -\frac{20(s+2)}{s} - 1 - 4(s+2)V(s)$$
$$(s^{2} + 8s + 12)V(s) = -\frac{20(s+2)}{s} - 1$$
$$(s+2)(s+6)V(s) = -\frac{20(s+2)}{s} - 1 = -\frac{21s + 40}{s}$$

$$V(s) = -\frac{21s + 40}{s(s+2)(s+6)}$$
$$= -\frac{10}{3}\frac{1}{s} - \frac{1}{4}\frac{1}{s+2} + \frac{43}{12}\frac{1}{s+6}$$

Assim:

$$v(t) = -\frac{10}{3} - \frac{1}{4}e^{-2t} + \frac{43}{12}e^{-6t}$$

Para obter os limites no infinito, calculamos:

$$\lim_{t\to +\infty} v(t) = -\frac{10}{3}$$

Além disso, vemos que:

$$Q(s) = -\frac{1}{s+2} - 4V(s)$$

е

$$\lim_{t\rightarrow +\infty}q(t)=\lim_{s\rightarrow 0+}sQ(s)=-4\lim_{s\rightarrow 0+}sV(s)=\frac{40}{3}$$