CSCI 275: Programming Abstractions

Lecture 32: Learning a Language

Fall 2024

Goal for the next few days

```
(lambda (x y) (+ x y))
```

1. Where does the lambda keyword actually come from?

- 2. Why does Racket's syntax look the way it does?
- 3. A bunch of other cool things

MiniScheme

In the MiniScheme project, we wrote an **interpreter** for a language called MiniScheme

- MiniScheme has a formal grammar that we wrote down
- We made parse trees to represent an intermediate version of the language
- We then interpreted those parse trees to evaluate MiniScheme expressions

Learning a Language & Practical Concerns

What I want you to take away from this class is a practiced, defined notion of

Language design and implementation fundamentals

What's a good way to learn a language?

Know the most fundamental underlying structure!

To Spoil the Punchline....

The rest of this week we are going to talk about the first programming language

It's called the *lambda calculus*

Invented in 1935 by Alonzo Church

MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY

AI Memo No. 349

December 1975

SCHEME

AN INTERPRETER FOR EXTENDED LAMBDA CALCULUS

by

Gerald Jay Sussman and Guy Lewis Steele Jr.

Abstract:

Inspired by ACTORS [Greif and Hewitt] [Smith and Hewitt], we have implemented an interpreter for a LISP-like language, SCHEME, based on the lambda calculus [Church], but extended for side effects, multiprocessing, and process synchronization. The purpose of this implementation is tutorial. We wish to:

Introduction to the Lambda Calculus

The Lambda Calculus

Much like other languages, the lambda calculus has a *syntax* and a *semantics*. Here is its syntax:

```
e ::= x variable \lambda x. e function abstraction e_1 e_2 function application
```

Use parentheses for grouping terms together (λx. λy. x) a b

Function application is left associative: f x y is the same as (f x) y

How do we compute with this?

It is *very simple*: all we can do in the base lambda calculus is apply functions to arguments.

Examples:

```
(\lambda x. x) a gives a (\lambda x. x) b gives us b (\lambda x. x)
```

How do we compute with this?

It is very simple: all we can do in the base lambda calculus is apply functions to arguments.

Examples:

 $(\lambda x. x)$ a gives a $(\lambda x. x (\lambda x. x))$ b gives us b $(\lambda x. x)$

Substituting arguments into functions is called betareduction

These terms are called reducible expressions

How do we compute with the lambda calculus?

We can actually write *many more meaningful* programs than you might expect!

Church
Booleans

Church Numerals

Reminder: Currying

Currying is the approach of returning a function from another function:

Then (equal-x-checker 3) will be a procedure that checks whether any input is equal to 3

```
((equal-x-checker 3) 4) is #f
```

Currying is default in the lambda calculus

Curried functions are actually the only multi-argument functions in the lambda calculus:

$$\lambda x$$
. λy .

We could add something like below, but we choose not to:

$$\lambda xy$$
.

Church Booleans

We can encode values for true and false. We call these "Church Booleans"

Intuition: true and false are two argument functions; they act like (if #t t f) in Scheme

```
true t f = t
false t f = f
```

Church Booleans

Rewriting these in lambda calculus

true =
$$\lambda t$$
. λf . tfalse = λt . λf . f

Variable names don't matter!

Encoding And

and = λb . λc . b c false

Let's walk through the fact this works on the board!

```
true = \lambda t. \lambda f. tfalse = \lambda t. \lambda f. f
```

If true = λt . λf . the and = λb . λc . by a false false = λt . λf . f

Is there another way to encode and?

 $A. \lambda b. \lambda c. b. c. c$

 $B.\lambda b.$ $\lambda c.$ b. c. b.

C. \lambda b. \lambda c. \text{b c true}

D. Something else

E. Nope, only one and!

Church Numerals

We can also encode numbers in the lambda calculus

Intuition: We'll encode numbers as repeated applications of a function f to a value x

Think of each number as a two argument function that applies its first argument to its second argument that number of times

```
0 f x = x
1 f x = f x
2 f x = f (f x)
3 f x = f (f (f x))
```

Church Numerals

Rewriting this in lambda calculus gives

```
zero = \lambda f. \lambda x. x

one = \lambda f. \lambda x. f x

two = \lambda f. \lambda x. f (f x)

n = \lambda f. \lambda x. f (f x)...)
```

```
Wait. If false = \lambda t. \lambda f. fand zero = \lambda f. \lambda x. x
```

Is this a problem?

A.Yes

B.No

C.Maybe?

Given one, how can we get two?

We can define a successor function:

one =
$$\lambda f$$
. λx . f x succ = λn . λf . λx . f (n f x)

To get:

```
two = \lambda f. \lambda x. f(fx)
```

Let's try it out: https://capra.cs.cornell.edu/lambdalab/

How can we add two numbers together?

Given two numbers n and m, discuss in your small groups how you might intuitively compute n + m with just the successor function.

How can we add two numbers together?

One way: given m, apply the successor function m times to n!

plus = λm . λn . n succ m

Let's try it out!

How can we write a recognizer?

Let's write a recognizer (something that returns a Boolean): isZero

This should return (our definition) of true if the argument is zero, and false otherwise