SUMMARY

- 1. A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ and $T(r\mathbf{u}) = rT(\mathbf{u})$ for all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and all scalars r.
- 2. If A is an $m \times n$ matrix, then the function $T_A: \mathbb{R}^n \to \mathbb{R}^m$ given by $T_A(x) = Ax$ for all $x \in \mathbb{R}^n$ is a linear transformation.
- 3. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is uniquely determined by $T(\mathbf{b}_1)$, $T(\mathbf{b}_2), \ldots, T(\mathbf{b}_n)$ for any basis $\{\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n\}$ of \mathbb{R}^n .
- 4. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the $m \times n$ matrix whose jth column vector is $T(\mathbf{e}_j)$. Then $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$; the matrix A is the standard matrix representation of T. The kernel of T is the nullspace of A, and the range of T is the column space of A.
- 5. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ and $T': \mathbb{R}^m \to \mathbb{R}^k$ be linear transformations with standard matrix representations A and B, respectively. The composition $T' \circ T$ of the two transformations is a linear transformation, and its standard matrix representation is BA.
- 6. If y = T(x) = A(x) where A is an invertible $n \times n$ matrix, then T is invertible and the transformation T^{-1} defined by $T^{-1}(y) = A^{-1}y$ is the inverse of T. Both $T^{-1} \circ T$ and $T \circ T^{-1}$ are the identity transformation of \mathbb{R}^n .

EXERCISES

- 1. Is $T([x_1, x_2, x_3]) = [x_1 + x_2, x_1 3x_2]$ a linear transformation of \mathbb{R}^3 into \mathbb{R}^2 ? Why or why not?
- Is T([x₁, x₂, x₃]) = [0, 0, 0, 0] a linear transformation of R³ into R⁴? Why or why not?
- Is T([x₁, x₂, x₃]) = [1, 1, 1, 1] a linear transformation of R³ into R⁴? Why or why nut?
- 4. Is $T([x_1, x_2]) = [x_1 x_2, x_2 + 1, 3x_1 2x_2]$ a linear transformation of \mathbb{R}^2 into \mathbb{R}^3 ? Why or why not?

In Exercises 5–12, assume that T is a linear transformation. Refer to Example 7 for Exercises 9–12, if necessary.

- 5. If T([1, 0]) = [3, -1] and T([0, 1]) = [-2, 5], find T([4, -6]).
- 6. If T([-1, 0]) = [2, 3] and T([0, 1]) = [5, 1]. find T([-3, -5]).

- 7. If T([1, 0, 0]) = [3, 1, 2], T([0, 1, 0]) = [2, -1, 4], and T([0, 0, 1]) = [6, 0, 1], find T([2, -5, 1]).
- 8. If T([1, 0, 0]) = [-3, 1], T([0, 1, 0]) = [4, -1], and T([0, -1, 1]) = [3, -5], find T([-1, 4, 2]).
- 9. If T([-1, 2]) = [1, 0, 0] and T([2, 1]) = [0, 1, 2], find T([0, 10]).
- 10. If T([-1, 1]) = [2, 1, 4] and T([1, 1]) = [-6, 3, 2], find T([x, y]).
- 11. If T([1, 2, -3]) = [1, 0, 4, 2], T([3, 5, 2]) = [-8, 3, 0, 1], and <math>T([-2, -3, -4]) = [0, 2, -1, 0], find T([5, -1, 4]).[Computational aid: See Example 4 in Section 1.5.]
- 12. If T([2, 3, 0]) = 8, T([1, 2, -1]) = -5, and T([4, 5, 1]) = 17, find T([-3, 11, -4]). [Computational aid: See the answer to Exercise 7 in Section 1.5.]

2.3

- 13. $T([x_1, x_2]) = [x_1 + x_2, x_1 3x_2]$
- 14. $T([x_1, x_2]) = [2x_1 x_2, x_1 + x_2, x_1 + 3x_2]$
- 15. $T([x_1, x_2, x_3]) = [x_1 + x_2 + x_3, x_1 + x_2, x_1]$
- **16.** $T([x_1, x_2, x_3]) = [2x_1 + x_2 + x_3, x_1 + x_2 + 3x_3]$
- 17. $T([x_1, x_2, x_3]) = [x_1 x_2 + 3x_3, x_1 + x_2 + x_3, x_1]$
- 18. $T([x_1, x_2, x_3]) = x_1 + x_2 + x_3$
- 19. If $T: \mathbb{R}^2 \to \mathbb{R}^3$ is defined by $T([x_1, x_2]) = [2x_1 + x_2, x_1, x_1 x_2]$ and $T': \mathbb{R}^3 \to \mathbb{R}^2$ is defined by $T'([x_1, x_2, x_3]) = [x_1 x_2 + x_3, x_1 + x_2]$, find the standard matrix representation for the linear transformation $T' \circ T$ that carries \mathbb{R}^2 into \mathbb{R}^2 . Find a formula for $(T' \circ T)([x_1, x_2])$.
- 20. Referring to Exercise 19, find the standard matrix representation for the linear transformation $T \circ T'$ that carries \mathbb{R}^3 into \mathbb{R}^3 . Find a formula for $(T \circ T')([x_1, x_2, x_3])$.

In Exercises 21–28, determine whether the indicated linear transformation T is invertible. If it is, find a formula for $T^{-1}(x)$ in row notation. If it is not, explain why it is not.

- 21. The transformation in Exercise 13.
- 22. The transformation in Exercise 14.
- 23. The transformation in Exercise 15.
- 24. The transformation in Exercise 16.
- 25. The transformation in Exercise 17.
- 26. The transformation in Exercise 18.
- 27. The transformation in Exercise 19.
- 28. The transformation in Exercise 20.
- 29. Mark each of the following True or False.
- ___ a. Every linear transformation is a function.
- ___ b. Every function mapping \mathbb{R}^n into \mathbb{R}^m is a linear transformation.
- c. Composition of linear transformations corresponds to multiplication of their standard matrix representations.
- ___ d. Function composition is associative.

- e. An invertible linear transformation mapping Rⁿ into itself has a unique inverse.
- f. The same matrix may be the standard matrix representation for several different linear transformations.
- g. A linear transformation having an m × n matrix as standard matrix representation maps Rⁿ into R^m.
- ___ h. If T and T' are different linear transformations mapping \mathbb{R}^n into \mathbb{R}^m , then we may have $T(\mathbf{e}_i) = T'(\mathbf{e}_i)$ for some standard basis vector \mathbf{e}_i of \mathbb{R}^n .
- i. If T and T' are different linear transformations mapping \mathbb{R}^n into \mathbb{R}^m , then we may have $T(\mathbf{e}_i) = T'(\mathbf{e}_i)$ for all standard basis vectors \mathbf{e}_i of \mathbb{R}^n .
- **j.** If $B = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is a basis for \mathbb{R}^n and T and T' are linear transformations mapping \mathbb{R}^n into \mathbb{R}^m , then $T(\mathbf{x}) = T'(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$ if and only if $T(\mathbf{b}_i) = T'(\mathbf{b}_i)$ for $i = 1, 2, \dots, n$.
- 30. Verify that $T^{-1}(T(\mathbf{x})) = \mathbf{x}$ for the linear transformation T in Example 9 of the text.
- 31. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ and $T': \mathbb{R}^m \to \mathbb{R}^k$ be linear transformations. Prove directly from Definition 2.3 that $(T' \circ T) \mathbb{R}^n \to \mathbb{R}^k$ is also a linear transformation.
- 32. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Prove from Definition 2.3 that $T(r\mathbf{u} + s\mathbf{v}) = rT(\mathbf{u}) + sT(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and all scalars r and s.

Exercise 33 shows that the reduced row-echelon form of a matrix is unique.

33. Let A be an $m \times n$ matrix with row-echelon form H, and let V be the row space of A (and thus of H). Let $W_k = \operatorname{sp}(\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_k)$ be the subspace of \mathbb{R}^n generated by the first k rows of the $n \times n$ identity matrix. Consider $T_k \colon V \to W_k$ defined by

$$T_k([x_1, x_2, \ldots, x_n])$$

= $[x_1, x_2, \ldots, x_k, 0, \ldots, 0].$

a. Show that T_k is a linear transformation of V into W_k and that $T_k[V] = \{T_k(\mathbf{v}) \mid \mathbf{v} \text{ in } V\}$ is a subspace of W_k .

- c. Assume that A has four columns. Referring to part (b), suppose that $d_1 = d_2$ = 1 and $d_3 = d_4 = 2$. Find the number of pivots in H, and give the location of each.
- d. Repeat part (c) for the case where A has six columns and $d_1 = 1$, $d_2 = d_3 = d_4 = 2$, and $d_5 = d_6 = 3$.
- e. Argue that, for any matrix A, the number of pivots and the location of each pivot in any row-echelon form of A is always the same.
- f. Show that the reduced row-echelon form of a matrix A is unique. [HINT: Consider the nature of the basis for the row space of A given by the nonzero rows of H.1
- 34. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let U be a subspace of \mathbb{R}^m . Prove that the inverse image $T^{-1}[U]$ is a subspace of \mathbb{R}^n .

In Exercises 35-38, let T_1 , T_2 , T_3 , and T_4 be linear transformations whose standard matrix representations are

2.4

$$A = \begin{bmatrix} -4 & 5 & 7 \\ 2 & 4 & 5 \\ 1 & 8 & -5 \end{bmatrix}, \quad B = \begin{bmatrix} 8 & -3 \\ 1 & 4 \\ 2 & 5 \end{bmatrix},$$

$$C = \begin{bmatrix} -5 & 3 & -6 \\ 11 & 7 & -1 \end{bmatrix}, \text{ and}$$

$$D = \begin{bmatrix} 3 & -4 & 1 \\ -2 & 5 & 0 \end{bmatrix},$$

respectively. Use LINTEK or MATLAB to compute the indicated quantity, if it is defined. Load data files for the matrices if the data files are available.

- 35. $(T_1 \circ T_2 \circ T_4)([1, 2, 1])$
- 36. $(T_3 \circ T_1^{-1} \circ T_2)([0, -1])$
- 37. $(T_4 \circ (T_2 \circ T_3)^{-1} \circ T_2)([-1, 0])$
- 38. $(T_1 \circ (T_1 \circ T_2)^{-1} \circ T_4)([-1, 0, 1])$
- 39. Work with Topic 4 of the LINTEK routine VECTGRPH until you can consistently achieve a score of at least 80%.
- 40. Work with Topic 5 of the LINTEK routine VECTGRPH until you can regularly attain a score of at least 82%.

LINEAR TRANSFORMATIONS OF THE PLANE (OPTIONAL)

From the preceding section, we know that every linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is given by $T(\mathbf{x}) = T_a(\mathbf{x}) = A\mathbf{x}$, where A is some 2×2 matrix. Different 2 × 2 matrices A give different transformations because $T(e_1) = Ae_1$ is the first column vector of A and $T(e_2) = Ae_2$ is the second column vector. The entire plane is mapped onto the column space of the matrix A. In this section we discuss these linear transformations of the plane \mathbb{R}^2 into itself, where we can draw reasonable pictures. We will use the familiar x,y-notation for coordinates in the plane.

The Collapsing (Noninvertible) Transformations

For a 2 \times 2 matrix A to be noninvertible, it must have rank 0 or 1. If rank(A) = 0, then A is the zero matrix