Toronto Metropolitan University

Department of Electrical and Computer Engineering COE328- Digital Systems

Midterm (Make up) Examination

November 02, 2022

	A Carlo & Compart on
Duration:	120 Minute

Examiner: Dr. Hossain				
Student Last Name:	Solution	Student First Na	2005	
Student Number	العالمة الله المعاولة	Section #:	*****************	(Required)

MULLS

- Use TMU approved calculators for calculations.
- A custom made handwritten single sided A4 size formula sheet is permitted.
- NO QUESTIONS to be asked. If doubt exists as to the interpretation of any question, you are urged to submit with the answer, a clear statement of any logical assumptions made.
- 4. Use both sides of the sheets. No additional sheets will be supplied

Table 1: Test Score

Question	Total Marks	Obtained Marks
Q1	25	
Q2	25	
Q3	15	
-⊊ Q4	20	
Q5	15	
Total	100	

Q1. (b) Implement the simplified function using NAND gates only.

[4 Marks]

Q1. (c) Implement the simplified function using multiplexers only. Use 4-to-1 and 2-to-1 multiplexers.

This part can be solved in several ways.

[10 Marks]

$$f = \overline{x_2} \overline{x_4} + x_1 x_2 x_4 + x_2 x_3 x_4$$

$$= \overline{x_2} \overline{x_4} (1) + \overline{x_2} x_4 (0) + x_2 \overline{x_4} (0) + x_2 x_4 (x_1 + x_3)$$

$$f_1 = 1 \qquad f_2 = 0 \qquad f_3 = 0 \qquad g_4 = x_1 + x_3$$

$$g_4 = \overline{x_1} (x_3) + x_1(1)$$

Q1. (d) Find the complement of the simplified function using DeMorgan's theorem.

[3 Marks]

$$\vec{f} = \overline{\vec{x}_2 \vec{x}_4 + \vec{x}_1 \vec{x}_2 \vec{x}_4 + \vec{x}_2 \vec{x}_3 \vec{x}_4} \\
= (\vec{x}_2 + \vec{x}_4) (\vec{x}_1 + \vec{x}_2 + \vec{x}_4) (\vec{x}_2 + \vec{x}_3 + \vec{x}_4)$$

Q2. A logic function is implemented in CMOS, Its Pull Up Network (PMOS circuit) is given in the following figure.

Q2. (a) Find the logic function, f.

[5 Marks]

$$f = \left(\bar{x}_1 + \bar{x}_2 + \bar{x}_3\right) \cdot \left(\bar{x}_2 + \bar{x}_1\right) \cdot \bar{x}_3$$

Q2. (b) Simplify the function using Boolean algebra.

[5 Marks]

$$f = ((\overline{x_1} + \overline{x_2}) + \overline{x_3}) (\overline{x_1} + \overline{x_2}) \cdot \overline{x_3}$$

$$= (\overline{x_1} + \overline{x_2}) \cdot \overline{x_3}$$

$$= \overline{x_1} \cdot \overline{x_3} + \overline{x_2} \cdot \overline{x_3}$$

Q2. (c) Implement the simplified circuit in part (b) in CMOS. Show both PUN and PDN.

[8 Marks]

$$f = \overline{x_1}\overline{x_3} + \overline{x_2}\overline{x_3} \quad (for pun)$$

$$f = (x_1 + x_3)(x_2 + x_3) \quad (for pon)$$

$$\underline{f} = (x_1 + x_3)(x_2 + x_3) \quad (for pon)$$

$$\underline{f} = x_3 \quad (x_1 + x_2) \quad pun$$

$$f = x_3 \quad (x_1 + x_2) \quad pun$$

$$f = x_3 + x_1 \cdot x_2 \quad pon$$

Q2. (d) Write the simplified function in part (b) in SOP form. Implement the SOP function using 2-input LUTs.

[7 Marks]

$$f = \overline{x_1} \overline{x_3} + \overline{x_2} \overline{x_3}$$

$$= g + h$$

$$g = \overline{x_1} \overline{x_3} \qquad R = \overline{x_2} \overline{x_3}$$

, ollowing signed numbers are given.

- (a) A decimal number (37)₁₀. Convert it into signed-magnitude binary form, 2's complement form and hexadecimal form. Consider an 8-bit representation where the MSB will indicate the sign of the number.
- (b) A signed-magnitude binary number (1 10 1 1 0 0 1 1 0 0 1 0)₂. Find its equivalent decimal value, 2's complement value, and hexadecimal value.

 [6 Marks]
- (c) A 2's complement binary number (1 0 1 1 0 0 1 1 0 1 10 0)₂. Find its equivalent decimal value, signed-magnitude value, and hexadecimal value.

 [6 Marks]

Show your work and write your answers in the Table below.

Decimal	(37)10	-2866	- 2452
Signed- magnitude	00100101	1101100110010	1100110010100
2's Complement	00100101	1010011001110	1011001101100
Hexadecimal	(25),6	- B32	-994

Q4. (a) Draw the circuit diagram of a full adder. Label all input and output lines. Consider the inputs are x, y, c_{in} ($c_{in} = carry input$) and the outputs are s (sum) and c_o (carry output). [3 Marks]

Q4. (b) Complete the Truth Table of the full adder. Also, find the logic expressions for the s (sum) and c_o (carry output) outputs. Simplify your expressions. [5 Marks]

Truth Table

x	у	Cin	S	<i>c</i> ₀
0	0	0	0	0
0	0	4	1	0
O	1	0	١	O
O	1	}	0	1
1	0	0	1	0
. 1	0	1	O	1
1	1	0	0	١
(1	1,	l	1

S=
$$\overline{\chi}\overline{y}$$
 Cin + $\overline{x}.\overline{y}$ Cin + $\overline{\chi}\overline{y}$ Cin + $\overline{\chi}\overline{y}$ Cin ($\overline{\chi}\overline{y}$ + $\overline{\chi}\overline{y}$)

= $Cin(\overline{\chi}\overline{y}$ + $\overline{\chi}\overline{y}$) + $Cin(\overline{\chi}\overline{y}$ + $\overline{\chi}\overline{y}$)

= $Cin.\overline{\chi}\overline{\oplus}\overline{y}$ + $Cin.\overline{\chi}\overline{\oplus}\overline{y}$

= $\chi \oplus \overline{y} \oplus Cin$
 $C_0 = \overline{\chi}\overline{y}$ Cin + $\chi \overline{y}$ Cin + $\chi \overline{y}$ Cin + $\chi \overline{y}$ Cin

= $\chi \overline{y}$ + $\chi \overline{y}$ Cin + $\chi \overline{y}$ Cin

Use K-map

Q5. A 4-bit ASU is used to add two signed numbers X and Y. The values of X and Y are given in the Table below. Covert X and Y into 2's complement form $x_3x_2x_1x_0$ and $y_3y_2y_1y_0$, respectively. Find the output $c_4s_3s_2s_1s_o$. Comment on ASU's output; is its output correct or wrong? Why? What logic expression can [15 Marks]

Show your work and present your answers on the Table below.

		T-														
	x	Y		X			Y			S=X+Y				Arithmetic Overflow?		
C	-		<i>x</i> ₃	<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₀	<i>y</i> ₃	<i>y</i> ₂	<i>y</i> ₁	<i>y</i> ₀	C ₄	53	s ₂	<i>s</i> ₁	<i>s</i> ₀	* 2
Correct	+3	+3	0	0	1	1	O	0	1 -	1	0	0	1	١	0	No overflow
Correct	+6	-2	0	١	l	0	1	١	1	0	(1)	O	ı	0	0	No overflow
{ wrong	+7	+3	0	1	1	1	0	0	l	1	0	1	0	(0	Overflow
* wrong	-7	-3	- 1	O	0	1	l	١	0	1	T	0	(1	6	Overflow
sign bit affected																
											anus	ed				

$$C_{ov} = C_3 \oplus C_4$$
 or
 $C_{ov} = S_3 \oplus X_3 \oplus Y_3 \oplus C_4$