1 Week 3

- If f(n) = O(g(n)), there exist constants c_1 and c_2 such that $f(n) \leqslant c_2 \cdot g(n)$ holds for all $n \geqslant c_2$.
- If f(n) = O(g(n)), we have $\lim_{n\to\infty} \frac{f_1(n)}{g_1(n)} = c = \text{some constant } c$.

2 Week 3 - Extra

• When using 'Direction 1: Constant Finding' setting c_1 , always set it to match the coefficient on the LHS so that you can cancel.

- When trying to get a contradiction, try and isolate an $x \cdot c_1$ on the RHS, where $x \in \mathbb{Z}$, such that an expression that contains n is $\leqslant xc_1$
- Make judicious use of the *max* function when adding functions together
- If $f_1(n) + f_2(n) \leq c_1 \cdot g_1(n) + c'_1 \cdot g_2(n) \leq \max\{c_1, c'_1\} \cdot (g_1(n) + g_2(n))$, for all $n \geq \max\{c_2, c'_2\}$.

3 Week 4

Let f(n) be a function that returns a positive value for every integer n > 0.

We know:

$$f(1) \le c_1$$

 $f(n) \le \alpha \cdot f(\lceil n/\beta \rceil) + c_2 \cdot n^{\gamma} \text{ for } n \ge 2$

where $\alpha, \beta, \gamma, c_1$ and c_2 are positive constants. Then:

- If $log_b \alpha < \gamma$ then $f(n) = O(n^{\gamma})$
- If $log_b\alpha = \gamma$ then $f(n) = O(n^{\gamma}log(n))$
- If $log_b \alpha > \gamma$ then $f(n) = O(n^{log_\beta(a)})$