

PCT/GB 2003 / 000,030

INVESTOR IN PEOPLE

The Patent Office

Concept House	RECD	07 MAR 2003
Cardiff Road		
Newport	WIPO	PCT
South Wales		
NP10 8QQ		

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 10 January 2003

BEST AVAILABLE COPY

1/77
GSJANUZ E685932-1 D02882
PO1/7700 0.00-0200258.2

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

The Patent Office

Concept House
Cardiff Road
Newport
South Wales NP10 8QQ

1. Your reference

SJA/NLW/58857/000

2. Patent application number
(The Patent Office will fill in this part)

0200258.2 07 JAN 2002

3. Full name, address and postcode of the or of each applicant (underline all surnames)

NORCHIP AS
INDUSTRIVEIEN 8
N-3490 KLOKKARSTUA
NORWAY

Patents ADP number (if you know it)

7946734001

If the applicant is a corporate body, give the country/state of its incorporation

NORWAY

DETECTION OF HUMAN PAPILLOMAVIRUS E6 mRNA

4. Title of the invention

BOULT WADE TENNANT

5. Name of your agent (if you have one)

VERULAM GARDENS
70 GRAY'S INN ROAD
LONDON WC1X 8BT

Patents ADP number (if you know it)

42001

Country
Priority application number
(if you know it)

Date of filing
(day/month/year)

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request?

YES

(Answer 'Yes' if:

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is not named as an applicant, or
- c) any named applicant is a corporate body.

See note (d))

Patents Form 1/77

9. Enter the number of sheets for each of the following items you are filing with this form. Do not count copies of the same document

Continuation sheets of this form 0

Description 44

Claim(s) 10

Abstract 0

Drawing(s) 0

[Signature]

10. If you are also filing any of the following, state how many against each item.

Priority documents 0

Translations of priority documents 0

Statement of inventorship and right to grant of a patent (*Patents Form 7/77*) 0

Request for preliminary examination and search (*Patents Form 9/77*) 0

Request for substantive examination (*Patents Form 10/77*) 0

Any other documents
(Please specify)

11 I/We request the grant of a patent on the basis of this application.

Signature

Date

Boult Wade Tennant

7 January 2002

12. Name and daytime telephone number of person to contact in the United Kingdom Dr Nina L White
020 7430 7500

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 01645 500505.

b) Write your answers in capital letters using black ink or you may type them.

c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.

d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.

e) Once you have filled in the form you must remember to sign and date it.

f) For details of the fee and ways to pay please contact the Patent Office.

DETECTION OF HUMAN PAPILLOMAVIRUS E6 mRNA

The present invention is concerned with
oligonucleotide primers and probes for use in
detecting the presence of mRNA transcripts from the E6
5 gene of human papillomavirus in clinical samples.

In the last few years, there has been an
improvement in the methods used to detect HPV, with
10 methods based on amplification of nucleic acids using
the polymerase chain reaction (PCR) becoming
increasingly widespread. It is now possible to detect
small amounts of HPV DNA (<100 pg), quantify the
15 amount of viral DNA in clinical samples, identify a
broad spectrum of genital HPV types, test for selected
HPV types and localise the viral genome transcripts
and proteins to the individual cells. Since HPV
20 detection is often carried out in the presence of vast
quantities of host nucleic acids and cells not
infected with the virus, the ability of the primers to
be virus specific is critical for a sensitive and
specific amplification.

The present inventors have selected new primer
25 and probe sequences, specific for the E6 region, which
may be used in the detection of E6 transcripts by the
NASBA technique, particularly sensitive, real-time
NASBA, or by RT-PCR. The inventors' approach is based
upon the development of primers specific for regions
30 of E6 which are conserved across high-risk, cancer-
associated HPV types.

Therefore, in accordance with a first aspect the
invention provides target-specific primers and
35 oligonucleotide probes for use in the detection of
human papillomavirus (HPV) E6 mRNA, particularly for
use in detection of HPV E6 mRNA by RT-PCR or NASBA.

In particular, the invention provides primer and probe oligonucleotides comprising the HPV-specific sequences represented as sequence numbers (SEQ NO) 1 to 133 in Table 1. For each individual sequence an indication is given in the column "primer/probe type" of the general types of primers or probes into which the HPV-specific sequence may be incorporated for the purposes of HPV detection. The HPV type and position in the HPV genome is also indicated.

10

Table 1-Summary of primer sequences

	PRIMER/PROBE TYPE	SEQUENCE	SEQ NO	HPV	nt
15	NASBA P2/PCR	CCACAGGAGCGACCCAGAAAGTTA	1	16	116
	NASBA P1/PCR	ACGGTTTGTGTATTGCTGTTC	2	16	368
	NASBA P2/PCR	CCACAGGAGCGACCCAGAAA	3	16	116
	NASBA P1/PCR	GGTTTGTGTATTGCTGTTC	4	16	368
20	NASBA P1/PCR	TCACGTCGCAGTAACGT	126	16	208
	NASBA P1/PCR	TTGCTTGCACTACACACA	127	16	191
	NASBA P1/PCR	TGCAGTACACACATTCTA	128	16	186
	NASBA P1/PCR	GCAGTACACACATTCTAA	129	16	185
25	NASBA P2/PCR	ACAGTTATGCACAGAGCT	130	16	142
	PROBE				
	NASBA P2/PCR	ATATTAGAACATGTGTGTAC	131	16	182
	PROBE				
30	NASBA P2/PCR	TTAGAACATGTGTGTACTGC	132	16	185
	PROBE				
	NASBA P2/PCR	AATGTGTGTACTGCAAG	133	16	188
	PROBE				
35	PROBE	CTTTGCTTTCGGGATTTATGC	5	16	235
	PROBE	TATGACTTTGCTTTCGGGA	6	16	230
	NASBA P2/PCR	CAGAGGAGGAGGATGAAATAGTA	7	16	656
	NASBA P1/PCR	GCACAAACCGAAGCGTAGAGTCACAC	8	16	741
40	PROBE	TGGACAAGCAGAACCGGACAGAGC	9	16	687
	NASBA P2/PCR	CAGAGGAGGAGGATGAAATAGA	10	16	656
	NASBA P1/PCR	GCACAAACCGAAGCGTAGAGTCA	11	16	741
	PROBE	AGCAGAACCGGACAGAGCCCATT	12	16	693
45	NASBA P2/PCR	ACGATGAAATAGATGGAGTT	13	18	702
	NASBA P1/PCR	CACGGACACACAAAGGACAG	14	18	869
	PROBE	AGCCGAACCACACGTACA	15	18	748
	NASBA P2/PCR	GAAAACGATGAAATAGATGGAG	16	18	698
50	NASBA P1/PCR	ACACCAACGGACACACAAAGGACAG	17	18	869
	PROBE	GAACCACAAACGTACACAATG	18	18	752
	NASBA P2/PCR	TTCCGGTTGACCTCTATGT	19	18	651
	NASBA P1/PCR	GGTCGTCGTGAGCTTCT	20	18	817
55	NASBA P2/PCR	GCAAGACATAGAAATAACCTG	21	18	179

	NASBA P1/PCR	ACCCAGTGTAGTTAGTT	22	18	379
	PROBE	TGCAAGACAGTATTGGAACT	23	18	207
5	NASBA P2/PCR	GGAAATACCCCTACGATGAAC	24	31	164
	NASBA P1/PCR	GGACACAACGGTCTTGACA	25	31	423
	PROBE	ATAGGGACGACACACCACACGGAG	26	31	268
	NASBA P2/PCR	GGAAATACCCCTACGGATGAACTA	27	31	164
10	NASBA P1/PCR	CTGGACACAACGGTCTTGACA	28	31	423
	PROBE	TAGGGACGACACACCACACGGGA	29	31	269
	NASBA P2/PCR	ACTGACCTCCACTGTATTGAA	30	31	617
	NASBA P1/PCR	TATCTACTTGTGTGCTCTGT	31	31	766
	PROBE	GACAAGCAGAACCGGACACATC	32	31	687
15	NASBA P2/PCR	TGACCTCCACTGTATTGAGCAATT	33	31	619
	NASBA P1/PCR	TGCGAATATCTACTTGTGTGCTCTGT	34	31	766
	PROBE	GGACAAGCAGAACCGGACACATCCAA	35	31	686
	NASBA P2/PCR	ACTGACCTCCACTGTATT	36	31	617
20	NASBA P1/PCR	CACGATTCCAATGAGGCCAT	37	31	809
	NASBA P2/PCR	TATCCTGAACCAACTGACCTAT	38	33	618
	NASBA P1/PCR	TTGACACATAACGAACTG	39	33	763
	PROBE	CAGATGGACAAGCACAAACC	40	33	694
	NASBA P2/PCR	TCCTGAACCAACTGACCTAT	41	33	620
25	NASBA P1/PCR	CCCATAAGTAGTTGCTGTAT	42	33	807
	PROBE	GGACAAGCACAACCAGCCACAGC	43	33	699
	NASBA P2/PCR	GACCTTGTGTCTCAAGAA	44	33	431
	NASBA P1/PCR	AGGTCAAGTGGGTCAGGATA	45	33	618
	PROBE	AGAAAATGCACTGTGACGTGT	46	33	543
	NASBA P2/PCR	ATTACAGCGGAGTGAGGTAT	47	35	217
30	NASBA P1/PCR	GTCTTGCTTCACTGGA	48	35	442
	NASBA P2/PCR	TCAGAGGAGGAGGAAGATACTA	49	35	655
	NASBA P1/PCR	GATTATGCTCTGTGAACA	50	35	844
	NASBA P2/PCR	CCCGAGGCAACTGACCTATA	51	35	610
	NASBA P1/PCR	GTCAATGTGTGTGCTCTGTA	52	35	770
	PROBE	ATAGAGAAGGCCAGCCATAT	53	35	270
	PROBE	GACAAGCAAACCAACACCTCCAA	54	35	692
35	PROBE	GACAAGCAAACCAACAGACACC	55	35	692
	NASBA P2/PCR	TTGTGTAGGTGCTGGAGAAAT	56	52	144
	NASBA P1/PCR	CCCTCTCTCTAAATGTT	57	52	358
	PROBE	GTGCCTACGCTTTTATCTA	58	52	296
40	NASBA P2/PCR	GTGCCTACGCTTTTATCTA	59	52	296
	NASBA P1/PCR	GGGGTCTCCAACACTCTGAACA	60	52	507
	PROBE	TGCAAACACAAGCGATTCA	61	52	461
	NASBA P2/PCR	TCAGGCCTGGAGACATC	62	58	157
	NASBA P1/PCR	AGCAATCGTAAGCACACT	63	58	301
	NASBA P2/PCR	TCTGTGCATGAAATCGAA	64	58	173
	NASBA P1/PCR	AGCACACTTACATACTG	65	58	291
45	PROBE	TGAAATGCCTGATGCA	66	58	192
	PROBE	TTGCAGCGATCTGAGGTATATG	67	58	218
	NASBA P2/PCR	TACACTGCTGGACAAACAT	68	B	514
	NASBA P1/PCR	TCATCTCTGAGCTGTCT	69	B	619
	NASBA P2/PCR	TACACTGCTGGACAAACATGCA	70	B	514
50	NASBA P1/PCR	GTCACATCCACAGCAACAGGTCA	71	B	693
	PROBE	GTAGGGTTACATTGCTATGAA	72	B	590
	PROBE	GTAGGGTTACATTGCTATGAGC	73	B	590
	NASBA P2/PCR	TGACCTGTTGCTGTGGATGTGA	74	B	693

	NASBA P1/PCR	TACCTGAATCGTCCGCCAT	75	B	832
	PROBE	ATWGTGTGTCCTCATCTGC	76	B	794
5	NASBA P2/PCR	CATGCCATAATGTATAGA	77	C	295
	NASBA P1/PCR	CACCGCAGGCACCTTATTAA	78	C	408
	PROBE	AGAATTAGAGAATTAAGA	79	C	324
	NASBA P2/PCR	GCAGACGACCACTACAGCAA	80	39	210
10	NASBA P1/PCR	ACACCGAGTCCGAGTAATA	81	39	344
	PROBE	ATAGGGACGGGAACCACT	82	39	273
	NASBA P2/PCR	TATTACTCGGACTCGGTGT	83	39	344
	NASBA P1/PCR	CTTGGGTTTCTCTTCGTGTTA	84	39	558
	PROBE	GGACCACAAAACGGGAGGAC	85	39	531
	NASBA P2/PCR	GAAATAGATGAACCCGACCA	86	39	703
	NASBA P1/PCR	GCACACCACGGACACACAAA	87	39	886
	PROBE	TAGCCAGACGGGATGAACCACAGC	88	39	749
15	NASBA P2/PCR	AACCATTGAACCCAGCAGAAA	89	45	430
	NASBA P1/PCR	TCTTTCTGCCGTGCCTGGTCA	90	45	527
	NASBA P2/PCR	GAAACCATTGAACCCAGCAGAAAA	91	45	428
	NASBA P1/PCR	TTGCTATACTTGTGTTCCCTACG	92	45	558
	PROBE	GTACCGAGGGCAGTGTAAATA	93	45	500
20	PROBE	GGACAAACGAAGATTCACA	94	45	467
	NASBA P2/PCR	GTTGACCTGTTGTGTTACCGAAT	95	45	656
	NASBA P1/PCR	CACCACGGACACACAAAGGACAAG	96	45	868
	NASBA P2/PCR	CTGTTGACCTGTTGTGTTACGA	97	45	654
	NASBA P1/PCR	CCACGGACACACAAAGGACAAG	98	45	868
25	NASBA P2/PCR	GTTGACCTGTTGTGTTACGA	99	45	656
	NASBA P1/PCR	ACGGACACACAAAGGACAAG	100	45	868
	PROBE	GAGTCAGAGGAGGAAAACGATG	101	45	686
	PROBE	AGGAAAACGATGAAGCAGATGGAGT	102	45	696
	PROBE	ACAACTAACGCCCAGCAGGCCGAA	103	45	730
30	NASBA P2/PCR	GGAGGAGGATGAAGTAGATA	104	51	658
	NASBA P1/PCR	GCCCCATTAACATCTGCTGTA	105	51	807
	NASBA P2/PCR	AGAGGAGGAGGATGAAGTAGATA	106	51	655
	NASBA P1/PCR	ACGGGCAAACCAGGCTTAGT	107	51	829
	PROBE	GCAGGTGTTCAAGTGTAGTA	108	51	747
35	PROBE	TGGCAGTGGAAAGCAGTGGAGACA	109	51	771
	NASBA P2/PCR	TTGGGGTGCTGGAGACAAACATCT	110	56	519
	NASBA P1/PCR	TTCATCCTCATCCTCATCCTCTGA	111	56	665
	NASBA P2/PCR	TGGGGTGCTGGAGACAAACATC	112	56	520
	NASBA P1/PCR	CATCCTCATCCTCATCCTCTGA	113	56	665
40	NASBA P2/PCR	TTGGGGTGCTGGAGACAAACAT	114	56	519
	NASBA P1/PCR	CCACAAACTTACACTCACAAACA	115	56	764
	PROBE	AAAGTACCAACGCTGCAAGACGT	116	56	581
	PROBE	AGAACTAACACCTCAAACAGAAAT	117	56	610
	PROBE	AGTACCAACGCTGCAAGACGTT	118	56	583
45	PROBE	TTGGACAGCTCAGAGGATGAGG	119	56	656
	NASBA P2/PCR	GATTTCCCTTATGCAGTGTG	120	56	279
	NASBA P1/PCR	GACATCTGTAGCACCTTATT	121	56	410
	PROBE	GACTATTCACTGTATGGAGC	122	56	348
	PROBE	CAACTGAYCTMYACTGTTATGA	123	A	
50	PROBE	GAAMCAACTGACCTAYWCTGCTAT	124	A	
	PROBE	AAGACATTATTCAGACTC	125	A	

Oligonucleotides for use as NASBA P1 primers have the general structure "X₁-SEQ", wherein "X₁" represents a nucleotide sequence comprising a promoter and "SEQ" represents the HPV-specific sequence, as given in Table 1. The inclusion of a promoter sequence is essential in NASBA P1 primers but is not necessary in PCR primers, as discussed below. In a preferred embodiment, X₁ may be a sequence comprising a bacteriophage promoter, preferably the T7 promoter. In the most preferred embodiment, X₁ represents the sequence AATTCTAATACGACTCACTATAGGGAGAAGG.

The oligonucleotide molecules of the invention are selected to be specific for mRNA transcribed from the HPV E6 gene. Active expression of the E7 and E6 genes of HPV is associated with cervical cytological abnormalities which often progress to more serious disease. A number of studies relate the expression of the E6 and E7 genes to oncogenesis. Co-operation between E6 and E7 increases significantly the frequency of immortalization. Evidence has been presented that the E6 and E7 open reading frames are involved in the transforming activity of the virus (Tanaka et al., J. Virol. 63: 1465-1469, 1989). These transformation effects of E6 and E7 may at least in part be explained by their interaction with the cellular tumour suppressor gene products p53 and pRb 25 respectively (Boyer et al., Cancer Research. 56: 105, 1996; Lechner et al. EMBO J. 11: 3045-3051, 4620-4624, 1992).

HPV16 mRNA isolated from transfected cells and a variety of tumour cell lines and lesions containing both extrachromosomal and integrated HPV16 genomes has

been analysed in multiple laboratories (see Doorbar JA et al., Virology 178:254?262, Rohlfs et al., Virology 183:331?342; Sherman et al., Int. J. Cancer 50:356?364). These studies have shown that several 5 different alternatively spliced transcripts may be produced from the E6 and E7 region. In summary, there are four major transcripts: one with the whole E6/E7 gene area (E6), one with a loss of a coding sequence between basepairs 226 and 409 (E6*I), one 10 with a loss of a coding sequence in a larger part of E6 between 226 and 526 (E6*II) and one with the loss of the E7 transcript (E6*III). However there are clearly consensus sequences in the area up to 226 basepairs in the E6 region. The inventors therefore 15 selected the areas between 97 and 226 and between 526 and 880 as areas to target for diagnostic purposes.

The oligonucleotides provided by the invention may be grouped according to specificity for different 20 specific HPV types or groups of HPV types. Sequence numbers 1-12 and 126-133 are specific for HPV type 16, sequence numbers 13-23 are specific for HPV type 18, sequence numbers 24-37 are specific for HPV type 31, sequence numbers 38-46 are specific for HPV type 33. 25 HPV types 16, 18 , 31 and 33 are the major cancer-associated HPV types. Sequence numbers 47-55 are specific for HPV type 35, sequence numbers 56-61 are specific for HPV type 52, sequence numbers 62-67 are specific for HPV type 58, sequence numbers 80-88 are specific for HPV type 39, sequence numbers 89-103 30 are specific for HPV type 45, sequence numbers 104-109 are specific for HPV type 51, sequence numbers 110-122 are specific for HPV type 56. Sequence numbers 68-76 are consensus sequences for group B HPV types (in

particular HPV types 6 and 11). Sequence numbers
77-79 and 125 are consensus sequences for group C HPV
types (including HPV types 18, 39 and 45). Sequence
numbers 123 and 124 are consensus probe sequences for
group A HPV types. Sequence 123 is a consensus for
HPV types 16, 31 and 35; sequence 124 is a consensus
for HPV types 33, 52 and 58).

The oligonucleotide molecules of the invention
are preferably single stranded DNA molecules.
10 Non-natural synthetic polynucleotides which retain the
ability to base-pair with a complementary nucleic acid
molecule and are also within the scope of the
invention, including synthetic oligonucleotides which
incorporate modified bases and synthetic
15 oligonucleotides wherein the links between individual
nucleosides include bonds other than phosphodiester
bonds. The oligonucleotide molecules of the invention
may be produced according to techniques well known in
the art, such as by chemical synthesis using standard
20 apparatus and protocols for oligonucleotide synthesis.

The oligonucleotide molecules provided by the
invention will typically be isolated single-stranded
polynucleotides of no more than 100 bases in length,
more typically less than 55 bases in length. For the
avoidance of doubt it is hereby stated that the
language "oligonucleotide comprising sequence number
n" excludes the naturally occurring full-length HPV
30 genomes.

The invention provides several general types of
oligonucleotide primers and probes incorporating the
HPV-specific sequences listed in Table 1. Typically,

such oligonucleotides may comprise additional, non-HPV sequences, for example sequences which are required for an amplification reaction or which facilitate detection of the products of the amplification

5 reaction. The HPV-specific part of the oligonucleotide may consist of one of the sequences listed in Table 1 in the absence of any other contiguous HPV sequences. However, it will be appreciated that minor variations may be made to the

10 HPV-specific sequences, for example the addition, deletion or substitution of bases, without affecting the ability of the oligonucleotide to bind to its target sequence and function as a primer or probe to a material extent.

15

The first type of oligonucleotides are primer 1 oligonucleotides (also referred to herein as NASBA P1 primers), which are oligonucleotides of generally approximately 50 bases in length, containing an

20 average of about 20 bases at the 3' end that are complementary to a region of the target mRNA.

Oligonucleotides suitable for use as NASBA P1 primers are denoted "NASBA P1/PCR" in Table 1. The 5' ends of the P1 primer oligonucleotides (represented herein in general terms as X₁) comprise a promoter sequence that

25 is recognized by a specific RNA polymerase.

Bacteriophage promoters, for example the T7, T3 and SP6 promoters, are preferred for use in the oligonucleotides of the invention, since they provide

30 advantages of high level transcription which is dependent only on binding of the appropriate RNA polymerase. In a preferred embodiment, the 5' terminal sequence of the P1 primer oligonucleotides may comprise the sequence AATTCTAATACTGACTCACTATAGGG or

the sequence AATTCTAATACGACTCACTATAGGGAGAAGG. These sequences contains a T7 promoter, including the transcription initiation site for T7 RNA polymerase. The HPV-specific sequences denoted in Table 1 as "NASBA P1/PCR" are suitable for use in both NASBA P1 primers and standard PCR primers. When these sequences are used as the basis of NASBA P1 primers they have the general structure X_1 -SEQ, wherein X_1 represents a sequence comprising a promoter and SEQ represents the HPV-specific sequence. The promoter sequence X_1 is essential. However, when the same sequences are used as the basis of standard PCR primers it is not necessary to include X_1 . The phrase "sequence number" as used in the claims is to be interpreted accordingly.

For the avoidance of doubt, the phrase "a NASBA P1 primer comprising sequence number 1" is to be interpreted as requiring the presence of an X_1 sequence 5' to the HPV-specific sequence listed as sequence number 1, whereas the phrase "a PCR primer comprising sequence number 1" refers to any suitable PCR primer comprising the HPV-specific sequence, X_1 not being an essential feature of a PCR primer. The phrase "an oligonucleotide primer including sequence number n" is taken to encompass NASBA P1, NASBA P2 and PCR primers.

A second type of oligonucleotide provided by the invention are NASBA primer 2 oligonucleotides (also referred to herein as NASBA P2 primers) which generally comprise a sequence of approximately 20 bases substantially identical to a region of the target mRNA. The oligonucleotide sequences denoted in

Table 1 as "NASBA P2/PCR" are suitable for use in both NASBA P1 primers and standard PCR primers.

Oligonucleotides intended for use as NASBA P2 primers may, in a particular but non-limiting embodiment, further comprise a sequence of nucleotides at the 5' end which is unrelated to the target mRNA but which is capable of hybridising to a generic detection probe. The detection probe will preferably be labelled, for example with a fluorescent,

luminescent or enzymatic label. In one embodiment the detection probe is labelled with a label that permits detection using ECL™ technology, although it will be appreciated that the invention is in no way limited to this particular method of detection. In a preferred embodiment the 5' end of the primer 2 oligonucleotides may comprise the sequence GATGCAAGGT CGCATATGAG. This sequence is capable of hybridising to a generic ECL™ probe commercially available from Organon Teknika having the following structure:

Ru(bpy)₃²⁺-GAT GCA AGG TCG CAT ATG AG-3'

In a different embodiment the primer 2 oligonucleotide may incorporate "molecular beacons" technology, which is known in the art and described, for example, in WO 95/13399 by Tyagi and Kramer, Nature Biotechnology. 14: 303-308, 1996, to allow for real-time monitoring of the NASBA reaction.

A third type of oligonucleotide molecules provided by the invention are target-specific probe oligonucleotides (denoted "probe" in Table 1). The probe oligonucleotides generally comprise a sequence of approximately 20-25 bases substantially identical

to a region of the target mRNA, or the complement thereof. The probe oligonucleotides may be used as target-specific hybridisation probes for detection of the products of a NASBA or PCR reaction. In this connection the probe oligonucleotides may be coupled to a solid support, such as paramagnetic beads, to form a capture probe (see below). In a preferred embodiment the 5' end of the probe oligonucleotide may be labelled with biotin. The addition of a biotin label facilitates attachment of the probe to a solid support via a biotin/streptavidin or biotin/avidin linkage.

A fourth type of oligonucleotide molecules provided by the invention are target-specific probes incorporating "molecular beacons" technology which is known in the art and described, for example, by Tyagi and Kramer, *Nature Biotechnology*. 14: 303-308, 1996 and in WO 95/13399.

The term "molecular beacons probes" as used herein is taken to mean molecules having the structure:

wherein "target" represents a target-specific sequence of nucleotides, "X₂" and "X₃" represent a fluorescent moiety and a quencher moiety capable of substantially or completely quenching the fluorescence from the fluorescent moiety when the two are held together in close proximity and "arm₁" and "arm₂" represent complementary sequences capable of forming a stem duplex.

The invention provides molecular beacons probes incorporating a target-specific sequence comprising one of sequence numbers 6, 18, 35, 43, 123, 124 or 125.

5

Suitable pairs of arm₁ and arm₂ sequences for use with these HPV-specific sequences include, but not exclusively, the following:

10 For use with sequence number 6:

CGCATG-----CATGCG
CCAGCT-----AGCTGG
CACGC-----GCGTG
CGATCG-----CGATCG

15

For use with sequence number 18:

CGCATG-----CATGCG
CCGTCG-----CGACGG
CGGACC-----GGTCCG
CGATCG-----CGATCG

20

For use with sequence number 35:

CCGAAGG-----CCTTCGG
CCGTCG-----CGACGG
CACGTAG-----CGACGTG
CGCAGC-----GCTGCG
CGATCG-----CGATCG

25

For use with sequence number 43:

CCAAGC-----GCTTGG
CCAAGCG-----CGCTTGG
CCCAGC-----GCTGGG
CCAAAGC-----GCTTTGG
CCTGC-----GCAGG

30

CGATCG-----CGATCG

For use with sequence number 123:

CGCATG-----CATGCG

5 CCGTCG-----CGACGG

CCACCC-----GGGTGG

CGATCG-----CGATCG

For use with sequence number 124:

10 CCAAGC-----GCTTGG

CCAAGCC-----GGCTTGG

CCAAGCG-----GCGTTGG

CCAGCG-----CGCTGG

CGATCG-----CGATCG

15

For use with sequence number 125:

CCAAGC-----GCTTGG

CGCATG-----CATGCG

CCCAGC-----GCTGGG

20 CGATCG-----CGATCG

The use of probe molecules incorporating molecular beacons technology allows for real-time monitoring of amplification reactions, such as NASBA or RT-PCR reactions. The use of molecular beacons technology allows for real-time monitoring of the NASBA reaction (see Leone et al., Nucleic Acids Research., 1998, vol: 26, pp 2150-2155). The molecular beacons probes generally include complementary sequences flanking the HPV-specific sequence, represented herein by the notation arm₁ and arm₂, which are capable of hybridising to each other form a stem duplex structure. The precise sequences of arm₁ and arm₂ are not material to the invention,

except for the requirement that these sequences must be capable of forming a stem duplex when the probe is not bound to a target HPV sequence.

5 Molecular beacons probes also include a fluorescent moiety and a quencher moiety, the fluorescent and the quencher moieties being represented herein by the notation X₂ and X₃. As will be appreciated by the skilled reader, the fluorescer
10 and quencher moieties are selected such that the quencher moiety is capable of substantially or completely quenching the fluorescence from the fluorescent moiety when the two moieties are in close proximity, e.g. when the probe is in the hairpin
15 "closed" conformation in the absence of the target sequence. Upon binding to the target sequence, the fluorescent and quencher moieties are held apart such that the fluorescence of the fluorescent moiety is no longer quenched.

20 Many examples of suitable pairs of quencher/fluorescer moieties which may be used in accordance with the invention are known in the art (see WO 95/13399, Tyagi and Kramer, *ibid*). A broad range of fluorophores in many different colours made
25 be used, including for example

5-(2'-aminoethyl)aminonaphthalene-1-sulphonic acid (EDANS), fluorescein, FAM and Texas Red (see Tyagi, Bratu and Kramer, 1998, *Nature Biotechnology*, 16, 49-

30 53. The use of probes labelled with different coloured fluorophores enables "multiplex" detection of two or more different probes in a single reaction vessel. A preferred quencher is 4-(4'-dimethylaminophenylazo)benzoic acid (DABCYL), a

non-fluorescent chromophore, which serves as a 'universal' quencher for a wide range of fluorophores. The fluorescer and quencher moieties may be covalently attached to the probe in either orientation, either with the fluorescer at or near the 5' end and the quencher at or near the 3' end or vice versa.

5 Protocols for the synthesis of molecular beacon probes are known in the art. A detailed protocol for synthesis is provided in a paper entitled "Molecular Beacons: Hybridization Probes for Detection of Nucleic Acids in Homogenous Solutions" by Sanjay Tyagi et al.,
10 Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, New York, NY 10016; USA, which is available online via the PHRI website (at www.phri.nyu.edu or www.molecular-beacons.org).
15

Suitable combinations of the NASBA P1 and NASBA P2 primer oligonucleotide molecules provided by the invention may be used to drive a NASBA amplification reaction. In order to drive a NASBA amplification reaction the primer 1 and primer 2 oligonucleotides must be capable of priming synthesis of a double-stranded DNA from a target region of mRNA. For this to occur the primer 1 and primer 2 oligonucleotides must comprise target-specific sequences which are complementary to regions of the sense and the antisense strand of the target mRNA, respectively.
25

30 In the first phase of the NASBA amplification cycle, the so-called "non-cyclic" phase, the primer 1 oligonucleotide anneals to a complementary sequence in the target mRNA and its 3' end is extended by the

action of an RNA-dependent DNA polymerase (e.g. reverse transcriptase) to form a first-strand cDNA synthesis. The RNA strand of the resulting RNA:DNA hybrid is then digested, e.g. by the action of RNaseH,
5 to leave a single stranded DNA. The primer 2 oligonucleotide anneals to a complementary sequence towards the 3' end of this single stranded DNA and its 3' end is extended (by the action of reverse transcriptase), forming a double stranded DNA. RNA
10 polymerase is then able to transcribe multiple RNA copies from the now transcriptionally active promoter sequence within the double-stranded DNA. This RNA transcript, which is antisense to the original target mRNA, can act as a template for a further round of
15 NASBA reactions, with primer 2 annealing to the RNA and priming synthesis of the first cDNA strand and primer 1 priming synthesis of the second cDNA strand. The general principles of the NASBA reaction are well known in the art (see Compton, J. Nature. 350: 91-92).
20

The target-specific probe oligonucleotides described herein may also be attached to a solid support, such as magnetic microbeads, and used as "capture probes" to immobilise the product of the
25 NASBA amplification reaction (a single stranded RNA). The target-specific "molecular beacons" probes described herein may be used for real-time monitoring of the NASBA reaction.

30 In a particular embodiment the invention provides the oligonucleotide listed in Table 2, these being NASBA P1 primers and NASBA P2 primers containing the sequences listed in Table 1. The NASBA P1 primers further include a T7 promoter sequence, the NASBA P2

5 primers include a sequence for binding of a generic detection probe (see below) and associated probe molecules for use in the detection of HPV mRNA by NASBA. The oligonucleotides listed in Table 2 are merely illustrative and it is not intended that the scope of the invention should be limited to these specific molecules.

10 The NASBA P2 primers (p2) in Table 2 include the sequence GATGCAAGGT CGCATATGAG at the 5' end; the NASBA P1 primers (p1) in Table 2 include the sequence
AATTCTAATACGACTCACTATAGGGAGAAGG at the 5' end.
15 Oligonucleotides suitable for use as probes are identified by "po". The P2 primers generally contain HPV sequences from the positive strand, whereas the p1 primers generally contain HPV sequences from the negative strand. nt-refers to nucleotide position in the relevant HPV genomic sequence.

20 Table 2-NASBA primer and probe sequences

Primer name	Sequence	HPV Type	nt
HAe6701p2	GATGCAAGGT CGCATATGAGCCACAGGAGCGACCC AGAAAGTTA	16	116
HAe6701p1	AATTCTAATACGACTCACTATAGGGAGAAGGACGG TTTGTGTATTGCTGTTTC	16	368
25 HAe6702p2	GATGCAAGGT CGCATATGAGCCACAGGAGCGACCC AGAAA	16	116
HAe6702p1	AATTCTAATACGACTCACTATAGGGAGAAGGGTT TGTTGTATTGCTGTTTC	16	368
HAe6702Ap1	AATTCTAATACGACTCACTATAGGGAGAAGGTCA CGTCGCAGTAACGT	16	208
HAe6702Bp1	AATTCTAATACGACTCACTATAGGGAGAAGGTG CTTGCAGTACACACA	16	191
30 HAe6702Cp1	AATTCTAATACGACTCACTATAGGGAGAAGGTGC AGTACACACATTCTA	16	186
HAe6702Dp1	AATTCTAATACGACTCACTATAGGGAGAAGGGCA GTACACACATTCTAA	16	185
H16e6702Ap2	GATGCAAGGT CGCATATGAGACAGTTATGCACAGA GCT	16	142

Primer name	Sequence	HPV Type	nt	
H16e6702Bp2	GATGCAAGGTCGCATATGAGATATTAGAATGTGTG TAC	16	182	
H16e6702Cp2	GATGCAAGGTCGCATATGAGTTAGAATGTGTGTAC TGC	16	185	
H16e6702Dp2	GATGCAAGGTCGCATATGAGGAATGTGTGTACTGC AAG	16	188	
H16e6702Apo	ACAGTTATGCACAGAGCT	16	142	
H16e6702Bpo	ATATTAGAAATGTGTGTAC	16	182	
H16e6702Cpo	TTAGAACATGTGTGTACTGC	16	185	
H16e6702Dpo	GAATGTGTGTACTGCAAG	16	188	
HAe6701po	CTTTGGTTTTGGGGATTTATGC	16	235	
5	HAe6702po	TATGACTTTGCTTTCGGG	16	230
	HAe6702mb1	X ₂ -cgcatgtATGACTTTGCTTTCGGGAcatgcg -X ₃	16	230
	HAe6702mb2	X ₂ -ccagctTATGACTTTGCTTTCGGGAgctgg -X ₃	16	230
	HAe6702mb3	X ₂ -cacgcTATGACTTTGCTTTCGGGAgcgtg-X ₃	16	230
	H16e6702mb4	X ₂ -cgatcgTATGACTTTGCTTTCGGGAcgtcg -X ₃	16	230
	HAe6703p2	GATGCAAGGTCGCATATGAGCAGAGGAGGAGGATG AAATAGTA	16	656
	HAe6703p1	AATTCTAATACGACTCACTATAAGGGAGAACGGCAC AACCGAACCGTAGAGTCACAC	16	741
	HAe6703po	TGGACAAGCAGAACCGGACAGAGC	16	687
	HAe6704p2	GATGCAAGGTCGCATATGAGCAGAGGAGGAGGATG AAATAGA	16	656
	HAe6704p1	AATTCTAATACGACTCACTATAAGGGAGAACGGCAC AACCGAACCGTAGAGTCACAC	16	741
10	HAe6704po	AGCAGAACCGGACAGAGGCCATTAA	16	693
	H18e6701p2	GATGCAAGGTCGCATATGAGACGATGAAATAGATG GAGTT	18	702
	H18e6701p1	AATTCTAATACGACTCACTATAAGGGAGAACGGCACG GACACACAAAGGACAG	18	869
	H18e6701po	AGCCGAACCACAAACGTCACA	18	748
	H18e6702p2	GATGCAAGGTCGCATATGAGGAAAACGATGAAATA GATGGAG	18	698
	H18e6702p1	AATTCTAATACGACTCACTATAAGGGAGAACGGACAC CACGGACACACAAAGGACAG	18	869
	H18e6702po	GAACCACAAACGTCACACAATG	18	752
	H18e6702mb1	X ₂ -cgcatgAACCAACGTACACAAATGcatgcg -X ₃	18	752
	H18e6702mb2	X ₂ -ccgtcgAACCAACGTACACAAATGcgacgg -X ₃	18	752
	H18e6702mb3	X ₂ -cgaccGAACCACAAACGTACACAAATGggtccg -X ₃	18	752
15	H18e6702mb4	X ₂ -cgatcgAACCAACGTACACAAATGcgatcg	18	752

	Primer name	Sequence	HPV Type	nt
		$-X_3$		
35	H18e6703p2	GATGCAAGGTCGCATATGAGTTCCGGTTGACCTTC TATGT	18	651
	H18e6703p1	AATTCTAATACGACTCACTATAGGGAGAAGGGGTC GTCTGCTGAGCTTCT	18	817
	H18e6704p2	GATGCAAGGTCGCATATGAGGCAAGACATAGAAAT AACCTG	18	179
	H18e6704p1	AATTCTAATACGACTCACTATAGGGAGAAGGACCC AGTGTAGTTAGTT	18	379
	H18e6704po	TGCAAGACAGTATTGGAACCT	18	207
	H31e6701p2	GATGCAAGGTCGCATATGAGGGAAATACCCTACGA TGAAC	31	164
	H31e6701p1	AATTCTAATACGACTCACTATAGGGAGAAGGGAC ACAACGGTCTTGACA	31	423
40	H31e6701po	ATAGGGACGACACACCACACGGAG	31	268
	H31e6702p2	GATGCAAGGTCGCATATGAGGGAAATACCCTACGA TGAACTA	31	164
	H31e6702p1	AATTCTAATACGACTCACTATAGGGAGAAGGCTGG ACACAACGGTCTTGACA	31	423
	H31e6702po	TAGGGACGACACACCACACGGGA	31	269
	H31e6703p2	GATGCAAGGTCGCATATGAGACTGACCTCCACTGT TATGA	31	617
	H31e6703p1	AATTCTAATACGACTCACTATAGGGAGAAGGTATC TACTTGTGTGCTCTGT	31	766
45	H31e6703po	GACAAGCAGAACCGGACACATC	31	687
	H31e6704p2	GATGCAAGGTCGCATATGAGTGACCTCCACTGTTA TGAGCAATT	31	619
	H31e6704p1	AATTCTAATACGACTCACTATAGGGAGAAGGTGCG AATATCTACTTGTGTGCTCT GT	31	766
	H31e6704po	GGACAAGCAGAACCGGACACATCCAA	31	686
	H31e6704mb1	X_2 -ccgaaggGGACAAGCAGAACCGGACACATCC AAccttcgg - X_3	31	686
50	H31e6704mb2	X_2 -ccgtcgGGACAAGCAGAACCGGACACATCCA Acgacgg - X_3	31	686
	H31e6704mb3	X_2 - cacgtcgGGACAAGCAGAACCGGACACATCCAA cgacgtg - X_3	31	686
	H31e6704mb4	X_2 -cgcagcGGACAAGCAGAACCGGACACATCCAA gctgcg - X_3	31	686
	H31e6704mb5	X_2 -cgatcgGGACAAGCAGAACCGGACACATCCAA cgatcg - X_3	31	686
	H31e6705p2	GATGCAAGGTCGCATATGAGACTGACCTCCACTGT TAT	31	617
55	H31e6705p1	AATTCTAATACGACTCACTATAGGGAGAAGGCACCG ATTCCAAATGAGCCCAT	31	809
	H33e6701p2	GATGCAAGGTCGCATATGAGTATCCTGAACCAACT GACCTAT	33	618

	Primer name	Sequence	HPV Type	nt
5	H33e6701p1	AATTCTAATACGACTCACTATAAGGGAGAAGGGTTGA CACATAAACGAACTG	33	763
	H33e6701po	CAGATGGACAAGCACAACC	33	694
	H33e6703p2	GATGCAAGGTGCGCATATGAGTCCTGAACCAACTGA CCTAT	33	620
	H33e6703p1	AATTCTAATACGACTCACTATAAGGGAGAAGGCCCA TAAAGTAGTTGCTGTAT	33	807
	H33e6703po	GGACAAGCACAACCAGCCACAGC	33	699
	H33e6703mb1	X ₂ -ccaagcggACAAGCACAACCAGCCACAGCgct tgg-X ₃	33	699
10	H33e6703mb2	X ₂ -ccaagcgGGACAAGCACAACCAGCCACAGC cgcttgg-X ₃	33	699
	H33e6703mb3	X ₂ -cccagcggACAAGCACAACCAGCCACAGCgct ggg-X ₃	33	699
	H33e6703mb4	X ₂ -ccaaagcGGACAAGCACAACCAGCCACAGCg ctttgg-X ₃	33	699
	H33e6703mb5	X ₂ -cctgcGGACAAGCACAACCAGCCACAGCgagg -X ₃	33	699
	H33e6703mb6	X ₂ -cgatcgGGACAAGCACAACCAGCCACAGCcga tcg-X ₃	33	699
	H33e6702p2	GATGCAAGGTGCGCATATGAGGACCTTGTCCTC AAGAA	33	431
15	H33e6702p1	AATTCTAATACGACTCACTATAAGGGAGAAGGGAGGT CAGTTGGTCAGGATA	33	618
	H33e6702po	AGAAAATGCACTGTGACGTGT	33	543
	H35e6701p2	GATGCAAGGTGCGCATATGAGATTACAGCGGAGTGA GGTAT	35	217
	H35e6701p1	AATTCTAATACGACTCACTATAAGGGAGAAGGGTCT TTGCTTTCACTGGA	35	442
	H35e5601po	ATAGAGAAGGCCAGCCATAT	35	270
	H35e6702p2	GATGCAAGGTGCGCATATGAGTCAGAGGAGGAGGAA GATACTA	35	655
20	H35e6702p1	AATTCTAATACGACTCACTATAAGGGAGAAGGGATT ATGCTCTGTGAACA	35	844
	H35e6703p2	GATGCAAGGTGCGCATATGAGCCCGAGGCAACTGAC CTATA	35	610
	H35e6703p1	AATTCTAATACGACTCACTATAAGGGAGAAGGGTCA ATGTGTGCTCTGTA	35	770
	H35e6702po	GACAAGCAAACCAACGACACCTCAA	35	692
	H35e6703po	GACAAGCAAACCAACGACACC	35	692
	H52e6701p2	GATGCAAGGTGCGCATATGAGTTGTGAGGTGCTG GAAGAAT	52	144
25	H52e6701p1	AATTCTAATACGACTCACTATAAGGGAGAAGGCCCT CTCTTCTAATGTTT	52	358
	H52e6701po	GTGCCTACGCTTTATCTA	52	296
	H52e6702p2	GATGCAAGGTGCGCATATGAGGTGCCTACGCTTTT	52	296

	Primer name	Sequence	HPV Type	nt
30		ATCTA		
	H52e6702p1	AATTCTAACGACTCACTATAGGGAGAAGGGGG TCTCCAACACTCTGAACA	52	507
	H52e6702po	TGCAAACAAGCGATTCA	52	461
	H58e6701p2	GATGCAAGGTCGCATATGAGTCAGGCCTGGAGAC ATC	58	157
	H58e6701p1	AATTCTAACGACTCACTATAGGGAGAAGGAGCA ATCGTAAGCACACT	58	301
	H58e6702p2	GATGCAAGGTCGCATATGAGTCTGTGCATGAAATC GAA	58	173
	H58e6702p1	AATTCTAACGACTCACTATAGGGAGAAGGAGCA CACTTTACATACTG	58	291
	H58e6701po	TGAAATCGCTTGAATGCA	58	192
	H58e6702po	TTGCAGCGATCTGAGGTATATG	58	218
	HBe6701p2	GATGCAAGGTCGCATATGAGTACACTGCTGGACAA CAT	B(11)	514
35	HBe6701p1	AATTCTAACGACTCACTATAGGGAGAAGGTCA CTTCTGAGCTGTCT	B(11)	619
	HBe6702p2	GATGCAAGGTCGCATATGAGTACACTGCTGGACAA CATGCA	B(11)	514
	HBe6702p1	AATTCTAACGACTCACTATAGGGAGAAGGGTC CATCCACAGCAACAGGTCA	B(11)	693
	HBe6701po	GTAGGGTTACATTGCTATGA	B(11)	590
	HBe6702po	GTAGGGTTACATTGCTATGAGC	B(11)	590
	HBe6703p2	GATGCAAGGTCGCATATGAGTGACCTGTTGCTGTG GATGTGA	B(11)	693
	HBe6703p1	AATTCTAACGACTCACTATAGGGAGAAGGTACC TGAATCGTCCGCCAT	B(11)	832
	HBe6703po	ATWGTGTCCCATCTGC	B(11)	794
	HCe6701p2	GATGCAAGGTCGCATATGAGCATGCCATAATGTA TAGA	C(18 39 45)	295
	HCe6701p1	AATTCTAACGACTCACTATAGGGAGAAGGCACC GCAGGCACCTTATTAA	C(18 39 45)	408
40	HCe6701po	AGAATTAGAGAATTAAGA	C(18 39 45)	324
	H39e6701p2	GATGCAAGGTCGCATATGAGGCAGACGACCACTAC AGCAAA	39	210
	H39e6701p1	AATTCTAACGACTCACTATAGGGAGAAGGACAC CGAGTCCGAGTAATA	39	344
	H39e6701po	ATAGGGACGGGGAAACCACT	39	273
	H39e6702p2	GATGCAAGGTCGCATATGAGTATTACTCGGACTCG GTGT	39	344
	H39e6702p1	AATTCTAACGACTCACTATAGGGAGAAGGCTTG GGTTTCTTCGTGTTA	39	558
	H39e6702po	GGACCACAAAACGGGAGGAC	39	531
	H39e6703p2	GATGCAAGGTCGCATATGAGGAAATAGATGAACCC GACCA	39	703

	Primer name	Sequence	HPV Type	nt
5	H39e6703p1	AATTCTAATACGACTCACTATAAGGGAGAACGGCAC ACCACGGACACACAAA	39	886
	H39e6703po	TAGCCAGACGGGATGAACCACAGC	39	749
	H45e6701p2	GATGCAAGGTGCGCATATGAGAACCATTAACCCAG CAGAAA	45	430
	H45e6701p1	AATTCTAATACGACTCACTATAAGGGAGAACGGTCTT TCTTGCCGTGCCTGGTCA	45	527
	H45e6702p2	GATGCAAGGTGCGCATATGAGGAAACCATTGAACCC AGCAGAAAA	45	428
	H45e6702p1	AATTCTAATACGACTCACTATAAGGGAGAACGGTTGC TATACTTGTGTTCCCTACG	45	558
	H45e6701po	GTACCGAGGGCAGTGTAATA	45	500
	H45e6702po	GGACAAACGAAGATTCACA	45	467
	H45e6703p2	GATGCAAGGTGCGCATATGAGGTTGACCTGTTGT TACCAAGCAAT	45	656
	H45e6703p1	AATTCTAATACGACTCACTATAAGGGAGAACGGCACC ACGGACACACAAAGGACAAG	45	868
10	H45e6704p2	GATGCAAGGTGCGCATATGAGCTGTTGACCTGTTGT GTTACGA	45	654
	H45e6704p1	AATTCTAATACGACTCACTATAAGGGAGAACGCCAC GGACACACAAAGGACAAG	45	868
	H45e6705p2	GATGCAAGGTGCGCATATGAGGTTGACCTGTTGT TACGA	45	656
	H45e6705p1	AATTCTAATACGACTCACTATAAGGGAGAACGGACGG ACACACAAAGGACAAG	45	868
	H45e6703po	GAGTCAGAGGGAGGAAACGATG	45	686
15	H45e6704po	AGGAAAACGATGAAGCAGATGGAGT	45	696
	H45e6705po	ACAACCTACAGCCCCACGAGCCGAA	45	730
	H51e6701p2	GATGCAAGGTGCGCATATGAGGGAGGAGGATGAAGT AGATA	51	658
	H51e6701p1	AATTCTAATACGACTCACTATAAGGGAGAACGGGCC ATTAACATCTGCTGTA	51	807
	H51e6702p2	GATGCAAGGTGCGCATATGAGAGAGGAGGAGGATGA AGTAGATA	51	655
20	H51e6702p1	AATTCTAATACGACTCACTATAAGGGAGAACGGACGG GCAAACCAAGGCTTAGT	51	829
	H51e6701po	GCAGGGTGTCAAGTGTAGTA	51	747
	H51e6702po	TGGCAGTGGAAAGCAGTGGAGACA	51	771
	H56e6701p2	GATGCAAGGTGCGCATATGAGTTGGGTGCTGGAGA CAAACATCT	56	519
	H56e6701p1	AATTCTAATACGACTCACTATAAGGGAGAACGGTTCA TCCTCATCCTCATCCTCTGA	56	665
25	H56e6702p2	GATGCAAGGTGCGCATATGAGTGGGTGCTGGAGAC AAACATC	56	520
	H56e6702p1	AATTCTAATACGACTCACTATAAGGGAGAACGCATC CTCATCCTCATCCTCTGA	56	665
	H56e6703p2	GATGCAAGGTGCGCATATGAGTTGGGTGCTGGAGA	56	519

	Primer name	Sequence	HPV Type	nt
		CAAACAT		
30	H56e6703p1	AATTCTAATACGACTCACTATAAGGGAGAACGCCAC AAA CTTACACTCACAA ACA	56	764
	H56e6701po	AAAGTACCAACGCTGCAAGACGT	56	581
	H56e6702po	AGAACTAACACCTAACAGAAAT	56	610
	H56e6703po	AGTACCAACGCTGCAAGACGTT	56	583
	H56e6703po1	TTGGACAGCTCAGAGGATGAGG	56	656
	H56e6704p2	GATGCAAGGTCGCATATGAGGA TTTCCTTATGCA GTGTG	56	279
35	H56e6704p1	AATTCTAATACGACTCACTATAAGGGAGAACGGACA TCTGTAGCACCTTATT	56	410
	H56e6704po	GA CTATTCA GTGATGGAGC	56	348
	HPVAP01A	CAACTGAYCTMYACTGTTATGA	A (16 31 35)	
	HPVAp01Amb1	X ₂ -cgcatgCAACTGAYCTMYACTGTTATGAcatgcg -X ₃	A (16 31 35)	
	HPVAp01Amb2	X ₂ -ccgtcgCAACTGAYCTMYACTGTTATGAcga cg -X ₃	A (16 31 35)	
40	HPVAp01Amb3	X ₂ -ccaccccCAACTGAYCTMYACTGTTATGAgg gtgg -X ₃	A (16 31 35)	
	HPVAp01Amb4	X ₂ -cgatcgCAACTGAYCTMYACTGTTATGAcga tcg -X ₃	A (16 31 35)	
	HPVAP04A	GAAMCAACTGACCTAYWCTGCTAT	A (33 52 58)	
	HPVAP04Amb1	X ₂ -ccaagcGAAMCAACTGACCTAYWCTGCTATgc ttgg -X ₃	A (33 52 58)	
	HPVAP04Amb2	X ₂ -ccaagccGAAMCAACTGACCTAYWCTGCTAT ggcttgg -X ₃	A (33 52 58)	
45	HPVAP04Amb3	X ₂ -ccaagcgGAAMCAACTGACCTAYWCTGCTA Tcgcttgg -X ₃	A (33 52 58)	
	HPVAP04Amb4	X ₂ -ccagcgGAAMCAACTGACCTAYWCTGCTATcg ctgg -X ₃	A (33 52 58)	
	HPVAP04Amb5	X ₂ -cgatcgGAAMCAACTGACCTAYWCTGCTATcg atcg -X ₃	A (33 52 58)	
	HPVCPO4	AAGACATTATTCA GACTC	C (18 45 39)	
	HPVCPO4Amb1	X ₂ -ccaagcAAGACATTATTCA GACTC gcttgg-X ₃	C (18 45 39)	
50	HPVCPO4Amb2	X ₂ -cgcatgAAGACATTATTCA GACTC catgcg-X ₃	C (18 45 39)	
	HPVCPO4Amb3	X ₂ -cccagcAAGACATTATTCA GACTC gctggg-X ₃	C (18 45 39)	
	HPVCPO4Amb4	X ₂ -cgatcgAAGACATTATTCA GACTC cgatcg-X ₃	C (18 45 39)	

The meaning of X_2 - and - X_3 is defined above, in the discussion of "molecular beacons" probe molecules.

In a further embodiment the invention provides
5 the oligonucleotides listed in Table 3, these being PCR primers for use in the detection of HPV mRNA by RT-PCR. These oligonucleotides are merely illustrative and it is not intended that the scope of the invention should be limited to these specific
10 molecules:

	Primer name	Sequence	HPV type	nt
15	HAe6701PCR2	CCACAGGAGCGACCCAGAAAGTTA	16	116
	HAe6701PCR1	ACGGTTTGTGTATTGCTGTTTC	16	368
20	HAe6702PCR2	CCACAGGAGCGACCCAGAAA	16	116
	HAe6702PCR1	GGTTTGTGTATTGCTGTTTC	16	368
25	HAe6703PCR2	CAGAGGAGGAGGATGAAATAGTA	16	656
	HAe6703PCR1	GCACAACCGAACGCTAGAGTCACAC	16	741
30	HAe6704PCR2	CAGAGGAGGAGGATGAAATAGA	16	656
	HAe6704PCR1	GCACAACCGAACGCTAGAGTCAC	16	741
35	H18e6701PCR2	ACGATGAAATAGATGGAGTT	18	702
	H18e6701PCR1	CACGGACACACAAAGGACAG	18	869
40	H18e6702PCR2	GAAAACGATGAAATAGATGGAG	18	698
	H18e6702PCR1	ACACCACGGACACACAAAGGACAG	18	869
45	H18e6703PCR2	TTCCGGTTGACCTTCTATGT	18	651
	H18e6703PCR1	GGTCGTCTGCTGAGCTTTCT	18	817

	Primer name	Sequence	HPV type	nt
5	H35e6702PCR1	GATTATGCTCTGTGAACA	35	844
	H35e6703PCR2	CCCGAGGCAACTGACCTATA	35	610
	H35e6703PCR1	GTCAATGTGTGCTCTGTA	35	770
	H52e6701PCR2	TTGTGTGAGGTGCTGGAAGAAT	52	144
	H52e6701PCR1	CCCTCTTCTAATGTTT	52	358
	H52e6702PCR2	GTGCCTACGCTTTATCTA	52	296
	H52e6702PCR1	GGGGTCTCCAACACTCTGAACA	52	507
	H58e6701PCR2	TCAGGCGTTGGAGACATC	58	157
	H58e6701PCR1	AGCAATCGTAAGCACACT	58	301
	H58e6702PCR2	TCTGTGCATGAAATCGAA	58	173
10	H58e6702PCR1	AGCACACTTACATACTG	58	291
	HBe6701PCR2	TACACTGCTGGACAAACAT	B(11)	514
	HBe6701PCR1	TCATCTCTGAGCTGTCT	B(11)	619
	HBe6702PCR2	TACACTGCTGGACAAACATGCA	B(11)	514
	HBe6702PCR1	GTCACATCCACAGCAACAGGTCA	B(11)	693
	HBe6703PCR2	TGACCTGTTGCTGTGGATGTGA	B(11)	693
	HBe6703PCR1	TACCTGAATCGTCGCCAT	B(11)	832
	HCe6701PCR2	CATGCCATAATGTATAGA	C (18 39 45	295
	HCe6701PCR1	CACCGCAGGCACCTTATTAA	C (18 39 45	408
	H39e6701PCR2	GCAGACGACCACACTACAGCAAA	39	210
15	H39e6701PCR1	ACACCGAGTCCGAGTAATA	39	344
	H39e6702PCR2	TATTACTCGGACTCGGTGT	39	344
	H39e6702PCR1	CTTGGGTTCTTCGTGTTA	39	558
	H39e6703PCR2	GAAATAGATGAACCCGACCA	39	703
	H39e6703PCR1	GCACACCACGGACACACAAA	39	886
	H45e6701PCR2	AACCATTGAACCCAGCAGAAA	45	430
	H45e6701PCR1	TCTTCTGCCGTGCCTGGTCA	45	527
	H45e6702PCR2	GAAACCATTGAACCCAGCAGAAA	45	428
	H45e6702PCR1	TTGCTATACTTGTGTTCCCTACG	45	558
	H45e6703PCR2	GTTGACCTGTTGTTACCAAGCAAT	45	656
20	H45e6703PCR1	CACCA CGACACACAAAGGACAAG	45	868
	H45e6704PCR2	CTGTTGACCTGTTGTTACGA	45	654
	H45e6704PCR1	CCACGGACACACAAAGGACAAG	45	868
	H45e6705PCR2	GTTGACCTGTTGTTACGA	45	656
	H45e6705PCR1	ACGGACACACAAAGGACAAG	45	868
	H51e6701PCR2	GGAGGAGGATGAAGTAGATA	51	658
	H51e6701PCR1	GCCCATTAAACATCTGCTGTA	51	807
	H51e6702PCR2	AGAGGGAGGAGATGAAGTAGATA	51	655
	H51e6702PCR1	ACGGGCAAACCAGGCTTAGT	51	829
	H56e6701PCR2	TTGGGGTGTGGAGACAAACATCT	56	519
25	H56e6701PCR1	TTCATCCTCATCCTCATCCTCTGA	56	665
	H56e6702PCR2	TGGGGTGCTGGAGACAAACATC	56	520
	H56e6702PCR1	CATCCTCATCCTCATCCTCTGA	56	665
	H56e6703PCR2	TTGGGGTGTGGAGACAAACAT	56	519
	H56e6703PCR1	CCACAAACTTACACTCACAACA	56	764
	H56e6704PCR2	GATTTCTTATGCAGTGTG	56	279
	H56e6704PCR1	GACATCTGTAGCACCTTATT	56	410

Primer-pairs and primer-probe sets

The invention further provides primer-pairs and primer/probe sets for use in the detection of HPV E6 transcripts.

5

A "primer-pair" is taken to mean two primers which may be used in combination for amplification of a portion of an HPV E6 transcript, for example by NASBA or RT-PCR. The individual oligonucleotide primers making up the primer-pair may be supplied separately, e.g. in separate containers. A primer-pair may also be supplied as a homogenous mixture of the two primers, this mixture may include additional reagents required for the amplification reaction, as discussed below.

10

A "primer/probe set" is taken to mean a set of oligonucleotides comprising a primer-pair, as defined above, and at least one oligonucleotide probe which is suitable for use in detection of an amplification product generated by use of the primer-pair. The individual oligonucleotides making up the primer/probe set may be supplied separately, e.g. in separate containers or as a homogenous mixture.

15

In this context "primer" is taken to encompass primers suitable for use in PCR and primers suitable for use in NASBA.

20

The term "probe" may encompass any of the probe types described herein, including molecular beacons probes suitable for use in real-time NASBA (see below) and capture probes for immobilisation of NASBA amplification products.

25

Specific primer-pairs provided by the invention are given below, together with suitable probes which may be used in the detection of amplification products

generated using the primer-pair. In preferred embodiments, the primer-pairs listed below may comprise a NASBA P1 primer and a NASBA P2 primer or two PCR primers. The most preferred specific primer combinations are listed, using the primer names given in Tables 2 and 3. However, it is not intended to limit the scope of the invention to these particular combinations:

Primer-pairs and probes for use in the detection of mRNA transcripts from the E6 gene of HPV 16:

(1) an oligonucleotide primer comprising sequence number 1 and an oligonucleotide primer comprising sequence number 2; oligonucleotide probe comprising sequence number 5.

Preferred NASBA primers: HAe6701p1 and HAe6701p2
Preferred PCR primers: HAe6701PCR1 and HAe6701PCR2

(2) an oligonucleotide primer comprising sequence number 3 and an oligonucleotide primer comprising sequence number 4; oligonucleotide probe comprising sequence number 6.

Preferred NASBA primers: HAe6702p1 and HAe6702p2
Preferred PCR primers: HAe6702PCR1 and HAe6702PCR2

(3) an oligonucleotide primer comprising sequence number 7 and an oligonucleotide primer comprising sequence number 8; oligonucleotide probe comprising sequence number 9.

Preferred NASBA primers: HAe6703p1 and HAe6703p2
Preferred PCR primers: HAe6703PCR1 and HAe6703PCR2

(4) an oligonucleotide primer comprising sequence number 10 and an oligonucleotide primer comprising sequence number 11; oligonucleotide probe comprising sequence number 12.

5

Preferred NASBA primers: HAe6704p1 and HAe6704p2

Preferred PCR primers: HAe6704PCR1 and HAe6704PCR2

10 (5) an oligonucleotide primer comprising one of
sequence numbers 126, 127, 128 or 129 and an
oligonucleotide primer comprising sequence number 1 or
sequence number 3.

15 (6) an oligonucleotide primer comprising sequence
number 2 or sequence number 4 and an oligonucleotide
primer comprising one of sequence numbers 130, 131,
132 or 133.

20 Primer-pairs for use in the detection of mRNA
transcripts from the E6 gene of HPV 18:

25 (7) an oligonucleotide primer comprising sequence
number 13 and an oligonucleotide primer comprising
sequence number 14; oligonucleotide probe comprising
sequence number 15.

Preferred NASBA primers: H18e6701p1 and H18e6701p2

Preferred PCR primers: H18e6701PCR1 and H18e6701PCR2

30 (8) an oligonucleotide primer comprising sequence
number 16 and an oligonucleotide primer comprising
sequence number 17; oligonucleotide probe comprising
sequence number 18.

35 Preferred NASBA primers: H18e6702p1 and H18e6702p2

Preferred PCR primers: H18e6702PCR1 and H18e6702PCR2

(9) an oligonucleotide primer comprising sequence number 19 and an oligonucleotide primer comprising sequence number 20.

5 Preferred NASBA primers: H18e6703p1 and H18e6703p2
Preferred PCR primers: H1836703PCR1 and H18e6703PCR2

10 (10) an oligonucleotide primer comprising sequence number 21 and an oligonucleotide primer comprising sequence number 22; oligonucleotide probe comprising sequence number 23.

Preferred NASBA primers: H18e6704p1 and H18e6704p2
Preferred PCR primers: H18e6704PCR1 and H18e6704PCR2

15 Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 31:

20 (11) an oligonucleotide primer comprising sequence number 24 and an oligonucleotide primer comprising sequence number 25; oligonucleotide probe comprising sequence number 26.

25 Preferred NASBA primers: H31e6701p1 and H31e6701p2
Preferred PCR primers: H31e6701PCR1 and H31e6701PCR2

30 (12) an oligonucleotide primer comprising sequence number 27 and an oligonucleotide primer comprising sequence number 28; oligonucleotide probe comprising sequence number 29.

Preferred NASBA primers: H31e6702p1 and H31e6702p2
Preferred PCR primers: H31e6702PCR1 and H3136702PCR2

35 (13) an oligonucleotide primer comprising sequence number 30 and an oligonucleotide primer comprising

sequence number 31; oligonucleotide probe comprising sequence number 32.

5 Preferred NASBA primers: H31e6703p1 and H31e6703p2
Preferred PCR primers: H31e6703PCR1 and H31e6703PCR2

10 (14) an oligonucleotide primer comprising sequence number 33 and an oligonucleotide primer comprising sequence number 34; oligonucleotide probe comprising sequence number 35.

Preferred NASBA primers: H31e6704p1 and H31e6704p2
Preferred PCR primers: H31e6704PCR1 and H31e6704PCR2

15 (15) an oligonucleotide primer comprising sequence number 36 and an oligonucleotide primer comprising sequence number 37;

Preferred NASBA primers: H31e6705p1 and H31e6705p2
20 Preferred PCR primers: H31e6705PCR1 and H31e6705PCR2

Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 33:

25 (16) an oligonucleotide primer comprising sequence number 38 and an oligonucleotide primer comprising sequence number 39; oligonucleotide probe comprising sequence number 40..

30 Preferred NASBA primers: H33e6701p1 and H33e6701p2
Preferred PCR primers: H33e6701PCR1 and H33e6701PCR2

35 (17) an oligonucleotide primer comprising sequence number 41 and an oligonucleotide primer comprising sequence number 42; oligonucleotide probe comprising sequence number 43.

Preferred NASBA primers: H33e6703p1 and H33e6703p2
Preferred PCR primers: H33e6703PCR1 and H33e6703PCR2

5 (18) an oligonucleotide primer comprising sequence number 44 and an oligonucleotide primer comprising sequence number 45; oligonucleotide probe comprising sequence number 46.

10 Preferred NASBA primers: H33e6702p1 and H33e6702p2
Preferred PCR primers: H33e6702PCR1 and H33e6702PCR2

Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 35:

15 (19) an oligonucleotide primer comprising sequence number 47 and an oligonucleotide primer comprising sequence number 48; oligonucleotide probe comprising sequence number 53.

20 Preferred NASBA primers: H35e6701p1 and H35e6701p2
Preferred PCR primers: H35e6701PCR1 and H35e6701PCR2

25 (20) an oligonucleotide primer comprising sequence number 49 and an oligonucleotide primer comprising sequence number 50; oligonucleotide probe comprising sequence number 54.

Preferred NASBA primers: H35e6702p1 and H35e6702p2
Preferred PCR primers: H35e6702PCR1 and H35e6702PCR2

30 (21) an oligonucleotide primer comprising sequence number 51 and an oligonucleotide primer comprising sequence number 52; oligonucleotide probe comprising sequence number 55.

35 Preferred NASBA primers: H35e6703p1 and H35e6703p2
Preferred PCR primers: H35e6703PCR1 and H35e6703PCR2

Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 52:

5 (22) an oligonucleotide primer comprising sequence number 56 and an oligonucleotide primer comprising sequence number 57; oligonucleotide probe comprising sequence number 58.

Preferred NASBA primers: H52e6701p1 and H52e6701p2
10 Preferred PCR primers: H52e6701PCR1 and H52e6701PCR2

15 (23) an oligonucleotide primer comprising sequence number 59 and an oligonucleotide primer comprising sequence number 60; oligonucleotide probe comprising sequence number 61.

Preferred NASBA primers: H52e6702p1 and H52e6702p2
Preferred PCR primers: H52e6702PCR1 and H52e6702PCR2

20 Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 58:

25 (24) an oligonucleotide primer comprising sequence number 62 and an oligonucleotide primer comprising sequence number 63; oligonucleotide probe comprising sequence number 66.

30 Preferred NASBA primers: H58e6701p1 and H58e6701p2
Preferred PCR primers: H58e6701PCR1 and H58e6701PCR2

35 (25) an oligonucleotide primer comprising sequence number 64 and an oligonucleotide primer comprising sequence number 65; oligonucleotide probe comprising sequence number 67.

Preferred NASBA primers: H58e6702p1 and H58e6702p2
Preferred PCR primers: H58e6702PCR1 and H58e6702PCR2

Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 51:

5 (26) an oligonucleotide primer comprising sequence number 104 and an oligonucleotide primer comprising sequence number 105; oligonucleotide probe comprising sequence number 108.

Preferred NASBA primers: H51e6701p1 and H51e6701p2
10 Preferred PCR primers: H51e6701PCR1 and H51e6701PCR2

15 (27) an oligonucleotide primer comprising sequence number 106 and an oligonucleotide primer comprising sequence number 107; oligonucleotide probe comprising sequence number 109.

Preferred NASBA primers: H51e6702p1 and H51e6702p2
Preferred PCR primers: H51e6702PCR1 and H51e6702PCR2

20 Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 56:

25 (28) an oligonucleotide primer comprising sequence number 110 and an oligonucleotide primer comprising sequence number 111; oligonucleotide probe comprising sequence number 116.

Preferred NASBA primers: H56e6701p1 and H56e6701p2
Preferred PCR primers: H56e6701PCR1 and H56e6701PCR2

30 (29) an oligonucleotide primer comprising sequence number 112 and an oligonucleotide primer comprising sequence number 113; oligonucleotide probe comprising sequence number 117.

35 Preferred NASBA primers: H56e6702p1 and H56e6702p2
Preferred PCR primers: H56e6702PCR1 and H56e6702PCR2

(30) an oligonucleotide primer comprising sequence number 114 and an oligonucleotide primer comprising sequence number 115; oligonucleotide probe comprising sequence number 118 or sequence number 119.

5

Preferred NASBA primers: H56e6703p1 and H56e6703p2
Preferred PCR primers: H56e6703PCR1 and H56e6703PCR2

10

(31) an oligonucleotide primer comprising sequence number 120 and an oligonucleotide primer comprising sequence number 121; oligonucleotide probe comprising sequence number 122.

15

Preferred NASBA primers: H56e6704p1 and H56e6704p2
Preferred PCR primers: H56e6704PCR1 and H56e6704PCR2

20

Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 39:
(32) an oligonucleotide primer comprising sequence number 80 and an oligonucleotide primer comprising sequence number 81; oligonucleotide probe comprising sequence number 82.

25

Preferred NASBA primers: H39e6701p1 and H39e6701p2
Preferred PCR primers: H39e6701PCR1 and H39e6701PCR2

30

(33) an oligonucleotide primer comprising sequence number 83 and an oligonucleotide primer comprising sequence number 84; oligonucleotide probe comprising sequence number 85.

35

Preferred NASBA primers: H39e6702p1 and H39e6702p2
Preferred PCR primers: H39e6702PCR1 and H39e6702PCR2

(34) an oligonucleotide primer comprising sequence number 86 and an oligonucleotide primer comprising

sequence number 87; oligonucleotide probe comprising sequence number 88.

Preferred NASBA primers: H39e6703p1 and H39e6703p2
5 Preferred PCR primers: H39e6703PCR1 and H39e6703PCR2

Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 45:

10 (35) an oligonucleotide primer comprising sequence number 89 and an oligonucleotide primer comprising sequence number 90; oligonucleotide probe comprising sequence number 93.

15 Preferred NASBA primers: H45e6701p1 and H45e6701p2
Preferred PCR primers: H45e6701PCR1 and H45e6701PCR2

20 (36) an oligonucleotide primer comprising sequence number 91 and an oligonucleotide primer comprising sequence number 92; oligonucleotide probe comprising sequence number 94.

Preferred NASBA primers: H45e6702p1 and H45e6702p2
Preferred PCR primers: H45e6702PCR1 and H45e6702PCR2

25 (37) an oligonucleotide primer comprising sequence number 95 and an oligonucleotide primer comprising sequence number 96; oligonucleotide probe comprising sequence number 101.

30 Preferred NASBA primers: H45e6703p1 and H45e6703p2
Preferred PCR primers: H45e6703PCR1 and H45e6703PCR2

35 (38) an oligonucleotide primer comprising sequence number 97 and an oligonucleotide primer comprising sequence number 98; oligonucleotide probe comprising sequence number 102.

Preferred NASBA primers: H45e6704p1 and H45e6704p2
Preferred PCR primers: H45e6704PCR1 and H45e6704PCR2

5 (39) an oligonucleotide primer comprising sequence number 99 and an oligonucleotide primer comprising sequence number 100; oligonucleotide probe comprising sequence number 103.

10 Preferred NASBA primers: H45e6705p1 and H45e6705p2
~~Preferred PCR primers: H45e6705PCR1 and H45e6705PCR2~~

Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of group B HPV:

15 (40) an oligonucleotide primer comprising sequence number 68 and an oligonucleotide primer comprising sequence number 69; oligonucleotide probe comprising sequence number 72.

20 Preferred NASBA primers: HBe6701p1 and HBe6701p2
Preferred PCR primers: HBe6701PCR1 and HBe6701PCR2

25 (41) an oligonucleotide primer comprising sequence number 70 and an oligonucleotide primer comprising sequence number 71; oligonucleotide probe comprising sequence number 73.

30 Preferred NASBA primers: HBe6702p1 and HBe6702p2
Preferred PCR primers: HBe6702PCR1 and HBe6702PCR2

(42) an oligonucleotide primer comprising sequence number 74 and an oligonucleotide primer comprising sequence number 75; oligonucleotide probe comprising sequence number 76.

35 Preferred NASBA primers: HBe6703p1 and HBe6703p2
Preferred PCR primers: HBe6703PCR1 and HBe6703PCR2

Primer-pair for use in the detection of mRNA transcripts from the E6 gene of group C HPV:

5 (43) an oligonucleotide primer comprising sequence number 77 and an oligonucleotide primer comprising sequence number 78; oligonucleotide probe comprising sequence number 79.

10 Preferred NASBA primers: HCe6701p1 and HCe6701p2
Preferred PCR primers: HCe6701PCR1 and HCe6701PCR2

Methods of detecting HPV

15 In a further aspect the invention provides a method for detecting HPV mRNA in a test sample suspected of containing HPV which comprises performing an amplification reaction on the test sample to amplify a portion of the mRNA transcribed from the E6 gene of HPV, wherein the amplification reaction is performed using one of the primer-pairs provided by 20 the invention, as defined above.

25 Preferred amplification techniques which may be used to amplify a portion of the E6 mRNA are RT-PCR or NASBA.

30 The "test sample suspected of containing HPV" will most commonly be a clinical sample; for example a cervical scraping in the cervical screening field. The amplification reaction will preferably be carried out on a preparation of nucleic acid isolated from the test sample. The preparation of nucleic acid must include mRNA, however it need not be a preparation of purified poly A+ mRNA and preparations of total RNA or crude preparations of total nucleic acid containing both RNA and genomic DNA are also suitable as starting 35 material for a NASBA reaction. Essentially any technique known in the art for the isolation of a

preparation of nucleic acid including mRNA may be used to isolate nucleic acid from the test sample. A preferred technique is the "Boom" isolation method described in US-A-5,234,809 and EP-B-0389,063. This 5 method, which can be used to isolate a nucleic acid preparation containing both RNA and DNA, is based on the nucleic acid binding properties of silicon dioxide particles in the presence of the chaotropic agent guanidine thiocyanate (GuSCN).

10

Methods for the detection of HPV in a test sample using the NASBA technique will generally comprise the following steps:

15

(a) assembling a reaction medium comprising a primer-pair according to the invention, an RNA directed DNA polymerase, a ribonuclease that hydrolyses the RNA strand of an RNA-DNA hybrid without hydrolysing single or double stranded RNA or DNA, an RNA polymerase that recognises said promoter, and ribonucleoside and deoxyribonucleoside triphosphates;

20

(b) incubating said reaction medium with a preparation of nucleic acid isolated from a test sample suspected of containing HPV under reaction conditions which permit a NASBA amplification 25 reaction; and

reaction;

(c) detecting and/or quantitatively measuring any HPV-specific product of the NASBA amplification reaction.

30

Detection of the specific product(s) of the NASBA reaction (i.e. sense and/or antisense copies of the target RNA) may be carried out in a number of different ways. In one approach the NASBA product(s) may be detected with the use of an HPV-specific 35 hybridisation probe capable of specifically annealing to the NASBA product. The hybridisation probe may be attached to a revealing label, for example a

fluorescent, luminescent, radioactive or chemiluminescent compound or an enzyme label or any other type of label known to those of ordinary skill in the art. The precise nature of the label is not critical, but it should be capable of producing a signal detectable by external means, either by itself or in conjunction with one or more additional substances (e.g. the substrate for an enzyme).

Also within the scope of the invention is so-called "real-time NASBA" which allows continuous monitoring of the formation of the product of the NASBA reaction over the course of the reaction. In a preferred embodiment this may be achieved using a "molecular beacons" probe comprising an HPV-specific sequence capable of annealing to the NASBA product, a stem-duplex forming oligonucleotide sequence and a pair of fluorescer/quencher moieties, as known in the art described herein. If the molecular beacons probe is added to the reaction mixture prior to amplification it may be possible to monitor the formation of the NASBA product in real-time (Leone et al., Nucleic Acids Research, 1998, Vol 26, 2150-2155).

In a further approach, the molecular beacons technology may be incorporated into the primer 2 oligonucleotide allowing real-time monitoring of the NASBA reaction without the need for a separate hybridisation probe.

In a still further approach the products of the NASBA reaction may be monitored using a generic labelled detection probe which hybridises to a nucleotide sequence in the 5' terminus of the primer 2 oligonucleotide. This is equivalent to the "NucliSens™" detection system supplied by Organon Teknika. In this system specificity for NASBA

products derived from the target HPV mRNA may be conferred by using HPV-specific capture probes comprising probe oligonucleotides as described herein attached to a solid support such as a magnetic microbead. Most preferably the generic labelled detection probe is the ECL™ detection probe supplied by Organon Teknika. NASBA amplicons are hybridized to the HPV-specific capture probes and the generic ECL probe (via a complementary sequence on primer 2).

Following hybridization the bead/amplicon/ECL probe complexes may be captured at the magnet electrode of an automatic ECL reader (e.g. the NucliSens™ reader supplied by Organon Teknika. Subsequently, a voltage pulse triggers the ECL™ reaction.

Also provided by the invention are reagent kits for use in the detection of HPV by NASBA, the kits comprising a primer-pair cocktail according to the invention. The reagent kits may further comprise a mixture of enzymes required for the NASBA reaction, specifically an enzyme mixture containing an RNA directed DNA polymerase (e.g. a reverse transcriptase), a ribonuclease that hydrolyses the RNA strand of an RNA-DNA hybrid without hydrolysing single or double stranded RNA or DNA (e.g. RNaseH) and an RNA polymerase. The RNA polymerase should be one which recognises the promoter sequence present in the 5' terminal region of the NASBA P1 primer oligonucleotides in the oligonucleotide primer sets supplied in the reagent kit. The kit may also comprise a supply of NASBA buffer containing the ribonucleosides and deoxyribonucleosides required for RNA and DNA synthesis. The composition of a standard NASBA reaction buffer will be well known to those skilled in the art.

In certain embodiments the kit may further contain one or more capture probes, comprising a probe oligonucleotide attached to a solid support as described above, for immobilising the products of a specific NASBA reaction. The kit may still further contain labelled generic detection probes. Advantageously, the detection probes may comprise a sequence of nucleotides complementary to a non-HPV sequence present at the 5' terminal end of the NASBA P2 primer oligonucleotides present in the reagent kit.

In still further embodiments the kit may further contain one or more molecular beacon probes according to the invention. The molecular beacon probes may be supplied as a separate reagent within the kit. Alternatively, the NASBA primers and molecular beacons probe may be supplied as a primer/probe mixture. Such a mixture including the NASBA P1 and P2 primers and also a molecular beacons probe is convenient for use in "real-time" NASBA, wherein the NASBA amplification reaction and detection of an amplification product are performed simultaneously in a single reaction vessel.

The invention will be further understood with reference to the following, non-limiting, Example:

Example 1-Real-time NASBA
Collection and preparation of clinical samples

Cervical cytobrush samples are collected in 9 ml lysis buffer (5M Guanidine thiocyanate) prior to RNA/DNA extraction. Since RNA is best protected in the 5M guanidine thiocyanate at -70°C only 1 ml of the total volume of sample is used for each extraction round. 2-3 tubes with the RNA/DNA are stored at -167°C and the rest stored at -70°C.

RNA and DNA were automatically isolated according to the "Booms" isolation method from Organon Teknika (Organon Teknika B.V., Boselind 15, P.O. Box 84, 5280 AB Baxtel, The Netherlands; now Biomérieux, 69280 Marcy l'Etoile, France).

The following procedure was carried out using reagents from the Nuclisens™ Basic Kit, supplied by Organon Teknika. Procedure for n=10 samples:-

10 1. Prepare enzyme solution.
Add 55 µl of enzyme diluent (from Nuclisens™ Basic Kit; contains sorbitol in aqueous solution) to each of 15 3 lyophilized enzyme spheres (from Nuclisens™ Basic Kit; contains AMV-RT, RNase H, T7 RNA polymerase and BSA). Leave this enzyme solution at least for 20 minutes at room temperature. Gather the enzyme solutions in one tube, mix well by flicking the tube with your finger, spin down briefly and use within 1 20 hour. Final concentrations in the enzyme mix are 375 mM sorbitol, 2.5 µg BSA, 0.08 U RNase H, 32 U T7 RNA polymerase and 6.4 U AMV-reverse transcriptase.

25 2. Prepare reagent sphere/KCl solution.
For 10 samples: add 80 µl reagent sphere diluent (from Nuclisens™ Basic Kit; contains Tris/HCl (pH 8.5), 45% DMSO) to the lyophilized reagent sphere (from Nuclisens™ Basic Kit; contains nucleotides, dithiotreitol and MgCl₂) and immediately vortex well. 30 Do this with 3 reagent spheres and mix the solutions in one tube.

35 Add 3 µl NASBA water (from Nuclisens™ Basic Kit) to the reconstituted reagent sphere solution and mix well.

Add 56 μ l of KCl stock solution (from Nuclisens™ Basic Kit) and mix well. Use of this KCl/water mixture will result in NASBA reactions with a final KCl concentration of 70 mM. Final concentrations in the reagent/KCl solution are 1 mM of each dNTP, 2 mM of ATP, UTP and CTP, 1.5 mM GTP, and 0.5 mM ITP, 0.5 mM dithiotreitol, 70 mM KCl, 12 mM MgCl₂, 40 mM Tris-HCl (pH 8.5).

10 3. Prepare primer/probe solution containing target-specific primers and molecular beacon probe.
For each target reaction transfer 91 μ l of the reagent sphere/KCl solution (prepared in step 2) into a fresh tube. Add 25 μ l of primers/molecular beacon probe solution (to give final concentration of ~0.1-0.5 μ M each of the sense and antisense primers and ~ 15-70 pmol molecular beacon probe per reaction). Mix well by vortexing. Do not centrifuge.

15

20 In case less than 10 target RNA amplifications are being performed refer to the table below for the appropriate amounts of reagent sphere solution, KCl/water solution and primers to be used. Primer solutions should be used within 30 minutes after preparation.

25

Reactions (n)	Reagent sphere solution (μ l)	KCl/water (μ l)	Primer mix (μ l)
10	80	30	10
9	72	27	9
8	64	24	8
7	56	21	7
6	48	18	6
5	40	15	5
4	32	12	4
3	24	9	3
2	16	6	2
1	8	3	1

4. Addition of samples

For each target RNA reaction:

In a 96 well microtiter plate pipette 10 μ l of the primer/probe solution (prepared in step 3) into each of 10 wells. Add 5 μ l nucleic acid extract to each well. Incubate the microtiter plate for 4 minutes at 65 \pm 1 °C. Cool to at 41 \pm 0.5 °C for 4 minutes. Then to each well add 5 μ l enzyme solution. Immediately place the microtiter plate in a ~~fluorescent detection instrument (e.g. NucliSens™~~
10 ~~EasyQ Analyzer)~~ and start the amplification.

Claims:

1. An oligonucleotide molecule for use in the detection of mRNA transcribed from the E6 gene of a human papillomavirus, the oligonucleotide comprising any one of sequence numbers 1-133.

5

2. An oligonucleotide primer for use in the detection of mRNA transcribed from the E6 gene of a human papillomavirus, the oligonucleotide primer being selected from:

10

(i) a NASBA P1 primer comprising one of sequence numbers 2, 4, 8, 11, 14, 17, 20, 22, 25, 28, 31, 34, 15 37, 39, 42, 45, 48, 50, 52, 57, 60, 63, 65, 69, 71, 75, 78, 81, 84 87, 90, 92, 96, 98, 100, 105, 107, 111, 113, 115, 121, 126, 127, 128 or 129;

15

(ii) a NASBA P2 primer comprising one of sequence numbers 1, 3, 7, 10, 13, 16, 19, 21, 24, 27, 30, 33, 20 36, 38, 41, 44, 47, 49, 51, 56, 59, 62, 64, 68, 70, 74, 77, 80, 83, 86, 89, 91, 95, 97, 99, 104, 106, 110, 112, 114, 120, 122, 124, 126, 127, 128, 129, 130, 131, 132 or 133;

20

(iii) a PCR primer comprising one of sequence numbers 1, 3, 7, 10, 13, 16, 19, 21, 24, 27, 30, 33, 36, 38, 25 41, 44, 47, 49, 51, 56, 59, 62, 64, 68, 70, 74, 77, 80, 83, 86, 89, 91, 95, 97, 99, 104, 106, 110, 112, 114, 120, 2, 4, 8, 11, 14, 17, 20, 22, 25, 28, 31, 34, 37, 39, 42, 45, 48, 50, 52, 57, 60, 63, 65, 69, 71, 75, 78, 81, 84 87, 90, 92, 96, 98, 100, 105, 107, 111, 113, 115, 121, 126, 127, 128, 129, 130, 131, 132 or 30 133.

30

3. An oligonucleotide primer according to claim 2 which is a NASBA P1 primer having the sequence AATTCTAACGACTCACTATAGGGAGAAGG-SEQ, wherein SEQ represents any one of sequence numbers 2, 4, 8, 11,

35

14, 17, 20, 22, 25, 28, 31, 34, 37, 39, 42, 45, 48,
50, 52, 57, 60, 63, 65, 69, 71, 75, 78, 81, 84 87, 90,
92, 96, 98, 100, 105, 107, 111, 113, 115, 121, 126,
127, 128 or 129.

5

4. An oligonucleotide primer according to claim
2 which is a NASBA P2 primer having the sequence
GATGCAAGGTCGCATATGAG-SEQ wherein SEQ represents any
one of sequence numbers 1, 3, 7, 10, 13, 16, 19, 21,
24, 27, 30, 33, 36, 38, 41, 44, 47, 49, 51, 56, 59,
62, 64, 68, 70, 74, 77, 80, 83, 86, 89, 91, 95, 97,
99, 104, 106, 110, 112, 114, 120, 130, 131, 132 or
133.

15

5. An oligonucleotide probe for use in the
detection of mRNA transcribed from the E6 gene of a
human papillomavirus comprising one of sequence
numbers: 5, 6, 9, 12, 15, 18, 23, 26, 29, 32, 35, 40,
43, 46, 53, 54, 55, 58, 61, 66, 67, 72, 73, 76, 82,
85, 88, 93, 94, 101, 102, 103, 108, 109, 116, 117,
118, 119, 122, 130, 131, 132 or 133.

20

25

6. An oligonucleotide primer-pair for use in
the detection of mRNA transcripts from the E6 gene of
HPV 16, comprising one of the following combinations:

30

35

an oligonucleotide primer comprising sequence number 1
and an oligonucleotide primer comprising sequence
number 2;
an oligonucleotide primer comprising sequence number 3
and an oligonucleotide primer comprising sequence
number 4;
an oligonucleotide primer comprising sequence number 7
and an oligonucleotide primer comprising sequence
number 8;

an oligonucleotide primer comprising sequence number
10 and an oligonucleotide primer comprising sequence
number 11;

5 an oligonucleotide primer comprising one of sequence
numbers 126, 127, 128 or 129 and an oligonucleotide
primer comprising sequence number 1 or sequence number
3; or
10 an oligonucleotide primer comprising sequence number 2
or sequence number 4 and an oligonucleotide primer
comprising one of sequence numbers 130, 131, 132 or
133.

15 7. An oligonucleotide primer-pair for use in
the detection of mRNA transcripts from the E6 gene of
HPV 18, comprising one of the following combinations:

15 an oligonucleotide primer comprising sequence number
13 and an oligonucleotide primer comprising sequence
number 14;
20 an oligonucleotide primer comprising sequence number
16 and an oligonucleotide primer comprising sequence
number 17;
25 an oligonucleotide primer comprising sequence number
19 and an oligonucleotide primer comprising sequence
number 20; or
30 an oligonucleotide primer comprising sequence number
21 and an oligonucleotide primer comprising sequence
number 22.

30 8. An oligonucleotide primer-pair for use in
the detection of mRNA transcripts from the E6 gene of
HPV 31, comprising one of the following combinations:

35 an oligonucleotide primer comprising sequence number
24 and an oligonucleotide primer comprising sequence
number 25;

an oligonucleotide primer comprising sequence number
27 and an oligonucleotide primer comprising sequence
number 28;
5 an oligonucleotide primer comprising sequence number
30 and an oligonucleotide primer comprising sequence
number 31;
an oligonucleotide primer comprising sequence number
33 and an oligonucleotide primer comprising sequence
number 34; or
10 an oligonucleotide primer comprising sequence number
36 and an oligonucleotide primer comprising sequence
number 37.

9. An oligonucleotide primer-pair for use in
15 the detection of mRNA transcripts from the E6 gene of
HPV 33, comprising one of the following combinations:

20 an oligonucleotide primer comprising sequence number
38 and an oligonucleotide primer comprising sequence
number 39;
an oligonucleotide primer comprising sequence number
41 and an oligonucleotide primer comprising sequence
number 42; or
25 an oligonucleotide primer comprising sequence number
44 and an oligonucleotide primer comprising sequence
number 45.

10. An oligonucleotide primer-pair for use in
30 the detection of mRNA transcripts from the E6 gene of
HPV 35, comprising one of the following combinations:

35 an oligonucleotide primer comprising sequence number
47 and an oligonucleotide primer comprising sequence
number 48;
an oligonucleotide primer comprising sequence number
49 and an oligonucleotide primer comprising sequence
number 50; or

an oligonucleotide primer comprising sequence number
51 and an oligonucleotide primer comprising sequence
number 52.

5 11. An oligonucleotide primer-pair for use in
the detection of mRNA transcripts from the E6 gene of
HPV 52, comprising one of the following combinations:

10 an oligonucleotide primer comprising sequence number
56 and an oligonucleotide primer comprising sequence
number 57; or
an oligonucleotide primer comprising sequence number
59 and an oligonucleotide primer comprising sequence
number 60.

15 12. An oligonucleotide primer-pair for use in
the detection of mRNA transcripts from the E6 gene of
HPV 58, comprising one of the following combinations:

20 an oligonucleotide primer comprising sequence number
62 and an oligonucleotide primer comprising sequence
number 63;
an oligonucleotide primer comprising sequence number
64 and an oligonucleotide primer comprising sequence
number 65.

25 13. An oligonucleotide primer-pair for use in
the detection of mRNA transcripts from the E6 gene of
HPV 51, comprising one of the following combinations:

30 an oligonucleotide primer comprising sequence number
104 and an oligonucleotide primer comprising sequence
number 105; or
an oligonucleotide primer comprising sequence number
106 and an oligonucleotide primer comprising sequence
number 107.

14. An oligonucleotide primer-pair for use in the detection of mRNA transcripts from the E6 gene of HPV 56, comprising one of the following combinations:

5 an oligonucleotide primer comprising sequence number 110 and an oligonucleotide primer comprising sequence number 111;
an oligonucleotide primer comprising sequence number 112 and an oligonucleotide primer comprising sequence
10 number 113;

an oligonucleotide primer comprising sequence number 114 and an oligonucleotide primer comprising sequence number 115;
an oligonucleotide primer comprising sequence number
15 120 and an oligonucleotide primer comprising sequence number 121.

15. An oligonucleotide primer-pair for use in the detection of mRNA transcripts from the E6 gene of HPV 39, comprising one of the following combinations:

20 an oligonucleotide primer comprising sequence number 80 and an oligonucleotide primer comprising sequence number 81;
25 an oligonucleotide primer comprising sequence number 83 and an oligonucleotide primer comprising sequence number 84; or
an oligonucleotide primer comprising sequence number 86 and an oligonucleotide primer comprising sequence
30 number 87.

16. An oligonucleotide primer-pair for use in the detection of mRNA transcripts from the E6 gene of HPV 45, comprising one of the following combinations:

an oligonucleotide primer comprising sequence number
89 and an oligonucleotide primer comprising sequence
number 90;
5 an oligonucleotide primer comprising sequence number
91 and an oligonucleotide primer comprising sequence
number 92;
an oligonucleotide primer comprising sequence number
95 and an oligonucleotide primer comprising sequence
number 96;
10 an oligonucleotide primer comprising sequence number
97 and an oligonucleotide primer comprising sequence
number 98; or
an oligonucleotide primer comprising sequence number
99 and an oligonucleotide primer comprising sequence
number 100.

17. An oligonucleotide primer-pair for use in
the detection of mRNA transcripts from the E6 gene of
group B HPV, comprising one of the following
combinations:

20 an oligonucleotide primer comprising sequence number
68 and an oligonucleotide primer comprising sequence
number 69;
25 an oligonucleotide primer comprising sequence number
70 and an oligonucleotide primer comprising sequence
number 71; or
an oligonucleotide primer comprising sequence number
74 and an oligonucleotide primer comprising sequence
number 75.

30
18. An oligonucleotide primer-pair for use in
the detection of mRNA transcripts from the E6 gene of
group C HPV, comprising the following combination:

an oligonucleotide primer comprising sequence number 77 and an oligonucleotide primer comprising sequence number 78.

5 19. An oligonucleotide primer-pair according to any one of claims 6 to 18 which comprises a NASBA P1 primer and a NASBA P2 primer.

10 20. A primer-pair according to claim 19 wherein
the NASBA P1 primer includes the sequence
AATTCTAACATCGACTCACTATAGGGAGAAGG at the 5' end.

15 21. A primer/probe set comprising a primer-pair according to any one of claims 6 to 20 and at least one oligonucleotide probe specific for amplification products generated using the primer-pair.

20 22. A method of detecting HPV mRNA in a test sample suspected of containing HPV which comprises performing an amplification reaction on a preparation of nucleic acid isolated from the test sample to amplify a portion of the mRNA transcribed from the E6 gene of HPV, wherein the amplification reaction is performed using a primer-pair according to any one of 25 claims 6 to 18.

30 23. A method according to claim 22 which comprises performing RT-PCR to amplify a portion of the mRNA transcribed from the E6 gene of HPV.

24. A method according to claim 126 which comprises performing NASBA to amplify a portion of the mRNA transcribed from the E6 gene of HPV .

35 25. A method according to claim 24 which comprises:

(a) assembling a reaction mixture comprising a primer set as defined in any one of claims 6 to 18, an RNA directed DNA polymerase, a ribonuclease that hydrolyses the RNA strand of an RNA-DNA hybrid without hydrolysing single or double stranded RNA or DNA, an RNA polymerase that recognises said promoter, and 5 ribonucleoside and deoxyribonucleoside triphosphates;

(b) incubating said reaction mixture with a preparation of nucleic acid isolated from a test 10 sample suspected of containing HPV under reaction conditions which permit a NASBA amplification reaction; and

(c) detecting and/or quantitatively measuring 15 any HPV-specific product of the NASBA amplification reaction.

26. A method according to claim 25 wherein step (c) comprises real-time detection of an HPV-specific product of the NASBA amplification reaction.

27. A method according to claim 25 or claim 26 wherein the reaction mixture further comprises a molecular beacons probe oligonucleotide and the formation of any HPV-specific NASBA product in the 25 NASBA reaction is monitored by detecting fluorescence from the fluorescent moiety included in the molecular beacons probe.

28. A method according to claim 25 or claim 26 30 which comprises the further step of capturing the NASBA reaction product by hybridisation to a probe oligonucleotide attached to a solid support.

29. A reagent kit for use in the detection of 35 HPV by NASBA, the kit comprising an oligonucleotide primer-pair as defined in claim 19 and optionally an enzyme mixture comprising an RNA directed DNA

polymerase, a ribonuclease that hydrolyses the RNA strand of an RNA-DNA hybrid without hydrolysing single or double stranded RNA or DNA, and an RNA polymerase that recognises the promoter sequence present in at least one NASBA P1 primer oligonucleotide included in the reagent kit.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.