Exercício de laboratório 4

Blocos completos

César A. Galvão - 19/0011572

2022-08-10

Contents

1	Que	stao 1	3
	1.1	Modelo e hipóteses	3
	1.2	Tabela de ANOVA	3
	1.3	Estimativa dos parâmetros do modelo	4
	1.4	Qual elemento químico deve ser recomendado?	4
	1.5	Conferencia manual das contas	5
	1.6	Normalidade e homocedasticidade	5

1 Questao 1

Químico	Bolt 1	Bolt 2	Bolt3	Bolt 4	Bolt 5
1	73	68	74	71	67
2	73	67	75	72	70
3	75	68	78	73	68
4	73	71	75	75	69

1.1 Modelo e hipóteses

É utilizado o RCBD, randomized complete block design, representado por:

$$y_{ij} = \mu + \tau_i + \beta_j + e_{ij}, \quad i = 1, 2, ..., a; \quad j = 1, 2, ..., n$$

em que μ é a média geral, τ_i é a média ou efeito dos grupos – cada químico sendo considerado um tratamento –, β_j é a bloco – aqui cada *bolt* ou o equivalente a lote – e e_{ij} é o desvio do elemento. Os grupos são indexados por i e os blocos indexados por j.

As hipóteses do teste são as seguintes:

$$\begin{cases} H_0: \tau_1=\ldots=\tau_a=0, & \text{(O efeito de tratamento \'e nulo)} \\ H_1: \exists \tau_i \neq 0 \end{cases}$$

que equivale dizer

$$\begin{cases} H_0 : \mu_1 = \dots = \mu_a \\ H_1 : \exists \mu_i \neq \mu_j, \, i \neq j. \end{cases}$$

Mesmo que o interesse do estudo não seja sobre o efeito dos blocos, é interessante testá-los para avaliar se é necessário manter a estrutura de blocos e futuras replicações do experimento.

1.2 Tabela de ANOVA

De acordo com a tabela a seguir, de fato os blocos apresentam efeito significativo sobre a variância do experimento, o que não ocorre para os tratamentos, evidenciado pelo p-valor de 0.121.

Fonte de variação	g.l.	SQ	MQ	Estatística F	p-valor
bolts	4	157.00	39.2500	21.6055	0.0000
chem	3	12.95	4.3167	2.3761	0.1211
Residuals	12	21.80	1.8167	NA	NA

Mediante realização do teste Shapiro para normalidade, obtém-se p-valor de 0.041. Como ANOVA é um teste paramétrico, devemos utilizar outro teste para a avaliação da diferença estatística entre os tratamentos.

1.3 Estimativa dos parâmetros do modelo

μ	σ^2
71.75	1.82

$ au_1$	$ au_2$	$ au_3$	$ au_4$
-1.15	-0.35	0.65	0.85

1.4 Qual elemento químico deve ser recomendado?

Considerando apenas a análise de variância, tanto faz o elemento utilizado, já que não há diferença entre tratamentos. Procede-se ao teste de Tukey para avaliação de pares de tratamentos.

	diff	lwr	upr	p adj
b2-b1	-5.00	-8.04	-1.96	0.00
b3-b1	2.00	-1.04	5.04	0.28
b4-b1	-0.75	-3.79	2.29	0.93
b5-b1	-5.00	-8.04	-1.96	0.00
b3-b2	7.00	3.96	10.04	0.00
b4-b2	4.25	1.21	7.29	0.01
b5-b2	0.00	-3.04	3.04	1.00
b4-b3	-2.75	-5.79	0.29	0.08
b5-b3	-7.00	-10.04	-3.96	0.00
b5-b4	-4.25	-7.29	-1.21	0.01

	diff	lwr	upr	p adj
2-1	0.8	-1.73	3.33	0.79
3-1	1.8	-0.73	4.33	0.20
4-1	2.0	-0.53	4.53	0.14
3-2	1.0	-1.53	3.53	0.65
4-2	1.2	-1.33	3.73	0.52
4-3	0.2	-2.33	2.73	1.00

De forma similar, o teste não aponta diferença significativa entre grupos de tratamento, mas sim entre quase todos os blocos, considerando $\alpha=0,05$. São as exceções de significância: bloco 1 com blocos 3 e 4 e bloco 5 com bloco 2.

1.5 Conferencia manual das contas

[1] 0.1211445

[1] 2.059181e-05

fontes	gl	sumsq	meansq	Festat	pvalor
bolts	4	157.00	39.25	21.606	0.1211
chemicals	3	12.95	4.32	2.376	0.0000
residuals	12	21.80	1.82	NA	NA

Calcula-se inicialmente o valor crítico para a distância entre as médias das amostras, considerando a distribuição de Tukey:

$$T_{\alpha} = q_{\alpha}(a, f) \sqrt{\frac{MS_E}{n}}$$

$$= 4.19 \cdot \sqrt{\frac{MS_E}{4}}$$
(1)

$$=4.19 \cdot \sqrt{\frac{MS_E}{4}} \tag{2}$$

$$=2.829$$
 (3)

comparacao	distancias	n	pvalor
media trat 12	0.80	4	0.8348
media trat 13	1.80	4	0.2829
media trat 14	2.00	4	0.2083
media trat 23	1.00	4	0.7250
media trat 24	1.20	4	0.6038
media trat 34	0.20	4	0.9966
media bloco 12	5.00	5	0.0016
media bloco 13	2.00	5	0.2814
media bloco 14	0.75	5	0.9296
media bloco 15	5.00	5	0.0016
media bloco 23	7.00	5	0.0001
media bloco 24	4.25	5	0.0057
media bloco 25	0.00	5	1.0000
media bloco 34	2.75	5	0.0831
media bloco 35	7.00	5	0.0001
media bloco 45	4.25	5	0.0057

1.6 Normalidade e homocedasticidade

Conforme ja testado sobre os resíduos do modelo de análise variância, os dados de fato não cumprem o pressuposto de normalidade. No entanto, são homocedásticos.

statistic	p.value	df	df.residual	fonte
0.5815	0.6357	3	16	Chem - trat

(continued)

statistic	p.value	df	df.residual	fonte
0.2400	0.9113	4	15	Bolts - bloco

Por último, verifica-se possível aditividade de efeito de tratamento com efeito de bloco. Conforme o p-valor obtido a seguir para o teste de aditividade, cuja hipótese nula é a aditividade completa do modelo (isto é, não há um λ_{ij} diferente de zero, o qual representaria interação de efeitos), pode-se considerar que o modelo é completamente aditivo.

[1] 0.7396448

[1] 0.7508062

Como foi rejeitada a hipótese de normalidade, realiza-se o teste de Friendman, não paramétrico, para avaliação da diferença entre os tratamentos.

chi-squared	p-value	df	method
6	0.1116	3	Friedman rank sum test