Finite groups with a given number of elements of each order

M. Farrokhi D. G. (join work with F. Saeedi)

Department of Pure Mathematics, Ferdowsi University of Mashhad

6th Group Theory Conference of Iran Golestan University March 12-13, 2014

 $\omega_d(G)$

 $\omega_d(G)$ \blacktriangleright The number of elements of order d

 $\omega_d(G)$ \blacktriangleright The number of elements of order d

 $\omega_d^*(G)$

- $\omega_d(G)$ \blacktriangleright The number of elements of order d
- $\omega_d^*(G)$ \blacktriangleright The number of solutions of $x^d = 1$

 $\omega_d(G)$ \blacktriangleright The number of elements of order d

 $\omega_d^*(G)$ \blacktriangleright The number of solutions of $x^d = 1$

Spectrum $\omega(G)$

- $\omega_d(G)$ \blacktriangleright The number of elements of order d
- $\omega_d^*(G)$ \blacktriangleright The number of solutions of $x^d = 1$
- Spectrum $\omega(G)$ \blacktriangleright The set of orders of elements of G

$$\omega_d(G)$$
 \blacktriangleright The number of elements of order d

$$\omega_d^*(G)$$
 \blacktriangleright The number of solutions of $x^d = 1$

Spectrum
$$\omega(G)$$
 \blacktriangleright The set of orders of elements of G

Co-spectrum
$$\omega^*(G)$$

$$\omega_d(G)$$
 \blacktriangleright The number of elements of order d

$$\omega_d^*(G)$$
 \blacktriangleright The number of solutions of $x^d = 1$

Spectrum
$$\omega(G)$$
 \blacktriangleright The set of orders of elements of G

Co-spectrum
$$\omega^*(G) \blacktriangleright \{\omega_d(G) : d \in \omega(G)\}$$

$$\omega_d(G) \qquad \textbf{ The number of elements of order } d$$

$$\omega_d^*(G) \qquad \textbf{ The number of solutions of } x^d = 1$$

$$\textbf{Spectrum} \qquad \omega(G) \qquad \textbf{ The set of orders of elements of } G$$

$$\textbf{Co-spectrum} \qquad \omega^*(G) \qquad \textbf{ } \qquad \{\omega_d(G): d \in \omega(G)\}$$

 $\omega(d)$

$$\omega_d(G)$$
 \blacktriangleright The number of elements of order d

$$\omega_d^*(G)$$
 \blacktriangleright The number of solutions of $x^d=1$

Spectrum
$$\omega(G)$$
 \blacktriangleright The set of orders of elements of G

Co-spectrum
$$\omega^*(G)$$
 \blacktriangleright $\{\omega_d(G): d \in \omega(G)\}$

$$\omega(d) \quad \blacktriangleright \quad \{\omega_d(G) : G \text{ is a finite group}\}$$

Definitions

	$\omega_d(G)$	•	The number of elements of order a
	$\omega_d^*(G)$	•	The number of solutions of $x^d = 1$
Spectrum	$\omega(G)$	•	The set of orders of elements of G
Co-spectrum	$\omega^*(G)$	•	$\{\omega_d(G):d\in\omega(G)\}$
	$\omega(d)$	•	$\{\omega_d(G): G \text{ is a finite group}\}$

 ω

Definitions

	$\omega_d(G)$	•	The number of elements of order of
	$\omega_d^*(G)$	•	The number of solutions of $x^d = 1$
Spectrum	$\omega(G)$	•	The set of orders of elements of G
Co-spectrum	$\omega^*(G)$	•	$\{\omega_d(G):d\in\omega(G)\}$
	$\omega(d)$	•	$\{\omega_d(G): G \text{ is a finite group}\}$
	ω	•	$igcup_{d\in\mathbb{N}}\omega(d)$

G

 $\omega(G)$

 $\omega^*(G)$

G

 $\omega(G)$

 $\omega^*(G)$

$$G \qquad \omega(G) \qquad \omega^*(G)$$
 $Q_8 \qquad \{1,2,4\} \qquad \{1,6\}$

$$G \qquad \omega(G) \qquad \omega^*(G)$$
 $Q_8 \qquad \{1,2,4\} \qquad \{1,6\}$
 $S_3 \qquad \{1,2,3\} \qquad \{1,2,3\}$

$$G \qquad \omega(G)$$

$$\omega^*(G)$$

$$Q_8$$

$$\{1, 2, 4\}$$

$$\{1,6\}$$

$$S_3$$

$$\{1,2,3\}$$

$$\{1,2,3\}$$

$$\mathbb{Z}_p^n$$

$$\{1,p\}$$

$$\{1,p^n-1\}$$

Let G be a finite group whose order is divisible by a number n. Then $\sum_{d \mid n} w_d$ is divisible by n.

¹G. Frobenius, Über einen Fundamentalsatz der Gruppentheorie, *Sitz. Ber. Königl. Preuss. Akad. Wiss. Berlin*, 1903, 987–991. <□ → ⟨♂ → ⟨ ≥ →

Let G be a finite group whose order is divisible by a number n. Then $\sum_{d \mid n} w_d$ is divisible by n.

Corollary

Let G be a finite group whose order is divisible by a number n. Then $\sum_{d|n} w_d$ is divisible by n.

Corollary

• If $p \in \omega(G)$ is prime, then $w_p \equiv -1 \pmod{p}$.

Let G be a finite group whose order is divisible by a number n. Then $\sum_{d|n} w_d$ is divisible by n.

Corollary

- If $p \in \omega(G)$ is prime, then $w_p \equiv -1 \pmod{p}$.
- If $d \in \omega(G) \setminus \{1\}$, then ω_d is odd if and only if d = 2.

G

Upper bound for $w_p^*(G)$

<i>G</i>	Upper bound for $w_p^*(G)$
Non- <i>p</i> -group	$\frac{p}{p+1} G $
3-group of exponent \neq 3	$\frac{7}{9} G $

G	Upper bound for $w_p^*(G)$
Non- <i>p</i> -group	$\frac{p}{p+1} G $
3-group of exponent \neq 3	$\frac{7}{9} G $
2-group of exponent \neq 2	$\frac{3}{4} G $.

Name Year Conditions $w_{p^k}^*(G)$ is divisible by

Name	Year	Conditions	$w_{p^k}^*(G)$ is divisible by
Miller	1919	$p^k > p > 2$	p^k

Name	Year	Conditions	$w_{p^k}^*(G)$ is divisible by
Miller	1919	$p^k > p > 2$	$ ho^k$
Kulakof	1931	$p^k > p > 2$	$ ho^{k+1}$

Name	Year	Conditions	$w_{p^k}^*(G)$ is divisible by
Miller	1919	$p^k > p > 2$	$ ho^k$
Kulakof	1931	$p^k > p > 2$	p^{k+1}
Berkovich	1991	$p^k > p > 2$	$ ho^{k+ ho}$

Set Range

Set	Range
ω	N_0

Set	Range
ω	\mathbb{N}_0
$\omega(2)$	$2\mathbb{N}^0+1$

Set	Range		
ω	\mathbb{N}_0		
ω (2)	$2\mathbb{N}^0+1$		
ω (3)	Not known but contains $54\mathbb{N}^0+44$		

Freud and Pálfy, 1996

Set	Range
ω	\mathbb{M}_0
$\omega(2)$	$2\mathbb{N}^0+1$
ω (3)	Not known but contains $54\mathbb{N}^0+44$
ω (6)	$2\mathbb{N}^0\setminus\{4,16,28\}$

Set	Range
ω	\mathbb{N}_0
ω (2)	$2\mathbb{N}^0+1$
ω (3)	Not known but contains $54\mathbb{N}^0+44$
ω (6)	$2\mathbb{N}^0\setminus\{4,16,28\}$
$\omega(4k)$	$arphi(k)\mathbb{N}^0$

Freud and Pálfy, 1996

Set	Range
ω	N_0
ω (2)	$2\mathbb{N}^0+1$
ω (3)	Not known but contains $54\mathbb{N}^0+44$
ω (6)	$2\mathbb{N}^0\setminus\{4,16,28\}$
$\omega(4k)$	$\varphi(k)\mathbb{N}^0$
$\omega(p)$	Not known but contains $ig\{(p-1)p_1^{lpha_1}\cdots p_n^{lpha_n}:p_i^{lpha_i}\equiv 1\pmod{p}, i=1,\ldots,nig\}$

A simple fact

If G is a group with $|w^*(G)| = 1$, then |G| = 1 or 2.

Let G be a finite group. Then $|w^*(G)| = 2$ if and only if G is isomorphic to one of the following groups:

(1) \mathbb{Z}_4 ,

- (1) \mathbb{Z}_4 ,
- (2) Q_8 ,

- (1) \mathbb{Z}_4 ,
- (2) Q_8 ,
- (3) a p-group of exponent p different from \mathbb{Z}_2 ,

- (1) \mathbb{Z}_4 ,
- (2) Q_8 ,
- (3) a p-group of exponent p different from \mathbb{Z}_2 ,
- (4) $H \times \mathbb{Z}_2$, where H is a p-group of exponent p > 2.

Preliminary results

Lemma

Let G be a finite group. Then $w(G) = \{1, p, q\}$ if and only if G is a Frobenius group whose kernel is a p-group of exponent p and complements are cyclic q-groups of order q, where p and q are distinct primes.

Preliminary results

Lemma

Let G be a finite group. Then $w(G) = \{1, p, q\}$ if and only if G is a Frobenius group whose kernel is a p-group of exponent p and complements are cyclic q-groups of order q, where p and q are distinct primes.

Lemma

Let G be a finite group. Then $w(G) = \{1, p, q, pq\}$ and $w^*(G) = \{1, m, n\}$ if and only if G/Z(G) is a Frobenius group, $Z(G) \cong \mathbb{Z}_2$ and either $G \cong \mathbb{Z}_2 \times (\mathbb{Z}_p^k \rtimes \mathbb{Z}_2)$ or $G \cong \mathbb{Z}_2^k \rtimes \mathbb{Z}_p$.

Theorem

Let G be a finite group which is not a p-gorup. Then $|w^*(G)| = 3$ if and only if there exists distinct primes p and q such that

Theorem

Let G be a finite group which is not a p-gorup. Then $|w^*(G)| = 3$ if and only if there exists distinct primes p and q such that

(1) G is a Frobenius group whose kernel is a p-group of exponent p and complements are cyclic q-groups of order q,

Theorem

Let G be a finite group which is not a p-gorup. Then $|w^*(G)| = 3$ if and only if there exists distinct primes p and q such that

- (1) G is a Frobenius group whose kernel is a p-group of exponent p and complements are cyclic q-groups of order q,
- (2) $G = O_{pqp}(G)$ is a 3-step group, $O_{pq}(G) = O_p(G) \rtimes \mathbb{Z}_q$ is a Frobenius group, $G/O_p(G) \cong \mathbb{Z}_q \rtimes \mathbb{Z}_p$ is a Frobenius group, $\exp(P) = p$ and $Q \cong \mathbb{Z}_q$,

Theorem

Let G be a finite group which is not a p-gorup. Then $|w^*(G)| = 3$ if and only if there exists distinct primes p and q such that

- (1) G is a Frobenius group whose kernel is a p-group of exponent p and complements are cyclic q-groups of order q,
- (2) $G = O_{pqp}(G)$ is a 3-step group, $O_{pq}(G) = O_p(G) \rtimes \mathbb{Z}_q$ is a Frobenius group, $G/O_p(G) \cong \mathbb{Z}_q \rtimes \mathbb{Z}_p$ is a Frobenius group, $\exp(P) = p$ and $Q \cong \mathbb{Z}_q$,
- (3) G/Z(G) is a Frobenius group, $Z(G) \cong \mathbb{Z}_2$ and either $G \cong \mathbb{Z}_2 \times (\mathbb{Z}_p^k \rtimes \mathbb{Z}_2)$ or $G \cong \mathbb{Z}_2^k \rtimes \mathbb{Z}_p$,

p-groups

Proposition

Let G be a p-group satisfying $|w^*(G)| = 3$. Then $\exp(G) \le p^2(G)$.

p-groups

Proposition

Let G be a p-group satisfying $|w^*(G)| = 3$. Then $\exp(G) \le p^2(G)$.

Example

A p-groups G of exponent p^2 satisfies $|w^*(G)| = 3$.

Thank You for Your Attention!