Antiporter	Equation (mol/mm^2)		Ref
Na/Ca	()		(9, 71)
	$I_{NCX} = g_{NCX}^{max} \left(\frac{([Ca]_{i(M)})^{\eta_{Hill}}}{([Ca]_{i(M)}^{\eta_{Hill}} + (K_{m,NCX}^{Ca})^{\eta_{Hill}}} \right)$		
	$\left(\frac{[Na]_{i}^{n}[Ca]_{o}exp\left(\frac{(n-2)rV_{m}F}{2RT}\right) - [Na]_{o}^{n}[Ca]_{i}exp\left(-\frac{(n-2)(1-r)V_{m}F}{2RT}\right)}{1 + d_{NCX}\left([Na]_{o}^{n}[Ca]_{i} + [Na]_{i}^{n}[Ca]_{o}\right)}\right)$	[99]	
			(70, 75)
	$V_{r}C_{r}$ (reg. 2) $(rV_{m}F)$		(72–75)
	$i_{Ca}^{NaCa} = k_{NaCa} \left([Na]_{i(M)}^{3} [Ca]_{N(o)} exp\left(\frac{rV_{m}F}{RT} \right) \right)$		
	$-[Na]_{N(o)}^{3}[Ca]_{i(M)}exp\left(-\frac{(1-r)V_{m}F}{RT}\right)$	100]	
	$E_{NaCa} = \frac{(nE_{Na} - 2E_{Ca})}{(n-2)}$	101]	
		102]	
			(40, 55, 70)
	$([Ca]_{i(M)})^{\eta_{HW}}$		(48, 55, 76)
	$I_{NCX} = I_{NCX}^{max} \left(\frac{([Ca]_{i(M)})^{\eta_{Hill}}}{([Ca]_{i(M)}^{n_{Hill}} + (K_{m,NCX}^{Ca})^{\eta_{Hill}}} \right)$		
	$\left(\frac{[Na]_{i(M)}^{n_{NCX}}[Ca]_{N(o)}exp\left(\frac{rV_{m}F}{RT}\right) - [Na]_{N(o)}^{n_{NCX}}[Ca]_{i(M)}exp\left(-\frac{(1-r)V_{m}F}{RT}\right)}{\lambda(1 + k_{sat}exp\left(-\frac{(1-r)V_{m}F}{RT}\right))}\right)$	103]	
	$\lambda(1+k_{sat}exp\left(-\frac{(1-r)V_mF}{RT}\right))$,	
	$\lambda = [Na]_e^{n_{NCX}(orNa)} [Ca]_i + [Na]_i^{n_{NCX}} [Ca]_e + K_{m,Cae} [Na]_i^{n_{NCX}}$	104]	
	$+K_{m,Nai}^{n_{NCX}}[Ca]_e(1+\frac{[Ca]_i}{K_{m,Cai}})+K_{m,Cai}[Na]_e^{n_{NCX}}\left(1+\frac{[Na]_i^{n_{NCX}}}{K_{m,Nai}}\right)^{n_{NCX}}$,	
			(30, 55)
	$I_{NCX} = I_{NCX}^{max} \left(\frac{1}{1 + \left(\frac{K_{m,NCX}^{Ca}}{m,NCX}\right)^3} \right)$		
	· ([Ca] _{md} /		
	$\left(\frac{[Na]_{md}^{3}[Ca]_{out}exp\left(\frac{rV_{m}F}{RT}\right) - [Na]_{out}^{3}[Ca]_{md}exp\left(-\frac{(1-r)V_{m}^{md}F}{RT}\right)}{\lambda\left(1 + k_{sat}exp\left(-\frac{(1-r)V_{m}^{md}F}{RT}\right)\right)}\right)$	105]	
	$\lambda(1+k_{sat}exp(-\frac{r_{m}}{RT}))$		
	$\lambda = [Na]_{out}^{3}[Ca]_{md} + [Na]_{md}^{3}[Ca]_{out} + K_{m,Cao}[Na]_{out}^{3} + K_{m,Nao}^{3}[Ca]_{md}(1 + \frac{[Ca]_{md}}{K_{m,Cai}}) + K_{m,Cai}[Na]_{out}^{3} \left(1 + \frac{([Na]_{md}}{K_{m,Nao}})^{3}\right)$	106]	
	$+K_{m,Nao}^{\circ}[Ca]_{md}(1+\frac{1}{K_{m,Cai}})+K_{m,Cai}[Na]_{out}^{\circ}\left(1+\frac{1}{K_{m,Nai}}\right)^{\circ}\right)$		
			(51)
	$I_{NCX} = k_{NCX} \left(\frac{[Na^+]_o^3}{K_{m,Na}^3 + [Na^+]_o^3} \right) \left(\frac{[Ca^{2+}]_o}{[Ca^{2+}]_o + K_{m,Ca}} \right)$	ļ	
		107]	
	$\times \left(\frac{\frac{ Na^{+} _{0}^{3}}{ Na^{+} _{0}^{3}}e^{\frac{\eta V F}{RT}} - \frac{ Ca^{2+} _{1}^{3}}{ Ca^{2+} _{1}^{3}}e^{\frac{(\eta - 1)V F}{RT}}}{1 + k_{sate}\frac{(\eta - 1)V F}{RT}} \right)$	ļ	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

Table 40. The corresponding equations describing the flux and current transported via sodium calcium exchanger across the cell membrane

39 E.2. Sodium Calcium Exchanger (Na/Ca).

Table 41. NaCa Exchanger Parameters (equation 105)

Parameter	Description	Value	Types of Cells	References
I_{NCX}^{max}	Maximum Na/Ca exchange current	$200(\mu A\mu F)$		(30, 55)
$K_{m,Cai}$	Internal Ca half-saturation constant for Na/Ca exchange	$3.59(\mu M)$		(55)
$K_{m,Cao}$	External Ca half-saturation constant for Na/Ca exchange	1.3(mM)		(30, 55)
$K_{m,Nai}$	Internal Na half-saturation constant for Na/Ca exchange	12.29(mM)		(30, 55)
$K_{m,Nao}$	External Na half-saturation constant for Na/Ca exchange	87.5(mM)		(52, 55)
r	Na/Ca exchange saturation factor at negative potentials	0.27		(55)
r	Constant for voltage dependent of Na/Ca exchange	0.35		(52, 55)
$K_{m,NCX}^{Ca}$	Constant for Na/Ca exchange	0.256 (μM)		(55)

nomenclature for the TSs refers to the numbered species in the table.

Antiporter	Equation	
	(mol/mm^2)	
NHE		(61)
	$J_{NHE} = \frac{G_{NHE}([Na]_{bl}[H]_{c} - [Na]_{c}[H]_{bl})}{K_{Na} K_{H} \left(\left(1 + \frac{[Na]_{bl}}{K_{Na}} + \frac{[H]_{bl}}{K_{H}} \right) \left(\frac{[Na]_{c}}{K_{Na}} + \frac{[H]_{c}}{K_{H}} \right) \left(1 + \frac{[Na]_{c}}{K_{Na}} + \frac{[H]_{c}}{K_{H}} \right) \left(\frac{[Na]_{bl}}{K_{Na}} + \frac{[H]_{bl}}{K_{H}} \right) \right)} $ [108]	

Table 42. The corresponding equations describing the flux and current transported via Sodium Hydrogene exchanger

Table 43. NHE Parameters (equation 108)

Parameter	Description	Value	Types of Cells	References
G_{NHE}	Membrane permeability per 1 cm^2	$5 \times 10^{-10} \ mol/(sec \cdot cm^2)$	Pancreatic Ductal Epithelium	(61)
K_{Na}		100 (mM)	Pancreatic Ductal Epithelium	(61)
K_H		$5 \times 10^{-4} (mM)$	Pancreatic Ductal Epithelium	(61)

nomenclature for the TSs refers to the numbered species in the table.

E.3. Sodium Hydrogen Antiporter (NHE).

