Lecture 4: CS677

Aug 31, 2017

#### Review

- HW1 posted today; due September 12
- Previous class
  - Equations of projection
  - Homogeneous coordinates
  - Different coordinate systems
  - Intrinsic and extrinsic matrices
- Cloud computing: students can get a better personal account at: <a href="https://console.cloud.google.com/freetrial?ga=2.228461851.-722665125.1503520492&page=1">https://console.cloud.google.com/freetrial?ga=2.228461851.-722665125.1503520492&page=1</a>
- Today's objective
  - Weak perspective projection
  - Projective Geometry
  - Camera Calibration
  - Intro to Radiometry

# Weak Perspective

Perspective projection but assume all points have the same z-value (object sizes small, compared to distance from camera)



Matrix form developed in next slide

# Weak Perspective

- Equations become become simpler if we use homogeneous coordinates for P and non-homogeneous for image point p.
- Let  $Z_r$  be the distance of all points P; then, in normalized coord system, in matrix form

$$\begin{pmatrix} \hat{x} \\ \hat{y} \\ 1 \end{pmatrix} = \frac{1}{Z_r} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & Z_r \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Including K, R and t

$$p = \frac{1}{Z_r} \mathcal{K} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & Z_r \end{pmatrix} \begin{pmatrix} \mathcal{R} & t \\ \mathbf{0}^T & 1 \end{pmatrix} P$$

Rewrite 
$$\mathcal{K} \stackrel{\text{def}}{=} \begin{pmatrix} \alpha & -\alpha \cot \theta & x_0 \\ 0 & \frac{\beta}{\sin \theta} & y_0 \\ 0 & 0 & 1 \end{pmatrix}$$
 as:

$$\mathcal{K} = \begin{pmatrix} \mathcal{K}_2 & p_0 \\ \mathbf{0}^T & 1 \end{pmatrix}, \quad \text{where} \quad \mathcal{K}_2 \stackrel{\text{def}}{=} \begin{pmatrix} \alpha & -\alpha \cot \theta \\ 0 & \frac{\beta}{\sin \theta} \end{pmatrix} \quad \text{and} \quad \mathbf{p}_0 \stackrel{\text{def}}{=} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

## Weak Perspective (Continued)

Rewrite weak perspective projection equation as:

$$p = \mathcal{M}P$$
, where  $\mathcal{M} = \begin{pmatrix} \mathcal{A} & b \end{pmatrix}$ 

p is a non-homogeneous coordinate vector here; M is 2x4

$$\mathcal{A} = \frac{1}{Z_r} \mathcal{K}_2 \mathcal{R}_2$$
 and  $\boldsymbol{b} = \frac{1}{Z_r} \mathcal{K}_2 \boldsymbol{t}_2 + \boldsymbol{p}_0$ 

 $R_2$  is the sub-matrix of R consisting of the first two rows;  $t_2$  contains the first two terms of vector t.

Note t<sub>3</sub> does not appear in the projection equation.

• With further manipulation, we can derive:

$$\mathcal{M} = \frac{1}{Z_r} \begin{pmatrix} k & s \\ 0 & 1 \end{pmatrix} (\mathcal{R}_2 \quad t_2)$$
  $k$  denotes aspect ratio,   
  $s$  denotes skew

• Some restrictions on A matrix for it to be a weak perspective projection matrix; details omitted for now.

# Homogeneous Coordinates

- Linearize the entire image projection process, including various coordinate transformations
  - Allows us to work with a single 3 x 4 matrix transformation
     (for perspective projection) with at most 12 (11) parameters.
- Many geometrical entities (*e.g.* points, planes, *conics*) can be represented compactly
- Many relations between these entities and their mappings to image plane can also be represented compactly
- Allows points at infinity to be handled *homogeneously* with the other points
  - Consider [a b c 0]<sup>T</sup>, we can still project it to a finite point in the image
- Studied as part of the field of *Projective Geometry*

# Homogeneous Coords in 2-D

- Point X: normal coords (x,y); homogeneous  $(x, y, 1)^T$
- Line l: ax + by + c = 0, homogeneous:  $(a, b, c)^T$
- Point X is on line l iff  $X^T l = 0$
- Lines l and l' intersect in  $X = l \times l'$

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix},$$

$$\equiv \hat{\mathbf{x}} \left( u_y v_z - u_z v_y \right) - \hat{\mathbf{y}} \left( u_x v_z - u_z v_x \right) + \hat{\mathbf{z}} \left( u_x v_y - u_y v_x \right)$$

- Intersection of parallel lines
  - Consider  $(-1, 0, 1)^T$   $(-1, 0, 2)^T$ ;  $X = (0, 1, 0)^T$ , a point at  $\infty$ .
  - $(x_1, x_2, 0)^T$  set of all points at ∞, they all lie on line  $(0, 0, 1)^T$ , called the *line at infinity*. A point on this line corresponds to a *direction*.

# Homogeneous Coords in 3-D

- Point X: normal coords  $(x,y,z)^T$ ; homogeneous  $(x, y, z, 1)^T$
- Plane  $\Pi$ : ax + by + cz + d = 0 is defined by (a, b, c, d) T
- Point X is on plane iff  $\Pi^T X = 0$
- 3 points define a plane  $(X_1^T, X_2^T, X_3^T)^T \Pi = 0$
- 3 planes define a point  $(\Pi_1^T, \Pi_2^T, \Pi_3^T)^T \mathbf{X} = 0$
- Plane at infinity:  $\Pi_{\infty} = (0, 0, 0, 1)^{\mathrm{T}}$ .
  - Points on this plane,  $(x_1, x_2, x_3, 0)^T$  or  $(\boldsymbol{d}^T, 0)^T$  represent directions (of parallel lines)
  - Line of direction d intersects  $\Pi_{\infty}$  in  $(d^{T}, 0)^{T}$ . Vanishing point is simply image of this point (= K d)
  - Parallel planes intersect on a line in  $\Pi_{\infty}$ . Suppose **n** is the direction of the normal to these planes. It can be shown that the vanishing line is given by  $1 = K^{-T} \mathbf{n}$ .
- Lines in 3-D, harder to represent (more on this coming)
- Ref: Hartley- Zisserman book

# Conics and Quadrics

- Consider a 2-D conic:  $ax^2 + bxy + cy^2 + dx + ey + f = 0$
- Let  $X = [x, y, 1]^T$  be a point on the conic, expressed in homogeneous coordinates, then equation of conic can be written

as , 
$$\mathbf{X}^T \mathbf{C} \mathbf{X} = \mathbf{0}$$
, where  $\mathbf{C} = \begin{vmatrix} \mathbf{a} & \mathbf{b}/2 & \mathbf{d}/2 \\ \mathbf{b}/2 & \mathbf{c} & \mathbf{e}/2 \\ \mathbf{d}/2 & \mathbf{e}/2 & \mathbf{f} \end{vmatrix}$ 

• Sphere or quadric surface represented as a simple vector equation (see eq. 2.3, FP book, first edition)

$$a_{200}x^2 + a_{110}xy + a_{020}y^2 + a_{011}yz + a_{002}z^2 + a_{101}xz + a_{100}x + a_{010}y + a_{001}z + a_{000} = 0.$$

$$P^{T}QP = 0, \quad \text{where} \quad Q = \begin{pmatrix} a_{200} & \frac{1}{2}a_{110} & \frac{1}{2}a_{101} & \frac{1}{2}a_{100} \\ \frac{1}{2}a_{110} & a_{020} & \frac{1}{2}a_{011} & \frac{1}{2}a_{010} \\ \frac{1}{2}a_{101} & \frac{1}{2}a_{011} & a_{002} & \frac{1}{2}a_{001} \\ \frac{1}{2}a_{100} & \frac{1}{2}a_{010} & \frac{1}{2}a_{001} & a_{000} \end{pmatrix}.$$

# 3-D Lines in Homogeneous Coordinates

- Line Representation: more complex than for points and planes
- A line can be defined by two points on the line or the intersection of two planes
  - Say representation of line is concatenation of coordinates of two points
  - We can't project this new vector by using matrix M; if we project each point separately, we get two points in the image plane and then need to construct a line (which has only 3 parameters)
- Plücker coordinates define a neat 6 parameter representation of a line that can be operated on in similar ways as points and planes
- We will skip details of Plücker representation
  - For ref, see <a href="https://en.wikipedia.org/wiki/Pl%C3%BCcker\_coordinates">https://en.wikipedia.org/wiki/Pl%C3%BCcker\_coordinates</a>
    - Hartley-Zisserman book: Multi-view geometry
  - Details not necessary for 677 course

#### Inverse Problem

- In graphics, object point(s) P and camera transformation matrix, M, are known, task is to compute the image p
  - Matrix multiplication solves the problem
- Inverse problem
  - p is given, estimate P
    - *M* may or may not be known
  - Even if M is given, P is still not unique as M is not invertible;
     however, we can put some constraints on P (must lie on a specific line)
  - Given points in two images (say  $\mathbf{p}_1$  and  $\mathbf{p}_2$ ) and  $M_1$  and  $M_2$ , we can solve for  $\mathbf{P}$ 
    - Stereo processing, requires finding corresponding points,  $\mathbf{p}_1$  and  $\mathbf{p}_2$
- Camera calibration problem
  - Given  $\bf p$  and  $\bf P$ , solve for M

#### Camera Calibration

- Find camera transform matrix **M**
- Use a calibration object (cube, chessboard etc.)
  - 3-D positions of the points (set of  $P_i$ ) on the object are known (in an object centered coordinate system)
- Find correspondences between sets of image points ( $\mathbf{p}_i = (\mathbf{x}_i, \mathbf{y}_i)$  and 3-D object points  $\mathbf{P}_i$  (manually if necessary)
- Each correspondence provides two equations (relating  $\mathbf{p}_i$  to  $\mathbf{P}_i$  in terms of parameters of M).
- Given six matches, we can find an exact solution (ignoring degenerate cases)
- If we have more points, we can find a least mean squared error solution

#### Camera Calibration

• Given correspondences between sets of image points ( $\mathbf{p}_i = (x_i, y_i)$  and 3-D object points  $\mathbf{P}_i$ 

$$x_i = \frac{m_1(\xi) \cdot P_i}{m_3(\xi) \cdot P_i},$$
  
 $y_i = \frac{m_2(\xi) \cdot P_i}{m_3(\xi) \cdot P_i},$ 

( $\xi$  is the set of intrinsic and extrinsic parameters)

• Expanding and dropping  $\xi$  for simplicity:

$$(m_1 - x_i m_3) \cdot P_i = P_i^T m_1 + 0^T m_2 - x_i P_i^T m_3 = 0,$$
  
 $(m_2 - y_i m_3) \cdot P_i = 0^T m_1 + P_i^T m_2 - y_i P_i^T m_3 = 0.$ 

• Solve for m in Pm = 0 where

$$\mathcal{P} \stackrel{\text{def}}{=} \begin{pmatrix} \boldsymbol{P}_1^T & \boldsymbol{0}^T & -x_1 \boldsymbol{P}_1^T \\ \boldsymbol{0}^T & \boldsymbol{P}_1^T & -y_1 \boldsymbol{P}_1^T \\ \dots & \dots & \dots \\ \boldsymbol{P}_n^T & \boldsymbol{0}^T & -x_n \boldsymbol{P}_n^T \\ \boldsymbol{0}^T & \boldsymbol{P}_n^T & -y_n \boldsymbol{P}_n^T \end{pmatrix} \quad \text{and} \quad \boldsymbol{m} \stackrel{\text{def}}{=} \begin{pmatrix} \boldsymbol{m}_1 \\ \boldsymbol{m}_2 \\ \boldsymbol{m}_3 \end{pmatrix}$$

• Degenerate configurations: All points in same plane, 3 points in a line...

## Computing Intrinsic and Extrinsic Parameters

- Matrix M combines intrinsic and extrinsic parameters in complex ways; seems difficult to separate them but this can be done by careful application of algebra (we omit details, see FP book)
- Non-linear calibration
  - Elements of M are not independent, hence linear solution is not completely accurate
  - Number of unknowns may be smaller than 12
    - e.g. skew is typically zero, aspect ratio is known
  - Three or four points may suffice (or two or three lines)
- Non-linear methods may be expensive and converge to locally optimum solutions
  - Many such solutions exist in the literature but will not be discussed further in our class (also not covered in FP book).

### Radial Distortion

- Real lenses often have *radial distortion*, particularly wide-angle lenses
  - Scaling is proportional to distance from the center
  - Projections of straight lines near the edges of image appear curved
  - Radial distortion can be accounted for, details may be found in section 1.3.2 but not required for our class

## Self-calibration

- What can we infer about the camera without a calibration object?
  - Typical images don't come with calibration objects or transformation matrices?
- Inherent ambiguities
  - Primarily that of scale
- Use of vanishing points
  - "Vertical" vanishing point provides "tilt" angle
  - Three orthogonal vanishing points define a triangle
    - Orthocenter of this triangle gives the principal point
    - Horizon line gives "roll" angle directly
    - Size of triangle provides focal length
    - Height and scale can be estimated if an object of known size can be seen in the image
- Details omitted; self-calibration from single camera not included in exams.

# Example



## A street scene

- Where are the vanishing points?
- Where is the horizon?



#### RADIOMETRY

- Goal: Determine the *brightness* of an image point
- Depends on:
  - Intensity and direction of incoming light
  - Surface reflection properties
    - May be direction dependent
      - Specular (mirror), all light reflected in one direction
      - Lambertian (diffused), looks equally bright from all directions
      - Most objects can be modeled as a combination of the two
  - Sensor response
- We will focus on a *local* shading model only; intensity variations essentially depend on the local surface orientation
- Image is digitized (sampled at discrete points) and quantized (values are integers)

# Fig 2.2: Diffuse and Specular Reflections

• Fig 2.33 RS book



# Distant Point Light Source

- Some parts of scene don't get any direct light: "cast shadows"
- Inter-reflection
- Lambertian + Specular model
- Let I(x) be *intensity* of point x in the image;
  - N(x) be surface normal at x;
  - $\mathbf{S}(x)$  be the direction vector towards source (source is at  $\infty$ );
  - $I(x) = \rho(x) (N(x). S(x)) + \rho(x) A + M$
  - $-\rho(x)$  includes effects of surface *albedo*, sensor response, and illumination intensity
  - Second term accounts for ambient light, last for specular term
- Area source: sum of points sources; complex in general

# Some Examples

- Examples
  - Constant for a plane, source far away
  - Disk vs sphere (same geometric shape), (from Nalwa fig 5.2)



# Normal Field vs Height Field

- Surface normals can be derived from height (depth) by computing partial derivatives
- Height (depth) can be derived from surface normals by integration



#### Next Class

• FP: Chapter 2, section 2.2.1, Chapter 3, sections 3.1, 3.2 and 3.3