Nota. Итак, в теоремах сказано

 $\mathbf{1}^*$ В любом заданном направлении \overrightarrow{s} производная $\frac{\partial u}{\partial s}|_M$ равна проекции градиента в M

2-3* В направлении $\overrightarrow{\forall} u$ производная $\frac{\partial u}{\partial s}$ наибольшая по модулю, а в направлении $\overrightarrow{s} \perp \overrightarrow{\forall} u$ $\frac{\partial u}{\partial s} = 0$

 4^* Градиент \bot линиям уровня. Прямая, содержащая $\overrightarrow{\triangledown}u$ (т. е. перпендикулярная касательной к l), называется нормалью к l а тогда $\overrightarrow{\triangledown}u$ - вектор нормали

4.7.3. Касательная и нормаль к поверхности

Будем исследовать поверхность π с уравнением F(x, y, z(x, y)) = 0 (неявное задание)

Def. Прямая τ называется касательной прямой к поверхности π в точке P(x,y,z), если эта прямая касается какой-либо кривой, лежащей на π и проходящей через P

Nota. Кривая получается (обычно) сечением π какой-либо плоскостью

Nota. В одной точке может быть множество касательных, но необязательно

Nota. Договоримся различать два типа точек поверхности: обыкновенные и особые

Def. Поверхность π задана F(x,y,z(x,y))=0. Точка M называется обыкновенной, если существуют все $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}$, они непрерывны и не все равны нулю

 $\mathbf{Def.}$ Точка M называется особой, если $\frac{\partial F}{\partial x} = \frac{\partial F}{\partial y} = \frac{\partial F}{\partial z} = 0$ или хотя бы одна не существует

Th. Все касательные прямые к π в обыкновенной точке M_0 лежат в одной плоскости

 \overrightarrow{ds} - направляющий вектор касательной au, проведенной к кривой l в некоторой секущей плоскости

 \overrightarrow{ds} - вектор малых приращений, то есть $\overrightarrow{ds} = (dx, dy, dz)$

 \overrightarrow{dp} - проекция \overrightarrow{ds} на Oxy, то есть $\overrightarrow{dp}=(dx,dy)$

Кривую l можно задать параметрическими уравнениями $\begin{cases} x = \varphi(t) \\ y = \xi(t) \\ z = \theta(t) \end{cases}$

Прямая τ имеет уравнение

$$\frac{x - x_0}{dx} = \frac{y - y_0}{dy} = \frac{z - z_0}{dz}$$

При отходе от M_0 на малое расстояние по поверхности (точнее по кривой l) задаем приращение $dt \neq 0$

Домножим уравнение на dt

$$\frac{x - x_0}{\frac{dx}{dt}} = \frac{y - y_0}{\frac{dy}{dt}} = \frac{z - z_0}{\frac{dz}{dt}}$$

Из условия обыкновенности точки M_0 следует дифференцируемость функции F. Кроме того, уравнение можно преобразовать к виду F(x(t),y(t),z(t))=0, где x(t),y(t),z(t) - тоже дифференцируемы в точке M_0

Запишем F'_t , как вложенную:

$$F'_t = \frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt} + \frac{\partial F}{\partial z}\frac{dz}{dt} = 0$$

Или
$$\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right) \cdot \left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}\right) = 0$$

Таким образом, $\overrightarrow{N} \cdot \frac{d\overrightarrow{s}}{dt} = 0$. То есть $\overrightarrow{N} \perp \frac{d\overrightarrow{s}}{dt}$, при том, что $d\overrightarrow{s}$ выбран произвольно (кривая l - кривая произвольного сечения)

Итак, вектор $\overrightarrow{N} \perp$ любой касательной τ к поверхности π в точке M_0 . Следовательно, все касательные лежат в плоскости κ такой, что $\overrightarrow{N} \perp \kappa$

Def. Плоскость κ (содержащая все касательные прямые τ к π в точке M_0) называется касательной плоскостью к π в M_0

Def. Прямая в направлении \overrightarrow{N} через точку M_0 называется нормалью к π в M_0 \overrightarrow{N} - вектор нормали к поверхности в точке

Уравнение
$$(\pi)$$
 $F(x,y,z) = 0$, $\overrightarrow{N} = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right)$, $M_0(x_0, y_0, z_0) \in \pi, \kappa, n$

Касательная плоскость
$$(\kappa)$$
 $\frac{\partial F}{\partial x}(x-x_0) + \frac{\partial F}{\partial y}(y-y_0) + \frac{\partial F}{\partial z}(z-z_0) = 0$

Нормаль
$$(n)$$

$$\frac{x - x_0}{\frac{\partial F}{\partial x}} = \frac{y - y_0}{\frac{\partial F}{\partial y}} = \frac{z - z_0}{\frac{\partial F}{\partial z}}$$

Nota. Получим вектор нормали в случае явного задания π z=z(x,y)

Пересечем π в точке M_0 плоскостями $x=x_0,y=y_0.$

В сечении получим кривые с касательными векторами

Вектор нормали к π в M_0 $\overrightarrow{n} = \overrightarrow{m} \times \overrightarrow{p}$

Найдем \overrightarrow{m} , \overrightarrow{p}

В сечении $x = x_0$

картинка

Введем вектор
$$d\overrightarrow{p}||\overrightarrow{p}|$$

$$d\overrightarrow{p} = \left(0, dy, \frac{\partial z}{\partial y} dy\right) = \left(0, 1, \frac{\partial z}{\partial y}\right) dy$$

Аналогично найдем \overrightarrow{m} в сечении $y = y_0$

$$\overrightarrow{m}||\overrightarrow{dm} = \left(dx, 0, \frac{\partial z}{\partial x}dx\right) = \left(1, 0, \frac{\partial z}{\partial x}\right)dx$$

Так как модуль \overrightarrow{n} не важен, а только направление, то будем искать $\overrightarrow{n} = \left(1, 0, \frac{\partial z}{\partial x}\right) \times \left(0, 1, \frac{\partial z}{\partial y}\right)$

$$\overrightarrow{n} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 0 & \frac{\partial z}{\partial x} \\ 0 & 1 & \frac{\partial z}{\partial y} \end{vmatrix} = \overrightarrow{i} \left(-\frac{\partial z}{\partial x} \right) - \overrightarrow{j} \frac{\partial z}{\partial y} + \overrightarrow{k} =$$

$$= \left(-\frac{\partial z}{\partial x}; -\frac{\partial z}{\partial y}; 1 \right)$$

Тогда уравнение κ :

$$z - z_0 = \frac{\partial z}{\partial x}(x - x_0) + \frac{\partial z}{\partial y}(y - y_0) = dz$$

Уравнение нормали n: $\frac{x-x_0}{-\frac{\partial z}{\partial x}} = \frac{y-y_0}{-\frac{\partial z}{\partial y}} = \frac{z-z_0}{1}$

Nota. Последние уравнения можно получить проще, если свести уравнение z = f(x,y) к уравнению z - f(x,y) = F(x,y,z) = 0

<u>Lab.</u> Вывести уравнение κ и n, пользуясь предыдущим замечанием

Nota. Если найти $\overrightarrow{n}^2 = \overrightarrow{p} \times \overrightarrow{m} = -(\overrightarrow{m} \times \overrightarrow{p})$, то получим также вектор нормали, но обращенный в противоположную сторону

Будем говорить, что \overrightarrow{n}^+ - положительный вектор нормали, если угол $\angle \gamma = \angle(\overrightarrow{n}^+, Oz) \in [0; \frac{pi}{2})$ \overrightarrow{n}^- - отрицательный, если угол $\angle \gamma = \angle(\overrightarrow{n}^+, Oz) \in (\frac{\pi}{2}; \pi)$

Соответственно этому верхней стороной π называется та, к которой вектор нормали положительный

Нижней стороне соответствует \overrightarrow{n}

Если $\overrightarrow{n} \perp Oz$, то это боковая сторона

4.7.4. Экстремумы ФНП ($\Phi_2\Pi$)

Def. Точка $M_0(x_0,y_0)$ называется точкой максимума (минимума) функции z=z(x,y), если $\forall M \in U_\delta(M_0) \quad z(M_0) \geq z(M)$ (для минимума $z(M_0) \leq z(M)$)

Nota. То же, что
$$z(M) - z(M_0) = z - z_0 = \Delta z \le 0 \text{ (max)}, \quad \Delta z \ge 0 \text{ (min)}$$

Мет. Для ФОП формулировали Необходимое условие экстремума (Ферма), из этого условия получали точки, подозрительные на экстремум : критические - $f'(x_0) = 0$ или $\nexists f'(x_0)$ (для острого экстремума); стационарные - $\exists f'(x_0) = 0$ (частный случай критич.)

Далее при помощи достаточных условий (признаков) проверяем наличие экстремума в критических точках

Nota. Все термины переносятся на $\Phi H\Pi$

Необходимое условие и достаточное условие аналогично

Th. Необходимое условие экстремума (гладкого):

$$z=z(x,y):\mathbb{R}^2 \to \mathbb{R}; \quad z_0$$
 - точка гладкого экстремума, то есть $\exists \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ в M_0 и $\forall M \in U_\delta(M_0) \ z_0 \leq z(M)$ или $z_0 \geq z(M)$

Тогда
$$\begin{cases} \frac{\partial z}{\partial x}|_{M_0} = 0\\ \frac{\partial z}{\partial y}|_{M_0} = 0 \end{cases}$$

 \Box Аналогично лемме Ферма в сечениях $x = x_0, y = y_0 \Box$

Для существования острого экстремума нужно рассмотреть не существования или бесконечность $\frac{\partial z}{\partial x}$ или $\frac{\partial z}{\partial y}$

Если же функция трижды дифференцируема исследования на характер экстремума можно проводить с помощью вторых производных

Th. Достаточное условие (гладкого) экстремума

Пусть z = z(x, y) непрерывна в окрестности M_0 (критическая точка $\frac{\partial z}{\partial x}|_{M_0} = 0$, $\frac{\partial z}{\partial u}|_{M_0} = 0$) вместе со своими первыми и вторыми производными (можно потребовать трижды дифференцируемость) Тогда, если $\frac{\partial^2 z}{\partial x^2} \stackrel{\text{обозн}}{=} A$, $\frac{\partial^2 z}{\partial x \partial y} \stackrel{\text{обозн}}{=} B$, $\frac{\partial^2 z}{\partial y^2} \stackrel{\text{обозн}}{=} C$, то

Тогда, если
$$\frac{\partial^2 z}{\partial x^2} \stackrel{\text{обозн}}{=} A$$
, $\frac{\partial^2 z}{\partial x \partial y} \stackrel{\text{обозн}}{=} B$, $\frac{\partial^2 z}{\partial y^2} \stackrel{\text{обозн}}{=} C$, то

- 1. $AC B^2 > 0, A > 0 \Longrightarrow M_0$ точка минимума
- 2. $AC B^2 > 0, A < 0 \Longrightarrow M_0$ точка максимума
- 3. $AC B^2 < 0$ в точке M_0 нет экстремума
- 4. $AC-B^2=0$ \Longrightarrow нельзя утверждать наличие или отсутствие экстремума в точке (требуются дополнительные исследования)

Функция z дважды дифференцируема, тогда ($z_0 = z(M_0)$)

$$\Delta z = z - z_0 = \frac{dz}{1!}|_{M_0} + \frac{d^2z}{2!}|_{M_0} + o((\Delta \rho)^2) \quad \Delta \rho = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(dx)^2 + (dy)^2}, \ dx = \Delta \rho \cos \alpha, dy = \Delta \rho \sin \alpha$$

$$o((\Delta \rho)^2) = \lambda(\Delta \rho)^3$$

Заметим, что $dz|_{M_0} = 0$, так как M_0 - критическая

$$d^2z = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2 z = \left(\frac{\partial^2}{\partial x^2} + 2\frac{\partial^2}{\partial x \partial y} + \frac{\partial^2}{\partial y^2}\right) z = \frac{\partial^2 z}{\partial x^2} (dx)^2 + 2\frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} (dy)^2 = A(dx)^2 + 2Bdx dy + C(dy)^2 = A(\Delta \rho)^2 \cos^2 \alpha + 2B(\Delta \rho)^2 \cos \alpha \sin \alpha + C(\Delta \rho)^2 \sin^2 \alpha$$

Тогда $\Delta z = \frac{1}{2} (\Delta \rho)^2 (A \cos^2 \alpha + 2B \cos \alpha \sin \alpha + C \sin^2 \alpha + 2\lambda \Delta \rho)$

 $(A\cos\alpha + B\sin\alpha)^2 + (AC - B^2)\sin^2\alpha$

1) $\Box AC - B^2 > 0 (A > 0)$: Числитель неотрицательный и не равен нулю (иначе $\sin \alpha = 0$, то тогда $A\cos\alpha\neq0$

Итак, числитель и знаменатель больше нуля. Обозначим всю дробь за $k^2 > 0$

Вернемся к $\Delta z = \frac{1}{2} (\Delta \rho)^2 (k^2 + 2\lambda \Delta \rho)$

Устремим $\Delta \rho \to 0$, начиная с какого-то $\delta \ \forall M \in U_\delta(M_0) \ k^2 + \lambda \Delta \rho > 0$

То есть $\Delta z > 0$ в $U_{\delta}(M_0) \Longrightarrow M_0$ - точка минимума (локально в $U_{\delta}(M_0)$)

2)

$$\exists \ AC-B^2>0 (A<0),$$
тогда $\Delta z=\frac{1}{2}(\Delta\rho)^2(-k^2+2\lambda\Delta\rho)<0$ при достаточно малом
 $\Delta\rho$

3)
 $\exists \ AC-B^2 < 0 (A>0),$ тогда фиксируем направления $\alpha=0 \Longrightarrow \sin\alpha=0$

$$\Delta z = \frac{1}{2} (\Delta \rho)^2 (A + 2\lambda \Delta \rho) > 0$$

$$tg\alpha = -\frac{A}{B} \Longrightarrow \frac{(AC - B^2)\sin^2\alpha}{A} = -k^2, \Delta z = \frac{(\Delta\rho)^2}{2}(-k^2 + 2\lambda\Delta\rho) < 0$$

Вдоль разных путей $\alpha=0,\ tg\alpha=-\frac{A}{B},$ разный знак $\Delta z\Longrightarrow$ нет экстремума

Nota. Можно аналогично рассмотреть A < 0

4) A=0, вернемся к выражению $\Delta z=\frac{1}{2}(\Delta\rho)^2(\sin\alpha(2B\cos\alpha+C\sin\alpha)+2\lambda\Delta\rho)$

Пусть α беск. мал, тогда $\sin \alpha \approx 0$, $C\sin \alpha \approx 0$, $2B\cos \alpha \approx 2B$. Тогда знак $\sin \alpha \cdot 2B$ зависит от α

То есть Δz колеблется вместе с α по знаку \Longrightarrow нет экстремума

Можно доказать при $A\neq 0$, например, выбрав $tg\alpha=-\frac{A}{R}$, что знак Δz зависит от α