

Computer Security

INFR10067 Fall 2025

Cryptography

Asymmetric encryption

Markulf Kohlweiss School of Informatics University of Edinburgh

Introduction

So far: how two users can protect data using a shared secret key

• One shared secret key per pair of users that want to communicate

Our goal now: how to establish a shared secret key to begin with?

- Trusted Third Party (TTP)
- Diffie-Hellman (DH) protocol
- RSA
- · ElGamal (EG)

Recap

Action items:

- ✓ Upload slides in advance (note that they might change before, and even after the lecture)
- ✓ Exercises: Those that struggle. please read this short chapter and do the exercises there: https://jovofcryptography.com/pdf/chap0.pdf
- ✓ Office hours are 11:15 Mon and Fri. Talk with me after lecture, especially MSc students. Offer to discuss Feistel networks, S-boxes, and key schedules stands.
- ✓ Request: What are challenges in modern cryptography? Trusted, distributed, fair and safe AI. Digital and Decentralized Identity. Post-quantum. Formalization of cryptography in theorem provers, e.g. Lean.

We finished MAC algorithms and authenticated encryption last time.

- Users U_1 , U_2 , U_3 , ..., U_n , ...
- $\bullet \ \, \text{Each user} \, U_i \, \, \text{has a shared secret} \\ \, \text{key} \, K_i \, \, \text{with the TTP}$
- U_i and U_j can establish a key $K_{i,j}$ with the help of the TTP
- $\{m\}_k$ denotes the symmetric encryption of m under the key k

Figure: Paulson's variant of the Yahalom protocol

- Users U_1 , U_2 , U_3 , ..., U_n , ...
- Each user \boldsymbol{U}_i has a shared secret key \boldsymbol{K}_i with the TTP
- *U_i* and *U_j* can establish a key
 K_{i,j} with the help of the TTP
- {m}_k denotes the symmetric encryption of m under the key k

Figure: Paulson's variant of the Yahalom protocol

- Users U_1 , U_2 , U_3 , ..., U_n , ...
- Each user \boldsymbol{U}_i has a shared secret key \boldsymbol{K}_i with the TTP
- U_i and U_j can establish a key $K_{i,j}$ with the help of the TTP
- {m}_k denotes the symmetric encryption of m under the key k

- Users U_1 , U_2 , U_3 , ..., U_n , ...
- Each user \boldsymbol{U}_i has a shared secret key \boldsymbol{K}_i with the TTP
- U_i and U_j can establish a key $K_{i,j}$ with the help of the TTP
- {m}_k denotes the symmetric encryption of m under the key k

Figure: Paulson's variant of the Yahalom protocol

- Users U_1 , U_2 , U_3 , ..., U_n , ...
- Each user \boldsymbol{U}_i has a shared secret key \boldsymbol{K}_i with the TTP
- U_i and U_j can establish a key $K_{i,j}$ with the help of the TTP
- {m}_k denotes the symmetric encryption of m under the key k

Figure: Paulson's variant of the Yahalom protocol

Public-key encryption - Definition

• key generation algorithm: $G: \to \mathcal{K}_{pk} \times \mathcal{K}_{sk}$ encryption algorithm $E: \mathcal{K}_{pk} \times \mathcal{M} \to \mathcal{C}$ decryption algorithm $D: \mathcal{K}_{sk} \times \mathcal{C} \to \mathcal{M}$ st. $\forall (sk, pk) \in G$, and $\forall m \in \mathcal{M}, D(sk, E(pk, m)) = m$

• the decryption key sk_{Bob} is secret (only known to Bob). The encryption key pk_{Bob} is known to everyone. And $sk_{Bob} \neq pk_{Bob}$

Computer Security

INFR10067 Fall 2025

Asymmetric encryption
We need a bit of number theory now

Primes

Definition

 $p \in \mathbb{N}$ is a **prime** if its only divisors are 1 and p

Ex: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

Theorem

Every $n \in \mathbb{N}$ has a unique factorization as a product of prime numbers (which are called its factors)

Ex: $23244 = 2 \times 2 \times 3 \times 13 \times 149$

Relative primes

Definition

a and b in $\mathbb Z$ are **relative primes** if they have no common factors

Definition

The Euler function $\phi(n)$ is the number of elements that are relative primes with n:

$$\phi(n) = |\{m \mid 0 < m < n \text{ and } \gcd(m, n) = 1\}|$$

- For p prime: $\phi(p) = p-1$
- For p and q primes: $\phi(p \cdot q) = (p-1)(q-1)$

Integers modulo $n: \mathbb{Z}_n$

• Let $n \in \mathbb{N}$. We define $\mathbb{Z}_n = \{0, \dots n-1\}$

$$\forall a \in \mathbb{Z}_n, \ \forall b \in \mathbb{Z}, \ a \equiv b \pmod{n} \Leftrightarrow \exists k \in \mathbb{Z}. \ b = a + k \cdot n$$

• Modular inversion: the inverse of $x \in \mathbb{Z}_n$ is $y \in \mathbb{Z}_n$ s.t. $x \cdot y \equiv 1 \pmod{n}$. We denote x^{-1} the inverse of $x \mod n$ Ex: 7^{-1} in \mathbb{Z}_{12} : 7

 4^{-1} in \mathbb{Z}_{12} : 4 has no inverse in \mathbb{Z}_{12}

Theorem

Let $n \in \mathbb{N}$. Let $x \in \mathbb{Z}_n$. x has a inverse in \mathbb{Z}_n iff gcd(x, n) = 1

Inverse is computed using the Extended Euclidean Algorithm.

Multiplicative group of integers modulo n: \mathbb{Z}_n^*

- Let $n \in \mathbb{N}$. We define $\mathbb{Z}_n^* = \{x \in \mathbb{Z}_n \mid \gcd(x,n) = 1\}$ Ex: $\mathbb{Z}_{12} = \{1,5,7,11\}$
- Note that $|\mathbb{Z}_n^*| = \phi(n)$

Theorem (Euler)

 $\forall n \in \mathbb{N}, \forall x \in \mathbb{Z}_{n}^*, x^{\phi(n)} \equiv 1 \pmod{n}$

Theorem (Euler)

 $\forall p \text{ prime, } \mathbb{Z}_p^* \text{ is a cyclic group, i.e.}$

$$\exists g \in \mathbb{Z}_p^*,\, \{1,g,g^2,g^3,\ldots,g^{p-2}\} = \mathbb{Z}_p^*$$

Intractable problems

- Factoring: input: $n \in \mathbb{N}$ output: p_1, \ldots, p_m primes st. $n = p_1 \cdot \cdots \cdot p_m$
- RSA Problem input: n st. $n=p\cdot q$ with $2\leq p,q$ primes e st. $\gcd(e,\phi(n))=1$ $m^e \mod n$ output: m
- Discrete Logarithm Problem (DLP): input: prime p, generator g of \mathbb{Z}_p^* , $y \in \mathbb{Z}_p^*$ output: x such that $y = g^x \pmod{p}$
- Diffie-Hellman Problem (DHP): input: prime p, generator g of \mathbb{Z}_p^* , g^a (mod p), g^b (mod p) output: g^{ab} (mod p)

Computer Security

INFR10067 Fall 2025

Asymmetric encryption
Establish a key without a TTP

- Assumption: the DHP is hard in \mathbb{Z}_p^*
- Fix a very large prime p, and g generator of \mathbb{Z}_p^*

- Assumption: the DHP is hard in \mathbb{Z}_p^*
- Fix a very large prime p, and $g \in \{1, \dots, p-1\}$

- ullet Assumption: the DHP is hard in \mathbb{Z}_p^*
- Fix a very large prime p, and $g \in \{1, \dots, p\text{-}1\}$

- Assumption: the DHP is hard in \mathbb{Z}_p^*
- Fix a very large prime p, and $g \in \{1, \dots, p-1\}$

RSA trapdoor permutation

•
$$G_{RSA}() = (pk, sk)$$

where pk = (N, e) and sk = (N, d)and $N = p \cdot q$ with p, q random primes and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

where pk = (N, e)

where sk = (N, d)

• Consistency:
$$\forall (pk, sk) = G_{RSA}(), \forall x, RSA^{-1}(sk, RSA(pk, x)) = x$$

Proof: Let pk = (N, e), sk = (N, d). and $x \in \mathbb{Z}_N$. Easy case where x and N are relatively prime

$$A(), \forall x, RSA^{-1}$$

$$RSA^{-1}(sk, RSA(pk, x)) = (x^e)^d \pmod{N}$$

= $x^{e \cdot d} \pmod{N}$

$$= x^{k \cdot k} \pmod{N}$$

$$= x^{1+k\phi(N)} \pmod{N}$$

$$= x \cdot x^{k\phi(N)} \pmod{N}$$

$$= x \cdot (x^{\phi(N)})^k \pmod{N}$$
Euler

 $x \pmod{N}$

How NOT to use RSA

 (G_{RSA},RSA,RSA^{-1}) is called raw RSA (or sometimes Textbook RSA).

Do not use raw RSA directly as an asymmetric cipher!

RSA is deterministic and malleable ⇒ not secure against chosen plaintext attacks

ISO standard: ISO/IEC 18033-2

Goal: build a CPA secure asymmetric cipher using (G_{RSA}, RSA, RSA^{-1})

Let (E_s, D_s) be a symmetric encryption scheme over $(\mathcal{M}, \mathcal{C}, \mathcal{K})$ Let $H: \mathbb{Z}_N^* \to \mathcal{K}$

Build $(G_{RSA}, E_{RSA}, D_{RSA})$ as follows

- G_{RSA} () as described above
 - $E_{RSA}(pk, m)$:
 - pick random $x \in \mathbb{Z}_N^*$
 - $y \leftarrow RSA(pk, x)$
 - $k \leftarrow H(x)$
 - return $y||E_s(k,m)$
 - $-\frac{1}{2}$
 - $D_{RSA}(sk, y||c) = D_s(H(RSA^{-1}(sk, y)), c)$

 $(= x^e \mod N)$

PKCS1 v2.0: RSA-OAEP (old version)

Goal: build a CCA secure asymmetric cipher using (G_{RSA}, RSA, RSA^{-1})

PKCS1 v2.0: RSA-OAEP (wiki version)

Goal: build a CCA secure asymmetric cipher using (G_{RSA},RSA,RSA^{-1})

ElGamal (EG)

- Fix prime p, and generator $g \in \mathbb{Z}_p^*$
- $\mathcal{M} = \{0, \dots, p-1\}$ and $\mathcal{C} = \mathcal{M} \times \mathcal{M}$
 - $G_{EG}() = (pk, sk)$

$$G_{EG}()=(p\kappa,s\kappa)$$

- - $E_{FC}(pk, x) = (g^r \pmod{p}, m \cdot (g^d)^r \pmod{p})$
 - $D_{EC}(sk, x) = e^{-d} \cdot c \pmod{p}$
- Consistency: $\forall (pk, sk) = G_{EG}(), \forall x, D_{EG}(sk, E_{EG}(pk, x)) = x$ Proof: Let $pk = g^d \pmod{p}$ and sk = d

where $pk = g^d \pmod{p}$ and sk = d

and $d \leftarrow \{1, \dots, p-2\}$

where $pk = g^d \pmod{p}$

and $r \stackrel{r}{\leftarrow} \mathbb{Z}$

where x = (e, c)