Infineon TC275 ADC (Analog-to-Digital Converter)

Architecture and Compiler for Embedded System LAB.
School of Electronics Engineering, KNU, KOREA
2021-05-11

Hitex ShieldBuddy TC275

- GPIO를 통한 LED 제어
 - 1. 새로운 예제를 위한 프로젝트를 생성한다.
 - 2. 원하는 동작을 위해 레지스터와 메모리에 직접 접근해서 값을 써야한다.
 - 3. LED 사용을 위해 Board Schematic과 Datasheet에서 LED 연결 정보를 파악한다.
 - 4. LED가 연결된 PORT의 메모리 맵을 분석한다.
 - 5. 분석 결과를 활용해 임베디드 프로그래밍을 한다.

- 1. RGB LED 연결 정보 파악
 - ✓ Easy Module Shield V1 확장 보드의 RGB LED를 사용한다.

- 1. RGB LED 연결 정보 파악
 - ✔ RGB LED는 Easy Module Shield V1 확장 보드의 Pin D9/D10/D11과 연결되어 있다.
 - ✓ 타겟 보드는 Easy Module Shield V1 확장 보드의 Pin D9/D10/D11을 통해 RGB LED 출력을 보낼수 있다.

- 1. RGB LED 연결 정보 파악
 - ✓ TC275 보드의 Schematic과 Datasheet를 확인했을 때, Easy Module Shield V1 확장 보드의 Pin D9/D10/D11과 연결되는 IO는 PORT2의 Pin 7과 PORT10의 Pin 5/Pin3다.
 - ✓ 해당 Pin의 출력이 High-level 일 때 LED는 켜지고, Low-level 일 때 LED는 꺼진다.

- 2. Data sheet 분석: IO 설정
 - ✔ RGB LED RED를 사용하기 위해 연결된 Pin의 IO 설정이 필요하다.
 - ✓ RGB LED RED 제어를 위한 출력 신호를 내보내기 위해 해당 Pin을 **General-purpose output**으로 설정해야 한다.

Port	I/O	Pin Functionality	Associated	Port I/O Contr	ol Select.
Pin			Reg./ I/O Line	Reg./Bit Field	Value
P02.7	I	General-purpose input	P02_IN.P7	P02_IOCR4.	0XXXX _B
		GTM input	TIN7	PC7	
		QSPI3 input	SCLK3A	1	
		PSI5 input	PSIRX2B		
		SENT input	SENT1C		
		CCU60 input	CC61INC		
		CCU60 input	CCPOS1A		
		CCU61 input	T13HRB		
		GPT120 input	T3EUDA		
		DSADC input	DSCIN3B		
		CIF input	CIFD7		
		DSADC input	DSITR4E		
	O	General-purpose output	P02_OUT.P7		1X000 _B
		GTM output	TOUT7		1X001 _B
		Reserved	_		1X010 _B
		QSPI3 output	SCLK3		1X011 _B
		DSADC output	DSCOUT3		1X100 _B
		VADC output	VADCEMUX01		1X101 _B
		SENT output	SPC1		1X110 _B
		CCU60 output	CC61		1X111 _B

- 2. Data sheet 분석: IO 설정
 - ✔ RGB LED GREEN를 사용하기 위해 연결된 Pin의 IO 설정이 필요하다.
 - ✓ RGB LED GREEN 제어를 위한 출력 신호를 내보내기 위해 해당 Pin을 **General-purpose** output으로 설정해야 한다.

Port	I/O	Pin Functionality	Associated	Port I/O Cont	rol Select.	
Pin			Reg./ I/O Line	Reg./Bit Field	Value	
P10.5	I	General-purpose input	P10_IN.P5	P10_IOCR4.	0XXXX _B	
		GTM input	TIN107	PC5		
		SCU input	HWCFG4			
		MSC0 input	INJ01			
	О	General-purpose output	P10_OUT.P5		1X000 _B	
		GTM output	TOUT107		1X001 _B	
		ASCLIN2 output	ATX2		1X010 _B	
		QSPI3 output	SLSO38		1X011 _B	
		QSPI1 output	SLSO19		1X100 _B	
		GPT120 output	T6OUT		1X101 _B	
		ASCLIN2 output	ASLSO2		1X110 _B	
)		Reserved	_		1X111 _B	

- 2. Data sheet 분석: IO 설정
 - ✔ RGB LED BLUE를 사용하기 위해 연결된 Pin의 IO 설정이 필요하다.
 - ✓ RGB LED BLUE제어를 위한 출력 신호를 내보내기 위해 해당 Pin을 **General-purpose output**으로 설정해야 한다.

Port	I/O	Pin Functionality	Associated	Port I/O Cont	rol Select.
Pin			Reg./ I/O Line	Reg./Bit Field	Value
P10.3	1	General-purpose input	P10_IN.P3	P10_IOCR0.	0XXXX _B
		GTM input	TIN105	PC3	
		QSPI1 input	MTSR1A]	
		SCU input	REQ3]	
		GPT120 input	T5INB]	
	О	General-purpose output	P10_OUT.P3		1X000 _B
		GTM output	TOUT105		1X001 _B
		VADC output	VADCG6BFL3]	1X010 _B
		QSPI1 output	MTSR1		1X011 _B
		MSC0 output	EN00		1X100 _B
		MSC0 output	END02]	1X101 _B
		CAN node 2 output	TXDCAN2]	1X110 _B
		Reserved	_		1X111 _B

- 2. Data sheet 분석: PORT 설정 (1)
 - ✓ P02_IOCR Register는 PORT02의 Input/Output을 설정한다.
 - ✓ LED RED 가 PORTO2의 Pin 7에 연결되어 있기 때문에 **PO2_IOCR4 Register의 PC7 bits**를 설정한다.

Table 13-3 Registers Address Space

Module	Base Address	End Address	Note	
P00	F003 A000 _H	F003 A0FF _H	13 pins	
P01	F003 A100 _H	F003 A1FF _H	5 pins	;
P02	F003 A200 _H	F003 A2FF _H	12 pins	
P10	F003 B000 _H	F003 B0FF _H	9 pins	
P11	F003 B100 _H	F003 B1FF _H	16 pins	

P02_IOCR4 Register 주소: F003_A214h (F003A200h + 14h)
P02_IOCR4 Register 구조:

P0n_IOCR4 (n=0-2)
Port 0n Input/Output Control Register 4

PC7

(F003 A014_H + n*100_H) Reset Value: 1010 1010_H

26 25 24 23 22 21 20 19 18 17 16

0 PC6 0

Field	Bits	Туре	Description
PC4, PC5, PC6, PC7	[7:3], [15:11], [23:19], [31:27]	rw	Port Control for Port n Pin 4 to 7 This bit field determines the Port n line x functionality (x = 4-7) according to the coding table (see Table 13-5).
0	[2:0], [10:8], [18:16], [26:24]	г	Reserved Read as 0; should be written with 0.

- 2. Data sheet 분석: PORT 설정 (1)
 - ✔ P10_IOCR Register는 PORT10의 Input/Output을 설정한다.
 - ✓ LED GREEN이 PORT10의 Pin 5에 연결되어 있기 때문에 **P10_IOCR4 Register의 PC5 bits**를 설정한다.

Table 13-3 Registers Address Space

Module	Base Address	End Address	Note	
P00	F003 A000 _H	F003 A0FF _H	13 pins	
P01	F003 A100 _H	F003 A1FF _H	5 pins	
P02	F003 A200 _H	F003 A2FF _H	12 pins	
P10	F003 B000 _H	F003 B0FF _H	9 pins	
P11	F003 B100 _H	F003 B1FF _H	16 pins	

P10_IOCR4 Register 주소: F003_B014h (F003B000h + 14h) P10_IOCR4 Register 구조:

Pn_IOCR4 (n=10-11)

Port n Input/Output Control Register 4

Г	ort if input/Output Control Register 4															
						(F	003 /	\614 _⊦	+ n*	100 _H)		Rese	t Valı	ue: 10	10 10	010 _H
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			PC7				0				PC6				0	
		-	rw		•		r				rw				г	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			PC5				0	1		1	PC4	1			0	
•																

Field	Bits	Туре	Description
PC4, PC5, PC6, PC7	[7:3], [15:11], [23:19], [31:27]	rw	Port Control for Port n Pin 4 to 7 This bit field determines the Port n line x functionality (x = 4-7) according to the coding table (see Table 13-5).
0	[2:0], [10:8], [18:16], [26:24]	r	Reserved Read as 0; should be written with 0.

- 2. Data sheet 분석: PORT 설정 (1)
 - ✔ P10_IOCR Register는 PORT10의 Input/Output을 설정한다.
 - ✓ LED BLUE가 PORT10의 Pin 3에 연결되어 있기 때문에 **P10_IOCRO Register의 PC3 bits**를 설정한다.

Table 13-3 Registers Address Space

Module	Base Address	End Address	Note	
P00	F003 A000 _H	F003 A0FF _H	13 pins	
P01	F003 A100 _H	F003 A1FF _H	5 pins	
P02	F003 A200 _H	F003 A2FF _H	12 pins	
P10	F003 B000 _H	F003 B0FF _H	9 pins	
P11	F003 B100 _H	F003 B1FF _H	16 pins	

P10_IOCR0 Register 주소: F003_B010h (F003B000h + 10h) P10_IOCR0 Register 구조:

Pn_IOCR0 (n=10-11)
Port n Input/Output Control Register 0

(F003 A610_H + n*100_H) Reset Value: 1010 1010_H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PC3 0 PC2 0

TW T TW T

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC1 0 PC0 0

Field	Bits	Туре	Description
PC0, PC1, PC2, PC3	[7:3], [15:11], [23:19], [31:27]	rw	Port Control for Port n Pin 0 to 3 This bit field determines the Port n line x functionality (x = 0-3) according to the coding table (see Table 13-5).
0	[2:0], [10:8], [18:16], [26:24]	Г	Reserved Read as 0; should be written with 0.

- 2. Data sheet 분석 : PORT 설정 (2)
 - ✓ PORT02의 Pin7과 PORT10의 Pin5/Pin3를 General-purpose output (push-pull)으로 설정하기 위해 각 IOCR Register의 PC7, PC5, PC3 bits를 10000b로 설정한다.

Table 13-5 PCx Coding

PCx[4:0]	I/O	Characteristics	Selected Pull-up / Pull-down / Selected Output Function
10000 _B	Output	Push-pull	General-purpose output
10001 _B			Alternate output function 1
10010 _B			Alternate output function 2
10011 _B			Alternate output function 3
10100 _B			Alternate output function 4
10101 _B			Alternate output function 5
10110 _B			Alternate output function 6
10111 _B			Alternate output function 7
11000 _B		Open-drain	General-purpose output
11001 _B			Alternate output function 1
11010 _B			Alternate output function 2
11011 _B			Alternate output function 3
11100 _B			Alternate output function 4
11101 _B			Alternate output function 5
11110 _B			Alternate output function 6
11111 _B			Alternate output function 7

- 2. Data sheet 분석: PORT 출력 설정
 - ✓ P02_OMR Register는 PORT02의 출력을 설정한다.
 - ✔ PORT02의 Pin 7 출력을 설정하기 위해 PO2_OMR Register의 PCL7 bit와 PS7 bit를 설정한다.
 - ✔ PCL7 bit만 Set 하면 PO2.7 출력이 '0 (Low-level)'으로 Clear 된다.
 - ✔ PS7 bit만 Set 하면 P02.7 출력이 '1 (High-level)'로 Set 된다.
 - ✔ PCL7 bit와 PS7 bit를 동시에 Set 하면 P02.7 출력이 Toggle 된다.

Table 13-3 Registers Address Space

Module	Base Address	End Address	Note	
P00	F003 A000 _H	F003 A0FF _H	13 pins	
P01	F003 A100 _H	F003 A1FF _H	5 pins	
P02	F003 A200 _H	F003 A2FF _H	12 pins	
P10	F003 B000 _H	F003 B0FF _H	9 pins	
P11	F003 B100 _H	F003 B1FF _H	16 pins	
P12	F003 B200 _H	F003 B2FF _H	2 pins	
P13	F003 B300 _H	F003 B3FF _H	4 pins	
P14	F003 B400 _H	F003 B4FF _H	11 pins	
P15	F003 B500 _H	F003 B5FF _H	9 pins	

P10_OMR Register 주소: F003_A204h (F003A200h + 4h)

P10_OMR Register 구조:

P0n_OMR (n=0-2)
Port 0n Output Modification Register (F003 A004_H + n*100_H)
Reset Value:
0000 0000_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PCL															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

15	14	13	. 12	. 11	. 10	. 9	. 8		6	. 5	. 4	3	. 2	. 1	. 0	
PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	J

Table 13-9 Function of the Bits PCLx and PSx

PCLx	PSx	Function
0	0	Bit Pn_OUT.Px is not changed.
0	1	Bit Pn_OUT.Px is set.
1	0	Bit Pn_OUT.Px is reset.
1	1	Bit Pn_OUT.Px is toggled.

- 2. Data sheet 분석: PORT 출력 설정
 - ✓ P10_OMR Register는 PORT10의 출력을 설정한다.
 - ✓ PORT10의 Pin 5/3 출력을 설정하기 위해 **P10_OMR Register의 PCL5/3 bit와 PS5/3 bit**를 설정한다.
 - ✓ PCL5, PCL3 bit만 Set 하면 P10.5, P10.3 출력이 '0 (Low-level)'으로 Clear 된다.
 - ✔ PS5, PS3 bit만 Set 하면 P10.5, P10.3 출력이 '1 (High-level)'로 Set 된다.
 - ✓ PCL5, PCL3 bit와 PS5, PS3 bit를 동시에 S**만한면서RoPse grister 출락이Ff03kg B004h (F003B000h + 4h)**

Table 13-3 Registers Address Space

Module	Base Address	End Address	Note	
P00	F003 A000 _H	F003 A0FF _H	13 pins	
P01	F003 A100 _H	F003 A1FF _H	5 pins	
P02	F003 A200 _H	F003 A2FF _H	12 pins	
P10	F003 B000 _H	F003 B0FF _H	9 pins	
P11	F003 B100 _H	F003 B1FF _H	16 pins	,
P12	F003 B200 _H	F003 B2FF _H	2 pins	
P13	F003 B300 _H	F003 B3FF _H	4 pins	
P14	F003 B400 _H	F003 B4FF _H	11 pins	
P15	F003 B500 _H	F003 B5FF _H	9 pins	

P10_OMR Register 구조:

Pn_OMR (n=10-15)
Port n Output Modification Register (F003 A604_H + n*100_H)
0000 0000_H

Reset Value:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	PCL														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							_		•	ŭ			_		

15	14	13	. 12	. 11	. 10	. 9	. 8	. /	. 6	. 5	. 4	3	. 2	1	. 0	
PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	
15	14	13	12	11	PS 10	9	8	7	6	5	4	3	2	1	0	
W	W	W	w	W	w	W	W	W	W	W	W	W	W	W	W	J

Table 13-9 Function of the Bits PCLx and PSx

PCLx	PSx	Function
0	0	Bit Pn_OUT.Px is not changed.
0	1	Bit Pn_OUT.Px is set.
1	0	Bit Pn_OUT.Px is reset.
1	1	Bit Pn_OUT.Px is toggled.

3. 프로그래밍

1) RGB LED가 연결된 PORG02 Pin7과 PORT10 Pin 5/3에 대한 IO 설정을 한다.

```
/* Define PORT02/10 Registers for RGB LED */
71 #define PORT02 BASE
                           (0xF003A200)
72 #define PORT02 IOCR4
                           (*(volatile unsigned int*)(PORT02 BASE + 0x14))
   #define PORT02 OMR
                           (*(volatile unsigned int*)(PORT02 BASE + 0x04))
74
75 #define PC7
76 #define PCL7
                           23
   #define PS7
79 #define PORT10 BASE
                           (0xF003B000)
80 #define PORT10 IOCR4
                         (*(volatile unsigned int*)(PORT10 BASE + 0x14))
81 #define PORT10 IOCR0
                           (*(volatile unsigned int*)(PORT10 BASE + 0x10))
82 #define PORT10 OMR
                           (*(volatile unsigned int*)(PORT10 BASE + 0x04))
84 #define PC5
                           11
85 #define PC3
                           27
86 #define PCL5
                           21
87 #define PCL3
                           19
88 #define PS5
                           5
89 #define PS3
```

PORT IO 설정관련 레지스터 주소 및 비트 필드 정의

```
152 /* Initialize RGB LED */
153@ void init_RGBLED(void)
154 {
155
        /* Reset IOCR0 bits */
156
        PORT02_IOCR4 &= ~((0x1F) << PC7);
157
        PORT10_IOCR4 &= ~((0x1F) << PC5);
158
        PORT10 IOCR0 &= ~((0x1F) << PC3);
159
160
         /* Set PC bits in IOCR0 with push-pull(2b10000) */
161
        PORT02_IOCR4 |= ((0x10) << PC7);
162
         PORT10 IOCR4 |= ((0x10) << PC5);
163
         PORT10 IOCR0 |= ((0x10) << PC3);
164 }
```


- ADC로 읽은 전압 값의 범위에 따른 RGB LED 출력 제어
 - 1. 새로운 예제를 위한 프로젝트를 생성한다.
 - 2. 원하는 동작을 위해 레지스터와 메모리에 직접 접근해서 값을 써야한다.
 - 3. Potentiometer 사용을 위해 Board Schematic과 Datasheet에서 Potentiometer 연결 정보를 파악한다.
 - 4. ADC 모듈의 동작 원리를 파악하고 메모리 맵을 분석한다.
 - 5. 분석 결과를 활용해 임베디드 프로그래밍을 한다.

- 1. Potentiometer 연결 정보 파악
 - ✓ 타겟 보드인 Shield Buddy TC275에는 사용 가능한 Potentiometer가 없기 때문에 **Easy Module**Shield V1 확장 보드의 Potentiometer를 사용한다.

- 1. Potentiometer 연결 정보 파악
 - ✔ Potentiometer는 Easy Module Shield V1 확장 보드의 **Pin A0**과 연결되어 있다.
 - ✓ Potentiometer에 따라 Pin A0의 전압 값이 달라진다.
 - ✓ 타겟 보드는 Easy Module Shield V1 확장 보드의 Pin A0을 통해 아날로그 전압 값을 입력 받을 수 있다.

(정상적인 Potentiometer 동작을 위해 VCC 및 GND도 연결해야 하다)

1. Potentiometer 연결 정보 파악

✓ TC275 보드의 Schematic과 Datasheet를 확인했을 때, Easy Module Shield V1 확장 보드의 **Pin A0**와 연결되는 IO는 **SAR4의 Pin 7**이다.

Table 2-15 Analog Inputs (cont'd)

Pin			Туре	Function					
35	AN36	I	S/	Analog input 34					
	VADCG4.4		HighZ /	VADC analog input channel 4 of group 4					
	DS3PA		VDDM	DSADC: positive analog input of channel of DSADC 3, pin A					
	SENT6A			SENT input channel 6, pin A					
34	AN37	I	S/	Analog input 37					
	VADCG4.5		HighZ /	VADC analog input channel 5 of group 4					
	DS3NA		VDDM	DSADC: negative analog input of channel of DSADC 3, pin A					
	SENT7A			SENT input channel 7, pin A					
33	AN38	I	S/	Analog input 38					
	VADCG4.6		HighZ /	VADC analog input channel 6 of group 4					
	DS3PB		VDDM	DSADC: positive analog input of channel of DSADC 3, pin B					
	SENT8A			SENT input channel 8, pin A					
32	AN39	I	S/	Analog input 39					
	VADCG4.7		HighZ /	VADC analog input channel 7 of group 4					
	DS3NB		VDDM	DSADC: negative analog input of channel of DSADC 3, pin B					
	SENT9A			SENT input channel 9, pin A					
31	AN44	I	D/	Analog input 44					
	VADCG5.4		HighZ /	VADC analog input channel 4 of group 5					
	DS3PC		VDDM	DSADC: positive analog input of channel of DSADC 3, pin C					
30	AN45	I	D/	Analog input 45					
	VADCG5.5		HighZ /	VADC analog input channel 5 of group 5					
	DS3NC		VDDM	DSADC: negative analog input of channel of DSADC 3, pin C					
29	AN46	I	D/	Analog input 46					
	VADCG5.6		HighZ /	VADC analog input channel 6 of group 5					
	DS3PD		VDDM	DSADC: positive analog input of channel of DSADC 3, pin D					
28	AN47	I	D/	Analog input 47					
	VADCG5.7		HighZ /	VADC analog input channel 7 of group 5					
	DS3ND		VDDM	DSADC: negative analog input of channel of DSADC 3, pin D					

TC27x D-Step

Versatile Analog-to-Digital Converter (VADC)

Table 28-12 Analog Connections in the TC27x (cont'd)

Signal	Dir.	Source/Destin.1)	Description
G1CH4	1	AN12	analog input channel 4 of group 1
G1CH5	1	AN13	analog input channel 5 of group 1
G1CH6	1	AN14	analog input channel 6 of group 1
G1CH7	I	AN15	analog input channel 7 of group 1
G2CH0 (AltRef)	I	AN16	analog input channel 0 of group 2
G2CH1 (MD)	1	AN17	analog input channel 1 of group 2
G2CH2 (MD)	I	AN18	analog input channel 2 of group 2
G2CH3 (PDD)	1	AN19	analog input channel 3 of group 2
G2CH4	1	AN20 (X)	analog input channel 4 of group 2
G2CH5	I	AN21 (X)	analog input channel 5 of group 2
G2CH6	1	AN22	analog input channel 6 of group 2
G2CH7	1	AN23	analog input channel 7 of group 2
G3CH0 (AltRef)	I	AN24, P40.0 (X)	analog input channel 0 of group 3
G3CH1 (MD)	I	AN25, P40.1 (X)	analog input channel 1 of group 3
G3CH2 (MD)	I	AN26, P40.2	analog input channel 2 of group 3
G3CH3 (PDD)	I	AN27, P40.3	analog input channel 3 of group 3
G3CH4	I	AN28	analog input channel 4 of group 3
G3CH5	1	AN29	analog input channel 5 of group 3
G3CH6	I	AN30	analog input channel 6 of group 3
G3CH7	I	AN31	analog input channel 7 of group 3
G4CH0 (AltRef)	1	AN32, P40.4	analog input channel 0 of group 4
G4CH1 (MD)	1	AN33, P40.5	analog input channel 1 of group 4
G4CH2 (MD)	1	AN34	analog input channel 2 of group 4
G4CH3 (PDD, noAltref)	I	AN35	analog input channel 3 of group 4
G4CH4	I	AN36, P40.6 (X)	analog input channel 4 of group 4
G4CH5	I	AN37, P40.7 (X)	analog input channel 5 of group 4
G4CH6	I	AN38, P40.8 (X)	analog input channel 6 of group 4
G4CH7	I	AN39, P40.9 (X)	analog input channel 7 of group 4
G5CH0 (AltRef)	I	AN40	analog input channel 0 of group 5
G5CH1 (MD)	1	AN41	analog input channel 1 of group 5

User's Manual 28-154 V2.2, 2014-12 VADC, V1.4DC12

2. Data sheet 분석 : 아날로그 입력 Pin

- ✓ Potentiometer에 의한 아날로그 전압 값을 입력 받기 위해서는 아날로그 입력 Pin이 필요하다.
- ✓ Potentiometer가 연결된 Pin ANO은 아날로그 전압 값을 측정하여 디지털 값으로 변환하는 VADC (Versatile Analog-to-Digital Converter)의 Channel 7 of Group 4과 연결되어 있는 아날로그 입력 Pin이다.
- ✓ 해당 Pin은 아날로그 입력 전용 Pin이기 때문에 추가적인 IO 설정이 필요하지 않다.

2. Data sheet 분석 : VADC 구조 분석 (1)

- ✓ VADC는 8 개의 Group(0~7)으로 구성되며 각 Group은 ADC Kernel로 구성된다.
- ✓ Group은 Request Control에 의한 Conversion Request에 따라 동작을 수행한다.
- ✓ Conversion Request는 여러 Analog Input Channels 중 하나를 선택하며 AD Converter는 해당 Channel을 디지털 값으로 변환한다.
- ✓ 변환된 값은 Result Handling으로 전달되며 정해진 위치에 저장된다.

Figure 28-2 ADC Kernel Block Diagram

- 2. Data sheet 분석 : VADC 구조 분석 (2)
 - ✓ Request Control Conversion Request를 생성하는 2개의 Request Source와 각 Request Source에서 생성된 Conversion Request를 관리하는 Request Source Arbiter로 구성된다.
 - ✔ Request Source는 Timer Unit / External Request / Software에 따라 Conversion Request를 생성한다.
 - ✓ 각 Request Source는 필요에 따라 Enable / Disable 할 수 있다.

Figure 28-3 Conversion Request Unit

- 2. Data sheet 분석 : VADC 구조 분석 (3)
 - ✔ Result Handling은 변환된 결과인 디지털 값을 설정된 위치에 저장한다.
 - ✓ 디지털 값은 추가적으로 압축 및 필터링 될 수 있다.
 - ✓ 디지털 값은 Global Result Register 또는 Group Result Register에 저장될 수 있으며 각 Result Register는 디지털 값 뿐만 아니라 새로운 결과 값이 저장되었음을 나타내는 Valid Flag도 포함한다.
 - ✓ Valid Flag는 새로운 디지털 값이 저장되면 Set 되고, 해당 Result Register가 읽히면 Clear 된다.

Figure 28-18 Conversion Result Storage

- 2. Data sheet 분석 : VADC 구조 분석 (4)
 - ✓ VADC의 변환된 결과인 디지털 값은 8-bit에서 12-bit의 크기를 가진다.
 - ✓ 설정에 따라 디지털 값은 Result Register 내에 Right-Aligned 또는 Left-Aligned로 저장된다.
 - ✓ 따라서, 설정에 따라 결과값을 적절하게 읽어 처리해야 한다.

	Bit in Result Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
S	12-Bit	0	0	0	0	11	10	9	8	7	6	5	4	3	2	1	0
	10-Bit Left-Aligned	0	0	0	0	9	8	7	6	5	4	3	2	1	0	0	0
Standard	10-Bit Right-Aligned	0	0	0	0	0	0	9	8	7	6	5	4	3	2	1	0
Co	8-Bit Left-Aligned	0	0	0	0	7	6	5	4	3	2	1	0	0	0	0	0
	8-Bit Right-Aligned	0	0	0	0	0	0	0	0	7	6	5	4	3	2	1	0

- 2. Data sheet 분석 : VADC Enable 설정
 - ✔ VADC_CLC Register는 VADC 모듈의 Enable 설정을 한다.
 - ✓ VADC 모듈을 Enable 하기 위해 DISR bit를 0으로 설정한다.

Note

✓ VADC 모듈이 Enable 되어 있는지 확인하기 위해 DISS bit가 O인지 확인한다.

VADC_CLC Register 주소: F002_0000h (F0020000h + 0h)

Fnd Address

VADC_CLC Register 구조:

Module

Table 28-10 Registers Address Space

Base Address

Mou	uic			Dase	Auui	C33		iu Au	ui cs.	•	Note					
VAD	С	F002 0000 _H F002 3FFF _H														
CLC	k Cor	ntrol F	Regi	ster			(00	00 _H)			Res	et Va	lue: (0000	0003 _H	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	0	0	0	0	0	E DIS	0	DIS S	DIS R	
r	r	r	r	r	r	r	r	r	r	r	r	rw	r	r	rw	

Field	Bits	Туре	Description
DISR	0	rw	Module Disable Request Bit Used for enable/disable control of the module. Also the analog section is disabled by clearing ANONS. O _B On request: enable the module clock 1 _B Off request: stop the module clock
DISS	1	r	Module Disable Status Bit 0 _B Module clock is enabled 1 _B Off: module is not clocked
0	2	r	Reserved, write 0, read as 0
EDIS	3	rw	Sleep Mode Enable Control Used to control module's reaction to sleep mode. 0 _B Sleep mode request is enabled and functional 1 _B Module disregards the sleep mode control signal
0	[31:4]	r	Reserved, write 0, read as 0

- 2. Data sheet 분석 : System Critical Register 설정 (1)
 - ✓ 설정해야 하는 VADC_CLC Register는 System Critical Register이기 때문에 Write Protected (System ENDINIT, End-of-Initialization) 되어 있다.
 - ✓ 해당 Register를 수정하기 위해서는 System ENDINIT을 해제해야 한다.
 - ✓ SCU_WDTCPU0CON0 Register는 System Critical Register의 System ENDINIT을 설정/해제한다.

SCU_WDTCPU0CON0 Register 주소: F003_6100h (F0036000h + 100h)

SCU_WDTCPU0CON0 Register 구조:

Table 7-27	Registers Address Spaces - SCU Kernel Registers
------------	---

Module	Base Address	End Address	Note
SCU	F003 6000 _H	F003 63FF _H	-

WDTCPU0CON0

- 2. Data sheet 분석 : System Critical Register 설정 (2)
 - ✓ ENDINIT bit는 System ENDINIT의 설정 상태를 나타내며 Modify Access를 통해서만 수정이 가능하다.
 - ✓ **LCK bit**는 SCU_WDTCPU0CON0 Register의 Lock 상태를 나타내며 해당 Register의 Lock 상태는 Password Access를 통해 Unlock 되고, Modify Access를 통해 Lock 된다.
 - ✓ PW bits는 SCU_WDTCPU0CON0 Register에 접근하기 위한 Password를 저장하며 해당 값을

Field	Bits	Туре	Description
ENDINIT	0	rwh	End-of-Initialization Control Bit 0 _B Access to Endinit-protected registers is permitted. 1 _B Access to Endinit-protected registers is not permitted. This bit must be written with a '1' during a Password Access or Check Access (although this write is only used for the password-protection mechanism and is not stored). This bit must be written with the required ENDINIT update value during a Modify Access.
LCK	1	rwh	Lock Bit to Control Access to WDTxCON0 0 _B Register WDTxCON0 is unlocked 1 _B Register WDTxCON0 is locked (default after ApplicationReset) The current value of LCK is controlled by hardware. It is cleared after a valid Password Access to WDTxCON0 when WDTxSR.US is 0 (or when WDTxSR.US is 1 and the SMU is in RUN mode), and it is automatically set again after a valid Modify Access to WDTxCON0. During a write to WDTxCON0, the value written to this bit is only used for the password-protection mechanism and is not stored. This bit must be cleared during a Password Access to WDTxCON0, and set during a Modify Access to WDTxCON0.

PW	[15:2]	rwh	User-Definable Password Field for Access to WDTxCON0 This bit field is written with an initial password value during a Modify Access. A read from this bitfield returns this initial password,
			but bits [7:2] are inverted (toggled) to ensure that a simple read/write is not sufficient to service the WDT.
			If corresponding WDTxSR.PAS = 0 then this bit field must be written with its current contents during a Password Access or Check Access. If corresponding WDTxSR.PAS = 1 then this bit field must be written with the next password in the LFSR sequence during a Password Access or Check Access
			The default password after Application Reset is 000000001111100 _B
			A-step silicon: Bits [7:2] must be written with 111100 _B during Password Access and Modify Access. Read returns 000011 _B for these bits.

- 2. Data sheet 분석 : System Critical Register 설정 (3)
 - ✓ SCU_WDTCPU0CON0 Register에 적절한 값을 Write하여 Password Access를 수행한다.
 - ✓ Password Access는 SCU_WDTCPU0CON0 Register의 Lock 상태를 해제하며 과정은 다음과 같다.
 - 1. SCU_WDTCPU0CON0 Register의 값을 읽어 REL bits, PW bits를 파악한다.
 - 2. Bits[7:2] (PW bits의 일부)가 반전되어 읽히기 때문에 이를 반전시켜 정확한 PW bits를 얻는다.
 - 3. Write 할 값의 bits[31:16]은 읽혀진 REL bits 값으로 설정하고 bit[15:2]는 앞서 구한 정확한 PW bits 값으로 설정한다.
 - 4. Write 할 값의 bit[1]은 0으로 설정하고, bit[0]은 1로 설정한다.
 - 5. 설정된 값을 SCU_WDTCPU0CON0 Register에 한번에 쓴다.
 - 6. SCU_WDTCPU0CON0 Register의 LCK bit를 확인하여 Lock 상태가 해제되었는지 파악한다.
 (Password Access가 정상적으로 수행되면 Lock 상태가 해제되며 LCK bit가 0으로 설정된다.)
 - ✓ Password Access를 통해 SCU_WDTCPU0CON0 Register의 Lock 상태가 해제되면 Modify
 Access를 통해 System ENDINIT을 설정/해제할 수 있다.

- 2. Data sheet 분석 : System Critical Register 설정 (4)
 - ✓ SCU_WDTCPU0CON0 Register에 적절한 값을 Write하여 Modify Access를 수행한다.
 - ✓ Modify Access는 System ENDINIT을 설정/해제하며 과정은 다음과 같다.
 - 1. SCU_WDTCPU0CON0 Register의 값을 읽어 REL bits, PW bits를 파악한다.
 - 2. Bits[7:2] (PW bits의 일부)가 반전되어 읽히기 때문에 이를 반전시켜 정확한 PW bits를 얻는다.
 - 3. Write 할 값의 bits[31:16]은 읽혀진 REL bits 값으로 설정하고 bit[15:2]는 앞서 구한 정확한 PW bits 값으로 설정한다.
 - 4. Write 할 값의 bit[1]은 1로 설정하고, bit[0]은 적절한 값으로 설정한다. (System ENDINIT 설정: bit[0] = 1, System ENDINIT 해제 : bit[0] = 0)
 - 5. 설정된 값을 SCU_WDTCPUOCONO Register에 한번에 쓴다.
 - 6. SCU_WDTCPU0CON0 Register의 LCK bit를 확인하여 Lock 상태가 다시 설정되었는지 파악한다.

(Modify Access가 정상적으로 수행되면 Lock 상태가 설정되며 LCK bit가 1로 설정된다.)

♣CENbalfy Access를 통해 System ENDINIT을 해제하면 System Critical Register를 수정할 수 있으며₃

숴ᄋᇬᄀᆀᄜᇹᆞᅠᇒᇒᇒᆍᄋᄁᇊᆝᅥᄸᅯᆀᅅᇦᇊ

2. Data sheet 분석 : Group 설정 (1)

- ✓ VADC_GxARBPR Register는 Group의 Request Source Arbiter에 대한 설정을 한다.
- ✓ VADC의 여러 Group 중, Potentiometer와 연결된 Pin ANO이 Group 4에 입력되기 때문에
 VADC_G4ARBPR Register를 설정한다.
- ✓ Pin ANO에 대한 Conversion Request만 생성하면 되기 때문에 Request Source Arbiter는 Request Source O에 대한 설정 (PRIOO bits / CSMO bit / ASENO bit)만 수행한다.

VADC_G4ARBPR Register 주소: F002_1484h (F0020000h + 1484h)

VADC_G4ARBPR Register 구조:

Table	Table 28-10 Registers Address Space														
Mod	ule			Base	Addr	е									
VAD	С			F002 (F002 0000 _H F002 3FFF _H										
	RBPR ration				gister, Group x (x * 0400 _H + 0484 _H) Reset Value: 0000 0000 _H										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	0	AS EN2	AS EN1	AS EN0	0	0	0	0	0	0	0	0
r	r	r	r	r	rw	rw	rw	r	r	r	r	r	r	r	r
15	14	13	12	11	11 10 9 8 7 6 5 4 3 2 1 0										
0	0	0	0	CSM 2	0		RIO 2	CSM 1	0		1	CSM 0	0		io 0
r	· r	r	r	PM/		100	4/	DA/	r		47	PA/	-		147

Figure 28-3 Conversion Request Unit

2. Data sheet 분석 : Group 설정 (2)

- ✔ Request Source 0의 우선 순위를 가장 높게 설정하기 위해 PRIOO bits를 11b로 설정한다.
- ✓ Request Source 0의 Conversion Request가 현재 수행하고 있는 Conversion이 끝날 때까지 기다린 후에 실행되도록 설정하기 위해 CSMO bit를 Ob로 설정한다.
- ✓ Request Source 0을 Enable 하기 위해 ASENO bit를 1b로 설정한다.

	EXARBPR (x = 0 - 7) Arbitration Priority Register, Group x (x * 0400 _H + 0484 _H) Reset Value: 0000 0000 _H														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	0	AS EN2	AS EN1	AS EN0	0	0	0	0	0	0	0	0
r	r	r	r	r	rw	rw	rw	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	CSM 2	0		RIO 2	CSM 1	0	PR	1	CSM 0	0	PR (
r	r	r	r	rw	r	r	W	rw	r	r	W	rw	r	r	W

Field	Bits	Туре	Description
PRIO0, PRIO1, PRIO2	[1:0], [5:4], [9:8]	rw	Priority of Request Source x Arbitration priority of request source x (in slot x) 00 _B Lowest priority is selected 11 _B Highest priority is selected.
CSM0, CSM1, CSM2	3, 7, 11	rw	Conversion Start Mode of Request Source x 0 _B Wait-for-start mode 1 _B Cancel-inject-repeat mode, i.e. this source can cancel conversion of other sources.
0	2, 6, 10, [23:12]	r	Reserved, write 0, read as 0
ASENy (y = 0 - 2)	24 + y	rw	Arbitration Slot y Enable Enables the associated arbitration slot of an arbiter round. The request source bits are not modified by write actions to ASENR. O _B The corresponding arbitration slot is disabled and considered as empty. Pending conversion requests from the associated request source are disregarded. 1 _B The corresponding arbitration slot is enabled. Pending conversion requests from the associated request source are arbitrated.
0	[31:27]	r	Reserved, write 0, read as 0

2. Data sheet 분석 : Group 설정 (3)

- ✓ VADC_GxQMR Register는 Group의 Request Source에 대한 설정을 한다.
- ✔ Group 4의 Request Source 0을 사용하기 때문에 VADC_G4QMR0 Register를 설정한다.
- ✓ Software를 통해 Request Source 0의 Conversion Request 생성을 가능하게 하기 위해 ENGT bit를
 O1b로 설정한다.
- ✓ 초기화시, Request Source 0에 의한 Conversion Request를 Clear 하기위해 **FLUSH bit**를 **1**로 설정한다.

VADC_G4QMR0 Register 주소: F002_1504h (F0020000h + 1504h)

VADC_G4QMR0 Register 구조:

Table 28-10 Registers Address Space

Module	Base Address	End Address	Note							
VADC	F002 0000 _H	F002 3FFF _H								
GxQMR0 (x = 0 - 7)										

						•			- "						
	GxQMR0 (x = 0 - 7) Queue 0 Mode Register, Group x														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	RPT DIS
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	CEV	FLU SH	TR EV	CLR V	0	0	0	0	0	EN TR	EN	İGT
r	r	r	r	W	W	W	W	r	r	r	r	r	rw	r	W

Field	Bits	Туре	Description
ENGT	[1:0]	rw	Enable Gate Selects the gating functionality for source 0/2. 00 _B No conversion requests are issued 01 _B Conversion requests are issued if a valid conversion request is pending in the queue 0 register or in the backup register
			 10_B Conversion requests are issued if a valid conversion request is pending in the queue 0 register or in the backup register and REQGTx = 1 11_B Conversion requests are issued if a valid conversion request is pending in the queue 0 register or in the backup register and REQGTx = 0
			Note: REQGTx is the selected gating signal.
FLUSH	10	w	Flush Queue 0 _B No action 1 _B Clear all queue entries (including backup stage) and the event flag EV. The queue contains no more valid entry.

- 2. Data sheet 분석: Group 설정 (4)
 - ✓ TREV bit는 Conversion Request를 생성하는 트리거 이벤트를 소프트웨어적으로 발생시킨다.
 - ✓ 따라서, Conversion Request를 생성하고자 할 때 해당 bit를 1로 설정한다.

	GxQMR0 (x = 0 - 7) Queue 0 Mode Register, Group x															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	RPT DIS
_	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	rw
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	CEV	FLU SH	TR EV	CLR V	0	0	0	0	0	EN TR	EN	IGT
	r	r	r	r	W	W	W	W	r	r	r	r	r	rw	r	W

Field	Bits	Type	Description
CLRV	8	W	Clear Valid Bit 0 _B No action 1 _B The next pending valid queue entry in the sequence and the event flag EV are cleared. If there is a valid entry in the queue backup register (QBUR.V = 1), this entry is cleared, otherwise the entry in queue register 0 is cleared.
TREV	9	W	Trigger Event 0 _B No action 1 _B Generate a trigger event by software
FLUSH	10	w	Flush Queue 0 _B No action 1 _B Clear all queue entries (including backup stage) and the event flag EV. The queue contains no more valid entry.

2. Data sheet 분석 : Group 설정 (5)

- ✓ VADC_GxARBCFG Register는 Group의 AD Converter에 대한 설정을 한다.
- ✓ Group 4을 사용하기 때문에 VADC_G4ARBCFG Register를 설정한다.
- ✓ AD Converter를 Normal Operation Mode로 동작시키기 위해 ANONC bits를 11b로 설정한다.

VADC_G4ARBCFG Register 주소: F002_1480h

(F0020000h + 1480h)

VADC_G4ARBCFG Register 구조:

Table 28-10 Registers Address Space

Module	Base Address	End Address	Note
VADC	F002 0000 _H	F002 3FFF _H	

GxARBCFG(x = 0 - 7)

Arbitration Configuration Register, Group x

 $(x * 0400_{H} + 0480_{H})$

Reset Value: 0000 0000_H

						•		•							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
SAM PLE	BU SY	CAL S	CAL	0	0	SYN RUN			CHNF	2		cs	RC	ANG	ONS
rh	rh	rh	rh	r	r	rh			rh			r	h	r	h
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	ARB M	0	ARBRND		0	0	ANONC	
r	r	r	r	r	r	r	r	rw	r	r	W	r	r	r	N

• ANONS = 11_B: Normal Operation

The converter is active, conversions are started immediately. Requires no wakeup time.

- ANONS = 10_B or 01_B: Reserved
- ANONS = 00_B: Converter switched Off (default after reset)

Field	Bits	Туре	Description		
ANONC	[1:0]	rw	Analog Converter Control Defines the value of bitfield ANONS in a stand-alone converter or a converter in master mode. Coding see ANONS or Section 28.4.1.		
0	[3:2]	r	Reserved, write 0, read as 0		
ARBRND	[5:4]	rw	Arbitration Round Length Defines the number of arbitration slots per arb. rour (arbitration round length = t_{ARB}). The substitution round length = t_{ARB}) and the substitution round length = t_{ARB}). The substitution slots per round (t_{ARB} = 4 / t_{ADCD}) arbitration slots per round (t_{ARB} = 16 / t_{ADCD}) arbitration slots per round (t_{ARB} = 16 / t_{ADCD}) arbitration slots per round (t_{ARB} = 20 / t_{ADCD}) arbitration slots per round (t_{ARB} = 20 / t_{ADCD})		
0	6	r	Reserved, write 0, read as 0		

2. Data sheet 분석 : Group 설정 (6)

- ✓ VADC_GxICLASS Register는 Group의 Input Class에 대한 설정을 한다.
- ✓ Analog Input Channel은 미리 설정된 Input Class 중 하나에 속하게 되며 해당 Input Class의 설정이 반영된다.
- ✓ Group 4의 Input Class 0을 설정하기 위해 VADC_G4ICLASSO Register를 설정한다.
- ✓ Sample Time과 Conversion Mode를 설정하기 위해 STCS bits / CMS bits를 설정한다.

VADC_G4ICLASS0 Register 주소: F002_14A0h

(F0020000h + 14A0h)

VADC_G4ICLASSO Register 구조:

Table 28-10 Registers Address Space

Module	Base Address	End Address	Note
VADC	F002 0000 _H	F002 3FFF _H	

GxICLASS0 (x = 0 - 7)

Input Class Register 0, Group x

		,	_	,											
						(x * (0400 _F	+ 04	A0 _H)		Res	et Va	lue: 0	0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	0		CME	ı	0	0	0		1	STCE		
r	r	r	r	r		rw	•	r	r	r			rw	•	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0		CMS	1	0	0	0			STCS		
r	r	r	r	r		rw		r	r	r			rw		

Field	Bits	Туре	Description
STCS	[4:0]	rw	Sample Time Control for Standard Conversions Number of additional clock cycles to be added to the minimum sample phase of 2 analog clock cycles: Coding and resulting sample time see Table 28-4. For conversions of external channels, the value from bitfield STCE can be used.
0	[7:5]	r	Reserved, write 0, read as 0
CMS	[10:8]	rw	Conversion Mode for Standard Conversions 000 _B 12-bit conversion 001 _B 10-bit conversion 010 _B 8-bit conversion 011 _B Reserved 100 _B Reserved 101 _B 10-bit fast compare mode 110 _B Reserved 111 _B Reserved
0	[15:11]	r	Reserved, write 0, read as 0

Table 28-4 Sample Time Coding

15

16

32

240

Additional Clock Cycles

Sample Time

 $2/f_{ADCI}$

 $3/f_{ADCI}$

 $17/f_{ADCI}$

18 $/f_{ADCI}$

 $34/f_{ADCI}$

242 / f_{ADCI}

258 / f_{ADCI}

STCS / STCE

0 0000_R

0 0001_B

0 1111_B

1 0000_B

1 0001_B

1 1110_R

1 1111_B

- 2. Data sheet 분석: Channel 설정 (1)
 - ✓ VADC_GxCHCTR Register는 Group의 Analog Input Channel에 대한 설정을 한다.
 - ✓ Potentiometer가 연결된 Pin ANO이 Group 4의 Input Channel 7에 입력되기 때문에
 VADC_G4CHCTR7 Register를 설정한다.
 - ✓ 해당 Input Channel에 대한 Input Class / Result Register / Result Align을 설정하기 위해 ICLSEL bits / RESPEG bits / RESPOS bit를 설정한다.

VADC_G4CHCTR7 Register 주소: F002_161Ch (F0020000h + 161Ch)

VADC_G4CHCTR7 Register 구조:

Table 28-10 Registers Address Space

Mod	ule			Base	Addr	ess	E	nd Ad	ldres	s	Note					
VAD	С			F002 (0000	4	F	002 3F	FFF _H							
G0CHCTRy (y = 0 - 7) Group 0, Channel y Ctrl. Reg.						(0600 _H + y * 0004 _H)					Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	BWD EN	BV C		0	0	0	0	0	0	RES POS			RES	REG		
r	rw	n	W	г	r	r	г	r	r	rw	rw		n	W		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
BNDSELX			REF SEL	SY NC	CH MO		BND	SELU	BND	SELL	0	0	ICL	SEL		

2. Data sheet 분석 : Channel 설정 (2)

- ✓ Analog Input Channel 7의 Input Class를 앞서 설정한 Group 4의 Input Class 0으로 설정하기 위해 ICLSEL bits를 00b로 설정한다.
- ✓ Analog Input Channel 7의 디지털 값을 Group 0의 Result Register 1에 저장하기 위해 **RESREG** bits를 0001b로 설정한다.
- ✓ Analog Input Channel 7의 디지털 값을 Right-Aligned로 저장하기 위해 **RESPOS bit**를 **1**로 설정한다.

	НСТR ip 4, (7) Ctrl.	Reg.	(160)0 _H +	y * 00)04 _H)		Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
0	BWD EN	BV C		0	0	0	0	0	0	RES POS	RES TBS		RES	REG		
г	rw	n	W	г	r	r	г	r	r	rw	rw		n	W		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	BNDSFLX 1		REF SEL	SY NC	CHEV MODE		BND	SELU	BND	BNDSELL		0	ICL	SEL		
	n	W		rw	rw	п	w	Г	w	Г	w	Γ	г	r	W	

Field	Bits	Туре	Description
ICLSEL	[1:0]	rw	Input Class Select 00 _B Use group-specific class 0 01 _B Use group-specific class 1 10 _B Use global class 0 11 _B Use global class 1
RESREG	[19:16]	rw	Result Register 0000 _B Store result in group result register GxRES0 1111 _B Store result in group result register GxRES15
-			

Field	Bits	Туре	Description
RESPOS	21	rw	Result Position 0 _B Store results left-aligned 1 _B Store results right-aligned

2. Data sheet 분석 : Conversion Request 설정

- ✓ VADC_GxQINR Register는 Request Source의 Conversion Request에 대한 설정을 한다.
- ✓ Group 4의 Request Source 0을 사용하기 때문에 VADC_G4QINRO Register를 설정한다.
- ✔ Analog Input Channel 7을 입력으로 설정하기 위해 REQCHNR bits를 7으로 설정한다.
- ✓ Single-shot Mode로 설정하기 위해 RF bit를 Ob로 설정한다.
 (RF=1b로 설정하면 Conversion후 다시 Conversion Request가 발생하여 Continuous Mode로 동작)

VADC_G4QINR0 Register 주소: F002_1510h (F0020000h + 1510h)

VADC_G4QINR0 Register 구조:

Table 28-10 Pagisters Address Space

rabi	Table 20-10 Registers Address Space																
Mod	ule			Base	Addr	ddress End Address						Note					
VAD	С			F002 0000 _H F002 3FFF _H													
GxQINR0 (x = 0 - 7) Queue 0 Input Register, Group x (x * 0400 _H + 0510 _H) Reset Value: 0000 0000 _H																	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
0	0	0	0	0	0	0	0	EX TR	EN SI	RF	REQCHNR						
r	r	r	r	r	r	r	r	W	W	W			W				

Field	Bits	Туре	Description
REQCHNR	[4:0]	w	Request Channel Number Defines the channel number to be converted
RF	5	w	Refill 0 _B No refill: this queue entry is converted once and then invalidated 1 _B Automatic refill: this queue entry is automatically reloaded into QINR0 when the related conversion is started
ENSI	6	w	Enable Source Interrupt 0 _B No request source interrupt 1 _B A request source event interrupt is generated upon a request source event (related conversion is finished)

- 2. Data sheet 분석 : Result Register 설정
 - ✓ VADC_GxRES Register는 변환된 디지털 값에 대한 정보를 저장한다.
 - ✓ Analog Input Channel 7의 디지털 값을 Result Register 1에 저장하도록 설정했기 때문에
 VADC_G4RES1 Register를 확인한다.
 - ✓ 변환이 끝나 새로운 디지털 값이 저장되었는지 확인하기 위해 VF bit가 1인지 확인한다.
 - ✓ 변환된 디지털 값을 확인하기 위해 Align을 고려하여 RESULT bits를 확인한다.

VADC_G4RES1 Register 주소: F002_1704h (F0020000h + 1704h)

VADC_G4RES1 Register 구조:

Table 28-10 Registers Address Space

Mod	ule			Base	Addr	ess	Er	nd Ad	dress	5	Note						
VADO	0			F002	0000 _F	4	FC	F002 3FFF _H									
G0RESy (y = 0 - 15) Group 0 Result Register y (0700 _H) _H + :	_ı + y * 0004 _H)				Reset Value: 0000 0000 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
VF	FCR	CF	RS		EMUX		CHNR						DF	, RC			
rh	rh	rl	h		rh				rh				r	h			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
RESULT																	
	rwh																

Field	Bits	Туре	Description
RESULT	[15:0]	rwh	Result of Most Recent Conversion The position of the result bits within this bitfield depends on the configured operating mode. Refer to Section 28.7.2.
VF	31	rh	Valid Flag Indicates a new result in bitfield RESULT or bit FCR. 0 _B No new result available 1 _B Bitfield RESULT has been updated with new result value and has not yet been read, or bit FCR has been updated

3. 프로그래밍

1) RGB LED가 연결된 PORT에 대한 설정을 수행하는 함수를 구현한다.

```
/* Define PORT02/10 Registers for RGB LED */
71 #define PORT02 BASE
                           (0xF003A200)
72 #define PORT02 IOCR4
                           (*(volatile unsigned int*)(PORT02 BASE + 0x14))
   #define PORT02 OMR
                           (*(volatile unsigned int*)(PORT02 BASE + 0x04))
74
75 #define PC7
76 #define PCL7
                           23
   #define PS7
79 #define PORT10 BASE
                           (0xF003B000)
80 #define PORT10 IOCR4
                          (*(volatile unsigned int*)(PORT10 BASE + 0x14))
81 #define PORT10 IOCR0
                           (*(volatile unsigned int*)(PORT10 BASE + 0x10))
82 #define PORT10 OMR
                           (*(volatile unsigned int*)(PORT10 BASE + 0x04))
84 #define PC5
                           11
85 #define PC3
                           27
86 #define PCL5
                           21
87 #define PCL3
                           19
88 #define PS5
                           5
89 #define PS3
```

PORT IO 설정관련 레지스터 주소 및 비트 필드 정의

```
152 /* Initialize RGB LED */
153@ void init_RGBLED(void)
154 {
155
         /* Reset IOCR0 bits */
156
        PORT02_IOCR4 &= ~((0x1F) << PC7);
157
        PORT10_IOCR4 &= ~((0x1F) << PC5);
158
        PORT10 IOCR0 &= ~((0x1F) << PC3);
159
160
         /* Set PC bits in IOCR0 with push-pull(2b10000) */
161
         PORT02_IOCR4 |= ((0x10) << PC7);
162
         PORT10 IOCR4 |= ((0x10) << PC5);
163
         PORT10 IOCR0 |= ((0x10) << PC3);
164 }
```


PORT IO 설정 함수

3. 프로그래밍

- 2) VADC를 설정하기 위한 함수를 구현한다.
 - ① SCU_WDTCPU0CON0 Register를 통해 Password/Modify Access를 수행하여 System ENDINIT을 해제한다.
 - ② VADC_CLC Register를 통해 VADC 모듈을 Enable 한다.
 - ③ SCU_WDTCPU0CON0 Register를 통해 Password/Modify Access를 수행하여 System ENDINIT을 설정한다.
 - ④ VADC_G4ARBPR Register를 통해 Group 4의 Request Source 0에 대한 Request Source Arbiter 설정을 한다.
 - ⑤ VADC_G4QMR0 Register를 통해 Request Source 0에 대한 설정을 한다.
 - ⑥ VADC_G4ARBCFG Register를 통해 Analog Converter의 동작 모드를 Normal Operation으로 설정한다.
 - ⑦ VADC_G4lCLASSO Register를 통해 Input Class 0을 설정한다.
 - ⑧ VADC_G4CHCTR7 Register를 통해 Analog Input Channel 7에 대한 설정을 한다.

- 3. 프로그래밍
 - 2) VADC를 설정하기 위한 함수를 구현한다.

```
31 /* SCU Registers */
32 #define SCU BASE
                                (0xF0036000)
33 #define SCU WDT CPU0CON0
                               (*(volatile unsigned int*)(SCU BASE + 0x100))
34
35 #define LCK
                               1
                               0
36 #define ENDINIT
37
38 /* VADC Registers */
39 #define VADC_BASE
                           (0xF0020000)
40 #define VADC CLC
                           (*(volatile unsigned int*)(VADC BASE + 0x000))
41 #define VADC GLOBCFG
                           (*(volatile unsigned int*)(VADC BASE + 0x080))
42 #define VADC G4ARBCFG
                           (*(volatile unsigned int*)(VADC BASE + 0x1480))
43 #define VADC G4ARBPR
                           (*(volatile unsigned int*)(VADC BASE + 0x1484))
44 #define VADC_G4ICLASS0
                           (*(volatile unsigned int*)(VADC BASE + 0x14A0))
45 #define VADC G4QMR0
                           (*(volatile unsigned int*)(VADC BASE + 0x1504))
46 #define VADC G4QINR0
                           (*(volatile unsigned int*)(VADC BASE + 0x1510))
47 #define VADC_G4CHCTR7
                           (*(volatile unsigned int*)(VADC_BASE + 0x161C))
48 #define VADC G4RES1
                           (*(volatile unsigned int*)(VADC BASE + 0x1704))
50 #define DISS
51 #define DISR
52 #define ANONO
53 #define ASEN0
54 #define CSM0
                           3
55 #define PRIO0
56 #define CMS
57 #define STCS
58 #define FLUSH
                           10
59 #define TREV
60 #define ENGT
61 #define RF
62 #define REQCHNR
63 #define RESPOS
                           21
64 #define RESREG
                           16
65 #define ICLSEL
                           0
66 #define VF
                           31
67 #define RESULT
```


- 3. 프로그래밍
 - 2) VADC를 설정하기 위한 함수를 구현한다.

```
165@void init VADC(void)
166 {
167
        /* VADC Enable */
        /* Password Access to unlock WDTCPU0CON0 */
168
169
    SCU WDT CPU0CON0 = ((SCU WDT CPU0CON0 ^ 0xFC) & \sim(1 << LCK)) | (1 << ENDINIT);
170
        while((SCU WDT CPU0CON0 & (1 << LCK)) != 0);</pre>
171
172
        /* Modify Access to clear ENDINIT bit */
173
        SCU WDT CPU0CON0 = ((SCU WDT CPU0CON0 ^ 0xFC) | (1 << LCK)) & ~ (1 << ENDINIT);
        while((SCU_WDT_CPU0CON0 & (1 << LCK)) == 0);</pre>
174
175
176
    2 VADC_CLC &= ~(1 << DISR);
                                                  // Enable VADC Module
177
178
        /* Password Access to unlock WDTSCPU0CON0 */
179
    SCU WDT CPU0CON0 = ((SCU WDT CPU0CON0 ^ 0xFC) & \sim(1 << LCK)) | (1 << ENDINIT);
        while((SCU WDT CPU0CON0 & (1 << LCK)) != 0);</pre>
180
181
182
        /* Modify Access to clear ENDINIT bit */
183
        SCU WDT CPU0CON0 = ((SCU WDT CPU0CON0 ^{\circ} 0xFC) | (1 << LCK)) | (1 << ENDINIT);
184
        while((SCU WDT CPU0CON0 & (1 << LCK)) == 0);</pre>
185
186
        while((VADC CLC & (1 << DISS)) != 0);  // Wait until module is enabled</pre>
187
188
    (4) VADC_G4ARBPR |= ((0x3) << PRIO0); // Highest Priority for Request Source 0
        VADC_G4ARBPR &= ~(1 << CSM0);
                                                  // Conversion Start Mode : Wait-for-start mode
189
        VADC G4ARBPR = (1 \ll ASEN0);
                                                  // Arbitration Source Input 0 Enable
190
```

3. 프로그래밍

2) VADC를 설정하기 위한 함수를 구현한다.

```
VADC G40MR0 &= \sim((0x3) << ENGT);
                                                 // Enable Conversion Requests
193
        VADC G40MR0 \mid = ((0x1) << ENGT);
194
195
        VADC G4QMR0 = (1 \ll FLUSH);
                                                // Clear all Queue Entries
196
197
       VADC G4ARBCFG = ((0x3) << ANONC);
                                                 // Analog Converter : Normal Operation
198
199
       VADC G4ICLASSO &= \sim((0x7) << CMS);
                                                 // Group-specific Class 0
200
                                                 // Conversion Mode : Standard Conversion (12-bit)
201
202
        /* VADC Group 4 Channel 7 Setting */
        VADC_G4CHCTR7 |= (1 << RESPOS);
203
                                              // Read Results Right-aligned
        VADC G4CHCTR7 &= ~((0xF) << RESREG); // Store Result in Group Result Register G4RES1
204
205
        VADC G4CHCTR7 |= (1 << RESREG);
206
        VADC G4CHCTR7 &= ~((0x3) << ICLSEL); // Use Group-specific Class 0
207 }
```

VADC 설정 함수

3. 프로그래밍

- 3) VADC의 Conversion Request를 생성하는 함수를 구현한다.
 - ① VADC_GOQINRO Register를 통해 Request Source 0에서 생성할 Conversion Request의 Analog Input Channel (Channel 7)을 설정한다.
 - ② VADC_GOQINRO Register를 통해 해당 Conversion Request가 Single-shot Mode로 동작하도록 설정한다.
 - ③ VADC_GOQMR0 Register를 통해 Conversion Request를 생성하는 트리거 이벤트를 소프트웨어적으로 발생시킨다.

```
209@void VADC_startConversion(void)
210 {
211
        /* No fill and Start Oueue */
212
   1 VADC G4QINR0 &= ~(0x1F);
                                               // Request Channel Number : 7
       VADC G4QINR0 = (0x07);
213
214
    2 VADC G4QINR0 &= ~(1 << RF);
215
                                               // No fill : it is converted once
216
    3 VADC G4QMR0 |= (1 << TREV);
217
                                         // Generate a Trigger Event
218 }
```

3. 프로그래밍

- 4) VADC의 Result Register를 읽어오는 함수를 구현한다.
 - ① VADC_GORES1 Register의 VF bit를 통해 변환이 끝나 새로운 결과 값이 저장되기를 기다린다.
 - ② VADC_GORES1 Register를 Masking 하여 변환된 디지털 값만 읽어온다.
 - ③ 해당 디지털 값을 반환한다.

3. 프로그래밍

5) 동작에 따라 'main' 함수를 구현한다. (필요한 레지스터 / 비트 필드 및 함수 프로토타입을

```
31 /* SCU Registers */
32 #define SCU BASE
                               (0xF0036000)
33 #define SCU WDT CPU0CON0
                               (*(volatile unsigned int*)(SCU BASE + 0x100))
35 #define LCK
                               1
36 #define ENDINIT
                               0
38 /* VADC Registers */
39 #define VADC BASE
                           (0xF0020000)
40 #define VADC CLC
                            (*(volatile unsigned int*)(VADC BASE + 0x000))
41 #define VADC GLOBCFG
                           (*(volatile unsigned int*)(VADC BASE + 0x080))
42 #define VADC G4ARBCFG
                           (*(volatile unsigned int*)(VADC BASE + 0x1480))
43 #define VADC G4ARBPR
                           (*(volatile unsigned int*)(VADC BASE + 0x1484))
44 #define VADC G4ICLASS0
                           (*(volatile unsigned int*)(VADC BASE + 0x14A0))
45 #define VADC G40MR0
                           (*(volatile unsigned int*)(VADC BASE + 0x1504))
46 #define VADC G4QINR0
                           (*(volatile unsigned int*)(VADC BASE + 0x1510))
47 #define VADC G4CHCTR7
                           (*(volatile unsigned int*)(VADC BASE + 0x161C))
48 #define VADC_G4RES1
                           (*(volatile unsigned int*)(VADC_BASE + 0x1704))
50 #define DISS
                           1
51 #define DISR
52 #define ANONC
53 #define ASEN0
54 #define CSM0
55 #define PRIO0
56 #define CMS
57 #define STCS
58 #define FLUSH
59 #define TREV
                           9
60 #define ENGT
61 #define RF
62 #define REOCHNR
                           0
63 #define RESPOS
                           21
64 #define RESREG
                           16
65 #define ICLSEL
66 #define VF
                           31
67 #define RESULT
```

```
/* Define PORT02/10 Registers for RGB LED */
   #define PORT02 BASE
                            (0xF003A200)
   #define PORT02 IOCR4
                            (*(volatile unsigned int*)(PORT02 BASE + 0x14))
   #define PORT02 OMR
                            (*(volatile unsigned int*)(PORT02 BASE + 0x04))
73
74
   #define PC7
                            27
   #define PCL7
                            23
                            7
   #define PS7
77
   #define PORT10 BASE
                            (0xF003B000)
   #define PORT10 IOCR4
                            (*(volatile unsigned int*)(PORT10 BASE + 0x14))
   #define PORT10 IOCR0
                            (*(volatile unsigned int*)(PORT10 BASE + 0x10))
   #define PORT10 OMR
                            (*(volatile unsigned int*)(PORT10 BASE + 0x04))
82
83
   #define PC5
                            11
  #define PC3
                            27
   #define PCL5
                            21
   #define PCL3
                            19
   #define PS5
                            5
88
   #define PS3
89
   void init RGBLED(void);
   void init VADC(void);
   void VADC startConversion(void);
   unsigned int VADC readResult(void);
```

- 3. 프로그래밍
 - 5) 동작에 따라 'main' 함수를 구현한다. (앞서 구현한 함수들을 호출한다.)

```
97⊖ int core0 main(void)
98 {
99
         IfxCpu enableInterrupts();
100
101⊝
         /* !!WATCHDOGO AND SAFETY WATCHDOG ARE DISABLED HERE!!
102
          * Enable the watchdogs and service them periodically if it is required
103
104
        IfxScuWdt disableCpuWatchdog(IfxScuWdt getCpuWatchdogPassword());
105
        IfxScuWdt disableSafetyWatchdog(IfxScuWdt getSafetyWatchdogPassword());
106
107
         /* Wait for CPU sync event */
108
        IfxCpu emitEvent(&g cpuSyncEvent);
        IfxCpu_waitEvent(&g_cpuSyncEvent, 1);
109
110
111
        unsigned int adcResult;
112
113
         /* Initialization */
        init RGBLED();
114
                                     // Initialize PORT
115
         init_VADC();
                                     // Initialize VADC
116
```

```
while(1)
118
119
120
             VADC startConversion();
121
             adcResult = VADC readResult();
122
123
             if(adcResult >= 3096)
124
125
                 PORT02 OMR |= (1<<PS7);
                                                     // Set LED RED
126
                 PORT10 OMR |= (1<<PCL5);
                                                     // Clear LED GREEN
127
                 PORT10 OMR |= (1<<PCL3);
                                                     // Clear LED BLUE
128
129
             else if(adcResult >= 2048)
130
131
                 PORT02 OMR |= (1<<PCL7);
                                                      // Clear LED RED
132
                 PORT10 OMR |= (1<<PS5);
                                                      // Set LED GREEN
133
                 PORT10 OMR |= (1<<PCL3);
                                                      // Clear LED BLUE
134
135
             else if(adcResult >= 1024)
136
137
                 PORT02 OMR |= (1<<PCL7);
                                                      // Clear LED RED
138
                 PORT10 OMR |= (1<<PCL5);
                                                      // Clear LED GREEN
139
                 PORT10 OMR |= (1<<PS3);
                                                      // Set LED BLUE
140
141
             else
142
143
                 PORT02 OMR |= (1<<PCL7);
                                                      // Clear LED RED
144
                 PORT10 OMR |= (1<<PCL5);
                                                      // Clear LED GREEN
145
                 PORT10 OMR |= (1<<PCL3);
                                                      // Clear LED BLUE
146
147
148
         return (1);
149 }
```

4. 동작 확인

✓ Build 및 Debug 후 ('Resume' 버튼 클릭), Potentiometer를 돌려보며 RGB-LED가 켜지는 것을 확인한다.

- 1. Reference Code 수행
- 2. Light Sensor(Group4, Channel 6) ADC 입력 측정
 - ✓ ADC 입력값에 따라 3색 LED 구동 → 입력값 기준 자유
 - ✓ 입력값 8번 입력받아서 평균값으로 구현
 - ✓ 결과 값을 Printf로 출력(1초 이상)

```
/* SCU Registers */
   #define SCU BASE
   #define SCU WDT CPU0CON0
                               (*(volatile unsigned int*)(SCU BASE + 0x100))
  #define LCK
  #define ENDINIT
   /* VADC Registers */
   #define VADC BASE
  #define VADC CLC
                           (*(volatile unsigned int*)(VADC BASE + 0x000))
41 #define VADC GLOBCFG
                         (*(volatile unsigned int*)(VADC BASE + 0x080))
42 #define VADC G4ARBCFG
                          (*(volatile unsigned int*)(VADC BASE + 0x1480))
43 #define VADC G4ARBPR
                           (*(volatile unsigned int*)(VADC BASE + 0x1484))
44 #define VADC G4ICLASSO (*(volatile unsigned int*)(VADC BASE + 0x14A0))
45 #define VADC G4QMR0
                           (*(volatile unsigned int*)(VADC BASE + 0x1504))
46 #define VADC G4QINRO
                           (*(volatile unsigned int*)(VADC BASE + 0x1510))
  #define VADC G4CHCTR6
                           (*(volatile unsigned int*)(VADC BASE + 0x1618))
  #define VADC G4RES1
                           (*(volatile unsigned int*)(VADC BASE + 0x1704))
  #define DISS
51 #define DISR
52 #define ANONC
53 #define ASENO
54 #define CSMO
55 #define PRIO0
56 #define CMS
57 #define STCS
58 #define FLUSH
59 #define TREV
60 #define ENGT
61 #define RF
62 #define REQCHNR
63 #define RESPOS
64 #define RESREG
65 #define ICLSEL
  #define RESULT
   #define CHNR
```

```
void init VADC (void)
    /* VADC Enable */
    /* Password Access to unlock WDTCPU0CON0 */
    SCU WDT CPUOCONO = ((SCU WDT CPUOCONO ^ 0xFC) & ~(1 << LCK)) | (1 << ENDINIT);
    while ((SCU WDT CPU0CONO & (1 << LCK)) != 0);
    /* Modify Access to clear ENDINIT bit */
    SCU WDT CPU0CON0 = ((SCU WDT CPU0CON0 ^ 0xFC) | (1 << LCK)) & ~ (1 << ENDINIT);
    while((SCU WDT CPU0CON0 & (1 << LCK)) == 0);
    VADC CLC &= \sim (1 << DISR);
                                              // Enable VADC Module
    while((VADC CLC & (1 << DISS)) != 0);
                                              // Wait until module is enabled
    //VADC GLOBCFG |= ((1<<31) | (1<<15) | 0x9);
    VADC G4ARBPR \mid = ((0x3) << PRIO0);
                                               // Highest Priority for Request Source 0
    VADC G4ARBPR &= ~(1 << CSM0);
                                               // Conversion Start Mode : Wait-for-start mode
    VADC G4ARBPR |= (1 << (ASENO));
                                               // Arbitration Source Input 0 Enable
    VADC G4QMR0 &= \sim ((0x3) << ENGT);
                                               // Enable Conversion Requests
    VADC G4QMR0 \mid = ((0x1) << ENGT);
    VADC G4QMR0 |= (1 << FLUSH);
                                               // Clear all Queue Entries
    VADC G4ARBCFG |= ((0x3) << ANONC);
                                              // Analog Converter : Normal Operation
    VADC G4ICLASSO &= \sim ((0x7) << CMS);
                                               // Group-specific Class 0
    VADC G4ICLASSO &= ~((0x1F) << STCS);
                                               // Conversion Mode : Standard Conversion (12-bit)
                                               // Additional Sample Time for Standard Conversion
    /* VADC Group 4 Channel 6 Setting */
    VADC G4CHCTR6 |= (1 << RESPOS);
                                               // Read Results Right-aligned
    VADC G4CHCTR6 &= ~((0xF) << RESREG);
                                               // Store Result in Group Result Register G4RES1
    VADC G4CHCTR6 |= (1 << RESREG);
    VADC G4CHCTR6 &= ~((0x3) << ICLSEL);
                                              // Use Group-specific Class 0
void VADC_startConversion(void)
    /* No fill and Start Queue */
   VADC G4QINRO &= ~(0x1F);
                                              // Request Channel Number : 6
   VADC G4QINR0 |= (0x06);
    VADC G4QINRO &= ~(1 << RF);
                                              // No fill : it is converted once
    VADC G4QMR0 |= (1 << TREV);
                                              // Generate a Trigger Event
```

Q&A

Thank you for your attention

OOOOO Architecture and
Compiler
for Embedded Systems Lab.

School of Electronics Engineering, KNU

ACE Lab (hn02301@gmail.com)

