Лабораторная работа 8

Модель ТСР/АОМ

Абу Сувейлим Мухаммед Мунифович

Содержание

6	Библиография	12
5	Вывод	11
4	Выполнение лабораторной работы 4.1 Реализация модели в хсов	7 7 8
3	Теоретическое введение	6
2	Задание	5
1	Цель работы	4

Список иллюстраций

4.1	Задать переменные окружения в хсоз для модели	7
4.2	Конечное время интегрирования	7
4.3	Схема модели Модель ТСР/АQМ\$	8
4.4	Динамика изменения размера TCP окна W(t) и размера очереди Q(t)	8
4.5	Фазовый портрет (W, Q)	8
	Динамика изменения размера TCP окна W(t) и размера очереди Q(t)	9
4.7	Фазовый портрет (W, Q)	9
	Динамика изменения размера TCP окна W(t) и размера очереди	
	Q(t) при $C=0.9$	10
4.9		10

1 Цель работы

• Приобретение навыков моделирования в Xcos.

2 Задание

Требуется:

Реализовать модель (8.4)–(8.5) с использованием языка Modelica в среде OpenModelica. Для реализации задержки используйте оператор delay(). Постройте график динамики изменения размера TCP окна W(t) и размера очереди Q(t) и фазовый портрет (W; Q).

3 Теоретическое введение

Рассмотрим упрощённую модель поведения TCP-подобного трафика с регулируемой некоторым AQM алгоритмом динамической интенсивностью потока:

$$\dot{W}(t) = \frac{1}{R} - \frac{W(t)W(t-R)}{2R}KQ(t-R),$$

$$\dot{Q}(t) = \begin{cases} \frac{NW(t)}{R} - C, Q(t) > 0, \\ \max(\frac{NW(t)}{R} - C, 0), Q(t) = 0 \end{cases} \label{eq:Q_total_eq}$$

где W(t) — средний размер ТСР-окна (в пакетах), Q(t) — средний размер очереди (в пакетах), R(t) — время двойного оборота (Round Trip Time, сек.), С — скорость обработки пакетов в очереди (пакетов в секунду), N(t) — число ТСР-сессий, $p(\cdot)$ —вероятностная функция сброса (отметки на сброс) пакета (значения функции $p(\cdot)$ лежат на интервале [0;1]).

4 Выполнение лабораторной работы

4.1 Реализация модели в хсоѕ

1. В меню Моделирование, Задать переменные окружения зададим значения коэффициентов N, R, K, C (рис. 1):

Рис. 4.1: Задать переменные окружения в хсоз для модели

2. В меню Моделирование, Установка необходимо задать конечное время интегрирования, равным времени моделирования: 30.

Рис. 4.2: Конечное время интегрирования

3. Схема модели TCP/AQM в Xcos рис. 3:

Рис. 4.3: Схема модели Модель ТСР/АQМ\$

4. Результат моделирования представлен на рис. 4 и 5:

Рис. 4.4: Динамика изменения размера TCP окна W(t) и размера очереди Q(t)

Рис. 4.5: Фазовый портрет (W, Q)

4.2 Реализация модели в OpenModelica

7. Код программы:

model lab08_OM

```
//Initial parameters
parameter Real N = 1, R = 1, K = 5.3, C = 0.9;
Real W(start=0.1), Q(start=1);

equation

der(W) = 1/R - (W*delay(W,R)) / (2*R) * K*delay(Q,R);
if (Q==0) then
    der(Q) = max(N*W/R - C, 0);
else
    der(Q) = N*W/R - C;
end if;
end lab08_OM;
```

8. Результат моделирования представлен на рис. 4 и 5:

Рис. 4.6: Динамика изменения размера TCP окна W(t) и размера очереди Q(t)

Рис. 4.7: Фазовый портрет (W, Q)

9. Результат моделирования при C=0.9 представлен на рис. 6 и 7:

Рис. 4.8: Динамика изменения размера TCP окна W(t) и размера очереди Q(t) при C=0.9

Рис. 4.9: Фазовый портрет (W, Q)

5 Вывод

• Изучали как работать с хсоз. [1]

6 Библиография

1. Korolkova A., Kulyabov D. Моделирование информационных процессов. 2014.