Fields

A field is a non-zero commutative division ring. - All fields are Integral Domains.

Divsion Rings

A ring F in which every non-zero element $a \in F$ has an inverse $a^{-1} \in F$ (\Longrightarrow has no zero-divsors!)

Vector Spaces

A vector space V over a Field F is any set equipped with vector addition and scalr multiplication. $\forall u, v, w \in V \text{ and } a, b \in$

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

$$\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$$

$$\mathbf{v} + 0 = \mathbf{v}$$

$$\mathbf{v} + (-\mathbf{v}) = 0$$

$$a(\mathbf{v} + \mathbf{w}) = a\mathbf{v} + a\mathbf{w}$$

$$(a + b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$$

$$a(b\mathbf{v}) = (ab)\mathbf{v}$$

$$1v = v$$

Vector Subspaces

A subset U of a vector space V is called a vector subspace if U contains the zero vector and whenever $\mathbf{u}, \mathbf{v} \in \mathbf{U}$ and $\lambda \in F$ we have

- $\mathbf{u} + \mathbf{v} \in \mathbf{U}$
- $\lambda \mathbf{u} \in \mathbf{U}$

We write $U \subseteq V$.

For infinite and finite $U_1, U_2 \subseteq V$

- $U_1 \cap U_2$ is a subspace
- $U_1 + U_2$ is a subspace
- $U_1 \cup U_2$ is not a subspace
- $-\dim(U) \leq \dim V$

QUICK CHECK: For $\mathbf{u}, \mathbf{v} \in \mathbf{U}$ and $\lambda_1 \lambda_2 \in F$ we have $\lambda_1 \mathbf{u} + \lambda_2 \mathbf{v} \in \mathbf{U}$

Generating Vector Subspaces

Let T be a subset of a vector space V over a field F. Then amongst all vector subspaces of V that include T there is a smallest vector subspace

$$\langle T \rangle = \langle T \rangle_F \subseteq V.$$

It can be described as the set of all vectors $\alpha_1 \vec{v}_1 + \cdots + \alpha_r \vec{v}_r$ with $\alpha_1, \ldots, \alpha_r \in F$ and $\vec{v}_1, \ldots, \vec{v}_r \in T$, together with the zero vector in the case $T = \emptyset$.

A subset of a vector space is called a generating or spanning set of our vector space if its span is all of the vector space.

Power Sets

If X is a set, then the set of all subsets $\mathcal{P}(X) = \{U : U \subseteq X\}$ of X is the power set of X. A subset of $\mathcal{P}(X)$ is a system of subsets of X. Given such a system $\mathcal{U} \subseteq \mathcal{P}(X)$ we can create two new subsets of X, the union and the intersection of the sets of our system \mathcal{U} , as follows:

$$\bigcup_{U \in \mathcal{U}} U = \{ x \in X : \text{s.t. } \exists U \in \mathcal{U} \text{ with } x \in U \} \ c \in K,$$

$$\bigcap_{U \in \mathcal{U}} U = \{ x \in X : x \in U \text{ for all } U \in \mathcal{U} \}$$

system of subsets of X is X, and the union—its kernel is zero.

of the empty system of subsets of X is the - All linear maps have that $f(\vec{0}) = \vec{0}$. empty set.

Linear Independence

A subset L of a vector space V is called linearly independent if for all pairwise different vectors $\vec{v}_1, \ldots, \vec{v}_r \in L$ and arbitrary scalars $\alpha_1, \ldots, \alpha_r \in F$,

$$\alpha_1 \vec{v}_1 + \dots + \alpha_r \vec{v}_r = \overrightarrow{0} \Longrightarrow \alpha_1 = \dots = \alpha_r = 0$$
 from a vector space to itself.

A basis of a vector space V is a linearly independent generating set in V.

A basis always exists for finite vector spaces. The following are equivalent for a subset $E \subset V$:

- (1) E is a basis (2) E is minimal among all generating sets, meaning that $E \setminus \{\vec{v}\}\$ does not generate V, for any $\vec{v} \in E$;
- (3) E is maximal among all linearly independent subsets, meaning that $E \cup \{\vec{v}\}$ is not linearly independent for any $\vec{v} \in V$.
- (4) If $L \subset V$ is a linearly independent subset and E is minimal amongst all generating sets of our vector space with the property that $L \subseteq E$, then E is a basis.
- (5) If $E \subseteq V$ is a generating set and if L is maximal amongst all linearly independent subsets of vector space with the property $L \subseteq E$, then L is a basis.

Dimension

The dimension of a vector space V is the cardinality (size) of a basis of V.

Fundamental Estimate

No linearly independent subset of a given vector space has more elements than a generating set. Thus if V is a vector space, $L \subset V$ a linearly independent subset and $E \subseteq V$ a generating set, then:

$$|L| \leqslant |E|$$

Steinitz Exchange Lemma

Let V be a vector space, $L \subset V$ a finite linearly independent subset and $E \subseteq V$ a generating set. Then there is an injection $\phi: L \hookrightarrow E$ such that $(E \setminus \phi(L)) \cup L$ is also a generating set for V.

In other words, we can swap some elements of a generating set by the elements of our linearly independent set, and still keep a generating set.

Dimension Theorem

Let V be a vector space containing vector subspaces $U, W \subseteq V$. Then

 $\dim(U+W)+\dim(U\cap W)=\dim U+\dim W$. Linear Mapping and Basis

Linear Homomorphisms

Let V and W be vector spaces over the same field.

A function $f: V \to W$ is said to be a linear map if for all $x, y \in V$ and some scalar

$$f(x+y) = f(x) + f(y)$$
$$f(cx) = cf(u)$$

In particular the intersection of the empty - A linear map is injective if and only if

- Compositions of linear maps are also
- Linear mappings are completely determined by the values they take on the basis

Endomorphisms are Homomorphisms from a vector space to itself.

Automorphisms are isomorphisms from a vector space to itself.

Kernal and Image

The kernel of the linear mapping $f: V \to$

$$\ker(f) := f^{-1}(0) = \{v \in V : f(v) = 0\}$$

The image is the subset

$$im(f) = f(V) \subseteq W$$

The kernel and image are vector subspaces of V.

Fixed Points

Given a mapping $f: X \to X$, we denote the set of fixed points by

$$X^f = \{x \in X : f(x) = x\}.$$

Complemetary Subspaces

Two vector subspaces V_1, V_2 of a vector space V are called complementary if $V_1 \times$ $V_2 \stackrel{\sim}{\to} V$ (addition) defines a Bijection.

Internal Direct Sum

Given Complementary Subspaces $U, U' \subseteq$ V and the Linear Mappings $f: U \to V$, $f': U' \to V$ we then produce an vector space isomorphism $U \oplus U' \stackrel{\sim}{\to} V$.

$$f(u, u') = f(u) + f'(u')$$

We write $V = U \oplus U'$ and say V is the internal direct sum of U and U'.

Direct Sum

Let V be a Vector Space with Vector Subspaces V_1, \ldots, V_n .

The vector subspace of V they generate is called the sum of our vector subspaces and denoted by $V_1 + \cdots + V_n$.

$$\langle V_1 \cup \dots \cup V_n \rangle = V_1 + \dots + V_n$$

If the homomorphism given by addition $V_1 + \cdots + V_n \rightarrow V$ is an injection then we say the sum of the vector subspaces V_i is direct.

We write their sum also as $V_1 \oplus \cdots \oplus V_n$.

Let V, W be vector spaces over F and let $B \subset V$ be a basis. Then restriction of a mapping gives a bijection

$$\operatorname{Hom}_F(V,W) \xrightarrow{\sim} \operatorname{Maps}(B,W)$$

 $f \mapsto f|_B$.

In-Bi-Surjection

 $f:A\to B$

- is an injection (or one-to-one) if $f(a_1) =$ $f(a_2) \implies a_1 = a_2.$
- is a surjection (or onto) if every $b \in B$ has at least one pre-image in A.

- is a bijection (or one-to-one correspondence) if it is both an injection and a surjection.

Left and Right Inverse

Injective linear mappings always have a left inverse $g:W\to V$ defined $g\circ f=\mathrm{id}_V$. Surjective linear mapping always have a right inverse $g:W\to V$ defined $f\circ g=\mathrm{id}_W$.

Rank-Nulity

Let $f:V\to W$

$$\dim V = \dim(\ker f) + \dim(\operatorname{im} f).$$

V is finite-dimensional:

- Then f is injective if and only if $\dim f = \dim V$.
- Then f is surjective if and only if $\dim \ker f = \dim V \dim W$.
- f is an isomorphism and V is finite-dimensional.
- Then $\dim W = \dim V$. (In particular, F^m and F^n are isomorphic if and only if m = n.)

V,W are finite-dimensional with the same dimension:

- f is injective if and only if f is surjective.

Matrices as Linear Mapppings

There is a bijection between the space of linear mappings $F^m \to F^n$ and the set of matrices with n rows and m columns and entries in F:

$$M: \operatorname{Hom}_F(F^m, F^n) \xrightarrow{\sim} \operatorname{Mat}(n \times m; F)$$

 $f \mapsto [f].$

Each linear mapping f has its representing matrix M(f) := [f].

The columns of this matrix are the images under f of the standard basis elements of F^m

$$[f] := (f(\vec{e}_1) | f(\vec{e}_2) | \cdots | f(\vec{e}_m)).$$

Mat Mul

$$(AB)_{ik} = \sum_{j=1}^{m} A_{ij} B_{jk}$$

$$(A + A') B = AB + A'B$$

$$A (B + B') = AB + AB'$$

$$IB = B$$

$$AI = A$$

$$(AB)C = A(BC).$$

Composition of Linear Mappings

The composition $g \circ f : U \to W$ is the matrix product of the representing matrices of f and g:

$$_{\mathcal{C}}[g \circ f]_{\mathcal{A}} = _{\mathcal{C}}[g]_{\mathcal{B}} \circ _{\mathcal{B}}[f]_{\mathcal{A}}$$

Invertible Matrices

A matrix A is called invertible if and only if there exists matrices B and C such that BA = I and AC = I.

To calculate the inverse of a matrix A:

- Write the identity matrix I next to it,

producing an $(n \times 2n)$ -matrix $(A \mid I)$.

- Bring A into Echelon Form, (possibly further to into reduced echelon form: this is the identity matrix.)
- The inverse to A is then what is standing in the right half of the $(n \times 2n)$ -matrix.

Elementary Matrix

Any square matrix that differs from the identity matrix in at most one entry.

All the elementary matrices with non-zero diagonlas and entries in a field, are invertible.

Rank

The column rank of a matrix A is the dimension of the subspace generated by the columns of A.

Column and row rank are equal.

TO CALCUALTE: Count the number of non-zero rows in the echelon form of the matrix.

$$\operatorname{rank}(A+B) \le \operatorname{rank} A + \operatorname{rank} B$$

Center of a Group

The centre of a group G, denoted as Z(G), consists of elements that commute with every element in G.

$$Z(G) = \{ g \in G \mid \forall h \in G, gh = hg \}$$

Z(G) is never empty. If G is an abelian group, then Z(G) = G.

Abstract Linear Mappings as Matrices

Let F be a field, V and W vector spaces over F with ordered basis $\mathcal{A} = (\vec{v}_1, \ldots, \vec{v}_m)$ and $\mathcal{B} = (\vec{w}_1, \ldots, \vec{w}_n)$.

U Then each linear mapping $f: V \to W$ has a representing matrix $_{\mathcal{B}}[f]_{\mathcal{A}}$ whose entries a_{ij} are defined

$$f(\vec{v}_j) = a_{1j}\vec{w}_1 + \dots + a_{nj}\vec{w}_n \in W.$$

i.e. the image of a basis element $\vec{v_i} \in \mathcal{A}$ of V is a linear combination of the basis elements $\vec{w_i} \in \mathcal{B}$ of W.

This describes the isomorphism:

$$\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}: \operatorname{Hom}_{F}(V, W) \xrightarrow{\sim} \operatorname{Mat}(n \times m; F)$$

$$f \mapsto_{\mathcal{B}} [f]_{\mathcal{A}}$$

Change of Basis

$$_{\mathcal{B}}[\mathrm{id}_V]_{\mathcal{A}}$$

Its entries (a_{ij}) are given by the equalities $\vec{v}_j = \sum_{i=1}^n a_{ij} \vec{w}_i$.

 $Changing\ between\ vector\ spaces:$

Let V and W be finite dimensional vector spaces over F and let $f:V\to W$ be a linear mapping.

Suppose that $\mathcal{A}, \mathcal{A}'$ are ordered basis of V and $\mathcal{B}, \mathcal{B}'$ are ordered bases of W. Then

$$_{\mathcal{B}'}[f]_{\mathcal{A}'} = _{\mathcal{B}'}[\mathrm{id}_W]_{\mathcal{B}} \circ _{\mathcal{B}}[f]_{\mathcal{A}} \circ _{\mathcal{A}}[\mathrm{id}_V]_{\mathcal{A}'}$$

Changing within a vector space Let f be the endomorphism $f: V \to V$, we have

$$_{A'}[f]_{A'} = _{\mathcal{A}}[\mathrm{id}_V]_{A'}^{-1} \circ _{\mathcal{A}}[f]_{\mathcal{A}} \circ _{\mathcal{A}}[\mathrm{id}_V]_{\mathcal{A}'}$$

Similar Matrices

Let $N = {}_{\mathcal{B}}[f]_{\mathcal{B}}$ and $M = {}_{\mathcal{A}}[f]_{\mathcal{A}}$ then if

$$N = T^{-1}MT$$

where $T = {}_{\mathcal{A}}[id_V]_{\mathcal{B}}$. We say that N and M are similar matrices.

- Matrices that are similar are equivalent.
- Similar matrices have the same characteristic polynomial.

Rings

A ring is a set R equipped with Addition satisfying:

- Commutativity: a + b = b + a
- Associativity: (a+b)+c=a+(b+c)
- Identity: $\exists 0 \in R \text{ such that } a + 0 = a$
- Inverse: $\exists -a \in R$ such that a+(-a)=0. Multiplication satisfying:
- Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Distributivity: $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$
- Identity: $\exists 1 \in R \text{ such that } a \cdot 1 = a$

Units of a Ring

Let R be a ring. An element $a \in R$ is called a unit if is invertible i.e. $\exists a^{-1} \in R$

$$aa^{-1} = 1 = a^{-1}a$$
.

The set of units in a ring forms a group under multiplication called the group of units of the ring R written R^{\times} .

Integral Domains

An integral domain is a non-zero commutative ring with no zero-divisors, then:

- $ab = 0 \Rightarrow a = 0$ or b = 0, and
- $a \neq 0$ and $b \neq 0 \rightarrow ab \neq 0$
- ab = ac and $a \neq 0 \implies b = c$.

All Fields are integral domains since a unit cannot be a zero-divisor.

Every finite integral domain is a field.

Orbit - Stabiliser

The orbit of an element x under the action of a group G is denoted as Gx and is the set $\{g \cdot x \mid g \in G\}$.

The stabiliser of an element x under the action of a group G, denoted as G_x , is the subgroup of elements in G that leave x fixed. $G_x = \{g \in G \mid g \cdot x = x\}$

Polynomials

Let R be a ring. A polynomial over R is an expression of the form

$$P = a_0 + a_1 X + a_2 X^2 + \dots + a_m X^m$$

for some non-negative integer m and elements $a_i \in R$ for $0 \le i \le m$.

The set of all polynomials over R is denoted by R[X].

In case a_m is non-zero, the polynomial P has degree m, written $\deg(P)$, and a_m is its leading coefficient.

When the leading coefficient is 1 the polynomial is a monic polynomial.

Ring of Polynomials

R[X] becomes a Ring called the ring of polynomials with coefficients in R, with the operations $+, \times$.

$$(a_0 + a_1 X + \dots + a_m X^m) + (b_0 + b_1 X + \dots + b_n X^n)$$

= $(a_0 + b_0) + (a_1 + b_1) X + \dots$

and

$$(a_0 + a_1 X + \dots + a_m X^m)$$

$$\times (b_0 + b_1 X + \dots + b_n X^n)$$

$$= a_0 b_0 + (a_0 b_1 + a_1 b_0) X$$

$$I + J = \{ \{ \{ \{ \{ \{ \} \} \} \} \} + (a_0 b_2 + a_1 b_1 + a_2 b_0) X^2 + \dots + a_m b_n X^{m+n} \text{ is an ideal of } R. \}$$

The zero and the identity of R[X] are the zero and identity of R, respectively.

The elements of R are just polynomials of degree 0. These are constant polynomials. R is commutative, then so too is R[X]. If R is a ring with no zero-divisors, then R[X] has no zero-divisors and deg(PQ) =deg(P)+deg(Q) for non-zero $P, Q \in R[X]$. If R is an integral domain then so is R[X]. Let R be an integral domain and let $P, Q \in$

$$P = AQ + B$$

R[X] with Q monic. Then there exists

and deg(B) < deg(Q) or B = 0.

unique $A, B \in R[X]$ such that

Polynomial Roots

Let R be a commutative ring, let $\lambda \in R$ and $P(X) \in R[X]$. Then λ is a root of P(X) if and only if $(X - \lambda)$ divides P(X). Let R be an integral domain. Then P[X]has at most deg(P) roots in R.

Algebraic Closure

A field F is algebraically closed if each non-constant polynomial with coefficients in our field has a root in our field F.

If F is an algebraically closed field, then every non-zero polynomial decomposes into linear factors

$$P = c(X - \lambda_1) \cdots (X - \lambda_n)$$

with $n \ge 0, c \in F^{\times}$ and $\lambda_1, \ldots, \lambda_n \in F$. This decomposition is unique up to reordering the factors.

Fundamental Theorem of Algebra

The field of complex numbers \mathbb{C} is algebraically closed.

Rings Homomorphisms

Let R and S be rings.

A mapping $f: R \longrightarrow S$ is a ring homomorphism if the following hold for all $x, y \in R$

$$f(x+y) = f(x) + f(y)$$
$$f(xy) = f(x)f(y)$$

Then:

- $-f\left(0_{R}\right) =0_{S}$
- f(-x) = -f(x);
- f(x y) = f(x) f(y);
- f(mx) = mf(x),
- $f(x^n) = (f(x))^n$

f is injective if and only if ker $f = \{0\}$.

A subset I of a ring R is an ideal, written $I \subseteq R$, if the following hold:

- 1. $I \neq \emptyset$;
- 2. I is closed under subtraction;
- 3. for all $i \in I$ and $r \in R$ we have ri, $ir \in I$ i.e. I is closed under multiplication by elements of R.

In any ring R, $\{0\}$ and R are ideals of R.

The intersection of ideals of a ring R is an For $x, y \in X$ the following are equivalent: ideal of R.

Let I and J be ideals of a ring R. Then

$$I+J=\{a+b:a\in I,b\in J\}$$

Generting Ideals

Let R be a commutative ring and let $T \subset$ R. Then the ideal of R generated by T is

$$_R\langle T\rangle = \{r_1t_1 + \dots + r_mt_m : t_1, \dots, t_m \in T, \text{ equivalence class, impliing the surjection } r_1, \dots, r_m \in R\},$$

together with the zero element in the case $T = \emptyset$.

 $_R\langle T\rangle$ is the *smallest* ideal of R that contains T.

- Let $m \in \mathbb{Z}$. Then $\mathbb{Z}\langle m \rangle = m\mathbb{Z}$.
- $A \in \mathbb{R}[X]$ = { $Q : P \text{ divides } Q \text{ in } \mathbb{R}[X]$ }.

Principle Ideals

An ideal I of R is called a principal ideal if $I = \langle t \rangle$ for some $t \in R$ i.e. it I is generated by one element of R.

Kernal of a Ring Homomorphism

Let $f: R \to S$ be a ring homomorphism.

$$\ker f = \{r \in R : f(r) = 0_S\}.$$

Subrings

Let R be a ring. A subset R' of R is a subring of R if R' itself is a ring under the operations of addition and multiplication defined in R.

- It is not true that the intersection of two subrings of R is a subring of R.

QUICK CHECK

R' is a subring if and only if

- 1) R' has a multiplicative identity
- 2) R' is closed under subtraction:
- $a, b \in R' \to a b \in R'$
- 3) R' is closed under multiplication.

Subrings and Homomorphisms

Let $f: R \to S$ be a Ring Homomorphism. 1) If R' is a subring of R then f(R') =im f is a subring of S.

2) Assume that $f(1_R) = 1_S$. Then if xis a unit in R, f(x) is a unit in S and $(f(x))^{-1} = f(x^{-1})$. In this case f restricts to a group homomorphism $f|_{R^{\times}}$: $R^{\times} \to S^{\times}$.

Equivalence Relation

 \sim is an equivalence relation on X when for all elements $x, y, z \in X$ we have:

- 1) Reflexivity: $x \sim x$;
- 2) Symmetry: $x \sim y \iff yRx$;
- 3) Transitivity: $x \sim y$, $y \sim z \implies x \sim z$.

Equivalence Class

Suppose that \sim is an equivalence relation on a set X. For $x \in X$ the set E(x) := $\{z \in X : z \sim x\}$ is called the equivalence class of x.

An element of an equivalence class is called a representative of the class.

A subset $Z \subseteq X$ containing precisely one element from each equivalence class is called a system of representatives for the equivalence relation.

- 1) $x \sim y$;
- 2) E(x) = E(y);
- 3) $E(x) \cap E(y) \neq \emptyset$.

Set of Equivalence Classes

Given an equivalence relation \sim on the set X, we denote the set of equivalence classes

$$(X/\sim):=\{E(x):x\in X\}$$

Each element of X must belong to some

$$can: X \to (X/\sim), x \mapsto E(x)$$

Well-Defined Mappings

Given $g:(X/\sim)\to Z$, and $f:X\to Z$. q is well-defined and only if

$$x \sim y \Rightarrow f(x) = f(y)$$

Cosets of a Ring

Let $I \triangleleft R$ be an ideal in a Ring R. A coset of I in R is the set

$$x+I:=\{x+i:i\in I\}\subseteq R$$

Cosets are also defined by the equivalence relation $x \sim y \Leftrightarrow x - y \in I$.

Factor Rings

Let $I \subseteq R$ be an ideal in a ring R. R/I is the factor ring of R by I

$$R/I = \{r + I \mid r \in R\}$$

It describes is the set of cosets of R with I. We have This becomes an ring with

$$(x+I)+(y+I) = (x+y) + N$$

 $(x+I) \cdot (y+I) = xy + I$

for all $x, y \in R$ with 0 + I as the additive identity and -x+I as the inverse of x+I.

Universal Property of Factor Rings Let R be a ring and I an ideal of R.

- 1) The mapping $can: R \to R/I$ sending r to r + I for all $r \in R$ is a surjective ring homomorphism where $I = \ker(can)$.
- 2) If $f: R \to S$ is has $I \subseteq \ker f$, then there is a unique ring homomorphism \bar{f} : $R/I \to S$ such that $f = \bar{f} \circ can$.

First Iso Theorem for Rings

Let R and S be Rings. Then every f: $R \longrightarrow S$ induces a ring Isomorphism

$$\bar{f}: R/\ker f \xrightarrow{\sim} \operatorname{im} f.$$

Modules

A (left) module M over a ring R is a pair consisting of an Abelian group M = $(M, \dot{+})$ and a mapping

$$R \times M \to M$$

 $(r, a) \mapsto ra$

such that for all $r, s \in R$ and $a, b \in M$

$$r(a + b) = (ra) \dot{+} (rb)$$

$$(r + s)a = (ra) \dot{+} (sa)$$

$$r(sa) = (rs)a$$

$$1_R a = a$$

$$0_R a = 0_M$$

$$r0_M = 0_M$$

$$(-r)a = r(-a) = -(ra)$$

Direct Sum of Modules

Given a Ring R and R-modules M_1, \ldots, M_n, M , the cartesian product $M_1 \times M_2 \times \cdots \times M_n \in M$ when

$$(a_1, \ldots, a_n) + (b_1, \ldots, b_n)$$

= $(a_1 + b_1, \ldots, a_n + b_n)$

$$r\left(a_1,\ldots,a_n\right)=\left(ra_1,\ldots,ra_n\right)$$

for all $r \in R$ and $a_i, b_i \in M$.

This is denoted $M_1 \oplus \cdots \oplus M_n$ and called the direct sum.

Sub-module

A non-empty subset M' of an R-module M is a submodule if M' is an R- module with respect to the operations M restricted to M'.

- Let $T \subseteq M$. Then $_R\langle T \rangle$ is the smallest submodule of M that contains T.
- The intersection of any collection of submodules of M is a submodule of M.
- Let M_1 and M_2 be submodules of M.

$$M_1 + M_2 = \{a + b : a \in M_1, b \in M_2\}$$

is a submodule of M QUICK CHECK

- 1) $0_M \in M'$
- 2) $a, b \in M' \Rightarrow a b \in M'$
- 3) $r \in R, a \in M' \Rightarrow ra \in M'$.

Cosets of a Module

Let M an R-module and N a submodule of M. For each $a \in M$ the coset of a with respect to N in M is

$$a+N = \{a+b : b \in N\}$$

Factor Module

Let N be a sub-module of a R-module M. M/N is the factor module of M by N :=

$$M/N = \{m + N \mid m \in M\}$$

It describes the set of all cosets of N in M. This becomes an R-module with

$$(a+N)\dot{+}(b+N) = (a+b) + N$$
$$r(a+N) = ra + N$$

for all $a, b \in M, r \in R$.

Universal Property of Factor Modules

Let L, M be R-modules, and N a Submodule of M.

- 1) The mapping $can: M \to M/N$ sending a to a+N for all $a \in M$ is a surjective R-homomorphism with kernel N.
- 2) If $f: M \to L$ is an R-homomorphism

with $N \subseteq \ker f$, then there is a unique homomorphism $\bar{f}: M/N \to L$ such that $f = \bar{f} \circ can$.

First Isomorphism Theorem for Modules

Let M and N be R-modules. Then every $f: M \longrightarrow N$ induces an R-isomorphism

$$\bar{f}: M/\ker f \xrightarrow{\sim} \operatorname{im} f.$$

Multilinear Form

Let U_1, U_2, \ldots, U_n, W be vector spaces over a field F, then a map

$$H: U_1 \times U_2 \times \cdots \times U_n \to W$$

is multilinear if it is linear in each of its entries separately.

In the case n=2 this is exactly the definition of a bilinear form.

A multilinear form is alternating if it vanishes on every n-tuple of elements of U that has at least two entries equal. This is the same as writing, for any $\sigma \in \mathfrak{S}_n$

$$H\left(v_{\sigma(1)},\ldots,v_{\sigma(n)}\right) = \operatorname{sgn}(\sigma)H\left(v_1,\ldots,v_n\right)$$

Determinant

The determinant is a mapping from $Mat(n,R) \rightarrow R$ where $n=0 \implies \det(A)=1$.

Multilinear Form Characterisation Let F be a Field. The mapping

$$\det: F^n \times \dots \times F^n \to F(v_1, \dots, v_n)$$
$$\mapsto \det(v_1|\dots|v_n)$$

is the unique alternating multilinear form on n-tuples of column vectors with values in F that takes the value 1_F on the identity matrix.

Leibniz Characterisation

$$A \mapsto \det(A) = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \dots a_{n\sigma(n)}$$

The sum is over all permutations of n. Laplace's Expansion of the Determinant Let $A = (a_{ij})$. For a fixed i the i-th row expansion of the determinant is

$$\det(A) = \sum_{j=1}^{n} a_{ij} C_{ij}$$

and for a fixed j the j-th column expansion of the determinant is

$$\det(A) = \sum_{i=1}^{n} a_{ij} C_{ij}$$

where the (i, j) cofactor of A is

$$C_{ij} = (-1)^{i+j} \det(A\langle i, j \rangle)$$

where $A\langle i,j\rangle$ is the matrix obtained from A be deleting row i and column j.

Multiplicativity

$$\det(AB) = \det(A)\det(B).$$

Determinantal Criterion for Invertibility
The determinant of a square matrix with

entries in a field F is non-zero if and only if the matrix is invertible.

A square matrix with entries in a commutative ring R is invertible if and only if its determinant is a unit in R.

Inverse of the Determinant

If A is invertible then $\det(A^{-1}) = \det(A)^{-1}$. If B is a square matrix B then

$$\det\left(A^{-1}BA\right) = \det(B)$$

Determinant of an Endomorphism

The determinant of an representative matrix $_{\mathcal{A}}[f]_{\mathcal{A}}$ is independent of the choice of basis \mathcal{A} . Therefore the determinant is in fact defined only by the endomorphism f. Transpose

$$\det\left(A^{\top}\right) = \det(A)$$

 $Cramer's\ Rule$

$$A \cdot \operatorname{adj}(A) = (\det A)I_n$$

Jacobi's Formula

Let $A = (a_{ij})$ where the coefficients $a_{ij} = a_{ij}(t)$ are functions of t. Then

$$\frac{d}{dt} \det A = \operatorname{Tr} \operatorname{Adj} A \frac{dA}{dt}.$$

Notes $- \operatorname{rk} A < n \implies \det A = 0$

Adjugate

For $A \in Mat(n, R)$ for a commutative ring R.

$$adj(A)_{ij} = C_{ji}$$

where C_{ji} is the (j, i)-cofactor.

EigenStuff

Let $f: V \to V$ be an endomorphism of an F-vector space V. A scalar $\lambda \in F$ is an eigenvalue of f if and only if there exists a non-zero vector $\vec{v} \in V$ such that $f(\vec{v}) = \lambda \vec{v}$. Each such vector is called an eigenvector of f with eigenvalue λ . For any $\lambda \in F$, the eigenspace of f with eigenvalue λ is

$$E(\lambda, f) = \{ \vec{v} \in V : f(\vec{v}) = \lambda \vec{v} \}$$

Properties of EigenStuff

Each endomorphism of a non-zero finite dimensional vector space over an algebraically closed field has an eigenvalue. Eigenvectors are linearly independent.

Characteristic Polynomial

$$\chi_A(x) := \det\left(xI_n - A\right)$$

The eigenvalues of the linear mapping $A: F^n \to F^n$ are exactly the roots of the characteristic polynomial χ_A .

A matrix is nilpotent $\iff \chi_A(x) = x^n$ Similar matrices (including transposes !) have the same characteristic polynomial. The constant term of the characteristic polynomial is $(-1)^n \det A$.

Triangularisability

Let $f:V\to V$ be an endomorphism of a finite dimensional F-vector space V. f is triangularisable if either of the following statements are true

(1) The vector space V has an ordered basis $\mathcal{B} = (\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n)$ such that

$$f(\vec{v}_1) = a_{11}\vec{v}_1,$$

$$f(\vec{v}_2) = a_{12}\vec{v}_1 + a_{22}\vec{v}_2,$$

$$f(\vec{v}_n) = a_{1n}\vec{v}_1 + a_{2n}\vec{v}_2 + \dots + a_{nn}\vec{v}_n \in V$$

(so that the first basis vector \vec{v}_1 is an eigenvector, with eigenvalue a_{11}) or equivalently such that the $n \times n$ matrix $_{\mathcal{B}}[f]_{\mathcal{B}} =$ (a_{ij}) representing f with respect to \mathcal{B} is upper triangular.

(2) The characteristic polynomial $\chi_f(x)$ of f decomposes into linear factors in F[x].

(3) A = [f] is conjugate to an upper triangular matrix B, with $P^{-1}AP = B$ for an invertible matrix P.

NOTE: Any endomorphism of a \mathbb{C} -vector space is triangularisable.

Diagonalisability

An endomorphism $f: V \to V$ of an Fvector space V is diagonalisable if and only if there exists a basis of V consisting of eigenvectors of f. If V is finite dimensional then this is the same as saying that there exists an ordered basis $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_n\}$ such that corresponding matrix representing f is diagonal.

Cayley-Hamilton

Let $A \in Mat(n; R)$ be a square matrix on a commutative ring R. Then evaluating its characteristic polynomial $\chi_A(x) \in R[x]$ at the matrix A gives zero.

Inner Product

Let V be a Vector Space over \mathbb{R} . A real inner product on V is a mapping

$$(-,-): V \times V \to \mathbb{R}$$

such that for all $\vec{x}, \vec{y}, \vec{z} \in V$ and $\lambda, \mu \in \mathbb{R}$:

1) $(\lambda \vec{x} + \mu \vec{y}, \vec{z}) = \lambda(\vec{x}, \vec{z}) + \mu(\vec{y}, \vec{z})$

2) $(\vec{x}, \vec{y}) = (\vec{y}, \vec{x})$

3) $(\vec{x}, \vec{x}) \ge 0$, with equality if and only if

- A real inner product space is a Symmetric Bilinear Form, i.e. it is linear in both variables.

- A finite-dimensional real inner product space is a Euclidean Vector Space.

- Every finite dimensional inner product space has an orthonormal basis.

- The stander real inner product is the dot product.

Complex inner products are defined on Vector Spaces over \mathbb{C} and map to \mathbb{C} . The differences from a real iner product are if

 $\lambda, \mu \in \mathbb{C}$:

2) $(\vec{x}, \vec{y}) = (\vec{y}, \vec{x})$

NOTE: A complex inner product is NOT linear in the second variable.

The standard inner product for complex inner product spaces is

$$(\vec{v}, \vec{w}) = v_1 \overline{w_1} + v_2 \overline{w_2} + \dots + v_n \overline{w_n}$$

An inner product space is any vector space endowed with an inner product.

Inner Product Norm

In a real or complex inner product space the length or inner product norm $\|\vec{v}\| \in \mathbb{R}$ of a vector \vec{v} is defined as the non-negative square root

$$\|\vec{v}\| = \sqrt{(\vec{v}, \vec{v})}$$

Orthonormal Family and Basis

A family $(\vec{v}_i)_{i \in I}$ for vectors from an inner product space is an orthonormal family if all the vectors \vec{v}_i have length 1 and if they are pairwise orthogonal to each other

$$(\vec{v}_i, \vec{v}_j) = \delta_{ij}$$

An orthonormal family that is a basis is an orthonormal basis.

Orthogonality

Two vectors \vec{v}, \vec{w} are orthogonal

$$\vec{v} \perp \vec{w}$$

if and only if $(\vec{v}, \vec{w}) = 0$. We say that \vec{v} and \vec{w} are at right-angles to each other. We write $S \perp T$ as a shorthand for $\vec{v} \perp \vec{w}$ for all $\vec{v} \in S$ and $\vec{w} \in T$.

Orthogonal Projection

The orthogonal projection from V onto Uis the mapping

$$\pi_U:V\to V$$

that sends $\vec{v} = \vec{p} + \vec{r}$ to \vec{p} .

1) π_U is a linear mapping with im (π_U) = U and ker $(\pi_U) = U^{\perp}$.

2) If $\{\vec{v}_1,\ldots,\vec{v}_n\}$ is an Orthonormal Basis of U, then π_U is given by the following formula for all $\vec{v} \in V$

$$\pi_U(\vec{v}) = \sum_{i=1}^n (\vec{v}, \vec{v}_i) \, \vec{v}_i$$

3) $\pi_U^2 = \pi_U$, that is π_U is an idempotent.

Orthogonal Complement

Let V be an Inner Product Space and let $T \subseteq V$ be an arbitrary subset. Define

$$T^{\perp} = \{ \vec{v} \in V : \vec{v} \perp \vec{t} \text{ for all } \vec{t} \in T \},$$

calling this set the orthogonal to T. If Tis a subspace it is the orthogonal complement to V.

Orthogonal Matrix

An orthogonal matrix is any P $Mat(n, \mathbb{R} \text{ such that } P^{\top}P = I_n.$ other words, an orthogonal matrix is a square matrix P with real entries such that $P^{-1} = P^{\top}.$

Unitary Matrix

An unitary matrix is an $(n \times n)$ -matrix Pwith complex entries such that $\bar{P}^{\top}P = I_n$. i.e. $P^{-1} = \bar{P}^{\top}$.

Gram-Schmidt Process

Given an arbitrary linearly independent ordered subset $\vec{v}_1, \vec{v}_2, \ldots$ of an inner product space V.

Our aim is to produce the elements of $(\vec{w_i})$, an orthonormal family in V.

1. Take the first element \vec{v}_1 and normalize

it to have length 1. Let this be the first element \vec{w}_1 .

- 2. For each subsequent vector \vec{v}_i from the subset:
- Subtract the orthogonal projection of \vec{v}_i onto the space $\langle \vec{w}_1, \vec{w}_2, \dots, \vec{w}_{i-1} \rangle$.
- Normalize the resulting vector to have length 1. Let this be the i th element $\vec{w_i}$ of the orthonormal family.

Repeat this process until for all $\vec{v_i}$.

Adjoint Endomorphisms

Let V be an Inner Product Space. Then $T, T^* : V \rightarrow V$ are adjoint if for all

$$(T\vec{v}, \vec{w}) = (\vec{v}, T^*\vec{w})$$

Any endomorphism always has an adjoint.

Self-Adjoint

Let V be an inner product space, $T:V\to$ V is self-adjoint if $T^* = T$. 1) Every eigenvalue of T is real.

- 2) If λ and μ are distinct eigenvalues of T with corresponding eigenvectors \vec{v} and \vec{w} , then $(\vec{v}, \vec{w}) = 0$.
- 3) T has an eigenvalue.

Hermitian Matrices

 $A \in Mat(n,\mathbb{R})$ describes a self-adjoint mapping on the standard inner product space \mathbb{R}^n precisely when $A^{\top} = A$.

 $A \in Mat(n, \mathbb{C})$ describes a self-adjoint mapping on the standard inner product space \mathbb{C}^n precisely when $A = \bar{A}^{\top}$ holds. Such matrices are called hermitian.

Conjugate Transpose

The conjugate transpose \bar{A}^T is the matrix obtained from A by first conjugating each entry and then transposing the resulting matrix.

Raleigh Quotient

V is a finite dimensional real Inner Product Space. The Raleigh Quotient is the real-valued function defined

$$\begin{split} R: V \backslash \{ \overrightarrow{0} \} \to \mathbb{R} \\ \overrightarrow{v} \mapsto R(\overrightarrow{v}) &= \frac{(T\overrightarrow{v}, \overrightarrow{v})}{(\overrightarrow{v}, \overrightarrow{v})} \end{split}$$

Spectral Theorem

For Self-Adjoint Endomorphisms

Let V be a finite dimensional Inner Product Space and let $T: V \to V$ be a selfadjoint linear mapping. Then V has an Orthonormal Basis consisting of eigenvectors of T.

For Real Symmetric Matrices

Let A be a real $(n \times n)$ symmetric matrix. Then there is an $(n \times n)$ -orthogonal matrix P such that

$$P^{\top}AP = P^{-1}AP = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

where $\lambda_1, \ldots, \lambda_n$ are the (necessarily real) eigenvalues of A, repeated according to their multiplicity as roots of the characteristic polynomial of A.

For Hermitian Matrices

Let A be a $(n \times n)$ -hermitian matrix. Then there is an $(n \times n)$ -unitary matrix P such that

$$\bar{P}^{\top}AP = P^{-1}AP = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

where $\lambda_1, \ldots, \lambda_n$ are the (necessarily real) eigenvalues of A, repeated according to their multiplicity as roots of the characteristic polynomial of A.

Exponential Mapping

 $\exp: \operatorname{Mat}(n; \mathbb{C}) \to \operatorname{Mat}(n; \mathbb{C})$

$$A\mapsto \sum_{k=0}^\infty \frac{1}{k!}A^k$$

If $A \in \operatorname{Mat}(n; \mathbb{C})$ is a square matrix and $\vec{c} \in \mathbb{C}^n$ a column vector, then there exists exactly one differentiable mapping γ : $\mathbb{R} \to \mathbb{C}^n$ with initial value $\gamma(0) = \vec{c}$ and which satisfies $\dot{\gamma}(t) = A\gamma(t)$ for all $t \in \mathbb{R}$: it is the mapping

$$\gamma(t) = \exp(tA)\vec{c}.$$

Generilsed Eigenspace

The generalized eigenspace of ϕ with eigenvalue λ_i , is the subspace of V defined

$$E^{\mathrm{gen}}(\lambda_i, \phi) = \ker(\phi - \lambda_i \mathrm{id}_V)^n$$

 $Algebraic\ Multiplicity$

Defined dim($E^{\text{gen}}(\lambda_i, \phi)$). Can also be calculated from the the power of the factor of χ_A for each λ_i .

Geometric Multiplicity

Defined $\dim(E(\lambda_i, \phi)) = \dim(\ker(A - \lambda_i I))$

NOTE: Algebraic multiplicity \geq Geometric multiplicity.

Bezouts identity for polynomials

For a characteristic polynomial

$$\chi_{\phi}(x) = \prod_{i=1}^{s} (x - \lambda_i)^{a_i} \in F[x]$$

where each a_i is a positive integer, $\lambda_i \neq \lambda_j$ for $i \neq j$, and λ_i are e.v.s of ϕ . For each $1 \leq j \leq s$ define

$$P_j(x) = \prod_{\substack{i=1\\i\neq j}}^s (x - \lambda_i)^{a_i}$$

There exists polynomials $Q_j(x) \in F[x]$ such that

$$\sum_{j=1}^{s} P_j(x)Q_j(x) = 1$$

JNF

Let F be an algebraically closed field. Let V be a finite dimensional vector space and let $\phi:V\to V$ be an endomorphism of V with char. polynomial

$$\chi_{\phi}(x) = (x - \lambda_1)^{a_1} (x - \lambda_2)^{a_2} ... (x - \lambda_s)^{a_s}$$

$$a_i \ge 1, \sum_{i=1}^n a_i = n$$

For distinct $\lambda_1, \lambda_2, \ldots, \lambda_s \in F$. Then there exists an ordered basis \mathcal{B} of V such that the matrix of ϕ with respect to the block \mathcal{B} is block diagonal with Jordan blocks on the diagonal,

$$\mathcal{B}[\phi]_{\mathcal{B}} = \operatorname{diag}(J(r_{11}, \lambda_1), \dots, J(r_{1m_1}, \lambda_1))$$
$$J(r_{21}, \lambda_2), \dots, J(r_{sm_s}, \lambda_s))$$

with $r_{11}, ..., r_{1m_1}, r_{21}, ..., r_{sm_s} \ge 1$ such that

$$a_i = r_{i_1} + r_{i_2} + \dots + r_{im_i} \quad (1 \le i \le s)$$

Building JNF

Algebraic multiplicty denotes the size of Jordan Blocks. Geometric multiplicty denotes the number of boxes in each block. If $\alpha_i > 3$ then we must calculate the generilised eigenspaces to find the size of each box.

Kronecker Delta
$$\delta^i_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Euler Identity $e^{iz} = \cos z + i \sin z$ Rotation Matrix

$$\left(\begin{array}{ccc}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{array}\right)$$

Disciminant

 b^2-4ac

> 0: two distinct real roots.

= 0: exactly one real root.

< 0: no real roots.

Mod

- $\mathbb{Z}/m\mathbb{Z}$ is a ring.

- $\bar{a} = a + m\mathbb{Z} \in \mathbb{Z}/m\mathbb{Z}$ is a congruence class.

 $-\mathbb{Z}/m\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}\$

 $- |\mathbb{Z}/m\mathbb{Z}| = m$

 $-\bar{a} + \bar{b} = \overline{a+b}$

- $\bar{a} \cdot \bar{b} = \overline{ab}$

- $\mathbb{Z}/m\mathbb{Z}$ is an integral domain if and only if m is prime.

Symmetric Group

 $\mathfrak{S}_n := \text{all permutations of the set} \{1, 2, \dots, n\}$ under composition. It has n! elements.

A transposition is a permutation that only swaps two elements with $l(\sigma) = 2|j-i|-1$ An inversion is a pair (i,j) such that $1 \le i < j \le n$ and $\sigma(i) > \sigma(j)$.

Lenght is the number of inversions in a permutation. (i.e. number of crossings in a diagram)

$$sgn(\sigma) = (-1)^{\ell(\sigma)}$$

Matrix Stuff

- $\bullet (AB)^T = B^T A^T$
- $\operatorname{tr}(cA) = c \operatorname{tr}(A)$ for a scalar c.
- tr(ABC) = tr(BCA) = tr(CAB).
- Similar matrices have the same trace.
- $\bullet \ \overline{(A+B)} = \overline{A} + \overline{B}$
- $\bullet \overline{(AB)} = \overline{B} \cdot \overline{A}$
- $\bullet \ \overline{(kA)} = k \cdot \overline{A}.$

Counter Examples

- Ring of real quaternions are a division ring
- $(\mathbb{Z}/6\mathbb{Z})^{\times} = \{1, 5\}$, which is not cyclic

Trig.

- $\sin(\theta \pm \phi) = \sin\theta\cos\phi \pm \cos\theta\sin\phi$
- $\cos(\theta \pm \phi) = \cos\theta\cos\phi \mp \sin\theta\sin\phi$
- $\tan(\theta \pm \phi) = \frac{\tan \theta \pm \tan \phi}{1 \mp \tan \theta \tan \phi}$
- $\bullet \sin(2\theta) = 2\sin\theta \cdot \cos\theta$
- $\cos(2\theta) = \cos^2\theta \sin^2\theta$
- $\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$
- $\sin \theta + \sin \phi = 2 \sin \left(\frac{\theta + \phi}{2}\right) \cos \left(\frac{\theta \phi}{2}\right)$
- $\sin \theta \sin \phi = 2 \cos \left(\frac{\theta + \phi}{2}\right) \sin \left(\frac{\theta \phi}{2}\right)$
- $\cos \theta + \cos \phi = 2 \cos \left(\frac{\theta + \phi}{2}\right) \cos \left(\frac{\theta \phi}{2}\right)$
- $\cos \theta \cos \phi = -2 \sin \left(\frac{\theta + \phi}{2}\right) \sin \left(\frac{\theta \phi}{2}\right)$
- $\sin \theta \sin \phi = \frac{[\cos(\theta \phi) \cos(\theta + \phi)]}{2}$
- $\cos \theta \cos \phi = \frac{[\cos(\theta \phi) + \cos(\theta + \phi)]}{2}$
- $\sin \theta \cos \phi = \frac{[\sin(\theta + \phi) + \sin(\theta \phi)]}{2}$
- $\cos \theta \sin \phi = \frac{[\sin(\theta + \phi) + \sin(\theta \phi)]}{2}$