Hybrid fluid/kinetic modeling for plasma WENO method for plasma simulation

Josselin Massot

Encadré par : Anaïs Crestetto et Nicolas Crouseilles

2018/12/10

What is plasma or rarefied gas?

- System of interacting particles
- ightharpoonup Plasma : hot gas, electrons separated from atoms ightarrow electric field
- Examples of plasmas :
 - neons, ITER, nebula
- Examples of rarefied gas :
 - atmospheric entry (Soyouz, CST-100 Starliner, ...)

Classical models Hybrid model

Schemes

Time discretization Space discretization

Numerical test

Validation tests BoT studying

Conclusion

Outline

Models

Classical models Hybrid model

Schemes

Time discretization Space discretization

Numerical test

Validation tests BoT studying

Conclusion

Study only on macroscopic and kinetic models

Models

```
Microscopic model: simulation of all particles (t,x_i(t),v_i(t)), i=1,\ldots,N

\checkmark accuracy \checkmark computational time and memory Macroscopic model: plasma \approx fluid (\rho,u,T)(t,x) thermodynamic variables \checkmark accuracy \checkmark computational time and memory Kinetic model: simulation in phase space f(t,x,v) distribution of density in phase space \sim accuracy \sim computational time and memory
```

Models ○○ ●○○

Macroscopic model

Euler's equations:

$$\partial_t U + \nabla_{\mathsf{x}} \cdot \mathcal{F}(U) = S_{\mathsf{E}}(U)$$

- ightharpoonup U = U(t,x)
- ▶ Vector $U = (\rho, \rho u, e)^T$ thermodynamic variables
- \triangleright $S_E(U)$ source term that includes electric field E

Models

Kinetic model

Vlasov-BGK's equation:

$$\partial_t f + v \cdot \nabla_x f + E \cdot \nabla_v f = \frac{1}{\varepsilon} Q(f, f)$$

Transport (x, v) + stiff term $\frac{1}{\varepsilon}$

- ightharpoonup f = f(t, x, v) density distribution in phase space
- ▶ Q(f, f) collision operator (BGK) $Q(f, f) = \mathcal{M}_{[U]} f$
- $ightharpoonup \mathcal{M}_{[U]}$: velocity distribution at equilibrium
- ightharpoonup $\varepsilon \sim {\sf mean}$ free path
 - ▶ If $\varepsilon \ll 1 \rightarrow$ Euler equations
 - If $\varepsilon \gg 1 \rightarrow$ no collision (what I do now)

Relation with macroscopic variables:

$$\int_{\mathbb{R}^d} \begin{pmatrix} 1 \\ v \\ |v|^2 \end{pmatrix} f(t, x, v) dv = \int_{\mathbb{R}^d} \begin{pmatrix} 1 \\ v \\ |v|^2 \end{pmatrix} \mathcal{M}_{[U]}(t, x, v) dv = U(t, x)$$

Models ○○ ○○•

Electric field

Poisson's equation

$$\nabla_{x} \cdot E(x) = \rho(t, x) = \int_{\mathbb{R}^{d}} f(t, x, v) dv$$

Periodic conditions in space: resolution by FFT Maxwell's equation (magnetic field) soon! (one day)

Models 00 000 •000

Hybrid model

1. Micro-macro model (mM)

$$f = \underbrace{\mathcal{M}_{[U]}}_{ ext{thermodynamic equilibrium state}} + \underbrace{g}_{ ext{gap from equilibrium}}$$

- 2. Approximation of *micro* part (**mMh**) without interface between models (internship work)
 - Transition function h(t,x) between fluid area Ω_F and kinetic area Ω_K

Models ○○ ○○ ○○

Building hybrid model

1. **mM** consisting of 2 equations:

macro: **mean** in v of kinetic model:

$$\partial_t U + \nabla_x \cdot \mathcal{F}(U) + \nabla_x \cdot \langle vm(v)g \rangle_v = S_E(U)$$

micro: **projection** of kinetic model on image of collision operator $Q(f, f) = \mathcal{M}_{[U]} - f$:

$$\partial_t g + (I - \Pi)[v \cdot \nabla_x (\mathcal{M}_{[U]} + g) + E \cdot \nabla_v (\mathcal{M}_{[U]} + g)] = -\frac{1}{\varepsilon} g$$

mM model is equivalent to kinetic model

Approximation of micro part

2. **Hypothesis:** $f = \mathcal{M}_{[U]}$ on $\Omega_F \Rightarrow g_F = 0$ **New model:** approximation of **micro**-macro by domain decomposition

$$\Omega = \Omega_F \cup \Omega_K$$
 $g = (1 - h)g + hg = g_F + g_K$

Models 00 000

Approximated micro part

We multiply by h micro part to get:

$$\partial_t g_K + (I - \Pi) \left[v \cdot \nabla_x (\mathcal{M}_{[U]} + g_K) + E \cdot \nabla_v (\mathcal{M}_{[U]} + g_K) \right] =$$

$$- \frac{1}{\varepsilon} g_K + \frac{g_K}{h} \partial_t h$$

Outside the support of $h: g_K = 0$

Why this model? save computational time (kinetic evaluation only on Ω_K)

Outline

Models

Classical models Hybrid model

Schemes

Time discretization Space discretization

Numerical test

Validation tests BoT studying

Conclusion

Goals

- Transport in phase space (x, v) → scheme easy to use in multi-d (d at least 2)
- ► Heavy gradient → need high order scheme
- ▶ Stiff term in $\frac{1}{\varepsilon}$, $\varepsilon \in]0,1] \rightsquigarrow$ need adapted time integrators
- ▶ Long time simulation ~ need stability of space+time scheme

Explicit Euler method

Unstable with 5th-order WENO method:

► [Wang, R., & Spiteri, R. (2007) SINUM]

Amplification term is small enough to be *controlled* by $_{\text{very}}$ small Δt . If stiff term \rightsquigarrow IMEX:

$$f^{n+1} = f^n - dt(v\partial_x + E\partial_v)(f^n) + \frac{1}{\varepsilon}(\mathcal{M}_{[U^{n+1}]} - f^{n+1})$$

CFL upwind-IMEX: $\frac{\Delta x}{v_{\text{max}}}$

Runge-Kutta 3th order method

Stable with 5th-order WENO method (see later) If stiff term → exponential formulation:

$$\partial_t(e^{\frac{t}{\varepsilon}}g) + (I - \Pi)\left((v\partial_x + E\partial_v)(e^{\frac{t}{\varepsilon}}(g + \mathcal{M}_{[U]}))\right) = 0$$

and Lawson scheme or IFRK method

Compact scheme

- ▶ High order 6 points scheme $(u_{i-3}^n, \dots, u_{i-2}^n)$
- ▶ Based on 1 polynomial of degree 5

It doesn't work very well (implementation bug?) and it oscillates with discontinuity (not important for us) or heavy gradient (strong problem for filamentation).

Numerical order

$$\partial_t u + \partial_x u = 0$$

initial:
$$u(t = 0, x) = cos(x)$$

solution: $u(t = t_i, x) = cos(x - t_i)$

$$\begin{array}{c|cccc} \Delta x & \Delta t & T_f \\ \hline \frac{2\pi}{N} & 10^{-5} \Delta x & 1 \end{array}$$

$$N = 10, \dots, 200$$

Simplest test

Transport in 1 direction of a discontinuity

Initial condition

Result

WFNO method

- High order 6 points scheme
- Based on 3 ENO approximations (of lower order) combined with non-linear weights (indicator of smoothness)

BUT: Unstable with explicit Euler method [Wang, R., & Spiteri, R. (2007) SINUM]

Numerical order

$$\partial_t u + \partial_x u = 0$$

initial:
$$u(t = 0, x) = cos(x)$$

solution: $u(t = t_i, x) = cos(x - t_i)$

$$\begin{array}{c|cccc} \Delta x & \Delta t & T_f \\ \hline \frac{2\pi}{N} & 10^{-5} \Delta x & 1 \end{array}$$

$$N = 10, \dots, 200$$

Simplest test

Transport in 1 direction of a discontinuity

Initial condition

Result

Instability illustration

Gaussian rotation

Explicit Euler method

RK3 method

grid: 100×100 $\Delta t = 0.3 \Delta x$ $T_f = 15$

Schéma RK3

[Wang, R., & Spiteri, R. (2007) SINUM]

Steps of proof of instability

- 1. Von Neumann analysis : $f_{i+k}^n \rightarrow e^{ik\phi} \; (\phi \equiv \kappa \pi \Delta x)$
- 2. Linearized WENO scheme (weight $\approx \mathcal{O}(\Delta x^2)$):

$$z(\phi) = \tilde{z}(\phi) + M(\epsilon_i, \phi)$$

with $M(\epsilon_i, \phi) = \mathcal{O}(\Delta x^2)$

3. Draw $\tilde{z}(\phi)$ with some RK stability curve and conclude.

Stability of RKN-WENO

RK1-WENO

Stability of RK*N*-WENO

RK2-WENO

possible stability: $\Delta t=1.73\Delta x^{5/3}$ [Motamed, M., & Macdonald, C. & Ruuth S. (2010) J. Sci. Comput.]

Stability of RKN-WENO

RK3-WENO (CFL: 1.433)

Stability of RKN-WENO

RK4-WENO (CFL: 1.731)

Models

Classical models Hybrid model

Schemes

Time discretization
Space discretization

Numerical test Validation tests

BoT studying

Conclusion

Sod shock tube

Fluid regime validation

boundary: Neumann in space x, periodic in velocity v initial condition: discontinuity in ρ and T:

$$U(t = 0, x) = \begin{cases} U_L = (\rho_L, u_L, T_L) = (1, 0, 1) & , x \le \frac{1}{2} \\ U_R = (\rho_R, u_R, T_R) = (0.125, 0, 0.8) & , x > \frac{1}{2} \end{cases}$$

$$f(t = 0, x, v) = \mathcal{M}_{[U(t=0,x)]}(x, v)$$
 $g(t = 0, x, v) = 0$

Models and schemes validation

$$\rho(t = 0.067, x)$$

domain:
$$[0, 1] \times [-18, 18]$$

 $\Delta x = 10^{-3}$ $\Delta v = 0.5625$

grid:
$$1000 \times 64$$
 $\varepsilon = 10^{-4}$ $\Delta t = \frac{1}{2} \frac{\Delta x}{v_{\text{max}}} = 2.77 \cdot 10^{-5}$

Models and schemes validation

$$u(t = 0.067, x)$$

domain:
$$[0,1] \times [-18,18]$$

 $\Delta x = 10^{-3}$ $\Delta v = 0.5625$

grid:
$$1000 \times 64$$
 $\varepsilon = 10^{-4}$ 0.5625 $\Delta t = \frac{1}{2} \frac{\Delta x}{v_{\text{max}}} = 2.77 \cdot 10^{-5}$

Models and schemes validation

$$T(t = 0.067, x)$$

domain:
$$[0,1] \times [-18,18]$$

 $\Delta x = 10^{-3}$ $\Delta v = 0.5625$

grid:
$$1000 \times 64$$
 $\varepsilon = 10^{-4}$ $\Delta t = \frac{1}{2} \frac{\Delta x}{v_{\text{max}}} = 2.77 \cdot 10^{-5}$

Simulation : Sod shock tube, kinetic mode: $\varepsilon=1$

domain:
$$[0,1] \times [-18,18]$$

 $\Delta x = 10^{-3}$ $\Delta v = 0.5625$

Computing time: divided by 2

grid:
$$1000 \times 64$$
 $\varepsilon = 1$ $\Delta t = \frac{1}{2} \frac{\Delta x}{V_{\text{max}}} = 2.77 \cdot 10^{-5}$

Numerical test: two streams

Numerical test: two streams

Electric energy

Validation tests

Numerical test: Landau damping

Electric energy

Bump on Tail (BoT)

Cold and hot particles splitting (not same as micro-macro splitting)

$$f = f_c + f_h$$
 $f = \mathcal{M}_{[U]} + g$

What we expect: $f_c = \mathcal{M}_{[U]}$, $f_h = g...$

BoT: f_c , f_h

 f_c

 f_h

BoT: f_c mM, f_h kinetic

mM on
$$f_c = \mathcal{M}_{[U_c]} + g_c$$
, **kinetic** on f_h

$$\mathcal{M}_{[U_c]}$$

BoT: f_c mM, f_h kinetic

BoT: f_c fluid approximation

approximation : $f_c = \mathcal{M}_{[U_c]}$, $g_c = 0$

BoT: f_c fluid approximation

approximation : $f_c = \mathcal{M}_{[U_c]}$, $g_c = 0$

Result

Numerical test

BoT studying

Ideas

- ▶ Physicist idea (IPP Garching): $f_c = \delta_{v-u_c}$
- ightharpoonup Computer scientist idea: reduce grid in v around effective data for f_h

Outline

Model

Classical models Hybrid model

Schemes

Time discretization
Space discretization

Numerical test

Validation tests BoT studying

Conclusion

Conclusion

- ✓ WENO approved!
 - ▶ High order, no oscillation, no problem in multi-D (CFL ?)
 - ► Works well with RK3 (even with stiff term)
 - Could be use for Euler part

Future works

- Still a grid in phase space for 1Dx 3Dv or 3Dx 3Dv? (MC? PIC?)
- Code refactoring: some optimization and adaptive grid (no global variables) (Julia? C++?)
- Better understanding of SSPRK(3,3) diffusion, stability of couple of time-space schemes
- Automatic study of different schemes (SymPy & NodePy)
- ightharpoonup Approve approximation of f_c with conservative variables, and integrate Dirac modeling

Tank you for your attention

Outline

Construction de la fonction h(t,x)

Euler's equations

WENO scheme

Discrétisation du modèle micro-macro approximé

Détermination a priori de la fonction h:

Zone hors équilibre au cours du temps :

$$\operatorname{supp} h(t,x) = \Omega_K(t)$$

Étude du support numérique (seuil à 10^{-5}) de $(G_i^n)_3$:

$$\mathscr{I}^{n} = \left\{ i \in \llbracket 0, N_{x} \rrbracket, |\langle vm(v)g^{n} \rangle_{x=x_{i}}| > 10^{-5} \right\}$$

Étude de g_K limitée à $[i_s^n, i_e^n] = \mathscr{I}^n$

Étude du support de h

Outline

Construction de la fonction h(t,x)

Euler's equations

WENO scheme

Euler's equations

$$\partial_t U + \nabla_x \cdot \mathcal{F}(U) = S_E(U)$$

$$\mathcal{F}(U) = \begin{pmatrix} \rho u \\ \rho u \otimes u + \rho \mathbb{I}_d \\ u(e+p) \end{pmatrix} \qquad S(U) = \begin{pmatrix} 0 \\ \rho E \\ 2\rho u E \end{pmatrix}$$

pressure: $p = 2(e - \frac{1}{2}\rho|u|^2)$

Outline

Construction de la fonction h(t, x)

Euler's equations

WENO scheme

WENO scheme

Model:

$$\partial_t u + \partial_x (au) = 0$$

We would approximate $\partial_x(au)_{|x=x_i,v=v_k}$:

$$\partial (au)_{|x=x_i,v=v_k} pprox rac{1}{\Delta x} (\hat{u}_{i+rac{1}{2},k} - \hat{u}_{i-rac{1}{2},k})$$

WENO flux

$$\hat{u}_{i+\frac{1}{2},k}^{+} = w_0^{+} \left(\frac{2}{6} u_{i-2,k}^{+} - \frac{7}{6} u_{i-1,k}^{+} + \frac{11}{6} u_{i,k}^{+} \right)$$

$$+ w_1^{+} \left(-\frac{1}{6} u_{i-1,k}^{+} + \frac{5}{6} u_{i,k}^{+} + \frac{2}{6} u_{i+1,k}^{+} \right)$$

$$+ w_2^{+} \left(\frac{2}{6} u_{i,k}^{+} + \frac{5}{6} u_{i+1,k}^{+} - \frac{1}{6} u_{i+2,k}^{+} \right)$$

and

$$\hat{u}_{i+\frac{1}{2},k}^{-} = w_{2}^{-} \left(-\frac{1}{6} u_{i-1,k}^{-} + \frac{5}{6} u_{i,k}^{-} + \frac{2}{6} u_{i+1,k}^{-} \right)$$

$$+ w_{1}^{-} \left(\frac{2}{6} u_{i,k}^{-} + \frac{5}{6} u_{i+1,k}^{-} - \frac{1}{6} u_{i+2,k}^{-} \right)$$

$$+ w_{0}^{-} \left(\frac{11}{6} u_{i+1,k}^{-} - \frac{7}{6} u_{i+2,k}^{-} + \frac{2}{6} u_{i+3,k}^{-} \right)$$

WENO weights

$$w_n^{\pm} = rac{\tilde{w}_n^{\pm}}{\sum_{m=0}^2 \tilde{w}_m^{\pm}}, \quad \tilde{w}_n^{\pm} = rac{\gamma_n}{(\epsilon + \beta_n^{\pm})^2}$$
 $\gamma_0 = rac{1}{10}, \quad \gamma_1 = rac{3}{5}, \quad \gamma_2 = rac{3}{10}$

 $\epsilon = 10^{-6}$ numerical value to prevent the denominator from being 0

WENO Indicator of Smoothness

$$\beta_0^+ = \frac{13}{12} (u_{i-2,k}^+ - 2u_{i-1,k}^+ + u_{i,k}^+)^2 + \frac{1}{4} (u_{i-2,k}^+ - 4u_{i-1,k}^+ + 3u_{i,k}^+)^2$$

$$\beta_1^+ = \frac{13}{12} (u_{i-1,k}^+ - 2u_{i,k}^+ + u_{i+1,k}^+)^2 + \frac{1}{4} (u_{i-1,k}^+ - u_{i+1,k}^+)^2$$

$$\beta_2^+ = \frac{13}{12} (u_{i,k}^+ - 2u_{i+1,k}^+ + u_{i+2,k}^+)^2 + \frac{1}{4} (3u_{i,k}^+ - 4u_{i+1,k}^+ + u_{i+2,k}^+)^2$$

and

$$\beta_{0}^{-} = \frac{13}{12} (u_{i+1,k}^{-} - 2u_{i+2,k}^{-} + u_{i+3,k}^{-})^{2} + \frac{1}{4} (3u_{i+1,k}^{-} - 4u_{i+2,k}^{-} + u_{i+3,k}^{-})^{2}$$

$$\beta_{1}^{-} = \frac{13}{12} (u_{i,k}^{-} - 2u_{i+1,k}^{-} + u_{i+2,k}^{-})^{2} + \frac{1}{4} (u_{i,k}^{-} - u_{i+2,k}^{-})^{2}$$

$$\beta_{2}^{-} = \frac{13}{12} (u_{i-1,k}^{-} - 2u_{i,k}^{-} + u_{i+1,k}^{-})^{2} + \frac{1}{4} (u_{i,k}^{-} - 4u_{i,k}^{-} + 3u_{i+1,k}^{-})^{2}$$