Eigenvalues of Random Graphs

Yufei Zhao

Massachusetts Institute of Technology

May 2012

Random graphs

Question

What is the limiting spectral distribution of a random graph?

Random graphs

Question

What is the limiting spectral distribution of a random graph?

- Erdős-Rényi random graphs G(n, p): edges added independently with probability p.
- Random d-regular graph $G_{n,d}$.

Key difference: edges of $G_{n,d}$ are not independent.

Eigenvalues of random graphs

Random d-regular graph $G_{n,d}$

- Largest eigenvalue is d
- All other eigenvalues are $O(\sqrt{d})$.

G(n,p)

- Largest eigenvalue $\approx np$
- All other eigenvalues are $O(\sqrt{np})$.

Eigenvalues of random graphs

Random d-regular graph $G_{n,d}$

- Largest eigenvalue is d
- All other eigenvalues are $O(\sqrt{d})$.

G(n,p)

- Largest eigenvalue $\approx np$
- All other eigenvalues are $O(\sqrt{np})$.

Note: In spectra plots, the matrices de-meaned and normalized.

Fact: If J is rank 1, then the eigenvalues of A and A - J interlace.

So shape of limiting distribution is unchanged.

Yufei Zhao (MIT)

Eigenvalues of Random Graphs

May 2012

4 / 46

Yufei Zhao (MIT)

Eigenvalues of Random Graphs

May 2012

5 / 46

Yufei Zhao (MIT)

Yufei Zhao (MIT)

Eigenvalues of Random Graphs

May 2012

7 / 46

Random 3-regular graph

Random 6-regular graph

$$G(n,p)$$
 when $p=\omega(1/n)$

Theorem

Let $p = \omega(\frac{1}{n})$, $p \leq \frac{1}{2}$. The normalized spectral distribution of G(n, p) approaches the semicircle law.

$$G(n,p)$$
 when $p=\omega(1/n)$

Theorem

Let $p = \omega(\frac{1}{n})$, $p \leq \frac{1}{2}$. The normalized spectral distribution of G(n, p) approaches the semicircle law.

- Proof is basically same as Wigner's theorem.
- Method of moments.
- Counting walks and trees. Catalan numbers.

Yufei Zhao (MIT)

Yufei Zhao (MIT)

Eigenvalues of Random Graphs

May 2012

<u>-3</u> -2 -1 0 1 (□ 2 (□) (□ 3 (□) (□)

Yufei Zhao (MIT)

Eigenvalues of Random Graphs

May 2012

21 / 46

Yufei Zhao (MIT) Eigenvalues of Random Graphs

May 2012

23 / 46

Yufei Zhao (MIT)

Eigenvalues of Random Graphs

May 2012

Yufei Zhao (MIT)

Eigenvalues of Random Graphs

May 2012

 $\stackrel{\circ}{-3}$ $\stackrel{-2}{-2}$ $\stackrel{-1}{-1}$ 0 1 $\stackrel{\circ}{-1}$ $\stackrel{\circ}{-2}$ $\stackrel{\circ}{-3}$ $\stackrel{\circ}{-2}$ $\stackrel{\circ}{-2}$ $\stackrel{\circ}{-2}$ $\stackrel{\circ}{-2}$ $\stackrel{\circ}{-2}$

27 / 46

May 2012

$$G(n,\frac{\alpha}{n})$$

- Discrete component spikes
- Continuous component
- To explain this phenomenon, we need to understand the structure of G(n, p).

Structure of a random graph

P. Erdős and A. Rényi. On the evolution of random graphs. 1960.

Structure of G(n, p), almost surely for n large:

• $p = \frac{\alpha}{n}$ with $\alpha < 1$.

All components have small size $O(\log n)$, mostly trees.

• $p = \frac{\alpha}{n}$ with $\alpha = 1$.

Largest component has size on the order of $n^{2/3}$.

• $p = \frac{\alpha}{n}$ with $\alpha > 1$,

One giant component of linear size; and all other components have small size $O(\log n)$, mostly trees.

Spectra of $G(n, \frac{\alpha}{n})$

- Properties of spectra: very few rigorous proofs; lots of intuition and "physicists' proofs".
- Continuous spectrum + discrete spectrum
- Suspected that the giant component contributes to the continuous spectrum
- and isolated and hanging trees contribute to the discrete spectrum.

Trees give the spikes

T	A(T)	Eigenvalues
•	(0)	0
•••	$\left(\begin{smallmatrix}0&1\\1&0\end{smallmatrix}\right)$	-1, 1
•	$\left(\begin{smallmatrix}0&1&0\\1&0&1\\0&1&0\end{smallmatrix}\right)$	$-\sqrt{2}, 0, \sqrt{2}$ (-1.41)
••••	$ \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} $	$\frac{-1-\sqrt{5}}{2}$, $\frac{1-\sqrt{5}}{2}$, $\frac{-1+\sqrt{5}}{2}$, $\frac{1+\sqrt{5}}{2}$ (-1.62) (-0.62) (0.62) (1.62)
	$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$	$-\sqrt{3}$, 0, 0, $\sqrt{3}$ (-1.73)

Random 2-regular graph

Random 3-regular graph

Random 4-regular graph

Random 5-regular graph

Random 6-regular graph

Random 7-regular graph

Random 8-regular graph

Random 9-regular graph

Random 10-regular graph

Random 15-regular graph

Random 20-regular graph

Random *d*-regular graphs

Theorem (McKay 1981)

Let $d \geq 2$ be a fixed integer. As $n \to \infty$, the spectral distribution of a random d-regular graph $G_{n,d}$ on n vertices approaches

$$f_d(x) = egin{cases} rac{d\sqrt{4(d-1)-x^2}}{2\pi(d^2-x^2)}, & \textit{if } |x| \leq 2\sqrt{d-1}; \ 0, & \textit{otherwise}. \end{cases}$$

Random *d*-regular graphs

Theorem (McKay 1981)

Let $d \geq 2$ be a fixed integer. As $n \to \infty$, the spectral distribution of a random d-regular graph $G_{n,d}$ on n vertices approaches

$$f_d(x) = egin{cases} rac{d\sqrt{4(d-1)-x^2}}{2\pi(d^2-x^2)}, & \textit{if } |x| \leq 2\sqrt{d-1}; \ 0, & \textit{otherwise}. \end{cases}$$

Proof idea:

- Method of moments.
- Reduce to counting closed walks in $G_{n,d}$.
- Locally $G_{n,d}$ looks like a d-regular tree.

Random d-regular graphs with d growing

Theorem (Tran-Vu-Wang 2012)

Let $d \to \infty$, $d \le \frac{n}{2}$. As $n \to \infty$, the spectral distribution of a random d-regular graph $G_{n,d}$ on n vertices converges to the semicircle distribution.

Random *d*-regular graphs with *d* growing

Theorem (Tran-Vu-Wang 2012)

Let $d \to \infty$, $d \le \frac{n}{2}$. As $n \to \infty$, the spectral distribution of a random d-regular graph $G_{n,d}$ on n vertices converges to the semicircle distribution.

Proof idea:

- $G(n, \frac{d}{n})$ is d-regular with some (small) probability
- But the probability that the spectral distribution of $G(n, \frac{d}{n})$ deviates from the semicircle is even smaller.
- So with high probability the spectral distribution of $G_{n,d}$ is close to the semicircle.

Summary

Erdős-Rényi random graph G(n, p)

- $p = \frac{\alpha}{n}$: observed continuous + discrete spectrum
- $p = \omega(\frac{1}{n})$: semicircle [Wigner 1955]

Random *d*-regular graph

- Fixed *d*: [McKay 1981]
- Growing d: semicircle [Tran-Vu-Wang 2012]