Design and Analysis of Algorithms

Graph algorithms

Shortest path problem

• In graph theory, the shortest path problem is the problem of **finding a path between two vertices** (or nodes) in a graph such that the **sum of the weights of its constituent edges is minimized**.

shortest path problem

In a shortest-paths problem, we are given a weighted, directed graph

G = (V, E), with weight function $w : E \to \mathbb{R}$ mapping edges to real-valued weights. The *weight* w(p) of path $p = \langle v_0, v_1, \dots, v_k \rangle$ is the sum of the weights of its constituent edges:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$
.

We define the *shortest-path weight* $\delta(u, v)$ from u to v by

$$\delta(u, v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\} & \text{if there is a path from } u \text{ to } v, \\ \infty & \text{otherwise}. \end{cases}$$

A shortest path from vertex u to vertex v is then defined as any path p with weight $w(p) = \delta(u, v)$.

shortest path problem

(6, 4, 5, 1) and (6, 4, 3, 2, 1) are both paths between vertices 6 and 1

Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph

Single-source shortest-paths problem

- Given a graph G=(V,E), we want to find a shortest path from a given source vertex s ∈ V to each vertex v ∈ V.
- The algorithm for the single-source problem can solve many other problems
 - Single-destination shortest-paths problem
 - Single-pair shortest-path problem
 - All-pairs shortest-paths problem

Single-source shortest-paths problem

Identify single source shortest paths starting from vertex s

Single-source shortest-paths problem

Dijkstra's algorithm

• Dijkstra's algorithm solves the **single-source shortest-paths problem** on a **weighted, directed graph** G=(V,E) for the case in which **all edge weights are non-negative**.

Dijkstra's algorithm

Dijkstra's algorithm always chooses the "lightest" or "closest" vertex.

It uses a greedy strategy.

Dijkstra's algorithm

INITIALIZE-SINGLE-SOURCE (G, s)	array	binary min-heap
1 for each vertex $v \in G.V$ 2 $v.d = \infty$ 3 $v.\pi = \text{NIL}$ 4 $s.d = 0$	$\Theta(V)$	$\Theta(V)$
Relax(u, v, w)		
1 if $v.d > u.d + w(u, v)$ 2 $v.d = u.d + w(u, v)$ 3 $v.\pi = u$	<i>O</i> (1)	$O(\lg V)$
Dijkstra(G, w, s)		
1 INITIALIZE-SINGLE-SOURCE (G, s) 2 $S = \emptyset$)	
Q = G.V	O(1)	$O(\lg V)$
4 while $Q \neq \emptyset$	O(V)	O(V)
5 u = EXTRACT-MIN(Q)	O(V)	$O(\lg V)$
$S = S \cup \{u\}$		
7 for each vertex $v \in G.Adj[u]$	E	E
8 RELAX (u, v, w)		
	$O(V^2 + E) = O(V^2)$	$O((V+E)\lg V)$

Dijkstra's algorithm, run on a weighted, directed graph G = (V, E) with non-negative weight function w and source s, terminates with $u.d = \delta(s, u)$ for all vertices $u \in V$.

Proof We use the following loop invariant:

At the start of each iteration of the while loop of lines 4–8, $v.d = \delta(s, v)$ for each vertex $v \in S$.

It suffices to show for each vertex $u \in V$, we have $u.d = \delta(s, u)$ at the time when u is added to set S. Once we show that $u.d = \delta(s, u)$, we rely on the upper-bound property to show that the equality holds at all times thereafter.

Dijkstra's algorithm, run on a weighted, directed graph G = (V, E) with non-negative weight function w and source s, terminates with $u.d = \delta(s, u)$ for all vertices $u \in V$.

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```

Initialization: Initially, $S = \emptyset$, and so the invariant is trivially true.


```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```

We wish to show that in each iteration, $\mathbf{u.d=\delta(s,u)}$ for the vertex added to set

For the purpose of contradiction

let u be the first vertex for which $\mathbf{u.d} \neq \delta(\mathbf{s, u})$ when it is added to set S.


```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```

 $\mathbf{u} \neq \mathbf{s}$ because s is the first vertex added to set S and $\mathbf{s.d=\delta(s, s)=0}$ at that time.

Because $\mathbf{u} \neq \mathbf{s}$, we also have that $\mathbf{S} \neq \mathbf{\phi}$; just before u is added to S.

There must be some path from s to u, for otherwise $\mathbf{u.d=\delta(s, u)=\alpha}$ by the nopath property, which would violate our assumption that $\mathbf{u.d} \neq \delta(\mathbf{s, u})$.


```
S V - S
```

We claim that $y.d = \delta(s, y)$ when u is added to S.

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```


We can now obtain a contradiction to prove that $u.d = \delta(s, u)$. Because y appears before u on a shortest path from s to u and all edge weights are non-negative (notably those on path p_2), we have $\delta(s, y) \leq \delta(s, u)$, and thus

$$y.d = \delta(s, y)$$

 $\leq \delta(s, u)$
 $\leq u.d$ (by the upper-bound property) . (24.2)

But because both vertices u and y were in V-S when u was chosen in line 5, we have $u.d \le y.d$. Thus, the two inequalities in (24.2) are in fact equalities, giving

$$y.d = \delta(s, y) = \delta(s, u) = u.d.$$

Consequently, $u.d = \delta(s, u)$, which contradicts our choice of u. We conclude that $u.d = \delta(s, u)$ when u is added to S, and that this equality is maintained at all times thereafter.

Termination: At termination, $Q = \emptyset$ which, along with our earlier invariant that Q = V - S, implies that S = V. Thus, $u \cdot d = \delta(s, u)$ for all vertices $u \in V$.

Assume that this is the optimal path from s to u

What are the other paths possible?


```
RELAX(u, v, w)

1 if v.d > u.d + w(u, v)

2 v.d = u.d + w(u, v)

3 v.\pi = u
```

u.d=min[u.d, y.d + w(y,u)]

We claim that $y.d = \delta(s, y)$ when u is added to S.

Claim: y.d is the shortest path starts from s to y.

Negative weighted graph

