Bridging the Semantic Gap with SQL Query Logs in Natural Language Interfaces to Databases

Christopher Baik¹, H. V. Jagadish¹, Yunyao Li²

¹University of Michigan – Ann Arbor ²IBM Research – Almaden

Agenda

- Motivation
- Solution Approach
- Solution Details
- Experiments
- Conclusion

Motivation

Motivation > NLIDBs

- Understand relational model
- Know about specific schema and contents

Relational Databases

Motivation > NLIDBs

- Relational model is challenging
- No knowledge of schema and contents

Relational Databases

Motivation > The Semantic Gap

NLQ

Find papers after 2005 in the Databases domain.

Subproblems

- 1. Keyword mapping
- 2. Join path inference

Intended SQL

```
SELECT p.title
FROM publication AS p
JOIN publication_keyword pk
  ON p.pid = pk.pid
JOIN keyword k ON pk.kid = k.kid
JOIN domain_keyword dk
  ON k.kid = dk.kid
JOIN domain d ON d.did = dk.did
WHERE d.name = 'Databases'
  AND p.year > 2005
```


Motivation > The Semantic Gap > 1. Keyword Mapping

Candidate Mappings

- NLQ Find papers after 2005 in the Databases domain.
- 1. (journal.name, SELECT, 0.52)
- 2. (publication.title, SELECT, 0.48)
- 1. (publication.year > 2005, WHERE, 1.0)
- 1. (domain.name = 'Databases', WHERE, 0.8)
- 2. (keyword.kw = 'Databases', WHERE, 0.2)

Challenge 1 (Keyword Mapping):

How do we decide which mapping to select?

Existing Approaches

- Standard: Highest word embedding similarity score
- Ask the user to pick [Popescu 2003, Li 2014]
- Pre-define mappings with ontology [Saha 2016]

Motivation > The Semantic Gap > 2. Join Path Inference

Candidate Mappings

- NLQ Find papers after 2005 in the Databases domain.
- 1. (journal.name, SELECT, 0.52)
- (publication.title, SELECT, 0.48)
- 1. (publication.year > 2005, WHERE, 1.0)
- 1. (domain.name = 'Databases', WHERE, 0.8)
- 2. (keyword.kw = 'Databases', WHERE, 0.2)

Motivation > The Semantic Gap > 2. Join Path Inference

Candidate Mappings

```
1. (journal.name, SELECT, 0.52)
2. (publication.title, SELECT, 0.48)
1. (publication.year > 2005, WHERE, 1.0)
1. (domain.name = 'Databases', WHERE, 0.8)
2. (keyword.kw = 'Databases', WHERE, 0.2)
```

Assume we selected the **red** mappings

Candidate Join Paths

- publication—conference domain conference—domain
- 2. publication—journal—
 domain_journal—domain
- 3. publication—
 publication_keyword—
 keyword—domain_keyword—domain

Challenge 2 (Join Path Inference):

How do we decide which join path to select?

Existing Approaches

- Standard: Select shortest tree (i.e. Steiner tree)
- Ask the user to pick [Popescu 2003, Li 2014]
- Pre-define mappings with ontology [Saha 2016]

Solution Approach

Solution Approach > Typical Approach

- Goal: Learn from existing queries/training data
- Typical Approach: Collect NLQ-SQL pairs
 - Lots of work [Zhong 2017, Xu 2017, Yu 2018, etc...]
- Challenges:
 - Labeled pairs of NLQ-SQL are costly to obtain, requiring time and expertise
 - 2. High volume of data required to train system
 - 3. Data, esp. for join paths, must be domain-/schema-specific

Solution Approach > Our Approach

- Our Approach: Instead of NLQ-SQL pairs, SQL query logs
 - Readily available for production databases
 - Contain information on more common/likely user queries
- Challenge: Learning NLQ to SQL only using output (i.e. SQL)

Solution Details

Solution Details > System Overview

- **Augments** existing NLIDBs, which are still responsible for:
 - Parsing natural language
 - Extracting keywords
 - Decoding SQL clause structure
- Note the order of execution
 - 1. Keyword mapping
 - 2. Join path inference

Solution Details > Query Fragments

Query Log

```
SELECT p.title FROM publication p WHERE p.year > 2003

SELECT p.title FROM journal j, publication p WHERE j.name = 'TMC'

AND p.pid = j.pid

SELECT p.title FROM publication p, publication_keyword pk, keyword k, domain_keyword dk, domain d WHERE d.name = 'OS'

...
```

Query Fragments

(publication.title, SELECT)

(publication.year > 2003, WHERE)

(publication, FROM)

Solution Details > Modeling the SQL Query Log

- Goal: Model SQL query log to assist NLQ to SQL translation
- Intuition:
 - Keyword mappings vary in confidence
 - Anchor low-conf mappings given co-occurrence with high-conf ones

Solution Details > Query Fragment Graph (QFG)

Query Log

```
SELECT p.title FROM publication p WHERE p.year > 2003
SELECT p.title FROM journal j, publication p WHERE j.name = 'TMC'
AND p.pid = j.pid
SELECT p.title FROM publication p, publication keyword pk, keyword
k, domain keyword dk, domain d WHERE d.name = 'OS'
```


Solution Details > Applying the Model > 1. Keyword Mapping

Candidate Mappings

Solution Details > Applying the Model > 1. Keyword Mapping

Candidate Mappings

- 1. (journal.name, SELECT, 0.52)
 - 2. (publication.title, SELECT, 0.48)
- 1. (publication.year > 2005, WHERE, 1.0)
- 1. (domain.name = 'Databases', WHERE, 0.8)
- 2. (keyword.kw = 'Databases', WHERE, 0.2)

Score each **combination** of mappings using weighted sum of similarity and QFG co-occurrence

Solution Details > Applying the Model > 1. Keyword Mapping

Candidate Mappings

```
(journal.name, SELECT, 0.52)
    (publication.title, SELECT, 0.48)
    (publication.year > 2005, WHERE, 1.0)
    (domain.name = 'Databases', WHERE, 0.8)
    (keyword.kw = 'Databases', WHERE, 0.2)
       QFG
                   10x: p.year ?op ?val
                             10
                                    8
    23x: p.title
                                         8x: j.name ?op ?val
                 23
                     23x: publication
                                          8x: journal
5x: d.name ?op ?val
                             5
                 5x: publication keyword
                                          5x: keyword
      5x: domain
```

5x: domain keyword

Score each **combination** of mappings using weighted sum of similarity and QFG co-occurrence

Candidate Mappings

```
1. (journal.name, SELECT, 0.52)
2. (publication.title, SELECT, 0.48)

1. (publication.year > 2005, WHERE, 1.0)

1. (domain.name = 'Databases', WHERE, 0.8)
2. (keyword.kw = 'Databases', WHERE, 0.2)
```

Candidate Mappings

```
1. (journal.name, SELECT, 0.52)
2. (publication.title, SELECT, 0.48)
1. (publication.year > 2005, WHERE, 1.0)
1. (domain.name = 'Databases', WHERE, 0.8)
2. (keyword.kw = 'Databases', WHERE, 0.2)
```

Candidate Join Paths

- publication—conference domain_conference—domain
- 2. publication—journal—
 domain_journal—domain
- 3. publication—
 publication_keyword—
 keyword—domain_keyword—
 domain

Candidate Join Paths

- 1. publication—conference—
 domain_conference—domain
- 2. publication—journal—
 domain_journal—domain
- 3. publication—
 publication_keyword—
 keyword—domain_keyword—
 domain

Standard: Choose shortest path on schema graph

Candidate Join Paths

- 1. publication—conference—
 domain_conference—domain
- 2. publication—journal—
 domain_journal—domain
- 3. publication—
 publication_keyword—
 keyword—domain_keyword—
 domain

Standard: Choose shortest path on schema graph

Our Approach: Schema graph edge weights weighted inversely by co-occurrence

Experiments

Experiments > Setup

Benchmarks

Dataset	Queries	Tables	Cols	FK-PK Paths
MAS [Li 2014]	194 NLQ-SQL	17	53	19
Yelp [Yaghmazadeh 2017]	127 NLQ-SQL	7	38	7
IMDB [Yaghmazadeh 2017]	128 NLQ-SQL	16	65	20

- Tested Systems
 - NaLIR [Li 2014]
 - Pipeline (emulation of SQLizer [Yaghmazadeh 2017])
- Performed 4-fold cross validation on NLQ-SQL pairs
 - Used only SQL of 3 training folds as query log
 - Tested NLQ-SQL of 1 test fold
 - Caveat: Assumes NLQ-SQL workload similar to SQL query log

Experiments > End-to-end

Experiments > End-to-end

Experiments > Keyword Mapping

Similar trend to end-to-end results

Experiments > Join Path Inference

- Results only for
 Pipeline + Templar
 (effect not as drastic in NaLIR + Templar)
- Modest increases, but most gains from keyword mapping

Conclusion

Contributions

Query Fragment Graph
(QFG)
A model for storing
SQL query log info

Applying QFG to "bridge the semantic gap" between NLQ and SQL Templar
A system to augment existing NLIDBs with our techniques

Questions, comments, collaborations, etc.

cjbaik@umich.edu

Icon Attributions

database by iconeu from the Noun Project

users by Gregor Cresnar from the Noun Project

Network by mark from the Noun Project

• knowledge database by sahua d from the Noun Project

