Steady-state simulations of Euler equations

Bingqian Si

March 24, 2025

One-dimensional steady shock

Figure 1: One-dimensional steady shock: density contours from CENO5 scheme. Final simulation time: t = 12. Resolution: 400.

March 24, 2025

One-dimensional steady shock

Figure 2: One-dimensional steady shock: evolution history of average residual from CENO5, CWENOZ and MRWENO scheme. Resolution: 400.

Regular shock reflection problem

Figure 3: Regular shock reflection problem: density contours from (a) fifth-order linear scheme, (b) CENO5. Final simulation time: t = 20. Resolution: 120×30 .

Regular shock reflection problem

Figure 4: Regular shock reflection problem: evolution history of average residual from fifth-order linear scheme. Resolution: 120×30 .

5/16

Regular shock reflection problem

Figure 5: Regular shock reflection problem: evolution history of average residual from CENO5, CWENOZ and MRWENO scheme. Resolution: (a) 160×40 , (b) 640×160 .

Heterolateral shock interaction problem

Figure 6: Heterolateral shock interaction problem: density contours from CENO5 scheme. Final simulation time: t = 20. Resolution: 120×60 .

Heterolateral shock interaction problem

Figure 7: Heterolateral shock interaction problem: evolution history of average residual from CENO5, CWENOZ and MRWENO scheme. Resolution: (a) 240×120 , (b) 960×480

Oblique steady shock wave

Figure 8: Oblique steady shock wave: density contours from CENO5 scheme. Final simulation time: t = 20. Resolution: 120×60 .

Oblique steady shock wave

Figure 9: Oblique steady shock wave: evolution history of average residual from CENO5, CWENOZ and MRWENO scheme. Resolution: (a) 240×120 , (b) 480×240 , (c) 960×480 .

Ipsilateral shock interaction problem

Figure 10: Ipsilateral shock interaction problem: density contours from CENO5 scheme. Final simulation time: t=80. Resolution: 160×80 .

Ipsilateral shock interaction problem

Figure 11: Ipsilateral shock interaction problem: evolution history of average residual from CENO5, CWENOZ and MRWENO scheme. Resolution: (a) 160×80 , (b) 640×320

Supersonic flow past a long plate

Figure 12: Supersonic flow past a long plate: density contours from CENO5 scheme. Final simulation time: t = 30. Resolution: 160×80 .

Supersonic flow past a long plate

Figure 13: Supersonic flow past a long plate: evolution history of average residual from CENO5, CWENOZ and MRWENO scheme. Resolution: (a) 160×80 , (b) 640×320 .

Note: The results from CWENOZ scheme at the resolution of 640×320 blow up.

March 24, 2025

Multiple shock reflection problem

Figure 14: Multiple shock reflection problem: density contours from from CENO5 scheme. Final simulation time: t = 40. Resolution: 320×40 .

Multiple shock reflection problem

Figure 15: Multiple shock reflection problem: evolution history of average residual from CENO5, CWENOZ and MRWENO scheme. Resolution: (a) 320×40 , (b) 1280×160 .