Práctico 4 Matemática Discreta I – Año 2021/1 FAMAF

Antes de resolver los ejercicios, recordemos una propiedad muy útil que cumple las congruencias. Si k, m son enteros, con $m \geq 2$, entonces por la definición de congruencia se cumple que: $km \equiv 0 \pmod{m}$, ya que $m \mid km$. De donde, si $a = b \cdot q + r$, con a, $q \in \mathbb{Z}$, $b \geq 2$ y $0 \leq r < b$, por las propiedades de las congruencias (Teorema~4.1.3~del~Apunte) y teniendo en mente que " \equiv " es una relación~de~equivalencia, obtenemos

$$a \equiv b \cdot q + r \equiv 0 + r \equiv r \pmod{b}.$$
 (*)

De otro lado, si existen números naturales c, d tales que b = c + d (esto implica que c < b y d < b), entonces

 $c+d\equiv b\equiv 0\pmod b$ \Leftrightarrow $c\equiv -d\pmod b$ \Leftrightarrow $d\equiv -c\pmod b$. (**) En lo que sigue, aplicaremos (*) y (**), indicando cual de las igualdades se cumple: $a=b\cdot q+r$ o b=c+d, al trabajar módulo b.

Ejercicios resueltos

(1) *a)* Calcular el resto de la división de 1599 por 39, sin tener que hacer la división.

Rta: Como 40 = 39 + 1, se sique que:

$$40 \equiv 1 \ (39) \Rightarrow 40^2 \equiv 1 \ (39) \Rightarrow 40^2 - 1 \equiv 0 \ (39)$$

\Rightarrow 1599 \equiv 0 \ (39),

por lo tanto el resto es 0.

b) Lo mismo con el resto de 914 al dividirlo por 31.

Rta: Como
$$31 = 30 + 1$$
, tenemos que $30 \equiv -1$ (31). Luego,

$$914 \equiv 30^2 + 14 \equiv (-1)^2 + 14 \equiv 15 (31)$$
,

por lo tanto el resto es 15.

(2) Sea $n \in \mathbb{N}$. Probar que todo número de la forma $4^n - 1$ es divisible por 3.

Rta: Como 4 = 3 + 1, entonces:

$$4 \equiv 1 \ (3) \Rightarrow 4^n \equiv 1^n = 1 \ (3), \ \forall n \in \mathbb{N} \Rightarrow 4^n - 1 \equiv 0 \ (3), \ \forall n \in \mathbb{N}$$
 por lo tanto, $3 \mid (4^n - 1)$ para cada $n \in \mathbb{N}$.

(3) Hallar el resto en la división de x por 5 y por 7 para:

a)
$$x = 1^8 + 2^8 + 3^8 + 4^8 + 5^8 + 6^8 + 7^8 + 8^8$$
;

Rta: Para módulo 5: Como $2^4 = 16 = 3 \cdot 5 + 1$, se cumple que:

$$2^4 \equiv 1 \ (5) \ \Rightarrow \ 2^8 \equiv 1 \ (5)$$
.

Además,

Luego,

$$1^{8} + 2^{8} + 3^{8} + 4^{8} + 5^{8} + 6^{8} + 7^{8} + 8^{8}$$

$$\equiv 1 + 1 + 1 + 1 + 0 + 1 + 1 + 1 = 7 \equiv 2 (5).$$

Para módulo 7: (completar detalles) Ahora, $4^8 \equiv (-3)^8$ (7), $5^8 \equiv (-2)^8$ (7), $6^8 \equiv (-1)^8$ (7), y $8^8 \equiv 1^8$ (7). Como $2^3 \equiv 1$ (7) y $3^2 \equiv 2$ (7), entonces $2^8 = 2^6 \cdot 2^2 \equiv 4$ (7) y $3^8 \equiv 2^4 \equiv 2$ (7). De donde,

$$1^{8} + 2^{8} + 3^{8} + 4^{8} + 5^{8} + 6^{8} + 7^{8} + 8^{8}$$

$$\equiv 1 + 4 + 2 + 2 + 4 + 1 + 0 + 1 = 15 \equiv 1$$
 (7).

b) $x = 3 \cdot 11 \cdot 17 \cdot 71 \cdot 101$.

Rta: Completar detalles.

$$x = 3 \cdot 11 \cdot 17 \cdot 71 \cdot 101 \equiv 3 \cdot 1 \cdot 2 \cdot 1 \cdot 1 \equiv 6 \equiv 1 (5);$$

 $x = 3 \cdot 11 \cdot 17 \cdot 71 \cdot 101 \equiv 3 \cdot 4 \cdot 3 \cdot 1 \cdot 3 \equiv 108 \equiv 3 (7).$

(4) Sea $n \in \mathbb{Z}$. Probar que el resto de dividir n^2 por 4 es igual a 0 si n es par, y 1 si n es impar.

Rta: Si n = 2k, para algún $k \in \mathbb{Z}$, se tiene que:

$$n^2 \equiv 4k^2 \equiv 0$$
 (4) \Leftrightarrow 4 | $n^2 \checkmark$

Si n = 2t + 1, para algún $t \in \mathbb{Z}$, tenemos

$$n^2 \equiv 4t^2 + 4t + 1 \equiv 1$$
 (4) \checkmark

(5) Sean *a*, *b*, *c* números enteros, ninguno divisible por 3. Probar que

$$a^2 + b^2 + c^2 \equiv 0$$
 (3).

Rta: Si ninguno es divisible por 3, tenemos que cada uno de ellos es de la forma: $x \equiv 1 \pmod{3}$ o $x \equiv 2 \pmod{3}$, por lo tanto $x^2 \equiv 1 \pmod{3}$ o $x^2 \equiv 4 \equiv 1 \pmod{3}$. Luego, a^2, b^2, c^2 son congruentes a 1 módulo 3, y en consecuencia

$$a^2 + b^2 + c^2 \equiv 1 + 1 + 1 \equiv 3 \equiv 0$$
 (3).

Por lo tanto, $3 | (a^2 + b^2 + c^2)$.

(6) a) Probar las reglas de divisibilidad por 2, 3, 4, 5, 8, 9 y 11.

Reglas del 2 y 5. Como 10 = 2.5, entonces para todo $j \in \mathbb{N}$: $10^j \equiv 0$ (2). Ahora bien, si aplicamos la definición de la base 10 a $n \in \mathbb{N}$, esto es, $n = \sum_{j=0}^{k} a_j 10^j$, obtenemos:

$$n \equiv a_0 + \sum_{j=1}^k a_j 0^j \equiv a_0 (2).$$

Por lo tanto,

$$2 \mid n \Leftrightarrow n \equiv 0 \ (2) \Leftrightarrow a_0 \equiv 0 \ (2) \Leftrightarrow 2 \mid a_0.$$

Debido a que $0 \le a_0 \le 9$, concluimos que n es divisible por 2 si y sólo si *n* termina en 0, 2, 4, 6, 8.

Notar que lo mismo pasa con 5 por ser $10 \equiv 0$ (5), es decir

$$5 \mid n \Leftrightarrow a_0 \in \{0, 5\}.$$

Reglas del 3 y 9. Como $10 \equiv 1$ (3) (ya que $10 = 3 \cdot 3 + 1$), entonces para todo $j \ge 0$ se satisface que $10^j \equiv 1$ (3). Luego,

$$n \equiv \sum_{j=0}^{k} a_j 10^j \equiv \sum_{j=0}^{k} a_j 1^j \equiv \sum_{j=0}^{k} a_j (3).$$

Por lo tanto, $3 \mid n$ si y sólo si $3 \mid \left(\sum_{j=0}^{k} a_j\right)$. Notar que lo mismo pasa con 9 por ser $10 \equiv 1$ (9). Así,

$$9 \mid n \Leftrightarrow 9 \mid \left(\sum_{j=0}^{k} a_j\right).$$

Reglas del 4 y 8. Tenemos que $10^j \equiv 0$ (4) si $j \ge 2$ (ya que $10^2 = 4 \cdot 25$), y $10^{j} \equiv 0$ (8) si $j \ge 3$ (pues $10^{3} = 8 \cdot 125$). Por lo tanto,

$$n \equiv 10a_1 + a_0 \equiv 2a_1 + a_0 \text{ (4)} \quad (10 = 2 \cdot 4 + 2).$$

$$n \equiv 10^2 a_2 + 10a_1 + a_0$$

$$\equiv 4a_2 + 2a_1 + a_0 \text{ (8)} \quad (10^2 = 12 \cdot 8 + 4).$$

Es decir,

$$4 \mid n \iff 4 \mid (2a_1 + a_0);$$
 $8 \mid n \iff 8 \mid (4a_2 + 2a_1 + a_0).$

Regla del 11. Como 11 = 10 + 1, entonces $10 \equiv -1$ (11). De donde, para todo $j \ge 0$: $10^j \equiv (-1)^j$ (11). Así,

$$n \equiv \sum_{j=0}^{k} a_j 10^j \equiv \sum_{j=0}^{k} a_j (-1)^j \equiv \sum_{j=0}^{k} (-1)^j a_j$$
 (11).

Por lo cual, $11 \mid n$ si y sólo si 11 divide a la suma alternada de sus dígitos.

b) Decir por cuáles de los números del 2 al 11 son divisibles los siguientes números:

Rta: Usaremos las reglas de divisibilidad probadas en el inciso anterior. *Para n* := 12342. Tenemos que 2 | 2, 3 | (1 + 2 + 3 + 4 + 2) = 12, $4 \nmid (2 \cdot 4 + 2) = 10$, $5 \nmid 2$, $12342 = 1763 \cdot 7 + 1$, $9 \nmid 12$, y $11 \mid (1 - 2 + 3 - 4 + 2) = 0$. Por lo tanto, $2 \mid n$, $3 \mid n$, $4 \nmid n$ (⇒ $8 \nmid n$), $5 \nmid n$ (⇒ $10 \nmid n$), $6 \mid n$ (2 y 3 lo dividen), $7 \nmid n$, $9 \nmid n$, y $11 \mid n$.

Los demás números se analizan de la misma manera, se dejan al lector.

(7) Hallar la cifra de las unidades y la de las decenas del número 7^{15} .

Rta: Tenemos que para todo natural $j \ge 2$, $10^j \equiv 0$ (100). Luego, para cualquier $n \in \mathbb{N}$ escrito en la base 10, se satisface que:

$$n \equiv \sum_{j=2}^{k} a_j 0^j + 10a_1 + a_0 \equiv 10a_1 + a_0 (100),$$
 (*)

donde a_1 es la cifra de las decenas y a_0 es la cifra de las unidades. Luego, basta con hallar $0 \le r < 100$ tal que

$$7^{15} \equiv r (100)$$
.

Ahora bien,

$$7 \equiv 7 \ (100)$$
 $7^{2} \equiv 49 \ (100)$
 $7^{3} \equiv 343 \equiv 43 \ (100)$
 $7^{4} \equiv 7 \cdot 43 \equiv 301 \equiv 1 \ (100)$
 $7^{15} \equiv (7^{4})^{3} \cdot 7^{3} \equiv 7^{3} \equiv 43 \ (100)$
(por (*))

Así, $a_1 = 4 \text{ y } a_0 = 3.$

Observación:

Sean $a \in \mathbb{Z}$ y $n \in \mathbb{N}$. Si $a = n \cdot q + r$, para algún $q \in \mathbb{Z}$, $n \ge 2$ y $0 \le r < n$, entonces $a \equiv r$ (n), luego $a^2 \equiv r^2$ (n). Por lo tanto, para hallar las soluciones enteras de $x^2 \equiv b$ (n) (con $0 \le b < n$) ó de $x^2 \equiv x$ (n), basta con hallar las soluciones particulares $0 \le x_0 < n$, y todas las soluciones serían de la forma $x_0 + kn$, para algún $k \in \mathbb{Z}$.

(8) Hallar todos los $x \in \mathbb{Z}$ que satisfacen:

a)
$$x^2 \equiv 1$$
 (4)

Rta: Resolvemos primero para $0 \le x_0 \le 3$. Esto es, $x_0 = 1$ ó $x_0 = 3$, y por lo tanto x = 1 + 4k ó x = 3 + 4k, para algún $k \in \mathbb{Z}$, lo cual también se puede escribir como $x = 4k \pm 1$.

b) $x^2 \equiv x$ (12)

Rta: Soluciones menores que 12: $x_0 = 0, 1, 4, 9$. Luego el conjunto solución es $\{12k, 12k + 1, 12k + 4, 12k - 3 : k \in \mathbb{Z}\}$.

c) $x^2 \equiv 2$ (3)

Rta: No tiene soluciones pues $0^2 \equiv 0$ (3), $1^2 \equiv 1$ (3), $2^2 \equiv 1$ (3).

d) $x^2 \equiv 1$ (5)

Rta: Soluciones menores que 5: $\{1,4\}$. Luego las soluciones son $5k \pm 1, \ k \in \mathbb{Z}$.

e) $x^4 \equiv 1$ (16)

Rta: Si x=2t, para algún $t\in\mathbb{Z}$, entonces $x^4\equiv 16t^4\equiv 0$ (16). Por lo tanto, x debe ser impar. Ahora bien, podemos tomar $-8\le x_0\le 8$, es decir $x_0\in\{-7,-5,-3,-1,1,3,5,7\}$, ya que por ejemplo $9\equiv -7$ (16). De donde, $x_0^2\in\{1,9,25,49\}$, esto es: $x_0^2\equiv 1$ (16) o bien $x_0^2\equiv 9$ (16) (ya que 25=16+9, $49=16\cdot 3+1$). A su vez, cuando elevamos estos al cuadrado, como $9^2=81\equiv 1$ (16) (por $81=16\cdot 5+1$), obtenemos que todo número impar es solución de la ecuación.

 $f) x^2 \equiv 9 (19)$

Rta: Vemos que 3 y 16 son los únicos restos que son solución (usar que $18 \equiv -1$ (19), $17 \equiv -2$ (19), $16 \equiv -3$ (19),..., $10 \equiv -9$ (19)). Luego, todas las soluciones buscadas son $19k \pm 3$, $k \in \mathbb{Z}$.

(9) Sean $a, b \in \mathbb{Z}$. Si $m, d \in \mathbb{N}$ cumplen que $d \mid a, d \mid b$ y $d \mid m$, probar que la ecuación $a \times b = b$ (m) tiene solución si y sólo si la ecuación

$$\frac{a}{d}x \equiv \frac{b}{d} \left(\frac{m}{d}\right)$$

tiene solución.

Rta: La ecuación $\frac{a}{d}x \equiv \frac{b}{d}\left(\frac{m}{d}\right)$ tiene solución si y sólo si $\left(\frac{a}{d}, \frac{m}{d}\right) \mid \frac{b}{d}$ si y sólo si $\left(\frac{(a,m)}{d} \mid \frac{b}{d}\right)$ si y sólo si $\left(\frac{a}{d}, \frac{m}{d}\right) \mid \frac{b}{d}$ si y sólo si $\left(\frac{a}{d}, \frac{m}{d}\right) \mid \frac{a}{d} \mid \frac$

(10) Resolver las siguientes ecuaciones:

a) $2x \equiv -21$ (8)

Rta: Como $-21 = (-3) \cdot 8 + 3$, entonces $-21 \equiv 3$ (8), por lo tanto la ecuación es equivalente a $2x \equiv 3$ (8). Como $(2,8) = 2 \nmid 3$, entonces no hay solución.

b) $2x \equiv -12$ (7)

Rta: Tenemos que $-12 \equiv 2$ (7) (ya que $-12 = (-2) \cdot 7 + 2$), por lo tanto la ecuación es equivalente a $2x \equiv 2$ (7). Evidentemente 1 es solución de la ecuación, y como 1 = (2,7), todas las soluciones son de la forma x = 1 + 7k, $k \in \mathbb{Z}$.

c) $3x \equiv 5$ (4)

Rta: $5 \equiv 1$ (4), por lo tanto la ecuación es equivalente a $3x \equiv 1$ (4). Probando se encuentra que 3 es solución, y como 1 = (4,3), todas las soluciones son de la forma x = 3 + 4k, $k \in \mathbb{Z}$.

(11) Resolver la ecuación $221x \equiv 85$ (340). Hallar todas las soluciones x tales que $0 \le x < 340$.

Rta: Notemos que 221, 85 y 340 son divisibles por 17. Sus respectivos cocientes son 13, 5 y 20. Por el ejercicio (9), podemos entonces resolver

$$13x \equiv 5 (20)$$
.

Por el algoritmo de Euclides: $(13,20) = 1 = (-3) \cdot 13 + 2 \cdot 20$, por lo tanto $5 = (-15) \cdot 13 + 10 \cdot 20$. Haciendo congruencia módulo 20 obtenemos $5 \equiv (-15) \cdot 13 \equiv 5 \cdot 13$ (20) (por 20 = 15 + 5). Entonces 5 es una solución, y todas la soluciones son de la forma x = 5 + 20k, con $k \in \mathbb{Z}$.

Por último, $0 \le x < 340 \Leftrightarrow 0 \le 5 + 20k < 340 \Leftrightarrow -0.25 \le k < 16.75$. Como k debe ser un entero, entonces k = 0, 1, 2, ..., 16. Así, obtenemos que el conjunto buscado es: $\{5, 25, 45, ..., 305, 325\}$.

(12) a) Encontrar todas las soluciones de la ecuación $36 x \equiv 8$ (20). Rta: Tenemos que 4 = (36, 20). Como 4|8 la ecuación tiene solución. Ahora

bien, por el ejercicio 9, podemos entonces resolver

$$9x \equiv 2 (5) \Leftrightarrow 4x \equiv 2 (5)$$
.

Por el algoritmo de Euclides:

$$(5,4) = 1 = 5 - 4 \implies 2 = 2 \cdot 5 + (-2) \cdot 4 \implies 2 \equiv (-2) \cdot 4 (5)$$

entonces -2 es solución, y todas la soluciones son de la forma x = -2+5k, con $k \in \mathbb{Z}$.

b) Dar todas las soluciones x de la ecuación anterior tales que -8 < x < 30. Rta: Por el inciso anterior:

$$-8 < x < 30 \Leftrightarrow -8 < -2 + 5k < 30 \Leftrightarrow -6 < 5k < 32$$
.

De donde, k debe tomar los valores -1, 0, 1, 2, 3, 4, 5, 6, y por lo tanto el conjunto buscado es $\{-7, -2, 3, 8, 13, 18, 23, 28\}$.

- (13) a) Encontrar todas las soluciones de la ecuación $21 x \equiv 6 (30)$. Rta: Tenemos que $21 x \equiv 6 (30) \Leftrightarrow 7 x \equiv 2 (10)$. Luego, $1 = (-2) \cdot 10 + 3 \cdot 7 \Rightarrow 2 = (-4) \cdot 10 + 6 \cdot 7 \Rightarrow 2 \equiv 6 \cdot 7 (10)$. De donde, la ecuación tiene como soluciones x = 6 + 10k, con k entero.
 - b) Dar todas las soluciones x de la ecuación anterior tales que 0 < x < 35. Rta: En base al ítem anterior,

$$0 < x < 35 \Leftrightarrow 0 < 6 + 10k < 35 \Leftrightarrow -0.6 < k < 2.9.$$

De donde, k toma valores 0, 1, 2, y las soluciones buscadas son 6, 16, 26.

- (14) Dado $t \in \mathbb{Z}$, decimos que t es *inversible módulo m* si existe $h \in \mathbb{Z}$ tal que $th \equiv 1$ (m).
 - a) ¿Es 5 inversible módulo 17? Rta: Si, $5 \cdot 7 \equiv 1$ (17).
 - b) Probar que t es inversible módulo m, si y sólo si (t, m) = 1. Rta: t es inversible módulo m si y sólo si $tx \equiv 1$ (m) tiene solución si y sólo si $(t, m) \mid 1$ si y sólo si (t, m) = 1.
 - c) Determinar los inversibles módulo m, para m = 11, 12, 16.

Rta: Por el ítem anterior y el T.F.A, obtenemos:

$$(t, 11) = 1 \Leftrightarrow 11 \nmid t.$$

 $(t, 12) = 1 \Leftrightarrow (t, 2) = 1 = (t, 3).$
 $(t, 16) = 1 \Leftrightarrow 2 \nmid t.$

- (15) Encontrar el resto en la división de a por b en los siguientes casos:
 - a) $a = 11^{13} \cdot 13^8$, b = 12. Rta: Como 12 = 11 + 1 y 13 = 12 + 1, se sigue que:

$$11^{13} \cdot 13^8 \equiv (-1)^{13} \cdot 1^8 \equiv 11 \ (12)$$
.

b) $a = 4^{1000}$, b = 7. Rta: Sabemos que 7 es un número primo y que (4,7) = 1, entonces por el

Corolario del teorema de Fermat:

$$4^6 \equiv 1 (7)$$
.

Además, $4^2 \equiv 16 \equiv 2 \cdot 7 + 2 \equiv 2$ (7), luego $4^{1000} = (4^6)^{166} 4^4 \equiv (4^2)^2 \equiv 2^2 \equiv 4$ (7).

c) $a = 123^{456}$, b = 31.

Rta: Tenemos que $123 = 3 \cdot 31 + 30$ y 31 = 30 + 1, así $123^{456} \equiv 30^{456} \equiv (-1)^{456} \equiv 1 \ (31)$.

d) $a = 7^{83}$, b = 10.

Rta: Para cualquier entero x se satisface que $x \equiv a_0$ (10), donde a_0 es la cifra de las unidades. Por lo cual,

$$7^2 \equiv 9 \ (10) \ , \quad 7^3 \equiv 7 \cdot 9 \equiv 3 \ (10) \ , \quad 7^4 \equiv 3 \cdot 7 \equiv 1 \ (10) \ .$$

De donde,

$$7^{83} \equiv (7^4)^{20}7^3 \equiv 1^{20}3 \equiv 3 (10)$$
.

- (16) Hallar el resto en la división de a por b en los siguientes casos:
 - a) $a = 2^{21}$, b = 13.

Rta: Como 13 es primo y (2,13) = 1, por el corolario del teorema de Fermat:

$$2^{12} \equiv 1 (13)$$
.

De otro lado, $8 \cdot 5 \equiv 1$ (13) (ya que $40 = 3 \cdot 13 + 1$), así:

$$2^{12} \equiv 1 \ (13) \quad \Rightarrow \quad (5 \cdot 2^3) 2^9 \equiv 5 \ (13) \quad \Rightarrow \quad 2^9 \equiv 5 \ (13) \ .$$

Luego,

$$2^{21} = 2^{12}2^9 \equiv 2^9 \equiv 5 (13)$$
.

b) $a = 7^{241}$, b = 17.

Rta: Tenemos que 17 es primo y (7,17) = 1, por el corolario del teorema de Fermat:

$$7^{16} \equiv 1 \ (17) \quad \Rightarrow \quad 7^{241} \equiv (7^{16})^{15} \cdot 7 \equiv 7 \ (17) \ .$$

c) $a = 424^{97}$, b = 11.

Rta: Por comodidad en las cuentas, lo primero que hacemos es reducir la base de la potencia requerida a un número más chico, esto es: por el algoritmo de la división,

$$424 = 38 \cdot 11 + 6 \implies 424 \equiv 6 \text{ (11)} \implies 424^{97} \equiv 6^{97} \text{ (11)}.$$

Ahora bien, 11 es primo y (6,11) = 1, por el corolario del teorema de Fermat:

$$6^{10} \equiv 1 \ (11) \quad \Rightarrow \quad 6^{97} \equiv (6^{10})^9 \cdot 6^7 \equiv 6^7 \ (11) \ .$$

Además,

$$6^2 \equiv 3 \text{ (11)}$$
 (por $36 = 3 \cdot 11 + 3$)

$$6^6 \equiv 3^3 \equiv 5 \text{ (11)}$$
 (por $27 = 2 \cdot 11 + 5$)

$$6^7 \equiv 6 \cdot 5 \equiv 8 \text{ (11)}$$
 (por $30 = 2 \cdot 11 + 8$)

En resumen,

$$424^{97} \equiv 8 (11)$$
.

d) $a = 8^{25}$, b = 127.

Rta:
$$8^{25} = 2^{75}$$
: como $2^7 = 128 \equiv 1$ (127), tenemos que $2^{75} = (2^7)^{10}2^5 \equiv 32$ (127).

(17) Probar que si (a, 1001) = 1 entonces 1001 divide a $a^{720} - 1$.

Rta: Notemos que $1001 = 7 \cdot 11 \cdot 13$. Por lo tanto (a, 1001) = 1 implica (a, 7) = (a, 11) = (a, 13) = 1. Entonces por el corolario del teorema de Fermat: $a^6 \equiv 1$ (7), $a^{10} \equiv 1$ (11), $a^{12} \equiv 1$ (13). Como $720 = 6 \cdot 10 \cdot 12$, se sigue que $a^{720} \equiv 1$ (7), $a^{720} \equiv 1$ (11), $a^{720} \equiv 1$ (13).

Lo cual es equivalente a tener

7 |
$$(a^{720} - 1)$$
, 11 | $(a^{720} - 1)$, 13 | $(a^{720} - 1)$.

Por el ejercicio 21(b) del Práctico 3, concluimos que:

$$7 \cdot 11 \cdot 13 \mid (a^{720} - 1) \Leftrightarrow 1001 \mid (a^{720} - 1).$$

- (18) Sea p primo impar.
 - a) Probar que las únicas raíces cuadradas de 1 módulo p, son 1 y -1 módulo p. Es decir, probar que $x^2 \equiv 1 \pmod{p}$, entonces $x \equiv \pm 1 \pmod{p}$.

Rta: $x^2 \equiv 1 \pmod{p} \Rightarrow x^2 - 1 \equiv 0 \pmod{p}$, como $x^2 - 1 = (x - 1)(x + 1)$, obtenemos $(x-1)(x+1) \equiv 0 \pmod{p}$. Esto quiere decir que p|(x-1)(x+1). Como p es primo, p|(x-1) o p|(x+1), es decir

$$x - 1 \equiv 0 \pmod{p} \lor x + 1 \equiv 0 \pmod{p} \Leftrightarrow x \equiv 1 \pmod{p} \lor x \equiv -1 \pmod{p}.$$

- b) Sea $p = d \cdot 2^s + 1$, donde d es impar. Dado a entero tal que 0 < a < p, probar que
 - (i) $a^d \equiv 1 \pmod{p}$, o
 - (ii) $a^{2^{r} \cdot d} \equiv -1 \pmod{p}$ para algún r tal que $0 \le r < s$.

Rta: Consideremos la sucesión $a^{2^{s} \cdot d}$, $a^{2^{s-1} \cdot d}$, ..., a^{2d} , a^d . La demostración la haremos usando el teorema de Fermat, el resultado del inciso anterior y observando que cada término de la sucesión es el cuadrado del siguiente.

- o Por el teorema de Fermat $a^{2^{s\cdot d}}=a^{p-1}\equiv 1\pmod{p}$. Luego $(a^{2^{s-1}\cdot d})^2\equiv 1\pmod{p}$ y por lo tanto $a^{2^{s-1}\cdot d}$ es una raíz cuadrada de 1 módulo p. Por el inciso anterior entonces $a^{2^{s-1}\cdot d}\equiv \pm 1\pmod{p}$.
- Si $a^{2^{s-1} \cdot d} \equiv -1 \pmod{p}$, listo, en caso contrario $a^{2^{s-1} \cdot d} \equiv 1 \pmod{p}$, luego $(a^{2^{s-2} \cdot d})^2 \equiv 1 \pmod{p}$ y por lo tanto $a^{2^{s-2} \cdot d}$ es una raíz cuadrada de 1 módulo p. Por el inciso anterior entonces $a^{2^{s-2} \cdot d} \equiv \pm 1 \pmod{p}$.
- o Iterando el razonamiento anterior concluimos que alguno de los términos de la sucesión $a^{2^r \cdot d}$ es congruente a -1 módulo p o bien todos los términos son congruentes a 1, en particular $a^d \equiv 1 \pmod{p}$.