

Optimisation d'un service de volley-ball

```
<u>Paramètres</u>: → de position: x, y, z
```

- \rightarrow de vitesse : v
- → angulaires : lambda, alpha
- → relatifs au système {ballon} : masse (m), coefficient de frottements (coef)
 - → N : nombre de répétitions

OBJECTIF

Déterminer les zones du terrain à viser lors du service

PLAN

- Modélisation:
 - du terrain
 - de la trajectoire
- Optimisation du service
- Adaptation de la réception
- Conclusion

Le Terrain ·

Le Terrain: 1er choix: 100*100 cases

Le Terrain:

2nd choix: 30*30 cases

Le Terrain:

• • • •

Programme: "Terrain()"

 $\begin{bmatrix} [\], [\$

La trajectoire:

Frottements négligés:

Equation de la trajectoire dans le plan xOz :

$$z = -\frac{1}{2} \frac{g}{(v_0 \cos(\alpha))^2} x^2 + \tan(\alpha) x + h_0$$

<u>La trajectoire</u>: Choix des conditions initiales : $\alpha = 25^{\circ}$ $v_0 = 13m \cdot s^{-1}$ $h_0 = 2,20m$

Frottements négligés:

Equation de la trajectoire dans le plan xOz :

$$z = -\frac{1}{2} \frac{g}{(v_0 \cos(\alpha))^2} x^2 + \tan(\alpha) x + h_0$$

Programme: "trajectoire_sans_frot (g,v,a,h0)"

La trajectoire:

Avec frottements:

$$\vec{F} = -kv^2\hat{v}$$

avec
$$k = \frac{1}{2}C_x \rho S = 0,0095 \text{ kg. } m^{-1}$$

<u>La trajectoire</u>: Choix des conditions initiales : $\alpha = 25^{\circ}$ $v_0 = 13m \cdot s^{-1}$ $h_0 = 2,20m$

Avec frottements:

$$\vec{F} = -kv^2\hat{v}$$

avec
$$k = \frac{1}{2}C_x \rho S = 0,0095 \text{ kg. } m^{-1}$$

Programme:

"traj_avec_frot(t0,tf,x0,y0,z0,v0x,v0y,v0z,N,coef,m)"

<u>La trajectoire</u>: Choix des conditions initiales : $\alpha = 25^{\circ}$ $v_0 = 13m \cdot s^{-1}$ $h_0 = 2,20m$

——— Sans frottement

——— Avec frottements

La trajectoire : Expérimentalement

$$lpha_{exp} = 18^{\circ}$$
 $v_{\rm exp} = 17m \cdot {\rm s}^{-1}$
 $h_{exp} = 2,20m$

<u>La trajectoire</u>: Choix des conditions initiales : $\alpha = 18^{\circ}$ $v_0 = 17m \cdot s^{-1}$ $h_0 = 2,20m$

Sans frottement

Avec frottements

Modèle adopté

Choix de condition initiales diverses mais position du serveur fixe : $x_0 = 0$, $y_0 = 6$, $z_0 = 2.20$

→ mise en place d'un processus aléatoire

Adaptation au positionnement de la réception adverse :

1ère idée : mettre en évidence des « zones à viser » en évitant les joueurs.

Programme: "remplissage_en_fonction_de_recep_3j(paramètres)

2^{ème} idée et objectif final : indiquer au serveur les zones dont la probabilité de gain est maximale.

2^{ème} idée et objectif final : indiquer au serveur les zones dont la probabilité de gain est maximale.

Remplir la matrice Terrain avec les espérances de gain associées à chaque case.

Etape 1 : faire des lancers aléatoires

Etape 1 : faire des lancers aléatoires

Etape 1 : faire des lancers aléatoires

Etape 1 : faire des lancers aléatoires

Etape 1 : faire des lancers aléatoires

Exemple de 1000 lancers:

Programme: "remplissage_CI(paramètres, 1000)"

→ Matrice Terrain remplie avec les conditions initiales

Etape 1 : faire des lancers aléatoires

Etape 1 : faire des lancers aléatoires

Exemple de 1000 lancers:

Programme: "compte_impacts (remplissage_CI)"

Etape 2 : étude de la réception adverse \rightarrow Estimation des probabilités de succès en réception

Etape 2 : étude de la réception adverse \rightarrow Estimation des probabilités de succès en réception

Etape 2 : étude de la réception adverse \rightarrow Estimation des probabilités de succès en réception

Etape 2 : étude de la réception adverse \rightarrow Estimation des probabilités de succès en réception

Modélisation de la réception adverse

Deux gaussiennes : une avant, une arrière

Etape 2 : étude de la réception adverse \rightarrow Estimation des probabilités de succès en réception

Modélisation de la réception adverse

Deux gaussiennes : une avant, une arrière

Rappel de l'objectif final : indiquer au serveur les zones dont la probabilité de gain est maximale.

Rappel de l'objectif final : indiquer au serveur les zones dont la probabilité de gain est maximale.

Probabilité de gain maximale car distance ballon joueur maximale

Rappel de l'objectif final : indiquer au serveur les zones dont la probabilité de gain est maximale.

Imprécision humaine

Programme: "modif_alea(paramètres)"

→ Modifie les conditions initales

$$x \rightarrow x \pm 0 \le x_{er} \le 0.5 m$$

$$y \rightarrow y \pm 0 \le y_{er} \le 0.5 m$$

$$z \rightarrow z \pm 0 \le z_{er} \le 0.2m$$

$$v \rightarrow v \pm 0 \le v_{er} \le 2 \text{ m.s}^{-1}$$

$$\alpha \rightarrow \alpha \pm 0 \leq \alpha_{\rm er} \leq 2^{\circ}$$

$$\lambda \rightarrow \lambda \pm 0 \leq \lambda_{\rm er} \leq 2.5^{\circ}$$

Imprécision humaine

Programme: "modif_alea(paramètres)"

→ Modifie les conditions initales

$$x \rightarrow x \pm 0 \le x_{er} \le 0.5 m$$

$$y \rightarrow y \pm 0 \le y_{er} \le 0.5 m$$

$$z \rightarrow z \pm 0 \le z_{er} \le 0.2m$$

$$v \rightarrow v \pm 0 \le v_{er} \le 2 \text{ m.s}^{-1}$$

$$\alpha \rightarrow \alpha \pm 0 \le \alpha_{\rm er} \le 2^{\circ}$$

$$\lambda \rightarrow \lambda \pm 0 \leq \lambda_{\rm er} \leq 2.5^{\circ}$$

Risque de rater le service

Service faute (out ou filet) \rightarrow -1

Service gagnant (non renvoyé) \rightarrow +1

Sinon $\rightarrow 0$

Etape 3 : remplir la matrice Terrain avec les espérances de gain associées à chaque case et trouver le maximum.

Programme: "case_a_viser_proba (paramètres, N)"

Principe de fonctionnement :

$$\begin{split} & [[x_0, y_0, z_0, v_0, \, \alpha_0, \lambda_0], \\ & [x_1, y_1, z_1, v_1, \, \alpha_1, \lambda_1], \\ & [x_2, y_2, z_2, v_2, \, \alpha_2, \lambda_2]] \end{split}$$

Chaque case = liste de conditions initiales

Via "remplissage_CI"

Principe de fonctionnement :

Pour chaque case : 1000 tests réalisés

Principe de fonctionnement :

Principe de fonctionnement :

[
$$x_1 \pm x_{er}$$
, $y_1 \pm y_{er}$, $z_1 \pm z_{er}$, $v_1 \pm v_{er}$, $\alpha_1 \pm \alpha_{er}$, $\lambda_1 \pm \lambda_{er}$]

Si le service est dans le terrain \rightarrow (i,j)

Principe de fonctionnement :

Principe de fonctionnement :

Principe de fonctionnement :

Après 1000 tests:

Tableau_reussite

58	980	-32
-340	12	489
-890	266	555

Chaque case : $-1000 \le n \le 1000$

Principe de fonctionnement :

Après 1000 tests:

Tableau_reussite

	58	000	22
	36	980	-32
	-340	12	489
	-890	266	555

$$-1 \le p \le 1$$

⇔ Espérance de gain

→ Stocke les cases où l'espérance de gain est maximale

[[[0, 22], [1, 15], [1, 19], [2, 15], [2, 18], [3, 19], [3, 23], [4, 18], [4, 19], [5, 20], [6, 21], [8, 21], [19, 17], [19, 19], [20, 17], [20, 19], [20, 20], [21, 18], [22, 17]], 19, 0.899]

ADAPTATION DE LA RECEPTION

Réalisation du même processus mais pour 4 réceptionneurs :

[[[1, 18], [1, 22], [1, 23], [2, 21], [4, 17], [4, 22], [7, 19], [9, 18], [13,20], [14, 17], [18, 17], [21, 17], [22, 20], [24, 15]], 14, 0.743]

ADAPTATION DE LA RECEPTION

Observation:

Pour 3 réceptionneurs : p=0,899

Pour 4 réceptionneurs : p=0,743

→ Réception à 4 plus efficace

MAIS en pratique : la réception à 3 joueurs est la plus courante

ADAPTATION DE LA RECEPTION

Idée : tester toutes les configurations possibles de réception à 3 et 4 joueurs pour obtenir la réception idéale.

Exemple (pour 3 joueurs):

Programme: "meilleure_recep (paramètres, N)"

- → 6 boucles imbriquées faisant varier les positions x et y des joueurs en réception entre 0 et 30.
- → Programme interminable car complexité trop élevée.

CONCLUSION

→ Objectif global du TIPE atteint

CONCLUSION

- → Objectif global du TIPE atteint
- → Mais modèle qui reste à améliorer car :
 - la modélisation par une gaussienne reste une approximation.
 - le programme ne prend pas en compte le niveau individuel des joueurs.
 - le programme sur l'optimisation de la réception est à revoir.

CONCLUSION

- → Objectif global du TIPE atteint
- → Mais modèle qui reste à améliorer car :
 - la modélisation par une gaussienne reste une approximation.
 - le programme ne prend pas en compte le niveau individuel des joueurs.
 - le programme sur l'optimisation de la réception est à revoir.
- → Idées d'amélioration :
 - études de vidéos des réceptions.
 - réussir à modéliser le niveau de chaque joueur en ajoutant des paramètres.
- réduire la complexité du programme concernant la réception en prenant en compte les fautes de positions entre les joueurs, ou en imaginer un autre.