ABSTRACT ALGEBRA EXERCISE SHEET 1

PROF. DANIEL SKODLERACK

Problem 1 (10 points). (i) Let M be a set. Show that $(\mathfrak{P}(M), \Delta)$ (the power set with the symmetric difference) is an abelian group.

(ii) Show that $(\mathbb{R} \times \mathbb{R}, *)$ with * defined as

$$(a,b)*(c,d) := (a,bd)$$

is a non-abelian semigroup. Find all right- and left-units and find all elements which have a left-inverse with respect to the right-unit (1,1), i.e. all elements x of M for which there is an element y in M such that y * x = (1,1).

Problem 2 (10 points). Find an example of an infinite monoid of whom all elements a satisfy: $a^2 = a$.

Problem 3 (10 points). Let (G,*) be a semigroup such that all translations

$$r_a, l_a: G \to G, a \in G,$$

defined via $l_a(b) := a * b$ and $r_a(b) := b * a$ are bijections. Show that (G, *) is a group.

Problem 4 (10 points). Suppose that (M, *) is an abelian semigroup. Show that for all a_1, \ldots, a_m and all $f \in \text{Bij}(\{1, \ldots, m\})$ we have

$$a_1 * a_2 * \dots * a_m = a_{f(1)} * a_{f(2)} * \dots * a_{f(m)}.$$

Recall: $a_1 * a_2 * ... * a_m$ is iductively defined via

$$a_1 * a_2 * \dots * a_m := (a_1 * a_2 * \dots * a_{m-1}) * a_m, \ m > 1.$$

Problem 5 (10* points). Let (M, *) be a semigroup and let t be an element of M. We define a new structure

$$\odot: M \to M$$

via $a \odot b := a * t * b$. Show that

- (i) (M, \odot) is a monoid if and only if (M, *) is a monoid in which t has an inverse.
- (ii) (M, \odot) is a group if and only if (M, *) is a group.