

飞行力学 Flight Mechanics

Chen, Song (陈松)

School of General Engineering (SGE)

chensong@buaa.edu.cn; Office: D-1109

Contents

- Concept of trim
- Elevator angle to trim
- Elevator hinge moment
- Stick-free longitudinal static stability
- Directional static stability
- Lateral static stability

Road map for Stability and Control.

Questions

- What are the important things the pilot need to bear in mind?
- Why flight control is necessary?

Two different philosophies for stability

If you were the engineer and pilot during the first decade of powered flight, what will you choose?

Problem:

$$V_{\text{trim}} = \sqrt{\frac{2W}{\rho_{\infty} SC_{L_{\text{trim}}}}}$$

$$L = W$$

$$C_{L} \frac{1}{2} \rho V^{2} S = W$$

$$V = \sqrt{\frac{W}{S}} \frac{2}{\rho} \frac{1}{C_{L}}$$

$$V_{\min} = \sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_{l_{\max}}}}$$

(From lecture 4)

If V increase, C_L has to decrease to balance the weight, corresponding to a smaller α . Then, the airplane is no longer in equilibrium.

Solution

 $C_{M,cg}$

Solution

Change the slope of $C_{M,c,g}$

$$\frac{\partial C_{M,cg}}{\partial \alpha_a} \approx a(h - h_n) = -a(h_n - h)$$
(From lecture 11)

Figure 7.24 Illustration of the static margin.

The slope can be changed by shifting the center of gravity $h - h_n$

9

The total moment coefficient $C_{M,c,g}$

Change $C_{M,0}$

Tail deflection angle δ_e

 $C_{L,t}$ as a function of δ_e

$$L_t = C_{L,t} \frac{1}{2} \rho V^2 S_t$$

 $C_{L,t}$ as a function of δ_e

Lift coefficient of the tail

$$C_{L,t} = \frac{\partial C_{L,t}}{\partial \alpha_t} \alpha_t + \frac{\partial C_{L,t}}{\partial \delta_e} \delta_e$$
$$= a_t \alpha_t + \frac{\partial C_{L,t}}{\partial \delta_e} \delta_e$$

$$\Rightarrow C_{M,cg} = C_{M,ac_{wg}} + C_{L_{wb}} \left(h - h_{ac_{wb}} \right) - V_H \left(a_t \alpha_t + \frac{\partial C_{L,t}}{\partial \delta_e} \delta_e \right)$$

Effect of δ_e on $C_{M,c,g}$

$$C_{M,cg} = C_{M,ac_{wg}} + C_{L_{wb}} \left(h - h_{ac_{wb}} \right) - V_H \left(a_t \alpha_t + \frac{\partial C_{L,t}}{\partial \delta_e} \delta_e \right)$$

$$\Rightarrow \frac{\partial C_{M,cg}}{\partial \delta_e} = -V_H \frac{\partial C_{L,t}}{\partial \delta_e}$$

Increment in $C_{M,c,g}$ due to a given elevator deflection δ_e

$$\Rightarrow \Delta C_{M,cg} = -V_H \frac{\partial C_{L,t}}{\partial \delta_{e}}$$

Effect of δ_e on $C_{M,c,g}$

Summary

$$V_{\rm trim} = \sqrt{\frac{2W}{\rho_{\infty} SC_{L_{\rm trim}}}}$$

- Positive $\delta_e \Rightarrow \text{small } \alpha_e \Rightarrow \text{small } L_{trim} \Rightarrow \text{high } V_{trim}$
- Negative $\delta_e \Rightarrow \text{large } \alpha_e \Rightarrow \text{large } L_{trim} \Rightarrow \text{low } V_{trim}$

Elevator angle to trim

Elevator angle to trim

Calculate δ_e at α_n

$$C_{M,cg} = C_{M,0} + \frac{\partial C_{M,cg}}{\partial \alpha_a} \alpha_a$$

$$C_{M,cg} = C_{M,0} + \frac{\partial C_{M,cg}}{\partial \alpha_a} \alpha_a + \Delta C_{M,cg}$$

Increment in $C_{M,cg}$ due to a given elevator deflection δ_e

$$C_{M,cg} = C_{M,0} + \frac{\partial C_{M,cg}}{\partial \alpha_a} \alpha_a - V_H \frac{\partial C_{L,t}}{\partial \delta_e} \delta_e$$

Elevator angle to trim

Calculate δ_e at α_n

$$0 = C_{M,0} + \frac{\partial C_{M,cg}}{\partial \alpha_a} \alpha_n - V_H \frac{\partial C_{L,t}}{\partial \delta_e} \delta_e$$

Solve for the tail deflection angle δ_{trim}

$$\Rightarrow \delta_{trim} = \frac{C_{M,0} + (\partial C_{M,cg} / \partial \alpha_a) \alpha_n}{V_H (\partial C_{L,t} / \partial \delta_e)}$$

Where V_H is known design parameter, $C_{M,0}$, $\left(\partial C_{M,cg}/\partial \alpha_a\right)$ and $\left(\partial C_{L,t}/\partial \delta_e\right)$ are usually obtained from wind tunnel or flight data. (A good example for solving real-world problems!)

Practice – example 7.8

Consider a full-size airplane with the same aerodynamic and design characteristics as the wind tunnel model of Examples 7.3 to 7.7. The airplane has a wing area of 19 m², a weight of 2.27×10^4 N, and an elevator control effectiveness of 0.04. Calculate the elevator deflection angle necessary to trim the airplane at a velocity of 61 m/s at sea level.

J.D. Anderson, 7th edition, page 627

Given parameters:

$$C_{M,0} = 0.06$$
 (from Example 7.5)
$$\frac{C_{M,cg}}{\partial \alpha_a} = -0.0133$$
 (from Example 7.5)
$$\alpha_n = 6.5^{\circ}$$
 (this is the α_a calculated previously)
$$V_H = 0.34$$
 (from Example 7.4)
$$\frac{\partial C_{L,t}}{\partial \delta_a} = 0.04$$
 (given in the preceding information)

Elevator hinge moment

An elevator with hinge

$$C_{h_e} = \frac{H_e}{\frac{1}{2} \rho_{\infty} V_{\infty}^2 S_e c_e} \qquad \bigcirc$$

Elevator hinge moment

Calculation of hinge moment coefficient

$$C_{h_e} = \frac{\partial C_{h_e}}{\partial \alpha_t} \alpha_t + \frac{\partial C_{h_e}}{\partial \delta_e} \delta_e$$

Where $(\partial C_{he}/\partial \alpha_t)$ and $(\partial C_{he}/\partial \delta_e)$ are approximately constant. Its value can be obtained empirically from wind tunnel experiments

Deflection angle at "Stick-free"

$$C_{he} = 0 = \frac{\partial C_{he}}{\partial \alpha_t} \alpha_t + \frac{\partial C_{he}}{\partial \delta_e} \delta_{free}$$

$$\Rightarrow \delta_{free} = -\frac{\partial C_{he}/\partial \alpha_t}{\partial C_{he}/\partial \delta_e} \alpha_t$$

Both partial derivatives are usually negative, thus a positive α_t yields a negative δ_{free}

$$\delta_e \rightarrow \delta_{free}$$

$$C'_{L,t} = a_t \alpha_t + \frac{\partial C_{L,t}}{\partial \delta_e} \delta_{\text{free}}$$

$$C'_{L,t} = a_t \alpha_t - \frac{\partial C_{L,t}}{\partial \delta_e} \frac{\partial C_{h_e} / \partial \alpha_t}{\partial C_{h_e} / \partial \delta_e} \alpha_t$$

$$C_{L,t} = a_t \alpha_t + \frac{\partial C_{L,t}}{\partial \delta_e} \delta_e$$

Define F is free elevator factor:

$$F = 1 - \frac{1}{a_t} \frac{\partial C_{L,t}}{\partial \delta_e} \frac{\partial C_{h_e}}{\partial C_{h_e}} / \partial \alpha_t$$

$$\Rightarrow C'_{L,t} = a_t \alpha_t F$$

 $C_{M,c,g}$ for a free elevator

$$C_{M, cg} = C_{M, ac_{wb}} + C_{L_{wb}}(h - h_{ac_{wb}}) - V_H C_{L,t}$$

$$C'_{M,cg} = C_{M,ac_{wb}} + C_{L_{wb}}(h - h_{ac_{wb}}) - V_{H}C'_{L,t}$$

$$C'_{L,t} = a_{t}\alpha_{t}F$$

$$C'_{M,cg} = C_{M,ac_{wb}} + C_{L_{wb}}(h - h_{ac_{wb}}) - V_H a_t \alpha_t F$$

Another example for solving problems you don't fully understand.

Apply the same analyses as stick-fixed stability

$$C'_{M,0} = C_{M,ac_{wb}} + FV_{H}a_{t}(i_{t} + \varepsilon_{0})$$

$$h'_{n} = h_{ac_{wb}} + FV_{H}\frac{a_{t}}{a}\left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right)$$

$$\frac{\partial C'_{M,cg}}{\partial \alpha} = -a(h'_{n} - h)$$

(7.51)

(7.52)

(7.53)

Where $h'_n - h$ is the stick-free static margin

Practice – example 7.9

Consider the airplane of Example 7.8. Its elevator hinge moment derivatives are $\partial C_{h_e}/\partial \alpha_t = -0.008$ and $\partial C_{h_e}/\partial \delta_e = -0.013$. Assess the *stick-free* static stability of this airplane.

J.D. Anderson, 7th edition, page 634

Directional Static Stability

Effect of the vertical stabilizer

Figure 7.38 Effect of the vertical stabilizer on directional stability.

Directional Static Stability

Moment of vertical tail

$$M_{cg,vt} = F_{vt}l_{vt}$$

Vertical tail volume ratio:

$$V_{vt} = \frac{l_{vt}S_{vt}}{bS}$$

Figure 7.39 Moment arm of the vertical tail.

Dihedral: Upward angle of wings

Figure 7.40 Generation of slideslip.

Figure 7.41 Effect of dihedral.

Cost of dihedral?

Cost of dihedral?

- 1) Actual Lift force $L' = L \cos \Gamma$ is smaller
- 2) Reduce the roll rate, low maneuverability

An example of anhedral wing

Why Y-20 use anhedral wing?

Dihedral vs Anhedral Wings

Definition:

- **Dihedral wing** (上反翼) is where the wing slopes in a positive (upward) degree in relation to the wing base;
- Anhedral wing (下反翼) has a negative (downward) slope from the wing base.

Application:

- Dihedral wing: most passenger airliner, civil aviation aircraft;
- Anhedral wing: high performance military jets, heavy lifting high-wing cargo planes.

Paper airplane experiment (纸飞机实验)

Summary

Stability and control

With the help of modern autopilot system, more aircraft can be designed unstable.

Summary

Page 644 – 645 of Textbook

$$C_{M,0} = C_{M,ac_{wb}} + V_H a_t (i_t + \varepsilon_0)$$

$$\frac{\partial C_{M,\text{cg}}}{\partial \alpha_a} = a \left[h - h_{\text{ac}_{\text{wb}}} - V_H \frac{a_t}{a} \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right) \right]$$

$$C_{M,\text{cg}} = C_{M,\text{ac}_{\text{wb}}} + C_{L,\text{wb}}(h - h_{\text{ac}}) - V_H \left(a_t \alpha_t + \frac{\partial C_{L,t}}{\partial \delta_e} \delta_e \right)$$

$$h_n = h_{\text{ac}_{\text{wb}}} + V_H \frac{a_t}{a} \left(1 - \frac{\partial \varepsilon}{\partial \alpha} \right)$$

$$\delta_{\text{trim}} = \frac{C_{M,0} + (\partial C_{M,cg}/\partial \alpha_a)\alpha_n}{V_H(\partial C_{L,t}/\partial \delta_e)}$$

Space flight & orbital mechanics

Tiangong Space Station

Tianwen-1 and Zhurong

Research on CubeSat

TUM CubeSat

TUM MOVE-II project: https://www.move2space.de/MOVE-II/

Question

• What's the purpose and meaning for space explore?

Starship Explosion: How Elon Musk's SpaceX Got Here | Timeline | WSJ

