EXERCISE PROBLEMS

Note. The first three exercises are just for practice and need not be handed in!

Exercise 1. For natural numbers m and n, show that

$$\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}/m,\mathbb{Z}/n) \cong \mathbb{Z}/\operatorname{gcd}(m,n).$$

Exercise 2. Consider the polynomial ring $R = \mathbb{Z}[x]$. Compute the groups $\operatorname{Ext}_R^n(\mathbb{Z},\mathbb{Z})$, where \mathbb{Z} has the $\mathbb{Z}[x]$ -module structure where x acts by 0.

Exercise 3. Show that for R-modules M_1 , M_2 , and N, there are isomorphisms

$$\operatorname{Ext}_R^n(M_1 \oplus M_2, N) \cong \operatorname{Ext}_R^n(M_1, N) \oplus \operatorname{Ext}_R^n(M_2, N).$$

Similarly, show that

$$\operatorname{Ext}_R^n(M, N_1 \oplus N_2) \cong \operatorname{Ext}_R^n(M, N_1) \oplus \operatorname{Ext}_R^n(M, N_2).$$

Homework problems, to be handed in Feb 21

Exercise 4. (The Mayer-Vietoris sequence.) Consider a topological space X with open subsets $U, V \subseteq X$ such that $U \cup V = X$. Use excision for the pair (X, V) with respect to the subset $W := X \setminus U$ to establish the existence of a long exact sequence (called the Mayer-Vietoris sequence)

$$\cdots \to H^n(X) \xrightarrow{(i_U^*, i_V^*)} H^n(U) \oplus H^n(V) \xrightarrow{j_U^* - j_V^*} H^n(U \cap V) \to H^{n+1}(X) \to \cdots,$$

where $i_U: U \to X$, $i_V: V \to X$, $j_U: U \cap V \to U$, and $j_V: U \cap V \to V$ denote the obvious inclusions. (Hint: you will need the long exact sequences of the two pairs (X, V) and $(U, U \cap V)$. Also note that this exercise uses only the Eilenberg–Steenrod axioms and nothing particular about singular cohomology.)

Exercise 5. Let R be a commutative ring and consider the ring $A = R[x]/(x^2-1)$. We consider R as an A-module where x acts by 1.

(a) Prove that if $R = \mathbb{Z}/2$, then

$$\operatorname{Ext}_A^n(\mathbb{Z}/2,\mathbb{Z}/2) \cong \begin{cases} \mathbb{Z}/2 & \text{if n is even,} \\ 0 & \text{otherwise.} \end{cases}$$

Hint: it might be useful to first prove that $\mathbb{Z}/2[x]/(x^2-1) \cong \mathbb{Z}/2[y]/(y^2)$.

(b) For general R, prove that

$$\operatorname{Ext}\nolimits_A^n(R,R)\cong \begin{cases} R & \text{if } \mathbf{n}=0,\\ \operatorname{tor}\nolimits_2R & \text{if } \mathbf{n} \text{ is odd},\\ R/2 & \text{if } \mathbf{n} \text{ is even and strictly positive}. \end{cases}$$

Hint: in this case it might be useful to first show that $A \cong R[y]/(y(y-2))$.