EECE 2322: Fundamentals of Digital Design and Computer Organization Lecture 4_3: ALU

Xiaolin Xu Department of ECE Northeastern University

Mid-term Exam1

- * When
 - * Thursday, Feb. 17, 2022, 1:35—2:40PM
- * Where
 - Online, as a regular assignment in Canvas
 - * So, no lecture that day!
- * What
 - Slides, Week1—Week4
 - * HWs

Register File

- Register file or Regfile: a number of registers are used to store variables
 - * Could be a number of memory cells, e.g., SRAM array
- * 32 × 32 register file with two read ports and one write port

Register File

* 32 × 32 register file with two read ports and one write port

- * One write port (A3/ WD3).
- * 5-bit addresses(A1, A2, and A3) can each access all 32 registers.
- * Two registers can be read and one register written simultaneously.

ALU: Arithmetic Logic Unit

Digital circuit that performs arithmetic and bitwise operations

ALU: Arithmetic Logic Unit

- Digital circuit that performs arithmetic and bitwise operations
 - Data, Opcode, Status
- * Arithmetic
 - * Add, Add with carry, Subtract, Subtract with borrow ...
- Bite-wise logic
 - * AND, OR, XOR ...

ALU Schematic

- * Abstraction of ALU, three components
 - * Two inputs (A, B)
 - * One output (Y)
 - * Control signal F (3-bit)

$F_{2:0}$	Function
000	A AND B
001	A OR B
010	A + B
011	not used
100	A AND B
101	A OR B
110	A - B
111	SLT

SLT: Set less than (later)

ALU Operations: Addition

- * Adder, already introduced
- Replace the ALU with +

Adde	r
$c_{\text{out}} - \sqrt{\frac{A}{+}}$	c_{in}

C_{in}	Α	В	Cout	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

 $S = A \oplus B$ $C_{\text{out}} = AB$

EEC.

N-bit Adder

- Carry Propagate Adder (CPA)
 - * Full adder symbol, A, B, and S are busses rather than single bits

- Ripple-Carry Adder
 - * 32-bit example

* Performance issue?

* RCA

- * RCA
 - * The Cout of LSB is cascaded/used as the Cin of its LSB+1

- * RCA
 - * The Cout of LSB is cascaded/used as the Cin of its LSB+1
 - * Pros

- * RCA
 - * The Cout of LSB is cascaded/used as the Cin of its LSB+1
 - * Pros
 - Straightforward, easy topology

- * RCA
 - * The Cout of LSB is cascaded/used as the Cin of its LSB+1
 - * Pros
 - Straightforward, easy topology
 - * Cons

* RCA

- * The Cout of LSB is cascaded/used as the Cin of its LSB+1
- * Pros
 - Straightforward, easy topology
- * Cons
 - Long-latency

* RCA

- * The Cout of LSB is cascaded/used as the Cin of its LSB+1
- * Pros
 - Straightforward, easy topology
- * Cons
 - Long-latency
 - * MSB will have to wait for the results from LSB!

* Basic component

* Basic component

- * Basic component
- Cascaded

EECE2322

Critical Path Analysis

* Where is the critical path of the proposed schematic?

Critical Path Analysis

* Where is the critical path of the proposed schematic?

- * Each gate has a delay of T (ideal)
- * How much delay in total?
 - * hand calculation

- * Each gate has a delay of T (ideal)
- * How much delay in total?
 - * hand calculation
 - * 2*T***N*+*T*

- * How much delay for a 32-bit full adder?
- * (T+T)*N+T where N=32=65T

- * How much delay for a 32-bit full adder?
- * (T+T)*N+T where N=32=65T

- * How much delay for a 32-bit full adder?
- * (T+T)*N+T where N=32=65T
- * Good? Bad? What this number means?

- * 65T
- * A7 SoC of iPhone 5s
 - * 28nm CMOS
 - * 1.3GHz (~0.66ns)

- * 65T
- * A7 SoC of iPhone 5s
 - * 28nm CMOS
 - * 1.3GHz (~0.66ns)

- * 65T
- * A7 SoC of iPhone 5s
 - * 28nm CMOS
 - * 1.3GHz (~0.66ns)
- * Satisfying??
 - * T=0.02ns for 28nm
 - No! Not even considering setup/hold!

- * 65T
- * A7 SoC of iPhone 5s
 - * 28nm CMOS
 - * 1.3GHz (~0.66ns)
- * Satisfying??
 - * T=0.02ns for 28nm
 - No! Not even considering setup/hold!

4-bit RCA	0.18ns	5.56GHz
32-bit RCA	1.3ns	769MHz

Need to Optimize the Adder

- Key issue
 - MSBs has to wait for Cout from LSBs
- * How to optimize?
 - * What if we can predict the Cout?

Analysis of Cout

C_{in}	Α	В	Cout	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

 $C_{out} = AB + AC_{in} + BC_{in}$

Analysis of Cout

$$C_{i+1} =$$

C_{in}	Α	В	C_{out}	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

 $C_{out} = AB + AC_{in} + BC_{in}$

Analysis of Cout

$$C_{i+1} = (A_i \cdot B_i) + (A_i \cdot C_i) + (B_i \cdot C_i)$$

C_{in}	Α	В	Cout	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

 $C_{out} = AB + AC_{in} + BC_{in}$

Analysis of Cout

$$C_{i+1} = (A_i \cdot B_i) + (A_i \cdot C_i) + (B_i \cdot C_i)$$
$$= (A_i \cdot B_i) + (A_i + B_i) \cdot C_i$$

$$S = A \oplus B \oplus C_{in}$$

 $C_{out} = AB + AC_{in} + BC_{in}$

EECE2322 Xiaolin Xu

Carry-Lookahead Adder

- Proposed for addressing the low-performance of ripple
 - carry adder
- * How?

$$C_{i+1} = (A_i \cdot B_i) + (A_i \cdot C_i) + (B_i \cdot C_i)$$

= $(A_i \cdot B_i) + (A_i + B_i) \cdot C_i$

- * The i-th adder will **generate** a carry-out, if both A and B are 1, independent of carry_in!
- * The i-th adder will **propagate** a carry-out, if either A or B is 1, and there is a of carry_in!

Analysis of Cout

- Define two new parameters:
 - * Generate: Gi = Ai AND Bi
 - * Propagate: Pi = Ai + Bi

$$C_{i+1}=G_i+P_i\cdot C_i$$

$$C_{i+1} = (A_i \cdot B_i) + (A_i \cdot C_i) + (B_i \cdot C_i)$$
$$= (A_i \cdot B_i) + (A_i + B_i) \cdot C_i$$

Analysis of Cout

- Define two new parameters:
 - * Generate: Gi = Ai AND Bi
 - * Propagate: Pi = Ai + Bi

$$C_{i+1}=G_i+P_i\cdot C_i$$

$$C_{i+1} = (A_i \cdot B_i) + (A_i \cdot C_i) + (B_i \cdot C_i)$$
$$= (A_i \cdot B_i) + (A_i + B_i) \cdot C_i$$

$$C_{i+1}=G_i+P_i\cdot C_i$$

$$C_1 = G_0 + P_0 \cdot C_0$$

$$C_{i+1}=G_i+P_i\cdot C_i$$

$$C_1 = G_0 + P_0 \cdot C_0$$

$$\mathbf{C_2} = \mathbf{G_1} + \mathbf{P_1} \cdot \mathbf{C_1}$$

$$C_{i+1}=G_i+P_i\cdot C_i$$

$$C_1 = G_0 + P_0 \cdot C_0$$

$$\mathbf{C_2} = G_1 + P_1 \cdot C_1$$

= $G_1 + P_1 \cdot (G_0 + P_0 \cdot C_0)$

$$C_{i+1} = G_i + P_i \cdot C_i$$

$$C_1 = G_0 + P_0 \cdot C_0$$

$$\mathbf{C_2} = \mathbf{G_1} + \mathbf{P_1} \cdot \mathbf{C_1}$$

$$= \mathbf{G_1} + \mathbf{P_1} \cdot (\mathbf{G_0} + \mathbf{P_0} \cdot \mathbf{C_0})$$

$$= \mathbf{G_1} + \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0}$$

$$C_{i+1} = G_i + P_i \cdot C_i$$

$$C_1 = G_0 + P_0 \cdot C_0$$

$$\mathbf{C_2} = \mathbf{G_1} + \mathbf{P_1} \cdot \mathbf{C_1}$$

$$= \mathbf{G_1} + \mathbf{P_1} \cdot (\mathbf{G_0} + \mathbf{P_0} \cdot \mathbf{C_0})$$

$$= \mathbf{G_1} + \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0}$$

$$C_{i+1}=G_i+P_i\cdot C_i$$

$$\begin{aligned} \mathbf{C_3} = & \mathbf{G_2} + \mathbf{P_2} \cdot \mathbf{C_2} \\ = & \mathbf{G_2} + \mathbf{P_2} \cdot (\mathbf{G_1} + \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0}) \\ = & \mathbf{G_2} + \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0} \end{aligned}$$

$$C_1 = G_0 + P_0 \cdot C_0$$

 $C_2 = G_1 + P_1 \cdot C_1$
 $= G_1 + P_1 \cdot (G_0 + P_0 \cdot C_0)$

$$C_{i+1} = G_i + P_i \cdot C_i$$

$$\begin{aligned} \mathbf{C_3} = & \mathbf{G_2} + \mathbf{P_2} \cdot \mathbf{C_2} \\ = & \mathbf{G_2} + \mathbf{P_2} \cdot (\mathbf{G_1} + \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0}) \\ = & \mathbf{G_2} + \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0} \end{aligned}$$

 $=G_1+P_1\cdot G_0+P_1\cdot P_0\cdot C_0$

$$\mathbf{C_4} = \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{C_3}$$

$$= \mathbf{G_3} + \mathbf{P_3} \cdot (\mathbf{G_2} + \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0})$$

$$= \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{G_2} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0}$$

$$\begin{aligned} \mathbf{C_4} &= \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{C_3} \\ &= \mathbf{G_3} + \mathbf{P_3} \cdot (\mathbf{G_2} + \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0}) \\ &= \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{G_2} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0} \end{aligned}$$

$$\begin{aligned} \mathbf{C_4} &= \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{C_3} \\ &= \mathbf{G_3} + \mathbf{P_3} \cdot (\mathbf{G_2} + \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0}) \\ &= \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{G_2} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0} \end{aligned}$$

```
G_3
P_3 \cdot G_2
P_3 \cdot P_2 \cdot G_1
P_3 \cdot P_2 \cdot P_1 \cdot G_0
P_3 \cdot P_2 \cdot P_1 \cdot P_0 \cdot C_0
```

$$\begin{aligned} \mathbf{C_4} &= \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{C_3} \\ &= \mathbf{G_3} + \mathbf{P_3} \cdot (\mathbf{G_2} + \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0}) \\ &= \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{G_2} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0} \end{aligned}$$

$$C_4 = G_3$$
+
 $P_3 \cdot G_2$
+
 $P_3 \cdot P_2 \cdot G_1$
+
 $P_3 \cdot P_2 \cdot P_1 \cdot G_0$
+
 $P_3 \cdot P_2 \cdot P_1 \cdot P_0 \cdot C_0$

$$\begin{aligned} \mathbf{C_4} &= \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{C_3} \\ &= \mathbf{G_3} + \mathbf{P_3} \cdot (\mathbf{G_2} + \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0}) \\ &= \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{G_2} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0} \end{aligned}$$

$$\begin{aligned} \mathbf{C_4} &= \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{C_3} \\ &= \mathbf{G_3} + \mathbf{P_3} \cdot (\mathbf{G_2} + \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0}) \\ &= \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{G_2} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0} \end{aligned}$$

$$\begin{aligned} \mathbf{C_4} &= \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{C_3} \\ &= \mathbf{G_3} + \mathbf{P_3} \cdot (\mathbf{G_2} + \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0}) \\ &= \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{G_2} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0} \end{aligned}$$

$$\begin{aligned} \mathbf{C_4} &= \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{C_3} \\ &= \mathbf{G_3} + \mathbf{P_3} \cdot (\mathbf{G_2} + \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0}) \\ &= \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{G_2} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0} \end{aligned}$$

$$\begin{aligned} \mathbf{C_4} &= \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{C_3} \\ &= \mathbf{G_3} + \mathbf{P_3} \cdot (\mathbf{G_2} + \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0}) \\ &= \mathbf{G_3} + \mathbf{P_3} \cdot \mathbf{G_2} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{G_1} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{G_0} + \mathbf{P_3} \cdot \mathbf{P_2} \cdot \mathbf{P_1} \cdot \mathbf{P_0} \cdot \mathbf{C_0} \end{aligned}$$

- * Advantages?
 - * The latency of Ci+1 is constant! Not dependent on N anymore

* Any disadvantages?

- Any disadvantages?
 - * With the adder becomes wider, the circuit will be very complicated!

Further Optimization: Block of Adders

- * Applying the concepts of "generate" and "propagate" to multiple-bit blocks/adders
 - * A block *generates* a carry_out independent of the carry_in
 - * A block *propagates* a carry_out if there is a carry_in
- * Two new variables:
 - * Gi:j and Pi:j

$$G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))$$

$$P_{3:0} = P_3 P_2 P_1 P_0$$

Further Optimization: Block of Adders

- * Applying the concepts of "generate" and "propagate" to multiple-bit blocks/adders
 - * A block *generates* a carry_out independent of the carry_in
 - * A block *propagates* a carry_out if there is a carry_in
- * Two new variables:
 - * Gi:j and Pi:j

$$G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))$$

$$P_{3:0} = P_3 P_2 P_1 P_0$$

$$C_i = G_{i:j} + P_{i:j}C_j$$

32-bit CLA Example

EECE2322

Xiaolin Xu

32-bit CLA Example

- Timing analysis
 - t_{pg}: Propagation delay of a single AND/OR gate for generate/ propagate
 - * tpg_block: Propagation delay of a single AND/OR gate for generate/ propagate *of a block*
 - tand_or : Propagation delay from C_in to C_out

 C_3

 $B_{7:4}$ $A_{7:4}$

4-bit CLA

 $B_{3:0} A_{3:0}$

4-bit CLA

32-bit CLA Example

- * Timing analysis
 - * t_{pg}: Propagation delay of a single AND/OR gate for generate/ propagate

$$t_{CLA} = t_{pg} + t_{pg_block} + \left(\frac{N}{k} - 1\right) t_{AND_OR} + k t_{FA}$$

* tand_or : Propagation delay from C_in to C_out

 S_2

 S_1

 G_3

ALU Operations: Subtraction

- * Replace the ALU with (easy!)
- * How to implement? Do we need a new circuit? (easy?)

* Recall the two's complement number representation

- * $17_{10} = 111111111_2 00010001_2 + 1$
 - * = 1110111102 + 1
 - * = 11101111₂
 - * = -1710
 - * The MSB has a negative weight -2^(n-1)
- * Hardware mapping?

$$Y = A - B$$

- * $17_{10} = 111111111_2 00010001_2 + 1$
 - * = 1110111102 + 1
 - * = 111011111₂
 - * = -1710
 - * The MSB has a negative weight -2^(n-1)
- * Hardware mapping?

$$Y = A - B = A + \overline{B} + 1$$

- * Hardware mapping?
 - Step1: inverting all bit in B
 - Step2: add "1" to ~B
 - Step3: adding two variables

$$Y = A - B = A + \overline{B} + 1$$

- * Hardware mapping?
 - * Step1: inverting all bit in B
 - * Step2: add "1" to ~B
 - Step3: adding two variables

$$Y = A - B = A + \overline{B} + 1$$

- * Determines whether two binary numbers are equal or if one is greater or less than the other
- * How to implement?

- * Determines whether two binary numbers are equal or if one is greater or less than the other
- * How to implement?
 - * Equal

* Determines whether two binary numbers are equal or if one is greater or less than the other

* How to implement?

* Equal

* Determines whether two binary numbers are equal or if one is greater or less than the other

* How to implement?

- * Equal
- Unequal

* Determines whether two binary numbers are equal or if one is greater or less than the other

- * How to implement?
 - * Equal
 - * Unequal

Recall the ALU Schematic

- * Abstraction of ALU, three components
 - * Two inputs (A, B)
 - * One output (Y)
 - Control signal F (3-bit)
- * Most operations done!

$F_{2:0}$	Function
000	A AND B
001	A OR B
010	A + B
011	not used
100	A AND \overline{B}
101	A OR B
110	A - B
111	SLT
-51	

EECE2322 Xiaolin Xu

SLT: Set if Less Than

- * Y is set to 1 if A is less than B
 - * A<B, Y=1
 - * Otherwise, Y=0
- * Simply computing Y = A B
 - * If negative, then Y=1
 - * Otherwise, Y = 0

An ALU Design

- * Abstraction of ALU, three components
- * All operations done!

$F_{2:0}$	Function
000	A AND B
001	A OR B
010	A + B
011	not used
100	A AND \overline{B}
101	A OR B
110	A - B
111	SLT

Other Operations: Shifter

- Move bits toward left or right
 - Logical shifter shifts the number to the left (LSL) or right (LSR) and fills empty spots with 0s
 - * 11001 LSR 2 = ____; 11001 LSL 2 = ____;
 - * Arithmetic shifter
 - Same as a logical shifter
 - * Right shifts fills the most significant bits with a copy of the old most significant bit (msb)
 - * 11001 ASR 2 = ____; 11001 ASL 2 = ____;

Other Operations: Shifter

- * Move bits toward left or right
 - Logical shifter shifts the number to the left (LSL) or right (LSR) and fills empty spots with 0s
 - * 11001 LSR 2 =____; 11001 LSL 2 = ____;
 - Arithmetic shifter
 - Same as a logical shifter
 - Right shifts fills the most significant bits with a copy of the old most significant bit (msb)
 - * 11001 ASR 2 = ____; 11001 ASL 2 = ____;

Other Operations: Rotator

- * Rotator—rotates number in circle such that empty spots are filled with bits shifted off the other end.
 - * 11001 ROR 2 = ____; 11001 ROL 2 = ____;