Chapter 1 Homework

1. Write a formula expressing $z = \langle \langle x,y \rangle, \langle v,w \rangle \rangle$ using just ϵ and =.

SOLUTION.

$$\begin{aligned} & < x,y> = \{\{x\},\{x,y\}\} \\ & < v,w> = \{\{v\},\{v,w\}\} \\ & z = < < x,y>, < v,w> > = \{\{< x,y>\}, \{< x,y>, < v,w>\}\} = \{\{\{\{x\},\{x,y\}\}\}, \{\{\{x\},\{x,y\}\}\}, \{\{v\},\{y,w\}\}\}\} \\ & \{v,w\}\}\}\} \end{aligned}$$

2. (a) Show that $\alpha < \beta$ implies that $\gamma + \alpha < \gamma + \beta$ and $\alpha + \gamma \leqslant \beta + \gamma$. (b) Give an example to show that the " \leq " cannot be replaced by "<". (c) Also show: $\alpha \leq \beta \rightarrow \exists ! \delta(\alpha + \delta = \beta)$.

SOLUTION.

- (a) Suppose $\alpha < \beta$.
- (i) The element $<\alpha,1>\in\beta\times\{1\}$, but $<\alpha,1>\notin\alpha\times\{1\}$, which implies that $\gamma\times\{0\}\cup\alpha\times\{1\}<\gamma\times\{0\}\cup\beta\times\{1\}$ with the ordering from the definition of "+".
- (ii) Towards a contradiction, suppose $\alpha + \gamma > \beta + \gamma$. Then there is some element in $c \in \alpha \times \{0\} \cup \gamma \times \{1\}$ such that $c \notin \beta \times \{0\} \cup \gamma \times \{1\}$. This implies $\beta > \alpha$, a contradiction.
- (b) Let $\gamma = \omega$, $\alpha = 0$, and $\beta = 1$. Then $0 + \omega = \omega = 1 + \omega$, and hence there is no strict inequality.
- (c) If $\alpha = \beta$, then existence is trivial ($\delta = 0$) and uniqueness is clear since, for $\delta > 0$, $\beta + \delta > \beta$. So suppose $\alpha < \beta$.

Existence: Consider the set $\beta - \alpha$ (the complement) which exists by comprehension. By AC, this is well-orderable, hence isomorphic to some ordinal δ under that ordering R. This allows us to construct a well-ordering of the set β as $\alpha + \delta$, where the ordering on α is the ordinary \in relation, and the ordering R for elements of the set $\beta - \alpha$. Thus as we've constructed it, the set $\alpha + \delta$ is well-ordered and has the same elements as β and hence must be isomorphic to β .

Uniqueness: Suppose $\alpha + \delta_1 = \alpha + \delta_2 = \beta$. Then by (a), $\delta_1 \not< \delta_2$ and $\delta_2 \not< \delta_1$, hence $\delta_1 = \delta_2$.