Dezvoltarea sistemelor care învață singure - probleme de regresie

Obiective

Dezvoltarea sistemelor care învaţă singure. Algoritmi de învăţare supervizată. Modele liniare. Specificarea, proiectarea şi implementarea sistemelor care învaţă singure cum să rezolve probleme de regresie.

Aspecte teoretice

Proiectarea și dezvoltarea sistemelor care învață singure.

Algoritmi de învățare bazați pe:

- metoda celor mai mici pătrate
- metoda gradientului descendent
- algoritmi evolutivi

Termen de predare

Laborator 4

Cerințe

Specificați, proiectați și implementați o aplicație pentru rezolvarea uneia dintre problemele următoare cu ajutorul unui sistem care învață singur să rezolve problema. Sistemul trebuie să permită alegerea unuia dintre cei 3 algoritmi de învățare:

Tehnica	Cod logic	Interfață	Aplicația overall
metoda celor mai	40	20	40
mici pătrate			
metoda gradientului	70	20	70
descendent			
algoritmi evolutivi	110	20	110

Total 500p

Punctaj minim de realizat pentru validarea laboratorului 200p

Aplicaţia trebuie să permită:

- Încărcarea datelor problemei (probleme cu date deja definite de către programator, probleme cu date definite de utilizator)
- Alegerea și parametrizarea metodei de rezolvare a problemei
- Prezentarea rezultatelor procesului de învăţare (antrenare și testare)

Aplicaţia poate fi realizată în 2 variante:

varianta 1. Tehnica de învățare se bazează pe un tool deja existent (50% din punctaj)

varianta 2. Tehnica de învățare se bazează pe cod dezvoltat de student (100% din punctaj) Studenții pot alege care variantă de aplicație doresc să o realizeze.

Sisteme disponibile care implementează algoritmi de învățare:

- 1. Weka http://www.cs.waikato.ac.nz/ml/weka/
- 2. Matlab http://www.mathworks.com/products/neural-network/
- 3. OpenCV http://docs.opencv.org/modules/ml/doc/neural_networks.html

- 4. Scikit-learn http://scikit-learn.org/stable/
- 5. GPLAB http://gplab.sourceforge.net/
- 6. ECJ http://cs.gmu.edu/~eclab/projects/ecj/
- 1. Să se rezolve problema **aproximării calității betonului** pe baza ingredientelor folosite la prepararea lui. Datele de test se vor lua de aici http://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test.
- 2. Să se rezolve problema **aproximării scorului UPDRS de evaluare a bolii Parkinson** pe baza unor informații preluate de la pacienții bolnavi (sex, vârstă, semnalele vocale). Datele de test se vor lua de aici http://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring.
- 3. Să se aproximeze **poziția relativă pe axă a unor imagini de tomografie** pe baza unor informații preluate de la pacienți (id, histrograma structurii osoase, histograma regiunilor cu aer). Datele de test se vor lua de aici http://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis.