Outline of the lecture

This lecture introduces **Bayes rule** and Bayesian learning for linear models.

The goal is for you to:

- ☐ Learn how Bayes rule is derived.
- ☐ Learn to apply Bayes rule to simple examples.
- ☐ Learn how to apply Bayesian learning to linear models.
- ☐ Learn the mechanics of conjugate analysis.

Problem 1: Diagnoses

- ☐ The doctor has bad news and good news.
- ☐ The bad news is that you tested positive for a serious disease, and that **the test is 99% accurate** (i.e., the probability of testing positive given that you have the disease is 0.99, as is the probability of testing negative given that you don't have the disease).

Bayes rule

Bayes rule enables us to reverse probabilities:

$$\frac{P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Learning and Bayesian inference

Problem 1: Diagnoses

The test is 99% accurate: P(T=1|D=1) = 0.99 and P(T=0|D=0) = 0.99 Where T denotes test and D denotes disease.

The disease affects 1 in 10000: P(D=1) = 0.0001

$$P(D=1|T=1) = \frac{P(T=1|D=1)P(D=1)}{P(T=1|D=0)P(D=0)+P(T=1|D=1)P(D=1)}$$

Speech recognition

P(words | sound) α P(sound | words) P(words)

Final beliefs

Likelihood of data eg mixture of Gaussians

Prior language model

eg unigrams

Hidden Markov Model (HMM)

"Recognize speech"

"Wreck a nice beach"

Bayesian learning for model parameters

Step 1: Given n data, $D = x_{1:n} = \{x_1, x_2, ..., x_n\}$, write down the expression for the likelihood:

$$p(D \mid \theta)$$

Step 2: Specify a **prior**: $p(\theta)$

Step 3: Compute the **posterior**:

$$\frac{p(\boldsymbol{\theta}|\boldsymbol{D})}{p(\boldsymbol{D})} = \frac{p(\boldsymbol{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\boldsymbol{D})}$$

The likelihood is a Gaussian, $\mathcal{N}(\mathbf{y}|\mathbf{X}\boldsymbol{\theta}, \sigma^2\mathbf{I}_n)$. The conjugate prior is also a Gaussian, which we will denote by $p(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta}|\boldsymbol{\theta}_0, \mathbf{V}_0)$.

Using Bayes rule for Gaussians, the posterior is given by

$$p(\boldsymbol{\theta}|\mathbf{X}, \mathbf{y}, \sigma^2) \propto \mathcal{N}(\boldsymbol{\theta}|\boldsymbol{\theta}_0, \mathbf{V}_0) \mathcal{N}(\mathbf{y}|\mathbf{X}\boldsymbol{\theta}, \sigma^2 \mathbf{I}_n) = \mathcal{N}(\boldsymbol{\theta}|\boldsymbol{\theta}_n, \mathbf{V}_n)$$

$$\boldsymbol{\theta}_n = \mathbf{V}_n \mathbf{V}_0^{-1} \boldsymbol{\theta}_0 + \frac{1}{\sigma^2} \mathbf{V}_n \mathbf{X}^T \mathbf{y}$$

$$\mathbf{V}_n^{-1} = \mathbf{V}_0^{-1} + \frac{1}{\sigma^2} \mathbf{X}^T \mathbf{X}$$

Assume G2 is Known.

$$P(\Theta | X, Y, G^{2}) \propto P(Y | X, \Theta, G^{2}) P(\Theta)$$

$$\propto e^{-\frac{1}{2} (Y - X\Theta)^{T} (G^{2} I)^{-1} (Y - X\Theta)} e^{-\frac{1}{2} (\Theta - \Theta_{0})^{T} V_{0}^{-1} (\Theta - \Theta_{0})}$$

$$= e^{-\frac{1}{2} \left\{ Y^{T} (G^{2} I)^{-1} Y - 2 Y^{T} (G^{2} I)^{-1} X \Theta + \Theta^{T} X^{T} (G^{2} I)^{-1} X \Theta + \Theta^{T} V_{0}^{-1} \Theta + \Theta^{T} V_{0}^{-1} \Theta \right\}}$$

$$= e^{-\frac{1}{2} \left\{ const + \Theta^{T} \left(X^{T} (G^{2} I)^{-1} X + V_{0}^{-1} \right) \Theta - 2 \left(Y^{T} (G^{2} I)^{-1} X + \Theta_{0}^{T} V_{0}^{-1} \right) \Theta \right\}}$$

$$= e^{-\frac{1}{2} \left\{ const + \Theta^{T} V_{0}^{-1} \Theta - 2 \left(Y^{T} X + \Theta^{T} V_{0}^{-1} \right) \Theta \right\}}$$

$$= e^{-\frac{1}{2} \left\{ const + \Theta^{T} V_{0}^{-1} \Theta - 2 \Theta_{0}^{T} V_{0}^{-1} \Theta + 2 \Theta_{0}^{T} V_{0}^{-1} \Theta - 2 \left(Y^{T} X + \Theta^{T} V_{0}^{-1} \right) \Theta \right\}}$$

$$= e^{-\frac{1}{2} \left\{ const + \Theta^{T} V_{0}^{-1} \Theta - 2 \Theta_{0}^{T} V_{0}^{-1} \Theta + 2 \Theta_{0}^{T} V_{0}^{-1} \Theta - 2 \left(Y^{T} X + \Theta^{T} V_{0}^{-1} \right) \Theta \right\}}$$

$$= e^{-\frac{1}{2} \left\{ const + \Theta^{T} V_{0}^{-1} \Theta - 2 \Theta_{0}^{T} V_{0}^{-1} \Theta + 2 \Theta_{0}^{T} V_{0}^{-1} \Theta - 2 \left(Y^{T} X + \Theta^{T} V_{0}^{-1} \right) \Theta \right\}}$$

$$= e^{-\frac{1}{2} \left\{ const + \Theta^{T} V_{0}^{-1} \Theta - 2 \Theta_{0}^{T} V_{0}^{-1} \Theta + 2 \Theta_{0}^{T} V_{0}^{-1} \Theta - 2 \left(Y^{T} X + \Theta^{T} V_{0}^{-1} \right) \Theta \right\}}$$

$$= e^{-\frac{1}{2} \left\{ const + \Theta^{T} V_{0}^{-1} \Theta - 2 \Theta_{0}^{T} V_{0}^{-1} \Theta + 2 \Theta_{0}^{T} V_{0}^{-1} \Theta - 2 \left(Y^{T} X + \Theta^{T} V_{0}^{-1} \right) \Theta \right\}}$$

$$\Theta_{n}^{T} V_{n}^{-1} - Y_{n}^{T} X - \Theta_{0}^{T} V_{0}^{-1} = 0 \qquad \text{when } \Theta_{n} = V_{n} \left[V_{0}^{T} \Theta_{0} + \frac{X_{n}^{T} Y_{0}^{T}}{G^{2}} \right]$$

and when this happens, we have:

$$P(\Theta \mid X, Y, G^2) \propto e^{-\frac{1}{2}(\Theta - \Theta_n) V_n^{-1}(\Theta - \Theta_n)}$$

By the definition of a multivariate Gaussian,

$$\int e^{-\frac{1}{2}(\Theta-\Theta_n)V_n^{-1}(\Theta-\Theta_n)}d\theta = \left|2\Pi V_n\right|^{\frac{1}{2}}$$

$$P(\Theta|X,Y,G^2) = |2\Pi V_n|^{-1/2} e^{-\frac{1}{2}(\Theta-\Theta_n)^T V_n^{-1}(\Theta-\Theta_n)}$$

Consider the special case where $\theta_0 = \mathbf{0}$ and $\mathbf{V}_0 = \tau_0^2 \mathbf{I}_d$, which is a spherical Gaussian prior. Then the posterior mean reduces to

$$egin{aligned} oldsymbol{ heta}_n &= & rac{1}{\sigma^2} \mathbf{V}_N \mathbf{X}^T \mathbf{y} = rac{1}{\sigma^2} \left(rac{1}{ au_0^2} \mathbf{I}_d + rac{1}{\sigma^2} \mathbf{X}^T \mathbf{X}
ight)^{-1} \mathbf{X}^T \mathbf{y} \ &= & \left(\lambda \mathbf{I}_d + \mathbf{X}^T \mathbf{X}
ight)^{-1} \mathbf{X}^T \mathbf{y} \end{aligned}$$

where we have defined $\lambda := \frac{\sigma^2}{\tau_0^2}$. We have therefore recovered **ridge regression** again!

Bayesian versus ML plugin prediction

Posterior mean:
$$\boldsymbol{\theta}_{n} = (\lambda \mathbf{I}_{d} + \mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{y}$$

Posterior variance:
$$V_n = \sigma^2 (\lambda I_d + X^T X)^{-1}$$

To predict, Bayesians marginalize over the posterior. Let x_* be a new input. The prediction, given the training data D=(X, y), is:

$$P(y|x_*,D,\sigma^2) = \int \mathcal{N}(y|x_*^T\theta,\sigma^2) \mathcal{N}(\theta|\theta_n,V_n) d\theta$$
$$= \mathcal{N}(y|x_*^T\theta_n,\sigma^2 + x_*^TV_nx_*)$$

On the other hand, the ML plugin predictor is:

$$P(y|x_*,D,\sigma^2) = \mathcal{N}(y|x_*^T\theta_{ML},\sigma^2)$$

Bayesian versus ML plug-in prediction

