$\mathsf{Hedge}(\eta)$

The **Hedge**(η)Algorithm

Yoav Freund

January 8, 2014

Outline

```
Hedge(\eta)Algorithm Hedging vs. Halving
```

Bound on total loss

```
Upper bound on \sum_{i=1}^{N} w_i^{T+1}
Lower bound on \sum_{i=1}^{N} w_i^{T+1}
Combining Upper and Lower bounds
```

tuning η

Lower Bounds

The hedging problem

- N possible actions
- At each time step t = 1, 2, ..., T:
 - Algorithm chooses a distribution p^t over actions.
 - ▶ Losses $0 \le \ell_i^t \le 1$ of all actions i = 1, ..., N are revealed.
 - ▶ Algorithm suffers expected loss p^t · ℓ^t
- Goal: minimize total expected loss
- ▶ What is p^t?
 - Distribution wealth in a portfolio.
 - ▶ The algorithm chooses one of the actions at random.
- Prediction is a game played between algorithm and nature, in which the goal of the algorithm is to minimize regret.

Experts vs. actions

- Experts interaction (1 round):
 - 1. **Experts** make their predictions.
 - 2. **Algorithm** makes it's prediction.
 - 3. Nature Chooses label/outcome.
 - 4. **Loss** is associated with each action according to a loss function.
- Actions interaction (1 round):
 - 1. Algorithm a distribution over the actions.
 - 2. **Nature** reveals the loss of each action.
 - Loss of algorithm is expected loss wrt to chosen distribution.

Hedging vs. Halving / pros and cons

- Expert framework assumes more structure: algorithm gets expert predictions before choosing it's own prediction. The set of loss vectors is restricted - better for algorithm. Experts framework achieves better bounds.
- Actions framework assumes bounded losses: In exprets framework, we can deal with some unbounded loss functions.
- Partial visibility: In experts framework, the outcome defines all of the losses. In actions framework you might not know the loss of all of the actions (the multiple-arm-bandit problem).
- Actions framework is simple and general: We can usually get bounds in the experts framework using algorithm designed for the actions framework, but the constants can be worse.

Hedging vs. Halving

- Like halving we want to zoom into best action.
- Unlike halving no action is perfect.
- Basic idea reduce probability of lossy actions, but not all the way to zero.
- Modified Goal: minimize Regret=difference between expected total loss and minimal total loss of repeating one action.

$$\sum_{t=1}^{T} \mathbf{p}^t \cdot \ell^t - \min_{i} \left(\sum_{t=1}^{T} \ell_i^t \right)$$

Using Hedge to generalize halving alg.

- Suppose that there is no perfect action.
- \blacktriangleright actions: i for $i \in (1, 2, ..., N)$
- Now each iteration t ∈ {1,..., T} of game consists of two steps:
 - Algorithm chooses a distribution $\mathbf{p}^t = (\mathbf{p}_1^t, \dots, \mathbf{p}_N^t)$ over the actions.
 - Nature chooses the loss of each action: $\ell^t = (\ell^t_1, \dots, \ell^t_N)$, $\ell^t_i \in [0, 1]$
- ▶ Algorithm's cumulative loss is $L_A^T = \sum_{t=1}^T \mathbf{p}^t \cdot \ell^t$
- ► Cumulative loss of action *i* is $L_i^t = \sum_{t=1}^T \ell_i^t$
- Our goal is to minimize the regret: L^t_A min_i L^t_i for all t and all possible loss sequences.

The **Hedge**(η)Algorithm

Consider action *i* at time *t*

Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Weight:

$$\mathbf{w}_i^t = \mathbf{e}^{-\eta L_i^t}$$

- ▶ $\eta > 0$ is the learning rate parameter. Halving: $\eta \to \infty$
- Probability:

Bound on the loss of $Hedge(\eta)$ Algorithm

► Theorem (main theorem)
For any sequence of loss vectors ℓ^1, \dots, ℓ^T , and for any $i \in \{1, \dots, N\}$, we have

$$L_{\mathsf{Hedge}(\eta)} \leq \frac{\mathsf{ln}(N) + \eta L_i}{1 - e^{-\eta}}.$$

► Proof: by combining upper and lower bounds on $\sum_{i=1}^{N} w_i^{T+1}$

Upper bound on $\sum_{i=1}^{N} w_i^{T+1}$

Lemma (upper bound)

For any sequence of loss vectors ℓ^1, \dots, ℓ^T we have

$$\ln\left(\sum_{i=1}^N w_i^{T+1}\right) \leq -(1-e^{-\eta})L_{\mathsf{Hedge}(\eta)}.$$

Proof of upper bound (slide 1)

- ▶ If $a \ge 0$ then a^r is convex.
- ▶ For $r \in [0, 1]$, $a^r \le 1 (1 a)r$

Proof of upper bound (slide 2)

Applying $a^r \le 1 - (1 - a)^r$ where $a = e^{-\eta}, r = \ell_i^t$

$$\sum_{i=1}^{N} w_i^{t+1} = \sum_{i=1}^{N} w_i^t e^{-\eta \ell_i^t}
\leq \sum_{i=1}^{N} w_i^t \left(1 - (1 - e^{-\eta}) \ell_i^t \right)
= \left(\sum_{i=1}^{N} w_i^t \right) \left(1 - (1 - e^{-\eta}) \frac{\mathbf{w}^t}{\sum_{i=1}^{N} w_i^t} \cdot \ell^t \right)
= \left(\sum_{i=1}^{N} w_i^t \right) \left(1 - (1 - e^{-\eta}) \mathbf{p}^t \cdot \ell^t \right)$$

Proof of upper bound (slide 3)

Combining

$$\sum_{i=1}^N w_i^{t+1} \leq \left(\sum_{i=1}^N w_i^t\right) \left(1 - (1 - e^{-\eta})\mathbf{p}^t \cdot \ell^t\right)$$

- \blacktriangleright for $t = 1, \dots, T$
- yields

$$\sum_{i=1}^{N} w_i^{T+1} \leq N \prod_{t=1}^{T} (1 - (1 - e^{-\eta}) \mathbf{p}^t \cdot \ell^t)$$

$$\leq \exp \left(\ln N - (1 - e^{-\eta}) \sum_{t=1}^{T} \mathbf{p}^t \cdot \ell^t \right)$$

since
$$1 + x \le e^x$$
 for $x = -(1 - e^{-\eta})$.

Lower bound on $\sum_{i=1}^{N} w_i^{T+1}$

For any
$$j = 1, ..., N$$
:

$$\sum_{i=1}^{N} w_i^{T+1} \ge w_j^{T+1} = e^{-\eta L_j}$$

Combining Upper and Lower bounds

► Combining bounds on $\ln \left(\sum_{i=1}^{N} w_i^{T+1} \right)$

$$-\eta L_{j} \leq \ln \sum_{i=1}^{N} w_{i}^{T+1} \leq \ln N - (1 - e^{-\eta}) \sum_{t=1}^{T} \mathbf{p}^{t} \cdot \ell^{t}$$

► Reversing signs, using $L_{\text{Hedge}(\eta)} = \sum_{t=1}^{T} \mathbf{p}^t \cdot \ell^t$ and reorganizing we get

$$L_{\mathsf{Hedge}(\eta)} \leq \frac{\ln N + \eta L_i}{1 - e^{-\eta}}$$

Tuning η

How to Use Expert Advice

451

Tuning η

- ▶ Suppose $\min_i L_i < \tilde{L}$
- set

$$\eta = \ln\left(1 + \sqrt{\frac{2 \ln N}{\tilde{L}}}\right) pprox \sqrt{\frac{2 \ln N}{\tilde{L}}}$$

Then

$$L_{\mathsf{Hedge}(\eta)} \leq \frac{-\ln(w_i^1) + \eta L_i}{1 - e^{-\eta}} \leq \min_i L_i + \sqrt{2\tilde{L} \ln N} + \ln N$$

Tuning η as a function of T

▶ trivially $\min_i L_i \leq T$, yielding

$$L_{\mathsf{Hedge}(\eta)} \leq \min_i L_i + \sqrt{2T \ln N} + \ln N$$

per iteration we get:

$$\frac{L_{\mathsf{Hedge}(\eta)}}{T} \leq \min_{i} \frac{L_{i}}{T} + \sqrt{\frac{2 \ln N}{T}} + \frac{\ln N}{T}$$

How good is this bound?

- Very good! There is a closely matching lower bound!
- There exists a stochastic adversarial strategy such that with high probability for any hedging strategy S after T trials

$$L_{S} - \min_{i} L_{i} \geq (1 - o(1))\sqrt{2T \ln N}$$

► The adversarial strategy is random, extremely simple, and does not depend on the hedging strategy!

The adversarial strategy

- Adversary sets each loss ℓ_i^t indepedently at random to 0 or 1 with equal probabilities (1/2, 1/2).
- ▶ Obviously, nothing to learn ! $L_S \approx T/2$.
- ▶ On the other hand $\min_i L_i \approx T/2 \sqrt{2T \ln N}$
- ► The difference L_S min_i L_i is due to unlearnable random fluctuations!
- Detailed proof in "Adaptive Game playing using multiplicative weights" Freund and Schapire.

The adversarial construction

Summary

▶ Given learning rate η the **Hedge**(η)algorithm satisfies

$$L_{\mathsf{Hedge}(\eta)} \leq rac{\ln N + \eta L_i}{1 - e^{-\eta}}$$

▶ Setting $\eta \approx \sqrt{\frac{2 \ln N}{T}}$ guarantees

$$L_{\mathsf{Hedge}(\eta)} \leq \min_{i} L_{i} + \sqrt{2T \ln N} + \ln N$$

A trivial random data, for which there is nothing to be learned forces any algorithm to suffer this total regret.