선형대수학 비대면 강의

12주 2차시 수업

2020년 06월 05일

조 성희

Written by Cho Sung-hee

7장 고유값과 고유벡터 (Eigenvalues & Eigenvectors)

7.1 고유값, 고유벡터

7.2 대각화(Diagonalization)

7.3 대칭행렬(Symmetric)과 수직 대각화(Orthogonal Diagonalization)

Written by Cho Sung-hee

7.1 고유값(Eigenvalues), 고유벡터(Eigenvalues)

정 의 $7.1.1\ F$ 를 체, $A\in Mat_{n\times n}(F)$ 라고 하자. 다음의 등식

$$\mathbf{v} = \lambda \mathbf{v}$$

를 만족하는 영벡터가 아닌 벡터 $\mathbf{x} = \begin{bmatrix} x_2 \\ \vdots \end{bmatrix}$ $\in F^n$ 이 존재할 때, 스칼라 $\lambda \in F$ 를 행렬 A 의

고유값이라고 하고, 이 때의 벡터 \mathbf{x} 를 고유값 λ 에 해당하는 A 의 고유벡터라고 한다.

보기 7.1.1 행렬 $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \in Mat_{2\times 2}(\mathbb{R})$ 에 대하여 다음의 등식이 성립한다.

$$\begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

따라서, $\lambda = 3$ 은 A의 고유값이고, 이 때의 벡터 $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 는 고유값 $\lambda = 3$ 에 해당하는 A의 고유벡터이다.

또한, 행렬 A 에 대하여 다음의 등식도 성립하므로,

$$\begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -1 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

 $\lambda = -1$ 도 A 의 고유값이고, 이 때의 벡터 $\mathbf{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 은 고유값 $\lambda = -1$ 에 해당하는 A 의 고

행렬 $A \in Mat_{n \times n}(F)$ 의 고유값과 고유벡터를 구하기 위하여 등식 $A\mathbf{x} = \lambda \mathbf{x}$ 를 살펴보면 다음의 네 가지 등식들은 모두 동치임을 알 수 있다.

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$\Longleftrightarrow A\mathbf{x} = \lambda I_n\mathbf{x}$$

$$\Leftrightarrow A\mathbf{x} - \lambda I_n\mathbf{x} = \mathbf{0}$$

$$\iff (A - \lambda I_n)\mathbf{x} = \mathbf{0},$$

여기서 I_n 은 $n \times n$ 항등행렬이고 $\mathbf{0}$ 은 $n \times 1$ 크기의 영행렬을 나타낸다.

따라서, 행렬 $A \in Mat_{n \times n}(F)$ 에 대해서 다음의 네 조건들은 모두 동치임을 알 수 있다. (1) A ∈ F 가 A 의 고유값이다.

(2) 등식 $A\mathbf{x} = \lambda \mathbf{x}$ 를 만족하는 영벡터가 아닌 벡터 $\mathbf{x} \in F^n$ 가 존재한다.

(3) 제차 연립선형방정식 $(A - \lambda I_n)\mathbf{x} = \mathbf{0}$ 이 자명하지 않은 해를 가진다.

$$(4) \det(A - \lambda I_n) = 0.$$

(4)번에서의 등식 $\det(A-\lambda I_n)=0$ 을 전개하면

 $\bigvee_{\lambda} \times \bigvee_{\{X^0\}} \left(x^{00} + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0 = 0 \right)$ 으로서, 체F의 원소를 계수로 가지고 λ 를 미지수로 하는 차수가 n 인 다항방정식의 형태로 나타난다. 이러한 n 차 다항방정식을 행렬 A 의 특성방정식(characteristic equation) 또는 고유방정식이라고 한다.

Written by Cho Sung-hee

앞에서 언급한 사실로부터, 행렬 A 의 특성방정식 $\det(A-\lambda I_n)=0$ 의 해 λ 가 행렬 A 의 고유값이며, 이러한 고유값 λ 를 대입하여 얻은 제차 연립선형방정식 $(A-\lambda I_n)\mathbf{x}=\mathbf{0}$ 의 자 명하지 않은 해(nontrivial solution) 즉, 영벡터가 아닌 벡터 $\mathbf{x} \in F^n$ 가 고유값 λ 에 해당하 는 행렬 A 의 고유벡터이다.

이와 같이 고유값 λ 에 해당하는 행렬 A 의 고유벡터는 제차 연립선형방정식 $(A-\lambda I_n)\mathbf{x}=$ ${f 0}$ 의 자명하지 않은 해이므로 모든 고유벡터들에 영벡터를 추가하면 항상 벡터공간 ${f F}^n$ 의 부 분공간을 이룬다. 이러한 부분공간을 고유값 λ 에 해당하는 행렬 A 의 고유공간 (eigenspace)라고 하며 기호 E_2 를 사용하여 나타낸다. 즉

$$E_{\lambda} = \{\mathbf{0}\} \cup \{\mathbf{x} \in F^n | \mathbf{x} \vdash \lambda \text{ 에 해당하는 } A \text{ 의 고유벡터}\}$$

$$= \{\mathbf{x} \in F^n | A\mathbf{x} = \lambda \mathbf{x}\}$$

이다.

보기 7.1.2 행렬 $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \in Mat_{2\times 2}(\mathbb{R})$ 의 고유값과 고유공간을 모두 구해보자. 먼저, 4 의 고유값을 구하기 위해서 특성방정식을 구해보면, 이는

$$\det(A - \lambda I_n) = \begin{vmatrix} 3 - \lambda & 0 \\ 8 & -1 - \lambda \end{vmatrix}$$
$$= (3 - \lambda)(-1 - \lambda) = 0$$

이다. 따라서 A 는 서로 다른 두 개의 고유값 $\lambda_1 = -1$ 과 $\lambda_2 = 3$ 을 가진다

이제, 각 고유값에 해당하는 고유공간을 구해보자. 먼저 고유값 $\lambda_1 = -1$ 에 해당하는 고유 공간 $E_{\lambda_1=-1}$ 은 제차 연립선형방정식 $(A+I_n)\mathbf{x}=\mathbf{0}$ 즉,

$$\begin{bmatrix} 4 & 0 \\ 8 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

의 해공간이다. 따라서

이고, 고유값
$$\lambda_1 = 1$$
 에 해당하는 A 의 고유백터는

다음으로 $\lambda_2=3$ 에 해당하는 고유공간 $E_{\lambda_2=3}$ 은 제차 연립선형방장식 ($\lambda_1\rightarrow 3I_n$) $\mathbf{x}=\mathbf{0}$ 즉.

$$\begin{bmatrix} 0 & 0 \\ 8 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

의 해공간이다. 따라서

Written by Cho Sung-hee

Written by Cho Sung-hee

보기 7.1.3 행렬 $A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ $\in \underbrace{Mat_{3\times 3}(\mathbb{R})}$ 의 고유값과 고유공간을 모두 구해보자.

$$\begin{vmatrix} 1 - \lambda & 3 & 0 \\ 3 & 1 - \lambda & 0 \\ 0 & 0 & -2 - \lambda \end{vmatrix} = (-2 - \lambda)[(1 - \lambda)^2 - 9]$$
$$= (-2 - \lambda)(-8 - 2\lambda + \lambda^2)$$
$$= (-2 - \lambda)^2(4 - \lambda)$$
$$= 0$$

이므로 A 는 서로 다른 두 개의 고유값 $\lambda_1=-2$ 과 $\lambda_2=4$ 를 가진다. 여기서 고유값 $\lambda_1=-2$ 의 근의 중복도가 2인 것을 주목하자.

고유값 $\lambda_1 = -2$ 에 해당하는 A 의 고유공간은 제차 연립선형방정식 $(A+2I_n)\mathbf{x} = \mathbf{0}$ 의 해 공간이다.

으로부터, 고유공간은

$$E_{\lambda_1=-2}=\left\{\begin{bmatrix}-1\\1\\0\end{bmatrix}s+\begin{bmatrix}0\\0\\1\end{bmatrix}t\;\middle|\;s,t\in\mathbb{R}\right\}$$

이다.

다음으로, $\lambda_2=4$ 에 해당하는 A 의 고유공간은 제차 연립선형방정식 $(A-4I_n)\mathbf{x}=\mathbf{0}$ 의 해 공간이다.

$$\begin{bmatrix} -3 & 3 & 0 & 0 \\ 3 & -3 & 0 & 0 \\ 0 & 0 & -6 & 0 \end{bmatrix} \Rightarrow \cdots \Rightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

으로부터, 고유공간은

Written by Cho Sung-hee