NIST Challenge: Monitoring and Modeling **LPBF Powder Spreading Conditions**

Faculty of **Engineering**

Daniel Amoshie

Team: 39

Date: August 17, 2025

Hilton Anaheim Hotel Anaheim, CA

In-Person Presentations, Judging and Awards Ceremony: August 17, 2025 At IDETC-CIE 2025

ENGINEERING TECHNICAL CONFERENCES RMATION IN ENGINEERING CONFERENCE

Introduction

Laser Powder Bed Fusion (LPBF) is a process of building parts layer-wise from powder.

LPBF has challenges due to anomalies during the spreading process.

ENGINEERING TECHNICAL CONFERENCES RMATION IN ENGINEERING CONFERENCE

Spreading Factors

ONAL DESIGN ENGINEERING TECHNICAL CONFERENCES TERS AND INFORMATION IN ENGINEERING CONFERENCE

Spreading

Anomaly	Associated Print Anomaly			
Streaking	Partially melted particles			
	Oxide inclusion			
	Porosities			
Bright	Poor powder coverage			
spot	 Dimensional inaccuracies 			
	Lack of fusion			

Literature Review

High-resolution visual camera LPBF images [Non-numeric image data]

High-energy x-ray imaging of spreading [Non-numeric image data]

Automatic film applicator [Numeric continuous data]

The Hegman gauge spreading tool [Numeric continuous data]

Why Al Monitoring in LPBF

- Real-time process monitoring
- No interference with operation
- Automated anomaly detection
- Adaptable to different defects

Model Selection

Model Architecture

Data Preparation

Two prominent anomalies:

- Bright spot
- Streak

Data split:

- Labeled training set: 498 layers
- Unlabeled training set: 249 layers

Data normalization & correcting imbalance

NTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE

Result

Class	Data (Augmented)	Precision	Recall	mAP50	mAP50-95
All	600	0.918	0.844	0.789	0.777
Streak	498	0.823	0.826	0.837	0.815
Spots	597	0.796	0.809	0.741	0.739

EERING TECHNICAL CONFERENCES ON IN ENGINEERING CONFERENCE

Result

Model: YOLOv8 segmentation, Epoch: 80 epochs, Layers: 195 layers, Batch: 16,

File size: ~158 MB, Max precision: 0.918 @30 epoch, Max Recall: 0.844 @1 epoch

Limitations & Future Works

- Lack of computational resources to run heavy models.
- Limited time.

- Perform time series analysis layer wise behavior.
- Explore domain adaption and transfer learning capabilities.

Conclusion

- Re-coater mechanism impacts the quality of powder spreadability in LPBF.
- AI-based monitoring enables reliable anomaly detection and is adaptable to different conditions.
- Spread quality affects the surface finish, strength, and print quality.
- Bright spots and streaks remain the most critical anomalies

Thank you!

Daniel Amoshie (Team: 39)

Hilton Anaheim Hotel Anaheim, CA

In-Person Presentations, Judging and Awards Ceremony: August 17, 2025 At IDETC-CIE 2025

IDETC-INTERNATION

References

- [1] L. Scime, J. Beuth, Anomaly detection and classification in a laser powder bed additive manufacturing process. (2018), 19, pp. 114-126
- [2] Kunkel, Natalie, Daniel Thölken, and Klaus Behler. "Deep learning-based automated defect classification for powder bed fusion—Laser beam." European Journal of Materials 4.1 (2024): 2427401.
- [3] R. Sapkota, al., Comparing YOLOv8 and Mask R-CNN for instance segmentation. Al in Agriculture 13 (2024) 84-99(2023), vol. 8.
- [4] C. N. Hulme, et al., "A Practicable and Reliable Test for Metal Powder Spreadability. (2022), vol. 8, pp. 505-517, 10.1007
- [5] H.Y. Sohn, and C. Moreland, The effect of particle size distribution on packing density Can. (1968), 46 (3), pp. 162-167
- [6] A. Khorasani et al., A review of technological improvements in laser-based powder bed fusion of metal printers, (2020), vol. 108, pp. 1-19
- [7] L. Wang, et al., Effects of spreader geometry on powder spreading process in powder bed additive manufacturing Powder. (2021), 10.1016
- [8] A. B. Spierings, et al., Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. (2011), pp. 195-202
- [9] D. Gu, et.al, Laser additive manufacturing of metallic components. (2012), 57/3: 133-64
- [10] S. Agarwal, et al., Comparing U-Net and Mask R-CNN Algorithms. (2023), ICECCME 19-21 July.
- [10] G. Miao, W. Du, Z. Pei, C. Ma, A literature review on powder spreading in additive manufacturing. (2022), 58

