

COMP30810 Intro to Text Analytics

Dr. Binh Thanh Le

thanhbinh.le@ucd.ie

Insight Centre for Data Analytics
School of Computer Science
University College Dublin

Today goals

Regression Model:

Linear Regression for predicting a numeric target feature (can also be used for categorical target feature); looks for linear relationship between descriptive and target feature

Classification Model:

Logistic Regression for predicting a **categorical** target feature; looks for linear separation between classes

Example

• **Table:** The **office rentals dataset**: a dataset that includes office rental prices and several descriptive features for 10 Dublin city-centre offices.

			BROADBAND	ENERGY	RENTAL
ID	SIZE	FLOOR	RATE	RATING	PRICE
1	500	4	8	С	320
2	550	7	50	Α	380
3	620	9	7	Α	400
4	630	5	24	В	390
5	665	8	100	С	385
6	700	4	8	В	410
7	770	10	7	В	480
8	880	12	50	Α	600
9	920	14	8	С	570
10	1,000	9	24	В	620

Can we predict the rental price (target outcome), given the descriptive features for an office?

Simple Example

• **Table:** The **office rentals dataset**: a dataset that includes office **rental prices** and **Size** features for 10 Dublin city-centre offices.

		RENTAL		
ID	SIZE	PRICE		
1	500	320		
2	550	380		
3	620	400		
4	630	390		
5	665	385		
6	700	410		
7	770	480		
8	880	600		
9	920	570		
10	1,000	620		

Regression VS Classification

- Regression: Predict the RentalPrice given the Size of an office
- Classification: Predict if the RentalPrice is High or Low given the Size of office

(the focus is on predicting the **Probability(RentalPrice=High| Size)**)

- ❖ We typically work with **two classes** and code one class with 0 and the other class with 1.
- ❖ If more than 2 classes, we can use the one-vs-all formulation to create n binary classification problems (where n is the number of classes).

Regression VS Classification

Classification

Linear Regression: Linear Model

- Scatter plot shows linear relationship between SIZE and RENTAL PRICE
- This relationship can be approximately captured via a parameterized line
- The equation of a line can be written as:

```
y = b + m * x Or: y = w_0 + w_1 * x where m is the slope, w_1 is the slope, w_0 is the bias
```

Linear Regression: Linear Model

$$y = w_0 + w_1 * x$$

where w_1 is the slope,
 w_0 is the bias

From x and y vectors, calculate \bar{x} , \bar{y} as the means of x and y

		RENTAL		
ID	SIZE	PRICE		
1	500	320		
2	550	380		
3	620	400		
4	630	390		
5	665	385		
6	700	410		
7	770	480		
8	880	600		
9	920	570		
10	1,000	620		

$$w_1 = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2} = 0.62$$

$$w_0 = \bar{y} - w_1(\bar{x}) = 6.74$$

RENTAL PRICE = $6.47 + 0.62 \times SIZE$

Linear Regression: Linear Model

 What is the expected Rental Price for a new/test 730 square foot office?

RENTAL PRICE =
$$6.47 + 0.62 \times SIZE$$

This model is known as simple linear regression (1 descriptive feature, 1 target feature)

This allows us to extend the model to use more features

$$target feature = w_0 + w_1 * feature_1 + w_2 * feature_2 + ... + w_n * feature_n$$

$$w_i = \frac{\sum (x - \overline{x_i})(y - \overline{y})}{\sum (x - \overline{x_i})^2}$$

$$w_0 = \overline{y} - (\sum_{i=1..n} w_i \ \overline{x_i})$$

Linear Regression: Assumptions

When you want to apply the LR for your data, you should check the five key assumptions:

- Linear relationship
- Multivariate normality
- No or little multicollinearity
- No auto-correlation
- Homoscedasticity

Read more:

https://www.statisticssolutions.com/assumptions-of-linear-regression/

https://github.com/justmarkham/DAT4/blob/master/notebooks/08_linear_regression.ipynb

What if the relationship is not linear?

Solution1:

Create new features that capture nonlinear polynomials of original features

E.g., original descriptive feature: RAIN.
 Create a new feature (quadratic polynomial):
 RAIN²

 $GROWTH = w0 + w1*RAIN + w2*RAIN^2$

Solution2: Create feature interactions

E.g., original descriptive features: SALARY,
 HOUSE_PRICE. Create a new feature: the ratio
 of the two features SALARY/HOUSE PRICE

Build linear regression model with original features + new (derived) features that aim to capture non-linear behavior

What if the relationship is not linear?

A linear model using original features: 13.510 - 0.667 * RAIN

(This model has a large error!)

A linear model using original features and quadratic features:

(This model fits the data better and has lower error)

Logistic Regression

- We assume only 2 classes (binary classification); can extend to many classes with one-vsall approach
- We model the probability of class membership, e.g., if p(PriceClass = High | Size) > 0.5, then predict class High, else predict class Low
- We use a logistic function to make sure predictions are in the [0,1] interval (proper probabilities)

Linear regression:

$$p(PriceClass = High|Size) = w_0 + w_1 * Size$$

Logistic regression:

```
p(PriceClass = High|Size) = logistic(w_0 + w_1 * Size)
```

Logistic Regression

logistic function

$$Logistic(x) = \frac{1}{1 + e^{-x}}$$

$$logistic(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$
(8)

where *x* is a numeric value and *e* is **Euler's number** and is approximately equal to 2.7183.

When performing logistic regression, we use the following form:

$$\pi = \Pr(y = 1 \mid x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

Logistic Regression

• The logistic function takes on an "S" shape, where y is bounded by [0,1]

$$\pi = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

Changing the β_0 value shifts the function horizontally.

Changing the β_1 value changes the slope of the curve

Example for Text Analytics – Ham/Spam SMS

```
ham Go until jurong point, crazy.. Available only in bugis n great world la
ham Ok lar... Joking wif u oni...
        Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005.
ham U dun say so early hor... U c already then say...
ham Nah I don't think he goes to usf, he lives around here though
        FreeMsq Hey there darling it's been 3 week's now and no word back!
ham Even my brother is not like to speak with me. They treat me like aids p
ham As per your request 'Melle Melle (Oru Minnaminunginte Nurungu Vettam)'
        WINNER!! As a valued network customer you have been selected to rec
spam
       Had your mobile 11 months or more? U R entitled to Update to the la
spam
ham I'm gonna be home soon and i don't want to talk about this stuff anymor
        SIX chances to win CASH! From 100 to 20,000 pounds txt> CSH11 and s
spam
       URGENT! You have won a 1 week FREE membership in our £100,000 Prize
spam
ham I've been searching for the right words to thank you for this breather.
ham I HAVE A DATE ON SUNDAY WITH WILL!!
```

Download at: https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection

SMS Spam Collection Data Set

Download: Data Folder, Data Set Description

Abstract: The SMS Spam Collection is a public set of SMS labeled messages that have been collected for mobile phone spam research.

Data Set Characteristics:	Multivariate, Text, Domain-Theory	Number of Instances:	5574	Area:	Computer
Attribute Characteristics:	Real	Number of Attributes:	N/A	Date Donated	2012-06-22
Associated Tasks:	Classification, Clustering	Missing Values?	N/A	Number of Web Hits:	200580

Example for Text Analytics – Ham/Spam SMS

```
import pandas as pd
import numpy as np
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.linear model.logistic import LogisticRegression
from sklearn.model selection import train test split, cross val score
df = pd.read csv('SMSSpamCollection', delimiter='\t',header=None)
X train raw, X test raw, y train, y test = train test split(df[1],df[0])
vectorizer = TfidfVectorizer()
X train = vectorizer.fit transform(X train raw)
classifier = LogisticRegression()
classifier.fit(X train, y train)
X test = vectorizer.transform( ['URGENT! Your Mobile No 1234 was awarded a Prize'] )
predictions = classifier.predict(X test)
print('URGENT! Your Mobile No 1234 was awarded a Prize',' is predicted as:', predictions)
X test = vectorizer.transform( [ 'Hey honey, whats up?'] )
predictions = classifier.predict(X test)
print('Hey honey, whats up?',' is predicted as:', predictions)
```

URGENT! Your Mobile No 1234 was awarded a Prize is predicted as: ['spam'] Hey honey, whats up? is predicted as: ['ham']

Summary

• Linear Regression - Linear Model: This is Regression model. The output will be the predicted values of Target feature.

$$y = w_0 + w_1 * x$$

where w_1 is the slope,
 w_0 is the bias

- In case you require the output in [0,1], you should apply the Logistic Regression. The *logistic*() function will turn your output to [0,1]
 - > Predicted probability for each class
 - ➤ Based on the threshold (default=0.5), predicted labels can be provided

$$\pi = \Pr(y = 1 \mid x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$