Касательная к гиперэллипсу, покрытому слоем

Параметрическое уравнение $\frac{1}{4}$ гиперэллипса, покрытого слоем толщиной r_1 , и перпендикуляра к нему:

$$\vec{N} = (N_x, N_y) = \left(\frac{\cos^{n-1}t}{a^n}, \frac{\sin^{n-1}t}{b^n}\right),$$

$$x = \cos(t) \left(\frac{\cos^n t}{a^n} + \frac{\sin^n t}{b^n}\right)^{-1/n} + r_1 N_x \left(\frac{\cos^{2n-2}t}{a^{2n}} + \frac{\sin^{2n-2}t}{b^{2n}}\right)^{-1/2},$$

$$y = \sin(t) \left(\frac{\cos^n t}{a^n} + \frac{\sin^n t}{b^n}\right)^{-1/n} + r_1 N_y \left(\frac{\cos^{2n-2}t}{a^{2n}} + \frac{\sin^{2n-2}t}{b^{2n}}\right)^{-1/2}, \quad n \ge 2, \quad t \in [0, \pi/2].$$
(1)

Построить касательную, проходящую через точку Р2.

Разность векторов $\vec{P}_1 - \vec{P}_2$ должна быть перпендикулярна вектору \vec{N} , перпендикулярному кривой в точке P_0 . Для этого косинус угла между векторами (скалярное произведение векторов длиной 1) приравнивается к нулю:

$$\cos \varphi = \frac{(\vec{P}_1 - \vec{P}_2) \cdot \vec{N}}{\|\vec{P}_1 - \vec{P}_2\| \cdot \|\vec{N}\|} = \frac{(P_{1x} - P_{2x}) N_x + (P_{1y} - P_{2y}) N_y}{\sqrt{N_x^2 + N_y^2} \sqrt{(P_{1x} - P_{2x})^2 + (P_{1y} - P_{2y})^2}} = 0.$$
 (2)

Сокращения $\|\vec{P}_1 - \vec{P}_2\| \cdot \|\vec{N}\|$ не проводится, чтобы обеспечить задаваемую в численном методе точность, выраженную в $\cos \varphi$. Подставляются \vec{N} , x, y из уравнений (1):

$$\cos \varphi = \left(r_1 + \left(\frac{\cos^{2n-2}t}{a^{2n}} + \frac{\sin^{2n-2}t}{b^{2n}}\right)^{-1/2} \left(\frac{\cos^n t}{a^n} + \frac{\sin^n t}{b^n}\right)^{-1/n+1} - P_{2x} \frac{\cos^{n-1}t}{a^n} - P_{2y} \frac{\sin^{n-1}t}{b^n}\right) / \sqrt{(x - P_{2x})^2 + (y - P_{2y})^2}. \quad (3)$$

Свойства функции

- Если P_2 находится внутри замкнутой кривой, то касательных не существует. В остальных случаях существуют 2 касательных: слева и справа от луча, исходящего из начала координат и проходящего через P_2 .
- При необходимости P_2 переносится так, чтобы P_1 оказывалась в квадранте $P_{1x} \ge 0$, $P_{1y} \ge 0$, а после вычислений. P_1 переносится соответственно.
- Строится касательная к "углу" гиперэллипса tangentV и вычисляется находится ли P_2 слева или справа. Это определяет интервал, в котором находится P_1 : $t \in [0, \arctan(b/a)] \lor t \in [\arctan(b/a), \pi/2]$.
- Если P_2 справа от касательной (\vec{P}_2 -tangent $V \geqslant 0$) и внутри ограничевающего гиперэллипс прямоугольника ($P_{2x} \leqslant a + r_1 \land P_{2y} \leqslant b + r_1$), то: или P_2 находится внутри гиперэллипса, или обе точки касания находятся на определенном выше интервале. В этом случае решается задача нахождения точки на гиперэллипсе, ближайшей к P_2 . Если P_2 не оказывается внутри кривой, то параметр t ближайшей точки используется, чтобы разделить интервал.

Закрашена, обозначена цифрой **1** площадь, при нахождении в которой P_2 существуют 2 касательных на интервале [0, arctan(b/a)].

• Функция непрерывно дифференциируема на интервале $t \in [0, \pi/2]$. Значение производной в точке вычисляется вместе со значением функции автоматизированными программными средствами.

Применен метод Ньютона, комбинированный с методом бисекции так, как описано в "Расстояние от гиперэллипса до точки". Начальное значение t_0 устанавливается пропорционально расстоянию от P_2 до tangent V и до оси X или Y.

Количество вызовов функции (3) для достижения результата с абсолютным значением ошибки менее 10^{-12} зависит от параметров гиперэллипса n, a, b, r_1 , расстояния до точки и находится в пределах 4.2 - 9.7.