제9장 두 집단의 비교

9.1 서론

- (1) 두 모집단 간의 차이에 관심이 있다면 → 두 모집단의 비교를 위한 추 론과정은 자료를 어떻게 수집하느냐에 따라 추론방법이 달라진다.
- (2) 대표적인 두 종류의 자료수집과정
- ① 독립표본 (independent sample)

어떤 질병을 치료하기 위해 새롭게 개발된 약은 기존의 약보다 이론적으로 더효과적이라고 생각된다고 한다. 그러나 이러한 가설을 증명하기 위해서는 동물이나 인체를 대상으로 한 실험이 필수적이다. 따라서 두 약의 효과를 비교하기 위해 건강상태가 비슷한 19마리의 쥐를 대상으로 병균을 투입한 후, 그 중에서 임의로 10마리의 쥐를 추출하여 그들에게는 기존의 약을 투입하고 나머지 쥐들에게는 새로운 약을 투약하였다. 그 후에 쥐들이 완치될 때까지 걸린시간을 기록하였다.

- □ 완전확률화(completely randomized design)
- 서로 관련이 없는 두 집단에 각각 처리를 하고 반응값을 측정하므로두 처리의 반응값들은 서로 관련이 없다.

② 대응표본 (paired sample)

어떤 질병에 걸린 환자들을 대상으로 기존의 약과 새로운 약의 효과를 비교하고자 한다. 환자들의 외적인 조건, 즉 나이, 성별, 건강상태 등이 아주 다양하다고 하자. 이럴 때는 우선 외적인 조건과 병의 경중 등을 고려하여 비교적비슷한 조건을 갖는 환자끼리 짝을 짓는다. 즉 각 쌍 내의 환자들은 서로 비슷한 조건을 갖는 반면, 각 쌍들 간에는 서로 다른 조건들을 갖도록 한다. 이렇게 짝이 지어지면 각 쌍의 환자 중에서 임의로 한 환자를 추출하여 그 환자에게는 기존의 약을, 다른 한 명의 환자에게는 새로운 약을 투약한 후, 완치때까지 걸린 시간을 기록한다.

- \square 쌍내에서의 확률화 $[(x_i, y_i)]$ where $i = 1, \dots, n$
- □ 실험대상은 대응쌍으로 선택되므로 대응쌍에서의 원소는 비슷하지만 다른 쌍에서의 원소를 실질적으로 다르다.

(3) 모집단 간 차이 비교연구에 사용되는 용어

① 처리(treatment): 비교하고자 하는 특성

② 실험단위[대상](experimental unit): 실험의 대상

③ 반응치(response value): 실험 후에 얻어지는 수치

9.2 독립확률표본

모집단 1: 평균 μ_1 , 표준편차 σ_1 \rightarrow n_1 개의 표본을 추출

모집단 2: 평균 μ_2 , 표준편차 σ_2 \rightarrow n_2 개의 표본을 추출

표본	통계량
모집단 1에서의 표본	$\frac{1}{2}$ $\frac{n_1}{n_2}$ $\frac{1}{2}$ $\frac{n_1}{n_2}$ $\frac{1}{2}$
$X_1, X_2, \cdots, X_{n_1}$	$X = \frac{1}{n_1} \sum_{i=1}^{n} X_i$, $s_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n} (X_i - X_i)$
모집단 2에서의 표본	$\overline{V} = \frac{1}{V} \sum_{n=1}^{N_2} V_n s_n^2 = \frac{1}{V} \sum_{n=1}^{N_2} (V - \overline{V})^2$
$Y_1,\ Y_2,\ \cdots,\ Y_{n_2}$	$Y = \frac{1}{n_2} \sum_{i=1}^{n} Y_i$, $s_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n} (Y_i - Y_i)$

(1) 모평균의 차 $(\mu_1 - \mu_2)$ 에 대한 추론 (대표본)

① X-Y의 분포

 $^-$ 대표본에서 $\mu_1 - \mu_2$ 에 관한 추론은 $\stackrel{-}{X} - \stackrel{-}{Y}$ 에 근거를 둔다.

 $\overline{}$ $\overline{\phantom$

□ X-Y도 점근적으로 정규분포를 따른다.

② X-Y의 통계량

□ 평균: $E(\overline{X} - \overline{Y}) = \mu_1 - \mu_2$ □ 분산: $Var(\overline{X} - \overline{Y}) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$ 1)

 $\qquad \qquad \square \quad \stackrel{\sim}{\text{표}} \stackrel{\sim}{\text{-C}} \circ \stackrel{\sim}{\text{-R}} : \quad S.E. (\overline{X} - \overline{Y}) = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$

1) $Var(\overline{X} - \overline{Y}) = Var(\overline{X}) + Var(\overline{Y}) - 2Cov(\overline{X}, \overline{Y})$ 독립표본에서 위 식은 $Var(\overline{X} - \overline{Y}) = Var(\overline{X}) + Var(\overline{Y})$ 이 되다. 왜냐하면 $Cov(\overline{X}, \overline{Y}) = 0$. ③ 대표본에서 $H_0: \mu_1 - \mu_2 = \delta_0$ 의 검정법

□ 검정통계량

$$Z = \frac{(\overline{X} - \overline{Y}) - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

 \Box H_1 의 형태에 따른 기각역 설정

H_1	기각역
$H_1:\mu_1-\mu_2>\delta_0$	$R\colon z\geq z_{\alpha}$
$H_1: \mu_1-\mu_2<\delta_0$	$R: z \leq -z_{\alpha}$
$H_1: \mu_1 - \mu_2 \neq \delta_0$	$R\colon z \geq z_{a/2}$

[예제 9.4] 두 종족 A와 B에서 여성의 초혼연령을 비교하기 위해 각 종족에서 100명의 기혼여성을 확률표본으로 택하여 초혼연령의 평균과 표준편차를 구하였다.

	A	В
평균	20.7	18.5
표준편차	6.3	5.8

(1) $\mu_A - \mu_B$ 의 95% 신뢰구간을 구하라.

[풀이]

주어진 정보:
$$n_A=n_B=100$$
, $\overline{x_A}=20.7$, $\overline{x_B}=18.5$, $s_A=6.3$, $s_B=5.8$ $\alpha=0.05$, $z_{0.05/2}=z_{0.025}=1.96$

$$Var(\overline{X} - \overline{Y}) = Var(\overline{X}) + Var(\overline{Y}) = Var\left(\frac{1}{n_1} \sum_{i=1}^{n_1} X_i\right) + Var\left(\frac{1}{n_2} \sum_{i=1}^{n_2} Y_i\right)$$

$$= \frac{1}{n_1^2} \left[Var(X_1) + \dots + Var(X_{n_1}) \right] + \frac{1}{n_2^2} \left[Var(Y_1) + \dots + Var(Y_{n_2}) \right]$$

$$= \frac{n_1 \sigma_1^2}{n_1^2} + \frac{n_2 \sigma_2^2}{n_2^2}$$

$$= \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

< $\mu_A - \mu_B$ 에 대한 95%[=100(1-0.05)%] 신뢰구간 >

$$\begin{split} &\left(\overline{x}_{A} - \overline{x}_{B} - z_{\alpha/2}\sqrt{\frac{s_{A}^{2}}{n_{A}} + \frac{s_{B}^{2}}{n_{B}}}, \ \overline{x}_{A} - \overline{x}_{B} + z_{\alpha/2}\sqrt{\frac{s_{A}^{2}}{n_{A}} + \frac{s_{B}^{2}}{n_{B}}}\right) \\ &= \left(20.7 - 18.5 - 1.96\sqrt{\frac{6.3^{2}}{100} + \frac{5.8^{2}}{100}}, \ 20.7 - 18.5 + 1.96\sqrt{\frac{6.3^{2}}{100} + \frac{5.8^{2}}{100}}\right) \\ &= (0.52, \ 3.88) \end{split}$$

- ⇒ 종족 B의 여성들의 초혼연령이 종족 A보다 평균적으로 0.52년에서 3.88년 앞선다.
- (2) 두 종족 간의 평균 초혼 연령이 다르다는 확신을 가질 수 있는가? $\alpha = 0.02$ 에서 검정하라.

【풀이】

- \square $H_0: \mu_A = \mu_B$, $H_1: \mu_A \neq \mu_B$ (양측검정)
- □ 검정통계량

$$Z = \frac{\left(\overline{x}_A - \overline{x}_B\right) - \left(\mu_A - \mu_B\right)}{\sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}} = \frac{\left(\overline{x}_A - \overline{x}_B\right)}{\sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}} = \frac{(20.7 - 18.5)}{\sqrt{\frac{6.3^2}{100} + \frac{5.8^2}{100}}} = 2.569$$

- 미 기각역 설정: $\alpha=0.02$ → 기각치: $z_{\alpha/2}=z_{0.02/2}=z_{0.01}=2.33$ $R\colon |z|\ge 2.33$
- □ 검정통계치가 기각역에 포함되므로 귀무가설을 기각하고 대립가설이 맞다고 말할 수 있다. 즉, 두 종족 간의 평균 초혼연령은 다르다고 말할 수 있다.
- (2) 모평균의 차 $(\mu_1 \mu_2)$ 에 대한 추론 (소표본)
- ① 소표본일 때 필요한 가정
- □ 두 모집단이 모두 정규분포를 따른다.
- $^{\Box}$ 두 모집단의 표준편차가 일치한다. $(\sigma_1 = \sigma_2 = \sigma)$

② 공통표준편차 $(\sigma_1 = \sigma_2 = \sigma)$ 가정의 적용

두 표본표준편차 s_1 과 s_2 의 상대적 크기가 매우 중요하다. $\sigma_1 = \sigma_2$ 가정은

 $\frac{s_1}{s_2}$ 가 1과 크게 다르지 않을 때 받아들여지게 된다. 실제로 사용할 때는

$$\Box \ \frac{1}{2} \! \leq \! \frac{s_1}{s_2} \! \leq 2 \, \Rightarrow \, \sigma_1 \! = \! \sigma_2 \; ($$
합리적) \to 합동추정치를 구함

$$\Box \frac{s_1}{s_2} < \frac{1}{2} \text{ or } \frac{s_1}{s_2} > 2 \Rightarrow \sigma_1 = \sigma_2(?) \rightarrow \mu_1 - \mu_2$$
에 대한 근사적 추론방법을 쓴다.

③ X- Y의 통계량

□ 평균:
$$E(\overline{X} - \overline{Y}) = \mu_1 - \mu_2$$

$$\Box$$
 분산: $Var(\overline{X} - \overline{Y}) = \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2} = \sigma^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)$

$$\square$$
 표준오차: $S.E.(\overline{X}-\overline{Y})=\sqrt{\sigma^2\left(\frac{1}{n_1}+\frac{1}{n_2}\right)}=\sigma\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$

④ 두 모집단은 정규분포를 따르므로 두 표본평균은 각각 정규분포를 따른다. 따라서 두 표본평균의 차(X-Y)도 정규분포를 따른다.

$$(\overline{X}\!\!-\overline{Y}) \sim N\!\!\left[\mu_1\!-\!\mu_2,\sigma^2\!\!\left(\!\frac{1}{n_1}\!+\!\frac{1}{n_2}\right)\right]$$

* 공통분산의 합동추정치(pooled estimator) (두 집단의 전체 자료를 이용하여 구함)

$$s_p^2 = \frac{\sum_{i=1}^{n_1} \left(X_i - \overline{X} \right)^2 + \sum_{i=1}^{n_2} \left(Y_i - \overline{Y} \right)^2}{n_1 + n_2 - 2} = \frac{\left(n_1 - 1 \right) s_1^2 + \left(n_2 - 1 \right) s_2^2}{n_1 + n_2 - 2}$$

$$\text{ α if S_1^2} = \frac{\displaystyle\sum_{i=1}^{n_1} \! \left(X_i \! - \overline{X} \right)^2}{n_1 \! - \! 1}, \ \ s_2^2 = \frac{\displaystyle\sum_{i=1}^{n_2} \! \left(\, Y_i \! - \overline{Y} \right)^2}{n_2 \! - \! 1}$$

[예제 9.5] 다음 두 표본에서 s_n^2 의 값을 구하라.

모집단 1에서의 표본: 8, 5, 7, 6, 9, 7 모집단 2에서의 표본: 2, 6, 4, 7, 6

[풀이]

$$\overline{x} = \frac{1}{n_1} \sum_{i=1}^{n_1} x_i = \frac{1}{6} \sum_{i=1}^{6} x_i = \frac{(8+5+7+6+9+7)}{6} = \frac{42}{6} = 7 \quad \text{and} \quad n_1 = 6$$

$$\overline{y} = \frac{1}{n_2} \sum_{i=1}^{n_2} y_i = \frac{1}{5} \sum_{i=1}^{5} y_i = \frac{(2+6+4+7+6)}{5} = \frac{25}{5} = 5 \quad \text{and} \quad n_2 = 5$$

$$\begin{split} s_1^2 &= \frac{\sum_{i=1}^{n_1} \! \left(X_i \! - \overline{X} \right)^2}{n_1 \! - \! 1} \! = \! \frac{10}{5} \! = \! 2, \qquad s_2^2 \! = \! \frac{\sum_{i=1}^{n_2} \! \left(Y_i \! - \overline{Y} \right)^2}{n_2 \! - \! 1} \! = \! \frac{16}{4} \! = \! 4 \\ & \to \frac{s_1}{s_2} \! = \! \frac{\sqrt{2}}{\sqrt{4}} \! = \! \frac{1}{\sqrt{2}} \! = \! 0.7071 \\ & \Rightarrow \frac{1}{2} \! \leq \! \frac{s_1}{s_2} \! \leq \! 2 \, \Rightarrow \, \sigma_1 \! = \! \sigma_2 \, \left(\vec{\mathbf{u}} \! = \! \vec{\Delta} \right) \, \to \, \vec{\mathbf{u}} \! \in \! \vec{\gamma} \! = \! \vec{\lambda}$$
 합동추정치를 구함

$$s_p^2 = \frac{\sum_{i=1}^{n_1} \left(X_i - \overline{X}\right)^2 + \sum_{i=1}^{n_2} \left(Y_i - \overline{Y}\right)^2}{n_1 + n_2 - 2} = \frac{\left(n_1 - 1\right)s_1^2 + \left(n_2 - 1\right)s_2^2}{n_1 + n_2 - 2} = \frac{10 + 16}{6 + 5 - 2} = \frac{26}{9} = 2.89$$

* s_p^2 은 s_2^2 보다 s_1^2 에 더 가깝다. (이유: n_1 이 n_2 보다 더 큼)

⑤ 두 정규모집단에서 독립적으로 추출된 두 표본으로부터 얻게 되는 표준 화된 확률변수는 자유도가 (n_1+n_2-2) 인 t-분포를 따른다.

$$t = \frac{\left(\overline{X} - \overline{Y}\right) - \left(\mu_1 - \mu_2\right)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t\left(n_1 + n_2 - 2\right)$$

⑥ 모평균의 차 $(\mu_1 - \mu_2)$ 에 대한 신뢰구간 (소표본, 공통표준편차)

$$\left(\overline{X} - \overline{Y} - t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \,, \ \overline{X} - \overline{Y} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right) + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right) + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} + t_{\alpha/2}(n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2$$

[예제 9.6] 사료 1과 사료 2의 우유 생산량 증가효과를 비교하기 위해 실험용 젖소 25마리를 택하여 그 중 13마리에는 사료 1을 공급하고 나머지 12마리에는 사료 2를 공급하였다. 3주일 후 젖소의 우유 생산량 검사를 해본 결과 다음의 결과를 얻었다.

사료 1: 44, 44, 56, 46, 47, 38, 58, 53, 49, 35, 46, 30, 41 사료 2: 35, 47, 55, 29, 40, 39, 32, 41, 42, 57, 51, 39

(1) 사료 1과 사료 2의 평균 우유 생산량의 차이 $(\mu_1 - \mu_2)$ 에 대한 95% 신뢰구 간을 구하라.

【풀이】

$$\square$$
 사료 1: $n_1 = 13$, $\overline{x} = \frac{1}{n_1} \sum_{i=1}^{n_1} x_i = \frac{1}{13} \sum_{i=1}^{13} x_i = 45.15$

ㅁ 사료 2:
$$n_2=12$$
, $\overline{y}=\frac{1}{n_2}\sum_{i=1}^{n_2}y_i=\frac{1}{12}\sum_{i=1}^{12}y_i=42.25$

$$s_1^2 = \frac{\sum_{i=1}^{n_1} (X_i - \overline{X})^2}{n_1 - 1} = \frac{767.69}{12} = 63.9742,$$

$$s_2^2 = \frac{\sum_{i=1}^{n_2} (Y_i - \overline{Y})^2}{n_2 - 1} = \frac{840.25}{11} = 76.3864$$

$$\rightarrow \frac{s_1^2}{s_2^2} = \frac{63.9742}{76.3864} = 0.8375, \ \frac{s_1}{s_2} = 0.9152$$

$$\Rightarrow \frac{1}{2} \le \frac{s_1}{s_2} \le 2 \Rightarrow \sigma_1 = \sigma_2 \; ($$
합리적) \to 합동추정치를 구함

 \Box pooled estimator s_n^2

$$s_{p}^{2} = \frac{\sum_{i=1}^{n_{1}} (X_{i} - \overline{X})^{2} + \sum_{i=1}^{n_{2}} (Y_{i} - \overline{Y})^{2}}{n_{1} + n_{2} - 2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2} = \frac{767.69 + 840.25}{13 + 12 - 2} = \frac{1607.94}{23}$$

$$= 69.91$$

$$s_{p} = \sqrt{69.91} = 8.3612$$

$$\qquad \qquad \Box \quad t_{\alpha/2} (n_1 + n_2 - 2) = t_{0.05/2} (13 + 12 - 2) = t_{0.025} (23) = 2.069$$

 $\mu_1 - \mu_2$ 에 대한 95% 신뢰구간

$$\begin{split} &\left(\overline{X} - \overline{Y} - t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right, \ \overline{X} - \overline{Y} + t_{\alpha/2}(n_1 + n_2 - 2) \times s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right) \\ &= \left(45.45 - 42.25 - 2.069 \times 8.3612 \sqrt{\frac{1}{13} + \frac{1}{12}} \right, \ 45.15 - 42.25 + 2.069 \times 8.3612 \sqrt{\frac{1}{13} + \frac{1}{12}} \right) \\ &= (-4.025, \, 9.825) \end{split}$$

⑦ $H_0: \mu_1 - \mu_2 = \delta_0$ 에 대한 가설검정 (소표본, 공통표준편차)

□ H₁의 형태에 따른 기각역 설정

H_1	기각역
$H_1:\mu_1-\mu_2>\delta_0$	$R\colon t\geq t_{\alpha}$
$H_1: \mu_1-\mu_2<\delta_0$	$R\colon t\le -t_\alpha$
$H_{\!1}:\mu_1\!-\!\mu_2\neq\delta_0$	$R\colon t \geq t_{a/2}$

[예제 9.6 계속]

(2) 사료 1에서의 우유 생산량이 사료 2에서의 생산량보다 더 많다고 결론을 내릴 수 있는가? 유의수준 $\alpha = 0.05$ 에서 검정하라.

【풀이】

$$\ ^{\Box}\ H_{0}:\mu_{1}-\mu_{2}=0$$
 , $H_{1}:\mu_{1}-\mu_{2}>0$ (단측검정)

□ 검정통계량

$$t = \frac{\left(\overline{X} - \overline{Y}\right) - \left(\mu_1 - \mu_2\right)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{45.15 - 42.25}{8.3612 \sqrt{\frac{1}{13} + \frac{1}{12}}} = 0.866$$

□ 기각역 설정

$$\alpha = 0.05 \rightarrow$$
 기각치: $t_{\alpha}(n_1 + n_2 - 2) = t_{0.05}(23) = 1.714$

 $R: t \ge 1.714$

- □ 검정통계치가 기각역에 포함되지 않으므로 귀무가설을 기각할 수 없다. 따라서 대립가설은 입증되지 않는다. 즉 사료 1에서의 우유 생산량이 사료 2에서의 생산량보다 더 많다고 말할 수 없다.
- ⑧ 모평균의 차 $(\mu_1 \mu_2)$ 에 대한 추론 (소표본, 두 모표준편차가 다른 경우)
- \square 가정: A1. 모집단은 정규분포를 따른다. A2. $\sigma_1 \neq \sigma_2$
- $\mu_1 \mu_2$ 에 대한 $100(1-\alpha)$ % 신뢰구간

$$\left(\, \overline{x} - \overline{y} - t_{\alpha/2}^* \sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2} \right)}, \,\, \overline{x} - \overline{y} + t_{\alpha/2}^* \sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2} \right)} \,\, \right)$$

- $H_0: \mu_1 \mu_2 = \delta_0$
- □ 검정통계량

$$t^* = \frac{\left(\overline{X} - \overline{Y}\right) - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim t \qquad \qquad \text{자유도: } \left(n_1 - 1\right)$$
과 $\left(n_2 - 1\right)$ 중 작은 값

[예제] 지방의 한 도시에서 작은 개천을 사이에 두고 남북으로 나뉘어 있는 두 지역의 집값을 비교하고자 최근에 매매가 이루어진 집을 대상으로 남쪽으로 13가구, 북쪽으로 11가수의 집값을 조사하였더니 다음과 같았다.

남쪽:
$$n_1 = 13$$
, $\overline{x} = 2.4$ 억 원, $s_1 = 0.72$ 억원
북쪽: $n_2 = 11$, $\overline{y} = 2.15$ 억 원, $s_2 = 0.35$ 억원

유의수준 5%로 두 지역의 집값에 차가 있다고 할 수 있는지 검정하라.

[풀이]

$$\ \Box \ H_0: \mu_1 - \mu_2 = 0$$
 , $H_1: \mu_1 - \mu_2 \neq 0$ (양측검정)

$$ightarrow rac{s_1}{s_2} > 2 \implies \sigma_1 = \sigma_2(?)
ightarrow \mu_1 - \mu_2$$
에 대한 근사적 추론방법을 쓴다.

□ 검정통계량

$$t^* = \frac{(\overline{X} - \overline{Y}) - \delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{2.4 - 2.15}{\sqrt{\frac{0.5184}{13} + \frac{0.1225}{11}}} = 1.107$$

□ 기각역 설정

 $\alpha = 0.05$

ightarrow 기각치: $t_{lpha/2}\!\!\left(n_2\!-\!1\right)\!\!=\!t_{0.025}\!\!\left(10\right)\!\!=\!2.228$

[자유도: (n_1-1) 과 (n_2-1) 중 작은 값]

 \Rightarrow 기각역 $R:|t| \ge 2.228$

□ 결론: 검정통계치가 기각역에 포함되지 않으므로 귀무가설을 기각할 수 없다. 따라서 대립가설은 입증되지 않는다. 즉 두 지역 간에 집값 차이가 있다고 말할 수 없다.

11.3 대응[짝]비교

(1) 대응[짝]비교에서의 자료구조

① 자료구조

대응쌍	처리 1	처리 2	차
1	X_1	Y_1	$D_1 = X_1 - Y_1$
2	X_2	Y_2	$D_2 = X_2 - Y_2$
÷	:	:	:
n	X_n	Y_{n}	$D_n = X_n - Y_n$

* 차 D_1, D_2, \dots, D_n 은 확률표본이다.

② 통계량

(2) 차의 평균 δ 에 대한 소표본 추론

차 $D_i = X_i - Y_i$ 가 $N\!\left(\delta, \sigma_D^2\right)$ 에서의 확률표본이라고 가정한다.

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_i \qquad S_D = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (D_i - \overline{D})^2}$$

으로 두고 관측값을 $\overset{-}{d}$, s_D 라 한다.

- (a) δ 에 대한 $100(1-\alpha)$ % 신뢰구간: $\left(\overline{d}-t_{\alpha/2}\frac{s_D}{\sqrt{n}}, \overline{d}+t_{\alpha/2}\frac{s_D}{\sqrt{n}}\right)$
- (b) $H_0: \delta = \delta_0$ 에 대한 검정은 다음의 검정통계량을 이용한다.

$$T = \frac{\overline{D} - \delta_0}{S_D / \sqrt{n}}$$
 자유도= $(n-1)$

[예제 9] 어느 제약회사에서는 피임약이 사용자의 혈압을 떨어뜨리는 부작용이 있는지 알아보고자 한다. 15명의 주부를 택하여 혈압을 측정하고, 피임약을 6개월 동안 복용하게 한 후 혈압을 측정한 결과가 다음의 표에 기록되어있다. 이때 주부들의 혈압은 정규분포를 따른다고 가정한다.

	주부														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
전(x)	70	80	72	76	76	76	72	78	82	64	74	92	74	68	84
후(y)	68	72	62	70	58	66	68	52	64	72	74	60	74	72	74
d = (x - y)	2	8	10	6	18	10	4	26	18	-8	0	32	0	-4	10

(1) 혈압의 평균 감소량에 대한 95% 신뢰구간을 구하라.

【풀이】

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \frac{1}{15} \sum_{i=1}^{15} d_i = \frac{132}{15} = 8.80 \quad \text{여기서} \quad n = 15$$

$$s_D = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (d_i - \overline{d})^2} = \sqrt{\frac{1}{14} \sum_{i=1}^{15} (d_i - 8.80)^2} = 10.98$$

$$t_{\alpha/2}(n-1) = t_{0.05/2}(15-1) = t_{0.025}(14) = 2.145$$

< δ에 대한 95% 신뢰구간 >

$$\left(\overline{d} - t_{\alpha/2} \frac{s_D}{\sqrt{n}}, \ \overline{d} + t_{\alpha/2} \frac{s_D}{\sqrt{n}}\right) = \left(8.80 - 2.145 \frac{10.98}{\sqrt{15}}, 8.80 + 2.145 \frac{10.98}{\sqrt{15}}\right) = (2.72, 14.88)$$

(2) 피임약이 혈압을 감소시킨다고 주장할 수 있는가? $\alpha = 0.01$ 에서 검정하라.

[풀이]

$$= H_0: \mu_A - \mu_B = 0 \Leftrightarrow \delta = 0$$
 여기서, $\delta = \delta_0$, $\delta_0 = 0$ $H_1: \mu_A - \mu_B > 0 \Leftrightarrow \delta > 0$ (단측검정)

$$_{\Box}$$
 검정통계량: $t=rac{\overline{d}-\delta_{0}}{s_{D}\!/\sqrt{n}}=rac{8.80}{10.98/\sqrt{15}}=3.10$

 $^{\Box}$ 기각역 설정 $\alpha=0.01 \, o \,$ 기각치: $t_{\alpha}(n-1)=t_{0.01}(14)=2.624$ 기각역 $R\colon t\geq 2.624$

□ 결론

귀무가설 기각 → 대립가설이 맞다고 말할 수 있다.

⇒ 약이 혈압을 내린다는 주장을 뒷받침한다고 할 수 있다.

(3) 랜덤화 (randomization)

환자에게 있는 여러 조건들이 어느 한 쪽의 처리에만 영향을 주지 않고 확률적으로 같은 정도로 영향을 미치도록 해야 한다. 예를 들면 각 쌍에서한 환자에게 동전 던지기로 A, B 중 하나의 약을 처방하고 남은 환자에게는 다른 약을 처방함으로써 환자 간에 어떤 차이가 있다고 하더라도 그 차이가 한 종류의 약에만 영향을 주지는 않도록 하는 것이다. 이와 같이 무작위로 배정하는 것은 랜덤화 (randomization)라고 표현한다.

11.4 두 모비율의 차에 대한 추론

- (1) 모비율에 대한 점추정
- ① 설정
- □ 두 모비율의 비교

 p_1 : 모집단 1에서의 특성치에 대한 비율

 p_2 : 모집단 2에서의 특성치에 대한 비율

- $p_1 p_2$ 에 대한 신뢰구간 구축 $p_1 = p_2$ 에 대한 가설검정
- ② 예: 두 모집단으로부터 추출된 독립된 두 표본

	특성 <i>A</i> 인 것(성공)	특성 <i>A</i> 가 아닌 것(실패)	표본의 크기
모집단 1	X	$n_1 - X$	n_1
모집단 2	Y	$n_2 - Y$	n_2

$$\hat{p_1} = \frac{X}{n_1}, \ \hat{p_2} = \frac{Y}{n_2}$$

 $\hat{p_1} - \hat{p_2}$ 는 $p_1 - p_2$ 의 추정치

$$\qquad \qquad \square \quad \textit{S.E.} (\hat{p_1} - \hat{p_2}) = \sqrt{\frac{\hat{p_1}\hat{q_1}}{n_1} + \frac{\hat{p_2}\hat{q_2}}{n_2}} \qquad \text{od 71 kt} \quad \hat{q_1} = 1 - \hat{p_1}, \quad \hat{q_2} = 1 - \hat{p_2}$$

 \square 만약 n_1 과 n_2 가 충분히 크면, $\hat{p_1} - \hat{p_2}$ 은 근사적으로 정규분포를 따른다.

$$Z = rac{\left(\hat{p_1} - \hat{p_2}\right) - \left(p_1 - p_2\right)}{S.E.\left(\hat{p_1} - \hat{p_2}\right)} \sim N(0, 1^2)$$

여기서,
$$S.E.(\hat{p_1} - \hat{p_2}) = \sqrt{\frac{\hat{p_1}\hat{q_1}}{n_1} + \frac{\hat{p_2}\hat{q_2}}{n_2}}$$
 [$\hat{q_1} = 1 - \hat{p_1}$, $\hat{q_2} = 1 - \hat{p_2}$]

(2) 모비율의 차 (p_1-p_2) 에 대한 신뢰구간 (표본의 크기 n_1 과 n_2 가 클 때)

$$\hat{\left(p_{1}}-\hat{p_{2}}\right)\pm z_{a/2}\sqrt{\frac{\hat{p_{1}}\!\left(1-\hat{p_{1}}\right)}{n_{1}}+\frac{\hat{p_{2}}\!\left(1-\hat{p_{2}}\right)}{n_{2}}}$$

[예제 9.9] 종자의 발아율에 대한 화학적 처리의 효과가 있는지를 알아보기 위하여 100개의 종자에는 화학처리를 하고 150개의 종자에는 화학처리를 하지 않았다. 화학처리를 한 종자 중 88개가 발아하였고 화학처리를 하지 않은 종자 중 126개가 발아하였다. 화학처리를 한 종자와 하지 않은 종자의 발아율에 대한 차의 95% 신뢰구간을 구하라.

【풀이】

	발아된 종자의 수	발아 안된 종자의 수	하
화학처리 ()	88	12	100
화학처리 X	126	24	150

$$\begin{split} \hat{p_1} &= \frac{X}{n_1} = \frac{88}{100} = 0.88, \ \hat{p_2} = \frac{Y}{n_2} = \frac{126}{150} = 0.84 \\ S.E.(\hat{p_1} - \hat{p_2}) &= \sqrt{\frac{\hat{p_1}\hat{q_1}}{n_1} + \frac{\hat{p_2}\hat{q_2}}{n_2}} = \sqrt{\frac{0.88 \times 0.12}{100} + \frac{0.84 \times 0.16}{150}} = 0.044 \\ \alpha &= 0.05 \ \rightarrow \ z_{\alpha/2} = z_{0.05/2} = z_{0.025} = 1.96 \end{split}$$

<
$$p_1 - p_2$$
에 대한 95% 신뢰구간 >
$$(\hat{p_1} - \hat{p_2}) \pm z_{a/2} \sqrt{\frac{\hat{p_1}(1 - \hat{p_1})}{n_1} + \frac{\hat{p_2}(1 - \hat{p_2})}{n_2}} = (\hat{p_1} - \hat{p_2}) \pm z_{a/2} S.E.(\hat{p_1} - \hat{p_2})$$

$$= (0.88 - 0.84) \pm 1.96(0.044) = 0.04 \pm 1.96(0.044) = 0.04 \pm 0.09 = (-0.05, 0.13)$$

(3) $H_0: p_1 = p_2$ 에 대한 가설검정 (대표본)

① 검정통계량:
$$Z = \frac{\hat{p_1} - \hat{p_2}}{S.E.(\hat{p_1} - \hat{p_2})} = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\hat{p}(1-\hat{p})}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

여기서 합동추정량(pooled estimator) $\hat{p}=\frac{X+Y}{n_1+n_2}=\frac{n_1\hat{p_1}+n_2\hat{p_2}}{n_1+n_2}$ $S.E.(\hat{p_1}-\hat{p_2})=\sqrt{\hat{p}\hat{q}}\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$

 $*\hat{p}$: 귀무가설 하에서의 공통비율 p (모비율이 같은 두 모집단의 공통비율)의 추정량

② H의 형태와 상응하는 기각역

H_1	기각역
$H_1: p_1 > p_2$	$R\colon Z\!\geq z_{\alpha}$
$H_1: p_1 < p_2$	$R:Z\!\leq\!-z_{\alpha}$
$H_1: p_1 eq p_2$	$R\colon\! Z \geq z_{\alpha/2}$

[예제 9.9 계속] 앞의 예제 9.9에서 화학적인 처리가 씨의 발아율을 높인다고 할 수 있는지 유의수준 5%로 검정하라. 또 P-값도 구하라.

[풀이]

① 가설설정

$$H_0: p_1 - p_2 = 0, H_1: p_1 - p_2 > 0$$
 (단측검정)

②
$$n_1 = 100, n_2 = 150 \rightarrow$$
 대표본

③
$$\hat{p_1} = \frac{X}{n_1} = \frac{88}{100} = 0.88, \ \hat{p_2} = \frac{Y}{n_2} = \frac{126}{150} = 0.84$$

합동추정량
$$\hat{p} = \frac{X+Y}{n_1+n_2} = \frac{88+126}{100+150} = 0.856$$

검정통계량
$$Z = \frac{\hat{p_1} - \hat{p_2}}{S.E.(\hat{p_1} - \hat{p_2})} = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\hat{p}(1-\hat{p})}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
$$= \frac{0.88 - 0.84}{\sqrt{0.856 \times 0.144}\sqrt{\frac{1}{100} + \frac{1}{150}}} = 0.883$$

④ 기각역의 설정

$$\alpha = 0.05 \rightarrow 7$$
]각치]: $z_{\alpha} = z_{0.05} = 1.645$

□ 기각역 *R*: *Z* ≥ 1.645

⑤ 결론: 검정통계치가 기각역에 포함되지 않으므로 귀무가설을 기각할 수 없다. → 대립가설이 맞다고 말할 수 없다.

⇒ 화학적 처리가 씨의 발아율을 높인다는 충분한 근거가 없다.

⑥
$$p-value = P[z \ge 0.883] = 0.1894$$

[예제 9.10] 홍콩 독감의 백신을 5세에서 9세까지의 어린이에게 접종하였다. 남자 어린이 113명 가운데 34명이 항체가 생겼고 여자 어린이 139명 가운데 54이 항체가 생겼다.

(1) 항체의 생성 비율이 남자 어린이보다 여자 어린이쪽이 더 높다고 할 수 있는가? 유의수준 $\alpha = 0.05$ 에서 검정하라.

【풀이】

□ 설정

 p_1 : 남자 어린이의 항체 생성 모비율, p_2 : 여자 어린이의 항체 생성 모비율

□ 연구가설

 $H_0: p_1 = p_2 [p_1 - p_2 = 0], H_1: p_1 < p_2 [p_1 - p_2 < 0]$ (단측검정)

□ 검정통계량

$$\hat{p_1} = \frac{X}{n_1} = \frac{34}{113} = 0.301, \ \hat{p_2} = \frac{Y}{n_2} = \frac{54}{139} = 0.388$$

합동추정량
$$\hat{p} = \frac{X+Y}{n_1+n_2} = \frac{34+54}{113+139} = 0.349$$

$$Z = \frac{\hat{p_1} - \hat{p_2}}{S.E.(\hat{p_1} - \hat{p_2})} = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\hat{p}(1-\hat{p})}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
$$= \frac{0.301 - 0.388}{\sqrt{0.349 \times 0.651}\sqrt{\frac{1}{113} + \frac{1}{139}}} = -1.44$$

□ 기각역의 설정

$$\alpha = 0.05$$
 \rightarrow 기각치]: $z_{\alpha} = z_{0.05} = 1.645$

기각역 $R: Z \le -z_{0.05} \Rightarrow R: Z \le -1.645$

- □ 귀무가설을 기각할 수 없다 → 대립가설이 맞다고 말할 수 없다.
- ⇒ 항체의 생성 비율이 남자 어린이보다 여자 어린이쪽이 더 높다고 볼 수 없다.
- (2) *p*-값을 구하라.

【풀이】

$$p-value = P[z \le -1.44] = 0.0749$$