Description

This notebook implements a Transformer-based Automatic Speech Recognition (ASR) system. The implementation includes data preparation, training, evaluation, and result generation steps with advanced configurations for neural networks, optimizers, and metrics.

Main Features

1. Dataset Preparation:

- Downloads the ASR dataset from Kaggle and extracts it into the ./data directory.
- Supports train, validation, and test partitions with configurable subsets.

2. Model Design:

- Transformer-based architecture with configurable encoder and decoder layers.
- Implements SpecAugment techniques such as frequency and time masking.
- Embedding and down-sampling configurations for efficient processing.

3. Training Pipeline:

- Optimizes the model using AdamW with a cosine annealing learning rate scheduler.
- Supports mixed-precision training for efficiency.
- Tracks loss and evaluation metrics (e.g., CER, WER).

4. Evaluation:

- Includes metrics for Levenshtein distance, Word Error Rate (WER), and Character Error Rate (CER).
- Provides attention visualization to interpret model predictions.
- Supports beam search decoding for high-accuracy phoneme prediction.

5. Utilities:

- Comprehensive tokenizer implementations (GTokenizer and CharTokenizer) to support various tokenization strategies.
- Configuration files (config.yaml) for easy tuning of hyperparameters.
- Utilities for model saving, loading, and checkpoint management.

6. Logging and Analysis:

- Utilizes wandb for experiment tracking and visualization.
- Provides utilities to visualize attention weights and debug outputs.

Wandb log

