

Content

Summary - page 3

Trends and patterns - page 4-5

Attributes analysis - page 6-10

Correlations Between Attributes - page 11

Model recommendation - page 12-14

Annex - page 15-36

Summary

In this analysis, I aim to identify key factors contributing to engine breakdowns and recommend
predictive models to mitigate such risks. By examining various attributes of engine performance
and maintenance, I seek to provide actionable insights for improving engine reliability and
operational efficiency.

In conclusion, my analysis identified key factors influencing engine breakdown risks, such as
RPM, turbochargers, and piston material. By employing Random Forest and Gradient
Boosting Classifiers, we can achieve accurate predictions, enabling proactive maintenance
strategies to reduce downtime and improve engine reliability. Future work should focus on
real-time data integration and continuous model improvement.

Trends and patterns

 Higher RPM and Breakdown Risk: Engines with higher maximum RPMs consistently show a trend toward higher breakdown risk, emphasizing the need for careful monitoring of high-performance engines. page 24

Impact of Turbochargers: More turbochargers
 correlate with increased breakdown risk, highlighting
 the complexity and potential vulnerabilities introduced
 by additional turbocharging systems. - page 27

High_breakdown_risk

number_tc	False	True	Total
0	12	9	21
1	91	50	141
2	35	106	141
Total	138	165	303

Trends and patterns

High_breakdown_risk

 Resting Analysis Results: Abnormal resting analysis results are moderately correlated with breakdown risk, underlining the importance of regular post-operation analysis for predictive maintenance. - page 23

resting_analysis_results	False	True	Total
0.0	79	68	147
1.0	56	96	152
2.0	3	1	4
Total	138	165	303

number_up and high_b.down_risk

Unplanned Events and Breakdown Risk: More unplanned events correlate with lower breakdown risk, suggesting effective corrective actions are being taken following each unplanned event. - page 26

High_breakdown_risk

 Combustion Issues: Engines with non-related and atypical combustion issues show higher breakdown risks, emphasizing the need for timely and effective resolution of combustion problems. - page 19

issue_type	False	True	Total
atypical	9	41	50
non-related	18	68	86
non-symptomatic	7	16	23
typical	104	40	144
Total	138	165	303

INNIO

RPM Max (rpm_max) and Breakdown Risk: page 24

- Pattern: Higher maximum RPM values are associated with an increased risk of breakdown.
- Analytical Statement: Engines that achieve higher maximum RPMs tend to have a higher breakdown risk. The correlation coefficient is approximately 0.42, indicating that it is relevant for forecasting the risk of a breakdown.

Number of Turbo Chargers (number_tc) and Breakdown Risk: page 27

- Pattern: A greater number of turbochargers is associated with a higher breakdown risk.
- Analytical Statement: The presence of more turbochargers correlates with an increased likelihood of breakdowns (relevant for forecasting the risk of a breakdown).

Resting Analysis Results and Breakdown Risk: page 23

- Pattern: Engines with abnormal or critical resting analysis results are more likely to break down.
- Analytical Statement: There is a moderate positive correlation (r ≈ 0.14) between
 resting analysis results and breakdown risk. Engines with abnormal or critical resting
 analysis results show a higher incidence of breakdowns compared to those with
 normal results. (relevant for forecasting the risk of a breakdown)

High_breakdown_risk

number_tc	False	True	Total
0	12	9	21
1	91	50	141
2	35	106	141
Total	138	165	303

High_breakdown_risk

resting_analysis_results	False	True	Total
0.0	79	68	147
1.0	56	96	152
2.0	3	1	4
Total	138	165	303

INNIO

Issue Types (issue_type) and Breakdown Risk: page 19

- Pattern: Different types of combustion issues have varying impacts on breakdown risk.
- Analytical Statement: Engines with non-related and atypical combustion issues show a higher risk of breakdowns compared to those with typical or non-symptomatic issues. The correlation between issue type and breakdown risk highlights the significance of addressing combustion issues promptly to prevent breakdowns. (relevant for forecasting the risk of a breakdown)

Full Load Operation Issues (full_load_issues) and Breakdown Risk: page 25

- Pattern: There is a strong negative correlation between full load operation issues and breakdown risk.
- Analytical Statement: Engines experiencing issues during full load operations tend to have a lower risk of breakdown (r ≈ -0.44), which could be due to more frequent maintenance and checks in response to these issues. (relevant for forecasting the risk of a breakdown)

Н	High_breakdown_risl					
issue_type	False	True	Total			
atypical	9	41	50			
non-related	18	68	86			
non-symptomatic	7	16	23			
typical	104	40	144			
Total	138	165	303			

H	ligh_bre	eakdov	vn_risk
full_load_issues	False	True	Total
False	62	142	204
True	76	23	99
Total	138	165	303

Operating Hours (oph) and Breakdown Risk: page 17

- Pattern: There is a negative correlation between operating hours and breakdown risk.
- Analytical Statement: Contrary to initial expectations, the data reveals a negative correlation (r ≈ -0.22) between operating hours and breakdown risk, indicating that engines with higher operating hours might have undergone more maintenance, reducing the risk breakdown. (relevant for forecasting the risk of a breakdown)

Piston Material (pist_m) and Breakdown Risk: page 18

- Pattern: The type of piston material shows a negative correlation with breakdown risk.
- Analytical Statement: Engines with certain piston materials are less likely to break down, with a correlation coefficient of approximately -0.28, indicating that specific materials contribute to improved engine reliability. (relevant for forecasting the risk of a breakdown)

High_breakdown_risk

pist_m	False	True	Total
False	24	72	96
True	114	93	207
Total	138	165	303

INNIO

Break Mean Effective Pressure (bmep) and Breakdown Risk: page 20

- **Pattern:** There is a slight negative correlation between BMEP and breakdown risk.
- Analytical Statement: Higher BMEP values correlate with a reduced likelihood of breakdowns, suggesting that engines operating under higher pressure conditions might be less prone to failures.

Number of Unplanned Events (number_up) and Breakdown Risk: page 26

- Pattern: There is a strong negative correlation between the number of unplanned events and breakdown risk.
- Analytical Statement: Engines with more unplanned events show a lower risk of breakdown (r ≈ -0.43), possibly due to increased monitoring and preventive measures taken after each event.

Past Damages (past_dmg) and Breakdown Risk: page 22

- Pattern: Past damages have a slightly negative correlation with breakdown risk.
- Analytical Statement: Surprisingly, engines with past damages have a weak negative correlation (r ≈ -0.03) with breakdown risk, suggesting that past damages alone are not a strong predictor of future breakdowns.

Natural Gas Impurities (ng_imp) and Breakdown Risk: page 21

- Pattern: Natural gas impurities show a slight negative correlation with breakdown risk.
- Analytical Statement: The correlation coefficient between natural gas impurities and breakdown risk is close to zero, indicating that impurities in the fuel have zero relationship with breakdown risk.

 High_breakdown_risk

 past_dmg
 False
 True
 Total

 False
 116
 142
 258

 True
 22
 23
 45

 Total
 138
 165
 303

Correlations Between Attributes - page 29

Operating Hours and Resting Analysis Results:

There is a moderate positive correlation ($r \approx 0.25$) between operating hours and resting analysis results, suggesting that engines with more operating hours tend to show more abnormalities during resting analysis.

• RPM Max and Number of Turbo Chargers:

 A moderate positive correlation (r ≈ 0.3) exists between maximum RPM and the number of turbochargers, indicating that engines capable of higher RPMs often have more turbochargers installed.

Natural Gas Impurities and BMEP:

○ A moderate positive correlation (r ≈ 0.2) is observed between natural gas impurities and BMEP, suggesting that engines with higher fuel impurities tend to operate under higher pressure conditions.

Model recommendation

Model	Accuracy	AUC	Precision	Recall	F1 Score
Random Forest	87.8%	0.9686	90.1%	85.6%	87.8%
Gradient Boosting	93.9%	0.9921	92.3%	95.6%	93.9%
Logistic Regression	75.0%	0.8487	77.0%	80.6%	78.5%

For forecasting the risk of engine breakdown using the provided dataset, the Random Forest and Gradient Boosting Classifier models are highly recommended due to their superior performance in handling complex interactions and providing accurate predictions. These models, along with the identified relevant attributes, will ensure robust predictive maintenance strategies, enabling proactive measures to mitigate breakdown risks effectively.

Random Forest Classifier:

• **Suitability:** The model demonstrated an accuracy of 87.8% and an AUC of 0.9686 after tuning. This indicates that Random Forest effectively captures complex interactions between variables and provides reliable predictions. It also provides feature importance, which helps in understanding the impact of different attributes on breakdown risk. - page 13

Gradient Boosting Classifier:

• **Suitability:** This model achieved the highest accuracy (93.9%) and AUC (0.9921) after tuning, indicating excellent performance in predicting breakdown risk. - page 14

Random Forest Classifier

Steps	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс
create_model() -mean	0.7847	0.8515	0.8236	0.8164	0.8127	0.5618	0.5738
tune_model() -mean	0.7958	0.8562	0.8036	0.8352	0.8136	0.587	0.5967
predict_model(tuned)	0.8293	0.8979	0.8261	0.8636	0.8444	0.6555	0.6563
predict_model(final)	0.878	0.9686	0.8696	0.9091	0.8889	0.7539	0.7548
unseen_prediction	0.7	0.8688	0.6923	0.6429	0.6667	0.3946	0.3955

Gradient Boosting Classifier

Steps	Accuracy	AUC	Recall	Prec.	F1	Kappa	мсс
create_model() -mean	0.7689	0.8473	0.8036	0.8003	0.7954	0.5297	0.5395
tune_model() -mean	0.7797	0.8696	0.8618	0.7814	0.8152	0.5453	0.5577
predict_model(tuned)	0.7927	0.8901	0.8043	0.8222	0.8132	0.5804	0.5806
predict_model(final)	0.939	0.9921	0.9565	0.9362	0.9462	0.8758	0.8761
unseen_prediction	0.7	0.8824	0.7692	0.625	0.6897	0.4053	0.4135

Annex

Data cleaning steps

Original dataset with 15 columns and 316 entries

- Exclude duplicates
- Drop 3 columns
- Drop outliers
- Handle missing values
- Convert data types

Cleaned dataset with 12 columns and 303 entries

Attribute analysis with ydata-profiling

Attribute analysis - oph

oph

Real number (R)

Distinct	41	
Distinct (%)	13.5%	
Missing	0	
Missing (%)	0.0%	
Infinite	0	
Infinite (%)	0.0%	
Mean	54468.647	

Minimum	29000
Maximum	77000
Zeros	0
Zeros (%)	0.0%
Negative	0
Negative (%)	0.0%
Memory size	2.5 KiB

Histogram with fixed size bins (bins=41)

Quantile statistics

Minimum	29000
5-th percentile	40000
Q1	48000
median	56000
Q3	61000
95-th percentile	68000
Maximum	77000
Range	48000
Interquartile range (IQR)	13000

Descriptive statistics

Standard deviation	9071.7253
Coefficient of variation (CV)	0.16654949
Kurtosis	-0.53514629
Mean	54468.647
Median Absolute Deviation (MAD)	6000
Skewness	-0.20365472
Sum	16504000
Variance	82296199
Monotonicity	Not monotonic

oph and high_b.down_risk

Attribute analysis - pist_m

pist_m

Boolean

Distinct	2
Distinct (%)	0.7%
Missing	0
Missing (%)	0.0%
Memory size	431.0 B

True		207
False	96	

High_breakdown_risk

pist_m	False	True	Total
False	24	72	96
True	114	93	207
Total	138	165	303

Attribute analysis - issue_type

issue type

Categorical

HIGH CORRELATION

Distinct	4
Distinct (%)	1.3%
Missing	0
Missing (%)	0.0%
Memory size	635.0 B

typ	ical		144	-0.0	, in the second
non-rela	ted	86			
atyp	ical	50			
non-sympto	23				

High_breakdown_risk

issue_type	False	True	Total
atypical	9	41	50
non-related	18	68	86
non-symptomatic	7	16	23
typical	104	40	144
Total	138	165	303

Attribute analysis - bmer

bmep

Real number (R)

Quantile statistics

Distinct	49	
Distinct (%)	16.2%	
Missing	0	
Missing (%)	0.0%	
Infinite	0	
Infinite (%)	0.0%	
Mean	131.59736	

Minimum	94
Maximum	200
Zeros	0
Zeros (%)	0.0%
Negative	0
Negative (%)	0.0%
Memory size	2.5 KiB

Doccrintivo	etatictice	

Minimum	94
5-th percentile	108
21	120
median	130
23	140
5-th percentile	160
Maximum	200
Range	106
nterquartile range (IQR)	20

17.534533
0.13324381
0.93662805
131.59736
10
0.71859366
39874
307.45986
Not monotonic

Attribute analysis - ng_imp

ng_imp

Real number (\mathbb{R})

Distinct	153	
Distinct (%)	50.5%	
Missing	0	
Missing (%)	0.0%	
Infinite	0	
Infinite (%)	0.0%	
Mean	492.9604	

252
1128
0
0.0%
0
0.0%
2.5 KiB

Histogram with fixed size bins (bins=50)

Quantile statistics

Minimum	252
5-th percentile	350.2
Q1	422
median	481
23	549
5-th percentile	653.8
Maximum	1128
Range	876
Interquartile range (IQR)	127

Descriptive statistics

923	
Standard deviation	103.33777
Coefficient of variation (CV)	0.20962691
Kurtosis	4.5684594
Mean	492.9604
Median Absolute Deviation (MAD)	63
Skewness	1.1502869
Sum	149367
Variance	10678.694
Monotonicity	Not monotonic

Attribute analysis - past_dmg

past_dmg

Boolean

Distinct	2
Distinct (%)	0.7%
Missing	0
Missing (%)	0.0%
Memory size	431.0 B

High_breakdown_risk

past_dmg	False	True	Total
False	116	142	258
True	22	23	45
Total	138	165	303

Attribute analysis - resting_analysis_result

resting_analysis_results

Categorical

Distinct	3	
Distinct (%)	1.0%	
Missing	0	
Missing (%)	0.0%	
Memory size	563.0 B	

High_breakdown_risk

resting_analysis_results	False	True	Total
0.0	79	68	147
1.0	56	96	152
2.0	3	1	4
Total	138	165	303

Attribute analysis - rpm_max

rpm_max

Real number (R)

Distinct	92	
Distinct (%)	30.4%	
Missing	0	
Missing (%)	0.0%	
Infinite	0	
Infinite (%)	0.0%	
Mean	1495.7921	

710
110
2020
0
0.0%
0
0.0%
2.5 KiB

Quantile statistics

Minimum	710
5-th percentile	1081
Q1	1335
median	1525
Q3	1660
95-th percentile	1819
Maximum	2020
Range	1310
Interquartile range (IQR)	325

Descriptive statistics

Standard deviation	228.66196
Coefficient of variation (CV)	0.15287015
Kurtosis	-0.051828192
Mean	1495.7921
Median Absolute Deviation (MAD)	155
Skewness	-0.53477053
Sum	453225
Variance	52286.291
Monotonicity	Not monotonic

rpm_max and high_b.down_risk

Attribute analysis - full_load_issues

full_load_issues

Boolean

Distinct	2
Distinct (%)	0.7%
Missing	0
Missing (%)	0.0%
Memory size	431.0 B

High_breakdown_risk

full_load_issues	False	True	Total
False	62	142	204
True	76	23	99
Total	138	165	303

Attribute analysis - number_up

number_up

Real number (R) HIGH CORRELATION ZEROS Distinct 40 Distinct (%) 13.2% 0 Missing Missing (%) 0.0% Infinite 0 Infinite (%) 0.0% Mean 10.422442

Minimum	0
Maximum	62
Zeros	98
Zeros (%)	32.3%
Negative	0
Negative (%)	0.0%
Memory size	2.5 KiB

Quantile statistics

Quantile statistics	
Minimum	0
5-th percentile	0
Q1	0
median	8
Q3	16
95-th percentile	34
Maximum	62
Range	62
Interquartile range (IQR)	16

Descriptive statistics

Standard deviation	11.596118
Coefficient of variation (CV)	1.1126105
Kurtosis	1.5851753
Mean	10.422442
Median Absolute Deviation (MAD)	8
Skewness	1.2700288
Sum	3158
Variance	134.46996
Monotonicity	Not monotonic

number up and high b.down risk

Attribute analysis - number_tc

number to

Categorical

Distinct 3

Distinct	3
Distinct (%)	1.0%
Missing	0
Missing (%)	0.0%
Memory size	2.5 KiB

High_breakdown_risk

number_tc	False	True	Total
0	12	9	21
1	91	50	141
2	35	106	141
Total	138	165	303

high_breakdown_risk

Boolean

HIGH CORRELATION

Distinct	2
Distinct (%)	0.7%
Missing	0
Missing (%)	0.0%
Memory size	431.0 B

Correlations

Interactions

Model and feature selection with PyCaret

(pycaret.classification Module)

- Getting Data: Cleaned dataset with 12 columns and 303 entries (90% data, 10% as unseen data for the calculation)
- Setting up Environment: use 273 entities (70-30% training and test dataset), target is the 'high_risk_breakdown', using StratifiedKFold (fold number = 10)
- Create Model: create a model, perform stratified cross validation and evaluate classification metrics
- Tune Model: automatically tune the hyper-parameters of a classification model
- Plot Model: analyze model performance using various plots
- Finalize Model: finalize the best model at the end of the experiment
- Predict Model: make predictions on new / unseen data
- Save / Load Model: save / load a model for future use

Compare_models()

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
nb	Naive Bayes	0.7850	0.8610	0.7964	0.8262	0.8043	0.5675	0.5794	0.0930
rf	Random Forest Classifier	0.7847	0.8515	0.8236	0.8164	0.8127	0.5618	0.5738	0.4080
ridge	Ridge Classifier	0.7742	0.0000	0.8327	0.7939	0.8060	0.5384	0.5545	0.1800
gbc	Gradient Boosting Classifier	0.7689	0.8473	0.8036	0.8003	0.7954	0.5297	0.5395	0.3070
lda	Linear Discriminant Analysis	0.7689	0.8494	0.8227	0.7915	0.8010	0.5279	0.5391	0.1800
et	Extra Trees Classifier	0.7589	0.8209	0.7773	0.8014	0.7822	0.5147	0.5244	0.3630
lightgbm	Light Gradient Boosting Machine	0.7587	0.8595	0.8055	0.7941	0.7873	0.5117	0.5316	0.2450
lr	Logistic Regression	0.7487	0.8487	0.8064	0.7703	0.7805	0.4875	0.5028	0.1150
ada	Ada Boost Classifier	0.7266	0.7808	0.7845	0.7454	0.7593	0.4440	0.4514	0.3120
dt	Decision Tree Classifier	0.6800	0.6761	0.7091	0.7253	0.7097	0.3500	0.3570	0.1690
knn	K Neighbors Classifier	0.6239	0.6410	0.6909	0.6560	0.6694	0.2342	0.2378	0.1930
qda	Quadratic Discriminant Analysis	0.5600	0.5865	0.5009	0.6404	0.5127	0.1048	0.1292	0.1030
dummy	Dummy Classifier	0.5550	0.5000	1.0000	0.5550	0.7135	0.0000	0.0000	0.1120
svm	SVM - Linear Kernel	0.5024	0.0000	0.3891	0.3322	0.3027	0.0437	0.0569	0.1080

Naive Bayes

Steps	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс
create_model() -mean	0.785	0.861	0.7964	0.8262	0.8043	0.5675	0.5794
tune_model() -mean	0.7905	0.8664	0.8336	0.8055	0.814	0.5759	0.5866
predict_model(tuned)	0.7927	0.8937	0.7391	0.8718	0.8	0.5878	0.5965
predict_model(final)	0.8293	0.904	0.8043	0.881	0.8409	0.6575	0.6607
unseen_prediction	0.7	0.8597	0.8462	0.6111	0.7097	0.4156	0.4394

Ridge Classifier

Steps	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс
create_model() -mean	0.7742	0	0.8327	0.7939	0.806	0.5384	0.5545
tune_model() -mean	0.7795	0	0.8518	0.7894	0.8133	0.5473	0.5635
predict_model(tuned)	0.8171	0.8128	0.8478	0.8298	0.8387	0.6275	0.6277
predict_model(final)	0.8537	0.8454	0.913	0.84	0.875	0.6993	0.7028
unseen_prediction	0.7667	0.776	0.8462	0.6875	0.7586	0.5374	0.5483

Predicted Class

Light Gradient Boosting

Steps	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс
create_model() -mean	0.7587	0.8595	0.8055	0.7941	0.7873	0.5117	0.5316
tune_model() -mean	0.7587	0.8643	0.8518	0.7656	0.8002	0.5005	0.5156
predict_model(tuned)	0.7683	0.8273	0.8478	0.7647	0.8041	0.5224	0.5266
predict_model(final)	1	1	1	1	1	1	1
unseen_prediction	0.7	0.7783	0.7692	0.625	0.6897	0.4053	0.4135

Logistic Regression

Steps	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
create_model() -mean	0.7487	0.8487	0.8064	0.7703	0.7805	0.4875	0.5028
tune_model() -mean	0.7795	0.8222	0.8409	0.7867	0.81	0.5482	0.5554
predict_model(tuned)	0.8415	0.9076	0.8043	0.9024	0.8506	0.6829	0.6881
predict_model(final)	0.6951	0.7591	0.7391	0.7234	0.7312	0.3792	0.3793
unseen_prediction	0.7	0.8869	0.9231	0.6	0.7273	0.4255	0.4757

