

🗖 محدودیتهای دارای متغیرهای ناپیوسته
■ اگر متغیری بخواهد مقدارش یا صفر شود و یا عددی بـین یـک بـازه گیسته، آنگاه آن را نمیتوان به صورت خطی تبدیل کرد و راهی جـز استفاده از متغیرهای دودویی وجود ندارد.
$x = 0 \ orl \le x \le u$
$0 \qquad \qquad 0 \qquad \qquad 1 \qquad \qquad u \qquad \qquad x$
 مثال: فرض کنید که قرار از مقداری از مواد اولیه را از تامین کنندگانی سفارش دهید. حال اگر تامین کننده انتخاب شود، مواد اولیه به صورت دستهای در مقادیری بین یک حد بالا و پایین انتخاب خواهد شد.
ا برنامریزی عدد محج برنامریزی عدد محج

ا محدوديتهاي انتخاب

انتخاب یکی از دو محدودیت

■ انتخاب یکی از محدودیت را نمی شود توسط برنامه ریزی خطی حل کرد، زیرا در برنامه ریزی خطی همه محدودیت هه برقرار هستند.

$$\sum_{j \in J} a_{i,j} x_j \le b_i \quad or \quad \sum_{j \in J} a_{i,j} x_j \le b_i$$

■ مثال: دو حالت تولیدی در مسائل برنامهریزی تولید می تواند اتفاق بیفتد. حل باید مدل بتواند یکی از آنها را انتخاب کند.

برنامهریزی عددصحیح- روشهای مدل سازی برنامهریزی عدد صحیح

محدوديتهاي انتخاب-ادامه

■ روش تبدیل

$$\sum_{j \in J} a_{ij} x_j \le b_i$$

$$\sum_{j \in J} a_{ij} x_j \le b_i + M_i y_i$$

$$\sum_{j \in J} a_{ij} x_j \le b_i + M_i y_i$$

$$\sum_{j \in J} a_{ij} x_j \le b_i + M_i y_i$$

$$y \in \{\cdot, 1\}$$

برنامه ریزی عدد صحیح - روش های مدل سازی برنامه ریزی عدد صحیح

ا محدوديتهاي انتخاب-ادامه

 $m \le n$ متغیر باینری از \mathbf{n} متغیر باینری انتخاب حداکثر

$$\sum_{i=1}^{n} x_{j} \leq m$$

انتخاب حداقل m متغير باينرى از n متغير باينرى

$$\sum_{j=1}^{n} x_j \ge n$$

انتخاب m متغیر باینری از n متغیر باینری

$$\sum_{i=1}^{n} x_{j} = m$$

برنامه ریزی عددصحیح- روشهای مدل سازی برنامه ریزی عدد صحیح

محدوديتهاي انتخاب-ادامه

 $m \le n$ انتخاب حداکثر m محدودیت از n محدودیت

$$\sum_{i=1}^{n'} a_{ij} x_{ij} \leq b_i + M_i y_i \qquad i = 1, 7, 7, ..., n$$

$$\sum_{i=1}^{n} y_i \ge n - m$$

$$v_i \in \{\cdot, 1\}$$
 $i = 1, 7, 7, \dots, n$

ا محدوديتهاي انتخاب-ادامه

 $m \leq n$ انتخاب حداقل $m \leq n$ محدودیت از

$$\sum_{j=1}^{n'} a_{ij} x_{ij} \leq b_i + M_i y_i \qquad i = 1, \text{T,T,...,} n$$

$$\sum_{i=1}^{n} y_{i} \leq n - m$$

$$y_i \in \{\cdot, 1\}$$
 $i = 1, 7, 7, \dots, n$

محدوديتهاي انتخاب-ادامه

 $m \le n$

انتخاب m محدودیت از n محدودیت

$$\sum_{j=1}^{n'} a_{ij} x_{ij} \leq b_i + \boldsymbol{M}_i \boldsymbol{y}_i \qquad i = 1, 7, 7, ..., n$$

$$\sum_{i=1}^{n} y_i = n - n$$

$$y_i \in \{\cdot, 1\}$$
 $i = 1, 7, 7, \dots, n$

ا محدوديتهاي شرطي-ادامه

مثال

اگر $x \le a$ ، آنگاه $b \ge 0$ ، در غیر این صورت $x \le c$ ، فرض بر ایـن است که دو متغیر x,y عددصحیح هستند و $b \ge c$ این شـرط را بـه صورت محدودیتهای خطی بنویسید.

ياسخ

 $\left(\left(LB_{x} \leq x \leq a\right) \& \left(b \leq y \leq UB_{y}\right)\right) XOR\left(\left(a + 1 \leq x \leq UB_{x}\right) \& \left(LB_{y} \leq y \leq c\right)\right)$

$$(a+1)z+LB_x(1-z)\leq x\leq UB_xz+a(1-z)$$

$$LB_{y}z + b(1-z) \le y \le cz + UB_{y}(1-z)$$

19

و برنامه ریزی عدد صحیح- روش های مدل سازی برنامه ریزی عدد صحیح

ا محدودیتهای شرطی-ادامه

مثال

 شروط زیر را به صورت محدودیتها خطی بنویسید. (فرض کنید که متغیر x عدد صحیح است.)

$$x = a \longrightarrow y = 1$$

$$x \neq a \longrightarrow y = \cdot$$

$$x \le a - 1 \text{ or } x \ge a + 1$$

$$x \le (a - 1)z_1 + ay + UBz_2$$

$$x \ge LBz_1 + ay + (a + 1)z_2$$

$$z_1 + y + z_2 = 1$$

17

برنامه ریزی عدد صحیح- روش های مدل سازی برنامه ریزی عدد صحیح

امجموعه مرتبشده ويژه

SOS1

■ ۱) دریک مجموعه از تصمیمات صفر ویکی، حداکثریکی از متغیرها می تواند برابریک شود.

$$\sum_{i=1}^{n} y_i \leq 1$$

در حالت عمومی، اگر $u_i \leq x_i \leq x_i$ ، آنگاه محدودیت SOS1 به صورت زیر خواهد بود.

$$\sum_{i=1}^{n} a_i x_i \le b$$

برنامه ریزی عدد صحیح- روش های مدل سازی برنامه ریزی عدد صحیح

■ مدلسازي توابع خطى قطعهاي-ادامه

- .تابع شامل بازه $\left[a_i,b_i
 ight]$ است.
- به صورت کلی، این تابع به صورت زیر است.

$$f(x) = \begin{cases} f(a_i) + \frac{x - a_i}{b_i - a_i} [f(b_i) - f(a_i)] & \text{if } x \in [a_i, b_i], a_i < b_i \\ f(a_i) & \text{if } x = a_i = b_i \end{cases}$$

**

برنامهریزی عددصحیح- روشهای مدلسازی برنامهریزی عدد صحیه

■ مدلسازي توابع خطى قطعهاي-ادامه

■ فرمول تبدیل شده این تابع به صورت زیر است.

$$\bigvee_{i} \left(x = \lambda a_{i} + \mu b_{i} \\ z = \lambda f(a_{i}) + \mu f(b_{i}) \\ \lambda + \mu = 1 \right)$$

ست. وz نشان دهندهf(x)ست. وz نشان دهنده a_i,b_i است. وi

۲۱

برنامهریزی عددصحیح- روشهای مدلسازی برنامهریزی عدد صحیح

■ مدلسازی توابع خطی قطعهای-ادامه

شد محدودیتهای * و **	ا فرمول قبلی به فرمول زیر تبدیل خواهد
$x = \sum \lambda_i a_i$	همان مفهوم و کاربرد SOS2 است.

$$z = \sum \lambda_i f(a_i)$$

$$\sum \lambda_i = 1$$

$$\lambda_{i} \leq \delta_{i}, \lambda_{i} \leq \delta_{i-1} + \delta_{i}, \lambda_{I} \leq \delta_{I-1}$$

$$\sum_{i} \delta_{i} = 1$$

 $\delta_i \in \{\cdot, 1\}, \lambda_i \geq \cdot$

برنامه ریزی عدد صحیح- روش های مدل سازی برنامه ریزی عدد صحیح

ي نيازيان المال المارية

مطالعات بيشتر

- Guéret, C., Prins, C., & Sevaux, M. (1999). Applications of optimization with Xpress-MP. contract, 00034.
- Guide, A. M. (2012). Integer Programming Tricks. Paragon Decision Technology BV.
- Eiselt, H. A., & Sandblom, C. L. (2013). Integer programming and network models. Springer Science & Business Media.
- Hooker, J. N. Formulating Good MILP Models. Wiley Encyclopedia of Operations Research and Management Science.

۲

برنامه ریزی عددصحیح- روشهای مدل سازی برنامه ریزی عدد صحیح

🐷 تمر بر

- دو مـدل دیگـر از نوشـتن محـدودیتهای تـابع خطـی قطعـهای را
 بنویسید.
- دو مـدل دیگـر از نحـوه تبـدیل ضـرب دو متغیـر بـاینری بـه محدودیتهای خطی را بنویسید.
- ارائه پر ایمفهوم SOS2، یک نوع تبدیل برای متغیر |x| ارائه دهید.
 - عبارت زیر را خطیسازی کنید.

$$z = \sum_{i=1}^{x} a_i y$$

 $y_i \ge \cdot, x \in Z$

برنامهریزی عددصحیح- روشهای مدلسازی برنامهریزی عدد صحی