

 $f_{4MHII\Phi} = (\overline{X3}\overline{X2}X1) \ v \ (X4\overline{X2}) \ v \ (X4X1) \ v \ (X4X3)$

3.4. Спільна мінімізація функцій f1, f2, f3

Для отримання схем з мінімальними параметрами треба провести спільну мінімізацію системи функцій та їх заперечень. Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ.

Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.6). Побудуємо таблицю покриття (таблиця 4.5).

KO	K1	K2
0000 (1,2,3)	000X (1,2)	OXXO (1,3)
0001 (1,2)	00X0 (1,2,3)	X0X0 (3)
0010 (1,2,3)	OXOO (1,3)	OXXO (1,3)
0100 (-1,3)	X000 (1,3)	XX00 (1,3)
0110 (1,-2,-3)	OX10 (1,2,3)	XOXO (3)
0111 (-1,-2,3)	X010 (3)	XX00 (1,3)
1000 (1,3)	<i>01X0 (1,3)</i>	X1X0 (1)
-1010-(3)	X100 (1,3)	X1X0 (1)
1100 (1,-2,3)	011X (1,2,3)	X11X (1)
1101 (1)	X110 (1)	X11X (1)
-1110 (1)	X111 (1,2,3)	11XX (1)
1111 (1,2,3)	10X0 (3)	11XX (1)
	1X00 (1,3)	
	-110X-(1)	
	-11XO-(1)	
	11X1 (1)	
	-111X /1 /	

Рисунок 4.6 Склеювання і поглинання термів системи

\vdash				\vdash	<i>IAЛЦ.463</i>
3M.	Арк.	№ докум.	Підп.	Дата	ілі іц. тоз

Таблиця 4.5 Таблиця покриття системи

	00001F11	0001/F1/	0010IF1)	0110lF1)	1000(F1)	1100/F1/	1101/F1/	1110/F1/	1111/F1/	0000(F2)	0001/F2/	0010lF2J	1111F2J	0000IF3J	0010IF3/	0100IF3/	0111F3J	1000(F3)	1010IF3/	1100/F3/	1111F3J
1100 (1,-2,3)																					
000X (1,2)	+	+								+	+										
00X0 (1,2,3)			+									+									
OX10 (1,2,3)																					
011X (1,2,3)																					
X111 (1,2,3)													+				+				+
OXXO (1,3)				+										+	+	+					
X0X0 (3)																			+		
XX00 (1,3)					+													+		+	
X1X0 (1)																					
X11X (1)																					
11XX (1)						+	+	+	+												

Після мінімізації визначили кожну з функцій в формі І/АБО.

 $f1_{MJH\Phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (X3X2X1) \ v \ (\overline{X4}\overline{X1}) \ v \ (\overline{X2}\overline{X1}) \ v (X3\overline{X1}) \ v \ (X4X3)$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}\overline{X3}\overline{X1}) \ v \ (X3X2X1)$

 $f3_{M\Pi H \phi} = (\overline{X3}X2\overline{X1}) \ v \ (X3\overline{X2}\overline{X1}) \ v \ (X3X2X1) \ v \ (\overline{X4}\overline{X1})$

Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ. Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.7). Побудуємо таблицю покриття (таблиця 4.6).

Зм.	Арк.	№ докум.	Підп.	Дата

KO K1 *K2 -0001 (3)* 00X1 (3) X0X1 /3/ XX01 (3) 0011 (1,2,3) 0X01 (3) 0100 (-1,2) X001 (3) XOX1 (3) 0101 (1,2,3) | 0X11 (1,2) XX01 (3) 0110 (-2,-3) | X011 (1,2,3) | 01XX (2) 0111 (-1,-2) 010X (1,2) X10X (2) 01X0 (2) 1000 (2) 01XX (2) 1001 (1,2,3) X100 (2) X1X0 (2) 1010 (1.2) 01X1 (1.2) X10X (2) X101 (2,3) X1X0 (2) 1011 (1,2,3) 1100 (-2) 011X (2) 10XX (2) 1101 (2.3) X110 (2,3) 1XOX (2) 1110 (2,3) 100X (2) 10XX (2) 10X0 (2) 1XX0 (2) 1X00 (2) 1X0X (2) 10X1 (1,2,3) | 1XX0 (2) 1X01 (2.3) 101X (1,2) 1X10 (2) 110X (2) 11X0 (2)

Рисунок 4.7 Склеювання і поглинання термів системи

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.6 Таблиця покриття системи

	0011/F1)	0101/F1/	1001/F1/	1010/F1/	1011/F1)	0011[F2]	0100(F2)	0101(F2)	1000(F2)	1001/F2J	1010(F2)	1011/F2/	1101/F2/	1110IF2)	0001/F3/	0011(F3)	0101/F3/	1001(F3)	1011/F3J	1101/F3J	1110IF3J
0101 (1,2,3)																					
OX11 (1,2)																					
X011 (1,2,3)	+				+	+										+			+		
010X (1,2)		+					+	+													
01X1 (1,2)																					
X101 (2,3)													+				+			+	
X110 (2,3)														+							+
10X1 (1,2,3)			+																		
1X01 (2,3)																					
101X (1,2)				+																	
X0X1 (3)																					
XX01 (3)																		+			
01XX (2)																					
X10X (2)																					
X1X0 (2)																					
10XX (2)									+	+	+	+									
1XOX (2)																					
1XX0 (2)																					

Після мінімізації визначили кожну з функцій в формі І/АБО-НЕ.

 $f1_{MJH\Phi} = (\overline{X3}X2X1) \ v \ (\overline{X4}X3\overline{X2}) \ v \ (X4\overline{X3}X1) \ v \ (X4\overline{X3}X2)$

f2_{M][||+|+|}= (\overline{X}\overline{3} X2 X1| v (X3\overline{X}\overline{2}) v (X4\overline{X}\overline{3}) v (X3X2\overline{X}\overline{1})

 $f3_{MJH\Phi}=(\overline{X3}X2X1) \ v \ (\overline{X2}X1) \ v \ (X3X2\overline{X1})$

3M.	Арк.	№ докум.	Підп.	Дата

3.5. Одержання операторних форм для реалізації на ПЛМ

Для програмування ПЛМ використовують нормальны форми I/AБО, I/AБО-НЕ. Розглянемо програмування ПЛМ для системи перемикальних функції, що подана в формі I/AБО.

 $f1_{MJH\Phi} = (\overline{X}4\overline{X}3\overline{X}2) \ v \ (X3X2X1) \ v \ (\overline{X}4\overline{X}1) \ v \ (\overline{X}2\overline{X}1) \ v (X3\overline{X}1) \ v \ (X4X3)$

 $f2_{M\Pi H \phi} = (\overline{X4} \overline{X3} \overline{X2}) \ v \ (\overline{X4} \overline{X3} \overline{X1}) \ v \ (X3X2X1)$

 $f3_{MDH\phi} = (\overline{X3}X2\overline{X1}) \ v \ (X3\overline{X2}\overline{X1}) \ v \ (X3X2X1) \ v \ (\overline{X4}\overline{X1})$

Позначимо терми системи:

 $P1 = \overline{X4}\overline{X3}\overline{X2}$

P2 = X3X2X1

P3 = \(\overline{X4}\overline{X1}\)

 $P4 = \overline{X2}\overline{X1}$

P5 = \bar{X3}\bar{X1}

P6 = X4X3

 $P7 = \overline{X4}\overline{X3}\overline{X1}$

P8 = \(\overline{X}\)3X2\(\overline{X}\)1

P9 = X3\(\overline{X}2\overline{X}1\)

Тоді функції виходів описуються системою:

 $f1_{MDH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (X3X2X1) \ v \ (\overline{X4}\overline{X1}) \ v \ (\overline{X2}\overline{X1}) \ v \ (X3\overline{X1}) \ v \ (X4X3) = P1 \ v \ P2 \ v \ P3 \ v \ P4 \ v \ P5 \ v \ P6$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}\overline{X3}\overline{X1}) \ v \ (X3X2X1) = P1 \ v \ P7 \ v \ P2$

 $f3_{M\Pi H \phi} = (\overline{X3}X2\overline{X1}) \ v \ (X3\overline{X2}\overline{X1}) \ v \ (X3X2X1) \ v \ (\overline{X4}\overline{X1}) = P8 \ v \ P9 \ v \ P2 \ v \ P3$

	·			
3M.	Арк.	№ докум.	Підп.	Дата

<i>IA/IЦ.463626.004 ПЗ</i>

Визначимо мінімальні параметри ПЛМ:

п = 4 — число інформаційних входів, що дорівнює кількості аргументів системи перемикальних функцій.

р = 9 — число проміжних внутрішніх шин, яке дорівнює кількості різних термів системи.

т = 3 — число інформаційних виходів, котре дорівнює кількості функцій виходів.

Побудуємо спрощену мнемонічну схему ПЛМ(4,9,3) (рисунок 4.8).

Рисунок 4.8 Мнемонічна схема ПЛМ

Складемо карту програмування ПЛМ(4,9,3) (таблиця 4.7).

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.7 Карта програмування ПЛМ

Nº		Вх	оди	Виходи				
ШИНИ	<i>X</i> 1	<i>X2</i>	<i>X3</i>	<i>X</i> 4	f1	<i>f2</i>	f3	
<i>P1</i>	0	0	1	-	1	1	0	
<i>P2</i>	1	1	1	-	1	1	1	
<i>P3</i>	0	1	_	0	1	0	1	
P4	0	0	-	-	1	0	0	
<i>P5</i>	0	-	0	-	1	0	0	
<i>P6</i>	_	1	1	1	1	0	0	
<i>P7</i>	0	-	0	0	0	1	0	
<i>P8</i>	0	1	0	-	0	0	1	
<i>P9</i>	0	0	1	1	0	0	1	

Покажемо умовне графічне позначення даної П/ІМ (рисунок 4.8).

Рисунок 4.8 – умовне графічне позначення ПЛМ

3M.	Арк.	№ докум.	Підп.	Дата

IA/ILI.463626.004

4. Висновок

У даній курсовій роботі на підставі «Технічного завдання ІА/ІЦ.463626.002 ТЗ» був виконаний синтез керуючого автомата, а також синтез комбінаційних схем. Функціональна схема автомата приведена у документі «Керуючий автомат. Схема електрична функціональна» і виконана згідно з вимогами єдиної системи конструкторської документації.

При синтезі комбінаційних схем у роботі була виконана мінімізація функції різними методами, а також мінімізована методом Квайна— Мак-Класкі система функцій. В результаті було отримано дві форми представлення системи функцій, одна з яких була реалізована на програмувальній логічній матриці (ПЛМ).

Під час виконання роботи були закріплені знання теоретичного курсу, отримані навички їх практичного застосування, а також навички роботи зі стандартами та пошуку інформації.

Зм.	Арк.	№ докум.	Підп.	Дата

IA/IL	1.463626.004	//3
	, ,	

5. Список літератури

1. Жабін В.І., Жуков І.А., Клименко І.А., Ткаченко В.В. Прикладна теорія цифрових автоматів. Київ: книжкове видавництво НАУ, 2007 р. 2. Конспект лекцій з курсу «Комп'ютерна логіка», 2014р.

Зм.	Арк.	№ докум.	Підп.	Дата