VAR-PLS

Protocolo de tesina

J. Antonio García Ramírez

17-02-2019

Esquema

- Antecedentes
- Definición del problema
- Justificación
- Objetivos
- Metodología
- Cronograma
- Anexo: Extensiones
- Bibliografía

Antecedentes, PLSAR(h, p)

Phillip Hans Franses¹ propone una metodología para realizar pronosticos El método se ilustra con la productividad de USA en [1945,1,2000,4] frente a AR(p) y $AR_j(p)$

Horizon h	AR(5)	PLS_1	PLS_2	PLS_3	PLS_4	$AR_k(5)$
			Documin	e sample	nwi .	
1	0.893	0.992	0.963	0.973	0.929	0.893
2	0.785	0.779	0.785	0.785	0.779	0.779
3	0.784	0.770	0.783	0.778	0.779	0.779
4	0.792	0.771	0.787	0.801	0.810	0.815
5	0.770	0.766	0.773	0.798	0.791	0.791
	Moving window samples					
1	0.872	0.979	0.923	0.902	0,900	0.872
2	0.776	0.763	0.770	0.775	0.776	0.778
3	0.775	0.772	0.772	0.768	0.769	0.771
4	0.777	0.796	0.803	0.810	0.819	0.816
5	0.774	0.788	0.809	0.814	0.812	0.813

Figura 1: Resultados de Frances

¹2006, Países Bajos

Antecedentes, lo cool:

- CI (Bootstrap)
- ullet Test formales para el rango de \hat{B}_{pls}
- Extension a k > 1, no estacionaridad y raices unitarias

Definición del problema

Pronosticar de 1 a h pasos hacia delante

Con más de una serie

Justificación

OLS minimiza la suma cuadrada de ϵ_t pero no garantiza que lo sea para h errores a futuro

Objetivos

Pronósticos precisos y confiables, para la toma de decisiones.

Costo computacional bajo, implementación eficiente (OLS)

Metodología

- Modelo VAR
- Con el proceso autorregresivo construir la regresión PLS
- Construcción de intervalos de predicción vía Bootstrap
- Pronosticar con el VAR-PLS

Cronograma

Anexo: Posibles extensiones

- Incluir cointegración PLS-VAR
- Matrices sparse

Bibliografía

- Bjorn-Helge Mevik and Ron Wehrens; The pls Package: Principal Component and Partial Least Squares Regression in R, Journal of Statistical Software January 2007, Volume 18, Issue 2.
- Kim, J.H. (2001); Bootstrap after bootstrap prediction intervals for autoregressive models, Journal of Business and Economic Statistics, 19(1), 117-128.
- Hoskuldsson (1988); PLS Regression Methods, Journal of Chemometrics, Vol 2, pp 221-228
- Pascual, L., J. Romo, and E. Ruiz (2004); *Bootstrap predictive inference for ARIMA processes*, Journal of Time Series Analysis, 25, 449-465

- Philip Hans Franses (2006); Forecasting 1 to h steps ahead using partial least squares, Econometric Institute, Erasmus University Rotterdam, Econometric Institute Report 2006-47
- P.H. Garthwaite (1994); An Interpretation of Partial Least Squares, JASA Vol 89, No 425, pp122-127