

CS 4104 APPLIED MACHINE LEARNING

Dr. Hashim Yasin

National University of Computer and Emerging Sciences,

Faisalabad, Pakistan.

LINEAR REGRESSION

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal: $\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$

Simplified:

$$h_{\theta}(x) = \theta_1 x$$

 θ_1

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\underset{\theta_1}{\text{minimize}} J(\theta_1)$$

What's next?

Have some function $J(\theta_0, \theta_1)$

Want $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

Outline:

- Start with some random values $\, heta_0, heta_1 \,$
- Keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1) } }
```

Notice: α is the learning rate.

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad (\text{for } j = 0 \text{ and } j = 1)$ }

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(simultaneously update } j = 0 \text{ and } j = 1)$ }

Notice: α is the learning rate.

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Partial Derivative w.r.t. θ_0

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial J(\theta_0, \theta_1)}{\partial \theta_0} = \frac{\partial}{\partial \theta_0} \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial J(\theta_0, \theta_1)}{\partial \theta_0} = \frac{1}{2m} \sum_{i=1}^{m} \frac{\partial}{\partial \theta_0} \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right)^2$$

$$\frac{\partial J(\theta_0, \theta_1)}{\partial \theta_0} = 2 \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right) \frac{\partial}{\partial \theta_0} \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right)$$

$$\frac{\partial J(\theta_0, \theta_1)}{\partial \theta_0} = \frac{1}{m} \sum_{i=1}^{m} \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right) (1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Partial Derivative w.r.t. θ_1

$$J(\theta_{0}, \theta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$\frac{\partial J(\theta_{0}, \theta_{1})}{\partial \theta_{1}} = \frac{\partial}{\partial \theta_{1}} \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$\frac{\partial J(\theta_{0}, \theta_{1})}{\partial \theta_{1}} = \frac{1}{2m} \sum_{i=1}^{m} \frac{\partial}{\partial \theta_{1}} \left(\theta_{0} + \theta_{1} x^{(i)} - y^{(i)} \right)^{2}$$

$$\frac{\partial J(\theta_{0}, \theta_{1})}{\partial \theta_{1}} = 2 \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_{0} + \theta_{1} x^{(i)} - y^{(i)} \right) \frac{\partial}{\partial \theta_{1}} \left(\theta_{0} + \theta_{1} x^{(i)} - y^{(i)} \right)$$

$$\frac{\partial J(\theta_{0}, \theta_{1})}{\partial \theta_{1}} = \frac{1}{m} \sum_{i=1}^{m} \left(\theta_{0} + \theta_{1} x^{(i)} - y^{(i)} \right) x^{(i)} = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

Dr. Hashim Yasin

Summary

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Objective: $\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$

Update rules: $\theta_0 \coloneqq \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$ $\theta_1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

Derivatives:

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) \cdot x^{(i)}$$

LINEAR REGRESSION WITH MULTIPLE VARIABLES

Multivariate Regression

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

 $x_0 = 1$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat $\{$ $\theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\dots,\theta_n)$ $\}$ (simultaneously update for every $j=0,\dots,n$)

13

Gradient Descent

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)}$$

Partial Derivative w.r.t. θ_0

$$J(\theta_0, \theta_1, \theta_2) = \frac{\partial}{\partial \theta_0} \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial J(\theta_0, \theta_1, \theta_2)}{\partial \theta_0} = \frac{\partial}{\partial \theta_0} \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial J(\theta_0, \theta_1, \theta_2)}{\partial \theta_0} = \frac{1}{2m} \sum_{i=1}^m \frac{\partial}{\partial \theta_0} \left(\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} - y^{(i)} \right)^2$$

$$\frac{\partial J(\theta_0, \theta_1, \theta_2)}{\partial \theta_0} = 2 \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} - y^{(i)} \right) \frac{\partial}{\partial \theta_0} \left(\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} - y^{(i)} \right)$$

$$\frac{\partial J(\theta_0, \theta_1, \theta_2)}{\partial \theta_0} = \frac{1}{m} \sum_{i=1}^{m} \left(\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} - y^{(i)} \right) (1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)$$

14

Gradient Descent

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)}$$

Partial Derivative w.r.t. θ_1

$$J(\theta_0, \theta_1, \theta_2) = \frac{\partial}{\partial \theta_0} \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial J(\theta_0, \theta_1, \theta_2)}{\partial \theta_1} = \frac{\partial}{\partial \theta_0} \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial J(\theta_0, \theta_1, \theta_2)}{\partial \theta_1} = \frac{1}{2m} \sum_{i=1}^m \frac{\partial}{\partial \theta_0} \left(\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} - y^{(i)} \right)^2$$

$$\frac{\partial J(\theta_0, \theta_1, \theta_2)}{\partial \theta_1} = 2 \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} - y^{(i)} \right) \frac{\partial}{\partial \theta_1} \left(\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} - y^{(i)} \right)$$

$$\frac{\partial J(\theta_0, \theta_1, \theta_2)}{\partial \theta_1} = \frac{1}{m} \sum_{i=1}^{m} \left(\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} - y^{(i)}\right) x_1^{(i)} = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right) x_1^{(i)}$$

Dr. Hashim Yasin

Partial Derivative w.r.t. θ_2

$$J(\theta_0, \theta_1, \theta_2) = \frac{\partial}{\partial \theta_0} \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial J(\theta_0, \theta_1, \theta_2)}{\partial \theta_2} = \frac{\partial}{\partial \theta_0} \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial J(\theta_0, \theta_1, \theta_2)}{\partial \theta_2} = \frac{1}{2m} \sum_{i=1}^m \frac{\partial}{\partial \theta_0} \left(\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} - y^{(i)} \right)^2$$

$$\frac{\partial J(\theta_0, \theta_1, \theta_2)}{\partial \theta_2} = 2 \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} - y^{(i)} \right) \frac{\partial}{\partial \theta_2} \left(\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} - y^{(i)} \right)$$

$$\frac{\partial J(\theta_0, \theta_1, \theta_2)}{\partial \theta_2} = \frac{1}{m} \sum_{i=1}^{m} \left(\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} - y^{(i)}\right) x_2^{(i)} = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right) x_2^{(i)}$$

Previously (n = 1):

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update $heta_0, heta_1$)

New algorithm $(n \ge 1)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(simultaneously update $heta_i$ for $j=0,\ldots,n$)

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Applied Machine Learning (CS4104)

LINEAR REGRESSION WITH MULTIPLE VARIABLES(MATRIX FORM)

EXAMPLES

Examples: m=4.

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
 x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

simultaneously update

$$\theta = (X^TX)^{-1}X^Ty$$
 where $\mathbf{\theta} = (\theta_0, \theta_1, \theta_2, \theta_3, \theta_4)^T$

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Applied Machine Learning (CS4104)

A chemical process expects the yield to be affected by two factors x_1 and x_2

Observations recorded for these two factors are shown in the given table.

Observation	Factor 1	Factor 2	Yield
Number	(x_{i1})	(x_{i2})	(y_i)
1	41.9	29.1	251.3
2	43.4	29.3	251.3
3	43.9	29.5	248.3
4	44.5	29.7	267.5
5	47.3	29.9	273.0
6	47.5	30.3	276.5
7	47.9	30.5	270.3
8	50.2	30.7	274.9
9	52.8	30.8	285.0
10	53.2	30.9	290.0
11	56.7	31.5	297.0
12	57.0	31.7	302.5
13	63.5	31.9	304.5
14	65.3	32.0	309.3
15	71.1	32.1	321.7
16	77.0	32.5	330.7
17	77.8	32.9	349.0

□ The first order regression model is,

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$
$$\mathbf{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$X = \begin{bmatrix} 1 & 41.9 & 29.1 \\ 1 & 43.4 & 29.3 \\ \vdots & \vdots & \vdots \\ 1 & 77.8 & 32.9 \end{bmatrix} \quad y = \begin{bmatrix} 251.3 \\ 251.3 \\ \vdots \\ 349.0 \end{bmatrix}$$

$$\mathbf{\Theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 17 & 941 & 525.3 \\ 941 & 54270 & 29286 \\ 525.3 & 29286 & 16254 \end{bmatrix}^{-1} \begin{bmatrix} 4902.8 \\ 276610 \\ 152020 \end{bmatrix} \\
\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} -153.51 \\ 1.24 \\ 12.08 \end{bmatrix}$$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 17 & 941 & 525.3 \\ 941 & 54270 & 29286 \\ 525.3 & 29286 & 16254 \end{bmatrix}^{-1} \begin{bmatrix} 4902.8 \\ 276610 \\ 152020 \end{bmatrix} \\
\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} -153.51 \\ 1.24 \\ 12.08 \end{bmatrix}$$

$$h_{\theta}(x) = -153.51 + 1.24x_1 + 12.08x_2$$

$$h_{\theta}(x) = -153.51 + 1.24x_1 + 12.08x_2$$

Dr. Hashim Yasin

Applied Machine Learning (CS4104)

Acknowledgement

Tom Mitchel, Russel & Norvig, Andrew Ng, Alpydin & Ch. Eick.