

NuMicro[®] Family 1T 8051-based Microcontroller

ML51/ML54/ML56 Series Datasheet

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro® microcontroller and microprocessor based system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

TA	ABLE OF CONTENTS	
1	GENERAL DESCRIPTION	10
2	FEATURES	11
3	PART INFORMATION	16
	3.1 ML51/ML54/ML56 Series Package Type	16
	3.2 ML51/ML54/ML56 Series Selection Guide	
	3.2.1 ML51 Series	
	3.2.2 ML54 Series	20
	3.2.3 ML56 Series	21
	3.3 ML51/ML54/ML56 Series Selection Code	22
4	PIN CONFIGURATION	23
	4.1 Pin Configuration	23
	4.1.1 ML51/ML54/ML56 Series Pin Diagram	23
	4.1.2 ML51/ML54/ML56 Series Multi Function Pin Diagram	31
	4.2 Pin Description	71
	4.2.1 ML51/ML54/ML56 Series Pin Mapping	71
	4.2.2 ML51/ML54/ML56 Series Pin Functional Description	
5	BLOCK DIAGRAM	78
	5.1 ML51/ML54/ML56 Series Full Function Block	78
6	FUNCTIONAL DESCRIPTION	79
	6.1 Memory Organization	79
	6.2 System Manager	80
	6.3 Flash Memory Control	81
	6.3.1 In-application-programming (IAP)	81
	6.3.2 In-Circuit-Programming (ICP)	81
	6.3.3 On-Chip-Debugger (ICE)	
	6.4 GPIO Port Structure and Operation	
	6.4.1 GPIO Mode	
	6.5 Timer	83
	6.5.1 Overview	
	6.6 Watchdog Timer (WDT)	84
	6.7 Self Wake-up Timer (WKT)	85
	6.7.1 Overview	85
	6.8 Pulse Width Modulated (PWM)	86
	6.8.1 Overview	86
	6.8.2 Features	86

6.9 Serial Port (UART0 & UART1)87

		9.1 Overview	
		9.2 Features	
		Smart Card Interface (SC)	
		10.1Overview	
		10.2Features	
		Serial Peripheral Interface (SPI)	
		11.1 Overview	
		11.2 Features	
		Inter-Integrated Circuit (I ² C)	
		12.10verview	
		12.2Features	
		12-bit Analog-to-digital Converter (ADC)	
		13.10verview	
	6.14	Voltage Reference (VREF)	92
	6.15	Analog Comparator Controller (ACMP)	93
	6.	15.1Overview	93
		15.2Feature	
	6.16	PDMA Controller (PDMA)	94
	6.	16.1Overview	94
		16.2Feature	
		LCD Driver	
		17.10verview	
		17.2Features	
		Real Time Clock (RTC)	
		18.1Overview	
		18.2Features	
		Touch Key (TK)	
		19.1Overview	
		19.2Features	
	6.20	Instruction Set	
Α	(PPLI	CATION CIRCUIT	99
	7.1 Po	ower Supply Scheme	99
	7.2 Pe	eripheral Application Scheme	100
E	LECT	RICAL CHARACTERISTICS	101
	8.1 G	eneral Operating Conditions	101
		1.1 ML51 32KB/16KB Flash Series	
		1.2 ML51 64KB Flash/ML54/ML56 Series	
		C Electrical Characteristics	

7

8

	8.2.1 Supply Current Characteristics	102
	8.2.2 On-Chip Peripheral Current Consumption	110
	8.2.3 Wakeup Time from Low-Power Modes	
	8.2.4 I/O DC Characteristics	
	8.3 AC Electrical Characteristics	117
	8.3.1 24 MHz Internal High Speed RC Oscillator (HIRC)	117
	8.3.2 38.4 kHz Internal Low Speed RC Oscillator (LIRC)	
	8.3.3 External 4~24 MHz High Speed Crystal/Ceramic Resonator (HXT) char 119	acteristics
	8.3.4 External 4~24 MHz High Speed Clock Input Signal Characteristics	
	8.3.5 External 32.768 kHz Low Speed Crystal/Ceramic Resonator (LXT) char 122	
	8.3.6 I/O AC Characteristics	
	8.4 Analog Characteristics	125
	8.4.1 Reset and Power Control Block Characteristics	
	8.4.2 12-bit SAR ADC	
	8.4.3 Analog Comparator Controller (ACMP)	
	8.4.4 Internal Voltage Reference	
	8.4.6 LCD Controller	
	8.5 Flash DC Electrical Characteristics	
	8.6 Absolute Maximum Ratings	136
	8.6.1 Voltage Characteristics	136
	8.6.2 Current Characteristics	
	8.6.3 Thermal Characteristics	
	8.6.4 EMC Characteristics	
	8.6.5 Package Moisture Sensitivity(MSL)	
9	PACKAGE DIMENSIONS	
3		
	9.1 LQFP 64L-pin (7.0 x 7.0 x 1.4 mm) 9.2 LQFP 48-pin (7.0 x 7.0 x 1.4 mm)	
	9.3 LQFP 44-pin (10 x 10 x 1.4mm	
	9.4 QFN 33-pin (4.0 x 4.0 x 0.8 mm)	
	9.5 LQFP 32-pin (7.0 x 7.0 x 1.4 mm)	
	9.6 TSSOP 28-pin (4.4 x 9.7 x 1.0 mm)	148
	9.7 SOP 28-pin (300mil)	149
	9.8 TSSOP 20-pin (4.4 x 6.5 x 0.9 mm)	150
	9.9 SOP 20-pin (300 mil)	151
	9.10 QFN 20-pin (3.0 x 3.0 x 0.8 mm)	
	· ·	

11	REVIS	ION HISTORY	156
	10.1	Abbreviations	155
10	ABBRI	EVIATIONS	155
	9.12	MSOP 10-pin (3.0 x 3.0 x 0.85 mm)	154
	9.11	TSSOP 14-pin (4.4 x 5.0 x 0.9 mm)	153

LIST OF FIGURES

Figure 4.1-1 ML51SD1AE Pin Assignment	. 23
Figure 4.1-2 ML54SD1AE / ML56SD1AE Pin Assignment	. 24
Figure 4.1-3 ML51LD1AE Pin Assignment	. 24
Figure 4.1-4 ML54LD1AE / ML56LD1AE Pin Assignment	. 25
Figure 4.1-5 ML54MD1AE / ML56MD1AE Pin Assignment	. 25
Figure 4.1-6 ML51TD1AE / ML51TC0AE / ML51TB9AE Pin Assignment	. 26
Figure 4.1-7 ML51PC0AE / ML51PB9AE Pin Assignment	. 27
Figure 4.1-8 ML51EC0AE / ML51EB9AE Pin Assignment	. 27
Figure 4.1-9 ML51UC0AE / ML51UB9AE Pin Assignment	. 28
Figure 4.1-10 ML51FB9AE Pin Assignment	. 28
Figure 4.1-11 ML51OB9AE Pin Assignment	. 29
Figure 4.1-12 ML51XB9AE Pin Assignment	. 29
Figure 4.1-13 ML51DB9AE Pin Assignment	. 30
Figure 4.1-14 ML51BB9AE Pin Assignment	. 30
Figure 4.1-15 ML51SD1AE Multi-Function Pin assignment	. 31
Figure 4.1-16 ML54SD1AE Multi-Function Pin assignment	. 34
Figure 4.1-17 ML56SD1AE Multi-Function Pin assignment	. 37
Figure 4.1-18 ML51LD1AE Multi-Function Pin assignment	. 40
Figure 4.1-19 ML54LD1AE Multi-Function Pin assignment	. 43
Figure 4.1-20 ML56LD1AE Multi-Function Pin assignment	. 46
Figure 4.1-21 ML54MD1AE Multi-Function Pin assignment	. 49
Figure 4.1-22 ML56MD1AE Multi-Function Pin assignment	. 52
Figure 4.1-23 ML51TD1AE Multi-Function Pin assignment	. 55
Figure 4.1-24 ML51TC0AE / ML51TB9AE Multi-Function Pin Assignment	. 57
Figure 4.1-25 ML51PC0AE / ML51PB9AE Multi-Function Pin Assignment	. 59
Figure 4.1-26 ML51EC0AE / ML51EB9AE Multi-Function Pin Assignment	. 61
Figure 4.1-27 ML51UC0AE / ML51UB9AE Multi Function Pin Assignment	. 63
Figure 4.1-28 ML51FB9AE Multi Function Pin Assignment	. 65
Figure 4.1-29 ML51OB9AE Multi Function Pin Assignment	. 66
Figure 4.1-30 ML51XB9AE Multi Function Pin Assignment	. 67
Figure 4.1-31 ML51DB9AE Multi Function Pin Assignment	. 69
Figure 4.1-32 ML51BB9AE Pin Assignment	. 70
Figure 5.1-1 Functional Block Diagram	. 78
Figure 6.2-1 Clock System Block Diagram	. 80
Figure 7.1-1 NuMicro® ML51/ML54/ML56 Series Power supply circuit	. 99
Figure 7.2-1 NuMicro® ML51/ML54/ML56 Series Peripheral interface circuit	100

Figure 8.4-1 Typical Connection With Internal Voltage Reference	129
Figure 8.6-1 Soldering Profile From J-STD-020C	142
Figure 9.1-1 LQFP 64L Package Dimension	143
Figure 9.2-1 LQFP-48 Package Dimension	144
Figure 9.3-1 LFP44 Package Dimension	145
Figure 9.4-1 QFN-33 Package Dimension	146
Figure 9.5-1 LQFP-32 Package Dimension	147
Figure 9.6-1 TSSOP-28 Package Dimension	148
Figure 9.7-1 SOP-28 Package Dimension	149
Figure 9.8-1 TSSOP-20 Package Dimension	150
Figure 9.9-1 SOP-20 Package Dimension	151
Figure 9.10-1 QFN-20 Package Dimension	152
Figure 9.11-1 TSSOP-14 Package Dimension	153
Figure 9.12-1 MSOP-10 Package Dimension	154

List of	f Tables	
Tal	ble 6.4-1 Configuration for Different I/O Modes	82
Tal	ble 6.6-1 Watchdog Timer-out Interval Under Different Pre-scalars	84
Tal	ble 8.1-1 ML51 32KB/16KB Flash Series General Operating Conditions	101
Tal	ble 8.1-2 ML56/ML54/ML51 64KB Flash Series General Operating Conditions	101
Tal	ble 8.2-1 ML51 32KB / 16KB Series Current Consumption In Normal Run Mode	103
Tal	ble 8.2-2 ML51 32KB/16KB Flash Series Current Consumption In Low Power Run Mode	103
Tal	ble 8.2-3 ML51 32KB/16KB Flash Series Current Consumption In Idle Mode	104
Tal	ble 8.2-4 ML51 32KB/16KB Flash Series Current Consumption In Low Power Idle Mode	104
Tal	ble 8.2-5 ML51 32KB/16KB Flash Series Chip Current Consumption in Power down mode	105
Tal	ble 8.2-6 ML56/ML54/ML51 64KB Flash Series Current Consumption In Normal Run Mode	107
Tal	ble 8.2-7 ML56/ML54/ML51 64KB Flash Series Current Consumption In Low Power Run N	
Tal	ble 8.2-8 ML56/ML54/ML51 64KB Flash Series Current Consumption In Idle Mode	108
Tal	ble 8.2-9 ML56/ML54/ML51 64KB Flash Series Current consumption in Low Power Idle m	
Tal	ble 8.2-10 ML56/ML54/ML51 64KB Flash Series Chip Current Consumption In Power D Mode	
Tal	ble 8.2-11 Peripheral Current Consumption	111
Tal	ble 8.2-12 Low-Power Mode Wakeup Timings	112
Tal	ble 8.2-13 GPIO input characteristics	113
Tal	ble 8.2-15 GPIO output characteristics	115
Tal	ble 8.2-14 nRESET Pin Input Characteristics	116
Tal	ble 8.3-1 24 MHz Internal High Speed RC Oscillator(HIRC) Characteristic	117
Tal	ble 8.3-2 38.4 kHz Internal Low Speed RC Oscillator(LIRC) Characteristics	118
Tal	ble 8.3-3 External 4~24 MHz High Speed Crystal (HXT) Oscillator	119
Tal	ble 8.3-4 Typical Crystal Application	120
Tal	ble 8.3-5 External 4~24 MHz High Speed Clock Input Signal	121
Tal	ble 8.3-6 External 32.768 kHz Low Speed Crystal (LXT) Oscillator Characteristics	122
Tal	ble 8.3-7 Typical 32.768 kHz Crystal Application Circuit	122
Tal	ble 8.3-8 I/O AC characteristics	124
Tal	ble 8.4-1 Reset And Power Control Unit	125
Tal	ble 8.4-2 ADC Characteristics	126
Tal	ble 8.4-3 ACMP Characteristics	128
Tal	ble 8.4-4 Voltage Reference Character	129
Tal	ble 8.4-5 Temperature Sensor Character	130
Tal	ble 8.4-6 LCD Digital Characteristics	132

Table 8.4-8 Current Consumption In Power Down Mode With LCD Voltage Source Fro	m AV _{DD} 133
Table 8.4-9 Current Consumption In Power Down Mode With LCD Voltage Source Front VLCD pin	
Table 8.5-1 Flash Memory Characteristics	135
Table 8.6-1 ML51 32KB/16KB Flash Series Voltage Characteristics	136
Table 8.6-2 ML51 64KB Flash/ML54/ML56 Series Voltage Characteristics	136
Table 8.6-3 Current Characteristics	137
Table 8.6-4 Thermal Characteristics	138
Table 8.6-5 ML51 32KB/16KB Flash Series EMC Characteristics	139
Table 8.6-6 ML51 64KB Flash/ML54/ML56 Series EMC Characteristics	140
Table 8.6-7 Package Moisture Sensitivity(MSL)	141
Table 8.6-8 Soldering Profile	142
Table 10.1-1 List of Abbreviations	155

1 GENERAL DESCRIPTION

The NuMicro®ML51/ML54/ML56 series is a Flash embedded 1T 8051-based microcontroller. The instruction set of the ML51 series is fully compatible with the standard 80C51 with enhanced performance; This series is a three-to-one single microcontrollers, intergrated with up to 14 channels of capacitive touch and LCD driver.

The ML51/ML54/ML56 series is 1T 8051 core based low-power microcontrollers running at less 80μA/MHz in normal run mode, and power down current is below 1uA. It Provides operating frequency up to 24 MHz. 16KB and 32KB Flash of ML51 series voltage range supports 1.8V to 5.5V, and 64KB Flash of ML51 series supports 1.8 to 3.6V voltage range.

The ML51/ML54/ML56 series microcontroller provides 3 power modes to reduce power consumption — Low power run mode, Low power Idle mode, and Power-down mode. In Low power run mode, the power consumption can be down to 15 uA at 38.4 kHz LIRC. In Low power idle mode, CPU processing is suspended by holding the Program Counter. No program code is fetched and run in low power idle mode if the power consumption does not exceed 13 uA. Power-down mode stops the whole system clock for minimum power consumption with the leakage current less than 1 uA. The system clock of the ML51 series can also be slowed down by software clock divider, which allows for flexibility between execution performance and power consumption.

The ML51/ML54/ML56 series provides rich peripherals including 256 bytes of SRAM, 4 Kbytes of auxiliary RAM (XRAM), up to 56 general purpose I/O, two 16-bit Timers/Counters 0/1, one 16-bit Timer2 with three-channel input capture module, one Watchdog Timer (WDT), one Self Wake-up Timer (WKT), one 16-bit auto-reload Timer3 for general purpose or baud rate generator, two UARTs with frame error detection and automatic address recognition, two ISO7816 Smartcard interface, two SPI, two I2C, 6 enhanced PWM output channels with dead zone control, 6 PWM output channels with 3 individual configurable period, two analog comparators, eight-channel shared pin interrupt for all I/O ports, and one 12-bit ADC at 500 ksps. There are a total of 31 sources with 4-level-priority interrupts capability.

All series contains up to 64 Kbytes Flash, called APROM designed for programming. Flash supports In-Application-Programming (IAP) function, which supports on-chip firmware upgrade. Partial flash can be configured as Data Flash programmed by IAP and read by IAP or MOVC instruction. The ML51/ML54/ML56 series includes an additional configurable up to 4/3/2/1 Kbytes Flash area called LDROM, in which the Boot Code normally resides for carrying out the In-System-Programming (ISP). To facilitate mass production programming and verification, the Flash is allowed to be programmed and read electronically by parallel Writer/Programmer or In-Circuit-Programming (ICP) with Nu-Link. Once programmed and verified, the programmed code can be protected by the Flash lock mechanism from being read out by external programming tool.

Through the high performance and low power features of ML51/ML56 series, this series benefits for low-power, battery powered devices, general purpose, home appliances, and motor control system.

Series	V _{DD} Voltage	LCD Driver	Touch Key
ML51 32/16KB Flash Series	1.8 ~ 5.5 V	-	-
ML51 64KB Flash Series	1.8 ~3.6 V	-	-
ML54 Series	1.8 ~3.6 V	✓	-
ML56 Series	1.8 ~3.6 V	✓	√

2 FEATURES

Core and System	
	 Fully static design 8-bit high performance 1T 8051-based CMOS microcontroller.
8051	 Instruction set fully compatible with MCS-51.
	 4-priority-level interrupts capability.
	 Dual Data Pointers (DPTRs).
Power on Reset (POR)	POR with 1.55V threshold voltage level
Brown-out Detector (BOD)	 7-level selection, with brown-out interrupt and reset option. (4.4V / 3.7V / 3.0V / 2.7V / 2.4V / 2.0V / 1.8V)
Low Voltage Reset (LVR)	LVR with 1.63V threshold voltage level
	96-bit Unique ID (UID)
Security	128-bit Unique Customer ID (UCID)
	128-bytes security protection memory SPROM
Memories	
	Up to 64 KBytes of APROM for User Code.
	 4/3/2/1 Kbytes of Flash for loader (LDROM) configure from APROM for In-System-Programmable (ISP)
Flash	 Flash Memory accumulated with pages of 128 Bytes from APROM by In-Application-Programmable (IAP) means whole APROM can be use as Data Flash
	 An additional 128 bytes security protection memory SPROM
	Code lock for security by CONFIG
	256 Bytes on-chip RAM.
SRAM	 Additional 4 KBytes on-chip auxiliary RAM (XRAM) accessed by MOVX instruction.
	Three modes: peripheral-to-memory, memory-to-peripheral, and memory-to-memory transfer.
PDMA:	 Source address and destination address must be word alignment in all modes.
	 Memory-to-memory mode: transfer length must be word alignment.
Clocks	
External Clock Source	4~24 MHz High-speed external crystal oscillator (HXT) for

	precise timing operation
	 32.768 kHz High-speed external crystal oscillator (LXT) for RTC operation
Internal Clock Source	 Default 24 MHz high-speed internal oscillator (HIRC) trimmed to ±1% (accuracy at 25 °C, 3.3 V), ±2% in -20~105°C.
	 38.4 kHz low-speed internal oscillator (LIRC) calibrating to ±2% by software from high-speed internal oscillator
Timers	
	Two 16-bit Timers/Counters 0 and 1 compatible with standard 8051.
16-bit Timer	 One 16-bit Timer 2 with three-channel input capture module and 9 input pin can be selected.
	 One 16-bit auto-reload Timer 3, which can be the baud rate clock source of UARTs.
	6-bit free running up counter for WDT time-out interval.
Watchdog	 Selectable time-out interval is 1.66 ms ~ 3413.12 ms since WDT_CLK = 38.4 kHz (LIRC).
Watchdog	Able to wake up from Power-down or Idle mode
	 Interrupt or reset selectable on watchdog time-out
	16-bit free running up counter for time-out interval.
	Clock sources from LIRC
Wake-up Timer	 Able self Wake-up wake up from Power-down or Idle mode, and auto reload count value.
	Supports Interrupt
	Up To 12 output pins can be selected
	 Supports maximum clock source frequency up to 24 MHz
	 Supports up to Three PWM modules, each module provides 6 output channels.
	 Supports independent mode for PWM output
PWM	 Supports complementary mode for 3 complementary paired PWM output channels
	 Dead-time insertion with 8-bit resolution
	 Supports 16-bit resolution PWM counter
	 Supports mask function and tri-state enable for each PWM pin
	Supports brake function
	Supports trigger ADC on the following events
RTC	Supports real time counter and calendar counter for RTC time and calendar check.
4 07 0000	

	Supports alarm time and calendar settings
	 Supports alarm time and calendar mask enable settings.
	 Selectable 12-hour or 24-hour time scale setting.
	 Supports Leap Year indication setting.
	 Supports Day of the Week counter setting.
	 Frequency of RTC clock source compensate by RTC_FREQADJ register.
	 All time and calendar message expressed in BCD format.
	 Supports periodic RTC Time Tick interrupt with 8 period interval options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1 second.
	Supports RTC Time Tick and Alarm Match interrupt.
	 Supports chip wake-up from Idle or Power-down mode while a RTC interrupt signal is generated.
	 Support clock source selectable from LXT or LIRC.
Analog Interfaces	•
Analog-to-Digital Converter (ADC)	 Analog input voltage range: 0 ~ AV_{DD}. External or internal Voltage reference input selectable. 12-bit resolution and 10-bit accuracy is guaranteed. Up to 16 single-end analog input channels 1 internal channels, they are band-gap voltage (VBG). Maximum ADC peripheral clock frequency is 1 MHz. Up to 500 KSPS sampling rate. Software Write 1 to ADCS bit to trig ADC start. External pin (STADC) trigger PWM trigger.
Communication Interface	es e
UART	 Supports up to 2 UARTs: UART0, UART1 Supports 2 Smart Card configuration as UART function as UART2 and UART3. UART baud rate clock from HIRC or HXT. Full-duplex asynchronous communications Programmable 9th bit. TXD and RXD pins of UART0 exchangeable via software.
l ² C	 2 sets of I²C devices Master/Slave mode Bidirectional data transfer between masters and slaves Multi-master bus (no central master)

	 7-bit addressing mode
	 Standard mode (100 kbps) and Fast mode (400 kbps).
	 Supports 8-bit time-out counter requesting the I²C interrupt if the I²C bus hangs up and timer-out counter overflows
	 Multiple address recognition (four slave addresses with mask option)
	Supports hold time programmable
	2 sets of SPI devices
SPI	 Supports Master or Slave mode operation
Ol 1	 Supports MSB first or LSB first transfer sequence
	Slave mode up to 12 Mhz
	Two sets ISO 7816-3 device
ISO 7816-3	 Supports ISO 7816-3 compliant T=0, T=1
	Supports full-duplex UART mode.
	Four I/O modes:
	Quasi-bidirectional mode
	Push-Pull Output mode
	Open-Drain Output mode
	Input only with high impendence mode
	Schmitt trigger input / TTL mode selectable.
	 Each I/O pin configured as interrupt source with edge/level trigger setting
GPIO	Standard interrupt pins INT0 and INT1.
	Supports high drive and high sink current I/O
	 I/O pin internal pull-up or pull-down resistor enabled in input mode.
	Maximum I/O Speed is 24 MHz
	 Enabling the pin interrupt function will also enable the wake-up function
	 Supports 5V-tolerance function for ML51 64KB Flash/ML54/ML56 Series
	Support Internal resistor bias
	Support programmable internal VLCD charge pump mode
LCD Driver	 1/2, 1/3, 1/4 bias selectable
LCD Driver	 1/2, 1/3, 1/4 bias selectable 4 COM x 32 SEG / 6 COM x 30 SEG / 8 COM x 28 SEG
LCD Driver	
LCD Driver Touch Key	• 4 COM x 32 SEG / 6 COM x 30 SEG / 8 COM x 28 SEG

	pin as shielding electrode.
	 Programmable sensitivity levels for each channel.
	 Programmable scanning speed for different applications.
	 Supports effect when in Power-down mode.
	 Supports single key-scan and programmable periodic key- scan.
	 Programmable interrupt options for key-scan complete withardwareithout threshold control.
ESD & EFT	
ESD	 HBM ± 8 kV for ML51 32KB/16KB Flash Series pass HBM ± 7 kV for ML51 64KB Flash/ML54/ML56 Series pass
EFT	• > ± 4.4 kV
Latch-up	150 mA for ML51 32KB/16KB Flash Series pass

3 PART INFORMATION

3.1 ML51/ML54/ML56 Series Package Type

Package		ML51		ML54	ML56
	ML51xB	ML51xC	ML51xD	ML54xD	ML56xD
MSOP10	ML51BB9AE				
TSSOP14	ML51DB9AE				
TSSOP20	ML51FB9AE				
SOP20	ML51OB9AE				
QFN20(3x3)	ML51XB9AE				
TSSOP28	ML51EB9AE	ML51EC0AE			
SOP28	ML51UB9AE	ML51UC0AE			
LQFP32	ML51PB9AE	ML51PC0AE			
QFN33(4x4)	ML51TB9AE	ML51TC0AE	ML51TD1AE		
LQFP44				ML54MD1AE	ML56MD1AE
LQFP48			ML51LD1AE	ML54LD1AE	ML56LD1AE
LQFP64			ML51SD1AE	ML54SD1AE	ML56SD1AE

3.2 ML51/ML54/ML56 Series Selection Guide

3.2.1 **ML51 Series**

ML51 16KB Flash Series

	5 / 11 1		ML51							
	Part Number	BB9AE	DB9AE	FB9AE	OB9AE	XB9AE	EB9AE	UB9AE	PB9AE	TB9AE
	Flash (KB)	16	16	16	16	16	16	16	16	16
	SRAM (KB)	1	1	1	1	1	1	2	2	2
	ISP ROM (KB)	4	4	4	4	4	4	4	4	4
	SPROM (bytes)	128	128	128	128	128	128	128	128	128
Syste	m Frequency (MHz)	24	24	24	24	24	24	24	24	24
	GPIO	7	11	16	16	17	24	24	28	28
	16-bit Timer	4	4	4	4	4	4	4	4	4
PWM		5	6	6	6	6	6	6	6	6
	Analog Comparator	-	-	-	-	-	-	-	2	2
Interna	I Voltage Reference	-	=	-	=	=	-	-	Υ	Υ
	PDMA	2	2	2	2	2	2	2	2	2
	RTC	-	-	-	-	-	-	-	-	-
	LCD	-	-	-	-	-	-	-	-	-
>	ISO 7816-3	-	1	1	1	1	1	1	1	1
Connectivity	UART	2	2	2	2	2	2	2	2	2
ouuc	SPI	-	1	1	1	1	1	1	1	1
ŏ	I ² C	1	2	2	2	2	2	2	2	2
	12-bit SAR ADC	2	3	6	6	6	8	8	8	8
	Package	MSOP10	TSSOP14	TSSOP20	SOP20	QFN20	TSSOP28	SOP28	LQFP32	QFN33

Note:
1. ISP ROM programmable 1K/2K/3K/4KB Flash for user program loader (LDROM) share from ARPOM.

^{2.} ISO 7816-3 configurable as standard UART function.

ML51 32KB Flash Series

	Part Number		M	L51	
	r art Number	EC0AE	UC0AE	PC0AE	TC0AE
	Flash (KB)	32	32	32	32
	SRAM (KB)	2	2	2	2
	ISP ROM (KB)	4	4	4	4
	SPROM (bytes)	128	128	128	128
	System Frequency (MHz)	24	24	24	24
	GPIO	24	24	28	28
	16-bit Timer	4	4	4	4
	PWM	6	6	6	6
	Analog Comparator	2	2	2	2
	Internal Voltage Reference	Υ	Y	Y	Y
	PDMA	2	2	2	2
	RTC	-	-	-	-
	LCD	-	-	-	-
λ.	ISO 7816-3	1	1	1	1
Connectivity	UART	2	2	2	2
onne	SPI	2 ^[3]	2 ^[3]	2	2
Ö	I ² C	2	2	2	2
	12-bit SAR ADC	8	8	8	8
Note:	Package	TSSOP28	SOP28	LQFP32	QFN33

Note:

- 1. ISP ROM programmable 1K/2K/3K/4KB Flash for user program loader (LDROM) share from ARPOM.
- 2. ISO 7816-3 configurable as standard UART function.
- 3. SPI0 and SPI1 share with same SS pin in 28pin package.

ML51 64KB Flash Series

	Part Number		ML51	
	i art Namber	TD1AE	LD1AE	SD1AE
	Flash (KB)	64	64	64
	SRAM (KB)	4	4	4
	ISP ROM (KB)	4	4	4
	SPROM (bytes)	128	128	128
	System Frequency (MHz)	24	24	24
	GPIO	28	43	56
	16-bit Timer	4	4	4
	PWM	6+2+2+2	6+2+2+2	6+2+2+2
	Analog Comparator	2	2	2
	Internal Voltage Reference	Υ	Y	Υ
	PDMA	4	4	4
	RTC	Υ	Y	Υ
	LCD	-	-	-
ξ	ISO 7816-3	2	2	2
ctivi	UART	2	2	2
Connectivity	SPI	2	2	2
S	I ² C	2	2	2
	12-bit SAR ADC	9	10	14
	Package	QFN33	LQFP48	LQFP64

Note:

- 1. ISP ROM programmable 1K/2K/3K/4KB Flash for user program loader (LDROM) share from ARPOM.
- 2. ISO 7816-3 configurable as standard UART function.

3.2.2 ML54 Series

Part Number			ML54	
	r art Number	MD1AE	LD1AE	SD1AE
	Flash (KB)	64	64	64
	SRAM (KB)	4	4	4
	ISP ROM (KB)	4	4	4
	SPROM (bytes)	128	128	128
Sys	tem Frequency (MHz)	24	24	24
	GPIO	38	42	55
	16-bit Timer	4	4	4
	PWM	6+2+2+2	6+2+2+2	6+2+2+2
	Analog Comparator	2	2	2
Inter	nal Voltage Reference	Υ	Y	Y
	PDMA	4	4	4
	RTC	Υ	Y	Y
		8x17	8x18	8x28
	LCD	6x19	6x20	6x30
		4x21	4x22	4x32
ty	ISO 7816-3	2	2	2
ctivi	UART	2	2	2
Connectivity	SPI	2	2	2
S	I ² C	2	2	2
	12-bit SAR ADC	10	10	14
Note:	Package	LQFP44	LQFP48	LQFP64

Note:

^{1.} ISP ROM programmable 1K/2K/3K/4KB Flash for user program loader (LDROM) share from ARPOM.

^{2.} ISO 7816-3 configurable as standard UART function.

ML56 Series 3.2.3

	Part Number		ML56	
	Fait Number	MD1AE	LD1AE	SD1AE
Flash (KB)		64	64	64
	SRAM (KB)	4	4	4
	ISP ROM (KB)	4	4	4
	SPROM (bytes)	128	128	128
Sys	tem Frequency (MHz)	24	24	24
	GPIO	38	42	55
	16-bit Timer	4	4	4
	PWM	6+2+2+2	6+2+2+2	6+2+2+2
	Analog Comparator	2	2	2
Inter	nal Voltage Reference	Υ	Y	Y
	PDMA	4	4	4
	RTC	Υ	Y	Y
		8x17	8x18	8x28
	LCD	6x19	6x20	6x30
		4x21	4x22	4x32
	Touch Key	6+1	9+1	14+1
<u> </u>	ISO 7816-3	2	2	2
Connectivity	UART	2	2	2
onne	SPI	2	2	2
ŭ	I ² C	2	2	2
	12-bit SAR ADC	10	10	14
	Package	LQFP44	LQFP48	LQFP64

- Note:

 1. ISP ROM programmable 1K/2K/3K/4KB Flash for user program loader (LDROM) share from ARPOM.
- 2. ISO 7816-3 configurable as standard UART function.
- 3. Touch key should define 1 key as reference pin.

3.3 ML51/ML54/ML56 Series Selection Code

ML	51	F	В	9	Α	E
Core	Line	Package	Flash	SRAM	Reserve	Temperature
1T 8051	51: Base	B: MSOP10 (3x3 mm)	A: 8 KB	0: 2 KB		E:-40 ~ 105° C
Low power	54: LCD	D: TSSOP14 (4.4x5.0 mm)	B: 16 KB	1: 4 KB		
	56: Touch	E: TSSOP28 (4.4x9.7 mm)	C: 32 KB	2: 8/12 KB		
		F: TSSOP20 (4.4x6.5 mm)	D: 64 KB	3: 16 KB		
		L: LQFP48 (7x7 mm)		6: 32 KB		
		M: LQFP44(10x10 mm)		8: 64 KB		
		O: SOP20 (300 mil)		9: 1 KB		
		P: LQFP32 (7x7 mm)		A: 96 KB		
		S: LQFP64 (7x7 mm)				
		T: QFN33 (4x4 mm)				
		U: SOP28 (300 mil)				
		X: QFN20 (3x3mm)				

4 PIN CONFIGURATION

4.1 Pin Configuration

Users can find pin configuration informations in chapter 4 or by using <u>NuTool - PinConfigure</u>. The NuTool - PinConfigure contains all Nuvoton NuMicro® Family chip series with all part number, and helps users configure GPIO multi-function correctly and handily.

4.1.1 ML51/ML54/ML56 Series Pin Diagram

4.1.1.1 LQFP64 Package

Corresponding Part Number: ML51SD1AE/ ML54SD1AE / ML56SD1AE

ML51SD1AE

Figure 4.1-1 ML51SD1AE Pin Assignment

ML54SD1AE / ML56SD1AE

Figure 4.1-2 ML54SD1AE / ML56SD1AE Pin Assignment

4.1.1.2 LQFP48 Package

Corresponding Part Number: ML51LD1AE/ ML54LD1AE / ML56LD1AE

ML51LD1AE

Figure 4.1-3 ML51LD1AE Pin Assignment

ML54LD1AE / ML56LD1AE

Figure 4.1-4 ML54LD1AE / ML56LD1AE Pin Assignment

4.1.1.3 LQFP44 Package

Corresponding Part Number: ML54MD1AE / ML56MD1AE

ML54MD1AE / ML56MD1AE

Figure 4.1-5 ML54MD1AE / ML56MD1AE Pin Assignment

4.1.1.4 QFN33 Package

Corresponding Part Number: ML51TD1AE / ML51TC0AE / ML51TB9AE

ML51TD1AE / ML51TC0AE / ML51TB9AE

Figure 4.1-6 ML51TD1AE / ML51TC0AE / ML51TB9AE Pin Assignment

4.1.1.5 LQFP32 Package

Corresponding Part Number: ML51PC0AE / ML51PB9AE

ML51PC0AE / ML51PB9AE

Figure 4.1-7 ML51PC0AE / ML51PB9AE Pin Assignment

4.1.1.6 TSSOP28 Package

Corresponding Part Number: ML51EC0AE / ML51EB9AE

ML51EC0AE / ML51EB9AE

Figure 4.1-8 ML51EC0AE / ML51EB9AE Pin Assignment

4.1.1.7 SOP28 Package

Corresponding Part Number: ML51UC0AE / ML51UB9AE

ML51UC0AE / ML51UB9AE

Figure 4.1-9 ML51UC0AE / ML51UB9AE Pin Assignment

4.1.1.8 TSSOP20 Package

Corresponding Part Number: ML51FB9AE

ML51FB9AE

Figure 4.1-10 ML51FB9AE Pin Assignment

4.1.1.9 SOP20 Package

Corresponding Part Number: ML51OB9AE

ML510B9AE

Figure 4.1-11 ML51OB9AE Pin Assignment

4.1.1.10 QFN20 Package

Corresponding Part Number: ML51XB9AE

ML51XB9AE

Figure 4.1-12 ML51XB9AE Pin Assignment

4.1.1.11 TSSOP14 Package

Corresponding Part Number: ML51DB9AE

ML51DB9AE

Figure 4.1-13 ML51DB9AE Pin Assignment

4.1.1.12 MSOP10 Package

Corresponding Part Number: ML51BB9AE

ML51BB9AE

Figure 4.1-14 ML51BB9AE Pin Assignment

4.1.2 ML51/ML54/ML56 Series Multi Function Pin Diagram

4.1.2.1 LQFP64 Package

Corresponding Part Number: ML51SD1AE / ML54SD1AE / ML56SD1AE

ML51SD1AE Pin Function

Figure 4.1-15 ML51SD1AE Multi-Function Pin assignment

Pin	ML51SD1AE Pin Function
1	P2.6 / UART1_RXD / PWM3_CH1 / ACMP1_O
2	P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0
3	P2.4 / ADC_CH1 / ACMP0_N0 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1
4	P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE

PWM0_BRAKE	Pin	ML51SD1AE Pin Function
PWM0_BRAKE	5	P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / UART1_RXD / PWM0_CH3
8 P1.3 / ICO 9 P1.2 / UART3_TXD / IC1 10 P1.1 / UART3_RXD / UART1_TXD / IC2 11 P1.0 / UART1_RXD / ICO 12 P3.7 / SPI1_MOSI 13 P5.7 / PWM0_BRAKE / PWM0_CH4 / CLKO 14 P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC 15 P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT 16 P5.3 / UART0_TXD / I2C0_SCL / XT1_IN 17 P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT 18 P3.5 / PWM2_CH0 / T0 19 P3.4 / PWM2_CH1 / T1 20 P0.7 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1 21 P0.6 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0 22 Vss 23 Vob 24 P3.6 / PWM0_CH5 / INT1 25 P0.5 / UART0_RXD / I2C0_SCL / PWM0_CH0 26 P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1 27 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO 28 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3 29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_RXD / PWM0_CH4 30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_RXD / UART0_RXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 nRESET 33 P5.0 / UART1_TXD / I2C1_SDA / UART0_RXD / ICC_LK 35 P4.5 / UART2_TXD / I2C1_SDA / UART0_RXD / ICC_LK 36 P4.5 / UART2_TXD / I2C1_SDA / UART0_RXD / ICC_LK 37 P4.5 / UART1_TXD / I2C1_SDA / UART0_RXD / ICC_LK 38 P4.5 / UART1_TXD / I2C1_SDA / UART0_RXD / ICC_LK 39 P4.5 / UART1_TXD / I2C1_SDA / UART0_RXD / ICC_LK	6	P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM3_CH0 / PWM0_BRAKE
9 P1.2/UART3_TXD/IC1 10 P1.1/UART3_RXD/UART1_TXD/IC2 11 P1.0/UART1_RXD/IC0 12 P3.7/SPI1_MOSI 13 P5.7/PWM0_BRAKE/PWM0_CH4/CLKO 14 P5.5/UART2_RXD/PWM0_CH0/X32_IN/STADC 15 P5.4/UART2_TXD/PWM0_CH1/X32_OUT 16 P5.3/UART0_TXD/I2C0_SCL/XT1_IN 17 P5.2/UART0_RXD/I2C0_SDA/XT1_OUT 18 P3.5/PWM2_CH0/T0 19 P3.4/PWM2_CH1/T1 20 P0.7/UART0_TXD/I2C1_SCL/PWM3_CH0/INT1 21 P0.6/UART0_RXD/I2C1_SDA/PWM3_CH1/INT0 22 Vss 23 Voo 24 P3.6/PWM0_CH5/INT1 25 P0.5/UART0_TXD/I2C0_SCL/PWM0_CH0 26 P0.4/UART0_RXD/I2C0_SDA/PWM0_CH1 27 P0.3/SPI0_SS/SPI1_SS/UART1_TXD/I2C1_SCL/STADC/PWM0_CH2/CLKO 28 P0.2/SPI0_CLK/SPI1_CLK/UART1_RXD/I2C1_SDA/PWM0_CH3 29 P0.1/SPI0_MISO/SPI1_MISO/UART2_RXD/UART0_TXD/PWM0_CH4 30 P0.0/SPI0_MOSI/SPI1_MOSI/UART2_TXD/UART0_RXD/PWM0_CH5 31 P5.6/PWM0_BRAKE/PWM0_CH1/CLKO 32 nRESET 33 P5.0/UART1_TXD/I2C1_SCL/UART0_TXD/ICE_CLK 35 P4.5/UART2_TXD/I2C1_SDA/UART0_RXD/ICE_CLK 36 P4.5/UART2_TXD/I2C1_SDA/UART0_RXD/ICE_CLK 37 P4.5/UART1_TXD/I2C1_SCL/PWM1_CH0	7	P2.0 / ADC_CH5 / ACMP0_N1 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM3_CH1 / PWM0_BRAKE
10 P1.1 / UART3_RXD / UART1_TXD / IC2 11 P1.0 / UART1_RXD / IC0 12 P3.7 / SPI1_MOSI 13 P5.7 / PWM0_BRAKE / PWM0_CH4 / CLKO 14 P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC 15 P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT 16 P5.3 / UART0_TXD / I2C0_SCL / XT1_IN 17 P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT 18 P3.5 / PWM2_CH0 / T0 19 P3.4 / PWM2_CH1 / T1 20 P0.7 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1 21 P0.6 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0 22 Vss 23 Vob 24 P3.6 / PWM0_CH5 / INT1 25 P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0 26 P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1 27 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SDA / PWM0_CH2 / CLKO 28 P0.2 / SPI0_CLK / SPI1_CK / UART1_RXD / I2C1_SDA / PWM0_CH3 29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4 30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_TXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 NRESET 33 P5.0 / UART1_TXD / I2C1_SDA / UART0_TXD / ICE_DAT 34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	8	P1.3 / IC0
11 P1.0 / UART1_RXD / ICO 12 P3.7 / SPI1_MOSI 13 P5.7 / PWM0_BRAKE / PWM0_CH4 / CLKO 14 P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC 15 P5.4 / UART2_RXD / PWM0_CH1 / X32_OUT 16 P5.3 / UART0_TXD / I2CO_SCL / XT1_IN 17 P5.2 / UART0_RXD / I2CO_SDA / XT1_OUT 18 P3.5 / PWM2_CH0 / T0 19 P3.4 / PWM2_CH1 / T1 20 P0.7 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1 21 P0.6 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0 22 Vs 23 Vob 24 P3.6 / PWM0_CH5 / INT1 25 P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0 26 P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1 27 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH3 29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4 30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 RESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT 34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SDA / UART0_RXD / ICE_CLK	9	P1.2 / UART3_TXD / IC1
12 P3.7 / SPI1_MOSI 13 P5.7 / PWM0_BRAKE / PWM0_CH4 / CLKO 14 P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC 15 P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT 16 P5.3 / UART0_TXD / I2C0_SCL / XT1_IN 17 P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT 18 P3.5 / PWM2_CH0 / T0 19 P3.4 / PWM2_CH1 / T1 20 P0.7 / UART0_RXD / I2C1_SCL / PWM3_CH0 / INT1 21 P0.6 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0 22 Vss 23 Vop 24 P3.6 / PWM0_CH5 / INT1 25 P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0 26 P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1 27 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO 28 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3 29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_RXD / PWM0_CH4 30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 RESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICC_CLK 35 P4.5 / UART1_RXD / I2C1_SCL / PWM1_CH0	10	P1.1 / UART3_RXD / UART1_TXD / IC2
13 P5.7 / PWM0_BRAKE / PWM0_CH4 / CLKO 14 P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC 15 P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT 16 P5.3 / UART0_TXD / I2C0_SCL / XT1_IN 17 P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT 18 P3.5 / PWM2_CH0 / T0 19 P3.4 / PWM2_CH1 / T1 20 P0.7 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1 21 P0.6 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0 22 Vss 23 Vpd 24 P3.6 / PWM0_CH5 / INT1 25 P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0 26 P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1 27 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO 28 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3 29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4 30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 nRESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	11	P1.0 / UART1_RXD / IC0
14 P5.5/UART2_RXD/PWM0_CH0/X32_IN/STADC 15 P5.4/UART2_TXD/PWM0_CH1/X32_OUT 16 P5.3/UART0_TXD/I2C0_SCL/XT1_IN 17 P5.2/UART0_RXD/I2C0_SDA/XT1_OUT 18 P3.5/PWM2_CH0/T0 19 P3.4/PWM2_CH1/T1 20 P0.7/UART0_TXD/I2C1_SCL/PWM3_CH0/INT1 21 P0.6/UART0_RXD/I2C1_SDA/PWM3_CH1/INT0 22 Vss 23 Voo 24 P3.6/PWM0_CH5/INT1 25 P0.5/UART0_TXD/I2C0_SCL/PWM0_CH0 26 P0.4/UART0_RXD/I2C0_SDA/PWM0_CH1 27 P0.3/SPI0_SS/SPI1_SS/UART1_TXD/I2C1_SCL/STADC/PWM0_CH2/CLKO 28 P0.2/SPI0_CLK/SPI1_CLK/UART1_RXD/I2C1_SDA/PWM0_CH3 29 P0.1/SPI0_MISO/SPI1_MISO/UART2_RXD/UART0_TXD/PWM0_CH4 30 P0.0/SPI0_MOSI/SPI1_MOSI/UART2_TXD/UART0_RXD/PWM0_CH5 31 P5.6/PWM0_BRAKE/PWM0_CH1/CLKO 32 nRESET 33 P5.0/UART1_TXD/I2C1_SDA/UART0_RXD/ICE_CLK 35 P4.5/UART2_TXD/I2C1_SDA/UART0_RXD/ICE_CLK	12	P3.7 / SPI1_MOSI
15 P5.4/UART2_TXD/PWM0_CH1/X32_OUT 16 P5.3/UART0_TXD/I2C0_SCL/XT1_IN 17 P5.2/UART0_RXD/I2C0_SDA/XT1_OUT 18 P3.5/PWM2_CH0/T0 19 P3.4/PWM2_CH1/T1 20 P0.7/UART0_TXD/I2C1_SCL/PWM3_CH0/INT1 21 P0.6/UART0_RXD/I2C1_SDA/PWM3_CH1/INT0 22 Vss 23 Vp0 24 P3.6/PWM0_CH5/INT1 25 P0.5/UART0_TXD/I2C0_SCL/PWM0_CH0 26 P0.4/UART0_RXD/I2C0_SCL/PWM0_CH0 27 P0.3/SPI0_SS/SPI1_SS/UART1_TXD/I2C1_SCL/STADC/PWM0_CH2/CLKO 28 P0.2/SPI0_CLK/SPI1_CLK/UART1_RXD/I2C1_SDA/PWM0_CH3 29 P0.1/SPI0_MISO/SPI1_MISO/UART2_RXD/UART0_TXD/PWM0_CH4 30 P0.0/SPI0_MOSI/SPI1_MOSI/UART2_TXD/UART0_RXD/PWM0_CH5 31 P5.6/PWM0_BRAKE/PWM0_CH1/CLKO 32 nRESET 33 P5.0/UART1_TXD/I2C1_SCL/UART0_TXD/ICE_DAT 34 P5.1/UART1_RXD/I2C1_SDA/UART0_RXD/ICE_CLK 35 P4.5/UART2_TXD/I2C1_SCL/PWM1_CH0	13	P5.7 / PWM0_BRAKE / PWM0_CH4 / CLKO
16 P5.3 / UART0_TXD / I2C0_SCL / XT1_IN 17 P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT 18 P3.5 / PWM2_CH0 / T0 19 P3.4 / PWM2_CH1 / T1 20 P0.7 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1 21 P0.6 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0 22 Vss 23 Vod 24 P3.6 / PWM0_CH5 / INT1 25 P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0 26 P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1 27 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO 28 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3 29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4 30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 nRESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	14	P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC
P5.2 / UARTO_RXD / I2CO_SDA / XT1_OUT	15	P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT
18 P3.5 / PWM2_CH0 / T0 19 P3.4 / PWM2_CH1 / T1 20 P0.7 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1 21 P0.6 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0 22 Vss 23 Vod 24 P3.6 / PWM0_CH5 / INT1 25 P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0 26 P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1 27 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO 28 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3 29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4 30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 nRESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT 34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	16	P5.3 / UART0_TXD / I2C0_SCL / XT1_IN
19 P3.4 / PWM2_CH1 / T1 20 P0.7 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1 21 P0.6 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0 22 Vss 23 Vpd 24 P3.6 / PWM0_CH5 / INT1 25 P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0 26 P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1 27 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO 28 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3 29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4 30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 nRESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT 34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	17	P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT
20 P0.7 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1 21 P0.6 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0 22 Vss 23 Vdd 24 P3.6 / PWM0_CH5 / INT1 25 P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0 26 P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1 27 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO 28 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3 29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4 30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 nRESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT 34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	18	P3.5 / PWM2_CH0 / T0
21 P0.6 / UARTO_RXD / I2C1_SDA / PWM3_CH1 / INTO 22 Vss 23 Vdd 24 P3.6 / PWM0_CH5 / INT1 25 P0.5 / UARTO_TXD / I2C0_SCL / PWM0_CH0 26 P0.4 / UARTO_RXD / I2C0_SDA / PWM0_CH1 27 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO 28 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3 29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4 30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 NRESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT 34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	19	P3.4 / PWM2_CH1 / T1
22 Vss 23 Vdd 24 P3.6/PWM0_CH5/INT1 25 P0.5/UART0_TXD/I2C0_SCL/PWM0_CH0 26 P0.4/UART0_RXD/I2C0_SDA/PWM0_CH1 27 P0.3/SPI0_SS/SPI1_SS/UART1_TXD/I2C1_SCL/STADC/PWM0_CH2/CLKO 28 P0.2/SPI0_CLK/SPI1_CLK/UART1_RXD/I2C1_SDA/PWM0_CH3 29 P0.1/SPI0_MISO/SPI1_MISO/UART2_RXD/UART0_TXD/PWM0_CH4 30 P0.0/SPI0_MOSI/SPI1_MOSI/UART2_TXD/UART0_RXD/PWM0_CH5 31 P5.6/PWM0_BRAKE/PWM0_CH1/CLKO 32 nRESET 33 P5.0/UART1_TXD/I2C1_SCL/UART0_TXD/ICE_DAT 34 P5.1/UART1_RXD/I2C1_SDA/UART0_RXD/ICE_CLK 35 P4.5/UART2_TXD/I2C1_SCL/PWM1_CH0	20	P0.7 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1
23 VDD 24 P3.6 / PWM0_CH5 / INT1 25 P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0 26 P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1 27 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO 28 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3 29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4 30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 nRESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT 34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	21	P0.6 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0
24 P3.6 / PWM0_CH5 / INT1 25 P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0 26 P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1 27 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO 28 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3 29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4 30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 nRESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT 34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	22	Vss
25 P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0 26 P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1 27 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO 28 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3 29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4 30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 nRESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT 34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	23	V _{DD}
26 P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1 27 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO 28 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3 29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4 30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 nRESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT 34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	24	P3.6 / PWM0_CH5 / INT1
27 P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO 28 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3 29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4 30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 nRESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT 34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	25	P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0
28 P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3 29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4 30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 nRESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT 34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	26	P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1
29 P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4 30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 nRESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT 34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	27	P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO
30 P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5 31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 nRESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT 34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	28	P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3
31 P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO 32 nRESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT 34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	29	P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4
32 nRESET 33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT 34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	30	P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5
33 P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT 34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	31	P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO
34 P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK 35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	32	nRESET
35 P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0	33	P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT
	34	P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK
36 P4.4 / UART2 RXD / I2C1 SDA / PWM1 CH1	35	P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0
	36	P4.4 / UART2_RXD / I2C1_SDA / PWM1_CH1

Pin	ML51SD1AE Pin Function
37	P4.3 / PWM2_CH0
38	P4.2 / PWM2_CH1
39	P4.1 / UART2_TXD / I2C0_SCL / PWM3_CH0 / ACMP0_O
40	P4.0 / UART2_RXD / I2C0_SDA / PWM3_CH1 / ACMP1_O / INT1
41	P6.3 / SPI0_SS / UART0_TXD
42	P6.2 / UART3_TXD / SPI0_CLK / UART0_RXD
43	P6.1 / UART3_RXD / SPI0_MISO
44	P6.0 / SPI0_MOSI
45	P1.4 / I2C1_SCL
46	P1.5 / I2C1_SDA
47	P1.6 / UART0_TXD
48	P1.7 / UART0_RXD
49	Vss
50	P4.6 / PWM0_CH0 / T0 / CLKO / INT0
51	Vdd
52	P4.7 / T1
53	P3.3 / SPI1_SS / PWM1_CH0 / IC0 / PWM0_BRAKE
54	P3.2 / ADC_CH7 / ACMP1_N1 / SPI1_CLK / UART3_RXD / PWM1_CH1 / IC1 / CLKO
55	P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART3_TXD / UART0_TXD / PWM2_CH0 / IC2
56	P3.0 / ADC_CH10 / SPI1_MOSI / UART0_RXD / PWM2_CH1 / IC0
57	AV _{DD}
58	Vref
59	AV _{SS}
60	P6.7 / ADC_CH11 / I2C1_SCL
61	P6.6 / ADC_CH12 / I2C1_SDA
62	P6.5 / ADC_CH13 / UART0_TXD
63	P6.4 / ADC_CH14 / UART0_RXD
64	P2.7 / ADC_CH15 / UART1_TXD / PWM3_CH0 / ACMP0_O

ML54SD1AE Pin Function

Figure 4.1-16 ML54SD1AE Multi-Function Pin assignment

Pin	ML54SD1AE Pin Function
1	P2.6 / LCD_SEG6 / UART1_RXD / PWM3_CH1 / ACMP1_O
2	P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / LCD_COM0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0
3	P2.4 / ADC_CH1 / ACMP0_N0 / LCD_COM1 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1
4	P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / LCD_COM2 / UART1_TXD / PWM0_CH2 / PWM0_BRAKE

Pin	ML54SD1AE Pin Function
5	P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / LCD_COM3 / UART1_RXD / PWM0_CH3
6	P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / LCD_SEG5 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM3_CH0 / PWM0_BRAKE
7	P2.0 / ADC_CH5 / ACMP0_N1 / LCD_SEG4 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM3_CH1 / PWM0_BRAKE
8	P1.3 / IC0
9	P1.2 / LCD_DH2 / UART3_TXD / IC1
10	P1.1 / LCD_DH1 / UART3_RXD / UART1_TXD / IC2
11	P1.0 / UART1_RXD / IC0
12	VLCD
13	P5.7 / PWM0_BRAKE / PWM0_CH4 / CLKO
14	P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC
15	P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT
16	P5.3 / UART0_TXD / I2C0_SCL / XT1_IN
17	P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT
18	P3.5 / LCD_SEG3 / PWM2_CH0 / T0
19	P3.4 / LCD_SEG2 / PWM2_CH1 / T1
20	P0.7 / LCD_SEG1 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1
21	P0.6 / LCD_SEG0 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0
22	Vss
23	V _{DD}
24	P3.6 / PWM0_CH5 / INT1
25	P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0
26	P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1
27	P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO
28	P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3
29	P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4
30	P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5
31	P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO
32	nRESET
33	P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT
34	P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK
35	P4.5 / LCD_SEG31 / LCD_COM4 / UART2_TXD / I2C1_SCL / PWM1_CH0

Pin	ML54SD1AE Pin Function
36	P4.4 / LCD_SEG30 / LCD_COM5 / UART2_RXD / I2C1_SDA / PWM1_CH1
37	P4.3 / LCD_SEG29 / LCD_COM6 / PWM2_CH0
38	P4.2 / LCD_SEG28 / LCD_COM7 / PWM2_CH1
39	P4.1 / LCD_SEG27 / LCD_COM2 / UART2_TXD / I2C0_SCL / PWM3_CH0 / ACMP0_O
40	P4.0 / LCD_SEG26 / LCD_COM3 / UART2_RXD / I2C0_SDA / PWM3_CH1 / ACMP1_O / INT1
41	P6.3 / LCD_SEG25 / SPI0_SS / UART0_TXD
42	P6.2 / LCD_SEG24 / UART3_TXD / SPI0_CLK / UART0_RXD
43	P6.1 / LCD_SEG23 / UART3_RXD / SPI0_MISO
44	P6.0 / LCD_SEG22 / SPI0_MOSI
45	P1.4 / LCD_SEG21 / I2C1_SCL / LCD_COM4
46	P1.5 / LCD_SEG20 / I2C1_SDA / LCD_COM5
47	P1.6 / LCD_SEG19 / UART0_TXD / LCD_COM6
48	P1.7 / LCD_SEG18 / UART0_RXD / LCD_COM7
49	Vss
50	P4.6 / LCD_SEG17 / PWM0_CH0 / T0 / CLKO / INT0
51	V _{DD}
52	P4.7 / LCD_SEG16 / LCD_COM0 / T1
53	P3.3 / LCD_SEG15 / SPI1_SS / LCD_COM1 / PWM1_CH0 / IC0 / PWM0_BRAKE
54	P3.2 / ADC_CH7 / ACMP1_N1 / LCD_SEG14 / SPI1_CLK / UART3_RXD / PWM1_CH1 / IC1 / CLKO
55	P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / LCD_SEG13 / SPI1_MISO / UART3_TXD / UART0_TXD / PWM2_CH0 / IC2
56	P3.0 / ADC_CH10 / LCD_SEG12 / SPI1_MOSI / UART0_RXD / PWM2_CH1 / IC0
57	AV _{DD}
58	V _{REF}
59	AVss
60	P6.7 / ADC_CH11 / LCD_SEG11 / I2C1_SCL
61	P6.6 / ADC_CH12 / LCD_SEG10 / LCD_V1 / I2C1_SDA
62	P6.5 / ADC_CH13 / LCD_SEG9 / LCD_V2 / UART0_TXD
63	P6.4 / ADC_CH14 / LCD_SEG8 / LCD_V3 / UART0_RXD
64	P2.7 / ADC_CH15 / LCD_SEG7 / UART1_TXD / PWM3_CH0 / ACMP0_O

ML56SD1AE Pin Function

Figure 4.1-17 ML56SD1AE Multi-Function Pin assignment

Pin	ML56SD1AE Pin Function
1	P2.6/LCD_SEG6/UART1_RXD/PWM3_CH1/ACMP1_O
2	P2.5/ADC_CH0/ACMP0_P0/ACMP1_P0/LCD_COM0/I2C0_SCL/PWM0_CH0/UART2_TXD/T0/INT0
3	P2.4/ADC_CH1/ACMP0_N0/LCD_COM1/I2C0_SDA/PWM0_CH1/UART2_RXD/T1/INT1
4	P2.3/ADC_CH2/ACMP0_P1/ACMP1_P1/I2C1_SCL/LCD_COM2/UART1_TXD/PWM0_CH2/PWM0_BRAKE
5	P2.2/ADC_CH3/ACMP1_N0/I2C1_SDA/LCD_COM3/UART1_RXD/PWM0_CH3
6	P2.1/ADC_CH4/ACMP0_P2/ACMP1_P2/LCD_SEG5/UART2_TXD/I2C1_SCL/PWM0_CH4/PWM3_CH0/PWM0_BRAK E

Pin	ML56SD1AE Pin Function
7	P2.0/ADC_CH5/ACMP0_N1/LCD_SEG4/UART2_RXD/I2C1_SDA/PWM0_CH5/PWM3_CH1/PWM0_BRAKE
8	P1.3/IC0
9	P1.2/LCD_DH2/UART3_TXD/IC1
10	P1.1/LCD_DH1/UART3_RXD/UART1_TXD/IC2
11	P1.0/UART1_RXD/IC0
12	VLCD
13	P5.7/PWM0_BRAKE/PWM0_CH4/CLKO
14	P5.5/UART2_RXD/PWM0_CH0/X32_IN/STADC
15	P5.4/UART2_TXD/PWM0_CH1/X32_OUT
16	P5.3/UART0_TXD/I2C0_SCL/XT1_IN
17	P5.2/UART0_RXD/I2C0_SDA/XT1_OUT
18	P3.5/LCD_SEG3/PWM2_CH0/T0
19	P3.4/LCD_SEG2/PWM2_CH1/T1
20	P0.7/LCD_SEG1/UART0_TXD/I2C1_SCL/PWM3_CH0/INT1
21	P0.6/LCD_SEG0/UART0_RXD/I2C1_SDA/PWM3_CH1/INT0
22	vss
23	VDD
24	P3.6/TK7/PWM0_CH5/INT1
25	P0.5/UART0_TXD/I2C0_SCL/TK6/PWM0_CH0
26	P0.4/UART0_RXD/I2C0_SDA/TK5/PWM0_CH1
27	P0.3/SPI0_SS/SPI1_SS/UART1_TXD/I2C1_SCL/TK4/STADC/PWM0_CH2/CLKO
28	P0.2/SPI0_CLK/SPI1_CLK/UART1_RXD/I2C1_SDA/TK3/PWM0_CH3
29	P0.1/SPI0_MISO/SPI1_MISO/UART2_RXD/UART0_TXD/TK2/PWM0_CH4
30	P0.0/SPI0_MOSI/SPI1_MOSI/UART2_TXD/UART0_RXD/TK1/PWM0_CH5
31	P5.6/TK0/PWM0_BRAKE/PWM0_CH1/CLKO
32	nRESET
33	P5.0/UART1_TXD/I2C1_SCL/UART0_TXD/ICE_DAT
34	P5.1/UART1_RXD/I2C1_SDA/UART0_RXD/ICE_CLK
35	P4.5/LCD_SEG31/LCD_COM4/UART2_TXD/I2C1_SCL/PWM1_CH0
36	P4.4/LCD_SEG30/LCD_COM5/UART2_RXD/I2C1_SDA/TK12/PWM1_CH1
37	P4.3/LCD_SEG29/LCD_COM6/TK13/PWM2_CH0
38	P4.2/LCD_SEG28/LCD_COM7/TK14/PWM2_CH1
39	P4.1/LCD_SEG27/LCD_COM2/UART2_TXD/I2C0_SCL/PWM3_CH0/ACMP0_O
40	P4.0/LCD_SEG26/LCD_COM3/UART2_RXD/I2C0_SDA/PWM3_CH1/ACMP1_O/INT1

Pin	ML56SD1AE Pin Function
41	P6.3/LCD_SEG25/SPI0_SS/UART0_TXD/TK8
42	P6.2/LCD_SEG24/UART3_TXD/SPI0_CLK/UART0_RXD/TK9
43	P6.1/LCD_SEG23/UART3_RXD/SPI0_MISO/TK10
44	P6.0/LCD_SEG22/SPI0_MOSI/TK11
45	P1.4/LCD_SEG21/I2C1_SCL/LCD_COM4
46	P1.5/LCD_SEG20/I2C1_SDA/LCD_COM5
47	P1.6/LCD_SEG19/UART0_TXD/LCD_COM6
48	P1.7/LCD_SEG18/UART0_RXD/LCD_COM7
49	vss
50	P4.6/LCD_SEG17/PWM0_CH0/T0/CLKO/INT0
51	VDD
52	P4.7/LCD_SEG16/LCD_COM0/T1
53	P3.3/LCD_SEG15/SPI1_SS/LCD_COM1/PWM1_CH0/IC0/PWM0_BRAKE
54	P3.2/ADC_CH7/ACMP1_N1/LCD_SEG14/SPI1_CLK/UART3_RXD/PWM1_CH1/IC1/CLKO
55	P3.1/ADC_CH6/ACMP0_P3/ACMP1_P3/LCD_SEG13/SPI1_MISO/UART3_TXD/UART0_TXD/PWM2_CH0/IC2
56	P3.0/ADC_CH10/LCD_SEG12/SPI1_MOSI/UART0_RXD/PWM2_CH1/IC0
57	AV_DD
58	V_REF
59	AVSS
60	P6.7/ADC_CH11/LCD_SEG11/I2C1_SCL
61	P6.6/ADC_CH12/LCD_SEG10/LCD_V1/I2C1_SDA
62	P6.5/ADC_CH13/LCD_SEG9/LCD_V2/UART0_TXD
63	P6.4/ADC_CH14/LCD_SEG8/LCD_V3/UART0_RXD
64	P2.7/ADC_CH15/LCD_SEG7/UART1_TXD/PWM3_CH0/ACMP0_O

4.1.2.2 LQFP48 Package

Corresponding Part Number: ML51LD1AE

ML51LD1AE Pin Function

Figure 4.1-18 ML51LD1AE Multi-Function Pin assignment

Pin	ML51LD1AE Pin Function
1	P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0
2	P2.4 / ADC_CH1 / ACMP0_N0 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1
3	P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE
4	P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / UART1_RXD / PWM0_CH3

Pin	ML51LD1AE Pin Function
	P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM3_CH0 /
5	PWM0_BRAKE
6	P2.0 / ADC_CH5 / ACMP0_N1 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM3_CH1 / PWM0_BRAKE
7	P1.3 / IC0
8	P1.2 / UART3_TXD / IC1
9	P1.1 / UART3_RXD / UART1_TXD / IC2
10	P1.0 / UART1_RXD / IC0
11	P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC
12	P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT
13	P5.3 / UART0_TXD / I2C0_SCL / XT1_IN
14	P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT
15	P0.7 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1
16	P0.6 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0
17	P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0
18	P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1
19	P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO
20	P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3
21	P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4
22	P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5
23	P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO
24	nRESET
25	P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT
26	P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK
27	P4.5 / UART2_TXD / I2C1_SCL / PWM1_CH0
28	P4.4 / UART2_RXD / I2C1_SDA / PWM1_CH1
29	P4.3 / PWM2_CH0
30	P4.2 / PWM2_CH1
31	P4.1 / UART2_TXD / I2C0_SCL / PWM3_CH0 / ACMP0_O
32	P4.0 / UART2_RXD / I2C0_SDA / PWM3_CH1 / ACMP1_O / INT1
33	P1.4 / I2C1_SCL
34	P1.5 / I2C1_SDA
35	P1.6 / UART0_TXD
36	P1.7 / UART0_RXD

Pin	ML51LD1AE Pin Function
37	vss
38	P4.6 / PWM0_CH0 / T0 / CLKO / INT0
39	V _{DD}
40	P4.7 / T1
41	P3.3 / SPI1_SS / PWM1_CH0 / IC0 / PWM0_BRAKE
42	P3.2 / ADC_CH7 / ACMP1_N1 / SPI1_CLK / UART3_RXD / PWM1_CH1 / IC1 / CLKO
43	P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART3_TXD / UART0_TXD / PWM2_CH0 / IC2
44	P3.0 / ADC_CH10 / SPI1_MOSI / UART0_RXD / PWM2_CH1 / IC0
45	V _{REF}
46	AVss
47	P2.7 / ADC_CH15 / UART1_TXD / PWM3_CH0 / ACMP0_O
48	P2.6 / UART1_RXD / PWM3_CH1 / ACMP1_O

ML54LD1AE Pin Function

Figure 4.1-19 ML54LD1AE Multi-Function Pin assignment

Pin	ML54LD1AE Pin Function
1	P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / LCD_COM0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0
2	P2.4 / ADC_CH1 / ACMP0_N0 / LCD_COM1 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1
3	P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / LCD_COM2 / UART1_TXD / PWM0_CH2 / PWM0_BRAKE

Pin	ML54LD1AE Pin Function
4	P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / LCD_COM3 / UART1_RXD / PWM0_CH3
5	P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / LCD_SEG5 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM3_CH0 / PWM0_BRAKE
6	P2.0 / ADC_CH5 / ACMP0_N1 / LCD_SEG4 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM3_CH1 / PWM0_BRAKE
7	P1.3 / IC0
8	P1.2 / LCD_DH2 / UART3_TXD / IC1
9	P1.1 / LCD_DH1 / UART3_RXD / UART1_TXD / IC2
10	VLCD
11	P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC
12	P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT
13	P5.3 / UART0_TXD / I2C0_SCL / XT1_IN
14	P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT
15	P0.7 / LCD_SEG1 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1
16	P0.6 / LCD_SEG0 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0
17	P0.5 / UART0_TXD / I2C0_SCL / PWM0_CH0
18	P0.4 / UART0_RXD / I2C0_SDA / PWM0_CH1
19	P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO
20	P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3
21	P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4
22	P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5
23	P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO
24	nRESET
25	P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT
26	P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK
27	P4.5 / LCD_SEG31 / LCD_COM4 / UART2_TXD / I2C1_SCL / PWM1_CH0
28	P4.4 / LCD_SEG30 / LCD_COM5 / UART2_RXD / I2C1_SDA / PWM1_CH1
29	P4.3 / LCD_SEG29 / LCD_COM6 / PWM2_CH0
30	P4.2 / LCD_SEG28 / LCD_COM7 / PWM2_CH1
31	P4.1 / LCD_SEG27 / LCD_COM2 / UART2_TXD / I2C0_SCL / PWM3_CH0 / ACMP0_O
32	P4.0 / LCD_SEG26 / LCD_COM3 / UART2_RXD / I2C0_SDA / PWM3_CH1 / ACMP1_O / INT1
33	P1.4 / LCD_SEG21 / I2C1_SCL / LCD_COM4
34	P1.5 / LCD_SEG20 / I2C1_SDA / LCD_COM5

Pin	ML54LD1AE Pin Function
35	P1.6 / LCD_SEG19 / UART0_TXD / LCD_COM6
36	P1.7 / LCD_SEG18 / UART0_RXD / LCD_COM7
37	vss
38	P4.6 / LCD_SEG17 / PWM0_CH0 / T0 / CLKO / INT0
39	V _{DD}
40	P4.7 / LCD_SEG16 / LCD_COM0 / T1
41	P3.3 / LCD_SEG15 / SPI1_SS / LCD_COM1 / PWM1_CH0 / IC0 / PWM0_BRAKE
42	P3.2 / ADC_CH7 / ACMP1_N1 / LCD_SEG14 / SPI1_CLK / UART3_RXD / PWM1_CH1 / IC1 / CLKO
43	P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / LCD_SEG13 / SPI1_MISO / UART3_TXD / UART0_TXD / PWM2_CH0 / IC2
44	P3.0 / ADC_CH10 / LCD_SEG12 / SPI1_MOSI / UART0_RXD / PWM2_CH1 / IC0
45	V _{REF}
46	AV _{SS}
47	P2.7 / ADC_CH15 / LCD_SEG7 / UART1_TXD / PWM3_CH0 / ACMP0_O
48	P2.6 / LCD_SEG6 / UART1_RXD / PWM3_CH1 / ACMP1_O

ML56LD1AE Pin Function

Figure 4.1-20 ML56LD1AE Multi-Function Pin assignment

Pin	ML56LD1AE/ML56LC1AE Pin Function
1	P2.5/ADC_CH0/ACMP0_P0/ACMP1_P0/LCD_COM0/I2C0_SCL/PWM0_CH0/UART2_TXD/T0/INT0
2	P2.4/ADC_CH1/ACMP0_N0/LCD_COM1/I2C0_SDA/PWM0_CH1/UART2_RXD/T1/INT1
3	P2.3/ADC_CH2/ACMP0_P1/ACMP1_P1/I2C1_SCL/LCD_COM2/UART1_TXD/PWM0_CH2/PWM0_BRAKE
4	P2.2/ADC_CH3/ACMP1_N0/I2C1_SDA/LCD_COM3/UART1_RXD/PWM0_CH3
5	P2.1/ADC_CH4/ACMP0_P2/ACMP1_P2/LCD_SEG5/UART2_TXD/I2C1_SCL/PWM0_CH4/PWM3_CH0/PWM0_BRAK E
6	P2.0/ADC_CH5/ACMP0_N1/LCD_SEG4/UART2_RXD/I2C1_SDA/PWM0_CH5/PWM3_CH1/PWM0_BRAKE

Pin	ML56LD1AE/ML56LC1AE Pin Function
7	P1.3/IC0
8	P1.2/LCD_DH2/UART3_TXD/IC1
9	P1.1/LCD_DH1/UART3_RXD/UART1_TXD/IC2
10	VLCD
11	P5.5/UART2_RXD/PWM0_CH0/X32_IN/STADC
12	P5.4/UART2_TXD/PWM0_CH1/X32_OUT
13	P5.3/UART0_TXD/I2C0_SCL/XT1_IN
14	P5.2/UART0_RXD/I2C0_SDA/XT1_OUT
15	P0.7/LCD_SEG1/UART0_TXD/I2C1_SCL/PWM3_CH0/INT1
16	P0.6/LCD_SEG0/UART0_RXD/I2C1_SDA/PWM3_CH1/INT0
17	P0.5/UART0_TXD/I2C0_SCL/TK6/PWM0_CH0
18	P0.4/UART0_RXD/I2C0_SDA/TK5/PWM0_CH1
19	P0.3/SPI0_SS/SPI1_SS/UART1_TXD/I2C1_SCL/TK4/STADC/PWM0_CH2/CLKO
20	P0.2/SPI0_CLK/SPI1_CLK/UART1_RXD/I2C1_SDA/TK3/PWM0_CH3
21	P0.1/SPI0_MISO/SPI1_MISO/UART2_RXD/UART0_TXD/TK2/PWM0_CH4
22	P0.0/SPI0_MOSI/SPI1_MOSI/UART2_TXD/UART0_RXD/TK1/PWM0_CH5
23	P5.6/TK0/PWM0_BRAKE/PWM0_CH1/CLKO
24	nRESET
25	P5.0/UART1_TXD/I2C1_SCL/UART0_TXD/ICE_DAT
26	P5.1/UART1_RXD/I2C1_SDA/UART0_RXD/ICE_CLK
27	P4.5/LCD_SEG31/LCD_COM4/UART2_TXD/I2C1_SCL/PWM1_CH0
28	P4.4/LCD_SEG30/LCD_COM5/UART2_RXD/I2C1_SDA/TK12/PWM1_CH1
29	P4.3/LCD_SEG29/LCD_COM6/TK13/PWM2_CH0
30	P4.2/LCD_SEG28/LCD_COM7/TK14/PWM2_CH1
31	P4.1/LCD_SEG27/LCD_COM2/UART2_TXD/I2C0_SCL/PWM3_CH0/ACMP0_O
32	P4.0/LCD_SEG26/LCD_COM3/UART2_RXD/I2C0_SDA/PWM3_CH1/ACMP1_O/INT1
33	P1.4/LCD_SEG21/I2C1_SCL/LCD_COM4
34	P1.5/LCD_SEG20/I2C1_SDA/LCD_COM5
35	P1.6/LCD_SEG19/UART0_TXD/LCD_COM6
36	P1.7/LCD_SEG18/UART0_RXD/LCD_COM7
37	vss
38	P4.6/LCD_SEG17/PWM0_CH0/T0/CLKO/INT0
39	VDD
40	P4.7/LCD_SEG16/LCD_COM0/T1

Pin	ML56LD1AE/ML56LC1AE Pin Function
41	P3.3/LCD_SEG15/SPI1_SS/LCD_COM1/PWM1_CH0/IC0/PWM0_BRAKE
42	P3.2/ADC_CH7/ACMP1_N1/LCD_SEG14/SPI1_CLK/UART3_RXD/PWM1_CH1/IC1/CLKO
43	P3.1/ADC_CH6/ACMP0_P3/ACMP1_P3/LCD_SEG13/SPI1_MISO/UART3_TXD/UART0_TXD/PWM2_CH0/IC2
44	P3.0/ADC_CH10/LCD_SEG12/SPI1_MOSI/UART0_RXD/PWM2_CH1/IC0
45	V_REF
46	AVSS
47	P2.7/ADC_CH15/LCD_SEG7/UART1_TXD/PWM3_CH0/ACMP0_O
48	P2.6/LCD_SEG6/UART1_RXD/PWM3_CH1/ACMP1_O

4.1.2.3 LQFP44 Package

ML54MD1AE Pin Function

Figure 4.1-21 ML54MD1AE Multi-Function Pin assignment

Pin	ML54MD1AE Pin Function
1	P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / LCD_COM0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0
2	P2.4 / ADC_CH1 / ACMP0_N0 / LCD_COM1 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1
3	P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / LCD_COM2 / UART1_TXD / PWM0_CH2 / PWM0_BRAKE

Pin	ML54MD1AE Pin Function
4	P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / LCD_COM3 / UART1_RXD / PWM0_CH3
5	P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / LCD_SEG5 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM3_CH0 / PWM0_BRAKE
6	P2.0 / ADC_CH5 / ACMP0_N1 / LCD_SEG4 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM3_CH1 / PWM0_BRAKE
7	P1.3 / IC0
8	P1.2 / LCD_DH2 / UART3_TXD / IC1
9	P1.1 / LCD_DH1 / UART3_RXD / UART1_TXD / IC2
10	VLCD
11	P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC
12	P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT
13	P5.3 / UART0_TXD / I2C0_SCL / XT1_IN
14	P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT
15	P0.7 / LCD_SEG1 / UART0_TXD / I2C1_SCL / PWM3_CH0 / INT1
16	P0.6 / LCD_SEG0 / UART0_RXD / I2C1_SDA / PWM3_CH1 / INT0
17	P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2 / CLKO
18	P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3
19	P0.1 / SPI0_MISO / SPI1_MISO / UART2_RXD / UART0_TXD / PWM0_CH4
20	P0.0 / SPI0_MOSI / SPI1_MOSI / UART2_TXD / UART0_RXD / PWM0_CH5
21	nRESET
22	P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT
23	P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK
24	P4.5 / LCD_SEG31 / LCD_COM4 / UART2_TXD / I2C1_SCL / PWM1_CH0
25	P4.4 / LCD_SEG30 / LCD_COM5 / UART2_RXD / I2C1_SDA / PWM1_CH1
26	P4.3 / LCD_SEG29 / LCD_COM6 / PWM2_CH0
27	P4.2 / LCD_SEG28 / LCD_COM7 / PWM2_CH1
28	P4.1 / LCD_SEG27 / LCD_COM2 / UART2_TXD / I2C0_SCL / PWM3_CH0 / ACMP0_O
29	P4.0 / LCD_SEG26 / LCD_COM3 / UART2_RXD / I2C0_SDA / PWM3_CH1 / ACMP1_O / INT1
30	P1.4 / LCD_SEG21 / I2C1_SCL / LCD_COM4
31	P1.5 / LCD_SEG20 / I2C1_SDA / LCD_COM5
32	P1.6 / LCD_SEG19 / UART0_TXD / LCD_COM6
33	P1.7 / LCD_SEG18 / UART0_RXD / LCD_COM7
34	Vss

Pin	ML54MD1AE Pin Function
35	P4.6 / LCD_SEG17 / PWM0_CH0 / T0 / CLKO / INT0
36	V _{DD}
37	P3.3 / LCD_SEG15 / SPI1_SS / LCD_COM1 / PWM1_CH0 / IC0 / PWM0_BRAKE
38	P3.2 / ADC_CH7 / ACMP1_N1 / LCD_SEG14 / SPI1_CLK / UART3_RXD / PWM1_CH1 / IC1 / CLKO
39	P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / LCD_SEG13 / SPI1_MISO / UART3_TXD / UART0_TXD / PWM2_CH0 / IC2
40	P3.0 / ADC_CH10 / LCD_SEG12 / SPI1_MOSI / UART0_RXD / PWM2_CH1 / IC0
41	Vref
42	AVss
43	P2.7 / ADC_CH15 / LCD_SEG7 / UART1_TXD / PWM3_CH0 / ACMP0_O
44	P2.6 / LCD_SEG6 / UART1_RXD / PWM3_CH1 / ACMP1_O

ML56MD1AE Pin Function

Figure 4.1-22 ML56MD1AE Multi-Function Pin assignment

Pin	ML56MD1AE Pin Function
1	P2.5/ADC_CH0/ACMP0_P0/ACMP1_P0/LCD_COM0/I2C0_SCL/PWM0_CH0/UART2_TXD/T0/INT0
2	P2.4/ADC_CH1/ACMP0_N0/LCD_COM1/I2C0_SDA/PWM0_CH1/UART2_RXD/T1/INT1
3	P2.3/ADC_CH2/ACMP0_P1/ACMP1_P1/I2C1_SCL/LCD_COM2/UART1_TXD/PWM0_CH2/PWM0_BRAKE
4	P2.2/ADC_CH3/ACMP1_N0/I2C1_SDA/LCD_COM3/UART1_RXD/PWM0_CH3
5	P2.1/ADC_CH4/ACMP0_P2/ACMP1_P2/LCD_SEG5/UART2_TXD/I2C1_SCL/PWM0_CH4/PWM3_CH0/PWM0_BRAK E

Pin	ML56MD1AE Pin Function
6	P2.0/ADC_CH5/ACMP0_N1/LCD_SEG4/UART2_RXD/I2C1_SDA/PWM0_CH5/PWM3_CH1/PWM0_BRAKE
7	P1.3/IC0
8	P1.2/LCD_DH2/UART3_TXD/IC1
9	P1.1/LCD_DH1/UART3_RXD/UART1_TXD/IC2
10	VLCD
11	P5.5/UART2_RXD/PWM0_CH0/X32_IN/STADC
12	P5.4/UART2_TXD/PWM0_CH1/X32_OUT
13	P5.3/UART0_TXD/I2C0_SCL/XT1_IN
14	P5.2/UART0_RXD/I2C0_SDA/XT1_OUT
15	P0.7/LCD_SEG1/UART0_TXD/I2C1_SCL/PWM3_CH0/INT1
16	P0.6/LCD_SEG0/UART0_RXD/I2C1_SDA/PWM3_CH1/INT0
17	P0.3/SPI0_SS/SPI1_SS/UART1_TXD/I2C1_SCL/TK4/STADC/PWM0_CH2/CLKO
18	P0.2/SPI0_CLK/SPI1_CLK/UART1_RXD/I2C1_SDA/TK3/PWM0_CH3
19	P0.1/SPI0_MISO/SPI1_MISO/UART2_RXD/UART0_TXD/TK2/PWM0_CH4
20	P0.0/SPI0_MOSI/SPI1_MOSI/UART2_TXD/UART0_RXD/TK1/PWM0_CH5
21	nRESET
22	P5.0/UART1_TXD/I2C1_SCL/UART0_TXD/ICE_DAT
23	P5.1/UART1_RXD/I2C1_SDA/UART0_RXD/ICE_CLK
24	P4.5/LCD_SEG31/LCD_COM4/UART2_TXD/I2C1_SCL/PWM1_CH0
25	P4.4/LCD_SEG30/LCD_COM5/UART2_RXD/I2C1_SDA/TK12/PWM1_CH1
26	P4.3/LCD_SEG29/LCD_COM6/TK13/PWM2_CH0
27	P4.2/LCD_SEG28/LCD_COM7/TK14/PWM2_CH1
28	P4.1/LCD_SEG27/LCD_COM2/UART2_TXD/I2C0_SCL/PWM3_CH0/ACMP0_O
29	P4.0/LCD_SEG26/LCD_COM3/UART2_RXD/I2C0_SDA/PWM3_CH1/ACMP1_O/INT1
30	P1.4/LCD_SEG21/I2C1_SCL/LCD_COM4
31	P1.5/LCD_SEG20/I2C1_SDA/LCD_COM5
32	P1.6/LCD_SEG19/UART0_TXD/LCD_COM6
33	P1.7/LCD_SEG18/UART0_RXD/LCD_COM7
34	vss
35	P4.6/LCD_SEG17/PWM0_CH0/T0/CLKO/INT0
36	VDD
37	P3.3/LCD_SEG15/SPI1_SS/LCD_COM1/PWM1_CH0/IC0/PWM0_BRAKE
38	P3.2/ADC_CH7/ACMP1_N1/LCD_SEG14/SPI1_CLK/UART3_RXD/PWM1_CH1/IC1/CLKO
39	P3.1/ADC_CH6/ACMP0_P3/ACMP1_P3/LCD_SEG13/SPI1_MISO/UART3_TXD/UART0_TXD/PWM2_CH0/IC2

Pin	ML56MD1AE Pin Function
40	P3.0/ADC_CH10/LCD_SEG12/SPI1_MOSI/UART0_RXD/PWM2_CH1/IC0
41	V_{REF}
42	AVSS
43	P2.7/ADC_CH15/LCD_SEG7/UART1_TXD/PWM3_CH0/ACMP0_O
44	P2.6/LCD_SEG6/UART1_RXD/PWM3_CH1/ACMP1_O

4.1.2.4 QFN33 Package

ML51TD1AE Pin Function

Figure 4.1-23 ML51TD1AE Multi-Function Pin assignment

Pin	ML56TD1AE Pin Function
1	P2.5/ADC_CH0/ACMP0_P0/ACMP1_P0/LCD_COM0/I2C0_SCL/PWM0_CH0/UART2_TXD/T0/INT0
2	P2.4/ADC_CH1/ACMP0_N0/LCD_COM1/I2C0_SDA/PWM0_CH1/UART2_RXD/T1/INT1
3	P2.3/ADC_CH2/ACMP0_P1/ACMP1_P1/I2C1_SCL/LCD_COM2/UART1_TXD/PWM0_CH2/PWM0_BRAKE
4	P2.2/ADC_CH3/ACMP1_N0/I2C1_SDA/LCD_COM3/UART1_RXD/PWM0_CH3
5	P2.1/ADC_CH4/ACMP0_P2/ACMP1_P2/LCD_SEG5/UART2_TXD/I2C1_SCL/PWM0_CH4/PWM3_CH0/PWM0_BRAK E
6	P2.0/ADC_CH5/ACMP0_N1/LCD_SEG4/UART2_RXD/I2C1_SDA/PWM0_CH5/PWM3_CH1/PWM0_BRAKE

Pin	ML56TD1AE Pin Function
7	P5.5/UART2_RXD/PWM0_CH0/X32_IN/STADC
8	P5.4/UART2_TXD/PWM0_CH1/X32_OUT
9	P5.3/UART0_TXD/I2C0_SCL/XT1_IN
10	P5.2/UART0_RXD/I2C0_SDA/XT1_OUT
11	P0.3/SPI0_SS/SPI1_SS/UART1_TXD/I2C1_SCL/TK4/STADC/PWM0_CH2/CLKO
12	P0.2/SPI0_CLK/SPI1_CLK/UART1_RXD/I2C1_SDA/TK3/PWM0_CH3
13	P0.1/SPI0_MISO/SPI1_MISO/UART2_RXD/UART0_TXD/TK2/PWM0_CH4
14	P0.0/SPI0_MOSI/SPI1_MOSI/UART2_TXD/UART0_RXD/TK1/PWM0_CH5
15	P5.6/TK0/PWM0_BRAKE/PWM0_CH1/CLKO
16	nRESET
17	P5.0/UART1_TXD/I2C1_SCL/UART0_TXD/ICE_DAT
18	P5.1/UART1_RXD/I2C1_SDA/UART0_RXD/ICE_CLK
19	P4.1/LCD_SEG27/LCD_COM2/UART2_TXD/I2C0_SCL/PWM3_CH0/ACMP0_O
20	P4.0/LCD_SEG26/LCD_COM3/UART2_RXD/I2C0_SDA/PWM3_CH1/ACMP1_O/INT1
21	P1.4/LCD_SEG21/I2C1_SCL/LCD_COM4
22	P1.5/LCD_SEG20/I2C1_SDA/LCD_COM5
23	P1.6/LCD_SEG19/UART0_TXD/LCD_COM6
24	P1.7/LCD_SEG18/UART0_RXD/LCD_COM7
25	vss
26	P4.6/LCD_SEG17/PWM0_CH0/T0/CLKO/INT0
27	VDD
28	P3.3/LCD_SEG15/SPI1_SS/LCD_COM1/PWM1_CH0/IC0/PWM0_BRAKE
29	P3.2/ADC_CH7/ACMP1_N1/LCD_SEG14/SPI1_CLK/UART3_RXD/PWM1_CH1/IC1/CLKO
30	P3.1/ADC_CH6/ACMP0_P3/ACMP1_P3/LCD_SEG13/SPI1_MISO/UART3_TXD/UART0_TXD/PWM2_CH0/IC2
31	P3.0/ADC_CH10/LCD_SEG12/SPI1_MOSI/UART0_RXD/PWM2_CH1/IC0
32	V_REF
33	EPAD(VSS)

ML51TC0AE / ML51TB9AE Pin Function

Figure 4.1-24 ML51TC0AE / ML51TB9AE Multi-Function Pin Assignment

Pin	ML51TC0AE / ML51TB9AE Pin Function
1	P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0
2	P2.4 / ADC_CH1 / ACMP0_N0 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1
3	P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE
4	P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / UART1_RXD / PWM0_CH3
5	P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM0_BRAKE
6	P2.0 / ADC_CH5 / ACMP0_N1 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM0_BRAKE

Pin	ML51TC0AE / ML51TB9AE Pin Function
7	P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC
8	P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT
9	P5.3 / UART0_TXD / I2C0_SCL / XT1_IN
10	P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT
11	P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2
12	P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3
13	P0.1 / SPI0_MISO / SPI1_MISO / UART0_TXD / PWM0_CH4
14	P0.0 / SPI0_MOSI / SPI1_MOSI / UART0_RXD / PWM0_CH5
15	P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO
16	nRESET
17	P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT
18	P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK
19	P4.1 / UART2_TXD / I2C0_SCL / ACMP0_O
20	P4.0 / UART2_RXD / I2C0_SDA / ACMP1_O / INT1
21	P1.4 / I2C1_SCL
22	P1.5 / I2C1_SDA
23	P1.6 / UARTO_TXD
24	P1.7 / UARTO_RXD
25	Vss
26	P4.6 / PWM0_CH0 / T0 / CLKO / INT0
27	V _{DD}
28	P3.3 / SPI1_SS / IC0 / PWM0_BRAKE
29	P3.2 / ADC_CH7 / ACMP1_N1 / SPI1_CLK / IC1 / CLKO
30	P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART0_TXD / IC2
31	P3.0 / SPI1_MOSI / UART0_RXD / IC0
32	AV _{DD}
33	EPAD(VSS)

4.1.2.5 LQFP32 Package

ML51PC0AE / ML51PB9AE Pin Function

Figure 4.1-25 ML51PC0AE / ML51PB9AE Multi-Function Pin Assignment

Pin	ML51PC0AE Pin Function
1	P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0
2	P2.4 / ADC_CH1 / ACMP0_N0 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1
3	P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE
4	P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / UART1_RXD / PWM0_CH3

Pin	ML51PC0AE Pin Function
5	P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM0_BRAKE
6	P2.0 / ADC_CH5 / ACMP0_N1 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM0_BRAKE
7	P5.5 / UART2_RXD / PWM0_CH0 / X32_IN / STADC
8	P5.4 / UART2_TXD / PWM0_CH1 / X32_OUT
9	P5.3 / UART0_TXD / I2C0_SCL / XT1_IN
10	P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT
11	P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2
12	P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3
13	P0.1 / SPI0_MISO / SPI1_MISO / UART0_TXD / PWM0_CH4
14	P0.0 / SPI0_MOSI / SPI1_MOSI / UART0_RXD / PWM0_CH5
15	P5.6 / PWM0_BRAKE / PWM0_CH1 / CLKO
16	nRESET
17	P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT
18	P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK
19	P4.1 / UART2_TXD / I2C0_SCL / ACMP0_O
20	P4.0 / UART2_RXD / I2C0_SDA / ACMP1_O / INT1
21	P1.4 / I2C1_SCL
22	P1.5 / I2C1_SDA
23	P1.6 / UART0_TXD
24	P1.7 / UARTO_RXD
25	Vss
26	P4.6 / PWM0_CH0 / T0 / CLKO / INT0
27	V _{DD}
28	P3.3 / SPI1_SS / IC0 / PWM0_BRAKE
29	P3.2 / ADC_CH7 / ACMP1_N1 / SPI1_CLK / IC1 / CLKO
30	P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART0_TXD / IC2
31	P3.0 / SPI1_MOSI / UART0_RXD / IC0
32	AV _{DD}

4.1.2.6 TSSOP28 Package

ML51EC0AE / ML51EB9AE Pin Function

Figure 4.1-26 ML51EC0AE / ML51EB9AE Multi-Function Pin Assignment

Pin	ML51EC0AE / ML51EB9AE Pin Function
1	P1.4 / I2C1_SCL
2	P1.5 / I2C1_SDA
3	P1.6 / UART0_TXD
4	P1.7 / UART0_RXD
5	Vss
6	P4.6 / PWM0_CH0 / T0 / CLKO / INT0
7	VDD
8	P3.2 / ADC_CH7 / ACMP1_N1 / SPI1_CLK / IC1 / CLKO
9	P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART0_TXD / IC2
10	P3.0 / SPI1_MOSI / UART0_RXD / IC0
11	AV _{DD}
12	P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0
13	P2.4 / ADC_CH1 / ACMP0_N0 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1
14	P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE
15	P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / UART1_RXD / PWM0_CH3
16	P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM0_BRAKE
17	P2.0 / ADC_CH5 / ACMP0_N1 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM0_BRAKE
18	P5.3 / UART0_TXD / I2C0_SCL / XT1_IN
19	P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT
20	P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2
21	P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3

Pin	IL51EC0AE / ML51EB9AE Pin Function								
22	P0.1 / SPI0_MISO / SPI1_MISO / UART0_TXD / PWM0_CH4								
23	P0.0 / SPI0_MOSI / SPI1_MOSI / UART0_RXD / PWM0_CH5								
24	nRESET								
25	P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT								
26	P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK								
27	P4.1 / UART2_TXD / I2C0_SCL / ACMP0_O								
28	P4.0 / UART2_RXD / I2C0_SDA / ACMP1_O / INT1								

4.1.2.7 SOP28 Package

Corresponding Part Number: ML51UC0AE / ML51UB9AE

Figure 4.1-27 ML51UC0AE / ML51UB9AE Multi Function Pin Assignment

ML51UC0AE / ML51UB9AE Pin Function

Pin	ML51UC0AE / ML51UB9AE Pin Function
1	P1.4 / I2C1_SCL
2	P1.5 / I2C1_SDA
3	P1.6 / UART0_TXD
4	P1.7 / UART0_RXD
5	Vss
6	P4.6 / PWM0_CH0 / T0 / CLKO / INT0
7	V _{DD}
8	P3.2 / ADC_CH7 / ACMP1_N1 / SPI1_CLK / IC1 / CLKO
9	P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART0_TXD / IC2
10	P3.0 / SPI1_MOSI / UART0_RXD / IC0
11	AV _{DD}
12	P2.5 / ADC_CH0 / ACMP0_P0 / ACMP1_P0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0
13	P2.4 / ADC_CH1 / ACMP0_N0 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1
14	P2.3 / ADC_CH2 / ACMP0_P1 / ACMP1_P1 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE
15	P2.2 / ADC_CH3 / ACMP1_N0 / I2C1_SDA / UART1_RXD / PWM0_CH3
16	P2.1 / ADC_CH4 / ACMP0_P2 / ACMP1_P2 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM0_BRAKE
17	P2.0 / ADC_CH5 / ACMP0_N1 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM0_BRAKE
18	P5.3 / UART0_TXD / I2C0_SCL / XT1_IN
19	P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT
20	P0.3 / SPI0_SS / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2

Pin	ML51UC0AE / ML51UB9AE Pin Function
21	P0.2 / SPI0_CLK / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3
22	P0.1 / SPI0_MISO / SPI1_MISO / UART0_TXD / PWM0_CH4
23	P0.0 / SPI0_MOSI / SPI1_MOSI / UART0_RXD / PWM0_CH5
24	nRESET
25	P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT
26	P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK
27	P4.1 / UART2_TXD / I2C0_SCL / ACMP0_O
28	P4.0 / UART2_RXD / I2C0_SDA / ACMP1_O / INT1

4.1.2.8 TSSOP20 Package

ML51FB9AE Pin Function

Figure 4.1-28 ML51FB9AE Multi Function Pin Assignment

Pin	ML51FB9AE Pin Function
1	Vss
2	P4.6 / PWM0_CH0 / T0 / CLKO / INT0
3	V _{DD}
4	P3.2 / ADC_CH7 / ACMP1_N1 / SPI1_CLK / IC1 / CLKO
5	P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART0_TXD / IC2
6	P3.0 / SPI1_MOSI / UART0_RXD / IC0
7	AV _{DD}
8	P2.5 / ADC_CH0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0
9	P2.4 / ADC_CH1 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1
10	P2.3 / ADC_CH2 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE
11	P2.2 / ADC_CH3 / I2C1_SDA / UART1_RXD / PWM0_CH3
12	P5.3 / UART0_TXD / I2C0_SCL / XT1_IN
13	P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT
14	P0.3 / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2
15	P0.2 / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3
16	P0.1 / SPI1_MISO / UART0_TXD / PWM0_CH4
17	P0.0 / SPI1_MOSI / UART0_RXD / PWM0_CH5
18	nRESET
19	P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT
20	P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK

4.1.2.9 SOP20 Package

ML510B9AE Pin Function

Figure 4.1-29 ML51OB9AE Multi Function Pin Assignment

Pin	ML510B9AE Pin Function								
1	V _{ss}								
2	P4.6 / PWM0_CH0 / T0 / CLKO / INT0								
3	V _{DD}								
4	P3.2 / ADC_CH7 / ACMP1_N1 / SPI1_CLK / IC1 / CLKO								
5	P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART0_TXD / IC2								
6	P3.0 / SPI1_MOSI / UART0_RXD / IC0								
7	AV _{DD}								
8	P2.5 / ADC_CH0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0								
9	P2.4 / ADC_CH1 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1								
10	P2.3 / ADC_CH2 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE								
11	P2.2 / ADC_CH3 / I2C1_SDA / UART1_RXD / PWM0_CH3								
12	P5.3 / UART0_TXD / I2C0_SCL / XT1_IN								
13	P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT								
14	P0.3 / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2								
15	P0.2 / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3								
16	P0.1 / SPI1_MISO / UART0_TXD / PWM0_CH4								
17	P0.0 / SPI1_MOSI / UART0_RXD / PWM0_CH5								
18	nRESET								
19	P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT								
20	P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK								

4.1.2.10 QFN20 Package

ML51XB9AE Pin Function

Figure 4.1-30 ML51XB9AE Multi Function Pin Assignment

Pin	ML51XB9AE Pin Function
1	P2.5 / ADC_CH0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0
2	P2.4 / ADC_CH1 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1
3	P2.3 / ADC_CH2 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE
4	P2.2 / ADC_CH3 / I2C1_SDA / UART1_RXD / PWM0_CH3
5	P2.1 / ADC_CH4 / UART2_TXD / I2C1_SCL / PWM0_CH4 / PWM0_BRAKE
6	P0.3 / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2
7	P0.2 / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3
8	P0.1 / SPI1_MISO / UART0_TXD / PWM0_CH4

Pin	ML51XB9AE Pin Function
9	P0.0 / SPI1_MOSI / UART0_RXD / PWM0_CH5
10	nRESET
11	P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT
12	P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK
13	P4.1 / UART2_TXD / I2C0_SCL / ACMP0_O
14	P4.0 / UART2_RXD / I2C0_SDA / ACMP1_O / INT1
15	P1.7 / UARTO_RXD
16	Vss
17	P4.6 / PWM0_CH0 / T0 / CLKO / INT0
18	V _{DD}
19	P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART0_TXD / IC2
20	P3.0 / SPI1_MOSI / UART0_RXD / IC0
21	EPAD(floating)

4.1.2.11 TSSOP14 Package

ML51DB9AE Pin Function

Figure 4.1-31 ML51DB9AE Multi Function Pin Assignment

Pin	ML51DB9AE Pin Function
1	V _{SS}
2	P4.6 / PWM0_CH0 / T0 / CLKO / INT0
3	V _{DD}
4	P3.1 / ADC_CH6 / ACMP0_P3 / ACMP1_P3 / SPI1_MISO / UART0_TXD / IC2
5	P3.0 / SPI1_MOSI / UART0_RXD / IC0
6	P2.5 / ADC_CH0 / I2C0_SCL / PWM0_CH0 / UART2_TXD / T0 / INT0
7	P2.4 / ADC_CH1 / I2C0_SDA / PWM0_CH1 / UART2_RXD / T1 / INT1
8	P5.3 / UART0_TXD / I2C0_SCL / XT1_IN
9	P5.2 / UART0_RXD / I2C0_SDA / XT1_OUT
10	P0.3 / SPI1_SS / UART1_TXD / I2C1_SCL / STADC / PWM0_CH2
11	P0.2 / SPI1_CLK / UART1_RXD / I2C1_SDA / PWM0_CH3
12	nRESET
13	P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT
14	P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK

4.1.2.12 MSOP10 Package

ML51BB9AE Pin Function

Figure 4.1-32 ML51BB9AE Pin Assignment

Pin	ML51BB9AE Pin Function
1	P5.1 / UART1_RXD / I2C1_SDA / UART0_RXD / ICE_CLK
2	Vss
3	P4.6 / PWM0_CH0 / T0 / CLKO / INT0
4	Vod
5	P2.3 / ADC_CH2 / I2C1_SCL / UART1_TXD / PWM0_CH2 / PWM0_BRAKE
6	P2.0 / ADC_CH5 / UART2_RXD / I2C1_SDA / PWM0_CH5 / PWM0_BRAKE
7	P0.1 / SPI1_MISO / UART0_TXD / PWM0_CH4
8	P0.0 / SPI1_MOSI / UART0_RXD / PWM0_CH5
9	nRESET
10	P5.0 / UART1_TXD / I2C1_SCL / UART0_TXD / ICE_DAT

4.2 Pin Description

4.2.1 ML51/ML54/ML56 Series Pin Mapping

	ML54/ML56			ML51							
Pin Number	64	48	44	64	48	33/32	28	20	QFN20	14	10
AVDD	57	39	36	57	39	27	7				
AVSS	59	46	42	59	46				16		
VDD	23/51	39	36	23/51	39	27	7	3	18	3	4
VSS	22/49	37	34	22/49	37	25/33	5	1	16	1	2
nRESET	32	24	21	32	24	16	24	18	10	12	9
VLCD	12	10	10								
VREF	58	45	41	58	45	32	11	7			
EPAD						33			21		
P0.0	30	22	20	30	22	14	23	17	9		8
P0.1	29	21	19	29	21	13	22	16	8		7
P0.2	28	20	18	28	20	12	21	15	7	11	
P0.3	27	19	17	27	19	11	20	14	6	10	
P0.4	26	18		26	18						
P0.5	25	17		25	17						
P0.6	21	16	16	21	16						
P0.7	20	15	15	20	15						
P1.0	11			11	10						
P1.1	10	9	9	10	9						
P1.2	9	8	8	9	8						
P1.3	8	7	7	8	7						
P1.4	45	33	30	45	33	21	1				
P1.5	46	34	31	46	34	22	2				
P1.6	47	35	32	47	35	23	3				
P1.7	48	36	33	48	36	24	4		15		
P2.0	7	6	6	7	6	6	17				6
P2.1	6	5	5	6	5	5	16		5		
P2.2	5	4	4	5	4	4	15	11	4		
P2.3	4	3	3	4	3	3	14	10	3		5
P2.4	3	2	2	3	2	2	13	9	2	7	
P2.5	2	1	1	2	1	1	12	8	1	6	
P2.6	1	48	44	1	48						
P2.7	64	47	43	64	47						
P3.0	56	44	40	56	44	31	10	6	20	5	
P3.1	55	43	39	55	43	30	9	5	19	4	

nuvoTon

	r	ML54/ML5	6	ML51							
Pin Number	64	48	44	64	48	33/32	28	20	QFN20	14	10
P3.2	54	42	38	54	42	29	8	4			
P3.3	53	41	37	53	41	28					
P3.4	19			19							
P3.5	18			18							
P3.6	24			24							
P3.7				12							
P4.0	40	32	29	40	32	20	28		14		
P4.1	39	31	28	39	31	19	27		13		
P4.2	38	30	27	38	30						
P4.3	37	29	26	37	29						
P4.4	36	28	25	36	28						
P4.5	35	27	24	35	27						
P4.6	50	38	35	50	38	26	6	2	17	2	3
P4.7	52	40		52	40						
P5.0	33	25	22	33	25	17	25	19	11	13	10
P5.1	34	26	23	34	26	18	26	20	12	14	1
P5.2	17	14	14	17	14	10	19	13		9	
P5.3	16	13	13	16	13	9	18	12		8	
P5.4	15	12	12	15	12	8					
P5.5	14	11	11	14	11	7					
P5.6	31	23		31	23	15					
P5.7	13			13							
P6.0	44			44							
P6.1	43			43							
P6.2	42			42							
P6.3	41			41							
P6.4	63			63							
P6.5	62			62							
P6.6	61			61							
P6.7	60			60							

4.2.2 ML51/ML54/ML56 Series Pin Functional Description

As default all GPIO type is defined as input mode. User should setting the GPIO Mode by PxMx register.

A: Analog suggest disable digial function O: output, I: input, I/O: bi-direction (Quasi)

Group	Pin Name	Туре	Description
	ACMP0_N0	А	Analog comparator 0 negative input 0 pin.
	ACMP0_N1		Analog comparator 0 negative input 1 pin.
	ACMP0_O	0	Analog comparator 0 output pin.
ACMP0	ACMP0_P0		Analog comparator 0 positive input 0 pin.
	ACMP0_P1	A	Analog comparator 0 positive input 1 pin.
	ACMP0_P2		Analog comparator 0 positive input 2 pin.
	ACMP0_P3		Analog comparator 0 positive input 3 pin.
	ACMP1_N0	A	Analog comparator 1 negative input 0 pin.
	ACMP1_N1		Analog comparator 1 negative input 1 pin.
	ACMP1_O	0	Analog comparator 1 output pin.
ACMP1	ACMP1_P0		Analog comparator 1 positive input 0 pin.
	ACMP1_P1		Analog comparator 1 positive input 1 pin.
	ACMP1_P2	Α Α	Analog comparator 1 positive input 2 pin.
	ACMP1_P3		Analog comparator 1 positive input 3 pin.
	ADC_CH0		ADC_ channel analog input.
	ADC_CH1		ADC_ channel analog input.
	ADC_CH2		ADC_ channel analog input.
	ADC_CH3		ADC_ channel analog input.
	ADC_CH4		ADC_ channel analog input.
	ADC_CH5		ADC_ channel analog input.
ADC	ADC_CH6		ADC_ channel analog input.
ADC	ADC_CH7	Α Α	ADC_ channel analog input.
	ADC_CH10		ADC_ channel analog input.
	ADC_CH11		ADC_ channel analog input.
	ADC_CH12		ADC_ channel analog input.
	ADC_CH13		ADC_ channel analog input.
	ADC_CH14		ADC_ channel analog input.
	ADC_CH15		ADC_ channel analog input.
CLKO	CLKO CLKO		Clock Out
1200	I2C0_SCL	I/O	I2C0 clock pin.
I2C0	I2C0_SDA	I/O	I2C0 data input/output pin.
I2C1	I2C1_SCL	I/O	I2C1 clock pin.

Group	Pin Name	Туре	Description			
	I2C1_SDA	I/O	I2C1 data input/output pin.			
IC0	IC0	I/O	Input Capture channel 0			
IC1	IC1	I/O	Input Capture channel 1			
IC2	IC2	I/O	Input Capture channel 2			
ICE	ICE_CLK	ı	Serial wired debugger clock pin. Note: It is recommended to use 100 k Ω pull-up resistor on ICE_CLK pin			
102	ICE_DAT	0	Serial wired debugger data pin. Note: It is recommended to use 100 k Ω pull-up resistor on ICE_DAT pin			
INT0	INT0	ı	External interrupt 0 input pin.			
INT1	INT1	I	External interrupt 1 input pin.			
	LCD_COM0	0	LCD Common 0 output.			
	LCD_COM1	0	LCD Common 1 output.			
	LCD_COM2	0	LCD Common 2 output.			
	LCD_COM3	0	LCD Common 3 output.			
	LCD_COM4	0	LCD Common 4 output.			
	LCD_COM5	0	LCD Common 5 output.			
	LCD_COM6	0	LCD Common 6 output.			
	LCD_COM7	0	LCD Common 7 output.			
	LCD_DH1	0	LCD external capacitor pin of charge pump circuit.			
	LCD_DH2	0	LCD external capacitor pin of charge pump circuit.			
	LCD_SEG0	0	LCD segment 0 output			
LCD	LCD_SEG1	0	LCD segment 1 output			
LOD	LCD_SEG2	0	LCD segment 2 output			
	LCD_SEG3	0	LCD segment 3 output			
	LCD_SEG4	0	LCD segment 4 output			
	LCD_SEG5	0	LCD segment 5 output			
	LCD_SEG6	0	LCD segment 6 output			
	LCD_SEG7	0	LCD segment 7 output			
	LCD_SEG8	0	LCD segment 8 output			
	LCD_SEG9	0	LCD segment 9 output			
	LCD_SEG10	0	LCD segment 10 output			
	LCD_SEG11	0	LCD segment 11 output			
	LCD_SEG12	0	LCD segment 12 output			
	LCD_SEG13	0	LCD segment 13 output			

Group	Pin Name	Туре	Description
	LCD_SEG14	0	LCD segment 14 output
	LCD_SEG15	0	LCD segment 15 output
	LCD_SEG16	0	LCD segment 16 output
	LCD_SEG17	0	LCD segment 17 output
	LCD_SEG18	0	LCD segment 18 output
	LCD_SEG19	0	LCD segment 19 output
	LCD_SEG20	0	LCD segment 20 output
	LCD_SEG21	0	LCD segment 21 output
	LCD_SEG22	0	LCD segment 22 output
	LCD_SEG23	0	LCD segment 23 output
	LCD_SEG24	0	LCD segment 24 output
	LCD_SEG25	0	LCD segment 25 output
	LCD_SEG26	0	LCD segment 26 output
	LCD_SEG27	0	LCD segment 27 output
	LCD_SEG28	0	LCD segment 28 output
	LCD_SEG29	0	LCD segment 29 output
	LCD_SEG30	0	LCD segment 30 output
	LCD_SEG31	0	LCD segment 31 output
	LCD_V1	I	Output pin of the 1st most positive LCD level for measurement.
	LCD_V2	I	Output pin of the 2 nd most positive LCD level for measurement.
	LCD_V3	I	Output pin of the 3 rd most positive LCD level for measurement.
nRESET	nRESET	1	External reset input: active LOW, with an internal pull-up. Set this pin low reset to initial state.
IIICEOLT	TINCE OF T		Note: It is recommended to use 10 $k\Omega$ pull-up resistor and 10 uF capacitor on nRESET pin.
	PWM0_BRAKE	I	PWM0 Brake input pin.
	PWM0_CH0	I/O	PWM0 channel 0 output/capture input.
	PWM0_CH1	I/O	PWM0 channel 1 output/capture input.
PWM0	PWM0_CH2	I/O	PWM0 channel 2 output/capture input.
	PWM0_CH3	I/O	PWM0 channel 3 output/capture input.
	PWM0_CH4	I/O	PWM0 channel 4 output/capture input.
	PWM0_CH5	I/O	PWM0 channel 5 output/capture input.
PWM1	PWM1_CH0	I/O	PWM1 channel 0 output/capture input.
E AAIAI I	PWM1_CH1	I/O	PWM1 channel 1 output/capture input.
PWM2	PWM2_CH0	I/O	PWM2 channel 0 output/capture input.
FVVIVI∠	PWM2_CH1	I/O	PWM2 channel 1 output/capture input.

Group	Pin Name	Туре	Description	
PWM3	PWM3_CH0	I/O	PWM3 channel 0 output/capture input.	
PVVIVIS	PWM3_CH1	I/O	PWM3 channel 1 output/capture input.	
	SPI0_CLK	I/O	SPI0 serial clock pin.	
SPI0	SPI0_MISO	I/O	SPI0 MISO (Master In, Slave Out) pin.	
3PI0	SPI0_MOSI	I/O	SPI0 MOSI (Master Out, Slave In) pin.	
	SPI0_SS	I/O	SPI0 slave select pin.	
	SPI1_CLK I/O SPI1 serial clock pin. SPI1_MISO I/O SPI1 MISO (Master In, Slave Out) pin.			
SPI1	SPI1_MISO	I/O	SPI1 MISO (Master In, Slave Out) pin.	
SPII	SPI1_MOSI	I/O	SPI1 MOSI (Master Out, Slave In) pin.	
	SPI1_SS	I/O	SPI1 slave select pin.	
STADC	STADC	I	ADC external trigger input.	
T0	ТО	I/O	External count input to Timer/Counter 0 or its toggle output.	
T1	T1	I/O	External count input to Timer/Counter 1 or its toggle output.	
	TK0	А	Touch Key 0.	
	TK1	А	Touch Key 1.	
	TK2	А	Touch Key 2.	
	TK3	А	Touch Key 3.	
	TK4	А	Touch Key 4.	
	TK5	А	Touch Key 5.	
	TK6	А	Touch Key 6.	
TK	TK7	А	Touch Key 7.	
	TK8	А	Touch Key 8.	
	TK9	А	Touch Key 9.	
	TK10	А	Touch Key 10.	
	TK11	А	Touch Key 11.	
	TK12	А	Touch Key 12.	
	TK13	А	Touch Key 13.	
	TK14	А	Touch Key 14.	
LIADTO	UART0_RXD	1	UART0 data receiver input pin.	
UART0	UART0_TXD	0	UART0 data transmitter output pin.	
LIADT!	UART1_RXD	I	UART1 data receiver input pin.	
UART1	UART1_TXD	0	UART1 data transmitter output pin.	
LIABTO	UART2_RXD	I	UART2 data receiver input pin.	
UART2	UART2_TXD	0	UART2 data transmitter output pin.	
UART3	UART3_RXD	1	UART3 data receiver input pin.	

Group	Pin Name	Туре	Description
	UART3_TXD	0	UART3 data transmitter output pin.
V _{REF}	VREF	А	ADC reference voltage input. Note: This pin needs to be connected with a 1uF capacitor when use internal voltage reference output.
X32	X32_IN	I	External 32.768 kHz crystal input pin.
7,52	X32_OUT	0	External 32.768 kHz crystal output pin.
XT1	XT1_IN	1	External 4~24 MHz (high speed) crystal input pin.
XII	XT1_OUT	0	External 4~24 MHz (high speed) crystal output pin.
EPAD	EPAD	VSS / Floating	Exposed pad connect to VSS or floating

5 BLOCK DIAGRAM

5.1 ML51/ML54/ML56 Series Full Function Block

Figure 5.1-1 Functional Block Diagram

6 FUNCTIONAL DESCRIPTION

6.1 Memory Organization

A standard 80C51 based microcontroller divides the memory into two different sections, Program Memory and Data Memory. The Program Memory is used to store the instruction codes, whereas the Data Memory is used to store data or variations during the program execution.

The Data Memory occupies a separate address space from Program Memory. In ML51/ML54/ML56 Series, there are 256 bytes of internal scratch-pad RAM. For many applications those need more internal RAM, the ML51/ML54/ML56 Series provides another on-chip 4 Kbytes of RAM, which is called XRAM, accessed by MOVX instruction.

The whole embedded Flash, functioning as Program Memory, is divided into three blocks: Application ROM (APROM) normally for User Code, Loader ROM (LDROM) normally for Boot Code, and CONFIG bytes for hardware initialization. Actually, APROM and LDROM function in the same way but have different size. Each block is accumulated page by page and the page size is 128 bytes. The Flash control unit supports Erase, Program, and Read modes. The external writer tools though specific I/O pins, In-Application-Programming (IAP), or In-System-Programming (ISP) can both perform these modes.

6.2 System Manager

The ML51/ML54/ML56 Series has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. The ML51/ML54/ML56 Series provides five options of the system clock sources including internal oscillator, crystal/resonator, or external clock from XIN pin via software. The ML51/ML54/ML56 Series is embedded with two internal oscillators: one 38.4 kHz low-speed and one 24 MHz high-speed, which is factory trimmed to ±2% under all conditions. A clock divider CKDIV is also available on ML51/ML54/ML56 Series for adjustment of the flexibility between power consumption and operating performance.

Figure 6.2-1 Clock System Block Diagram

6.3 Flash Memory Control

6.3.1 In-application-programming (IAP)

Unlike RAM's real-time operation, to update Flash data often takes long time. Furthermore, it is a quite complex timing procedure to erase, program, or read Flash data. The ML51/ML54/ML56 Series carried out the Flash operation with convenient mechanism to help user re-programming the Flash content by In-Application-Programming (IAP). IAP is an in-circuit electrical erasure and programming method through software.

After IAP enabling by setting IAPEN (CHPCON.0 with TA protected) and setting the enable bit in IAPUEN that allows the target block to be updated, user can easily fill the 16-bit target address in IAPAH and IAPAL, data in IAPFD, and command in IAPCN. Then the IAP is ready to begin by setting a triggering bit IAPGO (IAPTRG.0). Note that IAPTRG is also TA protected. At this moment, the CPU holds the Program Counter and the built-in IAP automation takes over to control the internal charge-pump for high voltage and the detail signal timing. The erase and program time is internally controlled disregard of the operating voltage and frequency. Nominally, a page-erase time is 5 ms and a byte-program time is 23.5 µs. After IAP action completed, the Program Counter continues to run the following instructions. The IAPGO bit will be automatically cleared. An IAP failure flag, IAPFF (CHPCON.6), can be check whether the previous IAP operation was successful or not. Through this progress, user can easily erase, program, and verify the Flash Memory by just taking care of pure software.

6.3.2 In-Circuit-Programming (ICP)

The Flash Memory can be programmed by "In-Circuit-Programming" (ICP). If the product is just under development or the end product needs firmware updating in the hand of an end customer, the hardware programming mode will make repeated programming difficult and inconvenient. ICP method makes it easy and possible without removing the microcontroller from the system. ICP mode also allows customers to manufacture circuit boards with un-programmed devices. Programming can be done after the assembly process allowing the device to be programmed with the most recent firmware or a customized firmware.

There are three signal pins, \overline{RST} , ICPDA, and ICPCK, involved in ICP function. \overline{RST} is used to enter or exit ICP mode. ICPDA is the data input and output pin. ICPCK is the clock input pin, which synchronizes the data shifted in to or out from MCU under programming. User should leave these three pins plus V_{DD} and GND pins on the circuit board to make ICP possible.

Nuvoton provides ICP tool for ML51/ML54/ML56 Series, which enables user to easily perform ICP through Nuvoton ICP programmer. The ICP programmer developed by Nuvoton has been optimized according to the electric characteristics of MCU. It also satisfies the stability and efficiency during production progress. For more details, please visit Nuvoton 8-bit Microcontroller website: Nuvoton 80C51 Microcontroller Technical Support.

6.3.3 On-Chip-Debugger (ICE)

The ML51/ML54/ML56 Series is embedded in an on-chip-debugger (OCD) providing developers with a low cost method for debugging user code, which is available on each package. The OCD gives debug capability of complete program flow control with eight hardware address breakpoints, single step, free running, and non-intrusive commands for memory access. The OCD system does not occupy any locations in the memory map and does not share any on-chip peripherals.

6.4 GPIO Port Structure and Operation

6.4.1 GPIO Mode

The ML51/ML54/ML56 Series has a maximum of 56 general purpose I/O pins which 40 bit-addressable general I/O pins grouped as 5 ports, P0 to P4, and 16 general I/O pins grouped as P5 and P6. Each port has its port control register (Px register). The writing and reading of a port control register have different meanings. A write to port control register sets the port output latch logic value, where as a read gets the port pin logic state. These four modes are quasi-bidirectional (standard 8051 port structure), push-pull, input-only, and open-drain modes. Each port spends two special function registers PxM1 and PxM2 to select the I/O mode of port Px. The list below illustrates how to select the I/O mode of Px.n. Note that the default configuration of is input-only (high-impedance) after any reset.

PnM1.X ^[1]	PnM2.X ^[1]	I/O Type			
0	0	Quasi-bidirectional			
0	1	Push-pull			
1	0	Input-only (high-impedance)			
1	1	Open-drain			
Note: $N = 0 \sim 5$, $x = 0 \sim 7$					

Table 6.4-1 Configuration for Different I/O Modes

All I/O pins can be selected as TTL level inputs or Schmitt triggered inputs by selecting corresponding bit in PxS register. Schmitt triggered input has better glitch suppression capability. All I/O pins also have bit-controllable, slew rate select ability via software. The Register Description are PxSR. By default, the slew rate is slow. If user would like to increase the I/O output speed, setting the corresponding bit in PxSR, the slew rate is selected in a faster level.

6.5 Timer

6.5.1 Overview

ML51/ML54/ML56 Series provides following 16-bit Timer. Two 16-bit Timers/Counters 0 and 1 compatible with standard 8051. One 16-bit Timer 2 with three-channel input capture module and 9 input pin can be selected. One 16-bit auto-reload Timer 3, which can be the baud rate clock source of UARTs.

6.6 Watchdog Timer (WDT)

The ML51/ML54/ML56 Series provides one Watchdog Timer (WDT). It can be configured as a time-out reset timer to reset whole device. Once the device runs in an abnormal status or hangs up by outward interference, a WDT reset recover the system. It provides a system monitor, which improves the reliability of the system. Therefore, WDT is especially useful for system that is susceptible to noise, power glitches, or electrostatic discharge. The WDT also can be configured as a general purpose timer, of which the periodic interrupt serves as an event timer or a durational system supervisor in a monitoring system, which is able to operate during Idle or Power-down mode. WDTEN[3:0] (CONFIG4[7:4]) initialize the WDT to operate as a time-out reset timer or a general purpose timer.

The Watchdog time-out interval is determined by the formula $\frac{1}{F_{LIRC} \times clock \ divider \ scalar} \times 64$, where

F_{LIRC} is the frequency of internal 38.4 kHz oscillator. The following table shows an example of the Watchdog time-out interval with different pre-scales.

WDPS.3	WDPS.2	WDPS.1	WDPS.0	Clock Divider Scale	WDT Time-Out Timing ^[1]			
0	0	0	0	1/1	1.66 ms			
0	0	0	1	1/4	6.64 ms			
0	0	1	0	1/8	13.31 ms			
0	0	1	1	1/16	26.62 ms			
0	1	0	0	1/32	53.25 ms			
0	1	0	1	1/64	106.66 ms			
0	1	1	0	1/128	213.12 ms			
0	1	1	1	1/256	426.64 ms			
1	0	0	0	1/512	853.28ms			
1	0	0	1	1/1024	1706.56ms			
1	0	1	0	1/2048	3413.12ms			
	-	Others	•	1/2048	3413.12ms			
Note: This is a	lote: This is an approximate value since the deviation of LIRC.							

Table 6.6-1 Watchdog Timer-out Interval Under Different Pre-scalars

Since the limitation of the maxima vaule of WDT timer delay. To wake up ML51/ML54/ML56 Series from idle mode or power down mode suggest use WKT function see Chapter 6.7.

The WDT is implemented with a set of divider that divides the low-speed internal oscillator clock nominal 38.4 kHz. The divider output is selectable and determines the time-out interval. When the time-out interval is fulfilled, it will wake the system up from Idle or Power-down mode and an interrupt event will occur if WDT interrupt is enabled. If WDT is initialized as a time-out reset timer, a system reset will occur after a period of delay if without any software action.

6.7 Self Wake-up Timer (WKT)

6.7.1 Overview

The ML51/ML54/ML56 Series has a dedicated Self Wake-up Timer (WKT), which serves for a periodic wake-up timer in low power mode or for general purpose timer. WKT remains counting in Idle or Powerdown mode. When WKT is being used as a wake-up timer, a start of WKT can occur just prior to entering a power management mode. WKT has two clock source, internal LIRC 38.4 kHz or LXT 32.768 kHz. Note that the system clock frequency must be twice over WKT clock. If WKT starts counting, the selected clock source will remain active once the device enters Idle or Power-down mode. Note that the selected clock source of WKT will not automatically enabled along with WKT configuration. User should manually enable the selected clock source and waiting for stability to ensure a proper operation.

The WKT is implemented simply as a 16-bit auto-reload, up-counting timer with pre-scale 1/1 to 1/2048 selected by WKPS[2:0] (WKCON[2:0]). User fills the reload value into RWK register to determine its overflow rate. The RWK can reloadable when counter is count to overflow. The CWK can read current count value. The WKTR (WKCON.3) can be set to start counting. When the counter rolls over FFH, WKTF (WKCON.4) is set as 1 and a reload is generated and causes the contents of the RWK register to be reloaded into the internal 8-bit counter. If EWKT (EIE1.2) is set as 1, WKT interrupt service routine will be served

6.8 Pulse Width Modulated (PWM)

6.8.1 Overview

The PWM (Pulse Width Modulation) signal is a useful control solution in wide application field. It can used on motor driving, fan control, backlight brightness tuning, LED light dimming, or simulating as a simple digital to analog converter output through a low pass filter circuit.

The ML51/ML54/ML56 Series PWM0 is especially designed for motor control by providing three pairs, maximum 16-bit resolution of PWM0 output with programmable period and duty. The architecture makes user easy to drive the one-phase or three-phase brushless DC motor (BLDC), or three-phase AC induction motor. Each of six PWM can be configured as one of independent mode, complementary mode, or synchronous mode. If the complementary mode is used, a programmable dead-time insertion is available to protect MOS turn-on simultaneously. The PWM waveform can be edge-aligned or centeraligned with variable interrupt points.

The ML51/ML54/ML56 Series PWM1/2/3 provide individual configurable period and duty. maximum 16-bit resolution output. Each of two PWM1/2/3 can be configured as one of independent mode, complementary mode, or synchronous mode. The PWM1/2/3 waveform can be edge-aligned or centeraligned with variable interrupt points.

6.8.2 Features

- Up To 12 output pins can be selected
- Supports maximum clock source frequency up to 24 MHz
- Supports up to Three PWM modules, each module provides 6 output channels.
- Supports independent mode for PWM output
- Supports complementary mode for 3 complementary paired PWM output channels
- Dead-time insertion with 8-bit resolution
- Supports 16-bit resolution PWM counter
- Supports mask function and tri-state enable for each PWM pin
- Supports brake function
- Supports trigger ADC on the following events

6.9 Serial Port (UARTO & UART1)

6.9.1 Overview

The ML51/ML54/ML56 Series includes two enhanced full duplex serial ports enhanced with automatic address recognition and framing error detection. As control bits of these two serial ports are implemented the same. Generally speaking, in the following contents, there will not be any reference to serial port 1, but only to serial port 0.

Each serial port supports one synchronous communication mode, Mode 0, and three modes of full duplex UART (Universal Asynchronous Receiver and Transmitter), Mode 1, 2, and 3. This means it can transmit and receive simultaneously. The serial port is also receiving-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the register. The receiving and transmitting registers are both accessed at SBUF. Writing to SBUF loads the transmitting register, and reading SBUF accesses a physically separate receiving register. There are four operation modes in serial port. In all four modes, transmission initiates by any instruction that uses SBUF as a destination register.

6.9.2 Features

- Supports up to 2 UARTs: UART0, UART1
- Supports 2 Smart Card configuration as UART function as UART2 and UART3.
- UART baud rate clock from HIRC or HXT.
- Full-duplex asynchronous communications
- Programmable 9th bit.
- TXD and RXD pins of UART0 exchangeable via software.

6.10 Smart Card Interface (SC)

6.10.1 Overview

The ML51/ML54/ML56 Series provides Smart Card Interface controller (SC controller) with asynchronous protocal based on ISO/IEC 7816-3 standard. Software controls GPIO pins as the smartcard reset function and card detection function. This controller also provides UART emulation for high precision baud rate communication.

6.10.2 Features

- ISO 7816-3 T = 0, T = 1 compliant
- Programmable transmission clock frequency
- Programmable extra guard time selection
- Supports auto inverse convention function
- Supports UART mode
 - Full duplex, asynchronous communications
 - Supports programmable baud rate generator for each channel
 - Programmable transmitting data delay time between the last stop bit leaving the TX-FIFO and the de-assertion by setting SCnEGT register
 - Programmable even, odd or no parity bit generation and detection
 - Programmable stop bit, 1 or 2 stop bit generation

6.11 Serial Peripheral Interface (SPI)

6.11.1 Overview

The ML51/ML54/ML56 Series provides two Serial Peripheral Interface (SPI) block to support high-speed serial communication. SPI is a full-duplex, high-speed, synchronous communication bus between microcontrollers or other peripheral devices such as serial EEPROM, LCD driver, or D/A converter. It provides either Master or Slave mode, high-speed rate up to F_{SYS}/4, transfer complete and write collision flag. For a multi-master system, SPI supports Master Mode Fault to protect a multi-master conflict.

6.11.2 Features

- 2 sets of SPI devices
- Supports Master or Slave mode operation
- Supports MSB first or LSB first transfer sequence
- Slave mode up to 12 Mhz

6.12 Inter-Integrated Circuit (I²C)

6.12.1 Overview

The ML51/ML54/ML56 Series provides two Inter-Integrated Circuit (I^2C) bus to serves as an serial interface between the microcontrollers and the I^2C devices such as EEPROM, LCD module, temperature sensor, and so on. The I^2C bus used two wires design (a serial data line SDA and a serial clock line SCL) to transfer information between devices.

The I²C bus uses bi-directional data transfer between masters and slaves. There is no central master and the multi-master system is allowed by arbitration between simultaneously transmitting masters. The serial clock synchronization allows devices with different bit rates to communicate via one serial bus. The I²C bus supports four transfer modes including master transmitter, master receiver, slave receiver, and slave transmitter. The I²C interface only supports 7-bit addressing mode. A special mode General Call is also available. The I²C can meet both standard (up to 100kbps) and fast (up to 400k bps) speeds.

6.12.2 Features

- 2 sets of I²C devices
- Master/Slave mode
- Bidirectional data transfer between masters and slaves
- Multi-master bus (no central master)
- 7-bit addressing mode
- Standard mode (100 kbps) and Fast mode (400 kbps).
- ♦ Supports 8-bit time-out counter requesting the I²C interrupt if the I²C bus hangs up and timer-out counter overflows
- Multiple address recognition (four slave addresses with mask option)
- Supports hold time programmable

6.13 12-bit Analog-to-digital Converter (ADC)

6.13.1 Overview

The ML51/ML54/ML56 Series is embedded with a 12-bit SAR ADC. The ADC (analog-to-digital converter) allows conversion of an analog input signal to a 12-bit binary representation of that signal. The ML51/ML54/ML56 Series is selected as 8-channel inputs in single end mode. The internal bandgap voltage 0.814 V also can be the internal ADC input. The analog input, multiplexed into one sample and hold circuit, charges a sample and hold capacitor. The output of the sample and hold capacitor is the input into the converter. The converter then generates a digital result of this analog level via successive approximation and stores the result in the result registers. The ADC controller also supports DMA (direct memory access) function for ADC continuous conversion and storage result data into XRAM no need special enable PDMA module.

6.14 Voltage Reference (VREF)

The V_{REF} pin is for analog multiplexer, such as ADC, ACMP. It default be used as an external source(set ENVRF = 0). It also could be configurable as on-chip reference voltage generator (V_{REF_IN}) by setting ENVRF = 1. The output voltage is selectable by setting VRFSEL[2:0]. The maximum load of the V_{REF_IN} must be less than 200 uA to AVss. Set pre-load is to reduce stable time of V_{REF_IN} . At first enable V_{REF_IN} and turn on pre-load at the same time, the minimum stable time of pre-load on the V_{REF_IN} must be greater than 3 ms. After the V_{REF_IN} stable, user should be turn off pre-load to avoid any interference on analog multiplexer. Pre-load is only for internal V_{REF} use. For detailed electrical characteristics

6.15 Analog Comparator Controller (ACMP)

6.15.1 Overview

The ML51/ML54/ML56 Series contains two comparators. The comparator output is logic 1 when positive input is greater than negative input; otherwise, the output is 0. The comparator can be configured to generate an interrupt when the comparator output value changes.

6.15.2 Feature

- Analog input voltage range: 0 ~ AV_{DD}(voltage of AV_{DD} pin)
- Supports hysteresis function
- Supports wake-up function
- Selectable input sources of negative input
- Comparator ACMP0 supports
 - 4 positive source
 - P2.5 (ACMPn_P0)
 - P2.3 (ACMPn_P1)
 - P2.1 (ACMPn_P2)
 - P3.1 (ACMPn P3)
 - 4 negative sources
 - P2.4 (ACMP0_N0)
 - Comparator Reference Voltage (CRV)
 - VBG (BANDGAP voltage)
 - P2.0 (ACMP0_N1)
- Comparator ACMP1 supports
 - 4 positive source
 - P2.5 (ACMPn_P0)
 - P2.3 (ACMPn_P1)
 - P2.1 (ACMPn_P2)
 - P3.1 (ACMPn_P3)
 - 4 negative sources
 - P2.2 (ACMP1_N0)
 - Comparator Reference Voltage (CRV)
 - VBG (BANDGAP voltage)
 - P3.2 (ACMP1_N1)

6.16 PDMA Controller (PDMA)

6.16.1 Overview

The ML51/ML54/ML56 Series provides peripheral direct memory access (PDMA) controller. The PDMA controller is used to provide high-speed data transfer between memory and peripherals or between memory and memory. The PDMA controller can transfer data from one address to another without CPU intervention. This has the benefit of reducing the workload of CPU and keeps CPU resources free for other applications.

6.16.2 Feature

- Supports transfer data width of 8 bits
- Supports software and SPI and SMC/UART request
- ♦ Supports source and destination address increment size can be byte
- Supports transfer done and half done interrupt
- ◆ Supports using PDMA to write data to perform CRC operation

6.17 LCD Driver

6.17.1 Overview

The Liquid Crystal Displays (LCD) panel is widely used to meet the display need in applications. The ML54/ML56 series is equipped with LCD driver that can directly drive the LCD panel with 4 COM x 32 SEG , 6 COM x 30 SEG or 8 COM x 28 SEG. Use the corresponding COM and SEM according to the definition of multiple function pin. The LCD driver supports 1/4 duty, 1/6 duty, or 1/8 duty. The driving voltage supports 1/2 bias, 1/3 bias or 1/4 bias with waveform type A or Type B. The source of LCD clock is based on the choice of LIRC or LXT. The LCD display can keep display on or off during chip in power-down mode. The LCD power supply VLCD source is selectable from internal charge pump, external VLCD pin or analog power AVDD.

6.17.2 Features

- 1.8V to 5.5V LCD operating voltage.
- Selectable LCD clock source from LIRC or LXT
- 1/2, 1/3, 1/4 bias selectable
- Maximum 4 COM x 32 SEG, 6 COM x 30 SEG, 8 COM x 28 SEG
- Supports buffer mode for high current driving
- Support enhaced resistor mode for low power application
- Support external VLCD source or AV_{DD} as LCD voltage source.
- Support programmable internal charge pump circuit for LCD voltage level is higher or lower than V_{DD} application.
- Support blink function.
- Suppot display on or off during chip in power down mode

6.18 Real Time Clock (RTC)

6.18.1 Overview

The Real Time Clock (RTC) controller provides the real time and calendar message. The RTC offers programmable time tick and alarm match interrupts. The data format of time and calendar messages are expressed in BCD format. A digital frequency compensation feature is available to compensate external crystal oscillator frequency accuracy.

6.18.2 Features

- Supports real time counter and calendar counter for RTC time and calendar check.
- Supports alarm time and calendar settings
- Supports alarm time and calendar mask enable settings.
- Selectable 12-hour or 24-hour time scale setting.
- Supports Leap Year indication setting.
- Supports Day of the Week counter setting.
- Frequency of RTC clock source compensate by RTCFREQADJ0/1 register.
- All time and calendar message expressed in BCD format.
- Supports periodic RTC Time Tick interrupt with 8 period interval options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1 second.
- Supports RTC Time Tick and Alarm Match interrupt.
- Supports chip wake-up from Idle or Power-down mode while a RTC interrupt signal is generated.

6.19 Touch Key (TK)

6.19.1 Overview

The capacitive touch key sensing controller supports several programmable sensitivity levels for different applications to detect the finger touched or near the electrode covered by dielectric. It supports total 15 keys with single scan or programmable periodic key scans, and system can be waked up by any key for low power applications.

6.19.2 Features

- Supports up to 14 touch keys + 1 reference
- Supports any CLKO pin as shielding and any TK pin as reference.
- Programmable sensitivity levels for each channel.
- Programmable scanning speed for different applications.
- Supports any touch key wake up for low power applications.
- Supports single key scan and programmable periodic key scan.
- Programmable interrupt options for key scan complete with/without threshold control.

6.20 Instruction Set

The ML51/ML54/ML56 Series executes all the instructions of the standard 80C51 family fully compatible with MCS-51. However, the timing of each instruction is different for it uses high performance 1T 8051 core. The architecture eliminates redundant bus states and implements parallel execution of fetching, decode, and execution phases. The ML51/ML54/ML56 Series uses one clock per machine-cycle. It leads to performance improvement of rate 8.1 (in terms of MIPS) with respect to traditional 12T 80C51 device working at the same clock frequency. However, the real speed improvement seen in any system will depend on the instruction mix.

All instructions are coded within an 8-bit field called an OPCODE. This single byte should be fetched from Program Memory. The OPCODE is decoded by the CPU. It determines what action the CPU will take and whether more operation data is needed from memory. If no other data is needed, then only one byte was required. Thus the instruction is called a one byte instruction. In some cases, more data is needed, which is two or three byte instructions.

7 APPLICATION CIRCUIT

7.1 Power Supply Scheme

Figure 7.1-1 NuMicro® ML51/ML54/ML56 Series Power supply circuit

7.2 Peripheral Application Scheme

Note

- 1: It is recommended to use 100 k Ω pull-up resistor on both ICE_DAT and ICE_CLK pin.
- 2: It is recommended to use 10 k Ω pull-up resistor and 10 uF capacitor on nRESET pin.
- 3: It is suggest add 100ohm series resistor between ICE_DAT/ICE_CLK and writer pin to filter the disturb of noise on the circuit.

Figure 7.2-1 NuMicro® ML51/ML54/ML56 Series Peripheral interface circuit

8 ELECTRICAL CHARACTERISTICS

Please refer to the relative Datasheet for detailed information about the ML51/ML54/ML56 series electrical characteristics.

8.1 General Operating Conditions

 $(V_{DD}-V_{SS}=1.8\sim5.5V,\,T_A=25^{\circ}C,\,Fsys=24\,MHz$ unless otherwise specified.)

8.1.1 ML51 32KB/16KB Flash Series

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
T _A	Temperature	-40	-	105	°C	
V_{DD}	Operation voltage	1.8	-	5.5	V	
AV _{DD} ^[1]	Analog operation voltage	V_{DD}			V	

Note:

- 1. It is recommended to power V_{DD} and AV_{DD} from the same source. A maximum difference of 0.3V between V_{DD} and AV_{DD} can be tolerated during power-on and power-off operation.
 - 2. Based on characterization, tested in production.

Table 8.1-1 ML51 32KB/16KB Flash Series General Operating Conditions

8.1.2 ML51 64KB Flash/ML54/ML56 Series

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
T _A	Temperature	-40	-	105	°C	
V_{DD}	Operation voltage	1.8	-	3.6	V	
AV _{DD} ^[1]	Analog operation voltage	V _{DD}			V	

- 1.It is recommended to power V_{DD} and AV_{DD} from the same source. A maximum difference of 0.3V between V_{DD} and AV_{DD} can be tolerated during power-on and power-off operation .
- 2. Based on characterization, tested in production.

Table 8.1-2 ML56/ML54/ML51 64KB Flash Series General Operating Conditions

8.2 DC Electrical Characteristics

8.2.1 Supply Current Characteristics

The current consumption is a combination of internal and external parameters and factors such as operating frequencies, device software configuration, I/O pin loading, I/O pin switching rate, program location in memory and so on. The current consumption is measured as described in below condition and table to inform test characterization result.

8.2.1.1 ML51 32KB/16KB Flash Series

- All GPIO pins are in push pull mode and output high.
- The maximum values are obtained for $V_{DD} = 1.8V \sim 5.5 V$ and maximum ambient temperature (T_A), and the typical values for $T_A = 25 \, ^{\circ}\text{C}$ and $V_{DD} = 3.3 \, V$ unless otherwise specified.
- $V_{DD} = AV_{DD}$
- When the peripherals clock base is the system clock Fsys.
- Program run "while (1);" in flash.

Normal Run Mode

Symbol	mbol Conditions	_	Typ ^[6]		Max ^{[6][7]}		Unit
Symbol		Fsys	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
		24 MHz (HIRC) ^[1]	2.40	2.64	2.87	2.90	
		24 MHz (HXT) ^{[2][5]}	2.52	2.97	3.10	3.16	
	Normal run mode, executed	12 MHz (HXT) ^{[2][5]}	1.56	2.04	2.13	2.20	
	from Flash, all peripherals disable	4 MHz (HXT) ^{[2][5]}	0.91	1.33	1.39	1.43	
		38.4 kHz (LIRC) ^[3]	0.22	0.29	0.32	0.35	
I _{DD_RUN}		32.768 kHz (LXT) ^[4]	0.24	0.30	0.32	0.35	mA
IDD_RUN		24 MHz (HIRC) ^[1]	3.50	3.78	3.86	3.89	IIIA
		24 MHz (HXT) ^{[2][5]}	3.62	4.11	4.24	4.31	
	Normal run mode, executed from Flash, all peripherals	12 MHz (HXT) ^{[2][5]}	2.26	2.74	2.83	2.92	
	rrom Flash, all peripherals enable	4 MHz (HXT) ^{[2][5]}	1.30	1.74	1.81	1.83	
		38.4 kHz (LIRC) ^[3]	0.37	0.57	0.59	0.61	
Notes:		32.768 kHz (LXT) ^[4]	0.40	0.58	0.60	0.62	

- 1. This value base on HIRC enable, HXT disable, LIRC enable, LXT enable
- 2. This value base on HIRC disable, HXT enable, LIRC enable, LXT disable
- 3. This value base on HIRC disable, HXT disable, LIRC enable, LXT disable
- 4. This value base on HIRC disable, HXT disable, LIRC enable, LXT enable

0	Combal Conditions	Fa	Typ ^[6]	Max ^{[6][7]}		1114	
Symbol	Conditions	Fsys	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit

- 5. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values
- 6. $AV_{DD} = V_{DD} = 3.3V$, LVR17 enabled, POR enable and BOD enable.
- 7. Based on characterization, not tested in production unless otherwise specified.

Table 8.2-1 ML51 32KB / 16KB Series Current Consumption In Normal Run Mode

Low Power Run Mode

Symbol	Conditions		Typ ^[3]		Max ^{[3][4]}		
		Fsys	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
I _{DD_LPRUN}	Low power run mode, executed from Flash, all peripherals disable	38.4 kHz (LIRC) ^[1]	15	21	42	66	
		32.768 kHz (LXT) ^[2]	19	23	44	67	4
	Low power run mode, executed from Flash, all peripherals enable	38.4 kHz (LIRC) ^[1]	193	307	320	344	μΑ
		32.768 kHz (LXT) ^[2]	194	308	321	345	

Notes:

- 1. This value base on HIRC disable, HXT disable, LIRC enable, LXT disable
- 2. This value base on HIRC disable, HXT disable, LIRC enable, LXT enable
- 3. Based on characterization, not tested in production unless otherwise specified.
- 4. $AV_{DD} = V_{DD} = 3.3V$, LVR17 enabled, POR enable and BOD disable.

Table 8.2-2 ML51 32KB/16KB Flash Series Current Consumption In Low Power Run Mode

Idle Mode

0	Conditions	P	Typ ^[6]		Max ^{[6][7]}		Unit
Symbol	Conditions	Fsys	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
		24 MHz (HIRC) ^[1]	1.43	1.58	1.62	1.64	
		24 MHz (HXT) ^{[2][5]}	1.52	1.91	2.00	2.05	
	Idle mode, all peripherals disable	12 MHz (HXT) ^{[2][5]}	1.07	1.44	1.50	1.56	
1		4 MHz (HXT) ^{[2][5]}	0.76	1.10	1.15	1.19	mA
I _{DD_IDLE}		38.4 kHz (LIRC) ^[3]	0.20	0.30	0.32	0.35	IIIA
		32.768 kHz (LXT) ^[4]	0.22	0.32	0.34	0.36	
	Idle mode, all peripherals enable	24 MHz (HIRC) ^[1]	2.46	2.72	2.78	2.80	
		24 MHz (HXT) ^{[2][5]}	2.55	3.04	3.15	3.19	

Symbol	Con distance	P	Typ ^[6]	Max ^{[6][7]}			1114
Symbol	Conditions	Fsys	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
		12 MHz (HXT) ^{[2][5]}	1.67	2.14	2.22	2.26	
		4 MHz (HXT) ^{[2][5]}	1.08	1.51	1.57	1.60	
		38.4 kHz (LIRC) ^[3]	0.37	0.57	0.60	0.61	
		32.768 kHz (LXT) ^[4]	0.38	0.59	0.61	0.62	

Notes:

- 1. This value base on HIRC enable, HXT disable, LIRC enable, LXT enable
- 2. This value base on HIRC disable, HXT enable, LIRC enable, LXT disable
- 3. This value base on HIRC disable, HXT disable, LIRC enable, LXT disable
- 4. This value base on HIRC disable, HXT disable, LIRC enable, LXT enable
- 5. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values
- 6. Based on characterization, not tested in production unless otherwise specified.
- 7. $AV_{DD} = V_{DD} = 3.3V$, LVR17 enabled, POR enable and BOD enable.

Table 8.2-3 ML51 32KB/16KB Flash Series Current Consumption In Idle Mode

Low Power Idle Mode

0	Conditions	F	Typ ^[3]		Max ^{[3][4]}		
Symbol		Fsys	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
I _{DD_LPIDLE}	Low power idle mode, executed from Flash, all peripherals disable	38.4 kHz (LIRC) ^[1]	13	19	40	63	
		32.768 kHz (LXT) ^[2]	15	20	41	65	
	Low power idle mode, executed from Flash, all peripherals enable	38.4 kHz (LIRC) ^[1]	173	304	317	341	μΑ
		32.768 kHz (LXT) ^[2]	174	306	319	342	

- 1. This value base on HIRC disable, HXT disable, LIRC enable, LXT disable
- 2. This value base on HIRC disable, HXT disable, LIRC enable, LXT enable
- 3. Based on characterization, not tested in production unless otherwise specified.
- 4. $AV_{DD} = V_{DD} = 3.3V$, LVR17 enabled, POR enable and BOD enable.

Table 8.2-4 ML51 32KB/16KB Flash Series Current Consumption In Low Power Idle Mode

Power Down Mode

0	Tool Oou Milana	Typ ^[1]		Max ^{[2][3]}		11-24
Symbol	Test Conditions	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
	Power down mode, all peripherals disable@3.3V	0.8	1.6 ^[4]	18	34	
	Power down mode, all peripherals disable@5.5V	1.6	2.5	25	50	
	Power down mode, LVR enable all other peripherals disable	1.4	3.2	19	36	
I _{DD_PD}	Power down mode, LVR enable BOD enable all other peripherals disable	60	80	70	100	μΑ
	Power down mode, WDT / WKT enable all use LIRC, BOD disable	2.87	5.2	21	37	
	Power down mode, WDT use LIRC, WKT use LXT, BOD disable	2.42	4.2	20	38	

- 1. $AV_{DD} = V_{DD} = 3.3V$ unless otherwise specified, LVR17 enabled, POR disabled and BOD disabled.
- 2. Based on characterization, not tested in production unless otherwise specified.
- When analog peripheral blocks such as ADC and ACMP are ON, an additional power consumption should be considered.
- 4. Based on characterization, tested in production.

Table 8.2-5 ML51 32KB/16KB Flash Series Chip Current Consumption in Power down mode

8.2.1.2 ML51 64KB Flash/ML54/ML56 Series

- All GPIO pins are in push pull mode and output high.
- The maximum values are obtained for $V_{DD} = 1.8V \sim 3.6 V$ and maximum ambient temperature (T_A), and the typical values for $T_A = 25$ °C and $V_{DD} = 3.3 V$ unless otherwise specified.
- $V_{DD} = AV_{DD}$
- When the peripherals clock base is the system clock Fsys.
- Program run "while (1);" in flash.

Normal Run Mode

		_	Typ [6]		Max ^{[6][7]}		I locit
Symbol	Conditions	Fsys	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
		24 MHz (HIRC) ^[1]	2.86	3.67	3.92	4.15	
		12 MHz (HIRC) ^[1]	1.98	2.37	2.6	2.89	
		1 MHz (HIRC) ^[1]	0.91	1.14	1.2	1.32	
	Normal run mode, executed from Flash, all peripherals	24 MHz (HXT) ^{[2][5]}	2.94	3.76	4.02	4.23	
	disable	12 MHz (HXT) ^{[2][5]}	2.08	2.47	2.7	2.98	
		1 MHz (HXT) ^{[2][5]}	0.96	1.2	1.3	1.48	
		38.4 kHz (LIRC) ^[3]	0.23	0.32	0.34	0.39	
.		32.768 kHz (LXT) ^[4]	0.25	0.35	0.37	0.42	mA
I _{DD_RUN}		24 MHz (HIRC) ^[1]	4.50	4.78	4.86	4.89	IIIA
		12 MHz (HIRC) ^[1]	2.8	3.4	3.6	3.98	
		1 MHz (HIRC) ^[1]	1.17	1.45	1.6	1.75	
	Normal run mode, executed from Flash, all peripherals	24 MHz (HXT) ^{[2][5]}	4.9	5.21	5.46	5.89	
	enable	12 MHz (HXT) ^{[2][5]}	2.67	3.12	3.33	3.69	
		1 MHz (HXT) ^{[2][5]}	1.21	1.49	1.75	1.83	
		38.4 kHz (LIRC) ^[3]	0.41	0.61	0.67	0.72	
		32.768 kHz (LXT) ^[4]	0.42	0.62	0.69	0.73	

^{1.} This value base on HIRC enable, HXT disable, LIRC enable, LXT enable

0	O and Hillians	Fove	Typ ^[6]	Max ^{[6][7]}			11-16
Symbol	Conditions	Fsys	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit

- 2. This value base on HIRC disable, HXT enable, LIRC enable, LXT disable
- 3. This value base on HIRC disable, HXT disable, LIRC enable, LXT disable
- 4. This value base on HIRC disable, HXT disable, LIRC enable, LXT enable
- 5. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values
- 6. $AV_{DD} = V_{DD} = 3.3V$, LVR17 enabled, POR enable and BOD enable.
- 7. Based on characterization, not tested in production unless otherwise specified.

Table 8.2-6 ML56/ML54/ML51 64KB Flash Series Current Consumption In Normal Run Mode

Low Power Run Mode

	Conditions	_	Typ ^[3]			11-14	
Symbol		Fsys	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
	Low power run mode, executed from Flash, all peripherals disable	38.4 kHz (LIRC) ^[1]	19	29	52	83	
		32.768 kHz (LXT) ^[2]	21	32	55	85	4
	Low power run mode, executed from Flash, all peripherals enable	38.4 kHz (LIRC) ^[1]	223	314	327	351	μΑ
		32.768 kHz (LXT) ^[2]	230	326	339	362	

Notes:

- 1. This value base on HIRC disable, HXT disable, LIRC enable, LXT disable
- 2. This value base on HIRC disable, HXT disable, LIRC enable, LXT enable
- 3. Based on characterization, not tested in production unless otherwise specified.
- 4. AVDD = VDD = 3.3V, LVR17 enabled, POR enable and BOD disable.

Table 8.2-7 ML56/ML54/ML51 64KB Flash Series Current Consumption In Low Power Run Mode

Idle Mode

0	Conditions	Faur	Typ ^[6]		Max ^{[6][7]}		Unit
Symbol		Fsys	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	
		24 MHz (HIRC) ^[1]	1.8	2.25	2.43	2.46	
	24 MHz (HXT) ^{[2][5]}	1.74	1.91	2.00	2.05		
.	Idle mode, all peripherals disable	12 MHz (HXT) ^{[2][5]}	1.07	1.44	1.50	1.56	mA
I _{DD_IDLE}		4 MHz (HXT) ^{[2][5]}	0.97	1.10	1.15	1.19	IIIA
		38.4 kHz (LIRC) ^[3]	0.20	0.30	0.32	0.35	
		32.768 kHz (LXT) ^[4]	0.22	0.32	0.34	0.36	

Ohl	Conditions	F	Typ [6]		Max ^{[6][7]}		Unit
Symbol	Conditions	Fsys	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	
	Idle mode, all peripherals enable	24 MHz (HIRC) ^[1]	2.46	2.72	2.78	2.80	
		24 MHz (HXT) ^{[2][5]}	2.55	3.04	3.15	3.19	
		12 MHz (HXT) ^{[2][5]}	1.67	2.14	2.22	2.26	
		4 MHz (HXT) ^{[2][5]}	1.08	1.51	1.57	1.60	
		38.4 kHz (LIRC) ^[3]	0.37	0.57	0.60	0.61	
		32.768 kHz (LXT) ^[4]	0.38	0.59	0.61	0.62	

Notes:

- 1. This value base on HIRC enable, HXT disable, LIRC enable, LXT enable
- 2. This value base on HIRC disable, HXT enable, LIRC enable, LXT disable
- 3. This value base on HIRC disable, HXT disable, LIRC enable, LXT disable
- 4. This value base on HIRC disable, HXT disable, LIRC enable, LXT enable
- 5. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values
- 6. Based on characterization, not tested in production unless otherwise specified.
- 7. AVDD = VDD = 3.3V, LVR17 enabled, POR enable and BOD enable.

Table 8.2-8 ML56/ML54/ML51 64KB Flash Series Current Consumption In Idle Mode

Low Power Idle Mode

0	Conditions	F	Typ [3]	Max ^{[3][4]}			l luit
Symbol		Fsys	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
I _{DD_LPIDLE}	Low power idle mode, executed from Flash, all peripherals disable	38.4 kHz (LIRC) ^[1]	17	27	50	81	
		32.768 kHz (LXT) ^[2]	22	32	55	87	
	Low power idle mode, executed from Flash, all peripherals enable	38.4 kHz (LIRC) ^[1]	213	302	317	340	μΑ
		32.768 kHz (LXT) ^[2]	220	312	320	342	

Notes:

- 5. This value base on HIRC disable, HXT disable, LIRC enable, LXT disable
- 6. This value base on HIRC disable, HXT disable, LIRC enable, LXT enable
- 7. Based on characterization, not tested in production unless otherwise specified.
- 8. $AV_{DD} = V_{DD} = 3.3V$, LVR17 enabled, POR enable and BOD enable.

Table 8.2-9 ML56/ML54/ML51 64KB Flash Series Current consumption in Low Power Idle mode

Power Down Mode

Symbol	Test Conditions	Typ ^[1]	Max ^{[2][3]}			Unit
Symbol	rest Conditions	TA = 25 °C	TA = 25 °C	TA = 85 °C	TA = 105 °C	
I_{DD_PD}	Power down mode, all peripherals disable@3.3V	1.2	1.6 ^[4]	20	37	
	Power down mode, all peripherals disable@5.5V	1.7	2.6	27	47	μA

Cumbal	Test Conditions	Typ ^[1]		Max ^{[2][3]}		Unit
Symbol	rest Conditions	TA = 25 °C	TA = 25 °C	TA = 85 °C	TA = 105 °C	Unit
	Power down mode, LVR enable all other peripherals disable	1.7	3.2	25	42	
	Power down mode, LVR enable, Low power BOD enable all other peripherals disable	4.8	10	52	69	
	Power down mode, LVR enable BOD enable all other peripherals disable		82	98	110	
	Power down mode, WDT / WKT enable all use LIRC, BOD disable		6.4	44	52	
	Power down mode, WDT use LIRC, WKT use LXT, BOD disable	3.5	7.2	48	68	
	Power-down mode, RTC use LIRC, BOD disable, HIRC off / HXT off / LIRC on / LXT off	2.9	5.9	32	49	
	Power-down mode, RTC/TK use LIRC, BOD disable, HIRC off / HXT off / LIRC on / LXT off	3.4	6.8	42	56	
	Power-down mode, RTC use LXT, BOD disable, HIRC off / HXT off / LIRC off / LXT on	3.9	7.3	48	77	

- 1. AVDD = VDD = 3.3V unless otherwise specified, LVR17 enabled, POR disabled and BOD disabled.
- 2. Based on characterization, not tested in production unless otherwise specified.
- 3. When analog peripheral blocks such as ADC and ACMP are ON, an additional power consumption should be considered.
- 4. Based on characterization, tested in production.

Table 8.2-10 ML56/ML54/ML51 64KB Flash Series Chip Current Consumption In Power Down Mode

8.2.2 On-Chip Peripheral Current Consumption

- The typical values for T_A = 25 °C and V_{DD} = AV_{DD} = 3.3 V unless otherwise specified.
- All GPIO pins are set as output high of push pull mode without multi-function.
- The system clock = 24 MHz.
- The result value is calculated by measuring the difference of current consumption between all peripherals clocked off and only one peripheral clocked on

Peripheral	I _{DD Base}	I _{DD} ^[1]	Unit					
ADC ^[2]	309.2							
ACMP0 ^[3]	1.0							
ACMP1 ^[3]	1.1							
PWM0	152.3							
SPI0		40.2						
SPI1	•	44.2						
UART0	98.8	1						
UART1	90.0	1						
I2C0	440.7	1						
I2C1	118.7	118.7						
SC0		67.8						
PIN Interrupt		0.2						
TIMER 0		4.1						
TIMER 1		3.9						
TIMER 2	145	4.4	μA					
TIMER 3		10						
INT0		0.3						
INT1		0.3						
WDT		0.4						
WKT		0.7						
PDMA0		0.5						
PDMA1	13.4	0.5						
PDMA2	13.4	0.5						
PDMA3		0.5						
CAPTURE0		0.5						
CAPTURE1	145	0.3						
CAPTURE2	0.5							
RTC		1						
LCD		23						

Peripheral I _{DD Base}		I _{DD Base}	I _{DD} ^[1]	Unit		
Notes:						
Guaranteed by characterization results, not tested in production.						
2.	2. When the ADC is turned on, add an additional power consumption per ADC for the analog part.					
3.	When the ACMP is turned on, add an additional power consumption per ACMP for the analog part.					

Table 8.2-11 Peripheral Current Consumption

8.2.3 Wakeup Time from Low-Power Modes

The wakeup times given in Table 8.2-12 Low-Power Mode Wakeup Timings is measured on a wakeup phase with a 24 MHz HIRC oscillator.

Symbol		Parameter	Тур	Max	Unit
t _{WU_IDLE}	Wakeup from IDLE mo	ode	5	6	cycles
		Fsys = HIRC @5.5V	7	20	μs
		Fsys = HIRC @3.6V	10	20	μs
	Wakeup from Power down mode	Fsys = HIRC @1.8V	13	20	μs
+ [1][2]		Fsys = HXT@24MHz @5.5V ^[3]	370	-	μs
t _{WU_NPD} ^{[1][2]}		Fsys = HXT@24MHz @3.6V ^[3]	440	-	
		Fsys = HXT@24MHz @1.8V ^[3]	600	-	μs
		Fsys = LIRC	938	1500	μs
		Fsys = LXT@32.768KHz ^[4]	860	-	μs

- 1. Based on test during characterization, not tested in production.
- 2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first
- 3. Value variable based on extnerl Crystal stable time.
- 4 Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values, LXT not disabled when ML51/ML54/ML56 Series into Power down mode.

Table 8.2-12 Low-Power Mode Wakeup Timings

8.2.4 I/O DC Characteristics

8.2.4.1 GPIO Input Characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input low voltage	0	-	0.3*V _{DD}	V	
V _{IL1}	Input low voltage (I/O with TTL input)	V _{SS} -0.3	-	0.2V _{DD} -0.1	٧	
V _{IH}	Input high voltage	0.2V _{DD} +0.9	-	V _{DD} +0.3	V	
V _{IH1}	Input high voltage (I/O with Schmitt trigger input and Xin)	0.7*V _{DD}	-	V_{DD}	V	
V _{HY} ^[1]	Hysteresis voltage of schmitt input	-	0.2*V _{DD}	-	٧	
I _{LK} ^[2]	Input lookogo gurrent	-1		1	^	V _{SS} < V _{IN} < V _{DD} , Open-drain or input only mode
ILK,-,	Input leakage current	-1		1	μА	$V_{DD} < V_{IN} < 5.5 \text{ V},$ Open-drain or input only mode
		40	-	60	kΩ	V _{DD} = 5.5 V, Quasi mode and Input mode with pull up enable
R _{PU} ^{[1] [3]}	Pull up resistor	40	-	60	K12	V _{DD} = 3.3 V, Quasi mode and Input mode with pull up enable
		40	-	70		V _{DD} = 1.8 V, Quasi mode and Input mode pull up enable
		40	-	60	kΩ	V _{DD} = 5.5 V, Quasi mode and Input mode with pull up enable
R _{PD} ^{[1] [3]}	Pull down resistor	40	-	60		$V_{\text{DD}} = 3.3 \text{ V}$, Quasi mode and Input mode with pull up enable
		40	-	70		V _{DD} = 1.8 V, Quasi mode and Input mode pull up enable

- 1. Guaranteed by characterization result, not tested in production.
- 2. Leakage could be higher than the maximum value, if abnormal injection happens.
- To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up resistors must be disabled. Leakage could be higher than
 the maximum value, if positive current is injected on adjacent pins
- 4. Test condition of V_{DD} is base on the maximum value of V_{DD}

Table 8.2-13 GPIO input characteristics

8.2.4.2 GPIO Output Characteristics

The minimum and maximum values are obtained for V_{DD} = 1.8V ~ 5V for ML56/ML54/ML51 64KB Flash series and V_{DD} = 1.8V ~ 5.5 V for ML51 32KB/16KB Flash series MLand temperature condition is T_{A} = 25 °C unless otherwise specified.

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
		-7.4	-	-7.5	μA	$V_{DD} = 5.5 \text{ V}$ $V_{IN} = (V_{DD} - 0.4) \text{ V}$
	Source current for quasi- bidirectional mode and high	-7.3	-	-7.5	μА	$V_{DD} = 3.3 \text{ V}$ $V_{IN} = (V_{DD} - 0.4) \text{ V}$
	level	-7.3	-	-7.5	μΑ	$V_{DD} = 2.4 \text{ V}$ $V_{IN} = (V_{DD} - 0.4) \text{ V}$
I _{SR} ^{[1] [2]}		-57.2	-	-58.3	μΑ	$V_{DD} = 5.5 \text{ V}$ $V_{IN} = 2.4 \text{ V}$
ISR		-9	-	-9.6	mA	$V_{DD} = 5.5 \text{ V}$ $V_{IN} = (V_{DD} - 0.4) \text{ V}$
	Source current for push-pull	-6	-	-6.6	mA	$V_{DD} = 3.3 \text{ V}$ $V_{IN} = (V_{DD} - 0.4) \text{ V}$
	mode and high level	-4.2	-	-4.9	mA	$V_{DD} = 2.7 \text{ V}$ $V_{IN} = (V_{DD} - 0.4) \text{ V}$
		-18	-	-20	mA	V _{DD} = 5.5 V V _{IN} = 2.4 V
	Sink current for push-pull mode and low level	18	-	20	mA	V _{DD} = 5.5 V V _{IN} = 0.4 V
I _{SK} ^{[1] [2]}		16	-	18	mA	V _{DD} = 3.3 V V _{IN} = 0.4 V
		9.7	-	12.5	mA	V _{DD} = 2.4 V V _{IN} = 0.4 V
	Output high level voltage for quasi-bidirectional mode	V _{DD} -0.4	-	V_{DD}	V	I _{SR} = -7.3 uA
					V	$V_{DD} \ge 4.5 \text{ V}$ $I_{SR} = -20 \text{ mA}$
		V _{DD} -1.2	-	V_{DD}	V	$V_{DD} \ge 3.3 \text{ V}$ $I_{SR} = -13 \text{ mA}$
V _{OH} ^[1]	Output high level voltage for				V	$V_{DD} \ge 2.7 \text{ V}$ $I_{SR} = -9 \text{ mA}$
	push-pull mode				V	$V_{DD} \ge 4.5 \text{ V}$ $I_{SR} = -9 \text{ mA}$
		V _{DD} -0.4	-	V_{DD}	V	$V_{DD} \ge 3.3 \text{ V}$ $I_{SR} = -6 \text{ mA}$
					V	$V_{DD} \ge 2.7 \text{ V}$ $I_{SR} = -4.2 \text{ mA}$

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
		V _{SS}	-	1.2	V	V _{DD} ≥ 2.7 V I _{SR} = 20 mA (Max.)
V [1]	Output low level voltage for	V _{ss}	-	0.4	V	V _{DD} ≥ 5.5 V I _{SR} = 18 mA
V _{OL} ^[1]	push-pull mode				V	V _{DD} ≥ 3.3 V I _{SR} = 16 mA
					V	V _{DD} ≥ 2.4 V I _{SR} = 9.7 mA
C _{IO} ^[1]	I/O pin capacitance	-	5	-	pF	

- 1. Guaranteed by characterization result, not tested in production.
- 2. The I_{SR} and I_{SK} must always respect the abslute maximum current and the sum of I/O, CPU and peripheral must not exceed ΣI_{DD} and ΣI_{SS} .

Table 8.2-14 GPIO output characteristics

8.2.4.3 nRESET Pin Input Characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V_{ILR}	Negative going threshold, nRESET	-	-	0.3*V _{DD}	V	
V_{IHR}	Positive going threshold, nRESET	0.7*V _{DD}	-	-	V	
		45	-	60		V _{DD} = 5.5 V
R _{RST} ^[1]	Internal nRESET pull up resistor				ΚΩ	V _{DD} = 3.6 V
		50	-	65		V _{DD} = 1.8 V
4 [1]	-DECET insulance and a fine	- 1.5 -		Normal run and Idle mode		
t _{FR} ^[1]	nRESET input response time	10	=	25	μs	Power-down mode

- 1. Guaranteed by characterization result, not tested in production.
- 2. It is recommended to add a 10 k Ω and 10uF capacitor at nRESET pin to keep reset signal stable.

Table 8.2-15 nRESET Pin Input Characteristics

8.3 AC Electrical Characteristics

The maximum values are obtained for V_{DD} = 1.8 V ~ 5.5 V and maximum ambient temperature (T_A), and the typical values for T_A = 25 °C and V_{DD} = 3.3 V unless otherwise specified. V_{DD} = AV_{DD} .

8.3.1 24 MHz Internal High Speed RC Oscillator (HIRC)

The 24 MHz RC oscillator is calibrated in production.

Symbol.	Parameter	Min	Тур	Max	Unit	Test Conditions
V_{DD}	Operating voltage	1.8	-	5.5	٧	
	Oscillator frequnecy	23.76	24	24.24	MHz	$T_A = 25$ °C, $V_{DD} = 5V$
		-1 ^[1]	-	1 ^[1]	%	T _A = 25 °C, V _{DD} = 3.3V
F _{HRC}	Frequency drift over temperarure and volatge	-2 ^[2]	-	2 ^[2]		T _A = -20°C ~ +105 °C, V _{DD} = 1.8 ~ 5.5V
		-5 ^[2]		5 ^[2]	%	$T_A = -40^{\circ}C \sim -20^{\circ}C,$ $V_{DD} = 1.8 \sim 5.5V$
I _{HRC^[2]}	Operating current	-	490	550	μΑ	
Ts ^[3]	Stable time	-	3	5	μs	$T_A = -40^{\circ}\text{C} \sim +105^{\circ}\text{C},$ $V_{DD} = 1.8 \sim 5.5\text{V}$

- Based on characterization, tested in production.
- Guaranteed by characterization result, not tested in production.
- Guaranteed by design.

Table 8.3-1 24 MHz Internal High Speed RC Oscillator(HIRC) Characteristic

8.3.2 38.4 kHz Internal Low Speed RC Oscillator (LIRC)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V_{DD}	Operating voltage	1.8	-	5.5	V	
	Oscillator frequnecy	-	38.4	-	kHz	
F _{LRC}	Francisco deift over temperature	-2 ^[1]	-	2 ^[1]	%	T _A = 25 °C, V _{DD} = 5V
	Frequency drift over temperarure and volatge	-10 ^[2]	-	10 ^[2]	%	T _A =-40~105°C V _{DD} =1.8V~5.5V Without software calibration
I _{LRC} ^[2]	Operating current	-	0.85	1	μA	$V_{DD} = 3.3V$
Ts	Stable time	-	500	-	μs	T _A =-40~105°C V _{DD} =1.8V~5.5V

- 1. Guaranteed by characterization, tested in production.
- 2. Guaranteed by characterization, not tested in production.
- 3. The 38.4 kHz low speed RC oscillator can be calibrated by user.
- 4. Guaranteed by design.

Table 8.3-2 38.4 kHz Internal Low Speed RC Oscillator(LIRC) Characteristics

8.3.3 External 4~24 MHz High Speed Crystal/Ceramic Resonator (HXT) characteristics

The high-speed external (HXT) clock can be supplied with a 4 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this secion are based on characterization results obtained with typical external components. In the application, the external components have to be placed as close as possible to the XT1_IN and XT1_Out pins and must not be connected to any other devices in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Min ^[1]	Тур	Max ^[1]	Unit	Test Conditions ^[2]
V_{DD}	Operating voltage	1.8	-	5.5	V	
R_{f}	Internal feedback resister	-	500	-	kΩ	
f _{HXT}	Oscillator frequency	4	-	24	MHz	
		-	80	180		4 MHz, Gain = L0
		-	110	300		8 MHz, Gain = L1
I_{HXT}	Current consumption	-	180	500	μΑ	12 MHz, Gain = L2
		-	230	650		16 Mhz, Gain = L3
		-	360	975		24 MHz, Gain = L4
		-	3500	-		4 MHz, Gain = L0
		-	950	-	μs	8 MHz, Gain = L1
Ts	Stable time [3]	-	700	-		12 MHz, Gain = L2
		-	450	-		16 Mhz, Gain = L3
		-	400	-		24 MHz, Gain = L4
Du _{HXT}	Duty cycle	40	-	60	%	

Notes:

- 1. Guaranteed by characterization, not tested in production.
- 2. L0 ~ L4 defined by SFR XLTCON[6:4] HXSG
- 3. Value variable based on extnerl Crystal stable time.

Table 8.3-3 External 4~24 MHz High Speed Crystal (HXT) Oscillator

Typical Crystal Application Circuits

For C1 and C2, it is recommended to use high-quality external ceramic capacitors in 10 pF ~ 25 pF range, designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. The crystal manufacturer typically specifies a load capacitance which is the series combination of C1 and C2. PCB and MCU pin capacitance must be included (8 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C1 and C2.

CRYSTAL	C1	C2	R1
4 MHz ~ 24 MHz	10 ~ 25 pF	10 ~ 25 pF	without

Table 8.3-4 Typical Crystal Application

8.3.4 External 4~24 MHz High Speed Clock Input Signal Characteristics

For clock input mode the HXT oscillator is switched off and XT1_IN is a standard input pin to receive external clock. The external clock signal has to respect the below Table. The characteristics result from tests performed using a wavefrom generator.

Symbol	Parameter	Min ^[1]	Тур	Max [1]	Unit	Test Conditions
f _{HXT_ext} External user clock source frequency tchcx Clock high time		4	-	24	MHz	
t _{CHCX}	Clock high time	8	-	-	ns	
t _{CLCX}	Clock low time	8	-	-	ns	
t _{CLCH}	Clock rise time	-	-	10	ns	Low (10%) to high level (90% rise time
t _{CHCL}	Clock fall time	-	-	10	ns	High (90%) to low level (10%) fall time
Du _{E_HXT}	Duty cycle	40	-	60	%	
V _{IH}	Input high voltage	0.7*V _{DD}	-	V_{DD}	V	
V _{IL}	Input low voltage	V _{SS}	-	0.3*V _{DD}	V	
		External clock source	→ XT	1_IN t _{clcl}		→
,	/w.	\rightarrow	CLCH →	+		90%
	/ _{IH}	↓ t _{Cl}	CLCH →	← t	снсх →	90%

Table 8.3-5 External 4~24 MHz High Speed Clock Input Signal

8.3.5 External 32.768 kHz Low Speed Crystal/Ceramic Resonator (LXT) characteristics

The low-speed external (LXT) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this section are based on characterization results obtained with typical external components. In the application, the external components have to be placed as close as possible to the X32_OUT and X32_IN pins and must not be connected to any other devices in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Min ^[1]	Тур	Max [1]	Unit	Test Conditions ^[2]
V_{DD}	Operation voltage	1.8	-	5.5	V	
T _{LXT}	Temperature range	-40	-	105	°C	
R _f	Internal feedback resistor	-	6	-	МΩ	
F _{LXT}	Oscillator frequency		32.768		kHz	
	Current consumption	-	1.3	3.7	^	ESR=35 kΩ, Gain = L2
I _{LXT}	Current consumption	-	1.6	6	μА	ESR=70 kΩ, Gain = L3
Ts _{LXT}	Stable time [3]	-	2	-	s	
Du _{LXT}	Duty cycle	30	ı	70	%	
Rs	Equivalnet Series Resisotr(ESR)	-	35	70	kΩ	Crystal @32.768 kHz

Notes:

- 1. Guaranteed by characterization, not tested in production.
- 2. L1 ~ L2 defined by SFR XLTCON[1:0] LXSG
- 3. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values, Value variable based on extnerl Crystal stable time.

Table 8.3-6 External 32.768 kHz Low Speed Crystal (LXT) Oscillator Characteristics

Typical Crystal Application Circuits

Table 8.3-7 Typical 32.768 kHz Crystal Application Circuit

8.3.6 I/O AC Characteristics

Symbol	Parameter	Тур.	Max ^[1] .	Unit	Test Conditions ^[2]
		4.6	5.1		$C_L = 30 \text{ pF}, V_{DD} >= 5.5 \text{ V}$
		2.9	3.3		$C_L = 10 \text{ pF}, V_{DD} >= 5.5 \text{ V}$
	Normal mode [4] output high (90%) to low level (10%)	6.6	8		$C_L = 30 \text{ pF}, V_{DD} >= 3.3 \text{ V}$
t _{f(IO)out}	falling time	4.3	5	ns	$C_L = 10 \text{ pF}, V_{DD} >= 3.3 \text{ V}$
		8.5	12.5		$C_L = 30 \text{ pF}, V_{DD} >= 1.8 \text{ V}$
		8.0	10.7		$C_L = 10 \text{ pF}, V_{DD} >= 1.8 \text{ V}$
		4.0	4.3		$C_L = 30 \text{ pF}, V_{DD} >= 5.5 \text{ V}$
		2.1	2.5		$C_L = 10 \text{ pF}, V_{DD} >= 5.5 \text{ V}$
	High slew rate mode [5] output high (90%) to low level	4.9	5.8		$C_L = 30 \text{ pF}, V_{DD} >= 3.3 \text{ V}$
t _{f(IO)out}	(10%) falling time	3.0	3.7	ns	$C_L = 10 \text{ pF}, V_{DD} >= 3.3 \text{ V}$
		9.5	13.8		$C_L = 30 \text{ pF}, V_{DD} >= 1.8 \text{ V}$
		5.4	7.4		$C_L = 10 \text{ pF}, V_{DD} >= 1.8 \text{ V}$
		5.6	6.1		$C_L = 30 \text{ pF}, V_{DD} >= 5.5 \text{ V}$
		3.4	3.7		$C_L = 10 \text{ pF}, V_{DD} >= 5.5 \text{ V}$
	t _{r(IO)out} Normal mode [4] output low (10%) to high level (90%) rising time				$C_L = 30 \text{ pF}, V_{DD} >= 3.3 \text{ V}$
T _{r(IO)out}	rising time	5.1	5.8	ns	$C_L = 10 \text{ pF}, V_{DD} >= 3.3 \text{ V}$
	^r (IO)out rising time	15.1	20.3		$C_L = 30 \text{ pF}, V_{DD} >= 1.8 \text{ V}$
		9.6	12.4		$C_L = 10 \text{ pF}, V_{DD} >= 1.8 \text{ V}$
		4.8	5.2		$C_L = 30 \text{ pF}, V_{DD} >= 5.5 \text{ V}$
		2.1	2.5		$C_L = 10 \text{ pF}, V_{DD} >= 5.5 \text{ V}$
	High slew rate mode [5] output low (10%) to high level	6.4	7.4		$C_L = 30 \text{ pF}, V_{DD} >= 3.3 \text{ V}$
t _{r(IO)out}	(90%) rising time	3.0	3.7	ns	$C_L = 10 \text{ pF}, V_{DD} >= 3.3 \text{ V}$
		12.7	16.9		$C_L = 30 \text{ pF}, V_{DD} >= 1.8 \text{ V}$
		5.4	7.4		$C_L = 10 \text{ pF}, V_{DD} >= 1.8 \text{ V}$
£ [3]	VO manimum francisco	24	0.4	N41.1-	$C_L = 30 \text{ pF}, V_{DD} >= 1.8 \text{ V}$
f _{max(IO)out} ^[3]	I/O maximum frequency	24	24	MHz	$C_L = 10 \text{ pF}, V_{DD} >= 1.8 \text{ V}$
		2.77	-		$C_L = 30 \text{ pF}, V_{DD} = 3.3 \text{ V},$ $f_{(IO)out} = 24 \text{ MHz}$
		1.19	-		$C_L = 10 \text{ pF}, V_{DD} = 3.3 \text{ V},$ $f_{\text{(IO)out}} = 24 \text{ MHz}$
I _{DIO} [* ^{6]}	I/O dynamic current consumption	0.69	-	mA	$C_L = 30 \text{ pF}, V_{DD} = 3.3 \text{ V},$ $f_{(IO)out} = 6 \text{ MHz}$
		0.3	-		$C_L = 10 \text{ pF}, V_{DD} = 3.3 \text{ V},$ $f_{(IO)out} = 6 \text{ MHz}$

- 1. Guaranteed by characterization result, not tested in production.
- 2. C_L is a external capacitive load to simulate PCB and device loading.
- 3. The maximum frequency is defined by $f_{max} = \frac{2}{3 \times (t_f + t_r)}$
- 4. PxSR.n bit value = 0, Normal output slew rate
- 5. PxSR.n bit value = 1, high speed output slew rate
- 6. The I/O dynamic current consumption is defined by $I_{DIO} = V_{DD} \times f_{IO} \times (C_{IO} + C_L)$

Table 8.3-8 I/O AC characteristics

8.4 Analog Characteristics

8.4.1 Reset and Power Control Block Characteristics

The maximum values are obtained for $V_{DD} = 1.8 \text{ V} \sim 5.5 \text{ V}$ and maximum ambient temperature (T_A), and the typical values for T_A = 25 °C and V_{DD} = 3.3 V. The parameters in below table are derived from tests performed under ambient temperature unless otherwise specified.

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
I _{POR} ^[1]	POR Operating Current	-	60	100	μΑ	$AV_{DD} = 5.5V$
I _{LVR} ^[1]	LVR Operating Current	-	30	80		$AV_{DD} = 5.5V$
	LVR Low Power Run Mode Operating Current		0.5	1		AV _{DD} = 5.5V
I _{BOD} ^[1]	BOD Operating Current	-	0.5	2.9		$AV_{DD} = 5.5V$
V_{POR}	POR Reset Voltage	1.45	1.55	1.65	V	-
V_{LVR}	LVR Reset Voltage	1.55	1.63	1.70		-
V_{BOD}	BOD Brown-Out Detect Voltage	1.7	1.8	2		
		1.9	2	2.2		
		2.3	2.4	2.5]	
		2.55	2.7	2.8]	
		2.85	3	3.2]	
		3.55	3.7	3.9		
		4.2	4.4	4.5]	
T _{LVR_SU} ^[1]	LVR Startup Time	-	1	2	μs	-
T _{LVR_RE} ^[1]	LVR Respond Time	-	15	20		-
	LVR Low Power Run Mode Respond Time	-	20	30		-
T _{BOD_SU} ^[1]	BOD Startup Time	-	250	350		-
T _{BOD_RE} ^[1]	BOD Respond Time	-	19	30		-

- 1. Guaranteed by characterization, not tested in production.
- 2. Design for specified application.

Table 8.4-1 Reset And Power Control Unit

8.4.2 12-bit SAR ADC

The maximum values are obtained for V_{DD} = 1.8V ~ 5.5 V and maximum ambient temperature (T_A), and the typical values for T_A = 25 °C and V_{DD} = 3.3 V. The parameters in below table are derived from tests performed under ambient temperature unless otherwise specified.

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
T _A	Temperature	-40	-	105	°C	
AV _{DD}	Analog operating voltage	1.8	-	V_{DD}	V	$V_{DD} = AV_{DD}$
V _{REF}	Reference voltage	1.8	-	AV_{DD}	V	AV _{DD} - V _{REF} < 1.2 V
V _{IN}	ADC channel input voltage	0	-	V_{REF}	V	
I _{ADC} ^[1]	Operating current (AV _{DD} + V _{REF} current)	-	-	418	μA	$AV_{DD} = V_{DD} = V_{REF} = 5.5 \text{ V}$ $F_{ADC} = 500 \text{ kHz}$ $T_{CONV} = 17 * T_{ADC}$
N _R	Resolution	<u> </u>	12		Bit	
F _{ADCEC} ^[1]	Encoding Rate		500		kHz	This value is fixed by ADC module
T _{ADCEC}	Encoding Time		2		μs	This value is fixed by ADC module
F _{ADCSMP} ^[1]	ADC Sampling Clock frequency	F _{SYS} /128		F _{SYS}	kHz	base on ADCDIV (ADCCON1[5:4]
T _{SMP}	Sampling Time [3]	0.417	-	202	μs	
F _{ADCCOV}	Conversion Rate $F_{ADCCOV} = 1/T_{ADCCOV}$	2.417		204	μs	F _{SYS} = 24MHz;
T _{ADCCOV} ^[2]	Conversion Time $T_{ADC} = T_{SMP} + T_{ADCEC}$	4.9		413	kHz	F _{SYS} = 24MHz;
T _{EN}	Enable to ready time	20	-	-	μs	
INL ^[1]	Integral Non-Linearity Error	-3	-	+3	LSB	$V_{REF} = AV_{DD} = V_{DD}$
DNL ^[1]	Differential Non-Linearity Error	-2	-	+4	LSB	$V_{REF} = AV_{DD} = V_{DD}$
E _G ^[1]	Gain error	-3.5	-	+0.4	LSB	$V_{REF} = AV_{DD} = V_{DD}$
E ₀ ^[1]	Offset error	-2	-	+2.8	LSB	$V_{REF} = AV_{DD} = V_{DD}$
E _A [1]	Absolute Error	-7		+7	LSB	$V_{REF} = AV_{DD} = V_{DD}$
Rs	Input Channel Equivalent Resistance		0.5	2.5	kΩ	
C _{IN}	Input Equivalent Capacitance		2.5		pF	

- 1. Garanteed by characterization result, not tested in production.
- ADC Convertion time T_{ADCCOV} = ADC Sampling Time (T_{SMP}) + ADC Encoding Time (T_{ADCEC}).
- 3. ADC Sampling Time = $\frac{4*ADCAQT+10}{F_{ADC}}$ (FADC Base on ADCDIV (ADCSR[3:1])

ADC Sampling Time Minimum condition $\frac{10}{24\text{MHz}}$. (ADCAQT = 0, ADCDIV = 0)

ADC Sampling Time Maximum condition $\frac{4*7+10}{24M+z/128}$ (ADCAQT = 7, ADCDIV = 7)

Table 8.4-2 ADC Characteristics

Note: The INL is the peak difference between the transition point of the steps of the calibrated transfer curve and the ideal transfer curve. A calibrated transfer curve means it has calibrated the offset and gain error from the actual transfer curve.

8.4.3 Analog Comparator Controller (ACMP)

The maximum values are obtained for VDD = 5.5 V and maximum ambient temperature (T_A), and the typical values for T_A = $25 \, ^{\circ}\text{C}$ and V_{DD} = $3.3 \, \text{V}$ unless otherwise specified.

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
AV_{DD}	Analog supply voltage	1.8	-	5.5	V	$V_{DD} = AV_{DD}$
T _A	Temperature	-40	-	105	$^{\circ}\!\mathbb{C}$	
I _{DD}	Operating current	-	2	5	μΑ	
V _{CM} ^[2]	Input common mode voltage range	0.35	1/2 AV _{DD}	AV _{DD} -0.3		
V _{DI} ^[2]	Differential input voltage sensitivity	10	20	-	mV	Hysteresis disable
V _{offset} ^[2]	Input offset voltage	-	10	20	mV	Hysteresis disable
V _{hys} ^[2]	Hysteresis window	-	10	20	mV	
A _v ^[1]	DC voltage Gain	45	65	75	dB	
T _d ^[2]	Propagation delay	-	-	5	μS	
T _{Stable} ^[2]	Stable time	-	-	5	μS	
A _{CRV} ^[2]	CRV output voltage	-5	-	5	%	AVDD x (1/6+CRVCTL/24)
R _{CRV} ^[2]	Unit resistor value	-	4.5	-	kΩ	
T _{SETUP_CRV} ^[2]	Stable time	-	-	2	μS	CRV output voltage settle to ±5%
I _{DD_CRV} [2]	Operating current	-	2	-	μА	

- 1. Guaranteed by design, not tested in production
- 2. Guaranteed by characteristic, not tested in production. unless otherwise specified.

Table 8.4-3 ACMP Characteristics

8.4.4 Internal Voltage Reference

The maximum values are obtained for $V_{DD} = 5.5 \text{ V}$ and maximum ambient temperature (T_A), and the typical values for $T_A = 25 \,^{\circ}\text{C}$ and $V_{DD} = 3.3 \,^{\circ}\text{V}$ unless otherwise specified.

al Analog reference voltage	1.49	1.538	1.59		$AV_{DD} >= 2.0 \text{ V}, T_A = 25^{\circ}\text{C}$ Internal analog reference voltage VRFSEL[2:0] = $000^{[2]}$ $AV_{DD} >= 2.4 \text{ V}, T_A = 25^{\circ}\text{C}$		
					Internal analog reference voltage VRFSEL[2:0] = 000 [2]		
	2.018	2.048			Λ\/ >- 2.4 \/ T 25°C		
			2.078		Internal Analog reference voltage VRFSEL[2:0] = 001 ^[2] Test in product.		
Internal reference voltage		2.560	2.64	V	AV _{DD} >= 2.9 V, T _A = 25°C Internal analog reference voltage VRFSEL[2:0] = 010 [2]		
			3.072	3.102		$AV_{DD} >= 3.4 \text{ V}, T_A = 25^{\circ}\text{C}$ Internal Analog reference voltage $VRFSEL[2:0] = 011^{[2]}$	
					Test in product.		
				4.096	4.22		AV_{DD} >= 4.5 V, T_A = 25°C Internal analog reference voltage VRFSEL[2:0] = 100 [2]
gap voltage	0.793	0.814	0.835	V	T _A = -40°C ~105 °C, Test in product		
o timo	-	24	180	mS	$C_L = 1$ uF, V_{REF} initial=0, Preload is enabled.		
e time	-	2	2.6	mS	$C_L = 1$ uF, V_{REF} initial=5.5, Preload is enabled.		
NT operating current	-	-	1	mA			
MI Sporating duriont	-	-	1	mA			
	time T operating current T output loading current	- operating current -	time - 2 operating current	time - 2 2.6 r operating current 1	time - 2 2.6 mS r operating current 1 mA		

1. Guaranteed by characterization, not tested in production

Table 8.4-4 Voltage Reference Character

Figure 8.4-1 Typical Connection With Internal Voltage Reference

8.4.5 Temperature Sensor

The maximum values are obtained for $V_{DD} = 1.8 \sim 5.5 \text{ V}$ and maximum ambient temperature (T_A), and the typical values for $T_A = 25$ °C and $V_{DD} = 3.3 \text{ V}$ unless otherwise specified.

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions
$V_{\text{TEMP}_{OS}}^{[1]}$	Temperature sensor offset voltage	645	675	705	mV	
T _C ^[1]	Temperature Coefficient	1.74	1.83	1.9	mV/°C	T _J = 25 °C
I _{TEMP} ^[1]	Temperature sensor operating current	-	16	30	μА	

- 1. Guaranteed by characterization, not tested in production
- 2. V_{TEMP} (mV) = T_C (mV/°C) x Temperature (°C) + V_{TEMP_OS} (mV)

Table 8.4-5 Temperature Sensor Character

8.4.6 LCD Controller

The maximum values are obtained for V_{DD} = 3.6 V and maximum ambient temperature (T_A), and the typical values for T_A = 25 °C and V_{DD} = 3.3 V unless otherwise specified.

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V_{LCD}	LCD external pin voltage	1.8	-	5.5	٧	
V_{LCDDD}	VLCD Power Supply voltage	1.8	-	3.6	٧	LCD Power source is AV _{DD}
		-	5.4	-		VCP_SEL[5:0]=000000
		-	5.2	-		VCP_SEL[5:0]=000101
		-	5.0	-		VCP_SEL[5:0]=001010
		-	4.8	-		VCP_SEL[5:0]=001110
		-	4.6	-		VCP_SEL[5:0]=010011
		-	4.4	-		VCP_SEL[5:0]=011000
	LCD internal Charge Pump	-	4.2	-		VCP_SEL[5:0]=011101
V_{LCDCP}	Voltage Output Value	-	4.0	-	V	VCP_SEL[5:0]=100010
		-	3.8	-		VCP_SEL[5:0]=100111
		-	3.6	-		VCP_SEL[5:0]=101100
		-	3.4	-		VCP_SEL[5:0]=110000
		-	3.2	-		VCP_SEL[5:0]=110101
		-	3.0	-		VCP_SEL[5:0]=111010
		-	2.8	-		VCP_SEL[5:0]=111111
_	VLCD pin external pin		1	l .	_	Wihtout charge pump mode
C_{LCD}	capacitor ^[2]	1		10	μF	With charge pump mode
0	External charge-pump		Without			Wihtout charge pump mode
$C_{DH1-DH2}$	capacitor ^[2]	0.1		1	μF	With charge pump mode
C _{vx}	V1/V2/V3 external capacitance		Without		μF	Internal embedded with capacitor
V _{3/4}	COM/SEG 3/4 V _{LCD} (1/4 Bias)	-	3/4 V _{LCD}	-	٧	
V _{2/4}	COM/SEG 2/4 V _{LCD} (1/4 Bias)	-	2/4 V _{LCD}	-	٧	
V _{1/4}	COM/SEG 2/4 V _{LCD} (1/4 Bias)	-	1/4 V _{LCD}	-	٧	
V _{2/3}	COM/SEG 2/3 V _{LCD} (1/3 Bias)	-	2/3 V _{LCD}	-	V	
V _{1/3}	COM/SEG 1/3 V _{LCD} (1/3 Bias)	-	1/3 V _{LCD}	-	V	
R _{R_MODE}	Resistor Mode total internal Resistor Value	-	240	-	ΚΩ	
R _{RE_MODE}	Resistor Enhance Mode total internal Resistor Value		6		ΜΩ	
		-	18	-		V _{DD} =1.8, V _{LCD} =V _{CP} =3.2, Buffer Mode, all LCD display on
I _{LCD} ^[3]	Supply current from V_{DD} with builtin charge pump and buffer mode		31		μА	V _{DD} =1.8, V _{LCD} =V _{CP} =3.2, Resistor Mode, all LCD display on
		-	5.5	-	1	V_{DD} =1.8, V_{LCD} = V_{CP} =3.2, Resistor

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
						Enhance Mode, all LCD display on
		-	24	-		V _{DD} =3.3, V _{LCD} =V _{CP} =5.4, Buffer Mode, all LCD display on
		-	1.8	-		V _{DD} =1.8, V _{LCD} =V _{CP} =3.2, Buffer Mode, all LCD display off
		-	7	ı		V_{DD} =1.8, V_{LCD} =3.3, Buffer Mode, all LCD display on
	Supply current from V _{LCD} without Bulit-In Charge Pump		14			V_{DD} =1.8, V_{LCD} =3.3, Resistor Mode, all LCD display on
I _{VLCD} ^[3]			0.8			V _{DD} =1.8, V _{LCD} =3.3, Resistor Enhance Mode, all LCD display on
IATCD, 2		-	9.2	-	μА	V _{DD} =1.8, V _{LCD} =5.4, Buffer Mode, all LCD display on
		-	7	-		V_{DD} =3.3, V_{LCD} =3.3, Buffer Mode, all LCD display on
		-	9	-		V_{DD} =1.8, V_{LCD} =5.4, Buffer Mode, all LCD display off

Notes:

- 1. All condition not special defined is guaranteed by design, not tested in production
- 2. C_{DH1-DH2} value should be 1/10 C_{LCD}
- 3. LCD COM/SEG is set to clock source is LIRC, 1/8 duty, 1/4 bias, type B 64 Hz frame rate, all pixels active, waveform, without LCD panel loading.

Table 8.4-6 LCD Digital Characteristics

LCD Voltage Source From Internal Charge Pump

		<u>s</u>	V _{DD}						Тур.						
Symbol	Parameter	LCD Status		V _{DD} V _{LCD}		Вι	ıffer Mo	de	Res	sistor M	lode	Resis	tor Enl Mode	nance	Unit
		lol			-20	25	85	-20	25	85	-20	25	85	℃	
VDD Supply Current in Power Down Mode with ILCDCPPD LIRC,			1.8V	3.2V	17	18	24	30	31	36	5.1	5.5	10		
	LCD On	2.21/	3.2V	20	22	29	37	39	44	6	6.3	6			
		3.3V	5.4V	22	24	31	49	52	58	7	7	6			
(LIRC)	VLCD source	e al Je LCD	1.8V	3.2V	1.6	1.6	5	1.6	1.6	5	1.6	1.6	5		
	internal Charge Pump			2 21/	3.2V	1.8	2	5.7	1.8	2	5.7	1.8	2	5.7	
	·		3.3V	5.4V	1.8	2	5.7	1.8	2	5.7	1.8	2	5.7	μΑ	
	VDD Supply Current in		1.8V	3.2V	17	18	25	30	32	37	5.5	6	11		
I _{LCDCPPD}	Power Down Mode with	LCD On	2.21/	3.2V	21	22	30	37	40	45	6	6.5	16		
(LXT)	VLCD		3.3V	5.4V	22	24	32	50	52	59	7	7.5	17		
	source internal Charge	LCD	1.8V	3.2V	1.6	1.6	5	1.6	1.6	5	1.6	1.6	5		

Symbol Parameter		S	V_{DD}						Тур.					
) Status		V _{DD} V	V _{LCD}	Buffer Mode			Resistor Mode			Resistor Enhance Mode		
		CCD			-20	25	85	-20	25	85	-20	25	85	°C
	Pump	Off	3.3V	3.2V	1.8	2	5.7	1.8	2	5.7	1.8	2	5.7	
			3.31	5.4V	1.8	2	5.7	1.8	2	5.7	1.8	2	5.7	

Notes:

- 1. All condition not special defined is guaranteed by design, not tested in production
- 2. The values are obtained for TA= 25 °C and VDD = 3.3 V unless otherwise specified.
- 3. LCD COM/SEG is set as 1/8 duty, 1/4 bias, type B 64 Hz frame rate, all pixels active, without LCD panel loading.

Table 8.4-7 Current Consumption In Power Down Mode With LCD Voltage Source From Internal Charge Pump

LCD Voltage Source From AVDD

		SI						Тур.					Unit
Symbol	Parameter	LCD Status	O (VD)	Вι	ıffer Mo	de	Res	sistor M	ode	Resis	stor Enh Mode	ance	
		2		-20	25	85	-20	25	85	-20	25	85	°C
I _{LCDAVDDP} D(LIRC)	VDD Supply Current in	LCD On	1.8V	6.2	6.8	13	9	9.2	13	2.1	2.4	6	
	Power Down Mode with LIRC,		3.3V	9	9.5	15	16	16.4	21	2.6	3	7	
	VLCD source	LCD Off	1.8V	5.2	6	11	8	8.3	12	1.2	1.4	5	
	internal AVDD		3.3V	8	8.5	13.5	14.2	14.6	19	1.6	1.8	6	μA
I _{LCDAVDDP} D(LXT)	VDD Supply Current in	LCD On	1.8V	6.6	7.5	5.2	9.6	10	12.1	2.7	3	4.8	μ, .
	Power Down Mode with LXT,		3.3V	9	10	6.2	16.8	14.5	19.2	3.2	3.5	5.8	
	VLCD source internal AVDD	LCD Off	1.8V	5.2	6	11	8	8.3	12	1.2	1.4	5	
	internal AVDD		3.3V	8	8.5	13.5	14.2	14.6	19	1.6	1.8	6	

- 1. All condition not special defined is guaranteed by design, not tested in production
- 2. The values are obtained for TA= 25 °C unless otherwise specified.
- 3. LCD COM/SEG is set to 1/8 duty, 1/4 bias, 128 Hz frame rate, all pixels active, type B waveform, no LCD panel loading.

Table 8.4-8 Current Consumption In Power Down Mode With LCD Voltage Source From AVDD

LCD Voltage Source From External VLCD Pin

		" 0						Тур.					Unit
Symbol	Parameter) Status	V _{LCD}	В	uffer Mo	de	Res	sistor M	ode	Resi	stor Enh Mode	ance	
		ГСБ		-20	25	85	-20	25	85	-20	25	85	°C
I _{LCDVLCDP}	VLCD Supply Current in	LCD On	3.3	6.5	7	9	13.5	14	15	0.7	0.8	1.2	
	Power Down Mode with LIRC,		5.4V	8.6	9.2	11	22	23	24	1.2	1.2	2	
	VLCD source External	LCD Off	3.3V	6.5	7	8.5	14	14	14.5	0.5	0.6	1	
	VLCD pin		5.4V	8.3	9	11	22	23	23.5	0.9	1	2	μA
I _{LCDVLCDP} D(LXT)	Supply Current in	LCD On	3.3	6.5	7	9	13.5	14	15	0.7	0.8	1.2	μ, ,
	Power Down Mode with LXT,		5.4V	8.6	9.2	11	22	23	24	1.2	1.2	2	
	VLCD source External	LCD Off	3.3V	6.5	7	8.5	14	14	14.5	0.5	0.6	1	
	VLCD pin		5.4V	8.3	9	11	22	23	23.5	0.9	1	2	

- 1. All condition not special defined is guaranteed by design, not tested in production
- 2. The values are obtained for TA= 25 °C and VDD = 3.3 V unless otherwise specified.
- 3. LCD COM/SEG is set to 1/8 duty, 1/4 bias, 128 Hz frame rate, all pixels active, type B waveform, no LCD panel loading

Table 8.4-9 Current Consumption In Power Down Mode With LCD Voltage Source From External VLCD pin

8.5 Flash DC Electrical Characteristics

The devices are shipped to customers with the Flash memory erased.

Symbol	Parameter	Min	Тур	Max	Unit	Test Condition	
V _{FLA} ^[1]	Supply voltage	-	1.5	-	V		
T _{ERASE}	Page erase time	-	5	-	ms		
T_{PROG}	Program time	-	10	-	μs	T - 25°C	
I _{DD1}	Read current	-	4	-	mA	− T _A = 25°C	
I_{DD2}	Program current	-	4	-	mA		
I _{DD3}	Erase current	-	12	-	mA		
N _{ENDUR}	Endurance	100,000	-		cycles ^[2]	T _J = -40°C~125°C	
		50	-	-	year	100 kcycle ^[3] T _A = 55°C	
T _{RET}	Data retention	25	-	-	year	100 kcycle ^[3] T _A = 85°C	
		10	-	-	year	100 kcycle ^[3] T _A = 105°C	

- 1. V_{FLA} is source from chip internal LDO output voltage.
- 2. Number of program/erase cycles.
- 3. Guaranteed by design.

Table 8.5-1 Flash Memory Characteristics

8.6 Absolute Maximum Ratings

Volrage Stesses above the absolute maximum ratings may cause permanent damage to the device. The limiting values are stress ratings only and cannot be used to functional operation of the device. Exposure to the absolute maximum ratings may affect device reliability and proper operation is not guaranteed.

8.6.1 Voltage Characteristics

8.6.1.1 ML51 32KB/16KB Flash Series

Symbol	Description	Min	Max	Unit
V _{DD} -V _{SS} ^[1]	DC power supply		6.5	V
ΔV_{DD}	Variations between different power pins	-	50	mV
V _{DD} –AV _{DD}	Allowed voltage difference for V _{DD} and AV _{DD}		50	mV
ΔV _{SS}	Variations between different ground pins	-	50	mV
V _{SS} - AV _{SS}	Allowed voltage difference for V_{SS} and AV_{SS}	-	50	mV
V _{IN}	Input voltage on I/O	V _{SS} -0.3	6.5	V
Notes:				

1. All main power (V_{DD}, AV_{DD}) and ground (V_{SS}, AV_{SS}) pins must be connected to the external power supply.

Table 8.6-1 ML51 32KB/16KB Flash Series Voltage Characteristics

8.6.1.2 ML51 64KB Flash/ML54/ML56 Series

Symbol	Description	Min	Max	Unit	
V _{DD} -V _{SS} ^[1]	DC power supply	-0.3	4.0	V	
ΔV_{DD}	Variations between different power pins	-	50	mV	
V _{DD} -AV _{DD}	V _{DD} Allowed voltage difference for V _{DD} and AV _{DD} -			mV	
ΔV_{SS}	Variations between different ground pins	-	50	mV	
V _{SS} - AV _{SS}	Allowed voltage difference for V _{SS} and AV _{SS}	-	50	mV	
V _{IN} Input voltage on I/O V _{SS} -0.3 3.6 V					
Notes: 2. All main p					

Table 8.6-2 ML51 64KB Flash/ML54/ML56 Series Voltage Characteristics

8.6.2 Current Characteristics

Symbol	Description	Min	Max	Unit
$\Sigma I_{DD}^{[1]}$	Maximum current into V _{DD}	-	150	
ΣI _{SS}	Maximum current out of V _{SS}		150	
	Maximum current sunk by a I/O Pin	-	22	
	Maximum current sourced by a I/O Pin	-	10	A
I _{IO}	Maximum current sunk by total I/O Pins ^[2]	-	100	mA
	Maximum current sourced by total I/O Pins[2]	-	100	
I _{INJ(PIN)} [3]	Maximum injected current by a I/O Pin		±5	
ΣI _{INJ(PIN)} ^[3]	Maximum injected current by total I/O Pins	-	±25	

- Maximum allowable current is a function of device maximum power dissipation.
 - 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins.
 - 3. A positive injection is caused by V_{IN}>A_{VDD} and a negative injection is caused by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage supply pin.

Table 8.6-3 Current Characteristics

8.6.3 Thermal Characteristics

The average junction temperature can be calculated by using the following equation:

 $T_{J} = T_{A} + (P_{D} \times \theta_{JA})$

- TA = ambient temperature (°C)
- θ_{JA} = thermal resistance junction-ambient (°C/Watt)
- PD = sum of internal and I/O power dissipation

Symbol	Description	Min	Тур	Max	Unit	
T_A	Operating ambient temperature	-40	-	105		
TJ	Operating junction temperature	-40	-	125	℃	
T _{ST}	Storage temperature	-65	-	150	7	
	Thermal resistance junction-ambient 10-pin MSOP(3x3 mm)	-	160	-	°C/Watt	
	Thermal resistance junction-ambient 14-pin TSSOP(4.4x5 mm)	-	100	-	°C/Watt	
	Thermal resistance junction-ambient 20-pin QFN(3x3 mm)	-	68	-	°C/Watt	
	Thermal resistance junction-ambient 20-pin TSSOP(4.4x6.5 mm)	-	38	-	°C/Watt	
	Thermal resistance junction-ambient 20-pin SOP(300mil)	-	60	-	°C/Watt	
0 [1]	Thermal resistance junction-ambient 28-pin TSSOP(4.4x9.7 mm)	-	30	-	°C/Watt	
$\theta_{JA}^{[1]}$	Thermal resistance junction-ambient 28-pin SOP(300 mil)	-	55	-	°C/Watt	
	Thermal resistance junction-ambient 32-pin LQFP(7x7 mm)	-	62	-	°C/Watt	
	Thermal resistance junction-ambient 33-pin QFN(4x4 mm)	-	28	-	°C/Watt	
	Thermal resistance junction-ambient 44-pin LQFP(10x10 mm)	-	49	-	°C/Watt	
	Thermal resistance junction-ambient 48-pin LQFP(7x7 mm)	-	60	-	°C/Watt	
	Thermal resistance junction-ambient 64-pin LQFP(7x7 mm)	-	50	-	°C/Watt	

Note:

1. Determined according to JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions

Table 8.6-4 Thermal Characteristics

8.6.4 EMC Characteristics

8.6.4.1 Electrostatic discharge (ESD)

For the Nuvoton MCU products, there are ESD protection circuits which built into chips to avoid any damage that can be caused by typical levels of ESD.

8.6.4.2 Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

8.6.4.3 Electrical fast transients (EFT)

In some application circuit component will produce fast and narrow high-frequency transients bursts of narrow high-frequency transients on the power distribution system..

- Inductive loads:
 - Relays, switch contactors
 - Heavy-duty motors when de-energized etc.

The fast transient immunity requirements for electronic products are defined in IEC 61000-4-4 by International ElectrotechnicalCommission (IEC).

8.6.4.4 EMC Character Table

ML51 32KB/16KB Flash Series

Symbol	Description	Min	Тур	Max	Unit
V _{HBM} ^[1]	Electrostatic discharge,human body mode	-8000	-	+8000	V
V _{CDM} ^[2]	Electrostatic discharge,charge device model	-1000	-	+1000	V
LU ^[3]	Pin current for latch-up ^[3] @V _{DD} = 5.5V	-150	-	+150	mA
V _{EFT} [*4] [*5]	Fast transient voltage burst	-4.4	-	+4.4	kV

Notes:

- Determined according to ANSI/ESDA/JEDEC JS-001 Standard, Electrostatic Discharge Sensitivity Testing Human Body Model (HBM) – Component Level
- 2. Determined according to ANSI/ESDA/JEDEC JS-002 standard for Electrostatic Discharge Sensitivity (ESD) Testing Charged Device Model (CDM) Component Level.
- 3. Determined according to JEDEC EIA/JESD78 standard.
- 4. Determinded according to IEC 61000-4-4 Electrical fast transient/burst immunity test.
- 5. The performace cretia class is 4A.

Table 8.6-5 ML51 32KB/16KB Flash Series EMC Characteristics

ML51 64KB Flash/ML54/ML56 Series

Symbol	Description	Min	Тур	Max	Unit
V _{HBM} ^[1]	Electrostatic discharge,human body mode	-7000	-	+7000	\/
$V_{CDM}^{[2]}$	Electrostatic discharge,charge device model	-1000	-	+1000	V
LU ^[3]	Pin current for latch-up ^[3] @V _{DD} = 3.6V	-200	-	+200	mA

Symbol	Description	Min	Тур	Max	Unit
V _{EFT} [*4] [*5]	Fast transient voltage burst	-4.4	-	+4.4	kV

- 1. Determined according to ANSI/ESDA/JEDEC JS-001 Standard, Electrostatic Discharge Sensitivity Testing Human Body Model (HBM) Component Level
- Determined according to ANSI/ESDA/JEDEC JS-002 standard for Electrostatic Discharge Sensitivity (ESD) Testing Charged Device Model (CDM) – Component Level.
- 3. Determined according to JEDEC EIA/JESD78 standard.
- 4. Determinded according to IEC 61000-4-4 Electrical fast transient/burst immunity test.
- 5. The performace cretia class is 4A.

Table 8.6-6 ML51 64KB Flash/ML54/ML56 Series EMC Characteristics

8.6.5 Package Moisture Sensitivity(MSL)

The MSL rating of an IC determines its floor life before the board mounting once its dry bag has been opened. All Nuvoton surface mount chips have a moisture level classification. The information is also displayed on the bag packing.

Pacakge	MSL		
10-pin MSOP(3x3 mm) [1]	MSL 3		
14-pin TSSOP(4.4x5 mm) [1]	MSL 3		
20-pin QFN(3x3 mm) ^[1]	MSL 3		
20-pin TSSOP(4.4x6.5 mm) [1]	MSL 3		
20-pin SOP(300mil) ^[1]	MSL 3		
28-pin TSSOP(4.4x9.7 mm) [1]	MSL 3		
28-pin SOP(300 mil) ^[1]	MSL 3		
32-pin LQFP(7x7 mm) ^[1]	MSL 3		
33-pin QFN(4x4 mm) ^[1]	MSL 3		
44-pin LQFP(10x10 mm)	MSL 3		
48-pin LQFP(7x7 mm) ^[1]	MSL 3		
64-pin LQFP(7x7 mm) ^[1]	MSL 3		
Note: 1. Determined according to IPC/JEDEC J-STD-020			

Table 8.6-7 Package Moisture Sensitivity(MSL)

8.6.6 Soldering Profile

Figure 8.6-1 Soldering Profile From J-STD-020C

Porfile Feature	Pb Free Package
Average ramp-up rate (217°C to peak)	3°C/sec. max
Preheat temperature 150°C ~200°C	60 sec. to 120 sec.
Temperature maintained above 217℃	60 sec. to 150 sec.
Time with 5°C of actual peak temperature	> 30 sec.
Peak temperature range	260°C
Ramp-down rate	6°C/sec ax.
Time 25℃ to peak temperature	8 min. max
Note: 1. Determined according to J-STD-020C	

Table 8.6-8 Soldering Profile

9 PACKAGE DIMENSIONS

9.1 LQFP 64L-pin (7.0 x 7.0 x 1.4 mm)

Figure 9.1-1 LQFP 64L Package Dimension

9.2 LQFP 48-pin (7.0 x 7.0 x 1.4 mm)

Figure 9.2-1 LQFP-48 Package Dimension

9.3 LQFP 44-pin (10 x 10 x 1.4mm

Figure 9.3-1 LFP44 Package Dimension

9.4 QFN 33-pin (4.0 x 4.0 x 0.8 mm)

Figure 9.4-1 QFN-33 Package Dimension

9.5 LQFP 32-pin (7.0 x 7.0 x 1.4 mm)

Figure 9.5-1 LQFP-32 Package Dimension

ML51/ML54/ML56 SERIES DATASHEE

9.6 TSSOP 28-pin (4.4 x 9.7 x 1.0 mm)

Figure 9.6-1 TSSOP-28 Package Dimension

9.7 SOP 28-pin (300mil)

Figure 9.7-1 SOP-28 Package Dimension

9.8 TSSOP 20-pin (4.4 x 6.5 x 0.9 mm)

Figure 9.8-1 TSSOP-20 Package Dimension

9.9 SOP 20-pin (300 mil)

Figure 9.9-1 SOP-20 Package Dimension

ML51/ML54/ML56 SERIES DATASHEE

9.10 QFN 20-pin (3.0 x 3.0 x 0.8 mm)

Figure 9.10-1 QFN-20 Package Dimension

9.11 TSSOP 14-pin (4.4 x 5.0 x 0.9 mm)

Figure 9.11-1 TSSOP-14 Package Dimension

9.12 MSOP 10-pin (3.0 x 3.0 x 0.85 mm)

Figure 9.12-1 MSOP-10 Package Dimension

10 ABBREVIATIONS

10.1 Abbreviations

Acronym	Description		
ADC	Analog-to-Digital Converter		
BOD	Brown-out Detection		
GPIO	General-Purpose Input/Output		
Fsys	Frequency of system clock		
HIRC	12 MHz Internal High Speed RC Oscillator		
IAP	In Application Programming		
ICP	In Circuit Programming		
ISP	In System Programming		
LCD	Liquid Crystal Displays		
LDO	Low Dropout Regulator		
LIRC	10 kHz internal low speed RC oscillator (LIRC)		
LVR	Low Voltage \$eset		
PDMA	Peripheral Direct Memory Access		
POR	Power On Reset		
PWM	Pulse Width Modulation		
RTC	Real Time Clock		
SPI	Serial Peripheral Interface		
тк	Touch Key		
UART	Universal Asynchronous Receiver/Transmitter		
UCID	Unique Customer ID		
WKT	Wakeup Timer		
WDT	Watchdog Timer		

Table 10.1-1 List of Abbreviations

11 REVISION HISTORY

Date	Revision	Chapter	Description
2018.12.05	1.00		Initial release.
2019.09.03		Section 3.1	Added package type table
		Section 4.2.2	Added Multi-function summary table
		Section 6.2	Added ICP connect circuit
		Section 7.2.4	Modified ISR value
	1.01	Section 7.3	Removed 32.768kHz external clock input and deviation figure.
		Section 7.4.1	Modified POR/LVR/BOD operating current value
		Section 7.6.1	Modified DC power supply item
		Section 8.6	Modified TSSOP20 package dimension in title
		Section 37.6	Modified TSSOP20 package value
2020.03.11 1.02		Section 6.2	Added note in application circuit
		Section 7.4.2	Added RS and CIN value in table
	1.02	Section 7.4.4	Added section 7.4.4. Moved internal voltage character table to this section
		Section 8.1	Modified QFN33 package L value to 0.3
		Section 7.6.2	Modified Maximum current to 150mA
2020.06.29	1.03	Section 7.6.4	Modified Pin current for latch-up value to 150mA
			Modified Fast transient voltage burst value to 4.4kV
		Section 7.4.2	Modified ADC conversion rate and sampling timing description.
2020.09.01	2.00		Added ML51 64KB/ML54/ML56 Series description.
2021.02.20		Section 8.2.4.3	Added GPIO Output Characteristics table
	2.01	Section 8.4.2	Updated ADC sampling timing value
		Section 8.5	Modified Supply voltage typical value to 1.5
2022.03.07		Section 3.2.1	Updated ML51 series selection guide table.
		Section 4.2	Added QFN package EPAD exposed pad description.
		Section 8.2.4.2	Modified I _{SK} Maximum value from 11mA to 12.5 mA.
			Added R _{PU} and R _{PD} Resistor value
		Section 8.3.6	Added description for I/O dynamic current consumption.
	2.02	Section 8.4.2	Updated ADC sampling and convert rate table description.
		Section 8.4.6	Updated LCD operating temperature to -40~105.
			Updated LCD Power down current table condition from temperature 0 to -20.
		Section 8.4.6	Modified VLCD pin and external charge pump capacitor value.
			Updated the V1/V2/V3 external capacitor description.

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners