Polynomial Hierarchy

"A polynomial-bounded version of Kleene's Arithmetic Hierarchy becomes trivial if ${f P}={f NP}$." Karp, 1972

Larry Stockmeyer and Albert Meyer introduced polynomial hierarchy.

1. Larry Stockmeyer and Albert Meyer. The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space. SWAT'72.

Synopsis

- 1. Meyer-Stockmeyer's Polynomial Hierarchy
- 2. Stockmeyer-Wrathall Characterization
- 3. Chandra-Kozen-Stockmeyer Theorem
- 4. Infinite Hierarchy Conjecture
- 5. Time-Space Trade-Off

Meyer-Stockmeyer's Polynomial Hierarchy

Problem Beyond NP

Meyer and Stockmeyer observed that MINIMAL does not seem to have short witnesses.

$$\mathtt{MINIMAL} = \{ \varphi \mid \varphi \ \mathrm{DNF} \land \forall \ \mathrm{DNF} \ \psi. |\psi| < |\varphi| \Rightarrow \exists u. \neg (\psi(u) \Leftrightarrow \varphi(u)) \}.$$

Notice that MINIMAL can be solved by an NDTM that queries SAT a polynomial time.

► Why DNF?

$$\mathbf{P}^{\mathcal{C}} = \bigcup_{A \in \mathcal{C}} \mathbf{P}^{A},$$

 $\mathbf{NP}^{\mathcal{C}} = \bigcup_{A \in \mathcal{C}} \mathbf{NP}^{A}.$

Meyer-Stockmeyer's Definition

The complexity classes Σ_i^p , Π_i^p , Δ_i^p are defined as follows:

$$\Sigma_{0}^{\rho} = \mathbf{P},$$
 $\Sigma_{i+1}^{\rho} = \mathbf{NP}^{\Sigma_{i}^{\rho}},$
 $\Delta_{i+1}^{\rho} = \mathbf{P}^{\Sigma_{i}^{\rho}},$
 $\Pi_{i}^{\rho} = \overline{\Sigma_{i}^{\rho}}.$

The following hold:

- $\blacktriangleright \ \Sigma_{i}^{p} \subseteq \Delta_{i+1}^{p} \subseteq \Sigma_{i+1}^{p},$
- $\blacktriangleright \ \Pi_i^p \subseteq \Delta_{i+1}^p \subseteq \Pi_{i+1}^p.$

Notice that $\Pi_{i+1}^p = \mathbf{coNP}^{\Sigma_i^p}$ by definition.

The polynomial hierarchy is the complexity class $PH = \bigcup_{i>0} \Sigma_i^p$.

Natural Problem in the Second Level

"Synthesizing circuits is exceedingly difficult. It is even more difficult to show that a circuit found in this way is the most economical one to realize a function. The difficulty springs from the large number of essentially different networks available."

Claude Shannon, 1949

Umans showed in 1998 that the following language is Σ_2^p -complete.

$$\mathtt{MIN-EQ-DNF} = \{ \langle \varphi, k \rangle \mid \varphi \ \mathrm{DNF} \wedge \exists \ \mathrm{DNF} \ \psi. | \psi | \leq k \wedge \forall u. \psi(u) \Leftrightarrow \varphi(u) \}.$$

- ▶ MIN-EQ-DNF is the problem referred to by Shannon.
- ► The complexity of MINIMAL, as well as MINIMAL, is not known.

Natural Problem in the Second Level

SUCCINCT SET COVER:

Given a set $S = \{\varphi_1, \dots, \varphi_m\}$ of 3-DNF's and an integer k, is there a subset $S' \subseteq \{1, \dots, m\}$ of size at most k such that $\bigvee_{i \in S'} \varphi_i$ is a tautology?

This is another Σ_2^p -complete problem (Umans, 1998).

Natural Problem in the Second Level

EXACT INDSET refers to the following problem:

 $\{\langle G,k\rangle\mid \text{the largest independent sets of } G \text{ are of size } k\}.$

It is in Σ_2^p and is **DP**-complete.

 $L \in \mathbf{DP}$ if $L = L_0 \cap L_1$ for some $L_0 \in \mathbf{NP}$ and some $L_1 \in \mathbf{coNP}$. Clearly

 $NP, coNP \subseteq DP.$

Stockmeyer-Wrathall Characterization

In 1976, Stockmeyer defined Polynomial Hierarchy in terms of alternation of quantifier and Wrathall proved that it is equivalent to the original definition.

- 1. Larry Stockmeyer. The Polynomial-Time Hierarchy. Theoretical Computer Science, 3:1-22, 1976.
- 2. Celia Wrathall. Complete Sets and the Polynomial-Time Hierarchy. Theoretical Computer Science, 3:23-33, 1976.

Logic Characterization

Theorem. Suppose $i \ge 1$.

lacksquare $L \in \Sigma_i^p$ iff there exists a P-time TM $\mathbb M$ and a polynomial q such that for all $x \in \{0,1\}^*$,

$$x \in L \text{ iff } \exists u_1 \in \{0,1\}^{q(|x|)} \forall u_2 \in \{0,1\}^{q(|x|)} \dots Q_i u_i \in \{0,1\}^{q(|x|)} . \mathbb{M}(x,\widetilde{u}) = 1.$$

▶ $L \in \prod_{i=1}^{p}$ iff there exists a P-time TM M and a polynomial q such that for all $x \in \{0,1\}^*$,

$$x \in L \text{ iff } \forall u_1 \in \{0,1\}^{q(|x|)} \exists u_2 \in \{0,1\}^{q(|x|)} \dots Q_i u_i \in \{0,1\}^{q(|x|)} . \mathbb{M}(x,\widetilde{u}) = 1.$$

1. Celia Wrathall. Complete Sets and the Polynomial-Time Hierarchy. Theoretical Computer Science. 3:23-33, 1976.

Proof of Wrathall Theorem

Let \mathbb{M} be a P-time TM and q a polynomial such that $x \in L$ if and only if

$$\exists u_1 \in \{0,1\}^{q(|x|)} \dots Qu_{i+1} \in \{0,1\}^{q(|x|)}.\mathbb{M}(x,u_1,\dots,u_{i+1}) = 1.$$

Given x an NDTM guesses a u_1 and asks if the following is true

$$\forall u_2 \in \{0,1\}^{q(|x|)} \dots Qu_{i+1} \in \{0,1\}^{q(|x|)}.\mathbb{M}(x,u_1,\dots,u_{i+1}) = 1.$$

By induction hypothesis the above formula can be evaluated by querying a Σ_i^p oracle.

Proof of Wrathall Theorem

Let L be decided by a P-time NDTM $\mathbb N$ with access to some oracle $A \in \Sigma_i^p$. Now by Cook-Levin Theorem, $x \in L$ if and only if

$$\exists \widetilde{z}. \exists c_1, \ldots, c_m, a_1, \ldots, a_k. \exists u_1, \ldots, u_k. (\mathbb{N} \text{ accepts } x \text{ using choices } c_1, \ldots, c_m$$
 and answers a_1, \ldots, a_k to the queries $u_1, \ldots, u_k) \land (\bigwedge_{i \in [k]} a_i = 1 \Rightarrow u_i \in A)$ $\land (\bigwedge_{i \in [k]} a_i = 0 \Rightarrow u_i \in \overline{A}),$

where \tilde{z} are introduced by the Cook-Levin reduction. We are done by induction.

Σ_i SAT

Let Σ_i SAT be the subset of TQBF that consists of all tautologies of the following form

$$\exists u_1 \forall u_2 \ldots Q_i u_i . \varphi(u_1, \ldots, u_i),$$

where $\varphi(u_1,\ldots,u_i)$ is a propositional formula.

Theorem (Meyer and Stockmeyer, 1972). Σ_i SAT is Σ_i^p -complete.

Proof.

Clearly $\Sigma_i SAT \in \Sigma_i^p$. The completeness is defined with regards to Karp reduction.

Theorem (Stockmeyer, Wrathall, 1976). **PH** ⊆ **PSPACE**.

Chandra-Kozen-Stockmeyer Theorem

Ashok Chandra, Dexter Kozen and Larry Stockmeyer introduced Alternating Turing Machines that give alternative characterization of complexity classes.

1. Alternation. Journal of the ACM, 28(1):114-133, 1981.

Alternating Turing Machine

An Alternating Turing Machine (ATM) is an NDTM in which every state is labeled by an element of $\{\exists, \forall, \mathtt{accept}, \mathtt{halt}\}$.

We say that an ATM \mathbb{A} accepts x if there is a subtree Tr of the execution tree of $\mathbb{A}(x)$ satisfying the following:

- ▶ The initial configuration is in *Tr*.
- ▶ All leaves of *Tr* are labeled by accept.
- ▶ If a node labeled by \forall is in Tr, both children are in Tr.
- ▶ If a node labeled by \exists is in Tr, one of its children is in Tr.

Complexity via ATM

For every $T : \mathbb{N} \to \mathbb{N}$, we say that an ATM \mathbb{A} runs in T(n)-time if for every input $x \in \{0,1\}^*$ and for all nondeterministic choices, \mathbb{A} halts after at most T(|x|) steps.

- ▶ ATIME(T(n)) contains L if there is a cT(n)-time ATM $\mathbb A$ for some constant c such that, for all $x \in \{0,1\}^*$, $x \in L$ if and only if $\mathbb A(x) = 1$.
- ightharpoonup ASPACE(S(n)) is defined analogously.

Example of ATM

 $\ensuremath{\mathsf{TQBF}}$ is solvable by an ATM in quadratic time and linear space.

Complexity Class via ATM

$$\begin{array}{rcl} \mathbf{AL} & = & \mathbf{ASPACE}(\log n), \\ \mathbf{AP} & = & \bigcup_{c>0} \mathbf{ATIME}(n^c), \\ \mathbf{APSPACE} & = & \bigcup_{c>0} \mathbf{ASPACE}(n^c), \\ \mathbf{AEXP} & = & \bigcup_{c>0} \mathbf{ATIME}(2^{n^c}), \\ \mathbf{AEXPSPACE} & = & \bigcup_{c>0} \mathbf{ASPACE}(2^{n^c}). \end{array}$$

Theorem. Assume the relevant time/space functions are constructible. Then

- 1. $NSPACE(S(n)) \subseteq ATIME(S^2(n))$.
- 2. ATIME(T(n)) \subseteq SPACE(T(n)).
- 3. ASPACE $(S(n)) \subseteq \bigcup_{c>0} \mathsf{TIME}(c^{S(n)}).$
- 4. TIME(T(n)) \subseteq ASPACE(log T(n)).
- 1. Savitch's proof. Recursive calls are implemented using \forall -state. We need to assume that S(n) is constructible in $S(n)^2$ time.
- 2. Traversal of configuration tree. Counters of length T(n). We need to assume that T(n) is also space constructible.
- 3. Depth first traversal of configuration graph.
- 4. Backward guessing (\exists) and parallel checking (\forall) in the configuration circuit.

Chandra-Kozen-Stockmeyer Theorem

Bounded Alternation

$$L \in \Sigma_i \mathsf{TIME}(T(n))/\Pi_i \mathsf{TIME}(T(n))$$
 if

L is accepted by an O(T(n))-time ATM $\mathbb A$ with q_{start} labeled by \exists / \forall , and on every path the machine $\mathbb A$ may alternate at most i-1 times.

Polynomial Hierarchy Defined via ATM

Theorem. For every $i \ge 1$, the following hold:

$$\Sigma_i^p = \bigcup_{c>0} \Sigma_i \mathsf{TIME}(n^c),$$

$$\Pi_i^p = \bigcup_{c>0} \Pi_i \mathsf{TIME}(n^c).$$

Use the logical characterization.

Infinite Hierarchy Conjecture

Theorem. If NP = P then PH = P.

Suppose $\Sigma_i^p = \mathbf{P}$. Then $\Sigma_{i+1}^p = \mathbf{NP}^{\Sigma_i^p} = \mathbf{NP}^{\mathbf{P}} = \mathbf{NP} = \mathbf{P}$.

Theorem (Meyer and Stockmeyer, 1972). For every $i \geq 1$, if $\Sigma_i^p = \Pi_i^p$ then $\mathbf{PH} = \Sigma_i^p$.

Suppose $\Sigma_k^p = \Pi_k^p$. Then $\Sigma_{k+1}^p = \Sigma_k^p = \Pi_k^p = \Pi_{k+1}^p$.

Theorem. If there exists a language L that is **PH**-complete with regards to Karp reduction, then some i exists such that $PH = \sum_{i=1}^{p} f(x_i)$.

If such a language L exists, then $L \in \Sigma_i^p$ for some i. Consequently every language in **PH** is Karp reducible to L.

Theorem. If PH = PSPACE, then PH collapses.

If **PH** = **PSPACE**, then TQBF would be **PH**-complete.

Infinite Hierarchy Conjecture. Polynomial Hierarchy does not collapse.

Many results in complexity theory take the following form

"If something is not true, then the polynomial hierarchy collapses".

Time-Space Trade-Off

To summarize our current understanding of NP-completeness from an algorithmic point of view, it suffices to say that at the moment we cannot prove either of the following statements:

SAT
$$\notin$$
 TIME (n) ,
SAT \notin **SPACE** $(\log n)$.

We can however prove that SAT cannot be solved by any TM that runs in both linear time and logspace. Notationally,

SAT \notin **TISP** $(n, \log n)$.

TISP

Suppose $S, T : \mathbf{N} \to \mathbf{N}$. A problem is in

TISP(
$$T(n), S(n)$$
)

if it is decided by a TM that on every input x takes at most O(T(|x|)) time and uses at most O(S(|x|)) space.

Time-Space Tradeoff for SAT

Theorem. SAT \notin **TISP** $(n^{1.1}, n^{0.1})$.

We show that $NTIME(n) \not\subseteq TISP(n^{1.2}, n^{0.2})$, which implies the theorem for the following reason:

- 1. Using Cook-Levin reduction a problem $L \in \mathbf{NTIME}(n)$ is reduced to a formula, every bit of the formula can be computed in logarithmic space and polylogarithmic time.
- 2. If SAT \in TISP $(n^{1.1}, n^{0.1})$, then F could be computed in TISP $(n^{1.1}\operatorname{polylog}(n), n^{0.1}\operatorname{polylog}(n))$.
- 3. But then one would have $L \in \mathbf{TISP}(n^{1.2}, n^{0.2})$.

The proof of $NTIME(n) \not\subseteq TISP(n^{1.2}, n^{0.2})$ is given next.

The Cook-Levin reduction makes use of the configuration circuit.

$\mathsf{TISP}(n^{12},n^2) \subseteq \Sigma_2 \mathsf{TIME}(n^8).$

Suppose L is decided by M using n^{12} time and n^2 space.

- ▶ Given input x a node of $G_{\mathbb{M},x}$ is of length $O(n^2)$.
- $x \in L$ iff C_{accept} can be reached from C_{start} in n^{12} steps.
- ▶ There is such a path iff there exist n^6 nodes C_1, \ldots, C_{n^6} , whose total length is $O(n^8)$, such that, for all $i \in \{1, \ldots, n^6\}$, C_i can be reached from C_{i-1} in $O(n^6)$ -steps.
- ▶ The latter condition can be verified in $O(n^6 \log n)$ -time by resorting to a universal machine.

It is now easy to see that $L \in \Sigma_2$ **TIME** (n^8) .

If $NTIME(n) \subseteq TIME(n^{1.2})$ then $\Sigma_2 TIME(n^8) \subseteq NTIME(n^{9.6})$.

Suppose $L \in \Sigma_2$ **TIME** (n^8) . Then some c, d and $(O(n^8))$ -time TM $\mathbb M$ exist such that $x \in L$ iff

$$\exists u \in \{0,1\}^{c|x|^8}. \forall v \in \{0,1\}^{d|x|^8}. \mathbb{M}(x,u,v) = 1.$$
 (1)

Given $\mathbb M$ one can design a linear time NDTM $\mathbb N$ that given $x \circ u$ returns 1 iff $\exists v \in \{0,1\}^{d|x|^8}.\mathbb M(x,u,v)=0.$

- ▶ By assumption there is some $O(n^{1.2})$ -time TM $\mathbb D$ such that $\mathbb D(x,u)=1$ iff $\exists v \in \{0,1\}^{d|x|^8}.\mathbb M(x,u,v)=0.$
- ▶ Consequently $\overline{\mathbb{D}}(x,u) = 1$ iff $\forall v \in \{0,1\}^{d|x|^8}$. $\mathbb{M}(x,u,v) = 1$.

It follows that there is an $O(n^{9.6})$ time NDTM $\mathbb C$ such that

$$\mathbb{C}(x) = 1 \text{ iff } \exists u \in \{0,1\}^{c|x|^8}.\overline{\mathbb{D}}(x,u) = 1 \text{ iff (1) holds iff } x \in L,$$

implying that $L \in \mathbf{NTIME}(n^{9.6})$.

$$\begin{array}{lll} \textbf{NTIME}(n) & \subseteq & \textbf{TISP}(n^{1.2}, n^{0.2}), \text{ hypothesis} \\ & & \downarrow \\ \textbf{NTIME}(n^{10}) & \subseteq & \textbf{TISP}(n^{12}, n^2) \\ & & \downarrow \\ \textbf{NTIME}(n^{10}) & \subseteq & \Sigma_2 \textbf{TIME}(n^8), \text{ alternation introduction} \\ & \downarrow \\ \textbf{NTIME}(n^{10}) & \subseteq & \textbf{NTIME}(n^{9.6}), \text{ alternation elimination,} \\ & & \textbf{but} \\ \textbf{NTIME}(n^{9.6}) & \subseteq & \textbf{NTIME}(n^{10}), \text{ diagonalization.} \end{array}$$

Proof by Indirect Diagonalization

Suppose we want to prove $NTIME(n) \not\subseteq TISP(T(n), S(n))$.

- 1. Assume $NTIME(n) \subseteq TISP(T(n), S(n))$.
- 2. Derive unlikely inclusions of complexity classes.
 - ▶ Introduce alternation to speed up space bound computation.
 - ▶ Eliminate alternation using hypothesis.
- 3. Derive a contradiction using a diagonalization argument.

Lance Fortnow proved the first time-space lower bound. A survey on the time-space lower bounds for satisfiability is given by Dieter van Melkebeek.

- 1. Lance Fortnow, Time-Space Tradeoffs for Satisfiability, Journal of Computer and System Sciences, 60:337-353, 2000.
- Dieter van Melkebeek. A Survey of Lower Bounds for Satisfiability and Related Problems. Foundations and Trends in Theoretical Computer Science. 2:197-303. 2007.