NATIONAL AIR INTELLIGENCE CENTER

SINGLE GEOSTATIC ORBITAL SATELLITE IN TRACKING GROUND-BASED MOBILE RADIO TRANSMITTER

by

Chris Le Marshall

Approved for public release: distribution unlimited

19951108 106_

HUMAN TRANSLATION

NAIC-ID(RS)T-0224-95

11 October 1995

MICROFICHE NR: 95 COO 0633

SINGLE GEOSTATIC ORBITAL SATELLITE IN TRACKING GROUND-BASED MOBILE RADIO TRANSMITTER

By: Chris Le Marshall

English pages: 18

Source: Unknown

Country of origin: China Translated by: SCITRAN

F33657-84-D-0165

Requester: NAIC/TASS/Scott Feairheller

Approved for public release: distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE NATIONAL AIR INTELLIGENCE CENTER.

PREPARED BY:

TRANSLATION SERVICES
NATIONAL AIR INTELLIGENCE CENTER
WPAFB, OHIO

NAIC-ID(RS)T-0224-95

Date __11 October 1995

Abstract

ESLS is a very specialized satellite geo-position system. It is also used in satellite tracking and communication system(SAT/TARC). It can be used to pinpoint any objects that are equipped with ESLS low power radio transmitter. This technology can be used as a new method in radio tracking.

Accesi	on For	
DTIC	ounced	A
By Distribution /		
Availability Codes		
Dist	Avail and Specia	
A-1		

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this translation were extracted from the best quality copy available.

I. Introduction

A mobile ground launcher uses either Doppler tracking of low earth orbit satellite or triangular tracking of geostatic orbit satellite. An unique geo-position system, which has been developed by Anglewood Limited Inc. of Colorado, can locate low power transmitter using single geostatic satellite. This is a satellite tracking, measuring and communication system. It has a 165 feet diameter antenna. Single satellite such as this can meet the needs of 10,000 households. In conjunction with a similar satellite, the service can be expanded to 6,000,000 households with considerable amount of improvement in timing and locating accuracy.

II. Satellite Description

The satellite has a 165 feet wide stretchable antenna as it is shown in fig.1. It projects on the earth surface in a rectangular fashion. The satellite can self rotate along the axis of the antenna. It also circle around the plane which is perpendicular to the earth axis. Such rotation and circling covers certain geographic region as it was shown in fig.2. The position of the ground transmitter can be located when emitting signals are received as the antenna is turning.

^{*} Numbers in margins indicate foreign pagination. Commas in numbers indicate decimals.

Fig. 1

Key:

- (1) Solar panel; (2) Satellite frame; (3) Stretchable antenna;(4) Satellite power source panel;

Fig. 2 Satellite tracking and communication system diagram

Key:

- (1) Ground orbit antenna direction (2) Antenna direction
 (3) "Radial" antenna (4)Earth (5) Self-rotating(12 circles/min)
 (6) Satellite (7) Deviation(1 circle/min)
- (8) Orbits at three different time points (9) Self-rotating
- (deviation)
- (10) Locate household position using whole phase alternating wave

The working principle of the system

This system can serve customers full time or serve only upon request as it was shown in fig.3. During the full time service, the codes sent by customer's transmitter are relayed to the ground processing station. A mobile ground transmitter can meet the needs.

Fig.3 The comparison of full time service transmitter and needs based service transmitter

Key: (1) Full time service; (2) 24 gigaHz; (3) Full time geoposition signal; (4) customer; (5) 20 gigaHz; (6) signal
processing station;

(7) Need based service; (8) customer activated signal; (9) receiving and sending by customer; (10) geo-positioning signals from customer; (11) signal processing station.

By providing customer with a small mobile transmitter, the ground processing station can activate the transmitter regularly to meet the needs of the customers.

The characteristics of the system are listed in table 1. It depicts both single satellite effective system and two satellite working system. The communication time is dramatically reduced from 20 min to 1 minute. Single satellite effective system can be converted into two satellite working system by adding the second satellite. The resolution is increased from 1,000 feet to 50 feet. The analysis of single and two satellite system is shown in table 2 and table 3. Studies show that customers only need 5 watt all direction radiating power. The 24 giga Hz working mode can only be achieved by using modern MIMIC technology.

/141

Three pairs of satellite are needed to cover the whole continent as it was shown in fig.4.

Fig.4 Satellite tracking, measuring and covering range.

Table 1 System cha	aracteristics		
characteristics	effective system	working	
system			
user antenna	half sphere	half	
sphere			
user receiver	need based	need based	
user amplifier	5 watt	5 watt	
user basic unit	1.5 MC/s	1.5 MC/s	
satellite region	1	2	
constellation size	4.5	6.7	
satellite antenna	24 radials	24 radials	
satellite self			
rotating rate	0.6 circle/min	0.02	
circle/min			
satellite deviation rate	0.05 circle/min	None	
satellite power	use only 1 of the 24	24	
	30 watt	30 watt	
CPA antenna	1	2	
CPA antenna size	90 feet	90 feet	
CPA adjust	1000	60,000-	
100,000			
customer	10,000(capable of expand	-	
	-ing to 6,000,000)	6,000,000	
response time	20 min	1 min	
Average service response			
/day	selectable	8	
upper chain circuit widt	h 1.5 GHZ	1.5 GHZ	
lower chain circuit widt	h 1.5 GHZ	36 GHZ	
resolution	1,000 feet	50 feet	

Table 2 Chain Circuit Analysis Single satellite(effective system)

ι	synchronous orbit upper chain circuit	synchronous orb lower chain circuit	lower chai	n
Bozman			0220020	41120
constant -	-198.6	-198.6	-198.6	dBm/Hz/K
noise				
temperature	e 30.0	26.2	28.2	dB.K
correspondi	ing			
-	idth 11.9(16 Hz)	11.9(16 Hz)	0.0(1 Hz)	dB.Hz
resolution				
spectrum wi E/N	idth 15.7(1,000) i	ft 15.7(1,000)	ft -	dB.Hz
Interference	ce			
noise	3.0	3.0	-	
LNA minimum	1			
signal	-131.0(satel)	lite) -134.8(CP	A) -160.8	dBm
antenna wea	ar -52.5(satelli	ite)		
wave edge w	·	0.5		
opening sig	gnal -180.5(sate)	llite) -206.8(C	PA) -159.9	(user)
transmissio	on			
wear	211.5	210.3	210.3	dB
moisture ab	osorption 1.5	1.2	1.2	dB

Required EIRP	32.5(user)	4.7(satellite)	
51.6(satellite) Ant	enna wear	-2.1	-20.0
-20.0 dBi			
antenna/large power			
amplifier wear	1.5	2.0	2.0
edge of wave beam	1.0	3.0	3.0
single user large			
power amplifier	32.9	-10.3(satellit	e)
36.6(satellite)			
effective signal			
number	0.0	14.0	-
compensation	0.0	3.0	3.0
required large			
power amplifier	32.9(user)	6.7(satellite)	39.6(satellite)
large power amplific	er 2 watt(user)	10 watt(satel	lite)
Note: BER-error rate	e; EIRP-equi	valent irradiat	ion power
LNA-low noise ampli	fier		
			/143

Table 3 Chain Circuit Analysis
Twin satellite(working system)

```
Parameters upper chain
                           lower chain
                                         lower
             circuit on
                           circuit on
                                         communication
                                                             unit
             synchronous
                           synchronous
                                         chain circuit
            orbit
                           orbit
Bozman cons-
-tant
            -198.6
noise temper-
-ature
             30.09(satellite)
corresponding
spectrum width 28.5(50 ft) 28.5(50 ft)
E/N(10^{-3} BER)
Interference
Noise
               3.0
                               3.0
antenna minimum
signal
               -129.9(satellite) -133.7(CPA) -157.6(user)
                                                             dBm
antenna wear
               -49.3(satellite) -72.5
                                          -2.1
                                                             dBi
wave edge wear 3.0
                              0.5
opening signal -176.2(satellite) 205.7(CPA) -156.7(user)
transmission
wear
               211.5
                              210.3
moisture
absorption
               1.5
                              1.2
                                        1.2
required EIRP
               36.9(user)
                              5.8(satellite)
antenna wear
               -2.1
                              -20.0(satellite)
antenna/large
```

power amplifier

2.0 2.0 1.5 wear 3.0 wave edge wear 1.0 3.0 user's large power amplifier signal 37.2(user) -9.2(satellite) effective opening 35.5(3600) times 3.0 3.0 compensation required large power amplifier 37.2(user) 29.3(satellite) 42.8(satellite) large power 5 watt(user) 20 watt(satellite) amplifier

IV. Project

Satellite tracking, measuring and communication involves several technical subjects. Some preliminary characteristics on satellite and effective carrying capacity are listed in table 4.

/144

Table 4. Satellite effective carrying capacity feature (major feature in satellite tracking, measuring and communication system)

geo-positioning antenna diameter	165 feet
geo-positioning antenna width	0.15 feet
diversion from the center of earth	0.0
self-rotating rate	0.02 circle/min
benefit for 25 GHZ geo-positioning	
antenna along the axis	49 dBi
Geo-positioning	1000 feet
benefit for 20 GHZ earth-covering antenna	20 dBi
convertor belt width(upper chain circuit)	1.5 GHZ
convertor belt width(lower chain circuit)	36 GHZ
TT & C system	S wave(major)
	Ku wave(minor)

1. Antenna error estimate

Antenna error estimate is shown in fig.5. The major technical issue that is facing this 165 feet diameter hyperbola shaped antenna is how to guarantee its surface delicacy. As it was shown in fig.5, a 2.0 mm error in mechanical alignment can often lead to 6 dB loss in antenna power. Therefore, this expandable antenna often has to be calibrated mechanically after it is unfold on orbit.

2. Self-interference

Self-interference mostly results from increasingly high customer response and full time customer usage. The measurements and wave beam response estimate are shown in fig.6. The ideal solution is to adopt wider belt and more powerful transmitter. The assignment of radio wavelength restricts the width of belt, while light weight mobile receiver restricts the real usable power.

/145

3. Satellite power requirement

The power requirements for satellite tracking, measuring and instruction are listed in table 5. A "director" satellite requires more panel surface area than the one provided by spreading solar panel of a regular satellite. In order to increase power, an expandable globe structure antenna is installed away from the earth with resilient and economical solar panel.

天线机械精度	近似增益损耗
0.0mm	0.0dB
1.0mm	1.2dB
1.5mm	3.0dB
2.0mm	6.0dB

Fig.5 Antenna error estimate

Antenna mechanical accuracy approximate benefit loss 0.0mm 0.0dB

/146

Antenna benefit is contingent upon surface roughness and the shape of fully unfolded hyperbola under that particular kinetic and thermodynamic condition.

Key: (1) hyperbola shaped reflector; (2) reflecting source; (3)
wheel radius.

Fig. 6 Measurement/wave response estimate better resolution=wider belt width=more customer usage power

Key: (1) self-interference; (2) response; (3) time; (4) one
measurement unit=5 msec; (5) error; (6) response; (7) 3 measuring unit=5 msec;

(8) error; (9) time; (10) response; (11) 6 measuring unit=5 msec;

(12) error; (13) time; (14) energy response.

a) 5 msec shining(7 mile width).

- . Due to the high self-interference level, it is impossible to test energy level. The response does not exceed noise level.
- . Specific user codes can be used to distinguish customers.
- . Coded instruction have to be received within 5 msec. of wave scanning.
- . The higher the frequency of measurement per scanning, the higher accuracy in positioning.

Table 5. Summary on power power(watt) working cycle average power subsystem electric source subdivision 8.5 1.00 8.5 (adjustor use 75% power) communication & digital processing 10.00 10.00 1.00 processor 0.65 10.00 6.5 quality storing global positioning system 4.00 0.50 receiver 8.00 transmission system 1.00 2.30 instruction receiver 2.30 2.70 22.40 0.12 S wavelength transmitter position control system 14.00 0.25 3.50 reaction momentum wheel(2) 1.00 0.10 0.10 magnetic meter 2.70 torsional pendulum speed(3) 2.70 1.00 1.00 1.00 1.00 earth sensor momentary control(i.e. work 1.20 120.00 0.01 motor) effective carrying capacity total capacity(orbital average) 115.00

V. Conclusion

battery wear(orbital average)

total power(orbital average)

The new satellite tracking, measuring and communication concepts developed by Kinetic Energy Company Limited proved to be

16.00

131.00

very practical based on preliminary system engineering analysis. Although, some technical details on providing this new earth positioning service remain to be addressed, they are within the scope of current available technology.

DISTRIBUTION LIST

DISTRIBUTION DIRECT TO RECIPIENT

ORGANIZATION	MICROFICHE
BO85 DIA/RIS-2FI	1
C509 BALLOC509 BALLISTIC RES LAB	1
C510 R&T LABS/AVEADCOM	1
C513 ARRADCOM	1
C535 AVRADCOM/TSARCOM	1
C539 TRASANA	1
Q592 FSTC	4
Q619 MSIC REDSTONE	1
Q008 NTIC	1
Q043 AFMIC-IS	1
E404 AEDC/DOF	1
E410 AFDTC/IN	1
E429 SD/IND	1
P005 DOE/ISA/DDI	1
1051 AFIT/LDE	1
PO90 NSA/CDB	1

Microfiche Nbr: FTD95C000633

NAIC-ID(RS)T-0224-95