RANGKUMAN BUKU SCHAUM

DIBUAT OLEH: KELOMPOK 10

INSTITUT TEKNOLOGI SEPULUH NOPEMBER Departemen Matematika Indonesia

Daftar Anggota Kelompok

Renaldy Satriaji Wahyudi (5002221155)

Nicholas Joe Sumantri (5002221003)

3 Teosofi Hidayah Agung (5002221132)

Sagus Rico Pambudi (5002221144)

DAFTAR ISI

Chapter 4: Gradient, Divergence, and Curl

Chapter 5: Vector Integration

Chapter 6: The Divergence, Stokes, and Related Integral Theorems

Operator Vektor Delta (∇)

Definisi 1

Operator vektor ∇ atau disebut juga **del** adalah operator diferensial yang didefinisikan sebagai

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \tag{1}$$

Definisi 2

Dalam koordinat silinder, operator ∇ didefinisikan sebagai

$$\nabla = \left(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta}, \frac{\partial}{\partial z}\right) \tag{2}$$

Operator Vektor Delta (∇)

Definisi 3

Dalam koordinat bola, operator ∇ didefinisikan sebagai

$$\nabla = \left(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta}, \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}\right) \tag{3}$$

Gradien

Definisi 4

Gradien dari suatu fungsi skalar f(x,y,z) adalah vektor yang didefinisikan sebagai

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \tag{4}$$

Gradien mengubah fungsi skalar menjadi vektor.

Gradien

Example 1

Tentukan gradien dari fungsi $f(x, y, z) = x^2 + y^2 + z^2$. Jawab:

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$
$$= (2x, 2y, 2z)$$

Divergensi

Definisi 5

Divergensi dari suatu vektor F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)) adalah fungsi skalar yang didefinisikan sebagai

$$\nabla \cdot F = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \tag{5}$$

Divergensi mengubah vektor menjadi fungsi skalar.

Divergensi

Example 2

Tentukan divergensi dari vektor $F(x,y,z)=(\sin xy,\cos yz,\tan xz).$ Jawab:

$$\nabla \cdot F = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$
$$= y \cos xy - z \sin yz + x \sec^2 xz$$

Curl

Definisi 6

Curl dari suatu vektor F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)) adalah vektor yang didefinisikan sebagai

$$\nabla \times F = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \tag{6}$$

Curl mengubah vektor menjadi vektor.

Curl

Example 3

Tentukan curl dari vektor $F(x,y,z)=(2y\ln x,4e^{xyz},z^y).$ Jawab:

$$\nabla \times F = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)$$
$$= (z^{y} - 0, 0 - 0, 0 - 4e^{xyz})$$
$$= (z^{y}, 0, -4e^{xyz})$$

DAFTAR ISI

Chapter 4: Gradient, Divergence, and Cur

Chapter 5: Vector Integration

Chapter 6: The Divergence, Stokes, and Related Integral Theorems

Integral Vektor

Definisi 7

Diketahui sebuah vektor $\mathbf{R}(u) = R_1(u)\mathbf{i} + R_2(u)\mathbf{j} + R_3(u)\mathbf{k}$ memiliki parameter u, yang dimana $R_1(u),\ R_2(u),\ R_3(u)$ adalah kontinu di interval batas tertentu, maka

$$\int \mathbf{R}(u) du = \mathbf{i} \int R_1(U) du + \mathbf{j} \int R_2(U) du + \mathbf{k} \int R_3(u) du$$

disebut sebuah integral tak terbatas di R(u)

Definisi 8

Integral terbatas diantara batas u=a dan u=b dapat ditulis sebagai berikut.

$$\int_a^b \mathbf{R}(u) \, du = \int_a^b \frac{d}{du} \left(\mathbf{S}(u) \right) \, du = \mathbf{S}(u) + c \mid_a^b = \mathbf{S}(b) - \mathbf{S}(a)$$

Integral Garis

Definisi 9

Diketahui vektor $\mathbf{r}(u)=x(u)\mathbf{i}+y(u)\mathbf{j}+z(u)\mathbf{k}$, dimana $\mathbf{r}(u)$ adalah vektor posisi di (x,y,z). Terdapat sebuah kurva C yang merupakan kurva dengan batas untuk setiap $\mathbf{r}(u)$ adalah turunan kontinu. Misalkan $A(x,y,z)=A_1\mathbf{i}+A_2\mathbf{j}+A_3\mathbf{k}$ dan ditulis sebagai

$$\int_{p_1}^{p_2} \mathbf{A} \cdot dr = \int_C A_1 \, dx + A_2 \, dy + A_3 \, dz$$

dengan p_1 dan p_2 adalah batas kurva dan dapat ditulis menjadi C integral sebelumnya juga dalam kasus integral yang sederhana integral ini sering ditulis menjadi

$$\int_C \mathbf{A} \cdot dr = \oint \mathbf{A} \cdot dr$$

Integral Garis

Theorem 4

Jika $A=\nabla\phi$ berada diseluruh wilayah R, yang didefinisikan dengan $a_1\leq x\leq a_2$, $b_1\leq y\leq b_2$, $c_1\leq z\leq c_2$ dimana $\phi(x,y,z)$ adalah nilai tunggal dan memiliki turunan kontinu di R, maka

- \bullet $\int_{p_1}^{p_2} \mathbf{A} \, dr$ adalah independen dari lintasan C di R dengan batas p_1 dan p_2
- $\bullet \ \phi \ \mathbf{A} \cdot dr = 0$ disekitar kurva tertutup C di R

Integral Permukaan

Definisi 10

Misalkan S adalah permukaan dua sisi dengan normal satuan keluar n. Elemen diferensial area permukaan $d\mathbf{s}$ di arah n terhadap dS, sehingga $d\mathbf{s} = n\,dS$. Integral permukaan dari vektor \mathbf{A} di atas S, disebut sebagai fluks \mathbf{A} , diberikan oleh:

$$\iint_{S} \mathbf{A} \cdot d\mathbf{s} = \iint_{S} \mathbf{A} \cdot n \, dS.$$

Contoh integral permukaan lainnya meliputi:

$$\iint_{S} \phi \, dS, \quad \iint_{S} \phi n \, dS, \quad \iint_{S} \mathbf{A} \times d\mathbf{s}$$

di mana ϕ adalah fungsi skalar. Integral ini dapat didefinisikan dengan batas yang ditentukan dari fungsi yang diketahui .

Integral Permukaan

Definisi 11

Dalam kasus di permukaan S yang diberikan oleh persamaan Z=g(x,y), S yang merupakan permukaan ketinggian f(x,y,z)=z-g(x,y)=0 dapat dicari vektor normal terhadap permukaan S, yaitu $\nabla f(x,y,z)$. sehingga vektor normal satuan n adalah:

$$\mathbf{n} = \frac{\nabla f(x, y, z)}{|\nabla f(x, y, z)|} = \frac{-g_x(x, y)\mathbf{i} - g_y(x, y)\mathbf{j} + \mathbf{k}}{\sqrt{(g_x(x, y))^2 + (g_y(x, y))^2 + 1}}$$

Integral Permukaan

Definisi 12

Notasi \bigoplus_S digunakan untuk menunjukkan integrasi di atas permukaan tertutup S. Untuk mengevaluasi integral permukaan, biasanya diekspresikan sebagai integral ganda pada area proyeksi permukaan S pada salah satu bidang koordinat, dengan asumsi garis tegak lurus ke bidang koordinat hanya bertemu permukaan di satu titik.

CONTOH SOAL

- jika $\phi=2xyz^2$, $\mathbf{F}=xy\mathbf{i}-z\mathbf{j}+x^2k$ dan C adalah batas kurva dengan batas $x=t^2$, y=2t, $z=t^2$ dari t=0 menuju t=1. Langkah-langkahnya adalah sebagai berikut:
 - Menentukan $\mathbf{F}(\mathbf{r}(t))$:

$$\mathbf{F}(\mathbf{r}(t)) = \mathbf{F}(t^2, 2t, t^2) = \langle t^2 \cdot 2t, -t^2, (t^2)^2 \rangle = \langle 2t^3, -t^2, t^4 \rangle$$

2 Menentukan $\phi(\mathbf{r}(t))$:

$$\phi(\mathbf{r}(t)) = 2(t^2)(2t)(t^2)^2 = 2 \cdot t^2 \cdot 2t \cdot t^4 = 4t^7$$

3 Integral Garis $\int_C \phi \mathbf{F} \cdot d\mathbf{r}$:

$$\int_0^1 16t^{11} dt - \int_0^1 8t^9 dt + \int_0^1 8t^{12} dt = \frac{4}{3} - \frac{4}{5} + \frac{8}{13}$$

Jadi, hasil integral garis $\int_C \phi \mathbf{F} \cdot d\mathbf{r}$ adalah $\frac{224}{195}$.

DAFTAR ISI

Chapter 4: Gradient, Divergence, and Curl

Chapter 5 : Vector Integration

Chapter 6: The Divergence, Stokes, and Related Integral Theorems

Integral Volume

Definisi 13

Misalkan sebuah permukaan tertutup di ruang yang melingkupi volume V. Maka

$$\iiint_V \mathbf{A} \, dV$$
 dan $\iiint_V \phi \, dV$

adalah contoh dari integral volume atau integral ruang.

Teorema Divergensi Gauss

Theorem 5

Teorema Divergensi Gauss menyatakan jika V adalah volume yang dibatasi oleh permukaan tertutup S dan A merupakan fungsi vektor posisi dengan turunan kontinu, maka

$$\iiint_V (\nabla \cdot \mathbf{A}) \, dV = \iint_S \mathbf{A} \cdot \mathbf{n} \, dS = \oiint_S \mathbf{A} \cdot d\mathbf{S}$$

dimana $\mathbf n$ adalah positif (ditarik keluar) normal ke S.

22 / 32

Teorema Stokes

Theorem 6

Teorema Stokes menyatakan bahwa jika S adalah permukaan dua sisi terbuka yang dibatasi oleh kurva tertutup dan tidak berpotongan C (kurva tertutup sederhana) sehingga jika $\mathbf A$ mempunyai turunan berkelanjutan

$$\oint_C \mathbf{A} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{A}) \cdot \mathbf{n} \, dS = \iint_S (\nabla \times \mathbf{A}) \cdot d\mathbf{S}$$

dimana C dilintasi ke arah positif. Arah C disebut positif jika seorang pengamat berjalan pada batas S pada arah tersebut, dengan kepala menunjuk ke arah garis normal positif S, mempunyai permukaan di sebelah kirinya.

Teorema Green di Bidang

Theorem 7

Teorema Green pada Bidang menyatakan jika R merupakan daerah tertutup pada bidang xy yang dibatasi oleh kurva tertutup sederhana C dan jika M dan N adalah fungsi kontinu dari x dan y yang mempunyai turunan kontinu di R, maka:

$$\oint_C M \, dx + N \, dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy$$

atau

$$\iint_{B} (\operatorname{rot}_{Z} \mathbf{F}) \, dx \, dy = \oint_{C} \mathbf{F} \cdot d\mathbf{r}$$

dimana $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$.

Teorema Integral Terkait

Theorem 8

Properties

- 1. $\iiint_V (\psi \nabla^2 \phi + \nabla \phi \cdot \nabla \psi) dV = \iint_S (\phi \nabla \psi) \cdot d\mathbf{S}$ Ini disebut identitas atau teorema pertama Green.
- 2. $\iiint_V \left(\psi \nabla^2 \phi \phi \nabla^2 \psi \right) dV = \iint_S \left(\phi \nabla \psi \psi \nabla \phi \right) \cdot d\mathbf{S}$ Ini disebut identitas kedua Green atau teorema simetris.
- 3. $\iiint_V \nabla \times \mathbf{A} \, dV = \iint_S (\mathbf{n} \times \nabla \phi) \, dS = \iint_S \mathbf{dS} \times \nabla \phi$ Perhatikan bahwa di sini perkalian titik dari teorema divergensi Gauss diganti dengan perkalian silang.

Teorema Integral Terkait

Theorem 9

Properties

- 4. $\oint_C \phi d\mathbf{r} = \iint_S (\mathbf{n} \times \nabla \phi) dS = \iint_S \mathbf{dS} \times \nabla \phi$
- 5. Misalkan ψ menyatakan fungsi vektor atau skalar sesuai dengan simbol \circ yang menyatakan titik atau tanda silang, atau perkalian biasa. Kemudian

$$\iint_{V} \nabla \circ \psi \, dV = \iint_{S} \mathbf{n} \circ \psi \, dS = \iint_{S} \mathbf{dS} \circ \psi$$

$$\oint_{C} \mathbf{dr} \circ \psi = \iint_{S} (\mathbf{n} \times \nabla) \circ \psi \, dS = \iint_{S} (\mathbf{dS} \times \nabla) \circ \psi$$

Teorema divergensi Gauss, teorema Stokes, dan hasil 3 dan 4 adalah kasus khusus dari teorema ini.

Formulir Operator Integral untuk ∇

operator abla dapat dinyatakan secara simbolis dalam bentuk

$$\nabla \circ = \lim_{\Delta V \to 0} \frac{1}{\Delta V} \oiint_{\Delta S} \mathbf{dS} \circ$$

dimana o melambangkan titik, tanda silang, atau perkalian biasa. Hasilnya terbukti berguna dalam memperluas konsep gradien, divergensi, dan ikal ke sistem koordinat selain persegi panjang.

CONTOH SOAL

8. Carilah luas area dari ellips $x = a \cos \theta$, $y = b \sin \theta$.

$$\begin{aligned} \mathsf{Luas} &= \frac{1}{2} \oint_C x \, dy - y \, dx \\ &= \frac{1}{2} \int_0^{2\pi} \left(a \cos \theta \right) \left(b \cos \theta \, d\theta \right) - \left(b \sin \theta \right) \left(-a \sin \theta \, d\theta \right) \\ &= -\frac{1}{2} \int_0^{2\pi} ab \left(\cos^2 \theta + \sin^2 \theta \right) d\theta \\ &= -\frac{1}{2} \int_0^{2\pi} ab \, d\theta \\ &= \pi ab \end{aligned}$$

CONTOH SOAL

10. Hitung $\iint_S (\nabla \times \mathbf{A}) \cdot d\mathbf{S}$ dengan $\mathbf{A} = (2x-y)\mathbf{i} + yz^2\mathbf{j} - y^2z\mathbf{k}$ dimana S adalah separuh permukaan bola $x^2 + y^2 + z^2 = 1$ bagian atas dan C pembatasnya.

Penyelesaian:

$$\nabla \times \mathbf{A} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2x - y & yz^2 & -y^2z \end{vmatrix} = \mathbf{k}$$

Karena $\nabla \times \mathbf{A} = \mathbf{k}$, maka

$$\iint_{S} (\nabla \times \mathbf{A}) \cdot d\mathbf{S} = \iint_{S} k \cdot d\mathbf{S} = \iint_{R} dA = \iint_{R} dx \, dy = \pi$$

dimana R adalah proyeksi S pada bidang xy.

Dengan teorema Stokes, Perhatikan separuh permukaan bola pada gambar 7. Batas C dari S adalah suatu lingkaran dengan persamaan $x^2+y^2=1,\ z=0$ dan persamaan parameternya adalah $\mathbf{r}=\cos t\,\mathbf{i}+\sin t\,\mathbf{j},\ 0\leq t\leq 2\pi.$ Berdasarkan teorema Stokes $\iint_S (\nabla\times\mathbf{A})\cdot d\mathbf{S}=\oint_C\mathbf{A}\cdot d\mathbf{r}.$

$$\mathbf{A} \cdot d\mathbf{r} = [(2x - y)\mathbf{i} + yz^2\mathbf{j} - y^2z\mathbf{k}] \cdot (dx\mathbf{i} + dy\mathbf{j} + dz\mathbf{k})$$

$$= (2\cos t - \sin t)(-\sin t dt) + 0 + 0$$

$$= -2\sin t \cos t + \sin^2 t dt$$

$$= \int_0^{2\pi} (-2\sin t \cos t + \sin^2 t) dt$$

$$= \int_0^{2\pi} \left(\frac{-\sin 2t}{2} + \frac{1 - \cos 2t}{2}\right) dt$$

$$= \left[\frac{\cos 2t}{2} + \frac{t}{2} - \frac{\sin 2t}{4}\right]_0^{2\pi} = \pi$$

