Método

Leapfrog

Tabla de esquemas temporales

Para ecuaciones diferenciales de la forma $\frac{dq}{dt}=f(q,t)$

 α

$$\frac{q^{n+1} - q^{n-m}}{(m+1)\Delta t} = \beta f^{n+1} + \alpha_n f^n + \alpha_{n-1} f^{n-1} + \dots + \alpha_{n-l} f^{n-l}$$
$$= \beta f^{n+1} + \sum_{i=0}^{l} \alpha_{n-i} f^{n-i}$$

Tipo

Error

Expresión

con $f^n = f(q^n, t^n) = \frac{dq}{dt}(q^n, t^t)$.

m l β

Euler	0	0	0	$\alpha_n = 1$	Explícito	$O(\Delta t)$	$q^{n+1} = q^n + f^n \Delta t$
Atrasado	0	0	1	$\alpha_n = 0$	Implícito	$O(\Delta t)$	$q^{n+1} = q^n + f^{n+1}\Delta t$
Trapezoidal	0	0	$\frac{1}{2}$	$\alpha_n = \frac{1}{2}$	Implícito	$O(\Delta t^2)$	$q^{n+1} = q^n + \frac{\Delta t}{2}(f^{n+1} + f^n)$
Euler Atrasado o Matsuno	0	0	1	$\alpha_n = 0$	Iterativo	$O(\Delta t)$	$q^{n+1} = q^n + f(q^n + f^n \Delta t) \Delta t$
Heun	0	0	$\frac{1}{2}$	$\alpha_n = \frac{1}{2}$	Iterativo	$O(\Delta t^2)$	$q^{n+1} = q^n + \frac{\Delta t}{2} [f(q^n + f^n \Delta t) + f^n]$

Adams
– 0 1 0
$$\alpha_n=\frac{3}{2}$$
 Explícito $O(\Delta t^2)$ $q^{n+1}=q^n+\frac{\Delta t}{2}(3f^n+f^{n-1})$ Bashforth $\alpha_{n-1}=-\frac{1}{2}$

1 0 0 $\alpha_n = 1$ Explícito $O(\Delta t^4)$ $q^{n+1} = q^{n-1} + 2f^n \Delta t$