H2 Single Layer MLP

Bankbintje 22 februari 2016

Data

Load Data & Packages

Required packages worden geladen. Aanname is dat deze al voorkomen.

```
library(neuralnet)

## Loading required package: grid
## Loading required package: MASS

library(nnet)

## Warning: package 'nnet' was built under R version 3.1.3

library(plyr)
```

Install package "Mix All" en laad de dataset "Deb
Trivedi". Check # rijen en kolommen. Beschrijving kolommen:

- ofp (number of physician office visits)
- hosp (number of hospital stays)
- health (self-perceived health status)
- numchron (number of chronic conditions)
- gender
- school (number of years of education)
- privins (private insurance indicator)

```
##install.packages("MixAll")
data("DebTrivedi", package="MixAll")
data<-DebTrivedi
nrow(data)</pre>
```

[1] 4406

```
ncol(data)
```

[1] 19

Verwijder data met NA's, check # rijen en kolommen.

data<-na.omit(data) nrow(data)</pre>

[1] 4406

ncol(data)

[1] 19

Explore Data

```
plot(table(data$ofp), xlab= "Number of physician office visits (ofp)", ylab="Frequency")
```


Doel is om NN te gebruiken om te voorspellen of een individu hoger of lager dan gemiddeld aantal "office visits" heeft. Daarom een variabele toevoegen die waarde -1 heeft als het aantal ofp's lager is dan de mediaan en 1 als deze hoger is dan de mediaan.

```
data$Class<- ifelse(DebTrivedi$ofp>=median(DebTrivedi$ofp),-1,1)
```

Check de verdeling

```
barplot(table(data$Class), ylab = "Frequency")
```


Gebruik cfac function om relatie te tonen tussen "Class" en de covariates 1. hosp 2. health 3. numchron 4. gender 5. school 6. privins

 ${\bf uit\ https://cran.r-project.org/web/packages/pscl/vignettes/countreg.pdf}$

```
cfac <- function (x, breaks = NULL){
if(is.null(breaks)) breaks <- unique(quantile(x, 0:10/10))
x <- cut(x,breaks,include.lowest=TRUE, right=FALSE)
levels(x) <- paste(breaks[-length(breaks)], ifelse(diff(breaks)>1,
c(paste("-", breaks[-c(1, length(breaks))] -1, sep = ""), "+"), ""),
sep = "") + return(x)}
```

Plot de data

```
par (mfrow = c(3,2))
plot (Class ~ cfac(hosp), data = data, xlab = "Number of hospital stays (hosp)")
plot (Class ~ cfac(numchron), data = data, xlab = "Number of chronic conditions (numchron)")
plot (Class ~ cfac(school), data = data, xlab = "Number of years of education (school)")
plot (Class ~ health, data = data)
plot (Class ~ gender, data = data)
plot (Class ~ privins, data = data, xlab = "Private Insurance (privins)")
```


Prepare Data

Converteer gender, privins en health naar numerieke variabelen.

```
levels(data$gender)<- c("-1","1")
data$gender<- as.numeric(as.character(data$gender))

levels(data$privins)<- c("-1","1")
data$privins<- as.numeric(as.character(data$privins))

levels(data$health)<- c("0","1","2")
data$health<- as.numeric(as.character(data$health))</pre>
```

Converteer overige variabelen naar numeriek

```
data$hosp <- as.numeric(as.character(data$hosp))
data$numchron <- as.numeric(as.character(data$numchron))
data$school <- as.numeric(as.character(data$school))</pre>
```

Selecteer alleen relevante variabelen

```
keeps<-c("Class", "hosp", "health", "numchron", "gender", "school", "privins")
data<-data[keeps]
head(data)</pre>
```

```
Class hosp health numchron gender school privins
##
        -1
## 1
              1
                     1
                              2
              0
                               2
## 2
         1
                     1
                                     -1
                                            10
                                                     1
## 3
        -1
              3
                     0
                              4
                                     -1
                                            10
                                                    -1
                              2
## 4
        -1
           1
                     0
                                      1
                                             3
                                                     1
## 5
        1
              0
                               2
                                     -1
                                             6
                     1
                                                     1
                                             7
## 6
        -1
              0
                     0
                                     -1
                                                    -1
```

Centreer data: subtract the mean of all data points from each individual data point.

```
head(scale(data, center = TRUE, scale = FALSE))
```

```
##
      Class
                  hosp
                            health numchron
                                                 gender
                                                           school
                                                                     privins
## 1 -0.9133 0.7040399 0.04788924 0.4580118 1.1929187 -4.290286
                                                                  0.4471176
## 2 1.0867 -0.2959601 0.04788924 0.4580118 -0.8070813 -0.290286
                                                                  0.4471176
## 3 -0.9133 2.7040399 -0.95211076 2.4580118 -0.8070813 -0.290286 -1.5528824
## 4 -0.9133 0.7040399 -0.95211076 0.4580118 1.1929187 -7.290286
                                                                  0.4471176
## 5 1.0867 -0.2959601 0.04788924 0.4580118 -0.8070813 -4.290286
                                                                  0.4471176
## 6 -0.9133 -0.2959601 -0.95211076 3.4580118 -0.8070813 -3.290286 -1.5528824
```

Standardiseer (center & scale) de data met scale: subtract the mean of all data points from each individual data point, then divide those points by the standard deviation of all points.

```
data<-scale(data)
head(data)</pre>
```

```
hosp
                          health numchron
                                              gender
## 1 -0.9166481 0.9432503 0.1067271 0.3393606 1.2156191 -1.14752323
## 2 1.0906836 -0.3965179 0.1067271 0.3393606 -0.8224394 -0.07764282
## 3 -0.9166481 3.6227866 -2.1218967 1.8212464 -0.8224394 -0.07764282
## 4 -0.9166481 0.9432503 -2.1218967 0.3393606 1.2156191 -1.94993354
## 5 1.0906836 -0.3965179 0.1067271 0.3393606 -0.8224394 -1.14752323
## 6 -0.9166481 -0.3965179 -2.1218967 2.5621893 -0.8224394 -0.88005313
       privins
## 1 0.5365279
## 2 0.5365279
## 3 -1.8634130
## 4 0.5365279
## 5 0.5365279
## 6 -1.8634130
```

Correlation Plots

Maak een standaard corrplot van de dataset

```
library(corrplot)
corrplot(cor(data))
```


Functie voor het bepalen van correlatie & significantie

```
cor.mtest <- function(mat, conf.level = 0.95) {</pre>
    mat <- as.matrix(mat)</pre>
    n <- ncol(mat)</pre>
    p.mat <- lowCI.mat <- uppCI.mat <- matrix(NA, n, n)</pre>
    diag(p.mat) <- 0</pre>
    diag(lowCI.mat) <- diag(uppCI.mat) <- 1</pre>
    for (i in 1:(n-1)) {
         for (j in (i + 1):n) {
             tmp <- cor.test(mat[, i], mat[, j], conf.level = conf.level)</pre>
             p.mat[i, j] <- p.mat[j, i] <- tmp$p.value</pre>
             lowCI.mat[i, j] <- lowCI.mat[j, i] <- tmp$conf.int[1]</pre>
             uppCI.mat[i, j] <- uppCI.mat[j, i] <- tmp$conf.int[2]</pre>
         }
    }
    return(list(p.mat, lowCI.mat, uppCI.mat))
}
```

 $\label{lem:correlation} Verschillende \ manieren \ om \ correlatie \ te \ plotten. \ Zie: \ https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html$

```
res<-cor.mtest(data)
## add p-values on no significant coefficient
corrplot(cor(data), p.mat = res[[1]], sig.level = 0.1,insig="p-value")</pre>
```



```
## add all p-values
corrplot(cor(data), p.mat = res[[1]], sig.level = -1,insig="p-value")
```


Neural Network

Preparations

Schrijf de formule eerst als variabele:

```
f<-Class ~ hosp + health + numchron + gender + school + privins
# seed
set.seed(103)
n=nrow(data)
# selecteer trainingset
train <- sample(1:n, 4000, FALSE)</pre>
```

Estimate the model

Maak een MLP met een hidden layer

- hidden = nbr of hidden layers
- algorithm = "rprop+" = resilient backpropagation with backtracking
- algorithm = "backprop" = traditional backpropagation, needs learning rate
- learning rate = 0.01
- err.fct = error function: sum squared errors ("sse"") or cross-entropy ("ce")
- \bullet act.fct = type of activation function
- linear.output = if set to "TRUE" the node's output is not transformed by the specified activation function ; it is in essence linear

Results

```
print(fit)
## Call: neuralnet(formula = f, data = data[train, ], hidden = 1, algorithm = "rprop+",
## 1 repetition was calculated.
##
##
           Error Reached Threshold Steps
                    0.008971185555 15376
## 1 1854.659153
The model converged after 15.376 steps with an error of 1874.
https://groups.google.com/forum/#!topic/rropen/qS7Fki9pj8k
plotnn <- function (x, rep = NULL, x.entry = NULL, x.out = NULL, radius = 0.15,
  arrow.length = 0.2, intercept = TRUE, intercept.factor = 0.4,
  information = TRUE, information.pos = 0.1, col.entry.synapse = "black",
  col.entry = "black", col.hidden = "black", col.hidden.synapse = "black",
  col.out = "black", col.out.synapse = "black", col.intercept = "blue",
  fontsize = 12, dimension = 6, show.weights = TRUE, file = NULL,
{
  net <- x
  if (is.null(net$weights))
    stop("weights were not calculated")
  if (!is.null(file) && !is.character(file))
    stop("'file' must be a string")
  if (is.null(rep)) {
    for (i in 1:length(net$weights)) {
      if (!is.null(file))
        file.rep <- paste(file, ".", i, sep = "")</pre>
      else file.rep <- NULL
      # dev.new()
      plot.nn(net, rep = i, x.entry, x.out, radius, arrow.length,
        intercept, intercept.factor, information, information.pos,
        col.entry.synapse, col.entry, col.hidden, col.hidden.synapse,
        col.out, col.out.synapse, col.intercept, fontsize,
        dimension, show.weights, file.rep, ...)
    }
  }
  else {
    if (is.character(file) && file.exists(file))
      stop(sprintf("%s already exists", sQuote(file)))
    result.matrix <- t(net$result.matrix)</pre>
    if (rep == "best")
      rep <- as.integer(which.min(result.matrix[, "error"]))</pre>
    if (rep > length(net$weights))
      stop("'rep' does not exist")
    weights <- net$weights[[rep]]</pre>
    if (is.null(x.entry))
      x.entry <- 0.5 - (arrow.length/2) * length(weights)</pre>
```

err.fct = "

```
if (is.null(x.out))
  x.out <- 0.5 + (arrow.length/2) * length(weights)</pre>
width <- \max(x.out - x.entry + 0.2, 0.8) * 8
radius <- radius/dimension
entry.label <- net$model.list$variables</pre>
out.label <- net$model.list$response</pre>
neuron.count <- array(0, length(weights) + 1)</pre>
neuron.count[1] <- nrow(weights[[1]]) - 1</pre>
neuron.count[2] <- ncol(weights[[1]])</pre>
x.position <- array(0, length(weights) + 1)</pre>
x.position[1] <- x.entry</pre>
x.position[length(weights) + 1] <- x.out</pre>
if (length(weights) > 1)
  for (i in 2:length(weights)) {
    neuron.count[i + 1] <- ncol(weights[[i]])</pre>
    x.position[i] \leftarrow x.entry + (i - 1) * (x.out -
      x.entry)/length(weights)
y.step <- 1/(neuron.count + 1)
y.position <- array(0, length(weights) + 1)</pre>
y.intercept \leftarrow 1 - 2 * radius
information.pos <- min(min(y.step) - 0.1, 0.2)
if (length(entry.label) != neuron.count[1]) {
  if (length(entry.label) < neuron.count[1]) {</pre>
    tmp <- NULL
    for (i in 1:(neuron.count[1] - length(entry.label))) {
      tmp <- c(tmp, "no name")</pre>
    entry.label <- c(entry.label, tmp)</pre>
  }
if (length(out.label) != neuron.count[length(neuron.count)]) {
  if (length(out.label) < neuron.count[length(neuron.count)]) {</pre>
    tmp <- NULL
    for (i in 1:(neuron.count[length(neuron.count)] -
      length(out.label))) {
      tmp <- c(tmp, "no name")</pre>
    out.label <- c(out.label, tmp)</pre>
}
grid.newpage()
for (k in 1:length(weights)) {
  for (i in 1:neuron.count[k]) {
    y.position[k] <- y.position[k] + y.step[k]</pre>
    y.tmp <- 0
    for (j in 1:neuron.count[k + 1]) {
      y.tmp \leftarrow y.tmp + y.step[k + 1]
      result <- calculate.delta(c(x.position[k],
         x.position[k + 1]), c(y.position[k], y.tmp),
         radius)
      x \leftarrow c(x.position[k], x.position[k + 1] -
         result[1])
```

```
y <- c(y.position[k], y.tmp + result[2])</pre>
      grid.lines(x = x, y = y, arrow = arrow(length = unit(0.15,
        "cm"), type = "closed"), gp = gpar(fill = col.hidden.synapse,
        col = col.hidden.synapse, ...))
      if (show.weights)
        draw.text(label = weights[[k]][neuron.count[k] -
          i + 2, neuron.count[k + 1] - j + 1], x = c(x.position[k],
          x.position[k + 1]), y = c(y.position[k]),
          y.tmp), xy.null = 1.25 * result, color = col.hidden.synapse,
          fontsize = fontsize - 2, ...)
    }
    if (k == 1) {
      grid.lines(x = c((x.position[1] - arrow.length),
        x.position[1] - radius), y = y.position[k],
        arrow = arrow(length = unit(0.15, "cm"),
          type = "closed"), gp = gpar(fill = col.entry.synapse,
          col = col.entry.synapse, ...))
      draw.text(label = entry.label[(neuron.count[1] +
        1) - i], x = c((x.position - arrow.length),
        x.position[1] - radius), y = c(y.position[k],
        y.position[k]), xy.null = c(0, 0), color = col.entry.synapse,
        fontsize = fontsize, ...)
      grid.circle(x = x.position[k], y = y.position[k],
        r = radius, gp = gpar(fill = "white", col = col.entry,
    }
    else {
      grid.circle(x = x.position[k], y = y.position[k],
        r = radius, gp = gpar(fill = "white", col = col.hidden,
          ...))
   }
  }
out <- length(neuron.count)</pre>
for (i in 1:neuron.count[out]) {
  y.position[out] <- y.position[out] + y.step[out]</pre>
  grid.lines(x = c(x.position[out] + radius, x.position[out] +
    arrow.length), y = y.position[out], arrow = arrow(length = unit(0.15,
    "cm"), type = "closed"), gp = gpar(fill = col.out.synapse,
    col = col.out.synapse, ...))
  draw.text(label = out.label[(neuron.count[out] +
    1) - i], x = c((x.position[out] + radius), x.position[out] +
    arrow.length), y = c(y.position[out], y.position[out]),
    xy.null = c(0, 0), color = col.out.synapse,
    fontsize = fontsize, ...)
  grid.circle(x = x.position[out], y = y.position[out],
    r = radius, gp = gpar(fill = "white", col = col.out,
      ...))
}
if (intercept) {
  for (k in 1:length(weights)) {
    y.tmp <- 0
    x.intercept <- (x.position[k + 1] - x.position[k]) *</pre>
```

```
intercept.factor + x.position[k]
        for (i in 1:neuron.count[k + 1]) {
          y.tmp \leftarrow y.tmp + y.step[k + 1]
          result <- calculate.delta(c(x.intercept, x.position[k +
            1]), c(y.intercept, y.tmp), radius)
          x <- c(x.intercept, x.position[k + 1] - result[1])</pre>
          y <- c(y.intercept, y.tmp + result[2])</pre>
          grid.lines(x = x, y = y, arrow = arrow(length = unit(0.15,
            "cm"), type = "closed"), gp = gpar(fill = col.intercept,
            col = col.intercept, ...))
          xy.null <- cbind(x.position[k + 1] - x.intercept -</pre>
            2 * result[1], -(y.tmp - y.intercept + 2 *
            result[2]))
          if (show.weights)
            draw.text(label = weights[[k]][1, neuron.count[k +
              1] - i + 1], x = c(x.intercept, x.position[k +
              1]), y = c(y.intercept, y.tmp), xy.null = xy.null,
              color = col.intercept, alignment = c("right",
                "bottom"), fontsize = fontsize - 2,
              ...)
        grid.circle(x = x.intercept, y = y.intercept,
          r = radius, gp = gpar(fill = "white", col = col.intercept,
            ...))
        grid.text(1, x = x.intercept, y = y.intercept,
          gp = gpar(col = col.intercept, ...))
    }
    if (information)
      grid.text(paste("Error: ", round(result.matrix[rep,
        "error"], 6), " Steps: ", result.matrix[rep,
        "steps"], sep = ""), x = 0.5, y = information.pos,
        just = "bottom", gp = gpar(fontsize = fontsize +
          2, ...))
    if (!is.null(file)) {
      weight.plot <- recordPlot()</pre>
      save(weight.plot, file = file)
    }
 }
}
```

Simple plot, intercept & weights are turned off.

```
##par (mfrow = c(1,1))
plotnn(fit, intercept = FALSE, show.weights = FALSE)
```


Error: 1854.659153 Steps: 15376

To see what fit actually contains, run:

attributes(fit)

```
## $names
   [1] "call"
                               "response"
                                                      "covariate"
    [4] "model.list"
                               "err.fct"
                                                      "act.fct"
   [7] "linear.output"
                               "data"
                                                      "net.result"
## [10] "weights"
                               "startweights"
                                                      "generalized.weights"
  [13] "result.matrix"
##
##
## $class
## [1] "nn"
```

To check details of a particular attribute, use the \$ operator. For example, check the summary of the fitted network contained in result.matrix:

fit\$result.matrix

The value goven for hosp.to.1layhid1 is the calculated optimum weight of the synapse between hosp and the hidden neuron.

Predicting new cases

Method compute from the neuralnet package computes the output of all neurons given a trained neural network using (the same!) covariate vectors.

```
pred<-compute(fit, data[-train, 2:7])</pre>
```

View the first few predictions from \$net.result

```
## show attributes in pred
attributes(pred)

## $names
## [1] "neurons" "net.result"

## get top results
head(pred$net.result)
```

```
## [,1]
## 1 0.00001149730617861
## 15 0.000004387003430401
## 16 0.666976073629486299
## 46 0.000000001263003749
## 76 0.000000469604180798
## 82 0.000217696667194658
```

These numbers give the probability of an individual belonging to the below median or above median. Let's convert them back to the same -1, +1 scale as used in Class.

```
r2 <- ifelse(pred$net.result<=0.5,-1,1)
head(r2)</pre>
```

```
## [,1]
## 1 -1
## 15 -1
## 16 1
## 46 -1
## 76 -1
## 82 -1
```

Check Results

Build a confusion matrix:

```
table(sign(r2), sign(data[-train,1]), dnn=c("Predicted", "Observed"))

## Observed
## Predicted -1 1
## -1 205 157
## 1 11 33
```

Of the 406 observations 205 were correctly classified as belonging to group -1, and 33 were correctly classified as belonging to group +1. The error rate is calculated measuring the misclassified observations as proportion of the total:

```
error_rate = (1- sum(sign(r2)==sign(data[-train,1]))/length(data[-train,1]))
round(error_rate, 2)
```

```
## [1] 0.41
```

Overall 41% of individuals were misclassified. This implies a prediction accuracy of around 59%.

Nog beter: gebruik caret

```
library(caret)
```

```
## Warning: package 'caret' was built under R version 3.1.3

## Loading required package: lattice
## Loading required package: ggplot2

## Warning: package 'ggplot2' was built under R version 3.1.3

confusionMatrix(data=r2,reference = sign(data[-train,1]) )
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction -1
           -1 205 157
##
##
             11 33
##
##
                  Accuracy : 0.5862069
##
                    95% CI: (0.536584, 0.6345639)
       No Information Rate: 0.5320197
##
##
       P-Value [Acc > NIR] : 0.01602206
##
##
                     Kappa: 0.1287108
   Mcnemar's Test P-Value : < 0.000000000000000222
##
##
               Sensitivity: 0.9490741
##
```

```
Specificity: 0.1736842
##
##
           Pos Pred Value : 0.5662983
           Neg Pred Value : 0.7500000
##
##
               Prevalence: 0.5320197
           Detection Rate: 0.5049261
##
##
     Detection Prevalence: 0.8916256
        Balanced Accuracy : 0.5613791
##
##
##
          'Positive' Class : -1
##
```

Excercises

Question 1

Re-build the model, but this time using six hidden nodes Maak een MLP met zes hidden layers

plotnn(fit.q1, intercept = FALSE, show.weights = FALSE)

Q1 Results

```
## Call: neuralnet(formula = f, data = data[train, ], hidden = 6, algorithm = "rprop+", err.fct = "
## 1 repetition was calculated.
##
## Error Reached Threshold Steps
## 1 1828.890459    0.009396198984   3698

The model converged after 3.698 steps with an error of 1829.
Simple plot, intercept & weights are turned off.
```


Error: 1828.890459 Steps: 3698

To check details of a particular attribute, use the \$ operator. For example, check the summary of the fitted network contained in result.matrix:

fit.q1\$result.matrix

```
##
                         1828.890458758729
## error
## reached.threshold
                            0.009396198984
## steps
                         3698.000000000000
## Intercept.to.1layhid1
                           -0.423447092047
## hosp.to.1layhid1
                           25.652913369638
## health.to.1layhid1
                          -29.078245640452
## numchron.to.1layhid1
                           35.197525071508
## gender.to.1layhid1
                           -8.269092230283
## school.to.1layhid1
                          -11.301181730922
## privins.to.1layhid1
                           13.546659283759
## Intercept.to.1layhid2
                            6.935431125606
## hosp.to.1layhid2
                           -4.496416358485
## health.to.1layhid2
                           -8.027431561327
## numchron.to.1layhid2
                           -0.446288483916
## gender.to.1layhid2
                            4.023964410207
## school.to.1layhid2
                           -1.325467311502
## privins.to.1layhid2
                            8.635792296373
## Intercept.to.1layhid3
                           -0.255934305279
## hosp.to.1layhid3
                           15.742935399865
## health.to.1layhid3
                            3.988391663041
```

```
## numchron.to.1layhid3
                           39.842999489774
## gender.to.1layhid3
                            2.926658697943
## school.to.1layhid3
                           16.803364678757
## privins.to.1layhid3
                            9.332931392087
## Intercept.to.1layhid4
                           -0.115168770514
## hosp.to.1layhid4
                          -33.404504874158
## health.to.1layhid4
                          -16.018131378684
## numchron.to.1layhid4
                          -63.848494692455
## gender.to.1layhid4
                            0.275023894060
## school.to.1layhid4
                          -15.231794136035
## privins.to.1layhid4
                          -30.010214935539
## Intercept.to.1layhid5
                            2.897128715511
## hosp.to.1layhid5
                            0.751106103924
## health.to.1layhid5
                           -5.131686199332
## numchron.to.1layhid5
                            2.627657202005
## gender.to.1layhid5
                           -0.752776696962
## school.to.1layhid5
                            0.512525226472
## privins.to.1layhid5
                           -0.864357341599
## Intercept.to.1layhid6
                           -8.017062403861
## hosp.to.1layhid6
                           40.598224383093
## health.to.1layhid6
                           12.401076005280
## numchron.to.1layhid6
                           27.942416386952
## gender.to.1layhid6
                           -2.669361683444
## school.to.1layhid6
                           27.402140833438
## privins.to.1layhid6
                           29.260771923642
## Intercept.to.Class
                           -0.985088675130
## 1layhid.1.to.Class
                         -252.166172075793
## 1layhid.2.to.Class
                           -2.479937906277
## 1layhid.3.to.Class
                         -245.656856629309
## 1layhid.4.to.Class
                            3.940218969832
## 1layhid.5.to.Class
                           -3.441144063418
## 1layhid.6.to.Class
                           -2.957627410226
```

Q1 Predicting new cases

Method compute from the neuralnet package computes the output of all neurons given a trained neural network using (the same!) covariate vectors.

```
pred.q1<-compute(fit.q1, data[-train, 2:7])</pre>
```

These numbers give the probability of an individual belonging to the below median or above median. Let's convert them back to the same -1, +1 scale as used in Class.

```
r2.q1 <- ifelse(pred.q1$net.result<=0.5,-1,1)
head(r2.q1)</pre>
```

```
## [,1]
## 1 -1
## 15 -1
## 16 1
## 46 -1
## 76 -1
## 82 -1
```

Check Results Q1

Build a confusion matrix:

```
table(sign(r2.q1), sign(data[-train,1]), dnn=c("Predicted", "Observed"))

## Observed
## Predicted -1 1
## -1 203 158
## 1 13 32
```

Of the 406 observations 201 were correctly classified as belonging to group -1, and 35 were correctly classified as belonging to group +1. The error rate is calculated measuring the misclassified observations as proportion of the total:

```
error_rate.q1 = (1- sum(sign(r2.q1)==sign(data[-train,1]))/length(data[-train,1]))
round(error_rate.q1, 2)
```

```
## [1] 0.42
```

Overall 42% of individuals were misclassified. This implies a prediction accuray of around 58%. Nog beter: gebruik caret

```
library(caret)
confusionMatrix(data=r2.q1,reference = sign(data[-train,1]) )
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction -1
           -1 203 158
##
##
              13 32
##
##
                  Accuracy : 0.5788177
##
                    95% CI: (0.5291297, 0.6273485)
##
       No Information Rate: 0.5320197
##
       P-Value [Acc > NIR] : 0.03262661
##
##
                     Kappa: 0.1134466
##
   Mcnemar's Test P-Value : < 0.000000000000000222
##
##
               Sensitivity: 0.9398148
##
               Specificity: 0.1684211
##
            Pos Pred Value : 0.5623269
##
            Neg Pred Value: 0.7111111
##
                Prevalence: 0.5320197
            Detection Rate: 0.5000000
##
##
      Detection Prevalence: 0.8891626
##
         Balanced Accuracy: 0.5541179
##
##
          'Positive' Class : -1
##
```

Question 2

Re-estimate the model build in question 1, but using resilient backpropagation without backtracking. Maak een MLP met zes hidden layers

Q2 Results

```
print(fit.q2)

## Call: neuralnet(formula = f, data = data[train, ], hidden = 6, algorithm = "rprop-", err.fct = "

## 1 repetition was calculated.

##

## Error Reached Threshold Steps

## 1 1823.284806    0.009739367719 28568

The model converged after 28.568 steps with an error of 1823.

Simple plot, intercept & weights are turned off.

plotnn(fit.q2, intercept = FALSE, show.weights = FALSE)
```


Error: 1823.284806 Steps: 28568

To check details of a particular attribute, use the \$ operator. For example, check the summary of the fitted network contained in result.matrix:

fit.q2\$result.matrix

```
##
                          1823.284806030894
## error
## reached.threshold
                             0.009739367719
## steps
                         28568.000000000000
## Intercept.to.1layhid1
                             3.057835545610
## hosp.to.1layhid1
                            -0.535743490727
## health.to.1layhid1
                            -8.515857321455
## numchron.to.1layhid1
                             3.876165905862
## gender.to.1layhid1
                            -0.696248051676
## school.to.1layhid1
                            -1.176874225339
## privins.to.1layhid1
                             1.253137569104
## Intercept.to.1layhid2
                            24.340652059980
## hosp.to.1layhid2
                            -2.015005763762
## health.to.1layhid2
                            -44.343409191050
## numchron.to.1layhid2
                            54.584835965681
## gender.to.1layhid2
                            33.406802665794
                           -19.211713352079
## school.to.1layhid2
## privins.to.1layhid2
                            19.840455575198
## Intercept.to.1layhid3
                             5.697902890758
## hosp.to.1layhid3
                            14.606761120051
## health.to.1layhid3
                            29.469395377339
```

```
## numchron.to.1layhid3
                           145.673555107605
## gender.to.1layhid3
                            11.094037573479
## school.to.1layhid3
                            47.007263234492
## privins.to.1layhid3
                            34.915257246065
## Intercept.to.1layhid4
                             2.800096043635
## hosp.to.1layhid4
                           -65.725138726742
## health.to.1layhid4
                           -25.945546434082
## numchron.to.1layhid4
                          -104.742776612260
## gender.to.1layhid4
                            23.426772226935
## school.to.1layhid4
                            24.763469511725
## privins.to.1layhid4
                           -72.365713717550
## Intercept.to.1layhid5
                             2.170784122503
## hosp.to.1layhid5
                             4.332640394469
## health.to.1layhid5
                            -9.379252769875
## numchron.to.1layhid5
                            -1.728445851798
## gender.to.1layhid5
                            -0.363541361119
## school.to.1layhid5
                             0.714046916596
## privins.to.1layhid5
                            -0.597306920004
## Intercept.to.1layhid6
                            -8.563690192907
## hosp.to.1layhid6
                             1.230028435242
## health.to.1layhid6
                             2.319895454026
## numchron.to.1layhid6
                            -0.597510391351
## gender.to.1layhid6
                            -0.750306871965
## school.to.1layhid6
                             2.757249994580
## privins.to.1layhid6
                             6.917432429675
## Intercept.to.Class
                             2.716843198117
## 1layhid.1.to.Class
                            -7.488769394344
## 1layhid.2.to.Class
                            -3.793820235659
## 1layhid.3.to.Class
                            -4.716519973559
## 1layhid.4.to.Class
                             9.303512444689
## 1layhid.5.to.Class
                           -12.190836530598
## 1layhid.6.to.Class
                           -12.244292191868
```

Q2 Predicting new cases

Method compute from the neuralnet package computes the output of all neurons given a trained neural network using (the same!) covariate vectors.

```
pred.q2<-compute(fit.q2, data[-train, 2:7])</pre>
```

These numbers give the probability of an individual belonging to the below median or above median. Let's convert them back to the same -1, +1 scale as used in Class.

```
r2.q2 <- ifelse(pred.q2$net.result<=0.5,-1,1)
head(r2.q2)
```

```
## [,1]
## 1 -1
## 15 -1
## 16 1
## 46 -1
## 76 -1
## 82 -1
```

Check Results Q2

Build a confusion matrix:

Of the 406 observations 201 were correctly classified as belonging to group -1, and 35 were correctly classified as belonging to group +1. The error rate is calculated measuring the misclassified observations as proportion of the total:

```
error_rate.q2 = (1- sum(sign(r2.q2)==sign(data[-train,1]))/length(data[-train,1]))
round(error_rate.q2, 2)
```

```
## [1] 0.42
```

Overall 42% of individuals were misclassified. This implies a prediction accuray of around 58%. Nog beter: gebruik caret

```
library(caret)
confusionMatrix(data=r2.q2,reference = sign(data[-train,1]) )
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction -1
           -1 201 155
##
##
              15 35
##
##
                  Accuracy : 0.5812808
                    95% CI: (0.5316132, 0.6297549)
##
##
       No Information Rate: 0.5320197
       P-Value [Acc > NIR] : 0.02597266
##
##
##
                     Kappa: 0.1200918
##
   Mcnemar's Test P-Value : < 0.000000000000000222
##
##
               Sensitivity: 0.9305556
##
               Specificity: 0.1842105
##
            Pos Pred Value : 0.5646067
##
            Neg Pred Value: 0.7000000
##
                Prevalence: 0.5320197
##
            Detection Rate: 0.4950739
      Detection Prevalence: 0.8768473
##
##
         Balanced Accuracy: 0.5573830
##
##
          'Positive' Class : -1
##
```

Question 3

Suppose a domain expert informed you only hosp, health and numchron were relevant attributes. Build a model with 2 hidden nodes using resilient backpropagation without backtracking.

Maak nieuwe dataset met alleen de relevante variabelen.

```
keeps.q3<-c("Class", "hosp", "health", "numchron")
data.q3<-data[,keeps.q3]
head(data.q3)</pre>
```

```
## Class hosp health numchron

## 1 -0.9166480631 0.9432503020 0.106727104 0.3393605955

## 2 1.0906836298 -0.3965178575 0.106727104 0.3393605955

## 3 -0.9166480631 3.6227866210 -2.121896688 1.8212464071

## 4 -0.9166480631 0.9432503020 -2.121896688 0.3393605955

## 5 1.0906836298 -0.3965178575 0.106727104 0.3393605955

## 6 -0.9166480631 -0.3965178575 -2.121896688 2.5621893129
```

Maak een nieuwe formule:

```
f.q3<-Class ~ hosp + health + numchron
```

Maak een MLP met twee hidden layers

Q3 Results

1 1878.360131

```
print(fit.q3)
```

```
## Call: neuralnet(formula = f.q3, data = data.q3[train, ], hidden = 2, algorithm = "rprop-", err.f
##
## 1 repetition was calculated.
##
## Error Reached Threshold Steps
```

The model converged after 1.119 steps with an error of 1878.

0.008920075304 1119

Simple plot, intercept & weights are turned off.

```
plotnn(fit.q3, intercept = FALSE, show.weights = FALSE)
```


Error: 1878.360131 Steps: 1119

To check details of a particular attribute, use the \$ operator. For example, check the summary of the fitted network contained in result.matrix:

fit.q3\$result.matrix

```
##
                          1878.360130962280
## error
## reached.threshold
                            0.008920075304
## steps
                          1119.000000000000
## Intercept.to.1layhid1
                             1.151758601210
## hosp.to.1layhid1
                            1.757383420677
## health.to.1layhid1
                            -8.903994031155
## numchron.to.1layhid1
                            1.265204391022
## Intercept.to.1layhid2
                            0.95855555696
## hosp.to.1layhid2
                            5.457862673942
## health.to.1layhid2
                            1.047973107247
## numchron.to.1layhid2
                            6.904970816420
## Intercept.to.Class
                            0.863040590969
## 1layhid.1.to.Class
                           -8.396997863382
## 1layhid.2.to.Class
                           -12.446359336159
```

Q3 Predicting new cases

Method compute from the neuralnet package computes the output of all neurons given a trained neural network using (the same!) covariate vectors.

```
pred.q3<-compute(fit.q3, data.q3[-train, 2:4])</pre>
```

These numbers give the probability of an individual belonging to the below median or above median. Let's convert them back to the same -1, +1 scale as used in Class.

```
r2.q3 <- ifelse(pred.q3$net.result<=0.5,-1,1)
head(r2.q3)
```

```
## [,1]
## 1 -1
## 15 -1
## 16 -1
## 46 -1
## 76 -1
## 82 -1
```

Check Results Q3

Build a confusion matrix:

```
table(sign(r2.q3), sign(data.q3[-train,1]), dnn=c("Predicted", "Observed"))
```

```
## Observed
## Predicted -1 1
## -1 214 178
## 1 2 12
```

Of the 406 observations 214 were correctly classified as belonging to group -1, and 12 were correctly classified as belonging to group +1. The error rate is calculated measuring the misclassified observations as proportion of the total:

```
error_rate.q3 = (1- sum(sign(r2.q3)==sign(data.q3[-train,1]))/length(data.q3[-train,1]))
round(error_rate.q3, 2)
```

```
## [1] 0.44
```

Overall 44% of individuals were misclassified. This implies a prediction accuray of around 56%. Nog beter: gebruik caret

```
library(caret)
confusionMatrix(data=r2.q3,reference = sign(data.q3[-train,1]) )
```

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction -1 1
## -1 214 178
## 1 2 12
##
```

```
##
                  Accuracy : 0.5566502
##
                    95% CI : (0.5068319, 0.6056369)
      No Information Rate: 0.5320197
##
##
      P-Value [Acc > NIR] : 0.172391
##
##
                     Kappa: 0.0570809
   Mcnemar's Test P-Value : < 0.0000000000000002
##
##
               Sensitivity : 0.99074074
##
               Specificity: 0.06315789
##
##
            Pos Pred Value : 0.54591837
##
            Neg Pred Value : 0.85714286
##
                Prevalence : 0.53201970
##
            Detection Rate: 0.52709360
##
     Detection Prevalence : 0.96551724
         Balanced Accuracy : 0.52694932
##
##
##
          'Positive' Class : -1
##
```