

AMATÉRSKÉ RADIO ŘADA A

AMATÉRSKÉ RADIO ŘADA A

Vydává ÚV Svazarmu, Opletalova 29, 116 31

Praha 1, tel. 22 25 49, ve Vydavatelství NAŠE

VOJSKO, Vladislavova 26, 113 66 Praha 1. tel. 26 06 51-7. Šefredaktor ing. Jan Klabal, OKTUKA,
zástupce Luboš Kalousek, OKTFAC. Redakční rada: Předseda ing. J. T. Hyan, členové: RNDr.
V. Brunnhofer, CSc., OKTHAO, V. Brzák, OKTDK,
K. Donát, OKTDY, ing. O. Filippi, V. Gazda,
A. Glanc, OKTGW, ing. J. Hodik, P. Horák,
Z. Hradiský, J. Hudec, OKTRE, ing. J. Jaroš,
ing. J. Kroupa, V. Němec, ing. O. Petráček,
OKTNB, ing. Z. Prošek, ing. F. Smelik, OKTASF,
ing. E. Smutný, plk. ing. F. Smelk, oKTASF,
ing. E. Smelk, oKTAS

C. Indextu 46 045.
Rukopisy čísla odevzdány tlskárně 23. 3. 1987
Číslo má vyjít podle plánu 13. 5. 1987
© Vydavatelství NAŠE VOJSKO, Praha

NÁŠ INTERVIEW

Předsednictvo vlády ČSSR schválilo dne 6. prosince 1984 Program rozvíjení účasti dětí a mládeže ve vědeckotechnickém rozvoji a vyzvalo podniky a organizace k účasti na jeho zabez-pečení. 4. září 1986 byl schválen vládou ČSSR Realizační program elektronizace ve výchově a vzdělávání v oblasti školství pro léta 1986 až 1990. Oba programy působí i do oblasti elektroniky a mají-li být úspěšně realizovány, vyžadují i úzkou spolupráci s podniky FMEP při zajišťování jejich materiálového zabezpečení. Protože tato problematika má úzkou návaznost na oblast zájmové činnosti v elektronice, obrátila se redakce AR na náměstka ministra FMEP s. ing. F. Hamana o zodpovězení některých otázek souvisejících s oběma programy a jejich materiálovým zabezpečením.

Soudruhu náměstku, konstrukční činnost v elektronice má významný vliv na obeznámení se s elektronickými obvody i u lidí. kteří pracují v jiných profesích. To umožňuje i urychlení pronikání elektronizace do neelektronických oborů. Trvalý nedostatek součás-tek na trhu však podstatně omezuje tyto možnosti. Uvažuje se o zvýšení jejich prodeje, případně i jejich dovozu?

Otázka zabezpečení dostatečného množství elektronických součástek pro vnitřní trh úzce souvisí s prudkým rozvojem elektronizace národního hospodářství a možnostmi resortu elektrotechnického průmyslu plnit požadavky na součástkovou základnu jak vlastních podniků vyrábějících finální elektronické výrobky, tak i ostatních resortů, jejichž výroby jsou na dodávkách elektronických součástek závislé. Každý jistě chápe, že resort elektrotechnického průmyslu musí v prvé řadě do-dávat součástky právě těmto podnikům, které zajišťují průmyslovou výrobu a plnění státního plánu a na vnitřní trh je možno uvolnit zatím pouze přebytky součástek pro uspokojení zájmové činnosti amatérů a mládeže. l když resort FMEP nepodceňuje vý-znam této činnosti, musí se podřídit ekonomickým zákonům a zabezpečovat v první řadě národohospodářské potřeby, tj. potřeby průmyslu.

To ovšem neznamená, že by FMEP neřešilo otázku nedostatku součástkové základny. Zabezpečení součástkové základny je jedním z hlavních směrů FMEP a to jak z hlediska kvantity a kvality, tak i z hlediska technické a technologické úrovně. FMEP si je plně vědomo, že technický rozvoj sou-částkové základny je určujícím fakto-rem rozvoje nejen elektrotechnického průmyslu, ale i ostatních průmyslových odvětví a celého národního hospodářství a proto na rozvoj součástkové základny klade maximální důraz.

Dokladem toho je plán investičního rozvoje na 8. a 9. pětiletku, který v max. míře upřednostňuje podniky zabezpečující vývoj a výrobu součástkové základny. Dopady a výsledky těchto akcíse však nemohou projevit okamžitě, ale nejdříve koncem 8. PLP. Pokud se týká

Ing. František Haman

dovozu součástkové základny jsou uzavřeny specializační dohody mezi státy RVHP, v rámci nichž se uskutečňují vzájemné dodávky elektronických součástek. Jedná se však většinou o účelové dovozy součástek určených pro výrobu finálních výrobků elektrotechnického průmyslu pro národní hospodářství.

Jak se podílejí podniky FMEP svou účastí na realizaci výše uvedených programů, spoluprací se zájmovými organizacemi, a jejich materiálovým zabezpečením?

V resortu elektrotechnického průmyslu probíhá řada výrob elektronických stavebnic určených pro polytechnickou výchovu mládeže. Např. v k. p. TESLA Jihlava se vyrábí stavebnice "Mladý elektronik 7000" pro děti od 7 let a je připravován další složitější typ "Od telegrafu k radiu" pro děti od 10 let. V TESLA ELTOS se vyrábí asi 15 000 kusů stavebnic různých typů ročně, v k. p. MEZ Frenštát se vyrábí stavebnice "MEZ elektronik II". Odbyt těchto výrobků zabezpečuje o. p. TESLA ELTOS, který také vydal jejich katalog.

V současné době probíhají jednání resortem ministerstva školství ČSR a SSR s cílem zkoordinovat připravované výrobní programy s požadavky těchto resortů tak, aby bylo v maximální míře plněno vládní usnesení č. 134/1986 o realizačním programu elektronizace ve výchově a vzdělávání v oblasti školství pro léta 1986-90.

Dále byla uzavřena dohoda mezi FMEP, FMHTS, FMVS, ÚV Svazarmu, ÚV SSM a ÚV OSPK o společném postupu při výchově mladé generace. Cílem této dohody je sjednotit a zkoordinovat činnosti těchto organizací v uvedené oblasti. Z úrovně FMEP je dohoda pravidelně vyhodnocována a podle potřeb a množství zúčastněných organizací aktualizována.

Některé amatérské výrobky vystavované na celostátních soutěžích, např. ZENIT, ERA aj. svou konstrukcí i zapojením předčí i tovární výrobky. Uvažuje se do budoucna o větším průmyslovém využití některých exponátů?

Využití výsledků amatérských prací v elektrotechnické průmyslové výrobě je zásadně možné a z prvního pohledu se zdá, že by bylo škoda nevyužít výsledků nadšené, usilovné práce, technického umu a vtipu našich amatérů. Je nutné si však uvědomit, že pro průmyslové využití amatérských výrobků je třeba provést nejprve vývoj tohoto výrobku, i když existuje již fungující vzorek. Pod pojmem vývoj se rozumí vypracování příslušné konstrukční dokumentace, zhotovení a odzkoušení laboratorních a funkčních vzorů, zhoto-

Přijetí na ministerstvu spojů

V prosinci 1986'se uskutečnilo v budově MTTÚ v Praze již tradiční vyhodnocení nejlepších radioamatérů, elektroniků a funkcionářů našich svazarmovských odbornosti. Slavnostní akt probíhal za přítomnosti náměstka ministra spojů ČSSR ing. Jaroslava Losinského, náčelníka spojovacího vojska genpor. ing. Ladislava Stacha, místopředsedy ÚV Svazarmu PhDr. Jána Kováče, vedoucího oddělení elektroniky ÚV Svazarmu ing. plk. Františka Šimka, OK1FSI, ředitele odboru radiokomunikací FMS ing. Milana Dusíka, předsedkyně rady radioamatérství ÚV Svazarmu Josefy Zahoutové, OK1FBL, a předsedy rady radioamatérství SÚV Svazarmu Egona Môcika, OK3UE. Náměstek ministra spojů

ing. Losinský hovořil o spolupráci resortu spojů s radioamatéry a se Švazarmem a ocenil práci Svazarmu na poli výchovy mládeže pro elektroniku a radiokomunikace. Při této významné příležitosti také oznámil, že FMS s platností od 1. 1. 1987 uvolňuje pro naše radioamatéry nová kmitočtová pásma 18 a 24 MHz. Vlevo nahoře: plk. J. Kováč blahopřeje ing. Z. Proškovi (ČSVTS); vpravo nahoře: genpor. L. Stach děkuje za organizaci celostátního finále soutěže PROG 1986 pplk. ing. T. Škápíkovi z VVŠPV Vyškov; vlevo dole: plk. J. Kováč děkuje A. Novákovi, OK1AO, za práci v komisi telegrafie a vpravo dole Š. Horeckému, OK3JW, za práci v komisi KV při radě radioamatérství ÚV Svazarmu.

vení a odzkoušení prototypů a ověřovací série a vypracování výrobní dokumentace. Všechny tyto práce musí provést výzkumně vývojová základna výrobního podniku. Amatérský fungující vzorek může tyto práce usnadnit v tom, že nahradí první vývojovou etapu laboratorního vzoru a usnadní vypracování konstrukční dokumentace funkčního vzoru.

Pro využití výsledků amatérských prací je proto nutné, aby se organizace, ve které vzorek vznikl, spojila s útvarem technického rozvoje výrobního podniku, nabídla mu tento vzorek k využití a v případě zájmu výrobního podniku s ním uzavřela hospodářskou smlouvu na spolupráci při vývoji, případně uzavřela dohodu o pracovní činnosti dotyčného autora či autorů vzorku.

Je ovšem nutno konstatovat, že i ve výzkumně-vývojových kolektivech podniků resortu elektrotechnického průmyslu pracuje řadá vynikajících radioamatérů a výsledků jejich činnosti je přímo využíváno pro technický rozvoj.

Praktická průprava mládeže v používání mikropočítačové techniky stále naráží na nedostatečnou vybavenost vhodnou výpočetní technikou. Bude FMEP řešit tento závažný úkol vlastními silami nebo dovozem mikropočítačů?

Ať již z hlediska vlastní výroby v ČSSR nebo z hlediska dodávek je gesční organizací za výpočetní techniku tohoto typu PZO KOVO. Důvodem je zde skutečnost, že světová velkosério-

vá výroba vytváří vzhledem k cenám našich prvků situaci, že soubor potřebných součástek je mnohonásobně dražší než ceny kompletovaných zařízení na světových trzích. I přes tuto skutečnost bude FMEP zabezpečovat dodávky malé výpočetní techniky — osobních a domácích počítačů z vlastní výroby ve vyšší cenové relaci vůči světovým cenám. Konkrétně půjde o typy ONDRA, PP 01, IQ 151 a PMD 85. Pro objemové dokrytí potřeb byla vypracována dohoda FMEP — PZO KOVO o podpoře dovozů osobních počítačů.

Pro urychlení sociálně-ekonomického rozvoje je nezbytná výchova kádrů. Ta zase vyžaduje trvalý přísun informací. V oblasti mikroprocesorové a výpočetní techniky tyto nároky prudce vzrůstají. Plní naše současná publicistická a knižní produkce z hlediska požadavků FMEP tyto úkoly?

V této oblasti se dělá nejvíce chyb na úrovní motivací. Publikační činnost se stala souběžnou činností s jinými funkcemi, neboť autoři nejsou honorováni u kvalitních příspěvků tak, aby se zaručoval hodinový výdělek. Tím vznikly štáby nespecializovaných autorů s překrývající se tématikou. Soubor časopisů z oboru elektroniky nemá ve vzájemných vazbách promyšlenou koncepci. Většina ani nevychovává, ani neinformuje. Není ani obchodně, ani odborně vyhraněna. Řada podnikových publikací má mnohem vyšší úroveň.

A na konec ještě otázku, jejíž odpověď bude zajímat širší okruh čtenářů — jak je to s uspokojováním vnitřního trhu barevnými

televizními přijímačí?
Období 8. PLP je v ČSSR v oblasti
vybavení domácností televizními přijímači obdobím "přezbrojení", tzn. čer-nobílé televizní přijímače jsou postupně nahrazovány barevnými televizními přilímači. Průvodním jevem tohoto procesu je nenasycenost trhu těmito barevnými televizními přijímači a z toho plynoucí jejich nedostatek. Rychle stoupající poptávku nelze naráz uspokojit tuzemskou výrobou ani dovozem ze SSSR. Výrobní kapacita výrobního závodu umožňuje vyrobit cca 300 000 kusů barevných televizních přijímačů ročně a je částečně omezena materiálně technickým zásobováním některými součástkami, zejména barevnými obrazovkami o úhlopříčce 42 cm. Za této situace je možno očekávat, že k úplnému nasycení čs. trhu barevnými televizními přijímači dojde koncem 8. PLP. Podle předběžných údajů se však zásobování trhu už v letošním roce zlepší, protože jen do státního obchodu bude dodáno z podniků FMEP 171 000 kusů barevných televizních přijímačů, a navíc bude na trh dodáno zhruba 125 tisíc barevných televizních přijímačů z dovozu ze socialistických států, zejména ze SSSR. Základní požadavky poptávky by tedy měly být pokryty. Děkuji za rozhovor.

ing. Jan Klabai

AMATÉRSKÉ RADIO SVAZARMOVSKÝM ZO

Mirek, OK2TH, před dvaceti lety, u zařízení, které sám pomáhal konstruovat pro radioklub OK2KIW

A v roce 1986 v uniformě správce přehrady ve svém hamshacku společně se svým synem Miroslavem, OK2-22856

Radioamater of vody

(ke 3. straně obálky)

Městečko Vranov nad Dyjí s 950 obyvateli je známo hlavně díky krásnému zámku a díky Vranovské přehradě. Mezi radioamatéry je však proslavil hlavně Mirek Vrána, OK2TH, který ve Vranově prožil jako aktivní radioamatér 30 let.

V roce 1955 začínal na Vranovské přehradě jako strážný. Potom vystudoval Střední průmyslovou školu vodních staveb v Brně a v roce 1969 převzal misto správce přehrady. V této funkci setrval až do loňského roku, kdy odešel do důchodu a přestěhoval se s rodinou do Kroměříže.

Mirek, OK2TH, patří k těm, kdož jsou radioamatéry tělem i duší. V sedmi letech si stavěl krystalky a celé hodiny trávil poslechem rozhlasových stanic. V roce 1947 se stal členem organizace ČAV a od roku 1958 má vlastní vysílací koncesi. V roce 1951 založil společně s několika dalšími nadšenci první radioamatérský kroužek ve Vranově, z něhož v roce 1958 vznikl radioklub Svazarmu OK2KIW, jemuž byly přiděleny vskutku nepopulární prostory pro činnost - totiž tři kobky bývalé rakousko-uherské věznice. A jak už to bývá když máš nadšení pro věc, brzy se v jejím zájmu staneš i funkcionářem. A tak působil Mirek, OK2TH, v uplynulých dvaceti letech jako člen OV Svazarmu ve Znojmě, jako vedoucí operátor radioklubu OK2KIW a nakonec i jako předseda ZO Svazarmu. Byla to práce složitá, ala Mirek jí nikdy nelitoval. A protože to ani jinak nešlo, musel si najít ještě čas na konstrukci vlastního vysílacího zařízení. Prvním byl vysílač CW s elektronkou AL4, přijímač inkurantní typu "Emil", později zařízení TTR-1 s koncovým stupněm 50 W, které má Mirek uchováno podnes, přestože má nyní k dispozici transceiver FT101. A z toho vranovského dolíku pod vlastní značkou navázal spojení se 180 zeměmi DXCC!

Radioamatéři a televize ...

Problém, jehož se radioamatéři už nikdy nezbaví... Dnešní televizní diváci ve Vranově nad Dyjí už asi ani nevědí, že těmi, kdo umožnili prvně příjem TV signálů v jejich údolí, byli radioamatéři-vysílači. svazarmovští Začátkem 60. let se zahajovala výstavba naší televizní převáděčové sítě. Ve vranovském údolí TV signál beznaděj-Radioklub Svazarmu nebyl . . . OK2KIW si dal tento závazek: do svátku 1. máje 1962 vymýtit kus lesa a postavit na kopci vedle vranovského zámku anténní stožár a budovu pro TV převáděč. Svůj závazek splnil a na 1. máje 1962 večer byl na náměstí ve Vranově v provozu první televizor. I přes halasnou předcházející reklamu mistním rozhlasem se přišli podívat jen tři největší zvědavci . . Chvíli exhibici sledovali, pak odběhli, a za půl hodiny se tísnily na vranovském náměstí davy lidí.

Dovedete si představit, co by se dnes stalo, kdyby některý ze svazarmovských radioamatérů rušil v údolí příjem TV signálů u některého ze svých sousedů? Tomu se říká ironie osudu.

Pokusy s anténami

Stanoviště OK2TH bylo přímo u hráze přehrady, tedy v dolíku, odkud se někam dovolat bude vždy problémem, na VKV téměř neřešitelným. Proto se Mirek zaměřil hlavně na provoz na KV a na experimentování s anténami. Díky tomu, že Vranovská přehrada je místem vyhledávaným pro příjemný pobyt na dovolené, seznámil se Mirek s mnoha radioamatéry, kteří tyto končiny navštívili. S Jindrou,

OK1AMM, zkoušeli dipóly a antény FD4 natažené nad vodní hladinou, se Zdeňkem, OK1ARH, zkonstruovali anténu GP instalovanou na pontonu a s protiváhami ponořenými ve vodě; s Jendou, OK2BKH, postavil anténu quad přímo na břehu jezera a zjistil, že funguje výborně, i když je směrována přímo do strmých stěn údolí. S Maxem, DK4MM (OK8ABS), který tráví dovolenou často v ČSSR, vyzkoušeli, že i v pásmech VKV je možno se z vranovského kotlíku "dostat ven", a sice s 10 W výkonu a 4prvkovou anténou yagi odrazem od některých skal v údolí.

Radioamatérství a profese

Přehrada, to není zdaleka jen množství vody. Jednak je tu elektrárna, jednak je třeba udržovat rádiové spojení každý den s Brnem a navíc musí správce přehrady dbát o měření nejrůznějších ukazatelů, které se dnes již provádí většinou elektronicky. Před deseti lety podal Mirek, OK2TH, svůj první zlepšovací návrh: na místo Rangelovy píšťaly používat pro měření vztlaku spodní vody na přehradní hráz jednoduché elektronické zařízení, signalizující úroveň hladiny spodní vody. Díky tomu, že je Mirek radioamatérem, mohl sám opravovat drobnější závady na zařízeních v přehradě i na služebních vysílačích.

Vranovská budoucnost

Mirek, OK2TH, již nyní spokojeně vysílá z Kroměříže. S ním se věnuje radioamatérství společně i jeho syn Miroslav, OK2-22856, nyní student Středního odborného učiliště strojirenského při podniku PAL-Magneton v Kroměříži. Ve Vranově nad Dyjí převzal Mirkovy radioamatérské funkce ing. Karel Sára, OK2PKW, který je odchovancem vranovského radioklubu Svazarmu OK2KIW, absolventem elektrotechnické fakulty VUT v Brně a nyní i zaměstnancem elektrárny pod Vranovskou přehradou. A pro činnost radioklubu OK2KIW jsou již nyní vyčleněny nové prostory v Domě okresního podniku rekreace, jehož výstavba se právě dokončuje.

DÛLEŽITÉ UPOZORNĚNÍ: Při číslování desek s plošnými spoji v ročence Mikroelektronika 1987 došlo omylem ke shodnému číslování desek s plošnými spoji jako v AR pro konstruktéry (modrém). Jde tedy o desky s označením V 201 až V 216.

Prosíme proto všechny zájemce, aby při objednávkách těchto desek zřetelně označili, zda žádají desku z ročenky Mikroelektronika (ME), anebo z AR pro konstruktéry (B). Děkujeme za pochopení. Redakce

Dvoma snímkami vám približujeme vlaňajšiu krajskú prehliadku ERA'86 v Trenčíne. Podujatie vyvrcholilo Dňom elektroníky pri príležitosti 35. výročia založenia Zväzarmu. Organizátori pripravili pre takmer desať tisíc návštevníkov audiovizuálne pásma, spojené so súťažnými podujatiamí, prednáškami a besedami o elektronike. V posledný deň prehliadky sa uskutočnila súťaž mladých konštruktérov a programátorov z radov návštevníkov a burza náhradných dielcov a súčiastok. Prehliadka bola umiestnená v Okruho-

vom dome armády a elektronici z Dunajskej Stredy, Malaciek, Senice, Trnavy, Nového Mesta nad Váhom a z Trenčína vystavovali naozaj hodnotné exponáty. Porota ocenila striebornou visačkou model robota "Maťo" desaťročného Martina Ivanka (ZŠ Trenčín), v kategórii A zlatou visačkou regulovateľný zdroj a digitálny otáčkomer Petera Vaška (SOU Trenčín) a v kategórii C zlatou visačkou funkčný model robota Vladimíra Zemánka (Trenčín).

A. Cibula, K. Krajčo

Soutěžní přehlídky ERA v r. 1987

Přehlídky technické tvořivosti v elektronice a radioamatérství v roce 1987 jsou zaměřeny k významným historickým výročím, hlavně k 70. výročí VŘSR.

Cílem přehlídek technické tvořivosti je rozvíjet polytechnickou výchovu mládeže, technickou tvořivou činnost ve svazarmovské elektronice a radioamatérství, aktivizovat zlepšovatelské a vynálezecké hnutí na pomoc národnímu hospodářství i vlastní organizaci a prohlubovat propagaci této činnosti na veřeinosti.

Místní přehlídky pořádají výbory ZO Svazarmu všude tam, kde jsou z hlediska dosaženého stupně rozvoje odbornosti vytvořeny k tomu podmínky. Mohou být pořádány jako neveřejné (jen pro členy Svazarmu) i veřejné. Mají dobrovolný charakter. Okřesní (obvodní) nebo městské přehlídky jsou po-

řádány v měsících duben až červen 1987, také jako akce veřejné nebo neveřejné. Pořadatel je povinen pozvat k účasti v dostatečném předstihu všechny ZO Svazarmu v rozsahu své působnosti. Krajské (v Praze a Bratislavě městské) přehlídky budou pořádány do 15. 11. 1987 v každém kraji jako soutěžní akce veřejné. Pořadatelem 19. celostátní přehlídky ERA'87 je ÚV Svazarmu. Celostátní přehlídka bude uspořádána ve dnech 19. až 29. 11. 1987 ve Žďáru nad Sázavou.

Nové knihy pro radioamatéry (Recenze i zamyšlení)

V poslední době bylo Účelovou edicí ÚV Svazarmu opět vydáno několik brožur pro potřeby radioamatérského sportu, které byly distribuovány do radioklubů Svazarmu, a rádi bychom na ně tedy čtenáře AR upozornili.

Pro zájemce o radioamatérský provoz je nesporně zajímavá kniha "Radioamatérské diplomy" ing. Jiřího Pečka, OK2QX. Navazuje na prvou publikaci téhož názvu, obsahuje však podmínky diplomů, pro které diplomová služba ÚV Svazarmu poskytuje úhradu poplatků v IRC pouze po předchozí dohodě. Je třeba vysoce ocenit práci autora při shromáždění, výběru, ale zejména ověření podmínek uvedených diplomů. Materiál je zpracován obvyklým způsobem, přehlednost by tedy bylo možno zlepšít uspořádáním obsahu do tabulek, jak již bylo vícekrát doporučeno.

Postupná publikace metodik radioamatérských sportů pokračuje "Metodikou moderního víceboje telegrafistů" Dr. Vojtěcha Kroba, OK1DVK. Kniha je napsána skutečně výborně, s jednoznačným záměrem poskytnout čtenáři maximum praktických informací; navíc obsahuje řadu ilustrativních tabulek, obrázků i fotografií. Více péče mělo být věnováno korekturám – tiskové chyby někde (např. str. 46) vedou k věcné nesprávnosti. Populární *Přednášky z amatérské radiotechniky* pokročily ve čtvrté části třemi

"Jednoduché elektronické měřicí přístroje pro mládež" Jaroslava Winklera, OK1AOU, obsahují stručný ale výstižný popis stavby několika základních měřicích přístrojů pro začátečníky, například signálních generátorů, záznějového vlnoměru aj. Přinosem knihy není původnost popsaných zapojení, nýbrž důsledné podřízení konstrukce možnostem začátečníků a potřebám práce v kroužcích mládeže, jak je u autora obvyklé.

Sešit "Měření v radioamatérské praxi - měřicí metody – II. část" Jiřího Borovičky, OK1BI, obsahuje amatérům dostupné měřicí metody základních vlastností zařízení pro radioamatérský provoz (přijímačů, vysílačů, antén) včetně popisu měři-cích přístrojů a přípravků. Téma je nesmírně důležité a vůbec ne jednoduché. Nezbytnost přizpůsobit je omezeným možnostem amatérů nároky na uváženou koncepci jeho zpracování ještě umocňuje. Autor tato úskalí zvládl a sešit se zařadil mezi nejlepší (a také nejvyhledávanější) z celé publikované řady. Jeho zaměřením je dána orientace zejména na techniku KV; bylo by velmi účelné zpracování specifických otázek měření v oboru VKV obdobným způsobem v některém dalším sešitu. Čelek by si pak zasloužil řádné knižní vydání, protože jak problematika, tak i sám text mají dlouhodobou platnost a význam.

"Základy digitální techniky" ing. Michala Půži a Vladimíra Půži obsahují základní informaci o tomto oboru, o číslicových signálech, číslicových iO, obvodech TTL a zásadách jejich aplikací, o návrhu sekvenčních a kombinačních logických obvodů.

Úspěšně pokračující řada sešitů Přednášek z amatérské radiotechniky opět vede k malému zamyšlení.

Zařazení této řady do Knižnice zájmové, branně technické a sportovní činnosti Účelové edice ÚV Svazarmu umožnilo velmi dobrým způsobem vyřešit letitý tíživý problém - nedostatek odborné literatury o specifických otázkách techniky pro radioamatérský sport. Je jasné, že pro běžná vydavatelství není vydávání literatury tak specifického zaměření přijatelné (třeba již jen z ekonomických důvodů) v rozsahu, jaký soudobý rychlý rozvoj radiotechniky (byť jen amatérské) vyžaduje. Proto svazarmovské organizaci, která na publikaci a bezplatnou distribuci sešitů přednášek vynakládá nemalé prostředky, i všem těm, kdo k jejich realizaci přispěli a přispívají, patří uznání. Právě proto je ale nutné věnovat pozornost opravdu účelnému využití prostředků i úsilí, aby sešity skutečně poskytly radioamatérům tu látku (nebo její pojetí či zohlednění), jakou jinde najít nemohou: vždyť to je hlavním cílem sešitů. Protože peněz, času a práce, které by byly vynaloženy na sešit z této ediční řady, který by obsahoval látku vícekrát již zpracovanou v časopisech a jiné literatuře, navíc běžně dostupné, by bylo prostě škoda, i kdyby byl takový sešit napsán velmi dobře. Bylo by jich škoda třeba již jen s ohledem na to množství otázek, které na svůj sešit přednášek teprve čekají. –jjv–

SVAZAŘM (O)

AMATÉRSKÉ RADIO MLÁDEŽI

Antonín Beneš, OK2BAZ, s mladými operátory kolektivní stanice OK2KZC

Z vaší činnosti

Jedním z mladých úspěšných posluchačů je OK2-30826, Radek Hochmann z Vranovic. Pravidelně se zúčastňuje celoroční soutěže OK-maratón, ve které dosahuje každý měsíc umístění mezi prvními posluchači v kategorii do 18 roků. Dobrých výsledků dosahuje také v ROB, kde spolu s rodiči vede skupinu svých spolužáků ze základní školy. V roce 1986 se o prázdninách zúčastnil svazarmovského tábora talentované mládeže ROB v Janově u Zlatých Hor. V táboře se mu velice líbilo a získané zkušenosti předává svým spolužákům.

Radek je operátorem kolektivní stanice OK2KZC ve Vranovicích, kde pod vedením obětavého VO Antonína Beneše, OK2BAZ, přispívá k úspěšné činnosti celého kolektivu. Těší se na oprávnění k vysílání pod vlastní volací značkou OL po dovršení 15 roků v letošním roce.

Technické činnosti se věnuje i doma. Poslouchá na přijímači 1-V-1 a Pionýr. Připravuje se na stavbu přijímače pro pásmo 2 metrů. Nejcennějším Radkovým úspěchem je QSL lístek za poslech chilské expedice CEOAA z ostrova San Felix v pásmu 3,5 MHz.

Radioamatéři a domy pionýrů a mládeže

V 9. čísle loňského ročníku Amatérského radia jsem vás v naší rubrice požádal, abyste mi napsali, jaké zkušenosti máte ze spolupráce vašich radioklubů s domy pionýrů a mládeže.

Dostal jsem již na toto téma několik dopisů od vás a věřím, že další zprávy o vaší spolupráci s DPM od vás ještě obdržím. Dnes vás seznámím s částí dopisu, který poslal OK3CDN, Milan Horváth, VO kolektivní stanice OK3KUV z Bratislavy.

"Naše kolektivní stanice vznikala od roku 1980 do roku 1982, kdy jsme dostali povolení k vysílání pod značkou OK3KUV. Protože jsme měli málo operátorů, zaměřili jsme se ihned od samého počátku naší činnosti také na výchovu mladých operátorů. Zájem projevili chlapci ve věku 15 až 16 roků. Po vyškolení a získání osvědčení rádiových operátorů však naši kolektivní stanici opustili z důvodů studia na vysoké škole a nástupu do základní vojenské služby. Věříme však, že se k nám po čase opět vrátí a rozšíří řady našich operátorů.

Tato zkušenost nás přiměla k tomu, abychom se zaměřili na mládež, která ještě navštěvuje základní školu. Proto jsme se v letech 1984 až 1986 v našem radioklubu, který je součástí ZO Zväzarmu Kamzík při OV Bratislava III, zaměřili na výchovu mladých operátorů ve věku od 9 do 10 roků. Pro budoucí operátory jsme v našem radioklubu ve spolupráci s Obvodním domem pionýrů a mládeže Bratislava III založili radiotechnický kroužek. Kroužek měl vypracovaný plán činnosti ve smyslu jednotné metodiky práce v radioámatérských kroužcích mládeže ve Svazarmu. Plán činnosti kroužku byl vypracován na tříleté období, což je optimální doba pro práci s mládeží do 10 roků věku. Kroužek mladých operátorů střídavě vedli Stano, OK3CPW, a Milan, OK3CDN.

V prvním ročníku navštěvovalo kroužek pravidelně 10 chlapců. Do třetího ročníku však nastoupili již pouze 4 chlapci, z nichž Dušan, OK3-28257, Petr, OK3-28262, a Petr, OK3-28267, získali vysvědčení operátora třídy C. S úspěchem také složili zkoušky OL a stali se dobrými operátory naší kolektivní stanice. Zásluhu na úspěšném absolvování zkoušek OL měla také jejich účast na dvoutýdenním celoslovenském internátním kursu mladých radioamatérů Svazarmu, který byl v době letních prázdnin v roce 1986 uspořádán ve Vajnorech u Bratislavy pod patronací SÚV Svazarmu. Bylo by zapotřebí, aby naše vrcholné orgány podobné interní kursy mladých radioamatérů pořádaly častěji a pravidelně.

Našim mladým operátorům, kteří po prázdninách z kolektivní stanice navázali svá první spojení, se věnujeme dál, hlavně v práci na stanici. Pro rozšíření a zkvalitnění práce na stanici jsme v naší kolektivní stanici instalovali anténu pro pásmo 160 m a uvedli do provozu transceiver Jizera. Tím jsme vytvořili další předpoklady k tomu, aby naší mladí RO získali zručnost v běžném telegrafním provozu v KV pásmech, ale také v závodech, které jsou pořádány pro mládež. Tímto způsobem jsme tak dali možnost dalším zájemcům se věnovat radioamatérskému sportu.

Do budoucích let předpokládáme, že se nám znovu podaří ve spolupráci s Obvodním domem pionýrů a mládeže a obvodním výborem Svazarmu Bratislava III uspořádat další běh radioamatérského kroužku mládeže při kolektivní stanici OK3KUV.

Závěrem mohu na základě získaných poznatků a zkušeností z práce s mládeží říci, že začátky bývají vždy těžké. Je však nutné mít vypracovaný plán práce zájmového kroužku nejen na příslušný rok, ale rovněž na celé období trvání kroužku. Vytrvat musí žáci i vyučující a je nesmírně nutné udržet potřebnou kázeň, náplň a termíny schůzek. Věřím, že se v každém radioklubu najde obětavý člen, který dokáže věnovat potřebný čas k výchově mládeže a nových operátorů. Potom se zcela určitě také dostaví očekávané výsledky namáhavé práce s mládeží.

výsledky namáhavé práce s mládeží. Připomínám, že krajské celoroční hodnocení OK — maratónu a Soutěže MČSP se dosud, ke škodě radioamatérského hnutí, pravidelně nevyhlašuje. Přimlouvám se, aby všechny rady radioamatérství KV Svazarmu zahrnuly krajské hodnocení obou soutěží do svých plánů a pravidelně je každoročně vyhlašovaly. Jistě by to ještě více obě tyto soutěže podpořilo, rozšířilo počet soutěžících a naší radioamatérské činnosti by to prospělo."

Tolik z dopisu OK3CDN, Milana Hor-

Tolik z dopisu OK3CDN, Milana Horvátha z Bratislavy. Těším se, že mi také z ostatních radioklubů napíšete o vaší spolupráci s domy pionýrů a mládeže.

73! Josef, OK2-4857

PRO NEJMLADŠÍ ČTENÁŘE

Poslední příspěvek tohoto "seriálu" si vyžádal více času, než jsme očekávali. Podobně jako původní zapojení kapacitního spínače (viz Amatérské radio č. 3, 1982) byla i nová verze s integrovaným obvodem MHB4001 vyzkoušena v provozu na oddělení techniky Ústředního domu pionýrů a mládeže. Po sestavení a oživení prototypu navrhl ještě autor úpravu (blokování), která však není realizována na uveřejněné desce s plošnými spoji.

na uveřejněné desce s plošnými spoji.
Pokud bude pro někoho blokování funkce kapacitního spínače výhodné, může doplnit kondenzátor C12 a rezistor R18 přímo na desku s plošnými spoji, která je dostatečně velká. Obě součástky jsou připojeny na vstup 9 hradla H3, je však nutné přerušit spojení mezi vývody 8 a 9 tohoto hradla. Na obr. 1 je místo přerušení označeno křížkem. Fotografie ukazuje původní zapojení kapacitního spínače – bez C12 a R18.

-z h-

KAPACITNÍ SPÍNAČ

Tomáš Kůdela

Popis funkce

Obvod tranzistoru T1 (obr. 1) pracuje jako oscilátor na kmitočtu přibližně 100 kHz. Symetrické vinutí L3, L3' spolu s kondenzátory C5 a C6 v sérii s kapacitou antény tvoří transformátorový můstek. Je-li kapacita C6 stejná jako kapacita sériové kombinace C5

a antény (protože C5 má kapacitu řádově větší než bývá kapacita antény, ie ieho vliv na výslednou kapacitu zanedbatelný), je můstek v rovnováze a na odbočce mezi vinutími L3 a L3' není napětí. Poruší-li se rovnováha můstku, například změnou kapacity antény přiblížením nějakého tělesa, objeví se na odbočce mezi vinutími L3 a L3' střídavé napětí. Tento signál je proudově zesílen stupněm s tranzistorem T2 a přichází do detektoru s T3. Následuje klopný obvod z hradel H1 a H4. Vyvážený stav je indikován zhasnutím diody D2. Hradla H2 a H3 tvoří monostabilní klopný obvod, jehož časovou konstantu lze řídit odporovým trimrem R13.

Vstup B slouží k zablokování činnosti kapacitního spínače úrovní log. 1. Ke vstupu B může být připojen např. obvod s fotorezistorem podle obr. 2 — kapacitní spínač se tak automaticky uvede v činnosti až po setmění.

Oživení a obsluha přístroje

Spínač je výhodné napájet stabilizovaným napětím, které zaručuje maximální citlivost při dobré dlouhodobé stabilitě nastavení. Po připojení napájecího napětí zkontrolujte osciloskopem, kmitá-li oscilátor. Průběh napětí by měl být na anténní zdířce přibližně sinusový. Nemáte-li osciloskop, zkontrolujte střídavé napětí na anténě alespoň připojením běžného voltmetru přes detekční diodu (např. GA201).

Připojte anténu, která by měla být volně umístěna v prostoru a snažte se, aby byl propojovací přívod co nejkratší. Anténa může být realizována jako deska z plechu, kuprextitu nebo hliníkové fólie. Při prvních pokusech se spínačem zvolte rozměr antény asi 100 x 100 mm. Je nepřípustné, aby se anténa dotýkala vodivých předmětů nebo ležela přímo na zdi.

Po připojení antény vyvažte můstek změnou kapacity trimru C6. Postupujte takto: nejdříve nastavte nejmenší citlivost odporovým trimrem R6 (běžec posunut směrem k R7), potom pozvolným otáčením hřídele kapacitního trimru C6 nastavte takovou kapacitu obvodu, při které dioda D2 zhasne. Nyní můžete zvětšit citlivost trimrem R6 a postup opakovat. Tak dosáhnete optimálního nastavení při maximální citlivosti.

Odporovým trimrem R13 nastavte zpoždění pro vypnutí výstupního obvodu. Toto zpoždění je výhodné, je-li kapacitním spínačem řízeno osvětlení v místnosti nebo výkladní skříni, neboť osvětlení nezhasne při každém náhodném pohybu osoby, kterým se na krátké okamžiky vzdaluje od antény. Osvětlení zhasne až po nastavené době, kdy je již téměř jisté, že osoba příslušné místo opustila. Stavy výstupního spínače jsou indikovány diodou D4. Tranzistor T6 je výstupní spínač, který může přímo spínat malou zátěž nebo spínat proud do cívky relé, kterým pak ovládá např. síťové spotřebiče.

Seznam součástek

R1, R11, R14 rezistor $10~k\Omega$ R2 rezistor $2,2~k\Omega$ R3, R10, R17 rezistor $820~\Omega$ R4, R5 rezistor $2,2~M\Omega$ R6, R19 odporový trimr $22~k\Omega$, TP 041R7 rezistor $5,6~k\Omega$ R8 rezistor $47~k\Omega$ R9 rezistor $0,22~M\Omega$ R12, R18 rezistor $1~M\Omega$

R12, R18 rezistor 1 M Ω R13 odporový trimr 2,2 M Ω , TP 041

R15 rezistor 1,5 kΩ R16 rezistor 6,8 kΩ fotorezistor

C1 kondenzátor 150 nF, keramický C2 kondenzátor 68 nF, keramic-

C3 kondenzátor 2,2 nF, keramický

C4, C7 kondenzátor 10 nF, keramic-

C5 kondenzátor 1 nF, slídový C6 kapacitní trimr 1 až 15 pF (1 až 18 pF

C5 👱 1n 7_{2M2} R12 ใดวก R9 H1 _{R10} C2 R2 R11 820 <u>T</u>c8 10k 90V 2×KC149 LQ100 MHB4001 LQ100 KA261 KC148 KC507 KA261

Obr. 1. Schéma zapojení kapacitního spínače

Obr. 2. Světelné čidlo pro blokování spínače

Obr. 3. Provedení kapacitního spínače

Deska V31 s plošnými spoji a rozmístěním součástek

C8 C9 C10 C11, C12 kondenzátor 33 nF, keramický kondenzátor 10 μF, 12 V, elektrolytický kondenzátor 20 μF, 15 V, elektrolytický (TE 984) kondenzátor 22 nF, keramický

12 V, 15 V, D1, D3, D5 ramic- D2, D4

10

feritový hrníček H22, ø 12 až 18 mm L1 — 15 závitů, L2 — 3 závity, L3 = L3′ — 30 závitů, drát asi o ø 0,2 mm CuL

o ø 0,2 mm CuL dioda KA501 (KA261) svítivá dioda (LQ100) integrovaný obvod MHB4001 T1, T4, T5 tra T2, T3 tra T6 tra

deska s plošnými spoji V ... tranzistor KC148 tranzistor KC149 tranzistor KF507

-zh-

)

JAK

NA TO

Podle návodu v AR A1/82 jsem si zhotovil mikropáječku, která mě plně uspokojila až na jedinou věc. Každé držadlo, které jsem k páječce použil, se vždy za určitou dobu roztavilo, anebo alespoň teplem poškodilo. Problém jsem nakonec uspokojivě vyřešil konstrukcí držadla podle obr. 1.

DRŽADLO K MIKROPÁJEČCE

Jako základ jsem použil Centro-Fix 1710, z něhož jsem odstranil náplň a psací hrot. Na pájecí tělísko, které tvoří mosazná trubička, jsem připájel asi 13 mm od konce kousek tenkého drátu pro "zdrsnění" povrchu. Pak jsem tělísko zasunul do odšroubovaného hrotu fixu tak, aby první chladicí otvor byl asi 5 mm od hrotu fixu. Protože díra ve fixu je větší než průměr tělíska, zajjstil jsem tělísko v požadované poloze kouskem bužírky. Tím máme zároveň zaručeno optimální vystředění.

Celou sestavu jsem upevnil ve svislé poloze ve svěráku tak, aby pájecí hrot směřoval dolů.

Pak jsem rozdělal poměrně řídkou sádru a tělísko v hrotu fixu zalil tak, aby sádra dosahovala až k závitu. Musíme dát pozor, abychom nezalili i závit, protože bychom nemohli zašroubovat druhý díl. Bužírka, kterou jsme zajistili tělísko, nám současně zabrání, aby sádra vytekla ven. Když sádra ztvrdne, odstraníme bužírku a připájíme přívodní kablík, na kterém uděláme uzlik proti vytržení. Pak našroubujeme druhý díl fixu, v němž pochopitelně uděláme v zadní části otvor pro průchod kablíku.

Takto zhotovené držadlo je nejen mechanicky velmi odolné, ale díky malé tepelné vodivosti sádry se již nemusíme obávat jeho roztavení.

Marek Budina

SKLENĚNÉ PRŮCHODKY

Mnoho amatérů, například ti, kteří stavějí anténní zesilovače, je často postaveno před problém, jak a kde získat skleněné průchodky. Autory článků jsou většinou doporučovány průchodky ze starých krabicových kondenzátorů, které se však někdy dosti obtížně shánějí.

Používám poměrně jednoduchý způsob výroby těchto průchodek z diod typu KY701 až 706. Postupuji tak, že diodu nejprve přeříznu pilkou na železo asi 3 mm od jejího tenčího konce. Pak pilníkem řez začistím a průchodka je hotova. Pokud bychom použili nové diody, vyjde nám cena za průchodku asi na 2 Kčs. Z vadných diod máme průchodky zdarma.

A/5 Amatorske AD 10

AMATÉRSKÉ RADIO SEZNAMUJE...

Radiomagnetofon TESLA KM 350

Celkový popis

Radiomagnetofon KM 350 je přenosný přístroj a zahrnuje stereofonní rozhlasový přijímač a stereofonní kazetový magnetofon. Jeho výrobcem je k. p. TESLA Přelouč a prodejní cena byla stanovena na 3900 Kčs. Přijímač má čtyři vlnové rozsahy, přičemž pro roz-sahy AM je ve funkci vestavěná feritová anténa, pro roszahy FM pak výsuvná anténa. Pro pohodlnější vyladění vysllače slouží zelená svítivá dioda, indikující střed naladění, červená dioda pak indikuje stereofonní příjem. Univerzální zásuvka umožňuje připojit k radiomagnetofonu běžné zdroje nf signálu pro záznam na magnetofon, příčemž je možný příposlech jak pomocí vestavěných reproduktorů tak na sluchátka. Při záznamu je v činnosti nevypínatelná automatika vybuzení, nahrávat možno jak na materiály typu Fe, tak i typu Cr, přičemž se příslušné obvody přepínají automaticky. Radiomagnetofon KM 350 nemá přípojku pro vnější anténu ani pro vnější reproduktory. Napájení je buď síťové, nebo bateriové (šest malých monočlánků), přičemž pro indikaci stavu článků slouží další červeně svítící dioda, která při poklesu napájecího napětí asi pod 6,3 V začne blikat a tím upozorňuje na blížící se nutnost jejich výměny.

Na horní straně přístroje jsou všechny ovládací prvky magnetofonu, které tvoří šest tlačítek, přičemž poslední tlačítko vpravo (stop) slouží při druhém stisknutí k otevření prostoru kazety. Dále jsou tu odleva: přepínač kmitočtu oscilátoru k zamezení případných hvizdů při záznamu pořadů z rozhlasových pásem s amplitudovou modulací vysílačů, dále pak přepínač radio-magnétofon, přepínač mono-stereo-wide, kterým lze při příjmu rozhlasu v případě šumu v reprodukci nuceně přejít na monofonní provoz, anebo (jak při příjmu rozhlasu tak i při reprodukci z magnetofonu) uměle rozšířit stereofonní bázi a posledním přepínačem volíme vlnové rozsahy. Ladění při-

jímače je na pravém boku skříňky. Na čelní stěně jsou dva oddělené regulátory hlasitosti a vedle nich běžný tónová clona. Vpravo vedle prostoru pro kazetu je druhý přepínač s označením HIGH-LOW, jehož funkce prošla několika změnami a který je v podstatě přepínačem hudba-řeč. V horní poloze ie v reprodukci méně, v dolní poloze více hloubek. Nad tímto přepínačem jsou všechny tři, již dříve popsané, indikační diody.

Na zadní stěně přístroje je konektor, umožňující připojit (pro záznam) běžné zdroje nízkofrekvenčního signálu, kromě toho umožňuje signál z magnetofo-nu přivést na jiný vnější zesilovač, případně nahrát na jiný magnetofon. Na levém boku jsou konektory pro připojení síťového přívodu a stereofonních sluchátek.

Základní technické údaje podle výrobce

Vlnové rozsahy: DV 150 až 285 kHz,

SV 525 až 1605 kHz, VKV I 66 až 73 MHz. VKV II 87.5 až 108 MHz.

Citlivost:

DV 3 mV/m, SV 1,1 mV/m. VKV I 10 uV (mono), VKV II 8 uV (mono).

Rychlost posuvu: 4,76 cm/s. Kolísání rychlosti: ± 0,4 % Druh pásku: Fe nebo Cr. Celkový odstup

ruš. napětí: Kmitočtový

rozsah:

63 až 12 500 Hz. Rozměry: 41×15, 5×9,5 cm. Hmotnost: 2,6 kg.

Funkce přístroje

50 dB.

Začneme přijímačovou částí, kterou finalista, TESLA Přelouč, sám nevyrábí, ale přebírá ji od k.p. TESLA Bratislava. K citlivosti přijímače či jeho funkci na rozsazích středních a dlouhých vln, nelze mít žádné připomínky. Naproti tomu při ladění vysílačů v pásmech VKV nebude zákazník příliš spokojen. Na stupnici se totiž vyskytují podivné "fantomové" vysílače, které lze dokonce naladit na jakési optimum při kterém

svítí i dioda indikující stereofonní příjem, ale reprodukce je velmi zkreslená a tudíž neposlouchatelná. Červená dioda se kromě toho rozsvěcuje při projíždění stupnice mimořádně často aniž by byl zachycen vyhovující vysílač. Pokud se však při troše cviku podaří naladit vysílač, pak lze reprodukci označit za dobrou a odpovídající možnostem přijímače těchto rozměrů. Rovněž citlivost v rozsahu VKV lze označit za velice dobrou.

Uspokojivě pracuje i obvod WIDE, který po přepnutí slyšitelně rozšiřuje subjektivně vnímanou stereofonní bázi. Přitom sice dochází k určitému zdůraznění oblasti vyšších kmitočtů, avšak tato skutečnost v reprodukci neruší.

Magnetofonová část přístroje pracuje po elektrické stránce naprosto bez vady a všechny udávané parametry jsou splňovány - až na některé, možná ojedinělé, případy kolísání rychlosti posuvu. Pro tento přístroj byla upravena mechanická část přehrávače KM 340 (Walkman), která v původním provedení měla určité nedostatky. Přes veškerou snahu výrobce však i tato zlepšená varianta má určitou slabinu v náchylnosti ke zvětšenému kolísání rychlosti posuvu v případě, že použitá kazeta není právě v mechanicky nejlepším stavu. Máme-li však k dispozici skutečně dobrou kazetu, pak je i parametr kolísání rychlosti posuvu spiňován.

Ovládací prvky jsou rozmístěny účelně a tlačítka, ovládající magnetofon, mají přijatelně lehký chod. U magnetofonu je výhodné, že lze přecházet z jedné funkce na druhou aniž by bylo mezitím nutno pásek zastavovat

Zmíněná mechanika sice vypíná magnetofon na konci pásku ve funkci záznamu či reprodukce, neumí to však při převíjení. Přitom jsou tlačítka převíjení vpřed i vzad aretována, což považují za nevhodné řešení, protože nevypneme-li převíjení včas, některé díly mechaniky musí nutně prokluzovat, což jednak vyvolává nežádoucí zvuky, jednak se tím zvětšuje opotřebení. Bylo by jistě vhodné urychlit vývoj kvalitní univerzální mechaniky, která by všechny základní požadavky splňovala.

Drobnou přípomínku mám ještě k poněkud samoúčelnému přepínači

HIGH-LOW na čelní stěně. I když zde byl určitý záměr výrobce, je reprodukce v trvale zařazené poloze LOW příjemnější a poloha HIGH by snad mohla sloužit ve výjimečném případě k omezení hloubek při reprodukci mluveného slova.

Vnější provedení

Většině posuzovatelů se tento přístroj líbil. Domnívám se, že je zcela uspokojivý nejen vzhledem, ale i celkovým zpracováním. Rysky, indikující nastavené vlnové rozsahy a funkce mono-stereo-wide, jsou, vzhledem k vlastnostem použitých přepínačů, poměrně blízko u sebe. Přepínače, které měl výrobce od subdodavatele k dispozici, mají však dosti tuhý chod a ne zcela přesně definované jednotlivé aretované polohy. Proto se uživatel někdy.

hůře orientuje v tom, jak má právě přepínač nastaven. U několika vzorkových přístrojů jsem se setkal s volně padajícím držadlem, které otloukalo zadní stěnu, avšak byl jsem ujištěn, že držadlo bude ve svých čepech utěsněno aby drželo v jakékoli poloze.

Vnitřní provedení a opravitelnost

Zadní stěna se odnímá velmi jednoduše povolením šesti šroubů. K přijímačové části je přístup výborný, horší to je již s přístupem k části magnetofonové a k eliminátoru. A zcela nejhorší, pak k části mechanické. Obávám se, že při opravách mechaniky budou na adresu konstruktéra směřovat velmi ošklivá slova. Stejně tak i při případné výměně některé z indikačních diod.

Závěr

Radiomagnetofon TESLA KM 350 je nesporně líbivý výrobek, který má uspokojivé technické vlastnosti a dobrou reprodukci. Kdyby měl lépe laditelný přijímač a mechaniku s větší rezervou v parametrech rovnoměrnosti chodu, pak by všechny vyslovené připo-mínky byly jen málo významnými detaily. Na závěr proto mohu jen znovu apelovat na výrobce, aby buď skutečně urychlil vývoj perfektní mechaniky, anebo se pokusil o získání příslušné licence, která by tyto vleklé problémy vyřešila. K otázce přijímače bych jen dodal to, že by přístroji prospělo, kdyby se dekodér stereofonního příjmu (a tím i indikační červená dioda) zapínal až při poněkud silnějším vf signálu a nikoli dříve než se vůbec začne rozsvěcet zelená dioda indikující přítomnost a naladění vysílače.

Primární napájecí zdroje s dlouhou dobou života

V moderní elektronice jsou na napájecí zdroje kladeny stále náročnější a přísnější požadavky. Nejedná se ani tak o velký výkon zdrojů, ale spíš o dlouhodobý spolehlivý provoz při malém odběru energie, při němž je třeba zabezpečit spolehlivost, nenáročnost na obsluhu a konstantní napětí při malém objemu. Je to např. stálé napájení pamětí RAM, tak aby programy a údaje zůstaly zachovány i při vypnutí přístroje nebo při výpadku síťového napájení. Nároky na tyto vlastnosti zdrojů jsou nejen u počítačů, ale i u hodin, fotoaparátů, videomagnetofonů, kapesních elektronických adresářů, elektronických telefonních seznamů atd.

Jak vypadá energetická bilance primárních článků v závislosti na objemu? Základní údaje o množství energie, získané z 1 cm³ objemu, jsou pro pět druhů článků uvedeny v tab. 1.

Z uvedeného vyplývá, že nejvýhodnějším typem jsou lithiové baterie. Energeticky jsou sice velmi výhodným zdrojem i zinkové články se vzdušnou polarizací, ale pro malou skladovatelnost (nezbytné otvory pro přístup vzduchu) jsou použitelné jen jako stacionární články (pro telefonní účely, popř. ve formě knoflíkových baterií v naslouchacích přístrojích).

Z hlediska energetické kapacity, mechanické konstrukce i spolehlivosti jsou pro moderní zařízení nejvhodnější lithiové články s organickým elektrolytem, který je v současné době považován za nejvhodnější pro mikroelektroniku.

U nás dobře známá firma VARTA také vyrábí širokou paletu lithiových baterií v knoflíkovém a válcovém provedení; některé z nich se objevily i našem trhu (např. knoflíkový článek o g 20 mm, výška 1,6 mm, typ CR 2016; má napětí 3 V a kapacitu 60 mA/hod.).

VARTA vyrábí tři druhy (systémy) lithiových článků — pro malé samovybíjení, dlouhou skladovatelnost a výhodnou energetickou bilanci se dobře hodí pro napájení nejrůznějších elektronických zařízení.

V tabulce 2 jsou základní informace o lithiových bateriích, vyráběných v současné době.

Typ CR jsou nejvíce používány, vyrábí se dvanáct druhů (knoflíkové a válcové). Používají se pro náramkové hodinky, kalkulačky, menší počítače, elektronické hry, měřicí přístroje, poplašná zařízení, filmové a fotografické přístroje, záchranné a zabezpečovací systémy, telefonní zařízení atd.

Tab. 1

Systém	Energie (v mW/hod) v cm³
klasický (zinek — burel)	200 až 300
Zinek — oxid stříbra	350 až 430
Rtuťová baterie	400 až 520
Zinkové se vzduš- nou polarizací	650 až 900
Lithiové systémy	600 až 1000

Typ ER se používá především pro napájení paměťových systémů RAM. Jsou to válcové články, které se zapájejí na desku s pamětí. Mají napětí 3 V, kapacitu 1 Ah.

Typ DR je určen pro náramkové hodinky, ve kterých při odběru 1 až 2 μA vydrží dvojnásobnou dobu, tj. čtyři roky, v porovnání s dříve používanými články Ag₂O.

Další výhodou článků "VARTAlith" je plochá křivka, zabezpečující spolehlivé napájení zařízení. S ohledem na zmíněné aplikace se většina lithiových baterií vyrábí s vývody, které se zapájejí do desky s plošnými spoji.

Obr. 1.

V některých zařízeních se používá zapojení podle obr. 1, ve kterém je lithiová baterie "napájena" při běžném provozu proudem asi 200 nA, při výpadku napájecího napětí pak baterie přebírá napájení pamětí CMOS RAM.

—LK—

Tab. 2.

Тур	CR	ER	DR
Systém	Li/MnO ₂	Li/CrO	Li/Bi₂O₃
Energie [mWh/cm³]	360 až 580	650 až 1000	350 až 500
Jmenovité napětí [V]	3,0	3,0	1,5
Napětí naprázdno [V]	3,3	3,8	2,1
Vyrábí se s kapacitou [mAh]	30 až 200 knofl. 160 až 1400 válc.	1000 válc.	35 až 45
Skladovatelnost	> 5 let	do 10 let	> 5 let
Samovybíjení		< 1 % za rok	
Provozní teplota		—20 až +60 °C	

A/5 amatérské? AD 10

Digitální teploměr

Ing. Miroslav Prachař

Měření teploty je velmi často používáno v profesionální praxi i v domácnosti. Popisovaný teploměr byl původně vyvinut pro měření venkovní teploty vzduchu, nic však nebrání tomu, aby se využil i v jiných aplikacích, v nichž postačí jeho rozlišovací schopnost. Napájení je bateriové, takže je možné s ním pracovat v "terénu"

Technické údaie

Rozsah měřených teplot:

99 + 150 °C.

Rozlišovací schopnost: 1 °C. 4× 1,5 V, tužkové články, Napájení:

max. 120 mA.

Popis činnosti

Na stránkách AR bylo uveřejněno několik zapojení digitálního teploměru [1], [2], [3]. Jejich princip činnosti, dosažitelné parametry a složitost mě však neuspokojovaly. Výhodné řešení se nabízí s převodníkem A/D, ke kterému stačí připojit snímač teploty a zobrazovací jednotku. V [4] je blíže popsán převodník A/D typu AD2020 fy Analog Devices; jeho ekvivalentem je obvod C520D. Snímací část je navržena obdobně jako v [5], teoretický rozbor byl proveden v [6],

Tak vzniklo zapojení, jehož schéma je na obr. 1. Jelikož převodník A/D pracuje v kladné oblasti na tři platná místa a v záporné pouze na dvě platná místa, využívá se v celém měřicím

rozsahu zobrazení pouze posledních dvou míst s tím, že rozlišovací schopnost bude 1 °C

Dvoumístná zobrazovací jednotka O1 pracuje v multiplexním režimu, takže vystačíme s jedním dekodérem D147D. Zelená plochá dioda D2 slouží k zobrazení znaménka mínus při měření záporných teplot. Je zapojena namísto segmentu G nejvyšší platné číslice. K snímání teploty je použit varikap D1, zapojený v propustném směru do můstku. Využívá se skutečnosti, že změna napětí na diodě v propustném směru činí asi 2 mV/°C a je v širokém rozsahu teplot lineární. Trimr P1 slouží při kalibraci teploměru k nastavení 0 °C a trimr P2 k nastavení

Z důvodů malé změny napětí na diodě s teplotou musí být měřící můstek napájen kvalitním referenčním napětím. Velmi dobré vlastnosti v tomto směru má použitý IO3 MAB01D, jehož podrobnější popis je v [7]. Referenční zdroj MAB01D dává na výstupu napětí asi 10 V. Diodou D1 prochází přes rezistor R1 proud asi 130 µA. Protože odpor rezistoru R1 je velký, dá se říci, že D1 je napájena konstantním prou-

Obr. 1. Schéma zapojení digitálního teploměru

Obr. 3. Deska V33 s plošnými spoji držáku tužkových článků

Obr. 6. Kontakty do držáku tužkových článků

dem, a to se kladně projeví na linearitě teploměru. IO3 vyžaduje pro správnou funkci vstupní napětí v rozsahu 12 až 30 V.

Blokující oscilátor tvořený součástkami T4, R17, C3, L1, L2, zajišťuje přeměnu napětí baterie na napětí větší než 12 V. Dioda D4 je usměrňovací a D3 omezuje vstupní napětí referenčního zdroje na 13 V, protože napětí z oscilátoru se mění podle napětí baterie. Kmitočet oscilátoru je řádu desítek kHz.

Teploměr měří pouze v době stisknutí tlačítka Tl.

Konstrukční údaje

Všechny součástky jsou umístěny na desce s plošnými spoji o rozměrech 85 × 57,5 mm (obr. 2a, b). Na druhé desce se stejnými rozměry jsou umístěny čtyři tužkové články (obr. 3a, b).

Jako první zapájíme zobrazovací jednotku O1. Do desky s plošnými spoji ji zasuneme co nejméně, protože musí přesahovat ostatní součástky (nanejvýše může být v rovině s nimi). Rezistory R8 až R14 a R17 jsou umístěny nastojato. Feritový hrníček přišroubujeme mosazným šroubkem M3 a dáváme pozor, aby hlavička šroubku nebyla výše než O1. Začátky vinutí L1 a L2 je třeba zapojit podle schématu, jinak by oscilátor nekmital. Na tomto místě bych chtěl upozornit, že v některých výtiscích [8] je u zapojení vývodů IO3 chybně uvedeno "pohled shora". Správně tam má být "pohled zespodu'

Všechny odpory a trimry kromě R8 až R14 a R17 a dále kondenzátor C1 by měly být co nejkvalitnější, neboť na nich závisí časová a teplotní stabilita teploměru.

Na diodě D2 je nasazena maska např. z organického skla, zhotovená podle obr. 4. Ze spodní strany je natřena takovým odstínem zelené nitrocelulózové barvy, který se co nejvíce blíží barvě zobrazovací jednotky.

Pod trimry P1 a P2 jsou na desce vyvrtány otvory o průměru 3,5 mm, aby je bylo možno nastavovat šroubovákem. Mezi obě desky je vložena izolační podložka (obr. 5), jíž prochází napájecí kablík, spojující tyto desky.

Na obr. 6 jsou znázorněny kontakty k tužkovým článkům. Zhotovíme je z pružného fosforbronzového plechu nebo z pérového svazku většího relé. Kontakty jsou do desky zapájeny.

Snímač – varikap – se k teploměru připojuje nestíněným kablíkem, zakončeným miniaturním konektorem vyrobeným z černé objímky DIL (obr. 7). Objímku rozřízneme podélně a z jedné poloviny pak uřízneme dvě části, každou se dvěma kontakty. Jedna část bude sloužit jako zásuvka, tu zapájíme do desky. Druhou část, zástrčku, musíme upravit. K vývodům připájíme naplocho ještě jedny, které kývavým pohybem ulomíme ze zbytku objímky. Tím dosáhneme toho, že zástrčka bude v zásuvce lépe držet. Potom zkrátíme vývody na délku 5 mm. z druhé strany připájíme kablík s varikapem. Zástrčku očistíme od kalafuny a zakápneme z obou stran dvousložkovým lepidlem, např. UNILEX. Krabička je slepena z Novoduru lepidlem L20 nebo D80. Jednotlivé díly a sesta-

Obr. 7. Miniaturní konektor z objímky DIL

va jsou na obr. 8. Přes okénko zobrazovací jednotky je zevnitř nalepena průhledná krycí fólie.

Přebroušená a odmaštěná krabička je nastříkána vrstvou matného nitrocelulózového laku, ve kterém je rozmíchána prášková stříbrná barva za 4 Kčs. Po vytvoření nápisů z obtisků Propisot je celá krabička opět přestříkána matným lakem. Na spodním odnímatelném víku jsou zespodu přilepryžové nožkv peny čtyři o Ø 7×3 mm, vyseknuté ostrým průbojníkem z pryžového pásu. Na opačné straně víka je přilepen proužek molitanu 50 × 20 × 3 mm k utěsnění desek s plošnými spoji v krabičce. Ta je zhotovena přesně na rozměr desek, aby manipulace s nimi byla co nej-

Obr. 8. Jednotlivé díly krabičky a její sestava

snažší, tzn. bez šroubování. Krátké kolíčky použité na víku získáme z lízátka. Mechanickou konstrukci dokreslují fotografie na obr. 10 a 11.

Seznam součástek

Rezistory	
R1, R2	68 kΩ, TR 191 (MLT 0,25)
R3* —	5,6 kΩ, TR 191 (MLT 0,25), viz text
R4, R5	0,18 MΩ, TR 191 (MLT 0,25)
R6	27 kΩ, TR 191 (MLT 0,25)
R7	22 kΩ, TR 191 (MLT 0,25)
R8 až R14	180 Ω, TR 212
R15, R16	47 kΩ, TR 191 (MLT 0,25)
R17	100 kΩ. TR 212
P1 ·	100 Ω. TP 012
P2	47 kΩ, TP 012
	•

01	220 Nr. 1GL 2008424
C2	1 uF. TE 988
C3	390 pF, TK 754
C4	100 nF
Civky	
11	5 z drátu Cul o Ø 0 1 m

ve feritovém hrníčku Ø 14 mm.

28 z drátu CuL o Ø 0,1 mm,

hmota H12, A1 = 1600

Kondenzátory-

L2

	navinuto na L1
Polovodičov	vé součástky
101	C520D
102	D147D
103	MAB01D
01	VQE24
T1 až T3	(BC178), KC308
T4	(KC508), KC238
D1	KB105, 109
D2	VQA24
D3	KZ260/13
D4	KA206

Ostatní součástky telefonní tlačítko konektor: černá objímka DIL na IO, viz text

Uvedení do chodu a nastavení

Zapájíme všechny součástky kromě rezistoru R3x, který nahradíme trimrem 6k8. Běžce trimrů P1, P2 nastavíme doprostřed odporových drah. Nachystáme si do nádoby (nejlépe do termosky) směs vody s roztříštěným ledem, která má jak známo teplotu 0 °C. Teploměr připojíme k regulovatelnému zdroji ss napětí, na němž nastavíme napětí 5 V. Varikap ponoříme do ledové tříště, kterou neustále promícháváme, a necháme jej tepelně ustálit. Trimrem 6k8 nastavíme na displeji údaj "blikající" mezi "-01" a ..00". Poté trimr nahradíme rezistorem o stejném odporu. Tím je skončeno hrubé přednastavení.

Nyní přistoupíme k přesné kalibraci. Můžeme k ní použít buď jiný teploměr, měřící alespoň s přesností desetiny °C, nebo se spokojíme s předpo-

Obr. 10.

kladem, že ledová tříšť má teplotu přesně 0 °C a vařící voda 100 °C. Varikap mechanicky (např. přivázáním) spojíme se snímací částí kontrolního teploměru tak, aby byla mezi nimi co nejmenší vzdálenost. Tuto sestavu ponoříme nejprve do ledové tříště, kterou neustále mícháme. Po tepelném ustálení nastavíme na displeji trimrem P1 údaj odpovídající údaji kontrolnímu teploměru, anebo údaj "blikající" mezi "-01" a "00".

Pak ponoříme sestavu do vařící vody a opět po tepelném ustálení nastavíme na displeji trimrem P2 hodnotu podle kontrolního teploměru, anebo údaj "blikající" mezi "99" a "00". V tomto případě představuje údaj "00" teplotu 100 °C s tím, že první číslice není zobrazena. Varikap pak můžeme ponořit zpět do ledové tříště a ověřit si, zda nastavení bylo provedeno správně.

Nakonec ještě zkontrolujeme, zda teploměr pracuje spolehlivě při různě velkém napájecím napětí. Napětí tužkových článků se bude totiž měnit podle vyčerpání jejich kapacity v rozsahu 6,5 až 4 V. Varikap vložíme do teplotně stálého prostředí, např. do vody s pokojovou teplotou. Na regulovatelném zdroji ss napětí měníme napájecí napětí v rozsahu 6,5 až 4 V a na displeji by se neměl měnit údaj o více než 1 °C. Stabilita závisí na

Obr. 11,

činnosti blokujícího oscilátoru, který napájí referenční zdroj MAB01D. Měl by již při napájecím napětí 4 V (lépe při 3,5 V) dávat na výstupu 12 V. Činnost oscilátoru lze ovlivnit změnami R17 a C3.

Závěr

Konstrukce byla ověřena na několika kusech; všechny pracovaly na první zapojení. V celém rozsahu kladných teplot byla zajištěna nelinearita menší než 1 °C. Totéž lze předpokládat i v rozsahu záporných teplot. Podle [6] by měl mít varikap řady KB díky velkému průřezu přívodů nejmenší tepelnou setrvačnost ze všech malých diod. Změřená setrvačnost pro dvě typická měřená prostředí - vzduch a vodu - je graficky vyznačena na obr. 9. Budeme-li teploměr používat k měření venkovní teploty, zastíníme varikap, aby nebyl vystaven přímému dopadu slunečních paprsků. Při měření teploty ve vodivém prostředí je třeba zalít varikap např. epoxidovým lepidlem, aby nedocházelo k chybnému měření vlivem svodového proudu. Pak je však nutno počítat s větší tepelnou setrvačností snímače. Při síťovém napájení teploměru vypustíme součástky oscilátoru a usměrňovače, tj. T4, D3, D4, R17, C2, C3, L1, L2. Síťový zdroj však musí dodávat nejméně napětí 12 V nestabilizované pro 103 a stabilizované napětí 5 V pro ostatní obvody.

Literatura

- AR-A 7/78, s. 267 až 269. AR-B 2/79, s. 53.
- AR-A 4/86, s. 131 až 135.
- AR-B 4/81, s. 125 až 126.
- Příloha AR 1981, s. 10. 6
- AR-B 5/80, s. 170 až 175. AR-B 6/84, s. 230 až 231.
- Katalog polovodičových součástek TESLA 1984/85.

Obr. 9. Tepelná setrvačnost varikapu

KAZETOPÁSKOVÁ PAMĚŤ SP 210

Martin Arnošt

K. p. TESLA Přelouč uvedl v nedávné době na trh kazetopáskovou paměť pod typovým označením SP 210, protože se vhodný "data-recorder" u nás dosud ani nevyrábí, ani k nám běžně nedováží.

Kazetopásková paměť SP 210 je stolní jednokanálový síťový přístroj, který je vybaven dvoumotorovou mechanickou částí převzatou z řady SM 200. Tato mechanická část je elektronicky řízena, což je právě pro toto použití velmi výhodné. V přístroji je vestavěn elektretový mikrofon pro komentování programů, kontrolní reproduktor, třímístné počitadlo a regulace záznamové úrovně je řízena automa-

Konektory pro připojení počítače jsou označeny IN/OUT 1 a IN/OUT 2. Pro počítače Sinclair má kazetopásková paměť výkonový výstup označený POWER OUT, jehož výstupní napětí lze regulovat potenciometrem asi do 2,6 V ($R_z = 8 \Omega$). Na zadním panelu jsou dva sedmidutinkové konektory označené TTL CONTROL IN a TTL CONTROL OUT. Tyto konektory slouží k propojení kazetopáskové paměti s počítačem, k jejímu řízení, i k zpětnému hlášení provozního stavu.

Pro řízení SP 210 musí být počítač vybaven paralelním portem a šesti výstupními a čtyřmi vstupními bity. Takto propo-jená kazetopásková paměť s počítačem umožňuje přímo vyhledávat programy podle mezer mezi nimi a dovede i automaticky zapisovat údaje, které si může vzápětí zkontrolovat. Protože veškeré řízení SP 210 je svěřeno počítači, záleží pouze na složitosti softwarového vybavení a na požadavcích uživatele.

Řídicí program pro PMD 85-1 je ve strojovém kódu a je umístěn do adresy 7600 H. Spouští se příkazem JUMP 7600. Program modifikuje BASIC o příkaz

TAPE X. Y.

kde X je číslo hledaného programu (max. 63),

Y je parametr 0 nebo 1.

program vyhledá a zastaví na začátku.

program nahraje do paměti.

Je nutné zajistit postupné číslování programů na kazetě a oddělit je desetisekundovými mezerami. V případě zásahu do řízení SP 210 zvenčí dojde k chybovému hlášení "I/O ERROR". Program vyžaduje, aby první program na kazetě byl označen 01.

Pro součinnost SP 210 a počítače PMD 85 je nutno zhotovit propojovací kabel, zakončený na jedné straně konektorem FRB (20 kontaktů) a na druhé straně dvěma sedmikolíkovými konektory. Vzájemné propojení naznačuje následující přehled.

. TTL CC	NTROL IN	PIN PMD 85 GPIO II
dutinka	funkce	
1 2 3 4 5 6 7	REC ZEM START STOP PAUSE rychie zpět rychie vpřed	3 20 6 1 8 5

TTL CONTROL OUT			
1	Z	9	
2	ZEM	20	
3	PL	10	
6	ST	11	
7	BZ	12	

Zde je třeba upozornit, že ne zcela všechny počítače PMD 85 mají shodně zapojené paralelní porty, což se projeví v chybné činnosti. V tomto případě je buď nutné program přeadresovat, nebo změ-nit zapojení konektoru FRB. Program umožňuje automaticky vyhle-

dat programy uložené na kazetě za předpokladu, že jsou vzestupně číslovány a že jsou odděleny desetisekundovými pře-

stávkami.

7610 D3 F6 2F D3 4D C9 DB 4E

Plošné spoje - trochu jinak

Jak se u nás rodí plošné spoje? Na některých profesionálních pracovištích je dělá počítač a kontinuální výrobní linka — amatér takové možnosti nemá.

Profesionálně se kreslí (i ručně) ve zvětšeném měřítku, potom se fotografuje, zmenšuje, přenáší na cuprextit, leptá, atd. Pro amatéra zbývají jen dvě cesty: buď vytvořit obrazec obtisky Propisot a tuší většinou v měřítku 1:1 a potom přefotografovat na kuprextit, anebo nakreslit na pauzák, přenést na kuprextit jehlou, použít obtisky Propisot, nějaké vodovzdorné barvivo nebo Centrofix a rovnou leptat. Frézování cuprextitu se nehodí pro IO.

Tedy možností pro amatéra — ale i pro profesionála na menších pracovištích — je poskrovnu. I když Propisot znamená velkou pomoc, bez které si již nedovedeme představit, jak bychom mohli vytvořit obrazec pro integrované obvody, v prodeji pro elektroniku je jen několik druhů aršíků s omezeným počtem symbolů. Mimochodem poznamenávám, že amatér nemá k dispozici ani výběr vodovzdorných popisovačů (pouze Centrofix 1796 nebo 1736); ty, které jsou na trhu, nevydrží někdy ani leptání v chloridu. Mnohdy by byl vhodný slabší hrot, jaký má jeden z popisovačů v soupravě Centropen (typ 1900). Bylo by žádoucí, aby jej výrobce dodával i ve vodovzdorném provedení.

Dostal se mi do ruky BOLL-KATA-LOG č. 108 (Oswald Boll, CH-8702 Zollikon, Švýcarsko), který má přes 200 stran a nabízí vše, co souvisí s výrobou plošných spojů profesionálně i pro amatéry. Nepřeberné množství symbolů, značek, fólií, lepicích pásků, mikroelektronických symbolů, pomocného

nářadí, atd.

Především mne však upoutala zajímavá novinka — tzv. EZ-Circuit. Jsou to samolepicí měděné symboly pro zhotovení prototypů nebo pro opravy plošných spojů. Tedy lidově: měděný Propisot — ale bez leptání.

Symboly jsou v měřítku 1:1 galvanicky naneseny na podkladový materiál, který je na spodní straně opatřen samolepicí vrstvou. Potřebný symbol se ustřihne, sejme se krycí papír a symbol se nalepí na určené místo budoucího "tišťáku". Podklad může být libovolný: čistý sklolaminát, karton, ale i umělá hmota; např. organické sklo, teflon se nehodí. Může se použít laminát již předem vrtaný v modulu 2,54 mm; vrtat lze však i po nalepení symbolů. Symboly (vlastně pájecí body ve skupinách) se spojují měděnými páskami různé šíře (0,38 až 6,35 mm v palcové soustavě nebo 0,5 až 4 mm v metrické), které jsou také samolepicí. Spoje lze běžným způsobem pájet páječkou. Mají-li se spoje křížit, měděný pás se podloží samolepicím izolačním páskem. Symboly s podkladovým materiálem vydrží stálou teplotu do 204 °C, při pájení 316 °C po dobu dvaceti sekund.

Základním materiálem je sklotextit o tloušťce 0,127 mm, měděné pocínované symboly jsou tlusté 35 μm. Lepidlo má přilnavost po nalepení 1,42 kg/cm², po 48 hodinách 2,17 kg/cm².

Lepení symbolů na desku

Pevnost v tahu po 48 hodinách je 6,3 kg/cm²! Dielektrická konstanta při kmitočtu 1 kHz a teplotě 25 °C je 3,25.

Pro tento systém platí velmi přísné americké normy MIL. Při relativní vlhkosti 95 % při teplotě 38 °C např. nesmí měnit své vlastnosti po dobu 1000 hod. Na podkladový materiál nepůsobí ředidla, slabé kyseliny, olej, tuk, benzin.

Protože kovové symboly jsou galvanicky naneseny na podkladový materiál, symboly jsou i pro moduły 1,27 mm (Flat Pack), pro přímé kontakty pro moduly Eurocard, pro počítačo-

Křížení

vé systémy, pro upevnění výkonových součástek se šrouby, pro výkonové tranzistory apod.

Kromě symbolů nanesených galvanicky jsou vyráběny i samolepicí měděné pájecí body v arších, které se jednotlivě pinzetou přenášejí na potřebné místo. Body jsou v různých velikostech. Kromě již zmíněných měděných pásů jsou vyráběny i celé měděné samolepicí fólie do velikosti 12,7×22,9 cm. Tloušťka mědi je 0,05 mm, po nalepení je lze ostrým nožem vyřezávat místo leptání. KL

Elektrotechnická fakulta ČVUT v Praze

oznamuje, že od školního roku 1987/88 připravuje pro absolventy vysokých škol technického a příbuzného směru **postgraduální studia:**

- 1. Systémové řízení v palivoenergetickém komplexu I. běh
- 5 semestrů inovační zahájení zim. sem., uzávěrka přihlášek 31. 5. 1987
- 2. Počítačová grafika II. běh
- 5 semestrů specializační zahájení zim. sem., uzávěrka přihlášek 30. 6. 1987
- 3. Mikroprocesory a mikropočítače VIII. běh
- 5 semestrů inovační zahájení let. sem., uzávěrka přihlášek 30. 11. 1987

Závazné přihlášky na PGS získáte osobně — středa, pátek od 8.00 hod do 10.00 hod, nebo na telefonické vyžádání ČVUT FEL, dálkové a postgraduální studium, Suchbátarova 2, 166 27 Praha 6 — tel.: 332/3903 — s. Joudová.

Katedra automatického řízení fakulty strojní ČVUT v Praze

oznamuje, že od školního roku 1987/88 připravuje pro absolventy vysokých škol technického a příbuzného směru

inovační postgraduální studium

Aplikace mikropočítačů v průmyslu

Uzávěrka přihlášek 15. 9. 1987. Závazné přihlášky k PGS získáte osobně nebo telefonickým vyžádáním v oddělení pro dálkové a postgraduální studium — ČVUT FS Suchbátarova 4, 166 07 Praha 6-Dejvice, tel.: 332, l. 2457, s. Bartáková.

ÚPRAVA PIÁNKA PILLE

Ing. Jaroslav Erben

V následujícím článku je popsán způsob, jak lze obohatit zvuk u dětského hudebního nástroje PILLE, který je prodánudeonino nastroje PILLE, ktery je proda-ván nejen ve speciální prodejně Čajka v Železné ulici v Praze, ale i v mnoha jiných prodejnách (obvykle hračkář-ských) za 180 Kčs. Původní nástroj má rozsah dvě a půl oktávy a dvě volitelná zabarvení zvuku. Hlasitost i ladění lze plynule měnit.

Dvě základní zvuková zabarvení však uživatele brzy omrzí, zvláště proto, že zvuk, který produkuje vestavěný multivibrátor, zní příliš "syrově" a připomíná spíše tónový generátor než hudební nástroj. Proto jsem se rozhodl rozšířit pů-vodní rozsah od fo do c3, což odpovídá rozsahu 175 až 1046 Hz na rozsah od F1 až c5, tedy 44 až 4186 Hz. Původní dvě zvuková zabarvení jsem rozšířil na jedenáct

Obr. 1. Úpravy na desce s plošnými spoji

rejstříků a to pět flétnových, jejichž hlasitost lze nastavovat potenciometry, a šest rejstříků jazykových, které lze spínat tlačítky. Hlasitost nástroje se nastavuje původním potenciometrem (který byl k tévodním potenciometrem (ktery byl k te-muž účelu používán i v základním prove-dení). Protože vestavěný reproduktor není schopen vyzářit nejnižší kmitočty fléten 16' a 8', je signál vyveden na konektor. S vnějším zesilovačem a vhodnou reproduktorovou soustavou lze tak i v kapele realizovat přiměřený basový doprovod. S flétnovými rejstříký stop 8 4', 2' a 1' nebo jazykovými rejstříky stop 8' a 4' a jejich kombinacemi lze hrát jednoduché sólové melodie. Přitom lze zabarpřizpůsobit charakteru skladby i ostatním nástrojům. Domnívám se však, že hlavním posláním však piánko zůstává jako učební pomůcka pro děti.

Na obr. 1 je schéma původního zapojení piánka (bez koncového stupně). Na původní desce s plošnými spojí je třeba

realizovat následující úpravy

Nejprve vyjmeme trimr Ř19 (0,1 MΩ). Horní vývod trimru označený A slouží k propojení se vstupem A desky děličů na

Odpojíme živý konec od potenciometru hlasitosti R17 (4,7 k Ω), který vede na emitor tranzistoru V5. Živý konec tohoto potenciometru, který má označení B, je pak spojen s výstupem B předzesilovače na desce jazykových rejstříků podle obr. 2.

Kondenzátory multivibrátoru C1 a C2 (0,25 µF) nahradíme kondenzátory se čtvrtinovou kapacitou, tedy kondenzátory 56 nF. Pro určitou časovou i teplotní nestabilitu se však na toto místo nehodí polštářkové typy. Tím jsme posunuli pů-vodní kmitočet asi čtyřikrát, to znamená v kapacitě použitých kondenzátorů je vhodné je předem přeměřit a v případě potřeby sestavit výslednou kapacitu ze dvou kondenzátorů

Na vstup napájecího napětí na původní desce s plošnými spoji zapojíme navíc elektrolytický kondenzátor 500 μF. Tím zamezíme pronikání signálu multivibrátoru do koncového zesilovače touto cestou. Původní emitorový sledovač s tranzistorem V5 zůstane z téhož důvodu nepoužit a proto je bez funkce i původní přepínač zabarvení zvuku.

Po popsaných úpravách se zvětší odběr celého přístroje. Proto jsem ho doplnil o indikaci zapnutého stavu svítivou diodou. Rád bych jen doplnil, že pro zajištění potřebné kmitočtové stability je vhodné napájet celý nástroj ze stabilizovaného zdroje 9 V.

Na obr. 2 je schéma úpravy, kterou původní zapojení doplníme. Na vstup A přivádíme signál z výstupu A multivibrátoru z obr. 1. Signál je tvarován Schmittovým klopným obvodem tvořeným tranzistory T1 a T2 a přiveden na děličku s integrovaným obvodem MH7493, kde jej dělíme dvakrát, čtyřikrát, osmkrát a šestnáctkrát. Výstupy stop z děličky jsem

formálně označil 1' až 16' s tím, že základní rozsah pro stopu 8' je po úpravě od F do c². Výstupy jsou stejnosměrně odděleny vhodně zvolenými kondenzátory a rezistory (1,8 kΩ). Pak následují trojité členy RC flétnových filtrů. Trojitá dolní propust s vhodně voleným dělicím kmitočtem je asi minimem, při němž lze ještě hovořit o tom že rejstřík má flétnový charakter

o tom, že rejstřík má flétnový charakter.
Flétny stopových výšek 16' až 2' mají za základ obdélníkovitý průběh, který má pouze liché harmonické. Proto znějí dutě. Ve varhanách tomu odpovídají kryté píštaly. Nazývají se kryt, burdon, flétna krytá, copula nebo kvintadena; v pedálech pak subbas, pommer krytý apod. Nejvíce harmonických má kvintadena, kde výrazně slyšíme třetí harmonickou (kvintu).

Flétnové rejstříky tohoto nástroje, pokud se jedná o třetí a páté harmonické, se svým zvukovým spektrem blíží krytým dřevěným píšťalám.Neuděláme proto žádnou velkou chybu, použijeme-li obvyklý obecný název flétny. Je třeba si uvědomit, že u klasických varhan mají kryté píšťaly široké flétnové menzurace harmonických ještě méně a to zejména počínaje sedmou harmonickou.

Stopa 1', jejímž základem je též signál obdélníkovitého průběhu, avšak s nestejnou střídou, obsahuje i sudé harmonické a zní proto jasně. V dané poloze a při daném spektru se zpravidla nazývá superoktáva 1'. Název jsem zachoval, aby bylo zřejmé, že se zvukově liší od fléten 16' až 2'. S jistou nadsázkou nahrazuje superoktáva mixturu klasických varhan, která varhanímu zvuku dodává potřebný lesk.

Hlasitost rejstříků flétna 16' až superoktáva 1' se nastavuje potenciometry 0,1 MΩ (Ize tady použít potenciometry jak s lineárním, tak s logaritmickým průběhem).

Napájecí napětí pro Schmittův obvod a děličku je zmenšeno čtyřmi křemíkovými diodami asi na 6 V, což obvod MH7493 trvale snese. Výstupy děličky 2' a 4' jsou připojeny přes rezistory 1,2 kΩ na napětí +6 V. Tím se zamezí, aby bylo v těchto stopách slyšet i stopy 8' neho 16'

stopách slyšet i stopy 8' nebo 16'.
Rejstříky flétna 16' až superoktáva 1' odpovídají retným, jinak také labiálním píšťalám. Těch je v soudobých varhanách asi 90 %. Většinou jsou to píšťaly otevře né, které mají i sudé harmonické. Méně již je píšťal krytých, které mají jen liché harmonické, případně píšťal polokrytých.

Zbývající procento tvoří píšťaly jazykové, u nichž kmitá jazýček určující kmitočet. Délka a tvar ozvučnice pak ovlivňuje kmitočtové spektrum. U elektronických varhan se pro jazykové rejstříky používají zpravidla obvody LC. Jako základ je vhodný například pilovitý, nebo polopilovitý průběh. Já jsem se ve své konstrukci obvodům LC vyhnul a nahradil je obvody RC. Z tohoto důvodu mají jazykové rejstříky (trompeta 16' až šalmaj 4') poněkud smykavější charakter. Připomínám, že jsem názvy rejstříků použil podle běžných varhan.

Vstupy 16', 8' a 4' jazykových rejstříků jsou připojeny na příslušné výstupy děličky MH7493. Obdélníkovitý průběh je pomocí germaniových diod (křemíkové jsou pro tento účel nevhodné) a obvodů RC upraven na polopilovitý. Výjimku tvoří vox humana 8' (lidský hlas), který má za základ obdélníkovitý průběh.

Rád bych připomenul, že přesné hodnoty součástek filtrů ani zdaleka nejsou kritické. Většinou je třeba je vhodně pozměnit tak, aby rejstřík zvukově odpovídal našim představám i příslušnému označení. S barvou rejstříků souvisí i jejich hlasitost, která je v poměru k ostatním pevně nastavena rezistory před tlačítky, jimiž rejstříky spínáme.

Jak tlétnové tak i jazykové rejstříky jsou spojeny do jednoho bodu a přes rezistor 1,2 kΩ na zem. Tato malá impedance nám umožňuje používat nestíněné vodiče aniž by do výsledného signálu proznívala stopa 1′ z multivibrátoru.

Za filtry následuje předzesilovač s tranzistorem T3 (KC508) jehož výstup je připojen na regulátor hlasitosti R17 (obr. 1). Odtud signál již pokračuje na výstupní konektor.

V prostoru piánka PILLE není příliš mnoho místa. Zapojení podle obr. 2 jsem proto umístil na dvě desky. Deska děličů je na obr. 3. Je na ní Schmittův klopný obvod, dále dělička s MH7493 a flétnové filtry. Deska jazyků je na obr. 4. Jsou na ní jazykové filtry a předzesilovač. Umístění potenciometrů a tlačítek je patrné na obr. 5.

Z prostorových důvodů jsem musel desky s plošnými spoji umístit těsně u zdrojů a v pravé části piánka. Proto jsem také všechny součástky (kromě MH7493) pájel ze strany spojů. Výkresy desek neuvádím, protože jsem k tomuto účelu použil zkušební desku U4 a U5 z prodejny v Budečské ulici z níž jsem (podle obr. 3 a 4) vyřízl potřebnou velikost.

Je vhodné připomenout, že u nově zapojených desek je zemní plochou záporný pól zdroje, zatímco u původní desky představuje společná plocha kladný pól. Dále je třeba propojit vstupy a výstupy A a B, potenciometry k výstupům flétnových filtrů, jazykové rejstříky ke spínačům a propojit výstupy děličů stop

16', 8' a 4' se vstupem jazykových rejstříků. Použité rezistory jsou miniaturního typu, kondenzátory polštářkové (kromě multivibrátoru, kde jsou použity kondenzátory svitkové).

Pokud jsme vše správně zapojili, zbývá jen doladění nástroje. Nejprve zkontrolujeme (například klavírem), zda jsme skutečně posunuli rozsah o dvě oktávy výše taka, že lze piánko doladit příslušným potenciometrem (R7). Pokud by se nám to nepodařilo, museli bychom změnit kondenzátory multivibrátoru (C1, C2) tak, aby správné naladění bylo asi uprostřed dráhy R7

Jednotlivé tóny dolaďujeme změnou poloh kontaktů na ladicí liště. Můžeme k tomu použít buď klavír nebo jiný hudební nástroj, případně i čítač. Pokud použijeme čítač, vyvedeme signál z konektoru při nastaveném rejstříku flétny (např. 8'). Za předpokladu ladění a¹ = 440 Hz jsou kmitočty pro stopu 8' temperovaného ladění pro jednotlivé tóny v následující tabulce. Pro jiné ladění, například a¹ = 446 Hz, dostaneme vyšší (nižší) půltóny postupným násobením (dělením) základu ∜2).

F	87,31 Hz	gis	207,65 Hz
Fis	92,5 Hz	ă	220 Hz
G	98 Hz	b	233,08 Hz
Gis	103,83 Hz	h	246,94 Hz
Α	110 Hz	c¹	261,63 Hz
В	116,54 Hz	cis¹	277,18 Hz
Н	123,47 Hz	d¹	293.66 Hz
С	130,81 Hz	dis ¹	311,13 Hz
cis	138,6 Hz	e¹	329,63 Hz
d	146,83 Hz	f¹	349,23 Hz
dis	155,56 Hz	fis¹	370 Hz
e	164,81 Hz	g¹	392 Hz
f	174,61 Hz	a¹	440 Hz
fis	185 Hz	b¹	466,16 Hz
g	196 Hz	h¹	493,88 Hz
		C ²	523 25 Hz

Obr. 3. Základní rozměry desky děličů

Obr. 4. Základní rozměry desky jazyků

Obr. 5

mikroelektronika

Obr. 1. Blokové schéma displeje 8080 MC-DI

Televizní displej 8080 MC-DI

Ing. Eduard Sojka

8080 MC-DI je alfanumerický televizní displej, který byl zkonstruován k mikropočítači 8080 MC (AR 4/85). S jednoduchostí mikropočítače koresponduje do značné míry i jednoduchost displeje. Rozhodujícími požadavky i zde totiž byly nízká cena, snadná realizace a pochopitelně vyhovující funkční vlastnosti.

Základní technické údaje Tab. 2. Rozložení signálů na konektoru K1.

Formát zobrazení: 16×32 znaků.
Zobrazení znaků: v matici 5×8 bodů.
Repertoár znaků: 128 znaků ASCII.
Komunikace s počítačem: přímý přístup do paměti mikropočítače, možnost blokování činnosti displeje.
Výstup VIDEO: 0 až 6 MHz/75 Ω.

Komunikace displeje s mikropočítačem

8080 MC-DI patří do rodiny displejů bez vlastní obrazové paměti. Informaci o obsahu všech 16×32 znakových pozic čte displej v režimu DMA z paměti RAM mikropočítače. Paměť RAM vyhražená k činnosti displeje (VIDEORAM) je v adresovém prostoru 1C00 až 1DFF mikropočítače 8080 MC. Zápis na požadovanou pozici obrazovky displeje proběhne tedy jednoduše tak, že zvolený znak se v kódu ASCII zapíše na odpovídající adresu do paměti VIDEORAM mikropočítače (viz tab. 1). Kód ASCII je

sedmibitový, nejvyšší nevyužitý bit používá 8080 MC-DI k identifikaci módu zobrazení (D7 = 0 pozitivní mód, D7 = 1 negativní mód). Negativní zobrazení znaku může zastoupit funkci kurzoru. Obvody blokování činnosti slouží k programovému potlačení nebo povolení činnosti displeje. Jsou užitečné například při běhu programu s časovými smyčkami nebo tehdy, nemá-li být výpočet zbytečně zdržován neustálým zobrazováním obsahu VIDEORAM. Zablokování nebo povolení činnosti displeje provádí instrukce OUT 1A popř. OUT 1E. Obsah akumulátoru není při tom rozhodující. Na závěr tohoto odstavce ještě jedna připomínka — displei 8080 MC-DI, stejně jako mikropočítač 8080 MC nevyužívá nejvyššího adresního bitu A15 (adresní prostor je zúžen na 32 kB).

Popis zapojení

Srdcem displeje je časová základna tvořená oscilátorem 6 MHz (zapojení bylo převzato z AR-B 2/83) a děliči 1:6, 1:64,

Tab. 1. Adresování VIDEORAM

1C00 až 1C1F
1C20 až 1C3F
1C40 až 1C5F
1C60 až 1C7F
1C80 až 1C9F
1CA0 až 1CBF
1CC0 až 1CDF
1CEO až 1CFF
1D00 až 1D1F
1D20 až 1D3F
1D40 až 1D5F
1D60 až 1D7F
1D80 až 1D9F
1DA0 až 1DBF
1DC0 až 1DDF
1CE0 až 1DFF

Č.	Signál Název	Č.	Signál Název
1	0V zem	2	+5 V napájení
3	+12 V napájení	4	-5 V napájení
5	D0 data	6	D7 data
7	D1 data	8	D6 data
9	D2 data	10	D5 data
11	D3 data	12	D4 data
13	RES' nulování	14	MEMR' čtení z paměti
15	IOR' čtení z portu	16	MEMW' zápis do paměti
17	IOW' zápis do portu	18	INTA' potvrzení přerušení
19	INTE' přeruš. povol.	20	INT' žádost o přerušení
21	CLK hodiny (TTL)	22	HOLD' žádost o DMA
23	HLDA' potvrzení DMA	24	RDY READY
25	A10 adresa	26	A11 adresa
27	A12 adresa	28	A13 adresa
29	A14 adresa	30	A15 adresa
31	A6 adresa	32	A7 adresa
33	A5 adresa	34	A8 adresa
35	A4 adresa	36	A9 adresa
37	A3 adresa	38	A0 adresa
39	A1 adresa	40	A2 adresa
41	0V zem		

Obr. 2. Schéma zapojení displeje 8080 MC-DI

Obr. 3. Časové průběhy důležitých signálů

TAB.3 OBSAH GENERATORU ZNAKU	****	****	*	*	**	****	*	****
ADRESA OBSAH	* * * * * * * * * * * * * * * * * * * *	* * * *	* * * *	*	****	** **	· **	* * **** * *
0000 1F 11 11 11 11 11 1F 00 1F 01 01 01 01 01 00 0010 04 04 04 04 04 04 1F 00 10 10 10 10 10 10 1F 00	.*		****	*		*	****	***
0020 02 04 08 1E 04 08 10 00 1F 11 1B 15 1B 11 1F 00 0030 00 10 08 05 03 01 00 00 0E 11 11 1F 0A 0A 1B 00	****	*****	****	****	**** * * *	*****	****	* *
0040 04 02 0F 12 14 10 10 00 00 04 08 1F 08 04 00 00 0050 1F 00 00 1F 00 00 1F 00 00 04 04 15 0E 04 00 00	*		*****	-	*	•	****	****
0060 04 15 0E 04 15 0E 04 00 00 04 02 1F 02 04 00 00 0070 0E 11 1B 15 1B 11 0E 00 0E 11 11 15 11 11 0E 00	* *	* * * *	* ***	****	* * * *	* * *	* *	*****
0030 1F 11 11 1F 11 11 1F 00 0E 15 15 1D 11 11 0E 00 0070 0E 11 11 1D 15 15 0E 00 0E 11 11 17 15 15 0E 00	* *	* *	* * * * * *	* * * *	* *	**	** **	*
00A0 0E 15 15 17 11 11 0E 00 00 14 08 15 03 01 00 00 00B0 0E 0A 0A 0A 0A 0A 1B 00 10 10 1F 10 10 10 00	****	*	***	***	*****	*****	****	*****
00C0 1F 11 0A 04 0A 11 1F 00 04 04 0E 0E 04 04 04 09	***	***	**	****	*** *	*** *	: ::: : : : :	* **
00E0 1F 15 15 17 11 11 1F 00 1F 11 11 17 15 15 1F 00	****	*	*	***	*****	*****	*****	*****
00F0 1F 11 11 1D 15 15 1F 00 1F 15 15 1D 11 11 1F 00 0100 00 00 00 00 00 00 00 04 04 04 04 04 0		*	* *	****	**** * *	** *	**	.**
0110 0A 0A 0A 0A 00 00 00 00 0A 0A 1F 0A 1F 0A 0A 00 0120 04 1E 05 0E 14 0F 04 00 03 13 08 04 02 19 18 00		*		****	****	* * ** **	****	
0130 02 05 05 02 15 09 16 00 06 06 02 01 00 00 00 00 0140 08 04 02 02 02 04 08 00 02 04 08 08 08 04 02 00	.*	**.	. *	*				.*
0150 00 04 15 0E 15 04 00 00 00 04 04 1F 04 04 00 00 0160 00 00 00 00 06 06 02 01 00 00 01 1F 00 00 00 00	•	.*	* * * * * * * * *	****	**	****	**	
0170 00 00 00 00 00 06 06 06 00 00 10 08 04 02 01 00 00 0180 0E 11 19 15 13 11 0E 00 04 06 04 04 04 04 04 0E 00	*	*			*		**	
0190 0E 11 10 0E 01 01 1F 00 0E 11 10 0C 10 11 0E 00	* * * * ** * * *	**	****	****	**	****	****	****
01A0 08 0C 0A 09 1F 08 08 00 1F 01 0F 10 10 11 0E 00 01B0 0C 02 01 0F 11 11 0E 00 1F 10 08 04 02 01 01 00	** * * *	* * ***	* * ****	* ***	*****	* ***	::	*
01C0 0E 11 11 0E 11 11 0E 00 0E 11 11 1E 10 08 06 00 01D0 00 06 06 00 06 06 00 00 00 06 06 00 06 06	***	***	**	**	**		*.	****
01E0 08 04 02 01 02 04 08 00 00 00 1F 00 1F 00 00 00 01F0 02 04 08 10 08 04 02 00 0E 11 10 08 04 00 04 00	*** * *	****	**	**	**	*****	**	***
0200 0E 11 10 16 15 15 0E 00 04 0A 11 11 1F 11 11 00 0210 0F 12 12 0E 12 12 0F 00 0E 11 01 01 01 11 0E 00	***	**	**	***	*		**	*
0220 0F 12 12 12 12 12 0F 00 1F 01 01 07 01 01 1F 00 0230 1F 01 01 07 01 01 01 00 00 1E 01 01 19 11 11 1E 00	***	.**.	****	***	****	*****	*****	****
0240 11 11 11 1F 11 11 11 00 0E 04 04 04 04 04 0E 00 0259 10 10 10 10 10 10 10 10 10 0E 00 11 09 05 03 05 09 11 00	** * * * * * * *	****	***	*	* *	***	***	* **
0260 01 01 01 01 01 01 1F 00 11 1B 15 15 11 11 11 00	* *	* *	****	* *	****	*****	*	****
0270 11 11 13 15 19 11 11 00 0E 11 11 11 11 11 0E 00 0280 0F 11 11 0F 01 01 01 00 0E 11 11 11 15 09 16 90	* *	*	*	* * * *	* *	** **	***	* *
0290	* *	***	. ***	* **	*	* *	* **	* *
02B0 11 11 11 0A 0A 0A 0A 0A 0A 11 11 11 11 15 1B 11 00 02C0 11 11 0A 0A 0A 0A 11 11 00 11 11 0A 0A 0A 0A 0A 00	****	****	****	****	****	* *	* *	* *
02D0 1F 10 08 04 02 01 1F 00 0E 02 02 02 02 02 0E 00 02E0 00 01 02 04 08 10 00 0E 08 08 08 08 08 08 08 0E 00	**** *	i .;	**** * * * *	***	* * *	* *	***	:.:
02F0 04 0A 11 00 00 00 00 00 00 00 00 00 00 00 00	*	** *	* *	***	*	***	*	* *
0310	* *	***	**	*	**	*	****	
0320 10 10 16 19 11 19 16 00 00 00 0E 11 1F 01 0E 00 0330 08 14 04 0E 04 04 04 00 00 00 16 19 19 16 10 0E	* *	*	* * ****	* *	*	* *		****
0340 01 01 0D 13 11 11 11 00 04 00 06 04 04 04 06 00 0350 10 00 10 10 10 10 10 0E 01 01 09 05 03 05 09 00	** **		*		*		.*.	*****
0360 06 04 04 04 04 04 0E 00 00 00 0B 15 15 15 15 00 0370 00 00 DD 13 11 11 11 00 00 00 0E 11 11 11 0E 00	**	****	* ** ** * * *	****	** * * ** * *	*** ****	***	****
0380 00 00 0D 13 13 0D 01 01 00 00 16 19 19 16 10 10 0390 00 00 0D 13 01 01 01 00 00 00 1E 01 0E 10 0F 00		****	* **	"*** ["]	****	***	÷	***
03A0 04 04 1F 04 04 14 08 00 00 00 11 11 11 19 16 00 03B0 00 00 11 11 11 11 0A 04 00 00 00 11 11 15 15 0A 00	* ***	**	*	•	**	<u>**.*.</u>	*.**.	.***.
03C0 00 00 11 0A 04 0A 11 00 00 00 11 11 11 1E 10 0E	* *	***	*	***	***	* * * *	* *	***
03D0 00 00 1F 08 04 02 1F 00 08 04 04 02 04 04 08 00 03E0 04 04 04 00 04 04 04 00 02 04 04 08 04 04 02 00			***		*			
03F0 02 15 08 00 00 00 00 00 0A 15 0A 15 0A 15 0A 00	* **	** **	* ** ** *	****	*****	* *	* *	* * *
1:10, 1:32 (IO1, 20, 17, 8, 12). Pomocí	* **	** *	*	****	**	* **	***	***
časové ústředny je generována adresa, vertikální a horizontální synchronizační pul-	**	* *	****	**	*	**.	****	****
sy, signál HOLD a signály zatmívání paprs-	.**.	****	** *****	*	*	*		****

1:10, 1:32 (IO1, 20, 17, 8, 12). Pomocí časové ústředny je generována adresa, vertikální a horizontální synchronizační pulsy, signál HOLD a signály zatmívání paprsku. Jako generátor znaků je použita paměť EPROM 2758 nebo 2708 (Ize volit propojkami na desce displeje). Paralelní pětibajtová informace z generátoru znaků se převádí na sériovou v posuvném registru IO4. IO14 zabezpečuje přepínání mezi pozitivním a negativním módem zobrazení. Obvody D1, D2, D3, D4 slouží ke kompozici výsledného videosignálu. Zapojení výstupního zesilovače (T2, T3) bylo převzato opět z AR-B 2/83. Podrobně vyplývá činnost jednotlivých obvodů displeje z **obr. 1 a 3** (co do informační hodnoty jsou zřejmě obsažnější než obšírný slovní popis).

Programování generátoru znaků

Protože 8080 MC-DI používá jako generátor znaků paměti 1 kB EPROM, lze naprogramováním paměti tvar znaků v jistých mezích měnit. Jednu z možných variant naprogramování generátoru znaku ukazuje tab. 3 a obr. 4.

Obr. 4. Obsah generátoru znaků

(Vývod č. 3/IO13 je třeba propojit s vývodem K14 konektoru — nikoli K15, jak je v obrazci! Dále chybí propojení mezi L1 a uzlem R1-C1.)

Obr. 6. Rozložení součástek na desce s plošnými spoji V105

Připojení displeje k televiznímu přijímači

Displej je určen pro připojení k obrazovému zesilovači televizního přijímače. Tato varianta předpokládá drobný zásah do přijímače (pro TVP Satelit ap., byla úprava popsána např. v AR-B 2/83). Je nutné připomenouť, že takto lze displej připojit pouze k přijímači se síťovým transformátorem. Jestliže přijímač síťový transformátor nemá (nebo pokud není možné provést zásah do přijímače), je nutné použít modulátor a přijímače.

Seznam součástek

Diody, tranzistory, integrované obvody:

D1 až D5	KA206
T1, T3	KSY71
T2	KSY81
101, 8, 12, 17, 20	MH7493A
102, 7	MH7400
IO3, 9, 16	MH7404
104	MH7496
IO5	12758, 12708, MHB870
106, 10, 15	MH7474
IO11, 19	MH7420
1013, 18, 22, 23	74LS125, K155LP8
	(prodává TESLA)
IO14	MH7451
1021	MH3205

RI	3,9 κΩ
R2	560 Ω
R3	68 Ω
R4, R5	1 kΩ
R6	220 Ω
R7	680 Ω
R8	330 Ω
Kondenzátory:	
C1	150 pF
C2	100 pF
C3	50É

Rezistory:

C3 50 µF C4 20 µF C5 až C25 22 nF Indukčnost:

27 závitů vodičem o ø 0,2 mm, průměr kostřičky 5 mm, jádro M4 imes 0,5 imes 6 mm

A/5 Amatérske AD 1

Hodiny z PMI-80 s využitím přerušení

Ing. Miloš Husák. František Borde

V dostupné literatuře byl již publikován program [1] pro mikroprocesor 8080/85, se kterým mikroprocesor pracuje jako hodiny. Jeho nevýhodou je to, že interval 1 s je vytvářen programově, takže nelze současně vykonávať jinou činnost. Tento příspěvek má za cíl předvést jiné řešení, kdy je použito přerušovacího systému. Chod hodin zajišťuje krátký program pro obsluhu přerušení po sekundových pulsech, ve zbylém čase lze řešit další úkoly. Program je napsán pro PMI-80, myšlenku lze však snadno přenést i na jiný mikropočítač

Program se skládá ze 4 částí. Hlavní program žádá zobrazením HH a MM na displejíku zadání výchozího času, sekundy se automaticky nulují. Za cenu delšího programu je tak odstraněno nepraktické vkládání vstupních hodnot na určité adresy. Dále program cykluje ve smyčce CYKL, kde provádí zobrazení časového údaje. Do smyčky je možno vložit instruk-ce a provádět současně další úlohu (pozor! - uložit registry). Hlavní program používá podprogram HODMIN při sejmutí výchozího času. Podprogram HODINT zpracovává přerušení od sekundových impulsů a vytváří časový údaj v kódu BCD, který podprogram DEFORD dekóduje do zobrazovacího bufferu ve tvaru, potřebném pro zobrazení na displej PMI-80. Zobrazení má formu HH MM SS.

Drobná komplikace vznikne při připopri pripo-jení sekundových impulsů. Mikropočítač PMI-80 provádí po přerušení instrukci RST 7, při jejímž zpracování se provede hardwarově zákaz přerušení a další přeru-šení již není možné. Proto musí být v cyklu hlavního programu instrukce EI, povolující nové přerušení.

Protože přerušovací vstup je hladinový, dochází k přerušování po dobu úrovně H na vstupu INT mikroprocesoru, přičemž rychlost je dána rychlostí průchodu mikroprocesoru smyčkou CYKL k novému povolení přerušení El. To lze použít k ověření programu bez zdroje sekundových impulsů. Po spuštění programu od 1C00H a stisku tlačítka I běží na displeji rychle časový údaj po celou dobu stisku přerušovacího tlačítka, 24 hodin proběhne za asi 4 minuty.

1051 1052

Obr. 1. Připojovací obvod

Připojení sekundových impulsů musí být proto realizováno přes hranový obvod, např. MH7474, podle **obr. 1.** Výstup obvodu je připojem na místo kolektoru T1, který byl z desky odpojen. Jako časová základna byl použit s výhodou obvod U114D, jehož zapojení je publikováno např. ve [2]. Všechny pomocné obvody se vejdou na destičku PMI-80 do pole pájecích bodů, určených k rozšíření mikropočítače. Po navrhované úpravě je vyřazeno tlačítko přerušování. Vzhledem k tomu, že přerušovací systém u PMI-80 je jednoúrovňový, nejde stejně při použití časovače jinak využít.

Literatura:

- Kratochvíl, J.: Jednodeskový mikropo-čítač BOB-85. Příloha AR 1984.
 Pokorný, J.: Časová základna s U 114 D. AR 8/1984.
 Framu 1000
- ťany 1982

Výpis programu

;PROGRAM IDENT
;TIMER-PROGRAM PRO VYTVORENI HODIN NA PMI-80
;VERZE: 15.3.1985
;AUTOR: M.HUSAK A F.BORDE
;PROGRAM SE SPOUSTI OD ADRESY 1C00.VYPISE HH A ZADA HODINY VYCHOZIHO CASU,
;PAK VYPISE MM A ZADA MINUTY VYCHOZIHO CASU.SEKUNDY SE AUTOMATICKY NULUJI.
;OD ZADANI MINUT SE ZACNE ZOBRAZOVAT CAS.
;PRO CHOD PROGRAMU JE NUTNY HARDWAROVY PRIPRAVEK PROVADEJICI PRERUSENI PROGRAM IDENT V SEKUNDOVYCH INTERVALECH.

JZAKLADNI PROGRAM ZADA ZADANI VYCHOZIHO CASU A PAK CYKLUJE
JV ZUBRAZOVACI SMYCCE.CAS JE ULOZEN VE TVARU S,M,H NA ADRESACH
J1F04-1F06, BUFER ZOHRAZENI NA ADRESACH 1F07-1F1F.

1C04 21 47 1F INIT! LXI H,1F07 ;DEFINUJ BUFER
1C03 22 FC 1F SHDD 1FFC
1C06 3E 1A MYI A,1A ;VYPIS HH A SE.
1C08 CD 38 1C CALL HODMIN DRESACH 1FØ7.
LXI H,1FØ7
SHLD 1FFC
MVI A,1A
CALL HODMIN
DCX H
MOV M,A
MVI A,16
CALL HODMIN
DCX H DEFINUJ BUFER ZOBRAZENI JVYPIS HH A SEJMUTI HODIN 1 C AB IMODINY NA 1F6A 1COC JVYPIS MM A SEJMUTI MINUT 100F 38 1C DCX H MINUTY NA 1F05 1C13 XRA A JYYMAZ SEKUND JSEKUNDY NA 1F64 1015 1016 1017 DCX MOV M,A MVI A,C3 STA 1FE6 77 36 C3 32 E6 1F 21 59 1C 22 E7 1F 01 06 1F 21 07 1F CD 53 1C CD 53 1C CD 53 1C CD 53 1C JOEFINICE ORSLUHY PRERUSENI 1019 1010 1016 LXI H, HODINT SHLD 1FE7 1022 1025 1028 1028 1028 LXI B, 1F06 LXI H, 1F07 CALL DEFORD CALL DEFORD CALL DEFORD CALL DEFORD JADR.ZOB.BUFRU-1 JADR.CASU+1 JOEKODUJ HODINY JOEKODUJ MINUTY JOEKODUJ SEKUNDY CYKL: 1C31 1C34 CD 40 ZOBRAZ CAS POVOL PREHUSENI A RST7 1C35 C3 22 1C JMP CYKL

;PODPROGRAM HODMIN PRO PREVOD DVOU CISEL Z KLAVESNICE NA CASOVY ;UDAJ HODIN NEBO MINUT V BCD KODU 1C38 E5 HODMIN: PUSH H 1C39 CD AB 66 CALL CLEAR ;VYMAZ ZOB.RUFE HODMIN: PUSH H
CALL CLEAR
STA 1F08 CD AB 00 32 08 1F CD 16 01 E6 0F SVYMAZ ZOB_RUFER A ZAPIS HH.MM 103c 103F CALL DUTKE ANI ØF ZOBRAZ HH NEBO MM 1042 1044 PREVOD 1.CISLA Z KLAV RLC RLC 1045 1C46 1C47 RIC RLC PUSH PSW 1C48 1C49 JULOZIT VYSLEDEK JZOBKAZ HH NEBO MM JPREVOD Z.CISLA CD CALL OUTKE ANI OF 1040 104E MOV 8,A 1C4F 1050

ISLOZ 1.A 2.CISLO

١

PPODPROGRAM DEFORD DEKODUJE CASOVY UDAJ PRU ZOBRAZENI NA DISPLEJIK
1C53 2B DEFORD: DCX H JADRESA CASU
1C54 03 INX B JADRESA ZOBR.BUFRU
1C55 7E MOV A,M JCAS DO A MOV A,M JMP POMSUB 1056 C3 C6 00

ADD

POP RET

C6 #1 27 77 PRICTENI SEKUNDY DEKADICKY JULOZ SEKUNDY BYLA MINUTA? MOV M,A 1060 ; NE, NAVRAT ; VYMAZ SEKUND 1063 RNZ XRA A 1064 77 MOV M,A 1065 : MINUTY 1067 MOV A,M ADI 01H 1C68 1C6A 01 PRICTENI MINUTY ;DEKADICKY ;ULOZ MINUTY ;BYLA HODINA? DAA 1 C 6 R MOV M,A 1060 106E CPI 60 C. RNZ XRA A ; NE, NAVRAT ; VYMAZ MINUT 106E 1070 1071 1072 1073 1075 MOV M,A SHODINY MOV A,M ADI Ø1H 01 PRICTENI HODINY DAA DEKADICKY

BYLO 24 HODINY

BYLO 24 HODINY MOV M,A CPI 24 1C77 1C79 Cø ; NE, NAVRAT ; VYMAZ HODIN RNZ AF

MOV M.A

AREPARAL CONFIDE Ham redated publications a determination of control of the analysis of the analysis of the control of the con

Rozšírenie PMI-80 o periodické oživovanie displeja

Ing. Ján Ezechiáš

Pri aplikáciách PMI-80 bežiacich s užívateľskými programami nie je oživovaný displej, čo znemožňuje radu aplikácií mikropočítačového systému. Navrhnuté rozšírenie umožňuje:

- a) znázornenie údajov na displeji nezávisle od bežiaceho programu,
- b) vytvorenie programom prístupného časovača s veľkou stabilitou (takt odvodený zo systémového taktu).

Pomocou jednoduchej úpravy, ktorá účelne využíje systémový takt mikropočítača, zvačšíme možnosti využitia mikropočítača PMI-80. Úprava spočíva v deličke s deliacim pomerom 1:1000. Táto je taktovaná zo systémového taktu Φ 2 (TTL). Úzke výstupné impulzy z posledného dekadického deliča sú privedené cez rezistor R1 na bázu systémového tranzistora T1. Jeho kolektor je už priamo spojený s linkou Interrupt mikroprocesora MHB8080A. Ďalšie je už záležitosťou programu

Pred skokom do užívateľského programu sa musí previesť táto jednoduchá inicializácia

- a) zabezpečenie obsluhy prerušenia systému PMI-80,
- b) inicializovať prvú pozíciu pre displej,
- c) povolit prerušenie (interrupt).

Potom už užívateľský program len podľa potreby mení dáta vo výstupnom registri pre displej (zvolený je ten istý výstupný register, ktorý používa aj monitor) o ostatné sa postará program prerušenia, bez akéhokoľvek zásahu užívateľa. Dlžka programu prerušenia je asi 200 μs, k prerušeniu dochádza v intervaloch 900 μs. Do podprogramu prerušenia je taktiež zabudovaný 16-bitový programový čítač, ktorý je inkrementovaný raz za 0,9 ms (každým skokom do prerušenia). Čítač je reprezentovaný pamäťovými bunkami (COUNT) a (COUNT+1) v oblasti pamäti RAM. Časový interval 0,9 ms zodpovedá aj maximálnej rozlíšiteľnosti pri meraní externých časových úsekov.

Zapojenie rozšírenia pre PMI-80 je na obr. 1, je zrealizované priamo na základnej doske mikropočítača, v priestore určenom pre takéto aplikácie. Výpis zdrojového programu je napísaný v mnemonike procesora Z-80. Zodpovedajúci podprogram prerušenia INTER bol naprogramovaný do pamäti EPROM (rezerva systému PMI-80). Podprogram prerušenia je schopný prevádzky po počiatočnej inicializácii, ktorá sa zabezpečí vyvolaním podprogramu INIT. Všetko bolo odskúšané na funkčnom vzorku a takto upravený mikropočítač je použitý v praktickej aplikácii.

Výpis zdrojového programu

Obr. 1. Zapojenie rozšírenia pre PMI-80

CROMEMCO CDOS Z80 ASSEMBLER version 02.15

PAGE 0001

0000' (00F8) (00FA) (1FEF) (1F00) (1F02)	0001; 0002 0003 0004 0005 0006 0007 0008; 0009:	ORG 0400H PORTA: PORTC: REGIS: COUNT: POSIT: PODPROGI	EQU 0F8H EQU 0FAH EQU 1FEFH EQU 1F00H EQU 1F02H RAM PRERUSENI	OJOVEHO PROGRAMU: REZERVNA EPROM PMI-80 KANAL PA KANAL PC VYSTUPNY REGISTER DISPLEJA ADRESA SOFTWEROVEHO CITACA AKTUALNA POZICIA DISPLEJA A (INTERRUPT)
0400 F5 0401 C5 0402 D5 0403 E5	0010 0011 0012 0013	INTER:		; ULOZENIE REGISTROV
0404 2A001F 0407 23 • 0408 22001F	0014 0015	CITAC:	LD HL, (COUNT)	; INKREMENTACIA CITACA
040B 3A021F 040E 2F 040F 47 0410 2F			LD A, (POSIT)	; AKTUALNA POZICIA DISPLEJA ; KOMPLEMENT PRE DEKODER
040E 2F 040F 47 0410 2F 0411 21EF1F 0414 85 0415 6F 0416 3E00 0418 D3FA 041A 7E 041B D3F8 041D 78	0021 0022 0023		LD HL, REGIS ADD L LD L, A	; ZISKANIE NOVEJ ADRESY DAT ; ZHASNUTIE DISPLEJA
0418 D3FA 041A 7E 041B D3F8	0025 0026 0027		OUT (PORTC), A	· AKTUALNE DATA
041E D3FA 0420 2F	0029 0030		OUT (PORTC), A	; AKTUALNA POZICIA DISPLEJA
0421 3C 0422 FE09 0424 CA3004 0427 32021F			JP Z, FIRST	; DALSIA POZICIA DISPLEJA ; BOLI VSETKY POZICIE? ; ULOZENIE NASLEDUJUCEJ POZICIE
042A E1 042B D1 042C C1 042D F1	0035	END:		, VRATENIE REGISTROV DO CPU
042E FB 042F C9 0430 3E00	0089 0040 0041		EI RET	; POVOLENIE PRERUSENIA ; NAVRAT Z PODPROGRAMU ; NASTAVENIE PRVEJ POZICIE-
0432 32021F 0435 C32A04	0043 0044	,	LD (POSIT), A JP END GRAM PRE POCIA	; -PRE DISPLEJ ATOCNU INICIALIZACIU
0438 3EC3 043A 32E61F 043D 210004 0440 22E71F	0048	ÎŅIT:	LD (1FE6H), A	; KOD INSTRUKCIE SKOKU ULOZI- ; -NA ADRESU URCENU MONITOROM ; ADRESA PODPROGRAMU PRERUSENIA
0440 22E71F 0443 3E00 0445 32021F 0448 FB	0050 0051 0052		LD A, 00H LD (POSIT), A	; PRVA POZICIA PRE DISPLEJ : POVOLENIE PRERUŠENIA
0449 C9 044A (0400)	0053 0054		RET	; KONIEC ZDROJOVEHO PROGRAMU

Zpomalovač běhu programu pro ZX-Spectrum

Tento zpomalovač je určen pro usnadnění příliš rychlých a obtížných počítačových her, kde je zapotřebí hlavně postřeh a rychlá reakce. Lze jej však použít i pro jiné aplikace, například sledování běhu programu, neboť zpomalí veškerou činnost počítače. Přitom nezáleží na tom, zda je povolené, nebo zakázané přerušení.

Princip činnosti je v opakovaném přerušování běhu programu signálem NMI a provedení několika operací, které trvají určitý čas. Při častějším přerušování musí mikroprocesor provádět tyto operace častěji, což je na úkor rychlosti běhu normálního programu. Při příchodu aktivní úrovně NMI dojde k přerušení právě vykonávaného programu a ke skoku na adresu 0066H v ROM. Na této adrese je uložen podprogram, který nejprve uloží registry AF a HL příkazy PUSH AF a PUSH HL. Dále testuje hodnotu uloženou v systémové proměnné NMIADD. Je-li tato hodnota nula, pak dojde k inicializaci systému. Je-li však hodnota nenulová, jsou provedeny příkazy POP HL a POP AF a příkaz RETN provede návrat zpět do programu, který byl přerušen.

0066H RESET

PUSH AF PUSH HL LD HL, (NMIADD) LD A, H OR L JR NZ, 0070, NO-RESET JP (HL)

0070H NO-RESET

POP HL POP AF RETN

Pro přerušování lze použít libovolný nastavitelný generátor obdélníkového průběhu s logickou úrovní. Například jednoduchý generátor s obvodem MH7400, napájeným přímo z mikropočítače (obr. 1). Jedná se o známé zapojení oscilátoru se třemi hradly NAND. Čtvrté hradlo slouží k oddělení a zablokování přenosu signálu do počítače. Odpor R zvolíme takový, aby nejmenším odporu potenciometru.

kdy je zpomalení největší, ještě nedošlo ke zhroucení systému, způsobené nadměrně častým přerušením. Z tohoto důvodu není vhodné snažit se o téměř úplné zastavení běhu programu. Plošný spoj vzhledem k jeho jednoduchosti neuvádím. Je lépe, aby si každý navrhl plošný spoj podle vlastních požadavků.

Při vypnutém napájecím zdroji připojíme obvod k počítači a sepneme spínač S. (Spínač lze rozpojit jen při nenulové hodnotě na adrese 23728, jinak dojde k zablokování počítače.) Dále zapneme počítač a uložíme nenulové číslo na adresu 23728, například příkazem — POKE 23728, 1. Potom nahrajeme a spustíme běžným způsobem program. Rozepnutím spínače S dojde ke zpomalování, které je možno plynule nastavovat potenciometrem P. PO-ZOR! Některé programy pracují s adresou

23728, a proto pro në nelze tento postupi použít. Po inicializaci systému, před nahráním programu, nezapomeňte opět nastavit nenulovou hodnotu.

Ing. B. Helan

Kompilátor HISOFT BASIC pro SPECTRUM

Mezi firmami, které svými výrobky nejvíce proslavily domácí počítače ZX Spectrum u seriózních uživatelů a podle anglického počítačového tisku je povznesly na úroveň, na niž by je Sinclair sám nikdy nedostal, patří především malá anglická programátorská firma HiSoft. Po vývojovém systému DEVPAC, známému u nás spíše pod jmény jeho dvou částí - Gens a Mons, velmi rychlých a efektivních kompilátorech programovacích jazyků Pascal a C, nabízí HiSoft od podzimu 1986 i kompilátor jazyka BASIC. Na rozdíl od kompilátorů jiných firem, majících mnohá omezení (použití celých čísel, jednorozměrných polí aj.) a neschopných kompilovat i některé často užívané příkazy, HiSoft Basic Compiler zvládne téměř vše. To co nezvládne jsou zviadne tenier vse. 10 co nezviadne jsou systémové příkazy Save, Load, Clear a některé další, komplikované operace s poli a funkci VAL\$.

Po načtení kompilátoru, napsání programu v jazyku BASIC z klávesnice či jeho načtení z vnější paměti (kazetový magnetofon, Microdrive) máme několik málo sekund po zadání příkazu "*C" k dispozici program ve strojovém kódu, který dělá vše co původní program, jenže rychleji. Kolikrát rychleji závisí na našem programu. Program s častými příkazy pro grafiku v ROM typu Draw nebo Circle se zrychlí jen asi 3 až 10x, jednoduchá matematika a manipulace s řetězcovými proměnnými však budou zrychleny podstatně víc. Např. přiložený demonstrační program "Sieve" (sito) na vyhledávání prvočísel se kompilací zrychlí více než 150×. Známá hra "Breakout" (bourání zdi) z předváděcí kazety Horizons se zrychlí natolik, že je obtížné ji pouze sledovat a o jejím hraní nemůže být vůbec

Kompilátor může kompilovat i jen vybrané části programu v jazyku BASIC. Ty se vyznačí příkazy REM : OPEN # a REM CLOSE # a na každý pár těchto příkazů poskytne kompilátor startovací adresu. Nahrazením dané části programu v jazyku BASIC příkazem RANDOMIZE USR s patřičnou adresou máme vše připraveno pro běh programu. Rozsah zkompilovaného kódu je vždy poněkud větší než rozsah zdrojového programu v jazyku BASIC. To je dáno podprogramy, které musí být v paměti v průběhu výpočtu (tzv. run-time routines). Na rozdíl od některých jiných kompilátorů si HiSoft Compiler drží v paměti jen ty rutiny, které opravdu potřebuje. Kompilátor sám vyhledá a označí proměnné, které budou v průběhu programu stále jen celočíselné. Ty lze totiž uložit v úsporném formátu. Stejně tak vyhledává násobení a dělení dvěma, která převádí na posun bitů vpravo nebo vlevo. Cílový program vznikne třemi průchody kompilátoru zdrojovým kódem. Při každém průchodu jsou všechny nezbytné informace, seznamy a tabulky ukládány do obrazové paměti. Nápad je to dobrý, neboť po určitém cviku lze z měnících se bodů a barev usuzovat na průběh kompilace, ale pro nezkušené oko to vypadá stejně hrůzně jako zhroucení systému.

Za cenu 15,95 ≴ získá uživatel dvě kompaktní kazety a manuál. Jedna kazeta

obsahuje verzi kompilátoru pro ZX Spectrum 48 K, druhá verzi pro Spectrum 128 K. Obě verze lze bez potíží přenést na kazetu paměti Microdrive. Verze kompilátoru pro 48 K zabírá sama asi 10 kB, což nechává uživateli asi 30 kB paměti pro jeho program v jazyku BASIC. 128 K verze sídlí převážně na RAM disku a v paměti pro BASIC zabírá jen asi 500 bajtů, což znamená asi 40 kB paměti pro program uživatele. Podle recenzenta v [1], který dal kompilátoru nejvyšší ocenění - 5 hvězdiček, se bez něj obejdou jen ti, kteří z jazyka BASIC znají pouze příkaz LOAD "". Pro všechny ostatní, včetně těch co programují ve strojovém kódu, je údajně HiSoft BASIC Compiler naprostou nezbytností.

pek

AMIGA

V polovině roku 1986 se na západoevropském trhu objevil po ATARI 520 další zástupce šestnáctibitových počítačů COMMODORE AMIGA. A hned druhý měsíc se stal v NSR nejprodávanějším počítačem.

AMIGA je založen na výkonném šestnáctibitovém procesoru s 32bitovou vnitřní architek-M68000 s hodinovým kmitočtem 7,16 MHz. Základní operační paměť 512 kB je rozšiřitelná na 8,5 MB. Počítač má tři nové obvody. První jako koprocesor obstarává práci s grafikou. Společně s druhým umožňuje čtyři režimy grafiky – 320×200 , 320×400 s 32 barvami, nebo 640×200 , 640×400 s 16 barvami. Barvy si vybíráme ze škály 4096 odstínů. Umožňují pracovat s 8 sprajty s měnitelnou prioritou. Můžeme v různých barvách zobrazit 60 nebo 80 znaků na řádku. Třetí obvod se stará o stereofonní zvuk, který má čtyři kanály v rozsahu devíti oktáv. Počítač má vestavěnou diskovou jednotku 3,5" o kapacitě 880 kB. Dají se však připojit další tři externí 3,5" nebo 5,25". Má obousměrný port Centronics a sériový RS232 s adapterem MIDI pro připojení hudebních nástrojů, dva konektory pro myš, tablet, světelné pero, joystick, a konektor na expander, který může obsahovat RAM, Hard-Disk, periferie, měřicí přístroje nebo koprocesor. Monitor se připojí přes RGB, video nebo

Moderní operační systém umožňuje práci v reálném čase, paralelní běh programů a dá se snadno dále rozšířovat. Programy v BASICu se dají ovládat pomocí myši a grafických symbolů na obrazovce. Díky MS DOS emulátoru a expanderu se stává AMIGA plně kompatibilní s IBM PC a lze na něm používat všechny známé programy. Podle pořadu "Halo počítać" v Polské televizi by měl být 10× rychlejší než osmibitové a dvakrát rychlejší než počítač IBM

Jeho cena 3000 DM plně odpovídá tomu, že je teprve druhým zástupcem šestnáctibitových počítačů a v grafice zatím nemá konkurenci. Dá se však předpokládat, že po nasycení trhu klesne cena pod 2000 DM.

Miroslav Hošek

KONSTRUKTÉŘI SVAZARMU

Mf zesilovač

Ing. M. Linka, F. Michálek

Je známo, že vstupní jednotka přijímačů VKV má podstatný vliv na odstup užitečného signálu od šumu a na potlačení křížové modulace. Naproti tomu mf zesilovač rozhoduje o selektivitě přijímače a o potlačení amplitudového rušení. Moderní integrované obvody přitom zajišťují bez problémů potřebné zesílení k dokonalému amplitudovému omezení. Selektivita je dána především vlastnostmi použitých filtrů (keramických, magnetomechanických apod.).

Jedním z mnoha integrovaných obvodů, vyvinutých pro použití v mf zesilovačích přijímačů VKV, je CA3089 firmy RCA (nebo jeho přesné ekvivalenty "A3089 firmy Fairchild, popř. TDA1200 firmy SGS). Kromě vf zesilovače s velkým zesílením, účinného omezovače amplitudy a kvadraturního detektoru obsahuje CA3089 ještě pomocné obvody jako řízení AVC, ADK

(AFC), obvod pro indikaci síly pole a umlčovač šumu. Integrovaný obvod byl použit např. v maďarském přijímači Prometheus a občas se vyskytuje i v inzerci AR.

Popis zapojení

Popisovaný mf zesilovač, který navazuje na konstrukci "Jakostní vstupní jednotka VKV" (AR A5/85), je osazen

obvodem CA3089. Integrovaný obvod je doplněn ještě dvoustupňovým zesilovačem s keramickým filtrem a propustí *LC*. Vyzkoušeli jsme také variantu se dvěma keramickými filtry, ale výsledky nesplnily naše očekávání. Druhý keramický filtr byl proto nahrazen laděným obvodem *LC* s vazebním vinutím pro připojení k IO.

Další laděný obvod LC zajišťuje spolu s tlumivkou (asi 22 µH) správnou činnost detektoru integrovaného obvodu (fázovací článek). Všechny cívky je třeba umístit do stínicích krytů,

Signál po detekci se přivádí do stereofonního dekodéru A290D. Je známo, že činnost tohoto dekodéru ruší především signál o kmitočtu 114 kHz (3. harmonická signálu 38 kHz), proto je mezi výstupem IO1 a vstupem IO2 zařazen filtr, naladěný na tento kmitočet. Pro nezkreslený stereofonní vjem je třeba, aby filtr měl vyrovnanou amplitudovou i fázovou charakteristiku minimálně do kmitočtu 53 kHz. Tomuto požadavku lze s běžnými filtry LC vyhovět jen velmi obtížně (především pokud jde o fázovou charakteristiku),

Obr. 1. Zapojení mf zesilovače. Dole na obrázku dvojitý filtr RC jako náhrada aktivního filtru 19 kHz (viz text)

proto byl použit aktivní filtr se dvěma tranzistory, který oběma požadavkům bezpečně vyhoví.

Stereofonní dekodér je zapojen obvyklým způsobem s deemfází na výstupu. Zbytky signálu pilotního kmitočtu 19 kHz se odstraňují filtry na výstupu. Odzkoušeli jsme dva různé druhy filtrů – výrobně jednodušší je aktivní filtr

stejného provedení jako v předchozím případě případě (je nastaven přesně na 19 kHz), složitější je dvojitý filtr RC (dolní propust), převzatý z přijímače TESLA T814. V přijímači vyhoví oba druhy. Jako výstupní obvod jsme použili nf zesilovač s nastavitelnou úrovní zesílení v každém z oboú kanálů.

Celkové zapojení mf zesilovače je na

Konstrukce a součástky

Mf zesilovač byl postaven na jednostranné desce s plošnými spoji podle obr. 2, na obrázku jsou plošné spoje pro oba typy filtrů na výstupu. Výstup 10,7 MHz ze vstupní jednotky je připojen co nejkratším stíněným kabelem na jeden vývod kôndenzátoru C1. Použijeli se vstupní jednotka podle AR A5/85. není třeba kondenzátor C1 použít. První vf zesilovač má relativně malé zesílení, zaručuje však správné přizpůsobení mezi výstupem vstupní jednotky VKV a mf zesilovačem.

Deska s plošnými spoji je navržena pro použití různých keramických filtrů bez úpravy lze použít SFW10,7MA, FE10,7MA, MLF10,7. Odporovým SFE10,7MA, trimrem P1 se nastavuje minimální úroveň šumu. Druhý vf zesilovač hradí ztráty, vzniklé průchozím útlumem keramického filtru. Obvod LC v kolektoru tranzistoru T2 je zatlumen rezistorem R13

Na integrovaný obvod se signál přivádí vazebním vinutím, které zabezpečuje požadované galvanické propojení vývodů 1 a 3 integrovaného obvodu.

Integrovaný obvod je zapojen standardním způsobem. Výstup nf signálu (vývod 6) je použit i k získání signálu pro indikátor vyladění (po dodatečné filtraci) a řízení ADK (AFC). Na vývodu 12 je napětí, určené pro umlčovač šumu – tohoto napětí se využívá k automatickému přepínání provozu mono-stereo.

Celý mf zesilovač je napájen ze stabilizovaného zdroje s výstupním napětím 12 až 15 V. Odběr proudu je asi 60 až 80 mA. K indikaci síly pole (Smetr) lze použít libovolný mikroampérmetr se "spotřebou" do 500 μA. Měřidlo síly pole se připojuje druhým přívodem na zem přes rezistor (není zakreslen ve schématu), indikátor vyladění (měřidlo s nulou uprostřed) má předřadný rezistor na desce s plošnými spoji. Odpory těchto rezistorů je třeba volit podle citlivosti použitých měřídel.

Seznam součástek

Tranzistory T1, T2 KF173 (KF525, KF524) T3, T4, T6, T8, T9, T11, T12, T13 KC508 (KC507, KC509) T5, T7, T10 BC177 (BC178)

Integrované obvody TDA1200 (CA3089, µA3089) 102 A290D (MC1310P)

Diody D1 KZ140

Cívky (kostřička ø 5 mm, jádro M4×0,5 mm, hmota NO5 - modrá)

L1 10 závitů, drát o ø 0,2 mm CuL 4 závity, 0,2 mm CuL, vedle

L1 48 závitů, drát o ø 0,2 mm L3

CuL, 22µH 18 závitů, drát o ø 0,2 mm

CuL

cívky L5, L6, L7, L8 jsou z přijímače TESLA T814; označení 1PK 587 13 (2500 závitů drátu CuL o ø 0,08 mm)

Filtr		R27, R41,		C5, C11	TK 764, 10 nF
F	SFW10,7MA	R53	7,5 kΩ	C7	TK 754, 330 pF
	(SFE10,7MA,	R28, R42,		C8, C15	TK 764, 68 nF
	MLF10,7)	R54	3,3 kΩ	C9, C12	•
Pozietony /TD	191, TR 112a,	R29, R31,		C28, C29	TK 764, 15 nF
• •	151)	R43, R55	10 kΩ	C10	TK 724, 680 pF
in	131)	R30, R32,		C13, C17,	
R1, R60, R64	39 kΩ	R35, R47		C18, C34,	
R2, R8, R25		R58	1 kΩ	C35, C41,	
R39, R40,		R33, R34	3,9 kΩ	C42, C47,	
R51, R52	8,2 kΩ	R45, R56	0,27 ΜΩ	C53	TE 005, 2 μF
R3, R11	100 Ω	R46, R57	33 kΩ	C27, C30,	
R4, R7	330 Ω	R59, R61,		C36	TE 986, 2 uF
R5 .	1,5 kΩ	R63, R65	2,7 kΩ	C16, C48,	
R6	1,8 kΩ	R62, R66	390 Ω	C55	TK 764, 150 nF
R9	12 kΩ			C19, C21	TC 281, 150 pF
R10	2,2 Ω	Odporové trin	nry (TR 111)	C20	TC 281, 330 pF
R12, R18,		Cuporote triii	my (111 111)	C22	TK 754, 470 pF
R44	560 Ω	<u>`</u>		C23	TK 764, 47 nF
R13, R16	4,7 kΩ	P1, P2, P3,		C24, C26	TE 125, 220 nF
R14	6,8 kΩ '	P5, P6, P8,		C25	TE 125, 470 nF
R15, R22,	22 kΩ	P9	1 kΩ	C31, C32,	
R36, R48		P4	15 kΩ	C37, C38,	
R17	podle měřidla	P7, P10, P11		C43, C49	TC281, 1 nF
R19, R23,		P12	10 kΩ	C33, C39,	
R24, R37,				C45, C51	TC 281 , 2,2 nF
R38, R49,		Kondenzátory	<i>'</i>	C40	TE 004, 50 μF
R50	100 kΩ			C44, C50	TC 281, 820 pF
R20	27 kΩ	C1, C14	TK 754, 100 pF		TC 281, 3,3 nF
R21	18 kΩ	C2, C3, C6	TK 764, 22 nF	C54, C56	TE 004, 20 µF
R26	9,1 kΩ	C4	TK 764, 33 nF	55., 566	

Nastavení mf zesilovače

Mf zesilovač začneme nastavovat laděním nf filtrů. Jsou-li integrované obvody v objímkách, vyjmeme je, jsou-li v desce zapájeny, je třeba přivádět nf signál z generátoru přes oddělovací kondenzátor. Nastavíme generátor na 114 kHz, výstupní napětí menší než 1 V. Generátor připojíme na vývod 6 integrovaného obvodu (IO1). Na kondenzátor C27 připojíme osciloskop nebo nf milivoltmetr. Odporovými trimry P2 a P3 nastavíme minimální výchylku ručky nf milivoltmetru. Útlum filtru by měl být v mezích 30 až 40 dB. Pak překontrolujeme průběh kmitočtové a případně i fázové charakteristiky filtru v pásmu 0 až 53 kHz — útlum filtru v tomto pásmu by měl být maximálně 2 dB, fázová chyba max. 7°.

Stejným způsobem dále nastavíme filtry 19 kHz: nf generátor se připojí na kondenzátor C30 (C36), osciloskop až na nf výstup levého (pravého) kanálu. Minimum signálu 19 kHz na výstupu se nastavuje odporovými trimry P5, P6 (P8, P9) při P7 a P10 nastavených na maximální výstupní napětí. Jestliže jste zvolili filtry s laděnými obvody LC, pak je třeba nejprve nastavit generátor na

Obr. 3. Deska zesilovače, osazená součástkami

Technické údaje mí zesilovače

Střední kmitočet: 10,7 (10,6 až 10,8) MHz podle použitých filtrů.

Citlivost (s/ $\tilde{s} = 26 dB$): 3 μ V.

Potlačení signálu pilotního kmitočtu 19 kHz: aktivní filtr 37 dB, filtr LC 40 dB.

Výstupní napětí pro zdvih 40 kHz: nastavitelné 0 až 1 V.

Napájení: 12 až 15 V (stab.). Odběr proudu: asi 70 mA.

Ve spojení se vstupní jednotkou podle AR A5/85:

kmitočtový rozsah: 65 až 104 MHz. citlivost: (s/š= 26 dB, zdvih 40 kHz. 75 Ω): 0,85 μV,

potlačení f_{mf} : 110 dB, potlačení $f + 1/2 f_{mf}$: 90 dB, potlačení $f + 2f_{mf}$: 90 dB.

ní výstupní signál, pak generátor přela-Multiplikatívny zmiešavač dit na 15 kHz a cívkou L6 (L8) ladit na maximální výstupní signál. Nyní lze přistoupit k ladění mf zesilovače. Nejpřesněji lze mf zesilovač nas tranzistorom KF 910 stavit rozmítačem. Protože tento přístroj je pro většinu jistě nedostupný,

Ing. Víťaz Igor, CSc.

V poslednom období sa publikujú zapojenia multiplikatívnych zmiešavačov s dvojbázovými tranzistormi MOS. V článku chcem poukázať na tie vlastnosti tranzistorov KF910, ktoré sú dôležité v tomto zapojení.

Prednosťou multiplikatívnych zmiešavačov je, že napätie signálu U, a napätie z miestneho oscilátora prijímača Un sú pripojené medzi rôzne elektródy zmiešavacieho prvku. Podstatne sa tým znižuje nežiadúce parazitné prenikanie signálu miestneho oscilátora do ostatných častí prijímača. Tranzistory MOS majú kvadratický priebeh prevodovej charakteristiky, v zmiešavači nedochádza k tvorbe nežiadúcich produktov zmiešavania vyšších stupňov a k možnosti vlastného rušenia

Zosilnenie zmiešavača je vyjadrené ako podiel amplitúd napätí vstupného a medzifrekvenčného signálu Us a Umt

$$A_{\rm ZM} = \frac{U_{\rm mi}}{U} \tag{1}$$

S pomocou parametrov tranzistora ho možno zjednodušene vyjadriť rovnicou

$$A_{ZM} = k_{ZM} \frac{d^2 I_c}{du_s} U_h \qquad (2)$$
in kapitanta závielá na vlast

kde kzm je konštanta závislá na vlastnostiach tranzistora zaťažovacieho obvodu zmiešavača,

Ic je kolektorový prúd tranzistora, us, uh sú napätia vstupného signálu a signálu z miestneho oscilátora prijímača.

Principiálne zapojenie zmiešavača je na obr. 1. Napätie prijímaného signálu je pripojené na prvú bázu tranzistora, napätie signálu z miestneho oscilátora prijímača je pripojené na druhú bázu tranzistora. Napätia $U_{\rm b1}$ a $U_{\rm b2}$ sú jednosmerné napätia na bázach tranzistora, ktoré stanovujú pracovný bod tranzis-

Strmost prevodovej charakteristiky tranzistora v zmiešavači možno vyjadriť deriváciou

du s

Zosilnenie zmiešavača možno potom vyjadriť rovnicou

$$A_{ZM} = k_{ZM} \frac{d|y_{21e}|}{du_h} U_h. \tag{4}$$

Veľkosť zosilnenia zmiešavača nezávisí teda ani tak na samotnej strmosti | y_{21e} | tranzistora, ako na veľkosti jej zmeny pri zmene okamžitej hodnoty napätia dun miestneho oscilátora prijímača a ďalej na amplitude napätia miestneho oscilátora, Un. Vhodná pracovná oblasť charakteristík zmiešavača bude v tej časti charakteristík tranzistora, kde je maximálna hodnota derivácie strmosti tranzistora podľa napätia miestneho oscilátora.

Na obr. 2 je sieť prevodových charakteristik tranzistora KF910, $I_c = f(U_{b1})$ pri konštantnom napätí na druhej báze Ub2 konšt., U_{b1} a U_{b2} sú jednosmerné napätia na bázach tranzistora.

Na obr. 3 je závislosť strmosti tranzistora | y_{21e} | na veľkosti napätia U_{b1} na prvej báze tranzistora pri $U_{b2} = \text{konšt.}$ Dlhá lineárna časť charakteristík potvrdzuje, že prevodové charakteristiky tranzistora sú kvadratické pri napätiach $U_{\rm b1} < 0 \ \rm V.$

Na obr. 4 sú krivky závislosti strmosti tranzistora y 21e na veľkosti jednosmerného napätia na druhej báze $U_{\rm b2}$ pri $U_{\rm b1}$ = konšt. Charakteristiky majú v oblasti napäti na druhej báze $U_{\rm b2}$ < 1 V takmer lineárny priebeh s veľkou strmosťou. ktorá dosahuje u zmeraného tranzistora až 18 až 20 mA/V2. Strmosť charakteristík podstatne klesá pri napätiach) $U_{\rm b2} > 2 \, \rm V.$

Merania boli uskutočnené meračom impedancie a prenosu BM538 pri fre-

mální citlivost zesilovače. Pak připojíme se voltmetr na vývod "vyladění ADK". Laděním cívky L3 nastavíme ss napětí na 5,6 V. Zkontrolujeme naladění L1 a L4 a případně je doladíme. Celý postup několikrát opa-

19 kHz a ladit cívku L5 (L7) na minimál-

popíšeme postup s vf generátorem a osciloskopem. Na vf generátoru na-

stavíme kmitočet, odpovídající střed-nímu kmitočtu použitého keramického filtru. Zdvih volime 40 kHz. Osciloskop

připojíme na výstup L nebo P. Otáče-

ním jádra v cívce L4 nastavíme maxi-

mální rozkmit výstupního napětí na obrazovce osciloskopu. Zmenšujeme

výstupní napětí generátoru a dolaďo-

váním jádra cívky L1 nastavíme maxi-

kuieme.

Na generátoru FM vypneme modulaci a rozlaďujeme generátor o ± 150 kHz. Stejnosměrné napětí se musí měnit symetricky kolem 5,6 V na obě strany. Tím jsme zkontrolovali symetrii S-křivky.

Pak připojíme voltmetr na vývod "šumová brána" (spoj rezistorů R19 a R20) a změříme napětí při slabém a silném signálu. Při signálu asi do 10 μV bychom měli naměřit napětí 1,5 až 4 V, při silném signálu by se napětí mělo zmenšit na 0 až 0.7 V. Přivedením tohoto napětí na vývod 5 IO1 se otevírá nebo zahrazuje cesta pro nf signál na vývod 6. Přes dělič R20, R21 se napětí k řízeňí šumové brány přivádí také na tranzistor T3, jehož sepnutím se vyřadí z činnosti stereofonní dekodér. Pro trvalý provoz "mono" je použito tlačít-ko, uzemňující vývod 8 102.

Zbývá ještě nastavit kmitočet oscive stereofonním dekodéru. Máme-li měřič kmitočtu, připojíme jej na vývod 10 lO2. Mf zesilovač je bez signálu. Odporovým trimrem P4 nastavíme kmitočet na 19 kHz. Nemáme-li čítač, připojíme k mf zesilovači i vstupní jednotku a po celkovém naladění celého přijímače najdeme na stupnici dostatečně silný stereofonní signál. Trimrem P4 pak otáčíme tak, aby se rozsvítila indikační dioda LED, zapojená mezi přívod kladného napájecího napětí a srážecí rezistor R35.

Obr. 3. Závislosť strmosti tranzistora na jednosmernom napätí prvej báze

Obr. 4. Závislosť strmosti tranzistora na jednosmernom napätí druhej báze

Obr. 5. Závislosť strmosti tranzistora na jednosmernom napätí druhej báze

kvencii f = 85 MHz. Na obr. 3 sú tiež vyznačené i zmerané kapacity prvej bázy a výstupnej kapacity tranzistora. Kapacitu spätnoväzobnú medzi kolektorom a prvou bázou, C_{cb1}, nebolo možné dostupnými metódami zmerať.

Z rovnice (4) a z obr. 4 vyplýva, že najvhodnejšia oblasť charakteristík pre voľbu pracovného bodu zmiešavača je pri napătiach $U_{b1} \doteq 0 \text{ V a } U_{b2} = -0.5 \text{ až} +1 \text{ V. Na obr. 5 je táto oblasť nakresle-}$ ná vo zväčšenej mierke. Lineárny priebeh charakteristík umožňuje predpokladať veľmi nízky obsah nežiadúcich produktov zmiešavania vyšších stupňov. Pomerne dlhá lineárna časť charakteristík umožňuje dostatočne veľké napätie miestneho až do efektívnej hodnoty $U_h = 0,3 \text{ V.}$ Menšie napätie miestneho oscilátora spôsobí len pokles zosilnenie zmiešavača, väčšie napätie by mohlo spôsobiť posuv pracovného bodu do nelineárnych častí charakteristik a vytvorenie predpokladu vznik néžiadúcich produktov zmiešavania vyšších stupňov. Oblasť charakteristik pri $U_{\rm b2} > 2$ V nie je pre zmiešavanie vhodná.

Z obr. 3 a obr. 4 možno tiež vyvodiť závery pre voľbu pracovného bodu tranzistora v lineárnom zosilňovači. Najväčšiu strmosť dosahuje tranzistor pri napätí $U_{\rm b1}=-0.5$ až +1 V a $U_{\rm b2}=4$ až 8 V. Regulácia zosilnenia zosilňovača napríklad v obvode AVC sa dá účinne dosiahnuť zmenou napätia na druhej báze v rozsahu $U_{\rm b2}=-0.5$ až +2 V. Při väčších napätiach na druhej báze je riadenie zosilnenia menej účinné.

Podobné merania boli uskutočnené tiež na 4 kusoch tranzistorov KF907. Boli získané podobné výsledky, avšak strmosť bola así 60 až 70 % z nameraných hodnôt u tranzistora KF910.

Realizácia zmiešavača potvrdila výborné vlastnosti tranzistora KF910 (a KF907). Existuje výrazné maximum zosilnenia zmiešavača, ktoré sa dá nastaviť jednosmerným napätím na druhej báze tranzistora. Z hřadiska tolerancie parametrov tranzistorov a pomerne úzkej oblasti, v ktorej má tranzistor použiteřnosť ako multiplikatívny zmiešavač je vhodné, aby sa nastavil pracovný bod zmiešavača individuálne v konkrétnom zapojení.

Jednoduchý doplněk k čítači pro měření kapacit

V polovině roku 1986 se konečně i v našich obchodech objevily tak dlouho žádané integrované obvody typu 555.

Obr. 1. Schéma doplňku k čítači

Pro majitele čítačů doporučujeme zhotovení jednoduchého přípravku, kterým lze velmi přesně měřit kapacity. IO je zapojen jako astabilní multivibrátor, jehož kmitočet je dán vztahem

$$f = \frac{1,443}{(R_1 + 2R_2) \cdot C}$$

Odpory rezistorů pro měření kapacit volíme 390 Ω , pro kapacity v rozmezí 2 nF až 1 μ F 10 k Ω a pro ještě menší kapacity odpory větší než 1 M Ω . Kalku-

lačku má snad dnes již každý radioamatér a snadno si tedy spočte výslednou kapacitu ze vzorce

$$C = \frac{1,443}{(R_1 + 2R_2) \cdot f}$$

Podle QST zpracoval QX

ZRīšenosti sprimentelevize Palana (30 a 35

JUDr. Jan Procházka

Na značné části území Východočeského a Středočeského kraje včetně hlavního města Prahy lze úspěšně přijímat oba programy televize PLR z vysílače Sněžné jámy v Krkonoších. Tyto programy jsou vysílány na 30. (1. program) a 35. (2. program) kanálu. K jejich příjmu lze použít z vyráběných antén širokopásmové typy ("X-color", "síta") nebo pásmové antény v provedeních pro 25. až 30. a 31. až 35. kanál. Pokud je signál dostatečně silný, nejsou s výběrem vyhovující antény potíže. Chceme-li však přijímat signál v okrajových částech dosahu vysílače, kam patří například i vhodně položená místa v Praze, jeví se nutným použít kromě antény i anténní předzesilovač. Použití dvou úzkopásmových antén a dvou kanálových zesilovačů a sloučení signálů selektivním slučovačem není příliš ekonomické. Při použití širokopásmové antény a pásmového předzesilovače se zase často setkáváme s křížovou modulací (prolinání programů silných vysílačů do přijímaného kanálu). Konkrétně v Praze se takto projevují vysílače 2. čs. programu Černá hora (k. 23), Ještěd (k. 31), v oblasti Krče a Jižního města to může být ještě 1. program SSSR (k. 41), který koncem roku 1985 podstatně zvětšil vysílací výkon. Toto rušení se projevuje především na slabším kanálu č. 30, kde je při použití uvedené kombinace zcela běžné.

Při řešení tohoto problému se mi velmi osvědčila konstrukce uváděné antény ve spojení se širokopásmovým zesilovačem. Jedná se o anténu, odvozenou z výborné skládané pásmové antény podle ing. M. Českého (Antény pro příjem rozhlasu a televize, SNTL 1976).

Oproti širokopásmovým má uvedená anténa výhodu, že částečně potlačuje některé z rušivých signálů, ležící mimo pracovní oblast a zmenšuje tak pravděpodobnost vzniku křížové modulace. Při spojení do dvojice se zúží vyzařovací diagram natolik, že v Praze lze eliminovat i nepříznivý vliv vysílače Ještěd (k. 31).

Při svém návrhu isem vycházel ze zkušeností, které jsem získal ověřováním antén pro k. 25 až 30 a 31 až 35. V prvním případě byl dobrý příjem 1. programu, avšak druhý program byl bez barvy. S druhou anténou jsem přijímal sice oba programy, ovšem 1. program byl se značným šumem. Hledal jsem proto vhodný kompromis, abych zlepšil příjem na kanálu č. 30 a aby druhý program "chodil v barvě". Výsledkem je navržená anténa. Eze ji zhotovit v provedení s 12 nebo 21 prvkem. 12prvková je vhodná i na balkón či okno. Osobně jsem zhotovil dvanáctiprvkové dvojče na balkón. Ve spojení s anténním předzesilovačem, zhotoveným podle AR A/2 pro 470 až 790 MHz, přijímám na východním okraji Prahy oba programy PLR a 2. program Čs. televize na kanálu č. 23 ve výborné kvalitě, bez šumu a bez odrazů. Pouze při výjimečném počasí se nepatrně zhorší příjem na k. 30, což je ovšem vlastnost u dálkového příjmu běžná.

Při použití anténní dvojice lze ke vzájemnému propojení zářičů použít dvoulinku 300 Ω. Vedení od obou antén k místu vzájemného spojení musí být přesně stejně dlouhá. (Pozor na polaritu, při opačném spojení se signály odečítají!) Takovým spojením vznikne sice nepřizpůsobení, mající za důsledek ztrátu na zisku 0,5 dB, to však vzhledem k jednoduchosti realizace lze oželet. Pro bezeztrátové spojení by bylo nutno vyrobit vedení o charakteristické impedanci 425 Ω. Ve společném napájecím bodu se provede transformace symetrizačním členem UHF 300/75 Ω a k asymetrickému výstupu připojíme předzesilovač nebo souosý kabel.

Celkový zisk soustavy (u dvanáctiprvkového "dvojčete") je srovnatelný s anténou KC-91-BL (dlouhou X-kolorkou), ovšem nevyskytly se výše uvedené problémy s křížovou modulací na k. 30; 21prvkové "dvojče" má zisk ještě o 3 až 4 dB větší!

Anténu zhotovila řada známých a všichni byli s její funkcí spokojeni. Jako zesilovače jsou vhodné jakékoli pásmové zesilovače pro IV. a IV.—V. pásmo se "slušným" šumovým číslem. Z našich výrobků např. AZS 02, AZS 03, nebo některý z výrobků NDR. O stupeň lepší kvality jsem však dosáhl s vynikajícím zesilovačem 470 až 790 MHz od ing. Peterky, zveřejněném v AR A2 z roku 1985. (Zhotovil jsem několik kusů, všechny "chodily" na první zapojení.)

Na závěr musím upozornit, že neexistují "zázračné" antény ani předzesilovače a kde pro příjem nejsou minimální předpoklady, nepomůže žádná soustava ani předzesilovač. Před stavbou antén je nutné alespoň orientačně ověřit možnost příjmu, nejlépe náhražkovou anténou (dipól, prutová anténa přenos. televizoru). Pokud na tuto anténu zachytíte v místě příjmu (střecha, balkón) alespoň silně zašuměný obraz se zvukem, pak je předpoklad dobrého příjmu s uvedenou konstrukcí. V opačném případě budete výsledkem zpravidla zklamáni. Intenzitu signálu ověřuje i Kovoslužba asi za 100 Kčs za jeden měřený signál.

Tabulka rozměrů

Prvek	Rozměr [mm]	Prvek	Rozměr [mm]
R	375	н	90
Z	305	H ₁	163
D ₁ .	227	H ₂	82,5
D ₂	218	H ₃	23,5
D ₃	216	H ₄	67
. D₄	214	H ₅	141
D ₅	212	H ₆	150
D ₆	209	H ₇	161

Všechny prvky jsou z trubky Al o ø 8 mm. Ráhno je z kulatiny nebo lépe ze čtvercovitého profilu 15 až 18 mm. Jako materiál je nejvhodnější dural, lze použít i hliník, nevhodná je mosaz. Po zhotovení je třeba anténu konzervovat — nejlépe přípravkem Resistin-car.

Sondy k indikaci vf napětí

Petr Matuška, OK2PCH

K indikaci vf napětí se většinou v amatérské praxi používá diodových sond k univerzálním měřicím přístrojům. Popisované vf sondy používají místo měřicího přístroje svítivou diodu. Jejich služby oceníme především v terénu při opravách a zjišťování závad přijímačů, vysílačů, antén a různých vf zařízení. Sonda je vhodným pomocníkem začínajících i zkušených amatérů také v domácí dílně. Popisované tři vzorky se liší citlivostí i mechanickým provedením. Pozor! Sondy nelze připojit na stejnosměrné i vf napětí větší než 30 V!

Vf indikační sonda A — U_{vf} vstupní 1 V a větší; B — U_{vf} vstupní 0,2 V a větší; C — U_{vf} vstupní 0,08 až 0,1 a větší;

Sonda A — viz schéma obr. 1. Přes kondenzátor CL přivádíme vf napětí na D1 a D2 — diodový detektor, který napájí svítivou indikační diodu.

Obr. 1. Vf indikátor, provedení A

Sonda B (obr. 2) je doplněna zesilovačem T1 a napájecí baterií 3 V. Podle velikosti vf napětí se otevírá tranzistor T1, diodou teče proud, který je omezen rezistorem R1. Bez přivedeného vf napětí D3 nesvítí a tranzistorem teče pouze zbytkový proud 0,2 µA. Baterii není nutno vypínat.

Obr. 2. Vf indikátor, provedení B

Sonda C (obr. 3) je nejcitlivější, indikuje od 80 do 100 mV vf. Usměrněné vf napětí otevírá tranzistory T1, T2 v Darlingtonově zapojení. R3 omezuje maximální proud tekoucí svítivou diodou D3. Odporovým děličem R2 a R1 je nastaveno předpětí detekčních diod D1, D2.

Obr. 3. Vf indikátor, provedení C

Nastavení

Do série s diodou D3 zapojíme mikroampérmetr, R1 nahradíme trimrem 1,5 MΩ. Trimr nastavíme na takovou hodnotu, při které ještě nebude protékat měřidlem proud. Po změření nahradíme rezistorem. Takto jsme sondu nastavili na maximální citlivost.

Sonda A (obr. 1) je vestavěna do pouzdra popisovače "fix" K-I-N Pastelo 1800. Součástky, hrot i svíticí dioda jsou připájeny na proužek kuprextitu — obr. 4 (zhotovíme proškrábnutím měděné vrstvy). Svíticí dioda je prostrčena otvorem ø 4,3, vyvrtaným v zátce "fixu".

Obr. 4. Konstrukce vf indikátoru A

Sonda B — je vestavěna do krabičky od plastické gumy — obr. 5. Rozměry: 44 × 33 × 15 mm, k dostání v prodejnách Papírnictví za 1 Kčs. K napájení slouží dva články do naslouchacích přístrojů, typ 5108 IEC R1.

Obr. 5. Konstrukce vf indikátoru B

Sonda C — je zhotovena na destičce s plošnými spoji — obr. 6. Rozložení součástek znázorňuje obr. 7. V desce

plošných spojů je výřez, do kterého částečně zapadnou baterie (typ 5108). Na desku plošných spojů připájíme vhodné kontaktní plošky, např. z konta-

ktů rozebraného relé. Baterii přidržují dvě gumičky, pro které uděláme zářezy

na okraji desky plošných spojů jehlovým pilníkem. V bodě X připájíme

kousek měděné fólie, která je přehnuta přes hranu desky. Zajišťuje spojení záporného pólu s pouzdrem. Hrot je připájen dvěma drátovými spojkami.

Sonda je vestavěna do pouzdra od popisovače Centrofix 1886. Centrofix

rozebereme, trubičku z umělé hmoty,

vytaženou ze zadní strany popisovače,

zkrátíme na 6 mm, do středu vyvrtáme

otvor pro svíticí diodu. Oživenou desku

s plošnými spoji vložíme do pouzdra a

uzavřeme zátkou. Vůli měřicího hrotu

vymezíme vhodnou distanční trubičkou nebo pouzdrem zhotoveným podle

Seznam součástek

150 pF, TK774

LQ110 (červená)

150 pF, TK 794

1,5 nF, TK 774 GA205

220 Ω, TR 211 KC509

GA205

LQ110

Sonda A:

Sonda B:

D1, D2

C1

D3

C1

C2 D1, D2

D3

R1

Obr. 8. Pouzdro, vymezující hrot u indikátoru C

Obr. 6. Deska plošných spojů ví indikátoru C (V36)

Obr. 7. Rozložení součástek vf indikátoru C na desce V37

Obr. 9. Celkový pohled na indikátory A a B

Obr. 10. Celkový pohled na indikátor C

Sonda C:		R2	2.7 ΜΩ
C1	220 pF, TK 794	R3	68 Ω
C2	33 nF, TK 782	D1, D2	GA205
C3	1,5 nF, TK 774	D3	LQ110
R1	560 kΩ	T1, T2	KC509

Použitá literatura

[1] Borovička, Jiří: Přednášky z amatérské radiotechniky, ÚV Svazarmu, Praha, str. 77, 78.

JEDNODUCHÝ ZKOUŠEČ TRANZISTORŮ A DIOD

Zdeněk Kořínek

Na obr. 1 je zapojení jednoduchého zkoušeče, kterým lze ověřit, zda jsou v pořádku tranzistory (NPN i PNP) a diody (též LED). Kromě toho umožňuje i kontrolu neporušenosti rezistorů do odporu asi 1 MΩ.

Funkce vyplývá z obr. 1. Zasuneme-li zkoušený tranzistor do příslušné objím-ky, začne pracovat ve funkci splnače. U tranzistoru n-p-n se přes tlačítko Tl a rezistor R1 přivede na bázi zkoušeného tranzistoru kladné napětí, které otevře přechod emitor-kolektor. Tím se rozsvítí dioda D1 přičemž protékající proud je omezen rezistorem R2 asi na 10 mA. Zkoušíme-li tranzistor typu p-n-p, otevíráme ho přivedením záporného napětí na jeho bázi, což zajišťuje tranzistor T1, který se po stisknutí tlačítka Tl stane vodivým. Rezistor R3 v jeho kolektoru ovlivňuje citlivost obvodu. Čím je jeho odpor větší, tím je obvod citlivější.

Zkoušeč jsem pro své použití konstruoval tak, že nepotřebuje žádnou

Obr. 1. Zkoušeč tranzistorů a diod

krabičku. Destička s plošnými spoji je pomocí pryžového pásku připevněna přímo k napájecí devítivoltové baterii. Celkové provedení i s nalepeným popisem vyplývá z obr. 2. Protože celé zařízení má prakticky nulovou klidovou spotřebu, není třeba baterii odpojovat.

Pro připojování zkoušených tranzistorů jsem použil objímky o průměru 10 mm typ 6 AF 497 68. Pod tranzistor T1 i svítivou diodu D1 doporučuji umístit pro zvětšení mechanické pevnosti distanční křížek. Tlačítko Tl jsem zhotovil z bronzových vývodů vybité ploché baterie, které jsem vhodně ohnul a připájel na desku s plošnými spoji. Vývod, kterého se dotýkáme, musí být připojen na kladný pól baterie. Jinak by se LED rozsvěcovala brumovým napětím. Pro zkoušení dido jsem zvolil kousky tlustšího drátu, například měděného vodiče o průřezu 1,5 mm², který jsem v délce asi 15 mm zapájel do desky. Je pochopitelné, že jak celkové provedení, tak i konstrukci tlačítka Tl může každý zvolit podle svého vkusu možností.

Tranzistor, který chceme vyzkoušet, zasuneme do příslušné objímky. Po stisknutí tlačítka TI se musí svítivá dioda rozsvítit. Jestliže se nerozsvítí, je tranzistor přerušen, jestliže se rozsvítí ihned po zasunutí tranzistoru do objímky, je buď proražen nebo je opačné vodivosti. Zkoušet lze i výkonové tranzistory, je však nutno připojit k nim pomocné vodiče. Připomínám, že při případném zkoušení germaniových tranzistorů starších typů se může stát, že dioda začne slabě svítit již při jejich zasunutí do objímky, což je důsledek velkých klidových proudů.

Diody zkoušíme v propustném směru, přičemž dioda musí svítit, případně v nepropustném směru, kdy dioda svítit nesmí. Diodu připojujeme ke kontaktům A a K, tlačtko Tl nepoužíváme. Tak se rovněž můžeme rychle přesvědčit o orientaci vývodů diody. Při případném zkoušení detekčních

Obr. 2. Vnější provedení zkoušeče

diod je třeba jen dbát toho, aby je nepoškodil protékající proud, který je přibližně 10 mA.

informativním způsobem lze tímto přístrojem zkoušet i rezistory až asi do odporu 10 kΩ tak, že je připojujeme ke kontaktům pro zkoušení diod. Potřebujeme-li zjistit neporušenost rezistorů většího odporu, pak musíme nechat v některé z obou objímek zasúnutý dobrý tranzistor příslušného typu, anebo v objímce pro tranzistor p-n-p propojit kouskem drátu kontakty báze a emitoru. Rezistor zkoušíme tím způsobem, že ho přiložíme paralelně ke kontaktům tlačítka Tl. Pokud kontrolujeme rezistory s větším odporem, je vhodné používat zkušební kablíky se svorkami, kterými připojíme zkoušený rezistor, abychom měření neovlivňovali odporem ruky.

Stejnosměrné napájecí zdroje

AMATÉRSKÉ RADIO BRANNÉ VÝCHOVĚ

Diplom 200. výročí narození J. E. Purkyně

Rok 1987 je rokem 200. výročí narození význačného českého vědce a libochovického rodáka Jana Evangelisty Purkyně. Při té příležitosti vydávají radioamatéři okresu Litoměřice (ELI) diplom pro naše radioamatéry za těchto podmínek:

Platí všechna spojení uskutečněná v době od 1. 1. 1987 00.00 UTC do 31. 12. 1987 24.00 UTC. Spojení s každou stanicí lze započíst pouze jednou bez rozdílu pásma nebo druhu provozu. Zvláštní třída diplomu bude udělována za získání předepsaného počtu bodů pouze provozem CW.

Klasifikace spojení:

stanice	KV	VKV přímo	CW bez rozli- šení - pásem	RTTY SSTV
libocho- vické	5 bodů	10 bodů	15 bodů	20 bodů
OK1KAI	10 bodů	15 bodů	20 bodů	30 bodů
ostatní stanice z okr. Lito- měřice	3 body	6 bodů	10 bodů	15 bodů

Seznam libochovických stanic: OK1GC, GW, AYU, DIG, JVS, VRV, VVH, UXI, OL4BLS a RK OK1KAI.

Seznam stanic okresu Litoměřice:
OK1AV, BW, GR, ACS, AFI, AGS, AIL,
AIP, AIR, ASD, AUD, BOM, DGU, DMO,
DNP, DNQ, DOA, HBA, IMV, JHM, JLT,
JMJ, JOK, JUM, UNQ, VBE, VBF, UF,
VIO, VQJ, VQK, VRL, VSL, OL4BOR,
VFD, VGN, VGO, VGR, VHH, VIK, VIW,
VLR, RK-OK1KGR, KKP, KNI, KUY.

K získání diplomu je třeba doložit seznam spojení, jejichž bodová hodnota je minimálně 50 bodů. Stanice, které dosáhnou nejvyššího počtu bodů ve všeobecné a CW kategorii, budou odměněny zvláštní cenou. Žádost o diplom s přiloženým seznamem spojení a čestným prohlášením je třeba zaslat do konce měsíce března 1988 na adresu VO RK OK1KAI: František Brož, OK1GC, Husova 348, 411 17 Libochovice.

OK1DIG

Z jesenných trhov

Jesenné výstavné trhy v Prešove patria k akciam, na ktoré prichádzajú tisícky ľudí. Súčasťou vlaňajších trhov bola aj výstava prác rádioamatérov z Prešova, kde sa najväčším počtom exponátov prezentovali členovia klubu elektroniky Zväzarmu pri podnikovom riaditeľstve Pozemných stavieb Prešov. Po dobu troch dní návštěvníci obdivovali ich práce a sledovali rôzne hry s mikropočítačom. Výstavku doplňovali modely rakiet, lietadiel, lodí a aut vyhotovené šikovnými rukami zväzarmovcov.

O Josefu Štěrbáčkovi, OK2VMD, z Blanska jsme psali v minulém číle AR. Ve VKV rubrice vám nyní nabízíme detailní pohled na jeho anténní systém pro pásmo 145 MHz. Tvoří jej antény yagi typu YU0B s celkem 88 prvky a je umístěn na 15 m vysokém stožáru. S použitím těchto antén dosahují Josef, OK2VMD, i jeho syn Zdeněk, OK2PZW, vynikajících výsledků v soutěžích na VKV

IARU Region I. — VHF Contest 1986

Závod proběhl v pásmu 145 MHz za málo příznivých podmínek šíření vln pro naše soutěžící stanice, avšak ani stanice zahraniční nedosáhly nikterak výrazného počtu bodů oproti ročníku minulému. Závod spolu s UHF/SHF Contestem byl z pověření IARU vyhodnocen v ČSSR v době od 11. do 16. prosince 1986 v Ústí nad Orlicí radioklubem OK1KOK pod vedením člena VKV komise RR ÚV Svazarmu ing. Jana Šúrovského, OK1DAY. Hodnocení se zúčastnilo kolem 60 až 70 osob, převážně členů kolektivní stanice OK1KOK a z blízkého okolí.

mezinárodním hodnocení v pásmu 145 MHz v I. kategorii "jeden operátor" toto pořadí: 1. F6CTT/p — 797 spojení F6CYT/p — 8 - 299 596 bodů, 2. 816 282 017, F6HPP/p 722 — 236 224, F6HMQ/p — 520 — 219 562, 5. DL6FBL/p — 614 — 153 632. Bylo hodnoceno 530 stanic jednotlivců. Ve II. kategorii stanic s více operátory je pořadí: 1. F6KBF/p - 1039 QSO 343 997 bodů, 2. G4LIP/p -— 309 552, 3. OK5A — 968 — 299 272, 4. HB9BLF/p — 739 — 292 768, 5. F1KSL — 727 — 275 354 bodů. V této kategorii bylo hodnoceno celkem 483 stanic.

Nezapomeňte, že . . .

... v sobotu 6. června 1987 od 11 do 13 hodin UTC se koná závod k Mezinárodnímu dni dětí a od 14.00 do 10.00 UTC 6. a 7. června se koná Východoslovenský VKV závod.

OK1MG

Pri obsluhe mikropočítača členovia klubu elektroniky Zväzarmu Richard Drutárovský a Patrik Ferenc

Modely lodí a lietadiel, ovládané rádiom

Kalendář KV závodů na květen a červen 1987

1516. 5.	Čs. závod míru	22.0001.00
16.—17. 5 .		16.0016.00
2324. 5.	CQ WW WPX, CW	00.00-24.00
29. 5.	TEST 160 m	20.0021.00
30. 5.	World Telecom. Day, CW	00.00-24.00
31. 5.	World Telecom. Day, fone	00.0024.00
67. 6.	IARU Reg. I. Fieldday, HF, CW	15.0015.00
1314. 6.	VK-ZL RTTY DX contest	00.0024.00
1314. 6.	World Wide South America	15.0015.00
2021. 6.	All Asian DX contest, fone	00.00-24.00
26. 6.	TEST 160 m	20.0021.00
27.—28. 6.	Summer 1,8 MHz RSGB, CW	21.0001.00

Podmínky Čs. závodu míru — viz AR 1/85, CQ WW WPX AR 5/86 ale pozor, násobiči jsou prefixy bez ohledu na pásma! TEST 160 m AR 11/84, Summer 1,8 MHz AR 6/84.

World Telecom, Day

Závod začíná vždy poslední sobotu v květnu částí CW, v neděli je pak část SSB. Závodí se v pásmech 160 až 10 m v obvyklých kategoriích. Vyměňuje se report a zóna ITU. Spojení s vlastní zemí se nehodnotí, za spojení se stanicí na vlastním kontinentu v pásmech -15-20 m je jeden bod, v pásmech 40-80 a 160 m isou dva body; spojení s jiným kontinentem se hodnotí trojnásobně. Každá část se hodnotí samostatně a deníky musí odejít nejpozději do konce června na adresu: LABRE, ITU Contest Committee, P. O. Box 07004, 70000 Brasilia (DF), Brazil. Pozn.: časopis QST upozorňuje, že již delší dobu nedostal potvrzení, zda se závod ještě pořádá. V loňském roce však ještě byla v uvedené termíny závodní aktivita.

World Wide South America Contest

Od loňského roku jsou v platnosti tyto nové podmínky: Závod se koná každoročně druhý kompletní víkend v červnu, se začátkem v sobotu v 15.00 UTC a koncem v neděli, rovněž v 15.00 UTC. Navazují se spojení se všemi zeměmi na světě v pásmech 1,8 až 28 MHz vyjma pásem WARC, a to pouze telegrafním provozem. Stanice mohou soutěžit v kategoriích: a) jeden op. — jedno pásmo, b) jeden op. — všechna pásma, c) více operátorů a klubové stanice — jeden vysílač — všechna pásma, d) posluchači.

Výzva do závodu je CQ SA TEST, vyměňuje se kód složený z RST a pořadového čísla spojení počínaje 001. Spojení s vlastní zemí se bodově nehodnotí, spojení s vlastním kontinentem 2 body, spojení s jiným kontinentem 4 body, spojení s jinóamerickým kontinentem 8 bodů. Násobiči jsou různě země DXCC a jihoamerické prefixy v každém pásmu zvlášť. Konečný výsledek získáme vynásobením součtu bodů součtem násobičů ze všech pásem. Diplomy obdrží první tři stanice každé země v každé kategorii. Deníky se zasílají v obvyklé formě na adresu: WWSA Contest Committee, P. O. Box 18003, 20772 Rio de Janeiro, RJ. Brazil, S. A.

IARU Region I HF CW Field Day

 Závod se koná vždy první celý víkend v červnu, začátek v sobotu v 15.00 UTC, konec v neděli v 15.00 UTC. Závodí se

v kategoriích: OPEN, kde závodník může mít jeden přijímač a jeden vysílač nebo jeden transceiver, plus jeden další přijímač. Výkon podle Povolovacích podmínek; RESTRICTED, kde závodník může mít jeden přijímač a jeden vysílač, nebo jeden transceiver, výkon podle povolovacích podmínek. Může však použít pouze jednu anténu, a to buď dipól s jedním parazitním prvkem, LW nebo trapovaný vertikál ap. Anténa nesmí mít více než dva úchytné body a žádná část antény nesmí být výše než 15 m nad zemí; QRP, kde závodník může používat jeden RX a jeden TX nebo jeden transceiver, plus jeden další RX. Příkon koncového stupně vysílače nesmí překročit 10 W; SWL, posluchači mohou mít pouze jeden přijímač.

Posluchačské deníky musí obsahovat datum, čas spojení UTC, značku poslouchané stanice, její vysílaný kód (RST+číslo spojení), volací znak stanice, se kterou je poslouchaná stanice ve spojení. Zaznamenávají se pouze spojení stanic, pracujících /p nebo /m. V deníku musí být tež uvedeno QTH stanice posluchače a dosažené body. Pokud jsou odposlouchávány ve spojení dvě stanice pracující /p nebo /m, počítají se obě pro bodový zisk. Každá stanice může být zaznamenána pouze jednou, bodování jako u amatérůvysílačů.

Za spojení s pevnou stanicí na vlastním kontinentu jsou 2 body, za spojení s pevnou stanicí na jiném kontinentu 3 body. Za spojení se stanicemi pracujícími /m nebo /p na vlastním kontinentu 4 body, na jiném kontinentu 6 bodů. Násobiče nejsou. Konečný výsledek je dán součtem bodů z jednotlivých pásem, s každou stanicí lze na každém pásmu navázat jedno platné spojení. Závodí se pouze telegrafním provozem v pásmech 1,8—3, 5—7—14—21—28 MHz, v úsecích pro mezinárodní závody. Vyměňuje se kód složený z RST a pořadového čísla spojení počínaje 001, výzva do závodu je CQ FD.

Další ustanovení: a) v místě, kde je zřízena stanice, je možno mít další záložní zařízení, to však nesmí být připojeno k rozvodu napájení; b) budovy nelze využívat jako úchytných bodů pro antény; c) stanice pracující /p musí po celou dobu závodu pracovat jednoho místa a nesmí vysílat z budovy (chaty ap.) a k napájení nesmí být použito sítě, která je v místě stabilně k dispozici; d) k napájení musí být použito generátoru, solárních článbaterií nebo akumulátorů; e) v místě, odkud bude stanice vysílat, nesmí být žádné zařízení, včetně antén, instalováno dříve než 24 hodin před začátkem závodu.

Účastníci závodu jsou povinni zaslat své národní organizaci (URK) deník ze závodu, a to nejpozději do 14 dnů po závodě. Bude vyhotoveno národní pořadí, ze kterého manažer závodu pořádající organizace vyhodnotí pořadí stanic celé 1. oblasti IARU. V deníku musí být podepsáno toto čestné prohlášení: I declare, thal all rules for this contest and all rules and regulations for Amateur Radio operation in my country have been observed and adhered to. I accept the decissions of the contest committee.

Poznámka: pro kolektivní stanice není zvláštní kategorie, pokud dojde na konferenci 1. oblasti IARU ke změně těchto navržených podmínek (což není pravděpodobné), bude změna ohlášena vysílači OK1CRA, OK3KAB a OK5CRC.

OK2QX

Předpověď podmínek šíření KV na červen 1987

Stále ještě neopouštíme minimum jedenáctiletého cyklu sluneční aktivity, i když od loňského podzimu převládá aktivita skupin skvrn ve vyšších heliografických šířkách, patřící již dvaadvacátému systematicky sledovanému průběhu od července 1749. Počátkem letošního ledna byly sice pozorovány skyrny pouze u slunečního rovníku, v jeho druhé polovině ale jen v pásech mezi 13 až 38 stupni sluneční šířky. Denní měření slunečního rádiového toku poskytla tyto údaje: 74, 73, 72, 71, 73, 72, 72, 71, 70, 70, 70, 71, 72, 74, 74, 73, 73, 73, 72, 71, 75, 76, 74, 74, 73, 75, 72, 73, 73, 72 a 71, v průměru 72,5. Průměr relativních čísel slunečních skvrn je 9,8, takže můžeme vyčíslit vyhlazený dvanáctiměsíční průměr za červenec 1986: 13,8 - stále ještě hodně vzhledem k předpokládané blízkosti slunečního minima. Na červen jsme obdrželi tyto předpovědi: SIDC Brusel 29± 7 (klasickou metodou 22±6), NOAA/EDS Boulder 34, sluneční tok podle CCIR 78. V dalším vývoji má v říjnu vystoupit R 12 na 26 ± 7 a sluneční tok v únoru 1988 by měl dosáhnout průměru 92 – lepší podminky šíření, zejména na horních pásem KV, se tedy konečně

A ještě pohled zpět: denní indexy A_k geomagnetické aktivity v lednu činily 24, 10, 6, 3, 3, 3, 6, 9, 10, 5, 6, 12, 9, 5, 8, 15, 10, 9, 10, 22, 12, 14, 16, 10, 8, 8, 7, 18, 11, 4 a 10. Díky téměř úplné absenci poruch byly podmínky šíření KV většinou příznivé, navíc zpestřené kladnými fázemi krátkodobých výkyvů 1. 1., 23. 1. a 28. 1. Nepříznivá kombinace jinak malých změn určujících faktorů způsobila relativně horší vývoj 3.—5. 1. a 30. 1.

zpusobua retativne norsi vyvoj 3.—5. 1. a 30. 1. Ti z čtenářů, kteří chtějí naznačené závislosti zkoumat a využívat systematičtěji, mají možnost získat poslední známé relativní číslo slunečních skvrn, sluneční rádiový tok a denní index geomagnetické aktivity (i když z jiné observatoře, než zde uváděný) poslechem čs. rozhlasu, stanice Hvězda (na kmitočtech 272 a 1233 kHz a v pásmu VKV) v závěru relací Zelené vlny denně od pondělí do pátku v 19.05 a následně v 01.05 hodin místního času. Tamtéž lze adresovat i vyjádření, zda má tato experimentálně zavedená služba i v budoucnu pokračovat (Vinohradská 12, 120 99 Praha 2). Po odmíce francouzských stanic FTA83, FTH42, FTK77 a FTN87 předloní (bohužel, zařízení dožilo a peníze došty, viz ARA 6/85 str. 235) tak máme opět možnost získat čerstvé informace, navíc poněkud rychleji a pohodlněji.

Citlivost ionostéry na změny sluneční aktivity je ovšem právě v červnu nejmenší, nejvyšší použitelné kmitočty budou i přes vzrůst radiace jen o 2 až 5 % vyšší než vloni touto dobou (2 % platí pro směry severní a rovnoběžkové, větší vzestup na transekvatoriálních, přičemž při šíření dlouhou cestou činí vzestup MUF i více než 7 %).

Oproti květnu se rozsah použitelných kmitočtů zůží, relativně se zlepší pásma 40 až 17 metrů (na jih i 15 metrů), naopak horší bude stošedesátka, osmdesátka a kmitočty nad 20 MHz. Otevření v rovnoběžkových směrech se sice prodlouží, leč v poledníkových mírně zkrátí, možnosti spojení s Tichomořím se zhorší a na nejnáročnějších trasách vymizí, výrazně hůře bude dosažitelná i Antarktida. Výpočtem vychází nejmenší útlum při dostatečném MUF v jednotlivých pásmech takto: TOP band: UI 20.00—23.00, YE3-W2-3 03.00, W5-6 04.00.

Osmdesátka: JA 19.40, VK6 19.00—20.00, PY 00.00—02.00, W 03.00.

Ctyřicítka: JA 20.00, VK 00.00, 4K 03.00, PY 00.30, W6 04.00.

Třicítka: JA 18.00—20.00, VK až PY 00.00, W 2—4 01.00, W 5—6 04.00

Z RADIOAMATÉRSKÉHO SVĚTA

ON4UN

Na snímku je u svého zařízení John Devoldere, ON4UN. Je to jeden z nejznámějších světových radioamatérů. Má 45 roků a jako inženýr elektronik je zaměstnán na evropském ředitelství firmy ITT v Bruselu. Koncesi získal v roce 1961. Hned od začátku se věnoval DX-provozu na 80 metrech. V současné době mu v pásmu 80 metrů schází pouze několik zemí do úplného počtu 317. Také na ostatních pásmech je jeho skóre DXCC impozantní. Schází mu pouze potvrzení z Burmy, XZ. Získal též většinu nejtěžších světových radioamatérských diplomů, jako je např.: 5BDXCC, 5BWAS, 5BWAZ (dokonce s číslem 1). Jako 3. stanice z Evropy například získal po 3leté usilovné práci potvrzení všéch, tj. 3076 amerických okresů. John používá při práci na radioamatérských pásmech dva trans-ceivery — TS930 a TS430, oba od firmy Kenwood. Jako antenu pro pásmo 80 a 40 metrů používá 30metrový vertikál se 75 radiály. Pro příjem používá 9 antén typu beverage, dlouhých 300 metrů. Pochvaluje si tuto verzi jako vůbec nejlepší, co vyzkoušel. Pracoval bez problémů s touto soustavou se vzácnými zeměmi, jako např. VK0GC (ostrov Macquarie), C21RK, VK9MR, YI1BGD, KL7, s mnoha W6, 7, dále JA, VK a ZL stanicemi. Současně si však též stěžuje na nedisciplinovanost mnoha evropských stanic, které mnohdy bezhlavě volají, aniž by poslouchaly, a blokují tím dobré DX. Na ostatních pásmech používá John různé směrové

John, ON4UN, u svého zařízení

antény; několik jednopásmových směrovek pro 28, 21 a 14 MHz na 30metrovém stožáru, dále 2 až 5prvkové třípásmové směrovky ve výšce 13 metrů. V poslední době se aktivně věnuje provozu RTTY a modernímu provozu AMTOR. Provozem RTTY má potvrzeno 180 zemí DXCC. Zajímá se o využití počítačů v radioamatérské praxi, sám používá počítač APLLE 2e se dvěma diskovými paměťovými zásobníky a tiskárnou. Je autorem

populární knihy "Práce DX na 80 metrech", publikace "Čas východů a západů Slunce ve více než 500 různých místech na světě" (vypočítáno pro různá roční období ve 14denních cyklech a doplněno počítačovými údaji pro směrování antén na různá místa ve světě z různých lokalit).

Jenom škoda, že tyto publikace ještě nikdo u nás nepřeložil a nevydal pro potřeby československých radioamatérů.

OK2.IS

Zajímavosti

Známá stanice HZ1AB je opět v provozu! V začátku t. r. však pracovala pouze se 100 W výkonu a vertikální anténou pro všechna pásma, čeká však beam a 1 kW koncový stupeň.

Během velikonoc měly být v provozu zvláštní stanice s prefixem 4X5: 4X5DS z nejnižšího bodu na zeměkouli v oblasti Mrtvého moře, 4X5J z hradeb města Jeruzaléma a další stanice z míst, které mají vztah k biblickým událostem.

Zajímavé integrované obvody (bez udání výrobce) nabízí firma Radio Shack — SPO256 je MOS/LSI obvod k vytváření hlasového výstupu k počítači (cena 13 \$) a CTS 256, který převádí kód ASCII na data k řízení předchozího obvodu (17 \$).

NCDXC — Northern California DX Club oslavil v loňském roce 40 let od svého založení. Při té příležitosti se vydává diplom za spojení se 40 členy klubu od 10. 10. 1986 do 10. 10. 1987.

U příležitosti konference 2. oblasti IARU v Argentině, která proběhla v říjnu loňského roku, vysílala z ostrova Trinidad patřícího k Argentině (62°00' z. d. a 39°00' j. š.) skupina operátorů pod značkou AZ1D. QSL přes LU4EJ.

Call Book je od letošního roku vydáván opět ve dvou dílech, ale s jiným rozdělením — prvý obsahuje celý severoamerický kontinent od Panamy po Aljašku, Havaj a ostrovy patřící USA (KC, KX ap.), ve druhém jsou pak adresy stanic ostatního světa. V červnu bude vždy vydán jeden společný doplněk pro oba díly.

Na prvních třech místech v Helvetia 26 contestu 1986 se z našich stanic umístily: 1. OK3PQ — 11 856 bodů, 2. OK1OH — 4800 bodů a 3. OK1ORA — 4743 bodů. Celkem bylo hodnoceno 21 OK stanic.

Podobně jako u nás vysílá ústřední vysílač OK5CRC, i u našich protinožců mají oficiální stanici organizace NZART. Vysílá pod vzácnou značkou ZL6A a u příležitosti 60 let od založení této organizace vysílala nepřetržitě po dobu 24 hodin, včetně provozu přes satelity.

Podle sdělení komitétu DXCC se spojení v pásmech 18 a 24 MHz započítávají pro diplom DXCC! Pouze pásmo 10 MHz je z této soutěže vyloučeno.

Don Marchesi, K7HYR, je prvým radioamatérem na světě, který navázal všechna potřebná spojení pro diplom WAS v pásmu 24 MHz. Naši amatéři budou muset počkat na podobnou příležitost ještě alespoň dva roky, než se vylepší podmínky šíření na tomto pásmu.

Z ostrova Bear vysílá stanice JW8FG. Operátor Bjarne však není členem norské asociace radioamatérů a proto se musí QSL zasílat jen direct na adresu: JW8FG, Bear Island, N-9176 Norway.

V prosinci vysílala ze Švédska stanice 7S0TM k 50. výročí založení technického muzea.

Známý švédský radioamatér SM7DZZ již vysílá pod značkou 8Q7CH a na Maledivách se zdrží několik let. Má s sebou zařízení IC751, používá zatím dipólové antény, ale plánuje i směrovku pro 20 a 15 m. QSL se zasílají přes SM5DQC.

V únoru t. r. se opět ozvala známá stanice KH6JEB/KH7 z ostrova Kure, ležícího asi 80 km od ostrova Midway. Na ostrůvku je hlavní "atrakcí" stanice LORAN, ostrov však mimo 20členné posádky americké pobřežní stráže nemá žádné obyvatele. Operátor dříve pracoval velmi aktivně pod značkou ET3USA, 9E3USA a 9F3USA.

OK2QX

١

YO3RF, Georges Craiu, jeden z nejznámějších rumunských radioamatérů, o kterém jsme nedávno přinesli zprávu i s fotografií, zemřel 14. října loňského roku; amatérem byl od roku 1938.

● ZAJÍMAVOSTI ● ZE SVĚTA ● Z DOMOVA ●

MODERNÍ ELEKTRONICKÉ PŘÍSTROJE PRO NEDOSLÝ-CHAVÉ

Moderní technologie mikroelektroniky umožnila vyrábět dokonalejší naslouchátka pro pacienty, trpící vadami sluchu. Zásadně se rozlišují dva typy sluchadel: s přenosem zvuku vzduchem, vhodné zejména při vadách vnitřního ucha, nebo s přenosem prostřednictvím příslušné části lebeční kosti, která je rozechvívána k ní přiléhajícím vibrátorem. Tento druhý typ se používá při závadách středního ucha. Kmitočtové charakteristiky sluchadel musí být přizpůsobovány individuálně pro jednotlivé pacienty, zesílení musí být regulovatelné.

Nejmodernější a nejmenší typ sluchadla s vzduchovým přenosem vyrábí firma Siemens Erlangen pod označením Cosmea M. Vkládá se do ucha podobně jako sluchátka, dodávaná v příslušenství pro kapesní tranzi-storové přijímače; i jeho rozměry včetně baterie jsou se zmíněnými sluchátky srovnatelné. Vyrábí se ve dvou tvarech, zrcadlově symetrických (pro levé nebo pravé ucho). Protože při tak malých rozměrech je problém, jak vyřešit ovládací prvky, vyvinul výrobce zajímavý způsob řešení. Naslouchátko obsahuje mikrofon, a je-li citlivý i na ultrazvuk, lze jej využít k příjmu signálu dálkového ovládání. Vysílač dálkového ovládání s typovým označením Telos má plochý kapesní formát, lze jím zesilovat a zeslabovat slyšený zvuk nebo v něm potlačit hluboké tóny.

Dalším zlepšením sluchadel je ochrana proti rušivým zvukům. Je použit dvoukanálový zesilovač (pro dolní a horní část akustického pásma). Při rušivém zvuku se automaticky potlačí zesílení v kanálu dolní části pásma (pod 800 Hz), zatímco přenos vysokých kmitočtů se nemění. Po doznění rušivého zvuku je přenos opět širokopásmový.

ELO, č. 11/1986

UMĚLOHMOTNÉ AKUMULÁTORY

Již od roku 1982 se zabývají firmy VARTA a BASF vývojem "umělohmotného" akumulátoru. Podle zpráv, které nyní zveřejnila firma VARTA, se zdá, že se objevují první konkrétní výsledky této spolupráce. Protože jde o zcela nový princip, bude patrně ještě určitou dobu trvat než se laboratorní výsledky promítnou do sériové produkce.

Tyto akumulátorky tedy představují sekundární zdroje elektrické energie a prozatím byly vyrobeny jednak jako tužkové články, jednak jako ploché články pohlednicového rozměru. Jejich

kapacita je udávána přibližně shodná jako u běžné používaných niklokadmiových článků.

Jednotlivé články používají jako kladnou elektrodu vodivou umělou hmotu s obchodním názvem Polypyrrol, negativní elektroda je lithiová. Změna náboje probíhá v organickém elektrolytickém roztoku. Při opakovaném nabíjení a vybíjení se již dnes dosahuje několika set cyklů. Střední napětí jednoho článku je, podobně jako u lithiových suchých článků, 3 V.

V úplných počátcích vývoje byl u těchto akumulátorů používán materiál s obchodním názvem Polyacetylén, tedy látka, která se svou elektrickou vodivostí blížila kovům. Ta se však v průběhu zkoušek ukázala být nestabilní a tudíž pro dané použití nevhodná. Vývoj proto vedl dále až ke zmíněnému Polypyrrolu, který je jak na vzduchu, tak i ve většině organických roztoků stálý. Tyto vlastnosti, i to, že lze Polypyrrol vyrábět jako fólii, vedla ke konečné realizaci umělohmotného akumulátorku.

Varta neočekává, že by tento druh akumulátorků v budoucnu nahradil dosud používané akumulátory, považuje jej však za alternativní řešení, neboť je bude možno vyrábět v nejrůznějších formách (i ploché) a do některých přístrojů by je bylo možno i natrvalo vestavět. Takové řešení by mohlo být výhodné z řady důvodů.

-Hs-

DIGITÁLNÍ LÉKAŘSKÝ TEPLOMĚR

V zahraničí se stále častěji setkáváme s poměrně novým výrobkem, kterým je lékařský teploměr s digitální indikací. Pro informaci našich čtenářů jsme vybrali jeden z nejběžněji prodávaných výrobků tohoto druhu na trhu, teploměr firmy HESTIA v Mannheimu.

Jak vyplývá ze srovnávacího obrázku (obr. 1), je tento teploměr relativně malý a je rozměrově srovnatelný s dosud používanými rtuťovými teploměry. Jeho funkční výhody spočívají především v tom, že naměřená teplota je i z dálky zcela jednoznačně k přečtení, zatímco při čtení údaje na rtuťovém teploměru bývají často problémy. Dále v tom, že doba, za níž se údaj na teploměru na konečném stavu ustálí, je kratší než u teploměrů rtuťových a konečně i v tom, že je zde daleko menší možnost poškození, neboť celý teploměr je z plastické hmotv.

Zobrazený teploměr má typové označení Domotherm S a lze ho běžně koupit v lékárnách anebo ve specializovaných obchodech s elektronickými součástkami. Umožňuje měřit teplotu v rozmezí 35 až 42 °C a je napájen běžným miniaturním článkem SR 41 (vyrábí se i u nás). Článek vydrží v teploměru několik let. Celková hmotnost teploměru i se zdrojem je asi

Popisovaný přístrojek je vybaven obvodem, který uvede do činnosti akustický signál, když je měření teploty ukončeno. Přesně řečeno, když postupné zvětšování

Obr. 1. Lékařský teploměr Domotherm S

teploty čidla začne být menší než 0,02 °C za šest sekund. Současně přestane blikat značka °C (která bliká, pokud měření není ukončeno).

Pokud teplota přesáhne 37 °C, objeví se na displeji vpravo dole křížek v černém poli (viditelný na obrázku) a pokud přesáhne 38 °C, začne tento křížek blikat. Vyskytl se názor, že teploměru již chybí jen to, aby se při teplotě nad 42 °C na displeji objevila rakev. Na displeji je indikováno též zmenšené napětí zdroje, při němž by již mohlo být měření chybné.

Pro případné zájemce o tento užitečný přístrojek doplňuji, že je jeho cena v NSR přibližně 30.– DM.

-Hs-

INZERCE

Inzerci přijímá osobně a poštou Vydavatelství Naše vojsko, inzertní oddělení (inzerce AR), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51—9, linka 294. Uzávěrka tohoto čísla byla dne 27. 2. 1987, do kdy jsme museli obdržet úhradu za inzerát. Neopomeňte uvést prodejní cenu, jinak inzerát neuveřejníme. Text inzerátu pište čitelně, aby se předešlo chybám vznikajícím z nečitelnosti předlohy.

PRODEJ

Trojkomb. Sharp SG35H (Tuner + konv., Linear gramo, Tape deck Dolby NR 5pásm. ekval. 2×35 W sin. + repro 2×45 W sin.). (16 500). Různý el. mat. IO, Tr, R, C za 50 % ceny. René Kuchna, Vietnamská 1494, 708 00 Ostr.-Poruba.

Sord M5, Basic I, G, Falc, + EM5 32 Kb, 2x joystick, všechny manuály čes. a něm. další literat. magnet. pásky s progr. jen komplet (13 000). J. Kotisa, Tyršova 25, 360 01 Karlovy Vary, tel. 28 99 54

Tranzistorovou zkou. TKZ 1 (160). Koupím ZX Spectrum 48 kB, IO SO42P, BFY90, BFR90, BFT66, BFR96, BF900, BF961, cuprextit, různé TR, IO, R, C a jiný radiomateriál. Z. Bartoš, Zimmlerova 54, 704 00 Ostrava Zábřeh.

IFK 120 (100), radiomagnetofón AIWA TPR 180E. T. Michalčík, 032 14 Ľubela 193.

VF diel T 6202 renovujem (150). A. Panek, 072 01 Krásnovce 151, tel. 253 76.

ČB TV Šilelis 401D, vadná obrazovka (500), nepouž mech. mgf B60 (200), 2 ks nové indik. úrovně záznamu (100), 2 ks dvoupásm. repro — objem 151 (800). Z. Matušek, Hořínkova 20, 724 00 Ostrava St. Bělá.

Tel. relé gulaté — dvojča (10), ploché (5), väčšie množstvo. Polovodiče a iný material, zoznam za známku, končím. Dr. Pavel Pollák, SNP 27, 053 41 Krompachy.

Generátor mreží + gr. stupnica (480), multimer C 4323, *U-I-R* (300). Reg. zdroj vhodný pre tranz. prijímače 1 až 15 V/200 mA (145). Kryštál 468 kHz (195). J. Kubini, 958 43 Krásno pri Topolčanoch 137.

Barevný TV Color univerzal (7500). Perfektní stav. V. Pošva, Sverdlova 865, 530 03 Pardubice, tel. 369 48.

BTV Elektronika C 401, vadná obrazovka (1000). V. Sladkovský, Michalovická 258, 250 01 Brandýs n. t.

TV Elektronika VL-100 v chodu, druhá na náhr. díly (900), osazené desky AR-B 6/84, MO1, MO2, MO5, MO7, MO8 (120, 100, 100, 60, 60), AR-B 6/83, R213 (100). M. Helík, Vlkova 8, 130 00 Praha 3.

Digitální multimetr Voltcraft 6000Z - 0,1 mV - 100 V \pm , 1 μA - 10 A \pm , 0,1 Ω - 20 M Ω , vstupní odpor 10 M Ω , test diod, akust. zkouška (2800), Interface k ZX Spectrum pro monitor (1200). J. Zabloudil, Lidečská 206, 155 00 Praha 5-Zličín.

Kazet mgf. Akai GX-F91. (26 500). Nevyužitý. R. Uvíra, Loučná 740, 252 22 Praha 5-Řeporyje.

Sharp hi-fi věž, 2x 45 W, receiver SA 103HB, VKV, SV, DV, 7 předvoleb, cassette deck RT-103HB, Dolby NR, normal-metal, Apss system, linear tracking RP 103 HB, Apss system, vše kvalitní, nové, v záruce (25 000). V. Mauricová, Všenory 200, 252 31 Praha-západ.

Rádio Sony ICF 2001 — chytá všetky vlnové rozsahy aj SSB/CW, riadené mikroprocesorom, digitál. stupnica, 6 pamätí (9000), a pár obč. rádiostaníc TESLA (1200). Ing. M. Diklič, Bélu Kúna 39, 851 03 Bratislava, tel. 814-524

Stolní soustruh (3900). Z. Záhora, Pomořanská 474, 181 00 Praha 8.

Sharp PC 1500/A systém. manuál (stroj. kód, schémata atd.), v němčině (180) a 12 programů PC-1500 Sammlung VIII — Vieweg 85 v němčině (80). Obsahy proti známce. P. Šťastný, Koněvova 242, 130 00 Praha 3, tel. 82 29 80.

BF245C (40). K. Sachánek, Petýrkova 1942, 149 00 Praha 4-Chodov.

Cass. deck Akai GX-88 5 mot. 4 hlavy 20 Hz—21 kHz, rever. chod. mnoho dal. funkcí (19 000). Koupím prog. na Atari 130 XE. L. Kubec, Englsova 643, 278 01 Kralupy n. Vlt., tel. 415 63 po 16 hod.

Z 80 — PIO (150), Z80 — CTC (180), Z 80A
 — SIO9 (800), popis na požádání. Tl 58 + úprava na síť + vyvedená klávesnice (2700), snímač a děrovač DP (1000, 1200). P. Volný, Bezručova 496, 274 01 Slaný.
 Osciloskop BM370 (1600), osciloskop amat. 10

Osciloskop BM370 (1600), osciloskop amat. 10 MHz (2000), konektory BNC pár (à 80), relé LUN 24 V, 12 V (40). P. Kotráš, Kamenice 41, 251 68 Štiřín.

BTV Elektronika C 430 I. a II. prog. hrající za (2000). P. Brandejský, Brodského 1673, 149 00 Praha 4, tel. 792 85 50.

Osobní počítač Sharp MZ-700, 64 kB, vestavěný magn., Basic, 10 her (7500). M. Brachtl, Růžový palouček 6, 400 01 Ústí n. Labem, tel. 226 35.

Obč. radiostanice NSR (1600), kazet. mono magnetof. HITACHI přepín. kazet, počítadlo (900), ARZ 369 (à 50). K. Kulhavý, Chvatěrubská 366, 181 00 Praha 8, tel. 855 46 19.

MAA 725 (60), MH74192, 5410, 5460, 7453 (25, 13, 13, 10), TR 161 — 1K3, 2K21, 3K01, 3K32, 22K1 (3). Vše nové. Koupím A277, MA1458. A. Franc, SNB 79, 100 00 Praha 10.

STA zos. vl. 24 kan. — WIEN, konvertor 35/4 k., kvalit. antény 21—25, 21—40 k., selsyny, čas. relé RTs-61 0,6s — 60 h (à 480), letec. kompas, výškoměr a iné (780, 980), vys. W-43, stierač 12 V, mer. FP 80–25 V, knihu Antény (280, 140, 90, 30). Kúpim zariadenie pre príjem TV zo satelitu, video VHS, ZX Spectrum Plus + joystick, bezvývod. kond. TK 661, BFR34A. E. Ďuriník. Blagoevgradská 18. 010 08 žilina.

FTP Elektronika C 430, vad. obr. rozklad. (1000). Ing. K. Cabala, 914 42 Hor. Srnie č. 807.

Menič 12 V = /220 V 50 Hz 200 W (800), jednotázový mostíkovy usmerňovač s možnosťou riadenia, s tlumivkou, ku 150 A zvaraciemu trafu (1500). Ing. J. Prusák, Exnárova 17, 080 01 Prešov.

BF907 (à 22), BF479 (à 38), kompl. senzorovú voľbu na TVP Olympia s ladiacou súpravou (à 350). Kúpim osciloskop OML-ZM do 1800 Kčs. P. Hanák, Hviezdoslavova 51/68, 965 01 Žiar nad Hronom

Špičkové Hi-Fi gramo TOSHIBA SR-D33, zcela nové (5200), různé IO, seznam proti známce. J. Rejfek, Kotlářská 26, 602 00 Brno.

Mini vežu SHARP, tuner SA-103, $7\times$ predvolba, zos. $2\times$ 30 W, deck RT-103, Dolby, Cr, Metal, šuflikový plnoautomat. gramo RP-103 + 2 ks, 2-pásmové repro SHARP — 100% stav. (20 000). Zoltán Kubovics, Októbrová 666/11, 924 00 Galanta.

Tuner 3606A (3200), nový vstup. díl VKV CCIR Stereo Junior (100), hlavy na mgf. M2405S (100). Koupím elektronky 6AC7,. Z. Ulrich, Sportovní 1296. 468 51 Smržovka.

BFR90, BFT66, BF981, A277D, (65, 115, 55, 50), nepoužíté. M. Záhumenský, Hanzlíčkova 19, 821 03 Bratislava.

Výhodně bloky a náhr. díly do sov. bar. TV Elektronika C 401 (15 až 450). Levně růz. radioamatér. součástky — trafa, elektronky nové i starší, R, C, relé, elyty, osaz. plošné spoje a další (9 až 120). Kompletní seznam proti známce. M. Lorek, Kárníkova 556, 500 11 Hradec Králové.

Stereo cassette deck SONY TC-FX45, Dolby B-C, automat. vyhľadávanie skladieb, špičkový fluorescenční indikátor (11 500), stereo-zosiňovač AlWA Mx-90, 30+30 W/8—16 Ω skreslenie: 0,03 %, odst. ruš. napätí 90 dB, vstup: CD, tape, tuner, gramo, AUX, 7pásmový equalizér, indikátor výkonu, systém: DSL (6000), reproboxy AKAI SW-TM 5, 50 + 50 W/8 \angle 3 pásma (6500). Všetko 100% stav, používané asi 25 hod. možno aj jednotlivo. J. Kislík, Perečínská 15, sídlisko 3, 066 01 Humenné

ZX 81 + 32 kB (4500), programy, dokumentace, literatura (500). Z. Hotmar, ČSLA 1241, 756 61 Rožnov pod R.

AY-3-8500 + obj. (400), μA739PC (70). L. Šebošík, Gemerské Teplice 41, 049 15 Sivetice.

Nový PU 500 (1100), PS Q13 (30), Q14 (3) pre mel. zvonček A2/82. Kúpim serv. dok. a tech. inf. k TVP. Ing. S. Maxim, Lečkova 6, 040 11 Košice. Počítač VDO — Infoboard — 6 funkcí, 3× spotřeba, 1× rychlost, 2× čas. L. Jiříčka, Koutníkova 271, 503 01 H. Králové, tel. 61 55 43.

Mikropočítač PMI-80 + zdroj (2500 + 650), multimetr — oživené dosky — příloha 82 (1200), generátor kmitov 10 kHz AR 9/80 (150), gen. kmitov 100 kHz AR7/80 (400), sonda + čítač (300), prekovené dosky JPR1, AND1, DSM1, ABR1, REM1, RAM-1Z (à 150), zdroj pre mikropoč. 8080 (650), rôzny el. materiál (IO, TR, D...), Avomet II. (800). Brestič R., SNP II. č. 67, 917 00 Trnava.

Prog. kalk. CASIO fx-180 P (1100), SHARP PC 1401 (4000). V. Hájek, RA 1156, 286 01 Čáslav. Farebný televizor TESLA COLOR v dobrom stave s novou obrazovkou (4200). G. Ardelán, P.O.H. 47/72, 079 01 Veľké Kapušany.

Radioprijimač TESLA 813 A HiFi (3000), 2 ks reprobedne 20 W (900). M. Srnánek, 916 12 Lubina 304.

Odřezky cuprextit a oboustranný cuprextit, nejmenší plocha 1 dm² (à 8/dm²). Písemně, dobírkou. K. Hlaváček, Zápotockého 83, 586 00 Jihla-

Radiomgf. JVC model 9407 + dve kazety (1400), osc. obrazovku DG 18-116 (650). Kúpim MM 5316. L. Roth, Sidi. Juh, bl. Nádej 2910/7, 058 01 Poprad.

Zesilovač TW 120 am. výroby (1200), reproduktory ART 481 2 ks + 2 ks zvukovody + přev. trafa (à 250), ARV 168 2 ks (à 40), tónový generátor 20 Hz ÷ 20 kHz, výstup 0,3 V, am. výroby, nutno ocejchovat (100), různý radiomateriál R, C, IO, Tr, Ty, D, trafa, navíjecí dráty nové i použité, desky plošných spojů osazené i neosazené. Časopisy AR-A od r. 1981 (i jednotlivě). Seznam proti známce. J. Kauer, Táborská 574, 391 43 Mladá Vožice.

ZX Spectrum, 100% stav, český manuál, upravený zdroj Reset, 7×90 min. programů (5900). Jan Barták, Veletržní 9, 170 00 Praha 7, tel. 80 08 79.

Anténní předzesilovač ZKC 511 pro 55. kanál s výhybkou, v záruce (300). J. Vítek, Mysletín 15, 394 43 Mladé Břiště.

Casové relé RTS 61 0,3 s — 60 h (600), TU 60 (300). Koupím RAM 2114, Z 80 PIO (V855D). P. Kubr, Bezručova 3004, 276 01 Mělník-Pivovar. Bar. hudba, rampa 9 reflekt. skříňka vč. panelu, bez elektr. části, sada náhr. bar. žárovek, kompl. (395), čas. relé TU-60, 1 s ÷ 60 h nové (490). V. Kroutil, Jandova 8, 190 00 Praha 9.

EPROM 27128, nepoužité (495). lng. M. Gajdoš, Kováčska 1, 831 04 Bratislava.

Anténní předzesilovač pro VKV (OIRT + CCIR), zisk 22 dB, šum 1,5 dB, 300/75Ω, sym. člen + výhybka. Cena bez zdroje (200). J. Reiner, Z. Vinohrady 4667, 430 01 Chomutov.

Tuner ST 100 s dekodérem A 290. Perfektní stav. (2500). Ing. J. Jansa, Prievidzská 14, 787 01 Sumoerk.

ZX 61 + 17K, jemná graf. + reset + další zdroj + přípoj. mech. kláv., manuál č., a., n., mnoho prog. a lit. (4000), orig. paměť ZX 16K (1500), kazet. mgf. Unitra MK 232 (1000), starší TV v chodu (200), různý mat. z demont. TV a RP — seznam za známku. F. Straka, Janošíkova 8, 460 11 Liberec.

Stabilizátor napětí 200 VA 176 V — 225 V = 220 V stabil. Výrobce NDR (300). R. Čelechovský, lrkutská 4, 625 00 Brno.

Osciloskop OML-2M (1500), H 313 (1800), SURA (3500) je v tom zabudovaný generátor (ール・、) a 2× jednosměrný zdroj od 2 do 14 V — všetko spolahlivé. V. Džuman, Duklianská bl. M. 089 01 Svidník.

Reproduktor zn. EUM-12S — 200 W (6000). Koupím OZ FET NE5534 nebo TDA1034 — 15 ks. J. Linduška, Čechova 1726/34, 594 01 Velké Meziříčí

Zosilňovače i pre diaľkový príjem VKV — OIRT, CCIR BF961 (230) III, TV s BF961 (230), IV.—V. TV s BFT66 (350), 40 — 860 MHz s BFR90, 91 (420), BF961 (60), BFR90, 91 (75). I. Omámik, Odborárska 1443, 020 01 Púchov.

Špičkový digit. tuner TECHNICS ST-S 8 (černý) (12 000) a sluchátka EAH T10 (1400). J. Soudek, Leninova 2113, 436 01 Litvínov 1.

Walkman Unisef (1300), Crown (1500), nové. M. Nováček, Popovice 794, 675 51 Jaroměřice nad Rok.

Programátor EPROM 2716, 2732, pro ZX Spectrum (900), simulátor 2716 (900), vč. programů. Z. Štěpánek, Hlubočická 510, 725 26 Ostrava 4. Zesilovač SONY TA-AX 44 2× 45 W, ASP—audio signál procesor. Možnost uložení korekcí do paměti, rok starý 100% stav (10 000). K. Grohman, Puškinova 1, 785 01 Šternberk, tel. do zam. od 6.30—15 hod.: OSP 2642.

Ožív. desku S71 tuneru VKV CCIR — OIRT (400) + kompl. zdroj (200). I. Kremel, Lid. milicí 1093, 757.00 Val. Meziříčí.

Civkový HiFi mgf. PHILIPS N 4420 (8000), cassette deck TECHNICS RS-M 45 (8000), zesilovač PIONEER SA-608 (5000), tuner PIONEER TX-608 (3000), boxy PIONEER CS-722A (8000). Z. Smyček, Krosnianska 31, 040 01 Košice.

Cassette deck TOSHIBA PC-G16 NR-B, metal, černé, 6 měs. staré (5000). V. Horák, Žižkova 317, 407 22 Benešov n. Plouč.

DU 10 (800), AR-A, B 1981—86 s přílohami (400), cuprextit 240×380 mm oboj. i jedn. plat. dm² (4), chlorid žel. krišt. 1200 ml (65), ploš spoje S12, S70, T91, T 93, U6 (100), trafo stab. zdr. 2× 21 V, 2,7 A (150), TR 212 E 12 (0,20), TE 981—988 (1,50), mg B 444 Lux Super (500), TV VL-100 (500), rep. ARS 9240 15 W 4 Ω 2× (400), E. Kottek: Čsl. TV, RP a zos. III. a IV. (50/50), odb. lit., lacno. V. Jurík, Meteorová 1, 040 20 Košice.

SOUBORY SOUČÁSTEK TIŠTĚNÝCH SPOJŮ. VČETNĚ

které mohou kutilům přispět k amatérskému zhotovení různých elektronických přístrojů.

A 111 - FLEKTRONICKÝ GONG

Pro zvukové efekty fonoamatérských programů nebo k domovním dveřím místo zvonku. Cena 64 Kčs.

– ELEKTRONICKÁ SIRÉNA

K napájení na výstupu hlídacího zařízení. Cena 69 Kčs.

A 14 — ELEKTRONICKÝ METRONOM K udávání taktu. Cena 65 Kčs.

A 17 — NABÍJEČKA ČLÁNKŮ NICO

K nabíjení zapouzdřených akumulátorů. Součástí souboru není síťové trafo. Čena 79 Kčs.

A 19 — DVOUSTAVOVÝ REGULÁTOR A P

Spinač při průchodu proudu nulou. Ve spojení s čidlem, měnícím svůj odpor v závislosti na změně snímané veličiny (teplota, osvětlení apod.) spiná bezkontaktně síř. proud. Cena 130 Kčs.

A 20 UNIVERZÁLNÍ PROPORCIONÁLNÍ REGULÁTOR Pro 220 V — 500 VA. K řízení intenzity osvětlení nebo rychlosti otáček ventilátorů apod. Základem je monolitický IO MAA436 k určení fázového řízení tyristorů a triaků, doplněný pasívními součástkami k napájení systému. Cena 105 Kčs.

REGULÁTOROVÝ ZDROJ PROUDU DVOU

Pro experimentování s modelovými železnicemi. Zdroj s jištěním proti přetížení a zkratu. Součástí souboru není trafo 220 V/2× 15 V — 1A. Cena 136 Kčs.

C 17 — VÝKONOVÝ ZESILOVAČ TEXAN

Spiní podmínky bytové HiFi zesilovací stereo soupravy. Provedení: deska plošných spojů, IO, 5 tranzistorů, 2 Zenerovy diody, 15 odporů, odporový trimr, 8 kondenzátorů. **Cena 150 Kčs.**

C 19 — ZESILOVAČ PRO STEREOSLUCHÁTKA Provedení: deska plošných spojů, 6 tranzistorů, 4 diody, tandemový potenciometr, 20 odporů, 8 kondenzátorů. Cena

- ELEKTRONICKÁ SPÍNACÍ JEDNOTKA S MAS562 Pomoci dvou dotykových senzorů umožňuje ovládat až 8 obvodů se současnou optickou signalizací zapnutého stavu. Provedení: deska plošných spojů, IO, dioda, 8 tranzistorů, 22 odporů, odporový trimr, 4 kondenzátory. Cena 115 Kčs.

E 1 — STABILIZOVANÝ ZDROJ (5 V — 461 B)
Jednoduchý zdroj s IO MAA723, který je doplněn proudovým zesilovačem s křemíkovým výkonovým tranzistorem. Cena

E 4 — STABILIZOVANÝ ZDROJ (15 V — 463 B)
K napájení operačních zesilovačů. Provedení: plošný spoj,
4 tranzistory, 4 diody, 1 Zenerova dioda, 9 odporů, 4 kondenzátory. Cena 91 Kčs.

E 26 — STABILIZOVANÝ ZDROJ (2 až 36 V/0 až 2,5 A) Zákl. částí je monolitický lO MAA723 (tepelně kompenzovaný regulátor, zesilovač referenčního napětí, zesilovač regulační odchylky, obvod pro omezení proudu a koncový stupeň). Součástí souboru neni trafo. Cena 205 Kčs.

MULTIGENERÁTOR

Patří k základnímu vybavení při opravách televizorů. Provedení: plošný spoj, tranzistor, 5 odporů, 5 kondenzátorů. Cena 67 kčs.

Vybraný soubor si můžete objednat na dobírku ze ZÁSILKOVÉ SLUŽBY TEŚLA ELTOS, nám. Vítězného února 12, PSČ 688 19 Uherský Brod. Na objednávce (stačí koresp. lístek) uveďte laskavě číslo a název souboru.

ZX 81 + 16k, joystick, akust. indik. kláv., čes. a nem. manuál, Kochbuch, liter., programy (4300). Horský, Soběšická 40, 614 00 Brno.

KOUPĚ

Kryt na B 10S401 a 277 D + LED, kryštál 27.12 MHz, BNC konektory, sluchadlo 27,12 MHz, ± 200 Ω k miniprijímačů Kňour, tranzistory KF-KC diody, BF245. Serv. návody k far. tel. + schéma, rôzny radiomateriál. J. Kubini, 958 43 Krásno pri Topolčanoch 137.

Obrazovku Philips A 28, vychyl. úhel 110°. T. Holeček, Hrubínova 1461, 500 02 Hradec Králové, tel. 362 01.

Diody LD271, BPW34, LED, jap. MFT 7×7 , tranzistor BF256, NE555. M. Carda, Nádražní 1190, 580 01 Havi. Brod.

IO MM5314 alebo MM5313, kryštály 100 kHz 2 ks alebo 12,8 kHz 2 ks. P. Kubuš, Polední 33, 312 00 Plzeň-Lobzy.

Deck Technics RS-B50, nebo podobný s amorfní hlavou a dbx, max. rok starý. L. Pávek, Rosická 148, 530 09 Pardubice.

OZ NE5534 (TDA1034) 10 ks. T. Lachman, Raisova 6, 320 01 Plzeň.

Trafo k osc. N 313, nebo vrak s dobrým trafem, 10 — KR140 UD1B, tr. KT611AM, KT315G. J. Kadlec, 533 71 D. Roveň 217.

Ker. filtr SFE 10,7 MHz 3 ks stejné. J. Trejtnar, ČSLA 461, 564 01 Žamberk.

Televizní hry. Uveďte popis, cenu. Z. Lamač, 671 29 Strachotice 253.

Tranzistor 3N140 2 ks. Z. Dejnožka ml., Přemysla Ot. II. 1148, 286 01 Čáslav.

Osciloskop N313 nebo podobný nejraději tov. Uveďte popis, cenu. Ing. R. Balarin, Jiráskova 395, 747 87 Budišov n. Bud., tel. 923 69.

Stereozosil, min. vyk. 2 x 50 W + 2 ks - reprobox min. vyk. 2 x 50 W, cenu + presný popis, nabídněte. M. Sjanský, hotel Vagonar, Sov. armády, 075 01 Trebišov.

Equalizer Fisher EQ-276 a CD platne pop., rock, metal, klasika. L. Hanakovič, Lumumbova 39/A₁, 851 03 Bratislava.

Programy pro Commodore 128, C 64, CP/M, český manuál Commodore 128. V. Kuczera, 739 95 Bystřice n. O. 1, 815.

BFR90, 91, GE131, nepoužité, nabídněte. P. Salfický, Jilemnického 2212, 530 02 Pardubice.

Commodore 64 nebo 64 II, 128 s magnetofonem. Případně další příslušenství. Cena + popis. M. Mojžíšek, Tichá 3012, 738 01 Frýdek Mistek.

IO AY-3-8610, M. Bernas, Bezdrevská 8, 370 11 České Budějovice.

Pro SHARP MZ 800 — programy, seznamy a cena. Pokud možno kazety. M. Matyáš, Vaňurova 815, 460 01 Liberec 3.

Reproduktory 2 x 15 W, nejradšej do dverí, rychle. J. Chaban, Zahradná 21, 935 41 Tekovské Lužany.

Programy a literaturu na Sharp MZ 700, 800. M. Mička, Pokroku 1, 040 11 Košice.

Vrak Spectra na souč. nebo IO ULA 6C001E-7 a CF70001 STD. Kdo poskytne podklady pro konstrukci Teletext adapteru ke Spectru. P. Slaba, Vladislavova 6, 110 01 Praha 1.

Interface + joyštick k počítači Sinclair ZX Spectrum 48 kB. Cenu respektuji. J. Kvítek, Olšovická 152, 144 00 Praha 4.

Tiskárnu k ZX-Spectru, IO LS, CMOS i jiné. Nabidněte. Ing. A. Košina, Bezručova 496, 274 01

Elektronku EF22 do radiopřijímače staršího typu. M. Švejda, Fráni Šrámka 22, 150 00 Praha 5, tel. 54 15 32.

Vysokonapěťový transformátor pre televizor AT 1459 Viktoria Super. O. Tylče, 691 24 Přibice 363. Servisní návody VCR, zahr. lit. a časopisy, polovodiče, pasívní a konstr. prvky, katalogy. I dlouhodobý odběr. Čerpadlo Piccolo. Ing. A. Dvořák, Cihelna 35, 530 09 Pardubice.

AR-A, 7 — 73, 1, 2, 3, 8, 10 — 76, 12 — 79, 4 — 81, 1—12/82, 2, 3, 10 — 83, 1—12/84, 5, 12/85, 9, 7 — 78, AR-B roč. 76—86. Diody LED červené, zelené, oranžové ø 3 a 5 mm a obdél-níkové. IO C520D, D147C, VQB 71, odpory TR 161 — 163. Z. Halbrštat, Západní 55, 571 01 Mor. Třebová.

10 MA1458 4 ks, A273D 1 ks, A2030 2 ks, A277D 2 ks, i jednotl. sit. tr. 9 WN 66420 1 ks, AR 2/86 A. J. Konečný, Chuchelna 99, 513 01 Semily.

Telefonní přístroj bezdrátový. J. Reichel, Tyršova

Soupravu bezdrátových mikrofonů 100% stav, popis. J. Mikuš, Gottwaldova 1091, 757 01 Valašské Meziříčí.

Hry a programy na MZ 800 nahrané na mg. kazetě. J. Ďuračka, Růžová 3083, 434 01 Most. Rôzne IO, T, C, R, MP40 — 100 µA, objímky, konektory, AR-B/76 - 85, AR-A, LQ410, FeCl₃, vrtáky ø 1 mm, toroidy a iný elektromateriál. J. Hvizdoš, Kolinovce 13, 053 41 Krompachv.

Měr. přístroj DU-20. lng. O. Vyjidák, Fr. Krála 7, 811 05 Bratislava.

IO AY-3-8610, AY-3-8600. L. Klimeš, Lesní 9, 678 01 Blansko.

Usmerňovací dioda 150 A 4 ks, resp. 200 A, nové na zváračku. Ing. L. Siták, Mokrá Lúka 190, 050 01 Revúca.

Predzosilňovač VKV CCIR z AR 2/85, nastavitelné kondenzátory čo najkvalitnejšie, vzduch. diaelektrikum, max. kapacita 5,5 pF 3 ks, ker. konden. 2i7 3 ks. K. Novotný, kpt. Nálepku 42, 934 01 Levice.

Osciloskop f: 10 MHz, hranatá obrazovka, čas. základna hlavní + zpožděná, tov. výroba, dvoupaprskový. P. Baroš, 756 06 Vel. Karlovice 384.

TESLA Strašnice k. p.

závod J. Hakena U náklad. nádraží 6, 130 65 Praha 3

- pracovníky do útvaru zásobování
- samost. konstruktéra nástrojů
- technology normovače
- sam. výv. pracovníky
- konstruktéry
- do administrativy pracovnice se znalostí psaní strojem
- sam. požár. techniky
- členy závod. stráže vhodné pro duchodce

Nábor povolen na celém území ČSSR, s výjimkou vymezeného území. Ubytování pro svobodné zajistíme.

Zájemci hlaste se na osobním odd. podniku - č. tel. 77 63 40

BTV Oravan i poškozený, konektory WK 46580, repro střed. JVC HSA 0714-01A 8Ω, případně poškozené reprosoustavy JVC SP-33. 10 74LS02, LS05, joystick + interface Spectrum 48 kB, špičkový konvertor OIRT/CCIR, prodám el. tech. literaturu. J. Malinovský, 739 36 Sídliště 5.

Rx na 145 MHz popř. ostat. amat. pásma, pár obč. radiostanic, 3L31, 1L33, N17, N18. A. Beran, Ve vilách 1154, 549 01 Nové Město n. Met. Compo Asahi RD 830 jen nové či zánovní v perfektním stavu. R. Hruboň, Dvořákova 35, 741 01 Nový Jičín.

VÝMĚNA

Nabízím 6 her na Sharp MZ 800, MZ 700 k výměně. J. Jerie, Školní 4, 405 02 Děčín 6. Snímac. kameru a premietačku Admirál za 2 ks obč. radiostanicu. T. Zsitva, 943 53 Ľubá 112. Sord M 5, Basic I, Basic F, manuály ang. + české, mgtf. Sony M 18 za tiskárnu Seikosha + interface ke Spectru, nebo prodám, koupím. J. Huttr, Kl. Gottwalda 640, 549 01 Nové Město nad Metují. Programy na ZX Spectrum, prípadne kúpim alebo nahrám. R. Dobrovodský, Vrbovská 88, 921 01 Piešťany.

Malý kazet. magnetofon Transylvania CS 620 mono s počítadiem za pásky (kotouče) Maxell UD 120, event. LN 120 v bezvad. stavu. Z. Zatloukal, Churáňovská 2692, 150 00 Praha 5.

RÛZNÉ

ZX 81, kdo opraví mikropočítač nebo prodá obvod ULA. P. Stehno, Formánkova 508, 500 11 Hradec Králové.

Hledám partnera s Sharp 800, programy, zkušenosti. A. Kučera, Teplická 79, 419 01 Duchcov. Kdo zapůjčí nebo nechá ofotografovat schéma zapojení varhan Farfíza Compart de luxe, zaplatím. F. Smrček, Nová 35, 370 01 Č. Budějovice. Hledám majitele počítačů Sharp MZ 800, MZ 700 z důvodů výměny programů a informací. T. Urbanec, Otta Synka 1846, 708 00 Ostrava-

Die dodané předlohy nebo odkazu na přísluš. AR zhotovím ploché filmy pro fotochemický způs. výroby ploš. spojů. Pro nevýrobní org., školy, kroužky apod. též na fakturu. Cena přibliž. (15 dm²), lng. P. Kuneš, 561 51 Letohrad 529. Kto pomôže s FEM? Ing. J. Fiala CSc., Vodárenská 13, 040 01 Košice.

Pro počítač Thomson TO7-70 programy, hry, informace — výměny zkušeností. R. Polách, J. Hory 2555, 415 01 Teplice 1.

Kdo zapůjčí plánek na rep. soustavu 8 Ω 30 W 3pásmové, basreflex. V. Horák, Žižkova 317,

407 22 Benešov n. Plouč. Klub Commodore — Amiga hledá zájemce. V. Sustr, Box 137, P. Karlova 12, 110 01 Praha 01.

ČETLI **JSME**

Kolektiv pod vedením M. Havlíčka: ROČENKA SDĚLOVACÍ TECHNIKY 1987. SNTL: Praha 1987. 308 stran, 67 obr., 25 tabulek. Cena váz. 26 Kčs.

Tato periodicky vydávaná publikace přináší pravidelně aktuální informace z různých oborů sdělovací techniky. Má ustálenou skladbu jednotlivých kapitol s určitou "zvýrazněnou" tématickou oblastí, kterou je v letošním - již 29. ročníku - aplikace integrovaných obvodů a číslicové techniky.

Co tedy do této ročenky kolektiv osmnácti odborníků pod vedením ing. M. Havlíčka připra-

V první kapitole (Informace, předpisy, normy) kromě obvyklých přehledových informací je stať, věnovaná rozhlasovému a televiznímu řádu, platnému od 1. 1. 1986. Pro čtenáře AR je zajímavá stručná informace o výrobě a distribuci desek s plošnými spoji z podniku ÚV Svazarmu Radiotechnika. V další kapitole (Obecná sdělovací technika) je úvaha o činitelích, ovlivňujících rozvoj elektroniky a pak obvyklé "odpočinkové" statě Napsali a řekli, Panoptikum elektroniky a Černé skříňky a jiné hlavolamy.

Třetí kapitola (Návrhy a výpočty obvodů přístrojů) obsahuje souhrn základních vlastností relé (elektromagnetických a polovodičových), úvahu o metrologické spolehlivosti při navrhování obvodů a přístrojů, v níž jsou i matematické postupy a grafy, dále obvyklé informace pro uživatele programovatelných kalkulátorů a stať o čs. zákaznických obvodech. Amatérské konstruktéry nepochybně nejvíce zaujme čtvrtá kapitola Stavba, opravy a úpravy přístrojů, v níž jsou publikována schémata a popisy osvědčených praktických zapojení a rady pro dílnu; závěrečná část textu pojednává o elektromagnetické slučitelnosti.

Pátá kapitola obsahuje stručné informace z různých oblastí provozu sdělovacích zařízení. V šesté kapitole (Materiály a součástky) jsou nejzajímavější přehled v tuzemsku vyráběných řad logických obvodů a údaje o elektromagnetických relé. Rozsáhlá je sedmá kapitola Mikroprocesory a mikropočítače. Kromě popisů některých zařízení technického vybavení a měřicí techniky přináší přehled literatury a pro "odlehčení" i průpovídky z oboru výpočetní techniky.

Také ve zbývajících kapitolách najde jistě každý čtenář části, které ho zaujmou. V kapitole věnované zvukové, obrazové a reprodukční technice např. přehled návodů na opravy, úpravy a doplňky přístrojů (je to v podstatě souhrn témat článků z AR řady A), v kapitole o měřicí technice technické údaje tří univerzálních měřicích přístrojů, v kapitole jedenácté např. názvosloví z oboru elektrochemických zdrojů proudu apod.

Celkově lze shrnout, že letošní Ročenka se přinejmenším vyrovná úrovní zpracování í výběrem námětů svým předchozím ročníkům a její stálí odběratelé i ti zájemci, kteří si ji koupí poprvé, nebudou zklamáni.

PZO MERKURIA, Argentinská 38, Praha 7, blízko stanice metra Fučíkova

přiime

OPERÁTORY POČÍTAČE SIEMENS –

🗕 dvousměnný provoz,

požadované vzdělání ÚS, platové zařazení tř. 8 ZEUMS, příplatky za směnnost, odměny, podíly na hospodářských výsledcích, možnosti studia jazyků, další zvyšování odborné kvalifikace, dobrý pracovní kolektiv, záv. lékař i stravování v budově.

Náborová oblast Praha.

Informace na tel. 8724 244, 8724 339.

Funkamateur (NDR), č. 2/1987

Jednoduché zesilovače s OZ - Mikroelektronické stavební jednotky pro stavebnici Polytronic A-B-C (8) - Zjednodušené zapojení měniče k napájení radiostanice UFT 420/422 z palubní sítě vozidla - Vstupní zesilovací stupeň pro přijímač 144 MHz s tranzistorem KT3101A2 Komerční krystalové filtry v amatérské technice - Hybridní dvojitý Quad pro příjem VKV - Filtry Vagant a Mikki, technické údaje pro amatéry - Poškozené náramkové digitální hodinky jako základ pro bytové hodiny - Třiapůlmístný digitální multimetr s C520D (2) — Pratický napájecí zdroj - Stroboskop spouštěný síťovým kmitočtem - Hexadecimální klávesnice - Chybná činnost S256 - EDAS 4, editor assembler pro AC-1 — Radioamatérský diplom America (Kuba).

Rádiótechnika (MLR), č. 2/1987

Speciální IO (50), obvody video TVP - Strojový jazyk PC-1500 PTA-4000 (10) Evidence programů pro ZX Spectrum Přestavba filtrů FM 10—60 na vstupní filtry pro VKV (2) Vf předzesilovač pro pásmo 2 m Amatérská zapojení: Vybírání tranzistorů; Voltmetr s velkou vstupní impedancí; Přijímač typu synchrodyn pro pásmo 80 m - Videotechnika (39) — Video monitor ze starého televizoru Širokopásmový anténní zesilovač pro příjem televize - TV servis: Videoton Super Color TS-3302 a 4312 — Tuner pro VKV-FM — Přesné digitální hodiny řízené signálem DCF 77 Zesilovač 60 W k hudebním nástrojům Siréna se zpožděným spínáním – Zesilovač pro signál budíku - Melodický zvonek s mikroprocesorem - Doplňující elektronické obvody k zábleskovému zařízení — Učme se Basic s C-16 (14) — Pro pionýry: tranzistorová siréna — Údaje výkonových tranzistorů Tungsram.

Elektronikschau (Rak.), č. 2/1987

Technické zajímavosti — Přehled situace na trhu elektronických součástek (dodací Ihůty) — Nové součástky CMOS — Čtyřbitové jednočipové procesory — Desky s plošnými spoji pro technologii povrchového pájení součástek — Vícekanálový multimetr Wavetek model 52 — Signalcomputer Createc SC 01, univerzální měřicí přístroj (včetně zobrazení průběhů signálu) rozměřů 260×105×39 mm — Nové součástky: Přesný zdroj referenčního napětí AD588; Spínač a časovač — Přenosné analogové osciloskopy, nabízené na trhu — Nové součástky a přístroje.

Radio, Fernsehen, Elektronik (NDR), č. 2/1987

Modulární systém pro barevné zobrazení grafů GFD 1520/m — Přehled integrovaných hradlových polí — Paměť CMOS 16 Kbyte — Emulátor in-circuit pro U880 — Generátor pro zkoušení elektromagnetické slučitelnosti (2) — Adresový multiplexor a vf výstup pro terminál — Analýzy obvodů jazykem Basic (13) — Pro servis — Informace o polovodičových součástkách 233 — Kompaktní kombinace SC 1800, SC 1900 a SC 1920 — Zkušenost s kombinací SC 1900 — MIDI interface pro elektronickou hudbu — Před sto lety (Heinrich Hertz) — Regulátor teploty s impulsy střídavého proudu — Současný stav a směry vývoje: výkonové spínací součástky — Lithiové baterie, dlouhodobé zdroje energie — Zkušenosti s počítačem KC85/3 — Mezinárodní veletrh Plovdiv 1986 — Nový systém konektorů IEC.

Radio-amater (Jug.), č. 12/1986

Anténa Deltaloop pro tři pásma — Přepínač ovládaný zvukem — Zlepšení zařízení IC-402 — Obvod generující signál v sekundových intervalech — Hiří stereo audio a video systémy — Betacam, integrovaná kamera s videomagnetofonem — Dva univerzální elektronické zvonky — Sířový zdroj bez transformátoru s IO MAX610 a MAX612 — Obsah ročníku 1986 — Práce se součástkami pro povrchovou montáž — Fázová tyristorová regulace s integrovaným monostabilním KO — Pracovní světlo do amatérské dílny — Zkoušeč tranzistorů a diod — Technické novinky.

ELO (NSR), č. 1/1987

Elektronika zajišťuje bezpečnost jaderných elektráren — Měřicí technika při vývoji rychlých železničních dopravních prostředků — Elektroakustika pro začinající (9) — Úvod do robotiky (6) — IO TEA1017, třináctibitový sérioparalelní měnič — Zlepšení reprodukce u gramofonů — "Aktivní" využití televize — Zdroj konstantního proudu — Reproduktorová soustava pro 100/150 W — Pasta k cínování desek s plošnými spoji — Maticový displej s LED (3) — Srovnávací test TI-74 a Sharp PC 1600 — Elektronický šperk.

Radioelektronik (PLR), č. 12/1986

Z domova a ze zahraničí — Zapojení napěťových ní zesilovačů (2) — Jakostní stereofonní sluchátka — Jednoduchý univerzální mikroprocesorový systém (2) — Vývoj techniky světlovodů — Miniaturní stereofonní přijímač RS-101 — Příjem signálu v systému PAL s přijímačem BTV Neptun 505 — TV konvertor UHF — Jednoduchý miniaturní přijímač VKV — Integrované obvody U257B a U267B — VFO pro pásma 3,5, 14 a 21 MHz — Elektronické zapalování s IO U2029B — Obsah ročníku 1986 — Zařízení k signalizaci zániku plamene.

Radio-amater (Jug.), č. 1/1987

Technické novinky — Měřicí minimoduly — Měřiče pole — Předzesilovače s malým šumem pro pásma 24 a 12 cm — Monostabilní-multivibrátory CMOS — Kalendář závodů v r. 1978 — Zapojení vývodů 10 CMOS série 4000 a některých dalších typů — Betacam, integrovaná kamera s videomagnetofonem (2) — Radioamatérské rubriky.

ELO (NSR), č. 2/1987

Vodík jako pohonná hmota budoucnosti — Přenos dat skleněnými vlákny — Počítač řídí vytápění školy — Hodiny pro počítače Commodore — Nový typ procesoru pro speciální počítače — Vf milivoltmetr do 500 MHz — Kombinovaný šíťový napájecí zdroj — Úsporné využití relé — Elektroakustika pro začnající (10) — IO RTC-62421 pro přesný čas — Matematika a elektronika — Úvod do robotiky (8) — Čištění vzduchu v provozech s výrobou polovodičových součástek — Zařízení do autak signalizaci náledí.

Sajner, J.: PRÁCE NA ELEKTRIC-KÝCH ZAŘÍZENÍCH A JEJICH OB-SLUHA. SNTL: Praha 1986. 488 stran, 16 obr., 26 tabulek. Cena váz. 55 Kčs.

Dobrá odborná kvalifikace pracovníků na elektrických zařízeních je základním předpokladem jejich činnosti, a to nejen z hlediska kvality práce, ale především z hlediska jeji bezpečnosti i bezpečnosti pracovního (i životního) prostředí. Proto jsou znalosti těchto pracovníků prověřovány zkouškami, v nichž prokazují svou odbornou způsobilost v elektronice.

Publikace ing. Sajnera je určena širokému okruhu pracovníků, kteří vykonávají činnost na elektrických zařízeních nebo tuto činnost řídí. Mohou ji použít jak pro přípravu ke zkouškám způsobilosti, tak jako příručku při výkonu svého zaměstnání.

Obsah je rozdělen do tří částí. V první je výklad a komentář vyhlášky Českého úřadu bezpečnosti práce a Českého báňského úřadu č. 50/1978 Sbírky o odborné způsobilosti v elektrotechnice, ve druhé jsou vybraná ustanovení z československých státních norem, zákonů a vyhlášek, která tvoří základní část zkoušky.

Ve třetí části jsou potom příklady učebních a zkušebních (testových) otázek, sestavených podle československých státních norem, které jsou základem zkoušky. Tři kapitoly této poslední části obsahují tři skupiny otázek v kvízové formě, tj. s několika variantami odpovědí. Rejstřík správných odpovědí pak navazuje vždy na příslušnou část otázek. Otázky si_může každá organizace podle svého uvážení obměňovat, sdružovat, vytvářet nové apod., podle svých specifických podmínek (např. podle toho, jakou činnost má příslušný pracovník vykonávat nebo řídit atd.). V závěru knihy je seznam doporučené literatury, převážně vyhlášek a československých státních norem.

Kniha, která vyšla jako osmdesátý sedmý svazek edice Praktické elektrotechnické příručky, bude jistě dobrou pomůckou jak pro zkoušené, tak pro organizátory zkoušek a může být užitečná všem, kdo mají co činit s provozem elektrických zařízení.