第 4 章 上下文无关语言

(Part 1 of 2)

王 鑫

wangx@tju.edu.cn

天津大学 智能与计算学部

Outline

- Context-Free Grammars
- 2 Pushdown Automata
- Non-Context-Free Languages

Context-Free Languages

regular languages 正则语言

- finite automata: DFA / NFA
- regular expressions

some simple languages, such as $\{0^n1^n\mid n\geq 0\}$, are ${\it not}$ regular languages.

Context-Free Languages

regular languages 正则语言

- finite automata: DFA / NFA
- regular expressions

some simple languages, such as $\{0^n1^n\mid n\geq 0\}$, are ${\it not}$ regular languages.

context-free languages 上下文无关语言

- pushdown automata 下推自动机
- first used in the study of human languages
- in the specification and compilation of programming languages
 - parser
 - the construction of a parser from a context-free grammar

Outline

- Context-Free Grammars
 - Formal Definition of a Context-Free Grammar
 - Examples of a Context-Free Grammar
 - Designing Context-Free Grammars
 - Ambiguity
 - Chomsky Normal Form
- 2 Pushdown Automata
- Non-Context-Free Languages

例 (context-free grammar: G_1)

$$A \rightarrow 0A1$$

$$A \to B$$

 $B \to \#$

A grammar

- substitution rules, *productions* 产生式
- variable 变元
- terminals 终结符
- start variable 起始变元

例 (context-free grammar: G_1)

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \to \#$$

 G_1 generates the string 000#111

Derivation 推导

- The sequence of substitutions to obtain a string is called a derivation
- $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\#111$

Derivation 推导

• $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\#111$

parse tree 语法分析树

Derivation 推导

• $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\#111$

parse tree 语法分析树

Derivation 推导

• $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\#111$

parse tree 语法分析树

Derivation 推导

• $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\#111$

parse tree 语法分析树

language of the grammar 文法的语言

• $L(G_1)$: the language of grammar G_1

Derivation 推导

• $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\#111$

parse tree 语法分析树

language of the grammar 文法的语言

- $L(G_1)$: the language of grammar G_1
- What is $L(G_1)$?

Derivation 推导

• $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\#111$

parse tree 语法分析树

language of the grammar 文法的语言

- $L(G_1)$: the language of grammar G_1
- What is $L(G_1)$? $\{0^n \# 1^n \mid n \ge 0\}$

language of the grammar 文法的语言

- $L(G_1)$: the language of grammar G_1
- What is $L(G_1)$? $\{0^n \# 1^n \mid n \ge 0\}$

context-free languages (CFL) 上下文无关语言

• any language that can be generated by some context-free grammar

Abbreviation

$$A \rightarrow 0A1$$
 and $A \rightarrow B$

$$A \rightarrow 0A1 \mid B$$

例 (context-free grammar G_2)

```
<SENTENCE> \rightarrow <NOUN-PHRASE> <VERB-PHRASE>
```

$$<$$
NOUN-PHRASE $> \rightarrow <$ CMPLX-NOUN $> | <$ CMPLX-NOUN $> <$ PREP-PHRASE $> = <$

$$<$$
VERB-PHRASE $> \rightarrow <$ CMPLX-VERB $> | <$ CMPLX-VERB $> <$ PREP-PHRASE $> = <$

$$<$$
PREP-PHRASE $> \rightarrow <$ PREP $><$ CMPLX-NOUN $>$

$$<$$
CMPLX-NOUN $> \rightarrow <$ ARTICLE $> <$ NOUN $>$

$$<$$
CMPLX-VERB $> \rightarrow <$ VERB $> \mid <$ VERB $> <$ NOUN-PHRASE $>$

$$<\!$$
ARTICLE $>\rightarrow$ a | the

$$<$$
NOUN $> \rightarrow$ boy $|$ girl $|$ flower

$$<$$
VERB $> \rightarrow$ touches $|$ likes $|$ sees

$$\langle \mathsf{PREP} \rangle \to \mathsf{with}$$

a boy sees

the boy sees a flower

a girl with a flower likes the boy

Derivation

<SENTENCE> ⇒ <NOUN-PHRASE><VERB-PHRASE>

 \Rightarrow < CMPLX-NOUN> < VERB-PHRASE>

⇒ <ARTICLE><NOUN><VERB-PHRASE>

 \Rightarrow a <NOUN><VERB-PHRASE>

 \Rightarrow a boy <VERB-PHRASE>

 \Rightarrow a boy <CMPLX-VERB>

 \Rightarrow a boy <VERB>

 \Rightarrow a boy sees

定义 (CFG (上下文无关文法))

定义 (CFG (上下文无关文法))

定义 (CFG (上下文无关文法))

A *context-free grammar* (CFG) is a 4-tuple (V, Σ, R, S) , where

ullet V is a finite set called the **variables**,

定义 (CFG (上下文无关文法))

- V is a finite set called the *variables*.

定义 (CFG (上下文无关文法))

- $oldsymbol{0}$ V is a finite set called the **variables**.
- R is the finite set of *rules*, with each rule being a variable and a string of variables and terminals, and

定义 (CFG (上下文无关文法))

- $oldsymbol{0}$ V is a finite set called the **variables**.
- R is the finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- $S \in V$ is the **start variable**.

 $u,\ v,\ w$ are strings of variables and terminals, $A \to w$ is a rule of the grammar

 $\it u, \it v, \it w$ are strings of variables and terminals,

 $A \rightarrow w$ is a rule of the grammar

• $uAv \Rightarrow uwv$: uAv **yields** uwv 直接推导

u, v, w are strings of variables and terminals,

 $A \rightarrow w$ is a rule of the grammar

- $uAv \Rightarrow uwv$: uAv yields uwv 直接推导
- $u \stackrel{*}{\Rightarrow} v$: u derives v 推导

 $\it u, \it v, \it w$ are strings of variables and terminals,

A o w is a rule of the grammar

- uAv ⇒ uwv: uAv yields uwv 直接推导
- $u \stackrel{*}{\Rightarrow} v$: u derives v 推导
 - if u = v or

u, v, w are strings of variables and terminals,

A o w is a rule of the grammar

- $uAv \Rightarrow uwv$: uAv yields uwv 直接推导
- $u \stackrel{*}{\Rightarrow} v$: u derives v 推导
 - if u = v or
 - if a sequence u_1, u_2, \dots, u_k exists for $k \ge 0$ and $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \dots \Rightarrow u_k \Rightarrow v$

u, v, w are strings of variables and terminals,

 $A \rightarrow w$ is a rule of the grammar

- $uAv \Rightarrow uwv$: uAv yields uwv 直接推导
- $u \stackrel{*}{\Rightarrow} v$: u derives v 推导
 - if u = v or
 - if a sequence u_1, u_2, \dots, u_k exists for $k \ge 0$ and $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \dots \Rightarrow u_k \Rightarrow v$

The *language of the grammar* is $\{w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w\}$

例 (context-free grammar: G_1)

$$G_1 = (V, \Sigma, R, S)$$

- $V = \{A, B\}$
- $\Sigma = \{0, 1, \#\}$
- \bullet S=A
- R:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \to \#$$

例 (context-free grammar: G_3)

$$G_3 = (\{S\}, \{a, b\}, R, S)$$

• $S \rightarrow aSb \mid SS \mid \varepsilon$

例 (context-free grammar: G_4)

$$G_3 = (V, \Sigma, R, \langle \mathsf{EXPR} \rangle)$$

- $V = \{\langle \mathsf{EXPR} \rangle, \langle \mathsf{TERM} \rangle, \langle \mathsf{FACTOR} \rangle \}$
- $\Sigma = \{a, +, \times, (,)\}$
- $< \mathsf{EXPR} \! \to < \mathsf{EXPR} \! > + < \mathsf{TERM} \! > | < \mathsf{TERM} \! > \\ < \mathsf{TERM} \! > \to < \mathsf{TERM} \! > \times < \mathsf{FACTOR} \! > | < \mathsf{FACTOR} \! > \\ < \mathsf{FACTOR} \! > \to < (< \mathsf{EXPR} \! >) | a$

Two strings generated with grammar G_4

- \bullet $a + a \times a$
- \bullet $(a+a) \times a$

Parse tree for the strings $a + a \times a$ and $(a + a) \times a$

Many CFLs are the union of simpler CFLs

Many CFLs are the union of simpler CFLs

例

$$\{0^n 1^n \mid n \ge 0\} \cup \{1^n 0^n \mid n \ge 0\}$$

Many CFLs are the union of simpler CFLs

例

$$\{0^n 1^n \mid n \ge 0\} \cup \{1^n 0^n \mid n \ge 0\}$$

- $\{0^n 1^n \mid n \ge 0\}$: $S_1 \to 0 S_1 1 \mid \varepsilon$
- $\{1^n0^n \mid n \ge 0\}$: $S_2 \to 1S_20 \mid \varepsilon$

Many CFLs are the union of simpler CFLs

例

$$\{0^n1^n \mid n \ge 0\} \cup \{1^n0^n \mid n \ge 0\}$$

- $\{0^n 1^n \mid n \ge 0\}$: $S_1 \to 0 S_1 1 \mid \varepsilon$
- $\{1^n0^n \mid n \ge 0\}$: $S_2 \to 1S_20 \mid \varepsilon$

$$S \to S_1 \mid S_2$$

$$S_1 \to 0S_11 \mid \varepsilon$$

$$S_2 \rightarrow 1S_20 \mid \varepsilon$$

Constructing a CFG for a language that happens to be regular

- ② Constructing a CFG for a language that happens to be regular Convert any DFA into an equivalent CFG as follows
 - Make a variable R_i for each state q_i of the DFA
 - \bullet Add the rule $R_i \to a R_j$ to the CFG if $\delta(q_i,a) = q_j$ is a transition in the DFA
 - ullet Add the rule $R_i
 ightarrow arepsilon$ if q_i is an accept state of the DFA
 - Make R_0 the start variable of the grammar, where q_0 is the start state of the machine

- Oertain context-free languages contain strings with two substrings
 - $\{0^n 1^n \mid n \ge 0\}$
- \bullet $R \rightarrow uRv$

- Oertain context-free languages contain strings with two substrings
- $\{0^n 1^n \mid n \ge 0\}$
- \bullet $R \rightarrow uRv$
- The strings may contain certain structures that appear recursively as part of other (or the same) structures
 - the grammar that generates arithmetic expressions

Ambiguity 二义性

Sometimes a grammar can generate the same string in several different ways

Ambiguity 二义性

Sometimes a grammar can generate the same string in several different ways

Such a string will have several different parse trees and thus several different meanings

Ambiguity 二义性

Sometimes a grammar can generate the same string in several different ways

Such a string will have several different parse trees and thus several different meanings

- If a grammar generates the same string in several different ways, we say that the string is derived ambiguously in that grammar
- If a grammar generates some string ambiguously, we say that the grammar is ambiguous

例 (Grammar G_5)

 $<\!\!\mathsf{EXPR}\!\!> + <\!\!\mathsf{EXPR}\!\!> \mid <\!\!\mathsf{EXPR}\!\!> \times <\!\!\mathsf{EXPR}\!\!> \mid (<\!\!\mathsf{EXPR}\!\!>)\mid \mathsf{a}$

例 (Grammar G_5)

$$<$$
EXPR $>$ $+$ $<$ EXPR $>$ \mid $<$ EXPR $>$ \times $<$ EXPR $>$ \mid \mid \mid \mid a

This grammar generates the string $a+a\times a$ ambiguously

例 (Grammar G_5)

$$\langle \mathsf{EXPR} \rangle \rightarrow \langle \mathsf{EXPR} \rangle + \langle \mathsf{EXPR} \rangle \mid \langle \mathsf{EXPR} \rangle \times \langle \mathsf{EXPR} \rangle \mid (\langle \mathsf{EXPR} \rangle) \mid \mathsf{a} \mid$$

This grammar generates the string $a+a\times a$ ambiguously

The two parse trees for the string $a+a\times a$ in grammar G_5

例 (Grammar G_5)

$$<\!\!\mathsf{EXPR}\!\!> + <\!\!\mathsf{EXPR}\!\!> \mid <\!\!\mathsf{EXPR}\!\!> \times <\!\!\mathsf{EXPR}\!\!> \mid (<\!\!\mathsf{EXPR}\!\!>)\mid \mathsf{a}$$

- ullet This grammar doesn't capture the usual precedence relations and so may group the + before the imes or vice versa.
- Grammar G_4 generates exactly the same language, but every generated string has a unique parse tree.

例 (Grammar G_5)

$$<\!\!\mathsf{EXPR}\!\!> + <\!\!\mathsf{EXPR}\!\!> \mid <\!\!\mathsf{EXPR}\!\!> \times <\!\!\mathsf{EXPR}\!\!> \mid (<\!\!\mathsf{EXPR}\!\!>)\mid \mathsf{a}$$

- ullet This grammar doesn't capture the usual precedence relations and so may group the + before the imes or vice versa.
- Grammar G_4 generates exactly the same language, but every generated string has a unique parse tree.
- G_4 is unambiguous.
- G_5 is ambiguous.

例 (Grammar G_5)

$$<\!\!\mathsf{EXPR}\!\!> + <\!\!\mathsf{EXPR}\!\!> \mid <\!\!\mathsf{EXPR}\!\!> \times <\!\!\mathsf{EXPR}\!\!> \mid (<\!\!\mathsf{EXPR}\!\!>)\mid \mathsf{a}$$

- This grammar doesn't capture the usual precedence relations and so may group the + before the \times or vice versa.
- Grammar G_4 generates exactly the same language, but every generated string has a unique parse tree.
- G_4 is unambiguous.
- G_5 is ambiguous.

What about the grammar G_2 ? Is it ambiguous?

the girl touches the boy with the flower

例 (Grammar G_5)

$$<\!\!\mathsf{EXPR}\!\!> + <\!\!\mathsf{EXPR}\!\!> \mid <\!\!\mathsf{EXPR}\!\!> \times <\!\!\mathsf{EXPR}\!\!> \mid (<\!\!\mathsf{EXPR}\!\!>)\mid \mathsf{a}$$

- This grammar doesn't capture the usual precedence relations and so may group the + before the \times or vice versa.
- Grammar G_4 generates exactly the same language, but every generated string has a unique parse tree.

例 (Grammar G_5)

$$<\!\!\mathsf{EXPR}\!\!> + <\!\!\mathsf{EXPR}\!\!> \mid <\!\!\mathsf{EXPR}\!\!> \times <\!\!\mathsf{EXPR}\!\!> \mid (<\!\!\mathsf{EXPR}\!\!>)\mid \mathsf{a}$$

- ullet This grammar doesn't capture the usual precedence relations and so may group the + before the imes or vice versa.
- Grammar G_4 generates exactly the same language, but every generated string has a unique parse tree.
- G_4 is unambiguous.
- G_5 is ambiguous.

例 (Grammar G_5)

$$<\!\!\mathsf{EXPR}\!\!> + <\!\!\mathsf{EXPR}\!\!> \mid <\!\!\mathsf{EXPR}\!\!> \times <\!\!\mathsf{EXPR}\!\!> \mid (<\!\!\mathsf{EXPR}\!\!>)\mid \mathsf{a}$$

- This grammar doesn't capture the usual precedence relations and so may group the + before the \times or vice versa.
- Grammar G_4 generates exactly the same language, but every generated string has a unique parse tree.
- G_4 is unambiguous.
- G_5 is ambiguous.

What about the grammar G_2 ? Is it ambiguous?

the girl touches the boy with the flower

定义 (leftmost derivation (最左推导))

A derivation of a string w in a grammar G is a **leftmost derivation** if at every step the leftmost remaining variable is the one replaced.

定义 (leftmost derivation (最左推导))

A derivation of a string w in a grammar G is a **leftmost derivation** if at every step the leftmost remaining variable is the one replaced.

定义 (ambiguity (二义性))

- A string w is derived ambiguously in context-free grammar G if it
 has two or more different leftmost derivations.
- ullet Grammar G is **ambiguous** if it generates some string ambiguously.

定义 (leftmost derivation (最左推导))

A derivation of a string w in a grammar G is a **leftmost derivation** if at every step the leftmost remaining variable is the one replaced.

定义 (ambiguity (二义性))

- A string w is derived ambiguously in context-free grammar G if it
 has two or more different leftmost derivations.
- ullet Grammar G is **ambiguous** if it generates some string ambiguously.

Some context-free languages can be generated only by ambiguous grammars. Such languages are called *inherently ambiguous* (固有二义性). e.g., $\{a^ib^jc^k\mid i=j \text{ or } j=k\}$

定义 (Chomsky Normal Form (乔姆斯基范式))

A context-free grammar is in *Chomsky normal form* if every rule is of the form

$$A \to BC$$
$$B \to a$$

- where a is any terminal and A, B, and C are any variables,
- except that B and C may not be the start variable.
- permit the rule $S \to \varepsilon$, where S is the start variable.

定理

Any context-free language is generated by a context-free grammar in Chomsky normal form.

定理

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Proof idea:

定理

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Proof idea:

Rules that violate the conditions are replaced with equivalent ones that are satisfactory

1 add a new start variable

定理

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Proof idea:

Rules that violate the conditions are replaced with equivalent ones that are satisfactory

- 1 add a new start variable
- **2** eliminate all ε -rules of the form $A \to \varepsilon$

定理

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Proof idea:

Rules that violate the conditions are replaced with equivalent ones that are satisfactory

- 1 add a new start variable
- **2** eliminate all ε -rules of the form $A \to \varepsilon$
- \bullet eliminate all *unit rules* of the form $A \to B$

定理

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Proof idea:

Rules that violate the conditions are replaced with equivalent ones that are satisfactory

- 1 add a new start variable
- **2** eliminate all ε -rules of the form $A \to \varepsilon$
- \odot eliminate all *unit rules* of the form $A \to B$
- convert the remaining rules into the proper form

Proof

1 add a new start variable

- add a new start variable
 - add a new start variable S_0 and the rule $S_0 \to S$, where S was the original start variable.

- add a new start variable
 - add a new start variable S_0 and the rule $S_0 \to S$, where S was the original start variable.
 - This change guarantees that the start variable doesn't occur on the right-hand side of a rule.

Proof

2 eliminate all ε -rules of the form $A \to \varepsilon$

- $oldsymbol{2}$ eliminate all ε -rules of the form $A \to \varepsilon$
 - remove an ε -rule $A \to \varepsilon$, where A is not the start variable.

- 2 eliminate all ε -rules of the form $A \to \varepsilon$
 - remove an ε -rule $A \to \varepsilon$, where A is not the start variable.
 - for each occurrence of an A on the right-hand side of a rule, add a new rule with that occurrence deleted.

- - remove an ε -rule $A \to \varepsilon$, where A is not the start variable.
 - ullet for each occurrence of an A on the right-hand side of a rule, add a new rule with that occurrence deleted.
 - $R \rightarrow uAv \Rightarrow R \rightarrow uv$
 - $R \to uAvAw \Rightarrow R \to uvAw$, $R \to uAvw$, and $R \to uvw$

- 2 eliminate all ε -rules of the form $A \to \varepsilon$
 - remove an ε -rule $A \to \varepsilon$, where A is not the start variable.
 - ullet for each occurrence of an A on the right-hand side of a rule, add a new rule with that occurrence deleted.
 - $R \rightarrow uAv \Rightarrow R \rightarrow uv$
 - $R \to uAvAw \Rightarrow R \to uvAw$, $R \to uAvw$, and $R \to uvw$
 - If we have the rule $R \to A$, add $R \to \varepsilon$ unless the rule $R \to \varepsilon$ was previously removed.

- 2 eliminate all ε -rules of the form $A \to \varepsilon$
 - remove an ε -rule $A \to \varepsilon$, where A is not the start variable.
 - ullet for each occurrence of an A on the right-hand side of a rule, add a new rule with that occurrence deleted.
 - $R \rightarrow uAv \Rightarrow R \rightarrow uv$
 - $R \to uAvAw \Rightarrow R \to uvAw$, $R \to uAvw$, and $R \to uvw$
 - If we have the rule $R \to A$, add $R \to \varepsilon$ unless the rule $R \to \varepsilon$ was previously removed.
 - repeat these steps until we eliminate all ε -rules not involving the start variable

Proof

 \odot eliminate all unit rules of the form $A \to B$

- \odot eliminate all unit rules of the form $A \to B$
 - ullet remove a unit rule $A \to B$

- **3** eliminate all unit rules of the form $A \rightarrow B$
 - remove a unit rule $A \to B$
 - whenever a rule $B \to u$ appears, we add the rule $A \to u$ unless this was a unit rule previously removed.

- \odot eliminate all unit rules of the form $A \to B$
 - remove a unit rule $A \rightarrow B$
 - whenever a rule $B \to u$ appears, we add the rule $A \to u$ unless this was a unit rule previously removed.
 - repeat these steps until we eliminate all unit rules.

Proof

onvert the remaining rules into the proper form

- convert the remaining rules into the proper form
 - replace each rule $A \to u_1u_2\cdots u_k$, with the rules $A \to u_1A_1$, $A_1 \to u_2A_2$, $A_2 \to u_3A_3$, \cdots , and

$$A_{k-2} \to u_{k-1} u_k$$

- where $k \geq 3$
- ullet each u_i is a variable or terminal symbol
- \bullet A_i 's are new variables

- convert the remaining rules into the proper form
 - replace each rule $A \to u_1 u_2 \cdots u_k$, with the rules $A \to u_1 A_1$, $A_1 \to u_2 A_2$, $A_2 \to u_3 A_3$, \cdots , and

$$A_{k-2} \to u_{k-1} u_k$$

- where $k \geq 3$
- ullet each u_i is a variable or terminal symbol
- A_i 's are new variables
- replace any terminal u_i in the preceding rule(s) with the new variable U_i and add the rule $U_i \to u_i$

例

Let G_6 be the following CFG and convert it to Chomsky normal form by using the conversion procedure just given.

• The original CFG G_6 is shown on the left. The result of applying the first step to make a new start variable appears on the right.

$$S \to ASA \mid aB$$
$$A \to B \mid S$$
$$B \to b \mid \varepsilon$$

例

Let G_6 be the following CFG and convert it to Chomsky normal form by using the conversion procedure just given.

• The original CFG G_6 is shown on the left. The result of applying the first step to make a new start variable appears on the right.

$$S oup ASA \mid aB$$
 $S_0 oup S$ $A oup B \mid S$ $S oup ASA \mid aB$ $A oup B \mid S$ $A oup B \mid S$ $B oup b \mid \varepsilon$

例

Let G_6 be the following CFG and convert it to Chomsky normal form by using the conversion procedure just given.

 $\hbox{$ @ $ Remove ε-rules $B\to\varepsilon$, shown on the left, and $A\to\varepsilon$, shown on the right.}$

$$S_0 \to S$$

$$S \to ASA \mid aB \mid a$$

$$A \to B \mid S \mid \varepsilon$$

$$B \to b \mid \varepsilon$$

例

Let G_6 be the following CFG and convert it to Chomsky normal form by using the conversion procedure just given.

2 Remove ε -rules $B \to \varepsilon$, shown on the left, and $A \to \varepsilon$, shown on the right.

$$S_0 \rightarrow S$$
 $S_0 \rightarrow S$ $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S$ $A \rightarrow B \mid S \mid \varepsilon$ $A \rightarrow B \mid S \mid \varepsilon$ $B \rightarrow b \mid \varepsilon$ $B \rightarrow b$

例

Let G_6 be the following CFG and convert it to Chomsky normal form by using the conversion procedure just given.

3 (a) Remove unit rules $S \to S$, shown on the left, and $S_0 \to S$, shown on the right.

$$S_0 \to S$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S$$

$$A \to B \mid S$$

$$B \rightarrow b$$

例

Let G_6 be the following CFG and convert it to Chomsky normal form by using the conversion procedure just given.

3 (a) Remove unit rules $S \to S$, shown on the left, and $S_0 \to S$, shown on the right.

$$S_0 \rightarrow S$$
 $S_0 \rightarrow S \mid ASA \mid aB \mid a \mid SA \mid AS$
 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S$ $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow B \mid S$ $A \rightarrow B \mid S$
 $B \rightarrow b$ $B \rightarrow b$

例

Let G_6 be the following CFG and convert it to Chomsky normal form by using the conversion procedure just given.

 $\textbf{ (b)} \ \text{Remove unit rules} \ A \to B \ \text{and} \ A \to S.$

$$S_0 \to ASA \mid aB \mid a \mid SA \mid AS$$

$$S \to ASA \mid aB \mid a \mid SA \mid AS$$

$$A \to B \mid S \mid b$$

$$B \to b$$

例

Let G_6 be the following CFG and convert it to Chomsky normal form by using the conversion procedure just given.

3 (b) Remove unit rules $A \to B$ and $A \to S$.

$$S_0 o ASA \mid aB \mid a \mid SA \mid AS$$
 $S_0 o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$ $S o ASA \mid aB \mid a \mid SA \mid AS$

例

Let G_6 be the following CFG and convert it to Chomsky normal form by using the conversion procedure just given.

• Convert the remaining rules into the proper form by adding additional variables and rules. The final grammar in Chomsky normal form is equivalent to G_6 .

$$S_0 \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS$$

$$S \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid AA_1 \mid UB \mid a \mid SA \mid AS$$

$$A_1 \rightarrow SA$$

$$U \rightarrow a$$

$$B \rightarrow b$$

Outline

- Context-Free Grammars
- Pushdown Automata
 - Formal Definition of a Pushdown Automaton
 - Examples of Pushdown Automata
- 3 Non-Context-Free Languages

Outline

- Context-Free Grammars
- Pushdown Automata
- Non-Context-Free Languages