Package 'irg'

October 13, 2022
Title Instantaneous Rate of Green Up
Version 0.1.6
Description Fits a double logistic function to NDVI time series and calculates instantaneous rate of green (IRG) according to methods described in Bischoff et al. (2012) <doi:10.1086 667590="">.</doi:10.1086>
License GPL-3
Encoding UTF-8
RoxygenNote 7.1.2
Suggests knitr, rmarkdown, DiagrammeR, ggplot2, curl, tinytest
Depends R (>= 2.10)
Imports data.table, RcppRoll, stats, chk
VignetteBuilder knitr
<pre>URL https://github.com/robitalec/irg, https://robitalec.github.io/irg/</pre>
<pre>BugReports https://github.com/robitalec/irg/issues</pre>
NeedsCompilation no
Author Alec L. Robitaille [aut, cre] (https://orcid.org/0000-0002-4706-1762)
Maintainer Alec L. Robitaille <robit.alec@gmail.com></robit.alec@gmail.com>
Repository CRAN
Date/Publication 2021-12-22 03:10:02 UTC
R topics documented:
calc_irg
filter_qa
filter_top
irg

2 calc_irg

	model_params	
	sampled-ndvi-Landsat-LC08-T1-L2.csv	
	sampled-ndvi-MODIS-MOD13Q1.csv	
	scale_doy	
	scale_ndvi	
	use_example_ee_script	7
Index	1	8
calc_	irg <i>IRG</i>	_

Description

Calculate the instantaneous rate of green-up.

Usage

```
calc_irg(DT, id = "id", year = "yr", scaled = TRUE)
```

Arguments

DT data.table of model parameters (output from model_params).

id id column. default is 'id'. See details. year year column name. default is 'yr'.

scaled boolean indicating if irg should be rescaled between 0-1 within id and year. If

TRUE, provide id and year. Default is TRUE.

Details

The DT argument expects a data.table of model estimated parameters for double logistic function of NDVI for each year and individual. Since it is the rate of green-up, model parameters required are only xmidS and scalS.

The scaled argument is used to optionally rescale the IRG result to 0-1, for each year and individual.

The id argument is used to split between sampling units. This may be a point id, polygon id, pixel id, etc. depending on your analysis. This should match the id provided to filtering functions. The formula used is described in Bischoff et al. (2012):

$$IRG = (exp((t+xmidS)/scalS))/(2*scalS*(exp(1)^{(}(t+xmidS)/scalS)) + (scalS*(exp(1)^{(}(2*t)/scalS))) + (scalS*(exp(1)^{(}(2*t)/scalS)))) + (scalS*(exp(1)^{(}(2*t)/scalS))) + (scalS*(exp(1)^{(}(2*t)/scalS))) + (scalS*(exp(1)^{(}(2*t)/scalS)))) + (scalS*(exp(1)^{(}(2*t)/scalS))) + (scalS*(exp(1)^{(}(2*t)/scalS)))) + (scalS*(exp(1)^{(}(2*t)/scalS))) + (scalS*(exp(1)^{(}(2*t)/scalS)))) + (scalS*(exp(1)^{(}(2*t)/scalS))) + (scalS*(exp(1)^{(}(2*t)/scalS)))) + (scalS*(exp(1)^{(}(2*t)/scalS)))) + (scalS*(exp(1)^{(}(2*t)/scalS))) + (scalS*(exp(1)^{(}(2*t)/scalS)))) + (scalS*(exp(1)^{(}(2*t)/scalS)))) + (scalS*(exp(1)^{(}(2*t)/scalS))) + (scalS*(exp(1)^{(}(2*t)/scalS)$$

(See the "Getting started with irg vignette" for a better formatted formula.)

Value

Extended data.table 'irg' column of instantaneous rate of green-up calculated for each day of the year, for each individual and year.

filter_ndvi 3

See Also

```
Other irg: irg()
```

Examples

```
# Load data.table
library(data.table)
# Read in example data
ndvi <- fread(system.file("extdata", "sampled-ndvi-MODIS-MOD13Q1.csv", package = "irg"))</pre>
# Filter and scale NDVI time series
filter_ndvi(ndvi)
scale_doy(ndvi)
scale_ndvi(ndvi)
# Guess starting parameters
model_start(ndvi)
# Double logistic model parameters given starting parameters for nls
mods <- model_params(</pre>
  ndvi,
  return = 'models',
  xmidS = 'xmidS_start',
  xmidA = 'xmidA_start',
  scalS = 0.05,
  scalA = 0.01
)
# Fit double logistic curve to NDVI time series
fit <- model_ndvi(mods, observed = FALSE)</pre>
# Calculate IRG for each day of the year
calc_irg(fit)
```

filter_ndvi

Filter NDVI

Description

Meta function, calling all filtering steps, in order. Only defaults.

Usage

```
filter_ndvi(DT)
```

Arguments

 DT

data.table of NDVI time series

filter_qa

Value

filtered NDVI time series.

See Also

```
Other filter: filter_qa(), filter_roll(), filter_top(), filter_winter()
```

Examples

```
# Load data.table
library(data.table)

# Read example data
ndvi <- fread(system.file("extdata", "sampled-ndvi-MODIS-MODI3Q1.csv", package = "irg"))

# Use filter_ndvi to apply all filtering steps (with defaults)
filter_ndvi(ndvi)</pre>
```

filter_qa

Filter with QA Band

Description

Using QA band information, filter the NDVI time series.

Usage

```
filter_qa(DT, ndvi = "NDVI", qa = "SummaryQA", good = c(0, 1))
```

Arguments

DT data.table of NDVI time series

ndvi ndvi column name. default is 'NDVI'.
qa QA column. default is 'SummaryQA'.

good values which correspond to quality pixels. default is 0 and 1.

Details

See the details for the example data in ?sampled-ndvi-Landsat-LC08-T1-L2.csv and ?sampled-ndvi-MODIS-MOD13Q1.cs For MODIS MOD13Q1, the SummaryQA band

For Landsat

Value

filtered data.table with appended 'filtered' column of "quality" NDVI.

filter_roll 5

See Also

```
Other filter: filter_ndvi(), filter_roll(), filter_top(), filter_winter()
```

Examples

```
# Load data.table
library(data.table)

# Read example data
ndvi <- fread(system.file("extdata", "sampled-ndvi-MODIS-MOD13Q1.csv", package = "irg"))

filter_qa(ndvi, ndvi = 'NDVI', qa = 'SummaryQA', good = c(0, 1))</pre>
```

filter_roll

Filter with rolling median

Description

Using a rolling median, filter the NDVI time series for each id.

Usage

```
filter_roll(DT, window = 3L, id = "id", method = "median")
```

Arguments

DT data.table of NDVI time series window window size. default is 3.

id id column. default is 'id'. See details.

method median. no other options yet. let me know if you are looking for something else.

Details

The id argument is used to split between sampling units. This may be a point id, polygon id, pixel id, etc. depending on your analysis.

Value

filtered data.table with appended 'rolled' column of each id's rolling median, filtered NDVI time series.

```
Other filter: filter_ndvi(), filter_qa(), filter_top(), filter_winter()
```

filter_top

Examples

```
# Load data.table
library(data.table)

# Read example data
ndvi <- fread(system.file("extdata", "sampled-ndvi-MODIS-MODI3Q1.csv", package = "irg"))

filter_qa(ndvi, ndvi = 'NDVI', qa = 'SummaryQA', good = c(0, 1))
filter_winter(ndvi, probs = 0.025, limits = c(60L, 300L), doy = 'DayOfYear', id = 'id')
filter_roll(ndvi, window = 3L, id = 'id')</pre>
```

filter_top

Filter top NDVI

Description

Using upper quantile (default = 0.925) of multi-year MODIS data, determine the top NDVI for each id.

Usage

```
filter_top(DT, probs = 0.925, id = "id")
```

Arguments

DT data.table of NDVI time series

probs quantile probability to determine top. default is 0.925.

id id column. default is 'id'. See details.

Details

The id argument is used to split between sampling units. This may be a point id, polygon id, pixel id, etc. depending on your analysis.

Value

filtered data.table with appended 'top' column of each id's top (quantile) NDVI value.

```
Other filter: filter_ndvi(), filter_qa(), filter_roll(), filter_winter()
```

filter_winter 7

Examples

```
# Load data.table
library(data.table)

# Read example data
ndvi <- fread(system.file("extdata", "sampled-ndvi-MODIS-MOD13Q1.csv", package = "irg"))

filter_qa(ndvi, ndvi = 'NDVI', qa = 'SummaryQA', good = c(0, 1))
filter_winter(ndvi, probs = 0.025, limits = c(60L, 300L), doy = 'DayOfYear', id = 'id')
filter_roll(ndvi, window = 3L, id = 'id')
filter_top(ndvi, probs = 0.925, id = 'id')</pre>
```

filter_winter

Filter winter NDVI

Description

Using lower quantile (default = 0.025) of multi-year MODIS data, determine the "winterNDVI" for each id.

Usage

```
filter_winter(
   DT,
   probs = 0.025,
   limits = c(60L, 300L),
   doy = "DayOfYear",
   id = "id"
)
```

Arguments

DT	data.table of NDVI time series
probs	quantile probability to determine "winterNDVI". default is 0.025.
limits	integer vector indicating limit days of absolute winter (snow cover, etc.). default is $c(60,300)$: 60 days after Jan 1 and 65 days before Jan 1.
doy	julian day column. default is 'DayOfYear'.
id	id column. default is 'id'. See details.

Details

The id argument is used to split between sampling units. This may be a point id, polygon id, pixel id, etc. depending on your analysis.

Value

filtered data.table with appended 'winter' column of each id's "winterNDVI" baseline value.

8 irg

See Also

```
Other filter: filter_ndvi(), filter_qa(), filter_roll(), filter_top()
```

Examples

```
# Load data.table
library(data.table)

# Read example data
ndvi <- fread(system.file("extdata", "sampled-ndvi-MODIS-MODI3Q1.csv", package = "irg"))
filter_qa(ndvi, ndvi = 'NDVI', qa = 'SummaryQA', good = c(0, 1))
filter_winter(ndvi, probs = 0.025, limits = c(60L, 300L), doy = 'DayOfYear', id = 'id')</pre>
```

irg

IRG

Description

Wrapper function for one step IRG calculation. Only defaults.

Usage

irg(DT)

Arguments

DT

data.table of NDVI time series

Details

data.table must have columns:

- 'id' individual identifier
- 'yr' year of observation
- 'NDVI' NDVI value
- 'DayOfYear' day of year/julian day of observation
- 'SummaryQA' summary quality value for each sample (provided by MODIS)

Value

Extended data.table 'irg' column of instantaneous rate of green-up calculated for each day of the year, for each individual and year.

```
Other irg: calc_irg()
```

model_ndvi 9

Examples

```
# Load data.table
library(data.table)

# Read in example data
ndvi <- fread(system.file("extdata", "sampled-ndvi-MODIS-MOD13Q1.csv", package = "irg"))

# Calculate IRG for each day of the year and individual
out <- irg(ndvi)</pre>
```

model_ndvi

Model NDVI time series

Description

Fit double logistic model to NDVI time series given parameters estimated with model_params.

Usage

```
model_ndvi(DT, observed = TRUE)
```

Arguments

DT data.table of model parameters (output from model_params).

observed boolean indicating if a full year of fitted values should be returned (observed =

FALSE) or if only observed values will be fit (observed = TRUE)

Value

Model parameter data.table appended with 'fitted' column of double logistic model of NDVI for a full year. Calculated at the daily scale with the following formula from Bischoff et al. (2012).

$$fitted = \frac{1}{1 + \exp\frac{xmidS - t}{scalS}} - \frac{1}{1 + \exp\frac{xmidA - t}{scalA}}$$

(See the "Getting started with irg vignette" for a better formatted formula.)

References

```
https://www.journals.uchicago.edu/doi/abs/10.1086/667590
```

See Also

Other model: model_params(), model_start()

10 model_params

Examples

```
# Load data.table
library(data.table)
# Read in example data
ndvi <- fread(system.file("extdata", "sampled-ndvi-MODIS-MOD13Q1.csv", package = "irg"))</pre>
# Filter and scale NDVI time series
filter_ndvi(ndvi)
scale_dov(ndvi)
scale_ndvi(ndvi)
# Guess starting parameters for xmidS and xmidA
model_start(ndvi)
## Two options: fit to full year or observed data
# Option 1 - returns = 'models'
# Double logistic model parameters
   given global starting parameters for scalS, scalA
   and output of model_start for xmidS, xmidA
mods <- model_params(</pre>
  ndvi,
  returns = 'models',
  xmidS = 'xmidS_start',
  xmidA = 'xmidA_start',
  scalS = 0.05,
  scalA = 0.01
# Fit to the whole year (requires assignment)
fit <- model_ndvi(mods, observed = FALSE)</pre>
# Option 2 - returns = 'columns'
model_params(
  ndvi,
  returns = 'columns',
  xmidS = 'xmidS_start',
  xmidA = 'xmidA_start',
  scalS = 0.05,
  scalA = 0.01
# Fit double logistic curve to NDVI time series for the observed days
model_ndvi(ndvi, observed = TRUE)
```

model_params 11

Description

Model estimated parameters for fitting double logistic curve.

Usage

```
model_params(
  DT,
  returns = NULL,
  id = "id",
  year = "yr",
  xmidS = NULL,
  xmidA = NULL,
  scalS = NULL,
  scalA = NULL
)
```

Arguments

DT	data.table of NDVI time series. Also optionally starting estimates. See Details.
returns	either 'models' or 'columns'. 'models' will return a data.table of model outcomes by id and year. 'columns' will append model estimate parameters to the input DT.
id	id column. default is 'id'. See details.
year	year column name. default is 'yr'.
xmidS	starting estimates. see Details "spring inflection point"
xmidA	starting estimates. see Details "fall inflection point"
scalS	starting estimates. see Details "scale parameter for spring green-up portion of the NDVI curve"
scalA	starting estimates. see Details "scale parameter for fall dry-down portion of the NDVI curve"

Details

Arguments xmidS, xmidA, scalS, scalA allow users to provide either group level or global starting estimates to be used for all models.

Either: a character indicating the column name which stores a group level starting parameter (possibly created by model_start OR a numeric value used as a global value for all models. See nls for more details on starting parameters.

Default value for the year column is 'yr'. If you only have one year of data, set to NULL.

The id argument is used to split between sampling units. This may be a point id, polygon id, pixel id, etc. depending on your analysis. This should match the id provided to filtering functions.

Formula and arguments xmidS, xmidA, scalS, scalA following this from Bischoff et al. (2012).

$$fitted = \frac{1}{1 + \exp{\frac{xmidS - t}{scalS}}} - \frac{1}{1 + \exp{\frac{xmidA - t}{scalA}}}$$

12 model_start

Value

data.table of model estimated parameters for double logistic model. If any rows are NULL, nls could not fit a model given starting parameters to the data provided.

References

```
https://www.journals.uchicago.edu/doi/abs/10.1086/667590
```

See Also

```
Other model: model_ndvi(), model_start()
```

Examples

```
# Load data.table
library(data.table)
# Read in example data
ndvi <- fread(system.file("extdata", "sampled-ndvi-MODIS-MOD13Q1.csv", package = "irg"))</pre>
# Filter and scale NDVI time series
filter_ndvi(ndvi)
scale_doy(ndvi)
scale_ndvi(ndvi)
# Guess starting parameters for xmidS and xmidA
model_start(ndvi)
# Double logistic model parameters
    given global starting parameters for scalS, scalA
    and output of model_start for xmidS, xmidA
mods <- model_params(</pre>
  ndvi,
  returns = 'models',
  xmidS = 'xmidS_start',
  xmidA = 'xmidA_start',
  scalS = 0.05,
  scalA = 0.01
```

model_start

Model starting parameters

Description

Try guessing starting parameters for model_params and model_ndvi.

Usage

```
model_start(DT, id = "id", year = "yr")
```

Arguments

DT	filtered and scaled data.table of NDVI time series. Expects columns 'scaled' and 't' are present.
id	id column. default is 'id'. See details.
year	year column name. default is 'yr'.

Details

The id argument is used to split between sampling units. This may be a point id, polygon id, pixel id, etc. depending on your analysis. This should match the id provided to filtering functions.

Value

The input DT data.table appended with xmidS_start and xmidA_start columns. Note - we curently do not attempt to guess appropriate starting values for scalS and scalA.

See Also

```
Other model: model_ndvi(), model_params()
```

Examples

```
# Load data.table
library(data.table)

# Read in example data
ndvi <- fread(system.file("extdata", "sampled-ndvi-MODIS-MOD13Q1.csv", package = "irg"))

# Filter and scale NDVI time series
filter_ndvi(ndvi)
scale_doy(ndvi)
scale_doy(ndvi)
# Guess starting parameters for xmidS and xmidA
model_start(ndvi)</pre>
```

```
sampled-ndvi-Landsat-LC08-T1-L2.csv

**Raw Landsat NDVI data**
```

Description

A CSV containing NDVI samples for seven points over ten years (2005-2010). Data extracted using Earth Engine with the example script provided by the use_example_ee_script() function with sensor set to 'Landsat'.

Format

A data.table with 1652 rows and 5 variables:

- id individual identifier
- ndvi sampled NDVI value
- mask mask value, see details below
- doy julian day/day of year of sample
- year year of sample

mask details:

- 0 Good data
- 1 if QA_PIXEL indicates unwanted pixels OR if QA_RADSAT indicates saturated pixels
- 2 if QA_PIXEL indicates unwanted pixels AND if QA_RADSAT indicates saturated pixels

Details

Note: these are the same locations as in the example 'MODIS' data.

Examples

```
# Load data.table
library(data.table)

# Read example data
ndvi <- fread(system.file('extdata', 'sampled-ndvi-Landsat-LC08-T1-L2.csv', package = 'irg'))</pre>
```

```
sampled-ndvi-MODIS-MOD13Q1.csv
```

Raw MODIS MOD13Q1 NDVI data

Description

A CSV containing NDVI samples for seven points over ten years (2005-2010). Data extracted using Earth Engine with the example script provided by the use_example_ee_script() function with sensor set to 'MODIS'.

Format

A data.table with 805 rows and 5 variables:

- id individual identifier
- NDVI sampled value
- SummaryQA Summary quality assessment value, see details below
- DayOfYear julian day/day of year of sample

scale_doy 15

• yr - year of sample

SummaryQA details:

- 0 Good data, use with confidence
- 1 Marginal data, useful but look at detailed QA for more information
- 2 Pixel covered with snow/ice
- 3 Pixel is cloudy

Details

Note: these are the same locations as in the example 'Landsat' data.

Examples

```
# Load data.table
library(data.table)

# Read example data
ndvi <- fread(system.file('extdata', 'sampled-ndvi-MODIS-MODI3Q1.csv', package = 'irg'))</pre>
```

scale_doy

Scale DOY

Description

Scale the day of the year to 0-1 (like NDVI).

Usage

```
scale_doy(DT, doy = "DayOfYear")
```

Arguments

DT data.table of NDVI time series doy julian day column. default is 'DayOfYear'.

Value

data.table with appended 't' column of 0-1 scaled day of year.

```
Other scale: scale_ndvi()
```

16 scale_ndvi

Examples

```
# Load data.table
library(data.table)

# Read in example data
ndvi <- fread(system.file("extdata", "sampled-ndvi-MODIS-MOD13Q1.csv", package = "irg"))

# Scale DOY
scale_doy(ndvi)</pre>
```

scale_ndvi

Scale NDVI

Description

Using filtered NDVI time series, scale it to 0-1.

Usage

```
scale_ndvi(DT)
```

Arguments

DT

data.table of NDVI time series

Details

This functions expects the input DT is the output of previous four filtering steps, or filter_ndvi.

Value

data.table with appended 'scaled' column of 0-1 scaled NDVI.

See Also

```
Other scale: scale_doy()
```

Examples

```
# Load data.table
library(data.table)

# Read in example data
ndvi <- fread(system.file("extdata", "sampled-ndvi-MODIS-MOD13Q1.csv", package = "irg"))

# Filter and scale NDVI time series
filter_ndvi(ndvi)
scale_ndvi(ndvi)</pre>
```

use_example_ee_script

Description

Provides an example script for use in Earth Engine, as a preceeding step to using the irg package. Use the script to sample NDVI in Earth Engine, then use the irg package to calculate the instantaneous rate of green-up.

Usage

```
use_example_ee_script(sensor = "MODIS", filepath = NULL, overwrite = FALSE)
```

Arguments

sensor either 'MODIS' or 'Landsat'

file path relative to current working director, indicating where to save the exam-

ple script. default is NULL, simply printing lines to the console.

overwrite boolean indicating if the file should overwrite existing files. default is FALSE.

Value

use_example_ee_script prints an example NDVI extraction script or if filepath is provided, saves it at the location specified.

Index

```
* filter
    filter_ndvi, 3
    filter_qa, 4
    filter_roll, 5
    filter_top, 6
    filter_winter, 7
* irg
    calc_irg, 2
    irg,8
* model
    model_ndvi, 9
    model\_params, 10
    model_start, 12
* scale
    scale_doy, 15
    scale_ndvi, 16
calc_irg, 2, 8
filter_ndvi, 3, 5, 6, 8
filter_qa, 4, 4, 5, 6, 8
filter_roll, 4, 5, 5, 6, 8
filter_top, 4, 5, 6, 8
filter_winter, 4-6, 7
irg, 3, 8
model_ndvi, 9, 12, 13
model_params, 9, 10, 13
model_start, 9, 11, 12, 12
nls, 11
sampled-ndvi-Landsat-LC08-T1-L2.csv,
sampled-ndvi-MODIS-MOD13Q1.csv, 14
scale_doy, 15, 16
scale_ndvi, 15, 16
use_example_ee_script, 17
```