Collin Johnston Math 135 Homework #2 09/17/2014

Elements of Set Theory 3.1, 3.3, 3.8, 3.11, 3.15, 3.19, 3.25, 3.30

3.1 Suppose that we attempted to generalize the Kuratowski definitions of ordered pairs to ordered triples by defining

$$\langle x, y, z \rangle^* = \{ \{x\}, \{x, y\}, \{x, y, z\} \}$$

Show that this definition is unsuccessful by giving examples of objects u, v, w, x, y, z with $\langle x, y, z \rangle^* = \langle u, v, w \rangle^*$ but with either $y \neq v$ or $z \neq w$ (or both).

One such ordered pair would be

$$\langle a,b,b\rangle^* = \langle a,a,b\rangle^*$$

Expanded: $\{\{a\},\{a,b\},\{a,b,b\}\} = \{\{a\},\{a,a\},\{a,a,b\}\}$
 $\{\{a\},\{a,b\},\{a,b\}\} = \{\{a\},\{a\},\{a,b\}\}$
 $\{\{a\},\{a,b\}\} = \{\{a\},\{a,b\}\}$

3.3 Show that $A \times \bigcup \mathcal{B} = \bigcup \{A \times X \mid X \in \mathcal{B}\}.$

Taking fifth roots of the equation yields

$$z+1=ze^{ik\frac{2\pi}{5}},$$

where $k \in \mathbb{Z}$. We note that k = 0 (and all other multiples of 5) yields z + 1 = z, which reduces to 1 = 0, an inconsistent equation. Isolating z, we therefore have the solutions

$$z = \frac{1}{e^{ik\frac{2\pi}{5}} - 1},$$

with four unique solutions obtained using k = 1, 2, 3, 4. We expect 4 unique solutions because $(z + 1)^5 - z^5$ is a fourth-degree polynomial.

SS 1.7.5ad Describe the projections on the Riemann sphere of the following sets in the complex plane:

- (a) the right half-plane $\{z \mid \operatorname{Re} z > 0\}$,
- (*d*) the set $\{z \mid |z| > 3\}$.

(a) The right half-plane corresponds to the right open hemisphere $\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 > 0, x_1^2 + x_2^2 + x_3^2 = 1\}$.

(d) Since |z| > 3, $|z|^2 + 1 > 10$, so

$$x_3 = \frac{|z|^2 - 1}{|z|^2 + 1} = 1 - \frac{2}{|z|^2 + 1} > 1 - \frac{2}{10} = \frac{4}{5}.$$

Thus, the set $\{z \mid |z| > 3\}$ corresponds to the dome of the Riemann sphere above the plane $x_3 = 4/5$. Hand sketches of these projections are shown below:

DF 1.1.25 Prove that if $x^2 = 1$ for all $x \in G$ then G is abelian.

Suppose $x^2 = 1$ for all $x \in G$. Then $x = x^2x^{-1} = 1x^{-1} = x^{-1}$ for all $x \in G$. For two arbitrary elements a and b of G,

$$ab = (ab)^{-1} = b^{-1}a^{-1} = ba,$$

so a and b commute. Since a and b are arbitrary, ab = ba for all a and $b \in G$, and G is abelian.

Logan 1.8.6 This exercise illustrates an important numerical procedure for solving Laplace's equation on a reactangle. Consider Laplace's equation on the rectangle D: 0 < x < 4, 0 < y < 3 with boundary conditions given on the bottom and top by u(x,0) = 0, u(x,3) = 0 for $0 \le x \le 4$ and on the sides by u(0,y) = 2y(3-y), u(4,y) = 0 for $0 \le y \le 3$. Apply the average value property (1.45) with h = 1 at each of the six lattice points (1,1), (1,2), (2,1), (2,2), (3,1), (3,2) inside D to obtain a system of six equations for the six unknown temperatures on these lattice points. Solve the system to approximate the steady temperature distribution and plot the approximate surface using a software package.

Applying this average value property with h = 1 yields the following linear system:

$$u(1,1) = \frac{1}{4}(u(1,0) + u(1,2) + u(0,1) + u(2,1)) = \frac{1}{4}(4 + u(1,2) + u(2,1)),$$

$$u(1,2) = \frac{1}{4}(u(1,1) + u(1,3) + u(0,2) + u(2,2)) = \frac{1}{4}(4 + u(1,1) + u(2,2)),$$

$$u(2,1) = \frac{1}{4}(u(2,0) + u(2,2) + u(1,1) + u(3,1)) = \frac{1}{4}(u(1,1) + u(2,2) + u(3,1)),$$

$$u(2,2) = \frac{1}{4}(u(2,1) + u(2,3) + u(1,2) + u(3,2)) = \frac{1}{4}(u(2,1) + u(2,3) + u(3,2)),$$

$$u(3,1) = \frac{1}{4}(u(3,0) + u(3,2) + u(2,1) + u(4,1)) = \frac{1}{4}(u(3,2) + u(2,1)),$$

$$u(3,2) = \frac{1}{4}(u(3,1) + u(3,3) + u(2,2) + u(4,2)) = \frac{1}{4}(u(3,1) + u(2,2)),$$

which we solve in Mathematica 5.0 to obtain

$$\begin{pmatrix} u(1,1) \\ u(1,2) \\ u(2,1) \\ u(2,2) \\ u(3,1) \\ u(3,2) \end{pmatrix} = \begin{pmatrix} \frac{32}{21} \\ \frac{32}{21} \\ \frac{4}{7} \\ \frac{4}{7} \\ \frac{4}{21} \\ \frac{4}{21} \end{pmatrix}.$$

Plotting these lattice point values yields the following approximate temperature surface:

