2014-2015 学年第一学期《电工技术》课内考试卷(A卷)

授课班号 6252740-01~04 年级专业 2013 级 学号 _____ 姓名

题号	1	11	Ξ	四	五.	六	七	总分	审核
题分	20	14	10	14	12	14	16		
得分									

得分	评阅人

- **一、单项选择题**。在下列各题中,请将唯一正确的选项填入括号 内。(本题 10 小题, 每题 2 分, 共 20 分)
- 1. 电路如下图 Fig.1 所示, 电压和电流的正确关系式为.....(A)

- **A.** U = IR E **B.** U = IR + E **C.** U = -IR + E **D.** U = -IR E
- 2. 如图 **Fig.2** 所示, U_s , I_{si} , I_s , 均为正值, 且 I_{si} > I_{si} , 则供出功率的电源是...(C)

- **A.** 电压源 U_s **B.** 电流源 I_{s_1} **C.** 电流源 I_{s_2} **D.** 电流源 I_{s_2} 和电压源 U_s
- **A.** $8/3\Omega$
- **B.** 4Ω
- C. 6Ω
- **D.** 2Ω

Fig. 1

Fig. 2

- Fig. 3
- **A.** 线性电路中的电压、电流和功率 **B.** 线性电路中的电压和电流

- **C.** 非线性电路中的电压和电流 **D.** 非线性电路中的电压、电流和功率
- 5. 在直流稳态时,电感元件上.....
- A. 有电流,有电压 B. 有电流,无电压
- C. 无电流,有电压 D. 无电流,无电压
- 6. 实验室中的交流电压表和电流表,其读值是交流电的.....(D)
- A. 最大值

- **B.** 最小值 **C.** 瞬时值 **D.** 有效值

- 7. 已知某一阶线性电路的响应为 $i_L(t) = (2 e^{-10t}) \mathbf{A}$,则其初始值 $i_L(0_+)$ 为...(**D**)
- **A.** -1A
- **B.** 10A
- **C.** 2A
- **D.** 1A
- 几个正弦量画在同一相量图上时,它们必须是.....(С)
- **A.** 初相位相同

- **B.** 大小相等 **C.** 频率相同 **D.** 相位差相同
- 9. 在纯电容交流电路中,下列各式正确的是.....(A)
- **A.** $I = \omega C U$; **B.** $I = \frac{U}{\omega C}$; **C.** $i = \frac{u}{\omega C}$; **D.** $i = \frac{U}{X_C}$
- 10. 一只小鸟停留在高压输电线路上,不会触电致死,是因为.....(BorC)
- **A.** 小鸟的电阻非常大; **B.** 小鸟的身体绝对没有电流流过;
- **C.** 小鸟两脚间电压很小: **D.** 小鸟的脚是绝缘的。

得分	评阅人

二、电路如图所示, $I_{S}=2A$, $U_{S}=6V$, $R_{1}=2\Omega$, $R_{2}=1\Omega$, $R_{3}=3\Omega$, \mathbf{R}_{4} =6 Ω ,试用支路电流法计算 \mathbf{R}_{4} 两端的电压 \mathbf{U}_{R4} 。 (共 **14** 分)

$$I_1 = 2A$$
, $I_2 = 0A$, $I_3 = 2/3A$, $I_4 = 2/3A$ (各 3 分)

$$U_{R4} = 4V (2 \%)$$

得分

三、求 S 开关打开和闭合情况下 A 点的电位。(共 10 分)

S开关打开时, $V_A = 5V$ (5分)

S 开关闭合时, $V_A = 7V$ (5分)

得分	评阅人

四、已知图示电路原处于稳态,t=0时开关 S 闭合, $U_{S}=10V$, $R_{1}=10\Omega$, $R_{2}=5\Omega$, $C=6\mu F$.求: $t\geq 0$ 时,电容上的电压 $u_{C}(t)$ 和 R_{2} 上的电流 $i_{2}(t)$.(共 14 分)

$$u_c(0+) = 10V (3 \%)$$

$$u_c(\infty) = 10/3V (3分)$$

$$R_0 = 10/3\Omega$$
, $\tau = 2 \times 10^{-5}$ s (3 $\%$)

$$u_c(t) = \frac{10}{3} + \frac{20}{3} e^{-5 \times 10^4 t} (V) \quad (3 \%)$$

$$i_2(t) = \frac{2}{3} + \frac{4}{3} e^{-5 \times 10^4 t} (A) \quad (2 \%)$$

得分	评阅人

五、如图所示电路,已知 U_1 = 20V, U_2 = 2V, I_S = 5A, R_1 = 12 Ω , R_2 = 8 Ω , R_3 = 2 Ω , R_4 = 2 Ω , 画出戴维南等效电路并计算 U_{ab} 和等效电阻 R_0 (共 12 分)。

$$U_{ab} = 0V \quad (5 \, \%)$$

$$R_0 = 44/5\Omega = 8.8\Omega \ (5 \%)$$

戴维南等效电路图(2分)

得分	评阅人

六、已知电压 $u_c(t) = 5\sqrt{2}\sin 1000t$ V,试求(1)电压 u_c 的相量;(2)该电路的总的阻抗Z;(3)总的电压 \dot{U} ;(4)电路的平均功率P、无功功率O 和视在功率S。(共 **14** 分)

$$\dot{U}_C = 5 \angle 0^{\circ} \text{V} \quad (2 \text{ } \text{?})$$

$$Z = 3 + 3j = 3\sqrt{2} \angle 45^{\circ} \Omega \quad (3 \, \text{分})$$

$$\dot{U} = 15 \angle 90^{\circ} \text{V}, \quad \dot{I} = \frac{5}{2} \sqrt{2} \angle 45^{\circ} \text{A} \quad (3 \%)$$

$$P = 75/2W = 37.5W$$
 (2分)

$$Q = 75/2 \text{Var} = 37.5 \text{Var} (2 \text{ }\%)$$

$$S = 75\sqrt{2}/2V \cdot A = 53V \cdot A$$
 (2分)

得分	评阅人

(共16分)。

七、图示负载对称的三相电路中,三相对称电源相电压 $\dot{U}_{\rm A}=220\angle0^{\circ}$,每相负载 $Z_{\rm A}=Z_{\rm B}=Z_{\rm C}=8+{\rm j6}\,\Omega$ 。试求(1)线电压 $\dot{U}_{\rm AB}$, $\dot{U}_{\rm BC}$ 和 $\dot{U}_{\rm CA}$; (2)线电流 $\dot{I}_{\rm A}$ 、 $\dot{I}_{\rm B}$ 和 $\dot{I}_{\rm C}$; (3)三相有功功率。

$$\dot{U}_{AB} = 380\angle 30^{\circ} \text{V} \quad (4 \, \text{\frac{\psi}{D}}) , \quad \dot{U}_{BC} = 380\angle -90^{\circ} \text{V} \quad (1 \, \text{\frac{\psi}{D}}) , \quad \dot{U}_{CA} = 380\angle 150^{\circ} \text{V} \quad (1 \, \text{\frac{\psi}{D}})$$

$$\dot{I}_{A} = 22\angle -37^{\circ} \text{A} \quad (4 \, \text{\frac{\psi}{D}}) , \quad \dot{I}_{B} = 22\angle -157^{\circ} \text{A} \quad (1 \, \text{\psi}) , \quad \dot{I}_{C} = 22\angle 83^{\circ} \text{A} \quad (1 \, \text{\psi})$$

$$P = 11616 \text{W} \quad (4 \, \text{\psi})$$