SpaceTx cell type calling – combined "consensus" mapping

September 11, 2020 Renee Zhang

Intro

- Intuition: some of the computational methods may map "better" for some cell types, and some methods may map "better" for some other cell types
- Here, "better" means cleaner mapping in the spatial plot for those cell types with known layering knowledge, e.g. L2/3, etc.
- By combining all methods, can we arrive at a mapping that are overall "better"/cleaner in all cell types, by borrowing the strength of each individual method? → "Consensus" mapping
- Challenge: the quantitative ("probabilistic") cell type calling methods have different distributional property, i.e. some skewed to 1, some skewed to 0, etc.

A "qualitative" consensus by assigning negative weight

Arithmetic mean

Endo 20000 15000 10000 5000 -L5 NP 20000 15000 10000 5000 Macrophage Meis2 rmax 0.1 • 0.2 > 10000 • 0.3 • 0.4 5000 • 0.5 20000 15000 10000 5000 10000 15000 5000 10000 15000 5000 10000 15000 5000 10000 15000 (Eesh)

Negative weighting

Number of cells mapped to each subclass

subclass	n_ar_mean	n_neg_weight	n_geom_mean l	n_js_div
CR	0	0	0	0
SMC	0	0	0	0
Astro	0	2	2	0
Peri	2	1	0	0
Meis2	3	3	1	1
VLMC	3	1	2	
Endo	6	7	19	1
Macrophage	6	3	2	0
Sncg	13	13	12	10
Lamp5	17	30	32	37
Oligo	86	72	96	52
Vip	90	91	92	100
L5 NP	92	109	76	71
L6b	102	91	114	96
L5 IT	186	212	270	168
Sst	202	188	188	202
Pvalb	211	208	218	219
L4	271	460	474	494
L6 IT	403	383	358	311
L6 PT	507	557	508	521
L5 PT	609	272	327	400
L2/3 IT	727	833	745	850

Nearly no agreement on rare cell type callings

More agreement on abundant cell types

Qualitative agreement measure

- Cohen's/Fleiss's Kappa: inter-rater reliability measure for categorical data between two/multiple raters
- For subclass types, Fleiss's Kappa = 0.7022774

For broad class types, Fleiss's Kappa = 0.8051847

```
> pairwise_agreement(df_class, cols=cols)

ar_mean neg_weight geom_mean js_div

ar_mean 1.0000000 0.7093764 0.7140030 0.7018781

neg_weight 0.7093764 1.0000000 0.9122499 0.9150444

geom_mean 0.7140030 0.9122499 1.0000000 0.8799261

js_div 0.7018781 0.9150444 0.8799261 1.0000000
```