Année Universitaire 2020- 2021 Thermodynamique (S1 : SMI/A)

Série : II

Exercice 1

On veut rafraichir une bouteille de jus de 25° C à 5° C dans un seau à glace isotherme contenant 1L d'eau à 15° C. La masse de la bouteille de jus est 400g, sa chaleur massique 0.9KJ/Kg/ $^{\circ}$ C. La masse de jus est 750g, sa chaleur massique 4 KJ/Kg/ $^{\circ}$ C. Calculer la masse minimale de glace m_g à -15 $^{\circ}$ C nécessaire à cette opération.

On donne la chaleur latente de fusion de la glace $L_{\rm f}$ = 334 KJ/Kg ; chaleur massique de la glace $c_{\rm g}$ = 2,1 KJ/Kg/°C et chaleur massique de l'eau $c_{\rm 0}$ = 4,18 KJ/Kg/°C.

Exercice 2

On veut remplir une baignoire de 100 litres d'eau à 32°C. On dispose pour cela de deux sources d'eau, l'une froide à 18°C, l'autre chaude à 60°C. Si on néglige la capacité thermique de la baignoire et les diverses pertes thermiques, quel volume doit-on prélever à chacune des deux sources ?

On donne la masse volumique de l'eau $\rho=1$ Kg.litre⁻¹.

Exercice 3

On place dans un calorimètre une masse M=400~g d'eau que l'on chauffe à l'aide d'une résistance électrique alimentée par un courant d'intensité 0,85 A, sous une tension de 220 V. Il en résulte un accroissement régulier de la température de l'eau de 4,86 °C par minute.

- a) Quelle est la capacité thermique C du calorimètre ?
- b) Trouvez la valeur en eau du calorimètre.

Exercice 4

Pour déterminer la puissance d'une plaque chauffante électrique, on mesure la durée nécessaire à la vaporisation de 0,51 d'eau en ébullition à 100° C. On trouve 9,5 mn. Quelle est la puissance de la plaque. On donne la chaleur latente de vaporisation $L_v = 2257 \; KJ/Kg$

Exercice 5

Un thermomètre à mercure, gradué linéairement, est plongé dans la glace fondante ; le mercure affleure à la division -2. Dans la vapeur d'eau bouillante, sous 76 cm de mercure, il affleure la division +103.

- a) Dans un bain tiède, le mercure affleure à la division +70. Déterminez la température θ du bain, indiquée par ce thermomètre.
- b) Plus généralement, déterminez la correction à apporter à la lecture de la division, sous la forme θ -n=f(n). En déduire la température θ pour laquelle la correction n'est pas nécessaire.