Cryptographic hashing

- ◆ Two families of hash functions:
- 1. Non-keyed hash functions:
 - H: $\{0,1\}^* \rightarrow \{0,1\}^n$ (e.g. n=160)
 - Used for password protection, digital signatures, ...
- 2. Keyed hash functions:
 - H_{kev} : $\{0,1\}^* \rightarrow \{0,1\}^n$ (e.g. n=96)
 - Used for message integrity (MAC).

Non-keyed hash functions

 $H: \{0,1\}^* \rightarrow \{0,1\}^n$

- The hash H(M) of a message M is called a Message Digest.
- ◆ Hash functions satisfy different properties depending on the application.

2

Preimage resistance

- ♦ H: $\{0,1\}^* \rightarrow \{0,1\}^n$ is preimage resistant if:
 - Given random y it is hard to find M s.t. H(M) = y .
- ◆ Application: protecting the password file.

> Never store pwd in clear. Store hash of pwd.

2nd preimage resistance

- ♦ H: $\{0,1\}^* \rightarrow \{0,1\}^n$ is 2^{nd} preimage resistant if:
 - Given random M_1 it is hard to find M_2 s.t. $H(M_1) = H(M_2)$.
- ◆ Application: virus protection (Tripwire)

File System
File1
File2

Floppy H(File1) H(File2)

➤ Defeat Tripwire: virus must find F s.t. H(F) = H(File1)

Collision resistance

- ♦ H: $\{0,1\}^* \rightarrow \{0,1\}^n$ is collision resistant if:
 - It is hard to find M_1 , M_2 s.t. $H(M_1) = H(M_2)$.
- ◆ Application: digital signatures.
 - Signature = Sig_{alice} [H(M) , alice-priv-key]
- ♦ Suppose adversary has M_1 , M_2 s.t. $H(M_1) = H(M_2)$
 - Adversary asks Alice to sign M_1 .
 - Alice's sig is also a sig on M2.

Relation between properties

◆ Roughly speaking:

Collision resistance \Rightarrow $2^{\rm nd} \ {\rm preimage} \ {\rm resistance} \Rightarrow$ ${\rm preimage} \ {\rm resistance}.$

- ♦ In other words:
 - Hardest to construct collision resistant hashing.
 - Much easier to construct 2nd preimage resistance.
- ◆ From here on: focus on collision resistance.

6

Birthday attack

♦ Birthday paradox:

 $r_1, ..., r_n \in [0,1,\underline{...}_B]$ indep. random integers. When $n = 1.2 \sqrt{B}$ then

 $Pr[\exists i \neq j : r_i = r_i] > \frac{1}{2}$

- ♦ msg-digest only 64 bits long \Rightarrow can find collision in 2^{32} tries.
- ◆ Typical digest size = 160 bits. (e.g. SHA-1) ⇒ collision time is 2⁸⁰ tries.

Constructions

 All constructions are iterated: Merkle-Damgard method.

◆Terminology: F(M_i, H_i) compression func.

 $|M_i|$ = block-size = 512 bits ; $|H_i|$ = chain-var = 160 bits

Motivation

- ◆ Why Merkle-Damgard iterated construction?
- ullet Lemma: Suppose compression func $F(M_i, H_i)$ is collision resistant.
 - ⇒ resulting hash function is coll. resistant.
- ♦ Proof:

Adversary finds M_1 , M_2 s.t. $H(M^1) = H(M^2)$ Then $\exists i$ s.t. $F(M_{i_1}^1, H_{i_1}^1) = F(M_{i_1}^2, H_{i_1}^2)$

Constructions

Main point:

To construct CRHF suffices to construct collision resistant compression functions.

F:
$$\{0,1\}^{512} \times \{0,1\}^{160} \rightarrow \{0,1\}^{160}$$

- Compression functions:
 - 1. Based on block ciphers. Typically slow.
 - 2. Customized compression functions. Faster

10

Comp. func. from block ciphers

- lacktriangle Let E(M,k) be a block cipher.
- ♦ Matyas-Meyer function: $F(M, H) = E(M, g(H) \oplus M)$

♦ Why is this collision resistant?

Thm: suppose $E_k(M) = E(M,k)$ is an ideal cipher. \Rightarrow finding collision takes $2^{n/2}$ evals of E.

◆ 2^{n/2}: best possible! note: "black box security"

Customized compression func.

◆ Several special build compr. functions exist.

On 200MhZ Pentium:

Name	hash-len	speed	<u>comment</u>
MD4	128		Prop. Broken. Time: 226
MD5	128	28.5 MB/sec	collis. for compr. func.
SHA-1	160	15.25 MB/sec	NIST
RIPE-MD	160	12.6 MB/sec	RIPE

◆ Note: faster than 3DES, IDEA, etc.

12

Keyed hash functions

Keyed hash functions

 $H_k: \{0,1\}^* \rightarrow \{0,1\}^n$

- ◆ Note: key k needed to evaluate function.
- ◆ Main application:

Message Authentication Codes (MAC) Guarantee message integrity.

♦ H_k(M) is a cryptographic "checksum". Ensures message has not been tampered.

..

Two scenarios

◆ Network scenario:

Alice and Bob share a secret key k.

- ◆ Adversary can't build valid MAC for M' ≠ M.
- ◆ Note: MAC used for integrity. Not privacy.
- ◆ Digital signatures work, but are too slow.

Second scenario

◆ File system:

Bob protects a file on his file system.

- ◆ When accessing file, Bob verifies MAC.
- ◆ No one can modify file (without Bob's pwd).

16

What is a secure MAC?

MAC H_k(M,r) (r - random)
 is secure if not efficient adversary can
 win the following game with prob. > ε

Constructing MACs

- ◆ Two types of constructions:
 - · Cryptographic MAC:

based on block ciphers (CBC-MAC) or non-keyed hash functions (HMAC).

Information theoretic MAC:
 Based on universal hashing.

18

CBC-MAC

 Most commonly used in banking industry. secret key = (k, k', IV)

◆ If E is a MAC then CBC-E is also a MAC.

MAC length

- ◆ Typical CBC-MAC length = 40 bits.
 - \Rightarrow security of 2⁴⁰ (guessing prob).
- ◆ Note: no birthday attack on MACs. ⇒ MACs are shorter than message-digest.

Hash based MAC

- ◆ MACs based on a non-keyed hash function h.
- ♦ Attempt 1: $MAC_k(M) = h(k || M)$ Insecure. Adv. can elongate M.
- ♦ Attempt 2: $MAC_k(M) = h (M || k)$ Insecure. Birthday attack.
- ◆ Envelope method: $MAC_{k,k'}(M) = h(k||M||k')$

Preferred method: HMAC

- ◆ HMAC used in TPsec, SSL, TLS.
- $+ \mathsf{HMAC}_{k}(\mathsf{M}) = \mathsf{h}(\mathsf{k}||\mathsf{pad}_{1}||\mathsf{h}(\mathsf{k}||\mathsf{pad}_{2}||\mathsf{M}))$
- **♦** "Thm":

If compr. func. In h is a MAC and h is collision resistant then HMAC is a MAC.

♦ In IPsec, SSL use 96 bit HMAC.

Performance

◆ HMAC is much faster than CBC-MAC.

On 200MhZ Pentium:

Name	hash-len	speed
MD5	128	28.5 MB/sec
SHA-1	160	15.25 MB/sec
3DES	64	1.6 MB/sec
IDFA	64	3 MB/sec

Both encryption and integrity

◆ Encryption key K_F. ◆ Method 1: $MAC(M,K_I)$ ◆ Method 2: $MAC(C, K_I)$ Enc K_E

 $MAC key = K_1$

◆ Wrong:

 $MAC(M, K_I)$