

October 2013

FDP070AN06A0

N-Channel PowerTrench[®] MOSFET 60 V, 80 A, 7 m Ω

Features

- $R_{DS(on)}$ = 6.1 m Ω (Typ.) @ V_{GS} = 10 V, I_D = 80 A
- $Q_{g(tot)} = 51 \text{ nC (Typ.)} @ V_{GS} = 10 \text{ V}$
- · Low Miller Charge
- Low Q_{rr} Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)

Formerly developmental type 82567

Applications

- Synchronous Rectification for ATX / Server / Telecom PSU
- · Battery Protection Circuit
- Motor Drives and Uninterruptible Power Supplies

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter	FDP070AN06A0	Unit	
V _{DSS}	Drain to Source Voltage	60	V	
V _{GS}	Gate to Source Voltage	±20	V	
	Drain Current			
I_D	Continuous (T _C < 97°C, V _{GS} = 10V)	80	Α	
	Pulsed	Figure 4	Α	
E _{AS}	Single Pulse Avalanche Energy (Note 1)	190	mJ	
	Power dissipation	175	W	
P_{D}	Derate above 25°C	1.17	W/°C	
T _J , T _{STG}	Operating and Storage Temperature -55 to 175			

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case, Max.	0.86	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient, Max. (Note 2)	62	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Package Reel Size		Quantity
FDP070AN06A0	FDP070AN06A0	TO-220	N/A	N/A	50 units

Electrical Characteristics $T_C = 25$ °C unless otherwise noted.

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
Off Chara	cteristics						
B _{VDSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS}	= 0V	60	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 50V		-	-	1	^
		$V_{GS} = 0V$	$T_{\rm C} = 150^{\rm o}{\rm C}$	-	-	250	μA
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20V		-	-	±100	nA
On Chara	cteristics						
V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D =$	250μΑ	2	-	4	V
,		I _D = 80A, V _{GS} =			0.0061	0.007	
r _{DS(ON)}	Drain to Source On Resistance	$I_D = 80A, V_{GS} = T_J = 175^{\circ}C$	10V,	-	0.0127	0.015	Ω
Dynamic	Characteristics				•		
C _{ISS}	Input Capacitance			-	3000	_	pF
C _{OSS}	Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$ f = 1MHz		- \	510	-	pF
C _{RSS}	Reverse Transfer Capacitance			-	230	-	pF
$Q_{g(TOT)}$	Total Gate Charge at 10V	V _{GS} = 0V to 10V	'		51	66	nC
$Q_{g(TH)}$	Threshold Gate Charge	V _{GS} = 0V to 2V	V _{DD} = 30V	-	5.4	7	nC
Q _{gs}	Gate to Source Gate Charge		I _D = 80A	-	17	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau		$I_g = 1.0 \text{mA}$	-	11.6	-	nC
Q _{gd}	Gate to Drain "Miller" Charge			-	16	-	nC
Switching	Characteristics (V _{GS} = 10V)						
t _{ON}	Turn-On Time			- /	-	256	ns
t _{d(ON)}	Turn-On Delay Time			-/	12	-	ns
t _r	Rise Time	$V_{DD} = 30V, I_{D} =$	80A	-	159	-	ns
t _{d(OFF)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GS} = 5.6\Omega$		-	27	-	ns
t _f	Fall Time			-	35	-	ns
t _{OFF}	Turn-Off Time			-	-	93	ns
 Drain-Sou	urce Diode Characteristics						
		I _{SD} = 80A		-	-	1.25	V
V_{SD}	Source to Drain Diode Voltage	I _{SD} = 40A		-	-	1.0	V
t _{rr}	Reverse Recovery Time	I_{SD} = 75A, dI_{SD}/dI_{SD}	dt = 100A/μs	-	-	34	ns
Q _{RR}	Reverse Recovered Charge	$I_{SD} = 75A$, $dI_{SD}/dt = 100A/\mu s$		-	-	35	nC

Notes: 1: Starting T_J = 25°C, L = 93 μ H, I_{AS} = 64A. 2: Pulse width = 100s.

Figure 1. Normalized Power Dissipation vs Ambient Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Peak Current Capability

Typical Characteristics T_C = 25°C unless otherwise noted

Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature

Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

Figure 13. Capacitance vs Drain to Source Voltage

Figure 14. Gate Charge Waveforms for Constant Gate Current

Test Circuits and Waveforms

Figure 15. Unclamped Energy Test Circuit

Figure 16. Unclamped Energy Waveforms

Figure 17. Gate Charge Test Circuit

Figure 18. Gate Charge Waveforms

Figure 19. Switching Time Test Circuit

Figure 20. Switching Time Waveforms

SABER Electrical Model rev March 2003 template FDP070AN06A0 n2,n1,n3 electrical n2,n1,n3 var i iscl dp..model dbodymod = (isl=7.6e-12,nl=1.04,rs=2.2e-3,trs1=2.7e-3,trs2=2e-7,cjo=1.6e-9,m=0.55,tt=5e-12,xti=3.9) dp..model dbreakmod = (rs=8e-1,trs1=5e-4,trs2=-8.9e-6) dp..model dplcapmod = (cjo=1.05e-9,isl=10e-30,nl=10,m=0.45) m..model mmedmod = (type=_n,vto=3.7,kp=10,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=4.7,kp=100,is=1e-30, tox=1) m..model mweakmod = $(type=_n, vto=3.01, kp=0.03, is=1e-30, tox=1, rs=0.1)$ LDRAIN sw vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-2) **DPLCAP** DRAIN sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2,voff=-4) 10 sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.5,voff=0.5) RLDRAIN sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.5,voff=-1.5) RSLC1 c.ca n12 n8 = 1.5e-9RSLC₂ c.cb n15 n14 = 1.5e-9 ISCL c.cin n6 n8 = 2.9e-9DBREAK 50 dp.dbody n7 n5 = model=dbodymod RDRAIN dp.dbreak n5 n11 = model=dbreakmod 8 ESG (dp.dplcap n10 n5 = model=dplcapmod ■ DBODY **EVTHRES** 21 MWFAK spe.ebreak n11 n7 n17 n18 = 62 LGATE EVTEME **RGATE** MMED spe.eds n14 n8 n5 n8 = 1 **EBREA** 9 20 spe.egs n13 n8 n6 n8 = 1 MSTRO RLGATE spe.esq n6 n10 n6 n8 = 1 **LSOURCE** spe.evthres n6 n21 n19 n8 = 1 CIN SOURCE spe.evtemp n20 n6 n18 n22 = 1 **RSOURCE** RLSOURCE i.it n8 n17 = 1RBREAK I.lgate n1 n9 = 4.8e-917 18 I.ldrain n2 n5 = 1.0e-9 **₹**RVTEMP I.Isource n3 n7 = 3e-9 СВ 19 CA ΙT res.rlgate n1 n9 = 48 VBAT res.rldrain n2 n5 = 10 **EGS** res.rlsource n3 n7 = 3 m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u **RVTHRES** m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1=7.1e-4,tc2=-5.5e-7 res.rdrain n50 n16 = 1.3e-3, tc1=1.7e-2,tc2=4e-5 res.rgate n9 n20 = 2.7res.rslc1 n5 n51 = 1e-6, tc1=3e-3,tc2=1e-5 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 3.1e-3, tc1=1e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-5.2e-3,tc2=-1.5e-5 res.rvtemp n18 n19 = 1, tc1=-3e-3,tc2=1.3e-6 sw vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/250))** 10))

Mechanical Dimensions

Figure 21. TO-220, Molded, 3-Lead, Jedec Variation AB

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT220-003

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ $CROSSVOLT^{\text{TM}}$

CTI ™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficentMax™ ESBC™

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FPS™

F-PFS™ FRFET® Global Power ResourceSM GreenBridge™ Green FPS™ Green FPS™ e-Series™

G*max*™ GTO™ IntelliMAX™

ISOPLANAR™ Marking Small Speakers Sound Louder

and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™

MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver® OptoHiT™ OPTOLOGIC® OPTOPLANAR® PowerTrench® PowerXS™

Programmable Active Droop™

QFET QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™ Solutions for Your Success™

STEALTH™

SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SvncFET™

Sync-Lock™ SYSTEM®* TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®*

UHC[®] Ultra FRFET™ UniFFT™ VCX™ VisualMax™ VoltagePlus™ XS™

μSerDes™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete Not In Production		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev 166