

Workshop "Data Bahia" UFBA, Fiocruz, Sorbonne Universités Salvador de Bahia, Brazil April 25-26, 2016

Supporting big data in Health and Bioinformatics through hybrid parallel architectures and distributed execution engines

Marcos Barreto

Distributed Systems Laboratory (LaSiD) Computer Science Department (DCC) Federal University of Bahia (UFBA)

Outline

- Part I:
 - Bioinformatics workflows on hybrid parallel architectures.
- Part II
 - Social and healthcare data integration supported by distributed execution engines.

Hybrid parallel architectures

1380

Nagasaki Univ.

ATI Radeon

47 kW

Top500 #456

1266

Barcelona

81.5 kW

Top500 #177

+ multi-MIC systems.

What technology is dominant?

1381

Intel Corp

72.9 kW

Knights Corner

Top500 #150

1400

1200

1000

800

600

400

200

Higher is Better Source: www.preen500.org

MFLOPS/Watt

Hybrid parallel architectures

- Why they are hard to program?
 - Parallel programming => <u>performance</u>-oriented programming.
 - Users must explicitly deal with scalability, load (tasks + data) balancing, synchronization, and communication issues.

Our approach

Performance model, based on algorithm parameters (AP) and

system parameters (SP).

of processors, # of processes # and size of data blocks

Cost of one arithmetic operation Communication (start-up + word transfer) times

Auto-tuning methodology: estimate parameters during setup.

Symbol	Description				
k	Computation parameter for each execution system				
N	Order of the polynomial. In the experiment	s it ranges from 2 to 40			
n	The length of the sum. In the experiments it ranges from 1.3 to 25.4 million terms				
c	Number of CPU cores				
w	GPU workload	1 1/2			
g_w	Number of GPUs	$t(N, n, c, w) = \frac{k \cdot N^2 \cdot n}{c + g_w \cdot S_{\frac{g_w}{c}}} + t_c \cdot c + t_{g_w(w)} \cdot g_w.$			
t_C	Cost of initialization of a thread in CPU $c + g_w \cdot S_{\frac{g_w}{c}}$				
t_{g_w}	Cost of initialization of a kernel in GPU				
$S_{\frac{g_w}{c}}$	Relative speedup of a GPU with respect to a core in the CPU				

Heterogeneous Computational Model for Landform Attributes Representation on Multicore and Multi-GPU Systems

BORATTO, M.; BARRETO, M.; ALONSO, P.; RAMIRO, C. (ICCS 2012)

Sequential	OMP	1GPU	2GPU	Model
84.49	12.32	12.44	14.19	13.61
386.17	41.85	21.36	19.39	18.04
1, 166.88	114.55	43.31	31.48	25.53
2,842.52	268.32	90.57	57.03	49.29
5,916.06	544.93	172.71	101.08	88.86
11,064.96	1,011.42	310.53	176.88	156.72
24, 397.66	1,777.25	521.63	285.07	256.62
30,926.82	2,700.00	828.50	450.67	404.25
46, 812.70	4, 252.69	1,261.09	666.77	600.90
	84.49 386.17 1,166.88 2,842.52 5,916.06 11,064.96 24,397.66 30,926.82	84.49 12.32 386.17 41.85 1,166.88 114.55 2,842.52 268.32 5,916.06 544.93 11,064.96 1,011.42 24,397.66 1,777.25 30,926.82 2,700.00	84.49 12.32 12.44 386.17 41.85 21.36 1,166.88 114.55 43.31 2,842.52 268.32 90.57 5,916.06 544.93 172.71 11,064.96 1,011.42 310.53 24,397.66 1,777.25 521.63 30,926.82 2,700.00 828.50	84.49 12.32 12.44 14.19 386.17 41.85 21.36 19.39 1,166.88 114.55 43.31 31.48 2,842.52 268.32 90.57 57.03 5,916.06 544.93 172.71 101.08 11,064.96 1,011.42 310.53 176.88 24,397.66 1,777.25 521.63 285.07 30,926.82 2,700.00 828.50 450.67

Automatic routine tuning to represent landform attributes on multicore and multi-GPU systems

BORATTO, M.; BARRETO, M.; ALONSO, P.; GIMENÉZ, D. (Journal of Supercomputing, 2014)

System 2:

- 4 NVIDIA Tesla C2070 (240 cores/GPU), 2 Intel Xeon quadcore processors (2.4 GHz, 48 GB DDR3)
- Number of CPU cores (c) = 16
- Workload (w) = (GPU, GPU, GPU, GPU, CPU) = (22%, 22%, 22%, 22%, 12%)

System 2	w =	: 10	w =	: 15	w =	20	w =	: 22
N	\overline{c}	t(N, n, c, w)						
10	8	59.25	10	48.50	10	50.93	10	47.53
20	8	479.88	14	1,227.78	14	940.60	14	860.79
30	10	1,623.82	14	2,113.72	14	1, 200.96	16	1,090.76
40	10	3,858.78	16	3,107.71	16	1,390.07	16	1,260.05

Current efforts

• Use of <u>functional performance models</u> (FPM) to data partitioning in hybrid parallel architectures.

Asynchronous task assignment model applied to matrix polynomials and

triangular linear systems.

Complete abstraction of the underlying architecture.

run(myApp, inputData, NumberofCores)

Current efforts - Bioinformatics

Adaptation of bioinformatics tools to hybrid architectures through performance and auto-tuning models

Phylogenetic analysis

Virtual screening

BLAST, ClustalW, PhyML, ProtTest. Tree-Puzzle

Autodock, Gromacs

Leishmania, EpiGen-Brasil

FPM + auto-tuning

Part II – Social and healthcare data integration

- The '100 million cohort project' challenge
 - Introductory conference: Mauricio Barreto "Evaluating the impact of social protection policies on health: the 100 million Brazilian cohort"

Proposed platform

Developers (Computing, Statistics, Epidemiology)

Cohort setup and management

 Longitudinal merge of CadastroÚnico (CadU) based on NIS (social ID) attribute

	Table	Filesize	# of lines	Version
2007	A	11,4GB	21.028.364	
2007	В	86,8GB	79.050.446	
2008	A	12,5GB	22.767.472	
2008	В	100,1GB	89.915.568	V6
2009	A	13,5GB	24.661.693	vo
2009	В	108,8GB	97.640.845	
2010	A	14,3GB	26.107.223	
2010	В	114,4GB	102.663.287	
2011	1	25GB	27.014.194	
2011	4	4,3GB	106.433.938	
2012	1	11GB	30.268.867	
2012	4	27GB	115.636.503	
2013	1	6.5GB	32.897.120	V7
2013	4	29GB	123.116.446	v <i>i</i>
2014	1	7.1GB	35.439.015	
2014	4	34GB	130.430.300	
2015	1	7.6GB	35.439.015	
2010	4	36GB	136.368.326	

A Spark-based workflow for probabilistic record linkage of healthcare data PITA, R.; PINTO, C.; MELO, P.; SILVA, M.; BARRETO, M.; RASELLA, D. (BeyondMR - EDBT/ICDT 2015)

Record linkage pipeline - methods

Full probabilistic: Sorensen (Dice) index applied to Bloom filters.

$$D_{a,b} = \frac{2h}{|a| + |b|} = [0, 1]$$

h = number of 1's at same position in both Bloom filters

a = number of 1's in Bloom filter A

b = number of 1's in Bloom filter B

Hybrid approach: individual comparison of attributes based on different rules

RULES:

Correlação probabilística de bases de dados governamentais PINTO, C.: PITA, R.: MELO, P.: SENA, S.: BARRETO, M. (SBBD 2015)

Record linkage pipeline - results

• Controlled scenario: 2 databases

Databases	Total # of records	True matches
Rotavirus (diarrhea)	686	486 (positive exams)
Other causes (children treated at outpatient clinics)	9,678	

- 4 simulated scenarios
 - different percentage of changes in records

	Cenário 1 (10,3%)	Cenário 2 (11,3%)	Cenário 3 (10,3%)	Cenário 4 (5,15%)
Tradicional (sem blocos)	482	481	479	482
Tradicional (com blocos)	444	332	466	458
Alternativo (sem blocos)	482	482	480	486
Alternativo (com blocos)	482	482	472	486

Tradicional = full prob. Alternativo = hybrid prob.

- Main metrics:
 - Sensitivity ('sensibilidade')
 - Positive predictive value (VPP)

	Com blocag	em	Sem blocag	em
Dice	Sensibilidade (%) VPP (%)		Sensibilidade (%)	VPP (%)
10000	69.3	100.0	8.8	100.0
9800	71.2	100.0	12.8	100.0
9600	75.3	100.0	59.5	100.0
9400	79.4	100.0	86.6	100.0
9200	82.3	100.0	95.3	100.0
9000	86.4	100.0	98.1	100.0
8800	91.4	100.0	98.8	100.0
8600	91.4	100.0	99.0	100.0
8400	91.4	100.0	99.2	99.8
8200	91.4	100.0	99.2	99.8
8000	91.4	100.0	99.2	99.8
7000	91.4	100.0	99.2	98.2

Record linkage pipeline - results

Databases	Linked pairs		True positives (within linked pairs)	
	Full prob.	Hybrid prob.	Full prob.	Hybrid prob.
CadU (tuberculosis) X SINAN (Sergipe)	398	311	309 (77,63%)	299 (96,14%)
CadU (tuberculosis) X SINAN (Sta. Catarina)	661	500	551 (83,35%)	462 (92,4%)
CadU (tuberculosis) X SIH (Sergipe)	40	24	23 (57,5%)	23 (95,83%)
CadU (tuberculosis) X SIH (Sta. Catarina)	140	95	83 (59,28%)	86 (90,52%)

Sergipe: CadU (1,447,512), SIH (49), SINAN (624)

Sta. Catarina: CadU (1,988,599), SIH (330), SINAN (2049)

Databases	Linked pairs	True positives
SIM (Manaus) X BCG vaccination (Manaus)	2,264	2,172 (95,9%)

BCG Manaus: 156,331 SIM: 16,260

Dice	Linked pairs	True pairs	Sensitivity (%)	Specificity (%)	PPV (%)
≥ 10000	952	952	43,83	100,00	100,00
≥ 9800	1234	1234	56,81	100,00	100,00
≥ 9600	1680	1678	77,26	97,83	99,88
≥ 9400	1960	1950	89,78	89,13	99,49
≥ 9200	2151	2119	97,56	65,22	98,51
≥ 9110	2247	2169	99,86	15,22	96,53

Current efforts

Cohort setup & management

- 121 million records found! => deduplication
- How to deal with family dynamics in CadU?
 - People changing NIS code during relisting.
- Construction of the cohort's profile
 - baseline + variables to be used in each desired study.
 - currently 15 sub-projects (tuberculosis, leprosy, HIV, suicides, nutritional evaluation etc).

Scalability tests of linkage routines

 Performance and scalability evaluation using the CIMATEC's Yemoja (#2 in LatAM) supercomputer

Number of nodes (20 cores / node)	Larger Database (# records)	Smaller Database (# records)	Execution Time (seconds)
30	1,000	1,000	11
30	100,000	1,000	24
30	500,000	1,000	98
40	1 million	1,000	240
100	40 million	1,000	200
60	81 million	1,000	

Current efforts

Metadata & indexing

(payments received along the observed period)

Workshop "Data Bahia" UFBA, Fiocruz, Sorbonne Universités Salvador de Bahia, Brazil April 25-26, 2016

Thank you!

Merci beaucoup!

Marcos Barreto

Distributed Systems Laboratory (LaSiD)
Computer Science Department (DCC)
Federal University of Bahia (UFBA)