

Steps:

1. Determine the quantity of bars of the footing.

LEGEND:

If there is no input on the quantity box, but only on the spacing.

$$\begin{split} Qty_{_{L}} &= Qty_{_{F}} \bigg[rounded \ up \ to \ whole \ number \bigg(\frac{F_{_{W}} - 2CC_{_{F}}}{S_{_{L}}} + \ 1 \bigg) \bigg] \\ Qty_{_{U}} &= Qty_{_{F}} \bigg[rounded \ up \ to \ whole \ number \bigg(\frac{F_{_{W}} - 2CC_{_{F}}}{S_{_{U}}} + \ 1 \bigg) \bigg] \\ Qty_{_{T}} &= Qty_{_{F}} \bigg[rounded \ up \ to \ whole \ number \bigg(\frac{F_{_{L}} - 2CC_{_{F}}}{S_{_{T}}} + \ 1 \bigg) \bigg] \end{split}$$

If there is an input on the quantity box.

$$\begin{aligned} Qty_{_L} &= Qty_{_F} \bullet Qty_{_{L(input)}} \\ Qty_{_U} &= Qty_{_F} \bullet Qty_{_{U(input)}} \\ Qty_{_T} &= Qty_{_F} \bullet Qty_{_{T(input)}} \end{aligned}$$

Example

For F-1

Since there is no input on the quantity box of each reinforcement. Thus,

$$Qty_L = 3\left(\frac{4000 - 2(75)}{125} + 1\right) = 3(31.8) = 3(32) = 96 \ pcs.$$

$$Qty_U = 3\left(\frac{4000 - 2(75)}{300} + 1\right) = 3(13.8) = 3(14) = 42 \ pcs.$$

$$Qty_T = 3\left(\frac{5500 - 2(75)}{300} + 1\right) = 3(18.8) = 3(19) = 57 \ pcs.$$

For F-2

Since there is an input on the quantity box of each reinforcement. Thus,

$$Qty_L = 12.11 = 132 \ pcs.$$

 $Qty_T = 12.11 = 132 \ pcs.$

2. The program will compute the required length of each quantity. (The answer must be converted to meters)

LEGEND:

$$L_{B} of Qty_{U} = F_{L} - 2CC_{F} + 2H_{L}$$

$$L_{B} of Qty_{T} = F_{W} - 2CC_{F} + 2H_{L}$$

Example:

For F-1

$$L_B of Qty_L = 5500 - 2(75) + 2(450) = 6250 mm = 6.25 m$$

$$L_B \text{ of } Qty_{II} = 5500 - 2(75) + 2(450) = 6250 \text{ } mm = 6.25 \text{ } m$$

$$L_B of Qty_T = 4000 - 2(75) + 2(450) = 4750 mm = 4.75 m$$

For F-2

$$L_B of Qty_L = 3800 - 2(75) + 2(450) = 4550 mm = 4.55 m$$

$$L_{R} of Qty_{T} = 3800 - 2(75) + 2(450) = 4550 mm = 4.55 m$$

3. The program will check the available manufactured bar lengths. And will compute the following equations to determine the manufactured bar length and its corresponding manufactured quantity.

LEGEND:			

For Combined Footing

a) If
$$(L_{_B}of\ Qty_{_L} + L_{_B}of\ Qty_{_T}) \leq Largest\ L_{_M}$$
 and $db_{_L} = db_{_U} = db_{_T}$

I. Case 1:
$$(Qty_L + Qty_U) < Qty_T$$

For
$$(Qty_I + Qty_{II})$$

$$Qty_{p} = \frac{L_{_{M}}}{L_{_{B}}of\ Qty_{_{L}} + L_{_{B}}of\ Qty_{_{T}}}$$

$$Qty_{M(a)} = \frac{Qty_{L} + Qty_{U}}{Qty_{p}(round\ down\ to\ whole\ number)}$$

$$L_{E} = \left[Qty_{M}(round\ up\ to\ whole\ number) - Qty_{M}\right] \bullet L_{M}$$

And

$$Total \ Wastage = L_{_E} + L_{_W} \Big[Qty_{_M} (round \ down \ to \ whole \ number) \Big]$$

The manufactured bar length that has the smallest total wastage will be the chosen manufactured bar length and its corresponding manufactured quantity

For Qty_T

$$Qty_{p} = \frac{L_{M}}{L_{p} of \ Qty_{T}}$$

$$Qty_{_T} - Qty - Qty_{_U}$$

$$Qty_{M} = \frac{Qty_{T} - Qty_{U} - Qty_{U}}{Qty_{p}(round\ down\ to\ whole\ number)}$$

$$\boldsymbol{L_{E}} = \left[\textit{Qty}_{\textit{M}}(\textit{round up to whole number}) - \textit{Qty}_{\textit{M}} \right] \bullet \boldsymbol{L_{\textit{M}}}$$

And

$$Total \ Wastage = L_{_E} + L_{_W} \Big[Qty_{_M}(round\ down\ to\ whole\ number) \Big]$$

The manufactured bar length that has the smallest total wastage will be the chosen manufactured bar length and its corresponding manufactured quantity

II. Case 2:
$$\left(Qty_L + Qty_U\right) \ge Qty_T$$

For $Qty_{_T}$

$$Qty_{p} = \frac{L_{M}}{L_{B} of \ Qty_{L} + L_{B} of \ Qty_{T}}$$

$$Qty_{M(a)} = \frac{Qty_{_T}}{Qty_{_P}(round\ down\ to\ whole\ number)}$$

$$L_{_E} = \left[Qty_{_M}(round\ up\ to\ whole\ number) - Qty_{_M}\right] \bullet\ L_{_M}$$

And

$$Total \ Wastage = L_{_E} + L_{_W} \Big[Qty_{_M}(round\ down\ to\ whole\ number) \Big]$$

The manufactured bar length that has the smallest total wastage will be the chosen manufactured bar length and its corresponding manufactured quantity

$$\mathbf{For}\left(Qty_{_{L}}+Qty_{_{U}}\right)$$

$$Qty_{p} = \frac{L_{M}}{L_{B} of \ Qty_{L}}$$

$$Qty_{_{M}} = \frac{_{Qty_{_{L}} + Qty_{_{U}} - Qty_{_{T}}}}{_{Qty_{_{p}}(round\ down\ to\ whole\ number)}}$$

$$L_{E} = \left[Qty_{M}(round up to whole number) - Qty_{M} \right] \bullet L_{M}$$

And

$$Total \ Wastage = L_{_E} + L_{_W} \Big[Qty_{_M} (round \ down \ to \ whole \ number) \Big]$$

The manufactured bar length that has the smallest total wastage will be the chosen manufactured bar length and its corresponding manufactured quantity

b) If
$$(L_B of Qty_L + L_B of Qty_T) > Largest L_M or db_L \neq db_U \neq db_T$$

Note x is either \boldsymbol{L} for Longitudinal, \boldsymbol{U} for Upper, and \boldsymbol{T} for Transverse

$$Qty_{p} = \frac{L_{M}}{L_{B} of \ Qty_{x}}$$

$$Qty_{_{M}} = \frac{Qty_{_{x}}}{Qty_{_{p}}(round\ down\ to\ whole\ number)}$$

$$\boldsymbol{L_{E}} = \left[\textit{Qty}_{\textit{M}}(\textit{round up to whole number}) - \textit{Qty}_{\textit{M}} \right] \bullet \boldsymbol{L_{\textit{M}}}$$

And

$$Total \ Wastage = L_{_E} + L_{_W} \Big[Qty_{_M} (round \ down \ to \ whole \ number) \Big]$$

The manufactured bar length that has the smallest total wastage will be the chosen manufactured bar length and its corresponding manufactured quantity

For Isolated Footing

Note x is either L for Longitudinal, U for Upper, and T for Transverse

$$Qty_{p} = \frac{L_{M}}{L_{B} of \ Qty_{x}}$$

$$Qty_{\underline{M}} = \frac{Qty_{\underline{x}}}{Qty_{\underline{p}}(round\ down\ to\ whole\ number)}$$

$$\boldsymbol{L_{E}} = \left[\textit{Qty}_{\textit{M}} (\textit{round up to whole number}) - \textit{Qty}_{\textit{M}} \right] \bullet \boldsymbol{L_{\textit{M}}}$$

And

$$Total \, Wastage \, = L_{_E} + L_{_W} \Big[Qty_{_M}(round \; down \; to \; whole \; number) \Big]$$

The manufactured bar length that has the smallest total wastage will be the chosen manufactured bar length and its corresponding manufactured quantity

Example.

COLUMN FOOTING	6.0	7.5	9.0	10.5	12.0	13.5	15.0
WALL FOOTING	6.0	7.5	9.0	10.5	12.0	13.5	15.0
COLUMN	6.0	7.5	9.0	10.5	12.0	13.5	15.0
BEAM/GIRDER	6.0	7.5	9.0	10.5	12.0	13.5	15.0
WALL	6.0	7.5	9.0	10.5	12.0	13.5	15.0
SLAB ON GRADE	6.0	7.5	9.0	10.5	12.0	13.5	15.0
SUSPENDED SLAB	6.0	7.5	9.0	10.5	12.0	13.5	15.0
STAIRS	6.0	7.5	9.0	10.5	12.0	13.5	15.0
AVAILABLE NOT-AVAILABLE							

For F-1

Check Conditions

$$\left(L_{B} of \ Qty_{L} + L_{B} of \ Qty_{T}\right) = (6.25 + 4.75) = 11 m$$

$$Largest L_{M} = 12 m$$

Thus,

$$(L_B of Qty_L + L_B of Qty_T) < Largest L_M$$

And

$$(Qty_L + Qty_U) = (96 + 42) = 120$$

 $Qty_T = 57$

Thus,

$$(Qty_L + Qty_U) > Qty_T : Case 2$$

For $Qty_{_T}$

$$D_{M} = 6 m$$

$$Qty_p = \frac{L_{_M}}{L_{_B}of\,Qty_{_L} + L_{_B}of\,Qty_{_L}} = \frac{6}{6.25 + 4.75} = 0.5454$$

$$L_{W(6)} = 0:Since\,Qty_{_{P(6)}} < 1$$

$$Qty_{_{M(6)}} = \frac{57}{0} = Undefined$$

$$L_{E(6)} = [Undefined - Undefined] \cdot 6 = Undefined$$

$$Total = Undefined + 0(Undefined) = Undefined$$

You can see the answers in the table

L [M]	Qty [Total]	L [B] of Qty [L] + L [B] of Qty [T	Qty [P]		Qty [M]		L [W]	L [E]	Total Waste
6			0.55	0	#####	#DIV/0!	0.000	#DIV/0!	#DIV/0!
7.5			0.68	0	#####	#DIV/0!	0.000	#DIV/0!	#DIV/0!
9	57	11	0.82	0	#####	#DIV/0!	0.000	#DIV/0!	#DIV/0!
10.5			0.95	0	#####	#DIV/0!	0.000	#DIV/0!	#DIV/0!
12			1.09	1	57	57	1.000	0	57.000

Thus,

$$L_{MC(a)} = 12 m \text{ and } Qty_{MC(a)} = 57 pcs.$$

For
$$Qty_L + Qty_U$$

$$Qty_{p} = \frac{L_{M}}{L_{B} of Qty_{L} + L_{B} of Qty_{L}} = \frac{6}{6.25} = 0.96$$

$$L_{W(6)} = 0:Since Qty_{P(6)} < 1$$

$$Qty_{M(6)} = \frac{96 + 42 - 57}{0} = \frac{81}{0} = Undefined$$

$$L_{E(6)} = [Undefined - Undefined] \cdot 6 = Undefined$$

$$Average = \frac{Undefined + 0}{2} = Undefined$$

L [M]	Qty [L] + Qty [U] - Qty [U]	L [B] of Qty [L]	Qty [P]		Qty	Qty [M]		L [E]	Total Waste
6			0.96	0	#####	#DIV/0 !	0.00 0	#DIV/0 !	#DIV/0!
7.5			1.20	1	81	81	1.25 0	0	101.250
9	81	6.25	1.44	1	81	81	2.75 0	0	222.750
10.5			1.68	1	81	81	4.25 0	0	344.250
12			1.92	1	81	81	5.75 0	0	465.750

Thus,

For F-2

$$L_{MC(b)} = 7.5 \text{ m} \text{ and } Qty_{MC(b)} = 81 \text{ pcs.}$$

@Longitudinal Reinforcement

L [M]	Qty [Total]	L [B] of Qty [L]	Qty	Qty [P]		Qty [M]		L [E]	Total Waste
6			1.32	1	132	132	1.45 0	0	191.400
7.5			1.65	1	132	132	2.95 0	0	389.400
9	132	4.55	1.98	1	132	132	4.45 0	0	587.400
10.5			2.31	2	66	66	1.40 0	0	92.400
12		'	2.64	2	66	66	2.90 0	0	191.400

Thus the

$$L_{MC(a)} = 10.5 m \text{ and } Qty_{MC(a)} = 66 pcs.$$

@Transverse Reinforcement

L [M]	Qty [T]	L [B] of Qty [T]	Qty	Qty [P]		Qty [M]		L [E]	Total Waste
6			1.32	1	132	132	1.45 0	0	191.400
7.5			1.65	1	132	132	2.95 0	0	389.400
9	132	4.55	1.98	1	132	132	4.45 0	0	587.400
10.5			2.31	2	66	66	1.40 0	0	92.400
12			2.64	2	66	66	2.9	0	191.400

Thus the

$$L_{MC(b)} = 10.5 m \text{ and } Qty_{MC(b)} = 66 pcs.$$

4. The program will compute the weight of the chosen manufactured bar length in transverse and longitudinal reinforcement of the footing.

For Combined Footing

$$Weight = L_{MC(y)} \bullet Qty_{M(y)} \bullet W_{D}$$

For Isolated Footing

$$Weight = L_{MC(y)} \bullet Qty_{M(y)} \bullet W_D$$

Where:

 $W_{D} = corresponding weight of the reinforcement diameter (Table in the Parameters)$

Example

г١	WEIGHT —	
	BAR SIZE (Diameter)	kg/m
	6 mm	0.222
	8 mm	0.395
	10 mm	0.616
П	12 mm	0.888
П	16 mm	1.597
П	20 mm	2.466
П	25 mm	3.854
П	28 mm	4.833
П	32 mm	6.313
П	36 mm	7.991
П	40 mm	9.864
	44 mm	11.926
	50 mm	15.413
	56 mm	19.318

F-1

Since
$$\left(L_{B} \ of \ Qty_{L} + L_{B} \ of \ Qty_{T}\right) \leq Largest \ L_{M} \ \text{and} \ db_{L} = db_{U} = db_{T}.$$
 Thus, @ Qty_{T} : $diameter = 25 \ mm$, thus $W_{D} = 3.854$

$$\begin{aligned} Weight_{1(a)} &= L_{MC(y)} \bullet Qty_{M(y)} \bullet W_D \\ Weight_{1(a)} &= 12(57) \cdot 3.854 \\ Weight_{1(a)} &= 2636.136 \ kg \end{aligned}$$

@
$$Qty_L + Qty_U$$
: $diameter = 25 \ mm$, thus $W_D = 3.854$

$$Weight_{1(b)} = L_{MC(y)} \bullet Qty_{M(y)} \bullet W_{D}$$

$$Weight_{1(b)} = 7.5(81) \cdot 3.854$$

$$Weight_{1(b)} = 2341.305 \, kg$$

F-2

@
$$Qty_L$$
: $diameter = 25 \, mm$, thus $W_D = 3.854$

$$Weight_{2(a)} = L_{\mathit{M(chosen)}} \bullet \mathit{Qty}_{\mathit{M(chosen)}} \bullet \mathit{W}_{\mathit{D}} =$$

$$Weight_{2(a)} = (10.5) \bullet (66) \bullet (3.854)$$

$$Weight_{2(a)} = 2670.822 \, kg$$

@
$$Qty_{_T}$$
: $diameter = 25 \ mm$, thus $W_{_D} = 3.854$

$$Weight_{2(b)} = L_{{\it M(chosen)}} \bullet Qty_{{\it M(chosen)}} \bullet W_{\it D} =$$

$$Weight_{2(b)} = (10.5) \cdot (66) \cdot (3.854)$$

$$Weight_{2(b)} = 2670.822 \, kg$$

5. The program will compute the total weight of reinforcements on each footing.

$$Weight_{TOTAL(n)} = \varphi \cdot \sum_{y=a}^{y} (Weight_{ny})$$

Where:

$$\varphi = \textit{just a factor}$$

$$\varphi = 1$$

Example:

For F-1

$$Weight_{TOTAL(1)} = \varphi \cdot \sum_{y=a}^{b} (Weight_{ny}) = 1 \cdot (2636.136 + 2341.305)$$

$$Weight_{TOTAL(1)} = 4977.441 \, kg$$

For F-2

$$Weight_{TOTAL} = \varphi \cdot \sum_{y=a}^{b} (Weight_{ny}) = 1 \cdot (2670.822 + 2670.822)$$

$$Weight_{TOTAL} = 5341.644 \, kg$$