Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (currently amended) A method for demodulation of M-ary quadrature amplitude modulation (M-QAM) signals by estimating the amplitude of a received M-QAM signal based upon known phase information of a plurality of transmitted symbols (d_k), the method comprising the steps of:

recovering a respective set of received symbols (r_k) corresponding to the plurality of transmitted symbols (d_k) ;

generating a set of products <u>based on the received symbols (r_k) ;</u> summing the set of products;

determining the real part of the sum of products;

summing the absolute values of the transmitted symbols $|(d_k)|$ to generate a magnitude value; and

generating the estimated amplitude of the received M-QAM signal by dividing the real part of the sum of products by the magnitude value.

2. (previously presented) The method of claim 1 wherein said generating the set of products

multiplying each of the plurality of received symbols (r_k) by exp $[-j\theta(d_k)]$, wherein $\theta(d_k)$ represents the phase of a corresponding transmitted symbol (d_k) .

3. (previously presented) A method for demodulation of q-ary quadrature amplitude shift keyeing (q-ASK) signals by estimating the amplitude of a q-ASK signal at a receiver based upon magnitude information regarding a plurality of N where N is a positive integer greater than once transmitted symbols (dk), the method comprising the steps of.

recovering a respective set of N received samples (y_k) corresponding to the transmitted symbols (d_k) ;

for each of the N samples, multiplying the sample (y_k) by a corresponding sign (d_k) to generate a set of products (y_k) *sign (d_k) ;

summing the set of products to generate a first sum;

summing the absolute values of the transmitted symbols $|(d_k)|$ to generate a second sum; and

generating the estimated amplitude of the q-ASK signal by dividing the first sum by the second sum.

4. (previously presented) A method for signal demodulation by estimating the amplitude of a received signal which includes a set of N transmitted symbols (d_k), where N is a positive integer greater than one, the method comprising the steps of:

recovering a respective set of N received samples (y_k) corresponding to the transmitted symbols (d_k) ;

determining the absolute values of the received samples $|(y_k)|$; summing the absolute values to generate a first sum;

determining the mean of the absolute values of the amplitudes of transmitted symbols, $E |(d_k)|$;

multiplying the mean of the absolute values by N to generate a product, N* $E \mid (d_k) \mid$; and

generating the estimated amplitude of the received signal by dividing the first sum by the product.

- 5. (previously presented) The method of claim 4, wherein the received signal is an M-ary quadrature amplitude modulation (M-QAM) signal.
- 6. (previously presented) The method of claim 4, wherein the received signal is a q-ary amplitude shift keyeing (q-ASK) signal.
- 7. (previously presented) A method for demodulation of M-ary quadrature amplitude modulation (M-QAM) signals by estimating the amplitude of a received M-QAM signal that includes a set of transmitted symbols (d_k) , the method comprising the steps of:

recovering a respective set of received samples (r_k) corresponding to the transmitted symbols (d_k) ;

determining the mean of the absolute values of the amplitudes of the transmitted symbols, $E|(d_k)|$;

determining the mean of the absolute values of the amplitudes of the received samples, $E|(r_k)|$; and

estimating the amplitude of the received M-QAM signal \hat{A} as: $\hat{A} = \{ 2^*(E \mid r_k \mid^2)^2 - E \mid r_k \mid^4 \} / [2^*(E \mid d_k \mid^2)^2 - E \mid d_k \mid^4] \}^{1/4}$.

8. (previously presented) A method for demodulation of M-ary quadrature amplitude modulation (M-QAM) signals by estimating the noise power of a received M-QAM signal that includes a set of transmitted symbols (d_k), the method comprising the steps of:

recovering a respective set of received samples (r_k) corresponding to the transmitted symbols (d_k) ;

determining the mean of the absolute values of the amplitudes of the transmitted symbols, $E|(d_k)|$;

determining the mean of the absolute values of the amplitudes of the received samples, $E|(r_k)|$;

estimating amplitude of the received M-QAM signal \hat{A} as: $\hat{A} = \{ [2*(E \mid r_k \mid^2)^2 - E \mid r_k \mid^4] / [2*(E \mid d_k \mid^2)^2 - E \mid d_k \mid^4] \}^{1/4}$; and

estimating noise power of the received M-QAM signal σ^2_n as: $\sigma^2_n = E |r_k|^2 - \hat{A}^2 E |d_k|^2$.

recovering a respective set of received samples (r_k) corresponding to the transmitted symbols (d_k) ;

determining second and fourth order moments of the transmitted symbols, $E(d_k^2)$ and $E(d_k^4)$;

determining second and fourth order moments of the received samples, $E(r_k^2)$ and $E(r_k^4)$; and

estimating amplitude of the received q-ASK signal Å as: $\hat{A} = \{ [3*(E(r_k^2))^2 - E(r_k^4)] / [3*(E(d_k^2))^2 - E(d_k^4)] \}^{1/4}$.

shift keyeing (q-ASK) signals by estimating the power of a received q-ASK signal that includes a set of transmitted symbols (d_k), the method including the steps of:

recovering a respective set of received samples (r_k) corresponding to the transmitted symbols (d_k) ;

determining second and fourth order moments of the transmitted symbols, $E(d_k^2)$ and $E(d_k^4)$;

determining second and fourth order moments of the received samples, $E(r_k^2)$ and $E(r_k^4)$; and

estimating power of the received q-ASK signal as: $\hat{A}^2 = \{ [3*(E(r_k^2))^2 - E(r_k^4)] / [3*(E(d_k^2))^2 - E(d_k^4)] \}^{1/2}$.

9. (previously presented) A method for demodulation of M-ary quadrature amplitude modulation (M-QAM) signals by estimating the signal-to-noise ratio (SNR) of a received M-QAM signal that includes a set of transmitted symbols (d_k), the method comprising the steps of:

recovering a respective set of received samples (r_k) corresponding to the transmitted symbols (d_k);

determining the mean of the absolute values of the amplitudes of the transmitted symbols, $E[(d_k)]$;

determining the mean of the absolute values of the amplitudes of the received samples, $E|(r_k)|$;

estimating amplitude of the received M-QAM signal \hat{A} as: $\hat{A} = \{ [2*(E \mid r_k \mid^2)^2 - E \mid r_k \mid^4] / [2*(E \mid d_k \mid^2)^2 - E \mid d_k \mid^4] \}^{1/4};$

estimating noise power of the received M-QAM signal σ^2_n as: $\sigma^2_n = E |r_k|^2 - A^2 E |d_k|^2$; and

estimating SNR of the received M-QAM signal as: SNR = [Å 2 * E | d_k | 2] / σ^2_n

10. (previously presented) A method for demodulation of q-ary amplitude shift keyeing (q-ASK) signals by estimating the amplitude of a received q-ASK signal that includes a set of transmitted symbols (d_k), the method including the steps of:

12. (previously presented) A method for demodulation of q-ary amplitude shift keyeing (q-ASK) signals by estimating the noise power of a received q-ASK signal that includes a set of transmitted symbols (d_k), the method including the steps of:

recovering a respective set of received samples (r_k) corresponding to the transmitted symbols (d_k) ;

determining second and fourth order moments of the transmitted symbols, $E(d_k^2)$ and $E(d_k^4)$;

determining second and fourth order moments of the received samples, $E(r_k^2)$ and $E(r_k^4)$;

estimating amplitude \hat{A} as: $\hat{A} = \{ [3*(E(r_k^2))^2 - E(r_k^4)] / [3*(E(d_k^2))^2 - E(d_k^4)] \}^{1/4};$ and

estimating noise power of the received q-ASK signal σ^2_n from the estimated amplitude \hat{A} as: $\sigma^2_n = E(r_k^2) - \hat{A}^2 E(d_k^2)$.

13. (previously presented) A method for demodulation of q-ary amplitude shift keyeing (q-ASK) signals by estimating the signal-to-noise ratio (SNR) of a received q-ASK signal that includes a set of transmitted symbols (d_k), the method including the steps of:

recovering a respective set of received samples (r_k) corresponding to the transmitted symbols (d_k) ;

determining second and fourth order moments of the transmitted symbols, $E(d_k{}^2)$ and $E(d_k{}^4)$;

determining second and fourth order moments of the received samples, $E(r_k^2)$ and $E(r_k^4)$;

estimating amplitude \hat{A} as: $\hat{A} = \{ [3*(E(r_k^2))^2 - E(r_k^4)] / [3*(E(d_k^2))^2 - E(d_k^4)] \}^{1/4};$ estimating noise power σ^2_n as: $\sigma^2_n = E(r_k^2) - \hat{A}^2 E(d_k^2);$ and

estimating SNR of the q-ASK signal as: SNR = $[\hat{A}^2 * E(d_k^2)] / \sigma^2_n$

14. (previously presented) A method for demodulation of M-ary quadrature amplitude modulation (M-QAM) and q-ary amplitude shift keyeing (q-ASK) signals by estimating the signal-to-noise ratio (SNR) of a received M-QAM or q-ASK signal from second-order and fourth-order moments of received samples (r_k) , wherein the second-order moment is defined as $E\{|r_k|^2\} = E\{|n_k|^2\} + E\{|d_k|^2\}$, and the fourth-order moment is defined as $E\{|r_k|^4\} = E\{|n_k|^4\} + E\{|d_k|^4\} + 4E\{|n_k|^2\} + 4E\{|a_k|^2\}$, where d_k denotes the transmitted symbols and n_k denotes a noise component that is recovered with the received samples r_k ; the method comprising the steps-of:

dividing the fourth-order moment by the second-order moment so as to implement a Kurtosis operation as:

$$Kurt(r) = \frac{E\{|r_k|^4\}}{E\{|r_k|^2\}^2} = \frac{E\{|d_k|^4\} + E\{|n_k|^4\} + 4E\{|d_k|^2\} E\{|n_k|^2\}}{E\{|d_k|^2\}^2 + E\{|n_k|^2\}^2 + 2E\{|d_k|^2\} E\{|n_k|^2\}}, \quad \text{wherein} \quad \text{the} \quad \text{foregoing}$$

expression for Kurtosis includes a first Kurtosis component attributable to received signal, and a second Kurtosis component corresponding to received noise;

determining the first Kurtosis component attributable to the signal alone, (K_{sig}) , as: $K_{sig} = \frac{E\{|d_k|^4\}}{E\{|d_k|^2\}^2}$; and

estimating the signal-to-noise ratio (SNR) of the received M-QAM or q-ASK signal as:

$$SNR = \frac{(2 - Kurt(r)) + \sqrt{(4 - 2K_{sig}) - (2 - K_{sig})Kurt(r)}}{(Kurt(r) - K_{sig})}$$