Question number	Scheme	Marks	
9 (a)	$\cos \alpha = \frac{3}{\sqrt{13}}$	B1	
	VII	(1)	
(b)	$h = \sqrt{17^2 - \left(9^2 + 12^2\right)} = 8$	M1 M1	
	\(\frac{1}{2}\)	A1 (3)	
(c)	Let <i>M</i> be the midpoint of <i>BC</i>	(3)	
	±	M1 A1	
	$\tan \theta^{\circ} = \frac{h}{OM} = \frac{8}{12} = \frac{2}{3} *$	(2)	
(d)	Let <i>N</i> be the midpoint of <i>EM</i>		
	$EM = \sqrt{8^2 + 12^2} = 4\sqrt{13}$	M1	
	$NO = \sqrt{12^2 + (2\sqrt{13})^2 - 2(12)(2\sqrt{13})(\frac{3}{\sqrt{13}})} \Rightarrow NO = 2\sqrt{13}$	M1	
	Hence triangle <i>ONM</i> is isosceles		
	$180 - 2 \times 33.7 = 112.6^{\circ}$	M1 A1	
	Total 10 marks		

Part	Mark	Notes
(a)	B1	For $\cos \alpha = \frac{3}{\sqrt{13}}$
(b)	M1	For use of Pythagoras to <i>OC</i> find e.g. $\sqrt{(9^2 + 12^2)}$ oe
	M1	For use of Pythagoras to find h e.g. $\sqrt{17^2 - (9^2 + 12^2)}$
	A1	For 8
(c)	M1	For $\tan \theta^{\circ} = \frac{h}{OM} = \frac{8}{12}$ (condone the omission of the degree sign)
	A1	For obtaining the given result
	cso	
(d)	M1	For use of Pythagoras to find <i>EM</i> e.g. $\sqrt{8^2 + 12^2}$
		For use of the cosine rule to find NO e.g.
	M1	$\sqrt{12^2 + \left(2\sqrt{13}\right)^2 - 2(12)\left(2\sqrt{13}\right)\left(\frac{3}{\sqrt{13}}\right)}$
	M1	For $180 - 2 \times 33.7$
	A1	For 112.6°