Modulations Numériques Cours systèmes de communications M1 SMART'COM

Généralités

- Objectif: associer à des données (numériques) un signal physique adapté au canal de transmission.
- 2 types de transmission:
 - transmission en bande de base : le spectre du signal physique contient la fréquence nulle et les basses fréquences ⇒ Codage en ligne ou Modulation en Bande de Base
 - transmission sur fréquence porteuse : le spectre du signal physique est dans une bande de fréquences centrée sur la fréquence porteuse ⇒ Modulations (en bande transposée)

Critères de choix d'une modulation

- minimisation de l'occupation spectrale (largeur de bande) pour un débit binaire donné;
- minimisation de la probabilité d'erreur dans un environnement de transmission donné (notamment, le SNR);
- maximisation de l'efficacité spectrale (rapport entre le nombre de bits transmis par seconde et la largeur de bande utilisée)
- complexité des circuits en émission et réception;
- immunité par rapport aux perturbations (amplificateurs à saturation, phénomène d'évanouissement,...)
- ⇒ compromis à trouver entre simplification des équipements et performances

Types de modulations numériques

Définitions

- Valence: c'est le nombre de symboles discernables utilisés par le signal. Si la valence vaut v alors chaque symbole code log₂ v bits.
- Rapidité de la modulation /bit rate : c'est le nombre de changement d'états (de symboles) par seconde, notée par la suite M. Elle s'exprime en baud. Chaque modulation correspond `a un symbole.
- Débit binaire / bit rate : c'est le nombre de bits transmis par seconde, soit D = M * q où q est le nombre de bits codés par une modulation (i.e. un symbole).

Exemple

- On considère un canal de transmission numérique de débit binaire 9600 bits/s.
- Quelle rapidité de modulation est nécessaire
- Quelle doit être la valeur minimale du rapport S/B, si la largeur de la bande passante de la liaison est de 1000 Hz, afin d'obtenir ce même débit binaire?
- Quel serait la réponse aux précédentes questions si le signal était quadrivalent au lieu de bivalent ?

Solution

- Signaux transmis sont binaires => rapidité de modulation = débit binaire = 9600 bits/s.
- Par Shannon C = F log₂(1+S/N) donc 9600 = 1000
 log₂(1+S/N) et S/N = 775 d'ou S/B = 29 dB
- Si la valence est 4, chaque valeur du signal sur le canal de transmission peut être utilisé pour transporter 2 bits. Donc le débit binaire est deux fois plus élevé que la rapidité de transmission. rapidité de modulation = 4800 bauds S/N = 10^{(4.8 log(2))}-1 = 26.85 donc S/B = 14.3 dB

Modulation d'amplitude

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & pour1\\ 0 & pour0 \end{cases}$$

M. Hamza

8

Modulation de fréquence

$$s(t) = \begin{cases} A\cos(2\pi f_1 t) & pour1\\ A\cos(2\pi f_2 t) & pour0 \end{cases}$$

Modulation de Phase

Dibit	Phase		
00	0		
01	90		
10	180		
11	270		

Dibit (2 bits)

Tribit	Phase		
000	0		
001	45		
010	90		
011	135		
100	180		
101	225		
110	270		
111	315		

Tribits (3 bits)

Constellation diagram

Modulations Phase/amplitude (QAM)

Généralement # phases> # d'amplitudes

Modulation	Units	Bits/Ba ud	Baud rate	Bit Rate
ASK, FSK, 2-PSK	Bit	1	N	N
4-PSK, 4-QAM	Dibit	2	N	2N
8-PSK, 8-QAM	Tribit	3	N	3N
16-QAM	Quadbit	4	N	4N
32-QAM	Pentabit	5	N	5N
64-QAM	Hexabit	6	N	6N
128-QAM	Septabit	7	N	7N
256-QAM	Octabit	8	N	8N

M. Hamza

14

Questions

- Un diagramme de constellation est constituée de huit points uniformément espacés sur un cercle. Si le débit est de 4800 bps, quelle est la vitesse de transmission?
- Quel est le débit binaire pour un signal 16-QAM 1000 bauds.
- Calculer la vitesse de transmission pour un signal 72.000 bps-64-QAM.

Réponses

- La constellation indique une modulation 8-PSK (45 degrés d'espacement). $2^3 = 8$, 3 bits sont transmis par symbole . alors, le baud rate is 4800 / 3 = 1600 baud
- A 16-QAM signal has 4 bits per signal unit since $(\log_2 16 = 4)$. Alors (1000)(4) = 4000 bps
- $_{3.}$ 64-QAM signal has 6 bits symbole (log₂ 64 = 6). donc, 72000 / 6 = 12,000 baud