Geometría Diferencial 2023

Lista 01

26.enero.2023

- 1. a) Sea $\alpha(t)$ una curva parametrizada en \mathbb{R}^n , que no pasa por el origen O. Si $\alpha(t_0)$ es un punto del trazo de α que está más próximo a O, y $\alpha'(t_0) \neq 0$ entonces $\alpha(t_0)$ es ortogonal a $\alpha'(t_0)$
 - b) Sea $\alpha:I\to\mathbb{R}^3$ una curva parametrizada, con $\alpha'(t)\neq 0$, $\forall t\in I$. Mostrar que $|\alpha(t)|$ es una constante >0 si, y sólo si, $\alpha(t)$ es ortogonal a $\alpha'(t)$, para todo $t\in I$.
- 2. Considere la parametrización de la cicloide de radio r vista en aula.
 - a) Calcular la longitud de arco de la cicloide en el primero de sus arcos, esto es correspondiente a una rotación completa del círculo.
 - b) Calcular el área bajo la curva (entre la curva y el eje x) para este arco de cicloide.
- 3. Sea $\alpha:(0,\pi)\to\mathbb{R}^2$ la curva dada por

$$\left(\sin t, \cos t + \log \tan \frac{t}{2}\right),$$

donde t es el ángulo que el eje Oy hace con el vector $\alpha'(t)$. Esta curva se llama la tractriz (Figura en pág. 8 de Do Carmo). Mostrar que

- α es una curva parametrizada diferenciable, regular excepto en $t=\frac{\pi}{2}$.
- La longitud del segmento de la tangente a la tractriz, entre el punto de tangencia y el eje Oy es constante e igual a 1.
- 4. Sea α una curva plana regular en coordenadas polares (r,φ) , dada por $r=r(\varphi)$. Usando la notación $r'=\frac{\partial r}{\partial \varphi}$, verificar que la longitud de arco en el intervalo $[\varphi_1,\varphi_2]$ es

$$s = \int_{\varphi_1}^{\varphi_2} \sqrt{r'^2 + r^2} \, d\varphi,$$

y que la curvatura está dada por

$$\kappa(\varphi) = \frac{2r'^2 - rr'' + r^2}{(r'^2 + r^2)^{3/2}}.$$

- 5. Calcular la curvatura de la espiral de Arquímedes, la cual está dada por $r(\varphi) = a\varphi$, a constante (Figura 1(a)).
- 6. Para la espiral logarítmica, dada en coordenadas polares por por $r(t) = ae^t$, $\varphi(t) = bt$, a, b constantes (Figura 1(b)), probar lo siguiente:
 - a) La longitud de la curva en el intervalo $(-\infty,t]$ es proporcional al radio r(t)
 - b) $\alpha(t) \to 0$, cuando $t \to \infty$ y α tiene longitud de arco finita en el intervalo $[t_0, \infty)$.
 - c) El vector $\alpha(t)$ tiene ángulo constante con el vector tangente $\alpha'(t)$.
 - d)
- 7. Mostrar que la curva de menor longitud entre dos puntos $\mathbf{p}, \mathbf{q} \in \mathbb{R}^n$ es el segmento de recta que los une. (Sugerencia: ver las ideas en el Ejercicio 10, pág 11 de Do Carmo.)

Figure 1: (a) espiral de Arquímedes, (b) espiral logarítmica.

8. Probar que la curvatura y la torsión de una curva de Frenet $\alpha(t)$ en \mathbb{R}^3 , parametrizada de forma arbitraria, están dadas por

$$\kappa(t) = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3}, \quad \tau(t) = \frac{\det(\alpha', \alpha'', \alpha''')}{|\alpha' \times \alpha''|^2}.$$

En particular, en el caso de curvas planas,

$$\kappa(t) = \frac{\det(\alpha', \alpha'')}{|\alpha'|^3}.$$

(Sugerencia: ver las ideas en el Ejercicio 12, pág 26 de Do Carmo.)

9. Sea α la *hélice* en \mathbb{R}^3 , dada por

$$\alpha(t) = (a\cos t, a\sin t, bt), \quad a, b \in \mathbb{R}^+.$$

Muestre que la curvatura y la torsión de α son constantes.

- 10. Construir una curva plana, parametrizada por longitud de arco, cuya curvatura esté dada exactamente por $\kappa(s) = s^{-1/2}$.
- 11. (Ejercicio opcional, no es necesario entregar). Suponga que para una curva de Frenet $\alpha(s)$ en \mathbb{R}^n , todas las cuvaturas κ_i en la matriz K del sistema de Frenet son constantes, $\kappa_i \neq 0$, $\forall i$.
 - a) Mostrar que la solución de las ecuaciones de Frenet, está dada por una matriz exponencial $\mathbf{x}(s) = \mathbf{x}_0 e^{sK}$, donde

$$\exp(sK) = \sum_{n=0}^{\infty} \frac{1}{n!} (sK)^n,$$

y $\mathbf{x}_0 = x(s_0) \in \mathbb{R}^n$ es un punto o condición inicial de la curva.

b) Para el caso de \mathbb{R}^3 , demuestre que una curva de Frenet con curvatura $\kappa>0$ y torsión $\tau>0$ constantes, es necesariamente una hélice.

Así, en \mathbb{R}^3 tenemos que

$$\mbox{Si }\alpha(t) \mbox{ tiene } \kappa,\tau \mbox{ constantes } \Rightarrow \begin{cases} \alpha \mbox{ es una recta}, & \mbox{ cuando } \kappa=0; \\ \alpha \mbox{ es un círculo}, & \mbox{ cuando } \kappa>0,\tau=0; \\ \alpha \mbox{ es una hélice}, & \mbox{ cuando } \kappa,\tau>0. \end{cases}$$