- **5.** Sea $\Phi(u,v) = (e^u \cos v, e^u \sin v, v)$ una aplicación de $D = [0,1] \times [0,\pi]$ en el plano uv sobre una superficie S en el espacio xyz.
 - (a) Hallar $\mathbf{T}_u \times \mathbf{T}_v$.

430

- (b) Hallar la ecuación del plano tangente a S cuando $(u, v) = (0, \frac{\pi}{2})$.
- (c) Hallar el área de $\Phi(D)$.
- **6.** Hallar el área de la superficie definida por z = xy v $x^2 + y^2 < 2$.
- 7. Utilizar una integral de superficie para determinar el área del triángulo T en \mathbb{R}^3 con vértices en (1,1,0), (2,1,2) y (2,3,3). Comprobar la respuesta determinando las longitudes de los lados y usando la geometría clásica. [SUGERENCIA: expresar el triángulo como la gráfica z=g(x,y) sobre un triángulo T^* en el plano xy.]
- **8.** Utilizar una integral sobre una superficie para determinar el área del cuadrilátero D in \mathbb{R}^3 de vértices en (-1,1,2), (1,1,2), (0,3,5) y (5,3,5). Comprobar la respuesta determinando las longitudes de los lados y usando la geometría clásica (véase la sugerencia del problema anterior).
- **9.** Sea $\Phi(u, v) = (u v, u + v, uv)$ y sea D el disco unidad en el plano uv. Hallar el área de $\Phi(D)$.
- **10.** Hallar el área de la porción de la esfera unidad contenida en el cono $z \ge \sqrt{x^2 + y^2}$ (véase el Ejercicio 1).
- **11.** Demostrar que la superficie $x=1/\sqrt{y^2+z^2}$, donde $1 \le x < \infty$, ¡se puede llenar pero no se puede pintar!
- **12.** Hallar una parametrización de la superficie $x^2 y^2 = 1$, donde $x > 0, -1 \le y \le 1$ y $0 \le z \le 1$. Utilizar la respuesta para expresar el área de la superficie como una integral.
- **13.** Representar el elipsoide E:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

paramétricamente y escribir la integral que da el área de su superficie A(E). (No calcular la integral).

14. Hacemos girar la curva $y = f(x), a \le x \le b$ alrededor del eje y. Demostrar que el área de la superficie barrida está dada por la Ecuación (6); es decir,

$$A = 2\pi \int_{a}^{b} |x| \sqrt{1 + [f'(x)]^2} \, dx.$$

Interpretar la fórmula geométricamente utilizando la longitud de arco y la distancia al eje de rotación.

- **15.** Hallar el área de la superficie obtenida al hacer girar la curva $y=x^2,\,0\leq x\leq 1$ alrededor del eje y.
- **16.** Utilizar la fórmula (4) para calcular el área de la superficie del cono del Ejemplo 1.
- **17.** Hallar el área de la superficie definida por x + y + z = 1, $x^2 + 2y^2 \le 1$.
- **18.** Demostrar que para los vectores \mathbf{T}_u y \mathbf{T}_v , se tiene la fórmula

$$\|\mathbf{T}_{u} \times \mathbf{T}_{v}\| = \sqrt{\left[\frac{\partial(x,y)}{\partial(u,v)}\right]^{2} + \left[\frac{\partial(y,z)}{\partial(u,v)}\right]^{2} + \left[\frac{\partial(x,z)}{\partial(u,v)}\right]^{2}}.$$

19. Dibujar y calcular el área de la superficie dada por

$$\begin{aligned} x &= r \cos \theta, & y &= 2r \cos \theta, & z &= \theta, \\ 0 &\le r &\le 1, & 0 &\le \theta &\le 2\pi. \end{aligned}$$

- **20.** Demostrar el teorema de Pappus: Sea $\mathbf{c} : [a,b] \to \mathbb{R}^2$ una trayectoria C^1 cuya imagen se encuentra en el semiplano derecho y es una curva cerrada simple. El área de la superficie lateral generada al rotar la imagen de \mathbf{c} alrededor del eje y es igual a $2\pi\bar{x}l(\mathbf{c})$, donde \bar{x} es el valor medio de las coordenadas x de puntos sobre \mathbf{c} y $l(\mathbf{c})$ es la longitud de \mathbf{c} . (Véanse los Ejercicios 16 a 19 de la Sección 7.1 para ver una exposición acerca de los valores medios.)
- **21.** El cilindro $x^2 + y^2 = x$ divide la esfera unidad S en dos regiones S_1 y S_2 , donde S_1 corresponde al interior del cilindro y S_2 al exterior. Hallar la relación de las áreas $A(S_2)/A(S_1)$.
- **22.** Supongamos que una superficie S que es la gráfica de una función z=f(x,y), donde $(x,y)\in D\subset \mathbb{R}^2$ se puede describir también como el conjunto de $(x,y,z)\in \mathbb{R}^3$ con F(x,y,z)=0 (una superficie de nivel). Deducir una fórmula para A(S) que solo implique a F.
- **23.** Calcular el área del cono truncado mostrado en la Figura 7.4.7 utilizando (a) solo geometría y después (b) una fórmula para el área de la superficie.