I. Linear Algebra

I.8. Singluar Value Decomposition

Lecture based on

https://github.com/gwthomas/math4ml (Garrett Thomas, 2018)

Prof. Dr. Christoph Lippert

Digital Health & Machine Learning

Singular value decomposition (SVD) is a widely applicable tool in linear algebra.

Its strength stems partially from the fact that *every matrix* $\mathbf{A} \in \mathbb{R}^{m \times n}$ has an SVD (even non-square matrices)!

The decomposition goes as follows:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$$

where $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ are orthogonal matrices.

Further, $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix with the **singular values** of **A** (denoted σ_i) on its diagonal.

By convention, the singular values are given in non-increasing order, i.e.

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_{\min(m,n)} \ge 0$$

Only the first r singular values are nonzero, where r is the rank of A.

Observe that the SVD factors provide eigendecompositions for A^TA and AA^T :

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}})^{\mathsf{T}}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\boldsymbol{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\boldsymbol{\Sigma}^{\mathsf{T}}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}$$
$$\mathbf{A}\mathbf{A}^{\mathsf{T}} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}\mathbf{V}\boldsymbol{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}} = \mathbf{U}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}}$$

It follows that the columns of V (the **right-singular vectors** of A) are eigenvectors of $A^{T}A$.

Similarly, the columns of U (the **left-singular vectors** of A) are eigenvectors of AA^{T} .

Note, that the matrices $\Sigma^{\top}\Sigma$ and $\Sigma\Sigma^{\top}$ are not necessarily the same size.

However, both are diagonal with the squared singular values σ_i^2 on the diagonal (plus possibly some zeros).

Thus the singular values of A are the square roots of the eigenvalues of $A^{\top}A$ (or equivalently, of AA^{\top})¹.

•

¹ Recall that $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\mathsf{T}}$ are positive semi-definite, so their eigenvalues are nonnegative, and thus taking square roots is always well-defined.