

<u>Lecture 14: Wald's Test, Likelihood</u> <u>Ratio Test, and Implicit Hypothesis</u>

Course > Unit 4 Hypothesis testing > Test

> 8. Review: Power of a Test

Audit Access Expires Dec 24, 2019

You lose all access to this course, including your progress, on Dec 24, 2019.

8. Review: Power of a Test

Review: Power of a Test for Different Alternative Hypotheses

2/3 points (graded)

Recall that the power π_{ψ} of a test ψ for the hypotheses

$$H_0: heta^*\in\Theta_0$$

$$H_1: heta^*\in\Theta_1$$

is

$$\pi_{\psi} \; \equiv \; \inf_{ heta \in \Theta_{1}} \left(1 - eta_{\psi} \left(heta
ight)
ight)$$

where $eta_{\psi}\left(heta
ight)=\mathbf{P}_{ heta}\left(\psi=0
ight)$, defined for $heta\in\Theta_{1},\,$ is the **type 2 error rate** of $\psi.$

Suppose X_1, \ldots, X_n are i.i.d. random variables (in 1 dimension). Assume the theorem of MLE applies so that $\hat{\theta}^{\text{MLE}}$ is asymptotically normal. You use the test

$$\psi \; = \; \mathbf{1} \left(\sqrt{nI} \, \left| \hat{ heta}^{ ext{MLE}} - 0
ight| > C_lpha
ight),$$

which has level α for some threshold C_{α} , to test the hypotheses

$$H_0: heta^*=0$$

$$H_1: heta^*
eq 0.$$

What is the *asymptotic* power π_{ψ} in terms of α ?

$$\pi_{\psi} = egin{pmatrix} ext{1-alpha} & extbf{X} ext{ Answer: alpha} \ \hline & 1-lpha & ext{} \end{bmatrix}$$

Now, you use the same test $\psi = \mathbf{1} \left(\sqrt{nI} \left| \hat{\theta}^{\mathrm{MLE}} - 0 \right| > C_{\alpha} \right)$ to test a different alternative hypothesis against the same null hypothesis:

$$H_0: heta^* = 0$$

$$H_1: heta^* = 1.$$

How do the (smallest) *asymptotic* level and the *asymptotic* power of ψ change with this change of the alternative hypothesis? (Choose one for each column.)

The (smallest) asymptotic level of $\,\psi\,...\,$ the asymptotic power of $\,\psi\,...\,$

increases	increases
decreases	decreases
stays the same	stays the same

(In general, how does the level and power of a test vary as Θ_1 shrinks?)

STANDARD NOTATION

Solution:

The power of ψ with $H_1: heta^*
eq 0$ is

$$egin{array}{ll} \pi_{\psi} &=& \inf_{ heta
eq 0} \left(1 - eta_{\psi} \left(heta
ight)
ight) \ &=& \inf_{ heta
eq 0} \mathbf{P}_{ heta} \left(\psi = 1
ight) \, = \, \inf_{ heta
eq 0} \mathbf{P}_{ heta} \left(\sqrt{nI} \left| \hat{ heta}^{ ext{MLE}} - 0
ight| > C_{lpha}
ight) \end{array}$$

Since $\sqrt{nI}\left(\hat{\boldsymbol{\theta}}^{\mathrm{MLE}}-\boldsymbol{\theta}\right)\sim\mathcal{N}\left(0,1\right)$ (asymptotically if $\boldsymbol{\theta}^{*}=\boldsymbol{\theta}$), $\mathbf{P}_{\boldsymbol{\theta}}\left(\sqrt{nI}\left|\hat{\boldsymbol{\theta}}^{\mathrm{MLE}}-\boldsymbol{0}\right|>C_{\alpha}\right)$ decreases as $\boldsymbol{\theta}\to0$ and approaches $\mathbf{P}_{0}\left(\sqrt{nI}\left|\hat{\boldsymbol{\theta}}^{\mathrm{MLE}}-\boldsymbol{0}\right|>C_{\alpha}\right)=\alpha$ (sketch the probability as an area to see this). Hence $\pi_{\psi}=\alpha$ in this case.

If we use the same test ψ for the alternative hypothesis $H_1: heta^* = 1$, then

$$egin{array}{ll} \pi_{\psi} &=& \mathbf{P}_{ heta=1} \left(\sqrt{nI} \left| \hat{ heta}^{ ext{MLE}} - 0
ight| > C_{lpha}
ight) \end{array}$$

which is greater than $\left.\mathbf{P}_{ heta=0}\left(\sqrt{nI}\left|\hat{ heta}^{ ext{MLE}}-0
ight|>C_{lpha}
ight)=lpha$. (Again, sketch the probability as an area to see this.)

On the other hand, the alternative hypothesis has no effect on the level of the test once the test has been fixed.

Submit

You have used 2 of 2 attempts

• Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 4 Hypothesis testing:Lecture 14: Wald's Test, Likelihood Ratio Test, and Implicit Hypothesis Test / 8. Review: Power of a Test

Add a Post

© All Rights Reserved