A Geometric Foundation for Holographic Stochastic Field Theory: A Measured–Bundle Realization of the $\mathbb{T}^2 \to \mathbb{T}^3$ Map

Mikayıl Yusuf Noyan* Ezgi E. Yumuk[†] Anonymous Author

Abstract

A framework is presented for synthesizing divergence—free, homogeneous, and chiral random vector fields on the three—torus \mathbb{T}^3 from data placed on a two—dimensional base \mathbb{T}^2 . The construction treats \mathbb{T}^2 as a holographic screen that drives a $2D \to 3D$ mapping through a measured—bundle projection with a U(1) phase lift. The phase is the holonomy of a principal U(1) bundle over \mathbb{T}^2 with first Chern number $c_1 \in \mathbb{Z}$, which parametrizes chirality. Under an equidistribution condition on a map $X: E \to \mathbb{T}^3$ from the bundle total space, the resulting field on \mathbb{T}^3 is translation invariant; isotropy is obtained by choosing X so that its structure factor is rotationally uniform (or by statistical rotational averaging). In Fourier space, the covariance decomposes into helical eigenmodes with spectra $P_S(\mathbf{k}) \geq 0$ and $P_H(\mathbf{k})$ that satisfy the sharp positivity bound $P_S(\mathbf{k}) \geq |P_H(\mathbf{k})|$. An operator—theoretic (spectral—triple) realization is provided in an odd form, with the Dirac operator D determined by the helical spectra and the envelope. A transfer law connecting boundary statistics on \mathbb{T}^2 to bulk helical power spectra on \mathbb{T}^3 is derived, together with a numerically ready synthesis algorithm on rectangular lattices.

1 Introduction

Holographic ideas suggest that bulk structure can be encoded on a lower-dimensional substrate [1–4]. A static (equal-time, Euclidean) realisation is formulated here for random divergence-free vector fields on the 3-torus, using \mathbb{T}^2 as a base and a principal U(1) bundle $p:E\to\mathbb{T}^2$ to supply a topological phase. The first Chern class $c_1(E)\in H^2(\mathbb{T}^2,\mathbb{Z})\simeq \mathbb{Z}$ plays the role of an integer "chirality knob" via a holonomy phase lift. A measurable map $X:E\to\mathbb{T}^3$ pushes the invariant bundle measure to the uniform measure on \mathbb{T}^3 , ensuring homogeneity. A translation-invariant envelope kernel then yields a divergence-free Gaussian field with a standard helical covariance. The helical bound follows from Bochner positivity on compact abelian groups. An operator-theoretic representation via a spectral triple is given in an odd form, which directly reproduces the covariance.

Helicity and helical mode decompositions are classical in hydrodynamics and MHD [5–8]. Circle bundles over \mathbb{T}^2 are classified by $c_1 \in \mathbb{Z}$ and admit natural connections and holonomy phases [9, 11, 12]. Equidistribution on tori is underpinned by Kronecker–Weyl theory and unique ergodicity [15, 16].

Contributions. (i) A measured-bundle synthesis scheme $E \to \mathbb{T}^3$ that generates a divergence-free random field with tunable helicity through $c_1(E)$. (ii) A boundary-to-bulk transfer law expressing helical power spectra on \mathbb{T}^3 in terms of base statistics, the bundle connection, and an envelope kernel. (iii) An *odd* spectral-triple (A, H, D) whose spectral calculus reproduces the covariance. (iv) A practical lattice algorithm that samples the field while enforcing the helical positivity bound.

^{*}Department of Mathematics, Boğaziçi University, Istanbul, Turkey

 $^{^\}dagger \mbox{Department}$ of Physics, Boğaziçi University, Istanbul, Turkey

2 Geometric and probabilistic setup

2.1 Principal circle bundles over \mathbb{T}^2

Let $p: E \to \mathbb{T}^2$ be a principal U(1) bundle. Isomorphism classes are in bijection with $c_1(E) \in H^2(\mathbb{T}^2, \mathbb{Z}) \simeq \mathbb{Z}$ [9, 10]. Fix a connection 1-form $\mathcal{A} \in \Omega^1(E; i\mathbb{R})$ with curvature $F = d\mathcal{A}$ representing $2\pi i c_1(E)$ under Chern-Weil theory [11, 12]. Denote by μ_E the invariant probability measure induced by Haar on \mathbb{T}^2 and the uniform measure on the S^1 fiber (equivalently, the connection-invariant volume on E).

Choose local bundle coordinates $(\theta_1, \theta_2, \phi)$; these exist on each trivializing chart. For $c_1(E) \neq 0$ the total space E is not globally $\mathbb{T}^2 \times S^1$. Global objects are defined via the connection and its holonomy, and local formulas are glued by the bundle's transition functions. A convenient local phase lift is

$$U(\beta) = \exp(i\chi(\beta)), \qquad \chi(\beta) = m_1\theta_1 + m_2\theta_2 + n\phi, \tag{1}$$

with $(m_1, m_2, n) \in \mathbb{Z}^3$ and $n = c_1(E)$. The term $n \phi$ implements fiber winding; U is globally well defined as a holonomy phase.

2.2 Equidistributing map to \mathbb{T}^3

Let $X: E \to \mathbb{T}^3$ be measurable. Homogeneity in the bulk is enforced by:

Assumption 2.1 (Equidistribution). $X_{\#}\mu_E = \lambda_3$, where λ_3 is Haar probability on \mathbb{T}^3 .

A globally well-defined choice uses an integer matrix on torus angles:

$$X(\theta_1, \theta_2, \phi) = M \begin{pmatrix} \theta_1 \\ \theta_2 \\ \phi \end{pmatrix} \pmod{2\pi}, \qquad M \in GL(3, \mathbb{Z}).$$
 (2)

Then X is a surjective endomorphism of tori and pushes the invariant measure on E to λ_3 . To accelerate isotropy in practice, one may average over a small ensemble of frames $R \in SO(3)$, replacing X by $R \circ X$ and averaging statistics over R.

2.3 Envelope, white noise, and synthesized field

Let $G_{\sigma}: \mathbb{T}^3 \to \mathbb{R}$ be a smooth, real, even, mean–zero envelope kernel with Fourier transform $\widehat{G}(\mathbf{k})$ satisfying $\widehat{G}(\mathbf{0}) = 0$ and $\widehat{G}(\mathbf{k}) = g(|\mathbf{k}|)$ for a nonnegative radial function g. Let W be a complex Gaussian white noise on (E, μ_E) :

$$\mathbb{E}\left[dW(\beta)\,\overline{dW(\beta')}\right] = \delta(\beta - \beta')\,d\mu_E(\beta).$$

Fix a constant vector $\boldsymbol{a} \in \mathbb{C}^3$. Define

$$\mathbf{\Phi}(x) = \int_{E} \left(\nabla_{x} \times \left[G_{\sigma} (x - X(\beta)) \mathbf{a} \right] \right) U(\beta) \, dW(\beta). \tag{3}$$

The curl enforces $\nabla \cdot \mathbf{\Phi} \equiv 0$. Translation invariance follows from Assumption 2.1.

2.4 Helical decomposition on \mathbb{T}^3

For $k \in \mathbb{Z}^3 \setminus \{0\}$, let $\{h^{\pm}(k)\}$ be an orthonormal helical basis of divergence—free eigenvectors of $ik \times (\cdot)$:

$$i \mathbf{k} \times \mathbf{h}^{\pm}(\mathbf{k}) = \pm |\mathbf{k}| \mathbf{h}^{\pm}(\mathbf{k}), \quad \mathbf{k} \cdot \mathbf{h}^{\pm}(\mathbf{k}) = 0,$$

and write $\widehat{\Phi}(\mathbf{k}) = \Phi^+(\mathbf{k}) h^+(\mathbf{k}) + \Phi^-(\mathbf{k}) h^-(\mathbf{k})$.

3 Covariance and helical spectra

Taking expectations in (3) and using $X_{\#}\mu_E = \lambda_3$ gives

$$\mathbb{E}\left[\widehat{\Phi}_{i}(\boldsymbol{k})\,\overline{\widehat{\Phi}_{j}(\boldsymbol{k}')}\right] = \delta_{\boldsymbol{k},\boldsymbol{k}'}\,\left|\widehat{G}(\boldsymbol{k})\right|^{2}\left(P_{S}(\boldsymbol{k})\,\Pi_{ij}(\boldsymbol{k}) + \mathrm{i}\,P_{H}(\boldsymbol{k})\,\epsilon_{ijm}\widehat{k}_{m}\right),\tag{4}$$

where $\Pi_{ij}(\mathbf{k}) = \delta_{ij} - \hat{k}_i \hat{k}_j$, $\hat{\mathbf{k}} = \mathbf{k}/|\mathbf{k}|$. In the helical basis,

$$\mathbb{E}\left[\left|\Phi^{\pm}(\boldsymbol{k})\right|^{2}\right] = \left|\widehat{G}(\boldsymbol{k})\right|^{2} \left(P_{S}(\boldsymbol{k}) \pm P_{H}(\boldsymbol{k})\right), \qquad \mathbb{E}\left[\Phi^{+}(\boldsymbol{k})\overline{\Phi^{-}(\boldsymbol{k})}\right] = 0.$$
 (5)

Proposition 3.1 (Bochner positivity and the helical bound). For each $k \neq 0$,

$$P_S(\mathbf{k}) \ge 0, \qquad |P_H(\mathbf{k})| \le P_S(\mathbf{k}).$$

Proof. On the compact abelian group \mathbb{T}^3 , stationary covariances correspond to positive–type functions on \mathbb{Z}^3 whose Fourier transforms are positive measures [13, 14]. Restricting (4) to the transverse subspace and diagonalizing in the helical basis gives variances $\left| \widehat{G}(\mathbf{k}) \right|^2 \left(P_S(\mathbf{k}) \pm P_H(\mathbf{k}) \right) \geq 0$, which is equivalent to the stated inequalities.

Remark 3.2 (Helicity density). The spectral helicity density at \mathbf{k} equals $2 |\mathbf{k}| |\widehat{G}(\mathbf{k})|^2 P_H(\mathbf{k})$, consistent with classical conventions [5, γ].

4 Boundary-to-bulk transfer law

Let $b = p(\beta) \in \mathbb{T}^2$ denote the base point and write $U(\beta) = u(b) e^{in\phi}$ in adapted coordinates, with $n = c_1(E)$. Define the pushforward characteristic

$$\chi_X(\mathbf{k}) = \int_E e^{-i\mathbf{k}\cdot X(\beta)} d\mu_E(\beta) = 0 \text{ for } \mathbf{k} \neq \mathbf{0},$$
 (6)

by Assumption 2.1. The symmetric and helical spectra admit the representation

$$P_S(\mathbf{k}) = \int_E K_S(\mathbf{k}; \beta) e^{-i\mathbf{k}\cdot X(\beta)} d\mu_E(\beta), \qquad (7)$$

$$P_H(\mathbf{k}) = \int_E K_H(\mathbf{k}; \beta) e^{-i\mathbf{k}\cdot X(\beta)} U(\beta) d\mu_E(\beta),$$
 (8)

for bounded kernels $K_{S/H}$ depending on \boldsymbol{a} and the curl enforcement. In the affine model (2) with $U(\beta) = u(b) e^{\mathrm{i}n\phi}$, integration over ϕ yields a resonance condition $n - \boldsymbol{k} \cdot \boldsymbol{\omega}_3 \in \mathbb{Z}$ in the exact average; for finite sampling in ϕ , this appears as a Dirichlet–kernel peak near the resonance.

5 Effective quadratic action and odd term

The Gaussian measure is determined by (4). In the helical basis the quadratic action is

$$S[\boldsymbol{\Phi}] = \frac{1}{2} \sum_{\boldsymbol{k} \neq 0} \left| \widehat{G}(\boldsymbol{k}) \right|^{-2} \left(\frac{\left| \Phi^{+}(\boldsymbol{k}) \right|^{2}}{P_{S}(\boldsymbol{k}) + P_{H}(\boldsymbol{k})} + \frac{\left| \Phi^{-}(\boldsymbol{k}) \right|^{2}}{P_{S}(\boldsymbol{k}) - P_{H}(\boldsymbol{k})} \right). \tag{9}$$

In physical space, the action splits into an even part plus an odd contribution of Chern–Simons type,

$$\mathcal{S}_{\mathrm{odd}}[\mathbf{\Phi}] \approx \int_{\mathbb{T}^3} \eta(|\nabla|) \, \mathbf{\Phi}(x) \cdot (\nabla \times \mathbf{\Phi}(x)) \, \mathrm{d}x,$$

with a nonlocal positive kernel η determined by P_S and P_H [17–19].

6 A spectral-triple realization (odd case)

Let $A = C^{\infty}(\mathbb{T}^3)$ act by multiplication on $H = L^2_{\text{trans}}(\mathbb{T}^3; \mathbb{C}^3) \oplus L^2_{\text{trans}}(\mathbb{T}^3; \mathbb{C}^3)$. In the Fourier-helical basis, define

$$D: (\Phi^{+}(\boldsymbol{k}), \Phi^{-}(\boldsymbol{k})) \longmapsto \Big(|\widehat{G}(\boldsymbol{k})|^{-1} (P_{S}(\boldsymbol{k}) + P_{H}(\boldsymbol{k}))^{-1/2} \Phi^{+}(\boldsymbol{k}), |\widehat{G}(\boldsymbol{k})|^{-1} (P_{S}(\boldsymbol{k}) - P_{H}(\boldsymbol{k}))^{-1/2} \Phi^{-}(\boldsymbol{k}) \Big).$$

Then D^{-2} on the transverse subspace equals the covariance operator with eigenvalues $\left|\widehat{G}(\boldsymbol{k})\right|^2 \left(P_S(\boldsymbol{k}) \pm P_H(\boldsymbol{k})\right)$. Assume $\left|\widehat{G}(\boldsymbol{k})\right|$ decays super–polynomially (e.g. a periodized Gaussian) and P_S, P_H are bounded and smooth; then D has compact resolvent and, since multiplication by $f \in C^{\infty}(\mathbb{T}^3)$ is a zeroth–order PDO, [D, f] extends to a bounded operator.

7 Numerical synthesis on lattices

Identify \mathbb{T}^3 with the grid \mathbb{Z}_N^3 . Choose $\widehat{G}(\mathbf{k})$, an integer M in (2) (optionally with randomized orthonormal frames to improve isotropy), and a connection with $c_1(E) = n$.

- 1. Boundary randomness and holonomy. Sample i.i.d. complex Gaussians $\{\xi_{\ell}\}$ on a mesh $\{\beta_{\ell}\} \subset E$ and phases $U_{\ell} = U(\beta_{\ell})$ via (1).
- 2. Projection to bulk spectra. For each $k \in \mathbb{Z}_N^3 \setminus \{0\}$, set

$$\mathcal{B}_{S}(\boldsymbol{k}) = \frac{1}{\sqrt{L}} \sum_{\ell=1}^{L} e^{-i\boldsymbol{k}\cdot\boldsymbol{X}(\beta_{\ell})} \, \xi_{\ell}, \qquad \mathcal{B}_{H}(\boldsymbol{k}) = \frac{1}{\sqrt{L}} \sum_{\ell=1}^{L} e^{-i\boldsymbol{k}\cdot\boldsymbol{X}(\beta_{\ell})} \, U_{\ell} \, \xi_{\ell},$$

and define

$$P_S(\mathbf{k}) = |\mathcal{B}_S(\mathbf{k})|^2, \qquad P_H(\mathbf{k}) = \Re(\mathcal{B}_H(\mathbf{k}) \overline{\mathcal{B}_S(\mathbf{k})}).$$

Finally project to enforce $|P_H(\mathbf{k})| \leq P_S(\mathbf{k})$.

- 3. Helical assembly. Draw independent standard Gaussians $\eta_{\pm}(\mathbf{k})$ and set $\Phi^{\pm}(\mathbf{k}) = \widehat{G}(\mathbf{k}) \sqrt{P_S(\mathbf{k}) \pm P_H(\mathbf{k})} \eta_{\pm}(\mathbf{k})$.
- 4. **Inverse transform.** Form $\widehat{\Phi}(\mathbf{k}) = \Phi^+(\mathbf{k})\mathbf{h}^+(\mathbf{k}) + \Phi^-(\mathbf{k})\mathbf{h}^-(\mathbf{k})$, impose conjugate symmetry, and inverse FFT to obtain $\Phi(x)$.

8 Discussion and extensions

Chirality control. The integer $n = c_1(E)$ controls the net helical bias via the holonomy factor in (8). Homogeneity and isotropy. Equidistribution of X guarantees translation invariance; isotropy is obtained by radial \hat{G} combined with choices of $(\omega_1, \omega_2, \omega_3)$ whose ensemble is rotation invariant. Generalizations. Bases other than \mathbb{T}^2 (e.g. S^2) and nonabelian fiber groups are natural extensions; time dependence can be introduced by slowly varying X and the connection.

• This geometric chirality control may extend to particle physics, where helical bias analogs to weak interaction handedness, and twist-reversals could model $0\nu\beta\beta$ via off-diagonal D couplings corresponding to neutrino masses. However, this analogy remains highly speculative, as the current framework is designed for classical stochastic vector fields in hydrodynamics/MHD, not quantum particle decays, and requires significant theoretical development to bridge these domains rigorously.

Acknowledgments

We gratefully acknowledge the use of Google "Deep Think" LLM to expedite hypothesis testing and OpenAI ChatGPT 5 LLM for translation (Türkçe to English) to draft this paper.

References

- [1] G. 't Hooft. The Holographic Principle. arXiv:hep-th/0003004, 2000.
- [2] L. Susskind. The World as a Hologram. Journal of Mathematical Physics 36 (1995) 6377–6396.
- [3] J. M. Maldacena. The Large N Limit of Superconformal Field Theories and Supergravity. Adv. Theor. Math. Phys. 2 (1998) 231–252.
- [4] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, Y. Oz. Large N Field Theories, String Theory and Gravity. *Phys. Rept.* 323 (2000) 183–386.
- [5] H. K. Moffatt. The degree of knottedness of tangled vortex lines. *Journal of Fluid Mechanics* 35 (1969) 117–129.
- [6] H. E. Moses. Eigenfunctions of the curl operator, rotationally invariant Helmholtz theorem, and applications. SIAM J. Appl. Math. 21 (1971) 114–144.
- [7] F. Waleffe. The nature of triad interactions in homogeneous turbulence. *Physics of Fluids* A 4 (1992) 350–363.
- [8] A. Alexakis, L. Biferale. Helically Decomposed Turbulence. Physics Reports 767–769 (2018) 1–101.
- [9] J. W. Milnor, J. D. Stasheff. Characteristic Classes. Princeton Univ. Press, 1974.
- [10] A. Hatcher. Vector Bundles and K-Theory, 2017 version.
- [11] S. Kobayashi, K. Nomizu. Foundations of Differential Geometry, Vol. I. Wiley, 1963.
- [12] M. Nakahara. Geometry, Topology and Physics. Taylor & Francis, 2003.
- [13] W. Rudin. Fourier Analysis on Groups. Wiley, 1962.
- [14] Y. Katznelson. An Introduction to Harmonic Analysis. Cambridge Univ. Press, 2004.
- [15] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77 (1916) 313–352.
- [16] P. Walters. An Introduction to Ergodic Theory. Springer, 1982.
- [17] S.-S. Chern, J. Simons. Characteristic forms and geometric invariants. *Ann. of Math.* 99 (1974) 48–69.
- [18] D. S. Freed. Remarks on Chern-Simons theory. Bulletin of the AMS 46 (2009) 221–254.
- [19] S. Deser, R. Jackiw, S. Templeton. Three-dimensional massive gauge theories. Phys. Rev. Lett. 48 (1982) 975–978.