Hochiminh city University of Technology Faculty of Computer Science and Engineering

COMPUTER GRAPHICS

CHAPTER 01:

Graphics System

Outline

- Computer Graphics: Why & What?
- Application
- Computer Graphics Systems
- Image Formation
- Models and Architectures
- API Contents

Why

- "A Picture is Worth a Thousand Words"

What

- Computer graphics deals with all aspects of creating images with a computer
- Hardware
- Software
 - High-Level: Maya, Lightwave, 3DS Studio
 - Low-level: OpenGL, Direct3D Libraries for programming graphics applications
- Applications

- Display of Information
- Computer-Aided Design
- Simulation and Animation
- User Interface

- Display of Information
 - Complex scientific data

- Display of Information
 - Medical Imaging

- Display of Information
 - Network and threat visualization

- Computer-Aided Design
 - Architecture

- Computer-Aided Design
 - Mechanical Engineering

- Computer-Aided Design
 - Digital Logic Design

- Simulation and Animation
 - Flight simulators

- Simulation and Animation
 - Surgical training

- Simulation and Animation
 - Virtual Reality

- Simulation and Animation
 - Augmented Reality

- Simulation and Animation
 - Augmented Reality

■ Simulation and Animation

Entertainment

■ User Interface

- System's Overview
 - Input devices
 - Processor
 - Memory
 - Frame buffer
 - Output devices

■ System's Overview

- ☐ Input devices
 - Keyboard, Button boxes, dials
 - Mouse Devices: 2D and 3D
 - Trackballs and Spaceballs
 - Joysticks
 - Data Gloves, CyberGloves
 - Data tablet
 - Image Scanner
 - Touch Panels
 - Light Pens
 - 3D Scanner

- ☐ Frame buffer
 - Location
 - Inside the system memory
 - Inside GPU, graphic card
 - Store pixels of image to be shown on video display

- ☐ Frame buffer
 - Pixel
 - Is the smallest element of images
 - Image = 2D Array of pixels
 - Specification:
 - →Location: (X,Y)
 - →Value: (Color)
 - Gray value
 - Color: [R,G,B]
 - Index to color

☐ Frame buffer

- Specification:
 - Resolution: the number of pixels in the frame buffer
 - Depth or Precision: the number of bits that are used for each pixel
 - 1 bit: back and white color
 - 8 bits: 28 (= 256) colors
 - 24 bits: full-color system or true-color system.

☐ Frame buffer

- Output devices
 - Hard-copy devices
 - Printer
 - Film recorder
 - Video display/projector
 - Cathode-Ray Tube (CRT)
 - Flat-panel display.

Output Devices

Output Devices

Output devices

■ Output Devices – Color Monitor

■ Output Devices – Color Monitor

- Output devices
 - Indexed Color & Look up table

640*480*6/8 = 230 K

640*480*15/8 = 230K*2.5

LUT: 64*15/8 = 120

bytes

Output devices

0	0	0	39	0	0	0	0
0	0	39	39	39	0	0	0
0	0	39	39	39	0	0	0
39	39	39	39	39	39	39	0
39	39	39	39	39	39	39	0
0	0	39	39	39	0	0	0
0	0	39	39	39	0	0	0
0	0	0	39	0	0	0	0

$$R = 18*8 = 64 G = 25*8 = 150 B = 10*8 = 80$$

Output Devices

0	0	0	39	0	0	0	0
0	0	39	39	39	0	0	0
0	0	39	39	39	0	0	0
39	39	39	39	39	39	39	0
39	39	39	39	39	39	39	0
0	0	39	39	39	0	0	0
0	0	39	39	39	0	0	0
0	0	0	39	0	0	0	0

R, G, B 11111, 00010, 11111 255, 16, 255

Output devices

- RGB=(45,73,208)
- RGB=(45,74,208)
- RGB=(45,74,215)

Output Devices

Output Devices

Human color receptor relative sensitivity

Output devices

Image Formation

- □ Elements of Image Formation
 - Objects
 - Viewers
 - Lights (Materials)
- Advantages
 - Separation of objects, viewer, light sources
 - Two-dimensional graphics is a special case of threedimensional graphics
 - Leads to simple software API
 - Leads to fast hardware implementation

Image & Image Formation

- Elements of Image Formation
 - Objects & viewers

Image & Image Formation

- □ Elements of Image Formation
 - Objects & viewers

Image & Image Formation

- □ Elements of Image Formation
 - Lights

Models and Architectures

- Practical Approach : Pipeline
 - Fast, simple
 - All steps can be implemented in hardware on the graphics card

- Functions that specify what we need to form an image
 - Objects
 - Viewer
 - Light Source(s)
 - Materials
- Other information
 - Input from devices such as mouse and keyboard
 - Capabilities of system

- Object Specification
 - Most APIs support a limited set of primitives including
 - Points (0D object)
 - Line segments (1D objects)
 - Polygons (2D objects)
 - Some curves and surfaces
 - All are defined through locations in space or vertices

Object Specification

```
type of object
                           location of vertex
glBegin(GL POLYGON)
 glVertex3f(0.0, 0.0, 0.0);
 glVertex3f(0.0, 1.0, 0.0);
 glVertex3f(0.0, 0.0, 1.0);
glEnd( );
      end of object definition
```

Object Specification

Object Specification

- Camera Specification
 - Six degrees of freedom
 - Position of center of lens
 - Orientation
 - Lens
 - Film size
 - Orientation of film plane

- Lights and Materials
 - Types of lights
 - Point sources vs distributed sources
 - Spot lights
 - Near and far sources
 - Color properties
 - Material properties
 - Absorption: color properties
 - Scattering
 - →Diffuse
 - →Specular

Further Reading

- ☐ "Interactive Computer Graphics: A Topdown Approach Using OpenGL", Edward Angel
 - Chapter 1: Graphics Systems And Models
- "Đồ họa máy tính trong không gian hai chiều", Trần Giang Sơn
 - Chương 1: Giới thiệu đồ họa máy tính