

Machine Learning with Graphs (MLG)

Network Community Detection (1)

What are clusters in graphs and how to find them?

Cheng-Te Li (李政德)

Institute of Data Science
National Cheng Kung University

TANDLY AND CALABOT AND CALABOT

chengte@mail.ncku.edu.tw

Network Community Detection

 Given a social network, can we automatically identify a set of subgraphs with the best community structures?

Applications:

- ✓ Friend Suggestion
- ✓ Viral Marketing
- ✓ Missing Value Inference
- ✓ Outlier Detection
- ✓ Multi-faceted Analysis
- ✓ Financial Support/Competition
- ✓ Brain Functionality

Data Clustering

• Given a set of objects V, and a notion of similarity (or distance) between them, partition the objects into disjoint sets S_1, S_2, \ldots, S_k , such that objects within the each set are similar, while objects across different sets are dissimilar

Data in each subset share some common traits

How about on Networks?

N undifferentiated vertices (nodes)

NO prior information

Only know the edge (link) connectivity: **Structural information**

- How can we partition the network into several parts?
 - According to their structural connectivity
 - Community structure
- Applications
 - Topic/Domain Detection, Friend Suggestion, Viral Marketing, Graph Compression, Parallel Processing on graphs, etc.

Community Structure

- Community structure
 - Within (intra-) group edges High density
 - Between (inter-) group edges Low density
 - The average path length among nodes is relatively small

Community Structure

Community Structure: Social Circle

friends under the same advisor CS department friends family members college friendsego' u'alters' v_i highschool friends

Node Similarity

- Node similarity is defined by how similar their interaction patterns are
- Two nodes are similar if they connect to the same set of actors
 - e.g., nodes 8 and 9 tend to belong to the same community
- In practice, use vector similarity
 - e.g., cosine similarity, Jaccard similarity

Vector Similarity

		1	2	3	4	5	6	7	8	9	10	11	12	13
a vector 🛑	5		1				1							
structurally	8	1					1							1
structurally - equivalent	9	1					1							1

Cosine Similarity: $similarity = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$

$$sim(5,8) = \frac{1}{\sqrt{2} \times \sqrt{3}} = \frac{1}{\sqrt{6}}$$

Jaccard Similarity: $J(A, B) = \frac{|A \cap B|}{|A \cup B|}$ $J(5,8) = \frac{|\{6\}|}{|\{1,2,6,13\}|} = 1/4$

Clustering based on Node Similarity

- For practical use with huge networks:
 - Consider the connections as features
 - Use Cosine or Jaccard similarity to compute vertex similarity
 - Apply classical k-means clustering Algorithm
- K-means Clustering Algorithm
 - Each cluster is associated with a centroid (center point)
 - Each node is assigned to the cluster with the closest centroid

Algorithm 1 Basic K-means Algorithm.

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

Illustration of k-means Clustering

http://etrex.tw/flash/kMeansClustering/kMeansClustering2.html

Community Detection Approaches

- Propagation-based Method
 - Structural Clustering Algorithm for Networks (SCAN)
- Edge-Removal
 - Girvan-Newman Algorithm (GNA)
 - Fast Newman Algorithm
- Louvain Algorithm
- Label Propagation Algorithm

Main Idea of SCAN

- Use the neighborhood of the vertices as clustering criteria
 - Instead of direct connections

Vertices are grouped into clusters by how they share neighbors

	Neighbors
0	{0,1,4,5 ,6}
5	{0,1 ,2,3, 4,5 }
9	{8, 9 ,10,12, 13 }
13	{9,13 }

The Neighbor of a Vertex

(Focus on simple, undirected and un-weighted graph)

- Vertex structure
 - Define $\Gamma(v)$ as the immediate neighborhood of a vertex (i.e. the set of people an individual knows)

$$\Gamma(v) = \{ w \in V \mid (v, w) \in E \} \cup \{ v \}$$

14

- Normalize the number of common neighbors by geometric mean of two neighborhoods' size
- Define structural similarity:

$$\sigma(v, w) = \frac{|\Gamma(v) \cap \Gamma(w)|}{\sqrt{|\Gamma(v)||\Gamma(w)|}}$$

Basic Concepts (1/3)

ε-Neighborhood

$$N_{\varepsilon}(v) = \{ w \in \Gamma(v) \mid \sigma(v, w) \ge \varepsilon \}$$

- $Core_{\varepsilon,\mu}$ $CORE_{\varepsilon,\mu}(v) \Leftrightarrow |N_{\varepsilon}(v)| \geq \mu$
 - If a vertex is in ε -neighborhood of a core, it should be in the same cluster
- Directly Structure Reachable
 - w is directly structure reachable from v

$$DirREACH_{\varepsilon,\mu}(v,w) \Leftrightarrow CORE_{\varepsilon,\mu}(v) \land w \in N_{\varepsilon}(v)$$

$$\mu$$
 = 5, ε = 0.8

Basic Concepts (2/3)

Structure-reachable

$$\begin{split} REACH_{\varepsilon,\mu}(v,w) &\Leftrightarrow \\ \exists v_1,...v_n \in V : v_1 = v \wedge v_n = w \wedge \\ \forall i \in \{1,...,n-1\} : DirREACH_{\varepsilon,\mu}(v_i,v_{i+1}). \end{split}$$

- Transitive closure of direct structure reachability
- Structure-connected

$$\begin{split} &CONNECT_{\varepsilon,\mu}(v,w) \Leftrightarrow \\ &\exists u \in V : REACH_{\varepsilon,\mu}(u,v) \land REACH_{\varepsilon,\mu}(u,w). \end{split}$$

Basic Concepts (3/3)

Structure-connected cluster

$$CLUSTER_{\varepsilon,\mu}(C) \Leftrightarrow$$

Connectivity:

 $\forall v, w \in C : CONNECT_{\varepsilon,\mu}(v,w)$

- Hub
 - Not belong to any cluster
 - Bridge to many clusters
- Outlier
 - Not belong to any cluster
 - Connect to few clusters

SCAN Algorithm (1/13)

SCAN Algorithm (2/13)

20

SCAN Algorithm (3/13)

SCAN Algorithm (4/13)

SCAN Algorithm (5/13)

SCAN Algorithm (6/13)

SCAN Algorithm (7/13)

SCAN Algorithm (8/13)

SCAN Algorithm (9/13)

SCAN Algorithm (10/13)

SCAN Algorithm (11/13)

SCAN Algorithm (12/13)

SCAN Algorithm (13/13)

SCAN Algorithm

$$DirREACH_{\varepsilon,\mu}(v,w) \Leftrightarrow CORE_{\varepsilon,\mu}(v) \land w \in N_{\varepsilon}(v)$$


```
ALGORITHM SCAN(G=<V, E>, \varepsilon, \mu)
               // all vertices in V are labeled as unclassified:
               for each unclassified vertex v \in V do
               // STEP 1. check whether v is a core;
                  if CORE_{\varepsilon,u}(v) then
               // STEP 2.1. if v is a core, a new cluster is expanded;
                      generate new clusterID;
                      insert all x \in N_{\varepsilon}(v) into queue Q;
                      while Q \neq 0 do
                          y = first vertex in Q;
                          R = \{x \in V \mid \text{DirREACH}_{\varepsilon,\mu}(y,x)\};
                          for each x \in R do
                             if x is unclassified or non-member then
                                 assign current clusterID to x;
                             if x is unclassified then
                                 insert x into queue Q;
                          remove y from Q;
                  else
               // STEP 2.2. if v is not a core, it is labeled as non-member
                      label v as non-member;
               end for.
               // STEP 3. further classifies non-members
               for each non-member vertex v do
                  if (\exists x, y \in \Gamma(v)) (x.clusterID \neq y.clusterID) then
                    label v as hub
                  else
                    label v as outlier;
               end for.
Prof. Cheng-Te Li @ NCKU
```