TET Formelsammlung (Prof. H.G. Krauthäuser, TU Dresden, CC0 1.0 Universal)

Maxwell Gleichungen

$$\begin{split} \operatorname{rot} \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \overset{\operatorname{Stokes}}{\to} \oint\limits_{C(A)} \vec{E} \cdot \, \mathrm{d}\vec{s} = -\frac{\mathrm{d}}{\mathrm{d}t} \iint\limits_{A} \vec{B} \cdot \, \mathrm{d}\vec{A} \\ \operatorname{rot} \vec{H} &= \vec{J} + \frac{\partial \vec{D}}{\partial t} \overset{\operatorname{Stokes}}{\to} \oint\limits_{C(A)} \vec{H} \cdot \, \mathrm{d}\vec{s} = \iint\limits_{A} \vec{J} \cdot \, \mathrm{d}\vec{A} + \frac{\mathrm{d}}{\mathrm{d}t} \iint\limits_{A} \vec{D} \cdot \, \mathrm{d}\vec{A} \\ \operatorname{div} \vec{B} &= 0 \overset{\operatorname{Gauss}}{\to} \iint\limits_{C(V)} \vec{B} \cdot \, \mathrm{d}\vec{A} = 0 \\ \operatorname{div} \vec{D} &= \rho_{V} \overset{\operatorname{Gauss}}{\to} \iint\limits_{C(V)} \vec{D} \cdot \, \mathrm{d}\vec{A} = \iiint\limits_{C(V)} \rho_{V} \, \mathrm{d}V \end{split}$$

Material Gleichungen

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} \quad \stackrel{\text{hli}}{\rightarrow} \quad \vec{D} = \varepsilon \vec{E}$$

$$\vec{B} = \mu_0 \left(\vec{H} + \vec{M} \right) \quad \stackrel{\text{hli}}{\rightarrow} \quad \vec{B} = \mu \vec{H}$$

Kontinuitätsgleichung

$$\operatorname{div} \vec{J} = -\frac{\partial \rho_{\mathrm{V}}}{\partial t} \quad \overset{\mathrm{Gauss}}{\to} \quad \oiint\limits_{O(V)} \vec{J} \cdot \operatorname{d} \vec{A} = - \oiint\limits_{V} \frac{\partial \rho_{\mathrm{V}}}{\partial t} \operatorname{d} V$$

Stetigkeitsbedingungen

Für Normalenvektor \vec{n} von (1) nach (2):

$$\begin{array}{c|c} \textcircled{1} & \textcircled{\vec{n}} \times \left(\vec{E}_2 - \vec{E}_1 \right) = \vec{0} \\ \\ \rightarrow \vec{n} & \vec{n} \cdot \left(\vec{D}_2 - \vec{D}_1 \right) = \rho_{\mathrm{F}} \\ \\ \vec{n} \times \left(\vec{H}_2 - \vec{H}_1 \right) = \vec{J}_A \\ \\ \vec{n} \cdot \left(\vec{B}_2 - \vec{B}_1 \right) = 0 \\ \end{array}$$

Elektrisches Skalarpotential

rot
$$ec E=ec 0 oec E=-{
m grad}\,\phi$$

$$\Delta\phi=-\frac{1}{\varepsilon}\rho_{
m V}\ {
m Poisson-Gleichung}$$

Coulomb-Integral

$$\phi(\vec{r}) = \frac{1}{4\pi\varepsilon} \iiint_V \frac{\rho_V(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3r'$$

Spannung an \vec{r}_2 bezogen auf \vec{r}_1

$$\mathrm{rot}\, \vec E=\vec 0 \to U_{21}=\phi(\vec r_2)-\phi(\vec r_1)=\int\limits_{\vec r_2}^{\vec r_1} \vec E \cdot \mathrm{d}\vec s \ \ \mathrm{wegunabh\"{a}ngig}$$

Kraft auf q, Arbeit $ec{r}_1 ightarrow ec{r}_2$, Energie

$$\vec{F} = q\vec{E} \quad A = q \int_{\vec{r}_2}^{\vec{r}_1} \vec{E} \cdot d\vec{s} = q \left[\phi(\vec{r}_2) - \phi(\vec{r}_1) \right] = qU_{21}$$

$$w_e = \frac{1}{2} \vec{E} \cdot \vec{D} \quad W_e = \frac{1}{2} \iiint\limits_V \vec{E} \cdot \vec{D} \, dV$$

Dipol bei $ec{r}'$, Dipoldichte, Kraft, Drehmoment

$$\begin{split} \phi_D(\vec{r}) &= \frac{1}{4\pi \, \varepsilon_0} \frac{\vec{p} \cdot (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} \\ \vec{E}_D(\vec{r}) &= \frac{1}{4\pi \, \varepsilon_0} \left[\frac{3[\vec{p} \cdot (\vec{r} - \vec{r}')](\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^5} - \frac{\vec{p}}{|\vec{r} - \vec{r}'|^3} \right] \\ \phi_D(\vec{r}) &= \frac{1}{4\pi \, \varepsilon_0} \, \iint_V \frac{\vec{m} \cdot (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} \mathrm{d}^3 r' \\ \vec{F}_D(\vec{r}) &= (\vec{p} \cdot \nabla) \vec{E}(\vec{r}) = \mathrm{grad} \, \left(\vec{p} \cdot \vec{E}(\vec{r}) \right) \quad \vec{M}_D(\vec{r})) = \vec{p} \times \vec{E}(\vec{r}) \end{split}$$

Skalar
potential mit Randwerten auf O(V)

$$\begin{split} \phi(\vec{r}) &= \frac{1}{4\pi\varepsilon_0} \iiint\limits_V \frac{\rho_V(\vec{r}')}{|\vec{r} - \vec{r}'|} \mathrm{d}^3 r' \\ &+ \frac{1}{4\pi} \iint\limits_{O(V)} \left[\frac{1}{|\vec{r} - \vec{r}'|} \frac{\partial \phi(\vec{r}')}{\partial n'} - \phi(\vec{r}') \frac{\partial}{\partial n'} \frac{1}{|\vec{r} - \vec{r}'|} \right] \mathrm{d}^2 r' \end{split}$$

Greensche Funktionen von $\Delta G(\vec{r}, \vec{r}') = -\frac{1}{\varepsilon} \delta(\vec{r} - \vec{r}')$

$$G(\vec{r}, \vec{r}') = \frac{1}{4\pi\varepsilon_0} \frac{1}{|\vec{r} - \vec{r}'|} + \Gamma(\vec{r}, \vec{r}')$$

$$\Delta\Gamma(\vec{r}, \vec{r}') = 0, \quad \Gamma(\vec{r}, \vec{r}') = \Gamma(\vec{r}', \vec{r})$$