Logika és számításelmélet

Pótzárthelyi dolgozat (számításelmélet rész)

- 1. feladat. [5 pont]
 - 1. Mely negész számokra teljesül az $n^{16} \leq 2^{\frac{n}{16}}$ egyenlőtlenség?
 - 2. Tekintsük az $f(n)=n^3$ és a $g(n)=n^2\log n$ függvényeket. Az $f(n)=\mathcal{O}(g(n)), f(n)=\Omega(g(n)), f(n)=\Theta(g(n))$ állítások közül melyik igaz? A választ indokold is!
- **2. feladat.** [5 pont] Mi lesz az alábbi Turing gép szalagján amikor q_i -ben megáll, ha a gépet egy $u \in \{a,b\}^*$ szóval a bemenetén indítjuk el? A választ indokold is!

3. feladat. [5 pont] Adj meg egy olyan egyszalagos determinisztikus Turing-gépet, ami a következő nyelvet dönti el: $L = \{u \# v \mid u, v \in \{0,1\}^*, l(u) = l(v)\}$. (Tehát a nyelvben olyan szavak vannak, melyekben pontosan középen van egy # szimbólum.)

Mekkora lesz a megadott gép időigénye?

- **4. feladat.** [5 pont] Vázlatosan ismertesd azt a Turing-gépet, ami az $L = \{u \mid u \in \{a,b\}^*, l_a(u) = l_b(u)\}$ nyelvet dönti el (tehát a nyelvben olyan szavak vannak, melyekben ugyanannyi a és b betű van). A leírásból derüljön ki, hogy milyen algoritmus szerint működik a gép és hogyan manipulálja a szalagjait. Hogyan módosítanád a megadott gépet ahhoz, hogy az L nyelv eldöntése logaritmikus tárral működjön?
- 5. feladat. [5 pont] Tekintsük a Post Megfelelkezési Probléma egy alábbi dominókészletét:

$$\left\{\frac{00}{01}, \frac{11}{1}, \frac{1}{0}, \frac{100}{110}\right\}.$$

Van-e ennek a dominókészletnek megoldása? A választ indokold is!

6. feladat. [5 pont] Legyen $L_{\text{HALT}} = \{ \langle M, w \rangle \mid M \text{ megáll a } w \text{ bemeneten} \}$. Mutasd meg, hogy L_{HALT} egy eldönthetetlen nyelv!

1