Cambridge (CIE) A Level Chemistry

Predicting the Type of Polymerisation

Contents

Predicting & Deducing the Type of Polymerisation

Predicting & Deducing the Type of Polymerisation

Predicting Type of Polymerisation

- When a set of monomers is given in an exam question, the type of polymerisation can be determined
- Firstly, it's important to identify the key functional groups in the monomers

Addition polymerisation

- If the monomer/s contain a C=C double bond, they will polymerise through addition polymerisation
- The double bond can open up in order to add more monomers on either side of the starting monomer
- This type of polymerisation makes (poly)alkenes

Addition polymerisation using one monomer

During addition polymerisation of one alkene monomer, a (poly)alkene is formed

- (Poly)alkenes can be produced if there are 2 or more alkene monomers as well
- When more than one monomer is used for addition polymerisation, the resulting product is known as a copolymer

Addition polymerisation using more than one monomer

Addition polymerization can also use two or more different alkene monomers forming a co-polymer

Condensation polymerisation

- Condensation polymerisation makes polyamides and polyesters
- When looking to identify this type of polymerisation, there are some key functional groups to be aware of

Monomers for condensation polymers table

Polyamide monomers	Polyester monomers	Molecule expelled as a result of condensation polymerisation
Acyl chlorides (-COCl) Amines (-NH ₂)	Acyl chlorides (-COCI) Alcohols (-OH)	Hydrochloric acid (HCl)
Carboxylic acids (- COOH) Amines (-NH ₂)	Carboxylic acids (-COOH) Alcohols (-OH)	Water (H ₂ O)
Aminocarboxylic acids (H ₂ N-CHR-COOH)	Hydroxycarboxylic acids (HO-R-COOH)	Water (H ₂ O)

Examiner Tips and Tricks

- As well as the functional groups to be aware of, know that a small molecule is expelled when the polymer is formed
- Identify 2 functional groups that can react together to produce either a polyamide or a polyester
- There are instances where both of the functional groups are on the same monomer molecule
 - For example, amino acid molecules contain an amine group (-NH₂) and a carboxylic acid group (-COOH) which means that they can polymerise to produce a polyamide

Deducing Type of Polymerisation

■ The type of polymerisation can be determined by considering the structure of the polymer backbone

Identifying addition polymerisation

- The polymer backbone of an addition polymer does not contain functional groups
- The backbone of the polymer is generally a chain of carbon atoms
- There may be sidechains branching off from the backbone
- Some examples of side chains include:
 - Benzene rings
 - Nitrile groups (-CN)
 - Halogen atoms (-F/-Cl/-Br/-l)

Identifying addition polymers

Addition polymers are identified using the plain carbon chain as the polymer backbone

Identifying condensation polymerisation

- A condensation polymer can be identified by functional groups on the polymer backbone
- The backbone of polyesters contains ester links (-COO-)
- The backbone of polyamides contains amide / peptide links (-CONH-)

Identifying condensation polymers

Condensation polymers are identified using functional groups that form part of the polymer backbone, e.g. ester links in polyesters and amide / peptide links in polyamides

Examiner Tips and Tricks

- Different sections of polymer chains may be formed using various types of polymerisation
- In an exam, you may be given a section of a polymer and asked to determine the type of polymerisation used to form that section
- Firstly, look at the polymer backbone
 - If there are functional groups along the backbone, that section was made using condensation polymerisation
 - If there are no functional groups along the backbone, addition polymerisation was used