MA2.101: Linear Algebra (Spring 2022)

Exam

Wednesday, 28 March 2024

 $2024 \left(V \rightarrow W \right)$ $+ \left(V \rightarrow W \right)$ $+ \left(C + \beta \right) = + \left(C + \beta \right)$ $+ \left(C + \beta \right) = + \left(C + \beta \right)$

Course outcomes: CO1, CO3, CO6.

- 1. ([4 marks]) Solve one of the following.
 - The system of equations

$$x + y + z = 6$$
$$x + 4y + 6z = 20$$
$$x + 4y + \lambda z = \phi.$$

Find the values of λ and ϕ for which this system of equations has no solutions.

- If Ax = b always has at least one solution, show that the only solution to $A^T y = 0$ is y = 0. Here A^T denotes the transposition of matrix A.
- 2. ([3 marks]) V is a finite-dimensional vector space and let $T:V\to V$ be a linear operator on V. Suppose that $rank(T^2) = rank(T)$. Prove that the range and nullspace of T have only the zero vector $\mathbf{0}$ in common.
- Two vector spaces are called isomprphic if there exists an 3. ([4 marks]) invertible linear transformation from one vector space onto the other one. Prove that two finite-dimensional vector spaces over F are isomorphic if and only if they have the same dimension.
- 4. ([4 marks]) Solve one of the following.
 - (a) Prove both of the following statements.
 - The image or the range of a linear transformation $T:V \to W$ is
 - a subspace of rr.

 A linear transformation $T: V \to W$ is one-to-one if and only if

- (b) Consider the ordered bases $A = \{(1,2), (-2,-3)\}$ and $B = \{(2,1), (1,3)\}$ for a vector space V. Then find the following
 - Matrix P that changes coordinates of any vector $\vec{\alpha} \in V$ w.r.t. the ordered basis \mathcal{A} to coordinates w.r.t. the ordered basis \mathcal{B} .
 - Matrix Q that changes coordinates of any vector $\vec{\alpha} \in V$ w.r.t. the ordered basis \mathcal{B} to coordinates w.r.t. the ordered basis \mathcal{A} .