X

通过所需分数: 80% 或更高

每隔8小时,您最多可以重新进行3次此测验。

返回到第5周

重新测试

 $\mathbf{1}_{\mathbf{0}}$ Given the following contour plot,

1/1分

Which starting points (from 1 to 5) are likely to converge to the global minimum (shown by the mobile phone) when using a steepest descent algorithm?

Starting point 1

正确

In this case, the algorithm descends smoothly down the slope.

Starting point 2				
未选择的是正确的				
Starting point 3				
正确 In this case, the algorithm descends smoothly down the slope.				
Starting point 4				
正确 In this case, the algorithm descends smoothly down the slope.				
Starting point 5				
未选择的是正确的				
None of the above				
未选择的是正确的				

2 o Again, which starting points converge to the global minimum?

1/1分

Starting point 1

未选择的是正确的

Starting point 2

未选择的是正确的

Starting point 3

正确

This should converge to the global minimum.

Starting point 4

正确

Optimisation scenarios

测验, 6 个问题

This should converge to the global minimum.

4/6 分 (66%)

Starting point 5

正确

This should converge to the global minimum.

None of the above

未选择的是正确的

3 Which starting points converge to the global minimum?

0/1分

Starting point 1

这个选项的答案不正确

This starting point is in a different basin, it will seek to move upwards.

Starting point 2

正确

From here, the algorithm will descend the hill to the global minimum.

Starting point 3

未选择的是正确的

Starting point 4

未选择的是正确的

None of the above

未选择的是正确的

 4_{\circ} What's happening in this gradient descent?

1/1分

- None of the other options.
- The global minimum is in a wide and flat basin, so convergence is slow.

正确

This could be improved by increasing the aggression.

- The algorithm is getting stuck near local minima.
- The algorithm is getting stuck near saddle points.

5。

What is happening here?

0/1分

The algorithm is passing either side of a local maximum.

The algorithm is passing either side of a local minimum.

这个选项的答案不正确

If it was a local minimum, the algorithm would converge here.

- None of the other options.
- The algorithm is passing either side of a saddle point.
- There is noise in the system.

6。

What is happening here?

- The marked points are saddle points.
- The Jacobian at the starting point is very large.

1		Ŀ	•
- 11	_	«П	ш

This is causing the algorithm to overshoot. In one case into a different basin.

There is noise in the system

None of the other options.

