Задача №1. Две резинки

На горизонтальной поверхности в точке O удерживают шайбу массой m, связанную с двумя невесомыми резинками, продетыми через зафиксированные на этой поверхности гладкие колечки В и С. Другие концы резинок закреплены в точках A и D, при этом AB = CD = L, BC = 2L, $BO = CO = L\sqrt{2}$

(рис. 1). Длины обеих резинок в свободном состоянии равны L, а коэффициенты жёсткости $k_{OBA} = k, k_{OCD} = 3k,$ где k — известная величина. Коэффициент трения шайбы о поверхность равен μ , а резинки не касаются поверхности. Ускорение свободного падения q. Шайбу отпускают.

- 1. Найдите максимальную скорость v_{max} шайбы в процессе дальнейшего движения.
- 2. Определите время au от момента старта до момента, когда максимальная скорость достигается.

Задача №2. Цилиндр и клапан

В торце теплоизолированного цилиндра с поршнем установлен клапан (рис. 2), перекрывающий небольшое отверстие, который открывается и начинает пропускать воздух снаружи в цилиндр при перепаде давлений $\Delta p = p_0/3 \ (p_0 - \text{атмосферное давление})$. Воздух из цилиндра наружу клапан не пропускает. В начальный момент времени поршень прижат к торцу цилиндра, воздуха внутри нет.

В первом случае цилиндр заполняют воздухом до объема V_0 , медленно перемещая поршень, после чего останавливают, а затем освобождают поршень.

1. Определите температуру воздуха в цилиндре T_1 в момент остановки поршня при объеме V_0 , а также после освобождения поршня и прекращения его движения T_2 .

Во втором случае поршень резко перемещают в положение, при котором объем под поршнем равен V_0 , так что воздух не успевает проникнуть через клапан в цилиндр. В этом положении поршень фиксируют, дожидаются заполнения цилиндра воздухом, и так же, как в первом случае, освобождают поршень.

2. Определите и для этого случая температуру воздуха в цилиндре T_1' после остановки поршня и заполнения цилиндра воздухом, и температуру T_2' после освобождения поршня и прекращения его движения. Считайте, что процесс заполнения цилиндра воздухом происходит квазистатически, клапан закрывается мгновенно после того, как разность давлений оказывается меньше пороговой.

Снаружи цилиндра воздух при атмосферном давлении и температуре T_0 . Трением поршня о стенки, массой поршня, а также теплообменом воздуха с поршнем и стенками цилиндра можно пренебречь. Воздух можно считать двухатомным идеальным газом. После отпускания поршня клапан всё время остается закрытым.

Задача №3. Колебания заряда

Длинная диэлектрическая тонкостенная труба радиуса R, равномерно заряженная с поверхностной плотностью заряда σ , закреплена горизонтально в поле тяжести g. К верхней точке трубы одним концом прикреплена невесомая, нерастяжимая, непроводящая нить длины R, на другом конце нити маленький заряженный шарик массы m. Знаки зарядов шарика и трубы совпадают. Шарик сначала удерживают так, что нить не натянута, а затем отпускают. Через некоторое время движение прекращается, причем нить принимает форму прямого отрезка, перпендикулярного оси цилиндра.

1. Какие значения может принимать величина заряда шарика q?

Рис. 3

- 2. Определите величину силы натяжения нити при значениях заряда, полученных в первом пункте, и постройте график этой зависимости T(q) с указанием характерных точек и участков.
- 3. Пусть модуль заряда шарика |q|, причем $|q|>2\varepsilon_0 mg/|\sigma|$. Определите период малых гармонических колебаний шарика, происходящих в плоскости рисунка.

Задача №4. Соленоид и виток

Полубесконечный соленоид с радиусом витков r и плотностью намотки n (число витков на единицу длины) расположен соосно круговому сверхпроводящему витку радиуса R так, что его основание находится в плоскости витка. Известно, что $r \ll R$. Изначально ток в витке отсутствовал. Индуктивность витка равна L. Силу тока в соленоиде медленно увеличивают от нуля до I и далее поддерживают постоянной. Провода, подводящие ток к соленоиду, расположены таким образом, что их магнитным полем и их взаимодействием с другими элементами можно пренебречь. Направим ось x так, как показано на рисунке.

- 1. Точки A и C расположены в плоскости витка на расстояниях r/3 и 3r соответственно от оси симметрии системы. Найдите проекции индукции B_{Ax} и B_{Cx} магнитного поля, создаваемого соленоидом в точках A и C соответственно.
- 2. Найдите силу тока $I_{\rm B}$ в витке. Укажите, как он направлен.
- 3. Найдите величину и направление силы магнитного взаимодействия, действующей на соленоид со стороны витка.

Примечание: для бесконечного соленоида поле внутри соленоида однородное, вектор магнитной индукции направлен параллельно оси и его величина определяется формулой $B_0 = \mu_0 n I$. Снаружи бесконечного соленоида $\vec{B} = 0$.

Рис. 4

Задача №5. Нелинейный элемент и конденсатор

Рассмотрим нелинейный элемент (рис. 5) такой, что при протекании через него тока в направлении от A к Bзависимость напряжения U_{AB} от силы тока I описывается формулой

$$A \xrightarrow{I} B$$

Рис. 5

$$U_{AB} = U_1 + \frac{A}{I},$$

где $U_1 > 0$ и A > 0.

Если сила тока, текущего через элемент, равна нулю, то напряжение на нём может принимать любые значения. В противоположном направлении электрический ток протекать не может. На рисунке 6 качественно представлена ВАХ нелинейного элемента. В данной задаче рассматриваются две электрические цепи, содержащие данный нелинейный элемент.

Рис. 6

Часть 1. Электрическая цепь, схема которой приведена на рисунке 7, состоит из источника постоянного напряжения с пренебрежимо малым внутренним сопротивлением, резистора с сопротивлением R и нелинейного элемента с известными параметрами U_1 и A.

1. При каких значениях напряжения источника U_0 в цепи может протекать постоянный электрический ток?

Часть 2. Электрическая цепь, схема которой приведена на рисунке 8, состоит из источника постоянного напряжения U_0 с пренебрежимо малым внутренним сопротивлением, резистора с сопротивлением R, конденсатора ёмкостью C=10 мФ и нелинейного элемента, для которого $U_1=2$ В.

Изначально конденсатор не заряжен. Затем в результате кратковременного внешнего воздействия в цепи начинает протекать электрический ток. На рисунке 9 ниже (и на отдельном листе в увеличенном масштабе) представлен график зависимости напряжения на конденсаторе U_C от силы тока в цепи I.

Точка 1 соответствует моменту времени начала протекания тока, точка 2- достижению максимального напряжения на конденсаторе, а пунктирная линия 23- прекращению протекания в цепи электрического тока.

- 2. Найдите U_0 , R и A.
- 3. Найдите количество теплоты Q_R , выделившееся на резисторе за все время протекания тока в цепи.
- 4. Определите время τ , в течение которого в цепи протекал ток.