МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа прикладной математики и информатики

Отчёт о выполнении лабораторной работы 2.1.3

Определение C_p/C_v по скорости звука в газе

Автор: Вронский Александр Сергеевич Б05-226

1 Введение

Цель работы: 1) измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; 2) определение показателя адиабаты с помощью уравнения состояния идеального газа.

В работе используются: звуковой генератор ГЗ; электронный осциллограф ЭО; микрофон; телефон; теплоизолированная труба, обогреваемая водой из термостата.

2 Теоретические сведения

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . На измерении скорости звука основан один из наиболее точных методов определения показателя адиабаты.

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}},$$

где R — газовая постоянная, T — температура газа, а μ — его молярная масса. Преобразуя эту формулу, найдем

$$\gamma = \frac{\mu}{RT}c^2$$
 (1)

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука (молярная масса газа предполагается известной).

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Если длина трубы L равна целому числу полуволн, то есть когда

$$L = \frac{n\lambda}{2},$$

где λ — длина волны звука в трубе, а n — любое целое число. Если это условие выполнено, то волна, отраженная от торца трубы, вернувшаяся к ее началу и вновь отраженная, совпадает по фазе с падающей. Совпадающие по фазе волны усиливают друг друга. Амплитуда звуковых колебаний при этом резко возрастает — наступает резонанс.

Скорость звука c связана c его частотой f и длиной волны λ соотношением

$$c = \lambda f. (2)$$

Будем плавно изменять частоту f звукового генератора, а следовательно, и длину звуковой волны λ . Для последовательных резонансов получим:

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_{k+1}}{2}(n+k).$$
 (3)

Из (2) и (3) имеем

$$f_1 = \frac{c}{\lambda_1} = \frac{c}{2L}n, \quad f_2 = \frac{c}{\lambda_2} = \frac{c}{2L}(n+1) = f_1 + \frac{c}{2L}, \dots,$$

$$f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_1 + \frac{c}{2L}k$$
(4)

Таким образом, чтобы определить скорость звука, достаточно найти угловой коэффициент графика зависимости частоты от номера резонанса.

3 Экспериментальная установка

В установке (рис. 1) звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном М. Мембрана телефона приводится в движение переменным током звуковой частоты; в качестве источника переменной ЭДС используется звуковой генератор ГЗ. Возникающий в микрофоне сигнал наблюдается на осциллографе ЭО.

Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчетах оба торца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь.

Установка содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревается водой из термостата. Температура газа принимается равной температуре омывающей трубу воды. Таким образом, на установке можно измерить зависимость скорости звука от температуры.

Рис. 1: Установка для изучения зависимости скорости звука от температуры

4 Ход работы

В установке была использована труба длины $L=800\pm1$ мм. При фиксированной температуре плавно будем плавно увеличивать частоту звукового сигнала, начиная с ≈ 400 Гц. На экране осциллографа резонанс будет выражен многократным увеличением амплитуды. Запишем частоты \hat{f}_k последовательных резонансов, а также "приведенные" частоты $\hat{f}_k=\hat{f}_k-f_1$. Результаты измерений приведены в таблице 1. Погрешность измерений частоты \hat{f}_K составила ± 1 Гц, поэтому погрешность f_k порядка ± 2 Гц.

T, °C	23.5		35		43		49		57	
k	\hat{f}_k , Гц	f_k , Гц								
1	448	0	456	0	462	0	466	0	472	0
2	660	212	671	215	679	217	687	221	694	222
3	874	426	890	434	899	437	908	442	920	448
4	1088	640	1109	653	1121	659	1134	668	1146	674
5	1306	858	1330	874	1345	883	1359	893	1376	904
6	1522	1074	1550	1094	1568	1106	1584	1118	1604	1132
7	1738	1290	1771	1315	1791	1329	1810	1344	1831	1359
8	1954	1506	1989	1533	2014	1552	2034	1568	2058	1586
9	2170	1722	2210	1754	2238	1776	2259	1793	2286	1814
10	2387	1939	2431	1975	2462	2000	2485	2019	2515	2043

Таблица 1: Частоты резонанса в воздухе при разных температурах

По полученным данным построены графики зависимости частоты резонанса от его номера (рис. 2).

Рис. 2: График зависимости частоты резонанса от его номера

Все аппроксимации были проведены с помощью линейной регрессии со среднеквадратичной функцией потерь. Аппроксимируя зависимость частоты резонанса от его номера функцией и используя формулу (4), вычисляется скорость звука c. Соответствующая зависимость вычисленной скорости звука от температуры приведена в таблице 2 и на графике рис. 3. После вычисления краевых значений наклона найдена погрешность скорости звука порядка ± 0.95 м/с.

T, °C	23.5	35	43	49	57
с, м/с	344.11 ± 0.94	350.52 ± 0.94	354.67 ± 0.95	358.32 ± 0.95	362.5 ± 0.96

Таблица 2: Скорость звука в воздухе при разных температурах

Рис. 3: График зависимости скорости звука в воздухе от температуры

Заметим, что аппроксимируя полученную зависимость скорости звука от температуры, получим, что при $T=20~^{\circ}\mathrm{C}$ предсказанное значение скорости звука равно $c=342.2\pm0.95~\mathrm{m/c}$, что находится в пределах погрешности в размере 0.26% или $0.9~\mathrm{m/c}$ от табличного значения $c=343.1~^{\circ}\mathrm{C}$.

T, °C	23.5	35	43	49	57	Среднее	Станд. откл.
γ	1.393	1.391	1.388	1.391	1.389	1.391	± 0.002

Таблица 3: Значения показателя адиабаты γ при разных значениях температуры

По формуле (1) рассчитывается γ . Результаты вычислений приведены в таблице 3. Кроме статистической погрешности в размере ± 0.002 , также рассчитана погрешность, вытекающая из погрешностей измерения $\Delta c = \pm 0.95$ м/с и $\Delta T \pm 0.2$ °C (погрешность внутреннего термометра термостата) в размере $\Delta \gamma = 0.008$. В итоге, рассчитанное значение показателя адиабаты:

$$\gamma = 1.391 \pm 0.01$$

Найденное значение находится в пределах погрешности на уровне теоретически предказанного значения $\gamma=1.4.$

5 Вывод

Способ измерения показателя адиабаты по скорости звука в воздухе показал хорошую точность. В ходе обработки данных также была рассчитана зависимость скорости звука от температуры.