درس معماری کامپیوتر

14.4/.4/55

تمرین سری هشتم

4-11-2777

متين باقري

در way associative حافظه نهان set 512 دارد که هر یک دو block (یا block) داده دارد. هر block از حافظه اصلی set 512 دارد که هر یک دو set 512 قرار بگیرد. اما مکان آن درون set از قبل که به عمور میشود، مشخص است که باید در کدام یک از این set 512 قرار بگیرد. اما مکان آن درون set از قبل مشخص نیست، اگر entry خالی وجود داشته باشد در آن قرار گرفته و در غیر این صورت بسته به الگوریتم مورد استفاده، محل ذخیره آن مشخص میشود. برای یافتن آن داده در set cache مربوط به آن مشخص است، ولی باید تمام entry های و bit tag, 9 bit index, 6 bit offset

ب)

 $1.5 + 40\% \times (8\% \times (20 + 2\% \times 100)) = 1.5 + 0.704 = 2.204 CPI$

tag: 22 bit, index: 5 bit, offset: 5 bit (Y

آ) ۵ بیت آفست، بنابراین اندازه هر بلاک برابر ۳۲ تا از واحد آدرسدهی حافظه است. با فرض byte addressable بودن:

۳۲ بایت درون هر بلاک، هر بلاک شامل ۸ کلمه ۳۲ بیتی است.

ب ۵ بیت ایندکس، <u>entry ۳۲</u>

ج) مطابق اسلاید نهم درس(pg 32)، با فرض نداشتن dirty bit یا status bit بیت ۲۲ بیت تگ، ۳۲ بایت داده.

$$32 \times 8/(32 \times 8 + 22 + 1) = 256/279 \approx 92\%$$

در اینجا داشتن یا نداشتن dirty bit یا status bit تاثیر چندانی بر جواب نهایی ندارد.

(১

byte address	tag	index	offset	hit/miss
0	0	0	0	miss
4	0	0	4	hit
16	0	0	16	hit
132	0	4	4	miss
232	0	7	8	miss
160	0	5	0	miss
1024	1	0	0	miss
30	0	0	30	miss
140	0	4	12	hit
3100	3	0	28	miss
180	0	5	20	hit
2180	2	4	4	miss

index \rightarrow current tag:

$$0 \rightarrow 0, 1, 0, 3$$

$$4 \rightarrow 0, 2$$

$$7 \rightarrow 0$$

$$5 \rightarrow 0$$

ه)

hit rate =
$$4 / 12 = 1/3$$

(٣

each word is 2 byte. each block has 16 words. we have 2K blocks.

direct-mapped cache with 8 blocks(sets). each set includes 32 bytes.

word data (hex)	div 32(dec) = block No.	block No. MOD 8	miss/hit
4A32	593	1	miss
B830	1473	1	miss
B832	1473	1	hit
B834	1473	1	hit
B822	1473	1	hit
4A32	593	1	miss
311A	392	0	miss
3142	394	2	miss

hit rate = 3/8 = 37.5%

cache: 32 blocks, each having 1 word (4 byte)

در قسمت آ و ب، دسترسی به حافظه را نیاز کلی به حافظه در نظر گرفتیم، بدون در نظر گرفتن اینکه آیا در miss رخ می دهد یا hit. چراکه بستگی به آدرسی دارد که در حال کپی کردن آن هستیم.

آ) ۶ بار برای ۶ دستور و ۲ بار برای دستورات lb و sb. در مجموع ۸ دسترسی به حافظه

ب) ۳ بار برای ۳ دستور و ۲ بار برای دستورات lb و sb. در مجموع ۵ دسترسی به حافظه

8*3+5=29 اگر مانند دو قسمت قبل بررسي كنيم:

اما با بررسی دقیق تر متوجه می شویم روند دسترسی به حافظه و حافظه نهان به این صورت است:

address (byte)	block	Hit/miss
0	0	m
128	0	m
4	1	m
256		directly to memory
8	2	m
12	3	m
16	4	m
20	5	m
0	0	m
129	0	m
4	1	Н
257		directly to memory

8	2	Н
12	3	Н
16	4	Н
20	5	Н
0	0	m
130	0	m
4	1	Н
258		directly to memory
8	2	Н
12	3	Н
16	4	Н
20	5	Н
0	0	m
131	0	m
4	1	Н
259		directly to memory
8	2	Н

4+13=17 ها و miss ها e write کل تعداد write کل تعداد است با مجموع می برابر است با مجموع تعداد

تعداد hit های hit های hit عداد

(ა

12 hit, 13 miss, cache miss-rate = 13 / 25 = 52%

address (byte)	block	Hit/miss
0	0	m
128	0	m
4	1	m
256		directly to memory
8	2	m
12	3	m
16	4	m
20	5	m
0	0	Н
129	0	Н
4	1	Н
257		directly to memory
8	2	Н
12	3	Н
16	4	Н
20	5	Н
0	0	Н
130	0	Н
4	1	Н
258		directly to memory
8	2	Н
12	3	Н
16	4	Н

20	5	Н
0	0	Н
131	0	Н
4	1	Н
259		directly to memory
8	2	Н

18 hit, 7 miss, miss-rate = 7/25 = 28 %

و) cache: 16 sets, each having 2 blocks, each having 1 word (4 byte). with write-allocate & write back و) المحتود والمحتود والمح

address (byte)	block	Hit/miss
0	0	m
128	0	m
4	1	m
256	0	m
8	2	m
12	3	m
16	4	m
20	5	m
0	0	Н
129	0	m
4	1	Н

257	0	m
8	2	Н
12	3	Н
16	4	Н
20	5	Н
0	0	Н
130	0	m
4	1	Н
258	0	m
8	2	Н
12	3	Н
16	4	Н
20	5	Н
0	0	Н
131	0	m
4	1	Н
259	0	m
8	2	Н

14 miss, 15 hit, miss-rate = 14 / 29 = 48%

byte addressable بودن آ) با فرض

 2^{10} = 1024 sets, each having 2 blocks: تعداد بلاک ها در حافظه = 2048

block offset bits: $\log 32 = 5$ bits

tag bits: 32 - 10 - 5 = 17 bits

ب) آدرسها باینری در نظر گرفته شده اند.

Address	block No.	MOD 4	Hit/Miss
110001	1100	0	M
100111	1001	1	M
001111	0011	3	M
001100	0011	3	Н
010001	0100	0	M
110010	1100	0	M
100101	1001	1	Н
001110	0011	3	Н
100001	1000	0	M
110001	1100	0	M

blocks status:

 $0 \rightarrow 1100, 0100, 1100, 1000, 1100$

1 **→** 1001

 $2 \rightarrow$

 $3 \rightarrow 0011$

ج) از آنجا که اطلاعات سوال درمورد کارکرد cache و جزئیات pipeline کامل نیست، صرفا تاثیر دسترسی به حافظه در دستورات load & store را در نظر گرفتیم:

$$1 + 2\% * (25\% + 15\%) * 100 = 1.8 \text{ CPI}$$