Anuladores e hiperplanos

Ejercicio 1

Si W es un subespacio k-dimensional de un espacio vectorial V, n-dimensional, entonces W es la intersección de (n-k) hiperplanos de V.

Demostración:

Sean W \subset V, espacios vectoriales sobre \mathbb{F} , con $k = \dim(W)$ y $n = \dim(V)$. Supongamos k = n, luego W = V. Supongamos también lo siguiente:

$$\exists S \subset V, \dim(S) = n - 1 : W \subseteq S.$$

Luego S es un hiperplano de V que contiene a W. Sin embargo, $n = \dim(W) \le \dim(S) = n - 1 \implies n \le n - 1$. Esto es una clara contradicción, luego, no existe hiperplano de V tal que W esté contenido en tal, por lo que no será intersección de hiperplanos.

Luego, W es intersección de 0 = n - k hiperplanos.

Ahora supongamos k < n. Sea $\mathcal{B} = \{v_1, \dots, v_k\}$ una base de W, y sea $\mathcal{B}' = \{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}$ base de V. Definiremos los siguientes hiperplanos como siguen:

$$U_j = \langle \mathcal{B}' \setminus \{v_j\} \rangle, \ j = k+1, \dots, n$$

Son directas las siguientes proposiciones:

- 1. $\dim(U_j) = n 1, \forall j = k + 1, \dots, n$
- 2. $W \subseteq U_j, \forall j = k+1, \ldots, n$
- 3. $U_j \neq U_i \text{ si } j \neq i$

Hacemos la siguiente definición:

$$U = \bigcap_{j=k+1}^{n} U_j \quad \text{con } U \subset V$$

por ser intersección de subespacios de V. U es una intersección de (n-k) subespacios de V, todos de dimensión n-1, luego U es intersección (n-k) hiperplanos de V.

Luego, surge de (2) que $W \subseteq U$. Sea entonces $v \in U$.

 $v \in U \iff v \in U_j \, \forall j = k+1, \ldots, n \iff v \in \langle \mathcal{B}' \setminus \{v_j\} \rangle \, \forall j = k+1, \ldots, n \text{ Por lo que } v$ deberá ser combinación lineal de v_1, \ldots, v_{n-1} , y también deberá serlo de $v_1, \ldots, v_{n-2}, v_n$ y de los vectores $v_1, \ldots, v_k, \ldots, v_{j-1}, v_{j+1}, \ldots, v_n$ para algún $j \in \{k+1, \ldots, n\}$

Como todos estos son linealmente independientes entre sí, los vectores v_{k+1}, \ldots, v_n no participan en la combinación lineal, o de lo contrario tendríamos:

 $v = \alpha_1 v_1 + \dots + \alpha_k v_k + \alpha_j v_j, \ \alpha_j \neq 0 \implies v_j \in U_j$ para algun $j \in \{k+1, \dots, n\}$, lo cual es una contradicción.

Tendremos entonces el siguiente resultado: $v = \sum_{i=1}^k \alpha_i v_i$, $\alpha_i \in \mathbb{F} \ \forall i = 1, \dots, n \implies v \in W \implies U \subseteq W$, por lo que W = U.

$$\therefore W$$
 es intersección de $(n-k)$ hiperplanos (1) de V q.e.d

Ejercicio 2

Si W_1 y W_2 son subespacios de un espacio vectorial V sobre \mathbb{F} de dimensión finita, entonces $W_1 = W_2$ si y solo si $W_1^a = W_2^a$.

Demostración:

⇒) Trivial

 \iff Sean $W_1, W_2 \subset V$ tales que $W_1^a = W_2^a$. Notamos lo siguiente, a partir del hecho de que $\dim(W_1^a) = \dim(W_2^a)$:

$$\dim(W_1) + \dim(W_1^a) = \dim(V) = \dim(W_2) + \dim(W_2^a)$$

$$\implies \dim(W_1) + \dim(W_1^a) = \dim(W_2) + \dim(W_2^a)$$

$$\implies \dim(W_1) = \dim(W_2)$$

Supongamos primero el caso $\dim(W_1^a) = \dim(W_2^a) = 0$, tendremos luego:

$$\dim(W_1) + \dim(W_1^a) = \dim(V) \implies \dim(W_1) = \dim(W_2) = \dim(V) \implies W_1 = W_2 = V$$

Por lo que se verifica para este caso particular.

Veamos ahora el caso general con $\dim(W_1^a) > 0$:

Sea $\dim(V) = n + k$, $k = \dim(W_1^a) = \dim(W_2^a)$. Luego, $n = \dim(W_1) = \dim(W_2)$. Tomamos entonces $\mathcal{B} = \{w_1, \ldots, w_n\}$ base de W_2 .

Haremos la suposición de que $W_1 \neq W_2$, tomando como verdadero $\exists v \in V/v \in W_1 \setminus W_2$ (el caso $\exists v \in V/v \in W_2 \setminus W_1$ es análogo).

Luego $\mathcal{B} \cup \{v\}$ es linealmente independiente, y tendremos dim $(\langle \mathcal{B} \cup \{v\} \rangle) = n + 1$.

Definimos $U = \langle \mathcal{B} \cup \{v\} \rangle$.

Sigue que $\dim (U^a) = \dim (V) - \dim (U) = n + k - (n+1) = k - 1.$

Sea entonces $f \in W_2^a$. Por hipótesis, $f \in W_1^a$, luego $f(w_i) = 0 \,\forall i = 1, \ldots, n \, y \, f(v) = 0$.

Tomaremos $w = \alpha_1 w_1 + \dots + \alpha_n w_n + \beta v \in U$ para escalares $\alpha_1, \dots, \alpha_n, \beta \in \mathbb{F}$. Tendremos entonces:

$$f(w) = f\left(\sum_{i=1}^{n} \alpha_i w_i + \beta v\right) = \sum_{i=1}^{n} \alpha_i f(w_i) + \beta f(v) = 0$$

Por lo que $f \in W_2^a \implies f \in U^a$, lo que implica $W_2^a \subseteq U$. Sin embargo, $k = \dim(W_2^a) \le \dim(U^a) = k - 1$, contradicción.

 $\therefore \nexists v \in V/v \in W_1 \setminus W_2$. Siguiendo con el caso análogo llegamos a $W_1 = W_2$. q.e.d