Advanced Data Structures and Algorithms

Single Source Shortest Paths (SSSP):

Bellman-Ford Algo

• Weights on edges represent costs.

• A weighted directed graph:

• A weighted directed graph:

- Weights on edges represent costs.
- The cost of a path is the sum of the weights along that path.

A weighted directed graph:

- Weights on edges represent costs.
- The cost of a path is the sum of the weights along that path.
- A shortest path from s
 to t is a directed path
 from s to t with the
 smallest cost.

A weighted directed graph:

- Weights on edges represent costs.
- The cost of a path is the sum of the weights along that path.
- A shortest path from s
 to t is a directed path
 from s to t with the
 smallest cost.
- The single-source shortest path problem is to find the shortest path from s to v for all v in the graph.

This is a path from s to t of cost 10. It is the shortest path from s to t.

Intro to Bellman-Ford

- Basic idea:
 - Instead of picking the u with the smallest d[u] to update, just update all of the u's simultaneously.

Bellman-Ford algorithm

Bellman-Ford(G,s):

- d[v] = ∞ for all v in V
- d[s] = 0
- **For** i=0,...,n-1:

Instead of picking u cleverly, just update for all of the u's.

- For u in V:
 - For v in u.neighbors:
 - d[v] ← min(d[v] , d[u] + edgeWeight(u,v))

Bellman-Ford algorithm

Bellman-Ford(G,s):

- $d[v] = \infty$ for all v in V
- d[s] = 0
- **For** i=0,...,n-1:

• **For** u in V:

Instead of picking u cleverly, just update for all of the u's.

- For v in u.neighbors:
 - d[v] ← min(d[v], d[u] + edgeWeight(u,v))

Compare to Dijkstra:

- While there are not-sure nodes:
 - Pick the not-sure node u with the smallest estimate d[u].
 - For v in u.neighbors:
 - d[v] ← min(d[v], d[u] + edgeWeight(u,v))
 - Mark u as sure.

For pedagogical reasons

- We are actually going to change this to be less smart.
- Keep n arrays: d⁽⁰⁾, d⁽¹⁾, ..., d⁽ⁿ⁻¹⁾

Bellman-Ford*(G,s):

- d⁽⁰⁾[v] = ∞ for all v in V
- $d^{(0)}[s] = 0$
- **For** i=0,...,n-2:
 - **For** u in V:
 - For v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$
- Then dist(s,v) = $d^{(n-1)}[v]$

Slightly different than the original Bellman-Ford algorithm, but the analysis is basically the same.

Start with the same graph, no negative weights.

- **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

Start with the same graph, no negative weights.

- **For** i=0,...,n-2:
 - **For** u in V:
 - For v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

Start with the same graph, no negative weights.

- **For** u in V:
 - For v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

Start with the same graph, no negative weights.

- **For** u in V:
 - For v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

Start with the same graph, no negative weights.

- **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

Start with the same graph, no negative weights.

	Gnan	CSA	ICICI HostelB IIITS			
$d^{(0)}$	0	∞	∞	∞	∞	
d ⁽¹⁾	0	1	∞	∞	25	
d ⁽²⁾	0	1	2	45	23	
d ⁽³⁾	0	1	2	6	23	
d ⁽⁴⁾	0	1	2	6	23	

- **For** i=0,...,n-2:
 - **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

Start with the same graph, no negative weights.

How far is a node from Gnan Circle

	Gnan	CSA	ICICI HostelB IIITS			
$d^{(0)}$	0	∞	∞	∞	∞	
d ⁽¹⁾	0	1	∞	∞	25	
1/2)						
d ⁽²⁾	0	1	2	45	23	
d ⁽³⁾	0	1	2	6	23	
d ⁽⁴⁾	0	1	2	6	23	

These are the

- For i=0,...,n-2: final distances!
 - For u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

Interpretation of d⁽ⁱ⁾

d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.

• Does it work?

• Is it fast?

- Does it work?
 - Yes
 - Idea to the right.

• Is it fast?

Idea: proof by induction.
Inductive Hypothesis: $d^{(i)}[v] \text{ is equal to the cost of the shortest path between s and } v$ with at most i edges.

- Does it work?
 - Yes
 - Idea to the right.

• Is it fast?

Idea: proof by induction.

Inductive Hypothesis:

d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.

Conclusion:

d⁽ⁿ⁻¹⁾[v] is equal to the cost of the shortest simple path between s and v. (Since all simple paths have at most n-1 edges).

- Does it work?
 - Yes
 - Idea to the right.

- Is it fast?
 - Not really...

Idea: proof by induction.

Inductive Hypothesis:

d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.

Conclusion:

d⁽ⁿ⁻¹⁾[v] is equal to the cost of the shortest simple path between s and v. (Since all simple paths have at most n-1 edges).

Assume there is no negative cycle.

Assume there is no negative cycle.

• Then there is a shortest path from s to t, and moreover there is a simple shortest path.

Assume there is no negative cycle.

 Then there is a shortest path from s to t, and moreover there is a simple shortest path.

Assume there is no negative cycle.

 Then there is a shortest path from s to t, and moreover there is a simple shortest path.

This cycle isn't helping. Just get rid of it.

Assume there is no negative cycle.

• Then there is a shortest path from s to t, and moreover there is a simple shortest path.

This cycle isn't helping. Just get rid of it.

• A simple path in a graph with n vertices has at most n-1 edges in it.

Assume there is no negative cycle.

• Then there is a shortest path from s to t, and moreover there is a simple shortest path.

This cycle isn't helping. Just get rid of it.

• A simple path in a graph with n vertices has at most n-1 edges in it.

Can't add another edge without making a cycle!

Assume there is no negative cycle.

• Then there is a shortest path from s to t, and moreover there is a simple shortest path.

• A simple path in a graph with n vertices has at most

"Simple" means

that the path has

no cycles in it.

n-1 edges in it.

Can't add another edge without making a cycle!

• So there is a shortest path with at most n-1 edges

Proof by induction

- Inductive Hypothesis:
 - After iteration i, for each v, d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.
- Base case:
 - After iteration 0...

Inductive step:

Inductive step

Hypothesis: After iteration i, for each v, $d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.

- Suppose the inductive hypothesis holds for i.
- By induction, d⁽ⁱ⁾[u] is the cost of a shortest path between s and u of i edges.
- By setup, $d^{(i)}[u] + w(u,v)$ is the cost of a shortest path between s and v of i+1 edges.
- In the i+1'st iteration, we ensure $d^{(i+1)}[v] \le d^{(i)}[u] + w(u,v)$.
- So d⁽ⁱ⁺¹⁾[v] <= cost of shortest path between s and v with i+1 edges.
- But $d^{(i+1)}[v] = cost$ of a particular path of at most i+1 edges >= cost of shortest path.
- So d[v] = cost of shortest path with at most i+1 edges.

Proof by induction

- Inductive Hypothesis:
 - After iteration i, for each v, d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v of length at most i edges.
- Base case:
 - After iteration 0...
- Inductive step:
- Conclusion:
 - After iteration n-1, for each v, d[v] is equal to the cost of the shortest path between s and v of length at most n-1 edges.
 - Aka, d[v] = d(s,v) for all v as long as there are no cycles!

Important thing about Bellman-Ford

for the rest of this lecture

d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.

Bellman-Ford* algorithm

Bellman-Ford*(G,s):

- Initialize arrays $d^{(0)},...,d^{(n-1)}$ of length n to be all ∞
- $d^{(0)}[s] = 0$
- **For** i=0,...,n-2:
 - **For** u in V:

Here, Dijkstra picked a special vertex u – Bellman-Ford will just look at all the vertices u.

- **For** v in u.outNeighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + w(u,v))$
- Now, dist(s,v) = $d^{(n-1)}[v]$ for all v in V.
 - (Assuming G has no negative cycles)

We can simplify the pseudocode a bit

• This will be useful later...

One step of Bellman-Ford

- **For** u in V:
 - For v in u.outNeighbors:
 - $d^{(i+1)}[v] \leftarrow min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + w(u,v))$

One step of Bellman-Ford

For u in V:

• For v in u.outNeighbors:

What will happen to z if we run these for-loops?

• $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + w(u,v))$

For u in V:

• For v in u.outNeighbors:

What will happen to z if we run these for-loops?

• $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + w(u,v))$

- **For** u in V:
 - For v in u.outNeighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + w(u,v))$

- **For** u in V:
 - For v in u.outNeighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + w(u,v))$
- Each vertex z finds the in-neighbor u so that d⁽ⁱ⁾ [u] + w(u,z) is smallest and goes with that.
- (Unless z chooses not to update).

- **For** u in V:
 - For v in u.outNeighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + w(u,v))$
- Each vertex z finds the in-neighbor u so that d⁽ⁱ⁾ [u] + w(u,z) is smallest and goes with that.
- (Unless z chooses not to update).

- So we can equivalently write:
 - **For** z in V:
 - $d^{(i+1)}[z] \leftarrow \min(d^{(i)}[z], \min_{u \text{ in } z, \text{inNbrs}} \{d^{(i)}[u] + w(u,z)\})$

Bellman-Ford* algorithm

Bellman-Ford*(G,s):

- Initialize arrays d⁽⁰⁾,...,d⁽ⁿ⁻¹⁾ of length n
- $d^{(0)}[v] = \infty$ for all v in V
- $d^{(0)}[s] = 0$
- **For** i=0,...,n-2:
 - **For** v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \in V \in Nbrs} \{d^{(i)}[u] + w(u,v)\})$
- Now, dist(s,v) = $d^{(n-1)}[v]$ for all v in V.

Note on implementation

- Don't actually keep all n arrays around.
- Just keep two at a time: "last round" and "this round"

Note on implementation

- Don't actually keep all n arrays around.
- Just keep two at a time: "last round" and "this round"

Pros and cons of Bellman-Ford

- Running time: O(mn) running time
 - For each of n steps we update m edges
 - Slower than Dijkstra

Pros and cons of Bellman-Ford

- Running time: O(mn) running time
 - For each of n steps we update m edges
 - Slower than Dijkstra
- However, it's also more flexible in a few ways.
 - Can handle negative edges
 - If we constantly do these iterations, any changes in the network will eventually propagate through.

Wait a second...

Wait a second...

Wait a second...

 What is the shortest path from the Gnan Circle to the HostelB?

 Shortest paths aren't defined if there are negative cycles!

Bellman-Ford and negative edge weights

- Bellman-Ford works with negative edge weights...as long as there are not negative cycles.
 - A negative cycle is a path with the same start and end vertex whose cost is negative.
- However, Bellman-Ford can detect negative cycles.

Back to the correctness

- Does it work?
 - Yes
 - Idea to the right.

If there are negative cycles, then non-simple paths matter!

So the proof breaks for negative cycles.

Idea: proof by induction.

Inductive Hypothesis:

d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.

Conclusion:

d⁽ⁿ⁻¹⁾[v] is equal to the cost of the shortest simple path between s and v. (Since all simple paths have at most n-1 edges).

- **For** i=0,...,n-2:
 - **For** u in V:
 - **For** v in u.neighbors:
 - d⁽ⁱ⁺¹⁾[v] ← min(d⁽ⁱ⁾[v], d⁽ⁱ⁺¹⁾[v], d⁽ⁱ⁾[u] + edgeWeight(u,v))

- **For** i=0,...,n-2:
 - **For** u in V:
 - **For** v in u.neighbors:
 - d⁽ⁱ⁺¹⁾[v] ← min(d⁽ⁱ⁾[v], d⁽ⁱ⁺¹⁾[v], d⁽ⁱ⁾[u] + edgeWeight(u,v))

- **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

- **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

- **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

	Gnan	CSA	ICICI	HostelE	3 IIITS
d ⁽⁰⁾	0	∞	∞	∞	∞

- **For** i=0,...,n-2:
 - **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

- **For** i=0,...,n-2:
 - **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

- **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

- **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

This is not looking good!

- **For** i=0,...,n-2:
 - **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

- **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

But we can tell that it's not looking good:

- For i=0,...,n-1:
 - **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

But we can tell that it's not looking good:

For i=0,...,n-1:

- For u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

How Bellman-Ford deals with negative cycles

- If there are no negative cycles:
 - Everything works as it should.
 - The algorithm stabilizes after n-1 rounds.
 - Note: Negative edges are okay!!
- If there are negative cycles:
 - Not everything works as it should...
 - Note: it couldn't possibly work, since shortest paths aren't welldefined if there are negative cycles.
 - The d[v] values will keep changing.
- Solution:
 - Go one round more and see if things change.
 - If so, return NEGATIVE CYCLE ⊗

Bellman-Ford algorithm

Bellman-Ford*(G,s):

- $d^{(0)}[v] = \infty$ for all v in V
- $d^{(0)}[s] = 0$
- For i=0,...,n-1:
 - **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$
- If $d^{(n-1)} != d^{(n)}$:
 - Return NEGATIVE CYCLE ⊗
- Otherwise, dist(s,v) = d⁽ⁿ⁻¹⁾[v]

Summary

- The Bellman-Ford algorithm:
 - Finds shortest paths in weighted graphs with negative edge weights
 - runs in time O(nm) on a graph G with n vertices and m edges.
- If there are no negative cycles in G:
 - the Bellman-Ford algorithm terminates with $d^{(n-1)}[v] = d(s,v)$.
- If there are negative cycles in G:
 - the Bellman-Ford algorithm returns negative cycle.

Bellman-Ford is also used in practice.

- eg, Routing Information Protocol (RIP) uses something like Bellman-Ford.
 - Older protocol, not used as much anymore.
- Each router keeps a table of distances to every other router.
- Periodically we do a Bellman-Ford update.
- This means that if there are changes in the network, this will propagate. (maybe slowly...)

Destination	Cost to get there	Send to whom?
172.16.1.0	34	172.16.1.1
10.20.40.1	10	192.168.1.2
10.155.120.1	9	10.13.50.0

Recap: shortest paths

Breadth-First Search:

- (+) O(n+m)
- (-) only unweighted graphs

Dijkstra's algorithm:

- (+) weighted graphs
- (+) O(nlog(n) + m) if you implement it right.
- (-) no negative edge weights
- (-) very "centralized" (need to keep track of all the vertices to know which to update).

The Bellman-Ford algorithm:

- (+) weighted graphs, even with negative weights
- (+) can be done in a distributed fashion, every vertex using only information from its neighbors.
- (-) O(nm), i.e., Slower than Dijkstra's algorithm

Acknowledgement

Stanford University