Assignment 2

(COMP3605 - Introduction to Data Analytics, 2023-2024)

Date Available: Thursday, October 26, 2023

Due Date: 11:50 PM, Thursday, November 09, 2023

Total Mark: 100 marks

Answer ALL Questions

INSTRUCTIONS

- 1. Type or write your answers neatly.
- 2. Show all working of your answers.
- **3**. Your solutions must be your own. You must not share your working or solutions with your peers.
- **4**. You are not permitted to copy, summarize, or paraphrase the work of others in your solutions.
- **5**. Submit your answers in a single zipped file named A2_ID.zip to the email comp3605@gmail.com, where ID is replaced with your student ID. The file A2_ID.zip contains
- a single PDF file containing all of your typed, handwritten, and screenshots answers.
- a signed and dated UWI Plagiarism Declaration indicating that the work submitted is your own.

Question 1 [50 marks]

You are given the transactional data set D shown in the table below. The data set has six transactions. Let the minimum support $(min \ sup)$ count be 3.

The transactional data set D

TID	Items
1	J, M, S
2	J, R, S
3	G, M, R, S
4	G, J, M, R, S
5	G, M, S
6	G, M, R

Find all frequent itemsets in D using

- **a**. [25 marks] the horizontal Apriori algorithm
- **b**. [25 marks] the vertical Apriori algorithm

Question 2 [50 marks]

You are given six two-dimensional points shown in the table below.

Point	x coordinate	y coordinate
p_1	1	1
p_2	1.5	2
p_3	4	4
p_4	5	5
p_5	6	4.6
p_6	4	3

- **a.** [5 marks] Use the Euclidean distance to calculate the distance matrix M for the six points.
- **b.** [20 marks] Show the results of the **complete linkage** version of the basic agglomerative hierarchical clustering algorithm. The distance between two clusters C_i and C_j is computed by

$$dist_{max}(C_i, C_j) = \max_{p \in C_i, p' \in C_j} \{||p - p'||_2\}$$

where $\|\cdot\|_2$ is Euclidean distance (a.k.a. L_2 -norm).

c. [25 marks] Show the results of the **group-average linkage** version of the basic agglomerative hierarchical clustering algorithm. The average distance between two clusters C_i and C_j is calculated by using the UPGMA (<u>U</u>nweighted <u>Pair Group Method with Arithmetic mean</u>) approach. That is, we have

$$dist_{avg}(C_i, C_j) = \frac{1}{n_i n_j} \sum_{\boldsymbol{p} \in C_i, \boldsymbol{p'} \in C_j} ||\boldsymbol{p} - \boldsymbol{p'}||_2$$

where $n_i = |C_i|, n_i = |C_i|$.

Note: For each iteration of the algorithm, you need to show the found closest two clusters and the updated distance matrix M.

End of Assignment 2