SRI SIDDHARTHA ACADEMY OF HIGHER EDUCATION SRI SIDDHARTHA INSTITUTE OF TECHNOLOGY, TUMAKURU

(A Constituent College of SSAHE, Tumakuru)

BE., CIE-III, JUNE 2024

CEMECTED IX

22SS401: COMBINATORICS AND ADVANCED LINEAR ALGEBRA

Time: 60 M:	Common to: CS/IS/DS/AI&ML
Time: 60 Minutes	Max. Marks: 20

	Answer all the anati	ax. Marks. 20			
1	Answer all the questions	CO	PO	BL	M
1	Show that the transformation $T: V_2(R) \to V_2(R)$ defined by $T(x, y) = (x + y, x - y)$ is a linear transformation.	3	1	2	5
2					
	Explain Linear transformation. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation which $T(1,0,0) = (2,-1), T(0,1,0) = (3,1), T(0,0,1) = (-1,2)$. Find $T(-3,4,2)$.	4	4	2	5
3	Explain matrix representation of the linear transformation. Find the linear transformation for the matrix $A = \begin{bmatrix} -1 & 0 \\ 2 & 0 \\ 1 & 3 \end{bmatrix}$ with respect to $B_1 = \{(1,0,0), (0,1,0), (0,0,1)\}$ and $B_2 = \{(1,0), (0,1)\}$.		1	2	5
4	Explain Range and Null space. Find the range, null space, rank, nullity in the case of the $T: V_3(R) \to V_2(R)$ defined by $T(x, y, z) = (y - x, y - z)$. Also verify the rank, nullity theorem.	3	1	2	5

SRI SIDDHARTHA INSTITUTE OF TECHNOLOGY, TUMAKURU

(A constituent college of Sri Siddhartha Academy of Higher Education, Tumakuru)

22IS402: Database Management System

			Time:1.00Hr Max Marks: 20			
1. 2.	Explain how a transaction moves through its execution states with a state transition diagram.	M 5	C 1	B 2		
3.	Describe the ACID properties of a transaction Define a Normal form. Explain the first Normal form (1NF) with an example.	5	1	2		
4.	Discuss the informal design guidelines for a relation schema.	5	4	2		

NOTE: M is marks, C is CO and B is Blooms level

SIDDHARTHA INSTITUTE OF TECHNOLOGY, TUMAKURU

(A constituent college of Sri Siddhartha Academy of Higher Education, Tumakuru)

22IS403: Object Oriented Programming

Date:04/06/2024 CIE-3 Time:1.00Hr Max Marks: 20 Answer all the questions print protected public Define package. Describe the access modifiers and their 1. M B 5 2 visibility for class members in Java. Design a simple Java program to demonstrate different 2. 3 combinations of access control modifiers for: same 3 package subclass, same package non sub class. What is Interface? Write a Java program for the 3. 3 3 implementation of multiple inheritance using interfaces to calculate the area of rectangle and triangle. Explain the concept of default interface methods in detail. 4.

3

2

NOTE: M is marks, C is CO and B is Blooms level

DDHARTHA INSTITUTE OF TECHNOLOGY, TUMAKURU

(A constituent college of Sri Siddhartha Academy of Higher Education, Tumakuru)

22IS404: Algorithm Design and Analysis

Date: 5/06/2024

CIE - 3

Marks: 20

Time: 1.00 Hr

Answer all the questions.

Apply Floyd's algorithm for the following matrix to find all pair shortest paths.

,	Α	В	С	D
Α	∞	5	8	9
В	∞	0	3	4
С	∞	∞	0	1
D	∞	∞	∞	0

Apply Dijkstra's algorithm for the following graph by 5 4 3 considering node A as source.

Apply Prims and Kruskals algorithm to find minimum 6 4 3 3 spanning tree for the given graph.

Solve the knapsack problem using dynamic programming for 5 3 3 the knapsack capacity m = 8, n = 4, w = [2345] p = [1256].

Note: M is marks, C is CO and B is Blooms level

SRI SIDDHARTHA INSTITUTE OF TECHNOLOGY, TUMKUR

(A constituent college of Sri Siddhartha Academy of Higher Education, Tumakuru)

IS4TH5: Introduction to Automata Theory and Computation

Date: 05/06/2024

CIE 3

Time:1.00 Hr

Max Marks: 20

Answer all the questions.

1. Convert the following grammar into CNF:

M C B 5 3 3

 $S \rightarrow aA \mid aB$

 $A \rightarrow aaA \mid B \mid \mathcal{E}$

 $B \to b \mid bB$

 $D \rightarrow B$

2. Design a Push Down Automata (PDA) to accept the 5 2 3 language: $L = \{a^{n+1} b \mid n \ge 1\}$.

8 5 1. Conton

3. Define the following:

5 1 1

- i) Pushdown Automata
- i) Instantaneous Description
- ii) Language of PDA by Final State
- My steel
- 4. Design PDA for the L = $\{a^n b^m c^{n+m} | n \ge 1, m \ge 1\}$

5 2 3

NOTE: M is Marks, C is CO and B is Blooms level.