



### 第八章 内排序

张铭 主讲

采用教材: 《数据结构与算法》, 张铭, 王腾蛟, 赵海燕 编写高等教育出版社, 2008.6 ("十二五"国家级规划教材)

http://jpk.pku.edu.cn/course/sjjg/
https://www.icourse163.org/course/PKU-1002534001

### 内排序

## 大纲

- · 8.1 排序问题的基本概念
- · 8.2 插入排序(Shell 排序)
- · 8.3 选择排序(堆排序)
- 8.4 交换排序
  - 8.4.1 冒泡排序
  - 8.4.2 快速排序
- 8.5 归并排序
- · 8.6 分配排序和索引排序
- · 8.7 排序算法的时间代价
- ·内排序知识点总结

### THE CLASSIC WORK NEWLY UPDATED AND REVISED

# The Art of Computer Programming

VOLUME 3

Sorting and Searching Second Edition

DONALD E. KNUTH



## 8.1 基本概念

- 序列 (Sequence): 线性表
  - 由记录组成
- · 记录 (Record): 结点, 进行排序的基本单位
- · 关键码 (Key): 唯一确定记录的一个或多个域
  - 有人翻译为"键"
- · 排序码 (Sort Key): 作为排序运算依据的一个 或多个域

| 名      | 学号                                     |
|--------|----------------------------------------|
| 忌      | 2100015428                             |
|        | 2100013098                             |
| 翰      | 2100013055                             |
| 琪      | 2100013185                             |
| 宇      | 2100013085                             |
|        | 2000017767                             |
| 博      | 2100017794                             |
| 琪<br>宇 | 2100013185<br>2100013085<br>2000017767 |



## 什么是排序?

### ・排序

- 将序列中的记录按照排序码顺序排列起来
- •排序码域的值具有不减(或不增)的顺序
- •排序码不重复,则递增或递减

### • 内排序

• 整个排序过程在内存中完成



## 排序问题

- 给定一个序列  $R = \{ r_0, r_1, ..., r_{n-1} \}$ 
  - 其排序码分别为  $k = \{k_0, k_1, ..., k_{n-1}\}$
- •排序的目的:将记录按排序码重排
  - 形成新的有序序列  $R' = \{ r'_0, r'_1, ..., r'_{n-1} \}$
  - 相应排序码为 k'= { k'<sub>0</sub>, k'<sub>1</sub>, ..., k'<sub>n-1</sub> }
- 排序码的顺序
  - 其中  $\mathbf{k'_0} \le \mathbf{k'_1} \le \dots \le \mathbf{k'_{n-1}}$ , 称为**不减**序
  - 或 k'<sub>0</sub> ≥ k'<sub>1</sub> ≥ ... ≥ k'<sub>n-1</sub> , 称为**不增**序



## 正序 vs. 逆序

- "正序"序列: 待排序序列正好符合排序要求
- "<mark>逆序</mark>"序列: 把待排序序列逆转过来, 正好 符合排序要求
- 例如,要求不升序列
  - 08 12 34 96
  - 96 34 12 08

正序!

逆序!



## 排序的稳定性

### ・稳定

- 存在多个具有相同排序码的记录
- 排序后这些记录的相对次序保持不变
- 例如,
  - **34** 12 **34'** 08 96
  - 08 12 **34 34'** 96
- 稳定性的证明——形式化证明



## 排序的稳定性

### ・不稳定

- 存在多个具有相同排序码的记录
- 排序后这些记录的相对次序可能变化
- 例如,
  - 12 **34'** 08
  - 12 **34' 34**



• 不稳定性的证明——反例说明





## 排序算法的衡量标准

**12** 

- •时间代价:记录的比较和移动次数
- •空间代价
- 算法本身的繁杂程度

**45 34 78** 

### 内排序



## 思考

1. 排序算法的稳定性有何意义?

2. 为何需要考虑"正序"与"逆序"序列?

### 第八章

### 内排序



## 大纲

- · 8.1 排序问题的基本概念
- · 8.2 插入排序(Shell 排序)
- · 8.3 选择排序(堆排序)
- · 8.4 交换排序
  - 8.4.1 冒泡排序
  - 8.4.2 快速排序
- · 8.5 归并排序
- · 8.6 分配排序和索引排序
- · 8.7 排序算法的时间代价
- · 内排序知识点总结



### 8.2 插入排序

## 8.2 插入排序

- 8.2.1 直接插入排序
- 8.2.2 Shell 排序





### 8.2 插入排序

# 插入排序动画

45

34

**78** 

**12** 

34'

**32** 

**29** 

64



**78** 

### 8.2 插入排序

# 插入排序算法

```
template <class Record>
                                            12
void ImprovedInsertSort (Record Array[], int n){
//Array[] 为待排序数组, n 为数组长度
  Record TempRecord; // 临时变量
  for (int i=1; i<n; i++){ // 依次插入第 i 个记录
     TempRecord = Array[i];
     //从 i 开始往前寻找记录 i 的正确位置
     int j = i-1;
     //将那些大于等于记录 i 的记录后移
     while ((j>=0) && (TempRecord < Array[j])){</pre>
       Array[j+1] = Array[j];
       j = j - 1;
     //此时 j 后面就是记录 i 的正确位置,回填
     Array[j+1] = TempRecord;
```

34

**45** 



### 8.2 插入排序

## 算法分析

- 稳定
- 空间代价: Θ(1)
- 时间代价:
  - 最佳情况: n-1 次比较, 2(n-1) 次移动, Θ(n)
  - 最差情况: Θ(n²)
    - 比较次数

$$\sum_{i=1}^{n-1} i = n(n-1)/2 = \Theta(n^2)$$

$$\sum_{i=1}^{n-1} (i+2) = (n-1)(n+4)/2 = \Theta(n^2)$$

- **平均**情况: Θ(n²)



## 8.2.2 Shell排序

- 直接插入排序的两个性质:
  - 在最好情况(序列本身已是**基本有序**的)下 时间代价为 Θ(n)
  - 对于短序列,直接插入排序比较有效
- Shell 排序有效地利用了直接插入排序的 这两个性质



## Shell排序算法思想

- 先将序列转化为若干小序列,在这些小序列内 进行插入排序
- 逐渐增加小序列的规模,而减少小序列个数, 使得待排序序列逐渐处于更有序的状态
- 最后对整个序列进行<mark>扫尾</mark>直接插入排序,从而 完成排序



# Shell排序动画





### "增量每次除以2递减"的Shell 排序

```
template <class Record>
void ShellSort(Record Array[], int n) {
// Shell排序,Array[]为待排序数组,n为数组长度
  int i, delta:
  // 增量delta每次除以2递减
  for (delta = n/2; delta>0; delta /= 2)
    for (i = 0; i < delta; i++)
       // 分别对delta个子序列进行插入排序
       //"&"传 Array[i]的地址,数组总长度为n-i
       ModInsSort(&Array[i], n-i, delta);
  // 如果增量序列不能保证最后一个delta间距为1
  // 可以安排下面这个扫尾性质的插入排序
  // ModInsSort(Array, n, 1);
```







## 针对增量而修改的插入排序算法

```
template <class Record> // 参数delta表示当前的增量
void ModInsSort(Record Array[], int n, int delta) {
  int i, j;
  for (i = delta; i < n; i += delta) // 第i个记录找插入位置
      // j以dealta为步长向前寻找逆置对进行调整
      for (j = i; j >= delta; j -= delta) {
        if (Array[j] < Array[j-delta]) // 逆置对
             swap(Array, j, j-delta);  // 交换
        else break;
```



# Shell 排序算法分析

- ・不稳定
- · 空间代价: Θ(1)
- 时间代价
  - 增量每次**除以2递减**, $\Theta(n^2)$



## Shell 排序选择增量序列

- · 增量每次除以2递减
  - ·效率仍然为  $\Theta(n^2)$



- ·问题:选取的增量之间并不互质
  - 间距为 2<sup>k-1</sup> 的子序列,都是由那些间距为 2<sup>k</sup>的子序列组成的
  - 上一轮循环中在同一个子序列中,可能下一轮还在同一个子序列中,**重复处理**,导致处理效率不高



## Hibbard 增量序列

· Hibbard 增量序列

$$-\{2^{k}-1, 2^{k-1}-1, ..., 7, 3, 1\}$$

- · Shell(3) 和 Hibbard 增量序列的 Shell 排序的效率可以达到 Θ(n³/²)
- · 选取其他增量序列还可以更进一步减少时间代价



## Shell最好的代价

- 呈 2p3q 形式的一系列整数:
  - -1, 2, 3, 4, 6, 8, 9, 12
- ·算法代价  $\Theta(n \log^2 n)$



## 思考

- · 1. 插入排序的<mark>变种</mark>
  - 发现逆序对直接交换
  - 二分插入排序: 查找待插入位置时, 采用二分法
- · 2. Shell 排序中增量作用是什么? 增量除以2递 减和增量除以3递减的序列, 哪个更好? 为什么?
- · 3. Shell 排序的**每一轮子序列排序** 可以用其他方法吗?

### 第八章

### 内排序



## 大纲

- · 8.1 排序问题的基本概念
- · 8.2 插入排序(Shell 排序)
- · 8.3 选择排序(堆排序)
- · 8.4 交换排序
  - 8.4.1 冒泡排序
  - 8.4.2 快速排序
- 8.5 归并排序
- · 8.6 分配排序和索引排序
- · 8.7 排序算法的时间代价
- · 内排序知识点总结



## 8.3 选择排序

- · 8.3.1 直接选择排序
  - 依次选出剩下的未排序记录中的 最小记录

- ・8.3.2 堆排序
  - 堆排序: 基于最大堆来实现



## 直接选择排序动画











45

34

**78** 

**12** 

34'

**32** 

**29** 

**64** 





## 直接选择排序

```
template <class Record>
void SelectSort(Record Array[], int n) {
// 依次选出第i小的记录, 即剩余记录中最小的那个
  for (int i=0; i< n-1; i++) {
    // 首先假设记录i就是最小的
    int Smallest = i;
    // 开始向后扫描所有剩余记录
    for (int j=i+1;j<n; j++)
       // 如果发现更小的记录,记录它的位置
       if (Array[j] < Array[Smallest])</pre>
         Smallest = j;
    // 将第i小的记录放在数组中第i个位置
     swap(Array, i, Smallest);
```



## 直接选择排序性能分析

- ·不稳定
- ·空间代价:  $\Theta(1)$
- ·时间代价
  - **比较**次数: Θ(*n*<sup>2</sup>)
  - **交换**次数: *n*-1
  - **总时间**代价: Θ(n²)



#### 8.3.2 堆排序

## 8.3.2 堆排序

### • 选择类的内排序

- 直接选择排序:直接从剩余记录中线性 查找最小记录
- **堆排序**: 基于最大堆来实现,效率更高

### • 选择类的外排序

- -置换选择排序
- 赢者树、败方树





# 最大堆排序过程示意图







# 最大堆排序过程示意图





#### 8.3.2 堆排序

## 堆排序算法

```
template <class Record>
void sort(Record Array[], int n){
 int i;
 // 建堆
  MaxHeap<Record> max_heap
     = MaxHeap<Record>(Array,n,n);
 // 算法操作n-1次, 最小元素不需要出堆
 for (i = 0; i < n-1; i++)
   // 依次找出剩余记录中的最大记录,即堆顶
    max_heap. RemoveMax();
```

34

### 8.3.2 堆排序



## 算法分析

- ·建堆: Θ(n)
- ·删除堆顶: Θ(log n)
- ·一次建堆, n次删除堆顶
  - 总时间代价为  $\Theta(n\log n)$
- · 空间代价为  $\Theta(1)$



## 思考

- 直接选择排序为什么不稳定? 怎么修改
  - 一下让它变稳定
- 改写堆排序算法,发现逆序对直接交换



### 大纲

- · 8.1 排序问题的基本概念
- · 8.2 插入排序 (Shell 排序)
- · 8.3 选择排序(堆排序)
- · 8.4 交换排序
  - 8.4.1 冒泡排序
  - 8.4.2 快速排序
- 8.5 归并排序
- · 8.6 分配排序和索引排序
- · 8.7 排序算法的时间代价
- ·内排序知识点总结



### 8.4 交换排序

- •8.4.1 冒泡排序
- •8.4.2 快速排序



#### 8.4.1 冒泡排序

### 8.4.1 冒泡排序

- ・算法思想
  - 不停地**比较相邻的记录**,如果**不满足排序**要求,就 **交换相邻记录**,直到所有的记录都已经排好序
- · 检查**每轮冒泡过程**中**是否**发生过**交换**,如果没有,则表明整个数组已经排好序了,排序结束
  - 避免不必要的比较



# 冒泡排序动画

45

34

**78** 

**12** 

*34'* 

**32** 

**29** 



#### 8.4.1 冒泡排序

### 冒泡排序算法

```
template <class Record>
void BubbleSort(Record Array[], int n) {
                                 // 是否发生了交换的标志
   bool NoSwap;
   int i, j;
   for (i = 0; i < n-1; i++) {
                                  // 标志初始为真
      NoSwap = true;
      for (j = n-1; j > i; j--){
         if (Array[j] < Array[j-1]) {</pre>
                                 // 判断是否逆置
                          1); // 交换逆置对 // 发生了交换,标志变为假
            swap(Array, j, j-1);
            NoSwap = false
                                  // 没发生交换,则已完成排好序
         if (NoSwap)
            return;
```

#### 第八章 **内排序**



#### 8.4.1 冒泡排序

### 算法分析

- ・稳定
- · **空间**代价: **Θ(1)**
- ・时间代价分析
  - 比较次数
    - ·最少: Θ(n)
    - ·最多:  $\sum_{i=1}^{n-1} (n-i) = n(n-1)/2 = \Theta(n^2)$

交换次数最少为 0, 最多为  $\Theta(n^2)$ , 平均为  $\Theta(n^2)$ 

- ·时间代价结论
  - 最大, **平均**时间代价均为 **Θ(n²)**
  - **最小**时间代价为 **Θ(n)**: 最佳情况下只运行第一轮循环



# 思考

•冒泡排序和直接选择排序哪个更优





#### 第八章 内排序

张铭 主讲

采用教材: 《数据结构与算法》, 张铭, 王腾蛟, 赵海燕 编写高等教育出版社, 2008.6 ("十二五"国家级规划教材)

http://jpk.pku.edu.cn/course/sjjg/
https://www.icourse163.org/course/PKU-1002534001

#### 内排序



### 学习目标

#### ·经典的内排序算法思想

- 归纳法 (插入)
- 分治法(归并、快排)
- 跨区虚拟数组操作 (Shell)
- 地址排序的数据整理

#### ·算法时间复杂度分析方法

- 排序的基本操作: 比较、移动
- 最好、最坏、平均情况排序算法
- 排序问题的决策树分析方法



### 大纲

- · 8.1 排序问题的基本概念
- · 8.2 插入排序 (Shell 排序)
- · 8.3 选择排序(堆排序)
- · 8.4 交换排序
  - 8.4.1 冒泡排序
  - 8.4.2 快速排序
- 8.5 归并排序
- · 8.6 分配排序和索引排序
- · 8.7 排序算法的时间代价
- ·内排序知识点总结



### 8.4.2 快速排序

- ・算法思想
  - 选择<mark>轴值</mark> (pivot)
  - 将序列划分为两个子序列 L 和 R, 使得 L 中所有记录都小于或等于轴值, R 中记录都大于轴值
  - 对子序列 L 和 R 递归进行快速排序
- 20世纪十大算法
  - Top 10 Algorithms of the Century
  - 1962 London 的 Elliot Brothers Ltd 的 Tony Hoare 提出的快速排序





### 分治策略的基本思想

- •主要思想
  - 分: 划分子问题 (子问题规模尽量均衡)
  - 治: 求解子问题(子问题不重叠)
  - 合:综合子问题的解
- 分治策略的实例
  - BST 查找、插入、删除算法
  - 二分检索
  - 快速排序、归并排序



### 快速排序分治思想



最终排序结果: 12 25 29 32 34' 34 45 64



## 轴值选择

- ·L, R 长度尽可能接近
- •选择策略:
  - 选择最左/最右
  - 随机选择 RQS
  - 选择平均值



### 一次分割过程

25 34 45 32 78 12 29 64 1 r

- 选择轴值并存储轴值
- 最后一个元素放到轴值位置
- 初始化**下标 l, r**, 分别指向**头尾**
- i 递增直到遇到比轴值大的元素,将此元素覆盖到 j 的位置; j 递减直到遇到比轴值小的元素,将此元素覆盖到 i 的位置
- 重复上一步**直到 l==r**,将轴值放到 i 的位置,完毕



### 快速排序算法

```
template <class Record>
void QuickSort(Record Array[], int left, int right) {
// Array[]为待排序数组,left,right分别为数组两端
  if (right <= left) // 只有0或1个记录,就不需排序
     return;
                                   //选择轴值
  int pivot = SelectPivot(left, right);
                                   // 轴值放到数组末端
  swap(Array, pivot, right);
                                  // 分割后轴值正确
  pivot = Partition(Array, left, right);
                               // 左子序列递归快排
  QuickSort(Array, left, pivot-1);
                                  // 右子序列递归快排
  QuickSort(Array, pivot +1, right);
int SelectPivot(int left, int right) {
  // 选择轴值,参数left,right分别表示序列的左右端下标
                                  // 选中间记录作为轴值
  return (left+right)/2;
```



# 分割函数

```
template <class Record>
int Partition(Record Array[], int left, int right) {
// 分割函数,分割后轴值已到达正确位置
 int r = right; // r 为右指针
 Record TempRecord = Array[r]; // 保存轴值
 // 1指针向右移动,直到找到一个大于轴值的记录
   while (Array[I] <= TempRecord && r > I)
     |++;
   if (I < r) { // 未相遇,将逆置元素换到右边空位
     Array[r] = Array[l];
     r--; // r 指针向左移动一步
```



```
//r 指针向左移动, 直到找到一个小于轴值的记录
 while (Array[r] >= TempRecord && r > I)
   r--;
 if (I < r) { // 未相遇,将逆置元素换到左空位
   Array[l] = Array[r];
       //1指针向右移动一步
   |++;
} //end while
Array[I] = TempRecord; // 把轴值回填到分界位置 I 上
      // 返回分界位置I
return |;
```



### 时间代价

- 长度为n的序列,时间为 T(n)
  - T(0) = T(1) = 1
- 选择轴值时间为常数
- ·分割时间为 cn
  - 分割后长度分别为 i 和 n-i-1
  - 左右子序列 T(i) 和 T(n-i-1)
- 求解递推方程

$$T(n) = T(i) + T(n - i - 1) + cn$$





### 最差情况

$$T(n) = T(n-1) + cn$$

$$T(n-1) = T(n-2) + c(n-1)$$

$$T(n-2) = T(n-3) + c(n-2)$$
...
$$T(2) = T(1) + c(2)$$

• 总的时间代价为:

$$T(n) = T(1) + c \sum_{i=2}^{n} i = \Theta(n^2)$$





### 最佳情况

$$T(n) = 2T(n/2) + cn$$

$$\frac{T(n)}{n} = \frac{T(n/2)}{n/2} + c$$

$$\frac{T(n/2)}{n/2} = \frac{T(n/4)}{n/4} + c$$

$$\frac{T(n/4)}{n/4} = \frac{T(n/8)}{n/8} + c$$
...
$$\frac{T(2)}{2} = \frac{T(1)}{1} + c$$

$$\frac{T(n)}{n} = \frac{T(1)}{1} + c \log n$$

$$T(n) = cn \log n + n = \Theta(n \log n)$$



### 等概率情况

- 也就是说,轴值将数组分成长度为 0 和 n-1, 1 和 n-2, …的子序列的概率是相等的,**都为** 1/n
- T(i) 和 T(n-i-1) 的平均值都是

$$T(i) = T(n - i - 1) = \frac{1}{n} \sum_{k=0}^{n-1} T(k)$$

$$T(n) = cn + \frac{1}{n} \sum_{k=0}^{n-1} (T(k) + T(n - k - 1)) = cn + \frac{2}{n} \sum_{k=0}^{n-1} T(k)$$

$$nT(n) = (n + 1)T(n - 1) + 2cn - c$$

$$T(n) = \Theta(n \log n)$$



### 快速排序算法分析

• 最差情况时间代价:  $\Theta(n^2)$ 

• 最佳情况时间代价:  $\Theta(n \log n)$ 

•平均情况时间代价:  $\Theta(n\log n)$ 

•空间代价: O(n)



### 另一种分割方案

25 34 45 32 78 12 29 64 l r

- 选择轴值并与最后一个元素交换
- 初始化下标 1, r, 分别指向待分序列的头尾
- 1 递增直到遇到比轴值大的元素, r 递减直到遇到比轴值 小的元素, 两元素交换
- 重复上面的步骤, **直到 l>r**, 将轴值(在最后)与位置 l 的元素交换



### 一个逆序对互相交换的分割方法

```
template <class Record>
                     // 初始时,轴值 pivot 被放置在最右边
int partition(Record * Array, int l, int r) {
    int right = r;
                             // 保留轴值的位置
    Record pivot = Array[r];
                              // 为了算法统一, 初始化 l = l - 1
    l--;
    // 从两端向中间移动, 直到边界重合
    do { // 每个while 循环都是先拨动下标,再进行比较
      while (Array[++l] < pivot); // 左下标不需要判越界,右移
      while ((r!=0) && (Array[--r] > pivot)); // 右下标左移,注意要判下标不越界
      swap(array, l, r);
    } while (l < r);
                              // l>=r 时才会停止
    swap(array, l, r);
                              // 此算法有一次多余交换, 故应该换回来
    swap(array, l,right);
                              // 轴值入位
    return l;
                              // 返回左下标值 l, 这就是轴值所在位置
```



#### 思考

- 快速排序为什么不稳定
- 快速排序可能的优化
  - 轴值选择 RQS
  - 小子串不递归 (阈值 28? )
  - 消除递归 (用栈,队列?)





### 大纲

- · 8.1 排序问题的基本概念
- · 8.2 插入排序 (Shell 排序)
- · 8.3 选择排序(堆排序)
- · 8.4 交换排序
  - 8.4.1 冒泡排序
  - 8.4.2 快速排序
- · 8.5 归并排序
- · 8.6 分配排序和索引排序
- · 8.7 排序算法的时间代价
- ·内排序知识点总结



### 归并排序思想

- 划分为两个子序列
- 对每个子序列分别进行归并排序
- 有序子序列合并





### 两路归并排序

```
template <class Record>
void MergeSort(Record Array[], Record TempArray[], int left,
int right) {
  // Array为待排序数组,left,right两端
  int middle;
  if (left < right) { // 序列中只有0或1个记录,不用排序
     middle = (left + right) / 2; // 平分为两个子序列
    // 对左边一半进行递归
     MergeSort(Array, TempArray, left, middle);
    // 对右边一半进行递归
     MergeSort(Array, TempArray, middle+1, right);
     Merge(Array, TempArray, left, right, middle); // 归并
```



### 合并子序列的函数

```
// 两个有序子序列都从左向右扫描,归并到新数组
template <class Record>
void Merge(Record Array[], Record TempArray[], int left, int
right, int middle) {
  int i, j, index1, index2;
  // 将数组暂存入临时数组
  for (j = left; j <= right; j++)
    TempArray[j] = Array[j];
  index2 = middle+1;  // 右边子序列的起始位置
                  // 从左开始归并
  i = left;
```



```
(25 32 34 45)(12 34' 64 78)
                                                 (12 25 32 34 34' 45 64 78)
while (index1 <= middle && index2 <= right) {</pre>
  // 取较小者插入合并数组中
  if (TempArray[index1] <= TempArray[index2])</pre>
     Array[i++] = TempArray[index1++];
  else Array[i++] = TempArray[index2++];
while (index1 <= middle) // 只剩左序列,可以直接复制
  Array[i++] = TempArray[index1++];
while (index2 <= right) // 与上个循环互斥,复制右序列
  Array[i++] = TempArray[index2++];
```



### 归并算法优化

- 同优化的快速排序一样,对基本已排序序列直接 插入排序
- R.Sedgewick 优化:先把右子序列置逆,归并时从两端开始处理,向中间推进,简化边界判断

```
(25 32 34 45)(78 64 34' 12)
(12 25 32 34 34' 45 64 78)
```



# R.Sedgewick优化归并思想









### R.Sedgewick优化归并



# 优化的归并排序(阈值28)

```
template <class Record>
void ModMergeSort(Record Array[], Record TempArray[], int left, int right) {
// Array为待排序数组,left,right两端
  int middle;
  if (right-left+1 > THRESHOLD) { // 长序列递归
     middle = (left + right) / 2; // 从中间划为两个子序列
     ModMergeSort(Array, TempArray, left, middle); // 左
     ModMergeSort(Array, TempArray, middle+1, right);// 右
     // 对相邻的有序序列进行归并
     ModMerge(Array, TempArray, left, right, middle); // 归并
  else InsertSort(&Array[left],right-left+1); // 小序列插入排序
```



## 优化的归并函数

```
(25 32 34 45)(78 64 34' 12)
(12 25 32 34 34' 45 64 78)
```

```
template <class Record> void ModMerge(Record Array[], Record
TempArray[], int left, int right, int middle) {
                                    //两个子序列的起始位置
   int index1,index2;
   int i,j,k;
   for (i = left; i <= middle; i++)
      TempArray[i] = Array[i]; // 复制左边的子序列
   for (j = 1; j <= right-middle; j++) // 颠倒复制右序列
      TempArray[right-j+1] = Array[j+middle];
   for (index1=left, index2=right, k=left; k<=right; k++)</pre>
      if (TempArray[index1] <= TempArray[index2])</pre>
         Array[k] = TempArray[index1++];
      else
         Array[k] = TempArray[index2--];
```

#### 8.5 归并排序

### 算法复杂度分析

- **空间**代价: **Θ**(*n*)
- 划分时间、排序时间、归并时间

$$T(n) = 2T(n/2) + cn$$
  
 $T(1) = 1$ 

- 归并排序总时间代价也为  $\Theta(n \log n)$
- 不依赖于原始数组的输入情况
  - 最大、最小以及平均**时间代价均为**  $\Theta(n \log n)$





#### 8.5 归并排序

### 思考

- •普通归并和 Sedgewick 算法都是稳定的吗?
- 两个归并算法哪个更优?
  - 二者的比较次数和赋值次数
  - 归并时子序列下标是否需要边界判断

#### 排序问题的讨论

### 假币问题

- 9枚硬币,其中一枚是假的且重量较轻。 请用一个没有砝码的天平,以最少的比较。数来寻找假币
- a,b,c,d,e,f,g,h 八枚硬币,用一个没有 砝码的天平,以最少的比较次数找出假 币

• . . . . . . . .







#### 8.5 归并排序

### 讨论: 统计逆序对

- 给定n个数a<sub>0</sub>, a<sub>1</sub> ... a<sub>n-1</sub>
  - 如果存在存在 $a_i > a_j$ 且i < j,则称这样的元素对 $< a_i, a_j > 为一个逆序对$
  - 统计这n个数中逆序对的总数
- •比如说, n=5, a<sub>0</sub>到a<sub>4</sub>分别为5,3,1,4,3
  - 则逆序对有<5,3>,<5,1>,<5,4>,<5,3>,<3,1>,<4,3> 共6对
- · "逆序对(逆置)"的分析,有助于插入排序等算法的 效率分析

#### 第八章

#### 内排序



### 大纲

- · 8.1 排序问题的基本概念
- · 8.2 插入排序 (Shell 排序)
- · 8.3 选择排序(堆排序)
- · 8.4 交换排序
  - 8.4.1 冒泡排序
  - 8.4.2 快速排序
- 8.5 归并排序
- · 8.6 分配排序和索引排序
  - 8.6.1 桶式排序
  - 8.6.2 基数排序
  - 8.6.3 索引排序
- · 8.7 排序算法的时间代价
- · 内排序知识点总结



### 8.6 分配排序和基数排序

- 纪录之间不需要两两比较
- •需要事先知道记录序列的分布特征



#### 8.6.1 桶式排序

### 8.6.1 桶式排序

•记录都位于某**小区间段 [0, m)** 内, 分配到各桶, 再收集



| <b>T J Z J Z J O O J</b> |
|--------------------------|
|--------------------------|





待排数组: 7 3 8 9 6 1 8' 1' 2

每个桶 count分配:

$$+ + + +$$

前若干桶的 累计count:





### 桶排序示意

待排数组: 7 3 8 9 6 1 8' 1' 2

每个桶count:

| 0 |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 2 | 1 |

前若干桶的 累计count:



收集:

| 0 | 1  | 2 | 3 | 4 | 5 | 6 | 7  | 8 |
|---|----|---|---|---|---|---|----|---|
| 1 | 1' | 2 | 3 | 6 | 7 | 8 | 8' | 9 |



#### 8.6.1 桶式排序

### 桶式排序算法

```
template <class Record> void BucketSort(Record Array[], int n, int max) {
   Record *TempArray = new Record[n]; // 临时数组
   int *count = new int[max]; // 桶容量计数器
  int i;
                            // 把序列复制到临时数组
  for (i = 0; i < n; i++)
     TempArray[i] = Array[i];
                            // 所有计数器初始都为0
  for (i = 0; i < max; i++)
     count[i] = 0;
                             // 统计每个取值出现的次数
  for (i = 0; i < n; i++)
     count[Array[i]]++;
                       // 统计小于等于i的元素个数
  for (i = 1; i < max; i++)
     count[i] = count[i-1]+count [i]; // c [i]记录i+1的起址
  for (i = n-1; i >= 0; i--) // 尾部开始,保证稳定性
     Array[--count[TempArray[i]]] = TempArray[i];
```



#### 8.6.1 桶式排序

### 算法分析

- 数组长度为 n, 所有记录区间 [0, m) 上
- 空间代价:
  - 长度为 n 的临时数组, m 个计数器,  $\Theta(n+m)$
- •**时间**代价:
  - 统计**计数**:  $\Theta(n+m)$  , 输出有序序列时循环 n 次
  - **总的**时间代价**为** Θ(*n+m*)
  - 适用于 m 相对于 n 很小的情况
- 稳定



### 思考

- 1. 桶排事先知道序列中的记录都位于某个小区间段 [0, m)内。桶m 多大合适?超过这个范围怎么办?
- 2. 桶排中,count 数组的作用是什么?
- 3. 为什么桶排要从后往前收集?

#### 第八章

#### 内排序



### 大纲

- · 8.1 排序问题的基本概念
- · 8.2 插入排序 (Shell 排序)
- · 8.3 选择排序(堆排序)
- · 8.4 交换排序
  - 8.4.1 冒泡排序
  - 8.4.2 快速排序
- 8.5 归并排序
- · 8.6 分配排序和索引排序
  - 8.6.1 桶式排序
  - 8.6.2 分配排序和基数排序
    - 顺序基数排序
    - 链式基数排序
  - 8.6.3 索引排序
- · 8.7 排序算法的时间代价
- · 内排序知识点总结

### 8.6.2 基数排序

• 假设数组长度为 n, 所有记录区间 [0, m) 上

- 桶式排序只适合 m 很小的情况
- 基数排序: 当 *m* 很大时,可以将一个记录的值即排序码拆分为多个部分来进行比较



### 排序码的多段划分

• 假设长度为 n 的序列

$$R = \{ r_0, r_1, ..., r_{n-1} \}$$
  
记录的排序码 K 包含 d 个子排序码  
 $K = (k_{d-1}, k_{d-2}, ..., k_1, k_0)$ 

• R 对排序码有序,即对于任意 两个记录  $R_i$ ,  $R_j$  ( $0 \le i < j \le n$ -1),都满足 ( $k_{i,d-1}$ ,  $k_{i,d-2}$ , ...,  $k_{i,1}$ ,  $k_{i,0}$ )  $\le$ ( $k_{i,d-1}$ ,  $k_{i,d-2}$ , ...,  $k_{i,1}$ ,  $k_{i,0}$ )



### 例子

例如:对0到9999之间的整数进行排序

- 将四位数看作是由四个排序码决定
  - 即千、百、十、个位
  - 千位为最高排序码, 个位为最低排序码
  - 基数 *r*=10
- •可以按干、百、十、个位数字依次进行4次桶排
- 4趟分配排序后,整个序列就排好序了



黑桃♠(S) > 红心♥(H) > 方片♦(D) > 梅花♣ (C)

**43 ¥J 48 ¥9 49 ★3 41 ★7** 

- 高位先排, 递归分治
  - 先按花色: ♣8 ♣1 ♦3 ♦7 ♥J ♥9 ♠3 ♠9
  - 再按面值: ♣1 ♣8 ♦3 ♦7 ♥9 ♥J ♠3 ♠9
- 低位先排,要求稳定排序!
  - 先面值: ♣1 ♠3 ♦3 ♦'7 ♣8 ♥9 ♠'9 ♥'J
  - 再花色: ♣1 ♣'8 ◆3 ◆'7 ♥9 ♥'J ♠3 ♠'9



### 高位优先法

- MSD, Most Significant Digit first
- 先处理最高位  $k_{d-1}$  将序列分到若干桶中
- 然后再对每个桶处理次高位  $k_{d-2}$  ,分成更小的桶
- **依次重复**,**直到对**  $k_0$  排序后,分成最小的桶,每个桶内含有相同排序码( $k_{d-1}$ , ...,  $k_1$ ,  $k_0$ )
- 最后将所有的桶中的数据**依次连接**在一起,成为一个有序序列
- 这是一个分、分、…、分、收的过程



### 低位优先法

- LSD, Least Significant Digit first
- 从最低位  $k_0$  开始排序
- 对于排好的序列再用次低位 k<sub>1</sub> 排序;
- 依次重复,直至对最高位  $k_{d-1}$  排好序后,整个序列成为有序的
- 分、收; 分、收; …; 分、收的过程
  - 比较简单, 计算机常用



## 基数排序的实现

- 主要讨论 LSD
  - 基于顺序存储
  - 基于链式存储
- 原始输入数组 R 的长度为 n, 基数为 r, 排序 码个数为 d



### 基于顺序存储的基数排序



(a) 第一趟处理个位



### 基于顺序存储的基数排序

第一次收集结果: 41 31 22 53 26 97 88 88' 59 第二趟: count 按 count 分配桶: 收集: 88' 

最终排序结果: 22 26 31 41 53 59 88 88' 97

(b) 第二趟处理十位



### 基于数组的基数排序

```
template <class Record>
void RadixSort(Record Array[], int n, int d, int r) {
  Record *TempArray = new Record[n];
  int *count = new int[r]; int i, j, k;
  for (i = 0; i <= d-1; i++) { // 对第 i 个排序码分配
    for (j = 0; j < r; j++)
      count[j] = 0; // 初始计数器均为0
    for (j = 0; j < n; j++) { / / 统计每桶记录数
      k = (Array[j] / Radix) % r; // 取第i位
      count[k]++; // 相应计数器加1
```





```
for (j = 1; j < r; j++) // 给桶划分下标界
  count[j] = count[j-1] + count[j]; // count[i]记录了i+1桶的开始位置
for (j = n-1; j >= 0; j--) { // 从数组尾部收集
  k = (Array[j] / Radix ) % r; // 取第 i 位
  count[k]--; // 桶剩余量计数器减1
  TempArray[count[k]] = Array[j]; // 入桶
for (j = 0; j < n; j++) // 内容复制回 Array 中
  Array[j] = TempArray[j];
                      // 修改模Radix
Radix *= r;
```



### 顺序基数排序代价分析

- 待排数组长度 n, 基为 r, 排序码分为 d 段
- •空间代价:
  - 临时数组, n
  - *r* 个计数器
  - ・ 总空间代价 Θ(n+r)
- •时间代价
  - 每趟桶式排序: Θ(n+r)
  - d 次桶式排序
  - ・总时间代价 Θ(d·(n+r))

#### 第八章

#### 内排序



### 大纲

- · 8.1 排序问题的基本概念
- · 8.2 插入排序 (Shell 排序)
- · 8.3 选择排序(堆排序)
- · 8.4 交换排序
  - 8.4.1 冒泡排序
  - 8.4.2 快速排序
- 8.5 归并排序
- 8.6 分配排序和索引排序
  - 8.6.1 桶式排序
  - 8.6.2 基数排序
    - 顺序基数排序
    - 链式基数排序
  - 8.6.3 索引排序
- · 8.7 排序算法的时间代价
- · 内排序知识点总结

北大《数据结构与算法》



### 基于静态链的基数排序

•假设长度为 n 的序列

$$R = \{ r_0, r_1, ..., r_{n-1} \}$$
 记录的排序码 K 包含 d 个子排序码  $K = (k_{d-1}, k_{d-2}, ..., k_1, k_0)$ 

- 将分配出来的**子序列存放在** *r* **个队列** (静态链组织的)
- 链式存储避免了空间浪费情况



### (c) 第一趟收集

| 41 31 | L 22 | 53 | 26 | 97 | 88 | 88' | 59 |
|-------|------|----|----|----|----|-----|----|
|-------|------|----|----|----|----|-----|----|



### (e) 第二趟收集结果 (最终结果)

 22
 26
 31
 41
 53
 59
 88
 88'
 97



# 静态队列定义

```
// 结点类
class Node {
public:
              // 结点的排序码值
  int key;
              //下一个结点在数组中的下标
  int next;
};
class StaticQueue { // 静态队列类
public:
  int head;
  int tail;
```

```
index 0 1 2 3 4 5 6 7 8 key 49 38 65 97 76 13 27 52 next 6 8 1 5 0 4 7 2 3
```



# 基于静态链的基数排序 template <class Record>

```
void RadixSort(Record *Array, int n, int d, int r) {
  int i, first = 0; // first指向第一个记录
  StaticQueue *queue = new StaticQueue[r];
  for (i = 0; i < n-1; i++)
     Array[i].next = i + 1; // 初始化静态指针域
  Array[n-1].next = -1;  // 链尾next为空
  //对第i个排序码进行分配和收集,一共d趟
  for (i = 0; i < d; i++) {
     Distribute(Array, first, i, r, queue);
     Collect(Array, first, r, queue);
  delete[] queue;
  AddrSort(Array, n, first); // 整理后, 按下标有序
```





```
template <class Record>
void Distribute(Record *Array, int first, int i, int r, StaticQueue *queue) {
   int j, k, a, curr = first;
   for (j = 0; j < r; j++) queue[j].head = -1;</pre>
   while (curr != -1) { // 对整个静态链进行分配
      k = Array[curr].key;
      for (a = 0; a < i; a++) // 取第i位排序码数字k
         k = k / r;
      k = k \% r;
      if (queue[k].head == -1) // 把数据分配到第k个桶中
         queue[k].head = curr;
      else Array[queue[k].tail].next = curr;
      queue[k].tail = curr;
      curr = Array[curr].next; // curr移动,继续分配
```



```
template <class Record>
void Collect(Record *Array, int& first, int r, StaticQueue *queue) {
              // 已收集到的最后一个记录
  int last, k=0;
  while (queue[k].head == -1) k++; // 找到第一个非空队
  first = queue[k].head; last = queue[k].tail;
  while (k < r-1) { // 继续收集下一个非空队列
     k++;
     while (k < r-1 && queue[k].head == -1)
        k++;
     if (queue[k].head != -1) { // 试探下一个队列
        Array[last].next = queue[k].head;
        last = queue[k].tail; // 最后一个为序列的尾部
                           // 收集完毕
  Array[last].next = -1;
```



### 链式基数排序算法代价分析

- 待排数组长度 n, 基为 r, 排序码分为 d 段
- •空间代价
  - n 个 next 域空间
  - r 个子序列的头尾指针
  - ・总空间代价 Θ(n + r)
- 时间代价
  - 不需要移动记录本身,只需要修改记录的 next 指针
  - ・总空间代价 Θ(d·(n+r))



### 基数排序效率

- 因为 r << n,  $\Theta(d \cdot (n+r))$  可以看作  $\Theta(d \cdot n)$
- d 是比较小的数, 基数排序代价是  $\Theta(n)$  吗?
- •实际上还是  $\Theta(n \log n)$ 
  - **排序码不重复**的情况下,需要 n 个不同的编码来表示
  - 段数  $d >= \log_r n$ , 即在  $\Omega(\log n)$  中

#### 第八章

#### 内排序



### 大纲

- · 8.1 排序问题的基本概念
- · 8.2 插入排序 (Shell 排序)
- · 8.3 选择排序(堆排序)
- · 8.4 交换排序
  - 8.4.1 冒泡排序
  - 8.4.2 快速排序
- 8.5 归并排序
- · 8.6 分配排序和索引排序
  - 8.6.1 桶式排序
  - 8.6.2 基数排序
  - 8.6.3 索引排序
- · 8.7 排序算法的时间代价
- · 内排序知识点总结



### 思考:链式基数排序的结果整理?

链式基数排序的结果,放在有头结点的单链表

整理之后: 13 27 38 49 52 65 76 97



# 线性时间整理静态链表

```
template <class Record>
void AddrSort(Record *Array, int n, int first) {
  int i, j;
                        //j待处理数据下标
 j = first;
 Record TempRec;
 for (i = 0; i < n-1; i++) { // 循环,每次处理第 i 个记录
                     // 暂存第 i 个的记录 Array[j]
    TempRec = Array[j];
    swap(Array[i], Array[j]);
                 // next 链要保留调换轨迹j
    Array[i].next = j;
                   //i移动到下一位
    j = TempRec.next;
                       //i比i小,则是轨迹,顺链找
    while (j <= i)
      j = Array[j].next;
```





# 索引数组

数据域很大,交换记录的代价比较高



## 索引数组





交换指针,减少交换记录的次数



# 索引结果:

- ·<mark>谁该来?</mark> 结果下标 IndexArray[i] 存放的是 Array[i] 中应该摆放的数据位置。
- · 整理后 Array[i] **对应**原数组中 Array[IndexArray[i]]
- ·下标 0 1 2 3 4 5 6 7
- ·排序码 29 25 34 64 34' 12 32 45
- · 索引 5 1 0 6 2 4 7 3
  - 0 1 2 3 4 5 6 7
  - 12 25 29 32 34 34' 45 64





# 对索引数组的顺链整理

- 下标 0 1 2 3 4 5 6 7排序码 29 25 34 64 34'12 32 45
- 索引 5 1 0 6 2 4 7 3

结果
12
3
4
5
6
7
12
25
29
32
34
34'
45
64



# 索引排序的适用性

- ·一般的排序方法都可以
  - 赋值 (或交换) 都换成 对 index 索引数组的赋值 (或交换)
- ·举例:插入排序



# 插入排序的索引地址排序版本

```
template<class Record>
void AddrSort(Record Array[], int n) {
  // n为数组长度
  int *IndexArray = new int[n], TempIndex;
  int i,j,k;
                           // 只需一个临时空间
  Record TempRec;
  for (i=0; i<n; i++)
     IndexArray[i] = i;
                           // 依次插入第i个记录
  for (i=1; i<n; i++)
    for (j=i; j>0; j--) // 依次比较,发现逆置就交换
       if ( Array[IndexArray[j]] < Array[IndexArray[j-1]]))</pre>
          swap(IndexArray, j, j-1);
                 //此时i前面记录已排序
       else break;
```



### 插入排序的索引地址排序版本(续)

```
// 调整为按下标有序
for(i=0;i<n;i++) {</pre>
     j= i;
     TempRec = Array[i];
     while (IndexArray[j] != i) {
        k=IndexArray[i];
        Array[j]=Array[k];
        IndexArray[j] = j;
        j = k;
     Array[j] =TempRec;
     IndexArray[j] = j;
```

```
下标 0 1 2 3 4 5 6 7
排序码 29 25 34 64 34' 12 32 45
索引 5 1 0 6 2 4 7 3
整理后: 12 25 29 32 34 34' 45 64
```



# 第二种索引方法

- · 我去哪? : 结果下标 IndexArray[i] 存放的是 Array[i] 中数据应该待的位置。
- · 排好序的 Array[IndexArray[i]] 对应原数组 中 Array[i]
- · 下标 0 1 2 3 4 5 6 7
- ·排序码 29 25 34 64 34' 12 32 45
- ・索引 2 1 4 7 5 0 3 6
  - 0 1 2 3 4 5 6 7
  - 12 25 29 32 34 34' 45 64





# 对第二种索引的顺链整理

• 下标 0 1 2 3 4 5 6 7

• 排序码 29 25 34 64 34'12 32 45

• 索引 2 1 4 7 5 0 3 6

· 结果 0 1 2 3 4 5 6 7 12 25 29 32 34 34' 45 64



## 思考

- 1. 证明**索引排序整理方案**的时间代价为  $\Theta(n)$
- 2. 修改快速排序,得到第一种索引结果。
- 3. 对**静态链的基数排序**结果进行简单变换得到**第** 二种索引的方法。
- 4. 还有哪些排序方法可以得到第二种索引的结果?



# 大纲

- · 8.1 排序问题的基本概念
- · 8.2 插入排序 (Shell 排序)
- · 8.3 选择排序(堆排序)
- · 8.4 交换排序
  - 8.4.1 冒泡排序
  - 8.4.2 快速排序
- 8.5 归并排序
- · 8.6 分配排序和索引排序
- · 8.7 排序算法的时间代价
- 内排序知识点总结

### 8.7 排序算法的时间代价



## 8.7 排序算法的时间代价

- 简单排序算法的时间代价
- 排序算法的理论和实验时间
- 排序问题的下限

### 8.7 排序算法的时间代价



# 简单排序算法 $\Theta(n^2)$ 的原因

- · 一个长度为 n 的序列平均有 n(n-1)/4 个逆置对
- ·任何一种基于相邻记录比较的排序算法的平均时间代价都是  $\Theta(n^2)$

### 第八章 内排序





# 8.7.2 排序算法的理论和实验时间

| 算法     | 最大<br>时间           | 平均<br>时间           | 最小<br>时间           | 辅助<br>空间代价 | 稳定性 |
|--------|--------------------|--------------------|--------------------|------------|-----|
| 直接插入排序 | Θ(n <sup>2</sup> ) | Θ(n <sup>2</sup> ) | Θ(n)               | Θ(1)       | 稳定  |
| 冒泡排序   | Θ(n <sup>2</sup> ) | Θ(n <sup>2</sup> ) | Θ(n)               | Θ(1)       | 稳定  |
| 直接选择排序 | Θ(n <sup>2</sup> ) | Θ(n <sup>2</sup> ) | Θ(n <sup>2</sup> ) | Θ(1)       | 不稳定 |

### 第八章 内排序



### 8.7.2 排序算法的理论和实验时间

| 算法             | 最大时间                    | 平均时间                         | 最小时间              | 辅助空间   | 稳定性 |
|----------------|-------------------------|------------------------------|-------------------|--------|-----|
| Shell<br>排序(3) | $\Theta(n^{3/2})$       | <b>O</b> (n <sup>3/2</sup> ) | $\Theta(n^{3/2})$ | Θ(1)   | 不稳定 |
| 快速排序           | $\Theta(n^2)$           | O(nlog n)                    | Θ(nlog n)         | O(n)   | 不稳定 |
| 归并排序           | Θ(nlog n)               | O(nlog n)                    | Θ(nlog n)         | Θ(n)   | 稳定  |
| 堆排序            | Θ(nlog n)               | O(nlog n)                    | Θ(nlog n)         | Θ(1)   | 不稳定 |
| 桶式排序           | Θ(n+m)                  | 0(n+m)                       | Θ(n+m)            | Θ(n+m) | 稳定  |
| 基数排序           | $\Theta(d \cdot (n+r))$ | Θ(d·(n+r))                   | Θ(d·(n+r))        | Θ(n+r) | 稳定  |



# 小结

- ·n 很小或基本有序时插入排序比较有效
- Shell 排序选择增量以3的倍数递减
  - •需要保证最后一趟增量为1
- 综合性能快速排序最佳

### 第八章 内排序



### 8.7.2 排序算法的理论和实验时间

# 测试环境

### • 硬件环境

• CPU: Intel P4 3G

• 内存: 1G

### • 软件环境

- Windows XP
- Visual C++ 6.0



# 随机生成待排序数组

```
inline void Randomize() { // 设置随机种子
  srand(1);
//返回一个[0,n-1]之间的随机整数值
inline int Random(int n) {
  return rand() % (n);
//产生随机数组
// 不能用申请静态数组ELEM sortarray[1000000];
ELEM *sortarray =new ELEM[1000000];
for(int i=0; i<1000000; i++)
  sortarray[i] = Random(32003);
```



# 时间测试

```
#include <time.h>
#define CLOCKS_PER_SEC 1000
clock t tstart = 0; // 开始的时间
//初始化计时器
void Settime() {
  tstart = clock();
// 上次 Settime() 之后经过的时间
double Gettime() {
  return (double)((double)clock() -
     (double)tstart) / (double)CLOCKS PER SEC;
```



# 排序的时间测试

```
Settime();
for (i=0; i<ARRAYSIZE; i+=listsize) {
   sort<int>(&array[i], listsize);
}
cout << "Sort with list size " << listsize
<< ", array size " << ARRAYSIZE << ", and
threshold " <<
THRESHOLD << ": " << Gettime() << "
seconds\n";</pre>
```

### 第八章





### 8.7.2 排序算法的理论和实验时间

| 数组<br>规模   | 10         | 100      | 1K       | 10K    | 100K   | 1M     | 10K<br>正序 | 10K<br>逆序 |
|------------|------------|----------|----------|--------|--------|--------|-----------|-----------|
| 直接插入排序     | 0.00000047 | 0.000020 | 0.001782 | 0.1752 | 17.917 |        | 0.00011   | 0.35094   |
| 直接选择排序     | 0.00000110 | 0.000041 | 0.002922 | 0.2778 | 36.500 |        | 0.27781   | 0.29109   |
| 冒泡排序       | 0.00000160 | 0.000156 | 0.015620 | 1.5617 | 207.69 |        | 0.00006   | 2.44840   |
| Shell排序(2) | 0.00000156 | 0.000036 | 0.000640 | 0.0109 | 0.1907 | 3.0579 | 0.00156   | 0.00312   |
| Shell排序(3) | 0.00000078 | 0.000016 | 0.000281 | 0.0038 | 0.0579 | 0.8204 | 0.00125   | 0.00687   |
| 堆排序        | 0.00000204 | 0.000027 | 0.000344 | 0.0042 | 0.0532 | 0.6891 | 0.00406   | 0.00375   |
| 快速排序       | 0.00000169 | 0.000021 | 0.000266 | 0.0030 | 0.0375 | 0.4782 | 0.00190   | 0.00199   |
| 优化快排/16    | 0.00000172 | 0.000020 | 0.000265 | 0.0020 | 0.0235 | 0.3610 | 0.00082   | 0.00088   |
| 优化快排/28    | 0.00000062 | 0.000011 | 0.000141 | 0.0018 | 0.0235 | 0.2594 | 0.00063   | 0.00063   |

### 第八章

### 内排序

### 8.7.2 排序算法的理论和实验时间



| 数组规模    | 10         | 100      | 1K       | 10K    | 100K   | 1M     | 10K     | 10K     |
|---------|------------|----------|----------|--------|--------|--------|---------|---------|
|         |            |          |          |        |        |        | 正序      | 逆序      |
| 归并排序    | 0.00000219 | 0.000028 | 0.000375 | 0.0045 | 0.0532 | 0.5969 | 0.00364 | 0.00360 |
| 优化归并/16 | 0.0000063  | 0.000014 | 0.000188 | 0.0030 | 0.0375 | 0.4157 | 0.00203 | 0.00265 |
| 优化归并/28 | 0.0000062  | 0.000013 | 0.000204 | 0.0027 | 0.0360 | 0.4156 | 0.00172 | 0.00265 |
| 顺序基数/8  | 0.00000610 | 0.000049 | 0.000469 | 0.0048 | 0.0481 | 0.4813 | 0.00484 | 0.00469 |
| 顺序基数/16 | 0.00000485 | 0.000034 | 0.000329 | 0.0032 | 0.0324 | 0.3266 | 0.00328 | 0.00313 |
| 链式基数/2  | 0.00002578 | 0.000233 | 0.002297 | 0.0234 | 0.2409 | 3.4844 | 0.02246 | 0.02281 |
| 链式基数/4  | 0.00000922 | 0.000075 | 0.000719 | 0.0075 | 0.0773 | 1.3750 | 0.00719 | 0.00719 |
| 链式基数/8  | 0.00000704 | 0.000048 | 0.000466 | 0.0049 | 0.0502 | 0.9953 | 0.00469 | 0.00469 |
| 链式基数/16 | 0.00000516 | 0.000030 | 0.000266 | 0.0028 | 0.0295 | 0.6570 | 0.00281 | 0.00281 |
| 链式基数/32 | 0.00000500 | 0.000027 | 0.000235 | 0.0028 | 0.0297 | 0.5406 | 0.00263 | 0.00266 |



#### 8.7.3 排序问题的下限

# 排序问题的下限

- 排序问题的时间代价在  $\Omega(n)$  (单趟扫描) 到  $O(n \log n)$  (平均, 最差情况) 之间
- 用 判定树 (Decision Tree)
   基于比较的排序算法的
   下限也为 Ω(n·log n)





### 用判定树模拟基于比较的排序



### 8.7.3 排序问题的下限



# 基于比较的排序的下限

- 对 n 个记录, 共有 n! 个叶结点
  - 树的层数,至少为  $\Omega$  (log n!)
- $\Omega$  (log(n!)) 在  $\Omega$ (n· log n) 中
- 在最差情况下任何基于比较的排序算法都至少需要  $\Omega(n \log n)$  次比较
- 而排序问题的上限是 O (nlogn)
- 因此可以推导出排序问题的时间代价为
  - $\Theta$  ( $n \cdot \log n$ )





# 讨论:

排序算法时间代价: 比较、赋值 一次交换是3次赋值,请写出 void swap(int &a, int &b)的实现

```
void swap(int &a, int &b)
{
    int tmp = a;
    a = b;
    b = tmp;
}
```

```
void swap(int &a, int &b)
{
    a = a^b;
    b = a^b;
    a = a^b;
}
```

```
A B A^B
0 0 0
0 1 1
1 0 1
1 1 0
```

```
void swap(int &a, int &b)
{
    a = a + b;
    b = a - b;
    a = a - b;
}
```



## 讨论:

- 1. 本章讨论的排序算法都是基于数组实现的,可否采用动态链表? 性能上是否有差异?
- 2. 试总结并证明各种排序算法的**稳定性**,若算法 稳定,如何修改可以使之不稳定? 若算法不稳 定,有没有必要改为稳定的?
- 3. 试调研**STL中的各种排序函数**是如何组合各种 排序算法的。





### 数据结构与算法

#### 感谢倾听

国家精品课"数据结构与算法"

http://jpk.pku.edu.cn/course/sjjg/

https://www.icourse163.org/course/PKU-1002534001

张铭,王腾蛟,赵海燕 高等教育出版社,2008.6。"十二五"国家级规划教材