Operator evolution from the similarity renormalization group

Anthony Tropiano¹, Dick Furnstahl¹, Scott Bogner²

¹Ohio State University, ²Michigan State University

APS DNP Meeting – Arlington, Virginia
October 15, 2019

Motivation

- Explosion of new NN interactions from chiral effective field theory (χ^{EFT}) in the last few years
- Previous SRG studies of operators were limited to phenomenological models or one χ^{EFT} interaction
- Revisit the question of how different potentials (regulator functions, cutoff, order, etc.) change under SRG transformations and how these transformations affect other operators

SRG formalism

 SRG transformations decouple low- and high-momenta in Hamiltonian

$$H(s) = U(s)H(0)U^{\dagger}(s)$$

where $s = 0 \rightarrow \infty$

• In practice, solve differential flow equation

$$\frac{dH(s)}{ds} = [\eta(s), H(s)]$$

with SRG generator
$$\eta(s) \equiv \frac{dU(s)}{ds} U^{\dagger}(s) = [G, H(s)]$$

SRG formalism

• $G = H_D(s)$ for banddiagonal decoupling and $G = H_{BD}(s)$ for block-diagonal decoupling

Fig. 1: SRG evolution of $V_{\lambda}(k, k')$ for several values of λ and Λ in the $^{1}P_{1}$ channel. Potentials from P. Reinert et al., Eur. Phys. J. A **54**, 86 (2018) which will be referred to as the RKE potentials.

SRG formalism

- $G = H_D(s)$ for banddiagonal decoupling and $G = H_{BD}(s)$ for block-diagonal decoupling
- Parameters $\lambda = s^{-1/4}$ and Λ describe the decoupling of the evolved Hamiltonian

Fig. 1: SRG evolution of $V_{\lambda}(k, k')$ for several values of λ and Λ in the ${}^{1}P_{1}$ channel. Potentials from P. Reinert et al., Eur. Phys. J. A **54**, 86 (2018) which will be referred to as the RKE potentials.

SRG evolution of modern chiral potentials

 How do different potentials change under SRG transformations?

[fm]

[fm]

[fm]

г 1.0

0.5

0.0

-0.5

1.0

0.5

0.0

-0.5

1.0

0.5

0.0

-0.5

Fig. 2: SRG evolution of $V_{\lambda}(k, k')$ for several chiral potentials.

SRG evolution of modern chiral potentials

- How do different potentials change under SRG transformations?
- Use non-local Entem-Machleidt¹, semi-local RKE², and local Gezerlis et al.³ potentials as examples

¹D.R. Entem and R. Machleidt, Phys. Rev. C **68**, 041001 (2003)

²P. Reinert, H. Krebs, and E. Epelbaum, Eur. Phys. J. A **54**, 86 (2018)

³A. Gezerlis, et al., Phys. Rev. C **90**, 054323 (2014)

Fig. 2: SRG evolution of $V_{\lambda}(k, k')$ for several chiral potentials.

[fm]

[fm]

[fm]

г 1.0

0.5

0.0

-0.5

0.5

0.0

1.0

0.5

-0.0

SRG evolution of modern chiral potentials

- How do different potentials change under SRG transformations?
- Use non-local Entem-Machleidt¹, semi-local RKE², and local Gezerlis et al.³ potentials as examples
- Different potentials evolve to the same low-momentum matrix elements!

Fig. 2: SRG evolution of $V_{\lambda}(k,k')$ for several chiral potentials.

-0.5

Universality in SRG-evolved potentials

Evolved matrix elements collapse to the same lines

Fig. 3: Diagonal and far off-diagonal matrix elements of $V_{\lambda}(k,k')$ for several chiral potentials with band- and block-diagonal decoupling.

Universality in SRG-evolved potentials

 Universality in potential matrix elements is due to equivalent low-energy phase shifts¹

SRG evolution for other operators

 SRG transformations will decouple the Hamiltonian but this behavior is not necessarily true for any operator

$$\frac{dO(s)}{ds} = [\eta(s), O(s)]$$

SRG evolution for other operators

 SRG transformations will decouple the Hamiltonian but this behavior is not necessarily true for any operator

$$\frac{dO(s)}{ds} = [\eta(s), O(s)]$$

What are the characteristics of other evolved operators?

SRG evolution for other operators

 SRG transformations will decouple the Hamiltonian but this behavior is not necessarily true for any operator

$$\frac{dO(s)}{ds} = [\eta(s), O(s)]$$

- What are the characteristics of other evolved operators?
- Does universality hold for evolved operators?

• We use the momentum projection operator $a_a^{\dagger}a_a$ as a test case

$$a_q^{\dagger} a_q \psi(k) = \psi(q)$$

Fig. 4: SRG evolution of $a_q^{\dagger}a_q(k,k')$ for several values of λ and Λ where the transformations are done using the RKE N³LO potential. Here q=3 fm⁻¹.

• We use the momentum projection operator $a_a^{\dagger}a_a$ as a test case

$$a_q^{\dagger} a_q \psi(k) = \psi(q)$$

- Initially starts out as a δ -function
- SRG transformations induce low-momentum contributions

Fig. 4: SRG evolution of $a_q^{\dagger}a_q(k,k')$ for several values of λ and Λ where the transformations are done using the RKE N³LO potential. Here q=3 fm⁻¹.

Fig. 6: Integrand of $\langle \psi_d | a_q^{\dagger} a_q | \psi_d \rangle$ in momentum-space for q=3 (top) and 0.3 (bottom) fm⁻¹ with SRG transformations for several values of λ where the transformations are done using the RKE N³LO potential.

 Matrix elements do not collapse for different cases

Fig. 5: Diagonal matrix elements of $a_q^{\dagger}a_q(k,k')$ for q=3 (top) and 0.3 (bottom) fm⁻¹ with SRG transformations from several chiral potentials with band- and block-diagonal decoupling.

- Matrix elements do not collapse for different cases
- Initial $|\phi_d(q)|^2$ is not the same for various potentials
- \Rightarrow No universality in SRGevolved $a_q^{\dagger}a_q(k,k')$ operator

Fig. 5: Diagonal matrix elements of $a_q^{\dagger}a_q(k,k')$ for q=3 (top) and 0.3 (bottom) fm⁻¹ with SRG transformations from several chiral potentials with band- and block-diagonal decoupling.

Summary

- Different SRG softened interactions collapse to universal form at low-energy if corresponding phase shifts are the same
- Universality depends on the pattern of SRG decoupling the SRG generator (band- or block-diagonal)
- Other operators do not necessarily decouple like evolved potentials but reflect changes in the evolved wave function

Outlook

• Further test SRG-evolution of other operators (\hat{r}^2 , \hat{Q} , etc.)

Outlook

- Further test SRG-evolution of other operators $(\hat{r}^2, \hat{Q}, \text{ etc.})$
- Recent interest in high cutoff potentials and spurious, deeply bound states¹
 - Spurious bound states can affect decoupling and universality (choice in $G = H_D$ or T_{rel} is important)²
 - How do other operators change with these potentials?

Outlook

- Further test SRG-evolution of other operators $(\hat{r}^2, \hat{Q}, \text{ etc.})$
- Recent interest in high cutoff potentials and spurious, deeply bound states¹
 - Spurious bound states can affect decoupling and universality (choice in $G = H_D$ or T_{rel} is important)²
 - How do other operators change with these potentials?
- The Magnus expansion provides an improved approach to the SRG³
 - Do the same characteristics of operator evolution, universality, and generator dependence hold in this approach?
 - What does this imply for IMSRG calculations?

¹I. Tews et al., Phys. Rev. C **98**, 024001 (2018), ²K.A. Wendt et al., Phys. Rev. C **83**, 034005 (2011), ³T.D. Morris et al., Phys. Rev. C **92**, 034331 (2015)

Extras

