for every $\epsilon > 0$, there is some $\eta > 0$, such that, for every $x \in E$,

if
$$||x - a||_E \le \eta$$
, then $||f(x) - f(a)||_F \le \epsilon$.

It is worth noting that continuity is a topological notion, in the sense that equivalent metrics (or equivalent norms) define exactly the same notion of continuity.

Definition 37.17. If (E, \mathcal{O}_E) and (F, \mathcal{O}_F) are topological spaces, and $f: E \to F$ is a function, for every nonempty subset $A \subseteq E$ of E, we say that f is continuous on A if the restriction of f to A is continuous with respect to (A, \mathcal{U}) and (F, \mathcal{O}_F) , where \mathcal{U} is the subspace topology induced by \mathcal{O}_E on A.

Given a product $E_1 \times \cdots \times E_n$ of topological spaces, as usual, we let $\pi_i \colon E_1 \times \cdots \times E_n \to E_i$ be the projection function such that, $\pi_i(x_1, \dots, x_n) = x_i$. It is immediately verified that each π_i is continuous.

Given a topological space (E, \mathcal{O}) , we say that a point $a \in E$ is *isolated* if $\{a\}$ is an open set in \mathcal{O} . Then if (E, \mathcal{O}_E) and (F, \mathcal{O}_F) are topological spaces, any function $f \colon E \to F$ is continuous at every isolated point $a \in E$. In the discrete topology, every point is isolated.

In a nontrivial normed vector space (E, || ||) (with $E \neq \{0\}$), no point is isolated. To show this, we show that every open ball $B_0(u, \rho)$ contains some vectors different from u. Indeed, since E is nontrivial, there is some $v \in E$ such that $v \neq 0$, and thus $\lambda = ||v|| > 0$ (by (N1)). Let

$$w = u + \frac{\rho}{\lambda + 1}v.$$

Since $v \neq 0$ and $\rho > 0$, we have $w \neq u$. Then,

$$||w - u|| = \left\| \frac{\rho}{\lambda + 1} v \right\| = \frac{\rho \lambda}{\lambda + 1} < \rho,$$

which shows that $||w - u|| < \rho$, for $w \neq u$.

The following proposition is easily shown.

Proposition 37.10. Given topological spaces (E, \mathcal{O}_E) , (F, \mathcal{O}_F) , and (G, \mathcal{O}_G) , and two functions $f: E \to F$ and $g: F \to G$, if f is continuous at $a \in E$ and g is continuous at $f(a) \in F$, then $g \circ f: E \to G$ is continuous at $a \in E$. Given n topological spaces (F_i, \mathcal{O}_i) , for every function $f: E \to F_1 \times \cdots \times F_n$, then f is continuous at $a \in E$ iff every $f_i: E \to F_i$ is continuous at a, where $f_i = \pi_i \circ f$.

One can also show that in a metric space (E, d), the distance $d: E \times E \to \mathbb{R}$ is continuous, where $E \times E$ has the product topology. By the triangle inequality, we have

$$d(x,y) \le d(x,x_0) + d(x_0,y_0) + d(y_0,y) = d(x_0,y_0) + d(x_0,x) + d(y_0,y)$$