Fundamental Methods of Data Science

Class 21

Evaluating Classification Models

▶ Which metric have we been using for model evaluation?

Evaluating Classification Models

- Which metric have we been using for model evaluation?
- Accuracy (or error-rate) are common in evaluation
 - $\qquad \qquad \textbf{Accuracy} = \frac{\texttt{Number of correct decisions made}}{\texttt{Total number of decisions made}}$
- Can you think of a scenario where accuracy will not be as useful?
 - I.e. a model of lower accuracy will be preferred

Evaluating Classification Models

- Which metric have we been using for model evaluation?
- Accuracy (or error-rate) are common in evaluation
 - \blacktriangleright Accuracy = Number of correct decisions made Total number of decisions made
- Can you think of a scenario where accuracy will not be as useful?
 - I.e. a model of lower accuracy will be preferred
- Medical examination: positive means a person has a certain disease
 - ▶ Model 1: 10 errors: 5 false positive and 5 false negative
 - ▶ Model 2: 15 errors: 15 false positive and 0 false negative
- Where
 - ▶ False positive means we wrongly predicted true for this instance
- which model is better?

Confusion Matrix

- ▶ A possible improvement to counting accuracy
 - ▶ Count different types of errors made by the classifier

Confusion Matrix

- A possible improvement to counting accuracy
 - Count different types of errors made by the classifier
- A confusion matrix counts correct and incorrect classifications
- ► A confusion matrix for a binary classification problem

	р	n
Υ	True positives	False positives
N	False negatives	True negatives

- Positive/Negative refer to the actual class
- Yes/No refer to the answer our model gives
- What is the meaning of each diagonal?
- ▶ What is the matrix of the previous example?

Bad Positive and Harmless Negative

- ▶ In the previous medical example, we referred to being ill as positive
- ▶ Being positive normally refers to meriting special attention
 - Having a certain disease
- It also refers to a rarer event
 - Churning

Unbalanced Class Distribution

- Consider the following scenario for the churn problem
 - Analyst A gives you a model of 80% accuracy

	Positive	Negative
Yes	300	0
No	200	500

► Analyst B gives you a model of 64% accuracy

	Positive	Negative
Yes	100	360
No	0	540

What is the difference?

Unbalanced Class Distribution

- The two analysts used data of different distributions
 - Analyst A used data with balanced distribution
 - Analyst B used data with representative distribution

Positive	Negative
100	360
0	540
	100

- ▶ What is the representative distribution?
- ▶ What would be analyst B accuracy on a balanced distribution?
- ► Can you see an easy way to get more than 80% accuracy on the representative distribution?

Unbalanced Class Distribution

Unequal Costs and Benefits

- How much do we care about the different errors and correct decisions?
 - Classification accuracy makes no distinction between false positive and false negative errors
 - In real-world applications, different kinds of errors lead to different consequences!
- Examples for medical diagnosis:
 - a patient has cancer (although he does not)
 - false positive error, expensive, but not life threatening
 - a patient has cancer, but she is told that she has not
 - false negative error, more serious
- Errors should be counted separately
 - Estimate cost or benefit of each decision

Evaluation Metrics

Accuracy

```
score = sklearn.metrics.accuracy_score(y_true, y_pred)
```

Confusion Matrix

```
matrix = sklearn.metrics.confusion_matrix(y_true, y_pred)
```

Precision and Recall

- Precision = $\frac{TP}{TP + FP}$
- ▶ Recall = $\frac{TP}{TP + FN}$
- ► F1-score = 2 * Precision*Recall Precision+Recall

Evaluation Metrics

Precision, Recall and F-score

```
>>> from sklearn.metrics import classification_report
>>> y true = [0, 1, 2, 2, 2]
>>> y_pred = [0, 0, 2, 2, 1]
>>> target names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred))
         precision recall f1-score
                                   support
 class 0 0.50 1.00 0.67
 class 1 0.00 0.00 0.00
 class 2 1.00 0.67 0.80
avg / total 0.70 0.60 0.61
```

Workout

- For the Churn data can you get a confusion matrix for one of your models?
 - http://scikit-learn.org/stable/modules/generated/ sklearn.metrics.confusion_matrix.html
- Is the data balanced or representational?

Analytical Framework: Expected Value

- ► The expected value computation provides a framework that is useful in organizing thinking about data-analytic problems
- ▶ It decomposes data-analytic thinking into:
 - ▶ The structure of the problem
 - ► The elements of the analysis that can be extracted from the data
 - ► The elements of the analysis that need to be acquired from other sources

Analytical Framework: Expected Value

- ► The expected value computation provides a framework that is useful in organizing thinking about data-analytic problems
- It decomposes data-analytic thinking into:
 - ▶ The structure of the problem
 - ► The elements of the analysis that can be extracted from the data
 - The elements of the analysis that need to be acquired from other sources
- ▶ The structure of the problem is given by the following formula

$$EV = p(o_1)v(o_1) + \ldots + p(o_n)v(o_n)$$

- Consider the churn problem
 - ▶ What are the possible outcomes for a customer?

- Consider the churn problem
 - ▶ What are the possible outcomes for a customer?
 - Can we get the probabilities of each outcome for a specific customer? How?

Consider the churn problem

- ▶ What are the possible outcomes for a customer?
- Can we get the probabilities of each outcome for a specific customer? How?
- What is your estimation for the probability of churning on a representative distribution?

Consider the churn problem

- What are the possible outcomes for a customer?
- Can we get the probabilities of each outcome for a specific customer? How?
- What is your estimation for the probability of churning on a representative distribution?
- ► Should we target customers of 10% churning? 20%? How can well decide?

- ▶ We can use the EV framework!
- ▶ What is missing for us to use the expected value formula?

$$\mathtt{EV} = p(o_1)v(o_1) + \ldots + p(o_n)v(o_n)$$

- ▶ We can use the EV framework!
- ▶ What is missing for us to use the expected value formula?

$$\mathtt{EV} = p(o_1)v(o_1) + \ldots + p(o_n)v(o_n)$$

► How can we obtain these values?

- We need some business understanding
 - What costs are involved with each outcome
- Responding to a product campaign example
 - Assume for a specific customer you got the following probabilities
 - $p(o_1) = 0.05$
 - $p(o_2) = 1 p(o_1) = 0.95$
 - Assume having the following business understanding
 - ▶ Price of product: \$200
 - Costs of product: \$100
 - ► Contacting a customer: \$1
- Should we contact this customer?

- We need some business understanding
 - What costs are involved with each outcome
- Responding to a product campaign example
 - Assume for a specific customer you got the following probabilities
 - $p(o_1) = 0.05$
 - $p(o_2) = 1 p(o_1) = 0.95$
 - Assume having the following business understanding
 - ▶ Price of product: \$200
 - ► Costs of product: \$100
 - Contacting a customer: \$1
- ▶ Should we contact this customer?
- Compute what is the probability threshold

Expected Value of a Model

- ▶ We have seen how EV can be used with an existing model.
- We have also seen that our evaluation of models using accuracy score might sometimes not be very useful.
- ▶ We want to use the same framework, I.e. to use

$$\mathtt{EV} = p(o_1)v(o_1) + \ldots + p(o_n)v(o_n)$$

- What are the possible outcomes now?
 - ► Hint: consider confusion matrices

Using the Confusion Matrix

Data mining can give us a confusion matrix

	Positive	Negative
Yes	100	360
No	0	540

▶ We now have our outcomes, what are the probabilities of each?

Using the Confusion Matrix

Data mining can give us a confusion matrix

Positive	Negative
100	360
0	540
	100

▶ We now have our outcomes, what are the probabilities of each?

Assume having the same business understanding

Price of product: \$200Costs of product: \$100Contacting a customer: \$1

▶ What are the values of each outcome?

Using the Confusion Matrix

Data mining can give us a confusion matrix

	Positive	Negative
Yes	100	360
No	0	540

- ▶ We now have our outcomes, what are the probabilities of each?
- Assume having the same business understanding

Price of product: \$200

► Costs of product: \$100

► Contacting a customer: \$1

- ▶ What are the values of each outcome?
- ► This matrix is called Cost-benefit Matrix