MSIAM M2 Thesis Defense on 27/August/2021

Ghimire Suraj M2 MSIAM 2020-21 Grenoble INP Ensimag

Variable Selection of the Parrinello-Behler Descriptors for Neural-Network Potentials in Material Science

Research project performed at Grenoble INP SiMaP

Suraj Ghimire

Grenoble INP Ensimag (Master MSIAM)

August 27th, 2021

Under the supervision of

Noel JAKSE Emilie DEVIJVER SIMAP, Grenoble LIG, Grenoble

Evolving of Molecular Dynamics

¹ Jim Gray, 2007 [GRAY]

Fig 1: Paradigm of Molecular Science

Ghimire Suraj M2 Thesis Defense August 27th, 2021

1/42

Evolving of Molecular Dynamics

Fig 2: Representation of Atom within the box

Molecular dynamics (MD) is a computer simulation technique where the time evolution of a set of interacting atoms is followed by integrating their equations of motion.

In molecular dynamics we follow the laws of classical mechanics, and most notably Newton's law:

$$\mathbf{F}_i = m_i \mathbf{a}_i$$

for each atom i in a system constituted by N atoms.

Single layer perceptron

Fig: 3: Single-layer perceptron network

Single layer perceptron

Fig: 3: Single-layer perceptron network

$$y = f(u) = f\left(\sum_{i=1}^{N_{\text{inputs}}} w_i x_i + b_i\right)$$
 (1)

Sub-networks and networks

Input layer

Hidden layer 1

Hidden layer 2

Output layer

Fig 4: Example of Multi-layer perceptron network

Mathematical representation of the network

Mathematical Equation for fig 4 is

$$y_i^3 = f^3 \left(\sum_{j=1}^4 w_{ij}^3 f^2 \left(\sum_{k=1}^5 w_{jk}^2 f^1 \left(\sum_{l=1}^2 w_{kl}^1 x_l^0 + b_k^1 \right) + b_j^2 \right) + b_i^3 \right)$$
 (2)

The generalized equation of ANNs can be written as

$$y_i^l = f^l \left(u_i^l \right) = f^l \left(\sum_{j=1}^{N_{l-1}} w_{ij}^l y_j^{l-1} + b_i^l \right)$$
 (3)

This Neural Network structure is written as 2-5-4-1

Behler Parrinnelo Features

Fig 5: cut off function

Cutoff Function

$$f_{c}(R_{ij}) = \begin{cases} 0.5 \cdot \left[\cos \left(\frac{\pi R_{ij}}{R_{c}} \right) + 1 \right] & \text{for } R_{ij} \leq R_{c} \\ 0 & \text{for } R_{ij} > R_{c} \end{cases}$$
(4)

where R_{ij} refers to the distance between an atom i and an atom j and R_c is the cutoff radius.

Behler Parrinnelo Features [1] [2]

Radial Function

$$G_i^2 = \sum_{j} e^{-\eta (R_{ij} - R_s)^2} \cdot f_c(R_{ij})$$
 (5)

Angular Function

$$G_i^5 = 2^{1-\zeta} \sum_{j,k \neq i}^{\text{all}} (1 + \lambda \cos \theta_{ijk})^{\zeta} \cdot e^{-\eta (R_{ij}^2 + R_{ik}^2)} \cdot f_c(R_{ij}) \cdot f_c(R_{ik})$$
 (6)

where η is a Gaussian width, $\theta_{ijk} = a\cos(\mathbf{R}_{ij} \cdot \mathbf{R}_{ik}/R_{ij} \cdot R_{ik})$

Sub-networks and networks

Fig 6: Symmetry functions on NN [[3]

An example of HDNN of 22-10-10-1

Fig 7 An example of HDNN of 22-10-10-1

• That gives prediction of potential with highest precision

That gives prediction of potential with highest precision

How do we do measure precision?

By minimizing the validation loss

That gives prediction of potential with highest precision

How do we do measure precision?

By minimizing the validation loss

• That has low computation cost

That gives prediction of potential with highest precision

How do we do measure precision?

By minimizing the validation loss

• That has low computation cost

How do we do it?

By selecting smaller sets of observations as possible

That gives prediction of potential with highest precision

How do we do measure precision?

By minimizing the validation loss

• That has low computation cost

How do we do it?

By selecting smaller sets of observations as possible

By selecting smaller structure as possible

That gives prediction of potential with highest precision

How do we do measure precision?

By minimizing the validation loss

• That has low computation cost

How do we do it?

By selecting smaller sets of observations as possible

By selecting smaller structure as possible

On the basis of weights

Comparing weights of a variables within the model

On the basis of weights

Comparing weights of a variables within the model

Random selection of variables

Randomization of available features

On the basis of weights

Comparing weights of a variables within the model

Random selection of variables

Randomization of available features

Least cost

through least cost of the model

On the basis of weights

Comparing weights of a variables within the model

Random selection of variables

Randomization of available features

Least cost

through least cost of the model

Measuring Criteria

Comparing Least loss of various across models

Ghimire Suraj M2 Thesis Defense August 27th, 2021

11/42

Cost function

$$\Gamma \equiv \Gamma(\mathbf{w}, X, y) = \frac{1}{2N} \sum_{i=1}^{N} (y_i - y_i^*)^2$$
(7)

August 27th, 2021 Ghimire Suraj M2 Thesis Defense 12 / 42

Adam Optimisation Algorithm

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t \tag{8}$$

13 / 42

where

$$m_{t} = \beta_{1} m_{t-1} + (1 - \beta_{1}) g_{t},$$

$$\hat{m}_{t} = \frac{m_{t}}{1 - \beta_{1}}$$

$$v_{t} = \beta_{2} v_{t_{1}} + (1 - \beta_{2}) g_{t}^{2}$$

$$\hat{v}_{t} = \frac{v_{t}}{1 - \beta_{2}}$$

Adam on Keras

optimizer_adam = optimizers.Adam
(learning_rate=use.learning_rate, beta_1=0.9,
beta_2=0.999, epsilon=1e-08, amsgrad=False)

[4]

Ghimire Suraj M2 Thesis Defense August 27th, 2021

A little about Dataset

Temperature	State	#NO. of obs
10 K	Solid	1000 obs
300 K	Solid	342 obs
500 K	Solid	344 obs
800 K		1000 obs
1000 K	Liquid	1000 obs
1250 K	Liquid	1000 obs
1350 K	Liquid	1000 obs
1500 K	Liquid	1000 obs
1600 K	Liquid	1000 obs
1700 K	Liquid	1000 obs
1500 KH	Liquid	346 obs
Total		9032 obs

The initial Dataset [3]

256 atoms Total No. of rows $\longrightarrow 2,312,192rows$

14 / 42

A little about Dataset

Variables of Dataset

- Input variables:-G2 and G5 variables
- Forces in each direction
- Energy Predictions

A little about Dataset

Method of Simulation

- Trained a dataset of 22 variables by changing structures eg. Number of layers, depth, validation split, lrr, Number of observations
- Selected the best possible combination
- Extended the data to 329 variables
- Replicated the training with the best combination
- Selected the smallest set of variables that gives prediction with high precision.

Train and validation loss per atom (G2)

Fig 8: Loss per atom with 12 radial (G2) features

Physical representations of 12 radial (G2) features

Fig 9: Physical representations of 12 radial (G2) features

Train and validation loss per atom (G2+G5)

Fig 10: Training loss and validation loss for different layers

Selecting other hyperparameters

- Train Validation split :- 0.8
- Number of layers :- 2
- **Depth of inner layer** : (10, 10)
- Activation Function: tanh

Train-validation curve of loss (MSE) of of 22-10-10-1

Fig 11: Training loss and validation loss for structure 22-10-10-1. Least validation loss 0.3481

Test-Predict Curve of the Model

Fig 12: Test-Predict Curve of the Model for structure 22-10-10-1

Predicting Potentials with Random Forest

Fig 13: Predicting potentials with random forest

Predicting Forces with Random Forest

Fig 14: Predicting forces with random forest

Ghimire Suraj M2 Thesis Defense August 27th, 2021 24 / 42

Extension of G2 variables

```
#format r_c, eta, r_s
x = np.linspace(0.0, 2.0, 201)
x1 = np.ones(68)*1.85
e1 = np.linspace(0.05, 6.8, 68)
e = np.zeros(201)
r = np.ones(269)*6.8
x = np.append(x, x1)
e = np.append(e, e1)
x[0] = 0.0013
features G2 = []
for i in range (269):
    features_G2_append([r[i],x[i],e[i]])
```

Ghimire Suraj M2 Thesis Defense August 27th, 2021 25 / 42

Physical representation of G2 269 variables

Fig 15: Physical representation of G2 269 variables

Ghimire Suraj M2 Thesis Defense August 27th, 2021 26 / 42

Verifying the data

Fig 16: Matching G2 features of both case

August 27th, 2021 Ghimire Suraj M2 Thesis Defense 27 / 42

Verifying the data

Fig 17: Comparing least loss of 12 and 22 variables in the case of old data and extracted data

Ghimire Suraj M2 Thesis Defense August 27th, 2021 28 / 42

Digging 329 variables

Fig 18: Training with variables defined by G_s

Ghimire Suraj M2 Thesis Defense August 27th, 2021 29 / 42

Randomly selecting variables

Training with randomly selecting variables

Fig 19: Training with various number of variables

August 27th, 2021 Ghimire Suraj M2 Thesis Defense 30 / 42

Statistical Significance using t-test

Ghimire Suraj M2 Thesis Defense August 27th, 2021

31/42

Further Digging 57 variables

Digging with respect to G_s

Fig 21: Training with various number of variables

Ghimire Suraj M2 Thesis Defense August 27th, 2021 32 / 42

Further Digging 57 variables

Different possibilities of groups of 57 variables

```
#Randomly selecting even spaced variables
a,b,c = 8.4.4 #for 57 variables
x, y, z = 1,202,1 \# set A
\#x,y,z=2,203,2 \#set B
\#x, y, z = 3,204,3 \#set C
\#x, y, z = 4,205,4 \# set D
g2_{4_1} = np.array(range(x,201,a))
g2_{4_2} = np. array(range(y, 270, b))
g2_4 = np.concatenate((g2_4_1, g2_4_2), axis = None)
g5_4 = np.array(range(z,61,c))
```

Ghimire Suraj M2 Thesis Defense August 27th, 2021 34 / 42

Further Digging 57 variables

Different possibilities of groups of 57 variables.

Fig 22: Training with various groups of 57 variables, part D gives the least validation loss of 0.150827 per configuration (0.00059 per atom).

Ghimire Suraj M2 Thesis Defense August 27th, 2021 35 / 42

Dropping one variable at a time

Different possibilities of groups of 57 variables

- Training with 56 variables
- Compared the least loss of all 57 models
- Retrained with variables after dropping 5 variables.

Dropping variables whose absence gives a better loss

Different possibilities of groups of 57 variables

- Starting from 57, dropped a variable at a time
- If loss increases, retake that variable again
- If loss decreases, permanently drop that variable
- At the end dropped four variables.

Ghimire Suraj M2 Thesis Defense August 27th, 2021 37 / 42

Dropping variables with respect to weight

Different possibilities of groups of 57 variables

Dropped variables that have least absolute sum weight/ sum of weights.

August 27th, 2021 Ghimire Suraj M2 Thesis Defense 38 / 42

Our Result

- The least loss decreased from 0.28 for 22 variables to 0.14478 for 57 variables.
- Dataset with 57 features gave the best precision.
- There can be one or more sets of variables that give better precision.
- Adding new variables with G_s non-zero values can give higher precision.

Hurdles during training process

- Least loss is not consistent
- Different Results at a different time
- Not feasible to replicate the training for every possibility.

Ghimire Suraj M2 Thesis Defense August 27th, 2021 40 / 42

Further possibilities

Lasso Net Regressor [5]

- A penalty is introduced to the original empirical risk minimization that encourages feature sparsity. The formulation transforms the combinatorial search to a continuous search by varying the level of the penalty.
- A proximal gradient algorithm is applied in a mathematically elegant way so that it admits a simple and efficient implementation. The method can be implemented by adding just a few lines of code to a standard neural network.

Ghimire Suraj M2 Thesis Defense August 27th, 2021 41 / 42

Any Questions Please?

Ghimire Suraj M2 Thesis Defense August 27th, 2021

42 / 42

Any Questions Please?

Thank you

- Heartful Thanks to my supervisors Noel JAKSE & Emilie DEVIJVER
- Thanks to my Professors and Friends for your support in 3 years of journey
- Thanks to Ensimag, UGA, and SIMAP administration Staff for your support
- Thanks to my family.

42 / 42

Further possibilities

- [1] Jörg Behler. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. Journal of Chemical Physics, 134(7), 2011. ISSN 00219606. doi: 10.1063/1.3553717.
- [2] Jörg Behler. Constructing high-dimensional neural network potentials: A tutorial review. International Journal of Quantum Chemistry, 115(16):1032-1050, 2015. ISSN 1097461X. doi: 10.1002/qua.24890.
- [3] Anthony Saliou. Kungliga Tekniska Höngskolan, Building neural network potentials for Lennard-Jones and Aluminium systems Anthony Saliou Master Thesis for the MSc in Engineering Physics KTH, Royal Institute of Technology. (July), 2020.
- [4] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980 [cs], Jan 2017. URL http://arxiv.org/abs/1412.6980. arXiv: 1412.6980.
- [5] Ismael Lemhadri, Feng Ruan, Louis Abraham, and Robert Tibshirani. Lassonet: A neural network with feature sparsity. Journal of Machine Learning Research, 22(127):1–29, 2021. URL http://jmlr.org/papers/v22/20-848.html.