# Factored MDPs for Detecting Topics of User Sessions

Maryam Tavakol & Ulf Brefeld

Knowledge Mining & Assessment brefeld@cs.tu-darmstadt.de





#### Traditional Item-to-Item

• A user views the following item:



- Task: Recommend an item that is likely to be clicked
- But: What's the reason for viewing that item?

#### Session-to-Item

• A user views the following sequence of items:



- What is the user's goal of the session?
- Take a content-based approach!

#### Attribute View



#### Attribute View



#### Markov Decision Processes

- ullet 4-tuple  $\langle S, A, R, P \rangle$
- $\bullet$  Set of states S (last k viewed items/user clicks)
- $\bullet$  Set of actions A (items)
- Reward function  $R: S \times A \to \mathbb{R}$  (positive for clicks on recommended items)
- ullet Transition probabilities P:S imes A imes S o [0,1]

#### Factored MDPs

States decompose into state variables

$$S = X_1 \times X_2 \times \ldots \times X_n$$
 colour brand price

Factorisation of probability distribution

$$P(S'|S,a) = \prod_{j=1}^{n} P(X'_j|parent(X'_j),a)$$
 value of attribute j given all attributes of previous items

# Attribute Independence

#### complete model infeasible



# Attribute Independence

#### complete model infeasible

#### exploit independence



(see theorem in the paper)

# Exact and Approximate fMDPs

- Exact P(x'|s,x) estimated by Maximum Likelihood
- Approximate (Shani et al., JMLR 2005) approximate  $P(x|s,x) \approx \alpha P(x|s)$  and  $P(x|s,x') \approx \beta P(x|s)$
- Optimisation by value iteration

$$Q(s_t, x_t) = R(s_t, x_t) + \gamma \sum_{\substack{s_t' \text{ realisation } \mathbf{x}_t \text{ when in state } \mathbf{s}_t}} P(s_t' | s_t, x_t) V^*(s_t')$$

### Topic Detection

ullet Use min-max normalisation of  $Q(s_j,x_j)$  values

$$q(\mathcal{X}_j = x_j | s_j) = \frac{Q(s_j, x_j) - \min_{x'_j} [Q(s_j, x'_j)]}{\max_{x'_j} [Q(s_j, x'_j)] - \min_{x'_j} [Q(s_j, x'_j)]}$$

Thresholding important!

| colour           | price                |
|------------------|----------------------|
| q(black s) = 0.8 | q(expensive s) = 0.8 |
| q(blue s) = 0.7  | q(cheap s) = 0.8     |
| q(green s) = 0.4 | q(sale s) = 0.7      |
| q(red s) = 0.2   |                      |

# Topic Detection

ullet Use min-max normalisation of  $Q(s_j,x_j)$  values

$$q(\mathcal{X}_j = x_j | s_j) = \frac{Q(s_j, x_j) - \min_{x'_j} [Q(s_j, x'_j)]}{\max_{x'_j} [Q(s_j, x'_j)] - \min_{x'_j} [Q(s_j, x'_j)]}$$

Thresholding important!

| colour           | price                |
|------------------|----------------------|
| q(black s) = 0.8 | q(expensive s) = 0.8 |
| q(blue s) = 0.7  | q(cheap s) = 0.8     |
|                  | q(sale s) = 0.7      |
|                  |                      |

topic = {black, blue, expensive, cheap, sale}

### **Empirical Evaluation**

- Transaction data from Zalando
- About 1.7 million user sessions
- > 24 million clicks
- Attributes: category, colour, gender, price
- User parameters optimised by model selection

### Impact of Threshold





 Size of topics decreases wrt threshold

 Topic accuracy decreases wrt threshold

# Accuracies (Small-Scale)

|            | k | joint | colour | gender | category | price |
|------------|---|-------|--------|--------|----------|-------|
|            | 4 | 33.69 | 49.78  | 92.24  | 78.52    | 63.96 |
| Markov     | 3 | 37.70 | 52.98  | 92.31  | 79.50    | 65.06 |
| Process    | 2 | 37.65 | 52.15  | 92.22  | 79.68    | 64.24 |
|            | 1 | 28.06 | 44.31  | 91.85  | 79.01    | 56.28 |
|            | 4 | 67.53 | 85.61  | 95.00  | 90.70    | 78.68 |
| MDP        | 3 | 69.56 | 93.94  | 95.21  | 93.36    | 72.01 |
| (exact)    | 2 | 40.62 | 45.96  | 95.30  | 94.90    | 78.39 |
|            | 1 | 16.47 | 28.37  | 95.31  | 95.28    | 46.55 |
|            | 4 | 75.33 | 81.92  | 94.65  | 90.05    | 92.38 |
| MDP        | 3 | 89.52 | 92.95  | 94.83  | 92.81    | 94.48 |
| (approx)   | 2 | 93.69 | 95.12  | 94.97  | 94.45    | 95.00 |
| (-777-3-7) | 1 | 94.14 | 95.25  | 94.98  | 94.82    | 94.97 |
| LDA        | - | 1.65  | 11.76  | 85.89  | 52.8     | 21.14 |

longer chains better but data too sparse

estimation of  $\alpha$  and  $\beta$  better for shorter chains

# Accuracies (Large-Scale)

|          | k | joint | colour | gender | category | price |
|----------|---|-------|--------|--------|----------|-------|
|          | 4 | 39,56 | 53,50  | 89,70  | 77,93    | 71,25 |
| Markov   | 3 | 39,53 | 52,83  | 89,70  | 78,09    | 71,04 |
| Process  | 2 | 38,37 | 50,78  | 89,57  | 77,94    | 71,09 |
|          | 1 | 30,82 | 42,37  | 89,15  | 77,29    | 70,02 |
|          | 4 | 88,3  | 91,09  | 92,61  | 90,88    | 92,19 |
| MDP      | 3 | 91,13 | 92,73  | 92,45  | 92,04    | 92,56 |
| (approx) | 2 | 91,48 | 92,82  | 92,46  | 92,37    | 92,49 |
| / / /    | 1 | 91,53 | 92,85  | 92,4   | 92,39    | 92,55 |
| LDA      | - | 2.84  | 12.31  | 81.18  | 51.22    | 41.71 |

more data
diminish effect
of shorter chains

Turn Q-values into probabilities (softmax)

$$\Pr(\mathcal{X}_j = x_j | s_j) = \frac{\exp\{Q(s_j, x_j)\}}{\sum_{x_i'} \exp\{Q(s_j, x_i'j)\}}$$

 $\bullet$  Rank items i according to sum of log-probabilities (exploiting independence)

$$score(i; s) = \prod_{j=1}^{n} P(\mathcal{X}_j = x_j | s_j) \propto \sum_{j=1}^{n} \log P(\mathcal{X}_j = x_j | s_j)$$









#### Conclusion

- Topic detection for user sessions
  - Sessions-based approach = short-term interests
  - Exploit sequential nature of the data (MDP)
  - Content-based (factorise over attributes)
- Empirically outperform traditional CF/MF recommenders and straw men



Maryam Tavakol: tavakol@cs.tu-darmstadt.de

# Variance of Topics



- Uncertainty decreases in length of session
- Markov assumption influences convergence