Секвенційні числення 1-го порядку

Розглянемо числення секвенційного типу логік 1-го порядку. Такі числення будуємо на основі властивостей відношення |= логічного наслідку для множин формул.

Враховуючи семантичні властивості відношення |=, для секвенцій відмічених формул вводимо базові секвенційні форми ⊢¬, ⊢¬, ⊢¬, ⊢¬, ⊢¬. Н¬. НЗ. НЗ.

Секвенційні форми, успадковані від пропозиційного числення:

$$\vdash \frac{\neg A, \Sigma}{\vdash \neg A, \Sigma};$$

$$\vdash \frac{A, \Sigma}{\vdash \neg A, \Sigma};$$

$$\vdash \frac{A, \Sigma}{\vdash A \lor B, \Sigma};$$

$$\vdash \frac{A, \Sigma}{\vdash A \lor B, \Sigma};$$

$$\vdash \frac{A, \Sigma}{\vdash A & B, \Sigma};$$

$$\vdash \frac{A, \Sigma}{\vdash A \to B, \Sigma};$$

$$\vdash \frac{A, \Sigma}{\vdash A \to B, \Sigma};$$

Нові секвенційні форми для кванторів:

$$_{\perp}$$
 $\exists \frac{[-A_x[y], \Sigma}{[-\exists xA, \Sigma]}, \qquad$ де $y-$ **нова** змінна, що не зустрічається в A та Σ ,

 $A_a[b]$ — формула, отримана з A заміною всіх входжень a на b;

$$\exists \frac{\neg |A_x[z_1],...,\neg |A_x[z_m],\Sigma,\neg \exists xA}{\neg \exists xA,\Sigma}, \text{ де } z_1,...,z_m - \textit{всі вільні}$$
 змінні в A та Σ та згодом їх наступниках;
$$\vdash \forall \frac{|\neg A_x[z_1],...,\neg A_x[z_m],\Sigma,\neg \forall xA}{\neg \forall xA,\Sigma};$$

$$\vdash \forall \frac{\neg |A_x[y],\Sigma}{\neg \forall xA,\Sigma}.$$

При побудові секвенційного дерева можливі такі випадки:

- 1) процедура завершена позитивно, отримане скінченне замкнене секвенційне дерево;
- 2) процедура завершена негативно (отримали скінченне незамкнене дерево), або вона не завершується (тоді маємо нескінченне секвенційне дерево). В такому дереві існує незамкнений шлях \wp , який дає змогу визначити контрмодель.

Приклад 1. Виведення формули $(\exists x P(x) \rightarrow Q(x)) \rightarrow P(x) \rightarrow \exists x Q(x)$.

$$\neg(\exists x P(x) \rightarrow Q(x)) \rightarrow P(x) \rightarrow \exists x Q(x).$$

$$\neg \exists x P(x) \rightarrow Q(x), \neg P(x) \rightarrow \exists x Q(x)$$

$$\neg \exists x P(x), \neg P(x) \rightarrow \exists x Q(x)$$

$$\neg \exists x P(x), \neg P(x) \rightarrow \exists x Q(x)$$

$$\neg P(x), \neg P(x$$

Отримали замкнене секвенційне дерево.

Отримали незамкнене секвенційне дерево, тому невірно, що $P(x) \to \exists x Q(x) \models \exists x P(x) \to Q(x)$. Для лівого незамкненого шляху отримуємо контрмодель A:

	P	Q
х	F	F
и	T	будь-яке

Для правого незамкненого шляху маємо контрмодель B:

	P	Q
х	будь-яке	F
и	будь-яке	T
v	T	будь-яке

Приклад 3. Для встановлення вірності $\exists x \forall y P(x, y) \models \forall y \exists x P(x, y)$ будуємо виведення секвенції $\models \exists x \forall y P(x, y), \neg \forall y \exists x P(x, y).$

$$\Box x \forall y P(x, y), \neg \forall y \exists x P(x, y)$$

$$\Box \forall y P(u, y), \neg \forall y \exists x P(x, y)$$

$$\Box \forall y P(u, y), \neg \exists x P(x, v)$$

$$\Box P(u, u), \Box P(u, v), \Box \forall y P(u, y), \neg \exists x P(x, v)$$

$$\Box P(u, u), \Box P(u, v), \Box \forall y P(u, y), \neg P(u, v), \Box P(v, v), \neg \exists x P(x, v) \times P(u, v), \Box P(v, v), \Box$$

Отримали замкнене секвенційне дерево.

Приклад 4 - самостійно. Невірно, що $\forall y \exists x P(x, y) \models \exists x \forall y P(x, y)$. Процес виведення відповідної секвенції виявиться нескінченним.

ЗАВДАННЯ

Побудуйте виведення чи доведіть його відстутність для таких формул:

- 1) $\exists x A(x) \lor B(x) \rightarrow \exists x (A(x) \lor B(x));$
- 2) $\exists x (A(x) \lor B(x)) \rightarrow \exists x A(x) \lor B(x)$;
- 3) $(\forall x A(x) \rightarrow B(x)) \rightarrow (A(x) \rightarrow \forall x B(x));$
- 4) $\forall x(A(x) \rightarrow B(x)) \rightarrow (\exists x A(x) \rightarrow \forall x B(x)).$