Design of Coupling

- Shafts are usually available up to 7 meters length due to inconvenience in transport.
- In order to have a greater length, it becomes necessary to join two or more pieces of the shaft by means of a coupling

- Shaft couplings are used in machinery for several purposes,
- 1.To provide for the connection of shafts of units that are manufactured separately such as a motor and generator and to provide for disconnection for repairs or alternations.
- 2.To provide for misalignment of the shafts or to introduce mechanical flexibility.
- 3.To reduce the transmission of shock loads from one shaft to another.
- 4.To introduce protection against overloads.

- Requirements of a <u>Good Shaft</u> Coupling
- 1.It should be easy to connect or disconnect.
- 2. It should transmit the full power from one shaft to the other shaft without losses.
- 3.It should hold the shafts in perfect alignment.
- 4.It should reduce the transmission of shock loads from one shaft to another shaft.
- 5.If should have no projecting parts.

Types of Shafts Couplings

1. Rigid coupling
 2. Flexible coupling

- Rigid coupling: It is used to connect two shafts which are perfectly aligned.
- types of <u>rigid coupling</u> are
- a)Sleeve or muff coupling.
- b)Clamp or split-muff or compression coupling,
- c)Flange coupling

 2.Flexible coupling: It is used to connect two shafts having both lateral and angular misalignment.

Types of <u>flexible coupling</u> are

- a)Bushed pin type coupling,
- b)Universal coupling, and
- c)Oldham coupling

a. Sleeve or Muff-coupling

 It is the simplest type of rigid coupling, made of cast iron.

- It consists of a hollow cylinder whose inner diameter is the same as that of the shaft (sleeve).
- It is fitted over the ends of the two shafts by means of a gib head key, as shown in Fig.
- The power is transmitted from one shaft to the other shaft by means of a key and a sleeve.

• SHAFT - (d, T)

d = diameter of the shaft, T= torque

• SLEEVE - (D, L)

D= Outer diameter of the sleeve

- KEY- RED
- I= length, w= width, t=thickness

1. Design for sleeve

The usual <u>proportions</u> of a cast iron sleeve coupling

Outer diameter of the sleeve, D = 2d + 13 mm

length of the sleeve, L=3.5d

Where d = diameter of the shaft

 The sleeve is designed by considering it as a hollow shaft.

- T=Torque to be transmitted by the coupling
- τ_c=Permissible shear stress for the material of the sleeve which is cast rion.
- $\tau_c = 14 MPa$.
- Torque transmitted by a hollow section

T =
$$(\pi/16)\times\tau_c\times(D^4-d^4)/D$$

= $(\pi/16)\times\tau_c\times D^3(1-K^4)$
... $(:k = d / D)$

 From this expression, the induced <u>shear stress</u> in the sleeve may be checked

2. Design for key

- The length of the coupling key = sleeve (i.e. . 3.5d).
- The coupling key is usually made into two parts
- length of the key in each shaft

 After fixing the length of key in each shaft, the induced <u>shearing and crushing stresses</u> may be checked. We know that torque transmitted, T = I× w×τ ×(d /2)
 (Considering shearing of the key)

• T =
$$I \times t/2 \times \sigma_C \times (d/2)$$

(Considering crushing of the key

b. Clamp or Compression Coupling

- the muff or sleeve is made into two halves and are bolted together.
- The halves of the muff are made of cast iron.
- The shaft ends are made to a butt each other
- a single key is fitted directly in the keyways of both the shafts.
- One-half of the muff is fixed from below and the other half is placed from above.
- Both the halves are held together by means of mild steel studs or bolts and nuts.
- The number of bolts may be two, four or six.
- The advantage of this coupling is that the position of the shafts need not be changed for assembling or disassembling of the couplings

1. Design of muff

- The usual <u>proportions</u> of a cast iron sleeve coupling
- Outer diameter of the sleeve, D = 2d + 13 mm
- length of the sleeve, <u>L=3.5d</u>

Where d = diameter of the shaft

 The sleeve is designed by considering it as a hollow shaft.

- T=Torque to be transmitted by the coupling
- τ_c=Permissible shear stress for the material of the sleeve which is cast iron.
- $\tau_c = 14 MPa$.
- Torque transmitted by a hollow section

T =
$$(\pi/16) \times \tau_c \times (D^4 - d^4)/D$$

= $(\pi/16) \times \tau_c \times D^3 (1 - K^4)$
... $(\forall k = d / D)$

 From this expression, the induced <u>shear stress</u> in the sleeve may be checked

2. Design for key

- The length of the coupling key = length of the sleeve (i.e. . 3.5d).
- The coupling key is usually made into two parts
- length of the key in each shaft

 After fixing the length of key in each shaft, the induced <u>shearing and crushing stresses</u> may be checked. We know that torque transmitted T = I× w×τ ×(d /2)
 (Considering shearing of the key)

• T = $I \times t/2 \times \sigma_C \times (d/2)$ (Considering crushing of the key

3. Design of clamping bolts

- T =Torque transmited by the shaft,
- d = Diameter of shaft,
- d_b=Root or effective diameter of bolt
- n=Number of bolts,
- σ_t =Permissible tensile stress for bolt material,
- µ=Coefficient of friction between the muff and shaft, and
- L=Length of muff.

- force exerted by each bolt (F) =($\pi/4$) (d $_{b}^{2}$) σ_{t}
- Force exerted by the bolts on each side of the shaft (F)= (π/4) (d_b²) (σ_t)(n/2)
- (P) be the pressure on the shaft and the muff surface due to the force, then for uniform pressure distribution over the surface
- P=Force/Projected area
- P= $(\pi/4)$ $(d_b^2)(\sigma_t)(n/2)/(1/2)Ld$

 Frictional force between each shaft and muff,

$$F = \mu \times pressure \times area$$

• F=(
$$\mu \times (\pi/4)(d_b^2)(\sigma_t)(n/2)/(\frac{1/2)Ld}$$
)
 $\times \pi \frac{(1/2) d L}$

• F=
$$\mu \times (\pi^2/8)(d_b^2)(\sigma_t)(n)$$

Torque that can be transmitted by the coupling

$$T=F \times d/2$$

$$T=\mu \times (\pi^2/8)(d_b^2)(\sigma_t)(n)\times d/2$$

 From this relation, the root diameter of the bolt (d_b)

may be evaluated. $\mu=0.3$

c. Flange coupling

- A flange coupling usually applies to a coupling having two separate cast iron flanges.
- Each flange is mounted on the shaft end and keyed to it.
- The faces are turned up at right angle to the axis of the shaft
- Flange coupling are
- 1.Unprotected type flange coupling
- 2. Protected type flange coupling
- 3. Marine type flange coupling

1.Unprotected type flange coupling

 In an unprotected type flange coupling each shaft is keyed to the boss of a flange with a counter sunk key and the flanges are coupled together by means of bolts.

· Generally, three, four or six bolts are used

Design of Unprotected type Flange Coupling

- The usual <u>proportions</u> for an unprotected type cast iron flange couplings
- d = diameter of the shaft or inner diameter of the hub
- D= Outside diameter of hub D=2d
- Length of hub, L= 1.5d
- Pitch circle diameter of bolts, D₁=3d
- Outside diameter of flange,

$$D_2 = D_1 + (D_1 - D) = 2 D_1 - D = 4d$$

- Thickness of flange t_f =0.5d
- Number of bolts =3, ford upto 40 mm

=4, for d upto 100 mm

=6, for d upto 180 mm

- d = Diameter of shaft or inner diameter of hub,
- τ_s =Allowable shear stress for shaft,
- D=Outer diameter of hub,
- t_f =Thickness of flange
- τ_c=Allowable shear stress for the flange material
- d₁=Nominal or outside diameter of bolt,
- D₁ = Diameter of bolt circle,
- n=Number of bolts,
- τ_{b=} Allowable shear stress for bolt
- $\sigma_{cb,..}$ =Allowable crushing stress for bolt
- τ_{k=} Allowable shear stress for key material
- σ_{ck=} key material

1. Design for hub

- The hub is designed by considering it as a hollow shaft,
- transmitting the same torque (T) as that of a solid shaft

$$T = T = (\pi/16) \times \tau_c \times (D^4 - d^4)/D$$

The outer diameter of hub is usually taken as twice the diameter of shaft.

The length of hub (L) = 1.5d

2. Design for key

The material of key is usually the same as that of shaft. The length of key is taken equal to the length of hub

T = I× w×τ ×(d /2)
 (Considering shearing of the key)

• T = $I \times t/2 \times \sigma_c \times (d/2)$ (Considering crushing of the key

3. Design for flange

T = Circumference of hub × Thickness of flange
 × Shear stress of flange × Radius of hub

$$T = \pi D \times t_f \times \tau_c \times D/2$$

$$T = \pi \times t_f \times \tau_c \times D^2/2$$

The thickness of flange is usually taken as half the diameter of shaft

4. Design for bolts

Load on each bolt (F)=

$$(\pi/4) (d_1^2) (\tau_b)$$

Total load on all the bolts (F) =

$$(\pi/4) (d_1^2) (\tau_b)(n)$$

 The bolts are subjected to shear stress due to the torque transmitted

(T)=
$$(\pi/4)$$
 (d₁²) (τ_b) (n) (D₁/2)

From this equation, the diameter of bolt (d_1) may be obtained.

 We know that area resisting crushing of all the bolts = n×d₁×t_f

crushing strength of all the bolts

$$= n \times d_1 \times t_f \times \sigma_{Cb}$$

Torque =
$$n \times d_1 \times t_f \times \sigma_{cb} \times (D_1/2)$$

 From this equation, the induced crushing stress in the bolts may be checked

Protected type flange coupling

 the protruding bolts and nuts are protected by flanges on the two halves of the coupling, in order to avoid danger to the workman

$$(t_p) = 0.25d$$

The design of unprotective type is same process of protective type

Bushed-pin Flexible Coupling

a modification of the rigid type of flange coupling.

- The coupling bolts are known as pins. The rubber or leather bushes are used over the pins.
- The two halves of the coupling are dissimilar in construction.
- A clearance of 5 mm is left between the face of the two halves of the coupling.

- the <u>proportions</u> of the rigid type flange coupling
- the bearing pressure on the rubber or leather bushes and it should not exceed 0.5 N/mm²

Pin and bush design

- I=Length of bush in the flange,
- d₂=Diameter of bush,
- p_b=Bearing pressure on the bush or pin,
- n=Number of pins,
- D₁=Diameter of pitch circle of the pins

Pin and bush design

- · bearing load acting on each pin,
- W = $p_b \times d_2 \times l$
- Total bearing load on the bush or pins
- $W \times n = p_b \times d_2 \times l \times n$
- torque transmitted by the coupling=

$$T=W \times n \times (D_1/2)$$

$$T=p_b \times d_2 \times I \times n \times (D_1/2)$$

- Direct shear stress due to pure torsion in the coupling halve
- $\tau = W/[(\pi/4)(d_1^2)]$
- maximum bending moment on the pin
- M =W (I/2 +5mm)
- bending stress

$$\sigma = M / Z$$

= W (I/2 +5mm)/ (π /32) (d₁³)

Maximum principal stress

$$= 1/2[\sigma + (\sigma + 4\tau^2)^{1/2}]$$

maximum shear stress on the pin

$$= 1/2(\sigma + 4\tau^2)^{1/2}$$

 The value of maximum principal stress varies from 28 to 42 MPa