Predicting **Delinquency** in Credit Card Payments

Argishti Ovsepyan Masood Dastan Gabriela Fichtner Saamir Shamsie

Improving risk management

By analyzing personal information and historical credit data, the project will estimate the likelihood of payment defaults and facilitate the implementation of effective risk control measures.

Addressing the demand of credit assessment methods that do not require traditional credit checks has potential savings for banks and allows individuals to avoid a credit inquiry on their record.

Agenda

01 Data Cleaning

Process aimed at enhancing data quality

02

EDA

Features and their relationship with delinquency

03

Modeling

Creating and tuning machine learning algorithms

04 Evaluation

Assessing the models performance

05

Limitations

Constraints in the study that can impact our models

01 Data Cleaning

Process aimed at enhancing data quality

Data Source: Kaggle

Predictive Features

- Education Level
- Annual Income
- Occupation
- Days of Employment
- Days from Birth
- Family Status
- Housing Type

(Potential) Target Variables

- Current Delinquency
- 3 Months Delinquency
- 6 Months Delinquency
- 12 Months Delinquency

Enhancing data quality

Dropping Features:

Gender, Days Employed, and Days Birth

Handling missing values:

Identified and created a new label for retirees and a separate label 'missing' for the rest

Custom functions:

The function 'credit_approval_data_cleaner' was utilized to do all the cleaning on both the training and test data

Generating features:

Age and Years Employed as well as predictive variables

Handling duplicates:

Merged dataset had 47 duplicate ID's with different values and were dropped

Delinquency Ratios Over Time (Percentage of Individuals who were Delinquent)

Time Frame (Months)

02 EDA

Features and their relationship with delinquency

Delinquency Ratios vs Number of Children (Percentage of Individuals who were Delinquent)

03 Modeling

Creating and tuning machine learning algorithms

Train-validation-Test Split

We split the data three ways to make sure our predictions are generalizable.

Models

- DNN
- SVC
- Random Forest
- AdaBoost
- Gradient Boosting
- Logistic Regression

Scores on 6-month delinquency

_	Accuracy		Accuracy
DNN	62%	Gradient Boost	79.05%
Logistic Regression	75.5%	Random Forest	79.06%
svc	76.7%	Ada Boost	79.3%

04 Evaluation

Assessing the models performance

Best Model: AdaBoost with GridSearchCV

- 'Number of estimators': 300
- 'learning rate': 2.25
- 'max depth': None
- 'max features': 'auto'

Model Performance

05 Limitations

Constraints in the data that can impact our models

Data Limitations

Thanks!

Do you have any questions?