

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 ПРОГРАММНАЯ ИНЖЕНЕРИЯ

ОТЧЕТ

по лабораторной работе № 2_

Название: Исследование дешифраторов

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-41Б		Е.А. Варламова
	(Группа)	(Подпись, дат	га) (И.О. Фамилия)
Преподаватель			А.Ю. Попов
		(Подпись, дат	та) (И.О. Фамилия)

Цель работы — изучение принципов построения и методов синтеза дешифраторов; макетирование и экспериментальное исследование дешифраторов.

1. Исследование линейного двухвходового дешифратора с инверсными выходами:

а) собрать линейный стробируемый дешифратор на элементах 3*И*-*НЕ*; наборы входных адресных сигналов *A0*, *A1* задать в выходы *Q0*, *Q1* четырехразрядного счетчика; подключить световые индикаторы к выходам счетчика и дешифратора;

Рисунок 1 Линейный стробируемый дешифратор

б) подать на вход счетчика сигнал с выхода ключа (Switch) лог. 0 и 1 как генератора одиночных импульсов; изменяя состояние счетчика с помощью ключа, составить таблицу истинности нестробируемого дешифратора (т.е. npu EN=1);

EN	A1	A2	F1	F2	F3	F4
0	X	X	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	0	1	1
1	1	0	1	1	0	1
1	1	1	1	1	1	0

Таблица 1 Таблица истинности нестробируемого дешифратора

в) подать на вход счетчика сигнал генератора и снять временные диаграммы сигналов дешифратора; временные диаграммы здесь и в дальнейшем наблюдать на логическом анализаторе;

Изменяем схему:

Рисунок 2 Линейный стробируемый дешифратор с сигналом генератора на входе

Снимаем временные диаграммы:

Рисунок 3 Временные диаграммы линейного дешифратора

г) снять временные диаграммы сигналов стробируемого дешифратора; в качестве стробирующего сигнала использовать инверсный сигнал генератора, задержанный линией задержки логических элементов (повторителей и инверторов);

Поставим 2 инвертора:

Рисунок 4 Стробируемый дешифратор с использованием инверторов для задержки сигнала генератора

Получим следующие временные диаграммы:

Рисунок 5 Временные диаграммы дешифратора с задержанным сигналом генератора

д) опередить время задержки, необходимое для исключения помех на выходах дешифратора, вызванных гонками.

Диаграмма снята со схемы из рисунка 2:

Рисунок 6 Время задержки, необходимое для устранения помех на выходах дешифратора

2. Исследование дешифраторов ИС К155ИД4 (74LS155)

а) снять временные диаграммы сигналов двухвходового дешифратора, подавая на его адресные входы 1 и 2 сигналы Q0 и Q1 выходов счетчика, а на стробирующие входы E3 и E4 – импульсы генератора, задержанные линией задержки; Схема:

Рисунок 7 Дешифратор 74LS155

Построим временные диаграммы:

Рисунок 8 Временные диаграммы дешифратора 74LS155

б) определить время задержки стробирующего сигнала, необходимое для исключения помех на выходах дешифратора;

Рисунок 9 Время задержки сигнала для исключения помех на дешифраторе

в) собрать схему трехвходового дешифратора на основе дешифратора К155ИД4, задавая входные сигналы A0, A1, A2 с выходов Q0, Q1, Q2 счетчика; снять временные диаграммы сигналов дешифратора и составить по ней таблицу истинности.

Рисунок 10 Трехвходовый дешифратор

Построим временные диаграммы:

Рисунок 11 Временные диаграммы трёхвходового дешифратора

Опираясь на временные диаграммы, построим таблицу истинности:

Q0	Q1	Q2	F0	F1	F2	F3	F4	F5	F6	F7
0	0	0	0	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	0	1	1
1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0

Таблица 2 Таблица истинности дешифратора 74LS155

3. Исследование дешифраторов ИС КР531ИД14 (74LS139) аналогично п.2.

ИС 74LS139 содержит два дешифратора DC 2-4 (U1A и U1B) с раздельными адресными входами и разрешения. Входы разрешения — инверсные. Так как каждый дешифратор имеет один вход разрешения, то для образования двух инверсных входов необходимо перед входом разрешения включить двухвходовой ЛЭ. Чтобы на выходе ЛЭ получить функцию конъюнкции Not(EN1) · Not(EN2), ЛЭ при наборе 00 входных сигналов должен формировать выходной сигнал 0, а на остальных наборах входных сигналов — 1.

Рисунок 12 Два дешифратора DC 2-4

4. Исследовать работоспособность дешифраторов ИС 533ИД7 (74LS138)

а) снять временные диаграммы сигналов нестробируемого дешифратора DC 3-8 UC 533UД7, подавая на его адресные входы 1, 2, 4 сигналы Q0, Q1, Q2 с выходов счетчика, а на входы разрешения E1, E2, E3 — сигналы лог. 1, 0, 0 соответственно;

Рисунок 14 Дешифратор DC 3-8 (74LS138)

Рисунок 15 Временные диаграммы дешифратора DC 3-8 (74LS138)

б) собрать схему дешифратора DC 5-32 согласно методике наращивания числа входов и снять временные диаграммы сигналов, подавая на его адресные входы сигналы Q0, Q1, Q2, Q3, Q4 с выходов 5-разрядного счетчика, а на входы разрешения – импульсы генератора, задержанные линией задержки макета.

Рисунок 16 Дешифратор 5-32

Рисунок 17 Временные диаграммы дешифратора 5-32

Вывод: были изучены принципы построения и методы синтеза дешифраторов, а также были экспериментально исследованы разные дешифраторы.