Out-of-the-(l_p)-Box:

Exploiting Adversarials, Exploring Compositionality, and Exposing New Al Threats

Background

Adversarial Threats and Robustness

Intriguing Properties^[2]

"Easy Features" for Domain Adaptation with OT

"Easy Features" for Domain Adaptation with OT

"Easy Features" for Domain Adaptation with OT

Method	M/S	S/M	M/U	M/MM
EMD	21.2 ±3	68.7±3	79.2±2	56.1±3
EMD(sf)	23.0±3	86.3 ± 3	83.1±2	62.7 ± 2
OTLin	21.8±4	69.9±4	84.1±7	62.3±1
OTLin(sf)	25.5±4	88.4 ± 4	89.3±6	64.5±3
Sinkh	21.8±4	68.8±2	82.1±7	55.7±12
Sinkh(sf)	25.5±4	86.2 ± 4	83.8±6	62.9±4
SinkhLp	21.8±4	68.8±6	84.8±16	55.7±19
SinkhLp(sf)	25.5±4	86.3 ± 7	88.3±19	63.0 ± 27
SinkhL2	21.8±4	68.8±4	84.8±2	55.7±4
SinkhL2(sf)	25.5±4	86.3 ± 2	88.3 ± 2	63.0 ± 2

Method	A/S	S/ A	A/W	W/A	S/W	W/S
EMD	38.4±3	9.3±5	45.2±3	45.6±5	13.6±3	36.7±3
EMD(sf)	56.8±3	29.7±4	64.9 ± 3	73.9 ± 4	40.1±3	60.1 ± 2
OTLin	37.1±3	11.0±3	38.7±3	47.5±3	6.2±3	39.6±4
OTLin(sf)	58.5±3	29.8±3	65.2 ± 3	74.4±3	40.1±3	63.1±5
Sinkh	38.0±3	10.1±4	44.7±6	45.5±3	13.1±7	37.2±3
Sinkh(sf)	57.0±3	31.0 ± 4	65.2 ± 7	73.9 ± 3	39.9±4	60.0 ± 2
SinkhLp	38.1±6	10.4±8	45.2±7	45.3±5	13.1±7	37.2±3
SinkhLp(sf)	57.2±6	31.0±11	65.2 ± 8	74.0±5	40.1±5	60.1 ± 4
SinkhL2	38.1±4	10.4±7	45.0±4	45.3±6	13.1±6	37.2±3
SinkhL2(sf)	57.2±4	31.0±7	65.2±4	74.0±6	40.1±5	60.1±4

(a) Digits dataset domains.

(b) Modern Office-31 dataset domains.

Provable Compositional Generalization for Object-Centric Learning

Provable Compositional Generalization for Object-Centric Learning

Provable Compositional Generalization for Object-Centric Learning

Different Aspects of Generalization

Different Aspects of Generalization

- Diffusion Models
 - Compositional (Concepts) Generalization
 - Shape Bias
 - Generative Classifiers

Different Aspects of Generalization

- Diffusion Models
 - Compositional (Concepts) Generalization
 - Shape Bias
 - Generative Classifiers

- Adversarial / Backdoor Attacks
- Data Memorization / Extraction
- Data Poisoning
- Watermarking

Different Aspects of Generalization

- Diffusion Models
 - Compositional (Concepts) Generalization
 - Shape Bias
 - Generative Classifiers
- Capabilities vs. Alignment

- Adversarial / Backdoor Attacks
- Data Memorization / Extraction
- Data Poisoning
- Watermarking
- New Threat Models
 - Author profiling
 - Deceptive Behavior
 - Malicious ChatBots

Different Aspects of Generalization

- Diffusion Models
 - Compositional (Concepts) Generalization
 - Shape Bias
 - Generative Classifiers
- Capabilities vs. Alignment

- Adversarial / Backdoor Attacks
- Data Memorization / Extraction
- Data Poisoning
- Watermarking
- New Threat Models
 - Author profiling
 - Deceptive Behavior
 - Malicious ChatBots

erent Aspects

Some alignment researchers [..] believe that sufficiently advanced language models should be aligned to prevent an existential risk [...] to humanity: if this were true, an attack that causes such a model to become misaligned would be devastating. [1]

Backdoor Attacks

rization / Extraction

[1] Carlini, N., Nasr, M., Choquette-Choo, C. A., Jagielski, M., Gao, I., Awadalla, A., ... & Schmidt, L. (2023). Are aligned neural networks adversarially aligned? arXiv preprint arXiv:2306.15447.

Thank you!