Chapter 7 Statistics

Main objectives

- 1. choosing a right statical method
- 2. Do's and dont's of statistics
- 3. Reliable results
- 4. Paper revisions with proof of statistical test(WhQ s)
- 5. Making Data Visualization
- 6. Interpreting result

Tests and their types

Parametric Tests

- 1. More Reliable results
- 2. First we have meet the assumptions

2	25	
5	38	
16	52	
18	100	
20	100	

Not equal!

Non-parametric Tests

- 1. Less reliable results
- 2. Calculates the rank of data
- 3. No need to make the assumptions

1	1
2	2
3	3
4	4
5	5

^{**}Note: Before starting data analysis always check the normality of data **

Normality test

Normality refers to a specific statistical distribution called a normal distribution, or sometimes the Gaussian distribution or bell-shaped curve. The normal distribution is a symmetrical continuous distribution defined by the mean and standard deviation of the data.

There are some properties of the normal distribution:

- 1. Bell-shaped
- 2. Symmetrical
- 3. Unimodal it has one "peak"

 Mean and median are equal; both are located at the center of the distribution
- 4. About 68% of data falls within +/- one standard deviation of the mean
- 5. About 95% of data falls within +/- two standard deviations of the mean
- 6. About 99.7% of data falls within +/- three standard deviations of the mean

Tests to be used:

- 1. Shapiro-wilk test
 - Specific (Reliable)
- 2. Kolmogorov-Smirnov test
 - General (less reliable)

2. Homogeneity test

A data set is homogeneous if it is made up of things (i.e. people, cells or traits) that are similar to each other.

Test to be used

1. Levene's tets

Purpose

know the puorpose of your research question

Two type of purpose

- 1. Comparison
 - Difference
- 2. Relationship
 - Connection

Comparison

if your purpose is comparison the compare atleast two groups Examples:

- 1. Male vs Female
- 2. Control group vs treatment group
- 3. Grouping individual by color preference

Relationship

To find a connection

Examples:

- 1. Can food predict weight of a group of individuals
- 2. do fertilizer application increase crop growth?

We seek following here:

- Connection
- Correlayion
- Causation
- Prediction

Data type

Know the type of data you are working with

CATEGORICAL

No numerical meaning represented in texts

(e.g: character, factors)

Qualitative

EXAMPLES:

 Yes and No answers (Have you ever been to Lahore?)

Which gene was expressed?

Do you like Mangoes?" yes"or"No"

CONTINUOUS

Mostly represented in

(e.g: Numerical variable,

Quantitative

Numerical

number

int and float)

Quantitative

EXAMPLES:

- Amount
- Number
- Age
- Plant Height
- Number of bacterial colonies
- Chlorophyll content
- Fertilizer Amount

Statistical tests

Choose a statistical test from three families

3 Families of statiscal tests

- 1. Chi-Squared
 - Purpose : Comparison
 - Data: Categorical only (Chi-Squared)
- 2. t-Test/ANOVA
 - Purpose : Comparison
 - Data: Categorical and continuous (t_Test)
- 3. Correlation
 - Purpose : Relationship
 - Data: continuous only (Corrrelation)

Chi-Squared

• Purpose : Comparison

 Data: Categorical only (Chi-Squared)

When and where to use?

Types:

1.Chi-Squared test of homogeneity 2.Chi-squared test of independence

When to use?

- Nothing effects this,
- Can be used with any number of levels or groups

You must remember the purpose and datatype

t-Test/ANOVA

- Purpose: Comparison
- Data: Categorical and continuous
- (t_Test)

When and where to use?

Types:

- One-sample t-Test(for one sample group with a know mean)
- 2. Two-sample t-Test:
- Un-paired t-Test(Two different groups)
- Paired t-Test (Same group Twice)
- ANOVA (Analysis of Variance) [3+levels or groups are involved]
- One-way ANOVA (Even one of group is significant you will get significant results, but doesn't tell you which one)
- Two-way ANOVA
- Repeated measures of ANOVA (3+paired groups, scale up of Paired t-Test)

Correlation

Purpose: RelationshipData: continuous only (Corrrelation)

When and where to use?

Types:

1. Pearson's Correlation (one-Independent an

One-Dependent Variable)

2. **Regression** (one-Independent and One-Dependent Variable)

Correlation: Tells us how closely cone nc ted two variables are?
"Is food a predictor of weight gain?"

Regression: Tells us a specific mathematical equation that describes the relationship. (This helps us to find the data points not measured yet) e.g: missing values can be predicted like this!

Important Things

Assumptions about your data

These tests trusts you that:

- Your data is Normally distributed
- or follow a Gaussian distribution

If you do not follow the assumptions and break the trusts of 3-test families, they will not happy with you!

If Assumptions are not met! then

- 1. Normalize your Data
 - a. Standardization
 - b. Min-max scaling
 - c. Log transformation
- 2. Use Alternative Non-Parametric Tests

2

Non-parametric test

1

Chi-Squared t-Test/ANOVA Correlation

3

1	2	3
Purpose: Comparison Data: Categorical only (Chi-Squared)	Purpose: Comparison Data: Categorical and continuous (t_Test)	Purpose: Relationship Data: continuous only (Corrrelation)
Chi-Squared	One-sample t-Test One-Sample Wilcoxon Signed rank test 2.Two-sample t-Test a.Unpaired t-Test(Mann Whitney'sU-Test) b.Paired t-Test(Wilcoxon) 3.ANOVA(Kruskal-Wallis test)	Pearson's Correlation (Spearman's Correlation) & (Kendall'sTau) Regression

ANOVA

• Purpose: Comparison • Data: Categorical and

Types of ANOVA

ANOVA (Analysis of Variance) [3+levels or groups are involved

- One-way ANOVA (Even one of group is significant you will get significant results, but doesn't tell you which one)
- Two-way ANOVA
- Repeated measures of ANOVA (3+paired groups, scale up of Paired t-Test)

ANCOVA (Analysis of Co-variance)

• Compare the means of 3+iden pendent groups which can not be tested by ANOVA because the variables are affected by co-variance(pre-test and post-Test of class)

MANOVA (Multi-variate analysis of Variance)

MANCOVA (Multi-variate analysis of Co-variance)

Some other test

Reliability tests

• K under-Richardson's Formula 20and 21 (KR20/21)

Cronbach's Alpha

Inter-rater Reliability tests

- Krippendorf's Alpha
 - (Categorical or continuous)
- Fleis's Kappa
 - o (Only Categorical)
- Validity tests
 - Krippendorf's Alpha Test
 - Fle is's Kappa Test
- Sample size computation
 How to make sure how
 many samples are valid?
 - Cochran'sQ Test
 - Yamane's Test
 - many others.....

Whole Process diagram

