العلامة		عناصر الاجابة	محاور
المجموع	مجزأة	الموضوع الأول	ق م وضوع
	2×0.25	القرين الأول: $v_1 = \frac{7}{3}$, $v_0 = 1$ (1	المنتاليات
	1	$\frac{1}{3}$ و منه $v_{n+1} = \frac{1}{3}v_n$ و منه $v_{n+1} = \frac{1}{3}(u_{n+1} - u_n)$ (2)	
03.5	0.75	$S_{n} = \frac{3}{2} \left[1 - \left(\frac{1}{3} \right)^{n} \right]^{n} $ (5)	
	0.75	$u_n = S_n + 1$ و منه $S_n = u_n - u_0$ (ب	
	0.5	$\lim_{n\to +\infty} u_n = \frac{5}{2}$ الدينا (u_n) عنقارية	
	4×0.25	التمرين الثانى: $\Delta = \left(2i\sqrt{3}\right)^2$ $\Delta = \left(2i\sqrt{3}\right)^2$ (1) منه $\Delta = \left(2i\sqrt{3}\right)^2$	الأعداد العركبة
	2×0.5	$z_2 = 2e^{-i\frac{\pi}{3}}, z_1 = \sqrt{2}e^{-i\frac{\pi}{4}} $ (1 {2	
05	2×0.5	$\frac{z_1}{z_2} = \frac{\sqrt{2}}{2} e^{\frac{7\pi}{12}i} \cdot \frac{z_1}{z_2} = \frac{1 - \sqrt{3}}{4} + i \frac{1 + \sqrt{3}}{4} (4)$	
	2×0.5	$\sin \frac{7\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4} \text{o} \cos \frac{7\pi}{12} = \frac{\sqrt{2} - \sqrt{6}}{4} (\Rightarrow$	
	0.75	$\left(\frac{z_1}{z_2}\right)^n = \left(\frac{1}{\sqrt{2}}\right)^n e^{\left(\frac{7n\pi}{12}i\right)} \left(\frac{z_1}{z_2}\right)^n \in \mathbb{R} \text{alien } n = 12k (k \in \mathbb{N}) (13)$	
	0.25	$\left(\frac{z_1}{z_2}\right)^{456} = \frac{1}{2^{228}} \; (-1)^{456} = \frac{1}{2^{28}} \; (-1)^{456} = \frac{1}{2^{28}} \; (-1)^$	
04	4	التعرين الثالث: $\overline{AB}\begin{pmatrix} \mathbf{i} \\ \mathbf{l} \end{pmatrix}$ و $\overline{AB}\begin{pmatrix} \mathbf{i} \\ \mathbf{l} \\ \mathbf{l} \end{pmatrix}$ و $\overline{AB}\begin{pmatrix} \mathbf{i} \\ \mathbf{l} \\ \mathbf{l} \end{pmatrix}$ و رائع التعريف في التعريف التعلق التعريف التعلق التعريف التعلق ال	
	0.5	(P) تحقق معادلة (P) . \overline{AB} . $\overline{AC}=0$ (ب \overline{AB} . $\overline{AC}=0$ في \overline{AB} . $\overline{AC}=0$	هندسة فضائية
	0.5 0.5	D ot= (ABC)اً) (ABC) (ABC) (ABC) الإنتشمي إلى (ABC) الإن ABC (رباعي وجوه	
	1	المساقة هي: $\frac{\sqrt{2}}{2}$	
	0.5	$V = \frac{1}{3}S h = \frac{1}{3} \cdot \left(\frac{1}{2}ABAC\right)h = \frac{1}{2}$ (وحدة مكعبة) الحجم:	

العلامة		تابع الإجابة و سلم التعيط مادة: الرياضيات الشعبة: العلوم النجريبي	محاور
المجموع	مجزأة	الموضوع الأول	محاور الموضوع
	3×0.25	$\lim_{x \to -\infty} f(x) = -\infty \lim_{x \to -\infty} f(x) = +\infty \lim_{x \to -\infty} f(x) = +\infty \text{if } f(x) = +\infty$	
	0.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	0.25	$\lim_{x \to +\infty} g(x) = +\infty \text{ (i (2)}$	
07.5	2×0.25	x →+∞ =	
	0.75	$g'(x) = \frac{(x-1)(x+3)}{(x+1)^2} \ (\Rightarrow$	
	0.25+0.25		_
	0.5	$g(0) = 4 \cdot g'(x)$ $g'(y) - + +$ $g(x) = 4 \cdot g'(x)$ $g'(x) = 4 \cdot g'(x)$	دو ال
	2×0.25	$ \lim_{\substack{k \to 0 \\ h \to 0}} \frac{k(h) - k(0)}{h} = -5 \text{3} \lim_{\substack{k \to 0 \\ h \to 0}} \frac{k(h) - k(0)}{h} = -3 \text{(i)} \text{(1)} \text{(ii)} $	
	0.25	الدالة ٨ لا نقبل الاشتقاق عند 0	
	0.5	$(C_{_{ m K}})$ النقطة ذات الفاصلة 0 هي نقطة زاوية والمنحنى $(C_{_{ m K}})$ يقبل نصفي مماسين	
	0.5	\mathbf{x}_{a} اكتب معادلتي المماسين (Δ_{1}) و (Δ_{2}) عند النقطة التي فاصلتها \mathbf{x}_{a}	
	1	$(C_{ m K})$ الرسم (Δ) ، $({}_1\Delta)$ ، $({}_2\Delta)$ ، $({}_1\Delta)$	
		$A = \int_{-V_2}^{0} f(x) dx + \int_{0}^{V_2} g(x) dx = \left[\frac{x^2}{2} + 4Ln(x+1) \right]_{-V_2}^{0} + \left[\frac{x^2}{2} + 4Ln(x+1) \right]_{0}^{V_2} $ (4)	
	1	$=\frac{1}{4}+4Ln3\left(\mu a\right)$	

تد سة	العلومال	الشعبة: ا
77.0	-	

		تبع ، رببه و سنم استولت	
العلامة		عناصر الاجابة	محاور
المجموع	مجزأة	الموضوع الثاني	الموضوع
***************************************		التمرين الأول: (04 نقط)	
	01	ر) جواب خاطئ لأن $C \cdot B \cdot A$ ليست على استقامية	
04	01	2) جواب صحيح لأن إحداثيات $D\cdot B\cdot A$ تحقق المعاطة	هندسه فضائیة
	01	\overrightarrow{CD} جو اب خاطئ لأن \overrightarrow{CD} ليس شعاع ناظمي لـــ (π) جواب خاطئ الأن	
	01	\overrightarrow{BH} جواب خاطئ لأن \overrightarrow{BH} ليس شعاع ناظمي لـــ (π)	
		التمرين الثاني: (04 نقط)	
	0,75	$z_z = 1 + i\sqrt{3}$ ؛ $z_1 = 1 - i\sqrt{3}$: 1	
04	0,5		
	0 1	$ABC+AC=3+BC=\sqrt{3}+AB=2\sqrt{3}$ (ب	الأعداد
	0,75	$\operatorname{arg}(Z) = \frac{\pi}{3} [2\pi] : Z = \frac{1}{2} (\Rightarrow$	المركبة
	01	$Z^{3k} = \left(-\frac{1}{8}\right)^k$ ؛ $Z^6 = \frac{1}{64}$ ؛ $Z^3 = -\frac{1}{8}$ (ع	

05	1,75 0,25 2x0,5 0,5	(25) التمرين الثالث (25 نقط) $u_1 = 2 : q = 3 : u_2 = 6 \text{ (i.1)}$ $u_n = 2 \times 3^{n-1} \text{ (ب)}$ $n = 6 : S_n = 3^n - 1 \text{ (ب)}$ $v_2 = 5 \text{ (i.2)}$ $v_3 = \frac{27}{2}$	المتالية المالية
05		$v_{2} = 5$ (1.2)	المنتقيات
	2x0,5	$ v_n = \frac{2}{3} \left(\frac{3}{2}\right)^{n-1} + \frac{4}{3} \times 3^{n-1} : w_n = \frac{1}{3} \left(\frac{1}{2}\right)^{n-1} $	

		التمرين الرابع (07 نقط)	
	0,5	$\lim_{x \to -1} h(x) = -\infty : \lim_{x \to -\infty} h(x) = +\infty (1)$	
	3x0,25	متزایدهٔ علی $(2;+\infty)$ ؛ $h:h'(x)=\frac{1+2(x+1)^2}{x+1}$ (2)	
	2x0,25	h(x) اشارة $h(0) = 0$ (3)	
	00,5	الجزء الثاني: 1.1) $x=-1$ الجزء الثاني: $x=-1$ الجزء الثانية المستقيم	
		مقارب	
	0,5	$\lim_{u \to +\infty} \frac{\ln u}{u} = \lim_{t \to \infty} \frac{t}{e^t} = \lim_{x \to +\infty} \frac{1}{\left(\frac{e'}{t}\right)} = 0$	
07	0,25	$\lim_{x \to +\infty} f(x) = +\infty (\varepsilon)$	44 .44
07	0,5	د) $y = x - 1$: $\lim_{x \to +\infty} \left[f(x) - (x - 1) \right] = 0$ (ع	الدوال
	0.05	مقارب	
	0,25	هـــ)الوضعية.	
	0,5+0,5	$f'(x) = \frac{h(x)}{(x+1)^2}$ (2): بجدول التغيرات	
	0,75	[3,3;3,4] مستمرة و متزايدة على f (3	
		f(3,3) < 2 < f(3,4)	
	0,75	$(C_{_f})$ رسم (4)	
	:	المسلحة:	
	0,75		