	TP1 Niveau - Modele	Pt		A B C D	Note	
1	Préparation du travail					
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	Α		2	
2	Quel est le nom de la grandeur réglée ?	1	Α		0,5	
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	Α		0,5	
4	Quelle est la grandeur réglante ?	1	Α		0,5	
5	Donner une grandeur perturbatrice.	1	Α		0,5	
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.	1	Х		0	
II.	Etude du procédé					
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Α		1	
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1	В		0,75	Il faut tracer la courbe à partir des valeurs du tableau
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	Α		1	
4	En déduire le sens d'action à régler sur le régulateur.	1	В		0,75	en fonction de la commande
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	В		2,25	C'est moche
III.	Etude du régulateur					
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	Χ		0	
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	D		0,075	Je ne comprends rien
IV.	Performances et optimisation				_	
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	D		0,05	
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	2	D		0,075	
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	D		0,05	
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	D		0,075	
			Not	te sur : 20	10,1	

TP1 DE NIVEAU

1-Préparation du travail

- 2) La grandeur réglé est le niveau
- 3) Pour mesurer la grandeur on utilise un capteur différentiel
- 4) La grandeur réglante est le débit d'eau
- 5) La grandeur perturbatrice est le débit d'eau d'entrée
- 6)

2-Étude du procédé

1-Entrée

agliame	01M01_0A		LIN Name	01M01_0A		
Туре	AI_UIO		DBase	<local></local>		
Task	3 (110ms)		Rate	0		
MODE	AUTO		Alarms			
Fallback	AUTO		Node	>00		
			Sitello	t _{soo} .		
PV	0.0	%	Channel	>00		
HR	100.0	%	InType	mA		
LR	0.0	%	HR_in	20.00	mA	
			LR_in	4.00	mA	
HiHi	100.0	%	Al	0.00	mA	
Hi	100.0	%	Res	0.000	Ohms	
Lo	0.0	%				
LoLo	0.0	%	CJ_type	Auto		
Hyst	0.5000	%	CJ_temp	0.000		
			LeadRes	0.000	Ohms	
Filter	0.000	Secs	Emissiv	1.000		
Char	Linear		Delay	0.000	Secs	
UserChar						

2-sortie

Bloc	Black: 02P01_0A Comment Connections								
	Tagllame	02P01_0A			LIN Name	02P01_0A			
	Туре	AO_UIO			DBase	<local></local>			
	Task	3 (110ms)			Rate	0			
	MODE	AUTO			Alarms				
	Fallback	AUTO			Node	>00			
					Sitello	2			
-	OP	0.0	%		Channel	1			
	HR	100.0	%		OutType	mA			
	LR	0.0	%		HR_out	20.00	mA		
					LR_out	4.00	mA		
	Out	0.0	%		A0	0.00	mA		
	Track	0.0	%						
	Trim	0.000	mA		Options	>0000			
					Status	>0000			

2)

50%	12
75%	20
100%	42

3)gain statique= DELTA s/DELTA e=(100-50)/(42-12)=50/30=1,66

4)le sens d'action du régulateur doit être inverse car le procédé doit être direct , la mesure augmente en fonction de la consigne

5)

3-Étude du régulateur

$$H(p) = K_e-TP/1+tp = 0.51 PID //$$

2) il faudra un régulateur pid parallèle.

4-Performances et optimisation

- 1) je ne sais pas
- 2) je ne sais pas
- 3) je ne sais pas
- 4) je ne sais pas