

Nested Variational Inference

Heiko Zimmermann¹

Hao Wu²

Babak Esmaeili¹

Jan-Willem van de Meent¹²

¹Amsterdam Machine Learning Lab, University of Amsterdam, Amsterdam, Netherlands ¹{h.zimmermann, b.esmaeili, j.w.vandemeent}@uva.nl

²Khoury College of Computer Sciences, Northeastern University, Boston, USA ²{wu.hao10, j.vandemeent}@northeastern.edu

Proper Weighting and Resampling

Proper weighting Let π be a probability density. For some constant c > 0, a random pair $(w, z) \sim \Pi$ is properly weighted (p.w.) for an unnormalized probability density $\gamma \equiv Z\pi$ if $w \geq 0$ and for all measurable functions g

$$\mathbb{E}_{w,z\sim\Pi}\left[w\ g(z)\right] = c\int dz\ \gamma(z)\ g(z) = cZ\mathbb{E}_{z\sim\pi}\left[g(z)\right].$$

We can propose from any sampler as long as it produces properly weighted samples for the proposal density of interest. **Resampling preserves proper weighting.**

