Oil Project

Year	1990	1992	1994	1996	1998	2000	2002	2004
X	-10	-8	-6	-4	-2	0	2	4
Y	16.99	17.03	17.72	18.31	18.92	19.70	19.76	20.52

Year	X	Y	X^2	XY
1990	-10	16.99	100	-169.90
1992	-8	17.03	64	-136.24
1994	-6	17.72	36	-106.32
1996	-4	18.31	16	-73.24
1998	-2	18.92	4	-37.84
2000	0	19.70	0	0
2002	2	19.76	4	39.52
2004	4	20.52	16	82.08
\sum	-24	148.95	240	-401.94

Comparison Graph of Predicted vs Real Values

$$m = (8*-401.94 - -24*148.95) \backslash (8*240 - 576) \approx 0.2673$$

$$b = \frac{148.95 - 0.2673* - 24}{8} = 19.42$$

Equation : O(x) = 0.2673 * year + 19.42

- 1. $O(20) \approx 24.76$; Yearly ≈ 9.039 billion barrels
- 2. $O(25) \approx 26.1$; Yearly ≈ 9.52741 billion barrels
- 3. Change is constant; therefore it is 97.56 million barrels increase per year
- 4. Average gallons of gas produced per barrel is 19-20; Assuming an average of 19.5 gallons per barrel you can compute the following
 - (a) 176.26 billion gallons
 - (b) 185.78 billion gallons
 - (c) 1.902 billion gallons
- 5. $O(x) = 30,000,000; (30-19.42)/.2673 \approx 39.58$ Approximately 2040 AD