Chapter 5: Numerical Methods for Differential equations Lecture 1

- 1. Introduction to differential equations
- 2. One-step methods
- 3. Euler's Method: A simple one-step method

1. Introduction to differential equations

Basic Concepts

■ A differential equation may involve derivatives of higher-order, such as y', y'', y''', etc

$$f(x, y(x), y'(x), y''(x), ..., y^{(n)}(x)) = 0$$

- The **order of a differential equation** is that of the highest-order derivative in the equation
- A linear first-order differential equation is an equation of the form

$$\frac{dy}{dx} + P(x)y = Q(x)$$

$$mv'(t) = -pv(t) - mg$$

$$v'(t) + \frac{p}{m}v(t) = -g$$

How to solve 1st-order diff. eq.?

Set the integrating factor

$$I(x) = e^{\int P(x)dx}$$

• We have
$$I'(x) = e^{\int P(x)dx} P(x) = I(x)P(x)$$

■ Multiply both sides the diff. eq. by I(x) to get

$$\frac{dy}{dx} + P(x)y = Q(x)$$

$$I(x)y'(x) + I(x)P(x)y = I(x)Q(x)$$

$$I(x)y'+I'(x)y = I(x)Q(x)$$

$$I(x)y'(x) + I(x)P(x)y = I(x)Q(x)$$

$$I(x)y' + I'(x)y = I(x)Q(x)$$

$$\frac{d}{dx}(I(x)y) = I(x)Q(x)$$

$$I(x)y = \int I(x)Q(x)dx$$

$$I(x)y = \int I(x)Q(x)dx$$

$$y = e^{-\int P(x)dx} \int I(x)Q(x)dx$$

Separable Differential Equations

Differential equation of the form

$$\frac{dy}{dx} = \frac{f(x)}{g(y)}$$

$$g(y)y'(x) = f(x)$$

is called a separable differential equation.

A separable differential equation can be solved by integrating both sides. This method is known as separation of variables

$$\int g(y)y'(x)dx = \int f(x)dx \Longrightarrow \int g(y)dy = \int f(x)dx$$

$$G(y) = F(x) + C$$

F and G are anti-derivatives of f and g

Ex:

Solve the initial-value problem for differential equation

1)
$$y' - 2y = 2x + 1$$
, $x > 0$, $y(0) = 2$

2)
$$y' = \frac{4x^3}{y}$$
, $x > 1$, $y(1) = 3$

3)
$$y' = \sin(xy)$$
, $x > 0$, $y(0) = 1$

YOU CANNOT SOLVE IT!

THIS IS THE REASON WHY YOU NEED THIS LECTURE!

2. One-step Methods

A class of methods

Approximations of solution of DEs

Approximate solution of the initial value problem

$$\frac{dy}{dx} = f(x, y), \quad a \le x \le b$$
$$y(a) = y_0$$

Sequence of approximate values $y_i \approx y(x_i)$ will be generated at various values x_i , called mesh points

Assumption: mesh points are equally distributed in [a, b]

$$x_i = a + ih$$
, $i = 0, 1, 2, ..., N$, $h = \frac{b - a}{N}$: step size

One-step Methods

For problem

$$\frac{dy}{dx} = f(x, y), \quad a \le x \le b$$
$$y(a) = y_0$$

A one-step method is of the form

$$y_{i+1} = y_i + h\varphi$$

3. Euler's method

$$y'(x) = f(x, y(x)), y(x_0) = y_0$$

It is a onestep method

$$x_i = x_0 + ih$$
, step size $h > 0$, $y_i \approx y(x_i)$, $i = 0, 1, 2, ...$

$$\frac{y(x_i + h) - y(x_i)}{h} \approx y'(x_i) = f(x_i, y(x_i))$$

$$\frac{y_{i+1} - y_i}{h} = f(x_i, y_i)$$

$$y_{i+1} = y_i + h f(x_i, y_i)$$

Interpretation of Euler Method

Interpretation of Euler Method

Interpretation of Euler Method

Example

Find approximate values and the errors of the solution of the initial-value problem

$$y' = 3xy$$
, $0 < x < 1/2$, $y(0) = 1$

with step size h=0.1

Solution: Exact solution

14

$$y' = 3xy \Rightarrow y'/y = 3x \Rightarrow \int y'/y dx = \int 3x dx$$

$$\ln(y) = 3x^2 / 2 + C$$

Using initial condition:

$$\ln(y(0)) = \ln(1) = 0 = C$$

$$\Rightarrow \ln(y) = 3x^2 / 2 \Rightarrow y = e^{3x^2/2}$$

$$f(x, y) = 3xy, h = 0.1$$

$$x_i = 0 + ih = 0.1i, \quad i = 0, 1, 2, 3, 4, 5$$

$$y_0 = y(0) = 1$$

$$y_{i+1} = y_i + h \quad f(x_i, y_i) = y_i + 3hx_i y_i$$

X	y-exact	y-Approx	Error
		,	_
0	1	1	0
0.1	1.01511	1	0.0151131
0.2	1.06184	1.03	0.0318365
0.3	1.14454	1.0918	0.0527368
0.4	1.27125	1.19006	0.0811872
0.5	1.45499	1.33287	0.122122

Local truncation error

The <u>local truncation error</u> at a specific step measures the amount by which the exact solution to the DE fails to satisfy the method.

Method $y_{i+1} = y_i + h \Phi(x_i, y_i; h)$ has local truncation error:

$$\tau_{i+1}(h) = \frac{y(x_{i+1}) - (y_i + h\Phi(x_i, y_i; h))}{h} = \frac{y(x_{i+1}) - y_i}{h} - \Phi(x_i, y_i; h)$$

$$i = 0, 1, \dots, N-1$$

Method of order
$$p: \tau_{i+1}(h) = O(h^p)$$

Global error and Convergence

- The global error is the maximum error of the method over the entire range of approximation, assuming only that the method gives exact result at the initial value
- A one-step method is convergent if

```
\lim_{h\to 0} \max_{1\leq i\leq N} |y_i - y(x_i)| = 0
```

where $y(x_i)$: exact value

 y_i : approximate value $y_i \approx y(x_i)$

1/24/2021

Higher-order Taylor series method

Taylor expansion

$$y(x_i + h) = y(x_i) + hy'(x_i) + \frac{h^2}{2}y''(x_i) + O(h^3)$$

$$= y(x_i) + hf(x_i, y_i) + \frac{h^2}{2}f'(x_i, y_i) + O(h^3)$$
where $f'(x_i, y_i) = f_x(x_i, y_i) + f_y(x_i, y_i)y'(x_i) = f_x(x_i, y_i) + f_y(x_i, y_i)f(x_i, y_i)$

The 2nd order Taylor series method is given by

$$y_{i+1} = y_i + hf(x_i, y_i) + \frac{h^2}{2} [f_x(x_i, y_i) + f_y(x_i, y_i) f(x_i, y_i)]$$

Find approximate values and the errors of the solution of the initial-value problem

$$y' = y + 2x + 1$$
, $0 \le x \le 1/2$, $y(0) = 2$
with step size h=0.1

- a) using Euler method
- b) using Taylor series method

$$y_{i+1} = y_i + hf(x_i, y_i) + \frac{h^2}{2} [f_x(x_i, y_i) + f_y(x_i, y_i) f(x_i, y_i)]$$
MAFE 208IU-L11

$$y' = y + 2x + 1, \quad 0 \le x \le \frac{1}{2}$$

$$y(0) = 2$$
, $h=0.1$

Exact solution:

$$y = -2x - 3 + 5e^x$$

X	y-exact	y-Euler Error	y-Taylor Error
0	2	2 0	2 0
0.1	2.326	2.3 0.02585	2.325 0.0008546
0.2	2.707	2.65 0.05701	2.705 0.001889
0.3	3.149	3.055 0.09429	3.146 0.003131
0.4	3.659	3.52 0.1386	3.655 0.004613
0.5	4.244	4.053 0.1911	4.237 0.006373

Exercise

Find approximate values and the errors of the solution of the initial-value problem

$$y' = -2xy, \quad 0 \le x \le 1,$$

with step size h=0.2, and initial condition y(0) = 3

- a) using Euler method
- b) using Taylor series method

(m-2)(n-2) is the two last digits of your student ID number

Problem 1: Find approximate values and the errors of the solution of the initial-value problem

$$y' = (m+n)y - mx + n, \quad 0 \le x \le 1,$$

with step size h=1/4, and initial condition y(0) = 2 by

- a) Euler Method
- b) Midpoint Method
- c) Heun method
- d) 4th-order Runge-Kutta method

Problem 2: Find approximate solution of problem by

a) Euler's method b) Midpoint method, Heun's method

$$u' = 3mu + 2v - (t^{2} - n)e^{2t}$$

$$v' = -u + nv + (t^{2} + mt - 4)e^{2t}, \quad 0 \le t \le 1$$

$$u(0) = 1, \quad v(0) = 1, \quad h = 1/4$$

Problem 3: Find approximate solution of the following Problem by

- a) Euler's method
- b) Heun's method

$$y''-my'+ny = e^{2t} \sin t$$
, $0 \le t \le 1$
 $y(0) = m+1$, $y'(0) = n$
using $h = 1/4$

24

Additional Problems:

Textbook, Page 752

Problems 25.1, 25.3, 25.4, 25.7

Deadline: 3 weeks