Kinetics and Reactor Design HW6

Daniel Naumov

Assigned: March 23, 2023 Due: March 30, 2023

Problem Statement 1

P9-16_B (b, c) 1.1

P9-16_B The production of a product P from a particular gram-negative bacteria follows the Monod growth law

$$r_g = \frac{\mu_{\text{max}} C_s C_c}{K_S + C_s}$$

with $\mu_{max}=1$ h⁻¹, $K_S=0.25$ g/dm³, and $Y_{c/s}=0.5$ g/g. (a) The reaction is to be carried out in a batch reactor with the initial cell concentration of $C_{c0}=0.1$ g/dm³ and substrate concentration of $C_{s0} = 20 \text{ g/dm}^3$.

$$C_c = C_{c0} + Y_{c/s}(C_{s0} - C_s)$$

Plot r_g , $-r_s$, $-r_c$, C_s , and C_c as a function of time.

- (b) The reaction is now to be carried out in a CSTR with C_{s0} = 20 g/dm³ and C_{s0} = 0. What is the dilution rate at which wash-out occurs?
- (c) For the conditions in part (b), what is the dilution rate that will give the maximum product rate (g/h) if $Y_{p/c} = 0.15$ g/g? What are the concentrations C_c , C_p , C_p , and $-r_s$ at this value of D?

Figure 1

P9-18 $_{B}$ (a - e) 1.2

- P9-18_B The bacteria X-II can be described by a simple Monod equation with $\mu_{max} = 0.8 h^{-1}$ and $K_S = 4 g/dm^3$, $Y_{p/c} = 0.2 g/g$, and $Y_{s/c} = 2 g/g$. The process is carried out in a CSTR in which the feed rate is 1000 dm3/h at a substrate concentration of 10 g/dm3.
 - (a) What size fermentor is needed to achieve 90% conversion of the substrate? What is the exiting cell concentration?
 - (b) How would your answer to (a) change if all the cells were filtered out and returned to the feed
 - (c) Consider now two 5000-dm³ CSTRs connected in series. What are the exiting concentrations C_s C, and C, from each of the reactors?
 - (d) Determine, if possible, the volumetric flow rate at which wash-out occurs and also the flow rate at which the cell production rate $(C_c v_0)$ in grams per day is a maximum.

Figure 2

(e) Suppose you could use the two 5000-dm³ reactors as batch reactors that take two hours to empty, clean, and fill. What would your production rate be in (grams per day) if your initial cell concentration is 0.5 g/dm³? How many 500-dm³ batch reactors would you need to match the CSTR production rate?

Figure 3

2 Problem Solution

2.1 P9-16 $_B$ (b, c)

b) The equation:

$$D = \frac{Y_{C/S}\mu_{max}C_{S0}}{K_M + C_{S0}} \tag{1}$$

We have all these values given and can evaluate D to be 0.494 hr^{-1} .

c) The equation:

$$D_{max} = Y_{C/S} \mu_{max} \left(1 - \sqrt{\frac{K_M}{K_M + C_{S0}}} \right) \tag{2}$$

We have all these values - $D_{max} = 0.44 \text{ hr}^{-1}$. Equation for C_c :

$$C_c = \left[\frac{Y_{C/S}(K_M + C_{S0})}{Y_{C/S}\mu_{max} - D_{max}} \right] \times \left[\frac{Y_{C/S}\mu_{max}C_{S0}}{K_M + C_{S0}} - D_{max} \right]$$
(3)

 $C_c = 9.08 \text{ g/cm}^3.$

$$C_s = \frac{D_{max} K_M}{Y_{C/S} \mu_{max} - D_{max}} \tag{4}$$

$$C_s = 1.83 \text{ g/cm}^3.$$

 $C_p = C_s \times Y_{P/C} = 1.362 \text{ g/cm}^3.$
 $-r_s = \frac{\mu_{max}C_cC_s}{K_M + C_s} = 7.99 \text{ g/(dm}^3 \times hr)$

2.2 P9-18 $_B$ (a - e)

a) What we know: CSTR, X = 90, Monod eqn. values. $r_g = \mu C_s$, $\mu = \frac{\mu_{max}C_s}{K_M + C_s}$.

$$DC_c = r_q \tag{5}$$

$$D(C_{S0} - C_S) = -r_s \tag{6}$$

$$-r_s = Y_{S/C}r_q \tag{7}$$

$$D = \frac{v_0}{V} \tag{8}$$

$$C_S = C_{S0}(1 - X) = 10g/dm^3(0.1) = 1g/dm^3$$
(9)

$$C_c = Y_{C/S}(C_{S0} - C_S) = 0.5(9)g/dm^3 = 4.5g/dm^3$$
 (10)

$$V = \left[\frac{\mu_{max} C_s}{(K_M + C_s) v_0} \right]^{-1} \tag{11}$$

 $V = 6250 \text{ dm}^3$.

- b) How would my answer to (a) change if cells were filtered out and returned to feed stream? The derivative of C_c w.r.t time would become r_g exponential growth (assuming no cell death). This would stop working at some point because the reactor would be full of cells and more cannot enter.
- c) Two 5000 dm³ CSTRs in series. Exiting concentrations from each reactor?

Figure 4: 2 CSTRs in Series - nonlinear Polymath Solution

Not included in image: $C_{P1} = Y_{P/C}C_{C1} = 0.9866 \text{ g/dm}^3$. C_{C2} and C_{S2} are displayed, have same units.

d) Washout rate volumetric flow rate, also $D_{maxProd}$. For dilution: $C_C = 0$, so $D_{max} = \frac{C_{S0}\mu_{max}}{K_M + C_{S0}} = 0.57 \text{ hr}^{-1}$.

$$D_{maxProd} = \mu_{max} \left(1 - \sqrt{\frac{K_M}{K_M + C_{S0}}} \right) \tag{12}$$

Thus $D_{maxProd} = 0.37 \text{ hr}^{-1}$. Production rate then is $C_C 2v_0 = 118,392 \text{ g/day}$.

e) Two 5000 dm³ reactors as batch reactors, 2 hours to empty, clean, fill them. $C_C0 = 0.5$ g/dm³. Production rate in g/day? How many 500 dm³ batch reactors would you need to match CSTR production rate (I calculated this in (d)). I'm setting final time for reaction stop at 6 hours - I compared 4 and 6 hours and got a slightly larger number at 6 hours (also both fit neatly into 24 hours).

Figure 5: 2 Batch reactors - ODE Polymath Solution for C_C

 $5000 \text{ dm}^3 \text{ times } 5.43 \text{ g/dm}^3 \text{ times } 2 \text{ reactors times } (24 \text{ hours/}(6 \text{ hours to run} + 2 \text{ to clean})$ = 162,900 g/day. For $500 \text{ dm}^3 \text{ batches to match CSTR reactor } (118,392 \text{ g/day})$, would need (118,392/16,290) reactors, or around $7.25 500 \text{ dm}^3 \text{ batch reactors which run on } 6 + 2 \text{ hour cycles}$.