Experiment No. 03

Name of the Exp: Verification of superposition theorem.

<u>Objective</u>: Our objective is to find the total current through the resistors in the following circuit using superposition theorem.

Circuit Diagram 1.0

Theory: In this experiment we are verifying the superposition theory which states that "The current through, or voltage across, any element of a network is equal to the algebraic sum of the currents or voltages produced independently by each source".

Apparatus:

- 1. DC power supply
- 2. Resistors
- 3. Digital multi meter
- 4. Bread board
- 5. Connection wire

Procedure:

- 1. For the 1st step of superposition theorem, we must disconnect one of the voltage sources and replace it with a short circuit.
- 2. Then determine the current through each resistor for the 1st voltage source.
- 3. As for the 2nd step of superposition theorem, we are going to disconnect the other voltage source from the circuit and replace it with a short circuit.
- 4. Then determine the current through each resistor for the 2nd voltage source.

5. Now we sum up the currents for 1^{st} & 2^{nd} voltage source and match with the total current value that we got practically.

Circuit Diagram:

1. For theoretical calculations

2. Measured Value

Circuit Diagram 1.1

Circuit Diagram 2.2

Circuit Diagram 3.3

Model Calculation: (For theoretical & measured value).

Theoretical:

Let's say,
$$R_1 = R_2 = R_3 = 9\Omega$$
, $E_1 = 30V$, $E_2 = 40V$

For E_1 in circuit diagram 2.0 we get,

$$\frac{1}{R_{(2+3)}} = \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{9} + \frac{1}{9} = \frac{2}{9} = \frac{1}{4.5}$$

or,
$$R_{(2+3)} = 4.5\Omega$$
 Now,

$$R_T = R_1 + R_{(2+3)} = 9 + 4.5 = 13.5$$

or,
$$R_{T_1} = 13.5\Omega$$

For
$$E_1$$

$$I_{T_1} = \frac{E_1}{R_{T_1}} = \frac{30}{13.5} = 2.22A$$

 $I_1' = I_{T_1}$ & Using current divider rule we get,

$$I_3' = \frac{I_{T_1} \cdot R_2}{R_2 + R_3} = \frac{2.22 \times 9}{18} = 1.11A$$
 $I_2' = \frac{I_{T_1} \cdot R_3}{R_2 + R_3} = \frac{2.22 \times 9}{18} = 1.11A$

For E_2 in circuit diagram 3.0 we get,

$$\frac{1}{R_{(1+3)}} = \frac{1}{R_1} + \frac{1}{R_3} = \frac{1}{9} + \frac{1}{9} = \frac{2}{9}$$

or,
$$R_{(1+3)} = 4.5\Omega$$
 Now,

$$R_{T_2} = R_{(1+3)} + R_2 = 4.5 + 9 = 13.5\Omega$$

For
$$E_2$$

$$I_{T_2} = \frac{E_2}{R_{T_2}} = \frac{40}{13.5} = 2.963A$$

 $I_2^{\prime\prime\prime} = I_{T_2}$ & Using current divider rule we get,

$$I_3^{"} = \frac{I_{T_2} \cdot R_1}{R_1 + R_3} = \frac{2.963 \times 9}{18} = 1.481A$$
 $I_1^{"} = \frac{I_{T_2} \cdot R_3}{R_1 + R_3} = \frac{2.963 \times 9}{18} = 1.481A$

Now according to superposition theorem, we are going to do the algebraical sum of the current for E_1 & E_2 and see if the sum matches out for total current.

Since the direction of $I'_1 \& I''_1$ is opposite so,

$$I_1 = I_1' - I_1'' = 2.22 - 1.481 = 0.738A$$

It means the direction of I_1 is the same direction of I'_1 .

And the direction of I'_2 & I''_2 is also opposite so,

$$I_2 = I_2' - I_2'' = 1.11 - 2.963 = -1.853A = 1.853A$$

The negative sign means the direction of I_2 is in the direction of I_2'' .

The direction of I_3' & I_3'' is in the same direction so,

$$I_3 = I_3' + I_3'' = 1.11 + 1.481 = 2.591A$$

Since both current is in the same direction so the current I_3 will flow the same way as $I_3' \& I_3''$.

Result: The result for theoretical (TV) and measured (MV) value is given below

For \mathbf{E}_1

Current (A)	I_{T_1}		I_1'		I_2'		I_3'	
Values	TV	MV	TV	MV	TV	MV	TV	MV
(TV)&(MV)	2.22	2.222	2.22	2.222	1.11	1.111	1.11	1.111

For $\mathbf{E_2}$

Current (A)	I_{T_2}		$I_1^{\prime\prime}$		$I_2^{\prime\prime}$		$I_3^{\prime\prime}$	
Values	TV	MV	TV	MV	TV	MV	TV	MV
(TV)&(MV)	2.963	2.963	1.481	1.482	2.963	2.963	1.481	1.482

Current (A)	I_1		Ι	2	I_3		
Values	TV	MV	TV	MV	TV	MV	
(TV)&(MV)	0.738	0.740	1.853	1.852	2.591	2.593	

<u>Conclusion</u>: The theoretical and measured value of this circuit matches up. So, we can say the superposition theorem, was applied & verified successfully.

Precautions:

- 1. Check for proper connections before switching ON the power supply.
- 2. Take care of the reading the apparatus.
- 3. The terminal of the resistance should be properly connected.