Efficient Matrix Multiplication through Multi-Threading

Your Name University or Institution

March 9, 2024

Abstract

The research documented here looks into the problem of matrix multiplication utilizing multi-threading, a pivotal operation in scientific computing and data analysis. This study aims to improve upon the inefficiencies of large-scale matrix operations by utilizing multi-threading...

1 Introduction

Matrix multiplication stands as a cornerstone operation across numerous computational domains including but not limited to algorithm design, engineering simulations, and the burgeoning field of machine learning...

2 Methodology

The core of this project's methodology revolves around the strategic segmentation of large matrices into smaller manageable blocks...

3 Implementation

The practical implementation of this project was realized through a comprehensive development and testing process employing Python's robust threading library...

4 Testing Strategy

A rigorous testing strategy was employed to evaluate the efficacy of the threaded matrix multiplication approach...

5 Evaluation

The evaluation phase yielded insightful results, underscoring the significant performance uplift achieved through the threaded approach...

6 Limitations

In the course of this study, several limitations of the threaded matrix multiplication approach were identified...

7 Challenges Encountered

The development journey was marked by numerous challenges, from conceptual hurdles to practical implementation obstacles...

8 Future Research

Looking forward, this study paves the way for several exciting avenues of future research...

9 Conclusion

In conclusion, the adoption of a threaded approach to matrix multiplication represents a significant leap forward in the quest to address the computational challenges posed by large matrix operations...

10 References

1. Higham, Nicholas J. "Accuracy and Stability of Numerical Algorithms." Society for Industrial and Applied Mathematics, 2002.

- 2. Barney, Blaise. "Introduction to Parallel Computing." Lawrence Livermore National Laboratory.
- 3. Van Loan, Charles F. "Computational Frameworks for the Fast Fourier Transform." Society for Industrial and Applied Mathematics, 1992.
- 4. Wilkinson, Barry and Michael Allen. "Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers." Prentice Hall, 2004.