Algebra I Blatt 10

Thorben Kastenholz Jendrik Stelzner

3. Juli 2014

Aufgabe 1

Es sei $\{v_1,\ldots,v_n\}$ eine k-Basis von V und $\{w_1,\ldots,w_m\}$ eine k-Basis von W. Für eine Darstellung X von A schreiben wir

$$\rho_X: A \to \operatorname{End}_k(X), a \mapsto (x \mapsto ax)$$

(a)

Ist $V\cong W$, so gibt es einen Isomorphismus $\varphi:V\to W$ von Darstellungen von A. Inbesondere ist φ k-linear und somit $\{\varphi(v_1),\ldots,\varphi(v_n)\}$ eine k-Basis von W. Es sei $a\in A$ beliebig aber fest. Bezeichnet A die darstellende Matrix von $\rho_V(a)$ bezüglich $\{v_1,\ldots,v_n\}$, so ist dies, da φ ein k-Algebrahomomorphismus ist, auch die darstellende Matrix von $\rho_W(a)$ bezüglich $\{\varphi(v_1),\ldots,\varphi(v_n)\}$. Inbesondere ist deshalb

$$\chi_V(a) = \operatorname{tr} A = \chi_W(a).$$

(b)

Es sei $a\in A$ beliebig aber fest. Da a komponentenweise auf $V\oplus W$ wirkt, ist die darstellende Matrix von $\rho_{V\oplus W}$ bezüglich der k-Basis

$$\{(v_1,0),\ldots,(v_n,0),(0,w_1),\ldots,(0,w_m)\}$$

von $V \oplus W$ der Form

$$C = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix},$$

wobei A die darstellende Matrix von $\rho_V(a)$ bezüglich $\{v_1,\ldots,v_n\}$ ist, und B die darstellende Matrix von $\rho_W(a)$ bezüglich der Basis $\{w_1,\ldots,w_m\}$ ist. Inbesondere ist daher

$$\chi_{V \oplus W}(a) = \operatorname{tr} C = \operatorname{tr} A + \operatorname{tr} B = \chi_V(a) + \chi_W(a).$$

(c)

Da $\rho_V(e)=\mathrm{id}_V$ ist die darstellende Matrix von $\rho_V(e)$ bezüglich jeder Basis von V die $n\times n$ -Einheitsmatrix über k, und somit

$$\chi_V(e) = n \bmod \operatorname{char} k = \dim_k(V) \bmod \operatorname{char} k.$$

(d)

Es sei $a \in A$ beliebig aber fest. Bezeichnet A die darstellende Matrix von $\rho_V(a)$ bezüglich $\{v_1,\ldots,v_n\}$ und B die darstellende Matrix von $\rho_W(a)$ bezüglich $\{w_1,\ldots,w_m\}$, so ist, da $\rho_{V\otimes W}(a)=\rho(V)(a)\otimes\rho(W)(a)$, die darstellende Matrix von $\rho_{V\otimes W}(a)$ bezüglich der k-Basis

$$\{v_1 \otimes w_1, v_1, \otimes w_2, \dots, v_1 \otimes w_m, v_2 \otimes w_1, \dots, v_n \otimes w_m\}$$

von $V \otimes W$ von der Form

$$C = \begin{pmatrix} a_{11}B & a_{12}B & \dots & a_{1n}B \\ a_{21}B & a_{22}B & \dots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \dots & a_{nn}B \end{pmatrix}.$$

Daher ist

$$\chi_{V\otimes W}(a) = \operatorname{tr} C = \sum_{i=1}^{n} a_{ii} \operatorname{tr} B = \operatorname{tr} A \operatorname{tr} B = \chi_{V}(a)\chi_{W}(a).$$

(e)

Es sei $g \in G$ beliebig aber fest. Bezeichnet A die darstellende Matrix von $\rho_V(g)$ bezüglich $\{v_1,\ldots,v_n\}$, so ist die A^{-1} die darstellende Matrix von $\rho_V\left(g^{-1}\right)$ bezüglich $\{v_1,\ldots,v_n\}$ und $A^*=(A^{-1})^T$ die darstellende Matrix von $\rho_{V^*}(g)$ bezüglich $\{v_1^*,\ldots,v_n^*\}$. Deshalb ist

$$\chi_{V^*}(g) = \operatorname{tr}\left(\left(A^{-1}\right)^T\right) = \operatorname{tr}\left(A^{-1}\right) = \chi_V\left(g^{-1}\right).$$

Aufgabe 2

(a)

Wir betrachten $V=\mathbb{R}^2$. $G=\mathbb{Z}/3\mathbb{Z}$ wirke auf V, indem $1\in G$ durch eine Rotation um $2\pi/3$ und $2\in G$ eine Rotation um $4\pi/3$ (in gleicher Orientierung) wirkt. Es ist klar, dass V so zu einer Darstellung von G wird. Diese ist irreduzibel: Ist $U\subseteq V$ eine Unterdarstellung mit $U\neq 0$, so gibt es $v\in U$ mit $v\neq 0$. Da v und 1.v linear unabhängig sind, ist dann bereits $U=\langle v,1.v\rangle=V$.

Aufgabe 3

(a)

Da kG als k-Vektorraum von $G\subseteq kG$ erzeugt wird, ist $f\in Z(kG)$ genau dann, wenn $f\cdot\chi_g=\chi_g\cdot f$ für alle $g\in G$. Dabei ist für alle $h\in G$

$$(f \cdot \chi_g)(h) = \sum_{y \in G} f(y) \cdot \chi_g \left(y^{-1} h \right) = f \left(h g^{-1} \right)$$

und

$$(\chi_g \cdot f)(h) = \sum_{y \in G} \chi_g(y) \cdot f(y^{-1}h) = f(g^{-1}h).$$

Mit $h'=hg^{-1}$ erhalten wir so, dass $f\in Z(kG)$ genau dann, wenn für alle $h'\in G$

$$f(h') = f(hg^{-1}) = f(g^{-1}h) = f(g^{-1}hg).$$