CLIPPEDIMAGE= JP409330843A

PAT-NO: JP409330843A

DOCUMENT-IDENTIFIER: JP 09330843 A

TITLE: MANUFACTURE OF ELECTRONIC PARTS

PUBN-DATE: December 22, 1997

INVENTOR-INFORMATION:

NAME

HAYAMA, MASAAKI MORI, NOBORU MURAKAWA, SATORU MATSUNAGA, HAYASHI MIZUNO, MASAYUKI

ASSIGNEE-INFORMATION:

NAME

MATSUSHITA ELECTRIC IND CO LTD

COUNTRY

N/A

APPL-NO: JP08148814

APPL-DATE: June 11, 1996

INT-CL (IPC): H01F041/04; H01F017/00; H05K003/12; H05K003/20

ABSTRACT:

PROBLEM TO BE SOLVED: To provide an electronic parts manufacturing method by which a fine pattern can be formed with high accuracy and, at the same time,

the high- performance laminated structure of a conductor pattern can be

manufactured easily, by simultaneously forming via hole electrodes at the time

of performing intaglio printing for forming the conductor pattern on an

insulating substrate by transfer.

SOLUTION: A conductor pattern is formed in such a way that, after an intaglio printing 20 is formed by forming a pattern in which grooves at arbitrary

positions are made deeper than those at the other positions on the surface of a flexible resin layer by laser beam machining and a strippable layer 23 on the surface of the pattern, the printing 20 is filled up with an Ag paste 24, and the paste 24 is dried. Then, the printing 20 is put on an insulating surface 2 carrying a water-soluble resin 28 on its surface, by utilizing a pressurizing section 26 of a press and transferring the pattern of the paste 24 to the resin 28 by removing the printing 20 from a substrate 2 after freezing the resin 28, and then, baking the resin pattern.

COPYRIGHT: (C) 1997, JPO

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-330843

(43)公開日 平成9年(1997)12月22日

(51) Int.C1.6	識別記号	庁内整理番号	FΙ				技術表示箇所
H01F 41/04			H01F 4	1/04		c	(1)142-(74 (HIL))
17/00				7/00		В	
H05K 3/12	7511-4E			3/12	Z		
3/20		7511-4E	3/20 C				
			審查請求	未請求	請求項の数15	OL	(全 15 頁)
(21)出願番号	特顧平8-148814		(71)出願人	000005821			
				松下電器	居産業株式会社		
(22)出願日	平成8年(1996)6月11日			大阪府門	『真市大字門真』	006番地	
			(72)発明者	葉山 邪	能昭		
					門真市大字門真1	006番地	松下電器
				産業株式			
			(72)発明者	毛利 昇			
			İ		門真市大字門真1	006番地	松下電器
				產業株式	会社内		
			(72)発明者	村川 巷	Ī		
				大阪府門]真市大字門真1	006番地	松下電器
				産業株式	会社内		
			(74)代理人	弁理士	滝本 智之	(外1名))
				最終頁に続く			

(54) 【発明の名称】 電子部品の製造方法

(57)【要約】

【課題】 転写によって導体パターンを絶縁基板上に形 成する凹版印刷において、高精度で微細なパターンを形 成でき、かつ、ビアホール電極も同時に形成して導体パ ターンの高性能な積層構造を容易に製造できる電子部品 の製造方法を提供することを目的とする。

【解決手段】 可とう性樹脂層の表面にレーザ加工によ って任意の位置の溝が他の箇所より深いパターンを形成 し、その表面に剥離層23を形成して凹版20を形成 し、この凹版20にAgペースト24を充填して乾燥さ せ、水溶性樹脂28を表面に設けた絶縁基板2上にプレ ス加圧部26を利用して凹版20を重ね合わせ、冷凍し た後に凹版20と絶縁基板2とを剥離してAgペースト 24のパターンを転写して焼成によって導体パターンを 形成する。

2 絕緣基板 20 凹版 24 Agペースト 21 溝 26 プレス加圧部 22 ピット 27 冷凍装置

【特許請求の範囲】

【請求項1】 基板上に導体パターンを凹版印刷によっ て形成する電子部品の製造方法において、可とう性樹脂 の表面に溝を導体パターンに対応するパターンで形成し て凹版を製造する工程と、前記凹版の表面に基板と凹版 との剥離を容易にする剥離層を設ける工程と、前記溝に 導電性ペーストを充填する工程と、前記導電性ペースト を乾燥する工程と、前記導電性ペーストを乾燥させる工 程で乾燥された導電性ペーストの乾燥による体積減少分 を補うために追加の導電性ペーストを再充填する工程と 10 再充填後の導電性ペーストを再乾燥する工程とを所定の 回数繰り返す工程と、前記凹版と基板とを水又は水溶性 樹脂を介在させて重ね合わせ、所定の範囲の温度及び所 定の範囲の圧力を加えることによって水又は水溶性樹脂 を凍らすことによって貼り合わせる工程と、凍らした状 態で前記凹版を基板から剥離して導電性ペーストのパタ ーンを基板上に転写する工程と、転写された前記導電性 ペーストのパターンを焼成して導体パターンを形成する 工程からなる電子部品の製造方法。

【請求項2】 可とう性樹脂の表面に溝を導体パターン 20 に対応するパターンで形成して凹版を製造する工程は、前記凹版に形成される溝の一部を他の箇所より深く形成して導体パターンの一部に高さの差を設ける請求項1記載の電子部品の製造方法。

【請求項3】 基板上に第1導体パターンを凹版印刷に よって形成する電子部品の製造方法において、可とう性 樹脂の表面に溝を第1導体パターンに対応するパターン で形成して凹版を製造する工程と、前記凹版の表面に基 板と凹版との剥離を容易にする剥離層を設ける工程と、 前記溝に導電性ペーストを充填する工程と、前記導電性 30 ペーストを乾燥する工程と、前記導電性ペーストを乾燥 させる工程で乾燥された導電性ペーストの乾燥による体 積減少分を補うために追加の導電性ペーストを再充填す る工程と再充填後の導電性ペーストを再乾燥する工程と を所定の回数繰り返す工程と、前記凹版と基板とを水又 は水溶性樹脂を介在させて重ね合わせ、所定の範囲の温 度及び所定の範囲の圧力を加えることによって水又は水 溶性樹脂を凍らすことによって貼り合わせる工程と、凍 らした状態で前記凹版を基板から剥離して導電性ペース トのパターンを基板上に転写する工程と、転写された前 40 記導電性ペーストのパターンを焼成して第1導体パター ンを形成する工程と、前記第1導体パターンの少なくと も一部を覆う絶縁層を形成する工程と、前記絶縁層の表 面に第2導体パターンを形成する工程と、前記第1導体 パターンの絶縁層によって覆われていない部分に、前記 第1導体パターンと第2導体パターンとを電気的に接続 する電極を設ける工程とからなる電子部品の製造方法。

【請求項4】 水溶性樹脂がPVA、ボリビニルアセタール、セルロースエーテル、メチルビニルエーテル無水マレイン酸共重合体等の水溶性合成高分子とゼラチン、

2 ガラストーク等の天然系水溶性高分子である請求項1ま たは3記載の電子部品の製造方法。

【請求項5】 第1導体パターンの少なくとも一部を覆う絶縁層を形成する工程と、前記絶縁体層の表面に第2 導体パターンを形成する工程とをさらに包含しており、前記第1導体パターンのうちで高さが高く形成されている箇所を電極として使用して第1導体パターンと第2導体パターンとを電気的に接続する請求項2記載の電子部品の製造方法。

) 【請求項6】 絶縁層の表面に平坦部を設けるべき箇所 に対応する前記第1導体パターンの部分を低く形成する 請求項5記載の電子部品の製造方法。

【請求項7】 絶縁層の表面の前記平坦部にICチップをフェースダウン実装する工程をさらに包含する請求項6記載の電子部品の製造方法。

【請求項8】 絶縁層が磁性材料または誘電材料によって形成されている請求項3から7のいずれかに記載の電子部品の製造方法。

【請求項9】 可とう性樹脂の表面に溝を前記第1 導体) パターンに対応するパターンで形成して凹版を製造する 工程は、紫外領域の発振周波数を有するレーザを用いて 前記溝を形成する請求項1から8のいずれかに記載の電 子部品の製造方法。

【請求項10】 レーザがエキシマレーザである請求項9記載の電子部品の製造方法。

【請求項11】 剥離層がフッ化炭素系の単分子膜である請求項1から10のいずれかに記載の電子部品の製造方法。

【請求項12】 導電性ペーストに可塑剤が添加されて 0 いて可とう性を有している請求項1から11のいずれか に記載の電子部品の製造方法。

【請求項13】 凹版に形成される前記溝が側面にテーパ角を有する断面形状を有している請求項1から12のいずれかに記載の電子部品の製造方法。

【請求項14】 基板が、誘電材料または磁性材料あるいは絶縁材料のいずれかの絶縁基板である請求項1から13のいずれかに記載の電子部品の製造方法。

【請求項15】 基板がグリーンシートから形成されている請求項1から13のいずれかに記載の電子部品の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は各種電子機器に用いる電子部品の製造方法に関し、特に、凹版印刷によって製造される電子部品の製造方法に関するものである。 【0002】

【従来の技術】近年、電子機器の小型化が進んでおり、 それに伴って電子機器内で使用される電子部品の小型化 も進んでいる。このような状況の下で、電子部品の導体 50 パターンに対してもパターンを構成する導体ライン(以 下、単にラインと称する)の微細化、ライン抵抗を下げ ることを目的とした導体パターンを構成する導電膜の厚 さの増加、さらに小型化のための積層構造化が要求され

【0003】従来の電子部品の導体パターンはスクリー ン印刷や凹版印刷などの印刷法で銀ペーストや銅ペース トなどの導電性ペーストのパターンを被形成物である基 板上に印刷して、これを焼成して形成されてきた。例え ば、凹版印刷法の応用としては、特開平4-24079 2号公報に開示されているように、形成すべき導体パタ 10 ーンに対応した凹版内に導電ペースト (有機金属イン ク)を充填し、その導電ペーストを乾燥・硬化させてか ら、被形成物である基板上に硬化性樹脂を介してそのパ ターンを転写することによって、所望の導体パターンを 形成する印刷方法が知られている。

【0004】さらに、ハイブリッドIC回路、サーマル ヘッドあるいは透明電極などでは、導体パターンにおけ る各ラインの幅及びラインの間隔が微細になることか ら、薄膜形成とエッチングとを利用した方法が用いられ ていることがある。この方法では、被形成物である基板 20 上に蒸着またはスパッタリングで金、アルミニウム、I TOなどの導電材料の薄膜を形成して、感光性樹脂を用 いたフォトリソグラフィー技術によって所望の導体パタ ーンに対応したマスクパターンを形成し、次にエッチン グ液及びマスクパターンを用いたエッチングを行って導 電材料の薄膜をエッチングし、最後に感光性樹脂を除去 して導体パターンを形成していた。

[0005]

【発明が解決しようとする課題】しかしながら、上述の 従来の方法は以下のような問題点を有している。

【0006】従来のスクリーン印刷は比較的安価な設備 で実施することができ、また必要な工程数は少ない。し かし、形成すべき導体パターンのラインの幅が70μm 以下であるような微細導体パターンをスクリーン印刷で 形成することは困難である。また、ラインピッチを15 Oμm以下に低減することは困難である。また、スクリ ーン印刷では導体パターンは一様に印刷されるので、設 計上の要求に合わせてパターン中に高低差(ラインの高 さの差)を設けることはできない。

【 0 0 0 7 】 従来の凹版印刷では、ラインの幅が 5 0 μ 40 m程度でラインピッチ100μm程度の微細導体パター ンを形成することが可能であるが、5μm以上の厚さを 有する導体膜を形成することが困難で導体抵抗の低減に 限界がある。

【0008】一方、電子部品の所望の高密度化を達成す るためには、各層の導体パターンの微細化だけでは十分 ではないことがあり、したがって積層構造の形成が必要 になる。そのような積層構造では、下層導体パターン、 絶縁層、上層導体パターンというサンドイッチ構造が幾

ターンを接続するビアホールを形成する必要があるが、 導体パターンの微細化にともなってそれらビアホールの 微細化も必要になってきている。しかし、上述の特開平 4-240792号公報に開示されている方法も含めて 従来の印刷方法では、直径100 μm以下であるような 微細なビアホールの形成は困難である。

4

【0009】さらに、上下層の導体パターン間の確実な 電気的接続を得るためには、ビアホールの内部に上下層 を接続する電極(以下、ビアホール電極と称する)を形 成する必要がある。しかし、従来の方法では、もし直径 100μm以下の微細なビアホールが形成できたとして も、そのような寸法のビアホール内部に電極を形成する ことは困難である。

【0010】また、従来の凹版印刷では、一般にガラス やシリコンウエハなどの剛体材料で形成された凹版を使 用する。その場合、硬化性樹脂を介してセラミックやガ ラス基板などの被形成物上に導体パターンを転写する工 程において、接着している凹版と被形成物とを剥離しよ うとしても凹版の変形がほとんど生じない。その結果、 面どうしで接着している凹版と被形成物とを剥離しなけ ればならず、強い剥離力が必要になる。

【0011】この点を解決するために、凹版として金属 シートを用いてフレキシブル性を得ることがある。しか し、そのような場合でも、凹版のパターン形状の加工 (溝の形成)はウエットエッチングで行われる。このエ ッチングは等方性エッチングになるために、ラインの幅 に対して導体膜が厚い(すなわちラインが高い)ような 導体パターンを形成するために必要になるアスペクト比 の高い凹版形状の加工ができない。

【0012】また、硬化性樹脂を介してセラミック、ガ 30 ラス基板などの被形成物上に導体ペースト材料で形成さ れたパターンを焼成して導体パターンを形成する場合、 硬化性樹脂が4μm以上の厚みが必要となり、硬化性樹 脂が焼成の昇温中に燃焼ガスを発生し、それに伴ってパ ターン変形を発生する問題点があり、寸法精度が得られ ない欠点があった。

【0013】一方、フォトリソグラフィー技術を利用し た導体パターンの形成は、半導体技術でよくあるように ラインの幅が数μπ以下で小面積のパターンを形成する 場合には有効である。しかし、電子部品で用いられる導 体パターンの形成では、一般に比較的大きな面積のパタ ーンを形成することが必要とされる。そのような場合に は、導電膜の蒸着、レジストの塗布、露光、現像、エッ チング及びレジスト除去などの一連の工程を大型装置を 用いて行わなければならない。その結果、使用する設備 が高価であることから製造コストが増加しがちである。 【0014】本発明は上記課題を解決するためになされ たものであり、その目的は、(1)導体パターンのライ ン幅が10μm以下で導電膜の厚さが5μm以上であっ 重にも重なって形成される。この場合、上下層の導体パ 50 て、かつライン幅と同程度の寸法のビアホール電極を含

20

むような微細な導体パターンを精度よく低コストかつ高 信頼性で形成することができる電子部品の製造方法、

(2) 導体パターンの設計上の要求に合わせて、導体パ ターン中の任意の箇所で導体膜の厚さを他の箇所の値か ら変えて導体パターンに高低差を設けることができる電 子部品の製造方法、(3)上記のような特徴を有する導 体パターンを積層化することができる電子部品の製造方 法を提供することである。

[0015]

【課題を解決するための手段】上記目的を達成するため 10 に本発明の電子部品の製造方法は、基板上に導体パター ンを凹版印刷によって形成する電子部品の製造方法であ って、可とう性樹脂の表面に溝を導体パターンに対応す るパターンで形成して凹版を製造する工程と、その凹版 の表面に基板と凹版との剥離を容易にする剥離層を設け る工程と、その溝に導電性ペーストを充填する工程と、 導電性ペーストを乾燥する工程と、この工程で乾燥され た導電性ペーストの乾燥による体積減少分を補うために 追加の導電性ペーストを再充填する工程と再充填後の導 電性ペーストを再乾燥する工程とを所定の回数繰り返す 工程と、前記凹版と基板とを水又は水溶性樹脂を介在さ せて重ね合わせ、所定の範囲の温度及び所定の範囲の圧 力を加えることによって水又は水溶性樹脂を凍らすこと によって貼り合わせる工程と、凍らせた状態で前記凹版 を基板から剥離して導電性ペーストのパターンを基板上 に転写する工程と、転写された導電性ペーストのパター ンを焼成して導体パターンを形成する工程からなるもの である。

【0016】上記方法により、ライン幅が10μm以下 で厚さが5μm以上でライン幅と同程度の寸法のビアホ 30 ール電極を含む微細な導体パターンをもった電子部品が 得られることになる。

[0017]

【発明の実施の形態】本発明の請求項1に記載の発明 は、基板上に導体パターンを凹版印刷によって形成する 電子部品の製造方法であって、可とう性樹脂の表面に溝 を導体パターンに対応するパターンで形成して凹版を製 造する工程と、その凹版の表面に基板と凹版との剥離を 容易にする剥離層を設ける工程と、その溝に導電性ペー ストを充填する工程と、導電性ペーストを乾燥する工程 と、この工程で乾燥された導電性ペーストの乾燥による 体積減少分を補うために追加の導電性ペーストを再充填 する工程と再充填後の導電性ペーストを再乾燥する工程 とを所定の回数繰り返す工程と、前記凹版と基板とを水 又は水溶性樹脂を介在させて重ね合わせ、所定の範囲の 温度及び所定の範囲の圧力を加えることによって水又は 水溶性樹脂を凍らすことによって貼り合わせる工程と、 凍らせた状態で前記凹版を基板から剥離して導電性ペー ストのパターンを基板上に転写する工程と、転写された 導電性ペーストのパターンを焼成して導体パターンを形

6 成する工程とからなり、微細な導体パターンが形成でき るという作用を有する。

【0018】請求項2に記載の発明は、前記凹版に形成 される前記溝の一部を他の箇所より深く形成して、それ によって前記導体パターンの一部に高さの差を設けるよ うにしたものであり、任意の箇所で導体パターンの厚さ を変えることができるという作用を有する。

【0019】請求項3に記載の発明は、第1導体パター ンの少なくとも一部を覆う絶縁層を形成する工程と、絶 縁層の表面に第2導体パターンを形成する工程と、第1 導体パターンの絶縁層によって覆われていない部分に、 第1導体パターンと第2導体パターンとを電気的に接続 する電極を設ける工程とをさらに包含するものであり、 積層構造が容易に実施できるという作用を有する。

【0020】請求項4に記載の発明は、水溶性樹脂がP VA、ポリビニルアセタール、セルロースエーテル、メ チルビニルエーテル無水マレイン酸共重合体等の水溶性 合成高分子とゼラチン、ガラストーク等の天然系水溶性 高分子からなるものであり、凍らせることが容易であ り、かつ基板への転写後の焼成時においても導体パター ンの基板に対する接着力が得られることになり、導体パ

ターンの変形を阻止するという作用を有する。

【0021】請求項5に記載の発明は、第1導体パター ンの少なくとも一部を覆う絶縁層を形成する工程と、絶 縁層の表面に第2導体パターンを形成する工程とをさら に包含しており、第1導体パターンのうちで高さが高く 形成されている箇所を電極として使用して、第1導体パ ターンと第2導体パターンとを電気的に接続するもので あり、積層構造が容易に実現できるという作用を有す

【0022】請求項6および7に記載の発明は、前記絶 縁層の表面に平坦部を設けるべき箇所に対応する前記第 1 導体パターンの部分を低く形成し、さらに、前記絶縁 層の表面の前記平坦部に I C チップをフェースダウン実 装する工程をさらに包含したものであり、ICチップの 実装が確実に行える作用を有する。

【0023】請求項8に記載の発明は、前記絶縁層が磁 性材料または誘電材料によって形成されており、この材 料の選択によって異なる特性の電子部品が得られる。

【0024】請求項9および10に記載の発明は、前記 凹版を製造する工程において、紫外領域の発振周波数を 有するレーザを用いて前記溝を形成し、前記レーザがエ キシマレーザであることを特徴とし、精度の高い溝が形 成できることになる。

【0025】請求項11に記載の発明は、前記剥離層が フッ化炭素系の単分子膜で構成されたものであり、凹版 と基板の剥離時に導電ペーストが確実に転写されること になる。

【0026】請求項12に記載の発明は、前記導電性ペ ーストに可塑剤が添加されていて可とう性を有している

ものであり、これも転写を確実に行える作用を有する。 【〇〇27】請求項13に記載の発明は、前記凹版に形 成される前記溝が側面にテーパ角を有する断面形状を有 しているものであり、これも転写を確実に行う作用を有 する。

【0028】請求項14に記載の発明は、前記基板が、 誘電材料または磁性材料または絶縁材料のいずれかの絶 縁基板から形成されているものであり、材料の選択によ り異なる電子部品を構成できるという作用を有する。

【0029】請求項15に記載の発明は、前記基板がグ 10 リーンシートから形成されているものであり、合理的に 電子部品の構造が行えることになる。

【0030】以下に、本発明の電子部品の製造方法の実 施の形態を、図面を参照して説明する。

【0031】(実施の形態1)本発明の電子部品の製造 方法の第1の実施の形態を、高周波用チップインダクタ 1の製造方法を例にとって、図1~9を参照して以下に 説明する。なお、以下の図面で、同じ構成要素には同じ 参照番号をつけている。

【0032】図1(a)には本実施の形態のチップイン 20 グクタ1の平面図、図1 (b)には図1 (a)の1B-1 B ′ 線におけるチップインダクタ1の断面図をそれぞ れ示す。

【0033】チップインダクタ1は2×1.25mmの絶 縁基板2の中央部付近の表面に形成されたスパイラル状 のコイル導体(ライン)3、及び絶縁基板2の両縁部に 形成された端子電極4a及び4bを有している。 コイル 導体3の外端3 a は、一方の端子電極4 a に接続されて いる。コイル導体3の内端3bは、リード電極6及びビ アホール電極7を介してもう一方の端子電極4 b に接続 30 されている。このリード電極6は、コイル導体3の形成 後にそれを覆うように絶縁基板2の表面に形成される絶 縁層5の表面にさらに設けられている。また、ビアホー ル電極7は、絶縁層5の表面に存在するリード電極6 と、絶縁層5の下面に存在するコイル導体3とを接続し ている。

【0034】チップインダクタ1は凹版印刷によって製 造される。以下、その製造方法を順に説明する。以下の 説明に現れる各工程210~310は、図2のブロック 図に示されている。

【0035】まず、図3を参照して使用される凹版20 の製造工程210を説明する。凹版20は、XYステー ジ16上に固定された厚さ125μmのポリイミドフィ ルム15上に形成される。エキシマレーザ装置11から 出射された紫外領域の波長248nmのレーザビームは、 形成されるべきコイルのスパイラルパターン及び端子電 極のパターンに対応するマスクパターンを有するマスク 12を照射する。マスク12通過後のレーザビームは、 ミラー13で反射され、イメージングレンズ14で縮小

ドフィルム 15のうち、レーザビームで照射された部分 は光化学反応で分解されて、導体パターンのラインに相 当する溝21 (図4参照)が形成される。これによっ て、所望のパターンに対応した凹版20が形成される。 XYステージ16を移動させながら上記の照射動作を繰 り返すことによって、典型的には100mm×100mmの ポリイミドフィルム15上にサイズ2×1.25mmの凹 版20が計4000個形成される。

8

【0036】エキシマレーザによる加工は、炭酸ガスレ ーザやYAGレーザによる加工が赤外波長領域のレーザ ビームによる熱分解加工であるのに対して、ピークパワ ーが数10MWに達する紫外波長領域のレーザビームに よる光分解加工である。また、レーザビームのパルス幅 が短いために加工領域以外の周囲への熱的影響が少な い。その結果、エキシマレーザによる加工ではパターン のライン幅が10μm以下の微細な加工を行うことがで きる。

【0037】また、レーザビームが照射された部分のポ リイミドフィルム15の表面は、フィルムを構成する分 子の結合が切断されていて化学的に非常に活性化された 状態にある。したがって、その部分では化学結合が起こ りやすい。この特徴は後述する剥離層の形成に有利であ

【0038】図4は、上記の方法で形成された凹版20 の溝21の典型的な断面形状を示す。レンズの焦点深度 などレーザ加工工程で使用される光学系の特性を適切に 調整することによって、溝21はその側面が2~60° のテーパ角を有する台形状の断面形状を有するように形 成される。これによって、後の工程で溝21の内部に充 填される導電ペーストの被形成物上への転写が容易に実 施できるようになる。なお、使用されるレーザビームの 形状は、典型的にはエキシマレーザ装置11からの出射 時で8×24mmの長方形で、ポリイミドフィルム15へ の照射時で3.2×9.6mmの長方形である。

【0039】また、凹版20の材料になるポリイミドフ

ィルム15の加工表面に適切な保護層を設けることによ って、溝21の形成時に発生するプラズマとの相互作用 から凹版20の加工面を保護することができる。これに よって、凹版20の表面の溝21の開口部の変形を防ぐ ことができる。なお、上記目的の保護層の材料として は、例えばポリエチレンテレフタレート (PET)、ポ リカーボネート(PC)、ポリサルフォン(PSF)が 使用できる。

【0040】次に、マスク12をビアホール電極7の形 成用のマスクに交換してレーザビームをさらに照射し て、先の工程で形成された導体パターンの溝21の所定 の位置に、ビアホール電極7に相当する円筒形のピット 22(図5参照)を形成する。ピット22の形成にあた っても溝21の形成時と同様に微細加工が可能であり、 されてポリイミドフィルム15上を照射する。ポリイミ 50 また充填された導電ペーストの転写が容易なように、ピ

ット22がテーパ形状を有するように形成することができる。なお、円筒形以外の形状を有するピット22を形成することも可能である。

【0041】以上の方法によって、幅 10μ m~ 50μ mのラインに相当する深さ 20μ mの溝21及び直径 45μ mのビアホール電極に相当する直径 60μ mのピット22を含む形成されるべき導体パターンに対応する凹版20が形成される。溝21やビット22の深さは、レーザビームの照射時間だけを変化させることによって、ラインの幅(溝21の幅)を変えることなく任意に 0.2μ m単位で変更でき、最適な値にすることができる。また、溝21の幅やピット22の直径はマスクの寸法を変更することで容易に調整することができる。これによって、本発明の方法によれば、導体パターンのライン幅を 10μ m以下にしたり、ビアホールの寸法をそのような微細なラインに対応して小さくしたりすることも可能である。

【0042】なお、上述のように凹版20の材料としてポリイミドフィルム15を用いることによって、本発明によれば、可とう性(フレキシブル性)を凹版20に持たせることができる。そのことによって得られる効果は後述する。

【0043】上記の方法で形成した凹版20を用いて、 導体パターンを被形成物である基板の表面に転写する。 しかしながら、凹版20の材料として使用しているポリイミドフィルム15では、溝21及びピット22の中に 充填されて転写される導電ペーストとポリイミドフィルム15との剥離性が十分ではない。そのため、転写工程において、溝21及びピット22の内部に導電ペーストが残存しやすい。特に、ビアホール電極7に相当するピット22では、その深さが深いために導電ペーストの残存が特に顕著に発生する。その結果、凹版20の形状が十分に転写されない結果になる。したがって、実質的に完全な凹版形状の転写を実現するためには、凹版20の表面、特に溝21及びピット22の表面における剥離層の形成工程220が必要である。

【 0 0 4 4 】 本発明者らは上記問題点を解決するために、ポリイミドフィルム1 5 に対する剥離処理を特に導電ペーストに対する剥離力及び処理層の寿命の点から鋭意検討した。その結果、以下の方法でフッ化炭素系単分子膜の剥離層を形成することが効果的であることを確認した。

【0045】まず、O2アッシャーで酸素プラズマを凹版20の表面に照射して、凹版20の表面に残存する酸素の密度を多くする。一方、n-ヘキサデカン(あるいは、トルエン、キシレン、ジシクロヘキシルでもよい)80%、四塩化炭素10%及びクロロホルム8%の混合溶液中に、フッ化炭素基及びクロロシラン基を含む物質を混ぜた非水性の溶媒、例えばCF3(CF2)7(CH2)2SiC13を約1%の濃度で溶かした溶液を調製

する。この溶液中に、上記のように酸素処理された凹版 20を浸漬して凹版 20の表面に酸化膜を形成する。この酸化膜の表面には水酸基が多数含まれており、フッ化炭素基及びクロロシラン基を含む物質のSiC1基と反応して脱塩素反応が生じる。この結果、凹版 20の表面に共有結合によって化学吸着したフッ化炭素系単分子膜が凹版 20の表面全体にわたって形成される。この単分子膜が剥離層 23(図5参照)として効果的に機能する。

10

【0046】剥離時に大きな剥離力を必要とする箇所は 主に溝21及びピット22の部分であり、剥離層23は 主としてそのような部分に形成されることが望ましい。 一方、先に述べたように凹版20を構成するポリイミド フィルム15のうち、エキシマレーザによる加工で溝2 1及びピット22が形成された部分は、化学的に活性な 状態にある。結果として、上記のフッ化炭素系単分子膜 の剥離層23は、剥離時に大きな剥離力が必要とされる 溝21及びピット22の内部に、より多く結合して形成 される。また、剥離層23と凹版20、すなわち上記の 単分子膜とポリイミドフィルム15との結合は共有結合 であるので両者は非常に強力に結合しており、剥離効果 の耐久性がある。さらに、剥離層23の厚さは100~ 1000オングストロームと薄いために、凹版20の形 状精度に影響を与えず凹版20内部に多くの導電ペース トを充填することができる。

【0047】このように、工程220で凹版20の表面に形成される剥離層23は非常に優れた特性を有するものである。

【0048】次に、工程230として、以上のように表 0 面に剥離層23が形成された凹版20の表面に導電ペーストとしてAgペースト24を塗布する。そして、塗布 後の凹版20表面をスキージ25で掻くことによって、 凹版20表面の余分なAgペースト24を除去するとと もに、溝21及びピット22の中にAgペースト24を 十分に充填する(図5参照)。

【0049】ここで、本発明者らによって行われた使用するスキージ25の材質に関する検討によれば、本発明では以下の理由によりセラミック製のスキージ25の使用が望ましいことが明らかになった。すなわち、樹脂製またはスチール製のスキージは、Agペースト24中に含まれる異物や凹版20の表面に存在するほこりなどによって傷つきやすい。そのため、そのようなスキージ表面の傷によって、凹版20の表面が傷つきやすくなって凹版20の寿命が低減する。それに対して、セラミック製のスキージ25は硬いために、異物やほこりによる先端部の損傷が少ない。さらに、2000番以上の細かい研磨材でセラミック製スキージ25の先端部を滑らかにすれば、長時間の摩耗による消耗も防ぐことができる。この結果、セラミック製のスキージ25は凹版20の表面を傷つけることが少ない。

【0050】次に、Agペースト24を充填した凹版2 O を循環式熱風乾燥機を用いて乾燥させて、Agペース ト24中の有機溶剤を蒸発させる(工程240)。これ によって、凹版20の溝21及びピット22に充填され たAgペースト24を溝21及びピット22の形状によ りフィットさせて、よりシャープな形状を得ることがで きる。なお、乾燥手段は上記に限られるものではない。 【0051】本実施の形態で扱っている凹版20の表面 には比較的深い溝21及びピット22が形成されてお り、特に、ピット22は最大深度60μmと深い。その 10 ため、この乾燥工程240において100℃以上の温度 で凹版20を急速に乾燥させると、溝21及びピット2 2の内部に充填されているAgペースト24に直径5~ 40μmのピンホールが発生しやすい。ライン幅が50 μm以下であるような微細な導体パターンでは、このよ うなピンホールはパターン焼成後のオープン不良の原因 になり、良質な導体パターンの形成を妨げる。

【0052】そこで、本発明の乾燥工程240では、以下のように2段階に凹版20の乾燥を行う。すなわち、まず100℃以下の温度で5分間の予備乾燥を行い、続 20いて温度150℃で5分間の乾燥を行う。それによって、上記のようなピンホールの発生を防ぐことができ、焼成後のオープン不良の発生がない導体パターンの形成が可能になる。

【0053】上記の予備乾燥の実施に換えて、室温から 150℃までの昇温を15℃/分以下の緩やかな温度勾 配で行うことによっても、上記と同様のピンホール発生 の抑制という効果を得ることができる。

【0054】なお、溝21やピット22の内部のAgペースト24を上記の工程240で乾燥または効果させる 30とその柔軟性が失われやすい。その結果、微細なライン幅(例えば100μm以下)を有する導体パターンを転写する場合には、転写時に発生するストレスによってAgペースト24にクラックが発生して焼成後のオープン不良の原因になることがある。このような不都合を防ぐため、本発明ではAgペースト24中に0.1~10wt%の可塑剤を添加する。これによって、Agペースト24が乾燥後にも適度な柔軟性を有するようにして転写工程でのクラックの発生を防ぐことができる。可塑剤としては、フタル酸エステル系の可塑剤、例えば、フタル酸ジメチル、フタル酸ジエチルあるいはフタル酸ジオクチルを使用することができる。

【0055】以上のような乾燥工程240を行うと、有機溶剤の蒸発分に相当するだけ溝21やピット22の内部に充填されているAgペースト24の体積が減少する。そこで、この減少分を補うためにAgペースト24の充填工程及び乾燥工程をもう一度繰り返す。先の乾燥工程240で有機溶剤が蒸発することによって一度硬化したAgペースト24はこの再充填で再び軟化する。この再充填工程250及び再乾燥工程260によって充填50

されているAgペースト24の形状をさらに良好なものに整えるとともに、Agペースト24の厚さを凹版20の溝21及びピット22の深さと同等にすることができる。

12

【0056】凹版20の非パターン部、特にそれぞれの 溝21の間の部分にAgペースト24が残存している と、導体パターンのライン間の短絡不良の原因になり得 る。このようなAgペースト24の残存は、Agペース ト24が粘性を有していて糸をひきやすいためにスキー ジ25による引っかき動作中に糸ひき減少が発生して、 除去されるべき部分にAgペースト24が残存してしま うことによる。しかし、上記のように再充填工程250 において、溝21及びピット22の内部に乾燥状態のA gペースト24が存在する状態で再充填を行うと、非パ ターン部に新規に塗布されたAgペースト24の溶剤が 溝21やピット22の内部の乾燥状態のペーストに吸収 されて、非パターン部に残存していたAgペースト24 の粘度が増加する。この結果、非パターン部のAgペー スト24をスキージで除去する場合に糸ひき減少が発生 せず、この部分の残存ペーストが容易に除去される。そ のためライン間の短絡不良が生じない導体パターンの形 成を行うことができる。

【0057】なお、本実施の形態の説明では、再充填工程250及び再乾燥工程260はそれぞれ1回ずつ繰り返されるが、必要に応じてそれらを2回以上繰り返すことも可能である。

【0058】次に、絶縁基板2上に水溶性樹脂28を形成する。この水溶性樹脂28は転写時に凍結することで接着層として機能する。そして、図6に模式的に示されているようにAgペースト24が充填された溝21及びピット22を有する側の凹版20の表面と水溶性樹脂28とを対向させて、凹版20と絶縁基板2とを貼り合わせる(工程270)。貼り合わせの装置は、図6に示すようにプレス装置のプレス加圧部26を冷凍装置27で囲んだ構造となっている。

【0059】圧力は、1kg/cm²から絶縁基板2の割れが発生する限界圧力値までの範囲に設定することが望ましい。圧力値が上記下限値より小さいと、絶縁基板2の表面にうねりがある場合に、貼り合わせ時の凹版20と絶縁基板2との間が完全に密着せず両者の間に気泡が混入することがある。そのような現象はやはり転写不良につながることがある。

【0060】上記の検討結果を考慮して、本実施の形態では、ラミネート工程270を以下の条件で行う。まず、ポリビニールアルコール樹脂(以下、PVAと略記する)を溶解した水溶性樹脂28を100mm角のアルミナ製の絶縁基板2の表面に塗布する。

【0061】水溶性樹脂28の使用する濃度は、樹脂の種類によって1~50wt%の範囲で最適な濃度があるが、本実施の形態のPVAにおいては15%の濃度が最

10

適であった。次に、このようにPVAの水溶性樹脂28を塗布した絶縁基板2と、Agペースト24を充填してある凹版20とを、図6に示すような加圧部分26を冷凍装置27で囲んだ構造のプレス装置を用いて温度-40℃、圧力20kg/cm²条件下で貼り合わせる。本実施の形態では絶縁基板2の片面のみ水溶性樹脂28を塗布し片面のみ貼り合わせたが、絶縁基板2の両面に水溶性樹脂28を塗布して両面貼り合わせても良い。

【0062】通常、絶縁基板2の表面には、図7(a)または図7(b)に模式的に示すように、最大幅30 μ m程度のうねりが存在する。従来のようにガラス製の凹版29を使用する場合には、図7(b)に示すように、ガラス凹版29の剛性が強すぎるために、凹版29が絶縁基板2のうねり形状に十分に追従できない。そのため、水溶性樹脂28′の厚さを $10\sim50\mu$ m程度に不均一にしてうねりを吸収してラミネートを行わねばならない。このため、水溶性樹脂28′の膜厚のムラによる部分的なパターン変形が発生する。

【0063】しかし、本発明のようにフレキシブル性に富んだ樹脂製の凹版20を使用する構成によれば、図7(a)に示すように、凹版20が絶縁基板2のうねり形状に十分に追従できる。したがって、絶縁基板2のうねり形状には無関係に、均一な膜厚の水溶性樹脂28を絶縁基板2上に形成することができる。

【0064】次に、転写工程280としてラミネートされた凹版20と絶縁基板2とを温度が0℃以下で水溶性樹脂28が凍った状態のまま凹版20を絶縁基板2から剥離させて、氷の凝集力で接着し、導体パターンに応じてパターン化されたAgペースト24の転写を行う。

【0065】このとき、本発明の構成では、凹版20が 30 フレキシブル性に富んでいるために、図8に示されるように凹版20を90°以上の角度に曲げることが可能である。その結果、絶縁基板2からの凹版20の剥離は面と線との剥離になる。このため、必要な剥離力が低減されて凹版20を容易に剥離することができる。一方、従来の剛性が強いガラス製凹版29(図7(b)参照)を用いる場合には、図8に示すような角度まで凹版29を曲げることができず面と面との剥離になるので、大きな剥離力が必要である。また、凹版29の曲げ角度を大きくし過ぎると、凹版29または絶縁基板2にクラックが 40 容易に発生する。したがって、両者の剥離には多大の注意が必要であって作業性が良くなく、作業コストや作業時間の増加を生じていた。

【0066】本発明によれば、例えば溝の幅15μm、深さ20μmのパターンを有する凹版20を用いても溝21の内部でのAgペースト24の残存がなく、上記の溝21の幅と実質的に同じ幅及び溝21の深さと実質的に同じ高さを有する導体パターンを転写・形成することができる。また、ビアホール電極部分に関しては、凹版20のピット22の直径が45μmで深さが60μmの50

14 司様に実質的に完全

場合に、溝21の場合と同様に実質的に完全に対応する 寸法の導体パターンを転写・形成することができる。また、導体ラインとビアホール電極とは同一工程で一体的 に同時に形成されるので、両者の間の電気的接続が確実 に確保される。

【0067】さらに、本実施の形態の高周波用チップイ ンダクタ1のように高周波数領域で使用される電子部品 では、表皮抵抗を小さくして電気的動作特性を向上させ るために導体パターンの表面形状をできるだけシャープ にする必要がある。しかし、従来の銅板やガラス製の凹 版の形成に用いられていた湿式エッチングは等方性のエ ッチングになってしまうのでアスペクト比の高い加工が できない。そのため、パターンが微細になって形成すべ きライン幅が細くなるにつれて深い溝を形成することが できなくなる。また、溝のエッジが鋭利にならずに円み を帯びてしまう。それに対して、本発明のようにエキシ マレーザによって凹版20を加工すれば、鋭角的なエッ ジを有するパターンを形成することができる。さらに、 すでに説明してきたように、転写時に溝21やピット2 2の内部にAgペースト24が残存しないので、鋭角的 な凹版20の形状と同様の鋭利な形状を有するパターン が転写される。したがって、本実施の形態にしたがって 形成された導体パターンは、高周波用導体として優れた 特性を有するものになる。

【0068】0℃以下の状態で凹版20の剥離を行った 後温度150℃の乾燥機で乾燥を行う。この時、水溶性 樹脂28中の水分は急激に蒸発し、接着層は1μm以下 の、Agペースト24を絶縁基板2に固定するのに必要 最低限の接着層となる。

【0069】従来の熱可塑性、熱硬化性樹脂を用いた工法では、凹版から転写させるために膜厚が4μm以上必要となっていた。そのため、後工程の焼成において接着層の熱変化、燃焼ガスによる導体パターンの不良につながる剥離や変形が発生していた。しかしながら、本発明のように、剥離段階では強い接着力が必要なため水を凍らせた時の凝集力を用い、焼成段階では水分を蒸発させることによって、絶縁基板2上にAgペースト24を固定するのに必要最低限の接着層の膜厚にし、焼成時の導体パターンの剥離、変形を防ぐことができる。もちろ

ん、凹版20と絶縁基板2を剥離後の乾燥、焼成の工程 を、絶縁基板2と固定しなくても導体パターンの変形が 起こらない連続した工程とすれば接着層に水溶性樹脂を 用いる必要は無く水のみでもかまわない。

【0070】また、上記のような本発明の方法によれば、導体パターン中のライン3とビアホール電極7とが一体的に同時に形成される。これによって、ライン3とビアホール電極7との間の確実な電気的接続が得られる。

【0071】次に、以上の工程で表面にAgペースト24による導体パターンを形成した絶縁基板2の表面に絶

縁層5を形成するために、ガラスペーストのパターンを印刷して形成する(工程300)。このとき、ビアホール電極7の部分は、マスク径150μmのスクリーン版を使用して粘度20万cpsの結晶化ガラスによって印刷する。これにより、ビアホール電極7の部分には印刷のにじみが発生して、ビアホール電極7の周囲を覆うガラスペーストの厚さが他の部分よりも薄くなる。この結果、ビアホール電極7の周囲にビアホール形状が形成される。

【0072】形成されるビアホールの径はビアホール電極7の形状によって規定されるので、これまでは形成が困難であった直径40μm程度の微少なビアホールであっても、本発明によれば簡単に印刷形成することができる。また、このように微少なビアホールを形成できるので、その分だけスパイラル状のコイルパターンのターン数を増加させることができる。これによって、得られるインダクタンス値を大きくすることができる。

【0073】上記のように印刷されたガラスペーストのパターンを、ピーク温度820℃に10分間保持して焼成し絶縁層5を形成する。このとき、結晶化ガラスを使 20用しているので、焼成中の流動が少なく印刷されたパターン形状が良好に保たれる。

【0074】従来の方法では、多層構造基板の上下層導体パターンを相互に接続するために、絶縁層にスクリーン印刷によるパターニングまたはエッチングなどによって開口部を設けてビアホールとし、さらにそこに電極材料を埋め込んでビアホール電極を形成していた。しかし、この方法では、電極の埋め込み工程における不良によって、上層または/及び下層の導体パターンとビアホール電極との電気的接続が十分でないことによる下層の導体パターンと上層の導体パターンとの間の接続不良が発生することがあった。しかし、本発明による方法では、すでに述べたようにビアホール電極7の形成は下層の導体パターンの形成と一体的に同時に行われるので上記のような接続不良は発生しない。

【0075】さらに、ビアホール電極7の形状・厚さを任意に設定できるので、絶縁層5の表面からビアホール電極7を数μm突き出させるような形状にすることによって、上層導体パターンとビアホール電極7との接続を確実に行うことができる。また、ビアホール電極7の絶 40 縁基板2の表面に垂直な方向の断面形状を台形状にすることによって、寸法的に微細なビアホール電極7であっても後工程で必要とされるだけの接続強度が十分に得られる構造になっている。

【0076】最後に、絶縁層5上にリード電極6を形成する工程310を行う。これは、Agペーストでリード電極6のパターンを絶縁層5の表面にスクリーン印刷して、ピーク温度810℃に10分間保持して焼成を行うことによって形成される。これによって、本実施の形態のチップインダクタ1が製造される。

16

【0077】上記の説明では、チップインダクタ1を例にとって本実施の形態の電子部品の製造方法を説明してきたが、構造できるのはチップインダクタ1に限られるわけではないのはもちろんである。例えば、本発明に従って、チップビーズ、EMIフィルタ、コンデンサなどの他の電子部品あるいは積層構造を有する他の電子部品の電極部分を製造することができる。

【0078】また、上記の説明では、工程210~29 0によって導体パターンを転写して形成した後に工程3 00及び310で絶縁層5及びリード電極6の形成を行っている。あるいは、このような構造が不要な導体パターンを形成する場合には、工程210~290までを行えば所望の導体パターンが得られるのであって工程30 0及び310を行う必要がない。

【0079】また、導体パターンを形成するために使用する導電ペーストの材料としてAgペーストを使用したが、これに限定されるものではない。例えば、Cu,Ni,A1,Auなどの他の金属ペーストまたはレジネートペーストを使用することができる。また、有機溶剤を含む導電ペースト以外にも、紫外線硬化性樹脂または熱硬化性樹脂で硬化後に適当なフレキシブル性を有する樹脂を含有する導電ペーストを使用することもできる。

【0080】凹版20の材料としては、適度の可とう性 (フレキシブル性)を有するものであれば、上述のポリイミドフィルム15の他に、PET、PSF、PC、PEI(ポリエーテルイミド)、PAR(ポリアクリレート)、PEEK(ポリエーテルケトン)などの樹脂シートを使用することができる。また、絶縁基板2上に塗布する水溶性樹脂28の材料には、エチルセルロース系の熱可塑性樹脂あるいはエポキシやアクリル系の熱硬化性 樹脂を使用することができる。

【0081】導体パターンを転写して形成するための被形成物を構成する絶縁基板2の材料は、特定のものに限定されるものではなく、セラミックなど一般的に使用されている材料を用いることができる。あるいは、チタン酸パリウムを主体とする誘電体さらにはフェライトなどの磁性体であってもよい。

【0082】特に、インダクタンス部品を形成する場合には、絶縁基板2及び絶縁層5の少なくとも一方をフェライトなどの磁性体材料で形成することが望ましい。これは、これらの磁性体材料の透磁率によって形成される電子部品のインダクタンス値を向上できるからである。また、コンデンサなどを構成する場合には誘電体材料を用いることが有効である。

【0083】さらに、被形成物をグリーンシートによって形成することができる。凹版20の形成にはエキシマレーザ装置11を使用したが、波長が紫外線領域のレーザビームを発することができるものであれば、色素レーザや自由電子レーザなど他のレーザ源を使用することができる。さらに、上記波長領域でこれらのレーザと同等

の必要なレベルのエネルギー密度を有するビームを発す ることができる光源であれば、レーザ源以外の他のもの を使用することも可能である。

【0084】(実施の形態2)本発明の電子部品の製造 方法の第2の実施の形態を、導体パターンの積層構造を 有するハイブリッドIC(以下、HICと略記する)基 板の製造方法を例にとって、図10~図13を参照して 説明する。なお、図10~図13において、同じ構成要 素には同じ参照符号をつけている。

【0085】図10(a)はHIC基板30の平面図、 図10(b)は図10(a)の11B-11B′線にお けるHIC基板30の切断面である。なお、図10

(a)の右半分は上層の第2導体パターンが形成されて いる部分、左半分は下層の第1導体パターンが形成され ている部分を示している。また、図10(a)及び図1 O(b)はHIC基板30の構成を簡略化して模式的に 示すものであるので、図面中の導体パターンは以下に記 す寸法の値を正確に反映していない。

【0086】HIC基板30は、絶縁基板31上に形成 された下層となる第1導体パターン32、この第1導体 パターン32を覆うように形成された絶縁層33及び絶 縁層33の上に形成された上層となる第2導体パターン 34からなる2層配線構造を有している。第1導体パタ ーン32は、図10(b)からわかるようにスパイラル 状のコイル導体部32a及びそれ以外の導体部32bを 含んでいる。第1導体パターン32と第2導体パターン 34とはビアホール電極35によって接続される。ま た、第1導体パターン34の一部には、ICチップをフ ェースダウン実装するための実装部36が設けられてい

【0087】第1導体パターン32のうちでコイル導体 部32 aに相当する部分には、電気的特性の観点から例 えばピッチ60µm(すなわち、各ラインの幅30µ m、ラインの間隔30µm)で高さ(すなわち、導体膜 の厚さ)35μmの導体パターンが形成される。また、 ビアホール電極35は、絶縁層33の表面から先端が飛 び出して上下層の導体パターン32及び34の間が確実 に接続されるように、高さ(すなわち、導体膜の厚さ) 50μmに形成されている。一方、第2導体パターン3 4のフェースダウン実装部36は、例えば、ピッチ15 Oμm (すなわち、各ラインの幅75μm、ラインの間 隔75 µm) で形成される。

【0088】さらに、このフェースダウン実装部36 は、ICチップをフェースダウン実装する際の実装条件 の制約から、表面の長さ5mmあたりのうねりが3μm以 下であるような平坦度が必要である。この場合、第1導 体パターン32のうちでフェースダウン実装部36の下 に位置する導体部32bの高さ(導体膜の厚さ)が5 μ m以上あると、絶縁層33の表面のうねりが大きくなっ てフェースダウン実装が困難になる。そのために、導体 50 状態で凹版を剥離して、導体パターンを絶縁基板31上

部32bの高さは、5μm以下に抑えられている。

18

【0089】以上のように、本発明の第2の実施の形態 では形成される導体パターンのうちで任意の場所の導体 膜の厚さ(ラインの高さ)を所望のレベルに変えてパタ ーン内に高低差を有する導体パターンが形成される。こ れによって表面の第2導体パターン34の所定の位置へ のICチップのフェースダウン実装を可能にしたHIC 基板30が形成される。

【0090】以下に、本実施の形態のHIC基板30の 10 製造方法を説明する。なお、以下の説明における凹版の 製造などの個々の工程は、形成対象である導体パターン の形状が異なるだけで第1の実施の形態に対応する各工 程と実質的に等価である。したがってその特徴などに関 する説明は省略する。

【0091】まず、第1導体パターン32を形成するた めの凹版を第1の実施の形態の工程210と同様に、第 1 導体パターン32のコイル導体部32a作成用及びそ の他の導体部32b作成用ならびにビアホール電極35 作成用の計3種類のマスクを使用して、エキシマレーザ を用いてポリイミドフィルム上に以下の順序で形成す る。まず、コイル導体部32aのパターンに対応するマ スクを用いて、深さ45μmの溝からなるコイル導体部 32aに相当するパターンを形成する。次に、ビアホー ル電極35のパターンに対応するマスクを用いて、深さ 65μmの溝からなるビアホール電極に相当するパター ンを形成する。最後に、導体部32bのパターンに対応 するマスクを用いて深さ10μmの溝からなる導体部3 2 bに相当するパターンを形成する。上記の各工程で形 成されるそれぞれのパターンの相対的位置を5μm以内 の精度で位置合わせすることによって、第1導体パター 30 ン32を形成するための凹版が形成される。

【0092】このように形成された凹版上に、第1の実 施の形態の工程220と同様にフッ化炭素系単分子膜か らなる剥離層を形成する。次に、第1の実施の形態の工 程230と同様に、セラミック製スキージを用いてAg ペーストを凹版のそれぞれの溝に充填する。その後に、 工程240と同様に循環熱風式乾燥機によってAgペー ストを乾燥して内部に含まれる有機溶剤を蒸発させて、 凹版の溝の内部のペーストを蒸発量に相当する体積分だ け減少させる。さらに、工程250及び260と同様に Agペーストを再充填した後に2段階の乾燥を行う。こ のように、第1の実施の形態と同様にペーストの充填及 び乾燥工程を繰り返すことによって、Agペーストの膜 の厚さをそれぞれの溝の深さと実質的に等しくすること ができる。

【0093】次に、工程270と同様に、水溶性樹脂を 絶縁基板31の表面に塗布して、凹版と絶縁基板31と を圧力25kg/cm²、基板温度-40℃で貼り合わせ る。その後、工程280と同様に基板温度を0℃以下の に転写し、温度150℃の乾燥機で乾燥を行う。さらに、工程290と同様に導体パターンを転写した絶縁基板31をピーク温度850℃まで30℃/minの温度勾配で昇温して焼成処理を行う。

【0094】以上の一連の工程によって、第1の実施の 形態の場合と同様に第1導体パターン32及びビアホー ル電極35が一体的に同時に形成される。

【0095】次に、工程300と同様にガラスペーストのスクリーン印刷によって、絶縁基板31の上に絶縁層33のパターンを形成する。そして、温度840℃で焼10成して絶縁層33を形成する。このとき、第1の実施の形態と同様に結晶化ガラスを使用することによって、焼成中のガラスペーストの流動が少なくスクリーン印刷で形成した形状が比較的良好に保たれている。

【0096】次に、絶縁層33の形成後に第2導体パターン34に相当するパターンをAgペーストのスクリーン印刷によって形成する。そして、ピーク温度810℃に10分間保持する焼成処理によって第2導体パターン34を形成する。

【0097】上記のようにして、導体パターンのうちで 20 スパイラル状のコイル導体部32aに相当する部分のラインの高さ(導体膜の厚さ)を大きくすることで、第1 の実施の形態と同様の電気的特性に優れたコイルが形成される。また、ビアホール電極35の基板表面に垂直な方向での断面を台形状にすることによって、第2導体パターン34と第1導体パターン32との電気的接続を確実に行うことができる。また、第1導体パターン32の厚さを任意の所定の箇所で選択的に薄くすることによって、絶縁層33の表面の平坦化が必要な箇所における所望の平坦化を実現できる。これによって、ICチップの 30 フェースダウン実装が可能なIC基板30が製造される。

【0098】ビアホール電極35の形状は、図10 (b)に示す形状に限られるものではない。例えば、図11に示すHIC基板40のように、ビアホールの一部分のみを埋めるような形状の電極35′を形成することもできる。あるいは、絶縁層33の形成時にビアホールを設けて第1導体パターン32が絶縁層33によって完全に覆われないようにして、第1導体パターン32および第2導体パターン34を接続する電極を第1導体パターン32の形成工程とは別の工程でビアホール内に設けてもよい。

【0099】さらに、上記の説明では2層配線基板を例にとって説明を行ったが、さらに多層化をはかることも可能である。例えば図12に示すHIC基板50では、それぞれが図10(b)あるいは図11に示したHIC基板30および40の一層のパターンに相当する導体パターン51,52及び53が、絶縁基板31の上に3層積層されている。

【0100】さらに、本実施の形態によれば、導体パタ 50

ーンのラインに高低差を設けられるので、図13に示すような絶縁層33の表面形状を有するHIC基板60を形成することもできる。HIC基板60では、下層導体パターンのうち、絶縁層33の表面うねり形状の制御が不要な部分に相当する導体部32aを比較的高いライン(厚い導体膜)によって形成している。一方、ICチップ61をフェースダウン実装する部分のように絶縁層33の表面を平坦にする必要がある部分に相当する導体部32bを比較的低いライン(薄い導体膜)によって形成している。導体部32bの高さが低くなると導体抵抗が増加するが、必要に応じて導体部32bのラインの幅を大きくすることによって、電気的特性に対する悪影響をおさえることができる。

20

【0101】このように、本発明によれば絶縁層33の表面形状に対する要求と導体パターンの電気的特性に対する要求とのトレードオフを考慮して、導体パターンの最適な形状を得ることができる。

【0102】以上のように、本発明の電子部品の製造方法によれば、フレキシブル性に富んだ樹脂シートの表面に形成されるべき導体パターンに対応した溝パターンをエキシマレーザの照射によって形成して凹版を製造する。凹版の溝部パターンに充填される導電ペーストは、被形成物である基板上に実質的に完全に転写される。また、凹版に形成する溝の形状を鋭利にすることができるので、転写後の焼成によって形成される導体パターンの形状も、所望の鋭利な矩形状になる。これによって、形成される導体パターンの電気的特性が改善される。

【0103】サイズの面では、導体パターンのラインの幅が10μm以下で導体膜の厚さが5μm以上であるような微細かつ厚膜の導体パターンの形成が可能である。また、任意の所定の箇所についてのみ導体膜の厚さを厚くする、すなわち導体パターンのラインを高くすることができる。これらの点を応用することによって、本発明の電子部品の製造方法によれば、微細な導体パターンのサイズと実質的に同等な程度に幅が微少なビアホールの形成が可能である。したがって、従来の印刷方法では実現が困難であった小型の積層構造を有する電子部品を低コストで製造することができる。

【0104】なお、以上の第1及び第2の実施の形態の説明では、導体パターンの中に導体膜の厚い部分を作成することが必要とされるタイプの電子部品を例にとって本発明を説明してきた。しかし、それ以外の電子部品、すなわち、特に導体膜の厚さを部分的に異ならせるあるいは厚くすることが必要でないような電子部品に対しても、本発明の電子部品の製造方法を適用できることは明らかである。そのような場合であっても、フレキシブルな樹脂シートから形成された凹版の使用によって転写工程での剥離が容易かつ確実に行えること、また、エキシマレーザによる凹版上のパターン形成により鋭利な矩形状のパターンが形成できることは、製造される電子部品

の特性にとっては十分に有効な改善手段になる。 【0105】

【発明の効果】以上に説明してきたように本発明によれ ば、可とう性に富んだ樹脂からなる凹版を用いることに よって、基板の損傷や導体パターンにおけるクラックや ピンホールの発生を招くことなく、凹版の剥離・導体パ ターンの転写が行われる。また、基板表面にうねりがあ っても凹版がそのうねり形状に追従して変形できるので 基板と凹版とが密着して導電ペーストの転写が良好に行 われる。また、導電ペーストの転写が完全に行えるの で、導体パターン中のライン幅が細く、かつ導体膜の厚 さが厚いパターンであっても良好な形状で形成する。さ らに、凹版への導電ペーストの充填及び乾燥を複数回行 うことによって、乾燥によって導電ペーストの体積が減 少しても充填される導電ペーストの形状を溝の形状によ りフィットさせることが可能になる。また、凹版と基板 との貼り合わせを、水溶性樹脂を凍らせることによっ て、不透明な基板上にも導体パターンの転写を行える。 【0106】また、導電ペーストパターンの転写時のパ ターンと絶縁基板の接着力として、水溶性樹脂を凍らせ 20

10106 また、専電ペーストパターンの転与時のパターンと絶縁基板の接着力として、水溶性樹脂を凍らせその凝集力を利用して転写を行い、その後水分を蒸発させることにより接着層の膜厚を1μm以下の膜厚にし、熱的な焼成時に接着層自身から発生する燃焼ガスの影響による導体パターンの欠陥の発生が抑制される。

【0107】さらに、導体パターンの多層構造化も、容易に実現される。また、導体パターンの任意の箇所の導電膜の厚さを容易に制御することが可能であるので、電気特性や絶縁層の表面の形状などの最適化を図ることができる。例えば、導体パターン中で高く形成された部分を多層構造の各導体パターンを接続する電極として使用30することができる。これによって、導体パターンと電極とが一体的に同時に形成されるので、両者の間の接続不良などの欠陥の発生が防がれる。あるいは、導体パターンを低く形成することによってその部分に対応する絶縁層の表面の平坦度が向上する。これによって、ICチップのフェースダウン実装に必要な平坦部を得ることができる。

【0108】凹版の表面の溝の形成を紫外波長領域の発振周波数を有するレーザ、好ましくはエキシマレーザで行うことによって、凹版上に微細パターンが容易にかつ高精度に形成される。また、溝の深さの変更は、レーザの照射時間の変更によって容易に行われる。さらに、凹版に形成する溝の形状を鋭利にすることができるので、転写後の焼成によって形成される導体パターンの形状も所望の鋭利な矩形状になる。これによって、形成される導体パターンの電気的特性が改善される。

【0109】フッ化炭素系単分子膜の剥離層は凹版の表面に容易に形成される。この剥離層は凹版表面に共有結合によって結合しているために耐久性があり、その結果が持続する。また、単分子層であるために剥離層は薄

く、凹版の形状に影響を与えない。

【0110】導体ペーストに可塑剤を添加して可とう性をもたせることによって、凹版がフレキシブルに屈曲しても追従することが可能になる。さらに、乾燥工程後であっても適度な可とう性を有することができるので、転写時のストレスに十分に対抗でき、導電ペーストにおける欠陥の発生が防がれる。

22

【0111】凹版にテーパをもたせることによって、充填された導電ペーストの剥離・転写をさらに容易にする 10 ことが可能になり、良好な形状の導体パターンが形成される。絶縁材料として誘電材料や磁性材料を使用すれば、形成される電子部品に所望の特性を付与することが可能になる。

【0112】さらに、本発明によって形成される電子部品では、高精度で微細な導体パターンが容易に形成されるとともに多層構造化も容易に行われる。また、各層の導体パターン間を接続する電極を導体パターンと一括して形成することができ、確実な電気的接続を得ることができる。

20 【図面の簡単な説明】

【図1】(a)本発明の一実施の形態におけるチップインダクタの模式的な平面図

(b) (a) の1B-1B' 線における断面図

【図2】 同電子部品の製造方法の工程の流れを示すブロック図

【図3】同要部である凹版の製造工程を模式的に示す概略図

【図4】同要部である凹版表面の溝の模式的に示す断面 図

50 【図5】同要部である凹版への導体ペーストの充填工程 を模式的に示す概略図

【図6】同要部であるラミネート工程を模式的に示す概 略図

【図7】(a)同要部であるポリイミド凹版と絶縁基板 とのラミネート状態を模式的に示す断面図

(b) 従来のガラス凹版と絶縁基板とのラミネート状態 を模式的に示す断面図

【図8】同要部である剥離工程を模式的に示す概略図

【図9】同要部であるビアホールの形状を模式的に示す 断面図

【図10】(a)本発明の他の実施の形態におけるハイブリッド I C基板の模式的な平面図

(b) (a) の11B-11B' 線における断面図

【図11】本発明によって製造される他のハイブリッド IC基板の模式的な断面図

【図12】本発明によって製造されるさらに他のハイブ リッドIC基板の模式的な断面図

【図13】本発明によって製造されるさらに他のハイブ リッドIC基板の模式的な断面図

50 【符号の説明】

【図12】

【図13】

フロントページの続き

(72)発明者 松永 速 大阪府門真市大字門真1006番地 松下電器 産業株式会社内

(72) 発明者 水野 雅之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内