Correction

Partie I

- $$\begin{split} \text{1.a} & \quad \varphi: \mathbb{K}^n \to \mathbb{K}^n \text{ est bien définie.} \\ & \quad \text{Soit } \lambda, \mu \in \mathbb{K} \text{ et } x = (x_1, \ldots, x_n) \in \mathbb{K}^n \text{ et } y = (y_1, \ldots, y_n) \in \mathbb{K}^n \text{ .} \\ & \quad \varphi(\lambda x + \mu y) = \varphi(\lambda x_1 + \mu y_1, \ldots, \lambda x_n + \mu y_n) = (0, \lambda x_1 + \mu y_1, \ldots, \lambda x_{n-1} + \mu y_{n-1}) = \lambda \varphi(x) + \mu \varphi(y) \text{ .} \\ & \quad \text{Donc } \varphi \text{ est bien un endomorphisme de } \mathbb{K}^n \text{ .} \end{split}$$
- $1.b \qquad x=(x_1,...,x_n)\in \ker\varphi \Leftrightarrow \varphi(x)=(0,...,0) \Leftrightarrow x_1=x_2=...=x_{n-1}=0\ .$ Donc suite $\ker\varphi=\left\{(0,...,0,x_n)/x_n\in\mathbb{K}\right\}=\mathrm{Vect}(\vec{u})$ avec $\vec{u}=(0,...,0,1)\neq\vec{o}$. Ainsi $\dim\ker\varphi=1$ et par le théorème du rang $\dim\operatorname{Im}\varphi=n-1$.
- 1.c $\varphi^2(x_1,...,x_n) = (0,0,x_1,...,x_{n-2}),..., \varphi^{n-1}(x_1,...,x_n) = (0,...,0,x_1)$ et $\varphi^n(x_1,...,x_n) = (0,...,0)$. Ainsi $\varphi^n = \tilde{o}$ et φ est donc un endomorphisme nilpotent.
- 2.a $\Delta: \mathbb{K}_n[X] \to \mathbb{K}_n[X]$ est bien définie car si $\deg P \leq n$ alors $\deg P(X+1) \deg P(X) \leq n$.
- 2.b Si P est constant alors P(X+1)=P(X) donc $\Delta(P)=0$ et on a $\deg \Delta(P)=-\infty$. Si P non constant alors on peut écrire : $P=a_pX^p+Q \text{ avec } p=\deg P \text{ , } a_p\in \mathbb{K}^* \text{ et } \deg Q\leq p-1 \text{ .}$ On a alors $\Delta(P)=a_p(X+1)^p-a_pX^p+Q(X+1)-Q(X)=pa_pX^{p-1}+R(X)$ avec $\deg R< p-1$ car la puissance d'exposant p-1 du polynôme Q s'est simplifiée dans la différence Q(X+1)-Q(X) . Par suite $\deg \Delta(P)=p-1$.
- 2.c Par ce qui précède $\ker \Delta$ est formé des polynômes constants et $\operatorname{Im} \Delta \subset \mathbb{K}_{n-1} \big[X \big]$. On a $\dim \ker \Delta = 1$ donc par le théorème du rang $\dim \operatorname{Im} \Delta = \dim \mathbb{K}_n \big[X \big] 1 = n = \dim \mathbb{K}_{n-1} \big[X \big]$ donc $\operatorname{Im} \Delta = \mathbb{K}_{n-1} \big[X \big]$.
- 2.d Pour tout $P \in \mathbb{K}_n[X]$, on a $\deg \Delta(P) \leq \deg P 1$ donc $\deg \Delta^2(P) \leq \deg P 2$,..., $\deg \Delta^{n+1}(P) \leq \deg P n + 1 < 0$ donc $\Delta^{n+1}(P) = 0$. Ainsi $\Delta^{n+1} = \tilde{o}$ et Δ est nilpotent.

Partie II

- 1.a On suppose qu'il existe $n \in \mathbb{N}^*$ tel que $f^n = \tilde{o}$. $(f \circ g)^n = (f \circ g) \circ (f \circ g) \circ \dots \circ (f \circ g) \text{ or } f \text{ et } g \text{ commutent donc } (f \circ g)^n = f^n \circ g^n = \tilde{o} \text{ car } f^n = \tilde{o} \text{ .}$ Ainsi $f \circ g$ est nilpotent.
- $\begin{array}{ll} \text{1.b} & \text{On suppose qu'il existe} \ \ n \in \mathbb{N}^* \ \ \text{tel que} \ \ (f \circ g)^n = \tilde{o} \ . \\ & (g \circ f)^{n+1} = (g \circ f) \circ (g \circ f) \circ \ldots \circ (g \circ f) = g \circ (f \circ g) \circ \ldots \circ (f \circ g) \circ f = g \circ (f \circ g)^n \circ f = \tilde{o} \ . \\ & \text{Ainsi} \ \ g \circ f \ \ \text{est nilpotent.} \end{array}$
- 1.c On suppose qu'il existe $n\in\mathbb{N}^*$ tel que $f^n=\tilde{o}$. $\mathrm{Id}=\mathrm{Id}-f^n=(\mathrm{Id}-f)\circ(\mathrm{Id}+f+\cdots+f^{n-1}) \text{ . En posant } g=\mathrm{Id}+f+\cdots+f^{n-1} \text{ , on a}$ $(\mathrm{Id}-f)\circ g=g\circ(\mathrm{Id}-f)=\mathrm{Id} \ \ \mathrm{donc} \ \ \mathrm{Id}-f \ \ \mathrm{est inversible \ et} \ \ (\mathrm{Id}-f)^{-1}=g \ .$
- 2. Soit $A = \{n \in \mathbb{N}^* / f^n = \tilde{o}\}$. A est une partie de \mathbb{Z} , minorée et non vide car f est supposé nilpotent donc A possède un plus petit élément, c'est notre indice de nilpotence.
- 3.a Puisque $f^{\nu(f)} = \tilde{o}$ on a $N_{\nu(f)} = \ker f^{\nu(f)} = E$.
- 3.b Soit $\vec{x} \in N_p$, on a $f^p(\vec{x}) = \vec{o}$ donc $f^{p+1}(\vec{x}) = f(f^p(\vec{x})) = f(\vec{o}) = \vec{o}$ d'où $\vec{x} \in N_{p+1}$. Ainsi $N_p \subset N_{p+1}$.

3.c Notons que $N_p \subset N_{p+1}$ et $\dim N_p = \dim N_{p+1}$ implique $N_p = N_{p+1}$ Par récurrence sur $q \in \mathbb{N}$.

Pour q = 0: ok

Supposons la propriété établie au rang $q \ge 0$.

On a $N_p=N_{p+q}\subset N_{p+q+1}$. Inversement, soit $\vec{x}\in N_{p+q+1}$. On a $f^{p+q+1}(\vec{x})=\vec{o}$ donc $f^q(\vec{x})\in N_{p+1}=N_p$ d'où $f^{p+q}(\vec{x})=\vec{o}$ i.e. $\vec{x}\in N_{p+q}$. Ainsi $N_{p+q+1}\subset N_{p+q}=N_p$. Par double inclusion l'égalité. Récurrence établie.

3.d La suite $(\dim N_p)_{p\in\mathbb{N}}$ est une suite croissante d'entiers naturels stationnaire égale à $\dim E$ à partir du rang $\nu(f)$. Par 3.c, dès que deux termes consécutifs sont égaux la suite devient stationnaire à partir d'un rang inférieur à $\dim E$ et donc $\nu(f) \leq \dim E$.

Partie III

- 1. $C(f) \subset \mathcal{L}(E)$, $\tilde{o} \in C(f)$ car $\tilde{o} \circ f = f \circ \tilde{o} = \tilde{o}$. Soit $\lambda, \mu \in \mathbb{K}$ et $g, h \in C(f)$. $f \circ (\lambda g + \mu h) = \lambda f \circ g + \mu f \circ h = \lambda g \circ f + \mu h \circ f = (\lambda g + \mu h) \circ f$ donc $\lambda g + \mu h \in C(f)$.
- 2.a $f^{n-1} \neq \tilde{o}$ car n est l'indice de nilpotence de f. Par suite il existe $\vec{x}_0 \in E$ tel que $f^{n-1}(\vec{x}_0) \neq \vec{o}$.
- 2.b Supposons $\lambda_0 \vec{x}_0 + \lambda_1 f(\vec{x}_0) + \dots + \lambda_{n-1} f^{n-1}(\vec{x}_0) = \vec{o}$. En appliquant f^{n-1} à cette relation : $\lambda_0 f^{n-1}(\vec{x}_0) + \vec{o} + \dots + \vec{o} = \vec{o}$. Or $f^{n-1}(\vec{x}_0) \neq \vec{o}$ donc $\lambda_0 = 0$.

En appliquant f^{n-2} à la relation initiale on obtient : $\lambda_1 f^{n-1}(\vec{x}_0) = \vec{o}$ et donc $\lambda_1 = 0$.

On obtient ainsi successivement $\lambda_2 = ... = \lambda_{n-1} = 0$.

La famille \mathcal{B} est donc libre, étant constituée de $n = \dim E$ vecteurs de E, c'est une base de E.

- 2.c $g(\vec{x}_0) = a_0 \vec{x}_0 + a_1 f(\vec{x}_0) + \dots + a_{n-1} f^{n-1}(\vec{x}_0) .$ $g(f(\vec{x}_0)) = f(g(\vec{x}_0)) = a_0 f(\vec{x}_0) + a_1 f^2(\vec{x}_0) + \dots + a_{n-2} f^{n-1}(\vec{x}_0) ...$ $g(f^k(\vec{x}_0)) = f^k(g(\vec{x}_0)) = a_0 f^k(\vec{x}_0) + a_1 f^{k+1}(\vec{x}_0) + \dots + a_{n-k-1} f^{n-1}(\vec{x}_0) ..$
- 2.d Introduisons $h = a_0 \operatorname{Id} + a_1 f + \dots + a_{n-1} f^{n-1} \in \mathcal{L}(E)$. Pour tout $0 \le k \le n-1$, $g(f^k(\vec{x}_0)) = h(f^k(\vec{x}_0))$. g et h prennent mêmes valeurs sur la base $(\vec{x}_0, f(\vec{x}_0), \dots, f^{n-1}(\vec{x}_0))$ donc g = h.
- $\begin{aligned} \text{3.} \qquad & \text{Par l'\'etude ci-dessus}: \text{Ainsi } C(f) \subset \left\{ a_0 \text{ Id} + a_1 f + \dots + a_{n-1} f^{n-1} \mid a_0, \dots, a_{n-1} \in \mathbb{K} \right\}. \\ & \text{Inversement pour } g = a_0 \text{ Id} + a_1 f + \dots + a_{n-1} f^{n-1} \text{ , on a } g \circ f = a_0 f + a_1 f^2 + \dots + a_{n-1} f^n = f \circ g \text{ donc } g \in \mathcal{C} \text{ . Ainsi } \left\{ a_0 \text{ Id} + a_1 f + \dots + a_{n-1} f^{n-1} \mid a_0, \dots, a_{n-1} \in \mathbb{K} \right\} \subset C(f) \text{ .} \\ & \text{Par double inclusion } C(f) = \left\{ a_0 \text{ Id} + a_1 f + \dots + a_{n-1} f^{n-1} \mid a_0, \dots, a_{n-1} \in \mathbb{K} \right\} = \text{Vect}(\text{Id}, f, \dots, f^{n-1}) \text{ .} \end{aligned}$
- 4. La famille $(\mathrm{Id},f,\ldots,f^{n-1})$ est génératrice de C(f). De plus si a_0 $\mathrm{Id}+a_1f+\cdots+a_{n-1}f^{n-1}=\tilde{o}$ alors en évaluant en $\vec{x}_0:a_0\vec{x}_0+a_1f(\vec{x}_0)+\cdots+a_{n-1}f^{n-1}(\vec{x}_0)=\vec{o}$ or la famille $(\vec{x}_0,f(\vec{x}_0),\ldots,f^{n-1}(\vec{x}_0))$ est libre donc $a_0=a_1=\cdots=a_{n-1}=0$. La famille $(\mathrm{Id},f,f^2,\ldots,f^{n-1})$ est donc aussi une famille libre. Finalement $(\mathrm{Id},f,f^2,\ldots,f^{n-1})$ est une base de C(f) et donc $\dim C(f)=n$.