Product Name: Electric Toilet Model Number: 20000002002300 FCCID: 2ACSF20000002002300

1.1 RF Exposure Limit

According to FCC 1.1310 table 1: The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Average Time (minutes)
(WITTZ)	(A)Limits For	 Occupational / Co	ntrol Exposures	
300-1500			F/300	6
1500-100,000	3793		5	6
((B)Limits For Gene	ral Population / U	ncontrolled Expos	ure
300-1500	y	****	f/1500	6
1500-100,000			1.0	30

f = Frequency in MHz

1.2 EUT Operating condition

The EUT transmits at a single frequency and at the highest output power.

1.3 Antenna Gain

The maximum Gain measured in Semi-Anechoic Chamber is 8.0 dBi or 6.310 (numeric).

1.4 Output Power into Antenna & RF Exposure value at distance 20cm:

Calculations for this report are based on highest power measurement and the highest gain of the antenna. Limit for MPE (from FCC part 1.1310 table 1) is 1.0 mW/cm2

eirp = pt
$$\times$$
 gt = $(E \times d)^2/30$

Where:

Pt = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unitless),

 $E = electric field strength in V/m, --- <math>10^{(dBuV/m)/20)}/10^6$

d = measurement distance in meters (m) --- 3m

So Pt = $(E \times d)^2/30 \times gt$

Maximum Field strength: 20000002002300: 110.340 dBuV/m @3m --10525MHz

Refer to 708881474503-00 FCC Part 15C 15.245 Test Report page 13.

Ant gain = 8dBi; so Ant numeric gain=6.310

So, for 20000002002300, Pt= $\{[(10^{(110.340/20)}/10^6) \times 3]^2/30 \times 1\} \times 1000$ mW = 32.443 mW

Highest Pout is 32.443 mW, highest antenna gain (in linear scale) is 6.310~R is 20cm, and f = 10525~MHz

FCC

Note: This calculation is assuming 100% duty cycle, which would not be the case in normal operation.

Uncontrolled Exposures - Limit (mW/cm²) =	1	
Pd =	0.040727	mW/cm ²
Uncontrolled Margin to Limit=	0.959273	mW/cm ²

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

1.5 Sample Calculation

The Friis transmission formula: $Pd = (Pout*G) / (4*\pi*R^2)$

Where:

 $Pd = power density in mW/cm^2$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

 $\pi \approx 3.1416$

R = distance between observation point and center of the radiator in cm