回帰分析

回帰モデルの考え方と推定

村田 昇

講義の内容

・ 第1回:回帰モデルの考え方と推定

• 第2回: モデルの評価

・ 第3回: モデルによる予測と発展的なモデル

回帰分析の考え方

回帰分析

• ある変量を別の変量で説明する関係式を構成する

• 関係式: 回帰式 (regression equation)

- 説明される側:目的変数,被説明変数,従属変数,応答変数

- 説明する側: 説明変数, 独立変数, 共変量

• 説明変数の数による分類

- 一つの場合: **単回帰** (simple regression)

- 複数の場合: **重回帰** (multiple regression)

一般の回帰の枠組

• 説明変数: $x_1, ..., x_p$ (p 次元)

• 目的変数: y(1次元)

• 回帰式: y を $x_1,...,x_p$ で説明するための関係式

$$y = f(x_1, \dots, x_p)$$

• 観測データ: n 個の $(y, x_1, ..., x_p)$ の組

$$\{(y_i, x_{i1}, \dots, x_{ip})\}_{i=1}^n$$

線形回帰

- 任意の f では一般的すぎて分析に不向き
- f として1次関数を考える

ある定数 $\beta_0, \beta_1, \ldots, \beta_p$ を用いた式:

$$f(x_1,\ldots,x_p) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$$

- 1 次関数の場合:線形回帰 (linear regression)
- 一般の場合: 非線形回帰 (nonlinear regression)
- 非線形関係は新たな説明変数の導入で対応可能
 - 適切な多項式: $x_j^2, x_j x_k, x_j x_k x_l, \ldots$
 - その他の非線形変換: $\log x_i, x_i^{\alpha}, \dots$
 - 全ての非線形関係ではないことに注意

回帰係数

• 線形回帰式

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

- $-\beta_0,\beta_1,\ldots,\beta_p$: 回帰係数 (regression coefficients)
- β₀: 定数項 / 切片 (constant term / intersection)
- 線形回帰分析 (linear regression analysis)
 - 未知の回帰係数をデータから決定する分析方法
 - 決定された回帰係数の統計的な性質を診断

回帰の確率モデル

- 回帰式の不確定性
 - データは一般に観測誤差などランダムな変動を含む
 - 回帰式がそのまま成立することは期待できない
- 確率モデル: データのばらつきを表す項 ϵ_i を追加

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \quad (i = 1, \dots, n)$$

- $-\epsilon_1,\ldots,\epsilon_n$: 誤差項 / 撹乱項 (error / disturbance term)
 - * 誤差項は独立な確率変数と仮定
 - * 多くの場合, 平均 0, 分散 σ^2 の正規分布を仮定
- 推定 (estimation): 観測データから回帰係数を決定

回帰係数の推定

残差

- 残差 (residual): 回帰式で説明できない変動
- 回帰係数 $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_n)^\mathsf{T}$ を持つ回帰式の残差

$$e_i(\beta) = y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_D x_{iD})$$
 $(i = 1, \dots, n)$

• 残差 $e_i(\beta)$ の絶対値が小さいほど当てはまりがよい

最小二乗法

• 残差平方和 (residual sum of squares)

$$S(\boldsymbol{\beta}) = \sum_{i=1}^{n} e_i(\boldsymbol{\beta})^2$$

• 最小二乗推定量 (least squares estimator)

残差平方和 $S(\beta)$ を最小にする β

$$\hat{\boldsymbol{\beta}} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p)^{\mathsf{T}} = \arg\min_{\boldsymbol{\beta}} S(\boldsymbol{\beta})$$

行列の定義

• デザイン行列 (design matrix)

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

ベクトルの定義

• 目的変数、誤差、回帰係数のベクトル

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}$$

- y, ϵ は n 次元ベクトル
- βは p+1 次元ベクトル

行列・ベクトルによる表現

• 確率モデル

$$y = X\beta + \epsilon$$

• 残差平方和

$$S(\boldsymbol{\beta}) = (\boldsymbol{v} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{v} - X\boldsymbol{\beta})$$

解の条件

• 解 **β** では残差平方和の勾配は零ベクトル

$$\frac{\partial S}{\partial \boldsymbol{\beta}}(\boldsymbol{\beta}) = \left(\frac{\partial S}{\partial \beta_0}(\boldsymbol{\beta}), \frac{\partial S}{\partial \beta_1}(\boldsymbol{\beta}), \dots, \frac{\partial S}{\partial \beta_p}(\boldsymbol{\beta})\right)^{\mathsf{T}} = \boldsymbol{0}$$

演習

問題

• 残差平方和 $S(\beta)$ をベクトル β で微分して解の条件を求めなさい

解答例

• 残差平方和を展開しておく

$$S(\boldsymbol{\beta}) = (y - X\boldsymbol{\beta})^{\mathsf{T}} (y - X\boldsymbol{\beta})$$
$$= y^{\mathsf{T}} y - y^{\mathsf{T}} X \boldsymbol{\beta} - (X\boldsymbol{\beta})^{\mathsf{T}} y + (X\boldsymbol{\beta})^{\mathsf{T}} X \boldsymbol{\beta}$$
$$= y^{\mathsf{T}} y - y^{\mathsf{T}} X \boldsymbol{\beta} - \boldsymbol{\beta}^{\mathsf{T}} X^{\mathsf{T}} y + \boldsymbol{\beta}^{\mathsf{T}} X^{\mathsf{T}} X \boldsymbol{\beta}$$

• ベクトルによる微分を行うと以下のようになる

$$\frac{\partial S}{\partial \boldsymbol{\beta}}(\boldsymbol{\beta}) = -(\boldsymbol{y}^{\mathsf{T}}\boldsymbol{X})^{\mathsf{T}} - \boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} + (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} + (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{\mathsf{T}})\boldsymbol{\beta}$$
$$= -2\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} + 2\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\boldsymbol{\beta}$$

• したがって β の満たす条件は以下となる

$$-2X^{\mathsf{T}}y + 2X^{\mathsf{T}}X\beta = 0 \quad \sharp \ \emptyset$$
$$X^{\mathsf{T}}X\beta = X^{\mathsf{T}}y$$

補足

• 成分ごとの計算は以下のようになる

$$\frac{\partial S}{\partial \beta_j}(\beta) = -2\sum_{i=1}^n \left(y_i - \sum_{k=0}^p \beta_k x_{ik} \right) x_{ij} = 0$$
ただし、 $x_{i0} = 1$ $(i = 1, \dots, n)$, $j = 0, 1, \dots, p$

$$\sum_{i=1}^n x_{ij} \left(\sum_{k=0}^p x_{ik} \beta_k \right) = \sum_{i=1}^n x_{ij} y_i \quad (j = 0, 1, \dots, p)$$
 x_{ij} は行列 X \mathcal{O} (i, j) 成分であることに注意

正規方程式

正規方程式

• 正規方程式 (normal equation)

$$X^{\mathsf{T}}XB = X^{\mathsf{T}}\mathbf{v}$$

- X^TX: Gram 行列 (Gram matrix)
 - (p+1)×(p+1) 行列(正方行列)
 - 正定対称行列(固有値が非負)

正規方程式の解

- 正規方程式の基本的な性質
 - 正規方程式は必ず解をもつ(一意に決まらない場合もある)
 - 正規方程式の解は最小二乗推定量であるための必要条件
- 解の一意性の条件
 - Gram 行列 X^TX が **正則**
 - X の列ベクトルが独立(後述)
- 正規方程式の解

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

最小二乗推定量の性質

解析の上での良い条件

- 最小二乗推定量がただ一つだけ存在する条件
 - X^TX が正則
 - X^TX の階数が p+1
 - X の階数が p+1
 - X の列ベクトルが 1 次独立

これらは同値条件

解析の上での良くない条件

- 説明変数が1次従属: **多重共線性** (multicollinearity)
- 多重共線性が強くならないように説明変数を選択
 - X の列 (説明変数) の独立性を担保する
 - 説明変数が互いに異なる情報をもつように選ぶ
 - 似た性質をもつ説明変数の重複は避ける

推定の幾何学的解釈

• あてはめ値 / 予測値 (fitted values / predicted values)

$$\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}} = \hat{\beta}_0 X_{\text{\tiny $\hat{\mathfrak{I}}$ \tiny 0 }\text{\tiny $\hat{\mathfrak{I}}$ \tiny $\hat{\mathfrak{I}}$$

- 最小二乗推定量 ŷ の幾何学的性質
 - L[X]: X の列ベクトルが張る \mathbb{R}^n の線形部分空間
 - -X の階数が p+1 ならば L[X] の次元は p+1 (解の一意性)
 - ŷ は y の L[X] への直交射影
 - 残差 (residuals) $\hat{\epsilon} = y \hat{y}$ はあてはめ値 \hat{y} に直交

 $\hat{\boldsymbol{\epsilon}} \cdot \hat{\boldsymbol{y}} = 0$

Figure 1: n = 3, p + 1 = 2 の場合の最小二乗法による推定

線形回帰式と標本平均

- $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})^\mathsf{T}$: i 番目の観測データの説明変数
- 説明変数および目的変数の標本平均

$$\bar{\boldsymbol{x}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i, \qquad \qquad \bar{\boldsymbol{y}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{y}_i,$$

• $\hat{\beta}$ が最小二乗推定量のとき以下が成立

$$\bar{y} = (1, \bar{x}^{\mathsf{T}})\hat{\boldsymbol{\beta}}$$

演習

問題

- 最小二乗推定量について以下を示しなさい
 - 残差の標本平均が0となる

目的変数や残差のベクトルについて以下を示せばよい

$$\mathbf{1}^{\mathsf{T}}(\boldsymbol{y} - \boldsymbol{\hat{y}}) = \mathbf{1}^{\mathsf{T}}\boldsymbol{\hat{\epsilon}} = 0$$

ただし $\mathbf{1} = (1, ..., 1)^{\mathsf{T}}$ とする

- 回帰式が標本平均を通る

$$\bar{y} = (1, \bar{\boldsymbol{x}}^{\mathsf{T}}) \boldsymbol{\hat{\beta}}$$

解答例

• 残差の表現を整理する

$$\hat{\epsilon} = y - \hat{y} = y - X\hat{\beta}$$
$$= y - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

左から X^T を乗じる

$$\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} - \boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} = \boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} - \boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} = 0$$

- 行列 X の 1 列目が 1 であることより明らか
- 説明変数の標本平均をデザイン行列で表す

$$\mathbf{1}^{\mathsf{T}}X = n(1, \bar{\boldsymbol{x}}^{\mathsf{T}})$$

• したがって以下が成立する

$$n(1, \bar{\mathbf{x}}^{\mathsf{T}})\hat{\boldsymbol{\beta}} = \mathbf{1}^{\mathsf{T}} X \hat{\boldsymbol{\beta}}$$
$$= \mathbf{1}^{\mathsf{T}} \hat{\mathbf{y}} = \mathbf{1}^{\mathsf{T}} \mathbf{y}$$
$$= n\bar{\mathbf{y}}$$

残差の分解

最小二乗推定量の残差

• 観測値と推定値 β による予測値の差

$$\hat{\epsilon}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_p x_{ip}) \quad (i = 1, \dots, n)$$

- 誤差項 $\epsilon_1, \ldots, \epsilon_n$ の推定値
- 全てができるだけ小さいほど良い
- 予測値とは独立に偏りがないほど良い
- 残差ベクトル

$$\hat{\boldsymbol{\epsilon}} = \boldsymbol{y} - \hat{\boldsymbol{y}} = (\hat{\epsilon}_1, \hat{\epsilon}_2, \dots, \hat{\epsilon}_n)^{\mathsf{T}}$$

平方和の分解

- $\bar{y} = \bar{y}1 = (\bar{y}, \bar{y}, \dots, \bar{y})^T$: 標本平均のベクトル
- いろいろなばらつき

-
$$S_v = (y - \bar{y})^T (y - \bar{y})$$
: 目的変数のばらつき

-
$$S = (y - \hat{y})^{\mathsf{T}} (y - \hat{y}) : 残差のばらつき (\hat{\epsilon}^{\mathsf{T}} \hat{\epsilon})$$

-
$$S_r = (\hat{\mathbf{y}} - \bar{\mathbf{y}})^\mathsf{T} (\hat{\mathbf{y}} - \bar{\mathbf{y}})$$
: あてはめ値 (回帰) のばらつき

• 3 つのばらつき (平方和) の関係

$$(\mathbf{y} - \bar{\mathbf{y}})^{\mathsf{T}} (\mathbf{y} - \bar{\mathbf{y}}) = (\mathbf{y} - \hat{\mathbf{y}})^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) + (\hat{\mathbf{y}} - \bar{\mathbf{y}})^{\mathsf{T}} (\hat{\mathbf{y}} - \bar{\mathbf{y}})$$

$$S_{v} = S + S_{r}$$

演習

問題

- 以下の関係式を示しなさい
 - あてはめ値と残差のベクトルが直交する

$$\hat{\mathbf{y}}^{\mathsf{T}}(\mathbf{y} - \hat{\mathbf{y}}) = \hat{\mathbf{y}}^{\mathsf{T}} \hat{\boldsymbol{\epsilon}} = 0$$

- 残差平方和の分解が成り立つ

$$S_{v} = S + S_{r}$$

解答例

• 残差の表現を整理する

$$\hat{\epsilon} = y - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$
$$= (I - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})y$$

左からŷを乗じる

$$\hat{\mathbf{y}}^{\mathsf{T}} \hat{\boldsymbol{\epsilon}} = \hat{\boldsymbol{\beta}}^{\mathsf{T}} X^{\mathsf{T}} (I - X(X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}}) \mathbf{y}$$
$$= \hat{\boldsymbol{\beta}}^{\mathsf{T}} (X^{\mathsf{T}} - X^{\mathsf{T}} X(X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}}) \mathbf{y}$$
$$= \hat{\boldsymbol{\beta}}^{\mathsf{T}} (X^{\mathsf{T}} - X^{\mathsf{T}}) \mathbf{y} = 0$$

• 以下の関係を用いて展開すればよい

$$y-ar{y}=y-\hat{y}+\hat{y}-ar{y}$$
ただし $ar{y}=ar{y}1$

• このとき以下の項は0になる

$$(\hat{\mathbf{y}} - \bar{\mathbf{y}})^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) = \hat{\mathbf{y}}^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) - \bar{\mathbf{y}} \mathbf{1}^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) = 0$$

決定係数

回帰式の寄与

• ばらつきの分解

$$S_y$$
 (目的変数) = S (残差) + S_r (あてはめ値)

• 回帰式で説明できるばらつきの比率

(回帰式の寄与率) =
$$\frac{S_r}{S_v}$$
 = $1 - \frac{S}{S_v}$

• 回帰式のあてはまり具合を評価する代表的な指標

決定係数 $(R^2$ 値)

• 決定係数 (R-squared)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

• 自由度調整済み決定係数 (adjusted R-squared)

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- 不偏分散で補正している

解析の事例

実データによる例

- 気象庁より取得した東京の気候データ
 - 気象庁 https://www.data.jma.go.jp/gmd/risk/obsdl/index.php
 - データ https://noboru-murata.github.io/multivariate-analysis/data/tokyo_weather.csv

気温に影響を与える要因の分析

• データの概要

日付	気温	降雨	日射	降雪	風向	風速	気圧	湿度	雲量
2023-08-01	26.0	12.5	8.02	0	S	2.5	1010.6	88	10.0
2023-08-02	28.9	0.0	25.99	0	S	3.7	1009.0	75	5.0
2023-08-03	30.2	0.0	25.35	0	S	4.0	1007.2	69	2.8
2023-08-04	31.3	0.0	26.66	0	S	3.0	1004.1	65	1.8
2023-08-05	30.4	0.0	25.58	0	S	4.3	1002.1	71	2.8
2023-08-06	28.6	4.0	21.20	0	SSE	4.1	1001.6	81	6.5
2023-08-07	29.4	0.0	21.38	0	SSE	3.7	1003.6	76	9.0
2023-08-08	30.1	1.0	19.59	0	SSE	3.3	1006.1	74	7.3
2023-08-09	28.2	8.0	12.29	0	SE	3.7	1009.5	90	9.8
2023-08-10	29.5	0.0	24.48	0	SE	3.6	1009.6	73	4.8
2023-08-11	29.5	0.0	21.29	0	NE	3.1	1005.1	72	5.8
2023-08-12	29.7	0.0	21.25	0	SE	2.5	1001.4	71	5.3
2023-08-13	27.4	48.5	10.71	0	ENE	2.2	1002.2	94	9.8
2023-08-14	28.6	22.5	16.57	0	ENE	3.0	1002.2	88	9.5
2023-08-15	28.6	14.5	17.29	0	SSE	4.2	1002.6	85	9.3
2023-08-16	28.1	4.5	15.13	0	S	4.6	1003.3	86	9.8
2023-08-17	29.9	0.0	20.64	0	S	3.6	1004.7	77	5.3
2023-08-18	30.0	0.0	24.71	0	SSE	3.2	1007.2	77	2.5
2023-08-19	30.3	0.0	23.15	0	SSE	2.4	1009.2	76	5.5
2023-08-20	30.3	0.0	19.61	0	SSE	2.4	1009.3	73	8.3
2023-08-21	29.8	0.0	16.12	0	SE	2.6	1008.8	76	4.8

2023-08-22	28.6	10.5	9.69	0	SE	2.4	1009.1	87	7.8
2023-08-23	29.4	2.0	22.24	0	SSE	4.0	1010.1	82	8.5
2023-08-24	29.5	0.0	17.13	0	S	3.9	1010.9	79	6.8
2023-08-25	29.6	0.0	18.16	0	S	3.8	1009.2	74	2.0
2023-08-26	28.1	3.5	11.73	0	SE	2.0	1008.1	81	5.3
2023-08-27	28.0	1.0	16.13	0	N	2.3	1005.6	78	6.8
2023-08-28	29.2	0.0	14.91	0	SSW	2.8	1005.4	74	10.0
2023-08-29	29.4	0.0	20.75	0	S	3.4	1010.6	74	3.0
2023-08-30	29.6	0.0	21.09	0	S	3.5	1013.1	74	7.3
2023-08-31	29.0	0.0	20.68	0	S	4.3	1014.1	74	10.0

• 気温を説明する5種類の線形回帰モデルを検討

- モデル1: 気温 = F(気圧)

- モデル2: 気温 = F(日射)

- モデル3: 気温 = F(気圧, 日射)

- モデル4: 気温 = F(気圧, 日射, 湿度)

- モデル 5: 気温 = F(気圧, 日射, 雲量)

分析の視覚化

• 関連するデータの散布図

Figure 2: 散布図

- モデル1の推定結果
- モデル2の推定結果

Figure 3: モデル 1

Figure 4: モデル 2

Figure 5: モデル 3

- モデル3の推定結果
- 観測値とあてはめ値の比較

モデルの比較

• 決定係数 (R², Adjusted R²)

	モデル 1		モデル 2		モデル 3		モデル 4		モデル 5	
Characteristic	Beta	\mathbf{SE}^{I}	Beta	\mathbf{SE}^{I}	Beta	\mathbf{SE}^{I}	Beta	\mathbf{SE}^{I}	Beta	\mathbf{SE}^{I}
気圧	0.00	0.054			0.01	0.035	-0.01	0.031	0.01	0.034
日射			0.16	0.024	0.16	0.025	0.08	0.034	0.13	0.030
湿度							-0.08	0.025		
雲量									-0.09	0.057
R ²	0.000		0.608		0.609		0.709		0.641	
Adjusted R ²	-0.034		0.595		0.581		0.676		0.602	

 $^{^{}I}$ SE = Standard Error

次回の予定

- ・ 第1回:回帰モデルの考え方と推定
- 第2回:モデルの評価
- ・ 第3回: モデルによる予測と発展的なモデル

Figure 6: モデルの比較