Příklad 1 - normální rozdělení $\sigma_{0.9}$ kritérium

Uvažujme standardní normální rozdělení N(0,1). Definujme $\sigma_{0.9}$ kritérium jako podmínku pro pravděpodobnost $P\{x \in [-\sigma_{0.9}, +\sigma_{0.9}]\} = 0.9$ neboli v intervalu $\pm \sigma_{0.9}$ v okolí očekávané hodnoty se nachází 90% naměřených hodnot náhodné proměnné x.

- (a) Vypočítejte hodnotu parametru $\sigma_{0.9}$. K výpočtu využijte hodnoty error funkce, jejíž graf je zobrazený na obrázku.
- (b) S jakou přesností (ve smyslu maximální chyby) je určena hodnota $\sigma_{0.9}$?
- (c) Zapište výsledek ve správném tvaru pomocí očekávané hodnoty a standardní odchylky veličiny $\sigma_{0.9}$).

Poznámka: Rozmyslete si, s jakou přesností odečítáte z grafu erf(x) hodnoty náhodné proměnné x; neboli $x \in [x_0 - \Delta, x_0 + \Delta]$.

(10 bodů)

Příklad 2 - Geiger-Müllerův počítač

Geiger-Müllerův počítač umístěný v blízkosti radioaktivního vzorku cesia obsahujícího izotop 137 Cs naměřil během deseti minut 7 200 událostí (rozpadů β^-).

Vypočítejte pravděpodobnost, že během jedné sekundy detekujeme právě 8 událostí. Jaká je pravděpodobnost, že během dvou sekund detekujeme právě 16 událostí?

Poznámka: Radionuklid 137 Cs má dlouhý poločas rozpadu (cca 30 let) a vzorek obsahuje obrovské množství těchto radioaktivních jader.

(5 bodů)