nex up previou

Next: Optimization Up: Solving Non-Linear Equations Previous: Newton-Raphson method (univariate)

Newton-Raphson method (multivariate)

Before discussing how to solve a multivariate systems, it is helpful to review the <u>Taylor series expansion of an N-D function</u>.

The methods discussed above for solving a 1-D equation f(x) = 0 can be generalized for solving an N-D multivariate equation system:

$$\begin{cases} f_1(x_1, \dots, x_N) = f_1(\mathbf{x}) = 0 \\ f_2(x_1, \dots, x_N) = f_2(\mathbf{x}) = 0 \\ \dots \\ f_N(x_1, \dots, x_N) = f_N(\mathbf{x}) = 0 \end{cases}$$

where we have defined

$$\mathbf{x} = [x_1, \cdots, x_N]^T$$

We can further define a vector function

$$\mathbf{f}(\mathbf{x}) = [f_1(\mathbf{x}), \cdots, f_n(\mathbf{x})]^T$$

so that the equation system above can be written as

$$f(x) = 0$$

When N=2, the solution of the equation above can be geometrically explained. The equation $f_i(x_1,x_2)=0$ represents contour curves in the (x_1,x_2) plane that partition the plane into regions in which the function $f_1(x_1,x_2)$ takes either positive or negative values. The solutions that satisfy both equations are the intersections of the contour curves of both $f_1(x_1,x_2)$ and $f_2(x_1,x_2)$.

Newton-Raphson method

The Newton-Raphson method can also be generalized for solving an N-D system $\mathbf{f}(\mathbf{x}) = \mathbf{0}$. We first consider the Taylor expansions of the N functions:

$$f_i(\mathbf{x} + \delta \mathbf{x}) = f_i(\mathbf{x}) + \sum_{j=1}^N \frac{\partial f_i(\mathbf{x})}{\partial x_j} \delta x_j + O(\delta \mathbf{x}^2) \approx f_i(\mathbf{x}) + \sum_{j=1}^N \frac{\partial f_i(\mathbf{x})}{\partial x_j} \delta x_j, \qquad (i = 1, \dots, N)$$

These N equations can be written in vector form:

$$\frac{\mathbf{f}(\mathbf{x} + \delta \mathbf{x})}{=} \begin{bmatrix} f_1(\mathbf{x} + \delta \mathbf{x}) \\ \vdots \\ f_N(\mathbf{x} + \delta \mathbf{x}) \end{bmatrix} \approx \begin{bmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_N(\mathbf{x}) \end{bmatrix} + \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_N}{\partial x_1} & \cdots & \frac{\partial f_N}{\partial x_N} \end{bmatrix} \begin{bmatrix} \delta x_1 \\ \vdots \\ \delta x_N \end{bmatrix} \\
= \mathbf{f}(\mathbf{x}) + \mathbf{J}_{\mathbf{f}}(\mathbf{x}) \delta \mathbf{x}$$

where $J_f(\mathbf{x})$ is an $N \times N$ Jacobian matrix defined over the function vector $f(\mathbf{x})$ defined as:

$$\mathbf{J_f}(\mathbf{x}) = \frac{d}{d\mathbf{x}}\mathbf{f}(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_N}{\partial x_1} & \cdots & \frac{\partial f_N}{\partial x_N} \end{bmatrix}$$

with the ijth element being $\frac{\partial f_i/\partial x_j}{\partial f_i/\partial x_j}$. Note that the ith row vector of $\mathbf{J}(\mathbf{x})$ is the gradient vector of the ith function $f_i(\mathbf{x})$:

$$\mathbf{g}[f_i(\mathbf{x})] = \left[\frac{\partial f_i(\mathbf{x})}{\partial x_1}, \cdots, \frac{\partial f_i(\mathbf{x})}{\partial x_N}\right]^T$$

Like in the 1-D case, if all equations are linear, the error terms $O_i(\delta \mathbf{x}^2)$ are zero and we have

$$f(x + \delta x) = f(x) + J(x)\delta x$$

By assuming $\mathbf{f}(\mathbf{x} + \delta \mathbf{x}) = 0$, we can find the roots as $\mathbf{x} + \delta \mathbf{x}$, where $\underline{\delta \mathbf{x}}$ can be obtained by solving the equation above:

$$\delta \mathbf{x} = \mathbf{J}(\mathbf{x})^{-1}[\mathbf{f}(\mathbf{x} + \delta \mathbf{x}) - \mathbf{f}(\mathbf{x})] = -\mathbf{J}(\mathbf{x})^{-1}\mathbf{f}(\mathbf{x})$$

and the root can be found from any starting point X as

$$\mathbf{x} + \delta \mathbf{x} = \mathbf{x} - \mathbf{J}(\mathbf{x})^{-1} \mathbf{f}(\mathbf{x})$$

If the equations are nonlinear, this result is only an approximation of the real root, which can be improved iteratively:

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \delta \mathbf{x}_n = \mathbf{x}_n - \mathbf{J}(\mathbf{x}_n)^{-1} \mathbf{f}(\mathbf{x}_n)$$

The iteration moves \mathbf{x}_n in the N-D space from an initial position $\mathbf{x}_0 = [x_1, \cdots, x_N]^T$ in such a direction that all functions $f_i(\mathbf{x})$ ($i = 1, \cdots, N$) are reduced.

Newton's method can be further generated to solve over-constrained non-linear equation systems with N unknowns but M>N equations. In the case the inverse matrix of the $M\times N$ Jacobian matrix $\underline{\mathbf{J}}$ does not exist, but the $N\times M$ pseudo-

inverse $\mathbf{J}^- = (\mathbf{J}^T \mathbf{J})^{-1} \mathbf{J}^T$ can be used in the iteration:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \mathbf{J}_n^- \mathbf{f}(\mathbf{x}_n)$$

or

$$\begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}_{n+1} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}_n - \begin{bmatrix} & \mathbf{J}^{-}(\mathbf{x}_n) \\ & \vdots \\ & f_M(\mathbf{x}_n) \end{bmatrix}$$

The iteration attempts to find a solution in the nonlinear least squares sense. This is essentially the <u>Gauss-Newton algorithm</u> to be considered later.

The Newton-Raphson method assumes the analytical expressions of all partial derivatives $\partial f_i(\mathbf{x})/\partial x_j$ can be made available based on the functions $\mathbf{f}(\mathbf{x})$, so that

the Jacobian matrix $\underline{\mathbf{J}}$ can be computed. However, when this is not the case, it is still possible to estimate the ijth component of $J_{ij} = \partial f_i/\partial x_j$ in $\underline{\mathbf{J}}$ given \mathbf{x}_n and

 \mathbf{x}_{n+1} in two consecutive iterations:

$$J_{ij} = \frac{\partial f_i(x_1, \dots, x_N)}{\partial x_j} \approx \frac{f_i(x_1^{(n)}, \dots, x_j^{(n+1)}, \dots, x_N^{(n)}) - f_i(x_1^{(n)}, \dots, x_N^{(n)})}{x_j^{(n+1)} - x_j^{(n)}}$$

This can be considered as the secant method generalized from 1-D to N-D, based on two initial guesses.

Example 1

$$\begin{cases} 3x_1 - \cos(x_2x_3) - 3/2 = 0\\ 4x_1^2 - 625x_2^2 + 2x_3 - 1 = 0\\ 20x_3 + e^{-x_1x_2} + 9 = 0 \end{cases}$$

$$\mathbf{J} = \begin{bmatrix} 3 & x_3 \sin(x_2 x_3) & x_2 \sin(x_2 x_3) \\ 8 x_1 & -1250 x_2 & 2 \\ -x_2 e^{-x_1 x_2} & -x_1 e^{-x_1 x_2} & 20 \end{bmatrix}$$

n	x	error
0	(1.000000, 1.000000, 1.000000)	6.207e + 02
1	(1.232701, 0.503132, -0.473253)	1.541e + 02
2	(0.832592, 0.251806, -0.490636)	3.884e + 01
3	(0.833238, 0.128406, -0.494702)	9.517e + 00
4	(0.833275, 0.069082, -0.497147)	2.200e + 00
5	(0.833281, 0.043585, -0.498206)	4.063e - 01
6	(0.833282, 0.036117, -0.498517)	3.486e - 02
7	(0.833282, 0.035343, -0.498549)	3.741e - 04
8	(0.833282, 0.035335, -0.498549)	4.498e - 08
9	(0.833282, 0.035335, -0.498549)	5.551e-16

Example 2

$$\mathbf{f}(\mathbf{x}) = \mathbf{0}, \qquad \begin{cases} f_1(\mathbf{x}) = x_1^2 - 2x_1 + x_2^2 - x_3 + 1 = 0 \\ f_2(\mathbf{x}) = x_1 x_2^2 - x_1 - 3x_2 + x_2 x_3 + 2 = 0 \\ f_3(\mathbf{x}) = x_1 x_3^2 - 3x_3 + x_2 x_3^2 + x_1 x_2 = 0 \end{cases}$$

$$\mathbf{J} = \left[\begin{array}{cccc} 2x_1 - 2 & 2x_2 & -1 \\ x_2^2 - 1 & 2x_1x_2 - 3 + x_3 & x_2 \\ x_3^2 + x_2 & x_3^2 + x_1 & 2x_1x_3 - 3 + 2x_2x_3 \end{array} \right]$$

With $\mathbf{x}_0 = [1, \ 2, \ 3]^T$, we get a root:

n	x	error
0	(1.000000, 2.000000, 3.000000)	e = 2.064e + 01
1	(0.102564, 1.641026, 2.564103)	e = 4.303e + 00
2	(1.520623, 1.411129, 0.198590)	e = 2.689e + 00
3	(1.941234, 0.771343, 0.894651)	e = 1.217e + 00
4	(1.067366, 1.191171, 0.483525)	e = 1.144e + 00
5	(1.268254, 0.951822, 0.880281)	e = 3.323e - 01
6	(0.958988, 1.033836, 0.968126)	e = 1.171e - 01
7	(1.001713, 1.000070, 0.997178)	e = 4.162e - 03
8	(1.000001, 1.000001, 1.000000)	e = 6.701e - 06
9	(1.000000, 1.000000, 1.000000)	e = 8.481e - 12

With $\mathbf{x}_0 = [0,\ 0,\ 0]^T$, we get another root:

n	x	error
0	(0.000000, 0.000000, 0.000000)	e = 2.236e + 00
1	(0.500000, 0.500000, 0.000000)	e = 5.728e - 01
2	(0.839506, 0.475309, 0.135802)	e = 1.175e - 01
3	(0.985821, 0.418485, 0.150694)	e = 2.639e - 02
4	(1.054172, 0.387153, 0.147169)	e = 6.088e - 03
5	(1.085652, 0.373392, 0.145578)	e = 1.264e - 03
6	(1.096933, 0.368489, 0.145029)	e = 1.618e - 04
7	(1.098881, 0.367643, 0.144935)	e = 4.817e - 06
8	(1.098943, 0.367617, 0.144932)	e = 4.837e - 09

Broyden's method

Recall that the secant method approximate the derivative $f'(x_{n+1})$ based on $\delta x_n = x_{n+1} - x_n$ and $f(x_n) = f(x_{n+1}) - f(x_n)$:

$$\hat{f}'(x_{n+1}) = \frac{f(x_{n+1}) - f(x_n)}{x_{n+1} - x_n} = \frac{\delta f(x_n)}{\delta x_n} = \hat{f}'(x_n) + \frac{\delta f(x_n) - \hat{f}'(x_n)\delta x_n}{\delta x_n}$$

Here $\hat{f}'(x_n)\delta x_n$ is the estimated value of $\delta f(x_n)$ based on the old derivate $\hat{f}'(x_n)$,

which is different from the more accurate estimate $\hat{f}'(x_{n+1})\delta x_n$ based on $\hat{f}'(x_{n+1})$. The difference between these two estimates, when divided by δx_n , approximates the difference between $\hat{f}'(x_{n+1})$ and $\hat{f}'(x_n)$, i.e., the update formula of $\hat{f}'(x_{n+1})$ given above.

The updated $\hat{f}'(x_{n+1})$ can then be used for updating x_{n+1} :

$$x_{n+1} = x_n - \frac{f(x_n)}{\hat{f}'(x_n)}$$

Broyden's method, one of the <u>quasi-Newton methods</u>, can be considered as a generalization of this secant method for solving an N-D system $f(\mathbf{x}) = \mathbf{0}$. Instead of

assuming the availability of the true Jacobian matrix $\hat{\mathbf{J}}$, here we estimate the next Jacobian $\hat{\mathbf{J}}_{n+1}$ by an iteration based on the current one. Let

$$\delta \mathbf{x}_n = \mathbf{x}_{n+1} - \mathbf{x}_n, \qquad \delta \mathbf{f}_n = \mathbf{f}_{n+1} - \mathbf{f}_n$$

then

$$\hat{\mathbf{J}}_{n+1} = \hat{\mathbf{J}}_n + \frac{(\delta \mathbf{f}_n - \hat{\mathbf{J}}_n \delta \mathbf{x}_n) \delta \mathbf{x}_n^T}{||\delta \mathbf{x}_n||^2}$$

With J_n available, we have the iteration for the solution update as before:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \hat{\mathbf{J}}_n^{-1} \mathbf{f}(\mathbf{x}_n)$$

Here the inverse of \mathbf{J}_n needs to be computed in each iteration. A better method is to estimate \mathbf{J}_n^{-1} directly. Specifically we apply the Sherman-Morrison formula

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^T)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}}$$

to the iteration above for J_n , with

$$\mathbf{u} = \frac{\delta \mathbf{f}_n - \mathbf{J}_n \delta \mathbf{x}_n}{||\delta \mathbf{x}_n||^2}, \quad \mathbf{v} = \delta \mathbf{x}_n, \quad \mathbf{A} = \mathbf{J}_n$$

and get

$$\hat{\mathbf{J}}_{n+1}^{-1} = \hat{\mathbf{J}}_n^{-1} - \frac{\hat{\mathbf{J}}_n^{-1} \left(\delta \mathbf{f}_n - \hat{\mathbf{J}}_n \delta \mathbf{x}_n\right) / ||\delta \mathbf{x}_n||^2 \delta \mathbf{x}_n^T \hat{\mathbf{J}}_n^{-1}}{1 + \delta \mathbf{x}_n^T \hat{\mathbf{J}}_n^{-1} \left(\delta \mathbf{f}_n - \hat{\mathbf{J}}_n \delta \mathbf{x}_n\right) / ||\delta \mathbf{x}_n||^2} = \hat{\mathbf{J}}_n^{-1} + \frac{\left(\delta \mathbf{x}_n - \hat{\mathbf{J}}_n^{-1} \delta \mathbf{f}_n\right) \delta \mathbf{x}_n^T \hat{\mathbf{J}}_n^{-1}}{\delta \mathbf{x}_n^T \hat{\mathbf{J}}_n^{-1} \delta \mathbf{f}_n}$$

nex up previou

Next: Optimization Up: Solving Non-Linear Equations Previous: Newton-Raphson method (univariate)

Ruye Wang 2015-02-12