Propositional Logic, Part 2

Lecture 15 Chapter 7, Sections 7.4

Jim Rehg
College of Computing
Georgia Tech

February 15, 2016

Elements of Propositional Logic

Must be sound and complete

```
Syntax – Defines the allowable sentences
  Atomic sentences – Single proposition P, Q, \dots either True or False
  Complex sentences – Built using connectives, e.g. P \wedge Q
Semantics – Identifies sentences that are True in a model
  Truth tables for connectives
Logical Reasoning – Entailment: KB = \alpha
  \alpha is entailed by KB if in every model where KB is True, \alpha is True
Inference Algorithm – Method for deriving sentences
  KB \vdash \alpha (\alpha is derived from KB)
```

Intro to AI, Georgia Tech © Jim Rehg

2016

Soundness and Completeness

Soundness

Inference engine only derives entailed sentences (truth-preserving) $KB \vdash \alpha$ implies $KB \models \alpha$

Completeness

Inference engine can derive any sentence that is entailed $KB \models \alpha$ implies $KB \vdash \alpha$

These properties are important because they allow us to ignore the semantics and just manipulate symbols

Prepositional Logic: Syntax

Propositional symbols P, Q, R, S, ...

Logical Connectives

Negation – If P is sentence, $\neg P$ is also sentence Conjunction (AND) – If P and Q sentences, $P \land Q$ is sentence Disjunction (OR) – If P and Q sentences, $P \lor Q$ is sentence Implication – If P and Q sentences, $P \Rightarrow Q$ is sentence Biconditional – If P and Q sentences, $P \Leftrightarrow Q$ is sentence

Propositional Logic: Semantics

Model (possible world) m:

Assignment of truth values to symbols (e.g. $m = \{P = T, Q = F\}$) If sentence α is true in model m, then m satisfies α and $m \in M(\alpha)$ e.g. if $\alpha = P \land Q$ then $M(\alpha) = \{\{P = T, Q = T\}\}$

Sentence α :

 α is valid (or is a tautology) if it is true in every model (e.g $P \vee \neg P$) α is a contradiction if it is false in every model (e.g. $P \wedge \neg P$) α is satisfiable if it is true in at least one model

Entailment

$$\beta \vDash \alpha$$
 if and only if $M(\beta) \subseteq M(\alpha)$

Propositional Logic: Truth Tables

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P\Rightarrow Q$	$P \Leftrightarrow Q$
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

Example Knowledge Base (KB)

$$KB = (A \lor B) \land (\neg C \lor A)$$

A	В	С	KB
F	F	F	F
F	F	<i>T</i>	F
F	T	F	T
F	<i>T</i>	<i>T</i>	F
T	F	F	<i>T</i>
T	F	<i>T</i>	T
T	<i>T</i>	F	T
T	T	T	T

Entailment

$$KB = (A \lor B) \land (\neg C \lor A)$$

C	 Δ	Λ	
J	 Α	/ \	L

Does $KB \models S$?

A	B	C	KB	S
F	F	F	F	F
F	F	T	F	F
F	T	F	T	F
F	T	T	F	F
T	F	F	<i>T</i>	F
T	F	T	T	T
T	T	F	T	F
T	T	T	T	T

KB | ← S because KB is true but S is false

Entailment

$$KB = (A \lor B) \land (\neg C \lor A)$$

 $S = A \vee B \vee C$

Does KB = S?

A	B	C	KB	S
F	F	F	F	F
F	F	T	F	T
F	T	F	Τ	T
F	T	T	F	T
T	F	F	T	T
T	F	T	T	T
T	T	F	T	T
T	T	T	T	T

 $KB \mid = S$ because Sis true for all the assignments for which KBis true

Sentences in Wumpus World

Let $P_{i,j}$ be True if there is pit in (i,j)

Let $B_{i,j}$ be True if there is breeze in (i,j)

Knowledge Base

Pits cause breezes in adjacent squares

$$R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

$$R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

Percepts

$$R_1: \neg P_{1,1} \quad R_4: \neg B_{1,1} \quad R_5: B_{2,1}$$

What does our KB say about $P_{2,2}$?

Entailment by Enumeration

Model

KB Sentences

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	false	false	false	false	false	false	true	true	true	true	false	false
false	false	false	false	false	false	true	true	true	false	true	false	false
i	:		!	1	:	į.	i	:	1	:	;	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	<u>true</u>
false	true	false	false	false	true	true	true	true	true	true	true	<u>true</u>
false	true	false	false	true	jaise	false	true	false	false	true	true	false
÷	:	:	1 1 1	:	:		:	:	ŧ	:	:	:
true	true	true	true	true	true	true	false	true	true	false	true	false

 $\neg P_{1,2}$ entailed

 $\neg P_{2,1}$ entailed

 $\neg P_{2,2}$ is not entailed

Entailment by Enumeration

Sound: Yes, if it says S is entailed then it is

Complete: Yes, enumerating everything will find all entailed sentences

Complexity: $O(2^N)$ in number of symbols Exponential in the size of the input, so not practical

Another Example: Autonomous Car

Knowledge-base describing when the car should brake?

```
( PersonInFrontOfCar ⇒ Brake )

∧ ((( YellowLight ∧ Policeman ) ∧ (¬Slippery )) ⇒ Brake )

∧ ( Policecar ⇒ Policeman )

∧ ( Snow ⇒ Slippery )

∧ ( Slippery ⇒ ¬Dry )

∧ ( RedLight ⇒ Brake )
```

Observation from sensors:

```
YellowLight

∧ ¬RedLight

∧ ¬Snow

∧ Dry

∧ Policecar

∧ ¬PersonInFrontOfCar
```

Model Checking

Idea:

- To test whether α ⊨ β , enumerate all models and check truth of α and β .
- α entails β if no model exists in which α is true and β is false (i.e. (α ∧ ¬β) is unsatisfiable)

Proof by Contradiction:

 $\alpha \models \beta$ if and only if the sentence $(\alpha \land \neg \beta)$ is unsatisfiable.

Model Checking:

- Variables: One for each propositional symbol
- Domains: {true, false}
- Objective Function: $(\alpha \land \neg \beta)$
- Which search algorithm works best?

Questions?