Course Review

Logistic Regression

- In classification, the target variable $y \in \{0, 1\}$
- In linear regression, the output f(x) = xw fall in the range $[-\infty, +\infty]$

 The output value of linear regression is not compatible with the target values in classification tasks Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Logistic regression

$$f(\mathbf{x}) = \sigma(\mathbf{x}\mathbf{w})$$

Linear regression

$$f(x) = xw$$

• The output range is transformed from $[-\infty, +\infty]$ to [0, 1]

Examples for Logistic Regression

Image category classification

Spam e-mails detection

 Document automatic categorization

Transaction fraud detection

Cost Function

Goal

- \triangleright If the true label y=1, we want $f(x)=\sigma(xw)$ to be close to 1
- If the true label y = 0, we want $f(x) = \sigma(xw)$ to be close to 0
- To achieve this goal, we can define a cost function similar to that in regression

$$L(\mathbf{w}) = (\sigma(\mathbf{x}\mathbf{w}) - \mathbf{y})^2$$

Alternatively, we can also seek to minimize

$$L(\mathbf{w}) = \begin{cases} -\log(\sigma(\mathbf{x}\mathbf{w})) & \text{if } y = 1\\ -\log(1 - \sigma(\mathbf{x}\mathbf{w})) & \text{if } y = 0 \end{cases}$$

The objective above can be equivalently written as

$$L(\mathbf{w}) = -y \log(\sigma(\mathbf{x}\mathbf{w})) - (1 - y) \log(1 - \sigma(\mathbf{x}\mathbf{w}))$$

If
$$y = 1$$
, $L(w)$ reduces to $L(w) = -\log(\sigma(xw))$;
Otherwise, if $y = 0$, $L(w)$ reduces to $L(w) = -\log(1 - \sigma(xw))$

The loss above is called the cross-entropy loss

Bernoulli Distribution

The Bernoulli distribution

$$p(z) = \begin{cases} \pi, & \text{if } z = 1\\ 1 - \pi, & \text{if } z = 0 \end{cases}$$

where $\pi \in [0, 1]$ is the probability of z being 1

• The p(z) can be concisely expressed as

$$p(z) = \pi^z \cdot (1 - \pi)^{1-z}$$

where z = 0 or 1

Binary Classification

 To achieve binary classification, the conditional probability is assumed to be a Bernoulli distribution

$$p(y|\mathbf{x}) = (\sigma(\mathbf{x}\mathbf{w}))^{y} \cdot (1 - \sigma(\mathbf{x}\mathbf{w}))^{1-y}$$
 where $\pi = \sigma(\mathbf{x}\mathbf{w})$; and $y = 0$ or 1

The training objective is to maximize the log-likelihood function

$$\log p(y|\mathbf{x}) = y \log \sigma(\mathbf{x}\mathbf{w}) + (1-y) \log(1 - \sigma(\mathbf{x}\mathbf{w}))$$

Recall that the logistic regression minimizes

cross entropy
$$\triangleq -y \log \sigma(xw) - (1-y) \log(1-\sigma(xw))$$

Maximizing $\log p(y|x)$ is equivalent to minimize the cross entropy

The Maximum-Margin Objective

 To perform well on unseen data, the intuition is to find a hyperplane that makes the margin as large as possible

When the margin is large, we can expect that an unseen sample has a larger chance to be categorized correctly

• The margin of a hyperplane under a dataset is given by the minimum distance, *i.e.*,

$$Margin = \min_{\ell} \frac{y^{(\ell)} \cdot (\mathbf{w}^T \mathbf{x}^{(\ell)} + b)}{\|\mathbf{w}\|}$$

• Thus, the maximum-margin classifier is to find the w^* and b^* that maximize the margin, *i.e.*,

$$\mathbf{w}^*$$
, $b^* = \arg\max_{\mathbf{w}, b} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{\ell} \left[y^{(\ell)} \cdot \left(\mathbf{w}^T \mathbf{x}^{(\ell)} + b \right) \right] \right\}$

But how to optimize is unknown

The Transformed Objective Function

- Optimizing another objective function that shares the same optima as the original problem
 - If w^* and b^* is the optima to $\frac{1}{\|w\|} \min_{\ell} [y^{(\ell)} \cdot (w^T x^{(\ell)} + b)]$, then κw^* and κb^* must also be the optima for all $\kappa \in \mathbb{R}$
 - There must exist an optima κw^* and κb^* that satisfy the constraints

$$y^{(\ell)} \cdot (\kappa \mathbf{w}^{*T} \mathbf{x}^{(\ell)} + \kappa b^*) \ge 1 \text{ for all } \ell = 1, 2, \dots, n$$

Among all w, b that satisfy $y^{(\ell)} \cdot (w^T x^{(\ell)} + b) \ge 1$ for all ℓ , the w and b with the smallest $||w||^2$ must be the optima w^* and b^* that maximizes

$$\frac{1}{\|\boldsymbol{w}\|} \min_{\ell} \left[y^{(\ell)} (\boldsymbol{w}^T \boldsymbol{x}^{(\ell)} + b) \right]$$

 Therefore, the maximum-margin hyperplane can be found by solving the optimization problem below

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|^2$$

$$s.t.: y^{(\ell)} \cdot (\boldsymbol{w}^T \boldsymbol{x}^{(\ell)} + b) \ge 1, \quad \text{for } \ell = 1, 2, \dots, N$$

- This is a quadratic optimization problem. Its optimal solution can be found by *numerical methods* efficiently
- With the optimal w^* and b^* , an unseen data x can be classified as

$$\hat{y}(\mathbf{x}) = sign(\mathbf{w}^{*T}\mathbf{x} + b^*)$$

Soft Margin Classification

- What if the training set is not linearly separable?
- Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called soft.

Soft Margin Classification Mathematically

The old formulation:

```
Find w and b such that \Phi(\mathbf{w}) = \mathbf{w}^T \mathbf{w} is minimized and for all (\mathbf{x}_i, y_i), i=1..n: y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1
```

Modified formulation incorporates slack variables:

```
Find w and b such that \Phi(\mathbf{w}) = \mathbf{w}^T \mathbf{w} + C\Sigma \xi_i is minimized and for all (\mathbf{x}_i, y_i), i=1..n: y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_{i,}, \xi_i \ge 0
```

Parameter *C* can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

Ensemble Methods Overview

- It is difficult to learn a strong classifier that can always classify instances correctly
- But it is easy to learn a lot of 'weak' classifiers

A weak classifier may not perform well on the whole dataset, but may perform well on a fraction of samples, *e.g.*, some may be good at recognizing 'cat', while some others may be good at recognizing 'dog'

- If weak classifiers perform well on different fractions of samples, it
 is possible to obtain a strong classifier by combining these weak
 classifiers in an appropriate way
- Two questions
 - 1) How to produce these weak classifiers?
 - 2) How to combine the weak classifiers?

Two Types of Combining Methods

- 1) Unweighted average
 - Majority vote
- 2) Weighted average
 - Give better classifiers bigger weighting

For example, consider a two-class classification problem {-1, 1}

Two basic classifiers:
$$\hat{y}_1 = sign(f_1(x))$$
 $\hat{y}_2 = sign(f_2(x))$

Final classifiers:
$$\hat{y}_e = sign(\alpha_1 f_1(x) + \alpha_2 f_2(x))$$

Remark: The weak classifiers could be of any kind, e.g. decision trees, SVM, neural networks, logistic regression etc.

Deriving Weak Classifiers

- We don't know how to obtain classifiers that perform well on different fractions of samples
- Instead, we seek to obtain classifiers that are as diverse as possible, that is, encouraging their predictions to be uncorrelated.
 For example,
 - 1) Creating subsets of the training dataset by bootstrapping
 - Randomly draw N' samples from the N-sample training dataset with replacement
 - \triangleright Repeat the above procedure K times, generating subsets S_1, S_2, \cdots, S_K
 - 2) Training a decision tree on each of the subset S_k

3) Combine *K* decision trees into one by majority voting

At testing, pass test data through all K classifiers, using the majority voting result as the final prediction

Overview of Boosting Methods

Weak classifiers derivation

Repeat the following steps several times

- 1) Identifying the examples that are incorrectly classified
- 2) Re-training the classifier by *giving more weighting to the misclassified examples*
- Combining

Combing the prediction results of each classifier by *weighted* average

How to weight the examples and prediction results is the key

- Adaboost algorithm
 - 1) Initialize the weight of examples as $\omega_0^{(n)} = \frac{1}{N}$ for $n = 1, \dots, N$
 - 2) For the k-th iteration, train a classifier $h_k(x)$ with the training examples weighted by $w_{k-1}^{(n)}$
 - 3) Evaluate the weighted classification error

$$\epsilon_{k} = \frac{\sum_{n=1}^{N} \omega_{k-1}^{(n)} I(y_{i} \neq h_{k}(x_{n}))}{\sum_{n=1}^{N} \omega_{k-1}^{(n)}}$$

4) Determine the vote stake of the k-th classifier

$$\alpha_k = \frac{1}{2} \ln \left(\frac{1 - \epsilon_k}{\epsilon_k} \right)$$

5) Update the weights of examples as

$$\omega_k^{(n)} = \omega_{k-1}^{(n)} \exp\{-y_i h_k(\boldsymbol{x}_i) \alpha_k\}$$

K-Means Algorithm

• Designate K centers μ_k for $k=1,\cdots,K$, and then evaluate the distance between every data $x^{(n)}$ and all centers μ_k

• Data $x^{(n)}$ is assigned to the cluster k that leads to smallest distance

$$r_{nk} = \begin{cases} 1, & if \ k = \arg\min_{j} \|\mathbf{x}^{(n)} - \boldsymbol{\mu}_{j}\|^{2} \\ 0, & otherwise \end{cases}$$

Updating the centers using the mean of samples within a cluster

 $\boldsymbol{\mu}_k \leftarrow \frac{\sum_{n=1}^N r_{nk} \, \boldsymbol{x}_n}{\sum_{n=1}^N r_{nk}}$

Two questions

- 1) What does the algorithm really do?
- 2) Is the algorithm guaranteed to converge?

Repeating the assignment and center updating steps above

Issue: Number of Clusters

 How to set the value for K is extremely important to the final clustering result

The distance J decreases as the number of clusters K increases.
 Thus, we cannot determine K by seeking the minimum of J

- 1) One possible method is to choose the elbow point (here K=2)
- 2) Another possible method is to determine the best K value according to the performance of downstream applications

Why the dimensionality could be reduced?

The high-dimensional data often resides on a low-dimensional intrinsic space approximately

3-dimensional data lies on a 2-dimensional plane approximately

2-dimensional data lies on a 1-dimensional line approximately

The key is to find *the principal directions* under which the dimensions of data can be significantly reduced

Finding the Best Directions

• Objective: Given data $\{x^{(n)}\}_{n=1}^N$ from \mathbb{R}^D , finding the orthogonal directions u_i under which the original data can be best represented

$$\mathbf{x}^{(n)} \approx \sum_{i=1}^{M} \alpha_i^{(n)} \mathbf{u}_i$$

• Suppose the best directions $\{u_i\}_{i=1}^M$ are given, what are the best coefficients $\alpha_i^{(n)}$?

$$\alpha_i^{(n)} = \boldsymbol{u}_i^T \boldsymbol{x}^{(n)}$$

Instead of representing the data $x^{(n)}$ directly, we first center the data to the origin, *i.e.*, subtracting each data point $x^{(n)}$ by its mean

$$x^{(n)} - \overline{x}$$
, where $\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x^{(n)}$

• The objective can now be described as minimizing the error between $x^{(n)} - \overline{x}$ and its best approximant $\widetilde{x}^{(n)} = \sum_{i=1}^{M} \alpha_i^{(n)} u_i$ in the $span(u_1, \cdots, u_M)$

$$E = \frac{1}{N} \sum_{n=1}^{N} \left\| \left(\boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}} \right) - \widetilde{\boldsymbol{x}}^{(n)} \right\|^{2}$$

where the best coefficient α_i is known equal to

$$\alpha_i = \boldsymbol{u}_i^T (\boldsymbol{x}^{(n)} - \overline{\boldsymbol{x}})$$

Content-based Recommendations

Main idea: Recommend items to customer **x** similar to previous items rated highly by **x**

Example:

Movie recommendations

 Recommend movies with same actor(s), director, genre, ...

Websites, blogs, news

Recommend other sites with "similar" content

Plan of Action

Item Profiles

For each item, create an item profile

Profile is a set (vector) of features

- Movies: author, title, actor, director,...
- **Text:** Set of "important" words in document

How to pick important features?

- Usual heuristic from text mining is TF-IDF
 (Term frequency * Inverse Doc Frequency)
 - Term ... Feature
 - Document ... Item

User Profiles and Prediction

User profile possibilities:

- Weighted average of rated item profiles
- Variation: weight by difference from average rating for item

•

Prediction heuristic:

• Given user profile \boldsymbol{x} and item profile \boldsymbol{i} , estimate $u(\boldsymbol{x}, \boldsymbol{i}) = \cos(\boldsymbol{x}, \boldsymbol{i}) = \frac{\boldsymbol{x} \cdot \boldsymbol{i}}{||\boldsymbol{x}|| \cdot ||\boldsymbol{i}||}$

Pros: Content-based Approach

+: No need for data on other users

- No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
- No first-rater problem
- +: Able to provide explanations
- Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

- -: Finding the appropriate features is hard
- E.g., images, movies, music
- -: Recommendations for new users
- How to build a user profile?
- -: Overspecialization
- Never recommends items outside user's content profile
- People might have multiple interests
- Unable to exploit quality judgments of other users

User-User Collaborative Filtering

Consider user x

Find set *N* of other users whose ratings are "similar" to *x*'s ratings

Estimate x's ratings based on ratings of users in N

Finding "Similar" Users

Let r_x be the vector of user x's ratings

Cosine similarity measure

•
$$sim(\boldsymbol{x}, \boldsymbol{y}) = cos(\boldsymbol{r}_{\boldsymbol{x}}, \boldsymbol{r}_{\boldsymbol{y}}) = \frac{r_{\boldsymbol{x}} \cdot r_{\boldsymbol{y}}}{||r_{\boldsymbol{x}}|| \cdot ||r_{\boldsymbol{y}}||}$$

$$r_x$$
, r_y as points:
 $r_x = \{1, 0, 0, 1, 3\}$
 $r_y = \{1, 0, 2, 2, 0\}$

Problem: Treat missing ratings as "negative", even smaller than than low ratings, e.g. 1

Pearson correlation coefficient

• S_{xy} = items rated by both users x and y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}} \quad \text{r_x, r_y ... avg.}$$
rating of x, y

Item-Item Collaborative Filtering

So far: User-user collaborative filtering

Another view: Item-item

- For item *i*, find other similar items
- Estimate rating for item i based on ratings for similar items
- Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

```
s_{ij}... similarity of items i and j r_{xj}...rating of user x on item j N(i;x)... set items rated by x similar to i
```

Pros of Collaborative Filtering

+ Works for any kind of item

No feature selection needed

Question

- The item-item CF methods look similar to the content-based recommendation methods, both evaluating the similarities between items and then recommending the similar ones
- But why the CF methods don't have the issue of feature selection for items?

Cons of Collaborative Filtering

- Cold Start:

Need enough users in the system to find a match

- Sparsity:

- The user/ratings matrix is sparse
- Hard to find users that have rated the same items

- First rater:

 Cannot recommend an item that has not been previously rated, e.g., new items

- Popularity bias:

- Tend to recommend popular items
- Cannot recommend items to someone with unique taste

Hybrid Methods

Implement two or more different recommenders and combine predictions

Perhaps using a linear model

Add content-based methods to collaborative filtering

- Item profiles for new item problem
- Demographics to deal with new user problem

EM Algorithm

Algorithm

E-step: Evaluating the expectation

$$Q(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)}) = \mathbb{E}_{p(\boldsymbol{z}|\boldsymbol{x}; \boldsymbol{\theta}^{(t)})}[\log p(\boldsymbol{x}, \boldsymbol{z}; \boldsymbol{\theta})]$$

M-step: Updating the parameter

$$\boldsymbol{\theta}^{(t+1)} = \arg \max_{\boldsymbol{\theta}} \mathcal{Q}(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)})$$

- Key integrant in EM
 - 1) The posteriori distribution $p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)})$
 - 2) The expectation of joint distribution $\log p(x, z; \theta)$ w.r.t. the posteriori
 - 3) Maximization

Re-representing the Log-likelihood

The log-likelihood can be reformulated as

$$\log p(\mathbf{x}; \boldsymbol{\theta}) = \sum_{\mathbf{z}} q(\mathbf{z}) \log p(\mathbf{x})$$

$$= \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}) q(\mathbf{z})}{p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}) q(\mathbf{z})}$$

$$= \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})}{q(\mathbf{z})} + \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{q(\mathbf{z})}{p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta})}$$

$$= \mathcal{L}(q, \boldsymbol{\theta}) + KL(q||p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta})), \quad \text{for } \forall \boldsymbol{\theta}, q(\mathbf{z})$$

Remark: The KL-divergence is used to *measure the distance* between two distributions q and p, which is defined as

$$KL(q||p) \triangleq \int q(z) \log \frac{q(z)}{p(z)} dz \ge 0$$

• Thus, with the parameter at the t-th iteration denoted as $\boldsymbol{\theta}^{(t)}$, we have

$$\log p(\mathbf{x}; \boldsymbol{\theta}^{(t)}) = \mathcal{L}(q, \boldsymbol{\theta}^{(t)}) + KL(q||p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)}))$$

This equality holds for any distribution q(z)

• Different q(z) will lead to different decomposition of $\log p(x; \theta^{(t)})$

Theoretical Justification for EM

$$\log p(\mathbf{x}; \boldsymbol{\theta}^{(t)}) = \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}^{(t)})}{q(\mathbf{z})} + \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{q(\mathbf{z})}{p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)})}$$

• If we set $q(\mathbf{z}) = p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)})$, then we have

$$KL(q||p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)})) = 0$$

Thus, we have

$$\log p(\mathbf{x}; \boldsymbol{\theta}^{(t)}) = \mathcal{L}(p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)}), \boldsymbol{\theta}^{(t)})$$
$$= \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)}) \log \frac{p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}^{(t)})}{p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)})}$$

$$\log p(\mathbf{x}; \boldsymbol{\theta}^{(t)}) = \mathcal{L}(p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)}), \boldsymbol{\theta}^{(t)})$$
$$= \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)}) \log \frac{p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}^{(t)})}{p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)})}$$

• If we update θ as

$$\boldsymbol{\theta}^{(t+1)} = \arg \max_{\boldsymbol{\theta}} \mathcal{L}(p(\boldsymbol{z}|\boldsymbol{x}; \boldsymbol{\theta}^{(t)}), \boldsymbol{\theta}),$$

then we must have the relation

$$\log p(\mathbf{x}; \boldsymbol{\theta}^{(t+1)}) = \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}^{(t+1)})}{q(\mathbf{z})} + \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{q(\mathbf{z})}{p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t+1)})}$$

• By setting $q(\mathbf{z}) = p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)})$, we obtain

$$\log p(\mathbf{x}; \boldsymbol{\theta}^{(t+1)}) = \underbrace{\mathcal{L}(p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)}), \boldsymbol{\theta}^{(t+1)})}_{\geq \log p(\mathbf{x}; \boldsymbol{\theta}^{(t)})} + \underbrace{KL(p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t)})||p(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}^{(t+1)}))}_{\geq 0}$$

The KL-divergence is always non-negative

Thus, we can see that

$$\log p(\mathbf{x}; \boldsymbol{\theta}^{(t+1)}) \ge \log p(\mathbf{x}; \boldsymbol{\theta}^{(t)})$$

 $\max_{\boldsymbol{\theta}} \mathcal{L}(p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)}),\boldsymbol{\theta})$ can guarantee the increase of likelihood at each step

Equivalence between EM updating

$$Q(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)}) = \mathbb{E}_{p(\boldsymbol{z}|\boldsymbol{x}; \boldsymbol{\theta}^{(t)})}[\log p(\boldsymbol{x}, \boldsymbol{z}; \boldsymbol{\theta})] \qquad \boldsymbol{\theta}^{(t+1)} = \arg \max_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)})$$

and the updating rule $\arg \max_{\boldsymbol{\theta}} \mathcal{L}(p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)}),\boldsymbol{\theta})$

$$\mathcal{L}(p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)}),\boldsymbol{\theta}) = \underbrace{\sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)}) \log p(\mathbf{x},\mathbf{z};\boldsymbol{\theta})}_{\mathbb{E}_{p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)})}[\log p(\mathbf{x},\mathbf{z};\boldsymbol{\theta})]} - \underbrace{\sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)}) \log p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}^{(t)})}_{constant}$$

Therefore,
$$\arg \max_{\boldsymbol{\theta}} \mathcal{L}(p(\boldsymbol{z}|\boldsymbol{x};\boldsymbol{\theta}^{(t)}),\boldsymbol{\theta}) \iff \arg \max_{\boldsymbol{\theta}} \mathcal{Q}(\boldsymbol{\theta};\boldsymbol{\theta}^{(t)})$$

EM algorithm can guarantee the increase of likelihood at each step