如何消除海上船舶短波盲区

王飞 刘嘉宁

短波通信是船舶远程战略通信与战术通信的一种重要通 信手段,尽管卫星通信出现后,某些短波通信业务被卫星通 信所取代,但与卫星通信相比,其独特的灵活性、抗毁性与 低廉性的优点使它仍然是船舶实现中远距船对船、船对岸通 信的主要手段之一。

传统短波通信的缺陷原因

由于短波传输的特殊性, 使短波通信在特定的距离上, 通常大约在距发射点150公里左右,存在通信盲区(也称跳 跃区)。导致船舶在距岸台或指挥所150公里左右时的短波 通信十分不可靠。

在频率为2 30MHz 的短波频段, 其电波传播方式主要 是地波传播和天波传播两种。地波是依靠地球表面作为传 播路径的表面波, 传输损耗主要是地球表面对电波能量的 吸收,有效传输距离S1一般在25 km左右,超出25 km时, 随着距离的增加,电波衰减急剧加快。天波是依靠高空电离 层作为传输媒质的反射波。由于电波进入电离层入射角的缘 故,天波的作用范围通常距发射点较远。天波从电离层第一

次反射落地 (第一 跳)的最短距离S2 约为100~180公 里。因而S1至S2 之间即25至180 公里之间这一段, 地波和天波都够 不到, 形成了短 波通信的"盲区"。

图1 短波通信的盲区示意图

NVIS天线的工作原理

解决盲区短波通信主要有两种方法:一是利用地波贴地 传输的特性,通过加大电台功率的方法,减少地球表面对电 波能量的吸收,延长地波传播距离;二是利用天波通过电离 层反射的特性, 选用高仰角天线, 这也是常用的有效方法。 仰角是指天线辐射波瓣与水平面之间的夹角。通过增加地面 对电离层的入射仰角,缩小天波经电离层反射后入射波与反 射波之间的夹角, 进而缩短天波的落地距离。仰角越高, 电 波第一跳落地的距离越短, 当仰角逐渐接近90°时, 盲区基 本上就不存在了。

图 2 NVIS工作原理示意图

因此,为保障短波静区(或称近场)的通信,应采用 近垂直入射天波链路,即NVIS (Near Vertical Incidence Skywave) 天线, NVIS意为近乎垂直入射的天波, 其幅射能 量集中在高仰角区域,从而缩短天波经电离层反射后落地的 距离, 使得在近距离全方位通信都没有盲区。

采用天波通信,工作频率的选择是很重要的,工作频率 太高,电波易穿透电离层射向太空;频率太低,电离层吸收 增大,以致于不能保证接收点必需的信噪比。为建立可靠的 近垂直入射天波通信链路, 必须选用合适的短波工作频率。

几种常见NVIS天线

能实现近垂直入射天波的天线种类很多, 典型的NVIS 天线主要有以下几种:

弯曲型鞭状天线: 法国THOMSON—CSF公司的ANT218 型近垂直入射天波(NVIS)天线,是一种较典型的电调谐的斜 置(弯曲)鞭天线,该种天线是传统鞭天线的改进型,将辐 射体螺旋,增加了辐射体的有效长度;朝后弯曲后,可利 用地面作为反射镜面, 改善了天线的方向图, 增加了高仰 角辐射分量。该天线和短波电台配接,通信距离可覆盖0~ 1000Km。但该天线需另外配接天线调谐器, 使电台的选择 和使用受到一定的限制。且天线长度太长. 移动及使用有一 定的限制。

斜置短波宽带鞭状近垂直入射天线: 采用斜置的短波宽 带单鞭天线, 利用近垂直入射天波传播技术, 将宽带天线斜 置,在提高天线沿高仰角90°~60°方向辐射能力的同时, 还保证了较好的水平全向性能。同时该天线安装、架设较方 便,易于在大型船舶等狭小场合安装。在近垂直入射天波可 用频带内(通常为4~12MHz),不需天线调谐器可满足驻波 比VSWR ≤ 3。

传统双极天线: 传统的双极天线如果低架也可实现近垂 直入射, 但是双极天线低架其效率较低。双极天线是频变驻 波天线, 其天线阻抗受工作频率影响非常大, 也就是说, 天 线的增益随频率变化的波动很大,因此工作 频率"窗"窄且 不均匀,由于双极天线的频率与场强在阻抗峰点变化较大, 因此在这些频点附近工作时,工作频率稍做调整其天线的 辐射场强就有较大的衰落, 故频率可选范围较小, 一般在 1.2MHz 左右。

优化全向双极天线: 德国ROHDE&SCHWARZ公司(简称

R/S公司)开发的5.2米长的HX002M1型短波NVIS天线是经 过优化的自调谐全向双极天线。

图 4 HX002M1型短波 NVIS天线外型图

优化全向双极天线尽管只有5.2米长,却可在1.5 MHz 到30 MHz 范围内实现中、近距离的全方向通信。在1.5MHz 到2 MHz 频率之间,该天线的工作模式为顶馈单极子天线, 因此在低端频率通信时,天线的有效辐射分量主要是地波分 量,电波不易被电离层所吸收。天线顶部集成了全自动天调, 天线与馈线之间可实现较为满意的匹配,其驻波比VSWR≤ 1.5, 同时天线与电台之间不需要调谐控制电缆, 因此该天 线可与各种短波系统配合,而不需任何改变。相对于前述几 种NVIS天线,该天线可与各种短波电台配合,适宜安装在 船舶桅杆顶部区域,辐射效率较高,工作频率范围较宽。

船用NVIS天线的选取

以上介绍的几种NVIS天线均可以解决短波通信中中近 距离的盲区问题, 但船上环境与陆地上并不一样, 天线的布 置和架设受到船上实际条件的限制,架设的尺寸和占用空 间都十分有限,因此船用NVIS天线的选择具有一定特殊性。 船用NVIS天线应选用架设方式简单、占用空间较小,同时 具有工作带宽较宽、辐射效率较高的类型。

基于以上考虑,建议船用NVIS天线首选R/S公司的 HX002M1型短波自调谐NVIS天线。该型天线可布设在船 舶桅杆上,不占用甲板面空间,工作频段范围宽,驻波比 VSWR≤1.5,具有较高的辐射效能。

为从根本上解决船舶短波中近距离通信的问题, 建议船 用短波天线的配置采用如下模式: 中近距离中小功率通信时 使用NVIS天线,远距离中大功率通信时使用传统鞭状天线, 两者配合使用。采用此种工作模式将能有效地弥补常规短波 通信中遇到的盲区问题,从根本上解决船舶短波通信中长期 存在的中近距离通信不可靠的缺陷。