חדו"א 1 סמסטר א' תשפ"ד עבודה עצמית 1

שאלות שמסומנת עם * מיועדת להעשרה בלבד ולא על הסילבוס.

שאלה 1

נתונה הפונקציה

$$sgn x = \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases}$$

- א) בנו את גרף הפונקציה
- $|x| = x \cdot \operatorname{sgn} x$ ב) הוכיחו כי

שאלה 2

נגדיר פונקציה בנה את גרף ($x \geq 0$) עבה (בנה את גרף הפונקציה (גדיר בנה את גרף כמות המספרים (בתחום בתחום לא בתחום בבתחום ב

שאלה 3 שרטטו את הגרפים של הפונקציות הבאות:

$$f(x) = \begin{cases} x - 3 & x < 2 \\ -(x - 3)^2 & x \ge 2 \end{cases}$$
 (x)

$$g(x) = \begin{cases} \frac{3}{2x^2} & x \neq 0 \\ 1 & x = 0 \end{cases}$$

$$h(x) = \begin{cases} 1 & x < 0 \\ \cos x & x \ge 0 \end{cases}$$

$$i(x) = \begin{cases} e^x & x \le 0 \\ -x + 2 & x > 0 \end{cases}$$

שאלה 4

נתונה פונקציה
$$f(x)=rac{1-x}{1+x}$$
 מצאו את

ر
$$\frac{1}{f(x)}$$
 ب

$$f\left(\frac{1}{x}\right)$$
 د

$$f(x) + 1$$
 (2)

$$f(x+1)$$
 (7

,
$$f(-x)$$
 (ក

$$.f(0)$$
 (1)

שאלה 5

$$\max(x,y)$$
 (1

$$\min(x,y)$$
 (2

$$|x|$$
 (3

$$|x| > 1$$
 (2)

$$|x| < 1$$
 (1 , $|x| > 1$ (2 , $|x| > 1$ (2 , $|x - 2| < 3$ (3 , $|x - 3| < 2$ (4

$$|x-3| < 2$$
 (4)

הוכיחו כי ()

(1

$$\max(x,y) + \min(x,y) = x + y$$

הוכיחו כי (7

$$\max(x,y) - \min(x,y) = |x-y|$$

. בעזרת הפונקציה ערך $\min(x,y)$ ו- $\max(x,y)$ את הבעו **(**1

[-1,2] באיור נתון גרף הפונקציה f(x) המוגדרת בקטע שאלה 6

ציירו את הגרפים של הפונקציות

$$f(x+1)$$
 (x

$$f(x-1)$$
 (2

$$f(x)+1$$

$$f(x) - 1$$
 (7

$$f(-x)$$
 (7

$$-f(x)$$
 (1)

$$f(2x)$$
 (?

$$f\left(\frac{x}{2}\right)$$
 (n

$$\frac{f(x)}{2}$$
 (v

$$|f(x)|$$
 (אי

$$f(\max(x,0))$$
 ند)

$$f(\min(x,0))$$
 (x)

$$\max(f(x),0)$$
 (7)

$$f(x)$$
 (x

$$f(x+2)$$

$$f(x)+4$$

$$f(x+3)$$

$$f(|x|+3)$$
 (1)

$$f(x+3) + 4$$
 (1)

$$f(x) + 8 \qquad (7)$$

$$f(x-5)$$
 (n

$$f(|x|-5)$$
 (v

$$f(x-5) + 8$$
 (*

$$f(-x)$$
 (x)

$$-f(x)$$
 (2)

: נתונה הפונקציות הבאות: $f(x)=x^3$ נתונה הפונקציות הבאות:

$$f(x)$$
 (x

$$f(x+2)$$
 (x

$$|f(x+2)|$$

$$f(x-3)$$

$$f(x+3)$$
 (1)

$$f(|x|+3)$$
 (*

$$f(x+3) + 4$$
 (n

$$f(x) + 8$$
 (v

$$f(x-5)$$
 (*

$$f(|x|-5)$$
 (אי

$$f(x-5) + 8$$
 (2)

$$f(-x)$$
 (x)

-f(x) (7)

 $f(x)=\sqrt{x-2}+1$ הפונקציה בקטע באיור נתון גרף הפונקציה $f(x)=\sqrt{x-2}+1$

ציירו את הגרפים של הפונקציות

$$f(x-2)$$
 (x

$$f(x+2)$$

$$f(x)-1$$

. $[0,\infty)$ באיור נתון גרף הפונקציה $f(x)=\sqrt{x}-2$ הפונקציה בקטע באיור באיור באיור שאלה

ציירו את הגרפים של הפונקציות

$$f(-x)$$
 (x

$$f(|x|)$$
 (2

$$|f(x)|$$
 ()

$$-|f(x)|$$

$$f(-|x|)$$
 (7

שאלה 11 * הוכיחו את הטענות הבאות ע"י אינדוקציה מתמטית או בכל דרך אחרת:

$$n \geq 4$$
 לכל $2^n \geq n^2$

$$n \geq 3$$
 לכל מספר טבעי $2^n > 2n+1$

$$n\geq 2$$
 לכל מספר טבעי $3^n>3n+1$

$$a \geq -1$$
 לכל מספר טבעי ולכל מספר ($1+a)^n \geq 1+na$

$$n \geq 10$$
 לכל מספר טבעי $2^n > n^3$

$$n\geq 17$$
 לכל מספר טבעי $2^n>n^4$

$$\frac{x+1}{x}>1$$
 שאלה 12 \star הוכיחו כי לכל x ממשי וחיובי, מתקיים \star

פתרונות

שאלה 1

(N

נט בתחום
$$x>0$$
 נשים לב כי $|x|=x$ ו- $|x|=x$ לכן $|x|=x$ לפיכך $|x|=x$ לפיכך $|x|=x=x\cdot \mathrm{sgn}(x)$

x>0 כשאר

$$\mathrm{sgn}(x)\cdot x=-1\cdot x=-x$$
 לכן הפיכך, און ו- $|x|=-x$ לפיכך, נשים לב כי $|x|=-x$ לפיכך $|x|=-x=x\cdot\mathrm{sgn}(x)$

x < 0 כשאר

בסה"כ .
$$|x|=0=\mathrm{sgn}(x)\cdot x$$
 , $x=0$ ב

$$|x| = \operatorname{sgn}(x) \cdot x$$

x לכל

שאלה 2

מספר ראשוני הוא מספר גדול מ-1 שמתחלק בעצמו או שמתחלק ב-1 בלבד.

$\overline{x-}$ מספרים ראשוניים קטן או שווה ל	f(x)	x
{}	0	x = 0
<u>{}</u>	0	x < 1
{}	0	x = 1
{2}	1	$x \leq 2$
$\{2,3\}$	2	$x \leq 3$
$\{2,3\}$	2	$x \le 4$
$-\{2,3,5\}$	3	$x \leq 5$
${2,3,5,7}$	4	$x \le 7$
$\{2, 3, 5, 7, 11\}$	5	$x \le 11$
${2,3,5,7,11,13}$	6	$x \le 13$
$\{2, 3, 5, 7, 11, 13, 17\}$	7	$x \le 17$
${2,3,5,7,11,13,17,19}$	6	$x \le 19$

<u>שאלה 3</u>

$$f(x) = egin{cases} x - 3 & x < 2 \\ -(x - 3)^2 & x \ge 2 \end{cases}$$
 (8

$$g(x)=egin{cases} rac{3}{2x^2} & x
eq 0 \ 1 & x=0 \end{cases}$$

$$h(x) = \begin{cases} 1 & x < 0 \\ \cos x & x \ge 0 \end{cases}$$

$$--h(x)$$

--i(x)

<u>שאלה 4</u>

$$\frac{1}{f(x)} = \frac{1+x}{1-x} \qquad (8)$$

$$f\left(\frac{1}{x}\right) = \frac{x-1}{x+1} \qquad \textbf{(2)}$$

$$f(x) + 1 = \frac{2}{x+1}$$
 (3

$$f(x+1) = \frac{1 - (x+1)}{1 + x + 1} = \frac{-x}{2 + x}$$
 (7

$$f(-x) = \frac{1+x}{1-x} = \frac{1}{f(x)}$$

$$f(0) = 1$$
 (1)

שאלה 5

(1 (N

 $\max(x,y) = \begin{cases} x & x \ge y \\ y & y \ge x \end{cases}.$

 $\min(x,y) = \begin{cases} y & x \ge y \\ x & y \ge x \end{cases}.$ (2

|x| < 1 \Rightarrow -1 < x < 1

 $|x|>1 \qquad \Rightarrow \qquad \{x<-1\}\cup\{x>1\}$

0 < |x-2| < 3 (3 x - 2 < 0 at 0 < x - 2 < 3 "t 0 < x - 2 < 3 "t 0 < x < 2 < 0 at 0 < x < 2 < 3 "t 0 < x < 3 at 0 < x < 3 at

 $\{-1 < x < 2\} \cup \{2 < x < 5\} \ .$

x=y :1 מצב

לכן

 $\max(x,y) = x = y,$

 $\min(x,y)=x=y,$

 $\max(x,y) + \min(x,y) = x + y \ .$

x>y :2 מצב

 $\max(x,y)=x,$

 $\min(x,y)=y,$

לכן

 $\max(x,y) + \min(x,y) = x + y \ .$

x < y :3 מצב

$$\max(x,y) = y,$$

$$\min(x,y) = x,$$

$$\mathrm{din}(x,y) + \min(x,y) = y + x = x + y \ .$$

x=y בעב (ז

$$\max(x,y) = x = y,$$

$$\min(x,y) = x = y,$$

 $\max(x, y) = x$

$$\max(x,y)-\min(x,y)=x-x=0,$$
וגם $|x-y|=0$, לפיכך אפיכך וואס אפיכך וואס אפיכך וואס אפיכך וואס אפיכן וואס אינער אייער אינער אייער אינער אינע

x>y :2 מצב

x < y :3 מצב

$$\min(x,y)=y,$$
 לכן
$$\max(x,y)-\min(x,y)=x-y\;,$$
 וגם $|x-y|=x-y$, לפיכך $\max(x,y)-\min(x,y)=|x-y|\;.$

$$\max(x,y)=y,$$

$$\min(x,y)=x,$$
 לכן
$$\max(x,y)-\min(x,y)=y-x\ ,$$
 וגם $|x-y|=y-x$, לפיכך
$$\max(x,y)-\min(x,y)=|x-y|\ .$$

(n

$$\max(x,y) = \frac{1}{2} \left(\max(x,y) + \min(x,y) \right) + \frac{1}{2} \left(\max(x,y) - \min(x,y) \right) = \frac{1}{2} \left(x + y \right) + \frac{1}{2} |x - y|$$

$$\min(x,y) = \frac{1}{2} \left(\max(x,y) + \min(x,y) \right) - \frac{1}{2} \left(\max(x,y) - \min(x,y) \right) = \frac{1}{2} \left(x + y \right) - \frac{1}{2} |x - y|$$

<u>שאלה 6</u>

$$\underline{f(x+1)}$$
 (x

$\underline{f(x-1)}$ (2

$$\underline{f(x)+1}$$
 (x)

f(x)-1

 $\underline{f(-x)}$ (ភ

 $\underline{-f(x)}$ (1)

f(2x) (?

$$\frac{f\left(\frac{x}{2}\right)}{}$$
 (n

$$\frac{f(x)}{2}$$

 $\underline{f(|x|)}$ (*

|f(x)| (אי

 $f(\max(x,0))$ دخ

 $\underline{f(\min(x,0))}$ (x)

 $\max(f(x),0)$ (۲۰

<u>שאלה 7</u>

(2

()

(7

(a

(1

1)

(n

()

(א)

<u>שאלה 8</u>

(N

(בי

 $--|x^3|$

()

(7

(1

<u>שאלה 9</u>

(N

 $\begin{array}{c}
y \\
--f(x)-1
\end{array}$

→ X

<u>שאלה 10</u>

()

(2

(†

<u>שאלה 11</u>

שלב הבסיס:

עבור $n=4^2$ לכן $4^2=4^2$ ו- $2^4=16$ מתקיים. n=4

שלב האינדוקציה

נניח כי $2^{m+1} > (m+1)^2$ כאשר m>4 שלם. נוכיח כי $2^m > m^2$ הרי $2^{m+1} = 2 \cdot 2^m$

לפי ההנחת האינדוקציה, $2^m>m^2$. לפיכך

$$2^{m+1} > 2 \cdot m^2 = m^2 + m^2 .$$

אז m>5 מכיוון ש

$$2^{m+1} > m^{2} + 5 \cdot m$$

$$= m^{2} + 2 \cdot m + 3 \cdot m$$

$$> m^{2} + 2m + 3 \cdot 5$$

$$= m^{2} + 2m + 15$$

$$> m^{2} + 2m + 1$$

$$= (m+1)^{2}.$$

 $m \geq 17$ לכל $2^m > m^4$ כי אינדוקציה ע"י אינדוקציה לכן . $2^{m+1} > (m+1)^4$ ליא

:שלב הבסיס

$$n=3$$
 עבור

$$2^3 > 2 \cdot 3 + 1$$

מתקיים.

: שלב האינדוקציה

 $2^{m+1}>2(m+1)+1$ נניח שעבור m>3 טבעי m>2 טבעי m>3 נוכיח שעבור $2^{m+1}=2\cdot 2^m>2\cdot (2m+1)=4m+2$

לפי ההנחת האינדוקציה. מכיוון ש-m>3 אז

$$\begin{aligned} 2^{m+1} > &4m+2 \\ &= &2m+2m+2 \\ &> &2m+2\cdot 3+2 \\ &= &2m+7 \\ &= &2(m+1)+5 \\ &> &2(m+1)+1 \ . \end{aligned}$$

 $2^m>2m+1$ כי אינדוקציה ע"י אינדוקציה . $2^{m+1}>2(m+1)+1$ א"א

ג) שלב הבסיס:

$$n=2$$
 עבור

$$3^2 > 3 \cdot 2 + 1$$

מתקיים.

שלב האינדוקציה:

 $:\!\!3^{m+1}>3(m+1)+1$ כניח כי 1 $3^m>3m+1$ טבעי שבור m>2נניח שעבור נניח

$$3^{m+1} = 3 \cdot 3^m > 3 \cdot (3m+1) = 9m+3$$

לפי ההנחת האינדוקציה. מכיוון ש-m>2 אז

$$3^{m+1} > 9m + 3$$

$$= 3m + 6m + 3$$

$$> 3m + 3 \cdot 6 + 3$$

$$= 3m + 19$$

$$= 3(m+1) + 16$$

$$> 3(m+1) + 1$$

 $3^m > 3m+1$ כי אינדוקציה מ"י אינדוקציה. $3^{m+1} > 3(m+1)+1$ ז"א

שלב הבסיס:

עבור n=1, לכל n=1 ממשי מתקיים

$$(1+a)^1 = 1+a$$
.

שלב האינדוקציה:

נניח כי עבור m>1 - ממשי ו- $a\geq -1$ טבעי מתקיים

$$(1+a)^m \ge 1 + ma .$$

נוכיח כי $(1+a)^{m+1} > 1 + (m+1)a$. הרי

$$(1+a)^{m+1} = (1+a) \cdot (1+a)^m . \tag{*1}$$

נשים לכ, מכיוון ש- $a\geq 0$ אז $a\geq 0$ אז לכן, בגלל ש- $a\geq 1+ma$ לכן, בגלל ש- (1+a) לפי ההנחת האינדוקציה, אז גם (1+a) (1+a) (1+a) (1+a) (1+a) (1+a) (1+a) (1+a) (1+a)

$$(1+a)^{m+1} > (1+a) \cdot (1+ma) = 1+a+ma+ma^2 = 1+(m+1)a+ma^2$$
 . (*2)

(*2) בי (אביכך נובע מ- m>1 לכן m>1 ו- $a^2\geq 0$ נשים לב, לפיכך נובע מ-

$$(1+a)^{m+1} > 1 + (m+1)a$$
.

. טבעי $a \geq 1$ לכל $a \geq 1$ לכל $(1+a)^m > 1+ma$ טבעיה אינדוקציה מיי

שלב הבסיס:

עבור n=10 מתקיים. n=10 מתקיים.

שלב האינדוקציה

נניח כי
$$2^{m+1} > (m+1)^3$$
 כאשר $m>10$ שלם. נוכיח כי $2^m>m^3$ הרי
$$2^{m+1} = 2\cdot 2^m$$

לפיכך $.2^m > m^3$, לפיכך האינדוקציה, לפיכך

$$2^{m+1} > 2 \cdot m^3 = m^3 + m^3 .$$

מכיוון ש- m > 10 אז

$$2^{m+1} > m^{3} + 10 \cdot m^{2}$$

$$= m^{3} + 3 \cdot m^{2} + 7 \cdot m^{2}$$

$$> m^{3} + 3m^{2} + 7 \cdot 10 \cdot m$$

$$= m^{3} + 3m^{2} + 70 \cdot m$$

$$= m^{3} + 3m^{2} + 3m + 67m$$

$$> m^{3} + 3m^{2} + 3m + 67 \cdot 10$$

$$= m^{3} + 3m^{2} + 3m + 670$$

$$> m^{3} + 3m^{2} + 3m + 1$$

$$= (m+1)^{3}.$$

 $2m \geq 10$ לכל $2^m > m^3$ כי אינדוקציה ע"י אינדוקציה לכן . $2^{m+1} > (m+1)^3$

. עבור n=17 לכן $17^4>17^4$ לכן $17^4=83521$ ו- $17^4=131072$ מתקיים. n=17

שלב האינדוקציה

נניח כי $2^{m+1} > (m+1)^3$ נניח כי m > 17 כאשר $2^m > m^4$ הרי נניח כי $2^{m+1} = 2 \cdot 2^m$

לפיכד $.2^m > m^4$. לפיכד

 $2^{m+1} > 2 \cdot m^4 = m^4 + m^4$.

מכיוון ש- 17 אז

$$\begin{split} 2^{m+1} > & m^4 + 17 \cdot m^3 \\ &= m^4 + 4 \cdot m^3 + 13 \cdot m^3 \\ > & m^4 + 4m^3 + 13 \cdot 17 \cdot m^2 \\ &= m^4 + 4m^3 + 221 \cdot m^3 \\ > & m^4 + 4m^3 + 221 \cdot 17m^2 \\ &= m^4 + 4m^3 + 3757m^2 \\ &= m^4 + 4m^3 + 6m^2 + 3751m^2 \\ > & m^4 + 4m^3 + 6m^2 + 3751 \cdot 17m \\ &= m^4 + 4m^3 + 6m^2 + 63869m \\ &= m^4 + 4m^3 + 6m^2 + 4m + 63865m \\ > & m^4 + 4m^3 + 6m^2 + 4m + 63865 \cdot 17 \\ &= m^4 + 4m^3 + 6m^2 + 4m + 1 \\ &= (m+1)^4 \; . \end{split}$$

 $2^m \geq 17$ לכל $2^m > m^4$ כי אינדוקציה ע"י אינדוקציה לכן $2^{m+1} > (m+1)^4$ אי"א

שאלה 12

$$\frac{x+1}{x} = \frac{x}{x} + \frac{1}{x} = 1 + \frac{1}{x} \ .$$

לכן $\frac{1}{x}>0$ גם אז גם x>0 -ש מכיוון מכיוון מכיוון א

$$1 + \frac{1}{x} > 1 + 0 \implies 1 + \frac{1}{x} > 1$$
.

נציב
$$1+rac{1}{x}=rac{1+x}{x}$$
 ונקבל

$$\frac{1+x}{x} > 1 .$$