电子科技大学

2011 年攻读硕士学位研究生入学试题 考试科目: 820 计算机专业基础

注: 所有答案必须写在答题纸上, 做在试卷或草稿纸上无效

W 17 17 (A 1 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
一、选择题(每小题1分,共8分)	
 若结点的存储地址与其关键字值之间存在某种对应关系,则称这种为() 	存储结构
A.顺序存储结构 B.链式存储结构 C.索引存储结构 D.散列存储结构	
2. 能在 O(1)时间内访问线性表的第 i 个元素的结构是 () A.顺序表 B.单链表 C.单向循环链表 D.双向	链表
 一个 n×n 的对称矩阵,如果以行主序存储,每个元素占一个单元要的最大存储空间为() A n×n B n×n/2 C (n+1)×n/2 D (n+1)×(n+1)/2 	,则其需
4. 已知一稀疏矩阵的三元组表为: (1, 2, 3), (1, 6, 1), (3, 1, 5), (1), (4, 5, 4), (5, 1, -3), 则其转置矩阵的三元组表中第 3 个() A.(2, 1, 3) B.(3, 1, 5) C.(3, 2, -1) D.(2, 3, -1)	三元组为
5. 在有 n 个结点的二叉链表中, 值为空的链域的个数为() A. n-1 B. n+1 C. 2n-1 D. 2n+1	1)
 对于一个具有 n 个顶点的无向图,若采用邻接表表示,则存放表头组的大小为() 	;结点的数
A.n B.n+1 C.n-1 D.n+1 边数	
7. 下图所示的二叉树是 () A. 二叉判定树 B. 二叉排序树 C. 二叉平衡树 D. 堆	

- 8. 用某种排序方法对关键字序列(25,84,21,47,15,27,68,35,20)进 行排序时,序列的变化情况如下:
 - 20, 15, 21, 25, 47, 27, 68, 35, 84
 - 15, 20, 21, 25, 35, 27, 47, 68, 84
 - 15, 20, 21, 25, 27, 35, 47, 68, 84

则所采用的排序方法是(

- A. 选择排序

- B. 希尔排序 C. 归并排序 D. 快速排序

二、填空题(每小题1分,共8分)

- 1. 若一个算法中的语句频度之和为 T(n)=3720n+4nlogn, 则算法的时间复杂度 为。
- 2. 在长度为 n 的顺序表的第 $i(1 \le i \le n+1)$ 个位置上插入一个元素,元素的移动次 数为 。
- 3. 一个队列的入队序列是 a、b、c、d,则队列的输出序列为。
- 4. 广义表 A=(a,(b),(),(c,d,e))的长度为_____。
- 5. 在有 n 个结点的哈夫曼树中, 其叶子结点数是
- 6. 已知某二叉树的先序序列为 ABDECF, 中序序列为 DBEAFC, 则其后序序 列为 。
- 7. 在含 n 个顶点和 e 条边的无向图的邻接矩阵中,零元素的个数为。
- 8. 在以{4,5,6,7,8}作为叶子结点权值构造的二叉树中, 其带权路径长度最小

三、简答题(每小题6分,共36分)

- 1. 已知一棵完全二叉树共有 893 个结点, 试求:
 - (1)树的高度;
 - (2)叶子结点数目。

2. 用 Dijkstra 算法求出下图中从顶点 v1 到其余各顶点的最短路径,按求解过程依次写出各条最短路径及其路径长度。

3. 已知关键字序列在 a[1..8]中的初始状态为

12	1	2	3	4	5	6	7	8
a	48	70	33	65	24	56	12	92

写出将其调整为大根堆的过程中每一次筛选后 a 的状态。

4. 已知图 G 的存储结构如下。假设对其访问时每行元素必须从右到左,请写出从 v1 开始按深度优先搜索时各连通分量的访问序列

$$V = (v_3, v_1, v_5, v_2, v_4) \quad A = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

5. 根据中序、先序、后序遍历二叉树的特点,将根结点、叶结点、叶结点或无 左子树结点、叶结点或无右子树结点填入下表空白处。

41	第一个被访问的结点	最后一个被访问的结点
先序遍历二叉树		
中序遍历二叉树		
后序遍历二叉树		

6. 选取散列函数 H(key) = (key) %11, 用线性探测法处理冲突, 对下列关键码序列{1,13,12,34,38,33,27,22},构造一个表长为 11 的散列表,并求其查找成功的平均长度。

四、算法题(共23分)

1. (6分) 阅读算法 test01, 说明其功能。
int test01(int a[], int low, int high, int x){
//low 和 high 分别为数据区的下界和上界
int i,j,t;
i=low;j=high;
while(i<j){
while(i<j && a[j]>=x)j--;
while(i<j && a[j]>=x)i++;
if(i<j){ t=a[j];a[j]=a[i];a[i]=t;}
}
if(a[i]<x) return i;
else return i-1;

2. (6分) 阅读算法 test02。若 root 为指向右图 A 的指针, 试给出其执行结果。

```
struct node {
    char data;
    struct node *lchild, * rchild;
};
void test02(struct node *root){
    if (root) {
        printf("%c", root->data);
        test02 (root->lchild);
        printf("%c", root->data);
        test02 (root->rchild);
    }
}
```

3 2 2

3. (11 分)编写一算法将顺序表转存为带头节点的单循环链表。算法中所用到 的数据结构需自行定义。

操作系统部分 75 分

-	一、单项选择题(每小题2分,共	6分,下面每题给出的四个选项中,只有一个最符
合i	合试题要求)	\$ P
1.	、机票订购系统处理来自各个终端的服	务请求, 处理后通过终端回答用户, 所以它是一个
(().	
	A.分时系统 B. 多	道批处理系统
	C.计算机网络 D.3	时信息处理系统
2.	、操作系统在计算机系统中位于()	之间。
	A.CPU 和用户之间 B.中	央处理器 CPU
	C.计算机硬件和用户 D.论	算机硬件和软件之间
3.	、在单处理机系统中,可并行的是(
	I 进程与进程 II 处理机与设备	III 处理机与通道 IV 设备与设备
	A. I、II和III B. I	、II和IV
	C. I、III和IV D. I	I、III和IV
4.	、进程具有3种基本状态: 就绪状态、	执行状态和阻塞状态。进程在执行过程中,其状态
	总是不停地发生变化下面关于进程状	态变化的说法中正确的是 ()。
	A.一个进程必须经过进程的 3 种基本	状态才能结束
	B.在分时系统中,一个正在运行进程	的时间片如果终结,该进程将转入就绪状态
	C.三种进程状态是进程运行过程中的	基本状态,进程可能同时处于某几种状态中
	D.进程一旦形成,首先进入的是运行	状态
5.	、采用中断屏蔽技术,会封锁()的	响应。
	A.与自己级别相同的中断事件	B.比自己级别高的中断事件
	C.与中断屏蔽标志相对应的事件	D.比自己级别低的中断事件
6.	、页表的作用是实现从页号到物理块号	的()。
	A.逻辑映射 B.∜	7理映射
	C.地址映射 D.设	4 地址映射
7.	、分页式虚拟存储管理系统中,页面的	大小与可能产生的缺页中断次数 ()。
	A.成正比 B.成	反比
	C.无关 D.成	。固定值
8.	、下面 4 个选项中不属于 SPOOLing 系	统特点的是 ()。
	A.提高了内存的利用率 B.摄	高了 I/O 操作的速度
	C.将独占设备改造为共享设备 D.9	现了虚拟设备功能
=	二、填空题(每空2分,共11	题,22分)
1.	、文件系统的主要目标是提高存储空间	的利用率和。
	,可变分区管理方式常用的主存分配算	
	和	
		的进程交替占用处理器,而进程各种状态的转换不

是事先预定的,也不是完全由操作系统来确定的,而是在硬件和操作系统的相互配合下

完成的,起主要作用的是。 4、在存储管理方案中,可用上、下限寄存器实现存储保护的是	
그렇게 그렇게 하면 하면 하면 하면 하면 하면 하는데 살아가면 하면 하는데 하면 하는데	and the second second
5、位图可以用来指示磁盘存储空间的使用情况,一个磁盘组的分块确定后,	根据可分配的
总块数决定位图由多少个字组成,位图中的每一位与一块对应,"1"状	态表示相应块
已, "0" 状态表示该块。	
6、死锁的 4 个必要条件是、、不可抢夺资源和行	6 茲签结容額
- BEN (1) - BEN BEN - BEN HOLE HER SHOW HOLE HER HOLE HER SHOW HER HOLE HER HOLE HER SHOW SHOW HE HER HER HER HE	
7、当一个进程独占处理器顺序执行时,具有两个特性:和	
三、简答题(每小题6分,共5小题,30分)	
_ Name (41/2011) X10 1/21 00/11	
1、请描述在当前运行进程状态改变时,操作系统进行进程切换的步骤。	2363
2、试写出 P(S) 操作的主要操作步骤。	
3、阐述对于互斥临界区的管理要求。	
4、为什么要在设备管理中引入缓冲技术?操作系统如何实现缓冲技术?	-
5、解释页式存储管理中为什么要设置页表和快表。	

四、计算题(7分)

现有一个仅 460 个字节的程序的下述内存访问序列 (该序列的下标均从 0 开始): 10、11、104、170、73、309、185、245、246、434、458、364。且页面大小为 100 字节:

- (1) 写出页面的访问序列。(2分)
- (2) 假设内存中仅有 200 字节可供程序使用且采用 FIFO 算法,那么共发生多少次缺页中断? (3分)
 - (3) 如果采用最近最久未使用的算法,则又会发生多少次缺页中断? (3分)