Quantum teleportation

Ryuhei Mori

Tokyo Institute of Technology

Time evolution of a system

Time evolution of a system is represented by a map from a state to a state.

T: The set of states \rightarrow the set of states.

$$pT(\rho_1) + (1-p)T(\rho_2) = T(p\rho_1 + (1-p)\rho_2)$$

for any density matrices ρ_1 , ρ_2 and $p \in [0, 1]$.

 $T: \mathcal{H}(V) \to \mathcal{H}(W)$ must be linear (a proof is needed).

Schrödinger picture and Heisenberg picture

 T^{\dagger} : The set of binary measurements \rightarrow the set of binary measurements.

$$\langle T(\rho), P \rangle = \langle \rho, T^{\dagger}(P) \rangle$$

for any $\rho \in \mathcal{H}(V)$ and $P \in \mathcal{H}(W)$. T^{\dagger} is an adjoint map of T.

$$\langle T_3(T_2(T_1(\rho))), P \rangle = \langle T_2(T_1(\rho)), T_3^{\dagger}(P) \rangle$$

=\langle T_1(\rho), T_2^{\dagger}(T_3^{\dagger}(P)) \rangle = \langle \rho, T_1^{\dagger}(T_2^{\dagger}(T_3^{\dagger}(P))) \rangle

No-cloning theorem

$$\begin{array}{l} |0\rangle \langle 0| \longmapsto |0\rangle \langle 0| \otimes |0\rangle \langle 0| \\ |1\rangle \langle 1| \longmapsto |1\rangle \langle 1| \otimes |1\rangle \langle 1| \end{array}$$

From the linearlity,

$$\frac{1}{2}(\left|0\right\rangle \left\langle 0\right|+\left|1\right\rangle \left\langle 1\right|)\longmapsto\frac{1}{2}(\left|0\right\rangle \left\langle 0\right|\otimes\left|0\right\rangle \left\langle 0\right|+\left|1\right\rangle \left\langle 1\right|\otimes\left|1\right\rangle \left\langle 1\right|)$$

This is not equal to

$$\frac{1}{2}(\ket{0}\bra{0}+\ket{1}\bra{1})\otimes\frac{1}{2}(\ket{0}\bra{0}+\ket{1}\bra{1}).$$

Axioms for quantum channel

$$T: \mathcal{H}(V) \to \mathcal{H}(W)$$
.

- **1** Trace-preserving: $Tr(T(\rho)) = Tr(\rho)$.
- **2** Positive : $T(\rho) \succeq 0$ for any $\rho \succeq 0$.
- **3** Completely positive: $id \otimes T$ is positive

Axioms for quantum channel

$$T: \mathcal{H}(V) \to \mathcal{H}(W)$$
.

1 Trace-preserving: $Tr(T(\rho)) = Tr(\rho)$.

2 Positive : $T(\rho) \succeq 0$ for any $\rho \succeq 0$

3 Completely positive: $id \otimes T$ is positive.

Positive but not completely positive 1/2

$$T \in \mathcal{L}(\mathcal{H}(\mathbb{C}^2))$$
: transposition according to $\{|0\rangle$, $|1\rangle\}$.

The transposition is obviously linear and trace-preserving.

Lemma

The transposition is positive.

Proof.

For any $A \succeq 0$ and $|\psi\rangle \in \mathbb{C}^2$,

$$\langle \psi | T(A) | \psi \rangle = \langle \psi | A^T | \psi \rangle = \langle \psi | A^* | \psi \rangle = (\langle \psi |^* A | \psi \rangle^*)^* \ge 0$$

Positive but not completely positive 2/2

Lemma

The transposition is not completely positive.

For
$$|\Phi\rangle := \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
,
$$(\mathrm{id}_{\mathcal{H}(\mathbb{C}^2)} \otimes \mathcal{T})(|\Phi\rangle \langle \Phi|)$$

$$= (\mathrm{id}_{\mathcal{H}(\mathbb{C}^2)} \otimes \mathcal{T}) \left(\frac{1}{2} \left(|0\rangle \langle 0| \otimes |0\rangle \langle 0| + |0\rangle \langle 1| \otimes |0\rangle \langle 1|\right) + |1\rangle \langle 0| \otimes |1\rangle \langle 0| + |1\rangle \langle 1| \otimes |1\rangle \langle 1|\right) \right)$$

$$= \frac{1}{2} \left(|0\rangle \langle 0| \otimes |0\rangle \langle 0| + |0\rangle \langle 1| \otimes |1\rangle \langle 0|\right)$$

$$+ |1\rangle \langle 0| \otimes |0\rangle \langle 1| + |1\rangle \langle 1| \otimes |1\rangle \langle 1|\right)$$

$$|00\rangle \mapsto |00\rangle \qquad |01\rangle \mapsto |10\rangle \qquad |10\rangle \mapsto |01\rangle \qquad |11\rangle \mapsto |11\rangle$$

Hence, $|01\rangle - |10\rangle \mapsto |10\rangle - |01\rangle$. (id_{$\mathcal{H}(\mathbb{C}^2)$} \otimes \mathcal{T})($|\Phi\rangle \langle \Phi|$) is not positive semidefinite.

Unitary operations

$$\rho \longmapsto U\rho U^{\dagger}$$
.

- **1** Trace-preserving: $Tr(U\rho U^{\dagger}) = Tr(\rho)$.
- **2** Completely positive: $(id \otimes T)(\rho) = (I \otimes U)\rho(I \otimes U^{\dagger}).$

In the most of quantum computing, only pure states and unitary operations are used.

Quantum circuit

Controlled not

$$|x\rangle \xrightarrow{} |x\rangle$$

$$|y\rangle \xrightarrow{} |y \oplus x\rangle$$

$$CNOT |x\rangle |y\rangle \longmapsto |x\rangle |y \oplus x\rangle$$

$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

Bell states and quantum circuit

$$|0\rangle$$
 H $|0\rangle$

$$egin{aligned} \ket{0}\ket{0}&\longmapstorac{1}{\sqrt{2}}(\ket{0}+\ket{1})\ket{0}&=rac{1}{\sqrt{2}}(\ket{0}\ket{0}+\ket{1}\ket{0})\ &\longmapstorac{1}{\sqrt{2}}(\ket{0}\ket{0}+\ket{1}\ket{1}) \end{aligned}$$

$$|x\rangle |y\rangle \longmapsto \frac{1}{\sqrt{2}} (|0\rangle + (-1)^x |1\rangle) |y\rangle = \frac{1}{\sqrt{2}} (|0\rangle |y\rangle + (-1)^x |1\rangle |y\rangle)$$

$$\longmapsto \frac{1}{\sqrt{2}} (|0\rangle |y\rangle + (-1)^x |1\rangle |\bar{y}\rangle).$$

Conditional density operator

A probability of outcome of local measurement in a joint system is

$$P(a, b) = \text{Tr}(\rho_{V \otimes W}(P_a \otimes Q_b)).$$

$$P(a \mid b) = \frac{1}{P(b)} \operatorname{Tr}(\rho_{V \otimes W}(P_a \otimes Q_b)) = \frac{1}{P(b)} \operatorname{Tr}(\operatorname{Tr}_W(\rho_{V \otimes W}(I_V \otimes Q_b))P_a).$$

$$\rho_{V|Q_b} := \frac{1}{P(b)} \mathsf{Tr}_W (\rho_{V \otimes W} (I_V \otimes Q_b)).$$

Trick

$$\begin{aligned} A_{W \to V} &= \sum_{i,j} A_{i,j} |i\rangle_V \langle j|_W \\ |A_{W \to V}\rangle\rangle &:= \mathcal{M}^{-1}(A_{W \to V}) = \sum_{i,j} A_{i,j} |i\rangle_V |j\rangle_W \end{aligned}$$

$$\langle A_{W \to V}, B_{W \to V} \rangle = \text{Tr}(A_{W \to V}^{\dagger} B_{W \to V}) = \langle \langle A_{W \to V} \mid B_{W \to V} \rangle \rangle$$

Examples

$$\left|\frac{1}{\sqrt{2}}I_{W\to V}\right\rangle\rangle = \frac{1}{\sqrt{2}}\left(\left|0\right\rangle_{V}\left|0\right\rangle_{W} + \left|1\right\rangle_{V}\left|1\right\rangle_{W}\right)$$
$$\left|\frac{1}{\sqrt{2}}X_{W\to V}\right\rangle\rangle = \frac{1}{\sqrt{2}}\left(\left|0\right\rangle_{V}\left|1\right\rangle_{W} + \left|1\right\rangle_{V}\left|0\right\rangle_{W}\right)$$
$$\left|\frac{1}{\sqrt{2}}(ZX)_{W\to V}\right\rangle\rangle = \frac{1}{\sqrt{2}}\left(\left|0\right\rangle_{V}\left|1\right\rangle_{W} - \left|1\right\rangle_{V}\left|0\right\rangle_{W}\right)$$
$$\left|\frac{1}{\sqrt{2}}Z_{W\to V}\right\rangle\rangle = \frac{1}{\sqrt{2}}\left(\left|0\right\rangle_{V}\left|0\right\rangle_{W} - \left|1\right\rangle_{V}\left|1\right\rangle_{W}\right)$$

Trick

Lemma

$$(B_V \otimes C_W)|A_{W \to V}\rangle\rangle = |B_V A_{W \to V} C_W^T\rangle\rangle.$$

Proof.

$$(B_{V} \otimes C_{W})|A_{W \to V}\rangle\rangle = (B_{V} \otimes C_{W}) \sum_{i,j} A_{i,j} |i\rangle_{V} |j\rangle_{W}$$

$$= \sum_{i,j} A_{i,j} (B_{V} |i\rangle_{V}) \otimes (C_{W} |j\rangle_{W})$$

$$\stackrel{\mathcal{M}}{\longmapsto} \sum_{i,j} A_{i,j} (B_{V} |i\rangle_{V}) (\langle j|_{W} C_{W}^{\dagger})^{*}$$

$$= B_{V} \sum_{i,j} A_{i,j} |i\rangle_{V} \langle j|_{W} C_{W}^{T}$$

$$= B_{V} A_{W \to V} C_{W}^{T}$$

$$\stackrel{\mathcal{M}^{-1}}{\longmapsto} |B_{V} A_{W \to V} C_{W}^{T}\rangle\rangle.$$

Trick

dim(A) = dim(B).

$$\begin{aligned} \operatorname{Tr}_{A}\left(\rho_{A}\left|L_{B\to A}\right\rangle\right) & \left\langle\left\langle L_{B\to A}\right|\right) = \operatorname{Tr}_{A}\left(\rho_{A}\left|L_{A}I_{B\to A}\right\rangle\right) \left\langle\left\langle L_{A}I_{B\to A}\right|\right) \\ & = \operatorname{Tr}_{A}\left(\rho_{A}L_{A}\left|I_{B\to A}\right\rangle\right) \left\langle\left\langle I_{B\to A}\right|L_{A}^{\dagger}\right) \\ & = \operatorname{Tr}_{A}\left(L_{A}^{\dagger}\rho_{A}L_{A}\left|I_{B\to A}\right\rangle\right) \left\langle\left\langle I_{B\to A}\right|\right) \\ & = \operatorname{Tr}_{A}\left(\left(L_{B}^{\dagger}\rho_{B}L_{B}\right)^{T}\left|I_{B\to A}\right\rangle\right) \left\langle\left\langle I_{B\to A}\right|\right) \\ & = \left(L_{B}^{\dagger}\rho_{B}L_{B}\right)^{T} \operatorname{Tr}_{A}\left(\left|I_{B\to A}\right\rangle\right) \left\langle\left\langle I_{B\to A}\right|\right) \\ & = \left(L_{B}^{\dagger}\rho_{B}L_{B}\right)^{T} \end{aligned}$$

Quantum teleportation

Alice sends a qubit ρ_{A_1} to Bob using a classical channel and a shared Bell state $|\Phi\rangle_{A_2B} = \left|\frac{1}{\sqrt{2}}I_{B\to A_2}\right\rangle\rangle = \frac{1}{\sqrt{2}}(|0\rangle_{A_2}|0\rangle_B + |1\rangle_{A_2}|1\rangle_B$.

- **1** Alice measure A_1A_2 by the Bell basis $\left\{ \left| \frac{1}{\sqrt{2}} I_{A_2 \to A_1} \right\rangle \right\}, \left| \frac{1}{\sqrt{2}} X_{A_2 \to A_1} \right\rangle \right\}, \left| \frac{1}{\sqrt{2}} Z_{A_2 \to A_1} \right\rangle \right\}, \left| \frac{1}{\sqrt{2}} (ZX)_{A_2 \to A_1} \right\rangle \right\}.$
- 2 Send the measurement outcome (2bit) to Bob
- **3** Bob apply the corresponding unitary to B_2 .

Quantum teleportation

Let $A_1 = A_2 = B = \mathbb{C}^d$. For $L_{A_2 \to A_1}$ satisfying $\operatorname{Tr}(L_{A_2 \to A_1}^{\dagger} L_{A_2 \to A_1}) = 1$, $\operatorname{Tr}_{A_1 A_2} \left(\rho_{A_1} \otimes \left| \frac{1}{\sqrt{d}} I_{B \to A_2} \right\rangle \right) \left\langle \left\langle \frac{1}{\sqrt{d}} I_{B \to A_2} \right| \quad \left| L_{A_2 \to A_1} \right\rangle \right\rangle \left\langle \left\langle L_{A_2 \to A_1} \right| \right)$ $= \operatorname{Tr}_{A_2} \left(\left| \frac{1}{\sqrt{d}} I_{B \to A_2} \right\rangle \right) \left\langle \left\langle \frac{1}{\sqrt{d}} I_{B \to A_2} \right| \quad (L_{A_2}^{\dagger} \rho_{A_2} L_{A_2})^T \right)$ $= \frac{1}{d} L_{B \to A_1}^{\dagger} \rho_{A_1} L_{B \to A_1}.$

When
$$L_{A_2 o A_1} = rac{1}{\sqrt{d}} U_{A_2 o A_1}$$
 for some unitary matrix (isometry) $U_{A_2 o A_1}$,

$$\frac{1}{d}L_{B\rightarrow A_1}^{\dagger}\rho_{A_1}L_{B\rightarrow A_1}=\frac{1}{d^2}U_{B\rightarrow A_1}^{\dagger}\rho_{A_1}U_{B\rightarrow A_1}.$$

The probability that $\left|\frac{1}{\sqrt{d}}U_{A_2\to A_1}\right\rangle \left\langle \left(\frac{1}{\sqrt{d}}U_{A_2\to A_1}\right)\right|$ is measured is $\frac{1}{d^2}$.

Orthonormal unitaries

When $d=2, \frac{1}{\sqrt{2}}I, \frac{1}{\sqrt{2}}X, \frac{1}{\sqrt{2}}Z, \frac{1}{\sqrt{2}}XZ$ are orthonormal unitaries in $\mathcal{L}(\mathbb{C}^2)$.

For $d \ge 3$, does there exists d^2 orthonormal unitaries?

Discrete Weyl operators:

Let ω be a primitive *d*-th root of unity, i.e., $\omega = \exp\{i2\pi/d\}$.

$$W(s, t) := X^{s}Z^{t}$$
 for $s, t \in \{0, 1, ..., d-1\}$

Orthogonality of Weyl operators

$$W(s,t) := X^s Z^t \qquad \text{for} \qquad s, \ t \in \{0,1,\dots,d-1\}$$

$$W(s,t)^\dagger = Z^{\dagger t} X^{\dagger s} = Z^{-t} X^{-s} = \omega^{st} X^{-s} Z^{-t} = \omega^{st} W(-s,-t)$$

$$W(s,t) W(u,v) = \omega^{tu} W(s+u,t+v) = \omega^{tu-sv} W(u,v) W(s,t)$$

$$\text{Tr}(W(s,t)) = \begin{cases} d, & \text{if } (s,t) = (0,0) \\ 0, & \text{otherwise.} \end{cases}$$

$$\langle W(s,t), W(u,v) \rangle = \text{Tr}(W(s,t)^\dagger W(u,v))$$

$$= \omega^{st} \text{Tr}(W(-s,-t) W(u,v))$$

$$= \omega^{st-tu} \text{Tr}(W(u-s,v-t))$$

$$= \begin{cases} d, & \text{if } (u,v) = (s,t) \\ 0, & \text{otherwise.} \end{cases}$$

Conditional density operator for pure state

For
$$\rho = |\varphi\rangle_{V \otimes W} \langle \varphi|_{V \otimes W}$$
 and $Q_b = |\psi_b\rangle_W \langle \psi_b|_W$,

$$\mathsf{Tr}_{W}(\rho_{V \otimes W}(I_{V} \otimes Q_{b})) = \mathsf{Tr}_{W}(|\varphi\rangle_{V \otimes W} \langle \varphi|_{V \otimes W} (I \otimes |\psi_{b}\rangle_{W} \langle \psi_{b}|_{W}))$$

From an expression $|\varphi\rangle_{V\otimes W} = \sum_{i,j} \varphi_{i,j} |i\rangle_{V} |\psi_{j}\rangle_{W}$,

$$\mathsf{Tr}_W(|\varphi\rangle_{V \otimes W} \langle \varphi|_{V \otimes W} (I_V \otimes |\psi_b\rangle_W \langle \psi_b|_W))$$

$$= \operatorname{Tr}_{W} \left(\sum_{i,j,k,l} \varphi_{i,j} \varphi_{k,l}^{*} \left| i \right\rangle_{V} \left| \psi_{j} \right\rangle_{W} \left\langle k \right|_{V} \left\langle \psi_{l} \right|_{W} \left(I_{V} \otimes \left| \psi_{b} \right\rangle_{W} \left\langle \psi_{b} \right|_{W} \right) \right)$$

$$\mathcal{L} = \mathsf{Tr}_{W} \left(\sum_{i,j,k,l} arphi_{i,j} arphi_{k,l}^{*} \ket{i}_{V} ra{k}_{V} \otimes \ket{\psi_{j}}_{W} ra{\psi_{l}}_{W} ra{U_{V} \otimes \ket{\psi_{b}}_{W}} ra{\psi_{b}}_{W} ra{\psi_{b}}_{W}$$

$$=\sum\varphi_{i,j}\varphi_{k,l}^{*}\left|i\right\rangle_{V}\left\langle k\right|_{V}\operatorname{Tr}\left(\left|\psi_{j}\right\rangle_{W}\left\langle\psi_{l}\right|_{W}\left|\psi_{b}\right\rangle_{W}\left\langle\psi_{b}\right|_{W}\right)$$

$$= \sum_{i,k} \varphi_{i,b} \varphi_{k,b}^* \left| i \right\rangle_V \left\langle k \right|_V = \left(\sum_i \varphi_{i,b} \left| i \right\rangle_V \right) \left(\sum_k \varphi_{k,b}^* \left\langle k \right|_V \right)$$

$$|\varphi\rangle_{V\otimes W} = \sum_{i,j} \varphi_{i,j} |i\rangle_{V} |\psi_{j}\rangle_{W} \longmapsto \frac{1}{\sqrt{P(b)}} \sum_{i} \varphi_{i,b} |i\rangle_{V}$$

Examples of conditional density operator

For $|\psi\rangle_{V\otimes W}:=\sum_{i,j=0}^{1}\alpha_{i,j}\left|i\right\rangle_{V}\left|j\right\rangle_{W}$, we measure the system W by ($|0\rangle\left\langle 0\right|$, $|1\rangle\left\langle 1\right|$).

if the outcome is 0, the state
$$\frac{1}{\sqrt{|\alpha_{0,0}|^2+|\alpha_{1,0}|^2}}\sum_{i=0}^1 \alpha_{i,0} |i\rangle_V$$
.

if the outcome is 1, the state
$$\frac{1}{\sqrt{|\alpha_{0,1}|^2+|\alpha_{1,1}|^2}}\sum_{i=0}^1 \alpha_{i,1}\,|i\rangle_V.$$

Assignments

1 Show the state vector $|\psi\rangle\in\mathbb{C}^2$ of the Bell state

$$rac{1}{\sqrt{2}}(\ket{00}+\ket{11})\in\mathbb{C}^2\otimes\mathbb{C}^2$$

when $|0\rangle\langle 0|$ is measured at the second system.

- 2 Show the state vector $|\psi\rangle\in\mathbb{C}^2$ of the Bell state when $|+\rangle\langle+|$ is measured at the second system.
- 3 Show the state vector $|\psi\rangle\in\mathbb{C}^2$ of the Bell state when $|\varphi\rangle\langle\varphi|$ is measured at the second system where $|\varphi\rangle:=\alpha\,|0\rangle+\beta\,|1\rangle$.