□ *Exercice* 1 (D'après bac S, Pondichéry, mai 2018.).

Dans une usine, un four cuit des céramiques à la température de 1000 °C. À la fin de la cuisson, il est éteint et il refroidit.

On s'intéresse à la phase de refroidissement du four, qui débute dès l'instant où il est éteint.

La température du four est exprimée en degré Celsius (° C).

La porte du four peut être ouverte sans risque pour les céramiques dès que sa température est inférieure à 70 °C. Sinon les céramiques peuvent se fissurer, voire se casser.

Partie A

Pour un nombre entier naturel n, on note T_n la température en degré Celsius du four au bout de n heures écoulées à partir de l'instant où il a été éteint. On a donc $T_0 = 1\,000$.

La température \mathcal{T}_n est calculée par l'algorithme suivant :

$$T \leftarrow 1\,000$$

Pour i allant de 1 à n
 $T \leftarrow 0,82 \times T + 3,6$
Fin Pour

- 1) Déterminer la température du four, arrondie à l'unité, au bout de 4 heures de refroidissement.
- 2) Démontrer que, pour tout nombre entier naturel n, on a : $T_n = 980 \times 0, 82^n + 20$.
- 3) Au bout de combien d'heures le four peut-il être ouvert sans risque pour les céramiques?

Partie B

Dans cette partie, on note t le temps (en heure) écoulé depuis l'instant où le four a été éteint.

La température du four (en degré Celsius) à l'instant t est donnée par la fonction f définie, pour tout nombre réel t positif, par :

$$f(t) = ae^{-\frac{t}{5}} + b,$$

où a et b sont deux nombres réels.

On admet que f vérifie la relation suivante : $f'(t) + \frac{1}{5}f(t) = 4$.

- 1) Déterminer les valeurs de a et b sachant qu'initialement, la température du four est de 1 000 °C, c'est-à-dire que $f(0) = 1\,000$.
- 2) Pour la suite, on admet que, pour tout nombre réel positif t:

$$f(t) = 980e^{-\frac{t}{5}} + 20.$$

- a) Déterminer la limite de f lorsque t tend vers $+\infty$.
- b) Étudier les variations de f sur $[0; +\infty[$. En déduire son tableau de variations complet.
- c) Avec ce modèle, après combien de minutes le four peut-il être ouvert sans risque pour les céramiques?

Corrigé exercice 1

Partie A

1) On cherche T_4 donc on applique l'algorithme pour n=4.

À l'aide de la calculatrice on trouve $T_4 \approx 463$ °C.

- **2)** On pose P_n : « $T_n = 980 \times 0,82^n + 20$ »
 - *Initialisation*: pour n = 0, $T_0 = 1000$ et 980×0 , $82^0 + 20 = 1000$. P_0 est donc vraie.
 - *Hérédité*: On suppose, pour $n \in \mathbb{N}$ fixé, que P_n est vraie, c'est-à-dire $T_n = 980 \times 0, 82^n + 20$. Montrons alors que P_{n+1} est vraie, c'est-à-dire $T_{n+1} = 980 \times 0, 82^{n+1} + 20$.

$$T_{n+1} = 0,82T_n + 3,6$$

$$= 0,82 \times (980 \times 0,82^n + 20) + 3,6$$

$$= 980 \times 0,82^{n+1} + 16,4 + 3,6$$

$$= 980 \times 0,82^{n+1} + 20$$

La propriété est donc héréditaire à partir du rang n=0 or elle est vérifiée à ce rang 0 donc par le principe de récurrence on a bien, $\forall n \in \mathbb{N}$, $T_n = 980 \times 0, 82^n + 20$.

3) On cherche le plus petit entier naturel n tel que $T_n \leq 70$.

On peut utiliser la calculatrice pour trouver $T_{14} \approx 80, 9 > 70$ et $T_{15} \approx 69, 9 < 70$ donc il faut attendre au minimum 15 heures avant de pouvoir ouvrir le four sans dommage.

Partie B

1)
$$f(0) = 1000 \Leftrightarrow a + b = 1000 \text{ et } f'(0) + \frac{1}{5}f(0) = 4 \Leftrightarrow f'(0) = -196.$$

f est dérivable sur \mathbb{R} et $\forall t \in \mathbb{R}$, $f'(t) = -\frac{1}{5}ae^{-\frac{t}{5}}$ d'où $f'(0) = -196 \Leftrightarrow \frac{1}{5}a = 196$. On a donc

$$\begin{cases} a+b=1\,000\\ \frac{1}{5}a=196 \end{cases} \Leftrightarrow \begin{cases} b=20\\ a=980 \end{cases}$$

Finalement on a $\forall t \in [0; +\infty[, f(t) = 980e^{-\frac{t}{5}} + 20]$

2)

$$f(t) = 980e^{-\frac{t}{5}} + 20.$$

a)
$$\lim_{t\to+\infty} \left(-\frac{t}{5}\right) = -\infty$$
, donc en posant $T = -\frac{t}{5}$, $\lim_{T\to-\infty} e^T = 0$

Par opération sur les limites on obtient $\lim_{t\to +\infty} f(t) = 0$.

b) D'après la question 1, $\forall t \in [0; +\infty[, f'(t) = -196e^{-\frac{t}{5}}, \text{d'où } f'(t) < 0.$

On en déduit que f est strictement décroissante sur $[0; +\infty]$

t	0 +∞
f'(t)	
f(t)	1000

c) On cherche à résoudre l'équation f(t) = 70.

Sur $[0; +\infty[$, f est continue et strictement décroissante à valeurs dans]20; 1000], or $70 \in]20; 1000]$ donc d'après le théorème des valeurs intermédiaires, l'équation f(t) = 70 admet une unique solution α sur $[0; +\infty[$.

Par dichotomie on trouve $\alpha \approx 14,9$ et comme f est strictement décroissante sur $[0; +\infty]$, on en déduit que $f(t) \leqslant 70 \Leftrightarrow t \geqslant \alpha$.

D'après ce modèle on peut donc ouvrir le four après environ 15 heures de refroidissement.