

CURSO PROFISSIONAL TÉCNICO DE GPSI

Programação e Sistemas de Informação

Módulo 2 – Estruturas de Controlo

Teste de Avaliação Prática

Crie uma pasta no ambiente de trabalho cujo nome deve identificar a turma, número e nome. Por exemplo 10T_01_AnaPeres O nome do ficheiro deve identificar o número do problema. Por exemplo PROBLEMA_01.PY. Compacte a pasta criada e submeta-a na tarefa "MOD02_AVALIAÇÃO", na plataforma Teams.

INTRODUÇÃO

Para realizar a viagem entre o Porto e Coimbra (120Km), existem várias estradas como alternativa. A tabela seguinte ilustra as diferentes alternativas em termos de trajeto considerando o custo do combustível por quilometro e o custo das portagens.

Estrada	Custo combustível/l	Custo portagens	Custo portagens Classe B	Custo portagens Classe C
A1	1,9	6.52		
A20	1,8	15.2	+20%	+40%
A21	1,75	5.75		

PROGRAMA

Faça um programa em Python que, dada a designação da estrada, a classe do veículo e o consumo total de combustível, retorne o custo total da viagem para essa alternativa.

DADOS DE ENTRADA

3 linhas com a seguinte informação:

- Estrada
- Consumo de combustível do seu veículo (litros totais consumidos)
- Classe do veículo

DADOS DE SAÍDA

Uma linha com o custo total da viagem.

----- EXEMPLOS -----

Exemplo 2

INPUT

Estrada: A1

Consumo de combustível: 10

Classe portagens: A

OUTPUT

O custo da viagem é **5 25,52 €**

Exemplo 2

INPUT

Estrada: A21

Consumo de combustível: 15

Classe portagens: B

OUTPUT

O custo da viagem é 33,15 €

INTRODUÇÃO

Pretende-se saber qual a maior altura de um grupo de pessoas, assim como a sua média de alturas.

PROGRAMA

Para isso pretende-se criar um programa que lendo a altura de várias pessoas, possa indicar qual a maior altura do grupo e a sua média final. O programa deve perguntar ao utilizador quantas pessoas deve ler; depois deve ler as alturas de cada pessoa e no final mostra no ecrã a maior altura lida e a média das alturas.

DADOS DE ENTRADA

O programa dever ler do utilizador o total de pessoas. O programa deve ler de forma sucessiva a altura dessas mesmas pessoas.

RESTRIÇÕES

A altura é um valor real positivo.

A média das alturas do grupo deve ser arredondada às decimas.

DADOS DE SAÍDA

O programa deve informar qual a maior altura e a média das alturas.

----- EXEMPLOS -----

Exemplo 1

INPUT

Altura da 1ª pessoa: 1.56 Altura da 2ª pessoa: 1.43 Altura da 3ª pessoa: 1.69

OUTPUT

A média das alturas é: 1.6 A maior altura é: 1.69

Exemplo 2

INPUT

Altura da 1ª pessoa: 1.73 Altura da 2ª pessoa: 1.88 Altura da 3ª pessoa: 1.32 Altura da 4ª pessoa: 1.52 Altura da 5ª pessoa: 1.64

OUTPUT

A média das alturas é: 1.3

A maior altura é: 1.88

INTRODUÇÃO

A Escola Secundária ESEN vai organizar um evento social em comemoração ao seu 125º aniversário. Para facilitar a participação dos convidados, foram reservadas mesas no salão do evento. Cada mesa tem capacidade para 8 pessoas e existem 15 mesas disponíveis. Os responsáveis pela organização do evento precisam controlar a reserva das mesas para garantir que o espaço seja utilizado de maneira eficiente.

PROGRAMA

Faça um programa em Python que permita a reserva de mesas para o evento. O programa deve solicitar sucessivamente o número de convidados que desejam partilhar uma mesa até que todas as mesas sejam preenchidas. O programa deve terminar quando não houver mais mesas disponíveis ou quando já não existirem pessoas para entrar no evento. Antes de terminar o programa deve indicar quantas mesas foram totalmente ocupadas, se há alguma mesa parcialmente ocupada e se existem mesas totalmente livres.

DADOS DE ENTRADA

O número de convidados por mesa. O programa deve continuar a solicitar este dado até que todas as mesas estejam ocupadas ou até que seja inserido o número 0 (zero).

DADOS DE SAÍDA

O número de mesas totalmente ocupadas, parcialmente ocupada e totalmente livres. Se há alguma mesa parcialmente ocupada, indicar quantas pessoas ocupam essa mesa.

------ EXEMPLOS -----Exemplo 1

INPUT

Número de convidados por mesa: 4 Número de convidados por mesa: 6 Número de convidados por mesa: 8 Número de convidados por mesa: 3 Número de convidados por mesa: 0

OUTPUT

Número total de mesas ocupadas: 2

Há uma mesa parcialmente ocupada por 5 pessoas.

Mesas livres: 12

Exemplo 2

INPUT

Número de convidados por mesa: 7 Número de convidados por mesa: 5 Número de convidados por mesa: 8 Número de convidados por mesa: 4 Número de convidados por mesa: 6 Número de convidados por mesa: 0

OUTPUT

Número total de mesas ocupadas: 3

Há uma mesa parcialmente ocupada por 2 pessoas.

Mesas livres: 11

Cotações

Problema 1

	Input	10
	Processamento	30
	Output	10
	Eficiência	10
Probl	ema 2	
	Input	10
	Processamento	40
	Output	10
	Eficiência	10
Probl	ema 3	
	Input	10
	Processamento	40
	Output	10
	Eficiência	10
Total		200