Cadeiras do auditório

Nome do arquivo fonte: cadeiras.c, cadeiras.cpp, ou cadeiras.pas

As cadeiras do auditório da escola são organizadas em um quadriculado com L linhas e C colunas. As linhas são numeradas de 1 a L, as colunas são numeradas de 1 a C, e as cadeiras são numeradas de 1 a $L \times C$, de tal modo que uma cadeira na linha i coluna j tem o número $(i-1) \times C + j$.

Durante a aula de teatro, a professora fez com que os alunos executassem uma sequência de mudanças na configuração da sala. Cada uma dessas mudanças intercambiou ou duas colunas ou duas linhas. A figura abaixo ilustra uma configuração original com três linhas e quatro colunas, a posição das cadeiras após uma mudança (intercâmbio das colunas 1 e 4), e a posição das cadeiras após mais uma mudança (intercâmbio das linhas 2 e 3).

Ao final da aula, como era de se esperar, a numeração das cadeiras ficou bem bagunçada. O problema é que a próxima aula é de Matemática, e o professor é muito exigente, e quer começar a aula com as cadeiras perfeitamente posicionadas da maneira original.

Tarefa

Sua tarefa é escrever um programa que, dada a posição de cada cadeira ao final da aula de teatro, determine qual é a menor sequência de mudanças que devem ser executadas para retornar as cadeiras aos seus devidos lugares, considerando que cada mudança faça o intercâmbio ou de duas linhas ou de duas colunas de cadeiras.

Entrada

A entrada contém um único conjunto de testes, que deve ser lido do dispositivo de entrada padrão (normalmente o teclado).

A primeira linha da entrada contém dois números inteiros L e C, representando respectivamente o número de linhas e o número de colunas de cadeiras do auditório ($1 \le L \le 200$ e $1 \le C \le 200$). Cada uma das L linhas seguintes contém C números inteiros entre 1 e $L \times C$, separados por um espaço em branco, indicando a posição das cadeiras ao final da aula de teatro. O j-ésimo número dado na linha i é o número da cadeira que se encontra na linha i e coluna j.

Saída

Seu programa deve imprimir, na $saída\ padrão$, na primeira linha um inteiro K representando o número de mudanças necessárias para retornar as cadeiras para sua posição original. Cada uma das K linhas seguintes contém a descrição de uma mudança, na forma de um caractere M (que pode ser 'L' ou 'C'), seguido de um espaço em branco, seguido de um inteiro X, seguido de um espaço em branco, seguido de um inteiro Y. Se o caractere descrevendo a mudança é 'L', X e Y representam linhas que devem ser intercambiadas; se o caractere descrevendo a mudança é 'C', X e Y representam colunas que devem ser intercambiadas.

Para todos os casos testes existe solução com $K \leq 1000$. Se mais de uma solução existe com o mesmo número de mudanças, imprima qualquer uma delas.

Informações sobre a pontuação

- $\bullet\,$ Em um conjunto de casos de teste que totaliza 30 pontos, $L \leq 10$ e $C \leq 10.$
- $\bullet\,$ Em um conjunto de casos de teste que totaliza 70 pontos, $L \leq 100$ e $C \leq 100.$

Exemplos

Entrada	Saída
2 2	2
4 3	L 1 2
2 1	C 1 2

Entrada	Saída
3 4 1 2 3 4 5 6 7 8 9 10 11 12	0