(재)경남테크노파크 공고 제2025-0051호

경남특화산업연계 스포츠산업육성사업(2025)을 위한 나노기술기반 스포츠용품 개발 지원사업 수혜모집 공고

경상남도 내 나노기술을 접목한 스포츠용품(제품)을 개발하고자 하는 기업을 지원하기 위한 『나노기술기반 스포츠용품(제품) 개발지원 사업』을 아래와 같이 공고합니다.

2025년 2월 (재)경남테크노파크 원장

1. 사업목적

나노기술과 스포츠의 접목으로 스포츠용품의 고부가화, 고기능화 등 신제품 개발 또는 사업화를 희망하는 중소기업을 대상으로 시제품제작, 제품고급화 및 시험인증 등을 지원하여 경남 스포츠산업 육성 기반을 마련하고자 함

2. 지원규모 및 기간

- ㅇ 선정규모: 총 4개 과제(사업화지원 4개사 내외)
- 지원규모:
 - 도비 지원금 최대 15백만원/ 기술지도 지원비 별도
 - ※ 지원대상업체 선정평가 결과에 따라 선정 및 지원규모 변동될 수 있음
- 사업기간: 협약일로부터 ~ 2025. 11. 30.
- o 지원내용: 시제품개발(재료비 및 시험평가비), 사업화(제품디자인·성능개선, 시험평가비, 마케팅비용), 기술지도, 전시회참가지원 등
- o 기술지도 지원비: 최대 60만원(시간당 120,000원)
 - ※ 기술지도는 사업화지원과 패키징 지원

3. 지원내용 및 대상

- 이 나노기술과 스포츠의 접목으로 스포츠용품의 고부가화, 고기능화 등 신제품 개발 또는 시업화
 - 나노기술 활용 스포츠용품, 관련 제품 개발 또는 사업고도화, 기술개발 계획 중인 중소기업
 - 연구개발 해당분야 자체 기술력(특허, 기술이전 등)을 보유한 기업
 - 지원사업 종료 후, 본 기술을 활용한 향후 기술개발 및 사업화 계획이 구체적인 기업

○ 세부지원분야

지원 분야	지원금	모집과제 수
나노기술기반 스포츠융품 개발 지원 사업	기업당 최대	
시제품제작(재료비 및 시험평가비), 사업화(제품디자인·성	15백만원	4개사 내외
능개선, 마케팅비용), 기술지도 (컨설팅비)	(기술지도비별도)	

※ 기업부담금 : 지원금의 10%이상 현금부담(부가세는 기업부담)

4. 신청자격

○ 신청자격

- (사업화지원) 나노기술을 접목한 스포츠용품(제품)을 개발하고자 하는 기업으로 신청지역이 부가가치세법 제6조에 따른 납세지로 경남에 주된 사업장(본사, 공장, 연구소)을 보유하거나, 경남에 소재한 기업으로 스포츠용품 및 나노기술 관련 기업

5. 선정평가 기준

ㅇ 사전검토

- 접수된 기업들의 사업신청서 사전검토 실시
- 서류 사전검토 과정을 통하여 자격 미달 시 지원 제외될 수 있음

ㅇ 평가방법

- 사업계획서, 발표내용, 실태조사 등을 종합적으로 참고하여 선정평가위원회 평 가 수혜기업으로 선정
- 평가지표 기준 70점 이상 득한 기업에 한함

평가항목(점수)	평가지표
기업역량	- 과제와 관련한 기업의 연관성
(7점)	- 기업의 재무역량(유동성,안정성,성장성)
목표타당성(30점)	- 최종 목표/성과 목표의 명확성, 타당성, 창의성
국표의 8.8(30급)	- 연차별 성과목표(지표) 설정의 적절성, 구체성
	- 과제 수행 전략의 구체성, 신뢰성, 적정성
시어스해트러(20전)	- 사업비 편성의 적정성(목표대비 사업비 구성의 적정성)
사업수행능력(30점)	- 주관기관 장비 활용방안의 적정성(주관기관 장비를 통한 기술
	개발 또는 생산)
시어서 귀(20전)	- 사업추진에 따른 활용방안 및 기대효과
사업성과(30점)	- 사업화지원을 통한 추가 가치 창출성(매출, 고용, 지적재산권)

* 1차년도(2023년), 2차년도(2024년) 수혜기업 중 우수기업(최종결과평가 80점 이상)은 가산점 3점을 부여함

6. 유의사항 및 추가 안내

- ㅇ 기업 수혜 확대를 위해 신규신청기업 우대
- ㅇ 신청서 작성 시 기술지도 신청서(희망전문가 포함)도 작성
- 아 사업비계상 중 기술개발과 제품 사업화를 위한 연구개발에 대한 사업비 책정 비율이 높은 기업 우대(과제 수행 및 사업화를 위한 의지 확인)
- ㅇ 기존 수혜기업 신청 시, 점검결과 및 최종평가를 참조하여 선정 여부 판단
- 0 지워 제외대상
 - 신청서류 허위기재가 발견된 경우
 - 동일내용으로 타 기관 또는 타 사업의 지원을 받았거나 기지원된 과제와 유사·중복이 확인될 경우
 - 기타 부도, 휴폐업, 국세(지방세) 체납처분, 채무불이행자, 파산회생기업, 자본전액잠식, 부채 1,000%이상, 국가R&D 참여제한 기업 및 대표자 등(법률 제19235호(2023. 3. 21.) 국가연구개발혁신법 연구개발과제 신청자격 적정성 확인서에 근거)
 - 서류가 누락(미비)되었거나 사실과 다른 경우
 - 기타 본 사업에 적정하지 않다고 판단되는 경우 등

7. 추진일정

사업공고	\Rightarrow	신청 및 접수마감	\Rightarrow	지원과제선정
25. 2. 28.(금)		~ 25. 3. 21(금) 예정		25. 3. 28(금) 예정
결과보고서 및 사후관리		사업수행	_	협약 체결
′25. 12. ~		′25. 4. ~ ′25. 11.		4월 중 예정

※ 세부추진일정은 상황에 따라 일부 변경 될 수 있음

8. 접수기간 및 접수방법

- (공고기간) 2024. 2. 28.(금) ~ 3. 21.(금)까지
- (접수기간) 2024. 2. 28.(금) ~ 3. 21.(금)까지
- ㅇ (신청방법) https://www.gntp.or.kr/login 후, 온라인 지원사업 신청
- ㅇ (신청양식) 시업계획서 등 제출서류 양식 홈페이지(www.gntp.or.kr) 다운로드
- ㅇ (신청서류) 사업계획서 원본 1부, 부속서류

구 분	제출서류	수량(부)	서식 번호
	· 신청서	2	1, 2
	· 사업자등록증	1	
공 통	· 공장등록증 또는 기업부설연구소 인증서	1	
	· 개인정보·과세정보 이용·제공 동의 및 청렴서약서	1	3
	· 재무제표('21~'23년도)	1	
사업계획서	· 사업계획서(표지, 목차포함 총 6장 이내)	1	4

9. 문 의 처

ㅇ 접수관련 사전문의

기관명 담당자명		전화번호	이메일
경남테크노파크	배중현	055-351-4057	charmant@gntp.or.kr

별 첨 기관보유장비현황

분류	연번	장 비 명	장비사진	주요사양
	1	위상전이 자외선 노광 시스템		• 위상전이 마스크 이용하여 200nm급 나노패턴 제작 • 조도: 20mW/cm, 조도분포: 90%이상 • Intensity Uniformity: ±3~5%, 분해능: 2#m
	2	1200mm급 롤기반 나노임프린팅 시스템		• 레이저 시스템 결합을 통한 선폭 100m급 나고패턴닝 공정 • 중심파장: <360nm • 출력파워:100mW 급 • SLM(Single Longitudinal Mode)
	3	DFR 라미네이터 공정 시스템		• 임프린팅롤 Ø120*1300L • 속도: 0.1~50mm/sec • UV LED: 365 nm
	4	곡면 나노임프린팅 시스템 (NI19)		• 고분자 필름 상에 나노패턴을 연속적으로 형성 • 기판폭: 300mm, 롤러 폭: 350mm • 속도: 0.1 - 10m/min, Tension: 10 -200N
	5	나노패턴 레이저 시스템 (LLM-100)		 고분자 필름 상에 나노패턴을 연속적으로 형성 기판폭: 1200mm, 롤러 폭: 1400mm 속도: 0.1 - 5m/min, Tension: 10 -500N 마이크로 그라비아 시 속도:0.1 - 100m/min
공정장비 (패터닝 공정)	6	대형 스프레이 코팅 시스템		• 플라즈마 세정, 감광제 코팅, 건조 트랙시스템 • 코팅 두께 범위: 100nm~10μm(±5%) • 두께 균일도: ±5%, 토출량 범위: 0.1 ~ 10cc/min
	7	대면적 스핀코터	20118	• 최대 기판크기: 550*650mm • 스핀모터 최고속도: 1,500rpm • Cover가 함께 회전해야 함
	8	대면적 원통/평판 현상 시스템		• 현상액 분사, 세정, 건조 트랙시스템 • 현상존 및 세정존: 스프레이 방식, 건조존: 에어나이프 • 롤 컨베이어 이송 및 회전(이송 속도: 20~200㎜/sec)
	9	대면적 원통박막 코팅장비		・나노패턴 성형 가능하도록 대형박막(감광제) 코팅 ・유효코팅길이: 1400~2000mm ・코팅두께: 100nm~수ムm, 균일도 오차: ±10%
	10	감광제 정밀 열판		• 핫 플레이트 방식의 건조장비로 감광제 경화 • 최대온도: 200℃ • 균일도: ±2℃ 이하
		평판/롤 코팅 건조롤		• 열풍순환 방식의 건조장비로 감광제 경화 • 최대온도: 250℃ • 균일도: ±5℃ 이하, 정밀도: ±1.0℃ 이하

공정장비 (중착장비)	11	대형 평판형 증착장비	• 기판 상에 두 가지 이상의 금속막 동시 증착 • 스퍼터링 공정: 마그네트론 캐소드(2set), Cu, Cr, SnO • PECVD 공정: 증착 물질(SnO ₂), 균일도: ±5% 이내
	12	스크린 프린팅	• 조도: 20mW/cm², 조도분포: 90%이상 • Intensity Uniformity: ±3~5% • 분해능: 2μ
금형제작 장비	13	다이아몬드 터닝머신	• 2000mm급 롤 금형을 나노미터급 면조도로 가공 • 진직도: (X축) ≤1/m/full travel, (Z축) ≤2.5/m/full travel • Positioning accuracy: ≤±2arcsec
	14	나노금형 리페어 장비	 나노금형의 이음매 제거 후 나노패턴 복구 펨토초 레이저: 325mW 파워 안정성: ±0.5%
	15	정밀 레이저 커팅장비	• 나노/마이크로 금형제작용 평판금형 커팅 장비 • 레이저 출력: 1000W 이상 • 평판 금형 사이즈: 1,400*1,000mm • 평판 금형 절단 두께: 150 ~ 800μm
	16	평판금형 랩핑 장비	• 원통에 평판금형을 랩핑· 용접하여 원통금형 제작 • 접합 선폭: 30/m 이하, Tiling 공극 단차: 5 /m 이내 • 정밀도: 0.5/m, 분해능: 20nm
기능성 필름 평가 장비	17	복합환경 신뢰성 챔버	• 온도 범위: (조사 X) -20°~80°/(조사 O) -10°~80° • 습도 범위: 10~95 %R.H. • 과장 범위: 290~400 nm
	18	산소투과도 시험기	• 시험범위: 0.005~50 cm³/m² d) • 시험편수: 1~3 • 온도범위: 10°~55°
	19	수분투과도 시험기	• 시험범위: 0.005~50 cm³/m² d) • 시험편수: 1~3 • 온도범위: 10°~55°

	20	이온빔 가공장비		• 이온빔으로 단면 가공 후 전자빔으로 이미지 관찰 • 이온빔 분해능: 2.5㎜(@30kV) • 전자현미경 분해능: 0.9 nm (@15 kV)
	21	알파스텝 프로파일러		•시료 표면을 팁을 이용하여 스탠으로 단차 및 거찰기 측정 • 스캔 길이: ≥55 mm • 수직 범위/해상도: ≤0.38 Angstrom • Stylus 힘: ≤0.03 mg
	22	광특성 분석장비	- 10 100 - 0 - 11	 기능성 필름의 최종제품에 대한 광학적 성능평가 화장: 380~780 nm HAZE, 전광선 투과율, 확산 투과율, 평행투과율 평가
분석장비	23	나노패턴 광측정 현미경 시스템		• 나노단위 표면 특성 측정 기능을 갖춘 측정시스템 • 레이저파장: 405nm, 출력: 100mW(Max) • 횡축 해상도: 100nm급, 대물렌즈 배율: 100 X • 영상영역: 40μm * 40μm
	24	라만 분석기		• 레이저파장: 532, 785, 1064 nm • 레이저 파워: 532nm(25mW)/785nm(100mW) • 분해능: 4㎝-1 이하
	25	감광제 두께측정장비		• 광학적방법으로 나노미터급 두께와 굴절율 측정 • 유효 측정 사이즈: 1200mmx1200mm • 파장범위: 190nm~1,100nm, 소요시간: 15초 이내
	26	평판형 대면적 3차원 현미경	4	• 광학현미경, SEM, 형상측정기 기능 갖춘 측정시스템 • 관찰배율: 고배율 기준 28,800배 이상 • 측정 렌즈부: 2.5x, 5x, 10x, 20x, 50x, 150x
	27	UV 레이저 시스템		• 나노구조체 회절 패턴 분석 및 성능 검증