Find the dimension and a basis of the solution space W of each homogeneous system:

$$x + 2y + 2z - s + 3t = 0 x + 2y + 3z + s + t = 0, 3x + 6y + 8z + s + 5t = 0$$

$$x + 2y + z - 2t = 0 2x + 4y + 4z - 3t = 0 3x + 6y + 7z - 4t = 0$$

$$x + y + 2z = 0 2x + 3y + 3z = 0 x + 3y + 5z = 0$$
(b)

(a) Reduce the system to echelon form:

$$x + 2y + 2z - s + 3t = 0$$

 $z + 2s - 2t = 0$ or $z + 2s - 2t = 0$
 $2z + 4s - 4t = 0$

The system in echelon form has two (nonzero) equations in five unknowns. Hence the system has 5-2=3 free variables, which are v, s, t. Thus dim W=3. We obtain a basis for W:

(1) Set
$$y = 1$$
, $s = 0$, $t = 0$ to obtain the solution $v_1 = (-2, 1, 0, 0, 0)$.

(2) Set
$$y = 0$$
, $s = 1$, $t = 0$ to obtain the solution $v_2 = (5, 0, -2, 1, 0)$.

(3) Set
$$y = 0$$
, $s = 0$, $t = 1$ to obtain the solution $v_3 = (-7, 0, 2, 0, 1)$.

The set $\{v_1, v_2, v_3\}$ is a basis of the solution space W.

(b) (Here we use the matrix format of our homogeneous system.) Reduce the coefficient matrix A to echelon form:

$$A = \begin{bmatrix} 1 & 2 & 1 & -2 \\ 2 & 4 & 4 & -3 \\ 3 & 6 & 7 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & -2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & -2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This corresponds to the system

$$x + 2y + 2z - 2t = 0$$
$$2z + t = 0$$

rank(AB) < rank(B) and rank(AB) =

The free variables are y and t, and dim W = 2.

(i) Set
$$y = 1$$
, $z = 0$ to obtain the solution $u_1 = (-2, 1, 0, 0)$.

(ii) Set
$$y = 0$$
, $z = 2$ to obtain the solution $u_2 = (6, 0, -1, 2)$.

Then $\{u_1, u_2\}$ is a basis of W.

(c) Reduce the coefficient matrix A to echelon form:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 3 \\ 1 & 3 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 5 \end{bmatrix}$$

This corresponds to a triangular system with no free variables. Thus 0 is the only solution, that is, $W = \{0\}$. Hence dim W = 0.

Find a homogeneous system whose solution set W is spanned by

$$\{u_1, u_2, u_3\} = \{(1, -2, 0, 3), (1, -1, -1, 4), (1, 0, -2, 5)\}$$

Let v = (x, y, z, t). Then $v \in W$ if and only if v is a linear combination of the vectors u_1, u_2, u_3 that span W. Thus form the matrix M whose first columns are u_1, u_2, u_3 and whose last column is v, and then row reduce M to echelon form. This yields

$$M = \begin{bmatrix} 1 & 1 & 1 & x \\ -2 & -1 & 0 & y \\ 0 & -1 & -2 & z \\ 3 & 4 & 5 & t \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & x \\ 0 & 1 & 2 & 2x + y \\ 0 & -1 & -2 & z \\ 0 & 1 & 2 & -3x + t \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & x \\ 0 & 1 & 2 & 2x + y \\ 0 & 0 & 0 & 2x + y + z \\ 0 & 0 & 0 & -5x - y + t \end{bmatrix}$$

Then v is a linear combination of u_1 , u_2 , u_3 if rank(M) = rank(A), where A is the submatrix without column v. Thus set the last two entries in the fourth column on the right equal to zero to obtain the required homogeneous system:

$$2x + y + z = 0$$
$$5x + y - t = 0$$

Consider the following subspaces of R⁵:

$$U = \text{span}(u_1, u_2, u_3) = \text{span}\{(1, 3, -2, 2, 3), (1, 4, -3, 4, 2), (2, 3, -1, -2, 9)\}$$

 $W = \text{span}(w_1, w_2, w_3) = \text{span}\{(1, 3, 0, 2, 1), (1, 5, -6, 6, 3), (2, 5, 3, 2, 1)\}$

Find a basis and the dimension of: (a) U + W, (b) $U \cap W$.

(a) U+W is the space spanned by all six vectors. Hence form the matrix whose rows are the given six vectors, and then row reduce to echelon form:

The following three nonzero rows of the echelon matrix form a basis of $U \cap W$:

$$(1, 3, -2, 2, 2, 3),$$
 $(0, 1, -1, 2, -1),$ $(0, 0, 1, 0, -1)$

Thus $\dim(U+W)=3$.

(b) Let v = (x, y, z, s, t) denote an arbitrary element in \mathbb{R}^5 . First find, say as in Problem 4.49, homogeneous systems whose solution sets are U and W, respectively.

Let M be the matrix whose columns are the u_i and v, and reduce M to echelon form:

$$M = \begin{bmatrix} 1 & 1 & 2 & x \\ 3 & 4 & 3 & y \\ -2 & -3 & -1 & z \\ 2 & 4 & -2 & s \\ 3 & 2 & 9 & t \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & x \\ 0 & 1 & -3 & -3x + y \\ 0 & 0 & 0 & -x + y + z \\ 0 & 0 & 0 & 4x - 2y + s \\ 0 & 0 & 0 & -6x + y + t \end{bmatrix}$$

Set the last three entries in the last column equal to zero to obtain the following homogeneous system whose solution set is U:

$$-x + y + z = 0$$
, $4x - 2y + s = 0$, $-6x + y + t = 0$

Now let M' be the matrix whose columns are the w_i and v, and reduce M' to echelon form:

$$M' = \begin{bmatrix} 1 & 1 & 2 & x \\ 3 & 5 & 5 & y \\ 0 & -6 & 3 & z \\ 2 & 6 & 2 & s \\ 1 & 3 & 1 & t \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & x \\ 0 & 2 & -1 & -3x + y \\ 0 & 0 & 0 & -9x + 3y + z \\ 0 & 0 & 0 & 4x - 2y + s \\ 0 & 0 & 0 & 2x - y + t \end{bmatrix}$$

Again set the last three entries in the last column equal to zero to obtain the following homogeneous system whose solution set is W:

$$-9+3+z=0$$
, $4x-2y+s=0$, $2x-y+t=0$

Combine both of the above systems to obtain a homogeneous system, whose solution space is $U \cap W$, and reduce the system to echelon form, yielding

$$-x + y + z = 0$$

$$2y + 4z + s = 0$$

$$8z + 5s + 2t = 0$$

$$s - 2t = 0$$

There is one free variable, which is t; hence $\dim(U \cap W) = 1$. Setting t = 2, we obtain the solution u = (1, 4, -3, 4, 2), which forms our required basis of $U \cap W$.