AIFA: PLANNING

01/04/2024

Koustav Rudra

Planning: Automation

- Partial order planning
- GraphPlan
- SATPlan
- Stochastic Planning

Partial Order Planning

- Basic Idea: Make choices only that are relevant to solving the current part of the problem
- Least Commitment Choices:
 - Orderings: Leave actions unordered, unless they must be sequential
 - Bindings: Leave variables unbound, unless needed to unify with conditions being achieved
 - Actions: usually not subject to "least commitment"

Terminology

- Totally Ordered Plan
 - There exists sufficient orderings O such that all actions in A are ordered with respect to each other
- Fully Instantiated Plan
 - There exist sufficient constraints in B such that all variables are constrained to be equal to some constant
- Consistent Plan
 - There are no contradictions in O or B
- Complete Plan
 - Every precondition P of every action Ai in A is achieved:
 - There exists an effect of an action A_j that comes before A_i and unifies with P, and no action A_k that deletes P comes between A_i and A_i

STRIPS

- Stanford Research Institute Problem Solver
- Many planners today use specification languages that are variants of the one used in STRIPS
- Our running example:
 - Given:
 - Initial State: The agent is at home without tea, biscuits, book
 - Goal State: The agent is at home with tea, biscuits, book
 - A set of actions

State Representation

- States are represented by conjunctions of function-free ground literals
 - $At(Home) \land \sim Have(Tea) \land \sim Have(Biscuits) \land \sim Have(Book)$
- Goals are also described by conjunction of literals
 - $At(Home) \land Have(Tea) \land Have(Biscuits) \land Have(Book)$
- Goals can also contain variables
 - $At(x) \wedge Sells(x, Tea)$
 - The above goal is being at a shop that sells tea

Representing Actions

- Action description: serves as a name
- Precondition: a conjunction of positive literals
- Effect: a conjunction of literals (+ve or -ve)
- OP(
 - ACTION: Go(there)
 - PRECOND: $At(here) \land Path(here, there)$
 - EFFECT: $At(there) \land \sim At(here)$
 -)

Representing Plans

- A set of plan steps
 - Each step is one of the operators for the problem
- A set of step ordering constraints
 - Each ordering constraint is of the form $S_i \prec S_j$
 - indicating S_i must occur sometime before S_j
- A set of variable binding constraints of the form v=x
 - v is a variable in some step
 - x is either a constant or another variable
- A set of causal links written as $S \to c$: S' indicating S satisfies the precondition C for S'

POP Example: Get Tea, Biscuits, Book

Initial State:

```
Op( ACTION: Start,

EFFECT: At(Home) ∧ Sells(BS, Book)

∧ Sells(TS, Tea)

∧ Sells(TS, Biscuits))
```

Goal State:

```
Op( ACTION: Finish,
PRECOND: At(Home) ∧ Have(Tea)
∧ Have(Biscuits)
∧ Have(Book))
```

Actions:

```
Op( ACTION: Go(y),
PRECOND: At(x),
EFFECT: At(y) ∧ ¬At(x))
```

```
Op( ACTION: Buy(x),
PRECOND: At(y) ∧ Sells(y, x),
EFFECT: Have(x))
```

START

START

Thank You