Web Data Mining

Lecture 10: Recommender Systems

Jaroslav Kuchař & Milan Dojčinovski

jaroslav.kuchar@fit.cvut.cz, milan.dojchinovski@fit.cvut.cz

Czech Technical University in Prague - Faculty of Information Technologies - Software and Web Engineering

Summer semester 2019/2020 Humla v0.3

Overview

- Introduction
- Collaborative Filtering
- Content Based Filtering
- Other Recommender Systems
- Other Aspects
- Supplementary Material

Motivation

- Too much information
 - users are overloaded with information
 - many choices available
- Examples
 - Thousands of news articles and blog posts every day
 - Milions of movies, books, sound tracks
 - Many restaurants, hotels, apps, people, ...
- People can't assess every piece of information!
 - Need for an intelligent information delivery!
- Solution
 - Recommender Systems
- Relation to Information Retrieval
 - Many similar approaches on the background
 - Goals
 - \rightarrow IR "I know what I am looking for"
 - \rightarrow RS "I am not sure what i am looking for"

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

_ 3 _

Recommender Systems

- Systems for recommending items to users
 - books, movies, web pages, songs, ...
 - based on users preferences in the past
- Enhance user experience
 - assist users in finding information
 - reduce search and navigation time
- Recommendations are on first place on the internet
 - Google's recommendations
 - → web pages, advertisments
 - → recommendations generate 38% more clicks
 - Youtube's recommendations
 - \rightarrow videos, channels to subscribe
 - Netflix's recommendations
 - \rightarrow movies
 - → 2/3 watched movies are recommended
 - Facebook's recommendations
 - → friends, posts, advertisments
 - Twitter's recommendations
 - \rightarrow tweets, people to follow
 - Amazon's recommendations
 - \rightarrow books, DVDs, electronics, toys, ...
 - \rightarrow 35% sales from recommendations

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

-4-

Information Used for Recommendations

- Used information can come from different sources:
 - browsing and searching past behavior
 - \rightarrow e.g. clicks, logs
 - purchase data
 - \rightarrow e.g. bought book or movie
 - explicit feedback provided by the users
 - \rightarrow e.g. likes, rating stars
 - comments on products
 - → requires opinion mining
 - demographic data
 - context
 - relations to other users
 - item similarities
- Recommender systems usually exploit information from more sources

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

Personalization

- Adapting to the individual needs
- Accommodate the differences between individuals according to their preferences, needs or interests
- Key idea in recommendation systems
- Assumptions
 - if user A and user B are similar, then in the future user A might be interested in items from user B
 - → recommend items from similar users
 - if user A is interested in item I, then in the future user A might be interested in items similar to item I
 - \rightarrow recommend items similar to the items in the basket

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 6 -

Types of Recommender Systems

- Collaborative filtering analyze the user-item interactions for each user, and recommend items from similar users
- Content-based filtering
 - analyze the content of the items (bought books) and recommend similar content (similar books)
- Knowledge-based
 - In situation when limited information is available
 - Uses knowledge-base
 - which item should be recommended in which context?
- Other demographic, ...
- Hybrid
 - combination of approaches

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

Types of Recommender Systems (cont.)

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

-8-

Overview

- Introduction
- Collaborative Filtering
- Content Based Filtering
- Other Recommender Systems
- Other Aspects
- Supplementary Material

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 9 -

Collaborative Filtering

- Assumption
 - User with similar taste in past will have similar taste in future
- Analyze user-item interactions
 - likes, watched video, bought book
 - do not analyze the content of the items being recommended
- Method
 - Produce recommendations by computing the similarity between a user's preferences and preferences of other people
 - Suggest new items to users who have similar preferences with others
- Approaches
 - \dot{U} ser-based find similar users to me and recommend what they liked
 - Item-based find similar items to those that I have previously liked
- Widely used in practice

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 10 -

CF Inputs

- General lists
 - List of users
 - List of items
- Associations
 - Each user has associations to items
 - $\rightarrow Explicit$
 - \rightarrow ratings
 - \rightarrow Implicit
 - \rightarrow purchases
 - → listen records
- Metrics/methods
 - to measure similarity between users
 - to select top neighbors
- Active user

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 11 -

Collaborative Filtering steps

- Steps
 - Identify relevant input data
 - → Collect user-item interactions for the users
 - \rightarrow ratings (0-5 stars), likes, etc
 - Identify set of users most similar to the active user neighborhood
 - → Compute user-to-user similarity
 - \rightarrow based on their interactions with the items
 - Identify items for these similar user
 - Generate prediction
 - \rightarrow that would be given by the active user
 - Recommend items
- Main challenge
 - how to compute the similarity between the users

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 12 -

User-based CF

- Steps
 - For the active user find top similar users
 → neighborhood
 - Detect ratings of neighbors for unrated items
 - Compute average of ratings
 - Recommend items with highest predicted ratings
- In short
 - "You may like it because other liked it"

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 13 -

Example

- Ratings of 5 users for 6 items
- What can we recommend for the user 3?

users\items		2	3		5	6	mean rating	Cosine(u, u3)	Pearson (u, 3)
u1	7	6	7	4	5	4	5.5	0.956	0.894
u2	6	7		4	3	4	4.8	0.981	0.939
u3		3	3	1	1		2	1.0	1.0
u4	1	2	2	3	3	4	2.5	0.789	-1.0
u5	1		1	2	3	3	2	0.645	-0.817

- Descriptions:

 For user 3 we can recommend missing items
 → Possibilities item 1 and 6

 - User 1 and user 2 are the most similar

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 14 -

Similarities

Cosine similarity

- Defined as cosine of the angle between the vectors

$$similarity = cos(\theta) = \frac{A*B}{||A||||B||} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \times \sqrt{\sum_{i=1}^{n} (B_i)^2}}$$

Cosine similarity in action

1	users\items							mean rating	Cosine(u, u3)	Pearson (u, 3)
	u1	7	6	7	4	5	4	5.5	0.956	0.894
ı	u3		3	3	1	1		2	1.0	1.0

$$-A * B = 6 * 3 + 7 * 3 + 4 * 1 + 5 * 1$$

• cosine(user1, user3)
-
$$A * B = 6 * 3 + 7 * 3 + 4 * 1 + 5 * 1$$

- $||A|| * ||B|| = \sqrt{6^2 + 7^2 + 4^2 + 5^2} * \sqrt{3^2 + 3^2 + 1^2 + 1^2}$

$$-cosine(user1, user3) = A * B / ||A|| * ||B|| = 0.956$$

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 15 -

Similarities (cont.)

Pearson Similarity Metric

- Computes how correlated are two vectors
- Similarity in range [1,-1]
 - → closer to 1 items are correlated, closer to -1 items are negatively correlated
 - → negative value means as one variable increases the other decreases
 - \rightarrow positive value means as one variable increases also the other increases
 - \rightarrow in our example, users tends to rank photos with similar ratings

$$corr(i,j) = \frac{\sum_{i=u}^{U} (R_{ui} - R_i) (R_{uj} - R_j)}{\sqrt{\sum_{i=u}^{U} (R_{ui} - R_i)^2} \sqrt{\sum_{i=u}^{U} (R_{uj} - R_j)^2}}$$

$$\uparrow^{r=0.4} \qquad \uparrow^{r=0} \qquad \uparrow^{r=0.4} \qquad \uparrow^{r=0} \qquad \uparrow^{r=0.4} \qquad \uparrow^{r$$

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 16 -

Similarities (cont.)

Pearson Similarity Metric in Action

users\items		2	3		5	6	mean rating	Cosine(u, u3)	Pearson (u, 3)
u1	7	6	7	4	5	4	5.5	0.956	0.894
u3		3	3	1	1		2	1.0	1.0

• corr(user1, user3)
-
$$A = (6 - 5.5) * (3 - 2) + (7 - 5.5) * (3 - 2)...$$

- $B = \sqrt{0.5^2 + 1.5^2 + ...} * \sqrt{1^2 + 1^2...}$

$$-corr(user1, user3) = A/B = 0.894$$

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 17 -

User-based Recommendation

- How to use the user-user similarity information and predict rating for an item?
- Pearson-weighted average of ratings predicts rating of missing items

 - predicted ratings are used for recommendation of items
- Raw rating prediction

$$pred(a,b) = \frac{\sum_{b \in N} sim(a,b) . r_b}{\sum_{b \in N} sim(a,b)}$$

• Mean-centered prediction

$$pred(a, b) = r_a + \frac{\sum_{b \in N} sim(a, b) \cdot (r_{bp} - r_b)}{\sum_{b \in N} sim(a, b)}$$

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 18 -

User-based Recommendation (cont.)

• What can we recommend for the user 3?

users\items	1	2	3	4	5	6	mean rating	Cosine(u, u3)	Pearson (u, 3)
u1	7	6	7	4	5	4	5.5	0.956	0.894
u2	6	7		4	3	4	4.8	0.981	0.939
u3		3	3	1	1		2	1.0	1.0
u4	1	2	2	3	3	4	2.5	0.789	-1.0
u5	1		1	2	3	3	2	0.645	-0.817

- In action

$$\rightarrow$$
 user3, item1 = $\frac{7*0.894+6*0.939}{0.894+0.939} = 6.49$

- by selecting top-2 similar users
- user3, item1 =
$$\frac{7*0.894 + 6*0.939}{0.894 + 0.939} = 6.49$$

- user3, item6 = $\frac{4*0.894 + 4*0.939}{0.894 + 0.939} = 4$

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

Item-based CF

- Computes similarity between items (columns in the rating matrix)
 - Use this similarity to predict ratings
 - More computationally efficient
 - → number of items << number of user
 - Similar similarity metrics can be used
 - Prediction is computed in the same way as in the user-based

users\items						
u1	7	6	7	4	5	4
u2	6	7		4	3	4
u3		3	3	1	1	
u4	1	2	2	3	3	4
u5	1		1	2	3	3
sim(1, i)	1	0.735	0.912	-0.848	-0.813	-0.990
sim(6, i)	-0.990	-0.622	-0.912	0.829	0.730	1

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 20 -

Matrix Factorization CF

- Model-based recommendation
- Main idea
 - Discover latent factors of users or items
 - Use those latent factors for recommendations
 - Assumption: Ratings can be inferred from a model put together from a smaller number of parameters
- Latent factors
 - features that describe recommended items o users
 - e.g. categories of movies
 - can be discovered automatically
- Approaches– Singular Value Decomposition (SVD)
 - Matrix Factorization

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

Matrix Factorization CF (cont.)

• Basic Matrix Factorization

- Description
 - -R rating matrix (m users, n items)
 - − *P* user features matrix (m users, f features/latent factors)
 - W item features matrix (n items, f features/latent factors)
 - Rating cane computed as

$$\rightarrow r_{ui} \approx q_i^T \times p_u$$

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 22 -

Matrix Factorization CF - Example

• Rating matrix

users\items	item1	item2	item3
u1	5	3	4
u2	?	2	4
u3	4	2	?

P

users\features	f1	f2	f3		
u1	0.276	-0.377	-1.262	-1.548	0.473
u2	0.399	-0.527	-0.289	-1.516	0.737
u3	0.225	-0.291	-1.067	-1.225	0.374

W

items\features		item2	item3
f1	0.302	0.143	0.434
f2	-0.405	-0.202	-0.575
f3	-1.399	-0.923	-0.468
f4	-1.678	-0.940	-1.720
f5	0.512	0.239	0.796

• Rating prediction: $r(user3, item3) = P_3 f \times W_f 3 = 3.168$

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 23 -

Matrix Factorization CF - Example 2

• Product Ratings

Charu C. Aggarwal: Recommender Systems - The Textbook. Springer 2016, ISBN 978-3-319-29657-9, pp. 1-498.

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 24 -

Matrix Factorization CF - Example 3

• Movie Ratings

User ID	Top Gun	Rambo	Young Guns	Lonesome Dove
1	5	4	1	1
2	4	5	1	1
3	1	1	5	5
4	1	1	4	5
5	1	1	5	4

• Feature Vectors for movies

	Feature 1	Feature 2		
	Military	Western		
Top Gun	3.836413	0.5803331		
Rambo	7.744796			
Young Guns	1.217036	7.829875		
Lonesome Dove	1.120779	9.8565764		

^{* &}quot;Nonnegative Matrix Factorization and Recommendor Systems." R-bloggers. N.p., 24 Oct. 2012. Web. 28 Apr. 2017.

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 25 -

Problems with Collaborative Filtering

- Cold start
 - needs to have enough other users already in the system to find match
- Sparsity
 - if there are many items to be recommended, even if there are many users, the user/ratings matrix is sparse, and it is hard to find users that have rated the same items
- First rater
 - new not rated items are not recommended
- Popularity bias
 - can not recommend items to someone with unique tastes
 - specific items are always popular
- Lack of Transparency recommendations can not be easily explained, why an item was recommended

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 26 -

Overview

- Introduction
- Collaborative Filtering
- Content Based Filtering
- Other Recommender Systems
- Other Aspects
- Supplementary Material

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 27 -

Content Based Filtering

- Produce recommendations by analyzing the content (metadata) of the items
 - metadata categories, tags, textual content, authors, etc.
 - automatically extracted fetures e.g. text mining
- Approach
 - Build representation for each item
 - → Represent items usually as a vector
 - Content-based learning of user profiles
 - → Can be represented in many ways
 - \rightarrow similar vector as for the items
 - \rightarrow *set of keywords*
 - → classification or regression models
 - Filtering and recommendations
 - → *Identify* candidates
 - → Measure the similarity between the user profile vector and each item vector
 - \rightarrow Classify items using user profiles as classifiers
 - \rightarrow Recommend top-N most relevant items to the user

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 28 -

Content Based Filtering - Example

• Items

	Action	Sci-fi	Comedy	Romance	Sport	Drama
item1	1	1	0	0	0	0
item2	1	0	1	0	0	0
item3	0	0	1	1	0	0
item4	0	0	0	0	1	1
item5	0	0	1	0	1	0
item6	0	1	0	0	0	1
item7	1	1	1	0	0	0

• User profile

	Action	Sci-fi	Comedy	Romance	Sport	Drama
user1	1	0	0	0	0	1

Similarity measures – item1, item2, item4, item6, ...

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 29 -

Content Based Filtering - Example 2

• Rule-based classifier

song\cat.	Drums			Classical	Symphony	Orchestra	L/D
1	1	1	1	0	0	0	D
2	1	1	0	0	0	1	D
3	0	1	1	0	0	0	D
4	0	0	0	1	1	1	L
5	0	1	0	1	0	1	L
6	0	0	0	1	1	0	L
t1	0	0	0	1	0	0	?
t2	1	0	1	0	0	0	?

• Rules (supp=0.3, conf=0.75) - Rule 1: {Classical} -> Like (50%, 100%) - Rule 2: {Symphony} -> Like (33%, 100%) - Rule 3: {Classical, Symphony} -> Like (33%, 100%)

- Rule 4: {Drums, Guitar} -> Dislike (33%, 100%)
- Rule 4: ¡Drums, Gullar} -> Distike (33%, 100%)
 Rule 5: {Drums} -> Dislike (33%, 100%)
 Rule 6: {Beat} -> Dislike (33%, 100%)
 Rule 7: {Guitar} -> Dislike (50%, 75%)

Classifications

- **−** t1 − Rule 1 − Like
- t2 Rule 5, Rule 6 Dislike

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 30 -

Advantages of Content Based Filtering

- No need for data from other users
 No cold start or sparsity problems
- Tastes of unique users are met
- Can recommend new and unpopular items *First rater problem is solved*
- Can provide explanation why an item was recommended
 - by listing content features that caused an item to be recommended

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 31 -

Disadvantages of Content Based Filtering

- Content should be encoded as meaningful features
- Users tastes must be possible to represent as vectors
- Problems with new users with no profile
- Does not exploit the collective intelligence information
 - how other users interacted with the item
- Difficult to implement serendipity
- Easy to overfit

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 32 -

Overview

- Introduction
- Collaborative Filtering
- Content Based Filtering
- Other Recommender Systems
- Other Aspects
- Supplementary Material

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 33 -

Knowledge-Based RS

- Applications
 - expensive items, not frequently purchased, few ratings
 - time span important (e.g., technological products)
 - → ratings may be time-sensitive
 - → "The ratings on an old car or computer are not very useful for recommendations because they evolve with changing product availability"
 - explicit requirements of user
 - → interactivity is a crucial component of such systems
- Limitations of other approaches
 - collaborative filtering unusable not enough data
 - content based similarity not sufficient
- Requires functional/domain knowledge
 - about how a particular item meets a particular user need

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 34 -

Knowledge-Based RS (cont.)

Types

- Constraint-based recommender systems
 - → users typically specify requirements or constraints (e.g., lower or upper limits) on the item attributes
 - → domain-specific rules are used to match the user requirements → e.g. "Cars before year 1970 do not have cruise control." → e.g. "Older investors do not invest in ultrahigh-risk products."
 - → process is interactively repeated until the user arrives at her desired results
- Case-based recommender systems
 - \rightarrow specific cases are specified by the user as targets
 - → similarity metrics are defined on the item attributes to retrieve similar items to these targets
 - → returned results are often used as new target cases
- → interactive process is used to guide the user towards the final recommendation

Interactions

- Conversational systems
 - → user preferences are determined in the context of a feedback loop
- Search-based systems
 - → a preset sequence of questions
- Navigation-based recommendation

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 35 -

Constraint-Based RS - Example

• Buying homes

Item	Beds	Baths	Locality	Туре	Floor Area	Price
1	3	2	Bronx	Townhouse	1600	220,000
2	5	2.5	Chappaqua	Split-level	3600	973,000
3	4	2	Yorktown	Ranch	2600	630,000
4	2	1.5	Yorktown	Condo	1500	220,000
5	4	2	Ossining	Colonial	2700	430,000

Customer-specified attributes

- Marital-status (categorical), Family-Size (numerical), suburban-or-rural (binary), Min-Bedrooms (numerical), Max-Bedrooms (numerical), Max-Price (numerical)
- Domain knowledge for mapping of requirement into the attributes
 - Suburban-or-rural=Suburban -> Locality= {List of relevant localities}
 - Marital-status=single -> Min-Bedrooms<=5
 - Family-Size>=5 -> Min-Bedrooms<=3
 - Min-Bedrooms>=3 -> Price>=100,000

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 36 -

Other RS

• Context-sensitive RS

- context additional information that defines the specific situation under which recommendations are made
 - → Time morning, evening, weekdays, weekends, holidays
 - → Location recommendation for a restaurant in his locality
 - ightarrow Social information e.g. social circles can affect the recommendation process

Ensemble or Hybrid RS

- Weighted
 - → scores of several recommender systems are combined into a single unified score
- Switching
 - → switches between various recommender systems depending on current needs
- Cascade
 - \rightarrow one recommender system refines the recommendations given by another
- Feature augmentation
 - → the output of one recommender system is used to create input features for the next
- Mixed

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 37 -

Overview

- Introduction
- Collaborative Filtering
- Content Based Filtering
- Other Recommender Systems
- Other Aspects
- Supplementary Material

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 38 -

Evaluation of RS

- Evaluations difficult to properly measure the quality
 - many approaches
 - many metrics

Approaches

- off-line
 - \rightarrow simulations of users and their behavior
 - → issues with overfitting
 - → the goal is to filter out inappropriate approaches
- user-studies
 - \rightarrow small group of real users
 - \rightarrow expensive
- on-line
 - \rightarrow AB testing
 - → can be risky user dissatisfaction

Metrics

- Root Mean Squared Error (RMSE) normalized and averaged
- Precision, Recall (at N)
- F-measure, Area Under the ROC Curve (AUC)
- Normalized Cumulative Discounted Gain (NDCG)
- Click-through rate (CTR)
- Coverage Novelty, Serendipity, Diversity

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 39 -

Explanations

Situation

- recommendations: selection (ranked list) of items
- explanations: (some) reasons for the choice

• Why explanations?

- transparency, trustworthiness, validity, satisfaction (users are more likely to use the system)
- persuasiveness (users are more likely to follow recommendations)
- effectiveness, efficiency (users can make better/faster decisions)
- education (users understand better the behaviour of the system, may use it in better ways)

Examples

- knowledge-based recommender
 - → "Because you, as a customer, told us that simple handling of car is important to you, we included a special sensor system in our offer that will help you park your car easily."
- recommendations based on item-similarity
 - \rightarrow "Because you watched X we recommend Y"

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

Explanations - Example

• Collaborative filtering

Movie: XYZ Personalized Prediction: **** Your Neighbors` Ratings for this Movie

Rating	Number of Neighbors	
*	2	
**	4	
***	8	
***	20	
****	9	

^{*} Explaining collaborative filtering recommendations, Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work (CSCW

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

Attacks

- Most vulnerable
 - Collaborative filtering RS
- Reasons for attacks
 - make the system worse (unusable)
 - influence rating (recommendations) of a particular item
 push attacks − improve rating of "my" items

 - → nuke attacks decrease rating of "opponent's" items
- Approach
 - creating a set of fake feedbacks from many different users → shilling attack - users become shills in the attack

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 42 -

Attacks (cont.)

• Example

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 43 -

Attacks - Types

Levels

- more knowledge about system -> more efficient attack

Types

- random attack
 - \rightarrow generate profiles with random values
 - → requires global mean
- average attack
 - → effective attack on memory-based systems (average ratings -> many neighbors)
 - → requires global mean and mean of each item
- bandwagon attack
 - \rightarrow high rating for "blockbusters", random values for others
 - → requires to know which items are the most popular
- segment attack
 - \rightarrow insert ratings only for items from specific segment
 - → attack item-based collaborative filtering
- love/hate attack
 - ightarrow the nuked item is set to the minimum rating value , whereas the other items are set to the maximum
- reverse bandwagon
 - → widely disliked items are used as filler items to mount the attack
- probe attack
 - → a seed profile is created by the attacker, and the predictions generated by the recommender system are used to learn related items and their ratings

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 44 -

Attacks - Detection

- Attack detections
 - *Unsupervised attack detection algorithms*
 - \rightarrow ad hoc rules are used to detect fake profiles
 - → to identify the key characteristics of attack profiles that are not similar to genuine profiles
 - \rightarrow if a profile (or significant portion of it) is identical to many other profiles
 - → Number of prediction differences, Degree of disagreement with other users, Rating deviation from mean agreement, Degree of similarity with top-k neighbors
 - Supervised attack detection algorithms
 - → classification models to detect attacks
 - → number of profiles to which a given user profile is identical can be used as a feature for that user profile
- Robust recommender systems
 - preventing automated attacks with CAPTCHAs
 - detections using metrics, clusterings, neighborhoods, more complex algorithms etc.

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 45 **-**

Overview

- Introduction
- Collaborative Filtering
- Content Based Filtering
- Other Recommender Systems
- Other Aspects
- Supplementary Material

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 46 -

Euclidean Based Proximity Measure

- Represent query and document in a vector space model
 - represent a query as a vector
 - represent a document as a vector
- Compute the distance of the two vectors in a multidimensional space
- An Eucledian distance of two vectors

$$d(\mathbf{p}, \mathbf{q}) = d(\mathbf{q}, \mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

- Eucledian distance is a bad idea
 - if a query term occurs more times in the document, the distance will be larger
 - distance is large, altough the distribution of terms are similar

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 47 -

Cosine Based Proximity Measure

- Use angle instead of distance

 compute cosine of the angle between the query and document vectors
- Cosine similarity of two vectors (query vs. document)

$$\text{similarity} = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum\limits_{i=1}^{n} A_i \times B_i}{\sqrt{\sum\limits_{i=1}^{n} (A_i)^2} \times \sqrt{\sum\limits_{i=1}^{n} (B_i)^2}}$$

- Long and short vectors now have comparable weights
- If two documents are identical, then the angle is $0 cosine \ of \ 0 \ angle = 1$
 - similarity of two identical vectors is 1
- Rank the documents according to the angle of the query

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 48 -

Precision and Recall

- Precision
 - fraction of retrieved documents that are relevant
 - P(relevantlretrieved)
- Recall
 - fraction of relevant documents that are retrieved
 - P(retrievedlrelevant)

Contingency table:

1	Relevant	Non-relevant
Retrieved	tp (true positive)	fp (false positive)
Not retrieved	fn (false negative)	tn (true negative)

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

Precision and Recall

1	Relevant	Non-relevant
Retrieved	tp (true positive)	fp (false positive)
Not retrieved	fn (false negative)	tn (true negative)

- tp true positive relevant documents that are retrieved
- fp false positive non-relevant documents that are retrieved
- fn false negative
 non-retrieved relevant documents
- tn true negative
 non-retrieved non-relevant documents

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 50 -

Precision and Recall Measure

1	Relevant	Non-relevant
Retrieved	tp (true positive)	fp (false positive)
Not retrieved	fn (false negative)	tn (true negative)

• Precision

$$-P = \frac{tp}{(tp + fp)}$$

• Recall
$$-R = \frac{tp}{(tp+fn)}$$

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

Accuracy

- Assume
 - an engine for a given query classifies each document as "relevant" or "non relevant"
- The accuracy
 - the fraction of these classifications that are correct

$$-\frac{(tp+tn)}{(tp+fp+fn+tn)}$$

- Extremely skewed normally over 99.9% of the documents are in the nonrelevant category
- Widly used measure in evaluating machine learning systems

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 52 -

F-Measure

- Also known as F-score or F1 score

Assesses precision/recall tradeoff
$$-F = 2 \times \frac{(Precision \times Recall)}{(Precision + Recall)}$$

Lecture 10: Recommender Systems - Jaroslav Kuchař & Milan Dojčinovski

- 53 -