

89 00303
Appendix II-A

DRAFT
AIR QUALITY MANAGEMENT PLAN
1988 REVISION

DRAFT
APPENDIX II—A
1985 SUMMARY OF
AIR QUALITY IN CALIFORNIA'S
SOUTH COAST AIR BASIN

INSTITUTE OF GOVERNMENTAL
STUDIES LIBRARY

MAR 27 1989

UNIVERSITY OF CALIFORNIA

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT
MARCH, 1988

89 00303
Appendix II-A

1985 SUMMARY of AIR QUALITY in California's South Coast Air Basin

DR. KAREN L. BROWN,
Chairwoman, Board of Directors
Supervisor

JOHN W. HANNAH,
Chairman, Clean Air Committee
San Bernardino County

EDWARD D. WILLIAMS,
Supervisor
Los Angeles County

ROBERT L. HAMPTON,
Supervisor, San Bernardino County

MR. THOMAS J. STEPHENSON,
Chair Supervisor
Los Angeles County

RONALD A. COOPER,
Board Member
Contra Costa County

WILLIAM M. ENDLUND,
Chairman, Air Resources
Board, City of Long Beach

KATHLEEN STABLER,
Supervisor, Orange County

FRANCIS M. MCGOWAN,
Supervisor,
Orange County

MICHAEL WILSON,
Chair Supervisor,
Santa Clara County

December 1986

SOUTH COAST
AIR QUALITY MANAGEMENT DISTRICT
9150 Flair Drive, El Monte, 91731

Digitized by the Internet Archive
in 2025 with funding from
State of California and California State Library

<https://archive.org/details/C124899123>

DISTRICT GOVERNING BOARD

NORTON YOUNGLOVE,

Chairman, Supervisor,
Riverside County

MARVIN BRAUDE,

Vice-Chairman, Councilman,
City of Los Angeles

DR. LARRY L. BERG,

Speaker of the Assembly
Appointee

FAYE MYERS DASTRUP,

Cities Representative,
San Bernardino County

EDMUND D. EDELMAN,

Supervisor,
Los Angeles County

ROBERT L. HAMMOCK,

Supervisor, San Bernardino County

DR. THOMAS F. HEINSHEIMER,

Cities Representative,
Los Angeles County

PATRICIA HERRON,

Cities Representative,
Riverside County

PETER F. SCHABARUM,

Supervisor,
Los Angeles County

SABRINA SCHILLER,

Senate Rules
Committee Appointee

WILLIAM M. SMILAND,

Governor's Appointee

ROGER R. STANTON,

Supervisor, Orange County

HARRIETT M. WIEDER,

Supervisor,
Orange County

HENRY WEDAA,

Cities Representative,
Orange County

JAMES M. LENTS, Ph.D., Executive Officer

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

James M. Lents, Ph.D., Executive Officer

Executive Officer, South Coast Air Quality Management District

In this report, the South Coast Air Quality Management District presents its proposed air quality management plan for the year 1990.

- National ambient air quality standards have been met throughout the South Coast area since 1982.
- Air quality continues to improve - concentrations of ozone and particulates have declined significantly over the past decade.
- National ambient air quality standards in sulfur dioxide have been met throughout the South Coast area since 1982.
- Air quality has improved significantly throughout the South Coast area, resulting from economic growth and implementation of pollution control measures by industry and government.

Prepared by Planning Division

Jo Anne Aplet, Director

Planning Division

*Joanne Moawad
Consolidated
Planning Office*

*Administrative
Division*

Planning

Art Davidson

Planning

*Consolidated
Planning Office*

May Hsu

Planning

Planning

Authors

Planning

Margaret Hoggan

Art Davidson

May Hsu

Technical Assistance:

Jeanne Randolph, Cong Bao Diep

Word Processing:

Helen Thompson, Marla Warner

Graphics:

Re Nee Moawad, Ylane Anifantis

Production:

Ron Munar

SUMMARY

Comparison to Standards

In this report 1985 air quality in the South Coast Air Basin is compared to the state and federal ambient air quality standards, and may be briefly summarized as follows:

- lead and sulfur dioxide - concentrations met standards at all Basin locations in 1985.
- nitrogen dioxide and sulfate - standards exceeded infrequently and only in portions of Los Angeles and Orange counties.
- carbon monoxide - standards exceeded in about one-fourth of the Basin, with the high area in coastal/central L.A. County.
- ozone and suspended particulate - standards exceeded throughout the Basin. Highest concentrations for both were observed in the inland valley areas of Eastern Los Angeles County and neighboring parts of Riverside and San Bernardino counties.

1985 Basin Maxima

The maximum concentrations measured in the South Coast Air Basin in 1985 were:

Pollutant	Basin Maximum Concentration (Averaging time)	Location of Basin Maximum
Ozone	.39 ppm (1-hour)	Glendora
Carbon monoxide	33. ppm (1-hour)	Lynwood
Nitrogen dioxide	.35 ppm (1-hour)	Long Beach
Sulfur dioxide	.08 ppm (1-hour)	Long Beach
Total suspended particulate	392 ug/m ³ (24-hour)	Reseda
Lead	.91 ug/m ³ (24-hour)	Lynwood
Sulfate	31 ug/m ³ (24-hour)	Long Beach

A more detailed overview of the Basin's current air quality in terms of state and federal standards is given in Table I of the Appendix.

Trends in Air Quality

Three year multi-station averages of the annual or seasonal average concentrations of these pollutants at key locations are compared for the periods 1975-1977 and 1982-1984. All showed a decrease over the period as follows:

Pollutant	Statistics	Number Stations	Percent Change 1975-77 to 1982-84
Ozone	May-Oct. avg. daily maximum 1-hour	6	-7%
Carbon monoxide	Jan., Feb., Oct., Nov., Dec., avg. daily max. 1-hour	6	-31%
Nitrogen dioxide	Annual average	6	-19%
Total suspended particulate	Annual average	8	-7%
Lead	Maximum quarterly average	1	-85%
Sulfate	Annual average	9	-9%

Basin Compared to U.S. Air Quality

In 1985, for four of the six federal criteria contaminants (lead, sulfur dioxide, carbon monoxide, and suspended particulate), the federal standards were exceeded by a greater margin and more frequently in other areas of the U.S. For ozone and nitrogen dioxide, standards were exceeded most frequently and by the greatest margin at locations within this Basin. Meteorological conditions in the Basin are highly conducive to ozone formation, with the result that Basin ozone concentrations are the highest in the U.S., despite the fact that emissions controls are more stringent than those applied elsewhere in the U.S.

Seasonal and Diurnal Variation

Pollutant concentrations vary both seasonally and diurnally, and these variations are particularly marked for ozone and carbon monoxide. In the inland valleys, which typically have the Basin's highest ozone, concentrations tend to be higher in the summer than in winter. The concentrations at night are generally very low, climbing after sunrise to an afternoon peak and then dropping off rapidly thereafter. Variations in pollutants other than ozone and carbon monoxide are less well defined and may vary with location.

TABLE OF CONTENTS

	PAGE
Summary	i
List of Figures	iv
Sections	
I. Introduction	1
II. Discussion of Contaminants	3
● Ozone	3
● Carbon Monoxide	7
● Nitrogen Dioxide	10
● Sulfur Dioxide	13
● Total Suspended Particulate (TSP)	15
● Suspended Particulate Matter (PM10)	19
● Lead	21
● Sulfate	22
● Nitrate	24
● Visibility	26
Appendix	

LIST OF FIGURES

NO.	TITLE	PAGE
1.	South Coast Air Basin Map.	1
2.	OZONE -1985, Number of Days on Which the State Standard was Exceeded.	4
3.	OZONE -1985, Number of Days on Which Stage I Episode Level was Exceeded.	5
4.	OZONE -Seasonal Variation, Monthly Averages,1985.	6
5.	OZONE -Diurnal Variation, Average for Each Hour, 1985.	6
6.	CARBON MONOXIDE -1985, Number of Days on Which State Standard was Exceeded.	7
7.	CARBON MONOXIDE -Seasonal Variation, Monthly Averages, 1985.	8
8.	CARBON MONOXIDE -Diurnal Variation, Average for Each Hour, 1985.	9
9.	NITROGEN DIOXIDE -1985, Number of Days on Which State Standard was Exceeded.	10
10.	NITROGEN DIOXIDE -Seasonal Variation, Monthly Averages, 1985.	11
11.	NITROGEN DIOXIDE -Diurnal Variation, Average For Each Hour, 1985.	11
12.	SULFUR DIOXIDE -1985, Maximum 1-Hour Average, ppm.	13
13.	SULFUR DIOXIDE -Seasonal Variation, Monthly Averages, 1985.	14
14.	SULFUR DIOXIDE -Diurnal Variation, Average for Each Hour, 1985.	14
15.	TOTAL SUSPENDED PARTICULATE -1985, Annual Geometric Mean, ug/m ³	16
16.	TOTAL SUSPENDED PARTICULATE -Seasonal Variation, Monthly Averages, 1983-1985.	17
17.	TOTAL SUSPENDED PARTICULATE -Diurnal Variation, Two-Hour Average, July -August 1977.	17
18.	SUSPENDED PARTICULATE (PM10) -1985, Annual Geometric Mean, ug/m ³	19
19.	SUSPENDED PARTICULATE (PM10) -Riverside, Proportion of PM10 in TSP by Month, 1985.	20
20.	SUSPENDED PARTICULATE (PM10) -Long Beach, Proportion of PM10 in TSP by Month, 1985.	20
21.	LEAD -1985, Maximum Monthly Averages, ug/m ³	21
22.	LEAD -Seasonal Variation, Monthly Averages, 1983-1985.	22
23.	SULFATE -1985, Percent of Days on Which State Standard Was Exceeded.	23
24.	SULFATE -Seasonal Variation, Monthly Averages, 1983-1985.	23
25.	SULFATE -Diurnal Variation, Two-Hour Averages, July-August 1977.	24
26.	NITRATE -1985, Annual Average, ug/m ³	25
27.	NITRATE -Seasonal Variation, Monthly Averages, 1983-1985.	25
28.	NITRATE -Diurnal Variation, Two-Hour Averages, July-August 1977.	26
29.	VISIBILITY -1985, Number of Days Visibility Less Than State Standard.	26

SECTION I

INTRODUCTION

AIR QUALITY OVERVIEW

Although overall air quality in the South Coast Air Basin of Southern California has shown improvement in recent years, levels of two pollutants, ozone and nitrogen dioxide, are still the highest in the United States.

Meteorological conditions in the Basin are more conducive to photochemical pollution formation than those in any other large urban area in the nation. As a result, increasingly stringent pollution controls have been placed on industrial sources in Los Angeles County since the late '40s and in the other three Basin counties since the '50s. California was the first state in the country to require controls on motor vehicles.

Because of these controls, there has been a gradual decline in atmospheric pollutant concentrations, despite a 125 percent population increase between 1950 and 1980. By the

'80s, peak ozone levels had dropped more than 30 percent from the highs recorded in the '50s and by 1985 all stations in the Basin were in compliance with state and federal standards for lead and sulfur dioxide.

South Coast Air Basin

The Basin consists of the non-desert portions of Los Angeles, Riverside, and San Bernardino counties and all of Orange County. Its area is approximately 6,600 square miles. The 1980 census showed a population of 10.9 million, with 7.4 million people concentrated in the Los Angeles County portion.

The Basin is bounded on the west by the Pacific Ocean, on the north and east by the San Gabriel, San Bernardino, and San Jacinto Mountains, and on the south by the San Diego County line (Figure 1.)

FIGURE 1

South Coast Air Quality Management District

With the exception of regulations on on-road vehicles, which are under the statewide jurisdiction of the California Air Resources Board, the South Coast Air Quality Management District is responsible for all air pollution control in the Basin. In 1985, the District maintained a network of 29 air monitoring stations in the Basin and 4 air monitoring stations in the Los Angeles and Riverside County portions of the Southeast Desert Air Basin (SEDAB).

Emissions, Meteorology, and Air Pollution Potential

The South Coast Air Basin is an area of high air pollution potential, particularly from June through September. The poor ventilation afforded by generally light winds and shallow vertical mixing is frequently insufficient to adequately disperse the Basin's emissions. In addition, the plentiful sunshine, characteristic of the area, provides the energy to convert oxides of nitrogen and reactive organic gases (hydrocarbons and related compounds) into ozone, photochemical aerosols, and other pollutants.

Pollutant concentrations in the Basin vary with location, season, and time of day. Ozone concentrations, for example, tend to be low along the coast, higher in the near inland valleys and lower in the far inland areas of the Basin and adjacent desert. High ozone concentrations are most probable between May and October. On a day with high ozone levels, concentrations are typically near zero at night, rise rapidly after sunrise to an afternoon peak, and then drop off sharply to low levels at night.

Effects of Air Pollutants

Individual pollutants in the Basin's atmosphere vary considerably in their impact on human health. Appendix Table II lists the observed health effects for specified concentrations of ozone, carbon monoxide, nitrogen dioxide, lead, and sulfur dioxide combined with particulate. It also lists the annual maximum contaminant concentrations in the Basin for 1985. In the discussion of contaminants, the typical seasonal and diurnal variation of the contaminants is presented (Section II of this report).

Pollutants may be damaging to plants and materials. Tables III and IV (appendix) briefly summarize some observed effects of air pollutants on plants and materials and the levels at which these occur.

Air Quality Standards and Episode Criteria

The State of California and the federal government each have established air quality standards and emergency episode criteria for various pollutants (Appendix Tables V and VI).

Air quality standards are set at concentrations which provide a sufficient margin to protect public health and welfare. Episode criteria define air pollutant concentrations at which short-term exposures may begin to affect the health of that portion of the population especially susceptible to air pollutants. The health effects are progressively more severe and widespread as pollutant concentrations increase from Stage One to Stage Two and Stage Three Episode levels. The episode levels require specific actions by industry, the public, and the District (Appendix Table VI).

The following section of this report presents an analysis of 1985 data for each of the major pollutants monitored in the four-county area. The pollutants discussed are:

- ozone (O_3)
- carbon monoxide (CO)
- sulfur dioxide (SO_2)
- nitrogen dioxide (NO_2)
- total suspended particulate (TSP)
- suspended particulate matter (PM10)
- lead (Pb)
- sulfate ($SO_4^{=}$)
- nitrate (NO_3^{-})

Atmospheric concentrations of these pollutants are compared to state and federal standards. Information on the sources, properties, and effects of these pollutants, and on the seasonal and diurnal variation in the concentrations of each, is also presented. Air quality trends are examined, and the Basin's air quality is compared to that of other areas of the United States.

For detailed treatment of pollutant trends for individual Basin locations see the District report "Air Quality Trends in the South Coast Air Basin 1975-1984."

SECTION II

DISCUSSION OF CONTAMINANTS

The following information is presented for each contaminant:

- Basin maps showing number or percent of days in 1985 exceeding the state standard by area.
- Tables showing the number or percent of days on which the state standards, federal standards and episode criteria were exceeded, and the maximum concentrations reached in 1985 at every District station in the South Coast and Southeast Desert Air Basins.
- Figures showing seasonal and diurnal variation in pollutant concentrations.
- Discussion of trends in pollutant concentrations
- Comparison of Basin and U.S. air quality in terms of federal standards

When using the maps to estimate the air quality at a particular location, it is necessary to consider variations due to the effect of local pollution sources. Lead, carbon monoxide and oxides of nitrogen (NO_x) are usually higher near heavily traveled roads than in areas with less traffic. Similarly sulfur dioxide is likely to be more concentrated near stationary sources such as power plants and petroleum refineries.

Since the reaction rate depends on sunlight intensity, peak concentrations generally occur near the middle of the day. By the time the maximum ozone concentration is reached, the polluted air mass has usually been transported miles inland by the prevailing sea breeze. The high ozone area is therefore downwind of the major sources of ozone precursors.

Ozone (O_3) is much more reactive than normal atmospheric oxygen (O_2), and it is this reactivity which accounts for its damaging effects on materials, plants and health. In part due to the rapid reaction of ozone with materials such as rubber, plastics and fabrics, indoor concentrations are typically lower than outdoor concentrations.

1985 Ozone Air Quality

State Standard

The state air quality standard for ozone is a 1-hour average concentration equal to or greater than (\geq) 0.10 ppm (0.10 ppm=1/10 parts per million, or 1/10 of a volume of ozone per million volumes of air). If a single hourly average ozone concentration is \geq 0.10 ppm during a day, the day is counted as one on which the standard was exceeded.

OZONE

Ozone is a colorless, highly reactive gas with a sharp odor. It is formed by a complicated series of chemical and photochemical reactions involving reactive organic gases, oxides of nitrogen, and the oxygen in air. Industrial and mobile sources contribute about equally to the precursor emissions. Because photochemical reactions require sunlight to proceed, ozone formation is favored by strong solar radiation.

Federal Standard

In Figure 2, the number of days in 1985 on which the state standard was exceeded in the different areas of the Basin is shown. The striped line indicates the boundary of the South Coast Air Basin, and the cities shown are the locations of the District's air monitoring stations. Contour lines have been drawn connecting locations at which the standard was exceeded on an equal number of days.

The number of days on which the federal ozone standard (1-hour average $O_3 > .12 \text{ ppm}$) was exceeded is given in Appendix Table VII. The federal standard was exceeded most frequently at Glendora (141 days), Fontana (126) and Rubidoux (125).

The state ozone standard was exceeded everywhere in the Basin in 1985, but least frequently in the coastal areas. The standard was exceeded most frequently in an area extending from the San Fernando Valley to the San Gabriel Valley and into the Riverside-San Bernardino area. In 1985 the greatest number of exceedances were at Glendora (187 days), Pasadena (173), and Rubidoux (173). The number of days on which the state ozone standard was exceeded, and the maximum 1-hour average for the year at each station are given in the Appendix Table VII.

FIGURE 2
OZONE - 1985
NUMBER OF DAYS ON WHICH STATE STANDARD WAS EXCEEDED
(1-HOUR AVERAGE $O_3 \geq .10 \text{ ppm}$)

- Less than 12 full months of data.
- ◆ Not measured at this location.

Stage I Episode

The number of days in 1985 on which the Stage I Episode level (1-hour average $O_3 \geq .20$ ppm) was exceeded is shown in Figure 3. The episode pattern is similar to the standard exceedance pattern with the high area extending from the Eastern San Fernando Valley through the San Gabriel Valley into the Riverside-San Bernardino area. Stage I Episodes occurred most frequently at Glendora (68 days), Azusa (48) and Fontana (48).

Stage II Episode

Only five Basin locations had Stage II Episodes (1-hour average $O_3 \geq .35$ ppm) in 1985, with Glendora recording Stage II episodes on 5 days and Azusa, Pasadena, Rubidoux and Norco, on 1 day each. The highest 1-hour average ozone concentration of the year was .39 ppm, recorded at Glendora on August 24, 1985. The number of days on which Stage I and II Episodes were recorded for all stations for the years 1976-1985 is given in Appendix Table VIII, and

the maximum concentration at each monitoring location for the years 1955-1985 is given in Appendix Table IX. Ozone is the only pollutant for which the Stage I Episode level is currently exceeded on more than 10 days annually in the Basin.

Seasonal and Diurnal Variation in Ozone Concentrations

Because time is required for the precursor organic gases and oxides of nitrogen to react to form ozone, peak ozone concentrations usually occur from late morning through afternoon. By this time, sea breezes usually have moved the polluted air mass miles inland. For this reason, the highest concentrations usually occur downwind of, rather than in, the areas of heavy precursor emissions. Ozone concentrations are higher in summer than in winter since solar radiation is more intense and of longer duration, and temperature inversions are stronger and more persistent in summer. These seasonal and

FIGURE 3
OZONE - 1985
NUMBER OF DAYS ON WHICH STAGE 1 EPISODE LEVEL WAS EXCEEDED
(1-HOUR AVERAGE $O_3 \geq .20$ ppm)

Less than 12 full months of data.

Not measured at this location.

Intervals of 5.

Intervals of 10.

diurnal patterns are illustrated in Figures 4 and 5.

Figure 4 shows the 1985 monthly averages of ozone at Glendora, which is located in the high ozone area of the Basin. The summer months experienced markedly higher ozone concentrations than the winter months, with the average in August being about 3.6 times that measured in December.

Figure 5 shows average ozone concentrations at Glendora for each hour of the day during

summer and winter. In winter, the concentrations are low at all hours. In summer, following low nighttime concentrations, ozone increases rapidly after sunrise and peaks in the early afternoon. Even on the most heavily impacted days, ozone concentrations are usually quite low in the early morning. (More detailed discussion of diurnal variation in ozone concentrations by area is available in the District report "Seasonal and Diurnal Variations in Air Pollutant Concentrations, in California's South Coast Air Basin" published in December, 1980.)

Trends

Ozone trends for the period 1975-1984 were examined for a six-station composite average ozone concentration.

The stations used to form the average were: Azusa, Pomona, Pasadena, Riverside, San Bernardino and Fontana. The 6-station average daily 1-hour maximum ozone for the period May-October showed a 4.6 percent decline from 1975 to 1984. A more statistically robust measure of the ozone trend is the 3-year running mean of this statistic, which increased between 1975-1977 and 1978-1980 and has shown a steady decrease since that time, with an overall decline of 7.2 percent from 1975-1977 to 1982-1984. Meteorological conditions were very similar for these two periods.

FIGURE 4. OZONE - SEASONAL VARIATION
MONTHLY AVERAGES, 1985

FIGURE 5. OZONE - DIURNAL VARIATION. AVERAGE FOR EACH HOUR, 1985

Ozone - Comparison of Basin to Other Areas in the United States

The 1985 maximum ozone concentrations and the number of days exceeding the federal ozone standard in the ten largest urban areas in the U.S. are shown in Table X. The Los Angeles urban area exceeded the standard most frequently and had the highest annual maximum 1-hour average ozone concentrations of the ten areas.

In Table XI, the five U.S. counties with the greatest number of days exceeding the ozone standard and the five with the highest annual maximum 1-hour average ozone concentrations are listed. Los Angeles, Riverside, and San Bernardino counties led all the U.S. counties in both number of days exceeding the federal standard and maximum ozone concentration.

CARBON MONOXIDE

Carbon monoxide (CO) is a colorless, odorless gas produced by incomplete combustion of carbon-containing fuels, such as

gasoline. More than 90 percent of the CO in the atmosphere of the Basin is emitted directly from motor vehicles, so that CO concentrations are generally higher in the vicinity and slightly downwind of areas with heavy traffic.

1985 Carbon Monoxide Air Quality

State Standard

Figure 6 shows the number of days on which the state 8-hour standard (8-hour average CO > 9.0 ppm) for carbon monoxide was exceeded in 1985. The standard was exceeded in about one-fourth of the Basin and the high area was the heavily traveled portions of Los Angeles and Orange counties. The air quality standard was exceeded most frequently at Lennox (51 days), Lynwood (36), and Burbank (16).

The single highest 8-hour average concentration of the year was 27.7 ppm reported at Lynwood. The number of days on which the standard was exceeded and the 1-hour and 8-hour maxima for 1985 are given for each station in Appendix Table XII.

FIGURE 6
CARBON MONOXIDE - 1985
NUMBER OF DAYS ON WHICH STATE STANDARD WAS EXCEEDED
(8-HOUR AVERAGE CO > 9.0 ppm)

The number of days in 1985 on which the state 1-hour standard for carbon monoxide (1-hour CO > 20 ppm) was exceeded is also given in Appendix Table XII. The affected area was smaller than for the 8-hour standard, and exceedances were less frequent. The locations with the greatest number of days on which the standard was exceeded were Lynwood and Lennox (12 days). The highest 1-hour average CO concentration was recorded at Lynwood (33 ppm).

Federal Standards

The number of days on which the federal 8-hour standard (8-hour CO > 9.4 PPM) was exceeded is given in Appendix Table XII. Lennox, Lynwood and Burbank recorded exceedances of the federal 8-hour standard most frequently, with 45 days, 32 days and 15 days above the standard, respectively. The federal 1-hour standard (1-hour average CO > 35 ppm) was not exceeded.

Stage I Episode (Federal Alert Level)

Appendix Table XII lists the number of days in 1985 on which the Stage I Episode level (8-hour average CO > 15 ppm) was exceeded. All but one of the exceedances occurred in the densely populated portions of Los Angeles County. The episode level was exceeded most frequently at Lynwood (10 days).

Seasonal and Diurnal Variation in Carbon Monoxide Concentrations

Carbon monoxide levels in the Basin tend to be highest in winter, and during late night and early morning hours. The seasonal and diurnal variations in CO are almost exactly the opposite of those for ozone.

Figure 7 shows the average CO concentration for each month at Lennox, which frequently has

the highest CO in the Basin. The Lennox air monitoring station is located at a major intersection and is about 100 yards west of the heavily traveled San Diego Freeway. December average CO concentrations were about 3.6 times those of June.

FIGURE 7. CARBON MONOXIDE - SEASONAL VARIATION
MONTHLY AVERAGES, 1985

Figure 8 shows the diurnal variation in CO at Lennox. The peak CO concentration for the day typically occurs at the time of morning rush hour both summer and winter, with peak winter concentrations in 1985 averaging about twice as high as in summer. In winter, there is generally a secondary peak late at night. The seasonal difference in CO concentrations is due to the more frequent occurrence in winter of late night and early morning surface inversions, which limit vertical mixing of vehicular and other ground level emissions.

Trends

Carbon monoxide trends for 1975-1984 were examined, based on 6-station composite averages. The stations used to form the average were: Burbank, Reseda, Lennox, Lynwood, West Los Angeles and Downtown Los Angeles. These six stations comprise the bulk of the CO problem in the Basin.

The 6-station mean of the daily maximum 1-hour CO concentration during the high CO season decreased steadily from 14.0 ppm in 1975 to 8.5 ppm in 1983, before increasing to 9 ppm in 1984. The increase in CO from 1983 to

1984 was due in large measure to a change to meteorological conditions more favorable for the buildup of CO concentrations.

The effect of meteorological bias on the calculation of "true" CO trends may be reduced by the use of 3-year running means. Adjusted to this format, the six-station mean of the daily maximum 1-hour average CO concentrations decreased steadily from 12.9 ppm in 1975-1977 to 8.9 ppm in 1982-1984, showing an overall decline of 31 percent between 1975-77 and 1982-84.

Carbon Monoxide - Comparison of Basin to Other Areas in the United States

In Table X the number of days on which the federal standard for carbon monoxide was exceeded is shown for the ten largest urban areas in the U.S. The maximum 1-hour average concentrations are also given for each area. The New York urban area led by a substantial margin in the number of days exceeding the federal standard. The Los Angeles area was second. Los Angeles reported the highest 1985 annual maximum 1-hour average concentration, of the ten urban areas.

CARBON MONOXIDE, PPM

Lennox

FIGURE 8. CARBON MONOXIDE - DIURNAL VARIATION. AVERAGE FOR EACH HOUR, 1985

Table XI shows the five U.S. counties, irrespective of population, which had the greatest number of exceedances of the federal standard and the five counties which had the highest 1985 maximum 1-hour concentrations of carbon monoxide. Los Angeles County is among the five worst in both categories.

NITROGEN DIOXIDE

Nitrogen dioxide (NO_2) is a brownish gas with an odor somewhat like that of bleach. It is formed in the atmosphere primarily by the rapid reaction of the colorless gas nitric oxide (NO) with atmospheric oxygen. These two compounds are referred to collectively as oxides of nitrogen. The most recent emissions inventory showed that about 2/3 of the oxides of nitrogen were emitted by mobile sources, and the remaining 1/3 were emitted by stationary sources. The rapidity of the chemical reaction of NO to NO_2 results in the highest concentrations of nitrogen dioxide occurring relatively close to the areas where emissions of oxides of nitrogen are greatest. In addition to being a regulated

pollutant itself, nitrogen dioxide is a participant in the chemical reactions which form ozone and other constituents of photochemical smog.

1985 Nitrogen Dioxide Air Quality

State Standard

Figure 9 shows the number of days in 1985 on which the state standard for nitrogen dioxide (1-hour average $\text{NO}_2 \geq .25 \text{ ppm}$) was exceeded. The standard was exceeded in roughly one-fifth of the Basin, primarily in coastal and central Los Angeles County. The greatest number of exceedances occurred at Long Beach and Pico Rivera (4 days). The maximum 1-hour concentrations and exceedances are given for each station in Appendix Table XIII.

Federal Standards

The federal standard for nitrogen dioxide (annual average $\text{NO}_2 > 100 \text{ ug/m}^3$ or .0534 ppm) was exceeded in only 2 percent of the Basin's area, and the highest annual average reported was 1.1 times the standard. The stations registering the highest annual average nitrogen dioxide were Los Angeles (.0599 ppm), Burbank

FIGURE 9
NITROGEN DIOXIDE - 1985
NUMBER OF DAYS ON WHICH STATE STANDARD WAS EXCEEDED
(1-HOUR AVERAGE $\text{NO}_2 \geq .25 \text{ ppm}$)

- Less than 12 full months of data.
- ◆ Not measured at this location.

(.0571), and Pomona (.0541). The 1985 annual average nitrogen dioxide concentrations for all stations are shown in Appendix Table XIII.

Stage I Episode (Federal Alert Level)

The number of days on which the Stage I Episode level for nitrogen dioxide (24-hour average $\text{NO}_2 \geq .15 \text{ ppm}$) was exceeded, and the maximum 24-hour nitrogen dioxide concentrations for 1985, are given in Appendix Table XIII. About 15 percent of the Basin's area recorded exceedances of the alert level, and the maximum 24-hour average concentration was 1.5 times the alert level. The greatest number of days exceeding occurred at Long Beach (4).

Seasonal and Diurnal Variation in Nitrogen Dioxide Concentrations

The seasonal and diurnal patterns in nitrogen dioxide concentrations are not as well defined as those for ozone and carbon monoxide and differ widely from location to location. The highest concentrations typically occur in the fall-winter months and the lowest in the spring or summer. The maximum hourly average of the day frequently occurs during late morning.

The monthly average nitrogen dioxide concentrations for 1985 at Long Beach are

FIGURE 10. NITROGEN DIOXIDE-SEASONAL VARIATION
MONTHLY AVERAGES, 1985

shown in Figure 10. The highest monthly average was reported for December and was 3.2 times the lowest monthly average, measured in May.

Figure 11 presents the average nitrogen dioxide concentrations at Long Beach for each hour for the spring-summer (May-July) and fall-winter (January, November, December) months of 1985. The peak hour during fall-winter at this location is 9 a.m., and a secondary peak is reached at 5 p.m. During spring-summer, average concentrations are low for all hours. The diurnal pattern varies with location. At some

FIGURE 11. NITROGEN DIOXIDE - DIURNAL VARIATION. AVERAGE FOR EACH HOUR, 1985

coastal locations, a late morning peak is observed but the secondary evening peak is lacking. At inland locations the evening peak may be higher than the late morning peak. The lack of well-defined seasonal and diurnal patterns in concentrations makes it difficult to state generally when concentrations will be highest.

Trends

Trends in NO₂ based on a composite average of six key stations (Burbank, Long Beach, Lennox, West Los Angeles, Downtown Los Angeles and Pasadena) were examined. The 6-station mean annual NO₂ concentration during 1984 was the lowest of any year during the period 1975-1984. The 3-year running mean showed a downtrend from 1976-1978 to 1982-1984 with an overall decline of 19 percent in NO₂ concentrations from 1975-1977 to 1982-1984.

Nitrogen Dioxide - Comparison of Basin to Other Areas in the United States

Nitrogen dioxide air quality in the ten largest U.S. urban areas is compared in Table X. In 1985, the Los Angeles urban area had both the highest annual average and the highest peak concentration of the ten urban areas.

The five counties with the highest annual average and the five counties with the highest 1985 peak concentrations (annual maximum 1-hour average) of nitrogen dioxide in the U.S. are shown in Table XI. Los Angeles County had the highest 1985 annual average nitrogen dioxide concentrations in the U.S. The highest and second highest 1985 annual maximum 1-hour average concentrations were recorded in other areas of the U.S. (Nassau County, New York and Clark County, Nevada). Los Angeles and Orange counties tied for third and fourth highest, respectively.

Although Los Angeles County was the only county in the U.S. to exceed the federal standard for nitrogen dioxide, the standard was exceeded by only a narrow margin and at only a few locations.

SULFUR DIOXIDE

Sulfur dioxide (SO_2) is a colorless gas with a sharp, irritating odor. It is emitted directly into the atmosphere, primarily by stationary sources such as power plants, petroleum refineries, and chemical plants. Sulfur dioxide can react in the atmosphere to give sulfuric acid and sulfates, which can contribute to acid deposition and visibility reduction.

1985 Sulfur Dioxide Air Quality

State Standard

Figure 12 shows the maximum 1-hour average sulfur dioxide concentrations for 1985. The state standard (1-hour average $\text{SO}_2 \geq .25 \text{ ppm}$) was not exceeded anywhere. The maximum 1-hour average concentration, .08 ppm reported at Long Beach, was about one-third of the standard. The 1985 maximum 1-hour and 24-hour average sulfur dioxide concentrations are given in Appendix Table XIV. The state 24-hour standard was not exceeded.

Federal Standards

The less stringent federal 1-hour, 24-hour and annual average standards were not exceeded at any location. The maximum 1-hour, 24-hour and annual average sulfur dioxide concentrations were substantially below these standards. Annual average sulfur dioxide concentrations for 1985 at all stations are given in Appendix Table XIV.

Seasonal and Diurnal Variation in Sulfur Dioxide Concentrations

Unlike many other areas of the United States, this Basin has low SO_2 concentrations during every month of the year. The diurnal variation is complex, but at most locations, daytime concentrations are higher than those at night.

FIGURE 12
SULFUR DIOXIDE - 1985
MAXIMUM 1-HOUR AVERAGE, ppm*

- Less than 12 full months of data.
- ◆ Not measured at this location.

*State standard = 1-hour average $\text{SO}_2 \geq .25 \text{ ppm}$. The state standard was not exceeded at any location.

FIGURE 13. SULFUR DIOXIDE - SEASONAL VARIATION
MONTHLY AVERAGES, 1985

The monthly average sulfur dioxide concentrations at Long Beach, which reported the highest 1-hour average concentration of 1985, are shown in Figure 13. The highest monthly averages were in the late fall and winter, with the monthly average for the highest month (December) 5.7 times that for the lowest (May).

Figure 14 shows the diurnal variation in sulfur dioxide concentrations in spring (March-May) and winter-fall (January, November and December) of 1985 at Long Beach. The peak hour for fall-winter is 8 a.m. Both seasonal and

diurnal patterns can differ substantially at different locations, but concentrations at all locations are below even the most stringent standards.

Trends

The Basin has been in attainment with the federal SO₂ standards since the mid 1960's. With the exception of one single violation on one day in 1984, the Basin has also been in attainment with the state standards since 1977. Analysis of the single exceedance in 1984 showed that it was associated with operational problems at a major refinery.

Sulfur Dioxide - Comparison of Basin to Other Areas in the United States

Of the ten largest U.S. urban areas, Los Angeles had the lowest sulfur dioxide concentrations of all but San Francisco. Chicago reported the highest 1-hour average sulfur dioxide concentration in 1985 (Table X). The highest annual average sulfur dioxide concentration was measured in the New York urban area. The Los Angeles area, although second in population, had a lower annual average concentration than six of the other nine areas.

Of the five U.S. counties with the greatest number of days exceeding the federal standard

FIGURE 14. SULFUR DIOXIDE - DIURNAL VARIATION. AVERAGE FOR EACH HOUR, 1985

for sulfur dioxide, none are in the South Coast Air Basin, nor are any of the five counties with the highest 1-hour average concentrations of the year. (Table XI)

TOTAL SUSPENDED PARTICULATE (TSP)

Total suspended particulate (TSP) is the name given to the solid matter suspended in the atmosphere. This complicated mixture of natural and man-made materials includes soil particles, biological materials, sulfates, nitrates, organic (or carbon-containing) compounds, and lead.

Constituents of this pollutant are responsible for nearly all of the pollution-induced visibility reduction in the Basin. As with ozone, TSP is highest well downwind of the most densely populated areas due to the fact that gaseous contaminant emissions react to yield particulate contaminants (e.g., sulfates, nitrates and organic compounds) several hours later when the air mass is usually well downwind of the sources. In addition, there is likely to be a larger natural contribution to the TSP in the less urbanized areas of the Basin, due to the greater amounts of exposed soil which can be entrained into the ambient air by surface winds.

A high volume sampler is used to determine TSP concentration by passing a measured volume of air through a glass fiber filter for a 24-hour period. The filter is weighed to determine the concentration of TSP, after which it is analyzed for lead, sulfate, and nitrate. TSP samples are normally collected every sixth day.

In 1985, nitrates averaged from 11 to 20 percent, sulfates from 5 to 12 percent, and lead from 0.1 to 0.4 percent of the total weight of TSP collected, depending on the particular location in the Basin. TSP is routinely analyzed only for these three components. Air quality standards exist for lead and sulfates.

Limited studies at a few Basin locations suggest that soil and organic compounds constitute a significant fraction of TSP. During 1979-1980 the Environmental Protection Agency collected

particulate samples in the Basin and analyzed them for silicon, a major constituent of soils. TSP samples collected between 1979 and 1981 at Basin locations by the California Air Resources Board (ARB) were analyzed for benzene-soluble organics. These data were used to estimate the organic (carbonaceous) fraction of TSP.

The size of particles suspended in the atmosphere varies widely, ranging from less than 0.01 microns (one micron is one-millionth of a meter) to up to 100 microns in diameter. The fine particles (less than 2.5 microns in diameter) tend to remain suspended in the atmosphere longer, have a greater effect on visibility and, because of their greater tendency to penetrate deeply into the lungs, are more of a health hazard. In 1979, a nationwide inhalable particulate network was established by the federal government, using instruments which divide particulate into coarse (greater than 2.5 microns) and fine (less than 2.5 microns) fractions. EPA analyses of fine and coarse particulate from this Basin showed soil particles (silicon) were mainly in the coarse fraction, while sulfate was concentrated mainly in the fine fraction.

1985 TSP Air Quality

Federal Standard

Figure 15 shows the annual average total suspended particulate concentrations. Approximately 2/5 of the Basin exceeded the annual average federal primary standard and about 2/3 of the Basin exceeded the annual federal secondary standard (annual average TSP $> 75 \text{ ug/m}^3$ and $> 60 \text{ ug/m}^3$, respectively). The highest annual average total suspended particulate was recorded at Riverside-Rubidoux (132 ug/m^3). The annual averages at each of the District's monitoring locations are given in Appendix Table XV.

The number of days in 1985 on which the 24-hour federal primary standard level and secondary standard level (24-hour average TSP $> 260 \text{ ug/m}^3$ and 24-hour average TSP $> 150 \text{ ug/m}^3$, respectively) were exceeded and the maximum 24-hour average recorded at each station are given in Appendix Table XV.

Eight Basin stations recorded exceedances of the federal primary 24-hour standard in 1985. Riverside-Rubidoux exceeded most frequently (7% of days sampled). All of the regular air monitoring stations except Crestline recorded exceedances of the federal secondary standard.

Stage I Episode

In 1985, the Stage 1 Episode level (375 ug/m^3) was exceeded at one Basin location on one day (Reseda, 392 ug/m^3), and at two locations in the neighboring Southeast Desert Air Basin (Indio, 606 ug/m^3 and Trona 393 ug/m^3).

*Total suspended particulate is reported in units of micrograms per cubic meter (ug/m^3). One ug/m^3 is approximately equal to one billionth of an ounce per cubic foot.

FIGURE 15
TOTAL SUSPENDED PARTICULATE - 1985
ANNUAL GEOMETRIC MEAN, $\mu\text{g}/\text{m}^3$

Seasonal and Diurnal Variation in TSP

The seasonal variation of total suspended particulate is not as pronounced as that of ozone or carbon monoxide and varies with location. Since a substantial fraction of total suspended particulate is, like ozone, formed in the atmosphere by chemical reactions of gaseous

precursors, the peak concentrations occur downwind of the areas of heaviest precursor emissions.

FIGURE 16. TSP - SEASONAL VARIATION
MONTHLY AVERAGES, 1983-85

Figure 16 shows the 1983-1985 monthly average TSP at Riverside. Concentrations are highest in summer and lowest in winter and spring. The monthly average for July is 1.7 times that for December. This is typical in the high TSP area, but not in coastal and central Los Angeles and Orange counties, where highest monthly average concentrations frequently occur in winter.

Since particulate is normally collected for a full 24 hours before weighing or analysis, diurnal variations are not normally observed. Special studies were done by Witz et al. of the District laboratory in July-September 1977, in which two-hour TSP samples were collected at downtown Los Angeles. Analyses for sulfate and nitrate were also done. These will be discussed later in the sections dealing with those pollutants.

Figure 17 shows the diurnal variation in TSP found at downtown Los Angeles in summer

FIGURE 17. TOTAL SUSPENDED PARTICULATE - DIURNAL VARIATION.
TWO-HOUR AVERAGES, JULY-AUGUST 1977

1977 by Witz, et al. Marked diurnal differences were found, with concentrations generally higher in the daytime than at night, and the highest average for a two-hour period occurred from 9:00 a.m. to 11:00 a.m. PST. For the 24 sampling days studied during July-September 1977, the highest two-hour average particulate levels occurred between 5:00 a.m. and 5:00 p.m. on all days, and on 50 percent of the days the maximum occurred in the period 9:00 a.m.-11:00 a.m., PST.

Trends

Trends in total suspended particulate for the period 1975-1984 based on an 8-station composite average were examined. The key stations chosen to form the composite average were: Azusa, Pasadena, Lynwood, Downtown Los Angeles, La Habra, Riverside, San Bernardino and Fontana. The 8-station average TSP increased 20 percent from 1983 to 1984. This increase from 1983 to 1984 was primarily due to the extremely good ventilation of the period March through April of 1983. Use of 3-year running means tends to lessen the effect of meteorology on air quality trends. On this basis, from 1975-1977 to 1982-1984 there has been an overall reduction of 7 percent in TSP concentrations. Clearly, as far as improvements in air quality over the period 1975-1984 are concerned, TSP is lagging well behind most other criteria pollutants.

Total Suspended Particulate - Comparison of Basin to Other Areas in the United States

In 1985, the Los Angeles urban area had the highest annual average total suspended particulate of the ten largest urban areas in the U.S. Four other urban areas had higher maximum 24-hour average concentrations in 1985. (Table X).

No South Coast Air Basin county is included in a listing of the five U.S. counties recording the greatest number of days exceeding the federal 24-hour standard for TSP or the maximum 24-hour average TSP concentrations (Table XI).

SUSPENDED PARTICULATE (PM10)

In August 1983 the Air Resources Board replaced the state standard for total suspended particulate (TSP) with a standard for PM10. The newer standard considers only the finer sized particulate, that collected by an instrument with an upper size cutpoint of 10 microns, referred to as PM10. The present standards require that suspended particulate matter (PM10) not exceed 50 ug/m³, 24-hour average or 30 ug/m³ annual average. The PM10 standards are set at exactly half of the TSP standards which they replaced.

1985 PM10 Air Quality

State Standard

Figure 18 shows the annual average suspended particulate (PM10) levels in the Basin. All locations had annual average concentrations in excess of the state standard (annual geometric mean PM10 > 30 ug/m³). The pattern observed is similar to that obtained for TSP. The location with the highest annual average

concentration is again Riverside-Rubidoux (81 ug/m³).

The state 24-hour PM10 standard was also exceeded throughout the Basin. Burbank exceeded the standard most frequently 77% of days sampled) followed by Riverside (75%). The maximum 24-hour average PM10 level in the Basin in 1985 was measured at Riverside-Rubidoux (208 ug/m³). This was exceeded in the neighboring SEDAB, at Indio (358 ug/m³) during exceptionally windy conditions. The number of days exceeding the state 24-hour standard, and the annual maxima and averages for each location monitoring PM10 are given in Appendix Table XVI.

Proposed Federal Standards

The EPA has proposed a range of values for a federal standard for PM10. The proposed range for the federal primary annual average standard is 50-65 ug/m³ (annual arithmetic mean PM10). From 3 to 5 of the 11 Basin locations monitoring PM10 in 1985 would exceed the annual federal primary standard, depending on the level selected.

FIGURE 18
SUSPENDED PARTICULATE (PM10)-1985
ANNUAL GEOMETRIC MEAN, ug/m³

The range for a federal 24-hour primary PM10 standard has been proposed at 150-250 ug/m³. From 0 to 5 of the 11 locations monitoring PM10 in 1985 would have recorded exceedances, depending upon the level selected. (See Appendix Table XVI).

Seasonal Variation in PM10

The seasonal variation in PM10 is similar to that observed for TSP as can be seen in figure 19. The total height of each bar indicates the monthly average TSP concentration in ug/m³.

The height of the crosshatched portion of the bar indicates the PM10 concentrations in ug/m³. The 1985 PM10 concentrations at Riverside averaged 64% of TSP concentrations, with monthly percentages ranging from 51%-74%. Both PM10 and TSP were lowest in January. The two highest months for both were July and August, but TSP was highest in August, while PM10 was highest in July. (See Figure 19)

FIGURE 19. RIVERSIDE - PROPORTION OF PM10 IN TSP BY MONTH, 1985

As is the case with TSP, the pattern of seasonal variation in PM10 concentration depends on location. While Riverside showed a spring-summer peak in both PM10 and TSP, this is not the pattern at Long Beach. Concentrations were highest in April and both PM10 and TSP are higher in January than in July and August. PM10 concentrations averaged 62% of TSP at Long Beach, with monthly averages ranging from 53-74% of corresponding monthly averages for TSP. (Figure 20)

FIGURE 20. LONG BEACH - PROPORTION OF PM10 IN TSP BY MONTH, 1985

LEAD

Combustion of leaded gasoline accounts for nearly all of the lead emitted into the atmosphere of the South Coast Air Basin. As a consequence, lead concentrations are highest in the densely populated parts of Los Angeles and Orange counties where vehicular traffic is heaviest. The reduction of gasoline lead content has resulted in a sharp decrease in atmospheric lead concentrations over the last decade. Atmospheric lead, which is a mixture of a number of chemical compounds of lead, is a small percentage of the material collected as total suspended particulate (0.1 to 0.4 percent in 1985). It is concentrated primarily in the fine particle fraction of TSP.

1985 Lead Air Quality

State Standard

In 1985, the state standard for lead, (monthly average lead $\geq 1.5 \text{ ug/m}^3$) was met throughout the Basin. Figure 21 shows the maximum monthly average lead concentrations. The

highest monthly average lead concentration was reported at Lynwood (.91 ug/m^3), followed by Lennox (.90). Maximum monthly averages for all stations are given in Appendix Table XVII.

Federal Standard

The federal standard for lead (quarterly average lead $> 1.5 \text{ ug/m}^3$) was also met throughout the Basin in 1985. The stations with the highest quarterly average lead concentrations were Lynwood (.63 ug/m^3), and Lennox (.60).

Seasonal and Diurnal Variation in Lead

Lead concentrations are typically highest in late fall and winter and lowest in spring and summer. In the study of diurnal variation in particulate by Witz et al., lead concentrations were not determined. However, since lead and carbon monoxide are alike in that both are emitted almost entirely by motor vehicles, it is possible to imply diurnal variations in lead from diurnal CO patterns. The surface inversions and light winds which result in high CO concentrations will also yield relatively high lead concentrations.

FIGURE 21
LEAD - 1985
MAXIMUM MONTHLY AVERAGE, $\mu\text{g}/\text{m}^3$ *

* Less than 12 full months of data.

* Not measured at this location.

* State standard=monthly average lead $> 1.5 \text{ ug/m}^3$. The standard was not exceeded at any location.

Figure 22 shows the 1983-1985 monthly average lead concentrations at Lennox. The monthly average lead concentration for January was 5.5 times that for June.

FIGURE 22. LEAD - SEASONAL VARIATION
MONTHLY AVERAGES, 1983-85

Trends

The principal source of atmospheric lead has been leaded gasolines. As the average lead content in gasoline has been reduced, atmospheric lead concentrations in the Basin have shown dramatic improvement. In the mid-1970's almost all stations in the Basin exceeded the federal lead standard (1.5 micrograms per cubic meter, calendar quarter average). By 1982 only the Lennox station still exceeded the federal lead standard, and in 1983, for the first time, all Basin stations met the standard. The more stringent state lead standard (1.5 micrograms per cubic meter, monthly average) was also met at all stations for the first time in 1983. During 1984 and 1985 all Basin stations continued to meet both the federal and state air quality standards for lead.

Lead - Comparison of Basin to Other Areas in the United States

Of the ten largest U.S. urban areas, only Philadelphia exceeded the federal lead standard

in 1985. Los Angeles ranked fourth in annual maximum quarterly average lead concentrations. (Table X).

Although some other areas of the country did exceed the federal lead standard in 1985, no area in the South Coast Air Basin recorded any exceedance. (Table XI).

SULFATES

Sulfates (SO_4^{2-}) are a group of chemical compounds containing the sulfate group, a sulfur atom with four oxygen atoms attached. Most of the sulfate in the Basin's atmosphere is produced by oxidation of SO_2 , a process favored by high relative humidity, photochemical activity, and limited vertical mixing. Oxidation of SO_2 gives SO_3 , and SO_3 in the presence of water gives H_2SO_4 (sulfuric acid), which will react rapidly with basic materials to give sulfates. The sulfate particles formed are of a size range which efficiently scatters light, and consequently high sulfate concentrations result in considerable visibility degradation. Because some of the sulfate in the atmosphere is present as sulfuric acid, it can result in acid deposition. In 1985, sulfates accounted for 5 to 12 percent of the total suspended particulate sampled in the Basin, depending on the location.

1985 Sulfate Air Quality

State Standard

Figure 23 shows the percent of days in 1985 on which the state standard for sulfate (24-hour average $\text{SO}_4^{=2} \geq 25 \text{ ug/m}^3$) was exceeded. The state standard was exceeded in about one-fiftieth of the Basin's area. The highest 24-hour average sulfate concentration in the Basin was measured at Long Beach (31 ug/m^3). The percent of days on which the state standard was exceeded and the maximum 24-hour average for 1985 are given for each station in Appendix Table XVIII.

Federal Standards

There is no federal standard for sulfate.

Seasonal and Diurnal Variation in Sulfate Concentrations

Although high sulfate concentrations occur throughout the year, the highest average concentrations occur in the summer and fall, while the lowest average sulfate concentrations occur in the winter and early spring. The summer-fall increase in average sulfate con-

centration occurs because this period registers many days of high relative humidity, strong photochemical activity and limited vertical mixing, all of which favor the conversion of SO₂ emissions to sulfate. Sulfate concentrations do not show sharp diurnal variation, but peak at different times depending on location. The closer to major SO₂ sources, the earlier in the day the sulfate peak appears.

Figure 24 shows the monthly average sulfate

**FIGURE 24. SULFATE - SEASONAL VARIATION
MONTHLY AVERAGES, 1983-85**

FIGURE 23
SULFATE-1985
PERCENT OF DAYS ON WHICH STATE STANDARD WAS EXCEEDED
(24-HOUR AVERAGE SULFATE \geq 25 $\mu\text{g}/\text{m}^3$)

- Less than 12 full months of data.
- ◆ Not measured at this location.

NITRATES

concentrations for 1983-1985 at Los Angeles. The ratio of June to December monthly averages was 2.6.

Figure 25 shows the average diurnal sulfate variation observed by Witz et al. in summer 1977 at downtown Los Angeles. The highest 2-hour sulfate was observed from 5 to 7 a.m. PST. The concentrations of sulfate did not vary diurnally as sharply as did those for TSP.

Trends

Sulfate trends were determined for the period 1976-1984, based on a 9-station composite average (Azusa, Pasadena, Lennox, Lynwood, Downtown Los Angeles, La Habra, Riverside, San Bernardino and Fontana). The 9-station average sulfate concentration increased from 1976 to 1977, showed a steady decline from 1977 to 1982, increased again in 1983, and then resumed its decrease in 1984. The 3-year moving average of this statistic shows that, from 1976-1978 to 1982-1984, there was an overall decrease of 9 percent in sulfate concentrations.

Nitrates (NO_3) are a family of chemical compounds containing the nitrate group, a nitrogen atom with three oxygen atoms attached. Nitrates in the atmosphere are produced by chemical reaction of the gaseous oxides of nitrogen. Some of the nitrate in the atmosphere is present as nitric acid which can cause acid deposition. Solid compounds such as ammonium nitrate and sodium nitrate are formed, contributing to visibility reduction in the Basin. In 1985, nitrates made up an average of 11 to 20 percent of TSP, depending on the location.

1985 Nitrate Concentrations

At present, no air quality standards for nitrate have been set by the state or federal governments. The data on nitrate air quality are therefore presented in terms of actual concentrations rather than the number of days on which a standard was exceeded. Figure 26 shows that in 1985, the highest average nitrate concentrations were centered in the San Bernardino-Riverside area. The highest annual average nitrate concentration was 23.1 ug/m^3 .

FIGURE 25. SULFATE - DIURNAL VARIATION. TWO-HOUR AVERAGES, JULY-AUGUST 1977

at Riverside. Annual average and annual maximum 24-hour average nitrate concentrations are presented for all stations in Appendix Table XIX.

Seasonal and Diurnal Variation in Nitrate Concentrations

The seasonal nitrate pattern differs considerably with location. At Lennox, a coastal location, nitrates are at a maximum in winter and a minimum in spring and summer. Both Riverside and San Bernardino typically show a summer through fall nitrate maximum and a winter through early spring minimum.

Figure 27 shows the average nitrate concentrations for each month for 1983-1985 at Riverside. The monthly average for June was highest, and was 2.0 times the lowest monthly average for the month of December.

The average nitrate for each 2-hour period of the day taken from Witz's data for downtown Los Angeles shows a sharp peak at 9-11 a.m.

FIGURE 27. NITRATE - SEASONAL MONTHLY AVERAGES, 1983-85

PST (see Figure 28), the same time as the maximum TSP peak. The average nitrate at 9-11 a.m. was about 20 percent of the average TSP at that time. In general, nitrate was considerably higher in the daytime than at night.

FIGURE 26
NITRATE - 1985
ANNUAL AVERAGE, ug/m³

- ◆ Less than 12 full months of data.
- ◆ Not measured at this location.

FIGURE 28. NITRATE - DIURNAL VARIATION. TWO-HOUR AVERAGES, JULY-AUGUST 1977

VISIBILITY

1985 Visibility

State Standard

Figure 29 shows the distribution by area of the number of days on which visibilities did not meet the state standard. (Less than ten miles with relative humidity less than 70 percent). The area most severely affected by these air pollution-induced low visibilities centered around Ontario International Airport. This is as expected, since this area also recorded high

concentrations of TSP, sulfate, and nitrate during 1985.

Seasonal and Diurnal Variation in Visibility

Visibility varies seasonally depending on location. Seasonal visibility patterns appear to be associated with seasonal variations in particulate contaminants. Most locations in the Basin display extremely low median visibilities (5 to 7 miles) during the summer and maximum visibility during fall and winter. The diurnal pattern agrees with the diurnal variations in aerosol concentrations.

FIGURE 29
VISIBILITY-1985
NUMBER OF DAYS VISIBILITY LESS THAN STATE STANDARD*

* Visibility less than 10 miles at relative humidity less than 70%.

Measured closest to this location, but not at the air monitoring station.

APPENDIX

LIST OF APPENDIX TABLES

NO.	TITLE	PAGE
I	1985 Air Quality Compared to State/Federal Standards	27
II	Health Effects of Air Pollutants	29
III	Air Pollution Damage to Plants	30
IV	Air Pollution Damage to Materials	31
V	Ambient Air Quality Standards	32
VI	Episode Criteria	33
VII	Ozone, 1985, Comparison to Air Quality Criteria	34
VIII	Ozone, Annual Number of Days of First/Second Stage Episodes, 1976-1985	35
IX	Ozone, Annual Maximum 1-hour, ppm. 1955-1985	36
X	Ten Largest U.S. Urban Areas, Comparison of 1985 Maximum and Exceedances of Federal Standards	37
XI	Five Worst U.S. Counties versus Worst Basin County, Comparison of 1985 Maximum and Exceedances of Federal Standards	38
XII	Carbon Monoxide, 1985, Comparison to Air Quality Criteria	39
XIII	Nitrogen Dioxide, 1985, Comparison to Air Quality Criteria	40
XIV	Sulfur Dioxide, 1985, Comparison to Air Quality Criteria	41
XV	Total Suspended Particulate (TSP), 1985, Comparison to Federal Standards, Annual Maximum, Annual Average	42
XVI	PM10, 1985, Comparison to State/Proposed Federal Standards, Annual Maximum/Average	43
XVII	Lead, 1985, Comparison to State/Federal Standards, Annual Maximum, Annual Average	44
XVIII	Sulfate, 1985, Comparison to State Standard, Annual Maximum, Annual Average	45
XIX	Nitrate, 1985, Annual Averages and Maximum	46

TABLE I
1985 AIR QUALITY COMPARED TO STATE AMBIENT AIR QUALITY STANDARDS
SOUTH COAST AIR BASIN

Pollutant/ Standard	Fraction of Basin Exceeding Standard	Most Heavily Impacted Area	Maximum ^a % of Days Exceeding Standard	Location with Maximum % of Days Exceeding Standard	Ratio of Annual Maximum to Standard
OZONE 1-hour avg. $O_3 \geq 10$ ppm	All	Inland Valleys	51% ^b	Glendora	3.9
SUSPENDED PARTICULATE (PM10) 24-hour avg. $> 50 \mu\text{g}/\text{m}^3$ Annual avg. $\text{PM10} > 30 \mu\text{g}/\text{m}^3$	1/3 All	Central L.A. County/ Inland valleys	80% ^c --	Los Angeles --	4.2 2.7
CARBON MONOXIDE 8-hour Avg. $\text{CO} > 9.0$ ppm	1/4	Coastal/central L.A. County	14%	Lynwood	3.1
NITROGEN DIOXIDE 1-hour avg. $\text{NO}_2 \geq .25$ ppm	1/5	Coastal/central L.A. County	1%	Long Beach Pico Rivera	1.4
SULFATE $\text{24-hour avg. } \text{SO}_4 = \geq 25 \mu\text{g}/\text{m}^3$	1/50	Near and downwind of sulfur dioxide sources	2%	Long Beach	1.2
SULFUR DIOXIDE 1-hour avg. $\text{SO}_2 > .25$ ppm	None (Standard Met)	Near sulfur dioxide sources	0%	--	0.32
LEAD Monthly avg. $\text{Pb} \geq 1.5 \mu\text{g}/\text{m}^3$	None (Standard Met)	Coastal/central L.A. County	0%	--	0.61

- (a) Ozone, carbon monoxide, nitrogen dioxide, and sulfur dioxide are measured daily on a continuous basis and averages are reported for each hour. Suspended particulate, lead, and sulfate are sampled every sixth day and 24-hour averages are reported. The percentages given are the percent of days sampled which exceeded the standard except in the case of lead. Since the lead standard is based on a monthly average, the percent given is the percent of months not meeting the standard.
- (b) Although the ozone standard was exceeded on 51 percent of the days in 1985, this does not imply that the standard was exceeded on 51 percent of the hours in 1985. A single hour above the standard during a day causes that day to be counted as exceeding. Similar reasoning applies to nitrogen dioxide and carbon monoxide.
- (c) Maxima shown are selected from locations having data for at least 75% of the 61 sampling days during the period (Los Angeles data was incomplete, with exactly 75% of possible sampling days sampled).

TABLE I (Continued)
1985 AIR QUALITY COMPARED TO FEDERAL AMBIENT AIR QUALITY STANDARDS
SOUTH COAST AIR BASIN

Pollutant/ Standard	Fraction of Basin Exceeding Standard	Most Heavily Impacted Area	Maximum ^a % of Days Exceeding Standard	Location with Maximum % of Days Exceeding Standard	Ratio of Annual Maximum to Standard
OZONE 1-hour avg. $O_3 > .12$ ppm	All	Inland Valleys	39% ^b	Glendora	3.3
TOTAL SUSPENDED PARTICULATE (TSP) Annual avg. TSP > 75 ug/m ³	2/5	Inland valleys	--	--	1.8
Annual avg. TSP > 60 ug/m ³	2/3				2.2
CARBON MONOXIDE 8-hour Avg. CO ≥ 9.3 ppm	1/4	Coastal/central L.A. County	13%	Lynwood	3.0
NITROGEN DIOXIDE Annual avg. NO ₂ $> .0534$ ppm	1/50	Coastal/central L.A. County	--	--	1.1
LEAD Quarterly avg. lead > 1.5 ug/m ³	None (Standard Met)	Coastal/central L.A. County	0%	--	0.4
SULFUR DIOXIDE 24-hour avg. SO ₂ $> .14$ ppm	None (Standard Met)	Near and downwind of sulfur dioxide sources	0%	--	0.2

- (a) Ozone, carbon monoxide, nitrogen dioxide, and sulfur dioxide are measured daily on a continuous basis and averages are reported for each hour. Suspended particulate, lead, and sulfate are sampled every sixth day and 24-hour averages are reported. The percentages given are the percent of days sampled which exceeded the standard except in the case of lead. Since the lead standard is based on a quarterly average, the percent given is the percent of quarters not meeting the standard.
- (b) Although the ozone standard was exceeded on 39 percent of the days in 1985, this does not imply that the standard was exceeded on 39 percent of the hours in 1985. A single hour above the standard during a day causes that day to be counted as exceeding. Similar reasoning applies to carbon monoxide.

TABLE II
HEALTH EFFECTS OF AIR POLLUTANTS

POLLUTANT	CONCENTRATION/ EXPOSURE TIME	OBSERVED HEALTH EFFECTS AT SPECIFIED CONCENTRATIONS	1985 ANNUAL HIGH CONCENTRATION IN SOCAB	
			CONCENTRATION/ AVERAGING TIME	LOCATION, DATE
Ozone	0.25 ppm/1 hour	Increased frequency of asthma attacks. ^{1,2*}		
	0.30 ppm/1 hour	Cough, chest discomfort and headache. ³	0.39 ppm/1 hour	Glendora 8/24/85
	0.37 ppm/2 hour	Decline in pulmonary function in healthy individuals. ⁴		
Carbon Monoxide	15-18 ppm/8 hour	Can cause decreased exercise capacity in patients with angina pectoris. ^{6,7,8,}	27.7 ppm/8 hour	Lynwood 12/24/85
	50 ppm/1 hour	Can cause impairment of time interval estimation and visual function. ⁹	33 ppm/1 hour	Lynwood 12/23/85
Nitrogen Dioxide	0.11 ppm/few minutes	Sensory responses may be elicited or altered. ¹⁰		
	Daily peak exceeds 0.45 ppm on 10% of days for 12 months	May cause some impairment of pulmonary function and increased incidence of acute respiratory disease. ¹⁰	0.35 ppm/1 hour	Long Beach 12/23/85
	1.50 ppm/short term	Can cause difficulty in breathing in healthy as well as bronchitic groups. ¹⁰		
Lead	3.2 ug/m ³ /7 weeks	Increase in blood lead levels which may impair or decrease hemoglobin synthesis. ¹¹	0.91 ug/m ³ monthly average	Lynwood 1/85
Sulfur Dioxide/ Total Suspended Particulate (TSP)	0.037 ppm SO ₂ annual average association with 100 ug/m ³ Smoke**	May cause higher frequencies of acute respiratory symptoms and diminished ventilatory function in children. ¹²	.008 ppm SO ₂ combined with 83 ug/m ³ TSP, annual average	Long Beach

*Superscripts refer to data sources shown in References to Health Effects.

**Smoke is a British measure of particulate matter concentrations.

TABLE III
AIR POLLUTION DAMAGE TO PLANTS

POLLUTANT	MOST SENSITIVE SPECIES AND LOWER CONCENTRATION LIMIT FOR INJURY	TYPICAL SYMPTOMS - CONCENTRATION OF FIRST APPEARANCE VARIES WITH SPECIES AND ENVIRONMENTAL FACTORS	OTHER SENSITIVE PLANTS
Ozone O_3	.05-.12 ppm, 2-4 hours Tobacco, spinach, beans	Shiny, oily or waxy appearance on upper Leaf surface may occur during exposure. Red-brown spots or bleaching to tan or white on upper surface or on both surfaces. Reduced plant growth.	Alfalfa, potatoes, corn grapes, alder, ponderosa pine, sycamore.
Peroxyacetyl Nitrate (PAN) O _{II} CH_3COONO_2	.015-.020 ppm, 4 hour Tomato, romaine lettuce, petunia. Tobacco.	Oily or waxy appearance develops 2-3 hours after exposure. Lower leaf surface gradually develops glazed or bronzed appearance. Bronzing usually develops after 2-3 days. White or occasionally brown bands from a few mm to a few cm wide develop on leaves, the position of the band varying with leaf age. Decreased crop yield.	Beans, head lettuce, oat, alfalfa, barley, sugar beet, carrot.
Sulfur dioxide SO_2	.24 ppm SO_2 combined with .037 ppm O_3 (background level O_3) Tobacco.	Chronic low-level exposure gives mild chlorosis (yellowing) of leaves, or a silvering or bronzing of the underside. High level exposure first causes water soaked discolored appearance of injured area, which on drying typically becomes white to ivory. Ragged appearance of leaves. Leaf drop.	Alfalfa, barley, beans cotton, oat, ponderosa pine.
Nitrogen dioxide NO_2	2.5-3.0 ppm, 2 hour Pinto bean, tomato, Cucumber.	Symptoms similar to SO_2 but higher concentrations required to produce white to tan areas on leaves. When dry, resembles tissue paper. Leaves age prematurely, drop.	Head lettuce, orange.
Carbon Monoxide	Well above ambient	Similar to ethylene but much higher concentrations required.	--
Ethylene	.001-.005 ppm 24-30 hr. .1 ppm, 6 hour African marigold, rose, orchid, cotton, tomato, peach.	Acts as growth hormone. Causes general reduction in growth as well as abnormal growth. Buds drop, flowers fail to open.	Carrot, squash.
Total suspended particulate	--	Not generally considered harmful. May increase costs of crops due to increased labor for cleaning.	--
Acid precipitation	--	Dead spots in foliage. Increased acidity of natural waters which may affect aquatic species.	

References:

- 1) Recognition of Air Pollution Injury to Vegetation: A Pictorial Atlas, Air Pollution Control Association and National Air Pollution Control Administration, 1970. Edited by J.S. Jacobsen and A. Clyde.
- 2) Air Pollution, Vol. II, Third Edition "The Effects of Air Pollution" Edited by A. C. Stern.
- 3) Air Pollution Damage to Vegetation, Editor J. A. Naegle.
- 4) Air Pollution Effects on Plant Growth, Editor M. Dugger.

TABLE IV
AIR POLLUTION DAMAGE TO MATERIALS

POLLUTANT	LOWER CONCENTRATION LIMIT	MATERIAL	EFFECTS OF POLLUTANT ON MATERIAL AT SPECIFIC CONCENTRATION
Ozone (O ₃)	.01-.02 ppm	Rubber ^{1,2}	Rubber under tension oxidizes causing decreased tensile strength and resilience, and cracking. Susceptibility to ozone varies with the type of rubber.
	.02-.06 ppm for 50 days	Fabrics ²	Cotton is weakened in the presence of moisture, showing decreased breaking strength.
	--	Fabric Dyes	A type of blue dye developed to resist NO ₂ attack (gas fading) failed field tests and was subsequently found to be suffering damage from ozone.
Sulfur Dioxide (SO ₂)	--	Building ¹ Materials	Limestone, marble, roofing slate, and mortar are attacked by SO ₂
	--	Metals ¹	In the presence of moisture, SO ₂ attacks iron, copper and galvanized or zinc-coated iron or steel products. Aluminum is resistant to SO ₂ . The greatest part of the economic loss due to SO ₂ is due to attack on metals.
	--	Electrical ³ Devices	Corrosion and tarnishing of electrical contacts by SO ₂ contributes to failure of electrical devices. This accounts for about 5% of the economic loss due to SO ₂ .
	2-.9 ppm for 10 days	Paper ¹	At these high concentrations, paper becomes brittle and a decrease in folding resistance is observed.
	--	Leather ¹	SO ₂ causes leather to lose strength and eventually disintegrate.
	--	Textiles ¹	Cotton and wool are weakened by SO ₂ . Nylon hose, which are made up of very thin fibers and are under tension, deteriorate rapidly. Heavier nylon fibers don't suffer noticeably.
Carbon Dioxide (CO ₂)	1-5 ppm and higher	Plastics and ⁵ other Polymers	High SO ₂ concentration have been shown to slightly increase deterioration of some plastics and other polymers over what normally occurs in presence of air and light.
	--	Building ¹ Materials	CO ₂ occurs in the atmosphere naturally, but is present in much greater amount in industrialized areas due to combustion of fossil fuels. In the presence of water, carbonic acid is formed and will attack limestone.
Particulates	--	Painted ^{1,3} Surfaces	Painted surfaces such as the exterior of an automobile may be damaged by particulates containing reactive chemicals. Absorbed SO ₂ , iron filings and mortar dust from building demolition are examples of such reactive materials which have been reported to cause paint damage.
	--	Electrical ³ Devices	Most of the damage to electrical components by air pollution has been attributed to particulates.
Nitrogen Dioxide (NO ₂)	--	Fabric ⁴	Either ambient NO ₂ or NO ₂ produced by gas appliances can cause some dyes to fade ("gas fading").

(1) J.E. Yocom, "The Deterioration of Materials in Polluted Atmospheres" J. Air Poll. Control Assoc., Vol. 8, No. 3, p. 203

(2) L.S. Jaffe, "The Effects of Photochemical Oxidants on Materials" J. Air Poll. Control Assoc., Vol. 17, No. 6, p. 375

(3) "Sulfur Dioxide and Material Damage", D.G. Gillette, J. Air Poll. Control Assoc., Vol. 13, No. 9, p. 1238.

(4) V.S. Salvin, "Effect of Air Pollutants on Dyed Fabrics" J. Air Poll. Control Assoc., Vol. 13, No. 9, p. 416, 1963.

(5) H.H.G. Jellinek, "Chain Scission of Polymers by Small Concentrations (1 to 5 ppm) of Sulfur Dioxide and Nitrogen Dioxide, Respectively, in presence of Air and Near Ultraviolet Radiation." J. Air Poll. Control Assoc., Vol. 20, No. 10, p. 672, 1970.

TABLE V
AMBIENT AIR QUALITY STANDARDS

CALIFORNIA			FEDERAL		
AIR POLLUTANT	CONCENTRATION	DISTRICT METHOD	PRIMARY (>)	SECONDARY (>)	METHOD ^a
Ozone	0.10 ppm, 1-hr. avg. \geq	U.V. Photometry	0.12 ppm, 1-hr. avg.	0.12 ppm, 1-hr. avg.	Chemiluminescent
Carbon Monoxide	9.0 ppm, 8-hr. avg. ^b > 20 ppm, 1-hr. avg. >	Non-dispersive Infra-red Spectrophotometry	9 ppm, 8-hr. avg. ^e 35 ppm, 1-hr. avg.	9 ppm, 8-hr. avg. 35 ppm, 1-hr. avg.	Non-dispersive Infra-red Spectrophotometry
Nitrogen Dioxide	0.25 ppm, 1-hr. avg. \geq	Gas Phase Chemiluminescence	0.053 ppm, annual avg. ^f	0.053 ppm, annual avg.	Gas Phase Chemiluminescence
Sulfur Dioxide	0.05 ppm, 24-hr. avg. \geq with Ozone \geq 0.10 ppm, 1-hr. avg. or TSP \geq 100 ug/m ³ , 24-hr. avg. Pulsed Fluorescence 0.25 ppm, 1-hr. avg. ^c >		0.03 ppm, annual avg. 0.14 ppm, 24-hr. avg.	0.5 ppm, 3-hr. avg.	Para-rosaniline
Total Suspended Particulate (TSP)			75 ug/m ³ , annual geometric mean 260 ug/m ³ , 24-hr. avg.	60 ug/m ³ , annual geometric mean 150 ug/m ³ , 24-hr. avg.	High Volume Sampling
Suspended Particulate Matter (PM10)	30 ug/m ³ , annual geometric mean ^d > 50 ug/m ³ , 24-hr. avg. \geq	Size Segregated Inlet High Volume Sampling			
Sulfates	25 ug/m ³ , 24-hr. avg. \geq	High Vol. Sampling Methyl-thymol Blue	-	-	-
Lead	1.5 ug/m ³ , 30-day avg. \geq	High Vol. Sampling X-Ray Fluorescence	1.5 ug/m ³ , calendar quarter	1.5 ug/m ³ , calendar quarter	High Volume Sampling Atomic Absorption Spectrophotometry
Hydrogen Sulfide	0.03 ppm, 1-hr avg. \geq	Cadmium Hydroxide Stractan	-	-	
Vinyl Chloride	0.010 ppm, 24-hr. avg. \geq	Gas Chromatography	-	-	-
Visibility Reducing Particles	In sufficient amount to reduce the prevailing visibility to less than 10 miles at relative humidity less than 70%, 1 obs.	-	-	-	

a) Reference method as described by the federal government. An equivalent method of measurement may be used as approved by the federal government.

b) Effective December 15, 1982. The standards were previously 10 ppm, 12-hour average and 40 ppm, 1-hour average.

c) Effective October 5, 1984. The standard was previously .5 ppm, 1 hour average.

d) Effective August 19, 1983. The standards were previously 60 ug/m³ TSP, annual geometric mean, and 100 ug/m³ TSP, 24-hour average.

e) Effective September 13, 1985, standard changed from >10 mg/m³ (\geq 9.3 ppm) to >9 ppm (\geq 9.5 ppm).

f) Effective July 1, 1985 standard changed from >100 ug/m³ ($>$.0532 ppm) to .053 ppm ($>$.0534 ppm).

> To violate standard concentration must be greater than (>) standard.

\geq To violate standard concentration must be greater than or equal to (\geq) standard.

TABLE VI
EPISODE CRITERIA

AIR POLLUTANT	SCAQMD AND CALIFORNIA			FEDERAL		
	STAGE 1 (\geq)	STAGE 2 (\geq)	STAGE 3 (\geq)	STAGE 1 (\geq)	STAGE 2 (\geq)	STAGE 3 (\geq)
Ozone	0.20 ppm, 1-hr. avg.	0.35 ppm, 1-hr. avg.	0.50 ppm, 1-hr. avg.	-	-	-
Carbon Monoxide	40 ppm, 1-hr. avg. 20 ppm, 12-hr. avg.	75 ppm, 1-hr. avg. 35 ppm, 12-hr. avg.	100 ppm, 1-hr. avg. 50 ppm, 12-hr. avg.	15 ppm, 8-hr. avg.	30 ppm, 8-hr. avg.	40 ppm, 8-hr. avg.
Nitrogen Dioxide	-	-	-	0.60 ppm, 1-hr. avg. 0.15 ppm, 24-hr. avg.	1.20 ppm, 1-hr. avg. 0.30 ppm, 24-hr. avg.	1.60 ppm, 1-hr. avg. 0.40 ppm, 24-hr. avg.
Sulfur Dioxide	0.50 ppm, 1-hr. avg. 0.20 ppm, 24-hr. avg.	1.00 ppm, 1-hr. avg. 0.70 ppm, 24-hr. avg.	2.00 ppm, 1-hr. avg. 0.90 ppm, 24-hr. avg.	-	-	-
Sulfur Dioxide/ Total Suspended Particulate Combined	-	-	-	65,000*, 24-hr. avg.	261,000*, 24-hr. avg.	393,000* 24-hr. avg.
Total Suspended Particulate (TSP)	-	-	-	375 ug/m ³ , 24-hr. avg.	625 ug/m ³ , 24-hr. avg.	875 ug/m ³ , 24-hr. avg.
Sulfates**	25 ug/m ³ , 24-hr. avg.	combined with ozone \geq 0.20 ppm, 1-hr. avg.	-	-	-	-
Actions to be Taken	Health advisory to a) Persons with respiratory and coronary disease. b) School officials in order to curtail students' participa- tion in strenuous activities. First steps in abatement plans.	Intermediate Stage. Abatement actions taken to reduce concentration of pollutant at issue.	Mandatory abatement measures. Extensive actions taken to prevent exposure at indicated levels. State can take action if local efforts failed	Open burning prohib- ited. Reduction in vehicle operation requested. Industrial curtailment.	Incinerator use prohibited. Reduction in vehicle operation required. Further industrial curtail- ment.	Vehicle use prohibited Industry shut down or curtailment. Public activities ceased.

*Product of sulfur dioxide (ppm), particulate matter (ug/m³) and a factor (2620).

**Episodes based upon these criteria are not classified according to stages.

TABLE VII
OZONE - 1985
Comparison to Air Quality Criteria

Number of Days in 1985
Max. 1-Hr Avg. Exceeded

Station No., Location	State Std ≥.10 ppm	Fed Std ≥.12 ppm	Stg 1 Epsd ≥.20 ppm	Stg 2 Epsd ≥.35 ppm	Max 1-Hr ppm	Ann Avg Daily Max	Ann Avg	Total Number Days
600 Azusa	168	117	48	1	.36	.1004	.0302	365
690 Burbank	141	87	17	0	.30	.0865	.0260	364
720 Long Beach	29	11	1	0	.23	.0499	.0200	364
740 Reseda	133	75	9	0	.25	.0813	.0279	362
750 Pomona	138	98	32	0	.33	.0868	.0252	365
760 Lennox	11	4	0	0	.17	.0431	.0176	357
800 Whittier	95	58	11	0	.32	.0750	.0248	365
820 Lancaster**	106	58	0	0	.19	.0755	.0398	362
840 Lynwood	41	16	1	0	.21	.0535	.0178	365
850 Pico Rivera	120	79	19	0	.31	.0822	.0231	365
870 Los Angeles	107	56	9	0	.30	.0729	.0211	365
880 Pasadena	173	116	41	1	.37	.1045	.0337	365
890 Newhall	141	93	15	0	.24	.0831	.0280	363
910 West L.A., VA.	82	37	4	0	.27	.0711	.0252	365
591 Glendora	187	141	68	5	.39	.1153	.0387	365
3176 Anaheim	70	35	11	0	.25	.0658	.0231	365
3177 La Habra	93	57	13	0	.34	.0755	.0263	365
3186 El Toro	61	30	7	0	.28	.0676	.0324	363
3190 Los Alamitos	30	11	0	0	.19	.0500	.0183	364
3192 Costa Mesa	33	17	1	0	.21	.0583	.0280	364
4137 Palm Springs**	81	25	2	0	.24	.0669	.0375	365
4139 Indio**	67	16	1	0	.20	.0657	.0380	365
4141 Hemet	52	13	1	0	.23	.0630	.0337	365
4144 Rubidoux	173	125	35	1	.35	.1023	.0372	364
4149 Perris	146	96	8	0	.29	.0871	.0364	365
4150 Banning**	94	55	8	0	.29	.0692	.0360	364
4155 Norco	147	92	20	1	.35	.0907	.0339	364
5175 Upland	156	110	39	0	.33	.0965	.0317	365
5181 Crestline	160	114	41	0	.30	.1015	.0528	365
5192 Redlands	158	113	31	0	.33	.0977	.0412	359
5194 San Bernardino	155	111	30	0	.27	.0940	.0340	362
5197 Fontana	162	126	48	0	.34	.1037	.0354	360
5198 Chino	136	85	15	0	.32	.0870	.0287	365

*Less than 12 full months of data.

**Southeast Desert Air Basin.

Std = Standard. Fed = Federal. Epsd = Episode.

Max = Maximum.

Ann Avg = annual average (arithmetic mean) in ppm (parts per million by volume).

Ann Avg Daily Max = annual average daily maximum.

Annual average daily maximum 1-hour average ozone more accurately reflects where peak

1-hour levels (which determine compliance with standards and episodes) occur, than does the annual average ozone.

ANNUAL NUMBER OF DAYS OF FIRST/SECOND STAGE EPISODES
 (days maximum 1-hour average ozone ≥ 0.20 ppm / ≥ 0.35 ppm)

1976-1985

STATION

YEAR

#	LOCATION	CODE	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
600	Azusa	AZUS	47/1	64/0	76/5	71/10	74/7	65/2	40/1	63/3	55/0	48/1
690	Burbank	BURK	43/1	11/0	30/0	26/2	30/1	18/0	12/0	34/0	5/0	17/0
720	Long Beach	LB	0/0	0/0	0/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0
740	Reseda	RESE	33/0	37/0	16/0	24/0	36/1	12/0	4/0	11/0	6/0	9/0
750	Pomona	POMA	37/1	58/0	72/9	57/3	49/1	32/0	31/0	45/0	30/0	32/0
760	Lennox	LENX	1/0	0/0	2/0	0/0	0/0	0/0	0/0	0/0	1/0	0/0
800	Whittier	WHIT	19/1	12/0	18/1*	16/0	5/0	18/0	7/0	23/0	17/0	11/0
820	Lancaster	LANC**	0/0	2/0	5/0	1/0	7/0*	7/0	0/0	0/0	0/0	0/0
840	Lynwood	LYNW	2/0*	0/0*	0/0	6/0	0/0*	1/0	2/0	3/0	4/0	1/0
850	Pico Rivera	PICO	26/1*	52/0	48/5	38/3	38/1	28/0	18/1	35/0	24/0	19/0
860	West L.A.	WLA	4/0	0/0	10/0*	7/0	3/0	3/0	3/0	6/0	5/0	4/0
870	Los Angeles	LA	11/0	3/0	16/0	14/0	10/0	8/0	7/1	12/0	8/0	9/0
880	Pasadena	PASA	51/0	55/0	85/8	78/11	56/3	48/0	33/1	59/0	49/0	41/1
890	Newhall	NEWL	38/0	59/0	45/0	59/0	46/2	37/0	17/0	19/0	18/0	15/0
591	Glendora	GLEN	/	/	/	/	30/5*	61/2	62/2	74/2	67/0	68/5
3176	Anaheim	ANAH	4/0*	0/0*	13/0	5/0	6/0	5/0	7/0	10/0	5/0	11/0
3177	La Habra	LAHB	15/0	8/0	24/1	21/1	14/0	15/0	12/0	15/0	15/0	13/0
3186	El Toro	TORO	3/0	2/0	10/0	6/0	3/0	5/0	3/0	10/0	3/0	7/0
3188	San Juan Cap.	SJCA	2/0*	1/0	2/0*	/	/	/	/	/	/	/
3190	Los Alamitos	LSAL	2/0	0/0*	5/0	2/0	3/0	0/0	2/0	2/0	0/0	0/0
3191	Santa Ana Cyn.	SACN	17/0	10/0	9/0	14/2	13/0	4/0*	/	/	/	/
3192	Costa Mesa	COST	0/0	0/0*	3/0	1/0	0/0	1/0	0/0	2/0	1/0	1/0
4137	Palm Springs	PLSP**	3/0*	5/0	3/0	3/0*	4/0	0/0	0/0	0/0	1/0	2/0
4139	Indio	INDO**	0/0*	0/0	0/0	1/0	0/0	0/0	0/0	0/0	0/0	1/0
4141	Hemet	HEME	0/0	2/0	2/0*	/	/	/	/	/	/	1/0
4144	Riverside Rub.	RIVR	46/2	66/1	62/2	55/0	67/4	34/0	26/0	42/1	29/0	35/1
4149	Perris	PERI	13/0	39/0	38/0	26/0	20/0	18/0	10/0	13/0	6/0	8/0
4150	Banning	BANN**	20/0*	13/0	22/0	22/0	13/0	7/0	3/0	12/0	5/0	8/0
4155	Norco	NORC	26/0	31/1	34/2	24/0	32/0	24/1	15/1	29/1	19/0*	20/1
5155	Barstow	BARS**	0/0*	1/0	0/0	0/0	0/0	0/0*	0/0*	/	/	/
5175	Upland	UPLA	61/1	85/2	68/2	59/2	73/4	62/1	0/0*	59/1	41/0	39/0
5181	Crestline	CRES	11/0	63/0	73/0	80/3	54/0	49/1	29/0	48/0	49/0	41/0
5182	Yucaipa	YUCI	28/0	39/0	56/0	0/0*	67/0	19/0*	/	/	/	
5188	Trona	TRON**	/	/	0/0*	0/0*	0/0*	0/0*	0/0*			
5190	Victorville	VCVL**	0/0*	1/0	1/0	3/0	5/0	3/0	1/0*	/	/	/
5192	Redlands	REDL	25/1	48/0	64/2	57/0	61/0	20/0	30/0	41/0	26/0	31/0
5194	San Bernardino	SNBD	51/0	70/1	72/1	62/0	72/2	58/1	38/0	49/0	36/0	30/0
5197	Fontana	FONT	69/1	98/6	98/11	95/9	84/6	73/1	34/0	56/0	45/0	48/0
5198	Chino	CHIN	39/1	42/3	22/2*	/	/	/	/	/	/	15/0

SOUTH COAST AIR BASIN

100/7 121/11 117/23 120/17 101/15 100/5 63/2 84/3 97/0 83/7

*Less than 12 full months of data

**Southeast Desert Air Basin. San Bernardino County SEDAB stations are operated by San Bernardino County APCD.

TABLE IX
OZONE - ANNUAL MAXIMUM 1-HOUR, PPM
1955 - 1985

STATION	YEAR																														
	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
Los Angeles	(68)	(47)	(53)	(61)	(61)	41	(45)	(50)	(50)	(46)	(58)	(50)	(36)	(46)	(30)	(33)	(24)	(25)	(52)	(25)	(25)	(34)	(21)	(30)	(31)	(29)	(32)	(40)	(26)	(29)	(30)
Azusa	-	-	.42	.45	.56	.49	(45)	.43	.34	.40	.54	(53)	(65)	.44	(54)	(58)	(48)	(49)	(46)	.38	.32	.40	(45)	.41	.35	.36	(39)	.31	.36		
Burbank	.33	.43	.39	.47	.33	.33	.33	.38	.39	.40	.32	.47	.42	.38	.35	.31	.28	.29	.35	.27	.35	.31	.30	.39	.35	.27	.25	.31	.26	.30	
West Los Angeles	-	-	-	-	-	.40*	.40	.32	.39	.29	.36	.44	.30	.24	.26	.19	.39	.19	.19	.28	.18	.24	.26	.21	.23	.28	.23	.27	.27		
Long Beach	-	-	.37	.30	.37	.34	.33	.28	.27	.34	.27	.21	.33	.22	.18	.27	.20	.27	.14	.16	.15	.19	.21	.20	.23	.22	.30	.27	.23		
Reseda	-	-	-	-	-	-	-	.47	.44	.41	.34	.39	.37	.32	.29	.28	.28	.30	.27	.34	.27	.33	.38	.25	.22	.26	.26	.25			
Pomona	-	-	-	-	-	-	-	.44*	.44	.43	(49)	.45	.48	.35	.37	.32	.31	.33	.36	.32	.41	.35	.37	.33	.31	.34	.31	.31	.33		
Lennox	-	-	-	-	-	-	-	.32	.37	.33	.23	.25	.23	.21	.17	.24	.15	.18	.22	.17	.30	.19	.11	.19	.16	.18	.22	.17			
Whittier	-	-	-	-	-	-	-	-	-	.43*	.36	.39	.29	.28	.35	.25	.37	.30	.36	.32	.27	.27	.31	.32	.30	.32					
Newhall	-	-	-	-	-	-	-	-	-	.20*	.41	.30	.29	.36	.26	.30	.33	.33	.32	.36	.29	.26	.29	.27	.24						
Lancaster	-	-	-	-	-	-	-	-	-	.06*	.20	.16	.21	.15	.19	.19	.23	.27	.20	.29	.21	.16	.18	.18	.19						
Pasadena	-	.46	.36	.44*	.47	(54)	.44	.46	.41	.42	.46	.43	.40	.48*	.52	.51	(53)	.38*	.45	.34	.32	.42	.44	.41	.33	.37	.34	.30	.37		
Lynwood	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	.22*	.28	.19	.24	.24	.18	.29	.18	.21	.26	.23	.27	.21			
Pico Rivera	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	.35	.32	(43)	.39	.39	.35	.39	.33	.27	.31				
Glendora	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	(49)	(39)	.36	.38	(34)	(39)						
Anaheim	-	-	-	-	-	-	.27	.23	.41	.31	.30	.28	.30	.29	.34	.28	.26	.24	.13*	.30	.19	.29	.33	.28	.26	.30	.25	.25			
La Habra	-	-	-	-	-	-	-	.23*	.26	.43	.30	.34	.32	.30	.44	.28	.30	.25	.35	.38	.31	.27	.32	.27	.32	.34					
Costa Mesa	-	-	-	-	-	-	-	-	-	-	-	.19	.21	.22	.18	.16	.18	.22	.21	.16	.20	.18	.25	.25	.21						
El Toro	-	-	-	-	-	-	-	-	-	-	-	.19	.38	.19	.23	.20	.34	.32	.34	.33	.27	.29	.30	.28							
San Juan Capistrano	-	*	Data may not be representative.	-	-	-	-	-	-	-	-	.20	.25	.18	.20	.22	.32	-	-	-	-	-	-	.19							
Laguna	-	/	Station location change.	-	-	-	-	-	-	-	-	.16	.08*	-	-	-	-	-	-	-	-	-	-	-	-	-					
Los Alamitos	-	(O)	District annual maximum 1-hour.	-	-	-	-	-	-	-	-	.14	-	.27	.21	.26	.18	.27	.26	.22	.18	.23	.20	.19	.19						
Santa Ana Canyon	-	-	-	-	-	-	-	-	-	-	-	-	-	.11	.33	.33	.30	.27	.39	.33	.23*	-	-	-							
Palm Springs	-	-	-	-	-	-	-	-	-	-	.31	.25	.25	.24	.21	.22	.21	.20	.24	.21	.19	.19	.19	.20	.24						
Indio	-	-	-	-	-	-	-	-	-	.26	.20	.17	.18	.20	.16	.19	.17	.21	.11	.18	.17	.18	.19	.19	.20						
Prado Park/Norco	-	-	-	-	-	-	-	-	-	.05*	.30	.35	.31	.15*	.33	.36	.40	.33	.34	.37	.35	.35	.30	.35							
Hemet	-	-	-	-	-	-	-	-	-	-	-	-	.22	.20	.18	.19	.25	.27	-	-	-	-	-	.18*	.23						
Riverside	-	-	-	-	-	.28	.40	.29	.31	.40	.34*	-	-	.45	.40*	.31	.32	.35	.36	.35	.39	.34	.37	.30	.31	.36	.32	.35			
Perris	-	-	-	-	-	-	-	-	-	-	-	-	.27*	.26	.27	.22	.28	.32	.25	.29	.24	.28	.26	.22	.29						
Banning	-	-	-	-	-	-	-	-	-	-	.37	.19	.26	.32*	.24	.27	.28	.27	.30	.27	.26	.23	.24	.26	.25	.29					
Temecula	-	-	-	-	-	-	-	-	-	-	-	-	-	-	.15	.18	.21	.17	.23	-	-	-	-	-	-						
Elsinore	-	-	-	-	-	-	-	-	-	-	-	-	-	.23*	.30	.20	.23	.30	-	-	-	-	-	-	-	-					
San Bernardino	-	-	-	-	.28	.32	.32	.31	.33	.28	.27	.36	.26	.34	.34	.27	.38	.32	.37	.36	.34	.36	.36	.30	.32	.30	.27				
Barstow	-	-	-	-	-	-	-	-	-	-	.10	.11*	.06*	.06*	.08*	.12	.12	.14*	.20	.16	.16	.19	.16	.16	-	-	-				
Redlands	-	-	-	-	-	-	-	-	-	.12*	.32	.30	.42	.28	.31	.34	.31	.32	.35	.33	.39	.34*	.32	.24	.29	.30	.29	.33			
Victorville	-	-	-	-	-	-	-	-	-	.09*	.14	.18*	.11	.12	.19	.16	.16	.13*	.22	.21	.21	.26	.21	.20	-	-	-				
Chino	-	-	-	-	-	-	.32*	.21	.21	.22	.08*	-	-	.36	.34	.33	.36	.37	.36	-	-	-	-	.32*	.32						
Upland	-	-	-	-	-	-	-	-	-	-	-	-	.48	(51)	.39	-	-	-	-	-	-	-	-	.36	.32	.33					
Upland-ARB	-	-	-	-	-	-	-	-	-	-	-	-	.51	.44	(41)	(38)*	.38	.35	.37	.44	.36	-	-	-	-	-					
Fontana	-	-	-	-	-	-	-	-	-	-	-	-	.42*	.49	.38	(38)	(39)	.42	.42	.42	.35	.31	.32	.32	.34						
Big Bear	-	-	-	-	-	-	-	-	-	-	-	-	.13*	.27	.14*	.15	.22	.17	-	-	-	-	-	.26							
Lake Gregory	-	-	-	-	-	-	-	-	-	-	-	-	.13*	.26*	.27	.23	.32	.33	.40	.31	.35	.32	.28	(34)	.30						
Yucaipa	-	-	-	-	-	-	-	-	-	-	-	-	.20*	.28*	.29	.32	.33	-	.33	.27*	-	-	-	-	-						
Twenty-Nine Palms	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	.11*	.13	.12	.15	.13	-	-	-	-	-						

TABLE X
TEN LARGEST U.S. URBAN AREAS
COMPARISON OF 1985 MAXIMA AND EXCEEDANCES OF FEDERAL STANDARDS

Urban Area/County(ies)/State	1980 Urban Area Population	Ozone		Carbon Monoxide		Nitrogen Dioxide		Sulfur Dioxide		Total Suspended Particulate		Lead	
		Max 1-Hr.	Days > .12 ppm	Max 8-Hr.	Days ≥ 9.3 ppm	Max 1-Hr.	AAM	Max 1-Hr.	AAM	Max 24-Hr.	AGM	Max Qtr.	Qtr. > 1.5 ug/m ³
New York/Kings, Queens, New York, Bronx, Richmond/New York	9,119,737	.192	12	17.7	112	.264	.042	.175	.022	129	70	.60	0
Los Angeles/Los Angeles/California	7,477,657	.370	117	27.9	76	.349	.0599	.081	.009	257	119	.63	0
Chicago/Cook/Illinois	7,102,328	.148	4	8.4	NA	.166	.042	.611	.019	545	85	1.48	0
Philadelphia/Philadelphia/Pennsylvania	4,716,818	.190	11	8.4	NA	.179	.036	.162	.017	160	74	2.07	3
Detroit/Wayne/Michigan	4,352,762	.106	NA	8.6	NA	.114	.021	.206	.014	452	112	.43	0
San Francisco/San Francisco/California	3,252,721	.090	NA	15.1	4	.179	.028	.071	.003	158	62	.26	0
Washington/District of Columbia	3,060,240	.149	3	10.5	1	.119	.037	.107	.013	237	67	.21	0
Dallas-Fort Worth/Dallas, Tarrant/Texas	2,974,878	.170	6	10.9	2	.150	.022	.152	.005	448	70	1.25	0
Houston/Harris/Texas	2,905,350	.290	21	8.7	NA	.150	.029	.437	.009	435	81	.26	0
Boston/Suffolk/Massachusetts	2,763,357	.129	1	8.8	NA	.160	.040	.253	.013	160	81	.43	0

Max 1 = maximum 1-hour average in ppm. Max 24 = maximum 24-hour average in ug/m³.

Days >.12 = number of days maximum 1-hour average O₃ > .125 ppm. Days ≥ 9.3 = number of days max. 8-hour CO ≥ 9.3 ppm (10 mg/m³).

AAM = annual average (arithmetic mean). AGM = annual average (geometric mean).

NA = data not available.

Source of data: Environmental Protection Agency.

TABLE XI

**FIVE WORST U.S. COUNTIES VERSUS WORST BASIN COUNTY
COMPARISON OF 1985 MAXIMA AND EXCEEDANCES OF FEDERAL STANDARDS**

*South Coast Air Basin

Source of data: Environmental Protection Agency.

TABLE XII
CARBON MONOXIDE - 1985
Comparison to Air Quality Criteria

Station No., Location	Days State Std 1-Hr Avg >20 ppm	Number of Days in 1985 Max. 8-Hr Avg. Exceeded								Total Number Days
		State Std >=9.1 ppm	Old Fed Std >=9.3 ppm	New Fed Std >=9.5 ppm	Fed Alert >=15 ppm	Max 1-Hr ppm	Max 8-Hr ppm	Ann Avg		
600 Azusa	0	0	0	0	0	9	4.88	1.17	365	
690 Burbank	1	16	15	15	1	21	16.14	2.76	365	
720 Long Beach	0	6	6	6	1	19	15.71	1.72	365	
740 Reseda	0	9	9	9	0	16	14.14	2.01	365	
750 Pomona	0	0	0	0	0	12	7.43	1.91	365	
760 Lennox	12	51	46	45	8	29	24.00	3.58	363	
800 Whittier	0	4	3	3	0	18	14.57	1.71	365	
820 Lancaster**	0	0	0	0	0	12	5.71	.71	364	
840 Lynwood	12	36	32	32	10	33	27.71	2.66	364	
850 Pico Rivera	0	5	3	3	0	19	13.14	1.87	365	
870 Los Angeles	0	2	1	1	0	14	9.86	2.21	365	
880 Pasadena	0	3	3	3	0	17	11.29	2.02	364	
890 Newhall										
910 West L.A., VA.	0	0	0	0	0	15	6.86	1.24	359	
591 Glendora										
3176 Anaheim	0	4	3	2	1	19	17.00	1.56	365	
3177 La Habra	2	5	4	4	0	22	14.00	2.29	365	
3186 El Toro	0	0	0	0	0	10	7.71	1.08	363	
3188 San Juan Cap.										
3190 Los Alamitos										
3192 Costa Mesa	0	5	4	4	0	19	13.29	1.13	365	
4137 Palm Springs**	0	0	0	0	0	5	2.57	.50	356	
4141 Hemet										
4144 Rubidoux	0	0	0	0	0	8	5.71	1.19	365	
4149 Perris										
4150 Banning**										
4155 Norco										
4139 Indio**										
5171 Ontario										
5175 Upland	0	0	0	0	0	10	6.33	1.52	364	
5181 Crestline										
5184 Big Bear										
5192 Redlands										
5194 San Bernardino	0*	0*	0*	0*	0*	9*	5.29*	.96*	234	
5197 Fontana	0	0	0	0	0	5	4.00	1.51	361	
5198 Chino										

*Less than 12 full months of data.

**Southeast Desert Air Basin.

Std = Standard. Max = Maximum.

Ann Avg = annual average (arithmetic mean) in ppm (parts per million by volume).

Fed. Std. = Federal standard. Changed from from >10 mg/m³ (≥ 9.3 ppm) to >9 ppm (≥ 9.5 ppm), effective September 13, 1985.

TABLE XIII
NITROGEN DIOXIDE - 1985
Comparison to Air Quality Criteria

Station No., Location	Number of Days in 1985 Exceeding						Total Number Days
	State Standard 1-Hr Avg $\geq .25$ ppm	Stage I Episode 24-Hr Avg $\geq .15$ ppm	Max 1-Hr ppm	Max 24-Hr ppm	Ann Avg		
600 Azusa	1	0	.27	.120	.0502	365	
690 Burbank	1	0	.31	.133	.0571E	360	
720 Long Beach	4	4	.35	.225	.0499	365	
740 Reseda	0	0	.21	.111	.0385	363	
750 Pomona	0	0	.23	.108	.0541E	365	
760 Lennox	0	1	.24	.174	.0432	362	
800 Whittier	3	2	.31	.177	.0479	365	
820 Lancaster**	0	0	.08	.036	.0146	363	
840 Lynwood	1	2	.31	.187	.0523	365	
850 Pico Rivera	4	1	.31	.152	.0532	365	
870 Los Angeles	3	0	.27	.128	.0599E	363	
880 Pasadena	1	0	.27	.110	.0501	364	
890 Newhall							
910 West L.A., VA.	0	0	.23	.100	.0384	365	
591 Glendora							
3176 Anaheim	2	1	.28	.153	.0430	365	
3177 La Habra	2	0	.30	.143	.0426	365	
3186 El Toro							
3188 San Juan Cap.							
3190 Los Alamitos							
3192 Costa Mesa	0	0	.24	.139	.0248	365	
4137 Palm Springs**	0	0	.08	.046	.0196	364	
4141 Hemet							
4144 Rubidoux	0	0	.16	.093	.0353	358	
4149 Perris							
4150 Banning**							
4155 Norco							
4139 Indio**							
5175 Upland	0	0	.18	.078	.0398	365	
5181 Crestline							
5184 Big Bear							
5192 Redlands							
5194 San Bernardino	0*	0*	.15*	.073*	.0379*	234	
5197 Fontana	0	0	.14	.076	.0373	363	
5198 Chino							

*Less than 12 full months of data.

**Southeast Desert Air Basin.

Max = Maximum. Fed = Federal. Std = Standard.

Ann Avg = annual average (arithmetic mean) in ppm (parts per million by volume).

E = exceeds federal standard (annual average arithmetic mean $\text{NO}_2 > .0534 \text{ ppm}$.) The federal NO_2 standard was changed from $> 100 \text{ ug/m}^3 (> .0532 \text{ ppm})$ to $> .053 \text{ ppm} (> .0534 \text{ ppm})$, effective July 1, 1985.

TABLE XIV
SULFUR DIOXIDE - 1985
Comparison to Air Quality Criteria

Station No., Location	Number of days in 1985 Exceeding						Total Number Days
	State Standard 1-Hr Avg >.25 ppm	Stage I Episode 24-Hr Avg >.14 ppm	Max 1-Hr ppm	Max 24-Hr ppm	Ann Avg		
600 Azusa	0	0	.02	.010	.0029		365
690 Burbank	0	0	.04	.017	.0051		365
720 Long Beach	0	0	.08	.031	.0081		365
740 Reseda	0	0	.02	.015	.0025		359
750 Pomona							
760 Lennox	0*	0*	.06*	.024*	.0074*		312
800 Whittier	0	0	.05	.021	.0043		365
820 Lancaster**							
840 Lynwood	0	0	.06	.031	.0070		346
850 Pico Rivera	0	0	.07	.023	.0050		363
870 Los Angeles	0	0	.04	.021	.0053		364
880 Pasadena	0	0	.03	.011	.0025		365
890 Newhall							
910 West L.A , VA.	0	0	.03	.012	.0032		365
591 Glendora							
3176 Anaheim	0	0	.03	.015	.0032		365
3177 La Habra	0	0	.05	.017	.0051		365
3186 El Toro							
3188 San Juan Cap.							
3190 Los Alamitos	0	0	.02	.018	.0030		364
3192 Costa Mesa	0	0	.05	.015	.0028		363
4137 Palm Springs**							
4139 Indio**							
4141 Hemet							
4144 Rubidoux	0	0	.02	.010	.0014		361
4149 Perris							
4150 Banning**							
4155 Norco							
4157 Indio**							
5175 Upland	0	0	.02	.008	.0008		365
5181 Crestline							
5184 Big Bear							
5192 Redlands							
5194 San Bernardino	0*	0*	.02*	.008*	.0017*		219
5197 Fontana	0	0	.02	.008	.0010		355
5198 Chino							

*Less than 12 full months of data.

**Southeast Desert Air Basin.

Max = Maximum.

Ann Avg = annual average (arithmetic mean) in ppm (parts per million by volume).

TABLE XV
TOTAL SUSPENDED PARTICULATE(TSP) - 1985
Comparison to Federal Standards, Annual Maximum, Annual Average, ug/m³

Station No., Location	Number Days		Percent Days		Max 24-Hr Avg	Ann Avg	Days Sampled
	>150	>260	>150	>260			
600 Azusa	9	1	15%	2%	227	95	61
690 Burbank	4	0	7%	0%	246	92	59
720 Long Beach	2	0	3%	0%	244	83	59
740 Reseda	3	1	5%	2%	392	68	59
750 Pomona							
760 Lennox	3	1	6%	2%	283	78	48
800 Whittier							
820 Lancaster**	1	1	2%	2%	316	71	55
840 Lynwood	6	1	11%	2%	290	104	55
850 Pico Rivera	4	0	7%	0%	232	96	60
870 Los Angeles	2	0	3%	0%	208	93	58
880 Pasadena	1	0	2%	0%	162	75	55
890 Newhall							
910 West L.A., VA.	1	1	2%	2%	291	58	61
591 Glendora	1	0	2%	0%	184	69	60
3176 Anaheim	3	0	5%	0%	215	88	60
3177 La Habra	4	0	8%	0%	254	91	49
3186 El Toro	1	0	2%	0%	183	70	59
3190 Los Alamitos	5	0	9%	0%	227	93	58
3192 Costa Mesa							
4137 Palm Springs**	7	1	11%	2%	291	74	61
4139 Indio**	8	3	13%	5%	606	102	60
4144 Rubidoux, RIVR	29	4	48%	7%	335	132	61
4146 Riverside, Mag.	15	0	25%	0%	229	108	61
4149 Perris	7	0	12%	0%	201	88	59
4150 Banning**	4	0	7%	0%	177	66	59
4155 Norco							
5155 Barstow**	0	0	0%	0%	135	62	59
5171 Ontario	16	1	26%	2%	292	110	61
5175 Upland	6	0	10%	0%	208	92	60
5181 Crestline	0	0	0%	0%	150	51	60
5184 Big Bear	0	0	0%	0%	147	51	28
5188 Trona**	12	3	21%	5%	393	109	56
5190 Victorville**	4	2	7%	4%	271	87	55
5191 29 Palms**	1	0	2%	0%	190	50	61
5192 Redlands	18	1	30%	2%	280	95	60
5194 San Bernardino	23	1	38%	2%	277	109	60
5197 Fontana	22	2	36%	3%	312	101	61
5198 Chino	18	0	31%	0%	252	124	59

*Less than 12 full months of data.

**Southeast Desert Air Basin. Stations in San Bernardino County are operated by San Bernardino County APCD.

Number(Percent) Days = the number(percent) of days exceeding the federal secondary and primary standard levels,

150 ug/m³ and 260 ug/m³ (micrograms per cubic meter)

Max 24-Hr Avg = maximum 24-hour average concentration of TSP in ug/m³.

Ann Avg = annual average (geometric mean) TSP in ug/m³.

TABLE XVI
PM10 - 1985
Comparison to State/Proposed Federal Standards, Annual Maximum/Average

Station No., Location	Number Days		Percent Days		Max 24-Hr Avg	Annual Average A/G	Days Sampled
	>50	>150	>50	>150			
600 Azusa	41	0	68%	0%	149	67/59	60
690 Burbank	46	1	77%	2%	165	70/65	60
720 Long Beach	29	0	53%	0%	106	55/52	55
740 Reseda							
750 Pomona							
760 Lennox							
800 Whittier							
820 Lancaster**							
840 Lynwood							
850 Pico Rivera							
870 Los Angeles	37*	0*	80%*	0%*	146*	70/66*	46
880 Pasadena							
890 Newhall							
910 West L.A., VA.							
591 Glendora							
3176 Anaheim							
3177 La Habra							
3186 El Toro	22	0	37%	0%	100	47/43	59
3190 Los Alamitos	34	0	57%	0%	144	56/52	60
3192 Costa Mesa							
4137 Palm Springs**							
4144 Rubidoux, RIVR	46	11	75%	18%	208	96/81	61
4146 Riverside, Mag.							
4149 Perris							
4150 Banning**	27	0	50%	0%	135	51/40	54
4155 Norco							
4157 Indio**	37	3	65%	5%	358	68/55	57
5171 Ontario	42	1	70%	2%	157	74/65	60
5175 Upland							
5181 Crestline							
5184 Big Bear							
5192 Redlands							
5194 San Bernardino							
5197 Fontana	9*	1*	60%*	7%*	154*	74/63*	15
5198 Chino							

*Less than 12 full months of data.

**Southeast Desert Air Basin.

PM10 = particulate matter less than 10 um (micrometer), by SSI method.

Number Days >50(150) = the number of days on which the state PM10 standard (24-hr avg PM10 >50 ug/m³) and the lower limit of proposed federal standard (24-hr avg >150 ug/m³) were exceeded.

Percent days >50(150) = the percent of days on which the state or lower limit of proposed federal standards were exceeded.

Max 24-hr Avg = maximum 24-hour average PM10 concentration of the year in ug/m³ (micrograms per cubic meter).

A/G = arithmetic mean/geometric mean PM10 in ug/m³.

State annual standard is annual geometric mean >30 ug/m³.

Lower limit of range of proposed federal standard is arithmetic mean >50 ug/m³.

TABLE XVII
LEAD - 1985
Comparison to State/Federal Standards, Annual Maximum, Annual Average

Station No., Location	Number Months ≥ 1.5	Maximum Monthly Average	Number Quarters ≥ 1.5	Maximum Quarterly Average	Annual Average	Days Sampled
600 Azusa	0	.25	0	.21	.19	61
690 Burbank	0	.60	0	.49	.31	59
720 Long Beach	0	.52	0	.36	.23	59
740 Reseda	0	.32	0	.27	.19	59
750 Pomona						
760 Lennox	0*	.90*	0*	.60*	.31*	48
800 Whittier						
820 Lancaster**	0	.18	0	.13	.09	55
840 Lynwood	0	.91	0	.63	.35	55
850 Pico Rivera	0	.65	0	.49	.34	60
870 Los Angeles	0	.61	0	.47	.31	58
880 Pasadena	0	.38	0	.29	.20	55
890 Newhall						
910 West L.A., VA	0	.33	0	.26	.16	61
591 Glendora						
3176 Anaheim	0	.32	0	.27	.20	60
3177 La Habra	0*	.44*	0*	.33*	.21*	49
3186 El Toro	0	.20	0	.15	.11	59
3190 Los Alamitos	0	.39	0	.31	.17	58
3192 Costa Mesa						
4137 Palm Springs**	0	.13	0	.10	.06	61
4144 Rubidoux, RIVR	0	.27	0	.21	.16	61
4146 Riverside, Mag.	0	.37	0	.30	.22	61
4149 Perris	0	.18	0	.13	.10	59
4150 Banning**	0	.10	0	.08	.07	59
4155 Norco						
4157 Indio**	0	.19	0	.14	.09	60
5155 Barstow**	0	.12	0	.09	.06	59
5171 Ontario	0	.36	0	.26	.18	61
5175 Upland	0	.26	0	.23	.17	60
5181 Crestline	0	.12	0	.07	.07	60
5184 Big Bear						
5188 Trona**	0	.12	0	.07	.07	56
5190 Victorville**	0	.12	0	.09	.08	55
5191 29 Palms**	0	.08	0	.05	.04	61
5192 Redlands	0	.19	0	.15	.12	60
5194 San Bernardino	0	.31	0	.20	.17	60
5197 Fontana	0	.22	0	.17	.15	61
5198 Chino						

*Less than 12 full months of data.

**Southeast Desert Air Basin. Stations in San Bernardino County are operated by San Bernardino County APCD.

Number months (quarters) = the number of months (quarters) exceeding the state (federal) standard for lead, monthly average lead concentration $\geq 1.5 \text{ ug/m}^3$ (quarterly average lead $>1.5 \text{ ug/m}^3$).

Maximum monthly average = the annual maximum monthly average lead concentration in ug/m^3 (micrograms per cubic meter).

Maximum quarterly average = highest quarterly average lead concentration of the year in ug/m^3 .

Annual Average = annual average (arithmetic mean) lead concentration in ug/m^3 .

TABLE XVIII
SULFATE - 1985
Comparison to State Standard, Annual Maximum, Annual Average

Station No., Location	Annual Number Days ≥ 25	Percent Days ≥ 25	Maximum Daily Average	Annual Average	Days Sampled
600 Azusa	0	0%	15.4	6.78	61
690 Burbank	0	0%	21.6	8.33	59
720 Long Beach	1	2%	31.0	9.36	59
740 Reseda	0	0%	19.0	6.58	59
750 Pomona					
760 Lennox	0*	0%*	24.4*	9.78*	48
800 Whittier					
820 Lancaster**	0	0%	7.6	3.65	55
840 Lynwood	0	0%	24.0	8.71	55
850 Pico Rivera	0	0%	19.2	8.62	60
870 Los Angeles	0	0%	20.0	8.32	58
880 Pasadena	0	0%	20.9	7.57	55
890 Newhall					
910 West L.A., VA.	0	0%	22.5	7.77	61
591 Glendora	0	0%	14.9	6.49	60
3176 Anaheim	0	0%	19.4	7.79	60
3177 La Habra	0*	0%*	22.8*	7.54*	49
3186 El Toro	0	0%	21.2	6.09	59
3190 Los Alamitos	0	0%	22.4	7.61	58
3192 Costa Mesa					
4137 Palm Springs**	0	0%	9.1	3.90	61
4144 Rubidoux, RIVR	0	0%	21.0	7.71	61
4146 Riverside, Mag.	0	0%	21.1	7.13	61
4149 Perris	0	0%	14.1	5.34	59
4150 Banning	0	0%	12.3	5.07	59
4155 Norco					
4157 Indio**	0	0%	8.4	4.50	60
5155 Barstow**	0	0%	6.8	4.07	59
5171 Ontario	0	0%	18.5	7.68	61
5175 Upland	0	0%	15.3	6.74	60
5181 Crestline	0	0%	7.1	3.24	60
5184 Big Bear	0*	0%*	4.8*	2.28*	28
5188 Trona**	1	2%	42.7	10.54	56
5190 Victorville**	0	0%	8.1	4.58	55
5191 29 Palms**	0	0%	6.0	2.42	61
5192 Redlands	0	0%	16.2	6.22	60
5194 San Bernardino	0	0%	19.4	6.64	60
5197 Fontana	0	0%	16.4	6.63	61
5198 Chino	0	0%	17.5	7.40	59

*Less than 12 full months of data.

**Southeast Desert Air Basin. Stations in San Bernardino County are operated by San Bernardino County APCD.

Number(Percent) Days = number(percent) of days exceeding the state sulfate standard (24-hour average sulfate $\geq 25 \text{ ug/m}^3$).

Annual Maximum Daily Average = single highest 24-hour average sulfate concentration of the year in ug/m^3 (micrograms per cubic meter).

Annual Average = annual average arithmetic mean sulfate concentration in ug/m^3 .

TABLE XIX
NITRATE - 1985
Annual Average and Maximum

Station No., Location	Maximum 24-hour Average	Annual Average	Days Sampled
600 Azusa	42.9	16.49	61
690 Burbank	41.2	15.86	59
720 Long Beach	32.4	11.43	59
740 Reseda	39.0	10.78	59
750 Pomona			
760 Lennox	27.4*	10.53*	48
800 Whittier			
820 Lancaster**	13.6	6.52	55
840 Lynwood	42.9	13.57	55
850 Pico Rivera	38.7	15.69	60
870 Los Angeles	35.2	15.32	58
880 Pasadena	32.7	13.73	55
890 Newhall			
910 West L.A., VA.	28.7	11.02	61
591 Glendora	38.2	15.48	60
3176 Anaheim	58.7	13.98	60
3177 La Habra	32.7*	14.54*	49
3186 El Toro	24.0	10.12	59
3190 Los Alamitos	30.2	11.14	58
3192 Costa Mesa			
4137 Palm Springs**	23.2	9.08	61
4144 Rubidoux, RIVR	67.6	23.11	61
4146 Riverside, Mag.	72.1	20.76	61
4149 Perris	54.1	15.40	59
4150 Banning**	52.1	14.34	59
4155 Norco			
4157 Indio**	25.3	8.77	60
5155 Barstow**	12.5	6.28	59
5171 Ontario	63.5	21.16	61
5175 Upland	48.8	17.40	60
5181 Crestline	24.3	9.00	60
5184 Big Bear	8.2*	3.43*	28
5188 Trona**	12.2	4.42	56
5190 Victorville**	24.9	8.65	55
5191 29 Palms**	11.1	4.19	61
5192 Redlands	81.0	22.53	60
5194 San Bernardino	74.9	20.48	60
5197 Fontana	58.4	19.20	61
5198 Chino	58.3	19.43	59

*Less than 12 full months of data.

**Southeast Desert Air Basin. Stations in San Bernardino County are operated by San Bernardino County APCD.

Maximum 24-hour Average = maximum 24-hour average nitrate concentration of the year in ug/m³
 (micrograms per cubic meter).

Annual Average = annual average (arithmetic mean) of daily average nitrate concentrations in ug/m³.

U.C. BERKELEY LIBRARIES

C124899123

