EECS 151/251A: Discussion 1

Intro, Boolean Algebra, Verilog Basics

8/30/2019

Intro

- · A bit about me
- Each discussion will review the week's lectures and provide a few examples and questions to solve
- All labs, discussions, and lectures will be posted on the website http: //inst.eecs.berkeley.edu/~eecs151/fa19/
- · All instructor and TA office hours are on the website
- Sign up for Piazza https://piazza.com/class/jzjemj1hg0z2nj
- No textbook required. Digital Integrated Circuits (Rabaey) is helpful.

Pre-Reqs

- CS61C
 - C
 - digital logic
 - RISC-V ISA
 - 3/5-stage CPU pipeline
 - hazard handling
- EE16A/B
 - · RC circuits
 - · energy and power

Scaling

- Moore's Law: Number of transistors per chip doubles every two years → cost per transistor is halved.
 - Cost isn't going down anymore when scaling to a new node
 - But increasing die size and chiplet packaging can keep the trend alive

Wafer-Scale Integration

- Startup Cerebras presented a wafer-scale ML accelerator at HotChips this year
- Defects always exist on such a large scale, need redundancy
- Consumes 15 kW! Custom cooling solution and power delivery required

Scaling

- Dennard Scaling: As MOSFETs scale down, voltages and currents scale proportionally and power density stays constant
 - Delay $\approx C \cdot V/I_{avg}$ (scales down linearly with transistor shrink)
 - $P \approx C \cdot V^2/\text{Delay}$ (scales down quadratically)

Device or Circuit Parameter	Scaling Factor
Device dimension t_{ox} , L , W	$1/\kappa$
Doping concentration N_a	К
Voltage V	$1/\kappa$
Current I	$1/\kappa$
Capacitance $\epsilon A/t$	$1/\kappa$
Delay time/circuit VC/I	$1/\kappa$
Power dissipation/circuit VI	$1/\kappa^2$
Power density VI/A	1

Logic Operators

- Logic operators work over boolean symbols
- · Common boolean operators include AND, OR, and NOT
- We will usually write AND as 'multiplication', OR as 'addition', and NOT with an overline
- e.g. A AND B OR (NOT C) = $AB + \overline{C}$
- Logic operators in boolean expressions map to digital logic gates (a key abstraction)

Boolean Algebra

- Review some basic boolean algebra laws
- OR Identity: A + 1 = 1, A + 0 = A, $A + \overline{A} = 1$
- AND Identity: A1 = A, A0 = 0, $A\overline{A} = 0$
- Absorption: A + AB = A, A(A + B) = A
- DeMorgan's Laws: $\overline{A+B}=\overline{A}\ \overline{B}$, $\overline{AB}=\overline{A}+\overline{B}$

Verilog

• Check out the Verilog Primer Slides before Lab 2