

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 September 2001 (07.09.2001)

(10) International Publication Number
PCT WO 01/64034 A1

(51) International Patent Classification⁷: A01N 31/16, (81) Designated States (*national*): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/US00/13945

(22) International Filing Date: 18 May 2000 (18.05.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/314,553 19 May 1999 (19.05.1999) US

(71) Applicant: STACK, Kevin [US/US]; Unit 1704, 6301 Collins Avenue, Miami Beach, FL 33141 (US).

(74) Agent: SLAVIN, Michael, A.; McHale & Slavin, P.A., 4440 PGA Boulevard, Suite 402, Palm Beach Gardens, FL 33410 (US).

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A1
WO 01/64034

(54) Title: ANTIMICROBIAL SANITIZING LOTION WITH SKIN PROTECTION PROPERTIES

(57) Abstract: The present invention is directed toward an antimicrobial hand sanitizing lotion in the form of a medicated polymer/emulsion based product and the method by which it is produced. The product is intended to be used as a topical antimicrobial and skin protective lotion and contains 2,4,4'-trichloro-2'-hydroxydiphenyl ether as the antimicrobial agent of choice in a base which forms a hydrophobic protective barrier, having persistent antimicrobial properties, upon application to the skin.

1 ANTIMICROBIAL SANITIZING LOTION WITH SKIN PROTECTION2 PROPERTIES3 FIELD OF THE INVENTION

4 This invention relates to sanitizing lotions having
5 antimicrobial properties; and particularly to a highly
6 persistent antimicrobial hand sanitizing lotion which
7 displays unique barrier properties.

8

9 BACKGROUND OF THE INVENTION

10

11 Hand washing has long been recognized as a particularly
12 effective method for reducing the transmission of
13 communicable diseases. In hospitals, where patients are in a
14 weakened condition, it is most important for health-care
15 professionals to utilize an antimicrobial hand cleaning
16 composition to prevent the spread of various pathogenic
17 microorganisms. Furthermore, it is necessary to treat parts
18 of the skin and mucous membranes antiseptically prior to any
19 type of surgical procedure, injection, or puncture so as to
20 prevent the transmission of infectious microorganisms. In
21 such environments, compositions such as alcohols are
22 effective antimicrobials. However, the defatting properties
23 of alcohols cause chapping and cracking to occur to the skin
24 of the user. The resultant damaged skin is then more prone
25 to additional infectious contamination, since pathogenic
26 microorganisms can enter and evade sanitizing materials by
27 residing within the cracked epidermal layer. Additionally,
28 the presence of alcohols inhibits the foaming action of
29 various detergent compositions which are likely to be used in
30 combination therewith. Various antimicrobials are known for
31 use in such formulations, for example, iodophors, iodine
32 formulations, phenolic compounds, e.g. hexachlorophene, and

1 bisbiguanides, e.g. chlorhexidene gluconate. Such
2 antimicrobial ingredients are also well-known additives for a
3 variety of products, such as deodorant soap bars, underarm
4 deodorants, liquid soaps and fabric treatments.

5 In order to form an efficacious antimicrobial product
6 which is not injurious to the user's skin, various proposals
7 have been made. Improvements in mildness and skin after-feel
8 have called for the addition of such additives as glycerin,
9 sorbitol, vitamin E, coco fatty acid derivatives and their
10 salts, alkyl quaternary salts and sugar esters.

11

12

13 DESCRIPTION OF THE PRIOR ART

14

15 U.S. Pat. No. 5,173,216 discloses a composition for
16 decontaminating and/or disinfecting the hands comprising an
17 amphoteric-cationic surfactant, a cationic surfactant, a
18 wetting agent which is compatible with the cationic
19 surfactant, and a nonionic regreasing agent. The composition
20 exhibits both bacteriostatic and fungistatic effectiveness at
21 varying concentrations.

22 U.S. Pat. No. 5,719,113 discloses an antimicrobial
23 cleansing composition containing chlorhexidine, a nonionic
24 surfactant which does not include
25 polyoxypropylene/polyoxyethylene block copolymers, an
26 amphoteric surfactant, and an alkyl polyglucoside.
27 Additionally included are viscosifiers or thickeners,
28 emollients, fragrances, perfumes, coloring agents,
29 preservatives, foaming agents, vitamins and fungicides.

30 U.S. Pat. No. 5,259,984 discloses a cleansing
31 composition containing a storage-stable volatile polymer gel
32 solution and a cleaning agent including an alkali metal
33 hydroxide. In a preferred embodiment, the polymer gel

1 solution includes a hydroxypropylmethylcellulose polymer.
2 The composition is formed by forming a pre-mixed cleaning
3 agent and a pre-mixed volatile aqueous gel solution. These
4 pre-mixed components are then intermixed to form the final
5 cleaner composition.

6 U.S. Pat. No. 5,562,912 discloses a cleansing
7 composition containing an EO/PO/EO tri-block nonionic
8 copolymer surfactant in conjunction with a generic skin
9 cleanser composition.

10 U.S. Pat. No. 5,629,006 discloses a cleansing
11 composition containing an alcohol, a block copolymer, a
12 foaming surfactant, an emulsifier, a cleaning agent, a
13 polyalkylene glycol, an emollient and water. Stepwise
14 addition of the components with continuous mixing to a point
15 of homogeneity is utilized in the method of formulation.

16 U.S. Pat. No. 5,728,662 discloses a cleansing
17 composition which consists essentially of a d-limonene, a
18 solvent, a C₁₁ alcohol ethoxylate, polyoxyethylene (20)
19 sorbitan monooleate, a water-soluble acrylic polymer, sodium
20 hydroxide, mixed isothioazolinones, 2,6-di-tert-butyl-p-
21 cresol and water.

22 U.S. Pat. No. 5,767,163 discloses a cleansing
23 composition and method for its use as a hand antiseptic. The
24 composition is an alcoholic solution containing cetyl
25 alcohol, glycolic acid, benzalkonium chloride and isopropyl
26 alcohol as its major constituent.

27 U.S. Pat. No. 5,750,579 is drawn to a cleansing
28 composition which is useful for the hands and fingers. The
29 composition is in the form of a solution which comprises a
30 disinfecting medicament in an alcohol and a thickening agent
31 consisting of a combination of a carboxyvinyl polymer and a
32 water-soluble, high molecular weight cellulose compound. The
33 process of manufacture requires that various of the

1 ingredients are blended to a point of homogeneity, resulting
2 in a final, homogeneous composition.

3 U.S. Pat. No. 5,591,442 is drawn to an antiseptic and
4 disinfectant hand cleaning composition containing a
5 synergistic mixture of an alkyl alcohol component and a
6 glycerol monoalkyl ether.

7 U.S. Pat. No. 5650143 drawn to a deodorant cosmetic
8 stick composition provides a deodorant cosmetic stick product
9 which has a translucent or transparent light transmitting
10 appearance. The cosmetic stick contains propylene glycol,
11 sodium stearate, dimethicone copolyol, TRICLOSAN,
12 PENTADOXYNOL-200, and water.

13 U.S. Pat. No. 5772640 drawn to TRICLOSAN-containing
14 medical devices, discloses polymeric medical articles
15 containing the antiinfective agents chlorhexidine and
16 TRICLOSAN. The patent discloses a synergistic relationship
17 between these compounds which permits the use of relatively
18 low levels of both agents, while achieving effective
19 antimicrobial activity when these compounds are contained in
20 either hydrophilic or hydrophobic polymers.

21 The prior art formulations suffer from the fact that
22 increased use of various surfactants and lipid-restoring
23 compositions reduce the effectiveness of the antimicrobial
24 active ingredient. Therefore, if a composition including
25 skin barrier properties and persistent anti-microbial
26 characteristics could be formulated in such a way that both
27 enhanced skin-care and increased antimicrobial effectiveness
28 resulted, a long-felt need in the art would be satisfied.
29

30 SUMMARY OF THE INVENTION

31 The present invention describes an antimicrobial hand
32 sanitizing lotion in the form of a medicated polymer/emulsion
33 based product and the method by which it is produced. The

1 product is intended to be used as a topical antimicrobial
2 lotion. 2,4,4'-trichloro-2'-hydroxydiphenyl ether, available
3 under the tradename TRICLOSAN or IRGASAN DP 300 from the Ciba
4 Geigy Corp., is the antimicrobial agent of choice in the
5 present formulation. TRICLOSAN has demonstrated efficacy
6 against the following gram-positive and gram-negative
7 bacteria, plus fungi and yeasts:

8	<u>GRAM- POSITIVE BACTERIA</u>	
9		Loeffierella mallei
10	Bacillus subtilis	Loeffierella pseudomallei
11	Bacillus megatherium	Moraxells duplex
12	Bacillus cereus	Moraxella glucidolytica
13	Bacillus cereus var.	Moraxella lwoffii
14	mycooides	Neisseria catarrhialis
15	Clostridium botulinum	Pasteurella septica
16	Clostridium tetani	Pasteurella
17	corynebacterium	pseuclotuberculosis
18	diphtheriae	Proteus vulgaris
19	Corynebacterium acnes*	proteus mirabilis
20	Diplococcus pneumoniae	Pseudomonas aeruginosa
21	Lactobacillus arabinosus	Pseudomonas fluorescens
22	Lactobacillus fermenti	Salmonella enteritidis
23	Mycobacterium	Salmonella typhimurium
24	tuberculosis	salmonella typhi
25	Mycobacterium smegmatis	Salmonella paratyphi A
26	Mycobacterium phlei	salmonella paratyphi B
27	Sarcina lutea	Salmonella pullorum
28	Sarcina ureae	Serratia marcescens
29	staphylococcus aureas	Shigella flexneri
30	Staphylococcus albus	Shigella sonnei
31	streptococcus agalactiae	Shigelle dysenteriae
32	streptococcus	Vibrio cholerae
33	haemolyticus A	Vibrio eltor
34	streptococcus faecalis	
35	streptococcus pyogenes	
36	*Propionibacterium acnes	

37	<u>GRAM-NEGATIVE BACTERIA</u>	<u>FUNGI AND YEASTS</u>
38		Aspergillus niger
39		Aspergillus furnigatus
40		Candida albicans
41	Aerobacter aerogenes	Epidermophyton floccosum
42	Alraligenes; faecalis	Keratinomyces ajelloi
43	Brucella intermedia	Tochophylon
44	Brucella abortus	mentagrophytes
45	Brucella melitensis	Trichophyton rubrum
46	Brucella suis	Trichophyton tonsurans
47	cloaca cloacae	
48	Escherichia coli	
49	Haemophilus Influenzae	
50	Klebsiella edwardsii	
51	Klebsiella aerogenes	
52	Klebsiella pneumoniae	

1 It has been discovered that incorporation of TRICLOSAN
2 in a topical lotion comprised of a Surfactant Phase, and a
3 Wax Phase results in a product which is particularly
4 effective in preventing cross-contamination of pathogenic
5 microorganisms in the workplace. The product is persistent
6 in that it significantly reduces the incidence of bacteria on
7 skin surfaces for a period of about 3-4 hours. It is
8 applicable to any area of intact skin, and will kill
9 pathogenic bacteria on contact and remain effective for
10 extended periods of time. The specially formulated
11 antiseptic handwash of the invention is a non-toxic and
12 hypoallergenic lotion containing a broad spectrum
13 antimicrobial which forms a polymeric film on healthy skin.
14 It is a completely safe and long lasting product which will
15 not rub off on food or the like due to its unique bonding
16 agent. The hydrophobic portion of the process utilizes a USP
17 White Wax in combination with the acrylic carbomer. The wax
18 in solution in co-ordination with the product backbone
19 (CARBOPOL 934-P), melts through the heat of the hand. The
20 wax-phase spreads over the skin with the CARBOPOL theorized
21 to act in two ways. The acrylate chains are theorized to
22 intercalate into the wax matrix and stabilize the wax by
23 adding support to the horizontal spreading and layering of
24 the wax. Further, the CARBOPOL is theorized to interact with
25 the skin surface relative to the horizontal wax layer. The
26 combination of these interactions forms a physical
27 hydrophobic layer which resides on the skin surface and
28 provides a barrier which would inhibit penetration of liquids
29 which are primarily hydrophilic in nature. The wax is
30 solubilized and dispersed with the aid of surfactants and
31 dimethicone within an alcohol/glycerol base. Stearic acid,
32 particularly triple pressed, is noted as being critical to
33 affecting complete solubilization of the raw materials in the

1 wax phase. At appropriate concentration ranges of the
2 antimicrobial ingredient, the product is efficacious for use
3 by healthcare professionals in that it is a highly effective,
4 broad spectrum bactericidal composition.

5 One of the unique properties of the product is its
6 ability to protect the skin from relatively strong acids and
7 bases. Tests conducted on metallic surfaces demonstrated
8 enhanced longevity of the metallic substrates when exposed to
9 corrosive environments. The barrier properties of the
10 instant composition further increase the efficiency of
11 bacterial removal from the skin's surface. The product is
12 further characterized by exhibiting a highly persistent
13 antimicrobial action. This persistence may be attributed to
14 the stability of the wax/carbomer hydrophobic layer which
15 allows for a unique physical presentation of the
16 antimicrobial, e.g. TRICLOSAN, molecule. The stabilized
17 barrier composition is stabilized by the CARBOPOL chains
18 orientated into the wax phase. TRICLOSAN, being a
19 hydrophobic molecule, would orientate with respect to the
20 barrier layer, resulting in a product which maintains
21 persistent skin contact and antimicrobial action. In
22 combination, these properties result in a product having
23 enhanced effectiveness in the removal of surface bacteria
24 compared to washing with soap and water. This effectiveness
25 persists for the duration of the presence of the product
26 formulation on the skin. Application of this product prior
27 to a soap and water hand washing has been clinically proven
28 to enhance hand washing with a statistically significant
29 increase in the removal of harmful bacteria from the skin
30 surface, compared to ordinary hand washing without prior
31 application of the product.

32 When used in combination with latex gloves, the product
33 inhibits the growth of microorganisms underneath the latex

1 gloves, protects hands from contamination should the gloves
2 become damaged, moisturizes and soothes the skin to combat
3 the potential damaging effects of latex, harsh soaps and
4 frequent washing.

5 When processing the lotion of the present invention, the
6 surfactant and wax phases are each formulated according to
7 particular concentration and processing parameters, and then
8 blended to form a Final Phase, resulting in a unique topical
9 antimicrobial sanitizing and skin care product.

10 Accordingly, it is an objective of the instant invention
11 to teach an antimicrobial sanitizing lotion, especially
12 effective as a hand sanitizer, which is efficacious for a
13 broad range of microorganisms and is characterized by unique
14 skin protective barrier properties and enhanced persistence.

15 It is a further objective of the instant invention to
16 teach a method for producing a sanitizing lotion wherein
17 adherence to particular process parameters results in a
18 unique final product.

19 It is yet another objective of the instant invention to
20 teach a skin protective and sanitizing lotion wherein contact
21 with the skin results in destruction of microbial
22 contaminants and simultaneous formation of a hydrophobic skin
23 protective surface layer.

24 It is a still further objective of the invention teach a
25 skin protective and sanitizing lotion that enhances the
26 capabilities of soaps and related skin-cleansers.

27 Other objects and advantages of this invention will
28 become apparent from the following description taken in
29 conjunction with the accompanying drawings wherein are set
30 forth, by way of illustration and example, certain
31 embodiments of this invention. The drawings constitute a
32 part of this specification and include exemplary embodiments

1 of the present invention and illustrate various objects and
2 features thereof.

3

4

5 DETAILED DESCRIPTION OF THE INVENTION

6

7 Production of the antimicrobial sanitizing lotion of the
8 present invention relies upon strict adherence to a
9 particular set of process parameters in order to arrive at a
10 unique final product. In carrying out the process,
11 particular attention must be given to the order of addition
12 of the various components. Additionally, it is necessary
13 that rigorous homogenization be carried out to form a "grain"
14 free product. Finally, the various steps must be carried out
15 within particular temperature ranges which are critical to
16 the outcome of the process.

17 The product contains, as its active ingredient,
18 TRICLOSAN (a Class III topical antimicrobial active
19 ingredient. The finished product strength for TRICLOSAN
20 ranges from (all percentages are percent by weight) 0.10% -
21 0.35%, with a particularly preferred range being 0.117% -
22 0.143% for general and food service usage and 0.27% - 0.33%
23 for the health care environment. The product is a viscous,
24 flowing liquid polymer emulsion which is opaque and white in
25 color, having a mild characteristic odor. The specific
26 gravity of the product ranges from 0.960 - 0.980 at 25°C and
27 the pH of a 10% by volume aqueous solution is within the
28 range of 6.5 - 7.1.

29 The excipients which are useful in forming the
30 antimicrobial and skin protective lotion of the present
31 invention are deionized water, in a range of 75 - 85 wt. %,
32 VERSENE-100, in a range of 0.136 - 0.184 wt. %, CARBOPOL
33 934-P in a range of 0.245 - 0.455 wt. %, TRITON X- 100 in a

1 range of 2.55 - 3.45 wt. %, Propylene Glycol U.S.P. in a
2 range of 0.85 - 1.15 wt. %, TERGITOL NP-9 in a range of
3 1.7 - 2.3 wt. %, DOWCIDE - A, in a range of 0.10 - 0.50 wt.
4 %, Triethanolamine 85 % n.f., in a range of 0.85 - 1.15 wt. %,
5 Chlorhexidine Digluconate 20 %, in a range of 0.16 - 0.75 wt.
6 %, Alpha Tocopherol (Vitamin E U.S.P.), in a range of 0.09 -
7 0.11 wt. %, Stearic Acid - triple pressed in a range of 2.55
8 - 3.45 wt. %, Cetyl Alcohol n.f., in a range of 1.35 - 1.65
9 wt. %, Ethylene Glycol Monostearate, in a range of 0.675 -
10 0.825 wt. %, Dimethicone L-45-350 cstks,in a range of 1.7 -
11 2.3 wt. %, U.S.P. White Wax in a range of 0.213 - 0.288 wt.
12 %, and PARAGON MEPB in a range of 1.0 - 3.0 wt. %.

13

14

15

16 EXAMPLE 1

17

18 The following formulation was produced in accordance
19 with the instant invention.

20 Excipients useful in the manufacture of this product
21 were added in the following amounts:

	<u>EXCIPIENT</u>	<u>% BY WEIGHT</u>
24	(1) DEIONIZED WATER	83.50
25	(2) VERSENE-100	0.16
26	(3) CARBOPOL 934-P	0.35
27	(4) TRITON X- 100	3.00
28	(5) PROPYLENE GLYCOL U. S.P.	1.00
29	(6) TERGITOL NP-9	2.00
30	(7) DOWCIDE - A	0.10
31	(8) TRIETHANOLAMINE 85 % N.F	1.00
32	(9) CHLORHEXIDINE DIGLUCONATE 20 %	0.16
33	(10) ALPHA TOCOPHEROL (VITAMIN E USP)	0.10
34	(11) STEARIC ACID - TRIPLE PRESSED	3.00
35	(12) CETYL ALCOHOL N.F.	1.50
36	(13) ETHYLENE GLYCOL MONOSTEARATE	0.75
37	(14) DIMETHICON L-45-350 CSTKS	2.00

38

1 (15) USP WHITE WAX 0.25
2 (16) PARAGON MEPB 1.00
3

4 In formulating a 4,050 pound batch of the antimicrobial
5 sanitizing and skin protective lotion of the invention, the
6 following method steps were followed:

7 (A) A Surfactant Phase is formulated by combining the
8 following ingredients:

9 1) Deionized Water of reagent grade exhibiting less than
10 1 microohm resistivity is first added to a mixing tank in an
11 amount of 405.40 gallons (3,382.59 lbs.)

12

13 2) VERSENE 100 (or a like equivalent EDTA Sodium
14 Salt) (6.06 lbs.) is added; followed by

15 3) CARBOPOL 934 P (or a like equivalent Acrylic Polymer)
16 (14.18 lbs.)

17 The mixer is engaged in the reverse mode while the
18 circulating pump is turned on to full open, yielding a flow
19 rate of about 110 - 150 gpm at a pressure of about 60-110
20 psi, for recirculation of the mixture. Engagement of the
21 pump in the reverse mode causes mixing to occur in a bottom
22 to top direction within the tank. This reverse mode pumping
23 coupled with the forceful agitation of the recirculating pump
24 is critical in solubilizing the Carbopol 934 in the mixture.

25 Homogenization of the above-mentioned ingredients is
26 then carried out for about 30 - 40 minutes utilizing a
27 stator-bladed motor driven homogenizer under flow conditions
28 of about 110 - 150 gpm and at a pressure of about 60-110 psi,
29 which conditions are sufficiently rigorous to yield a "grain"
30 free and highly uniform product.

31 The remaining raw materials:

32 4) TRITON X-100 Surfactant (or a like equivalent Octyl
33 Phenoxypropoxy non-ionic surfactant)

1 121.5 lbs
2 5) Propylene Glycol (USP) 40.50 lbs.
3 6) TERGITOL NP-9 Surfactant (or a like equivalent
4 Nonylphenol polyethylene glycol ether non-ionic surfactant)
5 81.00 lbs.
6 7) DOWCIDE-A (or a like equivalent Sodium O-
7 Phenylphenatetrahydrate)
8 4.05 lbs.
9 8) IRGASAN DP300 (2,4,4'-trichloro-2'-hydroxydiphenyl
10 ether) 5.25 lbs.

11 9) Triethanolamine 85% N.F. 40.50 lbs.
12 10) Chlorhexidine Digluconate 20% 6.06 lbs.
13 11) Alpha Tocopherol 4.05 lbs.

14 are weighed and added to the mixture.

15 It is noted that the hydrophilic portion of the product
16 is modified by the use of the non-ionic surfactant (TRITON X-
17 100) in a propylene glycol base. The hydrophilic phase is
18 further modified due to the inclusion of TERGITOL NP-9 which
19 includes the nonoxyl class of compounds.

20 Inclusion of Alpha Tocopherol (Alpha Tocopherol Acetate)
21 commonly known as Vitamin E has a two-fold benefit. Its
22 presence inhibits oxidation of the product as well as
23 providing additional skin conditioning properties. Since
24 tocopherols are freely soluble in alcohols and lipids, they
25 easily penetrate the skin layer and provide conditioning
26 benefits.

27 After all ingredients have been blended, the Surfactant
28 Phase is then heated to within a range of about 70°C - 85°C,
29 and maintained within this temperature range while mixing and
30 pump recirculation are continued at about 110 - 150 gpm at a
31 pressure of about 60-110 psi.

32
33

1 (B) The Wax Phase is next formulated by adding the following
2 ingredients:

3 Stearic Acid - Triple Pressed 121.50 lbs.
4 Cetyl Alcohol N.F. 60.75 lbs.
5 Ethylene Glycol Monostearate 30.38 lbs.
6 Dimethicone L-45-350 cstks 81.00 lbs.
7 White Wax (BARECO BE SQUARE) 10.13 lbs.;

8 heating to within a range of about 70°C - 85°C, ideally
9 about 77°C - 80°C; and

10 maintaining the temperature of the Wax Phase within this
11 temperature range, while mixing at about 1500 - 1700 rpm
12 using a direct drive mixer.

13 The use of a wax, e.g. BARECO BE SQUARE, or a like
14 equivalent which is a USP grade White Wax having a melting
15 point in the range of 70°C - 85°C, provides a unique property.
16 The wax, which is in solution in coordination with the
17 Carbopol-934-P, melts through contact with the heat of the
18 hands. This in turn forms a physical hydrophobic layer and
19 provides a barrier which appears to inhibit penetration of
20 liquids which are primarily hydrophilic in nature. This
21 property helps protect the user from injury due to contact
22 injurious materials, e.g. with acids and/or bases. The wax
23 is apparently solubilized and dispersed with the aid of the
24 surfactants and Dimethicone within an alcohol/glycerol base.
25 The presence of Stearic acid, particularly triple pressed, is
26 critical to effecting the complete solubilization of the
27 remaining Wax Phase materials. While not wishing to be bound
28 to any particular theory, it is believed that the wax
29 flattens to form a neutral and hydrophobic barrier. The
30 carbomers are believed to support the wax layer in the
31 horizontal plane and in attachment to the skin. The carbomer
32 molecule, which is believed to physically intercalate within
33 the wax phase, thereby reinforcing the wax layer, is also

1 believed to interact with the skin thereby having a
2 stabilizing effect upon the wax layer, which results in the
3 enhanced persistence characteristic of the product. Lastly,
4 it is believed that the processing steps orient the TRICLOSAN
5 molecules to yield an optimum level of antimicrobial
6 activity.

7 (C) The Final Phase is formed by adding the Wax Phase to the
8 Surfactant Phase.

9 At the time of mixing, the Wax Phase is being maintained
10 at approximately 85°C and the surfactant Phase is maintained
11 at 80° C. The mixing takes place by using homogenization,
12 recirculation and pressure. Pressure generation is
13 accomplished by restricting the outlet side of the pump, thus
14 limiting the flow therethrough. This restriction keeps the
15 pump stators full at all times, so as to avoid burn out of
16 the pump. Such conditions are maintained for 45 - 60 minutes
17 using a 20 HP pump, at a rate of about 100-150 gal/min, at
18 about 60-110 psi, in reverse mode, restricting the outlet and
19 recirculating the batch. After approximately 60 minutes, the
20 temperature is then lowered to less than 50°C so that the
21 PARAGON MEPB Parabens materials can be safely added.

22 Paragon MEPB (a mixture of Methyl, Ethyl, Propyl, and
23 Butyl Parabenzenes in a Phenoxy Ethanol solvent, or a like
24 equivalent mixture) is then added (40.50 lbs.) and
25 homogenization is continued for an additional 20 - 30 minutes
26 with the recirculation pump on full open. In a particular
27 embodiment, the MEPB mixture had about 16% methyl paraben,
28 about 4% ethyl paraben, about 2% propyl paraben, about 6%
29 butyl paraben and the remainder, about 72% of phenoxy-ethanol
30 solvent.

31 It is theorized that inclusion of DOWCIDE-A,
32 Chlorhexidine gluconate and the Parabens species in a
33 Phenoxy-Ethanol solvent act as phenolic based preservatives

1 to further increase hydrophobic solubility and thereby
2 potentiate the active biocidal properties of the product.

3 It is further theorized that the propylene glycol, cetyl
4 alcohol, phenoxyethyl alcohol, parabens, and octyl phenol act
5 as permeability barriers to the bacterial lipid cell wall;
6 that the TRITON-X 100 and triethanolamine offer an ionic
7 approach to cell wall disruption via a chelation mechanism;
8 and that the phenoxyethyl alcohol, parabens and DOWCIDE-A
9 further provide cytoplasmic membrane permeation.

10

11 It is to be understood that while a certain form of the
12 invention is illustrated, it is not to be limited to the
13 specific form or arrangement of parts herein described and
14 shown. It will be apparent to those skilled in the art that
15 various changes may be made without departing from the scope
16 of the invention and the invention is not to be considered
17 limited to what is shown and described in the specification
18 and drawings.

19

20

21

22

23

1

CLAIMS

2

3 What is claimed is:

4

5 Claim 1. A homogeneously blended, grain free,
6 antimicrobial sanitizing lotion, characterized by enhanced
7 antimicrobial and skin protective properties comprising:

8 (1) Deionized water, from about 75 - 85 wt.%;
9 (2) EDTA Sodium Salt, from about 0.136 - 0.184 wt.%;
10 (3) Acrylic polymer, from about 0.245 - 0.455 wt.%;
11 (4) Octyl Phenoxyethoxy non-ionic surfactant,
12 from about 2.55 - 3.45 wt.%;
13 (5) Propylene Glycol, from about 0.85 - 1.15 wt.%;
14 (6) Nonylphenol Polyethylene Glycol Ether non ionic
15 surfactant, from about 1.70 - 2.30 wt.%;
16 (7) Sodium O-Phenylphenatetrahydrate, from about
17 0.10 - 0.50 wt.%;
18 (8) Triethanolamine, from about 0.85 - 1.15 wt.%;
19 (9) Chlorhexidine Digluconate 20 %, from about
20 0.16 - 0.75 wt.%;
21 (10) Alpha Tocopherol (Vitamin E USP), from about
22 0.09 - 0.11 wt.%;
23 (11) Stearic Acid, from about 2.55 - 3.45 wt.%;
24 (12) Cetyl Alcohol,n.f., from about 1.5 - 1.65 wt.%;
25 (13) Ethylene Glycol Monostearate, from about
26 0.675 - 0.825 wt.%;

1 (14) Dimethicone, from about 1.70 - 2.30 wt.%;
2 (15) USP White Wax, from about 0.213 - 0.288 wt.%;
3 (16) a mixture of Methyl, Ethyl, Propyl and Butyl
4 Parabenzene in Phenoxy-Ethanol solvent, from
5 about 1.00-3.00 wt.%; and
6 (17) 2,4,4' - trichloro - 2'- hydroxydiphenyl ether,
7 from about 0.10 - 0.35 wt.%;
8 wherein contact with the skin results in destruction of
9 microbial contaminants and simultaneous formation of a
10 hydrophobic skin protective barrier layer.

11

12 Claim 2. The composition of claim 2 wherein the 2,4,4'
13 - trichloro - 2'- hydroxydiphenyl ether is present in the
14 range of from about 0.117 - 0.143 wt.%.

15

16 Claim 3. The composition of claim 2 wherein the
17 2,4,4' - trichloro - 2'- hydroxydiphenyl ether is present in
18 the range of from about 0.270 - 0.330 wt %.

19

20 Claim 4. The composition of claim 1 wherein the
21 antimicrobial action persists for up to about 4 hours.

22

23 Claim 5. A homogeneously blended, grain free,
24 antimicrobial sanitizing lotion, characterized by enhanced
25 antimicrobial and skin protective properties comprising:

26

1 (1) Deionized water 83.50 wt. %;
2 (2) EDTA Sodium Salt 0.16 wt. %;
3 (3) Acrylic polymer 0.35 wt. %;
4 (4) Octyl Phenoxy polyethoxy
5 non-ionic surfactant 3.00 wt. %;
6 (5) Propylene Glycol U. S.P. 1.00 wt. %;
7 (6) Nonylphenol Polyethylene Glycol
8 Ether non ionic surfactant 2.00 wt. %;
9 (7) Sodium O-Phenylphenate tetrahydrate 0.10 wt. %;
10 (8) Triethanolamine 85 % N.F. 1.00 wt. %;
11 (9) Chlorhexidine Digluconate 20 % 0.16 wt. %;
12 (10) Alpha Tocopherol (Vitamin E USP) 0.10 wt. %;
13 (11) Stearic Acid 3.00 wt. %;
14 (12) Cetyl alcohol N.F. 1.50 wt. %;
15 (13) Ethylene Glycol Monostearate 0.75 wt. %;
16 (14) Dimethicone 2.00 wt. %;
17 (15) USP White Wax 0.25 wt. %;
18 (16) a mixture of Methyl, Ethyl, Propyl and Butyl
19 Parabenzene in Phenoxy-Ethanol solvent 1.00 wt. %;
20 and
21 (17) 2,4,4' - trichloro - 2'- hydroxydiphenyl ether,
22 0.13 wt.%;
23 wherein contact with the skin results in destruction of
24 microbial contaminants and simultaneous formation of a
25 hydrophobic skin protective barrier layer.
26

1 Claim 6. The composition of claim 5 wherein the
2 antimicrobial action persists for up to about 4 hours.

3

4 Claim 7. A method for forming a topical antimicrobial
5 skin sanitizing and conditioning composition comprising:

6 1) forming a surfactant phase mixture, based upon a
7 percentage by weight of the total composition, by first
8 combining 83.5 wt. % deionized water, .16 wt. % EDTA Sodium
9 Salt and .35 wt. % of an acrylic polymer within a vessel
10 containing mixing means and recirculating means;

11 2) operating said mixing means in the reverse mode while
12 operating the recirculation means at 100-150 gpm at a
13 pressure of 60-110 psi, whereby the acrylic polymer is
14 completely solubilized in said surfactant phase mixture;

15 3) homogenizing said surfactant phase mixture for 30 - 40
16 minutes under conditions sufficiently rigorous to yield a
17 grain free, homogeneously blended mixture;

18 4) further adding, in the order and amounts stated, 3.0
19 wt. % Octyl Phenoxypropoxy non-ionic surfactant, 1.0 wt.
20 % Propylene Glycol (USP), 2.0 wt. % Nonylphenol polyethylene
21 glycol ether non-ionic surfactant; 0.1 wt. % Sodium O-
22 Phenylphenatetrahydrate, 0.13 wt. %
23 2,4,4'-trichloro-2'-hydroxydiphenyl ether, 1.0 wt. %
24 Triethanolamine 85% N.F., 0.16 wt. % Chlorhexidine
25 Digluconate 20%, and 0.1 wt. % Alpha Tocopherol to said
26 surfactant phase mixture;

1 5) further mixing the above ingredients to form a
2 homogeneous blend while heating to within a temperature range
3 of 70°C - 85°C;

4 6) maintaining the surfactant phase mixture within said
5 temperature range while mixing and pump recirculation are
6 continued;

7 7) in a separate vessel, forming a wax phase mixture by
8 combining 3.0 wt. % Stearic Acid, 1.5 wt. % Cetyl Alcohol
9 N.F., 0.75 wt. % Ethylene Glycol Monostearate, 2.0 wt. %
10 Dimethicone, and 0.25 wt. % USP White Wax;

11 8) heating said wax phase mixture to within a
12 temperature range of 70°C - 85°C and maintaining the
13 temperature of said wax phase mixture within said temperature
14 range while mixing;

15 9) adding the wax phase mixture to said surfactant phase
16 mixture to form a final phase mixture under conditions of
17 homogenization, recirculation and pressure for 45 - 60
18 minutes;

19 10) lowering the temperature of said final phase mixture
20 to less than 50°C; and

21 11) adding 1.0 wt. % of a mixture of Methyl, Ethyl, Propyl
22 and Butyl Parabenzenes in a Phenoxy-Ethanol solvent and
23 continuing homogenization for an additional 20 - 30 minutes
24 with total recirculation at a rate of about 100-150 gpm at a
25 pressure of 60-110 psi.

26

1 Claim 8. The product produced by the process of claim
2 7.

3

4

5 Claim 9. The process of claim 7, wherein the wax phase
6 in step (8) is maintained at a temperature of 77°C - 80°C.

7

8 Claim 10. A method for forming a topical antimicrobial
9 skin sanitizing and conditioning composition comprising:

10 1) forming a surfactant phase mixture, based upon a
11 percentage by weight of the total composition, by first
12 combining 75 - 85 wt. % deionized water, .136 - .184 wt. %
13 EDTA Sodium Salt and .245 - .455 wt. % of an acrylic polymer
14 within a vessel containing mixing means and recirculating
15 means;

16 2) operating said mixing means in the reverse mode while
17 operating the recirculation means at 100-150 gpm at a
18 pressure of 60-110 psi, whereby the acrylic polymer is
19 completely solubilized in said surfactant phase mixture;

20 3) homogenizing said surfactant phase mixture for 30 - 40
21 minutes under conditions sufficiently rigorous to yield a
22 grain free, homogeneously blended mixture;

23 4) further adding, in the order and within the range of
24 amounts stated, 2.55 - 3.45 wt. % Octyl Phenoxypropoxyethoxy
25 non-ionic surfactant, 0.85 - 1.15 wt. % Propylene Glycol
26 (USP), 1.70 - 2.30 wt. % Nonylphenol polyethylene glycol

1 ether non-ionic surfactant; 0.1 - 0.5 wt. % Sodium O-
2 Phenylphenatetrahydrate, 0.10 - 0.35 wt. %
3 2,4,4'-trichloro-2'-hydroxydiphenyl ether, 0.85 - 1.15 wt. %
4 Triethanolamine 85% N.F., 0.16 - 0.75 wt. % Chlorhexidine
5 Digluconate 20%, and 0.09 - 0.11 wt. % Alpha Tocopherol to
6 said surfactant phase mixture;

7 5) further mixing the above ingredients to form a
8 homogeneous blend while heating to within a temperature range
9 of 70°C - 85°C;

10 6) maintaining the surfactant phase mixture within said
11 temperature range while mixing and pump recirculation are
12 continued;

13 7) in a separate vessel, forming a wax phase mixture by
14 combining 2.55 - 3.45 wt. % Stearic Acid, 1.35 - 1.65 wt. %
15 Cetyl Alcohol N.F., 0.675 - 0.825 wt. % Ethylene Glycol
16 Monostearate, 1.7 - 2.3 wt. % Dimethicone, and 0.213 - 0.288
17 wt. % USP White Wax;

18 8) heating said wax phase mixture to within a
19 temperature range of 70°C - 85°C and maintaining the
20 temperature of said wax phase mixture within said temperature
21 range while mixing;

22 9) adding the wax phase mixture to said surfactant phase
23 mixture to form a final phase mixture under conditions of
24 homogenization, recirculation and pressure for 45 - 60
25 minutes;

26

1 10) lowering the temperature of said final phase mixture
2 to less than 50°C; and
3 11) adding 1.0 - 3.0 wt. % of a mixture of
4 Methyl,Ethyl,Propyl and Butyl Parabenzene in a Phenoxy
5 ethanol solvent and continuing homogenization for an
6 additional 20 - 30 minutes with total recirculation at a rate
7 of about 100-150gpm at a pressure of 60-110 psi.

8

9 Claim 11. The product produced by the process of claim
10 10.

11

12 Claim 12. The product produced by the process of claim
13 10 wherein the amount of 2,4,4' - trichloro - 2'-
14 hydroxydiphenyl ether added is in the range of from about
15 0.117 - 0.143 wt.%.

16

17 Claim 13. The product produced by the process of claim
18 10 wherein the amount of 2,4,4' - trichloro - 2'-
19 hydroxydiphenyl ether added is in the range of from about
20 0.270 - 0.330 wt %.

21

22

23

24

25

INTERNATIONAL SEARCH REPORT

Int'l Application No

PCT/US 00/13945

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 A01N31/16 A01N47/44 A61K7/48 A61P31/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A01N A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 843 002 A (KAO) 20 May 1998 (1998-05-20) claims 1,5,6	1,5,8,11
A	WO 93 07250 A (NOVAPHARM RES AUSTRALIA) 15 April 1993 (1993-04-15) claims 1,6,7	1,5,8,11
A	PATENT ABSTRACTS OF JAPAN vol. 015, no. 388 (C-0872), 2 October 1991 (1991-10-02) & JP 03 157311 A (KANEBO LTD), 5 July 1991 (1991-07-05) abstract	1,5,8,11
A	US 5 417 875 A (NOZAKI TOSHI0) 23 May 1995 (1995-05-23) claim 1	1,5,8,11
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the International search

6 October 2000

Date of mailing of the International search report

16/10/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Voyiazoglou, D

INTERNATIONAL SEARCH REPORT

b International Application No
PCT/US 00/13945

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 772 640 A (MODAK SHANTA ET AL) 30 June 1998 (1998-06-30) cited in the application column 7	1,5,8,11
A	EP 0 231 080 A (IMPERIAL CHEMICAL INDUSTRIES) 5 August 1987 (1987-08-05) claim 1	1,5,8,11
P,A	EP 0 937 394 A (ETHICON INC) 25 August 1999 (1999-08-25) claim 1	1,5,8,11
P,A	EP 0 934 742 A (ETHICON INC) 11 August 1999 (1999-08-11) claims 1,9,12	1,5,8,11

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 00/13945

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP 843002	A	20-05-1998		JP 3018155 B JP 10147795 A JP 3018156 B JP 10147799 A BR 9706659 A CN 1183268 A		13-03-2000 02-06-1998 13-03-2000 02-06-1998 08-06-1999 03-06-1998
WO 9307250	A	15-04-1993		NONE		
JP 03157311	A	05-07-1991		NONE		
US 5417875	A	23-05-1995		JP 3018122 B JP 5156296 A DE 4240914 A GB 2262534 A, B		13-03-2000 22-06-1993 24-06-1993 23-06-1993
US 5772640	A	30-06-1998		AU 1523597 A CA 2241461 A EP 0874655 A JP 2000507842 T US 6083208 A WO 9725085 A US 6106505 A		01-08-1997 17-07-1997 04-11-1998 27-06-2000 04-07-2000 17-07-1997 22-08-2000
EP 231080	A	05-08-1987		AT 42333 T AU 602665 B AU 6715687 A BE 906147 A BR 8700125 A DE 3760109 D DK 17687 A FI 870175 A FR 2592763 A GR 3000016 T IT 1215342 B JP 1104003 A NO 870173 A PT 84114 A, B ZA 8700050 A		15-05-1989 25-10-1990 23-07-1987 01-07-1987 01-12-1987 24-05-1989 17-07-1987 17-07-1987 17-07-1987 31-10-1989 08-02-1990 21-04-1989 17-07-1987 01-02-1987 24-02-1988
EP 0937394	A	25-08-1999		US 6022551 A AU 1215899 A BR 9900320 A CN 1232665 A HU 9900152 A JP 11322560 A PL 330949 A		08-02-2000 12-08-1999 16-05-2000 27-10-1999 28-01-2000 24-11-1999 02-08-1999
EP 0934742	A	11-08-1999		US 5980925 A AU 9822498 A JP 11279079 A		09-11-1999 22-07-1999 12-10-1999