ECON 613: Applied Econometrics

Methods for Cross-sectional Data

January 29, 2019

Introduction

Binary response models are models where the variable to be explained y is a random variable taking on the values zero and one which indicate whether or not a certain event has occured.

- ightharpoonup y = 1 if a person is employed
- y = 1 if a family contributes to a charity during a particular year
- ightharpoonup y = 1 if a firm has a particular type of pension plan
- y = 1 if a worker goes to college
- Regardless of what y stands for, we refer to y = 1 as a success and y = 0 as a failure.

An OLS regression of y on dependent variables denoted x ignores the discreteness of the dependent variable and does not constrain predicted probabilities to be between zero and one.

Linear Probability Model (1)

$$P(y = 1) = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k.$$
 (1)

- ▶ If x_1 is continuous, β_1 is the change in the probability of success given one unit increase in x_1
- If x₁ is discrete, β₁ is the difference in the probability of success when x₁ = 1 and x₁ = 0, holding other x_i fixed.

Linear Probability Model (2)

Given that y is a random variable (Bernouilli), we also have

$$E(y \mid x) = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k. \tag{2}$$

$$Var(y \mid x) = x\beta(1-x\beta) \tag{3}$$

Implications:

- ▶ OLS regression of y on $x_1, x_2, ..., x_k$ produces consistent and unbiased estimators of the β_j .
- Heteroskedacticity, which can be dealt with using standard heteroskedasticity-robust standard errors.
- Problem: OLS fitted values may not be between zero and one.

Maximum Likelihood Estimation: Logit and Probit Models

For binary outcome data, the dependent variable y takes one of two values. We let

$$y = \begin{cases} 1, & \text{with probability } p \\ 0, & \text{with probability } 1 - p \end{cases}$$
 (4)

Parametrize conditional probabilities:

$$p_i = F_{\epsilon}(X\beta) \tag{5}$$

And, Marginal Effects

$$\frac{\partial Pr(y_i = 1 \mid x_i)}{\partial x_{ii}} = F'_{\epsilon}(X\beta)\beta_j \tag{6}$$

Probit Model (1)

The probit model corresponds to the case where F(x) is the cumulative standard normal distribution function

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp(\frac{1}{2}X^2) dX \tag{7}$$

Where $F(X\beta) = \Phi(X\beta)$.

Probit Model (2)

Consider the latent approach

$$y^* = X\beta + \epsilon \tag{8}$$

where $\epsilon \sim N(0,1)$. Think of y^* as the net utility associated with some action. If the action yields positive net utility, it is undertaken otherwise it is not.

▶ We would care only about the sign of y^*

$$y = \begin{cases} 1, & \text{if } p \\ 0, & \text{with probability } 1 - p \end{cases}$$
 (9)

Probabilities

$$Pr(y = 1) = Pr(y^* > 0) = Pr(X\beta + \epsilon \ge 0)$$

= $Pr(\epsilon \ge -X\beta) = Pr(\epsilon \le X\beta) = \Phi(X\beta)$

Logit Model

The logit model specifies the cdf function F(x) is now the logistic function

$$\Lambda(x) = \frac{1}{1 + \exp(-x)} = \frac{\exp(x)}{1 + \exp(x)}$$
 (10)

The logit model is most easily derived by assuming that

$$\log\left(\frac{P}{1-P}\right) = X\beta\tag{11}$$

The logarithm of the odds (ratio of two probabilities) is equal to $X\beta$

Maximum Likelihood Estimation

- Likelihood can not be defined as a joint density function.
- Outcome of a Bernouilli trial

$$f(y_i \mid x_i) = p_i^{y_i} (1 - p_i)^{1 - y_i}$$
 (12)

 Given the independence of individuals, the likelihood can be written

$$\mathcal{L}(\beta) = \prod_{i=1}^{n} F(x_i \beta)^{y_i} (1 - F(x_i \beta))^{1 - y_i}$$
 (13)

Log Likelihood

The log likelihood

$$\log \mathcal{L}(\beta) = \sum_{i=1}^{n} y_i ln F(x_i \beta) + (1 - y_i) ln (1 - F(x_i \beta))$$
 (14)

First order conditions

$$\sum_{i=1}^{n} \frac{y_i - F(x_i \beta)}{F(x_i \beta)(1 - F(x_i \beta))} F'(x_i \beta) x_i = 0$$
 (15)

Empirical considerations

- Probit and logit yield same outcomes. Only difference is how parameters are scaled.
- The natural metric to compare models is the fitted log-likelihood provided that the models have the same number of parameters.
- Although estimated parameters are different, marginal effects are quite similar.

Pseudo R2

$$R_{\mathsf{Binary}}^2 = 1 - \frac{\mathcal{L}(\hat{\beta})}{N[\bar{y} \ln \bar{y} + (1 - \bar{y}) \ln (1 - \bar{y})]} \tag{16}$$

Predicted Outcomes

- ► The criterion $\sum_i (y_i \hat{y}_i)^2$ gives the number of wrong predictions.
 - average rule: let $\hat{y} = 1$ when $\hat{p} = F(X\beta) > 0.5$
 - Receiver Operating Characteristics (ROC) curve plots the fractions of y=1 correctly classified against the fractions of y=0 incorrectly specified as the cutoffs $\hat{p}=F(X\beta)>c$ varies.

Example: Affairs

Infidelity data, known as Fair's Affairs. Cross-section data from a survey conducted by Psychology Today in 1969.

Table: Descriptive Characteristics

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
affairs	601	1.5	3.3	0	0	0	12
age	601	32.5	9.3	18	27	37	57
yearsmarried	601	8.2	5.6	0	4	15	15
religiousness	601	3.1	1.2	1	2	4	5
education	601	16.2	2.4	9	14	18	20
occupation	601	4.2	1.8	1	3	6	7
rating	601	3.9	1.1	1	3	5	5

Understanding the determinants of having an affair

Table:

	Dependent variable:								
	Affairs								
	(1)	(2)	(3)	(4)	(5)	(6)			
l(gender)male	0.140 (0.110)	0.120 (0.110)	0.210* (0.120)	0.200* (0.120)	0.200* (0.120)	0.210 (0.130)			
I(age)		0.007 (0.006)	-0.024** (0.010)	-0.023** (0.010)	-0.023** (0.010)	-0.023** (0.010)			
I(yearsmarried)			0.066*** (0.017)	0.055*** (0.018)	0.064*** (0.019)	0.064*** (0.019)			
I(children)yes				0.250 (0.160)	0.270* (0.160)	0.270* (0.160)			
I(religiousness)					-0.200*** (0.051)	-0.200*** (0.051)			
I(education)						-0.005 (0.026)			
Constant	-0.740*** (0.078)	-0.970*** (0.200)	-0.560** (0.240)	-0.670*** (0.250)	-0.150 (0.280)	-0.067 (0.480)			
Log Likelihood	-337.000	-336.000	-328.000	-327.000	-319.000	-318.000			
-									

Note: p < 0.1; **p < 0.05; ***p < 0.01

Identification considerations

- $ightharpoonup \beta$ is identified up to a scale.
- We observe only whether $X\beta + \epsilon > 0$.
- ▶ Implication for the interpretation of the coefficients.