Dynamic Programming

Thomas J. Sargent and John Stachurski

Longye Tian longye.tian@anu.edu.au

Australian National University School of Economics

March 7th, 2025

Outline

• Chapter 1.4.1 Nonstationary Policies

2 Chapter 1.4.2 Minimization Problem

• 1.4.2.1 Definitions

Nonstationary policies

In this section, we will see that under some conditions, the lifetime value of any nonstationary policy will be weakly dominated by the lifetime value of a stationary policy. This ensures that we can focus on the stationary policies without loss of generality.

Comparison

Stationary policy

- Fixed a policy σ
- Lifetime value

$$v_{\sigma} = \lim_{j \to \infty} T_{\sigma}^{j} v$$

Nonstationary policy/Policy Plan

- a policy plan $\overline{\sigma} = (\sigma_t)_{t \geq 0} \in \times_{t \geq 0} \Sigma$
- Lifetime value of $v_{\overline{\sigma}}$

$$v_{\overline{\sigma}} = \lim_{j \to \infty} T_{\sigma_0} T_{\sigma_1} \cdots T_{\sigma_j} v$$

• Question, why not

$$v_{\overline{\sigma}} = \lim_{j \to \infty} T_{\sigma_j} \cdots T_{\sigma_1} T_{\sigma_0} v$$

Existence of Lifetime value of a policy plan

We want the limit to exist and, ideally, the limit is independent of v.

$$v_{\overline{\sigma}} = \lim_{j \to \infty} T_{\sigma_0} T_{\sigma_1} \cdots T_{\sigma_j} v$$

Set up

- $V = (V, \preceq)$ a partially ordered space
- $\mathbb{T} = \{T_{\sigma} : \sigma \in \Sigma\}$, family of order preserving self-map on V
- Metric d on V
 - d is complete (Every Cauchy sequence converges.)
 - $\exists \lambda \in (0,1)$ such that

$$d(T_{\sigma}v, T_{\sigma}w) \leq \lambda d(v, w)$$
 for all $v, w \in V, \sigma \in \Sigma$

• for all $v \in V$, we have

$$\sup_{\sigma \in \Sigma} d(v, T_{\sigma}v) < \infty$$

• sup-nonexpansive, for any subsets (v_{α}) and (w_{α}) in V such that their supremum exists,

$$d\left(\bigvee_{\alpha} v_{\alpha}, \bigvee_{\alpha} w_{\alpha}\right) \le \sup_{\alpha} d(v_{\alpha}, w_{\alpha})$$

Lemma 1.4.1.(i)

Lemma 1

If the above conditions hold, then for each $v \in V$ and policy plan $\hat{\sigma} := (\sigma_t)_{t \geq 0}$, the limit

$$v_{\hat{\sigma}} = \lim_{n \to \infty} \sum_{t=0}^{n} T_{\sigma_t} v$$

exists in V and is independent of v.

Proof for Existence.

To prove that (v_n) is Cauchy sequence, where $v_n := \times_{t=0}^n T_{\sigma_t} v$

Lemma 1.4.1.(i) Continue

Proof.

Fix $v \in V$, $\hat{\sigma} = (\sigma_t)_{t \geq 0}$, $\epsilon > 0$. Let $T_{m,n} := \times_{t=m}^{t=n} T_{\sigma_t}$, $v_n = T_{0,n}v$. For $m \in \mathbb{N}$, we have

$$d(v_m, v_{m+1}) = d\left(T_0(T_{1,m}v), T_0(T_{1,m+1}v)\right)$$

$$\leq \lambda d\left(T_1(T_{2,m}v), T_1(T_{2,m+1}v)\right) \qquad \text{(contraction)}$$

$$\vdots$$

$$\leq \lambda^{m+1}d(v, T_{m+1}v)$$

$$\leq \lambda^{m+1}b_v \qquad \text{(bounded)}$$

8 / 34

Longye DP2 March 7th, 2025

Lemma 1.4.1.(i) Continue

Proof.

WLOG, let $m, n, j \in \mathbb{N}, n = m + j, j \ge 0$.

$$d(v_m, v_{m+j}) \leq d(v_m, v_{m+1}) + d(v_{m+1}, v_{m+2}) + \dots + d(v_{m+j-1}, v_{m+j}) \qquad (\Delta \text{ inequality})$$

$$\leq \lambda^{m+1} b_v + \lambda^{m+2} b_v + \dots + \lambda^{m+j} b_v \qquad (\text{page 7})$$

$$\leq \lambda^{m+1} b_v (1 + \lambda + \dots + \lambda^{m+j-1})$$

$$\leq \lambda^{m+1} b_v (1 + \lambda + \dots + \lambda^{m+j-1} + \dots)$$

$$\leq \lambda^{m+1} b_v / (1 - \lambda) \qquad (\text{geom sum})$$

⇒ Cauchy. By completeness, we get the limit exists.

Lemma 1.4.1.(i) Continue

The limit is independent of v.

Let $v, w \in V$. Then

$$d(v_n, w_n) = d\left(T_0(T_{1,n}v), T_0(T_{1,n}w)\right)$$

$$\leq \lambda d\left(T_1(T_{2,n}v), T_1(T_{2,n}w)\right) \qquad \text{(contraction)}$$

$$\vdots$$

$$\leq \lambda^{n+1}d(v, w)$$

So (v_n) and (w_n) have the same limit.

Longye DP2 March 7th, 2025 10 / 34

Lemma 1.4.1.(ii)

Lemma 2

If the conditions in page 5 holds, every $T_{\sigma} \in \mathbb{T}$ is continuous, globally stable on V, with unique fixed point v_{σ} satisfying

$$v_{\sigma} = \lim_{j \to \infty} T_{\sigma}^{j} v$$
 for all $v \in V$

Proof.

From contraction and completeness.

Lemma 1.4.1.(iii)

Lemma 3

If the conditions in page 5 holds, there exists a $v \in V$ such that $v := \bigvee_{\sigma \in \Sigma} T_{\sigma} v$

Proof.

If T is well-defined on V, then for $v, w \in V$, we have

$$d(Tv, Tw) = d\left(\bigvee_{\sigma \in \Sigma} T_{\sigma}v, \bigvee_{\sigma \in \Sigma} T_{\sigma}w\right)$$

$$\leq \sup_{\sigma \in \Sigma} d(T_{\sigma}v, T_{\sigma}w) \qquad \text{(sup-nonexpansionary)}$$

$$\leq \lambda d(v, w) \qquad \text{(contraction)}$$

Hence, T is a contraction, therefore, it has at least one fixed point in V.

Question: Do we need $v \in V_G$? Is T continuous, globally stable with unique fixed point?

Longye DP2 March 7th, 2025 12 / 34

Review Theorem 1.3.3.

Theorem 4

Let V be a pospace, (V, \mathbb{T}) be regular, globally stable and T has a fixed point in V, then

- the fundamental optimality properties hold
- VFI, HPI, OPI converge.

Review of the Fundamental Optimality Properties

Let (V, \mathbb{T}) be regular and well-posed. We say the fundamental optimality properties hold for (V, \mathbb{T}) if

- (B1) at least one optimal (stationary) policy exists
- (B2) $v^* := \bigvee_{\sigma} v_{\sigma}$ is the unique solution to the Bellman equation
- (B3) Bellman's principle of optimality holds (optimal policy is v^* -greedy)

Review on Pospace

A partial order \preceq on topological space V is called **closed** if, given any two nets $(u_{\alpha})_{\alpha \in \Lambda}$ and $(v_{\alpha})_{\alpha \in \Lambda}$ contained in V.

$$u_{\alpha} \to u, v_{\alpha} \to v$$
 and $u_{\alpha} \lesssim v_{\alpha}$ for all $\alpha \in \Lambda \implies u \lesssim v$

A partially ordered space, is a Hausdorff topological space endowed with a closed partial order.

> DP2March 7th, 2025 15 / 34 Longye

Proposition 1.4.2. Any policy plan is weakly dominated by a stationary policy

Proposition 1.4.2.

If (V, \mathbb{T}) is regular and conditions in page 5 holds, then

- the fundamental optimality properties hold
- Given any policy plan $\overline{\sigma}$, there exists a stationary policy plan σ such that $v_{\overline{\sigma}} \lesssim v_{\sigma}$

Proof.

Part One from Theorem 1.3.3. Part Two: Fix a policy plan $\overline{\sigma}$ and let σ be the optimal policy(B1). Then, for all $j \in \mathbb{N}$, we have

$$T_{\sigma_0}T_{\sigma_1}\cdots T_{\sigma_i}v_{\sigma} \to v_{\overline{\sigma}}, T^jv_{\sigma} \to v_{\sigma}, \qquad T_{\sigma_0}T_{\sigma_1}\cdots T_{\sigma_i}v_{\sigma} \lesssim T^jv_{\sigma} = v_{\sigma}$$

The partial order is closed implies $v_{\overline{\sigma}} \lesssim v_{\sigma}$.

16 / 34

Minimization Problem

For a given ADP (V, \mathbb{T}) , a minimization problem can be converted to a maximization problem by reversing the partial order on V. Hence, we can focus on solving the maximization problem without loss of generality.

Let (V, \mathbb{T}) be an ADP with policy set Σ . We define

• Bellman min-operator T_{\perp} by

$$T_{\perp}v = \bigwedge_{\sigma \in \Sigma} T_{\sigma}v$$
 whenever the infimum exists

- $\sigma \in \Sigma$ is **v-min-greedy** if $T_{\sigma}v \lesssim T_{\tau}v$ for all $\tau \in \Sigma$
- (V, \mathbb{T}) is min-regular if, for each $v \in V$, at least one v-min-greedy policy exists (V_G, \mathbb{T}) or V_C^{min})
- v satisfies the **Bellman min-equation** if $v = T_{\perp}v$

DP2March 7th, 2025 18 / 34 Longye

Suppose (V, \mathbb{T}) is well-posed. We define

• min-value function by

$$v_{\perp}^* = \bigwedge_{\sigma \in \Sigma} v_{\sigma}$$
 whenever the infimum exists

- $\sigma \in \Sigma$ is min-optimal for (V, \mathbb{T}) if $v_{\sigma} = v_{\perp}^*$
- \bullet (V, \mathbb{T}) obeys Bellman's principle of min-optimality if

 $\sigma \in \Sigma$ is min-optimal for $(V, \mathbb{T}) \iff \sigma$ is v_{\perp}^* -min-greedy

We say that the fundamental min-optimality properties hold if

- (B1') at least one min-optimal policy exists
- (B2') v_{\perp}^{*} is the unique solution to the Bellman min-equation in V
- (B3') Bellman's principle of min-optimality holds.

When (V, \mathbb{T}) is min-regular, we define the **Howard policy min-operator** corresponding to (V, \mathbb{T}) via

$$H_{\perp}: V_G \to V_{\Sigma}, \quad H_{\perp}v = v_{\sigma} \quad \text{where } \sigma \text{ is } v\text{-min-greedy}$$

For each $m \in \mathbb{N}$, the optimistic policy min-operator via

$$W_{\perp}: V_G \to V, \quad W_{\perp}v = T_{\sigma}^m v \quad \text{where } \sigma \text{ is } v\text{-min-greedy}$$

Let V_D be all $v \in V$ with $T_{\perp}v \preceq v$. We say that

- min-VFI converges if $T_+^n \downarrow v_+^*$ for all $v \in V_D$
- min-OPI converges if $W_{\perp}^n v \downarrow v_{\perp}^*$ for all $v \in V_D$ and all $m \in \mathbb{N}$
- min-HPI converges if $H_+^n v \downarrow v_+^*$ for all $v \in V_D$.

DP2March 7th, 2025 21 / 34 Longye

Dual ADPs

How minimization problems can be converted to maximization problem in this abstract setting?

Order dual and Dual ADP

Definition 5

Given partially ordered set V, let $V^{\partial} = (V, \preceq^{\partial})$ be the **order dual** (also called the **dual**), so that, for $u, v \in V$, we have

$$u \lesssim^{\partial} v \iff v \lesssim u$$

Definition 6

For ADP (V, \mathbb{T}) , we call $(V, \mathbb{T})^{\partial} := (V^{\partial}, \mathbb{T})$ the **dual** of (V, \mathbb{T}) . In other words, the dual ADP is created by replacing the poset V with its order dual V^{∂} .

Exercise 1.4.1

Show that $(V, \mathbb{T})^{\partial}$ is an ADP.

Proof.

We need to show that V^{∂} is a poset. And T_{σ} is order-preserving self-map on V^{∂} for any $\sigma \in \Sigma$. Let $u, v, w \in V$, we have

- (Reflexivity) $u \lesssim u \implies u \lesssim^{\partial} u$
- (Antisymmetry) $u \preceq^{\partial} v, v \preceq^{\partial} u \implies v \preceq u, u \preceq v \implies u = v$
- (Transitivity) $u \preceq^{\partial} v, v \preceq^{\partial} w \implies w \preceq v, v \preceq u \implies w \preceq u \implies u \preceq^{\partial} w$.

Hence V^{∂} is a poset. Let $u, v \in V$ and $u \lesssim^{\partial} v$. We have $v \lesssim u \Longrightarrow T_{\sigma}v \lesssim T_{\sigma}u \Longrightarrow T_{\sigma}u \lesssim^{\partial} T_{\sigma}v$ for any $\sigma \in \Sigma$. Hence, T_{σ} is order-preserving self map on V^{∂} .

Notation for the dual ADP

For the dual ADP $(V, \mathbb{T})^{\partial}$,

- the Bellman max-operator will be denoted by T^{∂}
- ullet the Bellman min-operator will be denoted by T_{\perp}^{∂}
- the max-value function will be denoted by $(v^*)^{\partial}$

Self-Dual

Each ADP is a self-dual, i.e.,

$$((V,\mathbb{T})^{\partial})^{\partial} = (V,\mathbb{T})$$

This follows from the fact that all partially ordered sets are order self-dual.

Exercise 1.4.2 (i)

Let (V, \mathbb{T}) be a well-posed ADP with dual $(V, \mathbb{T})^{\partial}$. Fix $v \in V$ and verify that:

 σ is v-min-greedy for (V, \mathbb{T}) if and only if σ is v-max-greedy for $(V, \mathbb{T})^{\partial}$

$Proof (\iff)$

 $T_{\sigma}v \preceq T_{\tau}v$ for all $\tau \in \Sigma \iff T_{\tau}v \preceq^{\partial} T_{\sigma}v$ for all $\tau \in \Sigma$.

DP2March 7th, 2025 Longye

Exercise 1.4.2 (ii)

Let (V, \mathbb{T}) be a well-posed ADP with dual $(V, \mathbb{T})^{\partial}$. Fix $v \in V$ and verify that:

 (V,\mathbb{T}) is min-regular if and only if $(V,\mathbb{T})^{\partial}$ is max-regular

Proof.

By Exercise 1.4.2 (i)

DP2March 7th, 2025 28 / 34 Longye

Exercise 1.4.2.(iii)

Let (V, \mathbb{T}) be a well-posed ADP with dual $(V, \mathbb{T})^{\partial}$. Fix $v \in V$ and verify that:

If $T^{\partial}v$ exists then so does $T_{\perp}v$, and, moreover, $T_{\perp}v=T^{\partial}v$

Proof.

By the definition of Bellman max-operator, we have $T_{\sigma}v \preceq^{\partial} T^{\partial}v$ for all $\sigma \in \Sigma$, i.e., $T^{\partial}v \preceq T_{\sigma}v$ for all $\sigma \in \Sigma$. Hence, $T_{\perp}v$ exists and equals to $T^{\partial}v$ by definition.

DP2March 7th, 2025 Longye 29 / 34

Exercise 1.4.2.(iv)

Let (V, \mathbb{T}) be a well-posed ADP with dual $(V, \mathbb{T})^{\partial}$. Fix $v \in V$ and verify that:

If $W^{\partial}v$ exists then so does $W_{\perp}v$, and, moreover, $W_{\perp}v=W^{\partial}v$

Proof.

By definition, we have $W^{\partial}v = T_{\sigma}v$ where σ is v-max-greedy for $(V, \mathbb{T})^{\partial}$. Hence by Exercise 1.4.2.(i), σ is v-min-greedy for (V, \mathbb{T}) . Hence, we have $W^{\partial}v = W_{\perp}v$.

> DP2March 7th, 2025 Longye 30 / 34

Exercise 1.4.2.(v)

Let (V, \mathbb{T}) be a well-posed ADP with dual $(V, \mathbb{T})^{\partial}$. Fix $v \in V$ and verify that:

If $H^{\partial}v$ exists then so does $H_{\perp}v$, and, moreover, $H_{\perp}v=H^{\partial}v$

Proof.

By definition, we have $H^{\partial}v = v_{\sigma}$ where σ is v-max-greedy for $(V, \mathbb{T})^{\partial}$. Hence by Exercise 1.4.2.(i), σ is v-min-greedy for (V, \mathbb{T}) . Hence, we have $H^{\partial}v = H_{\perp}v$.

Longye DP2 March 7th, 2025 31 / 34

Exercise 1.4.2.(vi)

Let (V, \mathbb{T}) be a well-posed ADP with dual $(V, \mathbb{T})^{\partial}$. Fix $v \in V$ and verify that: If the max-value function $(v^*)^{\partial}$ exists for $(V, \mathbb{T})^{\partial}$ then the min-value function v^*_{\perp} exists for (V, \mathbb{T}) , and, moreover, $v^*_{\perp} = (v^*)^{\partial}$.

Proof.

By definition,

$$(v^*)^{\partial} = \bigvee_{\sigma \in \Sigma}^{\partial} v_{\sigma} = \bigwedge_{\sigma \in \Sigma} v_{\sigma} = v_{\perp}^*$$

following Exercise A.1.15.

Exercise 1.4.2.(vii)

Let (V, \mathbb{T}) be a well-posed ADP with dual $(V, \mathbb{T})^{\partial}$. Fix $v \in V$ and verify that:

 $\sigma \in \Sigma$ is min-optimal for (V, \mathbb{T}) if and only if σ is max-optimal for $(V, \mathbb{T})^{\partial}$

Proof.

 σ is min-optimal for (V, \mathbb{T}) if and only if $v_{\sigma} = v_{\perp}^* = (v^*)^{\partial}$, i.e., σ is max-optimal for $(V, \mathbb{T})^{\partial}$ from Exercise 1.4.2.(vi).

Optimality and Convergence

Theorem 7

Let (V, \mathbb{T}) be a well-posed ADP with dual $(V, \mathbb{T})^{\partial}$. The fundamental max-optimality properties hold for $(V, \mathbb{T})^{\partial}$ if and only if the fundamental min-optimality properties hold for (V, \mathbb{T}) . Moreover,

- (i) max-VFI converges for $(V, \mathbb{T})^{\partial}$ if and only if min-VFI converges for (V, \mathbb{T})
- (ii) max-OPI converges for $(V, \mathbb{T})^{\partial}$ if and only if min-OPI converges for (V, \mathbb{T})
- (iii) max-HPI converges for $(V, \mathbb{T})^{\partial}$ if and only if min-HPI converges for (V, \mathbb{T})