

Overview

Goal:

- Produce a predicted high resolution image based on the low-resolution input
- Balance between the running cost and predictive performance

Outline:

- Baseline
- Advanced Algorithm (SRCNN)
- Model Evaluation

Feature Construction

Baseline Algorithm

Build low/high-resolution patch pairs, and learn the best mapping between them.

Feature Extraction

Low and High-resolution image patches ILR and IHR with sizes D×D and U×U (D=3,U=2)

$$x = \text{vectorize}(I_{LR}) - \text{center pixel}(I_{LR}) \in \mathbb{R}^{D^2 \times 1}$$

$$y = \text{vectorize}(I_{HR}) - \text{center pixel}(I_{LR}) \in \mathbb{R}^{U^2 \times 1}$$

Prediction Algorithm

For R/G/B channel:

Predictor(x): First outside layer (8 pixels) of each pixel

Response(y): Corresponding 4 subpixels

Model:

- 3 channels * 4 sub-pixels = 12 models
- Linear regression model
- Tune parameters by Gradient Boosting Machine(number of trees, depth, etc)

Architecture of Super-resolution Convolutional Neural Network

Patch extraction and representation

Extract patches from the low-resolution image and represents each patch as a high-dimensional vector. These vectors comprise a set of feature maps.

$$F_1(\mathbf{Y}) = \max\left(0, W_1 * \mathbf{Y} + B_1\right),\,$$

Non-Linear mapping

This operation nonlinearly maps each high-dimensional vector onto another high-dimensional vector. Each mapped vector is conceptually the representation of a high-resolution patch. These vectors comprise another set of feature maps.

$$F_2(\mathbf{Y}) = \max(0, W_2 * F_1(\mathbf{Y}) + B_2).$$

Reconstruction

This operation aggregates the above high-resolution patch-wise representations to generate the final high-resolution image. This image is expected to be similar to the ground truth X. 8

$$F(\mathbf{Y}) = W_3 * F_2(\mathbf{Y}) + B_3.$$

Example feature maps of different layers

Recall of Terminology

Feature: Piece of **information** that describes a part of image or whole image. These features could be corners, edges, lines, color, etc.

- Feature maps of the first layer:
 Structures (e.g., edges at different directions)
- Feature maps of the second layer:
 Intensities

Model Training and Performance Trade off

Learning algorithm: a set of instructions that tries to model the **target function** using training dataset.

In this case,

Learning the end-to-end mapping function \mathbf{F} requires the estimation of network parameters $\Theta = \{W1, W2, W3, B1, B2, B3\}$. This is achieved through minimizing the loss between the **reconstructed** images $F(Y;\Theta)$ and the **corresponding ground truth high-resolution images** X.

Given a set of high-resolution images {Xi} and their corresponding low-resolution images {Yi}, we use **Mean Squared Error (MSE)** as the loss function: $L(\Theta) = \frac{1}{n} \sum_{i=1}^{n} ||F(\mathbf{Y}_i; \Theta) - \mathbf{X}_i||^2$,

Performance	Filter Numbers	Filter Size	Number of Layers
Accuracy	+	+	No apparent
Computational Efficiency	-	-	-
Setting	n1=64, n2=32	f1 =9, f2 =1, f3 =5	3

Super Resolution by SRCNN

Original

Original

Super Resolution

Original

Super Resolution

PSNR: 37.571371960526974

PSNR: 39.81817950331664

Super Resolution

PSNR: 37.67317231587752

Performance Improvement

	Baseline	SRCNN
Average PSNR	25.0	31.2
Running Time (1500 images)	20min	10min

Model Comparison

Criteria	Baseline	SRCNN
Complexity	Easy to implement	Hard to understand
SR Speed	Time Consuming	Fast
Accuracy	Low Accuracy	High
Data Requirement	Small Dataset	Data hungry

Conclusion

- SRCNN performs remarkably in the perspective of Accuracy and Super resolution Speed.
- Computational expensive to train.
- Hard to comprehend without strong theoretical foundation.

THANKS!

Reference

Image Super-Resolution Using Deep Convolutional Networks http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html