GEORGIA INSTITUTE OF TECHNOLOGY

Mathematical Foundations of Machine Learning, Quiz #1 September 28, 2022

Name:			
	Last,	First	

- Closed book, closed notes, one $8\frac{1}{2}'' \times 11''$ handwritten sheet is allowed.
- Seventy-five (75) minute time limit.
- No calculators. None of the problems require involved calculations.
- There are four problems, each are worth 25 points. Subproblems are given equal weight.
- All work should be performed on the quiz itself. If more space is needed, use the backs of the pages.
- This quiz will be conducted under the rules and guidelines of the Georgia Tech Honor Code and no cheating will be tolerated.
- Write your final answers in the boxes provided.
- Turn in your "cheat sheet" by placing it in between the first and second pages.

Problem 1:

(a) Let $\|\cdot\|_A$ and $\|\cdot\|_B$ be the following valid norms on \mathbb{R}^2

$$\|\boldsymbol{x}\|_A = \sqrt{16x_1^2 + x_2^2}, \quad \|\boldsymbol{x}\|_B = \sqrt{x_1^2 + 9x_2^2}.$$

Sketch the unit balls on the axes below.

(b) Let

$$\|x\|_C = \max(\|x\|_A, \|x\|_B),$$

where $\|\cdot\|_A$ and $\|\cdot\|_B$ are the norms defined in the previous part. Sketch the unit ball on the axes below.

 $\mathcal{B}_C = \{ \boldsymbol{x} : \|\boldsymbol{x}\|_C \le 1 \}$

(c) True or False: $\|\cdot\|_C$ is a valid norm on \mathbb{R}^2 .

Circle one: True False

Justification:

(d) Let

$$\|x\|_D = \min(\|x\|_A, \|x\|_B),$$

where $\|\cdot\|_A$ and $\|\cdot\|_B$ are the norms defined in the previous part. Sketch the unit ball on the axes below.

(e) True or False: $\|\cdot\|_D$ is a valid norm on \mathbb{R}^2 .

Circle one: True False

Justification:

Problem 2: Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a third-order spline defined by the overlap of six B-splines:

$$f(t) = \sum_{k=0}^{5} \alpha_k b_3(t-k),$$

where $b_3(t)$ is the cubic *B*-spline function:

Suppose

$$f(0) = -5$$
, $f(1) = -1$, $f(2) = 3$, $f(3) = 0$ $f(4) = -3$, $f(5) = 7$

Write the linear system of equations that we have to solve to find the unique α_k corresponding to these samples. (You do not have to solve the system.)

Problem 3: Given a 2×2 matrix \boldsymbol{Q} , define

$$\langle oldsymbol{x}, oldsymbol{y}
angle_Q = oldsymbol{x}^{ ext{T}} oldsymbol{Q} oldsymbol{y} \quad ext{ for all } oldsymbol{x}, oldsymbol{y} \in \mathbb{R}^2.$$

Circle the matrices Q below that make $\langle \cdot, \cdot \rangle_Q$ a valid inner product on \mathbb{R}^2 .

$$\boldsymbol{Q} = \begin{bmatrix} 0.999 & 0\\ 0 & 0.001 \end{bmatrix}$$

$$Q = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

$$Q = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

$$Q = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$oldsymbol{Q} = egin{bmatrix} 4 & 2 \ 3 & 4 \end{bmatrix}$$

Problem 4:

(a) Given 4 data points

$$(x_i, y_i) \in \{(1, 1), (1, 0), (-1, 0), (-1, -1)\},\$$

find the vector $\widehat{\boldsymbol{\beta}} = \begin{bmatrix} \widehat{\beta}_0 \\ \widehat{\beta}_1 \end{bmatrix}$ such that

$$\widehat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\beta = [\beta_0, \beta_1]^{\top} \in \mathbb{R}^2} \sum_{i=1}^4 (y_i - \beta_0 - \beta_1 x_i)^2.$$

You need to set up the least-squares problem in the matrix form by providing the design matrix X and the target vector y such that $y \approx X \hat{\beta}$. Sketch the linear regression line $\hat{f}(x) = \hat{\beta}_0 + \hat{\beta}_1 x$ on the axes below along with the 4 data points.

$$oldsymbol{X} = \left[egin{array}{c} oldsymbol{y} = \left[egin{array}{c} oldsymbol{eta} = \left[egin{array}{c} oldsymbol{eta} \end{array}
ight]$$

(b) Given 4 data points

$$(x_i, y_i) \in \{(1, 1), (0, 1), (0, -1), (-1, -1)\},\$$

find the vector $\hat{\beta} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix}$ such that

$$\widehat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\beta = [\beta_0, \beta_1]^{\top} \in \mathbb{R}^2} \sum_{i=1}^4 (y_i - \beta_0 - \beta_1 x_i)^2.$$

You need to set up the least-squares problem in the matrix form by providing the design matrix X and the target vector y such that $y \approx X \hat{\beta}$. Sketch the linear regression line $\hat{f}(x) = \hat{\beta}_0 + \hat{\beta}_1 x$ on the axes below along with the 4 data points.

$$oldsymbol{X} = \left[egin{array}{c} oldsymbol{y} = \left[egin{array}{c} oldsymbol{eta} = \left[egin{array}{c} oldsymbol{eta} \end{array}
ight]$$

Additional work space:

Additional work space:

Problem	Score
1	
2	
3	
4	
Total	