Perceptrón Multicapa

Aplicaciones

Perceptrón Multicapa

¿Para qué se puede usar un perceptrón multicapa?

Compresión de imágenes por encoder/decoder

Objetivo: presentar un método basado en Redes Neuronales para compresión de imágenes

Problemática: transmisión de imágenes como proceso costoso → reducir la cantidad de bits → aumentar el volumen de datos transmitidos en un lapso

Superioridad de las redes neuronales frente a datos incompletos o con ruido

Compresión de imágenes por encoder/decoder

Entrada=salida (autoasociador) M << N

Compresión de imágenes por encoder/decoder

Entrada: ventanas de 8x8 de la imagen (blanco y negro). Las entradas similares fueron eliminadas

Parámetros:

Cantidad de neuronas en la capa oculta: 20

Pares del conjunto de entrenamiento: entre 100 y 400

Velocidad de aprendizaje: 0.2

Momentum: 0.2

Análisis de riesgo crediticio

Sexo Edad Vol.Cons. Ult. Cons PT1 . . . PT5 Ptipo1 . . . Ptipo5 Relacionados

Donde

Sexo: 0 indica masculino, 1 indica femenino.

Edad: expresada en años a la fecha tope.

Volumen de consultas: cantidad de consultas registradas a la fecha tope.

Ultima consulta: antigüedad de la última consulta en meses a la fecha tope.

1. Por antigüedad:

Problemas Tiempo 1: Menos de 1 año

Problemas Tiempo 2: Entre 1 y 3 años

Problemas Tiempo 3: Entre 3 y 6 años

Problemas Tiempo 4: Entre 6 y 10 años

Problemas Tiempo 5: Más de 10 años

2. Por tipo:

Problemas Tipo 1: Cierres de cuenta

Problemas Tipo 2: Juicios

Problemas Tipo 3: Quiebras

Problemas Tipo 4: Deudas en Tarjetas de crédito

Problemas Tipo 5: Ejecuciones hipotecarias

Fecha tope: el momento actual (los hechos anteriores a esa fecha son tomados como antecedentes y los posteriores como respuesta)

____**-**

se puede clasificar a los individuos como confiables o no confiables según si tuvieron problemas o no, luego de esa fecha tope.

Se obtuvo información de 15883 personas:

- 786 casos no confiables (5% del total)
- 15097 casos confiables.

(tomando el último año observado como período de respuesta)

factor a tener en cuenta en la selección del conjunto de entrenamiento para las redes neuronales y en el análisis de los resultados.

Dinámica inversa de un brazo robótico

$$T = T (\theta, \theta, \theta)$$

Problema básico: singularidades de las funciones, cerca de las cuales la derivada cambia muy rápidamente o tiende a infinito

→ backpropagation suele fallar

Predicción de series de tiempo

Para: predicción del tiempo, clima, stock y precios de acciones, tráfico aéreo, cambios de cotizaciones.

Convertir el problema temporal en un mapeo entrada-salida entradas: x(t) en k instantes anteriores salida: predicción de x(t+1)

Predicción de radiación solar

Objetivo: - estimar la radiación solar del día, o bien

- predecir con un número de días de anticipación

Datos diarios de un año calendario completo → 365 vectores de datos

Entrenamiento de una red neuronal artificial para la predicción de la radiación sola**r.** Morales et al. (2016)

Calibración de cámara de video

A partir de una imagen de video, un robot tiene que deducir la distancia y la orientación respecto de un objeto

Características:

No paramétrico

No requiere estimación de parámetros (distorsión de la lente, distancia focal, etc)

Método aproximado

La precisión aumenta con el tamaño del conjunto de entrenamiento

Calibración de cámara de video

Se utiliza un perceptrón multicapa (una capa oculta) para aproximar la función f.

- 1) Muestrear $f:(d,\theta) \rightarrow (x,y)$
- 2) "Invertir" f $(x,y) \rightarrow (d,\theta)$