enunciato

Se una funzione f(x) è continua nell'intervallo chiuso e limitato [a,b]

allora esiste almeno un punto c appartenente all'intervallo chiuso [a, b] tale che:

$$\int_{a}^{b} f(x)dx = (b-a) \cdot f(c)$$

dimostrazione

Osserviamo che le ipotesi sono le stesse del teorema di Weierstrass per cui la funzione è dotata di un punto di minimo e di massimo assoluto nell'intervallo [a, b]:	$\exists m = minimo \ assoluto$ $\exists M = massimo \ assoluto$
Per definizione di minimo e massimo assoluto, per ogni punto $x \in [a, b]$ della funzione si ha che:	$m \le f(x) \le M$ $\forall x \in [a, b]$
Applichiamo ai tre membri della disuguaglianza l'integrale definito tra gli estremi $[a, b]$	$\int_{a}^{b} m dx \le \int_{a}^{b} f(x) dx \le \int_{a}^{b} M dx$
Osserviamo che:	$\int_{a}^{b} m dx = m \cdot \int_{a}^{b} dx = m \cdot (b - a)$ $\int_{a}^{b} M dx = M \cdot \int_{a}^{b} dx = M \cdot (b - a)$
Sostituendo nella disuguaglianza otteniamo:	$m \cdot (b-a) \le \int_a^b f(x) dx \le M \cdot (b-a)$
Dividiamo i tre membri per $(b-a)$. Osserviamo che il termine centrale è un valore compreso tra il minimo ed il massimo.	$m \le \frac{\int_a^b f(x) dx}{(b-a)} \le M$
Per il teorema di Bolzano esisterà almeno un punto c appartenente all'intervallo chiuso $[a,b]$ tale che:	$\frac{\int_{a}^{b} f(x) dx}{(b-a)} = f(c)$
Moltiplicando entrambi i membri per $(b-a)$ ottieniamo la tesi	$\int_{a}^{b} f(x)dx = (b-a) \cdot f(c)$

f(c) viene detto *valore medio* di f(x) in [a, b]

significato geometrico del teorema della media

Riportiamo per comodità l'enunciato del teorema della media:

Se una funzione f(x) è continua nell'intervallo chiuso e limitato [a,b] allora esiste almeno un punto **c** appartenente all'intervallo chiuso [a,b] tale che:

$$\int_{a}^{b} f(x)dx = (b - a) \cdot f(c)$$

Il primo membro del teorema è l'area del trapezoide di base l'intervallo [a, b] e delimitato superiormente dal grafico della funzione f(x).

Il secondo membro del teorema è l'area del rettangolo di base [a, b] ed altezza f(c).

Da un punto di vista geometrico il teorema afferma che esiste almeno un punto ${\bf c}$ nell'intervallo [a,b] tale che l'area del trapezoide risulta uguale all'area del rettangolo di base [a,b] ed altezza f(c).

