II B. E (Electronics & Telecommunication) December 2023 Examination Sub: 3ETRC2 Digital Electronics

Time: 3 hrs.

2024033

Max Marks: 60

Note: Attempt all five questions. Attempt any two part of each question. All questions carry equal marks.				
Q.1	a) (i)	Determine the value of base r1 and r2, if $(121)_{r1} = (100)_{r2}$ and $(34)_{r1} = (41)_{r2}$. Base of the numbers r1 and r2 are		
		positive integers.	3	
	a)(ii)	Perform following subtraction using 2's complement (8 bit		
200		number) subtraction 68 - 95. Also give answer in 8 bit 2's complement form.	3	
Q.1	b) (i)	A code has four-bit code word has following valid codes.		
		0001,0010,0100,0111,1000,1011,1101,1110. How many		
		errors can be detected in this code? Give reason for your answer.	2	
	b)(ii)	Following sequence is received at the receiver of a system.	3	
		1010 0110 1011.		
		It is given that the sequence contains 8 bit of message and		
		coded in Hamming code. Determine message. (Correct it if		
O 1	a) (i)	required.)	3	
Q.1	c) (i)	What are open collector gates? Explain the concept of Wired AND operation.	3	
0.0	c) (ii)	Draw and explain the working CMOS Inverter gate.	3	
Q.2	a)(i)	Obtain the minimal expression in SOP form for		
		$F(a,b,c,d) = \sum_{m=0}^{\infty} m(0,1,2,3,5,7,8,9,11,14)$ using K-Map		
	a) (ii)	method. Draw the NAND-NAND circuit.	3	
	(11)	Using K-map method obtain NOR-NOR circuit for following function and draw the circuit.		
		$F(a,b,c,d) = \pi M(1,4,6,9,10,11,14,15)$	3	
	b)(i)	Prove that.	3	
		((AB'+ABC)'+A(B+AB'))'=0	3	
* .	b) (ii)	Prove that if $AB'+A'B = C$, then $AC'+A'C = B$	3	
			P.T.O.	

	c)(i)	Implement the following multiple output combinational	
-, ·		$F_1 = \sum_{i=1}^{n} m(0,1,5,7)$	
		$F_2 = \sum m(2,5,6,7)$ $F_3 = \sum m(0,3,4,6)$	
	c(ii)	Implement following expression using appropriate multiplexer.	3
0.0	7.	$f_1(a,b,c,d) = \sum_{i=1}^{n} m(0,2,3,6,0,0,1,2,1,0)$	3
Q.3	<u>a</u>)	Bir w Tull diller circuit	
	,b)/	draw the circuit.	
		Design negative edge triggered T-flip-flop with an active low PRESET and CLEAR asynchronics.	6
	c)	Design a four-bit parity generates.	6
Q.4	a)	parity checker circuit to check the output generator circuit. Design a negative edge triggered mod 12	
Q. T	a)	Design a negative edge triggered mod-13 asynchronous up	6
	b)	counter using JK-flip-flop. Design a synchronous up	6
	,	Design a synchronous counter goes through states 0, 5, 4,2,0 Is this counter self-starting? II.	O
		triggered T flin-flow	
	S	Design a combinational circuit to convert a R-S flip-flop to T-flip-flop.	6
Q.5	a)	Fynlain working Ail is	
	27,	Explain working 4 bit switched current source type D/A converter. If logic 1 = 5V and Logic 0 = 0V 41	6
		analog value of digital in the determine	6
	b)	An 8-hit suggestion	
		resolution of 10 mV. What is the digital output for analog	6 -
	c)	Design a Solution :	
	- /	Design a Schmitt trigger circuit using 555 timer IC.	
		T.	6

