Started on	Friday, 9 April 2021, 10:00:35 AM
State	Finished
Completed on	Friday, 9 April 2021, 10:50:55 AM
Time taken	50 mins 20 secs
Grade	8.50 out of 20.00 (43 %)

Question 1

Correct

Mark 1.00 out of 1.00

If a matrix ${m A}$ is in row echelon form, the column vectors containing non zero leading terms of the row vectors form a basis for the column space of ${m A}$.

Select one:

True

False

The correct answer is 'True'.

Question 2

Correct

Mark 1.00 out of 1.00

Flag question

If $T:\mathbb{R}^2\to\mathbb{R}^2$ rotates vectors about the origin through an angle θ , then T is a linear transformation.

Select one:

True

False

The correct answer is 'True'.

Question **3**

Correct

Mark 1.00 out of 1.00

Any set of n generating vectors in an n-dimensional vector space is a basis.

Select one:

True

False

The correct answer is 'True'.

Ouestion 4

Correct

Mark 1.00 out of 1.00

Flag question

Let W be the subspace of dimension 1342 of vector space \mathbb{R}^{2021} . Then the dimension of subspace W^{\perp} is

Answer: 679

The correct answer is: 679

Question **5**

Correct

Mark 1.00 out of 1.00

True or False

Let A be an $n \times n$ matrix such that $\det(A) = 0$, then 0 is one of the eigenvalues of A.

Select one:

T
Irue

False

The correct answer is 'True'.

Question **6**

Incorrect

Mark 0.00 out of 2.00

The dimension of row space of the given matrix $\begin{bmatrix} 1 & 2 & -1 & 1 \\ 2 & 1 & -1 & 4 \\ 1 & -4 & 1 & 5 \end{bmatrix}$ is

Select one or more:

- _ 1
- _ 2
- 3

The correct answer is: 2

Question **7**

Partially correct

Mark 1.00 out of 2.00

Select the correct answer: True or False.

True False

This choice was deleted after the attempt was started.

True Fa	alse
	This choice was deleted after the attempt was started.
	Let $S: \mathbb{R}^3 \to \mathbb{R}$ be a mapping defined by $S(x,y,z) = x+y+z $, then S is linear map.
	A homogeneous system of linear equations with fewer unknowns than equations has a nonzero solution.

This choice was deleted after the attempt was started.: False

This choice was deleted after the attempt was started.: False Let $S: \mathbb{R}^3 \to \mathbb{R}$ be a mapping defined by S(x,y,z) = |x+y+z|, then S is linear map.

: False

A homogeneous system of linear equations with fewer unknowns than equations has a nonzero solution.: False

Question **8**

Partially correct

Mark 0.50 out of 2.00

Flag question

Let $L:\mathbb{R}^3 \to \mathbb{R}^3$ be a linear map defined by $L(x_1$, x_2 , $x_3) = (x_1 + x_3$, $x_3 + 2x_2 - x_1$, $x_2 - x_1$). Let \mathbf{A} be the matrix of \mathbf{L} .

Kernel of L is

span{(1,1,-1), (0,0,0)}

Image of L is

span{(1,0,0), (-1,1,0), (0,0,0)}

Dimension of row space of $\ensuremath{\emph{A}}$ is

3

Dimension of null space of ${m A}$ is 2 span{(2,0,-1), (-1,0, 0.5), (-1,0,0)}

1

3

 $span\{(0,2,1), (-2,-2,0), (2,0,-1)\}$

span{(0,0,1), (-1,0,0), (0,2,0)}

The correct answer is:

Let $L:\mathbb{R}^3\to\mathbb{R}^3$ be a linear map defined by $L(x_1$, x_2 , $x_3)=(x_1+x_3$, $x_3+2x_2-x_1$, x_2-x_1). Let A be the matrix of L.

Kernel of L is $[span{(1,1,-1), (0,0,0)}].$

Image of L is $[span{(0,2,1), (-2,-2,0), (2,0,-1)}].$

Dimension of row space of \mathbf{A} is [2].

Dimension of null space of \mathbf{A} is [1].

Ouestion 9

Correct

Mark 2.00 out of 2.00

Flag question

Let $T:\mathbb{R}^2 \to \mathbb{R}^3$ be a linear map defined as T(x,y) = (x+3y,2x+5y,7x+9y). Matrix associated with map T with respect to the ordered basis $\{(1,0),(1,1)\}$ of \mathbb{R}^2 and the ordered basis $\{(1,1,1),(1,1,0),(1,0,0)\}$ of \mathbb{R}^3 is

- $\begin{bmatrix} 16 & -9 & -3 \\ 7 & -5 & -1 \end{bmatrix}$
- $\begin{bmatrix}
 16 & 7 \\
 -9 & -5 \\
 -3 & -1
 \end{bmatrix}$
- 7 16 -5 -9 -1 -3

3/17/22, 8:13 AM

$$\begin{bmatrix} 7 & -5 & -1 \\ 16 & -9 & -3 \end{bmatrix}$$

The correct answer is: $\begin{bmatrix} 7 & 16 \\ -5 & -9 \\ -1 & -3 \end{bmatrix}$

Question 10

Incorrect

Mark 0.00 out of 2.00

Flag question

Let $\mathbf{A} = \begin{pmatrix} -1 & 2 & 0 \\ -6 & 6 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. Dimension of the eigenspace of the largest eigenvalue of A is...

*Note: Write your answer as a numerical value.

Answer: 3

The correct answer is: 2

Question 11

Incorrect

Mark 0.00 out of 2.00

Flag question

Let A be a 7×7 matrix and -3 is one of the eigenvalues of A then which of the following are eigenvalues of $9I - 5A - 2A^3$, A^{-1} , PAP^{-1} respectively where P is an invertible matrix?

Select one:

- -30,
 - -1/3,
 - 3
- 30,
 - 1/3,
 - -3
- 78,
 - -1/3,

-78,-1/3,-3

The correct answer is: 78, -1/3, -3

Question 12

Not answered

Marked out of 3.00

Drag the correct answers:

Let $\mathbb{P}_2(\mathbb{R})$ be the vector space of polynomials in x of degree at most 2 and $T\colon \mathbb{P}_2(\mathbb{R}) \to \mathbb{M}_2(\mathbb{R})$ be a linear map such that $T(1) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $T(x) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ and $T(x^2) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Then Im(T) is and a pre-image of $\begin{pmatrix} 1 & 5 \\ 5 & 1 \end{pmatrix}$ under

 $oldsymbol{T}$ is

a proper subspace of vector space of symmetric matrices

a subspace of vector space of symmetric matrices

a proper subspace of vector space of skew-symmetric matrices

a subspace of vector space of skew-symmetric matrices

 $3-2x+7x^2$

 $2-3x+7x^2$

 $3+2x-7x^2$

The correct answer is:

Drag the correct answers:

Let $\mathbb{P}_2(\mathbb{R})$ be the vector space of polynomials in \boldsymbol{x} of degree at most 2 and $\boldsymbol{T}\colon \mathbb{P}_2(\mathbb{R}) \to \mathbb{M}_2(\mathbb{R})$ be a linear map such that $\boldsymbol{T}(1) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $\boldsymbol{T}(x) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ and $\boldsymbol{T}(x^2) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Then $\boldsymbol{Im}(\boldsymbol{T})$ is [a proper subspace of vector space of symmetric matrices], and a pre-image of $\begin{pmatrix} 1 & 5 \\ 5 & 1 \end{pmatrix}$ under \boldsymbol{T} is [3-2x+7x^2]

Save the state of the flags