Resampling Methods

- Repeated Holdout*
- Cross Validation*
- Bootstrapping

*Stratified resampling is preferred

Repeated holdout

Compute Avg Acc

Repeated Holdout Idea

- n = total number of training data points
 k = number of repetitions
- for i = 1:k
 - Randomly hold 30% of data for validation
 - -train on remaining 70% of data
 - -Acc(i) = accuracy on 30% held data
- Repeated holdout Accuracy = 1/k Σ_i Acc(i)
- Common value for k is 10

Repeated Holdout Illustrated

K-fold cross validation

Compute Avg Acc

K-Fold CV Idea

- n = total number of training data points
 k = number of folds
- Randomly partition our full data set into k disjoint subsets (each roughly of size n/k)
- for i = 1:k
 - -train on all folds of data except ith
 - -Acc(i) = accuracy on ith fold
- Cross-Validation Accuracy = $1/k \Sigma_i Acc(i)$
- Common values for k are 5 and 10 and called as "leave-one-out" when k = n

K-Fold CV Illustrated

Bootstrapping Idea

Bootstrap sample: sample with replacement from a dataset

The probability that a given example is not selected for a bootstrap sample of size n:

$$(1-1/n)^n$$

This has a limit as n goes to infinity: 1/e = 0.368

Conclusion: each bootstrap sample is likely to leave out about a third of the examples.

Bootstrapping Illustrated

