Sasa Mardi, EE23BTECH11222

Question 10.5.2-9: If the 3rd and the 9th terms of an AP are 4 and -8, respectively, which term of this AP is zero?

Solution:

TABLE I: Input Parameters

Parameter	Value	Description
x(n)	x(0) + (n)d	$(n+1)^{th}$ term of the AP
x(0) + 2d	4	Third term of the AP
x(0) + 8d	-8	Ninth term of the AP
<i>x</i> (0)	-	First term of the AP
d	-	Common difference of the AP

$$\begin{pmatrix} x(0) & -x(0) \\ 8d & -2d \\ -8 & -4 \end{pmatrix} = \begin{pmatrix} 0 \\ 6d \\ -12 \end{pmatrix} \tag{1}$$

$$6d = -12 \tag{2}$$

$$\implies d = -2$$
 (3)

Substitute d = -2 into:

$$x(0) = 4 - 2d \tag{4}$$

$$x(0) = 4 - 2(-2) \tag{5}$$

$$x(0) = 8 \tag{6}$$

Substitute x(0) = 8 and d = -2 into:

$$x(n) = x(0) + (n)d = 0 (7)$$

$$8 + (n)(-2) = 0 (8)$$

$$n = 4 \tag{9}$$

Term number = n + 1 = 5

The term where the value is zero in the given arithmetic progression is the 5th term.

The series is an arithmetic progression.

$$x(n) = (x(0) + n(-2))(u(n))$$
 (10)

2) Z-transform of x(n)

$$\frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2} \quad \forall \quad |z| > 1$$
 (11)

Using the values from Table I:

$$\frac{8}{1-z^{-1}} + \frac{-2z^{-1}}{(1-z^{-1})^2} \quad \forall \quad |z| > 1$$
 (12)

Fig. 1: Plot of x(n) vs n; Refer to Table I for values of x(0) and d