Chapter 1

- Get the overview and terminology
- depth coming up later in course
- Approach: use Internet as example

KUROSE ROSS

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Performance
 - delay, loss and throughput
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

What is the Internet?

What is the Internet: "nuts and bolts" view

server

wireless laptop

cellular handheld

- * millions of connected computing devices:
 - hosts = end systems
 - running network apps

communication links

satellite

- wired links
- transmission rate = bandwidth

fiber, copper, radio,

- * routers: forward packets
 - routers or switches

... to Internet of (Every)Things

Smartphones

Home Appliances

Wearables

Drones

Mobile is King

Time Spent With the Internet, by Device, in the US

total minutes (mm) per month

February 2013 - January 2014

- 7.7B mobile-connected devices vs 7.1B world's population
- 1.4B smartphones vs. 2B PCs

Mobile and Social

We are social, Global Digital Snapshot, Jan 2015

Time Spent on Mobile Apps

What is the Internet: "nuts and bolts" view

server

wireless laptop

cellular handheld

- * millions of connected computing devices:
 - hosts = end systems
 - running network apps

communication links

wired links

- fiber, copper, radio, satellite
- transmission rate = bandwidth

- router
- * routers: forward packets
 - routers or switches

What is the Internet: "nuts and bolts" view

These components interoperate via protocols and standards

- Internet: "network of networks"
 - loosely hierarchical
- protocols control sending+ receiving of msgs. E.g.:
 - HTTP, Skype
 - TCP/IP
 - WiFi (802.11)
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

What is the Internet: a "service" view

From an application developer's pointof-view, it seems like an API.

 communication infrastructure enables distributed applications:

> Web, VoIP, email, games, ecommerce, file sharing

communication services provided to applications:

- reliable data delivery from sour to destination
- "best effort" (unreliable) data delivery

Analogy: Postal Service.

What is the Internet: two views

"Service" View

"Nuts and bolts" View

It all works because of protocols.

What is a protocol?

human protocols:

"what's the time?"

... specific msgs sent

... specific actions taken when msgs received, or other events

Q: Other examples of human protocols?

A: Q & A in class, introductions, automated phone service (airline, banking, healthcare), ordering coffee at starbucks, bank,

What is a protocol?

<u>human protocols:</u>

- * "what's the time?"
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet is governed by protocols

What is a protocol?

Human vs. computer network protocol:

- protocols define format, order of msgs sent and received among network entities, and actions taken on msg Tx/Rx
- protocols do NOT define the content

Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Performance
 - delay, loss and throughput
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

Goal: connect end-systems

end systems (hosts or servers):

- run application programs
- e.g. Web, email
- at "edge of network"

client/server model

- client host requests, receives service from always-on server
- e.g. Web browser/server; email client/ server

peer-peer model:

- minimal (or no) use of dedicated servers
- e.g. Skype, BitTorrent

A closer look at network structure:

- network edge: applications and hosts
- access networks, physical media: wired, wireless communication links

- network core:
 - interconnected routers
 - network of networks

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets (local telco or TV company)
- institutional access networks (school, company)
- * mobile access networks

Characteristics of access:

- bandwidth (bits per second) of access network?
- * shared or dedicated?
- other?

Access net: Dial-up Modem

- uses existing telephony infrastructure
 - Twisted pair, convert digital to analog
 - home directly-connected to central office
- ❖ <56Kbps direct access to router (was 14Kbps ©)
 </p>
 - It sounded like this: https://www.youtube.com/watch?v=gsNaR6FRu00
 - Data on the wire restricted to a band of ~= 4000Hz
 - 8000 samples per sec; 8 bits per sample (1 bit for control); 56,000bits/sec= 56kbps
- Couldn't surf and phone at same time: not "always on"

Access net: Digital Subscriber Line (DSL)

- * use existing telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- < 2.5 Mbps upstream transmission rate (typically < 1 Mbps)
- < 24 Mbps downstream transmission rate (typically < 10 Mbps)
 </p>

Q: Why Modem is Worse than DSL over same medium??

PSTN for carrying voice calls made of:

- Local loops, mostly analog twisted pairs to houses
- Trunks, digital fiber optic links that carry calls
- Switching offices, that move calls among trunks
- Local loops/last mile has frequency band 0-1MHz

Modem and DSL use similar (analog-to-digital) approach over same local loop Q:Why does Modem get 56 kbps and DSL gets 10Mbps?

Modem (POTS):

- POTS apply filter 0-4000Hz at end-office, to match human voice
- In fact filter is 300-3400Hz (3dB points, but cutoffs not sharp),
- ◆ Data on the wire restricted to a band of ~= 4000Hz
- 8000 samples per sec (Nyquist); 8bits per sample 1 bit for control); 56,000bits/sec= 56kbps

[Local loop (I): modems]

Telephone modems send digital data over an 3.1 KHz analog voice channel interface to the POTS

- ❖ POTS apply filter 0-4000Hz at end-office, to match human voice
- In fact filter is 300-3400Hz (3dB points, but cutoffs not sharp),
- ❖ Data on the wire restricted to a band of ~= 4000Hz
- 8000 samples per sec; 8 bits per sample (1 bit for control); 56,000bits/ sec= 56kbps

[Local loop (2): DSL]

DSL <u>broadband</u> sends data over the local loop to the local office using frequencies that are not used for POTS

- Incoming line connected to different switch that does NOT filter data
- Telephone/computers attach to the same old phone line
- Rates vary with line
 - Limit IMGHz > 3.1Khz
 - 2,000,000 samples/sec, 8bbps → 16Mbps
 - OFDM is used up to 1.1 MHz for ADSL2
 - ADSL2 up to 12 Mbps

Access net: Cable network

- Use existing cable TV infrastructure
- * HFC: hybrid fiber coax
 - asymmetric: up to 30Mbps downstream, 2 Mbps upstream
- network of cable+fiber attaches homes to ISP router
 - homes share access network to cable headend
 - unlike DSL, which has dedicated access to central office

Fiber to the Home (FTTH)

- optical links from central office to the home
- much higher rates; fiber also carries television and phone services
- fiber.google.com

Access net: home network

Enterprise access networks (Ethernet)

- typically used in companies, universities, etc
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- today, end systems typically connect into Ethernet switch

Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka "access point"

wireless LANs:

- within building (100 ft)
- 802.11b/g (WiFi): 11, 54 Mbps transmission rate
- 802.11n: up to 600 Mbps

wide-area wireless access

- provided by telco (cellular) operator, 10's km
- between 1 and 10 Mbps
- 3G, 4G: LTE, 5G

Characteristics of selected wireless links

Roadmap

I.I What is the Internet?

network connecting end-systems, end-systems, "nuts and bolts" vs "service" view, protocols

I.2 Network edge

- end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Performance
 - delay, loss and throughput
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

Physical media

- bit: propagates between transmitter/receiver pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

Physical media – twisted pair (TP)

- two insulated copper wires
 - Category 3: traditional telephone network
 - Category 5: 100 Mbps, I Gbps Ethernet
 - Category 6a: 10Gbps up to 100m

 Speed depends on material, thickness of wire, #twists, shielding, and distance

Physical Media: coax, fiber

Coaxial cable:

- two concentric copper conductors
- bidirectional
- baseband:
 - single channel on cable
 - legacy Ethernet
- broadband:
 - multiple channels on cable
 - HFC

Fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed point-to-point transmission
 - e.g., 10' s-100' s Gpbs
- low error rate:
 - low attenuation up to 100s kms
 - repeaters spaced far apart
 - immune to electromagnetic noise
- Hard to tap
- Top-choice for long distance
- Residential: fiber.google.com

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

radio link types:

- terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., WiFi)
 - I I Mbps, 54 Mbps
- wide-area (e.g., cellular)
 - 3G cellular: ~ few Mbps
- satellite
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude

Transmission over a single point-topoint link

Notes on Transmission vs. Propagation Delay

Host sends one bit

Host: sends one packet

Host: sends 2 packets of data

Host: sends packets of data

host sending function:

- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- transmits packet into access network at link transmission rate R
 - aka link capacity, aka link bandwidth

one-hop numerical example:

- L = 7.5 Mbits
- R = 1.5 Mbps
- one-hop transmission delay = L/R= 5 sec

transmission delay time needed to transmit
$$L$$
-bit packet into link $= \frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Caravan analogy: d_{trans}vs. d_{prop}

- cars "propagate" at 100 km/hr
- toll booth takes 12 sec to service car (transmission time)
- car~bit; caravan ~ packet
- Q: How long until caravan is lined up before 2nd toll booth?
- time to "push" entire caravan through toll booth onto highway = 12*10 = 120 sec = 2min
- time for last car to propagate from 1st to 2nd toll both: 100km/(100km/ hr)= 1 hr=60min
- A: 62 minutes

Caravan analogy: d_{trans} < d_{prop}

Caravan analogy: d_{trans} > d_{prop}

- cars now "propagate" at 1000 km/hr, i.e. 6min
- toll booth now takes I min to service a car
- ❖ Q: Will cars arrive to 2nd booth before all cars serviced at 1st booth?
 - A: Yes! After 7 min, 1st car arrives at second booth; three cars still at 1st booth.
 - Ist bit of packet can arrive at 2nd router before packet is fully transmitted at 1st router! (see applet at AWL Web site)

Caravan analogy: d_{trans} > d_{prop}

Throughput <= Link Rate

- throughput: rate (bits/time unit) at which bits are transferred
 - instantaneous: rate at given point in time
 - average: rate over longer period of time

