

Termodinámica (FIS1523)

Tablas termodinámicas (cont.)

Felipe Isaule felipe.isaule@uc.cl

Miércoles 9 de Abril de 2025

Resumen clase anterior

- Revisamos los distintos tipos de diagramas de propiedades.
- Comenzamos a revisar las tablas termodinámicas para líquidos y vapores saturados.

Clase 11: Tablas termodinámicas (cont.)

- Mezclas saturadas.
- Vapores sobrecalentados y líquidos comprimidos.
- Valores de referencia.

- Bibliografía recomendada:
- → Cengel (3.5).

Clase 11: Tablas termodinámicas (cont.)

- Mezclas saturadas.
- Vapores sobrecalentados y líquidos comprimidos.
- Valores de referencia.

Mezcla saturada de líquido-vapor

- Como hemos visto en clases pasadas, durante el proceso de vaporación existe una mezcla saturada líquido-vapor.
- Por lo tanto, para describir tal mezcla necesitamos saber la proporción de la mezcla en cada fase.

Calidad de una mezcla líquido-vapor

 La calidad o título corresponde a la cantidad de vapor con relación a la cantidad total de materia

$$x = \frac{m_{\text{vapor}}}{m_{\text{total}}},$$

donde

$$m_{\text{total}} = m_{\text{vapor}} + m_{\text{liquido}} = m_f + m_g.$$

- La calidad toma valores entre cero y uno, describiendo un vapor húmedo.
 - \rightarrow x=1: Vapor saturado.
 - \rightarrow x=0: Líquido saturado.
- El nombre calidad viene de la observación de que las máquinas de vapor funcionan mejor con mayor proporción de vapor que de líquido.

Calidad de una mezcla líquido-vapor

 Ahora examinemos el volumen de una mezcla:

Volumen total:
$$V = V_f + V_g$$

 $\longrightarrow m_t \nu_{\text{prom}} = m_f \nu_f + m_g \nu_g$
 $m_t \nu_{\text{prom}} = (m_t - m_g) \nu_f + m_g \nu_g$

donde $m_t = m_{\text{total}}$. Al dividir por m_t ,

$$\longrightarrow \nu_{\text{prom}} = (1 - x)\nu_f + x\nu_g = \nu_f + x\nu_{fg},$$

donde $\nu_{fg}=v_g-v_f$. Al despejar la **calidad**:

$$x = \frac{\nu_{\text{prom}} - \nu_f}{\nu_{fg}}.$$

Calidad de una mezcla líquido-vapor

• La calidad se puede relacionar con las distancias horizontales en los diagramas $P-\nu$ y $T-\nu$.

$$x = \frac{\nu_{\text{prom}} - \nu_f}{\nu_{fg}}.$$

 Podemos escribir otras cantidades de la misma forma:

$$u_{\text{prom}} = u_f + x u_{fg}, \qquad h_{\text{prom}} = h_f + x h_{fg}.$$

• De manera general, podemos escribir, para una propiedad y,

$$y_{\text{prom}} = y_f + xy_{fg},$$

donde los datos y_f e y_{fg} son obtenidos de las **tablas** para **líquidos y vapores saturados**.

Ejemplo 1:

 Un recipiente rígido contiene 10 kg de agua a 90 °C. Si 8 kg del agua están en forma líquida y el resto como vapor, determine la presión y el volumen del recipiente.

Ejemplo 1:

 Un recipiente rígido contiene 10 kg de agua a 90 °C. Si 8 kg del agua están en forma líquida y el resto como vapor, determine la presión y el volumen del recipiente.

De la figura de inmediato tenemos que la presión es

$$P = 10.183 \text{ kPa}$$

Para calcular el volumen, primero notamos que:

$$\nu_f = 0.001036, \qquad \nu_g = 2.3593.$$

Entonces:

$$V = m_f \nu_f + m_g \nu_g$$
= 8 kg 0.001036 + 2 kg 2.3593
$$V = 4.73 \text{ m}^3.$$

Tarea: Obtener el volumen utilizando calidad.

 $m_q = m_t - m_f$

- Un recipiente de 80 L contiene 4 kg de "refrigerante 134a" a una presión de 160 kPa. Determine
 - → La temperatura, la calidad, y la entalpía del refrigerante.
 - → El volumen que ocupa la fase de vapor.

		Volumen específico, snº/kg		Ene	Energia interna, kJ/kg		Entalpia, 8,89g		Entropia, kilkg - K			
Pres., P kPa	Temp. sat., T _{us} *C	Liq. sat.,	Vapor sat., v,	Liq. sat., o,	Evap	Vapor sat., u,	Liq. sat., by	Evap	Vapor sat., h,	Liq. sat.,	Evap	Vapor set.,
60	-36.95	0.0002048	0.81121	3.798	205.32	209.12	3.841	223.95	227.79	0.01634	0.94807	0.964
70	-33.87	0.0007144	0.26929	7.680	203.20	210.88	7.730	222.00	229.73	0.03267	0.92775	0.960
80	-21.13	0.0007185	0.23753	11.15	200.30	212.46	11.21	220.25	231.46	0.04711	0.90999	0.957
90	-28.65	0.0007223	0.21263	14.31	199.57	213.88	14.37	218.65	233.02	0.06008	0.89419	0.9543
100	-26.37	0.0007259	0.19254	17.21	197.98	215.19	17.28	217.16	234.44	0.07188	0.87995	0.951
	-22.32	0.0007324	0.16212	22.40	195.11	217.51	22.49		236.97	0.09275		0.947
140	-18.77	0.0007383	0.14014	26.58	192.57	219.54	27.08	212.08	239.16	0.11087	0.83368	0.9445
160	-15.60	0.0007437	0.12348	31.09	190.27	221.35	31.21	209.90	241.11	0.12693	0.81496	0.9415
	-12.73	0.0007487	0.11041	34.83	188.16	222.99	34.97		242.86	0.14139	0.79826	
200	-10.09	0.0007533	0.099867	38.28	186.21	224.48	38.43	206.03	244.46	0.15457	0.78316	0.937
240	-5.38	0.0007620	0.083897	44.48	182.67	227.14	44.66	202.62	247.28	0.17794	0.75664	0.934
280	-1.25	0.0007699	0.072352	49.97	179.50	229.46	50.18		249.72	0.19829	0.73381	
320	2.46	0.0007772	0.063604	54.92	176.61	231.52	55.16		251.88	0.21637	0.71369	
360	5.82	0.0007841	0.056738	59.44	173.94	233.38	59.72	194.08	253.91	0.23270	0.69566	0.9280
400	8.91	0.0007907	0.051201	63.62	171.45	235.07	63.94	191.62	255.55	0.24761	0.67929	0.9269
450	12.46	0.0007985	0.045619	68.45	168.54	237.00	68.81		257.53	0.26465	0.66069	
500	15.71	0.0008059	0.041118	72.93	165.82	238.75	72.33		259.30	0.28023	0.64377	
550	18.73		0.037408	77.10	163.25	240.35	77.54		260.92	0.29461	0.62821	
600	21.55	0.0008199		81.02	160.81	241.83	81.51		262.40	0.30799	0.61378	
650	24.20	0.0008266	0.031646	84.72	158.48	243.20	85.26	178.51	263.77	0.32051	0.60030	
700	26.69	0.0008331	0.029361	88.24	156.24	244.48	88.82		265.03	0.33230	0.58763	
750	29.06	0.0008355	0.027371	91.59	154.08	245.67	92.22		266.20	0.34345	0.57567	0.919
800	31.31	0.0008458	0.025621	94.79	152.00	246.79	95.47		267.29	0.35404		0.918
850	33.45	0.0008520	0.024069	97.87	149.98	247.95	99.60	169.71	268.31	0.36413	0.55349	0.917
900	35.51	0.0008580	0.022683	100.83	148.01	248.85			269.26	0.37377	0.54315	
950	37.48	0.0008641	0.021438		146.10	249.79			270.15	0.38301	0.53323	
1000	39.37	0.0008700	0.020313	105.45	144.23	250.68	107.32		270.99	0.39189	0.52368	
1200	46.29	0.0008934	0.016715	116.70	137.11	253.81			273.87	0.42441	0.48863	
1400	52.40	0.0009166	0.014107	125.94	130.43	256.37	127.22	148.90	276.12	0.45315	0.45734	0.910
1600	57.88	0.0009400	0.012123	134.43	124.04		135.93	141.93	277.86	0.47911	0.42873	
1800	62.87	0.0009639	0.010559	142.33	117.83		144.07		279.17	0.50294		0.9045
2000	67,45	0.0009886	0.009288		111.73		151.76		280.09	0.52509	0.37675	0.901
2500	77.54	0.0000566	0.006936	166.99	96.47	263.45			280.79	0.57531	0.31695	
3000	86.16	0.0011406	0.005275	183.04	80.22	263.26	186.46	92.63	279.09	0.62118	0.25776	0.8785

- Un recipiente de 80 L contiene 4 kg de "refrigerante 134a" a una presión de 160 kPa. Determine
 - La temperatura, la calidad, y la entalpía del refrigerante.

Primero verifiquemos que tenemos una mezcla saturada. El Volumen específico es:

$$\nu = \frac{V}{m} = \frac{0.08 \text{ m}^3}{4 \text{ kg}} = 0.02 \frac{\text{m}^3}{\text{kg}}$$

Por otra parte, de la tabla y figura tenemos que:

$$\nu_f = 0.0007437 \text{ m}^3/\text{kg}, \quad \nu_g = 0.12348 \text{ m}^3/\text{kg} \quad \longrightarrow \quad \nu_f < \nu < \nu_g.$$

Sí es una mezcla saturada

Por tanto, de la tabla y figura:

$$T = -15.6$$
°C

Felipe Isaule

- Un recipiente de 80 L contiene 4 kg de "refrigerante 134a" a una presión de 160 kPa. Determine
 - → La temperatura, la calidad, y la entalpía del refrigerante.

Ahora calculamos la calidad:

$$x = \frac{\nu_g}{\nu_t} = \frac{\nu - \nu_f}{\nu_g - \nu_f} = \frac{0.02 - 0.0007437}{0.12348 - 0.0007437}$$

$$\longrightarrow \boxed{x = 0.157}$$

P, kPa

R-134a

$$P = 160 \text{ kPa}$$
 $m = 4 \text{ kg}$
 $V_f = 0.0007437$
 $V_g = 0.12348$
 $V_g = 0.12348$

- Un recipiente de 80 L contiene 4 kg de "refrigerante 134a" a una presión de 160 kPa. Determine
 - → La temperatura, la calidad, y la entalpía del refrigerante.

Finalmente, para calcular la entalpía recordamos que:

$$h = h_f + xh_{fg} = (31.21 + 0.157 \times 209.9) \text{kJ/kg}$$

$$\longrightarrow h = 64.2 \text{ kJ/kg}$$

- Un recipiente de 80 L contiene 4 kg de "refrigerante 134a" a una presión de 160 kPa. Determine
 - → El volumen que ocupa la fase de vapor.

Ya tenemos el volumen específico, calidad, y masa total. Con esto podemos calcular el volumen del vapor.

Primero, la masa del vapor:

$$m_g = x m_t = 0.157 \times 4 \text{ kg} = 0.628 \text{ kg}$$

Entonces, el volumen del vapor:

$$V_g = m_g \nu_g = 0.628 \text{ kg } 0.12346 \text{ m}^3/\text{kg}$$

$$\longrightarrow \boxed{V_g = 0.077 \text{ m}^3}$$

Clase 11: Tablas termodinámicas (cont.)

- Mezclas saturadas.
- Vapores sobrecalentados y líquidos comprimidos.
- Valores de referencia.

Vapor sobrecalentado

- En la región sobrecalentada existe una sola fase.
- La presión y temperatura ya no son dependientes.
 - → Las propiedades se tabulan para una presión o temperatura determinada.

С	
0	
T, °C	v u h m^3/kg kJ/kg kJ/kg
	P = 0.1 MPa (99.61 °C)
Sat.	1.6941 2 505.6 2 675.0
100	1.6959 2 506.2 2 675.8
0 150	1.9367 2 582.9 2 776.6
1 300	7.2605 4 687.2 5 413.3
	P = 0.5 MPa (151.83 °C)
Sat.	0.37483 2 560.7 2 748.1
200	0.42503 2 643.3 2 855.8
250	0.47443 2 723.8 2 961.0
0	

Vapor sobrecalentado

- En comparación con un vapor saturado, un vapor sobrecalentado tiene:
 - → **Menor presión** $P < P_{\text{sat}}$ a temperatura fija.
 - \rightarrow Mayor temperatura $T > T_{\rm sat}$ a presión fija.
 - \rightarrow Mayor volumen específico $\nu > \nu_{sat}$ a temperatura o presión fija.
 - \rightarrow Mayor energía interna $u>u_{\rm sat}$ a temperatura o presión fija.
 - \rightarrow Mayor entalpía $h > h_{sat}$ a temperatura o presión fija.

Líquido comprimido

- Las tablas para líquidos comprimidos son similares a las de vapores sobrecalentados debido a que, nuevamente, la temperatura y presión no son dependientes.
- Estas tablas no son muy comunes.
 - La variación de las propiedades con cambios de presión es muy pequeña.
- Por lo anterior, podemos aproximar las propiedades de un líquido comprimido por las de un líquido saturado a la misma temperatura:

$$\nu_{\text{compr.},T} \approx \nu_{\text{sat.},T}, \quad h_{\text{comp.},T} \approx h_{\text{sat.},T}, \quad u_{\text{comp.},T} \approx u_{\text{sat.},T}.$$

donde $f_{\text{sat.},T}$ es el valor de la propiedad f saturada a una temperatura T.

Líquido comprimido

- La excepción a la aproximación anterior es la entalpía, ya que tiene una dependencia mayor con la presión.
- Sin embargo, podemos usar la siguiente aproximación:

$$h_{\text{compr.},T} \approx h_{\text{sat.},T} + \nu_{\text{sat.},T} \left(P - P_{\text{sat.},T} \right)$$
.

• Sin embargo, para obtener valores realistas de la entalpía es mejor consultar una tabla.

Líquido comprimido

- En comparación con un líquido saturado, un líquido comprimido tiene:
 - \rightarrow Mayor presión $P > P_{\text{sat}}$ a temperatura fija.
 - \rightarrow Menor temperatura $T < T_{\rm sat}$ a presión fija.
 - Menor volumen específico $\nu < \nu_{\text{sat}}$ a temperatura o presión fija.
 - \rightarrow Menor energía interna $u < u_{sat}$ a temperatura o presión fija.
 - → **Menor entalpía** $h < h_{sat}$ a temperatura o presión fija.
- Sin embargo, como se indicó, sólo la entalpía muestra cambios significativos con respecto a sus valores saturados.

Ejemplo 3:

- Determine la energía interna del agua líquida comprimida a 80 °C y 5 MPa con
 - Datos de la tabla para líquido comprimido.
 - → Datos para líquido saturado. ¿Cuál es el error?

Ejemplo 3:

- Determine la energía interna del agua líquida comprimida a 80 °C
 y 5 MPa con
 - Datos de la tabla para líquido comprimido.

La energía interna específica es directamente:

$$u = 333.82 \text{ kJ/kg}$$

Ejemplo 3:

- Determine la energía interna del agua líquida comprimida a 80 °C y 5 MPa con
 - → Datos para líquido saturado. ¿Cuál es el error?

De la tabla de líquido saturado:

$$u_{\rm sat.} = 334.97 \text{ kJ/kg}$$

Para calcular el error comparamos el valor real con el saturado:

error =
$$\frac{u_{\text{sat.}} - u}{u} \times 100 = \frac{334.97 - 333.82}{333.82} \times 100$$

$$\longrightarrow \boxed{\text{error} = 0.34\%}$$

Clase 11: Tablas termodinámicas (cont.)

- Mezclas saturadas.
- Vapores sobrecalentados y líquidos comprimidos.
- Valores de referencia.

Valores de referencia

- Los valores de u, h y s no se pueden medir directamente.
- En la práctica se miden los cambios de estas propiedades.
- Por tanto, es necesario fijar valores de referencia. Es decir, asignar un valor cero.
- <u>Ejemplo</u>: Para el agua se suele tomar el líquido saturado a 0.01°C como valor de referencia.
- En ocasiones, tablas pueden mostrar valores distintos debido a que usan distintos valores de referencia.

 Para el agua, determine las propiedades faltantes y las descripciones de fase en la siguiente tabla:

	T, °C	<i>P</i> , kPa	u, kJ/kg	Χ	Descripción de fase
a)		200		0.6	
b)	125		1.600		

 Para el agua, determine las propiedades faltantes y las descripciones de fase en la siguiente tabla:

	T, °C	<i>P</i> , kPa	u, kJ/kg	Χ	Descripción de fase
a)		200		0.6	
b)	125		1.600		

a) Primero, debido a que la calidad es distinta a 0 y 1, entonces tenemos una mezcla saturada.

Ahora vamos a la tabla de agua saturada.

Agua saturada. Tabla de presiones

		<u> </u>		_		
			_	nergía interna, kJ/kg		
Pres., P kPa	Temp. sat., $T_{\rm sat}$ °C	Líq. sat., u _f	Evap., u _{fg}	Vapor sat., u_g		
200	120.21	504.50	2024.6	2529.1		

De la tabla, la temperatura:

$$T = 120.21^{\circ} \text{C}$$

La energía interna:

$$u = u_f + x u_{fg}$$

= $(504.5 + 0.6 \times 2024.6) \text{ kJ/kg}$
 $\longrightarrow u = 1719.26 \text{ kJ/kg}$

 Para el agua, determine las propiedades faltantes y las descripciones de fase en la siguiente tabla:

	T, °C	<i>P</i> , kPa	u, kJ/kg	Χ	Descripción de fase
a)	120.21	200	1719.26	0.6	Mezcla saturada
b)	125		1.600		

a) Primero, debido a que la calidad es distinta a 0 y 1, entonces tenemos una mezcla saturada.

Ahora vamos a la tabla de agua saturada.

Agua saturada. Tabla de presiones

		·	- terna,	
Pres., P kPa	Temp. sat., T _{sat} °C	Líq. sat., u _f	Evap., u_{fg}	Vapor sat., u_g
200	120.21	504.50	2024.6	2529.1

De la tabla, la temperatura:

$$T = 120.21^{\circ}\mathrm{C}$$

La energía interna:

$$u = u_f + x u_{fg}$$

= $(504.5 + 0.6 \times 2024.6) \text{ kJ/kg}$
 $\longrightarrow u = 1719.26 \text{ kJ/kg}$

 Para el agua, determine las propiedades faltantes y las descripciones de fase en la siguiente tabla:

	T, °C	<i>P</i> , kPa	u, kJ/kg	Х	Descripción de fase
a)	120.21	200	1719.26	0.6	Mezcla saturada
b)	125		1.600		

b) En principio desconocemos la fase, y por tanto no sabemos qué tabla utilizar.

Para identificar la fase, recordamos que, con temperatura constante, la energía interna aumenta al pasar de líquido, a mezcla, a gas.

Al revisar las tablas para *T*=125°C nos damos cuenta que tenemos una **mezcla**, ya que:

$$u_f < u < u_g$$

$$u_f = 524.82 \text{ kJ/kg}, \quad u_g = 2534.3 \text{ kJ/kg}.$$

Agua saturada. Tabla de temperaturas

			Energía in kJ/kg	
Temp., T°C	Pres. sat., P _{sat} kPa	Líq. sat., u _f	Evap., u _{fg}	Vapor sat., u _g
125	232.23	524.83	2009.5	2534.3

De la tabla, la presión:

$$P = 232.23 \text{ kPa}$$

Finalmente, la calidad:

$$u = u_f + xu_{fg} \longrightarrow x = \frac{u - u_f}{u_{fg}}$$
$$x = \frac{1600 - 524.83}{2009.5} \longrightarrow x = 0.535$$

Felipe Isaule

• Para el agua, determine las **propiedades faltantes** y las descripciones de **fase** en la siguiente tabla:

	T, °C	<i>P</i> , kPa	u, kJ/kg	Х	Descripción de fase
a)	120.21	200	1719.26	0.6	Mezcla saturada
b)	125	232.23	1.600	0.535	Mezcla saturada

b) En principio desconocemos la fase, y por tanto no sabemos qué tabla utilizar.

Para identificar la fase, recordamos que, con temperatura constante, la energía interna aumenta al pasar de líquido, a mezcla, a gas.

Al revisar las tablas para *T*=125°C nos damos cuenta que tenemos una **mezcla**, ya que:

$$u_f < u < u_g$$

$$u_f = 524.82 \text{ kJ/kg}, \quad u_g = 2534.3 \text{ kJ/kg}.$$

Agua saturada. Tabla de temperaturas

		Energía interna, kJ/kg			
Temp., T°C	Pres. sat., P _{sat} kPa	Líq. sat., u_f	Evap., u _{fg}	Vapor sat., u _g	
125	232.23	524.83	2009.5	2534.3	

De la tabla, la presión:

$$P = 232.23 \text{ kPa}$$

Finalmente, la calidad:

$$u = u_f + xu_{fg} \longrightarrow x = \frac{u - u_f}{u_{fg}}$$
$$x = \frac{1600 - 524.83}{2009.5} \longrightarrow x = 0.535$$

Resumen

- Hemos definido la calidad para mezclas saturadas.
- Revisamos el uso de tablas para gases sobrecalentados y líquidos comprimidos.
- Próxima clase:
 - → Gases ideales.