

COURSE SYLLABUS

<MTH00051> – <Applied Mathematics and Statistics>

1. GENERAL INFORMATION

Course name: Applied Mathematics and Statistics

Course name (in Vietnamese): Toán ứng dụng và thống kê

Course ID: MTH00051

Knowledge block: General Education Knowledge

Number of credits: 4

Credit hours for theory: 45

Credit hours for practice: 30

Credit hours for self-study: 90

Prerequisite: none

Prior-course: none

Instructors:

2. COURSE DESCRIPTION

Systematize math knowledge learned in the first 3 semesters of university (calculus, linear algebra, probability-statistics), introduce algorithmic skills to be able to solve problems related to data analysis. Specifically, including 3 blocks of knowledge:

- Computational methods for matrix algebra.
- Computational methods for convex optimization
- Probability models

3. COURSE GOALS

At the end of the course, students are able to

ID	Description	Program LOs
G1	Be able to work on an individual and team level.	2.2, 2.3.1
G2	Be able to explain terminologies in data science.	2.4.3, 2.4.5
G3	Be able to explain terminologies in computer science.	1.4, 3.3
G4	Be able define applied mathematical problems.	1.3.6, 1.4
G5	Be able to apply math knowledge to solve CS problems.	5.1.1, 5.1.3, 5.2.1, 5.2.2, 5.3.1, 6.1.1
G6	Python programming.	1.3.6

4. COURSE OUTCOMES

CO	Description	I/T/U
G1.1	Establish, organize, operate, and manage the team.	I
G1.2	Participate in group discussions.	I, T
G1.3	Writing a technical report.	U
G2.1	Be able to explain terminologies.	I
G2.2	Reading English lectures and textbooks.	I
G3.1	Be able to explain basic concepts.	I
G3.2	Ethics.	I
G3.3	Be able to self study.	I
G4.1	Be able to use the learned models.	I, T
G5.1	Be able to describe the learned mathematical and statistical methods	I, T
G5.2	Be able to design an algorithm.	I, T, U

5. TEACHING PLAN

ID	Topic	Course outcomes	Teaching/Learning Activities (samples)
1	System of linear equations		Lecturing
	. Introduction to system of linear		Q&A, Group discussion
	equations		QZ1: Quiz 1
	. System of linear equations and matrices $-\mathbf{A}\mathbf{x} = \mathbf{b}$		(Chapter 1)
	. Equation systems of the special form		
	. Generic equation systems		
	. Gaussian elimination		
2	Vector		Lecturing
	. Vector and vector operations		Demonstration, Q&A
	. Norm, Dot product, Distance in R ⁿ		QZ2: Quiz 2
	. Basis and Orthogonal Basis		
	. Gram-Schmidt process		
3	Matrix		Lecturing
	. Matrix and matrix operations		Demonstration, discussion
	. Special matrix forms (sparse,		
	Symmetrical, triangular, diagonal		
	matrices)		
	. Invertible matrices		
	. Determinant		
	. Matrix equations		
4	Matrix decompositions		Lecturing
	. LU decomposition		Demonstration, discussion
	. QR decomposition using Gram-		
	Schmidt		

ID	Торіс	Course outcomes	Teaching/Learning Activities (samples)
	. Eigenvalues and Eigenvectors		
	. Diagonalization		
	. Introduction to Singular Value		
	Decomposition		
5	Applications		Lecturing
	. some applications in Information		Demonstration
	Technology		
	. some applications in Physics/Chemistry		
	. some applications in Polynomial		
	interpolation		
6	Midterm review		Question & answer
			Case study and discussion
7	Introduction to optimization		Lecturing
	. One variable optimization		Demonstration
	. Sensitivity and Robustness		
	. Multivariable optimization		
8	Convex optimization		Lecturing
	. Convex and concave functions		Q&A, discussion
	. Least square method		
	. Data fitting		
9	Introduction to probability		Lecturing
	. Axiom of probability		
	. Random variables		
	. Conditional probability formular		
10	Probability models		Case study, discussion

ID	Topic	Course outcomes	Teaching/Learning Activities (samples)
	. Introduction to statistics		Demonstration
	. Markov chains		
11	Review		Lecturing
			Q&A, Discussion
			Project submitted

For the practical laboratory work, there are 10 weeks which cover similar topics as it goes in the theory class. Each week, teaching assistants will explain and demonstrate key ideas on the corresponding topic and ask students to do their lab exercises either on computer in the lab or at home. All the lab work submitted will be graded. There would be a final exam for lab work.

6. ASSESSMENTS

ID	Topic	Description	Course outcomes	Ratio (%)
A1	Assignments			0%
	Weekly homework: HW#1, HW#2, HW#3, HW#4, HW#5	·		0%
A2	Projects			25%

ID	Topic	Description	Course outcomes	Ratio (%)
	Weekly labs: Lab#1,	Lab#1: Gaussian algorithm.		25%
	Lab#2, Lab#3, Lab#4	Lab#2: QR process.		
		Lab#3: Applications.		
		Lab#4: Data fitting.		
A3	Exams			75%
A31	Lab final exam	In-class programming exam on computer		15%
A32	Midterm exam	Closed book exam. Describe the understanding of different topics, analyze & program to solve problems		30%
A33	Final exam	Closed book exam. Describe the understanding of different topics, analyze & program to solve problems		30%

7. RESOURCES

Textbooks

• Stephen Boyd, Lieven Vandenberghe, *Introduction to Applied Linear: Algebra, Matrices, and Least Squares,* Cambridge University Press, 2018 (available in internet).

Others

• [1] G. H. Golub, C. F. Van Loan, *Matrix computations*, 4th edition, Johns Hopkins University Press, 2013.

- [2] Y. Saad, *Iterative methods for sparse linear systems*, 2nd edition, Society for Industrial and Applied Mathematics, 2003.
- [3] S. Boyd, L. Vandenberghe, *Convex optimization*, 7th edition, Cambridge University Press, 2009.
- [4] R. V. Hogg, J. W. McKean, A. T. Craig, *Introduction to mathematical statistics*, 7th edition, Pearson, 2013.
- [5] Đ. Đ. Trọng, Đ. N. Thanh, Lý thuyết thống kê, NXB ĐHQG Tp HCM, 2016.
- [6] Đ. N. Thanh et. al., Bài tập và thực hành lý thuyết thống kê, NXB ĐHQG Tp HCM, 2016.
- [7] Zed Shaw, Learn Python: The Hard Way. Addison Wesley, 3rd Edition, 2014

8. GENERAL REGULATIONS & POLICIES

- All students are responsible for reading and following strictly the regulations and policies of the school and university.
- Students who are absent for more than 3 theory sessions are not allowed to take the exams.
- For any kind of cheating and plagiarism, students will be graded 0 for the course. The incident is then submitted to the school and university for further review.
- Students are encouraged to form study groups to discuss on the topics. However, individual work must be done and submitted on your own.