Amueblado de propiedades en 3D

Autor: Joan Manuel Ramos Refusta

Día de presentación: 30/06/2021

Director: Sergi Jiménez

Ponente: Antonio Chica

1. Floorfy

1. Floorfy

Tour virtual

2. Proyecto

2. Proyecto

• Objetivos del proyecto

- Amueblar inmuebles
- Manipulación de objetos
- Cambiar textura y color de objetos
- Cambiar textura y color de paredes y suelos del inmueble.

2. Proyecto

Metodología empleada

• Catálogo de modelos

- Catálogo de modelos
- Object Options

- Catálogo de modelos
- Object Options
- Paint Options

Bounding Box

- Bounding Box
- Pivot Point

- Bounding Box
- Pivot Point


```
Por cada punto pointsObject[i] de pointsObject {

Generar un punto aux igual que pointsObject[i] con valor en x infinito;

Inicializar contador = 0;
```



```
Por cada punto pointsObject[i] de pointsObject {
    Generar un punto aux igual que pointsObject[i] con valor en x infinito;
    Inicializar contador = 0;
    Por cada segmento edgesFloor[j] de edgesFloor {
        Comprobar intersección de aux-pointsObject[i] con edgesFloor[j];
        Si hay intersección, ++contador;
}
```



```
Por cada punto pointsObject[i] de pointsObject {
    Generar un punto aux igual que pointsObject[i] con valor en x infinito;
    Inicializar contador = θ;
    Por cada segmento edgesFloor[j] de edgesFloor {
        Comprobar intersección de aux-pointsObject[i] con edgesFloor[j];
        Si hay intersección, ++contador;
    }
    Si contador es par, return false;
}
Si finaliza el algoritmo, return true;
```



```
Por cada punto pointsObject[i] de pointsObject {

Generar un punto aux que va desde pointsObject[i] en dirección perpendicular a la normal de la pared interseccionada;

Inicializar contador = 0;
```



```
Por cada punto pointsObject[i] de pointsObject {

Generar un punto aux que va desde pointsObject[i] en dirección perpendicular a la normal de la pared interseccionada;

Inicializar contador = 0;

Por cada segmento edgesWall[j] de edgesWall {

Comprobar intersección de aux-pointsObject[i] con edgesWall[j];

Si hay intersección, ++contador;
}
```



```
Por cada punto pointsObject[i] de pointsObject {
    Generar un punto aux que va desde pointsObject[i] en dirección perpendicular a la normal de la pared interseccionada;
    Inicializar contador = 0;
    Por cada segmento edgesWall[j] de edgesWall {
        Comprobar intersección de aux-pointsObject[i] con edgesWall[j];
        Si hay intersección, ++contador;
    }
    Si contador es par, return false;
}
Si finaliza el algoritmo, return true;
```


Colisión entre objetos

```
Por cada cara[i] del BBOX de A {
   Por cada segmento[j] del BBOX de B {
        Calcular el punto de intersección entre el plano en el que está cara[i] y la línea que forma el segmento[j];
        Si el punto de intersección encontrado pertenece al segmento[j] y a la cara[i], return false;
Si finaliza el algoritmo, return true;
```


Layers

- Layers
- UV mapping

Color

Textura

Reset

Clone

Tour controls

	Tour controls	Controles de manipulación de objetos
Rueda del ratón	Zoom	Escalar objeto
Click derecho	Mover cámara	Rotar 45° el objeto
Click izquierdo	Navegación hotspots	-
Doble click	-	Añadir objeto a la escena

- Transformaciones geométricas
 - Traslación

object.position.set(x, y, z);

- Transformaciones geométricas
 - Traslación
 - Rotación

object.rotationY(angle);

- Transformaciones geométricas
 - Traslación
 - Rotación
 - Escalado

object.scale.set(x, y, z);

• Seleccionar paredes/suelos

Textura

Color

8. Demo

9. Conclusiones