МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Вятский государственный университет» (ФГБОУ ВПО «ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

> Отчет по лабораторной работе №1 «Вычислительная математика»

Выполнил студент группы ИВТм-11	/Шурупов М.А./
Проверил доцент кафедры ЭВМ	/Исупов К.С./

Задание

- Решить 5 матриц (в качестве правой части единичный вектор) разными методами (таблица: la.mathworks.com/*/iterative-methods-for-linear-systems.html).
- Сравнить по точности и количеству итераций.
- Построить графики невязок.

Ход выполнения

В таблице 1 приведены выбранные матрицы из ресурса: sparse.tamu.edu

Таблица 1 - выбранные матрицы

Название	Размер	Количество ненулевых			
		элементов			
Dubcova2	62025 на 65025	1030225			
finan512	74752 на 74752	596992			
G2_circuit	150102 на 150102	726674			
qa8fm	66127 на 66127	1660579			
$thermomech_dM$	204316 на 204316	1423116			

Все вычисления проводились с точностью 10-8 и количеством итераций до 20000. Все скрипты для каждого метода представлены в приложении A.

На рисунках 1-11 приведены истории невязок для матрицы Dubcova2

Рисунок 1 - История невязок методом bicg для матрицы Dubcova2

Рисунок 2 - История невязок методом bicgstab для матрицы Dubcova2

Рисунок 3 - История невязок методом bicgstabl для матрицы Dubcova2

Рисунок 4 - История невязок методом cgs для матрицы Dubcova2

Рисунок 5 - История невязок методом gmres для матрицы Dubcova2

Рисунок 6 - История невязок методом lsqr для матрицы Dubcova2

Рисунок 7 - История невязок методом minres для матрицы Dubcova2

Рисунок 8 - История невязок методом рсд для матрицы Dubcova2

Рисунок 9 - История невязок методом qmr для матрицы Dubcova2

Рисунок 10 - История невязок методом symmlq для матрицы Dubcova2

Рисунок 11 - История невязок методом tfqmr для матрицы Dubcova2

В таблице 2 приведена сводная информация о использовании каждого метода для матрицы Dubcova2

Таблица 2 - сравнение методов по точности и количеству итераци для матрицы Dubcova2

Название	Без			С			C		
метода	предобуславливателя			предобуславливателем			предобуславливателем		
				неполное			LU-		
				разложение			разложение		
				Холецкого					
	Число	Точностн	5	Число	Точності	·	Число	Точность	
	итераций			итераций			итераций		
bicg	180	10^{-8}		148	10^{-8}		148	10^{-8}	
bicgstab	250	10^{-8}		148	10^{-8}		204	10^{-8}	
bicgstabl	270	10^{-8}		150	10^{-8}		180	10^{-8}	
cgs	152	10^{-8}		148	10^{-8}		104	10^{-8}	
gmres	180	10^{-8}		148	10^{-8}		147	10^{-8}	
lsqr	2000	10^{-8}		144	10^{-8}		2300	10^{-8}	
minres	180	10^{-8}		147	10^{-8}		140	10^{-8}	
pcg	180	10^{-8}		147	10^{-8}		147	10^{-8}	
qmr	178	10^{-8}		145	10^{-8}	147		10^{-8}	
symmlq	180	10^{-5}		149	10^{-6}		148	10^{-6}	
tfqmr	290	10^{-8}		150	10^{-8}		216	10^{-8}	

Из таблицы 2 видно, что минимальное количество итераций при приемлемой точности получилось у всех методов с предобуславливателем неполное разложение Холецкого (от 145 до 150 итераций). Самое большое количество итераций понадобилось методу lsqr с предобуславливателем LU-разложение (2300 итераций). Матрица не смогла посчитаться методом symmlq с установленной точностью $(10^{-6}10^{-8})$.

На рисунках 12-22 приведены истории невязок для матрицы Qa8fm

Рисунок 12 - История невязок методом bicg для матрицы Qa8fm

Рисунок 13 - История невязок методом bicgstab для матрицы Qa8fm

Рисунок 14 - История невязок методом bicgstabl для матрицы Qa8fm

Рисунок 15 - История невязок методом cgs для матрицы Qa8fm

Рисунок 16 - История невязок методом gmres для матрицы Qa8fm

Рисунок 17 - История невязок методом lsqr для матрицы Qa8fm

Рисунок 18 - История невязок методом minres для матрицы Qa8fm

Рисунок 19 - История невязок методом рсg для матрицы Qa8fm

Рисунок 20 - История невязок методом qmr для матрицы Qa8fm

Рисунок 21 - История невязок методом symmlq для матрицы Qa8fm

Рисунок 22 - История невязок методом tfqmr для матрицы Qa8fm

В таблице 3 приведена сводная информация о использования каждого метода для матрицы Qa8fm.

Таблица 3 - сравнение методов по точности и количеству итераций для матрицы Qa8fm

Название	Без		C			C		
метода	предобуславливателя		предобуславливателем			предобуславливателем		
			неполное			LU-		
			разложение			разложение		
			Холецкого					
	Число	Точности	ò	Число	Точност	ò	Число	Точность
	итераций			итераций			итераций	
bicg	68	10^{-8}		8	10^{-8}		8	10^{-8}
bicgstab	100	10^{-8}		8	10^{-8}		9	10^{-8}
bicgstabl	95	10^{-8}		8	10^{-8}		9	10^{-8}
$_{ m cgs}$	36	10^{-8}		8	10^{-8}		4	10^{-8}
gmres	65	10^{-8}		8	10^{-8}		10	10^{-5}
lsqr	500	10^{-8}		8	10^{-8}		9	10^{-8}
minres	65	10^{-8}		8	10^{-8}		8	10^{-8}
pcg	67	10^{-8}		8	10^{-8}		8	10^{-8}
qmr	64	10^{-8}		8	10^{-8}		8	10^8
symmlq	67	10^{-6}		7	10^{-8}		8	10^{-7}
tfqmr	75	10^{-8}		7	10^{-8}		8	10^{-8}

Из таблицы 3 видно, что в среднем всем методам спредобуславливателем понадобилось примерно одинаковое количество итераций (в среднем 8). Самое большое количество итераций понадобилось методу lsqr без предобуславливателя (500 итераций).

На рисунках 23-32 приведены истории невязок для матрицы Thermomech $_dM$

Выводы

В ходе выполнения лабораторной работы были решены системы линейных уравнений, где левой частью были матрицы различной размерности, а правой единичные векторы, различными способами. Решение систем линейных уравнений большой размерности без предобуславливателя выполняется за большее количество итераций по сравнению с предобуславливателем неполного разложения Холецкого или с предобуславливателем LU-разложения. За меньшее количество итераций систему на основе матрицы Dubcova2 решает методом lsqr с предобуславливателем неполное разложение Холецкого (145 итераций). На основе матрицы Finan512 - cgs с предобуславливателем LU-разложение (5 итераций). G2circuit bicgstabl.Qa8 (8).Thermomech_dM - cgsLU - (6).

Приложение А

Скрипты методов

BICG.m

```
b = ones(size(A,1),1);
[x, fl, rr, it, rv] = bicg(A, b, 1e-8, 20000);
L = ichol(A);
\left[\,x1\;,fl1\;,rr1\;,it1\;,rv1\,\right] \;=\; bicg\left(A,b,1\,e\,{-}8\,,20000\,,\;L\,,\;L\,'\,\right);
clear L;
[L, U] = ilu(A);
[x2, fl2, rr2, it2, rv2] = bicg(A, b, 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
semilogy (0: length(rv1)-1, rv1/norm(b), '-o')
semilogy (0: length(rv2)-1, rv2/norm(b), '-o')
y line (1e-8, 'r--');
legend (
     'No Preconditioner',
     'Default ICHOL',
     'Default LU',
    'Tolerance',
     'Location',
     'East'
)
xlabel('Iteration number')
ylabel ('Relative residual')
export graphics (gcf, 'image/bicg.png')
hold off
clear;
                                       BICGSTAB.m
function [rv0, rv1, rv2, it, it1, it2] = BICGSTAB(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv] = bicgstab(A, b, 1e-8, 20000);
L = ichol(A);
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
[x2, fl2, rr2, it2, rv2] = bicgstab(A, b, 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
```

function [rv0, rv1, rv2, it, it1, it2] = BICG(A)

```
semilogy (0: length(rv1)-1, rv1/norm(b), '-o')
semilogy (0: length (rv2) - 1, rv2 / norm (b), '-o')
y line (1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East')
xlabel('Iteration number')
ylabel ('Relative residual')
exportgraphics (gcf, 'image/bicgstab.png')
hold off
clear;
                                    BICGSTABL.m
function [rv0, rv1, rv2, it, it1, it2] = BICGSTABL(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv] = bicgstabl(A, b, 1e-8, 20000);
L = ichol(A);
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
[x2, fl2, rr2, it2, rv2] = bicgstabl(A, b, 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
semilogy (0: length(rv1)-1, rv1/norm(b), '-o')
semilogy (0: length(rv2)-1, rv2/norm(b), '-o')
y line (1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East')
xlabel ('Iteration number')
ylabel ('Relative residual')
exportgraphics (gcf, 'image/bicgstabl.png')
hold off
clear;
                                         CGS.m
function [rv0, rv1, rv2, it, it1, it2] = CGS(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv] = cgs(A, b, 1e-8, 20000);
L = ichol(A);
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
```

```
[x2, fl2, rr2, it2, rv2] = cgs(A, b, 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
semilogy (0: length(rv1)-1, rv1/norm(b), '-o')
semilogy (0: length(rv2)-1, rv2/norm(b), '-o')
y line (1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East')
xlabel('Iteration number')
ylabel ('Relative residual')
export graphics (gcf, 'image/cgs.png')
hold off
clear;
                                       GMRES.m
function [rv0, rv1, rv2, it, it1, it2] = GMRES(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv] = gmres(A, b, [], 1e-8, 20000);
L = ichol(A);
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
[x2, fl2, rr2, it2, rv2] = gmres(A, b, [], 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
semilogy (0: length(rv1)-1, rv1/norm(b), '-o')
semilogy (0: length(rv2)-1, rv2/norm(b), '-o')
y line (1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East
xlabel('Iteration number')
ylabel ('Relative residual')
export graphics (gcf, 'image/gmres.png')
hold off
clear;
                                        LSQR.m
function [rv0, rv1, rv2, it, it1, it2] = LSQR(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv, lsrv] = lsqr(A, b, 1e-8, 20000);
L = ichol(A);
```

```
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
[x2, fl2, rr2, it2, rv2, lsrv2] = lsqr(A, b, 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
semilogy (0: length (rv1)-1,rv1/norm(b),'-o')
semilogy (0: length(rv2)-1, rv2/norm(b), '-o')
y line (1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East
xlabel('Iteration number')
ylabel ('Relative residual')
export graphics (gcf, 'image/lsqr.png')
hold off
clear;
                                        PCG.m
function [] = PCG(B)
b = ones(size(B,1),1);
[x, fl0, rr0, it0, rv0] = pcg(B, b, 1e-8, 20000);
L = ichol(B);
[x1, fl1, rr1, it1, rv1] = bicg(B, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(B);
[x2, fl2, rr2, it2, rv2] = pcg(B, b, 1e-8, 20000, L, U);
semilogy (0: length(rv0)-1, rv0/norm(b), '-o')
hold on
semilogy (0: length(rv1)-1, rv1/norm(b), '-o')
semilogy (0: length(rv2)-1, rv2/norm(b), '-o')
y line (1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East
xlabel('Iteration number')
ylabel ('Relative residual')
exportgraphics (gcf , 'image/PCG.png')
hold off
clear;
```

```
function [rv0, rv1, rv2, it, it1, it2] = MINRES(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv, lsrv] = minres(A, b, 1e-8, 20000);
L = ichol(A);
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
[x2, f12, rr2, it2, rv2, lsrv2] = minres(A, b, 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
semilogy (0: length(rv1)-1, rv1/norm(b), '-o')
semilogy (0: length(rv2)-1, rv2/norm(b), '-o')
y line (1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East')
xlabel('Iteration number')
ylabel ('Relative residual')
export graphics ( gcf , 'image/MINRES.png')
hold off
clear;
                                         QMR.m
function [rv0, rv1, rv2, it, it1, it2] = QMR(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv] = qmr(A, b, 1e - 8, 20000);
L = ichol(A);
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
[x2, f12, rr2, it2, rv2] = qmr(A, b, 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
semilogy (0: length(rv1)-1, rv1/norm(b), '-o')
semilogy (0: length(rv2)-1, rv2/norm(b), '-o')
y line (1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East')
xlabel('Iteration number')
ylabel ('Relative residual')
export graphics (gcf, 'image/qmr.png')
```

```
hold off
clear;
```

SYMMLQ.m

```
function [rv0, rv1, rv2, it, it1, it2] = SYMMLQ(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv, lsrv] = symmlq(A, b, 1e-8, 20000);
L = ichol(A);
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
[x2, fl2, rr2, it2, rv2, lsrv2] = symmlq(A, b, 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
hold on
semilogy (0: length(rv1)-1, rv1/norm(b), '-o')
semilogy (0: length(rv2)-1, rv2/norm(b), '-o')
yline (1e-8, 'r--');
legend ('No Preconditioner', 'Default ICHOL', 'Default LU', 'Tolerance', 'Location', 'East')
xlabel('Iteration number')
ylabel ('Relative residual')
exportgraphics (gcf , 'image/symmlq.png')
hold off
clear;
                                       TFQMR.m
function [rv0, rv1, rv2, it, it1, it2] = TFQMR(A)
b = ones(size(A,1),1);
[x, fl, rr, it, rv] = tfqmr(A, b, 1e-8, 20000);
L = ichol(A);
```

```
[x1, fl1, rr1, it1, rv1] = bicg(A, b, 1e-8, 20000, L, L');
clear L;
[L, U] = ilu(A);
```

```
[x2, fl2, rr2, it2, rv2] = tfqmr(A, b, 1e-8, 20000, L, U);
semilogy (0: length(rv)-1, rv/norm(b), '-o')
```

hold on

```
semilogy (0: length(rv1)-1, rv1/norm(b), '-o')
semilogy (0: length(rv2)-1, rv2/norm(b), '-o')
```

```
yline(1e-8,'r--');
legend('No Preconditioner','Default ICHOL','Default LU','Tolerance','Location','East')
xlabel('Iteration number')
ylabel('Relative residual')
exportgraphics(gcf,'image/tfqmr.png')
hold off
```