Identifying Mutations in ACE2 That Influence Susceptibility to SARS-CoV-2

(L) Zak White

### Introduction / SARS-Cov-2

#### COVID-19 is caused by the virus SARS-CoV-2

- Likely of zoonotic origin
- Some non-human animals are known to be susceptible; some are not

# Introduction / Motivation

#### **Motivation:**

• Why are some animals susceptible to SARS-CoV-2 and some are not?





Big-eared horseshoe bat (L) is susceptible; the greater horseshoe bat (R) is not susceptible. Both belong to genus Rhinolophus

### Introduction / ACE2

The SARS-CoV-2 spike protein's target in potential hosts is the ACE2 protein (angiotensin-converting enzyme 2)

• Differences in ACE2 sequences can result in different interaction with the spike protein, or possibly inhibit interaction altogether

# Introduction / Objective

#### Objective:

• Identify variations in ACE2 sequences (ie, mutations) that influence a host's susceptibility to SARS-CoV-2

### Introduction / Related Work

#### Li et al. (2005)

- Researched SARS-CoV spike protein interaction with ACE2 chimera sequences
- Identified mutations that restricted interaction: D31, A41, 82-84NFS, A353, H353, and A357

#### Liu et al. (2021)

- Structural analysis of human ACE2 to identify critical residues
- Concluded acids at positions 31, 35, 38, 82, and 353 were crucial for supporting interaction

### Methods / Data

#### 25 ACE2 sequences were collected from NCBI and UniProt:

- 12 susceptible mammal hosts (incl. human)
- 6 insusceptible mammal hosts
- 7 insusceptible partial sequences

Each was aligned with the human sequence to standardize indexing

- Complete: Needleman-Wunsch
- Partial: Smith-Waterman

# Methods / Algorithm

#### Iterative sequence comparison algorithm

- Compared acids at each positions
- Assigned weights to mutations based on number of mutations in the sequence
- Summed weights to identify most influential mutations

```
for each negative sequence S<sup>-</sup> do

| for each i < length of S<sup>-</sup> do
| isInfluentialIndex ← True;
| for each positive sequence S<sup>+</sup> do
| if i<sup>th</sup> acid in S<sup>-</sup> == i<sup>th</sup> acid in S<sup>+</sup> then
| isInfluentialIndex ← False;
| end
| end
| if isInfluentialIndex then
| // The mutation may be influential
| Record i, i<sup>th</sup> acid in S<sup>-</sup>
| end
| end
| end
| end
```

### Results

The analysis identified 8 influential mutations

• 5 of the results overlapped with the findings of other studies (D31, A41, F83, H353, S426)

| <b>Pos</b> 31 | Mutation                    |               |                   |  |  |
|---------------|-----------------------------|---------------|-------------------|--|--|
|               | Lysine (K)                  | $\rightarrow$ | Aspartate (D)     |  |  |
| 41            | Tyrosine (Y)                | $\rightarrow$ | Alanine (A)       |  |  |
| 66            | Glycine (G)<br>Arginine (R) | $\Rightarrow$ | Alanine (A)       |  |  |
| 83            | Tyrosine (Y)                | $\rightarrow$ | Phenylalanine (F) |  |  |
| 113           | Serine (S)<br>Arginine (R)  | $\Rightarrow$ | Asparagine (N)    |  |  |
| 353           | Lysine (K)                  | $\rightarrow$ | Histidine (H)     |  |  |
| 426           | Proline (P)                 | $\rightarrow$ | Serine (S)        |  |  |
| 679           | Isoleucine (I)              | $\rightarrow$ | Valine (V)        |  |  |

### Discussion

Each mutation appeared in at least two insusceptible sequences and no susceptible sequences

• Each insusceptible sequence contained at least one of these mutations

The presence of these mutations may be indicators of a host's insusceptibility to the virus

Three mutations identified have not been mentioned in past studies (A66, N113, V679)

| Pos | Mutation                    |               |                   |  |
|-----|-----------------------------|---------------|-------------------|--|
| 31  | Lysine (K)                  | $\rightarrow$ | Aspartate (D)     |  |
| 41  | Tyrosine (Y)                | $\rightarrow$ | Alanine (A)       |  |
| 66  | Glycine (G)<br>Arginine (R) | $\Rightarrow$ | Alanine (A)       |  |
| 83  | Tyrosine (Y)                | $\rightarrow$ | Phenylalanine (F) |  |
| 113 | Serine (S)<br>Arginine (R)  | $\Rightarrow$ | Asparagine (N)    |  |
| 353 | Lysine (K)                  | $\rightarrow$ | Histidine (H)     |  |
| 426 | Proline (P)                 | $\rightarrow$ | Serine (S)        |  |
| 679 | Isoleucine (I)              | $\rightarrow$ | Valine (V)        |  |

### Discussion / Considerations

#### Limited amount of data was a main restriction

- Not enough research into which animals are or are not susceptible
- More sequences could produce more accurate results

#### Effect of mutations in consecutive positions

- Some studies (incl. Li et al.) show that mutation in positions 82-84 together can influence susceptibility
- The algorithm could be expanded to account for this

### Conclusion

This analysis identified eight ACE2 mutations that may influence susceptibility to SARS-CoV-2

• The presence of any of these mutations can be an indicator for a host's immunity

| Pos | Mutation                    |               |                   |  |
|-----|-----------------------------|---------------|-------------------|--|
| 31  | Lysine (K)                  | $\rightarrow$ | Aspartate (D)     |  |
| 41  | Tyrosine (Y)                | $\rightarrow$ | Alanine (A)       |  |
| 66  | Glycine (G)<br>Arginine (R) | $\Rightarrow$ | Alanine (A)       |  |
| 83  | Tyrosine (Y)                | $\rightarrow$ | Phenylalanine (F) |  |
| 113 | Serine (S)<br>Arginine (R)  | $\Rightarrow$ | Asparagine (N)    |  |
| 353 | Lysine (K)                  | $\rightarrow$ | Histidine (H)     |  |
| 426 | Proline (P)                 | $\rightarrow$ | Serine (S)        |  |
| 679 | Isoleucine (I)              | $\rightarrow$ | Valine (V)        |  |

# Questions

Thanks for listening!

