Locally Differentially Private Frequency Estimation via <u>Joint Randomized Response</u>

Authors: Ye Zheng, Shafizur Rahman Seeam, Yidan Hu, Rui Zhang, Yanchao Zhang

Frequency Estimation

- Social scientists: <u>How many people engage in tax evasion?</u>
 - ask one person if they had evaded tax
 - the person answers YES or NO

- People tend to lie for such sensitive/embarrassing question
 - i.e. don't want to let the collector know

- People tend to lie for such sensitive/embarrassing question
 - i.e. don't want to let the collector know
- Randomized Response: Randomize the truth before answering the collector

- People tend to lie for such sensitive/embarrassing question
 - i.e. don't want to let the collector know
- Randomized Response: Randomize the truth before answering

RR:

answer truth with probability p

$$RR(x) = \begin{cases} x & \text{w. p. } p \\ \neg x & \text{w. p. } 1 - p \end{cases}$$

Ye Zheng

- People tend to lie for such sensitive/embarrassing question
 - i.e. don't want to let the collector know
- Randomized Response: Randomize the truth before answering

RR: answer truth with probability p

$$RR(x) = \begin{cases} x & \text{w. p. } p \\ \neg x & \text{w. p. } 1 - p \end{cases}$$

estimated frequency

$$= \frac{\text{# of YES} - \text{# } \times q}{p - q}$$

Unbiased:

expectation = truth

Privacy: RR Satisfies LDP

• A mechanism \mathcal{M} satisfies LDP if

For any truth x_1, x_2 , and randomized answer y:

$$\max \frac{\Pr[\mathcal{M}(x_1) = y]}{\Pr[\mathcal{M}(x_2) = y]} \le e^{\varepsilon}$$

Distinguishability of x_1 (YES) and x_2 (NO) from y (randomized answer)

Privacy: RR Satisfies LDP

• A mechanism \mathcal{M} satisfies LDP if

For any truth x_1, x_2 , and randomized answer y:

Distinguishability of x_1 (YES) and x_2 (NO) from y (randomized answer)

Privacy: RR Satisfies LDP

A mechanism \mathcal{M} satisfies LDP if

For any truth x_1, x_2 , and randomized answer y:

$$\operatorname{RR}: \frac{p}{q} \to \varepsilon \ge \ln \frac{p}{q}$$

$$\operatorname{max} \frac{\Pr[\mathcal{M}(x_1) = y]}{\Pr[\mathcal{M}(x_2) = y]} \le e^{\varepsilon}$$

Distinguishability of x_1 (YES) and x_2 (NO) **from** *y* (randomized answer)

- quantifiable hardness to distinguish x_1 (YES) and x_2 (NO) from the randomized answer y
- against inference from data collectors or adversaries

Randomization reduces data utility

$$\operatorname{Var}\left[\frac{\# \text{ of YES} - \# \trianglerighteq \times q}{p - q}\right] = \frac{\operatorname{Var}[\# \text{ of YES}]}{(p - q)^2} = \frac{npq}{(p - q)^2}$$

- summation of variance from n independent randomization

Randomization reduces data utility

$$\operatorname{Var}\left[\frac{\# \text{ of YES} - \# \trianglerighteq \times q}{p - q}\right] = \frac{\operatorname{Var}[\# \text{ of YES}]}{(p - q)^2} = \frac{npq}{(p - q)^2}$$

- summation of variance from n independent randomization

- larger
$$p \in (0.5, 1] \to \text{lower variance} \to \text{larger privacy parameter } \varepsilon$$

$$\uparrow \text{ data utility} \qquad \downarrow \text{ privacy}$$

Randomization reduces data utility

$$Var[\frac{\# \text{ of YES} - \# \ge \times q}{p - q}] = \frac{Var[\# \text{ of YES}]}{(p - q)^2} = \frac{npq}{(p - q)^2}$$

- summation of variance from n independent randomization

- larger
$$p \in (0.5, 1] \to \text{lower variance} \to \text{larger privacy parameter } \varepsilon$$

$$\uparrow \text{ data utility} \qquad \downarrow \text{ privacy}$$

Q: Can correlated (joint) randomization improve this privacy-utility tradeoff?

Joint randomization can boost data utility

- Joint randomization can boost data utility
- **Example:** 2-person ($x_1 = YES$ and $x_2 = YES$) with p = 0.8 (P[T = 1] = 0.8)

RR: Joint distribution

	$T_1 = 1$	$T_1=0$	Truthfulness of x_1
$T_2 = 1$	0.64 (=0.8× 0.8)	0.16 (=0.2× 0.8)	
$T_2=0$	0.16 (=0.8× 0.2)	0.04 (=0.2× 0.2)	

Truthfulness of x_2

- Joint randomization can boost data utility
- **Example:** 2-person ($x_1 = YES$ and $x_2 = YES$) with p = 0.8 (P[T = 1] = 0.8)

RR: Joint distribution

	$T_1 = 1$	$T_1=0$	Truthfulness of x_1
$T_2 = 1$	0.64 (=0.8× 0.8)	0.16 (=0.2× 0.8)	
$T_2=0$	0.16 (=0.8× 0.2)	0.04 (=0.2× 0.2)	-

Truthfulness of x_2

Independent T_1 and T_2 (P[$T_1 \cap T_2$] = P[T_1] · P[T_2])

- Joint randomization can boost data utility
- **Example:** 2-person ($x_1 = YES$ and $x_2 = YES$) with p = 0.8 (P[T = 1] = 0.8)

RR: Joint distribution

	$T_1 = 1$	$T_1 = 0$
$T_2 = 1$	0.64 (=0.8× 0.8)	0.16 (=0.2× 0.8)
$T_2=0$	0.16 (=0.8× 0.2)	0.04 (=0.2× 0.2)

Truthfulness of x_2

JRR: Joint distribution

	$T_1 = 1$	$T_1=0$
$T_2 = 1$	0.6	0.2
$T_2 = 0$	0.2	0

Independent T_1 and T_2 (P[$T_1 \cap T_2$] = P[T_1] · P[T_2])

- Joint randomization can boost data utility
- Example: 2-person ($x_1 = YES$ and $x_2 = YES$) with p = 0.8 (P[T = 1] = 0.8) <

RR: Joint distribution

	$T_1 = 1$	$T_1 = 0$
$T_2 = 1$	0.64 (=0.8× 0.8)	0.16 (=0.2× 0.8)
$T_2=0$	0.16 (=0.8× 0.2)	0.04 (=0.2× 0.2)

Truthfulness of x_2

Independent T_1 and T_2 (P[$T_1 \cap T_2$] = P[T_1] · P[T_2])

$$P[T_1 = 0 \cap T_2 = 0] = 0$$

 $P[T_1 = 0] \cdot P[T_2 = 0] = 0.04$

NOT independent T_1 and T_2

Same estimator as RR

Expectation:
$$E[\# \text{ of YES}] = \sum_{i=1}^{\#} P[y_i = \text{YES}] = n_{\text{YES}} \cdot p + (\# \& - n_{\text{YES}}) \cdot q$$

$$\hat{n}_{\text{YES}} = \frac{\# \text{ of YES} - 2q}{p - q} \text{ is unbiased}$$
Identical to RR

Same estimator as RR

Expectation:
$$E[\# \text{ of YES}] = \sum_{i=1}^{\#} P[y_i = \text{YES}] = n_{\text{YES}} \cdot p + (\# \ge -n_{\text{YES}}) \cdot q$$

$$\hat{n}_{\rm YES} = \frac{\text{\# of YES} - 2q}{p - q}$$
 is unbiased

Identical to RR

• Variance: (
$$\#$$
 = 2, p = 0.8)

$$Var[\hat{n}_{YES}] = \frac{Var[\# \text{ of YES}]}{(0.8 - 0.2)^2}$$

# of YES	0	1	2
Probability	0	0.2 + 0.2	0.6

$$Var[\# \text{ of YES}] = E[(X - \mu)^2] = 0.24$$

Same estimator as RR

Expectation:
$$E[\# \text{ of YES}] = \sum_{i=1}^{\#} P$$

RR			
# of YES	0	1	2
Probability	0.04	0.16 + 0.16	0.6

• Variance: (
$$\#$$
 = 2, p = 0.8)

$$Var[\hat{n}_{YES}] = \frac{Var[\# \text{ of YES}]}{(0.8 - 0.2)^2}$$

JRR

 $Var[\# \text{ of YES}] = E[(X - \mu)^2] \approx 0.32$

# of YES	0	1	2
Probability	0	0.2 + 0.2	0.6

$$Var[\# \text{ of YES}] = E[(X - \mu)^2] = 0.24$$

Same estimator as RR

Expectation:
$$E[\# \text{ of YES}] = \sum_{i=1}^{\#} P$$

RR			
# of YES	0	1	2
Probability	0.04	0.16 + 0.16	0.6

$$Var[\# \text{ of YES}] = E[(X - \mu)^2] \approx 0.32$$

• Variance: (
$$\#$$
 = 2, p = 0.8)

$$Var[\hat{n}_{YES}] = \frac{Var[\# \text{ of YES}]}{(0.8 - 0.2)^2}$$

JRR **Better utility**

# of YES	0	1	2	
Probability	0	0.2 + 0.2	0.6	

$$Var[\# \text{ of YES}] = E[(X - \mu)^2] = 0.24$$

Privacy: NOT as Simple as RR

If any person can be an adversary

 T_1 : I am an adversary ()

	$T_1 = 1$	$T_1 = 0$
$T_2 = 1$	0.6	0.2
$T_2 = 0$	0.2	0 <

When I report untruthfully $(T_1 = 0)$, My partner will report truthfully $(T_2 = 1)$

Privacy: NOT as Simple as RR

If any person can be an adversary

JRR: Joint distribution

 T_1 : I am an adversary (

	$T_1 = 1$	$T_1 = 0$
$T_2 = 1$	0.6	0.2
$T_2 = 0$	0.2	0

When I report untruthfully $(T_1 = 0)$, My partner will report truthfully $(T_2 = 1)$

Correlation results in privacy leakage (2 slides later)

General JRR

• Correlated randomization with 2 persons x_{2i-1} and x_{2i}

JRR: Joint distribution

	$T_{2i-1}=1$	$T_{2i-1}=0$
$T_{2i}=1$	$p^2 + \rho pq$	$(1-\rho)pq$
$T_{2i}=0$	$(1-\rho)pq$	$q^2 + \rho pq$

General JRR

• Correlated randomization with 2 persons x_{2i-1} and x_{2i}

JRR: Joint distribution

		:	$\rho \in [-1,1]$:
	$T_{2i-1}=1$	$T_{2i-1}=0$	correlated coefficient
$T_{2i}=1$	$p^2 + \rho pq$	$(1-\rho)pq$	
$T_{2i}=0$	$(1-\rho)pq$	$q^2 + \rho pq$	

• RR is a special case of JRR with $\rho = 0$ (no correlation)

- Use random grouping to form 2-person groups for correlated randomization
 - secure shuffling by multi-party computing (MPC)

- Use random grouping to form 2-person groups for correlated randomization
 - secure shuffling by multi-party computing (MPC)

Threat model:

- any person can be an adversary
- if a group contains an adversary, the adversary knows who is their partner (after random grouping)

- Use random grouping to form 2-person groups for correlated randomization
 - secure shuffling by multi-party computing (MPC)
- Threat model:
 - any person can be an adversary
 - if a group contains an adversary, the adversary knows who is their partner (after random grouping)

- Use random grouping to form 2-person groups for correlated randomization
 - secure shuffling by multi-party computing (MPC)

Threat model:

- any person can be an adversary
- if a group contains an adversary, the adversary knows who is their partner (after random grouping)
- the adversary cannot control randomness, but can infer their partner's

$$P[JRR(x_2) = 1 \mid \underline{JRR(x_1)} = 0] = \frac{(1-\rho)pq}{q} = (1-\rho)p$$
Adversary knows Higher confidence

 $P\begin{bmatrix} \text{the adversary} \\ \text{knows id} \end{bmatrix} = \frac{m}{n-1} \xrightarrow{m: \# \text{ of adversaries}}$

- Use random grouping to form 2-person groups for correlated randomization
 - secure shuffling by multi-party computing (MPC)

Threat model:

- any person can be an adversary
- if a group contains an adversary, the adversary knows who is their partner (after random grouping)
- the adversary cannot control randomness, but can infer their partner's

 $P\begin{bmatrix} \text{the adversary} \\ \text{knows id} \end{bmatrix} = \frac{m}{n-1} \xrightarrow{m: \# \text{ of adversaries}}$

Use random grouping to form 2-person groups for correlated randomization

Theorem. Assume there is a set of data contributors \mathcal{T}_m whose reporting truthfulness is known to the adversary. For any data contributor i, the JRR mechanism satisfies:

$$\frac{\Pr[\operatorname{JRR}(x_i) | \mathcal{T}_m]}{\Pr[\operatorname{JRR}(x_i') | \mathcal{T}_m]} \le e^{\varepsilon}, \text{ where } \varepsilon = \ln \frac{mp_{\max} + (n-m-1)p}{mp_{\min} + (n-m-1)q}.$$

Theorem. Assume there is a set of data contributors \mathcal{T}_m whose reporting truthfulness is known to the adversary. For any data contributor i, the JRR mechanism satisfies:

$$\frac{\Pr[\operatorname{JRR}(x_i) \mid \mathcal{T}_m]}{\Pr[\operatorname{JRR}(x_i') \mid \mathcal{T}_m]} \le e^{\varepsilon}, \text{ where } \varepsilon = \ln \frac{mp_{\max} + (n-m-1)p}{mp_{\min} + (n-m-1)q}.$$

 $m = |\mathcal{T}_m|$:
of adversaries

 $p_{\text{max}} = \max\{(1 - \rho)p, p + \rho q\}$: confidence of adversaries inferring a specific value

Theorem. Assume there is a set of data contributors \mathcal{T}_m whose reporting truthfulness is known to the adversary. For any data contributor i, the JRR mechanism satisfies:

$$\frac{\Pr[\operatorname{JRR}(x_i) | \mathcal{T}_m]}{\Pr[\operatorname{JRR}(x_i') | \mathcal{T}_m]} \le e^{\varepsilon}, \text{ where } \varepsilon = \ln \frac{mp_{\max} + (n-m-1)p}{mp_{\min} + (n-m-1)q}.$$

Theorem. The variance of JRR's estimator \widehat{n}_v is

$$\operatorname{Var}[\widehat{\boldsymbol{n}}_{\boldsymbol{v}}] = \frac{pq}{(p-q)^2} \cdot \left(n + \frac{\rho((2n_{\text{YES}} - n)^2 - n)}{n-1} \right).$$

Theorem. Assume there is a set of data contributors \mathcal{T}_m whose reporting truthfulness is known to the adversary. For any data contributor i, the JRR mechanism satisfies:

$$\frac{\Pr[\operatorname{JRR}(x_i) | \mathcal{T}_m]}{\Pr[\operatorname{JRR}(x_i') | \mathcal{T}_m]} \le e^{\varepsilon}, \text{ where } \varepsilon = \ln \frac{mp_{\max} + (n-m-1)p}{mp_{\min} + (n-m-1)q}.$$

Affected by # of original values

Theorem. The variance of JRR's estimator \widehat{n}_v is

$$\operatorname{Var}[\widehat{\boldsymbol{n}}_{\boldsymbol{v}}] = \frac{pq}{(p-q)^2} \cdot \left(n + \frac{\rho \left((2n_{\text{YES}} - n)^2 - n \right)}{n-1} \right).$$

Independent

randomization (RR)

Correlated randomization

JRR - Variance Heatmap

• Effect of ρ , p, and m on variance (when $\varepsilon = 1, n = 10^4$, and $n_{Yes} = 200$)

JRR - Variance Heatmap

• Effect of ρ , p, and m on variance (when $\varepsilon = 1$, $n = 10^4$, and $n_{\rm Yes} = 200$)

Summary

- Correlated randomization can improve the data utility of frequency estimation
- JRR: Privacy & utility model for correlated randomization

- What's more in the paper
 - selection the tradeoff between ho and p
 - practical protocol design
 - prototype extensions to non-binary data and larger-size group
 - evaluations on synthetic and real-world datasets

Locally Differentially Private Frequency Estimation via <u>Joint Randomized Response</u>

- Joint randomization can boost data utility
- Example: 2-person ($x_1 = \text{YES}$ and $x_2 = \text{YES}$) with p = 0.8 (P[T = 1] = 0.8) $P[T_1 = 1] = 0.6 + 0.2 = 0.8$

 $P[T_1 = 0 \cap T_2 = 0] = 0$ $P[T_1 = 0] \cdot P[T_2 = 0] = 0.04$

 $T_1 = 1$

0.6

0.2

 $T_1 = 0$

0.2

0

JRR: Joint

 $T_2 = 1$

 $T_2 = 0$

Independent T_1 and T_2 ($P[T_1 \cap T_2] = P[T_1] \cdot P[T_2]$)

NOT independent T_1 and T_2

Locally Differentially Private Frequency Estimation via Joint Randomized Response

Utility: JRR's Variance

Locally Differentially Private Frequency Estimation via Joint Randomized Response

 $Var[\# \text{ of YES}] = E[(X - \mu)^2] = 0.24$

General JRR

• Correlated randomization with 2 persons x_{2i-1} and x_{2i}

• RR is a special case of JRR with $\rho=0$ (no correlation)

JRR - Privacy Model in This Paper

Use random grouping to form 2-person groups for correlated randomization

Locally Differentially Private Frequency Estimation via Joint Randomized Response

JRR - Variance Heatmap

• Effect of ρ , p, and m on variance (when $\varepsilon = 1$, $n = 10^4$, and $n_{\rm Yes} = 200$)

Ye Zheng Locally Differentially Private Frequency Estimation via <u>Joint Randomized Response</u>

Thank you!

