Presentation On Chapter 13 Bitcoin, Blockchains and Ethereum

August 11, 2022

Group Member

- 1. Salima Akhtar Nabila 17701025
- 2. Fahmida Alam 17701089
- 3. Labanti Singha 17701055
- 4. Khadiza Morioum Sama 17701084
- 5. Marufa Sultana 18701008
- 6. Tithi Rani Das 18701030
- 7. Sejuti Saha Peu 18701067
- 8. Farhad Kashem 18701073

History of Bitcoins

Bitcoins-

- What is Bitcoins?
- When Bitcoins concepts appeared?
- How block chain is related to cryptography?
- Advantages of Bitcoins.
- Disadvantages of Bitcoins.
- Who accepts Bitcoin?
- Why many Govts banned Bitcoin?

Bitcoin Transaction Types and Its Fields

There are 5 types of bitcoin transactions:

- pay-to-public-key-hash (P2PKH)
- public-key
- multi-signature (limited to 15 keys)
- pay-to-script-hash (P2SH)
- data output (OP_RETURN)

Bitcoin transaction fields

Size	Field	Description
4 bytes	Version	Specifies which rules this transaction follows
1-9 bytes (VarInt)	Input Counter	How many inputs are included
Variable	Inputs	One or more transaction inputs
1-9 bytes (Varint)	Output Counter	How many outputs are included
Variable	Outputs	One or more transaction outputs
4 bytes	Locktime	A Unix timestamp or block number

Bitcoin script execution (signature validation)

Script - A list of instructions recorded with each transaction that describe how the next person wanting to spend the Bitcoins being transferred can gain access to them.

Bitcoin Script - It is a stack-based programming language for locking and unlocking transactions. Bitcoin transactions contain scripts.

STACK-BASED MACHINE MODEL

- Linear structure represented by a physical stack or pile.
- Items at the top of the stack can be added (pushed) or removed (popped) in a "Last In, First Out (LIFO)" queue.

EVALUATING INPUT-OUTPUT SCRIPTS

- Execution script is the concatenation of two pieces identified in the input section of the current transaction-
 - 1. sig
 - 2. pubkey

Bitcoin script execution (signature validation)

EVALUATING INPUT-OUTPUT SCRIPTS

Instruction	Stack
< sig >	< sig >
< pubKey >	< pubKey >
	<\$ig >
OP_DUP	< pubKey >
	< pubKey >
	< sig >
OP_HASH160	< pubKeyHash >
	< pubKey >
	< sig >
< pubKeyHash? >	< pubKeyHash? >
	< pubKeyHash >
	< pubKey >
	< sig >
OP_EQUALVERIFY	< pubKey >
	< sig >
OP_CHECKSIG	TRUE

Block structure, Merkle trees and the blockchain

Blockchain- Block structure-

- Block as data structure with transaction.
- A Bitcoin block has two main parts: a block header and an ordered set of detailed transactions each of length typically 250 to 1000 bytes.
- The merkle-root field in the header serves to incorporate the entire ordered list of transactions into the header.
- The header field identifies the previous block in the chain with a hash function, and is a hashlink specifying the hash of that previous block's header.
- The hash of its block header is used to uniquely identify each block.

Merkle tree-

- It's a mathematical data structure or a method of organizing data
- It's made up of hash number of various data blocks of transactions performed of the Blockchain Network

Block structure, Merkle trees and the blockchain

Block Chain-

- Blocks are back-linked to form the blockchain
- Blockchain is a back-linked list of blocks ordering and integrating all transactions in time, made available as a public ledger.
- It uses secure hash algorithm or SHA

Data Integrity-

- Verifying data integrity of a given blockchain requires holding a reference to the current head block, and a trusted genesis block.
- Each block's prev-block-hash field is dereferenced to get the preceding block, this hashlink's hash field is compared to the hash of that previous block's header.
- In a full blockchain check, this process ends with a match against the hard-coded genesis block, validation failing if any integrity check fails along the way.

Block Chain Mining

Block Chain Mining: Mining is the process of creating new cryptocurrency by solving puzzles.

Mining Process:Number of transaction or capacity. **Memory Pool:** Vereified transaction(information) are kept that wait here until they are included in the block. Each transaction are hashed(T*1,T*2,T*3). Merkle tree is created to get market root. Mercal root_blockidentify, and content verified.

Candidate Blocks: atemporaryblock.

Block Header:

- 1) a summary of all transation data in the candidate block,
- 2) alinkof previous block,
- 3) the time of creation of the block,
- 4) a valid proof of work. (Block header is then has hed to get a block identifier)

When the given puzzle is solved, broadcast the block, and other people in the blockchine verify the block and add it to the blockchine.

Hash Targeting

Target Hash means:

• A target hash is a number that must be greater than or equal to a hashed block header for a new block to be awarded.

Why Target Hash:

 The target hash is used to determine the difficulty of input and can be adjusted to ensure efficient processing of the blocks.

Analyzing Target Hash:

- Taking an string of any length.
- Input length doesn't matter as output always be the same length.
- Each block will contain the preceding block header hash.
- The block header contains the number of the block edition, a timestamp, the hash used in the previous block and the goal hash.
- If the hash meets the target's requirement, then add the block to the blockchain.

Building the blockchain, validation, and full nodes

Blockchain-

- Constantly growing ledger
- Keeps permanent record of all transaction
- Uses a secure chronological way

Validation-

- Transactions and blocks are validated in two different ways.
- Miner validates new transaction and store in global ledger by using Longest Chain Rule and Proof of work (pof).
- Miner gets transaction fees and block fees (new bitcoins) by confirming the transaction

Resolution of a blockchain

- If blocks A and B emerge around the same time-Miners start building on A or B, whichever they receive first.
- Now,block A' and B' may emerge at the same time but which one is the majority one. That is the majority of miners receive first(here it is B').
- B" emerges, extending B', as most miners indicate B as main branch. So, the fork now resolved in favor of branch B.

Fig: Resolution of a blockchain

The End