Devoir maison 12 - Surfaces

On se place dans l'espace euclidien \mathbb{R}^3 muni de son produit scalaire canonique (sa base canonique étant orthonormée).

- **1. a.** Pour $\theta \in \mathbb{R}$, on note $R_{\theta} : (x, y, z) \mapsto (\cos(\theta)x + \sin(\theta)z, y, -\sin(\theta)x + \cos(\theta)z)$. Justifier que \mathbb{R}_{θ} est une rotation de \mathbb{R}^{3} .
 - **b.** Soit $x_0 \in \mathbb{R}$ et $M_{x_0} = \left(x_0, \frac{x_0^2}{2}, 0\right)$. Déterminer la nature de $\Gamma_{x_0} = \{R_{\theta}(M_{x_0}); \theta \in [0, 2\pi]\}$. Donner un système d'équations cartésiennes de Γ_{x_0} .
 - c. Déterminer une équation de la surface $S = \bigcup_{x_0 \in \mathbb{R}} \Gamma_{x_0}$.
 - **d.** Soient $\psi: \mathbb{R}^2 \to \mathbb{R}^3$ définie par $\psi(u, v) = \left(u, \frac{u^2 + v^2}{2}, v\right)$, et la surface $\Sigma = \psi(\mathbb{R}^2)$. Que peut-on dire des surfaces S et Σ ?
 - e. Soient $(x_0, z_0) \in \mathbb{R}^2$ fixé et $A_0 = \psi(x_0, z_0)$. Déterminer une équation du plan tangent à Σ en A_0 .
 - **f.** Déterminer A_0 tel que ce plan soit de la forme $P_c = \{(x, c, z), (x, z) \in \mathbb{R}^2\}$, où c est une constante.
- 2. On considère les courbes :

$$C_1 = \left\{ \left(x, \frac{x^2}{2}, 0 \right), x \in \mathbb{R} \right\} \quad \text{et} \quad C_2 = \left\{ \left(0, y, \frac{y^2}{2} \right), y \in \mathbb{R} \right\}$$

Soit $\Delta = \{(0, u, 0), u \in \mathbb{R}\}\ (\text{c'est l'axe } (Oy)!).$

- **a.** Soit $P = \left(x_0, \frac{x_0^2}{2}, 0\right) \in C_1$, avec $x_0 \neq 0$. Déterminer le point A_1 d'intersection entre Δ et la tangente à C_1 au point P.
- **b.** Soit $Q = \left(0, y_0, \frac{y_0^2}{2}\right) \in C_2$, avec $y_0 \neq 0$. Déterminer le point A_2 d'intersection entre Δ et la tangente à C_2 au point Q. A quelle condition a-t-on $A_1 = A_2$?
- c. Soit σ la réunion des droites génératrices (PQ), où $P \in C_1$ et $Q \in C_2$, avec $P \neq Q$ et tels que la tangente à C_1 au point P et la tangente à C_2 au point Q se coupent sur Δ . Déterminer une représentation paramétrique de σ .
- d. Montrer que les plans tangents à σ en tous points de σ qui appartiennent à une même génératrice (PQ) donnée sont parallèles.