2017-10-05

- Definition: a language is **regular** iff there is a DFA that accepts it.
- Regular expressions over Σ include (1) \emptyset , (2) ϵ , (3) $a \in \Sigma$, (4) $e_1 \cup e_2$, (5) $e_1 e_2$, (6) e^* .
- A regular expression e over Σ defines a language L(e) as follows: (1) $L(\emptyset) = \emptyset$, (2) $L(\varepsilon) = \{\varepsilon\}$, (3) $L(a) = \{a\}$, (4) $L(e_1 \cup e_2) = L(e_1) \cup L(e_2)$, (5) $L(e_1 e_2) = L(e_1)L(e_2)$, (6) $L(e^*) = L(e)^*$
- Examples: (1) $L(e \cup \emptyset) = L(e)$, (2) $L(e\emptyset) = \emptyset$, (3) $L(e \cup \varepsilon) = L(e) \cup \{\varepsilon\}$, (4) $L(e\varepsilon) = L(e)$, (5) $L(\emptyset^*) = \{\varepsilon\}$, (6) $L(\varepsilon^*) = \{\varepsilon\}$.
- DFA, NFA, and regular expression:
 - Equivalent in their descriptive power.
 - Closed under complement, union, intersection, concatenation, Kleene star.
- Theorem: For every regular expression e, there is an NFA A s.t. L(e) = L(A).
- $L(e) \subseteq L(A)$ proved by construction:

- $L(A) \subseteq L(e)$ proved by induction:
 - Definition: $A = \langle \Sigma, Q, q_0, F, \delta \rangle$, where $Q = \{q_0, q_1, q_2, \dots, q_m\}$.
 - Definition: $L(i, j, k) = \{w | \text{ there is a run from state } i \text{ to state } j \text{ passing only through state } \leq k \}$, where $i, j, k \in \{0, 1, 2, ..., m\}$.
 - Hypothesis: For any $k \in \{0, 1, 2, ..., m\}$, there is a valid regular expression $e_{i,j,k}$ s.t. $L(i,j,k) = L(e_{i,j,k})$.
 - Basis: When k = 0, $e_{i,j,0}$ is always a valid regular expression s.t. $L(i,j,0) = L(e_{i,j,0})$.
 - Induction: Assume the hypothesis hold for k=m-1 and consider k=m. $L(i,j,m)=L(i,j,m-1)\cup L(i,m,m-1)L(m,m,m-1)^*L(m,j,m-1)=L(e_{i,j,m-1}\cup e_{i,m,m-1}e_{m,m,m-1}^*e_{m,j,m-1})$. Because $e_{i,j,m-1}$, $e_{i,m,m-1}$, $e_{m,m,m-1}$, and $e_{m,j,m-1}$ are all regular expressions, $e_{i,j,m}=e_{i,j,m-1}\cup e_{i,m,m-1}e_{m,m,m-1}^*e_{m,j,m-1}$ is also a valid regular expression.
 - Conclusion: $L(A) = \bigcup_{q_j \in F} L(0, j, k) = \bigcup_{q_j \in F} L(e_{0,j,k})$, and $\bigcup_{q_j \in F} e_{0,j,k}$ is the equivalent regular expression for any $k \in \{0, 1, 2, ..., m\}$.
- Again, since the set of all languages is uncountably infinite, and the set of regular languages is countably infinite, there is a language which is *not* regular.
- Pumping lemma is a useful tool to prove languages that are *not* regular.

- An example of proof using the *pumping lemma*: Prove $L = \{a^n b^n | n \in \mathbb{N}\}$ is *not* regular.
 - Suppose L is regular, and $A = \langle \Sigma, Q, q_0, F, \delta \rangle$, where $\Sigma = \{a, b\}$, is its DFA.
 - Consider the following word $w = a^k b^k$, where $k \ge |Q|$.
 - Then, a^k can be divided into three part $a^k = a^u a^v a^w$, and k = u + v + w s.t. $a^u (a^v)^n a^w b^k \in L(A)$ for every nonnegative integer $n \ge 0$.
 - However, there is a contradiction since $a^u(a^v)^n a^w b^k = a^{u+nv+w} b^k \notin L(A)$ for nonnegative integers $n \neq 1$.
 - \circ Therefore, L is *not* regular.