Estadística II Grado en Matemáticas, UAM, 2020-2021

Hoja 1 (Preliminares)

Sobre matrices simétricas y matrices idempotentes

1. Sea A una matriz real, de dimensiones $n \times n$, simétrica. Prueba que

A es definida positiva \iff $A = R^{\mathsf{T}}R$, con R matriz $n \times n$ invertible

(Puedes usar que una matriz simétrica definida positiva tiene todos los autovalores positivos).

- 2. Sea A una matriz real, de dimensiones $n \times n$, simétrica y definida positiva.
- a) Sea B una matriz $n \times n$ invertible. Prueba que la matriz $C = B^{\mathsf{T}}AB$ es simétrica y definida positiva.
 - b) Calcula los coeficientes de la matriz L de dimensiones $n \times n$ y triangular superior tal que

$$A = L^{\mathsf{T}} \cdot L$$

(descomposición de Cholesky) para los casos n = 2 y n = 3.

Puedes escribir los coeficientes de L en términos de los coeficientes de A y/o como procedimiento recursivo. Comprueba que todas las raíces cuadradas que aparecen tienen sentido justamente porque A es definida positiva.

3. Sea V una matriz (real, $n \times n$) simétrica y semidefinida positiva. Sea $\mathbf{a} \in \mathbb{R}^n$. Prueba que

$$\mathbf{a}^{\mathsf{T}}V\mathbf{a} = 0 \quad \Longleftrightarrow \quad V\mathbf{a} = \mathbf{0}.$$

(Sugerencia: para $\lambda \in \mathbb{R}$ y $\mathbf{b} \in \mathbb{R}^n$, considera la función cuadrática $p(\lambda) = (\mathbf{a} + \lambda \mathbf{b})^{\mathsf{T}} V(\mathbf{a} + \lambda \mathbf{b})$.)

- **4.** Sea A una matriz (real, $n \times n$) simétrica ($A = A^{\mathsf{T}}$) e idempotente ($A^2 = A$). Digamos que A no es ni la matriz identidad, ni la matriz nula.
 - a) Comprueba que traza(A) = rango(A), y que es un entero positivo < n.
 - b) Comprueba que $I_n A$ es también simétrica e idempotente.
 - c) ¿Cómo son las matrices simétricas e idempotentes para n=2?

Sobre la normal multidimensional

5. Sea $\mathbb{Y} = (Y_1, Y_2, Y_3)^\mathsf{T}$ un vector aleatorio con distribución $\mathcal{N}(\mathbf{m}, V)$, donde $\mathbf{m} = \mathbf{0}$ y

$$V = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{array}\right)$$

- (a) Calcula la distribución del vector $(X_1, X_2)^{\mathsf{T}}$, donde $X_1 = Y_1 + Y_3$ y $X_2 = Y_2 + Y_3$.
- (b) ¿Existe alguna combinación lineal de las variables aleatorias Y_i que sea independiente de X_1 ?

6. Sea $\mathbb{X} = (X_1, X_2, X_3)^{\mathsf{T}}$ un vector aleatorio con distribución $\mathcal{N}(\mathbf{m}, V)$, donde $\mathbf{m} = \mathbf{0}$ y

$$V = \left(\begin{array}{ccc} 4 & 0 & -1\\ 0 & 5 & 0\\ -1 & 0 & 2 \end{array}\right)$$

Determina razonadamente cuáles de los siguientes pares de variables o vectores aleatorios son independientes y cuáles no: (i) X_1 y X_2 ; (ii) $(X_1, X_3)^{\mathsf{T}}$ y X_2 ; (iii) X_1 y $X_1 + 3X_2 - 2X_3$.

7. Sea $\mathbb{X} = (X_1, X_2)^{\mathsf{T}}$ un vector aleatorio con distribución $\mathcal{N}(\mathbf{m}, V)$, donde $\mathbf{m} = (1, 1)^{\mathsf{T}}$ y

$$V = \left(\begin{array}{cc} 3 & 1 \\ 1 & 2 \end{array}\right)$$

Calcula la distribución de $X_1 + X_2$ condicionada por el valor de $X_1 - X_2$.

8. Sea $\mathbb{X} = (X_1, X_2, X_3)^{\mathsf{T}}$ un vector aleatorio con distribución $\mathcal{N}(\mathbf{m}, V)$, donde $\mathbf{m} = \mathbf{0}$ y

$$V = \left(\begin{array}{rrr} 1 & 2 & -1 \\ 2 & 6 & 0 \\ -1 & 0 & 4 \end{array}\right)$$

Se definen las variables aleatorias $Y_1=X_1+X_3,\,Y_2=2X_1-X_2$ e $Y_3=2X_3-X_2$. Calcula la distribución de Y_3 dado que $Y_1=0$ e $Y_2=1$.

9. El vector $\mathbb{X} = (X_1, X_2, X_3)^{\mathsf{T}}$ sigue una normal multidimensional $\mathcal{N}(\mathbf{m}, V)$, de parámetros

$$\mathbf{m} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad \mathbf{y} \qquad V = \begin{pmatrix} 3 & a & 1/2 \\ a & 2 & 0 \\ 1/2 & 0 & 1 \end{pmatrix}$$

Aquí, a es un cierto número real.

a) ¿Para qué valores de a es V una matriz definida positiva?

b) Definimos el vector $\mathbb{Y}=(Y_1,Y_2)^{\mathsf{T}}$ mediante $Y_1=X_1+2X_2$ e $Y_2=X_1-X_2$. ¿Qué valor debe tomar a para que Y_1 e Y_2 sean independientes? Justifica bien todos los pasos que te lleven a la respuesta.

c) En este apartado, tomamos a=2. Determina la distribución de $(X_1,X_2)^{\mathsf{T}}$ condicionando a que $X_3=1/2$.

10. El vector $\mathbb{X} = (X_1, \dots, X_4)^{\mathsf{T}}$ sigue una normal multidimensional $\mathcal{N}(\mathbf{m}, V)$, de parámetros

$$\mathbf{m} = \mathbf{0} \qquad \mathbf{y} \qquad V = \begin{pmatrix} 10 & 1 & 2 & 3 \\ 1 & 9 & 4 & 5 \\ 2 & 4 & 8 & 6 \\ 3 & 5 & 6 & 7 \end{pmatrix}$$

a) Calcula la probabilidad de que la variable $Y = 2X_1 - 3X_4$ sea $\leq A$.

b) Determina la distribución de $(X_1, X_2)^{\mathsf{T}}$ condicionando a que $X_4 = 1$.

11. El vector $\mathbb{X} = (X_1, X_2)^{\mathsf{T}}$ sigue una normal bidimensional con vector de medias $\mu = (1, -\sqrt{2}/2)^{\mathsf{T}}$ y matriz de covarianzas $V = 3 \cdot I_{2 \times 2}$. Considera la matriz

$$B = \left(\begin{array}{cc} 1/3 & \sqrt{2}/3\\ \sqrt{2}/3 & 2/3 \end{array}\right).$$

Determina cómo se distribuye la variable aleatoria

$$Z = \frac{1}{3} \, \mathbb{X}^{\mathsf{T}} \cdot B \cdot \mathbb{X}.$$