```
import pandas as pd
import matplotlib.pyplot as plt
# 1. Load your CSV file
    On Windows, either use a raw string (prefix with r) or
escape backslashes.
file_path = r'D:\csvfiles\sales_data.csv'
df = pd.read_csv(file_path)
# 2. Inspect the data
print(df.head())
print(df.info())
print(df.describe())
plt.hist(df['Sales'], bins=5, color='skyblue',
edgecolor='black')
plt.title("Distribution of Sales")
plt.xlabel("Sales Amount")
plt.ylabel("Frequency")
plt.show()
```

The histogram is a visualization of how the five monthly "Sales" values in the dataset are spread out across different ranges (bins).

1. Identify the minimum and maximum

- Minimum sale = 1000
- Maximum sale = 1700

So the full range is from 1000 up to 1700, which is a span of

$$1700 - 1000 = 700.$$

2. Compute the bin width

We want 5 bins of equal width, so each bin's width is

bin width =
$$\frac{(\text{max} - \text{min})}{\# \text{ of bins}} = \frac{700}{5} = 140.$$

3. Determine all bin edges

Starting at the minimum (1000), each edge is +140 from the previous:

- 1. **Edge 0 (start)**: 1000
- 2. **Edge 1**: 1000 + 140 = 1140
- 3. **Edge 2**: 1140 + 140 = 1280
- 4. **Edge 3**: 1280 + 140 = 1420
- 5. **Edge 4**: 1420 + 140 = 1560
- 6. **Edge 5 (end)**: 1560 + 140 = 1700

So the five bins cover these intervals (we'll label them Bin 1 through Bin 5):

- **Bin 1:** [1000, 1140)
- **Bin 2:** [1140, 1280)

Bin 3: [1280, 1420)
Bin 4: [1420, 1560)
Bin 5: [1560, 1700]

(Note: By convention, the left edge is inclusive "[" and the right edge is exclusive ")", except that the very last bin can include the max.)

4. Locate which bin 1300 falls into

Check 1300 against each interval:

- Is $1300 \ge 1000$ and < 1140?
 - No, because $1300 \ge 1140$.
- Is $1300 \ge 1140$ and < 1280?
 - No, because $1300 \ge 1280$.
- Is $1300 \ge 1280$ and < 1420?
 - Yes—1300 lies between 1280 and 1420.

Hence 1300 sits in Bin 3 (the [1280, 1420) interval).

5. Confirm the "1 month" count

Since the only sales value that lands in the [1280, 1420) interval is 1300, that makes the frequency (count) for Bin 3 equal to **1**.

To summarize:

Sales Value Falls Into Which Bin Interval? Bin

1000	[1000, 1140)	1
1300	[1280, 1420)	3
1500	[1420, 1560)	4
1600	[1560, 1700]	5
1700	[1560, 1700]	5

Sales values: [1000, 1500, 1300, 1700, 1600]

Bins (intervals):

```
Bin 1: 1000-1140 \rightarrow \text{contains} [1000] \rightarrow \text{frequency} = 1

Bin 2: 1140-1280 \rightarrow \text{contains} [] \rightarrow \text{frequency} = 0

Bin 3: 1280-1420 \rightarrow \text{contains} [1300] \rightarrow \text{frequency} = 1

Bin 4: 1420-1560 \rightarrow \text{contains} [1500] \rightarrow \text{frequency} = 1

Bin 5: 1560-1700 \rightarrow \text{contains} [1600, 1700] \rightarrow \text{frequency} = 2
```

In general, the **height** of each bar in a histogram is its **frequency**—how many observations (data points) fall into that bin.

```
# 4. Plot: Boxplot of Profit (Identify outliers, spread)
plt.boxplot(df['Profit'])
plt.title("Boxplot of Profit")
plt.ylabel("Profit")
plt.show()
```


A **boxplot** (or "box-and-whisker" plot) gives you a quick visual summary of how your **Profit values are distributed**. Let's walk through exactly what each part of that boxplot means for five Profit numbers:

Profit values: [200, 300, 250, 400, 380]

1. Sort the data

First, put the numbers in order:

[200, 250, 300, 380, 400]

To find the median of the list 200, 250, 300, 380, 400, follow these steps:

Sort the data (if it isn't already sorted)

In this case, the list is already in ascending order:

[200, 250, 300, 380, 400]

Count how many values there are

There are 5 numbers in total.

- 3. For an odd number of values, the median is the middle element
 - When n=5, the "middle" position is at index $rac{n+1}{2}=rac{5+1}{2}=3$ (counting 1st, 2nd, 3rd, etc.).
 - In zero-based indexing (like Python), that corresponds to index 2 (because indices run 0,1,2,3,4).
- 4. Pick the 3rd element in the sorted list

1st element: 200 2nd element: 250

3rd element: 300 ← this is the median

4th element: 380 5th element: 400

2. Key statistics

- 1. Minimum (min)
 - The smallest value is 200.
- 2. First Quartile (Q1)
 - Q1 is the "middle" of the lower half.
 - With five points, the overall median is 300, so the lower half is [200, 250].
 - The median of [200, 250] is (200 + 250)/2 = 225.
- 3. **Median (Q2)**

• The overall middle value is **300** (the third number in the sorted list).

4. Third Quartile (Q3)

- Q3 is the "middle" of the upper half, which is [380, 400].
- The median of [380, 400] is (380 + 400)/2 = 390.

5. Maximum (max)

• The largest value is **400**.

3. How those numbers map to the boxplot

1. The Box (the "interquartile range" or IQR)

- Bottom of box = Q1 = 225
- Top of box = Q3 = 390
- So the box spans from 225 up to 390.
- Everything inside that box represents the middle 50% of your data (i.e., from the 25th percentile up to the 75th percentile).

2. The Line inside the Box (the Median)

- Drawn at Profit = 300.
- This line shows that half of your five profits are below 300 and half are above 300.

3. Whiskers (lines extending from the box)

- Lower whisker runs from Q1 down to the minimum (200).
- Upper whisker runs from Q3 up to the maximum (400).
- In this simple case, none of the points are far enough from Q1 or Q3 to be considered "outliers," so the whiskers simply touch the min and max.

4. Outliers (dots beyond the whiskers)

a. What Is an "Outlier" in a Boxplot?

• In a boxplot, any data point that lies "far outside" the bulk of the values is marked with a dot (or a small circle).

The standard rule is:

Anything more than $1.5 \times IQR$ below the first quartile (Q1) or above the third quartile (Q3) is called an outlier.

2. Compute the IQR (Interquartile Range)

profit values sorted:

[200, 250, 300, 380, 400]

- **Q1** (first quartile) = 225
- **Q3 (third quartile)** = 390

So

$$IQR = Q3 - Q1 = 390 - 225 = 165.$$

3. Find the "1.5 × IQR" Distance

Multiply that IQR by 1.5:

$$1.5 \times IQR = 1.5 \times 165 = 247.5.$$

This number (247.5) tells us how far from the "middle 50% box" a point has to be to count as an outlier.

4. Calculate the Cutoff Values

In other words, any profit below -22.5 would be considered an outlier on the low side.

Any profit above 637.5 would be an outlier on the high side.

5. Compare Your Actual Profit Values

profits are:

[200, 250, 300, 380, 400]

- Is any profit < -22.5? No (the smallest is 200).
- Is any profit > **637.5**? No (the largest is 400).

Since all five numbers lie between -22.5 and 637.5, none of them fall outside the cutoff range. Therefore, there are no outliers, and you won't see any extra dots beyond the whiskers in the boxplot.

In Plain English

- 1. **Find the middle 50% box** (225 up to 390).
- 2. **Stretch that box** out by 1.5 times its height $(165 \times 1.5 = 247.5)$ in both directions.
- Any point outside that stretched range would be "too far away" and get a dot.
- All your profits (200-400) stay inside those stretched limits, so no dots appear—no outliers.

4. Reading the plot Box from 225 to 390:

50% of your profits fall between \$225 and \$390.

Median line at 300:

Half of the months had Profit below \$300, half above.

• Whiskers down to 200 and up to 400:

Your full range of profits is from \$200 (the lowest month) to \$400 (the highest month).

No outlier dots:

None of your profit values are unusually far from the rest.

In plain terms

- The **lowest profit** was \$200, and the **highest profit** was \$400.
- The "middle" profit (median) is \$300.
- Most months' profits (the central 50%) lie between about \$225 and \$390.
- There are no extremely unusual profit values.