Math 650.2 Homework 4

Elliot Gangaram elliot.gangaram@gmail.com

Problem 1

Denseness

(a) Prove that \mathbb{Q} is dense in \mathbb{Q} .

Let $x \in \mathbb{Q}$ and let $y \in \mathbb{Q}$. WLOG, assume that x < y. We want to show that there exists a $q \in \mathbb{Q}$ such that x < q < y. I claim that q can be taken to be $\frac{x+y}{2}$. First note that by the closure property of the field \mathbb{Q} , we have $x+y \in \mathbb{Q}$ and $\frac{1}{2} \in \mathbb{Q}$, thus $\frac{x+y}{2} \in \mathbb{Q}$. We now must show that $x < \frac{x+y}{2} < y$. We will first show $x < \frac{x+y}{2}$.

$$x < y$$

$$x + x < x + y$$

$$2x < x + y$$

$$x < \frac{x + y}{2}$$

We must now show that $\frac{x+y}{2} < y$.

$$x < y$$

$$x + y < y + y$$

$$x + y < 2y$$

$$\frac{x + y}{2} < y$$

1

Hence, \mathbb{Q} is dense in \mathbb{Q} .

(b) Show that \mathbb{R} is dense in \mathbb{R} .

Let $x \in \mathbb{R}$ and let $y \in \mathbb{R}$ such that x < y. We want to show that there exists a $q \in \mathbb{R}$ such that x < q < y. By the same argument above, let us take $q = \frac{x+y}{2}$. By the closure property of \mathbb{R} it is clear that $\frac{x+y}{2} \in \mathbb{R}$. We will first show $x < \frac{x+y}{2}$.

$$x < y$$

$$x + x < x + y$$

$$2x < x + y$$

$$x < \frac{x + y}{2}$$

We must now show that $\frac{x+y}{2} < y$.

$$x < y$$

$$x + y < y + y$$

$$x + y < 2y$$

$$\frac{x + y}{2} < y$$

(c) Prove that \mathbb{R} is dense in \mathbb{Q} .

Let $x \in \mathbb{Q}$ and let $y \in \mathbb{Q}$ such that x < y. We want to show that there exists a $q \in \mathbb{R}$ such that x < q < y.

We will make use of the Archimedean Property. Since x < y this implies that y-x > 0. Since 1 is a real number, then we may invoke the Archimedean property. That is, there exists a positive integer n such that n(y-x) > 1. So we have

$$n(y-x) > 1$$

$$ny - nx > 1$$

$$ny > nx + 1$$
(1)

Let us set Equation 1 aside and come back to it later. Let m be the smallest integer such that m > nx. This implies that

$$\frac{m}{n} > x \tag{2}$$

.

Since m is the smallest integer such that m > nx, then $m - 1 \le nx$. To see this, note if m - 1 > nx, then we would have m > m - 1 > nx which contradicts our choice of m. So $m - 1 \le nx$ implies $m \le nx + 1$. So Equation 1 and $m \le nx + 1$ implies

$$m \le nx + 1 < ny \tag{3}$$

$$m < ny$$
 (4)

$$\frac{m}{n} < y \tag{5}$$

Putting Eq.2 and Eq.5 together tells us

$$x < \frac{m}{n} < y \tag{6}$$

To complete the proof, we must show $\frac{m}{n}$ is a real number. Since m and n are defined to be integers and n cannot be zero since n is positive, then $\frac{m}{n} \in \mathbb{Q}$ which is a subset of \mathbb{R} and hence $\frac{m}{n} \in \mathbb{R}$.

Problem 2

(a) Prove Rudin's Theorem 1.20

Theorem 1.20 For every real x > 0 and every integer n > 0 there is one and only one positive real y such that $y^n = x$

Proof: We first will show uniqueness. Assume that there exists two distinct y's, namely y_1 and y_2 such that $y_1^n = x$ and $y_2^n = x$. Since y_1 and y_2 are distinct, we have either $y_1 < y_2$ or $y_1 > y_2$. WLOG, assume $y_1 < y_2$. Then we have the following.

$$y_1 < y_2$$
$$y_1^n < y_2^n$$
$$x < x$$

Contradiction! Thus, it must be the case that $y_1 = y_2$ and so y is unique.

Now we will prove the existence of such a y. To do so, let $E = \{t \mid t > 0, t \in \mathbb{R} \text{ and } t^n < x\}$. We will first show that E is not empty. To show this, it suffices to take $t = \frac{x}{1+x}$. Note that for sufficiently large x, $\frac{x}{1+x}$ is close to 1 but never equal to 1. Moreover, since x > 0, then the smallest $\frac{x}{1+x}$ can be is some number close to 0. Thus, $0 \le t < 1$.

By Lemma 1, (see below) this implies $t^n \leq t < x$ and so there exists some $t \in E$.

Now that we know E is not empty, we will also show that E is bounded above. I claim that 1 + x is an upper bound of E. That is, for all $t \in E$, $t \le x + 1$. To see this, we will do proof by contradiction. Assume that t > 1 + x, where $t \in E$. Then,

by Lemma 2, we have $t^n \ge t > x$, but this implies that $t \notin E$ and we have reached our contradiction. This tells us that E is a nonempty subset of \mathbb{R} which is bounded above. By the LUB property of \mathbb{R} , the LUB of E exists. Let $y = \sup E$.

We want to show that $y^n = x$. Well, since we are in an ordered set, if we can show that both $y^n < x$ and $y^n > x$ fails to hold, then it must mean that $y^n = x$. In order to see this, we will use the result from Lemma 4, namely

$$b^n - a^n < (b - a)nb^{n-1}$$
 where $0 < a < b$. (7)

Case One: We will first show that $y^n < x$ leads to a contradiction. So assume $y^n < x$. Choose an h such that 0 < h < 1 and

$$h < \frac{x - y^n}{n(y+1)^{n-1}} \tag{8}$$

Note that the right hand side of the above equation is positive so it follows by the denseness of \mathbb{R} in \mathbb{R} that such an h exists. With regards to Equation 7, substitute in a = y and b = y + h. It follows that

$$(y+h)^n - y^n < hn(y+h)^{n-1} < hn(y+1)^{n-1} < x - y^n$$
(9)

Note the first inequality, $(y+h)^n - y^n < hn(y+h)^{n-1}$ is a result from Eq. 7 while $hn(y+h)^{n-1} < hn(y+1)^{n-1}$ follows since h < 1. The last inequality, $hn(y+1)^{n-1} < x - y^n$ comes directly from Eq. 8.

So, by Eq. 9, we have $(y+h)^n - y^n < x - y^n$ so $(y+h)^n < x$, which shows $y+h \in E$. Since y+h>y, this contradicts the fact that y is an upper bound of E.

Case Two: We now show that $y^n > x$ fails to hold. Assume $y^n > x$. Let

$$k = \frac{y^n - x}{ny^{n-1}} \tag{10}$$

Then we have 0 < k < y. Why is 0 < k? Well since $y^n > x$ the numerator of Equation 10 will always be bigger than 0. 0 divided by any nonzero real number, as seen in the denominator, will still give us 0. Hence 0 < k. Moreover, we have k < y since the ratio between the numerator and denominator of Equation 10 can be at most $y - \epsilon$ where ϵ is some small positive real number. To see this, let x be any positive real number as defined before and the smallest n can be is n = 1. Then as x approaches 0 from the right, x = 0 but can never actually be 0 based on the restriction of x. So this case tells

us k < y. Now as x and n increases, the ratio between the numerator and denominator becomes smaller and so that ratio must be less than y.

Now if $y - k \le t$, then this implies that

$$y^{n} - t^{n} \le y^{n} - (y - k)^{n} < kny^{n-1} = y^{n} - x$$
(11)

Note that we get $y^n-t^n \leq y^n-(y-k)^n$ from using the assumption that $t\geq y-k$. From there, we use Equation 7, to show $y^n-(y-k)^n < kny^{n-1}$. Lastly, $kny^{n-1}=y^n-x$ stems from Equation 10. From the chain of inequalities, we see that $y^n-t^n < y^n-x$, which shows $t^n>x$ so $t\notin E$. This means our assumption was wrong, so for $t\in E$, we must have y-k>t. However this implies that y-k is an upper bound of E. Since we assumed y is the least upper bound of E and since y-k< y, we have reached our contradiction.

Thus, it must be the case that $y^n = x$.

Lemmas

(a) **Lemma 1**: Let x be a real positive number, let n be a positive integer and let t have the following restrictions: $t = \frac{x}{1+x}$ and $t^n < x$. Prove that $t^n \le t < x$.

Proof: We will first show $t^n \leq t$. Assume that $t^n > t$. Then, substituting in for t yields

$$\left(\frac{x}{1+x}\right)^n > \frac{x}{1+x}$$
$$\frac{x^n}{(1+x)^n} > \frac{x}{1+x}$$

$$x^n > x(1+x)^{n-1}$$

which is false since distributing and simplifying the right hand side will yield a x^n term accompanied by positive real numbers.

We now show t < x by contradiction. Assume that $t \ge x$. Then we have

$$t \ge x$$

$$\frac{x}{1+x} \ge x$$

$$x \ge x(1+x)$$
$$1 \ge 1+x$$
$$0 \ge x$$

which is clearly false since x is defined to be positive.

(b) **Lemma 2**: Let x be a real positive number, let n be a positive integer and let t be such that t > 1 + x. Then $t^n \ge t > x$.

Proof: We will first show $t^n \ge t$ by contradiction. Assume that $t^n < t$. Then this implies that $t^{n-1} < 1$ which is false since t > 1 + x and therefore t > 1 so this contradicts $t^{n-1} < 1$.

We now will show that t > x. Assume that $t \le x$. Clearly t cannot equal x because this violates t > 1 + x. It is also clear that t < x leads to a contradiction since this again violates t > 1 + x.

(c) **Lemma 3**: Let a and b be real numbers and let n be a positive integer. Then,

$$b^{k} - a^{k} = (b - a)(b^{k-1} + b^{k-2}a + \dots + a^{k-1})$$
(12)

Proof:

$$(b-a)(b^{k-1}+b^{k-2}a+\ldots+a^{k-1})$$

$$=b^k+b^{k-1}a+b^{k-2}a^2+b^{k-3}a^3+\cdots+ba^{k-1}-ab^{k-1}-a^2b^{k-2}-\ldots-a^{k-1}b-a^k$$

$$=b^k+(b^{k-1}a-ab^{k-1})+\ldots+(ba^{k-1}-a^{k-1}b)-a^k$$

$$=b^k-a^k$$

(d) **Lemma 4**: Let 0 < a < b. Then $b^n - a^n < (b - a)nb^{n-1}$

Proof: Since
$$b^n - a^n = (b - a)(b^{n-1} + b^{n-2}a + \ldots + a^{n-1})$$
, we must show that $(b - a)(b^{n-1} + b^{n-2}a + \ldots + a^{n-1}) < (b - a)nb^{n-1}$

Since (b-a) is on both sides, the problem reduces to showing that

$$(b^{n-1} + b^{n-2}a + \ldots + a^{n-1}) < nb^{n-1}$$

Since 0 < a < b, we have

$$(b^{n-1} + b^{n-2}a + \ldots + a^{n-1}) < (b^{n-1} + b^{n-2}b + \ldots + b^{n-1})$$

But notice that the right hand side is precisely nb^{n-1} , since $(b^{n-1}+b^{n-2}b+\ldots+b^{n-1})=b^{n-1}+b^{n-1}+\ldots+b^{n-1}$ where there are a total of n b^{n-1} 's and thus we have proved what we needed to show:

$$(b^{n-1} + b^{n-2}a + \ldots + a^{n-1}) < nb^{n-1}$$

(e) **Lemma 5**: Suppose r is a rational number, x and y are real numbers, and r < x + y. Then there are rational numbers s < x and t < y with r < s + t < x + y.

Proof: Since r < x + y, then subtracting y and adding x to both sides yields r < -y + x < 2x). Dividing by 2 gives us $\frac{r-y+x}{2} < x$. By Theorem 1.20(b) in Rudin,there exists a rational number s such that

$$\frac{r - y + x}{2} < s < x.$$

Similarly, there exists a rational number t such that

$$\frac{r - x + y}{2} < t < y$$

Adding the above equations yields r < s + t < x + y.

Problem 3

Prove the following corollary of Theorem 1.20

(a) Corollary: If a and b are real numbers and n is a positive integer, then

$$(ab)^{1/n} = a^{1/n}b^{1/n}$$

Proof: Let $\alpha = a^{1/n}$ and let $\beta = b^{1/n}$. Then,

$$\alpha^n = (a^{1/n})^n = (a^{1/n})(a^{1/n})\dots(a^{1/n}) = a^1$$

Similarly, $\beta^n = b^1$. Note that

$$ab = \alpha^n \beta^n = (\alpha \alpha \dots \alpha)(\beta \beta \dots \beta) = (\alpha \beta)(\alpha \beta) \dots (\alpha \beta) = (\alpha \beta)^n$$

Since $ab = (\alpha \beta)^n$, then by Theorem 1.20, we have

$$\alpha\beta = (ab)^{1/n} \tag{13}$$

Also, based on our definition of α and β , we have

$$\alpha\beta = a^{1/n}b^{1/n} \tag{14}$$

By the uniqueness portion of Theorem 1.20, it therefore follows that

$$(ab)^{1/n} = a^{1/n}b^{1/n}$$

Problem 4

Rudin Chapter 1 Question 6

(a) Fix b > 1. If m, n, p, q are integers, n > 0, q > 0, and $r = \frac{m}{n} = \frac{p}{q}$, prove that

$$(b^m)^{1/n} = (b^p)^{1/q}$$

Hence it makes sense to define $b^r = (b^m)^{1/n}$

First note that $\frac{m}{n} = \frac{p}{q}$ implies mq = np. We will use this fact in a few short moments. Let $y^n = b^m$. Using $y^n = b^m$, we have $y^{nq} = b^{mq} = b^{np}$, by our small fact mentioned above. As shown in the proof of the corollary of Theorem 1.20, we then may conclude that $(y^q)^n = (b^p)^n$. Since n^{th} roots are unique, we see that $y^q = b^p$. Taking the q^{th} roots of each side yields $y = (b^p)^{1/q}$. By a similar argument, we can show $y = (b^m)^{1/n}$. To see this, we have shown $y^{nq} = b^{mq}$ so $(y^n)^q = (b^m)^q$. Taking the q^{th} root yields $y^n = b^m$ and by taking the n^{th} root, we have $y = (b^m)^{1/n}$. Finally, since $y = (b^p)^{1/q}$ and $y = (b^m)^{1/n}$, by the uniqueness, we may conclude $(b^m)^{1/n} = (b^p)^{1/q}$. Since this value is well-defined, that is, the representation does not matter, it is sensible to define $b^r = (b^m)^{1/n}$.

(b) Prove that $b^{r+s} = b^r b^s$ if r and s are rational.

To prove this, we first invoke the following lemma.

Lemma: If b is a real number greater than 1, $x, y \in \mathbb{Z}$, then $b^x b^y = b^{x+y}$.

Proof: $b^x b^y = (b_{x1} \times b_{x2} \dots \times b_{xx})(b_{y1} \times b_{y2} \times \dots \times b_{yy}) = b^{x+y}$ since b is multiplied a total of x + y times.

We now continue with the original proof. Since r and s are rational, then there exists integers m, n, p, and q such that m, n, p, q are integers, $n \neq 0$, and $q \neq 0$, where $r = \frac{m}{n}$ and $s = \frac{p}{q}$. Note that $r + s = \frac{m}{n} + \frac{p}{q} = \frac{mq + np}{nq}$. By part (a) and by the corollary to

Theorem 1.20, we may write $b^{r+s} = (b^{mq+nq})^{1/nq} = (b^{mq}b^{np})^{1/nq} = (b^{mq})^{1/nq}(b^{np})^{1/nq} = (b^{mp})^{1/nq}(b^{np})^{1/nq} = (b^{mp})^{1/nq}$

(c) If x is real, define B(x) to be the set of all numbers b^t where t is rational and $t \leq x$. Prove that

$$b^r = \sup B(r)$$

when r is rational. Hence it makes sense to define

$$b^x = \sup B(r)$$

We now must show that $b^r = \sup B(r)$. In order to prove this, we must show two things:

- (a) We must show that b^r is an upper bound for B(r), namely $b^r \geq x, \forall x \in B(r)$
- (b) We must show that any element less than b^r fails to be an upper bound for B(r). Namely if $b^r > \lambda$ then λ fails to be a upper bound for B(r).

Let us now prove the first claim. Let us denote the element $x \in B(r)$ by b^s . By definition, s is rational and $s \le r$ so $0 \le r - s$ which implies that $1 \le b^{r-s}$. (Note b > 1 by assumption). Multiplying by b^s gives us $b^s \le b^r$, so b^r is an upper bound for B(r). To prove the second claim, note that $r \le r$ and so $b^r \in B(r)$. So if $\lambda < b^r$, then λ fails to be an upper bound for B(r). Thus, $b^r = \sup B(r)$.

Since the numbers above are arbitrary, it holds for any such r so it makes sense to define $b^x = \sup B(x)$ provided that x is rational and b > 1.

(d) Prove that $b^{x+y} = b^x b^y$ for all real x and y.

If we can somehow show that $b^{x+y} \leq b^x b^y$ and also show that $b^x b^y \leq b^{x+y}$ then this would show $b^{x+y} = b^x b^y$. We will first attempt to show that $b^{x+y} \leq b^x b^y$. First note that $b^{x+y} = \sup B'(x+y)$ where $B'(z) = \sup \{b^r | r < z, r \in \mathbb{Q}\}$. For every $b^r \in B'(x+y)$, we have r < x + y so by Lemma 5, there exists rational numbers s < x and t < y such that r < s + t < x + y. By part (b) and by the fact that b > 1, we have

$$b^r < b^{s+t} = b^{s+t} < b^{x+y}$$
.

This suggests that $b^x b^y$ is an upper bound for B'(x+y), and so $b^{x+y} \le b^x b^y$.

We now show $b^x b^y \leq b^{x+y}$. If r < x and s < y then r+s < x+y. By part (b) and by using the fact that b > 1 suggests $b^x b^y = \sup \{b^r b^s | r < x, s < y, r, s \in \mathbb{Q}\}$. This implies that $b^x b^y \leq b^{x+y}$. Thus $b^x b^y = b^{x+y}$.

Problem 5

Rudin Question 7 Chapter 1. Fix b > 1, y > 0, and prove that there is a unique real x such that $b^x = y$, bu completing the following outline. (This x is called the logarithm of y to the base b).

(a) For any positive integer $n, b^n - 1 \ge n(b-1)$.

We will prove this by induction. For our base case, n=1, it is clear that $b-1 \ge b-1$ is a true statement. Assume this holds for n=k. We want to show that this holds for k+1. That is,

$$b^{k+1} - 1 \ge (k+1)(b-1)$$

$$b^k b^1 - 1 \ge kb - b + b - 1$$

$$b^k b^1 - b \ge kb - b$$

$$b(b^k - 1) \ge k(b-1)$$

which is true since $b^k - 1 \ge k(b-1)$ by hypothesis and b is a positive number greater than 1.

(b) Hence $b - 1 \ge n(b^{1/n} - 1)$.

Note this follows immediately by setting b in part (a) equal to $b^{1/n}$. This yields $b-1 \ge n(b^{1/n}-1)$ which is exactly what we needed to show. Note that the statement is still true because $b^{1/n}$ still satisfies the definition of b.

(c) If t > 1 and n > (b-1)/(t-1), then $b^{1/n} < t$.

Since n > (b-1)/(t-1), then (b-1) < n(t-1). By part (b) we may write $n(b^{1/n}-1) \le (b-1) < n(t-1)$ and so $n(b^{1/n}-1) < n(t-1)$ which shows $(b^{1/n}-1) < t-1$ and thus we may conclude $b^{1/n} < t$.

(d) If w is such that $b^w < y$, then $b^{w+(1/n)} < y$ for sufficiently large n.

Let $t = \frac{y}{b^w}$. Then t > 1. We already showed $b^{1/n} < t$ so multiplying on both sides by b^w yields $b^w b^{1/n} < tb^w$ which shows $b^{w+(1/n)} < y$.

(e) If $b^w > y$ then $b^{w-(1/n)} > y$ for sufficiently large n.

Let $t = \frac{b^w}{y}$. Then t > 1. By part (c) we have $b^{1/n} < t$. Dividing throughout by $b^{1/n}$ yields $1 < \frac{t}{b^{1/n}}$. Substituting in for t gives us $1 < \frac{b^w}{yb^{1/n}}$ which gives us $y < b^{w-(1/n)}$.

(f) Let A be the set of all w such that $b^w < y$ and show that $x = \sup A$ satisfies $b^x = y$.

We will first show that sup A exists. Note that since b > 1, and y > 0 we may choose a sufficiently small w which will get us close to 0. This tells us that A is nonempty. Moreover, since $b^w < y$ for a sufficiently large w, A is bounded above. Since we have a nonempty subset of \mathbb{R} which is bounded above, then the supremum exists. Let sup A = x.

We must now show that $b^x = y$. To do this we will show that $b^x < y$ and $b^x > y$ lead to contradictions.

Assume $b^x < y$. Then by part (d), $b^{x+(1/n)} < y$. This tells us that $x + (1/n) \in A$. However, x is an upper bound of A and since, x + (1/n) > x we have reached our contradiction.

Assume $b^x > y$. Then by part (e) $b^{x-(1/n)} > y$. However, x - (1/n) < x and x is assumed to be the sup A so every element less than x fails to be an upper bound and thus we have reached our contradiction.

Therefore, it must be the case that $b^x = y$.

(g) Prove that this x is unique.

Assume that x is not unique. That is, there exists x and y such that $x = \sup A$ and $y = \sup A$, but $x \neq y$. Then, either x > y or x < y. WLOG, assume that x > y. Then, be the definition of the supremum, every element less than x fails to be an upper bound for A. However, y is less than x and y is also a supremum and hence an upper bound as well. Contradiction!