Project Design Phase-I Proposed Solution Template

Date	19 September 2022
Team ID	PNT2022TMID33686
Project Name	Project - Natural Disasters Intensity Analysis
	And Classification Using Artificial
	Intelligence
Maximum Marks	2 Marks

Proposed Solution Template:

Project team shall fill the following information in proposed solution template.

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	The proposed multilayered deep convolutional neural network was simulated on the computer system with Core i7, Central Processing Unit 2.8 GHZ with 16 GB RAM in MATLAB 2018a and different types of results were calculated.
2.	Idea / Solution description	It defines the overall method for natural disaster intensity analysis and classification based on multi-spectral images using a multilayered deep convolutional neural network. Moreover, this method consists of two blocks of a convolutional neural network.
3.	Novelty / Uniqueness	To evaluate the performance of the proposed multilayered deep convolutional neural network, uses a train-test validation schema. To train the whole model, the training dataset was used, while for the fine-tuning of model the validation set was used. The performance of the whole framework was calculated on the basis of the test dataset.

4.	Social Impact / Customer Satisfaction	Hayyayar the detection of
٦.	Social impact / Customer Satisfaction	However, the detection of
		natural disasters by using deep
		learning techniques still faces
		various issues due to noise and
		serious class imbalance
		problems. To address these
		problems, we proposed a
		multilayered deep convolutional
		neural network for detection and
		intensity classification of natural
		disasters.
5.	Business Model (Revenue Model)	The proposed model achieved
		the highest accuracy as
		compared to other state-of-the-
		art methods due to its
		multilayered structure. The
		proposed model performs
		significantly better for natural
		disaster detection and
		classification, but in the future
		the model can be used for
		various natural disaster
		detection processes.
6.	Scalability of the Solution	The overall accuracy for the
		whole model is 99.92%, which is
		competitive and comparable
		with state-of-the-art algorithms.