fn make_vector_integer_laplace_cks20

Michael Shoemate

February 27, 2024

This proof resides in "contrib" because it has not completed the vetting process.

Proves soundness of $make_vector_integer_laplace_cks20$ in mod.rs at commit f5bb719 (outdated¹). The function on the resulting measurement takes in a data set x (an integer vector), and returns a sample from the Vector Discrete Laplace Distribution centered at x, with a fixed noise scale.

PR History

• Pull Request #490

1 Hoare Triple

Preconditions

- Variable input_domain, of type VectorDomain<AtomDomain<T>
- Variable input_metric, of type L1Distance<T>
- Variable scale, of type QO
- Type T must have trait Integer and support saturating cast from IBig (for postprocessing a noisy big integer back to T)
- Type QO must have trait Float and support casting with controlled rounding from T (for converting d_{in} to type QO)
- Type IBig must be constructable from T (to convert the data into a big integer)
- Type RBig must be fallibly constructable from QO (to convert scale into a rational)

Pseudocode

```
def make_vector_integer_laplace_cks20(input_domain, input_metric, scale: Q0):
    if scale.is_sign_negative():
        raise ValueError("scale must not be negative")

# conversion to rational will fail if scale is null
r_scale = RBig.try_from(scale)

if scale.is_zero():
    def function(x: list[T]):
```

 $^{^1\}mathrm{See}$ new changes with git diff f5bb719..0ede89a5 rust/src/measurements/laplace/discrete/cks20/mod.rs

```
return x
10
11
       else:
           def function(x: list[T]):
12
13
               release = [IBig(x_i) + sample_discrete_laplace(r_scale) for x_i in x]
14
               # postprocessing
               return [T.saturating_cast(r_i) for r_i in release]
16
       return Measurement (
17
           input_domain,
18
           function.
19
           input_metric,
20
           MaxDivergence(QO),
21
           privacy_map=laplace_map(scale, relaxation=0.)
22
```

Postcondition

For every setting of the input parameters (input_domain, input_metric, scale, T, QO) to make_vector_integer_laplace_cks20 such that the given preconditions hold, make_vector_integer_laplace_cks20 raises an exception (at compile time or run time) or returns a valid measurement. A valid measurement has the following property:

1. (Privacy guarantee). For every pair of elements x, x' in input_domain and for every pair (d_{in}, d_{out}) , where d_in has the associated type for input_metric and d_out has the associated type for output_measure, if x, x' are d_in-close under input_metric, privacy_map(d_in) does not raise an exception, and privacy_map(d_in) \leq d_out, then function(x), function(x') are d_out-close under output_measure.

2 Proof

Proof. (Privacy guarantee.)

The proof assumes the following lemma.

Lemma 2.1. sample_integer_laplace and laplace_map each satisfy their postcondition.

sample_integer_laplace can only fail due to lack of system entropy. This is usually related to the computer's physical environment and not the dataset. The rest of this proof is conditioned on the assumption that this function does not raise an exception.

Let x and x' be datasets that are d_in-close with respect to input_metric. Here, the metric is AbsoluteDistance<T>.

By the postcondition of sample_integer_laplace, the output of each call of the function follows the Discrete Laplace Distribution with scale scale.

$$\begin{aligned} & \max_{x \sim x'} D_{\infty}(M(x), M(x')) \\ &= \max_{x \sim x'} \max_{z \in supp(M(\cdot))} \ln \left(\frac{\Pr\left[M(x) = z\right]}{\Pr\left[M(x') = z\right]} \right) & \text{substitute } D_{\infty} \\ &= \max_{x \sim x'} \max_{z \in \mathbb{Z}} \ln \left(\frac{\Pr\left[\operatorname{DLap}(x, b) = z\right]}{\Pr\left[\operatorname{DLap}(x', b) = z\right]} \right) & \text{where } b \text{ is the noise scale} \\ &= \max_{x \sim x'} \max_{z \in \mathbb{Z}} \ln \left(\frac{\prod_{i}^{d} \frac{\exp^{1/b} - 1}{\exp^{1/b} + 1} \exp\left(-\frac{|x_{i} - z_{i}|}{b}\right)}{\prod_{i}^{d} \frac{\exp^{1/b} - 1}{\exp^{1/b} + 1} \exp\left(-\frac{|x'_{i} - z_{i}|}{b}\right)} \right) & \text{use pdf of Discrete Laplace} \\ &= \max_{x \sim x'} \max_{z \in \mathbb{Z}} \sum_{i}^{d} \ln \left(\frac{\exp\left(-\frac{|x_{i} - z_{i}|}{b}\right)}{\exp\left(-\frac{|x'_{i} - z_{i}|}{b}\right)} \right) & \text{pull product out by log rules} \\ &= \max_{x \sim x'} \max_{z \in \mathbb{Z}} \sum_{i}^{d} \frac{|x'_{i} - z_{i}| - |x_{i} - z_{i}|}{b} & \text{exp and ln cancel} \\ &\leq \frac{\max_{x \sim x'} \sum_{i}^{d} |x_{i} - x'_{i}|}{b} & \text{by reverse triangle inequality} \\ &= \frac{d_{in}}{b} & \text{by definition of } L^{1} \text{ distance} \end{aligned}$$

This bound satisfies the postcondition of laplace_map. The saturating conversion to T is a post-processing step.

Therefore it has been shown that for every pair of elements $x, x' \in \text{input_domain}$ and every $d_{L1}(x, x') \leq d_{\text{in}}$ with $d_{\text{in}} \geq 0$, if x, x' are $d_{\text{in-close}}$ then function(x), function(x') are $\text{privacy_map}(d_{\text{in}})$ -close under output_measure (the Max-Divergence).