Homework 2: Due Tuesday, May 21, at 11:59pm, on Gradescope

Recall that for any sets X and Y, we write $X \leq Y$ if there exists an injective function from X to Y, and $X \approx Y$ if there exists a bijective function from X to Y. By the Cantor-Schroder-Bernstein Theorem, $X \approx Y$ if and only if $X \leq Y$ and $Y \leq X$.

(1) Use induction and the triangle inequality for real numbers to prove that for all $n \in \mathbb{N}$ and for all $a_1, \ldots, a_n \in \mathbb{R}$,

$$\left| \sum_{k=1}^{n} a_k \right| \leq \sum_{k=1}^{n} |a_k|.$$

- (2) Let $A \subseteq \mathbb{R}$ be bounded, let $c \in \mathbb{R}$, and write $cA = \{ca : a \in A\}$. Find an expression for $\sup(cA)$, and prove your claim. Then state (but do not prove) the "dual" claim for $\inf(cA)$.
- (3) Let X, Y, and Z be any sets, and let $f: X \to Y$ and $g: Y \to Z$ be functions.
 - (a) Prove that if f and g are injective, then $g \circ f$ is injective.
 - (b) Prove that \leq is reflexive and transitive; that is, prove that $X \leq X$ and that if $X \leq Y$ and $Y \leq Z$, then $X \leq Z$.
- (4) Let A and B be any nonempty sets.
 - (a) Prove that if $A \subseteq B$ then $A \leq B$.
 - (b) Prove that there is an injective function from A to B if and only if there is a surjective function from B to A.
- (5) (a) Prove that if A is an infinite set and A_0 is a finite subset of A, then $A \approx A \setminus A_0$.
 - (b) Prove that if A is an uncountable set and A_0 is a countable subset of A, then $A \approx A \setminus A_0$.
- (6) (a) Prove that $\overline{\mathbb{Q}}$ is countable. Conclude that there are uncountably many transcendental real numbers.
 - (b) Prove that for all $a, b \in \mathbb{R}$, if a < b then there are uncountably many transcendental numbers in the interval (a, b).
- (7) Let $\mathbb{R}^{\mathbb{R}}$ be the set of all functions from \mathbb{R} to \mathbb{R} .
 - (a) Prove that $\mathcal{P}(\mathbb{R}) \leq \mathbb{R}^{\mathbb{R}}$.
 - (b) Prove that there is no surjective function from \mathbb{R} to $\mathbb{R}^{\mathbb{R}}$. (This shows that there are strictly more functions from \mathbb{R} to \mathbb{R} than there are real numbers.)
- (8) Use the definition of convergence directly to prove that the following sequences converge to the given limits:

(a)
$$\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$$
 (b) $\lim_{n \to \infty} \frac{n}{n+1} = 1$

- (9) Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . Prove that if $\lim_{n\to\infty} a_n = L \in \mathbb{R}$, then $\lim_{n\to\infty} |a_n| = |L|$.
- (10) Prove that for every $n \in \mathbb{N}$ and sequence (a_k) in \mathbb{R} , if (a_k) converges to L then $\lim a_k^n = L^n$.

- (11) Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} , and for each $n\in\mathbb{N}$ let $s_n=a_{n+1}-a_n$. Prove that if (a_n) converges, then (s_n) converges to zero.
- (12) Let S be a bounded nonempty subset of \mathbb{R} . Show that there is a sequence in S that converges to $\sup S$.

Optional Challenge Problems:

- (13) (a) Prove that [0, 1] cannot be expressed as the union of an indexed family of open intervals.
 - (b) Prove that (0,1) cannot be expressed as the intersection of an indexed family of closed intervals.
- (14) Is the converse of Problem (11) true? That is, if (a_n) is a sequence in \mathbb{R} and $\lim(a_{n+1} a_n) = 0$, must (a_n) converge?