ECOGRAPHY

Predicting temporal change of species distributions from a single snapshot

Journal:	Ecography		
Manuscript ID	Draft		
Wiley - Manuscript type:	Research Article		
Keywords:	colonization, extinction, fractal, grid, species distributions, temporal change		
Abstract:	Obtaining temporal biodiversity trends in the light of rapid global change is crucial to estimating future impacts – yet the lack of temporally replicated monitoring data limits our ability. Here, we identify imprints of temporal change in static data and utilize them to predict temporal biodiversity trends without requiring a time-series. We used data from temporally replicated breeding bird atlases from four regions worldwide and measured the change in each bird species by log ratio of occupancy change (measure of loss or gain) and by temporal Jaccard index (measure of turnover of sites). We calculated predictors from the configuration of each species' spatial distribution, traits, diversity metrics, and from study region characteristics and used machine-learning to link these to the temporal change. Static predictors failed to predict the log ratio of occupancy change, but they did predict the magnitude of site turnover. Variables that characterize the spatial configuration of the species range were sufficient to predict the change, while all others contributed only marginally. Here, we show that static data, especially the details of the spatial configuration of species ranges, provide signals of the processes of temporal change. This holds promise for estimating biodiversity change in situations without temporal data.		

SCHOLARONE™ Manuscripts Page 1 of 134 Ecography

1 Predicting temporal change of species distributions from a single snapshot

2 Abstract:

3 Obtaining temporal biodiversity trends in the light of rapid global change is crucial to estimating 4 future impacts – yet the lack of temporally replicated monitoring data limits our ability. Here, 5 we identify imprints of temporal change in static data and utilize them to predict temporal biodiversity trends without requiring a time-series. We used data from temporally replicated 6 7 breeding bird atlases from four regions worldwide and measured the change in each bird 8 species by log ratio of occupancy change (measure of loss or gain) and by temporal Jaccard 9 index (measure of turnover of sites). We calculated predictors from the configuration of each 10 species' spatial distribution, traits, diversity metrics, and from study region characteristics and 11 used machine-learning to link these to the temporal change. Static predictors failed to predict 12 the log ratio of occupancy change, but they did predict the magnitude of site turnover. Variables 13 that characterize the spatial configuration of the species range were sufficient to predict the change, while all others contributed only marginally. Here, we show that static data, especially 14 15 the details of the spatial configuration of species ranges, provide signals of the processes of temporal change. This holds promise for estimating biodiversity change in situations without 16 temporal data. 17

18 Key Words:

- 19 colonization, extinction, fractal dimension, grid, risk assessment, threat status, species
- 20 distributions

Ecography Page 2 of 134

1. Introduction:

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

The world is undergoing intensification of agriculture, pollution, climate change, overexploitation of resources, and changes in land use¹. All this has been linked to temporal changes in a vital resource, biodiversity², and associated ecosystem functions that support human well-being³. Consequently, tracking temporal changes in biodiversity and geographic distributions of species that form biodiversity is of high interest. Obtaining species distribution data over time, however, is challenging, expensive, and depends on the long-term commitment and consistency of biodiversity monitoring projects. As a result, there is a major lack of temporally replicated data4. Despite the fact that we have some data on trends in local population abundances in the wealthy Global North (e.g., refs 5,6) and some data on global extinctions⁷, we are missing data on temporal changes in geographic ranges and occupancy over continuous space and large spatial grains and extents. Several model-based approaches have aimed to circumvent the lack of data, each with its advantages and limitations. A popular tool to predict species distributions and their change under future climate projections are species niche models, or species distribution models (SDMs); however, SDMs may be biased by false assumptions about the species being in equilibrium with the environment, the choice of environmental predictors, species inability to evolve their niche, and stationarity of relationships over time^{8,9}. Additionally, when used with future climate projections, the results may be biased by the inaccuracy of the climate projections¹⁰ and by dispersal limitations of the species¹¹. An alternative to SDM projections is space-for-time substitution methods^{12,13}, although they, too, may falsely assume stationarity. Another promising solution has been extrapolating and interpolating good data to situations with poor data, which may address geographical data gaps¹⁴, but the jury is still out on the method. Yet, another relatively untested alternative involves deriving temporal change of species from static spatial patterns without requiring future climate projection models and without assuming

the species' ecology is stationary. One published example of how this may work is based on the link between a species' spatial aggregation, spatial scaling, and temporal change^{15–17}: Declining species may have sparser distributions due to patchy local extinctions, while expanding species have aggregated distributions due to distance-limited colonization to nearby patches¹⁷. This can be characterized by plotting the total area of occupancy (AOO) across several resolutions on a log-log scale, which is the Occupancy-Area Relationship (OAR). Its slope can be converted to the 'box-counting' fractal dimension (D=-2*slope+2)^{18,19}, which turned out to predict temporal occupancy change in butterflies in Britain, Flanders, and Belgium, and in rare plant species in Britain¹⁷.

The drawback is that the method has a limited mechanistic understanding of the drivers of this change. Moreover, whether aggregation patterns can predict temporal change remains untested across large scales, different areas in the world, and many species. Another unanswered question is whether the method would work for predicting both the direction and magnitude of occupancy change.

Here, we argue that, besides the fractal dimension, there may be other static ecological variables, or patterns, that can predict the temporal change of species distributions and perhaps even provide insights into the drivers of temporal change. We propose that combining multiple variables that describe the ecology of a species, the geometry of their spatial distribution, local diversity patterns, and characteristics of the study area can enhance our ability to predict future species trajectories from static data. Furthermore, we propose that additional insights may be gained by separating the analysis of (i) the magnitude from (ii) the direction of temporal change. As far as we know, this has never been done.

Specifically, we present four hypotheses (H1-4), each with a different logic of why dynamic temporal changes can be predictable from static patterns:

• Species traits (H1): Traits related to dispersal and adaptive ability may be important predictors for range edge shifts, and it has been suggested that considering traits may

advance our understanding of species range edges in fractal analysis²⁰. Indeed, traits
related to the ecology and morphology of northern passerines were found to be relevant
drivers of range shifts in Great Britain birds²¹. We thus hypothesize that species traits
can predict a species' capacity to adapt, move, or colonize new areas and thus its
vulnerability to threat.

- Species Range Geometry (H2): The shape and location of a species' spatial distribution may indicate underlying population dynamics such as site colonization and extinction^{22,23}, similar to the fractal dimension. For example, circular ranges may enhance species' survival through reduced edge effects because of the small edge-to-area ratio. In addition, when species have rounded ranges, the individuals are likely to be closer to each other, increasing their mating probabilities and gene flow. In contrast, elongated ranges may face higher edge effects and lower encounter rates between individuals²⁴.
- Mean Species Site-Level Diversity Indices (H3): Information on site-level diversities that each species encounters may indicate their potential to compete and coexist through information about the association between species²⁵. Species with limited competitive abilities (i.e., those that occupy sites with low a-diversity) may decline in area rather than expand, especially if they struggle to colonize new sites.
- Spatial Characteristics of the Study Area (H4): Characteristics of the study area, such as total area, shape, or elongation, can influence species distributions²⁶ and, thus, potentially also the temporal change of these distributions. For instance, small landlocked countries like the Czech Republic might exhibit different trends compared to large, elongated islands like Japan due to their geometrical differences and surrounding environments.
- Here, we test these hypotheses using high-quality presence/absence data from four large-scale breeding bird atlas projects in temperate zones around the world, combined with tree-based machine learning (random forest²⁷). We aim to determine which hypothesis and

Page 5 of 134 Ecography

predictors explain the most variation and whether the (i) magnitude of change (turnover of occupied sites) or (ii) direction of change (total area of occupied sites lost or gained) can be better predicted.

Ecography Page 6 of 134

2. Methods:

2.1 Species distribution data

We extracted species presence/absence information from four temporally replicated continuous-grid breeding bird atlases. Specifically, we used two atlas replications from each of the following regions (Table 1):

- 108 Czech Republic ^{28,29}
- New York State ^{30,31}
- 110 Japan ^{32–34}
- 111 Europe ^{35–37}

These atlases aim to provide long-term data on species distributions across a continuous grid within given administrative borders³⁸. Over several years, dedicated survey efforts have gathered information on the presence of breeding bird species during the breeding season within predefined grid cells (e.g., 5x5 km in New York or 20x20 km in Japan, Table 1). These surveys are conducted by hundreds of expert ornithologists and volunteers. Due to the goal of compiling comprehensive species lists, atlas data offer high-quality presence and absence information of species across continuous space, aggregated over a multi-year sampling period, which reduces the likelihood of false presences and absences. Although the data for the Czech Republic is embedded in the European dataset and is therefore not fully independent, their spatial scales and thus, distribution patterns are different. Therefore, we regard each atlas dataset as a different 'study region' and will refer to these two terms whenever differences between atlas datasets are highlighted or accounted for.

Bias corrections. Following ref. ³⁶ for Europe, we only considered cells sampled in both atlas periods to avoid taxonomic and geographical sampling biases for all four atlas datasets (Table S1, Supplementary Information 1 for the number of removed species and cells at each step across atlases and sampling periods). Also, we only considered species present in both sampling periods since calculating the log ratio with zeroes in the numerator or denominator is

mathematically impossible; therefore, we excluded species that were completely lost or gained between atlas periods (Table S1, Supplementary Information 1).

2.2 The response: species' temporal change

We calculated two measures of temporal change for each species. First, we calculated the *log ratio* of change in Area of occupancy (AOO) between two sampling periods. AOO is the sum of occupied areas (i.e., cells) in km². Its *log ratio* between two sampling periods is, therefore, a measure of both magnitude and direction of change for each species, where negative values indicate net area loss and positive values indicate net area gain on a logarithmic scale. The ratio was calculated as follows using the natural logarithm:

$$log Ratio AOO_{time2, time1} = log \left(\frac{AOO_{time2}}{AOO_{time1}}\right)$$

Second, we calculated the Jaccard (J) similarity index³⁹ across a species' occupied sites between both sampling periods (temporal J, Fig. S1, Supplementary Information 1). This application of J describes how much site turnover (i.e., magnitude of change) happened for each species between the two sampling periods, but it doesn't indicate if the change was positive or negative. J was calculated following, e.g., ref. ⁴⁰:

144
$$J\left(cells_{time1}, cells_{time2}\right) = \frac{|cells_{time1} \cap cells_{time2}|}{|cells_{time1} \cup cells_{time2}|}$$

Where $cells_{time1}$ denotes the list of sites (i.e., grid cells) that are occupied in sampling period one, and $cells_{time2}$ denotes the list of sites that are occupied in sampling period two. J ranges from 1 (= species is found at exactly the same set of sites in both time periods) to 0 (= species occupies a completely different set of sites in time one and in time two). J can be interpreted as the proportion of "stable" cells that are occupied in both time periods in the total number of cells that were ever occupied by the species. In comparison to the $log\ ratio$, J contains less information, but we expected that exactly for this reason it might be more predictable.

In Figure 2, we illustrate how the direction (*log ratio*) and magnitude (*J*), are related in our data.

2.3 Static predictors

We extracted and calculated a set of 56 predictors; their number was later reduced during data preparation and recursive feature selection. Each predictor relates to a certain hypothesis (H1-4). To facilitate the application of our approach to other study systems in the future, we chose predictors that are easy to gather (for any taxonomic group). A detailed description of the predictors and how they were calculated is in Supplementary Material S1. Here, we only provide a summary:

H1: Species traits. These predictors represent species' capability to adapt (or exapt - i.e., previously evolved traits become beneficial after changes in the environment) or disperse and may thus affect temporal change of distributions. Specifically, we extracted species traits from the AVONET database⁴¹, and global threat status from IUCN⁴². We calculated global phylogenetic distinctness from the BirdTree phylogeny⁴³. We used CHELSA global climate data^{44,45} in combination with BirdLife International global range maps⁴⁶ to calculate species global climate niche breadth using an ordination (Supplementary Material S2). We produced the following predictors: 1) Global climate niche breadth (PC1), 2) global climate niche breadth (PC2), 3) global IUCN threat status, 4) hand-wing index, 5) global range size, 6) body mass, 7) trophic niche, 8) trophic level, 9) habitat type, 10) habitat density, 11) migration (sedentary, partially, migratory), 12) primary lifestyle (aerial, terrestrial, insessorial, aquatic), 13) global evolutionary distinctness.

H2: Species range geometry. These predictors describe the shape, fragmentation, and autocorrelation of the geographic distribution of each species in each atlas, as well as its (relative) location inside each atlas region. We standardized some of these predictors to relative proportions of the total extent of each atlas. The full list of geometric predictors is: 1) area of occupancy (AOO), 2) prevalence, 3) mean probability of co-occurrence, 4) fractal dimension, 5) Moran's I, 6) scale of spatial autocorrelation, 7) range centroid latitude, 8) range centroid longitude, 9) length of the minimum bounding rotated rectangle (MBRR), 10) width of the MBRR, 11) elongation of the MBRR, 12) north-bearing of the MBRR, 13) circularity, 14)

bearing along the longest axis of the range, 15) southerness, 16) westernness, 17) relative maximum distance, 18) relative east-west distance, 19) relative north-south distance, 20) relative elongation ratio, 21) relative related circumscribing circle, 22) relative normalized circularity, 23) relative linearity index, 24) distance from the range centroid to the atlas 'center of gravity' (i.e., the average centroid of all species ranges in the study region), 25) maximum distance from the range border to the study region border, 26) maximum distance from the range centroid to the study region border, 27) minimum distance from the range centroid to the study region border.

H3: mean site-level diversity. We measured α - and β -diversity in all grid cells for each atlas. We then calculated the average α - and β -diversity for each species across all sites that are occupied by the species²⁵. We expected mean α -diversity for each species to influence temporal range dynamics through the presence of more (or less) competing species. Additionally, species with high mean α -diversity can act as indicators for conservation as they are found in high-diversity sites. A high average β for a species may indicate that it occupies a wide range of habitats with different species assemblages, suggesting adaptability and ecological versatility. Additionally, higher values of β may indicate a larger spatial spread of the range covering various habitats, while species with low mean β may be restricted to specific, similar habitats. The predictors were: 1) mean species α -diversity, 2) mean species β -diversity, and 3) γ -diversity of the study region.

H4: spatial characteristics of the study area. Similarly to the species range for H2, we characterized the spatial configuration of each study region by calculating a set of geometric measures characterizing the shape of the study region (i.e., administrative borders) and individual sites. Species trend estimations are limited by the spatial configuration of the study area, meaning that larger areas can foster larger absolute changes. Since the occurrence datasets we used come at different resolutions, we aimed to include the temporal and spatial scale of each atlas dataset to account for regional differences. However, for reasons of collinearity in the predictors, this information had to be replaced by a classifier for the "dataset"

Ecography Page 10 of 134

(Supplementary Information S1). The predictors for atlases were: 1) dataset, 2) mean cell area, 3) total area sampled, 4) total number of cells sampled, 5) mean cell length, 6) length of the MBRR, 7) width of the MBRR, 8) elongation of the MBRR, 9) circularity, 10) north-bearing of the MBRR, 11) north-bearing of the study region, 12) atlas center of gravity longitude, 13) atlas center of gravity latitude.

2.4 Machine learning

To link the static predictors to the two metrics of change (*log ratio* and *J*) in each species and region, we used machine learning in R Version 4.4.0⁴⁷. We initially compared results for random forest (RF) (*'ranger'* R package⁴⁸ Version 0.16.0), extreme gradient boosting (*'xgboost'* R package⁴⁹ Version 1.7.7.1), and boosted regression trees (*'gbm'* R package⁵⁰ Version 2.1.9) for robustness and found that these were consistent across models. Therefore, we only report results for the RF.

Machine learning preparations. First, the data were prepared with stepwise processing following the recipes protocol (*'recipes'* R package⁵¹ Version 1.0.11) to remove highly correlated predictors (r > 0.85) and to check for zero- and near-zero variance in each variable as these will explain little variation in the response. We used knn-imputation⁵² (k = 5) to impute the missing traits of three species that have recently undergone taxonomical reclassification. Overall, 18 predictors were removed because of high collinearity between them, yielding a set of 38 final predictors before recursive feature elimination (RFE, see below). IUCN status was revealed to be a near-zero variance predictor, but we still decided to include it in the model as we regarded it as important to explain temporal change for species.

The data were then split into a training set (80%) and a testing set (20%) for later external validation. Furthermore, we applied 3x repeated 10-fold cross-validation for all modeling steps (recursive feature elimination, hyperparameter tuning, final modeling and predictor importance extraction, and variation partitioning).

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

Recursive feature elimination. We used recursive feature elimination (RFE) to identify the most significant features. RFE iteratively builds models, estimates predictor importances, and removes the least important features based on the model's performance. We again used RF ('random forest' R package⁵³ Version 4.7-1.1) for this purpose within the 'caret' framework ('caret' R package⁵⁴ Version 6.0-94). The process continued until the optimal subset of features was identified, balancing model complexity and performance. Additionally, RFE is useful in reducing the number of predictors required to apply the model to new data, for which not all 38 predictors may be available. Predictor importance was determined through the permutation of variables and comparing the increase in inaccuracy (mean square error, MSE) to the nonpermuted model. Based on these results, we chose the final predictor lists for hyperparameter tuning. Note that model results (e.g., R² or individual variable importances) between RFE and the final model may differ slightly since we performed hyperparameter tuning with a limited grid search for each model with a different predictor subset for RFE to reduce computing time and more thoroughly for the final model (see below). Hyperparameter tuning. In addition to repeated cross-validation, we utilized a thorough grid search to find the best hyperparameters for the final models (using 'caret'). The chosen hyperparameters for J were: ntrees = 5,000, mtry = 27, target node size = 5, and splitrule = extratrees. This configuration resulted in OOB-MSE (out of bag-mean square error) = 0.010 and OOB-R² = 0.875. For *log ratio*, the chosen hyperparameters were: ntrees = 5,000, mtry = 10, target node size = 5, and splitrule = variance. This configuration resulted in OOB-MSE = 0.272 and OOB-R² = 0.202. Model performance evaluation. The predictive performance of the final models was evaluated using RMSE and R² on the independent test data (20% of the full data), while the performance of RFE models, variation partitioning, and hyperparameter tuning were directly evaluated based on OOB-R2 and OOB-RMSE since the aim was not the prediction itself for these analyses. We selected the final hyperparameters to minimize RMSE.

Variation partitioning. We utilized variation partitioning⁵⁵ to understand the contribution of the four different hypotheses to the model's performance (i.e., to test the importance of sets of predictors, as opposed to individual predictors). This was done through the iterative building of RF models with all possible combinations of hypotheses as predictors (N_{models}= 15) for each response (ntrees = 5000). The variation was partitioned by subtracting the shared and unique contributions from the individual models following the same approach as '*varpart4()*' from the '*vegan*' R package⁵⁶ Version 2.6-6.1. Since models are built iteratively on different subsets of predictors, we performed automated hyperparameter tuning for each model.

2.5 Future projections

We also aimed to provide an example of the model's application. In the last part, we applied the final ('ranger'48) RF model to forecast temporal change from the data of the second sampling period of the atlases. These results are compared to the observed *Jaccard* and *log ratio AOO*, and we provide ranked species lists for each study region based on the magnitude of their future change prediction in Supplementary Information S2.

3. Results:

3.1 Summary of Trends in the Data

Examples of trends and spatial patterns in the atlas data, together with per-atlas summaries, are in Figure 1. There were differences in trends across the atlases. For instance, most species in Europe retained a stable AOO and underwent weak site turnover. In Japan, similar numbers of species underwent weak decreases, weak increases, and no trends of AOO but underwent stronger turnover than elsewhere. There was a higher number of species undergoing strong decreases in AOO in New York and Japan than in the Czech Republic and Europe.

3.2 <u>Predictive Performance of Models</u>

The predictive performance of the Jaccard (J) models was strong, with our model achieving an R² of 0.88 and an RMSE of 0.10 on the independent test dataset (Fig. 3a). Recursive feature elimination revealed that 18 predictors out of 58 were sufficient to achieve this level of model performance (Fig. 5a). For *log ratio AOO*, model predictive performance was variable and always low (test-R² = 0.14 and RMSE = 0.55, Fig. 3b; OOB-R² = 0.20).

3.3 <u>Predictive Power of Hypotheses</u>

The RF model including only predictors for species range geometry (H2) accounted for a higher proportion of the variation in J than the full model (R² = 0.85 for H2 alone, R² = 0.77 for the full model, Fig. 4a). Partitioning the variation explained by the full model into unique fractions explained by each hypothesis revealed that the largest proportion was again explained by the species range geometry (H2) alone (R² = 0.396), while fractions explained by the other hypotheses were negligible (R² = 0.006 or lower, and even negative for (H1) species traits and (H4) atlas characteristics).

Results for *log ratio* (Fig. 4b) indicate a low explanatory power for all hypotheses (full model $R^2 = 0.177$). The largest proportion of variation is explained by H1, H2, and H4 together (shared $R^2 = 0.206$), while the inclusion of H3 decreases the model performance strongly by $R^2 = -0.22$.

However, this strongly negative R² value may derive from a bad choice of hyperparameters on this model with only two predictors and indicates generally low explanatory power of diversity indices for this response.

3.4 <u>Importance of Predictors</u>

Recursive feature elimination for J determined that 18 out of 58 predictors were enough to yield sufficient accuracy in model predictions. Out of these 18 predictors, 14 belonged to H2 (species range geometry), two belonged to H3 (diversity indices) and one belonged to H4 (atlas characteristics) and H1 (species traits) (Fig. 5a). The most important predictors (in order of importance) to predict J were: prevalence and Moran's I, followed by fractal dimension and range circularity (Fig. 5a). Further, mean species α - and β -diversity were more important than individual species traits such as habitat type and global range size.

The marginal effects of predictors on J (Fig. 5b) show that the higher the prevalence (proportion occupied sites in the region), the lower site turnover J is expected. We also found a positive relationship between the fractal dimension and J and between spatial autocorrelation of distributions (Moran's I) and J. On the contrary, highly irregular range sizes (indicated by high values of circularity or lower values of the related circumscribing circle) suggest higher J. Both mean species α - and β -diversity show that species that, on average, share sites with many other species tend to have lower values of J than is the case for species that, on average, occupy sites with fewer species (Fig. S5, Supplementary Information 1).

Results for the *log ratio* should be regarded with caution due to the poor performance of the models. They were also more variable across different runs of the model, and the best model included all variables except species evolutionary distinctness, trophic level, migratory status, and hand-wing index, see Fig. S6, Supplementary Information 1). However, the fractal dimension has always emerged as the most important predictor across all hyperparameter tuning, and resampling runs for this response. Partial dependencies between predictors and

log ratio were mostly flat, reflecting the poor performance of the models (Fig. S7, Supplementary Information 1).

3.5 Observed trends and future predictions

We projected species-level *J* values (but not change of AOO because the model was weak) into the future using the species distribution data from the second atlas generations. We provide comprehensive ranked lists of species undergoing temporal change observed and forecasted trends for each study region in Supplementary Information 2.

Comparing these future projections with past values of J revealed that several species are projected to undergo a change in range dynamics with time (Fig. 6), i.e., they are expected to slow down or accelerate their site turnover. Especially in Europe (Fig. 6b), we forecast species ranges to become less dynamic in the future, as indicated by more points falling below the 1-1 line in the lower right corner of the plot. Trends for Japan (Fig. 6c) are more variable and include several outlier species where ranges become very stable or very dynamic. Trends for the Czech Republic (Fig. 6a) are balanced besides three outlier species that are predicted to become much more dynamic in the future, while in New York state (Fig. 6d), species ranges will predominantly become less dynamic.

4. Discussion:

4.1 Predicting magnitude vs direction of temporal change

Our most striking result is that J (turnover of occupied sites) is highly predictable from a single snapshot, but the net change of occupancy is not. Thus, we can predict that a species is going through something very dynamic, but we do not know if it is an expansion, a decline, or a mix of both. The weak predictability of AOO change is partly in line with ref. ¹⁷; although they claimed that change can be predicted from the fractal dimension of species' distribution together with AOO, the relationship was, in fact, weak (their $R^2 = 0.23$), which is similar to what we found (but note differences in the methodology). In comparison to ref. ¹⁷ and our results for the *log ratio*, the good predictability of the site turnover is truly striking.

properties of the distributions, namely species prevalence, fractal dimension, autocorrelation, and range circularity. Specifically, species with compact, filled, round, and larger ranges will undergo less site turnover in the future than species with fragmented and small distributions with complex edges.

So far, we have used highly structured and standardized atlas data, but following the strong predictive performance of the range geometry for temporal change, we suggest that there is the potential to apply our approach to less structured data. This should be verified by comparing results for the same regions and taxa with other data. For instance, using data from the Global Biodiversity Information Facility (GBIF, https://www.gbif.org/). This can be done by overlaying a continuous grid over the retrieved distribution data. Despite the limitations and biases associated with biased sampling and unstructured (non-probability samples of) data, addressing these has been extensively studied recently. For example, ref. ^{57,58}.

4.2 Theoretical implications and future directions

We propose the following theoretical explanation for what appears to be a novel finding: Imagine that the dynamical system of species' spatial distributions has two primary attractors

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

that lead to stable equilibrium points: (i) The first attractor is a complete loss of the species, and (ii) the second attractor is a compact, filled, round, and relatively large range. The second attractor leads to a stable equilibrium because such a shape can protect the species against the negative impacts of demographic and environmental stochasticity. Any distribution pattern that falls between these two attractors would be fragmented, unfilled, and unstable, as it would inevitably either move towards the first attractor (leading to a net loss in AOO) or the second attractor (leading to a net gain in AOO). Further, we can even observe a mixture of these attraction trends in the same region in a species with many fragments and/or with a complex and "unfilled" range. This would result in high site turnover. In contrast, since the compact, round, and filled distribution is a stable attractor, they would generate low site turnover. This may also explain why the net direction is less predictable, as the transition from an (unstable) fragmented distribution can lead either to loss or gain. We tentatively refer to this as the equilibrium hypothesis of range geometry, which we plan to develop further in future theoretical research. One geometrical predictor that deserves special attention is the area of occupancy (AOO) since it could lead to a regression-towards-the-mean effect⁵⁹, a common statistical phenomenon in ecological temporal change studies (e.g., ref.⁶⁰). It describes the tendency to yield values closer to the mean in a second random sample of a variable when the first random sample of the same variable is extreme. We have indeed detected that species with small AOO tend to increase in AOO (Fig. S3b, Supplementary Information S1) and that species with large AOO tended to experience less change. In contrast, we did not find a similar effect of AOO on J (i.e., not more turnover for species with extreme AOO, Fig. S3a). We incorporated this effect into our analysis by including AOO as a predictor for temporal change. However, there may still be other geometrical or statistical effects at play, and we suggest that these should be explored in future research. Another remarkable result is the poor predictive performance of species traits. Despite traits (e.g., specialization, body size, and habitat preference) being proposed as useful predictors of range shifts and species responses to environmental changes ^{21,61}, their effectiveness remains contested as their explanatory power has been shown to be generally low^{62,63}. Our study aligns with the latter position, as we find traits to have little influence on the range dynamics in our chosen study system (i.e., birds) and/or at the large temporal and spatial scales that we assessed here. Yet, we admit that the result is limited to the specific traits that we assessed here. The validity of our finding across other traits, regions, scales, and taxa is yet to be established. Other approaches, such as those including phylogenetic information to assess predictors of range size and extinction, often emphasize complex interactions between current traits, evolutionary history, and environmental factors (e.g., in lizards⁶⁴, birds⁶⁵, and mammals⁶⁶). Since our study only looked at the phylogenetic distinctness of species, we did not determine the direct strength of the phylogeny in our results. However, our findings suggest that the spatial configuration of species ranges, which is known to be influenced by phylogenetic history⁶⁷, can play a significant role in predicting temporal changes. Nevertheless, the scale at which this acts may be larger than what is assessed here.

4.4 Practical implications and future directions

We suggest that our results can be useful in risk assessments and in determining the conservation status (priority) of species. Because of temporal data deficits, risk assessments usually involve static indicators such as the geographic range size, while criteria based on temporal reductions are less frequently evaluated and more difficult to meet⁶⁸. Our findings indicate that the magnitude of temporal dynamics in a species' range can be predicted from a single snapshot of the species distribution, where species with small, unfilled, and discontinuous ranges are prone to change in distribution. We thus suggest incorporating prediction models of simple but highly predictable metrics (e.g., *J*) in species risk assessments. Even though *J* alone does not indicate if the species is increasing or decreasing, we propose that a species' occupancy and the predicted *J* can be used to prioritize extreme species for the compilation of available data on change and, if necessary, promote new monitoring initiatives

Page 19 of 134 Ecography

to determine if the change is going to be negative or positive (e.g., *Cercotrichas galactotes* in Europe or *Rostratula benghalensis* in Japan).

Along similar lines, the fact that *J* was predictable, but the net AOO change was not, may have implications for the choice of the response variable in ecological models. Specifically, the use of response variables with less information but higher predictability (e.g., temporal species-level *Jaccard* index) may be preferable over the use of high-information responses with low accuracy (e.g., temporal *log ratio AOO*) for species lacking baseline data. Furthermore, the high predictability of *Jaccard* offers novel interdisciplinary possibilities in the future for any binary dynamical data with spatial information, e.g., using eDNA, fossils, and in epidemiology (assessments of disease spread in space). Support for *Jaccard* being a good metric to compare different sets of patterns has been found across many different datasets and disciplines⁶⁹. We suggest that the application of *Jaccard* as an index for the magnitude of temporal change will enhance our understanding of species distribution dynamics and improve conservation strategies globally

Ecography Page 20 of 134

5. Tables and Figures.

Table 1: Overview of temporally replicated continuous-grid breeding bird atlases used in this study

Atlas	N _{Species}	Spatial Scope	Temporal scope	Ref	Data type
	*				
	^				
Atlas of Breeding Birds of	200	Czech Republic:	1985 - 1989,	28,2	Field survey
the Czech Republic		10x10 km	2001 - 2003	9	
New York State Breeding	237	New York State:	1980 - 1985,	30,3	Field survey
Bird Atlas		5x5 km	2000 - 2005	1	
European Breeding Bird	503	Europe:	1972 - 1995,	35–	Field survey
Atlas		50x50 km	2013 - 2017	37	
Japan National Bird	208	Japan:	1997 - 2002,	32,3	Field survey,
Breeding Distribution		20x20 km	2016 - 2021	3,70	Questionnaires
Survey					
·					

^{*} Final counts after removing species that were gained or lost completely and those that were only recorded in cells not sampled twice.

434

435

436

437

438

Figure 1: Examples of temporal species trends across the four study regions. (a)

Example maps showing species change in occupancy between sampling periods. Gray cells indicate areas not sampled repeatedly. Significant occupancy decrease: *Athene noctua* in the Czech Republic (10x10 km, S-JTSK / Krovak East North); Substantial occupancy increase: *Branta canadensis* in New York State (5x5 km, NAD83 / New York Long Island);

High site turnover, but with stable area: Poecile montanus in Japan (20x20 km, JGD2011 / Japan Plane Rectangular CS XVI); Generally stable distribution with stable area and low site turnover: Sturnus vulgaris in Europe (50x50 km, ETRS89-extended / LAEA Europe). (b) Table summarizing some predictor and response values for the provided maps. 1 and 2 = sampling periods. (c) The number of species per observed trend in site turnover (Jaccard) across study regions. (d) The number of species per observed trend in occupied area (log ratio) across the study regions. Photo credits: Athene noctua by Arturo Nikolai, CC BY-SA rain;
erre Selim, 2.0; Branta canadensis, public domain; Poecile montanus by Francis C. Franklin, CC BY-SA 3.0; and Sturnus vulgaris by Pierre Selim, CC BY-SA 3.0.

439

440

441

442

443

444

445

446

Page 23 of 134

Figure 2: Relationship between the observed measures of temporal change: direction (log ratio of area of occupancy) and magnitude of site turnover (Jaccard index). Lower values of Jaccard (higher magnitude of change) may be accompanied by stronger trends in direction (lower part of the graph). High values of Jaccard (low magnitudes of change) are restricted to weak trends in direction (upper part of the graph). Each point represents a single species and is colored by categorical trends in log ratio. Note the marginal distributions of both variables: the highest proportion of values in log ratio is centered around zero, while values for J are evenly spread, indicating that most species that are estimated to undergo no net change in direction are still likely to experience turnover.

Figure 3: Scatterplots of observed and predicted values in the validation data of (a)

Jaccard index (J) and (b) log ratio area of occupancy. Each point represents the relationship between observed values and model predictions for a single species in the validation data (20% random species subset of the full dataset). Species represented in this figure were not used to train the model. The 1:1 line (black) represents a perfect predictive performance for the model on new data. Subpanels show the differences in the predictive

469

470

performance across study regions. The blue line and confidence intervals represent the linear relationship and standard deviation. R² values represent the accuracy of the model when predicting using new data.

Figure 4: Variation partitioning results for (a) the magnitude of temporal change (*Jaccard index, J*) and (b) the direction of temporal change (*log ratio AOO*) across the four hypotheses. The results are presented in terms of OOB-R², which indicates the proportion of variance explained by each hypothesis evaluated against the out-of-bag sample during the Random Forest fitting. Negative fractions in panel (b) are likely an artifact due to the different hyperparameter tuning of individual models, all with poor performance.

Inconsistencies in model performances (i.e., R²) between this analysis and the final model similarly derive from different hyperparameter tuning of individual models.

Figure 5: Predictor influences in the final model for *Jaccard index (J)*. (a) Relative Importance of predictors after recursive feature elimination from the final Random Forest model. Relative predictor importance is the scaled increase in mean square error (MSE) when the variable is permuted. Bars are colored by the hypothesis to which the specific predictor belongs. (b) Partial dependence plots for a selection of the most interesting predictors (Random Forest). Plots were created using the 'partial()' function from the 'pdp' R package (Version 0.8.1). Dependencies represent the effect of the variable when all other variables are averaged (i.e., marginal effects). MBRR = minimum bounding rotated rectangle.

Ecography Page 28 of 134

Figure 6: Comparison of past dynamics with future projections of range dynamics across (a) the Czech Republic, (b) Europe, (c) Japan, and (d) New York State. Each point represents a species, with past dynamics on the x-axis and future projected dynamics on the y-axis. Orange colors indicate decreases in *J* from past to future, and blue colors indicate increases in *J* with time. Points that fall on the 1-1 line (black) are not expected to undergo a change in their range dynamics (i.e., the change in the past is the same as the change in the future). The dots are sized by the absolute difference between *J* values (i.e., the 'magnitude' of the change in dynamics with time).

Page 29 of 134

500

References

- 1. Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for
- transformative change. *Science* **366**, eaax3100 (2019).
- 503 2. IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the
- Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.
- 505 https://zenodo.org/record/3831673 (2019) doi:10.5281/ZENODO.3831673.
- 3. Zhang, R., Tian, D., Wang, J. & Niu, S. Critical role of multidimensional biodiversity in
- contributing to ecosystem sustainability under global change. *Geography and*
- 508 Sustainability 4, 232–243 (2023).
- 4. Meyer, H. & Pebesma, E. Machine learning-based global maps of ecological variables
- and the challenge of assessing them. *Nat Commun* **13**, 2208 (2022).
- 5. Dornelas, M. *et al.* BioTIME: A database of biodiversity time series for the Anthropocene.
- 512 Global Ecology and Biogeography **27**, 760–786 (2018).
- 6. Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124
- 514 (2019).
- 7. Barnosky, A. D. et al. Has the Earth's sixth mass extinction already arrived? *Nature* **471**,
- 516 51–57 (2011).
- 8. Asch, R. G., Sobolewska, J. & Chan, K. Assessing the reliability of species distribution
- models in the face of climate and ecosystem regime shifts: Small pelagic fishes in the
- 519 California Current System. *Frontiers in Marine Science* **9**, (2022).
- 520 9. Elith, J. & Leathwick, J. R. Species Distribution Models: Ecological Explanation and
- 521 Prediction Across Space and Time. Annual Review of Ecology, Evolution, and
- 522 Systematics, **40**, 677–697 (2009).
- 10. Santini, L., Benítez-López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. J. Assessing
- the reliability of species distribution projections in climate change research. *Divers.*
- 525 *Distrib.* **27**, 1035–1050 (2021).
- 11. Marjakangas, E.-L. et al. Ecological barriers mediate spatiotemporal shifts of bird

Ecography Page 30 of 134

- 527 communities at a continental scale. *Proc. Natl. Acad. Sci.* **120**, e2213330120 (2023).
- 12. Hudson, L. N. et al. The PREDICTS database: A global database of how local terrestrial
- biodiversity responds to human impacts. *Ecology and Evolution* **4**, 4701–4735 (2014).
- 13. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. *Nature* **520**,
- 531 45–50 (2015).
- 14. Keil, P. & Chase, J. Interpolation of temporal biodiversity change, loss, and gain across
- scales: a machine learning approach. (2022).
- 15. Hui, C. Forecasting Population Trend From the Scaling Pattern of Occupancy. *Ecological*
- 535 *Modelling* (2011) doi:10.1016/j.ecolmodel.2010.10.020.
- 16. Pöyry, J., Heikkinen, R. K., Heliölä, J., Kuussaari, M. & Saarinen, K. Scaling distributional
- patterns of butterflies across multiple scales: Impact of range history and habitat type.
- 538 Diversity and Distributions **24**, 1453–1463 (2018).
- 17. Wilson, R. J., Thomas, C. D., Fox, R., Roy, D. B. & Kunin, W. E. Spatial patterns in
- species distributions reveal biodiversity change. *Nature* **432**, 393–396 (2004).
- 18. Hartley, S. & Kunin, W. E. Scale Dependency of Rarity, Extinction Risk, and
- 542 Conservation Priority. *Conservation Biology* **17**, 1559–1570 (2003).
- 19. Kunin, W. E. Extrapolating Species Abundance Across Spatial Scales. Science 281,
- 544 1513–1515 (1998).
- 545 21. Thompson, L., Wells, K., Galiana, N. & Lurgi, M. Joint Effects of Species Traits and
- Environmental Preferences on Range Edge Shifts of British Birds. *Global Ecology and*
- 547 Biogeography (2023) doi:10.1111/geb.13752.
- 548 22. Brown, J. H., Stevens, G. C. & Kaufman, D. M. THE GEOGRAPHIC RANGE: Size,
- Shape, Boundaries, and Internal Structure. *Annual Review of Ecology and Systematics*
- **27**, 597–623 (1996).
- 23. Lucas, P. M., González-Suárez, M. & Revilla, E. Range Area Matters, and So Does
- 552 Spatial Configuration: Predicting Conservation Status in Vertebrates. *Ecography* (2019)
- 553 doi:10.1111/ecog.03865.
- 554 24. Brown, J. H. On the relationship between abundance and distribution of species. *The*

Page 31 of 134

Ecography

- 555 *american naturalist* **124**, 255–279 (1984).
- 556 25. Arita, H. T., Christen, J. A., Rodríguez, P. & Soberón, J. Species Diversity and
- 557 Distribution in Presence-Absence Matrices: Mathematical Relationships and Biological
- Implications. *The American Naturalist* **172**, 519–532 (2008).
- 559 26. Kunin, W. E. Sample shape, spatial scale and species counts: Implications for reserve
- design. *Biological Conservation* **82**, 369–377 (1997).
- 561 27. Breiman, L. Random forests. *Mach. Learn.* **45**, 5–32 (2001).
- 28. Štastný, K., Bejček, V. & Hudec, K. Atlas Hnizdního Rozšírení Ptáku v České Republice
- 563 1985–1989. (H & H, Jinocany, Czech Republic, 1996).
- 29. Šťastný, K., Bejček, V. & Hudec, K. Atlas Hnízdního Rozšíření Ptáků v České Republice:
- 565 *2001-2003*. (Aventinum, Praha, 2006).
- 30. Federation of New York State Bird Clubs, New York (State). Department of
- 567 Environmental Conservation, & Cornell University Laboratory of Ornithology. *The Atlas of*
- *Breeding Birds in New York State.* (Cornell University Press Ithaca, Ithaca, 1988).
- 31. The Second Atlas of Breeding Birds in New York State. (Comstock Publishing
- 570 Associates, Ithaca, 2008).
- 32. Ueta, M. & Uemura, S. The Report of the Japan Breeding Bird Atlas Mapping the
- 572 Present Status of Japanese Birds 2016-2021. (Bird Breeding Distribution Research
- 573 Committee, Fuchu, Tokyo, 2021).
- 33. Ministry of the Environment, Natural Environment Bureau, Biodiversity Center. *Bird*
- 575 Breeding Distribution Survey Report. (Ministry of the Environment, Natural Environment
- Bureau, Biodiversity Center, Fujiyoshida City, 2004).
- 577 34. Ueta, M. *et al.* The third dataset of "the breeding bird atlas of Japan". Japan Bird
- Research Association https://doi.org/10.57368/data.birdresearch.21957254.v2 (2023).
- 579 35. EBCC. European breeding bird atlas 2 website. http://ebba2.info/ (2022).
- 580 36. Keller, V. et al. European Breeding Bird Atlas 2: Distribution, Abundance and Change.
- (European Bird Census Council & Lynx Edicions, Barcelona, 2020).
- 582 37. The EBCC Atlas of European Breeding Birds: Their Distribution and Abundance. vol. 479

Ecography Page 32 of 134

- 583 (T & A D Poyser, London, 1997).
- 38. Pototsky, P. C. & Cresswell, W. A new global review of bird atlases and their contribution
- to knowledge. *Bird Study* **70**, 84–98 (2023).
- 39. Jaccard, P. The distribution of the flora in the alpine zone. *New phytologist* **11**, 37–50
- 587 (1912).
- 40. Chung, N. C., Miasojedow, B., Startek, M. & Gambin, A. Jaccard/tanimoto similarity test
- and estimation methods for biological presence-absence data. BMC Bioinf. 20, 644
- 590 (2019).
- 41. Tobias, J. A. et al. AVONET: Morphological, Ecological and Geographical data for all
- 592 Birds. *Ecology Letters* **25**, 581–597 (2022).
- 593 42. IUCN. The IUCN Red List of Threatened Species. (2024).
- 43. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of
- birds in space and time. *Nature* **491**, 444–448 (2012).
- 596 44. Karger, D. N. et al. Climatologies at high resolution for the earth's land surface areas. Sci
- 597 *Data* **4**, 170122 (2017).
- 598 45. Karger, D. N. et al. Climatologies at high resolution for the earth's land surface areas. 2.1
- 599 KB EnviDat https://doi.org/10.16904/ENVIDAT.228.V2.1 (2021).
- 46. BirdLife International and Handbook of the Birds of the World. Bird species distribution
- 601 maps of the world. (2022).
- 47. R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation
- for Statistical Computing, Vienna, Austria, 2024).
- 48. Wright, M. N. & Ziegler, A. ranger: A fast implementation of random forests for high
- dimensional data in C++ and R. *Journal of Statistical Software* **77**, 1–17 (2017).
- 49. Chen, T. et al. Xgboost: Extreme Gradient Boosting. https://CRAN.R-
- project.org/package=xgboost (2024).
- 50. Ridgeway, G. & GBM Developers. Gbm: Generalized Boosted Regression Models.
- 609 https://CRAN.R-project.org/package=gbm (2024).
- 51. Kuhn, M., Wickham, H. & Hvitfeldt, E. Recipes: Preprocessing and Feature Engineering

Page 33 of 134

- Steps for Modeling. (2024).
- 52. Gower, J. C. A general coefficient of similarity and some of its properties. *Biometrics*
- 613 857–871 (1971).
- 53. Liaw, A. & Wiener, M. Classification and regression by randomForest. *R News* **2**, 18–22
- 615 (2002).
- 54. Kuhn & Max. Building predictive models in R using the caret package. J. Stat. Softw. 28,
- 617 1–26 (2008).
- 55. Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of
- ecological variation. *Ecology* **73**, 1045–1055 (1992).
- 56. Oksanen, J. et al. vegan: Community Ecology Package. 2.6-8
- 621 https://doi.org/10.32614/CRAN.package.vegan (2001).
- 57. Gonsamo, A. & D'Odorico, P. Citizen Science: Best Practices to Remove Observer Bias
- in Trend Analysis. *International Journal of Biometeorology* (2014) doi:10.1007/s00484-
- 624 014-0806-8.
- 58. Isaac, N. J. B. & Pocock, M. J. O. Bias and Information in Biological Records. *Biological*
- 626 Journal of the Linnean Society (2015) doi:10.1111/bij.12532.
- 59. Galton, F. Regression Towards Mediocrity in Hereditary Stature. *The Journal of the*
- Anthropological Institute of Great Britain and Ireland 15, 246 (1886).
- 629 60. Mazalla, L. & Diekmann, M. Regression to the mean in vegetation science. J Vegetation
- 630 *Science* **33**, e13117 (2022).
- 631 61. Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species
- along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514
- 633 (2008).
- 634 62. Beissinger, S. R. & Riddell, E. A. Why are species' traits weak predictors of range shifts?
- Annual Review of Ecology, Evolution, and Systematics vol. 52 47–66 (2021).
- 636 63. Angert, A. L. et al. Do species' traits predict recent shifts at expanding range edges?
- 637 *Ecology Letters* **14**, 677–689 (2011).
- 638 64. Camacho, A. et al. Overcoming phylogenetic and geographic uncertainties to test for

Ecography Page 34 of 134

- correlates of range size evolution in gymnophthalmid lizards. *Ecography* **40**, 764–773 (2017).
- 65. Böhning-Gaese, K., Caprano, T., Ewijk, K. van & Veith, M. Range size: disentangling current traits and phylogenetic and biogeographic factors. *Am. Nat.* **167**, 555–567 (2006).
- 66. Fritz, S. A., Bininda-Emonds, O. R. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. *Ecology letters* **12**, 538–549
- 645 (2009).
- 67. Roy, K., Hunt, G., Jablonski, D., Krug, A. Z. & Valentine, J. W. A macroevolutionary perspective on species range limits. *Proc. R. Soc. B.* **276**, 1485–1493 (2009).
- 68. Mace, G. M. *et al.* Quantification of extinction risk: IUCN's system for classifying threatened species. *Conserv. Biol.* **22**, 1424–1442 (2008).
- 69. Fletcher, S. & Islam, M. Comparing sets of patterns with the Jaccard index. *Australas. J. Inf. Syst.* 22, (2018).

Page 35 of 134 Ecography

Supplemental Information for:

Predicting temporal change of species distributions from a single snapshot

DBPR

Table of Contents:

Supplementary Methods	Page 1
Supplementary Results	Page 18
Supplementary References	Page 22

Page 36 of 134

Supplementary Methods

The original atlas data was extensively pre-processed to yield the set of predictors. Here, we describe each step in detail. In addition, we provide our code in a separate repository (https://anonymous.4open.science/r/StaticPatterns_Code-80E1/). All steps were done in R Version 4.4.0¹ using RStudio² or Visual Studio Code.

Data integration and preparations. All bird atlases were standardized to the same data format, which included a table with presence information for all species in all cells across sampling periods and a spatial object with cells matching those from the data. We first checked the data and spatial grid files for misspelled names, non-UTF8 characters, misplaced spatial coordinates, or projection issues. Then, the data and the grid were spatially aggregated multiple times to capture several scales. Note that we did not perform any up-or downscaling to standardize the resolution of the assessment of different atlases but preferred to stick to the original resolution as the target scale for most analyses. Spatial objects were projected to local coordinate reference systems (CRS) that best captured local area properties for plotting (see figure captions for information about projections).

Raw atlas data filtering. To correct for spatial bias in the atlas data, we followed a simple filtering approach. Specifically, we followed the recommendations by ref. ³ to keep only cells that were quantitatively sampled (i.e., as opposed to occurrence records based on expert knowledge) in both atlas periods. For the European Breeding Bird Atlas (EBBA), this led to the exclusion of Russia, Kazakhstan, Turkey, Cyprus, Georgia, the Canary Islands, Armenia, and Azerbaijan, for which no (quantitative) data was available for the first atlas period (EBBA1). Naturally, the exclusion of certain cells from the data led to the exclusion of species that were exclusively found in these cells. Additionally, we excluded all species for which only occurrence data from one atlas was available. For an overview of filtering steps and related sample sizes, see Table S1.

Scaling. Gridded data enable easy upscaling via nested aggregation of neighboring cells to larger areas. We made multiple layers of aggregations to enable the calculation of scale-independent descriptors of the species range (fractal dimension). Specifically, we calculated 2x2, 4x4, 8x8, 16x16, 32x32, and 64x64 cell aggregations until the largest aggregation only captured a single cell of the entire country. The single-cell layer was then excluded⁴. When coarsening the grids, the lists of species present in cells of every coarser cell reflected records of all the smaller cells in the bigger cell. Note that different atlases come in different resolutions, with cell sizes ranging from 5x5 km in New York State to 50x50 km in Europe (Table 1, main text). We did not standardize the spatial resolution between atlases but rather aimed to account for it in the final machine-learning model.

Page 37 of 134 Ecography

Table S1: Data reductions during pre-processing and bias correction of temporally replicated atlas datasets*

Atlas	C	Z	N	Υ	E	U	J	P	TOTAL
Temporal replicate	1	2	1	2	1	2	1	2	both
N species	206	213	242	248	432	446	221	227	826
N sites	628	628	5323	5332	2826	2868	1095	1098	9926
N sp lost	1	3	Ţ	5	()	1	.1	29
completely									
N sp gained	(5	1	1	1	4	2	.9	60
completely									
N removed cells	(1	5	5	2	3	3	70
(1x1)									
N removed cells	()	2	2	8	3	()	10
(layer 2x2)									
N removed cells	()		2	3	3	()	5
(layer 4x4)									
N removed cells	()	4		-	L	()	2
(layer 8x8)									
N final species		00	23			32		08	774
N species	1	9	1	6	1	4	3	2	52
removed									
N cells final		28		20		21		95	9864
Mean cell area km2	13	30	2	5	1470 -	12769	40	58	
Avg. side length km	1	1		5	5	0	18	3.5	

^{*} Cells were removed at the original resolution (1x1) if they were not sampled repeatedly over both atlas sampling periods. Cells in higher aggregations (2x2, 4x4, 8x8) were only removed if none of the cells that were merged to a larger cell were sampled. Additionally, species that were not found in both sampling periods were removed. The absence of species from the occurrence data indicates AOO = 0 and would thus lead to division by zero or taking the logarithm of zero during the calculation of log ratio AOO, which is mathematically impossible.

Measuring temporal change. In this study, we adapted the *Jaccard (J)* index of similarity⁵, which was originally developed to highlight proportional differences in species composition between different sites. *J* is a straightforward index as it simply indicates the proportion between the union and the intersection between two sets of data. So far, most studies that use *J* have used it in one of the first three ways depicted in Fig. S1 (1-3), where (pairs of) sites are compared in terms of species composition (1) or pairs of species are compared in terms of their

spatial association (2) (for a review of 'turnover' indices see 6 . Recently, 'temporal β -diversity indices (TBI)' 7 have been applied to compare dissimilarities in species composition in sites across multiple sampling periods.

Here, we take a different approach and use J to compare the ratio between sites that are similar in both periods (intersection) to those sites that are occupied in all sampling periods (union). In the scheme below (Fig. S1), the union is Site 2, site 3, and site 6, and the intersection would be Site 6. In this simplified example, J would be 0.33, indicating that only $\frac{1}{2}$ of sites are similar between periods and that there was a moderately high magnitude of temporal change in the species distribution.

Concept of Jaccard as a temporal species-level index.

- (1) Turnover of species between two sites
- (2) Interspecific spatial association between two species
- (3) Turnover of species at a single site between two sampling periods
- (4) Turnover of sites between sampling periods for a single species (J)

Figure S1: Diversity of turnover indices that can be calculated from presence-absence matrices highlighting our measure of 'magnitude of change' (orange). In traditional analyses, estimations of biodiversity change are often calculated from presence-absence matrices of species across sites in either one of the first three (1-3) approaches visualized here. We aimed at characterizing temporal change for each species separately and developed a fourth method on how this can be readily done from presence-absence matrices (4) by directly comparing the occupied sites for the same species across multiple sampling periods (time 1, time 2). Additionally, by summing up the area of all occupied sites for a single species and contrasting it between both sampling periods, we can estimate the *log ratio of AOO* while comparing whether occupied sites are similar between both periods can estimate *Jaccard (J)*.

Predictors.

In the following section, we provide detailed information about how the predictor variables were calculated for each hypothesis.

H1: Species traits

In addition to species traits extracted directly from AVONET⁸, we calculated the species' global climate niche breadth from CHELSA climate data^{9,10} and BirdLife International Range maps¹¹ using an ordination technique.

Global climate niche breadth. We calculated climatic niche breadth for each species as the standard deviation along the two major principle component (PC) axis that include the following CHELSA bio variables averaged across 1981-2010 across the species global range: mean annual air temperature, mean diurnal air temperature range, isothermality, temperature seasonality, mean daily maximum air temperature of the warmest month, mean daily minimum air temperature of the coldest month, annual range of air temperature, annual precipitation amount, precipitation amount of the wettest month, precipitation amount of the driest month, precipitation seasonality. These variables are known to characterize the water- and temperature demands of terrestrial species (e.g., following ref. ¹²). Climate raster layers were stacked and aggregated from 0.008333 degrees to roughly 1 degree (or 110x110 km) resolution using the *'terra'* R package Version 1.7-78 ¹³ to enhance computation.

First, we calculated the global climate space for these variables using PCA (73% cumulative variation explained) using 'prcomp' Version 4.4.0 in R ¹; for loadings of principal component axes, see Table S2. Climate variables were numerically scaled because of highly different variable dimensions. Second, BirdLife global range maps (subsetted to Breeding and resident, native or reintroduced, extant or possibly/probably extant) for each species in the atlas dataset were projected onto the climate stack, and average climate values were extracted for each species at occupied cells across the species global distribution. Extracted climate values were used to predict each species' global distribution into the climate space of the PCA (colored dots in Figure S1). Standard deviations (SD) of the first and second major axes were computed for each species to characterize the species' climatic niche breadth.

Page 41 of 134 Ecography

Table S2: Principal component analysis (PCA) loadings for calculating the global climate space in which species occurrences are projected to estimate climatic niches

Bio Name	CHELSA_1981-2010_Bio_Var_name*	PC1	PC2
bio1	mean annual air temperature	0.36	0.26
bio2	mean diurnal air temperature range	-0.15	0.48
bio3	isothermality	0.28	0.18
bio4	temperature seasonality	-0.36	0.14
	mean daily maximum air temperature of the warmest		
bio5	month	0.28	0.41
bio6	mean daily minimum air temperature of the coldest month	0.39	0.14
bio7	annual range of air temperature	-0.34	0.25
bio12	annual precipitation amount	0.35	-0.13
bio13	precipitation amount of the wettest month	0.33	0.03
bio14	precipitation amount of the driest month	0.27	-0.30
bio15	precipitation seasonality	0.01	0.55
Proportion of	of variance	0.51	0.22
Cumulative	proportion	0.51	0.73

^{*}Averaged climate data for the period between 1981 and 2010 was downloaded from CHELSA 9,14

Figure S2: Example of climate space for four species (colored points) against the background of the global climate space (black points). Each point represents the average climatic conditions for the period between 1981-2010 at a certain 10x10 km site in the global grid.

Phylogenetic distinctness. We used the 'phyloregion' R package Version 1.0.8 ¹⁵ to calculate phylogenetic distinctness as fair-proportion. We did so on the complete bird phylogeny ¹⁶ and subsequently extracted values only for species present in our data to get a global measure of phylogenetic distinctness that is comparable between different study regions. Phylogenetic distinctness is a measure of evolutionary isolation and is used by global nature conservation initiatives such as the 'EDGE of Existence' programme to identify and preserve species with evolutionary distinct genomes.

Red Lists. We used the IUCN API via the 'taxize' R package Version 0.9.100.1 ¹⁷ to retrieve the threat status for all species (and synonyms) in our data on 22nd April 2024. In addition, we harvested local threat statuses from the National Red List database ¹⁸ for the Czech Republic, Japan, and Europe. For New York state, we had to convert the state's species list and their legal status ¹⁹ to something comparable to a red list. Since the data for New York was strongly different from the data that was collected for the rest of the regions, we abandoned this approach and continued with the global threat statuses from IUCN.

H2: Species Range Geometry

Area of occupancy (AOO) was calculated for each species-time-atlas combination as the sum of the area of all cells occupied by the species across the filtered set of cells. We checked for *regression-towards-the-mean*^{20,21} effects in the distribution of AOO between both time periods.

We did not find strong trends in the data. We then checked whether it affected the relationship between *log ratio AOO* and log AOO, as well as *Jaccard* and log AOO (Fig. S3). If such an effect were present, we would expect a bell-shaped distribution for Jaccard and log AOO (i.e., strong turnover for extreme values of log AOO and high stability for intermediate values of log AOO). For the log ratio, we would expect a negatively linear relationship (i.e., increases for small ranges, decreases for large ranges). Indeed, we found a weak tendency for the regression-towards-the-mean in *log ratio*, although it was stronger for very small ranges compared to very large ones (which seemed to be stable rather than decreasing).

Prevalence was calculated as the number of cells occupied by the species divided by the total number of cells sampled per atlas. It indicates how dominant a species is across the study area.

Occupancy-Area relationships (OAR) were calculated for each species-time-atlas combination across all spatial scales that were not saturated by the species (i.e., Prevalence < 1). This step led to the exclusion of species that saturated at the original resolution (i.e., Prevalence = 1 at the original resolution). Next, we fit a linear regression model with the formula $log(AOO) \sim log(mean area)$ for each species-time-atlas combination. From this, we extracted the slopes and calculated the **fractal dimension** as D = -2 * b + 2 to scale it between 0 and 2 and account for the area (instead of cell side length) in the regression formula.

Mean probability to co-occur was calculated from a presence/absence community matrix using the R package 'coocurr' Version 1.3 ²². First, we computed the community presence-absence matrices for each scale-atlas-time period combination with the R package 'fossil'²³ Version 0.4.0. Next, we used the 'coocurr' package to probabilistically model the co-occurrence of species among sites. For each species, the model estimates an expected frequency based on the distribution of each species being independent of the other species and returns the probabilities for species pairs as having positive, negative, or random associations. We averaged these probabilities for single species across all co-occurring pairs to yield the mean probability to co-occur for each species.

Spatial Autocorrelation. We used the *'ncf'* R package Version 1.3-2 ²⁴ to calculate Moran's I from the correlogram of species presence/absences based on the first distance increment at the original cell size of the specific atlas. To include diagonally adjacent cells in addition to the neighboring cells into the calculation (i.e., queen formation), we set the increment to calculate Moran's I as: increment= cell side length * 1.75. This was necessary as cells are not equally shaped, and we wanted to prevent the inclusion of cells that do not directly surround the focal cell. Additionally, we extracted the x-intercept of the correlogram, which indicates the distance at which the autocorrelation becomes zero and can be used as a scale of autocorrelation.

Geometric features: Landscape Ecology Indices

A JOURNAL OF SPACE AND TIME IN ECOLOGY

The geometric features of polygons of grids and species ranges were calculated in R Version 4.4.0 with the packages 'terra' Version 1.7-78 and 'sf' Version 1.0-16 ²⁵. Every polygon was first reprojected to WGS84 to obtain their latitude and longitude coordinates and minimize shape and distance distortion over large areas. This is especially important when the study areas cover more than a single UTM zone. By using latitude and longitude, we implicitly used a spherical model of the earth and spherical trigonometry as implemented in 'terra'. Some features were calculated on the minimal bounding rotated rectangle (hereafter: MBRR) ('terra' function 'minRect()'), which is the smallest rotated rectangle that can be drawn around the polygon.

Page 45 of 134 Ecography

Figure S3: Checking for regression-to-the-mean effects in *Jaccard* and log AOO (a) and *log ratio AOO* and log AOO (b). We expect a bell-shaped distribution for *Jaccard* and a negatively linear relationship for the log ratio to identify the effect. No smoothing method was applied.

Ecography Page 46 of 134

Table S3: Geometric indices calculated from the country shapes and species range shapes.

Geometry index	Formula / Description
East-West	Distance from easternmost to westernmost longitude
distance	
North-South	Distance from northernmost to southernmost latitude
distance	
Maximum	Maximum distance between any two points on the borders
distance	
Elongation ratio	E = 1 - S/L (S = short-axis length; L = long-axis length; axes are the one that connects the two more distant points in opposite polygon boundaries (long axis)
	and the distance between opposite points in an axis perpendicular to the first
	(short axis). It measures polygon direction in addition to overall elongation.
Circularity	C = Perimeter ² / Area, where a circle has $C = 1$ and everything else $C > 1$ (2 INF)
Normalized	CNORM = (perimeter^2) / (4 * pi * area), where a circle has C = 1 and everything
circularity	else C < 1 (2 0)
Length of the	Length of the smallest optimally oriented rectangle needed to cover the polygon
MBRR*	
Width of the	Width of the smallest optimally oriented rectangle needed to cover the polygon
MBRR*	
Elongation of the	E = 1 - S/L of the smallest optimally oriented rectangle able to cover the whole
MBRR*	polygon ²⁶
Related	RCC = 1 - A / Ac; ranges from 0 to 1, where 0 indicates a circular polygon and 1 is
circumscribing	a highly elongated polygon. It is a measure of polygon elongation
circle	
Linearity index	The coefficient of determination (r ²) calculated from a regression analysis of the
	x and y coordinates of the exterior convex hull nodes. A measure of how well the
	polygon can be described by a straight line. It is more efficient than the
	elongation ratio as it does not require finding the MBRR first
North bearing of	The angle of the MBRR along its longest axis, measured clockwise from the north
the MBRR*	angle.
Bearing along the	The angle of the polygon's longest axis, measured clockwise from the north
longest axis	angle
Center of gravity of the atlas long	Mean longitude of all species population centroids in the atlas
Center of gravity	Mean latitude of all species population centroids in the atlas
of the atlas lat	wear latitude of all species population certifolds in the atlas
Species Centroid	Mean latitude of species range inside atlas
lat	saaa.a a. apadica range maide dada
Species Centroid	Mean longitude of species range inside atlas
long	
Distance centroid-	Distance from the species centroid to the center of gravity of the atlas
CoG	

Page 47 of 134 **Ecography**

Min dist centroid-

Minimum distance from the species centroid to the border of the atlas

Maximum distance from the species centroid to the border of the atlas

Minimum distance from the species range border to the border of the atlas

Maximum distance from the species range border to the border of the atlas

border

Min dist border

species-border

atlas

Max dist centroid-

border

Max dist border species-border

Southerness

atlas

Divided the atlas into half, set values above the centroid to northern and below

the centroid to southern and assigned a scaled score where 1 = most northern and 0 = most southern. Extracted the lat and long values for these classes, classified species by the lat and long of the range centroid, and transformed the

values so that Southerness = 1-Northerness.

Divided the atlas into half, set values right of the centroid to Eastern, left of the Westerness

> centroid to Western, and assigned a scaled score where 1 = most eastern and 0 = most western. Extracted the lat and long values for these classes, classified species by the lat and long of the range centroid, and transformed the values so

that Westerness = 1-Easterness.

rel ewDist = ewDist / atlas ewDist

rel_nsDist = nsDist / atlas_nsDist

rel relCirc = relCirc / atlas relCirc

rel maxDist = maxDist / atlas maxDist

rel elonRatio = elonRatio / atlas elonRatio

Relative maximum

distance

Relative east-west

distance

Relative north-

south distance

Relative elongation ratio

Relative related

circumscribing

circle

Relative linearity

Relative

rel lin = lin / atlas lin

rel_circNorm = circNorm / atlas_circNorm

normalized circularity

*MBRR = minimal bounding rotated rectangle

Ecography Page 48 of 134

H3: Mean species site-level diversities:

We calculated taxonomic γ -diversity as the total species richness of each atlas in each time period. Then we estimated local site diversities (α) and turnover (β) (sensu ref. 27 ; β =/) for all cells in each atlas. Next, we summarized this spatial information for each species by averaging over all α - and β -diversity values in the cells in which the specific species is present 28 , thereby creating a species-level measure of mean α - and β -diversity. We used Whittaker's β -diversity as β is independent of the species richness of the system and thus comparable across different study regions.

H4: Spatial Characteristics of the Study Region:

Similarly to H2, we calculated spatial characteristics of the study region and additionally included information about areas and scale of the specific atlas project. Table S4 summarizes all predictors for H4.

Page 49 of 134 Ecography

Table S4: Characteristics collected for each study region as predictors for H4**

Predictor	Description
dataset	corresponds to the specific atlas project (categorical)
mean cell area, i.e., spatial scale	mean(cell area)
total area sampled	the total area that was sampled during field campaigns
total number of cells sampled	total number of cells that were sampled during field campaigns
mean cell length	mean(cell side length)
length of the MBRR*	
width of the MBRR*	
elongation of the MBRR*	
circularity	
north-bearing of the MBRR*	
north-bearing of the study region	on
atlas center of gravity longitude	mean centroid longitude for all species ranges in the study region
atlas center of gravity latitude	mean centroid latitude for all species ranges in the study region
temporal scale	number of years for each sampling period
*MBRR = minimal bounding rot	ated rectangle. **Predictors without specific description were

already described in Table S2.

Ecography Page 50 of 134

Predictor collinearity. We calculated correlations between predictor variables, estimated their significance, and filtered predictors for correlation coefficients r < 0.85 to exclude highly collinear predictors. Figure S4 shows the plotted clustered matrix of correlations between predictors. Notably, spatial characteristics of the study region were highly collinear and would have thus been excluded from the analysis. Therefore, we aimed to include this information by constructing relative predictors that combine the information from species ranges within specific study regions. We then continued to remove highly collinear variables.

These removed variables were: 1) maximum distance from the range centroid to the border of the study region, 2) length of the MBRR of the atlas, 3) maximum distance from the range border to the border of the study region, 4) atlas mean cell length, 5) atlas mean cell area, 6) atlas total area sampled, 7) atlas bearing of the MBRR, 8) atlas gamma-diversity, 9) circularity of the study region, 10) atlas elongation of the MBRR, 11) range length of the MBRR, 12) relative east-west distance of the range, 13) atlas center of gravity latitude, 14) relative north-south distance of the range, 15) atlas width of the MBRR, 16) relative normalized circularity of the range, 17) atlas center of gravity longitude, 18) mean probability of co-occurrence.

Page 51 of 134 Ecography

Figure S4: Correlation matrix across all predictor variables. Insignificant values were removed from the matrix (blank, white fields). Red cells indicate a positive correlation, while blue cells indicate a negative correlation. We removed variables with r > 0.85 from the analysis.

Ecography Page 52 of 134

Caveats. Some limitations or uncertainties of our analysis should be noted, which can be divided into issues with (1) data quality and (2) issues of scale. The results presented here should be interpreted in the light of these uncertainties.

First, (1) sampling bias, varying detection probability in the field (e.g., nocturnal species, raptors - these groups of species are difficult to detect during field campaigns in the day using acoustic methods), and varying data collection methods between and within datasets affect the overall data quality. Diversity estimates and species spatial distributions may be especially affected by biased data collection in space and time. In this study, we applied a simple filtering approach to rule out spatial sampling biases but otherwise assumed a structured data collection process for all atlas datasets involving expert ornithologists, thereby making these data potentially less biased than unstructured data sources^{29,30}.

Second, (2) combining datasets of different spatial and temporal scales comes at a disadvantage: Although we can disentangle differences between study regions, we cannot provide explanations about underlying local processes as we did not measure the influence of the different scales using this approach. Here, we assumed that for each atlas project, the original (temporal and spatial) scale was chosen to reflect a combination of time- and effort constraints over the total area of the sampling region and that it at least reflects the scale over which ecologically accurate knowledge about regional bird distributions can be generated.

Lastly, we admit that the way we calculated specific predictor variables, i.e., including the relative circularity of a species' distribution within the boundaries of the circularity of the study region, played a role in determining the importance of hypotheses and predictors in this study. Nevertheless, we suggest that incorporating the limits of the dataset into the calculation of species range predictors can advance the predictability of change - although at the cost of information.

Page 53 of 134 Ecography

Supplementary results

Predicting AOO change.

Although predictors did not capture much variation in the log ratio of AOO change, we still think that the results provide interesting insights that should accompany the results for site turnover, as they add to our understanding of change dynamics. Specifically, those species for which the log ratio of AOO change was close to zero, indicating very little change in the amount of area occupied by the species, tended to have strong trends in terms of site turnover. These species that do not tend to lose area but still experience site turnover are potentially vulnerable to future change. These patterns indicate that dispersal outweighs stable site occupancy, suggesting that species are under pressure to disperse as their previously occupied sites have become unsuitable. On the other hand, species that show zero change in AOO and zero change in site turnover are those that can be labeled "stable". However, this pattern was only detected rarely, and if so, for species that occupied the full area of the study region (and potentially beyond the administrative borders).

Partial dependencies between the log ratio and predictors were mostly inconclusive and centered around zero, although some stronger relationships were detected (Figure S4b). Specifically, the *log ratio* is highest for ranges with low fractal dimensions between 0 and 0.5 (i.e., indicating range expansion for ranges comparable to a point pattern) but decreases to zero for higher fractal dimensions. In contrast, the *log ratio* is lowest for low values of the related circumscribing circle (i.e., range declines for species with irregular ranges) and for high mean a-diversity (i.e., range declines for species that, on average, occur in highly diverse sites). Regarding species body mass, the *log ratio* is lowest for species with very low body mass but stabilizes rapidly for species with low to high body mass without further influence of increasing weight. Nevertheless, it is important to note that the performance of the model was low for *the log ratio*, which affected the accuracy of estimating these parameters.

Partial dependencies between Jaccard and predictors.

Figure S5. Full set of partial dependence plots for *Jaccard (J)***.** Dependencies are 'marginal' dependencies for each predictor variable when all other predictors are average and were calculated using the 'pdp' R package. Partial dependence plots for all predictors (Random Forest). Plots were created using the 'partial()' function from the 'pdp' R package (Version 0.8.1). Dependencies represent the effect of the variable when all other variables are averaged (i.e., marginal effects). MBRR = minimum bounding rotated rectangle.

Page 55 of 134 Ecography

Supporting results from log ratio.

Figure S6: Relative predictor importance for modeling *log ratio AOO.* Relative Importance of predictors after recursive feature elimination from the final Random Forest model. Relative predictor importance is the scaled increase in mean square error (MSE) when the variable is permuted. Bars are colored by the hypothesis to which the specific predictor belongs. Model performance was low, and results should, therefore, be regarded with caution.

Figure S7: Partial dependence plots for all predictors of Log Ratio AOO. Partial dependence plots for all predictors (Random Forest). Plots were created using the 'partial()' function from the 'pap' R package (Version 0.8.1). Dependencies represent the effect of the variable when all other variables are averaged (i.e., marginal effects). MBRR = minimum bounding rotated rectangle.

Page 57 of 134 Ecography

References

- 1. R Core Team. *R: A Language and Environment for Statistical Computing*. (R Foundation for Statistical Computing, Vienna, Austria, 2024).
- 2. Posit team. *RStudio: Integrated Development Environment for R*. http://www.posit.co/(2024).
- 3. Keller, V. et al. European Breeding Bird Atlas 2: Distribution, Abundance and Change. (European Bird Census Council & Lynx Edicions, Barcelona, 2020).
- 4. Halley, J. M. *et al.* Uses and abuses of fractal methodology in ecology. *Ecology Letters* **7**, 254–271 (2004).
- 5. Jaccard, P. The distribution of the flora in the alpine zone. *New Phytol.* **11**, 37–50 (1912).
- 6. Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence—absence data. *Journal of Animal Ecology* **72**, 367–382 (2003).
- 7. Legendre, P. A temporal beta-diversity index to identify sites that have changed in exceptional ways in space—time surveys. *Ecol. Evol.* **9**, 3500—3514 (2019).
- 8. Tobias, J. A. *et al.* AVONET: morphological, ecological and geographical data for all birds. *Ecology Letters* **25**, 581–597 (2022).
- 9. Karger, D. N. *et al.* Climatologies at high resolution for the earth's land surface areas. 2.1 KB EnviDat https://doi.org/10.16904/ENVIDAT.228.V2.1 (2021).
- 10. Karger, D. N. *et al.* Climatologies at high resolution for the earth's land surface areasCHELSA V2.1 (current. 2 1 (2021) doi:10.16904/ENVIDAT.228.V2.1.
- 11. BirdLife International and Handbook of the Birds of the World. Bird species distribution maps of the world. (2022).
- 12. Coelho, M. T. P. *et al.* The geography of climate and the global patterns of species diversity. *Nature* **622**, 537–544 (2023).
- 13. Hijmans, R. J. *Terra: Spatial Data Analysis*. https://CRAN.R-project.org/package=terra (2024).
- 14. Karger, D. N. *et al.* Climatologies at high resolution for the earth's land surface areas. *Sci Data* **4**, 170122 (2017).
- 15. Daru, B. H., Karunarathne, P. & Schliep, K. phyloregion: R package for biogeographic regionalization and macroecology. *Methods in Ecology and Evolution* **11**, 1483–1491 (2020).
- 16. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. *Nature* **491**, 444–448 (2012).
- 17. Scott Chamberlain & Eduard Szocs. taxize taxonomic search and retrieval in R. *F1000Research* (2013).
- 18. ZSL & IUCN National Red List Working Group. National Red List Database. (2022).
- 19. Federation of New York State Bird Clubs, New York (State). Department of Environmental Conservation, & Cornell University Laboratory of Ornithology. *The Atlas of Breeding Birds in New York State*. (Cornell University Press Ithaca, 1988).

Ecography Page 58 of 134

- 20. Galton, F. Regression Towards Mediocrity in Hereditary Stature. *The Journal of the Anthropological Institute of Great Britain and Ireland* **15**, 246 (1886).
- 21. Mazalla, L. & Diekmann, M. Regression to the mean in vegetation science. *J Vegetation Science* **33**, e13117 (2022).
- 22. Griffith, D. M., Veech, J. A. & Marsh, C. J. **cooccur**: Probabilistic Species Co-Occurrence Analysis in *R. J. Stat. Soft.* **69**, (2016).
- 23. Vavrek, M. J. Fossil: palaeoecological and palaeogeographical analysis tools. *Palaeontologia electronica* **14**, 16 (2011).
- 24. Bjornstad, O. N. *Ncf: Spatial Covariance Functions*. https://CRAN.R-project.org/package=ncf (2022).
- 25. Pebesma, E. Simple features for R: Standardized support for spatial vector data. *The R Journal* **10**, 439–446 (2018).
- 26. Dražić, S., Ralević, N. & Žunić, J. Shape elongation from optimal encasing rectangles. *Computers & mathematics with applications* **60**, 2035–2042 (2010).
- 27. Whittaker, R. H. Evolution and measurement of species diversity. *Taxon* **21**, 213–251 (1972).
- 28. Arita, H. T., Christen, J. A., Rodríguez, P. & Soberón, J. Species Diversity and Distribution in Presence-Absence Matrices: Mathematical Relationships and Biological Implications. *The American Naturalist* **172**, 519–532 (2008).
- 29. Boakes, E. H. *et al.* Distorted Views of Biodiversity: Spatial and Temporal Bias in Species Occurrence Data. *PLOS Biology* **8**, e1000385 (2010).
- 30. Boyd, R. J., Stewart, G. B. & Pescott, O. L. Descriptive inference using large, unrepresentative nonprobability samples: An introduction for ecologists. *Ecology* **105**, e4214 (2024).

Page 59 of 134 Ecography

Column Name

Rank_J_predicted trend J Predicted

dataset

verbatim_name

J Predicted

Rank J observed

J Observed

trend J Observed

LR Predicted

trend_LR_Predicted

LR_Observed

trend LR Observed

Rank_LR_predicted

Rank_LR_observed

Explanation

Rank from 1:N(species) in the dataset indicating the magnitude of site turnover that is predicted for the future based

Categorical trend that is predicted for the species

Atlas data (either: Czech Republic, Europe, Japan or New York State)

Original species name used in the atlas project

Future prediction of Jaccard value

Rank from 1:N(species) in the dataset indicating the magnitude of site turnover that has happend between both atla

Observed Jaccard value for the temporal change that happened between two consecutive atlas generations.

Categorical trend that is observed for the species

Predicted value of log ratio AOO for the future from the occurrence data in the second atlas generation

Categorical trend that is predicted for the species

Observed value of log ratio AOO for the future from the occurrence data in the second atlas generation

Categorical trend that is predicted for the species

Rank from 1:N(species) in the dataset indicating the direction of temporal change that is predicted for the future bas

Rank from 1:N(species) in the dataset indicating the direction of temporal change that is observed from the compar

Page 60 of 134

d on the occurrence data from the second atlas generation.

sed on the occurrence data from the second atlas generation, rison of two consecutive atlas generations.

Page 61 of 134 Ecography

Rank_J_predicted	trend_J_Predicted	dataset	verbatim_name	J_Predicted	
	1 complete turnover (< 0.1)	Birds_Atlas_Czechia	Otus scops		0.0361
	2 complete turnover (< 0.1)	Birds_Atlas_Czechia	Larus cachinnans		0.0389
	3 complete turnover (< 0.1)	Birds_Atlas_Czechia	Luscinia luscinia		0.0407
	4 complete turnover (< 0.1)	Birds_Atlas_Czechia	Anas acuta		0.0463
	5 complete turnover (< 0.1)	Birds_Atlas_Czechia	Podiceps grisegena		0.0556
	6 complete turnover (< 0.1)	Birds_Atlas_Czechia	Larus melanocephalus		0.0594
	7 complete turnover (< 0.1)	Birds_Atlas_Czechia	Turdus iliacus		0.0615
	8 complete turnover (< 0.1)	Birds_Atlas_Czechia	Himantopus himantopus		0.0841
	9 complete turnover (< 0.1)	Birds_Atlas_Czechia	Asio flammeus		0.0876
	10 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Phylloscopus trochiloide	s	0.1066
	11 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Numenius arquata		0.1129
	12 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Emberiza hortulana		0.1247
	13 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Mergus merganser		0.1273
	14 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Aythya nyroca		0.1297
	15 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Porzana parva		0.1333
	16 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Ardea purpurea		0.1411
	17 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Aquila pomarina		0.143
	18 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Anthus campestris		0.1516
	19 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Egretta garzetta		0.1584
	20 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Limosa limosa		0.1629
	21 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Recurvirostra avosetta		0.1657
	22 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Falco peregrinus		0.1689
	23 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Falco cherrug		0.177
	24 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Prunella collaris		0.1824
	25 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Grus grus		0.1869
	26 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Charadrius morinellus		0.189
	27 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Panurus biarmicus		0.2142
	28 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Platalea leucorodia		0.2234
	29 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Larus canus		0.2237
	30 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Chlidonias niger		0.2246
	31 strong turnover (0.1 - 0.25)	Birds_Atlas_Czechia	Corvus frugilegus		0.2413

Ecography Page 62 of 134

32 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	An	thus spinoletta	0.2637
33 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Up	oupa epops	0.2654
34 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Во	taurus stellaris	0.2734
35 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Te	trao urogallus	0.2743
36 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	$O\epsilon$	enanthe oenanthe	0.2771
37 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Mil	lvus migrans	0.2821
38 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Ca	primulgus europaeus	0.2866
39 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Cii	rcus cyaneus	0.2871
40 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	lxc	obrychus minutus	0.2871
41 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Cii	rcus pygargus	0.2915
42 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Po	rzana porzana	0.2981
43 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Ne	etta rufina	0.3092
44 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Ga	alerida cristata	0.3148
45 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	На	liaeetus albicilla	0.3252
46 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Ph	alacrocorax carbo	0.327
47 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Tri	inga totanus	0.3424
48 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Мс	otacilla flava	0.3425
49 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	De	endrocopos leucotos	0.345
50 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Bu	cephala clangula	0.3456
51 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Atl	hene noctua	0.3503
52 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Tri	inga ochropus	0.355
53 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Ca	rpodacus erythrinus	0.356
54 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	An	ser anser	0.3583
55 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Ste	erna hirundo	0.3642
56 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	An	as clypeata	0.3668
57 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Me	erops apiaster	0.3671
58 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Fic	cedula parva	0.3715
59 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Po	diceps nigricollis	0.3734
60 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Mil	lvus milvus	0.3813
61 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Lo	custella luscinioides	0.3883
62 stro	ng intermediate turnover (0.25 Birds_Atlas_Czechia	Lu	llula arborea	0.3886

Page 63 of 134 Ecography

63 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Nycticorax nycticorax	0.4002
64 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Anas crecca	0.4168
65 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Anas querquedula	0.4177
66 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Riparia riparia	0.4194
67 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Tetrao tetrix	0.4277
68 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Picoides tridactylus	0.4291
69 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Dendrocopos syriacus	0.4324
70 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Strix uralensis	0.4369
71 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Actitis hypoleucos	0.4455
72 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Gallinago gallinago	0.4597
73 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Miliaria calandra	0.4629
74 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Aegolius funereus	0.4686
75 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Tyto alba	0.469
76 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Corvus monedula	0.4703
77 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Acrocephalus arundinace	0.4745
78 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Falco subbuteo	0.4783
79 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Rallus aquaticus	0.4893
80 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Turdus torquatus	0.4926
81 strong intermediate turnover (0.25 Birds_Atlas_Czechia	Scolopax rusticola	0.4956
82 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Larus ridibundus	0.5018
83 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Dendrocopos medius	0.5028
84 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Saxicola torquata	0.5038
85 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Anas strepera	0.5054
86 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Glaucidium passerinum	0.5101
87 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Carduelis flammea	0.5158
88 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Ficedula hypoleuca	0.5232
89 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Remiz pendulinus	0.5235
90 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Anthus pratensis	0.5418
91 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Nucifraga caryocatactes	0.572
92 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Ficedula albicollis	0.5722
93 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Acrocephalus schoenoba	0.5819

Ecography Page 64 of 134

94 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Luscinia megarhynchos	0.5846
95 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Picus canus	0.5867
96 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Pernis apivorus	0.6004
97 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Columba oenas	0.6071
98 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Crex crex	0.6131
99 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Cinclus cinclus	0.6211
100 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Aythya ferina	0.6229
101 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Podiceps cristatus	0.6232
102 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Charadrius dubius	0.626
103 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Ardea cinerea	0.6282
104 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Loxia curvirostra	0.6494
105 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Certhia brachydactyla	0.6653
106 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Bubo bubo	0.6731
107 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Jynx torquilla	0.6868
108 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Tachybaptus ruficollis	0.6918
109 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Gallinula chloropus	0.6921
110 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Lanius excubitor	0.6958
111 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Ciconia ciconia	0.7026
112 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Oriolus oriolus	0.7096
113 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Parus montanus	0.7153
114 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Ciconia nigra	0.7159
115 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Carduelis spinus	0.7171
116 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Aythya fuligula	0.7252
117 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Regulus ignicapillus	0.734
118 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Columba livia	0.7381
119 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Dendrocopos minor	0.7437
120 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Cygnus olor	0.745
121 weak intermediate turnover (0.5 - Birds_Atlas_Czechia	Acrocephalus scirpaceus	0.7471
122 weak turnover (> 0.75) Birds_Atlas_Czechia	Saxicola rubetra	0.7647
123 weak turnover (> 0.75) Birds_Atlas_Czechia	Asio otus	0.7809
124 weak turnover (> 0.75) Birds_Atlas_Czechia	Alcedo atthis	0.7821

Page 65 of 134 Ecography

125 weak turnover (> 0.75)	Birds_Atlas_Czechia	Perdix perdix	0.7901
126 weak turnover (> 0.75)	Birds_Atlas_Czechia	Locustella fluviatilis	0.8067
127 weak turnover (> 0.75)	Birds_Atlas_Czechia	Circus aeruginosus	0.8088
128 weak turnover (> 0.75)	Birds_Atlas_Czechia	Fulica atra	0.8097
129 weak turnover (> 0.75)	Birds_Atlas_Czechia	Locustella naevia	0.8099
130 weak turnover (> 0.75)	Birds_Atlas_Czechia	Emberiza schoeniclus	0.8129
131 weak turnover (> 0.75)	Birds_Atlas_Czechia	Parus cristatus	0.8137
132 weak turnover (> 0.75)	Birds_Atlas_Czechia	Accipiter gentilis	0.8388
133 weak turnover (> 0.75)	Birds_Atlas_Czechia	Strix aluco	0.8388
134 weak turnover (> 0.75)	Birds_Atlas_Czechia	Pyrrhula pyrrhula	0.8614
135 weak turnover (> 0.75)	Birds_Atlas_Czechia	Acrocephalus palustris	0.8663
136 weak turnover (> 0.75)	Birds_Atlas_Czechia	Phasianus colchicus	0.8692
137 weak turnover (> 0.75)	Birds_Atlas_Czechia	Corvus corone	0.872
138 weak turnover (> 0.75)	Birds_Atlas_Czechia	Phylloscopus sibilatrix	0.8731
139 weak turnover (> 0.75)	Birds_Atlas_Czechia	Muscicapa striata	0.8769
140 weak turnover (> 0.75)	Birds_Atlas_Czechia	Parus palustris	0.8809
141 weak turnover (> 0.75)	Birds_Atlas_Czechia	Turdus viscivorus	0.8814
142 weak turnover (> 0.75)	Birds_Atlas_Czechia	Sylvia borin	0.8853
143 weak turnover (> 0.75)	Birds_Atlas_Czechia	Aegithalos caudatus	0.8889
144 weak turnover (> 0.75)	Birds_Atlas_Czechia	Coturnix coturnix	0.8889
145 weak turnover (> 0.75)	Birds_Atlas_Czechia	Regulus regulus	0.8893
146 weak turnover (> 0.75)	Birds_Atlas_Czechia	Turdus pilaris	0.8912
147 weak turnover (> 0.75)	Birds_Atlas_Czechia	Picus viridis	0.8914
148 weak turnover (> 0.75)	Birds_Atlas_Czechia	Passer montanus	0.8985
149 weak turnover (> 0.75)	Birds_Atlas_Czechia	Streptopelia turtur	0.8987
150 stable (> 0.9)	Birds_Atlas_Czechia	Hippolais icterina	0.9009
151 stable (> 0.9)	Birds_Atlas_Czechia	Motacilla cinerea	0.9019
152 stable (> 0.9)	Birds_Atlas_Czechia	Parus ater	0.9032
153 stable (> 0.9)	Birds_Atlas_Czechia	Phoenicurus phoenicurus	0.9049
154 stable (> 0.9)	Birds_Atlas_Czechia	Accipiter nisus	0.909
155 stable (> 0.9)	Birds_Atlas_Czechia	Dryocopus martius	0.9101
• •		-	

Ecography Page 66 of 134

156 stable (> 0.9)	Birds_Atlas_Czechia	Carduelis cannabina	0.914
157 stable (> 0.9)	Birds_Atlas_Czechia	Coccothraustes coccothra	0.9192
158 stable (> 0.9)	Birds_Atlas_Czechia	Pica pica	0.9209
159 stable (> 0.9)	Birds_Atlas_Czechia	Anas platyrhynchos	0.9355
160 stable (> 0.9)	Birds_Atlas_Czechia	Apus apus	0.9443
161 stable (> 0.9)	Birds_Atlas_Czechia	Streptopelia decaocto	0.946
162 stable (> 0.9)	Birds_Atlas_Czechia	Prunella modularis	0.9565
163 stable (> 0.9)	Birds_Atlas_Czechia	Phylloscopus trochilus	0.9646
164 stable (> 0.9)	Birds_Atlas_Czechia	Falco tinnunculus	0.9735
165 stable (> 0.9)	Birds_Atlas_Czechia	Phylloscopus collybita	0.9743
166 stable (> 0.9)	Birds_Atlas_Czechia	Lanius collurio	0.9744
167 stable (> 0.9)	Birds_Atlas_Czechia	Carduelis carduelis	0.9748
168 stable (> 0.9)	Birds_Atlas_Czechia	Alauda arvensis	0.9758
169 stable (> 0.9)	Birds_Atlas_Czechia	Serinus serinus	0.9758
170 stable (> 0.9)	Birds_Atlas_Czechia	Passer domesticus	0.9761
171 stable (> 0.9)	Birds_Atlas_Czechia	Sturnus vulgaris	0.9761
172 stable (> 0.9)	Birds_Atlas_Czechia	Delichon urbica	0.9781
173 stable (> 0.9)	Birds_Atlas_Czechia	Cuculus canorus	0.9782
174 stable (> 0.9)	Birds_Atlas_Czechia	Buteo buteo	0.9784
175 stable (> 0.9)	Birds_Atlas_Czechia	Garrulus glandarius	0.979
176 stable (> 0.9)	Birds_Atlas_Czechia	Troglodytes troglodytes	0.9796
177 stable (> 0.9)	Birds_Atlas_Czechia	Columba palumbus	0.9826
178 stable (> 0.9)	Birds_Atlas_Czechia	Parus caeruleus	0.9835
179 stable (> 0.9)	Birds_Atlas_Czechia	Erithacus rubecula	0.9838
180 stable (> 0.9)	Birds_Atlas_Czechia	Sitta europaea	0.9838
181 stable (> 0.9)	Birds_Atlas_Czechia	Turdus philomelos	0.9838
182 stable (> 0.9)	Birds_Atlas_Czechia	Sylvia atricapilla	0.984
183 stable (> 0.9)	Birds_Atlas_Czechia	Dendrocopos major	0.9843

Page 67 of 134 Ecography

Rank_J_observed	J_Observed	trend_J_Observed	LR_Predicted	trend_LR_Predicted	LR_Obsen
	1	0 complete turnover (< 0.1)	0.7186	strong increase (> doubling)	0.689
	2	0 complete turnover (< 0.1)	0.8705	strong increase (> doubling)	-0.217
	3	0 complete turnover (< 0.1)	0.5073	weak increase (< doubling)	0.536
	4	0 complete turnover (< 0.1)	0.6991	strong increase (> doubling)	0.001
	11	0.054 complete turnover (< 0.1)	0.2682	weak increase (< doubling)	-0.155
	21	0.125 strong turnover (0.1 - 0.25)	0.4062	weak increase (< doubling)	1.249
	14	0.073 complete turnover (< 0.1)	-0.0699	stable	-0.185
	5	0 complete turnover (< 0.1)	0.7018	s strong increase (> doubling)	0.23
	6	0 complete turnover (< 0.1)		weak increase (< doubling)	0.955
	12	0.071 complete turnover (< 0.1)	0.1142	weak increase (< doubling)	-0.145
	25	0.156 strong turnover (0.1 - 0.25)	0.3201	weak increase (< doubling)	-0.275
	15	0.086 complete turnover (< 0.1)		weak increase (< doubling)	-0.181
	9	0.045 complete turnover (< 0.1)		weak increase (< doubling)	1.046
	7	0 complete turnover (< 0.1)		weak increase (< doubling)	-0.801
	10	0.05 complete turnover (< 0.1)		weak increase (< doubling)	1.453
	28	0.208 strong turnover (0.1 - 0.25)		weak increase (< doubling)	0.641
	8	0 complete turnover (< 0.1)		weak increase (< doubling)	0.072
	20	0.097 complete turnover (< 0.1)		weak increase (< doubling)	-0.362
	16	0.091 complete turnover (< 0.1)		weak increase (< doubling)	2.394
	30	0.214 strong turnover (0.1 - 0.25)	0.1776	weak increase (< doubling)	-0.608
	22	0.143 strong turnover (0.1 - 0.25)		weak increase (< doubling)	1.108
	19	0.095 complete turnover (< 0.1)	0.3444	weak increase (< doubling)	0.623
	61	0.381 strong intermediate turnove	r 0.2824	weak increase (< doubling)	0.201
	93	0.571 weak intermediate turnover	0.2509	weak increase (< doubling)	0.181
	17	0.093 complete turnover (< 0.1)	0.5166	weak increase (< doubling)	1.746
	83	0.5 strong intermediate turnove	r 0.91	strong increase (> doubling)	-0.7
	63	0.392 strong intermediate turnove	r 0.415	weak increase (< doubling)	0.198
	13	0.071 complete turnover (< 0.1)	0.7663	strong increase (> doubling)	1.387
	31	0.217 strong turnover (0.1 - 0.25)	0.3757	weak increase (< doubling)	0.584
	53	0.341 strong intermediate turnove	r 0.4225	weak increase (< doubling)	-0.318
	44	0.3 strong intermediate turnove		weak increase (< doubling)	-0.18

Ecography Page 68 of 134

102	0.625 weak intermediate turnover	0.3156 weak increase (< doubling)	-0.155
35	0.226 strong turnover (0.1 - 0.25)	0.145 weak increase (< doubling)	0.212
38	0.258 strong intermediate turnover	0.3761 weak increase (< doubling)	0.362
59	0.377 strong intermediate turnover	0.3097 weak increase (< doubling)	-0.303
32	0.218 strong turnover (0.1 - 0.25)	0.0627 stable	-0.439
34	0.222 strong turnover (0.1 - 0.25)	0.175 weak increase (< doubling)	0.32
27	0.168 strong turnover (0.1 - 0.25)	0.1315 weak increase (< doubling)	-0.465
36	0.245 strong turnover (0.1 - 0.25)	-0.0159 stable	-0.039
48	0.323 strong intermediate turnover	0.232 weak increase (< doubling)	0.079
18	0.094 complete turnover (< 0.1)	0.3216 weak increase (< doubling)	0.836
42	0.283 strong intermediate turnover	0.2101 weak increase (< doubling)	0.175
49	0.323 strong intermediate turnover	0.3711 weak increase (< doubling)	0.78
43	0.287 strong intermediate turnover	0.0984 weak increase (< doubling)	-0.84
24	0.149 strong turnover (0.1 - 0.25)	0.4959 weak increase (< doubling)	1.585
33	0.218 strong turnover (0.1 - 0.25)	0.4873 weak increase (< doubling)	1.074
68	0.408 strong intermediate turnover	0.1849 weak increase (< doubling)	-0.086
57	0.362 strong intermediate turnover	-0.0603 stable	0.077
65	0.404 strong intermediate turnover	0.1711 weak increase (< doubling)	-0.027
58	0.367 strong intermediate turnover	0.4608 weak increase (< doubling)	0.711
41	0.276 strong intermediate turnover	-0.0539 stable	-0.936
23	0.145 strong turnover (0.1 - 0.25)	0.1382 weak increase (< doubling)	1.206
56	0.353 strong intermediate turnover	0.1127 weak increase (< doubling)	0.195
45	0.301 strong intermediate turnover	0.4377 weak increase (< doubling)	0.72
52	0.333 strong intermediate turnover	0.221 weak increase (< doubling)	0.135
74	0.444 strong intermediate turnover	0.081 stable	-0.085
29	0.212 strong turnover (0.1 - 0.25)	0.338 weak increase (< doubling)	0.62
47	0.314 strong intermediate turnover	0.1391 weak increase (< doubling)	0.163
72	0.438 strong intermediate turnover	0.0879 stable	-0.433
39	0.259 strong intermediate turnover	0.1002 weak increase (< doubling)	0.535
51	0.332 strong intermediate turnover	0.2426 weak increase (< doubling)	0.525
50	0.33 strong intermediate turnover	0.054 stable	0.174

Page 69 of 134 Ecography

37	0.246 strong turnover (0.1 - 0.25)	0.467 weak increase (< doubling)	0.772
69	0.419 strong intermediate turnover	0.0153 stable	-0.18
70	0.431 strong intermediate turnover	-0.0175 stable	0.032
91	0.566 weak intermediate turnover	0.0604 stable	-0.236
81	0.495 strong intermediate turnover	0.0329 stable	-0.429
88	0.543 weak intermediate turnover	0.2123 weak increase (< doubling)	-0.143
46	0.313 strong intermediate turnover	0.2919 weak increase (< doubling)	0.834
26	0.158 strong turnover (0.1 - 0.25)	0.2614 weak increase (< doubling)	1.511
66	0.405 strong intermediate turnover	0.001 stable	0.004
77	0.47 strong intermediate turnover	-0.0263 stable	-0.246
40	0.271 strong intermediate turnover	0.0516 stable	0.719
67	0.407 strong intermediate turnover	0.0781 stable	0.472
60	0.379 strong intermediate turnover	-0.1261 weak decrease (< halfing)	-0.265
89	0.546 weak intermediate turnover	-0.1035 stable	-0.339
85	0.526 weak intermediate turnover	0.057 stable	0.058
54	0.346 strong intermediate turnover	0.0689 stable	0.239
82	0.497 strong intermediate turnover	0.0271 stable	0.343
105	0.632 weak intermediate turnover	0.1097 weak increase (< doubling)	-0.029
73	0.439 strong intermediate turnover	0.0208 stable	0.121
78	0.474 strong intermediate turnover	-0.0272 stable	-0.144
64	0.399 strong intermediate turnover	0.186 weak increase (< doubling)	0.34
76	0.459 strong intermediate turnover	0.1224 weak increase (< doubling)	0.236
75	0.449 strong intermediate turnover	0.1522 weak increase (< doubling)	0.321
62	0.387 strong intermediate turnover	0.0789 stable	0.656
84	0.507 weak intermediate turnover	0.0748 stable	0.114
80	0.489 strong intermediate turnover	0.0332 stable	0.045
101	0.62 weak intermediate turnover	0.0179 stable	-0.081
92	0.57 weak intermediate turnover	-0.0204 stable	0.036
99	0.609 weak intermediate turnover	0.0531 stable	0.069
86	0.53 weak intermediate turnover	0.1236 weak increase (< doubling)	0.095
90	0.558 weak intermediate turnover	0.0079 stable	0.197

Ecography Page 70 of 134

97	0.597 weak intermediate turnover	0.0479 stable	0.218
96	0.58 weak intermediate turnover	0.0159 stable	0.011
79	0.488 strong intermediate turnover	0.0662 stable	0.157
87	0.53 weak intermediate turnover	0.0526 stable	0.323
55	0.346 strong intermediate turnover	-0.0301 stable	0.659
119	0.704 weak intermediate turnover	0.0388 stable	0.04
115	0.686 weak intermediate turnover	-7.00E-04 stable	-0.091
114	0.685 weak intermediate turnover	0.0249 stable	-0.046
95	0.576 weak intermediate turnover	-0.0042 stable	0.038
71	0.436 strong intermediate turnover	0.2037 weak increase (< doubling)	0.46
107	0.646 weak intermediate turnover	0.0426 stable	0.121
98	0.603 weak intermediate turnover	0.0443 stable	0.069
106	0.632 weak intermediate turnover	0.1124 weak increase (< doubling)	0.01
94	0.572 weak intermediate turnover	0.0722 stable	0.055
116	0.698 weak intermediate turnover	-0.0049 stable	-0.019
111	0.676 weak intermediate turnover	-0.0022 stable	0.015
103	0.63 weak intermediate turnover	0.0052 stable	0.027
122	0.727 weak intermediate turnover	0.1195 weak increase (< doubling)	0.048
120	0.72 weak intermediate turnover	0.024 stable	0.06
109	0.667 weak intermediate turnover	0.0336 stable	0.146
104	0.631 weak intermediate turnover	0.1324 weak increase (< doubling)	0.235
117	0.699 weak intermediate turnover	0.0484 stable	0.028
123	0.738 weak intermediate turnover	0.0044 stable	0.018
100	0.614 weak intermediate turnover	0.0559 stable	0.256
126	0.748 weak intermediate turnover	-0.0657 stable	0.012
113	0.681 weak intermediate turnover	0.0118 stable	0.093
127	0.763 weak turnover (> 0.75)	0.1222 weak increase (< doubling)	-0.001
124	0.744 weak intermediate turnover	-0.0076 stable	0.041
130	0.801 weak turnover (> 0.75)	0.0283 stable	-0.034
121	0.722 weak intermediate turnover	0.0224 stable	-0.011
108	0.654 weak intermediate turnover	0.0419 stable	0.238

Page 71 of 134 Ecography

129	0.787 weak turnover (> 0.75)	-0.0417 stable	-0.074
118	0.699 weak intermediate turnover	0.0574 stable	0.158
110	0.671 weak intermediate turnover	0.0419 stable	0.286
136	0.837 weak turnover (> 0.75)	0.0248 stable	-0.002
125	0.747 weak intermediate turnover	0.0326 stable	0.102
128	0.778 weak turnover (> 0.75)	-0.0032 stable	0.079
134	0.829 weak turnover (> 0.75)	0.0372 stable	-0.004
138	0.842 weak turnover (> 0.75)	0.039 stable	-0.025
135	0.834 weak turnover (> 0.75)	0.0367 stable	0.023
146	0.883 weak turnover (> 0.75)	0.0398 stable	-0.004
133	0.827 weak turnover (> 0.75)	0.0272 stable	0.061
147	0.884 weak turnover (> 0.75)	0.0257 stable	-0.042
143	0.873 weak turnover (> 0.75)	0.014 stable	-0.026
139	0.846 weak turnover (> 0.75)	0.027 stable	0.04
137	0.84 weak turnover (> 0.75)	0.0313 stable	0.048
131	0.82 weak turnover (> 0.75)	0.0279 stable	0.043
132	0.824 weak turnover (> 0.75)	0.0103 stable	0.113
141	0.86 weak turnover (> 0.75)	0.022 stable	0.016
148	0.885 weak turnover (> 0.75)	0.0224 stable	0.036
112	0.679 weak intermediate turnover	0.0135 stable	0.301
154	0.911 stable (> 0.9)	0.04 stable	0.013
151	0.899 weak turnover (> 0.75)	0.0291 stable	0.017
142	0.87 weak turnover (> 0.75)	0.0276 stable	0.042
158	0.937 stable (> 0.9)	0.0257 stable	-0.022
157	0.926 stable (> 0.9)	-0.0554 stable	-0.003
150	0.897 weak turnover (> 0.75)	0.031 stable	0.007
152	0.906 stable (> 0.9)	0.0248 stable	0.054
156	0.917 stable (> 0.9)	0.0282 stable	0.019
144	0.876 weak turnover (> 0.75)	0.0212 stable	0.057
145	0.877 weak turnover (> 0.75)	0.0272 stable	0.046
149	0.894 weak turnover (> 0.75)	0.0195 stable	0.041

Page 72 of 134

153	0.906 stable (> 0.9)	-0.002 stable	0.04
140	0.849 weak turnover (> 0.75)	0.0303 stable	0.079
155	0.915 stable (> 0.9)	0.0061 stable	0.025
160	0.942 stable (> 0.9)	0.0221 stable	0.023
161	0.944 stable (> 0.9)	0.0072 stable	0.015
163	0.971 stable (> 0.9)	-0.0249 stable	-0.007
159	0.941 stable (> 0.9)	0.0158 stable	0.015
162	0.965 stable (> 0.9)	0.0161 stable	0.003
165	0.976 stable (> 0.9)	0.0159 stable	0.015
172	0.989 stable (> 0.9)	0.015 stable	0.002
170	0.987 stable (> 0.9)	0.0049 stable	0.006
166	0.976 stable (> 0.9)	0.0136 stable	0.008
178	0.994 stable (> 0.9)	-0.0161 stable	-0.003
171	0.987 stable (> 0.9)	0.0278 stable	0.003
179	0.994 stable (> 0.9)	0.003 stable	-0.003
175	0.99 stable (> 0.9)	0.0098 stable	0
182	0.997 stable (> 0.9)	0.0087 stable	0
167	0.979 stable (> 0.9)	0.0146 stable	0.008
180	0.995 stable (> 0.9)	0.0149 stable	-0.002
164	0.975 stable (> 0.9)	0.017 stable	0.016
169	0.984 stable (> 0.9)	0.024 stable	0.01
168	0.981 stable (> 0.9)	0.012 stable	0.013
177	0.992 stable (> 0.9)	0.0202 stable	0.005
176	0.99 stable (> 0.9)	0.0146 stable	0.006
173	0.989 stable (> 0.9)	0.0153 stable	0.008
181	0.995 stable (> 0.9)	0.0126 stable	0.002
183	0.997 stable (> 0.9)	0.0126 stable	0
174	0.989 stable (> 0.9)	0.0112 stable	0.008

Page 73 of 134 Ecography

trend_LR_Observed F	Rank_LR_predicteRank_LR_observed		
weak increase (< doubling	180	164	
weak decrease (< halfing	182	18	
weak increase (< doubling	173	157	
stable	178	56	
weak decrease (< halfing	148	23	
strong increase (> doublir	161	177	
weak decrease (< halfing	3	19	
weak increase (< doubling	179	139	
strong increase (> doublir	163	172	
weak decrease (< halfing	121	25	
weak decrease (< halfing	154	14	
weak decrease (< halfing	141	20	
strong increase (> doublir	176	173	
strong decrease (> halfine	149	3	
strong increase (> doublir	167	179	
weak increase (< doubling	175	161	
stable	162	113	
weak decrease (< halfing	130	10	
strong increase (> doublir	168	183	
weak decrease (< halfing	135	5	
strong increase (> doublir	177	175	
weak increase (< doubling	157	160	
weak increase (< doubling	150	136	
weak increase (< doubling	146	132	
strong increase (> doublir	174	182	
strong decrease (> halfing	183	4	
weak increase (< doubling	164	135	
strong increase (> doublir	181	178	
weak increase (< doubling	159	158	
weak decrease (< halfing	165	12	
weak decrease (< halfing	136	22	
ait doordage (- Halling	100		

Page 74 of 134

weak decrease (< halfing	153	24	
weak increase (< doubling	131	137	
weak increase (< doubling	160	152	
weak decrease (< halfing	152	13	
weak decrease (< halfing	107	7	
weak increase (< doubling	134	147	
weak decrease (< halfing	126	6	
stable	16	35	
stable	144	117	
strong increase (> doublir	155	171	
weak increase (< doubling	140	131	
strong increase (> doublir	158	169	
strong decrease (> halfinç	116	2	
strong increase (> doublir	172	181	
strong increase (> doublir	171	174	
stable	137	29	
stable	5	114	
stable	133	38	
strong increase (> doublir	169	165	
strong decrease (> halfinç	7	1	
strong increase (> doublir	128	176	
weak increase (< doubling	120	133	
strong increase (> doublir	166	167	
weak increase (< doubling	143	125	
stable	114	30	
weak increase (< doubling	156	159	
weak increase (< doubling	129	129	
weak decrease (< halfing	115	8	
weak increase (< doubling	117	156	
weak increase (< doubling	145	155	
weak increase (< doubling	102	130	

Page 75 of 134 Ecography

strong increase (> doublir	170	168	
weak decrease (< halfing	47	21	
stable	14	90	
weak decrease (< halfing	106	17	
weak decrease (< halfing	84	9	
weak decrease (< halfing	142	27	
strong increase (> doublir	151	170	
strong increase (> doublir	147	180	
stable	24	61	
weak decrease (< halfing	11	16	
strong increase (> doublir	99	166	
weak increase (< doubling	112	154	
weak decrease (< halfing	1	15	
weak decrease (< halfing	2	11	
stable	104	108	
weak increase (< doubling	109	143	
weak increase (< doubling	71	151	
stable	118	37	
weak increase (< doubling	57	123	
weak decrease (< halfing	10	26	
weak increase (< doubling	138	150	
weak increase (< doubling	124	141	
weak increase (< doubling	132	148	
weak increase (< doubling	113	162	
weak increase (< doubling	111	122	
stable	85	101	
stable	54	31	
stable	13	91	
stable	101	112	
stable	125	119	
weak increase (< doubling	31	134	

Page 76 of 134

weak increase (< doubling	97	138	
stable	50	72	
weak increase (< doubling	108	127	
weak increase (< doubling	100	149	
weak increase (< doubling	9	163	
stable	89	96	
stable	23	28	
stable	67	33	
stable	19	93	
weak increase (< doubling	139	153	
weak increase (< doubling	95	124	
stable	96	111	
stable	119	71	
stable	110	106	
stable	18	42	
stable	21	76	
stable	28	88	
stable	122	104	
stable	63	109	
weak increase (< doubling	86	126	
weak increase (< doubling	127	140	
stable	98	89	
stable	26	83	
weak increase (< doubling	103	144	
stable	4	73	
stable	36	118	
stable	123	52	
stable	17	97	
stable	78	36	
stable	61	43	
weak increase (< doubling	93	142	

Page 77 of 134 Ecography

stable	8	32	
weak increase (< doubling	105	128	
weak increase (< doubling	94	145	
stable	65	51	
weak increase (< doubling	83	120	
stable	20	115	
stable	88	45	
stable	90	40	
stable	87	86	
stable	91	46	
stable	72	110	
stable	68	34	
stable	42	39	
stable	70	95	
stable	82	103	
stable	76	100	
weak increase (< doubling	34	121	
stable	59	81	
stable	62	92	
weak increase (< doubling	40	146	
stable	92	75	
stable	79	82	
stable	74	99	
stable	69	41	
stable	6	47	
stable	81	65	
stable	66	105	
stable	77	84	
stable	58	107	
stable	73	102	
stable	55	98	

Page 78 of 134

stable	22	94	
stable	80	116	
stable	29	87	
stable	60	85	
stable	30	77	
stable	12	44	
stable	49	78	
stable	52	59	
stable	51	79	
stable	46	58	
stable	27	63	
stable	41	67	
stable	15	48	
stable	75	60	
stable	25	49	
stable	33	54	
stable	32	53	
stable	43	68	
stable	45	50	
stable	53	80	
stable	64	70	
stable	37	74	
stable	56	62	
stable	44	64	
stable	48	69	
stable	38	57	
stable	39	55	
stable	35	66	

Page 79 of 134 Ecography

Rank_J_predicted	trend_J_Predicted	dataset	verbatim_name	J_Predicted	J_Observe trend_J_Observe
,	1 strong turnover (0.1 -	0. Birds_atlas_EBBA	Pastor roseus	0.1484	
	2 strong turnover (0.1 -		Anser erythropus	0.1504	
	3 strong turnover (0.1 -	0. Birds_atlas_EBBA	Xenus cinereus	0.166	0.19 strong turnover (
	4 strong turnover (0.1 -	0. Birds_atlas_EBBA	Circus macrourus	0.1715	0.02 complete turnove
	5 strong turnover (0.1 -	0. Birds_atlas_EBBA	Larus ichthyaetus	0.1806	0.444 strong intermedia
	6 strong turnover (0.1 -	0. Birds_atlas_EBBA	Glareola nordmanni	0.1831	0 complete turnove
	7 strong turnover (0.1 -	0. Birds_atlas_EBBA	Emberiza aureola	0.1862	0.038 complete turnove
	8 strong turnover (0.1 -	0. Birds_atlas_EBBA	Pelecanus onocrotalu	0.1862	0.143 strong turnover (
	9 strong turnover (0.1 -	0. Birds_atlas_EBBA	Zapornia pusilla	0.2047	0.081 complete turnove
	10 strong turnover (0.1 -	0. Birds_atlas_EBBA	Oxyura jamaicensis	0.2172	0.072 complete turnove
	11 strong turnover (0.1 -	0. Birds_atlas_EBBA	Bucanetes githagineu	0.2252	0.3 strong intermedia
	12 strong turnover (0.1 -	0. Birds_atlas_EBBA	Spilopelia senegalen:	0.2336	0.222 strong turnover (
	13 strong turnover (0.1 -	0. Birds_atlas_EBBA	Aix sponsa	0.2391	0.016 complete turnove
	14 strong intermediate tu	rnBirds_atlas_EBBA	Falco biarmicus	0.2563	0.215 strong turnover (
	15 strong intermediate tu	rnBirds_atlas_EBBA	Clanga clanga	0.2596	0.12 strong turnover (
	16 strong intermediate to	rnBirds_atlas_EBBA	Marmaronetta angust	0.2613	0.412 strong intermedia
	17 strong intermediate tu	rnBirds_atlas_EBBA	Plegadis falcinellus	0.2618	0.213 strong turnover (
	18 strong intermediate tu	rnBirds_atlas_EBBA	Fulica cristata	0.2654	0.227 strong turnover (
	19 strong intermediate tu	rnBirds_atlas_EBBA	Pelecanus crispus	0.2703	0.471 strong intermedia
	20 strong intermediate tu	rnBirds_atlas_EBBA	Calidris minuta	0.2749	0.375 strong intermedia
	21 strong intermediate to	rnBirds_atlas_EBBA	Phoenicopterus rosel	0.275	0.167 strong turnover (
	22 strong intermediate tu	rnBirds_atlas_EBBA	Aegypius monachus	0.2769	0.446 strong intermedia
	23 strong intermediate tu	rnBirds_atlas_EBBA	Acrocephalus paludic	0.2817	0.253 strong intermedia
	24 strong intermediate tu	rnBirds_atlas_EBBA	Tringa stagnatilis	0.2888	0.078 complete turnove
	25 strong intermediate tu	rnBirds_atlas_EBBA	Larus genei	0.299	0.259 strong intermedia
	26 strong intermediate tu	rnBirds_atlas_EBBA	Amandava amandava	0.3043	0.219 strong turnover (
	27 strong intermediate tu	rnBirds_atlas_EBBA	Cercotrichas galactot	0.3125	0.393 strong intermedia
	28 strong intermediate tu	rnBirds_atlas_EBBA	Microcarbo pygmaeu.	0.3133	0.252 strong intermedia
	29 strong intermediate tu		Syrmaticus reevesii	0.3178	<u> </u>
	30 strong intermediate tu		Acrocephalus agricola	0.3184	<u> </u>
	31 strong intermediate tu		Oxyura leucocephala		

Ecography Page 80 of 134

32 strong intermediate turn Birds_atlas_EBBA	Acrocephalus melanc	0.3263	0.321 strong intermedia
33 strong intermediate turn Birds_atlas_EBBA	Bubo scandiacus	0.3267	0.242 strong turnover (
34 strong intermediate turn Birds_atlas_EBBA	Cyanistes cyanus	0.3338	0.333 strong intermedia
35 strong intermediate turn Birds_atlas_EBBA	Phylloscopus borealis	0.3458	0.387 strong intermedia
36 strong intermediate turn Birds_atlas_EBBA	Sterna dougallii	0.3466	0.245 strong turnover (
37 strong intermediate turnBirds_atlas_EBBA	Hydrobates leucorhol	0.3501	0.3 strong intermedia
38 strong intermediate turnBirds_atlas_EBBA	Eremophila alpestris	0.352	0.423 strong intermedia
39 strong intermediate turnBirds_atlas_EBBA	Alaudala rufescens	0.3536	0.39 strong intermedia
40 strong intermediate turn Birds_atlas_EBBA	Aquila heliaca	0.3558	0.259 strong intermedia
41 strong intermediate turnBirds_atlas_EBBA	Puffinus puffinus	0.356	0.442 strong intermedia
42 strong intermediate turn Birds_atlas_EBBA	Myiopsitta monachus	0.3568	0.065 complete turnove
43 strong intermediate turn Birds_atlas_EBBA	Anthropoides virgo	0.3684	0.433 strong intermedia
44 strong intermediate turn Birds_atlas_EBBA	Phylloscopus oriental	0.3689	0.366 strong intermedia
45 strong intermediate turn Birds_atlas_EBBA	Alectoris chukar	0.3697	0.425 strong intermedia
46 strong intermediate turn Birds_atlas_EBBA	Morus bassanus	0.3725	0.426 strong intermedia
47 strong intermediate turn Birds_atlas_EBBA	Tarsiger cyanurus	0.3731	0.048 complete turnove
48 strong intermediate turn Birds_atlas_EBBA	Gelochelidon nilotica	0.3742	0.339 strong intermedia
49 strong intermediate turn Birds_atlas_EBBA	Hydroprogne caspia	0.3745	0.591 weak intermedia
50 strong intermediate turn Birds_atlas_EBBA	Lanius nubicus	0.3763	0.468 strong intermedia
51 strong intermediate turn Birds_atlas_EBBA	Hippolais olivetorum	0.3832	0.414 strong intermedia
52 strong intermediate turnBirds_atlas_EBBA	Platalea leucorodia	0.3857	0.248 strong turnover (
53 strong intermediate turnBirds_atlas_EBBA	Emberiza caesia	0.3861	0.308 strong intermedia
54 strong intermediate turnBirds_atlas_EBBA	Ficedula semitorquata	0.3862	0.33 strong intermedia
55 strong intermediate turnBirds_atlas_EBBA	Colinus virginianus	0.387	0.545 weak intermedia
56 strong intermediate turn Birds_atlas_EBBA	Aythya nyroca	0.3881	0.337 strong intermedia
57 strong intermediate turn Birds_atlas_EBBA	Falco cherrug	0.3882	0.257 strong intermedia
58 strong intermediate turn Birds_atlas_EBBA	Larus melanocephalu	0.3932	0.205 strong turnover (
59 strong intermediate turn Birds_atlas_EBBA	Apus caffer	0.3933	0.18 strong turnover (
60 strong intermediate turn Birds_atlas_EBBA	Sternula albifrons	0.3969	0.462 strong intermedia
61 strong intermediate turn Birds_atlas_EBBA	Otis tarda	0.4006	0.426 strong intermedia
62 strong intermediate turn Birds_atlas_EBBA	Glareola pratincola	0.4027	0.508 weak intermedia

Page 81 of 134 Ecography

63 strong intermediate turn Birds_atlas_EBBA	Accipiter brevipes	0.4029	0.338 strong intermedia
64 strong intermediate turn Birds_atlas_EBBA	Puffinus yelkouan	0.4029	0.369 strong intermedia
65 strong intermediate turn Birds_atlas_EBBA	Larus audouinii	0.4093	0.354 strong intermedia
66 strong intermediate turn Birds_atlas_EBBA	Chersophilus duponti	0.4107	0.433 strong intermedia
67 strong intermediate turn Birds_atlas_EBBA	Porphyrio porphyrio	0.4117	0.256 strong intermedia
68 strong intermediate turn Birds_atlas_EBBA	Ardeola ralloides	0.4124	0.337 strong intermedia
69 strong intermediate turn Birds_atlas_EBBA	Oenanthe pleschanka	0.4171	0.325 strong intermedia
70 strong intermediate turn Birds_atlas_EBBA	Chlidonias leucopteru	0.4177	0.42 strong intermedia
71 strong intermediate turn Birds_atlas_EBBA	Pterocles alchata	0.4186	0.44 strong intermedia
72 strong intermediate turn Birds_atlas_EBBA	Falco vespertinus	0.4199	0.284 strong intermedia
73 strong intermediate turn Birds_atlas_EBBA	Tadorna ferruginea	0.4201	0.148 strong turnover (
74 strong intermediate turn Birds_atlas_EBBA	Oenanthe isabellina	0.4222	0.272 strong intermedia
75 strong intermediate turn Birds_atlas_EBBA	Netta rufina	0.4224	0.263 strong intermedia
76 strong intermediate turn Birds_atlas_EBBA	Larus cachinnans	0.4265	0.114 strong turnover (
77 strong intermediate turn Birds_atlas_EBBA	Hydrobates pelagicus	0.4353	0.466 strong intermedia
78 strong intermediate turn Birds_atlas_EBBA	Iduna opaca	0.4394	0.415 strong intermedia
79 strong intermediate turn Birds_atlas_EBBA	Limosa limosa	0.4422	0.506 weak intermedia
80 strong intermediate turn Birds_atlas_EBBA	Recurvirostra avosett	0.4465	0.476 strong intermedia
81 strong intermediate turn Birds_atlas_EBBA	Falco eleonorae	0.4473	0.427 strong intermedia
82 strong intermediate turn Birds_atlas_EBBA	Calonectris diomedea	0.4488	0.435 strong intermedia
83 strong intermediate turn Birds_atlas_EBBA	Loxia leucoptera	0.449	0.396 strong intermedia
84 strong intermediate turn Birds_atlas_EBBA	Thalasseus sandvice	0.4491	0.327 strong intermedia
85 strong intermediate turn Birds_atlas_EBBA	Pinicola enucleator	0.4527	0.441 strong intermedia
86 strong intermediate turn Birds_atlas_EBBA	Gallinago media	0.4529	0.389 strong intermedia
87 strong intermediate turn Birds_atlas_EBBA	Limosa lapponica	0.4569	0.6 weak intermedia
88 strong intermediate turn Birds_atlas_EBBA	Motacilla citreola	0.4586	0.193 strong turnover (
89 strong intermediate turn Birds_atlas_EBBA	Emberiza pusilla	0.4589	0.5 strong intermedia
90 strong intermediate turn Birds_atlas_EBBA	Podiceps nigricollis	0.4624	0.437 strong intermedia
91 strong intermediate turnBirds_atlas_EBBA	Aix galericulata	0.4641	0.127 strong turnover (
92 strong intermediate turn Birds_atlas_EBBA	Puffinus mauretanicu	0.4655	0.5 strong intermedia
93 strong intermediate turnBirds_atlas_EBBA	Anas acuta	0.4828	0.464 strong intermedia

Ecography Page 82 of 134

94 strong intermediate turnBirds_atlas_EBBA	Chlidonias hybrida	0.4858	0.335 strong intermedia
95 strong intermediate turnBirds_atlas_EBBA	Anser fabalis	0.4877	0.636 weak intermedia
96 strong intermediate turnBirds_atlas_EBBA	Nycticorax nycticorax	0.4944	0.427 strong intermedia
97 weak intermediate turncBirds_atlas_EBBA	Mergellus albellus	0.5002	0.533 weak intermedia
98 weak intermediate turncBirds_atlas_EBBA	Himantopus himantoμ	0.5011	0.371 strong intermedia
99 weak intermediate turncBirds_atlas_EBBA	Charadrius alexandriı	0.5013	0.584 weak intermedia
100 weak intermediate turncBirds_atlas_EBBA	Estrilda astrild	0.5019	0.359 strong intermedia
101 weak intermediate turnc Birds_atlas_EBBA	Bubulcus ibis	0.5022	0.17 strong turnover (
102 weak intermediate turnc Birds_atlas_EBBA	Egretta garzetta	0.5031	0.314 strong intermedia
103 weak intermediate turncBirds_atlas_EBBA	Neophron percnopter	0.5049	0.497 strong intermedia
104 weak intermediate turnc Birds_atlas_EBBA	Lymnocryptes minimu	0.5054	0.549 weak intermedia
105 weak intermediate turncBirds_atlas_EBBA	Calidris falcinellus	0.5087	0.503 weak intermedia
106 weak intermediate turncBirds_atlas_EBBA	Zapornia parva	0.5092	0.353 strong intermedia
107 weak intermediate turncBirds_atlas_EBBA	Prunella collaris	0.5103	0.59 weak intermedia
108 weak intermediate turnc Birds_atlas_EBBA	Aythya marila	0.5129	0.46 strong intermedia
109 weak intermediate turnc Birds_atlas_EBBA	Ardea alba	0.5132	0.191 strong turnover (
110 weak intermediate turncBirds_atlas_EBBA	Branta leucopsis	0.5134	0.131 strong turnover (
111 weak intermediate turncBirds_atlas_EBBA	Ardea purpurea	0.5166	0.518 weak intermedia
112 weak intermediate turncBirds_atlas_EBBA	Gypaetus barbatus	0.5198	0.414 strong intermedia
113 weak intermediate turncBirds_atlas_EBBA	Asio flammeus	0.5207	0.486 strong intermedia
114 weak intermediate turncBirds_atlas_EBBA	Chlidonias niger	0.5217	0.596 weak intermedia
115 weak intermediate turncBirds_atlas_EBBA	Catharacta skua	0.5257	0.511 weak intermedia
116 weak intermediate turncBirds_atlas_EBBA	Anthus cervinus	0.5264	0.538 weak intermedia
117 weak intermediate turncBirds_atlas_EBBA	Phylloscopus trochilo	0.5302	0.414 strong intermedia
118 weak intermediate turncBirds_atlas_EBBA	Calidris pugnax	0.5303	0.461 strong intermedia
119 weak intermediate turncBirds_atlas_EBBA	Tadorna tadorna	0.5303	0.509 weak intermedia
120 weak intermediate turncBirds_atlas_EBBA	Phalacrocorax carbo	0.5311	0.261 strong intermedia
121 weak intermediate turncBirds_atlas_EBBA	Gyps fulvus	0.5316	0.539 weak intermedia
122 weak intermediate turncBirds_atlas_EBBA	Eudromias morinellus	0.5331	0.557 weak intermedia
123 weak intermediate turncBirds_atlas_EBBA	Tetrax tetrax	0.534	0.534 weak intermedia
124 weak intermediate turncBirds_atlas_EBBA	Hydrocoloeus minutu	0.5383	0.426 strong intermedia

Page 83 of 134 Ecography

125 weak intermediate turnc Birds_atlas_EBBA	Strix nebulosa	0.5383	0.355 strong intermedia
126 weak intermediate turnc Birds_atlas_EBBA	Coracias garrulus	0.5423	0.406 strong intermedia
127 weak intermediate turnc Birds_atlas_EBBA	Arenaria interpres	0.5446	0.667 weak intermedia
128 weak intermediate turnc Birds_atlas_EBBA	Aquila adalberti	0.5453	0.487 strong intermedia
129 weak intermediate turnc Birds_atlas_EBBA	Panurus biarmicus	0.5465	0.345 strong intermedia
130 weak intermediate turnc Birds_atlas_EBBA	Poecile cinctus	0.5468	0.618 weak intermedia
131 weak intermediate turnc Birds_atlas_EBBA	Carduelis citrinella	0.5471	0.652 weak intermedia
132 weak intermediate turnc Birds_atlas_EBBA	Melanitta fusca	0.549	0.635 weak intermedia
133 weak intermediate turnc Birds_atlas_EBBA	Poecile lugubris	0.5512	0.5 strong intermedia
134 weak intermediate turnc Birds_atlas_EBBA	Buteo rufinus	0.5522	0.239 strong turnover (
135 weak intermediate turnc Birds_atlas_EBBA	Clangula hyemalis	0.5527	0.57 weak intermedia
136 weak intermediate turnc Birds_atlas_EBBA	Calcarius lapponicus	0.5535	0.611 weak intermedia
137 weak intermediate turnc Birds_atlas_EBBA	Falco naumanni	0.554	0.45 strong intermedia
138 weak intermediate turncBirds_atlas_EBBA	Calidris temminckii	0.5556	0.607 weak intermedia
139 weak intermediate turnc Birds_atlas_EBBA	Anthus petrosus	0.5561	0.746 weak intermedia
140 weak intermediate turnc Birds_atlas_EBBA	Dendrocopos leucoto	0.5565	0.493 strong intermedia
141 weak intermediate turnc Birds_atlas_EBBA	Stercorarius longicau	0.5604	0.592 weak intermedia
142 weak intermediate turnc Birds_atlas_EBBA	Pterocles orientalis	0.5612	0.59 weak intermedia
143 weak intermediate turnc Birds_atlas_EBBA	Calandrella brachyda	0.562	0.506 weak intermedia
144 weak intermediate turnc Birds_atlas_EBBA	Podiceps grisegena	0.5628	0.515 weak intermedia
145 weak intermediate turnc Birds_atlas_EBBA	Emberiza melanocep	0.5631	0.481 strong intermedia
146 weak intermediate turnc Birds_atlas_EBBA	Larus michahellis	0.5637	0.43 strong intermedia
147 weak intermediate turnc Birds_atlas_EBBA	Clamator glandarius	0.5669	0.581 weak intermedia
148 weak intermediate turnc Birds_atlas_EBBA	Uria aalge	0.5669	0.63 weak intermedia
149 weak intermediate turnc Birds_atlas_EBBA	Phalaropus fulicarius	0.5684	0.538 weak intermedia
150 weak intermediate turnc Birds_atlas_EBBA	Melanitta nigra	0.5724	0.594 weak intermedia
151 weak intermediate turnc Birds_atlas_EBBA	Tichodroma muraria	0.5751	0.595 weak intermedia
152 weak intermediate turnc Birds_atlas_EBBA	Acrocephalus dumeto	0.5753	0.348 strong intermedia
153 weak intermediate turnc Birds_atlas_EBBA	Sitta neumayer	0.5754	0.584 weak intermedia
154 weak intermediate turnc Birds_atlas_EBBA	Anthus spinoletta	0.5768	0.703 weak intermedia
155 weak intermediate turnc Birds_atlas_EBBA	Calidris alpina	0.5771	0.542 weak intermedia

Ecography Page 84 of 134

156 weak intermediate turnc Birds_atlas_EBBA	Calonectris borealis	0.5774	0.65 weak intermedia
157 weak intermediate turnc Birds_atlas_EBBA	Gulosus aristotelis	0.5775	0.603 weak intermedia
158 weak intermediate turnc Birds_atlas_EBBA	Burhinus oedicnemus	0.578	0.626 weak intermedia
159 weak intermediate turnc Birds_atlas_EBBA	Elanus caeruleus	0.579	0.369 strong intermedia
160 weak intermediate turnc Birds_atlas_EBBA	Pyrrhocorax graculus	0.5814	0.753 weak turnover (>
161 weak intermediate turnc Birds_atlas_EBBA	Branta bernicla	0.5827	0.28 strong intermedia
162 weak intermediate turnc Birds_atlas_EBBA	Strix uralensis	0.5828	0.544 weak intermedia
163 weak intermediate turnc Birds_atlas_EBBA	Haematopus ostraleg	0.5835	0.714 weak intermedia
164 weak intermediate turnc Birds_atlas_EBBA	Phalaropus lobatus	0.5847	0.591 weak intermedia
165 weak intermediate turnc Birds_atlas_EBBA	Larus fuscus	0.5858	0.626 weak intermedia
166 weak intermediate turnc Birds_atlas_EBBA	Montifringilla nivalis	0.586	0.717 weak intermedia
167 weak intermediate turnc Birds_atlas_EBBA	Iduna pallida	0.5891	0.598 weak intermedia
168 weak intermediate turnc Birds_atlas_EBBA	Tringa erythropus	0.5895	0.696 weak intermedia
169 weak intermediate turncBirds_atlas_EBBA	Aquila fasciata	0.5926	0.564 weak intermedia
170 weak intermediate turnc Birds_atlas_EBBA	Podiceps auritus	0.5947	0.609 weak intermedia
171 weak intermediate turnc Birds_atlas_EBBA	Spatula clypeata	0.6014	0.572 weak intermedia
172 weak intermediate turnc Birds_atlas_EBBA	Monticola saxatilis	0.6024	0.572 weak intermedia
173 weak intermediate turnc Birds_atlas_EBBA	Apus pallidus	0.6033	0.388 strong intermedia
174 weak intermediate turnc Birds_atlas_EBBA	Linaria flavirostris	0.6036	0.633 weak intermedia
175 weak intermediate turnc Birds_atlas_EBBA	Porzana porzana	0.6037	0.549 weak intermedia
176 weak intermediate turnc Birds_atlas_EBBA	Emberiza rustica	0.6075	0.715 weak intermedia
177 weak intermediate turnc Birds_atlas_EBBA	Alopochen aegyptiac	0.6111	0.069 complete turnove
178 weak intermediate turnc Birds_atlas_EBBA	Circus cyaneus	0.6113	0.522 weak intermedia
179 weak intermediate turnc Birds_atlas_EBBA	Falco rusticolus	0.6133	0.527 weak intermedia
180 weak intermediate turnc Birds_atlas_EBBA	Gavia immer	0.6134	0.72 weak intermedia
181 weak intermediate turnc Birds_atlas_EBBA	Calidris maritima	0.6144	0.596 weak intermedia
182 weak intermediate turnc Birds_atlas_EBBA	Melanocorypha calan	0.6159	0.628 weak intermedia
183 weak intermediate turnc Birds_atlas_EBBA	Anser brachyrhynchu	0.6166	0.689 weak intermedia
184 weak intermediate turnc Birds_atlas_EBBA	Uria lomvia	0.6166	0.702 weak intermedia
185 weak intermediate turnc Birds_atlas_EBBA	Larus marinus	0.6172	0.694 weak intermedia
186 weak intermediate turnc Birds_atlas_EBBA	Alectoris graeca	0.6212	0.651 weak intermedia

Page 85 of 134 Ecography

187 weak intermediate turnc Birds_atlas_EBBA	Somateria spectabilis	0.6233	0.476 strong intermedia
188 weak intermediate turnc Birds_atlas_EBBA	Oenanthe leucura	0.6261	0.639 weak intermedia
189 weak intermediate turnc Birds_atlas_EBBA	Mareca strepera	0.6287	0.408 strong intermedia
190 weak intermediate turnc Birds_atlas_EBBA	Alca torda	0.6313	0.706 weak intermedia
191 weak intermediate turnc Birds_atlas_EBBA	Turdus torquatus	0.6315	0.722 weak intermedia
192 weak intermediate turnc Birds_atlas_EBBA	Pyrrhocorax pyrrhocc	0.6317	0.673 weak intermedia
193 weak intermediate turnc Birds_atlas_EBBA	Tetrao urogallus	0.6344	0.756 weak turnover (>
194 weak intermediate turnc Birds_atlas_EBBA	Tachymarptis melba	0.6353	0.621 weak intermedia
195 weak intermediate turnc Birds_atlas_EBBA	Passer hispaniolensis	0.6355	0.511 weak intermedia
196 weak intermediate turnc Birds_atlas_EBBA	Pandion haliaetus	0.6376	0.609 weak intermedia
197 weak intermediate turnc Birds_atlas_EBBA	Emberiza hortulana	0.6386	0.555 weak intermedia
198 weak intermediate turnc Birds_atlas_EBBA	Anser anser	0.641	0.5 strong intermedia
199 weak intermediate turnc Birds_atlas_EBBA	Plectrophenax nivalis	0.6425	0.658 weak intermedia
200 weak intermediate turnc Birds_atlas_EBBA	Nucifraga caryocatac	0.643	0.678 weak intermedia
201 weak intermediate turnc Birds_atlas_EBBA	Anthus campestris	0.6436	0.551 weak intermedia
202 weak intermediate turnc Birds_atlas_EBBA	Oenanthe hispanica	0.6457	0.701 weak intermedia
203 weak intermediate turnc Birds_atlas_EBBA	Hieraaetus pennatus	0.6467	0.47 strong intermedia
204 weak intermediate turnc Birds_atlas_EBBA	Fratercula arctica	0.6472	0.694 weak intermedia
205 weak intermediate turnc Birds_atlas_EBBA	Ixobrychus minutus	0.6476	0.576 weak intermedia
206 weak intermediate turnc Birds_atlas_EBBA	Botaurus stellaris	0.6482	0.598 weak intermedia
207 weak intermediate turnc Birds_atlas_EBBA	Circus pygargus	0.6484	0.573 weak intermedia
208 weak intermediate turnc Birds_atlas_EBBA	Ficedula parva	0.6499	0.608 weak intermedia
209 weak intermediate turnc Birds_atlas_EBBA	Aquila chrysaetos	0.6503	0.682 weak intermedia
210 weak intermediate turnc Birds_atlas_EBBA	Locustella luscinioide	0.6532	0.512 weak intermedia
211 weak intermediate turnc Birds_atlas_EBBA	Haliaeetus albicilla	0.655	0.323 strong intermedia
212 weak intermediate turnc Birds_atlas_EBBA	Picoides tridactylus	0.6585	0.693 weak intermedia
213 weak intermediate turnc Birds_atlas_EBBA	Aythya ferina	0.6588	0.608 weak intermedia
214 weak intermediate turnc Birds_atlas_EBBA	Clanga pomarina	0.6597	0.58 weak intermedia
215 weak intermediate turnc Birds_atlas_EBBA	Larus argentatus	0.6621	0.717 weak intermedia
216 weak intermediate turnc Birds_atlas_EBBA	Mareca penelope	0.6627	0.666 weak intermedia
217 weak intermediate turnc Birds_atlas_EBBA	Spatula querquedula	0.663	0.656 weak intermedia

Ecography Page 86 of 134

218 weak intermediate turnc Birds_atlas_EBBA	Charadrius hiaticula	0.6645	0.705 weak intermedia
219 weak intermediate turnc Birds_atlas_EBBA	Remiz pendulinus	0.6657	0.617 weak intermedia
220 weak intermediate turnc Birds_atlas_EBBA	Larus hyperboreus	0.6666	0.8 weak turnover (>
221 weak intermediate turnc Birds_atlas_EBBA	Ficedula albicollis	0.667	0.513 weak intermedia
222 weak intermediate turnc Birds_atlas_EBBA	Glaucidium passerinเ	0.6676	0.485 strong intermedia
223 weak intermediate turnc Birds_atlas_EBBA	Cecropis daurica	0.6695	0.539 weak intermedia
224 weak intermediate turnc Birds_atlas_EBBA	Branta canadensis	0.6704	0.49 strong intermedia
225 weak intermediate turnc Birds_atlas_EBBA	Emberiza cia	0.6706	0.692 weak intermedia
226 weak intermediate turnc Birds_atlas_EBBA	Aegolius funereus	0.672	0.647 weak intermedia
227 weak intermediate turnc Birds_atlas_EBBA	Cinclus cinclus	0.672	0.72 weak intermedia
228 weak intermediate turnc Birds_atlas_EBBA	Falco columbarius	0.673	0.704 weak intermedia
229 weak intermediate turnc Birds_atlas_EBBA	Circaetus gallicus	0.6732	0.586 weak intermedia
230 weak intermediate turnc Birds_atlas_EBBA	Numenius arquata	0.6775	0.721 weak intermedia
231 weak intermediate turnc Birds_atlas_EBBA	Sterna hirundo	0.6794	0.698 weak intermedia
232 weak intermediate turnc Birds_atlas_EBBA	Milvus milvus	0.68	0.553 weak intermedia
233 weak intermediate turnc Birds_atlas_EBBA	Tringa totanus	0.6811	0.69 weak intermedia
234 weak intermediate turnc Birds_atlas_EBBA	Sterna paradisaea	0.6819	0.774 weak turnover (>
235 weak intermediate turnc Birds_atlas_EBBA	Carpodacus erythrinu	0.6823	0.701 weak intermedia
236 weak intermediate turnc Birds_atlas_EBBA	Mergus merganser	0.6841	0.61 weak intermedia
237 weak intermediate turnc Birds_atlas_EBBA	Bubo bubo	0.6848	0.591 weak intermedia
238 weak intermediate turnc Birds_atlas_EBBA	Cygnus cygnus	0.6848	0.487 strong intermedia
239 weak intermediate turnc Birds_atlas_EBBA	Rissa tridactyla	0.6859	0.717 weak intermedia
240 weak intermediate turnc Birds_atlas_EBBA	Puffinus Iherminieri	0.6902	0.583 weak intermedia
241 weak intermediate turnc Birds_atlas_EBBA	Lanius minor	0.6904	0.475 strong intermedia
242 weak intermediate turnc Birds_atlas_EBBA	Hydrobates castro	0.692	0.9 weak turnover (>
243 weak intermediate turnc Birds_atlas_EBBA	Milvus migrans	0.6921	0.669 weak intermedia
244 weak intermediate turnc Birds_atlas_EBBA	Alle alle	0.6927	0.8 weak turnover (>
245 weak intermediate turnc Birds_atlas_EBBA	Petronia petronia	0.6954	0.72 weak intermedia
246 weak intermediate turnc Birds_atlas_EBBA	Surnia ulula	0.6985	0.729 weak intermedia
247 weak intermediate turnc Birds_atlas_EBBA	Larus ridibundus	0.7006	0.7 weak intermedia
248 weak intermediate turncBirds_atlas_EBBA	Perisoreus infaustus	0.7015	0.842 weak turnover (>

Page 87 of 134 Ecography

249 weak intermediate turnc Birds_atlas_EBBA	Cyanopica cooki	0.7021	0.76 weak turnover (>
250 weak intermediate turnc Birds_atlas_EBBA	Caprimulgus ruficollis	0.7031	0.589 weak intermedia
251 weak intermediate turnc Birds_atlas_EBBA	Somateria mollissima	0.7031	0.772 weak turnover (>
252 weak intermediate turnc Birds_atlas_EBBA	Mergus serrator	0.7039	0.807 weak turnover (>
253 weak intermediate turnc Birds_atlas_EBBA	Monticola solitarius	0.7051	0.752 weak turnover (>
254 weak intermediate turnc Birds_atlas_EBBA	Alectoris barbara	0.706	0.95 stable (> 0.9)
255 weak intermediate turnc Birds_atlas_EBBA	Fulmarus glacialis	0.7067	0.816 weak turnover (>
256 weak intermediate turnc Birds_atlas_EBBA	Stercorarius parasitic	0.7076	0.729 weak intermedia
257 weak intermediate turnc Birds_atlas_EBBA	Anas crecca	0.7126	0.74 weak intermedia
258 weak intermediate turnc Birds_atlas_EBBA	Gavia stellata	0.7163	0.722 weak intermedia
259 weak intermediate turnc Birds_atlas_EBBA	Larus canus	0.717	0.777 weak turnover (>
260 weak intermediate turnc Birds_atlas_EBBA	Locustella fluviatilis	0.7174	0.635 weak intermedia
261 weak intermediate turnc Birds_atlas_EBBA	Grus grus	0.7175	0.712 weak intermedia
262 weak intermediate turnc Birds_atlas_EBBA	Ciconia nigra	0.7207	0.671 weak intermedia
263 weak intermediate turnc Birds_atlas_EBBA	Lagopus lagopus	0.7227	0.802 weak turnover (>
264 weak intermediate turnc Birds_atlas_EBBA	Loxia curvirostra	0.7227	0.683 weak intermedia
265 weak intermediate turnc Birds_atlas_EBBA	Actitis hypoleucos	0.723	0.706 weak intermedia
266 weak intermediate turnc Birds_atlas_EBBA	Lagopus muta	0.7244	0.806 weak turnover (>
267 weak intermediate turnc Birds_atlas_EBBA	Falco peregrinus	0.7245	0.458 strong intermedia
268 weak intermediate turnc Birds_atlas_EBBA	Loxia pytyopsittacus	0.7269	0.787 weak turnover (>
269 weak intermediate turnc Birds_atlas_EBBA	Bombycilla garrulus	0.7277	0.51 weak intermedia
270 weak intermediate turnc Birds_atlas_EBBA	Passer italiae	0.7283	0.855 weak turnover (>
271 weak intermediate turnc Birds_atlas_EBBA	Tringa glareola	0.7301	0.762 weak turnover (>
272 weak intermediate turnc Birds_atlas_EBBA	Lanius excubitor	0.7309	0.629 weak intermedia
273 weak intermediate turnc Birds_atlas_EBBA	Lanius senator	0.7309	0.667 weak intermedia
274 weak intermediate turnc Birds_atlas_EBBA	Dendrocopos syriacu	0.7315	0.687 weak intermedia
275 weak intermediate turnc Birds_atlas_EBBA	Lyrurus tetrix	0.7334	0.793 weak turnover (>
276 weak intermediate turnc Birds_atlas_EBBA	Tyto alba	0.737	0.736 weak intermedia
277 weak intermediate turnc Birds_atlas_EBBA	Spinus spinus	0.7375	0.754 weak turnover (>
278 weak intermediate turnc Birds_atlas_EBBA	Bucephala clangula	0.7385	0.728 weak intermedia
279 weak intermediate turnc Birds_atlas_EBBA	Cepphus grylle	0.7392	0.798 weak turnover (>

Ecography Page 88 of 134

280 weak intermediate turnc Birds_atlas_EBBA	Scolopax rusticola	0.7399	0.75 weak intermedia
281 weak intermediate turnc Birds_atlas_EBBA	Ptyonoprogne rupesti	0.733	0.708 weak intermedia
282 weak intermediate turnc Birds_atlas_EBBA	Numenius phaeopus	0.7402	0.79 weak turnover (>
	•	0.7402	•
283 weak intermediate turnc Birds_atlas_EBBA	Corvus frugilegus		0.761 weak turnover (>
284 weak intermediate turnc Birds_atlas_EBBA	Gallinago gallinago	0.7408	0.823 weak turnover (>
285 weak intermediate turnc Birds_atlas_EBBA	Galerida cristata	0.7439	0.73 weak intermedia
286 weak intermediate turnc Birds_atlas_EBBA	Merops apiaster	0.7453	0.574 weak intermedia
287 weak intermediate turnc Birds_atlas_EBBA	Columba oenas	0.7476	0.709 weak intermedia
288 weak intermediate turncBirds_atlas_EBBA	Aythya fuligula	0.7479	0.766 weak turnover (>
289 weak intermediate turncBirds_atlas_EBBA	Tringa ochropus	0.7488	0.762 weak turnover (>
290 weak turnover (> 0.75) Birds_atlas_EBBA	Tringa nebularia	0.7509	0.792 weak turnover (>
291 weak turnover (> 0.75) Birds_atlas_EBBA	Apus unicolor	0.7518	1 stable (> 0.9)
292 weak turnover (> 0.75) Birds_atlas_EBBA	Circus aeruginosus	0.7546	0.701 weak intermedia
293 weak turnover (> 0.75) Birds_atlas_EBBA	Acrocephalus arundir	0.7552	0.735 weak intermedia
294 weak turnover (> 0.75) Birds_atlas_EBBA	Rallus aquaticus	0.7553	0.708 weak intermedia
295 weak turnover (> 0.75) Birds_atlas_EBBA	Cisticola juncidis	0.7575	0.681 weak intermedia
296 weak turnover (> 0.75) Birds_atlas_EBBA	Pluvialis apricaria	0.759	0.805 weak turnover (>
297 weak turnover (> 0.75) Birds_atlas_EBBA	Otus scops	0.7611	0.641 weak intermedia
298 weak turnover (> 0.75) Birds_atlas_EBBA	Turdus iliacus	0.7658	0.799 weak turnover (>
299 weak turnover (> 0.75) Birds_atlas_EBBA	Cygnus olor	0.7659	0.679 weak intermedia
300 weak turnover (> 0.75) Birds_atlas_EBBA	Motacilla cinerea	0.7663	0.754 weak turnover (>
301 weak turnover (> 0.75) Birds_atlas_EBBA	Galerida theklae	0.7664	0.724 weak intermedia
302 weak turnover (> 0.75) Birds_atlas_EBBA	Caprimulgus europae	0.7665	0.709 weak intermedia
303 weak turnover (> 0.75) Birds_atlas_EBBA	Ficedula hypoleuca	0.7675	0.793 weak turnover (>
304 weak turnover (> 0.75) Birds_atlas_EBBA	Fringilla montifringilla	0.7678	0.773 weak turnover (>
305 weak turnover (> 0.75) Birds_atlas_EBBA	Crex crex	0.7684	0.668 weak intermedia
306 weak turnover (> 0.75) Birds_atlas_EBBA	Picus canus	0.7706	0.657 weak intermedia
307 weak turnover (> 0.75) Birds_atlas_EBBA	Buteo lagopus	0.7714	0.793 weak turnover (>
308 weak turnover (> 0.75) Birds_atlas_EBBA	Leiopicus medius	0.7772	0.661 weak intermedia
309 weak turnover (> 0.75) Birds_atlas_EBBA	Anthus berthelotii	0.7789	1 stable (> 0.9)
310 weak turnover (> 0.75) Birds_atlas_EBBA	Luscinia luscinia	0.7802	0.844 weak turnover (>
o to troat tarriovor (otro) bildo_atido_Ebb/t	_asonna raconna	0.7002	olo : i would tarriovor (

Page 89 of 134 Ecography

311 weak turnover (> 0.75) Birds_atlas_EBBA	Acrocephalus schoer	0.7808	0.808 weak turnover (>
312 weak turnover (> 0.75) Birds_atlas_EBBA	Acanthis flammea	0.7821	0.772 weak turnover (>
313 weak turnover (> 0.75) Birds_atlas_EBBA	Phasianus colchicus	0.7833	0.776 weak turnover (>
314 weak turnover (> 0.75) Birds_atlas_EBBA	Ardea cinerea	0.7856	0.723 weak intermedia
315 weak turnover (> 0.75) Birds_atlas_EBBA	Regulus ignicapilla	0.7873	0.702 weak intermedia
316 weak turnover (> 0.75) Birds_atlas_EBBA	Gavia arctica	0.7876	0.847 weak turnover (>
317 weak turnover (> 0.75) Birds_atlas_EBBA	Perdix perdix	0.7876	0.795 weak turnover (>
318 weak turnover (> 0.75) Birds_atlas_EBBA	Lanius meridionalis	0.7904	0.833 weak turnover (>
319 weak turnover (> 0.75) Birds_atlas_EBBA	Alectoris rufa	0.7914	0.809 weak turnover (>
320 weak turnover (> 0.75) Birds_atlas_EBBA	Hippolais polyglotta	0.7914	0.845 weak turnover (>
321 weak turnover (> 0.75) Birds_atlas_EBBA	Ciconia ciconia	0.7927	0.78 weak turnover (>
322 weak turnover (> 0.75) Birds_atlas_EBBA	Tachybaptus ruficollis	0.7934	0.737 weak intermedia
323 weak turnover (> 0.75) Birds_atlas_EBBA	Cettia cetti	0.7949	0.784 weak turnover (>
324 weak turnover (> 0.75) Birds_atlas_EBBA	Lophophanes cristatu	0.7957	0.83 weak turnover (>
325 weak turnover (> 0.75) Birds_atlas_EBBA	Locustella naevia	0.797	0.773 weak turnover (>
326 weak turnover (> 0.75) Birds_atlas_EBBA	Vanellus vanellus	0.7979	0.828 weak turnover (>
327 weak turnover (> 0.75) Birds_atlas_EBBA	Riparia riparia	0.798	0.79 weak turnover (>
328 weak turnover (> 0.75) Birds_atlas_EBBA	Alcedo atthis	0.8001	0.799 weak turnover (>
329 weak turnover (> 0.75) Birds_atlas_EBBA	Phylloscopus bonelli	0.8005	0.784 weak turnover (>
330 weak turnover (> 0.75) Birds_atlas_EBBA	Acrocephalus scirpac	0.8006	0.742 weak intermedia
331 weak turnover (> 0.75) Birds_atlas_EBBA	Hippolais icterina	0.8006	0.806 weak turnover (>
332 weak turnover (> 0.75) Birds_atlas_EBBA	Podiceps cristatus	0.8053	0.759 weak turnover (>
333 weak turnover (> 0.75) Birds_atlas_EBBA	Regulus regulus	0.8071	0.842 weak turnover (>
334 weak turnover (> 0.75) Birds_atlas_EBBA	Charadrius dubius	0.8087	0.755 weak turnover (>
335 weak turnover (> 0.75) Birds_atlas_EBBA	Fulica atra	0.8091	0.828 weak turnover (>
336 weak turnover (> 0.75) Birds_atlas_EBBA	Periparus ater	0.8099	0.815 weak turnover (>
337 weak turnover (> 0.75) Birds_atlas_EBBA	Coccothraustes cocc	0.81	0.729 weak intermedia
338 weak turnover (> 0.75) Birds_atlas_EBBA	Sturnus unicolor	0.8111	0.892 weak turnover (>
339 weak turnover (> 0.75) Birds_atlas_EBBA	Certhia familiaris	0.8124	0.804 weak turnover (>
340 weak turnover (> 0.75) Birds_atlas_EBBA	Emberiza cirlus	0.8128	0.837 weak turnover (>
341 weak turnover (> 0.75) Birds_atlas_EBBA	Acrocephalus palustr	0.8138	0.786 weak turnover (>

Ecography Page 90 of 134

342 weak turnover (> 0.75)	Birds_atlas_EBBA	Bulweria bulwerii	0.8141	1 stable (> 0.9)
343 weak turnover (> 0.75)	Birds_atlas_EBBA	Phylloscopus sibilatri.	0.8161	0.819 weak turnover (>
344 weak turnover (> 0.75)	Birds_atlas_EBBA	Gallinula chloropus	0.8167	0.851 weak turnover (>
345 weak turnover (> 0.75)	Birds_atlas_EBBA	Athene noctua	0.8189	0.805 weak turnover (>
346 weak turnover (> 0.75)	Birds_atlas_EBBA	Dryobates minor	0.8194	0.767 weak turnover (>
347 weak turnover (> 0.75)	Birds_atlas_EBBA	Asio otus	0.8208	0.777 weak turnover (>
348 weak turnover (> 0.75)	Birds_atlas_EBBA	Oenanthe oenanthe	0.8208	0.817 weak turnover (>
349 weak turnover (> 0.75)	Birds_atlas_EBBA	Accipiter gentilis	0.8214	0.798 weak turnover (>
350 weak turnover (> 0.75)	Birds_atlas_EBBA	Lullula arborea	0.8218	0.765 weak turnover (>
351 weak turnover (> 0.75)	Birds_atlas_EBBA	Poecile montanus	0.8219	0.837 weak turnover (>
352 weak turnover (> 0.75)	Birds_atlas_EBBA	Motacilla flava	0.8227	0.823 weak turnover (>
353 weak turnover (> 0.75)	Birds_atlas_EBBA	Phoenicurus phoenic	0.8241	0.817 weak turnover (>
354 weak turnover (> 0.75)	Birds_atlas_EBBA	Upupa epops	0.8247	0.852 weak turnover (>
355 weak turnover (> 0.75)	Birds_atlas_EBBA	Emberiza schoeniclus	0.8261	0.87 weak turnover (>
356 weak turnover (> 0.75)	Birds_atlas_EBBA	Turdus pilaris	0.8265	0.856 weak turnover (>
357 weak turnover (> 0.75)	Birds_atlas_EBBA	Dryocopus martius	0.8267	0.803 weak turnover (>
358 weak turnover (> 0.75)	Birds_atlas_EBBA	Pernis apivorus	0.8277	0.743 weak intermedia
359 weak turnover (> 0.75)	Birds_atlas_EBBA	Poecile palustris	0.8291	0.853 weak turnover (>
360 weak turnover (> 0.75)	Birds_atlas_EBBA	Saxicola rubetra	0.8315	0.826 weak turnover (>
361 weak turnover (> 0.75)	Birds_atlas_EBBA	Jynx torquilla	0.8325	0.807 weak turnover (>
362 weak turnover (> 0.75)	Birds_atlas_EBBA	Picus viridis	0.8327	0.844 weak turnover (>
363 weak turnover (> 0.75)	Birds_atlas_EBBA	Emberiza calandra	0.8331	0.751 weak turnover (>
364 weak turnover (> 0.75)	Birds_atlas_EBBA	Certhia brachydactyla	0.8338	0.861 weak turnover (>
365 weak turnover (> 0.75)	Birds_atlas_EBBA	Serinus serinus	0.8348	0.821 weak turnover (>
366 weak turnover (> 0.75)	Birds_atlas_EBBA	Falco subbuteo	0.835	0.768 weak turnover (>
367 weak turnover (> 0.75)	Birds_atlas_EBBA	Sylvia borin	0.8352	0.841 weak turnover (>
368 weak turnover (> 0.75)	Birds_atlas_EBBA	Coturnix coturnix	0.8356	0.744 weak intermedia
369 weak turnover (> 0.75)	Birds_atlas_EBBA	Luscinia megarhynch	0.8393	0.862 weak turnover (>
370 weak turnover (> 0.75)	Birds_atlas_EBBA	Phoenicurus ochruros	0.8403	0.803 weak turnover (>
371 weak turnover (> 0.75)	Birds_atlas_EBBA	Anthus pratensis	0.8432	0.897 weak turnover (>
372 weak turnover (> 0.75)	Birds_atlas_EBBA	Saxicola torquatus	0.8435	0.729 weak intermedia

Page 91 of 134 Ecography

373 weak turnover (> 0.75)	Birds_atlas_EBBA	Sitta europaea	0.847	0.841 weak turnover (>
374 weak turnover (> 0.75)	Birds_atlas_EBBA	Prunella modularis	0.8472	0.868 weak turnover (>
375 weak turnover (> 0.75)	Birds_atlas_EBBA	Pyrrhula pyrrhula	0.8498	0.884 weak turnover (>
376 weak turnover (> 0.75)	Birds_atlas_EBBA	Streptopelia turtur	0.8502	0.87 weak turnover (>
377 weak turnover (> 0.75)	Birds_atlas_EBBA	Oriolus oriolus	0.8526	0.856 weak turnover (>
378 weak turnover (> 0.75)	Birds_atlas_EBBA	Anthus trivialis	0.8574	0.867 weak turnover (>
379 weak turnover (> 0.75)	Birds_atlas_EBBA	Emberiza citrinella	0.8581	0.909 stable (> 0.9)
380 weak turnover (> 0.75)	Birds_atlas_EBBA	Lanius collurio	0.8603	0.894 weak turnover (>
381 weak turnover (> 0.75)	Birds_atlas_EBBA	Phylloscopus trochilu	0.8605	0.893 weak turnover (>
382 weak turnover (> 0.75)	Birds_atlas_EBBA	Columba livia	0.8661	0.763 weak turnover (>
383 weak turnover (> 0.75)	Birds_atlas_EBBA	Passer montanus	0.8699	0.826 weak turnover (>
384 weak turnover (> 0.75)	Birds_atlas_EBBA	Turdus viscivorus	0.8699	0.838 weak turnover (>
385 weak turnover (> 0.75)	Birds_atlas_EBBA	Strix aluco	0.8704	0.87 weak turnover (>
386 weak turnover (> 0.75)	Birds_atlas_EBBA	Accipiter nisus	0.8724	0.838 weak turnover (>
387 weak turnover (> 0.75)	Birds_atlas_EBBA	Aegithalos caudatus	0.875	0.858 weak turnover (>
388 weak turnover (> 0.75)	Birds_atlas_EBBA	Sturnus vulgaris	0.8759	0.901 stable (> 0.9)
389 weak turnover (> 0.75)	Birds_atlas_EBBA	Corvus monedula	0.8765	0.875 weak turnover (>
390 weak turnover (> 0.75)	Birds_atlas_EBBA	Alauda arvensis	0.8769	0.884 weak turnover (>
391 weak turnover (> 0.75)	Birds_atlas_EBBA	Linaria cannabina	0.878	0.898 weak turnover (>
392 weak turnover (> 0.75)	Birds_atlas_EBBA	Phylloscopus collybita	0.8811	0.879 weak turnover (>
393 weak turnover (> 0.75)	Birds_atlas_EBBA	Streptopelia decaocto	0.8833	0.783 weak turnover (>
394 weak turnover (> 0.75)	Birds_atlas_EBBA	Troglodytes troglodyt	0.8839	0.892 weak turnover (>
395 weak turnover (> 0.75)	Birds_atlas_EBBA	Turdus philomelos	0.8875	0.892 weak turnover (>
396 weak turnover (> 0.75)	Birds_atlas_EBBA	Carduelis carduelis	0.8912	0.904 stable (> 0.9)
397 weak turnover (> 0.75)	Birds_atlas_EBBA	Buteo buteo	0.8915	0.894 weak turnover (>
398 weak turnover (> 0.75)	Birds_atlas_EBBA	Dendrocopos major	0.8915	0.896 weak turnover (>
399 weak turnover (> 0.75)	Birds_atlas_EBBA	Garrulus glandarius	0.8936	0.899 weak turnover (>
400 weak turnover (> 0.75)	Birds_atlas_EBBA	Apus apus	0.8944	0.898 weak turnover (>
401 weak turnover (> 0.75)	Birds_atlas_EBBA	Passer domesticus	0.8967	0.945 stable (> 0.9)
402 stable (> 0.9)	Birds_atlas_EBBA	Anas platyrhynchos	0.9016	0.909 stable (> 0.9)
403 stable (> 0.9)	Birds_atlas_EBBA	Muscicapa striata	0.9021	0.882 weak turnover (>

Ecography Page 92 of 134

404 stable (> 0.9)	Birds_atlas_EBBA	Sylvia atricapilla	0.9105	0.908 stable (> 0.9)
405 stable (> 0.9)	Birds_atlas_EBBA	Corvus corax	0.9114	0.832 weak turnover (>
406 stable (> 0.9)	Birds_atlas_EBBA	Erithacus rubecula	0.9122	0.909 stable (> 0.9)
407 stable (> 0.9)	Birds_atlas_EBBA	Turdus merula	0.9139	0.93 stable (> 0.9)
408 stable (> 0.9)	Birds_atlas_EBBA	Columba palumbus	0.9141	0.889 weak turnover (>
409 stable (> 0.9)	Birds_atlas_EBBA	Chloris chloris	0.9179	0.924 stable (> 0.9)
410 stable (> 0.9)	Birds_atlas_EBBA	Fringilla coelebs	0.9189	0.949 stable (> 0.9)
411 stable (> 0.9)	Birds_atlas_EBBA	Falco tinnunculus	0.9192	0.931 stable (> 0.9)
412 stable (> 0.9)	Birds_atlas_EBBA	Motacilla alba	0.9195	0.947 stable (> 0.9)
413 stable (> 0.9)	Birds_atlas_EBBA	Cyanistes caeruleus	0.9202	0.906 stable (> 0.9)
414 stable (> 0.9)	Birds_atlas_EBBA	Pica pica	0.9202	0.959 stable (> 0.9)
415 stable (> 0.9)	Birds_atlas_EBBA	Hirundo rustica	0.9221	0.946 stable (> 0.9)
416 stable (> 0.9)	Birds_atlas_EBBA	Parus major	0.9221	0.958 stable (> 0.9)
417 stable (> 0.9)	Birds_atlas_EBBA	Cuculus canorus	0.9231	0.93 stable (> 0.9)
418 stable (> 0.9)	Birds_atlas_EBBA	Delichon urbicum	0.9237	0.94 stable (> 0.9)
419 stable (> 0.9)	Birds_atlas_EBBA	Corvus corone	0.9241	0.956 stable (> 0.9)

Page 93 of 134 Ecography

LR_Predicted	trend_LR_PredicteLR_Observed	trend_LR_ObserveRank_J_observed	Ra	nk_LR_rRank_	_LR_observed
	0.1436 weak increase (< c	-0.268 weak decrease (<	10	241	25
	0.4222 weak increase (< c	-1.393 strong decrease (>	8	401	3
	-0.8015 strong decrease (>	0.824 strong increase (>	22	2	390
	-0.622 weak decrease (<	0.004 stable	3	5	135
	0.5493 weak increase (< c	0.1 weak increase (< c	104	414	245
	0.5181 weak increase (< c	-2.002 strong decrease (>	1	410	2
	1.6872 strong increase (>	-3.296 strong decrease (>	4	419	1
	0.6692 weak increase (< c	0.318 weak increase (< c	17	418	343
	-0.0173 stable	-0.52 weak decrease (<	12	55	12
	0.5146 weak increase (< c	-0.673 weak decrease (<	9	409	8
	0.6503 weak increase (< c	0.161 weak increase (< (46	416	278
	0.6636 weak increase (< c	1.504 strong increase (>	29	417	409
	0.4221 weak increase (< c	2.166 strong increase (>	2	400	417
	0.1695 weak increase (< c	-0.508 weak decrease (<	27	274	13
	-0.3006 weak decrease (<	0.483 weak increase (< c	14	8	365
	0.3163 weak increase (< c	0.124 weak increase (< (83	373	262
	0.444 weak increase (< c	0.758 strong increase (>	26	403	387
	0.5259 weak increase (< c	1.195 strong increase (>	30	412	407
	0.3352 weak increase (< c	0.557 weak increase (< (115	384	370
	0.018 stable	-0.786 strong decrease (>	74	72	6
	0.6338 weak increase (< c	1.028 strong increase (>	19	415	399
	0.3253 weak increase (< c	-0.351 weak decrease (<	105	379	17
	-0.839 strong decrease (>	-0.12 weak decrease (<	36	1	58
	-0.6456 weak decrease (<	0.406 weak increase (< c	11	4	356
	0.1769 weak increase (< c	1.078 strong increase (>	39	284	403
	0.5203 weak increase (< c	0.986 strong increase (>	28	411	395
	0.2148 weak increase (< c	-0.756 strong decrease (>	79	319	7
	0.4076 weak increase (< c	0.889 strong increase (>	35	399	392
	0.2322 weak increase (< c	0.371 weak increase (< c	56	331	352
	0.3934 weak increase (< c	0.813 strong increase (>	53	394	389
	0.3708 weak increase (< c	0.293 weak increase (< c	72	391	332
			_	•	-

Page 94 of 134

0.2984 weak increase (< a	-0.157 weak decrease (<	50	362	49
-0.1464 weak decrease (<	-0.993 strong decrease (>	32	11	4
-0.4618 weak decrease (<	0.891 strong increase (>	57	6	393
0.3261 weak increase (<	-0.62 weak decrease (<	75	380	10
0.0521 stable	-0.153 weak decrease (<	33	104	53
0.1547 weak increase (< c	0.207 weak increase (< α	47	256	311
-0.0063 stable	-0.11 weak decrease (<	89	60	63
0.0186 stable	0.016 stable	78	73	149
0.2143 weak increase (< c	0.059 stable	40	317	204
-0.0521 stable	-0.263 weak decrease (<	103	37	28
0.1204 weak increase (< c	2.108 strong increase (>	6	204	416
0.3587 weak increase (< c	0.353 weak increase (< c	97	389	351
0.3234 weak increase (< c	-0.094 stable	69	377	73
-0.0847 stable	0.083 stable	90	25	227
0.302 weak increase (<	0.182 weak increase (< α	91	364	291
0.354 weak increase (<	3.125 strong increase (>	5	388	419
0.2073 weak increase (<	0.624 weak increase (< c	62	310	375
-0.3835 weak decrease (<	0.177 weak increase (< c	176	7	287
0.3288 weak increase (< a	-0.09 stable	113	383	74
0.1056 weak increase (< c	0.122 weak increase (< α	84	184	259
0.5269 weak increase (< c	1.043 strong increase (>	34	413	401
0.0839 stable	-0.94 strong decrease (>	48	156	5
0.3493 weak increase (< c	0.215 weak increase (< α	55	387	312
0.212 weak increase (< c	-0.236 weak decrease (<	153	315	32
0.2889 weak increase (< c	0.19 weak increase (< α	59	360	297
0.2156 weak increase (< c	0.178 weak increase (< α	38	320	288
0.472 weak increase (< c	1.165 strong increase (>	25	406	404
0.4876 weak increase (< c	1.193 strong increase (>	21	408	406
0.3117 weak increase (< c	0.079 stable	110	369	224
0.1305 weak increase (< c	-0.4 weak decrease (<	92	223	14
0.0719 stable	0.005 stable	134	137	136

Page 95 of 134 Ecography

0.3266 weak increase (< c	0.49 weak increase (< c	61	381	366
0.0276 stable	-0.353 weak decrease (<	70	79	16
-0.0375 stable	0.595 weak increase (< c	66	42	373
0.3997 weak increase (< o	0.251 weak increase (< c	98	395	325
0.4581 weak increase (< o	1.036 strong increase (>	37	405	400
0.1358 weak increase (< a	0.438 weak increase (< c	60	230	359
0.4572 weak increase (< a	0.383 weak increase (< c	52	404	353
0.3188 weak increase (< a	0.3 weak increase (< c	88	375	334
0.3199 weak increase (< a	-0.214 weak decrease (<	101	376	37
0.0425 stable	-0.051 stable	45	90	90
0.4046 weak increase (< c	1.54 strong increase (>	18	397	410
0.3163 weak increase (< a	0.998 strong increase (>	43	372	396
0.4003 weak increase (< a	0.792 strong increase (>	42	396	388
0.4063 weak increase (< a	2.057 strong increase (>	13	398	415
0.0719 stable	0.058 stable	112	136	202
0.0894 stable	0.012 stable	87	159	144
0.1394 weak increase (< a	-0.276 weak decrease (<	132	234	22
0.2771 weak increase (< a	0.498 weak increase (< c	117	358	367
-0.0287 stable	0.22 weak increase (< c	94	50	314
0.1085 weak increase (< a	-0.001 stable	99	188	125
0.1236 weak increase (< a	-0.108 weak decrease (<	80	214	65
0.2017 weak increase (< a	0.286 weak increase (< a	54	304	329
-0.0525 stable	-0.648 weak decrease (<	102	36	9
0.1614 weak increase (< (0.191 weak increase (< c	77	266	300
0.0055 stable	0.116 weak increase (< c	186	67	255
0.3641 weak increase (< a	1.561 strong increase (>	24	390	411
0.0996 weak increase (< a	0.115 weak increase (< c	127	174	254
0.3278 weak increase (< a	0.094 stable	100	382	237
0.4232 weak increase (< (1.823 strong increase (>	15	402	414
0.2144 weak increase (< (0.288 weak increase (< c	128	318	331
0.1624 weak increase (< (-0.276 weak decrease (<	111	267	23

Page 96 of 134

0.2423 weak increase (< a	0.7 strong increase (>	58	337	382
0.2904 weak increase (< a	-0.002 stable	206	361	121
0.2607 weak increase (< a	0.436 weak increase (< c	95	350	358
0.3126 weak increase (< a	0.454 weak increase (< c	145	370	362
0.3082 weak increase (< a	0.742 strong increase (>	73	367	386
0.137 weak increase (< a	0.04 stable	170	232	182
0.1795 weak increase (< a	1.015 strong increase (>	68	285	397
0.3395 weak increase (< a	1.595 strong increase (>	20	385	412
0.2327 weak increase (< a	0.868 strong increase (>	49	333	391
0.1285 weak increase (< a	-0.294 weak decrease (<	126	220	20
0.2204 weak increase (< a	-0.109 weak decrease (<	154	324	64
-0.0878 stable	-0.255 weak decrease (<	131	23	30
0.1205 weak increase (< a	0.449 weak increase (< c	65	205	361
-0.0374 stable	-0.191 weak decrease (<	174	43	42
-0.0581 stable	-0.256 weak decrease (<	108	34	29
0.2731 weak increase (< a	1.489 strong increase (>	23	355	408
0.2886 weak increase (< a	1.65 strong increase (>	16	359	413
0.2447 weak increase (< a	0.287 weak increase (< c	142	338	330
0.2227 weak increase (< a	0.057 stable	85	326	199
0.0775 stable	0.061 stable	121	146	206
0.2044 weak increase (< a	-0.214 weak decrease (<	182	308	36
0.1264 weak increase (< a	0.194 weak increase (< a	137	216	302
-0.019 stable	-0.271 weak decrease (<	147	54	24
-0.711 strong decrease (>	0.69 weak increase (< c	86	3	381
0.0245 stable	-0.618 weak decrease (<	109	75	11
0.3016 weak increase (< a	0.526 weak increase (< c	135	363	369
0.4798 weak increase (< a	1.026 strong increase (>	41	407	398
0.2012 weak increase (< a	0.095 stable	149	303	238
-0.1189 weak decrease (<	-0.226 weak decrease (<	159	16	33
0.1211 weak increase (< a	-0.155 weak decrease (<	146	207	51
0.0962 weak increase (< ι	0.191 weak increase (< c	93	170	299

Page 97 of 134 Ecography

0.1221 weak increase (< a	0.565 weak increase (< a	67	211	372
0.0405 stable	-0.202 weak decrease (<	81	88	40
-0.0792 stable	-0.128 weak decrease (<	218	28	57
0.2295 weak increase (< a	0.504 weak increase (< a	122	329	368
0.3044 weak increase (< a	0.67 weak increase (< c	63	365	379
-0.1207 weak decrease (<	-0.394 weak decrease (<	196	15	15
0.2399 weak increase (< a	0.035 stable	212	336	172
0.0517 stable	-0.197 weak decrease (<	204	103	41
0.1487 weak increase (< a	0.2 weak increase (< a	129	248	306
0.3904 weak increase (< a	1.172 strong increase (>	31	393	405
-0.0846 stable	-0.095 stable	161	26	70
-0.1394 weak decrease (<	-0.204 weak decrease (<	194	13	39
0.0666 stable	-0.173 weak decrease (<	106	130	47
-0.1495 weak decrease (<	-0.189 weak decrease (<	188	10	43
0.0116 stable	-0.014 stable	280	69	111
0.2572 weak increase (< a	0.35 weak increase (< a	125	347	349
-0.1002 stable	-0.089 stable	179	18	75
0.2217 weak increase (< (-0.054 stable	175	325	89
-0.0302 stable	-0.094 stable	133	49	72
-0.0672 stable	0.119 weak increase (< c	141	30	256
0.1459 weak increase (< a	0.316 weak increase (< a	119	243	340
0.1889 weak increase (< a	0.72 strong increase (>	96	298	384
0.0844 stable	0.219 weak increase (< a	168	158	313
0.0723 stable	-0.003 stable	202	139	120
-0.1046 stable	-0.181 weak decrease (<	148	17	44
-0.0691 stable	-0.172 weak decrease (<	180	29	48
0.0961 weak increase (< (-0.218 weak decrease (<	181	169	35
-0.0912 stable	0.965 strong increase (>	64	22	394
0.0781 stable	0.125 weak increase (< c	171	147	263
0.056 stable	-0.116 weak decrease (<	244	111	59
-0.1464 weak decrease (<	-0.33 weak decrease (<	151	12	18

Page 98 of 134

0.1579 weak increase (< α	0.314 weak increase (< c	210	259	339
0.2727 weak increase (< a	0.181 weak increase (< c	187	354	289
0.0555 stable	0.047 stable	198	109	192
0.2761 weak increase (< a	0.742 strong increase (>	71	357	385
0.0257 stable	0.009 stable	284	77	141
0.0471 stable	0.343 weak increase (< c	44	97	347
0.2544 weak increase (< a	0.319 weak increase (< a	152	345	344
0.0088 stable	0.15 weak increase (< c	254	68	272
-0.1384 weak decrease (<	-0.283 weak decrease (<	177	14	21
0.1309 weak increase (< a	0.182 weak increase (< a	199	224	290
0.0503 stable	0.029 stable	256	101	163
0.1047 weak increase (< a	0.097 weak increase (< a	184	182	240
0.0251 stable	-0.149 weak decrease (<	236	76	54
0.0984 weak increase (< a	-0.067 stable	160	172	82
0.1097 weak increase (< a	0.039 stable	191	193	178
0.2291 weak increase (< a	0.159 weak increase (< c	162	328	276
0.0216 stable	-0.226 weak decrease (<	163	74	34
0.1395 weak increase (< a	0.674 weak increase (< c	76	235	380
-0.0937 stable	-0.064 stable	203	21	83
0.2107 weak increase (< a	-0.017 stable	155	314	109
0.1118 weak increase (< a	-0.248 weak decrease (<	255	195	31
0.3096 weak increase (< a	2.482 strong increase (>	7	368	418
0.0657 stable	-0.309 weak decrease (<	143	127	19
0.0126 stable	0.036 stable	144	71	173
0.2025 weak increase (< a	0.068 stable	259	305	215
-0.0954 stable	-0.267 weak decrease (<	183	20	26
-0.0146 stable	-0.059 stable	200	59	85
0.1412 weak increase (< c	0.223 weak increase (< a	230	239	316
0.0946 stable	-0.079 stable	242	167	78
0.1128 weak increase (< c	0.126 weak increase (< c	234	196	265
-0.031 stable	-0.153 weak decrease (<	211	47	52

Page 99 of 134 Ecography

0.2345 weak increase (< o	-0.095 stable	118	334	71
0.19 weak increase (< o	-0.209 weak decrease (<	207	299	38
0.3072 weak increase (< o	0.656 weak increase (< c	82	366	377
-0.001 stable	0.014 stable	247	63	146
-0.015 stable	-0.041 stable	263	57	96
0.121 weak increase (< c	0.036 stable	223	206	174
0.2126 weak increase (< c	-0.114 weak decrease (<	288	316	60
0.0639 stable	0.186 weak increase (< c	197	125	294
0.0613 stable	0.439 weak increase (< c	138	121	360
0.1875 weak increase (< ι	0.099 weak increase (< a	192	296	243
0.1851 weak increase (< ι	-0.156 weak decrease (<	158	292	50
0.2585 weak increase (< ι	0.607 weak increase (< c	130	348	374
-0.0995 stable	-0.265 weak decrease (<	215	19	27
0.1864 weak increase (< ι	0.122 weak increase (< α	224	295	260
0.0928 stable	0.074 stable	156	162	218
0.0688 stable	-0.142 weak decrease (<	239	132	55
0.1513 weak increase (< ι	0.317 weak increase (< c	114	251	341
-0.0461 stable	-0.043 stable	235	39	94
0.2321 weak increase (< ι	0.246 weak increase (< c	166	330	321
0.208 weak increase (< ι	0.278 weak increase (< c	185	312	328
0.2027 weak increase (< o	0.221 weak increase (< c	164	306	315
0.1795 weak increase (< ι	0.196 weak increase (< c	189	286	303
0.1762 weak increase (< ι	0.199 weak increase (< a	227	282	305
0.2585 weak increase (< ι	0.35 weak increase (< c	139	349	350
0.3238 weak increase (< o	1.046 strong increase (>	51	378	402
0.1885 weak increase (< ι	0.112 weak increase (< c	233	297	252
0.173 weak increase (< a	0.106 weak increase (< c	190	281	249
0.316 weak increase (< ι	0.319 weak increase (< c	167	371	345
0.0721 stable	0.062 stable	257	138	209
0.0404 stable	0.003 stable	217	87	134
0.1583 weak increase (< a	0.008 stable	213	261	139

Page 100 of 134

0.0118 stable	0.009 stable	246	70	140
0.2105 weak increase (< a	0.171 weak increase (< c	195	313	285
0.122 weak increase (< ι	0.163 weak increase (< c	324	210	279
0.2399 weak increase (< o	0.402 weak increase (< c	140	335	355
0.2326 weak increase (< o	0.401 weak increase (< c	120	332	354
0.1092 weak increase (< o	0.47 weak increase (< c	150	192	363
0.2484 weak increase (< c	0.559 weak increase (< c	124	341	371
0.0606 stable	0.04 stable	232	116	180
0.1589 weak increase (< ι	0.164 weak increase (< c	209	263	281
0.0266 stable	-0.01 stable	260	78	112
-0.0147 stable	-0.101 stable	245	58	69
0.2452 weak increase (< o	0.318 weak increase (< c	172	339	342
0.0739 stable	-0.025 stable	262	141	102
0.1326 weak increase (< ι	0.079 stable	237	227	223
0.2741 weak increase (< a	0.246 weak increase (< c	157	356	322
0.041 stable	0.018 stable	231	89	150
-0.0833 stable	-0.023 stable	303	27	104
0.1563 weak increase (< ι	0.186 weak increase (< c	240	257	295
0.2186 weak increase (< ι	0.338 weak increase (< c	193	322	346
0.2184 weak increase (< a	0.172 weak increase (< c	178	321	286
0.317 weak increase (< a	0.704 strong increase (>	123	374	383
-0.0661 stable	-0.073 stable	258	31	79
0.1722 weak increase (< a	0.435 weak increase (< c	169	278	357
0.0807 stable	0.075 stable	116	150	219
0.3451 weak increase (< a	0.154 weak increase (< c	396	386	274
0.1926 weak increase (< a	0.1 weak increase (< c	221	300	244
0 stable	-0.006 stable	325	64	116
0.0632 stable	-0.061 stable	261	124	84
-0.0396 stable	0.014 stable	268	41	145
0.0972 weak increase (< a	-0.005 stable	238	171	119
-0.0354 stable	-0.105 stable	359	44	67

Page 101 of 134 Ecography

-0.2199 weak decrease (<	0.107 weak increase (< c	290	9	250
0.0771 stable	0.24 weak increase (< c	173	145	319
0.0448 stable	0.078 stable	299	95	220
0.037 stable	-0.058 stable	334	83	86
0.114 weak increase (< a	0.139 weak increase (< c	283	197	268
0.0991 weak increase (< a	0.042 stable	413	173	185
-0.0303 stable	-0.054 stable	339	48	87
-0.0849 stable	-0.105 stable	269	24	66
0.0818 stable	-0.019 stable	276	151	106
0.0326 stable	0.09 stable	264	81	234
0.0537 stable	0.033 stable	305	106	168
0.2515 weak increase (< a	0.308 weak increase (< c	205	343	337
0.25 weak increase (< a	0.306 weak increase (< c	253	342	336
0.2672 weak increase (< a	0.302 weak increase (< c	222	351	335
-0.0245 stable	-0.179 weak decrease (<	326	51	45
0.1055 weak increase (< a	0.149 weak increase (< a	228	183	271
0.0592 stable	-0.04 stable	248	114	97
-0.0424 stable	-0.03 stable	332	40	100
0.1525 weak increase (< a	0.642 weak increase (< c	107	254	376
0.1116 weak increase (< (-0.071 stable	312	194	80
-0.0223 stable	0.666 weak increase (< c	136	53	378
0.0014 stable	-0.001 stable	368	65	122
0.0837 stable	0.007 stable	292	155	138
0.109 weak increase (< a	-0.049 stable	201	190	92
-0.0224 stable	-0.081 stable	219	52	77
-0.0641 stable	0.251 weak increase (< c	229	32	323
0.1198 weak increase (< (-0.113 weak decrease (<	316	203	61
0.1647 weak increase (< (0.047 stable	274	269	193
0.1269 weak increase (< (0.06 stable	285	218	205
0.1517 weak increase (< (0.2 weak increase (< c	267	252	307
-0.0628 stable	-0.033 stable	320	33	99

Page 102 of 134

0.1606 weak increase (< a	-0.025 stable	281	265	103
0.0959 weak increase (< a	0.189 weak increase (< c	249	168	296
-0.0171 stable	-0.007 stable	313	56	114
0.1586 weak increase (< c	0.09 stable	291	262	236
0.0676 stable	-0.085 stable	344	131	76
0.0323 stable	-0.132 weak decrease (<	272	80	56
0.1472 weak increase (< a	0.478 weak increase (< c	165	244	364
0.2268 weak increase (< a	0.05 stable	251	327	196
0.1293 weak increase (< a	0.019 stable	296	221	153
0.1766 weak increase (< a	0.059 stable	293	283	203
-0.0318 stable	0.043 stable	315	46	188
0.2674 weak increase (< a	0 stable	417	353	131
0.1796 weak increase (< a	0.252 weak increase (< c	241	287	326
0.2078 weak increase (< a	0.135 weak increase (< a	273	311	267
0.1931 weak increase (< a	0.105 weak increase (< c	250	301	248
0.1195 weak increase (< a	0.229 weak increase (< a	226	202	317
-0.0521 stable	-0.041 stable	330	38	95
0.1002 weak increase (< a	0.251 weak increase (< c	208	175	324
-0.0557 stable	-0.102 stable	322	35	68
0.2672 weak increase (< a	0.346 weak increase (< c	225	352	348
0.1229 weak increase (< a	0.185 weak increase (< c	286	212	292
0.1633 weak increase (< a	0.256 weak increase (< c	266	268	327
0.1352 weak increase (< a	0.097 weak increase (< c	252	229	241
0.14 weak increase (< a	-0.05 stable	317	236	91
-0.0037 stable	-0.176 weak decrease (<	301	62	46
0.1072 weak increase (< a	0.161 weak increase (< c	220	186	277
0.1809 weak increase (< a	0.244 weak increase (< (214	289	320
-0.0342 stable	-0.111 weak decrease (<	318	45	62
0.3883 weak increase (< a	0.308 weak increase (< a	216	392	338
0.2527 weak increase (< a	0 stable	418	344	130
0.1843 weak increase (< a	0.046 stable	361	291	190

Page 103 of 134 Ecography

0.1154 weak increase (< c	0.001 stable	336	199	132
0.034 stable	0.132 weak increase (< c	300	82	266
0.1819 weak increase (< c	0.102 weak increase (< c	304	290	247
0.2461 weak increase (< c	0.196 weak increase (< c	265	340	304
0.2052 weak increase (< c	0.3 weak increase (< c	243	309	333
0.1192 weak increase (< c	-0.018 stable	364	201	107
0.1704 weak increase (< c	-0.071 stable	319	275	81
0.0608 stable	-0.03 stable	352	117	101
0.061 stable	0.119 weak increase (< c	337	118	257
0.1518 weak increase (< c	0.097 weak increase (< c	363	253	242
0.2548 weak increase (< c	0.192 weak increase (< c	307	346	301
0.1406 weak increase (< c	0.148 weak increase (< c	275	237	270
0.109 weak increase (< a	0.165 weak increase (< c	309	191	283
0.1953 weak increase (< c	0.046 stable	350	302	191
0.1855 weak increase (< c	0.096 weak increase (< c	302	293	239
0.0768 stable	0 stable	348	144	128
0.138 weak increase (< c	0.014 stable	314	233	148
0.1858 weak increase (< c	0.018 stable	323	294	151
0.1319 weak increase (< c	0.037 stable	310	226	175
0.1481 weak increase (< c	0.201 weak increase (< c	277	246	308
0.1566 weak increase (< c	0.034 stable	333	258	170
0.1729 weak increase (< c	0.185 weak increase (< c	289	280	293
0.1025 weak increase (< c	0.048 stable	360	177	194
0.1407 weak increase (< c	0.112 weak increase (< c	287	238	251
0.1592 weak increase (< c	0.081 stable	349	264	225
0.1217 weak increase (< c	0.038 stable	338	209	177
0.1796 weak increase (< c	0.204 weak increase (< c	270	288	310
0.0841 stable	0.101 weak increase (< c	385	157	246
0.1678 weak increase (< c	0.064 stable	329	272	213
0.0724 stable	0.09 stable	353	140	235
0.1485 weak increase (< c	0.142 weak increase (< c	311	247	269

Page 104 of 134

0.1299 weak increase (< c	0 stable	419	222	129
0.1711 weak increase (< (0.011 stable	342	277	143
0.1412 weak increase (< (0.065 stable	365	240	214
0.1032 weak increase (< (-0.015 stable	331	180	110
0.1506 weak increase (< o	0.12 weak increase (< c	297	250	258
0.1281 weak increase (< c	0.087 stable	306	219	233
0.0043 stable	-0.017 stable	340	66	108
0.1457 weak increase (< c	0.056 stable	321	242	198
0.1728 weak increase (< c	0.164 weak increase (< a	295	279	282
0.1264 weak increase (< c	-0.01 stable	354	217	113
0.0612 stable	0 stable	345	119	127
0.1066 weak increase (< ι	0.053 stable	341	185	197
0.2186 weak increase (< ι	0.062 stable	366	323	210
0.0711 stable	-0.005 stable	376	135	118
0.1314 weak increase (< ι	0.014 stable	369	225	147
0.1687 weak increase (< ι	0.124 weak increase (< c	327	273	261
0.1582 weak increase (< ι	0.163 weak increase (< c	278	260	280
0.2042 weak increase (< a	0.022 stable	367	307	155
0.0899 stable	-0.054 stable	346	160	88
0.1141 weak increase (< ι	0.079 stable	335	198	221
0.1502 weak increase (< ι	0.002 stable	362	249	133
0.0663 stable	0.087 stable	282	129	232
0.1672 weak increase (< a	0.084 stable	372	270	229
0.093 stable	0.042 stable	343	164	184
0.1362 weak increase (< a	0.165 weak increase (< c	298	231	284
0.1233 weak increase (< a	-0.001 stable	357	213	126
0.125 weak increase (< a	0.204 weak increase (< c	279	215	309
0.1027 weak increase (< a	0.046 stable	373	178	189
0.1534 weak increase (< a	0.153 weak increase (< c	328	255	273
-0.0048 stable	0.006 stable	392	61	137
0.0836 stable	0.239 weak increase (< c	271	154	318

Page 105 of 134 Ecography

0.1676 weak increase (< c	0.061 stable	358	271	208
0.0613 stable	-0.046 stable	375	122	93
0.075 stable	-0.001 stable	382	142	124
0.0603 stable	-0.007 stable	377	115	115
0.1332 weak increase (< c	0.042 stable	370	228	187
0.1215 weak increase (< c	0.032 stable	374	208	167
0.1037 weak increase (< c	-0.02 stable	401	181	105
0.108 weak increase (< a	0.031 stable	389	187	166
0.0707 stable	-0.001 stable	388	134	123
0.0916 stable	0.126 weak increase (< c	294	161	264
0.0944 stable	0.085 stable	347	166	230
0.1086 weak increase (< a	0.114 weak increase (< c	355	189	253
0.1704 weak increase (< c	0.021 stable	378	276	154
0.0936 stable	0.049 stable	356	165	195
0.1172 weak increase (< c	0.079 stable	371	200	222
0.0617 stable	0.035 stable	397	123	171
0.1027 weak increase (< c	0.042 stable	379	179	186
0.0564 stable	-0.039 stable	383	112	98
0.0612 stable	0.03 stable	393	120	165
0.0661 stable	0.082 stable	380	128	226
0.0834 stable	0.191 weak increase (< c	308	152	298
0.0541 stable	0.028 stable	386	108	162
0.0761 stable	0.086 stable	387	143	231
0.0806 stable	0.084 stable	398	149	228
0.0834 stable	0.072 stable	390	153	217
0.0929 stable	0.064 stable	391	163	212
0.0783 stable	0.034 stable	395	148	169
0.0586 stable	0.027 stable	394	113	160
0.0555 stable	-0.006 stable	409	110	117
0.1022 weak increase (< o	0.061 stable	402	176	207
0.0499 stable	0.024 stable	381	100	158

Page 106 of 134

0.0481 stable	0.058 stable	400	99	201
0.1474 weak increase (< a	0.155 weak increase (< c	351	245	275
0.0538 stable	0.04 stable	403	107	179
0.0525 stable	0.041 stable	405	105	183
0.0691 stable	0.071 stable	384	133	216
0.043 stable	0.058 stable	404	91	200
0.0432 stable	0.028 stable	412	92	161
0.0648 stable	0.04 stable	407	126	181
0.037 stable	0.03 stable	411	84	164
0.0436 stable	0.064 stable	399	93	211
0.0473 stable	0.019 stable	416	98	152
0.0505 stable	0.023 stable	410	102	156
0.0463 stable	0.026 stable	415	96	159
0.0382 stable	0.038 stable	406	85	176
0.0386 stable	0.011 stable	408	86	142
0.0444 stable	0.024 stable	414	94	157

Page 107 of 134 Ecography

Rank_J_predicted	trend_J_Predicted	dataset	verbatim_name	J_Predicted	J_Observe trend_J_Observe LR_Predicted	
	14 strong turnover (0.1 -	0.Birds_atlas_	.Rostratula benghalen	0.1238	0.181 strong turnover (-0.7729
	9 strong turnover (0.1 -	0.Birds_atlas_	. Otus sunia	0.1123	0.042 complete turnov€	-0.612
	55 strong turnover (0.1 -	0.Birds_atlas_	. Apus nipalensis	0.1929	0.114 strong turnover (-0.4608
	94 strong intermediate to	urnBirds_atlas_	. Agropsar philippensis	0.2551	0.298 strong intermedia	-0.2635
	114 strong intermediate to	urnBirds_atlas_	Halcyon coromanda	0.3277	0.344 strong intermedia	-0.1648
	71 strong turnover (0.1 -	· 0.Birds_atlas_	Sterna albifrons	0.2215	0.474 strong intermedia	-0.1568
	87 strong turnover (0.1 -	· 0.Birds_atlas_	. Hirundo daurica	0.2486	0.309 strong intermedia	-0.1336
	16 strong turnover (0.1 -	· 0.Birds_atlas_	Eurystomus orientalis	0.1254	0.158 strong turnover (-0.1285
	15 strong turnover (0.1 -	· 0.Birds_atlas_	_ Gorsachius goisagi	0.125	0.104 strong turnover (-0.119
	134 strong intermediate to	urnBirds_atlas_	. Cisticola juncidis	0.4027		-0.096
	118 strong intermediate to	urnBirds_atlas_	Pericrocotus divaricat	0.3386	0.348 strong intermedia	-0.0733
	62 strong turnover (0.1 -	· 0.Birds_atlas_	Charadrius placidus	0.2036	•	-0.0673
	129 strong intermediate to			0.3923	0.417 strong intermedia	-0.0651
	98 strong intermediate to	urnBirds_atlas_	Sterna sumatrana	0.2638	3	-0.063
	153 weak intermediate tu	rncBirds_atlas_	Bambusicola thoracic		0.65 weak intermedia	-0.0624
	44 strong turnover (0.1 -	· 0.Birds_atlas_	Ninox scutulata	0.1748	· ·	-0.058
	141 strong intermediate to	urnBirds_atlas_	. Uragus sibiricus	0.451	0.528 weak intermedia	-0.05
	69 strong turnover (0.1 -			0.2148	3	-0.0426
	136 strong intermediate to	urnBirds_atlas_	. Gallinago hardwickii	0.4063	0.438 strong intermedia	-0.0339
	131 strong intermediate to	urnBirds_atlas_	. Egretta garzetta	0.3962	0.465 strong intermedia	-0.0334
	51 strong turnover (0.1 -	· 0.Birds_atlas_	. Prunella rubida	0.1863	0.323 strong intermedia	-0.032
	97 strong intermediate to	urnBirds_atlas_	Gallinula chloropus	0.2629	0.349 strong intermedia	-0.025
	126 strong intermediate to	urnBirds_atlas_	. Butastur indicus	0.369	0.38 strong intermedia	-0.025
	143 strong intermediate to	urnBirds_atlas_	Treron formosae	0.4651	0.636 weak intermedia	-0.0249
	65 strong turnover (0.1 -	0.Birds_atlas_	Megaceryle lugubris	0.2082	0.211 strong turnover (-0.0198
	42 strong turnover (0.1 -	0.Birds_atlas_	Caprimulgus indicus	0.1663	0.128 strong turnover (-0.0178
	157 weak intermediate tu	rncBirds_atlas_	Cuculus canorus	0.5349	0.549 weak intermedia	-0.002
	109 strong intermediate t			0.3038	0.344 strong intermedia	2.00E-04
	181 weak turnover (> 0.7	5) Birds_atlas_	Emberiza cioides	0.8476	0.907 stable (> 0.9)	0.0084
	117 strong intermediate to	•		0.3379	` ,	0.0115
	82 strong turnover (0.1 -			0.2435	3	0.0129

Ecography Page 108 of 134

53 strong turnover (0.1 - 0.Birds_atlas_ Butorides striata	0.1873	0.231 strong turnover (0.0133
91 strong intermediate turnBirds_atlas Actitis hypoleucos	0.2519	0.269 strong intermedia	0.0135
92 strong intermediate turnBirds_atlas Emberiza fucata	0.2533	0.321 strong intermedia	0.0179
60 strong turnover (0.1 - 0.Birds_atlasLocustella lanceolata	0.2012	0.208 strong turnover (0.0189
96 strong intermediate turnBirds_atlas_ Bubulcus ibis	0.2619	0.259 strong intermedia	0.0193
147 strong intermediate turnBirds_atlas Spodiopsar cineraceu	0.489	0.537 weak intermedia	0.0242
163 weak intermediate turncBirds_atlas Lanius bucephalus	0.5841	0.574 weak intermedia	0.0272
107 strong intermediate turnBirds_atlas Vanellus cinereus	0.2919	0.303 strong intermedia	0.0277
175 weak intermediate turncBirds_atlas Passer montanus	0.6919	0.763 weak turnover (>	0.0345
179 weak turnover (> 0.75) Birds_atlas_ Chloris sinica	0.7879	0.776 weak turnover (>	0.037
155 weak intermediate turncBirds_atlas_ Motacilla grandis	0.5289	0.513 weak intermedia	0.0412
144 strong intermediate turnBirds_atlas_ Alauda arvensis	0.4817	0.59 weak intermedia	0.0414
57 strong turnover (0.1 - 0.Birds_atlas_ <i>Egretta sacra</i>	0.1942	0.21 strong turnover (0.0484
140 strong intermediate turnBirds_atlas_ Delichon dasypus	0.4319	0.371 strong intermedia	0.0487
168 weak intermediate turncBirds_atlas_ <i>Hirundo rustica</i>	0.6469	0.772 weak turnover (>	0.0505
105 strong intermediate turnBirds_atlas Anthus hodgsoni	0.2786	0.31 strong intermedia	0.0509
125 strong intermediate turnBirds_atlas Terpsiphone atrocauc	0.3645	0.38 strong intermedia	0.0529
77 strong turnover (0.1 - 0.Birds_atlas_ <i>Muscicapa dauurica</i>	0.2367	0.209 strong turnover (0.0531
113 strong intermediate turnBirds_atlas_ Tachybaptus ruficollis	0.3265	0.431 strong intermedia	0.0537
165 weak intermediate turncBirds_atlas Picus awokera	0.5893	0.6 weak intermedia	0.0554
159 weak intermediate turncBirds_atlas <i>Eophona personata</i>	0.5478	0.515 weak intermedia	0.0575
169 weak intermediate turncBirds_atlas_ Motacilla cinerea	0.6479	0.65 weak intermedia	0.0575
133 strong intermediate turnBirds_atlasAcrocephalus orienta.	0.3992	0.499 strong intermedia	0.058
174 weak intermediate turncBirds_atlas_ Poecile varius	0.6897	0.645 weak intermedia	0.0582
116 strong intermediate turnBirds_atlas_ Monticola solitarius	0.3378	0.442 strong intermedia	0.0593
184 weak turnover (> 0.75) Birds_atlas_ Cettia diphone	0.8938	0.909 stable (> 0.9)	0.0601
80 strong turnover (0.1 - 0.Birds_atlasSyrmaticus soemmer.	0.2421	0.226 strong turnover (0.0606
164 weak intermediate turncBirds_atlas Cuculus poliocephalu	0.5873	0.557 weak intermedia	0.0632
167 weak intermediate turncBirds_atlas Aegithalos caudatus	0.6416	0.576 weak intermedia	0.0702
149 strong intermediate turnBirds_atlas_ Motacilla alba	0.4984	0.401 strong intermedia	0.073
43 strong turnover (0.1 - 0.Birds_atlas_ Falco tinnunculus	0.17	0.084 complete turnove	0.0763

Page 109 of 134 Ecography

183 weak turnover (> 0.75) Birds_atlas_ <i>Hypsipetes amaurotis</i>	0.8671	0.891 weak turnover (>	0.0797
89 strong intermediate turnBirds_atlas <i>Egretta intermedia</i>	0.2505	0.229 strong turnover (0.0807
160 weak intermediate turncBirds_atlas Dendrocopos major	0.565	0.53 weak intermedia	0.0823
28 strong turnover (0.1 - 0.Birds_atlas_ Accipiter gularis	0.1511	0.059 complete turnove	0.0921
74 strong turnover (0.1 - 0.Birds_atlas_ <i>Ixobrychus sinensis</i>	0.2331	0.221 strong turnover (0.093
29 strong turnover (0.1 - 0.Birds_atlas_ Accipiter nisus	0.1539	0.079 complete turnove	0.0948
176 weak intermediate turncBirds_atlas_ Cyanoptila cyanomela	0.696	0.697 weak intermedia	0.0952
148 strong intermediate turnBirds_atlas_ Poecile palustris	0.4944	0.519 weak intermedia	0.0958
85 strong turnover (0.1 - 0.Birds_atlas_ Apus pacificus	0.2448	0.237 strong turnover (0.0966
171 weak intermediate turncBirds_atlas_ Garrulus glandarius	0.6732	0.672 weak intermedia	0.1028
90 strong intermediate turnBirds_atlas Phylloscopus xanthoc	0.2511	0.204 strong turnover (0.1041
161 weak intermediate turncBirds_atlas_ Emberiza spodoceph	0.5732	0.577 weak intermedia	0.1054
76 strong turnover (0.1 - 0.Birds_atlas_ <i>Picus canus</i>	0.2351	0.217 strong turnover (0.1055
70 strong turnover (0.1 - 0.Birds_atlas_ Emberiza variabilis	0.218	0.21 strong turnover (0.1059
182 weak turnover (> 0.75) Birds_atlas Streptopelia orientalis	0.8487	0.838 weak turnover (>	0.1064
142 strong intermediate turnBirds_atlas_ Luscinia cyane	0.464	0.5 strong intermedia	0.1066
132 strong intermediate turnBirds_atlas Sitta europaea	0.3976	0.402 strong intermedia	0.1092
88 strong turnover (0.1 - 0.Birds_atlas <i>Hierococcyx hyperyth</i> .	0.2488	0.337 strong intermedia	0.1098
172 weak intermediate turncBirds_atlas_ Urosphena squameic	0.6743	0.646 weak intermedia	0.1135
170 weak intermediate turncBirds_atlas_ Ficedula narcissina	0.6694	0.562 weak intermedia	0.1138
104 strong intermediate turnBirds_atlas Larus crassirostris	0.2763	0.427 strong intermedia	0.1147
146 strong intermediate turnBirds_atlas Turdus chrysolaus	0.4837	0.471 strong intermedia	0.1157
40 strong turnover (0.1 - 0.Birds_atlas_ Charadrius alexandrii	0.1651	0.244 strong turnover (0.1158
178 weak intermediate turncBirds_atlas Dendrocopos kizuki	0.7461	0.66 weak intermedia	0.1164
177 weak intermediate turncBirds_atlas Corvus corone	0.7352	0.755 weak turnover (>	0.1172
67 strong turnover (0.1 - 0.Birds_atlas Strix uralensis	0.2133	0.145 strong turnover (0.1179
47 strong turnover (0.1 - 0.Birds_atlasDendrocopos leucoto	0.178	0.224 strong turnover (0.1187
166 weak intermediate turncBirds_atlas Periparus ater	0.592	0.613 weak intermedia	0.1287
123 strong intermediate turnBirds_atlas Alcedo atthis	0.3624	0.304 strong intermedia	0.1288
37 strong turnover (0.1 - 0.Birds_atlas_ Pitta nympha	0.1631	0.029 complete turnove	0.13
180 weak turnover (> 0.75) Birds_atlas_ Corvus macrorhyncho	0.8351	0.72 weak intermedia	0.1308

Ecography Page 110 of 134

0.4987	0.704 weak intermedia	0.132
0.5452	0.482 strong intermedia	0.1327
0.4058	0.436 strong intermedia	0.1335
0.3615	0.368 strong intermedia	0.1369
0.5228	0.383 strong intermedia	0.1379
0.5734	0.534 weak intermedia	0.138
0.1371	0.099 complete turnove	0.1396
0.2714	0.367 strong intermedia	0.1428
0.2718	0.286 strong intermedia	0.1463
0.2074	0.168 strong turnover (0.1511
0.1648	0.163 strong turnover (0.1521
0.3642	0.271 strong intermedia	0.1573
0.1759	0.084 complete turnov€	0.1588
0.1578	0.195 strong turnover (0.1657
0.3448	0.329 strong intermedia	0.1666
0.1339	0.088 complete turnove	0.1678
0.237	0.256 strong intermedia	0.1698
0.3079	0.392 strong intermedia	0.1751
0.2243	0.188 strong turnover (0.1753
0.2439	0.189 strong turnover (0.1761
0.4124	0.462 strong intermedia	0.1769
0.4997	0.468 strong intermedia	0.1841
0.1326	0.253 strong intermedia	0.1887
0.2411	0.26 strong intermedia	0.1939
0.5003	0.503 weak intermedia	0.1971
0.1164	0.065 complete turnove	0.1992
0.2545	0.229 strong turnover (0.1994
0.1823	0.273 strong intermedia	0.2155
0.3928	0.368 strong intermedia	0.2234
0.2925	0.158 strong turnover (0.2296
0.3843	0.371 strong intermedia	0.2518
	0.5452 0.4058 0.3615 0.5228 0.5734 0.1371 0.2714 0.2718 0.2074 0.1648 0.3642 0.1759 0.1578 0.3448 0.1339 0.237 0.3079 0.2243 0.2439 0.4124 0.4997 0.1326 0.2411 0.5003 0.1164 0.2545 0.1823 0.3928 0.2925	0.5452 0.482 strong intermedia 0.4058 0.436 strong intermedia 0.3615 0.368 strong intermedia 0.5228 0.383 strong intermedia 0.5734 0.534 weak intermedia 0.1371 0.099 complete turnova 0.2714 0.367 strong intermedia 0.2718 0.286 strong turnover (0.1648 0.163 strong turnover (0.1648 0.163 strong turnover (0.3642 0.271 strong intermedia 0.1759 0.084 complete turnova 0.1578 0.195 strong turnover (0.3448 0.329 strong intermedia 0.1339 0.088 complete turnova 0.237 0.256 strong intermedia 0.3079 0.392 strong turnover (0.2439 0.189 strong turnover (0.4124 0.462 strong intermedia 0.1326 0.253 strong intermedia 0.1326 0.253 strong intermedia 0.2411 0.26 strong intermedia 0.5003 0.503 weak intermedia 0.164 0.065 complete turnova 0.2545

Page 111 of 134 Ecography

173 weak intermediate turncBirds_atlas_ Milvus migrans	0.6779	0.688 weak intermedia	0.2735
110 strong intermediate turnBirds_atlas Spilornis cheela	0.3047	0.333 strong intermedia	0.2739
120 strong intermediate turnBirds_atlas Luscinia calliope	0.3532	0.418 strong intermedia	0.2747
84 strong turnover (0.1 - 0.Birds_atlas_ <i>Emberiza schoeniclus</i>	0.2446	0.33 strong intermedia	0.2764
5 strong turnover (0.1 - 0.Birds_atlas_ Muscicapa sibirica	0.1032	0.068 complete turnove	0.2919
121 strong intermediate turnBirds_atlas Ardea alba	0.3541	0.211 strong turnover (0.3035
115 strong intermediate turnBirds_atlas_ Luscinia komadori	0.3296	0.714 weak intermedia	0.3115
58 strong turnover (0.1 - 0.Birds_atlas_ Sterna dougallii	0.1978	0.1 complete turnove	0.3146
86 strong turnover (0.1 - 0.Birds_atlas_ Accipiter gentilis	0.2481	0.09 complete turnove	0.3165
17 strong turnover (0.1 - 0.Birds_atlas_ Falco subbuteo	0.1303	0.063 complete turnove	0.3195
22 strong turnover (0.1 - 0.Birds_atlas_ Jynx torquilla	0.1402	0.144 strong turnover (0.3219
63 strong turnover (0.1 - 0.Birds_atlas_ Aix galericulata	0.206	0.115 strong turnover (0.3258
13 strong turnover (0.1 - 0.Birds_atlas_ Dendrocopos minor	0.1202	0.094 complete turnove	0.3309
6 strong turnover (0.1 - 0.Birds_atlas_ Loxia curvirostra	0.1053	0.044 complete turnove	0.333
106 strong intermediate turnBirds_atlas_ Buteo buteo	0.28	0.173 strong turnover (0.3347
31 strong turnover (0.1 - 0.Birds_atlas_ <i>Certhia familiaris</i>	0.1571	0.125 strong turnover (0.339
24 strong turnover (0.1 - 0.Birds_atlas_ Scolopax rusticola	0.1461	0.148 strong turnover (0.3414
7 strong turnover (0.1 - 0.Birds_atlas_ Rallus aquaticus	0.1068	0.077 complete turnove	0.3473
56 strong turnover (0.1 - 0.Birds_atlasLagopus muta	0.1938	0.429 strong intermedia	0.3493
81 strong turnover (0.1 - 0.Birds_atlas_ Emberiza yessoensis	0.2425	0.5 strong intermedia	0.3509
25 strong turnover (0.1 - 0.Birds_atlas_ Aythya fuligula	0.1463	0.144 strong turnover (0.3527
137 strong intermediate turnBirds_atlas_ Garrulus lidthi	0.4076	1 stable (> 0.9)	0.3545
23 strong turnover (0.1 - 0.Birds_atlas_ Otus lempiji	0.145	0 complete turnove	0.3575
59 strong turnover (0.1 - 0.Birds_atlas_ <i>Nisaetus nipalensis</i>	0.2005	0.129 strong turnover (0.3916
111 strong intermediate turnBirds_atlas_ Turnix suscitator	0.3068	0.412 strong intermedia	0.3983
145 strong intermediate turnBirds_atlas Pycnonotus sinensis	0.4819	0.167 strong turnover (0.4023
101 strong intermediate turnBirds_atlas <i>Anas platyrhynchos</i>	0.2689	0.18 strong turnover (0.4048
34 strong turnover (0.1 - 0.Birds_atlas_ <i>Histrionicus histrionic</i>	0.1612	0.167 strong turnover (0.4109
139 strong intermediate turnBirds_atlas_ Grus japonensis	0.4208	0.5 strong intermedia	0.4328
12 strong turnover (0.1 - 0.Birds_atlas_ Aythya ferina	0.1187	0.056 complete turnove	0.4377
66 strong turnover (0.1 - 0.Birds_atlas_ Chalcophaps indica	0.2092	0.333 strong intermedia	0.4449

Ecography Page 112 of 134

10 strong turnover (0.1 - 0.Birds_atlas_ <i>Anas clypeata</i>	0.1149	0.06 complete turnove	0.4688
1 complete turnover (< 0. Birds_atlas_ Himantopus himantop	0.0747	0.061 complete turnove	0.4821
27 strong turnover (0.1 - 0.Birds_atlas_ Circus spilonotus	0.1469	0.113 strong turnover (0.4951
99 strong intermediate turnBirds_atlas_ Pandion haliaetus	0.2648	0.168 strong turnover (0.5003
61 strong turnover (0.1 - 0.Birds_atlas_ Falco peregrinus	0.2015	0.075 complete turnove	0.5091
49 strong turnover (0.1 - 0.Birds_atlas_ Pernis ptilorhynchus	0.1846	0.055 complete turnove	0.5533
127 strong intermediate turnBirds_atlas_ Phalacrocorax carbo	0.3704	0.074 complete turnove	0.5567
20 strong turnover (0.1 - 0.Birds_atlas_ Anas falcata	0.1348	0.115 strong turnover (0.5573
52 strong turnover (0.1 - 0.Birds_atlas_ Ardea purpurea	0.1873	0.1 complete turnove	0.561
46 strong turnover (0.1 - 0.Birds_atlas_ <i>Fulica atra</i>	0.1765	0.268 strong intermedia	0.5673
95 strong intermediate turnBirds_atlas_ Larus schistisagus	0.2576	0.223 strong turnover (0.568
41 strong turnover (0.1 - 0.Birds_atlas_ Glareola maldivarum	0.1651	0.091 complete turnove	0.5728
26 strong turnover (0.1 - 0.Birds_atlas_ Podiceps cristatus	0.1466	0.021 complete turnove	0.6161
156 weak intermediate turncBirds_atlas_ Ardea cinerea	0.533	0.145 strong turnover (0.6204
68 strong turnover (0.1 - 0.Birds_atlas_ <i>Phalacrocorax capilla</i>	0.214	0.191 strong turnover (0.634
54 strong turnover (0.1 - 0.Birds_atlas_ <i>Motacilla flava</i>	0.1919	0 complete turnove	0.6502
100 strong intermediate turnBirds_atlas_ Sapheopipo noguchii	0.2682	0.333 strong intermedia	0.6732
8 strong turnover (0.1 - 0.Birds_atlas_, <i>Anas strepera</i>	0.1114	0.051 complete turnove	0.7107
36 strong turnover (0.1 - 0.Birds_atlas_, Cepphus carbo	0.1624	0.125 strong turnover (0.7373
38 strong turnover (0.1 - 0.Birds_atlas_ <i>Mergus merganser</i>	0.1646	0.055 complete turnove	0.7441
4 complete turnover (< 0. Birds_atlas_ Lanius tigrinus	0.0872	0.052 complete turnove	0.753
75 strong turnover (0.1 - 0.Birds_atlas_ Haliaeetus albicilla	0.2342	0.108 strong turnover (0.7775
50 strong turnover (0.1 - 0.Birds_atlas_ <i>Phalacrocorax pelagi</i>	0.1856	0.19 strong turnover (0.8148
2 complete turnover (< 0. Birds_atlas_ Asio otus	0.0801	0.053 complete turnove	0.82
72 strong turnover (0.1 - 0.Birds_atlas_ Ixobrychus cinnamon	0.2224	0.222 strong turnover (0.8233
30 strong turnover (0.1 - 0.Birds_atlas_ Calonectris leucomela	0.1546	0.211 strong turnover (0.8285
33 strong turnover (0.1 - 0.Birds_atlas_ <i>Tringa totanus</i>	0.1582	0.125 strong turnover (0.9258
3 complete turnover (< 0. Birds_atlas_ Pinicola enucleator	0.0867	0.143 strong turnover (0.9329
35 strong turnover (0.1 - 0.Birds_atlas_ Sula leucogaster	0.1615	0 complete turnove	0.9567

Page 113 of 134 Ecography

trend_LR_PredicteLR_Observed	trend_LR_Observ∈Rank_J_observed	Ra	ank_LR_rRank_l	LR_observed
strong decrease (>	-0.6 weak decrease (<	60	1	6
weak decrease (<	-0.408 weak decrease (<	6	2	12
weak decrease (<	1.704 strong increase (>	36	3	177
weak decrease (<	-0.319 weak decrease (<	96	4	19
weak decrease (<	0.245 weak increase (< c	111	5	106
weak decrease (<	-0.136 weak decrease (<	140	6	35
weak decrease (<	-0.343 weak decrease (<	99	7	15
weak decrease (<	-0.503 weak decrease (<	50	8	9
weak decrease (<	-0.108 weak decrease (<	33	9	37
stable	-0.163 weak decrease (<	157	10	33
stable	-0.323 weak decrease (<	112	11	17
stable	-0.078 stable	77	12	39
stable	-0.438 weak decrease (<	126	13	11
stable	0.267 weak increase (<	133	14	110
stable	-0.187 weak decrease (<	167	15	28
stable	-0.405 weak decrease (<	58	16	14
stable	0.289 weak increase (< c	150	17	113
stable	0.144 weak increase (< c	103	18	89
stable	-0.002 stable	134	19	53
stable	0.25 weak increase (< c	137	20	108
stable	-0.049 stable	102	21	43
stable	-0.123 weak decrease (<	113	22	36
stable	-0.169 weak decrease (<	120	23	32
stable	0.3 weak increase (< c	164	24	116
stable	-0.285 weak decrease (<	72	25	20
stable	-0.825 strong decrease (>	42	26	5
stable	-0.226 weak decrease (<	154	27	25
stable	0.065 stable	110	28	67
stable	-0.011 stable	182	29	51
stable	-0.229 weak decrease (<	128	30	22
stable	-0.141 weak decrease (<	94	31	34
	,			

Page 114 of 134

stable	0.068 stable	83	32	68
stable	-0.17 weak decrease (<	91	33	31
stable	-0.33 weak decrease (<	101	34	16
stable	-0.277 weak decrease (<	67	35	21
stable	0.645 weak increase (< c	88	36	147
stable	0.001 stable	153	37	55
stable	-0.199 weak decrease (<	158	38	26
stable	0.475 weak increase (< c	97	39	134
stable	-0.024 stable	177	40	49
stable	0.108 weak increase (< c	179	41	79
stable	0.055 stable	147	42	65
stable	-0.074 stable	161	43	40
stable	0.08 stable	69	44	72
stable	0.216 weak increase (< c	118	45	98
stable	-0.04 stable	178	46	46
stable	0.102 weak increase (< a	100	47	77
stable	0.046 stable	119	48	62
stable	-0.039 stable	68	49	47
stable	-0.044 stable	131	50	45
stable	0.137 weak increase (< c	162	51	85
stable	0.096 weak increase (< a	148	52	76
stable	0.075 stable	168	53	71
stable	0.053 stable	142	54	64
stable	0.27 weak increase (< c	165	55	111
stable	0.113 weak increase (< c	135	56	80
stable	0.064 stable	183	57	66
stable	-0.198 weak decrease (<	80	58	27
stable	0.074 stable	155	59	70
stable	0.126 weak increase (< c	159	60	84
stable	0.561 weak increase (< c	123	61	145
stable	0.999 strong increase (>	24	62	162

Page 115 of 134 Ecography

stable	0.083 stable	181	63	73
stable	0.54 weak increase (< ι	81	64	142
stable	0.155 weak increase (< ι	151	65	91
stable	0.735 strong increase (>	14	66	153
stable	-0.171 weak decrease (<	75	67	30
stable	0.419 weak increase (< c	23	68	128
stable	0.121 weak increase (< c	172	69	82
weak increase (< c	0.444 weak increase (< c	149	70	130
weak increase (< c	0.17 weak increase (< c	84	71	94
weak increase (< c	0.006 stable	170	72	58
weak increase (< c	0.346 weak increase (< c	66	73	121
weak increase (< c	0.084 stable	160	74	74
weak increase (< c	-0.227 weak decrease (<	74	75	23
weak increase (< c	0.68 weak increase (< c	70	76	151
weak increase (< c	0.051 stable	180	77	63
weak increase (< c	0.172 weak increase (< c	145	78	95
weak increase (< c	0.227 weak increase (< c	124	79	102
weak increase (< c	-0.047 stable	109	80	44
weak increase (< c	0.199 weak increase (< τ	166	81	97
weak increase (< c	0.255 weak increase (< τ	156	82	109
weak increase (< c	0.12 weak increase (< τ	129	83	81
weak increase (< c	0.137 weak increase (< c	139	84	86
weak increase (< c	-0.481 weak decrease (<	85	85	10
weak increase (< c	0.216 weak increase (< τ	169	86	99
weak increase (< c	0.005 stable	176	87	57
weak increase (< c	0.034 stable	47	88	61
weak increase (< c	0.019 stable	79	89	59
weak increase (< c	0.124 weak increase (< c	163	90	83
weak increase (< c	0.306 weak increase (< c	98	91	118
weak increase (< c	1.792 strong increase (>	5	92	180
weak increase (< c	0.16 weak increase (< c	175	93	92

Page 116 of 134

weak increase (< c	0.352 weak increase (< a	173	94	122
weak increase (< c	0.233 weak increase (< c	141	95	104
weak increase (< c	0.353 weak increase (< c	132	96	123
weak increase (< (0.087 stable	115	97	75
weak increase (< c	0.393 weak increase (< c	121	98	126
weak increase (< c	-0.054 stable	152	99	42
weak increase (< c	0.676 weak increase (< c	30	100	150
weak increase (< c	0.294 weak increase (< c	114	101	115
weak increase (< c	0.555 weak increase (< c	95	102	143
weak increase (< c	0.241 weak increase (< c	55	103	105
weak increase (< c	-0.507 weak decrease (<	52	104	8
weak increase (< c	0.19 weak increase (< c	92	105	96
weak increase (< c	0.698 strong increase (>	25	106	152
weak increase (< c	-0.323 weak decrease (<	65	107	18
weak increase (< c	0.137 weak increase (< c	104	108	87
weak increase (< c	-1.114 strong decrease (>	26	109	3
weak increase (< c	0.344 weak increase (< c	87	110	120
weak increase (< c	-0.059 stable	122	111	41
weak increase (< c	0.462 weak increase (< c	61	112	132
weak increase (< c	0.531 weak increase (< c	62	113	141
weak increase (< c	0.145 weak increase (< c	136	114	90
weak increase (< c	0.418 weak increase (< c	138	115	127
weak increase (< c	-0.227 weak decrease (<	86	116	24
weak increase (< c	0.673 weak increase (< c	89	117	148
weak increase (< c	-0.007 stable	146	118	52
weak increase (< c	-1.448 strong decrease (>	18	119	1
weak increase (< c	0.14 weak increase (< c	82	120	88
weak increase (< c	0.302 weak increase (< c	93	121	117
weak increase (< c	-0.035 stable	116	122	48
weak increase (< c	1.839 strong increase (>	51	123	181
weak increase (< c	0.358 weak increase (< c	117	124	124

Page 117 of 134 Ecography

weak increase (< a	0.027 stable	171	125	60
weak increase (< a	0.51 weak increase (< a	108	126	135
weak increase (< a	0.376 weak increase (< a	127	127	125
weak increase (< a	0.335 weak increase (< a	105	128	119
weak increase (< a	-0.406 weak decrease (<	19	129	13
weak increase (< a	1.268 strong increase (>	73	130	168
weak increase (< a	0.163 weak increase (< a	174	131	93
weak increase (< a	0.992 strong increase (>	32	132	161
weak increase (< a	1.317 strong increase (>	27	133	171
weak increase (< a	0.226 weak increase (< a	17	134	101
weak increase (< a	0.001 stable	45	135	56
weak increase (< a	0.78 strong increase (>	38	136	155
weak increase (< a	0.423 weak increase (< c	29	137	129
weak increase (< a	1.319 strong increase (>	7	138	172
weak increase (< a	0.51 weak increase (< a	57	139	136
weak increase (< a	0.249 weak increase (< a	39	140	107
weak increase (< a	-0.103 stable	49	141	38
weak increase (< c	0.229 weak increase (< a	22	142	103
weak increase (< c	-0.848 strong decrease (>	130	143	4
weak increase (< c	0.107 weak increase (< a	143	144	78
weak increase (< a	0.757 strong increase (>	46	145	154
weak increase (< a	0 stable	184	146	54
weak increase (< c	-0.529 weak decrease (<	1	147	7
weak increase (< c	0.451 weak increase (< a	43	148	131
weak increase (< a	0.511 weak increase (< a	125	149	138
weak increase (< a	1.29 strong increase (>	54	150	169
weak increase (< c	0.858 strong increase (>	59	151	156
weak increase (< c	1.414 strong increase (>	53	152	174
weak increase (< a	0.47 weak increase (< a	144	153	133
weak increase (< a	1.652 strong increase (>	13	154	176
weak increase (<	0.51 weak increase (< c	106	155	137

Page 118 of 134

weak increase (< a	1.24 strong increase (>	15	156	167
weak increase (< a	1.375 strong increase (>	16	157	173
weak increase (< a	1.093 strong increase (>	35	158	165
weak increase (< a	1.061 strong increase (>	56	159	164
weak increase (< a	1.023 strong increase (>	21	160	163
weak increase (< a	0.896 strong increase (>	12	161	157
weak increase (< a	2.522 strong increase (>	20	162	184
weak increase (< a	0.931 strong increase (>	37	163	159
weak increase (< a	0.519 weak increase (< c	31	164	140
weak increase (< a	0.513 weak increase (< c	90	165	139
weak increase (< a	0.942 strong increase (>	78	166	160
weak increase (< a	0.91 strong increase (>	28	167	158
weak increase (< a	2.141 strong increase (>	4	168	182
weak increase (< a	1.721 strong increase (>	48	169	178
weak increase (< a	0.558 weak increase (< c	64	170	144
weak increase (< a	1.786 strong increase (>	3	171	179
weak increase (< a	1.098 strong increase (>	107	172	166
strong increase (>	2.302 strong increase (>	8	173	183
strong increase (>	0.218 weak increase (< c	41	174	100
strong increase (>	1.291 strong increase (>	11	175	170
strong increase (>	-1.403 strong decrease (>	9	176	2
strong increase (>	1.627 strong increase (>	34	177	175
strong increase (>	0.569 weak increase (< c	63	178	146
strong increase (>	0.27 weak increase (< c	10	179	112
strong increase (>	-0.177 weak decrease (<	76	180	29
strong increase (>	0.069 stable	71	181	69
strong increase (>	0.675 weak increase (< c	40	182	149
strong increase (>	-0.014 stable	44	183	50
strong increase (>	0.293 weak increase (< c	2	184	114

Page 119 of 134 Ecography

Rank_J_predicted	trend_J_Predicted	dataset	verbatim_name	J_Predicted	J_Observe trend_J_Observe
	1 complete turnover (< 0.	Birds_Atlas_New_York	Lanius Iudovicianus	0.0407	0 complete turnove
	2 complete turnover (< 0.	Birds_Atlas_New_York	Wilsonia pusilla	0.0412	0 complete turnove
	3 complete turnover (< 0.	Birds_Atlas_New_York	Dendroica castanea	0.0463	0 complete turnove
	4 complete turnover (< 0.	Birds_Atlas_New_York	Aquila chrysaetos	0.047	0 complete turnove
	5 complete turnover (< 0.	Birds_Atlas_New_York	Spiza americana	0.0516	0 complete turnove
	6 complete turnover (< 0.	Birds_Atlas_New_York	Dendroica tigrina	0.0523	0.067 complete turnove
	7 complete turnover (< 0.	Birds_Atlas_New_York	Vermivora peregrina	0.0526	0 complete turnove
	8 complete turnover (< 0.	Birds_Atlas_New_York	Hydropogne caspia	0.0592	0 complete turnove
	9 complete turnover (< 0.	Birds_Atlas_New_York	Anas acuta	0.0619	0.098 complete turnove
	10 complete turnover (< 0.	Birds_Atlas_New_York	Protonotaria citrea	0.062	<u>.</u>
	11 complete turnover (< 0.	Birds_Atlas_New_York	Dendroica dominica	0.0628	<u>.</u>
	12 complete turnover (< 0.	Birds_Atlas_New_York	Icteria virens	0.0713	0.042 complete turnove
	13 complete turnover (< 0.	Birds_Atlas_New_York	Rallus elegans	0.0722	0.111 strong turnover (
	14 complete turnover (< 0.	Birds_Atlas_New_York	Bubulcus ibis	0.0726	0.08 complete turnove
	15 complete turnover (< 0.	Birds_Atlas_New_York	Asio otus	0.0747	0.016 complete turnove
	16 complete turnover (< 0.	Birds_Atlas_New_York	Asio flammeus	0.075	0.053 complete turnove
	17 complete turnover (< 0.	Birds_Atlas_New_York	Oporornis formosus	0.0762	0.064 complete turnove
	18 complete turnover (< 0.	Birds_Atlas_New_York	Aythya affinis	0.0794	0 complete turnove
	19 complete turnover (< 0.	Birds_Atlas_New_York	Oxyura jamaicensis	0.0807	0.087 complete turnove
	20 complete turnover (< 0.	Birds_Atlas_New_York	Larus delawarensis	0.084	0.169 strong turnover (
	21 complete turnover (< 0.	Birds_Atlas_New_York	Mergus serrator	0.0897	0.103 strong turnover (
	22 complete turnover (< 0.	Birds_Atlas_New_York	Spizella pallida	0.0936	0.057 complete turnove
	23 complete turnover (< 0.	Birds_Atlas_New_York	Anas crecca	0.0947	0.081 complete turnove
	24 complete turnover (< 0.	Birds_Atlas_New_York	Aegolius acadicus	0.0957	0.05 complete turnove
	25 complete turnover (< 0.	Birds_Atlas_New_York	Tyto alba	0.0958	0.085 complete turnove
	26 complete turnover (< 0.			0.0988	0.143 strong turnover (
	27 complete turnover (< 0.	Birds_Atlas_New_York	Perdix perdix	0.0989	0.049 complete turnove
	28 strong turnover (0.1 - 0			0.1053	·
	29 strong turnover (0.1 - 0			0.1136	•
	30 strong turnover (0.1 - 0				•
	31 strong turnover (0.1 - 0		•	0.1162	•
	- 1 3	25_,25_, OIK	=gaid	002	(

Ecography Page 120 of 134

32 strong turnover (0.1 - 0. Birds_Atlas_New_York	Ammodramus henslo	0.118	0.045 complete turnove
33 strong turnover (0.1 - 0. Birds_Atlas_New_York	Anas clypeata	0.1203	0.128 strong turnover (
34 strong turnover (0.1 - 0. Birds_Atlas_New_York	Melanerpes erythrocε	0.1207	0.09 complete turnove
35 strong turnover (0.1 - 0. Birds_Atlas_New_York	Sturnella neglecta	0.121	0 complete turnove
36 strong turnover (0.1 - 0. Birds_Atlas_New_York	Loxia curvirostra	0.1274	0.085 complete turnove
37 strong turnover (0.1 - 0. Birds_Atlas_New_York	Falco peregrinus	0.1298	0.076 complete turnove
38 strong turnover (0.1 - 0. Birds_Atlas_New_York	Vireo philadelphicus	0.1339	0.063 complete turnove
39 strong turnover (0.1 - 0. Birds_Atlas_New_York	Aythya valisineria	0.1347	0 complete turnove
40 strong turnover (0.1 - 0. Birds_Atlas_New_York	Accipiter gentilis	0.1374	0.096 complete turnove
41 strong turnover (0.1 - 0. Birds_Atlas_New_York	Ammodramus savanı	0.141	0.181 strong turnover (
42 strong turnover (0.1 - 0. Birds_Atlas_New_York	Ixobrychus exilis	0.1465	0.178 strong turnover (
43 strong turnover (0.1 - 0. Birds_Atlas_New_York	Fulica americana	0.1498	0.162 strong turnover (
44 strong turnover (0.1 - 0. Birds_Atlas_New_York	Caprimulgus caroline	0.1564	0.115 strong turnover (
45 strong turnover (0.1 - 0. Birds_Atlas_New_York	Porzana carolina	0.1604	0.148 strong turnover (
46 strong turnover (0.1 - 0. Birds_Atlas_New_York	Empidonax virescens	0.1612	0.186 strong turnover (
47 strong turnover (0.1 - 0. Birds_Atlas_New_York	Anas discors	0.1625	0.121 strong turnover (
48 strong turnover (0.1 - 0. Birds_Atlas_New_York	Bartramia longicauda	0.1628	0.161 strong turnover (
49 strong turnover (0.1 - 0. Birds_Atlas_New_York	Gallinula chloropus	0.163	0.203 strong turnover (
50 strong turnover (0.1 - 0. Birds_Atlas_New_York	Piranga rubra	0.1644	0.2 strong turnover (
51 strong turnover (0.1 - 0. Birds_Atlas_New_York	Dendroica palmarum	0.1649	0 complete turnove
52 strong turnover (0.1 - 0. Birds_Atlas_New_York	Podilymbus podiceps	0.1663	0.117 strong turnover (
53 strong turnover (0.1 - 0. Birds_Atlas_New_York	Egretta caerulea	0.1701	0.121 strong turnover (
54 strong turnover (0.1 - 0. Birds_Atlas_New_York	Botaurus lentiginosus	0.1775	0.188 strong turnover (
55 strong turnover (0.1 - 0. Birds_Atlas_New_York	Pooecetes gramineus	0.1793	0.207 strong turnover (
56 strong turnover (0.1 - 0. Birds_Atlas_New_York	Haliaeetus leucoceph	0.1794	0.037 complete turnove
57 strong turnover (0.1 - 0. Birds_Atlas_New_York	Spinus pinus	0.1865	0.157 strong turnover (
58 strong turnover (0.1 - 0. Birds_Atlas_New_York	Rallus limicola	0.1868	0.194 strong turnover (
59 strong turnover (0.1 - 0. Birds_Atlas_New_York	Anas strepera	0.1909	0.225 strong turnover (
60 strong turnover (0.1 - 0. Birds_Atlas_New_York	Cistothorus palustris	0.1926	0.289 strong intermedia
61 strong turnover (0.1 - 0. Birds_Atlas_New_York	Dendroica cerulea	0.1928	0.219 strong turnover (
62 strong turnover (0.1 - 0. Birds_Atlas_New_York	Progne subis	0.2072	0.295 strong intermedia

Page 121 of 134 Ecography

63 strong turnover (0.1 - 0. Birds_Atlas_New_York	Anas rubripes	0.2108	0.209 strong turnover (
64 strong turnover (0.1 - 0. Birds_Atlas_New_York	Circus cyaneus	0.2123	0.218 strong turnover (
65 strong turnover (0.1 - 0. Birds_Atlas_New_York	Passerina caerulea	0.2134	0 complete turnove
66 strong turnover (0.1 - 0. Birds_Atlas_New_York	Caprimulgus vociferu	0.2139	0.181 strong turnover (
67 strong turnover (0.1 - 0. Birds_Atlas_New_York	Coccothraustes vesp	0.2143	0.171 strong turnover (
68 strong turnover (0.1 - 0. Birds_Atlas_New_York	Larus marinus	0.2162	0.366 strong intermedia
69 strong turnover (0.1 - 0. Birds_Atlas_New_York	Vermivora chrysoptei	0.2222	0.12 strong turnover (
70 strong turnover (0.1 - 0. Birds_Atlas_New_York	Lophodytes cucullatu	0.226	0.138 strong turnover (
71 strong turnover (0.1 - 0. Birds_Atlas_New_York	Aythya collaris	0.2263	0.099 complete turnove
72 strong turnover (0.1 - 0. Birds_Atlas_New_York	Icterus spurius	0.2269	0.157 strong turnover (
73 strong turnover (0.1 - 0. Birds_Atlas_New_York	Nycticorax nycticorax	0.2287	0.266 strong intermedia
74 strong turnover (0.1 - 0. Birds_Atlas_New_York	Egretta tricolor	0.2292	0.333 strong intermedia
75 strong turnover (0.1 - 0. Birds_Atlas_New_York	Nyctanassa violacea	0.2303	0.302 strong intermedia
76 strong turnover (0.1 - 0. Birds_Atlas_New_York	Picoides arcticus	0.2309	0.217 strong turnover (
77 strong turnover (0.1 - 0. Birds_Atlas_New_York	Buteo lineatus	0.2313	0.173 strong turnover (
78 strong turnover (0.1 - 0. Birds_Atlas_New_York	Euphagus carolinus	0.2355	0.207 strong turnover (
79 strong turnover (0.1 - 0. Birds_Atlas_New_York	Ardea alba	0.2367	0.205 strong turnover (
80 strong turnover (0.1 - 0. Birds_Atlas_New_York	Leucophaeus atricilla	0.2384	0.086 complete turnove
81 strong turnover (0.1 - 0. Birds_Atlas_New_York	Pandion haliaetus	0.2387	0.192 strong turnover (
82 strong turnover (0.1 - 0. Birds_Atlas_New_York	Loxia leucoptera	0.2398	0.198 strong turnover (
83 strong turnover (0.1 - 0. Birds_Atlas_New_York	Chlidonias niger	0.2459	0.36 strong intermedia
84 strong turnover (0.1 - 0. Birds_Atlas_New_York	Seiurus motacilla	0.2499	0.324 strong intermedia
85 strong intermediate turnBirds_Atlas_New_York	Petrochelidon pyrrhol	0.2532	0.281 strong intermedia
86 strong intermediate turnBirds_Atlas_New_York	Plegadis falcinellus	0.2539	0.288 strong intermedia
87 strong intermediate turnBirds_Atlas_New_York	Polioptila caerulea	0.2545	0.318 strong intermedia
88 strong intermediate turnBirds_Atlas_New_York	Larus argentatus	0.2551	0.303 strong intermedia
89 strong intermediate turnBirds_Atlas_New_York	Gelochelidon nilotica	0.256	0.143 strong turnover (
90 strong intermediate turnBirds_Atlas_New_York	Contopus cooperi	0.2569	0.309 strong intermedia
91 strong intermediate turnBirds_Atlas_New_York	Sterna hirundo	0.2596	0.407 strong intermedia
92 strong intermediate turnBirds_Atlas_New_York	Sterna forsteri	0.2599	0.091 complete turnove
93 strong intermediate turnBirds_Atlas_New_York	Dendroica pinus	0.2607	0.182 strong turnover (

Ecography Page 122 of 134

94 strong intermediate turnBirds_Atlas_New_York 1/2	Megascops asio	0.2644	0.257 strong intermedia
95 strong intermediate turnBirds_Atlas_New_York C	Coccyzus americanu:	0.2647	0.237 strong turnover (
96 strong intermediate turn Birds_Atlas_New_York A	Myiopsitta monachus	0.2673	0 complete turnove
97 strong intermediate turnBirds_Atlas_New_York F	Phasianus colchicus	0.2688	0.314 strong intermedia
98 strong intermediate turn Birds_Atlas_New_York A	Rynchops niger	0.2711	0.292 strong intermedia
99 strong intermediate turn Birds_Atlas_New_York S	Seiurus noveboracen	0.2713	0.248 strong turnover (
100 strong intermediate turn Birds_Atlas_New_York A	A <i>ccipiter cooperii</i>	0.273	0.119 strong turnover (
101 strong intermediate turn Birds_Atlas_New_York E	Egretta thula	0.2739	0.333 strong intermedia
102 strong intermediate turn Birds_Atlas_New_York A	Riparia riparia	0.277	0.319 strong intermedia
103 strong intermediate turn Birds_Atlas_New_York A	Mergus merganser	0.2779	0.225 strong turnover (
104 strong intermediate turn Birds_Atlas_New_York E	Empidonax flaviventrı	0.2786	0.261 strong intermedia
105 strong intermediate turn Birds_Atlas_New_York &	Gallinago delicata	0.2792	0.281 strong intermedia
106 strong intermediate turn Birds_Atlas_New_York C	Colinus virginianus	0.2797	0.33 strong intermedia
107 strong intermediate turn Birds_Atlas_New_York E	Eremophila alpestris	0.2818	0.339 strong intermedia
108 strong intermediate turn Birds_Atlas_New_York C	Catharus bicknelli	0.2884	0.391 strong intermedia
109 strong intermediate turn Birds_Atlas_New_York l	Vireo griseus	0.3026	0.328 strong intermedia
110 strong intermediate turn Birds_Atlas_New_York C	Cygnus olor	0.3064	0.359 strong intermedia
111 strong intermediate turn Birds_Atlas_New_York F	Perisoreus canadens	0.3071	0.321 strong intermedia
112 strong intermediate turn Birds_Atlas_New_York /	Wilsonia canadensis	0.3089	0.36 strong intermedia
113 strong intermediate turn Birds_Atlas_New_York E	Bubo virginianus	0.3102	0.293 strong intermedia
114 strong intermediate turn Birds_Atlas_New_York &	Strix varia	0.3154	0.243 strong turnover (
115 strong intermediate turn Birds_Atlas_New_York F	Poecile hudsonicus	0.3176	0.332 strong intermedia
116 strong intermediate turn Birds_Atlas_New_York H	Helmitheros vermivor	0.3179	0.366 strong intermedia
117 strong intermediate turn Birds_Atlas_New_York A	A <i>ccipiter striatus</i>	0.3181	0.151 strong turnover (
118 strong intermediate turn Birds_Atlas_New_York L	Dendroica striata	0.3195	0.297 strong intermedia
119 strong intermediate turn Birds_Atlas_New_York A	A <i>ctitis macularius</i>	0.3214	0.303 strong intermedia
120 strong intermediate turn Birds_Atlas_New_York S	Scolopax minor	0.3289	0.27 strong intermedia
121 strong intermediate turn Birds_Atlas_New_York C	Coccyzus erythroptha	0.3329	0.283 strong intermedia
122 strong intermediate turn Birds_Atlas_New_York S	Sterna dougallii	0.3333	0.476 strong intermedia
123 strong intermediate turn Birds_Atlas_New_York A	Regulus satrapa	0.3339	0.32 strong intermedia
124 strong intermediate turn Birds_Atlas_New_York L	Dendroica discolor	0.3363	0.376 strong intermedia

Page 123 of 134 Ecography

125 strong intermediate turnBirds_Atlas_New_York	Stelgidopteryx serripe	0.3375	0.322 strong intermedia
126 strong intermediate turnBirds_Atlas_New_York	Corvus ossifragus	0.339	0.342 strong intermedia
127 strong intermediate turnBirds_Atlas_New_York	Parula americana	0.34	0.323 strong intermedia
128 strong intermediate turnBirds_Atlas_New_York	Ammodramus maritin	0.3433	0.474 strong intermedia
129 strong intermediate turnBirds_Atlas_New_York	Quiscalus major	0.353	0.077 complete turnove
130 strong intermediate turnBirds_Atlas_New_York	Thryothorus ludovicia	0.3614	0.182 strong turnover (
131 strong intermediate turnBirds_Atlas_New_York	Vireo flavifrons	0.3626	0.366 strong intermedia
132 strong intermediate turnBirds_Atlas_New_York	Oporornis philadelphı	0.3745	0.371 strong intermedia
133 strong intermediate turnBirds_Atlas_New_York	Buteo platypterus	0.3746	0.371 strong intermedia
134 strong intermediate turnBirds_Atlas_New_York	Melospiza lincolnii	0.3759	0.333 strong intermedia
135 strong intermediate turn Birds_Atlas_New_York	Rallus longirostris	0.3836	0.443 strong intermedia
136 strong intermediate turnBirds_Atlas_New_York	Gavia immer	0.393	0.499 strong intermedia
137 strong intermediate turnBirds_Atlas_New_York	Catharus ustulatus	0.3941	0.475 strong intermedia
138 strong intermediate turnBirds_Atlas_New_York	Vermivora ruficapilla	0.3957	0.353 strong intermedia
139 strong intermediate turn Birds_Atlas_New_York	Wilsonia citrina	0.3974	0.251 strong intermedia
140 strong intermediate turn Birds_Atlas_New_York	Butorides virescens	0.4115	0.469 strong intermedia
141 strong intermediate turnBirds_Atlas_New_York	Corvus corax	0.4386	0.128 strong turnover (
142 strong intermediate turnBirds_Atlas_New_York	Ammodramus cauda	0.4404	0.565 weak intermedia
143 strong intermediate turnBirds_Atlas_New_York	Toxostoma rufum	0.4416	0.479 strong intermedia
144 strong intermediate turnBirds_Atlas_New_York	Certhia americana	0.4447	0.365 strong intermedia
145 strong intermediate turnBirds_Atlas_New_York	Mimus polyglottos	0.4458	0.514 weak intermedia
146 strong intermediate turnBirds_Atlas_New_York	Haematopus palliatus	0.4567	0.569 weak intermedia
147 strong intermediate turnBirds_Atlas_New_York	Tringa semipalmata	0.4578	0.451 strong intermedia
148 strong intermediate turnBirds_Atlas_New_York	Sternula antillarum	0.4589	0.55 weak intermedia
149 strong intermediate turnBirds_Atlas_New_York	Chaetura pelagica	0.4757	0.501 weak intermedia
150 strong intermediate turnBirds_Atlas_New_York	Charadrius melodus	0.4803	0.562 weak intermedia
151 strong intermediate turnBirds_Atlas_New_York	Sitta canadensis	0.4958	0.446 strong intermedia
152 strong intermediate turnBirds_Atlas_New_York	Vermivora pinus	0.4986	0.498 strong intermedia
153 weak intermediate turnc Birds_Atlas_New_York	Troglodytes troglodyt	0.5025	0.431 strong intermedia
154 weak intermediate turnc Birds_Atlas_New_York	Aix sponsa	0.5028	0.377 strong intermedia
155 weak intermediate turnc Birds_Atlas_New_York	Bonasa umbellus	0.5075	0.458 strong intermedia

Page 124 of 134

156 weak intermediate turnc Birds_Atlas_New_York	Empidonax traillii	0.5082	0.469 strong intermedia
157 weak intermediate turnc Birds_Atlas_New_York	Empidonax alnorum	0.5274	0.387 strong intermedia
158 weak intermediate turnc Birds_Atlas_New_York	Dendroica fusca	0.5286	0.518 weak intermedia
159 weak intermediate turnc Birds_Atlas_New_York	Dendroica caerulescε	0.5306	0.558 weak intermedia
160 weak intermediate turnc Birds_Atlas_New_York	Melanerpes carolinus	0.5346	0.384 strong intermedia
161 weak intermediate turnc Birds_Atlas_New_York	Dendroica magnolia	0.5451	0.506 weak intermedia
162 weak intermediate turnc Birds_Atlas_New_York	Laterallus jamaicensi.	0.5478	1 stable (> 0.9)
163 weak intermediate turnc Birds_Atlas_New_York	Mniotilta varia	0.5521	0.573 weak intermedia
164 weak intermediate turnc Birds_Atlas_New_York	Melospiza georgiana	0.5522	0.539 weak intermedia
165 weak intermediate turnc Birds_Atlas_New_York	Sturnella magna	0.5644	0.661 weak intermedia
166 weak intermediate turnc Birds_Atlas_New_York	Catharus guttatus	0.5712	0.552 weak intermedia
167 weak intermediate turnc Birds_Atlas_New_York	Vireo solitarius	0.5785	0.502 weak intermedia
168 weak intermediate turnc Birds_Atlas_New_York	Carpodacus purpureı	0.5916	0.554 weak intermedia
169 weak intermediate turnc Birds_Atlas_New_York	Megaceryle alcyon	0.5945	0.593 weak intermedia
170 weak intermediate turnc Birds_Atlas_New_York	Dendroica coronata	0.6067	0.547 weak intermedia
171 weak intermediate turnc Birds_Atlas_New_York	Falco sparverius	0.6089	0.612 weak intermedia
172 weak intermediate turnc Birds_Atlas_New_York	Pipilo erythrophthalm	0.6188	0.692 weak intermedia
173 weak intermediate turnc Birds_Atlas_New_York	Dryocopus pileatus	0.6239	0.494 strong intermedia
174 weak intermediate turnc Birds_Atlas_New_York	Junco hyemalis	0.6239	0.606 weak intermedia
175 weak intermediate turnc Birds_Atlas_New_York	Dendroica virens	0.6258	0.598 weak intermedia
176 weak intermediate turnc Birds_Atlas_New_York	Baeolophus bicolor	0.6348	0.436 strong intermedia
177 weak intermediate turnc Birds_Atlas_New_York	Meleagris gallopavo	0.6409	0.316 strong intermedia
178 weak intermediate turnc Birds_Atlas_New_York	Cathartes aura	0.6443	0.433 strong intermedia
179 weak intermediate turnc Birds_Atlas_New_York	Carpodacus mexican	0.6497	0.634 weak intermedia
180 weak intermediate turnc Birds_Atlas_New_York	Passerculus sandwic	0.6539	0.692 weak intermedia
181 weak intermediate turnc Birds_Atlas_New_York	Spizella pusilla	0.6557	0.704 weak intermedia
182 weak intermediate turnc Birds_Atlas_New_York	Dolichonyx oryzivorus	0.6656	0.754 weak turnover (>
183 weak intermediate turnc Birds_Atlas_New_York	Vireo gilvus	0.6664	0.643 weak intermedia
184 weak intermediate turnc Birds_Atlas_New_York	Empidonax minimus	0.6762	0.646 weak intermedia
185 weak intermediate turnc Birds_Atlas_New_York	Ardea herodias	0.6934	0.574 weak intermedia
186 weak intermediate turnc Birds_Atlas_New_York	Columba livia	0.6954	0.78 weak turnover (>

Page 125 of 134 Ecography

187 weak intermediate turnc Birds_Atlas_New_York	Sphyrapicus varius	0.6961	0.546 weak intermedia
188 weak intermediate turnc Birds_Atlas_New_York	Branta canadensis	0.7008	0.238 strong turnover (
189 weak intermediate turnc Birds_Atlas_New_York	Picoides villosus	0.704	0.646 weak intermedia
190 weak intermediate turnc Birds_Atlas_New_York	Sialia sialis	0.7104	0.512 weak intermedia
191 weak intermediate turnc Birds_Atlas_New_York	Anas platyrhynchos	0.7121	0.595 weak intermedia
192 weak intermediate turnc Birds_Atlas_New_York	Charadrius vociferus	0.7216	0.775 weak turnover (>
193 weak intermediate turnc Birds_Atlas_New_York	Buteo jamaicensis	0.7284	0.692 weak intermedia
194 weak intermediate turnc Birds_Atlas_New_York	Myiarchus crinitus	0.7385	0.736 weak intermedia
195 weak intermediate turnc Birds_Atlas_New_York	Dendroica pensylvan	0.7386	0.69 weak intermedia
196 weak turnover (> 0.75) Birds_Atlas_New_York	Archilochus colubris	0.7517	0.627 weak intermedia
197 weak turnover (> 0.75) Birds_Atlas_New_York	Catharus fuscescens	0.7613	0.762 weak turnover (>
198 weak turnover (> 0.75) Birds_Atlas_New_York	Passer domesticus	0.7634	0.856 weak turnover (>
199 weak turnover (> 0.75) Birds_Atlas_New_York	Piranga olivacea	0.7677	0.762 weak turnover (>
200 weak turnover (> 0.75) Birds_Atlas_New_York	Cardinalis cardinalis	0.7707	0.812 weak turnover (>
201 weak turnover (> 0.75) Birds_Atlas_New_York	Setophaga ruticilla	0.774	0.738 weak intermedia
202 weak turnover (> 0.75) Birds_Atlas_New_York	Contopus virens	0.7936	0.784 weak turnover (>
203 weak turnover (> 0.75) Birds_Atlas_New_York	Sitta carolinensis	0.7939	0.743 weak intermedia
204 weak turnover (> 0.75) Birds_Atlas_New_York	Pheucticus Iudoviciar	0.7986	0.804 weak turnover (>
205 weak turnover (> 0.75) Birds_Atlas_New_York	Passerina cyanea	0.801	0.787 weak turnover (>
206 weak turnover (> 0.75) Birds_Atlas_New_York	Molothrus ater	0.8046	0.798 weak turnover (>
207 weak turnover (> 0.75) Birds_Atlas_New_York	Seiurus aurocapilla	0.8224	0.772 weak turnover (>
208 weak turnover (> 0.75) Birds_Atlas_New_York	Icterus galbula	0.8257	0.852 weak turnover (>
209 weak turnover (> 0.75) Birds_Atlas_New_York	Tyrannus tyrannus	0.8295	0.859 weak turnover (>
210 weak turnover (> 0.75) Birds_Atlas_New_York	Troglodytes aedon	0.8301	0.87 weak turnover (>
211 weak turnover (> 0.75) Birds_Atlas_New_York	Picoides pubescens	0.8336	0.802 weak turnover (>
212 weak turnover (> 0.75) Birds_Atlas_New_York	Hylocichla mustelina	0.834	0.838 weak turnover (>
213 weak turnover (> 0.75) Birds_Atlas_New_York	Sayornis phoebe	0.8578	0.821 weak turnover (>
214 weak turnover (> 0.75) Birds_Atlas_New_York	Dendroica petechia	0.8584	0.881 weak turnover (>
215 weak turnover (> 0.75) Birds_Atlas_New_York	Hirundo rustica	0.8674	0.897 weak turnover (>
216 weak turnover (> 0.75) Birds_Atlas_New_York	Tachycineta bicolor	0.8702	0.841 weak turnover (>
217 weak turnover (> 0.75) Birds_Atlas_New_York	Sturnus vulgaris	0.8725	0.92 stable (> 0.9)

Ecography Page 126 of 134

218 weak turnover (> 0.75)		•	0.8778	0.883 weak turnover (>
219 weak turnover (> 0.75)	Birds_Atlas_New_York	Dumetella carolinens	0.8782	0.919 stable (> 0.9)
220 weak turnover (> 0.75)	Birds_Atlas_New_York	Zenaida macroura	0.8929	0.887 weak turnover (>
221 weak turnover (> 0.75)	Birds_Atlas_New_York	Quiscalus quiscula	0.8993	0.906 stable (> 0.9)
222 stable (> 0.9)	Birds_Atlas_New_York	Spizella passerina	0.9031	0.916 stable (> 0.9)
223 stable (> 0.9)	Birds_Atlas_New_York	Bombycilla cedrorum	0.9136	0.899 weak turnover (>
224 stable (> 0.9)	Birds_Atlas_New_York	Agelaius phoeniceus	0.9144	0.931 stable (> 0.9)
225 stable (> 0.9)	Birds_Atlas_New_York	Spinus tristis	0.9154	0.915 stable (> 0.9)
226 stable (> 0.9)	Birds_Atlas_New_York	Corvus brachyrhynch	0.9196	0.929 stable (> 0.9)
227 stable (> 0.9)	Birds_Atlas_New_York	Vireo olivaceus	0.944	0.929 stable (> 0.9)
228 stable (> 0.9)	Birds_Atlas_New_York	Melospiza melodia	0.9484	0.963 stable (> 0.9)
229 stable (> 0.9)	Birds_Atlas_New_York	Cyanocitta cristata	0.9496	0.956 stable (> 0.9)
230 stable (> 0.9)	Birds_Atlas_New_York	Geothlypis trichas	0.9496	0.955 stable (> 0.9)
231 stable (> 0.9)	Birds_Atlas_New_York	Poecile atricapillus	0.9545	0.962 stable (> 0.9)
232 stable (> 0.9)	Birds_Atlas_New_York	Turdus migratorius	0.9603	0.973 stable (> 0.9)

Page 127 of 134 Ecography

LR_Predicted	trend_LR_PredicteLR_Observed	trend_LR_ObserveRank_J_observed	Ra	ank_LR_r Ranl	<_LR_observed
0.076	⁷ stable	-1.792 strong decrease (>	1	143	1
0.9423	3 strong increase (>	-0.405 weak decrease (<	2	232	37
0.1053	3 weak increase (< ≀	-0.981 strong decrease (>	3	152	16
0.3413	3 weak increase (< ≀	0.118 weak increase (< c	4	213	153
-0.122	7 weak decrease (<	1.792 strong increase (>	5	38	228
-0.115	5 weak decrease (<	-0.251 weak decrease (<	28	40	47
-0.412	2 weak decrease (<	0.036 stable	6	8	132
0.5728	3 weak increase (< ≀	0.51 weak increase (< c	7	226	200
0.261	5 weak increase (< (-1.253 strong decrease (>	41	207	10
0.016	7 stable	-0.693 weak decrease (<	27	113	19
0.054	1 stable	0.511 weak increase (< c	8	131	201
	9 stable	-1.508 strong decrease (>	17	53	6
	5 stable	0 stable	44	122	106
	ا weak increase (< د	-1.049 strong decrease (>	31	219	13
	9 stable	-0.523 weak decrease (<	15	63	25
	7 weak decrease (<	-0.405 weak decrease (<	22	12	35
	9 stable	-1.266 strong decrease (>	26	135	9
	l weak increase (< (-0.406 weak decrease (<	9	228	34
-0.1092	2 weak decrease (<	0.944 strong increase (>	37	41	220
-0.43	3 weak decrease (<	-0.204 weak decrease (<	62	6	52
0.305	1 weak increase (< (0.252 weak increase (< c	43	210	176
0.020	5 stable	1.099 strong increase (>	23	117	221
0.206	7 weak increase (< ≀	-0.598 weak decrease (<	32	195	23
0.1482	2 weak increase (< c	0.124 weak increase (< c	21	178	155
-0.4642	2 weak decrease (<	-1.504 strong decrease (>	34	4	7
-0.1862	2 weak decrease (<	-0.647 weak decrease (<	54	24	22
-0.0192	2 stable	-1.638 strong decrease (>	20	80	4
0.069	7 stable	0.559 weak increase (< c	19	138	207
-0.133	7 weak decrease (<	-1.24 strong decrease (>	33	33	11
	1 stable	0.233 weak increase (< c	24	55	172
	I stable	0.256 weak increase (< c	63	52	177
		· · · · · · · · · · · · · · · · · ·		-	

Page 128 of 134

-0.4827 weak decrease (<	-1.603 strong decrease (>	18	3	5
-0.0953 stable	0.274 weak increase (< c	51	44	179
-0.2397 weak decrease (<	-1.42 strong decrease (>	38	16	8
0.9398 strong increase (>	-1.791 strong decrease (>	10	231	2
-0.0111 stable	-1.025 strong decrease (>	35	90	14
0.3003 weak increase (< o	1.867 strong increase (>	29	209	229
0.1424 weak increase (< c	0.448 weak increase (< c	25	174	199
0.719 strong increase (>	0 stable	11	229	107
0.3736 weak increase (< c	-0.224 weak decrease (<	40	216	49
-0.3527 weak decrease (<	-0.544 weak decrease (<	67	11	24
-0.2567 weak decrease (<	-0.096 stable	66	15	68
-0.2941 weak decrease (<	0.093 stable	61	13	146
0.1182 weak increase (< c	-0.965 strong decrease (>	45	165	17
-0.0171 stable	0.143 weak increase (< c	56	81	157
0.1175 weak increase (< ι	0.389 weak increase (< a	71	164	192
-0.1304 weak decrease (<	-1.001 strong decrease (>	49	35	15
-0.0723 stable	-1.059 strong decrease (>	60	48	12
-0.0208 stable	-0.405 weak decrease (<	77	77	36
0.3839 weak increase (< o	-0.001 stable	76	218	104
-0.0022 stable	3.761 strong increase (>	12	100	232
-0.0338 stable	0.38 weak increase (< a	46	66	191
-0.2206 weak decrease (<	-0.054 stable	50	18	82
0.0898 stable	-0.111 weak decrease (<	72	147	67
-0.3668 weak decrease (<	-0.683 weak decrease (<	79	10	21
0.527 weak increase (< c	2.543 strong increase (>	16	224	231
0.219 weak increase (< ι	0.012 stable	58	200	120
-0.1336 weak decrease (<	0.189 weak increase (< a	74	34	167
0.171 weak increase (< ι	0.009 stable	85	184	117
-0.0506 stable	0.049 stable	100	57	138
-0.2185 weak decrease (<	-0.134 weak decrease (<	84	19	63
-0.2678 weak decrease (<	-0.504 weak decrease (<	103	14	27

Page 129 of 134 Ecography

0.1466 weak increase (< o	-0.416 weak decrease (<	81	176	33
-0.1264 weak decrease (<	-0.014 stable	83	36	96
0.116 weak increase (< o	0.81 strong increase (>	13	161	214
-0.0873 stable	-0.854 strong decrease (>	68	47	18
0.1958 weak increase (< o	0.359 weak increase (< c	64	192	187
0.2329 weak increase (< o	-0.058 stable	131	205	81
-0.1692 weak decrease (<	-0.691 weak decrease (<	48	26	20
0.2189 weak increase (< c	0.745 strong increase (>	53	199	212
0.1321 weak increase (< c	0.725 strong increase (>	42	170	211
0.3781 weak increase (< c	0.556 weak increase (< a	59	217	206
0.3542 weak increase (< c	0.009 stable	94	214	118
0.0591 stable	0.167 weak increase (< c	121	134	160
-0.2274 weak decrease (<	-0.322 weak decrease (<	105	17	41
0.0845 stable	0.108 weak increase (< c	82	145	150
0.2194 weak increase (< c	0.209 weak increase (< a	65	201	170
-0.0494 stable	-0.255 weak decrease (<	80	58	46
0.1701 weak increase (< c	0.535 weak increase (< c	78	183	204
0.1069 weak increase (< ι	-1.674 strong decrease (>	36	153	3
0.4397 weak increase (< c	0.901 strong increase (>	73	220	219
0.1664 weak increase (< c	0.13 weak increase (< c	75	181	156
-0.4853 weak decrease (<	-0.506 weak decrease (<	128	2	26
0.0509 stable	-0.23 weak decrease (<	117	130	48
-0.0877 stable	-0.125 weak decrease (<	96	46	66
0.0666 stable	-0.213 weak decrease (<	99	137	51
0.1129 weak increase (< ι	0.171 weak increase (< ι	111	159	161
0.2114 weak increase (< c	-0.139 weak decrease (<	106	198	62
0.5747 weak increase (< o	0.511 weak increase (< α	55	227	202
-0.0623 stable	-0.422 weak decrease (<	108	50	32
-0.0977 stable	-0.016 stable	141	43	94
0.1457 weak increase (< o	1.609 strong increase (>	39	175	225
0.037 stable	1.161 strong increase (>	69	123	222

Page 130 of 134

0.0464 stable	0.011 stable	92	125	119
0.0932 stable	0.031 stable	87	150	130
0.1736 weak increase (< o	1.61 strong increase (>	14	185	226
0.0477 stable	-0.464 weak decrease (<	109	127	29
-0.4421 weak decrease (<	-0.392 weak decrease (<	101	5	38
0.0716 stable	0.039 stable	90	139	134
0.117 weak increase (< ι	0.901 strong increase (>	47	163	218
-0.137 weak decrease (<	-0.483 weak decrease (<	122	32	28
-0.0392 stable	-0.325 weak decrease (<	112	64	40
0.4645 weak increase (< c	0.849 strong increase (>	86	221	216
0.2106 weak increase (< ι	0.348 weak increase (< c	93	197	184
0.0747 stable	0.021 stable	97	140	125
-0.0493 stable	-0.299 weak decrease (<	119	59	42
-0.6005 weak decrease (<	-0.458 weak decrease (<	124	1	31
0.1392 weak increase (< ι	0.379 weak increase (< c	140	172	190
-0.0463 stable	-0.071 stable	118	62	76
0.5405 weak increase (< ι	0.624 weak increase (< c	127	225	209
0.091 stable	0.156 weak increase (< c	114	148	159
0.055 stable	-0.263 weak decrease (<	129	132	45
0.2757 weak increase (< a	-0.193 weak decrease (<	102	208	54
0.2476 weak increase (< c	0.354 weak increase (< c	89	206	186
0.0813 stable	0.115 weak increase (< c	120	144	151
0.2196 weak increase (< a	-0.009 stable	132	202	99
0.1162 weak increase (< ι	0.516 weak increase (< c	57	162	203
0.003 stable	-0.083 stable	104	106	70
0.0029 stable	-0.134 weak decrease (<	107	105	64
0.0255 stable	0.038 stable	95	121	133
0.0223 stable	0.034 stable	98	118	131
-0.1167 weak decrease (<	-0.46 weak decrease (<	153	39	30
0.127 weak increase (< a	0.116 weak increase (< c	113	169	152
0.1784 weak increase (< a	0.18 weak increase (< c	136	189	164

Page 131 of 134 Ecography

-0.0059 stable	0.191 weak increase (< c	115	97	168
0.2094 weak increase (< a	0.434 weak increase (< c	125	196	198
0.2045 weak increase (< a	0.407 weak increase (< c	116	194	194
-0.4209 weak decrease (<	-0.288 weak decrease (<	151	7	43
-0.3927 weak decrease (<	2.251 strong increase (>	30	9	230
0.1682 weak increase (< ι	1.411 strong increase (>	70	182	224
0.0197 stable	-0.074 stable	133	116	74
0.0764 stable	0.043 stable	134	142	136
0.0749 stable	0.007 stable	135	141	112
0.1374 weak increase (< a	-0.148 weak decrease (<	123	171	60
-0.1966 weak decrease (<	-0.035 stable	145	21	88
0.4862 weak increase (< c	0.349 weak increase (< a	157	222	185
0.0924 stable	-0.182 weak decrease (<	152	149	55
0.1895 weak increase (< ι	-0.075 stable	126	191	72
-0.1464 weak decrease (<	0.9 strong increase (>	91	30	217
-0.0485 stable	-0.14 weak decrease (<	149	60	61
0.4863 weak increase (< c	1.791 strong increase (>	52	223	227
-0.1955 weak decrease (<	-0.166 weak decrease (<	172	22	57
-0.0209 stable	-0.358 weak decrease (<	154	76	39
0.0892 stable	0.048 stable	130	146	137
0.1745 weak increase (< ι	0.093 stable	162	186	148
-0.0154 stable	0.413 weak increase (< c	173	84	195
-0.1781 weak decrease (<	0.569 weak increase (< a	147	25	208
-0.1486 weak decrease (<	-0.22 weak decrease (<	167	29	50
-0.0897 stable	-0.164 weak decrease (<	158	45	58
-0.1942 weak decrease (<	0.027 stable	171	23	127
0.0477 stable	0.309 weak increase (< c	146	128	182
0.1099 weak increase (< o	0.152 weak increase (< c	156	155	158
0.2287 weak increase (< o	0.396 weak increase (< c	142	204	193
0.1185 weak increase (< o	0.37 weak increase (< c	137	166	188
0.1156 weak increase (< c	-0.203 weak decrease (<	148	160	53

Page 132 of 134

-0.0087 stable	0.304 weak increase (< c	150	95	181
0.0587 stable	0.373 weak increase (< c	139	133	189
0.178 weak increase (< c	0.174 weak increase (< c	163	188	162
0.1975 weak increase (< c	0.096 weak increase (< a	170	193	149
0.1798 weak increase (< c	0.802 strong increase (>	138	190	213
0.1657 weak increase (< c	0.228 weak increase (< a	160	180	171
0.8262 strong increase (>	0 stable	232	230	108
0.0481 stable	-0.009 stable	174	129	98
-0.023 stable	0.056 stable	164	74	139
-0.2114 weak decrease (<	-0.286 weak decrease (<	186	20	44
0.1085 weak increase (< c	0.266 weak increase (< a	168	154	178
0.177 weak increase (< c	0.329 weak increase (< a	159	187	183
0.0664 stable	0.004 stable	169	136	111
-0.0261 stable	-0.061 stable	176	70	79
0.1656 weak increase (< c	0.3 weak increase (< c	166	179	180
-0.1489 weak decrease (<	-0.153 weak decrease (<	180	28	59
-0.0119 stable	-0.126 weak decrease (<	188	89	65
0.1121 weak increase (< c	0.251 weak increase (< c	155	157	175
0.1207 weak increase (< c	0.207 weak increase (< c	179	167	169
0.1468 weak increase (< c	0.25 weak increase (< c	178	177	174
0.0935 stable	0.695 strong increase (>	144	151	210
0.3675 weak increase (< c	0.845 strong increase (>	110	215	215
0.2243 weak increase (< c	0.536 weak increase (< c	143	203	205
-0.024 stable	0.175 weak increase (< c	182	73	163
-0.1056 weak decrease (<	0.021 stable	189	42	122
-0.0643 stable	-0.173 weak decrease (<	191	49	56
-0.1555 weak decrease (<	-0.086 stable	195	27	69
0.0157 stable	0.12 weak increase (< c	183	112	154
0.1125 weak increase (< a	-0.041 stable	184	158	85
0.3264 weak increase (< a	0.182 weak increase (< c	175	212	165
-0.0618 stable	-0.008 stable	200	51	101

Page 133 of 134 Ecography

0.1248 weak increase (< a	0.419 weak increase (< c	165	168	196
0.3263 weak increase (< a	1.321 strong increase (>	88	211	223
-0.0046 stable	0.081 stable	185	98	141
0.0235 stable	0.433 weak increase (< c	161	120	197
0.1392 weak increase (< a	0.236 weak increase (< a	177	173	173
-0.0546 stable	-0.042 stable	199	54	84
0.1116 weak increase (< a	0.062 stable	190	156	140
-0.0137 stable	-0.034 stable	192	86	89
0.0103 stable	0.093 stable	187	110	147
0.0468 stable	0.188 weak increase (< a	181	126	166
-0.0084 stable	-0.027 stable	196	96	91
-0.0524 stable	-0.065 stable	211	56	77
0.0137 stable	0.008 stable	197	111	115
-0.0161 stable	0.085 stable	206	83	142
0.0192 stable	0.021 stable	193	115	124
0.0094 stable	-0.044 stable	201	109	83
0.0062 stable	0.028 stable	194	108	129
0.0226 stable	-0.065 stable	205	119	78
-0.01 stable	-0.009 stable	202	94	97
-0.0134 stable	-0.072 stable	203	87	75
0.038 stable	0.086 stable	198	124	145
-0.03 stable	-0.036 stable	210	69	87
-0.0248 stable	-0.076 stable	212	72	71
-0.0471 stable	-0.032 stable	213	61	90
-0.0107 stable	0.024 stable	204	93	126
-0.0131 stable	-0.074 stable	208	88	73
-0.0111 stable	0.085 stable	207	91	143
-0.0324 stable	0 stable	214	68	105
-0.0249 stable	-0.061 stable	217	71	80
-0.0169 stable	0.04 stable	209	82	135
-0.0343 stable	-0.016 stable	223	65	95

Page 134 of 134

-0.1264 weak decrease (<	-0.008 stable	215	37	100
-0.0203 stable	-0.037 stable	222	78	86
-0.0335 stable	0.086 stable	216	67	144
-0.1424 weak decrease (<	-0.02 stable	219	31	92
0.0011 stable	0.003 stable	221	103	110
-4.00E-04 stable	0.021 stable	218	102	123
-0.0201 stable	-0.018 stable	226	79	93
-0.003 stable	0.017 stable	220	99	121
-0.0217 stable	0.008 stable	224	75	113
0.0179 stable	0.027 stable	225	114	128
-0.011 stable	-0.007 stable	230	92	102
-0.0146 stable	0.003 stable	228	85	109
0.0046 stable	-0.003 stable	227	107	103
0.0019 stable	0.009 stable	229	104	116
-0.0011 stable	0.008 stable	231	101	114