Commutative algebra

Contents

1.	Introduction	4
2.	Graded commutative algebra	4
Biblic	ography	O

CONTENTS

4

1. Introduction

2. Graded commutative algebra

Let G be an Abelian group. We write the group operation of G multiplicatively and denote the identity of G as 1.

Definition 2.1. Let A be an Abelian group. A G-grading on A is a coproduct decomposition

$$A = \bigoplus_{g \in G} A_g$$

of Abelian groups such that $A_g \subseteq A$. An Abelian group with a G-grading is called a G-graded Abelian group.

A G-graded homomorphism between G-graded Abelian groups A and B is a homogeneous of the underlying Abelian groups $f: A \to B$ such that $f(A_a) \subseteq B_a$ for any $g \in G$.

The category of G-graded Abelian groups is denoted by $\mathcal{A}\mathbf{b}^G$.

A usual Abelian group A can be given the trivial G-grading: $A_0 = A$ and $A_q = 0$ for $g \in G$, $g \neq 0$. In this way, we find a fully faithful embedding

$$\mathcal{A}\mathbf{b} \to \mathcal{A}\mathbf{b}^G$$
.

When we regard an Abelian group as a G-graded Abelian group and there are no natural gradings, we always understand that we are taking the trivial G-grading.

Definition 2.2. A G-graded ring is a commutative ring A endowed with a G-grading:

$$A = \bigoplus_{g \in G} A_g$$

as Abelian groups and such that

- (1) $A_g A_h \subseteq A_{gh}$ for any $g, h \in G$; (2) $1 \in A_1$.

An element $a \in A$ is said to be homogeneous if there is $g \in G$ such that $a \in A_q$. If a is furthermore non-zero, we write $g = \rho(a)$. We set $\rho(0) = 0$.

A G-homomorphism of G-graded rings A and B is a ring homomorphism $f: A \to B$ such that $f(A_q) \subseteq B_q$ for each $g \in G$.

The category of G-graded rings is denoted by $\mathcal{R}ing^G$.

Example 2.3. Let A be a G-graded ring, $n \in \mathbb{N}$ and $g = (g_1, \ldots, g_n) \in G^n$. Then there is a unique G-grading on $A[T_1, \ldots, T_n]$ extending the grading on A and such that $\rho(T_i) = g_i$ for i = 1, ..., n. We will denote $A[T_1, ..., T_n]$ with this grading as $A[g_1^{-1}T_1, ..., g_n^{-1}T_n]$ or simply $A[g^{-1}T]$.

Example 2.4. Let A be a G-graded ring and S be a multiplicative subset of Aconsisting of homogeneous elements, then $S^{-1}A$ has a natural G-grading. To see this, recall the construction of $S^{-1}A$ in [Stacks, Tag 00CM]. One defines an equivalence relation on $A \times S$: $(x,s) \sim (y,t)$ if there is $u \in S$ such that (xt-ys)u = 0. For each $g \in G$, we define $(S^{-1}A)_q$ as the image of (x,s) for all $s \in S$ and $x \in A_{q\varrho(s)}$. It is easy to verify that this is a well-defined G-grading on $S^{-1}A$. Add details.

Definition 2.5. Let A be a G-graded ring. A G-homogeneous ideal in A is an ideal I in G such that if $a \in A$ can be written as

$$a = \sum_{g \in G} a_g, \quad a_g \in A_g$$

with almost all $a_q = 0$, then $a_q \in I$.

Lemma 2.6. Let $f:A\to B$ be a G-homomorphism of G-graded rings. Then $\ker f$ is a G-homogeneous ideal in A.

PROOF. We need to show that

$$\ker f = \sum_{g \in G} (\ker f) \cap A_g.$$

Take $x \in \ker f$, we can write x as

$$\sum_{g \in G} a_g, \quad a_g \in A_g$$

and almost all a_q 's are 0. Then

$$f(x) = \sum_{g \in G} f(a_g), \quad f(a_g) \in B_g.$$

It follows that $f(a_g) = 0$ for each $g \in G$ and hence $a_g \in (\ker f) \cap A_g$.

Definition 2.7. Let A be a G-graded ring and I be a G-homogeneous ideal in A. Then we define a G-grading on A/I as follows: for any $g \in G$

$$(A/I)_a := (A_a + I)/I.$$

Proposition 2.8. Let A be a G-graded ring and I be a G-homogeneous ideal in A. Then the construction in Definition 2.7 defines a grading on A/I. The natural map $\pi:A\to A/I$ is a G-homomorphism.

For any G-graded ring B and any G-homomorphism $f: A \to B$ such that $I \subseteq \ker A$, there is a unique G-homomorphism $f': A/I \to B$ such that $f' \circ \pi = f$.

PROOF. We first argue that for different $g,h\in G, (A/I)_g\cap (A/I)_h=0$. Suppose $x\in (A/I)_g\cap (A/I)_h$, we can lift x to both $y_g+i_g\in A$ and $y_h+i_h\in A$ with $y_g,y_h\in A$ and $i_g,i_h\in I$. It follows that $y_g-y_h\in I$. But I is a G-homogeneous ideal, so it follows that $y_g,y_h\in I$ and hence x=0.

Next we argue that

$$A/I = \sum_{g \in G} (A/I)_g.$$

Lift an element $x \in A/I$ by $a \in A$, we represent a as

$$a = \sum_{g \in G} a_g, \quad a_g \in A_g$$

with almost all a_g 's equal to 0. Then x can be represented as

$$x = \sum_{g \in G} \pi(a_g).$$

We have shown that the construction in Definition 2.7 gives a G-grading on A. It is clear from the definition that π is a G-homomorphism.

CONTENTS

6

Next assume that B and f are given as in the proposition. Then there is a ring homomorphism $f': A/I \to B$ such that $f = f' \circ \pi$. We need to argue that f' is a G-homomorphism. For this purpose, take $g \in G$, $x \in (A/I)_g$, we need to show that $f'(x) \in B_g$. Lift x to y+i with $y \in A_g$ and $i \in I$, then we know that $f'(x) = \pi(y+i) = \pi(y) \in B_g$.

Definition 2.9. Let A be a G-graded ring and M an A-module which is also a G-graded Abelian group. We say M is a G-graded module if for each $g, h \in G$, we have

$$A_g M_h \subseteq M_{gh}$$
.

A G-graded homomorphism of G-graded A-modules M and N is an A-module homomorphism $f:M\to N$ which is at the same time a homomorphism of the underlying G-graded Abelian groups.

The category of G-graded A-modules is denoted by $\mathcal{M}od_A^G$.

Observe that G-homogeneous ideals of A are G-graded submodules of A. Also observe that \mathcal{M} od $_{\mathbb{Z}}^G$ is isomorphic to \mathcal{A} b G .

Proposition 2.10. Let A be a G-graded ring. Then $\mathcal{M}od_A^G$ is an Abelian category.

PROOF. We first show that $\mathcal{M}\mathrm{od}_A^G$ is preadditive. Given $M,N\in\mathcal{M}\mathrm{od}_A^G$, we can regard $\mathrm{Hom}_{\mathcal{M}\mathrm{od}_A^G}(M,N)$ as a subgroup of $\mathrm{Hom}_A(M,N)$. It is easy to see that this gives $\mathcal{M}\mathrm{od}_A^G$ an enrichment over $\mathcal{A}\mathrm{b}$.

Next we show that $\mathcal{M}od_A^G$ is additive. The zero object is clearly given by 0 with the trivial grading. Given $M, N \in \mathcal{M}od_A^G$, we define

$$(M \oplus N)_g := M_g \oplus N_g, \quad g \in G.$$

This construction makes $M \oplus N$ a G-graded A-module. It is easy to verify that $M \oplus N$ is the biproduct of M and N.

Next we show that $\mathcal{M}od_A^G$ is pre-Abelian. Given an arrow $f:M\to N$ in $\mathcal{M}od_A^G$, we need to define its kernel and cokernel. We define

$$(\ker f)_g := (\ker f) \cap M_g$$

and $(\operatorname{coker} f)_g$ as the image of N_g for any $g \in G$. It is straightforward to verify that these are kernels and cokernels.

Finally, given a monomorphism $f: M \to N$, it is obvious that the map f is injective and f can be identified with the kenrel of the natural map $N/\operatorname{Im} f$. A dual argument shows that an epimorphism is the cokernel of some morphism as well. \square

Example 2.11. This is a continuition of Example 2.4. Let A be a G-graded ring and S be a multiplicative subset of A consisting of homogeneous elements. Consider a G-graded A-module M. We define a G-grading on $S^{-1}M$. Recall that $S^{-1}M$ can be realized as follows: one defines an equivalence relation on $M \times S$: $(x,s) \sim (y,t)$ if there is $u \in S$ such that (xt - ys)u = 0. For each $g \in G$, we define $(S^{-1}M)_g$ as the image of (x,s) for all $s \in S$ and $s \in M_{g\rho(s)}$. It is easy to verify that this is a well-defined G-grading on $S^{-1}M$ and $S^{-1}M$ is a G-graded $S^{-1}A$ -module. Add details.

Example 2.12. Let A be a G-graded ring and $g \in G$. We define $g^{-1}A$ as the G-graded A-module:

$$(g^{-1}A)_h = A_{g^{-1}h}$$

for any $h \in G$. Observe that $1 \in (g^{-1}A)_g$.

Definition 2.13. Let $f: A \to B$ be a G-graded homomorphism of G-graded rings. We say f is *finite* (resp. *finitely generated*, resp. *integral*) if it is finite (resp. finitely generated, resp. integral) as a usual ring map.

Proposition 2.14. Let $f:A\to B$ be a G-graded homomorphism of G-graded rings. Then

(1) f is finite if and only if there are $n \in \mathbb{N}$, $g_1, \ldots, g_n \in G$ and a surjective G-graded homomorphism

$$\bigoplus_{i=1}^{n} (g_i^{-1}A)^n \to B$$

of graded A-modules.

(2) f is finitely generated if and only if there are $n \in \mathbb{N}, g_1, \ldots, g_n \in G$ and a surjective G-graded A-algebra homomorphism

$$A[g_1^{-1}T_1, \dots, g_n^{-1}T_n] \to B.$$

(3) f is integral if and only if for any non-zero homogeneous element $b \in B$, there in $n \in \mathbb{N}$ and homogeneous elements $a_1, \ldots, a_n \in A$ such that

$$b^{n} + f(a_{1})b^{n-1} + \dots + f(a_{n}) = 0.$$

PROOF. (1) The non-trivial direction is the direct implication. Assume that f is finite. Take $b_1, \ldots, b_n \in B$ so that $\sum_{i=1}^n f(A)b_i = B$. Up to replacing the collection $\{b_i\}_i$ by the finite collection of non-zero homogeneous components of the b_i 's, we may assume that each b_i is homogeneous. We define $g_i = \rho(b_i)$ and the map $\bigoplus_{i=1}^n (g_i^{-1}A)^n \to B$ sends 1 at the i-th place to b_i .

- (2) The non-trivial direction is the direct implication. Suppose f is finitely generated, say by b_1, \ldots, b_n . Up to replacing the collection $\{b_i\}_i$ by the finite collection of non-zero homogeneous components of the b_i 's, we may assume that each b_i is homogeneous. Then we define $g_i = \rho(b_i)$ for $i = 1, \ldots, n$ and the A-algebra homomorphism $A[g_1^{-1}T_1, \ldots, g_n^{-1}T_n] \to B$ sends T_i to b_i for $i = 1, \ldots, n$.
- (3) Assume that f is integral, then for any non-zero homogeneous element $b \in B$, we can find $a_1, \ldots, a_n \in A$ such that

$$b^{n} + f(a_{1})b^{n-1} + \dots + f(a_{n}) = 0.$$

Obviously, we can replace a_i by its component in $\rho(b)^i$ for $i=1,\ldots,n$ and the equation remains true.

The reverse direction follows from [Stacks, Tag 00GO].

Bibliography

[Stacks] T. Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu. 2020.