Numerical Optimization with Python

Programming Assignment 02

In this exercise we will implement an interior point method solver for small constrained optimization problems.

Instructions:

- 1. To your src directory, add a new module, constrained min.py
- 2. Implement the function (or as a method of a class):

interior_pt (func, ineq_constraints, eq_constraints_mat, eq_constraints_rhs, x0) which minimizes the function func subject to the list of inequality constraints specified by the Python list of functions ineq_constraints, and to the affine equality constraints Ax = b that are specified by the matrix eq_constraints_mat, and the right hand side vector eq_constraints_rhs. The outer iterations start at x0.

- 3. Use the log-barrier method studied in class, with the initial parameter t=1 and increase it by a factor of $\mu=10$ each outer iteration.
- 4. To your tests directory, add a module test_constrained_min.py and define, using the unittest framework as in HW01, the function test_qp(),test_lp() that will demonstrate solutions for a quadratic programming example and a linear programming example.
- 5. To your examples . py file, add the functions and the definition of the matrix and vector, to enable $test_qp$ () use them for solving the following problem:

$$\min x^{2} + y^{2} + (z+1)^{2}$$
Subject to: $x + y + z = 1$

$$x \ge 0$$

$$y \ge 0$$

$$z \ge 0$$

Note: the problem finds the closest probability vector to the point (0,0,-1). Choose an initial interior point (0.1,0.2,0.7), and do not implement a phase I method for finding a strictly feasible point in this exercise.

6. To your examples.py file, add the functions to enable test_lp() use them for solving the following problem:

$$\max[x + y]$$
Subject to: $y \ge -x + 1$

$$y \le 1$$

$$x \le 2$$

$$y \ge 0$$

Note: the problem finds the upper right vertex of a planar polygon. You only have inequality constraints here, hence at each outer iteration you will solve an unconstrained problem. Choose an initial interior point (0.5,0.75), and do not implement a phase I method for finding a strictly feasible point in this exercise.

- 7. For both examples above, plot
 - a. The final candidate
 - b. Objective and constraint values at the final candidate
 - c. Plot the feasible region and the path taken by the algorithm.
 - d. The graph of objective value vs. outer iteration number.

Note: in both cases the feasible region is a polygon, but in the first example it is a triangle to be plotted in 3D space, and the path is in 3D space, there are several options to do that, here:

https://matplotlib.org/2.0.2/mpl toolkits/mplot3d/tutorial.html

Submit the required plots and final iterates in a PDF file to the course site, and your code should be sent over email as a link to a GitHub repo (do not send notebooks or Python files as email attachments).

Good luck!