A POSTERIORI ERROR ESTIMATION FOR THE FRACTIONAL LAPLACIAN

Raphaël Bulle^{1,2}, Alexei Lozinski², Franz Chouly², Stéphane P.A. Bordas¹, Jack S. Hale¹.

² Laboratoire de Mathématiques de Besançon, Université de Bourgogne Franche-Comté.

The method in [Bonito and Pasciak, 2013] solves fractional elliptic operator equations by re-writing the operator as an integral over solutions of standard parametric elliptic problems. Can we use a similar idea to derive an a posteriori error estimator for the spatial discretization of the method in [Bonito and Pasciak, 2013]?

CONTRIBUTIONS

- ► We derive a sharp a posteriori error estimator for the finite element discretization of fractional Laplacian PDEs.
- ► We perform adaptive mesh refinement.
- ► We use the **FEniCS project** and our a posteriori error estimation **package FEniCS-EE** [Hale and Bulle, 2020].

FRACTIONAL PROBLEM

For any $\alpha \in (0,2)$, d=1,2 or 3 and $f \in L^2(\Omega)$, we consider the fractional Laplacian equation on a polygonal domain Ω in \mathbb{R}^d

$$(-\Delta)^{\alpha/2}u = f \text{ in } \Omega, \quad u = 0 \text{ in } \partial\Omega.$$
 (1)

The solution u can be represented by

$$u = C_{\alpha} \int_{-\infty}^{+\infty} e^{\alpha y} u_{y} \, dy$$

where C_{α} is a constant depending on α and u_{y} is the solution of the parametric problem

$$\int_{\Omega} u_y v + \mathrm{e}^{2y} \int_{\Omega} \nabla u_y \cdot \nabla v = \int_{\Omega} f v \quad \forall v \in H_0^1(\Omega).$$

FINITE ELEMENT DISCRETIZATION

The discretization of (1) relies on two things [Bonito and Pasciak, 2013]:

▶ A finite element method: to discretize the parametric problems. Let \mathcal{T} be a triangulation on Ω and $V^1 \subset H^1_0(\Omega)$ be the linear Lagrange finite elements space on \mathcal{T} .

$$u = C_{\alpha} \int_{-\infty}^{+\infty} e^{\alpha y} u_y \, dy \approx C_{\alpha} \int_{-\infty}^{+\infty} e^{\alpha y} u_{1,y} \, dy =: u_1,$$

where $u_{1,y}$ is the solution of the parametric finite element problem

$$\int_{\Omega} u_{1,y} v_1 + e^{2y} \int_{\Omega} \nabla u_{1,y} \cdot \nabla v_1 = \int_{\Omega} f v_1 \quad \forall v_1 \in V^1.$$
 (2)

Note: the same mesh is used for every parametric problems.

▶ A quadrature method: to discretize the integral over y. Let $\{\omega_k, y_k\}_{k=-N}^N$ be a quadrature rule on \mathbb{R} .

$$u_1 := C_\alpha \int_{-\infty}^{+\infty} e^{\alpha y} u_{1,y} \, dy \approx C_\alpha \sum_{k=N}^N \omega_k \, e^{\alpha y_k} \, u_{1,y_k} =: u_1^N, \tag{3}$$

A POSTERIORI ERROR ESTIMATION

We are interested in the spatial discretization error only so we consider the quadrature error to be negligible.

We would like to estimate the error $||u-u_1||_{L^2(T)}$ on each cell T of the mesh. Given $V^1(T)$ and $V^2(T)$ respectively the local linear and local quadratic Lagrange finite elements spaces and $\mathcal{L}_T: V^2(T) \longrightarrow V^1(T)$ the Lagrange interpolation operator, we consider $V^{\mathrm{bw}}(T) = \{v \in V^2(T), \mathcal{L}_T(v) = 0\}$ [Bank and Weiser, 1985].

For each paramteric problem (2) we derive the local Bank–Weiser (BW) problem given by

$$\int_{\mathcal{T}} e_{T,y}^{\text{bw}} v^{\text{bw}} + e^{2y} \int_{\mathcal{T}} \nabla e_{T,y}^{\text{bw}} \cdot \nabla v^{\text{bw}} = \int_{\mathcal{T}} r_y v^{\text{bw}} + \frac{1}{2} \sum_{E \in \partial \mathcal{T}} \int_{E} J_y v^{\text{bw}} \quad \forall v^{\text{bw}} \in V^{\text{bw}}(\mathcal{T}), \quad (4)$$

where $r_T:=f-u_{1,y}+\mathrm{e}^{2y}\Delta u_{1,y}$ and $J_y:=\mathrm{e}^{2y}\left[\!\left[\frac{\partial u_{1,y}}{\partial n}\right]\!\right]$.

We sum the solutions $\{e_{T,y_k}^{\text{bw}}\}_{k=-N}^{N}$ using the same quadrature rule as (3)

$$e_T^{\mathrm{bw}} := C_{\alpha} \sum_{k=-N}^{N} \omega_k \mathrm{e}^{\alpha y_k} e_{T,y_k}^{\mathrm{bw}}.$$
 (5)

lacktriangle We take the norms of the local functions $\{e_T^{\mathrm{bw}}\}_{T\in\mathcal{T}}$ to get the local BW estimators

$$\|e_T^{\text{bw}}\|_{L^2(T)} =: \eta_T^{\text{bw}}.$$
 (6)

NUMERICAL RESULTS

We solve (1) on $\Omega = (0,1)^2$ for $\alpha = 0.5$ and f = 1 on $(0,0.5)^2 \cup (0.5,1)^2$ and f = -1 on $(0,0.5) \times (0.5,1) \cup (0.5,1) \times (0,0.5)$. We compare uniform and adaptive mesh refinement. The convergence curves for the L^2 error (computed from the comparison with a higher order FE discretization) and the estimator are shown in Fig.5.

Fig.1 Initial mesh.

Fig. 1 Initial mesh.

Fig. 3.9e-01

-0.3
-0.2
-0.1
-0.2
-0.3
-3.9e-01

10⁻³

Fig.3 Solution *u* after 17 adapt. ref. steps.

Fig.4 Convergence curves comparison.

 10^{4}

 10^{2}

PRELIMINARY FINDINGS

- Numerical evidences show that the error estimation is sharp.
- ► The algorithm is **perfectly parallelizable**.
- ▶ It works the same way for 1, 2 or 3D problems and for higher order finite elements.

FUTURE WORK

- ▶ Use this method on parabolic fractional linear equations [Bonito, Lei, and Pasciak, 2016; Bonito, Lei, and Pasciak, 2017].
- Adapt the method to other boundary conditions [Antil, Pfefferer, and Rogovs, 2018].
- ► Try to prove the **reliability and efficiency** of the estimator.
- ► Apply it to the **study of non-local physical phenomena** as non-local diffusion.

BIBLIOGRAPHY

- Antil, Harbir, Johannes Pfefferer, and Sergejs Rogovs (2018). "Fractional operators with inhomogeneous boundary conditions: analysis, control, and discretization". In: *Commun. Math. Sci.* ISSN: 15396746.

 DOI: 10.4310/CMS.2018.v16.n5.a11. arXiv: 1703.05256.
- Bank, R. E. and A. Weiser (1985). "Some a posteriori error estimators for elliptic partial differential equations". In: *Math. Comp.* 170. ISSN: 0025-5718. DOI: 10.2307/2007953.
- Bonito, Andrea, Wenyu Lei, and Joseph E. Pasciak (2016). "The Approximation of Parabolic Equations Involving Fractional Powers of Elliptic Operators". In: arXiv: 1607.07832.
- (2017). "Numerical Approximation of Space-Time Fractional Parabolic Equations". In: *Comput. Methods Appl. Math.* 4. ISSN: 16099389. DOI: 10.1515/cmam-2017-0032. arXiv: 1704.04254.
- Appl. Math. 4. ISSN: 16099389. DOI: 10.1515/cmam-2017-0032. arXiv: 1704.04254.

 Bonito, Andrea and Joseph E. Pasciak (2013). "Numerical Approximation of Fractional Powers of Elliptic Operators". In: arXiv: 1307.0888.
- Hale, Jack S. and Raphaël Bulle (2020). An implementation of the Bank-Weiser error estimator in the FEniCS Project finite element software. DOI: 10.6084/m9.figshare.10732421.