## **Performance Evaluation**

# **Part 1:**

- To evaluate the performance of the system, especially, REGISTER, SEARCH and OBTAIN operations, I have created a Test program (file TestClient.java)
- The Test programs asks you the type of operation you want to evaluate REGISTER/SEARCH/OBTAIN and then it executes (sends) 10k requests for the selected operation.
- This program was run on various combinations of the input parameters. So the test environment was as follows:

Total no. of peers connected: 1

Configuration of each peer: 2 core processor, 512 MB RAM virtual machine (Ubuntu Linux OS)

Total no. of requests: 10,000 (10k requests each)

Results are as follows:

| Sr. No. | REGISTER Operation | SEARCH Operation | <b>OBTAIN Operation</b> |
|---------|--------------------|------------------|-------------------------|
| 1       | 53 milliseconds    | 16 milliseconds  | 66 seconds              |

Average response time for REGISTER request: **0.0053 milliseconds**Average response time for SEARCH request: **0.0016 milliseconds** 

Average response time for OBTAIN request including download: 6.6 milliseconds

Average File Transfer Speed: 10.24 MBps

Time is less because all the files will hash to the same client and will be registered (entry stored in hash table) to self because there is only one client in the network.

Total no. of peers connected: 2

Configuration of each peer: 2 core processor, 512 MB RAM virtual machine (Ubuntu Linux OS)

Total no. of requests: 20,000 (10k requests each)

Results are as follows:

| Sr. No. | REGISTER Operation | SEARCH Operation | OBTAIN Operation |
|---------|--------------------|------------------|------------------|
| 1       | 213.69 seconds     | 215.1 seconds    | 82 seconds       |
| 2       | 213.69 seconds     | 214.7 seconds    | 80 seconds       |
| AVG.    | 213.69 seconds     | 214.9 seconds    | 81 seconds       |

Average response time for REGISTER request: **21.36 milliseconds**Average response time for SEARCH request: **21.49 milliseconds** 

Average response time for OBTAIN request including download: 8.1 milliseconds

Average File Transfer Speed: 8.33 MBps

Total no. of peers connected: 4

Configuration of each peer: 2 core processor, 512 MB RAM virtual machine (Ubuntu Linux OS) Total no. of requests: 40,000 (10k requests each)

Results are as follows:

| Sr. No. | REGISTER Operation | SEARCH Operation | OBTAIN Operation |
|---------|--------------------|------------------|------------------|
| 1       | 327.55 seconds     | 315.82 seconds   | 107 seconds      |
| 2       | 328 seconds        | 316.37 seconds   | 116 seconds      |
| 3       | 328 seconds        | 315.02 seconds   | 105 seconds      |
| 4       | 325.1 seconds      | 310.86 seconds   | 98 seconds       |
| AVG.    | 327.16 seconds     | 314.51 seconds   | 106.5 seconds    |

Average response time for REGISTER request: **32.71 milliseconds**Average response time for SEARCH request: **21.49 milliseconds** 

Average response time for OBTAIN request including download: 10.65 milliseconds

Average File Transfer Speed: 6.31 MBps

Total no. of peers connected: 8

Configuration of each peer: 2 core processor, 512 MB RAM virtual machine (Ubuntu Linux OS)

Total no. of requests: 80,000 (10k requests each)

Results are as follows:

| Sr. No. | REGISTER Operation | SEARCH Operation | OBTAIN Operation |  |
|---------|--------------------|------------------|------------------|--|
| 1       | 352.12 seconds     | 328.87 seconds   | 168 seconds      |  |
| 2       | 352.30 seconds     | 328.77 seconds   | 179 seconds      |  |
| 3       | 352.29 seconds     | 328.02 seconds   | 170 seconds      |  |
| 4       | 348.90 seconds     | 326.12 seconds   | 174 seconds      |  |
| 5       | 350.23 seconds     | 327.10 seconds   | 163 seconds      |  |
| 6       | 351.83 seconds     | 325.45 seconds   | 160 seconds      |  |
| 7       | 354.52 seconds     | 329.14 seconds   | 158 seconds      |  |
| 8       | 350.13 seconds     | 326.40 seconds   | 171 seconds      |  |
| AVG.    | 351.54 seconds     | 327.48 seconds   | 167.87 seconds   |  |

Average response time for REGISTER request: **35.15 milliseconds**Average response time for SEARCH request: **32.74 milliseconds** 

Average response time for OBTAIN request including download: 16.78 milliseconds

Average File Transfer Speed: 4.86 MBps



#### **Observation:**

- In the above evaluations, we can observe that the average time for REGISTER, SEARCH and OBTAIN requests increase as the number of peers increase in the network. While the average download (file transfer) speed decreases as the number of peers in the network increase because the peers constantly demand files and hence the communication link between the peers get more and more busy.
- These tests were performed on a peer having low configuration. The average response time for the REGISTER, SEARCH and OBTAIN requests will decrease and the average download speed will increase as the configuration of peer becomes strong (i.e. faster processor, more number of cores and more RAM).
- The response time for serving REGISTER and SARCH request if there is only one peer in the network is very small (i.e. 0.0016 milliseconds) because the file names are stored and retrieved from itself (same peer).
- The response time stated above includes connection to the peer time, server processing time and sending the results and connection closing time.

## **Part 2:**

- This test was done to check the throughput which we achieve through different file sizes. 8 peers were connected in the network and file of size 1KB, 50KB, 1MB, 50MB, 400MB, and 1GB were registered by each peer.
- The file was downloaded (obtained) by all the eight peers concurrently and average download speed was calculated. This program was run on various combinations of the input parameters. So the test environment was as follows:

Total no. of peers connected: 8

Configuration of each peer: 2 core processor, 512 MB RAM virtual machine (Ubuntu Linux OS)

Total no. of file downloading requests: 8 (1 request each)

File size tested: 1KB, 50KB, 1MB, 50MB, 400MB, and 1GB

| Peer    | File Size (Speed in Bytes per second) |         |         |         |         |         |         |         |
|---------|---------------------------------------|---------|---------|---------|---------|---------|---------|---------|
| Number  | 1 KB                                  | 50 KB   | 500 KB  | 1 MB    | 50 MB   | 400 MB  | 1 GB    | AVERAGE |
| 1       | 26497                                 | 461261  | 2426540 | 4017532 | 6247473 | 8078896 | 2532134 | 4827190 |
| 2       | 12047                                 | 360563  | 1418282 | 4017532 | 6171724 | 5831577 | 5083265 | 3270713 |
| 3       | 4357                                  | 656410  | 2089795 | 6432981 | 6439302 | 7196321 | 5881541 | 4100101 |
| 4       | 17694                                 | 1600000 | 4571428 | 5461333 | 7180060 | 6881323 | 5110953 | 4403256 |
| 5       | 4266                                  | 320000  | 1651612 | 6168094 | 4360708 | 6531555 | 5487952 | 3503455 |
| 6       | 36571                                 | 269473  | 1689768 | 5518821 | 4087378 | 7525845 | 4915478 | 3434762 |
| 7       | 6168                                  | 742028  | 1199063 | 5115004 | 4045432 | 8202894 | 5548954 | 3551363 |
| 8       | 6781                                  | 292571  | 1187935 | 3666349 | 531835  | 7633779 | 5369874 | 2669875 |
| AVERAGE | 14297                                 | 587788  | 2029303 | 5049706 | 4882989 | 8485274 | 4991269 | 3541518 |

Average file transfer speed for the entire test is 35, 41, 518 bytes per second = 3.377 MBps

#### **Observation:**

The average file transfer speed is 3.377 MBps. While developing the application and debugging, I got somewhat same transfer speed. As we can see from the last row in the above table, the average speed is somewhat same for files ranging from 500 KB - 1 GB. There is a minute difference because of we can't say how much memory or processing power is available at this time. Moreover, three virtual machines out of 8 were clone of first 3 machines. So, the performance of these cloned virtual machines were dependent on their parent virtual machines.

# **Comparison with Centralized File Transfer System (Assignment 1):**

Similar tests as above were performed on Centralized File Transfer System as done in Assignment 1.
 Configuration of each peer: 2 core processor, 512 MB RAM virtual machine (Ubuntu Linux OS)
 Total no. of requests: 10,000 (10k requests each)

Results are as follows:

| Peer  | REGISTER Operation   | SEARCH Operation     | OBTAIN Operation     |  |
|-------|----------------------|----------------------|----------------------|--|
| Count | (Avg. Response Time) | (Avg. Response Time) | (Avg. Response Time) |  |
| 1     | 22 milliseconds      | 18 milliseconds      | 9 milliseconds       |  |
| 2     | 26 milliseconds      | 22 milliseconds      | 13 milliseconds      |  |
| 4     | 33 milliseconds      | 25 milliseconds      | 17 milliseconds      |  |
| 8     | 39 milliseconds      | 29 milliseconds      | 25 milliseconds      |  |





#### **Observation:**

In the above evaluations, we can observe that the average time for REGISTER, SEARCH and OBTAIN
requests increase as the number of peers increase in the network because the communication link
between the peers and the indexing server gets more and more busy. While the average download (file
transfer) speed decreases as the number of peers in the network increase because the peers constantly
demand files and hence the communication link between the peers gets more and more busy.

## **Conclusion:**

- As we can see that the average response time for serving the requests in case of centralized system is
  more than compared to the average response time in de-centralized system because in case of
  centralized system all the requests except the download request is served by only one machine i.e. the
  indexing server. Whereas in the case if de-centralized system, the requests are divided among the
  different peers using the hashing mechanism.
- The difference between the response times in both the systems may seem to be less here in a real-time scenario where millions of files can be shared using the system, the difference will be more, and thus we'll see the benefit of distributed system vs. the centralized system.