Minleyan Noh 2021/ 4/12

- · Objectives
 - MOSFET
 - Half-bridge stage
 - H-bridge Inverter.
- Metal-Oxide-semiconductor Field-effective transister
 we focus on n-channel, enhancement-mode MOSFET.

Symbol meaning

- Grate is AC complete : zq = 0.
- Atrow : p-type body -> n-channel
- Body source short : "Body diode"
 - Doited line: enhancement mode (normally off)

 4 often drawn as a solid line for bravity
 depletion-mode

· Voltage: vas, vas

· Current: ¿q, ¿D, ¿s (¿q=o at DC = ¿D= ¿s)

Terminal Relations

Terminal Varienties

- O Cutoff region (VGs < Vth).
- 2 Continuation region ($v_{qs} > V_{th}$, $v_{ps} > v_{qs} V_{th}$) 2 $\Rightarrow g_{m} = \frac{dv_{ps}}{dv_{qs}} = K(v_{qs} V_{th})$.

· MOSFET can be used as a vccs

¿p is insensitive to vos in saturation region.

Similar to Active mode in BJT

(normally on)

3 Thole region (
$$v_{qs} > V_{th}$$
, $v_{ps} < v_{qs} - V_{th}$).

 $v_{ps} = k \left[(v_{qs} - V_{th}) v_{ps} - \frac{1}{2} v_{ps}^2 \right]$
 $v_{qs} = v_{qs} + v_{qs}$

o MOSFET as a "poner Smitch".

Suppose VGS = \$ 0 (Switch off)

2D (OV (Switch on)

Equivalent Citarit>

Body diode

Russon

· Modern MOSFETS have fast-enough body diodes (fast recovery)
· Block + V / Conduct I is

o Half-bridge Stage (Totan pole circuit)

- · Con make a unipolar two quadrant (+vo, tro) voltage source.
- " Vetratile building block for various Switching power convertors.
- · Available as a single package with Integrated gate drive:

· State Table

R	5, 52	vo.	Conduction
0	0 0	0 / Vde	D2 (2,00) / D1 (2,00)
A supplied to the supplied to		Vdc	Q1. } Lower Paiss thom k=1.
2	0	0	Q ₂
2		×	Shoot-through

Toggle between k=1 and k=2. "Complementary switching"

Never use k=3. "Shoot-through"

. Insert k=0 between k=1 () k=2 to avoid k=3. "Dead time"

o State Variable

· Synchronous Buck Converter (de/de donn conv.).

n	a	20
		Vdc
2		6.
	1	

o Cutput waveform. (n=1 (>) n=2)

o H-bridge Inverter (de/ac converter)

Com make bipolar four quadrant (±vo, ±20) Voltage source

"Bridge" between legs

· State Table

	h	a	6	1 V
State -> Vector	0	0	0	
V= [0.0]	-1	The second	0	Vdc.
	2	0		-Vdc
	. 3	, , , , , , , , , , , , , , , , , , ,	1	

· Output wave-form (n=1 () n=2)

o Duty tatio Control.

When b = 0.5 (Worst - case tipple).

- · Current tipple courses { torque tipples. -> Vibration.

 Core losses (Hysterests, oddy -cumunt).
- · Remedy Insert serves inductors (cost: current slew rote) - Increases the smitching frequency (cost: smitching loss)