Academia Sabatina de Jóvenes Talento

Polinomios I

Encuentro: 2

Curso: Álgebra Semestre: I

Nivel: Preolímpico IMO

Fecha: 26 de abril de 2025

Instructor: Kenny Jordan Tinoco
Instructor Aux: Jonathan Gutiérrez

Índice

1	Fundamentos	1
	1.1 Conceptos	1
	1.2 División de polinomios	2
	1.3 Raíces	3
2	Problemas	4

1. Fundamentos

En esta segunda sesión repasaremos aspectos fundamentales sobre los polinomios.

1.1. Conceptos

Definición 1.1. Un *monomio* en la variable x es una expresión cx^k donde c es una constante y k un entero no negativo.

Un polinomio es la suma de finitos monomios. En otras palabras un polinomio es una expresión de la forma

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

Asumamos que $a_n \neq 0$. En este caso, los números $a_n, a_{n-1}, \ldots, a_1, a_0$ se llaman los coeficientes del polinomio, y n es llamado el grado del polinomio.

Los polinomios pueden ser sumados y multiplicados. Para $A(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ y $B(x) = b_0 + b_1x + b_2x^2 + \ldots + b_nx^n$ definimos

$$A(x) + B(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \dots$$
$$A(x)B(x) = a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + \dots$$

Para los motivos de este documento consideraremos a los polinomios con coeficientes reales, racionales, enteros, complejos o incluso valores que son residuos en módulo de algún primo p.

1.2. División de polinomios

Definición 1.2. Para los polinomios F(x) y G(x), llamamos *cociente* y *resto* a los polinomios Q(x) y R(x), respectivamente, si

$$F(x) = Q(x)G(x) + R(x)$$

y $\deg R < \deg G$.

Teorema 1.1. El cociente y resto siempre existen y son únicos.

Teorema 1.2 (Bezout version 1). El resto de P(x) dividido por (x-a) es igual a P(a).

Teorema 1.3 (Bezout version 2). Un número a es raíz de P(x) si y solo si (x-a)|P(x).

Corolario 1.1. Si a_1, a_2, \ldots, a_n son raíces distintas de P(x), entonces

$$(x-a_1)(x-a_2)\dots(x-a_n)|P(x).$$

Teorema 1.4. El polinomio P(x) con grado n tiene a lo más n raíces.

Corolario 1.2. Si A(x) y B(x) no son iguales, y su grado es a lo máximo n, entonces la ecuación A(x) = B(x) tiene a lo sumo n raíces.

Ejemplo 1.1. Probar que

$$a\frac{(x-b)(x-c)}{(a-b)(a-c)} + b\frac{(x-c)(x-a)}{(b-c)(b-a)} + c\frac{(x-a)(x-b)}{(c-a)(c-b)} = x.$$

Solución. Denotemos por P(x) al lado izquierdo de la ecuación. Sabemos que P(x) es un polinomio con grado a lo sumo 2 y P(a) = a, P(b) = b y P(c) = c. Por tanto, por el corolario previo P(x) = x.

Ejemplo 1.2. Dado el entero positivo n. El polinomio P(x) satisface $P(i) = 2^i$ para todo $i = 0, 1, \ldots, n$. Probar que deg $P \ge n$.

Solución. Considere el polinomio Q(x) = 2P(x) - P(x+1). Es obvio que deg $Q = \deg P$. Y los números $0, 1, \ldots, n-1$ son raíces de Q, por lo cual deg $Q \ge n$.

Ejemplo 1.3. Dado el polinomio P(x) con grado tres. Llamaremos a una tripleta de números reales (a, b, c) cíclica si P(a) = b, P(b) = c y P(c) = a. Probar que existen a lo más nueve tripletas cíclicas.

Solución. Dividamos la solución

- 1. Tripletas cíclicas diferentes no tienen elementos compartidos. Supongamos lo contrario y que hay dos tripletas cíclicas con números iguales (a, b, c) y (a, d, e). Con base en la definición de tripleta cíclica, b = P(a) y d = P(a), por tanto d = b. Y c = P(b) y e = P(d) = P(b), por tanto c = e. Esto implica que las tripletas son iguales.
- 2. Todos los números en cualquier tripleta cíclica son raíces del polinomio Q(x) = P(P(P(x))) x. Consideremos cualquier tripleta cíclica (a, b, c).

$$P(P(P(a))) = P(P(b)) = P(c) = a.$$

3. El grado del polinomio P(P(P(x))) - x es 27, ya que si existen 10 tripletas cíclicas distintas, entonces existen 30 raíces distintas para Q(x). Lo cual es absurdo.

1.3. Raíces

2. Problemas

Ejercicio 1.

Problema 2.1.