2 Régression linéaire simple

Postulats

 \mathbf{H}_1 Linéarité : $\mathbf{E}\left[\varepsilon_i\right] = 0$

 \mathbf{H}_2 Homoscédasticité : $Var(\varepsilon_i) = \sigma^2$

H₃ Indépendance : $Cov(\varepsilon_i, \varepsilon_i) = 0$

H₄ Normalité : $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$

Modèle

$$\begin{aligned} \operatorname{E}\left[Y_{i}|x_{i}\right] &= \beta_{0} + \beta_{1}x_{i} \\ \operatorname{Var}\left(Y_{i}|x_{i}\right) &= \sigma^{2} \\ Y_{i}|x_{i} &\stackrel{\mathbf{H}_{4}}{\sim} \mathcal{N}(\beta_{0} + \beta_{1}x_{i}, \sigma^{2}) \end{aligned}$$

Estimation des paramètres

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n x_i Y_i - \bar{Y} \sum_{i=1}^n x_i}{\sum_{i=1}^n x_i^2 - \bar{x} \sum_{i=1}^n x_i} = \frac{\sum_{i=1}^n (x_i - \bar{x}) Y_i}{S_{XX}}$$

Estimation de σ^2

$$\hat{\sigma^2} = s^2 = \frac{\sum_{i=1}^n \hat{\varepsilon_i}^2}{n - p'} = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n - 2}$$

Propriété des estimateurs

$$E\left[\hat{\beta}_{1}\right] = \beta_{1} \quad , Var\left(\hat{\beta}_{1}\right) = \frac{\sigma^{2}}{S_{XX}}$$

$$\hat{\beta}_{1} \stackrel{H_{4}}{\sim} \mathcal{N}(\beta_{1}, \frac{\sigma^{2}}{S_{XX}})$$

$$E\left[\hat{\beta}_{0}\right] = \beta_{0} \quad , Var\left(\hat{\beta}_{0}\right) = \sigma^{2}\left(\frac{1}{n} + \frac{\bar{x}^{2}}{S_{XX}}\right)$$

$$\hat{\beta}_{0} \stackrel{H_{4}}{\sim} \mathcal{N}\left(\beta_{0}, \sigma^{2}\left(\frac{1}{n} + \frac{\bar{x}^{2}}{S_{XX}}\right)\right)$$

$$Cov(\hat{\beta}_{0}, \hat{\beta}_{1}) = -\frac{\bar{x}\sigma^{2}}{S_{XX}}$$

Tests d'hypothèse sur les paramètres

$$H_0: \hat{eta} = heta_0$$
 , $H_1: \hat{eta}
eq heta_0$
$$t_{obs} = \frac{\hat{eta} - heta_0}{\sqrt{Var(\hat{eta})}} \sim T_{n-2}$$
 On Rejette H_0 si $t_{obs} > |t_{n-2}(1 - rac{lpha}{2})|$

Intervalle de confiance

Pour la droite de régression (E $[Y_0|x_0]$)

Sachant que E
$$[Y_0|x_0] = \beta_0 + \beta_1 x_0$$
, on a l'IC suivant
$$\left[\hat{Y}_0 \pm t_{n-2} \left(1 - \frac{\alpha}{2}\right) \sqrt{s^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{XX}}\right)}\right]$$

Pour la prévision de Y_0

Sachant que
$$Y_0 = \beta_0 + \beta_1 x_0 + \varepsilon$$
, on a l'IC suivant
$$\hat{Y_0} \pm t_{n-2} \left(1 - \frac{\alpha}{2}\right) \sqrt{s^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{XX}}\right)}$$

Analyse de la variance (ANOVA)

Source	dl	SS	MS	F
Model	р	$\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 $ (SSR)	$SSR/dl_1 \ (MSR)$	MSR MSE
Residua	$\ln n - p'$	$\frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{(SSE)}$	$SSE/dl_2 (MSE = s^2)$	
Total	n-1	$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 $ (SST)		

Où *p* est le nombre de variables explicatives dans le modèle.

Coefficient de détermination

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$
 On a aussi la relation suivante avec F_{obs} :
$$F = \frac{R^2}{1 - R^2} \cdot \frac{n - p'}{p}$$

Test F de Fisher pour la validité globale de la régression

On rejette
$$H_0: \beta_1 = \beta_2 = ... = \beta_p = 0$$
 si $F_{obs} = \frac{MSR}{MSE} \ge F_{n,n-p'}(1-\alpha)$ où p est le nombre de variables explicatives

où p est le nombre de variables explicatives dans le modèle (régression linéaire simple, p=1 et p'=p+1).

Distribution d'un résidu ε

$$\begin{split} \operatorname{E}\left[\hat{\varepsilon}_{i}\right] &= 0 \quad , Var\left(\hat{\varepsilon}_{i}\right) = \sigma^{2}(1-h_{ii}) \\ \operatorname{où}h_{ii} &= \frac{1}{n} + \frac{(\bar{x}-x_{i})^{2}}{S_{XX}}. \\ \operatorname{On peut aussi prouver que} \\ \operatorname{Cov}(\hat{\varepsilon}_{i},\hat{\varepsilon}_{j}) &= -\sigma^{2}\left(\frac{1}{n} + \frac{(x_{i}-\bar{x})(x_{j}-\bar{x})}{S_{XX}}\right) \end{split}$$

Vérification des postulats

Les résidus studentisés sont définis par

$$r_i = \frac{\hat{\varepsilon}_i}{\sqrt{s^2(1 - h_{ii})}}$$

Linéarité

- \rightarrow graphique $Y_i|x_i$
- \Rightarrow graphique $\hat{\varepsilon}_i | \hat{Y}_i$
- \Rightarrow graphique $\hat{\varepsilon}_i | x_i$

Les deux derniers graphique doivent être centrés à 0 et d'allure aléatoire.

Homoscédasticité

> Graphique $r_i | \hat{Y}_i :$ la dispersion des résidus doit être constante, pas de forme d'entonnoir ou de résisus absolus supérieurs à 3.

Indépendance

> Graphique $r_i|i$: si il y a un *pattern*, présence d'auto-corrélation (le postulat H_3 n'est donc pas respecté).

Normalité

- \rightarrow Histogramme des r_i
- > Q-Q Plot Normal : les résidus du modèle doivent suivre la droite des quantiles normaux théoriques.

3 Régression linéaire multiple

Le modèle et ses propriétés

$$\mathbf{Y}_{n\times 1} = \mathbf{X}_{n\times p'}\boldsymbol{\beta}_{p'\times 1} + \boldsymbol{\varepsilon}_{n\times 1}$$

$$\mathbf{E}\left[\mathbf{Y}\right] = \mathbf{X}\boldsymbol{\beta} \quad , \text{Var}\left(\mathbf{Y}\right) = \sigma^{2}\mathbf{I}_{n\times n}$$

$$\mathbf{Y} \stackrel{H_{4}}{\sim} \mathcal{N}_{n}(\mathbf{X}\boldsymbol{\beta}, \sigma^{2}\mathbf{I}_{n\times n})$$

Paramètres du modèle

Estimation et propriétés des paramètres

$$\begin{split} \hat{\boldsymbol{\beta}} &= (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Y} \\ \mathbf{E} \left[\hat{\boldsymbol{\beta}} \right] &= \boldsymbol{\beta} \quad , Var(\hat{\boldsymbol{\beta}}) = \sigma^2 (\mathbf{X}^{\top} \mathbf{X})^{-1} \\ \hat{\boldsymbol{\beta}} &\stackrel{H_4}{\sim} \mathcal{N}_p(\boldsymbol{\beta}, \sigma^2 (\mathbf{X}^{\top} \mathbf{X})^{-1}) \end{split}$$

Intervalle de confiance sur les paramètres

$$\begin{split} var[\beta_j] &= \sigma^2 v_{jj} \\ \beta_j &\in \left[\hat{\beta}_j \pm t_{n-p'} \left(1 - \frac{\alpha}{2}\right) \sqrt{s^2 v_{jj}}\right] \\ \text{où } v_{jj} \text{ est l'élément } (j,j) \text{ de la matrice } (\mathbf{X}^\top \mathbf{X})^{-1}. \end{split}$$

Estimation de σ^2

$$\hat{\sigma}^2 = s^2 = \frac{\hat{\boldsymbol{\varepsilon}}^\top \hat{\boldsymbol{\varepsilon}}}{n - p'}$$

Il peut être démontré que cette estimateur est sans biais et indépendant de $\hat{\pmb{\beta}}$

Test d'hypothèse sur un paramètre du modèle

On rejète
$$H_0: eta_j=0$$
 si $|t_{obs,j}|=rac{eta_j}{\sqrt{s^2v_{jj}}}>t_{n-p'}\left(1-rac{lpha}{2}
ight)$

Propriétés de la droite de régression

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} \qquad \qquad \hat{\boldsymbol{\varepsilon}} = \mathbf{Y} - \hat{\mathbf{Y}}$$

$$= \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y} \qquad = (\mathbf{I}_{n} - \mathbf{H})\mathbf{Y}$$

$$= \mathbf{H}\mathbf{Y}$$
où $\mathbf{H} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ est la hat matrix.

On a aussi que
$$\mathbf{E} [\hat{\mathbf{Y}}] = \mathbf{X}\boldsymbol{\beta} \quad \text{, Var } (\hat{\mathbf{Y}}) = \sigma^{2}\mathbf{H}$$

$$\hat{\mathbf{Y}} \stackrel{H_{4}}{\sim} N_{n}(\mathbf{X}\boldsymbol{\beta}, \sigma^{2}\mathbf{H})$$

Pour les résidus de la droite de régression, on a

$$E\left[\hat{\boldsymbol{\varepsilon}}\right] \stackrel{H_1}{=} 0 \quad , \text{Var}\left(\hat{\boldsymbol{\varepsilon}}\right) = \sigma^2(\mathbf{I}_{n \times n} - \mathbf{H})$$
$$\hat{\boldsymbol{\varepsilon}} \stackrel{H_4}{\sim} \mathcal{N}_n(0, \sigma^2(\mathbf{I}_{n \times n} - \mathbf{H}))$$

Matrice de projection

Les matrices H et I_n-H peuvent être vues commes des matrices de projection. Ces deux opérateurs possèdent plusieurs propriétés :

- 1. $\mathbf{H}^{\top} = \mathbf{H}$ (symétrie)
- 2. $\mathbf{H}\mathbf{H} = \mathbf{H}$ (idempotence)
- 3. HX = X
- 4. $(\mathbf{I}_n \mathbf{H}) = (\mathbf{I}_n \mathbf{H})^{\top}$ (symétrie)
- 5. $(\mathbf{I}_n \mathbf{H})(\mathbf{I}_n \mathbf{H}) = (\mathbf{I}_n \mathbf{H})$
- 6. $(\mathbf{I}_n \mathbf{H})\mathbf{X} = 0$
- 7. $(\mathbf{I}_n \mathbf{H})\mathbf{H} = 0$

Intervalle de confiance pour la prévision

Théorème de Gauss-Markov

Selon les postulats H_1 à H_4 , l'estimateur $\mathbf{a}^{\top}\hat{\boldsymbol{\beta}} = \mathbf{a}^{\top}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$ est le meilleur estimateur pour $\mathbf{a}^{\top} \boldsymbol{\beta}$

(BLUE: Best linear unbiaised estimator).

I.C. pour la prévision de la valeur moyenne $E[Y|X^*]$

$$\left[\mathbf{X}^{*\top} \hat{\boldsymbol{\beta}} \pm t_{n-p'} \left(1 - \frac{\alpha}{2} \right) \sqrt{s^2 \mathbf{X}^{*\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{*}} \right]$$

I.C. pour la valeur prédite $\hat{Y}|X^*$

$$\left[\mathbf{X}^{*\top}\hat{\boldsymbol{\beta}} \pm t_{n-p'} \left(1 - \frac{\alpha}{2}\right) \sqrt{s^2 \left(1 + \mathbf{X}^{*\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^*\right)}\right]$$

Analyse de la variance

Tableau ANOVA

- > On utilise le même tableau ANOVA qu'en ré- Détection gression linéaire simple.
- $\Rightarrow SSR_{\text{régression}} = \sum_{i=1}^{p} SSR_i$, où SSR_i représente le SSR individuel de la variable explicative *i* calculé par R. On peut ensuite trouver MSR et la statistique F_{obs} .

Test F pour la validité globale de la régression

Même test qu'en régression linéaire simple.

Test F partiel pour la réduction du modèle

Avec k < p, on va rejeter

$$H_0: Y_i = \beta_0 + \beta_1 x_{i1} + ... \beta_{ik}$$
 (modèle réduit)

Pour

$$H_1: Y_i = \beta_0 + \beta_1 x_{i1} + ... \beta_{ip}$$
 (modèle complet)

Si

$$F_{obs} = \frac{(SSE^{(0)} - SSE^{(1)})/\Delta dl}{SSE^{(1)}/(n - p')} \ge F_{p-k,n-p'}(1 - \alpha)$$

où $\Delta dl = p - k$, $SSE^{(0)}$ pour le modèle réduit (H_0) et $SSE^{(1)}$ pour le modèle complet (H_1).

Multicollinéarité

Problèmes potentiels

- > Instabilité de $(X^TX)^{-1}$, i.e. une petite variation de Y peut changer de grandes variations en $\hat{\beta}$ et
- $\Rightarrow \hat{\beta}_i$ de signes contre-intuitif;
- $\rightarrow Var(\hat{\beta}_i)$ et $Var(\hat{Y})$ très grandes;
- > Les méthodes de sélection de variable ne concordent pas;
- > Conclusions erronées sur la significativité de certains paramètres, malgré une forte corrélation Homogénéité des variances avec Y.

- \rightarrow Si r_{ij} dans la matrice de corrélation $\mathbf{X}^{*\top}\mathbf{X}^{*}$ est élevée, où $\mathbf{X}^* = \begin{bmatrix} \frac{x_1 - \bar{x}_1}{s_1} & \dots & \frac{x_p - \bar{x}_p}{s_p} \end{bmatrix}_{1 \times n}$
- \rightarrow Si le facteur d'influence de la variance (VIF_i) est élevé, où

$$VIF_j = \frac{1}{1 - R_j^2}$$

avec R_i^2 le coefficient de détermination de la régression ayant comme variable réponse le je variable et les (j-1) autres variables exogènes en input.

> La variance de $\hat{\beta}_i$ s'exprime en fonction du VIF comme suit:

$$\operatorname{Var}(\hat{\beta}_j) = \frac{\sigma^2}{(\mathbf{X}^{*\top}\mathbf{X}^*)_{\mathbf{j}\mathbf{i}}} VIF_j$$

Solution

- > On retire les variables ayant un VIF élevé (une à la fois)
- > On combine des variables exogènes redondantes

Validation du modèle et des postulats

Linéarité

- \rightarrow On trace les graphiques à variable ajoutée ($\hat{\epsilon}_{Y|X_{-i}}$ en fonction de $\hat{\varepsilon}_{x_i|\mathbf{X}_{-i}}$).
- > Ces graphiques doivent normalement donner une droite de pente β_i .
 - Si le graphique ressemble à un graphique de résidus normaux, x_i est inutile.
 - Si il y a une courbe, x_i est non-linéaire.

 \rightarrow Graphique $r_i | \hat{Y}_i$

Indépendance entre les observations

- \rightarrow Graphique $\hat{\varepsilon}_i | i$
- > Test de Durbin-Watson (pas à l'examen)

Sélection de modèle et régression régularisée

En présence de beaucoup de variable exogènes, on court le danger d'en garder trop ou pas assez

- > **Trop**: On augmente inutilement la variance des estimations(β)
- > Moins : On augmente inutilement le biais des estimations($\hat{\beta}$)

Critères de comparaison classiques

qualité globale du modèle):

$$R_2 = \frac{SSR}{SST}$$

Si on ajoute une variable exogène, il est certain que R^2 augmentera, on utilise donc ce critère pour valider si la régression est utile pour prédire Y, mais pas pour critère de sélection des variables exogènes.

> Coeficient de détermination ajusté :

$$R_a^2 = \frac{SSE/p}{SST/(n-1)} = \frac{MSE}{MST}$$

Ce critère permet de valider l'ajout de nouvelles variables exogènes.

Ces deux critères sont inutiles pour comparer des modèles avec des transformations différentes et pour des modèles avec/sans ordonnée à l'origine.

Méthode basées sur la puissance de prévision

Ce critère maximise l'habileté du modèle a prédire de nouvelles données.

Principe de la validation croisée

- 1. Pour i = 1, ..., n,
 - 1.1 Enlever la *i*^e observation du jeu de données.
 - 1.2 Estimer les paramètres du modèle à partir des n - 1 données restante.
 - 1.3 Prédire Y_i à partir de x_i et du modèle obtenu en 2, noté $\hat{Y}_{i,-i}$
- 2. Calculer la somme des carrés des erreurs de prévision $PRESS = \sum_{i=1}^{n} (Y_i - \hat{Y}_{i,-i})^2$

On cherche a minimiser le PRESS ou à maximiser le coefficient de détermination de prévision :

$$R_p^2 = 1 - \frac{PRESS}{SST}$$

Les résidus PRESS

> Coefficient de détermination (pour mesurer la Il est possible de trouver la statistique PRESS sans devoir calculer *n* régressions :

$$PRESS = \sum_{i=1}^{n} \left(\frac{\hat{\varepsilon}_i}{1 - h_{ii}} \right)^2$$

Échantillion de test et validation croisée par k ensemble

- 1. Pour k = 1, ..., K,
 - 1.1 Enlever le *k*^e ensemble du jeu de donnée.
 - 1.2 Estimer les paramètres du modèle à partir des données des k-1 échantillons restants.
 - 1.3 Prédire les observations du ke ensemble $(\hat{Y}_{i,-k})$ et calculer

$$MSEP_k = \frac{1}{n_k} \sum_{i \in group \ k} (Y_i - \hat{Y}_{i,-k})^2$$

2. Calculer la moyenne des sommes des carrés des erreurs de prévision $\frac{1}{k} \sum_{k=1}^{k} MSEP_k$

On choisit le modèle qui minimise $\frac{1}{k} \sum_{k=1}^{k} MSEP_k$

Le C_v de Mallows

$$C_p = p' + \frac{(s_p^2 - \hat{\sigma}^2)(n - p')}{\hat{\sigma}^2} = \frac{SSE}{\hat{\sigma}^2} + 2p' - n$$

On cherche le modèle pour lequel $C_n \approx p'$

Critère d'information d'akaike et critère bayésien de Schwarz

> Ce critère est le plus utilisé dans la pratique et permet d'évaluer la qualité de l'ajustement d'un

$$AIC = n \cdot \ln\left(\frac{SSE}{n}\right) + 2p'$$

AIC prend en compte à la fois la qualité des prédictions du modèle et sa complexité.

> BIC est similaire a AIC, mais la pénalité des paramètres dépend de la taille de l'échantillon. On cherche à minimiser ces 2 critères.

$$BIC = n \cdot \ln\left(\frac{SSE}{n}\right) + \ln(n)p'$$

Méthode algorithmiques

Méthode d'inclusion (forward)

- 1. On commence avec le modèle le plus simple (i.e. $\hat{Y}_i = \beta_0$
- 2. On essaie d'ajouter la variable qui, en l'incluant dans le modèle, permet de réduire le plus le SSE du modèle.
- 3. On valide si la variable diminue de façon significative les résidus avec un test F, où

$$F_{obs} = rac{SSE_{
m petit\ mod\`ele} - SSE_{
m grand\ mod\`ele}}{SSE_{
m grand\ mod\`ele}/(n-p')}$$

On ajoute la variable au modèle si

$$F_{obs} > F_{1,n-p'}(1-\alpha)$$

4. On répète jusqu'à ce qu'aucune variable ne vaille la peine d'être ajoutée.

Méthode d'exclusion (backward)

- 1. On débute avec le modèle complet
- 2. On veut enlever la variable exogène qui, en l'excluant du modèle, permet de minimiser l'augmentation du SSE de la régression.
- 3. Même test F qu'à l'étape 3 de la méthode forward, sauf qu'on enlève la variable seulement si

$$F_{obs} < F_{1,n-p'}(1-\alpha)$$

4. On répète jusqu'à ce qu'aucune variable ne vaille la peine d'être enlevée.

Méthode pas à pas (step-wise)

- 1. On débute avec la méthode d'inclusion
- 2. Après l'ajout d'une variable au modèle, on effectue la méthode d'exclusion pour les variables qui sont actuellement dans le modèle (on remet constamment le modèle en question).

Modèles linéaires (GLM)

Famille exponentielle linéaire

Définition

Une loi de probabilité fait partie de la famille exponentielle linéaire si

> On peut exprimer la fonction de densité (ou masse) de probabilité comme

$$f(y; \theta, \phi) = \exp\left(\frac{y\theta - b(\theta)}{a(\phi)} + c(y; \phi)\right)$$

où θ est le paramètre canonique et θ est le paramètre de dispersion.

- \rightarrow la fonction c ne dépend pas du paramètre θ .
- \rightarrow Le support de Y ne dépend pas des paramètres θ ou ϕ .

Propriétés

Soit $\mu = \dot{b}(\theta) = \frac{\partial}{\partial \theta} b(\theta)$ et $V(\mu) = \ddot{b}(\theta) = \frac{\partial^2}{\partial \theta^2} b(\theta)$. Alors, si Y fait partie de la famille exponentielle linéaire, on peut exprimer l'espérance et la variance comme

$$E[Y] = \dot{b}(\theta) = \mu$$

$$Var(Y) = a(\phi)\ddot{b}(\theta) = a(\phi)V(\mu)$$

Lemme de la Log-vraisemblance

Soit $\ell(\theta, \phi; Y) = L(\theta, \phi; Y)$ la log-vraisemblance. Alors,

$$\mathrm{E}\left[\frac{\partial}{\partial \theta}\ell(\theta, \phi; Y)\right] = 0$$

$$E\left[\left(\frac{\partial}{\partial \theta}\ell(\theta,\phi;Y)\right)^{2}\right] = -E\left[\frac{\partial^{2}}{\partial \theta^{2}}\ell(\theta,\phi;Y)\right]$$

Fonction de lien

Soit $\eta = X\beta$. La fonction de lien est la transformation qu'on applique à η afin de limiter le support de Y.

généralisés Lien logistique
$$\eta = \ln\left(\frac{\mu}{1-\mu}\right) \leftrightarrow \mu = \frac{e^{\eta}}{1+e^{\eta}}$$

Lien probit $\eta = \Phi^{-1}(\mu) \leftrightarrow \mu = \Phi(\eta)$

Lien log-log complémentaire $\eta = \ln(-\ln(1-\mu)) \leftrightarrow$

Lien canonique $\eta = \theta$

Estimation des paramètres

- \rightarrow On estime $\hat{\beta}$ avec la méthode du maximum de vraisemblance (EMV ou MLE en anglais)
- > L'EMV est cohérent, i.e.

$$\hat{\boldsymbol{\beta}} \xrightarrow[n \to \infty]{} \boldsymbol{\beta}$$

> L'estimateur a une normalité asymptotique, i.e.

$$\hat{oldsymbol{eta}} \sim \mathcal{N}\left(oldsymbol{eta}, rac{\mathcal{I}(oldsymbol{eta})^{-1}}{n}
ight)$$

où $\mathcal{I}(oldsymbol{eta})_{(p' imes p')}$ est la matrice d'information de Fi-

$$\mathcal{I}(\boldsymbol{\beta}) = \mathbf{E} \left[\dot{\ell}(\boldsymbol{\beta}; Y_1, ..., Y_n) \dot{\ell}(\boldsymbol{\beta}; Y_1, ..., Y_n)^\top \right]$$
$$= -\mathbf{E} \left[\ddot{\ell}(\boldsymbol{\beta}; Y_1, ..., Y_n) \right]$$

> On peut estimer la matrice d'information de Fisher avec l'information observée :

$$\mathcal{I}(\hat{\boldsymbol{\beta}}) = -\sum_{i=1}^{n} \frac{\partial^{2}}{\partial \boldsymbol{\beta}^{2}} \ell(\boldsymbol{\beta}; Y_{i}) \Big|_{\hat{\boldsymbol{\beta}}}$$

Algorithme de Newton-Raphson

L'objectif est de trouver $\hat{\beta}$ qui maximise $\ell(\hat{\beta})$, ce qui revient à trouver $\ell(\hat{\beta} = 0$. On utilise l'approximation de Taylor de premier ordre dans l'algorithme :

- (1) Choisir des valeurs de départ pour le vecteur $\hat{\beta}^{H_0}$
- (2) Pour k = 1, 2, ...

(2.1)
$$\hat{\boldsymbol{\beta}}^{(k)} = \hat{\boldsymbol{\beta}}^{(k-1)} \mathcal{I} \left\{ \ddot{\ell}(\hat{\boldsymbol{\beta}})^{(k-1)} \right\}^{-1} \dot{\ell}(\hat{\boldsymbol{\beta}})^{(k-1)}$$

- (2.2) Si $|\dot{\ell}(\hat{\beta})^{(k)}| < \varepsilon$, on converge vers les paramètres optimaux pour le modèle et on arrète.
- (2.3) Répéter les étapes (2.1) et (2.2) jusqu'à une convergence.

Méthode du score de Fisher

Cette méthode est la même que l'algorithme de Newton-Raphson, à l'exception qu'on remplace $\mathcal{I}\left\{\ddot{\ell}(\hat{\boldsymbol{\beta}})\right\}$ par E $\left|\ddot{\ell}(\hat{\boldsymbol{\beta}})\right|$ à l'étape (2.1)

Statistique de Wald

Test d'hypothèse pour tester $H_0: \beta_i = 0, H_1: \beta_i \neq 0$.

$$Z = rac{eta_j}{\sqrt{\hat{\mathrm{Var}}(\hat{eta}_j)}} \sim \mathcal{N}(0,1)$$

On rejète donc H_0 si $Z > z_{1-rac{lpha}{2}}$.

Note On obtient $\hat{Var}(\hat{\beta}_i)$ sur les éléments de la diagonale de $\{\mathcal{I}(\hat{\beta})^{-1}/n$.

Test du rapport de vraisemblance

On teste $H_0: \beta \in \beta_0$ et $H_1: \beta \in \beta_1$, où β_1 est le complément de l'espace β_0 , qui est une sélection réduite des variables explicatives disponibles. On teste

$$\lambda(y) = rac{L\left(\hat{eta}^{(H_0)}
ight)}{L(\hat{eta})}$$

 $\lambda(y)$ sera assurément plus petit que 1 (il y a moins de variables explicatives). Mais on veut tester si $\lambda(y)$ est plus petit qu'une certaine valeur critique.

- \rightarrow Si H_0 spécifie tous les paramètres du modèle, on a $-2\ln\lambda(y)\sim\chi_{n'}^2$, Sous H_0
- \rightarrow Si H_0 spécifie partiellement les paramètres du modèle,

$$-2\ln\lambda(y)\sim\chi^2_{k_2-k_1}$$
, Sous H_0 où k_1 est le nombre de paramètres non-spécifiés dans H_0 et k_2 le nombre de paramètres non-spécifiés dans H_1 .

> Avec le TRV, on peut seulement comparer des modèles qui sont liés.

Adéquation du modèle

Statistiques χ^2 de Pearson

On peut valider l'adéquation du modèle avec la statistique X^2 , où

$$X^{2} = \sum_{i=1}^{n} \left(\frac{y_{i} - \hat{\mu}_{i}}{\sqrt{V(\hat{\mu}_{i})}} \right)^{2} \sim \chi_{n-p'}^{2}$$

Avec $X^2 \le \chi^2_{n-p',1-\frac{\alpha}{2}}$ si le modèle est adéquat. Si ϕ est inconnu, on peut l'estimer avec $\hat{\phi} = \frac{X^2}{n-v'}$

Déviance

On a

$$2(\ell(\tilde{\theta}) - \ell(\hat{\theta})) \sim \chi^2_{n-p'}$$

avec $\bar{\theta}$ est le modèle nul, $\hat{\theta}$ le modèle à l'étude et $\tilde{\theta}$ le modèle complet, où $\hat{\mu}_i = y_i$. Cette expression représente la déviance $D(y; \hat{\mu})$:

$$2(\ell(\tilde{\theta}) - \ell(\hat{\theta})) = 2\sum_{i=1}^{n} \frac{w_i}{\phi} (y_i \tilde{\theta} - b(\tilde{\theta}) - y_i \hat{\theta} + b(\hat{\theta}))$$
$$= 2\sum_{i=1}^{n} \frac{w_i}{\phi} y_i (\tilde{\theta} - \hat{\theta}) - (b(\tilde{\theta} - b(\hat{\theta})))$$
$$= \frac{D(y; \hat{\mu})}{\phi}$$

Si ϕ est inconnu, on peut l'estimer avec $\hat{\phi} = \frac{D(y_i\hat{\mu})}{n-p'}$

Comparaison de modèles

Les critères classiques AIC et BIC peuvent être utilisés pour comparer des modèles. On peut aussi faire une analyse de la déviance

Analyse de la déviance

On compare le modèle A et le modèle B (où A est une simplification de B). Le modèle A sera une bonne simplification de B si

$$\frac{D(y;\hat{\mu}_A) - D(y;\hat{\mu}_B)}{\phi} \sim \chi^2_{p_B - p_A}$$

Il est certain que la déviance va augmenter en diminuant le nombre de paramètres. On veut valider si la

déviance augmente *significativement* au point de ne pas pouvoir simplifier B. On rejète H_0 que A est une bonne simplification de B si la différence est déviance réduite est supérieure à $\chi^2_{p_B-p_A,1-\frac{\alpha}{2}}$

Analyse des résidus

Résidus de Pearson

$$r_{P_i} = \frac{y_i - \hat{\mu}_i}{\sqrt{V(\hat{\mu})_i}}$$

Résidus d'Anscombe

À valider si la formule est à savoir

Résidus de la déviance

À valider si la formule est à savoir

6 Modélisation de données de comptage