Illumina Miseq processing Pipeline

bridge amplification

bridge amplification

Sequencing by synthesis

Sequencing by synthesis

Illumina Miseq

Figure 6B: Paired-End Sequencing Genomic DNA Fragment (200–500 bp) Ligate Adaptors Generate Clusters Sequence First End Regenerate Clusters and Sequence Paired End DNA to Data Sample Prep ~7 days 36×2 bp reads 3 hours hands-on Adapters containing attachment sequences (A1 & A2) and sequencing primer sites (SP1 & SP2) are ligated onto DNA fragments (e.g., genomic

DNA). The resulting library of single molecules is attached to a flow cell.

Each end of every template is read sequentially.

Primer constructs

Primer constructs

fastq files with a lot of reads

Fastq

quality score:

Substract 33 from the decimal value of the ASCII encoded quality value → Phred quality value

Fastq

Phred Qualities

Quality Value	Error Probability	Probability Called Base is Correct	Description
10	0.1	0.9	error rate of 1 in 10
20	0.01	0.99	error rate of 1 in 100
30	0.001	0.999	error rate of 1 in 1000
40	0.0001	0.9999	error rate of 1 in 10000

What is probability that a base having a phred quality score of 32 was incorrectly called?

$$q = -10\log_{10}(p)$$

$$p = 10^{\frac{q}{-10}}$$

Phred Qualities

Quality Value	Error Probability	Probability Called Base is Correct	Description
10	0.1	0.9	error rate of 1 in 10
20	0.01	0.99	error rate of 1 in 100
30	0.001	0.999	error rate of 1 in 1000
40	0.0001	0.9999	error rate of 1 in 10000

What is probability that a base having a phred quality score of 32 was incorrectly called?

$$q = -10\log_{10}(p)$$

$$p = 10^{\frac{q}{-10}}$$

$$p = 10^{\frac{q}{-10}}$$

Illumina data from eurofins

1 Illumina Sequencing Report

Project: GEN140109_B

General Information								
Sequencing Mode								
Instrument	MiSeq							
Software	MiSeq Control Software 2.3.0.3							
	RTA 1.18.42							
	CASAVA-1.8.2							
Flow cell ID	000000000-A76F9							

Sequencing Results												
Lane	Sample	Index	Yield (Mbp)	#Cluster	%Q30	Mean Q						
1	Pool1	NoIndex	10 682	17802794	75.31	29.97						
1			Σ 10682	Σ 17 802 794								
			Σ 10 682	Σ 17 802 794								

Remarks:

- "Yield (Mbp)": number of bases called in mega bases.
- All reads are passed filter, i.e. reads have passed the default Illumina filter procedure (chastity filter).
- "%Q30": represents the percentage of bases with a quality score of at least 30 (inferred base call accurecy of 99.9%). The Q-score is a prediction of the probability of a wrong base call.
- A PhiX library is added before sequencing to estimate the sequencing quality.

Illumina data from eurofins

Illumina data from eurofins forward reads reverse reads

Illumina data from eurofins forward reads reverse reads

unassigned reads

Primer constructs

Probe	Probe FWD	forward primer	poly N	MID	specific_forward_primer	reverse primer	poly N	specific_reverse_primer
Silber_ExpStart1	Pro_Silber_Exp_Start1_A	B104F 1 A	NNN	TAGAAGGAGCGC	GGCGVACGGGTGMGTAA	B515R R1	N N	TTACCGCGGCKGCTGGCAC
Silber Exp. Start2	Pro Silber Exp Start2 A	B104F 2 A	NNNNN	ACGAGTCACACA	GGCGVACGGGTGMGTAA	B515R R2	NN	TTACCGCGGCKGCTGGCAC
Silber_ExpStart3	Pro Silber Exp Start3 A	B104F 3 A	NNN	AAATGAAGCAAC	GGCGVACGGGTGMGTAA	B515R R3	NNN	TTACCGCGGCKGCTGGCAC
Silber Exp. Start3	Pro Silber Exp Start3 B	B104F 3 B	NNNN	CCTGTAACACAA	GGCGVACGGGTGMGTAA	B515R R3	NNN	TTACCGCGGCKGCTGGCAC
Silber Exp. Ko1	Pro Silber Exp Ko1 A	B104F 4 A	NNNNN	TCTGAAACGCAA	GGCGVACGGGTGMGTAA	B515R R4	NNNN	TTACCGCGGCKGCTGGCAC
Silber_ExpKo1	Pro Silber Exp Ko1 B	B104F 4 B	NNNNNN	TACCATTTGCTC	GGCGVACGGGTGMGTAA	B515R R4	NNNN	TTACCGCGGCKGCTGGCAC
Silber_ExpKo2	Pro Silber Exp Ko2 A	B104F 13 A	NNN	GGTGCTACTGAT	GGCGVACGGGTGMGTAA	B515R R4	NNNNN	TTACCGCGGCKGCTGGCAC
Silber_ExpKo2	Pro_Silber_Exp_Ko2_B	B104F 5 B	NNNN	CGTGTTACAGAT	GGCGVACGGGTGMGTAA	B515R R5	NNNNN	TTACCGCGGCKGCTGGCAC
Silber_ExpKo3	Pro_Silber_Exp_Ko3_A	B104F 6 A	NNNNN	GTCACACTTGCG	GGCGVACGGGTGMGTAA	B515R R6	NNNNNN	TTACCGCGGCKGCTGGCAC
Silber_ExpKo3	Pro_Silber_Exp_Ko3_B	B104F 6 B	NNNNNN	GATGCCTCTAAC	GGCGVACGGGTGMGTAA	B515R R6	NNNNNN	TTACCGCGGCKGCTGGCAC
Silber_ExpNP1	Pro_Silber_Exp_NP1_A	B104F 7 A	NNN	CGGGTTCAAGCT	GGCGVACGGGTGMGTAA	B515R R1	N	TTACCGCGGCKGCTGGCAC
Silber_ExpNP1	Pro_Silber_Exp_NP1_B	B104F 7 B	NNNN	TGAAACAGGTGT	GGCGVACGGGTGMGTAA	B515R R1	N	TTACCGCGGCKGCTGGCAC
Silber_ExpNP2	Pro_Silber_Exp_NP2_A	B104F 8 A	NNNNN	GTCTCTCTTTCG	GGCGVACGGGTGMGTAA	B515R R2	NN	TTACCGCGGCKGCTGGCAC
Silber_ExpNP2	Pro_Silber_Exp_NP2_B	B104F 8 B	NNNNNN	GTTACATCTGTG	GGCGVACGGGTGMGTAA	B515R R2	NN	TTACCGCGGCKGCTGGCAC
Silber_ExpNP3	Pro_Silber_Exp_NP3_A	B104F 9 A	NNN	CTCCTCCTAGTG	GGCGVACGGGTGMGTAA	B515R R3	NNN	TTACCGCGGCKGCTGGCAC
Silber_ExpNP3	Pro_Silber_Exp_NP3_B	B104F 9 B	NNNN	TTCAAACTGGCG	GGCGVACGGGTGMGTAA	B515R R3	NNN	TTACCGCGGCKGCTGGCAC
Silber_ExpNO3_1	Pro_Silber_Exp_NO3_1_A	B104F 10 A	NNNNN	CGAGTTGGAGGT	GGCGVACGGGTGMGTAA	B515R R4	NNNN	TTACCGCGGCKGCTGGCAC
Silber_ExpNO3_1	Pro_Silber_Exp_NO3_1_B	B104F 10 B	NNNNNN	TCATACAGGCAA	GGCGVACGGGTGMGTAA	B515R R4	NNNN	TTACCGCGGCKGCTGGCAC
Silber_ExpNO3_2	Pro_Silber_Exp_NO3_2_A	B104F 11 A	NNN	GCGCCGCATATA	GGCGVACGGGTGMGTAA	B515R R5	NNNNN	TTACCGCGGCKGCTGGCAC
Silber_ExpNO3_2	Pro_Silber_Exp_NO3_2_B	B104F 11 B	NNNN	ACATGCAGCCAA	GGCGVACGGGTGMGTAA	B515R R5	NNNNN	TTACCGCGGCKGCTGGCAC
Silber_ExpNO3_3	Pro_Silber_Exp_NO3_3_A	B104F 12 A	NNNNN	ACCAGTTTCATA	GGCGVACGGGTGMGTAA	B515R R6	NNNNNN	TTACCGCGGCKGCTGGCAC
Silber_ExpNO3_3	Pro_Silber_Exp_NO3_3_B	B104F 12 B	NNNNNN	CATCTTACACAC	GGCGVACGGGTGMGTAA	B515R R6	NNNNNN	TTACCGCGGCKGCTGGCAC
Silber_ExpStart1	Euk_Silber_Exp_Start1_A	SSU 1 A	NNN	TAGAAGGAGCGC	GTACACACCGCCCGTC	ITS R1	N	GCTGCGTTCTTCATCGATGC
Silber_ExpStart1	Euk_Silber_Exp_Start1_B	SSU 1 B	NNNN	GAAACGAGTCAC	GTACACACCGCCCGTC	ITS R1	N	GCTGCGTTCTTCATCGATGC
Silber_ExpStart2	Euk_Silber_Exp_Start2_A	SSU 2 A	NNNNN	ACGAGTCACACA	GTACACACCGCCCGTC	ITS R2	NN	GCTGCGTTCTTCATCGATGC
Silber_ExpStart2	Euk_Silber_Exp_Start2_B	SSU 2 B	NNNNNN	GTTGCGTCTTAG	GTACACACCGCCCGTC	ITS R2	NN	GCTGCGTTCTTCATCGATGC
Silber_ExpStart3	Euk_Silber_Exp_Start3_A	SSU 3A	NNN	AAATGAAGCAAC	GTACACACCGCCCGTC	ITS R3	NNN	GCTGCGTTCTTCATCGATGC
Silber_ExpStart3	Euk_Silber_Exp_Start3_B	SSU 3B	NNNN	CCTGTAACACAA	GTACACACCGCCCGTC	ITS R3	NNN	GCTGCGTTCTTCATCGATGC
Silber_ExpKo1	Euk_Silber_Exp_Ko1_A	SSU 4 A	NNNNN	TCTGAAACGCAA	GTACACACCGCCCGTC	ITS R4	NNNN	GCTGCGTTCTTCATCGATGC
Silber_ExpKo1	Euk_Silber_Exp_Ko1_B	SSU 4 B	NNNNNN	TACCATTTGCTC	GTACACACCGCCCGTC	ITS R4	NNNN	GCTGCGTTCTTCATCGATGC
Silber_ExpKo2	Euk_Silber_Exp_Ko2_A	SSU 5 A	NNN	TCGGAACAGCCA	GTACACACCGCCCGTC	ITS R5	NNNNN	GCTGCGTTCTTCATCGATGC
Silber_ExpKo2	Euk_Silber_Exp_Ko2_B	SSU 5 B	NNNN	CGTGTTACAGAT	GTACACACCGCCCGTC	ITS R5	NNNNN	GCTGCGTTCTTCATCGATGC
Silber_ExpKo3	Euk_Silber_Exp_Ko3_A	SSU 6 A	NNNNN	GTCACACTTGCG	GTACACACCGCCCGTC	ITS R6	NNNNNN	GCTGCGTTCTTCATCGATGC
Silber_ExpKo3	Euk_Silber_Exp_Ko3_B	SSU 6 B	NNNNNN	GATGCCTCTAAC	GTACACACCGCCCGTC	ITS R6	NNNNNN	GCTGCGTTCTTCATCGATGC
Silber_ExpNP1	Euk_Silber_Exp_NP1_A	SSU 7A	NNN	CGGGTTCAAGCT	GTACACACCGCCCGTC	ITSR1	N	GCTGCGTTCTTCATCGATGC
Silber_ExpNP1	Euk_Silber_Exp_NP1_B	SSU 7B	NNNN	TGAAACAGGTGT	GTACACACCGCCCGTC	ITSR1	N	GCTGCGTTCTTCATCGATGC
Silber_ExpNP2	Euk_Silber_Exp_NP2_A	SSU 8A	NNNNN	GTCTCTCTTTCG	GTACACACCGCCCGTC	ITS R2	NN	GCTGCGTTCTTCATCGATGC
Silber_ExpNP2	Euk_Silber_Exp_NP2_B	SSU 8B	NNNNNN	GTTACATCTGTG	GTACACACCGCCCGTC	ITS R2	NN	GCTGCGTTCTTCATCGATGC
Silber_ExpNP3	Euk_Silber_Exp_NP3_A	SSU 9A	NNN	CTCCTCCTAGTG	GTACACACCGCCCGTC	ITS R3	NNN	GCTGCGTTCTTCATCGATGC
Silber_ExpNP3	Euk_Silber_Exp_NP3_B	SSU 9B	NNNN	TTCAAACTGGCG	GTACACACCGCCCGTC	ITS R3	NNN	GCTGCGTTCTTCATCGATGC
Silber_ExpNO3_1	Euk_Silber_Exp_NO3_1_A	SSU 10 A	NNNNN	CGAGTTGGAGGT	GTACACACCGCCCGTC	ITS R4	NNNN	GCTGCGTTCTTCATCGATGC
Silber_ExpNO3_1	Euk_Silber_Exp_NO3_1_B	SSU 10 B	NNNNNN	TCATACAGGCAA	GTACACACCGCCCGTC	ITS R4	NNNN	GCTGCGTTCTTCATCGATGC
Silber_ExpNO3_2	Euk_Silber_Exp_NO3_2_A	SSU 11 A	NNN	GCGCCGCATATA	GTACACACCGCCCGTC	ITS R5	NNNNN	GCTGCGTTCTTCATCGATGC
Silber_ExpNO3_2	Euk_Silber_Exp_NO3_2_B	SSU 11 B	NNNN	ACATGCAGCCAA	GTACACACCGCCCGTC	ITS R5	NNNNN	GCTGCGTTCTTCATCGATGC
Silber_ExpNO3_3	Euk_Silber_Exp_NO3_3_A	SSU 12A	NNNNN	ACCAGTTTCATA	GTACACACCGCCCGTC	ITS R6	NNNNNN	GCTGCGTTCTTCATCGATGC

>sequence

x reduced quality at the end of a read → uncalled bases

>sequence

>quality

x reduced quality at the end of a read - uncalled bases

poly-N tail

The pipeline single-read mode poly-N trimming

>sequence

CTATCTCTGAAACGCAAGGCGAACGGGTGAGTAACACGGGTCATCNG...CCCTGCACTTTGGGATAAGCCTGGGAAACTG

>quality

x reduced quality at the end of a read → uncalled bases

x poly-N tailes are trimmed

>sequence

 ${\tt CTATCTCTGAAACGCAAGGCGAACGGGTGAGTAACACGGGTCATCNG}\dots {\tt CCCTGCACTTTGGGATAAGCCTGGGAAACTG} > {\tt quality}$

- x calculates for each sequence the mean Phread score (mPs)
- x determines the lowest Phread score for a base in the sequences (IPs)
- x if mPs \langle a given treshold OR IPs \langle a given treshold \rightarrow sequence is discarded
- x sequences are saved as fasta, quality values are no longer required

single-read mode

Probe	Probe_FWD	forward primer	poly_N	MID	specific_forward_primer	reverse_primer	poly N	specific_reverse_primer
Silber_ExpStart1	Pro_Silber_Exp_Start1_A	B104F 1 A	NNN	TAGAAGGAGCGC	GGCGVACGGGTGMGTAA	B515R R1	N	TTACCGCGGCKGCTGGCAC
Silber Exp. Start2	Pro Silber Exp Start2 A	B104F 2 A	NNNNN	ACGAGTCACACA	GGCGVACGGGTGMGTAA	B515R R2	NN	TTACCGCGGCKGCTGGCAC
Silber_ExpStart3	Pro_Silber_Exp_Start3_A	B104F 3 A	NNN	AAATGAAGCAAC	GGCGVACGGGTGMGTAA	B515R R3	NNN	TTACCGCGGCKGCTGGCAC
Silber_ExpStart3	Pro_Silber_Exp_Start3_B	B104F 3 B	NNNN	CCTGTAACACAA	GGCGVACGGGTGMGTAA	B515R R3	NNN	TTACCGCGGCKGCTGGCAC
Silber_ExpKo1	Pro_Silber_Exp_Ko1_A	B104F 4 A	NNNNN	TCTGAAACGCAA	GGCGVACGGGTGMGTAA	B515R R4	NNNN	TTACCGCGGCKGCTGGCAC
Silber_ExpKo1	Pro_Silber_Exp_Ko1_B	B104F 4 B	NNNNNN	TACCATTTGCTC	GGCGVACGGGTGMGTAA	B515R R4	NNNN	TTACCGCGGCKGCTGGCAC
Silber Exp. Ko2	Pro Silber Exp Ko2 A	B104F 13 A	NNN	GGTGCTACTGAT	GGCGVACGGGTGMGTAA	B515R R4	NNNNN	TTACCGCGGCKGCTGGCAC
Silber_ExpKo2	Pro_Silber_Exp_Ko2_B	B104F 5 B	NNNN	CGTGTTACAGAT	GGCGVACGGGTGMGTAA	B515R R5	NNNNN	TTACCGCGGCKGCTGGCAC

single-read mode

	Probe	Probe_FWD	forward primer	poly N	MID	specific forward primer	reverse_primer	poly N	specific reverse primer
	Silber_ExpStart1	Pro_Silber_Exp_Start1_A	B104F 1 A	NNN	TAGAAGGAGCGC	GGCGVACGGGTGMGTAA	B515R R1	N	TTACCGCGGCKGCTGGCAC
	Silber Exp. Start2	Pro Silber Exp Start2 A	B104F 2 A	NNNNN	ACGAGTCACACA	GGCGVACGGGTGMGTAA	B515R R2	NN	TTACCGCGGCKGCTGGCAC
	Silber_ExpStart3	Pro_Silber_Exp_Start3_A	B104F 3 A	NNN	AAATGAAGCAAC	GGCGVACGGGTGMGTAA	B515R R3	NNN	TTACCGCGGCKGCTGGCAC
_	Silher Exn Start3	Pro Silber Exp Start3 R	R104F 3 R	NNNN	CCTGTAACACAA	GGCGVACGGGTGMGTAA	R515R R3	NNN	TTACCGCGGCKGCTGGCAC
ı	Silber_ExpKo1	Pro_Silber_Exp_Ko1_A	B104F 4 A	NNNNN	TCTGAAACGCAA	GGCGVACGGGTGMGTAA	B515R R4	NNNN	TTACCGCGGCKGCTGGCAC
	Silber_ExpKo1	Pro_Silber_Exp_Ko1_B	B104F 4 B	MINIMININ	TACCATTTGCTC	GGCGVACGGGTGMGTAA	B515R R4	MINININ	TTACCGCGGCKGCTGGCAC
	Silber Exp. Ko2	Pro Silber Exp Ko2 A	B104F 13 A	NNN	GGTGCTACTGAT	GGCGVACGGGTGMGTAA	B515R R4	NNNNN	TTACCGCGGCKGCTGGCAC
	Silber_ExpKo2	Pro_Silber_Exp_Ko2_B	B104F 5 B	NNNN	CGTGTTACAGAT	GGCGVACGGGTGMGTAA	B515R R5	NNNNN	TTACCGCGGCKGCTGGCAC

- x poly-N + MID + primer: NNNNNTCTGAAACGCAAGGCGVACGGGTGMGTAA -> 34 n
- x looks for exact match in reads

single-read mode

	Probe Silber_ExpStart1	Probe_FWD Pro Silber Exp Start1 A	forward primer B104F 1 A	poly_N NNN	MID TAGAAGGAGCGC	specific_forward_primer GGCGVACGGGTGMGTAA	reverse_primer B515R R1	poly N N	specific_reverse_primer TTACCGCGGCKGCTGGCAC
	Silber Exp. Start2	Pro Silber Exp Start2 A	B104F 2 A	NNNNN	ACGAGTCACACA	GGCGVACGGGTGMGTAA	B515R R2	NN	TTACCGCGGCKGCTGGCAC
	Silber Exp. Start3	Pro Silber Exp Start3 A	B104F 3 A	NNN	AAATGAAGCAAC	GGCGVACGGGTGMGTAA	B515R R3	NNN	TTACCGCGGCKGCTGGCAC
_	Silber Exp. Start3	Pro Silher Exp Start3 R	R104F 3 R	NNNN	CCTGTAACACAA	GGCGVACGGGTGMGTAA	R515R R3	NNN	TTACCGCGGCKGCTGGCAC
I	Silber_ExpKo1	Pro_Silber_Exp_Ko1_A	B104F 4 A	NNNNN	TCTGAAACGCAA	GGCGVACGGGTGMGTAA	B515R R4	NNNN	TTACCGCGGCKGCTGGCAC
	Sliber_ExpR01	FT0_Slibel_Exp_R01_B	D1041 4 D	LALALALALALA	IACCATHOCIC	OOCOVACOOO I OMO I AA	DOION IN4	LALALALA	HACCOCOCKOCTOOCAC
	Silber Exp. Ko2	Pro Silber Exp Ko2 A	B104F 13 A	NNN	GGTGCTACTGAT	GGCGVACGGGTGMGTAA	B515R R4	NNNNN	TTACCGCGGCKGCTGGCAC
	Silber_ExpKo2	Pro_Silber_Exp_Ko2_B	B104F 5 B	NNNN	CGTGTTACAGAT	GGCGVACGGGTGMGTAA	B515R R5	NNNNN	TTACCGCGGCKGCTGGCAC

- x poly—N + MID + primer: NNNNNTCTGAAACGCAAGGCGVACGGGTGMGTAA → 34 n^d
- x looks for exact match in reads

width seq

300 AGTGATCTGAAACGCAAGGCCGGACGGTGAGTAATACATCGGAACGTACCTTATCGTGGGGGGATAACGCAGCGAAAGCTG...

MID

primer

single-read mode

	Probe	Probe_FWD	forward primer	poly_N	MID	specific_forward_primer	reverse_primer	poly N	specific_reverse_primer
	Silber_ExpStart1	Pro_Silber_Exp_Start1_A	B104F 1 A	NNN	TAGAAGGAGCGC	GGCGVACGGGTGMGTAA	B515R R1	N	TTACCGCGGCKGCTGGCAC
	Silber_ExpStart2	Pro_Silber_Exp_Start2_A	B104F 2 A	NNNNN	ACGAGTCACACA	GGCGVACGGGTGMGTAA	B515R R2	NN	TTACCGCGGCKGCTGGCAC
	Silber_ExpStart3	Pro_Silber_Exp_Start3_A	B104F 3 A	NNN	AAATGAAGCAAC	GGCGVACGGGTGMGTAA	B515R R3	NNN	TTACCGCGGCKGCTGGCAC
_	Silher Exp. Start3	Pro Silher Exp Start3 R	R104F 3 R	NNNN	CCTGTAACACAA	GGCGVACGGGTGMGTAA	R515R R3	NNN	TTACCGCGGCKGCTGGCAC
ı	Silber_ExpKo1	Pro_Silber_Exp_Ko1_A	B104F 4 A	NNNNN	TCTGAAACGCAA	GGCGVACGGGTGMGTAA	B515R R4	NNNN	TTACCGCGGCKGCTGGCAC
-	Silber_ExpKo1	Pro_Silber_Exp_Ko1_B	B104F 4 B	NININININ	TACCATTTOCTC	GGCGVACGGGTGMGTAA	B515R R4	MAIAIA	TTACCGCGGCKGCTGGCAC
	Silber Exp. Ko2	Pro Silber Exp Ko2 A	B104F 13 A	NNN	GGTGCTACTGAT	GGCGVACGGGTGMGTAA	B515R R4	NNNNN	TTACCGCGGCKGCTGGCAC
	Silber_ExpKo2	Pro_Silber_Exp_Ko2_B	B104F 5 B	NNNN	CGTGTTACAGAT	GGCGVACGGGTGMGTAA	B515R R5	NNNNN	TTACCGCGGCKGCTGGCAC

- x poly-N + MID + primer: NNNNNTCTGAAACGCAAGGCGVACGGGTGMGTAA → 34 nt
- x looks for exact match in reads

width seq

300 AGTGATCTGAAA<mark>CG</mark>CAAGGC<mark>GGACG</mark>GGT<mark>GAG</mark>TAATACATCGGAAC<mark>GT</mark>ACCTTA<mark>TC</mark>GTGGGGGATAACGCAGCGAAAGCTG...

poly-N MID primer

width seq 300 GGCCTTCTGAAACGCAAGGCGCACGGGTGAGTAACGCGTAAGAATCTAACTTCAGGACGGGGACAACAGTTGGAAACGAC...

poly-N MID primer

single-read mode

	Probe	Probe_FWD	forward primer	_	MID		reverse_primer	poly N	specific_reverse_primer
	Silber_ExpStart1	Pro_Silber_Exp_Start1_A	B104F 1 A	NNN	TAGAAGGAGCGC	GGCGVACGGGTGMGTAA	B515R R1	N	TTACCGCGGCKGCTGGCAC
	Silber_ExpStart2	Pro_Silber_Exp_Start2_A	B104F 2 A	NNNNN	ACGAGTCACACA	GGCGVACGGGTGMGTAA	B515R R2	NN	TTACCGCGGCKGCTGGCAC
	Silber_ExpStart3	Pro_Silber_Exp_Start3_A	B104F 3 A	NNN	AAATGAAGCAAC	GGCGVACGGGTGMGTAA	B515R R3	NNN	TTACCGCGGCKGCTGGCAC
_	Silher Exp. Start3	Pro Silher Exp Start3 R	R104F 3 R	NNNN	CCTGTAACACAA	GGCGVACGGGTGMGTAA	R515R R3	NNN	TTACCGCGGCKGCTGGCAC
	Silber_ExpKo1	Pro_Silber_Exp_Ko1_A	B104F 4 A	NNNNN	TCTGAAACGCAA	GGCGVACGGGTGMGTAA	B515R R4	NNNN	TTACCGCGGCKGCTGGCAC
-	Silber_ExpK01	Fro_Silber_Exp_Ko1_B	B104F 4 B	LALALALALALA	TACCATTIOCIC	OOCOVACOOO I OMO I AA	DOION NA	IAIAIAIA	HACCOCOCKOC I GOCAC
	Silber Exp. Ko2	Pro Silber Exp Ko2 A	B104F 13 A	NNN	GGTGCTACTGAT	GGCGVACGGGTGMGTAA	B515R R4	NNNNN	TTACCGCGGCKGCTGGCAC
	Silber_ExpKo2	Pro_Silber_Exp_Ko2_B	B104F 5 B	NNNN	CGTGTTACAGAT	GGCGVACGGGTGMGTAA	B515R R5	NNNNN	TTACCGCGGCKGCTGGCAC

- x poly-N + MID + primer: NNNNNTCTGAAACGCAAGGCGVACGGGTGMGTAA → 34 nt
- x looks for exact match in reads

width seq
300 GGCCTTCTGAAACGCAAGGCGCACGGGTGAGTAACGCGCGTAAGAATCTAACTTCAGGACGGGGACAACAGTTGGAAACGAC...

poly-N MID primer

single-read mode

Probe	Probe_FWD	forward primer	poly_N	MID	specific_forward_primer	reverse_primer	poly N	specific_reverse_primer
Silber_ExpStart1	Pro_Silber_Exp_Start1_A	B104F 1 A	NNN	TAGAAGGAGCGC	GGCGVACGGGTGMGTAA	B515R R1	N	TTACCGCGGCKGCTGGCAC
Silber_ExpStart2	Pro_Silber_Exp_Start2_A	B104F 2 A	NNNNN	ACGAGTCACACA	GGCGVACGGGTGMGTAA	B515R R2	NN	TTACCGCGGCKGCTGGCAC
Silber_ExpStart3	Pro_Silber_Exp_Start3_A	B104F 3 A	NNN	AAATGAAGCAAC	GGCGVACGGGTGMGTAA	B515R R3	NNN	TTACCGCGGCKGCTGGCAC
Silher Exp. Start3	Pro Silher Exp Start3 R	R104F 3 R	NNNN	CCTGTAACACAA	GGCGVACGGGTGMGTAA	R515R R3	NNN	TTACCGCGGCKGCTGGCAC
Silber_ExpKo1	Pro_Silber_Exp_Ko1_A	B104F 4 A	NNNNN	TCTGAAACGCAA	GGCGVACGGGTGMGTAA	B515R R4	NNNN	TTACCGCGGCKGCTGGCAC
Silber Exp. Ko1	Pro_Silber_Exp_Ko1_B	B104F 4 B	IMMINIMINI	TACCATHIGGIC	GGCGVACGGGTGMGTAA	BUIUN NA	MAINIA	TACCGCGGCKGCTGGCAC
Silber_ExpKo2	Pro_Silber_Exp_Ko2_A	B104F 13 A	NNN	GGTGCTACTGAT	GGCGVACGGGTGMGTAA	B515R R4	NNNNN	TTACCGCGGCKGCTGGCAC
Silber_ExpKo2	Pro_Silber_Exp_Ko2_B	B104F 5 B	NNNN	CGTGTTACAGAT	GGCGVACGGGTGMGTAA	B515R R5	NNNNN	TTACCGCGGCKGCTGGCAC

- x poly-N + MID + primer: NNNNNTCTGAAACGCAAGGCGVACGGGTGMGTAA \rightarrow 34 nt
- x looks for exact match in reads

width seq

266 TACATCGGAACGTACCTTATCGTGGGGGATAACGCAGCGAAAGCTG...

width seq

266 CGCGTAAGAATCTAACTTCAGGACGGGGACAACAGTTGGAAACGAC...

The pipeline paired-end mode poly-N trimming length filtering quality filtering removal PandaSeq Paired-eND Assembler for Illumina sequences Typical Scenario

Figure 1 Schematic of paired-end assembly. Typical scenario: forward and reverse reads are overlapped and the primer regions are removed to reconstruct the sequences. Highly overlapping scenario: for short templates, the overlapping region may include the primer regions.

Paired-eND Assembler for Illumina sequences

- x Three step process:
 - x locates sequencing primers
 - x identifies optimal overlap
- · Uses the Phred values to estimate the probabilities that
 - a) the true bases match, given the sequenced bases mismatch
 - b) the true bases match, given the sequenced bases match
 - c) the true bases match, given that one of the bases is uncalled

The pipeline paired-end mode poly-N trimming

length quality filtering

primer+MID removal

PandaSeq

Paired-eND Assembler for Illumina sequences

x Three step process:

- x locates sequencing primers
- x identifies optimal overlap

1 forward

 $c \in [1, \min(|F|, |R|)]$

c, the range of overlap is choosen to maximize:

$$\Pr[F, R|c] = \prod_{i=1...f} \Pr[F_i]$$

$$\cdot \prod_{i=1...c} \Pr[\hat{F}_{i+f} = \hat{R}_i]$$

$$\cdot \prod_{i=1...r} \Pr[R_{i+c}]$$

c+r

The pipeline paired-end mode poly-N trimming filtering filtering

PandaSeq

Paired-eND Assembler for Illumina sequences

- x Three step process:
 - x locates sequencing primers
 - x identifies optimal overlap
 - x reconstructs complete sequence
- unpaired regions are copied
- overlapping regions:
 - · quality score is corrected
 - if bases don't match, base with higher quality score is choosen
- · calculates an overall quality score
- · primer are removed

The pipeline paired-end mode

palved evid if

poly-N trimming lengt quality filtering primer+MID removal

PandaSeq

Paired-eND Assembler for Illumina sequences

- x Three (Four) step process:
 - x locates sequencing primers
 - x identifies optimal overlap
 - x reconstructs complete sequence
 - x rejects sequences based on user specified parameters
- · low quality score
- · length of assembled sequence
- · length of overlap
- presence of uncalled bases

The pipeline

x number of reads for each sequenced amplicon are counted

- * number of reads for each sequenced amplicon are counted
- x for single read mode, shorter reads are sorted to longer amplicons/OTUs

- x number of reads for each sequenced amplicon are counted
- x for single read mode, shorter reads are sorted to longer amplicons/OTUs

>Pro Silber Exp Ko1 A 1;size=16066;

CGCGTAAGAACTTACCTTTTGGTGTGGGATAACAGCTGGAAACGGCTGCTAATACCGCATAGTGCTGAGAAGCTAAAAGTGA
AAACTGCCAAGAGAGAGGCTTGCGTCTGATTAGCTAGTTGGTGGAGGGTAAAGGCTCCCCAAGGCGACGATCAGTAGCTGGT
CTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGAGGAATTTTCCACAAT
GGGCGAAAGCCTGATGGAGCAATACCGCGTGGAGGAAGACGGATCGTGGTCTGTAAACTCCTTTTCTTAGAGAAGACAACC
GACGGTATCTAAGGAATAAGCACCGGCTAACTCC

>Pro Silber Exp Ko1 A 2;size=3883;

>Pro_Silber_Exp_Ko1_A_3;size=3072;

The pipeline

- x uses uclust algorithm from usearch (in deterministic mode)
- x cluster is defined by one sequence, the centroid
- x Input amplicons are orderd by descending abundance

- x uses uclust algorithm from usearch (in deterministic mode)
- x cluster is defined by one sequence, the centroid
- x Input amplicons are orderd by descending abundance

The pipeline

x chimera: sequences that stem from 2+ original sequences
 x UCHIME - reference mode denovo mode

http://drive5.com/usearch/manual/uchime_algo.html Bioinformatics. Aug 15, 2011; 27(16): 2194–2200.

- x chimera: sequences that stem from 2+ original sequences
- x UCHIME reference mode denovo mode

x algorithm:

- query is devided into 4 chunks
- · each chunk is used to search a reference database
- 2 best candidate parents are identified, at least n times more abundant then query
- three—way multiple alignment is constructed
- · calculates a score h for the alignment
- if h is above a user specified treshold → query is classified as a chimera
- any sequence classified as non chimeric is added to the reference DB

http://drive5.com/usearch/manual/uchime_algo.html Bioinformatics. Aug 15, 2011; 27(16): 2194–2200.

The pipeline

The pipeline

one table with all samples is generated, sequences used as key values

one table with all samples is generated, sequences used as key values

x uses blast on local machine: Ncbi-blast-2.2.29+ blastn in megablast mode

x returns GI number of best hit

x GI number is converted to taxid

x taxid is used to recursively build the taxonomic lineage

Pro Silber #filename 200 # minlength 15 # basequality 25 # meanguality 100 #clustering nt # BLASTdb illumina # NGStype 8 # cores TRUE # pairedEnd R1# name extension 600 # max length TRUE # Forward TRUE # negative GIs 0.8 # threshold(pairedEnd=TRUE) 10 # minoverlap(pairedEnd=TRUE) 5 # mingual(pairedEnd=TRUE) TRUE # chimera removal 0.28 # minh(uchime denovo) 5 # mindiffs(uchime denovo) 1.5 # mindiv(uchime denovo) 12.0 # beta(weightOfNoVote) 2.0 # pseudo count 2 #abskew(uchime denovo) megablast # blastn task Xxx.fastq.gz

<dataname>.csv

