

Mehrteiliges zusammengesetztes Ventil
für eine Brennkraftmaschine

Die Erfindung betrifft ein mehrteiliges zusammengesetztes Ventil für eine Brennkraftmaschine nach dem Oberbegriff des Patentanspruchs 1.

5

In modernen Hochleistungsmotoren werden immer höhere Ansprüche an die hoch thermisch belasteten Auslassventile gestellt. Insbesondere der Ventilteller wird sehr hohen mechanischen und thermischen Belastungen unterzogen. Es wurde deshalb verschiedentlich bereits vorgeschlagen, den Ventilschaft und den Ventilteller aus unterschiedlichen Materialien herzustellen und beide zusammenzufügen. Hierbei kann der Ventilschaft aus einem duktilen Werkstoff hergestellt werden und der Ventilteller aus einem hochtemperaturbeständigen und verschleißfesten Werkstoff dargestellt werden.

Aus der US 881191 sind Ventile aus Metall bekannt, die aus geschmiedetem Metallschaft und gegossenem Ventilteller bestehen. Eine Ausführung sieht vor, den Schaft mit dem Teller einzugießen.

In der DE 100 29 299 C2 ist ein mehrteiliges zusammengesetztes Ventil für eine Brennkraftmaschine beschrieben, das wie bereits dargelegt, durch Fügen eines Ventilschaftes und eines Ventiltellers hergestellt ist. Diese Erfindung ist jedoch insbesondere darauf ausgerichtet, einen hohlen Ventilschaft zu verwenden, der beispielsweise durch Natrium kühlbar ist.

Ventilschaft und Ventilteller sind bei dieser Anordnung bevorzugt durch Laserschweißen oder durch Hartlöten aneinander gefügt. Bei diesem Verfahren müssen jedoch alle Einzelteile separat hergestellt werden und anschließend durch eine teilweise aufwändige Fügeeinrichtung aneinandergefügt werden.

Die Aufgabe der Erfindung besteht darin, ein mehrteiliges zusammengesetztes Ventil für eine Brennkraftmaschine bereitzustellen, das gegenüber dem Stand der Technik weniger Produktionsschritte und eine weniger aufwändige Produktionsanlage 10 erfordert.

Die Lösung der Aufgabe besteht in einem Ventil für eine Brennkraftmaschine mit den Merkmalen des Patentanspruchs 1.

Das mehrteilige zusammengesetzte Ventil für eine Brennkraftmaschine nach Patentanspruch 1 weist ein Ventilschaft und einen Ventilteller auf. Beide sind getrennt ausgestaltet und in einem Überdeckungsbereich aneinandergefügt. Die Erfindung 15 zeichnet sich dadurch aus, dass der Ventilschaft im Überdeckungsbereich zumindest teilweise mit mindestens einer Zwi- 20 schenschicht versehen ist, diese sowohl mit dem Ventilschaft als auch mit dem Ventilteller stoffschlüssig in Form einer chemischen Verbindung verbunden ist. Ferner ist der Ventil- 25 teller an den Ventilschaft angegossen.

Unter chemischer Verbindung wird hierbei eine stoffschlüssige Verbindung verstanden, wobei die Stoffe der verbundenen Schichten entweder durch Reaktion, durch Legierung oder durch 30 Diffusion miteinander verbunden sind. Eine derartige stoffschlüssige Verbindung kann auch durch reines Angießen des Ventiltellers an den Schaft erreicht werden. Das Anbindungsverhalten ist bei dieser Methode jedoch abhängig von den verwendeten Werkstoffen bisweilen unzureichend. Die erfindungs-

gemäß eingesetzte Zwischenschicht ist so ausgestaltet, dass sie sowohl mit dem Material des Ventilschaftes als auch mit dem Material des Ventiltellers stoffschlüssig in Verbindung steht. Somit ist eine feste Verbindung zwischen dem Ventilschaft und dem Ventilteller gewährleistet. Dadurch, dass der Ventilteller angegossen wird, ist ein aufwändiges Schweiß- und Lötverfahren nicht mehr nötig.

Je nach Beschaffenheit der Materialien von Ventilschaft und Ventilteller kann es bisweilen zweckmäßig sein, dass die Zwischenschicht in Form einer Gradientenschicht oder einer Mehrfachschicht ausgestaltet ist. Auf diese Weise werden die mechanischen Eigenschaften (z. B. Härte, E-Modul), die physikalischen Eigenschaften (z. B. Ausdehnungskoeffizient, Wärmeleitfähigkeit) und die chemischen Eigenschaften der einzelnen Teilbereiche, dem Ventilteller und dem Ventilschaft Rechnung getragen.

Zur Unterstützung der stoffschlüssigen Verbindung kann es zweckmäßig sein, dass zusätzlich eine formschlüssige Verbindung zwischen dem Ventilschaft und dem Ventilteller vorgesehen ist. Diese formschlüssige Verbindung kann beispielsweise in Form von makroskopischen Hinterschneidungen im Überdeckungsbereich ausgestaltet sein.

Ebenfalls kann es zweckmäßig sein, den Ventilschaft im Überdeckungsbereich zur Bildung von mikroskopischen Hinterschneidungen mechanisch oder chemisch aufzurauen. Unter mikroskopischen Hinterschneidungen werden hierbei mikroskopische Oberflächenvertiefungen die beispielsweise durch Materialabtrag oder Materialverdrängung eingebracht sind, verstanden. Das flüssige Material des angegossenen Ventiltellers setzt sich in diesen mikroskopischen Oberflächenvertiefungen ein, er-

starrt und bildet eine feste, verklammernde formschlüssige bzw. stoffschlüssige Verbindung.

In zweckmäßiger Weise wird die Zwischenschicht oder eine chemische Vorläuferschicht vor dem Angießen des Ventiltellers auf den Überdeckungsbereich des Ventilschaftes aufgebracht. Unter chemischer Vorläuferschicht wird hierbei eine Schicht verstanden, die während des Anschmelzens des Ventiltellers oder durch eine nachträgliche Wärmebehandlung ihre chemische Zusammensetzung mindestens teilweise verändert.

In einer Ausgestaltungsform der Erfindung besteht der Ventilteller aus einer Aluminium-Titanverbindung. Hierbei bietet sich in der Regel das stöchiometrische Titanaluminid (TiAl) an. Dieses Material besteht aus einer intermetallischen Verbindung aus Titan und Aluminium. Es ist ausgesprochen hochtemperaturbeständig und weist dabei eine hohe mechanische und tribologische Festigkeit auf.

Der Ventilschaft ist hingegen in vorteilhafter Weise aus einem Stahlwerkstoff hergestellt. Stahlwerkstoffe sind bekanntlich günstig und weisen eine vergleichsweise hohe Duktilität auf.

Die Zwischenschicht oder zumindest eine Lage der Zwischenschicht besteht in zweckmäßigerweise aus einer Legierung auf Silberbasis, Nickelbasis, Titanbasis, und / oder Kupferbasis. Derartige Legierungen eignen sich beispielsweise als Hartlote, sie können mit gängigen Beschichtungsverfahren auf den Ventilschaft leicht aufgebracht werden und bilden mit diesen an der Oberfläche eine Legierung, die nach dieser Erfindung als chemische Verbindung betrachtet wird.

Die mindestens eine Zwischenschicht oder die chemische Vorläuferschicht kann ebenfalls in zweckmäßigerweise auf der Basis eines Metalloxides bestehen. Dieses Metalloxid kann mit den Legierungselementen des Ventiltellers bei dessen

5 Anschmelzung eine Reaktion insbesondere eine Reduktionsreaktion eingehen, die zu einer festen chemischen Verbindung zwischen dem Ventilteller und dem Metalloxid der Zwischenschicht führen.

10 Es kann zweckmäßig sein, dass die Zwischenschicht oder die chemische Vorläuferschicht vor dem Angießen des Ventiltellers eine offene Porosität aufweist. Diese offene Porosität beträgt zwischen 1% und 75%. Bevorzugt beträgt diese Porosität zwischen 5 % und 25 % und zwischen 30% und 60%. Hierbei kann

15 in vorteilhafter Weise das flüssige Metall, das später den Ventilteller bildet, in die Porosität der Zwischenschicht eindringen und mit dieser oberflächennah reagieren. Durch die Einbringung der Porosität wird die Oberfläche, die zur Verbindung zwischen dem Ventilteller und der Zwischenschicht zur

20 Verfügung steht, erhöht. Gleichzeitig kann es zweckmäßig sein, die Oberfläche der Zwischenschicht analog der Oberfläche des Ventilschaftes mit mikroskopischen Hinterschneidungen durch mechanische oder chemische Bearbeitung zu versehen.

25 Die Erfindung wird nachfolgend anhand einiger ausgewählter Ausführungsbeispiele im Zusammenhang mit den beiliegenden Zeichnungen näher beschrieben und erläutert.

Dabei zeigen:

30

Fig. 1 einen Querschnitt durch ein Ventil mit einem Ventilschaft und einem angegossenen Ventilteller, die im Überdeckungsbereich eine Zwischenschicht aufweisen,

Fig. 2 einen Querschnitt durch ein Ventil mit einem Ventilschaft und einem angegossenen Ventilteller, die im Überdeckungsbereich eine Zwischenschicht aufweisen,

Fig. 3 eine Vergrößerung des Details III aus Figur 1 mit der schematischen Darstellung einer Zwischenschicht in Form einer Gradientenschicht und

Fig. 4 eine vergrößerte Darstellung des Details IV aus Figur 2, eine schematische Darstellung einer Zwischenschicht in Form einer Mehrfachschicht.

In Figur 1 ist schematisch ein Querschnitt durch ein Ventil 1 dargestellt, wobei das Ventil 1 einen Ventilschaft 2 und einen Ventilteller 4 aufweist. In einem Überdeckungsbereich 6 des Ventilschaftes 2 und des Ventiltellers 4 ist der Ventilschaft 2 mit ringförmigen Hinterschneidungen 14 versehen. Zudem weist der Ventilschaft 2 im Überdeckungsbereich 6 eine Zwischenschicht 8 auf.

Der Ventilteller 4 ist an dem Ventilschaft 2 angegossen. Im Übergangsbereich 6 sind der Ventilteller 4 und der Ventilschaft 2 über die Zwischenschicht 8 stoffschlüssig miteinander verbunden. Zur Unterstützung der stoffschlüssigen Verbindung über die Zwischenschicht 8 sind der Ventilteller 4 und der Ventilschaft 2 zudem formschlüssig durch die Hinterschneidungen 14 miteinander verbunden und somit zusätzlich gesichert.

In Figur 2 ist eine analoge Darstellung eines Ventils 1 mit einem Ventilschaft 2 und einem Ventilteller 4 dargestellt. Begrifflich gleiche Teile werden grundsätzlich mit denselben

Bezugszeichen versehen. Auch das Ventil 1 in Figur 2 weist eine Hinterschneidung 14 in Form einer Kugel oder eines Tropfens auf, die im Überdeckungsbereich 6 an den Ventilschaft 2 angebracht ist. Ebenfalls ist in dieser Ausgestaltungsform 5 eine Zwischenschicht 8 vorgesehen, die den Ventilteller 4 und den Ventilschaft 2 stoffschlüssig über chemische Verbindungen miteinander verbindet.

Das Einbringen von Hinterschneidungen 14, wie es in den Figuren 1 und 2 dargestellt ist, ist zur Gewährleistung einer optimalen Verbindung zwischen dem Ventilschaft 2 und dem Ventilteller 4 nicht unbedingt erforderlich jedoch bisweilen zweckmäßig. Bei den Hinterschneidungen 14 in den Figuren 1 und 2 handelt es sich lediglich um zwei willkürliche Beispiele. Es ist zudem denkbar, dass die Hinterschneidungen 14 beispielsweise in Form eines Gewindes in den Überdeckungsbereich 6 des Ventilschaftes 2 eingebracht werden. Hierbei sind alle Verfahren zweckmäßig, die gängigerweise zur Herstellung eines Gewindes angewendet werden. Weitere Formen der Hinterschneidungen 14 im Überdeckungsbereich 6 können Nuten, Riefen, Rillen, Kanäle oder Bohrungen sein.

Weiterhin ist es zweckmäßig, dass der Ventilschaft 2 im Überdeckungsbereich 6 mechanisch beispielsweise durch Sandstrahlen oder durch Kugelstrahlen behandelt wird. Dadurch wird die Oberflächenrauhigkeit im Überdeckungsbereich 6 erhöht, was das Aufbringen und das Haften der Zwischenschicht 8 verbessert.

30 Die Zwischenschicht 8 kann grundsätzlich aus einer oder mehreren Funktionsschichten bestehen. Dabei können wiederum grundsätzlich ein oder mehrere Aufbringungsverfahren für die einzelnen Lagen der Zwischenschicht 8 angewendet werden. Typische Aufbringungsverfahren sind beispielsweise thermische

Spritzverfahren wie Plasmaspritzen, Flammenspritzen, Lichtbogen- und Drahtspritzen oder kinetisches Kaltgaskompaktieren. Ferner können Dünnschichttechniken wie CVD, PVD oder Sputtern, Lackier- und Sprühverfahren oder galvanische Verfahren angewendet werden. Ferner ist das Aufbringen beispielsweise einer Metalllegierung durch ein Tauchbad oder durch eine Lötfolie, die weiter in einem Lötofen aufgeschmolzen wird, denkbar.

Als Materialien für die Beschichtung kommen zum einen hochtemperaturbeständige Metalllegierungen, insbesondere auf Silberbasis, Nickelbasis, Titanbasis, oder Kupferbasis in Frage. Derartige Legierungen können auch als Hartlote verwendet werden, werden jedoch in diesem Fall beispielsweise durch eine Dünnschichttechnik oder galvanische Technik oder durch ein Tauchbad beziehungsweise durch eine später aufgeschmolzene Folienbeschichtung auf den Überdeckungsbereich 6 aufgebracht. Derartige Legierungen bringen bei Aufbringung einer externen Energie mit der Oberfläche des Ventilschaftes 2 eine Legierung ein. Sie legieren demnach, was definitionsgemäß als chemische Verbindung betrachtet wird. Beim Anschmelzen des Ventiltellers 4 legieren diese Materialien wiederum mit dem Ventiltellermaterial, das in geschmolzener, zumindest jedoch in erweichter Form vorliegt und bilden somit wiederum eine chemische Verbindung in Form einer Legierung oder in Form intermetallischer Phasen.

Eine weitere Variante von Schichtmaterialien besteht in der Aufbringung von reaktiven Metallverbindungen beispielsweise Metalloxiden. Derartige Metalloxide können beispielsweise durch ein thermisches Spritzverfahren oder durch Lasersintern eines aufgebrachten keramischen Schlickers erzeugt werden. Derartige thermische Spritzverfahren sind produktionstechnisch besonders kostengünstig. Als Beispiel für ein geeignetes Metalloxid sei hierbei das Titanoxid (TiO_2) genannt. Bei

der Verwendung eines Ventiltellermaterials auf der Basis von TiAl geht das TiO_2 eine exotherme chemische Reaktion mit dem Aluminium der TiAl-Schmelze ein. Die chemische Reaktion läuft nach folgendem Schema ab:

5

Die angegebene Reaktionsgleichung ist stöchiometrisch nicht ausgeglichen. Es sei jedoch angemerkt, dass durch die chemische Reaktion der Schmelze Aluminium zur Bildung des Aluminiumoxides herangezogen wird. Zur Gewährleistung einer stöchiometrischen Zusammensetzung des Ventiltellers 4 auf der Basis $\text{Ti:AL} = 1:1$, ist es zweckmäßig der Schmelze überstöchiometrisch Aluminium zuzufügen.

15

Die Reaktionsprodukte Aluminiumoxid und Ti_aAl_b , die die Zwischenschicht 8 nach dieser Reaktion bilden, bilden eine homogene dichte Schicht, die chemisch mit dem Ventilteller 4 verbunden ist. Durch die exotherme Energie, die bei der genannten Reaktion frei wird, findet auch eine Oberflächenreaktion mit der Oberfläche des Ventilschaftes 2 statt. Das thermisch gespritzte bzw. lasergesinterte Metalloxid kann als chemische Vorläuferschicht zur Zwischenschicht 8 angesehen werden.

25 Die vorangegangenen Erläuterungen sollen lediglich ein Beispiel für ein Reaktionssystem darstellen, durch das eine chemisch gebundene Übergangsschicht 8 herstellbar ist. Grundsätzlich können alle weiteren Reaktionssysteme, die mit dem Schmelzmaterial des Ventiltellers 4 eine exotherme Reaktion eingehen, als Grundmaterial und chemische Vorläuferschicht der Übergangsschicht 8 angewendet werden. Hierzu zählen beispielsweise auch die Karbide, Nitride und Boride der Nebengruppenmetalle.

Grundsätzlich kann nach dem Angießen des Ventiltellers 4 an den Ventilschaft 2 eine weitere Wärmebehandlung folgen, die zur Unterstützung der Ausbildung einer chemischen Verbindung zwischen der Zwischenschicht 8 einerseits und dem Ventilteller 4 bzw. dem Ventilschaft 2 dienen kann.

Zur Gewährleistung eines Ausgleiches der unterschiedlichen physikalischen Werkstoffeigenschaften der Ventilschaftmaterialien und der Ventiltellermaterialien, kann es zweckmäßig 10 sein, eine Mehrfachschicht 12 (Fig. 4) oder eine Gradientenschicht 10 (Fig. 3) als Übergangsschicht 6 anzuwenden. Hierbei kann auf die bereits beschriebenen Grundprinzipien der Aufbringungsart der Schichtmaterialien und ihrer Reaktionsweisen beliebig zurückgegriffen werden. In den Figuren 3 und 15 4 sind exemplarische Beispiele für eine Gradientenschicht 10 beziehungsweise für eine Mehrfachschicht 12 angegeben.

In Figur 3 ist eine gradientenförmige Übergangsschicht 6 angegeben, die beispielsweise auf der Basis eines Hochtemperaturlates AgCu 13 basiert. Das Lotmaterial AgCu 13 wird in 20 Form eines Tauchbades auf dem Überdeckungsbereich 6 des Ventilschaftes 2 aufgebracht. Durch die Energie, die die flüssige Schmelze aufweist, kommt es zu einer chemischen Reaktion 25 in Form einer Legierung im Bereich 16. Es handelt sich hierbei um eine oberflächennahe Legierung des Stahles des Ventilschaftes 2 und des AgCu 13 Legierung. In Figur 3 ist dieser Bereich 16 durch zwei gestrichelte Linien eingegrenzt und schematisch durch einen abnehmenden Graubereich gekennzeichnet. Während des Anschmelzens des Ventiltellers 4 wird wie- 30 derum so viel Schmelzenergie aufgebracht, dass das AgCu 13 Schichtmaterial wiederum einer Legierung mit den TiAL Material des Ventiltellers 4 eingeht. Auch hier entsteht ein gradientenförmiger Übergangsbereich 16 in dem die einzelnen Legierungsbestandteile in Form von intermetallischen Phasen o-

der in Form von Legierung vorliegen. Als weiterer Schichtablauf folgt dann das Material des Ventiltellers 4 in Reinform.

Ein weiteres zweckmäßiges Legierungssystem besteht auf der

5 Basis von Nickel und weist beispielsweise eine folgende Zusammensetzung auf:

7 Gew. % Cr, 3 Gew. % Fe, 4,5 Gew. % Si, 3,2 Gew. % B sowie als Rest Nickel.

10

Der Chromgehalt dieser Legierung kann zwischen 7 Gew. % und 19 Gew. %, der Siliziumanteil kann zwischen 4,5 Gew. % und 7,5 Gew. % variieren.

15 Das Material wird bevorzugt in Form einer Folie aufgebracht und im Überdeckungsbereich 6 des Ventilschaftes 2 aufgeschmolzen.

20 Sollte eine chemische Verbindung des Schaftmaterials und des Tellermaterials durch eine Verbindungslegierung, wie sie beispielsweise in der Form AgCu 13 gegeben ist, nicht gewährleistet sein, so kann es zweckmäßig sein, analog der Figur 4 eine weitere Zusatzschicht 18 in Form einer thermischen Spritzschicht eines Titanoxides aufzubringen.

25

Die Zwischenschicht 8 aus Figur 4 ist in Form einer Mehrfachschicht 12 ausgestaltet. Hierbei wird analog der Figur 3 zunächst im Überdeckungsbereich 6 des Ventilschaftes 2 eine metallische Legierung, in diesem Fall durch galvanische Be-30 schichtung aufgebracht, auf die weiterhin durch ein thermisches Spritzverfahren, in diesem Fall durch ein Lichtbogendrahtspritzen eine Titanoxidschicht aufgebracht wird. Durch die galvanische Aufbringungsmethode bildet sich zwischen dem Material des Ventilschaftes 2 und dem galvanisch aufgebrach-

ten Legierungsmaterial 17 eine Legierung in Form einer festen chemischen Verbindung. Die thermische Spritzschicht 18, die im Wesentlichen aus einem Titanoxid besteht, weist eine Porosität auf, die eingestellt durch die Verfahrensparameter, 55% 5 beträgt. Beim Anschmelzen des Ventiltellers 4 wird das flüssige TiAl Material durch Kapillarkräfte in die Poren der porösen Schicht 18 eingesaugt, wobei es zu einer exothermen Reaktion nach der oben angegebenen Reaktionsgleichung kommt. Im Bereich der Schicht 18 bildet sich reaktionsbedingt ein Aluminiumoxid / TiAl Material aus, das in fester chemischer Verbindung mit dem TiAl Material des Ventiltellers 4 steht.

Die in Figur 4 dargestellte Zwischenschicht 8 stellt somit eine Kombination aus einer Mehrfachschicht 12 und einer Grav 15 dientenschicht 10 dar. Dieser komplexere Aufbau ist dazu geeignet, physikalische und mechanische Eigenschaften zwischen dem Ventilschaftmaterial und dem Ventiltellermaterial auszugleichen. Hierbei ist insbesondere der thermische Ausdehnungskoeffizient genannt. Aber auch elektro-chemische Eigenschaften können die Verwendung von mehreren Schichten notwendig machen. Durch das Aufbringen einer thermischen Spritzschicht kann zum Beispiel auch auf die Oberflächenstruktur der Schicht eingegangen werden. Durch Einstellen der Spritzparameter kann beispielsweise eine für das Anschmelzen des 20 Ventiltellers 4 geeignete raue Oberfläche eingestellt werden.

Patentansprüche

1. Mehrteiliges zusammengesetztes Ventil (1) für eine Brennkraftmaschine, wobei ein Ventilschaft (2) und ein Ventilteller (4) getrennt ausgestaltet sind und in einem Überdeckungsbereich (6) aneinandergefügt sind, wobei der Ventilteller (4) an den Ventilschaft (2) angegossen ist,
5 durch gekennzeichnet,
dass der Ventilschaft (2) im Überdeckungsbereich (6) zu-
mindest teilweise mit mindestens einer Zwischenschicht
10 (8) versehen ist, die sowohl mit dem Ventilschaft (2) und
dem Ventilteller (4) stoffschlüssig in Form einer chemi-
schen Verbindung verbunden ist.
2. Ventil nach Anspruch 1,
15 durch gekennzeichnet,
dass die Zwischenschicht (8) in Form einer Gradienten-
schicht (10) oder Mehrfachschicht (12) ausgestaltet ist.
3. Ventil nach Anspruch 1 oder 2,
20 durch gekennzeichnet,
dass der Ventilschaft (2) im Überdeckungsbereich (6)
makroskopische Hinterschneidungen (14) aufweist.
4. Ventil nach einem der Ansprüche 1 bis 3,
25 durch gekennzeichnet,
dass der Ventilschaft (2) im Überdeckungsbereich (6) zur
Bildung von mikroskopischen Hinterschneidungen (14) me-
chanisch oder chemisch aufgeraut ist.

5. Ventil nach einem der vorhergehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t,
dass sich die Zwischenschicht (8) oder eine chemische
Vorläuferschicht vor dem Angießen des Ventiltellers auf
den
Überdeckungsbereich (6) des Ventilschaftes (2) befindet.
10. Ventil nach einem der vorhergehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t,
dass der Ventilteller (4) aus einer Aluminium-Titan-
Verbindung besteht.
15. Ventil nach einem der vorhergehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t,
dass der Ventilschaft (2) aus einem Stahl-Werkstoff be-
steht.
20. Ventil nach einem der vorhergehenden Ansprüchen,
d a d u r c h g e k e n n z e i c h n e t,
dass die mindestens eine Zwischenschicht (8) eine Ag-
Basis-Legierung und/oder Ni-Basis-Legierung und/oder Ti-
Basis-Legierung und/oder Cu-Basis-Legierung umfasst.
25. Ventil nach einem der vorhergehenden Ansprüchen,
d a d u r c h g e k e n n z e i c h n e t,
dass die mindestens eine Zwischenschicht (8) auf der Ba-
sis eines Metalloxides besteht.
30. Ventil nach einem der vorhergehenden Ansprüchen,
d a d u r c h g e k e n n z e i c h n e t,
dass die Zwischenschicht (8) vor dem Angießen des Ventil-
tellers (4) eine offene Porosität zwischen 1 % und 75 %
aufweist.

Fig. 1

Fig. 2

2/2

Fig. 3

Fig. 4

INTERNATIONAL SEARCH REPORT

International Application No

.../EP2004/009171

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 F01L3/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 F01L . B23P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GB 08417 A A.D. 1914 (THE ENFIELD CYCLE COMPANY, LIMITED; FRANK WALKER SMITH) 1 April 1915 (1915-04-01) the whole document	1-3,7
A	EP 0 296 619 A1 (KAWASAKI JUKOGYO KABUSHIKI KAISHA) 28 December 1988 (1988-12-28) the whole document	1,6,7
A	US 5 525 374 A (RITLAND ET AL) 11 June 1996 (1996-06-11) the whole document	9,10

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the International search

31 January 2005

Date of mailing of the International search report

25/02/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Klinger, T

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/009171

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
GB 191408417	A	01-04-1915	NONE		
EP 0296619	A1	28-12-1988	JP	64003007 U	10-01-1989
			US	4834036 A	30-05-1989
US 5525374	A	11-06-1996	AU	2379895 A	23-10-1995
			DE	69527055 D1	18-07-2002
			DE	69527055 T2	20-11-2003
			EP	0753101 A1	15-01-1997
			WO	9527127 A1	12-10-1995
			AU	5131293 A	12-04-1994
			BR	9307067 A	29-06-1999
			CA	2145161 A1	31-03-1994
			EP	0662019 A1	12-07-1995
			JP	8501500 T	20-02-1996
			WO	9406585 A1	31-03-1994
			US	5503122 A	02-04-1996
			US	5700373 A	23-12-1997
			US	5676907 A	14-10-1997
			US	5626914 A	06-05-1997
			US	5614043 A	25-03-1997
			US	6338906 B1	15-01-2002
			US	5735332 A	07-04-1998
			US	2001044999 A1	29-11-2001
			US	6346317 B1	12-02-2002
			US	6143421 A	07-11-2000
			US	6247221 B1	19-06-2001

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 F01L3/O2

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 F01L B23P

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^o	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	GB 08417 A A.D. 1914 (THE ENFIELD CYCLE COMPANY, LIMITED; FRANK WALKER SMITH) 1. April 1915 (1915-04-01) das ganze Dokument	1-3,7
A	EP 0 296 619 A1 (KAWASAKI JUKOGYO KABUSHIKI KAISHA) 28. Dezember 1988 (1988-12-28) das ganze Dokument	1,6,7
A	US 5 525 374 A (RITLAND ET AL) 11. Juni 1996 (1996-06-11) das ganze Dokument	9,10

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung,

eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

31. Januar 2005

25/02/2005

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Bevollmächtigter Bediensteter

Klinger, T

