Opinion Mining and Sentiment Analysis: Latent Aspect Rating Analysis

Part 1

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Opinion Mining and Sentiment Analysis: Latent Aspect Rating Analysis

Motivation

Hotel XYX

How to infer aspect ratings?

Reviewer 1: ★★★★★

"Great location + spacious room = happy traveler"
Stayed for a weekend in July. Walked everywhere,
enjoyed the comfy bed and quiet hallways....

Reviewer 2: ★★★★ "Terrific service and gorgeous facility"

I stayed at the hotel wiht my young daughter for three nights June 17-20, 2010 and absolutely loved the hotel. The room was one of the nicest I've ever stayed in ...

Latent Aspect Rating Analysis [Wang et al. 10]

- Given a set of review articles about a topic with overall ratings
- Output
 - Major aspects commented on in the reviews
 - Ratings on each aspect
 - Relative weights placed on different aspects by reviewers
- Many applications
 - Opinion-based entity ranking
 - Aspect-level opinion summarization
 - Reviewer preference analysis
 - Personalized recommendation of products

— ...

Solving LARA in Two Stages

Aspect Segmentation

"A friend and I stayed at the Hotel ... The hotel was very nice. The location was amazing. We could walk almost anywhere, but ... far. The room was very **nicely appointed** and the **bed** was sooo **comfortable**. Even though the **bathroom door** did not close all the way, it was still pretty private. ... But what I liked best about the hotel was the staff. They were soooo nice and accommodating ..."

Observed

Latent Rating Regression [Wang et al. 10]

- Data: a set of review documents with overall ratings: C={(d, r_d)}
 - d is pre-segmented into k aspect segments
 - $-c_i(w,d)$ = count of word w in aspect segment i (zero if w didn't occur)
- Model: predict rating based on d: p(r_d | d)

Overall Rating = Weighted Average of Aspect Ratings

Multivariate Gaussian Prior

$$\sim N(\vec{\mu}, \Sigma)$$

$$\begin{aligned} r_{d} &\sim N(\sum_{i=1}^{k} \alpha_{i}(d) r_{i}(d), \underline{\delta^{2}}), & \overline{\alpha}(d) \\ r_{i}(d) &= \sum_{w \in V} c_{i}(w, d) \underline{\beta_{i, w}} & \overline{\beta_{i, w}} \in \Re \end{aligned}$$

Aspect-Specific Sentiment of w

Aspect Rating = Sum of sentiment weights of words in the aspect

Latent Rating Regression (cont.)

- Maximum Likelihood Estimate
 - Parameters: $\Lambda = (\{\beta_{i,w}\}, \bar{\mu}, \Sigma, \delta^2)$
 - ML estimate: $\Lambda^* = \arg \max_{\Lambda} \prod_{d \in C} p(r_d \mid d, \Lambda)$
- Aspect Rating for aspect i

$$r_{i}(d) = \sum_{w \in V} c_{i}(w, d)\beta_{i,w}$$

c_i(w,d)=0 for words not occurring in aspect segment i

• Aspect Weights: $\alpha_i(d)$ =weight on aspect i

$$\vec{\alpha}(d)^* = \arg\max_{\vec{\alpha}(d)} p(\vec{\alpha}(d) \mid \mu, \Sigma) p(r_d \mid d, \{\beta_{i,w}\}, \delta^2, \vec{\alpha}(d))$$

Maximum a Posteriori

Likelihood

Suggested Reading

 [Wang et al. 10] Hongning Wang, Yue Lu, and ChengXiang Zhai, Latent aspect rating analysis on review text data: a rating regression approach. In Proceedings of ACM KDD 2010, pp. 783-792, 2010. DOI=10.1145/1835804.1835903