DS.DM - przykładowe zadania sprawdzające

- Niech {{bcde}, {bcdf}, {bcef}, {bdef}, {cdef}} beda wszystkim czestymi zbiorami pozycji o długości 4. Które z poniższych zdań 1. jest (sa) prawdziwe?
 - a) {de} jest częsty
- b) być może $\{de\}$ jest częsty, ale nie jest to pewne
- c) {de} nie jest częsty f) {bcdef} nie jest częsty
- d) {bcdef} jest częsty e) być może {bcdef} jest częsty, ale nie jest to pewne
- 2. Rozważmy transakcyjny zbiór danych z tab. 1. Wyznacz wartości dla następujących miar:

TId	Pozycje
1	{abce}
2	{abdeh}
3	$\{abefh\}$
4	{bcefh}
5	{acde}
6	{abcdefh}
7	{aefh}
8	$\{bcefh\}$

Tab. 1. Transakcyjny zbiór danych

- wsparcie $sup(\{fh\} \rightarrow \{b\}) = 4$
- wsparcie względne $rSup(\{fh\}) = \frac{5/8}{8}$
- wsparcie względne $rSup(\{b\}) = \frac{6/8}{8}$
- zaufanie $conf(\{fh\} \rightarrow \{b\}) = \frac{4/5}{2}$
- lift $lift(\{fh\} \rightarrow \{b\}) = (4/5) : (6/8)$
- współczynnik pewności $cf(\{fh\} \to \{b\}) = \frac{(4/5 6/8)}{(1 6/8)}$
- współczynnik zależności $df(\{fh\} \rightarrow \{b\}) =$
- Czy $\{b\}$ zależy od $\{fh\}$?
- 3. Rozważ transakcyjny zbiór danych z tab. 1. Wyznacz zaufanie reguły z negacją: $\{e\} \rightarrow \{\bar{h}\}$: $conf(\{fh\} \rightarrow \{\bar{b}\}) = 1/5$
- 4. Rozważ transakcyjny zbiór danych z tab. 1. Które zbiory pozycji sa domknieciami zbioru $\{bfh\}$? $\gamma(\{bfh\}) = \{befh\}$
- Rozważ transakcyjny zbiór danych z tab. 1. Które zbiory pozycji są generatorami zbioru $\{bfh\}$? $G(\{bfh\}) = \{\{bf\}\}\}$ 5.
- Na podstawie reprezentacji opartej na częstych zbiorach zamkniętych (CR) z rys. 1, określ, czy {ach} jest zbiorem częstym. Jeśli 6. tak, określ jego wsparcie. Jeśli nie, podaj największą możliwą wartość wsparcia zbioru {ach}. Częsty, sup = 3
- Na podstawie reprezentacji opartej na generatorach (GR) z rys. 2, określ, czy {ach} jest zbiorem częstym. Jeśli tak, określ jego wsparcie. Jeśli nie, podaj największą możliwą wartość wsparcia zbioru $\{ach\}$. Częsty, sup = 2.

Rys. 1. CR: Częste zbiory zamknięte FC

Rys. 2. GR: Częste generator FG & negatywna granica Bd

- Dotyczy operatora pokrycia: Wyznacz liczbę reguł asocjacyjnych należących do pokrycia reguły: $\emptyset \rightarrow \{abcde\}$? $|C(\emptyset \rightarrow \{abcde\})| =$ 8.
- Rozważ reguły reprezentatywne RR z Tab. 2:

rule identifier	rule	support	confidence	• Które z tych reguł pokrywają regułę $\{ae\} \rightarrow \{b\}$? #1, #3
1	$\varnothing \rightarrow \{abe\} [4,4/5]$	4	4/5	De la companya del companya de la companya del companya de la comp
2	$\varnothing \rightarrow \{bcde\} [4,4/5]$	4	4/5	Podaj oszacowanie wsparcia i zaufania reguły
3	$\{a\} \rightarrow \{bcde\} [3,3/4]$	3	3/4	$\{ae\} \rightarrow \{b\}$ na podstawie wsparć i zaufań
4	$\{c\} \rightarrow \{abde\} [3,3/4]$	3	3/4	pokrywających ją reguł reprezentatywnych RR:
5	$\{d\} \rightarrow \{abce\} [3,3/4]$	3	3/4	support ≥ 4 , confidence $\geq 4/5$

Tab. 2. Reguly reprezentatywne RR

10. **Dotyczy algorytmu SPADE:** Poniżej zamieszczono listy identyfikatorów transakcji (tidlisty) wspierające wybrane sekwencje.

			<u>, </u>		 										
t<(0	c)(b)>		t<(c))(c)>		t<(b))(c)>		t<(c)	(bc)>	t<(c)>	t<(b)>	a)
Cid	TId		CId	TId		CId	TId		Cid	TId	Cid	TId	CId	TId	<(
1	10		1	10		1	10		1	10	1	10	1	10	b)
2	20		1	20		2	10		2	10	1	15	2	5	do
3	5		2	5		2	20		2	15	3	5	3	5	
4	5		2	10		3	5		3	20	3	55	3	15	c)
4	15		2	15		4	15		4	25	5	25	5	20	

) Jakie jest wsparcie sekwencji:

(c)(c) > ? 2

) Które tidlisty sa używane w SPADE lo utworzenia tidlisty t < (c)(b)(c) > ?

t < (c)(b) >, t < (c)(c) > *c) Utwórz t < (c)(b)(c) >:

11. Dotyczy algorytmu GSP (Generalized Sequential Patterns):

CId	TId	Items
1	1	<u>ac</u>
1	2	ab
1	5	<u>cdei</u>
1	8	fgh
1	9	gi

Niech windowSize = 2, minGap = 2, maxGap = 4.

Czy sekwencja danych klienta o identyfikatorze CId = 1 (zamieszczona w tabeli po lewej stronie) wspiera sekwencję kandydującą <(bc) (ci) (hi)>?

Tak

12. Dotyczy algorytmu DBSCAN:

Niech minPts = 4, a promień Eps = 1. Zaznacz na rysunku z lewej strony grupy i szum, które zostałyby wyznaczone przy użyciu algorytmu DBSCAN, przy założeniu, że zastosowano miarę odległości Euklidesowej (czyli, distance(P₁,P₂) = $[|x_1-x_2|^2+|y_1-y_2|^2]^{\frac{1}{2}}$).

Grupa 1 – zb. punktów w zielonym obszarze, grupa 2 – zb. punktów w żółtym obszarze, szum – zb. pozostałych punktów.

13. **Dotyczy użycia nierówności trójkata przy wyznaczaniu sąsiedztwa epsilonowego:** Niech D będzie zbiorem dwu-wymiarowych punktów jak w tab. 3, dla których wyznaczono ich odległości Euklidesowe do punktu referencyjnego r.

Tab. 3. Zbiór D dwu-wymiarowych punktów, uporządkowany względem ich odległości Euklidesowych do punktu referencyjnego r (wraz z informacją o tych odległościach)

point q	X	Y	distance(q,r)
K	0.9	0.0	0.9
L	1.0	1.5	1.9
G	0.0	2.4	2.4
Н	2.4	2.0	3.1
F	1.1	3.0	<mark>3.2</mark>
C	2.8	3.5	<mark>5.0</mark>
A	4.2	4.0	5.8
В	5.9	3.9	<mark>6.1</mark>

Załóżmy, że punkty w D są uporządkowane ze względu na ich odległości Euklidesowe – do punktu r. Niech Eps = 1.0, a A będzie punktem, którego otoczenie epsilonowe należy efektywnie wyznaczyć z użyciem własności nierówności trójkąta.

- Dla których punktów w zbiorze D trzeba wyznaczyć pesymistyczne oszacowanie ich odległości Euklidesowych do punktu A? B, C, F
- Dla których punktów w zbiorze D trzeba wyznaczyć ich rzeczywiste odległości Euklidesowe do punktu A? B, C

Tab. 4. Tablica decyzyjna

Car	Price	Mileage	Size	MaX-speed	d
#					
1	medium	medium	full	low	poor
2	high	high	full	low	poor
3	low	low	full	low	good
4	medium	medium	full	low	good
5	high	low	compact	high	excellent
6	high	low	full	high	excellent
7	low	low	full	low	excellent

Tab. 5. Tablica decyzyjna, zredukowana ze względu na obiekt klasyfikowany T

Car#	Price	Mileage	Size	MaX-	d	ocenaPrzyna-
				speed		leżności
1					poor	17
2	high	<mark>high</mark>			poor	<mark>/2</mark>
3					good	0/0
4					good	0/2
5	high		compact	high	excellent	
6	high			high	excellent	<mark>2/3</mark>
7					excellent	

- 14. **Dotyczy klasyfikacji leniwej z użyciem wzorców kontrastowych:** Niech d będzie atrybutem decyzyjnym w tabeli 4. Niech T będzie klasyfikowanym obiektem, o następujących wartościach atrybutów warunkowych: (high, high, compact, high).
- Podaj w tabeli 5 zawartość tej tablicy decyzyjnej po redukcji ze względu na obiekt T.
- W oparciu o tę zredukowaną tablicę decyzyjną wyznacz minimalne wzorce kontrastowe dla każdej z poniższych klas decyzyjnych: b)
 - poor: {Mileage_{high}}
 - good: <mark>brak</mark>
 - excellent: {Size_{compact}}, {MaX-Speed_{high}}
- c) Jaka jest wartość ocenyPrzynależności obiektu T do klasy decyzyjnej Decision= poor?
- d) Jaka jest wartość ocenyPrzynależności obiektu T do klasy decyzyjnej Decision= good?
- Jaka jest wartość ocenyPrzynależności obiektu T do klasy decyzyjnej Decision= excellent? e)
- Do której klasy decyzyjnej zostanie zaklasyfikowany obiekt T? excellent