Cryptography and Network Security

BLOCK CIPHER MODES OF OPERATION

Session Meta Data

Author	Dr T Sree Sharmila
Reviewer	
Version Number	1.0
Release Date	3 July 2018

Revision History

Revision Date	Details	Version no.
		1.0

- Introduction
- Modes of operations
 - Electronic Codebook Mode
 - Cipher block Chaining Mode
 - Cipher feedback mode
 - Output feedback Mode
 - Counter Mode
- Summary
- Test your understanding
- References

Introduction

- DES Modes of Operation
- Advantages & Limitations of different Modes
- The Five Different Modes are:
 - Electronic Codebook Mode
 - Cipher block Chaining Mode
 - Cipher feedback mode
 - Output feedback Mode
 - Counter Mode

- Introduction
- Modes of operations
 - Electronic Codebook Mode
 - Cipher block Chaining Mode
 - Cipher feedback mode
 - Output feedback Mode
 - Counter Mode
- Summary
- Test your understanding
- References

Modes of Operation

- block ciphers encrypt fixed size blocks
 - eg. DES encrypts 64-bit blocks with 56-bit key
- need some way to en/decrypt arbitrary amounts of data in practise
- ANSI X3.106-1983 Modes of Use (now FIPS 81) defines 4 possible modes
- subsequently 5 defined for AES & DES
- have block and stream modes

Modes of Operation

Block modes:

- Electronic Codebook Book (ECB)
 - Message is broken into independent blocks of 64 bits
- Cipher Block Chaining (CBC)
 - Message is broken in independent blocks of 64 bits, but next input depends of previous output
 - Ci= Ek (Pi⊕Ci-1), with C-1=IV

Modes of Operation

Stream Modes

- Cipher FeedBack (CFB)
 - The message is xored with the feedback of encrypting the previous block
 - $C_i = P_i \oplus E_k(C_{i-1})$, with $C_{-1} = IV$
- Output feedback
 - The feedback is independent of the message
 - $C_i = P_i \oplus E_k(O_{i-1})$, with $O_{-1} = IV$

- Introduction
- Modes of operations
 - Electronic Codebook Mode
 - Cipher block Chaining Mode
 - Cipher feedback mode
 - Output feedback Mode
 - Counter Mode
- Summary
- Test your understanding
- References

Electronic Codebook Book (ECB)

- message is broken into independent blocks which are encrypted
- each block is a value which is substituted, like a codebook, hence name
- each block is encoded independently of the other blocks

$$C_i = DES_{K1}(P_i)$$

uses: secure transmission of single values

Electronic Codebook Mode(ECB)

Advantages and Limitations of ECB

- message repetitions may show in ciphertext
 - if aligned with message block
 - particularly with data such graphics
 - or with messages that change very little, which become a code-book analysis problem
- weakness is due to the encrypted message blocks being independent
- main use is sending a few blocks of data

- Introduction
- Modes of operations
 - Electronic Codebook Mode
 - Cipher block Chaining Mode
 - Cipher feedback mode
 - Output feedback Mode
 - Counter Mode
- Summary
- Test your understanding
- References

Cipher Block Chaining (CBC)

- message is broken into blocks
- linked together in encryption operation
- each previous cipher blocks is chained with current plaintext block, hence name
- use Initial Vector (IV) to start process

$$C_i = DES_{K1}(P_i XOR C_{i-1})$$

 $C_{-1} = IV$

uses: bulk data encryption, authentication

Cipher Block Chaining (CBC)

Message Padding

- at end of message must handle a possible last short block
 - which is not as large as blocksize of cipher
 - pad either with known non-data value (eg nulls)
 - or pad last block along with count of pad size
 - eg. [b1 b2 b3 0 0 0 0 5]
 - means have 3 data bytes, then 5 bytes pad+count
 - this may require an extra entire block over those in message
- there are other, more esoteric modes, which avoid the need for an extra block

Advantages and Limitations of CBC

- a ciphertext block depends on all blocks before it
- any change to a block affects all following ciphertext blocks
- need Initialization Vector (IV)
 - which must be known to sender & receiver
 - if sent in clear, attacker can change bits of first block,
 and change IV to compensate
 - hence IV must either be a fixed value

- Introduction
- Modes of operations
 - Electronic Codebook Mode
 - Cipher block Chaining Mode
 - Cipher feedback mode
 - Output feedback Mode
 - Counter Mode
- Summary
- Test your understanding
- References

Cipher FeedBack (CFB)

- message is treated as a stream of bits
- added to the output of the block cipher
- result is feed back for next stage (hence name)
- standard allows any number of bit (1,8, 64 or 128 etc) to be feed back
 - denoted CFB-1, CFB-8, CFB-64, CFB-128 etc
- most efficient to use all bits in block (64 or 128)

$$C_i = P_i XOR DES_{K1}(C_{i-1})$$

 $C_{-1} = IV$

uses: stream data encryption, authentication

Cipher FeedBack (CFB)

Advantages and Limitations of CFB

- appropriate when data arrives in bits/bytes
- most common stream mode
- limitation is need to stall while do block encryption after every n-bits
- note that the block cipher is used in encryption mode at both ends
- errors propogate for several blocks after the error

- Introduction
- Modes of operations
 - Electronic Codebook Mode
 - Cipher block Chaining Mode
 - Cipher feedback mode
 - Output feedback Mode
 - Counter Mode
- Summary
- Test your understanding
- References

Output FeedBack (OFB)

- message is treated as a stream of bits
- output of cipher is added to message
- output is then feed back (hence name)
- feedback is independent of message
- can be computed in advance

$$C_i = P_i XOR O_i$$
 $O_i = DES_{K1}(O_{i-1})$
 $O_{-1} = IV$

uses: stream encryption on noisy channels

Output FeedBack (OFB)

Advantages and Limitations of OFB

- bit errors do not propagate
- more vulnerable to message stream modification
- a variation of a Vernam cipher
 - hence must never reuse the same sequence (key+IV)
- sender & receiver must remain in sync
- originally specified with m-bit feedback
- subsequent research has shown that only full block feedback (ie CFB-64 or CFB-128) should ever be used

- Introduction
- Modes of operations
 - Electronic Codebook Mode
 - Cipher block Chaining Mode
 - Cipher feedback mode
 - Output feedback Mode
 - Counter Mode
- Summary
- Test your understanding
- References

Counter (CTR)

- a "new" mode, though proposed early on
- similar to OFB but encrypts counter value rather than any feedback value
- must have a different key & counter value for every plaintext block (never reused)

$$C_i = P_i XOR O_i$$
 $O_i = DES_{K1}(i)$

uses: high-speed network encryptions

Counter (CTR)

Advantages and Limitations of CTR

- efficiency
 - can do parallel encryptions in h/w or s/w
 - can preprocess in advance of need
 - good for bursty high speed links
- random access to encrypted data blocks
- provable security (good as other modes)
- but must ensure never reuse key/counter values, otherwise could break (cf OFB)

- Introduction
- Modes of operations
 - Electronic Codebook Mode
 - Cipher block Chaining Mode
 - Cipher feedback mode
 - Output feedback Mode
 - Counter Mode
- Summary
- Test your understanding
- References

Summary

- Studied Five Different Modes of operation
 - Electronic Codebook Mode
 - Cipher block Chaining Mode
 - Cipher feedback mode
 - Output feedback Mode
 - Counter Mode

- Introduction
- Modes of operations
 - Electronic Codebook Mode
 - Cipher block Chaining Mode
 - Cipher feedback mode
 - Output feedback Mode
 - Counter Mode
- Summary
- Test your understanding
- References

Test your understanding

- 1. Explain different block cipher modes of operations.
- 2. What are the advantages and disadvantages of cipher block chaining mode?
- 3. List out the limitations of cipher feedback mode.

- Introduction
- Modes of operations
 - Electronic Codebook Mode
 - Cipher block Chaining Mode
 - Cipher feedback mode
 - Output feedback Mode
 - Counter Mode
- Summary
- Test your understanding
- References

References

- 1. William Stallings, Cryptography and Network Security, 6th Edition, Pearson Education, March 2013.
- 2. Charlie Kaufman, Radia Perlman and Mike Speciner, "Network Security", Prentice Hall of India, 2002.

