29th TJIMO

Alexandria, Virginia

Round: Individual

Problem 1. Compute $2^0 + 1 \cdot 7 + 2(0 \cdot 1 + 8)$.

Answer. 24

Solution. We follow the order of operations to obtain

$$2^{0} + 1 \cdot 7 + 2(0 \cdot 1 + 7) = 1 + 7 + 2(0 + 8)$$

$$= 8 + 2(7)$$

$$= 8 + 16$$

$$= 24.$$

Problem 2. NAME turned 14 years old in the year 2017. Determine in what year NAME's age will double.

Answer. 2031

Solution. NAME's age will double in 14 years, or in the year 2017 + 14 = 2031.

Problem 3. A fence encloses a square region with area 2025 ft². Compute the perimeter of the fence, in ft.

Answer. $\boxed{180}$ (ft)

Solution. The area of a square with side length s is s^2 , so the length of one side enclosed by the fence is $\sqrt{2025 \text{ ft}^2} = 45 \text{ ft}$. There are four sides, so the perimeter is four times the side length, which is $4 \cdot 45 \text{ ft} = \boxed{180} \text{ ft}$.

Problem 4. Today is Saturday, October 28, 2017. Determine the day of the week on which Halloween falls *next* year (October 31, 2018).

Answer. Wednesday

Solution. Since 2018 is not a leap year, October 28, 2018 is 365 days after October 28, 2017. As 365 = 7(52) + 1 is 1 more than a multiple of 7, October 28, 2018 will be one day after Saturday, or Sunday. October 31 is 3 more days later, which is Wednesday.

Problem 5. Compute the number of positive three-digit integers without leading zeros (so 042 does not count) that have either three even digits or three odd digits.

Answer. 225

Solution. If the number has three even digits, then the hundreds digit can be either 2, 4, 6, or 8, for 4 choices, and the tens and ones digit can each be any of 0, 2, 4, 6, 8, for 5 choices each. This gives $4 \cdot 5 \cdot 5 = 100$ integers for this case.

If the number has three odd digits, then each of the three digits can be any of 1, 3, 5, 7, or 9, for 5 choices each. This gives $5 \cdot 5 \cdot 5 = 125$ integers for this case.

29th TJIMO ALEXANDRIA, VIRGINIA

Round: Individual

In total, we have $100 + 125 = \boxed{225}$ such numbers.

Problem 6. There are 100 students at a math competition. Some teams consist of 5 students while others have 6 students. If there are a total of 18 teams, compute the number of teams with 6 students.

Answer. 10 (teams) Solution.

Problem 7. The STORE NAME store sells packs of 5 highlighters for \$3 and packs of 6 highlighters for \$3.50. Compute the maximum number of highlighters that may be purchased with \$41.

Answer. 70 (highlighters)

Solution. We compare the two deals by comparing the unit price per highlighter for each. The pack of 5 highlighters has a unit price of $\frac{\$3}{5 \text{ highlighters}} = \frac{36}{60}$ dollar per highlighter, while the pack of 6 highlighters has a unit price of $\frac{\$3.50}{6 \text{ highlighters}} = \frac{35}{60}$ dollar per highlighter, so the 6-pack is a better deal. Hence we should start by buying packs of 6 highlighters. However, once we buy 10 of these, we are left with \$41 - 10(\$3.50) = \$6. At this point, we can either buy one more 6-pack or two 5-packs. The latter option gives more highlighters, so we can buy a maximum of $10(6) + 2(5) = \boxed{70}$ highlighters.