

Departamento de Matemática

$2.^a$ Frequência de Análise Matemática I - 25/11/2017

Observações: Apresente todos os cálculos que efectuar e justifique todas as suas respostas. Resolva cada um dos grupos em folhas de teste separadas. Numere todas as folhas de teste que entregar: por exemplo, se entregar 3 folhas de teste, deve numerá-las como 1/3, 2/3 e 3/3.

Grupo I

1. Considere $f:D\subset\mathbb{R}\longrightarrow\mathbb{R}$ a função real de variável real definida por

$$f(x) = \frac{\pi}{2} - \arccos\left(\frac{x}{2}\right).$$

- a) Determine o domíno e os zeros de f.
- b) Estude a função f quanto à continuidade.
- c) Indique o contradomínio de f e diga, justificando, se a função tem máximo e/ou mínimo.
- d) Aplicando o teorema de Bolzano, mostre que $\exists c \in (-1,1) : f(c) = c$.

Grupo II

2. Seja $b \in \mathbb{R}$ e $f : \mathbb{R} \longrightarrow \mathbb{R}$ uma função real de variável real definida por

$$f(x) = \begin{cases} arctg(bx) & \text{se } x < 0, \\ 2xe^{-x} & \text{se } x \ge 0. \end{cases}$$

a) Determine o valor de b por forma a que f seja diferenciável em zero.

- b) Estude f quanto à diferenciabilidade e indique a sua função derivada.
- c) Calcule $\lim_{x \to +\infty} f(x)$ e $\lim_{x \to -\infty} f(x)$.
- d) Determine, caso existam, os intervalos de monotonia e os extremos locais de f.

Grupo III

3. Considere que um ponto móvel se movimenta sobre uma recta. Suponha que a lei dos espaços x(t) é derivável, que a velocidade $v(t) = \frac{dx}{dt}$ também é derivável: $a(t) = \frac{dv}{dt}$ é a aceleração.

Suponha que num instante inicial t_1 um móvel está na posição $x(t_1)$ em repouso, isto é, $v(t_1) = 0$. Suponha ainda que num instante posterior, t_2 , o móvel volta à mesma posição, ou seja, que $x(t_1) = x(t_2)$.

Prove que existe um instante τ , com $t_1 < \tau < t_2$, em que a aceleração é nula, isto é, $a(\tau) = 0$.

- **4.** a) Calcule $\lim_{t\to 1} \frac{\sqrt[3]{t-1}}{t-1}$, fazendo a substituição $t=s^3$.
- b) Este limite é a derivada, em t=1, de uma função, qual? Verifique o resultado obtido na alíena anterior aplicando uma regra de derivação.

Grupo IV

- 5. Diga se a série $\sum_{n=1}^{+\infty} (-1)^n \frac{4^n}{8^n+1}$ é absolutamente convergente, simplesmente convergente ou divergente.
- **6**. Considere $\alpha \in \mathbb{R}^+$ e a série $\sum_{n=1}^{+\infty} (-1)^n \frac{1}{n^{\alpha}}$. Diga para que valores de α a série dada é:
 - a) Absolutamente convergente;
 - b) Simplemente convergente.

Nome:	
$N.^o$	Curso: