PHYSICS 3APHY and 3BPHY Formulae and Constants Sheet

Physics 3A/3B: Formulae and Constants Sheet

Forces and Motion

Mean velocity $v_{av} = \frac{s}{t} = \frac{v + u}{2}$

Equations of motion $a = \frac{\Delta v}{\Delta t} \; ; \quad s = ut + \frac{1}{2}at^2 \; ; \quad v^2 = u^2 + 2as \; ; \quad v = u + at$

Force F = ma

Weight force F = mg

Momentum p = mv

Change in momentum (impulse) $F\Delta t = mv - mu$

Kinetic energy $E_k = \frac{1}{2}mv^2$

Gravitational potential energy $E_p = mgh$

Work done $W = Fs = \Delta E$

Power $P = \frac{W}{t} = \frac{\Delta E}{t} = Fv_{av}$

Centripetal acceleration $a_c = \frac{V}{V}$

Centripetal force $F_c = ma_c = \frac{mv^2}{r}$

Newton's Law of Universal $F = G \frac{m_1 m_2}{r^2}$

Gravitational field strength $g = G \frac{M}{r^2}$

Moment of a force $\tau = rF$

PHYSICS EXAM

Electricity and Magnetism

Electric current
$$I = \frac{q}{t}$$

Electric field
$$E = \frac{F}{q} = \frac{V}{d}$$

Work and energy
$$W = qV = VIt$$

Ohm's Law
$$V = IR$$

Resistances in series
$$R_T = R_1 + R_2 + ...$$

Resistances in parallel
$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$$

Power
$$P=VI=I^2R=\frac{V^2}{R}$$

Magnetic flux
$$\Phi = BA$$

Electromagnetic induction
$$emf = -N \frac{\Delta \Phi}{\Delta t} \,, \; emf = \ell \, v \, B \label{eq:emf}$$

Magnetic force
$$F = I \, \ell B \ , \ F = q v B$$

Ideal transformer turns ratio
$$\frac{V_s}{V_p} = \frac{N}{N}$$

Particles and waves

Energy of photon
$$E = hf$$

Energy transitions
$$E_2 - E_1 = hf$$

Wave period
$$T = \frac{1}{f}$$

Wave equation
$$v_{\text{wave}} = f\lambda$$

Internodal distance
$$d = \frac{1}{2}\lambda$$

Absolute refractive index
$$n_x = \frac{c}{c_x}$$

Snell's Law
$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Physical Constants

Speed of light in vacuum or airc	$= 3.00 \times 10^8 \mathrm{m s^{-1}}$
Electron chargee	$=-1.60 \times 10^{-19} \text{ C}$
Mass of electronme	$= 9.11 \times 10^{-31} \text{ kg}$
Planck's constanth	$= 6.63 \times 10^{-34} \mathrm{J s}$
Universal gravitational constantG	$= 6.67 \times 10^{-11} \mathrm{N m^2 kg^{-2}}$
Electron volt	$= 1.60 \times 10^{-19} J$
Mass of protonm _p	$= 1.67 \times 10^{-27} \text{ kg}$
Mass of alpha m_{α}	$= 6.65 \times 10^{-27} \text{ kg}$

3

Physical Data

Physical Data		
Mean acceleration due to gravity on Earth	g	$= 9.80 \mathrm{m s^{-2}}$
Mean acceleration due to gravity on the Moon	g _M	$= 1.62 \mathrm{m s^{-2}}$
Mean radius of the Earth	R_{E}	$= 6.37 \times 10^6 \mathrm{m}$
Mass of the Earth	$M_{\rm E}$	$= 5.98 \times 10^{24} \mathrm{kg}$
Mean radius of the Sun	R_{S}	$= 6.96 \times 10^8 \mathrm{m}$
Mass of the Sun	M_{S}	$= 1.99 \times 10^{30} \mathrm{kg}$
Mean radius of the Moon	R_{M}	$= 1.74 \times 10^6 \mathrm{m}$
Mass of the Moon	M_{M}	$= 7.35 \times 10^{22} \mathrm{kg}$
Mean Earth-Moon distance		$3.84 \times 10^8 \mathrm{m}$
Mean Earth-Sun distance		1.50 x 10 ¹¹ m
Tonne	1 tonne	$=10^3 \text{ kg} = 10^6 \text{ g}$

Note: 1. Shaded areas represent regions of overlap.

2. Gamma rays and X-rays occupy a common region.

PHYSICS EXAM

4 FORMULAE AND CONSTANTS SHEET

Prefixes of the Metric System

Factor	Prefix	Symbol	Factor	Prefix	Symbol
10 ¹²	tera	T	10^{-3}	milli	m
10^{9}	giga	G	10^{-6}	micro	μ
10^{6}	mega	M	10 ⁻⁹	nano	n
10^{3}	kilo	k	10^{-12}	pico	p

Mathematical expressions

Given
$$ax^2 + bx + c = 0$$
, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The following expressions apply to the triangle ABC as shown:

The following expressions apply to the right-angled triangle ABC as shown:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$b = \sqrt{a^2 + c^2 - 2ac\cos B}$$

$$\sin A = \frac{a}{c}$$

$$\cos A = \frac{b}{c}$$

$$\tan A = \frac{a}{b}$$