В данной задаче вам предстоит рассмотреть модель бареттера — электронного устройства, используемого для стабилизации тока. Рассматриваемый бареттер представляет собой заполненный водородом

стеклянный баллон, внутрь которого помещена тонкая железная проволока радиуса $r=5.00\cdot 10^{-5}\,$ м и длины $l=2.00\cdot 10^{-1}\,$ м. Водород обладает достаточной теплопроводностью, чтобы отводить теплоту, выделяющуюся при прохождении тока по проволоке, к стенкам баллона и затем в окружающую среду. Температура водорода у стенок баллона постоянна и равна $t_0=0$ °C. Количество теплоты, которое предается с единицы площади поверхности проволоки в единицу времени, определяется законом Ньютона-Рихмана

$$q = \alpha(t - t_0), \tag{1}$$

где α — коэффициент теплоотдачи, t — температура поверхности проволоки, t_0 — температура стенок баллона, которая в нашем случае всегда равна нулю, поэтому можно использовать выражение $q = \alpha t$.

Удельное электрическое сопротивление металлов возрастает при увеличении температуры t по закону

$$\rho = \rho_0 (1 + \gamma t), \tag{2}$$

где ρ_0 — удельное сопротивление металла при температуре 0°С, γ — температурный коэффициент сопротивления.

Этот закон является приближенным, справедливым в небольшом диапазоне температур. В реальности удельное сопротивление зависит от температуры более сложным образом. В Частях 1 и 2 задачи используйте приближенный закон (2), в Части 3 используйте приведенный там график зависимости реальной зависимости. Вам понадобятся следующие характеристики железа:

- 1) удельное сопротивление при 0°С $-\rho_0 = 8,57 \cdot 10^{-8}$ Ом · м;
- 2) температурный коэффициент сопротивления $\gamma = 6.06 \cdot 10^{-3} \, \text{°C}^{-1}$;
- 3) коэффициент теплоотдачи $\alpha = 50,0 \frac{BT}{M^2 \cdot n}$;
- 4) температура плавления $t_{nn} = 1538$ °С.

При решении данной задачи рекомендуется выполнять промежуточные численные расчеты некоторых параметров и использовать их в дальнейшем.

В задаче рассматривается стационарный режим работы бареттера, после установления теплового равновесия, поэтому рассчитывать временные характеристики процессов не требуется!

Введение. Характеристики бареттера.

- 0.1. Рассчитайте значение сопротивления проволоки бареттера R_0 при температуре 0° С. Запишите формулу зависимости сопротивления проволоки от температуры.
- 0.2. Покажите, что мощность теплоотдачи бареттера определяется формулой $P_{omd} = At$, рассчитайте значение коэффициента A.

Часть 1. Вольтамперная характеристика идеального бареттера

1.1. Получите зависимость температуры проволоки t от силы тока l через неё. Постройте схематический график этой зависимости.

1.2. Постройте вольтамперную характеристику (график зависимости силы тока I через проволоку от приложенного к ней напряжения U) рассматриваемого бареттера.

Этот график постройте на выданном вам бланке №1.

<u>Подсказка.</u> Выберите, какую зависимость легче анализировать: I(U) или U(I).

- 1.3. Найдите силу тока через бареттер и температуру проволоки при $U \to \infty$.
- 1.4. Найдите максимальное напряжение U_{max} , при котором может работать данный бареттер.
- 1.5. Покажите, что при малых напряжениях сила тока пропорциональна приложенному напряжению, определите коэффициент пропорциональности этой зависимости.

Часть 2. Вольтамперные характеристики цепей с бареттером.

- 2.1.Постройте вольтамперную характеристику цепи, состоящей из бареттера с подключенным к нему параллельно резистором с сопротивлением $R_1 = 10 \text{ Om}$.
- 2.2.Постройте вольтамперную характеристику цепи, состоящей из бареттера с подключенным к нему последовательно резистором с сопротивлением $R_1 = 10 \text{ Om}$. Эти графики так же постройте на Бланке №1.

Часть 3. Реальный бареттер

Реальный бареттер, в отличие от рассмотренной в данной задаче модели, не может стабилизировать ток при сколь угодно большом напряжении. Это объясняется тем, что при достаточно больших температурах зависимость сопротивления от температуры перестаёт быть линейной. Реальная зависимость $\rho(t)$ для железа приведена на бланке №2 (пунктиром показана использованная ранее приближенная зависимость).

Для удобства на том же бланке приведена таблица зависимости удельного сопротивления железа от температуры. В этой таблице есть свободные столбцы, в которых Вы можете привести результаты необходимых расчетов.

3.1. Используя приведенную реальную зависимость $\rho(t)$, постройте вольт амперную характеристику реального бареттера.

Построение проведите на Бланке №3.

- 3.2. Укажите на графике (и запишите численные значения в тетради) напряжение стабилизации \overline{U}_{cm} , при котором изменение силы тока ΔI минимально при изменении напряжения ΔU .
- 3.3. Укажите диапазон напряжений $\left[U_{cm.\min}, U_{cm.\max}\right]$ в котором бареттер стабилизирует силу тока в цепи. Необходимо, что бы в этом диапазоне сила тока изменялась не более, чем на 2,5%.

Не забудьте сдать выданные Вам бланки!

Бланки к задачам Бланк №1 К заданию 9-3 «Бареттер»

Бланк №2 к заданию 9-3 «Бареттер»

V10 , C				
	$\rho \cdot 10^6, O_M \cdot M$			
t,°C				
100	0,173			
200	0,257			
300	0,346			
400	0,446			
500	0,563			
600	0,695			
700	0,831			
800	0,951			
900	1,047			
1000	1,118			
1100	1,168			
1200	1,207			
1300	1,240			
1400	1,270			
1500	1,310			

Бланк №3 к заданию 9-3 «Бареттер»

