Describe all linear combination of

a)
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$

Because of [3] is the multiple

vector of [2], thus the combination

from
$$([\frac{1}{3}] + d[\frac{5}{9}])$$
 is a straight

b)
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$. The combination of two vectors above is

line while cnd EZ

$$C\begin{bmatrix}0\\0\end{bmatrix}+d\begin{bmatrix}2\\3\end{bmatrix}$$
. From the equation the combination of the two vectors can form a plane geometrical shape.

c)
$$\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$.

The combination from:

$$c\begin{bmatrix}2\\0\\0\end{bmatrix} \uparrow d\begin{bmatrix}2\\2\\2\end{bmatrix} + e\begin{bmatrix}2\\2\\3\end{bmatrix}$$
 can fill all of p^2

Compute utv tw and 2 u t 2 v t w.

How do you know u, v, w lic in a
plane?

In a plane
$$u=\begin{bmatrix}1\\2\\3\end{bmatrix}$$
, $v=\begin{bmatrix}-3\\1\\-2\end{bmatrix}$, $w=\begin{bmatrix}-2\\3\\-1\end{bmatrix}$

First, calculate utv+w.

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} -3 \\ 1 \\ -2 \end{bmatrix} + \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Nou, calculate 24+2V+W.

$$\begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} + \begin{bmatrix} -6 \\ 2 \\ -4 \end{bmatrix} + \begin{bmatrix} 4 \\ -6 \\ -2 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix}$$

Be cause of the solution is resulting the same value, hence u, v, s is in the same plane.

The other diagonal from V and w aside from (v+w) is (v-w). The some of two diagonal is:

V+w + v - w = 2V

If three corrers of a parallelogram are (1,1), (4,2), and (1,3), what are all three of the possible fourth corner? Draw two of them

10 = .> Point of the T+j in the cube is	·) (3e) - (2e) =
at (1,1,0).	e=1
Mt (111)0);	d = 2
·) Vector sum of i = (1,0,0) and	c = 3
j=(0,1,0) and k=(0,0,1) ic	,
·	Hence, all c,d,e can be found!
i+j+k= (1,1,1).	•
o) All point in the cube is:	
(0,0,0), (0,1,0), (0,0,0), (0,0,0)	
(0,0,1), (1,0,1), (1,1,1), (0,1,1)	
Tool The also feel to be a super	
The plane of all linear combination of $\bar{i} = (1,0,0)$ and $i+j(1,1,0)$ is	
express by following equation:	
Express 138 Johnson J. Change I.	
c [0] + d [1]	
[0]	
The plane shoud be in all R2. That	
nean it's only fill xy in the xgz	
Space	
316 For equation cut dutew=6	
while:	
$U = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, V = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}, W = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}, and$	
P = 0	
(0)	
We know:	
i)-c+2d-e=0	
ii) - d + 2e = 0	
iii) 2C - d = 1	
ii) - d = -2e	
·) - C + 2(2e) - e = 0	
- c + ue - e = 0	
(=90	