

Cayley-Hamilton Theorem states that a square matrix satisfies its own characteristic equation. Consider a matrix

$$A = \begin{bmatrix} -3 & 2 \\ -1 & 0 \end{bmatrix}$$

(A)
$$A+3I+2A^{-1}=0$$

(B)
$$A^2 + 2A + 2I = 0$$

(C)
$$(A+I)(A+2I)=0$$

(D)
$$\exp(A) = 0$$

Q.31
$$A^9$$
 equals

(A)
$$511 A + 510 I$$

(B)
$$309 A + 104 I$$

(C)
$$154 A + 155 I$$

(D)
$$\exp(9A)$$

Q.32 The matrix
$$A = \begin{bmatrix} \frac{3}{2} & 0 & \frac{1}{2} \\ 0 & -1 & 0 \\ \frac{1}{2} & 0 & \frac{3}{2} \end{bmatrix}$$
 has three distinct Eigen values and one of its Eigen vectors is $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. Which

one of the following can be another Eigen vector of A?

$$(A) \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$$

(B)
$$\begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

$$(C) \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 6 & 5 \\ -1 & 3 & 2 & -5 \\ 2 & 4 & 12 & 10 \\ 3 & -2 & 1 & -4 \end{bmatrix}$$
 is _____.

Q.34 Let N be a
$$3\times3$$
 matrix with real number entries. The matrix is such that $N^2 = 0$. The Eigen values of N are

(B)
$$0, 0, 1$$

Q.35 Let M be a real 4×4 matrix. Consider the following statements:

S1: *M* has 4 linearly independent eigenvectors.

S2: M has 4 distinct eigenvalues.

S3: *M* is non-singular (invertible) matrix.

Which one among the following is TRUE?

- (A) S1 implies S2
- (B) S1 implies S3
- (C) S2 implies S1
- (D) S3 implies S2
- The eigen values and the corresponding eigen vectors of a 2×2 matrix are given by

Eigen value	Eigen vector	
$\lambda_1 = 8$		sh Course
$\lambda_2 = 4$	$v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$	

The matrix is

$$(A) \begin{bmatrix} 6 & 2 \\ 2 & 6 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 4 & 6 \\ 6 & 4 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 4 & 6 \\ 6 & 4 \end{bmatrix}$$
 (C)
$$\begin{bmatrix} 2 & 4 \\ 4 & 2 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 4 & 8 \\ 8 & 4 \end{bmatrix}$$

Q.37 The system of equations

$$x + y + z = 6$$

$$x + 4y + 6z = 20$$

$$x+4y+\lambda z=\mu$$

has NO solution for values of λ and μ given by

(A)
$$\lambda = 6, \mu = 20$$

(B)
$$\lambda = 6$$
, $\mu \neq 20$

(C)
$$\lambda \neq 6$$
, $\mu = 20$

(D)
$$\lambda \neq 6$$
, $\mu \neq 20$

Q.38 The value of q for which the following set of linear algebraic equations

$$2x + 3y = 0$$

$$6x + qy = 0$$

can have non-trivial solution is

The matrix has $M = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ eigen values -3, -3, 5. An eigen vector corresponding to the

eigenvalue 5 is $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}^T$. One of the eigen vectors of the matrix M^3 is

(A)
$$\begin{bmatrix} 1 & 8 & -1 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}^{T}$$

(A)
$$\begin{bmatrix} 1 & 8 & -1 \end{bmatrix}^T$$
 (B) $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}^T$ (C) $\begin{bmatrix} 1 & \sqrt[3]{2} & -1 \end{bmatrix}^T$ (D) $\begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^T$

(D)
$$\begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^T$$

23=	1 9 60
	A= 1 b ca , factor of s
1	1 C al
	Sal R3 - R3 - R1 , R2 - 3 R2 - R1
	$A = 0 \ b-q \ c(a-b)$ $0 \ c-a \ b(a-c)$
	c-a b (a~c)
	A a+b Cabc Da+b+c

38 3	62 +4y=
	2 3 = 0
	29 - 18 = 0 $9 = 9$
39-5	[-2 · 2 - 3]
B	$M = 2 \qquad 1 \qquad -6 \qquad 5 \qquad \text{Eigen Value} = -3.35$ $2 \qquad 2 \qquad 3 \qquad $
	egen ve cour L1 2 -N
	So- (B) [1/2,-1]