1 Matrices y Sistemas lineales de ecuaciones

Sea $\mathcal{M}_{n\times m} = \mathcal{M}_{n\times m}(\mathbb{R})$ el espacio vectorial de las matrices reales con n filas y m columnas.

1.1 Operaciones elementales por filas

En una matriz, se consideran operaciones elementales por filas a las siguientes:

- 1. Intercambiar dos filas.
- 2. Multiplicar una fila por un número real no nulo.
- 3. Sustituir una fila por la suma de ella misma con el producto de otra por un número real.

Ejemplo

$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & 1 & 0 \end{pmatrix} \xrightarrow{f_1 \leftrightarrow f_3} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \\ 2 & 1 & 0 \end{pmatrix} \xrightarrow{2f_2 \to f_2} \begin{pmatrix} 0 & 1 & 0 \\ 2 & 4 & -2 \\ 2 & 1 & 0 \end{pmatrix} \xrightarrow{f_2 - f_3 \to f_2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 3 & -2 \\ 2 & 1 & 0 \end{pmatrix}$$

1.2 Matrices elementales

Se llaman matrices elementales a aquellas matrices cuadradas que resultan de aplicar una operación elemental a la matriz identidad.

Ejemplo

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{f_1 \leftrightarrow f_2} E = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} ; \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{-2f_3 \to f_3} E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{f_3 - 2f_2 \to f_3} E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix}$$

1.3 Relación entre operaciones y matrices elementales

El resultado de hacer una operación elemental a una matriz $A \in \mathcal{M}_{n \times m}$ coincide con el resultado de multiplicar la matriz elemental $E \in \mathcal{M}_{n \times n}$, asociada a dicha operación elemental, por A.

Ejemplo

$$A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 2 & -1 & 1 & 0 \\ 1 & 0 & 3 & -2 \end{pmatrix} \xrightarrow{f_2 - 2f_1 \to f_2} \begin{pmatrix} 1 & 2 & -1 & 1 \\ 0 & -5 & 3 & -2 \\ 1 & 0 & 3 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot A$$

$$A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 2 & -1 & 1 & 0 \\ 1 & 0 & 3 & -2 \end{pmatrix} \xrightarrow{f_1 \leftrightarrow f_3} \begin{pmatrix} 1 & 0 & 3 & -2 \\ 0 & -5 & 3 & -2 \\ 1 & 2 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot A$$

$$A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 2 & -1 & 1 & 0 \\ 1 & 0 & 3 & -2 \end{pmatrix} \xrightarrow{-f_3 \to f_3} \begin{pmatrix} 1 & 2 & -1 & 1 \\ 2 & -1 & 1 & 0 \\ -1 & 0 & -3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \cdot A$$

1.4 Formas escalonada y canónica de una matriz. Rango

Se llama **matriz escalonada o reducida** de $A \in \mathcal{M}_{n \times m}$ a cualquier matriz $A_r \in \mathcal{M}_{n \times m}$ que se obtiene a partir de A mediante operaciones elementales, y en la que el primer elemento no nulo de cada fila se encuentra a la derecha del primer elemento no nulo de la fila anterior. Las filas nulas, si las hay, en una matriz escalonada deben estar al final.

Se llama rango de A al número de filas no nulas de una matriz escalonada de A.

Se llama matriz canónica por filas de $A \in \mathcal{M}_{n \times m}$ a la matriz $A_c \in \mathcal{M}_{n \times m}$, que se obtiene a partir de A mediante operaciones elementales, en la que el primer elemento no nulo de cada fila es un uno, se encuentra a la derecha del primer elemento no nulo de la fila anterior, y por encima de él todos los elementos son nulos.

Observa que si B se obtiene a partir de $A \in \mathcal{M}_{n \times m}$ después de p operaciones elementales, entonces

$$B = E_p \cdot E_{p-1} \cdot \ldots \cdot E_2 \cdot E_1 \cdot A$$

donde E_i es la matriz elemental asociada a la operación *i*-ésima. Además, si $I \in \mathcal{M}_{n \times n}$ es la matriz identidad de orden n, se tiene que

$$(A \mid I) \xrightarrow{\text{operaciones elementales}} (B \mid E) \qquad \text{con} \qquad B = E \cdot A$$

donde $E = E_p \cdot E_{p-1} \cdot \ldots \cdot E_2 \cdot E_1$ se llama **matriz de paso** de A a B.

Ejemplo

Si se quiere hallar una matriz escalonada, y la matriz de paso asociada, de la matriz

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 2 & -1 & 3 & 1 & 3 \\ 1 & -1 & 2 & 1 & 1 \\ 1 & 1 & 0 & 0 & 2 \end{pmatrix}$$

se hacen las operaciones elementales necesarias adosándole la matriz identidad:

$$(A \,|\, I) = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 2 & -1 & 3 & 1 & 3 & 0 & 1 & 0 & 0 \\ 1 & -1 & 2 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{f_2 - 2f_1 \rightarrow f_2}_{f_3 - f_1 \rightarrow f_3}$$

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & -3 & 3 & -1 & 1 & -2 & 1 & 0 & 0 \\ 0 & -2 & 2 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{f_2 \leftrightarrow f_3}_{f_3} \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & -2 & 2 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{\frac{-1}{2}f_2 \rightarrow f_2}_{3f_2 - 2f_3 \rightarrow f_3} \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & -2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\frac{1}{2}f_3 \rightarrow f_3}_{2f_4 + f_3 \rightarrow f_4} \xrightarrow{2f_4 + f_3 \rightarrow f_4}_{2f_4 + f_3 \rightarrow f_4}$$

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1/2 & 0 & -1/2 & 0 \\ 0 & 0 & 0 & 1 & -1 & 1/2 & -1 & 3/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & -2 & 3 & 2 \end{pmatrix} = (A_r \mid E^r) \quad \text{con} \quad A_r = E^r \cdot A$$

Puesto que la matriz escalonada tiene tres filas no nulas, su rango es tres:

$$\operatorname{rg} A = 3$$

Para hallar la matriz canónica por filas, y la matriz de paso asociada, se continúan las operaciones elementales:

$$(A \mid I) \rightarrow (A_r \mid E) \xrightarrow{f_1 - f_2 \rightarrow f_1} \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 1/2 & 0 & 1/2 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1/2 & 0 & -1/2 & 0 \\ 0 & 0 & 0 & 1 & -1 & 1/2 & -1 & 3/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & -2 & 3 & 2 \end{pmatrix}$$

$$\xrightarrow{f_1 - f_3 \rightarrow f_1} \begin{pmatrix} 1 & 0 & 1 & 0 & 2 & 0 & 1/2 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1/2 & 0 & -1/2 & 0 \\ 0 & 0 & 0 & 1 & -1 & 1/2 & -1 & 3/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & -2 & 3 & 2 \end{pmatrix} = (A_e \mid E^e) \quad \text{con} \quad A_e = E^e \cdot A$$

1.5 Matriz inversa

Se llama **matriz inversa** de una matriz cuadrada $A \in \mathcal{M}_{n \times n}$ a otra matriz $A^{-1} \in \mathcal{M}_{n \times n}$ tal que

$$A \cdot A^{-1} = A^{-1} \cdot A = I$$

No todas las matrices cuadradas tienen inversa. Una matriz cuadrada A se llama **regular** si tiene matriz inversa, y se llama **singular** si no la tiene.

Es fácil observar que todas las matrices elementales tienen inversa:

- 1. La matriz inversa de la matriz elemental asociada a intercambiar dos filas es ella misma.
- 2. La matriz inversa de la matriz elemental asociada a multiplicar una fila por un número, distinto de cero, es la asociada a multiplicar la misma fila por su inverso.
- 3. La matriz inversa de la matriz elemental asociada a sustituir una fila por ella misma más otra multiplicada por un número es la asociada a la misma operación pero multiplicando la fila por el número opuesto.

Es conocido que la existencia de matriz inversa se puede caracterizar, en términos de determinantes, como

$$A \in \mathcal{M}_{n \times n}$$
 tiene inversa (es regular) $\iff |A| \neq 0$

También se puede caracterizar, en términos de operaciones elementales, por el siguiente teorema:

Teorema

Una matriz cuadrada es regular si y sólo si se puede reducir a la matriz identidad por operaciones elementales de filas.

Además, si

$$(A \mid I) \xrightarrow{\text{operaciones elementales}} (I \mid E) \qquad \text{con} \qquad I = E \cdot A$$

se tiene que $A^{-1} = E$.

Algoritmo para el cálculo de la matriz inversa

Para hallar la matriz inversa de una matriz cuadrada A se procede así:

- 1. Se considera la matriz $(A \mid I)$.
- 2. Se obtiene una forma escalonada $(A_r | E^r)$.
- 3. Si A_r tiene algún cero en la diagonal principal, entonces la matriz A es singular (**no es invertible**).
- 4. Si A_r no tiene ceros en la diagonal principal, entonces A es regular (es invertible) y se siguen haciendo operaciones elementales hasta llegar a $(I \mid E)$.
- 5. La matriz inversa es $A^{-1} = E$.

Ejemplo

Halla, si existe, la matriz inversa de:

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$(A \mid I) = \begin{pmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 2 & 1 & -1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{f_2 - 2f_1 \to f_2} \begin{pmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 3 & -3 & -2 & 1 & 0 \\ 0 & 2 & 0 & -1 & 0 & 1 \end{pmatrix} \xrightarrow{f_3 - 2f_2/3 \to f_3}$$

$$\begin{pmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & -2/3 & 1/3 & 0 \\ 0 & 0 & 2 & 1/3 & -2/3 & 1 \end{pmatrix} \xrightarrow{f_3/2 \to f_3} \begin{pmatrix} 1 & -1 & 0 & 5/6 & 1/3 & -1/2 \\ f_1 - f_3/2 \to f_1 \\ f_1 - f_3/2 \to f_1 \\ 0 & 0 & 1 & 1/6 & -1/3 & 1/2 \end{pmatrix}$$

$$\xrightarrow{f_1 + f_2 \to f_1} \begin{pmatrix} 1 & 0 & 0 & 1/3 & 1/3 & 0 \\ 0 & 1 & 0 & -1/2 & 0 & 1/2 \\ 0 & 0 & 1 & 1/6 & -1/3 & 1/2 \end{pmatrix} = (I \mid A^{-1})$$

de donde

$$A^{-1} = \begin{pmatrix} 1/3 & 1/3 & 0 \\ -1/2 & 0 & 1/2 \\ 1/6 & -1/3 & 1/2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 2 & 2 & 0 \\ -3 & 0 & 3 \\ 1 & -2 & 3 \end{pmatrix}$$

1.6 Sistemas lineales

Un sistema lineal de m ecuaciones con n incógnitas es

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

con $a_{ij}, b_i \in \mathbb{R}$, que se puede expresar en forma matricial como

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

o también como

$$A\mathbf{x} = \mathbf{b}$$
 con $A \in \mathcal{M}_{m \times n}, \mathbf{x} \in \mathcal{M}_{n \times 1}, \mathbf{y} \mathbf{b} \in \mathcal{M}_{m \times 1}$

Las matrices $A \in \mathcal{M}_{m \times n}$ y $\overline{A} = (A \mid \mathbf{b}) \in \mathcal{M}_{m \times (n+1)}$ se llaman, respectivamente, **matriz de coeficientes** y **matriz ampliada**. Cuando $\mathbf{b} = \mathbf{0}$ el **sistema** se llama **homogéneo**.

Se llama solución del sistema $A\mathbf{x} = \mathbf{b}$ a cualquier vector $\mathbf{x}^0 = (x_1^0, x_2^0, \dots, x_n^0)^t \in \mathcal{M}_{n \times 1}$ tal que $A\mathbf{x}^0 = \mathbf{b}$. Resolver un sistema es hallar todas sus soluciones.

Dos sistemas se llaman equivalentes si tienen las mismas soluciones.

Teorema

Si un sistema $A\mathbf{x} = \mathbf{b}$ tiene más de una solución entonces tiene infinitas soluciones.

Demostración: Si $\mathbf{x}^0, \mathbf{x}^1 \in \mathcal{M}_{n \times 1}$ son dos soluciones distintas del sistema, entonces, para cualesquiera $\alpha, \beta \in \mathbb{R}$ con $\alpha + \beta = 1$, se cumple que $\mathbf{x} = \alpha \mathbf{x}^0 + \beta \mathbf{x}^1 \in \mathcal{M}_{n \times 1}$ es también solución:

$$A\mathbf{x} = A(\alpha \mathbf{x}^0 + \beta \mathbf{x}^1) = \alpha A\mathbf{x}^0 + \beta A\mathbf{x}^1 = \alpha \mathbf{b} + \beta \mathbf{b} = (\alpha + \beta)\mathbf{b} = \mathbf{b}$$

Luego si el sistema tiene dos soluciones distintas, entonces tiene infinitas soluciones.

Clasificación de sistemas lineales

Según el número de soluciones, los sistemas se clasifican en

Sistema incompatible \iff No tiene soluciones
Sistema compatible determinado \iff Tiene solución única
Sistema compatible indeterminado \iff Tiene infinitas soluciones

Teorema

Si $(A' | \mathbf{b}')$ es la matriz que se obtiene después de aplicar un número finito de operaciones elementales a la matriz $(A | \mathbf{b})$, los sistemas $A\mathbf{x} = \mathbf{b}$ y $A'\mathbf{x} = \mathbf{b}'$ son equivalentes.

Demostración: Sea $(A' | \mathbf{b}') = E_r \cdot \ldots \cdot E_2 \cdot E_1 \cdot (A | \mathbf{b})$, es decir

$$A' = E_r \cdot \ldots \cdot E_2 \cdot E_1 \cdot A$$
 y $\mathbf{b}' = E_r \cdot \ldots \cdot E_2 \cdot E_1 \cdot \mathbf{b}$

Entonces:

$$\mathbf{x}^{0}$$
 es solución de $A'\mathbf{x} = \mathbf{b}' \iff A'\mathbf{x}^{0} = \mathbf{b}' \iff E_{r} \dots E_{2}E_{1}A\mathbf{x}^{0} = E_{r} \dots E_{2}E_{1}\mathbf{b}$
 $\iff E_{1}^{-1}E_{2}^{-1} \dots E_{r}^{-1}E_{r} \dots E_{2}E_{1}A\mathbf{x}^{0} = E_{1}^{-1}E_{2}^{-1} \dots E_{r}^{-1}E_{r} \dots E_{2}E_{1}\mathbf{b}$
 $\iff IA\mathbf{x}^{0} = I\mathbf{b} \iff A\mathbf{x}^{0} = \mathbf{b} \iff \mathbf{x}^{0} \text{ es solución de } A\mathbf{x} = \mathbf{b}$

Es decir, los sistemas $A\mathbf{x} = \mathbf{b}$ y $A'\mathbf{x} = \mathbf{b}'$ son equivalentes.

1.7 Método de Gauss

Todo sistema lineal $A\mathbf{x} = \mathbf{b}$ de n ecuaciones con n incógnitas y $|A| \neq 0$ (o rg A = n) es compatible determinado. Se puede resolver por el **método de Gauss**:

- 1. Se considera la matriz ampliada $(A \mid \mathbf{b})$.
- 2. Se obtiene una matriz escalonada $(A_r | \mathbf{b_r})$.
- 3. Se resuelve el sistema equivalente $A_r \mathbf{x} = \mathbf{b_r}$ por el método de ascenso.

Ejemplo

Para resolver el sistema

$$\begin{cases} x - y + z = 4 \\ 2x + y - z = -1 \\ x + 2y - z = -3 \end{cases}$$

por el método de Gauss, se procede así:

$$\begin{pmatrix} 1 & -1 & 1 & | & 4 \\ 2 & 1 & -1 & | & -1 \\ 1 & 2 & -1 & | & -3 \end{pmatrix} \xrightarrow{f_2 - 2f_1 \to f_2} \begin{pmatrix} 1 & -1 & 1 & | & 4 \\ 0 & 3 & -3 & | & -9 \\ 0 & 3 & -2 & | & -7 \end{pmatrix} \xrightarrow{f_3 - f_2 \to f_3} \begin{pmatrix} 1 & -1 & 1 & | & 4 \\ 0 & 1 & -1 & | & -3 \\ 0 & 0 & 1 & | & 2 \end{pmatrix}$$

y se resuelve, por el método de ascenso, el sistema equivalente:

$$\begin{cases} x - y + z = 4 \\ y - z = -3 \\ z = 2 \end{cases} \implies \begin{cases} x = 1 \\ y = -1 \\ z = 2 \end{cases}$$

1.8 Teorema de Rouché-Frobenius

Si $A\mathbf{x} = \mathbf{b}$ es un sistema de m ecuaciones con n incógnitas, entonces:

- 1. Si $\operatorname{rg} A \neq \operatorname{rg} (A \mid \mathbf{b})$, el sistema es incompatible.
- 2. Si $\operatorname{rg} A = \operatorname{rg} (A \mid \mathbf{b}) = n$, el sistema es compatible determinado.
- 3. Si rg $A = \text{rg}(A \mid \mathbf{b}) = k < n$, el sistema es compatible indeterminado, y su solución depende de n k parámetros.

1.9 Resolución de sistemas lineales por el método de Gauss

Para resolver el sistema lineal $A\mathbf{x} = \mathbf{b}$, de m ecuaciones con n incógnitas, se procede como sigue:

- 1. Se considera la matriz ampliada $(A \mid \mathbf{b})$.
- 2. Se obtiene una matriz escalonada $(A_r | \mathbf{b_r})$.
- 3. Entonces, se pueden presentar los siguientes casos:
 - (a) Si $\operatorname{rg} A_r \neq \operatorname{rg} (A_r | \mathbf{b_r})$, el sistema es incompatible. No hay soluciones.

- (b) Si $\operatorname{rg} A_r = \operatorname{rg} (A_r \mid \mathbf{b_r}) = n$, el sistema es compatible determinado. Sus única solución se obtiene resolviendo por el método de Gauss el sistema resultante después de eliminar las ecuaciones nulas (si las hay).
- (c) Si $\operatorname{rg} A_r = \operatorname{rg} (A_r | \mathbf{b_r}) = k < n$, el sistema es compatible indeterminado. Su solución se obtiene resolviendo por el método de ascenso el sistema que se obtiene al pasar al segundo miembro, como parámetros, las n-k incógnitas que no son comienzo (primer elemento no nulo) de alguna fila de A_r .

Ejemplo

Para resolver el sistema de 3 ecuaciones con 5 incógnitas:

$$\begin{cases} x_1 + x_2 + x_4 = -1 \\ x_1 + x_2 + x_3 + 2x_4 + x_5 = 0 \\ x_1 + x_2 + x_4 + x_5 = -1 \end{cases}$$

se obtiene, en primer lugar, la matriz reducida de la ampliada:

$$(A \mid \mathbf{b}) = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & -1 \\ 1 & 1 & 1 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & -1 \end{pmatrix} \xrightarrow{f_2 - f_1 \to f_2} \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} = (A_r \mid \mathbf{b_r})$$

Puesto que rg $A_r = \text{rg}(A_r \mid \mathbf{b_r}) = 3 < 5$ el sistema es compatible indeterminado. Sus soluciones se obtienen pasando al segundo miembro, como parámetros, las incógnitas que no son comienzo de alguna ecuación, $x_2 = \lambda$ y $x_4 = \mu$, y resolviendo el sistema resultante por el método de ascenso:

$$\begin{cases} x_1 & = -1 - \lambda - \mu \\ x_2 + x_5 = 1 - \mu \\ x_5 = 0 \end{cases} \implies \begin{cases} x_1 = -1 - \lambda - \mu \\ x_2 = \lambda \\ x_3 = 1 - \mu \\ x_4 = \mu \\ x_5 = 0 \end{cases}, \quad \lambda, \mu \in \mathbb{R}$$

1.10 Sistemas lineales homogéneos

Puesto que $\operatorname{rg} A = \operatorname{rg} (A \mid \mathbf{0})$, el sistema lineal homogéneo $A\mathbf{x} = \mathbf{0}$, de m ecuaciones con n incógnitas, siempre es compatible:

- 1. Si rg A = n, el sistema homogéneo es compatible determinado, y la única solución es la solución trivial $x_1 = x_2 = \ldots = x_n = 0$.
- 2. Si rg A = k < n, el sistema homogéneo es compatible indeterminado, y su solución depende de n k parámetros.

Ejemplo

Para resolver el sistema lineal homogéneo

$$\begin{cases} 2x + 3y - z = 0 \\ x - y + z = 0 \\ x + 9y - 5z = 0 \end{cases}$$

se calcula una matriz escalonada de la matriz de coeficientes (no es necesario considerar la columna de los términos independientes pues son siempre nulos):

$$\begin{pmatrix} 2 & 3 & -1 \\ 1 & -1 & 1 \\ 1 & 9 & -5 \end{pmatrix} \xrightarrow{f_1 \leftrightarrow f_2} \begin{pmatrix} 1 & -1 & 1 \\ 2 & 3 & -1 \\ 1 & 9 & -5 \end{pmatrix} \xrightarrow{f_2 - 2f_1 \to f_2} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 5 & -3 \\ 0 & 10 & -6 \end{pmatrix} \xrightarrow{f_3 - 2f_2 \to f_3} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 5 & -3 \\ 0 & 0 & 0 \end{pmatrix}$$

Puesto que rg A=2, el sistema es compatible indeterminado con solución dependiente de 3-2=1 parámetro. Pasando $x_3=\lambda$ al segundo miembro, y resolviendo el sistema resultante por el método de ascenso, se obtiene la solución:

$$\left\{ \begin{array}{c} x - y = -\lambda \\ 5y = 3\lambda \end{array} \right. \Longrightarrow \left\{ \begin{array}{c} x = \frac{-2\lambda}{5} \\ y = \frac{3\lambda}{5} \\ z = \lambda \end{array} \right. \Longrightarrow \left\{ \begin{array}{c} x = -2\lambda \\ y = 3\lambda \\ z = 5\lambda \end{array} \right. , \quad \lambda \in \mathbb{R}$$

1.11 Eliminación de parámetros

Eliminar parámetros en

$$\begin{cases} x_1 = b_1 + a_{11}\lambda_1 + a_{12}\lambda_2 + \dots + a_{1r}\lambda_r \\ x_2 = b_2 + a_{21}\lambda_1 + a_{22}\lambda_2 + \dots + a_{2r}\lambda_r \\ \vdots \\ x_n = b_n + a_{n1}\lambda_1 + a_{n2}\lambda_2 + \dots + a_{nr}\lambda_r \end{cases}$$

es equivalente a encontrar un sistema del que sea solución, y ésto es equivalente a obtener los valores (x_1, x_2, \dots, x_n) para los que el sistema

$$\begin{cases} a_{11}\lambda_1 + a_{12}\lambda_2 + \dots + a_{1r}\lambda_r = x_1 - b_1 \\ a_{21}\lambda_1 + a_{22}\lambda_2 + \dots + a_{2r}\lambda_r = x_2 - b_2 \\ \vdots \\ a_{n1}\lambda_1 + a_{n2}\lambda_2 + \dots + a_{nr}\lambda_r = x_n - b_n \end{cases}$$

es compatible, es decir que se verifica:

$$\operatorname{rg}\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1r} \\ a_{21} & a_{22} & \dots & a_{2r} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nr} \end{pmatrix} = \operatorname{rg}\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1r} & x_1 - b_1 \\ a_{21} & a_{22} & \dots & a_{2r} & x_2 - b_2 \\ \vdots & \vdots & & \vdots & \\ a_{n1} & a_{n2} & \dots & a_{nr} & x_n - b_n \end{pmatrix}$$

Ejemplo

Para eliminar los parámetros $a, b \in \mathbb{R}$ en la expresión:

$$\begin{cases} x_1 = a + 2b \\ x_2 = a - b \\ x_3 = 1 + b \\ x_4 = a + b - 1 \end{cases}$$

se impone la condición de que el sistema

$$\begin{cases} a + 2b = x_1 \\ a - b = x_2 \\ b = x_3 - 1 \\ a + b = x_4 + 1 \end{cases}$$

tiene solución (es compatible), para lo que se necesita que:

$$\operatorname{rg}\left(\begin{array}{ccc} 1 & 2\\ 1 & -1\\ 0 & 1\\ 1 & 1 \end{array}\right) = \operatorname{rg}\left(\begin{array}{ccc} 1 & 2\\ 1 & -1\\ 0 & 1\\ 1 & 1 \end{array}\right) x_{3} - 1\\ 1 & 1 & x_{4} + 1 \end{array}\right)$$

Para imponer esta condición, se busca una matriz escalonada de ambas matrices, lo que se hace simultáneamente considerando la segunda matriz:

$$\begin{pmatrix}
1 & 2 & x_1 \\
1 & -1 & x_2 \\
0 & 1 & x_3 - 1 \\
1 & 1 & x_4 + 1
\end{pmatrix}
\xrightarrow{f_2 - f_1 \to f_2 \atop f_4 - f_1 \to f_4}
\begin{pmatrix}
1 & 2 & x_1 \\
0 & -3 & x_2 - x_1 \\
0 & 1 & x_3 - 1 \\
0 & -1 & x_4 - x_1 + 1
\end{pmatrix}$$

$$\xrightarrow{3f_3 + f_2 \to f_3 \atop 3f_4 - f_2 \to f_4}
\begin{pmatrix}
1 & 2 & x_1 \\
0 & -3 & x_2 - x_1 \\
0 & -1 & x_4 - x_1 + 1
\end{pmatrix}$$

$$\xrightarrow{3f_3 + f_2 \to f_3 \atop 3f_4 - f_2 \to f_4}
\begin{pmatrix}
1 & 2 & x_1 \\
0 & -3 & x_2 - x_1 \\
0 & 0 & 3(x_3 - 1) + (x_2 - x_1) \\
0 & 0 & 3(x_4 - x_1 + 1) - (x_2 - x_1)
\end{pmatrix}$$

Para que las dos matrices tengan el mismo rango, es necesario que en la tercera columna los elementos de las filas tercera y cuarta sean nulos, es decir que:

$$\begin{cases} 3(x_3 - 1) + (x_2 - x_1) = 0 \\ 3(x_4 - x_1 + 1) - (x_2 - x_1) = 0 \end{cases}$$

con lo que se tiene la condición:

$$\begin{cases} x_1 - x_2 - 3x_3 = -3 \\ 2x_1 + x_2 - 3x_4 = 3 \end{cases}$$