Clase 7: Análisis Multivariado

Justo Andrés Manrique Urbina

5 de octubre de 2019

1. Análisis Multivariado

Problema: Dadas dos poblaciones con probabilidad π_1 y π_2 y un elemento $X_0=(X_1^0,X_2^0,\dots,X_p^0)$. ¿Dónde ubicarlo?

Criterio: Ubicarlo de tal manera que el costo esperado por mala ubicación fuera mínimo.

1.1. Teoría

$$(\mu_1 - \mu_2)^T \Sigma^{-1} x_0 * \frac{-1}{2} (\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 + \mu_2) \ge 0.$$
$$(x_1 - \bar{x})^T S^{-1} x_0 > \frac{1}{2} (\bar{X}_1 - \bar{X}_2)^T S^{-1} (\bar{X}_1 + \bar{X}_2)$$

2. Escalamiento Multidimensional

Según el profesor, se usa mucho en marketing. Se tienen muchos individuos $1, 2, \ldots, n$ y muchas mediciones de cada individuo $1, 2, \ldots, p$ Las redes neuronales convolucionales recorren la imagen en sub-matrices.z

2.1. Escalamiento Multidimensional No Métrico

Partimos de una matriz de distancias o similaridades. Esta matriz está compuesta por objetos, es decir las variables descriptivas de cada objeto ya han sido condensadas en esta matriz. Se hace el siguiente procedimiento:

- Se obtiene la matriz de similaridades. Solo con la escala ordinal.
- Se hace el ordenamiento $S_{i_1J_1} < \ldots < S_{i_nJ_n}$.