ASSIGNMENTS FOR FUNCTIONAL ANALYSIS

HAO XIAO

These assignments were arranged in Soochow's functional analysis class in Spring 2018, taught by Prof. Yisheng Huang. I live-TEXed them using sublime, and as such there may be typos; please send questions, comments, complaints, and corrections to xiaohao1096@163.com.

Contents

Sections		Page		
1.	Assignment #1: 3/21/2018		1	
2.	Assignment #2: 4/4/2018		5	
3.	Assignment #3: 4/18/2018		9	
4.	Assignment #4: 5/9/2018	1	14	
5.	Assignment #5: 5/23/2018	1	19	

1. Assignment #1: 3/21/2018

Exercise 1.1. Let $b \neq 0$. Prove that ||a + b|| = ||a|| + ||b|| iff there exists a real constant k > 0 such that a = kb.

Proof. From $||a+b||^2=(a+b)(\overline{a+b})=a\bar{a}+b\bar{b}+\bar{a}b+a\bar{b}=||a||^2+||b||^2+2\mathrm{Re}(\bar{a}b),$ it follows that $||a+b||=||a||+||b||\Leftrightarrow \mathrm{Re}(\bar{a}b)=||ab||.$ Since $b\neq 0$, put a/b=k and then $\mathrm{Re}(\bar{a}b)=||b||^2\mathrm{Re}(\bar{k})$ and $||ab||=||b||^2||k||.$ Now we see that $\mathrm{Re}(\bar{k})=||k||\geq 0$, which is equivalent to k is real and $k\geq 0$. Thus, the statement holds.

Exercise 1.2. Let $p \ge 1$. Prove that $(\sum_{k=1}^{n} ||a_k||)^p \le n^{p-1} \sum_{k=1}^{n} ||a_k||^p$.

Proof. The inequality is trivial for p = 1. When p > 1, use Hölder's inequality and we derive

$$\sum_{k=1}^{n} \|a_k\| = \sum_{k=1}^{n} 1 \cdot \|a_k\| \le \left(\sum_{k=1}^{n} 1^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}} \left(\sum_{k=1}^{n} \|a_k\|^p\right)^{\frac{1}{p}} = n^{\frac{p-1}{p}} \left(\sum_{k=1}^{n} \|a_k\|^p\right)^{\frac{1}{p}},$$

which is equivalent to $(\sum_{k=1}^{n} ||a_k||)^p \le n^{p-1} \sum_{k=1}^{n} ||a_k||^p$.

Exercise 1.3. In a metric space (X,d) prove that $|d(x,y) - d(x',y')| \le d(x,x') + d(y,y')$ holds for all $x, y, x', y' \in X$.

Proof. Since any metric satisfies triangle inequality, we have

$$|d(x,y) - d(x',y')| = |(d(x,y) + d(x',y)) - (d(x',y) + d(x',y'))|$$

$$\leq |d(x,y) + d(x',y)| + |d(x',y) + d(x',y')|$$

$$\leq |d(x,x')| + |d(y,y')|$$

$$= d(x,x') + d(y,y').$$

Exercise 1.4. Check whether the following functions ρ are metrics on the \mathbb{R} .

(a)
$$\rho(x,y) = (x-y)^2$$
. (b) $\rho(x,y) = \sqrt{|x-y|}$.

Solution. (a) Since $\rho(1,2) + \rho(2,3) = 2 < 4 = \rho(1,3)$, we know that $\rho(x,y) = (x-y)^2$ is not a metric on \mathbb{R} .

(b) It is obvious that for all x and y in \mathbb{R} , $\rho(x,y) \geq 0$ and $\rho(x,y) = 0$ iff x = y. Also, $\rho(x,y) + \rho(y,z) = \sqrt{|x-y|} + \sqrt{|y-z|} \geq \sqrt{|x-y|} + |y-z| + 2\sqrt{|x-y|}\sqrt{|y-z|} \geq \sqrt{|x-y|} + |y-z| \geq \sqrt{|x-y|} \geq \sqrt{|x-y|}$ is a metric on \mathbb{R} .

Exercise 1.5. Suppose that (X, d) is a metric space. Prove that each of the following functions ρ is a metric on the set X.

- (a) For every $x, y \in X$, $\rho(x, y) = \frac{d(x, y)}{1 + d(x, y)}$.
- (b) For every $x, y \in X$, $\rho(x, y) = \min\{1, d(x, y)\}$.

Proof. (a) It is obvious that for all x,y in X, $\rho(x,y) \geq 0$ and $\rho(x,y) = 0$ iff x = y. Since $\varphi(t) = \frac{t}{1+t}$ increases on $[0,+\infty)$, apply triangle inequality here and we derive $\rho(x,y) + \rho(y,z) = \frac{d(x,y)}{1+d(x,y)} + \frac{d(y,z)}{1+d(y,z)} \geq \frac{d(x,y)+d(y,z)}{1+d(x,y)+d(y,z)} \geq \frac{d(x,z)}{1+d(x,z)} = \rho(x,z)$ for all x,y,z in X. Thus, ρ is a metric on X.

(b) It is obvious that for all x, y in X, $\rho(x, y) \ge 0$ and $\rho(x, y) = 0$ iff x = y. For all $x, y, z \in X$, if $d(x, y) \ge 1$ or $d(y, z) \ge 1$, then

 $\rho(x,y) + \rho(y,z) = \min\{1,d(x,y)\} + \min\{1,d(y,z)\} \ge 1 \ge \min\{1,d(x,z)\} = \rho(x,z);$ if d(x,y) < 1 and d(y,z) < 1, then

$$\rho(x,y) + \rho(y,z) = d(x,y) + d(y,z) \ge d(x,z) \ge \min\{1, d(x,z)\} = \rho(x,z).$$

Hence, ρ is a metric on X.

Exercise 1.6. In a metric space (X,d), prove that $x_n \to x$ and $y_n \to y$ as $n \to \infty$ imply $d(x_n, y_n) \to d(x, y)$ as $n \to \infty$.

Proof. From Exercise 1.3, we know that $0 \le |d(x_n, y_n) - d(x, y)| \le d(x_n, x) + d(y_n, y)$ always holds. Since $x_n \to x$ and $y_n \to y$ as $n \to \infty$, $|d(x_n, y_n) - d(x, y)| \to 0$ as $n \to \infty$. Thus, $d(x_n, y_n) \to d(x, y)$ as $n \to \infty$.

Exercise 1.7. In a metric space (X,d), prove that if a Cauchy sequence has a convergent subsequence then the whole sequence is convergent.

Proof. Suppose $\{x_n\}_{n=1}^{\infty} \subset X$ is a Cauchy sequence and $\{x_{n_k}\}_{k=1}^{\infty} \subset \{x_n\}_{n=1}^{\infty}$ is a subsequence that converges to $x \in X$. Then for any $\varepsilon > 0$, there exists $K_1 > 0$ such that $d(x_n, x_{n_k}) < \varepsilon/2$ when $n, n_k > K_1$; there exists $K_2 > 0$ such that $d(x_{n_k}, x) < \varepsilon/2$ when $n_k > K_2$. Take $K = \max\{K_1, K_2\} > 0$ and then $0 \le d(x_n, x) \le d(x_n, x_{n_k}) + d(x_{n_k}, x) < \varepsilon/2 + \varepsilon/2 = \varepsilon$ when $n, n_k > K$. In brief, we see that for any $\varepsilon > 0$, there exists K > 0 such that $0 \le d(x_n, x) \le \varepsilon$ when n > K, that is, $x_n \to x$ $(n \to \infty)$, which implies that the whole sequence $\{x_n\}_{n=1}^{\infty}$ is convergent.

Exercise 1.8. In (X, d), let triangle inequality be replaced by the axiom $d(x, z) \le \max\{d(x, y), d(y, z)\}$, but keep the same definition of Cauchy sequence. Prove that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence iff $d(x_n, x_{n+1}) \to 0$ as $n \to \infty$.

Proof. \Rightarrow) If $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence, then it is obvious that $d(x_n, x_{n+1}) \to 0$ as $n \to \infty$ by definition.

 \Leftarrow) Since $d(x_n, x_{n+1}) \to 0$ as $n \to \infty$, for any $\varepsilon > 0$, there exists K > 0 such that $d(x_n, x_{n+1}) < \varepsilon$ when n > K. Then for m > n > K, we derive $0 \le d(x_n, x_m) \le \max\{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}), \cdots, d(x_{m-1}, x_m)\} = \max_{0 \le i \le m-n-1} d(x_{n+i}, x_{n+i+1})$ by the new axiom. Note that $d(x_{n+i}, x_{n+i+1}) < \varepsilon$ for all $0 \le i \le m-n-1$ and the index set $\{0, 1, \cdots, m-n-1\}$ is finite. Hence, $0 \le d(x_n, x_m) < \varepsilon$ when n, m > K and $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

Exercise 1.9. Let A and B be subsets of a metric space (X, d). Show that the following statements hold.

- (a) If $A \subset B$ then $A' \subset B'$, $A^{\circ} \subset B^{\circ}$ and $\bar{A} \subset \bar{B}$.
- (b) $(A \cup B)' \subset A' \cup B'$.
- (c) A is open iff $A = A^{\circ}$.
- (d) A is closed iff $A = \bar{A}$.

Proof. (a) If $x \in A'$, then $(B(x,\varepsilon) \setminus \{x\}) \cap A \neq \emptyset$ for all $\varepsilon > 0$. Since $A \subset B$, $(B(x,\varepsilon) \setminus \{x\}) \cap B \neq \emptyset$ for all $\varepsilon > 0$, which indicates that $x \in B'$. Thus, $A' \subset B'$ since x is arbitrary.

If $x \in A^{\circ}$, then there is some r > 0 such that $B(x,r) \subset A$. Since $A \subset B$, we have $B(x,r) \subset B$. Thus, $A^{\circ} \subset B^{\circ}$ since x is arbitrary.

If $A \subset B$, we now know that $\bar{A} = A \cup A' \subset B \cup B' \subset \bar{B}$, that is, $\bar{A} \subset \bar{B}$.

- (b) If $x \in A'$, then $(B(x,\varepsilon) \setminus \{x\}) \cap (A \cup B) \neq \emptyset$ for all $\varepsilon > 0$. Then at least one of the following claims is true:
 - $(B(x,\varepsilon)\setminus\{x\})\cap A\neq\emptyset$ for all $\varepsilon>0$;
 - $(B(x,\varepsilon)\setminus\{x\})\cap B\neq\emptyset$ for all $\varepsilon>0$,

which indicates that $x \in A'$ or $x \in B'$. Hence, $x \in A' \cup B'$ and then $(A \cup B)' \subset A' \cup B'$ since x is arbitrary.

(c) \Leftarrow) If $A = A^{\circ}$, then every point of A is also a point of A° , which implies that every point of A is an interior point of A by the definition of A° . Thus, A is open.

\Rightarrow) If A is open then every point of A is an interior point of A and so is a point of
A° , which implies that $A \subset A^{\circ}$. Since $A^{\circ} \subset A$ by definition, then $A = A^{\circ}$.
(d) \Leftarrow) If $A = \bar{A}$, then $A' \subset A$ since $\bar{A} = A \cup A'$. Thus, A is closed by definition.
\Rightarrow) If A is closed, then $A' \subset A$ and so $A \cup A' \subset A$. Since $A \subset A \cup A'$, we deduce
that $A = A \cup A' = \bar{A}$.

Exercise 1.10. Consider the metric space (X, d), where $X = [0, 3) \cup [4, 5] \cup (6, 7) \cup \{8\}$ and d is the euclidean metric in \mathbb{R} restricted to X. For each of the following subsets, check whether it is open or closed, and justify you assertions.

- (a) [0,3). (d) $\{8\}$. (g) $(6,7) \cup \{8\}$. (j) [1,2]. (b) [4,5). (e) $[0,3) \cup [4,5)$. (h) [1,2).
- (c) (6,7). (f) $[0,3)\cup(6,7)$. (i) (1,2).

Solution. (a) [0,3) is open and closed since $[0,3) = (-1,3) \cap X$ and $[0,3) = [0,3] \cap X$. (b) [4,5) is open since $[4,5) = (3.5,5) \cap X$. [4,5) is not closed since [4,5) does not contain its accumulation point 5.

- (c) (6,7) is open and closed since $(6,7) = (6,7) \cap X$ and $(6,7) = [6,7] \cap X$.
- (d) $\{8\}$ is open and closed since $\{8\} = (7.5, 8.5) \cap X$ and $\{8\} = [7.5, 8.5] \cap X$.
- (e) $[0,3) \cup [4,5)$ is open since [0,3) and [4,5) are open. $[0,3) \cup [4,5)$ is not closed since $[0,3) \cup [4,5)$ does not contain its accumulation point 5.
 - (f) $[0,3) \cup (6,7)$ is open and closed since both [0,3) and (6,7) are open and closed.
 - (g) $(6,7) \cup \{8\}$ is open and closed since both (6,7) and $\{8\}$ are open and closed.
- (h) [1,2) is neither open nor closed since $1 \in [1,2)$ is not an interior point of [1,2) and [1,2) does not contain its accumulation point 2.
- (i) (1,2) is open since $(1,2)=(1,2)\cap X$. (1,2) is not closed since (1,2) does not contain its accumulation point 2.
- (j) [1,2] is closed since $[1,2]=[1,2]\cap X$. [1,2] is not open since $1\in[1,2]$ is not an interior point of [1,2].

Exercise 1.11. Let A be a nonempty set of (X, d), show that A is an open set in X iff A is a union of some open balls.

Proof. \Rightarrow) If A is an open set, then for all $x \in A$, there exists some $r_x > 0$ such that $B(x, r_x) \subset A$. Hence, we have $\bigcup_{x \in A} B(x, r_x) \subset A$. Note that the union takes over all elements in A. It is clear that $A \subset \bigcup_{x \in A} B(x, r_x)$. Then $A = \bigcup_{x \in A} B(x, r_x)$, that is, a union of open balls.

 \Leftarrow) Suppose that $A = \bigcup_{i \in I} B(x_i, r_i)$, where I is an nonempty index set and $B(x_i, r_i)$ is an open ball centered at x_i with radius $r_i > 0$ for all $i \in I$. If $x \in A$, then there exists some $i \in I$ such that $x \in B(x_i, r_i)$. Put $r = r_i - d(x, x_i) > 0$ and then $B(x, r) \subset B(x_i, r_i) \subset A$, which shows that x is an interior point of A. Since x is arbitrary, we conclude that A is open.

2. Assignment #2: 4/4/2018

Exercise 2.1. If a metric space (X, d) is separable, prove that every subspace of X is separable.

Proof. Since X is separable, there exists a countable subset $A \subset X$ such that $X \subset \bar{A}$. The claim goes that $\mathscr{B} = \{B(a,q) : a \in A, q \in \mathbb{Q}^+\}$ is a base for the open sets in X. Basically, for any open set U of X and any $x \in U$, we see $x \in \bar{A}$ implies that there exists a sequence $\{x_n\}_{n=1}^{\infty} \subset A$ which converges to x. Since U is open, there exists an open ball B(x,r) centered at x of radius r > 0 such that $B(x,r) \subset U$. Choose $n \in \mathbb{N}_+$ satisfying $d(x_n,x) < r/2$ since $x_n \to x$ $(n \to \infty)$. Now we obtain a open ball $B(x_n,r/2) \subset B(x,r) \subset U$ which contains x. Let $q \in (d(x_n,x),r/2)$ be a rational number and then $x \in B(x_n,q) \subset B(x_n,r/2) \subset U$. Note that $B(x_n,q) \in \mathscr{B}$. This shows the claim.

Recall that A is countable. Thus, \mathscr{B} is a countable base. Suppose Y is a subspace of X. Without loss of generality, we also assume that Y is nonempty. Let $\mathscr{B}' := \{B \cap Y : B \cap Y \neq \varnothing, B \in \mathscr{B}\}$ and then choose $x_B \in B$ for every $B \in \mathscr{B}'$. Now we derive a set $D = \{x_B : B \in \mathscr{B}'\}$ which is countable, obviously nonempty, and a subset of Y. We perform the following procedure:

- Choose $B_1 \in \mathcal{B}'$ such that $y \in B_1 \subset B(y,1) \cap Y$;
- Choose $B_2 \in \mathcal{B}'$ such that $y \in B_2 \subset B(y, 1/2) \cap Y$;
- Choose $B_3 \in \mathscr{B}'$ such that $y \in B_3 \subset B(y, 1/3) \cap Y$;
-

The procedure works because $B(y, 1/n) \cap Y$ is open in Y for all $n \in \mathbb{N}_+$ and \mathscr{B}' is obviously a base of Y. Now we obtain a sequence $\{x_{B_n}\}_{n=1}^{\infty} \subset D$ such that $d(x_{B_n}, y) < 1/n$ $(n \in \mathbb{N}_+)$, which implies that $x_{B_n} \to y$ as $n \to \infty$. Since y is arbitrary, we get $Y \subset \overline{D}$. This proves that Y is separable and so is every subspace of X.

Exercise 2.2. Prove that each Cauchy sequence of a metric space is bounded.

Proof. Suppose $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence of a metric space (X, d). There exists a positive integer N such that $d(x_n, d_m) < 1$ when n, m > N. Fix $m = n_0 > N$ and then $d(x_n, x_{n_0}) < 1$ when n > N. Put $r = \max\{1, d(x_1, x_{n_0}), d(x_2, x_{n_0}), \cdots, d(x_N, x_{n_0})\} > 0$ and then $\{x_n\}_{n=1}^{\infty} \subset B(x_{n_0}, r)$, which implies $\{x_n\}_{n=1}^n$ is bounded. Hence, the claim holds since $\{x_n\}_{n=1}^{\infty}$ is arbitrary.

Exercise 2.3. Let X be the set of all continuous functions on [0,1]. Show that X with the metric $\rho(x,y) = \int_0^1 |x(t) - y(t)| dt$ (not the usual metric on C[0,1]) is incomplete.

Proof. Consider the sequence $\{x_n\}_{n=1}^{\infty}$ of (X,ρ) defined by

$$x_n(t) = \begin{cases} 0 & 0 \le t < 1/2 \\ nt - n/2 & 1/2 \le t \le 1/2 + 1/n \\ 1 & 1/2 + 1/n < t \le 1 \end{cases}$$

which is a Cauchy sequence which is not convergent in X. In fact, for any $\varepsilon > 0$, let $N = \frac{1}{2\varepsilon} > 0$ and then $\rho(x_n, x_m) = \int_0^1 |x_n(t) - x_m(t)| dt = \frac{n-m}{2nm} < \frac{n}{2nm} = \frac{1}{2m} < \varepsilon$ when n > m > N.

However, the limit of $\{x_n\}_{n=1}^{\infty}$ is a discontinuous function

$$x(t) = \begin{cases} 0 & 0 \le t < 1/2 \\ 1 & 1/2 \le t \le 1 \end{cases},$$

which is not in C[0,1]. Thus, X is not complete when equipped with the metric ρ . \square

Exercise 2.4. Let (X,d) be a metric space. Show that (X,d) is complete iff each closed set sequence $\{A_n\}_{n=1}^{\infty}$ in X with $A_n \neq \emptyset$, $A_{n+1} \subset A_n$ for all $n \in \mathbb{N}_+$ and

$$\lim_{n \to \infty} \sup \{ d(x, y) : x, y \in A_n \} = 0$$

implies that $\bigcap_{n=1}^{\infty} A_n$ is a set of a single point.

Proof. \Rightarrow) Suppose $\{A_n\}_{n=1}^{\infty}$ is an arbitrary closed set sequence in X with $A_n \neq \emptyset$, $A_{n+1} \subset A_n$ for all $n \in \mathbb{N}_+$ and $\lim_{n \to \infty} \sup\{d(x,y) : x,y \in A_n\} = 0$. We choose $x_n \in A_n$ for every $n \in \mathbb{N}_+$ and obtain a sequence $\{x_n\}_{n=1}^{\infty}$ in X.

The claim goes that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in X. Basically, since

$$\lim_{n \to \infty} \sup \{ d(x, y) : x, y \in A_n \} = 0,$$

for every $\varepsilon > 0$ we can always choose N > 0 such than $d(x,y) \le \varepsilon/2$ when n > N and $x,y \in A_n$. Note the $\{A_n\}_{n=1}^{\infty}$ is a decreasing sequence of sets. It follows that $d(x_n,x_m) < \varepsilon$ when n,m > N. This shows the claim. Now we see that $x_n \to x \in X$ as $n \to \infty$ since X is complete.

Since $\{x_n\}_{n=m}^{\infty} \subset A_m$ and A_m is closed, then $x_n \to x \in A_m$ $(n \to \infty)$ holds for all $m \in \mathbb{N}_+$. This shows that $x \in \bigcap_{n=1}^{\infty} A_n$, which means $\bigcap_{n=1}^{\infty} A_n$ is nonempty.

If there exist two distinct points in $\bigcap_{n=1}^{\infty} A_n$, say x, y, then $\sup\{d(x,y): x,y \in A_n\} \ge d(x,y) > 0$ holds for all $n \in \mathbb{N}_+$. So $\lim_{n\to\infty} \sup\{d(x,y): x,y \in A_n\} \ge d(x,y) > 0$, which is a contradiction. Thus, $\bigcap_{n=1}^{\infty} A_n$ contains at most one element. And hence $\bigcap_{n=1}^{\infty} A_n$ is a single point set.

- \Leftarrow) Given an arbitrary Cauchy sequence $\{x_n\}_{n=1}^{\infty}$ in X and we perform the following procedure:
 - Choose integer $n_1 > 0$ such that $d(x_n, x_m) < 1$ when $n, m \ge n_1$;
 - Choose integer $n_2 > n_1$ such that $d(x_n, x_m) < 1/2$ when $n, m \ge n_2$;
 - Choose integer $n_3 > n_2$ such that $d(x_n, x_m) < 1/3$ when $n, m \ge n_3$;
 -

Let $A_1 = \bar{B}(x_{n_1}, 1)$ and $A_k = A_{k-1} \cap \bar{B}(x_{n_k}, 1/n)$ when $n \geq 2$. Now we derive a decreasing closed set sequence $\{A_n\}_{n=1}^{\infty}$ with $A_n \neq \emptyset$, $A_{n+1} \subset A_n$ for all $n \in \mathbb{N}_+$ and $\operatorname{diam}(A_n) \to 0$ as $n \to \infty$. Since $\bigcap_{n=1}^{\infty} A_n$ is a single point set, we denote the only element of $\bigcap_{n=1}^{\infty} A_n$ by x. It follows that $d(x_n, x) < 1/n \to 0$ as $n \to \infty$ and then

 $\{x_n\}_{n=1}^{\infty}$ converges in X. This is also true for all the other Cauchy sequence in X. Now we conclude that X is complete.

Exercise 2.5. Let S be a subset of a metric space (X, d). Prove that the following two statements are equivalent.

- (a) S is nowhere dense in X.
- (b) The complement $(\bar{S})^{C}$ is dense in X.

Proof. (a) \Rightarrow (b) For every $x \in X$ we have either $x \in \bar{S}$ or $x \in (\bar{S})^{\mathrm{C}}$. If $x \in \bar{S}$, since S is nowhere dense in X, that is, $(\bar{S})^{\circ} = \emptyset$, we can choose $x_n \in B(x, 1/n) \cap (\bar{S})^{\mathrm{C}}$ for all $n \in \mathbb{N}_+$. Then $\{x_n\}_{n=1}^{\infty} \subset (\bar{S})^{\mathrm{C}}$ and $x_n \to x \ (n \to \infty)$. Hence x is in the closure of $(\bar{S})^{\mathrm{C}}$. Then $(\bar{S})^{\mathrm{C}}$ is dense in X since x is arbitrary.

(b) \Rightarrow (a) For every $x \in \bar{S}$, since $(\bar{S})^{C}$ is dense in X, we have $B(x,r) \cap (\bar{S})^{C} \neq \emptyset$ for all $\varepsilon > 0$. Then x is not an interior point of \bar{S} . Then $(\bar{S})^{\circ} = \emptyset$ since x is arbitrary. Hence, S is nowhere dense in X.

Exercise 2.6. Use Barie category theorem to deduce that [0,1] in \mathbb{R} is uncountable.

Proof. Assume $[0,1] = \{x_1, x_2, x_3, \dots\}$ is countable. Since $\{x_n\}$ is nowhere dense for all $n \in \mathbb{N}_+$, $[0,1] = \bigcup_{n=1}^{\infty} \{x_n\}$ is of the first category. However, [0,1] is nonempty and complete. Then [0,1] is of the second category by Barie category theorem, which is a contradiction. Thus, [0,1] is uncountable.

Exercise 2.7. Let (X,d) be a metric space and $d(x,A) = \inf_{y \in A} d(y,x)$ for every subset $A \subset X$ and every point $x \in X$.

- (a) Prove that if $x \in A$, then d(x, A) = 0.
- (b) Is the converse of (a) true? Justify your assertion.
- (c) Prove that $d(x, A) = d(x, \bar{A})$. In particular, d(x, A) = 0 iff $x \in \bar{A}$.

Solution. (a) Since $x \in A$, we derive $0 \le d(x, A) = \inf_{y \in A} d(y, x) \le d(x, x) = 0$, that is, d(x, A) = 0.

- (b) The converse of (a) is false in general. For instance, let $X = \mathbb{R}$ with the usual metric on \mathbb{R} and A = (0, 1). Then it is obvious that d(0, (0, 1)) = 0 but $0 \notin (0, 1)$.
- (c) It is easy to see that $d(x, A) = \inf_{y \in A} d(y, x) \ge \inf_{y \in \bar{A}} d(y, x) = d(x, \bar{A})$ since $A \subset \bar{A}$. Obviously, there exists a sequence $\{x_n\}_{n=1}^{\infty} \subset \bar{A}$ such that $d(x_n, x) \to d(x, \bar{A})$ as $n \to \infty$. Now we discuss the problem under two cases.
 - If $\{x_n\}_{n=1}^{\infty} \cap A'$ is a finite set, without loss of generality, we assume $\{x_n\}_{n=1}^{\infty} \subset A$. Hence $d(x,A) \leq \lim_{n \to \infty} d(x_n,x) = d(x,\bar{A})$.
 - If $\{x_n\}_{n=1}^{\infty} \cap A'$ is an infinite set, then $\{x_n\}_{n=1}^{\infty}$ contains a subsequence in A'. Without loss of generality, we can assume $\{x_n\}_{n=1}^{\infty} \subset A'$. Since $(B(x_n, 1/n) \setminus \{x_n\}) \cap A \neq \emptyset$, choose $y_n \in (B(x_n, 1/n) \setminus \{x_n\}) \cap A$ for all $n \in \mathbb{N}_+$. Since $\{y_n\}_{n=1}^{\infty} \subset A$, we derive $d(x, A) \leq \lim_{n \to \infty} d(y_n, x) \leq \lim_{n \to \infty} d(y_n, x_n) + \lim_{n \to \infty} d(x_n, x) \leq \lim_{n \to \infty} 1/n + d(x, \bar{A}) = d(x, \bar{A})$.

So we always have $d(x, A) \leq d(x, \bar{A})$. Thus, $d(x, A) = d(x, \bar{A})$.

In particular, when $x \in \bar{A}$, $d(x,A) = d(x,\bar{A}) = 0$ by (a). If d(x,A) = 0, assume $x \notin \bar{A}$ and then there is some r > 0 such that $B(x,r) \subset X \setminus A$. But $d(x,A) \ge r > 0$ which is a contradiction. Hence, $x \in \bar{A}$. We conclude that d(x,A) = 0 iff $x \in \bar{A}$. \square

Exercise 2.8. Suppose that A is a nonempty subset of a metric space (X, d). Prove that the function $f: X \to \mathbb{R}$ defined by f(x) = d(x, A) is continuous on X. Furthermore, f is uniformly continuous on X, in the sense that for all $\varepsilon > 0$ there exists some $\delta > 0$ such that $|f(x_1) - f(x_2)| < \varepsilon$ whenever $x_1, x_2 \in X$ and $d(x_1, x_2) < \delta$.

Proof. For $\varepsilon > 0$, put $\delta = \varepsilon/2$. When $x_1, x_2 \in X$ and $d(x_1, x_2) < \delta$, there always exist sequences $\{y_n\}_{n=1}^{\infty}, \{z_n\}_{n=1}^{\infty} \subset A$ such that $\lim_{n\to\infty} d(y_n, x_1) = d(x_1, A)$ and $\lim_{n\to\infty} d(z_n, x) = d(x_2, A)$. Take N > 0 satisfying $|d(y_n, x_1) - d(x_1, A)| < \varepsilon/2$ and $|d(z_n, x_2) - d(x_2, A)| < \varepsilon/2$ if n > N. Hence, when n > N, we derive

$$d(x_1, A) \le d(z_n, x_1) \le d(x_1, x_2) + d(z_n, x_2)$$

$$< \delta + d(x_2, A) + \varepsilon/2 = d(x_2, A) + \varepsilon,$$

$$d(x_2, A) \le d(y_n, x_2) \le d(x_1, x_2) + d(y_n, x_1)$$

$$< \delta + d(x_1, A) + \varepsilon/2 = d(x_1, A) + \varepsilon.$$

It is now clear that $|d(x_1, A) - d(x_2, A)| < \varepsilon$ when $d(x_1, x_2) < \delta$, which implies d is uniformly continuous on X since ε is arbitrary. Then automatically, d is continuous on X.

Exercise 2.9. Suppose that (X, d) is a metric space, F_1 and F_2 are closed subsets of X with $F_1 \cap F_2 = \emptyset$. Prove that there exists a continuous function on X such that f(x) = 0 if $x \in F_1$, and f(x) = 1 if $x \in F_2$.

Proof. Consider $f(x) = d(x, F_1)/(d(x, F_1) + d(x, F_2))$ which is a well-defined continuous function on X. In fact, if $d(x, F_1) = d(x, F_2) = 0$, then $x \in F_1, F_2$ by part (c) of Exercise 2.7 since F_1, F_2 are closed. But $F_1 \cap F_2 = \emptyset$, which is a contradiction. So $d(x, F_1)$ and $d(x, F_2)$ cannot be 0 at the same time. This shows that f is well-defined and the continuity comes from Exercise 2.8. It is easy to check that f(x) = 0 if $x \in F_1$, and f(x) = 1 if $x \in F_2$. Hence the claim holds.

Exercise 2.10. Prove that a set in \mathbb{R}^n is compact iff it is bounded and closed.

Proof. \Rightarrow) Let $E \subset \mathbb{R}^n$ be compact.

If E is unbounded, then choose a fixed point $a \in E$ and there exists $x_n \in E$ such that $||x_n - a|| > n$ for all $n \in \mathbb{N}_+$. By the compactness of E, some subsequence $\{x_{n_k}\}_{k=1}^{\infty} \subset \{x_n\}_{n=1}^{\infty}$ would converge to $x_0 \in E$. But $||x_{n_k} - x_0|| \ge ||x_{n_k} - a|| - ||x_0 - a|| \ge n_k - ||x_0 - a|| \to \infty$ as $k \to \infty$, which is a contradiction. Hence E is bounded.

Given $y_0 \in E'$ and then there exists a sequence $\{y_n\}_{n=1}^{\infty} \subset E$ that converges to y_0 . Since E is compact, $\{y_n\}_{n=1}^{\infty}$ has a subsequence $\{y_{n_k}\}_{k=1}^{\infty}$ which converges to $y'_0 \in E$. Obviously, $y_0 = y_0' \in E$. Then $y_0 \in E$ and hence $E' \subset E$ since y_0 is arbitrary, which shows E is closed.

 \Leftarrow) Suppose E is bounded and closed in \mathbb{R}^n . By accumulation principle of bounded sequence in \mathbb{R}^n , for all $\{x_n\}_{n=1}^{\infty} \subset E$ there is a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ that converges to $x_0 \in \bar{E} = E$. Then E is compact since $\{x_n\}_{n=1}^{\infty}$ is arbitrary.

Exercise 2.11. Let $X = [0,1] \cup \{2,3,\cdots\}$ with the metric d(x,y) = |x-y| defined for all $x, y \in X$. Justify the following assertions.

- (a) Is X complete?
- (b) Is X separable?
- (c) Is X compact?

Solution. (a) It is clear that d is a well-defined metric on X since it is induced from the usual metric on \mathbb{R} . Then X can be regarded as a subspace of \mathbb{R} . Since \mathbb{R} is complete and X is closed, it is obvious that X is complete.

- (b) Note that $\overline{X \cap \mathbb{Q}} = X$ and $X \cap \mathbb{Q} \subset X$ is a countable subset. So X is separable.
- (c) X is not compact since $\{x_n = n\}_{n=1}^{\infty} \subset X$ does not even have a convergent subsequence.

Exercise 2.12. Suppose E is a nonempty compact set in a metric space (X, d). Prove that there exist $x, y \in E$ such that $d(x, y) = \sup_{u,v \in E} d(u,v)$.

Proof. E is bounded by the compactness of E. Then $l:=\sup_{u,v\in E}d(u,v)<\infty$ and there exists $u_n,v_n\in E$ such that $l-1/n< d(u_n,v_n)\leq l$ for all $n\in\mathbb{N}_+$. From the definition of compactness, there exist $\{u_{n_k}\}_{k=1}^\infty\subset\{u_n\}_{n=1}^\infty$ and $\{v_{n_k}\}_{k=1}^\infty\subset\{v_n\}_{n=1}^\infty$ such that $\{u_{n_k}\}_{k=1}^\infty$ converges to $u_0\in E$, $\{v_{n_k}\}_{k=1}^\infty$ converges to $v_0\in E$, and $l-1/n_k< d(u_{n_k},v_{n_k})\leq l$ for all $k\in\mathbb{N}_+$. Hence $d(u_0,v_0)=l$ and the claim holds. \square

3. Assignment #3: 4/18/2018

Exercise 3.1. Given $M \subset C[a,b]$ for which there exist m, L > 0 and $x_0 \in [a,b]$ such that $|f(x_0)| \leq m$ and $|f(x) - f(y)| \leq L|x - y|$ for all $f \in M$ and $x, y \in [a,b]$. Prove that M is relatively compact in C[a,b].

Proof. From the assumption, it follows that for all $f \in M$ and $x \in [a, b]$, $|f(x)| \le |f(x) - f(x_0)| + |f(x_0)| \le L|x - x_0| + m \le L(b - a) + m$. This shows that M is uniformly bounded.

Also, M is equicontinuous. In fact, for all $\varepsilon > 0$, $|f(x_1) - f(x_2)| \le L|x_1 - x_2| < \varepsilon$ for all $f \in M$ whenever $x_1, x_2 \in [a, b]$ with $|x_1 - x_2| < \varepsilon/L$.

Hence, M is relatively compact by Arzelà-Ascoli Theorem.

Exercise 3.2. Given $M \subset C^1[a,b]$ such that $\int_a^b (|f(x)|^2 + |f'(x)|^2) dx \le k$ for all $f \in M$ where k > 0 is a constant. Prove that M is relatively compact in C[a,b].

Proof. We compute that

$$|f(a)| \le |f(x) - f(a)| + |f(x)| = \left| \int_a^x f'(t) dt \right| + |f(x)|$$

$$\le \left(\int_a^x dt \right)^{1/2} \left(\int_a^x |f'(t)|^2 dt \right)^{1/2} + |f(x)|$$

$$\le \sqrt{(b-a)k} + |f(x)|.$$

Therefore,

$$(b-a)|f(a)| = \int_{a}^{b} |f(a)| dx \le (b-a)^{3/2} \sqrt{k} + \int_{a}^{b} |f(x)| dx$$

$$\le (b-a)^{3/2} \sqrt{k} + \sqrt{b-a} \left(\int_{a}^{b} |f(x)|^{2} dx \right)^{1/2}$$

$$\le (b-a)^{3/2} \sqrt{k} + \sqrt{(b-a)k}.$$

Set $k_1 = \frac{(b-a)^{3/2}\sqrt{k} + \sqrt{(b-a)k}}{b-a}$ and then $|f(a)| \le k_1$ for all $f \in M$. So for all $f \in M$ and $x \in [a,b]$, we have

$$|f(x)| \le |f(x) - f(a)| + |f(a)| \le \sqrt{(b-a)k} + k_1.$$

Then M is uniformly bounded.

And for all $\varepsilon > 0$, choose $\delta = \frac{\varepsilon^2}{k} > 0$, then for all $f \in M$ and $x_1, x_2 \in [a, b]$ with $x_1 \leq x_2$ and $x_2 - x_1 < \delta$ we have

$$|f(x_2) - f(x_1)| = \left| \int_{x_1}^{x_2} f'(t) dt \right| \le \int_{x_1}^{x_2} |f'(t)| dt$$

$$\le \left(\int_{x_1}^{x_2} dt \right)^{1/2} \left(\int_{x_1}^{x_2} |f'(t)|^2 dt \right)^{1/2}$$

$$\le \sqrt{(x_2 - x_1)k}$$

$$< \sqrt{\varepsilon^2/k \cdot k} = \varepsilon.$$

Thus, M is equicontinuous.

Hence, M is relatively compact in C[a, b] by Arzelà-Ascoli Theorem.

Exercise 3.3. Given $M \subset C^1[a,b]$ which satisfies the following properties:

• There exists L > 0 such that $|f'(x)| \le L$ for all $f \in M$ and $x \in [a, b]$;

• There is at least one solution to f(x) = 0 on [a, b] for each $f \in M$.

Prove that M is relatively compact in C[a, b].

Proof. Since $|f'(x)| \le L$ for all $f \in M$ on [a, b], we have $|f(x) - f(y)| = |f'(\xi)| |x - y| \le L|x - y|$ for all $x, y \in [a, b]$ where ξ is some point on the line segment with x, y as endpoints. For each $f \in M$, let $x = x_0$ be the solution to f(x) = 0, then

$$|f(x)| = |f(x) - f(x_0)| \le L|x - x_0| \le L(b - a),$$

which indicates that M is uniformly bounded.

Also, M is equicontinuous. In fact, for all $\varepsilon > 0$, $|f(x_1) - f(x_2)| \le L|x_1 - x_2| < \varepsilon$ for all $f \in M$ whenever $x_1, x_2 \in [a, b]$ and $|x_1 - x_2| < \varepsilon/L$.

Hence, M is relatively compact by Arzelà-Ascoli Theorem.

Exercise 3.4. Determine whether or not the following sets of functions are relatively compact in C[a,b]:

- (i) $\{f_{\alpha}(x) = \sin \alpha x : \alpha \in \mathbb{R}\}.$ (iii) $\{f_{\alpha}(x) = \arctan(\alpha x) : \alpha \in \mathbb{R}\}.$
- (ii) $\{f_{\alpha}(x) = \sin(x + \alpha) : \alpha \in \mathbb{R}\}.$ (iv) $\{f_{\alpha}(x) = e^{x \alpha} : \alpha \in [0, \infty)\}.$

Solution. (i) It is not relatively compact.

The set of functions is not equicontinuous. In fact, for all $\delta > 0$ there exists $\alpha > 0$ such that $2\pi/\alpha < \min\{(b-a)/2, \delta/2\}$. Since $2\pi/\alpha$ is the least positive period of f_{α} , there always exist $x_1, x_2 \in [a, b]$ with $|x_1 - x_2| < \delta$ such that $f_{\alpha}(x_1) = 1, f_{\alpha}(x_2) = -1 \Rightarrow |f_{\alpha}(x_1) - f_{\alpha}(x_2)| = 2$.

(ii) This set of functions is relatively compact.

In fact, it is obvious that $|f_{\alpha}| \leq 1$ for all $\alpha \in \mathbb{R}$, which indicates that the set is uniformly bounded.

For all $\varepsilon > 0$ and $\alpha \in \mathbb{R}$, we have $|f_{\alpha}(x_1) - f_{\alpha}(x_2)| \le |\sin(x_1 + \alpha) - \sin(x_2 + \alpha)| = 2|\cos(\frac{x_1 + x_2}{2} + \alpha)\sin(\frac{x_1 - x_2}{2})| \le 2|\frac{x_1 - x_2}{2}| = |x_1 - x_2| < \varepsilon$ whenever $x_1, x_2 \in [a, b]$ with $|x_1 - x_2| < \varepsilon$. So the set is equicontinuous.

Hence, the set is relatively compact by Arzelà-Ascoli Theorem.

(iii) The answer depends on whether or not $0 \in [a, b]$.

For all $\alpha \in \mathbb{R}$ and $x \in [a, b]$, $|f_{\alpha}(x)| \leq \pi/2$. So the set is uniformly bounded.

If $0 \notin [a,b]$, set $m = \min\{|a|,|b|\} > 0$ and then $|f'_{\alpha}(x)| = \frac{\alpha}{1+(\alpha x)^2} \le \frac{\alpha}{1+(\alpha m)^2} = \frac{1}{m^2\alpha+1/\alpha} \le \frac{1}{2m}$ for all $x \in [a,b]$. Thus, the set is equicontinuous by Exercise 3.3.

But when $0 \in [a, b]$, without loss of generality, we assume that b > 0. For all $\delta > 0$, choose $\alpha > \max\{1/b, 1/\delta\}$ then $0 < 1/\alpha < b$, $1/\alpha - 0 < \delta$, and $\arctan(\alpha \cdot 1/\alpha) - \arctan(0) = \arctan(1) = \pi/4$. So the set is not uniformly bounded.

Thus, the set is relatively compact iff $0 \notin [a, b]$ by Arzelà-Ascoli Theorem and not iff $0 \in [a, b]$.

(iv) It is relatively compact.

In fact, for all $\alpha \in [0, \infty)$ and $x \in [a, b]$, $|f_{\alpha}(x)| = |f'_{\alpha}(x)| \le e^b$, which means that the set is uniformly bounded and equicontinuous by Exercise 3.3. So it is relatively compact by Arzelà-Ascoli Theorem.

Exercise 3.5. Let the mapping $T : \mathbb{R} \to \mathbb{R}$ be defined by $Tx = x + \pi/2 - \arctan x$ for all $x \in \mathbb{R}$. Show that $d(Tx_1, Tx_2) < d(x_1, x_2)$ whenever $x_1, x_2 \in \mathbb{R}$ and $x_1 \neq x_2$, but T has no fixed-point.

Proof. For all $x_1, x_2 \in \mathbb{R}$ with $x_1 \neq x_2$, there exists ξ between x and y such that

$$|\arctan x_1 - \arctan x_2| = |f'(\xi)||x_1 - x_2| = \frac{|x_1 - x_2|}{1 + \xi^2}.$$

Consider the function $f(x) = x - \arctan x + c$ with an arbitrary constant c defined on \mathbb{R} . Then $f'(x) = \frac{x^2}{1+x^2}$ and f'(x) = 0 iff x = 0. So f strictly increases on \mathbb{R} with $f(-\infty) = -\infty$ and $f(+\infty) = +\infty$, which shows that f has a unique root on \mathbb{R} . Thus, the graphs of y = x + c and $y = \arctan x$ intersect at a unique point.

If $\xi = 0$, then there is some constant c such that $(x_1, \arctan x_1)$ and $(x_2, \arctan x_2)$ lie on the graph of y = x + c, which is a contradiction since $x_1 \neq x_2$. Now we see that $\xi \neq 0$ if $x_1 \neq x_2$. Hence, $|\arctan x_1 - \arctan x_2| < |x_1 - x_2|$. Note that the signs of $x_1 - x_2$ and $\arctan x_1 - \arctan x_2$ are the same. So $d(Tx_1, Tx_2) = |Tx_1 - Tx_2| = |(x_1 - x_2) - (\arctan x_1 - \arctan x_2)| < |x_1 - x_2| = d(x_1, x_2)$.

From Tx = x, it follows that $\arctan x = \pi/2$. But $\arctan x < \pi/2$ for all $x \in \mathbb{R}$, which yields the contradiction. Thus, T has no fixed-point on \mathbb{R} .

Exercise 3.6. Suppose that (X,d) is complete and $T: X \to X$. Prove that if

$$\alpha_0 = \inf_{n \in \mathbb{N}_+} \sup_{\substack{x,y \in X \\ x \neq y}} \frac{d(T^n x, T^n y)}{d(x, y)} < 1,$$

then T has a unique fixed-point on X.

Proof. Choose $c \in (\alpha_0, 1)$ and then there exists $n_0 \in \mathbb{N}_+$ such that

$$\alpha_0 \le \sup_{\substack{x,y \in X \\ x \ne y}} \frac{d(T^n x, T^n y)}{d(x, y)} < c,$$

which means $d(T^{n_0}x, T^{n_0}y) \leq cd(x, y)$ for all $x, y \in X$. Since T^{n_0} is a contraction with c, then Tx = x has a unique solution, i.e. T has a unique fixed-point on X. \square

Exercise 3.7. Let (X, d) be compact. Suppose the mapping $T: X \to X$ satisfies that d(Tx, Ty) < d(x, y) for all $x, y \in X$ with $x \neq y$. Prove that T has a unique fixed-point on X.

Proof. Let f(x) = d(Tx, x) for all $x \in X$ and f is continuous on X. In fact, for all $x \in X$ and all neighborhood V of f(x), there exists r > 0 such that $B(f(x), r) \subset V$. For all $y \in B(x, r/2)$, we have $d(f(x), f(y)) = |d(Tx, x) - d(Ty, y)| \le d(Tx, Ty) + d(x, y) < 2d(x, y) < r$ by Exercise 1.3, which shows that $f(B(x, r/2)) \subset B(f(x), r) \subset V$.

Since X is compact, there exists $x_0 \in X$ such that $f(x_0) = \min_{x \in X} f(x)$. We claim that $f(x_0) = 0$. If not, $f(Tx_0) = d(T^2x_0, Tx_0) < d(Tx_0, x_0) = \min_{x \in X} f(x)$, which is a contradiction. So $f(x_0) = d(Tx_0, x_0) = 0$. Thus, $Tx_0 = x_0$.

If there exists $x_1 \in X$ such that $Tx_1 = x_1$, then $d(x_1, x_0) = d(Tx_1, Tx_0) < d(x_1, x_0)$ if $x_1 \neq x_0$, which is impossible. Thus, $x_1 = x_0$ and T has a unique fixed-point. \square

Remark 3.8. The claim falls when X is not compact. Take $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sqrt{x^2 + 1}$ for all $x \in \mathbb{R}$ as a counterexample.

Exercise 3.9. Suppose that $(X, \| \bullet \|)$ is a normed linear space. If $x \in X \setminus \{0\}$ and r > 0, find a real number $c \in \mathbb{R}$ such that $\|cx\| = r$.

Solution. Let $c = r/\|x\|$ and then $\|cx\| = |c| \cdot \|x\| = \frac{r}{\|x\|} \cdot \|x\| = r$. So $c = r/\|x\|$ is a real number which we are looking for.

Exercise 3.10. Consider the real linear space \mathbb{R}^2 . For every $x = (x_1, x_2) \in \mathbb{R}^2$, let $||x||_1 = |x_1| + |x_2|$.

- (a) Show that $\| \bullet \|_1$ defines a norm on \mathbb{R}^2 .
- (b) Sketch the unit circle $\{x \in \mathbb{R}^2 : ||x||_1 = 1\}$.

Solution. (a) Assume that $x, y \in \mathbb{R}^2$ and $\alpha \in \mathbb{F}$. Let $x = (x_1, x_2)$ and $y = (y_1, y_2)$. Firstly, $||x||_1 = |x_1| + |x_2| \ge 0$ and $||x||_1 = 0$ iff $|x_1| + |x_2| = 0 \Leftrightarrow x_1 = x_2 = 0 \Leftrightarrow x = 0$. Secondly, $||\alpha x||_1 = |\alpha x_1| + |\alpha x_2| = |\alpha|(|x_1| + |x_2|) = |\alpha| \cdot ||x||_1$. Thirdly, $||x + y||_1 = |x_1 + y_1| + |x_2 + y_2| \le (|x_1| + |x_2|) + (|y_1| + |y_2|) \le ||x||_1 + ||y||_1$. Then $|| \bullet ||_1$ is indeed a well-defined norm on \mathbb{R}^2 since x, y, α are arbitrary.

(b) Denote $x = (x_1, x_2)$ and note that $||x||_1 = 1 \Leftrightarrow |x_1| + |x_2| = 1$.

The graph of the unit circle $\{x \in \mathbb{R}^2 : ||x||_1 = 1\} = \{(x_1, x_2) \in \mathbb{R}^2 : |x_1| + |x_2| = 1\}$ is as above.

Exercise 3.11. Show that the discrete metric on a linear space $X \neq \{0\}$ cannot be obtained from a norm.

Proof. If there exists a norm $\| \bullet \|$ on X such that the discrete metric d on X is induced from $\| \bullet \|$, then select $x_0 \in X \setminus \{0\}$. It is obvious that $\|x_0\| = d(x_0, 0) = 1$. Note that $d(x_0/2, 0) = \|x_0/2\| = \|x_0\|/2 = 1/2$ but $d(x_0/2, 0) = 1$ since $x_0/2 \neq 0$, which is a contradiction. Hence, the discrete metric cannot be induced from a norm.

Exercise 3.12. Suppose that $(X, \| \bullet \|_1)$ and $(Y, \| \bullet \|_2)$ are Banach spaces. Let $Z = X \times Y \text{ with the norm } ||(x,y)|| = ||x||_1 + ||y||_2 \text{ for all } (x,y) \in X \times Y.$

- (a) Prove that Z is a Banach space.
- (b) Is $(Z, \| \bullet \|_0)$ a Banach space with the norm $\|(x, y)\|_0 = \max\{\|x\|_1, \|y\|_2\}$ defined for all $(x,y) \in \mathbb{Z}$?

Solution. (a) Suppose $\sum_{n=1}^{\infty} \|(x_n, y_n)\|$ is a convergent series. Since $\sum_{n=1}^{\infty} \|(x_n, y_n)\| = \sum_{n=1}^{\infty} \|x_n\|_1 + \sum_{n=1}^{\infty} \|y_n\|_2$, then $\sum_{n=1}^{\infty} \|x_n\|_1$ and $\sum_{n=1}^{\infty} \|y_n\|_2$ are both convergent. From the fact that X, Y are both Banach spaces, it follows that $\sum_{n=1}^{\infty} x_n$ converges in X and $\sum_{n=1}^{\infty} y_n$ converges in Y. So $\sum_{n=1}^{\infty} (x_n, y_n)$ converges in Z since $\sum_{n=1}^{\infty} (x_n, y_n) = (\sum_{n=1}^{\infty} x_n, \sum_{n=1}^{\infty} y_n)$. Hence, Z is a Banach space since $\sum_{n=1}^{\infty} \|(x_n, y_n)\|$ is arbitrary.

(b) The answer is yes.

(b) The answer is yes.

In fact, suppose $\sum_{n=1}^{\infty} \|(x_n, y_n)\|$ is a convergent series. Since $\sum_{n=1}^{\infty} \|(x_n, y_n)\| = \sum_{n=1}^{\infty} \max\{\|x_n\|_1, \|y_n\|_2\} \Rightarrow \sum_{n=1}^{\infty} \|x_n\|_1 \leq \sum_{n=1}^{\infty} \|(x_n, y_n)\|$ and $\sum_{n=1}^{\infty} \|y_n\|_2 \leq \sum_{n=1}^{\infty} \|(x_n, y_n)\|$, then $\sum_{n=1}^{\infty} \|x_n\|_1$ and $\sum_{n=1}^{\infty} \|y_n\|_2$ are both convergent.

From the fact that X, Y are both Banach spaces, it follows that $\sum_{n=1}^{\infty} x_n$ converges in X and $\sum_{n=1}^{\infty} y_n$ converges in Y. So $\sum_{n=1}^{\infty} (x_n, y_n)$ converges in Z since $\sum_{n=1}^{\infty} (x_n, y_n) = (\sum_{n=1}^{\infty} x_n, \sum_{n=1}^{\infty} y_n)$.

Hence Z is a Banach space since $\sum_{n=1}^{\infty} \|(x_n, y_n)\|$ is arbitrary

Hence, Z is a Banach space since $\sum_{n=1}^{\infty} \|(x_n, y_n)\|$ is arbitrary.

Exercise 3.13. Let $0 < \alpha < \beta$. For what value of p does the function $f(x) = \beta$ $1/(x^{\alpha}+x^{\beta})$ $(x\in(0,\infty))$ belong to $L^{p}(0,\infty)$?

Solution. When $p < 1/\alpha$, $\int_0^1 1/(x^\alpha + x^\beta)^p dx \le \int_0^1 1/x^{\alpha p} dx$ is finite since $\alpha p < 1$. When $p > 1/\beta$, $\int_1^\infty 1/(x^\alpha + x^\beta)^p dx \le \int_1^\infty 1/x^{\beta p} dx$ is finite since $\beta p > 1$. So $f \in$ $L^p(0, \infty)$ provided that $1/\beta .$

But if $p \ge 1/\alpha$, $\int_0^1 1/(x^{\alpha} + x^{\beta})^p dx \ge \int_0^1 1/(2x^{\alpha})^p dx \ge 2^{-p} \int_0^1 1/x^{\alpha p} dx$ is infinite since $\alpha p \ge 1$. If $p \le 1/\beta$, $\int_1^\infty 1/(x^{\alpha} + x^{\beta})^p dx \ge \int_1^\infty 1/(2x^{\beta})^p dx \ge 2^{-p} \int_1^\infty 1/x^{\beta p} dx$ is infinite since $\beta p < 1$.

Hence, f belongs to $L^p(0,\infty)$ iff $p \in (1/\beta, 1/\alpha)$.

4. Assignment #4: 5/9/2018

Exercise 4.1. Prove that ℓ^p $(p \ge 1)$ is a separable Banach space.

Proof. Note that $\mathbb{F}(=\mathbb{R} \text{ or } \mathbb{C})$ is separable. So take a countable dense subset, say, S of \mathbb{F} . Define for all $n \in \mathbb{N}_+$ that $A_n = \{(x_1, \dots, x_n, 0, 0, \dots) : x_i \in S, i \in [1, n] \cap \mathbb{Z}\}.$ It's clear that each A_n is a countable subset of ℓ^p and so is $A = \bigcup_{n=1}^{\infty} A_n$.

The claim goes that A is dense in ℓ^p . Basically, for each $x=(x_1,x_2,\cdots)\in\ell^p$ and $\varepsilon > 0$, there exists an integer N > 0 such that $\sum_{n=N+1}^{\infty} |x_n|^p < \varepsilon^p/2$. Then choose $y = (y_1, \dots, y_N, 0, 0, \dots) \in A_N \subset A$ such that $|y_n - x_n|^p < \varepsilon^p/2N$ for all $n \in [1, N] \cap \mathbb{Z}$. So

$$||y - x||^p \le \sum_{n=1}^N |y_n - x_n|^p + \sum_{n=N+1}^\infty |x_n|^p < \varepsilon^p/2 + \varepsilon^p/2 = \varepsilon^p,$$

and then $||y - x|| < \varepsilon$. Hence, $B(x, \varepsilon) \cap A \neq \emptyset$ for each $\varepsilon > 0$. It follows that $x \in \overline{A}$ and $\ell^p \subset \overline{A}$ since x is arbitrary. Thus, ℓ^p is separable.

For each Cauchy sequence $\{x_n=(x_{n,1},x_{n,2},\cdots)\}_{n=1}^{\infty}\subset \ell^p \text{ and } \varepsilon>0$, there exists N>0 such that $|x_{n,i}-x_{m,i}|\leq (\sum_{i=1}^{\infty}|x_{n,i}-x_{m,i}|^p)^{1/p}<\varepsilon$ for all $i\in\mathbb{N}_+$ when n,m>N. So each $\{x_{n,i}\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{F} . Let $y_i:=\lim_{n\to\infty}x_{n,i}$ for each $i\in\mathbb{N}_+$ since \mathbb{F} is complete. We claim that $\lim_{n\to\infty}x_n=y=(y_1,y_2,\cdots)\in\ell^p$.

Note that for all $k \in \mathbb{N}_+$, $\sum_{i=1}^k |x_{n,i} - x_{m,i}|^p (\leq \sum_{i=1}^\infty |x_{n,i} - x_{m,i}|^p) < \varepsilon^p$ when n, m > N. Send $m \to \infty$ and we will get that $\sum_{i=1}^k |x_{n,i} - y_i|^p \leq \varepsilon^p$ holds for all $k \in \mathbb{N}_+$ when n > N. Send $k \to \infty$ and we will get $\sum_{i=1}^\infty |x_{n,i} - y_i|^p \leq \varepsilon^p$ when n > N, which implies that $||x_n - y|| < \varepsilon$ when n > N. So $||x_n - y|| \to 0$ as $n \to \infty$. Also, since $||y|| \leq ||x_n|| + ||x_n - y|| < ||x_n|| + \varepsilon$ when n > N, it follows that $y \in \ell^p$. Hence, ℓ^p is complete since $\{x_n\}_{n=1}^\infty$ is arbitrary.

Exercise 4.2. Let E be a Lebesgue measurable set in \mathbb{R} with $m(E) < \infty$. Denote the norms on $L^p(E)$ $(p \ge 1)$ and $L^\infty(E)$ by $\| \bullet \|_p$ and $\| \bullet \|_\infty$ respectively. Prove that $L^\infty(E) \subset L^p(E)$ for all $p \ge 1$ and $\lim_{p \to \infty} \|x\|_p = \|x\|_\infty$.

Proof. For each $x \in L^{\infty}(E)$, there exists $A \subset E$ with m(A) = 0 such that

$$\sup_{t \in E \setminus A} |x(t)| = \operatorname{ess\,sup}|x(t)| = ||x||_{\infty} := M < \infty.$$

It follows that

$$\int_{E} |x(t)|^{p} dt = \int_{A} |x(t)|^{p} dt + \int_{E \setminus A} |x(t)|^{p} dt = \int_{E \setminus A} |x(t)|^{p} dt \le M^{p} m(E) < \infty,$$

which shows that $x \in L^p(E)$. Thus, $L^{\infty}(E) \subset L^p(E)$ since x is arbitrary.

If M = 0, then $\lim_{p \to \infty} ||x||_p = ||x||_{\infty}$ would be really obvious. So we may assume that M > 0. By the definition of essential supremum, for each $\varepsilon \in (0, M)$, there exists $B \subset E$ with m(B) > 0 such that $|x(t)| > M - \varepsilon$ when $t \in B$. Then

$$||x||_p = \left(\int_E |x(t)|^p dt\right)^{1/p} \ge \left(\int_B (M - \varepsilon)^p dt\right)^{1/p} = (M - \varepsilon)(m(B))^{1/p} \to M - \varepsilon$$

as $p \to \infty$, which implies that $\lim_{p \to \infty} ||x||_p \ge M$ since $\varepsilon \in (0, M)$ is arbitrary. Also, $||x||_p \le M(m(E))^{1/p} \to M$ as $p \to \infty$. Hence, $||x||_p \to ||x||_\infty$ as $p \to \infty$.

Exercise 4.3. Let P[0,1] denote the complex vector space of all complex-valued polynomials defined on [0,1]. This can be viewed as a linear subspace of $C([0,1],\mathbb{C})$. Show that the two norms $||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|$ and $||f||_1 = \int_0^1 |f(t)| dt$ defined for all $f \in P[0,1]$ are not equivalent on P[0,1].

Proof. For each $n \in \mathbb{N}_+$, define $f_n(t) = t^n$ $(t \in [0,1])$. It follows that $f_n \in P[0,1]$, $||f_n||_{\infty} = 1$, and $||f_n||_1 = 1/(n+1)$ for all $n \in \mathbb{N}_+$. Suppose that $||\bullet||_{\infty}$ and $||\bullet||_1$ are equivalent on P[0,1], then there exists a constant K > 0 such that $||f||_{\infty} \leq K||f||_1$ whenever $f \in P[0,1]$. So $1 = ||f_n||_{\infty} \leq K||f_n||_1 = K/(n+1) \to 0$ as $n \to \infty$, which is a contradiction. Hence, $||\bullet||_{\infty}$ and $||\bullet||_1$ are not equivalent on P[0,1].

Exercise 4.4.

- (i) If $(X, \| \bullet \|)$ is a normed linear space and $Y \subset X$ is a finite-dimensional linear subspace, prove that any element of X has a projection on Y, that is, for each $x \in X$, there exists $y_0 \in Y$ such that $\|x y_0\| = d(x, Y) = \inf_{y \in Y} \|x y\|$.
- (ii) Is this projection unique? Give a proof or a counterexample.

Solution. (i) Let $\delta := d(x, Y)$. By definition of infimum, there exists $\{y_n\}_{n=1}^{\infty} \subset Y$ such that $||y_n - x|| \to \delta$ $(n \to \infty)$. Since $(y_n + y_m)/2 \in Y$ for each $n, m \in \mathbb{N}_+$, we derive

$$0 \le ||y_n - y_m||^2 = ||(y_n - x) + (x - y_m)||^2$$

$$= 2(||y_n - x||^2 + ||y_m - x||^2) - ||2x - (y_n + y_m)||^2$$

$$= 2(||y_n - x||^2 + ||y_m - x||^2) - 4 \left||x - \frac{y_n + y_m}{2}\right||^2$$

$$\le 2(||y_n - x||^2 + ||y_m - x||^2) - 4\delta^2 \to 0 \ (n, m \to \infty),$$

which implies that $\{y_n\}_{n=1}^{\infty}$ is a Cauchy sequence. Note that Y is complete since Y is finite dimensional. Hence there exists $y_0 \in Y$ such that $d(y_n, y_0) \to 0$ $(n \to \infty)$. Then $||x - y_0|| = ||x - \lim_{n \to \infty} y_n|| = \lim_{n \to \infty} ||x - y_n|| = \delta$ since $|| \bullet ||$ is continuous.

(ii) If $y_1 \in Y$ and $||x-y_1|| = \delta$, then $0 \le ||y_1-y_0|| \le 2(||y_1-x||^2 + ||y_0-x||^2) - 4\delta^2 = 0$. So $||y_1 - y_0|| = 0 \Rightarrow y_1 = y_0$. Hence, the projection is unique.

Exercise 4.5. Let $S = \{\{x_n\}_{n=1}^{\infty} \in \ell^2 : \text{there exists } N \in \mathbb{N}_+ \text{ such that } x_n = 0 \text{ for all } n \geq N\}$ so that S is a linear subspace of ℓ^2 consisting of all sequences with only finitely many nonzero terms. Show that S is not closed.

Proof. Let $x=(1,1/2,1/3,\cdots)$ and $x_n=(1,1/2,\cdots,1/n,0,0,\cdots)\in \ell^2$ for each $n\in\mathbb{N}_+$. Since $\sum_{n=1}^\infty 1/n^2<\infty$, it follows that $x\in\ell^2$. And $\|x_n-x\|=\sum_{i=n+1}^\infty 1/i^2\to 0$ as $n\to\infty$, which shows that $\{x_n\}_{n=1}^\infty\subset S$ is a convergent sequence in ℓ^p and then $\{x_n\}_{n=1}^\infty$ is a Cauchy sequence in S. But $x\notin S$. Thus, S is not closed.

Exercise 4.6. Let X be a normed linear space, $x \in X \setminus \{0\}$, and Y be a linear subspace of X.

- (a) If there exists $\eta > 0$ such that $\{y \in X : ||y|| < \eta\} \subset Y$, show that $\frac{\eta x}{2||x||} \in Y$ whenever $x \in X$.
- (b) Suppose Y is open. Show that Y = X.

Proof. (a) Since

$$\left\| \frac{\eta x}{2\|x\|} \right\| = \frac{\eta}{2\|x\|} \|x\| = \frac{\eta}{2} < \eta,$$

it follows that $\frac{\eta x}{2||x||} \in \{y \in X : ||y|| < \eta\}$. So $\frac{\eta x}{2||x||} \in Y$.

(b) Since $0 \in Y$ and Y is open, it follows that there exists r > 0 such that $\{y \in X : ||y|| < r\} = B(0,r) \subset Y$. By (a), $\frac{rx}{2||x||} \in Y$ for each $x \in X$. Note that Y is a linear subspace. Thus, $x = \frac{2||x||}{\eta} \cdot \frac{\eta x}{2||x||} \in Y$. So $X \subset Y$ and then Y = X.

Exercise 4.7. Let X be a normed linear space with $X \neq \{0\}$. Show that X is a Banach space iff the set $S = \{x \in X : ||x|| = 1\}$ is complete in X.

Proof. \Rightarrow) Since X is complete and S is closed, it's obvious that S is complete.

 \Leftarrow) Suppose $\{x_n\}_{n=1}^{\infty} \subset X$ is an arbitrary Cauchy sequence. Then $|||x_n|| - ||x_m||| \le ||x_n - x_m|| \to 0 \ (n \to \infty)$. So $\{||x_n||\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} . Since \mathbb{R} is complete, there exists $c \in \mathbb{R}$ such that $\lim_{n\to\infty} ||x_n|| = c$. If c = 0, it's obvious that $x_n \to 0 \in X$ as $n \to \infty$. If c > 0, then there exists N > 0 such that $c/2 \le ||x_n|| \le 3c/2$ when n > N. So when n, m > N,

$$\left\| \frac{x_n}{\|x_n\|} - \frac{x_m}{\|x_m\|} \right\| = \frac{\|\|x_m\|x_n - \|x_n\|x_m\|}{\|x_n\|\|x_m\|}$$

$$\leq \frac{4}{c^2} \|\|x_m\|(x_n - x_m) + (\|x_m\| - \|x_n\|)x_m\|$$

$$\leq \frac{4}{c^2} (\|x_m\|\|x_n - x_m\| + \|\|x_m\| - \|x_n\|\|\|x_m\|) \to 0 \ (n, m \to \infty).$$

Thus, $\{x_n/\|x_n\|\}_{n=N+1}^{\infty} \subset S$ is a Cauchy sequence. Since S is complete, there is some $x \in S$ such that $x_n/\|x_n\| \to x$ as $n \to \infty$, which implies that $x_n \to cx$ as $n \to \infty$. It follows that X is complete since $\{x_n\}_{n=1}^{\infty}$ is arbitrary.

Exercise 4.8. In an inner product space, suppose that $y \neq 0$. Prove that ||x + y|| = ||x|| + ||y|| iff x = py for some real $p \geq 0$.

Proof. Since $||x+y||^2 = \langle x+y, x+y \rangle = ||x||^2 + ||y||^2 + \langle x, y \rangle + \overline{\langle x, y \rangle}$ and $(||x|| + ||y||)^2 = ||x||^2 + ||y||^2 + 2||x|||y||$, it follows that $||x+y|| = ||x|| + ||y|| \Leftrightarrow \langle x, y \rangle + \overline{\langle x, y \rangle} = 0 \Leftrightarrow \operatorname{Re}(\langle x, y \rangle) = ||x|| ||y||$. By Cauchy-Schwarz inequality, $|\langle x, y \rangle| \leq ||x|| ||y||$. Since $|\langle x, y \rangle| = \sqrt{(\operatorname{Re}(\langle x, y \rangle))^2 + (\operatorname{Im}(\langle x, y \rangle))^2}$, it follows that

$$||x|||y|| = \operatorname{Re}(\langle x, y \rangle) \le \sqrt{(\operatorname{Re}(\langle x, y \rangle))^2 + (\operatorname{Im}(\langle x, y \rangle))^2} = |\langle x, y \rangle| \le ||x|| ||y||.$$

So $\operatorname{Re}(\langle x,y\rangle) = \langle x,y\rangle$ and $\operatorname{Im}(\langle x,y\rangle) = 0$. Thus, $\operatorname{Re}(\langle x,y\rangle) = ||x|| ||y|| \Leftrightarrow \langle x,y\rangle = ||x|| ||y||$. Note that $y \neq 0$. Let $p := \langle x,y\rangle/\langle y,y\rangle$, then if $p \in \mathbb{R}$,

$$\begin{split} \langle x - py, x - py \rangle &= \langle x, x \rangle + p^2 \langle y, y \rangle - p \overline{\langle x, y \rangle} - \overline{p} \langle x, y \rangle \\ &= \langle x, x \rangle + \frac{|\langle x, y \rangle|^2}{(\langle y, y \rangle)^2} \langle y, y \rangle - \frac{\langle x, y \rangle \overline{\langle x, y \rangle}}{\langle y, y \rangle} - \frac{\overline{\langle x, y \rangle} \langle x, y \rangle}{\langle y, y \rangle} \\ &= \langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} = \frac{\langle x, x \rangle \langle y, y \rangle - |\langle x, y \rangle|^2}{\langle y, y \rangle}. \end{split}$$

So $\langle x, y \rangle = ||x|| ||y|| \Leftrightarrow \langle x - py, x - py \rangle = 0$ and $p \in \mathbb{R} \Leftrightarrow x = py$ and $p \in \mathbb{R}$.

Exercise 4.9. Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be sequences in an inner product space satisfying $||x_n||, ||y_n|| \le 1$ for all $n \in \mathbb{N}_+$ and $\lim_{n\to\infty} \langle x_n, y_n \rangle = 1$. Show that $\lim_{n\to\infty} ||x_n - y_n|| = 0$.

Proof. The claim goes that $\lim_{n\to\infty} \|x_n\|^2 + \|y_n\|^2 = 2$. In fact, since $\|x_n\| \le 1$ and $\|y_n\| \le 1$ for all $n \in \mathbb{N}_+$, then $\lim_{n\to\infty} \|x_n\|^2 + \|y_n\|^2 \le 2$. Also, $\|x_n\|^2 + \|y_n\|^2 \ge 2\|x_n\|\|y_n\| \ge 2|\langle x_n, y_n\rangle|^2 \to 2$ as $n \to \infty$. Hence, $\lim_{n\to\infty} \|x_n\|^2 + \|y_n\|^2 = 2$. Note that complex conjugate is uniformly continuous when regarded as a function. It follows that $\|x_n - y_n\|^2 = \langle x_n - y_n, x_n - y_n \rangle = (\|x_n\|^2 + \|y_n\|^2) - \langle x_n, y_n \rangle - \overline{\langle x_n, y_n \rangle} \to 2 - 1 - 1 = 0$ as $n \to \infty$.

Exercise 4.10. Let X be a real inner product space. If $||x+y||^2 = ||x||^2 + ||y||^2$, show that $x \perp y$. Is this result true if X is complex?

Solution. Since $\|x+y\|^2 = \|x\|^2 + \|y\|^2 + 2\operatorname{Re}(\langle x,y\rangle)$, it follows from $\|x+y\|^2 = \|x\|^2 + \|y\|^2$ that $\operatorname{Re}(\langle x,y\rangle) = 0$. If X is real, then $\langle x,y\rangle = \operatorname{Re}(\langle x,y\rangle) = 0 \Rightarrow x \perp y$. If X is complex, $x \perp y$ does not hold in general. As a counterexample, consider $X = \mathbb{C}$ equipped with the inner product $\langle x,y\rangle = x\bar{y}$ defined for all $x,y\in\mathbb{C}$. Let x=1+i and y=1-i, then $\|x+y\|=2$ and $\|x\|=\|y\|=\sqrt{2}$. So $\|x+y\|^2=\|x\|^2+\|y\|^2$. But $\langle x,y\rangle = 2i \neq 0$. Thus, $x \perp y$ fails to hold here.

Exercise 4.11. If an inner product space \mathcal{H} is real, show that the condition ||x|| = ||y|| implies $\langle x + y, x - y \rangle = 0$. What does this mean geometrically if $\mathcal{H} = \mathbb{R}^2$? What does the condition imply if \mathcal{H} is complex?

Solution. Since \mathcal{H} is real and ||x|| = ||y||, it follows that $\langle x+y, x-y \rangle = ||x||^2 - ||y||^2 - \langle x, y \rangle + \overline{\langle x, y \rangle} = -\langle x, y \rangle + \langle x, y \rangle = 0$.

If $\mathcal{H} = \mathbb{R}^2$, $\langle x + y, x - y \rangle = 0$ means that the two diagonals of a rhombus are perpendicular to each other.

If \mathcal{H} is complex, then $\langle x+y, x-y \rangle = -\langle x, y \rangle + \overline{\langle x, y \rangle} = -2i \cdot \operatorname{Im}(\langle x, y \rangle)$, which shows that $\operatorname{Re}(\langle x+y, x-y \rangle) = 0$.

5. Assignment #5: 5/23/2018

Exercise 5.1. Let M be a convex subset of a Hilbert space \mathcal{H} and let $\{x_n\}_{n=1}^{\infty} \subset M$ with $||x_n|| \to d := \inf_{x \in M} ||x||$ as $n \to \infty$. Prove that $\{x_n\}_{n=1}^{\infty}$ is convergent in \mathcal{H} .

Proof. By parallelogram law, $||x_n - x_m||^2 = 2(||x_n||^2 + ||x_m||^2) - ||x_n + x_m||^2$. Note that the convexity of M assures that $(x_n + x_m)/2$ always belongs to M. So divide both sides of the identity by 4, then we derive

$$0 \le \frac{1}{4} \|x_n - x_m\|^2 = \frac{1}{2} (\|x_n\|^2 + \|x_m\|^2) - \left\| \frac{x_n + x_m}{2} \right\|^2$$
$$\le \frac{1}{2} (\|x_n\|^2 + \|x_m\|^2) - d^2 \to \frac{1}{2} (d^2 + d^2) - d^2 = 0 \ (n \to \infty),$$

which shows that $||x_n - x_m|| \to 0$ as $n \to \infty$. Thus, $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathcal{H} and so is convergent in \mathcal{H} since \mathcal{H} is complete.

Exercise 5.2. Let X be an inner product space over \mathbb{F} and $x,y \in X$. Prove that $x \perp y \text{ iff } ||x + \alpha y|| \ge ||x|| \text{ for all } \alpha \in \mathbb{F}.$

Proof. Firstly we notice that $x \perp y \Leftrightarrow x \perp \operatorname{span}(\{y\}) \Leftrightarrow x \in (\operatorname{span}(\{y\}))^{\perp}$. Hence, $x \perp y$ is equivalent to $||x-y'|| \geq ||x||$ whenever $y' \in \text{span}(\{y\})$. Since each $y' \in \text{span}(\{y\})$ $\operatorname{span}(\{y\})$ would be of the form $y' = -\alpha y$ where $\alpha \in \mathbb{F}$. So it follows that $x \perp y$ iff $||x + \alpha y|| \ge ||x||$ for all $\alpha \in \mathbb{F}$.

Exercise 5.3. Suppose $A = \{\{x_n\}_{n=1}^{\infty} \in \ell^2 : x_{2n} = 0 \text{ for all } n \in \mathbb{N}_+\}$. Find A^{\perp} .

Solution. Let $B = \{\{x_n\}_{n=1}^{\infty} \in \ell^2 : x_{2n-1} = 0 \text{ for all } n \in \mathbb{N}_+\}$, then it's clear that $B \subset A^{\perp}$. For each $y = \{y_n\}_{n=1}^{\infty} \in A^{\perp}$, select $x = \{x_n\}_{n=1}^{\infty} \in A$ such that $x_{2n-1} = y_{2n-1}$ for all $n \in \mathbb{N}_+$. Then $\langle y, x \rangle = \sum_{n=1}^{\infty} |x_{2n-1}|^2 = 0 \Rightarrow x_{2n-1} = 0$ for all $n \in \mathbb{N}_+$, which indicates that $y \in B$. Hence, $A^{\perp} \subset B$ since y is arbitrary. So $A^{\perp} = B$.

Exercise 5.4. Let X be an inner product space and let $A \subset X$. Show that $A^{\perp} = \bar{A}^{\perp}$.

Proof. Since $A \subset \bar{A}$, it's obvious that $\bar{A}^{\perp} \subset A^{\perp}$. For each $y \in A^{\perp}$, then for all $x \in \bar{A}$, there exists $\{x_n\}_{n=1}^{\infty} \subset A$ such that $x_n \to x$ as $n \to \infty$. Then $\langle y, x \rangle =$ $\lim_{n\to\infty}\langle y,x_n\rangle=0$ since $\langle \bullet,\bullet\rangle$ is continuous. So $y\in \bar{A}^\perp$ since x is arbitrary. Hence, $A^{\perp} \subset \bar{A}^{\perp}$. So we derive $A^{\perp} = \bar{A}^{\perp}$.

Exercise 5.5. Let X be a Hilbert space and let $A \subset X$ be nonempty. Show that:

- (a) $A^{\perp \perp} = \overline{\operatorname{span}(A)};$ (b) $A^{\perp \perp \perp} = A^{\perp}.$

Proof. (a) Firstly it's known that $A \subset A^{\perp \perp}$ and $A^{\perp \perp}$ is a closed linear subspace of X. So $A \subset A^{\perp \perp} \Rightarrow \operatorname{span}(A) \subset \operatorname{span}(A^{\perp \perp}) = A^{\perp \perp}$ and then $\overline{\operatorname{span}(A)} \subset A^{\perp \perp}$.

Note that $A \subset \overline{\operatorname{span}(A)}$. So $A^{\perp} \supset \overline{\operatorname{span}(A)}^{\perp}$ and then $A^{\perp \perp} \subset \overline{\operatorname{span}(A)}^{\perp \perp}$. Since X is a Hilbert space and $\overline{\mathrm{span}(A)}$ is a closed linear subspace of X, it follows that X =

 $\overline{\operatorname{span}(A)} \oplus \overline{\operatorname{span}(A)}^{\perp}$. For each $x \in \overline{\operatorname{span}(A)}^{\perp \perp} \subset X$, there exists unique $y \in \overline{\operatorname{span}(A)}$ and $z \in \overline{\operatorname{span}(A)}^{\perp}$ such that x = y + z. Noticing $x \perp z$, $\langle x, z \rangle = \langle y, z \rangle + \langle z, z \rangle = \langle z, z \rangle = \|z\|^2 = 0 \Rightarrow z = 0$. So $x = y \in \overline{\operatorname{span}(A)}$ and then $\overline{\operatorname{span}(A)}^{\perp \perp} \subset \overline{\operatorname{span}(A)}$. Since $\overline{\operatorname{span}(A)} \subset \overline{\operatorname{span}(A)}^{\perp \perp}$, it follows that $\overline{\operatorname{span}(A)}^{\perp \perp} = \overline{\operatorname{span}(A)}$. Now we see that $A^{\perp\perp} \subset \overline{\operatorname{span}(A)}$.

In all, it has been showed that
$$\underline{A^{\perp \perp} = \overline{\operatorname{span}(A)}}$$
.
(b) By (a), $A^{\perp \perp \perp} = (A^{\perp})^{\perp \perp} = \overline{\operatorname{span}(A^{\perp})} = A^{\perp} = A^{\perp}$.

Exercise 5.6. Use the Gram-Schmidt algorithm to orthogonalize and normalize the following vectors $x_0(t) \equiv 1$, $x_1(t) = t$, $x_2(t) = t^2$ in $L^2[-1, 1]$.

Solution. We compute that $||x_0|| = \sqrt{2}$, $||x_1|| = \sqrt{2/3}$, $||x_2|| = \sqrt{2/5}$, $\langle x_0, x_1 \rangle = 0$, $\langle x_0, x_2 \rangle = 2/3$, and $\langle x_1, x_2 \rangle = 0$. So

$$u_0(t) = x_0(t) \equiv 1,$$

$$u_1(t) = x_1(t) - \frac{\langle u_0, x_1 \rangle}{\langle u_0, u_0 \rangle} u_0(t) = t,$$

$$u_2(t) = x_2(t) - \frac{\langle u_0, x_2 \rangle}{\langle u_0, u_0 \rangle} u_0(t) - \frac{\langle u_1, x_2 \rangle}{\langle u_1, u_1 \rangle} u_1(t) = t^2 - \frac{1}{3}.$$

Then normalize u_0, u_1, u_2 , and we derive

$$e_0(t) = \frac{u_0(t)}{\|u_0\|} \equiv \frac{\sqrt{2}}{2},$$

$$e_1(t) = \frac{u_1(t)}{\|u_1\|} = \frac{\sqrt{6}}{2}t,$$

$$e_2(t) = \frac{u_2(t)}{\|u_2\|} = \frac{\sqrt{10}}{4}(3t^2 - 1).$$

Exercise 5.7. Show that an orthonormal sequence $\{e_n\}_{n\in\mathbb{N}_+}$ in a Hilbert space \mathfrak{H} cannot have a convergent subsequence.

Proof. If $\{e_{n_k}\}_{k=1}^{\infty} \subset \{e_n\}_{n \in \mathbb{N}_+}$ is a convergent subsequence, then it is a Cauchy sequence in \mathcal{H} . So $\sqrt{2} = \sqrt{\|e_{n_k}\|^2 + \|e_{n_l}\|^2} = \|e_{n_k} - e_{n_l}\| \to 0$ as $n \to \infty$, which is a contradiction. Hence, $\{e_n\}_{n\in\mathbb{N}_+}$ has no convergent subsequence.

Exercise 5.8. Let \mathcal{H} be a Hilbert space and let $\{e_n\}_{n\in\mathbb{N}_+}$ be an orthonormal sequence in H. Determine whether the following series converge in H.

(a)
$$\sum_{n=1}^{\infty} \frac{e_n}{n}$$
. (b) $\sum_{n=1}^{\infty} \frac{e_n}{\sqrt{n}}$.

Solution. By Riesz-Fischer theorem, we derive:

(a)
$$\sum_{n=1}^{\infty} \frac{e_n}{n}$$
 converges since $\sum_{n=1}^{\infty} n^{-2} < \infty$;
(b) $\sum_{n=1}^{\infty} \frac{e_n}{\sqrt{n}}$ does not converge since $\sum_{n=1}^{\infty} n^{-1}$ diverges.

Exercise 5.9. Let $\{e_n\}_{n\in\mathbb{N}_+}$ be an orthonormal basis in a Hilbert space \mathfrak{H} and let $\{f_n\}_{n\in\mathbb{N}_+}$ be an orthonormal sequence in \mathfrak{H} , satisfying $\sum_{n=1}^{\infty}\|e_n-f_n\|^2<1$. Show that $\{f_n\}_{n=1}^{\infty}$ is an orthonormal basis in \mathfrak{H} .

Proof. Since $\{e_n\}_{n\in\mathbb{N}_+}$ is an orthonormal basis, it follows that $y=\sum_{n=1}^{\infty}\langle y,e_n\rangle e_n$ for each $y\in\{f_n\}_{n\in\mathbb{N}_+}^{\perp}$. Note that $\langle y,f_n\rangle=0$, then $y=\sum_{n=1}^{\infty}\langle y,e_n\rangle e_n-\sum_{n=1}^{\infty}\langle y,f_n\rangle e_n=\sum_{n=1}^{\infty}\langle y,e_n-f_n\rangle e_n$. The claim goes that y=0. If not, then

$$||y||^{2} = \left\langle \sum_{n=1}^{\infty} \langle y, e_{n} - f_{n} \rangle e_{n}, \sum_{n=1}^{\infty} \langle y, e_{n} - f_{n} \rangle e_{n} \right\rangle$$

$$= \sum_{n=1}^{\infty} |\langle y, e_{n} - f_{n} \rangle|^{2} \langle e_{n}, e_{n} \rangle$$

$$\leq \sum_{n=1}^{\infty} ||y||^{2} ||e_{n} - f_{n}||^{2} ||e_{n}||^{2}$$

$$= ||y||^{2} \sum_{n=1}^{\infty} ||e_{n} - f_{n}||^{2} < ||y||^{2},$$

which is a contradiction. Hence y = 0 and so we derive $\{f_n\}_{n \in \mathbb{N}_+}^{\perp} = \{0\}$ since y is arbitrary. Thus, $\{f_n\}_{n \in \mathbb{N}_+}$ is an orthonormal basis in \mathcal{H} .

Exercise 5.10. Consider a linear functional $T: C[0,1] \to \mathbb{C}$, defined for every $x \in C[0,1]$ by Tx = x(1).

- (a) Show that T is continuous on C[0,1] with respect to the standard norm.
- (b) Determine whether T is continuous on C[0,1] with respect to the norm $||x|| = (\int_0^1 |x(t)|^2 dt)^{1/2}$, and justify your assertion.

Solution. (a) For each $x \in C[0,1]$, it's clear that $||Tx|| = |x(1)| \le \max_{t \in [0,1]} |x(t)| = ||x||$, which shows that T. Also, for each $\alpha, \beta \in \mathbb{C}$ and each $x, y \in C[0,1]$, we have $T(\alpha x + \beta y) = (\alpha x + \beta y)(1) = \alpha x(1) + \beta y(1) = \alpha Tx + \beta Ty$. So T is indeed linear and then it is bounded. Hence, T is continuous on C[0,1].

(b) T is not continuous on C[0,1]. If not, assume that T is continuous on C[0,1], then there exists M>0 such that $||Tx|| \leq M||x||$ for each $x \in C[0,1]$. Consider the sequence $\{x_n: x_n(t) = t^{n/2}, t \in [0,1]\}_{n=1}^{\infty}$. It follows that $1 = x_n(1) = ||Tx_n|| \leq M||x|| = M/\sqrt{n+1} \to 0 \ (n \to \infty)$, which is a contradiction. Hence, the assumption fails and T is not continuous on C[0,1].

Exercise 5.11. Let $h \in L^{\infty}[0,1]$.

- (a) If f is in $L^2[0,1]$, show that $fh \in L^2[0,1]$.
- (b) Let $T: L^2[0,1] \to L^2[0,1]$ be defined as Tf = hf. Show that T is a bounded linear operator.

Proof. (a) Since $h \in L^{\infty}[0,1]$, there exists $A_0 \subset [0,1]$ such that $m(A_0) = 0$ and $||h|| = \sup_{t \in [0,1] \setminus A_0} |x(t)| < \infty$. Let M = ||h||, then

$$\int_{[0,1]} |f(t)h(t)|^2 dt \le M^2 \int_{[0,1] \setminus A_0} |f(t)|^2 dt \le M^2 \int_{[0,1]} |f(t)|^2 dt < \infty$$

since $f \in L^2[0,1]$. Thus, $fh \in L^2[0,1]$.

(b) It follows from the proof of (a) that $||Tf|| \le M||f||$, where M = ||h|| is a nonnegative constant. Hence, T is bounded since T is obviously linear.

Exercise 5.12. Consider the normed linear space ℓ^2 of all square summate infinite sequences of complex numbers, with norm $\|x\| = (\sum_{i=1}^{\infty} |x_i|^2)^{1/2}$ defined for all $x = \{x_i\}_{i=1}^{\infty} \in \ell^2$. For every $x = (x_1, x_2, x_3, \cdots) \in \ell^2$, let $Tx = (0, 4x_1, x_2, 4x_3, x_4, \cdots)$.

- (a) Show that $Tx \in \ell^2$ for every $x \in \ell^2$.
- (b) Show that $T: \ell^2 \to \ell^2$ is a bounded linear operator.
- (c) Find the norm ||T||.

Solution. (a) For each $x = \{x_i\}_{i=1}^{\infty} \in \ell^2$, $||Tx|| = (16\sum_{i=1}^{\infty} |x_{2i-1}|^2 + \sum_{i=1}^{\infty} |x_{2i}|^2)^{1/2} \le (16\sum_{i=1}^{\infty} |x_{2i-1}|^2 + 16\sum_{i=1}^{\infty} |x_{2i}|^2)^{1/2} = 4(\sum_{i=1}^{\infty} |x_i|^2)^{1/2} = 4||x|| < \infty$. Hence, $Tx \in \ell^2$ for each $x \in \ell^2$.

- (b) It's clear by (a) that $T \in \mathcal{B}(\ell^2)$.
- (c) It's clear by (a) that $||T|| \le 4$. For $e_1 = (1, 0, 0, \dots) \in \ell^2$, $||e_1|| = 1$ and $||T|| = \sup_{||x||=1} ||Tx|| \ge ||Te_1|| = ||(0, 4, 0, \dots)|| = 4$. So ||T|| = 4.

Exercise 5.13. Suppose that \mathcal{H} is a Hilbert space over \mathbb{F} , and that $x_0 \in \mathcal{H}$ is fixed. For every $x \in \mathcal{H}$, let $Tx = \langle x, y \rangle z$. Show that $T : \mathcal{H} \to \mathcal{H}$ is a bounded linear operator, and find the norm ||T||.

Proof. For all $x_1, x_2 \in \mathcal{H}$ and $\alpha_1, \alpha_2 \in \mathbb{F}$, $T(\alpha_1 x_1 + \alpha_2 x_2) = \langle \alpha_1 x_1 + \alpha_2 x_2, y \rangle z = \alpha_1 \langle x_1, y \rangle z + \alpha_2 \langle x_2, y \rangle z = \alpha_1 T x_1 + \alpha_2 T x_2$. So T is linear.

For each $x \in \mathcal{H}$, $||Tx|| = ||\langle x, y \rangle z|| = |\langle x, y \rangle| ||z|| \le ||x|| ||y|| ||z||$. So T is bounded and $||T|| \le ||y|| ||z||$.

Note that $||Ty|| = ||y||^2 ||z||$ and then $||T|| \ge ||y|| ||z||$. Hence, ||T|| = ||y|| ||z||.

DEPARTMENT OF MATHEMATICS, SOOCHOW UNIVERSITY, SUZHOU, JIANGSU 215000, CHINA