

Multi-objectives optimization

3/30/2020

1

Table of contents

- 1. Introduction about Multi-objective Optimization
- 2. Methods to solve Multi-objective Optimization problem
- 3. NSGA-II

Multi-objective optimization

Suppose you need to fly on a long trip: Should you choose the cheapest ticket (more waiting time) or shortest flying time (more expensive)?

Ticket	Travel time (hours)	Price (\$)
А	42	2000
В	40	2300
С	35	2100
D	37	2600
Е	32	2500

Multi-objective optimization

- Definition: Non-dominated solution set is a set of all the solutions that are not dominated by any member of the solution set.
- The non-dominated set of the entire feasible decision space is called the Pareto-optimal set
- The boundary defined by the set of all point mapped from the Pareto optimal set is called the Pareto-optimal front

3/3(._._.

Multi-objective optimization

- The goal in Multi-Objective Optimization (MOO)
- Find a set of solutions as close as possible to Pareto-optimal front
- To find a set of solutions as diverse as possible

Genetic approach: Non-dominated Sorting Genetic Algorithm (NSGA-II)

Math definitions

Multi-objective optimization

- Minimize $f_m(x)$, $m \in \{1, 2, ..., M\}$ • Subject to $g_j(x) \ge 0$, $j \in \{1, 2, ..., J\}$ • $h_k(x) = 0$, $k \in \{1, 2, ..., K\}$
- A solution $x_1 \in \mathbb{R}^n$ dominates another solution $x_2 \in \mathbb{R}^n$ $(x_1 > x_2)$ when
 - $\forall i \in \{1, 2, ..., M\}, f_i(x_1) \le f_i(x_2)$
 - $\exists i \in \{1, 2, ..., M\}, f_i(x_1) < f_i(x_2)$

Methods

- Weighted Sum method
- Constraint method
- Weighted Metric method
- Evolutionary Algorithm (EA)

Weighted Sum

- Scalarize a set of objectives into a single objective with predefined weight.
 - Minimize $F(x) = \sum_{m=1}^{M} w_m f_m(x)$
 - Subject to $g_j(x) \ge 0$, $j \in \{1, 2, ..., J\}$
 - $h_k(x) = 0, \quad k \in \{1, 2, ..., K\}$
- Pros: Simple, easy to implement
- Cons:
 - Can only find 1 solution for each set of weight
 - Cannot find all solutions in case of non-convex objective space

Weighted Sum (Convex case)

Weighted Sum (Non-convex case)

Constraint method

- Optimize one objective while consider other objectives as constraints.
 - Minimize $f_{\mu}(x)$ • Subject to $g_j(x) \geq 0$, $j \in \{1,2,\ldots,J\}$ • $h_k(x) = 0$, $k \in \{1,2,\ldots,K\}$
 - $f_m \le \epsilon_m, \quad m \in \{1, 2, \dots, M\}, m \ne \mu$
- Pros: Can applicable to both convex and non-convex problem
- Cons: Must carefully choose constraint ε

Weighted Metric

- Combine multiple objectives using the weighted distance metric of any solution from the ideal solution z^* .
 - Minimize $l_p(x) = (\sum_{m=1}^{M} w_m | f_m(x) z^*|^p)^{\frac{1}{p}}$
 - Subject to $g_j(x) \ge 0$, $j \in \{1, 2, ..., J\}$
 - $h_k(x) = 0, \quad k \in \{1, 2, ..., K\}$
- Pros: Can find all Pareto-optimal solution with ideal solution z^*
- Cons:
 - Require z^* to be found by independently optimize each objective function
 - For small p, not all Pareto-optimal solution can be founded
 - As p increases, the problem becomes non-differentiable.

Weighted Metric

Weighted Metric

(Weighted Tchebycheff problem)

Evolutionary Algorithm

- Advantages over classical methods
 - In MOO, we desire a set of solutions as answer
 - Classical methods operate on a candidate solution
 - To obtain a set of solution in classical methods, we must run the program with different parameters -> not efficient
 - Evolutionary Algorithm (EA) fundamentally operates on a set of candidate solutions
- There are several different multi-objectives evolutionary algorithm, the most popular one is Non-dominated Sorting Genetic Algorithm II (NSGA-II)

Consider a pair of individuals p_1 and p_2 with non-dominated fronts NF_1 and NF_2 , and crowding distances CD_1 and CD_2 . Individual p_2 to

be preferred over
$$p_1$$
 ($p_2 > p_1$) iff $\begin{cases} NF_1 < NF_2 \\ NF_1 = NF_2 \text{ and } CD_1 > CD_2 \end{cases}$

```
fast-non-dominated-sort(P)
for each p \in P
   S_p = \emptyset
   n_p = 0
   for each q \in P
      if (p \prec q) then
                                         If p dominates q
         S_p = S_p \cup \{q\}
                                         Add q to the set of solutions dominated by p
      else if (q \prec p) then
                                          Increment the domination counter of p
         n_p = n_p + 1
   if n_p = 0 then
                                         p belongs to the first front
     p_{\rm rank} = 1
      \mathcal{F}_1 = \mathcal{F}_1 \cup \{p\}
i = 1
                                          Initialize the front counter
while \mathcal{F}_i \neq \emptyset
                                         Used to store the members of the next front
   Q = \emptyset
   for each p \in \mathcal{F}_i
      for each q \in S_p
         n_q = n_q - 1
         if n_q = 0 then
                                          q belongs to the next front
            q_{\rm rank} = i + 1
            Q = Q \cup \{q\}
   i = i + 1
   \mathcal{F}_i = Q
```

```
\begin{array}{ll} \operatorname{crowding-distance-assignment}(\mathcal{I}) \\ \hline l = |\mathcal{I}| & \operatorname{number of solutions in } \mathcal{I} \\ \text{for each } i, \text{ set } \mathcal{I}[i]_{\text{distance}} = 0 & \text{initialize distance} \\ \text{for each objective } m \\ \mathcal{I} = \operatorname{sort}(\mathcal{I}, m) & \text{sort using each objective value} \\ \mathcal{I}[1]_{\text{distance}} = \mathcal{I}[l]_{\text{distance}} = \infty & \text{so that boundary points are always selected} \\ \text{for } i = 2 \text{ to } (l-1) & \text{for all other points} \\ \mathcal{I}[i]_{\text{distance}} = \mathcal{I}[i]_{\text{distance}} + (\mathcal{I}[i+1].m - \mathcal{I}[i-1].m)/(f_m^{\max} - f_m^{\min}) \end{array}
```



```
\begin{split} R_t &= P_t \cup Q_t \\ \mathcal{F} &= \texttt{fast-non-dominated-sort}(R_t) \\ P_{t+1} &= \emptyset \text{ and } i = 1 \\ \text{until } |P_{t+1}| + |\mathcal{F}_i| \leq N \\ &= \texttt{crowding-distance-assignment}(\mathcal{F}_i) \\ P_{t+1} &= P_{t+1} \cup \mathcal{F}_i \\ i &= i+1 \\ \texttt{Sort}(\mathcal{F}_i, \prec_n) \\ P_{t+1} &= P_{t+1} \cup \mathcal{F}_i [1:(N-|P_{t+1}|)] \\ Q_{t+1} &= \texttt{make-new-pop}(P_{t+1}) \\ t &= t+1 \end{split}
```

combine parent and offspring population $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2, \ldots)$, all nondominated fronts of R_t until the parent population is filled calculate crowding-distance in \mathcal{F}_i include ith nondominated front in the parent pop check the next front for inclusion sort in descending order using \prec_n choose the first $(N - |P_{t+1}|)$ elements of \mathcal{F}_i use selection, crossover and mutation to create a new population Q_{t+1} increment the generation counter

20

Challenges

- Many-objectives optimization
 - Number of objective functions is high (>=4)
 - Solutions are more likely to be non-dominated -> no room for evolution process
 - Hard to visualize solutions
- Multi-task multi-objective optimization
 - Optimize simultaneously multiple multi-objective optimization problem at once

Summary

- Multi-objective Optimization
 - · Optimize simultaneously several objective functions with tradeoff between functions
 - Search for a set of optimal solution as answer
- Methods to solve Multi-objective Optimization Problem
 - Weighted Sum Method
 - Constraint Method
 - Weighted Metric Method
 - Evolutionary Algorithm
- Non-dominated Sorting Genetic Algorithm II (NSGA-II)
 - Fast non-dominated sorting
 - Crowding distance sorting