Access answers to RD Sharma Solutions for Class 11 Maths Chapter 6 – Graphs of Trigonometric Functions

EXERCISE 6.1 PAGE NO: 6.5

1. Sketch the graphs of the following functions:

(i) f (x) = 2 sin x, $0 \le x \le \pi$

(ii) g (x) = $3 \sin (x - \pi/4)$, $0 \le x \le 5\pi/4$

(iii) h (x) = 2 sin 3x, $0 \le x \le 2\pi/3$

(iv) ϕ (x) = 2 sin (2x - π /3), $0 \le x \le 7\pi$ /3

(v) Ψ (x) = 4 sin 3 (x - π /4), $0 \le x \le 2\pi$

(vi) θ (x) = $\sin (x/2 - \pi/4)$, $0 \le x \le 4\pi$

(vii) u (x) = $\sin^2 x$, $0 \le x \le 2\pi \ \upsilon$ (x) = $|\sin x|$, $0 \le x \le 2\pi$

(viii) $f(x) = 2 \sin \pi x$, $0 \le x \le 2$

Solution:

(i) $f(x) = 2 \sin x, 0 \le x \le \pi$

We know that $g(x) = \sin x$ is a periodic function with period π .

So, $f(x) = 2 \sin x$ is a periodic function with period π . So, we will draw the graph of $f(x) = 2 \sin x$ in the interval $[0, \pi]$. The values of $f(x) = 2 \sin x$ at various points in $[0, \pi]$ are listed in the following table:

X	0(A)	π/6 (B)	π/3 (C)	π/2 (D)	2π/3 (E)	5π/6 (F)	Π (G)
$f(x) = 2\sin x$	0	1	$\sqrt{3} = 1.73$	2	$\sqrt{3} = 1.73$	1	0

The required curve is:

(ii) g (x) = $3 \sin (x - \pi/4)$, $0 \le x \le 5\pi/4$

We know that if f(x) is a periodic function with period T, then f(ax + b) is periodic with period T/|a|.

So, g (x) = 3 sin (x $-\pi/4$) is a periodic function with period π . So, we will draw the graph of g (x) = 3 sin (x $-\pi/4$) in the interval [0, $5\pi/4$]. The values of g (x) = 3 sin (x $-\pi/4$) at various points in [0, $5\pi/4$] are listed in the following table:

X	0(A)	π/4 (B)	π/2 (C)	3π/4 (D)	π (E)	5π/4 (F)
$g(x) = 3 \sin(x - \pi/4)$	$-3/\sqrt{2} = -2.1$	0	$3/\sqrt{2} = 2.12$	3	$3/\sqrt{2} = 2.12$	0

(iii) h (x) = 2 sin 3x, $0 \le x \le 2\pi/3$

We know that $g(x) = \sin x$ is a periodic function with period 2π .

So, h (x) = 2 sin 3x is a periodic function with period $2\pi/3$. So, we will draw the graph of h (x) = 2 sin 3x in the interval [0, $2\pi/3$]. The values of h (x) = 2 sin 3x at various points in [0, $2\pi/3$] are listed in the following table:

x	0 (A)	π/6 (B)	π/3 (C)	π/2 (D)	2π/3 (E)
$h(x) = 2 \sin 3x$	0	2	0	-2	0

The required curve is:

(iv) $\phi(x) = 2 \sin(2x - \pi/3), 0 \le x \le 7\pi/3$

We know that if f(x) is a periodic function with period T, then f(ax + b) is periodic with period T/|a|.

So, ϕ (x) = 2 sin (2x – π /3) is a periodic function with period π . So, we will draw the graph of ϕ (x) = 2 sin (2x – π /3), in the interval [0, 7π /5]. The values of ϕ (x) = 2 sin (2x – π /3), at various points in [0, 7π /5] are listed in the following table:

x 0 (A) $\pi/6$ (B) $2\pi/3$ (C) $7\pi/6$ (D) $7\pi/5$ (E)
--

$\phi(x) = 2\sin(2x - \pi/3)$	$-\sqrt{3} = -1.73$	0	0	0	1.98

(v) Ψ (x) = 4 sin 3 (x – π /4), 0 ≤ x ≤ 2 π

We know that if f(x) is a periodic function with period T, then f (ax + b) is periodic with period T/|a|.

So, Ψ (x) = 4 sin 3 (x – π /4) is a periodic function with period 2π . So, we will draw the graph of Ψ (x) = 4 sin 3 (x – π /4) in the interval [0, 2π]. The values of Ψ (x) = 4 sin 3 (x – π /4) at various points in [0, 2π] are listed in the following table:

x	0 (A)	π/4 (B)	π/2 (C)	π (D)	5π/4 (E)	2π (F)
$\Psi(x) = 4 \sin 3 (x - \pi/4)$	$-2\sqrt{2} = -2.82$	0	$2\sqrt{2} = 2.82$	0	1.98	$-2\sqrt{2} = -2.82$

The required curve is:

(vi) $\theta(x) = \sin(x/2 - \pi/4), 0 \le x \le 4\pi$

We know that if f(x) is a periodic function with period T, then f(ax + b) is periodic with period T/|a|.

So, θ (x) = sin (x/2 – π /4) is a periodic function with period 4π . So, we will draw the graph of θ (x) = sin (x/2 – π /4) in the interval [0, 4π]. The values of θ (x) = sin (x/2 – π /4) at various points in [0, 4π] are listed in the following table:

$x = 0 \text{ (A)} \qquad \pi/2 \qquad \pi \text{ (C)} \qquad 2\pi \text{ (D)} \qquad 5\pi/2 \qquad 3\pi \text{ (F)}$	4π (G)

		(B)			(E)		
$\theta(x) = \sin(x/2 - \pi/4)$	$-1/\sqrt{2} = -0.7$	0	$1/\sqrt{2} = 0.7$	$1/\sqrt{2} = 0.7$	0	$-1/\sqrt{2} = -0.7$	$-1/\sqrt{2} = -$ 0.7

(vii) $u(x) = \sin^2 x$, $0 \le x \le 2\pi u(x) = |\sin x|$, $0 \le x \le 2\pi$

We know that $g(x) = \sin x$ is a periodic function with period π .

So, $u(x) = \sin^2 x$ is a periodic function with period 2π . So, we will draw the graph of $u(x) = \sin^2 x$ in the interval [0, 2π]. The values of $u(x) = \sin^2 x$ at various points in [0, 2π] are listed in the following table:

x	0 (A)	π/2 (B)	П (С)	3π/2 (D)	2π (E)
$u(x) = \sin^2 x$	0	1	0	1	0

The required curve is:

(viii) $f(x) = 2 \sin \pi x$, $0 \le x \le 2$

We know that $g(x) = \sin x$ is a periodic function with period 2π .

So, f (x) = 2 sin πx is a periodic function with period 2. So, we will draw the graph of f (x) = 2 sin πx in the interval [0, 2]. The values of f (x) = 2 sin πx at various points in [0, 2] are listed in the following table:

x	0 (A)	1/2 (B)	1 (C)	3/2 (D)	2 (E)
$f(x) = 2 \sin \pi x$	0	2	0	-2	0

2. Sketch the graphs of the following pairs of functions on the same axes:

(i)
$$f(x) = \sin x$$
, $g(x) = \sin (x + \pi/4)$

(ii)
$$f(x) = \sin x$$
, $g(x) = \sin 2x$

(iii)
$$f(x) = \sin 2x, g(x) = 2 \sin x$$

(iv)
$$f(x) = \sin x/2$$
, $g(x) = \sin x$

Solution:

(i)
$$f(x) = \sin x$$
, $g(x) = \sin (x + \pi/4)$

We know that the functions $f(x) = \sin x$ and $g(x) = \sin (x + \pi/4)$ are periodic functions with periods 2π and $7\pi/4$.

The values of these functions are tabulated below:

Values of f (x) = $\sin x \text{ in } [0, 2\pi]$

x	0	π/2	π	$3\pi/2$	2π
$f(x) = \sin x$	0	1	0	-1	0

Values of g (x) = $\sin (x + \pi/4) \ln [0, 7\pi/4]$

x	0	π/4	$3\pi/4$	5π/4	7π/4
$g(x) = \sin(x + \pi/4)$	$1/\sqrt{2} = 0.7$	1	0	-1	0

(ii) $f(x) = \sin x$, $g(x) = \sin 2x$

We know that the functions $f(x) = \sin x$ and $g(x) = \sin 2x$ are periodic functions with periods 2π and π .

The values of these functions are tabulated below:

Values of f (x) = $\sin x$ in [0, 2π]

x	0	π/2	π	$3\pi/2$	2π
$f(x) = \sin x$	0	1	0	-1	0

Values of g (x) = $\sin(2x)$ in $[0, \pi]$

x	0	π/4	π/2	$3\pi/4$	π	5π/4	$3\pi/2$	7π/4	2π
$g(x) = \sin(2x)$	0	1	0	-1	0	1	0	-1	0

The required curve is:

(iii) $f(x) = \sin 2x, g(x) = 2 \sin x$

We know that the functions $f(x) = \sin 2x$ and $g(x) = 2 \sin x$ are periodic functions with periods π and π .

The values of these functions are tabulated below:

Values of f (x) = $\sin(2x)$ in $[0, \pi]$

X	0	π/4	π/2	$3\pi/4$	π	5π/4	$3\pi/2$	7π/4	2π
$f(x) = \sin(2x)$	0	1	0	-1	0	1	0	-1	0

Values of g (x) = $2 \sin x \ln [0, \pi]$

x	0	π/2	π	$3\pi/2$	2π
$g(x) = 2 \sin x$	0	1	0	-1	0

The required curve is:

(iv)
$$f(x) = \sin x/2$$
, $g(x) = \sin x$

We know that the functions $f(x) = \sin x/2$ and $g(x) = \sin x$ are periodic functions with periods π and 2π .

The values of these functions are tabulated below:

Values of f (x) = $\sin x/2$ in [0, π]

x	0	π	2π	3π	4π
$f(x) = \sin x/2$	0	1	0	-1	0

Values of g (x) = $\sin(x)$ in $[0, 2\pi]$

X	0	π/2	π	$3\pi/2$	2π	5π/2	3π	$7\pi/2$	4π
$g(x) = \sin(x)$	0	1	0	-1	0	1	0	-1	0

EXERCISE 6.2 PAGE NO: 6.8

1. Sketch the graphs of the following trigonometric functions:

(i)
$$f(x) = \cos(x - \pi/4)$$

(ii) g (x) =
$$\cos (x + \pi/4)$$

(iii)
$$h(x) = cos^2 2x$$

(iv)
$$\phi$$
 (x) = 2 cos (x - π /6)

$$(v) \psi (x) = \cos (3x)$$

(vi) u (x) =
$$\cos^2 x/2$$

(vii)
$$f(x) = \cos \pi x$$

(viii) g (x) =
$$\cos 2\pi x$$

Solution:

(i)
$$f(x) = \cos(x - \pi/4)$$

We know that $g(x) = \cos x$ is a periodic function with period 2π .

So, f (x) = $\cos(x - \pi/4)$ is a periodic function with period π . So, we will draw the graph of f (x) = $\cos(x - \pi/4)$ in the interval [0, π]. The values of f (x) = $\cos(x - \pi/4)$ at various points in [0, π] are listed in the following table:

X	0 (A)	π/4 (B)	π/2 (C)	3π/4 (D)	π (E)	5π/4 (F)	3π/2 (G)	7π/4 (H)
$f(x) = \cos(x - \pi/4)$	$1/\sqrt{2} = 0.7$	1	$1/\sqrt{2} = 0.7$	0	$-1/\sqrt{2} = -$ 0.7	-1	$-1/\sqrt{2} = -$ 0.7	0

(ii) g (x) =
$$\cos (x + \pi/4)$$

We know that $f(x) = \cos x$ is a periodic function with period 2π .

So, g (x) = $\cos(x + \pi/4)$ is a periodic function with period π . So, we will draw the graph of g (x) = $\cos(x + \pi/4)$ in the interval [0, π]. The values of g (x) = $\cos(x + \pi/4)$ at various points in [0, π] are listed in the following table:

X	0 (A)	π/4 (B)	π/2 (C)	3π/4 (D)	π (E)	5π/4 (F)	3π/2 (G)	7π/4 (H)
$g(x) = \cos(x + \frac{\pi}{4})$	$1/\sqrt{2} = 0.7$	0	$-1/\sqrt{2} = -$ 0.7	-1	$-1/\sqrt{2} = -$ 0.7	0	$1/\sqrt{2} = 0.7$	1

The required curve is:

(iii) h (x) = $\cos^2 2x$

We know that $f(x) = \cos x$ is a periodic function with period 2π .

So, h (x) = $\cos^2 2x$ is a periodic function with period π . So, we will draw the graph of h (x) = $\cos^2 2x$ in the interval [0, π]. The values of h (x) = $\cos^2 2x$ at various points in [0, π] are listed in the following table:

X	0 (A)	π/4 (B)	π/2 (C)	3π/4 (D)	π (E)	5π/4 (F)	3π/2 (G)
$h(x) = \cos^2 2x$	1	0	1	0	1	0	1

(iv)
$$\phi(x) = 2 \cos(x - \pi/6)$$

We know that $f(x) = \cos x$ is a periodic function with period 2π .

So, ϕ (x) = 2cos (x – π /6) is a periodic function with period π . So, we will draw the graph of ϕ (x) = 2cos (x – π /6) in the interval [0, π]. The values of ϕ (x) = 2cos (x – π /6) at various points in [0, π] are listed in the following table:

x	0 (A)	π/3 (B)	2π/3 (C)	π (D)	4π/3 (E)	5π/3 (F)
$\phi(x) = 2\cos(x - \pi/6)$	$\sqrt{3} = 1.73$	$\sqrt{3} = 1.73$	0	$-\sqrt{3} = -1.73$	$-\sqrt{3} = -1.73$	0

 $(v) \psi (x) = \cos (3x)$

We know that $f(x) = \cos x$ is a periodic function with period 2π .

So, ψ (x) = cos (3x) is a periodic function with period $2\pi/3$. So, we will draw the graph of ψ (x) = cos (3x) in the interval [0, $2\pi/3$]. The values of ψ (x) = cos (3x) at various points in [0, $2\pi/3$] are listed in the following table:

x	0 (A)	π/6 (B)	π/3 (C)	π/2 (D)	2π/3 (E)	5π/6 (F)
$\psi(x) = \cos(3x)$	1	0	-1	0	1	0

The required curve is:

(vi) $u(x) = \cos^2 x/2$

We know that $f(x) = \cos x$ is a periodic function with period 2π .

So, u (x) = $\cos^2(x/2)$ is a periodic function with period π . So, we will draw the graph of u (x) = $\cos^2(x/2)$ in the interval [0, π]. The values of u (x) = $\cos^2(x/2)$ at various points in [0, π] are listed in the following table:

X	0 (A)	π (B)	2π (C)	3π (D)
$u(x) = \cos^2 x/2$	1	0	1	0

(vii) $f(x) = \cos \pi x$

We know that $g(x) = \cos x$ is a periodic function with period 2π .

So, f (x) = $\cos(\pi x)$ is a periodic function with period 2. So, we will draw the graph of f (x) = $\cos(\pi x)$ in the interval [0, 2]. The values of f (x) = $\cos(\pi x)$ at various points in [0, 2] are listed in the following table:

x	0 (A)	1/2 (B)	1 (C)	3/2 (D)	2 (E)	5/2 (F)
$f(x) = \cos \pi x$	1	0	-1	0	1	0

(viii) $g(x) = \cos 2\pi x$

We know that $f(x) = \cos x$ is a periodic function with period 2π .

So, g (x) = $\cos(2\pi x)$ is a periodic function with period 1. So, we will draw the graph of g (x) = $\cos(2\pi x)$ in the interval [0, 1]. The values of g (x) = $\cos(2\pi x)$ at various points in [0, 1] are listed in the following table:

X	0 (A)	1/4 (B)	1/2 (C)	3/4 (D)	1 (E)	5/4 (F)	3/2 (G)	7/4 (H)	2
$g(x) = \cos 2\pi x$	1	0	-1	0	1	0	-1	0	1

The required curve is:

2. Sketch the graphs of the following curves on the same scale and the same axes:

(i) $y = \cos x$ and $y = \cos (x - \pi/4)$

(ii)
$$y = \cos 2x$$
 and $y = \cos (x - \pi/4)$

(iii)
$$y = \cos x$$
 and $y = \cos x/2$

(iv)
$$y = \cos^2 x$$
 and $y = \cos x$

Solution:

(i) $y = \cos x$ and $y = \cos (x - \pi/4)$

We know that the functions $y = \cos x$ and $y = \cos (x - \pi/4)$ are periodic functions with periods π and π .

The values of these functions are tabulated below:

x	0	$\pi/4$	π/2	$3\pi/4$	π	$5\pi/4$	$3\pi/2$	7π/4
$y = \cos x$	1	$1/\sqrt{2} = 0.7$	0	$-1/\sqrt{2} = -$ 0.7	-1	$-1/\sqrt{2} = -$ 0.7	0	1
$y = \cos(x - \pi/4)$	$1/\sqrt{2} = 0.7$	1	$1/\sqrt{2} = 0.7$	0	$-1/\sqrt{2} = -0.7$	-1	$-1/\sqrt{2} = -$ 0.7	0

The required curve is:

(ii)
$$y = \cos 2x$$
 and $y = \cos 2(x - \pi/4)$

We know that the functions $y = \cos 2x$ and $y = \cos 2(x - \pi/4)$ are periodic functions with periods π and π .

The values of these functions are tabulated below:

x	0	π/4	$\pi/2$	$3\pi/4$	π	5π/4	$3\pi/2$	7π/4
$y = \cos x$	1	0	-1	0	1	0	-1	0
$y = \cos 2 (x - \pi/4)$	0	1	0	-1	0	1	0	-1

(iii) $y = \cos x$ and $y = \cos x/2$

We know that the functions $y = \cos x$ and $y = \cos (x/2)$ are periodic functions with periods π and π .

The values of these functions are tabulated below:

X	0	π/2	π	$3\pi/2$	2π
$y = \cos x$	1	0	-1	0	1
$y = \cos x/2$	1	$1/\sqrt{2} = 0.7$	0	$-1/\sqrt{2} = -0.7$	-1

The required curve is:

(iv) $y = \cos^2 x$ and $y = \cos x$

We know that the functions $y = \cos^2 x$ and $y = \cos x$ are periodic functions with period 2π .

The values of these functions are tabulated below:

X	0	π/2	π	$3\pi/2$	2π
$y = \cos^2 x$	1	0	1	0	1
$y = \cos x$	1	0	-1	0	1

The required curve is:

EXERCISE 6.3 PAGE NO: 6.13

Sketch the graphs of the following functions:

1. $f(x) = 2 \csc \pi x$

Solution:

We know that $f(x) = \csc x$ is a periodic function with period 2π .

So, f (x) = 2 cosec (π x) is a periodic function with period 2. So, we will draw the graph of f (x) = 2 cosec (π x) in the interval [0, 2]. The values of f (x) = 2 cosec (π x) at various points in [0, 2] are listed in the following table:

x	0 (A)	1/2 (B)	1 (C)	-1 (D)	3/2 (E)	-2 (F)	2 (G)	5/2 (H)
$f(x) = 2 \csc(\pi x)$	∞	2	∞	-∞	-2	-∞	∞	2

2. $f(x) = 3 \sec x$

Solution:

We know that $f(x) = \sec x$ is a periodic function with period π .

So, f (x) = 3 sec (x) is a periodic function with period π . So, we will draw the graph of f (x) = 3 sec (x) in the interval [0, π]. The values of f (x) = 3 sec (x) at various points in [0, π] are listed in the following table:

x	0 (A)	π/2 (B)	-π/2 (C)	π (D)	-3π/2 (E)	$3\pi/2$ (F)	2π (G)	5π/2 (H)
$f(x) = \sec x$	3	∞	-∞	-3	-∞	∞	3	∞

The required curve is:

3. $f(x) = \cot 2x$

Solution:

We know that $f(x) = \cot x$ is a periodic function with period π .

So, f (x) = cot (2x) is a periodic function with period π . So, we will draw the graph of f (x) = cot (2x) in the interval [0, π]. The values of f (x) = cot (2x) at various points in [0, π] are listed in the following table:

X	0 (A)	π/4 (B)	-π/2 (C)	π/2 (D)	3π/4 (E)	-π (F)
$f(x) = \cot x$	$\rightarrow \infty$	0	-∞	$\rightarrow \infty$	0	-∞

The required curve is:

4. $f(x) = 2 \sec \pi x$

Solution:

We know that $f(x) = \sec x$ is a periodic function with period π .

So, f (x) = 2 sec (π x) is a periodic function with period 1. So, we will draw the graph of f (x) = 2 sec (π x) in the interval [0, 1]. The values of f (x) = 2 sec (π x) at various points in [0, 1] are listed in the following table:

x	0	1/2	-1/2	1	-3/2	3/2	2
$f(x) = 2 \sec(\pi x)$	2	∞	→-∞	-2	-∞	∞	2

5. $f(x) = tan^2 x$

Solution:

We know that $f(x) = \tan x$ is a periodic function with period π .

So, f (x) = $\tan^2(x)$ is a periodic function with period π . So, we will draw the graph of f (x) = $\tan^2(x)$ in the interval $[0, \pi]$. The values of f (x) = $\tan^2(x)$ at various points in $[0, \pi]$ are listed in the following table:

x	0 (A)	π/2 (B)	π/2 (C)	π (D)	3π/2 (E)	3π/2 (F)	2 π
$f(x) = \tan^2(x)$	0	∞	$\rightarrow \infty$	0	∞	$\rightarrow \infty$	0

