

Metrum Research Group LLC Phone: 860.735.7043 billg@metrumrg.com

2 Tunxis Road, Suite 112 Tariffville, CT 06081 www.metrumrg.com

Torsten

Torsten: A Pharmacokinetic/Pharmacodynamic Model Library for Stan

> > October 2018

Contents

Development team	2
Acknowledgements	3
Institutions	3
Funding	3
Individuals	3
1. Introduction	4
1.1. Overview	4
1.2. Implementation summary	5
1.3. Development plans	5
1.4. Changelog	6
2. Installation	7
3. Using Torsten	9
3.1. One Compartment Model	9
3.2. Two Compartment Model	9
3.3. General Linear ODE Model Function	12
3.4. General ODE Model Function	16
3.5. Mixed ODE Model Function	19
3.6. Example	20
Appendix. Index	25
Bibliography	26

Development team

Bill Gillespie. billg@metrumrg.com, Metrum Research Group, LLC

Yi Zhang. yiz@metrumrg.com, Metrum Research Group, LLC

Charles Margossian. charles.margossian@columbia.edu, Columbia University, Department of Statistics(formerly Metrum Research Group, LLC)

Acknowledgements

Institutions

We thank Metrum Research Group, Columbia University, and AstraZeneca.

Funding

This work was funded in part by the following organizations:

Office of Naval Research (ONR) contract N00014-16-P-2039. provided as part of the Small Business Technology Transfer (STTR) program. The content of the information presented in this document does not necessarily reflect the position or policy of the Government and no official endorsement should be inferred.

Bill & Melinda Gates Foundation.

Individuals

We thank the Stan Development Team for giving us guidance on how to create new Stan functions and adding features to Stan's core language that facilitate building ODE-based models.

We also thank Kyle Baron and Hunter Ford for helpful advice on coding in C++ and using GitHub, Curtis Johnston for reviewing the User Manual, and Yaming Su for using Torsten and giving us feedback.

Introduction

Stan is an open source probabilistic programing language designed primarily to do Bayesian data analysis [2]. Several of its features make it a powerful tool to specify and fit complex models. Notably, its language is extremely flexible and its No U-Turn Sampler (NUTS), an adaptative Hamiltonian Monte Carlo algorithm, has proven more efficient than commonly used Monte Carlo Markov Chains (MCMC) samplers for complex high dimensional problems [5]. Our goal is to harness these innovative features and make Stan a better software for pharmacometrics modeling. Our efforts are twofold:

- (1) We contribute to the development of new mathematical tools, such as functions that support differential equations based models, and implement them directly into Stan's core language.
- (2) We develop Torsten, an extension with specialized pharmacometrics functions.

Throughout the process, we work very closely with the Stan Development Team. We have benefited immensely from their mentorship, advice, and feedback. Just like Stan, Torsten is an open source project that fosters collaborative work. Interested in contributing? Shoot us an e-mail and we will help you help us(billg@metrumrg.com)!

Torsten is licensed under the BSD 3-clause license.

WARNING: The current version of Torsten is a *prototype*. It is being released for review and comment, and to support limited research applications. It has not been rigorously tested and should not be used for critical applications without further testing or cross-checking by comparison with other methods.

We encourage interested users to try Torsten out and are happy to assist. Please report issues, bugs, and feature requests on our GitHub page.

1.1. Overview

Torsten is a collection of Stan functions to facilitate analysis of pharmacometric data using Stan. The current version includes:

- Specific linear compartment models:
 - One compartment model with first order absorption.
 - Two compartment model with elimination from and first order absorption into central compartment
- General linear compartment model described by a system of first-order <u>linear</u> Ordinary Differential Equations (ODEs).
- General compartment model described by a system of first order ODEs.
- Mix compartment model with PK forcing function described by a linear one or two compartment model.

The models and data format are based on NONMEM $^1/NMTRAN/PREDPP$ conventions including:

¹NONMEM® is licensed and distributed by ICON Development Solutions.

- Recursive calculation of model predictions
 - This permits piecewise constant covariate values
- Bolus or constant rate inputs into any compartment
- Handles single dose and multiple dose histories
- Handles steady state dosing histories
 - Note: The infusion time must be shorter than the inter-dose interval.
- Implemented NMTRAN data items include: TIME, EVID, CMT, AMT, RATE, ADDL, II, SS

In general, all real variables may be passed as Stan parameters. A few exceptions apply /to functions which use a numerical integrator/(i.e. the general and the mix compartment models). The below listed cases present technical difficulties, which we expect to overcome in Torsten's next release:

- In the case of a multiple truncated infusion rate dosing regimen:
 - The bioavailability (F) and the amount (AMT) must be fixed.

This library provides Stan language functions that calculate amounts in each compartment, given an event schedule and an ODE system.

1.2. Implementation summary

- Current v0.85 Torsten is based on Stan v2.18.1.
- All functions are programmed in C++ and are compatible with the Stan math automatic differentiation library [3]
- One and two compartment models are based on analytical solutions of governing ODEs.
- General linear compartment models are based on semi-analytical solutions using the builtin matrix exponential function
- General compartment models are solved numerically using built-in ODE integrators in Stan. The tuning parameters of the solver are adjustable. The steady state solution is calculated using a numerical algebraic solver.
- A mix compartment model's PK forcing function is solved analytically, and its forced ODE system is solved numerically.

1.3. Development plans

Our current plans for future development of Torsten include the following:

- Build a system to easily share packages of Stan functions (written in C++ or in the Stan language)
- Allow numerical methods to handle bioavailability fraction (F) as parameters in all cases.
- Optimize Matrix exponential functions
 - Function for the action of Matrix Exponential on a vector
 - Hand-coded gradients
 - Special algorithm for matrices with special properties
- Fix issue that arises when computing the adjoint of the lag time parameter (in a dosing compartment) evaluated at $t_{\text{lag}} = 0$.
- Extend formal tests
 - We want more C++ Google unit tests to address cases users may encounter
 - Comparison with simulations from the R package $\mathit{mrgsolve}$ and the software NON-MEM®
 - Recruit non-developer users to conduct beta testing

1.4. Changelog

1.4.1. 0.85 < 2018-10-20 Sat >.

- Added
 - Dosing rate as parameter
- Changed
 - Update with Stan version 2.18.0.

1.4.2. 0.84 < 2018-02-24 Sat >.

- Added
 - Piecewise linear interpolation function.
 - Univariate integral functions.
- Changed
 - Update with Stan version 2.17.1.
 - Minor revisions to User Manual.
 - Bugfixes.

1.4.3. 0.83 <2017-08-02 Wed>.

- Added
 - Work with TorstenHeaders
 - Each chain has a different initial estimate
- Changed
 - User manual
 - Fix misspecification in ODE system for TwoCpt example.
 - Other bugfixes

$1.4.4. \ 0.82 < 2017-01-29 \ Sun > .$

- Added
 - Allow parameter arguments to be passed as 1D or 2D arrays
 - More unit tests
 - Unit tests check automatic differentiation against finite differentiation.
- Changed
 - Split the parameter argument into three arguments: pMatrix (parameters for the ODEs note: for linOdeModel, pMatrix is replaced by the constant rate matrix K), biovar (parameters for the biovariability), and tlag (parameters for the lag time).
 - bugfixes

1.4.5. 0.81 < 2016-09-27 Tue >.

• Added linCptModel (linear compartmental model) function

1.4.6. 0.80a < 2016-09-21 Wed>.

• Added check_{finite} statements in pred₁ and pred₂ to reject metropolis proposal if initial conditions are not finite

Installation

We are working with Stan development team to create a system to add and share Stan packages. In the mean time, the current repo contains forked version of Stan with Torsten. The latest version of Torsten (v0.85) is compatible with Stan v2.18.1. Torsten is agnostic to which Stan interface you use. Here we provide command line and R interfaces.

After downloading the project

• https://github.com/metrumresearchgroup/Torsten

to torsten path, set the envionment variable TORSTEN_PATH as

```
# in bash
export TORSTEN_PATH=torsten_path
# in csh
setenv TORSTEN_PATH torsten_path
```

2.0.1. Command line interface. The command line interface cmdstan does not require installation. The following command builds a Torsten model model_name in model_path

```
cd $TORSTEN_PATH/cmdstan; make model_path/model_name
```

2.0.2. R interface. The R interface is based on rstan, the Stan's interface for R. To install R version of Torsten, at \$TORSTEN_PATH, in R

```
source('install.R')
```

Please ensure the R toolchain includes a C++ compiler with C++14 support. In particular, R 3.4.0 and later is recommended as it contains toolchain based on gcc 4.9.3. On Windows platform, such a toolchain can be found in Rtools34 and later.

Please ensure .R/Makevars constains the following flags

For more information of installation troubleshooting, please consult rstan wiki.

2.0.3. Testing. To test the installation, run

```
./test-torsten.sh --unit # math unit test
./test-torsten.sh --signature # stan function # signature test
./test-torsten.sh --model # R model test, takes long time to finish
```

Using Torsten

The reader should have a basic understanding of how Stan works before reading this chapter. There are excellent resources online to get started with Stan

• http://mc-stan.org/documentation

In this section we go through the different functions Torsten adds to Stan. The code for the examples can be found at

• https://github.com/metrumresearchgroup/example-models

3.1. One Compartment Model

Torsten function PKModelOneCpt (see also Figure 1) solves one-compartment PK models. The model obtains plasma concentrations of parent drug $c = y_2/V_2$ by solving for the mass of drug in the central compartment y_2 from ordinary differential equations(ODEs)

$$y'_1 = -k_a y_1,$$

 $y'_2 = k_a y_1 - \left(\frac{CL}{V_2} + \frac{Q}{V_2}\right) y_2.$

- ODE Parameters theta consists of CL, V_2 , k_a , in that order.
- The event arguments time, amt, rate, ii, evid, cmt, addl, and ss, describe the event schedule of the clinical trial. All arrays have the same length corresponding to the number of events.
- The model arguments, other than theta, include
 - biovar, the bioavailability fraction in each compartment
 - tlag, the lag time in each compartment.
- theta, biovar, tlag may be either
 - one-dimensional array real[] for constants of all events, or
 - two-dimensional array real [,] so that the *i*th row of the array describes the model arguments for time interval (t_{i-1}, t_i) , and the number of the rows ends to the number of events.
- Setting $k_a = 0$ eliminates the first-order absorption.
- The function returns a two-dimensional array of size nt by ncmt, where nt is the number of time steps and ncmt=2 is the number of compartments.

3.2. Two Compartment Model

FIGURE 1. One and two compartment models with first order absorption implemented in Torsten.

Torsten function PKModelTwoCpt (see also Figure 1) solves two-compartment PK models. The model obtains plasma concentrations of parent drug $c = y_2/V_2$ by solving for y_2 and y_3 , the mass of drug in the central and peripheral compartments, respectively, from ODEs

$$y_1' = -k_a y_1 \tag{1}$$

$$y_2' = k_a y_1 - \left(\frac{CL}{V_2} + \frac{Q}{V_2}\right) y_2 + \frac{Q}{V_3} y_3 \tag{2}$$

$$y_3' = \frac{Q}{V_2} y_2 - \frac{Q}{V_3} y_3 \tag{3}$$

- ODE Parameters theta consists of CL, Q, V_2 , V_3 , k_a .
- The event arguments time, amt, rate, ii, evid, cmt, addl, and ss, describe the event schedule of the clinical trial. All arrays have the same length corresponding to the number of events.
- See section ?? regarding model arguments theta, biovar, and tlag.
- Setting ka to 0 eliminates the first-order absorption.
- The function returns a two-dimensional array of size nt by ncmt, where nt is the number of time steps and ncmt=3 is the number of compartments.
- **3.2.1. Example.** We model drug absorption in a single patient and simulate plasma drug concentrations:
 - Multiple Doses: 1250 mg, every 12 hours, for a total of 15 doses
 - PK measured at 0.083, 0.167, 0.25, 0.5, 0.75, 1, 1.5, 2, 4, 6, 8, 10 and 12 hours after 1st, 2nd, and 15th dose. In addition, the PK is measured every 12 hours throughout the trial.

With the plasma concentration \hat{c} solved from two-compartment ODEs, we simulate c according to:

$$\log(c) \sim N \left(\log(\widehat{c}), \sigma^2 \right)$$

$$(CL, Q, V_2, V_3, ka) = \left(5 \text{ L/h}, 8 \text{ L/h}, 20 \text{ L}, 70 \text{ L}, 1.2 \text{ h}^{-1} \right)$$

$$\sigma^2 = 0.01$$

The data are generated using the R package mrgsolve [1].

Code below shows how Torsten function PKModelTwoCpt can be used to fit the above model.

```
data{
  int<lower = 1> nt; // number of events
  int<lower = 1> nObs; // number of observation
  int<lower = 1> iObs[nObs]; // index of observation
  // NONMEM data
  int<lower = 1> cmt[nt];
  int evid[nt];
  int addl[nt];
 int ss[nt];
 real amt[nt];
 real time[nt];
 real rate[nt];
 real ii[nt];
  vector<lower = 0>[nObs] cObs; // observed concentration (Dependent Variable)
}
transformed data{
  vector[nObs] logCObs = log(cObs);
  int nTheta = 5; // number of ODE parameters in Two Compartment Model
  int nCmt = 3; // number of compartments in model
 // Since we're not trying to evaluate the bio-variability (F) and
  // the lag times, we declare them as data.
 real biovar[nCmt];
 real tlag[nCmt];
 biovar[1] = 1;
 biovar[2] = 1;
 biovar[3] = 1;
 tlag[1] = 0;
  tlag[2] = 0;
 tlag[3] = 0;
}
parameters{
 real<lower = 0> CL;
 real<lower = 0> Q;
 real<lower = 0> V1;
 real<lower = 0> V2;
 real<lower = 0> ka;
 real<lower = 0> sigma;
transformed parameters{
 real theta[nTheta]; // ODE parameters
 vector<lower = 0>[nt] cHat;
 vector<lower = 0>[nObs] cHatObs;
 matrix<lower = 0>[nt, nCmt] x;
```

Three MCMC chains of 2000 iterations are simulated. The first 1000 iteration of each chain were discarded. Thus 1000 MCMC samples per chain were used for the subsequent analyses. The MCMC history plots(Figure 2) suggest that the 3 chains have converged to common distributions for all of the key model parameters. The fit to the plasma concentration data (Figure 5) are in close agreement with the data, which is not surprising since the fitted model is identical to the one used to simulate the data. Similarly the parameter estimates summarized in Table 1 and Figure 4 are consistent with the values used for simulation.

TABLE 1. Summary of the MCMC simulations of the marginal posterior distributions of the model parameters

	mean	se_{mean}	sd	2.5%	25%	50%	75%	97.5%	$n_{ m eff}$	Rhat
$\overline{\mathrm{CL}}$	4.823	0.002	0.092	4.647	4.762	4.823	4.883	5.012	2392.155	1.00
Q	7.596	0.013	0.586	6.479	7.201	7.594	7.977	8.785	1923.939	1.00
V1	21.073	0.069	2.573	16.017	19.352	21.046	22.817	26.097	1385.883	1.00
V2	76.365	0.105	5.611	65.805	72.623	76.172	79.916	87.971	2862.184	1.00
ka	1.231	0.004	0.177	0.907	1.107	1.221	1.344	1.599	1581.825	1.00
sigma	0.109	0.000	0.012	0.089	0.100	0.108	0.116	0.134	2560.112	1.00

3.3. General Linear ODE Model Function

Torsten function linOdeModel solves a (piecewise) linear ODEs model with coefficients in form of matrix K

$$y'(t) = Ky(t) \tag{4}$$

For example, for a two-compartment model with first order absorption, K would be

$$K = \begin{bmatrix} -k_a & 0 & 0\\ k_a & -(k_{10} + k_{12}) & k_{21}\\ 0 & k_{12} & -k_{21} \end{bmatrix}$$
 (5)

where $k_{10} = CL/V_2$, $k_{12} = Q/V_2$, and $k_{21} = Q/V_3$.

FIGURE 2. MCMC history plots for the parameters of a two compartment model with first order absorption (each color corresponds to a different chain)

FIGURE 3. MCMC history plots for the parameters of a two compartment model with first order absorption (each color corresponds to a different chain)

FIGURE 4. Posterior Marginal Densities of the Model Parameters of a two compartment model with first order absorption (each color corresponds to a different chain)

• K contains system parameters. In the case of constant rate,

K is the same for all events or an array of constant rate matrices. The length of the array is the number of events and the i th element corresponds to the matrix at the interval [time[i-1], time[i]]. Note that K contains all the ODE parameters, so we no longer need theta.

- See section ?? regarding model arguments theta, biovar, and tlag.
- The function returns a two-dimensional array of size nt by n, where nt is the number of time steps and n is the size of the square matrix K.
- **3.3.1.** Example. Using linOdeModel, the following example fits a two-compartment model with first order absorption.

```
// LinTwoCptModelExample.stan
// Run two compartment model using matrix exponential solution
// Heavily anotated to help new users

data{
   int<lower = 1> nt; // number of events
   int<lower = 1> nObs; // number of observations
   int<lower = 1> iObs[nObs]; // index of observation

// NONMEM data
   int<lower = 1> cmt[nt];
   int evid[nt];
   int addl[nt];
```


FIGURE 5. Predicted (posterior median and 90% credible intervals) and observed plasma drug concentrations of a two compartment model with first order absorption

```
int ss[nt];
  real amt[nt];
  real time[nt];
  real rate[nt];
  real ii[nt];
  vector<lower = 0>[nObs] cObs; // observed concentration (dependent variable)
transformed data{
  vector[nObs] logCObs = log(cObs);
  int nCmt = 3;
  real biovar[nCmt];
  real tlag[nCmt];
  for (i in 1:nCmt) {
    biovar[i] = 1;
    tlag[i] = 0;
parameters {
  real<lower = 0> CL;
  real<lower = 0> Q;
  real<lower = 0> V1;
  real<lower = 0> V2;
  real<lower = 0> ka;
```

```
real<lower = 0> sigma;
transformed parameters{
  matrix[3, 3] K;
  real k10 = CL / V1;
  real k12 = Q / V1;
  real k21 = Q / V2;
  vector<lower = 0>[nt] cHat;
  vector<lower = 0>[nObs] cHatObs;
 matrix < lower = 0 > [nt, 3] x;
  K = rep_matrix(0, 3, 3);
  K[1, 1] = -ka;
  K[2, 1] = ka;
  K[2, 2] = -(k10 + k12);
  K[2, 3] = k21;
  K[3, 2] = k12;
  K[3, 3] = -k21;
  // linModel takes in the constant rate matrix, the object theta which
  // contains the biovariability fraction and the lag time of each compartment,
  // and the NONMEM data.
  x = linOdeModel(time, amt, rate, ii, evid, cmt, addl, ss,
                  K, biovar, tlag);
```

3.4. General ODE Model Function

Torsten function generalOdeModel_rk45 and generalOdeModel_bdf solve first ODEs with user-specified first-order right-hand-side(RHS)

$$y'(t) = f(t, y(t))$$

In the case where the rate vector r is non-zero, this equation becomes:

$$y'(t) = f(t, y(t)) + r$$

ullet User specifies f(t,y(t)) by defining ODE_system

inside the functions block (see section 19.2 of the Stan reference manual for details and Figure \sim ?? for an example). The user does NOT include the rates in their definition of f. Torsten automatically corrects the derivatives when the rates are non-zero.

• nCmt is the number of compartments (or, equivalently, the

number of ODEs) in the model.

• rel_tol, abs_tol,

and max_step are tuning parameters for the ODE integrator: respectively the relative tolerance, the absolute tolerance, and the maximum number of steps.

- generalOdeModel_rk45 solves ODEs with Stan's Runge-Kutta ODE solver function integrate_ode_rk45.
- generalOdeModel_rk45 solves ODEs with Stan's Backward Differentiation(BDF) ODE solver function integrate ode bdf,
- The values to use for the tuning parameters depends on the integrator and the specifics of the ODE system. Reducing the tolerance parameters and increasing the number of steps make for a more robust integrator but can significantly slow down the algorithm. The following can be used as a starting point:

```
- rel_tol = 1e-6

- abs_tol = 1e-6

- max_step = 1e+6

for rk45 integrator and

- rel_tol = 1e-10

- abs_tol = 1e-10

- max_step = 1e+8
```

for the BDF integrator ¹. Users should be prepared to adjust these values. For additional information, see the Stan User's Manual [6].

- In the case of a multiple truncated infusion rate dosing regimen The bioavailability biovar and the amount amt cannot be passed as parameters.
- See section ?? regarding model arguments theta, biovar, and tlag.
- **3.4.1. Example.** Using generalOdeModel_rk45, the following example fits a two-compartment model with first order absorption. User-defined function twoCptModelODE describes the RHS of the ODEs.

```
// GenTwoCptModelExample.stan
// Run two compartment model using numerical solution
// Heavily anotated to help new users
functions {
  // define ODE system for two compartmnt model
  real[] twoCptModelODE(real t,
                        real[] x,
                        real[] parms,
                        real[] rate, // in this example, rate is treated as data
                        int[] dummy) {
    // Parameters
    real CL = parms[1];
    real Q = parms[2];
    real V1 = parms[3];
    real V2 = parms[4];
    real ka = parms[5];
    // Re-parametrization
```

 $^{^{1}}$ These are the default tuning parameters the integrators. Torsten functions do not have a default values for these parameters. The user must explicitly pass the tuning parameters to generalOdeModel_*().

```
real k10 = CL / V1;
    real k12 = Q / V1;
    real k21 = Q / V2;
    // Return object (derivative)
    real y[3]; // 1 element per compartment of
                // the model
    // PK component of the ODE system
    y[1] = -ka*x[1];
    y[2] = ka*x[1] - (k10 + k12)*x[2] + k21*x[3];
    y[3] = k12*x[2] - k21*x[3];
    return y;
  }
data{
 int<lower = 1> nt; // number of events
 int<lower = 1> nObs; // number of observations
  int<lower = 1> iObs[nObs]; // index of observation
  // NONMEM data
  int<lower = 1> cmt[nt];
 int evid[nt];
 int addl[nt];
 int ss[nt];
 real amt[nt];
 real time[nt];
 real rate[nt];
 real ii[nt];
  vector<lower = 0>[nObs] cObs; // observed concentration (dependent variable)
}
transformed data{
 vector[nObs] logCObs = log(cObs);
 int nTheta = 5;  // number of parameters
int nCmt = 3;  // number of compartments
 real biovar[nCmt];
 real tlag[nCmt];
 for (i in 1:nCmt) {
   biovar[i] = 1;
   tlag[i] = 0;
 }
}
parameters{
 real<lower = 0> CL;
 real<lower = 0> Q;
 real<lower = 0> V1;
 real<lower = 0> V2;
 real<lower = 0> ka;
 real<lower = 0> sigma;
transformed parameters{
```

```
real theta[nTheta];
  vector<lower = 0>[nt] cHat;
  vector<lower = 0>[nObs] cHatObs;
  matrix<lower = 0>[nt, 3] x;
 theta[1] = CL;
  theta[2] = Q;
  theta[3] = V1;
  theta[4] = V2;
  theta[5] = ka;
 // generalCptModel takes in the ODE system, the number of compartment
  // (here we have a two compartment model with first order absorption, so
  // three compartments), the parameters matrix, the NONEM data, and the tuning
 // parameters (relative tolerance, absolute tolerance, and maximum number of
  \hookrightarrow steps)
 // of the ODE integrator. The user can choose between the bdf and the rk45
  \hookrightarrow integrator.
  // Returns a matrix with the predicted amount in each compartment
 // at each event.
// x = generalOdeModel_bdf(twoCptModelODE, 3,
                            time, amt, rate, ii, evid, cmt, addl, ss,
                            theta, biovar, tlag,
                            1e-8, 1e-8, 1e8);
  x = generalOdeModel_rk45(twoCptModelODE, 3,
                           time, amt, rate, ii, evid, cmt, addl, ss,
                           theta, biovar, tlag,
                           1e-6, 1e-6, 1e6);
 cHat = col(x, 2) ./ V1;
 for(i in 1:nObs) {
   cHatObs[i] = cHat[iObs[i]]; // predictions for observed data records
}
```

3.5. Mixed ODE Model Function

When the ODE system consists of two subsystems in form of

$$y'_1 = f_1(t, y_1),$$

 $y'_2 = f_2(t, y_1, y_2),$

with y_1 , y_2 , f_1 , and f_2 being vector-valued functions, and y_1' independent of y_2 , the solution can be accelerated if y_1 admits an analytical solution which can be introduced into the ODE for y_2 for numerical integration. This structure arises in PK/PD models, where y_1 describes a forcing PK function and y_2 the PD effects. In the example of a Friberg-Karlsson semi-mechanistic model(see below), we observe an average speedup of $\sim 47 \pm 18\%$ when using the mix solver in lieu of the numerical integrator. Torsten supports the mixed solver for cases where y_1 solves the ODEs for a One or Two Compartment model with a first-order absorption.

The reduced_ODE_system specifies the system we numerically solve (y_2 in the above discussion, also called the *reduced system* and node the number of equations in the <u>reduced</u> system. The function that defines a reduced system has an almost identical signature to that used for a full system, but takes one additional argument: y_1 , the PK states, i.e. solution to the PK ODEs.

The four functions of mixed solver correspond to all the permutations Torsten provides when using a forcing One or Two Compartment function, and the Runge-Kutta 4th/5th order (rk45) or Backward Differentiation (bdf) integration scheme. The mixed ODE functions can be used to compute the steady state solutions supported by the general ODE model functions.

Restrictions regarding which arguments may be passed as parameters for general ODE solvers also apply to mixed solvers.

3.6. Example

A Friberg-Karlsson Semi-Mechanistic model [4] couples a PK model with a PD effect. In the current example, we use the two compartment model in section 3.2 for PK model.

Neutropenia is observed in patients receiving an ME-2 drug. Our goal is to model the relation between neutrophil counts and drug exposure. Using a feedback mechanism, the body maintains

the number of neutrophils at a baseline value (Figure~??). While in the patient's blood, the drug impedes the production of neutrophils. As a result, the neutrophil count goes down. After the drug clears out, the feedback mechanism kicks in and brings the neutrophil count back to baseline.

$$\log(ANC_i) \sim N(\log(Circ), \sigma_{ANC}^2)$$
(6)

$$Circ = f_{FK}(MTT, Circ_0, \alpha, \gamma, c) \tag{7}$$

$$(MTT, Circ_0, \alpha, \gamma, ktr) = (125, 5.0, 3 \times 10^{-4}, 0.17)$$
 (8)

$$\sigma_{ANC}^2 = 0.001 \tag{9}$$

where c is the drug concentration in the blood we get from the Two Compartment model, and Circ is obtained by solving the following system of nonlinear ODEs:

$$y'_{\text{prol}} = k_{\text{prol}} y_{\text{prol}} (1 - E_{\text{drug}}) \left(\frac{Circ_0}{y_{\text{circ}}}\right)^{\gamma} - k_{\text{tr}} y_{\text{prol}}$$
(10)

$$y'_{\text{trans1}} = k_{\text{tr}} y_{\text{prol}} - k_{\text{tr}} y_{\text{trans1}} \tag{11}$$

$$y'_{\text{trans2}} = k_{\text{tr}} y_{\text{trans1}} - k_{\text{tr}} y_{\text{trans2}} \tag{12}$$

$$y'_{\text{trans3}} = k_{\text{tr}} y_{\text{trans2}} - k_{\text{tr}} y_{\text{trans3}} \tag{13}$$

$$y'_{\rm circ} = k_{\rm tr} y_{\rm trans3} - k_{\rm tr} y_{\rm circ} \tag{14}$$

where $E_{druq} = \alpha c$.

The ODEs specifying the Two Compartment Model (Equation (1)) do not depend on the PD ODEs (Equation (3.6)) and can be solved analytically using Torsten's PKModelTwoCpt function. We therefore specify our model using a mixed solver function. We do not expect our system to be stiff and use the Runge-Kutta 4th/5th order integrator (Figures ?? and ??).

```
functions{
 real[] FK_ODE(real t,
                real[] y,
               real[] y_pk,
                real[] theta,
                real[] rdummy,
               int[] idummy) {
    /* PK variables */
    real VC = theta[3];
    /* PD variable */
   real mtt = theta[6];
               = theta[7];
    real circ0
    real alpha = theta[8];
                = theta[9];
    real gamma
    real ktr
                 = 4.0 / mtt;
              = y[1] + circ0;
    real prol
    real transit1 = y[2] + circ0;
    real transit2 = y[3] + circ0;
    real transit3 = y[4] + circ0;
                = fmax(machine_precision(), y[5] + circ0);
    real conc
                 = y_pk[2] / VC;
    real EDrug = alpha * conc;
    real dydt[5];
```

```
dydt[1] = ktr * prol * ((1 - EDrug) * ((circ0 / circ)^gamma) - 1);
    dydt[2] = ktr * (prol - transit1);
    dydt[3] = ktr * (transit1 - transit2);
    dydt[4] = ktr * (transit2 - transit3);
    dydt[5] = ktr * (transit3 - circ);
   return dydt;
}
data{
 int<lower = 1> nt;
 int<lower = 1> nObsPK;
 int<lower = 1> nObsPD;
 int<lower = 1> iObsPK[nObsPK];
 int<lower = 1> iObsPD[nObsPD];
 real<lower = 0> amt[nt];
 int<lower = 1> cmt[nt];
 int<lower = 0> evid[nt];
 real<lower = 0> time[nt];
 real<lower = 0> ii[nt];
  int<lower = 0> addl[nt];
  int<lower = 0> ss[nt];
 real rate[nt];
  vector<lower = 0>[nObsPK] cObs;
 vector<lower = 0>[nObsPD] neutObs;
 real<lower = 0> circ0Prior;
 real<lower = 0> circ0PriorCV;
 real<lower = 0> mttPrior;
 real<lower = 0> mttPriorCV;
 real<lower = 0> gammaPrior;
 real<lower = 0> gammaPriorCV;
 real<lower = 0> alphaPrior;
 real<lower = 0> alphaPriorCV;
transformed data{
 int nOde = 5;
 vector[nObsPK] logCObs;
 vector[nObsPD] logNeutObs;
// int idummy[0];
// real rdummy[0];
 int nTheta;
 int nIIV;
 int n;
                               /* ODE dimension */
 real rtol;
 real atol;
 int max_step;
 n = 8;
 rtol = 1e-8;
 atol = 1e-8;
 max\_step = 100000;
 logCObs = log(cObs);
```

```
logNeutObs = log(neutObs);
 nIIV = 7; // parameters with IIV
 nTheta = 9; // number of parameters
parameters{
 real<lower = 0> CL;
 real<lower = 0> Q;
 real<lower = 0> VC;
 real<lower = 0> VP;
 real<lower = 0> ka;
 real<lower = 0> mtt;
 real<lower = 0> circ0;
 real<lower = 0> alpha;
 real<lower = 0> gamma;
 real<lower = 0> sigma;
 real<lower = 0> sigmaNeut;
  // IIV parameters
 cholesky_factor_corr[nIIV] L;
  vector<lower = 0>[nIIV] omega;
transformed parameters{
 vector[nt] cHat;
 vector<lower = 0>[nObsPK] cHatObs;
 vector[nt] neutHat;
 vector<lower = 0>[nObsPD] neutHatObs;
 real<lower = 0> theta[nTheta];
 matrix[nt, nOde + 3] x;
 real biovar[nTheta];
 real tlag[nTheta];
 for (i in 1:nTheta) {
   biovar[i] = 1.0;
   tlag[i] = 0.0;
  }
 theta[1] = CL;
 theta[2] = Q;
 theta[3] = VC;
 theta[4] = VP;
 theta[5] = ka;
 theta[6] = mtt;
 theta[7] = circ0;
  theta[8] = alpha;
 theta[9] = gamma;
 x = mixOde2CptModel_rk45(FK_ODE, nOde, time, amt, rate, ii, evid, cmt, addl, ss,
  cHat = col(x, 2) / VC;
  neutHat = col(x, 8) + circ0;
  for(i in 1:nObsPK) cHatObs[i] = cHat[iObsPK[i]];
```

```
for(i in 1:nObsPD) neutHatObs[i] = neutHat[iObsPD[i]];
}
model {
  // Priors
 CL ~ normal(0, 20);
Q ~ normal(0, 20);
     ~ normal(0, 100);
  VC
 VP ~ normal(0, 1000);
ka ~ normal(0, 5);
 sigma \sim cauchy(0, 1);
          ~ lognormal(log(mttPrior), mttPriorCV);
  circ0 ~ lognormal(log(circ0Prior), circ0PriorCV);
  sigmaNeut ~ cauchy(0, 1);
  // Parameters for Matt's trick
  L ~ lkj_corr_cholesky(1);
  omega \sim cauchy(0, 1);
 // observed data likelihood
 logCObs ~ normal(log(cObs), sigma);
  logNeutObs ~ normal(log(neutObs), sigmaNeut);
```

Index

Friberg-Karlsson Model, 20

One Compartment Model, 9

General linear model, 12 General ODE Model, 16

Mixed ODE Model, 19

Bibliography

- [1] Kyle T. Baron and Marc R. Gastonguay. Simulation from ode-based population pk/pd and systems pharmacology models in r with mrgsolve. *J Pharmacokinet Pharmacodyn*, 42(W-23):S84–S85, 2015.
- [2] Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A Probabilistic Programming Language. *Journal of Statistical software*, 76, 2017.
- [3] Bob Carpenter, Matthew D. Hoffman, Marcus Brubaker, Daniel Lee, Peter Li, and Michael Betancourt. The Stan Math Library: Reverse-Mode Automatic Differentiation in C++. arXiv:1509.07164 [cs], September 2015. arXiv: 1509.07164.
- [4] Lena E. Friberg and Mats O. Karlsson. Mechanistic Models for Myelosuppression. *Investigational New Drugs*, 21(2):183–194, May 2003.
- [5] Matthew D. Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. arXiv:1111.4246 [cs, stat], November 2011. arXiv: 1111.4246.
- [6] Stan Development Team. Stan modeling language users guide and reference manual. 2017.