안정해시 설계

왜 안정해시 설계를 알아야 할까?

안정해시설계의 이론은 간단하다. 컴퓨터 구조에도 맞닿는 부분이 있다.

일단 안정해시설계가 나온 배경부터 이해해보자.

해시는 요청 또는 데이터를 서버에 균등하게 나누는 것이 중요하다.

serverIndex = hash(key) % N(서버의 개수)

여기서 hash() 는 어떤 알고리즘에 의한 함수.

안정해시설계가 나온 이유?

문제점

해시키 재배치(rehash) 문제

모듈러 연산을 통해 부하를 균등하게 나눌 수 있는 서버 4대가 있다.

111,222,333,444,555,666,777,888,999 의 해시를 갖는 키가 있다고 가정해보자.

7	해시	해시 % 4(서버 인덱스)
key 0	111	1
key 1	222	2
key 2	333	3
key 3	444	0
key 4	555	1
key 5	666	2
key 6	777	3
key 7	888	0
key 8	999	1

서버	해시키
Server 1	key0, key4, key7
Server 2	key 1, key 5
Server 3	key 2, key 6
Server 4	key 3, key 7

균등하게 배포될 수 있다. 그래서 예시에서는 해시의 키가 이미 정렬된 상태였기 때문에 가능했던 것이며, 여기서 만약 Server 1이 죽으면 어떻게 될까? 다시 재배치를 해야될텐데.

모듈러 계산

해시 % 4(서버 인덱스) 에서

해시 % 3(서버 인덱스) 으로 변하게 된다.

그럼 Server 1 에서 가졌던 key0, key4, key7 키뿐만 아니라 모든 해시키가 재배치된다.

그 결과로 기존에 Server1,2,3,4 를 쓰던 클라이언트는 엉뚱한 서버에서 값을 찾을 테고 그 결과 대뮤고 캐시미스(cache miss)가 발생한다.

안정 해시

그래서 나온게 안정 해시

안정해시는 해시 테이블이 조정될 때 **평균적으로 오직 k/n개** 의 키만 재배치하는 해시 기술.

여기서 해시 공간과 해시 링 등장인 물이 등장

\$1,2,3 는 해시 서버

해시 키는 k0,k1,k2,k3 로 표현된다. 이때 각 키는 모듈러 연산으로 나온 결과물을 의미하지 않는다.

이때 각각의 키는 시계방향으로 링을 탐색하면 마주치는 서버에 저장.

만약 s0 이 사라진다면?

또는 s0_1이 추가된다면

다시 말하지만 안정해시는 평균적으로 오직 k/n개 키만 재배치하는 해시 기술이다.

위 방식의 안정해시 기술은 2가지 문제점

첫번째

서버가 추가되거나 삭제되는 상황을 감안하면 파티션(partition)의 크기를 균등하게 유지하는 게 불가능하다는 것(파티션은 인접한 서버 사이의 해시 공간)

어떤 서버는 굉장히 작은 해시 공간을 할당 받고, 어떤 서버는 굉장히 큰 해시 공간을 할당 받는 상황이 가능하다는 것.

두번째

키의 균등 분포(unifrom distribution)를 달성하기가 어렵다는 것. 균등한 키의 분포를 해결하기 위해서 제안된 기법은 가상 노드(virtual node) 또는 복제 (replica)라 불리는 기법 어떻게 해결할 수 있을까? 앞에서 언 급한 **가상 노드** 를 활용

가상 노드의 개수를 늘리면 키의 분 포는 점점 더 균등.

표준 편차(standard deviation)가 작아져서 데이터가 고르게 분포되기 때문.

타협적 결정(tradeoff)

코드 살펴보기