Midterm Project Introduction To Data Science

Name: Shakib Sadat Shanto

Id: 20-43074-1

Section: D

Tasks for data_1:

•Import the data set(data_1) as csv and print the data set:

Code:

dataset = read.csv('Dataset_1.csv')

dataset

Output:

	Воппожоп	Loan	Interest mate	Cradit Scara
	Borrower		Interest_rate	
1	1	10000	15.50	high
2	2	20000	14.50	high
3	3	30000	13.05	medium
4	4	70000	12.50	medium
5	5	100000	10.05	medium
6	6	150000	9.50	high
7	7	200000	9.05	low
8	8	300000	8.10	high
9	9	300000	8.10	low
10	10	400000	7.05	high
11	11	500000	6.55	medium
12	12	600000	5.85	high
13	13	800000	4.75	medium
14	14	1000000	3.55	low 1
15	15	1500000	2.85	low

•Find the shape of the data set:

Code:

summary(dataset)

str(dataset)

```
Interest_rate
    Borrower
                        Loan
                                                             Credit_Score
                  Min. : 10000
1st Qu.: 85000
Min. : 1.0
                                         Min. : 2.85
                                                             Length:15
                                         1st Qu.: 6.20
1st Qu.: 4.5
                                                             Class :character
Median: 8.0
                  Median : 300000
                                         Median: 8.10
                                                             Mode :character
                  Mean : 398667
                                         3rd Qu.:11.28
3rd Qu.:11.5
                   3rd Qu.: 550000
Max. :15.0 str(dataset)
                  Max. :1500000
'data.frame':
                   15 obs. of 4 variables:
                   : int 1 2 3 4 5 6 7 8 9 10 ...
$ Borrower
$ Loan : int 10000 20000 30000 70000 100000 150000 200000 300000 400000 ...
$ Interest_rate: num 15.5 14.5 13.1 12.5 10.1 ...
$ Credit_Score : chr "high" "high" "medium" "medium" ...
```

•Show the attributes name of the data set:

Code:

ls(dataset)

Output:

```
> ls(dataset)
[1] "Borrower" "Credit_Score" "Interest_rate" "Loan"
```

•Find the types of data for all attributes:

Code:

typeof(dataset\$Borrower)

typeof(dataset\$Loan)

typeof(dataset\$Interest_rate)

typeof(dataset\$Credit_Score)

```
> typeof(dataset$Borrower)
[1] "integer"
> typeof(dataset$Loan)
[1] "integer"
> typeof(dataset$Interest_rate)
[1] "double"
> typeof(dataset$Credit_Score)
[1] "character"
```

•Measure of center (mean, median and mode) for Loan and Interest_rate attributes:

```
Code:
```

```
install.packages('dplyr')
library(dplyr)
dataset[,2:3] %>% summarise_if(is.numeric, mean)
dataset[,2:3] %>% summarise_if(is.numeric, median)
install.packages("DescTools")
library(DescTools)
modeValue_Loan <- Mode(dataset$Loan)
modeValue_Interest_rate <- Mode(dataset$Interest_rate)</pre>
```

```
> modeValue_Interest_rate
[1] 8.1
attr(,"freq")
[1] 2
> modeValue_Loan
[1] 300000
attr(,"freq")
[1] 2
```

•Measure of Spread (range and standard Deviation) for Loan and Interest rate attributes:

Code:

```
library(dplyr)
```

dataset[,2:3] %>% summarise_if(is.numeric, sd)

range(dataset\$Loan)

range(dataset\$Interest_rate)

Output:

•Find the mode for Credit_Score attribute:

Code:

library("DescTools")

modeValue <- Mode(dataset\$Credit_Score)</pre>

```
> modeValue
[1] "high"
attr(,"freq")
[1] 6
```

Tasks for data_2:

- •Import the data set 2(data_2) as csv and print the data set:
- •Find the missing value for all attributes:

Code:

dataset2\$Type[dataset2\$Type==""] <- NA
colSums(is.na(dataset2))</pre>

^	Rooms ‡	Туре ‡	Price ‡
1	2	h	NA
2	2	h	1480000
3	2	m	1035000
4	3	NA	NA
5	3	h	1465000
6	NA	h	1480000
7	4	m	1600000
8	NA	h	NA
9	2	h	NA
10	2	NA	NA
11	2	h	941000
12	3	h	1876000
13	NA	1	NA
14	4	h	NA
15	2	h	1636000
16	3	h	1000000
17	2	hhh	1480000
18	1	1	300000
19	2	h	1097000

```
> colSums(is.na(dataset2))
Rooms Type Price
3 2 7
```

•Detect the outlier as a missing value:

Code:

dataset2\$Price[dataset2\$Price<=300000] <- NA

Output:

ullet Annotate h as 1, m as 2 , and 1 as 3 from "Type" attribute:

Code:

dataset2\$Type = factor(dataset2\$Type,

levels =
$$c("h","m","l")$$
,

labels =
$$c(1,2,3)$$
)

Output:

*	Rooms ‡	Туре ‡	Price ‡
1	2	1	NA
2	2	1	1480000
3	2	2	1035000
4	3	NA	NA
5	3	1	1465000
6	NA	1	1480000
7	4	2	1600000
8	NA	1	NA
9	2	1	NA
10	2	NA	NA
11	2	1	941000
12	3	1	1876000
13	NA	3	NA
14	4	1	NA
15	2	1	1636000
16	3	1	1000000
17	2	NA	1480000
18	1	3	NA
19	2	1	1097000

- •Recover missing values by the following strategies for Rooms and Price attributes:
 - I. Delete the rows with missing values:

Code:

```
remove_row =
dataset2[complete.cases(dataset2$Rooms,dataset2$Price), ]
```


II. Recover missing values with the mean value:

Code:

dataset2\$Rooms[is.na(dataset2\$Rooms)] = mean(dataset2\$Rooms, na.rm = TRUE)

dataset2\$Price[is.na(dataset2\$Price)] = mean(dataset2\$Price, na.rm = TRUE)

*	Rooms ‡	Туре ‡	Price ‡
1	2.0000	h	1371818
2	2.0000	h	1480000
3	2.0000	m	1035000
4	3.0000	NA	1371818
5	3.0000	h	1465000
6	2.4375	h	1480000
7	4.0000	m	1600000
8	2.4375	h	1371818
9	2.0000	h	1371818
10	2.0000	NA	1371818
11	2.0000	h	941000
12	3.0000	h	1876000
13	2.4375	1	1371818
14	4.0000	h	1371818
15	2.0000	h	1636000
16	3.0000	h	1000000
17	2.0000	hhh	1480000
18	1.0000	1	1371818
19	2.0000	h	1097000

III. Recover missing values with the median value:

Code:

dataset2\$Price[is.na(dataset2\$Price)] = median(dataset2\$Price, na.rm = TRUE)

dataset2\$Rooms[is.na(dataset2\$Rooms)] = median(dataset2\$Rooms, na.rm = TRUE)

*	Rooms ‡	Туре 💠	Price ‡
1	2	h	1480000
2	2	h	1480000
3	2	m	1035000
4	3	NA	1480000
5	3	h	1465000
6	2	h	1480000
7	4	m	1600000
8	2	h	1480000
9	2	h	1480000
10	2	NA	1480000
11	2	h	941000
12	3	h	1876000
13	2	1	1480000
14	4	h	1480000
15	2	h	1636000
16	3	h	1000000
17	2	hhh	1480000
18	1	1	1480000
19	2	h	1097000

IV. Recover missing values with the mode value:

Code:

 $dataset2\$Rooms[is.na(dataset2\$Rooms)] <- \ Mode(dataset2\$Rooms, na.rm = TRUE)$

dataset2\$Price[is.na(dataset2\$Price)] <- Mode(dataset2\$Price, na.rm = TRUE)

^	Rooms ‡	Туре 🕏	Price ‡
1	2	1	1480000
2	2	1	1480000
3	2	2	1035000
4	3	NA	1480000
5	3	1	1465000
6	2	1	1480000
7	4	2	1600000
8	2	1	1480000
9	2	1	1480000
10	2	NA	1480000
11	2	1	941000
12	3	1	1876000
13	2	3	1480000
14	4	1	1480000
15	2	1	1636000
16	3	1	1000000
17	2	NA	1480000
18	1	3	1480000
19	2	1	1097000