

Nowcasting Economic Activity

a comparison of now casting, econometrics and machine learning models

> Romain legrand Capital Fund Management

Friday 30th October, 2020

Outline

- 1 Motivation
- 2 Dataset
- 3 Dynamic Factor Model
- 4 Bayesian VAR
- 5 LSTM
- 6 Results
- 7 Conclusion

1.1 - Context: Now-casting.com

- ▶ now-casting.com trial at CFM
- Now-casting.com: real time forecasts (nowcasts) for quaterly GDP growth
- ▶ based on large monthly macro dataset
- ▶ use the Dynamic Factor Model of Giannone et al. (2008)

Conclusion

- ▶ GDP: works well for some countries (Euro area, Japan), poorly for others (US)
- other features: some well predicted, others terribly predicted

1.1 - Context: Now-casting.com

- ▶ now-casting.com trial at CFM
- Now-casting.com: real time forecasts (nowcasts) for quaterly GDP growth
- ▶ based on large monthly macro dataset
- ▶ use the Dynamic Factor Model of Giannone et al. (2008)

Conclusion

- ► GDP: works well for some countries (Euro area, Japan), poorly for others (US)
- other features: some well predicted, others terribly predicted

1.2 - The project

- replicate the dfm (possibly: improve the results)
- compare its performance with other models

Proposition

- ▶ nowcasting dataset for the US: quarterly GDP + monthly features
- nowcasting: dynamic factor model, MIDAS, mixed frequency Bayesian VAR
- econometrics: Bayesian VAR, time-varying Bayesian VAR
- ▶ machine learning: LSTM, boosting, random forest
- compare predictive performance

1.2 - The project

- replicate the dfm (possibly: improve the results)
- compare its performance with other models

Proposition

- ► nowcasting dataset for the US: quarterly GDP + monthly features
- nowcasting: dynamic factor model, MIDAS, mixed frequency Bayesian VAR
- ▶ econometrics: Bayesian VAR, time-varying Bayesian VAR
- ▶ machine learning: LSTM, boosting, random forest
- compare predictive performance

2.1 - a US macro dataset

- quarterly series of real GDP growth
- ▶ 30 monthly series of macro variables
- ightharpoonup sample dates: 1992m1 2020m8 (T = 320 m /106 q)
- ▶ series made stationary by differentiation / growth rate

Limit of the exercise

pseudo real time only!

2.1 - a US macro dataset

- quarterly series of real GDP growth
- ▶ 30 monthly series of macro variables
- ightharpoonup sample dates: 1992m1 2020m8 (T = 320 m /106 q)
- ▶ series made stationary by differentiation / growth rate

Limit of the exercise

pseudo real time only!

2.2 - dataset overview

- business indicators: pmi, business outlook survey, business confidence index, consumer confidence index
- production and sales: industrial production, Markit GDP index, business sales, residential sales, inventories
- ▶ labor and wage: unemployment rate, employment, weekly hours, hourly earnings, consumer credit, personal income
- ▶ macro aggregates: federal debt, exports, imports
- prices: ppi, cpi
- money and credit: monetary base, bank asset and liabilities, mortgage rate
- ▶ interest rates and finance: federal funds rate, treasury bill, treasury 10 years, effective exchange rate, spot Euro/US, NYSE index, VIX

3.1 - Dynamic factor: the model in brief

- features x_t are linear functions of a few factors f_t : $x_t = \mu + \Lambda f_t + \xi_t$ $\xi_t \sim N(0, diag(\psi))$
- $x_t = \mu + \Lambda f_t + \zeta_t \qquad \qquad \zeta_t$ factors f_t follow an AR process:
 - $f_t = Af_{t-1} + Bu_t \qquad u_t \sim N(0, I_a)$
- ▶ gdp growth \hat{y}_t is a linear function of projected factors:

$$\hat{y}_t = \alpha + \beta \hat{f}_t$$
 $\hat{f}_t = E(f_t | \Omega_t)$

3.2 - estimation procedure

- raw estimates of f_t by running PCA on x_t .
- estimation of μ , Λ , A and B from f_t .
- ightharpoonup model in state-space form: obtain smoothed estimates \hat{f}_t from Kalman filtering
- \blacktriangleright estimate α and β by simple OLS

Predictions

- $\hat{y}_{t+h} = \alpha + \beta \hat{f}_{t+h}$
- $ightharpoonup \hat{f}_{t+h}$ from Kalman filter

- raw estimates of f_t by running PCA on x_t .
- \triangleright estimation of μ , Λ , A and B from f_t .
- \triangleright model in state-space form: obtain smoothed estimates f_t from Kalman filtering
- \triangleright estimate α and β by simple OLS

Predictions

- $\hat{y}_{t+h} = \alpha + \beta \hat{f}_{t+h}$ \hat{f}_{t+h} from Kalman filter

4.1 - Bayesian VAR: the model in brief

► VAR model:

$$y_t = c + A_1 y_{t-1} + \dots + A_p y_{t-p} + \varepsilon_t$$
 $\varepsilon_t \sim N(0, \Sigma)$

- ▶ stack c, A_1, \dots, A_p in a single vector β .
- ▶ "estimate the model" = apply Bayes rule to get the posterior distribution of β and Σ : $\pi(\beta, \Sigma|y) \propto f(y|\beta, \Sigma)\pi(\beta, \Sigma)$
- ▶ likelihood function is normal:

$$f(y|\beta,\Sigma) = (2\pi)^{-nT/2} |\bar{\Sigma}|^{-1/2} \exp\left[-\frac{1}{2}(y-\bar{X}\beta)'\bar{\Sigma}^{-1}(y-\bar{X}\beta)\right]$$

- ▶ prior for β is normal: $N(b_0, \Omega_0)$: $\pi(\beta) = (2\pi)^{-nq/2} |\Omega_0|^{-1/2} \exp\left[-\frac{1}{2}(\beta - b_0)'\Omega_0^{-1}(\beta - b_0)\right]$
- ▶ b_0 and Ω_0 set by following the "Minnesota" prior (Litterman (1986))
- \triangleright b_0 : most economic variables follow a random walk: 1 on first ar coefficient, 0 otherwise
- $ightharpoonup \Omega_0$: "Bayesian shrinkage", prior variance is tighter for further lags and cross equation coefficients
- ▶ prior for Σ is inverse Wishart: $IW(S_0, \nu_0)$: $\pi(\Sigma) =$ $(2^{\nu_0 n/2} \Gamma_n(\nu_0/2))^{-1} |S_0|^{\nu_0/2} |\Sigma|^{-(\nu_0 + n + 1)/2} \exp\left[-\frac{1}{2} tr\{\Sigma^{-1} S_0\}\right]$
- \triangleright S_0 and ν_0 chosen to match OLS estimate $\hat{\Sigma}$.

- ▶ prior for β is normal: $N(b_0, \Omega_0)$: $\pi(\beta) = (2\pi)^{-nq/2} |\Omega_0|^{-1/2} \exp\left[-\frac{1}{2}(\beta - b_0)'\Omega_0^{-1}(\beta - b_0)\right]$
- ▶ b_0 and Ω_0 set by following the "Minnesota" prior (Litterman (1986))
- \triangleright b_0 : most economic variables follow a random walk: 1 on first ar coefficient, 0 otherwise
- $ightharpoonup \Omega_0$: "Bayesian shrinkage", prior variance is tighter for further lags and cross equation coefficients
- ▶ prior for Σ is inverse Wishart: $IW(S_0, \nu_0)$: $\pi(\Sigma) = (2^{\nu_0 n/2} \Gamma_n(\nu_0/2))^{-1} |S_0|^{\nu_0/2} |\Sigma|^{-(\nu_0 + n + 1)/2} \exp\left[-\frac{1}{2} tr\{\Sigma^{-1} S_0\}\right]$
- ► S_0 and ν_0 chosen to match OLS estimate $\hat{\Sigma}$.

4.2 - estimation procedure

- impossible to marginalize the posterior analytically to get $\pi(\beta|y)$ and $\pi(\Sigma|y)$.
- ▶ Gibbs sampling algorithm: draw sequentially from the conditional posteriors $\pi(\beta|y, \Sigma)$ and $\pi(\Sigma|y, \beta)$.
- ▶ repeat sufficiently to converge to $\pi(\beta|y)$ and $\pi(\Sigma|y)$
- recover an *empirical* posterior distribution

Predictions

- $\triangleright \beta$ and Σ : use simulations from Gibbs sampler

4.2 - estimation procedure

- impossible to marginalize the posterior analytically to get $\pi(\beta|y)$ and $\pi(\Sigma|y)$.
- ▶ Gibbs sampling algorithm: draw sequentially from the conditional posteriors $\pi(\beta|y, \Sigma)$ and $\pi(\Sigma|y, \beta)$.
- ▶ repeat sufficiently to converge to $\pi(\beta|y)$ and $\pi(\Sigma|y)$
- recover an *empirical* posterior distribution

Predictions

- $y_{t+h} = c + A_1 y_{t+h-1} + \dots + A_p y_{t+h-p} + \varepsilon_t \varepsilon_t \sim N(0, \Sigma)$
- \triangleright β and Σ : use simulations from Gibbs sampler

5.1 - LSTM: model tunning

- ▶ model: features x_{t-1} and x_{t-2} as input, x_t and GDP_t as output
- ► MSE used as loss function
- ▶ dataset is split in train/test samples (80-20%)
- ► MSE on test is lowest with only one layer
- ► MSE on test decreases with units, and stabilizes at 1000 units
- optimizer has little impact: AdaDelta, RMSprop, Adam all yields same estimates
- ▶ 500 epochs to train the model

5.1 - LSTM: model tunning

Predictions

- obtained sequentially
- ightharpoonup predict x_{t+1} and GDP_{t+1} from x_t and x_{t-1}
- ightharpoonup predict x_{t+2} and GDP_{t+2} from x_{t+1} and x_t ...

6.1 - Forecast exercise

- ▶ sequential sample: start from 1993m7 2016m7, then increase sequentially by one month, for 36 months (3 years)
- ▶ for each sample: produce forecasts at t + 1, t + 2, t + 3 and t + 4
- \triangleright forecasts are produced for GDP and all features in x_t
- ▶ for each model, sample, horizon and features, compute RMSE = $\sqrt{(x_{t+h} \hat{x}_{t+h})^2}$
- ▶ consider the average RMSE over the different samples

6.2 - Dynamic factors: illustration

structural factors: raw and smoothed estimates

6.3 - GDP predictions: all models, all horizons

6.4 - GDP predictions: RMSE tables

	1q_ahead	2q_ahead	3q_ahead	4q_ahead
Dynamic_factor_model	0.223051	0.212275	0.212238	0.303178
Bayesian_VAR	0.227662	0.193084	0.323950	1.135312
Istm	0.473065	0.506470	0.562262	1.249043

6.5 - Feature predictions: all models, one quarter ahead

6.6 - feature predictions: RMSE tables

		dfm 1q	bvar 1q	Istm 1q	dfm 2q	bvar 2q	Istm 2q	dfm 3q	bvar 3q	Istm 3q	
Ī	pmi	3.616116	4.733442	6.344117	4.831886	6.453893	10.824125	4.893616	5.297926	7.139917	Ī
	business_outlook_survey	13.270595	17.982585	28.711299	16.543634	14.509579	31.680201	15.709294	15.441356	25.866550	
	business_confidence_index	0.609327	0.881891	1.363845	0.989711	1.258690	2.302627	1.019017	1.087684	1.429962	
	consumer_confidence_index	0.477035	0.765440	0.807741	0.647770	0.747017	1.210376	0.642065	0.712899	0.983758	
	industrial_production	1.572153	1.711532	2.215614	1.411702	1.641410	3.622593	1.724344	2.600201	3.123910	
	mgdp	0.645384	0.671864	1.414081	0.621369	0.582079	1.518936	0.643031	0.983495	1.690903	
	business_sales	2.144843	2.621306	5.153992	2.632747	2.273208	7.230065	2.282892	3.122980	5.378684	
	new_residential_sales	7.530733	6.245320	9.289625	7.606331	7.522068	15.877749	7.084518	7.490126	18.944343	
	inventories	1.016453	1.077648	2.382430	1.145364	1.179062	3.070826	1.237835	1.308704	3.690093	
	unemployment_rate	0.244735	0.335247	0.441188	0.271103	0.373083	0.789802	0.320082	0.381574	0.599678	
	employment	0.220218	0.236808	0.385780	0.278078	0.252483	0.774189	0.362348	0.318726	0.926000	
	weekly_hours	0.645843	0.885315	0.660819	0.578805	0.963105	1.111286	0.590445	0.863723	1.349622	
	hourly_earnings	0.348683	0.402865	0.532967	0.371051	0.401727	0.522619	0.374493	0.367376	0.530256	
	consumer_credit	1.180668	1.280583	1.832170	1.299718	1.229607	2.783546	1.434462	1.428367	2.501960	
	personal_income	0.761734	1.286746	2.061013	0.694108	0.928167	1.396335	0.793089	0.838226	1.184694	
	federal_debt	2.079696	3.910228	4.243902	2.787228	3.922008	6.690096	2.424600	3.140373	2.531684	
	exports	4.566586	3.573000	4.721985	5.286181	4.204801	13.265452	5.847206	5.839289	10.312996	
	importo	4 707760	2 41 4020	0.075460	4 500001	4 225020	10 501/25	E 107/16	6.150410	12 424716	

Conclusion

GDP

- ▶ BVAR is best at short horizon, though dfm is quite close
- ▶ dfm is much better at longer horizons
- ▶ lstm does poorly

features

- ightharpoonup dfm >> BVAR >> lstm
- ▶ paradox: dfm does well for features (not intended), and worse than BVAR for gdp (dfm main target)
- explanation: dfm trains at monthly frequency for features, quarterly frequency for gdp: less accurate!

Nowcasting Economic Activity

a comparison of now casting, econometrics and machine learning models

> Romain legrand Capital Fund Management

Friday 30th October, 2020

References

Giannone, D., Reichlin, L., and Small, D. (2008). Nowcasting: The real-time informational content of macroeconomic data. *Journal of Monetary Economics*, (55):665–676.

Litterman, R. (1986). Forecasting with bayesian vector autoregressions: Five years of experience. *Journal of Business And Economic Statistics*, 4(1):25–38.