정보처리기능사 핵심요약

전자계산기 일반

- · 전자계산기구성 : 하드웨어(CPU, 주변장치), 소프트웨어(시스템, 응용 S/W)
- 전자계산기5대장치 : 제어, 연산, 기억, 입력, 출력
- ·특징 : 신속, 범용, 호환, 정확, 대용량, 자동성(창의성, 창조성등은 없음)
- ·컴퓨터의 수동성 의미 : GIGO(Garbage In Garbage Out)
- · CPU의 성능단위: MIPS(Million Instruction Per Second)
- · 전자계산기 발달과정(시대순으로)
- 바베지 : 차분기관, 해석기관 -->현대식 계산기의 기본원리 개념확립
- 홀러리스 : 천공카드(PCS) --> 인구조사와 국세조사에 이용
- 에이컨 : MARK-I --> 최초의 기계식 자동계산기
- 에커트, 머클리 : ENIAC --> 세계 최초의 전자계산기(진공관사용)
- 모리스, 위킬스 : EDSAC --> 프로그램 내장방식 최초 도입
- EDVAC --> 프로그램 내장방식 실용
- 에커트, 머클리 : UNIVAC-I --> 최초의 상업용 계산기
- ※ 폰노이만: 프로그램 내장방식 제창 --> 주기억장치에 저장시켜 처리하는 방식
- 전자계산기 개발순서 : ENIAC EDSAC EDVAC UNIVAC-I
- · 전자계산기 세대별 분류

구 분	1세대	2세대	3세대	4세대	5세대
주요소자	진공관	트랜지스터	집적회로	고밀도집적	초고밀도집적
처리속도	ms(10 ⁻³)	μs (10 ⁻⁶)	ns(10 ⁻⁹)	ps(10 ⁻¹²)	fs(10 ⁻¹⁵)

• 처리데이터에 의한 분류

		아날로그	디지털
입	력	연속적인 물리량	숫자 또는 문자
출	력	그래프, 곡선	숫자 또는 문자
연	산	미적분	사칙연산
회	로	증폭회로	논리회로
정밑	토	0.01%	필요한 자리까지

- ·마이크로프로세서 : 일반적으로 중앙처리장치와 LSI 1~2개를 하나의 칩에 결합해 기능을 수행
- ·컴퓨터의 기억용량 : KB(10³) -> MB(10⁶) -> GB(10⁶) -> TB(10¹²)
- 1KB = 1024Byte(영문 1자 : 1Byte, 한글 한자 : 2Byte)
- · 처리속도 단위 : ms(10⁻³) -> μ s(10⁻⁶) -> ns(10⁻⁹) -> ps(10⁻¹²) ->fs(10⁻¹⁵) -> as(10⁻¹⁸)
- 제어장치 : 컴퓨터 각 장치들의 동작을 감독 지시하는 역할 수행
- 명령계수기(PC, IC) : 다음에 실행할 명령어의 주소 보관
- 명령레지스터(IR) : 현재 실행중인 명령을 보관
- 명령해독기 : 명령을 해독하고 필요한 실행신호 보관
- 연산장치 : 제어장치에 의해 산술 및 논리연산을 수행
- 가산기 : 2진수의 덧셈
- ※ 누산기(Accumulator) : 산술 및 논리연산의 결과를 임시보관
- ·기억장치 : 입력장치로 읽어들인 프로그램, DATA, 결과를 기억
- 주기억장치 : 입력된 자료, 프로그램을 기억(RAM, ROM)
- 보조기억장치 : 내용을 영구히 기억(자기디스크, 드럼, 테이프)
- ·입력장치 : 마우스, 광전펜, 스캐너, OMR, OCR, MICR, 카드판독기, 바코드리더, 디지타이저
- ※ 카드판독기 용어
- 호퍼(Hopper) : 입력할 카드를 쌓아둔 곳
- 스태커(Stacker) : 읽은 카드를 쌓아둔 곳
- · 출력장치 : 모니터, 천공카드, 종이테이프천공기, 프린터, COM
- 천공카드 한 컬럼은 : 12bit 로 구성
- ※ 인쇄속도 단위
- CPS(Character Per Second) : 1초 동안 인쇄되는 문자수
- LPM(Line Per Minute) : 1분 동안 인쇄되는 라인(줄) 수
- PPM(Page Per Minute) : 1분 동안 인쇄되는 페이지의 수
- ·시스템 성능평가 기준 : 처리능력, 응답시간, 사용가능도, 신뢰도
- · 운영체제의 3대 자원 : 인적, 소프트웨어, 하드웨어 자원
- •운영체제의 구성

제어프로그램	처리프로그램	
감시감독, 데이터관리, 작업관리	언어번역, 문제처리 ,서비스	

- · 언어번역 : 사용자가 작성한 원시프로그램을 컴퓨터가 이해할 수 있는 목적 프로그램으로 변환
- 어셈블러 : 어셈블리어로 작성된 원시언어를 기계어로 번역(저급언어)
- 컴파일러 : 고급언어(C, 코볼, 파스칼, 포트란등)로 작성된 원시언어를 기 게어로 변환(고급언어)
- ※ 번역과정
 - 원시프로그램 -> 번역(어셈블러, 컴파일러) -> 목적프로그램 -> 연계편집 (Linkage Editor) -> 로드모듈(실행가능 P/G) -> 로더(적재기) -> Run(실행)

- 인터프리터: 베이직, 리스트, 스노볼등의 원시 언어를 줄단위로 변환후
 바로 실행하는 프로그램(목적프로그램 생성 안됨)
- 운영체제 운영방식
- 단일처리 : 주기억 장치에 하나의 프로그램만 수행
- 일괄처리(Bacth Processing System) : 일정기간, 량을 모아 한꺼번에 처리
- 실시간처리(On-line Real Time System) : 데이터가 발생하는 즉시 처리
- 다중프로그래밍(Multi Programming) : 하나의 CPU가 2개이상의 프로그램을 처리
- 다중처리(Multi Processing) : 2개 이상의 CPU가 여러개의 작업을 처리
- ※ 실시간처리 시스템의 종류 : 조회, 거래 데이터, 메시지교환 방식
- 운영체제의 용어
- Overlay : 긴프로그램을 분할하여 실행
- Spooling : CPU와 입출력장치사의 속도차이 수행
- Dead Lock : 둘이상의 프로세스들이 다른 프로세스가 차지하고 있는 자원을 무한정 기다리는 상태
- Relocation : 현 장소에서 다른 장소로 프로그램을 재배치
- · 드모르강의 정리 : $\overline{(X+Y)} = \overline{X} \cdot \overline{Y}$ $\overline{(X \cdot Y)} = \overline{X} + \overline{Y}$
- · 조합논리회로
 - 반가산기 : 두비트의 합(Sum)과 자리올림(Carry)를 발생하는 회로 Sum=AB+AB = A⊕ B
- 전가산기 : 두 개의 반가산기와 한 개의 OR 회로로 구성
- 엔코더 : 2진수로 부호화, 2m개의 입력 -> n개 출력 , OR회로 구성
- 디코더 : 10진코드와 같이 이해할 수 있는 형태로 해독, n개 입력 -> 2ⁿ 개 출력, AND 회로 구성
- · 순차논리회로
- RS 플립플롭 : 두비트에 동시에 1이면 출력은 불능상태
- JK 플립플롭 : RS의 불능상태를 보완한 회로, 두비트 1일 때 반전
- · 연산 : 수치연산(Shift), 비수치연산(MOVE, Complement, AND, OR, Rotate)
- 우측 시프트 : 원래의 값에 2의 비트 이동수승만큼 나눈값
- ex) n비트 우측이동하면 "원래 값 / 200", 우측이동한 비트는 절삭
- 좌측 시프트 : 원래의 값에 2의 비트 이동수승만큼 곱한값 ex) n비트 좌측이동하면 "원래 값 * 2™, 좌측이동한 비트는 절삭
- 단항연산 : 연산에 사용되는 자료가 한 개(Move, Complement, Shift)
- 이항연산 : 연산에 사용되는 자료가 두 개(AND, OR)
- 자료처리
- 자료 : 처리되지 않은 가공되지 않은 사실
- 처리 : 자료를 유용한 정보로 변환하는 과정
- 정보 : 사람의 의사결정에 도움을 주는 유용한 자료
- 피드백 : 원하는 결과를 얻을때까지 다시 되돌림
- ·자료의 표현단위
- 비트 : 정보의 최소단위 ※ 동시에 0과 1을 표현할 수 없다.
- Nibble : 4bit의 모임(2⁴=16가지 표현)
- Byte : 8bit의 모임(문자 표현최소 단위), 2⁸=256가지표현
- Word : CPU의 처리단위

Half word(반워드)	2바이트	
Full word(전워드)	4바이트	Full word는 1워드
Double word(배워드)	8바이트	

- Item(=Field) : word의 모임, 품명, 단가등
- Record(=논리레코드) : 프로그램 처리의 기본단위
- Physical Record(=물리레코드=Block) : 논리레코드의 모임 ※ 데이터의 입출력 단위
- File : 디스크에 저장되는 단위
- · 그레이코트(Gray code)

- * Pointer(포인터) 특징
- 기억공간의 자료의 주소의미, 기억공간 절약, 삽입삭제 용이, 프로그램 수 정 곤란, 연산속도가 느리다
- ·자료내부표현(정수 표현방식)
 - Zone Decimal(=Unpack) : 1바이트에 10진수 한 개 기억, 편집가능,연산불

F D F D F D S D S(부호): +: C, -: D

- Pack Decimal : 1바이트 10진수 두 개 기억, 편집불, 연산가능
- D
 D
 D
 D
 D
 D
 S
 S(부호): +: C, -: D

 - 고정소수점(1의 보수, 2의 보수, 부호화 절대치): 2진 연산 수행

 ※ 음수표현방법

	부호화 절대치	1의 보수	2의 보수
고설바베	보충비드라 1	비트에 0과 1을 반	1의 보수를 구한 뒤 마
표연공급	부호비트만 1		지막 비트에 1을 더함
표현범위	$-(2^{N-1}-1)\sim 2^{n-1}-1$	$-(2^{N-1}-1)\sim 2^{n-1}-1$	$-2^{n-1} \sim 2^{n-1}-1$

- ※ 2의 보수가 1의 보수보다 표현번위가 하나 더 많은
 - 부동소수점 표현 : 매우 큰수나 매우 작은수에 표현 31

0 8 1

부호 지수 가수부 야수 : 0 음수 : 1

- 자료 외부표현
- BCD : 6비트 구성(2⁶=64가지 표현), 숫자 4비트, 문자 6비트
- ASCII : 7비트 구성(2⁷=128가지 표현), 숫자 4비트, 문자 7비트, 데이터통 신용코드, 미표준 정보교환용코드, 개인용 컴퓨터에 사용
- EBCDIC : 8비트 구성(2⁸=256가지 표현), 숫자 4비트, 문자 8비트, 대형컴 퓨터에 많이 사용
- 명령어형식

OP-Code	Operand
연산자	주소부, 데이터

·Op-code : 명령어 형식, 연산자, 자료의 종류 · Operand : 주소, 명령의 순서, 주소의 정도

· 자료전달기능

CPU	< Load Store>	주기억장치	< Load Save>	보조기억장치

- 명령어 형식
 - 0번지 OP Code Stack 이용
 - 1번지 OP Code Address1 누산기 이용

- 2번지 OP Code Address1 Address2 범용레지스터 이용

- 3번지 OP Code Address1 Address2 Address3 범용레지스터 이용

- · 주소지정방식
- 즉시주소 : 주소부분에 있는값이 실제 데이터(속도 빠름)
- 직접주소 : 주소부분에 있는값이 실제데이터의 주소
- 간접주소 : 주소부분의 주소가 실제데이터의 주소를 가지고 있음
- 계산에 의한 주소 : 주소부분과 특정 레지스터의 값과 연산하여 주소구함 · Address(어트레스)
- 절대주소 : 오퍼랜드(주소부)가 실제 데이터가 있는 메모리 주소(고유번 지), 기억공간 낭비 심하다
- 상대주소 : 메모리 사용이 효율적
- ·BUS : 연산장치와 제어장치간의 자료전송과 지시 신호 전달 통로
- · 명령사이클(Instructon Cycle) : 페치사이클과 실행사이클로 구성
- Fech Cycle(페치 사이클) : 명령실행 완료후 다음에 실행할 명령을 기억 장치로부터 가져오는 동작
- Excute Cycle(실행 사이클) : 명령 해독후 실행하는 단계
- · 인터럼트
- 하드웨어 인터럽트
 - 정전(우선순위 1위) 기계착오 인터럽트
- 외부 인터런트 - 입춬력인터런트
- 소프트웨어 인터럽트
- 프로그램 인터럽트 - SVC(SuperVisor Call)(우선순위 가장 낮음)
- 주기억장치
- RAM : 인의 정근 방식 위고 쓰기가능 회박성 DRAM과 SRAM구성

		, = 0, , , 0
	SRAM(정적램)	DRAM(동적램)
특징	전원이 공급되는한 내용이 유지	
0] &	속도가 빠르다 Cache(캐시)에 이용	재충전(Refresh)이 필요 일반적인 주긱억장치
-1.0	Cache(/II/I/II = 1.6	[관련기년 기기경기

- ROM : 읽기전용으로 내용 변경 불가능, 비휘발성

종류	특징
Mask-ROM	제조회사에서 만들어진 롬
PROM	빈 롬을 사용자가 한번만 기록가능
EPROM	자외선을 이용하여 여러번 지워 사용 가능
EEPROM	전기적인 방법으로 여러번 지워 사용 가능

- 자기코어 : 초장기에 쓰였던 주기억 장치
- ·보조기억장치 : 데이터를 영구 기억하기 위함
- 자기 테이프 : 순차처리만 가능(SASD), 7트랙 9트랙형식, 일괄처리 방식 에 주로사용, 데이터 백업용으로 사용,
- * 관련용어
- IBG : 블록과 블록사이의 공백
- IRG: 논리 레코드와 논리 레코드 사이의 공백 BPI(Byte Per Inch) : 자기테이프의 기록밀도 BOT : 테이프의 시작 EOT : 테이프의 끝
- 레코드의 기록형식 : 고정길이 비블록, 고정길이 블록, 가변길이 비블록,
 - 가변길이 블록, 부정형식
- 파일과 볼류

Single File/Single Volume	하나의 볼륨에 하나의 파일 기록
Multi File/Single Volume	하나의 볼륨에 여러개의 파일 기록
Single File/Multi Volume	여러개의 볼륨에 하나의 파일 기록
Multi File/Multi Volume	여러개의 볼륨에 여러개의 파일 기록

- 자기디스크 : 직접접근기억장치(DASD), 순차 임의 접근 가능, 속도가 빠 르다 프로그램 라이브러리에 주로 사용
- * 관련용어

디스크, 엑세스 암, Read/Write 헤드, 트랙, 실린더, 섹터, 디스크팩등

Seek Time: 지정된 트랙 위치까지 도달시간 Search Time : 트랙내에서 해당 데이터의 레코드 위치를 찾는 시간

※ 디스크 입출력시간 : Seek Time + Read/Write 선택시간 + 회전 대기 시간 + 데이터 전송시간의 합

- · 캐시 메모리 : CPU와 주기억장치 사이의 속도차이 해결
- ※ 처리속토: CPU 레지스터 캐시 주기억 보조기억(자기드럼 자기 디스크 - 자기 테이프)
- 임축검장치
- 채널 : 중앙처리장치 대신 입출력장치의 조작을 대행, 입출력장치를 직접 제어하다

셀렉터 채널 : 고속의 입출력장치에 사용(자기디스크, 드럼, 테이프), 블록 단위 전송

멀티플렉서 채널: 저속의 입출력장치에 사용(프린터, 카드리터), Byte 단 위 정송

- ·데이터통신 기본요소 : 단말장치, 전송회선, 통신제어장치(CCU)
- ※ 전송속도 단위
- BPS(Bit Per Second) : 초당 전송되는 비트수
- Baud(보) : 초당 변조 속도단위
- 저송방식

결과기억

- 단방향(Simplex) : 한쪽 방향으로만 데이터 전송(라디오,TV)
- 반이중(Half Duplex): 양쪽으로 가능하나 동시에는 불가능(무전기)
- 전이중(Full Deplex) : 동시에 양쪽으로 가능(전화기)
- · 통신회선의 종류 : 광케이블, 전신회선, 위성통신
- · 통신망의 유형 : 성형, 링형, 메시형, 버스형(랜에 가장 많이 사용)
- 통신망의 종류
- LAN(Local Area Network) : 한건물 또는 동일지역 내의 가까운 거리에 서 사용
- WAN(Wide Area Network) : 도시나 국가 사이에서 정보교환
- VAN(Value Added Network) : 부가가치 통신망으로 회선을 빌려 서비 스를 제공하고 서비스 이용자는 사용료를 지불
- ISDN(Intergrated Service Digital Network) : 하나의 디지털 회선에 음 성, 영상, 문자등을 종합적으로 제공
- · OSI 7계층 : ISO에서 시스템 연결 표준을 정의
- 순서 : 물리-데이터링크-네트워크-트랜스포트(전송)-세션-표현-응용계층
- · Client/Server System : 서버와 클라이언트가 독자적인 중앙처리장치를 가 지고 각각으 처리를 담당하는 **분산처리 시스템**
- 클라이언트 : 서버의 지원을 받아 수행
- 서버 : 자원을 보유하면서 서비스를 제공
- 장점 : 분담처리 가능, 자원고유 및 자료 상호교환, 시스템 확장 유연, 사 용하기 쉽고 편리
- ·인터넷(Internet): 전세계의 네트워크(통신망을)를 연결시켜놓은 네트워크
- 텔넷(Telnet)=원격지 로그인 : 다른 컴퓨터로 로그인 하는 기능
- 전자우편(E-Mail) : 모든 인터넷 사용자와 메시지나 편지를 주고 받음
- 유즈넷(Usenet) : 특정 주제에 대한 사용자 모임
- 고퍼(Gopher) : 인터넷의 정보를 메뉴방식으로 검색수행
- FTP(File Transfer Protocol) : 파일 전송 프로토콜
- 아키(Archie) : FTP 서버들이 가지고 있는 파일을 검색하는 데이터베이스
- 인터넷채팅(IRC) : 인터넷상에서 대화
- WWW(월드와이드웹): 인터넷상의 정보(문자,그림, 동영상등)를 제공
- · 인터넷 프로토콜 : TCP/IP
- 주소체계(DNS) : 점으로 구분하면 형식은 → 컴퓨터명.소속기관.기관종 류.소속국가
 - 예) www.soback.nm.kr → 이 메일은

speednet@www.soback.nm.kr

- 웹브라우서 : 인터넷상에서 정보를 볼수 있도록 해주는 프로그램 (네스케이프, 익스플로러, 모자이크, 첼로등)
- HTTP: 인터넷 상에서 하이퍼텍스트 문서를 전송하기위한 통신규약
- HTML : 인터넷 문서를 만드는데 사용되는 언어규약
- DNS : 인터넷 주소체계, 점으로 구분한다.
- 윈속 : 인터넷에 접속할수 있도록 설정하는 통신담당 프로그램

- 프로세스 개념 : 실행중인 프로그램 의미
- ·프로세스 상태 : 하나의 작업이 기계 내부에 입력되어 처리되어 나오기까지 의 일련의 상태 의미
- 실행 : 하나의 프로세스가 CPU를 차지
- 대기 : 프로세스가 어떠한 사건이 일어나기를 기다리는 상태
- 준비 : 프로세스가 CPU에 할당되기를 기다리는 상태
- ·프로세스 제어블록(PCB): 프로세스에 대한정보(현재상태, 우선순위, 할당 된 자원)를 기억하고 있는 데이터 블록이나 레코드
- · 스케줄링 성능평가 기준 : 처리능력, 대기시간, 반응시간, 반환시간
- · 스케줄링 방식
- 선점방식 : 하나의 프로세스가 CPU를 점유하고 있을 때 다른 프로세스가 현재 프 로세스를 중단시키고 CPU를 차지할 수 있는 방식(라운드로빈(RR), SRT)
- 비선점방식 : CPU를 할당받으면 그 프로세스가 실행이 완료될 때까지 독점(FIFO, SJF, HRN, 우선순위, 기한부)

FIFO	먼저 들어온 작업을 먼저 처리
SJF	실행 시간이 가장 짧은 작업 먼저 처리
라운드로빈	FIFO 스케줄링을 선점 기법으로 구현한 기법, 먼저들어온
(Round Robin)	작업이라도 할당된 시간만 CPU 사용
SRT	남은 작업 시간이 가장 짧은 프로세스 먼저 실행
HRN	SJF의 방식의 단점을 보완한 방식
우선순위	우선순위 부여후 우선순위 순서대로 작업수행
기한부	제한된 시간내에 반드시 완료하도록 하는 방법

- ·교착상태(Deadlock) : 다른 프로세스가 이미 사용중인 자원을 사용하기 위 해 무한정 기다리는 현상
- 주기억장치 분할관리 기법

	고정분할	처리전에 주기억장치를 여러개의 고정된 크기로 나누어 할당
		처리전에 주기억장치를 여러개의 고정된 크기로 나누어 할당 단편화 현상으로 기억장소 낭비
	가변분할	작업에 필요한 만큼 기억장소 할당(할당 재비치 알고리즘 필요)

•기억장소 할당 : 프로그램이나 데이터가 들어갈 기억장소 위치 결정

최초적합(First Fit)	가장먼저 발견된 기억공간에 할당
최적적합(Best Fit)	크기가 가장 적당한 곳을 할당
최악적합(Worst Fit)	사용하지 않는 공간중 가장 큰 영역 할당

·가상기억장치 : 기억장치의 부족한 공간을 보조기억장치의 일부를 주기억장 치처럼 사용

DOS(Disk Operating System)

- ·의미 : CUI 방식의 개인용 컴퓨터에서 사용하는 운영체제
- ·기능 : 컴퓨터와 사용자의 중개역할 담당
- •부팅: 전원을 넣어 명령행 상태 표시인 프롬프트가 화면에 표시됨
- ·시스템 파일
- IO.SYS : 실제 입출력 수행(HRS)
- MSDOS.SYS : 디스크의 입출력수행(HRS)
- COMMAND.COM : 사용자가 입력한 명령을 해석 처리, 내부명령어 포 함되어 있어 부팅후 메모리에 적재(R)
- · 부팅과정 : 전원 -> POST 수행 -> IO.SYS 적재 -> MSDOS.SYS -> CONFIG.SYS
 - 실행 -> COMMAND.COM 실행 -> AUTOEXEC.BAT 실행
- · 부팅좆류

웜부팅(Warm)	Ctrl+Alt+Del 눌러 재부팅(메모리테스트과정 안거침)	
콜드부팅(Cold)	Reset, Power SW를 이용 재부팅(" 거침)	_

- ·파일 : 디스크에 저장되는 기본단위, **파일명과.확장자**로 구성, 같은 디렉토 리에 동일 파일명 존재할 수 없음.
- 파일명 : 8자 이내, 공백제외, 몇몇 특수문자제외(한글 4자), 예약어 사용 불가능(AUX, CON, NUL, PRN)
- 확장자 : 3자 이내(한글 1자)
- 만능문자

*	모든문자	대응	?	한	문자	대응

- ·디렉토리 : 서로 관련된 파일들의 집합(방 개념)
- 루트디렉토리 ; 각 드라이브마다 하나만 존재, 삭제 불가능, (₩, \, 표시)
- 서브디렉토리 : 현 디렉토리 아래에 있는 디렉토리(자식)
- 작업디렉토리 : 현재 위치하고 있는 디렉토리, . 로 표시
- 상위디렉토리 : 현 디렉토리 위에 있는 디렉토리, .. 로 표시
- · 명령어
- 내부명령어: COMMAND.COM 파일에 포함, 부팅시 주기억장치에 적재, 아무곳에서나 실행가능
- 외부명령어 : 반드시 디스크에 파일로 존재, COM이나 EXE로 되어 있음

※ 실행순서 (COM - EXE - BAT)

- 기본명령어
- CLS : 화면에 있는 내용을 지움
- DATE : 현재 시스템 날자 확인하거나 변경(., /, -)로 사용

- TIME : 현재 시스템 시간 확인하거나 변경(:) 로사용
- PROMPT : 프롬프트를 사용가자 변경
- VER : 사용중인 DOS의 버전 확인

· 파일 관련 명령

- DIR : 드라이브나 디렉토리의 목록 출력

	한 화면씩 출력	,	서브디렉토리 포함
/W	한줄에 5개 파일 나열	/A	속성(D, H, R, S, A)

- COPY : 파일 복사, 텍스트 파일 결합
- DEL : 파일 삭제, /P 옵션은 : 삭제시 삭제여부 물어봄
- UNDELETE : DEL 또는 ERASE 명령으로 삭제한 파일 복구
- REN(RENAME) : 파일 이름 변경
- TYPE : 텍스트 파일 내용 보여줌 💥 만능문자 사용 불가능
- ATTRIB : 파일에 속성(H,R,S,A) 표시, 지정(+), 해제(-)
- FC : 두 개 이상의 파일 비교하여 차이점 출력
- MOVE : 파일 이동

·디스크 관련 명령

- FORMAT : 디스크 초기화

/Q	빠른포맷(2번째부터)	/4	360KB로 포맷
/S	포맷후 시스템 전송	/V	포맷후 이름지정

- SYS : 시스템 파일(IO.SYS, MSDOS.SYS, COMMAND) 전송
- LABEL : 디스크의 이름확인, 변경, 삭제
- VOL : 디스크의 이름 확인
- DISKCOPY : 플로피디스크 원본을 다른 디스크로 똑같이 복사
- DISKCOMP : DISKCOPY로 복사된 디스크 비교
- CHKDSK : 디스크 검사, 결과 출력

/V 검사실행 파일 보여줌 /F 검사시 오류 수정

- FDISK : 하드디스크를 논리적으로 분할(파티션 생성, 수정, 삭제)

·디렉토리 관련 명령

- MD : 디렉토리 생성 CD : 디렉토리 이동
- RD : 디렉토리 삭제 DELTREE : 서브디렉토리 포함 모든 파일 삭제
- PATH : 실행할 파일의 경로 지정 ※ 해제시 : PATH;
- XCOPY : 서브디렉토리 포함 파일 복사

/S 서브디랙토리 포함복사 /E 비어있는 디렉토리 복사 반드시 /S와 같이 사용		/S	서브디렉토리 포함복사	/E	비어있는 디렉토리 복사 반드시 /S와 같이 사용
---	--	----	-------------	----	-------------------------------

- DOSKEY : 이전에 사용한 명령어 표시, 매크로 지정

· 필터와 리다리엑션

>	출력(파일	생성)	>>	추가(파일에	추가)	<	입력

- FIND : 지정한 문자열 찾음
- SORT : 내용을 정렬하여 출력(기본적으로 오름차순, /R 내림차순)
- MORE : 화면단위로 축력

· 일괄처리와 환경설정

AUTOEXEC.BAT : 일괄처리파일의 특수한 경우로 컴퓨터 부팅시 시스템 에서 자동적으로 수행, 정해진 일을 순서적으로 처리, 루트에 존재하지 않으면 날짜와 시간을 물어본다.

- 전용 명령어 : REM, ECHO, PAUSE, IF, GOTO, FOR, SHIFT, CALL CONFIG.SYS : 부팅될 때 시스템 환경을 설정, 동시에 열수 있는 파일수, 캐시설정, 기타 주변장치 설정, 메모리 설정등.

- 전용 명령어 : BREAK, COUNTRY, FCBS, FILES, SHELL, STACKS, NUMLOCK, DEVICE, LASTDRIVE, DEVICEHIGH

-상위메모리를 사용하기위한 CONFIG.SYS 의 내용은?

DEVICE=HIMEM.SYS

DOS=HIGH

- -연속확장메모리(XMS) : 1MB 이상의 메모영역
- RAMDRIVE : 메모리의 일부분을 가상의 드라이브로 사용, 수행속도 향상
- INSTALL : CONFIG.SYS에서 램상주 프로그램을 읽어들이는 명령

WINDOWS 95(V7.0)

- ·윈도우95의 특징 : 32비트 운영체제, 선점형 멀티태스킹, GUI 향상, 설치마 법사, 자동감지설치(PNP), 255자까지의 긴 파일명(공백 포함), 폴더개념 도입,
- 설치옵션

표준설치	기본적인 설치방법
휴대용설치	보조프로그램이나 게임등 제외 노트북같은 휴대용 컴퓨터에 설치
최소설치	대부분의 선택요소를 제외한 핵심 기능만을 설치(용량최소화)
사용자석치	선탠적 구섯 요소를 사용자가 추가하거나 제외하여 석치

- ·윈도우 95 설치후 기본적인 구성으로 부팅되게 하는 메뉴는 : Normal
- ·Starting Windows 95후 멀티부팅을 하려면 어떤키를? : F8

• 한글 윈도우 95시동 단축키

F4 이전의 도스버전으로 부팅	F8	시동 메뉴
F5 안전 모드	shift+F5	도스 프롬프트 부팅
F6 네트워크 기능을 포함한 안전모드	shift+F8	단계별 부팅

· Ctrl과 Shift(선택과 복사시)

C1-:4	누른 상태에서 선택하면 연속적으로 선택 누른채 끌어다 놓기 하면 파일이나 폴더가 이동
Smit	누른채 끌어다 놓기 하면 파일이나 폴더가 이동
C+=1	누른 상태에서 항목을 선택하면 부부적인 선택
Ctrl	누른채 끌어다 놓기 하면 파일이나 폴더가 복사

- · 바탕화면 : 화면전체를 차지, 모든작업은 바탕화면에서 이루어짐, 바탕화면 에 관한 설정은 사용자가 바꿈
- 배경화면, 해상도, 색상 변경방법 : [제어판]-[디스플레이]

바탕화면의 단축메뉴-[등록정보]

- 내컴퓨터: 시스템의 각종 장치 표시
- · 휴지통 : 삭제된 파일이나 폴더를 임시 보관, 삭제된 파일은 선택하여 복원 가능, 휴지통을 비우면 복원할수 없음.
- ※ 휴지통에서 파일 복구할수 없는 경우
 - 토스에서 삭제 작업시 Shift + Del로 삭제한 경우
 - 휴지통에서 [휴지통 비우기] 명령을 실행후
- ·내서류가방: 네트워크나 플로피 디스크 등을 이용하여 두 대 이상의 컴퓨 터에서 작업할 경우 파일을 동기화 시킴(최신의 자료유지)
- ·아이콘정렬(이름순, 종류별, 크기순, 날짜순, 자동정렬)
- ·단축아이콘 : 특정한 파일의 위치에 대한 정보를 담고 있음, 확장자는 [.lnk], 왼쪽 아래에 격인 화살표로 표시, 단축아이콘을 삭제하여도 원본 파일은 삭제되지않음.
- ※ 시작메뉴
- ·문서 : 가장최근에 사용한 문서를 최대 15개까지 표시, 문서파일, 그림, 소리, 동영상 프로그램의 모든 파일표시
- •실행 : 도스용 프로그램이나 등록되지 않은 프로그램 실행
- ·시스템종료 메뉴
- 시스템종료 : 시스템 전원을 끔
- 시스템 재시작 : 웜부팅과 같으며 재부팅
- MS-DOS 모드에서 시스템 재시작 : 도스 7.0으로 재시작
- 모든프로그램을 종료하고 다른사용자 이름으로 로근온 : 윈도우를 다시 시작하지 않고 실행중인 프로그램, 네트워크에 로그온만 종
- · CD-ROM 삽입시 자동실행 방지법 : Shift
- ※ 윈도우 95의 단축키

F1	도움말	F10	메뉴
ALT+F4	프로그램 종료	ALT+TAB	프로그램 전환
ALT+PrtScr	활성화된 창 클립보드에 복사	PrtScr	전체화면 클립보드에 복사
CTRL+ESC	시작메뉴 열기	CTRL+C	복사
CTRL+X	잘라내기	CTRL+V	붙여넣기
<- Bksp	탐색기의 상위폴더	DEL	삭제
SHIFT	CD-ROM넣을 때 자동실행하	지 않게	함-

·윈도우 탐색기 : 윈도우 3.1 파일관리자가 윈도우 95에서 탐색기로 대치됨

士 키	해당 폴더 바로 다음의 하위 폴더를 보여준다.
□ 키	열려 있는 하위 폴더를 닫아준다.
* 7	선택한 항목에 속하는 맨 하위 폴더까지 펼쳐준다.

※ 모든 파일 선택시 : Ctrl + A

- ·탐색기의 주요기능 : 목록보기, 속성변경, 파일,디렉토리삭제, 이동, 복사, 복 구, 이름변경, 디스크포맷, 카피, 프로그램 실행
- ·내컴퓨터에서 여러개의 폴더 한꺼번에 닫기 : Shift + 닫기단추
- ·내컴퓨터에서 하나의 창만 이용하여 열기 : [보기]-[옵션]-[같은창을 사용하 여 폴더 열기] 항목 체크
- ·제어판에서 할수 있는 일: 새하드웨어 추가, 프로그램 추가/삭제, 디스플레이, 모뎀설정, 멀티미디어 설정, 네트워크, 프린터, 시스템
- 명령어 사용법
- 흐리게 표시된 명령 : 현재 사용할 수 없는 명령
- 이름뒤에 생략기호(…)가 있는 명령 : 대화상자가 나오는 명령
- 이름앞에 확인표시(✔)가 있는 명령 : 현재 실행되고 있는 명령
- 이름 옆에 키의 조합이 있는 명령 : 이 명령에 대한 단축키
- 이름뒤에 삼각형(▶)이 있는 명령 : 추가명령을 나열하는 계단식 명령
- · 파일/폴더 이름변경법 : [파일]-[이름바꾸기], 단축메뉴 -[이름바꾸기], 바꿀 파일/폴더 선택후 한번 더 선택, [F2]
- •파일 삭제 방법
- 원하는 파일 선택후 DEL
- 선택후 마우스 끌기를 이용해 휴지통에 집어 넣기
- 선택후 마우스 오른쪽 버튼 누른후 단축메뉴에서 삭제 선택
- · 프로그램 실행방법
- [시작]-[실행]메뉴이용하여 직접 실행파일 입력
- [시작]-[프로그램] 메뉴에 등록후 프로그램 실행
- 탐색기나, 내컴퓨터에서 실행파일 더블클릭

- 바탕화면의 단축아이콘이 있는 경우 더블클릭
- ※ 데이터 파일을 두 번눌러 해당 프로그램 실행가능
- · 프로그램 종료 방법
- Alt + F4를 누른다.
- 오른쪽 상단에 있는 단추를 누른다.
- 좌측 상단에 있는 조절 메뉴상자를 더블클릭 한다.
- 좌측 상단에 있는 조절 메뉴상자를 클릭후 단축메뉴에서 닫기를 누른다.
- * 프로그램 강제 종료 : 특정 프로그램 실행시 문제가 발생시 강제 종료할
 수 있음 --> Ctrl + Alt + Del
- · 프로그램추가/삭제

설치- Setup이나 Install 파일을 찾아 두 번 클릭하여 설치

- [시작]-[실행] 메뉴이용 설치
- [제어파]-[프로그램추가/삭제]심행후 [설치]

삭제- 자체 Uninstall 프로그램으로 제거

- [제어판]-[프로그램추가/삭제]실행후 [추가/삭제]
- 문서
- 문서 작업시 일반적으로 해당프로그램 실행후 작업할 문서를 불러온다. (그러나 문서 파일을 두 번 눌러 역으로 실행가능)
- 찾기 어려운 문서는 [시작]-[찾기]에서 찾아 열기가능
- [시작]-[문서]이용하여 문서 열기가능
- 등록되지 않은 문서는 [연결프로그램 찾기]를 이용하여 연결시킬 프로그 램을 등록함수 있음
- 인쇄
- 인쇄를 하기전에는 반드시 프린터가 설치되어야 함
- 해당프로그램에서 [파일]-[인쇄] 실행, 도구모음 이용
- 문서 파일선택후 단축메뉴에서 [인쇄]
- 해당 문서 파일을 프린터 아이콘으로 드래그 앤 드롭한다
- ※ 프린터 상태 확인
 - 작업표시줄의 표시기영역 더블클릭
- 문서이름, 상태, 진행율등 인쇄중인 문서의 확인, 취소, 중지, 순서변경 등 의 작업을 할수 있음.
- ·디스크의 공간 부족시 해결사항

-1	1 4 1 4 5 1 6
디스크조각모음	디스크의 단편화제거, 디스크의 입출력속도를 향상
디스크검사	디스크의 논리적,물리적 오류검사 및 해결
백업	중요한 파일을 정기적으로 백업, 이상시 복원가능
디스크공간늘림	부족한 디스크를 압축하여 많은 공간 사용
시스템사용상황	시스템의 각종자원(CPI)커널 메모리)등을 그래프로 표현

- 휴지통의 크기 재조정, 휴지통의 파일 삭제
- 사용하지 않는 프로그램 삭제, 임시파일, 불필요한 파일 제거
- 오류 파일 디스크검사 이용하여 오류 해결
- ·두대의 시스템(컴퓨터) 자원을 연결하는 방법
- 전화접속 네트워킹 이용하여 모뎀으로 연결 - 케이블 직접연결 - 내서류가방 이용 파일을 동기화
- ·시동디스크 작성법

시작 → 설정 → 제어판 → 프로그램 추가/삭제 → 시동디스크

- · CD-ROM 설치시 사용명령 ----> MSCDEX
- ·OLE(개체 연결 및 포함) : 다른 응용프로그램에서 작성한 그림, 표등을 특정 문서로 연결하거나 삽입하는 것
- 제공측과 제공받은 측의 프로그램 상호작용
- 수정, 편집시 상호 반영
- ·DDE(동적데이터교환) : 두 개의 프로그램이 동시에 열려있어야 서로 데이 터를 교환할수 있다
- · 프린터 아이콘의 기능
- 인쇄문서의 확인 대기중인 문서 학인
- 작업의 일시정지, 취소, 삭제
- ・[시작]→[문서]에 대한 내용설명
- 최대 문서 15개까지 저장 가능 선택하면 해당 프로그램이 실행
- 문서의 내용도 지울수 있음 [설정]-[작업표시줄]
- ·새하드웨어 추가방법
- [제어판]→[새하드웨어 추가] Plug & Play (PNP) 이용
- 새하드웨어 추가 마법사 이용
- ·도스창 작업후 다시 윈도우 95로 복귀시 사용명령은 ? : EXIT
- · 한글 MS-DOS모드로 이동후 윈도우와 상호 화면전환 방법은 : Alt + Enter
- •작업표시줄 : 프로그램, 문서 또는 창을 열때마다 해당 단추가 표시되는 줄
- 프로그램간의 작업 전환을 편리하게 해준다
- 위치(상, 하, 좌, 우) 및 크기조절이 가능하다.
- 최대 크기는 바탕화면 크기의 1/2이다.
- ·시스템 유지관리 방법: 파일백업, 디스크 검사, 디스크 조각모음 (※단, CD-ROM에서는 조각모음이 안됨)
- · 윈도우 탐색기의 아이콘 파일보기 형태
- 큰 아이콘, 작은 아이콘, 목록으로, 자세히
- · 윈도우 95의 시작메뉴 내용 : 시스템 종료, 실행, 도움말, 찾기, 설정, 문서, 프로그램
- ·클립보드(임시기억장소): 잘라내기, 복사, 붙여넣기등을 실행시 데이터가 저장되는 임시기억장소
- 한 번에 한가지의 정보만 기억 제일 마지막의 정보만 기억
- 클립보드의 내용을 파일로 저장 가능
- 전체화면 하드카피 : <Print Screen>

- 활성화된 화면 하드카피 : <Alt> + <Print Screen>
- 클립보드 표시하기 : 시작 → 프로그램 → 보조프로그램 → 클립보드 표시기
- ·스풀의 기능(병행처리) : 인쇄할 내용을 미리 하드디스크(보조기억장치)에 저장한 후 인쇄한다. 이때 인쇄도 하면서 컴퓨터 도 사용할수 있다.
- 주요 오피스 관련 보조 프로그램
- 메모장 : 간단한.TXT 파일을 작성, 파일의 크기가 64k이하인 텍스트 파 일작성시, 서식을 갖지 않은 문서
- 그림판 : 윈도우즈 표준 그림파일 BMP 형식의 그림 작성 또는 수정시. OLE 서버 기능을 가지고 있어 편집한 그림을 다른 문서에 붙 여넣기 할 수 있음.
- 문자표 : 키보드에 없는 특수문자 입력시 사용
- ·탐색기 도구모음

종 류	위 치	기 능	단축키
(C:)	목록상자	다른 폴더로 이동할 수 있도록 해 준다.	
Ē.	상위 폴더	현재 위치에서 상위 폴더로 이 동한다.	백스페이스
	편집 메뉴	잘라내기, 복사하기, 붙여넣기 메뉴를 도구 모음화 한 것이다.	Ctrl+X, Ctrl+C, Ctrl+V
N	실행 취소	맨 마지막으로 실행한 작업을 취소하여 그 이전의 상태로 되 돌아간다.	Ctrl+Z
X	삭제	선택된 항목을 삭제하여 휴지통 에 버린다.	Delete
	등록 정보	선택된 항목에 관한 등록 정보 를 보여준다.	Shift+F10
	아이콘 정렬	보기 메뉴의 큰 아이콘, 작은 아이콘, 목록, 자세히를 도구 모 음화한 것이다.	

UNIX

- ·특징 : 타기종간의 호환성, 간결하고, 유연성이 뛰어남, 복수사용자와 복수 태스킹의 지원, 통신기능 매우 강력.
- ※ 대부분의 명령어가 **C언어**로 만들어졌음.
- ※ 유닉스의 구성 : 커널,(Kernel), 셸(Shell), 유틸리티(Utility)
- 커널 : 시스템의 하드웨어를 직접 제어, 도스의 MSDOS.SYS, IO.SYS와 비슷한 기능담당
- 셸 : 도스의 COMMAND.COM과 비슷함. 내장명령 가지고 있음
- 유틸리티 : 도스의 외부명령에 해당, 보통 /bin 디렉토리에 보관
- ·파일이름 특징 : 대소문자 구분, 명령은 대개 소문자
- ·i-node(아이노드): 디스크의 파일에 대한 정보를 규정하는 레코드
- · 중요 명령어

0 0 1		
종류	설명	
who	현재 사용중인 사용자의 이름표시	
cat	파일 내용을 화면으로 출력	
ср	파일 복사	
ls	도스의 Dir처럼 목록보기	
mv	파일명 변경	
rm	파일 삭제	
cd	디렉토리 이동	
mkdir	디렉토리 생성	
rmdir	디렉토리 삭제	
kill	수행중인 프로세스 강제종료	
ps	프로세스 상태보기	
vi	텍스트 파일 화면편집	

· 파일권한 변경명령 : chmod 파일 형식 rwxrwxrwx

정보통신 일반

- 정보
 - 정의 : 데이터를 가공, 처리하여 얻어낸 부가가치
 - 특성 : 불확실성, 시한성, 비밀성, 유용성, 집합성, 연속성, 비소모성, 신용가치성
- ·자료 : 가공하지 않은 원시적 형태, 부호화 된 정보
- · 데이터 통신
 - 특성 : 신뢰성, 광역성, 다중성, 상용성, 경제성, 전문성, 반복성, 부호통신, 디지털화
 - 장점: 고속통신이 가능하다 (2,000Hz~20,000[Byte]), 응용범위의 광대화
 - 단점 : 어의(언어)적 차이
- 통신속도
- BPS (Bit/Sec) : 신호속도, 직렬전송시와 2레벨 데이타에서 BPS와 Baud는 같다
- Baud : 변조속도, 초당 상태의 변화 (신호변화의 횟수=최단 펄스의 수)

변조속도 (B) =
$$\frac{1}{T}$$
 [T:단위펄스의 시간길이]

초당 송신문자의 수 (L) =
$$\frac{B}{n}$$

분당 송신문자의 수 (L) =
$$\frac{60B}{n}$$

단위: 문자/초, 패킷/초, 문자/분

- © PPM (Peration Per Minute)
- ◎ 통신속도(데이터의 양)과 전송주파수 대역폭은 정비례
- BPS와 Baud의 관계 (한단위 신호시)

1Bit(2위상:One Bit) Baud = BPS

2Bit(4위상:Dibit) Baud = $\frac{1}{2}$ ×BPS

3Bit(8위상:Tribit) Baud = $\frac{1}{3} \times BPS$

Baud = $\frac{1}{4} \times BPS$ 4Bit(Quadbit)

- 통신효율
 - 부호(Code)효율 = 정보비트수
 - 에 ASCII부호의 실제정보Bit는 7Bit 이나, 1Bit의 Parity Bit를 추가하여 8Bit로 구성된다

$$(\frac{7}{8} = 0.875 = 87.5[\%])$$

- - 에 8Bit N부호에서 1개의 Start Bit와 Stop Bit를 추가 전송시 $\frac{8}{10}$ = 0.8 = 80[%]
- 정보통신
 - -- 정의 : 컴퓨터 + 전기통신
 - SAGE : 세계 최초의 정보통신 시스템 (군사용)
 - 3요소 : 정보원, 통신매체, 정보처리원
- · 정보통신 시스템
 - 4대 구성요소 : 단말장치, 전송회로, 통신제어장치, 컴퓨터
 - 5대 구성요소 : 4대 구성요소 + 통신S/W
 - 구성형태
 - ├ 데이터 전송계
 - ├ 단말장치 (DTE : Data Terminal Equipment)
 - ├ 데이터 전송회로
 - ├ 신호변환장치 : 예 DSU, MODEM, CODEC
 - 통신회로 → 전용회로
 교환회로
 - ├ 통신제어장치(CCU: Communication Unit)
 - ◎ 전송제어(TCU: Transmission Control Unit)
 - 정보의 타이밍 유지
 - 에러검출과 정정
 - \bigcirc FEP (Front End Processor)
 - 여러개의 통신선로를 중앙컴퓨터에 연결
 - 터미널의 송신 또는 수신여부 검사
 - 에러검출과 정정
 - └ 교환회선
 - └ └ 데이터 처리계
 - 네이더 시더세 ├- Hardware (H/W) --- 중앙처리장치 └- 주변장치
- └ Software (S/W) ── 통신 S/W DTE(Data Terminal Equipment) : 데이터 단말장치
- · DCE(Data Communication Equipment) : 데이터 회선종단
- 시스템 이용형태
 - ├ 데이터의 전송
 - ├ On-Line : 사람의 개입 불필요,
 - └ Off-Line : 사람의 개입 필요, CCU가 불필요
 - └ 정보의 처리
 - ├ Real-Time (실시간) : 즉시처리(회선에 항시연결, 회선비용 고가)
 - ├ Batch (일괄) : 모아서 한번에, 월급급여계산
 - └ Delay (지연) : 실시간과 일괄의 중간

◎ 온라인 구성요소

├ 3대 : 단말장치, 전송매체, 전송제어장치

└ 주요 : 단말장치, 전송매체, 전송제어장치, 신호변환기, 통신제어장치, 컴퓨터

·시스템 응용분야 : 질의문답 (기록갱신, 수정), 시차배분 (TSS : Time Share System), 거래처리, 정보검색, 데이터 수집(사 람의 손을 거치지 않고 데이터 수정), 입력(입력 : 사 람의 손을 거쳐 데이터 수정), 공정제어(물리적공정을 자동으로 모니터하고, 이를 이용하는 형태)

· 전송방식의 발전단계

- 1단계 : 음성급 전용회선

- 2단계 : 음성급 교환회선

- 3단계 : 고속도 광대역 아나로그 전용회선 - 4단계 : 디지털 전용회선

- 5단계: 데이터 전용교환회선 (패킷교환, 회선교환)

- 6단계 : 종합정보통신망 (ISDN)

• 전송방식

- 단향통신 (Simplex): 수신만 가능 (TV, Radio)

- 반이중 (Half Duplex) : 동시통신× , 2선식 필요(무전기)

- 전이중 (Full Duplex) : 동시통신○ , 4선식 필요(전화)

- 직렬전송 (Serial Transmission) : 데이터통신에서 사용, 터미널 구성 복잡, 회선비용 저렴

- 병렬전송 (Parallel Transmission) : 주로 근거리 통신에서 사용, 터미 널 구성 단순, 회선비용 고가

┌ 동기식 전송 (Synchronous)

- 정해진 블록만큼 전송 (문자열 방식)

- 휴지간격(Idle Time)이 없다

┌ 문자동기방식

└ 비트동기방식

= 2400[BPS]이상 고속전송시

= PSK 방식

└ 비동기식 전송 (Asynchronous)

- 한 글자씩 전송 (글자단위) - Strat Bit와 Stop Bit사용(휴지간격)

- 저속전송시 사용 (300~1200[BPS])

- FSK 방식

·교환방식 : 교환기가 필요 (↔ 전용회선)

- 회선교환방식 (직접교환방식)

= 가입자가 상대 가입자를 직접호출

= 논리적인 경로설정, 데이터가 긴 경우 사용, 회선 독점사용(real time)

- 초적교화방식

= 메시지(전문)교화방식 = 회선이용효율증대.

= 각 노드에 버퍼필요

= 패킷(Packet)교환방식 : 일정한 크기의 데이터블럭 교환, 온라인 대화식 응용이 가능, 현재 PSDN에서 거의사용, Packet 분해, 조립시 PAD 사용

전송회선

- 교환회선(Switched Line) (= Dial-Up 회선)

= PSTN(공중교환전화망) = 4800BPS 이하

전용회선(Leased Line) : 변조기에 따라 100~9600BPS

◎ 선로에 부정점이 존재하면,

= 반사, 누화의 원인, 파형의곡의 원인, 전력손실증가

전송로

- 유선 전송로

- 무선 전송로

= 위성채널 = 웨이브가이드

= 마이크로웨이브 (Microwave)

1[GHz]~30[GHz], 통신회선으로 사용 불가, 큰 장애물이 없는 한 가시 거리까지 직통성, 지향성 안테나, 우주통신이 가능

전송케이블

- 나선 (Open Wire) (=동선케이블=쌍대케이블)

- 동축 케이블 (Coaxial Cable)

= 고주파전송으로 속도가 빠르다 = 광대역 전송과 초다중화가 가능하다

= 차폐특성이 양호 (혼선이 없다) = 전송손실이 적다 (LG ≒ RC)

- 광선유 케이블

= 모래의 석영으로 만드며 머리카락 굵기

= 빛의 반사현상 이용 = 가볍고 다수의 접속이 가능

= 장거리 전송에 적합

= 무유도성과 외부의 전자유도가 없다

(누화 또는 잡음의 영향이 없다)

= 광대역으로 고속, 초다중, 대용량화가 가능 = 비전도성

= 구성 --- 발광기(LD:Laser Diode) : 송신측요소, 전광변화, LED ├ 중계기

- 수광기(PD:Photo Diode) : 수신측요소, 광전변화, APD

• 전송회로

- 1차 정수회로(선로에 직접적인 영향을 주는것)

= 종류 : 저항(R), 인덕턴스(L), 누설콘덕턴스(G), 정전용량(C)

= 정전용량(C)는 주파수와 관계가 없다

= 무왜조건 (누화가 없는) : LG = RC

- 2차 정수회로

= 종류 : 특성 임피던스(Z_0), 감쇄정수(α), 위상정수(β), 전파정수(γ)

위상변화

- 위상지터 (Phase Jitter) : 연속(규칙)적으로 위상변화

- 위상히트 (Phase Hit) : 불연속(불규칙)적으로 순간순간 변화

· 전송제어

- 절차 → 1단계 : 회선 연결 ├ 2단계 : 데이터링크 설정 ├ 3단계 : 데이터 전송 ├ 4단계 : 링크 종결 . └ 5단계 : 회선 절단

※ 1단계와 5단계는 전용선(LAN)에서 필요 없음

제어문자 [ASCII]

SOH(Start Of Header) : 시작 ENQ(ENQuire) : 응답요구 ACK(ACKnowledge) : 긍정응답 NAK(Negative AcKnowledge) : 부정응답

처리방식

폴링(Polling) 컴퓨터가 단말기에게 송신할 데이터가 있는가? 셀렉션(Selection) 컴퓨터가 단말기에게 수신할 데이터가 있는가?

저송부호

- ASCII 부호 : 미표준 코드, 테이터 통신용 표준 전송부호 7비트 구성, 1 개의 패티리 비트 추가하여 8비트 사용

- BAUDOT : TTY에 많이 사용, 5비트 구성

- EBCDIC: 8비트 구성, 대형 컴퓨터에서 많이 사용

· 오류검출부호의 종류

- 페리티부호(Parity Code)

= 기수 (홀수=Odd) Check : 2진수의 끝수를 홀수로 Check

= 우수 (짝수=Even) Check : 2진수의 끝수를 짝수로 Check

- 순환잉여 검사코드 (CRC) : 가장 신뢰받는 검사

- 오류검출후 재전송방식(ARQ): 수신측이 오류검출후 송신측에 재전송 요

구, 정방향, 역방향 채널이 필요

정지, 대기(Stop and Wait) ARQ	ACK, NAK가 올때까지 기다리는 방식
선택적(Selection) ARQ	블록만 재전송
적응적(Adaptive) ARQ	가장 효율적

- 해밍코드(Hamming Code) 방식

- 정보궤환방식 : 에러를 검출하여 정정하는 방식

- 비퀴너리코드(Biquinary Code) : 각 디짓트(Digit)에 1이 2개 포함되어 한비 트 에러발생시 1의 개수가 달라지는 코드

• 오류의 종류

- 백색잡음 (White Noise = 열잡음 = 배경잡음)

: 모든 대역에서 레벨이 고른 잡음

- 충격성 잡음 (Impulse Noise)

: 순간적으로 일어나는 높은 진폭의 잡음, 주로 기계적 충격으로 교환기에서 발생 케이블 구간에서 유도등에 의해 발생, 데이터 전송시 비트오류의 주요원인 선로 접점불량 또는 낙뢰등의 자연현상으로 발생,

· 단말설비 저 하기

구성

송화기 음성에너지 → 전기에너지, 가변저항형을 가장많이 사용 수화기 전기에너지 → 음성에너지, 수화음성을 정확히 하기위해 영구자석 필요

가입전신기(Telex)

장점: 기록통신, 부재통신

단점: 전송속도가 느리다 (50[Baud]), 사용문자의 수 제한 전송에러 검출이 불완전, 원거리일수록 요금이 비싸다

※ 특징 : 가입자 호출을 Keyboard로 한다 주로 조보식 5단위 인쇄전신부호 사용

ITU-TS는 50, 75, 100, 200[Baud]를 권고 <u>우리나라는 50[Baud] 기준</u>

교환기

- 전자교환기 방식: 공간분할 (SDS), 시분할 (TDS), 주파수분할 (FDS)

- 디지털 교환기 : 회선교환방식, 패킷교환방식

• 통신망 형태

- 성형(Star) : 중앙집중식, 정보량이 적을 때, 네트워크의 기본형, On-Line 방식, 중앙컴퓨터 또는 교환기가 고장시 전체가 Down

- 망형(Mesh): PSDN과 PSTN에 많이 사용, 통화량이 많고, 장거리에 사용

- 링형(Ring , 고리형) = 루프형 : LAN에 주로 이용, 우회기능이 필요

- 버스형(Bus) : LAN에서 Data량이 적을 때

- 나뭇가지형(Tree) = 분산형 : 멀티포인트 매체를 사용한다, 분산처리(DDD)가 가능

• 통신망 종류

- LAN(Local Area Network) : 근거리통신망 , 폐쇄지역 통신망, 광대역 전송매 체로 고속통신이 가능, 광케이블, 동축케이블을

많이 사용

- MAN(Metropolitan Area Network) : LAN의 서비스영역의 협소함을 해 결 (50Km 이내)

- VAN(Value Added Network) : 부가가치통신망, 통신사업자로부터 회선 을 대 또는 이용

- ISDN(Integrated Service Digital Network) : 종합정보통신망
- ·프로토콜 : 송,수신측 사이에 약속한 규범
- ·OSI 7계층구조: ISO(국제표준기구)의 규정, 개방형 시스템간의 접속규격
 - ① 물리계층 (Physical Layer) ¬↑하위계층
 - ② 데이터링크계층 (Data Link Layer) │↑(데이터전송)
 - ③ 네트워크계층 (Network Layer) '
 - ④ 트렌스포트계층 (Transport Layer) ¬
 - ⑤ 세션계층 (Session Layer) |↓상위계층
 - ⑥ 표현계층 (Presentation Layer) |↓(효율적
- ⑦ 응용계층 (Application Layer) □ ↓ 부가처리)
- · 국제표준화기관
- ISO : 국제 표준화 기구
- ITU : 국제 전기통신 연합(구 CCITT)
- EIA : 미국 전자 공업 협회, RS-232C 개발
- ◎ 국내 표준화기관 : 한국전산원
- ·뉴미디어(매체) : 필요한 정보를 감지하고 표현하여 저장, 전달하는 수단
- 분류

	Teletext, HDTV, CATV, FAX, TV 위성방송
통신계	LAN, VAN, ISDN, VRS(화상응답시스템), Teletex, Videotex
패키지형	비디오 테입, 비디오 디스크, CD-ROM

- 종류

CATV(Cable Television)	벽지 난시청, 도시 난시청, 빌딩 공동수신
CATV(Cable Television)	기본구성 : 헤드엔드, 전송로 분배망, 가입자 옥내설비
CCTV	폐쇄회로 TV
Teletex(텔리텍스)	워드프로세서 기능
Teletext(텔리텍스트)	문자다중방송, 방송을 통해 단방향 문자정보 전송
VII. ((ult] (til)	전화와 TV를 통해 쌍방향 영상정보 사스템
Videotex(비디오텍스)	기본구성 : 알파모자이크, 알파지오매트릭, 알파 포토그래픽
화상회의 (Teleconfrence)	원거리 사람간의 화상을 동한 회의
텔리컴퓨팅(Telecommuting)	집에서 컴퓨터로 직장 업무처리

- · 멀티미디어(Multimedia) : 문자, 숫자 데이터와 함Text, Image, Audio, Graphic등의 여러 데이터를 통합처리하는 다중 매체
- · PC통신서비스 : 개인용컴퓨터PC:PersonaComputer)간 또는 PC와 대 형컴퓨터간의정보교환서비스

데이터 베이스

◆ 데이터베이스

- ·정의 : 데이터관리의 효율을 높이기 위해 파일 시스템에서 발생할 수 있는 불필요한 데이터의 중복성을 없애고, 여러 응용프로그램에서 공용할 수 있도록 데이터의 독립성을 증대시킨 데이터의 집합
- ·데이터베이스시스템(DBMS)의
- 장점: 데이터 중복성 최소화, 데이터 독립성, 데이터 무결성, 실시간처리, 최신 데이터 유지, 내용에 의한 접근
- 단점 : 데이터 손상시 복구가 힘듬, 운영비의 증가(OverHead)
- ※ 데이터베이스의 논리적 구성요소

- ·데이터베이스 구조
- 3단계 데이터베이스

내부스키마	추상화의 최하위 단계, 물리적인 저장매체에선 본 구조
개념스키마	실제 저장된 데이터와 데이터간의관계, 논리적인 구조
외부(서브)스키마	추상화의 최상위 단계, 사용자 입장에서 본 구조

• 데이터베이스 언어

데이터 정의어(DDL)	데이터 베이스의생성, 수정
	데이터 개체를 처리하고, 조작, 운영
데이터제어어(DCL)	데이터 제어를 정의하고 기술

·데이터베이스의 장·단점

	장 점	단 점		
중복:	의 최소와, 물리적/논리적 독립	단 H		
성 우	구지, 내용에 의한 접근, 보안을	운영비의 증가, 자료처리 복잡, DB		
유지:	하여 데이터 손실방지	붕괴시 복구 어려움, 보안위험 증가		

- 데이터베이스 시스템 모델
- 계층데이터베이스, 네트워크 데이터베이스, 관계형 데이터베이스
- ※ 관계형 데이터 베이스의 구조

· 키 종류

기본키	모든 레코드를 유일하게 구별할 수 있는 필드(중복 배제)
복합키	하나로 부족하기 때문에 두 개 이상의 키를 조합해서 구별
후보키	기본키를 대신할 수 있는키
외래키	다른 테이블 내에서 기본키로 사용되는 필드와 동일한 필드

엑세스

·엑세스 화면기본 구성

테이블	하나의 데이터베이스에서 관리하는 테이블의 작성과 수정작업
질의	원하는 레코드의검색을 위한 질의작성
폼	레코드별 카드식(그래픽)으로 입력양식으로 나타냄
보고서	사용자의 요구에 원하는 형태로 출력
매크로	반복되는 작업을 자동으로 실행할 수 있도록 함
모듈	매크로로 수행할 수 없는 복잡한 작업을 자동으로 실행

- 테이블
- 테이블정의 : 데이터를 행과 열로 구성
- 필드 : 테이블에서 각 열
- 레코드 : 각 행과 서로 관련된 필드의 집합
- 엑세스에서 데이터베이스 파일 만들기 :
- [파일]-[새 데이터베이스], Ctrl + N, [도구모음]-[새 데이터베이스]
- · 엑세스 기본 확장자 : *.mdb
- · 폼 : 카드형 화면설계 기능으로 한 화면에 하나의 레코드를 등록카드 형태 로 나타낸다.
- 폼 작성 : 데이터베이스 대화상자에서 [폼] [새로 만들기] - 폼 수정 : 데이터베이스 대화상자에서 - [폼] - [디자인]

- ·보고서 : 각종 데이터를 보다 쉽게 정렬하여 보여줌, 화면에서 작성한 내 용을 정리하여 프린터로 출력하는 것
- 보고서 작성 : 데이터베이스 대화상자에서 [보고서] [새로 만들기]
- 보고서 수정 : 데이터베이스 대화상자에서 [보고서] [디자인]
- ·조건검색: 일정한 조건에 따라 필요한 데이터를 추출 새로운 테이블 구성, 절의에 의해 새로 구성된 테이블은 원본 테이블과 다를 수 있음.
 - 필터 기능 : 원하는 데이터를 추출시 사용함, 정렬 키를 여러개 지정 가 능
- 필터 종류

		정 필드의 중복된 내용에 해당되는 레코드 추출
		재 커서가 있는 항목을 기준으로 추출
고급필	필터 필	터링과 함께 정렬키를 주어 정렬/추출

- 질의 종류: 선택질의, 크로스탭질의, 실행질의, 매개변수질의

스프레드시트(엑셀)

- · 스프레드시트 기능 : 자동계산기능, 문서작성기능, 차트작성기능, 데이터베 이스 기능
- •엑셀 확장자

XLS	엑셀통합문서	XLT	엑셀서식파일	XLT	엑셀화면작업 파일
WK*	로터스1-2-3	XLC	엑섹 4.0	XLK	백업파일

·자료의 입력

문 자	왼쪽정렬, 셀폭보다 긴데이터는 인접 쎌로 넘어가 표시,		
군 사	한셀에서 줄 분리시 Alt + Enter J		
스 키	오른쪽정렬, 숫자중간에 특수문자, 공백 사용불가.		
숫 자	음수입력시 : -, () 분수입력시 0 1/2 => 1/2		
연속된	자동채우기 핸들사용		
자료입력	사중세포기 벤틸사중 		
접두어	': 왼쪽정렬 ": 오른쪽 정렬 ^: 가운데 정렬		

- ·채우기 핸들: 셀포인터의 오른쪽 아래부분에 있는 작고 검은 사각형
- · 워크시트 : 기본적으로 3개, 최대 255개,
- 종류 : 워크시트, 차트시트, 매크로시트, 대화상자 시트
- 시트추가 : 삽입-워크시트, 시트탭 단축메뉴-삽입
- 삭제 : 편집-시트삭제, 단축메뉴-삭제
- 이름변경: 시트탭 더블클릭후 이름변경, 서식-시트-이름바꾸기, 단축메 뉴-이름바꾸기
- 이동 : 마우스로 원하는 곳으로 드래그
- 복사 : Ctrl + 마우스 드래그
- 셀편집
- 연속적인 셀선택 : 마우스로 드래그, Shift + 마우스로 드래그
- 비연속적 셀선택 : Ctrl + 마우스로 클릭
- 행높이 조절 : 서식-행-높이 열너비 조절 : 서식-열-너비
- 행/열 자동조절 : 경계 열/행 머리글에서 더블클릭하면 해당셀중 가장 긴 셀로 자동 맞춤
- ·참조유형(F4로 변경가능)
- 절대참조 : 고정되어 있는 주소(\$A\$4)
- 상대참조 : 수식 복사시 셀의 주소 변화 발생(A4)
- 혼합참조 : 행/열 중 하나만 고정(\$A4, A\$4)
- · 연산자의 우선순위 : 참조연산자->산술연산자->문자열연산자->비교연산자
- 차트구성요소 : 차트영역, 그림영역, 범례, 축, 눈금선, 데이터계열
- ※ 워크시트의 내용 변경시 차트의 모양도 함께 변경
- · 차트마법사 : 1단계(차트종류) -> 2단계(데이터범위지정) -> 3단계(구성요 소 설정) -> 4단계(차트위치지정)
- 레코드관리 ; 입력한 데이터의 추가, 삭제, 수정,검색하는 기능
- •정렬 : 필드의 일정한 값을 기준으로 데이터를 재 배열하는 것
- 3개의 조건까지 가능 오름차순, 내림차순 가능
- ·필터 : 자료중 원하는 자료를 추출, 검색하는 기능(자동필터, 고급필터)
- •부분합 : 자료를 각 분류해서(정렬)해서 합계, 평균, 개수 등을 구함
- ※ 부분합을 하기전에 반드시 부분합의 대상으로 정렬할 것

프리젠테이션(파워포인트)

- ·의미 : 각종 보고서나 선전, 홍보등을 제한된 시간에 청중에게 효과적으로 전달하는 것
- · 프리젠테이션에 사용되는 장비 : 프로젝터, OHP등사기, 슬라이드 영사기
- · 파워포인트 확장자 : PPT
- · 파워포인트 서식 확장자 : POT
- ·마스터의 종류 : 슬라이드 마스터, 제목 마스터, 유인물 마스터, 슬라이드 노트 마스터
- · 개체 삽입하기
- 클립아트 : 삽입-그림-클립아트 - 조직도 : 삽입-그림-조직도
- 표삽입 : 삽입-그림-표