MATH2211 SPRING 2022 EXAM 1

WEDNESDAY, MARCH 2 2022

Name:
This exam is open notes. There are 50 points total in this exam.
High $49.5/50$, low $20/50$, mean $35.2/50$, median $36.5/50$. Good exam. Problems 2 and 5 were the most difficult, with average points obtained on them being 59% and 58% respectively. Every problem was approachable, and everyone had enough time to attempt every problem.
Problem 1.
(a) (5 points) Find, with proof, the dimension of
$V := \text{span}\{(1,1,1), (2,2,2), (3,3,3)\} \subseteq \mathbb{R}^3.$
(b) (5 points) Let $P_2(\mathbb{R})$ be the space of polynomials of degree at most 2. Write down the matrix of the derivative operator $\frac{d}{dx}$ from $P_2(\mathbb{R})$ to $P_2(\mathbb{R})$ with respect to the ordered basis $(1, x, x^2)$ for both the source and target.
Problem 2. (10 points) Find, with proof, all complex numbers $z \in \mathbb{C}$ such that z and z^2 are linearly independent over \mathbb{R} .
Problem 3. (10 points) Prove or disprove: Let v_1, v_2, v_3 be a basis of a real vector space V . Then the set $\{v_1 - v_2, v_2 - v_3, v_3 - v_1\}$ is also a basis of V .
Problem 4. (10 points) Let $T: V \to W$ be a linear transformation between two finite-dimensional \mathbb{R} -vector spaces. Prove that if T is injective, then $\dim V \leq \dim W$.

Problem 5. (10 points) Let \mathbb{R}^{∞} denote the space of infinite sequences of real numbers. For each $n \in \mathbb{Z}^+$, let v_n be the element $(n, n+1, n+2, n+3, \dots) \in \mathbb{R}^{\infty}$. Prove that $\mathrm{span}(v_1, v_2, v_3, \dots)$ is finite dimensional and determine its dimension.