Lecture 8: Policy Gradient I ¹

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2019

Additional reading: Sutton and Barto 2018 Chp. 13

¹With many slides from or derived from David Silver and John Schulman and Pieter Abbeel

Last Time: We want RL Algorithms that Perform

- Optimization
- Delayed consequences
- Exploration
- Generalization
- And do it statistically and computationally efficiently

Last Time: Generalization and Efficiency

 Can use structure and additional knowledge to help constrain and speed reinforcement learning

Class Structure

• Last time: Imitation Learning

• This time: Policy Search

• Next time: Policy Search Cont.

Table of Contents

- Introduction
- Policy Gradient
- 3 Score Function and Policy Gradient Theorem
- 4 Policy Gradient Algorithms and Reducing Variance

Policy-Based Reinforcement Learning

• In the last lecture we approximated the value or action-value function using parameters $\underline{\theta}$, or we often used ω

$$V_{ heta}(s) pprox V^{\pi}(s)$$

$$Q_{ heta}(s,a) pprox Q^{\pi}(s,a)$$

- A policy was generated directly from the value function
 - e.g. using ϵ -greedy

• In this lecture we will directly parametrize the policy

$$\pi_{ heta}(s,a) = \mathbb{P}[a|s; heta]$$

- Goal is to find a policy π with the highest value function V^{π}
- We will focus again on model-free reinforcement learning

Value-Based and Policy-Based RL

- Value Based
 - Learnt Value Function
 - Implicit policy (e.g. ϵ -greedy)
- Policy Based
 - No Value Function
- Learnt Policy Actor-Critic
 - Learnt Value Function
 - Learnt Policy

Advantages of Policy-Based RL

Advantages:

- 2 computation can matter
- Better convergence properties
- Effective in high-dimensional or continuous action spaces
- why do we want this?
 tabular MDP In which is alterministic Can learn stochastic policies & optimal

Disadvantages:

- Typically converge to a local rather than global optimum
- Evaluating a policy is typically inefficient and high variance

Example: Rock-Paper-Scissors

- Two-player game of rock-paper-scissors
 - Scissors beats paper
 - Rock beats scissors
 - Paper beats rock
- Consider policies for iterated rock-paper-scissors
 - A deterministic policy is easily exploited
 - A uniform random policy is optimal (i.e. Nash equilibrium)

Example: Aliased Gridword (1)

- The agent cannot differentiate the grey states
- Consider features of the following form (for all N, E, S, W)

$$\phi(s, a) = 1$$
 (wall to N, $a = \text{move E}$)

Compare value-based RL, using an approximate value function

$$Q_{\theta}(s,a) = f(\phi(s,a);\theta)$$

To policy-based RL, using a parametrized policy

$$\pi_{\theta}(s, a) = g(\phi(s, a); \theta)$$

Example: Aliased Gridworld (2)

- Under aliasing, an optimal deterministic policy will either
 - move W in both grey states (shown by red arrows)
 - move E in both grey states
- Either way, it can get stuck and never reach the money
- Value-based RL learns a near-deterministic policy
 - ullet e.g. greedy or ϵ -greedy
- So it will traverse the corridor for a long time

Example: Aliased Gridworld (3)

Not Markov

An optimal stochastic policy will randomly move E or W in grey states

$$\pi_{\theta}$$
 (wall to N and S, move E) = 0.5

$$\pi_{\theta}$$
 (wall to N and S, move W) = 0.5

- It will reach the goal state in a few steps with high probability
- Policy-based RL can learn the optimal stochastic policy

Policy Objective Functions

- Goal: given a policy $\pi_{\theta}(s, a)$ with parameters θ , find best θ
- But how do we measure the quality for a policy π_{θ} ?
- In episodic environments we can use the start value of the policy

$$H$$
 skps $J_1(\theta) = V^{\pi_{\theta}}(s_1)$

• In continuing environments we can use the average value

$$J_{avV}(\theta) = \sum_{s} \underline{d}^{\pi_{\theta}}(\underline{s}) V^{\pi_{\theta}}(s)$$

- where $d^{\pi_{\theta}}(s)$ is the stationary distribution of Markov chain for π_{θ} .
- Or the average reward per time-step

$$J_{avR}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) \sum_{a} \pi_{\theta}(s, a) R(a, s)$$

 For simplicity, today will mostly discuss the episodic case, but can easily extend to the continuing / infinite horizon case

Policy optimization

- Policy based reinforcement learning is an optimization problem
- ullet Find policy parameters heta that maximize $V^{\pi_{ heta}}$

Policy optimization

- Policy based reinforcement learning is an optimization problem
- ullet Find policy parameters heta that maximize $V^{\pi_{ heta}}$
- Can use gradient free optimization
 - Hill climbing
 - Simplex / amoeba / Nelder Mead
 - Genetic algorithms
 - Cross-Entropy method (CEM)
 - Covariance Matrix Adaptation (CMA)

Human-in-the-Loop Exoskeleton Optimization (Zhang et al. Science 2017)

Figure: Zhang et al. Science 2017

 Optimization was done using CMA-ES, variation of covariance matrix evaluation

Gradient Free Policy Optimization

 Can often work embarrassingly well: "discovered that evolution strategies (ES), an optimization technique that's been known for decades, rivals the performance of standard reinforcement learning (RL) techniques on modern RL benchmarks (e.g. Atari/MuJoCo)" (https://blog.openai.com/evolution-strategies/)

Gradient Free Policy Optimization

- Often a great simple baseline to try
- Benefits
 - Can work with any policy parameterizations, including non-differentiable
 - Frequently very easy to parallelize
- Limitations
 - Typically not very sample efficient because it ignores temporal structure

Policy optimization

- Policy based reinforcement learning is an optimization problem
- ullet Find policy parameters heta that maximize $V^{\pi_{ heta}}$
- Can use gradient free optimization:
- Greater efficiency often possible using gradient
 - Gradient descent
 - Conjugate gradient
 - Quasi-newton
- We focus on gradient descent, many extensions possible
- And on methods that exploit sequential structure

Table of Contents

- Introduction
- Policy Gradient
- 3 Score Function and Policy Gradient Theorem
- 4 Policy Gradient Algorithms and Reducing Variance

Policy Gradient

- Define $V(\theta) = V^{\pi_{\theta}}$ to make explicit the dependence of the value on the policy parameters
- Assume episodic MDPs (easy to extend to related objectives, like average reward)

Policy Gradient

- Define $V(\theta) = V^{\pi_{\theta}}$ to make explicit the dependence of the value on the policy parameters
- Assume episodic MDPs
- Policy gradient algorithms search for a *local* maximum in $V(\theta)$ by ascending the gradient of the policy, w.r.t parameters θ

$$\Delta \theta = \alpha \nabla_{\theta} V(\theta)$$
where is the second of the second of

very similar to Q/V based optimization

• Where $\nabla_{\theta} V(\theta)$ is the policy gradient

$$abla_{ heta}V(heta) = egin{pmatrix} rac{\partial V(heta)}{\partial heta_1} \ dots \ rac{\partial V(heta)}{\partial heta_n} \end{pmatrix}$$

ullet and lpha is a step-size parameter

Computing Gradients by Finite Differences

- To evaluate policy gradient of $\pi_{\theta}(s, a)$
- For each dimension $k \in [1, n]$
 - Estimate kth partial derivative of objective function w.r.t. θ
 - ullet By perturbing heta by small amount ϵ in kth dimension

$$\frac{\partial V(\theta)}{\partial \theta_k} pprox \frac{V(\theta + \epsilon u_k) - V(\theta)}{\epsilon}$$

where u_k is a unit vector with 1 in kth component, 0 elsewhere.

Computing Gradients by Finite Differences

- To evaluate policy gradient of $\pi_{\theta}(s, a)$
- For each dimension $k \in [1, n]$
 - Estimate kth partial derivative of objective function w.r.t. θ
 - By perturbing θ by small amount ϵ in kth dimension

$$rac{\partial V(heta)}{\partial heta_k} pprox rac{V(heta + \epsilon u_k) - V(heta)}{\epsilon}$$

where u_k is a unit vector with 1 in kth component, 0 elsewhere.

- Uses *n* evaluations to compute policy gradient in *n* dimensions
- Simple, noisy, inefficient but sometimes effective
- Works for arbitrary policies, even if policy is not differentiable

Training AIBO to Walk by Finite Difference Policy Gradient¹

- Goal: learn a fast AIBO walk (useful for Robocup)
- Adapt these parameters by finite difference policy gradient
- Evaluate performance of policy by field traversal time

¹Kohl and Stone. Policy gradient reinforcement learning for fast quadrupedal locomotion. ICRA 2004. http://www.cs.utexas.edu/ai-lab/pubs/icra04.pdf

AIBO Policy Parameterization

- AIBO walk policy is open-loop policy
- No state, choosing set of action parameters that define an ellipse
- Specified by 12 continuous parameters (elliptical loci)
 - The front locus (3 parameters: height, x-pos., y-pos.)
 - The rear locus (3 parameters)
 - Locus length
 - Locus skew multiplier in the x-y plane (for turning)
 - The height of the front of the body
 - The height of the rear of the body
 - The time each foot takes to move through its locus
 - The fraction of time each foot spends on the ground
- New policies: for each parameter, randomly add $(\epsilon, 0, \text{ or } -\epsilon)$

AIBO Policy Experiments

- "All of the policy evaluations took place on actual robots... only human intervention required during an experiment involved replacing discharged batteries ... about once an hour."
- Ran on 3 Aibos at once
- Evaluated 15 policies per iteration.
- Each policy evaluated 3 times (to reduce noise) and averaged
- Each iteration took 7.5 minutes
- Used $\eta = 2$ (learning rate for their finite difference approach)

Training AIBO to Walk by Finite Difference Policy Gradient Results

• Authors discuss that performance is likely impacted by: initial starting policy parameters, ϵ (how much policies are perturbed), η (how much to change policy), as well as policy parameterization

AIBO Walk Policies

link

Table of Contents

- Introduction
- Policy Gradient
- 3 Score Function and Policy Gradient Theorem
- 4 Policy Gradient Algorithms and Reducing Variance

Computing the gradient analytically

only converge local optima

- We now compute the policy gradient analytically
- Assume policy π_{θ} is differentiable whenever it is non-zero
- and we know the gradient $\nabla_{\theta}\pi_{\theta}(s,a)$

Likelihood Ratio Policies

framinsk

- Denote a state-action trajectory as ψ $\tau = (s_0, a_0, r_0, ..., s_{T-1}, a_{T-1}, r_{T-1}, s_T)$
- Use $R(au) = \sum_{t=0}^T R(s_t, a_t)$ to be the sum of rewards for a trajectory au

Likelihood Ratio Policies

- Denote a state-action trajectory as $\tau = (s_0, a_0, r_0, ..., s_{T-1}, a_{T-1}, r_{T-1}, s_T)$
- Use $R(\tau) = \sum_{t=0}^{T} R(s_t, a_t)$ to be the sum of rewards for a trajectory τ
- Policy value is

$$V(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{T} R(s_t, a_t); \pi_{\theta} \right] = \sum_{\tau} P(\tau; \theta) R(\tau)$$

- where $P(\tau; \theta)$ is used to denote the probability over trajectories when executing policy $\pi(\theta)$
- In this new notation, our goal is to find the policy parameters θ :

$$\arg\max_{\theta} V(\theta) = \arg\max_{\theta} \sum_{\tau} \frac{P(\tau; \theta)}{P(\tau; \theta)} R(\tau)$$

Likelihood Ratio Policy Gradient

• Goal is to find the policy parameters θ :

$$\arg\max_{\theta} V(\theta) = \arg\max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$$

• Take the gradient with respect to θ :

$$\nabla_{\theta}V(\theta) = \nabla_{\theta} \sum_{\tau} P(\tau;\theta)R(\tau)$$

$$= \sum_{\tau} R(\tau) V_{\theta} P(\tau;\theta)$$

$$= \sum_{\tau} R(\tau) \frac{P(\tau;\theta)}{P(\tau;\theta)} V_{\theta} P(\tau;\theta) \qquad = \frac{1}{R(\tau;\theta)} V_{\theta}R(\tau;\theta)$$

$$= \sum_{\tau} R(\tau) R(\tau;\theta) V_{\theta} \log P(\tau;\theta) \qquad = \frac{1}{R(\tau;\theta)} V_{\theta}R(\tau;\theta)$$

Likelihood Ratio Policy Gradient

• Goal is to find the policy parameters θ :

$$\arg \max_{\theta} V(\theta) = \arg \max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$$

• Take the gradient with respect to θ :

$$\nabla_{\theta} V(\theta) = \nabla_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$$

$$= \sum_{\tau} \nabla_{\theta} P(\tau; \theta) R(\tau)$$

$$= \sum_{\tau} \frac{P(\tau; \theta)}{P(\tau; \theta)} \nabla_{\theta} P(\tau; \theta) R(\tau)$$

$$= \sum_{\tau} P(\tau; \theta) R(\tau) \underbrace{\nabla_{\theta} P(\tau; \theta)}_{\text{likelihood ratio}}$$

$$= \sum_{\tau} P(\tau; \theta) R(\tau) \nabla_{\theta} \log P(\tau; \theta)$$

Likelihood Ratio Policy Gradient

• Goal is to find the policy parameters θ :

$$arg \max_{\theta} V(\theta) = arg \max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$$

• Take the gradient with respect to θ :

$$\nabla_{\theta} V(\theta) = \sum_{\tau} P(\tau; \theta) R(\tau) \nabla_{\theta} \log P(\tau; \theta)$$

• Approximate with empirical estimate for m sample paths under policy π_{θ} :

$$abla_{ heta}V(heta) pprox \hat{g} = (1/m)\sum_{i=1}^{m}R(au^{(i)})
abla_{ heta}\log P(au^{(i)}; heta)$$

Score Function Gradient Estimator: Intuition

- Consider generic form of $R(\tau^{(i)})\nabla_{\theta} \log P(\tau^{(i)}; \theta)$: $\hat{g}_i = f(x_i)\nabla_{\theta} \log p(x_i|\theta)$
- f(x) measures how good the sample x is.
- Moving in the direction \hat{g}_i pushes up the logprob of the sample, in proportion to how good it is
- Valid even if f(x) is discontinuous, and unknown, or sample space (containing x) is a discrete set

Score Function Gradient Estimator: Intuition

Score Function Gradient Estimator: Intuition

Decomposing the Trajectories Into States and Actions

• Approximate with empirical estimate for m sample paths under policy π_{θ} :

$$\nabla_{\theta}V(\theta) \approx \hat{g} = (1/m) \sum_{i=1}^{m} R(\tau^{(i)}) \nabla_{\theta} \log P(\tau^{(i)})$$

$$\nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log \left(\underbrace{\mathcal{U}(s_{\theta})}_{i \neq j \neq i} \underbrace{\nabla_{\theta} \log P(\tau^{(i)}; \theta)}_{j \neq j \neq j \neq i} \right) \pi_{\theta}(a_{j}^{i} k_{j}^{i})$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log \left(\underbrace{\mathcal{U}(s_{\theta})}_{i \neq j \neq i} \underbrace{\nabla_{\theta} \log P(\tau^{(i)}; \theta)}_{j \neq i} \right) \pi_{\theta}(a_{j}^{i} k_{j}^{i})$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log \left(\underbrace{\mathcal{U}(s_{\theta})}_{i \neq j \neq i} \underbrace{\nabla_{\theta} \log P(\tau^{(i)}; \theta)}_{j \neq i} \right) \pi_{\theta}(a_{j}^{i} k_{j}^{i})$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log \left(\underbrace{\mathcal{U}(s_{\theta})}_{i \neq j \neq i} \underbrace{\nabla_{\theta} \log P(\tau^{(i)}; \theta)}_{j \neq i} \right) \pi_{\theta}(a_{j}^{i} k_{j}^{i})$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log \left(\underbrace{\mathcal{U}(s_{\theta})}_{i \neq i} \underbrace{\nabla_{\theta} \log P(\tau^{(i)}; \theta)}_{j \neq i} \right) \pi_{\theta}(a_{j}^{i} k_{j}^{i})$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log \left(\underbrace{\mathcal{U}(s_{\theta})}_{i \neq i} \underbrace{\nabla_{\theta} \log P(\tau^{(i)}; \theta)}_{j \neq i} \right) \pi_{\theta}(a_{j}^{i} k_{j}^{i})$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log \left(\underbrace{\mathcal{U}(s_{\theta})}_{i \neq i} \underbrace{\nabla_{\theta} \log P(\tau^{(i)}; \theta)}_{j \neq i} \right) \pi_{\theta}(a_{j}^{i} k_{j}^{i})$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$= \nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$= \nabla_{\theta$$

Decomposing the Trajectories Into States and Actions

• Approximate with empirical estimate for m sample paths under policy π_{θ} :

$$abla_{ heta} V(heta) \;\; pprox \;\; \hat{g} = (1/m) \sum_{i=1}^m R(au^{(i)})
abla_{ heta} \log P(au^{(i)})$$

$$\nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log \left[\underbrace{\mu(s_0)}_{\text{Initial state distrib.}} \underbrace{\prod_{t=0}^{T-1} \underbrace{\pi_{\theta}(a_t | s_t)}_{\text{policy}} \underbrace{P(s_{t+1} | s_t, a_t)}_{\text{dynamics model}} \right]$$

$$= \nabla_{\theta} \left[\log \mu(s_0) + \sum_{t=0}^{T-1} \log \pi_{\theta}(a_t | s_t) + \log P(s_{t+1} | s_t, a_t) \right]$$

$$= \sum_{t=0}^{T-1} \underbrace{\nabla_{\theta} \log \pi_{\theta}(a_t | s_t)}_{\text{no dynamics model required!}} \underbrace{\nabla_{\theta} \log \pi_{\theta}(a_t | s_t)}_{\text{no dynamics model required!}}$$

Score Function

• Define score function as $\nabla_{\theta} \log \pi_{\theta}(s, a)$

Likelihood Ratio / Score Function Policy Gradient

- Putting this together
- Goal is to find the policy parameters θ :

$$\arg \max_{\theta} V(\theta) = \arg \max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$$

• Approximate with empirical estimate for m sample paths under policy π_{θ} using score function:

$$egin{aligned}
abla_{ heta} V(heta) &pprox & \hat{g} = (1/m) \sum_{i=1}^m R(au^{(i)})
abla_{ heta} \log P(au^{(i)}; heta) \ &= (1/m) \sum_{i=1}^m R(au^{(i)}) \sum_{t=0}^{T-1}
abla_{ heta} \log \pi_{ heta}(a_t^{(i)}|s_t^{(i)}) \end{aligned}$$

Do not need to know dynamics model

Policy Gradient Theorem

• The policy gradient theorem generalizes the likelihood ratio approach

Theorem

For any differentiable policy $\pi_{\theta}(s,a)$, for any of the policy objective function $J=J_1$, (episodic reward), J_{avR} (average reward per time step), or $\frac{1}{1-\gamma}J_{avV}$ (average value), the policy gradient is

$$abla_{ heta} J(heta) = \mathbb{E}_{\pi_{ heta}} [
abla_{ heta} \log \pi_{ heta}(s, a) Q^{\pi_{ heta}}(s, a)]$$

Table of Contents

- Introduction
- Policy Gradient
- 3 Score Function and Policy Gradient Theorem
- Policy Gradient Algorithms and Reducing Variance

Likelihood Ratio / Score Function Policy Gradient

$$abla_{ heta}V(heta) pprox (1/m)\sum_{i=1}^{m}R(au^{(i)})\sum_{t=0}^{T-1}
abla_{ heta}\log\pi_{ heta}(a_{t}^{(i)}|s_{t}^{(i)})$$

- Unbiased but very noisy
- Fixes that can make it practical
 - Temporal structure
 - Baseline
- Next time will discuss some additional tricks

Policy Gradient: Use Temporal Structure

• Previously:

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\left(\sum_{t=0}^{T-1} r_t \right) \left(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right) \right]$$

• We can repeat the same argument to derive the gradient estimator for a single reward term $r_{t'}$.

$$abla_{ heta}\mathbb{E}[r_{t'}] = \mathbb{E}\left[r_{t'}\sum_{t=0}^{t'}
abla_{ heta}\log\pi_{ heta}(a_t|s_t)
ight]$$

Summing this formula over t, we obtain

$$V(\theta) = \nabla_{\theta} \mathbb{E}[R] = \mathbb{E}\left[\sum_{t'=0}^{T-1} r_{t'} \sum_{t=0}^{t'} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)\right]$$
$$= \mathbb{E}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t, s_t) \sum_{t'=t}^{T-1} r_{t'}\right]$$

Policy Gradient: Use Temporal Structure

• Recall for a particular trajectory $au^{(i)}$, $\sum_{t'=t}^{T-1} r_{t'}^{(i)}$ is the return $G_t^{(i)}$

$$\nabla_{\theta} \mathbb{E}[R] \approx (1/m) \sum_{i=1}^{m} \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t, s_t) G_t^{(i)}$$

Monte-Carlo Policy Gradient (REINFORCE)

Leverages likelihood ratio / score function and temporal structure

$$\Delta\theta_t = \alpha\nabla_\theta \log \pi_\theta(s_t, a_t)G_t$$

REINFORCE:

```
Initialize policy parameters \theta arbitrarily for each episode \{s_1, a_1, r_2, \cdots, s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta} do for t=1 to T-1 do \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) G_t endfor endfor return \theta
```

Differentiable Policy Classes

- Many choices of differentiable policy classes including:
 - Softmax
 - Gaussian
 - Neural networks

Softmax Policy

- Weight actions using linear combination of features $\phi(s, a)^T \theta$
- Probability of action is proportional to exponentiated weight

$$\pi_{ heta}(s,a) = e^{\phi(s,a)^T heta} / (\sum_a e^{\phi(s,a)^T heta})$$

The score function is

$$abla_{ heta} \log \pi_{ heta}(s, a) = \phi(s, a) - \mathbb{E}_{\pi_{ heta}}[\phi(s, \cdot)]$$

Gaussian Policy

- In continuous action spaces, a Gaussian policy is natural
- Mean is a linear combination of state features $\mu(s) = \phi(s)^T \theta$
- Variance may be fixed σ^2 , or can also parametrised
- Policy is Gaussian $a \sim \mathcal{N}(\mu(s), \sigma^2)$
- The score function is

$$abla_{ heta} \log \pi_{ heta}(s,a) = rac{(a-\mu(s))\phi(s)}{\sigma^2}$$

Likelihood Ratio / Score Function Policy Gradient

$$abla_{ heta}V(heta) pprox (1/m)\sum_{i=1}^{m}R(au^{(i)})\sum_{t=0}^{T-1}
abla_{ heta}\log\pi_{ heta}(a_{t}^{(i)}|s_{t}^{(i)})$$

- Unbiased but very noisy
- Fixes that can make it practical
 - Temporal structure
 - Baseline
- Next time will discuss some additional tricks

Policy Gradient: Introduce Baseline

• Reduce variance by introducing a baseline b(s)

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t, \theta) \left(\sum_{t'=t}^{T-1} r_{t'} - b(s_t) \right) \right]$$

- For any choice of b(s), gradient estimator is unbiased.
- Near optimal choice is expected return, $b(s_t) \approx \mathbb{E}[r_t + r_{t+1} + \cdots + r_{T-1}]$
- Interpretation: increase logprob of action a_t proportionally to how much returns $\sum_{t'=t}^{T-1} r_{t'}$ are better than expected

Baseline b(s) Does Not Introduce Bias-Derivation

$$\begin{split} & \mathbb{E}_{\tau}[\nabla_{\theta}\log\pi(a_t|s_t,\theta)b(s_t)] \\ & = \mathbb{E}_{s_{0:t},a_{0:(t-1)}}\left[\mathbb{E}_{s_{(t+1):T},a_{t:(T-1)}}[\nabla_{\theta}\log\pi(a_t|s_t,\theta)b(s_t)]\right] \end{split}$$

Baseline b(s) Does Not Introduce Bias-Derivation

$$\begin{split} &\mathbb{E}_{\tau} \big[\nabla_{\theta} \log \pi(a_t | s_t, \theta) b(s_t) \big] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[\mathbb{E}_{s_{(t+1):T}, a_{t:(T-1)}} [\nabla_{\theta} \log \pi(a_t | s_t, \theta) b(s_t)] \right] \text{ (break up expectation)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \mathbb{E}_{s_{(t+1):T}, a_{t:(T-1)}} [\nabla_{\theta} \log \pi(a_t | s_t, \theta)] \right] \text{ (pull baseline term out)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \mathbb{E}_{a_t} [\nabla_{\theta} \log \pi(a_t | s_t, \theta)] \right] \text{ (remove irrelevant variables)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \sum_{a} \pi_{\theta}(a_t | s_t) \frac{\nabla_{\theta} \pi(a_t | s_t, \theta)}{\pi_{\theta}(a_t | s_t)} \right] \text{ (likelihood ratio)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \sum_{a} \nabla_{\theta} \pi(a_t | s_t, \theta) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} \sum_{a} \pi(a_t | s_t, \theta) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} 1 \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} 1 \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} 1 \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} 1 \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} 1 \right] \end{aligned}$$

"Vanilla" Policy Gradient Algorithm

```
Initialize policy parameter \theta, baseline b
for iteration=1, 2, \cdots do
 Collect a set of trajectories by executing the current policy
  At each timestep in each trajectory, compute
   the return R_t = \sum_{t'=t}^{T-1} r_{t'}, and
   the advantage estimate \hat{A}_t = R_t - b(s_t).
 Re-fit the baseline, by minimizing ||b(s_t) - R_t||^2.
   summed over all trajectories and timesteps.
  Update the policy, using a policy gradient estimate \hat{g},
   which is a sum of terms \nabla_{\theta} \log \pi(a_t|s_t;\theta) \hat{A}_t.
   (Plug \hat{g} into SGD or ADAM)
endfor
```

Practical Implementation with Autodiff

- Usual formula $\sum_t
 abla_{ heta} \log \pi(a_t|s_t; heta) \hat{A}_t$ is inifficient–want to batch data
- Define "surrogate" function using data from current batch

$$L(\theta) = \sum_{t} \log \pi(a_{t}|s_{t};\theta) \hat{A}_{t}$$

- Then policy gradient estimator $\hat{g} = \nabla_{\theta} L(\theta)$
- Can also include value function fit error

$$L(\theta) = \sum_{t} \left(\log \pi(z_t | s_t; \theta) \hat{A}_t - ||V(s_t) - \hat{R}_t||^2 \right)$$

Value Functions

Recall Q-function / state-action-value function:

$$Q^{\pi,\gamma}(s,a) = \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \gamma^2 r_2 \cdots | s_0 = s, a_0 = a \right]$$

• State-value function can serve as a great baseline

$$V^{\pi,\gamma}(s) = \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \gamma^2 r_2 \cdots | s_0 = s \right]$$

= $\mathbb{E}_{a \sim \pi} [Q^{\pi,\gamma}(s,a)]$

Advantage function: Combining Q with baseline V

$$A^{\pi,\gamma}(s,a) = Q^{\pi,\gamma}(s,a) - V^{\pi,\gamma}(s)$$

N-step estimators

 Can also consider blending between TD and MC estimators for the target to substitute for the true state-action value function.

$$\hat{R}_{t}^{(1)} = r_{t} + \gamma V(s_{t+1})$$

$$\hat{R}_{t}^{(2)} = r_{t} + \gamma r_{t+1} + \gamma^{2} V(s_{t+2}) \qquad \cdots$$

$$\hat{R}_{t}^{(\text{inf})} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+1} + \cdots$$

If subtract baselines from the above, get advantage estimators

$$\hat{A}_{t}^{(1)} = r_{t} + \gamma V(s_{t+1}) - V(s_{t})$$

$$\hat{A}_{t}^{(2)} = r_{t} + \gamma r_{t+1} + \gamma^{2} V(s_{t+2}) - V(s_{t})$$

$$\hat{A}_{t}^{(\text{inf})} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+1} + \dots - V(s_{t})$$

- $\hat{A}_t^{(a)}$ has low variance & high bias. $\hat{A}_t^{(\infty)}$ high variance but low bias. (Why? Like which model-free policy estimation techniques?)
- Using intermediate k (say, 20) can give an intermediate amount of bias and variance.

Application: Robot Locomotion

Learning to Walk in 20 Minutes

Russ Tedrake
Brain & Cognitive Sciences
Center for Bits and Atoms
Massachusetts Inst. of Technology
Cambridge, MA 02139
russt@csail.mit.edu

Teresa Weirui Zhang Mechanical Engineering Department University of California, Berkeley Berkeley, CA 94270 resa@berkeley.edu H. Sebastian Seung
Howard Hughes Medical Institute
Brain & Cognitive Sciences
Massachusetts Inst. of Technology
Cambridge, MA 02139
seung@mit.edu

Class Structure

• Last time: Imitation Learning

• This time: Policy Search

• Next time: Policy Search Cont.