

Two stage opamp

Professor: Paul C.-P. Chao

Two stage opamp

Vdd=1.8V, Vin+=Vin-=0.9V, C_L=4pF

Design Specification

Parameter	Value
DC Gain	>60dB
Phase Margin	>60 deg
Unit Gain Frequency	>10M Hz
Common mode rejection ratio (CMRR)	>60dB
Input Common Mode Range (ICMR)	>1V
Output Swing	>1V
Slew Rate	>10V/us

- 作業上傳到E3, 繳交以下檔案,檔名: hw3 _學號
- 報告(.pdf) (ex:hw3_0560030.pdf)
 - 1. 每個規格需符合,並附上模擬結果
 - 2. 解釋設計方法
 - Spice file (.sp) (ex:hw3_0560030.sp)

MOS

MOS

Calculate by Excel

В6	· ·	× ✓	f _x	=B2*2/B3*B5/(B4^2)
4	А	В	c ,	D
1	算W			
2	Id	76	(uA)	
3	uCox	240	(y/A/V2)	
4	vov=vgs-vth	0,8	(V)	
5	L	▶ 1	(u)	
6	W	0.989583	(um)	
7				
8				
9				
10	算uCox			
11	Id	76	(uA)	
12	vov=vgs-vth	0.8	(V)	
13	W	1	(u)	
14	L	1	(u)	
15	uCox	237.5	(uA/V2)	
16				

Operation in the saturation region:

Conditions:

$$(1) \quad v_{GS} \geq V, \quad \Longleftrightarrow \quad v_{OV} \geq 0$$

(2)
$$v_{GD} \le V_t \iff v_{DS} \ge v_{GS} - V_t \iff v_{DS} \ge v_{OV}$$

i-v Characteristics:

$$i_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (v_{GS} - V_t)^2 (1 + \lambda v_{DS})$$

Threshold voltage:

$$V_t = V_{t0} + \gamma(\sqrt{2\phi_f + |V_{SB}|} - \sqrt{2\phi_f})$$

Overdrive voltage: Process parameters:

$$v_{OV} = v_{CS} - V_c$$

$$v_{GS} = V_t + v_{OV}$$

$$v_{OV} = v_{GS} - V_t$$
 $C_{ox} = \varepsilon_{ox}/t_{ox}$ (F/m²)

$$k'_n = \mu_n C_{ox} \qquad (A/V^2)$$

$$V'_A = (V_A/L) \qquad (V/m)$$

$$V_A' = (V_A/L) \qquad (V/m)$$

$$\lambda = (1/V_A) \tag{V}^{-1}$$

$$\gamma = \sqrt{2qN_A\varepsilon_s}/C_{ox} \quad (V^{1/2})$$

Constants:

$$\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$$

$$\varepsilon_{ox} = 3.9 \varepsilon_0 = 3.45 \times 10^{-11} \text{ F/m}$$

$$\varepsilon_s = 11.7\varepsilon_0 = 1.04 \times 10^{-10} \text{ F/m}$$

$$q = 1.602 \times 10^{-19} \,\mathrm{C}$$

Hspice netlist

Circuit description and testbench

```
***** two stage opamp *****
      ***** model/lib *****
      .lib 'cic018.1' TT
      **** options ****
      .option post accurate method=gear
      .option probe
      .temp 27
8
      .global vdd gnd
9
      ***** Source *****
10
      Vdd
              Vdd
                       gnd
                               DC=1.8
11
      Iref
            vdd
                       g11
12
      Vinp
            vinp
                       gnd
                               dc=0.9 ac=1
13
      Vinn
              vinn
                               dc=0.9
                       gnd
14
15
      * Main Circuit
16
      М1
                           N 18 1=
17
                           N 18 1=
      M2
18
                           P 18 1=
      МЗ
19
      M4
20
      M5
                           N 18 1=
                           P 18 1=
21
      M6
22
                           N 18 1=
23
                           N 18 1=
24
      CC v12 vout
25
      CL vout gnd 4p
```

```
***** analysis *****
27
       go.
       .ac dec 10 10 1G
30
       .probe vdb (vout) vp (vout)
31
       .meas AC Gain10Hz FIND vdb(vout) AT 10
32
       .meas ac Unit gain when vdb(vout)=0
33
       .meas ac Phase mar FIND vp(vout) when vdb(vout)=0
34
35
       **SLEW RATE**
36
37
38
39
40
41
42
43
       **ICMR**
45
46
47
       **OUTPUT VOLTAGE SWING**
48
49
50
51
52
53
54
55
56
       **CMRR**
57
58
59
60
61
62
```

.end

63

.Measure

′ (10). MEASURE Statement : <u>AVG, RMS, MIN, MAX, & P-P</u>

Syntax :

```
.MEASURE DC|AC|TRAN result FUNC out_var <FROM=val1> <TO=val2> 
+ <Optimization Option>
```

- result_var : Name Given the Measured Value in HSPICE Output
- FUNC : AVG ---- Average MAX ---- Maximun PP ---- Peak-to-Peak
 MIN ----- Minimum RMS ---- Root Mean Square
- out_var : Name of the Output Variable to be Measured
- <Optimization Option>: <GOAL=val> <MINVAL=val> <WEIGHT=val>
- Example:

```
.meas TRAN minval MIN v(1,2) from=25ns to=50ns .meas TRAN tot_power AVG power from=25ns to=50ns .meas TRAN rms_power RMS power
```


.Measure

(11). MEASURE Statement : Find & When Function

Syntax :

```
.measure DC|AC|TRAN result WHEN ... <Optimization Option>
.measure DC|AC|TRAN result FIND out_var1 WHEN ... <Optimization Option>
.measure DC|AC|TRAN result_var FIND out_var1 AT=val <Optimization Option>
```

- result : Name Given the Measured Value in HSPICE Output
- WHEN ... : WHEN out_var2=val|out_var3 <TD=time_delay> + <CROSS=n|LAST> <RISE=r_n|LAST> <FALL=f_n|LAST>
- <Optimization Option>: <GOAL=val> <MINVAL=val> <WEIGHT=val>

Example:

```
.meas TRAN fifth WHEN v(osc_out)=2.5V rise=5
.meas TRAN result FIND v(out) WHEN v(in)=2.5V rise=1
.meas TRAN vmin FIND v(out) AT=30ns
```


AC analysis

.Measure

Unity-gain Freq, Phase margin, & DC gain(db/M):

```
.meas AC unitfreq WHEN vdb(out)=0 FALL=1
.meas AC phase FIND vp(out) WHEN vdb(out)=0
.meas AC 'gain(db)' MAX vdb(out)
.meas AC 'gain(mag)' MAX vm(out)
```

Analysis command

```
.ac dec 10 10 1G
.probe vdb(vout) vp(vout)
.meas ac Gain10Hz FIND vdb(vout) AT 10
.meas ac Unit_gain when vdb(vout)=0
.meas ac Phase_mar FIND vp(vout) when vdb(vout)=0
```

Lis file

```
***** two stage opamp *****

***** ac analysis tnom= 25.000 temp= 27.000 ***

gain10hz= 6.8925E+01

unit_gain= 1.2983E+07

phase_mar= -1.1773E+02
```


CMRR

$$CMRR = \underbrace{\frac{A_d}{A_{cm}}}$$

$$CMRR = 20\log_{10} \left(\frac{A_d}{A_{cm}}\right) dB$$
$$= 20 \log|Ad| - 20 \log|Acm|$$

➤ SPICE – 求Acm

Vcm vcm gnd dc=0.9 ac=1

Vinp vinp vcm dc=0

Vinn vinn vcm dc=0

.ac dec 10 10 1G

.probe vdb(vout)

CMRR

CMRR =
$$20\log_{10}\left(\frac{A_d}{A_{cm}}\right) dB = 20 \log|Ad| - 20 \log|Acm|$$

= $68.9dB - (-2.58dB) = 71.48dB$

ICMR

> SPICE

Vinp vinp gnd dc=0.9
M1 node_D vout node_S node_B N_18 l=?u w=?u m=?
.dc vinp 0 1.8 1m
.probe V(vout) V(vinp)

ICMR

- 觀察輸出Vout能夠隨著輸入Vinp改變的電壓範圍
- ICMR=1.32V **►**

Output Swing

> SPICE

vinp vinp gnd dc=0.9

R1 VIN vinn?k

R2 vinn vout ?k

VIN VIN gnd dc=0.9

.dc VIN 0 1.8 1m

.probe V(vout) V(VIN)

Output Swing

- 觀察輸出Vout能夠隨著輸入VIN變化的電壓範圍
- Output Swing = 1.71V ▶

Slew Rate

> SPICE

vinp vinp gnd pulse(0v 1.8v T_{delay} T_{rise} T_{fall} T_{duty} T_{period}) M1 node_D vout node_S node_B N_18 l=?u w=?u m=? .tran 1p ??

.probe V(vout) V(vinp)

.meas Tran Up_Slew-Rate DERIV V(vout) AT=??

Slew Rate

Slew Rate = 11.7V/us

****** two stage opamp ******

****** transient analysis tnom= 25.000

up_slew-rate= 1.1172E+07

課堂練習-Two stage opamp

Vdd=1.8V, Vin+=Vin-=0.9V, C₁=4pF

Parameter	Value	
Gain	>40dB	
Phase Margin	>50 deg	
Unit Gain	>1M Hz	
Frequency		
CMRR	>50dB	
ICMR	>1V	
Output Swing	>1V	
Slew Rate	>1V/us	

