

Mark Scheme (Results)

Summer 2024

Pearson Edexcel International Advanced Level In Statistics (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2024

Question Paper Log Number P75722A

Publications Code WST03_01_2406_MS

All the material in this publication is copyright

© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively.
 Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.

- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Where a candidate has made multiple responses <u>and indicates which response</u> they wish to submit, examiners should mark this response.

 If there are several attempts at a question which have not been crossed out, examiners should mark the final answer that is the most complete.
- 7. Ignore wrong working or incorrect statements following a correct answer

Special notes for marking Statistics exams (for AAs only)

- If a method leads to "probabilities" which are greater than 1 or less than 0 then M0 should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question Number	Scheme	Marks				
1(a)	Select a random number as the starting point					
	Take every 50th employee					
		(2)				
(b)	e.g. The alphabetical list may not be random or					
(0)	May be biased as list not truly random or	B1				
	Some combinations of names are not possible					
		(1)				
(c)	0	B1				
		(1)				
	Notes	Total 4				
(a)	B1 for realising they need to select a random number as the starting point					
	B1 for realising they need to take every 50 th employee					
	B1 for a suitable disadvantage. Sight of the words in bold oe for those reasons are sufficient					
	provided there is no contradiction or not a correct reason					
(b)	Condone "may not be representative". "some employees with the same surname won't be					
(0)	chosen"					
	Do not allow any reference to requiring a sampling frame as it already has one e.g. "a					
	sampling frame is needed because there is an alphabetical list"					
(c)	B1 0					

Question Number				Schem	e						Marks
		Kettle	A	В	С	D	E	F	G		
2 ()		Price (£)	99.99	14.99	34.97	49.99	19.97	29.99	8.99		3.61
2 (a)		Aarush Rank	2	5	4	1	7	3	6		M1
		Actual rank	1	6	3	2	5	4	7		
	~	$d^2 = 1 + 1 + 1 + 1 + 2$	1 . 1 . 1 .	_ 101							N/1
		$\frac{d^2 = 1 + 1 + 1 + 1 + 4}{6 \times "10"}$	++1+1								M1
	r_s	$=1-\frac{6\times"10"}{7\times48}$									dM1
	:	= 0.8214							awrt 0.	821	Alcso
(b)	П	$: \rho = 0 \mathbf{H}_1 : \rho > 0$	n								(4) B1
(0)		tical Value $r_s = 0$.									M1
	1	her reject H_0 / resu		ificant/	r_s does li	ie in the	critical 1	egion			M1
	Co	nclude there is evi	dence to								A1
		•									(4)
(c)		rush has already ra tributed	anked th	em or th	e order /	price is	not nor	mally			B1
											(1)
(d)	Ke	ttle A and D would	d have a	tied ran	k (1.5)						B1
											(1)
(-)	3.//1	f	1-	Notes		41 -		14 4 -		- 141-	Total 10
(a)		for an attempt to									
	M1 for finding differences between each pair of their ranks and evaluating $\sum d^2$ imp by A1 dM1 dependent on previous 2 M marks being awarded. Using $r_s = 1 - \frac{6 \times \sum d^2}{7 \times 48}$										
	A1	awrt 0.821 or allo	ow $\frac{23}{28}$								
(b)		both hypotheses ms of r) If their r_s				(condor	ne if app	ears as p	– it can	not b	pe in
		allow their CV		1							
	M1	for a correct nor	-contrac	lictory s	tatement			,	,		
		igns are compatib									
		dependent on all rect conclusion in	_				_				
		l no contradictory					II) and I	ias i alik	., neities	, and	price
(c)	B1	for a correct reason	on e.g. (s	some of)			-		l, Aarusl	n has	not
(d)	given the prices (only the ranks) oe. Condone "it is ordinal data" B1 for the idea that both A and D will have same rank (1.5) If the rank is stated it must 1.5. Must mention both A and D (or imply) and allow explanations such as "equal rant" average rank". Condone "order" for rank. If an incorrect rank or letter pairing is given then B0.										

Question Number	Scheme	Marks
3(a)	$H_0: \mu = 328$ $H_1: \mu \neq 328$ oe	B1
	Significance level is 5%	dB1
	(328 is within the interval therefore) no evidence to support that μ is not 328	B1
		(3)
(b)	$1.96 \times \frac{\sigma}{\sqrt{150}} = \frac{329.76 - 327.84}{2} (= 0.96) \text{ oe or e.g. } 328.8 + 1.96 \times \frac{\sigma}{\sqrt{150}} = 329.76$ or $328.8 - 1.96 \times \frac{\sigma}{\sqrt{150}} = 327.84 \ [\sigma = 5.9987]$	M1 B1
	$328 - 2.3263 \times \frac{"5.9987"}{\sqrt{200}}$ oe or $328 + 2.3263 \times \frac{"5.9987"}{\sqrt{200}}$ oe	M1 B1
	$328 \pm 2.3263 \times \frac{"5.9987"}{\sqrt{200}}$ oe	dM1
	(327.0132, 328.986) (awrt 327, awrt 329)	A1
		(6)
(c)	$X \sim B(5, 0.98)$ or $Y \sim B(5, 0.02)$	M1
	$P(X4)$ or $P(Y,, 1) = {}^{5}C_{4}(0.98)^{4}(0.02) + (0.98)^{5}$ oe	A1
	= 0.9961 awrt 0.996	A1
		(3)
		(3)
(a)	Notes Note that many are carrying out a full hypothesis test by finding the distribution the sample mean. These three marks can still be scored. You do not need to check the sample mean the sample mean to check the sample mean.	Total 12
(a)	Note that many are carrying out a full hypothesis test by finding the distribution the sample mean. These three marks can still be scored. You do not need to che calculations to score in (a) B1 for both hypotheses correct in terms of μ (do not accept use of \overline{x})	Total 12 ion of neck the
(a)	Note that many are carrying out a full hypothesis test by finding the distribution the sample mean. These three marks can still be scored. You do not need to chalculations to score in (a)	Total 12 ion of eck the
(a)	Note that many are carrying out a full hypothesis test by finding the distribution the sample mean. These three marks can still be scored. You do not need to che calculations to score in (a) B1 for both hypotheses correct in terms of μ (do not accept use of \overline{x}) dB1 correct significance level given. Allow $(\alpha =)$ 0.05 Do not allow if more than given. This mark is dependent on a two tail test being indicated with their hypothese condoning slips in notation e.g. use of \overline{x} Do not allow $p = 0.05$ on its own. B1 idea that $\mu = 328$ is supported. Allow e.g. "do not reject H_0 " provided H_0 : $\mu =$ condone poor notation for their null hypothesis. Does not need to be in context.	Total 12 ion of heck the one ses = 328 but
(a) (b)	Note that many are carrying out a full hypothesis test by finding the distribution the sample mean. These three marks can still be scored. You do not need to che calculations to score in (a) B1 for both hypotheses correct in terms of μ (do not accept use of \overline{x}) dB1 correct significance level given. Allow (α =) 0.05 Do not allow if more than given. This mark is dependent on a two tail test being indicated with their hypothese condoning slips in notation e.g. use of \overline{x} Do not allow $p = 0.05$ on its own. B1 idea that $\mu = 328$ is supported. Allow e.g. "do not reject H_0 " provided H_0 : $\mu = 0.05$ 0 is supported.	Total 12 ion of heck the one ses = 328 but
	Note that many are carrying out a full hypothesis test by finding the distribution the sample mean. These three marks can still be scored. You do not need to che calculations to score in (a) B1 for both hypotheses correct in terms of μ (do not accept use of \overline{x}) dB1 correct significance level given. Allow $(\alpha =)$ 0.05 Do not allow if more than given. This mark is dependent on a two tail test being indicated with their hypothese condoning slips in notation e.g. use of \overline{x} Do not allow $p = 0.05$ on its own. B1 idea that $\mu = 328$ is supported. Allow e.g. "do not reject H_0 " provided H_0 : $\mu =$ condone poor notation for their null hypothesis. Does not need to be in context.	Total 12 ion of heck the one ses $= 328 \text{ but}$ by awrt 6 for σ
	Note that many are carrying out a full hypothesis test by finding the distribution the sample mean. These three marks can still be scored. You do not need to che calculations to score in (a) B1 for both hypotheses correct in terms of μ (do not accept use of \overline{x}) dB1 correct significance level given. Allow $(\alpha =)$ 0.05 Do not allow if more than given. This mark is dependent on a two tail test being indicated with their hypothese condoning slips in notation e.g. use of \overline{x} Do not allow $p = 0.05$ on its own. B1 idea that $\mu = 328$ is supported. Allow e.g. "do not reject H_0 " provided $H_0: \mu = 0.05$ condone poor notation for their null hypothesis. Does not need to be in context. M1 forms an equation to find σ Allow $1.6 < z < 2$ may be seen in (a) or implied by their value M1 correct method to find one end of the confidence interval using their σ Allow	Total 12 ion of heck the one ses $= 328 \text{ but}$ by awrt 6 for σ
	Note that many are carrying out a full hypothesis test by finding the distribution the sample mean. These three marks can still be scored. You do not need to che calculations to score in (a) B1 for both hypotheses correct in terms of μ (do not accept use of \overline{x}) dB1 correct significance level given. Allow (α =) 0.05 Do not allow if more than given. This mark is dependent on a two tail test being indicated with their hypothese condoning slips in notation e.g. use of \overline{x} Do not allow $p = 0.05$ on its own. B1 idea that $\mu = 328$ is supported. Allow e.g. "do not reject H_0 " provided H_0 : $\mu = 0.05$ condone poor notation for their null hypothesis. Does not need to be in context. M1 forms an equation to find σ Allow $1.6 < z < 2$ may be seen in (a) or implied by B1 use of awrt 1.96 in the calculation may be seen in (a) or implied by their value M1 correct method to find one end of the confidence interval using their σ Allow $2.3 < z < 3.1$ condone use of 150 rather than 200 (may be implied by awrt 327 or a if no incorrect working is seen) B1 awrt 2.3263 seen dM1 dependent on both the previous method marks being awarded. Fully correct nusing their σ and using $n = 200$ to find both ends of the confidence interval. A co-confidence interval with no working – send to review	Total 12 ion of heck the one ses $= 328 \text{ but}$ by awrt 6 for σ awrt 329
	Note that many are carrying out a full hypothesis test by finding the distribution the sample mean. These three marks can still be scored. You do not need to che calculations to score in (a) B1 for both hypotheses correct in terms of μ (do not accept use of \overline{x}) dB1 correct significance level given. Allow (α =) 0.05 Do not allow if more than given. This mark is dependent on a two tail test being indicated with their hypothese condoning slips in notation e.g. use of \overline{x} Do not allow p = 0.05 on its own. B1 idea that μ = 328 is supported. Allow e.g. "do not reject H_0 " provided H_0 : μ = condone poor notation for their null hypothesis. Does not need to be in context. M1 forms an equation to find σ Allow $1.6 < z < 2$ may be seen in (a) or implied by B1 use of awrt 1.96 in the calculation may be seen in (a) or implied by their value M1 correct method to find one end of the confidence interval using their σ Allow $2.3 < z < 3.1$ condone use of 150 rather than 200 (may be implied by awrt 327 or a if no incorrect working is seen) B1 awrt 2.3263 seen dM1 dependent on both the previous method marks being awarded. Fully correct nusing their σ and using n = 200 to find both ends of the confidence interval. A co-confidence interval with no working – send to review A1 (awrt 327, awrt 329) Condone missing brackets	Total 12 ion of heck the one ses $= 328 \text{ but}$ by awrt 6 for σ awrt 329 hethod
	Note that many are carrying out a full hypothesis test by finding the distribution the sample mean. These three marks can still be scored. You do not need to che calculations to score in (a) B1 for both hypotheses correct in terms of μ (do not accept use of \overline{x}) dB1 correct significance level given. Allow (α =) 0.05 Do not allow if more than given. This mark is dependent on a two tail test being indicated with their hypothese condoning slips in notation e.g. use of \overline{x} Do not allow p = 0.05 on its own. B1 idea that μ = 328 is supported. Allow e.g. "do not reject H_0 " provided H_0 : μ = condone poor notation for their null hypothesis. Does not need to be in context. M1 forms an equation to find σ Allow $1.6 < z < 2$ may be seen in (a) or implied by their value B1 use of awrt 1.96 in the calculation may be seen in (a) or implied by their value M1 correct method to find one end of the confidence interval using their σ Allow $2.3 < z < 3.1$ condone use of 150 rather than 200 (may be implied by awrt 327 or a if no incorrect working is seen) B1 awrt 2.3263 seen dM1 dependent on both the previous method marks being awarded. Fully correct no using their σ and using n = 200 to find both ends of the confidence interval. A conconfidence interval with no working — send to review A1 (awrt 327, awrt 329) Condone missing brackets M1 use of Binomial e.g. B(5, 0.98) or B(5, 0.02) or 0.985 or ${}^5C_x \times 0.98^x \times 0.02^{5-x}$ be implied by awrt 0.0922 or awrt 0.904 within a calculation or awrt 0.996)	Total 12 ion of heck the one ses $= 328 \text{ but}$ by awrt 6 for σ awrt 329 $= 328 \text{ but}$
(b)	Note that many are carrying out a full hypothesis test by finding the distribution the sample mean. These three marks can still be scored. You do not need to che calculations to score in (a) B1 for both hypotheses correct in terms of μ (do not accept use of \overline{x}) dB1 correct significance level given. Allow (α =) 0.05 Do not allow if more than given. This mark is dependent on a two tail test being indicated with their hypothese condoning slips in notation e.g. use of \overline{x} Do not allow p = 0.05 on its own. B1 idea that μ = 328 is supported. Allow e.g. "do not reject H_0 " provided H_0 : μ = condone poor notation for their null hypothesis. Does not need to be in context. M1 forms an equation to find σ Allow $1.6 < z < 2$ may be seen in (a) or implied by their value B1 use of awrt 1.96 in the calculation may be seen in (a) or implied by their value M1 correct method to find one end of the confidence interval using their σ Allow $2.3 < z < 3.1$ condone use of 150 rather than 200 (may be implied by awrt 327 or a if no incorrect working is seen) B1 awrt 2.3263 seen dM1 dependent on both the previous method marks being awarded. Fully correct no using their σ and using n = 200 to find both ends of the confidence interval. A co-confidence interval with no working – send to review A1 (awrt 327, awrt 329) Condone missing brackets M1 use of Binomial e.g. B(5, 0.98) or B(5, 0.02) or 0.98^5 or ${}^5C_x \times 0.98^x \times 0.02^{5-x}$	Total 12 ion of heck the one ses $= 328 \text{ but}$ by awrt 6 for σ awrt 329 $= 328 \text{ but}$

Question Number			Scheme			Marks		
4(a)	H ₀ : favourite fla H ₁ : favourite fla					B1		
	11 ₁ : lavourite na	vouis do not occ	ear in the ratio i	10.3.2.3				
		Chocolate	Vanilla	Strawberry	Other			
	observed	188	95	40	77			
	expected	200	100	40	60			
	$\frac{(O_i - E_i)^2}{E_i}$	(188-"200")2	- \frac{(95 - "100")^2} "100"	\(\frac{\left(40 - "40"\right)^2}{"40"}\)	\frac{(77 - "60")^2}{"60"}	M1		
		"200" (= 0.72)	"100" (= 0.25)	(=0)	(=4.816)	M1		
	O_i^2	188 ²	95 ²	40 ² "40"	77 ²			
	$\frac{O_i^2}{E_i}$	"200"	95 ² "100"	"40"	"60"			
		(=176.72)	(=90.25)	(=40)	77 ² "60" (=98.816)			
	$\sum \frac{(O_i - E_i)^2}{E_i} =$	= 5.786 <u>or</u> \(\sqrt{2}	$\sum \frac{O_I^2}{E_I} - 400 = 4$	405.7867 – 400	(awrt 5.79)	A1		
	v = 3					B1		
	CV is 7.815					B1ft		
	[5.79 < 7.815] so insufficient evidence to reject H_0 or not significant							
	There is no evidence to suggest that people's favourite flavour s of ice-cream do not occur in the given ratio . oe							
(b)(i)(ii)	$\frac{188 \times 130}{400}$ or $\frac{112 \times 95}{400}$							
	61.1 and 26.6							
(c)	6							
			Notes			Total 11		
	need to state the	actual flavours.			"given ratio" oe. l			
(a)	Accept statements e.g. H_0 : the proportion of people who like different ice creams							
	10:5:2:3 Accept H_0 : the ratio 10:5:2:3 is correct. Do not accept e.g. H_0 : the manage							
	belief is correct (without reference to the ratio)							
	M1 At least 2 expected values correct. Check if each cell has been calculated separate the totals add up to 200, 100, 40 and 60 (seen)							
	M1 Correct method seen or may be implied by values for at least 2 flavours. Implie awrt 5.79							
	A1 awrt 5.79							
	B1 correct degrees of freedom stated or implied by any awrt 0.072 0.115 0.216 0. 0.584 6.251 7.815 9.348 11.345 12.838							
	B1ft awrt 7.815 follow through on 6 degrees only = 12.592							
	M1 Independent of hypotheses, ft their χ^2 value and their CV. A correct comment							

	"Accept H ₀ " or e.g. "do not reject H ₀ " Do not award if contradicting non contextual
	comments given. If their χ^2 value < their CV e.g. "do not reject H_0 " If their χ^2 value >
	their CV e.g. "reject H ₀ " (May be implied by a correct ft contextual comment)
	A1ft dependent on all the previous method marks. A correct contextual comment for
	their χ^2 value and their CV that mentions flavour and ratio oe (does not need to state the
	actual ratio) Accept sufficient evidence to support the manager's belief oe condone "the
	manager is correct"
(b)	M1 A correct method to find one of the values. Implied by one correct value
	A1 Both answers correct.
(c)	B1 cao

Question Number	Scheme	Marks				
5(a)	$H_0: \mu_p - \mu_f = 1$ oe	B1				
	$H_1: \mu_p - \mu_f > 1$ oe	B1				
	s.e. = $\sqrt{\frac{9}{605} + \frac{4}{45}} = \left[\sqrt{0.10376}\right] = [0.322]$	M1				
	$z = \pm \frac{7.0 - 5.6 - 1}{\sqrt{\frac{9}{605} + \frac{4}{45}}}$	dM1				
	= 1.24175 awrt 1.24	A1				
	CV 5% one tailed = ± 1.6449 (see notes)	B1				
	Not significant, do not reject H ₀ Insufficient evidence that full-time staff are more than one minute faster than	dM1				
	part-time staff or manager's claim is not supported	A1ft				
(h)	Assume both semples are normal or both large enough for CLT as	(8) B1				
(b)	Assume both samples are normal or both large enough for CLT oe Assume $s^2 = \sigma^2$ for both samples	В1				
	Assume individual results are independent	D1				
	Assume marvidual results are macpendent	(2)				
(c)	$\overline{a} = \frac{45 \times 7 + 8}{46} [= 7.0217]$	M1				
	$\sum a^2 = 44 \times 4 + 45 \times 7^2 + 8^2 \left[= 2445 \right]$	M1				
	$s^2 = \frac{"2445" - 46 \times "7.0217"^2}{45}$	M1				
	45 = 3.93285 awrt 3.93	A1				
	- 3.73263 uwit 3.73	(4)				
	Notes	Total 14				
(a)	B1 H ₀ correct on e.g. H ₀ : $\mu_f - \mu_p = -1$ Must be in terms of μ Use of \overline{t} is B0. May use other letters to p and f but must be defined					
	B1 H ₁ correct on e.g. H ₁ : $\mu_f - \mu_p < -1$ SC B0B1 for H ₀ : $\mu_f - \mu_p = 1$ and H ₁ : $\mu_f - \mu_p > 1$					
	Must be in terms of μ Use of \overline{t} is B0 May use other letters to p and f but must be defined					
	M1 Correct method to find s.e. may be seen within formula to standardise (implied by awrt ± 1.24)					
	dM1 dep on previous M being awarded. Correct method to find z value (implied by awrt ± 1.24)					
	A1 awrt ±1.24					
	B1 awrt ± 1.6449 or <i>p</i> -value awrt $0.107 > 0.05$ oe					
	dM1 all previous method marks awarded for a correct conclusion ft their z value and CV A1ft dependent on all previous method marks but independent of hypotheses. A correct					
	statement in context with the words in bold oe which does not reject H ₀ . ft their z value and CV Note B0B0M1dM1A1B0dM1A1ft is possible					
	Candidates who incorrectly test $H_0: \mu_f - \mu_p = 1$ and $H_1: \mu_f - \mu_p > 1$ will score maximum					
	B0B1M1dM0A0B1dM0A0	•				
(b)	B1 One correct assumption. Accept e.g. (times taken by) employees chosen follow distribution, times taken follow a normal distribution, employees are selected	a normal				

	independently. Samples are independent is B0						
	B1 2 correct assumptions. Need to see reference to both for each assumption but condone if written as one sentence or statement e.g. both samples are normally distributed and $s^2 = \sigma^2$						
	M1 correct method to find \bar{a} may be implied by awrt 7.02 or may be seen within a						
(c)	calculation e.g. $(s^2 =) \frac{2445 - \frac{(45 \times 7 + 8)^2}{46}}{45}$						
	M1 correct method to find $\sum a^2$ may see e.g. 2381+82 which may be embedded within						
	their calculation to find the sample variance. Sight of 2445 implies this mark						
	M1 correct method to find s^2 ft their \bar{a} (which cannot be 315) and $\sum a^2$ (which cannot be						
	2381)						
	A1 awrt 3.93						

Question Number	Scheme	Marks				
6(a)	E(C + C + C) = 3.6 oe	B1				
	$Var(C + C + C) = 0.03^2 + 0.03^2 + 0.03^2 = 0.0027$	M1				
	$P(C+C+C>3.5) = P\left(Z > \left(\pm \frac{3.5 - "3.6"}{\sqrt{"0.0027"}}\right) [=-1.9245]\right)$	M1				
	= 0.9726 (calc 0.97285) awrt 0.973	A1				
		(4)				
(b)	E(R-R) = 0	M1				
	$Var(R - R) = 0.03^2 + 0.03^2 = 0.0018$	M1				
	$P((R-R) > 0.05) = P\left(Z > \left(\frac{0.05 - "0"}{\sqrt{"0.0018"}}\right) [= 1.1785]\right)$	M1				
	[=0.119 (calc 0.119296)]					
	$2 \times P((R-R) > 0.05) = 2 \times "0.119"$	M1				
	= 0.238 table or 0.23859calc awrt 0.238/0.239	A1cso				
		(5)				
(c)	$\mu_G = 2.5 + 10 \times 2.3 [= 25.5]$	M1				
	$\sigma_G^2 = 0.1 + 10 \times 0.03^2 = 0.109$	M1				
	Let $X = G - 2T$	M1				
	$\mu_{\rm x} = "25.5" - 2 \times 2.5[=20.5]$	M1				
	$\sigma_X^2 = 0.109 + 4 \times 0.1 = 0.509$					
	$P(G-2T<20) = P\left(Z < \frac{20 - "20.5"}{\sqrt{"0.509"}} [= -0.7008]\right)$	M1				
	= 0.242 (table) or 0.2417 (calc) awrt 0.242	A1				
		(7)				
	Notes	Total 16				
(a)	B1 Correct value for $E(C + C + C)$ may be seen e.g. $\frac{18}{5}$ or implied by later calculation					
	M1 Correct method to find the variance. Condone 0.03^4 instead of 0.03^2 may be implied by calculation or awrt 0.973					
	M1 Correct standardisation using their mean and sd. Allow $\pm \frac{3.5 - "3.6"}{\sqrt{"0.0027"}}$ may b	e implied				
	by $P(Z > awrt - 1.92)$ or $P(Z < awrt 1.92)$ or $awrt 0.973$					
	A1 awrt 0.973 do not isw					
(b)	M1 for 0 may be seen or implied by later calculation					
	M1 correct method to find $Var(R-R)$ may be implied by 0.0018 or $\frac{9}{5000}$ or a later					
	calculation. Must be a numerical value or expression.					
	M1 Correct standardisation using their mean and Var Allow ±					
	M1 2 × "their 0.119"					
	A1 awrt 0.238	de an el 17				
(c)	M1 Correct method for finding the mean of <i>G</i> may be implied by 25.5 or later wor of 20.5 (or may subtract 20 so 0.5)					
	M1 Correct method for finding the var of G may be implied by sight of 0.109 provis not to find the variance of $10R - T$. May be implied by 0.509	rided this				

M1 Realising they need to find $\pm (G-2T)$. Allow $\pm (G-2T-20)$ may be seen as part of
a probability expression or implied by their calculation
M1 Correct method for finding the mean of X which may be from using their mean of G
(which must be correct if no method or value is seen) Allow 0.5
M1 Correct method for finding the var of X which may be from using their variance of G
(which must be correct if no method or value is seen) may be implied by $10 \times 0.03^2 + 0.5$ or
0.509
M1 Correct standardisation using their mean and standardisation for $G-2T$ (condone
G-T) leading to a probability < 0.5 Allow 0 – "0.5" for numerator for correct use of 20
with their "20.5" and their "0.509"
A1 awrt 0.242 from a correct distribution
Note candidates who attempt $10R + T < 2T + 20 \Rightarrow 10R - T < 20$ can score maximum
M1M0M0M1M0M1A0 (the first method mark is implied by the fourth method mark)

Question Number	Scheme	Marks			
7(a)	E(D) = x + 2	M1			
	$\operatorname{Var}(D) = \frac{\left(\left(x+5\right) - \left(x-1\right)\right)^{2}}{12} \left[=3\right]$ $\overline{D} \sim N\left(x+2, \frac{3}{n}\right)$	M1			
	$\overline{D} \sim N\left(x+2, \frac{3}{n}\right)$	A1			
		(3)			
(b)	$x + 2 = 22.101 + 2 = 24.101$ or $x + 2 = 24.6 \Rightarrow 24.6 - 2 = 22.6$	M1			
	$24.6 - 2.5758 \sqrt[3]{\frac{3}{n}} = 24.101$ oe	B1M1 dM1			
	n = 80	A1cao			
		(5)			
	Notes	Total 8			
(a)	M1 E(D) correct M1 Correct method to find Var(D) Must be subtracting the correct way round but condone missing brackets A1 for a fully correct distribution. Either states $N\left(x+2,\frac{3}{n}\right)$ or accept e.g. "normal" with				
	mean = $x + 2$ and variance = $\frac{3}{n}$ oe Must be seen in (a)				
(b)	M1 For a correct method to find d using x as 22.101 in their " $x+2$ " from (a) or a correct method to find x by rearranging their " $x+2$ " to $x=24.6-$ "2" Implied by 24.101 or 22.6 or ± 0.499 oe $x+2=24.6$ on its own is M0				
	B1 for awrt ± 2.5758 may be implied by an unrounded value for n of awrt 79.94 M1 for $24.6 \pm z \sqrt{\frac{\sigma^2}{n}}$ or " 22.6 " $\pm z \sqrt{\frac{\sigma^2}{n}}$ where $2.55 < z < 2.6$ (ft their mean and variance from (a) or may restart). May be part of an equation. Their numerical variance does not have to be substituted in for this mark.				
	This mark can still be scored if it is equated inconsistently to 22.101 eg $24.6 - z\sqrt{\frac{\sigma^2}{n}} = 22.101$ oe eg $z\sqrt{\frac{\sigma^2}{n}} = 2.499$ or $\sqrt{\frac{\sigma^2}{n}} = \frac{4165}{4293}$ (= 0.970)				
	dM1 dep on both the previous M marks awarded. For setting up a valid equation (allow 22.101 instead of "24.101" provided it is correctly paired with "22.6"). Their numerical variance must be substituted in for this mark.				
	$24.6 - 2.5758$ " $\sqrt{\frac{3}{n}} = 24.101$ " or 22.6 " $\sqrt{23.5758}$ " $\sqrt{\frac{3}{n}} = 22.101$ oe				
	eg "-2.5758" = $\frac{"24.101"-24.6}{\sqrt{\frac{"3"}{n}}}$ or "2.5758" $\sqrt{\frac{"3"}{n}}$ = "0.499"				
	A1 cao dependent on seeing a correct equation but allow use of $z = 2.576$ so M1B0M1dM1A1 is possible. Note awrt 79.94 seen can imply B1				