

Metabarcoding for diet analysis and environmental DNA – day 2

The University Of Sheffield.

Outline

- Normalising
- Assign taxonomy with dada2
- Exporting data from dada2
- Classifying ASVs with GenBank and BLAST
- Using MEGAN to assign taxa
- Creating your own reference database

Data Normalisation

- Have we sequenced enough to detect all taxa?
- Should we randomly subsample to the same depth?
 - May not be appropriate where species are differentially abundant
 - Could generate artificial variation between samples
- Other normalization methods:
 - Using relative abundance
 - Variance stabilising transformation

Assigning taxonomy with dada2

Two methods:

- assignTaxonomy
 - assigns across multiple taxonomic ranks
 - finds the most similar sequence in the reference file
 - bootstrap approach to assess confidence of assignment at each taxonomic level

 \circ

assignSpecies

- requires Genus species binomials in the reference database
- ASVs are assigned if they are an exact match
- most applicable to 16S bacterial amplicon data

Exporting data from dada2

>ASV_1

CACCGCGGTTATACGAGAGGCTCAAGTTGATAGACATCGGCGTAAAGAGTGGTTAGGAAGTTTTTAAACTAAAGCCGAACGCCCTCAGAA

CACCGCGGTTATACGAGAGGCCCAAGTTGATAGACGCCGGCGTAAAGAGTGGTTAGGAAGTTTTTTAAAATAAAGCCGAATGCCCTCAGA >ASV 3

CACCGCGGTTATACGAGCGGCTCAAGTTGACAGACGTCGGCGTAAAGAGTGGTTAGGAAATTCTTAAACTAAAGCCGAACGCCCTCAGAC >ASV_4

CACCGCGGTTATACGAAAGGCTCAAGTTGATTGTACACGGCGTAAAGTGTGGTTAAGGAACTACCTAAACTAAAGCTGAACACTCTCAAA

CACCGCGGTTATACGAGAGGCTCAAGTTGATAGACATCGGCGTAAAGAGTGGTTAGGAAGTTTTTAAACTAAAGCCGAACGCCCTCAGAA>ASV_6

CACCGCGGTTATACGAGCGGCTCAAGTTGACAGACGTCGGCGTAAAGAGTGGTTAGGAAATTCTTAAACTAAAGCCGAACGCCCTCAGAC

	Α	В	С	D	Е	F
1		S16	S17	S18	S25	S26
2	ASV_1	27453	0	102667	12198	9096
3	ASV_2	73373	13078	15	1192	3700
4	ASV_3	69	0	0	0	0
5	ASV_4	58385	6027	0	1173	0
6	ASV_5	0	0	134357	1111	0
7	ASV_6	0	0	0	496	868

taxonomy	

4	Α	В	С	D	E	F	G	Н
	Name Box	ringdom	Phylum	Class	Order	Family	Genus	Species
		ukaryota	Chordata	Actinopteri	Cichliformes	Cichlidae	Limnochromis	NA
	ASV_2	NA	NA	NA	NA	NA	NA	NA
	ASV_3	Eukaryota	Chordata	Actinopteri	Cichliformes	Cichlidae	Neolamprologus	NA
	ASV_4	Eukaryota	Chordata	Actinopteri	Cyprinodontiformes	Procatopodidae	Lamprichthys	Lamprichthys_tanganicanus
	ASV_5	Eukaryota	Chordata	Actinopteri	Cichliformes	Cichlidae	NA	NA
	ASV_6	Eukaryota	Chordata	Actinopteri	Cichliformes	Cichlidae	Neolamprologus	NA

- GenBank database of publicly available DNA sequences
- BLAST Basic Local Alignment Search Tool
- Can obtain multiple hits for each ASV/query sequence
- Very useful but proceed with caution!
 GenBank is not error-free.

Using MEGAN to assign taxa

- MEtaGenome ANalyzer
- Import BLAST results
- Lowest Common Ancestor algorithm
 - Multiple BLAST hits to different taxa
 - ASV assigned at lowest node that incorporates all 'good' BLAST hits.

Creating your own reference database

- Sample individual species and generate barcode sequences
- Download specific set of sequence from GenBank
- BOLD database curated DNA barcode, > 300,000 species
- Darwin Tree of Life whole genome sequencing for every species in the UK

Thank you!

Questions?

