Tree Queries

Time Limit: 1 second

Given an undirected, unweighted tree of \mathbf{N} vertices rooted at $\mathbf{1}$, you have to answer \mathbf{Q} queries. Each query is of the type: \mathbf{v} \mathbf{d} . Count the number of vertices in the subtree of \mathbf{v} which are at a distance of \mathbf{d} from \mathbf{v} . Note that distance between nodes \mathbf{u} and \mathbf{v} is defined as the number of edges on the path from \mathbf{u} to \mathbf{v} .

Input

The first line contains $\mathbf{N} \& \mathbf{Q}$ denoting the number of vertices and queries.

Next N - 1 lines contain $\mathbf{u_i}$ $\mathbf{v_i}$ denoting i^{th} undirected edge.

Next Q lines contain the query : \mathbf{v} \mathbf{d} denoting the vertex and the distance.

Output

Q lines each containg the answer to the query i.e. the number of vertices \mathbf{u} in the subtree of \mathbf{v} such that $\mathrm{dist}(\mathbf{u},\mathbf{v})=\mathbf{d}$.

Constraints

- $1 \le N \le 10^5$
- $1 \le Q \le 2 \times 10^5$
- $1 \le u_i, v_i \le N$
- $0 \le d \le 10^9$

Figure 1: Graph for the first sample case

Sample Cases

Input: 10 8 1 2 2 3 2 10 1 4 4 5 5 6 6 7 68 6 9 2 1 1 5 8 0 4 3 1 3 5 2 4 0

Output:

1 4