SORBONNE UNIVERSITÉ

Travaux d'étude et de recherche

Autour du théorème de Dvoretzky

"It soon became clear that an outstanding breakthrough in Geometric Functional Analysis had been achieved."

Vitali Milman à propos du théorème de Dvoretzky dans Dvoretzky theorem - thirty years later

Mathieu GALLO Enseignant : Omer Friedland

date

TABLE DES MATIÈRES

Introduction			2
1	Préliminaire		5
	1.1	Mesures de Haar	5
	1.2	Concentration de la mesure	7
	1.3	Ellipsoïdes	8
	1.4	Loi gaussienne	10
2	Démonstration du théorème de Dvoretzky		
	2.1	Lemmes d'approximations	12
	2.2	Démonstration du théorème de Dvoretzky	15
3	Sections presque euclidiennes de ℓ_p^n		18
	3.1	cas $1 \le p < 2$	18
	3.2	$cas \ 2 \le p < \infty$	18
	3.3	$\cos p = \infty \dots \dots \dots \dots \dots \dots \dots \dots \dots $	21
\mathbf{A}	- In	égalité de Khinchine	22

INTRODUCTION

Le mémoire suivant suit la série de lectures de Gideon Schetchman, "Euclidean sections of convex bodies" [1].

Alexandre Grothendieck en 1956 dans son article "Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretzky-Rogers" [2], inspiré par le lemme de Dvoretzky-Rogers (1950) propose une conjecture à laquelle Aryeh Dvoretzky répondra positivement en 1961, aboutissant au résultat suivant :

Théorème 1 (A. Dvoretzky, 1961). Il existe une fonction $k:]0,1[\times \mathbb{N} \to \mathbb{N}$, tel que $\forall \varepsilon \in]0,1[$, $k(\varepsilon,n) \xrightarrow{n\to\infty} \infty$ et pour tout $n \in \mathbb{N}$ et tout compact convexe symétrique $K \subset \mathbb{R}^n$, il existe $V \subset \mathbb{R}^n$ tels que :

- (i) dim $V = k(\varepsilon, n)$
- (ii) $\exists r > 0$ tel que, $r.(V \cap B_2^n) \subset V \cap K \subset (1+\varepsilon)r.(V \cap B_2^n)$

Dans le papier original de Dvortezky l'estimation de k était :

$$k(\varepsilon, n) \ge c(\varepsilon) \sqrt{\frac{\log n}{\log \log n}}$$
 pour un $c(\varepsilon) > 0$

Vitali Milman en 1971 donna une nouvelle preuve du théorème de Dvoretzky en utilisant le phénomène de concentration de la mesure [3], il a de plus amélioré le théorème en donnant l'estimation de la dépendance en n pour la dimension de $V: k(\varepsilon, n) \ge c(\varepsilon).\log(n)$.

Théorème 2 (V. Milman, 1971). Pour tout $\varepsilon > 0$, il existe une constante c > 0 tel que pour tout $n \in \mathbb{N}$ et pour tout compact convexe symétrique $K \subset \mathbb{R}^n$, il existe $V \subset \mathbb{R}^n$ tels que :

- (i) dim $V \ge c \cdot \log(n)$
- (ii) $\exists r>0$ tel que , $r.(V\cap B_2^n)\subset V\cap K\subset (1+\varepsilon)r.(V\cap B_2^n)$

La dépendance de c par rapport à ε donné par V.Milman était $c \sim \frac{\varepsilon^2}{\log \frac{1}{\varepsilon}}$ [3], c'est cette dépendance qui serras démontrée dans ce mémoire. Y.Gordon à montrer en 1988 l'on pouvais prendre $c \sim \varepsilon^2$ avec les même outils que V.Milman dans [4], plus récemment en 2006, G.Schechtman à montrer que l'on pouvais prouver le théorème de Dovretzky avec la même preuve que V. Milman pour $c \sim \varepsilon^2$ en construisant de manière plus précise le θ -net [5] (voir preuve de **théorème** 2.4).

Notation. Pour la suite on utiliseras les notations :

- $|.|_n$ la norme euclidienne sur \mathbb{R}^n , ou |.| si il n'y a pas d'ambiguïté sur la dimension.
- $S^{n-1} = \{x \in \mathbb{R}^n ; |x| = 1\}$, la (n-1)-sphère euclidienne.

Commençons par donner une légère interprétation géométrique du théorème, prenons l'exemple de $K=B_{||.||_{\infty}}$ dans le cas n=2 la distance entre un point situé sur un quart du cercle et le coin le plus proche est $\sqrt{2}-1$, nous pouvons facilement généraliser cela pour n>2. Prenons par exemple les points $A=(\frac{1}{\sqrt{n}},...,\frac{1}{\sqrt{n}})\in S^{n-1}$ et $B=(1,...,1)\in\partial B^n_{\infty}$ le coin de B^n_{∞} le plus proche de A, on peut joindre A aux points $e_j\in\partial B^n_{\infty}\cap S^{n-1}$

de la base canonique pour $1 \le j \le n$, et on a les distances suivantes :

$$|A - e_j| = \sqrt{2(1 - \frac{1}{\sqrt{n}})} \underset{n \to \infty}{\longrightarrow} \sqrt{2}$$

$$|e_i - e_j| = \sqrt{2} \quad \text{pour } i \neq j$$

$$|A - B| = \sqrt{n} - 1 \underset{n \to \infty}{\longrightarrow} \infty$$

$$|e_j - B| = \sqrt{n} - 1 \underset{n \to \infty}{\longrightarrow} \infty$$

Donc lorsque n est grand, si l'on se place sur la (n-1)-sphère euclidienne, B_{∞}^n semble être formé de 2^n "piques" qui sont de plus en plus grands avec n. Mais le théorème de Dvoretzky nous affirme qu'il existe une section C de B_{∞}^n de dimension supérieure à $c \log n$ où c ne dépendant

pas de n, tel que C soit arbitrairement proche de la boule euclidienne, c'est-à-dire une section sur laquelle on ne voit pas ces "piques". En terme plus mathématique, pour tout $\varepsilon > 0$ il existe $V \subset \mathbb{R}^n$ de dimension plus grande que $c(\varepsilon) \log n$ tel que pour un certain r > 0:

$$r.(V \cap B_2^n) \subset V \cap B_\infty^n \subset (1 + \varepsilon)r.(V \cap B_2^n)$$

Nous allons maintenant donner une reformulation du théorème de Dvoretzky en terme de norme, en utilisant la relation entre un compact convexe symétrique K et la norme $||y||_K = \inf\{\lambda \colon \frac{y}{\lambda} \in K\}$.

Défintion. Soit $(X,||.||_X),(Y,||.||_Y)$ deux espaces normés et C>0, on dit que X s'injecte Ccontinûment dans Y, si il existe $T\in \mathcal{L}(X,Y)$ tel que pour tout $x\in X$

$$||x||_X \leq ||Tx||_Y \leq C||x||_X$$

Théorème 3. Pour tout $\varepsilon > 0$ il existe c > 0 tel que pour tout $n \in \mathbb{N}$ et pour toute normes ||.|| sur \mathbb{R}^n , ℓ_2^k s'injecte $(1+\varepsilon)$ -continûment dans $(\mathbb{R}^n,||.||)$ pour un $k \ge c.\log(n)$.

Montrons que le théorème 2 et le théorème 3 sont équivalents.

$$(2) \Rightarrow (3)$$

Posons $K = \text{Adh}(B_{||.||}(0,1)) = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$ et appliquons le théorème 2, celui-ci nous procure un sous-espace V de \mathbb{R}^n , avec $\dim V := k \ge c.\log(n)$ et $V \cap K$ est ε -ecuclidien. Donnons-nous une base orthonormée $\{v_j\}_{1 \le j \le k}$ de V et posons

$$T: \begin{array}{ccc} (\mathbb{R}^k, |.|_k) & \mapsto & (V, ||.||) \\ \sum_{i=1}^k x_i e_i & \to & \sum_{i=1}^k x_i v_i \end{array}$$

Soit $x \in \mathbb{R}^k$ tel que ||Tx|| = 1, comme $K \cap V$ est ε -euclidien on a que

$$r \le |Tx|_n \le (1+\varepsilon)r$$
, pour un $r > 0$

La borne supérieure est immédiate car $K \cap V \subset r(1+\varepsilon).(V \cap B_2^n)$, pour la borne inférieure il suffit de remarquer que $(V \cap K)$ est un fermer de V qui contient l'ouvert $r.(V \cap B_2^n)$ de V, comme Tx est dans la frontière de $K \cap V$ il n'est pas dans l'intérieur de $K \cap V$ et donc dans aucun ouvert contenu dans $V \cap K$. Remarquons que $|Tx|_n = |x|_k$, donc

$$r \le |x|_k \le (1+\varepsilon)r$$

Il suffit d'appliqué cela à $\frac{x}{||Tx||}$ pour $x\neq 0$

$$r||Tx|| \le |x|_k \le (1+\varepsilon)r||Tx||$$

$$\frac{1}{(1+\varepsilon)r}|x|_k \le ||Tx|| \le \frac{1}{r}|x|_k$$

$$r|x|_k \le ||\tilde{T}x|| \le (1+\varepsilon)r|x|_k$$

avec $\tilde{T} = r(1+\varepsilon)T$, remarquons que la quantité importante est $||T||.||T^{-1}|| = ||\tilde{T}||.||\tilde{T}^{-1}|| \le 1 + \varepsilon$. (3) \Rightarrow (2)

Soit $\varepsilon>0$, par le théorème 3 il existe c>0 tel que pour tous $n\in\mathbb{N}$ il existe un $k>c.\log(n)$ et ℓ_2^k s'injecte $(1+\varepsilon)$ -continûment dans $(R^n,||.||)$ pour n'importe quelle norme ||.|| sur \mathbb{R}^n . Considérons un compact convexe symétrique $K\subset\mathbb{R}^n$ et $||y||=\inf\left\{\lambda>0\;;\;\frac{\gamma}{\lambda}\in K\right\}$, alors $\exists T:\ell_2^k\to(\mathbb{R}^n,||.||)$ linéaire tel que :

$$\forall x \in \mathbb{R}^k$$
, $|x| \le ||Tx|| \le (1+\varepsilon)|x|$

ceci implique immédiatement que T est injective, notons $V = \operatorname{Im} T$, alors la co-restriction à V de T est bijective. Soit $y \in \partial(K \cap V)$, c'est-à-dire ||y|| = 1, on sait qu'il existe un unique $x \in \mathbb{R}^k$

tel que Tx = y, on en déduit donc

$$|x| \le 1 \le (1+\varepsilon)|x| \iff \frac{1}{1+\varepsilon} \le |x| \le 1$$

la convexité et la symétrie centrale de $K \cap V$ implique :

$$\frac{1}{1+\varepsilon}T(B_2^k) \subset K \cap V \subset T(B_2^k)$$

Pour conclure nous nous référençons au **lemme 1.5** qui seras démontrer par la suite qui dit que toutes ellipsoïdes de dimension k admet une section de dimension $\lfloor k/2 \rfloor$ qui soit un multiple d'une boule euclidienne.

1 PRÉLIMINAIRE

1.1. MESURES DE HAAR

La mesure de Haar est une notion introduite par Alfred Haar en 1933, il démontre que dans tous groupe localement compact a base dénombrable il existe une mesure borélienne invariante par translation à gauche, en 1935 John V.Neumann montre que de plus cette mesure est unique à un coefficient multiplicatif près, nous ademetrons le théorème suivant (voir [9]).

Définition & Théorème (Mesures de Haar). Soit (X, d) un espace métrique, G un groupe topologique localement compact qui agit sur X et tel que :

$$\forall x, y \in X \ \forall g \in G, \ d(gx, gy) = d(x, y) \tag{*}$$

alors il existe une unique mesure à un coefficient multiplicatif près, régulière définie sur les boréliens de X qui est invariante sous l'action de G, cette mesure est appelée mesure de Haar de X (où G est sous-entendu).

Les deux exemples suivant d'espace métrique vérifie (\star) pour G = O(n),

- (i) $X = S^{n-1}$ muni de la distance euclidienne
- (ii) X = O(n) avec la norme $||T|| = \sup_{|x|=1} |Tx|$

Notation. Par le théorème précédent on peut définir sans ambiguïté μ et ν les mesures de Haar normalisés respectivement sur S^{n-1} et O(n).

Montrons quelques propriétés qui seront utiles par la suite.

Lemme 1.1. Soit $f \in C(S^{n-1})$ et $Y = (g_1, ..., g_n)$ où les $\{g_i\}_{1 \le i \le n}$ sont i.i.d suivant une loi normale $\mathcal{N}(0,1)$, alors

$$\int_{S^{n-1}} f \, d\mu = \mathbb{E}\left[f\left(\frac{Y}{|Y|}\right)\right]$$

Démonstration. Par unicité de la mesure de Haar , il nous suffit de montrer que pour tous $M \in O(n)$ et $f \in C(S^{n-1})$:

$$\mathbb{E}\left[f\left(\frac{MY}{|MY|}\right)\right] = \mathbb{E}\left[f\left(\frac{Y}{|Y|}\right)\right]$$

$$\mathbb{E}\left[f\left(\frac{MY}{|MY|}\right)\right] = \int_{\mathbb{R}^n\setminus\{0\}} f\left(\frac{My}{|y|}\right) \exp\left\{-\frac{1}{2}|y|^2\right\} dy_1...dy_n = \int_{\mathbb{R}^n\setminus\{0\}} \frac{1}{|\det M|} f\left(\frac{y}{|y|}\right) \exp\left\{-\frac{1}{2}|M^{-1}y|^2\right\} dy_1...dy_n$$
comme $|\det M| = 1$ et $|M^{-1}y| = |y|$, on a :

$$\mathbb{E}\bigg[f\Big(\frac{MY}{|MY|}\Big)\bigg] = \mathbb{E}\bigg[f\Big(\frac{Y}{|Y|}\Big)\bigg]$$

Lemme 1.2. Soit $A \subseteq S^{n-1}$ un borélien alors pour tous $x \in S^{n-1}$

$$v(T \in O(n); Tx \in A) = \mu(A)$$

 $D\acute{e}monstration.$ Soit $M\in O(n)$ et $x\in S^{n-1}$ alors la mesure définie par

$$\omega_x(A) = v \Big(T \in O(n) ; Tx \in A \Big)$$

 ω_x vérifie les propriétés suivantes :

$$\omega_x(MA) = \nu \Big(T \in O(n) \; ; \; M^T T x \in A \Big) = \nu \Big(T \in O(n) \; ; \; T x \in A \Big) = \omega_x(A)$$

$$\omega_x(\emptyset) = 0$$

$$\omega_{x}\left(\bigsqcup_{i\in\mathbb{N}}A_{i}\right) = \nu\left(T\in O(n)\;;\; Tx\in\bigsqcup_{i\in\mathbb{N}}A_{i}\right) = \nu\left(\bigsqcup_{i\in\mathbb{N}}\left\{T\in O(n)\;;\; Tx\in A_{i}\right\}\right)$$
$$= \sum_{i\in\mathbb{N}}\nu\left(T\in O(n)\;;\; Tx\in A_{i}\right) = \sum_{i\in\mathbb{N}}\omega_{x}(A_{i})$$

L'unicité de la mesure de Haar nous permet de conclure que $\omega_x = \mu$, en particulier ω_x ne dépend pas de x.

1.2. CONCENTRATION DE LA MESURE

Le phénomène de concentration de la mesure a été mis en avant par V.Milman étandant les travaux de P.Lévy et son inégalité isopérimétrique. On peut formuler la question que cherche à résoudre le théorème comme cela : étant donné (X,d) un espace métrique muni d'une mesure de probabilité P, on cherche à regarder où les fonctions 1-Lipschitziennes sont essentiellement constantes. Considérons f une fonctions 1-Lipschitzienne de X dans $\mathbb R$ et notons m_f sa médiane, c'est a dire le réel tel que

$$P(f \ge m_f) \ge \frac{1}{2}$$
 & $P(f \le m_f) \ge \frac{1}{2}$

L'assertion f est essentiellement constante se traduit par le faite que l'on puisse donner une borne supérieur à $P(|f-m_f| \ge \varepsilon)$, pour $\varepsilon \ge 0$.

Posons $A = \{f \leq m_f\}$, il est assez naturelle de s'intéresser à l'ensemble suivant

$$A_{\varepsilon} = \{ x \in X ; d(x, A) \le \varepsilon \}$$

On appelle A_{ε} le ε -élargissement de A, il suit cela :

$$x \in A_{\varepsilon} \Rightarrow f(x) \le \varepsilon + m_f \iff A_{\varepsilon} \subset \left\{ x \in S^{n-1} \; ; \; f(x) \le \varepsilon + m_f \right\}$$

$$P(f > \varepsilon + m_f) = 1 - P(f \le \varepsilon + m_f)$$

 $\le 1 - P(A_{\varepsilon})$

Cette observation a permis a Milman et Gromov de se ramener a une étude ensembliste du problème. Ils introduisent α une fonction dite de concentration, définit comme le plus petit réel tel que :

$$\forall A \subset X, P(A) \ge \frac{1}{2} \implies 1 - P(A_{\varepsilon}) \le \alpha(\varepsilon, P)$$

Appliquant ceci au ensemble $\left\{f\geq m_f\right\}$ et $\left\{f\leq m_f\right\},$ on trouve facilement :

$$P(|f - m_f| > \varepsilon) \le 2\alpha(\varepsilon, P)$$

Considérons maintenant que f est L-Lipschitzienne, alors la médiane de $\frac{f}{L}$ est $\frac{m_f}{L}$, donc par homogénéité

$$P(|f - m_f| > \varepsilon) \le 2\alpha(\frac{\varepsilon}{L}, P)$$

L'utilité de cette formulation est que dans certains cas α décroît très vite vers 0 lorsque ε devient grand. Pour certains espace X il est possible de remplacer la médiane par l'espérance qui est en générale plus simple à calculer, dans le cas ou X est la (n-1)-sphère euclidienne on

dispose du théorème suivant qui seras admis (voir [6] ou [9]).

Théorème 1.3 (Concentration de la mesure sur la sphère). Soit $f: S^{n-1} \to \mathbb{R}$ une fonction Lipschitzienne de constante L > 0, alors

$$\mu\left\{x\in S^{n-1}; |f(x)-\mathbb{E}[f]|>\varepsilon\right\} \le 2e^{-\frac{\varepsilon^2 n}{2L^2}}$$

Où
$$\mathbb{E}[f] =: \int_{S^{n-1}} f d\mu$$

1.3. ELLIPSOÏDES

Dans cette partie nous montrons plusieurs propriétés sur les ellipsoïdes, commençons par les définir :

Défintion. On appelle ellipsoïde de \mathbb{R}^n l'image de la boule unité euclidienne par un élément de GL(n).

Donnons une définition alternative d'un l'ellipsoïde.

Proposition 1.4. Pour toute ellipsoïde \mathcal{E} il existe $\alpha_1,...,\alpha_n>0$ et $\nu_1,...,\nu_n$ une base orthonormé tel que :

$$\mathcal{E} = \left\{ x \in \mathbb{R}^n \ ; \ \sum_{i=1}^n \frac{< x, v_i >^2}{\alpha_i^2} < 1 \right\}$$

Démonstration. Donnons nous $A \in GL(n)$ tel que $AB_2^n = \mathcal{E}$

$$|Ax|^2 = x^T A^T A x$$

 A^TA est symétrique, soit λ une de ses valeur propre et ν un vecteur propre associé, alors

$$0<|Av|^2=v^T\lambda v=\lambda |v|^2$$

Donc les valeurs propre A^TA sont strictement positive, Comme elle est symétrique, elle est donc diagonalisable dans une base orthonormé, donnons nous $(\lambda_i)_{i \leq n}$ et $(v_i)_{i \leq n}$ une base orthonormé tel que $A^TAv_i = \lambda_i^2 v_i$ pour tous $1 \leq i \leq n$ et définissons les quantités suivante :

- P la matrice définie par $Pv_j=\lambda_j v_j$
- $u_j = \lambda_i^{-1} A v_j$

Montrons que les u_i forment une base orthonormée :

$$\langle u_i, u_j \rangle = \lambda_j^{-1} v_j^T A^T \lambda_i^{-1} A v_i$$

$$= \lambda_j^{-1} \lambda_i^{-1} v_j^T (A^T A v_i)$$

$$= \lambda_j^{-1} \lambda_i^{-1} v_j^T \lambda_i^2 v_i$$

$$= \frac{\lambda_i}{\lambda_j} \langle v_j, v_i \rangle = \begin{cases} 0 \text{ si } i \neq j \\ 1 \text{ sinon} \end{cases}$$

Soit $x = \sum_{i=1}^{n} x_i v_i \in S^{n-1}$

$$y =: Ax = x_1 A \nu_1 + \dots + x_n A \nu_n$$
$$= x_1 \lambda_1 u_1 + \dots + x_n \lambda_n u_n$$

Les composante de y dans la base $\{u_j\}_{j \le n}$ sont $\langle y, u_j \rangle = x_j \lambda_j$, donc :

$$\frac{\langle y, u_1 \rangle^2}{\lambda_1^2} + \dots + \frac{\langle y, u_n \rangle^2}{\lambda_n^2} = x_1^2 + \dots + x_n^2 = 1$$

Et finalement $\partial\mathcal{E}=\big\{y\in\mathbb{R}^n\;;\;\frac{< y,u_1>^2}{\lambda_1^2}+\ldots+\frac{< y,u_n>^2}{\lambda_n^2}=1\big\}.$

Démontrons maintenant le lemme que nous avons utiliser dans l'introduction :

Lemme 1.5. Soit $\mathscr E$ un ellipsoïde de $\mathbb R^n$, alors $\exists \lambda > 0$ et $V \subset \mathbb R^n$ de dimension $\lceil \frac{n}{2} \rceil$ tel que :

$$\mathcal{E}\cap V=\lambda B_2^n\cap V$$

Démonstration. Quitte a effectuer une rotation on peut supposer que $\mathcal{E} = \{x \in \mathbb{R}^n : \sum_{i=1}^n a_i x_i^2 < 1\}$ pour $0 \le a_1 \le ... \le a_n$. Posons $\lambda = \text{Mediane}(a_1, ..., a_n)$ et

$$F = \left\{ x \in \mathbb{R}^n \; ; \; \forall i \le \left\lfloor \frac{n}{2} \right\rfloor, \; \sqrt{\lambda - a_i} \, x_i = \sqrt{a_{n+1-i} - \lambda} \, x_{n+1-i} \right\}$$

Alors pour tous $x \in F$ nous avons $\forall i \leq \lfloor \frac{n}{2} \rfloor$:

$$a_i x_i^2 + a_{n+1-i} x_{n+1-i}^2 = \lambda (x_i^2 + x_{n+1-i}^2)$$

d'où

$$\sum_{i=1}^{n} a_i x_i^2 = \lambda \sum_{i=1}^{n} x_i^2$$

Nous admettons le résultat de F.John:

Définition & Théorème (Ellipsoïde de John). Tous compact convexe symétrique d'intérieur non vide contient un unique ellipsoïde de volume maximale, elle est appelée ellipsoïde de John.

Remarque 1.6. Soit $K \subset \mathbb{R}^n$ un compact convexe symétrique et $D = u(B_2^n)$ (avec $u \in GL(n)$) son ellipsoïde de John, notons alors $C =: u^{-1}(K)$ dont l'ellipsoïde de John est B_2^n , supposons que

$$r(B_2^n \cap W) \subset C \cap W \subset r(1+\varepsilon)(B_2^n \cap W)$$

alors

$$u^{-1}(r(D \cap uW)) \subset u^{-1}(K \cap uW) \subset u^{-1}(r(1+\varepsilon)(D \cap uW))$$
$$r(D \cap uW) \subset K \cap uW \subset r(1+\varepsilon)(D \cap uW)$$

Le **lemme 1.5** nous permet de conclure que quitte à diviser la dimension du sous-espace W par deux, on peut se restreindre à montrer le théorème de Dvoretzky pour des compacts dont la boule euclidienne est l'ellipsoïde de John sans perte de généralité.

1.4. LOI GAUSSIENNE

Pour la preuve du théorème de Dvoretzky nous aurons besoins de deux résultat sur les variables aléatoires gaussiennes, ce premier combiner avec **lemme 1.2** nous seras utile pour calculer des intégrales par rapport à la mesure de Haar sur la (n-1)-sphère.

Lemme 1.7. Soit $g = (g_1, ..., g_n)$ des variables aléatoire i.i.d suivant une loi gaussienne, alors $\frac{g}{|g|}$ et |g| sont indépendants.

Démonstration. Posons $Y = \frac{g}{|g|}$ et R = |g| alors

$$\mathbb{E}[f(Y)g(R)] = \int_{\mathbb{R}^n} f(\frac{x_1}{|x|}, ..., \frac{x_n}{|x|}) g(|x|) \exp(-\frac{|x|^2}{2}) dx_1 ... dx_n$$

en passant en coordonnées sphériques

$$x_{1} = r \sin \theta_{1} ... \sin \theta_{n-1}$$

$$x_{2} = r \sin \theta_{1} ... \sin \theta_{n-2} \cos \theta_{n-1}$$

$$x_{3} = r \sin \theta_{1} ... \sin \theta_{n-3} \cos \theta_{n-2}$$

$$\vdots$$

$$x_{n} = r \cos \theta_{1}$$

On a le déterminant suivant :

$$dx_1...dx_n = r^{n-1} \prod_{1 \le i \le n-1} (|\sin \theta_i|)^{n-1-i} dr d\theta_1...d\theta_{n-1}$$

d'où:

$$\mathbb{E}\big[f(Y)g(R)\big] = \int_{\mathbb{R}^n} f \circ \varphi(\theta)g(r) \exp\Big(-\frac{r^2}{2}\Big) r^{n-1} \prod_{1 \le i \le n-1} (|\sin \theta_i|)^{n-1-i} dr d\theta_1 ... d\theta_{n-1}$$

$$\begin{split} \mathbb{E}\big[f(Y)g(R)\big] &= \int_{\mathbb{R}^+} g(r) \exp\Big(-\frac{r^2}{2}\Big) r^{n-1} dr \int_{]0,\pi[^{n-2}\times]0,2\pi[} f \circ \varphi(\theta) \prod_{1 \leq i \leq n-1} (|\sin\theta_i|)^{n-1-i} d\theta_1...d\theta_{n-1} \\ &\text{où } \varphi(\theta) = (\sin\theta_1...\sin\theta_{n-1},\sin\theta_1...\sin\theta_{n-2}\cos\theta_{n-1},\sin\theta_1...\sin\theta_{n-3}\cos\theta_{n-2},...,\cos\theta_1). \end{split}$$

Nous aurons besoins de trouver un minorant pour $\int_{S^{n-1}} ||x|| d\mu(x)$ pour une norme ||.|| sur \mathbb{R}^n et pour cela nous utiliserons le lemme suivant :

Lemme 1.8. il existe c>0 tel que $\forall N>1$ et $\{g_i\}_{1\leq i\leq N}$ des variables aléatoire i.i.d suivant une loi $\mathcal{N}(0,1)$ on ait :

$$\mathbb{E}\big[\max_{1 \le i \le \tilde{N}} |g_i|\big] \ge c\sqrt{\log N}$$

où $\tilde{N} = \left\lceil \frac{N}{2} \right\rceil$ est la partie entière supérieure de $\frac{N}{2}$.

 $D\acute{e}monstration. \ \ \text{Commençons par montrer que pour } n>1, \ \mathbb{P}\left(|g_1|>\sqrt{\log n}\right)\geq \frac{1}{n}, \ \text{on a}:$

$$\mathbb{P}(|g_1| > \sqrt{\log n}) = 2 \int_{\sqrt{\log n}}^{+\infty} e^{-\frac{x^2}{2}} dx \ge \int_{\sqrt{\log n}}^{+\infty} e^{-\frac{x^2}{2}} (1 + \frac{1}{x^2}) dx \qquad \text{pour } x > \sqrt{\log(2)}$$

$$\int_{\sqrt{\log n}}^{+\infty} e^{-\frac{x^2}{2}} (1 + \frac{1}{x^2}) dx = \left[-\frac{e^{-\frac{t^2}{2}}}{t} \right]_{\sqrt{\log n}}^{+\infty} = \frac{1}{\sqrt{n \log n}} > \frac{1}{n}$$

Donc

$$\mathbb{P}\Big(\max_{1 \leq i \leq \tilde{N}} |g_i| \leq \sqrt{\log N}\Big) = \mathbb{P}\Big(|g_1| \leq \sqrt{\log N}\Big)^{\tilde{N}} = \left(1 - \mathbb{P}\Big(|g_1| > \sqrt{\log N}\Big)\right)^{\tilde{N}}$$

$$\mathbb{P}\Big(\max_{1 \leq i \leq \tilde{N}} |g_i| \leq \sqrt{\log N}\Big) \leq \left(1 - \frac{1}{N}\right)^{\tilde{N}} \leq e^{-\frac{\tilde{N}}{N}} \leq e^{-\frac{1}{2}}$$

Ce qui équivaut a

$$\mathbb{P}\left(\max_{1 \le i \le \tilde{N}} |g_i| > \sqrt{\log N}\right) \ge 1 - e^{-\frac{1}{2}}$$

Par l'inégalité de Markov on a finalement :

$$\mathbb{E}\big[\max_{1\leq i\leq \tilde{N}}|g_i|\big]\geq \mathbb{P}\Big(\max_{1\leq i\leq \tilde{N}}|g_i|>\sqrt{\log N}\Big)\sqrt{\log N}\geq (1-e^{-\frac{1}{2}})\sqrt{\log N}$$

avec
$$c =: 1 - e^{-\frac{1}{2}}$$

2 DÉMONSTRATION DU THÉORÈME DE DVORETZKY

2.1. LEMMES D'APPROXIMATIONS

Avant de débuter la démonstration du théorème de Dvoretzky, nous allons avoir besoins de plusieurs lemmes, et de la définition suivante :

Défintion. Soit (X,d) un espace métrique et $\theta > 0$, on dit que $A \subset X$ est un θ -net si

- (i) A est de cardinal fini.
- (ii) $\forall x \in X$, $\exists y \in A$ tel que $d(x, y) \leq \theta$

Montrons maintenant que sur une section de la (n-1)-sphère on peut trouver un θ -net de cardinal borné par une quantité qui varie exponentiellement avec la dimension de la section.

Lemme 2.1. Pour tous $0 < \theta < 1$, $V \subset \mathbb{R}^n$ de dimension k > 0, alors il existe un θ -net sur $V \cap S^{n-1}$ de cardinal inférieur à $\left(\frac{3}{\theta}\right)^k$.

Démonstration. Notons $B_V(x,r) = \{y \in V : |x-y| < r\}$ la boule de centre $x \in V$ et de rayon $r \ge 0$, soit $N = \{x_i\}_{i=1,...,m}$ un sous-ensemble de $V \cap S^{n-1}$ maximal pour la propriété : $x,y \in N$, $|x-y| \ge \theta$, c'est-à-dire pour tous $x \in V \cap S^{n-1} \setminus N$ il existe $i \le m$ tel que $|x-x_i| < \theta$, donc N est un θ-net et les $\{B_V(x_i,\theta/2)\}_{i=1,...,m}$ sont donc disjoints deux à deux et toutes contenues dans $B_V(0,1+\frac{\theta}{2})$ d'ou :

$$\begin{split} m\mathrm{Vol}(B_V(x_1,\frac{\theta}{2})) &= \sum_{i=1}^m \mathrm{Vol}(B_V(x_i,\frac{\theta}{2})) = \mathrm{Vol}(\cup_{1 \leq i \leq m} B_V(x_i,\frac{\theta}{2})) \leq \mathrm{Vol}(B_V(0,1+\frac{\theta}{2})) \\ m &\leq \frac{\mathrm{Vol}(B_V(0,1+\frac{\theta}{2}))}{\mathrm{Vol}(B_V(x_1,\frac{\theta}{2}))} \end{split}$$

Par homogénéité de la mesure de Lebesgue :

$$m \le \left(\frac{1 + \frac{\theta}{2}}{\frac{\theta}{2}}\right)^k = \left(1 + \frac{2}{\theta}\right)^k < \left(\frac{3}{\theta}\right)^k$$

Le petit lemme qui suit nous permet d'approcher les points de la (n-1)-sphère par des points situé sur un θ -net.

Lemme 2.2. Soient $x \in S^{n-1}$, A un θ -net pour un $1 > \theta > 0$, alors il existe $(y_i)_{i \in \mathbb{N}} \subset A$ et $(\beta_i)_{i \in \mathbb{N}} \subset \mathbb{R}^+$ tel que

$$x = \sum_{i=0}^{+\infty} y_i \beta_i$$
 et $\forall i \in \mathbb{N}, \ \beta_i \le \theta^i$

 $D\acute{e}monstration$. Comme A est un θ -net alors il existe $y_0 \in A$ tel que $|x-y_0| < \theta$, et donc

$$x = y_0 + \lambda_1 x'$$

avec $\lambda_1 = |x - y_0| \le \theta$ et $x' = \frac{x - y_0}{\lambda_1} \in S^{n-1}$, on peut donc itéré le même procédé sur x' et réitéré indéfiniment :

$$x = y_0 + \lambda_1(y_1 + \lambda_2 x'') = y_0 + \lambda_1 y_1 + \lambda_1 \lambda_2 x'' \qquad \text{avec} \qquad \lambda_2 \leq \theta, \ y_1 \in A \ \text{et} \ x'' \in S^{n-1}$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$x = y_0 + \sum_{i=1}^N y_i \Big(\prod_{1 \leq k \leq i} \lambda_k \Big) + \tilde{x} \prod_{1 \leq k \leq N+1} \lambda_k \qquad \text{avec} \qquad \forall i \leq N+1 \ \lambda_i \leq \theta, y_i \in A \ \text{et} \ \tilde{x} \in S^{n-1}$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

Si l'on pose $S_N = y_0 + \sum_{i=1}^N y_i \Big(\prod_{1 \leq k \leq i} \lambda_k \Big),$ alors :

$$|x - S_N| \le |\lambda_1 ... \lambda_N| |\tilde{x}| \le \theta^N \to 0$$
 avec $N \to \infty$

il ne reste plus qu'as poser $\beta_0=1$ et pour $i>0,\;\beta_i=\prod_{1\leq k\leq i}\lambda_k\leq \theta^i$ et l'on a :

$$x = \sum_{i=0}^{+\infty} \beta_i y_i$$

Le **lemme 2.3** va nous permettre de passer d'un ensemble de grande μ -mesure a un grand sous-espace au sens des dimensions.

Lemme 2.3. $\forall \varepsilon > 0$, il existe $1 > \theta > 0$ tel que pour tous $n \in \mathbb{N}$, si l'on a A un θ -net sur $V \cap S^{n-1}$ pour $V \subset \mathbb{R}^n$ de dimension k, ||.|| une norme sur \mathbb{R}^n et $T \in GL(n)$, tel que :

$$\forall x \in A$$
, $(1-\theta) \le ||Tx|| \le (1+\theta)$

alors,

$$\forall x \in V, \quad \frac{1}{\sqrt{1+\varepsilon}}|x| \le \left|\left|Tx\right|\right| \le \sqrt{1+\varepsilon}|x|$$

de plus si $\varepsilon \leq \frac{1}{9}$, on peu prendre $\theta = \frac{\varepsilon}{9}$

Démonstration. Soient $1 > \theta > 0$, A un θ -net sur $S^{n-1} \cap V$ et $x \in S^{n-1} \cap V$ par le **lemme 2.2**, il existe $(y_i)_{i \in \mathbb{N}} \subset A$ et $(\beta_i)_{i \in \mathbb{N}} \subset \mathbb{R}^+$ tel que

$$x = \sum_{i=0}^{+\infty} y_i \beta_i$$
 et $\forall i \in \mathbb{N}, \ \beta_i \le \theta^i$

Notons $T = (a_1, ..., a_n)$

$$||Tx|| = \left| \left| T \sum_{i=0}^{+\infty} y_i \beta_i \right| \right|$$

$$= \left| \left| \sum_{i=0}^{+\infty} \beta_i \sum_{p=1}^n y_{i,p} a_p \right| \right|$$

$$\leq \sum_{i=0}^{+\infty} \theta^i || \sum_{p=1}^n y_{i,p} a_p ||$$

$$\leq \sum_{i=0}^{+\infty} \theta^i || Ty_i ||$$

$$\leq \sum_{i=0}^{+\infty} \theta^i (1+\theta) = \frac{1+\theta}{1-\theta}$$

de même:

$$||Tx|| \ge ||Ty_0|| - ||Tx - Ty_0||$$

$$= (1 - \theta) - ||\sum_{p=1}^{n} a_p \sum_{i=1}^{+\infty} \beta_i y_{i,p}||$$

$$\ge (1 - \theta) - \sum_{i=1}^{+\infty} \theta^i ||Ty_i||$$

$$\ge ((1 - \theta) - \theta \frac{1 + \theta}{1 - \theta}) = \frac{1 - 3\theta}{1 - \theta}$$

Il suffit donc de prendre θ tel que

$$\sqrt{1+\varepsilon} \ge \frac{1+\theta}{1-\theta}$$

$$\frac{1}{\sqrt{1+\varepsilon}} \le \frac{1-3\theta}{1-\theta}$$

et pour tous $x \in V \setminus \{0\}$ on a

$$\frac{1}{\sqrt{1+\varepsilon}} \le \left| \left| T \frac{x}{|x|} \right| \right| \le \sqrt{1+\varepsilon}$$
$$\frac{1}{\sqrt{1+\varepsilon}} |x| \le ||Tx|| \le |x|\sqrt{1+\varepsilon}$$

Ce qui fini la première partie de la preuve, dans la suite on suppose $\varepsilon \leq \frac{1}{9}$. On cherche $\theta =: \theta(\varepsilon) \in$]0,1[, tel que $\sqrt{1+\varepsilon} \geq \max\left(\frac{1-\theta}{1-3\theta},\frac{1+\theta}{1-\theta}\right)$, sachant que ε va être petit supposons $\theta \leq \frac{1}{3}$ alors

$$\frac{1-\theta}{1-3\theta} - \frac{1+\theta}{1-\theta} = \frac{4\theta^2}{(1-3\theta)(1-\theta)} > 0$$

Donc $\sqrt{1+\varepsilon} \ge \frac{1-\theta}{1-3\theta}$

$$1 + \varepsilon \ge \left(\frac{1 - \theta}{1 - 3\theta}\right)^2$$
$$(9\varepsilon + 8)\theta^2 - 2(3\varepsilon + 2)\theta + \varepsilon \ge 0$$

les deux racines de ce polynôme sont $0 < \frac{3\varepsilon + 2 - 2\sqrt{1+\varepsilon}}{8+9\varepsilon} < \frac{3\varepsilon + 2 + 2\sqrt{1+\varepsilon}}{8+9\varepsilon}$, on cherche donc un θ dans $]0, \frac{3\varepsilon + 2 - 2\sqrt{1+\varepsilon}}{8+9\varepsilon}]$. Pour finir

$$\frac{3\varepsilon + 2 - 2\sqrt{1 + \varepsilon}}{8 + 9\varepsilon} \ge \frac{3\varepsilon + 2 - 2 - 2\varepsilon}{8 + 9\varepsilon} = \frac{\varepsilon}{8 + 9\varepsilon}$$
$$\ge \frac{\varepsilon}{9}$$

donc pour $\varepsilon \in]0,9^{-1}[$ on peu prendre $\theta(\varepsilon) = \frac{\varepsilon}{9}.$

2.2. DÉMONSTRATION DU THÉORÈME DE DVORETZKY

La demonstration du théorème de Dvoretzky repose sur le **théorème 2.4** et la **proposition 2.7** qui sont démontrer dans cette partie. Dans un premier temps nous donnons un résultat de V.Milman qui est en grande partie la preuve du théorème de Dvoretzky.

Théorème 2.4. Pour tous $\varepsilon > 0$ il existe $c(\varepsilon) > 0$ tel que pour tout $n \in \mathbb{N}^*$ et pour toute norme $\|\cdot\|$ sur \mathbb{R}^n , ℓ_2^k s'injecte $(1+\varepsilon)$ -continûment dans $(\mathbb{R}^n, ||\cdot||)$, pour un $k \ge c(\varepsilon) \cdot \left(\frac{M}{b}\right)^2 n$. Où $M = \int_{S^{n-1}} ||x|| d\mu(x)$ et b > 0 le plus petit réel tel que $||\cdot|| \le b|$.

 $D\acute{e}monstration$. Soit $\varepsilon > 0$ et $1 > \theta(\varepsilon) =: \theta > 0$ donné par le **lemme 2.3** nous allons montrer que $c(\theta(\varepsilon)) =: \frac{\theta^2}{8\log(\frac{3}{\theta})}$ convient, pour alléger les notations on note

$$-\eta =: \frac{\theta M}{h}$$

-
$$\kappa(\theta) =: c(\theta) \left(\frac{M}{h}\right)^2 n$$

Évacuons un cas trivial, si $\kappa(\theta) < 1$ alors k = 1 convient car toute 1-section est euclidienne, pour la suite on suppose donc $\kappa(\theta) \ge 1 \iff \frac{\eta^2 n}{8} \ge \log(\frac{3}{\theta})$.

Fixons un k entier tel que $\kappa(\theta) \le k < 2\kappa(\theta)$ possible car $\kappa(\theta) \ge 1$ et on se donne A un θ -net sur $\mathrm{Vect}(e_1,...,e_k) \cap S^{n-1}$, avec $|A| \le (\frac{3}{\theta})^k$. On alors :

$$\begin{split} v\Big(\bigcap_{x\in A}\left\{T\in O(n)\,;\,\left|||Tx||-M\right|\leq b\eta\right\}\Big) &= 1-v\Big(\bigcup_{x\in A}\left\{T\in O(n)\,;\,\left|||Tx||-M\right|>b\eta\right\}\Big)\\ &\geq 1-|A|v\Big(T\in O(n)\,;\,\left|||Ty||-M\right|>b\eta\Big) \qquad \text{pour un }y\in A\\ &\geq 1-|A|\mu\Big(y\in S^{n-1}\,;\,\left|||y||-M\right|>b\eta\Big) \qquad \text{par le lemme 1.2} \end{split}$$

En appliquant la concentration de la mesure

$$\begin{split} v\Big(\bigcap_{x\in A} \left\{T\in O(n)\,;\, \left|||Tx||-M\right| \leq b\eta\right\}\Big) &\geq 1-|A|2e^{-\frac{\eta^2n}{2}} \\ &> 1-2\Big(\frac{3}{\theta}\Big)^k e^{-\frac{\eta^2n}{2}} \\ &> 1-2\exp\Big(2\kappa(\theta)\log(\frac{3}{\theta})-\frac{\eta^2n}{2}\Big) \\ &> 1-2e^{-\frac{\eta^2n}{4}} \\ &> 1-\frac{2}{3^2}\theta^2 > 0 \qquad \qquad \operatorname{car} \ \frac{\eta^2n}{4} \geq 2\log(\frac{3}{\theta}) \end{split}$$

Donc il existe $T \in O(n)$ tel que pour tous $x \in A$ on ait $\left| ||Tx|| - M \right| \leq b\eta$, c'est à dire

$$M(1-\theta) = M - b\eta \le ||Tx|| \le M + b\eta = M(1+\theta)$$

Par le **lemme 2.3** pour tous $x \in \text{Vect}(e_1, ..., e_k)$

$$\frac{1}{\sqrt{1+\varepsilon}}|x|M \le ||Tx|| \le \sqrt{1+\varepsilon}|x|M$$

et pour $\varepsilon < 9^{-1}$ on peut prendre $\theta(\varepsilon) = \frac{\varepsilon}{9}$ et donc $c(\varepsilon) = c_0 \frac{\varepsilon^2}{\log(\frac{c_1}{\varepsilon})}$ pour $c_0, c_1 > 0$.

Remarque 2.5. Pour tout $k \le c(\varepsilon) \left(\frac{M}{b}\right)^2 n$, ℓ_2^k s'injecte $(1+\varepsilon)$ -continûment dans $(\mathbb{R}^n, ||.||)$

Il ne nous reste plus qu'as donner une borne inférieur à $\frac{M}{b}$, pour cela nous allons utiliser la **remarque 1.6** et le lemme suivant :

Lemme 2.6 (Dvoretzky-Rogers). Soit ||.|| une norme sur \mathbb{R}^n tel que B_2^n est l'ellipsoïde de John de $B_{||.||}$, alors il existe une base orthonormée $\{x_i\}_{i=1,\ldots,n}$ tel que $\forall 1 \leq i \leq n$

$$e^{-1}\left(1 - \frac{i-1}{n}\right) \le ||x_i|| \le 1$$

Démonstration. S^{n-1} est compact et ||.|| continue, on peux donc prendre un $x_1 \in S^{n-1}$ qui maximise ||.|| c'est à dire $||x_1|| = 1$, supposons que l'on ai $x_1, ..., x_{k-1}$ avec $k \le n$ tel que pour tous $1 \le i \le k-1$, x_i maximise ||.|| sur $S^{n-1} \setminus \text{Vect}(x_1, ..., x_{k-1}) \ne \emptyset$ car les $\{x_i\}_{i=1,...,k-1}$ sont orthogonaux deux à deux. On peut donc répéter le procéder pour trouver x_k qui maximise $S^{n-1} \setminus \text{Vect}(x_1, ..., x_{k-1})$, par récurrence on peut donc avoir n vecteurs avec ses propriétés. Fixons $1 \le k \le n$, $a, b \in \mathbb{R}^*$ et définissons :

$$\mathcal{E} = \left\{ \sum_{i=1}^{n} a_i x_i \; ; \; \sum_{i=1}^{k-1} \left(\frac{a_i}{a} \right)^2 + \sum_{i=k}^{n} \left(\frac{b_i}{b} \right)^2 \le 1 \right\}$$

Supposons $\sum_{i=1}^n a_i x_i \in \mathcal{E}$, alors $\sum_{i=1}^{k-1} a_i x_i \in aB_2^n$ et donc $||\sum_{i=1}^{k-1} a_i x_i|| \le a$. Si $x \in \text{Vect}(x_k, ..., x_n) \cap B_2^n$ on a $||x|| \le ||x_k||$ par construction, et donc $\sum_{i=k}^n a_i x_i \in bB_2^n \Rightarrow ||\sum_{i=k}^n a_i x_i|| \le b||x_k||$, ce qui nous donne la majoration suivante

$$||\sum_{i=1}^{n} a_i x_i|| \le ||\sum_{i=1}^{k-1} a_i x_i|| + ||\sum_{i=k}^{n} a_i x_i|| \le a + b||x_k||$$

Posons $\phi \in GL(n)$ définit par $\phi(\sum_{i=1}^n a_i x_i) = \sum_{i=1}^{k-1} a a_i x_i + \sum_{i=k}^n b a_i x_i$ on a $\phi = \operatorname{diag}(\overbrace{a,...,a}^{(k-1)\times},\overbrace{b,...,b}^{(n-k+1)\times})$ et donc $\det \phi = a^{k-1}b^{n-k+1}$ d'où :

$$\int_{\mathscr{E}} dx_1 ... dx_n = \int_{B_2^n} \det \phi dx_1 ... dx_n = a^{k-1} b^{n-k-1} \int_{B_2^n} dx_1 ... dx_n$$

On prend $a+b||x_k||=1$ de sorte que $\mathcal{E}\subset K$, comme B_2^n est l'ellipsoïde de volume maximale inclue dans K, on a que

$$1 \ge \frac{\int_{\mathcal{E}} dx_1 ... dx_n}{\int_{B_2^n} dx_1 ... dx_n} = a^{k-1} b^{n-k+1}$$

Fixons donc pour $k \ge 2$, $b = \frac{1-a}{||x_k||}$ et $a = \frac{k-1}{n}$, en remplaçant dans l'inégalité on obtient :

$$1 \geq a^{k-1} \Big(\frac{1-a}{||x_k||}\Big)^{n-k+1} \iff ||x_k|| \geq a^{\frac{k-1}{n-k+1}} (1-a) = \Big(\frac{k-1}{n}\Big)^{\frac{k-1}{n-k+1}} \Big(1-\frac{k-1}{n}\Big)^{\frac{k-1}{n-k+1}} \Big(1-\frac{k-1}{n}\Big)^{\frac{k-1}{n}} \Big(1-\frac{k-1}{n}\Big)^{\frac{k-1}{n}}$$

et $\log a^{\frac{k-1}{n-k+1}} = \frac{k-1}{n-k+1} \log \left(\frac{k-1}{n} \right) > -1.$

Proposition 2.7. Soit ||.|| une norme sur \mathbb{R}^n tel que B_2^n est l'ellipsoïde de John de $B_{||.||}$, alors il existe c>0 tel que

 $M =: \int_{S^{n-1}} ||x|| d\mu(x) \ge c\sqrt{\frac{\log n}{n}}$

Démonstration. Par le lemme de Dvoretzky-Rogers il existe une base orthonormé $x_1,...,x_n$ tel que pour $1 \le i \le \tilde{n} =: \left\lceil \frac{n}{2} \right\rceil$ la partie entière supérieure de $\frac{n}{2}$, $||x_i|| \ge e^{-1} \left(1 - \frac{\tilde{n}-1}{n}\right) \ge e^{-1} \left(1 - \frac{\frac{\tilde{n}}{2}+1-1}{n}\right) = (2e)^{-1}$. Comme μ est invariante par composition par une transformation orthogonale on a que

$$M =: \int_{S^{n-1}} || \sum_{i=1}^{n} a_i x_i || d\mu(a) = \int_{S^{n-1}} || \sum_{i=1}^{n-1} a_i x_i - a_n x_n || d\mu(a)$$

et donc

$$\begin{split} M &= \frac{1}{2} \int_{S^{n-1}} || \sum_{i=1}^{n} a_i x_i || d\mu(a) + \frac{1}{2} \int_{S^{n-1}} || \sum_{i=1}^{n-1} a_i x_i - a_n x_n || d\mu(a) \\ &\geq \frac{1}{2} \int_{S^{n-1}} 2 \max \left\{ || \sum_{i=1}^{n-1} a_i x_i ||, || a_n x_n || \right\} d\mu(a) \geq \dots \geq \int_{S^{n-1}} \max_{1 \leq i \leq n} \left\{ |a_i| \, || x_i || \right\} d\mu(a) \\ &\geq \int_{S^{n-1}} \max_{1 \leq i \leq \bar{n}} \left\{ |a_i| \, || x_i || \right\} d\mu(a) \geq (2e)^{-1} \int_{S^{n-1}} \max_{1 \leq i \leq \bar{n}} |a_i| d\mu(a) \end{split}$$

Soit $(g_1,...,g_n)$, des variables aléatoire i.i.d de loi $\mathcal{N}(0,1)$ alors

$$\int_{S^{n-1}} \max_{1 \le i \le \tilde{n}} |a_i| d\mu(a) = \mathbb{E}\left[\left(\sum_{i=1}^n g_i^2\right)^{-\frac{1}{2}} \max_{1 \le i \le \tilde{n}} |g_i|\right]$$

Par le **lemme 1.7** $\left(\sum_{i=1}^n g_i^2\right)^{-\frac{1}{2}}(g_1,...,g_n)$ et $\left(\sum_{i=1}^n g_i^2\right)^{\frac{1}{2}}$ sont des variables aléatoires indépendantes, on a donc

$$\mathbb{E}\left[\left(\sum_{i=1}^{n}g_{i}^{2}\right)^{-\frac{1}{2}}\max_{1\leq i\leq \tilde{n}}|g_{i}|\right].\mathbb{E}\left[\left(\sum_{i=1}^{n}g_{i}^{2}\right)^{\frac{1}{2}}\right]=\mathbb{E}\left[\max_{1\leq i\leq \tilde{n}}|g_{i}|\right]$$

la fonction racine carré est concave, par l'inégalité de Jensen on a donc :

$$\mathbb{E}\big[\big(\sum_{i=1}^n g_i^2\big)^{\frac{1}{2}}\big] \leq \mathbb{E}\big[\sum_{i=1}^n g_i^2\big]^{\frac{1}{2}} = \sqrt{n}\mathbb{E}[g_1^2]^{\frac{1}{2}} = \sqrt{n}$$

Et finalement par le **lemme 1.8**, il existe K > 0 tel que :

$$M \ge \frac{1}{2e\sqrt{n}} \mathbb{E}\left[\max_{1 \le i \le \tilde{n}} |g_i|\right] \ge \frac{K}{2e} \sqrt{\frac{\log n}{n}}$$

On peut donc réunir la **proposition 2.7** et le **théorème 2.4** pour obtenir $k \ge c(\varepsilon) \log n$ lorsque B_2^n est l'ellipsoïde de John pour $B_{||.||}$, en utilisant la **remarque 1.6** quitte à diviser k par 2, on peut généralisé à toutes les normes et donc conclure la démonstration du théorème de Dvoretzky.

3 SECTIONS PRESQUE EUCLIDIENNES DE ℓ_P^N

Défintion. (Dimension critique) Soit $X = (\mathbb{R}^n, ||.||)$ pour ||.|| une norme sur \mathbb{R}^n , pour $\varepsilon > 0$ on note $k(X, \varepsilon)$ le plus grand entier tel que pour tout $k \le k(X, \varepsilon)$, ℓ_2^k s'injecte $(1 + \varepsilon)$ -continûment dans X.

3.1. CAS $1 \le P < 2$

Proposition 3.1. Soit $1 \le p < 2$, pour tout $\varepsilon > 0$ il existe $c(\varepsilon) > 0$ tel que pour tout $n \ge 2$, alors

$$k(\ell_p^n, \varepsilon) \ge c(\varepsilon)n$$

 $D\acute{e}monstration$. Par l'inégalité de Hölder $||x||_p \le n^{\frac{1}{p}-\frac{1}{2}}|x|$, c'est-à-dire $b \le n^{\frac{1}{p}-\frac{1}{2}}$. Comme les normes sont des applications convexes, par l'inégalité de Jensen :

$$\mathbb{E}\left[\left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}}\right] \geq \left(\sum_{i=1}^{n}\mathbb{E}[|x_{i}|]^{p}\right)^{\frac{1}{p}} = n^{\frac{1}{p}}\sqrt{\frac{\pi}{2}}$$

Et donc

$$\begin{split} M &=: \int_{S^{n-1}} ||x||_p d\mu(x) \\ &= \mathbb{E}\left[\frac{||x||_p}{|x|}\right] \\ &= \frac{\mathbb{E}\left[||x||_p\right]}{\mathbb{E}\left[|x|\right]} \geq n^{\frac{1}{p} - \frac{1}{2}} \sqrt{\frac{\pi}{2}} \end{split}$$

Par le **théorème 2.4** ℓ_2^k s'injecte $(1+\varepsilon)$ -continûment dans ℓ_p^n pour un $k \ge c(\varepsilon)(\frac{M}{b})^2 n = \tilde{c}(\varepsilon)n$.

3.2. CAS $2 \le P < \infty$

On pourrais utiliser la même inégalité que dans la **proposition 3.1**, cela nous donnerais une estimation de l'ordre de $k \ge c(\varepsilon) n^{\frac{2}{p}}$ (car ici $b \le 1$), mais il se trouve que l'on peut donner de

meilleur estimation en séparant les cas en deux, lorsque k est petit devant n on a la proposition suivante :

Proposition 3.2. Pour tout $\varepsilon > 0$ et $2 \le p$, il existe $c_p(\varepsilon) > 0$ tel que pour tout $n \in \mathbb{N}$ avec $p < \log n$, alors

$$k(\ell_p^n, \varepsilon) \ge c_p(\varepsilon) n^{\frac{2}{p}}$$

Démonstration.

$$M =: \int_{S^{n-1}} ||x||^p d\mu(x) = \mathbb{E}\left[\frac{\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}}{\left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}}\right] = \frac{\mathbb{E}\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}\right]}{\mathbb{E}\left[\left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}\right]}$$

Par l'inégalité de Hölder on a $||x||_p \le |x|$, donc $b \le 1$. Posons $m =: \lfloor e^p \rfloor$ et divisons $\{1,...,n\}$ en $N = \lceil \frac{n}{m} \rceil$ parties disjointes $I_1,...,I_N$ tel que pour j < N, card $(I_j) = m$, on a

$$\mathbb{E}\left[\left(\sum_{i=1}^{n}|g_{i}|^{p}\right)^{\frac{1}{p}}\right] = \mathbb{E}\left[\left(\sum_{j\leq N}\sum_{i\in I_{j}}|g_{i}|^{p}\right)^{\frac{1}{p}}\right]$$

$$\geq \mathbb{E}\left[\left(\sum_{j\leq N}(\max_{i\in I_{j}}|g_{i}|)^{p}\right)^{\frac{1}{p}}\right]$$

$$\geq \left(\sum_{j\leq N}\left(\mathbb{E}[\max_{i\in I_{j}}|g_{i}|]\right)^{p}\right)^{\frac{1}{p}}$$

$$\geq (N-1)^{\frac{1}{p}}c\sqrt{\log m} \text{ par le lemme 1.8}$$

Où c>0 est une constante universelle, de plus :

$$\frac{(N-1)^{\frac{1}{p}}}{N^{\frac{1}{p}}} = \left(\frac{N-1}{N}\right)^{\frac{1}{p}}$$
$$= \left(1 - \frac{1}{N}\right)^{\frac{1}{p}}$$
$$\ge \left(1 - \frac{1}{2}\right)^{\frac{1}{p}} = 2^{-\frac{1}{p}}$$

Car $N \ge 2$ par hypothèse, et finalement :

$$M \ge N^{\frac{1}{p}} 2^{-\frac{1}{p}} c \sqrt{\log \lfloor e^p \rfloor} n^{-\frac{1}{2}}$$
$$\ge n^{\frac{1}{p} - \frac{1}{2}} C_n$$

Où $C_p = 2^{-\frac{1}{p}} c \sqrt{\log \lfloor e^p \rfloor} \underset{p \to \infty}{\sim} c \sqrt{p}.$

Par le **théorème 2.4** ℓ_2^k s'injecte $(1+\varepsilon)$ -continûment dans ℓ_p^n , pour

$$\begin{split} k &\geq c(\varepsilon) \Big(\frac{E}{b}\Big)^2 n \\ &\geq c_p(\varepsilon) n^{\frac{2}{p}}, \quad \text{avec} \ c_p(\varepsilon) = c(\varepsilon) C_p^2 \underset{p \to \infty}{\sim} \tilde{c}(\varepsilon) p \end{split}$$

Remarque 3.3. Dans le cas contraire si $p \ge \log n$, alors $n^{\frac{2}{p}} \le e^2$ donc dans ce cas la meilleur estimation est celle donné par le théorème de Dvoretzky.

Pour la proposition suivante nous allons utiliser l'inégalité de Khinchine qui est démontrer en annexe.

Proposition 3.4. Soit $2 et <math>0 < \varepsilon < 1$, alors il existe $c_p(\varepsilon) > 0$ tel que,

$$k(\ell_p^n, \varepsilon) \le c_p(\varepsilon) n^{\frac{2}{p}}$$

 $D\acute{e}monstration.$ Considérons $T=(a_{ij})_{j\leq k}^{i\leq n}\subset \mathbb{R}^n$ tel que pour tout $x\in \mathbb{R}^k$

$$|x| \le ||Tx||_p \le (1+\varepsilon)|x|$$

Notons $r_i(t) = \text{sign}(\sin(\pi 2^i t))$ pour $t \in]0,1[$, $i \in \mathbb{N}^*$ (voir section 4 pour les détails).

$$\forall \, t \in]0,1[\; , \quad |(r_1(t),...,r_k(t))| \leq \left| \left| \left| T(r_1(t),...,r_k(t)) \right| \right|_p \leq (1+\varepsilon) |(r_1(t),...,r_k(t))| \right|$$

Or $|(r_1(t),...,r_k(t))|^2 = \sum_{i=1}^k r_i^2(t) = k$ presque sûrement. En intégrant entre 0 et 1 :

$$k^{\frac{p}{2}} \le \sum_{i=1}^n \int_0^1 |\sum_{i=1}^k a_{ij} r_j(t)|^p dt$$

Par l'inégalité de Khinchine (théorème A.3) $\exists B_p > 0$ tel que :

$$\left(\int_{0}^{1} \left| \sum_{j=1}^{k} a_{ij} r_{j}(t) \right|^{p} dt \right)^{\frac{1}{p}} \leq B_{p} \left(\sum_{j=1}^{k} a_{ij}^{2} \right)^{\frac{1}{2}}$$

$$k^{\frac{p}{2}} \leq \sum_{i=1}^{n} B_{p}^{p} \left(\sum_{j=1}^{k} a_{ij}^{2} \right)^{\frac{p}{2}} \tag{*}$$

Fixons $1 \leq v \leq n,$ alors pour $x = (a_{v,j})_{j \leq k},$ on a

$$\sum_{i=1}^{n} \left| \sum_{j=1}^{k} a_{ij} a_{\nu j} \right|^{p} \ge \left| \sum_{j=1}^{k} a_{\nu j}^{2} \right|^{p}$$

et donc:

$$\left| \sum_{j=1}^{k} a_{vj}^{2} \right|^{p} \le \sum_{i=1}^{n} \left| \sum_{j=1}^{k} a_{ij} a_{vj} \right|^{p} \le (1+\varepsilon)^{p} \left| \sum_{j=1}^{k} a_{vj}^{2} \right|^{\frac{p}{2}}$$

c'est-à-dire $\left|\sum_{j=1}^k a_{vj}^2\right|^{\frac{1}{2}} \le 1 + \varepsilon$, et finalement en injectant dans (\star) :

$$k \le B_p^2 (1+\varepsilon)^2 n^{\frac{2}{p}}$$

Remarque 3.5. Dans la démonstration de l'inégalité de Khinchine, on montre que

$$B_p = \left(2p \int_0^{+\infty} s^{p-1} e^{-\frac{s^2}{4}} ds\right)^{\frac{1}{p}}$$

3.3. CAS $P = \infty$

Proposition 3.6. Soit $0 < \varepsilon \le \frac{1}{32}$, si ℓ_2^k s'injecte $(1 + \varepsilon)$ -continûment dans ℓ_∞^n alors $k \le \frac{C \log(n)}{\log(\frac{1}{c\varepsilon})}$ avec c, C > 0 des constantes universelles.

Démonstration. Soit $T \in \mathcal{L}(\mathbb{R}^k, \mathbb{R}^n)$ tel que pour tous $x \in \mathbb{R}^k$,

$$\frac{1}{1+\varepsilon}|x| \le ||Tx||_{\infty} \le |x|$$

Comme $1-\varepsilon \leq \frac{1}{1+\varepsilon}$, en posant $a_1,\dots,a_n \in \mathbb{R}^k$ les lignes de T dans la base canonique, alors

$$(1 - \varepsilon)|x| \le \max_{i \le n} |\langle a_i, x \rangle| \le |x|$$

En prenant $x = a_p$ on obtient $(1 - \varepsilon)|a_p| \le \max_{i \le n} |\langle a_i, a_p \rangle| \le |a_p| \Rightarrow |a_p|^2 \le |a_p| \Rightarrow |a_p| \le 1$. Prenons $x \in S^{k-1}$, alors il existe $i \le n$ tel que $|\langle a_i, x \rangle| \ge (1 - \varepsilon)$, donc

$$|x - a_i|^2 = |x|^2 + |a_i|^2 - 2 < x, a_i > \le 2 - 2(1 - \varepsilon) = 2\varepsilon$$

Prenons $1>|x|>1-\sqrt{2\varepsilon}$, alors il existe i tel que $\left|\frac{x}{|x|}-a_i\right|\leq \sqrt{2\varepsilon}$ et donc :

$$|x - a_i| \le \left| x - \frac{x}{|x|} \right| + \left| \frac{x}{|x|} - a_i \right|$$

$$\le \left| 1 - |x| \right| + \sqrt{2\varepsilon}$$

$$\le 2\sqrt{2\varepsilon}$$

Donc $\bigcup_{i \leq n} B_2^k(a_i, 2\sqrt{2\varepsilon})$ contient $B_2^k \setminus (1 - \sqrt{2\varepsilon})B_2^k$.

$$n(2\sqrt{2\varepsilon})^k\lambda(B_2^k) \geq \lambda\Big(\bigcup_{i \leq n} B_2^k(a_i, 2\sqrt{2\varepsilon})\Big) \geq \lambda\Big(B_2^k \setminus (1 - \sqrt{2\varepsilon})B_2^k\Big) = \lambda(B_2^k) - (1 - \sqrt{2\varepsilon})^k\lambda(B_2^k)$$

$$n(2\sqrt{2\varepsilon})^k \geq 1 - (1 - \sqrt{2\varepsilon})^k \geq \sqrt{2\varepsilon}(1 - \sqrt{2\varepsilon})^{k-1}$$

car

$$(1 - \sqrt{2\varepsilon})^k = (1 - \sqrt{2\varepsilon})^{k-1} - \sqrt{2\varepsilon}(1 - \sqrt{2\varepsilon})^{k-1}$$

$$\leq 1 - \sqrt{2\varepsilon}(1 - \sqrt{2\varepsilon})^{k-1}$$

Alors pour $\varepsilon < \frac{1}{32}$ on a $\frac{1}{2\sqrt{2\varepsilon}} - \frac{1}{2} > \frac{7}{16\sqrt{2\varepsilon}}$ et donc

$$n \ge \frac{1}{2} \left(\frac{1}{2\sqrt{2\varepsilon}} - \frac{1}{2} \right)^{k-1}$$
$$\ge \frac{1}{2} \left(\frac{7}{16\sqrt{2\varepsilon}} \right)^{k-1}$$
$$\ge \frac{1}{2} \left(\frac{7}{16\sqrt{2\varepsilon}} \right)^{\frac{k}{2}}$$

et donc

$$k \le \frac{2\log n}{\log\left(\frac{7}{16\sqrt{2\varepsilon}}\right)}$$

Proposition 3.7. Soit $0 < \varepsilon < 1$, ℓ_2^k s'injecte $(1 + \varepsilon)$ -continûment dans ℓ_∞^n pour $k = \left[\frac{\log n}{\log(\frac{3}{\varepsilon})}\right]$

 $D\acute{e}monstration$. Comme $\left(\frac{3}{\varepsilon}\right)^k \leq n$ on peut prendre un ε -net sur S^{k-1} de cardinal n, donnons nous $\{y_i\}_{i\leq n}$ un tel ε -net et

$$T: \begin{array}{ccc} \mathbb{R}^k & \to & \mathbb{R}^n \\ x & \to & (1+\varepsilon)(\langle x, y_i \rangle)_{i \le n} \end{array}$$

Alors pour tout $x \in S^{k-1}$, il existe $i \le n$ tel que $|x-y| < \varepsilon$, alors

$$\varepsilon^{2} > |x - y_{i}|^{2} = |x|^{2} + |y|^{2} - 2\langle x, y_{i} \rangle$$
$$= 2(1 - \langle x, y_{i} \rangle)$$

$$\langle x, y_i \rangle > 1 - \frac{\varepsilon^2}{2} \ge \frac{1}{1 + \varepsilon}$$

Car $1-\frac{\varepsilon^2}{2}-\frac{1}{1+\varepsilon}=\frac{\varepsilon}{2(1+\varepsilon)}(1-\varepsilon)(\varepsilon+2)>0$, finalement avec l'inégalité de Cauchy-Schwarz :

$$1 \ge \max_{1 \le j \le n} |\langle x, y_j \rangle| \ge |\langle x, x_i \rangle| \ge \frac{1}{1 + \varepsilon}$$

C'est à dire pour tout $x \in S^{k-1}$

$$1 \leq ||Tx||_{\infty} \leq 1 + \varepsilon$$

A - INÉGALITÉ DE KHINCHINE

Soit (Ω, \mathcal{F}, P) un espace probabilisé, \mathcal{G} une sous tribus de \mathcal{F} , pour tous $f \in L^1(\Omega, \mathcal{F}, P)$ par le théorème de Randon-Nikodym il existe un unique $h \in L^1(\Omega, \mathcal{G}, P)$ tel que pour tous $A \in \mathcal{G}$ on ait

$$\int_{A} h dP = \int_{A} f dP$$

Notation. Par la suite on note $h = \mathbb{E}(f|\mathcal{G})$ l'espérance conditionnelle de f.

Donnons quelques propriétés associées :

Proposition A.1.

- (i) Pour toute sous tribus \mathcal{H} de \mathcal{G} on a $\mathbb{E}\Big(\mathbb{E}(f|\mathcal{G})|\mathcal{H}\Big) = \mathbb{E}(f|\mathcal{H})$.
- (ii) Pour tous $g \in L^{\infty}(\Omega, \mathcal{F}, P)$, $\mathbb{E}(f.g|\mathcal{G}) = g.\mathbb{E}(f|\mathcal{G})$.
- (iii) Si f et $\mathcal G$ sont indépendant alors $\mathbb E(f|\mathcal G)=\mathbb E[f]$.
- (iv) Si f est \mathcal{G} mesurable alors $\mathbb{E}(f|\mathcal{G}) = f$.

 $\label{eq:definition} \begin{array}{l} \textit{D\'{e}monstration.} \ \ (\text{i}) \ \text{Par d\'{e}finition} \ \mathbb{E}\Big(\mathbb{E}(f|\mathcal{G})|\mathcal{H}\Big) \ \text{est l'unique fonction de } L^1(\Omega,\mathcal{H},P) \ \text{tel que pour tous } A \in \mathcal{H} \subset \mathcal{G} \ : \end{array}$

$$\int_{A} \mathbb{E} \Big(\mathbb{E}(f|\mathcal{G}) | \mathcal{H} \Big) dP = \int_{A} \mathbb{E}(f|\mathcal{G}) dP = \int_{A} f dP$$

Par unicité $\mathbb{E}(\mathbb{E}(f|\mathcal{G})|\mathcal{H}) = \mathbb{E}(f|\mathcal{H}).$

(ii) Nous allons le montrer en plusieurs étapes, premièrement si $g=\mathbb{1}_B$ pour $B\in\mathcal{F}$ alors pour tous $A\in\mathcal{G}$

$$\begin{split} \int_A \mathbb{E}(\mathbb{I}_B f | \mathcal{G}) dP &= \int_A \mathbb{I}_B f dP \\ &= \int_{A \cap B} f dP \\ &= \int_{A \cap B} \mathbb{E}(f | \mathcal{G}) dP \quad \text{car } A \cap B \subset A \in \mathcal{G} \\ &= \int_A \mathbb{I}_B \mathbb{E}(f | \mathcal{G}) dP \end{split}$$

Par unicité $\mathbb{E}(\mathbb{I}_B f|\mathcal{G}) = \mathbb{I}_B \mathbb{E}(f|\mathcal{G})$. La linéarité de l'espérance permet de conclure pour des fonctions en escaliers, or pour toute fonction positive g mesurable il existe une suite de fonctions en escalier $(g_n)_{n\in\mathbb{N}}$ croissante tel que $g = \lim g_n$ presque partout, et donc par le théorème de convergence monotone pour $A \in \mathcal{G}$:

$$\int_{A} gf dP = \lim_{n} \int_{A} g_{n} f dP = \lim_{n} \int_{A} \mathbb{E}(g_{n}.f|\mathcal{G}) dP = \lim_{n} \int_{A} g_{n} \mathbb{E}(f|\mathcal{G}) dP = \int_{A} g\mathbb{E}(f|\mathcal{G}) dP$$

finalement si g est une fonction mesurable alors on écrit $g=|g|\mathbb{1}_{\left\{g>0\right\}}-|g|\mathbb{1}_{\left\{g<0\right\}}$ et on applique le point précédent à $|g|\mathbb{1}_{\left\{g>0\right\}}$ et $|g|\mathbb{1}_{\left\{g<0\right\}}$.

(iii)Soit $A \in \mathcal{G}$,

$$\begin{split} \int_A \mathbb{E}(f|\mathcal{G})dP &= \int_A f dP \\ &= \mathbb{E}[f].\mathbb{E}[\mathbb{I}_A] \quad \text{par indépendance} \\ &= \int_A \mathbb{E}[f] dP \end{split}$$

L'unicité permet de conclure.

(iv) Évident par la définition et l'unicité.

 $\mathbf{Lemme} \ \mathbf{A.2.} \ \mathrm{Soit} \ f \in L^{\infty}(\Omega, \mathcal{F}, P), \ \left\{ \emptyset, \Omega \right\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_N = \mathcal{F}, \ \mathrm{alors \ pour \ tous} \ \varepsilon > 0 \ :$

$$P(|f - \mathbb{E}[f]| > \varepsilon) \le 2 \exp\left(-\frac{\varepsilon^2}{4\sum_{i=1}^{N} ||d_i||_{\infty}}\right)$$

Où $d_i = \mathbb{E}(f|\mathcal{F}_i) - \mathbb{E}(f|\mathcal{F}_{i-1})$

 $D\acute{e}monstration.$ En utilisant l'inégalité $e^x \leq x + e^{x^2}$ on a pour tous $\lambda \neq 0$:

$$\mathbb{E}(e^{\lambda d_i}|\mathcal{F}_{i-1}) \leq \mathbb{E}(\lambda d_i|\mathcal{F}_{i-1}) + \mathbb{E}(e^{\lambda^2 d_i^2}|\mathcal{F}_{i-1})$$

Remarquons alors que

$$\begin{split} \mathbb{E} \big(\lambda d_i | \mathscr{F}_{i-1} \big) &= \lambda \mathbb{E} \big(d_i | \mathscr{F}_{i-1} \big) \\ &= \lambda \mathbb{E} \big(\mathbb{E} (f | \mathscr{F}_i) | \mathscr{F}_{i-1} \big) - \lambda \mathbb{E} \big(\mathbb{E} (f | \mathscr{F}_{i-1}) | \mathscr{F}_{i-1} \big) \\ &= \lambda \mathbb{E} \big(f | \mathscr{F}_{i-1} \big) - \lambda \mathbb{E} \big(f | \mathscr{F}_{i-1} \big) \\ &= 0 \end{split}$$

On a donc finalement

$$\mathbb{E}(e^{\lambda d_i}|\mathcal{F}_{i-1}) \leq \mathbb{E}(e^{\lambda^2 d_i^2}|\mathcal{F}_{i-1})$$

$$\leq \mathbb{E}(e^{\lambda^2||d_i||_{\infty}^2}|\mathcal{F}_{i-1})$$

$$\leq e^{\lambda^2||d_i||_{\infty}^2}$$

En utilisant la ${f proposition}$ ${f A.1.ii}$ on obtient :

$$\mathbb{E}\left(\mathbb{E}\left(\exp\left(\lambda\sum_{j=1}^{i}d_{j}\right)|\mathscr{F}_{i-1}\right)\right) = \mathbb{E}\left(\mathbb{E}\left(\exp\left(\sum_{j=1}^{i-1}\lambda d_{j}\right)e^{\lambda d_{i}}|\mathscr{F}_{i-1}\right)\right) = \mathbb{E}\left(\exp\left(\sum_{j=1}^{i-1}\lambda d_{j}\right)\mathbb{E}\left(e^{\lambda d_{i}}|\mathscr{F}_{i-1}\right)\right)$$

D'où:

$$\mathbb{E}\left(\mathbb{E}\left(\exp\left(\lambda\sum_{i=1}^{i}d_{j}\right)|\mathscr{F}_{i-1}\right)\right) \leq \mathbb{E}\left(\exp\left(\sum_{i=1}^{i-1}e^{\lambda d_{j}}\right)\right)e^{\lambda^{2}||d_{i}||_{\infty}^{2}}$$

d'autres part on a $\mathbb{E}\left(\mathbb{E}\left(\exp\left(\lambda\sum_{j=1}^{i}d_{j}\right)|\mathcal{F}_{i-1}\right)\right)=\mathbb{E}\left(\exp\left(\lambda\sum_{j=1}^{i}d_{j}\right)\right)$ et donc on a

$$\mathbb{E}\left(\exp\left(\lambda\sum_{j=1}^{i}d_{j}\right)\right) \leq \mathbb{E}\left(\exp\left(\sum_{j=1}^{i-1}e^{\lambda d_{j}}\right)\right)e^{\lambda^{2}||d_{i}||_{\infty}^{2}}$$

Par récurrence on obtient :

$$\mathbb{E}\left(\exp\left(\lambda \sum_{j=1}^{i} d_{j}\right)\right) \le \exp\left(\lambda^{2} \sum_{j=1}^{i} ||d_{j}||_{\infty}^{2}\right) \tag{*}$$

Remarquons maintenant ceci:

$$\sum_{i=1}^{N} d_i = \mathbb{E}(f|\mathcal{F}) - \mathbb{E}(f|\{\emptyset,\Omega\}) = f - \mathbb{E}[f]$$

Donc pour tous $\lambda > 0$,

$$\begin{split} P\big(f - \mathbb{E}[f] > \varepsilon\big) &= P\big(\sum_{i=1}^N d_i > \varepsilon\big) \\ &= P\Big(\exp\big(\lambda \sum_{i=1}^N d_i - \varepsilon\lambda\big) > 1\Big) \\ &\leq \mathbb{E}\big[\exp\big(\lambda \sum_{i=1}^N d_i - \varepsilon\lambda\big)\big] \qquad \text{par l'inégalité de Markov} \\ &\leq \exp\big(\lambda^2 \sum_{i=1}^N ||d_i||_{\infty}^2\big) e^{-\varepsilon\lambda} \qquad \text{par } (\star) \end{split}$$

de même

$$\begin{split} P \big(\mathbb{E}[f] - f > \varepsilon \big) &= P \big(-\sum_{i=1}^{N} d_i > \varepsilon \big) \\ &= P \Big(\exp \big(-\varepsilon \lambda - \lambda \sum_{i=1}^{N} d_i \big) > 1 \Big) \\ &\leq \mathbb{E} \big[\exp \big(-\lambda \sum_{i=1}^{N} d_i \big) \big] e^{-\varepsilon \lambda} \qquad \text{par l'inégalité de Markov} \\ &\leq \exp \big(\lambda^2 \sum_{i=1}^{N} ||d_i||_{\infty}^2 \big) e^{-\varepsilon \lambda} \qquad \text{par } (\star) \end{split}$$

finalement

$$P(|f - \mathbb{E}[f]| > \varepsilon) \le 2 \exp\left(\lambda^2 \sum_{i=1}^{N} ||d_i||_{\infty}^2\right) e^{-\varepsilon \lambda}$$

avec $\lambda = \frac{\varepsilon}{2\sum_{i=1}^N ||d_i||_\infty^2}$ on obtient le resultat rechercher :

$$P(|f - \mathbb{E}[f]| > \varepsilon) \le 2 \exp\left(-\frac{\varepsilon^2}{4\sum_{i=1}^{N} ||d_i||_{\infty}^2}\right)$$

Définition & Proposition. On note $r_k \in L^2([0,1])$ définie par :

$$r_k(t) = \operatorname{sign} \left(\sin(\pi 2^k t) \right)$$

les $(r_k)_{k\in\mathbb{N}}$ sont appelées fonctions de Rademacher et elles vérifient les propriétés suivantes :

- (i) Pour $p \neq q$, r_p et r_q sont orthogonaux dans L^2 .
- (ii) Pour tous $j \in \mathbb{N}^*$, $\int_0^1 r_j d\lambda = 0$.

Démonstration. (i) Supposons p < q, on a l'égalité suivante :

$$\int_0^1 \operatorname{sign}(\sin \pi 2^p t) \operatorname{sign}(\sin \pi 2^q t) dt = \sum_{i=0}^{2^p-1} \int_{i2^{-p}}^{(i+1)2^{-p}} \operatorname{sign}(\sin \pi 2^p t) \operatorname{sign}(\sin \pi 2^q t) dt$$

Or pour tout $t\in]i2^{-p},(i+1)2^{-p}[,$ on a $\mathrm{sign}(\sin\pi 2^pt)=(-1)^i$ et de plus

$$\pi 2^{q} t \in [i2^{q-p}\pi, (i+1)2^{q-p}\pi]$$

un intervalle de taille un multiple de 2π , et pour finir sign $(\sin \pi 2^q t)$ prends les valeurs 1 et -1 sur des intervalles de mêmes longueurs pour $t \in]i2^{-p}, (i+1)2^{-p}[$, donc chaque termes de la somme est nulle.

(ii) Pour $t \in]0,1[$ on a $\pi 2^j t \in]0,2^j \pi[$ un intervalle de taille un multiple de 2π , donc $\sin(\pi 2^j t)$ prend des valeurs positives et négatives sur des ensembles de mêmes mesures, et donc $\int_0^1 r_j d\lambda = 0$.

Théorème A.3 (Inégalité de Khinchine). Pour tous $1 \le p < \infty$, il existe des constantes $0 < A_p < B_p$ tel que pour tous n et tous $(a_i)_{i \le n} \subset \mathbb{R}$:

$$\left(\sum_{i=1}^{n}|a_{i}|^{2}\right)^{\frac{1}{2}}\frac{1}{A_{p}} \leq \left(\int_{0}^{1}\left|\sum_{i=1}^{n}a_{i}r_{i}(t)\right|^{p}dt\right)^{\frac{1}{p}} \leq B_{p}\left(\sum_{i=1}^{n}|a_{i}|^{2}\right)^{\frac{1}{2}}$$

Démonstration. Soit $(a_i)_{i \leq n} \neq (0,...,0)$, posons $b_i = \frac{a_i}{(\sum_{i=1}^n a_i^2)^{\frac{1}{2}}}$ et $f = \sum_{i=1}^n b_i r_i$, on veut appliquer le lemme qui précède à f, pour cela il nous faut définir une suite de sous-tribus de Bor([0,1]), on la construit de la manière suivante :

$$\mathcal{F}_0 = \left\{ \emptyset, [0, 1] \right\}$$

$$\mathcal{F}_1 = \sigma(r_1)$$

$$\mathcal{F}_2 = \sigma(r_1, r_2)$$

$$\vdots$$

$$\mathcal{F}_n = \sigma(r_1, ..., r_n)$$

$$\mathcal{F}_{n+1} = \text{Bor}([0, 1])$$

On a alors

$$\begin{split} d_i &= \mathbb{E}(f|\mathcal{F}_i) - \mathbb{E}(f|\mathcal{F}_{i-1}) \\ &= \sum_{j=1}^n \mathbb{E}(b_j r_j|\mathcal{F}_i) - \sum_{j=1}^n \mathbb{E}(b_j r_j|\mathcal{F}_{i-1}) \end{split}$$

remarquons alors que

- Si $1 \leq j \leq i < n, \ r_i$ est $\mathcal{F}_i \subset \mathcal{F}_i$ mesurable, donc $\mathbb{E}(r_i | \mathcal{F}_i) = r_i$.

- Si j>i , r_j est indépendante de \mathcal{F}_i et donc $\mathbb{E}(r_j|\mathcal{F}_i)=\mathbb{E}(r_j)=0$

et donc si $1 < i \le n$:

$$d_i = \sum_{j=1}^{i} b_j r_j - \sum_{j=1}^{i-1} b_j r_j = b_i r_i$$

et

$$d_1 = b_1 r_1 - \mathbb{E}(b_1 r_1) = b_1 r_1$$

$$d_{n+1} = \mathbb{E}(f|\mathscr{F}) - \mathbb{E}(f|\mathscr{F}_n) = f - f = 0$$

et l'on obtient :

$$\sum_{i=1}^{n+1} ||d_i||_{\infty}^2 = \sum_{i=1}^{n} |b_i|^2 = 1$$

par le **lemme A.2** pour tous $\varepsilon > 0$:

$$\lambda(|f| > \varepsilon) \le 2 \exp(-\frac{\varepsilon^2}{4})$$

Par changement de variable $s^p = t$ on obtient :

$$\int_{0}^{1} |f|^{p} d\lambda = \int_{0}^{+\infty} \lambda(|f|^{p} > t) dt = \int_{0}^{+\infty} p s^{p-1} \lambda(|f| > s) ds$$

$$\leq 2p \int_{0}^{+\infty} s^{p-1} e^{-\frac{s^{2}}{4}} ds$$

$$\leq B_{p}^{p}$$

avec $B_p = \left(2p \int_0^{+\infty} s^{p-1} e^{-\frac{s^2}{4}} ds\right)^{\frac{1}{p}}$.

Donc pour $p \ge 2$:

$$1 = \left(\int_0^1 |f|^2 d\lambda\right)^{\frac{1}{2}} \le \left(\int_0^1 |f|^p d\lambda\right)^{\frac{1}{p}} \le B_p$$
$$\left(\sum_{i=1}^n |a_i|^2\right)^{\frac{1}{2}} \le \left(\int_0^1 |\sum_{i=1}^n a_i r_i|^p d\lambda\right)^{\frac{1}{p}} \le B_p \left(\sum_{i=1}^n |a_i|^2\right)^{\frac{1}{2}}$$

Pour p = 1, soit $\theta \in]0,1[$ alors

$$\begin{split} \int_{0}^{1} |f|^{2} d\lambda &= \int_{0}^{1} |f|^{2\theta} |f|^{2(1-\theta)} d\lambda \leq \left(\int_{0}^{1} |f| d\lambda \right)^{2\theta} \left(\int_{0}^{1} |f|^{4} d\lambda \right)^{\frac{1-\theta}{2}} \\ &1 = \left(\int_{0}^{1} |f|^{2} d\lambda \right)^{\frac{1}{2}} \leq \left(\int_{0}^{1} |f| d\lambda \right)^{\theta} B_{4}^{1-\theta} \end{split}$$

Avec $\theta = \frac{1}{3}$ on obtient :

$$B_4^{-2} \le \int_0^1 |f| d\lambda$$

Et pour $1 \leq p < 2$ on a finalement :

$$B_4^{-2} \le \int_0^1 |f| d\lambda \le \left(\int_0^1 |f|^p d\lambda \right)^{\frac{1}{p}} \le \left(\int_0^1 |f|^2 d\lambda \right)^{\frac{1}{2}} = 1$$

c'est-à-dire

$$B_4^{-2} \left(\sum_{i=1}^n a_i^2 \right)^{\frac{1}{2}} \le \left(\int_0^1 |\sum_{i=1}^n a_i r_i|^p d\lambda \right)^{\frac{1}{p}} \le \left(\sum_{i=1}^n a_i^2 \right)^{\frac{1}{2}}$$

RÉFÉRENCES

- [1] G. Schechtman, "Euclidean sections of convex bodies," 2008.
- [2] A. GROTHENDIECK, "Sur certains classes de suites dans les espaces de Banach, et le théorème de Dvoretzky-Rogers," 1956.
- [3] V. MILMAN, "New proof of the theorem of A. Dvoretzky on intersections of convex bodies," 1971.
- [4] Y. GORDON, "On Milman's inequality and random subspaces which escape through a mesh in \mathbb{R}^n ," 1988.
- [5] G. Schechtman, "A remark concerning the dependence on ε in dvoretzky's theorem," 1989.
- [6] G. Schechtman, "Concentration results and applications," 2003.
- [7] G. PISIER, The volume of convex bodies and Banach space geometry. Cambridge University Press, 1989.
- [8] V. Milman, "Dvoretzky theorem thirty years later," 1992.
- [9] V. MILMAN et G. SCHECHTMAN, Asymptotic theory of finite dimensional normed space. Springer, 1986.