

Berkeley UNIVERSITY OF CALIFORNIA

kaggle

Chen Chen

Nelson Chen

Nesty Torres

Arash A. Omrani

Mentor: Adam Kalman

Outline

- Problem statement
- Evaluation and Kaggle leaderboard
- Approaches
 - 1. Logistic Regression and Neural Network
 - 2. Convolutional Neural Network
 - 3. Convolutional Neural Network with pre-trained initialization
- Summary of results

Problem Statement

- CDC data 1 in 5 car accidents is caused by a distracted driver
- Can computer vision spot distracted driver?
- Given dataset of 2D dashboard camera images
- Can we classify each driver's behavior? (10 categories)
- * Goal predict the likelihood of what the driver is doing in each picture *

Evaluation and Kaggle leaderboard

$$logloss = -rac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{M}y_{ij}\log(p_{ij})$$

N ---- Number of test images

M ---- Number of class labels

 y_{ij} ---- 1 if observation i belongs to class j, 0 otherwise

 p_{ij} ---- predicted probability that observation i belongs to class j

Evaluation and Kaggle leaderboard

$$logloss = -rac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{M}y_{ij}\log(p_{ij})$$

N ---- Number of test images

M ---- Number of class labels

 y_{ij} ---- 1 if observation i belongs to class j, 0 otherwise

 p_{ij} ---- predicted probability that observation i belongs to class j

#	Δ1w	Team Name * in the money	Score @	Entries
1	↑1	Z_B_C *	0.09275	101
2	11	MakeAmericaGreatAgain *	0.09488	179
3	↑2	BR BRAZIL POWER BR # *	0.10208	178
352	↓37	OP	0.60589	7
353	↑32	CDIPS #	0.60691	33
354	↓38	Meepo ♣	0.61160	5
		•		
1448	191	Silvio	30.35184	2
1449	↓91	Chris Jepeway	30.74658	1
1450	J91	Fernando	30.94094	1

Logistic Regression and Neural Network

- Best LR score: 4.2
- Best NN score: 2.6, rank:1004
- NN fits very well on the training set and even on cross-validation. But high error on test set
- There are different drivers in test-set

Logistic Regression

Multi-class Neural Network

Convolutional Neural Networks (CNN)

Convolutional Filtering

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Examples of Filters

Averaging nearest neighbors

Difference from neighboring pixels

Facial Recognition Example

Custom Built CNN

Computational details:

- → Resized to 64x64
- → Used Keras/Theano library backend (built on C)
- → Took 4-5 hours to run on my laptop
- → Took 20 mins to run on GPU Amazon Instance
- → Took a little more than twice as long to run for 128x128

Custom Built CNN Results

Results:

- Score: 0.78
- Leadership board: 406th Place

(<u>500+ ranks up!</u>)

Problems:

- Far from the top score
- Can't improve anymore because of overfitting

CNN with Pre-trained Model

- "VGG_16" model: 13 convolutional layers + 3 fully connected layers
- Model trained on millions of images from ImageNet competition
- Load pre-trained weights
- Fine tune the weights on the distracted driver dataset
- Score: 0.61 after only 1 epoch. Our best score!
- Problems: takes too much RAM and time! We used up all our AWS credit!

Feature Heat maps

https://www.kaggle.com/c/state-farm-distracted-driver-detection/forums/t/21994/heat-map-of-cnn-output

Future Work

- More training/fine tuning with pre-trained models
- Combine different models to improve the score
- More data augmentation

Thank you!
Drive Safe!