CS109/Stat121/AC209/E-109 Data Science Regression Continued

Hanspeter Pfister, Joe Blitzstein, and Verena Kaynig

This Week

- HW2 due next Thursday (Oct 8) at 11:59 pm (Eastern Time)
- See updated Piazza posting guidelines (pinned note) and follow the format described there

Simple interpretable summary with a regression
Linear is crude, but common
and good for simplifying. Need more References?

Sources: Abt, H. A. and Garfield, E. J. Am. Soc. for Info. Science & Tech. 53(13):1106-1112, Nov. 2002; Halevi, G. Res. Trends (32), March 2013; Beck, M., beckmw.wordpress.com July 2014. Humanties data estimated. Based on 1000-word pages.

Manhattan by far most expensive and explains bi-modality

- Response variable (y): price per square foot
- Predictor variables (x's): number of units in complex, number of square feet, borough indicators
- Try linear regression; it may help to take logs of some of the continuous variables first

Linear regression a good place to start for determining relationships Can have regressors be discrete or binary. But outcomes are continuous Binary outcomes are handled with logistic regression.

Coefficients:				
	Estimate	Std. Error t v	value Pr	(> t)
(Intercept) ***	4.430e+01	5.342e+00	8.293	<2e-16
Units ***	-1.532e-01	2.421e-02	-6.330	2.88e-10
SqFt ***	2.070e-04	2.129e-05	9.723	< 2e-16
BoroBrooklyn ***	3.258e+01	5.561e+00	5.858	5.28e-09
BoroManhattan ***	1.274e+02	5.459e+00	23.343	< 2e-16
BoroQueens ***	3.011e+01	5.711e+00	5.272	1.46e-07
BoroStaten Island -	7.114e+00	1.001e+01 -0	.711	0.477

stars = significance (p-value) this summary highlights significance - probably too much.

instead of table: plot

manhattan,
this is most important
variable
exclude bronx because
colinearity

Lander, R for Everyone; NYC Open Data

Where did the Bronx go?
Why are SqFT and Units so close to 0?

Why are SqFT and Units so close to 0? Where did the Bronx go?

Lander, R for Everyone; NYC Open Data

Collinearity

- Should avoid having predictor variables that are highly correlated with each other (collinearity results in instability, high variances in estimates, and worse interpretability)
- An extreme case of collinearity would be also including a Bronx indicator in the NYC Housing example. Instead, use one borough as a baseline.

Predicting a Binary Response

Logistic regression gives you this S-shape

source: Introduction to Statistical Learning, James, Witten, Hastie, Tibshirani, http://www-bcf.usc.edu/~gareth/ISL/

Assumption of linear regression is continuous outcome —> Switch to logistic regression instead.

Fen-Phen Case Study

On July 8, 1997 Mayo Clinic investigators described 24 cases of valvular heart disease in patients taking the recently released appetite suppressant combination fen/phen (fenfluramine plus phentermine). The FDA issued an advisory to encourage reporting of similar cases.

Strong Association? sample bias: how did you find Fen/phen users. how were the controls selected?

Recall we obtained the following sample of patients in a follow-up study:

	Heart disease	No heart disease	Total
Fen/phen	53	180	233
Control	3	230	233

- •So do you think there is strong association between heart disease and fen/phen usage? Sample Bias!
- •How would you defend your assertion scientifically? Can you just say "Well, 53/3=17.7 is very large to me"?

How about this one then?

Now suppose that instead of heart disease, you wanted to test whether fen/phen increased the risk of a rare type of cancer. Using the same patients, you observe that:

	cancer	No cancer	Total
Fen/phen	1	232	233
Control	0	233	233

Is that the strongest evidence of association one can ever get, since 1/0 is infinite?

Measures of Association: Odds Ratio

If someone's probability of experiencing an outcome is p, then that person's odds of the outcome are p/(1-p) If p is small, then odds and probability roughly equivalent, otherwise they are different.

The *odds ratio* is the ratio of two different people's odds of some outcome. If people in group A have probability p_A of disease, and people in group B have probability p_B , then the odds ratio of group A vs. group B is

Odds Ratio =
$$\frac{p_A}{1 - p_A} / \frac{p_B}{1 - p_B} = \frac{(1 - p_B)p_A}{(1 - p_A)p_B}$$

Crude Odds Ratio Estimate

The data in one study were as follows:

	Fen/phen			
Aortic Regurgitation -		+	-	
	+	6	162	168
	-	13	2343	2356
		19	2505	2524

Sample size: roughly 2500 But not balanced:

small sample of fen/phen

A crude estimate of the odds ratio is

Fails to control for any potential cofounders: ie, obese: fen/phen users disproportionally obese b/c they use the drug for weight-loss.

$$\frac{6 \times 2343}{13 \times 162} = 6.7$$

cross product in epidimeology

Palmieri V, Arnett DK, Roman MJ, Liu JE, Bella JN, Oberman A, Kitzman DW, Hopkins PN, Morgan D, de Simone G, Devereux RB. Appetite suppressants and valvular heart disease in a population-based sample: the HyperGEN study. Am J Med. 2002 Jun 15;112(9):710-5.

What about confounding factors?

But what if there are confounding factors? For example, what if fen/phen users are more likely to be obese, and obesity increases the risk of heart disease?

We can set up a *logistic regression model* to predict a person's odds of heart disease, given the predictor variables.

We can also use this to *compare* fen/phen users vs. non-fen/phen users, controlling for the other predictors.

Then we can use the data to estimate the parameters, using Maximum Likelihood Estimation (MLE).

Variables in the model

$$Y = \begin{cases} 1, & \text{if cardiac valve abnormality} \\ 0, & \text{if not} \end{cases}$$

$$X_{fen} = \begin{cases} 1, & \text{if taking fen/phen} \\ 0, & \text{if not} \end{cases}$$

$$X_{age} = \text{subject's age}$$

$$X_{sex} = \begin{cases} 1, & \text{male} \\ 0, & \text{if female} \end{cases}$$
 (plus other X -variables...)

ie, obesity (dummy) or BMI (continuous)

$$p = P(Y = 1 | X_{fen}, X_{age}, X_{sex}, ..., X_k)$$

So, how is p related to all of these factors?

A logistic regression model

logit: $log(p/(1-p)) \rightarrow log of the odds$

$$\operatorname{logit}(p) = \ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_{fen} X_{fen} + \beta_{age} X_{age} + \beta_{sex} X_{sex} + \dots + \beta_k X_k$$
 controlling for age coefficients also let you predict: can plug in any age once you have an estimate for coefficient.

The parameters of the model (the β 's) are unknown, and are estimate from the data using MLE.

This gave 1.84 as an estimate for the fen/phen parameter. How can that be interpreted?

Two patients, A and B, are the same age, same gender, and similarly identical on all other variables. Patient A has taken fen/phen and Patient B has not. The model predicts that

$$logit(p_A) = ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_{age}X_{age} + \beta_{sex}X_{sex} + \dots + \beta_kX_k + \beta_{fen}X_{fen}$$

$$\operatorname{logit}(p_B) = \ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_{age}X_{age} + \beta_{sex}X_{sex} + \dots + \beta_kX_k \quad \text{Xfen = 0 -> no useage}$$

Let's assume A and B are same except for fen/phen use (ie, controls/other things held equal)

$$eta_{fen} = \mathrm{logit}(p_A) - \mathrm{logit}(p_B) = \ln\left(rac{p_A}{1-p_A}
ight) \quad \log ext{ of odds ratio}$$

Using this model we can estimate an "adjusted" odds ratio that's the odds ratio for two people with all other known factors held constant:

$$e^{\hat{\beta}_{fen}} = e^{1.84} pprox 6.3$$
 these confounders controlled

6.3 increased odds ratio when

6.3 < 6.7 which was crude estimate 0.4 explained by confounders

Curse of Dimensionality

For a uniformly random point in a box with side length 2, what is the probability that the point is in the unit ball?

source: An Adventure in the nth Dimension, Brian Hayes, American Scientist 2011 Big Data: higher dimensional data sets.

Curse of Dimensionality

For a uniformly random point in the box in d dimensions with length 2 in each dimension, what is the probability that the random vector is in the unit ball in d dimensions?

analog of box/cube: what is prob a point is inside the central "sphere" above.

d	probability
2	0.79
3	0.52
6	0.08
10	0.002
15	0.00001
100	1.87 · 10 ⁻⁷⁰

Goes to 0 very fast

10 variables: 10 dimensional space

Most traditional statistical methods designed to understand center/middle: but now nothing is in the middle at high dimensions.

In many high-dimensional settings, the vast majority of data will be near the boundaries, not in the center.

Interpolation vs. Extrapolation

MY HOBBY: EXTRAPOLATING

source: https://xkcd.com/605/

In high dimensions, nearest neighbor point tends to be very far away. May be very hard to interpolate well, even with a lot of data points.

Blessing of Dimensionality

In statistics, "curse of dimensionality" is often used to refer to the difficulty of fitting a model when many possible predictors are available. But this expression bothers me, because more predictors is more data, and it should not be a "curse" to have more data....

With multilevel modeling, there is no curse of dimensionality. When many measurements are taken on each observation, these measurements can themselves be grouped. Having more measurements in a group gives us more data to estimate group-level parameters (such as the standard deviation of the group effects and also coefficients for group-level predictors, if available).

In all the realistic "curse of dimensionality" problems I've seen, the dimensions-the predictors-have a structure. The data don't sit in an abstract K-dimensional space; they are units with K measurements that have names, orderings, etc.

Andrew Gelman, http://andrewgelman.com/2004/10/27/the_blessing_of/

Tall data vs. wide data

of predictors (columns) vs # observations (rows) yields a matrix: n x p

for p > n -> run into curse of dimensionality traditional methods break down.

statistical methods tend to assume n>p

n rows (individuals), p columns (variables)

p measurements

Wide data are increasingly common in applications, e.g., neuroimaging, microarrays, MOOC data. But many traditional statistical methods assume n greater than p.

Ridge Regression and Shrinkage

In a linear regression model, in place of minimizing the sum of squared residuals, ridge regression says to minimize

minimize this part in OLS: breaks down in high dimensions

This is the RSS (duh)

penalty w/ tuning parameter penalizes for using too many parameters 2 to minimize RSS

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^{2i + n - 2i} + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2,$$

punish model for being too complicated

minimize RSS constrained by the penalty.

ridge regression: extension of linear regression add penalty for having more parameters.

results in shrinkage towards the origin.

Stein's Paradox and Shrinkage Estimation

Let $y_1 \sim \mathcal{N}(\theta_1, 1), y_2 \sim \mathcal{N}(\theta_2, 1), \dots, y_k \sim \mathcal{N}(\theta_k, 1)$ with $k \geq 3$. How should we estimate the vector θ , under sum of squared error loss? theta is a vector of means the y_i are independent

Stein: the vector y is *inadmissible*; uniformly beaten by the James-Stein estimator

MLE is ALWAYS inadmissible:

Stein's method results in

There exists a better estimator in each case.

 $\hat{\theta}_j = \left(1 - \frac{k-2}{\sum_i y_i^2}\right) y_j.$

265

Initial reaction: won't be practical, gains too small

Use this estimator: which depends of sum of squares of all data (despite independence!)

combine independent data

JAMES-STEIN ESTIMATORS for the 18 baseball players were calculated by "shrinking" the individual batting averages toward the overall "average of the averages." In this case the grand average is .265 and each of the averages is shrunk about 80 percent of the distance to this value. Thus the theorem on which Stein's method is based asserts that the true batting abilities are

Source: Efron-Morris, Scientific American 1977

more tightly clustered than the preliminary batting averages would seem to suggest they are.

LASSO and Sparsity

In a linear regression model, in place of minimizing the sum of squared residuals, LASSO says to minimize

penalizes regression coeff for growing too large

$$\sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij}\right)^2 + \lambda \sum_{j=1}^p |\beta_j| = \text{RSS} + \lambda \sum_{j=1}^p |\beta_j|.$$
absolute value:
sharp corner, derivative DNE

This helps induce sparsity, reducing the number of variables one has to deal with.

ridge regression: shrinks estimate towards 0

LASSO: it will kill estimates and make them 0 -> helps make model simpler agressively

Can't fit w/ normal calculus methods because of the sharp corner: but it's still convex optimizable and people have figured it out.

LASSO vs. Ridge Constraints

LASSO and ridge help with high-dimensional problem where traditional ML and OLS regressions fail.

bump into sharp corner: kill coefficient: LASSO handles the sparsity.

source: Introduction to Statistical Learning, James, Witten, Hastie, Tibshirani, http://www-bcf.usc.edu/~gareth/ISL/