

SCC.121: Fundamentals of Computer Science Sorting, Trees and Graphs

Algorithmic Paradigms: Dynamic Programming

Today's Lecture

Aim:

- Introduce the concept of:
 - Exhaustive search
 - Backtracking
 - Problem substructure
- Describe the dynamic programming approach.

Algorithmic paradigms

Generic framework that underlies a class of algorithms:

- Recursion
- Divide and conquer
- (Sweep-line algorithms)
- Greedy algorithms
- Exhaustive search,
- Backtracking,
- Dynamic programming

- Domain of inputs *In*
 - Integers,
 - Reals,
 - Binary strings,
 - Black and White Image (2D matrix of 0s and 1s),

- Domain of inputs *In*
- Domain of outputs Out
 - Integers,
 - Reals,
 - Binary strings,
 - Classification: {cat, dog}

- Domain of inputs *In*
- Domain of outputs Out
- For each input $x \in In$, you have a set of valid outputs: valid(x)
 - Sorting: x is a binary string and valid(x) is the set that contains the sorted version of x

- Domain of inputs In
- Domain of outputs Out
- For each input $x \in In$, you have a set of valid outputs: valid(x)
- Some algorithm A solves a problem P if for a given input $x \in In$ of size n, A(x) gives one of the valid outputs for x, or in other words, $A(x) \in valid(x)$.
- Most algorithms you've seen until now compute A(x) in a clever way.
- Because time and memory are important resources

Algorithmic Paradigm: Exhaustive Search

But in fact, one way to solve problems is to use "brute-force":

- This algorithmic paradigm is sometimes called **brute-force search**, sometimes called **exhaustive search**, and **generate and test**.
- What does solving a problem by "brute-force" entail?
 - Given an input x,
 - Test for all possible output y, one by one, whether y is a valid output i.e., whether $y \in valid(x)$
- Another way to look at it:
 - Possible outputs = candidate solutions
 - Try all candidate solutions

• Greatest common divisor of *a* and *b*:

- Gcd(2,4) = 2
- Gcd(5,7) = 1
- Gcd(32,48) = 16

Brute-force:

- For all integers in $1, ..., \min\{a, b\}$, check if they divide a and b,
- Keep the greatest such integer.

(Euclidean) Travelling Salesman Problem:

Given n nodes, distances between each pair and an origin city (node), compute smallest route starting at the origin city, going through all other city exactly once and coming back.

Brute-force:

For all possible orderings of the other n-1 nodes for the route, compute the route's distance and keep the route with smallest total distance.

O((n-1)!) possible routes (candidates) Time complexity:

• <u>Knapsack</u>: Given a set of items numbered 1 to n, such that item i has weight w_i and value v_i , and a total weight W, determine which items to put in the collection so that their total weight is < W and their total value is as large as possible.

• <u>Knapsack</u>: Given a set of items numbered 1 to n, such that item i has weight w_i and value v_i , and a total weight W, determine which items to put in the collection so that their total weight is < W and their total value is as large as possible.

• Brute-force:

For all subsets of these n items, compute the total weight and total value and keep the subset with largest total value, as long as its total weight is smaller than W.

• Time complexity: $O(2^n)$ possible subsets (candidates)

Candidate Space

- For a given problem, consider the set of all candidates:
 - That is a candidate space
 - Exhaustive search iterates through all candidates one by one and checks whether they are valid solutions.
 - Another possibility is to consider a potential search tree over the candidate space:
 - Tree root represents the candidate space (or also a generic candidate),
 - Its children represent disjoint subsets of the candidate space, obtained by **extending** the generic candidate,
 - And so on, until the leaves that represent the candidates are reached.

- Given a potential search tree approach:
 - Internal nodes allow to test multiple candidates at once, based on their common part,
 - There are many different ways to use this capability to test multiple candidates at once.
- In particular, you can use a depth-first search on this tree, and whenever you reach a (internal or leaf) node representing invalid candidates, you stop traversing this branch.

- Given a potential search tree approach:
 - Internal nodes allow to test multiple candidates at once, based on their common part,
 - There are many different ways to use this capability to test multiple candidates at once.
- In particular, you can use a depth-first search on this tree, and whenever you reach a (internal or leaf) node representing invalid candidates, you stop traversing this branch.

- Given a potential search tree approach:
 - Internal nodes allow to test multiple candidates at once, based on their common part,
 - There are many different ways to use this capability to test multiple candidates at once.
- In particular, you can use a depth-first search on this tree, and whenever you reach a (internal or leaf) node representing invalid candidates, you stop traversing this branch.

- Given a potential search tree approach:
 - Internal nodes allow to test multiple candidates at once, based on their common part,
 - There are many different ways to use this capability to test multiple candidates at once.
- In particular, you can use a depth-first search on this tree, and whenever you reach a (internal or leaf) node representing invalid candidates, you stop traversing this branch.

Beyond Backtracking

- In problems with additional constraints (e.g., knapsack), one can focus on eliminating subtrees of the search tree as early as possible.
 - These additional constraints, make even more subtrees unlikely to have a valid candidate.
 - Or one can compute some upper/lower bound on how good the candidates of a given subtree are -> Branch and Bound paradigm
 - One can use heuristics.
- Related concepts:
 - Pruning,
 - Minimax principle for the remaining possible moves in a chess game
 - •

Usages of Backtracking

- Puzzle solving:
 - Eight queens puzzle

Usages of Backtracking

- Puzzle solving:
 - Eight queens puzzle

Usages of Backtracking

- Puzzle solving:
 - Eight queens puzzle,
 - Crosswords,
 - Sudoku,...
- Combinatorial optimization problems:
 - Knapsack,
 - Parsing, ...
- Boolean satisfiability problem (SAT), constraint satisfaction problem, ...

Beyond candidate space

- Previous paradigms focus on the candidate space.
- Other paradigms focus on decomposing a "complicated" problem into "simpler" subproblems:
 - Recursion:

Decompose some problem P on input of size n into one or more instances of same problem P on smaller inputs (of size < n)

Divide-and-conquer:

Decompose some problem P on input of size n into two or more **disjoint** instances of same or related type.

Problem decomposition: First Aspect

- Optimal substructure (of problem P):
 - A solution to problem P can be obtained by the combination of optimal solutions to its subproblems.
 - Describes/gives a recursive algorithm (and definition) for problem P.
 - Example of optimal substructure for the shortest path from node u to node v on some graph G:
 - Consider the shortest path from u to v.
 - Take any intermediate node w on that path.
 - Then the "shortest path from u to v" = "shortest path from u to w" + "shortest path from w to v"

Problem decomposition: Second Aspect

- Overlapping/disjoint subproblems (of problem *P*):
 - If a solution to problem *P* can be obtained by the combination of optimal solutions to non-overlapping sub-problems -> **divide-and-conquer**
 - If a solution to problem P can be obtained by the combination of optimal solutions to overlapping sub-problems
 - Then the same subproblems will be solved over and over...
 - <u>Example</u>: Compute the Fibonacci numbers
 - F(0) = 0
 - F(1) = 1
 - F(n) = F(n-1) + F(n-2) for $n \ge 2$
 - That is, F(2) = 1, F(3) = 2, F(4) = 3, F(5) = 5, F(6) = 8, F(7) = 13, F(8) = 21,...

Problem decomposition: Second Aspect

- Overlapping/disjoint subproblems (of problem P):
 - If a solution to problem *P* can be obtained by the combination of optimal solutions to non-overlapping sub-problems -> **divide-and-conquer**
 - If a solution to problem P can be obtained by the combination of optimal solutions to overlapping sub-problems
 - Then the same subproblems will be solved over and over...
 - Example: Compute the Fibonacci numbers, F(n) = F(n-1) + F(n-2)

When computing F(6), F(4) is computed twice in the naïve recursive algorithm!

Problem decomposition: Second Aspect

- Overlapping/disjoint subproblems (of problem *P*):
 - If a solution to problem *P* can be obtained by the combination of optimal solutions to non-overlapping sub-problems -> **divide-and-conquer**
 - If a solution to problem P can be obtained by the combination of optimal solutions to overlapping sub-problems
 - Then the same subproblems will be solved over and over...
 - Example: Compute the Fibonacci numbers, F(n) = F(n-1) + F(n-2)

$$F(6) = F(5) + F(4)$$

$$F(6) = (F(4) + F(3)) + (F(3) + F(2))$$

$$F(6) = (F(3) + F(2) + F(2) + F(1))$$

$$+ (F(2) + F(1) + F(1) + F(0))$$

Algorithmic paradigm: Top-down dynamic programming

- Consider a problem with optimal substructure and overlapping subproblems.
- The top-down dynamic programming approach is:
 - Whenever a subproblem is solved, store the result in memory (e.g., in some array),
 - For every subsequent call to the subproblem, return the stored result.
- Storing computed values to avoid recomputing them is called memoization.
- Computation vs memory tradeoff

Top-down dynamic programming: Example

Computing the *n*th Fibonacci number

Algorithm:

- Keep an array Fib for the 0^{th} to (n-1)th Fibonacci numbers, with all entries null initially,
- Then, in algorithm, when F(i) is called,
 - If Fib[i] is null, compute F(i) and store the result in Fib
 - Else, return Fib[i]

Algorithmic paradigm: Bottom-up dynamic programming

- Consider a problem with optimal substructure and overlapping subproblems.
- The bottom-up dynamic programming approach is:
 - Solve the smallest subproblems first, and store the result in memory,
 - Solve larger and larger subproblems by using the stored results
- Can have better memory usage than top-down.

Bottom-up dynamic programming: Example

Computing the *n*th Fibonacci number

Algorithm:

- Have two variables currentFib and previous Fib, storing respectively the current Fibonacci number and the previous one, and initially set to 1 and 0.
- For n-1 iterations,
 - Compute the next Fibonacci number (nextFib) by summing the two variables together,
 - Set previousFib = currentFib, currentFib = nextFib.

• Given a set of items numbered 1 to n, such that item i has weight w_i and value v_i , and a total weight W, determine which items to put in the collection so that their total weight is < W and their total value is as large as possible.

- Given a set of items numbered 1 to n, such that item i has weight w_i and value v_i , and a total weight W, determine which items to put in the collection so that their total weight is < W and their total value is as large as possible.
- Variable $x_i \in \{0,1\}$ denotes whether item i is in the collection
- (Formal) Goal: choose $x_1, ..., x_n$ to maximise $\sum_{i=1}^n v_i x_i$, while keeping $\sum_{i=1}^n w_i x_i \leq W$
- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j,w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
j		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0																
	1																
	2																
	3																
	4																
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1																
	2																
	3																
	4																
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2																
	3																
	4																
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
j		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2																
	3																
	4																
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
j		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3																
	4																
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
j		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3																
	4																
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
j		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3																
	4																
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
j		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3																
	4																
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
j		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4																
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4																
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4																
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4																
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4																
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4																
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5																

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

$$W = 15$$

- What are the subproblems of (0-1) knapsack?
 - Computing m[j, w]: the max value one can get over the first j items with total weight at most w
 - m[0, w] = 0 for any w
 - $m[j, w] = m[j 1, w] \text{ if } w_j > w$
 - $m[j, w] = \max\{m[j-1, w], m[j-1, w-w_j] + v_j\}$ if $w_j \le w$

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

$$W = 15$$

- How to compute the set of items of the solution, not just the total value?
 - Compute set of items recursively using knapsack(j, w) function
 - If j = 0 then return empty set $\{\}$
 - Else if m[j, w] > m[j-1, w] then $\{i\} \cup knapsack(j-1, w-w_i)$
 - Else return knapsack(j-1, w)

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

$$W = 15$$

Solution: {...}

- How to compute the set of items of the solution, not just the total value?
 - Compute set of items recursively using knapsack(j, w) function
 - If j = 0 then return empty set $\{\}$
 - Else if m[j, w] > m[j-1, w] then $\{i\} \cup knapsack(j-1, w-w_i)$
 - Else return knapsack(j-1, w)

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

W = 15

Solution: {...}

- How to compute the set of items of the solution, not just the total value?
 - Compute set of items recursively using knapsack(j, w) function
 - If j = 0 then return empty set $\{\}$
 - Else if m[j, w] > m[j-1, w] then $\{i\} \cup knapsack(j-1, w-w_i)$
 - Else return knapsack(j-1, w)

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

W = 15

Solution: {5, ... }

- How to compute the set of items of the solution, not just the total value?
 - Compute set of items recursively using knapsack(j, w) function
 - If j = 0 then return empty set $\{\}$
 - Else if m[j, w] > m[j-1, w] then $\{i\} \cup knapsack(j-1, w-w_i)$
 - Else return knapsack(j-1, w)

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

W = 15

Solution: {5, ... }

- How to compute the set of items of the solution, not just the total value?
 - Compute set of items recursively using knapsack(j, w) function
 - If j = 0 then return empty set $\{\}$
 - Else if m[j, w] > m[j-1, w] then $\{i\} \cup knapsack(j-1, w-w_i)$
 - Else return knapsack(j-1, w)

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

W = 15

Solution: {5,4, ...}

- How to compute the set of items of the solution, not just the total value?
 - Compute set of items recursively using knapsack(j, w) function
 - If j = 0 then return empty set $\{\}$
 - Else if m[j, w] > m[j-1, w] then $\{i\} \cup knapsack(j-1, w-w_i)$
 - Else return knapsack(j-1, w)

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

W = 15

Solution: {5,4, ...}

- How to compute the set of items of the solution, not just the total value?
 - Compute set of items recursively using knapsack(j, w) function
 - If j = 0 then return empty set $\{\}$
 - Else if m[j, w] > m[j-1, w] then $\{i\} \cup knapsack(j-1, w-w_i)$
 - Else return knapsack(j-1, w)

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

W = 15

Solution: {5,4,3, ...}

- How to compute the set of items of the solution, not just the total value?
 - Compute set of items recursively using knapsack(j, w) function
 - If j = 0 then return empty set $\{\}$
 - Else if m[j, w] > m[j-1, w] then $\{i\} \cup knapsack(j-1, w-w_i)$
 - Else return knapsack(j-1, w)

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

W = 15

Solution: {5,4,3, ...}

- How to compute the set of items of the solution, not just the total value?
 - Compute set of items recursively using knapsack(j, w) function
 - If j = 0 then return empty set $\{\}$
 - Else if m[j, w] > m[j-1, w] then $\{i\} \cup knapsack(j-1, w-w_i)$
 - Else return knapsack(j-1, w)

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

W = 15

Solution: {5,4,3,2, ...}

- How to compute the set of items of the solution, not just the total value?
 - Compute set of items recursively using knapsack(j, w) function
 - If j = 0 then return empty set $\{\}$
 - Else if m[j, w] > m[j-1, w] then $\{i\} \cup knapsack(j-1, w-w_i)$
 - Else return knapsack(j-1, w)

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

W = 15

Solution: {5,4,3,2, ...}

- How to compute the set of items of the solution, not just the total value?
 - Compute set of items recursively using knapsack(j, w) function
 - If j = 0 then return empty set $\{\}$
 - Else if m[j, w] > m[j-1, w] then $\{i\} \cup knapsack(j-1, w-w_i)$
 - Else return knapsack(j-1, w)

	W																
i		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
	3	0	2	3	3	3	3	3	3	3	3	3	3	4	6	7	7
	4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
	5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

W = 15

Solution: {5,4,3,2}

0-1 Knapsack using dynamic programming

- Correctness
- Time complexity: O(nW)
- Space complexity: O(nW)

- What about NP-completeness?
 - Knapsack is NP-complete
 - But isn't it conjectured that NP-complete problems cannot be solved in polynomial time?
 - Input W contributes only $\log W$ to the problem input, unlike n. Why?
 - W can be encoded using only log W bits.
 - Indeed, there are n items and each item contributes some value to the input, so that is $\Theta(n)$ bits in total.
 - Knapsack has pseudo-polynomial runtime and thus is said to be weakly NP-complete

Beyond 0-1 Knapsack

• Given a set of items numbered 1 to n, such that item i has weight w_i and value v_i , and a total weight W, determine which items to put in the collection so that their total weight is < W and their total value is as large as possible.

Unbounded Knapsack:

- No longer constrained to at most one of each item
- $x_i \ge 0$ denotes how many items i you have in the collection
- **Goal**: maximise $\sum_{i=1}^{n} v_i x_i$, but keeping $\sum_{i=1}^{n} w_i x_i \leq W$

Applications of dynamic programming

Combinatorial optimization problem:

- Knapsack problems,
- Travelling Salesman problems,...

Other computer science problems:

- Tower of Hanoi (puzzle),
- Matrix chain multiplication (mathematic operation),...

But also for computational problems in other fields:

- Bioinformatics and computational biology
- Economy,
- Control theory,
- Operations research ,...

Algorithmic paradigms: Summary

Generic framework that underlies a class of algorithms:

- Exhaustive search,
- Backtracking,
- Greedy algorithms
- Recursion
- Divide and conquer
- Dynamic programming
- (Sweep-line algorithms)

Summary

Today's lecture:

Introduced:

- Exhaustive (or brute-force) search and backtracking,
- Problem substructure,
- Dynamic programming.

- Next Lecture:
- Any questions?