ENSTA 1ère année, Cours MA 103

25 Juin 2018

Contrôle de connaissances. Durée : 3 heures

Aucun document ni telephone/calculatrice/tablette/ordinateur/game boy/nintendo switch ou tout appareil électronique équivalent n'est autorisé. Les montres avec aiguilles sont acceptées et les montres digitales ne contenant pas plus de 8 chiffres sont tolérées.

Question 1. On considère le problème suivant : trouver u(x,t) et v(x,t) tel que $\forall (x,t) \in \mathbb{R} \times \mathbb{R}^+$

$$\begin{cases}
\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = -\sqrt{2} \frac{\partial v}{\partial x}, \\
\frac{\partial v}{\partial t} + 2 \frac{\partial v}{\partial x} = -\sqrt{2} \frac{\partial^2 u}{\partial x \partial t},
\end{cases} (1)$$

avec les conditions initiales

$$\begin{cases} u(x,0) = u^{0}(x), \\ \frac{\partial u}{\partial t}(x,0) = 0, \\ v(x,0) = 0. \end{cases}$$
 (2)

1.a. Ecrire le problème sous la forme

$$\begin{cases} \frac{\partial}{\partial t} \mathbb{U} + \mathbb{C} \frac{\partial}{\partial x} \mathbb{U} = 0 \\ \mathbb{U}(x, 0) = \mathbb{U}^{0}(x), \quad \forall x \in \mathbb{R} \end{cases}$$
 (3)

où l'on précisera les vecteurs \mathbb{U} , \mathbb{U}^0 et la matrice \mathbb{C} .

1.b. Est ce que ce système est hyperbolique? Justifier.

Corrigé de la question 1.

$$\frac{\partial}{\partial t} \begin{bmatrix} \frac{\partial u}{\partial t} \\ \frac{\partial u}{\partial x} \\ v \end{bmatrix} + \begin{bmatrix} 0 & -1 & \sqrt{2} \\ -1 & 0 & 0 \\ \sqrt{2} & 0 & 2 \end{bmatrix} \frac{\partial}{\partial x} \begin{bmatrix} \frac{\partial u}{\partial t} \\ \frac{\partial u}{\partial x} \\ v \end{bmatrix} = 0$$
(4)

La matrice C est symétrique réelle. Cette matrice est donc diagonalisable à valeurs propres réelles. Le système est donc hyperbolique.

Bareme. 1.a: 1 point — 1.b.: 1 point

Question 2. On considère le modèle unidimensionnel pour l'aéroacoustique : trouver u(x,t) et v(x,t) tel que $\forall (x,t) \in \mathbb{R} \times \mathbb{R}^+$

$$\begin{cases}
\frac{\partial u}{\partial t} + M \frac{\partial u}{\partial x} - c \frac{\partial v}{\partial x} = 0, \\
\frac{\partial v}{\partial t} + M \frac{\partial v}{\partial x} - c \frac{\partial u}{\partial x} = 0,
\end{cases}$$
(5)

avec les conditions initiales

$$\begin{cases} u(x,0) = u^{0}(x), \\ v(x,0) = v^{0}(x). \end{cases}$$
 (6)

où M est le nombre de Mach $M \in \mathbb{R}$ et c est la vitesse supposée positive $(c \ge 0)$.

2.a. On pose

$$\begin{vmatrix} u_1 = u + v \\ v_1 = u - v \end{vmatrix}$$

Montrer que chacune de ces 2 fonctions vérifie une équation de transport que l'on précisera. **2.b.** Calculer $u_1(x,t)$ et $v_1(x,t)$ pour tout $(x,t) \in \mathbb{R} \times \mathbb{R}^+$ par la méthode des caractéristiques. **2.c.** On suppose supp $u^0(\cdot) \subset [-a,a]$ et supp $v^0(\cdot) \subset [-a,a]$. Trouver le plus petit intervalle $[\alpha(t),\beta(t)]$ tel que alors supp $u(\cdot,t) \subset [\alpha(t),\beta(t)]$ et supp $v(\cdot,t) \subset [\alpha(t),\beta(t)]$.

Corrigé de la question 2.

2.a. En additionnant les 2 équations de (5), on trouve

$$\frac{\partial u_1}{\partial t} + (M - c)\frac{\partial u_1}{\partial x} = 0$$

et en les soustrayant:

$$\frac{\partial v_1}{\partial t} + (M+c)\frac{\partial v_1}{\partial x} = 0$$

et les CI sont

$$\begin{vmatrix} u_1^0 = u^0 + v^0 \\ v_1^0 = u^0 - v^0 \end{vmatrix}$$

2.b. Par la méthode des caractéristiques appliquée à u_1 et v_1 , on trouve

$$\forall (x,t) \in \mathbb{R} \times \mathbb{R}^+, \quad \begin{vmatrix} u_1(x,t) = u^0(x - (M-c)t) + v^0(x - (M-c)t) \\ v_1(x,t) = u^0(x - (M+c)t) - v^0(x - (M+c)t). \end{vmatrix}$$

2.c. Les solutions u et v sont des combinaisons linéaires de fonctions $f_i(x-c_it)$ qui se propagent aux vitesses M-c et M+c. Comme $c \geq 0$, $M-c \leq M+c$, on a donc supp $u(\cdot,t) \subset [\alpha(t),\beta(t)]$ et supp $v(\cdot,t) \subset [\alpha(t),\beta(t)]$ avec $\alpha(t) = -a + (M-c)t$ et $\beta(t) = a + (M+c)t$

Bareme. 2.a : 1 point(EDP+CI) — 2.b. : 1 point — 2.c : 2 points (1 point pour $\alpha(t)$ et 1 point pour $\beta(t)$)

Question 3. On considère l'équation de transport avec une vitesse c>0:

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0, \quad x \in \mathbb{R}, \quad t > 0, \tag{7}$$

Considérons le schéma décentré général défini par (K > 0)

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + \frac{c}{h} \sum_{k=0}^{K} \alpha_k u_{j-k}^n$$
 (S)

où les α_k sont indépendants de h et Δt .

3.a. Donner les conditions sur α_k pour que le schéma soit consistant. Que doivent vérifier les α_k pour que le schéma soit d'ordre 2 en espace?

3.b. Réécrire le schéma sous la forme

$$u_j^{n+1} = \sum_{k=0}^{K} \gamma_k \, u_{j-k}^n \tag{S}$$

où les nombres réels γ_k seront exprimés en fonction des α_k , de h et Δt .

3.c. On suppose

$$\gamma_k \ge 0, \quad 0 \le k \le K, \quad \sum_{k=0}^K \gamma_k = 1$$

Montrer qu'un tel schéma est automatiquement L^2 -stable.

Corrigé de la question 3.

3.a.Le schéma est consistant si et seulement si, $\sum_{k=0}^{K} \alpha_k = 0$ et $\sum_{k=0}^{K} k\alpha_k = -1$. Il est d'ordre 2 si, de plus, $\sum_{k=0}^K k^2 \alpha_k = 0$. **3.b.** On obtient $\gamma_0 = 1 - \frac{c\Delta t}{h} \alpha_0$ et $\gamma_k = -\frac{c\Delta t}{h} \alpha_k$ pour $0 < k \leqslant K$. **3.c.**Le coefficient d'amplification du schéma est :

$$\hat{S}_h(\xi) = \sum_{k=0}^K \gamma_k \, e^{-ik\xi h}$$

Par l'inégalité triangulaire, on obtient, les coefficients γ_k étant tous positifs

$$|\hat{S}_h(\xi)| \le \sum_{k=0}^K \gamma_k = 1$$

ce qui permet de conclure.

Bareme. 3.a: 1 pt pour la consistance +1 point pour l ordre 2 — 3.b.: 0.5 point — 3.c: 1.5 point

Question 4. On considère le schéma numérique associé à l'équation (7) :

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + ac\frac{u_j^n - u_{j-1}^n}{h} + (1 - a)c\frac{u_j^n - u_{j-2}^n}{2h} = 0,$$
(8)

où a est un réel indépendant de h et Δt .

4.a. En utilisant la question 3. donner une condition suffisante de convergence.

4.b. Donner la vitesse de propagation numérique du schéma en fonction de a. En déduire une condition nécessaire de convergence.

Corrigé de la question 4.

4.a. On a

$$\alpha_0 = \frac{a+1}{2}$$
 $\alpha_1 = -a$ $\alpha_2 = \frac{a-1}{2}$

Donc $\alpha_0 + \alpha_1 + \alpha_2 = 0$ et $\alpha_1 + 2\alpha_2 = -1$. La question 3 permet donc d'affirmer que le schéma est consistant. De plus :

$$\gamma_0 = 1 - \frac{c\Delta t}{h} \frac{a+1}{2}$$
 $\gamma_1 = \frac{c\Delta t}{h} a$ $\gamma_2 = \frac{c\Delta t}{h} \frac{1-a}{2}$

Donc $\gamma_0+\gamma_1+\gamma_2=1$. Avec la question 3, il suffit donc que les γ_i soient positifs pour que le schéma soit stable. Si $a\in[0,1]$ et $\frac{c\Delta t}{h}\leq\frac{2}{a+1}$, le schéma est donc stable. Sous ces deux conditions, le schéma est consistant et stable, donc convergent d'après le théorème de Lax.

4.b. Si $a \neq 1$ $V_{num} = \frac{2h}{\Delta t}$, si a = 1 $V_{num} = \frac{h}{\Delta t}$. La condition nécessaire de stabilité est $V_{num} \geq c$. Bareme. **4.a**: 1 pt pour la condition de stabilite +1 point pour la consistance et conclure sur la cv avec le th de Lax — **4.b**: 1 pt

Question 5. On considère le schéma numérique associé à l'équation (7) :

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + \frac{c}{2} \left(\frac{u_{j+1}^{n+1} - u_{j-1}^{n+1}}{2h} + \frac{u_{j+1}^n - u_{j-1}^n}{2h} \right) = 0, \tag{9}$$

5.a. Est ce que ce schéma est explicite ou implicite? Expliquer.

5.b. Quel est l'ordre de ce schéma? *Indication* : On pourra effectuer les développements autour du point $(x_j, t^{n+\frac{1}{2}})$.

5.c. Etudier la stabilité L^2 de ce schéma.

5.d. Est ce que ce schéma est dissipatif? dispersif?

5.e. Quels sont les avantages et inconvénients de ce schéma.

Corrigé de la question 5.

5.a. Ce schéma est implicite.

5.b. On effectue les développements de Taylor autour du point $(x_j, t^{n+\frac{1}{2}})$ à l'ordre 4 (en temps et espace). On obtient

$$\varepsilon_j^{n+\frac{1}{2}} = \frac{\Delta t^2}{8} \frac{\partial^3 u}{\partial t^3} + O(\Delta t^3) + c \frac{\Delta t^2}{8} \frac{\partial^3 u}{\partial t^2 \partial x} + c \frac{h^2}{6} \frac{\partial^3 u}{\partial x^3} + O(\Delta t^3 + h^3).$$

Le schéma est donc d'ordre 2 en temps et 2 en espace.

5.c. Le coefficient d'amplification vaut :

$$\hat{S}_h(\xi) = \frac{1 - i\frac{c\Delta t}{2h}\sin(h\xi)}{1 + i\frac{c\Delta t}{2h}\sin(h\xi)}$$

 $\hat{S}_h(\xi)$ est donc de module 1, et le schéma est stable.

5.d. La dissipation numérique est donnée par

$$a_h(\xi, \Delta t) = -\frac{1}{\Delta t} \ln(|\hat{S}_h(\xi, \Delta t)|)$$

Le coefficient d'amplification étant de module 1, le schéma n'est donc pas dissipatif. La dispersion numérique est donnée par

$$c_h(\xi, \Delta t) = -\frac{1}{\xi \Delta t} \arg(|\hat{S}_h(\xi, \Delta t)|)$$

Après un développement limité, on obtient

$$c_h(\xi, \Delta t) = \frac{2c}{\alpha \xi h} \arctan(\frac{\alpha}{2} \sin(h\xi)) \sim c + c(1 - \alpha^2/2)(h\xi)^2/6 + \mathcal{O}((h\xi)^4)$$

Le schéma est dispersif. **Bareme. 5.a: 0.5 pt — 5.b.: 1 point — 5.c:1 point — 5.d: 1 pt(dissipatif)+1pt(dispersif — 5.e:0.5pt**

Question 6. On considère le schéma de Beam Warming qui s'écrit

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} - \frac{1}{\Delta t} \left(\frac{\alpha(\alpha - 1)}{2} u_{j-2}^n + \alpha(2 - \alpha) u_{j-1}^n + \frac{\alpha(\alpha - 3)}{2} u_j^n \right) = 0, \tag{10}$$

où $\alpha = \frac{c\Delta t}{h}$.

6.a. Pour quelle équation aux dérivées partielles, ce schéma est-il consistant?

6.b. Montrer que le schéma est d'ordre 2 en temps et en espace.

Corrigé de la question 6.

Bareme. 6.a: 1 pt — 6.b.: 1 point

Question 7. On considère le problème (14) avec f(u) = u(u-1)

$$u^{0}(x) = 0$$
 si $x < 0$, $u^{0}(x) = 1$ si $0 < x < 1$, $u^{0}(x) = 0$ si $x > 1$.

Construire la solution faible entropique en justifiant.

Corrigé de la question 7. Il faut tout d'abord tracer les caractéristiques qui sont d'équation $X_{x_0}(t) = a(u^0(x_0))t + x_0 = (2u^0(x_0) - 1)t + x_0$. On trouve

$$\begin{cases} x_0 < 0, & X_{x_0}(t) = -t + x_0, \quad \text{zone 1} \\ 0 < x_0 < 1, & X_{x_0}(t) = t + x_0, \quad \text{zone 3} \\ x_0 > 1, & X_{x_0}(t) = -t + x_0, \quad \text{zone 4} \end{cases}$$

Au temps t=0, les caractéristiques des zones 3 et 4 se rencontrent : un choc apparait. Entre Les zones 1 et 3, il n y a pas de caracteristiques : une onde de detente apparait (on peut introduire des caracteristiques fictives, c'est la zone 2). La solution est donnée par

$$\forall t < t^*, \quad u(x,t) = \begin{cases} 0 & \text{si } x < -t \\ \frac{1}{2} \left(\frac{x}{t} + 1 \right) & \text{si } -t < x \le t \\ 1 & \text{si } t \le x \le \sigma_1(t) \\ 0 & \text{si } x > \sigma_1(t) \end{cases}$$
(11)

où, d'après la relation de Rankine Hugoniot $\sigma'_1(t) = 0$ soit $\sigma_1(t) = 1$.

A t=1 et $x^*=1$, la zone 3 disparait. Les caractéristiques de la zone 2 (caracteristiques fictives correspondant à la détente) et 4 se rencontrent : un nouveau choc apparait. La relation de Rankine Hugoniot donne

$$\sigma_2'(t) = \frac{\sigma_2(t)}{2t} - \frac{1}{2}.$$

Cette ligne de choc doit passer par $(x^*, t^*) = (1, 1)$, soit $\sigma_2(t) = 2\sqrt{t} - t$.

$$\forall t > t^*, \quad u(x,t) = \begin{cases} 0 & \text{si } x < -t \\ \frac{1}{2} \left(\frac{x}{t} + 1\right) & \text{si } -t < x \le \sigma_2(t) \\ 0 & \text{si } x > \sigma_2(t) \end{cases}$$

$$(12)$$

La solution donnée par (11) et (12) est une solution faible car elle est solution classique là où elle est C^1 et les lignes de choc vérifient la relation de Rankine Hugoniot. C'est la solution entropique car le long des lignes de choc, on a $u^- > u^+$ (f étant convexe).

Bareme. le 1er choc : 1 pt — la detente : 1 point — la solution pour $t < t^*$: 1 point — le choc pour $t > t^*$: 2 points — Justification solution entropique : 2 points

Question 8. 8.a. Montrer que les équations des caractéristiques associées au problème suivant

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{u^2}{2} \right) = -\alpha u, & (\alpha > 0) \\ u(x, t = 0) = u^0(x). \end{cases}$$
 (13)

sont données par

$$X_{x_0}(t) = u^0(x_0) \frac{1 - e^{-\alpha t}}{\alpha} + x_0, \quad x_0 \in \mathbb{R}.$$

8.b. Montrer que si u^0 est C^1 et croissante alors il existe une unique solution classique définie pour tout t>0. Donner la solution quand $u^0(x)=x$.

Corrigé de la question 8. 8.a. Soit $x_0 \in \mathbb{R}$, posons $v(t) = u(X_{x_0}(t), t)$. En dérivant v on voit qu'en posant $X'_{x_0}(t) = u(X_{x_0}(t), t)$ alors v vérifie $v'(t) = -\alpha v(t)$.

En résolvant la deuxième équation on obtient $v(t)=u^0(x_0)e^{-\alpha t}$ puisque $v(0)=u(x_0,0)=u^0(x_0)$. Donc $X'_{x_0}(t)=u(X_{x_0}(t),t)=v(t)=u^0(x_0)e^{-\alpha t}$. Ainsi, en se rappelant que $X_{x_0}(0)=x_0$, on a :

 $X_{x_0}(t) = u^0(x_0) \frac{1 - e^{-\alpha t}}{\alpha} + x_0.$

8.b. Supposons que u^0 soit croissante et C^1 , alors pour tout t>0, $F_t: x_0\mapsto u^0(x_0)\frac{1-e^{-\alpha t}}{\alpha}+x_0$ est strictement croissante puisque que $\frac{1-e^{-\alpha t}}{\alpha}>0$. Aussi, elle est surjective à valeur dans $\mathbb R$, c'est donc une bijection C^1 . Elle est donc inversible d'inverse C^1 . Ainsi, $\forall (x,t)\in\mathbb R\times\mathbb R^+,\exists!x_0\in\mathbb R$ tel que $x=u^0(x_0)\frac{1-e^{-\alpha t}}{\alpha}+x_0$ et $u(x,t)\mapsto u^0(F_t^{-1}(x_0))e^{-\alpha t}$ est C^1 . Par construction, cette application est solution de l'EDP point par point, c'est donc bien l'unique solution classique.

En particulier lorsque $u^0(x) = x$:

$$u(x,t) = u^{0} \left(\frac{\alpha x}{\alpha + 1 - e^{-\alpha t}} \right) e^{-\alpha t}$$

Bareme. 8.a: 1 pt — 8.b.: 2 points

Question 9. On considère la loi de conservation scalaire

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{\partial}{\partial x} (f(u)) = 0, \\ u(x, t = 0) = u^{0}(x). \end{cases}$$
(14)

avec $f(u) = u^3/3$ et

$$u^{0}(x) = -1$$
 si $x < 0$, $u^{0}(x) = 1$ si $x > 0$.

- **9.a.** Tracer les caractéristiques associées à cette donnée initiale.
- 9.b. Quelle solution du problème de Cauchy la méthode des caractéristiques suggère-t-elle?
- **9.c.** Cette solution est-elle une solution faible? Justifier.

Corrigé de la question 9.

- **9.a.** Les caractéristiques sont toutes de pente 1.
- **9.b.**Cela suggère la solution suivante : u(x,t) = 1 si x > t et u(x,t) = -1 si x < t : la ligne de choc est de vitesse 1.
- **9.c.** C'est une solution faible si la ligne de choc vérifie la relation de Rankine Hugoniot. La relation de Rankine Hugoniot dans le cas où $u^- = -1$ et $u^+ = 1$ donne

$$\sigma'(t) = \frac{\frac{1^3}{3} - \frac{(-1)^3}{3}}{1 - (-1)} = \frac{1}{3}$$

La solution trouvée à la question précédente n'est donc pas solution faible. **Bareme. 9.a : 0.5 pt** — **9.b. : 0.5 point** — **9.c : 2 pts**

Question 10. On considère l'équation de transport à coefficients variables

$$\begin{cases} \frac{\partial u}{\partial t} - x^3 t^3 \frac{\partial u}{\partial x} = 0, & \forall (x, t) \in \mathbb{R} \times \mathbb{R}^+ \\ u(x, 0) = u_0(x), & \forall x \in \mathbb{R}, \end{cases}$$
(15)

10.a. Montrer que la solution $t \mapsto X(t; x_0)$ de l'équation différentielle des caractéristiques qui part de x_0 existe globalement pour tout temps t > 0.

10.b. Représenter graphiquement la caractéristique $C_{x_0} := \{(X(t; x_0), t), t > 0\}$ issue de x_0 (pour plusieurs valeurs de x_0). Montrer que lorsque x_0 varie les courbes C_{x_0} ne remplissent pas le demiespace $\mathbb{R} \times \mathbb{R}^+$. Décrire le sous ensemble de $\mathbb{R} \times \mathbb{R}^+$ atteint par ces courbes.

10.c. Démontrer la non unicité de la solution du problème de Cauchy en construisant une solution non nulle du problème homogène (c'est à dire avec une donnée initiale nulle) qui soit de la forme

$$u(x,t) = \varphi\left(\frac{1}{x^2} - \frac{t^4}{2}\right) \tag{16}$$

où φ est une fonction régulère à support compact dont le support est adéquatement choisi.

Corrigé de la question 10.

10.a. L'équation des caractéristiques s'écrit cette fois

$$\frac{dX}{dt} = c(X, t) = -t^3 X^3 \quad \Longrightarrow -\frac{dX}{X^3} = t^3 dt$$

ce qui s'intégre, avec $X(0) = x_0$ en

$$\frac{1}{2X^2} - \frac{1}{2x_0^2} = \frac{t^4}{4}$$

d'où l'équation de la caractéristique issue de x_0 :

$$X(t) = x_0 \left(1 + \frac{x_0^2 t^4}{2}\right)^{-1/2}$$

qui existe bien pour tout temps positif.

10.b. Le domaine décrit par la réunion des caractéristiques est $\{(x,t) / x^2t^4 < 2\}$.

10.c. La fonction u donnée par (16) est régulière dans $\mathbb{R} \setminus \{0\} \times \mathbb{R}^+$. Si nous choisissons φ à support inclus dans \mathbb{R}^- , il est facile de voir que le support de u de contient ni l'axe x=0 ni la droite t=0, ce qui signifie que u est régulière partout et que u(x,0)=0 pour tout x. Par ailleurs, on calcule

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) = -2t^3 \varphi'\left(\frac{1}{x^2} - \frac{t^4}{2}\right), \\ \frac{\partial u}{\partial x}(x,t) = -2/x^3 \varphi'\left(\frac{1}{x^2} - \frac{t^4}{2}\right), \end{cases}$$

FIGURE 1 – En rouge : les caractéristiques. En gris : le domaine non atteint (question 10)

ce qui démontre que

$$\frac{\partial u}{\partial t}(x,t) - x^3 t^3 \frac{\partial u}{\partial x}(x,t) = 0.$$

Bareme. 10.a: 1 pt — 10.b.: 2 points — 10.c: 2 pts

FIGURE 2 – En bleu: le support de la solution