# 알고리즘및실습

#### 제3장 분할 정복

### 1. 분할 정복 방법

분할 정복 방법이란 문제의 사례를 2개 이상의 더 작은 같은 종류의 문제에 대한 사례로 나누어 각 작은 사례에 대한 해답을 얻고, 이들을 결합하여 원 문제에 대한 해답을 얻는 알고리즘 설계 방법을 말한다. 보통 분할 정복 방법을 이용하여 문제를 해결하면 전주소사를 하는 것보다 성능을 개선할 수 있다. 하지만 성능이 급격하게 개선되는 것은 아니라 표준 성능 분류에서 한 수준 정도 성능을 개선해 준다. 즉, 지수 시간이 필요한 것을 다차 시간으로 바꾸어주지는 못한다.

1장에서 살펴본 합병 정렬이 대표적인 분할 정복 기법을 사용하는 알고리즘이다.  $O(n^2)$ 인 일반 정렬 알고리즘을  $O(n\log n)$ 로 개선해 준다. 합병 정렬은 왼쪽 절반을 정렬하고, 오른쪽 절반을 정렬한 다음, 이 둘을 결합하여 최종 정렬 결과를 얻는다. 이때 왼쪽 절반, 오른쪽 절반의 정렬은 재귀적 기법을 사용하여 정렬한다. 이처럼 분할 정복 기법은 전수조사와 마찬가지로 보통 재귀 알고리즘으로 구현한다. 이때 각 재귀 단계에서 문제의 크기가 줄어드는 정도와 비재귀 부분의 비용이 전체 성능에 가장 큰 영향을 준다. 당연하지만 크기가 빠르게 줄어들면 재귀 호출 트리의 깊이가 짧아 더 빨리 종료할 수 있으며, 비재귀 부분의 비용이 저렴할수록 효과적이다. 우리가 잘 알고 있는 이진 검색도 분할 정복 기법을 사용하는 알고리즘이다.

분할 정복 기법의 기본 알고리즘은 다음과 같다.

- 단계 1. 문제를 같은 유형의 작은 문제로 나눈다.
- 단계 2. 작은 문제를 재귀적으로 해결한다.
- 단계 3. 작은 문제의 결과를 결합하여 원 문제에 대한 해결책을 제시한다.

이 기법을 적용하기 위해서는 주어진 문제를 같은 유형의 작은 문제로 나눌 수 있어야 한다. 단계 2에서 문제를 나누는 과정은 해답을 쉽게 얻을 수 있는 수준까지 반복적으로 이루어진다. 모든 재귀 알고리즘이 그러하듯이 재귀를 종료하는 시점이 알고리즘 설계에 중요한 요소이다. 이처럼 큰 문제를 작은 문제로 반복적으로 나누기 때문에 분할 정복은 하향식 접근(top-down) 방법이라 한다. 10장에서 살펴보는 동적 프로그래밍 중 테뷸레이션 방법은 거꾸로 상향식 접근(bottom-up) 방법이다. 분할 정복 기법의 성능은 재귀 깊이와 단계 3의 시간 복잡도에 의해 결정된다.

#### 역쌍 개수 구하기 2.



💗 역쌍 개수 구하기 문제

- ullet 입력. n개의 정수로 구성된 배열 A
- 출력. 배열 A에 존재하는 역쌍의 개수
- 역쌍의 정의. i < j에 대해 A[i] < A[j]인 쌍

주어진 입력 배열 A가 오름차순으로 정렬되어 있으면 역쌍이 하나도 없으며, 거꾸로 내림차순으로 정렬되어 있으면 모든 쌍이 역쌍이 된다. 따라서 역쌍의 개수는 0에서 n(n-1)/2이다.

이 문제는 이중 **for** 문을 이용하여 간단히 전수조사를 하여 해결할 수 있다. 이 알고리즘의 시간 복잡도는  $O(n^2)$ 이며 공간 복잡도는 입력 배열 외에 추가로 사용하는 공간이 일정하므로 O(n)이다.

#### 알고리즘 3.1 역쌍 개수 구하기 전주조사 알고리즘

```
1: function INVERSIONCOUNT(A)
      count := 0
2:
      for i := 1 to n - 1 do
3:
          for j := i + 1 to n do
4:
            \mathbf{if}\ A[i] > A[j] \ \mathbf{then}\ ++count
5:
6:
      return count
```

어떤 문제를 분할 정복으로 해결하고 싶으면 먼저 합병 정렬처럼 입력을 왼쪽 절반과 오른쪽 절반으로 나누어 같은 문제의 소 문제로 각 절반을 해결할 수 있는지 생각해 보아야 한다. 왼쪽 절반에 존재하는 역쌍은 전체 역쌍 수에 포함해야 하고, 오른쪽 절반에 존재하는 역쌍도 전체 역쌍 수에 포함해야 한다. 그런데 각 절반에 있는 역쌍이 전부는 아니며, 역쌍 중 쌍의 첫 번째 요소가 왼쪽에 있고, 다른 하나는 오른쪽에 있는 역쌍까지 찾아 이 역쌍도 전체 역쌍 수에 포함해야 한다. 이것을 쪼개진 역쌍이라 하면 왼쪽 절반, 오른쪽 절반에 있는 역쌍은 재귀적으로 구하면 되고, 쪼개진 역쌍은 비재귀적 부분에서 구하면 된다. 쪼개진 역쌍만 효과적으로 찾을 수 있다면 전수조사하는 것 보다 효과적으로 이 문제를 분할 정복하여 전체 역쌍을 찾을 수 있다. 합병 정렬에서는 비재귀적 부분에서 합병을 진행하며, 이것의 시간 복잡도는 O(n)이다. 쪼개진 역쌍을 O(n)에 찾을 수 있으면 분할 정복으로 역쌍을 찾는 것의 시간 복잡도는 합병 정렬과 마찬가지로  $O(n \log n)$ 이 된다.

쪼개진 역쌍을 어떻게 효과적으로 찾을 수 있을까? 합병 정렬에서 합병하는 것을 생각하여 보자. 왼쪽 절반의 첫 번째 요소와 오른쪽 절반의 첫 번째 요소를 비교하여 작은 것을 합병의 첫 번째 요소로 선택한다. 이때 왼쪽 절반에 있는 요소가 선택되면 이 요소로 구성되는 역쌍은 없다. 하지만 오른쪽 요소가 선택되면 왼쪽에 남아 있는 요소만큼 역쌍이 존재하게 된다. 즉, 합병 정렬을 수행하면서 합병할 때 쪼개진 역쌍을 구할 수 있다.

역쌍 개수 구하기는 추천 시스템에서 많이 사용하는 협업 필터링을 구현할 때 활용할 수 있다. 예를 들어 정해진 10개의 영화에 대해 길동이, 춘향이, 몽룡이가 선호하는 순서가 있다고 하자. 그러면 춘향이와 몽룡이 중 길동이와 취향이 더 가까운 사람은 누구일까? 춘향이와 몽룡이의 선호 순서를 길동이의 기준을 이용하여 다음과 같은 정수 배열을 만들 수 있다.

```
춘향 = [6, 7, 8, 1, 2, 4, 3, 5, 9, 10]
몽룡 = [4, 2, 1, 5, 3, 7, 8, 6, 10, 9]
```

즉, 길동이가 6번째로 선택한 영화를 춘향이는 가장 좋아한다는 것이며, 길동이가 4번째로 선택한 영화를 몽룡이는 가장 좋아한다는 것이다. 이 두 배열에서 역쌍을 구해보면 춘향이 배열은 16개 역쌍이 있고, 몽룡이 8개 역쌍이 있다. 그러면 길동이와 취향이 더 가까운 친구는 몽룡이다.

역쌍 개수 구하기와 유사한 문제로 연속 부분 구간의 합계 최댓값 구하기 문제가 있다. 이 문제도 모든 연속

#### 알고리즘 3.2 역쌍 개수 구하기 알고리즘

```
1: function COUNTINVERSION(A[])
 2: return COUNTINVERSION(1, n, A)
 1: function COUNTINVERSION(lo, hi, A[])
      \quad \textbf{if lo} < \textbf{hi then} \\
          mid := lo + (hi - lo)/2
 3:
          leftInv := countInversion(1, mid - 1, A)
 4:
          rightInv := COUNTINVERSION(mid, hi, A)
 5:
          splitInv := countSplitInversion(lo, mid, hi, A)
 6:
          return leftInv + rightInv + splitInv
 7:
    return 0
 1: function COUNTSPLITINVERSION(lo, mid, hi, A[])
       left[] := A[lo...mid - 1]
       right[] := A[mid...hi]
 3:
       L, R, i, count := 1, 1, lo, 0
 4:
       while L \le mid - 1 and R \le hi do
 5:
          if left[L] < right[R] then
 6:
             A[i++] := \mathsf{left}[L++]
 7:
          else
 8:
             A[i++] := right[R++]
 9:
             count += LEN(left)-L+1
10:
       while L \le mid - 1 do
11:
         A[i++] := \mathsf{left}[L++]
12:
       while R \le \text{hi do}
13:
          A[i++] := right[R++]
14:
      return count
15:
```

부분 구간의 합계를 이중 **for** 문을 이용하여 계산하여 최댓값을 구할 수 있다. 이것의 시간 복잡도는  $O(n^2)$ 이다. 이 문제도 합병 정렬과 동일하게 왼쪽 절반, 오른쪽 절반으로 나누면 찾고자 하는 구간은 왼쪽 절반에 있을 수 있고, 오른쪽 절반에 있을 수 있고, 구간이 왼쪽에서 시작하여 오른쪽에서 끝날 수 있다. 이렇게 쪼개진 구간을 선형에 찾을 수 있으면 역쌍 개수 구하기와 마찬가지로  $O(n\log n)$ 으로 성능을 개선할 수 있다. 이 문제는 실제 동적 프로그래밍 기법을 적용하여 O(n)에 해결할 수 있다.

## 3. 빠른 합

1부터 n까지 합은 n(n+1)/2 공식을 이용해 쉽게 계산할 수 있다. 하지만 이 문제도 분할 정복을 이용해 해결할 수 있다. n이 짝수일 때 1부터 n까지 합은 다음과 같이 1부터 n/2까지 합과 n/2+1부터 n까지 합으로 나눌 수 있다.

$$1 + 2 + \dots + n = \left(1 + 2 + \dots + \frac{n}{2}\right) + \left(\frac{n}{2} + 1 + \frac{n}{2} + 2 + \dots + \frac{n}{2} + \frac{n}{2}\right)$$
$$= \left(1 + 2 + \dots + \frac{n}{2}\right) + \frac{n}{2} \times \frac{n}{2} + \left(1 + 2 + \dots + \frac{n}{2}\right)$$

따라서 다음이 성립한다.

$$\operatorname{sum}(n) = 2 \times \left(\frac{n}{2}\right) + \frac{n^4}{4}$$

하지만 위 식은 n이 짝수일 때만 성립한다. n이 홀수이면 다음을 이용할 수 있다.

$$sum(n) = sum(n-1) + n$$

위 식에서 sum(n-1)를 분할 정복하여 구할 수 있다.

1부터 n까지 합을 이와 같이 분할 정복으로 구하였을 때 시간 복잡도는 어떻게 되는지 분석하여 보자. 원래 직관적인 합계는 n-1개의 합이 필요하다. 따라서 직관적인 합계의 시간 복잡도는 O(n)이다. 분할 정복은  $\log n$  번의 재귀 호출이 필요하고, 내부적으로 곱셈 2번, 나눗셈 2번이 필요하다. 물론 이 곱셈과 나눗셈은 2를 이용하는 것이기 때문에 비트 연산으로 매우 효과적으로 할 수 있다. 따라서 비재귀적 부분의 비용은 O(1)이므로 전체 비용은  $O(\log n)$ 이다. 시간 복잡도만 보면 분할 정복 방법이 더 효과적이다. 더 효과적이지만 실제 합계를 분할 정복을 이용하여 구하지는 않을 것이다. 간단하게 공식을 이용하여 O(1)에 계산할 수 있기 때문이다.

### 4. 수의 거듭제곱

 $n^m$ 은 기본적으로 m-1번의 곱셈을 이용하여 구할 수 있다. 수의 거듭 제곱을 구할 때 가장 많이 사용하는 알 고리즘은 square-and-multiply이다. 예를 들어  $3^{53}$ 은 총 52번의 곱셈이 필요하지만 square-and-multiply 기법을 적용하면 8번의 곱셈으로 계산할 수 있다. 기본적인 생각은 m을 2의 거듭제곱 합의 표현을 구하는 것이다. 예를 들어 53=32+16+4+1이다. 따라서 다음이 성립한다.

$$3^{53} = 3^{32} \cdot 3^{16} \cdot 3^4 \cdot 3$$

그런데  $3^{32}$ ,  $3^{16}$ ,  $3^4$ 은 총 5번의 곱셈을 통해 구할 수 있기 때문에 전체를 8번의 곱셈을 통해 구할 수 있다. 이것을 다르게 표현하면 53의 비트 표현인 110101를 구하고 1인 위치에 해당하는 3의 거듭제곱을 모두 곱하면 우리가 원하는  $3^{52}$ 를 계산할 수 있다.

#### 알고리즘 3.3 square-and-multiply 알고리즘

```
1: function POW(n, m)
2: | ret := 1
3: | while m > 0 do
4: | if m\%2 = 1 then
5: | | ret := ret \times n
6: | | n := n \times n
7: | | m := m/2
8: | return ret
```

이 알고리즘에서 while 반복문 내에서 m을 계속 2로 나누면서 m이 홀수이면 지금까지 구한 n의 거듭제곱을 최종 결과에 곱하고 있다. 이것은 비트 표현이 1인 위치의 n의 거듭제곱을  $n^0$ 부터 차례로 구하여 이를 이용하여  $n^m$ 을 구하는 과정이다. 이 알고리즘에서 while 문은 총  $\log m$ 번 반복하며, 반복문 내에 연산은 일정하므로 이 알고리즘의 시간 복잡도는  $O(\log m)$ 이다.

square-and-multiply 알고리즘을 모를 경우에는 분할 정복을 이용하여  $n^m$ 을 구하면 같은 시간 복잡도 알고리즘을 얻을 수 있다. m이 짝수이면  $n^m = n^{m/2} \times n^{m/2}$ 이다. m이 홀수이면  $n^{m-1} \times n$ 를 이용하여 분할 정복할 수 있다. 이것의 알고리즘은 알고리즘 3.4와 같다. 이 알고리즘의 재귀 호출 깊이는  $O(\log m)$ 이고, 비재귀적 부분에서 비용은 O(1)이므로 이 알고리즘의 시간 복잡도는  $O(\log m)$ 이다.

## 5. 행렬 곱셈

#### 행렬 곱셈 문제

- 입력. 두 개의  $n \times n$  행렬 X와 Y, n은 2의 거듭제곱
- 출력.  $n \times n$  행렬  $Z = X \times Y$

#### 알고리즘 3.4 수의 거듭제곱 분할 정복 알고리즘

```
1: function POW(n, m)
2: | if m = 0 then return 1
3: if m = 1 then return n
4: ret := 1
5: if m\%2 = 0 then
6: | ret := POW(n, m/2)
7: | ret := ret × ret
8: else
9: | ret := n \times POW(n, m - 1)
10: | return ret
```

#### 알고리즘 3.5 기본 행렬 곱셈 알고리즘

```
1: function MATRIXMULTIPLY(X[][], Y[][])
2: Z := [][]
3: for i := 1 to n do
4: for j := 1 to n do
5: Z[i][j] := 0
6: for k := 1 to n do
7: Z[i][j] := Z[i][j] + X[i][k] \times Y[k][j]
8: return Z
```

이 문제는 1장에서 살펴본 초등학교 곱셈 알고리즘처럼 수학 시간에 배운 방법을 적용한 알고리즘 3.5를 이용하여 구할 수 있다. 이 알고리즘의 시간 복잡도는  $O(n^3)$ 이다. 그런데 이 문제의 입력 크기는  $2n^2$ 이므로  $O(n^2)$ 보다 더 빠르게 해결할 수 없다. 이 문제도 당연히 분할 정복으로 해결할 수 있다.

행렬 곱셈은 각 행렬을 4개의 n/2 행렬로 나누어 다음을 이용하여 계산할 수 있다.

$$XY = \left[ \begin{array}{cc} A & B \\ C & D \end{array} \right] \left[ \begin{array}{cc} E & F \\ G & H \end{array} \right] = \left[ \begin{array}{cc} AE + BG & AF + BH \\ CE + DG & CF + DH \end{array} \right]$$

위 식을 그대로 이용하여 분할 정복하면 총 8개의 재귀 호출이 필요하며, 이것의 시간 복잡도를 계산하면  $O(n^3)$ 이다. 이 알고리즘에 대한 자세한 분석은 4장으로 미룬다.

Strassen은 다음과 같이 계산하여 8개의 재귀 호출을 7개로 축소하였다.

$$P_1 = A(F - H), P_2 = (A + B)H, P_3 = (C + D)E, P_4 = D(G - E),$$
  
 $P_5 = (A + D)(E + H), P_6 = (B - D)(G + H), P_7 = (A - C)(E + F)$ 

$$XY = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}$$

재귀 호출을 하나 줄이는 것이 큰 효과가 없을 것으로 생각할 수 있지만 이것의 효과는 일회성이 아니라 재귀 호출 트리에 계속 영향을 주는 것이기 때문에 전체 재귀 호출 수에는 큰 영향을 준다. 실제  $O(n^3)$ 의 시간 복잡도가  $O(n^{2.81})$ 으로 향상된다.

### 6. 가장 가까운 쌍 찾기

#### 가장 가까운 쌍 찾기 문제

- 입력.  $n(\geq 2)$ 개의  $p_i = (x_i, y_i)$  좌표
- 출력. 가장 가까운 좌표  $p_i, p_i$
- 가장 가까운 좌표는 euclidean distance가 가장 짧은 두 좌표

$$d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

### 알고리즘 3.6 가장 가까운 쌍 찾기 전수조사 알고리즘

이 문제는 알고리즘 3.6과 같이 전수 조사하여 해결할 수 있다. 이 알고리즘의 시간 복잡도는  $O(n^2)$ 이다. 좌표의 y 좌표 값이 모두 같거나 x 좌표가 같으면 이들을 반대 좌표를 기준으로 정렬한 후에 인접 좌표를 비교하면 가장 가까운 쌍을 찾을 수 있다. 이 경우 시간 복잡도는  $O(n\log n)$ 이 되므로 전수조사하는 것보다 효과적이다.

이것을 분할 정복하여 보자. 역쌍 개수를 구한 방법과 비슷하게 이 문제도 해결할 수 있다. 전체 좌표를 x 좌표를 기준으로 왼쪽 절반, 오른쪽 절반으로 나눌 수 있다. 물론 y 좌표를 기준으로 위쪽 절반, 아래쪽 절반으로 나눌 수 있다. 이렇게 x 좌표를 기준으로 나누면 가장 가까운 쌍은 왼쪽 절반에 있을 수 있고, 오른쪽 절반에 있을 수 있고, 양쪽으로 나누어져 있을 수 있다. 양쪽으로 나누어져 있는 쌍을 O(n)에 찾을 수 있으면 역쌍 개수를 구하는 알고리즘, 합병 정렬 알고리즘처럼  $O(n\log n)$ 에 할 수 있다. 그러면 어떻게 쪼개진 쌍을 O(n)에 찾을 수 있을까?

쪼개진 쌍은 서로 반대쪽 있는 쌍 간의 비교만 필요하다. 총  $\frac{n}{2} \times \frac{n}{2} = \frac{n^2}{4}$ 이므로 이를 직관적으로 구하면  $O(n^2)$ 이 필요하다. 따라서 비교해야 하는 쌍을 줄여야 비용을 O(n)으로 줄일 수 있다. 이 문제는 지금까지 본 문제와 달리 기발한 생각이 필요하다. 쉽게 생각해 낼 수 있는 방법은 아니다. 많은 문제는 앞으로 학습하게 되는 알고리즘 설계 방법 중 하나를 직관적으로 적용하면 해결할 수 있다. 하지만 이 문제처럼 기발한 방법을 생각해 내지 못하면 해결하기 어려운 문제도 있다.

이 문제는 두 가지 기발한 생각을 이용하여 해결하고 있다. 첫 번째는 조금 쉽게 생각해 낼 수 있는 것이다. 왼쪽 절반, 오른쪽 절반에서 구한 가장 가까운 쌍의 거리를 이용하는 것이다. 왼쪽 절반에서 구한 가장 가까운 쌍 거리, 오른쪽 절반에서 구한 가장 가까운 쌍 거리 중 더 짧은 거리를  $\delta$ 라 하자. 이 거리보다 기본적으로 멀리 있는 쌍의 비교는 필요가 없다.  $|x_i-x_j|>\delta$ 인 쌍의 비교는 제외할 수 있다. 절반을 나누기 위해 x 좌표를 기준으로 정렬하기 때문에 좌표들 중  $\bar{x}$ 가 중간 좌표에 해당하면  $\bar{x}-\delta$ 와  $\bar{x}+\delta$  사이에 있는 좌표만 고려하면 된다.

이렇게 하여 불필요한 좌표들을 제거하더라도 비교해야 하는 좌표 쌍의 수가 O(n)이 된다는 보장은 없다. 이 때문에 두 번째 기발한 생각의 적용이 필요하다. 이 부분은 쉽게 생각해 낼 수 있는 부분은 아니다. 우리는  $\delta$ 보다 거리가 짧은 쌍이 있는지 조사하고 싶은 것이다. 따라서  $\bar{x}-\delta$ 와  $\bar{x}+\delta$  집합에 있는 모든 쌍을 비교해야 하는 것은 아니다.  $\delta$  이내에 있을 수 있는 좌표 간에 비교만 필요하다. 그런데 이들을 y 좌표를 기준으로 정렬하면  $|y_i-y_j|>\delta$  인 쌍의 비교는 필요 없다.



<그림 3.1>y 좌표로 정렬되어 있을 때 q가 좌표들 중 가장 y 좌표가 작은 경우

두 번째 생각은 이를 이용하는 것이다. 면밀히 분석해 보면  $\bar{x}-\delta$ 와  $\bar{x}+\delta$  집합에 있는 하나의 좌표와 비교해야 하는 좌표의 수는 최대 7개이다. 그 이유는 그림 3.1을 생각해 보면 알 수 있다. 이 그림에서 q는  $\bar{x}-\delta$ 와  $\bar{x}+\delta$  집합에 있는 좌표이며, y 좌표가 가장 작은 좌표이다. 그러면 이 그림에는 최대 7개의 다른 좌표가 존재할 수 있다. 그 이유는 그림에 나타나는 각 정사각형 영역에 두 개의 좌표가 존재할 수 없기 때문이다. 존재할 경우에는  $\delta$ 가 왼쪽 절반 또는 오른쪽 절반의 가장 가까운 거리라는 것에 모순이 된다. 예를 들어 a와 b와 같은 좌표가 있다고 하자. 이두 좌표의 거리는  $\frac{1}{25}$ 가 되기 때문이다.

#### 알고리즘 3.7 가장 가까운 쌍 찾기 분할 정복 알고리즘

```
1: function CLOSESTPAIR(P_x[], P_y[])
        if LEN(P_x) <= 3 then
            return BRUTEFORCECLOSESTPAIR(P_x)
        \triangleright L_x, L_y, R_x, R_y must be obtained by O(n)
 4:
        L_x := \text{left of } Px
        L_y := \text{left of } P_x \text{ sorted by } y \text{ coordinate}
        R_x := \text{right of } P_x
        R_y := \text{right of } P_x \text{ sorted by } y \text{ coordinate}
        l_1, l_2 := \text{CLOSESTPAIR}(L_x, L_y)
        r_1, r_2 := \text{CLOSESTPAIR}(R_x, R_y)
10:
        d := MIN(DISTANCE(l_1, l_2), DISTANCE(r_1, r_2))
11:
12:
        ret := closest pair between (l1, l2) and (r_1, r_2)
        return CLOSESTSPLITPAIR(P_x, P_y, d, ret)
13:
```

알고리즘 3.7에 좌표를 전달하기 전에 원래 좌표 배열이 있으면 이것을 복제한 후에 x 축을 기준으로 오름차순 정렬하여  $P_x$ 를 만들고, y 축을 기준으로 오름차순 정렬하여  $P_y$ 를 만들어 이 둘을 인자로 전달해야 한다. 이때 좌표의 x 값이 같은 좌표가 여러 개 있을 수 있으므로 x 값이 같으면 y를 기준으로 오름차순으로 정렬해야 한다. 이 알고리즘이 합병 정렬처럼  $O(n\log n)$ 이 되기 위해서는 비재귀적인 부분의 비용이 O(n)이 되어야 한다. 따라서 내부적으로  $L_x$ ,  $L_y$ ,  $R_x$ ,  $R_y$ 를 얻을 때 정렬 알고리즘을 사용하면 안 된다.  $L_x$ 와  $R_x$ 는 쉽게  $P_x$ 를 절반으로 나누면 얻을 수 있다. 여기서 핵심은  $L_y$ 와  $R_y$ 를  $L_x$ 와  $R_x$ 를 정렬하여 얻는 것이 아니라  $P_y$ 를 이용하여 O(n)에 확보하여야 한다. 이렇게 분할 정복할 준비가 되면 왼쪽 절반과 오른쪽 절반을 재귀 호출하여 왼쪽 절반에서 가장 가까운 쌍을 찾고, 오른쪽 절반에서 가장 가까우 쌍을 찾으면 된다.

### 알고리즘 3.8 쪼개진 쌍 찾기 알고리즘

```
1: function CLOSESTSPLITPAIR(P_x[], P_y[], d, bestPair)
        \bar{x} := P_x[\text{LEN}(P_x)/2].x
 3:
        \triangleright S_y must be obtained by O(n)
        S_y := \{q_1, q_2, \dots, q_l\}, q_i = (x_i, y_i) \text{ where } \bar{x} - d < x_i < \bar{x} + d \text{ and } y_i < y_{i+1} 
 4:
        best := d
        for i := 1 to l - 1 do
 6:
             for j := 1 to MIN(()7, l - i) do d := DISTANCE(q_i, q_{i+j})
 7:
                 if d < best then
 8:
                     best := d
 9:
                     bestPair := (q_i, q_{i+j})
10:
        return bestPair
11:
```

쪼개진 쌍은 closesetSplitPair을 이용하여 얻는데, 이때 앞서 설명한 두 가지 기발한 생각을 이용하여 O(n)에 가장 가까운 쌍을 찾는다. closesetSplitPair의 알고리즘은 알고리즘 3.8과 같다. 이 알고리즘은 이 중 for 문으로 구성되어 있지만 내부 for 문은 항상 7 이하이므로 시간 복잡도는 O(n)이다. 위 알고리즘에서 테스트해야 하는  $S_u$  리스트를 O(n)에 확보해야 한다. 이때에는 closestPair처럼  $P_u$ 를 이용하여야  $S_u$ 를 만든다.

### 7. 분할 정복이 적합하지 않는 경우

분할 정복을 적용하여 문제를 해결하면 다차 시간 알고리즘의 차수를 줄여줄 수 있다. 하지만 다음과 같은 경우에는 분할 정복을 사용하여도 효과가 없다.

- ullet 경우 1. 입력 크기가 n인 문제가 입력 크기가 거의 n인 두 개 이상의 사례로 분할되는 경우
- 경우 2. 입력 크기가 n인 것이 거의 n개의 입력 크기가 n/b인 사례로 분할되는 경우

예를 들어 피보나찌 수가 경우 1에 해당한다. 피보나찌 수 f(n)=f(n-1)+f(n-2)이다. 크기가 n인 문제를 n-1, n-2인 문제로 나누어 해결하는 것은 재귀 호출 깊이가 너무 깊기 때문에 바람직하지 않다. 경우 2는 너무 많은 재귀 호출이 이루어지기 때문에 b에 따라 전체 재귀 호출 수가 너무 많아진다. 또 앞서 언급하였듯이 입력 크기가 적절한 크기로 줄어들고, 나누어지는 사례가 적더라도 비재귀적 부분의 비용이 효과적이지 않으면 분할 정복하는 효과가 없다.

### 퀴즈

- 1. 분할 정복과 관련된 다음 설명 중 틀린 것은
  - ① 문제의 사례를 더 작은 사례로 나누어 해결하는 방법이다. 이때 작은 사례는 원 사례와 다른 유형의 문제이어도 분할 정복할 수 있다.
  - ② 보통 다차시간 알고리즘의 성능을 개선하기 위해 사용한다.
  - ③ 분할 정복 알고리즘에서 작은 사례는 재귀 호출을 통해 해결하기 때문에 분할 정복에서 가장 힘든 부분은 작은 사례의 답들로부터 원 문제의 해답을 효과적으로 얻는 방법을 고안하는 부분이다.
  - ④ 한 번에 나누어지는 작은 사례들이 너무 많거나 나누어진 사례의 입력 크기가 원 문제의 크기와 차이가 없으면 분할 정복의 효과가 없다.
- 2. 크기가 n인 정수 배열에서 역쌍의 범위는?
  - ①  $0, n^2$
  - ② 1, n(n-1)/2
  - (3) 0, n(n-1)/2
  - (4) 1,  $n^2$
- 3. 수의 거듭제곱 문제도 분할 정복 기법을 적용해 해결할 수 있다. 수 n의 m 거듭제곱을 분할 정복으로 구하는 알고리즘 관련 다음 설명 중 틀린 것은?
  - ① 기저 사례는 m이 0 또는 1일 때이며, m이 0이면 1, m이 1이면 n을 반환한다.
  - ② m이 짝수일 때 n의 m/2 거듭제곱을 구하는 재귀 호출로 두 번 호출하여 n의 m 거듭제곱을 구한다.
  - ③ m이 홀수이면 m-1을 이용하여 재귀 호출한 결과에 n을 곱하여 n의 m 거듭제곱을 구한다.
  - ④ 재귀 호출마다 m의 크기를 반으로 줄기 때문에 재귀 호출의 깊이는  $\log m$ 에 비례한다.
- 4. 가장 가까운 쌍 찾기를 해결하는 분할 정복 알고리즘 관련 다음 설명 중 틀린 것은?
  - ① 이 알고리즘도 역쌍과 마찬가지로 좌표를 반으로 나누어 각 반에서 가장 가까운 쌍을 찾고, 양쪽으로 분리된 쌍 중에서 가장 가까운 쌍을 찾아 최종적으로 가장 가까운 쌍을 찾는다.

- ② 양쪽으로 분리된 쌍 중에서 가장 가까운 쌍을 O(n)에 찾기 위해 좌표 중 서로 비교할 필요가 없는 좌표를 걸러낸다. 이때 왼쪽 절반과 오른쪽 절반에서 찾는 가장 가까운 쌍의 거리 정보를 이용한다.
- ③ 이 알고리즘은 한 축으로만 정렬하여 알고리즘을 진행한다.
- ④ 양쪽으로 분리된 쌍 중에서 가장 가까운 쌍을 찾을 때 최초 양쪽으로 나누었을 때 사용한 축과 다른 축을 중심으로 정렬하여 비교한다. 예를 들어 최초 x 축으로 반으로 나누었으면 분리된 쌍에서는 y 축으로 정렬하고 y 축 값이 가장 작은 좌표를 그다음 7개와 비교하여 가장 가까운 쌍을 찾는다.

# 연습문제

- 1. 중복 요소가 있는 오름차순으로 정렬된 배열에서 정수 k가 주어지면 k의 첫 번째 시작 위치와 마지막 위치를 찾아주는 시간 복잡도가  $O(\log n)$ 인 분할 정복 알고리즘을 제시하라. 힌트. 이진 검색을 하여 정수 k를 찾았을 때, 왼쪽과 오른쪽 선형 검색하는 것은 최악의 경우 비용이 O(n)이 된다.
- 2. n개의 정수가 주어졌을 때, 합계가 가장 큰 연속된 부분 구간을 찾는 분할 정복 알고리즘을 제시하라. 이 구간의 크기는 최소 1이상이어야 한다.
- 3. 소문자로만 구성된 문자열 s와 정수 k가 주어지면 s의 부분 문자열 중 부분 문자열의 모든 문자의 빈도수가 k 이상인 가장 긴 부분 문자열의 길이 찾아라. 예를 들어 "mmmxx"와 k=3이 주어지면 "mmm"이 이 조건을 만족하는 가장 긴 부분 문자열이므로 3을 반환해야 한다. 이 문제를 해결하는 분할 정복 알고리즘을 제시하라.' 힌트. 전형적인 분할 정복처럼 왼쪽 절반과 오른쪽 절반으로 나누어 분할 정복하는 것이 아님