

k-Anonymität

Thomas Maier, Kai Sonnenwald, Tom Petersen

Universität Hamburg Fachbereich Informatik

Agenda

- 1. Motivation & Abgrenzung
- 2. k-Anonymität
 - Generalisierung
 - Unterdrückung
- 3. Schwächen der k-Anonymität
- 4. I-Diversity
- 5. Schwächen der I-Diversity
- 6. t-Closeness
- 7. Literaturverzeichnis

Motivation

Einführendes Beispiel, dass das Setting und in die Begriffe einführt

Abgrenzung

Abgrenzung zu anderen Konzepten (statistische Datenbanken, Authentifikation, ...)

k-Anonymität

Notizen identifier, quasi-identifier, sensitive attributes k-anonymity

Begriffe

Explicit identifier Attribut, das ein Individuum (nahezu) eindeutig identifiziert. Bsp: Name, Adresse, Steuernummer, ...

Quasi identifier Attributmenge, die ein Individuum in Kombination identifizieren kann. Formal in [Swe02] p. 7, auch [MKGV07] p. 3

Sensitive attribute Attribut, dessen Wert für ein Individuum in einer Datenmenge nicht herausgefunden werden darf.

k-Anonymität

Informell: Eine Tabelle (Datensatz?) erfüllt k-Anonymität, wenn jede Zeile (jeder Eintrag) ununterscheidbar von k-1 anderen Zeilen im Bezug auf jeden "quasi identifier"-Menge ist.

Formal: Sei $T(A_1, \ldots, A_n)$ eine Tabelle und $Q_T = \{A_i, \ldots, A_j\}$ der zugehörige quasi identifier. T erfüllt k-Anonymität genau dann, wenn jede Belegung von Werten in $T[Q_T]$ mindestens k mal auftritt, wobei $T[Q_T]$ die duplikatenerhaltende Projektion von T auf die Attribute des quasi identifiers beschreibt.

Generalisierung

s. Samarati, Sweeney Kapitel 3

domain, ground domain, generalization (partial ordering on domains) generalized table

Suppression

...

in combination with generalization

Schwächen der k-Anonymität

Unsorted matching attack Veröffentlichung mehrerer *k*—anonymer Tabellen mit derselben Sortierung ausgehend von einer nicht-öffentlichen Tabelle. [Swe02] p.10 Complementary release attack Veröffentlichung mehrerer *k*—anonymer Tabellen unterschiedlicher Generalisierung, die zusammengeführt die k-Anonymität verletzen. [Swe02] p.11 Temporal attack Dynamische Tabellen können k-Anonymität verletzen. [Swe02] p.12 Homogeneity attack Gleichheit der sensitive attributes einer Gruppe, die sich in den Werten des guasi identifiers gleicht, leakt das sensitive attribute eines Individuums.

Background knowledge attack Nutzen von Hintergrundwissen, um mit hoher Wahrscheinlichkeit auf den Wert des sensitive attributes eines Individuumsin einer Gruppe

[MKGV07] p. 2

I-Diversity

Schwächen der I-Diversity

Skewness attack similarity attack

t-Closeness

Literaturverzeichnis

MACHANAVAJJHALA, Ashwin; KIFER, Daniel; GEHRKE, Johannes; VENKITASUBRAMANIAM, Muthuramakrishnan: I-diversity: Privacy beyond k-anonymity.

In: ACM Transactions on Knowledge Discovery from Data (TKDD) 1 (2007), Nr. 1, S. 3

SAMARATI, Pierangela; SWEENEY, Latanya: Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression / Technical report, SRI International.

1998. -

Forschungsbericht

SWEENEY, Latanya:

k-anonymity: A model for protecting privacy.

In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10 (2002), Nr. 05, S. 557–570