Mobile IP and Mobile Transport Protocols

Preliminaries

IP4 routing

- Works on a <u>hop-by-hop</u> basis using a routing table
- 32 bit address: 129.97.92.42
- -Address = subnet (prefix) + host
- Two parts
 - » Routing protocols: Construct routing tables
 - » Packet forwarding: Uses the routing tables

Destination/	Next Hop	Interface
Prefix-Length	(IP address)	
7.7.7.99/ 32 (host specific)	R 1	a
7.7.7.0/24	R 2	b
(network prefix)		
0.0.0.0/ <mark>0 (default</mark>)	R 3	С

IPv4 Address

- IP address: 2 logical components of variable lengths
 - Network prefix (leftmost p = 32 h bits)
 - Identical for all hosts connected to the same link
 - Host ID (rightmost h bits)
 - Unique for hosts connected to the same link

IP4 routing at a glance

UDP: User Datagram Protocol

ICMP: Internet Control Message Protocol

The need for Mobile IP

- Hosts and routers base their forwarding decisions on the **network prefix** portion of an IP address.
- When a host moves from its **home link** to a **foreign link**, the host becomes unreachable.
 - Home link: The link on which a node should be located.
 (This link (network ID) and the host IP share the same network prefix.)
 - Foreign link: Any link other than a node's home link.

Entities and Packet delivery

What is Agent Discovery?

- A mobile node
 - Determines whether it is currently connected to its home link or a foreign link.
 - **Detects** whether it has moved from one link to another.
 - Obtains a COA when connected to a foreign link.

Agent Discovery?

Agent Discovery?

- Important Fields in Agent Advertisement message
 - IP Source Address (HA or FA)
 - » Know if you are home or away.
 - COA fields: one or more IP addresses
 - » Select one
 - Lifetime
 - » How soon the MN will hear from the agent again?

Move Detection

- Using *Lifetime*: If you don't hear from the FA after *Lifetime*
 - 1. Register with the next FA from which you receive an AA.
 - 2. Broadcast an Agent Solicitation message.
- Using Network-Prefixes
 - For each advertised route, there is a network prefix.
 - » A different network prefix means the node has moved.

Mobile IP Registration

- This is a process by which an MN
 - Requests routing service from an FA.
 - Informs its HA of its current COA.
 - Renews a registration which is due to expire.
 - Deregisters when it returns to its home link.
 - Act like a fixed host (no use of Mobile IP features.)

Important fields of a Registration Request

Mobile node's home IP address

Home Agent's IP address

• COA

• Time to Live (expiry time)

Registration

• After receiving a COA, MN registers with HA

Need for optimization

Optimized mobile IP

Mobile Transport Protocols

- Standard TCP
- Implication of mobility
- Different solutions

Standard TCP

- (Recall: Network layer addresses a host.)
- TCP
 - Ports allow addressing of applications.
 - End-to-end semantics ← Important feature
 - Congestion control ← makes the Internet stable
 - Slow start

Hosts and Ports

TCP: Application Context

- Reserved for well-known services
 Telnet/23, SMTP/25, FTP/20,21, HTTP/80, BGP/179, RIP/520, DNS/53, lp/515
- Free ports (allocated by the OS)

Congestion control

- Two events lead to a reduced Congestion Window
 - Timeout
 - Receiving duplicate ACKs for same packet
- Timeout
 - Real congestion
- Duplicate ACKs for the same packet
 - No real congestion (retransmit)

Congestion Control

Implications of mobility

- Wireless system
 - Higher bit error rate (BER)
 - -10^{-4} for wireless links as opposed to 10^{-12} for fibre optics
 - Packet loss is much more common.
 - Mobility itself can cause packet loss during handover.
 - Congestion is <u>not</u> the main reason for packet loss
 - → Degraded TCP performance

Implications of mobility

• No drastic change in TCP is possible.

- Installed base of TCP is too large.
- Slow start keeps the core Internet going.
- → Changes must be compatible.

 Must not jeopardize cautious behavior.

TCPs for mobile systems

- Indirect TCP (I-TCP)
- Snooping TCP (S-TCP)
- Mobile TCP (M-TCP)

→ For better performance

Indirect TCP

Motivation

- Better TCP performance over wireless links
- No change to TCP within fixed network

I-TCP handover

I-TCP

- Advantages
 - No change to standard TCP
 - No propagation of loss on wireless link to fixed net
 - Wireless TCP can be locally improved.
- Disadvantages
 - Loss of end-to-end semantics.

FA: Buffers <u>all</u> (MN ← CN) packets

Snoops packet flow in **both** directions

Does **not** generate ACKs.

- Packets (MN ← CN)
 - Buffered by FA
 - Until an ACK is received from MN
 - FA performs local retrans. in case of loss on wireless link
 - Timeout or multiple ACKs received
 - -MN retransmits from **local buffer**
 - -Smaller timeout, better performance
 - Discards duplicates from correspondent node

- Packets $(MN \rightarrow CN)$
 - FA snoops into the packet stream to detect gaps
 - Missing packet detected
 - -Sends a negative ACK (NACK) to MN to tell the MN to retransmit.

• (Reordering is done by CN.)

Advantages

- Preservation of end-to-end semantic
- No handover of state when MN moves to a new FA
- **No forwarding** of buffered data
- Does not matter whether or not the new FA supports S-TCP

Disadvantages

- Does not **isolate** the behavior of wireless link as good as I-TCP.
- NACK: additional mechanism on mobile node
- Useless if TCP protocol header is encrypted.

- Wireless link
 - (Packet dropping: higher bit error, handover)
 - Lengthy and/or frequent disconnections
- Retransmission policy
 - Sender retransmits data controlled by a timer.
 - Timeout interval doubles with each unsuccessful retransmission (max: 1 minute)
 - 12 retransmissions

- If connectivity is back before the 12th retrans
 - No data is sent for a minute
 - Slow start mode
- I-TCP and disconnection
 - FA buffers a lot of data
 - FA forwards buffered data to new FA ...
- Snooping TCP too is ineffective

- Goals
 - Adapt to lengthy/frequent disconnections
 - Lengthy disconnect can occur, if there is no signal.
 - Prevent sender window from shrinking.

No caching/retransmission of data by SH

Lost on wireless link: retransmission by original sender ← end-to-end

SH monitors all (MH \leftarrow CH) packets and (MH \rightarrow CH) ACKs. If SH does not see an ACK, it chokes the sender (window size = 0)

Window size = $0 \rightarrow$ sender goes into **persistent mode** (**no state change**)

SH detects connectivity: Reopen sender's window with an ACK.