Lecture 02

Python Basic Syntax for Data Processing

데이터 과학

Python Basics for Data Processing

1. Data Science

2. Python Basics 2.1. Variable 2.2. Operator 2.3. print() 2.4. input() 2.5. type()

3. Numerical data 3.1. int() / float() 3.2. round() 3.3. trunc() 3.4. ceil() 3.5. floor()

4. String data

4.1. lower() / upper()
4.2. lstrip() / rstrip()
/ strip()

4.3. replace()
4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert() 5.2. del() / remove() 5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr()

Data Science ?

- Data Mining과 유사하게 정형, 비정형 형태를 포함한 다양한 데이터로부터 knowledge와 insight를 추출하는 convergence 분야
- 튜링상(Turing Award)을 수상한 짐그레이(Jim Gray) 박사는
 과학의 네번째 Paradigm으로 데이터 과학(Data Science)을 정의

• 1st Paradigm : 수천 년 전 자연 현상을 관찰하는 **실험** 중심의 과학

• 2nd Paradigm : 수백 년 전 **이론** 중심의 과학

• 3rd Paradigm : 수십 년 전 계산 중심의 과학

• 4th Paradigm : 오늘날 데이터 중심의 과학(Data-Intensive Science)

정보기술(Information Technology)과 데이터 범람(data deluge) 때문

데이터의 표현 단위

Python Basics for Data Processing

1. Data Science

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. Istrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr()

기호	데이터 크기 (10진수)	데이터 크기 (2진수)
KB (Kilo Byte)	$1000^1 = 10^3$	$1024^1 = 2^{10}$
MB (Mega Byte)	$1000^2 = 10^6$	$1024^2 = 2^{20}$
GB (Giga Byte)	$1000^3 = 10^9$	$1024^3 = 2^{30}$
TB (Tera Byte)	$1000^4 = 10^{12}$	$1024^4 = 2^{40}$
PB (Peta Byte)	$1000^5 = 10^{15}$	$1024^5 = 2^{50}$
EB (Exa Byte)	$1000^6 = 10^{18}$	$1024^6 = 2^{60}$
ZB (Zetta Byte)	$1000^7 = 10^{21}$	$1024^7 = 2^{70}$
YB (Yotta Byte)	1000 ⁸ = 10 ²⁴	1024 ⁸ = 2 ⁸⁰

Python Basics for Data Processing

1. Data Science

2. Python Basics 2.1. Variable 2.2. Operator 2.3. print()

2.4. input() 2.5. type()

```
3. Numerical data
 3.1. int() / float()
 3.2. round()
 3.3. trunc()
 3.4. ceil()
```

4. String data

3.5. floor()

```
4.1. lower() / upper()
4.2. lstrip() / rstrip()
    /strip()
4.3. replace()
4.4. split()
4.5. type() / sizeof()
4.6. len()
4.7. String processing
    using operators
```

5. List

```
5.1. append() / insert()
5.2. del() / remove()
5.3. sort() / reverse()
```

6. Ascii code 6.1. ord()/chr()

데이터 증가 시대

Data의 증가

- 현재 년간 16.3 zetta byte의 데이터를 생산 (zetta byte는 10억 tera byte에 해당)
- IDC(International Data Corporation)와 Seagate의 조사에 따르면 2025년에는 163 zetta byte(163,000,000,000,000,000,000,000 byte)로 증가
- 향후 데이터 양을 yotta byte(10²⁴ byte)로 표기하게 될 것이라 예상

빅데이터

Python Basics for Data Processing

1. Data Science

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert() 5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr()

■ Gartner사의 Big Data에 대한 정의

- Big Data란 높은 통찰력, 의사결정, 프로세스 자동화를 위해 효과가 높은
 혁신적인 정보처리 과정을 요구한다.
- 다음과 같은 주요 특징을 지닌 정보 자산이다.
 - ✓ 대용량의 데이터 규모(high-volume)
 - ✓ 빠른 속도(high-velocity)
 - ✓ 높은 다양성(high-variety)

데이터 과학 활용 분야

1. Data Science

- 2. Python Basics 2.1. Variable 2.2. Operator 2.3. print() 2.4. input() 2.5. type()
- 3. Numerical data 3.1. int() / float() 3.2. round() 3.3. trunc() 3.4. ceil() 3.5. floor()
- 5. List 5.1. append() / insert() 5.2. del() / remove() 5.3. sort() / reverse()

using operators

6. Ascii code 6.1. ord()/chr()

인터넷 검색(Internet Search)

- 키워드 기반의 인터넷 검색은 데이터 과학 알고리즘을 사용하여 몇 초 안에 최상의 검색 결과를 제공
- 디지털 광고(Digital Advertisement)
 - 디지털 광고는 디스플레이 배너부터 디지털 광고판 까지의 모든 디지털 마케팅
 스펙트럼을 데이터 과학 알고리즘을 사용하여 개인별 맞춤형 광고를 제공
- 추천 시스템(Recommender systems)
 - 데이터 과학 알고리즘을 사용하여 쇼핑몰에서 소비자의 이전 검색 기록 데이터를 기반으로 수십억 개의 제품에서 관련 상품을 쉽게 찾아 추천하고 소비자 경험을 더욱 풍부하게 해줌

Python Basics for Data

Processing

1. Data Science

```
2. Python Basics
 2.1. Variable
 2.2. Operator
 2.3. print()
 2.4. input()
 2.5. type()
```

```
3. Numerical data
 3.1. int() / float()
 3.2. round()
 3.3. trunc()
 3.4. ceil()
 3.5. floor()
```

```
4. String data
 4.1. lower() / upper()
 4.2. lstrip() / rstrip()
     /strip()
 4.3. replace()
 4.4. split()
 4.5. type() / sizeof()
```

```
4.6. len()
4.7. String processing
   using operators
```

```
5. List
 5.1. append() / insert()
 5.2. del() / remove()
 5.3. sort() / reverse()
```

6. Ascii code 6.1. ord()/chr()

데이터 과학자

데이터 과학자가 되기 위한 필요한 요소

- 프로그래밍 언어 활용 능력이 필요함
 - ✓ Java, C언어, Perl과 함께 데이터 과학자들에게 가장 대중적으로 쓰이는 Python 코딩 능력
 - ✓ SAS, R에 대한 깊이 있는 지식
 - ✓ SQL 기반의 데이터베이스 관리
- 비정형 데이터 처리
 - ✓ 데이터 과학자들에게 비정형 데이터(웹 상의 텍스트, 이미지, 영상, 음성 등)를 다룰 수 있는 능력이 매우 중요해지고 있음
 - ✓ 데이터 분석 후 시각화 기술
- 통계적 기술 및 수학 분야의 이해 능력과 원활한 의사 소통 방법이 필요
- 머신러닝 및 딥러닝 기술이 필요

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()
5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr()

Python

- 1991년 귀도 반 로섬(Guido van Rossum)이 발표한 고급 프로그래밍 언어
- 플랫폼에 독립적이며 인터프리터식, 객체지향적 대화형 언어
- 귀도 반 로섬(Guido van Rossum)
 - 2005년 ~ 2012년 : 구글에서 근무
 - 2013년 ~ 2019년 10월 : 드롭박스에서 근무
 - 2020년 11월 13일 ~ 현재 : MS에서 근무 중

9

1. Data Science

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr() 변수이름은 반드시 영문자나 언더바(_)로 시작해야 하고, 숫자나 특수문자로 시작하면 안됩니다.

단, 숫자나 특수문자를 변수이름으로 사용하는 것은 가능해요.

대문자와 소문자는 다른 글자로 생각합니다.

파이썬에서 이미 사용되고 있는 단어들(reserved words, 예약어라고 합니다)은 변수 이름으로 사용할 수 없습니다.

• 변수 사용법과 입출력 배우기

1) var1 이름의 변수를 만들고 10의 값을 할당하기

```
1 | var1 = 10
2 | print(var1)
```

10

2) var2 이름의 변수를 만들고 20의 값을 할당하기

```
1 var2 = 20
2 print(var2)
```

20

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. Istrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord() / chr()

기호	설명	사용 예	
+	두 수를 더한 값	a + b	
-	두 수를 뺄셈한 값	a – b	
*	두 수를 곱한 값	a * b	
/	두 수를 나눈 실수형 몫에 해당하는 값	a / b	
//	두 수를 나눈 정수형 몫에 해당하는 값	a//b	
%	두 수를 나눈 나머지 값	a % b	

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr()

3) 다양한 연산자 사용하기

```
1 print(var1 + var2)
```

2 print(var1 * var2)

3 print(var1 / var2)

30

200

0.5

4) % 연산자 활용하기

```
1 | var5 = 3
```

2 | var6 = 14

3 |print(var6 % var5)

2

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr()

함수 이름	설명	사용 예
print()	변수나 데이터를 화면에 출력합니다	print("출력할 문장") print(출력할 변수)

5) print() 함수 사용하기

```
1 # 출력할 문장을 직접 쓰기
2 print("오늘도 굿모닝이지 말입니다!")
3
4 # 출력할 문장을 변수에 넣고 변수값 출력하기
5 str = "내일도 굿모닝이지 말입니다!"
6 print(str)
```

오늘도 굿모닝이지 말입니다! 내일도 굿모닝이지 말입니다! 2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr()

형식	미		
%d	정수(1,2,3,4,5 등)		
%f	실수(1.234 등)		
%s	문자열('this is string') 및 숫자		
%с	문자('a','c'등 문자 하나)		

6) 리터럴 문자와 함께 사용하기

```
1 hungry = 5
```

2 | print(' 배가 무지 고파서 밥을 %s 그릇도 먹겠네!' **%**hungry)

배가 무지 고파서 밥을 5 그릇도 먹겠네!

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr() 7) 특수문자와 함께 사용해야 할 경우

```
1 up = 20
2 print(' 뉴스에서 물가가 %s% 까지 오른다는데....' %up)
```

TypeError

Traceback (most recent call last)

TypeError: not enough arguments for format string

```
1 up = 20
2 print(' 뉴스에서 물가가 %s%% 까지 오른다는데....' %up)
```

뉴스에서 물가가 20% 까지 오른다는데....

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr() 8) 여러개의 변수를 한꺼번에 사용할 경우

```
1 up = 20
2 sal = 10
3
4 print('뉴스에서 물가는 %s%% 오른다는데 내 월급도 %s%%라도..' %(up , sal))
```

뉴스에서 물가는 20% 오른다는데 내 월급도 10%라도...

input()

Python Basics for Data Processing

1. Data Science

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr()

함수 이름	설명	사용 예
input()	사용자에게 문자형의 데이터를 입력 받습니다 숫자를 입력해도 문자형으로 처리됩니다.	input('입력 전에 출력될 문장")

9) input() 함수로 정보 입력받기

```
1 txt1 = input()
2
3 print("txt1 값을 출력하면 : ", txt1)
```

짬뽕

txt1 값을 출력하면 : 짬뽕

10) input() 함수에서 안내 멘트 보이기

```
1 txt2 = input('점심 뭐 드셨어용? ')
```

점심 뭐 드셨어용? 짬뽕

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. round()

3.2. trunc()

3.3. ceil()

3.4. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr()

11) 입력 데이터 형식 변환하기

```
area_no = input('''
  1. 서울
              2.대전
                           3.광주
                                        4.부산
  5. 경남
              6.경북
                           7.충청
                                        8.제주
4
  위 지역중 정보를 조회할 지역의 번호를 입력하세요: ''')
6
  # input으로 입력한 값은 str 형의 데이터
  print(type(area_no))
9
  # input으로 입력한 값을 숫자형으로 사용하려면 형식을 변환 해야함
12 print(type(int(area no)))
```

```
1. 서울 2.대전 3.광주 4.부산
5. 경남 6.경북 7.충청 8.제주
```

```
위 지역중 정보를 조회할 지역의 번호를 입력하세요: 3
<class 'str'>
<class 'int'>
```

Exercise (1)

Python Basics for Data Processing

1. Data Science

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr() input(), print() 함수를 이용하여 아래와 같은 결과가 나오도록 코딩하시오.

첫번째 주문하실 음식은 무엇인가요?: <u>짬뽕</u> 두번째 주문하실 음식은 무엇인가요?: <u>짜장면</u> 첫번째 주문하신 음식은 짬뽕이고 두번째 주문하신 음식은 짜장면입니다

위에서 짬뽕, 짜장면은 input()에 의해 입력한 값입니다.

그 외는 print()로 출력된 문장입니다.

- 1. Data Science
- 2. Python Basics
- 2.1. Variable
- 2.2. Operator
- 2.3. print()
- 2.4. input()
- 2.5. type()

3. Numerical data

- 3.1. int() / float()
- 3.2. round()
- 3.3. trunc()
- 3.4. ceil()
- 3.5. floor()

4. String data

- 4.1. lower() / upper()
- 4.2. lstrip() / rstrip() / strip()
- 4.3. replace()
- 4.4. split()
- 4.5. type() / sizeof()
- 4.6. len()
- 4.7. String processing using operators

5. List

- 5.1. append() / insert() 5.2. del() / remove()
- 5.3. sort() / reverse()
- 6. Ascii code 6.1. ord()/chr()

- 파이썬에서 산술 연산자를 사용
- 1) 사칙 연산자과 나머지 연산자를 이용한 연산

```
#더하기
                                          1.더하기 예 : 2 + 4 = 6
  print("1.더하기 예 : 2 + 4 = " , 2 + 4)
                                          2.빼기 예 : 4 - 2 = 2
3
                                          3.곱하기 예 : 4 X 2 = 8
  ###7/
                                          4.나누기 예 : 5 / 2 =
  5.나누기에서 몫만 출력하기 예 : 5 // 2 = 2
6
                                          6.나누기에서 나머지값만 출력하기 예 : 5 % 2 = ...
  #곱하기
                                          7.주어진 숫자의 승수값 출력하기 예 : 5 ** 2 = 25
  print("3.곱하기 예 : 4 X 2 = " , 4 * 2)
9
10
  #나누기
  print("4.나누기 예 : 5 / 2 = " , 5 / 2)
12
  #나누기에서 몫 만 출력하기
  |print("5.나누기에서 몫만 출력하기 예 : 5 // 2 = " , 5 // 2)
15
  #나누기에서 나머지값만 출력하기
  print("6.나누기에서 나머지값만 출력하기 예 : 5 % 2 = ", 5 % 2)
18
  # 주어진 숫자의 승수값 출력하기
  |print("7.주어진 숫자의 승수값 출력하기 예 : 5 ** 2 = " , 5**2)|
```

숫자 데이터 처리

Python Basics for Data Processing

1. Data Science

```
2. Python Basics
 2.1. Variable
 2.2. Operator
 2.3. print()
 2.4. input()
 2.5. type()
```

```
3. Numerical data
 3.1. int() / float()
 3.2. round()
 3.3. trunc()
 3.4. ceil()
 3.5. floor()
4. String data
 4.1. lower() / upper()
```

4.2. lstrip() / rstrip() /strip() 4.3. replace() 4.4. split() 4.5. type() / sizeof() 4.6. len() 4.7. String processing using operators

5. List

```
5.1. append() / insert()
5.2. del() / remove()
5.3. sort() / reverse()
```

6. Ascii code 6.1. ord() / chr()

2) +와 - 연산자를 사용한 연산

```
# Case 1
  1i = 3
  |i| = i + 2
   print("i 에 저장된 값은 %s 입니다" %i)
5
   # Case 2
  | i = 3 |
  i += 3
   print("j 에 저장된 값은 %s 입니다" %j)
10
   # Case 3
12 | i = 10
13 | i -= 3
  |print("j 에 저장된 값은 %s 입니다" %j)
```

```
에 저장된 값은 5 입니다
에 저장된 값은 6 입니다
j 에 저장된 값은 7 입니다
```

숫자 데이터 처리

Python Basics for Data Processing

1. Data Science

2. Python Basics

2.1. Variable 2.2. Operator

2.3. print()

2.4. input() 2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() /strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr() 3) input으로 입력받은 데이터의 산술 연산

```
|no1 = input("첫번째 숫자 입력: ")
|no2 = input("두번째 숫자 입력: ")
|print('''첫번째 숫자는 %s 이고 두번째 숫자는 %s 이며
두 숫자의 합은 %s 입니다''' %( no1, no2, no1+no2))
```

첫번째 숫자 입력: 10 두번째 숫자 입력: 20 첫번째 숫자는 10 이고 두번째 숫자는 20 이며 두 숫자의 합은 1020 입니다

4) input으로 입력받은 데이터를 숫자형으로 변환한 후 산술 연산

```
|no1 = int( input("첫번째 숫자 입력: ") )
|no2 = int( input("두번째 숫자 입력: ") )
|print('''첫번째 숫자는 %s 이고 두번째 숫자는 %s 이며
두 숫자의 합은 %s 입니다''' %( no1, no2 , no1+no2 ) )
```

첫번째 숫자 입력: 10 두번째 숫자 입력: 20 첫번째 숫자는 10 이고 두번째 숫자는 20 이며 두 숫자의 합은 30 입니다

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr() • 파이썬에서 숫자 형식 데이터 처리

1) int: 정수형 데이터 형식 / float: 실수형 데이터 형식

```
1 print("정수형 숫자 타입:", int(1))
2 print("실수형 숫자 타입:", float(1))
```

정수형 숫자 타입: 1 실수형 숫자 타입: 1.0

2. Python Basics

2.1. Variable 2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() /strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr() 2) 숫자 형식에서 많이 사용되는 주요 함수 : round() 반올림 함수

```
|no1| = 3.45678
2 \ln 2 = 3.56789
  |print("원래값: %s , 반올림후 값: %s" %(no1 , round(no1) ) )
4 | print("원래값: %s , 반올림후 값: %s" %(no2 , round(no2) ) )
```

원래값: 3.45678 , 반올림후 값: 3 원래값: 3.56789 , 반올림후 값: 4

round() 반올림 함수의 소수점 이하 자리수 지정

```
1 \mid no1 = 3
2 \mid no2 = 5
  |print("반올림하기 전 원래값:", no2 / no1)|
4 | print("소수 첫째자리까지 반올림하기:", round(no2 / no1,1) )
5 | print("소수 둘째자리까지 반올림하기:", round(no2 / no1,2) )
```

반올림하기 전 원래값: 1.6666666666666667

소수 첫째자리까지 반올림하기: 1.7 소수 둘째자리까지 반올림하기: 1.67

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr() 3) 숫자 형식에서 많이 사용되는 주요 함수: trunc() 버림 함수

```
1 no1 = 3
2 no2 = 5
3 print("버림하기 전 원래값:", no2 / no1)
4 print("소수 첫째자리까지 버림하기:", math.trunc(no2 / no1))
5 print("음수 값:", math.trunc(-3.14))

바림하기 전 원래값: 1.66666666666666667

NameError

(ipython-input-11-c0be94c3b3f2> in <module>
2 no2 = 5
3 print("버림하기 전 원래값:", no2 / no1)
---> 4 print("소수 첫째자리까지 버림하기:", math.trunc(no2 / no1))
5 print("음수 값:", math.trunc(-3.14))

NameError: name 'math' is not defined
```

```
1 import math
2 no1 = 3
3 no2 = 5
4 print("버림하기 전 원래값:", no2 / no1)
5 print("소수 첫째자리까지 버림하기:", math.trunc(no2 / no1))
6 print("음수 값:", math.trunc(-3.14))
```

음수 값 : -3

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil() 3.5. floor()

` '

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr() 4) 숫자 형식에서 많이 사용되는 주요 함수 : ceil() 천장 함수

```
1 cnt = int(input("총 몇 건의 데이터를 수집할까요?:"))
2 
3 # 웹 사이트의 한 페이지에 10건의 게시물이 있다고 가정할 경우
4 
5 page_cnt = math.ceil(cnt / 10)
6 print("총 %s 페이지까지 데이터를 수집해야 합니다" %page_cnt)
```

총 몇 건의 데이터를 수집할까요? :98 총 10 페이지까지 데이터를 수집해야 합니다.

floor()

Python Basics for Data Processing

1. Data Science

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() /strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr() 5) 숫자 형식에서 많이 사용되는 주요 함수 : floor() 바닥 함수

```
no1 = 4.9
 no2 = 4.1
 print("%s 보다 작으면서 가장 가까운 정수는 %s 입니다" %(no1 , math.floor(no1)))
5 | print("%s 보다 작으면서 가장 가까운 정수는 %s 입니다" %(no2 , math.floor(no2)))
 |print("음수 값 : ",math.floor(-3.14))
```

4.9 보다 작으면서 가장 가까운 정수는 4 입니다 4.1 보다 작으면서 가장 가까운 정수는 4 입니다 음수 값 : -4

6) 숫자 형식에서 많이 사용되는 주요 함수 : trunc()와 floor()의 차이점

```
print(math.trunc(-3.14)) # trunc()함수는 0을 향해 버림
2 | print(math.floor(-3.14)) # floor() 함수는 무조건 바닥을 향해 내림
```

-3

-4

문자열 데이터 처리

Python Basics for Data Processing

1. Data Science

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord() / chr()

문자열

파	이	썬	완	전	쉽	죠	?
0 번 요소	1번 요소	2번 요소	3번 요소	4번 요소	5번 요소	6번 요소	7번 요소
변수명[0]	변수명[1]	변수명[2]	변수명[3]	변수명[4]	변수명[5]	변수명[6]	변수명[7]

문자열 데이터 처리

Python Basics for Data Processing

1. Data Science

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() /strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord() / chr() • 파이썬에서 문자 형식 데이터 처리

1) 인덱싱을 활용한 문자 데이터 추출

```
str1 = '파이썬완전쉽죠?'
print(str1)
print(str1[0])
print(str1[1])
```

파이썬완전쉽죠? 파 이

문자열 데이터 처리

Python Basics for Data Processing

1. Data Science

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper() 4.2. lstrip() / rstrip()

/strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord() / chr()

2) 슬라이싱을 활용한 문자 데이터 추출

```
str1 = '파이썬완전쉽죠?'
print(str1)
print(str1[0:4])
```

파이썬완전쉽죠? 파이썬완

```
str1 = '빅데이터수집및분석'
print(str1[5:])
print(str1[:5])
```

집및분석 빅데이터수.

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil() 3.5. floor()

()

4. String data

4.1. lower() / upper()

4.2. Istrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr() 3) 문자 형식에서 많이 사용되는 주요 함수 : lower() 소문자 변환 함수, upper() 대문자 변환 함수

```
1 str2 = "PyThoN" # 대소문자가 섞여 있습니다
2 print(str2.lower())
3 print(str2.upper( ))
```

python PYTHON

- 1. Data Science
- 2. Python Basics
- 2.1. Variable
- 2.2. Operator
- 2.3. print()
- 2.4. input()
- 2.5. type()
- 3. Numerical data
- 3.1. int() / float()
- 3.2. round()
- 3.3. trunc()
- 3.4. ceil()
- 3.5. floor()
- 4. String data
- 4.1. lower() / upper()
- 4.2. lstrip() / rstrip() /strip()
- 4.3. replace()
- 4.4. split()
- 4.5. type() / sizeof()
- 4.6. len()
- 4.7. String processing using operators
- 5. List
- 5.1. append() / insert()
- 5.2. del() / remove()
- 5.3. sort() / reverse()
- 6. Ascii code 6.1. ord()/chr()

Istrip() / rstrip() / strip()

4) 문자 형식에서 많이 사용되는 주요 함수 : Istrip() 왼쪽 공백 제거 함수 / rstrip() 오른쪽 공백 제거 함수 / strip() 양쪽 공백 제거 함수

```
1 str3 = " <- 이쪽 끝에 공백 있었어요"
2 str4 = "오른쪽 끝에 공백 있었어요->
 str5 = " <- 양쪽 끝에 공백 있었어요 ->
 |print( str3.lstrip( ) )
6 print(str4.rstrip())
 |print(str5.strip())
```

<- 이쪽 끝에 공백 있었어요 오른쪽 끝에 공백 있었어요-> <- 양쪽 끝에 공백 있었어요 ->

replace()

```
Python Basics for Data
Processing
```

1. Data Science

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord() / chr() 5) 문자 형식에서 많이 사용되는 주요 함수 : replace() 문자 치환 함수

```
str6 = '새우깡도 해산물 인가요?'
2 print(str6.replace("새우깡", "새우"))
```

새우도 해산물 인가요?

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() /strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord() / chr() 6) 문자 형식에서 많이 사용되는 주요 함수 : split() 문자 분리 함수

```
tel = '02-1234-5678'
 2 print(tel.split('-'))
 3 print(tel.split('-',1))
['02', '1234', '5678']
['02', '1234-5678']
```

< 참고 > split()후 데이터 타입 확인

```
tel 1 = "02-1234-5647"
 2 print(type(tel_1))
    print(tel_1, "\n")
    tel_2 = tel_1.split('-')
   print(type(tel_2))
    print(tel_2, "₩n")
  8
<class 'str'>
```

```
02-1234-5647
<class 'list'>
['02', '1234', '5647']
```

type()/sizeof()

Python Basics for Data Processing

1. Data Science

2. Python Basics 2.1. Variable

2.2. Operator

2.3. print() 2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()
3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert() 5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr()

<참고> type / getsizeof 활용법

```
import sys
a = 2
b = 3.5
c = "A"
print("a:", a, "/ b:", b, "/ c:", c)
print(type(a), "/", type(b),"/", type(c))
print(sys.getsizeof(a),"byte / ", sys.getsizeof(b),"byte / ", sys.getsizeof(c), "byte")
```

```
a: 2 / b: 3.5 / c: A
<class 'int'> / <class 'float'> / <class 'str'>
28 byte / 24 byte / 50 byte
```

```
1 aa = "A"
2 bb = 40
3 cc = 23.5
4
5 print("aa:", aa, "/ bb:", bb, "/ cc:", cc)
6 print(type(aa), "/", type(bb),"/", type(cc))
7 print(sys.getsizeof(aa),"byte / ", sys.getsizeof(bb),"byte / ", sys.getsizeof(cc), "byte")
```

```
aa: A / bb: 40 / cc: 23.5
<class 'str'> / <class 'int'> / <class 'float'>
50 byte / 28 byte / 24 byte
```

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() /strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord() / chr() 7) 문자 형식에서 많이 사용되는 주요 함수 : len() 문자열 또는 단어의 길이를 출력하는 함수

```
str1 = '파이썬 완전 좋아요'
str2 = ['파이썬','웹크롤러','가치랩스']
print(len(str1))
print(len(str2))
```

10

len()

연산자를 활용한 문자열 처리

Python Basics for Data Processing

1. Data Science

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() /strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord() / chr() 8) 연산자를 이용한 문자열 처리

```
print("=" *80)
 print("문자열로 연산하기 실습")
3 print("+" *80)
```

문자열로 연산하기 실습 **Python Basics for Data Processing**

1. Data Science

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() /strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord() / chr() 리스트 타입은 다양한 형식의 데이터를 한꺼번에 저장할 때 사용하면 편리함

예시)

'1982-07-15'	'홍길동'	30
0번 요소	1번 요소	2번 요소
문자형	문자형	숫자형

- 파이썬에서 리스트 활용
- 1) 리스트 생성

```
list1 = ['1982-07-15','홍길동',30]
print(list1)
```

['1982-07-15', '홍길동', 30]

append() / insert()

Python Basics for Data Processing

1. Data Science

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr() 2) 리스트에서 append() 데이터 추가 함수 / insert() 데이터 삽입 함수

```
1 list2 = ['첫째','둘째','셋째']
2 list2.append('append로 추가한 것')
3 print(list2)
4
5 list2.insert(2,'insert로 추가한 것')
6 print(list2)
```

```
['첫째', '둘째', '셋째', 'append로 추가한 것']
['첫째', '둘째', 'insert로 추가한 것', '셋째', 'append로 추가한 것']
```

del() / remove()

```
1. Data Science
```

2. Python Basics 2.1. Variable 2.2. Operator 2.3. print() 2.4. input() 2.5. type()

3. Numerical data 3.1. int() / float() 3.2. round() 3.3. trunc() 3.4. ceil() 3.5. floor()

4. String data

4.1. lower() / upper()
4.2. lstrip() / rstrip()
/ strip()
4.3. replace()

4.3. replace() 4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert() 5.2. del() / remove() 5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr()

```
3) 리스트에서 데이터 삭제 함수 del()과 remove()
```

< del()과 remove()의 차이점 >

del a[인덱스] : 리스트 a의 해당 인덱스 원소가 삭제

a.remove(원소): 리스트 a의 해당 원소가 삭제

```
1 a = ['첫째', '둘째', 'three', '셋째', '넷째', 'five', '다섯째']
2 print('a 리스트 ->',a)
3 del a[2]
4 print("")
5
6 print('del a[2]로 삭제후 a 리스트:', a)
7 print("")
8
9 a.remove("five")
10 print('a.remove("five")로 삭제후 목록:', a)
```

a 리스트 -> ['첫째', '둘째', 'three', '셋째', '넷째', 'five', '다섯째']

del a[2]로 삭제후 a 리스트: ['첫째', '둘째', '셋째', '넷째', 'five', '다섯째']

a.remove("five")로 삭제후 목록: ['첫째', '둘째', '셋째', '넷째', '다섯째']

Python Basics for Data Processing

1. Data Science

```
2. Python Basics
2.1. Variable
2.2. Operator
2.3. print()
2.4. input()
2.5. type()
```

```
3. Numerical data
3.1. int() / float()
3.2. round()
3.3. trunc()
3.4. ceil()
3.5. floor()
```

```
4. String data
4.1. lower() / upper()
4.2. lstrip() / rstrip()
    / strip()
4.3. replace()
4.4. split()
4.5. type() / sizeof()
4.6. len()
4.7. String processing
    using operators
```

```
5. List
5.1. append() / insert()
5.2. del() / remove()
5.3. sort() / reverse()
```

```
6. Ascii code
6.1. ord()/chr()
```

sort() / reverse()

4) 리스트에서 sort() 오름차순 정렬 함수 / reverse() 내림차순 정렬 함수

```
1 list3 = [ 3,1,5,8,2]
2 list3.sort()
3 print('오름차순(기본)정렬후', list3, '₩n')
4
5 list3.reverse()
6 print('내림차순 정렬후:', list3, '₩n')
7
8 list4 = ['banana', 'apple', 'cherry', 'Apple']
9 list4.sort()
10 print('영어 정렬:', list4, '₩n')
11
12 list5 = ['홍길동', '전우치', '김유신', '이순신']
13 list5.sort()
14 print('한글 정렬:' , list5)
```

```
오름차순(기본)정렬후 [1, 2, 3, 5, 8]
내림차순 정렬후: [8, 5, 3, 2, 1]
영어 정렬: ['Apple', 'apple', 'banana', 'cherry']
```

·한글 정렬: ['김유신', '이순신', '전우치', '홍길동']

아스키 코드

Python Basics for Data Processing

1. Data Science

2. Python Basics 2.1. Variable 2.2. Operator 2.3. print() 2.4. input() 2.5. type()

```
3. Numerical data
3.1. int() / float()
3.2. round()
3.3. trunc()
```

3.4. ceil() 3.5. floor()

```
4. String data
```

4.6. len()
4.7. String processing using operators

5. List

```
5.1. append() / insert()
5.2. del() / remove()
5.3. sort() / reverse()
```

6. Ascii code 6.1. ord()/chr() ■ 미국정보교환표준부호(American Standard Code for Information Interchange), 또는 줄여서 ASCII(**아스키**)는 영문 알파벳을 사용하는 대표적인 문자 인코딩

아스키는 컴퓨터와 통신 장비를 비롯한 문자를 사용하는 많은 장치에서
 사용되며, 대부분의 문자 인코딩이 아스키 코드를 기반으로 한다.

ord()/chr()

Python Basics for Data Processing

1. Data Science

2. Python Basics

2.1. Variable

2.2. Operator

2.3. print()

2.4. input()

2.5. type()

3. Numerical data

3.1. int() / float()

3.2. round()

3.3. trunc()

3.4. ceil()

3.5. floor()

4. String data

4.1. lower() / upper()

4.2. lstrip() / rstrip() / strip()

4.3. replace()

4.4. split()

4.5. type() / sizeof()

4.6. len()

4.7. String processing using operators

5. List

5.1. append() / insert()

5.2. del() / remove()

5.3. sort() / reverse()

6. Ascii code 6.1. ord()/chr() <참고> ASCII 코드 값 활용

ord() 함수 : 문자를 아스키 코드 값으로 출력 / chr() 함수 : 아스키 코드 값을 문자로 출력

```
1 list_A = "A"
2 list_B = "B"
3
4 list_a = "a"
5 list_b = "b"
6
7 print("A 아스키 코드 값 : ", ord(list_A))
8 print("B 아스키 코드 값 : ", ord(list_B))
9 print("a 아스키 코드 값 : ", ord(list_a))
10 print("b 아스키 코드 값 : ", ord(list_b))
```

A 아스키 코드 값: 65 B 아스키 코드 값: 66 a 아스키 코드 값: 97 b 아스키 코드 값: 98

```
1 print("아스키 코드 값 65 : ", chr(65))
2 print("아스키 코드 값 66 : ", chr(66))
3 print("아스키 코드 값 97 : ", chr(97))
4 print("아스키 코드 값 98 : ", chr(98))
```

```
아스키 코드 값 65 : A
아스키 코드 값 66 : B
아스키 코드 값 97 : a
아스키 코드 값 98 : b
```