תורת החבורות – תרגיל בית 2 – פתרון

שאלה 2

 $\degig(fig(xig)ig)$ = ח פולינום עם מקדמים שלמים אי-שליליים, כאשר והי $fig(xig)=\sum_{i=0}^n a_i x^i$ יהי

. $f\left(k\right)$ $\equiv_9 \sum_{i=0}^n a_i$ אז k $\equiv_9 10$ מספר שלם אי-שלילי. $\frac{k}{n}$ כי לכל k טבעי מתקיים אם

<u>פתרון:</u>

נשים לב כי $k^i\equiv_9 1^i\equiv_9 1$, לכן לכל $0\leq i\leq n$ טבעי לב כי $k^i\equiv_9 10\equiv_9 1$, ולכל $a_i\in\mathbb{Z}$ מתקיים . $a_i\cdot k^i\equiv_9 a_i\cdot 1\equiv_9 a_i$ כי

lacksquare בכך מקבלים : $\sum_{i=0}^n a_i$ שווה ל- $\int_{i=0}^n a_i k^i$ שווה ל- פכך מקבלים :

<u>שאלה 3</u>

 $a^2 + b^2 = 3c^2$ שלמים המקיימים a,b,c שלמים מינמים כי לא קיימים

<u>פתרון:</u>

 $3c^2 \equiv_4 0,3$ - פכן $a^2 + b^2 \equiv_4 0,1,2$ לכן $x^2 \equiv_4 0,1$ איז $x \in \mathbb{Z}$ אים $x \in \mathbb{Z}$

מכך ומהשוויון $a^2+b^2=3c^2$ נובע כי $a^2=a^2=a^2$ נובע כי $a^2+b^2=3c^2$, בפרט שלושת המספרים הינם $a_1^2+b_1^2=3c_1^2$: נציבם ב- $a_1^2+b_1^2=3c_1^2$: נציבם ב- $a_1^2+b_1^2=3c_1^2$ נחזור על התהליך עבור a_1,b_1,c_1 וכך נמשיך עד שלא נגיע לשלב בו כבר לא נוכל לצמצם.

שאלה 4

 $a^2 \equiv_8 1$ מספר שלם אי-זוגי, הוכח: a

<u>פתרון:</u>

. $a=2\alpha+1$ מספר שלם אי-זוגי, לכן קיים מ $\alpha\in\mathbb{Z}$ מספר שלם אי

אני, אז $\alpha(\alpha+1) = (2\alpha+1)^2 = 4\alpha^2 + 4\alpha + 1 = 4\alpha(\alpha+1) + 1$ אז $a^2 = (2\alpha+1)^2 = 4\alpha^2 + 4\alpha + 1 = 4\alpha(\alpha+1) + 1 = 1$ $a^2 = 4\alpha(\alpha+1) + 1 = 1 \iff 4\alpha(\alpha+1) = 1$

 $\mathbf{a}^2 \equiv_8 1 \iff \mathbf{a} \equiv_8 1,3,5,7$ מספר שלם אי-זוגי, לכן \mathbf{a}