

Exercise 2A

Question 15:

Let α , β be the zeros of required quadratic polynomial f(x) We have,

$$\alpha + \beta = 0$$
, $\alpha\beta = -1$

: Polynomial whose zeros are α, β is

$$f(x) = x^2 - (\alpha + \beta)x + \alpha\beta$$

= $x^2 - 0.x + (-1) = x^2 - 1$

Required polynomial is x² – 1

Now
$$f(x) = x^2 - 1 = (x - 1)(x + 1)$$

 $f(x) = 0 \Rightarrow (x - 1)(x + 1) = 0$

 \therefore Either x-1=0 or x+1=0

i.e Either x = 1 or x = -1

.: Zeros of the polynomial are 1 and -1

Ouestion 16:

Let α , β be the zeros of required quadratic polynomial f(x) We have,

$$\alpha + \beta = \sqrt{2}$$
 and $\alpha\beta = -12$

.: Polynomial whose zeros are α, βis

$$f(x) = x^2 - (\alpha + \beta)x + \alpha\beta = x^2 - \sqrt{2}x - 12$$

 \therefore Polynomial required is $x^2 - \sqrt{2}x - 12$

For that,
$$f(x) = x^2 - \sqrt{2}x - 12$$

 $= x^2 - 3\sqrt{2}x + 2\sqrt{2}x - 12$
 $= x(x - 3\sqrt{2})x + 2\sqrt{2}(x - 3\sqrt{2})$
 $= (x - 3\sqrt{2})(x + 2\sqrt{2})$
 $f(x) = 0 \Rightarrow (x - 3\sqrt{2})(x + 2\sqrt{2})$
 $\Rightarrow \text{Either } x - 3\sqrt{2} = 0 \text{ or } x + 2\sqrt{2} = 0$

 α and β are the zeros of polynomial f(x) such that $\alpha + \beta = 6$ and $\alpha\beta = 4$

The polynomial f(x) whose zeros are α , β is

$$x^2 - (\alpha + \beta)x + \alpha\beta = x^2 - 6x + 4$$

 \therefore Either $x = 3\sqrt{2}$ or $x = -2\sqrt{2}$

********* FND ********