Biostatistics I: Statistical tests for continuous data

Eleni-Rosalina Andrinopoulou

Department of Biostatistics, Erasmus Medical Center

■ e.andrinopoulou@erasmusmc.nl

y@erandrinopoulou

Parametric

► One-sample t-test

Is the mean BMI of the students in my university different from the mean BMI of all students?

Non-parametric

One-sample Wilcoxon signed rank test

Is the median score value of the students in my university different from the median score value of all students?

One-sample t-test: Theory

Scenario

Is the mean BMI of the students in my university different from the mean BMI of all students?

Connection with linear regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
, where $x_i = 0$

$$H_0: \beta_0 = 0$$

$$H_1: \beta_0 \neq 0$$

2

Scenario

Is the mean BMI of the students in my university different from the mean BMI of all students?

Alternatively

 H_{O} : μ = O

 $H_1: \mu \neq 0$

More general

 H_{O} : μ = μ_{O}

 $H_1: \mu \neq \mu_0$

3

If one-tailed

Is the mean BMI of the students in my university larger than the mean BMI of all students?

 $H_0: \mu = \mu_0$ $H_1: \mu > \mu_0$

or

Is the mean BMI of the students in my university smaller than the mean BMI of all students?

 $H_0: \mu = \mu_0$ $H_1: \mu < \mu_0$

Test statistic

$$t = \frac{\bar{x} - \mu_0}{sd(x)/\sqrt{n}}$$

- ▶ Sample mean: \bar{x} (sample of students in my university)
- ▶ Population mean: μ_0 (all students)
- \triangleright Standard deviation of the sample: sd(x)
- ▶ Number of subjects: *n*

Sampling distribution

- ▶ t-distribution with df = n 1
- Critical values and p-value

Type I error

Normally α = 0.05

Draw conclusions

▶ Compare test statistic (*t*) with the critical values_{$\alpha/2$} or the p-value with α

If **one-tailed**: Compare test statistic with the critical value $_{\alpha}$

Two-sample test (independent samples)

Parametric

► Two-sample t-test (independent samples)

Is the mean BMI of the students from group 1 different from the mean BMI of the students of group 2?

Non-parametric

► Two-sample Wilcoxon rank sum test

Is the distribution of the score values of the students in group 1 different from the distribution of the score values of the students in group 2?

Two-sample test (dependent samples)

Parametric

► Two-sample t-test (dependent samples)

Is the mean BMI of the students before the exams different from the mean BMI of the students after the exams?

Non-parametric

► Two-sample Wilcoxon signed rank test

Is the median score value of the students in my university different this year compared to next year?

M-sample test

Parametric

► Analysis of variance / F-test

Is the mean BMI of the students different in groups 1, 2 and 3?

Non-parametric

► M-sample Kruskal-Wallis test

Is the distribution of the score values of the students different in groups 1, 2 and 3?

Correlation test

Parametric

▶ Pearson correlation test

Is the height of the students in my university linearly associated with their weight?

Non-parametric

Spearman correlation test

Is the height of the students in my university monotonically associated with their weight?