LISTA DE EXERCÍCIOS – PROCESSAMENTO DIGITAL DE IMAGENS

UNIDADE IV – REALCE

OBS: Sugere-se usar o EXCEL para fazer os exercícios 1 a 4, 10, 12 a 14.

Obs: Nesses exercícios de realce de umagens, fique atento para o fato de que trabalhar com materizes pequenas, muitas vezes, dificulta a análise dos resultados, já que o objetivo do realce é produzir imagens mais agradáveis de serem visualizadas. A qualidade do resultado final dependerá muito dos histogramas.

1) Suponha a imagem de entrada r, apresentando os valores abaixo:

15000	10	1
12000	1000	75
0	6	30

- a) Converta linearmente a imagem r para a imagem m, uma representação em 8 bits, a fim de que possa ser visualizada em um monitor.
- b) Utilize a transformação logaritmica s=c log(1+r), com c=1, para gerar a imagem transformada s.
- c) Encontre o calor de c que deveria ser utilizado no item anterior, de forma que o máximo valor de intensidade seja comvertido para 255.
- d) Encontre a nova imagem s, utilizando o valor encontrado no item anterior para a constant c.
- e) Plote os histogramas das imagens m e s (ambas com 8bits).
- f) Analise os resultados encontrados.
- 2) Repita o exercício anterior, mas agora usando a transformação de potência $s = c r^{\lambda}$, com $\lambda = 0.4$ e com $\lambda = 0.2$.
- 3) Aplique a transformação de potência $s = c r^{\lambda}$, com $\lambda = 2.5$ e com $\lambda = 25$ na imagem abaixo, que é predominantemente clara, e analise seus resultados.

200	232	255
100	150	180
0	230	240

4) Aplique a transformação de potência $s = c r^{\lambda}$, com $\lambda = 2.5$ e com $\lambda = 25$ na imagem abaixo, que é predominantemente escura, e analise seus resultados.

10	20	55
40	45	50
0	2	5

5) Interprete os resulatdos obtidos com a transformações de intensidade aplicadas, visando ao aumento de contraste das imagens originais.

6) Sobre a imagem de entrada u mostrada na figura a, aplique a transformação de intensidade mostrada na figura b para gerar a imagem transformada v. Considere a=80 e b=150

200	232	130
40	100	100
0	90	120
	(a)	

7) Sobre a imagem de entrada u mostrada na figura a, aplique as transformações de intensidade mostradas na figura b para gerar imagens transformadas. Considere A=80, B=150 e L=256.

E ainda, nas transformações da figura b, considere que o valor constante do pixel da imagem de saída correspondents aos pixels da imagem de entrada com valores entre A e B seja igual a 200.

Na primeira transformação, considere que o valor constante do pixel da imagem de saída correspondents aos pixels da imagem de entrada com valores menores que A ou maiores que B seja igual a 50.

200	232	130
40	100	100
0	90	120
	(a)	

8) Explique as etapas do processamento mostrado na figura a seguir. Qual a transformação de intensidade deve ser aplicada para a limiarização?

Exemplo: alargamento de contraste e limiarização (a) Forma da função de trasnformação; (b) Imagem de baixo contraste; (c) Resultado do alargamento de contraste; (d) Resultado da limiarização

9) Explique os processamento mostrados na figura a seguir, anaisando os resultados obtidos.

10) A imagem u apresenta as intensidades Xi relacionadas abaixo, com o respective histograma H(Xi). Aplique o método de equalização de

histograma para obter os novos valores de intensidade. Calcule e plote ambos os histogramas

INTENSIDADE Xi		H(Xi)	
	0	100	
	2	500	
	3	1000	
	16	800	
	20	1000	
	21	100	
1	L20	1200	
1	L40	1500	

11) Pelo método de Equalização de Histograma, a transformação de intensidade aplicada aos pixels da imagem de entrada é específica para cada imagem e depende única e exclusivamente do seu histograma.. Comente essa afirmação a partir da análise das figuras abaixo, em que as transformações aplicadas às imagens (I), (II), (III) e (IV) estão mostradas no gráfico à direita.

12) Sobre a imagem abaixo:

12	12	9	21
12	12	9	21
12	12	9	21
15	15	9	18
15	15	15	15
15	15	9	18
15	15	9	18
15	15	9	18

- a. Aplique uma máscara de convolução 3x3, relative a um filtro de media bidimensional. No tratamento das bordas, utiliza e extensão periódica (ou circular).
- b. Após tratamento de bordas com a extensão periódica, aplique uma mascara de média 1x3 (processamento unidimensional sobre as linhas). Em seguida, faça um novo tratamento de bordas com extensão periódica. E então, aplique uma mascara de média 3x1 (processamento unidimensional sobre as colunas resultants do processamento unidimensional anterior).
- c. Compare os resultados de (a) e (b) e determine se o filtro de media é separável (o processamento 2D pode ser separado em 2 processamentos 1D).
- d. O que se pode dizer sobre a demanda computacional em (a) e (b)?

13) Sobre a imagem abaixo:

12	12	9	21
12	12	9	21
12	12	9	21
15	15	9	18
15	15	15	15
15	15	9	18
15	15	9	18
15	15	9	18

- e. Aplique uma máscara de convolução 3x3, relative a um filtro de mediana bidimensional. No tratamento das bordas, utiliza e extensão periódica (ou circular).
- f. Após tratamento de bordas com a extensão periódica, aplique uma mascara de mediana 1x3 (processamento unidimensional sobre as linhas). Em seguida, faça um novo tratamento de bordas com extensão periódica. E então, aplique uma mascara de mediana 3x1 (processamento unidimensional sobre as colunas resultants do processamento unidimensional anterior).

- g. Compare os resultados de (a) e (b) e determine se o filtro de mediana é separável (o processamento 2D pode ser separado em 2 processamentos 1D).
- h. Qual dos filtros, media ou mediana, é mais eficiente para reduzir ruídos sem danificar as bordas?
- 14)Para as imagens originais abaixo, calcular o Laplaciano (com extensão circular de bordas) e, em seguida, calcular imagem com realce de bordas (imagem original + laplaciano). Analisar os resultados.

20	20	20	20
20	20	20	20
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
20	20	20	20
20	20	20	20

20	20	1	1	1	20	20
20	20	1	1	1	20	20
20	20		1	1	20	20
20	20		1	1	20	20
20	20		1	1	20	20
20	20	1	1	1	20	20
20	20	1	1	1	20	20

15)Para as mesmas imagens acima, calcular o Gradiente de Sobel (slide 74 da Unidade IV-parte 1)