Causal Inference Introduction

Paul English

November 19, 2016

Introduction

Causal Effect Counterfactual Substitutes Randomized Controlled Trials Statistical Adjustment

The Rubin Causal Model

Matching

Propensity Score Matching Distance Matching

Examples

Correlation does not imply causation

http://www.tylervigen.com/spurious-correlations

Causal Effect given access to a Time Machine

How we would measure causal effect if we had a time machine:

subject	Y(1)	Y(0)	Y(1) - Y(0)
Joe	-5	5	-10
Mary	-10	-5	-5
Sally	0	10	-10
Bob	-20	-5	-15
Mean			-10

Causal Effect since we don't have a time machine

But we haven't found any time machines yet, so we're usually stuck with this:

subject	Y(1)	Y(0)	Y(1) - Y(0)
Joe	?	5	?
Mary	-10	?	?
Sally	?	10	?
Bob	-20	?	?
Mean			?

Causal Effect since we don't have a time machine

What if we look at the average of each group?

subject	Y(1)	Y(0)	Y(1) - Y(0)
Joe	?	5	?
Mary	-10	?	?
Sally	?	10	?
Bob	-20	?	?
Mean	-15	7.5	?

Average treatment effect: $\bar{Y}(1) - \bar{Y}(0) = -22.5$

Causal Effect since we don't have a time machine

- ▶ In general we cannot observe the causal effect directly.
- Estimating causal effects requires:
 - substitutes for the potential outcome,
 - randomization.
 - or statistical adjustment.

Substitues to Potential Outcome

Examples:

- Maybe you can repeat treatment, e.g. drinking tea before bed.
- Dividing up a piece of plastic and exposing it to a corrosive chemical.
- ▶ The effect of a diet over time by measuring weight.

These tend to carry strong assumptions that may be implicit in the choice of substitution.

The Gold Standard: The Randomized Controlled Trial

- ► We cannot compare treatment and control on the same units, so we compare similar units.
- Selection bias is avoided through randomization.
- Well-proven methodology and typically one of the best ways to design a study.

The Gold Standard: The Randomized Controlled Trial

Problems:

- It's not always possible to conduct an experiment.
- It could be cost prohibitive.
- Participants could self-select into the treatment group, e.g. company wellness programs.
- ➤ You may not be involved in the study design, and only receive data post-hoc.
- ▶ It might be unethical to control treatment.

Statistical Adjustment

- Usually attempts to approximate what a random experiment can achieve.
- Attempts to create similar units.
- ▶ Regression estimate of the outcome.
- Matching to achieve balance.

For the moment let's assume randomization and revisit our example:

subject	Y(1)	Y(0)	Y(1) - Y(0)
Joe	?	5	?
Mary	-10	?	?
Sally	?	10	?
Bob	-20	?	?
Mean	?	?	?

What if we can estimate the unknown values which we can't observe in practice?

Building a linear model on treatment alone,

$$\hat{Y}_i = \alpha + \tau D_i + \epsilon_i$$

we have the least squares estimator of,

$$(\hat{\tau}, \hat{\alpha}) = \arg\min_{\tau, \alpha} \sum_{i=1}^{N} (Y - \alpha - \tau D_i)^2$$

Solving for $\hat{\tau}$ we end up with,

$$\hat{\tau} = \frac{\sum_{i=1}^{N} (D_i - \bar{D})(\hat{Y} - \bar{Y})}{\sum_{i=1}^{N} (D_i - \bar{D})^2}$$

This can be shown to be equal to,

$$\hat{\tau} = \bar{Y}(1) - \bar{Y}(0)$$

That is our estimator τ is identical to the difference in average outcomes of treatment status.

In general we can estimate our treatment effect with regression

► Controlling for covariates:

$$\hat{Y}_i = \alpha + \tau D_i + \beta X_i + \epsilon_i$$

Interaction with the treatment:

$$\hat{Y}_i = \alpha + \tau D_i + \beta X_i + \gamma D_i (X_i - \bar{X}) + \epsilon_i$$

Causal Inference Assumptions

What are we assuming here? Treatment is *Strongly Ignorable*:

- ▶ Unconfoundedness: D is independent of (Y(0), Y(1)) conditional on X = x, e.g. the treatment of one group does not affect the other group.
- Overlap: $c < \mathbb{P}(D = 1 | X = x) < 1 c$, for c > 0.

Matching

- Matching tries to avoid and remove selection bias from datasets.
- The goal is to approximate a randomized or controlled trial.
- ► There are various ways to do this, the most commonly seen is propensity matching.
- ► Can also be good for unbalanced groups in any trial, where the size of one group is significantly smaller than another (Maybe an observational study).

Propensity Score Matching

A propensity score is an approximate model of how likely a subject is to have been in the treatment group.

$$P(D_i = 1|X_i)$$

Solve this using a regression,

$$D_i = \text{logistic}(\alpha + \beta X_i + \epsilon_i)$$

We can then select the control group from the non-treatment population by matching members based on minimizing the difference in this score, e.g. pairing.

Distance Matching

Additionally we could minimize the distance between covariates,

$$m(i) = \arg\min_{j:W_i \neq W_i} ||X_j - X_i||$$

Where we define $||X_j - X_i||$ as a distance between the covariate vectors X_j and X_i as follows:

$$||X_j - X_i|| := (X_j - X_i)'W(X_j - X_i).$$

where W is defined as

$$W = \mathsf{diag}\{\hat{\sigma}_1^{-2}, \dots, \hat{\sigma}_K^{-2}\}\$$

also known as Mahalanobis distance.

Examples

Let's try some of this out.