Comparison Table of Epidemic Models for Spatial Heterogeneity

Anton Antonov,

<u>System Modeling at GitHub/antononcube</u>
2021-03-08

Tasks Modeling approach	Variables	Spatial structure parameters	Spatial effect modeling mechanism	Additional model features	Model analysis and investigation
Multi-site extension by graph (Antonov, [AA1])	Discrete in space, continuous in time	 Population sizes for each site. Contingency table of traveling patterns between graph nodes. Different at each site: Death rates Incubation periods Infectious periods Model specific choice of population types that travel. (Can travel or are allowed to.) 	 The migrant populations produce new "birth-like" equation terms. The new-comers at a given site become part of site's population. 	 Uses System Dynamics perspective. It is assumed that sites can be become empty. Persons are interchangeable — person's site origin does not matter. Chain-able model-transformations. E.g. Modify SEIR with air-travel patterns only of Susceptible and Recovered populations. Modify the obtained model with land-travel patterns for all populations. Works adequately if the time step is small. (E.g. a day for COVID-19 simulations.) 	 Demonstrating the algorithm using a: Trivial graph Grid graph Random graph
Multi-patch SEIR (Lloyd & May, [LM1])	Discrete in space, continuous in time	 Population sizes at each patch. Contact rates between patches. Universal death rate, average latent disease period, and average infectious period. 	Region-to-region mingling terms are used. The mingling parameters are given as a matrix of contact rates.	Simple, yet general approach.	 SEIR model based analysis. Stability and bifurcation analysis. Forced seasonalities.
Multi-region mobility incorporation into SIR (Sattenspieal & Dietz, [SD1])	Discrete in space, continuous in time	 Population sizes for each region. Fractions of travelers for each patch. Probability to go from patch i to patch j. Per capita return rate for travelers from patch i at patch j. A list of matrices for the proportion of contacts in region k between a susceptible from region i and an infective from region j. Average number of contacts per person for each patch. 	Region-to-region mingling terms are used. Multiple mingling parameters. (See left cell.)	 Markov chain perspective on traveling. Travelers do not "forget their home." No death rate, average latent disease period, and average infectious period are included in the model. 	 Taking the model to different extreme cases in order to do mathematical analysis. SIR model based analysis. Application to real-life Measles modeling.
By Partial Differential Equations (PDEs), (Kot [MK1], Wu [JW1])	Continuous in space, continuous in time.	 The continuous distribution of the population in space and its growth in time. Diffusion coefficients population motion. Relevant death rates, contact rates, incubation period, etc. 	PDEs of reaction-diffusion type.	Assumes populations migrate according to Fick's laws of diffusion.	 Derivation of the model Application to real-life Rabies and West Nile virus modeling.

References

[AAI] Anton Antonov, "Scaling of Epidemiology Models with Multi-site Compartments", (2020), SystemModeling at GitHub/antononcube.

[MKI] Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001).

[LMI] Lloyd, A., and May, R.M.: Spatial heterogeneity in epidemic models. J. Theor. Biol. 179, I–II (1996).

[SD1] Sattenspiel, L. and Dietz, K.: A structured epidemic model incorporating geographic mobility among regions. Math. Bios. 128, 71–91 (1995).

[JWI] Jianhong Wu, "Spatial Structure: Partial Differential Equations Models", in Mathematical Epidemiology, Springer, 2008.