מבוא לגנומיקה חישובית ומערכתית – challenge

:מטרות

- 1. לבנות מסווג שבהינתן פיצ'רים מגנום של מטופל מסוים יחזיר את סוג הסרטן אשר יש לאותו מטופל (Lung Squamous Cell Carcinoma LUSC) עבור סרטן קשקשי בריאה (Head-Neck Squamous Cell Carcinoma HNSC) בהתבסס על 100 גנים.
- 2. לבנות מסווג שבהינתן פיצ'רים מגנום של מטופל מסוים **ובנוסף מרמות המתילציה שלו** יחזיר את סוג הסרטן אשר יש לאותו חולה עבור אותם סוגי סרטן בסעיף הקודם בהתבסס על נתונים מאותם 100 גנים.

תיאור המשימה

מצורפים לכם הקבצים הבאים:

קובץ ראשון (train_muts_data.csv) – מכיל מוטציות עבור 80% מהמטופלים (805 מטופלים)

קובץ שני (test_muts_data.csv) – מכיל מוטציות עבור 20% מהמטופלים (201 מטופלים)

הקבצים הנ"ל מכילים את הנתונים הבאים:

- (case_id) אינדקס המטופל.
- 2. שם הגן בו יש את המוטציה (Gene_name)
- 3. מספר הכרומוזום בו יש את המוטציה ואת הגן (Chromosome)
 - 4. פוזיציית התחלה של המוטציה (Start_Position)
 - 5. פוזיציית סיום המוטציה (End_Position)
 - 6. באיזה גדיל המוטציה נמצאת (Mut_Strand)
 - (Variant_Classification) אופי המוטציה.
 - 8. הרצף בגן המקורי במיקום המוטציה (Reference_Allele)
 - (Tumor_Seq_Allele1) אוריה באלל 1 (Tumor_Seq_Allele1).
 - (Tumor_Seq_Allele2) 2. הרצף של המוטציה באלל
- שימו לב כי ייתכן ולמטופל מסוים יהיו כמה מוטציות, כלומר, כמה שורות של נתונים
- כמו כן, עבור סט ה-TRAIN קיימת גם עמודה בשם Label עם תווית (=לייבל) השווה ל-1 עבור חולי
 LUSC ול-2 עבור חולי

קובץ שלישי (train_feats.csv) – מכיל פיצ'רים ולייבלים עבור סט ה-TRAIN של המטופלים

של המטופלים TEST- מכיל פיצ'רים עבור סט – (test_feats.csv) קובץ רביעי

הקבצים האלה מכילים את הפיצ'רים של כמות המוטציות עבור כל אחד מ-100 הגנים שנבחרו.

שימו לב שזוהי רק דוגמא לפיצ'רים אפשריים שניתן לייצר. אתם צריכים לחשוב על פיצ'רים נוספים ולייצר אותם

קובץ חמישי (100_genes.csv) – מכיל את 100 הגנים שנבחרו של human עם שם הגן, הגדיל שלו, הרצף (100_genes.csv) – מכיל את transcript (כולל מיקומי transcript (כולל מיקומי (עבור הלבון\transcript). המקודד שלו (עבור הרצף המקודד בגנום).

קובץ שישי (train_meth_data.csv) – מכיל נתוני מתילציה עבור אותם מטופלים מהקובץ הראשון

קוד פייתון אשר בהינתן מיקום של מוטציה בכרומוזום מסויים מוציא X נוקלאוטידים לפני המוטציה ו-Y נוקלאוטידים אחרי המוטציה (extract_sequences)

שימו לב שבשביל להשתמש בקוד פייתון המצורף, יש להוריד את רצף הכרומוזמים המתאים לגן (מספר הכרומוזום נמצא בקבצים המצורפים) באתר NCBI כפי שנלמד בכיתה (https://www.ncbi.nlm.nih.gov/genome/?term=human)

קובץ שביעי (meth_train_data.csv) – מכיל נתוני מתילציה עבור החולים בסט ה-TRAIN. שימו לב כי לא תוכלו לראות את כל השורות שלו אם תסתכלו עליו באקסל (אבל כשתקראו אותו בפייתון הוא ייקרא כולו).

.TEST – מכיל נתוני מתילציה עבור החולים בסט ה-meth_test_data.csv) קובץ שמיני

הקבצים עם נתוני המתילציה מכילים:

- (case_id) אינדקס המטופל.
- 2. ה-ID של ה-probe שמדד את ערכי המתילציה (probelD)
 - (beta_val) ערכי הבטא המודדים את ערכי המתילציה
 - 4. הכרומוזום בו יש את המתילציה (CpG_chrm)
 - 5. פוזיציית ההתחלה של המתילציה (CpG_beg)
 - 6. פוזיציית הסיום של המתילציה (CpG_end)
 - 7. הגדיל בו היה ה-probe_strand) probe.
 - 8. שם הגן בו יש את המתילציה (matching_genes)

גם כאן שימו לב כי:

- ייתכן ולמטופל מסוים יהיו כמה מקומות בהם היה לו מטליציה, כלומר, כמה שורות של נתונים
- כמו כן, עבור סט ה-TRAIN קיימת גם עמודה בשם Label עם תווית (=לייבל) השווה ל-1 עבור חולי LUSC ול-2 עבור חולי

קובץ תשיעי (Main_text_npj.pdf) – מאמר אחד שמומלץ לקרוא כדי לקבל רעיונות לפיצ'רים (תחפשו עוד)

מטלה 1 (מסווג על סמך מוטציות בלבד):

- א. צרו את הפיצ'רים הבאים עבור כל מטופל:
- 1. כמות כל המוטציות (סכום על כל הגנים בלי להתחשב באופי שלהן)
- וכו') לכל הסוגים האפשריים של אופי מוטציות (Intron, Missense) .2 (סכום על כל הגנים)
- וכו') לכל הסוגים האפשריים של אופי מוטציות (Intron, Missense). כמות המוטציות מאופי מסוים (לכל הסוגים האפשריים של אופי מוטציות מרכל גן מ-100 הגנים.
 - ב. צרו פיצ'רים נוספים כראות עינכם (כפי שהוסבר והודגם בכיתה)
 - ג. צרו גרף בו ציר ה-Y מתאר את כמות המוטציות וציר ה-X מתאר את סוג∖מיקום המוטציה עבור כל הדאטא. החלוקה של ציר X היא לפי איור 1b של המאמר המצורף.
 - כפי TRAIN- ד. על סמך הפיצ'רים שקיבלתם וייצרתם צרו מסווג (למשל SVM) ואמנו אותו על סט ה-TRAIN כפי שנלמד בכיתה

- מתוך ה-Known Test) מתוך שלכם את הביצועים של המסווג שלכם לפי השגיאה הבאה על סט ה-Known Test (מתוך ה-CTRAIN=Known):

Error =

sum(df_known_test['Label']!=df_known_test['predict_label'])/len(df_known_test)

.predict_label-כאשר החיזוי של המסווג נמצא בעמודה

ו. לבסוף הציגו עבור המטופלים של סט ה-TEST מהו סוג הסרטן המתאים להם ע"י שימוש במסווג שבניתם

מטלה 2 (מסווג על סמך מוטציות ומתיליציה):

- א. צרו את הפיצ'רים הבאים עבור כל מטופל:
- 1. ממוצע ערכי המתיליציה לכל הפרובים השייכים לגן מסוים עבור כל גן.

ב'-ו' – אותו דבר כמו במטלה 1 (סעיף ג' לא רלוונטי במטלה זו). שימו לב להשתמש גם בפיצ'רים מהמטלה הקודמת.

תיאור הגשה –

- 1. צרו מסמך PDF שיכיל:
- מהם הפיצ'רים הנוספים שייצרתם וכן הסבר מדוע בחרתם להוסיף אותם
 - הגרף שייצרתם בסעיף ג' במטלה 1
 - תרשימי זרימה מפורטים של פעולת המסווגים שלכם.
- דיון מה מידת ההצלחה של המסווגים שלכם? כיצד מדדתם אותה? כיצד ניתן
 לשפר את המסווגים?
- מסודר על אופן פעולת READ_ME 2. צרפו את קבצי הקוד של שני המסווגים שלכם. כתבו קובץ PDF מסודר על אופן פעולת (PDF מסוג PDF) לכל אחד.
- 3. שני קבצי csv עבור סט ה-TEST (אחד עם הסיווג של המסווג ממטלה 1 ואחד עם הסיווג של המסווג ממטלה 2) שיכילו שתי עמודות:
 - (case_id אינדקס המטופל (בעמודה •
 - (predict_label בעמודה 2 (בעמודה) בי הסיווג המתאים לו, כלומר 1 או