## New Insights into Metric Optimization for Ranking-based Recommendation

Roger Zhe Li (Presenter), Julián Urbano, Alan Hanjalic Delft University of Technology, the Netherlands

Email: z.li-9@tudelft.nl





#### Offline Evaluation in Recommender Systems



nDCG

AP

RR

Precision

Recall

. . .







#### Optimizing for the Same Metric Used for Evaluation?

|                                 | Evaluation<br>Metric | Optimization<br>Target |
|---------------------------------|----------------------|------------------------|
| CLiMF<br>(Shi et al, 2012)      | RR                   | RR                     |
| TFMAP<br>(Shi et al, 2012)      | AP, Precision        | AP                     |
| Top-N-Rank (Liang et al, 2018)  | nDCG                 | DCG                    |
| LambdaRank (Burges et al, 2006) | nDCG                 | DCG                    |



# Is "Optimizing for the Same Metric Used for Evaluation" the BEST Way?



#### Concerns

- Some metrics are more informative than others;
- Metrics are correlated with each other to a different extent.



#### Problem

- Goal: investigate the choice of metric to optimize for a recommender.
- Given: {user, item, BINARY relevances}.
- Target: Extensive comparison (effectivess, fairness, etc) on personalized recommendation lists to each user, optimized by different IR metrics.



#### Strategies

- Pairwise (LambdaRank) and listwise methods for investigation;
- Four metrics: nDCG, AP, RR and RBP(s);
- Different data sparsities for training and testing.



#### Loss Design for Direct Optimization



#### Loss: Preliminaries

|            | nDCG                             | AP | RR                        | RBP |
|------------|----------------------------------|----|---------------------------|-----|
| LambdaRank | Donmez et al, 2009               |    |                           |     |
| Listwise   | Top-N-Rank,<br>Liang et al, 2018 |    | CLiMF,<br>Shi et al, 2012 |     |



#### Optimizing for nRBP

|       | nDCG   | AP     | RR     | RBP     |
|-------|--------|--------|--------|---------|
| Range | [0, 1] | [0, 1] | [0, 1] | [0, <1] |



#### Optimizing for nRBP: Listwise

$$L_{nRBP}(u) = \sum_{i=1}^{N} y_{ui}(\tilde{R}_{ui} - 1) - \sum_{j=1}^{m_u} (j - 1)$$

- Optimize for an upper bound based on logarithmic transformation and Jensen's inequality;
- Independent of the hyperparameter p;
- Lower bound = 0; upper bound not fixed;
- Active users with more items are more important.



#### Experiments



#### Datasets

| Dataset           | #users | #items  | #ratings | Density          |         |
|-------------------|--------|---------|----------|------------------|---------|
| CiteULike-a       | 2,465  | 16,702  | 157,527  | 0.383%<br>0.213% | Binary  |
| Epinions          | 4,690  | 32,592  | 325,154  | 0.213%           | Dillary |
| Sports & Outdoors | 9,123  | 119,404 | 342,311  | 0.031% • 0.017%  | Graded  |
| Home & Kitchen    | 20,531 | 222,472 | 795,845  | 0.017%           | 1-5     |

- Binarization: threshold=4 for graded datasets
- 25-core filtering
- User-level split with Train:Test =4:1 (>=5 items per user for testing)



#### Protocols

- 3 different splits per dataset
- Evaluation Metric: nDCG, AP, RR, RBP.8, RBP.9, RBP.95
- Recommender: Matrix Factorization
- Negative Sampling Ratio (NSR): 100%, 200%, 500%
- Training Epoch Selection: based on individual p's



#### Overall Performance







#### Overall Effectiveness: by Metrics used for Optimization







#### Overall Effectiveness: by Datasets







### Individual Analysis on nRBP: Fairness for Effectiveness?





#### Conclusions

- It is not necessarily the best to optimize for the same metric used for evaluation in ranking-based recommender systems;
- RBP is a promising alternative to serve as the loss in LTR recommenders.
- RBP-based listwise optimization improves the utility of all users, but favors more on active users.

Code & Data: <a href="https://github.com/roger-zhe-li/sigir21-newinsights">https://github.com/roger-zhe-li/sigir21-newinsights</a>
Special thanks to SIGIR for providing a travel grant for the first author.

