Topological Spaces

October 26th, 2020

1 Topological Spaces

Definition. A topology on a set X is a collection \mathcal{T} of subsets of X having the following properties:

- (1) \varnothing and X are in \mathcal{T}
- (1) \bowtie and Λ are m,
 (2) For any subcollection of \mathcal{T} , indexed by set I, we have: $\bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T}$ (3) For any finite subcollection of \mathcal{T} with n elements, we have: $\bigcap_{i=1}^{n} U_{i} \in \mathcal{T}$

A set for which a topology \mathcal{T} is specified is called a **topological space**. And the element of \mathcal{T} is called **Open Set**

With the element of \mathcal{T} is defined as open set, we could say a topology is a collection of subsets of X such that \emptyset and X itself are open and satisfies that arbitrary unions and finite intersections of open sets are open. We often write set X and its topology \mathcal{T} as the ordered pair: (X, \mathcal{T}) . And when we say: "Let XXX be open sets", that means we defined a topology on X and \mathcal{T} consists the subsets mentioned above.

EXAMPLE. If X is any set, the collection of all subsets of X is a topology on X, called **discrete topology**. The collection which has only \emptyset and X itself is called **trivial topology**.

EXAMPLE. Let X be a set; let \mathcal{T}_f be the collectino of all subsets U of X such that X-U is either finite or all of X. Then \mathcal{T}_f is a topology of X, called **finite complement topology**. Note that varnothing = U - U is finite and $U = U - \emptyset$, therefore we have \emptyset and U belong to \mathcal{T}_f . Let $\{U_\alpha\}$ be a subcollection of \mathcal{T} indexed by I. Then we have:

$$X - \bigcup U_{\alpha} = \bigcap (X - U_{\alpha})$$

Since each $X - U_{\alpha}$ is finite, we have $X - \bigcup U_{\alpha}$ is finite. If $U_1, ..., U_n \in \mathcal{T}_f$. Then:

$$X - \bigcap_{i=1}^{n} U_i = \bigcup_{i=1}^{n} (X - U_i)$$

Since each $X_n - U_i$ is finite, the finite union of sets with finite cardinal numbers are also finite. Thus $\bigcap_{i=1}^{n} U_i \in \mathcal{T}_f$ In conclusion, \mathcal{T}_f is a topology on set X.

EXAMPLE. Let X be a set and \mathcal{T} a topology on X. If Y is a subset of U. We define the following collection:

$$\mathcal{T}_Y = \{ Y \cap U \mid U \in \mathcal{T} \}$$

It is easy to see that \mathcal{T}_Y is a topology on Y:

$$\emptyset = \emptyset \cap Y \quad Y = X \cap Y$$

If $\{V_{\alpha}\}$ is a subcollection of \mathcal{T}_{Y} , then each V_{α} could be written as $U_{\alpha} \cap Y$, we have:

$$\bigcup V_{\alpha} = \bigcup (U_{\alpha} \cap Y) = (\bigcup U_{\alpha}) \cap Y$$

Note that $\bigcup U_{\alpha}$ is in \mathcal{T} ,hence we have $\bigcup V_{\alpha} \in \mathcal{T}_{Y}$. If $V_{i} = U_{i} \cap Y$, i = 1, 2, ..., n is a finite collection of \mathcal{T}_{Y} . Then:

$$\bigcap_{i=1}^{n} V_i = \bigcap_{i=1}^{n} (U_i \cap Y) = (\bigcap_{i=1}^{n} U_i) \bigcap Y$$

Note that $\bigcap_{i=1}^{n} U_i \in \mathcal{T}$, thus we have $\bigcap_{i=1}^{n} V_i \in \mathcal{T}_Y$. The above new collection consists of the intersection of Y and open sets are called **subspace topology**, and therefore, Y is a topological space.

REMARK. It is easy to see that a set could be assigned with different topology. A typical example is the discrete topology and trivial topology of the same set X. These two topology represents different topological structure. A trivial topology looks like a steel while discrete topology is fine enough to make generate any subset of X.

Definition. Suppose \mathcal{T} and \mathcal{T}' are two topologies on a given set X. If $\mathcal{T} \subset \mathcal{T}'(\mathcal{T} \subsetneq \mathcal{T}')$, we say that \mathcal{T}' is $finer(strictly\ finner)$ than \mathcal{T} , or \mathcal{T} is $coarser(strictly\ coarser)$ than \mathcal{T}' . We say \mathcal{T} is comparable with \mathcal{T}' if either $\mathcal{T} \subset \mathcal{T}'$ or $\mathcal{T}' \subset \mathcal{T}$

Sometimes we also say that \mathcal{T}' is larger than \mathcal{T} or \mathcal{T} is smaller than \mathcal{T}' , but not as vivid as finer.

2 Closed Sets and Limit Point

2.1 Closed Set

Definition. Let (X, \mathcal{T}) be a topological space. We say a subset A of X is **closed** if X - A is open.

EXAMPLE. Let (X, \mathcal{T}) be a topological space and \mathcal{T} be the discrete topology, then any subset of X is a closed set. On the other hand, let \mathcal{T} be trivial topology, then any subset that is neither \emptyset nor X is neither open nor closed.

EXAMPLE. Let $(\mathbb{R}^2, \mathcal{T})$ be a topological space and \mathcal{T} generated by all open ball. And consider the set:

$$\{(x,y) \mid x \ge 0, y \ge 0\}$$

The set is closed as its complement is:

$$(-\infty,0)\times\mathbb{R}\cup\mathbb{R}\times(-\infty,0)$$

And each of them are open.

EXAMPLE. Let $(\mathbb{R}, \mathcal{T})$ be a topological space with topology \mathcal{T} consists of all open sets under the metric space (\mathbb{R}, d) . Consider $Y = [0, 1] \cup (2, 3)$ and the subspace topology. We claim hat [0, 1] is an open set of Y, because $[0, 1] = (-1, \frac{3}{2}) \cap Y$. Similarly, (2, 3) is also open in Y. And the complement of each of them is another interval, therefore [0, 1] and (2, 3) are both open and closed.

REMARK. By these three examples, we could see that a subset of X can be open, or closed, or both, or neither. In addition, we see that a subset is open(closed) or not depends on the whole space you consider: [0,1] in EXAMPLE3 is not open in \mathbb{R} but open in Y.(2,3) is not closed in \mathbb{R} but closed in Y.

Theorem 1. Let X be a topology space. Then the following conditions hold:

- (1) \varnothing and X are closed
- (2) For any collection of closed set $\{V_{\alpha} \mid \alpha \in I\}$, we have $\bigcap_{\alpha \in I} V_{\alpha}$ is closed
- (3) The intersection of any finite many closed sets are closed.

Proof. (1) is trivial with $\emptyset = X - X$ and $X = X - \emptyset$. As for (2), notice that :

$$\bigcap_{\alpha \in I} V_{\alpha} = \bigcap_{\alpha \in I} U_{\alpha}^{c} = (\bigcup_{\alpha \in I} U_{\alpha})^{c}$$

where U_{α} is an open set. And we denote $X - U_{\alpha}$ with U_{α}^{c} . (3) follows the same way with the fact that:

$$\bigcup_{i=1}^{n} V_{\alpha} = \bigcup_{i=1}^{n} U_{\alpha}^{c} = (\bigcap_{i=1}^{n} U_{\alpha})^{c}$$

Theorem 2. Let Y be a subsapce of X. Then a set A is closed in Y if and only if it equals the intersection of a closed set of X with Y.

Proof. Consider the subspace topology of Y and let V_Y is a closed set under such subspace topology. Then we have $V_Y = Y - U_Y$ for some open set U_Y in Y. With the definition of subspace topology, we have $U_Y = U \cap Y$ with U an open set in X. Then $V_Y = Y - U_Y = Y - U \cap Y = Y - U = Y \cap (X - U)$ where (X - U) is closed in X. Therefore if V_Y is closed in Y, then V_Y is intersection of Y and a closed set in X.

On the other hand, if $V_Y = Y \cap V$ for some closed set V of X. We have $V_Y = Y \cap (X - U) = Y - U = Y - (Y \cap U)$, which is closed in Y

REMARK. General speaking, a set that is closed in a subspace may not be closed in the larger topological space. For example, let $X = \mathbb{R}$ and open set consists of conventional open set in \mathbb{R} . Consider the subspace Y generated by the intersection of [0,1) and X. Then

notice that $[0, \frac{1}{2})$ is open in Y as $[0, \frac{1}{2}) = (-1, \frac{1}{2}) \cap [0, 1)$. Therefore $Y - [0, \frac{1}{2}) = [\frac{1}{2}, 1)$ is closed in Y, however, it's not closed in \mathbb{R} .

But we have the following theorem explained the so called "transitivity" of closed property:

Theorem 3. Let Y be a subspace of X. If A is closed in Y and Y is closed in X, then A is closed in X.

Proof. By theorem 2, $A = Y \cap V$ with V closed in X. Therefore, A is closed in X by the fact that the intersection of two closed sets is closed.

2.2 Limit Point and Closure

Definition. Let X be a topological space and A a subset of X. An element x of X is said to be *limitpoint* of A if: for every open set U that contains $x, U \cap A \neq \emptyset$ or $\{x\}$.

Definition. Let A be a subset of the topological space X; let A' be the set of all limit points of A, we define the closure of A as the union of A and A', denoted by \bar{A} . Which is:

$$\bar{A} = A \cup A'$$

Theorem 4. Let X be a topological space. Then A is closed in X if and only if: $\bar{A} = A$

Proof. \Leftarrow : If $\bar{A} = A$, we need to show that A is closed, or to show that X - A is open. For any element $x \in X - A$, x is neither an element of A nor the limit point of A. $x \notin A'$ means there is some open set U that contains x but $U \cap A = \emptyset$ or $\{x\}$. Now that $x \notin A$, we have $U \cap A = \emptyset$. For any $x \in X - A$, we have such open set U_x . And thus:

$$X - A = \bigcup_{x \in (X - A)} U_x$$

is union of open set in X, therefore an open set. Hence we have A is closed.

 \Rightarrow : If A is closed. To prove $A = \bar{A}$, we only need to show that $A' \subset A$, which is: any limit point of A is in A. Suppose x is a limit point of A but $x \in X - A$. Then notice that X - A is an open set that contains x but $(X - A) \cap A = \emptyset$, which contradicts the definition of limit point. Therefore any limit point of A is in A, and hence $A = \bar{A}$.

Theorem 5. Let X be a topological space and A a subset of X, then \bar{A} is the smallest closed set that contains A.

Proof. The proof are divided into two parts:

- (i) \bar{A} is closed.
- (ii) Every closed set that contains A must contain \bar{A} .

For (ii), we only need to show that every closed set that contains A must contain the limit point of A. This is easy to show: Let B a closed set that contains A and x a limit point of A, then x must be a limit point of B as $A \subset B$. By theorem 4 and the fact that B is closed, we have: $x \in \overline{B} = B$. Therefore, $\overline{A} \subset B$

For (i), we only need to show that $\bar{A} = \bar{A}$ by theorem 4. which is concluded as the following lemma.

Lemma 6. Let X be a topological space and A a subset of X, then $\bar{A} = \bar{A}$.

Proof. $\bar{A} \subset \bar{A}$ according to the definition of closure. As for the other side ,we need to show that the limit point of \bar{A} is in \bar{A} .

If x is a limit point of \bar{A} . If $x \in A$, we're done. Otherwise let U be any open set that contains x, we have:

$$U\cap \bar{A}\neq\varnothing,\{x\}$$

We claim that x is a limit point of A, by claiming that $U \cap A \neq \emptyset$ (of course it can't be $\{x\}$ as $x \notin A$).

- (i) If $U \cap A \neq \emptyset$, we're done.
- (ii) Otherwise $U \cap A = \emptyset$ but $U \cap A' \neq \emptyset$. $U \cap A' \neq \emptyset$ shows that there is some point, say y, is a limit point of A, and $y \notin A$. Therefore $U \cap A \neq \emptyset$ as U is an open set containing y, this contradicts that assumption that $U \cap A = \emptyset$

In conclusion, $U \cap A \neq \emptyset$ and thus x is a limit point of A by definition.

Both sides contains the other side, therefore we have: $\bar{A} = \bar{A}$.

By using the result of lemma 6, we may draw the conclusion of theorem 5 as explained in the proof.

REMARK. The name "closure" means that \bar{A} remains constant under the map by mapping a set of topological space into the union of A and A'. Or, as explained int theorem 5, closure is the smallest closed set that contains A. Further more, we can easily prove the closure of A has an equivalent definition:

$$\bar{A} = \bigcap_{A \subset V, V \ closed} V$$

So far,we have actually given two ways of explaining what is a closed set is. One by clarifying the relationship between open set and closed set; and the other by using the definition of limit point. Theorem 4, 5 and lemma 6 has showed the equivalence of these two expression, and we conclude it as:

Theorem 7. Let X be a topological space, a subset A of X is closed iff every limit point of A is in A.

Proof. Omitted, see theorem 4.

The following theorem describes the closure of a subset in subspace.

Theorem 8. Let X be a topological space and Y a subspace of X; let A be a subset of Y; let \bar{A} denote the closure of A in X, Then the closure of A in Y equals $\bar{A} \cap Y$.

Proof. By theorem 5 and its remark, we know that the closure of A in Y, denoted by \bar{A}_Y , equals to the insersection of all closed set in Y that contains A. Note that any closed set in Y equals to the intersection of Y and a closed set in X. Therefore we have:

$$\bar{A_Y} = \bigcap_{A \subset V_Y, V_Y \text{ closed in } Y} V_Y$$

$$= \bigcap_{A \subset V \cap Y, V \text{ closed in } X} (V \cap Y)$$

$$= (\bigcap_{A \subset V, V \text{ closed in } X} V) \bigcap Y$$

$$= \bar{A_X} \bigcap Y$$

REMARK. The equivalence between the second line and the third line is easy to prove with the following claim:

$$A \subset V, V \ closed \ in \ X \Leftrightarrow A \subset V \cap Y, V \cap Y \ closed \ in \ Y$$

A question is that whether the following proposition is true:

Proposition. Let X be a topological space and Y is a subspace of X; A is a subset of X(not Y), then:

$$\overline{A\cap Y}=\bar{A_X}\cap Y$$

Unfortunately, this proposition is false. But we have the left side subsets the right side.

2.3 Dense Set

Definition. Let X be a topological space and A a subset of X. A is said to be a **dense** set of X if $\bar{A} = X$.

In other words, a set A is called dense, if any point x in X belongs to A or x is a limit point of A. There are many examples of dense set, the most common one, which is frequently mentioned in Mathematical Analysis, is that \mathbb{Q} is dense in \mathbb{R} .

Definition. Let X be a topological space, the *interior* of A is defined as the union of all open sets that is contained in A, denoted as **IntA**. The element of IntA is called *interior point*

It's easy to see the following relation between Int A, \bar{A} and A:

$$\operatorname{Int} A \subset A \subset \bar{A}$$

And further more, A is open iff Int A = A, A is closed iff $\bar{A} = A$.

Theorem 9. X is a topological space and A a subset of X. The following conditions are equalvalent:

- (i) x is an interior point of A.
- (ii) There is an open set U, such that: $x \in U \subset A$

Proof. (i) \Rightarrow (ii):

$$x \in \mathrm{Int} A \Rightarrow x \in \bigcup_{U \subset A, U \ open} U$$

Therefore, there is an open set in the right side that contains x and it's done. (ii) \Rightarrow (i):

$$x \in U \subset \bigcup_{U \subset A, U \ open} U = \text{Int} A$$