Best Practices and Missing Data in SEM

Best Practices (Kline, Ch 13)

- 1. Specify the model before data are collected
- 2. Include all paths/associations that are substantively meaningful (no omitted paths and no omitted covariances)
- Use psychometrically adequate measures (unreliability propagates across a model!)
- 4. Think about directionality and make no assumptions of causality without experimental data
- 5. Never add correlated residuals that are not theoretically justified and include those that are!
- 6. Remember parsimony!
- 7. Include enough indicators and remember rules of identification
- 8. Remember the main goal of specification is to test a theory, not a model! And all of our models are wrong!

Best Practices (Kline, Ch 13)

- 8. Check the accuracy and distributions of your data, examine outliers, patterns of missing data
- 9. Consider potential nonlinearities
- 10. Do not ignore clustering (i.e., non-independence of data)
- 11. Watch out for empirical underidentification, non-sense values, large residuals, large residual correlations
- 12. Check the solution for admissibility and convergence, do the results "make sense?"
- 13. Carefully screen all of the output
- 14. Complex models require large samples
- 15. Report unstandardized and standardized estimates

Best Practices (Kline, Ch 13)

- 16. Consider fit statistics along with other information (correlation residuals, size of coefficients, variance predicted)
- 17. Make scales of variables meaningful, centering coefficients when necessary
- 18. Test invariance whenever examining group differences
- 19. Ignore a significant chi-square test
- 20. Use theory to guide model building, rather than relying solely on statistical criteria or rules of thumb
- 21. Always consider equivalent and near-equivalent models
- 22. Always report enough information for the reader to reproduce your results

Missing Data

Basics

• Definition: Data are missing on some variables for some observations.

- Problem: How to do statistical analysis when data are missing? Three goals:
 - Minimize bias
 - Maximize use of available information
 - Get good estimates of uncertainty

Not a goal: imputed values "close" to real values.

Missing Data Mechanisms

- Missing complete at random (MCAR)
 - Probability of missing data is completely unsystematic.
 - Suppose some data are missing on Y. These data are said to be MCAR if the probability that Y is missing is unrelated to Y or other variables X.

$$P(Y \text{ is missing}|X,Y) = P(Y \text{ is missing})$$

- MCAR is the ideal(unrealistic) situation
- If data are MCAR, complete data subsample is a random sample from original target sample → listwise deletion is appropriate.

MCAR Example

- Employees complete an IQ test during a job interview.
- A number of employees quit prior to the 6-month review
- Performance ratings are missing for no particular reason (e.g., maternity leave, spouse relocates, found higher paying job)

ĨQ	Performance (Hypothetical)	Performance (Observed)
78	9	
84	13	13
84	10	
85	8	8
87	7	7
91	7	7
92	9	9
94	9	9
94	П	11
96	7	-
99	7	7
105	10	10
105	П	11
106	15	15
108	10	10
112	10	-
113	12	12
115	14	14
118	16	16
134	12	

Missing Data Mechanisms

- Missing at random (MAR)
 - Systematic missingness, where missing data is related to other measured variables in the analysis.
 - Data on Y are MAR if the probability that Y is missing does not depend on the value of Y, after controlling for other variables X.

$$P(Y \text{ is missing}|X,Y) = P(Y \text{ is missing}|X)$$

- Considerable weaker assumption than MCAR
- This is the assumption which people will be working with most of the time.

MAR Example

- Prospective employees complete an IQ test during a job interview.
- The company use IQ as a selection measure and does not hire applicants in the lowest quartile.
- The missing performance scores depends on observed IQ scores. But after controlling for IQ, the missing performance scores does not depends on performance.

IQ	Performance (Hypothetical)	Performance (Observed)
78	9	
84	13	
84	10	
85	8	
87	7	
91	7	7
92	9	9
94	9	9
94	H	П
96	7	7
99	7	7
105	10	10
105	H	П
106	15	15
108	10	10
112	10	10
113	12	12
115	14	14
118	16	16
134	12	12

Missing Data Mechanisms

- Missing not at random (MNAR)
 - Probability of missing data on Y is related to the the would-be values of Y itself.
 - Cannot test between MNAR vs. MAR, often rely on substantive knowledge to the data.
 - NMAR is problematic and introduces bias when the would-be outcome scores determine missingness.
 - NMAR requires specialized analysis procedures (e.g., selection models, pattern mixture models).

NMAR Example

- Employees complete an IQ test during a job interview
- The company terminates low-performing employees prior to their evaluation
- The would-be performance ratings determine missing data on the performance measure

IQ	Performance (Hypothetical)	Performance (Observed)
78	9	9
84	13	13
84	10	10
85	8	
87	7	
91	7	
92	9	9
94	9	9
94	П	П
96	7	
99	7	
105	10	10
105	П	11
106	15	15
108	10	10
112	10	10
113	12	12
115	14	14
118	16	16
134	12	12

Diagram of Mechanisms

- R is a binary missing data indicator for job performance ratings
- Z is a correlate or cause of missingness not in the data

Approaches for Handling Missing Data

Conventional

- Listwise deletion (complete case analysis)
 - If data are MCAR, does not introduce any bias in parameter estimates.
 - May delete a large proportion of cases, resulting in loss of statistical power.
 - Robust to NMAR for predictor variables in regression analysis

- Pairwise deletion (available case analysis)
 - Approximately unbiased if MCAR
 - Uses all available information
 - Standard errors in correct

Approaches for Handling Missing Data

Conventional

- Dummy variable adjustment (Cohen & Cohen, 1985)
 - Produces biased coefficient estimates (Jones, 1996)
- Imputation (any method that substitutes estimated values for missing values)
 - Replacement with means
 - Regression (replace with conditional means): use some predictors to predict the variables with missing, then use the regression model to generate predicted values for the cases with missing data.
 - Hot deck: Divide sample into homogeneous strata on observed variables. Within each stratum pick "donor" units with observed values to fill in missing values for other units.
 - Problems:
 - Often leads to biased parameter estimates.
 - Usually leads to smaller standard error estimates.

Approaches for Handling Missing Data

Modern

- Maximum likelihood
 - Factoring the likelihood for monotone missing data patterns.
 - EM algorithm.
 - Direct maximization of the likelihood (the focus for today).
- Multiple imputation

Direct ML

- Also known as "raw" ML or "full information" ML.
- Directly maximizes the likelihood for the model of interest. Produces "consistent" estimates of the standard errors.

Without missing data, the multivariate normal likelihood is

$$L(\theta) = \prod_{i} f(y_i | \mu(\theta), \sum_{i} (\theta))$$

Direct ML (cont.)

With missing data, the likelihood becomes

$$L(\theta) = \prod_{i} f(y_i | \mu_i(\theta), \sum_{i} (\theta))$$

- If data are missing for individual i, then y_i deletes the missing values, u_i deletes the corresponding means, and Σ_i deletes the corresponding rows and columns. This result follows from integrating the likelihood over the variables with missing data.
- This likelihood can be maximized by conventional methods, e.g., the Newton-Raphson algorithm.

College Example

1994 U.S. News Guide to Best Colleges

- 1302 four-year colleges in U.S.
- Goal: estimate a regression model predicting graduation rate (no. graduating/no. enrolled 4 years earlier X 100)
- 98 colleges have missing data on graduation rate

Independent variables:

- 1st year enrollment (logged, 5 case missing)
- Room & Board Fees (40% missing)
- Student/Faculty Ratio (2 cases missing)
- Private=1, Public=0
- Mean Combined SAT Score (40% missing)
- Auxiliary variable: Mean ACT scores (45% missing)

FIML with Mplus

```
DATA:
FILE IS college.csv;
VARIABLE:
    NAMES ARE gradrat lenroll rmbrd private stufac csat act;
    USEVARIABLE ARE gradrat lenroll rmbrd private stufac csat;
    MISSING ARE ALL (9999);
MODEL:
    gradrat ON lenroll rmbrd private stufac csat;
    !making exongenous variables to be endogenous variables
    lenroll:
    rmbrd;
    private;
    stufac;
    csat;
OUTPUT:
```

FIML with Lavaan

```
data.college <- read.table ("C:\\Users\\yuyuhsiao\\Dropbox\\UNM\\Courses\\607\\(14)\) Best Practice
head(data.college)

model.college <- "
gradrat ~ lenroll + rmbrd + private + stufac + csat

fit.college <- sem(model=model.college, data=data.college, missing="fim1", fixed.x=FALSE)
summary(fit.college)
varTable(fit.college)</pre>
```

Output: Mplus

SUMMARY OF ANALYSIS	
Number of groups	1
Number of observations	1302
Number of dependent variables	1
Number of independent variables	5
Number of continuous latent variables	0

MODEL RESULTS				
	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
GRADRAT ON				
LENROLL	2.166	0.605	3.582	0.000
RMBRD	2.364	0.578	4.091	0.000
PRIVATE	13.023	1.321	9.861	0.000
STUFAC	-0.194	0.102	-1.893	0.058
CSAT	0.066	0.005	13.357	0.000

Output: Lavaan

Optimization method	NLMINB
Number of free parameters	27
Number of observations	1302
Number of missing patterns	14

Regressions:

	Estimate	Std.Err	z-value	P(> z)
gradrat ∼				
lenroll	2.166	0.605	3.582	0.000
rmbrd	2.364	0.578	4.091	0.000
private	13.023	1.321	9.861	0.000
stufac	-0.194	0.102	-1.893	0.058
csat	0.066	0.005	13.357	0.000

SEM with Auxiliary Variable

 Including auxiliary variables can potentially reduce biases and standard errors without directly influencing parameter estimates.

• A good auxiliary variable should be highly correlated with variables with missingness in the model.

Adding Auxiliary Variables in Mplus

```
VARIABLE:

NAMES ARE gradrat lenroll rmbrd private stufac csat act;

USEVARIABLE ARE gradrat lenroll rmbrd private stufac csat;

MISSING ARE ALL (9999);

AUXILIARY = act (M);
```

Adding Auxiliary Variables in Lavaan

Method 1:

```
model.college2 <- "
gradrat ~ lenroll + rmbrd + private + stufac + csat
act~gradrat+lenroll + rmbrd + private + stufac + csat
"
fit.college2 <- sem(model=model.college2, data=data.college, missing="fim1", fixed.x=FALSE)
summary(fit.college2)</pre>
```

Method 2:

Packages ("semTools")

```
model.college <- "
gradrat ~ lenroll + rmbrd + private + stufac + csat
"
fit.college3 <- sem.auxiliary(model=model.college, data=data.college, aux = "act", missing="fiml", fixed.x=FALSE)
summary(fit.college3)</pre>
```

Outputs

• Mplus

MODEL RESULTS				
000000000000000000000000000000000000000	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
GRADRAT ON				
LENROLL	2.083	0.598	3.483	0.000
RMBRD	2.404	0.568	4.235	0.000
PRIVATE	12.914	1.298	9.952	0.000
STUFAC	-0.181	0.101	-1.788	0.074
CSAT	0.067	0.005	13.797	0.000

• Lavaan

_			
Rec	ır es	STI	ons:
IX C.S	,		лы.

	Estimate	Std.Err	z-value	P(> z)
gradrat ~				
lenroll	2.083	0.598	3.483	0.000
rmbrd	2.404	0.568	4.235	0.000
private	12.914	1.298	9.952	0.000
stufac	-0.181	0.101	-1.788	0.074
csat	0.067	0.005	13.797	0.000

Mplus vs. Lavaan in FIML

- Lavaan can do FIML for a very wide class of linear models in SEM.
- Mplus can do the same, but it can also handle missing data for
 - Logistic regression.
 - Poisson and negative binomial regression.
 - Models in which data are not missing at random.

Limitations of Maximum Likelihood

- Requires estimation of a model for the joint distribution of all the variables.
 - May be hard to comp up with an appropriate model for the different kinds of variables (e.g., discrete vs. continuous).
 - Results may not be robust to model choice.

Multiple Imputation

- Why multiple imputation?
 - Single imputation not fully efficient because of random variation.
 - Standard errors biased.
- Do it multiple times
 - Generate multiple imputed dataset. Use the same model to fit each imputed dataset.
 - Average the parameter estimates.
 - Variability among the estimates provides information for correcting the standard errors.

Combining the Imputations

Parameter estimate is just the mean of the multiple estimates.

- Standard error is calculated by the following steps:
 - 1. Square the estimated standard errors and average them across the replications.
 - 2. Calculate the variance of the parameter estimates across the replications.
 - 3. Add the results of 1 and 2 and take the square root.

Formula for Standard Error

$$\sqrt{\frac{1}{M} \sum_{k=1}^{M} s_k^2 + (1 + \frac{1}{M}) (\frac{1}{M-1}) \sum_{k=1}^{M} (b_k - \bar{b})^2}$$

- b_k is the parameter estimate
- s_k is the standard error of b_k
- M is the number of replications
- This formula is used with generally every application of multiple imputation.

MI with Mplus

• Step1: generating imputed dataset

```
DATA IMPUTATION:

IMPUTE = gradrat lenroll rmbrd private stufac csat;

NDATASETS = 20;

SAVE = missimp*.dat;

ANALYSIS: TYPE=BASIC;

BSEED=2019;
```

- 20 imputed datasets ("missimp1.dat", "missimp2.dat", ..., "missimp20.dat") were created.
- A file named "missimplist.dat" which contains the names of the imputed dataset was also created.

MI with Mplus (cont.)

• Step2: analyzed imputed dataset and aggregate the results

```
DATA:
FILE IS missimplist.dat;
TYPE=IMPUTATION;

VARIABLE:
   NAMES ARE gradrat lenroll rmbrd private stufac csat act;
   USEVARIABLE ARE gradrat lenroll rmbrd private stufac csat;
   MISSING ARE ALL (9999);

MODEL:
   gradrat ON lenroll rmbrd private stufac csat;
```

MI with Lavaan

• Packages: "Amelia", "mice"

```
model.college2 <- "
gradrat ~ lenroll + rmbrd + private + stufac + csat
act~gradrat+lenroll + rmbrd + private + stufac + csat
"

Miresults2 <- runMi(model=model.college2, data=data.college, m=20, miPackage="mice", fun="sem", seed=2019)
summary(Miresults2)</pre>
```

Why the results are different?

Outputs

Mplus

MOI	DEL RESULTS					
		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	Rate of Missing
GI	RADRAT ON					
	LENROLL	2.228	0.579	3.850	0.000	0.147
	RMBRD	2.404	0.555	4.336	0.000	0.481
	PRIVATE	13.192	1.253	10.528	0.000	0.170
	STUFAC	-0.202	0.107	-1.894	0.058	0.397
	CSAT	0.065	0.005	12.376	0.000	0.491

Regressions:

• Lavaan

	Estimate	Std.Err	z-value	P(> z)
gradrat ~				
lenroll	2.083	0.598	3.483	0.000
rmbrd	2.404	0.568	4.235	0.000
private	12.914	1.298	9.952	0.000
stufac	-0.181	0.101	-1.788	0.074
csat	0.067	0.005	13.797	0.000

Multiple Imputation

• Pros:

- Properties similar to ML.
- Can be used with any kind of data or model.
- Analysis can be done with conventional software.

• Cons:

- Get a different result every time you use it.
 - Increase imputation time
 - Select seed (does not guarantee results are effecient)
- The imputation model must be consistent with the analysis model (not a problem for ML).

Side by Side Comparisons

• E.g., gradart ON(~) lenroll

	Coefficient	Standard Error
Listwise	2.417	0.953
FIML	2.166	0.605
FIML with Auxiliary variable	2.083	0.598
MI (Mplus)	2.228	0.579
MI(Lavaan)	2.051	0.830

Class Practice (NLSYMISS)

N=581 Children, Variables are:

DV:

ANTI antisocial behavior, measured with a scale ranging from 0 to 6.

IV:

- SELF self-esteem, measured with a scale ranging from 6 to 24.
- POV poverty status of family, coded 1 for in poverty, otherwise 0.
- BLACK 1 if child is black, otherwise 0
- HISPANIC 1 if child is Hispanic, otherwise 0
- CHILDAGE child's age in 1990
- DIVORCE 1 if mother was divorced in 1990, otherwise 0
- GENDER 1 if female, 0 if male
- MOMAGE mother's age at birth of child
- MOMWORK 1 if mother was employed in 1990, otherwise 0

Goal: Run the Regression with...

- Listwise deletion on the predictor
- FIML
- Multiple Imputation with 20 imputed dataset