Análise

— Folha de exercícios 4 — 2018'19 —

1. Sendo $f: \mathbb{R}^2 \to \mathbb{R}$ a função definida por $f(x,y) = x^2 y$ e $(a,b) \in \mathbb{R}^2$, calcule, usando a definição de derivada parcial:

- (a) $\frac{\partial f}{\partial x}(1,2)$;
- (b) $\frac{\partial f}{\partial y}(1,2)$;
- (c) $\frac{\partial f}{\partial x}(a,b)$;
- (d) $\frac{\partial f}{\partial y}(a,b)$.

2. Determine as funções derivadas parciais de primeira ordem das funções definidas por

- (a) $f(x,y) = 5y^3 + 2xy x^2$;
- (b) $f(x,y) = ye^x + x\cos(x^2y)$;
- (c) $f(x,y) = \sqrt[3]{x}y^3$;
- (d) $f(x, y) = \log(\cos(xy))$;
- (e) $f(x, y, z) = \sin x + \log x + e^{xz}$;
- (f) $f(x, y, z) = \sqrt{x^2 y z^3}$.

3. Calcule as derivadas parciais de primeira ordem das funções definidas por

(a)
$$f(x,y) = 1$$
 se ($x = 0$ ou $y = 0$), e $f(x,y) = 0$ se $xy \neq 0$;

(b)
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 se $(x,y) \neq (0,0)$, e $f(x,y) = 0$ se $(x,y) = (0,0)$;

(c)
$$f(x,y) = \frac{2xy^2}{x^2 + y^4}$$
 se $(x,y) \neq (0,0)$, e $f(x,y) = 0$ se $(x,y) = (0,0)$;

(d)
$$f(x,y)=\dfrac{xy}{x+y}$$
 se $x+y\neq 0$, e $f(x,y)=x$ se $x+y=0$;

4. Mostre que:

- (a) se $f(x,y) = e^{xy}$, então $x\frac{\partial f}{\partial x} = y\frac{\partial f}{\partial y}$;
- (b) se $f(x,y)=\ln(x^2+y^2+xy)$, então $x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}=2$;
- (c) se $f(x,y,z)=x+rac{x-y}{y-z}$, então $rac{\partial f}{\partial x}+rac{\partial f}{\partial y}+rac{\partial f}{\partial z}=1$.

5. Usando a definição, calcule a derivada direccional $\frac{\partial f}{\partial \vec{v}}(A)$ da função f no ponto A na direcção e sentido do vector \vec{v} , para:

(a)
$$f(x,y) = xy$$
, $\vec{v} = \vec{e}_1 + \vec{e}_2$, $A = (1,0)$;

(b)
$$f(x,y) = x^2y + x$$
, $\vec{v} = \vec{e}_1 + \vec{e}_2$, $A = (1,0)$;

(c)
$$f(x,y) = e^{x^2 + y^2}$$
, $\vec{v} = -\vec{e_1} + \vec{e_2}$, $A = (1,1)$;

(d)
$$f(x,y) = 3x + y^2$$
, $\vec{v} = \vec{e}_1 + \vec{e}_2$, $A = (0,0)$;

- (e) $f(x, y, z) = ze^{x^2+y^2}$, $\vec{v} = \vec{e}_1 + \vec{e}_2$, A = (0, 0);
- (f) $f(x,y,z) = x^2 + xy + z^2$, $\vec{v} = \vec{e}_1 + 2\vec{e}_2 + \vec{e}_3$, A = (1,2,-1).
- 6. As curvas de nível de uma função f, nas quais os níveis mais elevados têm a cor mais clara, são apresentadas em cada uma das seguintes figuras. Qual o sinal de $\frac{\partial f}{\partial x}$ e de $\frac{\partial f}{\partial y}$ (para uma série de pontos à sua escolha)?

7. Calcule $\frac{\partial f}{\partial \vec{v}}(0,0)$ para qualquer $\vec{v} \in \mathbb{R}^2 \setminus \{(0,0)\}$, onde:

(a)
$$f(x,y) = \frac{x^3}{x^2 + y^2}$$
 se $(x,y) \neq (0,0)$ e $f(x,y) = 0$ se $(x,y) = (0,0)$;

(b)
$$f(x,y) = \frac{x^3y}{x^6 + y^2}$$
 se $(x,y) \neq (0,0)$ e $f(x,y) = 0$ se $(x,y) = (0,0)$.

8. Mostre que não são deriváveis em (0,0) cada uma das seguintes funções:

(a)
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 se $(x,y) \neq (0,0)$ e $f(x,y) = 0$ se $(x,y) = (0,0)$;

(b)
$$f(x,y) = \frac{x^3}{x^2 + y^2}$$
 se $(x,y) \neq (0,0)$ e $f(x,y) = 0$ se $(x,y) = (0,0)$;

(c)
$$f(x,y) = \frac{x^3y}{x^6 + y^2}$$
 se $(x,y) \neq (0,0)$ e $f(x,y) = 0$ se $(x,y) = (0,0)$.

- 9. Calcule o gradiente de cada uma das seguintes funções:
 - (a) $f(x, y, z) = xe^{y^2+z^2}$;
 - (b) $f(x, y, z) = \frac{xyz}{x^2+y^2+z^2+2}$;
 - (c) $f(x, y, z, w) = z^2 \cos(xy) \ln(xy)$.
- 10. Para cada uma das seguintes funções:

$$f(x, y, z) = x + y + \operatorname{sen}(xy^2), \quad g(x, y, z) = e^{xy} + 4z, \quad h(x, y, z) = \operatorname{sen} x + 3\operatorname{sen} y + z,$$

- (a) jusifique que são diferenciáveis na origem;
- (b) determine a derivada direccional na origem segundo o vector $\vec{v} = (1, 3, -1)$.
- 11. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$, definida por $f(x,y) = \sqrt[3]{xy}$.
 - (a) Determine as funções derivadas parciais de primeira ordem de f.
 - (b) Verfique se f é diferenciável em (0,0). Justifique.
- 12. Encontre uma equação do plano tangente ao gráfico da função $f(x,y)=x^2+y^3$ no ponto de coordenadas (3.1)

- 13. Mostre que os gráficos das funções $f(x,y)=x^2+y^2$ e $g(x,y)=-x^2-y^2+xy^3$ têm o mesmo plano tangente em (0,0).
- 14. Determine o ponto de interseção do plano tangente à superfície de equação $z=\mathrm{e}^{\,x-y}$ no ponto (1,1,1) com o eixo de zz.
- 15. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = \left\{ \begin{array}{ll} \frac{x^2y}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{array} \right.$
 - (a) Mostre que existe $Df(A, \vec{u})$, $\forall A, \vec{u} \in \mathbb{R}^2$;
 - (b) Verifique se f é derivável em (0,0).
- 16. Seja $f:\mathbb{R}^2 \to \mathbb{R}$ tal que

$$f(x,y) = \begin{cases} (x^2 + y^2) \operatorname{sen} \frac{1}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}.$$

- (a) Calcule $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial x}(0,0)$.
- (b) Determine $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ e verifique quenão são contínuas em (0,0);
- (c) Verifique se f é derivável em (0,0).
- 17. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = \left\{ egin{array}{ll} \frac{x^3}{x^2 + y^2}, & (x,y)
 eq (0,0) \\ 0 & (x,y) = (0,0) \end{array} \right.$

Mostre que:

- (a) f é contínua;
- (b) $Df((0,0),(a,b)) = f(a,b), \forall (a,b) \in \mathbb{R}^2;$
- (c) Verifique se f é derivável em (0,0).
- 18. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$, definida por $f(x,y) = 3xy + y^2$.
 - (a) Justifique que f é derivável em todos os pontos de \mathbb{R}^2 ;
 - (b) Determine f'(2,3);
 - (c) Determine a taxa de variação de f no ponto (2,3) e na direcção de $\vec{v}=(3,4)$;
 - (d) Qual o sentido e direcção a seguir, partindo de (2,3), para que a taxa de variação de f seja máxima?
 - (e) Qual a taxa de variação máxima de f no ponto (2,3)?
 - (f) Encontre a equação do plano tangente ao gráfico de f no ponto (2,3,27).