Devoir à la maison n° 15

À rendre le 10 mars

On considère l'application f ainsi que les deux ensembles F et G suivants :

$$\begin{split} f: & \mathbb{K}^3 & \to \mathbb{K}^3 \\ & (x,y,z) & \mapsto (2x+y+z, -x-z, x+y+2z) \,, \\ F &= \left\{ (x,y,z) \in \mathbb{K}^3, \quad x+y+z=0 \right\}, \\ G &= \left\{ (x,y,z) \in \mathbb{K}^3, \quad x=y=z \right\}. \end{split}$$

1) Étude de f:

- a) Justifier que $f \in \mathcal{L}(\mathbb{K}^3)$.
- b) Calculer $\operatorname{Ker}(f)$ et justifier que $\operatorname{Im}(f) = \mathbb{K}^3$. En déduire que $f \in \mathscr{GL}(\mathbb{K}^3)$ et expliciter f^{-1} .
- c) Calculer f^2 . En déduire que $f^2 = 3f 2\mathrm{Id}_{\mathbb{K}^3}$.
- 2) Projecteurs associés à f: On pose $p = f \mathrm{Id}_{\mathbb{K}^3}$ et $q = 2\mathrm{Id}_{\mathbb{K}^3} f$.
 - **a)** Vérifier que p et q sont des projecteurs de \mathbb{K}^3 puis que $\begin{cases} p+q=\mathrm{Id}_{\mathbb{K}^3},\\ 2p+q=f,\\ p\circ q=q\circ p=0_{\mathscr{L}(\mathbb{K}^3)}. \end{cases}$
 - **b)** En déduire que $\forall n \in \mathbb{N}$, $f^n = 2^n p + q$.
 - c) Soit $(x, y, z) \in \mathbb{K}^3$, expliciter $f^n(x, y, z)$ en fonction de x, y, z et n.
 - **d)** Calculer $f \circ (2^{-1}p + q)$ et $(2^{-1}p + q) \circ f$.
 - e) En déduire que $f \in \mathscr{GL}(\mathbb{K}^3)$ et que $f^{-1} = 2^{-1}p + q$. Retrouver ainsi le résultat de la question 1.b.

3) Étude de F et G:

- a) Justifier que F et G sont des \mathbb{K} -sous-espaces vectoriels de \mathbb{K}^3 et exhiber une base de chaque de ces espaces.
- **b)** Montrer que $\mathbb{K}^3 = F \oplus G$.
- c) Expliciter le projecteur $p_{F//G}$ de \mathbb{K}^3 sur F parallèlement à G ainsi que le projecteur $p_{G//F}$ de \mathbb{K}^3 sur G parallèlement à F.
- 4) Application à l'étude de trois suites :

On considère trois suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$, $(w_n)_{n\in\mathbb{N}}$ vérifiant la relation de récurrence :

$$(u_0, v_0, w_0) \in (\mathbb{R}_+^*)^3$$
 et $\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = u_n \sqrt{v_n w_n}, \\ v_{n+1} = \frac{1}{\sqrt{u_n w_n}}, \\ w_{n+1} = w_n \sqrt{u_n v_n}. \end{cases}$

a) Montrer que $\forall n \in \mathbb{N}, \quad u_n > 0, \quad v_n > 0, \quad w_n > 0.$ On considère alors les suites $(a_n)_{n \in \mathbb{N}}, \ (b_n)_{n \in \mathbb{N}}, \ (c_n)_{n \in \mathbb{N}}$ de termes généraux $a_n = \ln(u_n), b_n = \ln(v_n)$ et $c_n = \ln(w_n).$ Justifier que

$$\forall n \in \mathbb{N}, \quad \begin{cases} a_{n+1} = a_n + \frac{b_n + c_n}{2}, \\ b_{n+1} = -\frac{a_n + c_n}{2}, \\ c_{n+1} = \frac{a_n + b_n}{2} + c_n. \end{cases}$$

- **b)** Justifier que $\forall n \in \mathbb{N}$, $(a_{n+1}, b_{n+1}, c_{n+1}) = \frac{1}{2}f(a_n, b_n, c_n)$.
- c) En déduire que $\forall n \in \mathbb{N}$, $(a_n, b_n, c_n) = \frac{1}{2^n} f^n(a_0, b_0, c_0)$.
- d) A l'aide de la question 2c, exprimer a_n , b_n , c_n en fonction de a_0 , b_0 , c_0 et n. Justifier la convergence des suites $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$, $(w_n)_{n\in\mathbb{N}}$ et expliciter leurs limites respectives.

