Performance Evaluation for Classification

Confusion Matrix – 2-class

Actual Class				
ed		Class1 (Positive)	Class2 (Negative)	
dict	Class1	True Positive	False Positive	
	(Positive)	(C11)	(C12)	
Pre	Class2	False Negative	True Negative	
	(Negative)	(C21)	(C22)	

- True Positive: Number of test samples correctly predicted as positive class (Class1).
- True Negative: Number of test samples correctly predicted as negative class (Class2).
- False Positive: Number of test samples predicted as positive class (Class1) but actually belonging to negative class (Class2).
- False Negative: Number of test samples predicted as negative class (Class2) but actually belonging to positive class (Class1). 2

Confusion Matrix - 2-class

Actual Class				
cted		Class1 (Positive)	Class2 (Negative)	
Predicted	Class1	True	False	
	(Positive)	Positive	Positive	
	Class2	False	True	
	(Negative)	Negative	Negative	

Total test samples in class1

Confusion Matrix - 2-class

	Actual Class				
cted		Class1 (Positive)	Class2 (Negative)		
Predicted	Class1	True	False		
	(Positive)	Positive	Positive		
	Class2	False	True		
	(Negative)	Negative	Negative		

Total test samples in class 2

Confusion Matrix - 2-class

Actual Class				
cted		Class1 (Positive)	Class2 (Negative)	
Predicted	Class1	True	False	
	(Positive)	Positive	Positive	
	Class2	False	True	
	(Negative)	Negative	Negative	

Total test samples predicted as class1

- Biometric authentication system to access account
 - False Positive (wrongly detecting as genuine person) should be low
 - Some False Negative (Not detecting a genuine person as genuine) is OK
 - Precision should be high

Confusion Matrix – 2-class

Actual Class				
cted		Class1 (Positive)	Class2 (Negative)	
Predicted	Class1	True	False	
	(Positive)	Positive	Positive	
	Class2	False	True	
	(Negative)	Negative	Negative	

Total test samples predicted as class2

- Medical image analysis of microscopic image to detect the presence of cancer
 - False Negative (Detecting cancerous image as not cancer) should be low
 - Some False Positive (Detecting a non-cancerous images as cancer) is OK
 - Recall should be high

Accuracy – 2-class

Accuracy(%) =
$$\frac{\text{Number of samples correctly classified (C11+C22)}}{\text{Total number of samples used for testing}}*100$$

Accuracy(%) =
$$\frac{TP + TN}{Total \text{ number of samples used for testing}} *100$$

Actual Class				
ed		Class1 (Positive)	Class2 (Negative)	
edicte	Class1 (Positive)	True Positive (C11)	False Positive (C12)	
Pre	Class2 (Negative)	False Negative (C21)	True Negative (C22)	

Illustration: Number of classes is 3. It can be extended to any number of classes

Actual Class					
_		Class1	Class2	Class3	
dicted	Class1	C11	C12	C13	
	Class2	C21	C22	C23	
<u>م</u>	Class3	C31	C32	C33	

- C11: Number of test examples predicted as class1 and actually belonging to class1
- C12: Number of test examples predicted as class1, but actually belonging to class2
- C13: Number of test examples predicted as class1, but actually belonging to class3
- Similarly C21, C22, C23, C31, C32 and C33 are interpreted

With reference to Class1:

Actual Class					
_		Class1	Class2	Class3	
dicted	Class1	C11	C12	C13	
į δ	Class2	C21	C22	C23	
<u> </u>	Class3	C31	C32	C33	

- True Positive: Number of test samples correctly predicted as positive class (class1) (C11).
- True Negative: Number of test samples correctly predicted as negative class (class2 and class3) (C22+C33).
- False Positive: Number of test samples predicted as positive class (class1) but actually belonging to negative class (class2 and class3) (C12+C13)
- False Negative: Number of test samples predicted as negative class (class2 and class3) but actually belonging to positive class (class1) (C21+C31)

With reference to Class 2:

Actual Class					
_		Class1	Class2	Class3	
dicted	Class1	C11	C12	C13	
ρ̈́O	Class2	C21	C22	C23	
<u> </u>	Class3	C31	C32	C33	

- True Positive: Number of test samples correctly predicted as positive class (class2) (C22).
- True Negative: Number of test samples correctly predicted as negative class (class1 and class3) (C11+C33).
- False Positive: Number of test samples predicted as positive class (class2) but actually belonging to negative class (class1 and class3) (C21+C23)
- False Negative: Number of test samples predicted as negative class (class1 and class3) but actually belonging to positive class (class2) (C12+C32)

With reference to Class3:

Actual Class					
_		Class1	Class2	Class3	
dicted	Class1	C11	C12	C13	
į δ Ω	Class2	C21	C22	C23	
<u> </u>	Class3	C31	C32	C33	

- True Positive: Number of test samples correctly predicted as positive class (class3) (C33).
- True Negative: Number of test samples correctly predicted as negative class (class1 and class2) (C11+C22).
- False Positive: Number of test samples predicted as positive class (class3) but actually belonging to negative class (class1 and class2) (C31+C32)
- False Negative: Number of test samples predicted as negative class (class1 and class2) but actually belonging to positive class (class3) (C13+C23)

Example: Number of classes = 3. Same concept can be extended to number of classes more than 3

Actual Class					
		Class1	Class2	Class3	
d Class	Class1	C11	C21	C31	Total samples predicted as class1
Predicted	Class2	C12	C22	C32	Total samples predicted as class2
P	Class2	C13	C23	C33	Total samples predicted as class3
7	Total	Total samples in class1	Total samples in class2	Total samples in class3	

Total samples used for testing

Accuracy of Multiclass Classification

Example: Number of classes = 3. Same concept can be extended to number of classes more than 3

Accuracy(%) =
$$\frac{\text{Number of samples correctly classified (C11+C22+C33)}}{\text{Total number of samples used for testing}}*100$$

Accuracy(%) =
$$\frac{TP + TN}{Total \text{ number of samples used for testing}} *100$$

Actual Class					
lass		Class1	Class2	Class3	
O	Class1	C11	C21	C31	
redicted	Class2	C12	C22	C32	
Pre	Class2	C13	C23	C33	

Binary (2-class) Classification: Precision, Recall and F-measure

Actual Class			
		Class1	Class2
Predicted Class		(Positive)	(Negative)
	Class1	True Positive	False Positive
	(Positive)	(TP)	(FP)
	Class2	False Negative	True Negative
	(Negative)	(FN)	(TN)

Precision:

- Number of samples correctly classified as positive class, out of all the examples classified as positive class
- It is also called positive predictive value

$$Precision = \frac{TP}{TP + FP}$$

 $Precision = \frac{Number of samples correctly classified as positive class}{Total number of samples classified as positive class}$

Binary (2-class) Classification: Precision, Recall and F-measure

Actual Class			
		Class1	Class2
Predicted Class		(Positive)	(Negative)
	Class1	True Positive	False Positive
	(Positive)	(TP)	(FP)
	Class2	False Negative	True Negative
, See	(Negative)	(FN)	(TN)

Recall:

- Number of samples correctly classified as positive class, out of all the examples belonging to positive class
- It is also called as sensitivity or true positive rate (TPR)

Recall =
$$\frac{TP}{TP + FN}$$

 $Precision = \frac{Number of samples correctly classified as positive class}{Total number of samples belonging to positive class}$

Binary (2-class) Classification: Precision, Recall and F-measure

Actual Class			
		Class1	Class2
Predicted Class		(Positive)	(Negative)
	Class1	True Positive	False Positive
	(Positive)	(TP)	(FP)
	Class2	False Negative	True Negative
, and the second of	(Negative)	(FN)	(TN)

- F-measure or F-score or F1-score:
 - Combines precision and recall
 - Recall and precision are evenly weighted.
 - Harmonic mean of precision and recall

$$F-score = \frac{2 * Precision * Recall}{Precision + Recall}$$

Supervised Machine Learning: Pattern Classification

K-Nearest Neighbor, Reference Template Method

K-Nearest Neighbours (K-NN) Method

- Consider the class labels of the K training examples nearest to the test example
- Step 1: Compute Euclidean distance for a test example \mathbf{x} with every training examples, $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$

- Step 2: Sort the examples in the training set in the ascending order of the distance to x
- Step 3: Choose the first K examples in the sorted list
 - K is the number of neighbours for text example
- Step 4: Test example is assigned the most common class among its K neighbours

Reference Templates Method

- Each class is represented by its reference templates
 - Mean of each data points of each class as reference template
 - Let the data of class i be $D_i = \{\mathbf{x}_n\}_{n=1}^{N_i}, \mathbf{x}_n \in \mathsf{R}^d$
 - N_i : Number of examples (data points) in class i
 - Mean of data points of a class i, μ_i is given as:

$$\mathbf{\mu}_i = \frac{1}{N_i} \sum_{n=1}^{N_i} \mathbf{x}_n$$

Reference Templates Method

- Each class is represented by its reference templates
 - Mean of each data points of each class as reference template
- For a test example, compute an Euclidean distance to all the reference template corresponding to each class, $ED(\mathbf{x}, \boldsymbol{\mu}_i)$

= argmin
$$ED(\mathbf{x}, \boldsymbol{\mu}_i)$$

 μ_i : Mean vector of class i

 The class of the nearest reference template (mean) is assigned to the test pattern

Class label for
$$\mathbf{X} = \underset{i}{\operatorname{argmin}} ED(\mathbf{x}, \boldsymbol{\mu}_i)$$

$$i = 1, 2, ..., M$$

M = Number of classes

Reference Templates Method

- Each class is represented by its reference templates
 - Mean of each data points of each class as reference template
- For a test example, compute an Euclidean distance to all the reference template corresponding to each class, $ED(\mathbf{x}, \boldsymbol{\mu}_i)$

= argmin
$$ED(\mathbf{x}, \boldsymbol{\mu}_i)$$

 μ_i : Mean vector of class i

- The class of the nearest reference template (mean) is assigned to the test pattern
- Learning: Estimating first order statistics (mean) from the data of each class

Height	Weight	Class
90	21.5	0
95	23.67	0
100	32.45	0
116	38.21	0
98	28.43	0
108	36.32	0
104	27.38	0
112	39.28	0
121	35.8	0
92	23.56	0
152	46.8	1
178	78.9	1
163	67.45	1
173	82.9	1
154	52.6	1
168	66.2	1
183	90	1
172	82	1
156	45.3	1
161	59	1

Training Phase:

 Compute sample mean vector from training data of class 0 (Child)

$$\mu_0$$
 = [103.60 30.66]

Height	Weight	Class
90	21.5	0
95	23.67	0
100	32.45	0
116	38.21	0
98	28.43	0
108	36.32	0
104	27.38	0
112	39.28	0
121	35.8	0
92	23.56	0
152	46.8	1
178	78.9	1
163	67.45	1
173	82.9	1
154	52.6	1
168	66.2	1
183	90	1
172	82	1
156	45.3	1
161	59	1

Training Phase:

 Compute sample mean vector from training data of class 0 (Child)

$$\mu_0$$
 = [103.60 30.66]

 Compute sample mean vector from training data of class 1 (Adult)

$$\mu_1$$
 = [166.00 67.12]

Test Phase - Classification:

	Height	Weight	Class
μ_0	103.60	30.66	0
μ_1	166.60	67.12	1

- Compute Euclidean distance of test sample, \mathbf{x} with mean vector of class 0 (Child), $\boldsymbol{\mu}_0$: $ED(\mathbf{x}, \boldsymbol{\mu}_0) = 50.50$
- Compute Euclidean distance of test sample, \mathbf{x} with mean vector of class 1 (Adult), $\boldsymbol{\mu}_1$: $ED(\mathbf{x}, \boldsymbol{\mu}_1) = 23.00$

Class label of x = Adult

- Each class is represented by its reference templates
 - Mean and variance (covariance) of data points of each class as reference template
 - Let the data of class i be $D_i = \{\mathbf{x}_n\}_{n=1}^{N_i}, \mathbf{x}_n \in \mathsf{R}^d$
 - N_i : Number of examples (data points) in class i
 - Mean of data points of a class i, μ_i is given as:

$$\mathbf{\mu}_i = \frac{1}{N_i} \sum_{n=1}^{N_i} \mathbf{x}_n$$

- Covariance matrix of data points of a class i, \sum_{i} is given as:

$$\Sigma_i = \frac{1}{N_i - 1} \sum_{n=1}^{N_i} (\mathbf{x}_n - \boldsymbol{\mu}_i) (\mathbf{x}_n - \boldsymbol{\mu}_i)^\mathsf{T}$$

$$\Sigma_{i} = \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{2}^{2} & \dots & \sigma_{2d} \\ \dots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_{d}^{2} \end{bmatrix}$$

$$\sigma_{j}^{2} \text{ is variance; } \sigma_{j}^{2} = \frac{1}{N_{i} - 1} \sum_{n=1}^{N_{i}} (x_{nj} - \mu_{ji})^{2}$$

$$\sigma_{jk}^{2} \text{ Covariance of } \sigma_{jk} = \frac{1}{N_{i} - 1} \sum_{n=1}^{N_{i}} (x_{nj} - \mu_{ij})(x_{nk} - \mu_{ik})$$

$$\sigma_{d1}^{2} \sigma_{d2} \dots \sigma_{d}^{2}$$

- Each class is represented by one or more reference templates
 - Mean and variance (covariance) of data points of each class as reference template
- For a test example, compute a Mahalanobis distance to all the reference template corresponding to each class, $MD(\mathbf{x}, \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$

= argmin
$$MD(\mathbf{x}, \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

 $\mu_i \& \Sigma_i$: Mean vector and Covariance matrix of class i

The **Mahalanobis distance** is a measure of the distance between a point and a distribution

- Each class is represented by one or more reference templates
 - Mean and variance (covariance) of data points of each class as reference template
- For a test example, compute a Mahalanobis distance to all the reference template corresponding to each class, $MD(\mathbf{x}, \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$

= argmin
$$MD(\mathbf{x}, \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$
 = argmin $\sqrt{(\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)}$

 $\mu_i \& \Sigma_i$: Mean vector and Covariance matrix of class i

 The class of the nearest reference templates is assigned to the test pattern

Class label for
$$\mathbf{X} = \underset{i}{\operatorname{argmin}} MD(\mathbf{X}, \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

$$i = 1, 2, ..., M$$

M = Number of classes

- Each class is represented by one or more reference templates
 - Mean and variance (covariance) of data points of each class as reference template
- For a test example, compute a Mahalanobis distance to all the reference template corresponding to each class, $MD(\mathbf{x}, \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$

= argmin
$$MD(\mathbf{x}, \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$
 = argmin $\sqrt{(\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)}$

 $\mu_i \& \Sigma_i$: Mean vector and Covariance matrix of class i

- The class of the nearest reference templates is assigned to the test pattern
- Learning: Estimating
 - first order statistics (mean) and
 - Second order statistics (variance and covariance) from the data of each class

Height	Weight	Class
90	21.5	0
95	23.67	0
100	32.45	0
116	38.21	0
98	28.43	0
108	36.32	0
104	27.38	0
112	39.28	0
121	35.8	0
92	23.56	0
152	46.8	1
178	78.9	1
163	67.45	1
173	82.9	1
154	52.6	1
168	66.2	1
183	90	1
172	82	1
156	45.3	1
161	59	1

Training Phase:

 Compute sample mean vector from training data of class 0 (Child)

$$\mu_0$$
= [103.60 30.66]

 Compute sample covariance matrix from training data of class 0 (Child)

$$\Sigma_0 = \begin{bmatrix} 109.38 & 61.35 \\ 61.35 & 43.54 \end{bmatrix}$$

Height	Weight	Class
90	21.5	0
95	23.67	0
100	32.45	0
116	38.21	0
98	28.43	0
108	36.32	0
104	27.38	0
112	39.28	0
121	35.8	0
92	23.56	0
152	46.8	1
178	78.9	1
163	67.45	1
173	82.9	1
154	52.6	1
168	66.2	1
183	90	1
172	82	1
156	45.3	1
161	59	1

Training Phase:

 Compute sample mean vector from training data of class 0 (Child)

$$\mu_0$$
= [103.60 30.66]

 Compute sample covariance matrix from training data of class 0 (Child)

$$\Sigma_0 = \begin{bmatrix} 109.38 & 61.35 \\ 61.35 & 43.54 \end{bmatrix}$$

 Compute sample mean vector from training data of class 1 (Adult)

$$\mu_1$$
 = [166.00 67.12]

 Compute sample covariance matrix from training data of class 1 (Adult)

$$\Sigma_1 = \begin{bmatrix} 110.67 & 160.53 \\ 160.53 & 255.49 \end{bmatrix}$$

Test Phase - Classification:

- Compute Mahalanobis distance of test sample, \mathbf{x} with mean vector and covariance matrix of class 0 (Child): $MD(\mathbf{x}, \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0) = 4.87$
- Compute Mahalanobis distance of test sample, \mathbf{x} with mean vector and covariance matrix of class 1 (Adult): $MD(\mathbf{x}, \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2) = 2.07$

Class label of x = Adult

Classification using Reference Template Methods

- For a test example, a distance measure is computed with the reference template of each class
- The class of the reference template with least distance is assigned to the test pattern
- When Mahalanobis distance is used, it gives the notion that distance measure is computed between a test example and the distribution (density) of a class
 - Distribution (density) of class: All the training examples are drawn from that distribution
 - Density here is normal (Gaussian) density
- In other way, we are interested to estimate probability of class, $P(C_i | \mathbf{x})$
 - Given the test example \mathbf{x} , what is the probability that it belongs to i^{th} class (C_i)
- Solution: Bayes classifier

Text Books

J. Han and M. Kamber, *Data Mining: Concepts and Techniques*, Third Edition, Morgan Kaufmann Publishers, 2011.

2. S. Theodoridis and K. Koutroumbas, *Pattern Recognition*, Academic Press, 2009.

3. C. M. Bishop, *Pattern Recognition and Machine Learning*, Springer, 2006.