# Projektplan

Redaktör: Johannes Klasson

Version 0.1

## Status

| Granskad | Johannes Klasson    | - |
|----------|---------------------|---|
| Godkänd  | Martin Nielsen Lönn | - |

# PROJEKTIDENTITET

 $\label{eq:total_variance} $$\operatorname{VT}, 2016, \mbox{ Grupp 5}$$$ Linköpings Tekniska Högskola, IDA$ 

Grupp deltagare

| - "TT " " " " " " " " " " " " " " " " " |                  |             |                         |  |  |  |  |
|-----------------------------------------|------------------|-------------|-------------------------|--|--|--|--|
| Namn                                    | Ansvar           | Telefon     | E-post                  |  |  |  |  |
| Johan Isaksson                          | Projektledare    | 070 2688785 | johis024@student.liu.se |  |  |  |  |
| Johannes Klasson                        | Dokumentansvarig | 073 8209003 | johkl226@student.liu.se |  |  |  |  |
| Jonas Tarasso                           | Designer         | 070 5738583 | jonta760@student.liu.se |  |  |  |  |
| Alexander Yngve                         | Designer         | 076 2749762 | aleyn573@student.liu.se |  |  |  |  |

#### Hemsida: -

 $\mathbf{Kund}$ : ISY

Kontaktperson hos kund: Martin Nielsen Lönn Kursansvarig: Atila Alvandpour Handledare: Martin Nielsen Lönn  $INNEH \mathring{A}LL \hspace{1.5cm} 27 \hspace{.1cm} januari \hspace{.1cm} 2016$ 

# Innehåll

| 1  | Beställare                                                                                                                                                                                              | 1                                    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 2  | Översiktlig beskrivning av projektet2.1Syfte och mål2.2Leveranser2.3Begränsningar                                                                                                                       | 1<br>1<br>1                          |
| 3  | Fasplan         3.1       Fas 1: Förstudie          3.2       Fas 2: Högnivådesign          3.3       Fas 3: Transistornivådesign          3.4       Fas 4: Layout          3.5       Fas5: Redovisning | 1<br>1<br>2<br>2<br>2<br>2           |
| 4  | Organisationsplan för hela projektet 4.1 Villkor för samarbete inom projektgruppen                                                                                                                      | <b>2</b><br>3                        |
| 5  | Dokumentplan                                                                                                                                                                                            | 4                                    |
| 6  | Rapporteringsplan 6.1 Statusrapport                                                                                                                                                                     | <b>4</b>                             |
| 7  | Resursplan         7.1 Personer          7.2 Material          7.3 Lokaler          7.4 Ekonomi                                                                                                         | 4<br>4<br>5<br>5                     |
| 8  | Milstolpar och beslutspunkter 8.1 Milstolpar                                                                                                                                                            | <b>5</b><br>5                        |
| 9  | Aktiviteter 9.1 Utbildning . 9.2 Filsystem . 9.3 Huvudalgoritm . 9.4 Planering . 9.5 Gränssnitt . 9.6 Byggsystem . 9.7 Gurobi . 9.8 Dokumentation .                                                     | 6<br>6<br>6<br>6<br>6<br>7<br>7<br>7 |
| 10 | ) Projektavslut                                                                                                                                                                                         | 7                                    |
| Bi | ilaga A Mötesmall                                                                                                                                                                                       | 8                                    |

 $INNEH \mathring{A}LL \hspace{1.5cm} 27 \hspace{.1cm} januari \hspace{.1cm} 2016$ 

## Dokumenthistorik

| Version | Datum      | Utförda förändringar | Utförda av     | Granskad |
|---------|------------|----------------------|----------------|----------|
| 0.1     | 2016-02-10 | Första utkast        | Johan Isaksson |          |

## 1 Beställare

Beställare är ISY med Martin Nielsen-Lönn som kontaktperson.

# 2 Översiktlig beskrivning av projektet

## 2.1 Syfte och mål

Syftet med projektet är att:

- 1. Få djup insikt i fysik konstruktion av avancerade chip.
- 2. Få kunskap och erfarenhet i användandet av professionella CAD verktyg för konstruktion, simulering, layout och verifiering av VLSI chip.
- 3. Konstruera ett riktigt och fungerande chip från idé via beteendenivåmodellering till detaljerade kretskonstruktioner på transistornivå och slutligen layout och verifiering.
- 4. Slutföra ett projektet på ett industriellt och professionellt sätt.

Målet med projektet är att konstruera en integrerad krets med hjälp av CMOS teknologi, i detta fall en 16-bitars Kogge-Stone adderare.

#### 2.2 Leveranser

| Leverans                                                   | Ansvarig       | Färdig     |
|------------------------------------------------------------|----------------|------------|
| Högnivådesign klar och simulationsrapport inlämnad         | Johan Isaksson | 2016-02-19 |
| Transistornivådesign klar och simulationsrapport inlämnad  | Johan Isaksson | 2016-03-18 |
| Layout, LVS, DRC och parasitisk simulation ska vara färdig | Johan Isaksson | 2016-05-18 |
| Leverans av färdigt chip                                   | Johan Isaksson | 2016-05-23 |
| Slutgiltlig rapport inlämnad och muntlig presentation      | Johan Isaksson | 2016-05-27 |

Tabell 1 – Projektets leveranser.

## 2.3 Begränsningar

?

# 3 Fasplan

Projektet består av följande fem faser:

- 1. Förstudie
- 2. Högnivådesign
- 3. Transistornivådesign
- 4. Layout
- 5. Redovisning

#### 3.1 Fas 1: Förstudie

Under förstudien sker litteratursökning och fördjupning inom själv projektuppgiften, och en projektplan med tidplan skall levereras till handledare.

## 3.2 Fas 2: Högnivådesign

Det första som skall göras under projektet är att utveckla en högnivådesign som matchar det beteende som kunden söker. Denna design kommer skrivas i ett HDL-språk, som i detta fallet troligtvis kommer vara Verilog, och designen ska simuleras för att sökerställa att den uppför sig enligt specifikation.

#### 3.3 Fas 3: Transistornivådesign

Högnivådesignen från fas två är klar och börjar förfinas och mer detaljer läggs till. Allt eftersom mer detaljer läggs till så måste designen simuleras och verifieras igen. Detta är en iterativ process som går från blocknivå beskrivning genom en macromodelldesign ända ner till transistorimplementering av kretsen. Det huvudsakliga arbetet här kommer vara simuleringar. Om fel påträffas måste vi gå tillbaka till en högre nivå och ändra designen så att felen åtgärdas.

#### 3.4 Fas 4: Layout

Här byggs allting från grunden. Små celler byggs med transistorer som sedan används i större block, och hela systemet byggs nedifrån upp. Efter varje steg på vägen upp så simuleras cellen för att säkerställa att den fungerar korrekt.

#### 3.5 Fas5: Redovising

Efter projektets slut skall en slutgiltlig rapport lämnas in, samt en presentation av projektet skall ske.

# 4 Organisationsplan för hela projektet

Beställning av projektet har gjorts av kunden, och det är kunden som levererat kravspecifikationen och på så sätt avgör om den är uppfylld eller inte. Det är även kunden som står för betalning av den slutgiltliga produkten, som i detta fall kommer vara i form av högskolepoäng. All kontakt med kunden och annan kontakt utåt ligger på projektledaren. Projektledaren ska också planera arbetet i gruppen och se till att hela gruppen arbetar mot ett och samma mål. Arbetet i sig ligger dock inte enbart på projektledarens axlar, utan även på resterande gruppmedlemmar, där alla, inklusive projektledaren, spelar lika stor roll i arbetets utförande. Det finns även en handledare tillgänglig som experthjälp för att hjälpa gruppen på vägen. Figur 1 illustrerar organisationsstrukturen.



 ${\bf Figur~1}-{\rm Organisationsplan}$ 

# 4.1 Villkor för samarbete inom projektgruppen

Inom gruppen har vi kommit överens om att följande gäller:

- Alla skall komma väl förberedda till möten.
- Meddela i tid om man inte kan närvara vid ett möte. Vid sjukdom skall detta meddelas snarast.
- Man skall delta vid möten som gruppen kommit överens om.
- Om man är osäker på något ska man först söka information på egen hand eller ta upp detta med gruppen. I andra hand bör någon extern person tas kontakt med.
- Om någon inte bidrar tillräckligt till projektet så har resterande gruppmedlemmar rätt att diskutera detta med handledare.

# 5 Dokumentplan

Dokumentation listad i tabell 2 skall utföras.

| Dokument               | Ansvarig         | Syfte                    | Färdig datum          |
|------------------------|------------------|--------------------------|-----------------------|
| Projektplan            | Johannes Klasson | Hjälpmedel för hur       | 2016-01-31            |
|                        |                  | projektet ska utföras    |                       |
| Designspecifikation    | Johannes Klasson | Specifierar hur desig-   | 2016-01-??            |
|                        |                  | nen skall se ut          |                       |
| Simulationsrapport 1   | Johannes Klasson | Simulationsrapport av    | 2016-02-19            |
|                        |                  | högnivådesign            |                       |
| Simulationsrapport 2   | Johannes Klasson | Simulationsrapport av    | 2016-03-18            |
|                        |                  | transistornivådesign     |                       |
| Slutgiltlig rapport    | Johannes Klasson | Slutgiltlig rapport över | 2016-05-27            |
|                        |                  | hela projektet           |                       |
| Statusrapport för pro- | Johan Isaksson   | Se hur projektet ligger  | Varje måndag kl 12:00 |
| jektet                 |                  | till                     |                       |

**Tabell 2** – Dokumentation.

# 6 Rapporteringsplan

Rapporter kommer att användas för att ge beställaren, handledaren och examinatorn en bild av hur projektet fortlöper och om tiden fördelas efter anvisningar. Projekledaren är ansvarig för att dessa rapporter skrivs och levereras enligt överenskommelse.

## 6.1 Statusrapport

Varje vecka skall en statusrapport levereras till handledaren. Statusrapporten ska innehålla vad som har gjorts och hur mycket tid som har lagts ner sedan den senaste statusrapporten, samt vilka problem som kommit upp.

# 7 Resursplan

## 7.1 Personer

Projektgruppen består av medlemmar enligt tabell 3

| Namn            | Ansvar              | E-post                   |
|-----------------|---------------------|--------------------------|
| Adam Sestorp    | Teamleader          | adase035@student.liu.se  |
| Dennis Ljung    | Dokumentansvarig    | denlj069@student.liu.se  |
| Alexander Yngve | Utvecklingsansvarig | aleyn573@student.liu.se  |
| Martin Söderén  | Analysansvarig      | marso329@student.liu.se  |
| Ruben Das       | Kvalitetssamordnare | rubdas680@student.liu.se |
| Sebastian Fast  | Arkitekt            | sebfa680@student.liu.se  |
| Johan Isaksson  | Testledare          | johis024 @student.liu.se |

**Tabell 3** – Medlemmar i projektgruppen

#### 7.2 Material

Material nödvändig för projektet kommer dels att förses av beställaren, dels av oss själva. Testdata så programmet kan testas kommer förses av beställaren och mjukvarorna Matlab och

7.3 Lokaler 27 januari 2016

Gurobi kommer vi i gruppen behöva införskaffa själva. Matlab är gratis för studenter och Gurobi finns gratis som trial-version.

#### 7.3 Lokaler

Vi har inte tillgång till några lokaler. Arbete och alla möten sker i skolans lokaler som vi bokar dagen innan.

#### 7.4 Ekonomi

Varje medlem i projektet har 300 timmar att lägga på projektet. Detta betyder att projektetet när det är klart ska ha förbrukat 2100 minus eventuell variation mellan gruppmedlemmarna som maximalt för överstiga tio procent. Eventuell buffertid ska disponeras på aktiviteter som dragit över tiden.

# 8 Milstolpar och beslutspunkter

Milstolpar är organiserade så att grundläggande funktioner implementeras först. En milstolpe anses vara avklarad när funktionaliteten är väl testad och de underliggande funktionerna är väl dokumenterade.

## 8.1 Milstolpar

Nedan följer milstolpar uppsatta för projektet.

| Nr | Beskrivning                                                   | Datum       |
|----|---------------------------------------------------------------|-------------|
| 1  | Förstudie klar                                                | 2015-02-16  |
| 2  | Programmet ska ha grundläggande funktionalitet                | Iteration 1 |
| 3  | Gränsnitt mellan systemets moduler klar                       | Iteration 1 |
| 4  | Algoritmen kan lösa ett konvext problem                       | Iteration 1 |
| 5  | Gränsnitt till Matlab klart                                   | Iteration 2 |
| 6  | Parsern klar                                                  | Iteration 2 |
| 7  | GUI:t klart                                                   | Iteration 3 |
| 8  | QuadOpts prestanda är någorlunda likvärdig med prestandan hos | Iteration 3 |
|    | Gurobi                                                        |             |
| 9  | Demonstration godkänd                                         | 2015-05-27  |

# 9 Aktiviteter

Nedan följer de aktiviteter som ska utföras i projektet.

# 9.1 Utbildning

Följande utbildning krävs för att påbörja projektet.

| Nr | Beskrivning                            | Beroende av | Timmar | datum       |
|----|----------------------------------------|-------------|--------|-------------|
| 1  | Konvexa kvadratiska optimeringsproblem |             | 70     | iteration 1 |
| 2  | Karush Kunn Tucker bivillkor           |             | 42     | iteration 1 |
| 3  | Lagrangemultiplikatorer                |             | 14     | iteration 1 |
| 4  | Active set-metoden                     | 1, 2, 3     | 70     | iteration 1 |
| 5  | Lös enkelt testproblem för hand        | 4           | 7      | iteration 1 |
| 6  | Grundutbildning i Latex                |             | 7      | iteration 1 |
| 7  | Grundutbildning i Git                  |             | 7      | iteration 1 |
| 8  | Grundutbildning i Trello               |             | 7      | iteration 1 |
| 9  | Grundutbildning i Gurobi               |             | 7      | iteration 1 |
| 10 | Grundutbildning i Matlab               |             | 7      | iteration 1 |

## 9.2 Filsystem

Aktiviteter som ska utföras för hantering av in- och utdata från QuadOpt.

| Nr | Beskrivning                                  | Beroende av | Timmar | datum       |
|----|----------------------------------------------|-------------|--------|-------------|
| 11 | Definiera filformat och filstruktur          |             | 10     | iteration 1 |
| 12 | Implementera inmatning av data till program- | 11          | 10     | iteration 2 |
|    | met                                          |             |        |             |
| 13 | Implementera utmatning av data från program- | 11          | 10     | iteration 2 |
|    | met                                          |             |        |             |
| 14 | Utför test av filhanteringssystemet          | 12, 13      | 4      | iteration 2 |

## 9.3 Huvudalgoritm

Aktiviter som ska utföras till implementation av optimeringsalgoritmen.

| Nr | Beskrivning                                  | Beroende av | Timmar | datum         |
|----|----------------------------------------------|-------------|--------|---------------|
| 15 | Implementera datastrukturer                  |             | 35     | iteration 1   |
| 16 | Implementation av matrisaritmetik (multipli- | 15          | 20     | iteration 1   |
|    | kation/addition)                             |             |        |               |
| 17 | Implementera optimeringsalgoritmen           | 16          | 100    | iteration 1,2 |
| 18 | Göra interna tester för att se att problemet | 17          | 20     | iteration 1,2 |
|    | går att lösa                                 |             |        |               |
| 19 | Optimering av algoritmen                     |             | 140    | iteration 2,3 |

# 9.4 Planering

| Nr | Beskrivning      | Beroende av | Timmar | datum           |
|----|------------------|-------------|--------|-----------------|
| 20 | Möte varje vecka |             | 200    | iteration 1,2,3 |

9.5 Gränssnitt 27 januari 2016

## 9.5 Gränssnitt

| Nr | Beskrivning                                 | Beroende av | Timmar | datum       |
|----|---------------------------------------------|-------------|--------|-------------|
| 21 | Definiera gränssnitt mellan modulerna       |             | 30     | iteration 1 |
| 22 | Skapa ett gränssnitt (Matlab/terminal)      | 21          | 15     | iteration 2 |
| 23 | Definiera och implementera layout för GUI:t |             | 70     | iteration 1 |
| 24 | Definiera och implementera inmatningssyntax |             | 140    | iteration 1 |
|    | för GUI:t                                   |             |        |             |
| 25 | Hantera inmatning av matriser i GUI:t       |             | 105    | iteration 2 |
| 26 | Implementera generering av C-kod i GUI:t    |             | 245    | iteration 2 |
| 27 | Koppla samman GUI med lösaren               |             | 35     | iteration 2 |
| 28 | Testa gränssnitten                          | 22          | 50     | iteration 2 |

## 9.6 Byggsystem

Ett byggsystem krävs för att smidigt kompilera C-koden till de plattformar som gruppen valt att utveckla till.

| Nr | Beskrivning                                | Beroende av | Timmar | datum       |
|----|--------------------------------------------|-------------|--------|-------------|
| 29 | Implementering av kompilering till Linux   |             | 14     | iteration 3 |
| 30 | Implementering av kompilering till Windows |             | 14     | iteration 3 |
| 31 | Implementering av kompilering till Mac     |             | 7      | iteration 3 |
| 32 | Fixa struktur på Git                       |             | 1      | iteration 1 |

## 9.7 Gurobi

För att kunna se hur snabb algoritmen är krävs det ett jämförbart program. Vi har valt att jämföra Quadopt med det kommersiella programmet Gurobi.

| Nr | Beskrivning                   | Beroende av | Timmar | datum       |
|----|-------------------------------|-------------|--------|-------------|
| 33 | Testa med Gurobi              | 9           | 15     | iteration 3 |
| 34 | Jämför test med egen algoritm | 28          | 15     | iteration 3 |

#### 9.8 Dokumentation

| Nr | Beskrivning   | Beroende av                                      | Timmar | datum       |
|----|---------------|--------------------------------------------------|--------|-------------|
| 35 | Testplan      |                                                  | 35     | iteration 1 |
| 36 | Kvalitetsplan |                                                  | 14     | iteration 1 |
| 37 | Arkitektur    |                                                  | 35     | iteration 1 |
| 38 | Teknisk       | Gränssnitt, huvudalgoritm och filsystem är klart | 30     | iteration 3 |
|    | dokumenta-    |                                                  |        |             |
|    | tion          |                                                  |        |             |
| 39 | Användarhand  | dledning Gränssnitt och GUI är klara             | 10     | iteration 3 |

# 10 Projektavslut

Projektet avslutas när produkten är acceptanstestad, levererad och både teknisk dokumentation och användarhandledning blivit levererade.

# Bilaga A Mötesmall

- §1. Mötet öppnas av teamledare alternativt tillförordnad teamledare.
- §2. Sekreterare utses. Normalt utses dokumentansvarig.
- §3. Varje gruppmedlem får några minuter att redogöra för sitt arbetes status.
  - Hur går arbetet?
  - Medlemmen får uppskatta om denne tror att veckans aktiviteter kommer att hinnas med. Behövs ytterligare timmar eller eventuellt en till gruppmedlem tilldelas aktiviteten?
  - Är medlemmen sjuk och arbetsuppgiften ligger som beroende hos andra aktiviteter, måste uppgiften isåfall överlämnas till en annan gruppmedlem?
  - Är medlemmen redan klar med veckans aktiviteter?
- §4. Diskussion om eventuella problem i §3.
  - Ska samliga medlemmar närvara för att diskutera problemen?
- §5. Mötet avslutas.