TAI CHONG CHEANG STEAMSHIP CO (SINGAPORE) PTE LTD

Safety Management System

VOC MANAGEMENT PLAN Chapter 5 – Pressure Calculation

Issue No: 000 Revised
Issue Date: 15-Oct-20
Issued By: GM (MSD)
Page: 1 of 4

5.1 Pressure Drop Calculation

Pressure drop calculation is carried out for following two cases as the most severe situation.

THIS PRESSURE DROP IS CALCULATED ON THE BASIS OF NO. 1 Cargo Tank (P), WHICH IS THE FARTHEST CARGO TANK FROM VAPOUR CONNECTING MANIFOLD.

- g ; Density of the vapour gas : 3.0 KG/M3

- Vapour growth rate : 1.25

- Maximum loading capacity per each segregation : 6,840 M3/H

- Maximum loading rate per each cargo tank : About 3,420 M3/H

(If two(2) tanks are engaged in each segregation)

- f; Friction factor

- Re: Reynold's number [Re = (V x D) / v]

- V; Velocity [M/S]

- V: Kinematics viscosity : 0.175 x 10 ⁻⁴ M² / S

- ε; Pipe roughness height : 0.00004572 M

- L; Pipe length [M]

- D; Pipe inner diameter [M]

- K; Loss coefficient

VOC MANAGEMENT PLAN Chapter 5 - Pressure Calculation

Issue No: 000 Revised Issue Date: 15-Oct-20 Issued By: GM (MSD) Page: 2 of 4

5.2 Major pressure loss for vapour collection pipe

$$\triangle P_1 = (p \times V^2 \times f \times L) / (2 \times D)$$

* Here, friction factor will be obtained through following formula.

$$f = 1.325 / \{ [In (\epsilon / 3.7D + 5.74 / Re^{0.9})] \}^{2}$$

$$\triangle H_1 = \triangle P_1 x (0.102 MMAQ / 1 Pa)$$

Se <mark>gm</mark> ent	D(m)	L(m)	Q(m3)	V	f	dP	dH
1~4	0.293	13.90	3420	14.13	0.0164	233.46	23.81
4~5	0.431	2.50	3420	6.53	0.0170	6.31	0.64
5~8	0.584	50.90	6840	7.11	0.0158	104.36	10.64
8~11	0.584	41.40	13680	14.23	0.0143	307.70	31.38
11~13	0.584	14.90	13680	14.23	0.0143	110.74	11.30
13~19	0.584	21.30	20520	21.34	0.0136	339.59	34.64
					74.9466	93.68	112.42

Safety Management System

VOC MANAGEMENT PLAN Chapter 5 – Pressure Calculation Issue No: 000 Revised
Issue Date: 15-Oct-20
Issued By: GM (MSD)
Page: 3 of 4

5.3 Minor pressure loss for valve and fitting

 $\triangle P_t = K \times g \times V^2 / 2$

Point	Description	K	V	dP	dH
1	Entrance	0.50	14.13	149.78	15.28
2	90 D Elbow (300A)	0.24	14.13	71.90	7.33
3	Butterfly valve (300A)	0.28	14.13	83.88	8.56
4	Reducer(450A X 300A)	0.26	6.53	16.64	1.70
5	Tee(600A X 450A)	0.21	7.11	15.94	1.63
6	Tee(600A X 350A)	0.21	7.11	15.94	1.63
7	Tee(600A X 300A)	0.21	14.23	63.77	6.51
8	Tee(600A X 350A)	0.21	14.23	63.77	6.51
9	Tee(600A X 350A)	0.21	21.34	143.49	14.64
10	Tee(600A X 600A)	0.40	21.34	273.32	27.88
11	Tee(600A X 600A)	0.40	21.34	273.32	27.88
12	Tee(600A X 600A)	0.40	21.34	273.32	27.88
13	Tee(600A X 300A)	0.21	21.34	143.49	14.64
14	45 D Elbow (600A)	0.14	21.34	95.66	9.76
15	Tee(600A X 600A)	0.21	21.34	143.49	14.64
16	45 D Elbow (600A)	0.19	21.34	129.83	13.24
17	90 D Elbow (600A)	0.24	21.34	163.99	16.73
18	Butterfly valve (600A)	0.28	21.34	191.32	19.52
19	Vapor connection	0.38	21.34	259.65	26.48
TOTAL		218.66	262.40		

Total minor pressure loss: 262.40 MMAQ

TOTAL PRESSURE LOSS ($\triangle P_1 + \triangle P_t$)

 \triangle H = 112.42 + 262.40 = 374.82 MMAQ

Safety Management System

VOC MANAGEMENT PLAN
Chapter 5 – Pressure Calculation

Issue No: Issue Date: Issued By: 000 Revised 15-Oct-20 GM (MSD)

Page:

4 of 4

