Relaciones de orden - comisiones 1 y 3 Versión del 22/04/2013

Resumen de definiciones

- Relación binaria entre A y B: subconjunto de $A \times B$.
- Relación inversa: si $R \subseteq A \times B$, entonces $R^{-1} \subseteq B \times A$, y $R^{-1} = \{(b, a) / (a, b) \in R\}$.
- Relación definida en A: subconjunto de $A \times A$.
- Matriz de una relación R definida en A: es la matriz compuesta por elementos m_{ij} definidos así:

$$m_{ij} = \begin{cases} 1 & \text{si} \quad (a_i, a_j) \in R \\ 0 & \text{si} \quad (a_i, a_j) \notin R \end{cases}$$

ullet Una relación R definida en A es

```
reflexiva ssi \forall x: xRx.

irreflexiva ssi \forall x: \neg(xRx).

simétrica ssi \forall x: \forall y: xRy \rightarrow yRx.

antisimétrica ssi \forall x: \forall y: (xRy \land yRx) \rightarrow x = y.

transitiva ssi \forall x: \forall y: (xRy \land yRx) \rightarrow xRz.

de orden amplio ssi es reflexiva, antisimétrica y transitiva.

de orden estricto ssi es irreflexiva y transitiva.
```

- Una relación de orden es **total** si (además de ser de orden, claro), se cumple esta condición: $\forall x : \forall y : xRy \lor yRx$.
- Conjunto ordenado: (A, \prec) es un conjunto ordenado ssi \prec es una relación de orden definida en A.

Se puede decir que (A, \prec) es ampliamente ordenado o estrictamente ordenado, según cómo sea el orden. Si decimos solamente "conjunto ordenado", es estrictamente ordenado.

Si \prec es un orden total, entonces (A, \prec) es un conjunto totalmente ordenado.

■ A cualquier orden estricto \prec se le asocia un orden amplio \preceq definido así:

$$x \leq y$$
 ssi $x \prec y \lor x = y$.

Relaciones de orden – comisiones 1 y 3 Versión del 22/04/2013 – Matemática I. TPI. UNQ. 2013

■ Cotas, mínimo, ínfimo, etc.: si (A, \prec) es un conjunto estrictamente ordenado y $B \subseteq A$, entonces

cota superior z es cota superior de B ssi $z \in A$ y $\forall x : x \in B \to x \leq z$.

notación: csup(B).

cota inferior z es cota inferior de B ssi $z \in A$ y $\forall x : x \in B \rightarrow z \leq x$.

notación: cinf(B).

máximo z es el máximo de B ssi $z \in B$ y $\forall x : x \in B \rightarrow x \leq z$.

notación: max(B).

mínimo z es el mínimo de B ssi $z \in B$ y $\forall x : x \in B \rightarrow z \leq x$.

notación: min(B).

maximal z es maximal de B ssi $z \in B$ y $\neg \exists x : x \in B \land z \prec x$.

notación: maxl(B).

minimal z es minimal de B ssi $z \in B$ y $\neg \exists x : x \in B \land x \prec z$.

notación: minl(B).

supremo z es el supremo de B ssi es la cota superior más chica de B,

o sea, ssi z es cota superior de B y

 $\forall x : x \text{ es cota superior de } B \to z \leq x.$

notación: sup(B).

ínfimo z es el ínfimo de B ssi es la cota inferior más grande de B,

o sea, ssi z es cota inferior de B y

 $\forall x : x \text{ es cota inferior de } B \to x \leq z.$

notación: inf(B).

Recordamos que:

- supremo, ínfimo, máximo y mínimo son únicos, si existen.
- maximales y minimales pueden no ser únicos.
- el supremo es el mínimo de las cotas superiores.
- el ínfimo es el máximo de las cotas inferiores.

Ejercicios

- 1. Consideremos los siguientes conjuntos
 - A equipos que participaron en un campeonato
 - B partidos de ese campeonato
 - \mathbb{N}_0 nuestros amigos los números naturales, incluyendo el 0.

Para cada una de las siguientes relaciones, indicar en dónde está definida cada una, y en los casos en que tenga sentido la pregunta, si son necesariamente reflexivas, irreflexivas, simétricas, antisimétricas, y/o transitivas.

Nota: un contrajemplo de un campeonato inventado alcanza para mostrar que una relación no tiene, necesariamente, una propiedad.

- a) $aRb \, ssi \, a \, y \, b \, son \, dos \, partidos \, que \, se \, jugaron \, el \, mismo \, día.$
- b) aRb ssi en el partido a se hicieron más goles que en b.
- c) aRb ssi el equipo a jugó el partido b.
- d) aRb ssi los partidos a y b tienen, al menos, un equipo en común.
- e) aRb ssi b es la cantidad total de goles que hizo el equipo a en el campeonato.
- f) aRb ssi "a a b" fue el resultado de al menos un partido, o sea, ssi en algún partido el local hizo a goles y el visitante hizo b goles.
- g) aRb ssi los equipos a y b ganaron la misma cantidad de partidos.
- h) aRb ssi b es la cantidad de goles que se hizo en el partido a.
- i) aRb ssi a es la cantidad de goles que se hizo en el partido b.
- 2. Consideremos los siguientes conjuntos
 - A personas que hicieron compras en un negocio.
 - B artículos que se venden en el negocio.
 - \mathbb{R} nuestros amigos los números reales.

Para cada una de las siguientes relaciones, indicar en dónde está definida cada una, y en los casos en que tenga sentido la pregunta, si son reflexivas, irreflexivas, simétricas, antisimétricas, y/o transitivas.

- a) la que relaciona cada persona con el importe total de las compras que hizo (0 si no hizo ninguna compra).
- b) aRb ssi hay algún artículo que compraron tanto a como b.
- c) aRb ssi b es el artículo más caro que compró a.
- aRb ssi a fue una cantidad mayor o igual de veces al mercado de las que fue b.
- e) aRb ssi todos los artículos que compró a, también los compró b.
- f) aRb ssi b es la madre de a.
- g) aRb ssi a y b son familiares directos en primer grado, o sea, a es padre/madre, hermano ó hijo de b, o bien a y b son la misma persona.
- h) aRb ssi a y b son artículos y el precio de los dos es un número par.
- i) aRb ssi b es el precio del artículo a.

- 3. Si $A = \{a, b, c, d\}$, indicar para cada una de las siguientes relaciones si son reflexivas, irreflexivas, simétricas, antisimétricas, v/o transitivas. En cada caso que una relación no sea como se pide, indicar un conjunto lo más chico posible de pares a agregar y/o quitar para que la relación sea como se pide.
 - a) $\{(a,a),(a,b),(b,c)\}.$
 - b) $\{(a,a),(a,b),(a,c),(b,b),(b,c),(d,d)\}.$
 - c) $\{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,b),(c,c),(d,d)\}.$
 - $d) \{(a,a),(b,a),(b,b),(c,c),(d,d)\}.$
 - $e) \{(a,a),(a,d),(b,b),(c,c),(d,a),(d,d)\}.$
 - f) $A \times A$.
- 4. Para cada una de las siguientes relaciones: dar tres pares que pertencen y tres pares que no; indicar si son reflexivas, irreflexivas, simétricas, antisimétricas, y/o transitivas; y definir la relación inversa. Considerar $A = \{1, 2, 3, 4\}$.
 - a) en N, aRb ssi a + b = 11.
 - b) en \mathbb{N} , aRb ssi las dos últimas cifras de a y b coinciden (p.ej. 1438 R 738 porque ambos terminan en 38).
 - c) en \mathbb{N} , $aRb \operatorname{ssi} b = 2a$.
 - d) en \mathbb{Z} , $aRb \, \text{ssi} \, a = b^2 \, (\text{p.ej. } 9R3 \, \text{porque } 9 = 3^2).$
 - e) en \mathbb{Z} , aRb ssi $|a-b| \leq 5$.
 - f) en \mathbb{Z} , $aRb \operatorname{ssi} a b > 5$.
- i) en \mathbb{R} , $xRy \sin x > 4 \land y > 5$.
- (y) en \mathbb{R} , xRy ssi $x \ge 4 \lor y \ge 4$. (x) en \mathbb{R} , xRy ssi $|x| \ge y$.
- h) en \mathbb{R} , $xRy \text{ ssi } x \geq 4 \lor y \geq 5$.
- l) en \mathbb{R} , xRy ssi $y \le x \le y + 2$.
- i) en \mathbb{R} , xRy ssi $x \geq 4 \land y \geq 4$.
- m) en A, xRy ssi $x = y \lor x + y = 5$.
- n) en $\mathcal{P}(A)$, xRy ssi $x \cup y = A$.
- \tilde{n}) en $\mathcal{P}(A)$, xRy ssi y = A x.
- o) en $\mathcal{P}(A)$, $xRy \, \text{ssi} \, x \cup \{2,3\} = y \cup \{2,3\}$.
- p) en $\mathcal{P}(A)$, xRy ssi $x \cap y = \emptyset$.
- q) en $\mathcal{P}(A)$, xRy ssi $x \subseteq y$.
- 5. Para las relaciones definidas en $\{a, b, c, d, e\}$ en cada una de las matrices que siguen, indicar si es: reflexiva, irreflexiva, simétrica, antisimétrica, igual a su inversa.

R_1	R_2	R_3	R_4	R_5
$1 \ 0 \ 1 \ 0 \ 1$	$1 \ 0 \ 0 \ 0 \ 0$	$0 \ 1 \ 0 \ 0 \ 0$	$0\ 1\ 1\ 1\ 1$	1 1 1 0 0
$0 \ 1 \ 0 \ 1 \ 0$	$0 \ 1 \ 0 \ 1 \ 0$	$1 \ 0 \ 0 \ 0 \ 0$	$0 \ 0 \ 1 \ 1 \ 1$	1 1 0 0 0
$1 \ 0 \ 1 \ 0 \ 1$	$1 \ 0 \ 0 \ 0 \ 0$	$0 \ 0 \ 0 \ 0 \ 0$	$0 \ 0 \ 0 \ 1 \ 1$	1 0 1 0 1
$0 \ 1 \ 0 \ 1 \ 0$	$0 \ 0 \ 1 \ 1 \ 1$	$0 \ 0 \ 0 \ 0 \ 0$	$0 \ 0 \ 0 \ 0 \ 1$	$0 \ 0 \ 0 \ 1 \ 1$
1 0 1 0 1	$0 \ 0 \ 0 \ 0 \ 1$	$0 \ 0 \ 0 \ 0 \ 0$	$0 \ 0 \ 0 \ 0 \ 0$	$0 \ 0 \ 1 \ 1 \ 1$

Relaciones de orden – comisiones 1 y 3 Versión del 22/04/2013 – Matemática I. TPI. UNQ. 2013

R_6				R_7					
0	0	0	0	0	1	0	0	0	0
1	0	0	0	0	0	1	0	1	0
1	0	0	0	0	1	0	0	0	0
0	1	0	0	0	0	1	0	1	1
0	0	1	0	0	0	0	0	0	1

6. Para evitar que haya corazones rotos por amores no correspondidos, ¿cómo debería ser la relación

aRb ssi a ama a b

definida en el conjunto de las personas?

- 7. Para cada una de las siguientes relaciones, definidas sobre el conjunto de las palabras que aparecen en el diccionario, indicar si es: reflexiva, irreflexiva, simétrica, y/o antisimétrica.
 - a) pRq ssi la primer letra de p es anterior a la primer letra de q.
 - b) pRq ssi las dos palabras empiezan con la misma letra.
 - c) pRq ssi p empieza con vocal y q empieza con consonante.
 - d) pRq ssi p empieza con vocal.
 - e) pRq ssi p empieza con vocal y q empieza con consonante, o al revés (o sea, p empieza con consonante y q con vocal).
 - f) pRq ssi o bien las dos empiezan con vocal, o bien las dos empiezan con consonante y la primer letra de p es anterior a la primer letra de q.
 - g) pRq ssi la letra 'a' aparece más veces en p que en q. P.ej. abracadabra R aplacada, porque "abracadabra" tiene 5 'a' mientras que 'aplacada' tiene 4.
 - h) pRq ssi la letra 'a' aparece la misma cantidad de veces en p y en q.
 - i) p R q ssi la cantidad de veces que la letra 'a' aparece en p es mayor a la cantidad de veces que aparece la letra 'e' en q. P.ej. altanera R perfecta, porque la 'a' aparece 3 veces en "altanera", la 'e' aparece dos veces en "perfecta", y 3 > 2.
- 8. En una oficina juegan al amigo invisible. Esta actividad consiste en que cada persona que trabaja en la oficina le hace un regalo a alguien, sin que se sepa quién le compró el regalo a quién. Se define esta relación: $a\,R\,b$ ssi a le compró el regalo a b. ¿Qué tendría de inconveniente que R no fuera irreflexiva?
- 9. Si Juan es hermano de Ana y Ana es hermana de Lucas, ¿de quiénes más sé que son hermanos? Esto tiene que ver con que la relación de "ser hermanos" es ¿cómo?
- 10. Consideremos la relación $R = \{(a,a), (a,b), (b,a), (a,c)\}$ definida en $A = \{a,b,c,d\}$. Construir
 - a) una relación irreflexiva quitándole un par a R.
 - b) una relación simétrica agregandole un par a R.
 - c) una relación reflexiva agregándole a R la menor cantidad de pares que se pueda.

Relaciones de orden – comisiones 1 y 3 Versión del 22/04/2013 – Matemática I. TPI. UNQ. 2013

- d) una relación antisimétrica quitándole un par a R.
- e) una relación transitiva agregándole un par a R.
- 11. Considerando el conjunto $A = \{a, b, c, d\}$, construir
 - a) Dos relaciones R y S, tales que ninguna de las dos sean simétricas ni reflexivas, pero R-S sí sea simétrica y reflexiva.
 - b) Dos relaciones R y S, tales que ninguna de las dos sean simétricas, pero $R \cap S$ sí sea simétrica, y se verifique $R \cap S \neq \emptyset$.
- 12. En un depósito hay muchas remeras, algunas son verdes y otras son rojas. Llamemos A al conjunto de todas las remeras. Se define la relación R en A así: aRb ssi a es roja y b es verde.
 - a) Mostrar que esta relación es antisimétrica y no es transitiva.
 - b) Definir una relación antisimétrica S tal que $R \cup S$ sea simétrica.
 - c) Definir una relación S tal que $R \cup S$ sea transitiva, pero no simétrica.
- 13. Consideremos $A = \{a, b, c, d\}$.
 - a) La relación vacía definida en A, ¿es de orden? Justificar.
 - b) Dar una relación de orden de cardinal mínimo, o sea, que no existe una relación de orden con menos elementos.
 - c) Dar una relación de orden de cardinal máximo, o sea, que no existe una relación de orden con más elementos.
- 14. Se dice que una persona a es descendiente de una persona b si es hijo, nieto, bisnieto, etc.. En el conjunto de personas de la humanidad Se definen las relaciones aHb si a es hijo de b y aNb si a es nieto de B. Demostrar que $H \cup N$ no es una relación de orden estricto, y responder a esta pregunta ¿cómo ayuda la idea de descendiente para definir un orden estricto que incluya a $H \cup N$?
- 15. Demostrar que si R es simétrica y transitiva y aRb para ciertos a y b, entonces aRa y bRb.
- 16. Demostrar que si R es simétrica y transitiva y aRb para ciertos a y b, entonces aRa y bRb.
- 17. Demostrar que si \prec es una relación de orden estricto, entonces es antisimétrica. Ayuda: alcanza con probar que no puede ser, para cualesquiera a y b que considere, que $a \prec b$ y $b \prec a$. Relacionar con el ejercicio anterior.

18. Dados los siguientes conjuntos ordenados a través de diagramas de Hasse, hallar cotas, mínimo, máximo, minimales, maximales, supremo e ínfimo para cada subconjunto indicado.

19. En la relación de orden cuyo diagrama de Hasse es

hallar:

- a) Un subconjunto de 6 elementos con mínimo.
- b) Un subconjunto de 3 elementos sin máximo y con mínimo.
- c) Un subconjunto de 4 elementos con mínimo y 3 maximales.
- d) Un subconjunto de 3 elementos sin máximo y con supremo.
- e) Un subconjunto de 5 elementos con 4 maximales y 3 minimales.
- f) $csup(\{b\}).$
- g) Una forma de agregar un elemento i tal que $sup(\{c,d,e\}) = sup(\{c,d,e,g\}) = sup(\{c,d,e,g,h\}) = i$.

20. En la relación de orden cuyo diagrama de Hasse es

hallar:

- a) Un subconjunto de 6 elementos con máximo.
- b) Un subconjunto de 4 elementos sin máximo y con supremo.
- $c) \ cinf(\{g\}).$

21. En la relación de orden cuyo diagrama de Hasse es

hallar:

- a) Un subconjunto de 5 elementos sin máximo y con supremo.
- b) Un subconjunto de 4 elementos sin mínimo y con ínfimo.
- c) Un subconjunto de 3 elementos con 3 maximales y 3 minimales.
- d) Un elemento x tal que $\{x\}$ tiene 4 cotas superiores.
- e) Una forma de agregar un elemento j tal que el conjunto $\{f,g,h\}$ no tenga ínfimo.
- f) Una forma de agregar un elemento j tal que $inf(\{f,g,h\}) = a$.

22. Respecto del diagrama que se muestra al costado, se pide

- a) Encontrar un subconjunto de 5 elementos que tenga máximo, uno de 3 elementos que no tenga máximo pero sí supremo, uno de 2 elementos que no tenga supremo.
- b) Agregar un elemento g y relacionarlo con el resto, de modo tal que en el diagrama modificado, el ínfimo de $\{e,f\}$ sea g, en lugar de d.

23. Se parte de la relación \prec definida en $A = \{a, b, c, d, e\}$ cuyo diagrama de Hasse es

obsérvese que e está relacionado solamente con él mismo

Se pide

- a. Definir \prec' agregando a \prec pares que relacionen e con otros elementos, de forma tal que $\{a, b\}$ no tenga supremo pero $\{a, b, c, e\}$ sí.
- b. Definir \prec'' que sea un orden total en A y que verifique que $x \prec y \Rightarrow x \prec'' y$.
- 24. En cada caso, encontrar una relación de orden que cumpla lo pedido
 - a) En $A = \{a, b, c, d, e\}$, un orden total \prec en el que: a sea el máximo de $\{a, b, d, e\}$, c sea el máximo de $\{a, b, c\}$, $d \prec b$, y e sea cota inferior de $\{c, d, e\}$.
 - b) En $A = \{a, b, c, d, e\}$, un orden no total \prec en el que el supremo de $\{b, c, d\}$ sea a, que las cotas superiores de $\{b, c, d\}$ sean $\{a, e\}$, y que el mínimo de $\{b, c, d\}$ sea c.
 - c) En $A = \{a, b, c, d, e\}$, un orden no total \prec en el que c sea tanto el supremo de $\{d,e\}$ como el ínfimo de $\{a,b\}$, y en el que $\{a,b,d,e\}$ no tenga ni máximo ni mínimo.
 - d) En $A = \{a, b, c, d, e, f\}$, un orden no total \prec en el que: la única cota superior de $\{b, c, d, e, f\}$ sea a, los maximales de $\{b, c, d, e\}$ sean $\{b, c\}$, el máximo de $\{b,d,f\}$ sea b, el mínimo de $\{b,d,f\}$ sea f, se verifique que $f \prec e$, y finalmente que el supremo de $\{d, e, f\}$ sea c.
 - e) En $A = \{a, b, c, d, e, f\}$, una relación de orden \prec en la que: las cotas superiores de $\{e, f\}$ sean $\{a, b, c, d, e\}$, el supremo de $\{b, c\}$ sea a, el ínfimo de $\{b, d\}$ sea e, el subconjunto $\{c,d\}$ no tenga supremo, $\neg(d \prec a)$.
 - f) En $A = \{a, b, c, d, e, f\}$, una relación de orden \prec en la que: el supremo de $\{e, f\}$ sea d, el supremo de $\{b, c, d\}$ sea a, el ínfimo de $\{b, c, d\}$ sea c y el subconjunto $\{c, e, f\}$ tenga tres maximales.
 - g) En $A = \{a, b, c, d, e, f, g\}$, una relación de orden \prec que cumpla con todas las condiciones que siguen:

- $sup(\{d,e,f\}) = g$ $sup(\{a,b,c\}) = sup(\{a,c\}) = d$ $sup(\{a,b,c\}) = b$
- 25. Graficar el diagrama de Hasse y la matriz de una relación de orden ≺ en el conjunto $A = \{a, b, c, d, e, f\}$ que cumpla las siguientes condiciones: $\{a, b, c\}$ tiene como ínfimo a c y no tiene supremo, $\{d, e, f\}$ tiene como supremo a d y no tiene ínfimo, $c \prec d$.
- 26. Algunos de relaciones que sí son de orden
 - a) Se define esta relación de orden en \mathbb{R}^2 : $(a,b) \prec (c,d)$ ssi $(a < c) \lor (a =$ $c \wedge b < d$). Mostrar que es un orden total, y encontrar cotas, mínimo, máximo, maximales, minimales, supremo e ínfimo de $\{(2,3),(3,4),(2,4),(3,2)\}.$

- b) Se define esta relación de orden en \mathbb{R}^2 : $(a,b) \prec (c,d)$ ssi $(a=c \land b=d) \lor (a+b < c+d)$. Encontrar cotas, mínimo, máximo, maximales, minimales, supremo e ínfimo de $\{(1,1),(1,2),(2,1),(3,4),(2,5)\}$. La relación, ¿es un orden total?
- c) Se escribe a//b como la parte entera de a/b; por ejemplo, 328//3=109 porque 328/3=109,33... y del resultado 109,33... se toma lo que está a la izquierda de la coma. Más ejemplos: 5//3=1, 6//3=7//3=8//3=2, 9//3=3.

Se define esta relación de orden en \mathbb{N} : $a \prec b$ ssi (a-1)//3 < (b-1)//3. Encontrar cotas, mínimo, máximo, maximales, minimales, supremo e ínfimo de $\{2,6,13,14\}$.

Si te animás, demostrá que la relación es de orden.

- d) Se define la relación de orden \prec en $\mathbb N$ de esta forma: $x \prec y$ ssi x tiene menos cifras que y. P.ej. 248 \prec 248, 248 \prec 1304, 248 $\not\prec$ 77, 248 $\not\prec$ 304. Se pide
 - Demostrar que \prec no es un orden total.
 - Indicar cuáles de estos conjuntos tienen máximo. $\{20, 30, 200, 300\}$ $\{20, 30, 200, 300, 1000\}$ $\{8, 20, 30, 200, 300\}$
- 27. Consideremos la relación de orden \prec definida en \mathbb{N} : $x \prec y$ si y sólo si la última cifra de x es menor estricto a la última cifra de y. P.ej. los siguientes pares están en la relación: $(13\underline{4}, 2\underline{7}), (13\underline{4}, 13\underline{4}), (13\underline{4}, \underline{9}), (13\underline{4}, 30\underline{5})$, mientras que ni $(13\underline{4}, 2\underline{2})$ ni $(13\underline{4}, 48\underline{1})$ ni $(13\underline{4}, 7\underline{4})$ están en la relación (se destaca la última cifra de cada número, que es la que hay que mirar para determinar si un par está o no en la relación).

Se pide resolver justificando en cada caso (ítem sin justificación no cuenta):

- a) mostrar que el orden no es total.
- b) indicar cuáles de los siguientes números

son cotas inferiores del subconjunto {47, 104, 33, 17}.

c) indicar cuáles de los siguientes subconjuntos

$$\{16, 25, 34\}, \{16, 25, 36\}, \{16, 24, 34\}$$

tienen máximo.

- d) obtener un subconjunto de cinco elementos que tenga mínimo y tenga exactamente dos maximales.
- e) indicar cuáles son los elementos internos del subconjunto $\{26, 35, 128, 348, 507\}$ respecto de \prec . Decimos que $z \in B$ es interno si cumple esta condición:

$$(\exists x : x \in B \land x \neq z \land x \prec z) \land (\exists x : x \in B \land x \neq z \land z \prec x)$$

28. Consideremos la relación de orden \prec definida en \mathbb{N} : $x \prec y$ si y sólo si la suma de las cifras de x es menor estricto a la suma de las cifras de y. P.ej. los pares (321, 38) y (321, 9) están en la relación, porque 3+2+1=6<11=3+8 y 3+2+1=6<9; mientras que ni (321, 1000) (6 \nleq 1 = 1+0+0+0), ni (321, 4) (6 \nleq 4), ni (321, 42) (6 \nleq 6 = 4 + 2) están en la relación.

Se pide resolver justificando en cada caso (ítem sin justificación no cuenta):

- a) mostrar que el orden no es total.
- b) dar máximo, mínimo, 3 cotas superiores y 2 cotas inferiores del subconjunto $\{412, 339, 78, 704, 125\}.$
- c) indicar cuáles de los siguientes subconjuntos

$$\{385, 59, 761\}, \{385, 59, 762\}, \{385, 59, 763\}$$

tienen máximo.

- d) obtener un subconjunto de seis elementos que tenga exactamente tres minimales y tenga máximo.
- e) indicar cuáles son los elementos internos del subconjunto $\{126, 34, 981, 425, 2122\}$ respecto de \prec . Decimos que $z \in B$ es interno si cumple esta condición:

$$(\exists x : x \in B \land x \neq z \land x \prec z) \land (\exists x : x \in B \land x \neq z \land z \prec x)$$

- 29. Algunos de relaciones que no son de orden.
 - a) Se define esta relación en \mathbb{R}^2 : (a,b)R(c,d) ssi a < b o c < d. Mostrar que esta relación no es de orden.
 - b) Se define esta relación en \mathbb{R}^2 : (a,b)R(c,d) ssi $a+b \leq c+d$. Mostrar que esta relación no es de orden. Ayuda: comparar con ejercicio 26b.
- 30. Algunos más sobre cotas, mínimo, máximo, etc..
 - a) En una relación de orden definida en $\{a,b,c,d,e,f\}$, sabemos que el supremo de $\{c,d,e\}$ es b. Demostrar que: $\{c,d,e\}$ no tiene máximo, $\{b,c,d,e\}$ sí tiene máximo, el orden no es total.
 - b) En una relación de orden \prec definida en $\{g, h, i, j, k\}$, sabemos que los maximales de $\{i, j, k\}$ son $\{i, k\}$. Demostrar que: $\{i, j, k\}$ no tiene máximo, $i \neq k$ no son comparables según \prec (o sea ni $i \prec k$ ni $k \prec i$), el orden no es total.
- 31. Completar la siguiente matriz de relación, sabiendo que es de orden. ¿Se trata de una relación de orden total?

- 32. Considerando dos relaciones R y S definidas en un conjunto $A \neq \emptyset$, demostrar que
 - a) si R es reflexiva, entonces $R \cup R^{-1} \neq \emptyset$.
 - b) si R y S son reflexivas, entonces tanto $R \cap S$ como $R \cup S$ son reflexivas, y R S es irreflexiva.
 - c) si R y S son irreflexivas, entonces $R \cap S$, $R \cup S$, R S y $R \Delta S$ son todas irreflexivas, y \overline{R} es reflexiva.
 - d) si R y S son simetricas, ¿qué podemos decir de $R \cap S$ y $R \cup S$?
 - e) si R y S son transitivas, R-S puede no ser transitiva.
- 33. Considerando dos relaciones R y S definidas en un conjunto $A \neq \emptyset$, responder lo siguiente: ¿qué condiciones deben verificarse para que R-S sea reflexiva?