

Introduction to Mathematical Logic

For CS Students

CS104/CS108

Yida TAO (陶伊达)

2024年5月7日

Table of Contents

1 Warm up

- ► Warm up
- The Scope of Variables, Free and Bound Variables
- Interpretation
- Environment
- Truth values of FOL terms and formulas

Semantics of FOL formulas

1 Warm up

治非兰特闷剑才能判断真值

formula language

must force a domain

- y = x + 1
- $\forall y \exists x (y = x + 1)$

• $c_1 = c_2 + 1$

• $\exists x P(x) \land Q(f(a), a)$

domain, P.O.f.a

3/49

Table of Contents

2 The Scope of Variables, Free and Bound Variables

- ▶ Warm up
- ► The Scope of Variables, Free and Bound Variables
- Interpretation
- ▶ Environment
- Truth values of FOL terms and formulas

Scope

2 The Scope of Variables, Free and Bound Variables

Definition: Scope (辖域, 量词的作用范围或约束范围)

In a formula $\forall x \ \alpha$ or $\exists x \ \alpha$, x is the quantified variable and its scope is the formula α

The formula α is the scope of the quantifier $\forall x \ (\exists x)$, if $\forall x \ (\exists x)$ is adjacent to α , or, α immediately follows $\forall x \ (\exists x)$, and any *proper segment* ($\equiv \mathcal{E}$) of α is not a formula.

Scope

2 The Scope of Variables, Free and Bound Variables

Identify the scope of each quantifier in the following formulas.

• $\forall x P(x) \land Q(x)$

- "改括首的地方"
- $\forall x (P(x) \wedge Q(x))$
- $\exists y (P(y) \land \forall x (\underline{P(x)} \to Q(x,y)))$
- $\exists y (P(y) \land \forall x Q(x)) \land R(y)$

Free and Bound Variables

2 The Scope of Variables, Free and Bound Variables

Definition

- Free variables (自由变元): an occurrence of a variable x in a formula is *free* iff x is not within the scope of a quantified variable x.
- Bound variables (约束变元): otherwise, the occurrence of this variable is *bound*, i.e., the occurrence of this variable lies in the scope of some quantifier of the same variable.

Note that the variable symbol immediately after \exists or \forall is neither free nor bound.

Examples

2 The Scope of Variables, Free and Bound Variables

In the following formulas, which occurrences are free/bound variables?

- P(x, y)
- $\exists y P(x, y)$
- $\forall x \exists y P(x, y)$
- $\forall x P(x) \wedge Q(x)$
- $\forall x((P(\underline{x}) \to Q(\underline{x})) \land S(\underline{x},\underline{y}))$
- $\forall x (P(x, y) \to Q(x, y)) \to R(x, y)$

Free and Bound Variables

2 The Scope of Variables, Free and Bound Variables

We can also use parse trees to understand free and bound variables.

Definition

Let ϕ be a formula in FOL. An occurrence of x in ϕ is free in ϕ if it is a leaf node in the parse tree of ϕ such that there is no path upwards from that node x to a node $\forall x$ or $\exists x$. Otherwise, that occurrence of x is called bound.

In terms of parse trees, the scope of a quantifier is just its subtree, minus any subtree which re-introduce a quantifier for x.

Free and Bound Variables

2 The Scope of Variables, Free and Bound Variables

It is quite possible, and common, that a variable is bound and free in a formula. However, **individual occurrences** of variables are either free or bound, never both at the same time. The parse tree for $\forall x (P(x) \land Q(x)) \rightarrow (\neg P(x) \lor Q(y))$.

Similar concepts in programming languages

2 The Scope of Variables, Free and Bound Variables

The concept of the scope of variables in formulas of first-order logic is similar to the concept of the scope of variables in block-structured programming languages.

```
class MvClass {
  int x;
  Void p() {
    int x:
    x = 1:
    // Print the value of x
  void a() {
    // Print the value of x
  ... void main(...) {
  x = 5;
  p;
  α:
```


Sentence

2 The Scope of Variables. Free and Bound Variables

Definition

A formula with no free variables is called a closed formula (闭公式), or a sentence.

Examples:

- $\exists x \forall y P(x,y) \lor \forall x \exists y Q(x,y)$ is a sentence of FOL.
- $\exists x P(x, y) \lor \forall x Q(x, y)$ is a formula but not a sentence (y is free)
- $\forall y \exists x f(x) = y$) is a sentence but neither of its subformulas f(x) = y and $\exists x f(x) = y$ is a sentence

Sentence

2 The Scope of Variables, Free and Bound Variables

The presence of free variables distinguishes formulas from sentences.

It does not make sense to ask whether the formula y = x + 1 is true or not. But we can ask whether $\forall y \exists x (y = x + 1)$ or $c_1 = c_2 + 1$ is true or not.

Closure

2 The Scope of Variables, Free and Bound Variables

Definition: 封闭式

If $\{x_1,...,x_n\}$ are all the free variables of a formula α , then:

• Universal closure: $\forall x_1... \forall x_n \ \alpha$

• Existential closure: $\exists x_1...\exists x_n \ \alpha$

Example: for the formula P(x, y)

• Universal closure: $\forall x \forall y P(x, y)$

• Existential closure: $\exists x \exists y P(x, y)$.

Table of Contents

3 Interpretation

- ▶ Warm up
- The Scope of Variables, Free and Bound Variables
- ► Interpretation
- Environment
- ▶ Truth values of FOL terms and formulas

3 Interpretation

Consider the following formula of FOL. What's its semantics? Is it true or false?

$$\exists x P(x) \land Q(f(a), a)$$

3 Interpretation

Consider the following formula of FOL. What's its semantics? Is it true or false?

$$\exists x P(x) \land Q(f(a), a)$$

 α is true if we have the following interpretations:

- Domain D: the set of human beings
- a: Meng Zi (孟子)
- P(x): x loves to play
- Q(x, y): x educates y
- f(x): the mother of x

3 Interpretation

Consider the following formula of FOL. What's its semantics? Is it true or false?

 α is false if $y \in A$ have the following interpretations:

- Domain D: the set of natural numbers
- a: 0
- P(x): x > 0
- Q(x, y): $x \leq y$
- f(x): x + 1

Meanings of formulas

3 Interpretation

To assign meanings of formulas of FOL, we need:

- A domain *D*
- An <u>interpretation of non-logical symbols</u> mapping constants, predicates, and function symbols to specific individuals, properties or relations and functions in the domain *D*.
- An interpretation of logical symbols:
 - Logical connectives, punctuations (same as PL)
 - Quantifiers, variable symbols

After interpretation, terms in FOL represent individuals(个体) in the domain, while formulas represent propositions with fixed truth values

An interpretation \mathcal{I} (or structure) consists of:

- A non-empty set D, called the domain (or universe) of \mathcal{I} .
- For each constant symbol c, a member $c^{\mathcal{I}}$ of D.
- For each function symbol $f^{(i)}$, an i-ary function $f^{\mathcal{I}}$.
- For each predicate symbol $P^{(i)}$, an *i*-ary predicate (relation) $P^{\mathcal{I}}$.

The value of a term is always a member of the domain of \mathcal{I} .

Consider the term:

If we have an interpretation $\mathcal I$ with domain $\mathbb N$, while symbols a,b, and c are interpreted as 4,5, and 6 respectively. The binary function symbol f and unary function symbol g are interpreted as "addition" and "square" respectively. Then the term is interpreted as:

$$4^2 + (5+6)$$

which evaluates to 27, a member of \mathbb{N} .

Examples

3 Interpretation

Formulas get values in much the same fashion as terms, except that the values of formulas lie in $\{0,1\}$.

Consider the formula:

$$f(g(a),g(c))=g(b)$$

If we have an interpretation $\mathcal I$ with domain $\mathbb N$, while symbols a,b, and c are interpreted as 4,5, and 6 respectively. The binary function symbol f and unary function symbol g are interpreted as "addition" and "square" respectively. Then the formula is interpreted as:

$$4^2 + 6^2 = 5^2$$

which is a false proposition.

Let $f^{(1)}$ and $h^{(2)}$ be function symbols, $P^{(1)}$ and $Q^{(2)}$ be predicate symbols, a,b,c be constant symbols.

Define an interpretation \mathcal{I} by

- Domain: $D = \{1, 2, 3\}$
- Constant: $a^{\mathcal{I}} = 1$, $b^{\mathcal{I}} = 2$, $c^{\mathcal{I}} = 3$

- Functions: $f^{\mathcal{I}}(1) = 2$, $f^{\mathcal{I}}(2) = 3$, $f^{\mathcal{I}}(3) = 1$, $h^{\mathcal{I}} : (x, y) \mapsto min\{x, y\}$
- Predicates: $P^{\mathcal{I}}=\{1,3\}, Q^{\mathcal{I}}=\{\langle 1,2\rangle,\langle 3,3\rangle,\langle 3,61\rangle\}$

担 Symbol 扶成 interpretation

(continued from previous slide)

What is the meaning of each of these formulas in this interpretation?

$$f(h(f(a),f(c)))^{\mathcal{I}}$$
 $f(a)$ = 2

 $f(h(b),f(a))^{\mathcal{I}}$ $f(a)$ = 2

 $f(h(b),f(a))^{\mathcal{I}}$ $f(a)$ = 2

 $f(h(b),f(a))^{\mathcal{I}}$ $f(a)$ = 2

 $f(h(b),f(a))^{\mathcal{I}}$ $f(a)$ = 2

 $f(a)$ = 3

 $f(a)$ = 3

Table of Contents

4 Environment

- ▶ Warm u_l
- The Scope of Variables, Free and Bound Variables
- Interpretation
- **▶** Environment
- ▶ Truth values of FOL terms and formulas

4 Environment

Let α_1 be P(c) (where c is a constant), α_2 be P(x) (where x is a variable).

Let $\mathcal I$ be the interpretation with domain $\mathbb N$, $\mathbf c^{\mathcal I}=2$, $P^{\mathcal I}$ be "is even". Then $\alpha_1^{\mathcal I}=1$, but $\alpha_2^{\mathcal I}$ is undefined.

To give α_2 a value, we must also specify an environment E.

For example, if E(x) = 2, then $\alpha_2^{(\mathcal{I}, E)} = 1$

悠炙环境

An environment is a function (or, a look-up table) that assigns a value in the domain to every variable symbol in the language.

This concept is similar to the truth valuation (e.g., $\alpha^{v} = 1$) in propositional logic.

The combination of an interpretation and an environment supplies a value for every term, atomic formula, and formula.

Table of Contents

5 Truth values of FOL terms and formulas

- ▶ Warm up
- The Scope of Variables, Free and Bound Variables
- Interpretation
- Environment
- ► Truth values of FOL terms and formulas

The value of terms

5 Truth values of FOL terms and formulas

Definition: Fix an interpretation \mathcal{I} and an environment E. For each term t, the value of t under \mathcal{I} and E, denoted $t^{(\mathcal{I},E)}$, is defined as follows:

- If t is a constant c, the value $t^{(\mathcal{I},E)}$ is $c^{\mathcal{I}} \rightarrow \emptyset$
- If t is a variable x, the value $t^{(\mathcal{I},E)}$ is x^E .
- If t is $f(t_1,...,t_n)$, the value $t^{(\mathcal{I},E)}$ is $f^{\mathcal{I}}(t_1^{(\mathcal{I},E)},...,t_n^{(\mathcal{I},E)})$.

Example

5 Truth values of FOL terms and formulas

Suppose a language has constant symbol 0, a unary function s and a binary function +. An example of interpretations and environments:

- \mathcal{I} : $D = \mathbb{N}$, $0^{\mathcal{I}} = 0$, $s^{\mathcal{I}}$ is the successor function and $+^{\mathcal{I}}$ is the addition operation.
- E: E(x) = 3

Then, the following terms get values:

- $s((s(0) + s(x)))^{(\mathcal{I},E)} = 6$
- $s((x + s((x + s(0)))))^{(\mathcal{I},E)} = 9$

The value of atomic formulas

5 Truth values of FOL terms and formulas

Once we fix the truth value of terms, the truth value of every atomic formula can be determined.

Definition: Fix an interpretation \mathcal{I} and an environment E. The truth value of an atomic formula in the form $P(t_1,...,t_n)$ (where P is an n-ary predicate symbol), denoted $P(t_1,...,t_n)^{(\mathcal{I},E)}$, is $P^{\mathcal{I}}(t_1^{(\mathcal{I},E)},...,t_n^{(\mathcal{I},E)})$.

The value of atomic formulas

5 Truth values of FOL terms and formulas

Example

Let $\mathsf{dom}(\mathcal{I}) = \{a,b\}$, $P^\mathcal{I} = \{\langle a,a \rangle, \langle a,b \rangle, \langle b,b \rangle\}$, E(x) = a and E(y) = b.

Determine the value/semantics/meanings of the following formulas.

- $P(x,x)^{(\mathcal{I},E)}=1$, since $\langle E(x),E(x)\rangle=\langle a,a\rangle\in P^{\mathcal{I}}$.
- $P(y,x)^{(\mathcal{I},E)}=0$, since $\langle E(y),E(x)\rangle=\langle b,a\rangle\not\in P^{\mathcal{I}}$.

5 Truth values of FOL terms and formulas

Definition

Fix an interpretation $\mathcal I$ and an environment E. The truth value of a well-formed formula φ can be defined recursively as follows:

(i)
$$P(t_1, ..., t_n)^{(\mathcal{I}, E)} = \begin{cases} 1 & \text{if } \mathsf{P}^{\mathcal{I}}(t_1^{(\mathcal{I}, E)}, ..., t_n^{(\mathcal{I}, E)}) = 1 \\ 0 & \text{else} \end{cases}$$
 $(t_1 = t_2)^{(\mathcal{I}, E)} = \begin{cases} 1 & \text{if } \mathsf{t}_1^{(\mathcal{I}, E)} = t_2^{(\mathcal{I}, E)} \\ 0 & \text{else} \end{cases}$

(ii)
$$(\neg \alpha)^{(\mathcal{I}, E)} = \begin{cases} 1 & \text{if } \alpha^{(\mathcal{I}, E)} = 0 \\ 0 & \text{else} \end{cases}$$

5 Truth values of FOL terms and formulas

Definition (continued)

(iii)
$$(\alpha \wedge \beta)^{(\mathcal{I},E)} = \begin{cases} 1 & \text{if } \alpha^{(\mathcal{I},E)} = \beta^{(\mathcal{I},E)} = 1\\ 0 & \text{else} \end{cases}$$

(iv)
$$(\alpha \vee \beta)^{(\mathcal{I}, \mathcal{E})} = \begin{cases} 1 & \text{if } \alpha^{(\mathcal{I}, \mathcal{E})} = 1 \text{ or } \beta^{(\mathcal{I}, \mathcal{E})} = 1 \\ 0 & \text{else} \end{cases}$$

(v)
$$(\alpha \to \beta)^{(\mathcal{I}, E)} = \begin{cases} 1 & \text{if } \alpha^{(\mathcal{I}, E)} = 0 \text{ or } \beta^{(\mathcal{I}, E)} = 1 \\ 0 & \text{else} \end{cases}$$

(vi)
$$(\alpha \leftrightarrow \beta)^{(\mathcal{I}, E)} = \begin{cases} 1 & \text{if } \alpha^{(\mathcal{I}, E)} = \beta^{(\mathcal{I}, E)} \\ 0 & \text{else} \end{cases}$$

5 Truth values of FOL terms and formulas

Definition (continued)

(vii)
$$(\forall \mathbf{x} \ \alpha)^{(\mathcal{I},E)} = \begin{cases} 1 & \text{if } \\ 0 & \text{else} \end{cases}$$

(vii)
$$(\forall \mathbf{x} \ \alpha)^{(\mathcal{I},E)} = \begin{cases} 1 & ?? \\ 0 & \text{else} \end{cases}$$
(viii) $(\exists \mathbf{x} \ \alpha)^{(\mathcal{I},E)} = \begin{cases} 1 & ?? \\ 0 & \text{else} \end{cases}$

5 Truth values of FOL terms and formulas

How can we evaluate a formula of the form $(\forall x \ \alpha)$ or $(\exists x \ \alpha)$?

- For $(\forall x \ \alpha)$, we need to verify that α is true for every possible value of x in the domain.
- For $(\exists x \ \alpha)$, we need to verify that α is true for at least one possible value of x in the domain.

We formalize this on the next few slides.

Definition

5 Truth values of FOL terms and formulas

Definition: For any environment E and domain element d, the new environment "E with X re-assigned to d", denoted $E[x \mapsto d]$, is given by:

$$E[x \mapsto d](y) = \begin{cases} d & \text{if } y \text{ is } x \\ E(y) & \text{if } y \text{ is not } x \end{cases}$$

5 Truth values of FOL terms and formulas

Let $\mathcal{D} = \{1, 2, 3\}$ for some interpretation \mathcal{I} and consider E as defined by

$$E(x) = 3$$
 $E(y) = 3$ $E(z) = 1$

$$E(y) = 3$$

$$E(z) = 1$$

Then

$$E[x\mapsto 2](x)=2 \qquad E[x\mapsto 2](y)=3 \qquad E[x\mapsto 2](z)=1$$
 What about the following?

$$E[x \mapsto 2][y \mapsto 2](x)$$

$$E[x \mapsto 2][y \mapsto 2](x) \qquad E[x \mapsto 2][y \mapsto 2](y)$$

$$E[x \mapsto 2][y \mapsto 2](z)$$

The value of well-formed formulas

5 Truth values of FOL terms and formulas

Definition (continued)

The values of $(\forall x \ \alpha)$ and $(\exists x \ \alpha)$ are given by:

$$(\mathcal{T}, \mathcal{E}) = \begin{cases} 1 & \text{if } \alpha^{(\mathcal{I}, \mathcal{E}[\mathbf{x} \mapsto d])} = 1 \text{ for every } d \text{ in the domain of } \mathcal{I} \\ 0 & \text{otherwise} \end{cases}$$

$$(\exists) \ \alpha)^{(\mathcal{I}, \mathsf{E})} = \begin{cases} 1 & \text{if } \alpha^{(\mathcal{I}, \mathsf{E}[\mathsf{x} \mapsto d])} = 1 \text{ for some } d \text{ in the domain of } \mathcal{I} \\ 0 & \text{otherwise} \end{cases}$$

对九赋值

5 Truth values of FOL terms and formulas

Example 1

Let
$$\mathsf{dom}(\mathcal{I}) = \{a,b\}$$
, $P^\mathcal{I} = \{\langle a,a\rangle, \langle a,b\rangle, \langle b,b\rangle\}$, $E(x) = a$ and $E(y) = b$.

Determine the value/semantics/meanings of the following formulas.

$$\text{Hi} \stackrel{(\exists y P(y, x))^{(\mathcal{I}, E)}}{\text{Here }}$$

Because $\langle E[y\mapsto a](y), E[y\mapsto a](x)=a\rangle=\langle a,a\rangle\in P^{\mathcal{I}}$, which means that $P(y,x)^{(\mathcal{I},E[y\mapsto a])}=1$. Hence, by definition, the above formula is true.

5 Truth values of FOL terms and formulas

Example 1

Let dom(\mathcal{I}) = {a,b}, $P^{\mathcal{I}}$ = { $\langle a,a \rangle, \langle a,b \rangle, \langle b,b \rangle$ }, E(x) = a and E(y) = b.

Determine the value/semantics/meanings of the following formulas.

$$(\forall x(\forall y P(x,y)))^{(\mathcal{I},E)}$$

Since $\langle b,a\rangle \not\in P^{\mathcal{I}}$, so we have $P(x,y)^{(\mathcal{I},E[x\mapsto b][y\mapsto a])}=0$. Hence, by definition, the above formula is false.

5 Truth values of FOL terms and formulas

Example 1

Let dom(
$$\mathcal{I}$$
) = { a,b }, $P^{\mathcal{I}}$ = { $\langle a,a \rangle, \langle a,b \rangle, \langle b,b \rangle$ }, $E(x) = a$ and $E(y) = b$.

Determine the value/semantics/meanings of the following formulas.

$$(\forall x(\exists y P(x,y)))^{(\mathcal{I},E)}$$

5 Truth values of FOL terms and formulas

Example 2

For a language $\mathcal{L} = \{i, F, R\}$, let i be a constant, F be a unary predicate, while R be a binary predicate. Define an interpretation \mathcal{L} :

- Domain $A = \{a, b, c\}$, a set of states of a computer program.
- $i^{\mathcal{I}} = a$: initial states
- $F^{\mathcal{I}} = \{b, c\}$: Final accepting states
- $R^{\mathcal{I}} = \{(a,a), (a,b), (a,c), (b,c), (c,c)\}$: State transition relation

5 Truth values of FOL terms and formulas

Example 2

For a language $\mathcal{L} = \{i, F, R\}$, let i be a constant, F be a unary predicate, while R be a binary predicate. Define an interpretation \mathcal{L} :

- Domain $A = \{a, b, c\}$, a set of states of a computer program.
- $i^{\mathcal{I}} = a$: initial states
- $F^{\mathcal{I}} = \{b, c\}$: Final accepting states
- $R^{\mathcal{I}} = \{(a,a),(a,b),(a,c),(b,c),(c,c)\}$: State transition relation

Meaning of the formula?

 $\neg F(i)$

5 Truth values of FOL terms and formulas

Example 2

For a language $\mathcal{L} = \{i, F, R\}$, let i be a constant, F be a unary predicate, while R be a binary predicate. Define an interpretation \mathcal{L} :

- Domain $A = \{a, b, c\}$, a set of states of a computer program.
- $i^{\mathcal{I}} = a$: initial states
- $F^{\mathcal{I}} = \{b, c\}$: Final accepting states
- $R^{\mathcal{I}} = \{(a,a),(a,b),(a,c),(b,c),(c,c)\}$: State transition relation

Meaning of the formula?

$$\exists y R(i, y)$$

5 Truth values of FOL terms and formulas

Example 2

For a language $\mathcal{L} = \{i, F, R\}$, let i be a constant, F be a unary predicate, while R be a binary predicate. Define an interpretation \mathcal{L} :

- Domain $A = \{a, b, c\}$, a set of states of a computer program.
- $i^{\mathcal{I}} = a$: initial states
- $F^{\mathcal{I}} = \{b,c\}$: Final accepting states
- $R^{\mathcal{I}} = \{(a,a),(a,b),(a,c),(b,c),(c,c)\}$: State transition relation

Meaning of the formula?

$$\forall x \exists y R(x, y)$$

5 Truth values of FOL terms and formulas

Example 2

For a language $\mathcal{L} = \{i, F, R\}$, let i be a constant, F be a unary predicate, while R be a binary predicate. Define an interpretation \mathcal{L} :

- Domain $A = \{a, b, c\}$, a set of states of a computer program.
- $i^{\mathcal{I}} = a$: initial states
- $F^{\mathcal{I}} = \{b, c\}$: Final accepting states
- $R^{\mathcal{I}} = \{(a,a),(a,b),(a,c),(b,c),(c,c)\}$: State transition relation

Meaning of the formula?

$$\forall x \forall y \forall z (R(x,y) \land R(x,z) \rightarrow y = z)$$

• TextB: Section 2.4.1

Introduction to Mathematical Logic

Thank you for listening!
Any questions?