



# Multi-Aircraft Operations in the National Airspace

## Enabling scalable operations for Advanced Air Mobility (AAM)

### Challenge

Traditional aviation operations, as well as a pilot shortage, limit the scalability of emerging markets, such as Advanced Air Mobility (AAM).

Upcoming  
m:N WG  
Meeting in  
May @  
AUVSI  
Xponential

Find out  
more



### Expected Impacts

- Enabling the ability to dramatically increase air traffic in the National Airspace will result in:
  - A profitable, economically viable AAM market
  - Cost savings and convenience, making AAM more accessible to the general public
  - A more effective means of deploying aircraft for public good missions, such as wildfire fighting and providing needed goods and services to underserved areas
  - Spin-off technologies and applications for autonomous systems that apply to other aviation markets and non-aviation domains

### Solution

- Enable a system with significantly more vehicles than humans through m:N operations, where a small number of humans, m, operates or supervises many highly autonomous aircraft, N
- Perform research to address barriers to m:N operations, such as:
  - Developing technologies for increasingly autonomous aircraft
  - Capabilities and principles that facilitate humans and machines working and thinking better together
- Lead an m:N Working Group with members from NASA, industry, academia, and regulatory organizations with a goal of coalescing around a common operating model and roadmap to operational approval

### Results

- Delivery of an m:N operational approval roadmap that enables the AAM community to move forward more quickly on achieving operational approval through relevant research, demos, and data, standardized operational schemes, and coordinated advocacy efforts
- Release of publicly available tools and data from NASA research activities to accelerate the maturation of AAM

### Next Steps

Keep up with our progress, use our data and tools, and participate in our working group here: <https://www.nari.nasa.gov/ttt-ram>



### Partners and/or Participants

- Zipline, research on m:N ops for small UAS
- Wisk, research on m:N ops for urban passenger air taxis
- Old Dominion University, beta testing our new Human Autonomy Teaming (HAT) tools
- Georgia Tech, developing next generation controls laws for autonomous aircraft
- Sandia National Labs, researching AAM-relevant COTS sensor performance in fog