Iterative Refinement Unit Tests

Many test values are taken from project Algorithms for Bioninformatics of Alexander Mattheis or the lectures.

Test 1 (used **Feng-Doolittle** implementation and **Sum-of-Pairs** implementation)

Input

Sequence a: **ACGT** Sequence b: ΑТ Sequence c: GCT Sequence d: GC

-1 Gap opening: Enlargement: -3

1 (and 0 for placeholder #) Match:

Mismatch:

Output (Computation: Global Primary Library)

Feng-Doolittle Output

Alignment:

ΑC	CGT
A_	T
G	СТ
G_	_C_

Distance-Table	Dista	nce-1	Гab	le:
----------------	-------	-------	-----	-----

D	а	b	С	d
a	0	1.8	1.7	2.9
b	1.8	0	2.2	7.6
С	1.7	2.2	0	1.5
d	2.9	7.6	1.5	0

Tree:

Round-Robin – Minimum Distance Pair Output

Post-Order-Traversal: badc (left-right-root, where as in code reversed)

sequence (Hint: is cleaned from gaps)

b:
$$\underset{x}{\operatorname{argmin}}(D_{b,x}) = a \text{ with } D_{b,a} = 1.8$$

b~a: AT~ACGT

ACGT

Nothing changes!

 $\underset{x}{\operatorname{argmin}}(D_{a,x}) = c \text{ with } D_{a,c} = 1.7$ a:

a~c: ACGT~GCT

ACGT |* * GC_T remaining alignment

ACGT G_CT G_C_

GCT

(gap-only columns removed)

after realignment:

Score: -26

Hint: This alignment is kept.

d:
$$\underset{x}{\operatorname{argmin}}(D_{d,x}) = c \text{ with } D_{d,c} = 1.5$$
 ACGT A_T

d~c: GC~GC#T

GC_T

GC___

GC#T

Nothing changes!

Feng-Doolittle Alignment: Refined Realignment:

 ACGT
 ACGT

 A__T
 A__T

 G_CT
 GC_T

 G_C_
 GC__

Round-Robin – One-Vs-All Output

(analogous - but it is searched for the best and not the nearest alignment)

The other used procedures are already have been already tested during T-Coffee and Feng-Doolittle.