CLASE DE PREPARADURIA

29 de junio de 2010

CENTRO DE GRAVEDAD DE IMÁGENES ESCANEADAS

Una imagen escaneada es una matriz **Img[m,n]** de elementos enteros. Cada elemento almacena un valor comprendido entre 0 y 255 que representa el nivel de gris de cada punto de la imagen (0 representa una región totalmente negra y 255 una región totalmente blanca). La matriz tiene un máximo de 25 filas y 25 columnas.

Por ejemplo: La siguiente matriz es el resultado de escanear el carácter en minúscula 'O'

lmg							
77	64	77	64	51			
115	179	204	230	77			
51	230	255	255	51			
77	255	255	255	51			
51	26	204	64	26			
5×5							

Se requiere obtener la lista de niveles de gris presentes en la imagen, organizados de mayor a menor y la posición donde se encuentra cada nivel de gris por primera vez recorriendo la imagen por columnas. Por ejemplo el 255 se encuentra por primera vez en la fila 4 columna 2.

Ejemplo de la ejecución del programa:

Entrada: Img.dat 55 64 51 77 64 77 230 179 204 115 77 255 255 51 230 51 77 255 255 255 51 51 26 204 64 26

Salida en pantalla:

77	64	77	64	51
115	179	204	230	77
51	230	255	255	51
77	255	255	255	51
51	26	204	64	26

f	С	Mayor
4	2	255
3	2	230
2	3	204
2	2	179
2	1	115
1	1	77
1	2	64
3	1	51
5	2	26

PROBLEMA

Desarrolle un programa que lea desde un archivo **Img.dat** una matriz **Img[m,n]** y obtenga en un vector **V**, de elementos de tipo **imgEsca** el conjunto de niveles de gris almacenados en **Img** organizados de mayor a menor. El programa debe escribir por pantalla la matriz **Img** leída y luego el **vector** obtenido en forma vertical.

Para obtener el vector organizado sigue los siguientes pasos:

- a. Obtener el mayor valor de la matriz y la posición donde se encuentra el mayor valor la primera vez, recorriendo la matriz por columnas.
- b. Agregarlo al vector.
- c. Colocar en -1 todos los elementos de la matriz iguales al mayor valor encontrado en el paso a.
- d. Repetir los pasos a, b y c hasta que todos los elementos de la matriz sean iguales a -1.

REQUERIMIENTOS

Debe desarrollar los subprogramas que considere necesarios. El programa principal debe ser fundamentalmente llamado a los subprogramas.