# CSCE 438/838: Internet of Things





- Error-free
- In-sequence
- Duplicate-free
- Loss-free

#### Wireless Errors

- Causes: Fading, interference, loss of bit synchronization
  - Results in bit errors, sometimes bursty
  - For low power wireless communication → sometimes quite high average bit error rates (BERs)

(10<sup>-2</sup> ... 10<sup>-4</sup> possible!)

#### Error Control Approaches

- Automatic Repeat reQuest (ARQ)
- Forward Error Correction (FEC)
- Hybrid ARQ (Type I and II)





- Basic procedure
- Put header information before the payload
- Compute a checksum and add it to the end of the packet
  - Typically: Cyclic redundancy check (CRC),
    - → quick, low overhead, low residual error rate
- Provide feedback from receiver to sender
  - Send positive or negative acknowledgement (ACK/NACK)



- Sender uses timer to detect that ACKs have not arrived
  - Assumes packet has not arrived
  - Optimal timer setting?
- If sender infers that a packet has not been received correctly, sender can retransmit it
  - What is the maximum number of retransmission attempts?

### Standard ARQ protocols

- Alternating bit at most one packet outstanding, single bit sequence number
- Go-back-N send up to N packets, if a packet has not been ACKed when timer goes off, retransmit all packets after the first unacknowledged packet
- Selective Repeat when timer goes off, only send the unacknowledged packet(s)



#### **Confirmed Packets**

+ACK means ACK bit set



- Uplink
- NS successfully receives Data0
- NS sets ACK bit in its packet and sends during RX1
- Downlik packet is lost
- End-user waits for RETRANSMIT\_TIMEOU
   T sec and retransmits
- NS ACKs



### When to Retransmit?

- Assuming sender has decided to retransmit a packet when to do so?
  - For a good channel, any time is as good as any
  - For fading channels, try to avoid bad channel states postpone transmissions
  - Instead (e.g.): send a packet to another node if in queue (exploit multi-user diversity)
- REMARK: If the previous packet was corrupted then the channel was bad



## Forward Error Control (FEC)

- Idea: Endow symbols in a packet with additional redundancy to withstand a limited amount of random permutations
- Additionally: interleaving change order of symbols to withstand burst errors



CSCE 438/838: Internet of Things/



#### Forward Error Control





### Popular Block Code FECs

- Reed-Solomon Codes (RS)
- Bose-Chaudhuri-Hocquenghem Codes (BCH)

# Energy Consumption of Block Codes

- Encoding: Negligible overhead (linear-feedback shift register)
- Decoding: Depends on block length (n) and Hamming distance (t)

$$E_{dec} = (2nt + 2t^2)(E_{add}) + (E_{mult})$$

Eng. Consumption for addition

Eng. Consumption for multiplication

CSCE 438/838: Internet of Things



### Convolutional Codes

- Code rate: ratio of k user bits mapped onto n coded bits
- Constraint length k determines coding gain
- Energy consumption
  - Encoding: cheap
  - Decoding: Viterbi algorithm, energy & memory depends exponentially (!) on constraint length





Error control, ARQ, FEC







# Hybrid ARQ (HARQ)

#### ARQ

- Efficient when channel is good No redundant bits are sent
- Inefficient when channel is bad whole packet is sent again

#### FEC

- Inefficient when channel is good Redundant bits sent anyway
- Efficient when channel is bad No retransmissions

#### Hybrid ARQ

- Marry ARQ and FEC
- Get advantages from both techniques



- Send uncoded or lightly coded packet first
- If in error, retransmit with a stronger code
- Two types based on retransmission technique
  - HARQ Type I
  - HARQ Type II

#### Hybrid ARQ Type I (HARQ-I)





#### Hybrid ARQ Type I (HARQ-I)







#### Hybrid ARQ Type II (HARQ-II)







- Type I Does not require previous packet to be stored
- Type II Reduces bandwidth usage

#### Error Control through Transmit Power Control

- Higher transmission power reduces the packet error rate by improving SNR.
- → Energy consumption and interference is increased
- Radio should support different power levels







#### Cross-Layer Comparison: FEC, ARQ, HARQ

M. C. Vuran and I. F. Akyildiz, "Error Control in Wireless Sensor Networks: A Cross Layer Analysis, IEEE Trans. on Networking, vol. 17, no. 4, pp. 1186-1199, April 2009.

- Investigate the tradeoffs between ARQ, FEC, and HARQ in terms of
  - Energy consumption
  - Latency
  - Packet error rate
- Jointly considers
  - Broadcast wireless channel
  - Multi-hop communication
  - Realistic channel model
  - 2-D topology
  - Realistic hardware models (Mica2 and MicaZ)

#### Cross-Layer Effects

- Multi-hop communication affects
  - End-to-end packet error rate
  - Energy consumption
  - Latency
- Broadcast wireless channel
  - Nodes other than communicating parties are affected (overhearing)
- Wireless channel
  - Channel characteristics drastically influence BER performance

Cross-layer analysis of error control is necessary



### Error Resiliency



- Packet Error Rate (PER) is a function of signal to noise ratio (SNR), i.e., channel quality
- ARQ vs. FEC: FEC codes provide the same PER with lower SNR, i.e., lower channel quality
  - For PER\*, SNR<sub>ARQ</sub>>SNR<sub>FEC</sub>
- As error correction capability, t, increases, error resiliency improves



#### Error Resiliency

• How can error resiliency be exploited in multi-hop IoT?





#### Error Resiliency

- How can this be exploited in multi-hop IoT?
  - Hop-length Extension (increase hop length for FEC)
    - $P_{t,FEC} = P_{t,ARQ}, d_{FEC} > d_{ARQ}$





### Error Resiliency

$$P_{t,ARQ}$$
- $P_n$ 

- How can this be exploited in multi-hop IoT?
  - Hop-length Extension
     P<sub>t,ARQ</sub>-P<sub>n</sub>
     (increase hop length for FEC)
    - $P_{t,FEC} = P_{t,ARQ}, d_{FEC} > d_{ARQ}$





### Error Resiliency

$$P_{t,ARQ}\text{-}P_n$$

 $P_{t,FEC}$ - $P_n$ 

- How can this be exploited in multi-hop IoT?
  - Hop-length Extension  $P_{t,ARQ}$ - $P_n$  (increase hop length for FEC)

$$P_{t,FEC} = P_{t,ARQ}, d_{FEC} > d_{ARQ}$$

- Transmit Power Control (decrease transmit power)
  - $P_{t,FEC} < P_{t,ARQ}, d_{FEC} = d_{ARQ}$









- FEC codes improve error resiliency at the cost of
  - Encoding/decoding (energy + latency)
  - Tx/Rx longer packets (energy + latency)

| α      | $\mathbf{l}_{	exttt{DATA}}$ | n-k       |
|--------|-----------------------------|-----------|
| Header | Payload                     | Redundant |
|        |                             | Bits      |

#### Network Model

- Channel-aware routing
  - Next hop j is selected if received SNR,  $\psi_j > \psi_{Th}$  (SNR threshold)
- Contention-based medium access
  - RTS-CTS-DATA(-ACK) exchange
- Duty cycle operation
  - Nodes are active  $\delta$  fraction of the time



#### Cross-layer Analysis

Channel model

$$(P_r(d) = P_t) - (PL(d_0) - 10\eta log \left(\frac{d}{d_0}\right) + (X_\sigma)$$
Received Transmit Power Power Path loss exponent Path loss Exponent Shadow fading



### Cross-layer Analysis

- SNR threshold for a target BER
- Per-hop and end-to-end energy consumption
- End-to-end latency
- Decoding latency and energy
- Hardware-based BER



#### Numerical Evaluations

| D                    | 300 m          | $l_C$              | 8 bytes  |  |
|----------------------|----------------|--------------------|----------|--|
| $P_t$                | 0, -5, -15 dBm | $l_D$              | 38 bytes |  |
| $PL_{d0}$            | 55 dB          | $t_{cycle}$        | 250 ns   |  |
| $P_n$                | -105 dBm       | $I_{proc}$         | 8 mA     |  |
| $\mid \eta \mid$     | 3              | V                  | 3 V      |  |
| $\sigma$             | 3.8            |                    |          |  |
|                      | Mica2          | MicaZ              |          |  |
| $e_{rx}$             | 21 mJ          | 59.1 mJ            |          |  |
| $e_{tx} (P_t=0)$     | 24 mJ          | 52.2 mJ            |          |  |
| $e_{tx} (P_t = -5)$  | 21.3 mJ        | 42 mJ              |          |  |
| $e_{tx} (P_t = -15)$ | 16.2 mJ        | 29.7 mJ            |          |  |
| $t_{bit} = 1/R$      | 62.4 $\mu s$   | $4~\mu \mathrm{s}$ |          |  |
| N                    | N/A            | 16 chips           |          |  |
| K                    | N/A            | 2                  |          |  |

 Energy consumption, latency and PER are found for Mica2 and MicaZ, and ARQ, FEC, and HARQ schemes



### Numerical Evaluations

- FEC Codes
  - BCH (n,k,t) (128,50,13), (128,78,7), (128,106,3)
  - **RS** (n,k,t) (7,3,2), (15,9,3), (31,19,6)
- Hybrid ARQ (I & II) Notation:
  - HARQ-I (t1,t2) means:
    - Hybrid ARQ type I
    - t1: error correction capability for 1st transmission (t1 =  $0 \rightarrow$  uncoded packet)
    - t2: 2nd transmission
    - BCH codes are used for coded transmission



#### Hop Length Extension



Energy Consumption (MicaZ)

- Energy consumption vs. SNR threshold
- Lower SNR threshold leads to longer hop length
- BCH and RS achieve the same PER for lower SNR threshold compared to ARQ
- BCH (t=7) consumes less energy than ARQ
- RS (t=3) consumes more energy than ARQ



#### Hop Length Extension



- Compared to ARQ, BCH and RS achieve lower latency for the same PER
- Lower SNR threshold → longer hops → less number of hops → lower latency

Latency (MicaZ)



#### Hybrid ARQ



HARQ-II outperforms ARQ and FEC schemes

- HARQ-I is less energy efficient whole packet is retransmitted
- For HARQ-II, energy efficiency improves if error correction capability (t) increases
- HARQ-II implementation cost is also lower than HARQ-I

Energy Consumption (MicaZ)



#### Hybrid ARQ



- HARQ-II, BCH, and RS provide lower latency compared to ARQ
- HARQ-I latency is significantly higher
  - Retransmission +Encoding/Decoding overhead
- HARQ-II and RS most suitable for delay sensitive traffic



#### Conclusions

- A cross-layer analysis of ARQ, FEC, and HARQ
- Developed framework enables a generic analysis with various parameters (e.g. BCH, RS, Mica2, MicaZ)
- Careful selection of FEC parameters improve latency without hampering energy consumption (HARQ and RS suitable for multimedia traffic)
- Hardware support for FEC will improve performance

|       | Hop Length Ext. |           | Tx. Power Cont. |         |
|-------|-----------------|-----------|-----------------|---------|
|       | Energy          | Latency   | Energy          | Latency |
| Mica2 | HARQ I&II       | HARQ I&II | BCH             | ARQ     |
|       |                 |           | $(t \ge 1)$     |         |
| MicaZ | HARQ II         | HARQ II   | BCH             | ARQ     |
|       |                 |           | $(t \ge 1)$     |         |





#### Which concept was the most intriguing? (one word)





Total Results: 0





