

Cómo hacer un reporte estadístico con Sweave: \LaTeX $\mathtt{FT}_{\mathsf{FX}}$ y R

How to make statistical reports with Sweave. LATEX y R

Carlos Lesmes^a lesmes@member.ams.org

Resumen

Este documento muestra un ejemplo del uso de Sweave para manejar la entrada y salida de la consola de R en un documento LATEX. Este es un formato útil para hacer tutoriales de R, análisis estadísticos, proyectos con R y reproducir investigaciones.

Palabras clave: ambiente, integrado, tejido, R, código, trozo.

Abstract

This document provides an example of using Sweave to handle input and output in R console in a LATEX document. This is a useful format for R tutorials, statistical analyses, projects with R and reproducing researches.

Key words: environment, integrated tissue, R, code, chunk.

1. Introducción

Este artículo es un ejemplo de un documento creado usando Sweave. Sweave es una herramienta para combinar LATEX y código R en el mismo archivo. Se asume que el lector tiene cierta familiaridad con LATEX, R y RStudio.

Se ha procesado por el sistema Sweave en R, que corre el código R para generar una salida de texto y gráficos, y también crea un documento LATEX. En realidad Sweave es una función de R que permite integrar código R en un documento LATEX con el propósito de crear documentos dinámicos, que se puedan actualizar automáticamente si hay algún cambio en los datos. Para más detalles de Sweave ver Lenth (2012) y Leisch (2002). Lo anterior se puede realizar en el ambiente RStudio. Para esto se debe descargar e instalar RStudio de http://www.rstudio.com y tener previamente instaladas versiones recientes de R(Team 2012) y LATEX. RStudio

^aDocente tiempo completo, Facultad de Estadística, Universidad Santo Tomás.

es un Integrated Development Environment (IDE) : un ambiente integrado para desarrolladores. Este es un ambiente para programar, integrado al programa R, el cual le provee una interfaz gráfica, un editor de texto o código, un interpretador y un depurador. Este ambiente está desarrollado para usar y programar con R, entre otras aplicaciones. Para más información acerca de Rstudio consultar Verzani (2011).

2. RStudio

Los principales componentes de RStudio son cuatro paneles que incluyen la consola interactiva de R, un editor de R que permite administrar los scripts generados, un navegador de variables e historia de trabajo y un cuarto panel con las ayudas y acceso al manejo de paquetes de R, un manejador de gráficas y archivos. El editor de R soporta los comandos de R, archivos de texto, documentos Sweave, documentos .tex y documentación de R.

3. ¿Cómo se hace?

```
\documentclass{minimal}
\usepackage[...]{...}
\title{...}
\author{...}
\begin{document}
\maketitle
...
(segmento latex)
...
<<(opciones...)>>=
(código R)
@...
\end{document}
```

Figura 1: Estructura mínima para un documento Sweave. Fuente: elaboración propia.

Escriba un archivo LATEX con extensión .Rnw en vez de la extensión .tex. El archivo debe tener segmentos de código R alternado por segmentos de LATEX. Deberá tener la forma que se ve en la figura 1. Un trozo de código R se llama *chunk*. Un *chunk* es código R entre los delimitadores <>>= y @ dentro de un documento LATEX.

Simplemente se escoge la opción Sweave Document en la esquina inferior derecha del editor de R y se escribe el documento. El documento quedará con la extensión .Rnw requerida. Por último se obtiene el archivo LATEX y el PDF correspondiente con Compile PDF en la parte superior del editor (vea Figura 2). El archivo LATEX, (con extensión .tex) que se crea no se edita y en realidad solo lo utiliza RStudio para crear el PDF. Los *chunks* admiten diferentes opciones, de acuerdo con las necesidades del autor. A continuación se presentan algunas de ellas.

Figura 2: Opciones del editor de RStudio.

4. Algunos ejemplos de chunks

El chunk a continuación, con nombre uno.

<<uno>>= x <- 2 y <- 3 x+y @

produce

> x<-2 > y<-3 > x+y [1] 5

Si agregamos el chunk dos

<<label=dos>>= x*y @

se obtiene

```
> x*y
[1] 6
```

Los chunks con nombre se pueden reutilizar, como en el siguiente script:

```
<<tres>>=
<<uno>>
<<dos>>
@
```

y se tiene:

```
> x<-2
> y<-3
> x+y
[1] 5
> x*y
[1] 6
```

En el siguiente *chunk* nótese que la única opción es label=cuatro, que es el nombre del chunk. La palabra label puede ser omitida, el nombre debe ir en la primera posición, de lo contrario se produce un error. Un *chunk* puede no tener nombre.

```
<<label=cuatro>>=
datos=rexp(100)
summary(datos)
@
```

La salida correspondiente es:

```
> datos=rexp(100)
> summary(datos)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.03336 0.31170 0.71440 1.03500 1.50700 4.55900
```

El mismo *chunk* con la opción echo=FALSE: *no* muestra los comandos de la consola R, únicamente los resultados. En el *chunk* cuatro el defecto es echo=TRUE.

```
<<cinco, echo=F>>=
datos=rexp(100)
summary(datos)
@
```

con este *chunk* se obtiene:

Comunicaciones en Estadística, junio 2013, Vol. 6, No. 1

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.006007 0.348000 0.820300 1.016000 1.559000 5.352000
```

En el siguiente chunk los resultados de R salen con formato LATEX:

```
<<label=seis, echo=F,results=tex>>= datos=rexp(10) datos @
```

- > datos=rexp(10)
- > datos
- [1] 3.5420565 0.9458364 0.3135035 0.9355242 1.4517435 1.9733489 0.4764576
- [8] 0.2863853 0.8825239 1.9308057

Ahora, un *chunk* con echo=F y results=hide no muestra el código y tampoco los resultados.

```
<<label=siete, echo=F,results=hide>>=
datos=rexp(100)
summary(datos)
@
```

5. Resultados en el texto con Sexpr.

Se pueden insertar resultados de los comandos de R en el texto con el comando \ Sexpr{}. La media de datos se escribe en LATEX:

```
\ Sexpr{mean(datos)}
```

y por lo tanto se puede escribir:

La media de datos es 1.2246 y la varianza 1.6595.

6. Mejorando las opciones de un chunk

Un chunk para ver la salida de R en verbatim:

```
<<label=ocho, echo=T,results=verbatim>>=
                        datos[1:10]
y la salida es:
> datos[1:10]
 [1] 2.2713786 0.4022673 0.8288273 0.3506155 0.2636374 1.6728966 2.6034021
 [8] 1.5087466 0.3309880 0.4270607
Se pueden modificar las opciones de R usando el comando options() dentro del
chunk, en este caso con width y prompt, como en el siguiente chunk:
<<label=nueve, echo=F,results=verbatim>>=
options(width=60,prompt="SwR> ",continue="...")
datos[1:10]
obteniendo:
> options(width=60,prompt="SwR> ",continue="...")
SwR> datos[1:10]
 [1] 2.2713786 0.4022673 0.8288273 0.3506155 0.2636374
 [6] 1.6728966 2.6034021 1.5087466 0.3309880 0.4270607
```

7. Poniendo color

Hay comandos para ponerle color al código y a los resultados en verbatim, no olvide utilizar el paquete fancyvrb:

```
\DefineVerbatimEnvironment{Sinput}{Verbatim}{formatcom=% {\color[rgb]{0.8,0,0}},xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{formatcom=% {\color[rgb]{0,0,0.8}},xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{formatcom=% {\color[rgb]{0,0.8,0}},xleftmargin=2em} \Para el siguiente chunk:
<<label=diez, echo=F,results=verbatim>>= summary(datos)
```

Se tiene:

```
SwR> summary(datos)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01452 0.41630 0.82620 1.22500 1.53300 7.88500
```

8. Código para figuras

También se pueden insertar gráficas de R integradas con caption y label para hacer referencia (vea Figura 3). Note que debe estar la opción fig=TRUE y que se puede determinar el tamaño de la gráfica con width y height. Se pueden personalizar las gráficas con el comando

```
\SweaveOpts{width=6,height=4}
```

en el preámbulo. Las gráficas resultantes son del tamaño de 4 por 6 pulgadas. Las opciones de este comando aplican para todos los *chunks* del documento.

El siguiente código realiza la figura 3.

```
\begin{figure}
<<once, echo=F,fig=T,width=10,height=4>>=
par(mfrow=1,2)
hist(rexp(100),main="Hist 1",ylab="Frecuencia")
hist(rexp(1000),main="Hist 2",ylab="Frecuencia")
@
\caption{Histogramas}
\label{F1}
\end{figure}
```


Figura 3: Histogramas. Fuente: elaboración propia.

Recuerde que todos los *chunks* hacen parte de la misma sesión de R. Un código para hacer un histograma con datos (Figura 3), generado anteriormente, es el siguiente:

```
\begin{figure}
<<doce, echo=F,fig=T>>=
hist(datos,main="Otro",ylab="Frecuencia",col='gray90')
@
\caption{Datos}
\label{F2}
\end{figure}
```

El mismo *chunk* cambiando el tamaño de la figura (vea Figura 5) usando el comando LATEX \setkeys{Gin}{width=0.5\textwidth}.

9. Código para tablas

Un *chunk* para generar una tabla (vea tabla 1). Se utiliza el comando xtable y la opción results=tex.

Más opciones para los *chunks* se pueden obtener solicitando ayuda para el comando RweaveLatex: ??RweaveLatex en la consola de R o también se puede consultar en la página http://yihui.name/knitr/options#chunk_options.

No olvide hacer las citas necesarias:

Comunicaciones en Estadística, junio 2013, Vol. 6, No. 1

Figura 4: Datos. Fuente: elaboración propia.

Figura 5: Datos. Fuente: elaboración propia.

```
<< echo=F,results=tex>>=
library(xtable)
tabla=as.matrix(summary(datos))
xtable(tabla,caption="Resumen",label="F3")
@
```

	X
Min.	0.01
1st Qu.	0.42
Median	0.83
Mean	1.23
3rd Qu.	1.53
Max.	7.88

Tabla 1: Resumen. Fuente: elaboración propia.

```
<< echo=F>>=
citation()
citation(....)
```

10. Discusión

Hay que anotar que esta no es la única forma de hacer documentos con Sweave, pero sí una forma cómoda y rápida. Como parte de la llamada programación literaria, el tejido de programas fuente en los documentos se hace cada vez con más frecuencia. Literate programming o programación literaria se define como la combinación de documentación y código de tal manera que pueda ser entendida por seres humanos, algo así como un ensayo con macros. Para más información consulte la página http://en.wikipedia.org/wiki/Literate_programming y http://www.ntg.nl/maps/24/15.pdf.

Además, al enseñar el uso de R, Sweave hace más eficiente la presentación de documentos para las clases, también se puede guardar los programas de R hechos en clase para luego ser comentados en documentos.

Recibido: 24 de septiembre de 2012 Aceptado: 26 de octubre de 2012

Referencias

Leisch, F. (2002), 'Sweave: Dynamic generation of statistical reports using literate data analysis', *Proceedings in Computational Statistics, Springer*, pp. 575–580.

Comunicaciones en Estadística, junio 2013, Vol. 6, No. 1

- Lenth, R. V. (2012), StatWeave User's Manual, University of Iowa. *http://www.stat.uiowa.edu/rlenth/StatWeave/StatWeave-manual.pdf
- Team, R. C. (2012), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org
- Verzani, J. (2011), Getting Started with RStudio, O'Reilly Media, USA.