

#### **Percentage Comparison:**

**Hypothesis testing & Graphic Methods** 

**Session 8** 

Programación Estadística con Python

Alberto Sanz, Ph.D

asanz@edem.es

#### Goals



- Hypothesis testing over the relatioship of two nominal (categorical) variables.
  - Numeric methods:
    - Cross tabulations (Descriptive, sample level) +
    - Chi2 (Hypothesis testing, at the population level) +
    - Cramer's V (Strength of the association, at the pop. level)
       (To be developed)
  - Graphic methods:
    - Grouped barplots.
    - Mosaic plots. (To be developed)

## Our Dependent Variable



```
#Recoding DV for analysis
res = wbr.cnt.describe()
m = res[1]
sd = res[2]
n = res[0]
### Recode cnt to string
wbr.loc[(wbr['cnt']<(m-sd)),"cnt str"]= "Low rentals"</pre>
wbr.loc[((wbr['cnt']>(m-
sd))&(wbr['cnt']<(m+sd))),"cnt str"]="Average rentals"
wbr.loc[ (wbr['cnt']>(m+sd)), "cnt str"]="High rentals"
### Recode cnt to ordinal
my categories=["Low rentals", "Average rentals", "High
rentals"]
my rentals type =
CategoricalDtype(categories=my categories, ordered=True)
wbr["cnt cat"] = wbr.cnt str.astype(my rentals type)
wbr.info()
#Percentage table & barchart
mytable = pd.crosstab(wbr.cnt cat, columns="count",
normalize='columns')*100
plt.bar(mytable.index, mytable['count'])
```

**Table 1.** Percentage of days with different rentals in Washington D.C.

| Low rentals     | 19,8  |
|-----------------|-------|
| Average rentals | 60,6  |
| High rentals    | 19,56 |
| TOTAL           | 100,0 |
| (n)=731         |       |

Source: Own analyses over Fanaee, Hadi and Gama (2013) data







- Describe the two variables involved in the hypothesis separately. Special atention to be paid at the distribution of the DV\*
- Describe the DV, by the levels in the IV 2. (Cross tabulation of DV by IV)
- Perform the numeric test for inference: Chi<sup>2</sup> test 3.
- **Graphic representation: Combined barplot**
- When posible, combine:
  - Crosstabs + inference test (as footnote)
  - Combined barplot + inference test (as text insert)

<sup>\*</sup> DV stands for Dependent variable. IV stands for Independent Variable

#### Research Question



#### Why some days are rent more bikes?

**Table 1.** Percentage of days with different rentals in Washington D.C.

| Low rentals     | 19,8  |
|-----------------|-------|
| Average rentals | 60,6  |
| High rentals    | 19,56 |
| TOTAL           | 100,0 |
| (n)=731         |       |

Source: Own analyses over Fanaee, Hadi and Gama (2013) data



- □ HO.: Percentage of days with low/average/high rentals is the same in working days vs. not working days.
- □ H1.: Percentage of days with low/average/high rentals differes in working days vs. not working days.



#### 1. Describe the two variables involved in hypothesis

#### **Working days**

#### **Rentals**







#### 1. Special atention to the distribition of Dependent Variable

#### Rentals

**Table 1.** Percentage of days with different rentals in Washington D.C.

|                 | <u> </u> |
|-----------------|----------|
| Low rentals     | 19,8     |
| Average rentals | 60,6     |
| High rentals    | 19,56    |
| TOTAL           | 100,0    |
| (n)=731         |          |

Source: Own analyses over Fanaee, Hadi and Gama (2013) data





# 2. Describe the DV, by the factor levels in the IV (Cross tabulation of DV by IV)

pd.crosstab(wbr.cnt\_cat, wbr.wd\_cat, normalize='columns', margins=True)\*100

|                 | Non working days | Working days | TOTAL     |
|-----------------|------------------|--------------|-----------|
| Low rentals     | 24.67532         | 17.63527     | 19.86301  |
| Average rentals | 57.14286         | 62.32465     | 60.68493  |
| High rentals    | 18.18182         | 20.04008     | 19.45205  |
| Sum             | 100.00000        | 100.00000    | 100.00000 |



2. Describe the DV, by the factor levels in the IV (Cross tabulation of DV by IV)

Use DV as reference Non working days Working days **TOTAL** 17.63527 /19.86301 Low rentals 24.67532 60.68493 62.32465 57.14286 Average rentals 20.04008 \ 19.45205 High rentals 18.18182 100.00000 100.00000 100.00000 Sum



2. Describe the DV, by the factor levels in the IV (Cross tabulation of DV by IV)

|                 | Equal or different? | Use DV as reference  king days TOTAL |
|-----------------|---------------------|--------------------------------------|
| Low rentals     | 24.67532            | 17,63527 / 19,86301                  |
| Average rentals | 57.14286            | 62.32465 60.68493                    |
| High rentals    | 18.1/8182           | 20,04008 19.45205                    |
| Sum             | 100.00000           | 100.00000 100.00000                  |



# 2. Describe the DV, by the factor levels in the IV (Cross tabulation of DV by IV)

Equal or different?

| NC              | on working days wo | rking days | TOTAL     |
|-----------------|--------------------|------------|-----------|
| Low rentals     |                    | 17,63527   | 19.86301  |
| Average rentals | 57.14286           | 62.32465   | 60.68493  |
| High rentals    |                    | 20,04008   |           |
| Sum             | 100.00000          | 100.00000  | 100.00000 |

Answer: In the **sample** of 731 days, yes. In non working days it seems that we rent more bikes. BUT,.... what about in the **population**? Answer: Still don't know.



3. Perform the numeric test for inference: Chi<sup>2</sup> test

|                 | Non working days | Working days | TOTAL     |
|-----------------|------------------|--------------|-----------|
| Low rentals     | 24.67532         | 17.63527     | 19.86301  |
| Average rentals | 57.14286         | 62.32465     | 60.68493  |
| High rentals    | 18.18182         | 20.04008     | 19.45205  |
| Sum             | 100.00000        | 100.00000    | 100.00000 |

```
# We apply the stats.chi2_contingency()
over the original
crosstab containing FREQUENCIES
```

ct= pd.crosstab(wbr.cnt\_cat, wbr.wd\_cat)
stats.chi2\_contingency(ct)

#### Output:

```
(4 9833225686178624,
0.082772343895498146,
```

This is the P. Value

#### **CONCLUSION:**

As P. Val > 0.05, we do NOT REJECT H0.: In other words:

Percentage days with high/mid/low rentals do not significantly differ in Working days and Non working days.



**Table 2.** Rental levels in Washington, by type of day. (In percentage points)

|                 | Non working days | Working days | All days |
|-----------------|------------------|--------------|----------|
| Low rentals     | 24,7             | 17,6         | 19,9     |
| Average rentals | 57,1             | 62,3         | 60,7     |
| High rentals    | 18,2             | 20,0         | 19,5     |
| TOTAL           | 100              | 100          | 100      |
| (n)=731         |                  |              |          |

Chi<sup>2</sup>=4.983, p-value = 0.083. Source: Own analyses over Fanaee, Hadi and Gama (2013) data.

**Conclussion:** As P. Value > 0.05 Do not reject H0.

- HO.: Percentage of days with low/average/high rentals is the same in working days vs. not working days.
- H1.: Percentage of days with low/average/high rentals differes in working days vs. not working days.



#### 4. Graphic representation: Combined barplot

```
#Transpose and plot
my ct2=my ct.transpose()
my ct2.plot(kind="bar", edgecolor = "black", colormap='Blues')
props = dict(boxstyle='round', facecolor='white', lw=0.5)
plt.text(-0.4, 81, 'Chi2: 4983''\n''n: 731' '\n' 'Pval.: 0.083',
                                                                     bbox=props)
plt.xlabel('Working Day')
plt.title('Figure 7. Percentage of Rental level, by Working Day.''\n')
plt.legend(['Low rentals','Average rentals','High rentals'])
plt.ylim(0,100)
plt.xticks(rotation='horizontal')
```

Figure 7. Percentage of Rental level, by Working Day.



Alberto Sanz, Ph.D. asanz@edem.es



#### 4. Graphic representation: Combined barplot

Figure 7. Percentage of Rental level, by Working Day.





#### 4. Graphic representation: Combined barplot (ex. II)

Figure 8. Percentage of Rental level, by Weather situation



Alberto Sanz, Ph.D. asanz@edem.es

# Tricks of the Trade: Color in Python EDE Centro University



#### You may want to explore:

□ The matplotlib Colormaps

https://matplotlib.org/2.0.2/examples/color/colormaps\_reference.html





# Percentage Comparison Summing UPEI

- □ General Remainder:
  - Allways describe/explore your data (numerically + graphically) prior to perform any statistical analysis.
- □ Main Numeric Procedure:
  - Crosstabulation with Column percentages
  - Chi2: test
- □ Main Graphic Procedure:
  - Combined Barplot

# Statistical Programming with Python



Questions?

### Statistical Programming with Python



# Thank you!

Alberto Sanz asanz@edem.es