Let's go cisco live! #CiscoLive

Building transport grade packet-based networks with Routed Optical Networking

Kent Dailey and Brad Riapolov Technical Solutions Architects BRKOPT-2016

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 9, 2023.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKOPT-2016

- Today's Networking Layers
- Complexity of Multiple Control Planes
- Advantages of Routing Control Plane
- Unified Control Plane (incl sub 50ms restoration)
- Customer Outcomes with Summary

Today's Networking Layers

Multilayer Topologies... Fiber Layout

this is the Logical Fiber Topology

Multilayer Topologies... OLS Layout

Multilayer Topologies... Router Adjacencies

Hub-and-Spoke Logical Topology

Complexity of Multiple Control Planes

Multilayer Topologies... All Layers

Logical for all Layers

Use Fiber Topology to ensure route diversity of 1:1 Service

- Hub-and-Spoke topology R1-R10
 - must determine valid paths for all Router Connections
- None of the middle paths are useable due to fiber collapses

- These are static Optical Circuits supporting IP Services
 - constant line rate regardless of needed Capacity
 - no optical restoration or switching
- Fiber, OLS, and Router Diversities (SRLG's) must be determined/ designed between each router

Use Fiber Topology to ensure route diversity of 1:1 Service

Overcome with Optical Restoration 1+1+R

BRKOPT-2016

Overcome with Optical Restoration 1+1+R

- Failover is easy
 - just re-route during fault events
- No coordination with the IP Layer
 - Optical Restoration can restore within minutes

- Optical Reversion is Hard auto or manual reversion options
 - generally, auto just reverts after set time (WTR)
 - preferably would be scheduled event(s) in coordination with the IP Layer
 - · usually, multiple circuits will revert without coordination with each other

Network Protection Schemes

	IP Protection			
None - 1:1	1+1	1+1+R	PSM	ii Trotection
"Easily" done	< 50ms Electrical Switching (OTN)	N-x Optical Paths available for restoration	Fast Optical Switching	IP Protection is as fast as Optical Switching
Diverse Hardware and Paths	Diverse Paths could have diverse HW	No additional Optical Trunk (2)	Minimal Additional Hardware	All Paths are useable
<50% Link Utilization	+1 Optical Trunk/Card/HW	Requires Omni- directional, CDC HW	Loss of Light Switching prone to problems	Less Hardware
No or little IP Layer Interaction	Failback is not coordinated with IP Layer	Failback is not coordinated with IP Layer	Failback is not coordinated with IP Layer	New Skillset within IP
	Only 2-paths for redundancy	Multi-path support if available	Only 2-paths for redundancy	
	Additional Power, real estate, and costs			

BRKOPT-2016

RON Topology... all Layers are the same

Router Layout - Physical = Logical

Advantages of Routing Control Plane

A Single Control Plane?

400ZR/ZR+ QSFP-DD DCO Pluggable Optics

75GHz min. width DWDM: ROADM, FOADM or Terminals

> L3 VPN L2 VPN L1 PLE*

Unified Management and Automation Plane

IP/MPLS Control Plane (Segment Routing, EVPN)

*PLE: Private Line Emulation

400GE Capable Router: Modular, Fixed (from 1RU)

A Single IP/MPLS Control Plane

Why Segment Routing?

01

Optimized Traffic Delivery

- Complete control over forwarding path
- Ingress router "forces the path"
- Transit routers only need to know how to get to a segment, not the full per-path
- Segments are topology or services-based

03

Network Resiliency

- FRR over ANY topology (LFA/RFLA)
- Sub-50msec convergence
- Minimize network congestion

02

Network Simplification

- Reduce of protocols as IGP takes over
- Better network asset utilization
- Minimal Control Plane Pressure
 Migrations do not disrupt data plane

04

SDN – App-Eng Routing

- Can integrate with SDN Controllers for optimal path selection
- Balance between distributed intelligence and centralized optimization

Why EVPN?

Deliver Integrated Services

- Stateless SFC and NFV
- E-LAN, E-LINE, E-TREE, L3, IRB Services
- Multicast

Interoperability

- Fully support IPv4 and IPv6
- Simplify protocols and operations
- Open-Standard and Multi-Vendor

- Seamless Brownfield Integration
- Same principles and operational experience as IP VPNs
- All-Active Redundancy with Fast Convergence

Route Reflector Function

 Fliminate the need to establish. full-mesh PF connections Reduce number of network signaling messages

Fast, Resilient, Flexible Unified Services

Let us consider

Utilization we see...

A case against G.8032 Ethernet Rings

Smaller size - reconvergence suffers as the ring grows

Short L2 rings, star mesh not supported

Cascaded rings – physical disruption to stop unexplained behavior

Some locations on the ring do not have the best path to destination

No multi-failure resiliency

Optical restoration is not faster than IP

No traffic prioritization and engineering

No security for the control plane

No measurable latency advantage (fiber latency = $5 \mu s/km$)

Utilization we would like to see...

IP Compared to L2 Rings

Using ALL available paths (resilience = # of Fiber paths)

Any-to-Any connectivity = Aggregating traffic from any site onto the optical link and/or offloading traffic directly into any other site

Optical Fiber Path = Routing Topology

Easy & flexible integration and placement of new Platforms, like Far Edge compute, cloud native BNG

Built-in Fast-Convergence/Protection mechanisms (IP-FRR/TI-LFA)

L3 Control Plane as Single Control Plane vs. IP/MPLS + Optical GMPLS + WSON/SSON

Network Slicing through Segment Routing - Low Latency path, Disjoint Path, Highest BW path

G.8032 vs IP Compared

	VLAN-Based Solutions	EVPN-SR
Scale	 Large, flat L2 architectures don't scale VLAN tag stacking is not a manageable solution 	 Will scale to thousands of nodes per domain 20-bit labels yield virtually limitless tunnels and services 10's of thousands of LSPs
Operations	Understanding switching path will be very difficult since there is no control-plane state for services or tunnels	 Traffic routing will be deterministic based on dynamic or explicit path selection via control plane Switching paths are easily traced using MPLS OAM toolkit
Automation	Requires EMS or manual configuration and assignment (which will be error-prone and complex to manage)	 EVPN dynamically learns remote endpoints Programmatically define the path for the packet at the source node
Optimization	Traffic engineering with VLAN-based switching is very difficult if not impossible	Native ECMP allows efficient use of network resources – no configuration required
Flexibility	VLAN-based solutions constrained to logical hub-and-spoke or ring architectures	Any arbitrary topology can be supported with same resiliency and scale

BRKOPT-2016

Unified Control Plane Benefits

Interop with Existing MPLS

R LDP

Let's dispense with this (labels and mapping servers)

Multipath - any available path

ECMP/UECMP to use the totality of the network

SRLG (Fate Sharing)

Shared Risk Link Groups (SRLGs) are identified by a number Links with the same SRLG id share a common risk (e.g. same fiber conduit)

On Node6:

```
srlg
 interface Hun0/0/0/0
  10 value 1111
                                                                          1.1.1.4
  20 value 2222
                                                                        SID 16004
 interface Hun0/0/0/1
                                                         SRLG
  10 value 2222
                                                         1111
  20 value 3333
  30 value 4444
                                            SRLG
                                             2222
                                             3333
                                             4444
                                                   Default link metric: 10
```


SRLG (Fate Sharing)

SRTE can compute paths that excludes links that have specific SRLGs

TI-LFA sub 50ms restoration on any topology

Simple to operate and understand
Automatically computed by the IGP
One configuration line only

Prevents transient congestion and suboptimal routing

Leverages the post-convergence path, planned to carry the traffic

Default metric: 10

Service Disjointness


```
segment-routing
traffic-eng
policy POLICY1
color 20 end-point ipv4 1.1.1.3
candidate-paths
preference 100
dynamic
pcep
metric type igp
constraints
```

```
segment-routing
traffic-eng
policy POLICY2
color 20 end-point ipv4 1.1.1.8
candidate-paths
preference 100
dynamic
pcep
metric type igp
constraints
association group 1 type node
```

association group 1 type node

Two dynamic paths between two different pairs of (head-end, end-point) must be disjoint from each other

SR Traffic Engineering

Each SR Policy has a color to indicate a certain treatment (SLA, policy) Each SR Policy triplet (Headend, Color, Endpoint) is unique

Example:

Low-cost="blue", Low-delay="green" steer traffic to 1.1.1.0/24 via Node4 into Low-cost SR Policy (1, blue, 4) steer traffic to 2.2.2.0/24 via Node4 into Low-delay SR Policy (1, green, 4)

Circuit-style Segment Routing

- Pseudowire has a distinct bandwidth requirement assigned
- Pseudowire is mapped to a SR policy
- Headend routing requests a path via PCEP from a central PCE
 - Bandwidth
 - Path constraints
- The path is encoded via a list of adjacency SIDs in the packet header
- The central PCE maintains a real time view of
 - The network topology (BGP-LS)
 - All path/bandwidth requests (PCEP)

Partitioning the network for circuit-style Services

- To allow Circuit Style services, the network is partition
 - CS partition
 - IP partition
- Allocate one MPLS-EXP to the circuitstyle partition
- QoS configuration (MQC) isolates circuit traffic from IP traffic

SR - Service Aware Traffic Steering

- ✓ Mechanism on source router to steer traffic
- ✓ By default traffic uses IGP path
- ✓ Can steer traffic into a SR policy or specific Flex-algos
- ✓ Destination TS : destination only
- ✓ Flow based TS : destination+ QoS criteria

BRKOPT-2016

Demo Time!

Customer Outcomes

Benefits and Challenges

Technical

- Reduce cost to scale to high speeds (10/100GE)
- Reduce transport power requirements
- Manage one network, not two
- Network-wide Automation with OpenConfig

Business

- Technical design
- Organizational
- Commercial

#CiscoLive

Final thoughts

- IP Restoration/Protection has enhanced capabilities
 - These capabilities are inherent to IP nothing new here!
 - No interaction between Optical and IP Protection schemes

- Driving towards simpler Networks
 - Single Topology of Fiber = OLS = Routing Topology
 - Reduced Hardware
 - Easier to automate vs. coordinate across multiple-layers

Fill out your session surveys!

Attendees who fill out a minimum of four session surveys and the overall event survey will get **Cisco Live-branded socks** (while supplies last)!

Attendees will also earn 100 points in the **Cisco Live Challenge** for every survey completed.

These points help you get on the leaderboard and increase your chances of winning daily and grand prizes

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Thank you

Let's go cisco live! #CiscoLive