BITS F464 Machine Learning

Assignment-1 Report

By:

Ayush Kumar Tiwary- 2016A2PS0567H

Mukesh Basira- 2016A7PS0116H

Srijan Soni- 2016A4PS0328H

Vivek Pratap Deo- 2016A7PS0056H

1. Fisher Linear Discriminant Analysis

Data 1:

Scatter Plot

Points Plotted

Normal Plot

Threshold plot

Data 2:

Scatter Plot

Points Plotted

Normal Plot

• Threshold plot

Data 3:

Scatter Plot

Points Plotted

Normal Plot

Threshold plot

2. Perceptron

Perceptron Convergence Theorem

The perceptron convergence theorem basically states that the perceptron learning algorithm converges in finite number of steps, given a linearly separable dataset. More precisely, if for each data point x, $\|\mathbf{x}\| < R$, where R is certain constant number, $\mathbf{y} = (\theta^*)^T \mathbf{x} \mathbf{c}$ where $\mathbf{x} \mathbf{c}$ is the data point that is the closest to the linear separate hyperplane. It should be noted that mathematically $\mathbf{y}/(\|\theta^*\|^2)$ is the distance d of the closest datapoint to the linear separate hyperplane (it could be negative). The number of steps is bounded by $(R^2 \|\theta^*\|^2)/\mathbf{y}^2$ or R^2/d^2 .

First Dataset is linearly separable. The perceptron converges to give 0 misclassified points in 100 epoches at 0.01 learning rate. Second Dataset is not linearly separable. The perceptron converges to give 5 misclassified points in 100 epoches at 0.01 learning rate. The algorithm will not give a perfect discriminant line. Third Dataset is linearly separable. It also converges to give 0 misclassified points in 100 epoches at 0.01 learning rate.

The gifs for the three datasets have been saved in Data folder.

Data 1 discriminant:

Data 2 discriminant:

Data 3 discriminant:

