FINAL PROJECT - SPEED DATING

CS513-A: KNOWLEDGE DISCOVERY & DATA MINING

PROJECT GROUP 7

Atharv Subhekar 20015840

Kunal Mandalya 20012146

Nidhi Sura 20011965

Vismay Rathod 20013002

CONTENTS

- o Problem Statement
- Description of the dataset
- o Approach
- o Step 1: Data cleaning, replacement of missing values
- Step 2: Data analysis & visualization
- Step 3: Data pre-processing (encoding & normalization)
- Step 4: Feature selection methodologies
- o Step 5: Prediction using machine learning models

PROBLEM STATEMENT

- How do people choose partners in speed dating?
- Do specific qualities in partners stand out more than others?
- Are there certain gender or age-based preferences/biases?
- Can we predict a match with a certain degree of confidence?

DESCRIPTION OF THE DATASET

Speed Dating events from 2002-2004; 123 features; 8000+ samples

Demographics	Qualities	Interests	Preferences	Others
o Gender	o Attractiveness	o Sports	o Qualities	o Expected matches
o Age	o Sincerity	o Dining	o Interests	o Happiness with
o Age gap	o Intelligence	o Art	o Same race	speed dating people
o Nationality/Race	o Humor	o Hiking	o Same religion	o Met before the day
o Profession	o Ambition	o Concerts	o Concerts	o Wave

TARGET: 'DECISION'
Why not match?

APPROACH

STEP 1

INITIAL DATA CLEANING, REPLACEMENT OF MISSING VALUES

- Delete column with large number of missing values
- Replace missing values in type 'float' and 'int' columns with median
- Replace missing values in type 'object' columns with most frequent value
- Drop irrelevant column 'has_null'
- Drop repeated columns beginning with 'd_', since they only convert numeric value to range
- Remove 'b' from column values containing it

Heatmap of top 20 columns with the most missing values

STEP 2
DATA ANALYSIS & VISUALIZATION

Demographics

STEP 2 DATA ANALYSIS & VISUALIZATION

Age vs. age difference
Overall

Age vs. age difference
Women

Age vs. age differenceMen

STEP 2 DATA ANALYSIS & VISUALIZATION

Age vs. importance of same race

Age vs. importance of same religion

STEP 2
DATA ANALYSIS & VISUALIZATION

Preferences

STEP 2DATA ANALYSIS & VISUALIZATION

Pair plot of importance of qualities vs. partner's possession of said qualities

STEP 3: DATA PRE-PROCESSING (ENCODING & NORMALIZATION)

Ordinal encoder

Min-max scaler

STEP 4FEATURE SELECTION METHODOLOGIES

- Pearson
- Chi-2
- RFE
- Logistic Regression
- Random Forest

	Feature	Pearson	Chi-2	RFE	Logistics	Random Forest	Total
1	shared_interests_partner	True	True	True	True	True	5
2	guess_prob_liked	True	True	True	True	True	5
3	like	True	True	True	True	True	5
4	expected_num_matches	True	True	True	True	True	5
5	attractive_partner	True	True	True	True	True	5
6	funny_partner	True	True	True	True	True	5
7	ambition_partner	True	True	True	True	False	4
8	sincere_partner	True	True	True	True	False	4
9	attractive_o	True	False	True	True	False	3
10	funny	True	False	True	True	False	3
11	intelligence	True	False	True	True	False	3
12	d_age	True	False	True	True	False	3
13	attractive	True	False	True	True	False	3
14	attractive_important	True	False	False	True	False	2
15	sports	True	False	True	False	False	2

STEP 5: PREDICTION USING MACHINE LEARNING MODELS

Decision Tree

AdaBoost Classifier

Random Forest
With Bagging
With Randomized Search CV

K-nearest neighbor with Grid Search CV

Logistic Regressionwith Grid Search CV

Support Vector Machine with Grid Search CV

Naive Bayes Classifier

Multilayer Perceptron

16 DECISION TREE CLASSIFIER

Accuracy - 74%

ADABOOST CLASSIFIER

Accuracy - 74%

MULTI LAYER PERCEPTRON

Accuracy - 74%

Class	Precision	Recall	F1 Score
0	0.78	0.78	0.78
1	0.68	0.68	0.68

Class	Precision	Recall	F1 Score
0	0.81	0.83	0.82
1	0.76	0.73	0.75

Class	Precision	Recall	F1 Score
0	0.80	0.83	0.81
1	0.77	0.73	0.75

MULTI LAYER PERCEPTRON

Loss Curve

Validation Score

LOGISTIC REGRESSION + GRIDSEARCHCV

GridSearchCV Best Parameters

Feature	Tuned Value
'class_weight'	'balanced'
'fit_intercept'	True
'penalty'	None
'solver'	'lbfgs'

Class	Precision	Recall	F1 Score
0	0.84	0.76	0.8
1	0.7	0.8	0.75

SUPPORT VECTOR MACHINE + GRIDSEARCHCV

GridSearchCV Best Parameters

Feature	Tuned Value
'kernel'	'linear'
'degree'	1
'class_weight'	'balanced'
'probability'	True

Class	Precision	Recall	F1 Score
0	0.84	0.75	0.79
1	0.7	0.8	0.74

K-NEAREST NEIGHBORS+ GRIDSEARCHCV

GridSearchCV Best Parameters

Feature	Tuned Value
'metric'	'manhattan'
'n_neighbors'	19
'weights'	distance

Class	Precision	Recall	F1 Score
0	0.84	0.85	0.84
1	0.78	0.77	0.78

NAIVE BAYES

Class	Precision	Recall	F1 Score
0	0.82	0.69	0.75
1	0.64	0.78	0.70

RANDOM FOREST WITH RANDOMIZEDSEARCHCV

Classification Report

Class	Precision	Recall	F1 Score
0	0.83	0.83	0.83
1	0.76	0.76	0.76

Accuracy 80%

PCA USING RANDOM FOREST

Accuracy

70%

RANDOM FOREST WITH BAGGING

Classification Report

Class	Precision	Recall	F1 Score
0	0.83	0.85	0.84
1	0.78	0.75	0.77

Accuracy 81%

KMEANS CLUSTERING

	shared_interests_partner	guess_prob_liked	like	expected_num_matches	attractive_partner	funny_partner
cluster						
0	0.548488	0.511061	0.604300	0.163273	0.602664	0.639063
1	0.369828	0.396658	0.361649	0.156358	0.351432	0.435232
2	0.686517	0.618132	0.795423	0.214799	0.824670	0.786117

COMPARATIVE PLOT

THANK YOU