Evaluation Metrics in Machine Learning

- True Positive (TP) Actual label is positive and prediction is also positive
- True Negative (TN) Actual label is negative and prediction is also negative
- False Positive (FP) Actual label is negative but prediction is positive
- False Negative (FN) Actual label is positive but prediction is negative

Predicted Label

		True	False		
Actual Label	True	True Positive	False Negative		
	False	False Positive	True Negative		

$$Accuracy = \frac{Correct\ Predictions}{All\ Predictions} = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Recall = \frac{Correct\ Positive\ Predictions}{All\ Positives} = \frac{TP}{TP + FN}$$

$$Precision = \frac{Correct\ Positive\ Predictions}{All\ Positive\ Prediction} = \frac{TP}{TP + FP}$$

Sensitivity=

having the condition.

Sensitivity vs. Specificity

The traditional F-measure or balanced F-score (F_1 score) is the harmonic mean of precision and recall:

$$F_1 = rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}} = rac{ ext{tp}}{ ext{tp} + rac{1}{2}(ext{fp} + ext{fn})}.$$

A more general F score, F_{β} , that uses a positive real factor β , where β is chosen such that recall is considered β times as important as precision, is:

$$F_eta = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}.$$

Confusion matrix [edit]

Consider a group with **P** positive instances and **N** negative instances of some condition. The four outcomes can be formulated in a 2×2 *contingency table* or *confusion matrix*, as well as derivations of several metrics using the four outcomes, as follows:

		True condition				
	Total population	Condition positive	Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Σ True posit	iracy (ACC) = ive + Σ True negative tal population
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma}{\Sigma}$ False negative $\frac{\Sigma}{\Sigma}$ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, Power = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR)	F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	= LR+ LR-	2 · Precision · Recall Precision + Recall

Worked example [edit]

A worked example view talk tedit

A diagnostic test with sensitivity 67% and specificity 91% is applied to 2030 people to look for a disorder with a population prevalence of 1.48%

	Patients with bowel cancer (as confirmed on endoscopy)					
	Total population (pop.) = 2030	Condition positive	Condition negative	Prevalence = (TP + FN) / pop. = (20 + 10) / 2030 ≈ 1.48 %	Accurace = (TP + TN) / pop. = (20 + 1820) / 2030 ≈ 90.64%	cy (ACC)
Fecal occult blood	Test outcome positive	True positive (TP) = 20 (2030 × 1.48% × 67%)	False positive (FP) = 180 (2030 × (100% - 1.48%) × (100% - 91%))	Positive predictive value (PPV), precision = TP / (TP + FP) = 20 / (20 + 180) = 10%	False discovery rate (FDR) = FP / (TP + FP) = 180 / (20 + 180) = 90.0%	
test outcome	Test outcome negative	False negative (FN) = 10 (2030 × 1.48% × (100% - 67%))	True negative (TN) = 1820 (2030 × (100% - 1.48%) × 91%)	False omission rate (FOR) = FN / (FN + TN) = 10 / (10 + 1820) ≈ 0.55%	Negative predic = TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.45 %	tive value (NPV)
		True positive rate (TPR), recall, sensitivity = TP / (TP + FN) = 20 / (20 + 10) ≈ 66.7%	False positive rate (FPR), fall-out, probability of false alarm = FP / (FP + TN) = 180 / (180 + 1820) = 9.0%	Positive likelihood ratio (LR+) = TPR = (20 / 30) / (180 / 2000) ≈ 7.41	Diagnostic odds ratio (DOR) = LR+ LR-	F ₁ score = 2 × precision × recall precision + recall
		False negative rate (FNR), miss rate = FN / (TP + FN) = 10 / (20 + 10) ≈ 33.3%	Specificity, selectivity, true negative rate (TNR) = TN / (FP + TN) = 1820 / (180 + 1820) = 91%	Negative likelihood ratio (LR−) = FNR TNR = (10 / 30) / (1820 / 2000) ≈ 0.366	- LR- ≈ 20.2	≈ 0.174