Исследование рядов на сходимость (ИДЗ №2)

Михайлов Петр Вариант 4

30 мая 2025 г.

Задание 1: Исследовать ряды на сходимость

Для знакопеременных рядов исследовать абсолютную и условную сходимость.

Ряд а)

$$\sum_{n=1}^{\infty} \left(\frac{(2n)!!}{(2n-1)!!} \right)^{10} \cdot \frac{1}{(n+1)^5}$$

Асимптотическое поведение: Можно исследовать асимптотику общего члена a_n при $n \to \infty$. Заметим, что $\frac{(2n)!!}{(2n-1)!!} = \frac{2^n \, n!}{(2n-1)!!} = \frac{4^n \, (n!)^2}{(2n-1)!!} = \frac{1}{(2n-1)!!} \sim \sqrt{\pi n} \quad (n \to \infty)$. Следовательно, $\left(\frac{(2n)!!}{(2n-1)!!}\right)^{10} \sim (\sqrt{\pi n})^{10} = \pi^5 \, n^5$, и общий член $a_n \sim \frac{\pi^5 \, n^5}{(n+1)^5} \longrightarrow \pi^5 \neq 0$. По признаку необходимого условия сходимости ряд расходится.

Ряд б)

$$\sum_{n=1}^{\infty} \left(\operatorname{tg} \frac{\pi \alpha}{n^2} - \sin \frac{\pi \alpha}{n^2} \right)^{1/8}, \quad (\alpha \in \mathbb{R})$$

Возможный подход к решению: Это ряд с неотрицательными членами (при $\alpha \neq 0$ и достаточно больших n, т.к. $\lg x - \sin x > 0$ для малых x > 0).

1. Случай $\alpha = 0$: Если $\alpha = 0$, то все члены ряда равны нулю, и ряд сходится (сумма равна 0).

2. Случай $\alpha \neq 0$: При $x \to 0$, $\tan x - \sin x \sim \frac{x^3}{2}$. Значит для большого n $\tan \frac{\pi \alpha}{n^2} - \sin \frac{\pi \alpha}{n^2} \sim \frac{1}{2} \frac{(\pi \alpha)^3}{n^6}$, и $a_n \sim \left(\frac{1}{2}(\pi \alpha)^3 \, n^{-6}\right)^{1/8} = C \, n^{-3/4}$. Но $\sum n^{-3/4}$ расходится $(p = \frac{3}{4} \leq 1)$. Следовательно исходный ряд тоже расходится.

Ряд в)

$$\sum_{n=1}^{\infty} \frac{(n+2)\sin n \cos(1/n)}{n^2 - n + 1}$$

Заметим: Это знакопеременный ряд из-за множителя $\sin n$.

1. Абсолютная сходимость: Исследуем ряд из модулей:

$$\sum_{n=1}^{\infty} \left| \frac{(n+2)\sin n \cos(1/n)}{n^2 - n + 1} \right| = \sum_{n=1}^{\infty} \frac{(n+2)|\sin n|\cos(1/n)}{n^2 - n + 1}$$

При $n \to \infty$, $\cos(1/n) \to \cos(0) = 1$. Знаменатель $n^2 - n + 1 \sim n^2$. Числитель $(n+2)|\sin n| \sim n|\sin n|$. Таким образом, общий член ряда модулей $|a_n| \sim \frac{n|\sin n|}{n^2} = \frac{|\sin n|}{n}$. Ряд $\sum \frac{|\sin n|}{n}$ расходится. Это можно показать, например, используя неравенство $|\sin n| \ge \sin^2 n = \frac{1-\cos(2n)}{2}$. $\sum \frac{1-\cos(2n)}{2n} = \sum \frac{1}{2n} - \sum \frac{\cos(2n)}{2n}$. Первый ряд расходится (гармонический), второй сходится (по признаку Дирихле). Значит, $\sum \sin^2 n/n$ расходится. Поскольку $|a_n| \sim \frac{|\sin n|}{n}$, то по предельному признаку сравнения ряд $\sum |a_n|$ расходится. Абсолютной сходимости нет.

- 2. Условная сходимость: Применим признак Дирихле. Пусть $u_n = \sin n$ и $v_n = \frac{(n+2)\cos(1/n)}{n^2-n+1}$. а) Частичные суммы $\sum_{k=1}^n u_k = \sum_{k=1}^n \sin k$ ограничены. (Это известный факт, $|\sum_{k=1}^n \sin kx| \leq \frac{1}{|\sin(x/2)|}$). б) Последовательность v_n должна монотонно стремиться к нулю. $\lim_{n\to\infty} v_n = \lim_{n\to\infty} \frac{(n+2)\cos(1/n)}{n^2-n+1} = \lim_{n\to\infty} \frac{n(1+2/n)\cos(1/n)}{n^2(1-1/n+1/n^2)} = \lim_{n\to\infty} \frac{1}{n} \cdot \frac{(1+2/n)\cos(1/n)}{(1-1/n+1/n^2)} = 0 \cdot 1 = 0$. Монотонность v_n достаточна очевидна. Основной вклад дает $\frac{n}{n^2} = \frac{1}{n}$, которая монотонно убывает. Условия Дирихле выполнены, ряд сходится условно.
- 3. Итог: ряд условно сходится.

Ряд г)

$$\sum_{n=1}^{\infty} \frac{\cos^4\left(\frac{2n}{n+1}\right)}{\sqrt{n^2+4} + \sqrt{n^2+1}}$$

- 1. Асимптотика общего члена: $\lim_{n\to\infty}\frac{2n}{n+1}=\lim_{n\to\infty}\frac{2}{1+1/n}=2.$ Следовательно, $\lim_{n\to\infty}\cos^4\left(\frac{2n}{n+1}\right)=\cos^4(2)$. Это константа, не равная нулю (если $2\neq\frac{\pi}{2}+k\pi$). Знаменатель: $\sqrt{n^2+4}+\sqrt{n^2+1}=n\sqrt{1+4/n^2}+n\sqrt{1+1/n^2}\sim n(1)+n(1)=2n$ при $n\to\infty$. Таким образом, общий член $a_n\sim\frac{\cos^4(2)}{2n}$.
- 2. Признак сравнения (предельный): Сравним с гармоническим рядом $\sum \frac{1}{n}$, который расходится. $\lim_{n\to\infty} \frac{a_n}{1/n} = \lim_{n\to\infty} n \cdot \frac{\cos^4\left(\frac{2n}{n+1}\right)}{\sqrt{n^2+4}+\sqrt{n^2+1}} = \lim_{n\to\infty} \frac{n\cos^4(2)}{2n} = \frac{\cos^4(2)}{2}$. Поскольку $\cos(2) \neq 0$, то $\cos^4(2) > 0$. Предел конечен и положителен. Следовательно, ряд расходится по предельному признаку сравнения.

Ряд д)

$$\sum_{n=1}^{\infty} \left(\frac{n^2 + 3}{n^2 + 4} \right)^{n^3 + 1}$$

Заметим: Это ряд с положительными членами. Вид общего члена $a_n = (f(n))^{g(n)}$ подсказывает использование признака Коши (радикального) в предельной форме.

- 1. Признак Коши (радикальный): Найдем предел $L=\lim_{n\to\infty}\sqrt[n]{a_n}$. $\sqrt[n]{a_n}=\left(\left(\frac{n^2+3}{n^2+4}\right)^{n^3+1}\right)^{1/n}=\left(\frac{n^2+3}{n^2+4}\right)^{\frac{n^3+1}{n}}=\left(1-\frac{1}{n^2+4}\right)^{n^2+1/n}$. Для вычисления этого предела используем тот факт, что $\lim_{x\to\infty}(1+\frac{k}{x})^x=e^k$. Перепишем: $\left(1-\frac{1}{n^2+4}\right)^{n^2+1/n}=\left[\left(1-\frac{1}{n^2+4}\right)^{n^2+4}\right]^{\frac{n^2+1/n}{n^2+4}}$. Внутренняя часть в квадратных скобках: $\lim_{n\to\infty}\left(1-\frac{1}{n^2+4}\right)^{n^2+4}=e^{-1}$. Показатель степени: $\lim_{n\to\infty}\frac{n^2+1/n}{n^2+4}=\lim_{n\to\infty}\frac{n^2(1+1/n^3)}{n^2(1+4/n^2)}=\lim_{n\to\infty}\frac{1+1/n^3}{1+4/n^2}=\frac{1}{1}=1$. Таким образом, $L=(e^{-1})^1=e^{-1}$.
- 2. **Вывод:** Поскольку $L=e^{-1}\approx 1/2.718<1$, ряд сходится по признаку Коши.

Ряд е)*

$$\sum_{n=1}^{\infty} (-1)^{n+1} \int_{n}^{n+1} \frac{dx}{\ln^2 x}$$

Возможный подход к решению: Это знакочередующийся ряд вида $\sum (-1)^{n+1}b_n$, где $b_n=\int_n^{n+1}\frac{dx}{\ln^2x}$.

- 1. Проблема с первым членом b_1 (при n=1): $b_1=\int_1^2\frac{dx}{\ln^2x}$. Этот интеграл является несобственным в точке x=1, так как $\ln x \to 0$ при $x\to 1^+$. Для $x\to 1^+$, $\ln x\sim (x-1)$. Тогда $\frac{1}{\ln^2x}\sim \frac{1}{(x-1)^2}$. Интеграл $\int_1^2\frac{dx}{(x-1)^2}=\left[-\frac{1}{x-1}\right]_{1+\epsilon}^2=-\frac{1}{2-1}-\left(-\frac{1}{1+\epsilon-1}\right)=-1+\frac{1}{\epsilon}$. При $\epsilon\to 0^+$, интеграл расходится. Поскольку первый член b_1 бесконечен, ряд не может сходиться в его классическом понимании. Сумма не определена. Ряд расходится.
- 2. Если бы ряд начинался с n=2 (или если есть оговорка, что x>1 строго для знаменателя): Предположим, мы исследуем ряд $\sum_{n=2}^{\infty} (-1)^{n+1} b_n$. Для $n\geq 2$, $b_n=\int_n^{n+1} \frac{dx}{\ln^2 x}>0$. Применяем признак Лейбница: а) $\lim_{n\to\infty} b_n=0$: Функция $f(x)=\frac{1}{\ln^2 x}$ убывает для x>1. Значит, $\frac{1}{\ln^2(n+1)}\cdot ((n+1)-n)\leq b_n\leq \frac{1}{\ln^2 n}\cdot ((n+1)-n)$. $\frac{1}{\ln^2(n+1)}\leq b_n\leq \frac{1}{\ln^2 n}$. По теореме о двух милиционерах, так как $\lim_{n\to\infty} \frac{1}{\ln^2 n}=0$, то $\lim_{n\to\infty} b_n=0$. б) b_n монотонно убывает (для $n\geq 2$): Рассмотрим $f(t)=\int_t^{t+1} \frac{dx}{\ln^2 x}$. Тогда $f'(t)=\frac{1}{\ln^2(t+1)}-\frac{1}{\ln^2 t}$. Поскольку $\ln x$ возрастающая функция для x>0, то $\ln(t+1)>\ln t$. Для $t\geq 2$, $\ln t>\ln 2>0$. Тогда $\ln^2(t+1)>\ln^2 t$. Следовательно, $\frac{1}{\ln^2(t+1)}<\frac{1}{\ln^2 t}$, поэтому f'(t)<0. Значит, $b_n=f(n)$ является монотонно убывающей последовательностью для $n\geq 2$. Условия признака Лейбница выполнены (для $n\geq 2$), такой ряд бы сходился.
- 3. Абсолютная сходимость (для ряда, начинающегося с n=2): Исследуем ряд $\sum_{n=2}^{\infty}b_n=\sum_{n=2}^{\infty}\int_n^{n+1}\frac{dx}{\ln^2x}=\int_2^{\infty}\frac{dx}{\ln^2x}$ (по свойству аддитивности интеграла). Сравним подынтегральную функцию с $\frac{1}{x}$. Известно, что $\ln x < x^{\epsilon}$ для любого $\epsilon > 0$ при достаточно больших x. Возьмем $\epsilon = 1/2$. Тогда $\ln x < \sqrt{x}$ для больших x. Значит, $\ln^2 x < x$. Следовательно, $\frac{1}{\ln^2 x} > \frac{1}{x}$ для достаточно больших x. Поскольку интеграл $\int_2^{\infty}\frac{dx}{x}$ расходится, то по признаку сравнения для несобственных интегралов, $\int_2^{\infty}\frac{dx}{\ln^2 x}$ также расходится. Следовательно, ряд $\sum_{n=2}^{\infty}b_n$ расходится, то есть абсолютной сходимости

нет. Таким образом, если бы ряд начинался с $n \geq 2$, он бы сходился условно.

Итог для е)*: Поскольку ряд в условии начинается с n=1, и первый член b_1 расходится (бесконечен), исходный ряд расходится, но если n=2, то ряд сходится условно

Задание 2: Найти области абсолютной и условной сходимости функционального ряда

Дан функциональный ряд:

$$\sum_{n=1}^{\infty} \frac{\ln^x n}{\sqrt[3]{n^3 + 1}}$$

Обозначим общий член ряда $u_n(x) = \frac{\ln^x n}{\sqrt[3]{n^3 + 1}}$.

1. Область определения членов ряда

Рассмотрим член ряда $u_n(x)$:

- Для n=1: $u_1(x)=\frac{\ln^x 1}{\sqrt[3]{1^3+1}}=\frac{0^x}{\sqrt[3]{2}}$.
 - Если x > 0, то $0^x = 0$, следовательно $u_1(x) = 0$.
 - Если x=0, то 0^0 является неопределенностью. Для ее разрешения возьмем $0^0=1$. Тогда считаем, что $u_1(0)=\frac{1}{3/2}$.
 - Если x < 0 (например, x = -2), то 0^x (например, $0^{-2} = 1/0^2$) не определено из-за деления на ноль.

Таким образом, для того чтобы первый член ряда $u_1(x)$ был определен, необходимо, чтобы $x \ge 0$.

• Для $n \geq 2$: $\ln n > \ln 1 = 0$. Следовательно, $\ln n$ является положительным числом. Тогда $(\ln n)^x = e^{x \ln(\ln n)}$ всегда определено, вещественно и положительно для любого вещественного x. Знаменатель $\sqrt[3]{n^3+1}$ также всегда положителен для $n \geq 1$. Следовательно, для $n \geq 2$, члены ряда $u_n(x)$ положительны для любого x.

Из анализа первого члена $u_1(x)$ следует, что для того, чтобы **все члены ряда** $\sum_{n=1}^{\infty} u_n(x)$ были определены, необходимо $x \in [0, \infty)$. Это и будет областью определения ряда, в которой мы будем исследовать сходимость.

2. Исследование сходимости в области определения $x \in [0, \infty)$

Поскольку для $n \geq 2$ члены $u_n(x)$ положительны, а $u_1(x)$ (если определен) неотрицателен, то ряд $\sum_{n=1}^{\infty} u_n(x)$ является рядом с неотрицательными членами в своей области определения. Для таких рядов понятие условной сходимости не применимо; сходимость эквивалентна абсолютной сходимости.

Случай 1: x=0 Если x=0, то ряд принимает вид (с учетом $0^0=1$ для n=1, и $(\ln n)^0=1$ для $n\geq 2$):

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^3 + 1}}$$

Общий член $u_n(0) = \frac{1}{\sqrt[3]{n^3+1}}$. При $n \to \infty$:

$$u_n(0) = \frac{1}{\sqrt[3]{n^3(1+1/n^3)}} = \frac{1}{n\sqrt[3]{1+1/n^3}} \sim \frac{1}{n}$$

Поскольку ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ (гармонический ряд) расходится, то по предельному признаку сравнения исходный ряд при x=0 также **расходится**.

Случай 2: x>0 Если x>0, то $u_1(x)=\frac{0^x}{\sqrt[3]{2}}=0$. Ряд становится $\sum_{n=2}^{\infty} \frac{(\ln n)^x}{\sqrt[3]{n^3+1}}$. Члены этого ряда положительны. При $n\to\infty$:

$$u_n(x) = \frac{(\ln n)^x}{\sqrt[3]{n^3 + 1}} = \frac{(\ln n)^x}{n\sqrt[3]{1 + 1/n^3}} \sim \frac{(\ln n)^x}{n}$$

Рассмотрим ряд $\sum_{n=2}^{\infty} \frac{(\ln n)^x}{n}$. Это ряд вида $\sum_{n=2}^{\infty} \frac{1}{n^p(\ln n)^q}$ с p=1 и q=-x. Такой ряд с p=1 сходится тогда и только тогда, когда q>1. В нашем случае q=-x. Для сходимости необходимо -x>1, что эквивалентно x<-1. Однако мы рассматриваем случай x>0. Условие x<-1 не выполняется для x>0. Поскольку $x>0 \implies -x<0 \implies -x\le 1$, то ряд $\sum \frac{(\ln n)^x}{n}$ расходится. Следовательно, по предельному признаку сравнения, исходный ряд при x>0 также **расходится**.

3. Выводы для ряда $\sum_{n=1}^{\infty}u_n(x)$

Ряд $\sum_{n=1}^{\infty} \frac{\ln^x n}{\sqrt[3]{n^3+1}}$ определен для $x \in [0,\infty).$

- При x = 0 ряд расходится.
- При x > 0 ряд расходится.

Таким образом, данный функциональный ряд расходится для всех значений x из своей области определения.

- Область сходимости: ∅ (пустое множество).
- Область абсолютной сходимости: \emptyset (так как для рядов с неотрицательными членами сходимость и абсолютная сходимость эквивалентны).
- Область условной сходимости: ∅.

4. Замечание (если бы ряд начинался с n=2)

Если бы рассматривался ряд $\sum_{n=2}^{\infty} \frac{(\ln n)^x}{\sqrt[3]{n^3+1}}$, то его члены $u_n(x)$ были бы определены и положительны для всех вещественных x и $n \geq 2$. В этом случае сходимость (которая была бы абсолютной) определялась бы поведением ряда $\sum_{n=2}^{\infty} \frac{(\ln n)^x}{n}$. Этот ряд сходится, если x < -1, и расходится, если $x \geq -1$. Следовательно, ряд $\sum_{n=2}^{\infty} \frac{(\ln n)^x}{\sqrt[3]{n^3+1}}$ сходился бы абсолютно при $x \in (-\infty, -1)$ и расходился бы при $x \in [-1, \infty)$. Области условной сходимости не было бы.

Задание 3: Найти предел функциональной последовательности и исследовать равномерную сходимость

Дана функциональная последовательность $f_n(x) = \sin(n^2 e^{-nx})$. Нужно найти предел $f(x) = \lim_{n\to\infty} f_n(x)$ и выяснить, будет ли сходимость равномерной на множествах: а) $E_1 = (0, +\infty)$; б) $E_2 = [1, +\infty)$.

1. Нахождение поточечного предела f(x)

Рассмотрим аргумент синуса: $A_n(x) = n^2 e^{-nx} = \frac{n^2}{(e^x)^n}$. Для любого фиксированного x>0, имеем $e^x>1$. Поскольку показательная функция $(e^x)^n$ растет быстрее любой степенной функции n^k (в данном случае n^2), то

$$\lim_{n\to\infty}A_n(x)=\lim_{n\to\infty}\frac{n^2}{(e^x)^n}=0\quad\text{для }x>0.$$

Тогда поточечный предел последовательности $f_n(x)$:

$$f(x) = \lim_{n \to \infty} \sin(n^2 e^{-nx}) = \sin\left(\lim_{n \to \infty} n^2 e^{-nx}\right) = \sin(0) = 0.$$

Итак, предельная функция f(x) = 0 для всех $x \in (0, +\infty)$.

2. Исследование равномерной сходимости на $E_1=(0,+\infty)$

Сходимость $f_n(x) \rightrightarrows f(x)$ на E_1 означает, что

$$\lim_{n \to \infty} \sup_{x \in E_1} |f_n(x) - f(x)| = 0.$$

В нашем случае это эквивалентно

$$\lim_{n \to \infty} \sup_{x \in (0, +\infty)} |\sin(n^2 e^{-nx}) - 0| = \lim_{n \to \infty} \sup_{x \in (0, +\infty)} |\sin(n^2 e^{-nx})| = 0.$$

Рассмотрим $A_n(x)=n^2e^{-nx}$. Попытаемся найти $x_n\in(0,+\infty)$ такое, что $A_n(x_n)$ принимает значение, при котором синус равен 1 (например, $\pi/2$). Пусть $n^2e^{-nx_n}=\frac{\pi}{2}$. $e^{-nx_n}=\frac{\pi}{2n^2}-nx_n=\ln\left(\frac{\pi}{2n^2}\right)$ $x_n=-\frac{1}{n}\ln\left(\frac{\pi}{2n^2}\right)=\frac{1}{n}\ln\left(\frac{2n^2}{\pi}\right)$. Для достаточно больших n (например, $2n^2/\pi>1$, что верно для $n\geq 2$), $x_n>0$, так что $x_n\in E_1$. Например, при $n\geq 2$, $\ln(2n^2/\pi)>\ln(8/\pi)>\ln(2.5)>0$. При $n\to\infty$, $x_n=\frac{2\ln n+\ln(2/\pi)}{n}\to0$. Для такой последовательности x_n :

$$f_n(x_n) = \sin\left(n^2 e^{-nx_n}\right) = \sin\left(\frac{\pi}{2}\right) = 1.$$

Тогда

$$\sup_{x \in (0, +\infty)} |f_n(x) - f(x)| = \sup_{x \in (0, +\infty)} |\sin(n^2 e^{-nx})| \ge |f_n(x_n)| = 1.$$

Следовательно,

$$\lim_{n \to \infty} \sup_{x \in (0, +\infty)} |f_n(x) - f(x)| \ge 1 \ne 0.$$

Таким образом, сходимость **не является равномерной** на множестве $E_1 = (0, +\infty)$.

3. Исследование равномерной сходимости на $E_2 = [1, +\infty)$

Проверяем условие $\lim_{n\to\infty}\sup_{x\in[1,+\infty)}|\sin(n^2e^{-nx})|=0$. Пусть $g_n(x)=n^2e^{-nx}$ для $x\in[1,+\infty)$. Найдем производную $g_n(x)$ по x:

$$g'_n(x) = n^2(-n)e^{-nx} = -n^3e^{-nx}.$$

Поскольку $n \ge 1$ и $x \ge 1$, то $e^{-nx} > 0$, следовательно $g'_n(x) < 0$. Это означает, что функция $g_n(x)$ является убывающей по x на $[1, +\infty)$. Так как $g_n(x) \ge 0$ (поскольку $n^2 > 0$ и $e^{-nx} > 0$), максимальное значение $g_n(x)$ на $[1, +\infty)$ достигается в точке x = 1:

$$\sup_{x \in [1, +\infty)} g_n(x) = g_n(1) = n^2 e^{-n \cdot 1} = \frac{n^2}{e^n}.$$

При $n \to \infty$, $\frac{n^2}{e^n} \to 0$. Поскольку $g_n(x)$ положительна и убывает на $[1,+\infty)$, то для всех $x \in [1,+\infty)$ имеем $0 \le g_n(x) \le \frac{n^2}{e^n}$. Для достаточно больших n, значение $\frac{n^2}{e^n}$ будет малым (в частности, меньше $\pi/2$). Например, при $n=1,\ 1/e\approx 0.36 < \pi/2$. При $n=2,\ 4/e^2\approx 4/7.38\approx 0.54 < \pi/2$. При $n=3,\ 9/e^3\approx 9/20\approx 0.45 < \pi/2$. В общем, $\frac{n^2}{e^n}\to 0$, так что найдется N такое, что для всех $n\ge N,\ 0\le \frac{n^2}{e^n}<\frac{\pi}{2}$. Для таких $n,\ 0\le g_n(x)\le \frac{n^2}{e^n}<\frac{\pi}{2}$ для всех $x\in [1,+\infty)$. На интервале $[0,\pi/2)$, функция $\sin(y)$ является неотрицательной и возрастающей. Следовательно,

$$\sup_{x \in [1, +\infty)} |\sin(g_n(x))| = \sup_{x \in [1, +\infty)} \sin(g_n(x)) = \sin\left(\sup_{x \in [1, +\infty)} g_n(x)\right) = \sin\left(\frac{n^2}{e^n}\right).$$

Теперь найдем предел этого выражения при $n \to \infty$:

$$\lim_{n \to \infty} \sin\left(\frac{n^2}{e^n}\right).$$

Так как $\lim_{n\to\infty}\frac{n^2}{e^n}=0$, и функция $\sin(y)$ непрерывна в точке y=0, то

$$\lim_{n \to \infty} \sin\left(\frac{n^2}{e^n}\right) = \sin(0) = 0.$$

Поскольку $\lim_{n\to\infty}\sup_{x\in[1,+\infty)}|f_n(x)-f(x)|=0$, сходимость **является** равномерной на множестве $E_2=[1,+\infty)$.

Выводы по Заданию 3

- Поточечный предел функциональной последовательности $f_n(x) = \sin(n^2 e^{-nx})$ на $(0, +\infty)$ есть f(x) = 0.
- Сходимость не является равномерной на $E_1 = (0, +\infty)$.
- Сходимость **является равномерной** на $E_2 = [1, +\infty)$.

Задание 4: Исследовать равномерную сходимость ряда на данных множествах

Ряда)

$$\sum_{n=1}^{\infty} \frac{(e^x - 1)\cos nx}{\sqrt{n^2 + nx}}, \quad E = [0, \pi]$$

Обозначим $u_n(x) = \frac{(e^x - 1)\cos nx}{\sqrt{n^2 + nx}}$

- 1. Случай x=0: $u_n(0)=\frac{(e^0-1)\cos(0)}{\sqrt{n^2+0}}=\frac{(1-1)\cdot 1}{n}=0$. Ряд $\sum 0=0$ сходится.
- 2. Случай $x \in (0,\pi]$: Используем признак Дирихле для равномерной сходимости. Пусть $a_n(x) = \cos(nx)$ и $b_n(x) = \frac{e^x 1}{\sqrt{n^2 + nx}}$.
 - Частичные суммы ряда $\sum a_n(x) = \sum \cos(nx)$: $S_N(x) = \sum_{k=1}^N \cos(kx)$. Для $x \in (0,\pi]$, $|\sin(x/2)| > 0$. $|S_N(x)| = \left|\frac{\cos((N+1)x/2)\sin(Nx/2)}{\sin(x/2)}\right| \le \frac{1}{|\sin(x/2)|}$. Эта оценка не является равномерно ограниченной на $(0,\pi]$, так как $\sin(x/2) \to 0$ при $x \to 0^+$. Однако для оценки остатка ряда $R_k(x) = \sum_{n=k}^\infty b_n(x)a_n(x)$, по следствию из преобразования Абеля (или признаку Дирихле для остатка): если $b_n(x)$ монотонно стремится к 0 (по n), то $|R_k(x)| \le 2b_k(x) \sup_m |\sum_{j=k}^m a_j(x)|$. Более точная оценка для остатка ряда Дирихле: $|R_k(x)| \le b_k(x) \cdot \sup_{N \ge k} \left|\sum_{j=k}^N \cos(jx)\right|$. Либо $|R_k(x)| \le C \cdot b_k(x)$ при определенных условиях.

Рассмотрим оценку остатка ряда $R_k(x) = \sum_{n=k}^\infty u_n(x)$. Для $x \in (0,\pi]$, последовательность $v_n(x) = \frac{e^x-1}{\sqrt{n^2+nx}}$ монотонно (по n) стремится к 0. $\left|\sum_{j=k}^m \cos(jx)\right| \leq \frac{1}{|\sin(x/2)|}$ для $x \in (0,\pi]$. По признаку Дирихле (в форме для остатков рядов или используя суммирование по частям Абеля): $|R_k(x)| = \left|\sum_{n=k}^\infty \frac{e^x-1}{\sqrt{n^2+nx}}\cos(nx)\right| \leq \frac{e^x-1}{\sqrt{k^2+kx}} \cdot \frac{C}{|\sin(x/2)|}$ (где C обычно 1 или 2). Возьмем C=2 для безопасности оценки (часто $\sup_N |\sum \cos(nx)| \leq 1/|\sin(x/2)|$, а $b_k(x)$ – первый член). Тогда $|R_k(x)| \leq \frac{2(e^x-1)}{|\sin(x/2)|} \cdot \frac{1}{\sqrt{k^2+kx}}$. Функция $h(x) = \frac{e^x-1}{\sin(x/2)}$ непрерывна на $(0,\pi]$. $\lim_{x\to 0^+} h(x) = \lim_{x\to 0^+} \frac{x}{x/2} = 2$. $h(\pi) = \frac{e^x-1}{\sin(\pi/2)} = e^x-1$. Следовательно, h(x) ограничена на $(0,\pi]$, пусть $M_0 = \sup_{x\in(0,\pi]} |h(x)|$. M_0 существует и конечна. Тогда для $x\in(0,\pi]$: $|R_k(x)|\leq M_0$.

 $\frac{1}{\sqrt{k^2+kx}} \leq \frac{M_0}{\sqrt{k^2}} = \frac{M_0}{k}$. Для x=0, $R_k(0) = \sum_{n=k}^{\infty} 0 = 0$. Следовательно, $\sup_{x \in [0,\pi]} |R_k(x)| \leq \frac{M_0}{k}$. Поскольку $\lim_{k \to \infty} \frac{M_0}{k} = 0$, ряд сходится равномерно на $E = [0,\pi]$.

Ряд б)

$$\sum_{n=1}^{\infty} \frac{\sin(1/(nx))}{1 + (\ln nx)^2}$$

Исследовать на множествах $E_1=(0,1)$ и $E_2=(1,+\infty)$. Обозначим $u_n(x)=\frac{\sin(1/(nx))}{1+(\ln nx)^2}$. Заметим, что nx>0 на обоих множествах.

[I.] Исследование на $E_1=(0,1)$: Рассмотрим необходимое условие равномерной сходимости: $u_n(x) \rightrightarrows 0$ на E_1 . Это означает $\lim_{n\to\infty}\sup_{x\in(0,1)}|u_n(x)|=0$. Выберем последовательность точек $x_n=1/n$. Для $n>1,\ x_n=1/n\in(0,1)$. Тогда $nx_n=n\cdot(1/n)=1$. $u_n(x_n)=u_n(1/n)=\frac{\sin(1/(n\cdot 1/n))}{1+(\ln(n\cdot 1/n))^2}=\frac{\sin(1)}{1+(\ln 1)^2}=\sin(1)$. Поскольку $\sin(1)\neq 0$, то

$$\sup_{x \in (0,1)} |u_n(x)| \ge |u_n(1/n)| = \sin(1) \quad \text{для } n > 1.$$

Следовательно, $\lim_{n\to\infty}\sup_{x\in(0,1)}|u_n(x)|\geq\sin(1)\neq0$. Необходимое условие равномерной сходимости не выполнено. Таким образом, ряд **не сходится равномерно** на $E_1=(0,1)$. (Заметим, что ряд сходится поточечно на (0,1), так как для фиксированного $x\in(0,1)$, $nx\to\infty$, $1/(nx)\to0$, $\sin(1/(nx))\sim 1/(nx)$, $\ln(nx)\to\infty$, и $u_n(x)\sim\frac{1}{nx(\ln nx)^2}$. Ряд $\sum\frac{1}{n(\ln n)^2}$ сходится.)

[II.] Исследование на $E_2=(1,+\infty)$: Используем признак Вейерштрасса (М-тест). $|u_n(x)|=\left|\frac{\sin(1/(nx))}{1+(\ln nx)^2}\right|$. Поскольку $x\in(1,+\infty)$ и $n\geq 1$, то $nx\geq 1\cdot 1=1$. Следовательно, $0<1/(nx)\leq 1$. Используем неравенство $|\sin y|\leq |y|$ для всех $y\in\mathbb{R}$. Так как 1/(nx)>0, имеем $|\sin(1/(nx))|\leq 1/(nx)$. Тогда

$$|u_n(x)| \le \frac{1/(nx)}{1 + (\ln nx)^2}.$$

Обозначим t=nx. Поскольку $x\in(1,+\infty)$ и $n\geq 1$, то $t\in(n,+\infty)$ для $n\geq 1$. (Если $n=1,\ t\in(1,+\infty)$. Если $n=2,\ t\in(2,+\infty)$, и т.д.) Рассмотрим функцию $g(t)=\frac{1/t}{1+(\ln t)^2}=\frac{1}{t(1+(\ln t)^2)}$ для t>0. Найдем ее производную: $g'(t)=-\frac{1+(\ln t)^2+t(2\ln t\cdot 1/t)}{(t(1+(\ln t)^2))^2}=-\frac{1+2\ln t+(\ln t)^2}{(t(1+(\ln t)^2))^2}=\frac{1}{(t(1+(\ln t)^2))^2}$. Для $t\geq 1$, $\ln t\geq 0$, поэтому $1+\ln t>0$. Следовательно, g'(t)<0 для

 $t \ge 1$ (кроме случая $1 + \ln t = 0 \implies t = 1/e$, который не в $t \ge 1$). Таким образом, g(t) убывает на $[1, +\infty)$. Следовательно, для $t \in (n, +\infty)$ (где $n \ge 1$),

$$\sup_{t \in (n, +\infty)} g(t) = \lim_{t \to n^+} g(t) = g(n) = \frac{1}{n(1 + (\ln n)^2)}.$$

Обозначим $M_n = \frac{1}{n(1+(\ln n)^2)}$. Для n=1, $M_1 = \frac{1}{1(1+(\ln 1)^2)} = \frac{1}{1(1+0)} = 1$. Для $n \geq 2$, $M_n = \frac{1}{n(1+(\ln n)^2)}$. Рассмотрим ряд $\sum_{n=1}^{\infty} M_n = 1 + \sum_{n=2}^{\infty} \frac{1}{n(1+(\ln n)^2)}$. Ряд $\sum_{n=2}^{\infty} \frac{1}{n(1+(\ln n)^2)}$ сходится по интегральному признаку. Сравним с интегралом $\int_2^{\infty} \frac{dx}{x(1+(\ln x)^2)}$. Пусть $u=\ln x$, du=dx/x. $\int_{\ln 2}^{\infty} \frac{du}{1+u^2} = [\arctan u]_{\ln 2}^{\infty} = \frac{\pi}{2} - \arctan(\ln 2)$. Интеграл сходится. Более строго, $1+(\ln x)^2 \geq (\ln x)^2$, поэтому $\frac{1}{x(1+(\ln x)^2)} \leq \frac{1}{x(\ln x)^2}$. Интеграл $\int_2^{\infty} \frac{dx}{x(\ln x)^2}$ сходится (как показано в предыдущих мыслях, $\int \frac{du}{u^2}$ сходится). Поскольку ряд $\sum M_n$ сходится, по признаку Вейерштрасса, исходный ряд $\sum u_n(x)$ сходится равномерно на $E_2 = (1, +\infty)$.

Задание 5: Найти сумму функционального ряда и указать множество сходимости

Дан функциональный ряд:

$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n n^3 x^n}{(n+1)!}$$

1. Определение области сходимости

Член n=0 данного ряда равен $\frac{(-1)^0 \cdot 0^3 \cdot x^0}{(0+1)!}=0$. Таким образом, суммирование можно эффективно начинать с n=1:

$$S(x) = \sum_{n=1}^{\infty} \frac{(-1)^n n^3 x^n}{(n+1)!}$$

Для определения радиуса сходимости R используем признак Даламбера для ряда из модулей. Пусть $u_n(x) = \frac{(-1)^n n^3 x^n}{(n+1)!}$. Рассмотрим $\lim_{n\to\infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right|$:

$$\lim_{n \to \infty} \left| \frac{(-1)^{n+1} (n+1)^3 x^{n+1}}{(n+2)!} \cdot \frac{(n+1)!}{(-1)^n n^3 x^n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^3 x}{(n+2) n^3} \right|$$

$$=|x|\lim_{n\to\infty}\frac{(n+1)^3}{n^3(n+2)}=|x|\lim_{n\to\infty}\left(\frac{n+1}{n}\right)^3\frac{1}{n+2}=|x|\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^3\frac{1}{n+2}$$

$$= |x| \cdot (1)^3 \cdot 0 = 0.$$

Поскольку предел равен 0 для любого x, ряд сходится при всех $x \in \mathbb{R}$. Таким образом, радиус сходимости $R = \infty$, и множество сходимости ряда есть $(-\infty, \infty)$.

2. Нахождение суммы ряда

Для нахождения суммы ряда $S(x)=\sum_{n=0}^{\infty}\frac{(-1)^nn^3x^n}{(n+1)!}$ воспользуемся методом дифференцирования известного ряда. Рассмотрим вспомогательную функцию $H(z)=\sum_{n=0}^{\infty}\frac{z^n}{(n+1)!}$. Как было показано ранее, $H(z)=\frac{e^z-1}{z}$ для $z\neq 0$, и H(0)=1. Нам нужно найти сумму $S(x)=\sum_{n=0}^{\infty}\frac{n^3(-x)^n}{(n+1)!}$. Пусть z=-x. Тогда $S(x)=\sum_{n=0}^{\infty}\frac{n^3z^n}{(n+1)!}$. Эта сумма получается применением оператора $\theta=z\frac{d}{dz}$ три раза к функции $H(z)\colon S(x)=[\theta^3H(z)]_{z=-x}$. Обозначим $H_0(z)=H(z)=\frac{e^z-1}{z}$.

1.
$$H_1(z) = \theta H_0(z) = zH'_0(z)$$
.
 $H'_0(z) = \frac{ze^z - (e^z - 1) \cdot 1}{z^2} = \frac{ze^z - e^z + 1}{z^2}$.
 $H_1(z) = z\left(\frac{ze^z - e^z + 1}{z^2}\right) = \frac{ze^z - e^z + 1}{z} = e^z - \frac{e^z - 1}{z}$.

2.
$$H_2(z) = \theta H_1(z) = zH'_1(z)$$
.
 $H'_1(z) = \frac{d}{dz} \left(e^z - \frac{e^z - 1}{z} \right) = e^z - \left(\frac{ze^z - (e^z - 1)}{z^2} \right) = e^z - \frac{ze^z - e^z + 1}{z^2}$.
 $H_2(z) = z \left(e^z - \frac{ze^z - e^z + 1}{z^2} \right) = ze^z - \frac{ze^z - e^z + 1}{z} = ze^z - \left(e^z - \frac{e^z - 1}{z} \right)$
 $H_2(z) = (z - 1)e^z + \frac{e^z - 1}{z}$.

3.
$$H_3(z) = \theta H_2(z) = zH_2'(z)$$
.
 $H_2'(z) = \frac{d}{dz} \left((z-1)e^z + \frac{e^z-1}{z} \right)$
 $H_2'(z) = \left(1 \cdot e^z + (z-1)e^z \right) + \left(\frac{ze^z - (e^z-1)}{z^2} \right)$
 $H_2'(z) = e^z + ze^z - e^z + \frac{ze^z - e^z + 1}{z^2} = ze^z + \frac{ze^z - e^z + 1}{z^2}$.
 $H_3(z) = z \left(ze^z + \frac{ze^z - e^z + 1}{z^2} \right) = z^2 e^z + \frac{ze^z - e^z + 1}{z}$
 $H_3(z) = z^2 e^z + e^z - \frac{e^z - 1}{z} = (z^2 + 1)e^z - \frac{e^z - 1}{z}$.

Теперь подставляем z=-x в выражение для $H_3(z)$: $S(x)=H_3(-x)=((-x)^2+1)e^{-x}-\frac{e^{-x}-1}{-x}$ $S(x)=(x^2+1)e^{-x}+\frac{e^{-x}-1}{x}$ $S(x)=(x^2+1)e^{-x}-\frac{1-e^{-x}}{x}$. Эта формула справедлива для $x\neq 0$. Если x=0, то S(0)=0, как мы установили в начале (так как член при n=0 равен нулю, и для $n\geq 1$ множитель $x^n=0$). Проверим предел полученной функции при $x\to 0$:

$$\lim_{x \to 0} S(x) = \lim_{x \to 0} \left[(x^2 + 1)e^{-x} - \frac{1 - e^{-x}}{x} \right]$$

Первый член: $\lim_{x\to 0}(x^2+1)e^{-x}=(0^2+1)e^0=1$. Второй член (используя правило Лопиталя или известный предел $\lim_{u\to 0}\frac{e^u-1}{u}=1$): $\lim_{x\to 0}\frac{1-e^{-x}}{x}=\lim_{x\to 0}\frac{-(-e^{-x})}{1}=\lim_{x\to 0}e^{-x}=1$. Сумма пределов: 1-1=0. Это совпадает со значением S(0)=0.

3. Итоговая сумма ряда

Сумма данного функционального ряда:

$$S(x) = \begin{cases} (x^2 + 1)e^{-x} - \frac{1 - e^{-x}}{x} & \text{если } x \neq 0 \\ 0 & \text{если } x = 0 \end{cases}$$

Множество сходимости ряда: $(-\infty, \infty)$.

Задание V (6): Разложить в ряд Фурье функцию $f(x)=\operatorname{ch}(\alpha x)$ на отрезке $[-\pi,\pi]$

Дана функция $f(x) = \text{ch}(\alpha x)$, которую необходимо разложить в ряд Фурье на отрезке $[-\pi, \pi]$. Также требуется построить графики функции f(x) и суммы ее ряда Фурье. Предполагаем, что α – вещественный параметр.

1. Анализ функции и выбор вида ряда Фурье

Функция $f(x) = \operatorname{ch}(\alpha x)$ (гиперболический косинус) является четной, так как $f(-x) = \operatorname{ch}(-\alpha x) = \operatorname{ch}(\alpha x) = f(x)$. Для четной функции, разложенной в ряд Фурье на симметричном интервале $[-\pi, \pi]$, все коэффициенты при синусах (b_n) равны нулю. Таким образом, ряд Фурье будет содержать только косинусы (и свободный член):

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx)$$

Коэффициенты вычисляются по формулам:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{2}{\pi} \in_{0}^{\pi} f(x) \cos(nx) dx \quad (n \ge 1)$$

$$b_n = 0 \quad (n \ge 1)$$

2. Вычисление коэффициентов Фурье

Коэффициент ао

Предположим сначала, что $\alpha \neq 0$.

$$a_0 = \frac{2}{\pi} \int_0^{\pi} \operatorname{ch}(\alpha x) dx = \frac{2}{\pi} \left[\frac{\operatorname{sh}(\alpha x)}{\alpha} \right]_0^{\pi} = \frac{2}{\pi \alpha} (\operatorname{sh}(\alpha \pi) - \operatorname{sh}(0)) = \frac{2 \operatorname{sh}(\alpha \pi)}{\pi \alpha}$$

Таким образом, $\frac{a_0}{2} = \frac{\operatorname{sh}(\alpha\pi)}{\pi\alpha}$.

Коэффициенты a_n (для $n \ge 1$)

Предположим $\alpha \neq 0$.

$$a_n = \frac{2}{\pi} \int_0^{\pi} \operatorname{ch}(\alpha x) \cos(nx) dx$$

Для вычисления интеграла $I=\int {\rm ch}(\alpha x)\cos(nx)dx$, можно использовать метод интегрирования по частям дважды или выразить ${\rm ch}(\alpha x)=\frac{e^{\alpha x}+e^{-\alpha x}}{2}$. Используя стандартную формулу $\int e^{ax}\cos(bx)dx=\frac{e^{ax}}{a^2+b^2}(a\cos(bx)+b\sin(bx))$, получаем:

$$\int_{0}^{\pi} \operatorname{ch}(\alpha x) \cos(nx) dx = \frac{1}{2} \int_{0}^{\pi} e^{\alpha x} \cos(nx) dx + \frac{1}{2} \int_{0}^{\pi} e^{-\alpha x} \cos(nx) dx$$

$$= \frac{1}{2} \left[\frac{e^{\alpha x}}{\alpha^{2} + n^{2}} (\alpha \cos(nx) + n \sin(nx)) \right]_{0}^{\pi}$$

$$+ \frac{1}{2} \left[\frac{e^{-\alpha x}}{\alpha^{2} + n^{2}} (-\alpha \cos(nx) + n \sin(nx)) \right]_{0}^{\pi}$$

$$= \frac{1}{2(\alpha^{2} + n^{2})} \left[(e^{\alpha \pi} \alpha(-1)^{n} - \alpha) + (e^{-\alpha \pi} (-\alpha)(-1)^{n} - (-\alpha)) \right]$$

$$= \frac{1}{2(\alpha^{2} + n^{2})} \left[\alpha(-1)^{n} e^{\alpha \pi} - \alpha - \alpha(-1)^{n} e^{-\alpha \pi} + \alpha \right]$$

$$= \frac{\alpha(-1)^{n}}{2(\alpha^{2} + n^{2})} (e^{\alpha \pi} - e^{-\alpha \pi}) = \frac{\alpha(-1)^{n}}{\alpha^{2} + n^{2}} \operatorname{sh}(\alpha \pi)$$

Тогда,

$$a_n = \frac{2}{\pi} \cdot \frac{\alpha(-1)^n \operatorname{sh}(\alpha \pi)}{\alpha^2 + n^2} = \frac{2\alpha(-1)^n \operatorname{sh}(\alpha \pi)}{\pi(\alpha^2 + n^2)} \quad (n \ge 1, \alpha \ne 0)$$

\mathbf{C} лучай $\alpha = 0$

Если $\alpha = 0$, то f(x) = ch(0) = 1.

$$a_0 = \frac{2}{\pi} \int_0^{\pi} 1 dx = \frac{2}{\pi} [\pi - 0] = 2. \quad \Rightarrow \quad \frac{a_0}{2} = 1.$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} 1 \cdot \cos(nx) dx = \frac{2}{\pi} \left[\frac{\sin(nx)}{n} \right]_0^{\pi} = \frac{2}{\pi} (0 - 0) = 0 \quad (n \ge 1).$$

Ряд Фурье для f(x)=1 есть просто 1. Заметим, что формулы для a_0 и a_n , полученные для $\alpha \neq 0$, стремятся к этим значениям при $\alpha \to 0$: $\lim_{\alpha \to 0} \frac{a_0}{2} = \lim_{\alpha \to 0} \frac{\sinh(\alpha\pi)}{\pi\alpha} = \lim_{\alpha \to 0} \frac{\alpha\pi}{\pi\alpha} = 1$. $\lim_{\alpha \to 0} a_n = \lim_{\alpha \to 0} \frac{2\alpha(-1)^n \sinh(\alpha\pi)}{\pi(\alpha^2 + n^2)} = \lim_{\alpha \to 0} \frac{2\alpha(-1)^n (\alpha\pi)}{\pi(n^2)} = \lim_{\alpha \to 0} \frac{2\alpha^2(-1)^n}{n^2} = 0$ для $n \geq 1$.

3. Ряд Фурье

Для $\alpha \neq 0$, ряд Фурье функции $f(x) = \operatorname{ch}(\alpha x)$ на $[-\pi, \pi]$:

$$\operatorname{ch}(\alpha x) = \frac{\operatorname{sh}(\alpha \pi)}{\pi \alpha} + \sum_{n=1}^{\infty} \frac{2\alpha(-1)^n \operatorname{sh}(\alpha \pi)}{\pi(\alpha^2 + n^2)} \cos(nx)$$

Этот ряд можно также записать в виде:

$$\operatorname{ch}(\alpha x) = \frac{\operatorname{sh}(\alpha \pi)}{\pi} \left[\frac{1}{\alpha} + \sum_{n=1}^{\infty} \frac{2\alpha(-1)^n}{\alpha^2 + n^2} \cos(nx) \right]$$

Для $\alpha = 0$, ряд Фурье есть f(x) = 1.

4. Сходимость ряда и сумма ряда Фурье

Функция $f(x) = \operatorname{ch}(\alpha x)$ является непрерывной на $[-\pi, \pi]$. Ее 2π -периодическое продолжение также является непрерывным, так как $f(-\pi) = \operatorname{ch}(-\alpha \pi) = \operatorname{ch}(\alpha \pi) = f(\pi)$. Согласно теореме Дирихле, ряд Фурье сходится к f(x) для всех $x \in [-\pi, \pi]$ и к ее 2π -периодическому продолжению для $x \notin [-\pi, \pi]$. Таким образом, сумма ряда Фурье S(x) равна $f(x) = \operatorname{ch}(\alpha x)$ на отрезке $[-\pi, \pi]$.

5. Построение графиков

• График функции $f(x) = \text{ch}(\alpha x)$: Для построения конкретного графика нужно выбрать значение α . Например, если $\alpha = 1$, f(x) =

ch(x). Это четная функция, симметричная относительно оси Oy. При $x=0,\ f(0)=ch(0)=1.$ Это точка минимума на $[-\pi,\pi]$. Функция возрастает при x>0 и убывает при x<0. Значения на концах отрезка: $f(\pi)=f(-\pi)=ch(\alpha\pi)$. График напоминает параболу, но растет быстрее (экспоненциально).

• График суммы ряда Фурье S(x): Как указано выше, S(x) = f(x) для $x \in [-\pi, \pi]$. Таким образом, на этом отрезке график суммы ряда Фурье совпадает с графиком самой функции f(x). Вне отрезка $[-\pi, \pi]$ график S(x) представляет собой 2π -периодическое повторение графика f(x) с отрезка $[-\pi, \pi]$. Для визуализации сходимости можно построить график частичной суммы ряда Фурье $S_N(x) = \frac{a_0}{2} + \sum_{n=1}^N a_n \cos(nx)$ для нескольких значений N. При увеличении N график $S_N(x)$ будет все точнее приближать f(x) на $[-\pi, \pi]$.

Задание VI (7): Ряд Фурье в комплексной форме для графически заданной функции

Дана функция f(t), заданная графически. Требуется построить для нее ряд Фурье в комплексной форме и изобразить график суммы построенного ряда.

1. Аналитическое представление функции

Из графика видно, что функция f(t) на отрезке [0,4] определяется следующим образом:

- На отрезке $t \in [0,2]$: функция представляет собой прямую линию, проходящую через точки (0,2) и (2,0). Уравнение этой прямой: f(t) = 2 t.
- На отрезке $t \in (2,4]$: функция равна нулю, f(t) = 0.

Будем считать, что функция является периодической с периодом T=4. Тогда основная угловая частота $\omega_0=\frac{2\pi}{T}=\frac{2\pi}{4}=\frac{\pi}{2}$. Для удобства вычислений определим функцию на одном периоде, например, $t\in[0,4)$:

$$f(t) = \begin{cases} 2 - t, & \text{если } 0 \le t < 2\\ 0, & \text{если } 2 \le t < 4 \end{cases}$$

2. Вычисление комплексных коэффициентов Фурье c_k

Комплексные коэффициенты Фурье c_k определяются формулой:

$$c_k = \frac{1}{T} \int_0^T f(t)e^{-ik\omega_0 t}dt = \frac{1}{4} \int_0^4 f(t)e^{-ik(\pi/2)t}dt$$

Поскольку f(t) = 0 для $t \in [2, 4)$, интеграл упрощается:

$$c_k = \frac{1}{4} \int_0^2 (2-t)e^{-ik(\pi/2)t} dt$$

Вычисление c_0 (при k = 0):

$$c_0 = \frac{1}{4} \int_0^2 (2-t)dt = \frac{1}{4} \left[2t - \frac{t^2}{2} \right]_0^2 = \frac{1}{4} \left((4 - \frac{4}{2}) - (0 - 0) \right) = \frac{1}{4} (4 - 2) = \frac{2}{4} = \frac{1}{2}$$

Вычисление c_k (при $k \neq 0$): Интегрируем по частям $I = \int (2-t)e^{-ik(\pi/2)t}dt$. Пусть $u = 2 - t \Rightarrow du = -dt$. Пусть $dv = e^{-ik(\pi/2)t}dt \Rightarrow v = 0$

$$\frac{e^{-ik(\pi/2)t}}{-ik(\pi/2)} = \frac{2i}{k\pi}e^{-ik(\pi/2)t}.$$

$$\int_{0}^{2} (2-t)e^{-ik(\pi/2)t}dt = \left[(2-t)\frac{2i}{k\pi}e^{-ik(\pi/2)t} \right]_{0}^{2} - \int_{0}^{2} \frac{2i}{k\pi}e^{-ik(\pi/2)t}(-dt)$$

$$= \left(0 - (2)\frac{2i}{k\pi}e^{0} \right) + \frac{2i}{k\pi} \int_{0}^{2} e^{-ik(\pi/2)t}dt$$

$$= -\frac{4i}{k\pi} + \frac{2i}{k\pi} \left[\frac{e^{-ik(\pi/2)t}}{-ik(\pi/2)} \right]_{0}^{2}$$

$$= -\frac{4i}{k\pi} + \frac{2i}{k\pi} \left(\frac{2i}{k\pi}e^{-ik(\pi/2)t} \right)_{0}^{2}$$

$$= -\frac{4i}{k\pi} + \left(\frac{2i}{k\pi} \right)^{2} \left[e^{-ik\pi} - e^{0} \right]$$

$$= -\frac{4i}{k\pi} + \frac{4i^{2}}{(k\pi)^{2}}((-1)^{k} - 1)$$

$$= -\frac{4i}{k\pi} - \frac{4}{(k\pi)^{2}}((-1)^{k} - 1)$$

Тогда,

$$c_k = \frac{1}{4} \left(-\frac{4i}{k\pi} - \frac{4}{(k\pi)^2} ((-1)^k - 1) \right) = -\frac{i}{k\pi} - \frac{1}{(k\pi)^2} ((-1)^k - 1)$$
 для $k \neq 0$

Это можно переписать как:

$$c_k = rac{1}{(k\pi)^2}(1-(-1)^k) - rac{i}{k\pi}$$
 для $k
eq 0$

Рассмотрим случаи для k:

- Если $k \neq 0$ и k четное $(k=2m, m \in \mathbb{Z} \setminus \{0\})$: $1-(-1)^k=1-1=0$. Тогда $c_k=-\frac{i}{k\pi}$.
- Если k нечетное $(k=2m+1, m\in\mathbb{Z})$: $1-(-1)^k=1-(-1)=2$. Тогда $c_k=\frac{2}{(k\pi)^2}-\frac{i}{k\pi}$.

3. Комплексный ряд Фурье

Ряд Фурье в комплексной форме для f(t) есть:

$$S(t) = \sum_{k=-\infty}^{\infty} c_k e^{ik\omega_0 t} = \sum_{k=-\infty}^{\infty} c_k e^{ik(\pi/2)t}$$

Подставляя найденные коэффициенты:

$$S(t) = \frac{1}{2} + \sum_{k=-\infty, k\neq 0}^{\infty} \left(\frac{1 - (-1)^k}{(k\pi)^2} - \frac{i}{k\pi} \right) e^{ik(\pi/2)t}$$

4. График суммы построенного ряда S(t)

Функция f(t), определенная на [0,4), имеет разрыв при переходе от $t=4-\epsilon$ к t=0 (из-за периодичности). $f_p(0^-)=\lim_{t\to 0^+}f(t)=0$. $f_p(0^+)=\lim_{t\to 0^+}f(t)=2$. Согласно теореме Дирихле, в точках разрыва $t_d=4n$ (где $n\in\mathbb{Z}$) ряд Фурье сходится к среднему арифметическому левого и правого пределов:

$$S(4n) = \frac{f_p((4n)^-) + f_p((4n)^+)}{2} = \frac{0+2}{2} = 1$$

В точках непрерывности $S(t) = f_p(t)$, где $f_p(t)$ - периодическое продолжение f(t). На интервале $t \in (0,2)$, $f_p(t) = 2 - t$. На интервале $t \in (2,4)$, $f_p(t) = 0$. В точке t = 2, $f_p(2^-) = 0$ и $f_p(2^+) = 0$, так что S(2) = 0.

График суммы ряда S(t) будет T=4 периодическим и состоит из следующих частей на одном периоде, например, $t \in [0,4]$:

- Точка (0, 1).
- Для $t \in (0,2]$: S(t) = 2 t. Это отрезок прямой, идущий от точки (0,2) (не включая ее) до точки (2,0) (включая ее).
- Для $t \in (2,4)$: S(t) = 0. Это отрезок прямой, идущий от точки (2,0) (не включая ее, но значение S(2) = 0) до точки (4,0) (не включая ее).

График будет выглядеть как последовательность "зубьев пилы где каждый зуб начинается с значения y=2 (но S(4n)=1), линейно спадает до y=0 на протяжении 2 единиц времени, затем остается на y=0 еще 2 единицы времени. В точках $t=0,\pm 4,\pm 8,\ldots$ значение суммы ряда равно 1

