JADRA

*

Jezeli $F:V \to W$ jest liniowe, to jadro jest podprzestrzenia V, a obraz – podprzestrzenia $W\colon \ker F \le V$, $\mathbf{F} \le W$

DOWOD:

 $\ker : \overrightarrow{0} \in \ker F \colon F(\overrightarrow{0}) = \overrightarrow{0}$

Jesli $v_1,v_2\in\ker\overrightarrow{F}$, to wowczas $F(v_1,v_2)=f(v_1)+\overline{F(v_2)}=0+0=0$

dokonczyc dowod

Jadro pozwala nam zrozumiec, kiedy przeksztalcenie jest roznowartosciowe: $F:V\to W$ jest "na" jesli $\operatorname{im} F=V$, a jest 1-1 tylko jesli $\ker F=0=\{\stackrel{\rightarrow}{0}\}$ i wowczas jadro jest trywialne.

<u>DOWOD</u>: Zalozmu, ze jest 1-1. $F(\overrightarrow{0}) = \overrightarrow{0}$. Jezeli $v \neq 0$, to $F(v) \neq F(\overrightarrow{0}) = 0 \in W$.

Zalozmy, ze $\ker F = 0$ wiemy, ze $v_1, v_2 \in V$ takie, ze $F(v_1) = f(v_2)$ wowczas $F(v_1) - F(v_2) = 0$ $F(v_1 - v_2) = 0$, czyli $v_1 - v_2 \in \ker F \implies v_1 - v_2 = 0$ $v_1 = 0 + v_2 = v_2$

PRZYKLADY:

Wezmy macierz

$$A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & y \end{pmatrix}$$

kotra jest macierza przeksztalcenia bedacego endomorfizmem, czyli $F_1=F_2\in \operatorname{End}(\mathbb{R}^3)$. Wowczas:

$$\mathtt{im}F_A = \mathtt{Lin}(\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix})$$

$$\ker F_A = \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : \begin{cases} x + 4y + 7z = 0 \\ 2x + 5y + 8z = 0 \\ 3x + 6y + 9z = 0 \end{cases} \} = \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x + 2y + 3z = 0 \} = \text{Lin}(\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}) = \text{Lin}(\begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}) \}$$

$$F_4: C(\mathbb{R}) \to \mathbb{R} \quad F_4(f) = \int_{-1}^1 f(t)dt$$

$$\mathtt{im} F_4 = \mathbb{R}$$

$$\ker F_4 = \{ f : \int_{-1}^1 f(t)dt = 0 \}$$

$$F_5: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}} \quad F_5((a_0, a_1, ...)) = (a_1, a_2, ...)$$

$$\mathtt{im} F_5 = \mathbb{R}^{\mathbb{N}}$$

$$\ker F_5 = \{(a_0, 0, 0, 0, \dots) : a_0 \neq 0\}$$

RZEDY

Jesli V jest przestrzenia liniowa, a $A,B\subseteq V$, takimi, ze $a\cap B\neq\emptyset$ oraz $A\cup B$ jest lnz, to wowczas $\mathrm{Lin}(A)\cap\mathrm{Lin}(B)=0$.

Jezeli F:V o W jest liniowe, to RZAD jest $\mathtt{rk}F=\dim \mathtt{im}F$

Tw o rzedzie $\dim V = \dim \ker F + \dim \operatorname{im} F = \dim \ker F + \operatorname{rk} F$ Twierdzenie o indeksie: $\dim V < \infty$, to wowczas

$$\dim \ker F = \dim V - \dim \operatorname{im} F$$

$$\dim \mathtt{im} F = \dim V - \dim \ker F$$

 $\text{PRZYKLAD }V=\{P\in\mathbb{R}_{50}[X]\ :\ \int_{-1}^{1}P(t)e^{-t^2}dt=0\} \text{ Wezmy funkcje }G:\mathbb{R}_{50}[X]\to\mathbb{R} \text{ zadane }G(P)=\int\limits_{-1}^{1}P(t)e^{-t^2}dt=0\}$

 $\mathtt{im}G=\mathbb{R}$, bo $G(1)=\int\limits_{-1}^{1}P(t)e^{-t^2}dt>0$ $\dim\ker G=\dim\mathbb{R}_{50}[X]-\dim\mathtt{im}G=51-1=50$ Dowod twierdzenia orzedzie:

Niech A bedzie baza $\ker F \leq V$. A jest lnz, wiec $\exists \ A \subseteq C \quad B = C \setminus A$, gdzie C to baza V. Chcemy pokazac, ze |F[B]| = |B| i F[B] jest baza dla imF, bo

$$|A| = \dim \ker F$$

$$|B|=\dim { t im}\ F$$

$$\dim V = |C| = |A| + |B| = \dim \ker F + \dim \operatorname{im} F$$

Wezmy dowonle $v \in V$. Chcemy sprawdzic, ze $F(v) \in \text{Lin}(F[B])$.

$$v = \sum_{\alpha \in A} \alpha_a \cdot a + \sum_{b \in B} \beta_b \cdot b$$

$$F(v) = \sum_{\alpha \in A} \alpha_a \cdot F(a) + \sum_{b \in B} \beta_b \cdot F(b)$$

$$A \subseteq \ker F$$

$$A \subseteq \ker F$$
$$F(v) = \sum_{b \in B} \beta_b \cdot F(b) \in]LinF[B]$$

 $A\cap B= ext{oraz}\ A\cup B=C$ jest lnz, wiec ze witerdzenia $ext{Lin}(A)\cap ext{Lin}(B)=0=\{0\}.$ Jezeli tak, to $0 = \ker F = \mathtt{Lin}(A) \cap \mathtt{Lin}(B) \text{ oraz } \ker F \cap \mathtt{Lin}(B) = \{0\} \text{ i wtedy } \ker F\mathtt{Lin}(B) \implies \overline{F} \upharpoonright \mathtt{Lin}(B) \text{ i } F \text{ jest 1-1 na}(B) = \{0\} \text{ oraz } \ker F \cap \mathtt{Lin}(B) = \{0\} \text{ oraz } \ker F$ B Jezeli $\sum_{b \in B} \beta_b F(b) = 0$, to wtedy $F(\sum_{b \in B} \beta_b F(b)) = 0 \in \ker F$, ale B jest lnz, wiec wszystkie $\beta_b = 0$ i F[B]jest lnz

WNIOSEK: $F:V \to W$, $\mathrm{Lin}(V) = \mathrm{Lin}(W) < \infty$ wtedy: $\ker F = 0$ jest "na" i 1-1 o jest izomorfizmem.

Zalozmy, ze F jest "na". W takim wypadku $\dim \mathrm{im}\ F = \dim W = \dim V$ i z twierdzenia o indeksie $\dim \ker F =$ $\dim V - \dim \operatorname{im} F = \dim V - \dim V = 0 \implies \ker F = \{0\}$. Tak samo implikacja w druga strone.

F jest 1-1 i F jest "na, wiec F jest bijekcja i jest izmorofizmemem

DEF: izomorfizm $F:V \to V$ nazywamy automorfizmem

zbior automorfizmow przestrzeni liniowej V oznaczamy GL(V) lub $\operatorname{Aut}(V)$

wniosek 2: jESLI MAMY KROTKI CIAG PRZESTRZENI LINIOWYCH: $V_1 \stackrel{F_1}{\to} V_2 \stackrel{F_2}{\to} V_3$ (krotki ciag dokladny) taki, ze F_1 jest 1-1, F_2 jest na i $\ker F_2 = \operatorname{im} F_1$, to wtedy

$$\dim V_2 = \dim V_1 + \dim V_3$$

DOWOD: F_1 jest 1-1, wiec z tw o rzedzie $\dim V_1 = \dim \operatorname{im} F_1 + \dim \ker F_1 = \dim \operatorname{im} G = \dim \ker F_2$, z drugiej strony dim $V_2 = \dim \ker F_2 + \dim \operatorname{im} F_2 = \dim V_1 + \dim V_3$

SUMA PROSTA

Jesli mamy dwie przestrzenie liniowe V,W, ich SUMA PROSTA to V imes W z dzialaniami

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$

 $\alpha(v, w) = (\alpha v, \alpha w)$

 $\mathtt{i} \ \mathtt{oznaczamy} \ V \oplus W$

Jesli $F_1:V_1 o W_1$ i $F_2:V_2 o W_2$, to $F_1\oplus F_2:(V_1\oplus V_2) o (W_1\oplus W_2)$

Jesli $V_1 \stackrel{F_1}{\rightarrow} W_1 \stackrel{G_1}{\rightarrow} U_1$ i $V_2 \stackrel{F_2}{\rightarrow} W_2 \stackrel{G_2}{\rightarrow} U_2$, to

$$(G_1 \oplus G_2) \circ (F_1 \oplus F_2) = (G_1 \circ F_1) \oplus (G_2 \oplus F_2)$$

wystarczy podstawic arg $(v_1, v_2) \in V_1 \oplus V_2$ i przerachowac (CWICZENIA)

Jesli mamy $V \geq U, W$, takie, ze $U \cap W = 0$, to wowczas mamy izomorfizm naturalny $U \oplus W o U + W$ zadany $(u,w)\mapsto u+w$. Jesli V=U+w, to mowimy, ze V jest suma prosta U i W.

PRZESTRZEN DUALNA

Jesli V to przestrzen liniowa, to $V^* = \operatorname{Hom}(V, k) = \{f : V \to K : f \text{ jest liniowe}\}$ i elementy V^* nazywamy funkcjonalami (na V).

LEMAT: $V^* \geq K^V$ to przestrzen wszystkich funkcji $V \to K$, niekoniecznie liniowych