

Lecture 5 - RC/RL First-Order Circuits

Beginning of Temporal Behavior Analysis of Circuits

Lecture 5

- Till now we discussed static analysis of a circuit
 - Responses at a given time depend only on inputs at that time.
 - Circuit responds to input changes infinitely fast.

Outline

- Capacitors and inductors
- Natural response of RC/RL circuits
- Step response of RC/RL circuits
- Others

Capacitors

Storage element that stores energy in electric field

Parallel plate capacitor

V-I Relationship of Capacitors

Stored Energy

· The instantaneous power delivered to the capacitor is

The energy stored in a capacitor is:

Example-1

Example-2 Capacitor Response

Important Property of Capacitors

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

[Source: Berkeley] Lecture 5

Capacitors in Series

Combining In-Series Capacitors

Capacitors in Parallel

Lecture 5

Inductors

- A storage element that stores energy in magnetic field.
 - They have applications in power supplies, transformers, radios, TVs, radars, and electric motors.
- Any conductor has inductance, but the effect is typically enhanced by coiling the wire up.

(a) Toroidal inductor

(b) Coil with an iron-oxide slug that can be screwed in or out to adjust the inductance

(c) Inductor with a laminated iron core

V-I Relationship of Inductors

Energy Stored in an Inductor

The power delivered to the inductor is:

The energy stored is:

Inductor Response

Important Property of Inductors

Inductors in Series

Lecture 5 20

Inductors in Parallel

Combining In-Parallel Inductors

Lecture 5 21

Example

Summary of Resistors, Capacitors and Inductors

Table 5-4: Basic properties of R, L, and C.

Property	R	L	C
i – υ relation	$i = \frac{v}{R}$	$i = \frac{1}{L} \int_{t_0}^t v dt' + i(t_0)$	$i = C \frac{dv}{dt}$
υ-i relation	v = iR	$\upsilon = L \frac{di}{dt}$	$v = \frac{1}{C} \int_{t_0}^t i \ dt' + v(t_0)$
p (power transfer in)	$p = i^2 R$	$p = Li \frac{di}{dt}$	$p = C \upsilon \frac{d\upsilon}{dt}$
w (stored energy)	0	$w = \frac{1}{2}Li^2$	$w = \frac{1}{2}Cv^2$
Series combination	$R_{\rm eq}=R_1+R_2$	$L_{\rm eq} = L_1 + L_2$	$\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2}$
Parallel combination	$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2}$	$\frac{1}{L_{\text{eq}}} = \frac{1}{L_1} + \frac{1}{L_2}$	$C_{\text{eq}} = C_1 + C_2$
dc behavior	no change	short circuit	open circuit
Can υ change instantaneously?	yes	yes	no
Can i change instantaneously?	yes	no	yes

[Source: Berkeley] Lecture 5

Outline

- Capacitors and inductors
- Natural response of RC/RL circuits
- Step response of RC/RL circuits
- Others

RC and RL Circuits

 A circuit that contains only sources, resistors and <u>a</u> <u>capacitor</u> is called an *RC* circuit.

 A circuit that contains only sources, resistors and <u>an</u> <u>inductor</u> is called an *RL* circuit.

Natural Response of a Charged Capacitor

Behavior (*i.e.*, current and voltage) when stored energy in the inductor or capacitor is released to the resistive part of the network (containing <u>no independent sources</u>).

(a) $t = 0^-$ is the instant just before the switch is moved from terminal 1 to terminal 2;

(b) t = 0 is the instant just after it was moved, t = 0 is synonymous with $t = 0^+$.

Natural Response of a Charged Capacitor

Natural Response of RC

Time constant: $\tau = RC$

Time Constant τ (= RC)

 A circuit with a small time constant has a fast response and vice versa.

Example

• In the circuit below, let $v_C(t=0)=15$ V. Find v_C , v_χ , and i_χ for t>0.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Natural Response of the RL Circuit

Natural Response of the RL Circuit

Natural Response of the RL Circuit

Example

• The switch in the circuit below has been closed for a long time. At t=0, the switch is opened. Calculate i(t) for t>0.

Natural Response Summary

Capacitor voltage cannot change instantaneously

$$v(0^-) = v(0^+)$$

$$v(t) = v(0)e^{-t/\tau}$$

• time constant $\tau = RC$

Inductor current cannot change instantaneously

$$i(0^-) = i(0^+)$$

$$i(t) = i(0)e^{-t/\tau}$$

• time constant
$$\tau = \frac{L}{R}$$

[Source: Berkeley]