LAST NAME:				FI	FIRST NAME:					CIRCLE:					
											Li	N	Minkoff	Zweck	
1	/12	2	/14	3	/7	4	/6	5	/12	6	/12	7	/12	Т	/75

MATH 2415 (Fall 2016) Exam I, Sep 30th

No books or notes! **NO CALCULATORS!** Show all work and give **complete explanations**. Don't spend too much time on any one problem. This 90 minute exam is worth 75 points.

- (1) [12 pts]
- (a) Find a parametrization of the line that goes through the point (-2, 2, 4) and that is perpendicular to the plane 2x y + 5z = 12.

(b) Calculate the vector projection of $\mathbf{a} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ onto $\mathbf{b} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$.

- (2) [14 pts] Let P = (3, -1, 1), Q = (4, 0, 2), and R = (6, 3, 1) be three points in space.
- (a) Find a parametrization of the form $\mathbf{r}(s,t) = \mathbf{p} + s\mathbf{u} + t\mathbf{v}$ for the plane containing P, Q, and R.

(b) Find an equation of the form Ax + By + Cz + D = 0 for the same plane as in (a).

(3) [7 pts] Find two unit vectors that are both perpendicular to $\mathbf{i} + \mathbf{j}$ and perpendicular to each other.

(4) [6 pts] Let $f(x, y) = \sqrt{x^2 + 9y^2}$. Sketch the level curves f(x, y) = k for k = 1, 2, 3.

(5)	119	pts
(O)	12	pts

(a) Plot the point with spherical coordinates $(\rho, \theta, \phi) = (6, \frac{\pi}{3}, \frac{\pi}{4})$, and find its rectangular coordinates.

(b) The equation z = r is given in cylindrical coordinates. Convert this equation to spherical coordinates.

(6) [12 pts] Make a labelled sketch of the traces (slices) of the surface

$$4x^2 - y^2 + z^2 = 0$$

in the planes $x=0,\,z=0,$ and y=k for $k=0,\,\pm 1,\,\pm 2.$ Then make a labelled sketch of the surface.

(7) [12 pts] Let C be the curve parametrized by

$$x = t,$$
 $y = \frac{t^2}{2},$ $z = \frac{t^3}{6}.$

Find the length of C from the origin to the point (6,18,36).

Please sign the following honor statement:

On my honor, I pledge that I have neither given nor received any aid on this exam.

Signature: