Az egyterületű OSPF

Az OSPF az Open Shortest Path First rövidítése. Magyarul legrövidebb út először. Az OSPF egy kapcsolatállapot alapú forgalomirányító protokoll. A távolságalapú RIP leváltására alkották meg. A RIP kicsi ugrásszám korlátja, és az útvonalak különböző sebessége nem teszi ideális útválasztó protokollá. A RIP-el szemben a OSPF gyorsabb konvergenciát is lehetővé tesz.

Jellemzők:

- gyors konvergencia
- osztály nélküli
- skálázható
 - o bevezeti a terület fogalmát
- SPF algoritmus használ
 - Shortest Path First
- támogatja a VLSM-et és a CIDR-et
- frissítés csak változáskor
 - o nincs periodikus frissítés
- hitelesítés

SPF algoritmus

- Edsger Wybe Dijkstra
 - o [ˈɛtsxər ˈvibə ˈdɛikstra]
 - o holland matematikus, programozó és elméleti fizikus
 - o munkáit számos nyelven használják
- Shortest Path First
- az algoritmus:
 - o célok elérésének teljes költségét számolja
 - SPF fát épít

OSPF és az IP

- OSPFv2 IPv4
- OSPFv2 IPv6

Fejlesztés

- a fejlesztés kezdete: 1987
- fejlesztő:
 - o Internet Engineering Task Force (IETF)
 - o OSPF munkacsoport

Csoportosítás

Forgalomirányító protokollok osztályozása							
		В	lső		Külső		
	Távolság vektor alapú		Kapcsolat állapot alapú		Útvonal vektor alapú		
IPv4	RIPv2	EIGRP	OSPFv2	IS-IS	BGP4		
IPv6	RIPng	EIGRP for IPv6	OSPFv3	IS-IS for IPv6	MP-BGP		

Hitelesítés

- Message Digest MD5 alapú hitelesítés
- Ha be van kapcsolva: a router csak akkor fogad irányítási információt, ha egyezik a kulcs

Adminisztratív távolság

közvetlen kapcsolt	0			
statikus	1			
EIGRP összesített irányítás 5				
External BGP	20			
Internal EIGRP	90			
IGRP	100			
OSPF	110			
IS-IS	115			
RIP	120			
External EIGRP	170			
Internal BGP	200			

OSPF adatbázisai

- szomszédsági adjacency database
- kapcsolatállapot link-state database
- továbbítási adatbázis forwarding database irányítótábla

Egy konvergencia folyamat

A forgalomirányító elsőként hello üzenetet küldenek egymásnak, hogy meggyőzödjenek vane szomszédjuk, aki szintén OSPF-et beszél. Ha igen, felveszik szomszédnak.

Ezek után kapcsolat állapotot hirdet, angolosan Link-State Advertisements, vagy röviden csak LSA. LSA csomagokkal szórja meg a hálózatot. A szomszédok is visszakülik hirdetéseiket, ezeket feldolgozza és elkezd topológiai táblát építeni.

Futtatja az SPF algoritmust, a legjobb útvonal kiszámításához, majd SPF fát építi.

- szomszédsági kapcsolatok építése hello csomag
- kapcsolatállapot hirdetés Link-State Advertisements LSA

- o Az LSA tartalmaz:
 - minden közvetlenül kapcsolódó hálózat költsége
 - a router elárasztja a szomszédokat
 - a szomszéd azonnal továbbítja
- topológia tábla építése
- SPF-algoritmus futtatása
 - o létrejön az SPF-fa

Cél Legrövidebb út Költség

 $\begin{array}{cccc} 10.3.0.0/16 & R1 > R2 & 17 \\ 10.5.0.0/16 & R1 > R2 > R3 & 29 \\ 10.7.0.0/16 & R1 > R5 > R4 & 12 \\ 10.11.0.0/16 & R1 > R5 & 7 \end{array}$

OSPF megvalósítások

- egyterületű
 - Single-Area OSPF
 - o egyetlen terület
 - o gerinc terület
 - o backbone area, area 0
- többterületű OSPF
 - o multiarea OSPF
 - hierarchikus

Multiarea OSPF:

Minden területnek a 0 gerinchez kell kapcsolódnia.

Ha topológia változik a változások következtében, minden forgalomirányító futtatja az SPF-algoritmust. Ez nagy számításigényű, de így csak területen belül lesz újraszámolva.

A területek között távolságvektor formájában terjed. Ha egy területen sok forgalomirányító van, akkor túl nagy LSDB-ék vannak.

OSPF üzenetek

- hello csomag
- adatbázis-leíró
- frissítő (kapcsolatállapot)
- nyugtázó

Etherneten át küldött OSPF üzenet

Adatkapcsolati Ethernet keretfejléc.

A következő csoportos MAC címzés lehet:

- 01-00-5E-00-00-05 vagy
- 01-00-5E-00-00-06

Data Link Frame Header

IP szinten

IP csomagfejléc.

A következő csoportos IP címzés lehet:

- 224.0.0.5 vagy
- 224.0.0.6
- protokoll: 89

Data Link Frame Header IP Packet Header

IPv6 esetén: ff02::5 a cím.

OSPF üzenetfej

OSPF csomag

Tartalma:

- OSPF típusa
- router ID
- area ID

Data Link Frame Header IP Packet Header OSPF Packet Header

OSPF üzenet

OSPF csomagtípustól függő adatok:

- 0x01 Hello
- 0x02 Database Description
- 0x03 Link State Request
- 0x04 Link State Update
- 0x05 Link State
- Acknowledgment

Data Link Frame IP Packet OSPF Packet Type Header Header Specified Database

LSP üzenetek

Az LSP kapcsolatállapotcsomag.

Az LSP üzenetek típusai:

- 1-es típus hello csomag
- 2-es típus adatbázis leíró csomag
 - o Database Description, DBD
 - o LSDB-adatbázis rövidített listája
- 3-as típus kapcsolatállapot kérés
 - o Link-State Request, LSR
- 4-es típus kapcsolatállapot frissítés csomag
 - o Link-State Update LSU
- 5-ös típus kapcsolatállapot nyugta csomag
 - Link-State Acknowledgment
 - o LSAck

Hello üzenet

Az OSPF a Hello csomaggal építi ki a szomszédsági viszonyait. Hello üzenetben közli, hogy milyen beállításai vannak, amelyek meg kell egyezzenek a szomszéddal. De ezzel történik a DR és az BDR kiválasztása is.

Amikor egy forgalomirányító kap egy Hello csomagot, megnézi a küldő azonosítóját. Ha még nem ismeri, akkor szomszédsági viszonyt alakít vele ki.

A forgalomirányítók a **Hello Interval** időintervallumban megadott időközönként küldenek Hello üzenetet. Az érték másodpercben megadott érték. Többes-hozzáférésű hálózatok esetén ez az érték 10 másodperc.

A szomszédok között ez az érték meg kell egyezzen, ez a szomszédsági viszony létrejöttének feltétele.

Többes hozzáférésű hálózat és pon-pont kapcsolat esetén a a hello csomagok 10 másodpercenként indulnak. Olyan hálózatban, ahol nincs szórás a csomagok 30 másodpercenként indulnak, mint a Frame Relay-ben.

Router Priority

A Router Priority a forgalomirányítók prioritását szabályzó jellemző. Ezt a jellemzőt DR/BDR választás során használjuk. Az értéke 0 és 255 közötti érték lehet. Az alapértelmezés: 1. Minél magasabb a szám, annál valószínűbb, hogy DR lesz a forgalomirányító.

Dead Interval

A Dead Inerval, magyarul halott intervallum. A szomszéd, ha ennyi ideig nem válaszol, hallottnak nyilvánítja a forgalomirányító. Alapértelmezés szerint ez a hello négyszerese (4x).

Szomszédok között azonosnak kell lenni, különben a szomszédság nem jön létre.

Többes-hozzáférésű hálózat és pont-pont kapcsolat esetén ez alapból: 40 másodperc.

NBMA hálózatok, pl. Frame Relay: 120 másodperc. Az NBMA a Non-Broadcast Multiple Access rövidítése.

A DR

A DR a Designated Router rövidítése. Kijelölt forgalomirányító. Gyűjtő elosztó pont.

BDR

A BDR a Backup Designated Router rövidítése. Tartalék forgalomirányító.

List Of Neighbors

A List Of Neighbor a szomszédok listája, azok azonosítóját tartalmazza.

Üzenetváltások

A DBD az LSDB rövidített változata. A DBD a Database Description rövidítése.

A hello üzenetek után a forgalomirányítók rövidített DBD-t küldenek a megismert szomszédhoz, hogy az összevethesse saját adatbázisával.

A szomszéd ha több információt szeretne ehhez a megküldött DBD-hez, akkor LSR üzenetet küld.

LSU

Egy LSU egy vagy több LSA-t tartalmazhat. Az OSPFv2 11 különböző LSA típust ad meg:

LSA típusok				
Típus	Leírás			
1	Router LSA			
2	hálózat LSA			
3,4	összevonó LSA			
5	külső autonóm system LSA			
6	Multicast OSPF LSA			
7	Definíció a Not-So-Stubby Areas számára			
8	Külső tulajdonságok LSA, BGP számára			

Az OSPF indulása

9, 10, 11 átlátszó LSA

Down state	nem fogadunk Hello-t, de küldünk			
Init state	Hello csomag fogadása, Router ID küldése			
Two-Way state	Ethernet kapcsolaton DR és BDR választás Pont-pont kapcsolat esetén szinkronozálás			
ExStart state	A master/slave kapcsolatok és a DBD sorszám megbeszélése			
Exchange state DBD csomag csere				
Loading state	LSR és LSU használata			
Full state	A forgalomirányító konvergált			

OSPF működés

Ethernet kapcsolat esetén DR-t és BDR-t választunk, a többszörös szomszédsági viszony kialakulása ellen. Az LSA üzenetek is túl nagy számban jönnének létre.

DR/BDR

- DR Gyűjtő elosztó pont. Master.
 BDR DR tartaléka