

- Các phương pháp học có giám sát
  - Hồi quy tuyến tính (Linear regression)



#### Học có giám sát

#### Học có giám sát (Supervised learning)

- Tập dữ liệu học (training data) bao gồm các quan sát (examples, observations), mà mỗi quan sát được gắn kèm với một giá trị đầu ra mong muốn.
- Mục đích là học một hàm (vd: một phân lớp, một hàm hồi quy,...) phù hợp với tập dữ liệu hiện có và khả năng tổng quát hoá cao.
- Hàm học được sau đó sẽ được dùng để dự đoán cho các quan sát mới.
- Phân loại (classification): nếu đầu ra (output y) thuộc tập rời rạc
   và hữu hạn.
- □ Hồi quy (regression): nếu đầu ra (output y) là các số thực.

# 1

### Hồi quy tuyến tính: Giới thiệu

- Bài toán hồi quy: cần học một hàm y = f(x) từ một tập học cho trước D = {(x₁, y₁), (x₂, y₂), ..., (xӎ, yӎ)} trong đó yᵢ ≅f(xᵢ) với mọi i.
  - □ Mỗi quan sát được biểu diễn bằng một véctơ n chiều, chẳng hạn  $\mathbf{x}_i = (\mathbf{x}_{i1}, \mathbf{x}_{i2}, ..., \mathbf{x}_{in})^T$ .
  - Mỗi chiều biểu diễn một thuộc tính (attribute/feature)
- Mô hình tuyến tính: nếu giả thuyết hàm y = f(x) là hàm tuyến tính.

$$f(\mathbf{x}) = w_0 + w_1 x_1 + ... + w_n x_n$$

■ Học một hàm hồi quy tuyến tính thì tương đương với việc học véctơ trọng số  $\mathbf{w} = (w_0, w_1, ..., w_n)^T$ 



#### Hồi quy tuyến tính: Ví dụ

Hàm tuyến tính f(x) nào phù hợp?

| 0.13  | -0.91 |
|-------|-------|
| 1.02  | -0.17 |
| 3.17  | 1.61  |
| -2.76 | -3.31 |
| 1.44  | 0.18  |
| 5.28  | 3.36  |
| -1.74 | -2.46 |
| 7.93  | 5.56  |
|       |       |



Ví dụ: f(x) = -1.02 + 0.83x



#### Phán đoán tương lai

- Đối với mỗi quan sát  $\mathbf{x} = (x_1, x_2, ..., x_n)^T$ :
  - Giá trị đầu ra mong muốn c<sub>x</sub>
     (Không biết trước đối với các quan sát trong tương lai)
  - Giá trị phán đoán (bởi hệ thống)

$$y_x = w_0 + w_1 x_1 + ... + w_n x_n$$

- Ta thường mong muốn y<sub>x</sub> xấp xỉ tốt c<sub>x</sub>
- Phán đoán cho quan sát tương lai z = (z<sub>1</sub>, z<sub>2</sub>, ..., z<sub>n</sub>)<sup>T</sup>
  - Cần dự đoán giá trị đầu ra, bằng cách áp dụng hàm mục tiêu đã học được f:

$$f(z) = w_0 + w_1 z_1 + ... + w_n z_n$$



### Học hàm hồi quy

- Mục tiêu học: học một hàm f\* sao cho khả năng phán đoán trong tương lai là tốt nhất.
  - □ Tức là sai số  $|c_z f(z)|$  là nhỏ nhất cho các quan sát tương lai z.
  - Khả năng tổng quát hóa (generalization) là tốt nhất.
- Vấn đề: Có vô hạn hàm tuyến tính!!
  - Làm sao để học? Quy tắc nào?
- Dùng một tiêu chuẩn để đánh giá.
  - Tiêu chuẩn thường dùng là hàm lỗi (generalization error, loss function, ...)



#### Hàm đánh giá lỗi (loss function)

- Định nghĩa hàm lỗi E
  - □ Lỗi (error/loss) phán đoán cho quan sát  $\mathbf{x} = (x_1, x_2, ..., x_n)^T$

$$r(\mathbf{x}) = [cx_1 f_*(\mathbf{x})]^2 = (cx_1 w_0 - w_1 x_1 - ... - w_n x_n)^2$$

Lỗi của hệ thống trên toàn bộ không gian của x:

$$E = \mathbf{E}_{x}[r(\mathbf{x})] = \mathbf{E}_{x}[cx_{-}f*(\mathbf{x})]^{2}$$

Mục tiêu học là tìm hàm f\* mà E là nhỏ nhất:

$$f^* = \arg\min_{f \in H} E_{\chi}[r(\chi)]$$

Trong đó H là không gian của hàm f.

 Nhưng: trong quá trình học ta không thể làm việc được với bài toán này.



## Hàm lỗi thực nghiệm

- Ta chỉ quan sát được một tập D = {(x<sub>1</sub>, y<sub>1</sub>), (x<sub>2</sub>, y<sub>2</sub>), ..., (x<sub>M</sub>, y<sub>M</sub>)}. Cần học hàm f từ D.
- Lỗi thực nghiệm (empirical loss; residual sum of squares)

$$RSS(f) = \sum_{i} (y_i - f(x_i))^2$$
$$= \sum_{i} (y_i - w_0 - w_1 x_{i1} - \dots - w_n x_{in})^2$$

- $\square$  RSS/M là một xấp xỉ của  $\mathbf{E}_{\mathbf{x}}[\mathbf{r}(\mathbf{x})]$  trên tập học  $\mathbf{D}$
- Nhiều phương pháp học thường gắn với RSS.



#### Bình phương tối thiếu

Cho trước D, ta đi tìm hàm f mà có RSS nhỏ nhất.

$$f^* = \arg \min_{RSS}(f)$$
  
 $f \in H$ 

- Đây được gọi là bình phương tối thiểu (least squares).
- Tìm nghiệm w\* bằng cách lấy đạo hàm của RSS và giải phương trình RSS' = 0. Thu được:

$$\mathbf{w}^* = (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{y}$$

Trong đó **A** là ma trận dữ liệu cỡ  $M_x(n+1)$  mà hàng thứ i là  $A_i = (1, x_{i1}, x_{i2}, ..., x_{in});$  **B**-1 là ma trận nghịch đảo;

$$y = (y_1, y_2, ..., y_M)^T$$
.

Chú ý: giả thuyết A⊺A tồn tại nghịch đảo.

#### Bình phương tối thiếu: thuật toán

- Input: **D** = {( $\mathbf{x}_1, y_1$ ), ( $\mathbf{x}_2, y_2$ ), ..., ( $\mathbf{x}_M, y_M$ )}
- Output: w\*
- Học w\* bằng cách tính:

$$w^* = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}y$$

- □ Trong đó **A** là ma trận dữ liệu cỡ Mx(n+1) mà hàng thứ i là  $\mathbf{A}_i = (1, x_{i1}, x_{i2}, ..., x_{in}); \mathbf{B}^{-1}$  là ma trận nghịch đảo;  $\mathbf{y} = (y_1, y_2, ..., y_M)^T$ .
- □ Chú ý: giả thuyết A<sup>T</sup>A tồn tại nghịch đảo.
- Phán đoán cho quan sát mới x:

$$y_s = w_0^* + w_1^* x_1 + \dots + w_n^* x_n$$

### Bình phương tối thiểu: ví dụ

#### Két quả học bằng bình phương tối thiểu

| X     | У     |
|-------|-------|
| 0.13  | -1    |
| 1.02  | -0.17 |
| 3     | 1.61  |
| -2.5  | -2    |
| 1.44  | 0.1   |
| 5     | 3.36  |
| -1.74 | -2.46 |
| 7.5   | 5.56  |
|       |       |



$$f^*(x) = 0.81x - 0.78$$

### Bình phương tối thiểu: nhược điểm

- Nếu A<sup>⊤</sup>A không tồn tại nghịch đảo thì không học được.
  - Nếu các thuộc tính (cột của A) có phụ thuộc lẫn nhau.
- Độ phức tạp tính toán lớn do phải tính ma trận nghịch đảo.
  - →Không làm việc được nếu số chiều n lớn.
- Khả năng overfitting cao vì việc học hàm f chỉ quan tâm tối thiểu lỗi đối với tập học đang có.

### Một số ví dụ trên Python

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.utils import check_random_state
n = 100
x = np.arange(n)
rs = check_random_state(0)
y = rs.randint(-50, 50, size=(n,)) + 50. * np.log1p(np.arange(n))
# Fit LinearRegression models
Ir = LinearRegression()
Ir.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression
fig = plt.figure()
plt.plot(x, y, 'r.', markersize=12)
plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-')
plt.legend(('Data', 'Linear Fit'), loc='lower right')
plt.title('Regression')
plt.show()
```





### Ví dụ hiển thị dữ liệu

```
import numpy as np
import matplotlib.pyplot as plt
# chieu cao (cm)
X = \text{np.array}([[147, 150, 153, 158, 163, 165, 168, 170, 173, 175, 178, 180, 183]]).T
# can nang (kg)
y = np.array([49, 50, 51, 54, 58, 59, 60, 62, 63, 64, 66, 67, 68])
# hien thi du lieu
plt.plot(X, y, 'bo')
plt.xlabel('Chieu cao (cm)')
                                            67.5
plt.ylabel('Can nang (kg)')
                                            65.0
plt.show()
```

62.5

60.0 57.5 55.0

52.5 50.0

150

155

160

165

Chieu cao (cm)

170

175

180

Can nang (kg)

#### Hồi quy tuyến tính sử dụng thư viện Scikit-learn

```
from sklearn import linear_model
regr = linear_model.LinearRegression()
# height (cm)
X = \text{np.array}([[147, 150, 153, 158, 163, 165, 168, 170, 173, 175, 178, 180, 183])
]]).T
# weight (kg)
y = np.array([49, 50, 51, 54, 58, 59, 60, 62, 63, 64, 66, 67, 68])
regr.fit(X, y)
print( 'He so w_1=', regr.coef_[0],",w_0 =",regr.intercept_ )
# Preparing the fitting line
w_0 = regr.intercept_
w_1 = regr.coef_[0]
x0 = np.linspace(145, 185, 2)
y0 = w_0 + w_1*x0
# Drawing the fitting line
plt.plot(X, y, 'r^') # data
plt.plot(x0, y0) # the fitting line
plt.xlabel('Chieu cao (cm)')
plt.ylabel('Can nang (kg)')
plt.show()
```

He so  $w_1$ = 0.5592049619396674 , $w_0$  = -33.73541020580774



#### Ví dụ bộ dữ liệu Boston





#### Ví dụ: Bộ dữ liệu winequality-red.csv

```
from sklearn import linear_model
import pandas as pd
import numpy as np
wine = pd.read_csv("winequality-red.csv", sep=";")
clf = linear_model.LinearRegression()
# Sử dụng "density (mật độ)" làm biến giải thích
X = wine.loc[:, ['density']].as_matrix()
# Sử dụng "alcohol (Số độ cồn)" làm biến mục đích
Y = wine['alcohol'].as_matrix()
# Tao model suy đoán
clf.fit(X, Y)
# Hệ số hồi quy
print("Hệ số Hồi quy:",clf.coef_)
# Sai số
print(clf.intercept_)
# Score
print(clf.score(X, Y))
```



#### # Hoi quy da bien

```
from sklearn import linear_model
clf = linear model.LinearRegression()
# Tạo dataframe chỉ chứa data làm biến giải thích
wine_except_quality = wine.drop("quality", axis=1)
X = wine_except_quality
# Sử dung quality làm biến mục tiêu
Y = wine['quality']
# Tao model
clf.fit(X, Y)
# Hê số hồi quy
print(pd.DataFrame({"Name":wine_except_quality.columns
, "Coefficients":clf.coef_}).sort_values(by='Coefficients'))
```

|    | Name                 | Coefficients |
|----|----------------------|--------------|
| 7  | density              | -17.881164   |
| 4  | chlorides            | -1.874225    |
| 1  | volatile acidity     | -1.083590    |
| 8  | рН                   | -0.413653    |
| 2  | citric acid          | -0.182564    |
| 6  | total sulfur dioxide | -0.003265    |
| 5  | free sulfur dioxide  | 0.004361     |
| 3  | residual sugar       | 0.016331     |
| 0  | fixed acidity        | 0.024991     |
| 10 | alcohol              | 0.276198     |
| 9  | sulphates            | 0.916334     |

#### Chuẩn hóa dữ liệu

```
from sklearn import linear_model
clf = linear_model.LinearRegression()
# chuẩn hoá dữ liệu các cột
wine2 = wine.apply(lambda x: (x - np.mean(x)) / (np.max(x) - np.mean(x))
np.min(x))
# Tạo dataframe không chứa quality làm biến giải thích
X = wine2.drop("quality", axis=1)
# Sử dụng quality làm biến mục tiêu
Y = wine2['quality']
clf.fit(X, Y)
print(pd.DataFrame({"Name":X.columns, "Coefficients":np.abs(clf.coef_)
}).sort_values(by='Coefficients') )
print(clf.intercept_)
```

#### Chuẩn hóa dữ liệu:

|    | Name                 | Coefficients |
|----|----------------------|--------------|
| 2  | citric acid          | 0.036513     |
| 3  | residual sugar       | 0.047687     |
| 7  | density              | 0.048708     |
| 0  | fixed acidity        | 0.056479     |
| 5  | free sulfur dioxide  | 0.061931     |
| 8  | рН                   | 0.105068     |
| 6  | total sulfur dioxide | 0.184775     |
| 4  | chlorides            | 0.224532     |
| 9  | sulphates            | 0.306056     |
| 1  | volatile acidity     | 0.316408     |
| 10 | alcohol              | 0.359057     |