Linear Regression with Python - House Price Prediction

The data contains the following columns:

- 'Avg. Area Income': Avg. Income of residents of the city house is located in.
- · 'Avg. Area House Age': Avg Age of Houses in same city
- · 'Avg. Area Number of Rooms': Avg Number of Rooms for Houses in same city
- 'Avg. Area Number of Bedrooms': Avg Number of Bedrooms for Houses in same city
- · 'Area Population': Population of city house is located in
- · 'Price': Price that the house sold at
- 'Address': Address for the house

Import Libraries

```
In [255]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Check out the Data

```
In [256]:
```

```
USAhousing = pd.read csv('USA Housing.csv')
```

In [257]:

USAhousing.head()

Out[257]:

Addr	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Ferry / 674\nLaurabury, 370	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnson Vi∈ Suite 079\nL Kathleen, C	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Elizab Stravenue\nDanielto WI 0648	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nFPO 448	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymond\nF AE 09(6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4

In [258]:

USAhousing.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):
Avg. Area Income
                                5000 non-null float64
                                5000 non-null float64
Avg. Area House Age
                                5000 non-null float64
Avg. Area Number of Rooms
Avg. Area Number of Bedrooms
                                5000 non-null float64
                                5000 non-null float64
Area Population
Price
                                5000 non-null float64
                                5000 non-null object
Address
dtypes: float64(6), object(1)
memory usage: 273.5+ KB
```

In [259]:

USAhousing.describe()

Out[259]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [260]:

USAhousing.columns

Out[260]:

Plottings

In [261]:

sns.pairplot(USAhousing)

Out[261]:

<seaborn.axisgrid.PairGrid at 0x13e898358>

In [262]:

sns.distplot(USAhousing['Price'])

Out[262]:

<matplotlib.axes._subplots.AxesSubplot at 0x13e6dad30>

In [263]:

sns.heatmap(USAhousing.corr())

Out[263]:

<matplotlib.axes._subplots.AxesSubplot at 0x141dca908>

Training a Linear Regression Model

X and y arrays

```
In [264]:
```

Train Test Split

Now let's split the data into a training set and a testing set. We will train out model on the training set and then use the test set to evaluate the model.

```
In [265]:
```

```
from sklearn.model_selection import train_test_split
```

```
In [266]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_stat
```

Creating and Training the Model

```
In [267]:
```

```
from sklearn.linear_model import LinearRegression
```

```
In [268]:
```

```
lm = LinearRegression()
```

```
In [269]:
```

```
lm.fit(X_train,y_train)
```

```
Out[269]:
```

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize= False)

Model Evaluation

Let's evaluate the model by checking out it's coefficients and how we can interpret them.

```
In [270]:
```

```
print(lm.intercept_)
```

```
-2640159.79685
```

```
In [277]:
```

```
coeff_df = pd.DataFrame(lm.coef_,X.columns,columns=['Coefficient'])
coeff_df
```

Out[277]:

	Coefficient
Avg. Area Income	21.528276
Avg. Area House Age	164883.282027
Avg. Area Number of Rooms	122368.678027
Avg. Area Number of Bedrooms	2233.801864
Area Population	15.150420

Interpreting the coefficients:

- Holding all other features fixed, a 1 unit increase in Avg. Area Income is associated with an *increase of \$21.52 *.
- Holding all other features fixed, a 1 unit increase in Avg. Area House Age is associated with an *increase
 of \$164883.28 *.
- Holding all other features fixed, a 1 unit increase in **Avg. Area Number of Rooms** is associated with an *increase of \$122368.67 *.
- Holding all other features fixed, a 1 unit increase in **Avg. Area Number of Bedrooms** is associated with an *increase of \$2233.80 *.
- Holding all other features fixed, a 1 unit increase in Area Population is associated with an *increase of \$15.15 *.

Predictions from our Model

Let's grab predictions off our test set and see how well it did!

```
In [279]:
```

```
predictions = lm.predict(X_test)
```

In [282]:

plt.scatter(y_test,predictions)

Out[282]:

<matplotlib.collections.PathCollection at 0x142622c88>

Residual Histogram

In [281]:

sns.distplot((y_test-predictions),bins=50);

Regression Evaluation Metrics

Here are three common evaluation metrics for regression problems:

Mean Absolute Error (MAE) is the mean of the absolute value of the errors:

$$\frac{1}{n}\sum_{i=1}^n|y_i-\hat{y}_i|$$

Mean Squared Error (MSE) is the mean of the squared errors:

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Root Mean Squared Error (RMSE) is the square root of the mean of the squared errors:

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$$

Comparing these metrics:

- MAE is the easiest to understand, because it's the average error.
- **MSE** is more popular than MAE, because MSE "punishes" larger errors, which tends to be useful in the real world.
- RMSE is even more popular than MSE, because RMSE is interpretable in the "y" units.

All of these are loss functions, because we want to minimize them.

```
In [275]:
```

```
from sklearn import metrics
```

```
In [276]:
```

```
print('MAE:', metrics.mean_absolute_error(y_test, predictions))
print('MSE:', metrics.mean_squared_error(y_test, predictions))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions)))
```

MAE: 82288.2225191 MSE: 10460958907.2 RMSE: 102278.829223