大数据系统可靠性基准测试 ReliabilityBench

系统研发团队:郑莹莹,许利杰,刘重瑞,沈雯婷,赵伟,王伟

联系我们: zhengying14@otcaix.iscas.ac.cn

"大数据系统的运行是否可靠?有没有隐藏的缺陷?"

"数据处理和分析结果靠不靠谱?"

"系统升级是否引入了新的问题?"

系统上线运行前,应用开发、运维人员和用户 是否还在为这些问题"纠结"?

ReliabilityBench是一种面向大数据系统的可靠性测 试框架,提供大数据SQL查询、大规模图分析以及机器学 习等广泛使用的典型应用,并根据应用的计算特征生成满 足异常规则的测试数据,同时利用组合测试技术削减参数 组合空间。该框架可用于提前发现大数据系统、应用和数 据存在的可靠性问题。

典型应用构造

针对社交网络、搜索引擎、数据采集及数 据查询等应用场景,结合现有大数据系统基准测 试中提供的应用类型,选取了若干SQL、Graph 、Machine Learning以及Streaming类型、使 用广泛并且具有一定计算特征的应用作为典型应

类别	应用	计算属性	
	Scan	单表操作	
SOL	Aggregate	单表操作	
SQL	Join	多表关联	
	Mix	混合操作	
Graph	PageRank	迭代计算	
	TriangleCount		
	ConnectedComponents		
	SingleSourceShortestPaths		
	LogisticsRegression	分类算法、迭代计算	
Machine Learning	K-means	聚类算法、迭代计算	
	ALS	交替最小二乘法	
	RandomForest	分类、回归、宽度优先树	
	SVM	分布式双梯度下降	
Ctuo o no in a	WindowJoin	数据流的关联操作	
Streaming	WindowWordCount	数据流的flatmap操作	

异常数据生成

将具有以下特征的数据称为异常数据:数据量大 、数据倾斜、数据稀疏、数据维度高以及数据分布异

异常数据生成的步骤如下:1.给定一个应用;2.分 析应用计算特性; 3.根据应用特征, 选取异常规则; 4. 生成异常数据。

应用类型	计算特性	异常规则	异常数据
SQL	SQL基础查询语句中Scan、Aggregate、Join等应用在处理key/value对,其计算复杂度与key的分布相关。	数据量大 数据倾斜	1. 对影响较小的属性列,采用范围内的均匀分布; 2. 对两表连接的关联列以及满足Zipf定律的属性列,采用Zipf分布生成倾斜数据。
Graph	Graph中的应用大多需要迭代计算,在以顶点为中心的迭代模型中,如果顶点收集消息阶段有很重的操作时,单个顶点的计算压力会增大。	数据量大 数据稀疏 数据分布异常	1. 使用泊松分布生成顶点离散的图; 2. 使用Zipf分布生成顶点度异常分布的稀疏图。
Machine Learning	Machine Learning中的应用(如LogisticRegression和K-means等)采用矩阵征作为输入数据,因此其计算与矩阵特征(1.矩阵总大小;2.矩阵维度;3.每个矩阵列的分布;4.矩阵稀疏性等)有关系。 其它应用,如RandomForest等,需要在内存中保存宽度优先树并使用随机采样来训练树。当数据维度过高时,资源使用量也增加。	数据量大 数据稀疏 数据维度高 数据分布异常	1. 原始数据扩展生成异常数据; 2. 随机合成满足不同维度、实例数、稀疏度以及异常分布(高斯分布、伽马分布、加马分布、泊松分布、指数分布、Zipf分布及其混合)等数据。

组合参数测试

大数据系统参数包括:系统参数(可能会影响 系统数据分配或任务分配等的参数)和应用参数(应用或算法本身运行时需要的参数)。针对上述参 数,在两个假设(参数相互独立及参数取值与资源 占用有正负相关性)的基础上,使用贪心算法进行 参数组合空间削减测试。针对参数取值不满足相关 性要求的,使用探测性方法来确定参数取值。

系统获奖及论文发表

- ✓ 2016年度OW2国际程序竞赛第2名
- ✓ 2016年度NASAC软件系统竞赛三等奖
- ✓ ICDCS 2017 JCC Workshop论文

评测发现的系统缺陷与应用错误

目前已发现Apache Spark系统的1个严重系统缺陷和6个应用错误:

- 发现的严重bug [SPARK-4672] , 适用于所有的迭代图应用
- Join查询:小表内连接大表出现内存溢出错误
- Mix查询:一表同时参与多次Join操作时计算结果错误
- RandomForest应用:在数据维度高、多实例数、数据混合分布时出现内存溢出错误
- LogisticsRegression应用:在数据量大、数据维度高、倾斜数据时出现运行超时错误
 - ALS应用:在数据量大以及迭代次数多时出现内存溢出错误
- PageRank应用:在数据量大以及数据倾斜时出现内存溢出错误

应用名	输入数据	配置参数/操作描述	错误类型
Join	10GB,倾斜数据	小表Inner Join大表	内存溢出
Mix	10GB,倾斜数据	一表多次Join操作	计算结果出错
RandomForest	1 百万实例, 1000维 度, 伽马、泊松混合 分布	numTrees=100, maxDepth=30, dimensions=1000	内存溢出
LogisticsRegression	1.05GB 倾斜数据, 20216830维度	split=268.25MB, partitionNum=4	运行超时
ALS	3GB数据量	numIteration=20, sampleFraction=0.001, dataFeature=20	StackOutOfMemory
PageRank	10GB数据, 1百万顶 点, 2千万边	收敛精度=0.001	内存溢出