Laboratório 3 - Programação Linear

Erik Perillo, RA135582

28 de maio de 2017

1 Formulação do Problema

O problema consiste em encontrar a melhor alocação possível de recursos entre roteadores e servidores.

Para isso, considere um problema com um conjunto de terminais T e tamanho $|T|=n_1$ com requerimentos de banda r_t para todo $t\in T$, um conjunto de roteadores R e tamanho $|R|=n_2$ com limites de banda l_r para todo $r\in R$ e um conjunto de possíveis conexões X com tamanho |X|=m com custo por unidade de banda c_x para todo $x\in X$.

Queremos minimizar o custo total das ligações:

$$\min z = \sum\nolimits_{x \in X} x c_x$$

Sujeito a:

• Cada terminal deve receber pelo menos uma certa quantidade de banda:

$$\sum\nolimits_{x \in Adj(t)} x \ge r_t, \ \forall \ t \in T$$

• Cada roteador pode fornecer no máximo uma certa quantidade de banda:

$$\sum\nolimits_{x \in Adj(r)} x \le l_t, \ \forall \ r \in R$$

• Os valores são não-negativos:

$$x \ge 0, \ \forall \ x \in X$$