150А. СПЕКТРАЛЬНЫЙ АНАЛИЗ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ

<u>Принадлежности</u>: персональный компьютер; USB-осциллограф АКИП-4107; функциональный генератор WaveStation 2012; соединительные кабели.

В работе изучаются спектры периодических электрических сигналов различной формы (последовательности прямоугольных импульсов и цугов, а также амплитудно- и фазо-модулированных гармонических колебаний). Спектры этих сигналов наблюдаются с помощью спектроанализатора, входящего в состав USB-осциллографа и сравниваются с рассчитанными теоретически.

Экспериментальная установка.

Рис. 1

Функциональный генератор WaveStation 2012 позволяет сформировать два различных электрических сигнала, которые выводятся на два независимых канала – "СН1" и "СН2". Сигнал с канала "СН1" подается на вход "А", а сигнал с канала "СН2" – на вход "В" USB-осциллографа. Затем эти сигналы подаются на вход компьютера через USB-соединение. При работе USB-осциллографа в режиме осциллографа, на экране компьютера можно наблюдать каждый из сигналов в отдельности, а также их произведение. В режиме спектроанализатора можно наблюдать спектры этих сигналов.

При включении функционального генератора, на его экране отображается информация о параметрах электрического сигнала. На рис. 2 показаны области на экране генератора, в которых отображены следующие данные:

Рис. 2

- А форма или тип сигнала и номер выходного канала;
- Б форма и параметры выходного сигнала;
- В область установки параметров выходного сигнала;
- Γ форма или тип сигнала;
- Д экранное меню для установки параметров сигнала.

Передняя панель функционального генератора показана на рис. 3.

Рис. 3

1 — кнопка включения; **2** — USB-разъем; **3** — экран; **4** — кнопки экранного меню; **5** — кнопки выбора типа сигналов; **6** — цифровая панель; **7** — функциональные кнопки; **8** — разъемы с кнопками включения (выключения) вы-

ходных сигналов 1-го и 2-го каналов; **9** – кнопки перемещения; **10** – подстроечный регулятор.

Общие принципы работы с генератором.

После включения кнопкой **1** питания генератора, одной из кнопок **5** выбирается один из типов сигналов. При этом кнопки **4** экранного меню используются для выбора и изменения параметров сигнала. Большая часть кнопок экранного меню регулирует два связанных между собой параметра (например: частота – период), которые отображаются в правой части экрана напротив соответствующей кнопки. При однократном нажатии такой кнопки активируется верхний параметр, при повторном нажатии — нижний. Активированный параметр отображается на подсвеченном фоне. Изменить один из параметров сигнала можно выделив его одной из кнопок **4**, после чего один из числовых разрядов этого параметра на экране становится выделенным. Кнопки перемещения **9** " , " " перемещают выделенный числовой разряд параметра, который можно изменить с помощью цифровой панели **6** или подстроечного регулятора **10**. После установки числового значения параметра, надо нажать соответствующую кнопку **4** для установки единицы измерения данного параметра.

Задание.

I Подготовка приборов к работе.

- 1. Проверьте соединение блоков экспериментальной установки, согласно рис. 1 (канал "СН1" соединен с разъемом "А", а канал "СН2" с разъемом "В"). Включите компьютер и функциональный генератор.
- 2. Запустите программу "PicoScope 6" на рабочем столе компьютера. После запуска программы, в центре экрана компьютера появляется область, в которой можно наблюдать электрические сигналы, поступающие на USB-осциллограф, а также кнопки управления. Программа "PicoScope 6" может работать в режиме осциллографа и спектроанали-

- затора. При запуске программы она переходит в режим осциллографа (нажата кнопка режим "Осциллограф").
- 3. Над разъемами генератора "CH1" и "CH2" нажмите обе кнопки **Output**.

<u>П Исследование спектра периодической последовательности</u> <u>прямоугольных импульсов.</u>

- 5. На генераторе кнопкой **CH1/2** выберите вкладку для канала "CH1" и нажмите кнопку **Pulse** (импульсный сигнал). Кнопками **4** экранного меню (рис. 3) установите: а) **Ampl** : 1 Vpp (разность максимального и минимального значений сигнала 1 B); б) **Offset** : 0.5 Vdc (смещение сигнала на 0,5 B); в) **Freq** : 1 kHz (частота повторения импульсов $f_{\text{повт}} = 1$ кГц); г) **PulWidth** : 100 µs (длительность импульса $\tau = 100$ мкс).
- 6. В окне программы нажмите кнопку режим "Спектр", затем кнопку — "Параметры спектра", и в появившемся окне установите пара-

метры: а) "Масштаб": линейный; б) "Элементы разрешения спектра": 2048. В верхней части экрана установите удобный масштаб ($\approx \pm 2$ В) по вертикальной оси (справа от кнопки $\stackrel{\blacktriangle}{}$), а по горизонтальной оси – "48,83 кГц". Отдельные области спектра на экране можно увеличивать (уменьшать) с помощью кнопок $\stackrel{\maltese}{}$ и $\stackrel{\maltese}{}$.

7. Проанализируйте, как меняется спектр (Δv и δv на рис. 6.3 Ввеления): а) при увеличении τ вдвое при неизменной частоте $f_{\text{повт}} = 1$ к Γ ц; б) при увеличении $f_{\text{повт}}$ вдвое при неизменном $\tau = 100$ мкс. Опишите результаты или зарисуйте в тетрадь качественную картину.

Внимание ! При изменении на генераторе $f_{\text{повт}}$, автоматически изменяется τ , поэтому после изменения $f_{\text{повт}}$, надо установить прежнее значение τ .

- 8. Проведите измерения зависимости ширины спектра Δv от длительности импульса τ при увеличении τ от 40 до 200 мкс (6 8 значений при $f_{\text{повт}}$ = 1 к Γ ц).
- 9. Для $f_{\text{повт}} = 1$ кГц установите $\tau = 50$ мкс. В окне программы нажмите кнопку "Выбор". Если левой кнопкой мышки щелкнуть на вершине выбранной гармоники, то в отдельном окошке появляются значения ее амплитуды и частоты. Измерьте частоты и амплитуды спектральных составляющих сигнала и запишите результаты в таблицу:

№ гармоники, частота, амплитуда.

Проведите аналогичные измерения для импульса с τ = 100 мкс. По полученным данным постройте картины спектров.

10. Постройте график $\Delta v(1/\tau)$ и по его наклону убедитесь в справедливости соотношения неопределенностей.

<u>Ш Исследование спектра периодической последовательности</u> цугов гармонических колебаний.

- 11. В окне программы нажмите режим "Осциллограф". На генераторе кнопкой **CH1/2** выберите вкладку для канала "CH2" и нажмите кнопку **Sine** (синусоидальный сигнал). Кнопками **4** экранного меню (рис. 3) установите: а) **Ampl** : 2 Vpp (двойная амплитуда сигнала 2 В); б) **Offset** : 0 Vdc (смещение сигнала отсутствует); в) **Freq** : 25 kHz (частота несущей $v_0 = 25 \text{ к}\Gamma\text{ц}$).
- 12. В окне программы включите канал "В", щелкнув в верхней части экрана справа от кнопки в и заменив значение "Выкл" на "Авто". Нажмите кнопку

 "Автоматическая настройка".
- 13. На генераторе кнопкой **CH1/2** выберите вкладку для канала "CH1" и нажмите кнопку **Pulse** (импульсный сигнал). Кнопками **4** экранного меню (рис. 3) установите: а) **Ampl** : 1 Vpp (разность максимального и минимального значений сигнала 1 B); б) **Offset** : 0.5 Vdc (смещение сигнала на 0,5 B); в) **Freq** : 1 kHz (частота повторения импульсов $f_{\text{повт}} = 1 \text{ кГц}$); г) **PulWidth** : 100 µs (длительность импульса $\tau = 100 \text{ мкc}$).
- 14. В окне программы выберите в меню: "Сервис" → "Математические каналы", выделите пункт, соответствующий произведению "А*В" и нажмите "Ок". Выберите в меню: "Виды" → "Каналы", выделите пункт, соответствующий произведению "А*В", а с пунктов "А" и "В" выделение снимите. На экране должна быть видна периодическая последовательность цугов.
- 15. В окне программы нажмите режим "Спектр" и включите канал "В", щелкнув в верхней части экрана справа от кнопки В и заменив значение "Выкл" на "Авто". Выберите в меню: "Сервис" → "Математи-

ческие каналы", выделите пункт, соответствующий произведению "А*В" и нажмите "Ок". Выберите в меню: "Виды" → "Каналы", выделите пункт, соответствующий произведению "А*В", а с пунктов "А" и "В" выделение снимите. В верхней части экрана установите масштаб по вертикальной оси "Авто" (справа от кнопки ♠), а по горизонтальной оси "48,83 кГц". С помощью кнопки Фувеличьте по вертикали изображение спектра. При нажатии на эту кнопку, а затем на область в пределах спектра, появляется окно "Общий вид". Опустите в этом окне прямоугольную рамку вниз и установите удобную для наблюдения спектра ее высоту и ширину.

- 16. Проанализируйте, как изменяется вид спектра при увеличении длительности τ импульса вдвое от 100 до 200 мкс.
- 17. Установите длительность импульса $\tau = 100$ мкс. Кнопкой **СН1/2** выберите вкладку для канала "СН2". Проследите, как меняется картина спектра при изменении несущей частоты v_0 ($v_0 = 10$, 25 и 40 к Γ ц). Опишите результаты или зарисуйте в тетради качественную картину.
- 18. Установите частоту несущей $v_0 = 30$ к Γ ц. Кнопкой **СН1/2** выберите вкладку для канала "СН1". Установите длительность импульса $\tau = 100$ мкс. Определите расстояние δv между соседними спектральными компонентами для разных частот повторения импульсов $f_{\text{повт}}$. Проведите измерения для $f_{\text{повт}} = 0.5, 1, 2, 4$ и 5 к Γ ц.

Внимание! При изменении на генераторе $f_{\text{повт}}$, автоматически изменяется τ , поэтому после изменения $f_{\text{повт}}$, надо установить прежнее значение τ .

19. Установите $\tau = 100$ мкс и $f_{\text{повт}} = 1$ кГц. В окне программы нажмите кнопку
— "Выбор". Щелкая левой кнопкой мышки по вершинам гармоник спектра, определите их амплитуды и частоты. Результаты запишите в таблицу: № гармоники, частота, амплитуда. Проведите

- аналогичные измерения для импульса с $\tau = 100$ мкс и $f_{\text{повт}} = 2$ к Γ ц. По полученным данным постройте картины спектров.
- 20. Постройте график $\delta v(f_{\text{повт}})$. Найдите угловой коэффициент полученной зависимости и сравните с теоретическим значением.
- 21. Сравните построенные спектры (пп. 9, 20):
 - а) прямоугольных импульсов при одинаковых периодах и разных длительностях импульса τ ,
 - б) цугов при одинаковых τ и разных $f_{\text{повт}}$;
 - в) цугов и прямоугольных импульсов при одинаковых значениях τ и $f_{\text{повт}}.$

IV Исследование спектра гармонических сигналов, модулированных по амплитуде.

- 22. В окне программы нажмите режим "Осциллограф". Выберите в меню: "Виды" → "Каналы", выделите пункт, соответствующий произведению "А*В" и пункт "А".
- 23. На генераторе кнопкой **CH1/2** выберите вкладку для канала "CH2" и нажмите кнопку **Sine** (синусоидальный сигнал). Кнопками **4** экранного меню (рис. 3) установите: а) **Ampl** : 1 Vpp (двойная амплитуда сигнала 1 B); б) **Offset** : 0 Vdc (смещение сигнала отсутствует); в) **Freq** : 25 kHz (частота несущей $v_0 = 25$ к Γ ц).
- 24. Кнопкой **CH1/2** выберите вкладку для канала "CH1" и нажмите кнопку **Sine**. Кнопками **4** экранного меню (рис. 3) установите: а) **Offset** : 1 Vdc (смещение сигнала на 1 B); б) **Freq** : 1 kHz (частота модуляции $f_{\text{мод}} = 1$ кГц); в) **Ampl** : 0.2 Vpp (двойная амплитуда сигнала 0,2 B). Перемещая мышкой желтый квадратик маркера запуска (вблизи значения \cong 1 B по вертикальной оси), получите на экране устойчивое изображение сигнала.

- 25. В окне программы нажмите режим "Спектр". В верхней части экрана установите масштаб по вертикальной оси "Авто" (справа от кнопки →), а по горизонтальной оси "48,83 кГц". Нажмите кнопку → "Выбор".
- 26. Меняя двойную амплитуду сигнала канала "СН1" от 0,2 до 2 В (возьмите 5-6 значений), измеряйте для каждого значения максимальную A_{max} и минимальную A_{min} амплитуды сигналов модулированного колебания (переключаясь на вкладку "Осциллограф") и амплитуды спектральных компонент (переключаясь на вкладку "Спектр"). Амплитуды можно определить, если нажать левой кнопкой мышки на выбранную точку экрана. Амплитуда равна значению в появляющемся окошке, соответствующему произведению "А*В". Рассчитайте соответствующие значения глубины модуляции m по формуле 6.13 Введения.
- 27. При 100% глубине модуляции ($A_{\min} = 0$) посмотрите, как меняется спектр при увеличении частоты модуляции $f_{\text{мод}}$.
- 28. Постройте график отношения $A_{\text{бок}}/A_{\text{осн}}$ в зависимости от m. Определите угловой коэффициент наклона графика и сравните с рассчитанным с помощью формулы (6.14).

<u>V Исследование спектра гармонических сигналов,</u> модулированных по частоте (дополнительное задание).

При частотной модуляции мгновенная частота колебания равна:

$$\omega(t) = \omega_0 + \Delta \omega_m \cdot \sin \Omega t , \qquad (1)$$

где $\Delta \omega_m = 2\pi \Delta f_m$ — амплитуда отклонения частоты (девиация частоты), $\Omega = 2\pi F$ — модулирующая частота. Фаза частотно-модулированного колебания:

$$\varphi(t) = \int_{0}^{t} \omega(t)dt = \omega_{0}t - \frac{\Delta \omega_{m}}{\Omega} \cos \Omega t.$$
 (2)

Величина $\beta = \frac{\Delta \, \omega_{_m}}{\Omega} = \frac{\Delta f_{_m}}{F}$ называется индексом частотной модуляции. Частотно-модулированное колебание имеет вид:

$$f(t) = A_0 \cos \varphi(t) = A_0 \cos \left[\omega_0 t - \beta \cos \Omega t \right]. \tag{3}$$

Рассмотрим частный случай, когда β << 1. Из (3) имеем:

$$f(t) = A_0 \cos \omega_0 t \cdot \cos(\beta \cos \Omega t) + A_0 \sin \omega_0 t \cdot \sin(\beta \cos \Omega t) \cong$$

$$\cong A_0 \cos \omega_0 t + A_0 \beta \sin \omega_0 t \cdot \cos \Omega t \cong$$

$$\cong A_0 \cos \omega_0 t + \frac{A_0 \beta}{2} \cos \left[(\omega_0 - \Omega) t - \frac{\pi}{2} \right] + \frac{A_0 \beta}{2} \cos \left[(\omega_0 + \Omega) t - \frac{\pi}{2} \right]. \tag{4}$$

Таким образом, спектр частотно-модулированного колебания при $\beta << 1$ состоит из колебания с основной частотой ω_0 и амплитудой A_0 и двух боковых компонент с частотами ($\omega_0 \pm \Omega$) и амплитудами $A_0\beta/2$. Данный спектр отличается от спектра амплитудно-модулированного колебания (II, 14) тем, что боковые компоненты спектра сдвинуты по фазе на 90°. Сложение несущего колебания и боковых составляющих при амплитудной и частотной модуляции (при $\beta << 1$) показано на рис. 4.

Из рис. 4 видно, что при β << 1 амплитуда частотно-модулированного колебания практически не меняется. При увеличении β спектр частотно-модулированного колебания становится более сложным, и в общем случае надо учитывать, что он содержит кроме колебания с частотой ω_0 бесконечное число боковых частот ($\omega_0 \pm k\Omega$), где k = 1, 2, 3, ...

Рис. 4

Амплитуда колебания на основной частоте равна $A_0J_0(\beta)$, а на боковых частотах $A_0J_k(\beta)$, где $J_k(\beta)$ — функции Бесселя 1-го рода. На практике ширину спектра можно считать ограниченной, т.к. функции $J_k(\beta)$ при $k > \beta$ имеют

малое значение. В предельном случае $\beta >> 1$, ширина спектра примерно равна $2\Delta f_{\rm m}$.

Дополнительное задание.

- 29. В окне программы нажмите режим "Осциллограф". Выберите в меню: "Виды" → "Каналы", оставьте выделение пункта "А", а с пункта "А*В" выделение снимите.
- 30. На генераторе кнопкой **CH1/2** выберите вкладку для канала "CH1" и нажмите кнопку **Sine** (синусоидальный сигнал). Кнопками **4** экранного меню (рис. 3) установите: а) **Ampl** : 1 Vpp (двойная амплитуда сигнала 1 B); б) **Offset** : 0 Vdc (смещение сигнала отсутствует); в) **Freq** : 25 kHz (частота несущей $v_0 = 25 \text{ к}\Gamma\text{ц}$). Нажмите кнопку **Mod** и опять кнопками **4** экранного меню (рис. 3) установите параметры для модулирующей функции: а) **Type** : FM (частотная модуляция; для выбора данного параметра необходимо нажать на соответствующую кнопку несколько раз); б) **Shape** : Sine (синусоидальный закон изменения частоты); в) **FM Freq** : 1 kHz ($F = 1 \text{ к}\Gamma\text{ц}$); г) **FM Dev** : 100 Hz ($\Delta f_{m} = 100 \text{ }\Gamma\text{ц}$).
- 32. Меняя на генераторе девиацию частоты $\Delta f_{\rm m}$ от 100 до 1000 Γ ц, измерьте амплитуду A_0 компоненты на основной частоте v_0 и амплитуды $A_{\pm 1}$ на частотах ($v_0 \pm F$). При больших значениях $\Delta f_{\rm m}$, измерьте также амплитуды $A_{\pm 2}$ компонент на частотах ($v_0 \pm 2F$). Амплитуды можно опреде-

- лить в появляющемся окошке, если нажать левой кнопкой мышки на выбранную точку экрана. Обратите внимание, что при увеличении $\Delta f_{\rm m}$, число боковых спектральных компонент увеличивается.
- 33. Если продолжать увеличивать $\Delta f_{\rm m}$, спектр становится еще более сложным. Пронаблюдайте, как меняется спектр при увеличении $\Delta f_{\rm m}$ от 1 до $10~{\rm k}\Gamma$ ц.
- 34. Рассчитайте для каждого значения $\Delta f_{\rm m}$ индекс модуляции β и постройте график отношения $A_{\pm 1}/A_0$ в зависимости от β . Проведите предельную прямую, соответствующую случаю $\beta << 1$, определите угловой коэффициент наклона этой прямой и сравните с рассчитанным с помощью формулы (4). Из графика определите диапазон значений β , для которых экспериментальная зависимость отличается от предельной прямой менее чем на 10%.