Exercise (From expected to strict running time). Let \mathbb{G} be a finite q-element group such that all elements $y \in \mathbb{G}$ can be expressed as powers of $g \in \mathbb{G}$. Let A be an algorithm that always finds a discrete logarithm with the expected running-time at most τ . Construct a t-time algorithm \mathbb{B} that fails with probability 2^{-n} and its running-time t is linear in τ and in n.

Solution. Let t be a function mapping randomness of the algorithm $\omega \in \Omega$ and its input $y \in \mathbb{G}$ to the running time of the algorithm, i.e., $t(y;\omega)$ is the running time of A on input y and randomness ω . From the assumption, we know that

$$\forall y \in \mathbb{G} : \quad \underset{\omega \in \Omega}{\mathbf{E}} [t(y; \omega)] \le \tau .$$

By using Markov's inequality, we get that the probability that algorithm A runs longer than t_0 steps is

$$\Pr[t(y;\omega) \ge t_0] \le \frac{\mathbf{E}_{\omega \in \Omega}[t(y;\omega)]}{t_0} \le \frac{\tau}{t_0} .$$

Let us consider the probability that the algorithm fails provide an output in time 2τ . The inequality derived above allows us to punt the corresponding probability form above:

$$\forall y \in \mathbb{G}: \quad \Pr[t(y;\omega) \ge 2\tau] \le \frac{\tau}{2\tau} = \frac{1}{2}.$$

Now let $\mathcal{A}_{2\tau}$ be an algorithm that invokes \mathcal{A} and waits its output for exactly 2τ time. If \mathcal{A} succeeds, it outputs \mathcal{A} 's output and \bot otherwise. It is easy to construct such an algorithm from the code of \mathcal{A} by replacing each instruction of \mathcal{A} by a set of instructions: we first check if a dedicated time variable is smaller than 2τ , then we execute the instruction of \mathcal{A} , finally we increment the dedicated time variable t by 1. If \mathcal{A} and $\mathcal{A}_{2\tau}$ are random access machines, then it is easy to see that the running time of $\mathcal{A}_{2\tau}$ is $O(2\tau)$. If $\mathcal{A}_{2\tau}$ is a Turing machine with an extra working tape compared to \mathcal{A} then the same claim holds. However, if \mathcal{A} and $\mathcal{A}_{2\tau}$ must be turing machines such that the number of working tapes is the same, we can only prove that $\mathcal{A}_{2\tau}$ runs in time $O(\tau^2)$ because the location of the dedicated timer t might be $\Omega(\tau)$ apart from the symbol $\mathcal{A}_{2\tau}$ is modifying inside the instruction block. Regardless of the bound on the running time we have proven

$$\forall y \in \mathbb{G}: \quad \Pr\left[x \leftarrow \mathcal{A}_{2\tau}(y) : g^x \neq y\right] = \Pr\left[t(y; \omega) \ge 2\tau\right] \le \frac{1}{2}.$$

Now, let us consider the construction

$$\mathcal{B}^{\mathcal{A}_{2\tau}}(n,y)$$
For $\ell \in \{1,\ldots,n\}$ do
$$\begin{bmatrix} x \leftarrow \mathcal{A}_{2\tau}(y) \\ \text{if } g^x = y \text{ return } y \end{bmatrix}$$
return \perp

Clearly, algorithm \mathcal{B} runs in time less than $c \cdot 2n\tau$ for some small overhead constant c > 1 in the Random Access Machine model. During this time, \mathcal{B} makes at most n queries to $\mathcal{A}_{2\tau}$. As the probability of failure each time is $\frac{1}{2}$, then after n invocations the failure probability is $\left(\frac{1}{2}\right)^n = 2^{-n}$. Thus, we have constructed an algorithm \mathcal{B} which runs in time $O(n\tau)$ and its failure probability is 2^{-n} , as required.

For the Turing machines, the construction runs in time $O(n\tau^2)$ and in general it is difficult if not impossible to show that the running rime can be actually bounded by $O(n\tau)$. The only way to achieve that is to modify the definition of a Turing machine so that all algorithms can use timers. However, the latter is technically an non-trivial task, as the algorithm \mathcal{A} might then already use a timer and we must make sure that $\mathcal{A}_{2\tau}$ can make calls to timer without obligating timers used by \mathcal{A} .