

Efficient-Parallel-C++

General Weighted Matching – Alan Mazankiewicz

Overview

Matching Problem

Algorithms

- Local Dominant
- Suitor
- Heavy Matching

Evaluation

Definition - Matching

A **matching** in an undirected Graph G = (V, E) is a subset of edges M such that no two elements of M have common endpoints

Definition - Matching

A **matching** in an undirected Graph G = (V, E) is a subset of edges M that such no two elements of M have common endpoints

Definition – Maximum Weighted Matching

A maximum weighted matching of an undirected graph G = (V, E, W) is a matching M with the largest possible sum* of weights

Definition – Maximum Weighted Matching

A maximum weighted matching of an undirected graph G = (V, E, W) is a matching M with the largest possible sum* of weights

 $O(nm + n^2 \log n)$ [Gabow 90]

Half-Approximation Algorithms

Sequential

- Greedy Avis
- PGA' Path Growing Algorithm Drake and Hougardy
- GPA Global Paths Algorithm Maue and Sanders
- HEM Heurisitc of Heavy Matching Birn et al.

Sequential and Parallel

- Locally Dominant Edges Halappanavar et al.
- Suitor Manne and Halappanavar

17/04/2019

Half-Approximation Algorithms

Sequential

- Greedy Avis
- PGA' Path Growing Algorithm Drake and Hougardy
- GPA Global Paths Algorithm Maue and Sanders
- HEM Heurisitc of Heavy Matching Birn et al.

Sequential and Parallel

- Locally Dominant Edges Halappanavar et al.
- Suitor Manne and Halappanavar

17/04/2019

Sort edges in descending order

- Phase I
- Process each Vertex

- Phase I
- Process each Vertex

- Phase I
- Process each Vertex

- Phase I
- Add Endpoints to Queue Q

■ Phase II - while $Q \neq \{\}$

- Phase II while $Q \neq \{\}$
- Process each vertex that endpoint is candidate of

- Phase II while $Q \neq \{\}$
- Process each vertex that endpoint is candidate of

- Phase II while $Q \neq \{\}$
- Process each vertex that endpoint is candidate of

Same matching as Greedy

 $O(n+m * \Delta)$

Local Dominant - Parallel


```
1: procedure Parallel-Queue(G(V, E)),
        mate)
 2: Q_C \leftarrow \emptyset
 3: Q_N \leftarrow \emptyset
 4: —— Phase-I ——
       for each u \in V in parallel do
                                                               19:
 6:
           mate[u] \leftarrow \emptyset
                                                               20:
                                                                       — — Phase-2 — —
 7:
           candidate[u] \leftarrow \emptyset
                                                                       while Q_C \neq \emptyset do
                                                               21:
 8:
                                                               22:
                                                                          for each u \in Q_C in parallel
           max\_wt \leftarrow -\infty
                                                                             do
 9:
           max\_wt\_id \leftarrow \emptyset
                                                                            for each v \in adj(u) \setminus do
                                                               23:
10:
           for each v \in adj(u) do
                                                               24:
                                                                                if candidate[v] = u then
11:
              if (mate[v] = \emptyset) AND (max\_wt
                  < w(e_{u,v})) then
                                                               25:
                                                                               ProcessVertex(v, Q_N)
12:
                 max\_wt \leftarrow w(e_{u,v})
                                                                          Q_C \leftarrow Q_N
                                                               26:
                 max\_wt\_id \leftarrow v
13:
14:
           candidate[u] \leftarrow max\_wt\_id
                                                                         Q_N \leftarrow \emptyset
                                                               27:
15:
        for each u \in V in parallel do
16:
           if candidate[candidate[u]] = u
              then
17:
              mate[u] \leftarrow candidate[u]
18:
              Q_C \leftarrow Q_C \cup \{u\}
```

0


```
void ParallelDominant::processVertex(NodeHandle u, moodycamel::ConcurrentQueue<NodeHandle> &Q, Mate &candidate)
    double max_wt = 0;
    NodeHandle max_wt_id = G.null_node();
    size_t u_id = G.nodeId(u);
    for (EdgeIterator t = G.beginEdges(u); t != G.endEdges(u); ++t)
       if ((mate[*t] == G.null_node()) && (max_wt < G.edgeWeight(t)))</pre>
           max_wt = G.edgeWeight(t);
            max_wt_id = G.node(*t);
    candidate[u_id] = max_wt_id;
    if (candidate[u_id] == G.null_node())
        return;
    if (G.nodeId(candidate[G.nodeId(candidate[u_id])]) == u_id)
        mate[u_id] = candidate[u_id];
        mate[G.nodeId(candidate[u_id])] = u;
        Q.enqueue(u);
       Q.enqueue(candidate[u_id]);
}
class ParallelDominant
]{
public:
    using EdgeIterator = AdjacencyArray::EdgeIterator;
    using NodeHandle = AdjacencyArray::NodeHandle;
    using Mate = std::vector<NodeHandle>;
```


Suitor – Sequential

 \blacksquare suitor(u) - Who points to u

```
1: for each u \in V do
     suitor(u) = NULL
     ws(u) = 0
4: for each u \in V do
     current = u
    done = False
     while not done do
 7:
       partner = suitor(current)
 8:
       heaviest = ws(current)
 9:
       for each v \in N(current) do
10:
            w(current, v) >
                                       heaviest
11:
                                                   and
         w(current, v) > ws(v) then
12:
            partner = v
            heaviest = w(current, v)
13:
       done = True
14:
       if heaviest > 0 then
15:
         y = suitor(partner)
16:
          suitor(partner) = current
17:
         ws(partner) = heaviest
18:
         if y \neq NULL then
19:
            current = y
20:
            done = False
21:
```


Suitor – Sequential

 $O(m * \Delta)$

```
1: for each u \in V do
     suitor(u) = NULL
     ws(u) = 0
3:
4: for each u \in V do
     current = u
    done = False
     while not done do
 7:
8:
       partner = suitor(current)
       heaviest = ws(current)
 9:
       for each v \in N(current) do
10:
            w(current, v) >
                                       heaviest
11:
                                                   and
         w(current, v) > ws(v) then
12:
            partner = v
            heaviest = w(current, v)
13:
       done = True
14:
       if heaviest > 0 then
15:
         y = suitor(partner)
16:
          suitor(partner) = current
17:
         ws(partner) = heaviest
18:
         if y \neq NULL then
19:
            current = y
20:
            done = False
21:
```

0

Suitor – Parallel with Lock

```
void ParallelSuitor::process(NodeHandle start, NodeHandle finish)
    for (NodeHandle u = start; u != finish; ++u)
        NodeHandle current = u;
        bool done = false;
        while (!done)
            NodeHandle partner = G.null_node();
            double heaviest = 0;
            for (EdgeIterator v = G.beginEdges(current); v != G.endEdges(current); ++v)
                double weight_v = G.edgeWeight(v);
                if (weight_v > heaviest && weight_v > ws[*v])
                    partner = G.node(*v);
                    heaviest = weight_v;
            done = true;
            if (heaviest > 0)
                std::unique_lock<std::mutex> lock(mtx[G.nodeId(partner)]);
                if (ws[G.nodeId(partner)] < heaviest)</pre>
                    NodeHandle y = suitor[G.nodeId(partner)];
                    suitor[G.nodeId(partner)] = current;
                    ws[G.nodeId(partner)] = heaviest;
                    lock.unlock();
                    if (y != G.null_node())
                        current = y;
                        done = false;
                 else
                    done = false;
```


Graph Data Structure

■ Nodes: [0, 3, ...]

■ Edges: [1,2,3, 4,5,6 ...] → EdgeIterator

■ Weights: [11,12,13, 14, 15, 16, ...] → Index of EdgeIterator

→ NodeHandle

Suitor – Parallel Lockfree

```
void ParallelLocklessSuitor::process(NodeHandle start, NodeHandle finish)
    for (NodeHandle u = start; u != finish; ++u)
        NodeHandle current = u;
        bool done = false;
        while (!done)
            EdgeIterator partner = G.null_edge();
            double heaviest = 0;
            for (EdgeIterator v = G.beginEdges(current); v != G.endEdges(current); ++v)
                double weight_v = v->second;
                if (weight_v > heaviest && weight_v > suitor[v->first].load()->second)
                    partner = v;
                    heaviest = weight_v;
            done = true;
            if (heaviest > 0)
                size_t partnerId = partner->first;
                EdgeIterator current_suitor = suitor[partnerId];
                if (current suitor->second < heaviest)</pre>
                    if (suitor[partnerId].compare_exchange_strong(current_suitor, partner))
                        NødeHandle y = G.edgeHead(current_suitor);
                        if (y != G.null_node())
                            current = y;
                            done = false;
                    } else
                        done = false;
                } else
                    done = false;
```


Graph Data Structure

■ Nodes: [0, 3, ...]

→ NodeHandle

■ Edges: [1,2,3,4,5,6 ...] \rightarrow Edgelterator

■ Weights: [11,12,13, 14, 15, 16, ...] → Index of EdgeIterator

Prof. Sanders - General Weighted Matching

■ Nodes: [0, 3, ...]

→ NodeHandle

■ Edges: [(1,11),(2,12),(3,13),(4,14)...] → Edgelterator

31

Suitor – Parallel Lockfree

```
void ParallelLocklessSuitor::process(NodeHandle start, NodeHandle finish)
    for (NodeHandle u = start; u != finish; ++u)
        NodeHandle current = u;
        bool done = false;
        while (!done)
            EdgeIterator partner = G.null_edge();
            double heaviest = 0;
            for (EdgeIterator v = G.beginEdges(current); v != G.endEdges(current); ++v)
                double weight_v = v->second;
                if (weight_v > heaviest && weight_v > suitor[v->first].load()->second)
                    partner = v;
                    heaviest = weight_v;
            done = true;
            if (heaviest > 0)
                size_t partnerId = partner->first;
                EdgeIterator current_suitor = suitor[partnerId];
                if (current suitor->second < heaviest)</pre>
                    if (suitor[partnerId].compare_exchange_strong(current_suitor, partner))
                        NødeHandle y = G.edgeHead(current_suitor);
                        if (y != G.null_node())
                            current = y;
                            done = false;
                    } else
                        done = false;
                } else
                    done = false;
```


Suitor - Parallel

Quality Improvement – Heavy Matching

1st Matching

Quality Improvement – Heavy Matching

2nd Matching

Quality Improvement – Heavy Matching

- Path or Cycle
- Can be paralleized

Summary

Matching Problem

Algorithms

- Local Dominant
- Suitor
- Heavy Matching

References

- J. Maue and P. Sanders, "Engineering algorithms for approximate weighted matching," in WEA'07. LNCS, Springer, 2007, pp. 242–255.
- M. Halappanavar, J. Feo, O. Villa, A. Tumeo, and A. Pothen, "Approximate weighted matching on emerging manycore and multithreaded architectures," *Int. J. High Perf. Comput. App.*, vol. 26, no. 4, pp. 413–430, 2012.
- Manne, F., & Halappanavar, M. (2014, May). New effective multithreaded matching algorithms. In 2014 IEEE 28th International Parallel and Distributed Processing Symposium(pp. 519-528). IEEE.

Backup

Definition – Maximal Matching

A **maximal matching** is a matching M of an undirected graph G = (V, E) with the property that if any edge not in M is added to M, it is no longer a matching

Definition – Maximal Matching

A **maximal matching** is a matching M of an undirected graph G = (V, E) with the property that if any edge not in M is added to M, it is no longer a matching

Definition – Maximal Matching

A **maximal matching** is a matching M of an undirected graph G =(V, E) with the property that if any edge not in M is added to M, it is no longer a matching

47

Definition – Maximum Cardinality Matching

A maximum cardinality matching of an undirected graph G = (V, E) is a matching M that contains the largest possible number of elements

Backup - Evaluation

^{*}Parallel with 32 threads

Backup – Complexities

• Greedy: $O(m + m \log n)$

■ PGA': *O*(*m*)

■ Local Dominant: $O(n + m * \Delta)$

• Suitor: $O(m * \Delta)$

• Gabow: $O(nm + n^2 \log n)$

Karlsruhe Institute of Technology

Backup – Graphs

Runtime Sequential Implementation

Prof. Sanders - General Weighted Matching

- nVertices 1000000
- nEdges 100000000
- Runtime Heavy vs Simple Matching & Quality Comparison
 - nVertices 100000
 - nEdges 1000000
- Parallel Running Time
 - nVertices 6000000
 - nEdges 400000000

Karlsruhe Institute of Technology

Backup - Graphs

- Scalability Sequential Implementation
 - Sec. 1: nVertices 100.000 nEdges 1.000.000
 - Sec. 2: nVertices 200000 nEdges 2.000.000
 - Sec. 3: nVertices 600.000 nEdges 6.000.000
 - Sec. 4: nVertices 1.000.000 nEdges 1.000.000.000
 - Sec. 5: nVertices 2.000.000 nEdges 2.000.000.000
 - Sec. 6: nVertices 4.000.000 nEdges 4.000.000.000

17/04/2019

Backup – Sequential Local Dominant


```
1: procedure ProcessVertex (s, Q)
 1: procedure SERIAL-QUEUE
                                                                                  max\_wt \leftarrow -\infty
        (G(V, E), mate)
                                                                           3: max_wt_id \leftarrow \emptyset
       for each u \in V do
 3:
          mate[u] \leftarrow \emptyset
                                                                           4: for each t \in adj(s) do
      candidate[u] \leftarrow \emptyset
                                                                           5:
                                                                                      if (mate[t] = \emptyset) AND
     \mathbf{Q} \leftarrow \emptyset
                                                                                         (max\_wt < w(e_{s,t})) then
       for each u \in V do
                                                                           6:
                                                                                         max_wt \leftarrow w(e_{s,t})
          PROCESS VERTEX(u, Q)
                                                                                         max\_wt\_id \leftarrow t
 8:
        while Q \neq \emptyset do
                                                                           8:
                                                                                  candidate[s] \leftarrow max\_wt\_id
 9:
          u \leftarrow \text{FRONT}(Q)
                                                                           9:
                                                                                  if candidate[candidate[s]] = s
10:
     Q \leftarrow Q \setminus \{u\}
                                                                                      then
          for each v \in adj(u) \setminus mate(u) do
                                                                         10:
                                                                                      mate[s] \leftarrow candidate[s]
12:
              if candidate[v] = u then
                                                                         11:
                                                                                     mate[candidate[s]] \leftarrow s
                                                                                     Q \leftarrow Q \cup \{s, candidate[s]\}
                                                                         12:
13:
                 ProcessVertex(v, Q)
```

Source: Halappanavar et al.

	Fl. Small	Fl. Large	Rand	RMAT	Geo.	Comp. Geo	Comp. Rand
GREEDY	56.1	56.7	31.4	39.2	43.8	108.7	105.8
GREEDY-	1.0	1.5	0.8	1.3	1.8	1.7	1.3
PGA'	3.2	4.5	4.2	5.5	4.9	2.7	2.7
LOCALMAX	8.2	5.5	5.6	9.9	4.0	1166.0	5.8
SUITOR	2.5	2.8	3.1	4.1	3.1	195.6	2.4
SORTSUITOR	42.7	31.7	15.9	16.8	16.9	118.1	116.1
SORTSUITOR-	1.3	1.5	1.7	2.4	1.9	0.9	0.01

TABLE I
TIME TAKEN RELATIVE TO THE HEM ALGORITHM.

	Fl. Small	Fl. Large	Rand	RMAT	Geo	Comp. Geo	Comp. Rand
GPA	22.8	21.9	12.3	11.3	15.7	55.7	54.2
GPA-	0.9	2.3	1.4	1.8	3.5	1.1	0.8
2rPGA'	3.2	3.5	3.1	3.2	3.5	3.1	3.1
2rSuitor	2.1	2.0	2.6	2.6	2.2	199.2	2.5
2rSortSuitor	18.0	13.0	6.6	5.4	5.9	60.7	59.3
2rSortSuitor-	1.2	1.6	1.4	1.8	1.5	0.9	0.01

 $\label{table II} TIME\ TAKEN\ RELATIVE\ TO\ THE\ 2RHEM\ ALGORITHM.$

	Fl. Small	Fl. Large	Rand	RMAT	Geo	Comp. Geo	Comp. Rand
2RSUITOR	0.9986	0.9977	0.9983	1.0027	0.9989	1.0000	0.9995
2RPGA'	0.9972	0.9966	0.9960	0.9983	0.9969	0.9994	0.9997
2RHEM	0.8172	0.7795	0.9762	0.9675	1.0007	0.9959	0.9995
GREEDY	0.9921	0.9790	0.9761	0.9626	0.9749	0.9999	0.9992

Source: Manne and Halappanavar

Backup – Evaluation Suitor

(c) SUITOR on RMAT and Geometric graphs

(d) 2RSUITOR on RMAT and Geometric graphs

Source: Manne and Halappanavar

Suitor – Parallel Lockfree

Lock

```
double weight_v = G.edgeWeight(v);
if (weight_v > heaviest && weight_v > ws[*v])
```

Lockfree - unoptimized

```
double weight_v = G.edgeWeight(v);
if (weight_v > heaviest && weight_v > G.edgeWeight(suitor[*v]))
```

Lockfree - optimized

```
double weight_v = v->second;
if (weight_v > heaviest && weight_v > suitor[v->first].load()->second)
```


17/04/2019

Extend to maximal matching

Backup – Quality Scaled

Quality variable

17/04/2019

Dynamic Programming

Backup – Greedy Algorithm


```
\mathbf{GRDY}(G = (V, E), w : E \to \mathbb{R}^{\geq 0})

1 M := \emptyset

2 while E \neq \emptyset do

3 let e be the edge with biggest weight in E

4 add e to M

5 remove e and all edges adjacent to its endpoints from E

6 return M
```

Fig. 1. The greedy algorithm for approximate weighted matchings.

17/04/2019


```
PGA'(G = (V, E), w : E \to \mathbb{R}^{\geq 0})

1 M := \emptyset

2 while E \neq \emptyset do

3 P := \langle \rangle

4 arbitrarily choose v \in V with \deg(v) > 0

5 while \deg(v) > 0 do

6 let e = (v, u) be the heaviest edge adjacent to v

7 append e to P

8 remove v and its adjacent edges from G

9 v := u

10 M := M \cup \text{MaxWeightMatching}(P)

11 extend M to a maximal matching

12 return M
```

Fig. 2. The improved Path Growing Algorithm PGA'.

Source: Maue and Sanders

Backup – Dynamic Programming


```
\begin{array}{l} \mathbf{MaxWeightMatching}(P = \langle e_1, \dots, e_k \rangle) \\ 1 \ \ W[0] := 0; \ \ W[1] := w(e_1) \\ 2 \ \ M[0] := \emptyset; \ \ M[1] := \{e_1\} \\ 3 \ \ \mathbf{for} \ \ i := 2 \ \mathbf{to} \ k \ \mathbf{do} \\ 4 \ \ \ \mathbf{if} \ \ w(e_i) + W[i-2] > W[i-1] \ \mathbf{then} \\ 5 \ \ \ \ W[i] := w(e_i) + W[i-2] \\ 6 \ \ \ \ M[i] := M[i-2] \cup \{e_i\} \\ 7 \ \ \ \mathbf{else} \\ 8 \ \ \ \ W[i] := W[i-1] \\ 9 \ \ \ \ M[i] := M[i-1] \\ 10 \ \ \mathbf{return} \ \ M[k] \end{array}
```

Fig. 7. Obtaining a maximum weight matching for a path by dynamic programming.

Source: Maue and Sanders

17/04/2019

68

Extend to maximal matching

17/04/2019

Dynamic Programming

