

Vamos analisar a evolução de uma dívida no cartão de crédito

Juros por atraso: 10,99% ao mês

Valor do pagamento em atraso: R\$ 500,00

Tempo (meses)	Valor (R\$)
0	500
1	500 + 0,1099 · 500 = 554,95
2	554,95 + 0,1099 · 554,95 = 615,94
3	615,94 + 0,1099 · 615,94 = 683,63
4	683,63 + 0,1099 · 683,63 = 758,76
5	758,76 + 0,1099 · 758,76 = 842,15
6	842,15 + 0,1099 · 842,15 = 934,70

$$V=V_o \cdot (1 + i)^T$$

Quais operações estão envolvidas?

Representa uma função? Se sim, de que tipo?

Potência com expoente natural

Dados um número real positivo a e um número natural n, $n \ge 2$, chama-se **potência de base** a e **expoente** n o número a^n , que é igual ao produto de n fatores iguais a a:

$$a^n = \underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{n \text{ fatores}}$$

Potência com expoente inteiro

Dado qualquer $n \in \mathbb{N}^*$, devemos ter, para $a \neq 0$:

$$a^{-n} \cdot a^n = a^{-n+n} = a^0 = 1$$

Portanto,
$$a^{-n} \cdot a^n = 1$$
, ou seja, $a^{-n} = \frac{1}{a^n}$.

Potência com expoente racional

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
 com a real e $n = 2, 3, 4, ...$

Calcule o valor de:

a)
$$\left(27^{\frac{1}{3}} + 64^{\frac{1}{2}} - 8^{\frac{2}{3}} + 4^{\frac{1}{2}}\right)^{\frac{1}{2}}$$

b)
$$\frac{3^{0} + (-2)^{2} - \left(\frac{1}{3}\right)^{-1}}{\left(\frac{1}{2}\right)^{-2}}$$

Veja exemplos de como escrever um número em notação científica:

a)
$$300 = 3 \cdot 100 = 3 \cdot 10^2$$

b)
$$0,0052 = 5,2 \cdot 0,001 = 5,2 \cdot 10^{-3}$$

c)
$$32,45 = 3,245 \cdot 10 = 3,245 \cdot 10^{1}$$

d)
$$5249 = 5,249 \cdot 1000 = 5,249 \cdot 10^3$$

Notação científica

Uma função $f:\mathbb{R}\to\mathbb{R}_+^*$, definida por $f(x)=a^x$ ou $y=a^x$, com a>0 e $a\neq 1$, é denominada função exponencial.

Definição de função exponencial

As funções $f: \mathbb{R} \to \mathbb{R}_+^*$, definidas por $f(x) = b \cdot a^x + c$, com a > 0, $a \ne 1$ e $b \ne 0$ podem ser denominadas do **tipo exponencial**.

Alguns fornos elétricos contêm um dispositivo que controla a temperatura em seu interior. Assim, o aparelho desliga automaticamente quando chega à temperatura desejada e torna a ligar quando há certa perda na temperatura. Um forno elétrico que possui esse dispositivo tem sua temperatura interna T calculada em função do tempo t que o forno está ligado, em minutos, pela função $T(t)=300-265\cdot(0,3)^{\frac{1}{10}}$.

Qual é a temperatura interna desse forno elétrico 5 min após ter sido ligado? E após 20 min? Para analisar o efeito de um remédio no extermínio de determinada bactéria, cientistas fizeram experimentos expondo uma população desse microrganismo ao remédio e verificando o tempo necessário para que fosse exterminada. Ao final, verificou-se que a população p da bactéria d dias após a exposição ao remédio poderia ser estimada por meio da função p(d)=6 000 $\cdot \left(\frac{1}{4}\right)^{\alpha}$.

Dois dias após a exposição ao remédio, a população da bactéria reduziu-se a quantos por cento da população inicial? 6,25%

х	-3	-2	-1	0	1	2	3
2 ^x	2-3	2-2	2 ⁻¹	20	2 ¹	2 ²	2 ³
$y = 2^x$	1/8	1/4	1 2	1	2	4	8

х	-3	-2	-1	0	1	2	3
$\left(\frac{1}{2}\right)^x$	$\left(\frac{1}{2}\right)^{-3}$	$\left(\frac{1}{2}\right)^{-2}$	$\left(\frac{1}{2}\right)^{-1}$	$\left(\frac{1}{2}\right)^{0}$	$\left(\frac{1}{2}\right)^1$	$\left(\frac{1}{2}\right)^2$	$\left(\frac{1}{2}\right)^3$
$y = \left(\frac{1}{2}\right)^x$	8	4	2	1	1/2	1/4	1 8

Fique atento!

A função exponencial está definida para todo x real e tem por imagem o semieixo y > 0.

- para a > 1, a função é crescente $(x_1 > x_2 \Rightarrow a^{a_1} > a^{x_2})$;
- para 0 < a < 1, a função é decrescente $(x_1 > x_2 \Rightarrow a^{x_1} > a^{x_2})$;

Equação exponencial

a)
$$3^{3x-1} = 81$$

$$0,75^{x} = \frac{9}{16}$$

$$9^{x+1} = \frac{1}{27}$$

O número irracional e e a função exponencial e^x

$$f(x) = e^x$$

$$e = 2,718281... \Rightarrow$$

 $\Rightarrow e > 1 \Rightarrow f(x) = e^{x}$
é crescente

O número de bactérias de um cultura, t horas após o início de certo experimento, é dado pela expressão N(t) = 1200·2^{0,4t}. Nessas condições, quanto tempo após o início do experimento a cultura terá 38 400 bactérias?

Voltando a situação do cartão de crédito

- V = 500 + 1,1099^t
- Qual o valor da dívida após 1 ano?
- Em quanto tempo o valor da dívida chega em R\$ 5000,00?

Logaritmos

Dados os números reais positivos a e b, com $a \ne 1$, se $b = a^c$, então o expoente c chama-se **logaritmo de** b **na base** a, ou seja, $\log_a b = c \Leftrightarrow a^c = b$, com a e b positivos e $a \ne 1$.

Forma logarítmica	Forma exponencial
$\log_a b = c \begin{cases} c: \text{logaritmo} \\ a: \text{base de logaritm} \\ b: \text{logaritmando} \end{cases}$	$a^{c} = b \begin{cases} b: \text{potência} \\ a: \text{base da potência} \\ c: \text{expoente} \end{cases}$

a)
$$\log_3 81 = 4 \iff 3^4 = 81$$

b)
$$\log_{\frac{1}{2}} 32 = -5 \Leftrightarrow \left(\frac{1}{2}\right)^{-5} = 32$$

c)
$$\log_{\sqrt{5}} 5 = 2 \Leftrightarrow (\sqrt{5})^2 = 5$$

d)
$$log_8 1 = 0 \Leftrightarrow 8^0 = 1$$

Observações:

1ª) Condições de existência do logaritmo
 Pela definição,

$$\log_a N$$
 existe quando e somente quando $\begin{cases} N > 0 \\ a > 0 \text{ e } a \neq 1 \end{cases}$

Veja que, de acordo com as restrições impostas, não são definidos, por exemplo: log_3 (-81), log_{10} 0, log_0 3, log_{-2} 8 e log_1 6. Experimente aplicar a definição nesses casos.

 $2^{\underline{a}}$) Quando a base do logaritmo for 10, podemos omiti-la. Assim, log 2 é o logaritmo de 2 na base 10. Aos logaritmos na base 10 damos o nome de **logaritmos decimais** ou de **Briggs**. Por exemplo, log $100 = \log 10^2 = 2$.

Propriedades operatórias dos logaritmos

Para a, M e N números reais positivos e $a \neq 1$, temos:

1ª) Logaritmo de um produto

$$\log_a (M \cdot N) = \log_a M + \log_a N$$

2^{<u>a</u>}**)** Logaritmo de um quociente

$$\log_a \frac{M}{N} = \log_a M - \log_a N$$

3ª) Logaritmo de uma potência

$$\log_a M^N = N \cdot \log_a M$$

Mudança de base do logaritmo

$$\log_b N = \frac{\log_a N}{\log_a b} \text{ para } N > 0, b > 0, a > 0; b \neq 1 \text{ e } a \neq 1$$

- $-V = 500 \cdot 1,1099^{\dagger}$
- Em quanto tempo o valor da dívida chega em R\$ 5000,00?

Resolva a equação $3^x = 5$.

$$5^{2x} - 7 \cdot 5^x + 12 = 0$$

Em quantos anos 500 g de uma substância radioativa, que se desintegra a uma taxa de 3% ao ano, se reduzirão a 100 g? Use $Q = Q_0 \cdot e^{-rt}$, em que Q é a massa da substância, r é a taxa e t é o tempo em anos.

Função logarítmica

Definição

Uma função $f: \mathbb{R}_{+}^{*} \to \mathbb{R}$, definida por $f(x) = \log_{a} x$ ou $y = \log_{a} x$, com a > 0 e $a \neq 1$, é denominada função logarítmica.

a) $f(x) = \log_2 x$

x	y = f(x)
1/4	-2
1/2	-1
1	0
2	1
4	2

b)
$$f(x) = \log_{\frac{1}{2}} x$$

x	y = f(x)
1/4	2
1/2	1
1	0
2	-1
4	-2

Vamos comparar a taxa de crescimento

$$-f(x) = x$$

$$g(x) = x^2$$

$$-h(x) = 2^x$$

MIORELLI, A.A.; AYJARA, D.F.A.; MANTOVANI, L.M. Pré-cálculo. Grupo A, 2015.

Exercícios

p. 129 – 7.2, 7.5, 7.7, 7,8, 7.19, 7.21

Para ir além do básico: p. 134 – 7.29, 7.30