

Horn Minimization

An overview of some existing algorithms

Simon Vilmin

Supervisor: Sergei. A. Obiedkov

HSE - ISIMA

June 5, 2018

Introduction

- ▶ correlation relations (implications)
 - e.g: movies and genres, cyber-punk \longrightarrow sci-fi
- minimization without loss of knowledge
 - e.g: sci- $fi \longrightarrow sci$ -fi is useless
- study of existing algorithms

Outline

I - Horn theories

Closure and implications Minimization task

II - Some Algorithms

Minimizing the input Building the result

III - Experiments

Experiments

Closure operator and systems

1.1 - Closure and implications

Set Σ of attributes. A map $\varphi: 2^{\Sigma} \longrightarrow 2^{\Sigma}$ is a *closure operator* if, $\forall X, Y \subseteq \Sigma$:

- $ightharpoonup X \subseteq \varphi(X)$ (increasing)
- $\triangleright \varphi(\varphi(X)) = \varphi(X)$ (idempotent)

Associated terminology:

- ightharpoonup X is *closed* if $X = \varphi(X)$,
- \blacktriangleright Σ^{φ} set of closed sets: *closure system*.
- \triangleright Σ^{φ} is closed under *intersection*, contains Σ.

Implications

1.1 - Closure and implications

$A, B \subseteq \Sigma$. An *implication* is:

- $ightharpoonup A \longrightarrow B$, A premise, B conclusion.
- ▶ $M \subseteq \Sigma$ model of $A \longrightarrow B$
 - $\triangleright B \subseteq M \lor A \nsubseteq M \quad (\simeq B \lor \neg A)$
 - \triangleright $M \models A \longrightarrow B$, $A \longrightarrow B$ follows from M.

Set of implications \mathcal{L} : implication system.

- \triangleright $\mathcal{L} \models A \longrightarrow B$: all models of \mathcal{L} are models of $A \longrightarrow B$,
- \triangleright $\mathcal{L} \models A \longrightarrow B \text{ iff } B \subseteq \mathcal{L}(A).$

Implications and closure

1.1 - Closure and implications

$\mathcal L$ an implication system:

ightharpoonup models of \mathcal{L} form a *closure system*:

$$\Sigma^{\mathcal{L}} = \{ M \subseteq \Sigma \mid M = \mathcal{L}(M) \}$$

▶ closure operator $\mathcal{L}(X)$: smallest model (inclusion wise) of \mathcal{L} containing $X, X \subseteq \Sigma$.

$$\mathcal{L}(X) = \bigcap \{ M \in \Sigma^{\mathcal{L}} \mid X \subseteq M \}$$

Small Example

1.1 - Closure and implications

Let \mathcal{L} be an implication system:

- $\triangleright \Sigma = \{a, b, c, d, e, f\},\$
- $\blacktriangleright \ \mathcal{L} = \{ab \longrightarrow cde, cd \longrightarrow f, c \longrightarrow a, d \longrightarrow b, abcd \longrightarrow ef\}.$

We have:

- \triangleright $\mathcal{L}(b) = b$, b is *closed*, hence a *model* of \mathcal{L} ,
- \triangleright $\mathcal{L}(ab) = abcdef$, ab is not a model (abcdef is),
- ▶ ∅ is also a model.

Redundancy, equivalence

1.2 - Minimization task

${\cal L}$ and ${\cal L}'$ implication systems:

- ▶ $A \longrightarrow B \in \mathcal{L}$ redundant if $\mathcal{L} \{A \longrightarrow B\} \models A \longrightarrow B$,
- $\blacktriangleright \ \mathcal{L}' \models \mathcal{L} \text{: all implications of } \mathcal{L} \text{ follow from } \mathcal{L}',$
- $ightharpoonup \mathcal{L}' \models \mathcal{L}$ and $\mathcal{L} \models \mathcal{L}'$: equivalent bases.

Remind property:
$$(\mathcal{L}^- := \mathcal{L} - \{A \longrightarrow B\})$$

 $\blacktriangleright \ \mathcal{L}^- \models A \longrightarrow B \text{ iff } B \subseteq \mathcal{L}^-(A)$

Minimum basis

1.2 - Minimization task

\mathcal{L} minimum if no possible \mathcal{L}' such that:

- $\triangleright \mathcal{L}'$ equivalent to \mathcal{L} ,
- \triangleright \mathcal{L}' has fewer implications than \mathcal{L} .

Particular minimum basis:

- ▶ $P \subseteq \Sigma$ pseudo-closed in \mathcal{L} if:
 - $\triangleright P \neq \mathcal{L}(P)$,
 - \triangleright if $Q \subset P$ and Q pseudo-closed, then $\mathcal{L}(Q) \subseteq P$.
- ▶ Duquenne-Guigues (canonical) base:

$$\{P \longrightarrow \mathcal{L}(P) \mid P \text{ pseudo-closed }\}$$

Small Example 1.2 - Minimization task

Let \mathcal{L} be an implication system:

- $\Sigma = \{a, b, c, d, e, f\},\$

We have:

- ightharpoonup abcd \longrightarrow ef is redundant
- $ightharpoonup cd \longrightarrow f$ can be deleted, if $ab \longrightarrow cde$ replaced by $ab \longrightarrow cdef$
- ightharpoonup canonical basis: $ab \longrightarrow abcdef$, $c \longrightarrow ac$, $d \longrightarrow bd$

Tools

2.1 - Minimizing the input

Principle:

- ightharpoonup reducing an input base \mathcal{L} ,
- algorithms from FCA and databases,

First algorithm

2.1 - Minimizing the input

MINCOVER:

- ▶ from Day, Wild, Duquenne, Guigues (80's)
- two steps:
 - 1. maximize the knowledge $A \longrightarrow B$ becomes $A \longrightarrow \mathcal{L}(A)$
 - 2. remove redundant information if $\mathcal{L}(A) = \mathcal{L}^{-}(A)$, $A \longrightarrow \mathcal{L}(A)$ is redundant
- output: canonical base.

Recall: $\mathcal{L}^- = \mathcal{L} - \{A \longrightarrow \mathcal{L}(A)\}$

A variation

2.1 - Minimizing the input

DuquenneMin:

- ▶ variation of MINCOVER by Duquenne, 2007,
- two steps:
 - 1. *left-saturation* and *redundancy* elimination if $B \subseteq \mathcal{L}^-(A)$, $A \longrightarrow B$ is useless else $A \longrightarrow B$ becomes $\mathcal{L}^-(A) \longrightarrow (\mathcal{L}^-(A) \cup B)$
 - 2. *iteratively build* pseudo-closed implications base if $\mathcal{L}^-(A)$ pseudo-closed, add $\mathcal{L}^-(A) \longrightarrow \mathcal{L}(A)$ to the result
- output: canonical base.

Database approach

2.1 - Minimizing the input

MAIERMIN:

- ▶ functional dependency based algorithm, Maier, 80's
- steps:
 - 1. redundancy elimination if $B \subset \mathcal{L}^-(A)$, remove $A \longrightarrow B$
 - equivalence classes reduction group implications by premises closure reduce those classes
- output: minimum basis

General principle

2.2 - Building the result

Query learning and Angluin algorithm:

- ▶ aim: learn a theory by constructing an hypothesis
- oracle answering queries (questions)
- queries:
 - ▷ equivalence: is our hypothesis equivalent to the target?
 - ▶ membership: is a set a model of the target?
- ▶ improve by *counterexample*
 - positive: model of the target, not of the hypothesis
 - ▷ negative: model of the hypothesis, not of the target

III - Experiments

In our case

2.2 - Building the result

- ▶ no oracle to avoid *randomness*,
- no positive counter-example,
- premises are sufficient to have negative counter-example.

AFP Algorithm

2.2 - Building the result

AFP:

- derived from Angluin, no proof yet,
- principle:
 - 1. take implications one by one,
 - 2. refine the hypothesis:

use *stack* to store possible counter-examples add right-closed implications or refine old ones

expected output: canonical base.

Using minimality constraint

2.2 - Building the result

BercziMin:

- ▶ logic based, Berczi, 2017
- principle:
 - 1. build a basis \mathcal{L}_c against the input \mathcal{L}
 - 2. repeat minimality selection up to equivalence
 - 3. minimality selection:

select the next minimal negative counter-example A, add $A \longrightarrow \mathcal{L}(A)$ to \mathcal{L}_c

▶ output: *canonical* base.

Context

3.1 - Experiments

Practical aspect:

- context of FCA, previous study of closure operators,
- use datasets from UCI repository:

▶ breast cancer: 23 attributes

► C++, boost.

Theoretical considerations

- ▶ using Closure,
- ▶ 1 dataset rises 5 basis

Overhaul results

3.1 - Experiments

\mathcal{L}		MinCov	Duq	Maier	Berczi	AFP
Flare	DG	0.097	0.117	0.211	27.922	115.656
	min 1	0.134	0.194	0.288	27.750	116.594
	min 2	0.200	0.190	0.308	30.063	108.812
	proper	1.684	0.933	0.917	88.375	524.031
	mingen	16.047	7.981	7.576	160.328	2810.620
Breast Cancer	DG	0.089	0.109	0.203	33.047	90.031
	min 1	0.108	0.126	0.243	26.578	89.516
	min 2	0.153	0.132	0.258	29.438	105.141
	proper	1.920	0.864	1.014	93.266	429.844
	mingen	2.006	1.277	1.444	102.562	598.172

Table: Comparison of the algorithms on real datasets (execution in s)

Observation

3.1 - Experiments

Observations on these data:

- ► cost of AFP and BERCZIMIN.
- DuquenneMin, MaierMin efficient and similar on non-minimum cases,
- ► MINCOVER better on right-closed minimum cases.

Test observations:

- random generation

Some more results

3.1 - Experiments

Figure: Flare - Random against and minimum basis: 49 attr, 3382 imp

Some more results

3.1 - Experiments

Figure: SPECT - Random against minimum basis: 23 attr, 2169 imp

Ideas

3.1 - Experiments

Observations:

- ► results of MINCOVER: proper basis is worse,
- ▶ redundant cases: DUQUENNE, MAIER more efficient.

Explanations:

- redundancy elimination as first step,
- right-closeness of basis,
- suggests a study of underlying structure.

Boundaries:

- valid in our context,
- random generation,
- suggests extension of tests.

Conclusion

Purpose:

study of minimization algorithms.

Results:

- algorithms from various communities,
- ▶ in practice: redundancy elimination

Perspectives:

- theoretical study of systems structure, AFP proof and complexity,
- experimental aspect, extend tests.

