18-447 Lecture 2: RISC-V Instruction Set Architecture

James C. Hoe

Department of ECE

Carnegie Mellon University

Housekeeping

- Your goal today
 - get bootstrapped on RISC-V RV32I to start Lab 1
 (will revisit general ISA issues in L4)
- Notices
 - Student survey on Canvas, due next Wed
 - H02: Lab 1, Part A, due week of 1/27
 - H03: Lab 1, Part B, due week of 2/3
- Readings
 - P&H Ch2
 - P&H Ch4.1~4.4 (next time)

How to specify what a computer does?

Architectural Level

You can read a clock without knowing how it works

Microarchitecture Level

a particular clockwork has a certain set of gears arranged in a certain configuration

Realization Level

machined alloy gears vs stamped sheet metal

Stored Program Architecture a.k.a. von Neumann

- Memory holds both program and data
 - instructions and data in a linear memory array
 - instructions can be modified as data
- Sequential instruction processing
 - 1. program counter (PC) identifies current instruction
 - 2. fetch instruction from memory
 - 3. update some state (e.g. PC and memory) as a function of current state according to instruction
 - 4. repeat

Dominant paradigm since its invention

Very Different Architectures Exist

- Consider a von Neumann program
 - what is the significance of the instruction order?
 - what is the significance of the storage locations?

- instruction specifies who receives the result
- instruction executes when operands received
- no program counter, no intermediate state

Parallel Random Access Memory

Instruction Set Architecture (ISA)

"ISA" in a nut shell

- A stable programming target (to last for decades)
 - binary compatibility for SW investments
 - permits adoption of foreseeable technology

Better to compromise immediate optimality for future scalability and compatibility

- Dominant paradigm has been "von Neumann"
 - program visible state: memory, registers, PC, etc.
 - instructions to modified state; each prescribes
 - which state elements are read
 - which state elements—including PC—updated
 - how to compute new values of update state

Atomic, sequential, in-order

3 Instruction Classes (as convention)

- Arithmetic and logical operations
 - fetch operands from specified locations
 - compute a result as a function of the operands
 - store result to a specified location
 - update PC to the next sequential instruction
- Data "movement" operations (no compute)
 - fetch operands from specified locations
 - store operand values to specified locations
 - update PC to the next sequential instruction
- Control flow operations (affects only PC)
 - fetch operands from specified locations
 - compute a branch condition and a target address
 - if "branch condition is true" then PC ← target address

else PC \leftarrow next seq. instruction

Complete "ISA" Picture

- User-level ISA
 - state and instructions available to user programs
 - single-user abstraction on top a "virtualization"

For this course and for now, RV32I of RISC-V

- "Virtual Environment" Architecture
 - state and instructions to control virtualization (e.g., caches, sharing)
 - user-level, but for need-to-know uses
- "Operating Environment" Architecture
 - state and instructions to implement virtualization
 - privileged/protected access reserved for OS

RV32I Program Visible State

program counter

32-bit "byte" address of current instruction

M[0]
M[1]
M[2]
M[3]
M[4]
M[N-1]
[

note x0=0
x 1
x2
general purpose
register file
32x 32-bit words
named x0x31

32-bit memory address:

2³² by 8-bit locations (4 GBytes) (there is some magic going on)

Register-Register ALU Instructions

Assembly (e.g., register-register addition)

Machine encoding

0000000	rs2	rs1	000	rd	0110011
7-bit	5-bit	5-bit	3-bit	5-bit	7-bit

- Semantics
 - $GPR[rd] \leftarrow GPR[rs1] + GPR[rs2]$
 - $PC \leftarrow PC + 4$
- Exceptions: none (ignore carry and overflow)
- Variations
 - Arithmetic: {ADD, SUB}
 - Compare: {signed, unsigned} x {Set if Less Than}
 - Logical: {AND, OR, XOR}
 - Shift: {Left, Right-Logical, Right-Arithmetic}

Assembly Programming 101

- Break down high-level program expressions into a sequence of elemental operations
- E.g. High-level Code

$$f = (g + h) - (i + j)$$

- Assembly Code
 - suppose f, g, h, i, j are in r_f, r_g, r_h, r_i, r_i
 - suppose r_{temp} is a free register

```
add \mathbf{r}_{temp} \mathbf{r}_{g} \mathbf{r}_{h} # \mathbf{r}_{temp} = g+h

add \mathbf{r}_{f} \mathbf{r}_{i} \mathbf{r}_{j} # \mathbf{r}_{f} = i+j

sub \mathbf{r}_{f} \mathbf{r}_{temp} \mathbf{r}_{f} # \mathbf{f} = \mathbf{r}_{temp} - \mathbf{r}_{f}
```

Reg-Reg Instruction Encodings

31	25	5 24	20	19	15	14	12	11	7	6	0	
	funct7	rs2		rs	\mathfrak{s}_1	fun	ct3	r	$^{\mathrm{d}}$	opc	ode	R-type
	0000000	rs2		rs	1	00	00	r	$^{\mathrm{d}}$	0110	0011	ADD
	0100000	rs2		rs	$_{1}$	00	00	r	$^{\mathrm{d}}$	0110	0011	SUB
	0000000	rs2		rs	s1	00)1	r	$^{\mathrm{d}}$	0110	0011	SLL
	0000000	rs2		rs	s1	01	0	r	d	0110	0011	SLT
	0000000	rs2		rs	s1	01	1	r	d	0110	0011	SLTU
	0000000	rs2		rs	$\mathbf{s}1$	10	00	r	d	0110	0011	XOR
	0000000	rs2		rs	s1	10)1	r	$^{\mathrm{d}}$	0110	0011	SRL
	0100000	rs2		rs	s1	10)1	r	$^{\mathrm{d}}$	0110	0011	SRA
	0000000	rs2		rs	s1	11	0	r	$^{\mathrm{d}}$	0110	0011	OR
	0000000	rs2		rs	s1	11	1	r	d	0110	0011	AND
	'					•						j

32-bit R-type ALU

Reg-Immediate ALU Instructions

Assembly (e.g., reg-immediate additions)

Machine encoding

imm[11:0]	rs1	000	rd	0010011
12-bit	5-bit	3-bit	5-bit	7-bit

- Semantics
 - GPR[rd] ← GPR[rs1] + sign-extend (imm)
 - $PC \leftarrow PC + 4$
- Exceptions: none (ignore carry and overflow)
- Variations
 - Arithmetic: {ADDI, SMBI}
 - Compare: {signed, unsigned} x {Set if Less Than Imm}
 - Logical: {ANDI, ORI, XORI}
 - **Shifts by unsigned imm[4:0]: {SLLI, SRLI, SRAI}

Reg-Immediate ALU Inst. Encodings

31 20) 19 15	14 12	11 7	6 0	
imm[11:0]	rs1	funct3	rd	opcode	I-type
imm[11:0]	rs1	000	rd	0010011	ADDI
imm[11:0]	rs1	010	rd	0010011	SLTI
imm[11:0]	rs1	011	rd	0010011	SLTIU
imm[11:0]	rs1	100	rd	0010011	XORI
imm[11:0]	rs1	110	rd	0010011	ORI
imm[11:0]	rs1	111	rd	0010011	ANDI
	_	•			
sign-extended immediat	e				

sign-ex	tendec	limmed	liate	
		,		_

0000000	shamt	rs1	001	rd	0010011	SLLI
0000000	shamt	rs1	101	rd	0010011	SRLI
0100000	shamt	rs1	101	rd	0010011	SRAI

unsigned

matches

32-bit I-type ALU

R-type encoding

Note: SLTIU does <u>unsigned</u> compare with <u>sign</u>-extended immediate

[from page 54, The RISC-V Instruction Set Manual]

Load-Store Architecture

- RV32I ALU instructions
 - operates only on register operands
 - next PC always PC+4
- A distinct set of load and store instructions
 - dedicated to copying data between register and memory
 - next PC always PC+4
- Another set of "control flow" instructions
 - dedicated to manipulating PC (branch, jump, etc.)
 - does not effect memory or other registers

Load Instructions

Assembly (e.g., load 4-byte word)

LW rd, offset₁₂(base) \leftarrow

Machine encoding

offset[11:0]	base	010	rd	0000011
12-bit	5-bit	3-bit	5-bit	7-bit

- Semantics
 - byte_address₃₂ = sign-extend(offset₁₂) + GPR[base]
 - GPR[rd] ← MEM₃₂[byte_address]
 - $PC \leftarrow PC + 4$
- Exceptions: none for now
- Variations: LW, LH, LHU, LB, LBU

e.g., LB :: $GPR[rd] \leftarrow sign-extend(MEM_8[byte_address])$

LBU :: GPR[rd] ← zero-extend(MEM₈[byte_address])

Note: RV32I memory is byte-addressable, little-endian

LSB

byte 16

Big Endian vs. Little Endian

(Part I, Chapter 4, Gulliver's Travels)

- 32-bit signed or unsigned integer word is 4 bytes
- By convention we "write" MSB on left

MSB _					LSB
(most significant)	8-bit	8-bit	8-bit	8-bit 🗸 🕕	east significant)

MSB

byte 19

On a byte-addressable machine

MSB	LSB		
byte 0	byte 1	byte 2	byte 3
byte 4	byte 5	byte 6	byte 7
byte 8	byte 9	byte 10	byte 11
byte 12	byte 13	byte 14	byte 15
byte 16	byte 17	byte 18	byte 19

Dia Fadian

pointer points to the big end

byte 3	byte 2	byte 1	byte 0
byte 7	byte 6	byte 5	byte 4
byte 11	byte 10	byte 9	byte 8
byte 15	byte 14	byte 13	byte 12

Little Endian

pointer points to the **little end**

byte 18

What difference does it make?

check out htonl(), ntohl() in in.h

byte 17

Load/Store Data Alignment

MSB byte-3 byte-2 byte-1 byte-0 LSE byte-7 byte-6 byte-5 byte-4

- Common case is aligned loads and stores
 - physical implementations of memory and memory interface optimize for natural alignment boundaries (i.e., return an aligned 4-byte word per access)
 - unaligned loads or stores would require 2 separate accesses to memory
- Common for RISC ISAs to disallow misaligned loads/stores; if necessary, use a code sequence of aligned loads/stores and shifts
- RV32I (until v20191213) allowed misaligned loads/ stores but warns it could be very slow; if necessary, . . .

Store Instructions

Assembly (e.g., store 4-byte word)

Machine encoding

offset[11:5]	rs2	base	010	ofst[4:0]	0100011
7-bit	5-bit	5-bit	3-bit	5-bit	7-bit

- Semantics
 - byte_address₃₂ = sign-extend(offset₁₂) + GPR[base]
 - MEM₃₂[byte_address] ← GPR[rs2]
 - $PC \leftarrow PC + 4$
- Exceptions: none for now
- Variations: SW, SH, SB

e.g., SB::
$$MEM_8[byte_address] \leftarrow (GPR[rs2])[7:0]$$

Assembly Programming 201

• E.g. High-level Code

$$A[8] = h + A[0]$$

where **A** is an array of integers (4 bytes each)

- Assembly Code
 - suppose &A, h are in r_A, r_h
 - suppose r_{temp} is a free register

```
LW r_{temp} 0 (r_{A}) # r_{temp} = A[0]
add r_{temp} r_{h} r_{temp} # r_{temp} = h + A[0]
SW r_{temp} 32 (r_{A}) # A[8] = r_{temp}
# note A[8] is 32 bytes
# from A[0]
```

Load/Store Encodings

Both needs 2 register operands and 1 12-bit immediate

31	20	19 1	5 14	12 11	7	6	0
imm[11:0]		rs1	funct	t3	rd	opcode	I-type
imm[11:0]		rs1	000)	rd	0000011	LB
imm[11:0]		rs1	001		rd	0000011	LH
imm[11:0]		rs1	010)	rd	0000011	LW
imm[11:0]		rs1	100)	rd	0000011	LBU
imm[11:0]		rs1	101		rd	0000011	LHU

31	25	24 20	19 15	14 12	11 7	6 0	
	imm[11:5]	rs2	rs1	funct3	imm[4:0]	opcode	S-type
	imm[11:5]	rs2	rs1	000	imm[4:0]	0100011	SB
	imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	SH
	imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	SW

[from page 54, The RISC-V Instruction Set Manual]

RV32I Immediate Encoding

- RV32I adopts 2 different register-immediate formats (I vs S) to keep rs2 operand at inst[24:20] always
- Most RISCs had 1 register-immediate format

opcode	rs	rt	immediate
6-bit	5-bit	5-bit	16-bit

- rt field used as a source (e.g., store) or dest (e.g., load)
- also common to opt for longer 16-bit immediate
- RV32I encodes immediate in non-consecutive bits

RV32I Instruction Formats

- All instructions 4-byte long and 4-byte aligned in mem
- R-type: 3 register operands

31		25	24	20	19	15	14	12	11	7	6	0
	funct7		r	s2	rs	1	fund	ct3	1	rd	opco	ode

• I-type: 2 register operands (with dest) and 12-bit imm

31		20	19	15	14	12	11	7	6	0
	imm[11:0]		rs		fun	ct3		rd	opc	ode

• S(B)-type: 2 register operands (no dest) and 12-bit imm

31	2	5 24	20	19	15	14	12	11	7	6	0
	imm[11:5]		rs2	rs1		fun	ct3	imm	[4:0]	opco	ode
	imm[12 10:5]		rs2	rs1		fun	ct3	imm[4	4:1(11)	opco	ode

U(J)-type, 1 register operation (dest) and 20-bit imm

31 12	11 7	6 0
imm[31:12]	rd	opcode
imm[20(10:1 11)19:12]	rd	opcode

Aimed to simplify decoding and field extraction

Control Flow Instructions

• C-Code

{ code A }
if X==Y then
 { code B }
else
 { code C }

{ code D }

Control Flow Graph

Assembly Code (linearized)

basic blocks (1-way in, 1-way out, all or nothing)
18-447-\$20-L02-\$26, James C. Hoe, CMU/ECE/CALCM, ©2020

(Conditional) Branch Instructions

Assembly (e.g., branch if equal)

BEQ rs1, rs2, imm₁₃ Note: implicit imm[0]=0

Machine encoding

imm[12 10:5]	rs2	rs1	000	imm[4:1 11]	1100011
7-bit	5-bit	5-bit	3-bit	5-bit	7-bit

- Semantics
 - target = PC + sign-extend(imm₁₃)
 - if GPR[rs1]==GPR[rs2] then PC ← target else $PC \leftarrow PC + 4$

How far can you jump?

- Exceptions: misaligned target (4-byte) if taken
- Variations
 - BEQ, BNE, BLT, BGE, BLTU, BGEU

Assembly Programming 301

• E.g. High-level Code

```
if (i == j) then
    e = g
else
    e = h
f = e
```


- Assembly Code
 - suppose e, f, g, h, i, j are in r_e, r_f, r_g, r_h, r_i, r_i

Function Call and Return

- A function return need to 1. jump back to different callers
 - 2. know where to jump back to

Jump and Link Instruction

Assembly

Note: implicit imm[0]=0

Machine encoding

imm[20 10:1 11 19:12]	rd	1101111	UJ-type
20-bit	5-bit	7-bit	

- Semantics
 - target = PC + sign-extend(imm₂₁)
 - $GPR[rd] \leftarrow PC + 4$
 - PC ← target

How far can you jump?

Exceptions: misaligned target (4-byte)

Jump Indirect Instruction

Assembly

Machine encoding

imm[11:0]	rs1	000	rd	1100111
12-bit	5-bit	3-bit	5-bit	7-bit

- Semantics
 - target = GPR[rs1] + sign-extend(imm₁₂)
 - target &= 0xffff_fffe
 - $GPR[rd] \leftarrow PC + 4$
 - PC ← target

How far can you jump?

Exceptions: misaligned target (4-byte)

Assembly Programming 401

<u>Caller</u>

```
... code A ...

JAL x1, _myfxn
... code C ...

JAL x1, _myfxn
... code D ...
```

```
_myfxn: ... code B ...
JALR x0,x1,0
```

- $A \rightarrow_{call} B \rightarrow_{return} C \rightarrow_{call} B \rightarrow_{return} D$
- How do you pass argument between caller and callee?
- If A set x10 to 1, what is the value of x10 when B returns to C?
- What registers can B use?
- What happens to x1 if B calls another function

Caller and Callee Saved Registers

- Callee-Saved Registers
 - caller says to callee, "The values of these registers should not change when you return to me."
 - callee says, "If I need to use these registers, I promise to save the old values to memory first and restore them before I return to you."
- Caller-Saved Registers
 - caller says to callee, "If there is anything I care about in these registers, I already saved it myself."
 - callee says to caller, "Don't count on them staying the same values after I am done.
- Unlike endianness, this is not arbitrary

When to use which?

RISC-V Register Usage Convention

Register	ABI Name	Description	Saver
xO	zero	Hard-wired zero	
x1	ra	Return address	Caller
x2	sp	Stack pointer	Callee
хЗ	gp	Global pointer	
x4	tp	Thread pointer	
x5-7	t0-2	Temporaries	Caller
x8	s0/fp	Saved register/frame pointer	Callee
x9	s1	Saved register	Callee
x10-11	a0-1	Function arguments/return values	Caller
x12-17	a2-7	Function arguments	Caller
x18-27	s2-11	Saved registers	Callee
x28-31	t3-6	Temporaries	Caller

[from page 100, The RISC-V Instruction Set Manual]

Memory Usage Convention

Basic Calling Convention

- 1. caller saves caller-saved registers
- 2. caller loads arguments into a0 $^{\sim}$ a7 (x10 $^{\sim}$ x17)
- 3. caller jumps to callee using JAL x1
- 4. callee allocates space on the stack (dec. stack pointer)
- 5. callee saves callee-saved registers to stack

...... body of callee (can "nest" additional calls)

- 6. callee loads results to a0, a1 (x10, x11)
- 7. callee restores saved register values
- 8. **JALR** x0, x1
- 9. caller continues with return values in a0, a1

Terminologies

- Instruction Set Architecture
 - machine state and functionality as observable and controllable by the programmer
- Instruction Set
 - set of commands supported
- Machine Code
 - instructions encoded in binary format
 - directly consumable by the hardware
- Assembly Code
 - instructions in "textual" form, e.g. add r1, r2, r3
 - converted to machine code by an assembler
 - one-to-one correspondence with machine code (mostly true: compound instructions, labels)

We didn't talk about

- Privileged Modes
 - user vs. supervisor
- Exception Handling
 - trap to supervisor handling routine and back
- Virtual Memory
 - each process has 4-GBytes of private, large, linear and fast memory?
- Floating-Point Instructions