SAÉ 12 (PARTIE 2)

2. Analyser le trafic réseau

Q2.1. Analyse avec traceroute:

Le traceroute vers <u>www.youtube.com</u> donne les résultats suivants :

Saut	Adresse IP	Organisati on	Numéro AS	Commentaire
1	192.168.1. 254	IANA (Adresse privée)	N/A	Adresse privée locale pour le réseau domestique
2	*	N/A	N/A	Pas de réponse (timeout).

3	194.149.17 4.100	Scaleway S.A.S.	N/A	Fournisseur d'hébergement cloud (Scaleway en France).
4	62.115.46. 68	Arelion (Twelve 99)	AS 1299	Fournisseur de transit majeur (backbone Internet mondial).
5	62.115.174 .29	Arelion (Twelve 99)	AS 1299	Même fournisseur, transit entre deux points.
6	216.239.40 .79	Google LLC	AS15169	Infrastructure Google (Mountain View, California).
7	108.170.23 5.15	Google LLC	AS15169	Infrastructure Google pour les serveurs YouTube.
8	216.58.215 .46	Google LLC	AS15169	Destination finale pour www.youtube.com (serveur Google a Paris).

Le traceroute vers www.legs.cnrs.fr donne les résultats suivants :

Saut	Adresse IP	Organisation	Numéro AS	Commentaire
1	192.168.1.254	Adresse privée	AS 11845	Routeur local

2	193.253.11.26	Orange	ASNA	Fournisseur d'accès
3	97.77.84.83	Charter Communications	AS 11427	San Antonio, USA
4	180.0.9.1	NTT Communications	AS 4713	Tokyo, Japon
5	93.107.40.2	Vodafone Ireland	AS 15502	Dublin, Irlande

Le traceroute vers www.nyu.edu donne les résultats suivants :

Ét ap	Adresse IP	Emplacement	ASN	Organisation	Description
е					

1	192.168. 1.254	Réseau Privé	_	Adresse Privée	Adresse IP locale utilisée dans des réseaux domestiques ou d'entreprise.
2	194.149. 174.98	France, Paris	-	Scaleway S.A.S.	Cette IP appartient à un fournisseur d'hébergeme nt en France.
3	99.83.88. 180	États-Unis, Herndon	AS165 09	Amazon Data Services Nova	Partie d'un sous-réseau AWS utilisé pour les services cloud.
4	52.46.93. 50	France, Paris	AS165 09	Amazon Technologies Inc.	Serveur AWS situé à Paris, probablement pour la distribution de contenu.

5	52.93.63. 217	Singapour	AS165 09	Amazon Technologies Inc.	Connecté à un centre de données AWS en Asie (Singapour).
6	52.93.11 6.115	Inde, Mumbai	AS165 09	Amazon Technologies Inc.	Fait partie d'un réseau AWS à Mumbai, utilisé pour la distribution régionale.
7	52.95.60. 242	Irlande, Dublin	AS165 09	Amazon Technologies Inc.	Serveur AWS en Europe pour gérer le trafic régional.
8	-	* Temps d'attente dépassé *	-	-	Une étape où aucune réponse n'a été reçue.
9	13.32.14 5.73	France, Roissy-en-Fra nce	AS165 09	Amazon Technologies Inc.	Serveur CloudFront AWS pour la distribution de contenu.

Q2.2. Analyse avec capture Wireshark:

Liste des applications utilisées : Microsoft Edge; bloc-notes et explorateurs de fichier Onglet Ethernet :

Nombre d'adresses Mac : 6 cela va inclure une adresse multicast

FF:FF:FF:FF:FF

Onglet Ipv4:

Nombre d'adresses IPv4 : 91

le nombre est supérieur au nombre d'adresses mac car une adresse MAC est liée à une interface physique et les adresses IP représentent des points d'accès logiques, accessibles via un même routeur ou NAT.

Onglet TCP:

Nombre de conversations TCP : 99 les conversations les plus volumineuse sont celles vers google exemple : 172.217.20.196 (Google) : 164 Ko échangés.

3. Énergie:

Q3.1. Un exemple simple :

1. lien : <u>Réfrigérateur américain Samsung RS6HDG883EB1 | Darty</u> modèles : Samsung RS6HDG883EB1

2. Consommation d'énergie annuelle : 346 kWh

3. consommation électrique par ans : 346 kWh

consommation électrique par mois : 346÷12=28.833kWh/mois

consommation électrique par jour : 346÷365=0.947kWh/jour

consommation électrique par heure : 346÷(365*24)=0.03946kWh/heure

consommation électrique par minute : 346÷(365*24*60)=0.0006577kWh/minute

consommation électrique instantanée :

346÷(365*24*3600)=0.00001096kWh/seconde

Q3.2. Un ordinateur portable :

1. lien : Station de travail Dell Precision 17" avec processeur i9 de 13e génération | Dell France

Capacité de la batterie : La Dell Precision 7780 est équipée d'une batterie lithium-ion à 6 cellules d'une capacité de 93 Wh.

Puissance du chargeur : L'adaptateur secteur fourni délivre une puissance de 240 W

2. estimation du temps de charge :

Le temps de charge (T) peut être estimé par : T = (Capacité de la batterie (Wh)/Puissance du chargeur (W)) * facteur d'efficacité

T= 93÷(240*0.85)=0.455heures.

Le temps de charge estimé est **0,455 heures**, soit environ **27,3 minutes**.

3. il est susceptible que la pratique soit plus longue que l'estimation avec l'usure de la batterie car celles ci s'abîme au fur et à mesures du temps; si ont utilisé l'ordinateur en même temps ou pas et l'efficacité de charge car les système de charges ne sont pas complètement efficaces

Q3.3. Faisons chauffez la CPU:

1. d'après le tableau suivants l'ont peut remarquer que cela n'est pas proportionnels :

Nombre de Threads	Consommation d'Énergie (W)	Température (°C)	Utilisation du CPU (%)
0	5,2	Core #1: 46, Core #2: 51, Core #3: 47, Core #4: 45	7,4
1	6,7	Core #1: 49, Core #2: 46, Core #3: 42, Core #4: 42	12,7

2	6,0	Core #1: 46, Core #2: 46, Core #3: 44, Core #4: 42	12,7
3	20,4	Core #1: 45, Core #2: 45, Core #3: 44, Core #4: 46	31,0
4	20,4	Core #1: 45, Core #2: 44, Core #3: 40, Core #4: 45	13,7
5	20,4	Core #1: 48, Core #2: 45, Core #3: 44, Core #4: 41	11,7
6	20,4	Core #1: 48, Core #2: 44, Core #3: 40, Core #4: 40	9,2
7	20,4	Core #1: 48, Core #2: 44, Core #3: 48, Core #4: 44	9,4

2. La consommation maximale de 20,4 W est nettement inférieure à celle d'un réfrigérateur qui consomme environ 250 W en continu. Cela montre que les composants informatiques modernes sont bien plus économes.

Q3.4. Des kWhs au g de CO2 :

1. Émissions de CO₂ par recharge

Pays	Intensité carbone (g CO₂/kWh)	Émissions par recharge (g CO ₂)
France	35	3.26
Pologne	700	65.10

2. Émissions annuelles pour 300 recharges

Pays	Émissions par recharge (g CO ₂)	Émissions annuelles (kg CO₂)
France	3.26	0.98
Pologne	65.10	19.53

3. Consommation annuelle du réfrigérateur

Pays	Consommation annuelle (kWh)	Émissions annuelles (kg CO₂)
France	346	12.11
Pologne	346	242.20