

EMISSIONS TEST REPORT

Report Number: 101948295BOX-006d Project Number: G101948295

Report Issue Date: 09/02/2015

Product Designation: ANDE-6C (RFID at 13.56 MHz)

Standards: CFR47 FCC Part 15 Subpart C:2015 Section 15.225,

Industry Canada RSS-210 Issue 8 December 2010, Annex 2 (A2.6)

Industry Canada RSS-Gen Issue 4 November 2014

Tested by:
Intertek Testing Services NA, Inc.
70 Codman Hill Road
Boxborough, MA 01719 USA

Client: NetBio 266 Second Avenue Waltham, MA 02451 USA

Report prepared by

Kouma Sinn / Staff Engineer, EMC

Report reviewed by

Michael F. Murphy / Sr. Staff Engineer, EMC

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested was found to Comply with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test	
5	System Setup and Method	
6	Fundamental Radiated Emissions FCC Part 15 Subpart C:2015 15.225(a), (b), (c), (d) IC RSS-210 Issue 8 December 2010 A2.6 (a), (b), (c), (d)	Pass
7	Transmitter Spurious Emissions Below 30MHz FCC Part 15 Subpart C:2015 15.209, 15.225(d), IC RSS-210 Issue 8 December 2010 A2.6(d)	Pass
8	Transmitter Spurious Emissions Above 30MHz FCC Part 15 Subpart C:2015 15.209, 15.225(d), IC RSS-210 Issue 8 December 2010 A2.6(d)	Pass
	Receiver Spurious Emissions Below 30MHz FCC Part 15 Subpart B:2015 15.109, IC RSS-Gen Issue 3 December 2010: Section 6.0	N/A*
9	Receiver Spurious Emissions Above 30MHz FCC Part 15 Subpart B:2015 15.109, IC RSS-Gen Issue 3 December 2010: Section 6.0	Pass
10	AC Mains Conducted Emissions FCC Part 15 Subpart C:2015 15.207 IC RSS-Gen Section 7.2.2.	Pass
11	20dB Bandwidth FCC Part 15 Subpart C:2015 15.215 IC RSS-Gen Issue 3 December 2010 Section 4.6	Pass
12	Frequency Stability FCC Part 15 Subpart C:2015 15.225(e), IC RSS-Gen Issue 3 December 2010 Section 4.7 IC RSS-210 December 2010 A2.6	Pass
13	Revision History	

^{* -} no limits below 30 MHz

3 **Client Information**

This EUT was tested at the request of:

Client: NetBio

> 266 Second Avenue Waltham, MA 02451

USA

Contact: Melissa May (781) 916-8273 Telephone: Fax: (781) 890-2560

Melissa.May@netbio.com Email:

Description of Equipment Under Test

Manufacturer: NetBio

> 266 Second Avenue Waltham, MA 02451

USA

Equipment Under Test					
Description Manufacturer Model Number Serial Number					
DNA Sequencer NetBio ANDE-6C 0002-100-0919					

Receive Date:	01/16/2015
Received Condition:	Good
Type:	Production

Description of Equipment Under Test (provided by client)

The EUT is a measurement system used in the analyzing of DNA sequencing. It uses RFID at 13.56 MHz

Equipment Under Test Power Configuration					
Rated Voltage Rated Current Rated Frequency Number of Phases					
100-240 VAC	15 A	50/60 Hz	1		

Operating modes of the EUT:

_	0
No.	Descriptions of EUT Exercising
1	The RFID was programmed to transmit continuously at 13.56 MHz
2	The RFID was programmed to receive at 13.56 MHz

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	Pre-programmed

Page 3 of 48

5 **System Setup and Method**

	Cables						
ID	Description	Length (m)	Shielding	Ferrites	Termination		
1	AC Mains	2.5	None	None	AC Mains		
2	VGA Cable	1.5	Braid	One	Monitor		
3	Mouse Cable	1.25	Braid	None	USB		
4	Keyboard Cable	1.25	Braid	None	USB		
5	Ext Hard Drive Cable	0.25	Braid	None	USB		

Support Equipment					
Description Manufacturer Model Number Serial Number					
Display	Dell	2007FPb	MX-0G324-74262-27P-1GUL		
Keyboard	Microsoft	RT2300	7668208258746		
Mouse	Dell	MS-111L	CN-09RRC7-44751-22I-0KW8		
External Harddrive	Imation	IM250-1000S	BG904261-20111007		

5.1 Method:

Configuration as required by CFR47 FCC Part 15 Subpart C:2015 Section 15.225, Industry Canada RSS-210 Issue 8 December 2010, Annex 2 (A2.6) Industry Canada RSS-Gen Issue 4 November 2014, and ANSI C63.4:2009.

5.2 EUT Block Diagram:

Page 4 of 48

Fundamental Frequency Radiated Emissions

6.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C – 15.225(a), (b), (c), (d), IC RSS-210 – A2.6 (a), (b), (c), (d), and ANSI C63.4.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6	6.3
Radiated Emissions, 3m	30-1000 MHz	5.3	6.3
Radiated Emissions, 3m	1-6 GHz	4.5	5.2
Radiated Emissions, 3m	6-15 GHz	5.2	5.5
Radiated Emissions, 3m	15-18 GHz	5.0	5.5
Radiated Emissions, 3m	18-40 GHz	5.0	5.5

Page 5 of 48

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = $52.0 \text{ dB}_{\mu}\text{V}$ AF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = $32 \text{ dB}_{\mu}\text{V/m}$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in $dB\mu$ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \text{ dB}\mu\text{V}/20)} = 39.8 \text{ }\mu\text{V/m}$

Alternately, when C5 Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". "AF" is the Antenna Factor; "PA+CL" are Preamp and Cable Loss. These are already accounted for in the "Level" column.

Intertek

Report Number: 101948295BOX-006d Issued: 09/02/2015

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
ETS003'	9kHz-30MHz Active Loop Antenna	ETS Lindgren	6502	00143396	04/01/2014	04/01/2015
CBLBNC10'	25 ft, 50 Ohm BNC Cable	Pomona	RG 58 C/U	CBLBNC10	10/04/2014	10/04/2015
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/17/2014	03/17/2015

Software Utilized:

Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2010

6.3 Results:

The sample tested was found to comply.

The field strength of any emissions shall not exceed the limits as follows:

Frequency Bands	Field Strength Limits		Test Distance
(MHz)	μV/m	dBµV/m	(meters)
13.553 –13.567	15,848	84.00	30
13.410 –13.553	334	50.50	30
13.567 –13.710	334	50.50	30
13.110 –13.410	106	40.51	30
13.710 –14.010	106	40.51	30
Outside of 13.110 –14.010		§15.20	09

6.4 Setup Photographs:

6.5 Test Data:

QP

Radiated Emissions

Company: NetBio Antenna & Cables: Bands: N, LF, HF, SHF

Model #: ANDE-6C Antenna: ETS003 E-Field 04-01-2015.txt ETS003 H-Field 04-01-2015.txt

Serial #: 0002-100-0919 Cable(s): CBLBNC10 10-04-15.txt NONE.

Engineers: Vathana Ven Location: 10m Chamber Barometer: DAV004 Filter: NONE

Project #: G100435320 Date(s): 01/22/15

Standard: FCC Part 15C, 15.225 Temp/Humidity/Pressure: 22 deg C 15% 1012mB

Receiver: R&S ESI (145-128) 03-17-2015 Limit Distance (m): 30 PreAmp: NONE. Test Distance (m): 3

120VAC/60Hz PreAmp Used? (Y or N): Ν Voltage/Frequency: Frequency Range: 9 kHz - 30 MHz

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB) Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

			0		-,	,		, -			
	Ant.			Antenna	Cable	Pre-amp	Distance				
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB	
				Note	: Tx Mode,	120V/60Hz	FCC				
QP	V	0.064	48.27	-11.62	0.05	0.00	59.08	-22.38	43.00	-65.38	9/30 kHz
QP	V	0.088	45.50	-11.48	0.05	0.00	59.08	-25.01	43.00	-68.01	9/30 kHz
QP	V	0.131	42.10	-11.04	0.05	0.00	59.08	-27.97	43.00	-70.97	9/30 kHz
QP	V	13.560	26.04	-10.56	0.49	0.00	20.00	-4.02	84.00	-88.02	9/30 kHz
QP	V	13.410	3.38	-10.56	0.49	0.00	20.00	-26.69	50.48	-77.17	9/30 kHz
QP	V	13.553	12.16	-10.56	0.49	0.00	20.00	-17.90	50.48	-68.38	9/30 kHz
QP	V	13.567	12.50	-10.56	0.49	0.00	20.00	-17.56	50.48	-68.04	9/30 kHz
QP	V	13.710	3.10	-10.55	0.50	0.00	20.00	-26.95	50.48	-77.43	9/30 kHz
QP	V	13.110	3.38	-10.58	0.49	0.00	20.00	-26.71	40.51	-67.22	9/30 kHz
OP	V	14.010	3.10	-10.54	0.50	0.00	20.00	-26.94	40.51	-67.44	9/30 kHz

Notes: A 20dB/decade distance factor was used from 13.56 MHz to 30 MHz

9.00

27.120

Vathana F. Ven Test Personnel(s): Test Date(s): 1/22/2015

0.73

-8.59

Supervising Engineer: (Where Applicable) Test Levels: Per section 6.3 Product Standard: FCC 15.225, IC RSS-210 Ambient Temperature: 22 °C Input Voltage: 120VAC/60Hz Relative Humidity: 15 % Pretest Verification w/ Atmospheric Pressure: 1012 mbars

0.00

20.00

-18.86

40.00

-58.86

9/30 kHz

Ambient Signals or BB Source: Ambient Signals

Deviations, Additions, or Exclusions: None

Page 9 of 48

7 **Transmitter Spurious Emissions Below 30MHz**

7.1 Method

Tests are performed in accordance with FCC Part 15 Subpart – 15.209, 15.225(d), IC RSS-210 – A2.6(d), and ANSI C63.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6	6.3
Radiated Emissions, 3m	30-1000 MHz	5.3	6.3
Radiated Emissions, 3m	1-6 GHz	4.5	5.2
Radiated Emissions, 3m	6-15 GHz	5.2	5.5
Radiated Emissions, 3m	15-18 GHz	5.0	5.5
Radiated Emissions, 3m	18-40 GHz	5.0	5.5

Page 10 of 48

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = $52.0 \text{ dB}_{\mu}\text{V}$ AF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = $32 \text{ dB}_{\mu}\text{V/m}$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in $dB\mu$ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \text{ dB}\mu\text{V}/20)} = 39.8 \text{ }\mu\text{V/m}$

Alternately, when C5 Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". "AF" is the Antenna Factor; "PA+CL" are Preamp and Cable Loss. These are already accounted for in the "Level" column.

Intertek

Report Number: 101948295BOX-006d Issued: 09/02/2015

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
ETS003'	9kHz-30MHz Active Loop Antenna	ETS Lindgren	6502	00143396	04/01/2014	04/01/2015
CBLBNC10'	25 ft, 50 Ohm BNC Cable	Pomona	RG 58 C/U	CBLBNC10	10/04/2014	10/04/2015
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/17/2014	03/17/2015

Software Utilized:

Name	Manufacturer	Version		
EMI Boxborough.xls	Intertek	08/27/2010		

7.3 Results:

The sample tested was found to comply.

The field strength of any emissions shall not exceed the limits as follows:

FCC Part 15.209

Frequency	Fi	eld Strength	Test Distance
(MHz)	μV/m	dBμV/m	(meters)
0.009-0.490	2400/F(kHz)	20*Log(2400/F(kHz))	300
0.490-1.705	24000/F(kHz)	20*Log(24000/F(kHz))	30
1.705–30.0	30.00	29.54	30

Note: The emission limits for the bands 9-90kHz and 110-490kHz are based on measurements employing an average detector.

IC RSS-210 A2.6(d): emissions outside the band 13.110-14.010 MHz must not exceed 30 microvolts/m (29.5 dB μ V/m) at 30 m.

7.4 Setup Photographs:

7.5 Test Data:

QP

Radiated Emissions

Company: NetBio Antenna & Cables: N Bands: N, LF, HF, SHF
Model #: ANDE-6C Antenna: ETS003 E-Field 04-01-2015.txt ETS003 H-Field 04-01-2015.txt

Serial #: 0002-100-0919 Cable(s): CBLBNC10 10-04-15.txt NONE.

Engineers: Vathana Ven Location: 10m Chamber Barometer: DAV004 Filter: NONE

Project #: G100435320 Date(s): 01/22/15

27.120

Standard: FCC Part 15C, 15.225 Temp/Humidity/Pressure: 22 deg C 15% 1012mB

Receiver: R&S ESI (145-128) 03-17-2015 Limit Distance (m): 30 PreAmp: NONE. Test Distance (m): 3

9.00

-8.59

PreAmp Used? (Y or N): N Voltage/Frequency: 120VAC/60Hz Frequency Range: 9 kHz - 30 MHz

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB) Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

Antenna Distance Ant. Cable Pre-amp Detector Pol. Frequency Reading Factor Loss Factor Factor Net Limit Margin Bandwidth Type (V/H) MHz dB(uV) dB(1/m) dΒ dB dΒ dB(uV/m) dB(uV/m) dΒ Note: Tx Mode, 120V/60Hz FCC QΡ V 9/30 kHz 0.064 48.27 -11.62 0.05 0.00 59.08 -22.38 43.00 -65.38 QP 0.088 45.50 -11.48 0.05 0.00 59.08 -25.01 43.00 -68.01 9/30 kHz QP V 0.131 42.10 -11.04 0.05 0.00 59.08 -27.97 43.00 -70.97 9/30 kHz

0.00

20.00

-18.86

40.00

-58.86

9/30 kHz

0.73

Vathana F. Ven Test Personnel(s): Test Date(s): 1/22/2015 Supervising Engineer: N/A (Where Applicable) Test Levels: Per section 7.3 FCC 15.225, IC RSS-210 Ambient Temperature: 22 °C Product Standard: Input Voltage: 120VAC/60Hz 15 % Relative Humidity: Pretest Verification w/ Atmospheric Pressure: 1012 mbars Ambient Signals or **Ambient Signals** BB Source:

Deviations, Additions, or Exclusions: None

8 **Transmitter Spurious Above 30MHz**

8.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C – 15.209, 15.225(d), IC RSS-210 – A2.6(d), and ANSI C63.4.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6	6.3
Radiated Emissions, 3m	30-1000 MHz	5.3	6.3
Radiated Emissions, 3m	1-6 GHz	4.5	5.2
Radiated Emissions, 3m	6-15 GHz	5.2	5.5
Radiated Emissions, 3m	15-18 GHz	5.0	5.5
Radiated Emissions, 3m	18-40 GHz	5.0	5.5

Page 15 of 48

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = $52.0 \text{ dB}_{\mu}\text{V}$ AF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = $32 \text{ dB}_{\mu}\text{V/m}$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in $dB\mu$ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \text{ dB}\mu\text{V}/20)} = 39.8 \text{ }\mu\text{V/m}$

Alternately, when C5 Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". "AF" is the Antenna Factor; "PA+CL" are Preamp and Cable Loss. These are already accounted for in the "Level" column.

Intertek

Report Number: 101948295BOX-006d Issued: 09/02/2015

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
145106'	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	10/24/2014	10/24/2015
145003'	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2443A04077	10/08/2014	10/08/2015
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/17/2014	03/17/2015
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	10/04/2014	10/04/2015

Software Utilized:

Name	Manufacturer	Version		
C5	Teseq	5.26.46.46		

8.3 Results:

The sample tested was found to Comply.

The field strength of any emissions shall not exceed the limits as follows:

FCC Part 15.209

Frequency	Fiel	Test Distance	
(MHz)	μV/m	dBµV/m	(meters)
30–88	100	40.00	3
88–216	150	43.52	3
216–960	200	46.02	3
Above 960	500	53.98	3

IC RSS-210 A2.6(d): emissions outside the band 13.110-14.010 MHz must not exceed 30 microvolts/m (29.5 dB μ V/m) at 30 m (49.5 dB μ V/m at 3m)

Since the IC RSS-210 limits are less stringent than the FCC 15.209 limits under 960 MHz, the FCC limits were used.

8.4 Setup Photographs:

8.5 Plots/Data:

Test Information

User Entry Radiated - FCC15 Class B @ 10m NetBio_G101948295 120VAC/60Hz, RFID in Tx mode Test Details Test Details
Test:
Project:
Test Notes:
Temperature:
Humidity:

22 deg C 15%, 1012 mB Tested by: Test Started: Vathana Ven 22 Jan 2015 19 : 47 Additional Information

Prescan Emission Graph

Measured Peak Value Measured Quasi Peak Value Measured Average Value

Swept Quasi Peak Data Swept Average Data Maximum Value of Mast and Turntable

Emissions Test Data

Trace2: Measured Quasi Peak

		Ju.,								
Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
76.284369068 M	9.63	7.872	-24.472	30.000	-20.37	1	259	1.71	120 k	
139.905009701 M	21.20	13.609	-23.930	33.520	-12.32	İ	156	1.27	120 k	
546.182564778 M	26.85	18.224	-22.212	36.020	-9.17		126	1.04	120 k	
559.156713477 M	27.70	18.483	-22.109	36.020	-8.32		253	1.49	120 k	
344.931463287 M	29.93	14.299	-23.052	36.020	-6.09		103	1.93	120 k	
160.32304613 M	29.45	12.300	-23.841	33.520	-4.07	1	116	1.26	120 k	
298.80400799 M	33.01	13.476	-23.307	36.020	-3.01	İ	44	1.04	120 k	

Swept Peak Data

Azimuth Plots

Turntable Plot (139.905009701 MHz)

Turntable Plots

Level (dBuV/m)

Level (dBuV/m)

Test Date: 1/22/2015

Test Levels: Per section 8.3

Ambient Temperature: 22 °C
Relative Humidity: 15 %

Atmospheric Pressure: 1012mbars

Deviations, Additions, or Exclusions: None

9 **Receiver Spurious Emissions Above 30MHz**

9.1 Method

Tests are performed in accordance with FCC Part 15 Subpart B – 15.109, IC RSS-Gen – Section 6.0, and ANSI C63.4.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6	6.3
Radiated Emissions, 3m	30-1000 MHz	5.3	6.3
Radiated Emissions, 3m	1-6 GHz	4.5	5.2
Radiated Emissions, 3m	6-15 GHz	5.2	5.5
Radiated Emissions, 3m	15-18 GHz	5.0	5.5
Radiated Emissions, 3m	18-40 GHz	5.0	5.5

Page 24 of 48

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB_μV/m. This value in $dB\mu V/m$ was converted to its corresponding level in $\mu V/m$.

RA = 52.0 dBuVAF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = 32 dBuV/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in $dB\mu$ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \text{ dB}\mu\text{V}/20)} = 39.8 \text{ }\mu\text{V/m}$

Alternately, when C5 Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". "AF" is the Antenna Factor; "PA+CL" are Preamp and Cable Loss. These are already accounted for in the "Level" column.

Non-Specific EMC Report Shell Rev. May 2014 Client: NetBio, Model: ANDE-6C (RFID at 13.56 MHz)

Page 25 of 48

Intertek

Report Number: 101948295BOX-006d Issued: 09/02/2015

9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
145106'	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	10/24/2014	10/24/2015
145003'	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2443A04077	10/08/2014	10/08/2015
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/17/2014	03/17/2015
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	10/04/2014	10/04/2015

Software Utilized:

Name	Manufacturer	Version
C5	Teseq	5.26.46.46

9.3 Results:

The sample tested was found to Comply.

The field strength of any emissions shall not exceed the limits as follows:

FCC Part 15.109

Frequency	Field	l Strength	Test Distance
(MHz)	μV/m	dBμV/m	(meters)
30–88	100	40.00	3
88–216	150	43.52	3
216–960	200	46.02	3
Above 960	500	53.98	3

Page 26 of 48

9.4 Setup Photographs:

9.5 Test Data:

Test Information

Test Details User Entry Radiated - FCC15 Class B @ 10m NetBio_G101948295

120VAC/60Hz, Normal operation/RFID in idle/Rx mode

Test Details
Test:
Project:
Test Notes:
Temperature:
Humidity: 22 deg C 15%, 1012 mB Tested by: Test Started: Vathana Ven 22 Jan 2015 20 : 31 Additional Information

Prescan Emission Graph

Measured Peak Value Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable

Swept Peak Data Swept Quasi Peak Data Swept Average Data

Emissions Test Data

Trace2: Measured Quasi Peak

										
Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
57.209819838 M	11.95	7.200	-24.696	30.000	-18.05		211	1.21	120 k	
833.090981661 M	23.18	21.662	-21.192	36.020	-12.84	j	164	1.16	120 k	
298.762324623 M	32.32	13.475	-23.292	36.020	-3.70	1	66	1.04	120 k	
566.256913663 M	32.78	18.550	-22.029	36.020	-3.24		258	1.48	120 k	
344.99478994 M	32.99	14.300	-23.043	36.020	-3.03		101	1.15	120 k	
159.974148279 M	30.70	12.303	-23.790	33.520	-2.82		126	1.16	120 k	

Azimuth Plots

All Polarities Azimuth (Degrees)

Turntable Plot (159.974148279 MHz)

Azimuth (Degrees)

Turntable Plots

Turntable Plot (833.090981661 MHz)

Level (dBuV/m)

Test Personnel: Vathana F. Ven

Supervising/Reviewing Engineer:

Input Voltage:

Product Standard: FCC 15.225, IC RSS-210 120VAC/60Hz

Pretest Verification w/ Ambient

Signals or BB Source: Ambient Signals

Test Date: 1/22/2015 Test Levels: Per section 9.3 Ambient Temperature: 22 °C Relative Humidity: 15 % Atmospheric Pressure: 1012mbars

Deviations, Additions, or Exclusions: None

10 AC Mains Conducted Emissions

10.1 Method

Tests are performed in accordance with FCC Part 15 Subpart B – 15.207, IC RSS-Gen – Section 7.2.2, and ANSI C63.4.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
AC Line Conducted	450111 00111		
Emissions	150 kHz - 30 MHz	2.8	3.4
Telco Port Emissions	150 kHz - 30 MHz	3.2	5

Sample Calculations

The following is how net line-conducted readings were determined:

NF = RF + LF + CF + AF

Where NF = Net Reading in $dB\mu V$

RF = Reading from receiver in $dB\mu V$

LF = LISN or ISN Correction Factor in dB

CF = Cable Correction Factor in dB

AF = Attenuator Loss Factor in dB

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in dB μ V

Example:

NF = RF + LF + CF + AF =
$$28.5 + 0.2 + 0.4 + 20.0 = 49.1 \ dB\mu V$$
 UF = $10^{(49.1 \ dB\mu V / 20)} = 285.1 \ \mu V/m$

Alternately, when C5 Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". "TF" is the Transducer Factor; in this case LISN or ISN loss.

Non-Specific EMC Report Shell Rev. May 2014 Client: Analogic Corporation, Model: ANDE-6C (RFID at 13.56 MHz)

Intertek

Report Number: 101948295BOX-006d Issued: 09/02/2015

10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
DS27'	Attenuator, 20dB	Mini Circuits	20dB, 50 ohm	DS27	10/01/2014	10/01/2015
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/17/2014	03/17/2015
CBLBNC10'	50 Ohm Coaxial Cable	L-Com	RG-58 C/U	CBLBNC10	10/04/2014	10/04/2015
LISN32'	CISPR 16 LISN	Com-Power	LI-215A	191955	02/26/2014	02/26/2015
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/04/2014	10/04/2015

Software Utilized:

Name	Manufacturer	Version
C5 Emissions	TESEQ	5.26.46.46

10.3 Results:

The sample tested was found to Comply.

Limits: Per FCC Part 15 Subpart B – 15.207 and IC RSS-Gen – Section 7.2.2.

Non-Specific EMC Report Shell Rev. May 2014 Client: Analogic Corporation, Model: ANDE-6C (RFID at 13.56 MHz)

10.4 Setup Photograph:

10.5 Plots/Data:

Receive Mode

Test Information

Test Details Test:
Project:
Test Notes:

User Entry LISN - FCC15 Class B Analogic Corporation_G101948295 120VAC/60Hz, Normal operation/RFID in idle/Rx mode

Temperature: Humidity: 22 deg C 12%, 1003 mB Tested by: Test Started: Vathana Ven 23 Jan 2015 22 : 44 Additional Information

Prescan Emission Graph

Measured Peak Value Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable

Swept Peak Data Swept Quasi Peak Data Swept Average Data

Emissions Test Data

Trace2: Measured (Quasi Peak							
Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
327.054108216 k	17.33	0.070	20.570	59.526	-42.20	9 k		N
12.46 M	20.39	0.060	20.932	60.000	-39.61	9 k		L1
12.76 M	23.36	0.060	20.913	60.000	-36.64	9 k		N
269.93987976 k	28.89	0.080	20.570	61.120	-32.23	9 k		N
372.745490982 k	28.73	0.079	20.580	58.440	-29.71	9 k		N
401.30260521 k	34.12	0.080	20.574	57.826	-23.70	9 k		N
195.691382766 k	40.75	0.080	20.500	63.791	-23.04	9 k		L1
247.094188377 k	42.74	0.080	20.560	61.854	-19.12	9 k		N

Trace3: Measured	Average							
Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
12.46 M	10.53	0.060	20.932	50.000	-39.47	9 k		L1
12.76 M	11.85	0.060	20.913	50.000	-38.15	9 k		N
327.054108216 k	13.03	0.070	20.570	49.526	-36.49	9 k		N
372.745490982 k	20.21	0.079	20.580	48.440	-28.23	9 k		N
269.93987976 k	26.52	0.080	20.570	51.120	-24.60	9 k		N
247.094188377 k	36.53	0.080	20.560	51.854	-15.32	9 k		N
195.691382766 k	39.01	0.080	20.500	53.791	-14.78	9 k		L1
401.30260521 k	33.78	0.080	20.574	47.826	-14.05	9 k		N

Non-Specific EMC Report Shell Rev. May 2014 Client: Analogic Corporation, Model: ANDE-6C (RFID at 13.56 MHz)

Transmit Mode

Test Information

User Entry LISN - FCC15 Class B Test Details Test:

Project: Test Notes: Temperature:

LISN - FCC15 Class B Analogic Corporation_G101948295 120VAC/60Hz, RFID in Tx mode 22 deg C 12%, 1003 mB Vathana Ven 23 Jan 2015 23:15 Humidity: Tested by: Test Started:

Additional Information

Prescan Emission Graph

Measured Peak Value Swept Peak Data Measured Quasi Peak Value Swept Quasi Peak Data Measured Average Value Swept Average Data Maximum Value of Mast and Turntable

Emissions Test Data

rrace2: Measured	Quasi Peak							
Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
652.605210421 k	14.64	0.070	20.596	56.000	-41.36	9 k		N
13.09 M	25.88	0.060	20.959	60.000	-34.12	9 k		N
275.651302605 k	27.88	0.080	20.566	60.946	-33.07	9 k		N
13.57 M	28.76	0.060	20.980	60.000	-31.24	9 k		L1
378.456913828 k	32.91	0.080	20.580	58.313	-25.40	9 k		N
401.30260521 k	34.06	0.080	20.574	57.826	-23.76	9 k		N
195.691382766 k	40.58	0.080	20.500	63.791	-23.21	9 k		N
247.094188377 k	42.75	0.080	20.560	61.854	-19.11	9 k		N

Trace3: Measured	Average							
Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
652.605210421 k	11.55	0.070	20.596	46.000	-34.45	9 k		N
13.09 M	17.71	0.060	20.959	50.000	-32.29	9 k		N
275.651302605 k	23.67	0.080	20.566	50.946	-27.28	9 k		N
13.57 M	26.46	0.060	20.980	50.000	-23.54	9 k		L1
378.456913828 k	25.43	0.080	20.580	48.313	-22.88	9 k		N
195.691382766 k	38.91	0.080	20.500	53.791	-14.89	9 k		N
401.30260521 k	33.75	0.080	20.574	47.826	-14.08	9 k		N
247.094188377 k	38.42	0.080	20.560	51.854	-13.43	9 k		N

Non-Specific EMC Report Shell Rev. May 2014 Client: Analogic Corporation, Model: ANDE-6C (RFID at 13.56 MHz)

Intertek

Report Number: 101948295BOX-006d Issued: 09/02/2015

Test Personnel: Vathana F. Ven Test Date: 1/23/2015 Supervising/Reviewing Engineer: (Where Applicable) N/A Product Standard: FCC 15.225, IC RSS-210 Limit Applied: Per Section 10.3 Input Voltage: 120VAC/60Hz Pretest Verification w/ 22 °C Ambient Temperature: Ambient Signals or Relative Humidity: 12 % BB Source: Ambient Signals Atmospheric Pressure: 1003 mbars

Deviations, Additions, or Exclusions: None

11 20 dB Bandwidth

11.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C – 15.215, IC RSS-Gen – Section 4.6, and ANSI C63.4-2003.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6	6.3
Radiated Emissions, 3m	30-1000 MHz	5.3	6.3
Radiated Emissions, 3m	1-6 GHz	4.5	5.2
Radiated Emissions, 3m	6-15 GHz	5.2	5.5
Radiated Emissions, 3m	15-18 GHz	5.0	5.5
Radiated Emissions, 3m	18-40 GHz	5.0	5.5

Non-Specific EMC Report Shell Rev. May 2014 Page 38 of 48

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = $52.0 \text{ dB}_{\mu}\text{V}$ AF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = $32 \text{ dB}_{\mu}\text{V/m}$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V
NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \text{ dB}\mu\text{V}/20)} = 39.8 \text{ }\mu\text{V/m}$

Alternately, when C5 Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". "AF" is the Antenna Factor; "PA+CL" are Preamp and Cable Loss. These are already accounted for in the "Level" column.

Intertek

Report Number: 101948295BOX-006d Issued: 09/02/2015

11.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
ETS003'	9kHz-30MHz Active Loop Antenna	ETS Lindgren	6502	00143396	04/01/2014	04/01/2015
CBLBNC10'	25 ft, 50 Ohm BNC Cable	Pomona	RG 58 C/U	CBLBNC10	10/04/2014	10/04/2015
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/17/2014	03/17/2015

Software Utilized:

Name	Manufacturer	Version
None		

11.3 Results:

The sample tested was found to Comply. The 20 dB bandwidth remains within the assigned band.

11.4 Setup Photographs:

11.5 Test Data:

20 dB Bandwidth

Date: 22.JAN.2015 20:50:10

Occupied Bandwidth

Atmospheric Pressure:

1012mbars

Deviations, Additions, or Exclusions: None

BB Source: Ambient Signals

Pretest Verification w/

Ambient Signals or

12 Frequency Stability

12.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C – 15.225(e), IC RSS-Gen – Section 4.7, IC RSS-210 A2.6, and ANSI C63.

TEST SITE: Safety Lab

12.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
	Freezing Rain\lcing\Temp\Humidity\ -73deg C to		CTH-(FR)64-			
SAF1153'	+190deg C, 95% humidity, Ice Freezing Rain	Cincinnati Sub-Zero	6-6-SC/AC	12-CT15628	10/11/2014	10/11/2015
MET2'	Digital Multimeter	Meterman	15XP	050407779	01/14/2015	01/1542016
ROS001'	ROS001' Spectrum Analyzer 20Hz - 40 GHz		FSEK-30	100225	05/19/2014	05/19/2015
CBLBNC2012-2'	50 Ohm Coaxial Cable	Pomona	RG-58 C/U	CBLBNC2012-2	12/04/2014	12/04/2015

Software Utilized:

Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2011

12.3 Results:

The sample tested was found to Comply.

The fundamental frequency shall remain within $\pm 0.01\%$ of the operating frequency over a temperature variation of -30 degrees to +50 degrees. Voltage variations of $\pm 15\%$ were also performed.

12.4 Setup Photographs:

12.5 Test Data:

Intertek

Frequency Stability

Company: NetBio Test Equipment Used:

Model #: ANDE-1 SAF1153 MET2 **ROS001** CBLBNC2012-2 Near Field Probe Serial #: 0002-100-0919

Engineer(s): Kouma Sinn Location: Safety

Project #: G101948295 Date(s): 01/31/15 Standard: FCC Part 15 Subpart C Section 15.225 & RSS-210

> Limit: 100 PPM

Nominal f: 13.56 MHz Voltage:

	Voltage	Frequency	Deviation	
٠,	0			
%	Volts	MHz	kHz	Limit kHz
-15%	102	13.560752	0.2505	1.36
-10%	108	13.560752	0.2505	1.36
-5%	114	13.560755	0.254	1.36
+0%	120	13.560501	0	1.36
+5%	126	13.560752	0.2505	1.36
+10%	132	13.560752	0.2505	1.36
+15%	138	13.560752	0.2505	1.36

Temp	Frequency	Deviation	
Celsius	MHz	kHz	Limit kHz
-30	13.561002	0.501	1.36
-20	13.560752	0.2505	1.36
-10	13.560752	0.2505	1.36
0	13.560752	0.2505	1.36
10	13.560752	0.2505	1.36
20	13.560501	0	1.36
30	13.560752	0.2505	1.36
40	13.560752	0.2505	1.36
50	13.560752	0.2505	1.36

120 VAC

60Hz

Test Personnel: Kouma Sinn 43 Test Date: 01/31/2015 Supervising Engineer:

(Where Applicable) N/A Product Standard: FCC 15.225, IC RSS-210

Test Levels: Must remain within assigned band 120VAC/60Hz Input Voltage: Ambient Temperature:

N/A N/A Relative Humidity: Setup Verified: Yes Atmospheric Pressure: N/A

Deviations, Additions, or Exclusions: None

Non-Specific EMC Report Shell Rev. May 2014 Page 47 of 48

Intertek

Report Number: 101948295BOX-006d Issued: 09/02/2015

13 Revision History

Revision	Date	Report Number	Prepared	Reviewed	Notes
Level			Ву	Ву	
0	01/31/2015	101948295BOX-006a	KPS 43	MFM 🥙	Original Issue
1	09/02/2015	101948295BOX-006d	KPS 4/3	MFM #	Changed company name and address