Chapter Rings and Modules

Contents

1	Def	initon of ring
	1.1	Basic Motivation: $\operatorname{End}(G)$
	1.2	Definition of ring
	1.3	Rings with special properties
		1.3.1 Commutative ring
		1.3.2 Zero divisors and Integral domain
		1.3.3 Unit and division ring
	1.4	Other examples of rings
		1.4.1 Polynomial rings
		1.4.2 Monoid rings
2	Cat	segory Ring
	2.1	Ring homomorphism
	2.2	Category Ring
	2.3	Monomorphism and Epimorphism
		2.3.1 Monomorphism
		2.3.2 Epimorphism

1 Definition of ring

1.1 Basic Motivation:End(G)

The basic motivation of introduction of ring is the $\operatorname{Hom}_{\mathbf{Ab}}(G,G)$ (or simply $\operatorname{End}(G)$), that is, the set of all endmorphism over an abelian group G. We can define the so called addition over this set as follows:

$$(\forall f, g \in \text{End}(G) : (f+g)(a) = f(a) + g(a)$$

It's easy to show that $\operatorname{End}(G)$ forms an abelian group if G is abelian. One thing to remembr is that not any general group G satisfies $\operatorname{End}(G)$ is an abelian group. The key point is that the above-defined f+g might not be a group homomorphism if G is not abelian:

$$(\forall f, g \in \text{End}(G), a, b \in G) :$$

$$(f+g)(a+b) = f(a+b) + g(a+b)$$

$$= f(a) + f(b) + g(a) + g(b)$$

$$\xrightarrow{G \text{ is abelian}} f(a) + g(a) + f(b) + g(b)$$

$$= (f+g)(a) + (f+g)(b)$$

In conclusion, $\operatorname{End}(G)$ forms an abelian group under homomorphism addition. However, there is another type of operation: **Composition of homomorphisms**

$$(f, g \in \operatorname{End}(G)) : (f \circ g)(a) = f(g(a))$$

Thus, there are two kinds of different operations within set $\operatorname{End}(G)$. That's the basic motivation of a new algebra structure, called **ring**.

1.2 Definition of ring

A ring (R, +,) is an **abelian group** (R, +) endowed with a second binary operation (often omit this dot notion), satisfying of its own the requirements of being associative and having a two-sided identity:

• Associativity: $(\forall r, s, t \in R)$: (rs)t = r(st)

• Existence of Identity: $(\exists 1_R \in R)(\forall r \in R): \quad 1_R r = r 1_R = r$

Also, there are laws combining two different operations, called **distributive law**:

• $(\forall r, s, t \in R)$: r(s+t) = rs + rt, (r+s)t = rt + st

The operation + and \cdot are called addition and multiplication respectively.

Here are one point to note: Within this book, a ring is always to be considered have **multiplication identity**. Some other definition may not require a ring to have an identity.

Examples

- Trivial ring. There is only one element $\{0\}$, which is the addition identity.
- Integer ring. $(\mathbb{Z}, +, \times)$ forms a ring, where addition and multiplication are naturally integer addition and multiplication.
- Modular ring. The addition group $\mathbb{Z}/n\mathbb{Z}$ forms a ring. The addition and multiplication is modular addition and multiplication.
- Matrix ring. All square matrix of order n forms a ring, the addition and multiplication are matrix addition and multiplication.

1.3 Rings with special properties

1.3.1 Commutative ring

Definition 1. (Commutative Ring) A ring R is commutative, if multiplication is commutative, that is

$$(\forall r, s \in R): rs = sr$$

R is called commutative ring under in such case.

In our examples, $\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}$ are commutative rings. But matrix ring is not.

1.3.2 Zero divisors and Integral domain

Definition 2. (zero-devisor) Let R be a ring, and an element $r \in R$ is a left(resp.right) zero-divisor, if

$$(\exists s \in R, s \neq 0): rs = 0(sr = 0)$$

The following proposition depicts the property of a zero-divisor:

Proposition 1. Let R be a ring and $r \in R$ is an element. The following statements are equavialent:

- r is not a left zero divisor.
- Function: $f: R \longrightarrow R, a \mapsto ra$ is injective.

It is easy to prove the proposition and the right zero divisor case. By the definition of R, we give the following definition of integral domain:

Definition 3. A ring R is called an integral domain, if it is **commutative** and has no zero-divisors, i.e.

$$(\forall a, b \in R)$$
 $ab = 0 \Longrightarrow a = 0 \text{ or } b = 0$

According to the definition of integral domain and the property of zero-divisors We have the cancellation law holds:

(Cancellation) If R is an integral domain, then:

$$(\forall a, b, c \in R, a \neq 0): ab = ac \Longrightarrow b = c$$

That is, in integral domain we can simply cut off the same component in a multiplication expression, which is the same as we do in group.

Examples \mathbb{Z} is an integral domain. However, both $Z/n\mathbb{Z}$ and matrix ring are not integral domain in general case. For example, in matrix ring of order 2, we have:

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

In $\mathbb{Z}/6\mathbb{Z}$, we have $[2]_6 \times [3]_6 = [0]_6$. Thus $\mathbb{Z}/6\mathbb{Z}$ is not an integral domain. However, there is a class of n that makes $\mathbb{Z}/n\mathbb{Z}$ integral domain, in particular, they are actually field.

1.3.3 Unit and division ring

Definition 4. Let R be a ring and an element $r \in R$. r is called a left(resp. right) unit if

$$\exists v \in R, uv = 1 (resp. vu = 1)$$

r is an unit if it is both left and right side unit.

Similar to zero divisor, we given a depiction of unit as the following proposition:

Proposition 2. Let R be a ring and $r \in R$.

- r is a left unit $\iff f: R \longrightarrow R, a \mapsto ra$ is surjective
- r is a left unit $\Longrightarrow r$ is not a right zero-divisor
- The inverse of two-sided unit is unique
- The set of all two-sided unit forms a group.

Proof. The proof of above propositions are easy. For the third proposition we could actually prove that if r is a two sided unit, then the left-inverse and right inverse equals.

$$u = u1 = u(rv) = (ur)v = 1v = v$$

That's why we can use the word inverse to denote both left and right inverse.

Definition 5. (division ring and field) A division ring is a ring in which every non-zero element is an unit. A field is a non-zero commutative division ring.

It's obviously that both \mathbb{Q}, \mathbb{R} are fields. The following theorem implies a class of special modular group:

Theorem 1. $\mathbb{Z}/n\mathbb{Z}$ is field if and only if n is a prime.

Hint. We only need to show that $[a]_n$ is unit if and only if gcd(a, n) = 1.

Theorem 2. R is a finite commutative ring, then R is field if and ony if R is integral domain.

Hint. Field is naturally an integral domain. If R is an integral domain, prove that each $r \in R$ is unit by considering the left multiplication function. It must map some element to 1 since R is finite and this map is injective. More specificly, one injective map from a finite set to itself must be surjective

1.4 Other examples of rings

1.4.1 Polynomial rings

Let R be a ring and define a polynomial f(x) over R as the following form:

$$f(x) = \sum_{i>0} a_i x^i = a_0 + a_1 x + a_2 x^2 + \cdots$$

Note that each f(x) only has finitely many summation. The set of all f(x) is a ring, called Polynomial ring over R, denoted as R[x].

Definition 6. (Degree of polynomial) Let $f(x) \in R[x]$, the degree of f(x), denoted as degf, is the maximum n such that $a_n \neq 0$. Typically we define degr $= 0, r \in R$ and deg $0 = -\infty$.

When R is an integral domain, R[x] is also an integral domain. And the following equation holds:

$$\deg(fg) = \deg f + \deg g$$

1.4.2 Monoid rings

Monoid rings is a ring constructed from a monoid and a ring. Here is the definition:

Definition 7. (Monoid rings) Let R be a ring and M a monoid, then consider all the following linear combinations:

$$\sum_{m \in M} a_m \cdot m, a_m \in R$$

Where only finitely many $a_m \neq 0$. The addition and multiplication are defined as follows:

$$\sum_{m \in M} a_m \cdot m + \sum_{m \in M} b_m \cdot m = \sum_{m \in M} (a_m + b_m) \cdot m$$
$$(\sum_{m \in M} a_m \cdot m)(\sum_{m \in M} b_m \cdot m) = \sum_{m \in M} (\sum_{m_1 m_2 = m} a_{m_1} b_{m_2}) m$$

Under this definition, it's easy to show that all combination forms a ring. It is called Monoid rings, denoted as R[M]. Actually, the polynomial ring is a special case of general monoid ring, where we take $M = \{1, x, x^2, x^3, \dots\}$.

2 Category Ring

2.1 Ring homomorphism

A ring homomorphism is a function between two rings that maintains two operations: \cdot and +, that is:

Definition 8. Let R, S be rings, a function $f: R \to S$ is a ring homomorphism, if:

- $(\forall a, b \in R)$: f(a+b) = f(a) + f(b)
- $(\forall a, b \in R)$: f(ab) = f(a)f(b)
- $f(1_R) = 1_S$

Since f is a function maintains +, it is basically a group homomorphism of the underlying abelian group. Thus, it naturally has: $f(0_R) = 0_S$. However, the second axiom does not induce the third one. That is: a function maintains both \cdot and + might be send identity to identity. For example:

$$f: \mathbb{Z} \to \mathbb{Z}, a \mapsto 0$$

is a function maintaining both addition and multiplication. But it is not a ring homomorphism since it does not meet the third requirements.

Proposition 3. Let R, S be non-zero rings, $f: R \to S$ is a ring homomorphim, the following statement is true:

- If $r \in R$ is an unit, then f(r) is an unit in S, $f(r)^{-1} = f(r^{-1})$
- If $r \in R$ is a zero-divisor, then f(r) might not be a zero-divisor as f(r) might be zero.
- The composition of ring homomorphism is still a ring homorphism.

2.2 Category Ring

The category "Ring" consists all rings, and the morphism set between two objects is the ring homomorphisms. There are some interesting results in **Ring**: $\{0\}$ is a final object in **Ring** but not a initial object. The reason is that the identity in $\{0\}$ is exactly its zero, which means $\{0\}$ only has a ring homomorphism to itself. $(\mathbb{Z}, \cdot, +)$ is an initial object in **Ring**: any homomorphism $f: \mathbb{Z} \to R$ is uniquely determined by f(1), i.e $f(n) = nf(1) = n1_R$. The following proposition describes the universal property of polynomial ring on \mathbb{Z} :

Theorem 3. Let A be a finite set: $A = \{a_1, a_2, \dots, a_k\}$. Consider a new category \mathcal{R}_A : The object of \mathcal{R}_A is (j, R), where R is a ring, and j is a set-function from A to R.

$$j:A\to R$$

The morphism from object (j_1, R_1) to (j_2, R_2) is the following diagram:

$$R_1 \xrightarrow{\varphi} R_2$$

$$\downarrow_{j_1} \qquad \downarrow_{j_2} \qquad \qquad \downarrow_{j_2}$$

Then $(\mathbb{Z}[x_1, x_2, \dots, x_k], \iota)$ is an initial object in \mathcal{R}_A , where $\iota(a_i) = x_i, i = 1, 2, \dots, k$.

Proof. The proof this this theorem is pretty straight forward. We need to show for each (j, R) in \mathcal{R}_A , the following diagram is true: To prove this, one ituitive way is to map each polynomial to its coresponding "value": x_i is replaced as $j(a_i)$, and the whole polynomial forms a linear summation of multiplication consists of $j(a_i)$. The uniqueness is determined by the property of homomorphism.

For each object (R, j), we need to show the following diagram holds:

For a fixed object (R, j), define φ as follows:

$$\varphi(\sum_{i} a_{i} x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{k}^{i_{k}}) = \sum_{i} \varphi(a_{i}) \varphi(x_{1})^{i_{1}} \varphi(x_{2})^{i_{2}} \cdots \varphi(x_{k})^{i_{k}}$$

$$= \sum_{i} (a_{i} 1_{R}) \varphi(\iota(a_{1}))^{i_{1}} \varphi(\iota(a_{2}))^{i_{2}} \cdots \varphi(\iota(a_{k}))^{i_{k}}$$

$$= \sum_{i} (a_{i} 1_{R}) (j(a_{1}))^{i_{1}} (j(a_{2}))^{i_{2}} \cdots (j(a_{k}))^{i_{k}}$$

In the above construction, we do not only present a ring homomorphim that maps from $\mathbb{Z}[x_1, x_2, \dots, x_k]$ to R, but also shows the uniqueness by using the fact that R must maintains both addition and multiplication. Thus φ is unique. The key to the proof is that the fact that \mathbb{Z} is initial in **Ring**.

2.3 Monomorphism and Epimorphism

2.3.1 Monomorphism

Definition 9. (Kernel of ring homomorphim) Let R, S be rings and f a ring homomorphism from R to S, define kernel of this homomorphism as:

$$\ker f = \{ r \in R \mid f(r) = 0_S \}$$

Theorem 4. (Equavalence of ring monomorphism) Let f be a ring homomorphism from R to S, the following statements are equavalent:

- 1. f is monomorphism
- 2. $\ker f = \{0_R\}$
- 3. f is injective as set-function

Proof. $(1) \Rightarrow (2)$ Consider the following diagram:

2.3.2 Epimorphism

Definition 10. A ring homomorphism $f: R \to S$ is a ring homomorphism, if and only if for any ring T and ring homomorphism $S \to T, \varphi_1, \varphi_2$:

$$f \circ \varphi_1 = f \circ \varphi_2 \Longrightarrow \varphi_1 = \varphi_2$$

That is, the following commutative diagram

$$R \xrightarrow{f} S \xrightarrow{\varphi_1} T$$

indicates $\varphi_1 = \varphi_2$.