Deep Learning - 89687

Ass3 - Part 3

Our parameters:

On NER the loss on 'O' tag was weighted down to be 30% of the training loss over this tag.

Transducer a:

Pos:

- -hidden dimension = 256
- -embedding_size = 2000
- -batch_size = 100 (and 1 if predict)
- -learning_rate = 0.0003

Ner:

- -hidden dimension = 500
- -embedding_size = 200
- -batch_size = 128 (and 1 if predict)
- -learning_rate = 0.0007

Transducer b:

Pos:

- -hidden dimension = 120
- -embedding_size = 80
- -batch_size = 8 (and 1 if predict)
- -learning_rate = 0.003
- -btw_rnns = 200

Ner:

- -hidden dimension = 250
- -embedding_size = 80
- -batch_size = 80 (and 1 if predict)
- -learning_rate = 0.003
- -btw_rnns = 300

Transducer c:

Pos:

- -hidden dimension = 128
- -embedding_size = 30
- -batch_size = 16 (and 1 if predict)
- -learning_rate = 0.007

Ner:

Lea Setruk Yoel Benabou

- -hidden dimension = 250
- -embedding_size = 2000
- -batch_size = 128 (and 1 if predict)
- -learning_rate = 0.0007

Transducer d:

Pos:

- -hidden dimension = (256, 120)
- -embedding_size = (2000, 80)
- -batch_size = 64 (and 1 if predict)
- -learning_rate = 0.0003
- -btw_rnns = 200

Ner:

- -hidden dimension = (200, 250)
- -embedding_size = (1000, 80)
- -batch_size = 64 (and 1 if predict)
- -learning rate = 0.0003
- -btw_rnns = 500

Graphs

Pos - Accuracy:

The best model seems to be D.

Lea Setruk Yoel Benabou

Ner – Accuracy:

The best model is B.

Ner – Loss:

