

FACULTAD DE CIENCIAS SOCIALES

Examen Final

Especialidad de Economía Econometría 1 2013-II Profesor: Gabriel Rodríguez

Indicaciones: Todas las secciones son obligatorias. El número de puntos que aparece entre paréntesis corresponde al número de minutos que Ud. debería asignar a la sección respectiva. En consecuencia, la duración del examen es de 1:40 minutos (100 puntos). Ningún material de consulta del curso es permitido.

1 Sección 1 (30 puntos)

Defina (brevemente) los siguientes conceptos:

- 1. Mínimos Cuadrados en 2 y en 3 Etapas.
- 2. Función de Verosimilitud del Modelo Truncado.
- 3. Efectos marginales en el modelo Logit.
- A. Multiplicador de impacto de largo plazo en un modelo dinámico.
- 5. Índice de Ratio de Verosimilitud de McFadden.

mRI.

6. Método de Newton-Raphson.

2 Sección 2 (70 puntos)

1. (25 puntos) Sea el siguiente estadístico para verificar un conjunto de J restricciones lineales:

 $F_{N-k}^{J} = \frac{(R\widehat{\beta} - q)'[R(X'\Omega^{-1}X)^{-1}R']^{-1}(R\widehat{\beta} - q)/J}{(Y - X\widehat{\beta})'\Omega^{-1}(Y - X\widehat{\beta})/(N - k)},\tag{1}$

donde $\widehat{\beta}$ es el estimador GLS (MCG). Muestre que si Ω es conocido, si las perturbaciones son Normalmente distribuidas y si la hipótesis nula $R\beta=q$ es verdadera, entonces este estadístico está distribuido como una F con J y N-k grados de libertad. Cuáles son los supuestos adicionales usados para llegar a la demostración?

- 2. (25 puntos) Asuma que se tiene el modelo de regresión siguiente: $y_i = \mu + \epsilon_i$, donde $E[\epsilon_i|x_i] = 0$, $Cov[\epsilon_i,\epsilon_j|x_i,x_j] = 0$ para $i \neq j$, pero $Var[\epsilon_i|x_i] = \sigma^2 x_i^2$, $x_i > 0$. Se pide:
 - (a) Dada una muestra de observaciones de y_i y x_i , cuál es el estimador más eficiente de μ ? Cuál es su varianza?
 - (b) Cuál es el estimador OLS (MCO) de μ , y cuál es su varianza?
 - (c) Pruebe que el estimador hallado en (a) es al menos tan eficiente como el estimador hallado en (b).
- 3. (20 puntos) Asuma el siguiente proceso:

$$y_t = \alpha y_{t-1} + \epsilon_t \tag{2}$$

where $\epsilon_t \sim i.i.d. \ N(0, \sigma_\epsilon^2), \ y_0 \sim (0, \frac{\sigma_\epsilon^2}{1-\alpha^2}).$ Se pide:

- (a) Halle la $E(y_t)$. (b) Halle la Varianza de y_t .
 - (c) Explique de qué factores depende la estacionariedad de la serie y_t .
- (d) Halle la función de autocovarianzas de y_t , es decir, halle $\gamma(k)$ para k=0,1,2,3,4.
- (e) Halle la función de autocorrelación de y_t , es decir, halle $\rho(k)$ para k=0,1,2,3,4.

Lima, Diciembre 7 del 2013