Untangling Illiquidity: Optimal Asset Allocation with Private Assets

Daniel Dimitrov

University of Amsterdam, De Nederlandsche Bank

This paper does not represent the views of DNB or the Eurosystem.

Introduction to Private Assets

- Institutional investors increasingly allocate to private assets.
- Expected benefits:
 - Higher returns due to e.g. illiquidity premia
 - Diversification
- Private asset classes:
 - Private equity
 - Private real estate
 - Infrastructure
 - Hedge funds

Challenges of Private Asset Allocation

- Illiquidity risk:
 - Funds locked up for uncertain periods.
 - Limits ability to rebalance
 - Limits ability to withdraw (consume)
- Illiquidity risk premia: Creates potential for unintended overallocation.
- Increased consumption volatility: Affects long-term investor welfare.

Modeling Strategic Asset Allocation (SAA) with Illiquidity

- Extend dynamic portfolio choice model to include illiquidity effects.
 Merton [1971] → Ang, e.A. [2014]:
- ullet Liquidity arrival modeled as Poisson shocks o uncertainty in liquidity timing.
- Use *capital market assumptions (CMAs)* (JP Morgan 2025) to determine optimal allocation.
- Set up a numerical algorithm to solve the dynamic optimization problem.

Related Literature

- The applied SAA literature Terhaar et al. (2003); Ilmanen et al. (2020) emphasizes unsmoothening of private equity
- Theoretical work on dynamic portfolio choice with liquidity frictions: Zabel (1973); Magill and Constantinides (1976); Gennotte and Jung (1994); Boyle and Lin (1997); Dai et al. (2011); Longstaff (2001); Miklós and Ádám (2002); Dimmock et al. (2023); Ang et al. (2014); Jansen and Werker (2022).
- Incorporates stochastic liquidity events into dynamic programming Ang et al. (2014) and numerical solutions from Cai et al. (2013).
- Contributes to private equity allocation literature Korteweg and Westerfield (2022); Gourier et al. (2024); Giommetti and Sorensen (2021); Luxenberg et al. (2022).

Key Findings on Portfolio Impact

- Investors preemptively reduce withdrawals and tilt their portfolios away from illiquid assets.
- When liquid substitutes exist, investors prefer them over costly private assets.
- If substitution is not possible, investors increase holdings in liquid low-risk assets to buffer against illiquid asset fluctuations.
- Higher returns and diversification benefits interact negatively with illiquidity risk.

Welfare Implications of Illiquidity

- Private assets improve Certainty Equivalent Consumption (CEC) for long-term investors.
- Ignoring illiquidity risk leads to substantial welfare losses.
- Welfare improvements (in CEC terms) by asset class after illiquidity risk is factored in:

• **Private equity**: 5.5%–9%

• Infrastructure: 2%–4%

• Real estate: 16%

• Diversified hedge funds: 7%

• Macro hedge funds: 0.2%

- Merton (Mean-variance) optimization over-allocates private assets without liquidity considerations.
 - This results in significant welfare losses (Misallocation Risk)

Model: The Market

• Asset returns move as a multivariate Geom. Brownian Motion

- The *n*-th asset is illiquid:
 - It's liquidity is exogenous and random...
 - ullet ...can be accessed when a Poisson Shock N_t with intensity η hits.
 - ullet $1/\eta$ avarage waiting time to trade
- The expected returns and risk sensitivities are

$$oldsymbol{\mu} = egin{bmatrix} oldsymbol{\mu}_w \ \mu_{\scriptscriptstyle X} \end{bmatrix}, oldsymbol{\sigma} = egin{bmatrix} oldsymbol{\sigma}_w \ oldsymbol{\sigma}_{\scriptscriptstyle X} \end{bmatrix}$$

Model: Wealth Dynamics

$$dW_t/W_t = (r + \theta_t'(\mu_w - r) - c_t)dt + \theta_t'\sigma_w dZ_t - dI_t/W_t$$

$$dX_t/X_t = \mu_x dt + \sigma_x dZ_t + dI_t/X_t$$

$$dQ_t = dW_t + dX_t$$
(1)

- Investment choice:
 - Liquid Wealth W_t : liquid risky assets (θ_t) , and a risk-free asset $(1 \theta_t' \mathbf{1})$
 - Illiquid wealth X_t : of a risky asset
 - Rebalancing between liquid and illiquid wealth through cash withdrawals dl_t
- Wealth dynamics

Model: The Investor's objective

- ullet consumes continuously fraction c_t out of liquid wealth only
- decides in advance on portfolio composition when liquidity is possible (SAA)
- decides on rebalancing strategy when liquidity in one asset is not available (TAA)
- Investor optimizes lifetime utility of consumption

$$V(W_t, X_t) = \sup_{\theta_s, dI_s, c_s} E_t \int_t^{\infty} e^{-\beta(s-t)} u(c_s W_s) ds$$

• Define $\xi_t = \frac{X_t}{X_t + W_t}$; Assume CRRA Utility $u(C_s) = \frac{C_s^{1-\gamma}}{1-\gamma}$

$$\implies V(W_t, X_t) = (X_t + W_t)^{1-\gamma} H(\xi_t)$$

- Whenever liquidity is available, the investor reshuffles the portfolio such that $\xi^* = \arg \max_{\xi} H(\xi)$.
- ξ_t then has a dual nature
 - **decision variable** when liquidity arrives, ξ^*
 - state variable in illiquid periods
- Investor's optimal policy functions:

$$\{\xi^*, \theta_t = \theta(\xi_t, H(\xi_t)), c_t = c(\xi_t, H(\xi_t))\};$$

- Solve *numerically* for the unknown function $H(\xi_t)$
- Discretize and solve numerically through *value function iteration* and *multivariate quadrature techniques*.

Discretized Bellman equation of the form: $H(\xi_t) = \max_{(\theta_t,c_t)} \left\{ u(c_t(1-\xi_t))\Delta t + \delta \left(pH^*E_{\xi_t} \left[R_{q,t+\Delta t}^{1-\gamma} \right] + (1-p)E_{\xi_t} \left[R_{q,t+\Delta t}^{1-\gamma} H(\xi_t) \right] \right\} \right\}$ where

$$R_{w,t+\Delta t} = 1 + (r + \theta_t'(\mu_w - r \not\vdash) - c_t)\Delta t + \theta_t'\sigma_w\sqrt{\Delta t}\Delta Z_t$$

$$R_{x,t+\Delta t} = 1 + \mu_x\Delta t + \sigma_x\sqrt{\Delta t}\Delta Z_t$$

$$R_{q,t+\Delta t} = (1 - \xi_t)R_{w,t+\Delta t} + \xi R_{x,t+\Delta t}$$

$$\xi_{t+\Delta t} = \xi_t \frac{R_{x,t+\Delta t}}{R_{q,t+\Delta t}}$$
(2)

Adjust illiquid holdings to strategic allocation:

$$H^* = \max H(\xi)$$

Return back to strategic target allocations:

$$\xi_{t+\Delta t} = \arg \max H(\xi)$$
$$\theta_{t+\Delta t} = \theta(\xi^*)$$

Current State. Optimize given: ξ_t , $H(\xi_t)$

No rebalancing, 1 - p

Illiquid allocation cannot be adjusted:

$$\xi_{t+\Delta t} = \xi_t \frac{R_{x,t+\Delta t}}{R_{a,t+\Delta t}}$$

Adjust liquid allocations as a response:

$$\theta_{t+\Delta t} = \theta(\xi_{t+\Delta t})$$

Consumption Rate

Liquid Risky Asset Allocation

Realized Private Asset Allocation

Consumption Variability

(b)
$$\rho = 0.8$$
; $lp = 0$

Consumption Variability

(b)
$$\rho = 0.8$$
; $lp = 0.03$

Definition: Allocation Benefit

Define the allocation benefit from investing in the private asset class as the improvement in CEC relative to investing only in liquid public assets. Formally:

Allocation Benefit =
$$\frac{CEC(\xi^*)}{CEC_m(\xi=0)} - 1,$$
 (3)

where $CEC(\xi^*)$ based on allocation with the illiquid private asset, and $CEC_m(\xi=0)$ based on optimal allocation without the private asset.

19 / 27

Definition: Misallocation Risk

Define the misallocation loss as the potential welfare loss from ignoring the illiquidity risk of the private asset. Formally:

Misallocation Risk =
$$-\left(\frac{CEC(\xi^{liquid})}{CEC(\xi^*)} - 1\right)$$
, (4)

where $CEC(\xi^{liquid})$ based on the model with illiquid private asset but the mean-variance (Merton) is used; and the $CEC(\xi^*)$ based on the optimal allocation with illiquidity properly considered.

20 / 27

Portfolio Metrics: Private Equity

	Liquid	Illiquid 5Y	Illiquid 10Y
Fixed Income	63.20	67.02	67.99
- Short Term	30.92	48.56	53.81
 Long Term 	32.27	18.47	14.18
Equity	0.19	4.66	11.17
Liquid Alternatives	0.40	11.14	11.93
Private Assets	36.15	17.09	8.82
CEC	4.59	4.31	4.14
Median Realized ξ	36.15	20.34	13.41
Median Realized c	4.32	4.09	3.94
Allocation Benefit	16.65	9.51	5.11
Misallocation Risk	-	3.69	12.49

Portfolio Metrics: Infrastructure

	Liquid	Illiquid 5Y	Illiquid 10Y
Fixed Income	49.21	56.78	62.94
- Short Term	47.11	51.74	55.55
- Long Term	2.10	5.03	7.39
Equity	5.20	10.17	14.13
Liquid Alternatives	16.39	14.95	13.83
Private Assets	29.12	18.03	9.01
CEC	4.13	4.09	4.02
Median Realized ξ	29.12	20.44	12.13
Median Realized c	3.95	3.92	3.86
Allocation Benefit	4.78	3.87	2.20
Misallocation Risk	-	0.58	5.43

Portfolio Metrics: Real Estate

	Liquid	Illiquid
Fixed Income	30.57	54.87
- Short Term	9.13	39.89
- Long Term	21.44	14.99
Equity	18.02	20.43
Liquid Alternatives	0.05	4.07
Private Assets	51.31	20.55
CEC	5.25	4.60
Median Realized ξ	51.31	24.60
Median Realized c	4.83	4.31
Allocation Benefit	33.46	16.78
Misallocation Risk	-	16.68

Portfolio Metrics: Diversified Hedge Funds

	Liquid	Illiquid
Fixed Income	23.07	29.13
- Short Term	8.99	15.71
 Long Term 	14.08	13.41
Equity	3.34	5.29
Liquid Alternatives	14.42	14.08
Private Assets	59.13	51.46
CEC	4.24	4.21
Median Realized ξ	59.13	51.46
Median Realized c	3.98	4.02
Allocation Benefit	7.70	6.98
Misallocation Risk	-	0.19

Portfolio Metrics: Macro Hedge Funds

	Liquid	Illiquid
Fixed Income	57.97	58.25
- Short Term	47.90	48.18
- Long Term	10.07	10.07
Equity	16.47	16.50
Liquid Alternatives	13.34	13.33
Private Assets	12.13	11.84
CEC	3.95	3.95
Median Realized ξ	12.13	11.84
Median Realized c	3.81	3.81
Allocation Benefit	0.27	0.27
Misallocation Risk	-	0.00

Conclusion: The Need for Liquidity-Aware Allocation

- Institutional investors often underestimate illiquidity risks.
- Portfolio construction must account for liquidity constraints to avoid overexposure.
- Future research: Refining models for strategic vs. tactical asset allocation (SAA vs. TAA).

Thank You!

- Ang, A., Papanikolaou, D., and Westerfield, M. M. (2014). Portfolio choice with illiquid assets. *Management Science*, 60(11):2737–2761.
- Boyle, P. P. and Lin, X. (1997). Optimal portfolio selection with transaction costs. *North American Actuarial Journal*, 1(2):27–39.
- Cai, Y., Judd, K. L., and Xu, R. (2013). Numerical Solution of Dynamic Portfolio Optimization with Transaction Costs. *NBER Working Paper No. w18709*.
- Dai, M., Jin, H., and Liu, H. (2011). Illiquidity, position limits, and optimal investment for mutual funds. *Journal of Economic Theory*, 146(4):1598–1630.
- Dimmock, S. G., Wang, N., and Yang, J. (2023). The endowment model and modern portfolio theory. *Management Science*, 70(3):1554–1579.
- Gennotte, G. and Jung, A. (1994). Investment Strategies under Transaction Costs: The Finite Horizon Case. *Management Science*, 40(3):385–404.
- Giommetti, N. and Sorensen, M. (2021). Optimal allocation to private equity. *Tuck School of Business Working Paper*, (3761243).
- Gourier, E., Phalippou, L., and Westerfield, M. M. (2024). Capital commitment. *The Journal of Finance*, 79(5):3407–3457.

Daniel Dimitrov d.k.dimitrov@uva.nl 27 / 27

- Ilmanen, A., Chandra, S., and McQuinn, N. (2020). Demystifying illiquid assets: Expected returns for private equity. *The Journal of Alternative Investments*, 22(3):8–22.
- Jansen, K. A. and Werker, B. J. (2022). The shadow costs of illiquidity. *Journal of Financial and Quantitative Analysis*, 57(7):2693–2723.
- Korteweg, A. and Westerfield, M. M. (2022). Asset allocation with private equity. Foundations and Trends® in Finance, 13(2):95–204.
- Longstaff, F. A. (2001). Optimal Portfolio Choice and the Valuation of Illiquid Securities. *Review of Financial Studies*, 14(2):407–31.
- Luxenberg, E., Boyd, S., van Beek, M., Cao, W., and Kochenderfer, M. (2022). Strategic asset allocation with illiquid alternatives. In *Proceedings of the third ACM international conference on AI in finance*, pages 249–256.
- Magill, M. J. P. and Constantinides, G. M. (1976). Portfolio selection with transactions costs. *Journal of Economic Theory*, 13(2):245–263.
- Miklós, K. and Ádám, S. (2002). Portfolio Choice with Illiquid Assets. Rajk László Szakkollégium Working Papers 6, Rajk László College.

Daniel Dimitrov d.k.dimitrov@uva.nl 27 / 27

- Terhaar, K., Staub, R., and Singer, B. D. (2003). Appropriate policy allocation for alternative investments. *The Journal of Portfolio Management*, 29(3):101–110.
- Zabel, E. (1973). Consumer Choice, Portfolio Decisions, and Transaction Costs. *Econometrica*, 41(2):321–35.