Partition

Definition

A parition for a closed interval [a,b] is a set of point $(x_0$ to x_n) such that:

$$a = x_0, \quad x_k < x_{k+1} \quad \text{and} \quad b = x_n$$

Partition subinterval

Definition

A sub interval of a partition $(x_0 \text{ to } x_n)$ is $x_{k+1} - x_k$

Norm of a partition

Definition

The norm of a partition P is the largest subinterval of a partition. It is donated by ||P||

Reimans sum

Definition

The Reiman sum for a function f on a closed interval [a, b] is

$$\sum_{k=1}^{n} f(c_k) \Delta_k$$

where: The set of Δs is all subintervals of a partition P of [a, b] and

$$c_k \in \left[\sum_{j=1}^{k-1} \Delta_k, \sum_{j=1}^k \Delta_k\right]$$

Definate intergral

Definition

The definate intergral of a function f over a closed interval [a,b] is:

$$\lim_{||P|| \to 0} \sum_{k=0}^{n} f(c_k) \Delta_k$$

where: $\sum_{k=0}^{n} f(c_k) \Delta_k$ is any reimmann sum of f on interval [a, b] It is donaoted by

$$\int_{a}^{b} f(x)dx$$

Continues functions are intergratable

Result

Continues functions are intergratable

Piecewise continues function

Definition

A function is peicewise continues if it has a finite number of jump disconitiuities

Piecewise continues functions are itergratable

Result

Piecewise continues functions are intergratable

Norm of a partition

Result

If two rieman sums of a function f over and closed interval [a,b] are not equal, f is not intergratable over [a,b]

Zero width interval

Result

$$\int_a^b f(x) dx \stackrel{\text{Intergal}}{=} - \int_b^a f(x) dx \quad \text{ where } f \text{ is integratable of interval}[a, b]$$

Intergal Could not find a file

Zero width interval

Result

$$\int_a^a f(x) dx \stackrel{\text{Intergal}}{=} 0 \quad \text{ where } f \text{ is integratable of interval}[a,b]$$

Intergal Could not find a file

Intergration constant

Result

$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx \quad \text{for any constant k}$$

Integration sum and difference

Result

$$\int_{a}^{b} f(x) \pm g(x)dx = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$$

Additivity

Result

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

Max min inequality

Result

If f has maximum value f_{max} and minimium value f_{min}

$$f_m in(b-a) \le \int_a^b f(x) dx \le f_m ax(b-a)$$

Domination

Result

$$f(x) \ge g(x) \forall x \in [a, b] \Rightarrow \int_a^b f(x) dx \ge \int_a^b g(x) dx$$

Area under a graph

Definition

The area A under a curve y = f(x) over [a, b] is equal to

$$\int_{a}^{b} f(x)dx$$

Mean value theorem for definite intergrals

if f is continues over [a, b] than at some point c in [a, b]

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x)dx$$