Organisation d'un marathon

Sur 8 points

En 2020, un marathon a eu lieu, comme tous les ans depuis l'année 2000, dans la ville de Poumoncity. Un tirage au sort est organisé pour pouvoir courir ce marathon.

Les deux parties de cet exercice sont indépendantes.

Partie A

En 2020, 90 000 personnes ont participé au tirage au sort, et seulement 40 % d'entre elles ont été retenues. Sur ces personnes retenues, 85 % se sont présentées le jour de l'épreuve.

1-a- Vérifier que 30 600 personnes se sont présentées au départ de ce marathon.

On applique le taux de pourcentage (40%) sur le total (90000)

Retenus =
$$\frac{90000 \times 40}{100} = 36000$$

On applique le taux de pourcentage (85%) sur les retenus (76500)

Présents =
$$\frac{36000 \times 85}{100} = 30600$$

1-b- Déterminer le pourcentage des personnes au départ par rapport aux personnes ayant participé au tirage au sort.

En course à pied, la catégorie « Master » regroupe les personnes de 35 ans ou plus. Voici la répartition des coureurs par sexe et par catégorie :

	Hommes	Femmes	Total
Masters	18050	3800	21850
Autres	6150	2 600	8750
Total	24200	6400	30 600

2-a- Recopier et compléter ce tableau.

On fait la somme des lignes et des colonnes.

2-b- Calculer le pourcentage de « Masters » parmi l'ensemble des coureurs, puis parmi les femmes. *Arrondir les résultats à 0,1 %*.

%Masters =
$$\frac{21850}{30600} \times 100 = 71,4\%$$

Un journaliste interroge une personne au hasard parmi les 30 600 participants. On note :

- *H* l'événement : « la personne choisie est un homme » ;
- *M* l'événement : « la personne choisie appartient à la catégorie Masters » ;
- \overline{A} l'événement contraire d'un événement A .

3-a- Reproduire et compléter l'arbre de probabilité suivant, en donnant les valeurs exactes des probabilités sur chacune des branches :

$$p(H) = \frac{24200}{30600} = \frac{242}{306} = \frac{121}{153}$$
 (a)

$$p(\bar{H}) = \frac{6400}{30600} = \frac{64}{306} = \frac{32}{153}$$
 (b)

$$p_H(M) = \frac{18050}{24200} = \frac{361}{484}$$
 (c)

$$p_H(\bar{M}) = \frac{6150}{24200} = \frac{123}{484}$$
 (d)

$$p_H(M) = \frac{3800}{6400} = \frac{19}{32}$$
 (e)

$$p_H(\bar{M}) = \frac{2600}{6400} = \frac{13}{32} \left| \text{ (f)} \right|$$

3-b- On admet que la probabilité, arrondie au millième, que la personne choisie fasse partie de la catégorie « Master » est égale à 0,714.

On sait maintenant que la personne choisie par le journaliste est une femme.

Donner alors la valeur exacte de la probabilité que cette femme ne fasse pas partie de la catégorie « Master ».

Il s'agit d'un des résultats de la question précédente :

$$p_{\bar{H}}(\bar{M}) = \frac{2600}{6400} = \frac{13}{32}$$

Partie B

Les organisateurs de l'épreuve ont remarqué que le nombre de personnes inscrites au marathon augmente en moyenne de 800 chaque année depuis l'an 2000. En 2000, il y a eu 14600 participants.

On décide de modéliser ce nombre d'inscrits par une suite.

Pour tout entier naturel n, on note u_n le nombre de personnes inscrites à ce marathon pour l'année 2000+n. Ainsi $u_0=14\,600$.

4-a- Donner la nature de la suite (u_n) et préciser sa raison.

La suite (u_n) est arithmétique, de raison r=800.

4-b- Si l'évolution se poursuit ainsi, à partir de quelle année, le nombre de participants dépassera-til 40 000 pour la première fois ? Détailler la démarche.

Le terme général d'une suite arithmétique est : $u_n = u_0 + n$

soit dans notre cas : $u_n = 14600 + 800 n$

En testant différentes valeurs de n, on obtient :

$$u_{31}$$
=39400 **et** u_{32} =40200

Le nombre de participants dépasse donc 40000 pour la première fois à l'année 2000+32, soit en 2032.

(On peut aussi résoudre l'équation 14600+800 n=40000)

Le vainqueur de ce marathon a couru 3 km pour s'échauffer avant la course, puis a couru son marathon à une vitesse moyenne de 20 km/h. On admet que la distance parcourue (exprimée en km) en fonction du temps t (exprimé en heures) est donnée par la fonction d définie sur $[0; +\infty[$ par d(t)=3+20t.

5-a- Justifier le choix de modéliser la situation par une fonction plutôt que par une suite.

Le choix d'une fonction permet d'avoir plus de précision : la suite permet d'avoir des valeurs discrètes, toutes les heures par exemple, tandis que la fonction permet d'avoir des valeurs continues, puisque le temps t peut prendre n'importe quelle valeur réelle.

5-b- Quelle distance ce coureur a-t-il parcourue au bout d'une heure et demie ?

$$d(1,5)=3+20\times1,5=33$$

Le coureur a donc parcouru 33 km au bout d'une heure et demie.