Introto Reural Networks

BA865 – Mohannad Elhamod

Motivation

What is Deep Learning?

LinkedIn

ResearchGate

Behold The Almighty Deep Learning!

- Generate music
- Classify images
- Classify images (2)
- Dimensionality Reduction

Beware The Hype!

Beware The Hype!

 It hasn't always looked rosy...There are some "hypes" along the way.

Algorithms Come and Go...

 Different algorithms gain popularity at different periods of time.

Boston University Questrom School of Business

Why Deep Learning?

- Traditional ML was found to plateau in performance in the "Big Data" realm.
- Deep Learning has shown a much better capacity for learning from large amounts of data.

Why Now?

Geoffrey Hinton, Godfather of Al.

What was actually wrong with backpropagation in 1986?

- We all drew the wrong conclusions about why it failed.
 The real reasons were:
- 1. Our labeled datasets were thousands of times too small.
- 2. Our computers were millions of times too slow.
- 3. We initialized the weights in a stupid way.
- 4. We used the wrong type of non-linearity.

Where Can Deep Learning Be Applied?

Almost anywhere where you have data to learn from and

make decisions based on.

Machine Learning:

An Essential Review!

What is Machine Learning?

Knowledge-based modeling

Data-driven modeling

Elbadawi, Moe & McCoubrey, Laura & Gavins, Francesca & Ong, Jun Jie & Goyanes, Alvaro & Gaisford, Simon & Basit, Abdul. (2021). Harnessing Artificial Intelligence for the Next Generation of 3D Printed Medicines. Advanced Drug Delivery Reviews. 175.

Knowledge-based Modeling

 What challenges you find with this approach?

http://jcsites.juniata.edu/faculty/rhodes/ml/rulebasedClass.htm https://www.pinterest.com/pin/598626975454754006/

Supervised Learning

Phase 1: Training

Supervised Learning

Phase 2: Validation/Testing

50%

Supervised Learning

Supervised Learning - Model Types

Supervised Learning - Model Types

Unsupervised Learning

The Pillars of ML

Input & Output

What exactly are you trying to model?

https://www.wired.com/2015/04/cost-of-sensors-autonomous-cars https://medium.com/@ali_88273/regression-vs-classification-87c224350d69

Data

- Is there enough of it?
- Does it need clean-up?

Missing Features

Occluded Features

Elhamod, M., Diamond, K. M., Murat Maga, A., Bakis, Y., Bart, H. L., Mabee, P., Dahdul, W., Leipzig, J., Greenberg, J., Avants, B., & Karpatne, A. (2022). Hierarchy-guided neural network for species classification. *Methods in Ecology and Evolution*, 13, 642–652. https://doi.org/10.1111/2041-210X.13768

Model

 What kind of model would be sufficient/suitable for modeling your data?

https://statisticallyrelevant.com/decision-trees-in-python-predicting-diabetes/

Resources

- What compute resources are available?
- What is the project's timeline?

Model Generalization

Underfitting

$$\theta_0 + \theta_1 x$$

Well-fitted

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

Overfitting

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

https://datascience.foundation/sciencewhitepaper/underfitting-and-overfitting-in-machine-learning

Put Your Own Subtitle In This Box

Model Generalization

- How do we test the model's performance?
- How do we assess the model's finetuning?

Full dataset

https://www.machinecurve.com/index.php/2020/11/16/how-to-easily-create-a-train-test-split-for-your-machine learning-model/.

Model Generalization

- The test set should only be used once our model is ready, it should not be used to "tune" the model.
- Hence, we need a third "validation" dataset, which is a split of the training set.

Are We Overfitting or UnderFitting?

So What If We Overfit?

- Without validation/testing, you could overfit
 - In other words, you could learn the wrong patterns in the data!

https://medium.com/trusted-ai/explaining-ai-model-behaviour-with-ibm-watson-openscal 86515702c177

Logistics

Put Your Own Subtitle In This Box

Who is your professor?

Why are you here?

- I am sure it eventually leads to money....
- Not a required class. So, hopefully based on interest!
- Nonetheless, understanding how things work is essential for decision making and innovation.

Someone who had begun to [study] geometry asked Euclid, 'What shall I get by learning these things?' Euclid called his slave and said, 'Give him [some money], since he must make gain out of what he learns'.

(Heath, 1981, loc. 8625)

Euclid

Fundamentals are important!

- The more foundational knowledge you skip, the more fundamental errors you will make.
- Work hard. Be patient!

Your professor is not a God

- Deep Learning is a fast-growing domain.
- The internet nowadays has all kinds of learning material.
- Your professor is <u>NOT</u> here as a walking encyclopedia. He is here to guide your learning experience and build you a solid foundation, so you could continue learning on your own later.

No Question is Foolish

- Other might have the same question.
- Knowledge is hierarchical.

Can I get an A?

- Questrom policy
- But you will get your fair chance.

Participation is Essential!

- 7.5% of your grade!
- The instructor reserves the right to coldcall.

Office Hours

- They are for you to take advantage of!
- However, to make the best of your and the TA's/instructor's time, do your homework before dropping in:
 - If you have a question about your project, make sure you have synched with your colleague in advance.
 - If you have question about assignments, make sure you have done your best and that your question is specific rather than "How do I solve this?".

Syllabus

Here

- Pay attention to <u>Piazza!</u>
- Attendance and participation.
- The class is somewhat more technical than BA820 and BA810.
- Zero tolerance for cheating (Al or peers).
- 5%-20% Penalties for deviating from assessment instructions!

Shared Computing Cluster (SCC)

- BU's computing cluster with access to CPUs and GPUs.
- We have a limited number of compute hours. Use your allocations wisely!
- When facing issues, ask the professor or TA for help first, not IT support!
- Don't leave things till last minute!

Coding Environments

- https://www.simplilearn.com/kerasvs-tensorflow-vs-pytorch-article
 - Keras is easier to use for non-CS users. It is good at an introductory level.
 - PyTorch is most commonly used for research as it provides powerful lowlevel API.
 - We will also use some more advanced packages that help us diagnose and use more advanced models.

