COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

January 19, 2023

Lecture 7: Pattern Matching and Regular Expressions

Recap

- ▶ DFA = NFA = ε -NFA.
- ▶ All of them recognize (compute/decide) exactly regular languages
- ▶ Regular languages are closed under union, intersection, complement, concatenation, Kleene star, ...

- ▶ DFA = NFA = ε -NFA.
- ▶ All of them recognize (compute/decide) exactly regular languages
- ▶ Regular languages are closed under union, intersection, complement, concatenation, Kleene star, ...

A number of widely different and equiexpressive formalisms precisely capture the same class of languages:

► Type-3 languages in Chomsky's hierarchy.

- ▶ DFA = NFA = ε -NFA.
- ▶ All of them recognize (compute/decide) exactly regular languages
- ▶ Regular languages are closed under union, intersection, complement, concatenation, Kleene star, ...

- ► Type-3 languages in Chomsky's hierarchy.
- Monadic second-order logic definable languages (Buchi '60, Elgot '61, Trackhtenbrot'62)

- ▶ DFA = NFA = ε -NFA.
- ▶ All of them recognize (compute/decide) exactly regular languages
- ▶ Regular languages are closed under union, intersection, complement, concatenation, Kleene star, ...

- ► Type-3 languages in Chomsky's hierarchy.
- Monadic second-order logic definable languages (Buchi '60, Elgot '61, Trackhtenbrot'62)
- Certain Algebraic connection (acceptability via finite semi-group):
 Eilenberg'76

- ▶ DFA = NFA = ε -NFA.
- ▶ All of them recognize (compute/decide) exactly regular languages
- ▶ Regular languages are closed under union, intersection, complement, concatenation, Kleene star, ...

- ► Type-3 languages in Chomsky's hierarchy.
- Monadic second-order logic definable languages (Buchi '60, Elgot '61, Trackhtenbrot'62)
- Certain Algebraic connection (acceptability via finite semi-group):
 Eilenberg'76
- Regular expressions (Kleene'50s).
- Rational languages.

Consider any regular language

Consider any regular language

- It can be letters 1 or a or ϵ etc.
- It can be emptyset.
- ▶ It can be a word, e.g., 110: got as (finite) concatenation of letters.
- It can be several words: got as (finite) union of sets of words.

Consider any regular language

- It can be letters 1 or a or ϵ etc.
- ▶ It can be emptyset.
- ▶ It can be a word, e.g., 110: got as (finite) concatenation of letters.
- ▶ It can be several words: got as (finite) union of sets of words. Can these be used to generate all regular languages?
- It can be something that "repeats"!

Consider any regular language

- It can be letters 1 or a or ϵ etc.
- ▶ It can be emptyset.
- ▶ It can be a word, e.g., 110: got as (finite) concatenation of letters.
- ▶ It can be several words: got as (finite) union of sets of words. Can these be used to generate all regular languages?
- ▶ It can be something that "repeats"!

Kleene star

For a language L, its Kleene closure, denoted L^{*} is the set of all strings obtained by taking any number of strings from L with possible repetitions and concatenating all of them.

$$L^* = \cup_{i \ge 0} L^i$$

$$L^0 = \{\epsilon\}, L^i = L \circ L^{i-1}$$

- ▶ rm *.pdf
- ▶ Is, grep, awk etc.

- ▶ rm *.pdf
- ▶ Is, grep, awk etc.
- ► Textual (declarative) way to represent regular languages (compared to automata).

- ▶ rm *.pdf
- ▶ Is, grep, awk etc.
- ► Textual (declarative) way to represent regular languages (compared to automata).

- ▶ rm *.pdf
- ▶ Is, grep, awk etc.
- ► Textual (declarative) way to represent regular languages (compared to automata).

Definition (Pattern)

A pattern α is a string of symbols of a certain form representing a (possibly infinite) set of strings in Σ^* .

- ▶ rm *.pdf
- ▶ Is, grep, awk etc.
- ► Textual (declarative) way to represent regular languages (compared to automata).

Definition (Pattern)

A pattern α is a string of symbols of a certain form representing a (possibly infinite) set of strings in Σ^* .

$$L(\alpha) = \{ x \in \Sigma^* \mid x \text{ matches } \alpha \}$$

Atomic Patterns

$$a \in \Sigma$$
, $L(a) = \{a\}$

Atomic Patterns

- $a \in \Sigma, \ L(a) = \{a\}$
- \emptyset \varnothing , $L(\varnothing) = \varnothing$
- \odot Σ , matching any alphabet

Compound Patterns

- $a \in \Sigma, \ L(a) = \{a\}$
- \circ ε , $L(\varepsilon) = {\varepsilon}$
- \emptyset \varnothing , $L(\varnothing) = \varnothing$
- Σ^* , matching any finite string
- x matches $\alpha + \beta$ if $L(\alpha + \beta) = L(\alpha) \cup L(\beta)$

- \bullet x matches $\overline{\alpha}$ if $L(\overline{\alpha}) = \overline{L(\alpha)} = \Sigma^* \setminus L(\alpha)$

Compound Patterns

- $a \in \Sigma, \ L(a) = \{a\}$
- \emptyset \varnothing , $L(\varnothing) = \varnothing$
- \odot Σ , matching any alphabet
- Σ^* , matching any finite string
- x matches $\alpha + \beta$ if $L(\alpha + \beta) = L(\alpha) \cup L(\beta)$
- \bullet x matches $\alpha \cap \beta$ if $L(\alpha \cap \beta) = L(\alpha) \cap L(\beta)$
- \bullet x matches $\alpha\beta$ if x = yz where $L(\alpha\beta) = L(\alpha)L(\beta)$
- **4** x matches α^* if x can be expressed as zero or more of strings that match α , i.e., $L(\alpha^*) = L(\alpha)^*$
- ② x matches α^+ if x can be expressed as one or more of strings that match α , i.e., $L(\alpha^+) = L(\alpha)^+$

Given patterns for the following languages

▶ All words containing at least one *a*.

Given patterns for the following languages

• All words containing at least one $a. \Sigma^* a \Sigma^*$

- All words containing at least one $a. \Sigma^* a \Sigma^*$
- Words containing at least one a or one b.
- Words containing at least one a and one b.

- All words containing at least one $a. \Sigma^* a \Sigma^*$
- ightharpoonup Words containing at least one a or one b.
- ▶ Words containing at least one *a* and one *b*.
- Words of even length.

- All words containing at least one a. $\Sigma^*a\Sigma^*$
- Words containing at least one a or one b.
- ▶ Words containing at least one *a* and one *b*.
- Words of even length. $(\Sigma\Sigma)^*$
- Strings containing the substring abaab?
- Strings containing no occurrence of a

- ▶ All words containing at least one a. $\Sigma^*a\Sigma^*$
- ightharpoonup Words containing at least one a or one b.
- ▶ Words containing at least one *a* and one *b*.
- Words of even length. $(\Sigma\Sigma)^*$
- Strings containing the substring abaab?
- Strings containing no occurrence of a $(\Sigma \cap \overline{a})^*$
- lacktriangle Strings where every occurrence of a is followed by an occurrence of b.

Given patterns for the following languages

- All words containing at least one a. $\Sigma^*a\Sigma^*$
- lacktriangle Words containing at least one a or one b.
- ▶ Words containing at least one *a* and one *b*.
- Words of even length. $(\Sigma\Sigma)^*$
- Strings containing the substring abaab?
- Strings containing no occurrence of a $(\Sigma \cap \overline{a})^*$
- ▶ Strings where every occurrence of *a* is followed by an occurrence of *b*.

Express each of these languages as a pattern.

- ▶ How hard is to determine whether a given string *x* matches a pattern?
- Is every set of strings represented by some pattern?

- ▶ How hard is to determine whether a given string *x* matches a pattern?
- Is every set of strings represented by some pattern?
- ▶ Patterns $\alpha \equiv \beta$ if $L(\alpha) = L(\beta)$. Can you tell whether two given patterns are equivalent?

- ▶ How hard is to determine whether a given string *x* matches a pattern?
- Is every set of strings represented by some pattern?
- ▶ Patterns $\alpha \equiv \beta$ if $L(\alpha) = L(\beta)$. Can you tell whether two given patterns are equivalent?
- Which of the operators are redundant?

- ▶ How hard is to determine whether a given string *x* matches a pattern?
- Is every set of strings represented by some pattern?
- ▶ Patterns $\alpha \equiv \beta$ if $L(\alpha) = L(\beta)$. Can you tell whether two given patterns are equivalent?
- Which of the operators are redundant?

ε

- lacktriangle How hard is to determine whether a given string x matches a pattern?
- Is every set of strings represented by some pattern?
- ▶ Patterns $\alpha \equiv \beta$ if $L(\alpha) = L(\beta)$. Can you tell whether two given patterns are equivalent?
- Which of the operators are redundant?
 - $\varepsilon = \overline{\Sigma \Sigma^*}$

- lacktriangle How hard is to determine whether a given string x matches a pattern?
- Is every set of strings represented by some pattern?
- ▶ Patterns $\alpha \equiv \beta$ if $L(\alpha) = L(\beta)$. Can you tell whether two given patterns are equivalent?
- Which of the operators are redundant?
 - $\epsilon = \overline{\Sigma \Sigma^*}$
 - ∑*

- lacktriangle How hard is to determine whether a given string x matches a pattern?
- Is every set of strings represented by some pattern?
- ▶ Patterns $\alpha \equiv \beta$ if $L(\alpha) = L(\beta)$. Can you tell whether two given patterns are equivalent?
- Which of the operators are redundant?
 - $\epsilon = \overline{\Sigma \Sigma^*}$

- lacktriangle How hard is to determine whether a given string x matches a pattern?
- Is every set of strings represented by some pattern?
- ▶ Patterns $\alpha \equiv \beta$ if $L(\alpha) = L(\beta)$. Can you tell whether two given patterns are equivalent?
- Which of the operators are redundant?
 - $\varepsilon = \overline{\Sigma \Sigma^*}$
 - $\Sigma^* = (\Sigma)^*$
 - \triangleright Σ

- lacktriangle How hard is to determine whether a given string x matches a pattern?
- Is every set of strings represented by some pattern?
- ▶ Patterns $\alpha \equiv \beta$ if $L(\alpha) = L(\beta)$. Can you tell whether two given patterns are equivalent?
- Which of the operators are redundant?
 - $\epsilon = \overline{\Sigma \Sigma^*}$
 - $\Sigma^* = (\Sigma)^*$
 - $\Sigma = a_1 + \cdots + a_k$

- lacktriangle How hard is to determine whether a given string x matches a pattern?
- Is every set of strings represented by some pattern?
- ▶ Patterns $\alpha \equiv \beta$ if $L(\alpha) = L(\beta)$. Can you tell whether two given patterns are equivalent?
- Which of the operators are redundant?
 - $\epsilon = \overline{\Sigma \Sigma^*}$
 - $\Sigma^* = (\Sigma)^*$
 - $\Sigma = a_1 + \dots + a_k$
 - $\bullet \alpha \cap \beta$

- lacktriangle How hard is to determine whether a given string x matches a pattern?
- Is every set of strings represented by some pattern?
- ▶ Patterns $\alpha \equiv \beta$ if $L(\alpha) = L(\beta)$. Can you tell whether two given patterns are equivalent?
- Which of the operators are redundant?
 - $\epsilon = \overline{\Sigma \Sigma^*}$
 - $\Sigma^* = (\Sigma)^*$
 - $\Sigma = a_1 + \cdots + a_k$

- lacktriangle How hard is to determine whether a given string x matches a pattern?
- Is every set of strings represented by some pattern?
- ▶ Patterns $\alpha \equiv \beta$ if $L(\alpha) = L(\beta)$. Can you tell whether two given patterns are equivalent?
- Which of the operators are redundant?
 - $\epsilon = \overline{\Sigma \Sigma^*}$
 - $\Sigma^* = (\Sigma)^*$
 - $\Sigma = a_1 + \dots + a_k$
- Removing redundancy: Useful theoretically at the expense of losing succinctness.

- lacktriangle How hard is to determine whether a given string x matches a pattern?
- Is every set of strings represented by some pattern?
- ▶ Patterns $\alpha \equiv \beta$ if $L(\alpha) = L(\beta)$. Can you tell whether two given patterns are equivalent?
- Which of the operators are redundant?
 - $\epsilon = \overline{\Sigma \Sigma^*}$
 - $\Sigma^* = (\Sigma)^*$
 - $\Sigma = a_1 + \dots + a_k$
- Removing redundancy: Useful theoretically at the expense of losing succinctness.
- Can you get rid of complementation?

For a regular expression E we write L(E) for its language. The set of valid regular expressions RegEx can be defined recursively as the following:

	Syntax	Semantics
Empty String	ϵ	$L(\epsilon)$ = $\{\epsilon\}$
Empty Set	Ø	$L(\varnothing) = \varnothing$
Single Letter	a	$L(a) = \{a\}$
Union	E + F	$L(E+F) = L(E) \cup L(F)$
Concatenation	E.F	$L(E.F) = L(E) \circ L(F)$
Kleene Star	E^*	$L(E)^*$

For a regular expression E we write L(E) for its language. The set of valid regular expressions RegEx can be defined recursively as the following:

	Syntax	Semantics
Empty String	ϵ	$L(\epsilon)$ = $\{\epsilon\}$
Empty Set	Ø	$L(\varnothing) = \varnothing$
Single Letter	a	$L(a) = \{a\}$
Union	E + F	$L(E+F) = L(E) \cup L(F)$
Concatenation	E.F	$L(E.F) = L(E) \circ L(F)$
Kleene Star	E^*	$L(E)^*$

Associativity of + and o:

- $L(\alpha + (\beta + \gamma)) = L((\alpha + \beta) + \gamma)$
- $L(\alpha(\beta\gamma)) = L((\alpha\beta)\gamma)$

For a regular expression E we write L(E) for its language. The set of valid regular expressions RegEx can be defined recursively as the following:

	Syntax	Semantics
Empty String	ϵ	$L(\epsilon) = \{\epsilon\}$
Empty Set	Ø	$L(\varnothing) = \varnothing$
Single Letter	a	$L(a) = \{a\}$
Union	E + F	$L(E+F) = L(E) \cup L(F)$
Concatenation	E.F	$L(E.F) = L(E) \circ L(F)$
Kleene Star	E^*	$L(E)^*$

Associativity of + and ∘:

- $L(\alpha + (\beta + \gamma)) = L((\alpha + \beta) + \gamma)$
- $L(\alpha(\beta\gamma)) = L((\alpha\beta)\gamma)$

For a regular expression E we write L(E) for its language. The set of valid regular expressions RegEx can be defined recursively as the following:

	Syntax	Semantics
Empty String	ϵ	$L(\epsilon) = \{\epsilon\}$
Empty Set	Ø	$L(\varnothing) = \varnothing$
Single Letter	a	$L(a) = \{a\}$
Union	E + F	$L(E+F) = L(E) \cup L(F)$
Concatenation	E.F	$L(E.F) = L(E) \circ L(F)$
Kleene Star	E^*	$L(E)^*$

Associativity of + and ∘:

- $L(\alpha + (\beta + \gamma)) = L((\alpha + \beta) + \gamma)$
- $L(\alpha(\beta\gamma)) = L((\alpha\beta)\gamma)$

For a regular expression E we write L(E) for its language. The set of valid regular expressions RegEx can be defined recursively as the following:

	Syntax	Semantics
Empty String	ϵ	$L(\epsilon) = \{\epsilon\}$
Empty Set	Ø	$L(\varnothing) = \varnothing$
Single Letter	a	$L(a) = \{a\}$
Union	E + F	$L(E+F) = L(E) \cup L(F)$
Concatenation	E.F	$L(E.F) = L(E) \circ L(F)$
Kleene Star	E^*	$L(E)^*$

Associativity of + and o:

- $L(\alpha + (\beta + \gamma)) = L((\alpha + \beta) + \gamma)$
- $L(\alpha(\beta\gamma)) = L((\alpha\beta)\gamma)$

Precedence rules: $*>\circ>+$

Lemma

The language defined by any regular expression is regular.

$$(a+b)^*$$

Lemma

The language defined by any regular expression is regular.

$$(a+b)^*$$

$$start \longrightarrow 0$$
 a $start \longrightarrow 0$ b

Lemma

The language defined by any regular expression is regular.

$$(a+b)^*$$

$$start \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc$$

Lemma

The language defined by any regular expression is regular.

$$(a+b)^*$$

$$\mathsf{start} \longrightarrow \bigcirc \qquad \mathsf{a} \longrightarrow \bigcirc \qquad \mathsf{b} \longrightarrow \bigcirc$$

Lemma

The language defined by any regular expression is regular.

Lemma

The language defined by any regular expression is regular.

Proof idea

Lemma

The language defined by any regular expression is regular.

Proof idea

It is easy to construct NFAs for 1.,2.,3.

Lemma

The language defined by any regular expression is regular.

Proof idea

It is easy to construct NFAs for 1.,2.,3.

If we inductively have NFAs for $L(R_1), L(R_2)$ then we can create an NFA for $L(R_1 + R_2)$ and $L(R_1 \circ R_2)$.

Lemma

The language defined by any regular expression is regular.

Proof idea

It is easy to construct NFAs for 1.,2.,3.

If we inductively have NFAs for $L(R_1), L(R_2)$ then we can create an NFA for $L(R_1 + R_2)$ and $L(R_1 \circ R_2)$.

Similarly, if we inductively have NFAs for $L(R_1)$ then we can create an NFA for $(L(R_1))^*$

Lemma

The language defined by any regular expression is regular.

Proof idea

It is easy to construct NFAs for 1.,2.,3.

If we inductively have NFAs for $L(R_1), L(R_2)$ then we can create an NFA for $L(R_1 + R_2)$ and $L(R_1 \circ R_2)$.

Similarly, if we inductively have NFAs for $L(R_1)$ then we can create an NFA for $(L(R_1))^*$

What about the converse?

- $(aaa)^* + (aaaaa)^*$
- $(11+0)^*(00+1)^*$

Associativity
$$\alpha + (\beta + \gamma) \equiv (\alpha + \beta) + \gamma$$
$$\alpha(\beta\gamma) \equiv (\alpha\beta)\gamma$$

Associativity	$\alpha + (\beta + \gamma) \equiv (\alpha + \beta) + \gamma$
	$\alpha(\beta\gamma)\equiv(\alpha\beta)\gamma$
Commutativity	$\alpha + \beta \equiv \beta + \alpha$
Identity	$\alpha + \emptyset \equiv \alpha$
Idempotent	$\alpha + \alpha \equiv \alpha$

Associativity	$\alpha + (\beta + \gamma) \equiv (\alpha + \beta) + \gamma$
	$\alpha(\beta\gamma)\equiv(\alpha\beta)\gamma$
Commutativity	$\alpha + \beta \equiv \beta + \alpha$
Identity	$\alpha + \emptyset \equiv \alpha$
Idempotent	$\alpha + \alpha \equiv \alpha$
Left Distributivity	$\alpha(\beta + \gamma) \equiv \alpha\beta + \alpha\gamma$
Right Distributivity	$(\alpha + \beta)\gamma \equiv \alpha\gamma + \beta\gamma$

Associativity	$\alpha + (\beta + \gamma) \equiv (\alpha + \beta) + \gamma$
	$\alpha(\beta\gamma)\equiv(\alpha\beta)\gamma$
Commutativity	$\alpha + \beta \equiv \beta + \alpha$
Identity	$\alpha + \emptyset \equiv \alpha$
Idempotent	$\alpha + \alpha \equiv \alpha$
Left Distributivity	$\alpha(\beta + \gamma) \equiv \alpha\beta + \alpha\gamma$
Right Distributivity	$(\alpha + \beta)\gamma \equiv \alpha\gamma + \beta\gamma$
Closure	$\epsilon + \alpha \alpha^* \equiv \alpha^*$; $\epsilon + \alpha^* \alpha \equiv \alpha^*$

Associativity	$\alpha + (\beta + \gamma) \equiv (\alpha + \beta) + \gamma$
	$\alpha(\beta\gamma)\equiv(\alpha\beta)\gamma$
Commutativity	$\alpha + \beta \equiv \beta + \alpha$
Identity	$\alpha + \emptyset \equiv \alpha$
Idempotent	$\alpha + \alpha \equiv \alpha$
Left Distributivity	$\alpha(\beta + \gamma) \equiv \alpha\beta + \alpha\gamma$
Right Distributivity	$(\alpha + \beta)\gamma \equiv \alpha\gamma + \beta\gamma$
Closure	$\epsilon + \alpha \alpha^* \equiv \alpha^*$; $\epsilon + \alpha^* \alpha \equiv \alpha^*$
DeMorgan-type laws	$(\alpha + \beta)^* = (\alpha^* \beta^*)^*$

Associativity	$\alpha + (\beta + \gamma) \equiv (\alpha + \beta) + \gamma$
	$\alpha(\beta\gamma)\equiv(\alpha\beta)\gamma$
Commutativity	$\alpha + \beta \equiv \beta + \alpha$
Identity	$\alpha + \emptyset \equiv \alpha$
Idempotent	$\alpha + \alpha \equiv \alpha$
Left Distributivity	$\alpha(\beta + \gamma) \equiv \alpha\beta + \alpha\gamma$
Right Distributivity	$(\alpha + \beta)\gamma \equiv \alpha\gamma + \beta\gamma$
Closure	$\epsilon + \alpha \alpha^* \equiv \alpha^*; \ \epsilon + \alpha^* \alpha \equiv \alpha^*$
DeMorgan-type laws	$(\alpha + \beta)^* = (\alpha^* \beta^*)^*$
Subset order	$\beta + \alpha \gamma \le \gamma \implies \alpha^* \beta \le \gamma$
	$\beta + \gamma \alpha \le \gamma \implies \beta \alpha^* \le \gamma$

Associativity
$$\alpha + (\beta + \gamma) \equiv (\alpha + \beta) + \gamma$$

$$\alpha(\beta\gamma) \equiv (\alpha\beta)\gamma$$
 Commutativity
$$\alpha + \beta \equiv \beta + \alpha$$

$$\alpha(\beta + \beta) \equiv \alpha$$
 Idempotent
$$\alpha + \alpha \equiv \alpha$$
 Left Distributivity
$$\alpha(\beta + \gamma) \equiv \alpha\beta + \alpha\gamma$$
 Right Distributivity
$$\alpha(\beta + \gamma) \equiv \alpha\beta + \alpha\gamma$$

$$\alpha(\beta + \gamma) \equiv \alpha\beta + \alpha\gamma$$
 Closure
$$\alpha(\beta + \gamma) \equiv \alpha\beta + \alpha\gamma$$

$$\alpha(\beta + \gamma) \equiv \alpha\beta + \alpha\gamma$$

where

$$\alpha \le \beta \iff L(\alpha) \subseteq L(\beta)$$
 $\iff L(\alpha + \beta) = L(\beta)$
 $\iff \alpha + \beta = \beta$

A few consequences that follow

Exercise!

$$(\alpha\beta)^*\alpha \equiv \alpha(\beta\alpha)^*$$
$$(\alpha^*\beta)^*\alpha^* \equiv (\alpha+\beta)^*$$
$$\alpha^*(\beta\alpha^*)^* \equiv (\alpha+\beta)^*$$
$$(\epsilon+\alpha)^* \equiv \alpha^*$$
$$\alpha\alpha^* \equiv \alpha^*\alpha$$

- $(aaa)^* + (aaaaa)^*$
- $(11+0)^*(00+1)^*$
- $(1+01+001)^*(\varepsilon+0+00)$

 $(aaa)^* + (aaaaa)^*$ $(11+0)^*(00+1)^*$ $(1+01+001)^*(\varepsilon+0+00)$ $(1+01+001)^*(\varepsilon+0+00) = ((\varepsilon+0+00)1)^*(\varepsilon+0+00)$

- $(aaa)^* + (aaaaa)^*$ $(11+0)^*(00+1)^*$
- $(1+01+001)^*(\varepsilon+0+00)$

$$(1+01+001)^*(\varepsilon+0+00) \equiv ((\varepsilon+0+00)1)^*(\varepsilon+0+00)$$
$$\equiv ((\varepsilon+0)(\varepsilon+0)1)^*(\varepsilon+0)(\varepsilon+0)$$

- $(aaa)^* + (aaaaa)^*$ $(11+0)^*(00+1)^*$
- $(1+01+001)^*(\varepsilon+0+00)$

$$(1+01+001)^*(\varepsilon+0+00) \equiv ((\varepsilon+0+00)1)^*(\varepsilon+0+00)$$
$$\equiv ((\varepsilon+0)(\varepsilon+0)1)^*(\varepsilon+0)(\varepsilon+0)$$

 $(1+01+001)^*(\varepsilon+0+00)$ = all strings over $\{0,1\}$ with no substring of more than two adjacent 0's.

DFA to regular expression

Lemma

Any regular language can be specified by a regular expression

DFA to regular expression

Lemma

Any regular language can be specified by a regular expression

Want: Given any DFA, convert it into a regular expression.

Lemma

Given any DFA A, we can obtain a regular expression, say R_A , such that $L(A) = L(R_A)$.

Computing with labelled graphs

Lemma

Any regular language can be specified by a regular expression

Want: Given any DFA, convert it into a regular expression.

Lemma

Given any DFA A, we can obtain a regular expression, say R_A , such that $L(A) = L(R_A)$.