Description of Data

- Data from a Latin Square designs testing the effect of feeds (A, B, C, D, E) on milk yield
- Two blocking factors
 - 1) Animals (each animal has some uniqueness)
 - 2) Milkmen (each milkman has some uniqueness)

	Milkman 1	Milkman 2	Milkman 3	Milkman 4	Milkman 5
	A (33.8)	В (33.7)	D (30.4)	C (32.7)	E (24.4)
and the same of th	D(37.0)	E(28.8)	B(33.5)	A(34.6)	C(33.4)
	C(35.8)	D(35.6)	A(36.9)	E(26.7)	B(35.1)
	E(33.2)	A(37.1)	C(37.4)	B(38.1)	D(34.1)
	B(34.8)	C(39.1)	E(32.7)	D(37.4)	A(36.4)

Feed E produces least amount of milk

Differences exist among cows – could affect feeds comparison

No much differences among milkmen

Model: Design + Treatment + Random error

Full Model - Latin Square Model

Milk yield = Effect feed + Effect cow + Milkman Effect + Error

Null model (No design effect, No treatment effect)

Milk yield = General mean + Error

We can have three other models between the null and full models

Milkman 1	Milkman 2	Milkman 3	Milkman 4	Milkman 5
A (33.8)	В (33.7)	D (30.4)	C (32.7)	E (24.4)
D(37.0)	E(28.8)	B(33.5)	A(34.6)	C(33.4)
C(35.8)	D(35.6)	A(36.9)	E(26.7)	B(35.1)
E(33.2)	A(37.1)	C(37.4)	B(38.1)	D(34.1)
B(34.8)	C(39.1)	E(32.7)	D(37.4)	A(36.4)

1) Null model

Milk yield = General mean + Error

- 2) CRD model (ignore cow and milkman effects)
 - Milk yield = Effect feed + Error
- 3) RCBD with cow effects as blocking factor (ignore
- milkman effect)

Milk yield = Effect feed + Effect cow + Error

- 4) RCBD with milkman as blocking factor (ignore cow effect)
 - Milk yield = Effect feed + Milkman Effect + Error
- 5) Full model with two blocking factors

Milk yield = Effect feed + Effect cow + Milkman Effect + Error

	Milkman 1	Milkman 2	Milkman 3	Milkman 4	Milkman 5
	A (33.8)	В (33.7)	D (30.4)	C (32.7)	E (24.4)
PV	D(37.0)	E(28.8)	B(33.5)	A(34.6)	C(33.4)
	C(35.8)	D(35.6)	A(36.9)	E(26.7)	B(35.1)
	E(33.2)	A(37.1)	C(37.4)	B(38.1)	D(34.1)
	B(34.8)	C(39.1)	E(32.7)	D(37.4)	A(36.4)

1) Null model (all effects are in the error term)

Analysis of Variance Table

Response: Milkyield

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 24 296.66 12.361

2) CRD model (ignore cow and milkman effects)

Analysis of Variance Table

Response: Milkyield

Df Sum Sq Mean Sq F value Pr(>F)

Feed 4 155.89 38.974 5.5374 0.003619 **

Residuals 20 140.76 7.038

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

	Milkman 1	Milkman 2	Milkman 3	Milkman 4	Milkman 5
	A (33.8)	В (33.7)	D (30.4)	C (32.7)	E (24.4)
	D(37.0)	E(28.8)	B(33.5)	A(34.6)	C(33.4)
e di	C(35.8)	D(35.6)	A(36.9)	E(26.7)	B(35.1)
	E(33.2)	A(37.1)	C(37.4)	B(38.1)	D(34.1)
	B(34.8)	C(39.1)	E(32.7)	D(37.4)	A(36.4)

Residuals MS = 12.361 (Null model)
Residuals MS = 7.038 (CRD Model)

2) CRD model (ignore cow and milkman effects)

Analysis of Variance Table

Response: Milkyield

Df Sum Sq Mean Sq F value Pr(>F)

Feed 4 155.89 38.974 5.5374 0.003619 **

Residuals 20 140.76 7.038

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

3) RBCD model with cows block

Analysis of Variance Table

Response: Milkyield

Df Sum Sq Mean Sq F value Pr(>F)

Feed 4 155.894 38.974 11.6859 0.0001245 ***

Cow 4 87.402 21.851 6.5517 0.0025449 **

Residuals 16 53.362 3.335

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Milkman 1	Milkman 2	Milkman 3	Milkman 4	Milkman 5
A (33.8)	В (33.7)	D (30.4)	C (32.7)	E (24.4)
D(37.0)	E(28.8)	B(33.5)	A(34.6)	C(33.4)
C(35.8)	D(35.6)	A(36.9)	E(26.7)	B(35.1)
E(33.2)	A(37.1)	C(37.4)	B(38.1)	D(34.1)
B(34.8)	C(39.1)	E(32.7)	D(37.4)	A(36.4)

Residuals MS = 12.361 (Null model)

Residuals MS = 7.038 (CRD Model)

Residuals MS = 3.335 (RCBD -cow)

2) CRD model (ignore cow and milkman effects)

Analysis of Variance Table

Response: Milkyield

Df Sum Sq Mean Sq F value Pr(>F)

Feed 4 155.89 38.974 5.5374 0.003619 **

Residuals 20 140.76 7.038

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

4) RBCD model with Milkman as block

Analysis of Variance Table

Response: Milkyield

Df Sum Sq Mean Sq F value Pr(>F)

Feed 4 155.894 38.974 5.0207 0.00815 **

Milkman 4 16.562 4.141 0.5334 0.71314

Residuals 16 124.202 7.763

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Milkman 1	Milkman 2	Milkman 3	Milkman 4	Milkman 5
A (33.8)	В (33.7)	D (30.4)	C (32.7)	E (24.4)
D(37.0)	E(28.8)	B(33.5)	A(34.6)	C(33.4)
C(35.8)	D(35.6)	A(36.9)	E(26.7)	B(35.1)
E(33.2)	A(37.1)	C(37.4)	B(38.1)	D(34.1)
B(34.8)	C(39.1)	E(32.7)	D(37.4)	A(36.4)

Residuals MS = 12.361 (Null model)

Residuals MS = 7.038 (CRD Model)

Residuals MS = 3.335 (RCBD -cow)

Residuals MS = 7.763 (RCBD – Milkman)

2) CRD model (ignore cow and milkman effects)

Analysis of Variance Table

Response: Milkyield

Df Sum Sq Mean Sq F value Pr(>F)

Feed 4 155.89 38.974 5.5374 0.003619 **

Residuals 20 140.76 7.038

4) RBCD model with Milkman as block

Analysis of Variance Table

Response: Milkyield

Df Sum Sq Mean Sq F value Pr(>F)

Feed 4 155.894 38.974 12.7091 0.000284 ***

Cow 4 87.402 21.851 7.1254 0.003533 **

Milkman 4 16.562 4.141 1.3502 0.307872

Residuals 12 36.799 3.067

	Milkman 1	Milkman 2	Milkman 3	Milkman 4	Milkman 5
	A (33.8)	В (33.7)	D (30.4)	C (32.7)	E (24.4)
P	D(37.0)	E(28.8)	B(33.5)	A(34.6)	C(33.4)
	C(35.8)	D(35.6)	A(36.9)	E(26.7)	B(35.1)
	E(33.2)	A(37.1)	C(37.4)	B(38.1)	D(34.1)
	B(34.8)	C(39.1)	E(32.7)	D(37.4)	A(36.4)

Residuals MS = 12.361 (Null model)

Residuals MS = 7.038 (CRD Model)

Residuals MS = 3.335 (RCBD -cow)

Residuals MS = 7.763 (RCBD – Milkman)

Residuals MS = 3.067 (Latin Square – Cow & Milkman)

• Statistical models for the different experimental designs

CRD
$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$
 Error terms
$$y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$
 Error terms
$$y_{ijk} = \mu + \tau_i + C_j + R_k + \varepsilon_{ijk}$$
 Latin Square

CRD model: *Milk yield = Effect feed + Error*

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

- > model1<-aov(Milkyield~Feed, latinsquare) #analysis as CRD
- > anova(model1)

Analysis of Variance Table

Response: Milkyield

Df Sum Sq Mean Sq F value Pr(>F)

Feed 4 155.89 38.974 5.5374 0.003619 **

Residuals 20 140.76 7.038

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

			_		_	_
y_{ij}	=		+	$\boldsymbol{\mathcal{T}}$	+	۶
y ii		ρv	•	v_i	•	\mathbf{v}_{ii}
• • • • • • • • • • • • • • • • • • • •		•		ı		· · · · ·

> model1\$residuals

Datapoint	Observed Milk yeild	Fitted Milk yield	Residual
1	33.8	35.76	-1.96
2	33.7	35.04	-1.34
3	30.4	34.9	-4.5
4	32.7	35.68	-2.98
5	24.4	29.16	-4.76
6	37	34.9	2.1
7	28.8	29.16	-0.36
8	33.5	35.04	-1.54
9	34.6	35.76	-1.16
10	33.4	35.68	-2.28
11	35.8	35.68	0.12
12	35.6	34.9	0.7
13	36.9	35.76	1.14
14	26.7	29.16	-2.46
15	35.1	35.04	0.06
16	33.2	29.16	4.04
17	37.1	35.76	1.34
18	37.4	35.68	1.72
19	38.1	35.04	3.06
20	34.1	34.9	-0.8
21	34.8	35.04	-0.24
22	39.1	35.68	3.42
23	32.7	29.16	3.54
24	37.4	34.9	2.5
25	36.4	35.76	0.64

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

Distribution of Studentized Residuals

Normally distributed with mean of zero

Residuals
-1.96
-1.34
-4.5
-2.98
-4.76
2.1
-0.36
-1.54
-1.16
-2.28
0.12
0.7
1.14
-2.46
0.06
4.04
1.34
1.72
3.06
-0.8
-0.24
3.42
3.54
2.5
0.64

CRD model: *Milk yield = feed effect + Error*

More variation in Feed type E Less variation in Feed type B

Errors for cow 1 & 2 mostly negative Errors for cow4 and 5 mostly positive

Patterns appear more random More variations for milkman 4

Residuals
-1.96
-1.34
-4.5
-2.98
-4.76
2.1
-0.36
-1.54
-1.16
-2.28
0.12
0.7
1.14
-2.46
0.06
4.04
1.34
1.72
3.06
-0.8
-0.24
3.42
3.54
2.5
0.64
····

Error terms are randomly & independent, constant variance

RCBD model: *Milk yield* = *feed effect* + *Cow effect* + *Error*

Feed

Distribution of Studentized Residuals

RCBD model: *Milk yield = feed effect + Milkman effect + Error*

Distribution of Studentized Residuals

Error terms are randomly & independent, normally distributed with constant variance

LSD model: *Milk yield = feed effect + cow effect + Milkman effect + Error*

Distribution of Studentized Residuals

Error terms are randomly & independent, normally distributed with constant variance

> shapiro.test(resid(model1))

Shapiro-Wilk normality test

data: resid(model1)

W = 0.97753, p-value = 0.8321

> shapiro.test(resid(model2))

Shapiro-Wilk normality test

data: resid(model2)

W = 0.97334, p-value = 0.7301

> shapiro.test(resid(model3))

Shapiro-Wilk normality test

data: resid(model3)

W = 0.96399, p-value = 0.4996

> shapiro.test(resid(model4))

Shapiro-Wilk normality test

data: resid(model4)

W = 0.96669, p-value = 0.5629

> anova(lm((resid(lm(Milkyield~Feed, latinsquare))^2)~Feed, latinsquare))

Analysis of Variance Table

Response: (resid(lm(Milkyield ~ Feed, latinsquare))^2)

Df Sum Sq Mean Sq F value Pr(>F)

Feed 4 295.75 73.938 2.0426 **0.1269**

Residuals 20 723.95 36.198

> anova(lm((resid(lm(Milkyield~Feed + Cow, latinsquare))^2)~Feed, latinsquare))

Analysis of Variance Table

Response: (resid(lm(Milkyield ~ Feed + Cow, latinsquare))^2)

Df Sum Sq Mean Sq F value Pr(>F)

Feed 4 27.195 6.7987 1.4541 **0.2533**

Residuals 20 93.509 4.6755

> anova(lm((resid(lm(Milkyield~Feed + Milkman, latinsquare))^2)~Feed, latinsquare))

Analysis of Variance Table

Response: (resid(Im(Milkyield ~ Feed + Milkman, latinsquare))^2)

Df Sum Sq Mean Sq F value Pr(>F)

Feed 4 83.51 20.879 0.7728 0.5556

Residuals 20 540.32 27.016

> anova(lm((resid(lm(Milkyield~Feed + Cow + Milkman, latinsquare))^2)~Feed, latinsquare))

Analysis of Variance Table

Response: (resid(Im(Milkyield ~ Feed + Cow + Milkman, latinsquare))^2)

Df Sum Sq Mean Sq F value Pr(>F)

Feed 4 25.425 6.3564 1.7526 0.1781

Residuals 20 72.535 3.6268

```
> leveneTest(latinsquare$Milkyield, latinsquare$Feed)
Levene's Test for Homogeneity of Variance (center =
median)
      Df F value Pr(>F)
          1.1808 0.3493
group 4
   20
> leveneTest(latinsquare$Milkyield, latinsquare$Cow)
Levene's Test for Homogeneity of Variance (center =
median)
      Df F value Pr(>F)
group 4 0.0909 0.9842
   20
```

- > #Rule of thumb check ratio of maximum variance to minimum variance should not exceed 5
- > max(by(latinsquare\$Milkyield,latinsquare\$Feed,sd))^2/min(by(latinsquare\$Milkyield,latinsquare\$Feed,sd))^2

[1] 6.637368

> max(by(latinsquare\$Milkyield,latinsquare\$Cow,sd))^2/min(by(latinsquare\$Milkyield,latinsquare\$Cow,sd))^2

[1] 3.610889

> max(by(latinsquare\$Milkyield,latinsquare\$Milkman,sd))^2/min(by(latinsquare\$Milkyield,latinsquare\$Milkman,sd))^2

[1] 9.732847

Analysis of Variance for Factorial Experiments

Example: Beer-goggle effects (adopted Discovering statistics using R)

Antropologist is interested in the effect beers on mate selection in a night club

- Rationale: after alcohol consumption, subjective perceptions of physical attractiveness would become more inaccurate (the well-known beer-goggles effect).
- Does beer-goggles effect depend on sex?

Sex	Alcohol level	Number of participants	Variable measured
Female	0 (alcohol free lager)	6	
Female	2 bottles of beer	6	Take a photograph of the person that the participant was chatting up. She then got a pool
Female	4 bottles of beer	6	of independent judges to assess the
Male	0 (alcohol free lager)	6	attractiveness of the person in each photograph
Male	2 bottles of beer	6	(out of 100)
Male	4 bottles of beer	6	

80 attractiveness 40 -20 -2 bottles None 4 bottles alchol

Gender ignoring alcohol effect

Alcohol ignoring gender effect

Considering both effects

> by(attracdata\$attractiveness, attracdata\$gender, summary) #summary by gender attracdata\$gender: Female

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
```

```
50.00 55.00 60.00 60.21 65.00 70.00
```

attracdata\$gender: Male

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
```

20.00 43.75 60.00 56.46 70.00 85.00

> by(attracdata\$attractiveness, attracdata\$alchol, summary) #summary by alcohol attracdata\$alchol: None

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 50.00 58.75 62.50 63.75 70.00 80.00
```

attracdata\$alchol: 2 bottles

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 45.00 60.00 65.00 64.69 70.00 85.00
```

attracdata\$alchol: 4 bottles

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 20.00 33.75 50.00 46.56 55.00 70.00
```

summary)#by gender & alcohol

: Female

: None

Min. 1st Qu. Median Mean 3rd Qu. Max.

55.00 58.75 60.00 60.62 61.25 70.00

: Male

: None

Min. 1st Qu. Median Mean 3rd Qu. Max. 50.00 62.50 67.50 66.88 75.00 80.00

summary)#by gender & alcohol

: Female

: 2 bottles

Min. 1st Qu. Median Mean 3rd Qu. Max. 50.00 60.00 62.50 62.50 66.25 70.00

: Male

: 2 bottles

Min. 1st Qu. Median Mean 3rd Qu. Max. 45.00 60.00 67.50 66.88 72.50 85.00

summary)#by gender & alcohol

: Female

: None

Min. 1st Qu. Median Mean 3rd Qu. Max.

55.00 58.75 60.00 60.62 61.25 70.00

: Male

: None

Min. 1st Qu. Median Mean 3rd Qu. Max.

50.00 62.50 67.50 66.88 75.00 80.00

summary)#by gender & alcohol

: Female

: 4 bottles

Min. 1st Qu. Median Mean 3rd Qu. Max.

50.00 53.75 55.00 57.50 61.25 70.00

: Male

: 4 bottles

Min. 1st Qu. Median Mean 3rd Qu. Max.

20.00 30.00 32.50 35.62 41.25 55.00

One-way ANOVA

> attractmodel1<-aov(attractiveness~gender, data=attracdata)

> anova(attractmodel1)

Analysis of Variance Table

Response: attractiveness

Df Sum Sq Mean Sq F value Pr(>F)

gender 1 168.7 168.75 0.8823 **0.3525**

Residuals 46 8797.9 191.26

> attractmodel2<-aov(attractiveness~alchol, data=attracdata)

> anova(attractmodel2)

Analysis of Variance Table

Response: attractiveness

Df Sum Sq Mean Sq F value Pr(>F)

alchol 2 3332.3 1666.15 13.307 2.883e-05

Residuals 45 5634.4 125.21

One-way ANOVA

> attractmodel1<-aov(attractiveness~gender, data=attracdata)

> attractmodel2<-aov(attractiveness~alchol, data=attracdata)

Two-way ANOVA

> attractmodel3<-aov(attractiveness~gender*alchol, data=attracdata)

> anova(attractmodel3)

Analysis of Variance Table

Response: attractiveness

Df Sum Sq Mean Sq F value Pr(>F)

gender 1 168.7 168.75 2.0323 0.1614

alchol 2 3332.3 1666.15 20.0654 7.649e-07 ***

gender:alchol 2 1978.1 989.06 11.9113 7.987e-05 ***

Residuals 42 3487.5 83.04

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

gender*alchol effect plot

Contrast and Posthoc Test

- Contrast are useful when comparing treatments with structure
- Instead of comparing individual treatments we compare groups of treatments
- Example

Contrast 1: No alcohol vs some alcohol (average 2 and 4 bottles)

Contrast 2: 2 bottles vs 4 bottles

Contrast 3: Male vs Female

Contrast and Posthoc Test

Use the commands below we can modify our data frame

```
contrasts(attracdata\$alchol)<-cbind(c(-2, 1, 1), c(0, -1, 1))#creating contrast for alcohol contrasts(attracdata\$gender)<-c(-1, 1)#creating contrast for gender
attr(,"contrasts")
```

```
attr(,"contrasts")

[,1] [,2]

None -2 0

2 bottles 1 -1

4 bottles 1 1

Levels: None 2 bottles 4 bottles
```

Contrast and Posthoc Test

> anova(attractmodel4)

Analysis of Variance Table

Response: attractiveness

Df Sum Sq Mean Sq F value Pr(>F)

gender 1 168.7 168.75 2.0323 0.1614

alchol 2 3332.3 1666.15 20.0654 7.649e-07

gender:alchol 2 1978.1 989.06 11.9113 7.987e-05

Residuals 42 3487.5 83.04

> summary.lm(attractmodel4)

Coefficients:

Estimate Std. Error t value Pr(> t)				
(Intercept)	58.333	1.315	44.351	< 2e-16 ***
gender1	-1.875	1.315	-1.426	0.161382
alchol1	-2.708	0.930	-2.912	0.005727 **
alchol2	-9.062	1.611	-5.626	1.37e-06 ***
gender1:alchol1	-2.500	0.930	-2.688	0.010258 *
gender1:alchol2	-6.562	1.611	-4.074	0.000201 ***

Residual standard error: 9.112 on 42 degrees of freedom

Multiple R-squared: 0.6111, Adjusted R-squared: 0.5648

F-statistic: 13.2 on 5 and 42 DF, p-value: 9.609e-08

Simple effects

- Significant interaction between two factors Implies the effects of the two factors cannot be interpreted independent of each other
- Simple effect: Comparing the level of one factor when holding the level of the other factor constant – Similar to one-way ANOVA
- Example
 - Compare male and female at Zero alcohol level
 - Compare male and female at two bottle level
- Contrast can be constructed to test for simple effects

Simple effects

Contrast for simple effects

> simple

		alcEffect1	alcEff	ect2 gender_nor	ne gender_2bo	ttles gender_4bottles
Female_None	[1,]	-2	0	-1	0	0
Female_2bottles	s [2,]	1	-1	0	-1	0
Female_4bottles	s [3,]	1	1	0	0	-1
Male_None	[4,]	-2	0	1	0	0
Male_2bottles	[5,]	1	-1	0	1	0
Male_4bottles	[6,]	1	1	0	0	1

Simple effects

- > model4<-aov(attractiveness ~ simple_effect, data = attracdata)
- > summary.lm(model4)

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	58.333	1.315	44.351	< 2e-16 ***
simple_effectalcEffect1	-2.708	0.930	-2.912	0.00573 **
simple_effectalcEffect2	-9.062	1.611	-5.626	1.37e-06 ***
simple_effectgender_none	3.125	2.278	1.372	0.17742
simple_effectgender_2bottles	2.188	2.278	0.960	0.34243
simple_effectgender_4bottles	-10.938	2.278	-4.801	2.02e-05 ***

Posthoc

> pairwise.t.test(attracdata\$attractiveness, attracdata\$alchol, p.adjust.method ="bonferroni")

Pairwise comparisons using t tests with pooled SD

data: attracdata\$attractiveness and attracdata\$alchol

None 2 bottles

2 bottles **1.00000** -

4 bottles 0.00024 0.00011

P value adjustment method: bonferroni

Posthoc

> summary(postHocs)

Simultaneous Tests for General Linear Hypotheses Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = attractiveness ~ gender * alchol, data = attracdata)

Linear Hypotheses:

	Estimate	Std. Error.	t value	Pr(> t)
2 bottles - None == 0	0.9375	3.2217	0.291	0.954
4 bottles - None == 0	-17.1875	3.2217	-5.335	<1e-04 ***
4 bottles - 2 bottles == 0	-18.1250	3.2217	-5.626	<1e-04 ***