Драйверы для обеспечения взаимодействия ускорителя с реконфигурируемой архитектурой и центрального процессора вычислительной системы.

Организация взаимодействия ПЛИС с ПК

- ір-Ядра в ПЛИС не могут быть вызваны из ЦПУ непосредственно даже, если находятся на одном кристалле, поскольку имеют отличную архитектуру.
- Взаимодействие происходит через контроллеры посредники по специальному протоколу.
- Пропускная способность интерфейса передачи данных существенно ниже пропускной способности внутренних интерфейсов реализованных в ПЛИС.

Вычислительное ядро

Оптимизация передачи данных

```
int i;
for (i = 0; i < 1000; ++i) {
     a[i] = (b[2*i] + b[2*i + 1])*c[i];
}</pre>
```

i	0	1	2	3
b	b[0]; b[1]	b[2]; b[3]	b[4]; b[5]	b[6]; b[7]
С	-	c[0]	c[1]	c[2]
а	-	-	a[0]	a[1]

```
for (i = 0; i < 1000; ++i) {
     a[i] = (b[i] + b[i + 2])*c[i];
}</pre>
```

i	0	1	2	3
b	b[0]; b[2]	b[1]; b[3]	b[2]; b[4]	b[3]; b[5]
С	-	c[0]	c[1]	c[2]
а	-	-	a[0]	a[1]

Задачи драйвера

- 1. Управление вычислительными ядрами на ПЛИС.
- 2. Преобразование форматов хранения данных.
- 3. Буферизация отправляемых и получаемых данных.
- 4. Оптимизация порядка передачи данных.
- 5. Синхронизация потоков данных.
- 6. Синхронизация вычислительных потоков.

Алгоритм работы драйвера

- 1. Конфигурация ядра. Отправка конфигурационных данных на порты-константы и буферизированные потоковые порты.
- 2. Инициализация ядра. Отправка начальных значений на порты с обратной связью и буферизированные потоковые порты с обратной связью.
- 3. Работа ядра. Отправка данных на потоковые порты и одновременное получение результатов с потоковых выходных портов.
- 4. Де-инициализация. Получение данных с буферизированных потоковых портов и скалярных портов.

Разделение драйвера на статическую и генерируемую части

- Функционал, который может зависеть от структуры конкретной программы.
 - о Порядок отправки и получения данных.
 - о Функция конфигурирования вычислительного ядра.
 - о Функция инициализации вычислительного ядра.
- Функционал, который зависит только от выбранного интерфейса передачи данных и целевой платформы.
 - Функции обмена данными между ЦПУ и ПЛИС.
 - Буферы для отправляемых и получаемых данных на ПЛИС.

Проект компилятора на вычислительную систему с реконфигурируемой архитектурой

- Блок высокоуровневых преобразований. Находит в программе конвейеризуемые участки, а так же применяет преобразования, если те необходимы, способные улучшить конвейеризуемость кода.
- Преобразователь С в VHDL (C2HDL). Конвейеризация циклов и преобразование части кода исходной программы в описание вычислительного ядра на языке VHDL.
- Генератор драйверов. Автоматическая генерация на Си и VHDL вспомогательных модулей, обеспечивающих взаимодействие ПК и ПЛИС.
- Менеджер сборки. Из всех сгенерированных файлов собирает два проекта на Си и на VHDL соответственно, с описанием параметров компиляции каждого проекта. Также управляет процессом компиляции исходного кода в исполняемые файлы целевых платформ.

Экспериментальный стенд на базе Altera Cyclone V и MIPSfpga

