Mesures produit, Changement de variables

1. Mesures produit.

1.1. Construction.

- Soient (E, \mathcal{A}, μ) et (F, \mathcal{B}, ν) deux espaces mesurés
 - On suppose que μ et ν sont σ -finies
 - Il existe une suite croissante d'ensembles $(\mathcal{E}_n)_{n\geq 0} \subset \mathcal{A}$ telle que

$$\bigcup_{n \in \mathbb{N}} E_n = E, \qquad \forall n \in \mathbb{N}, \quad \mu(E_n) < +\infty.$$

- On veut construire une mesure m sur l'espace produit $(E \times F, \mathcal{A} \otimes \mathcal{B})$
 - $\mathscr{A} \otimes \mathscr{B}$ est la tribu engendrée sur $E \times F$ par les rectangles (pavés) mesurables i.e

$$\mathscr{A} \otimes \mathscr{B} = \sigma(A \times B : A \in \mathscr{A}, B \in \mathscr{B})$$

• m « se comporte comme le produit » de μ et ν : on souhaite que

$$(A \times B) = \mu(A)\nu(B)$$

• Rappelons que, pour tout $x \in E$, $y \mapsto (x, y)$, notée S_x , est mesurable par rapport à \mathscr{B} et $\mathscr{A} \otimes \mathscr{B}$. En effet, si $A \times B$ est un pavé mesurable,

$$S_x^{-1}(A \times B) = \{ y \in F : (x, y) \in A \times B \} = \begin{cases} B, & \text{si } x \in A, \\ \emptyset, & \text{sinon.} \end{cases}$$

- Déssiner $C_x = S_x^{-1}(C)$ et $C^y = S_y^{-1}(C)$ pour un ensemble qui n'est pas un pavé.
- Par conséquent, si $f: E \times F \longrightarrow \overline{\mathbf{R}}$ ou \mathbf{C} est mesurable alors, pour tout $x \in E$, $y \longmapsto f(x,y)$ est mesurable. Pour x fixé dans \mathscr{E}

$$f(x, y) = f \circ S_x(y)$$

Lemme. Soit $f: E \times F \longrightarrow \overline{\mathbb{R}}_+$ une fonction mesurable. Alors, les applications

$$x \longmapsto \int_{E} f(x, y) v(dy), \qquad y \longmapsto \int_{E} f(x, y) \mu(dx)$$

sont mesurables respectivement par rapport à A et B

Le résultat repose sur un argument de « classe monotone »

• Remarquons que si $f = \mathbf{1}_C$ avec $C \in \mathcal{A} \otimes \mathcal{B}$,

$$\int_{F} f(x, y) v(dy) = v(C_{x}), \quad C_{x} = \{ y \in F : (x, y) \in C \}.$$

• En particulier, si $C = A \times B$,

$$\int_{E} f(x, y) \, \nu(dy) = \nu(C_{x}) = \mathbf{1}_{A}(x) \nu(B), \qquad \int_{E} f(x, y) \, \mu(dx) = \mathbf{1}_{B}(y) \mu(A)$$

• On remarque que, dans ce cas,

$$\int_{E} \left(\int_{F} f(x, y) \, \nu(dy) \right) \mu(dx) = \int_{F} \left(\int_{E} f(x, y) \, \mu(dx) \right) \nu(dy) = \mu(A) \, \nu(B)$$

Théorème (Mesure produit). *Soient* (E, \mathcal{A}, μ) *et* (F, \mathcal{B}, ν) *deux espaces mesurés. On suppose que* μ *et* ν *sont* σ -*finies*.

Il exite une unique mesure m sur $(E \times F, \mathcal{A} \otimes \mathcal{B})$ telle que

$$\forall A \in \mathcal{A}, \quad \forall B \in \mathcal{B}, \qquad m(A \times B) = \mu(A)\nu(B).$$

La mesure m est notée $\mu \otimes \nu$ et est appelée mesure produit de μ et ν . De plus, pour tout $C \in \mathcal{A} \otimes \mathcal{B}$,

$$(\mu \otimes \nu)(C) = \int_E \nu(C_x) \, \mu(dx) = \int_F \mu(C^y) \, \nu(dy).$$

Exemple(s). Soient $f: E \longrightarrow \overline{\mathbb{R}}_+$ une fonction mesurable et

$$C = \left\{ (x, y) \in E \times \overline{\mathbf{R}}_+ : 0 \le y \le f(x) \right\}.$$

On a,

$$(\mu \otimes \lambda)(C) = \int_{E} \lambda(C_{x}) \, \mu(dx) = \int_{E} f(x) \, \mu(dx),$$

$$(\mu \otimes \lambda)(C) = \int_{[0,+\infty[} \mu(C^{y}) \, \lambda(dy) = \int_{[0,+\infty[} \mu(\{x \in E : f(x) \ge y\}) \, \lambda(dy).$$

• Plus généralement,

Théorème. Soient $(E_i, \mathcal{A}_i, \mu_i)$, $1 \le i \le n$, des espaces mesurés σ -finis. Il existe une unique mesure sur $(E_1 \times \ldots \times E_n, \mathcal{A}_1 \otimes \ldots \times \mathcal{A}_n)$, notée $\mu_1 \otimes \ldots \otimes \mu_n$, telle que :

$$\forall A_1 \in \mathcal{A}_1, \dots, \forall A_n \in \mathcal{A}_n, \qquad (\mu_1 \otimes \dots \otimes \mu_n)(A_1 \times \dots \times A_n) = \mu_1(A_1) \dots \mu_n(A_n).$$

De plus, pour $1 \le k \le n$, $(\mu_1 \otimes ... \otimes \mu_k) \otimes (\mu_{k+1} \otimes ... \otimes \mu_n) = \mu_1 \otimes ... \otimes \mu_n$.

• Par exemple, $\lambda_p \otimes \lambda_q = \lambda_{p+q}$.

1.2. Intégrales multiples.

- Dans tout ce paragraphe, (E, \mathcal{A}, μ) et (F, \mathcal{B}, ν) sont deux espaces mesurés σ -finis
- On étudie $\int_{E\times E} f(x,y) (\mu \otimes \nu) (dx,dy)$.

Théorème (Tonelli). *Soient* (E, \mathcal{A}, μ) *et* (F, \mathcal{B}, ν) *deux espaces mesurés* σ *-finis et* $f : E \times F \longrightarrow \overline{\mathbf{R}}_+$ *une application* $\mathcal{A} \otimes \mathcal{B}$ *-mesurable. Alors,*

$$\int_{E\times F} f(x,y) (\mu \otimes \nu)(dx,dy) = \int_{E} \left(\int_{F} f(x,y) \nu(dy) \right) \mu(dx) = \int_{F} \left(\int_{E} f(x,y) \mu(dx) \right) \nu(dy).$$

Démonstration. • Pour $f = \mathbf{1}_C$, c'est la définition de $\mu \otimes v$.

- Par linéarité, la formule est vraie pour f étagée.
- Par convergence monotone, elle est vraie si $f \in \mathcal{M}_+$.
- On note souvent $\mu(dx)\nu(dy)$ au lieu de $(\mu \otimes \nu)(dx, dy)$ i.e.

$$\int_{E\times F} f(x,y)\,\mu(dx)v(dy) \quad \text{au lieu de} \quad \int_{E\times F} f(x,y)\,(\mu\otimes v)(dx,dy).$$

Exemple(s). On considère la fonction f définie sur \mathbb{R}^2_+ par

$$f(x, y) = y \exp(-y^2(1+x^2)/2).$$

En utilisant le théorème de Tonelli, montrer que

$$\int_{\mathbf{R}} e^{-x^2/2} \, dx = \sqrt{2\pi}.$$

Corollaire. Une application f de $E \times F$ à valeurs dans $\overline{\mathbf{R}}$ ou \mathbf{C} , mesurable par rapport à $\mathcal{A} \otimes \mathcal{B}$, est intégrable par rapport à $\mu \otimes \nu$ si et seulement si

$$\int_{E\times F} |f(x,y)| \, \mu(dx) v(dy) = \int_E \left(\int_F |f(x,y)| \, \nu(dy) \right) \mu(dx) = \int_F \left(\int_E |f(x,y)| \, \mu(dx) \right) \nu(dy) < +\infty.$$

- Rappelons que f est définie μ -p.p. s'il existe $N \in \mathcal{A}$ tel que $\mu(N) = 0$ et f est définie sur N^c .
- Dans ce cas,

$$\int_E f(x) \, \mu(dx) = \int_E f(x) \mathbf{1}_{N^c}(x) \, \mu(dx).$$

Théorème (Fubini). *Soient* (E, \mathcal{A}, μ) *et* (F, \mathcal{B}, ν) *deux espaces mesurés* σ *-finis et* f *une application de* $E \times F$ *dans* $\overline{\mathbf{R}}$ *ou* \mathbf{C} *une application* $\mu \otimes \nu$ *-intégrable. Alors,*

$$\int_{E\times F} f(x,y)\,\mu(dx)\nu(dy) = \int_E \left(\int_F f(x,y)\,\nu(dy)\right)\mu(dx) = \int_F \left(\int_E f(x,y)\,\mu(dx)\right)\nu(dy).$$

• Ceci signifie que:

- Pour μ -presque tout $x \in E$, $y \mapsto f(x,y)$ est v-intégrable; de plus, $x \mapsto \int_F f(x,y) v(dy)$ est définie μ -presque partout et μ -intégrable.
- Pour v-presque tout $y \in F$, $x \mapsto f(x,y)$ est μ -intégrable; de plus, $y \mapsto \int_F f(x,y) \, \mu(dx)$ est définie v-presque partout et v-intégrable.

Exemple(s). Montrons que

$$\int_{\mathbf{R}} \frac{e^{itx}}{1+x^2} \lambda(dx) = \pi e^{-|t|}.$$

On rappelle que, pour a > 0 et $t \in \mathbb{R}$,

$$\int_{\mathbf{R}} e^{itx} e^{-a|x|} \, \lambda(dx) = 2 \operatorname{Re} \left(\int_0^\infty e^{itx} e^{-ax} \, dx \right) = 2 \operatorname{Re} \left(\frac{1}{a - it} \right) = \frac{2a}{a^2 + t^2}.$$

2017/2018 : fin du cours 13

Pour t fixé, on considère la fonction continue sur \mathbf{R}^2 , $f_t(x,y) = e^{i(y+t)x}e^{-a|x|}e^{-|y|}$. Comme $|f_t(x,y)| \le e^{-a|x|}e^{-|y|}$, f_t est intégrable sur \mathbf{R}^2 par rapport à la mesure de Lebesque. On a alors

$$\begin{split} \int_{\mathbf{R}^2} f_t(x,y) \, \lambda_2(dx,dy) &= \int_{\mathbf{R}} \left(e^{itx} e^{-a|x|} \int_{\mathbf{R}} e^{-iyx} e^{-|y|} \, \lambda(dy) \right) \lambda(dx) = \int_{\mathbf{R}} e^{itx} e^{-a|x|} \frac{2}{1+x^2} \, \lambda(dx), \\ &= \int_{\mathbf{R}} \left(e^{-|y|} \int_{\mathbf{R}} e^{i(y+t)x} e^{-a|x|} \, \lambda(dx) \right) \lambda(dy) = \int_{\mathbf{R}} e^{-|y|} \frac{2a}{a^2 + (y+t)^2} \, dy. \end{split}$$

On a donc, via z = (y + t)/a,

$$\int_{\mathbb{R}} \frac{e^{itx}}{1+x^2} e^{-a|x|} \lambda(dx) = \int_{\mathbb{R}} \frac{a}{a^2+(y+t)^2} e^{-|y|} dy = \int_{\mathbb{R}} \frac{1}{1+z^2} e^{-|az-t|} \lambda(dz).$$

Puisque,

$$\left| \frac{e^{itx}}{1+x^2} e^{-a|x|} \right| \le \frac{1}{1+x^2} \in L^1, \qquad \left| \frac{1}{1+z^2} e^{-|az-t|} \right| \le \frac{1}{1+z^2} \in L^1,$$

le théorème de convergence dominée permet de passer à la limite quand $a \to 0^+$ dans la $1^{\rm re}$ et la $3^{\rm e}$ intégrale, pour obtenir

$$\int_{\mathbf{R}} \frac{e^{itx}}{1+x^2} \, \lambda(dx) = \int_{\mathbf{R}} \frac{e^{-|t|}}{1+z^2} \, \lambda(dz) = \pi \, e^{-|t|}.$$

2. Changement de variable.

• Commençons par un résultat pratique

Proposition. Soit u l'application de \mathbf{R}^d dans \mathbf{R}_+ définie par $u(x) = \|x\|$. Alors $u_*(\lambda_d)$ est la mesure de densité d V_d x^{d-1} par rapport à λ_1 sur \mathbf{R}_+ où $V_d = \lambda_d(\{x \in \mathbf{R}^d : \|x\| \le 1\})$ est le volume de la boule unité.

· On peut montrer que

$$V_d = \frac{\pi^{d/2}}{(d/2)!}$$
 si d est pair, $V_d = \frac{2^d \pi^{(d-1)/2} ((d-1)/2)!}{d!}$ si d est impair.

Démonstration. Soit r > 0. $u_*(\lambda_d)([0, r]) = \lambda_d(\{x \in \mathbf{R}^d : ||x|| \le r\}) = r^d V_d$. Il suffit alors d'écrire

$$u_* (\lambda_d) ([0,r]) = \int_0^r dV_d x^{d-1} dx = \int_{\mathbf{R}_+} \mathbf{1}_{[0,r]}(x) dV_d x^{d-1} \lambda_1(dx),$$

et d'appliquer le résultat d'égalité de deux mesures.

Corollaire. *Soit* $f : \mathbf{R}_+ \longrightarrow \mathbf{R}_+$ *borélienne. Alors*

$$\int_{\mathbf{R}^d} f(\|x\|) \, \lambda_d(dx) = dV_d \int_{\mathbf{R}_+} f(x) x^{d-1} \, \lambda_1(dx).$$

En particulier, $x \longmapsto \frac{1}{1+\|x\|^{\alpha}}$ est intégrable sur \mathbf{R}^d si et seulement si $\alpha > d$, $x \longmapsto \frac{1}{\|x\|^{\alpha}} \mathbf{1}_{0 < \|x\| \le 1}$ est intégrable sur \mathbf{R}^d si et seulement si $\alpha < d$.

• Rappelons la définition de \mathscr{C}^1 -difféormorphisme.

Définition. Soit U un ouvert de \mathbf{R}^d . Une application $\psi: U \longrightarrow \mathbf{R}^d$ est un \mathscr{C}^1 -difféomorphisme si

- 1. $\psi(U)$ est un ouvert de \mathbf{R}^d ;
- 2. ψ est une bijection bicontinue de U sur $\psi(U)$;
- 3. ψ et ψ^{-1} sont de classe \mathscr{C}^1 .
- On note J_{ψ} le jocobien de ψ c'est à dire $J_{\psi}(x) = \det(D\psi(x))$.

Proposition. Soient U un ouvert de \mathbb{R}^d et ψ une application de U dans \mathbb{R}^d . ψ est un \mathscr{C}^1 -difféomorphsime de U si et seulement si ψ est de classe \mathscr{C}^1 , injective et J_{ψ} ne s'annule pas sur U.

Théorème. Soient U un ouvert de \mathbb{R}^d et ψ un \mathscr{C}^1 -difféomorphisme de U. On note V l'ouvert $\psi(U)$.

1. Soit $f: V \longrightarrow \mathbf{R}_+$ une application mesurable. Alors

$$\int_{V} f(y) \lambda_d(dy) = \int_{U} f(\psi(x)) |J_{\psi}(x)| \lambda_d(dx).$$

2. Soit f une application mesurable de V dans $\overline{\mathbf{R}}$ ou \mathbf{C} . Alors f est intégrable sur V si et seulement si $f \circ \psi |J_{\psi}|$ est intégrable sur U et dans ce cas

$$\int_{V} f(y) \lambda_d(dy) = \int_{U} f(\psi(x)) |J_{\psi}(x)| \lambda_d(dx).$$

- On pose $y = \psi(x)$, $dy = |J_{\psi}(x)| dx$.
- On applique souvent le résultat à la fonction $f \circ \psi$ avec ψ^{-1} i.e.

$$\int_{U} f(\psi(x)) \, \lambda_d(dx) = \int_{V} f(y) \, |J_{\psi^{-1}}(y)| \, \lambda_d(dy).$$

Exemple(s). • Montrons à nouveau que

$$\int_{\mathbf{R}} e^{-x^2/2} \, dx = \sqrt{2\pi}.$$

On calcule en fait I^2 en passant en coordonnées polaires. On a, notant Δ la demi-droite $\Delta = \{(x, y) \in \mathbb{R}^2 : x \leq 0\},$

$$I^{2} = \int_{\mathbf{R}^{2}} e^{-(x^{2} + y^{2})/2} dx dy = \int_{\mathbf{R}^{2} \setminus \Delta} e^{-(x^{2} + y^{2})/2} dx dy.$$

L'application $\psi(r,\theta)=(r\cos\theta,r\sin\theta)$ est un \mathscr{C}^1 -difféomorphisme de $]0,+\infty[\times]-\pi,\pi[$ dans $\mathbf{R}^2\setminus\Delta$ et

$$D\psi(r,\theta) = \begin{pmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{pmatrix}, \qquad J_{\psi}(r,\theta) = r.$$

Par conséquent,

$$\int_{\mathbf{R}^2} e^{-(x^2+y^2)/2} \, dx dy = \int_0^{+\infty} \int_{-\pi}^{\pi} e^{-r^2/2} \, r \, dr d\theta = 2\pi.$$

• Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}_+$ borélienne.

$$\int_{\mathbf{R}}^{2} f(2x+y, x+2y) \, dx \, dy = \frac{1}{3} \int_{\mathbf{R}^{2}} f(s, t) \, ds \, dt.$$

On pose s = 2x + y, t = x + 2y i.e.

$$D\psi(x,y) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \qquad J_{\psi}(x,y) = 3, \quad \ll ds dt = 3 dx dy$$

_____ 2017/2018 : fin du cours 14 _