Theory Of Automata

Spring 2021 Solution

Saad Bin Khalid 20K-0161 13 March 2022

A vending machine is an automated selling machine. Give a DFA and the transition table for this machine that sells a number of items (chips, candies, etc.) for 4 rupees each. It accepts only 1 and 2 rupees, and refunds all money if more than 4 rupees is added.

Q	1	2	
0	1	2	
1	2	3	
2	3	4	
3	4	0	
4	0	0	

1 40%

${\bf Question~2a}$

Find the DFA for the language L of string which does not contain the substring bb and ends with 'a' defined over alphabet {a, b}

2 30%

Question 2b

Construct the FA for the following regular expression. $1^*(0^*01^*)^* + 1 + 0 + \lambda$

2 30%

${\bf Question~2c}$

Find the DFA corresponding to set of strings with either no 1 preceding a 0 or no 0 preceding a 1.

2 30%

Express each of these languages over using a regular expression.

a) $L_1 =$ the set consisting of the strings 0, 11, and 010

0 + 11 + 010

b) $L_2 =$ the set of strings of three 0s followed by two or more 0s, containing no 1s

00000.0*

c) $L_3 =$ the set of strings of odd length

 $(a+b).[(a+b)^2]*$

d) L_4 = the set of strings that contain exactly one 1

0*10*

e) L_5 = the set of strings ending in 1 and not containing 000

 $(0+00+\lambda)(1+10+100)*$

f) L_6 = The set of strings containing a string of 1s such that the number of 1s equals 2 modulo 3, followed by an even number of 0s

11(111)*(00)*

Construct the DFA from the given Epsilon NFA

€ - Closure Table:

Q	λ-transition	
р	pqr	
q	q	
r	r	

Transition Table:

Q	а	b	С
pqr	pqr	qr	pqr
q r	pqr	r	pqr
r	-	-	-

≥ 30%

Find the regular expression of the DFA given in figure, using state elimination method.

★ 20%

2 30%

30% Exit zen mode