

Aula 09 – Segmentação de imagens II

Prof. João Fernando Mari

<u>joaofmari.github.io</u>

joaof.mari@ufv.br

Roteiro

- Limiarização
- Limiarização global simples
- O método de Otsu

Limiarização

- Limiarização de imagens
 - Posição central nas aplicações de segmentação de imagens
 - Facilidade de implementação
 - Velocidade computacional
- Limiarização global:
 - T é uma constante aplicável a uma imagem inteira.
- Limiarização local (variável ou regional):
 - T muda ao longo da imagem.

$$g(x,y) = \begin{cases} 1, & se \ f(x,y) > T \\ 0, & se \ f(x,y) \le T \end{cases}$$

LIMIARIZAÇÃO GLOBAL SIMPLES

- 1. Selecionar uma estimativa inicial para o limiar global, T.
- 2. Segmentar a imagem usando T:

$$g(x,y) = \begin{cases} 1 & se \ f(x,y) > T \\ 0 & se \ f(x,y) \le T \end{cases}$$

- Isso dará origem a dois grupos de pixels:
 - G₁, pixels com valores de intensidade > T;
 - G_2 , pixels com valores $\leq T$.
- 3. Calcular os valores de intensidade média m_1 e m_2 para os pixels em G_1 e G_2 , respectivamente.
- 4. Calcular um novo valor de limiar:

$$T = \frac{1}{2}(m_1 + m_2)$$

5. Repetir as etapas 2 a 4 até que a diferença entre os valores de T em iterações sucessivas seja menor que o parâmetro predefinido ΔT .

lma	agem	ı I						
2	3	6	5					
3	1	1	1					
6	7	6	3					
5	7	0	3					
	$T_0 = \min(I) = 0$ $\Delta T = 0.001$							

- $T_0 = \min(I) = 0$
- $G_1 = [2, 3, 6, 5, 3, 1, 1, 1, 6, 7, 6, 3, 5, 7, 3]$
- $G_2 = [0]$
- $m_1 = (2+3+6+5+3+1+1+1+6+7+6+3+5+7+3) / 15$ = 59 / 15 = 3.9333
- $m_2 = 0 / 1 = 0$
- $T_1 = (3.9333 + 0) / 2 = 1.9667$
- $|T_1 T_0| = |1.9667 0| = 1.9667 > \Delta T$, então nova iteração.

- $T_1 = 1.9667$
- $G_1 = [2, 3, 6, 5, 3, 6, 7, 6, 3, 5, 7, 3]$
- $G_2 = [1, 1, 1, 0]$
- $m_1 = (2 + 3 + 6 + 5 + 3 + 6 + 7 + 6 + 3 + 5 + 7 + 3) / 12$ = 56 / 12 = 4.6667
- $m_2 = (1 + 1 + 1 + 0) / 4 = 3 / 4 = 0.75$
- $T_2 = (4.6667 + 0.75) / 2 = 2.7084$
- $|T_2 T_1| = |2.7084 1.9667| = 0.7417 > \Delta T$, então nova iteração.

- $T_2 = 2,7084$
- $G_1 = [3, 6, 5, 3, 6, 7, 6, 3, 5, 7, 3]$
- $G_2 = [2, 1, 1, 1, 0]$
- $m_1 = (3+6+5+3+6+7+6+3+5+7+3) / 11$ = 54 / 11 = 4.9091
- $m_2 = (2 + 1 + 1 + 1 + 0) / 5 = 1$
- $T_3 = (4.9091 + 1) / 2 = 2.9546$
- $|T_3 T_2| = |2.9546 2,7084| = 0.2462 > \Delta T$, então nova iteração.

- $T_3 = 2.9546$
- $G_1 = [3, 6, 5, 3, 6, 7, 6, 3, 5, 7, 3]$
- $G_2 = [2, 1, 1, 1, 0]$
- $m_1 = (3+6+5+3+6+7+6+3+5+7+3) / 11$ = 54 / 11 = 4.9091
- $m_2 = (2 + 1 + 1 + 1 + 0) / 5 = 1$
- $T_4 = (4.9091 + 1) / 2 = 2.9546$
- $|T_4 T_3| = |2.9546 2.9546| = 0.0 \le \Delta T$, então, fim do algoritmo.

$$T_0 = \min(I) = 0$$
$$\Delta T = 0.001$$

Imagem I

imagem i						
2	3	6	5			
3	1	1	1			
6	7	6	3			
5	7	0	3			

$$T_3 = 2.9546$$

- $G_1 = [3, 6, 5, 3, 6, 7, 6, 3, 5, 7, 3]$
- $G_2 = [2, 1, 1, 1, 0]$
- $m_1 = (3+6+5+3+6+7+6+3+5+7+3) / 11$ = 54 / 11 = 4.9091
- $m_2 = (2+1+1+1+0) / 5 = 1$
- $T_4 = (4.9091 + 1) / 2 = 2.9546$
- $|T_4 T_3| = |2.9546 2.9546| = 0.0 \le \Delta T$, então, fim do algoritmo.

O MÉTODO DE OTSU

- Calcular o histograma normalizado da imagem de entrada:
 - Designar os componentes do histograma como p_i, i = 0, 1, ..., L-1.
- Calcular as somas acumuladas, P₁(k), para k=0, 1, 2, ..., L-1, de acordo com:
 - $P_1(k) = \sum_{i=0}^k p_i$
- Calcular as médias acumuladas m(k), para k=0, 1, 2, ..., L-1, de acordo com:
 - $m(k) = \sum_{i=0}^{k} i p_i$
- Calcular a intensidade média global, m_G , de acordo com:
 - $m_G = \sum_{i=0}^{L-1} i p_i$
- Calcular a variância entre classes, $\sigma_B^2(k)$, para k=0, 1, 2, ..., L-1, de acordo com:

$$- \sigma_B^2 = P_1(m_1 - m_G)^2 + P_2(m_2 - m_G)^2, \text{ reescrita como: } \sigma_B^2(k) = \frac{[m_G P_1(k) - m(k)]^2}{P_1(k)[1 - P_1(k)]}$$

- O limiar de Otsu, k*, é valor de k para o qual $\sigma_B^2(k)$ é máxima.
 - Se ocorrer mais de uma máxima, K* é a média dos valores de k correspondentes
- Obter a medida de separabilidade, η^* , considerando k = k* na equação:

$$-\eta(k)=rac{\sigma_B^2(k)}{\sigma_G^2},$$
 em que: $\sigma_G^2=\sum_{i=0}^{L-1}(i-m_G)^2p_i$

İ	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$
0	1	0.0625			
1	3	0.1875			
2	1	0.0625			
3	4	0.2500			
4	0	0.0000			
5	2	0.1250			
6	3	0.1875			
7	2	0.1250			

$(i-m_G)^2 p_i$

$$P_1(k) = \sum_{i=0}^k p_i$$

i	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$
0	1	0.0625	0.0625		
1	3	0.1875	0.2500		
2	1	0.0625	0.3125		
3	4	0.2500	0.5625		
4	0	0.0000	0.5625		
5	2	0.1250	0.6875		
6	3	0.1875	0.8750		
7	2	0.1250	1.0000		

$(i-m_G)^2 p_i$

$$P_1(k) = \sum_{i=0}^k p_i$$

$$m(k) = \sum_{i=0}^{k} i p_i$$

i	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$
0	1	0.0625	0.0625	0.0	
1	3	0.1875	0.2500	0.1875	
2	1	0.0625	0.3125	0.3125	
3	4	0.2500	0.5625	1.0625	
4	0	0.0000	0.5625	1.0625	
5	2	0.1250	0.6875	1.6875	
6	3	0.1875	0.8750	2.8125	
7	2	0.1250	1.0000	3.6875	

$(i-m_G)^2 p_i$

$$P_1(k) = \sum_{i=0}^k p_i$$

$$m(k) = \sum_{i=0}^{k} i p_i$$

$$m_G = \sum_{i=0}^{L-1} i p_i$$

i	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$
0	1	0.0625	0.0625	0.0	
1	3	0.1875	0.2500	0.1875	
2	1	0.0625	0.3125	0.3125	
3	4	0.2500	0.5625	1.0625	
4	0	0.0000	0.5625	1.0625	
5	2	0.1250	0.6875	1.6875	
6	3	0.1875	0.8750	2.8125	
7	2	0.1250	1.0000	3.6875	

$$(i-m_G)^2p_i$$

$$m_G = 3.6875$$

$$P_1(k) = \sum_{i=0}^k p_i$$

$$m(k) = \sum_{i=0}^{k} i p_i$$

$$m_G = \sum_{i=0}^{L-1} i p_i$$

$$\sigma_B^2(k) = \frac{[m_G P_1(k) - m(k)]^2}{P_1(k)[1 - P_1(k)]}$$

i	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$
0	1	0.0625	0.0625	0.0	0.906510
1	3	0.1875	0.2500	0.1875	2.876302
2	1	0.0625	0.3125	0.3125	3.283026
3	4	0.2500	0.5625	1.0625	4.159288
4	0	0.0000	0.5625	1.0625	4.159288
5	2	0.1250	0.6875	1.6875	3.344389
6	3	0.1875	0.8750	2.8125	1.567522
7	2	0.1250	1.0000	3.6875	

$$(i-m_G)^2 p_i$$

$$m_G = 3.6875$$

$$P_1(k) = \sum_{i=0}^k p_i$$

$$m(k) = \sum_{i=0}^{k} i p_i$$

$$m_G = \sum\nolimits_{i=0}^{L-1} i p_i$$

$$\sigma_B^2(k) = \frac{[m_G P_1(k) - m(k)]^2}{P_1(k)[1 - P_1(k)]}$$

$$k^* = \frac{1}{2}(3+4) = 3.5$$

i	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$
0	1	0.0625	0.0625	0.0	0.906510
1	3	0.1875	0.2500	0.1875	2.876302
2	1	0.0625	0.3125	0.3125	3.283026
3	4	0.2500	0.5625	1.0625	4.159288
4	0	0.0000	0.5625	1.0625	4.159288
5	2	0.1250	0.6875	1.6875	3.344389
6	3	0.1875	0.8750	2.8125	1.567522
7	2	0.1250	1.0000	3.6875	

$$(i-m_G)^2p_i$$

$$m_G = 3.6875$$

$$P_1(k) = \sum_{i=0}^k p_i$$

$$m(k) = \sum_{i=0}^{k} i p_i$$

$$m_G = \sum\nolimits_{i=0}^{L-1} i p_i$$

$$\sigma_B^2(k) = \frac{[m_G P_1(k) - m(k)]^2}{P_1(k)[1 - P_1(k)]}$$

$$k^* = \frac{1}{2}(3+4) = 3.5$$

$$\eta(k) = \frac{\sigma_B^2(k)}{\sigma_G^2},$$

Í	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$
0	1	0.0625	0.0625	0.0	0.906510
1	3	0.1875	0.2500	0.1875	2.876302
2	1	0.0625	0.3125	0.3125	3.283026
3	4	0.2500	0.5625	1.0625	4.159288
4	0	0.0000	0.5625	1.0625	4.159288
5	2	0.1250	0.6875	1.6875	3.344389
6	3	0.1875	0.8750	2.8125	1.567522
7	2	0.1250	1.0000	3.6875	

 $m_G = 3.6875$

 $(i-m_G)^2p_i$

$$P_1(k) = \sum_{i=0}^k p_i$$

$$m(k) = \sum_{i=0}^{k} i p_i$$

$$m_G = \sum_{i=0}^{L-1} i p_i$$

$$\sigma_B^2(k) = \frac{[m_G P_1(k) - m(k)]^2}{P_1(k)[1 - P_1(k)]}$$

$$\mathbf{k}^* = \frac{1}{2}(3+4) = 3.5$$

$$\eta(k) = \frac{\sigma_B^2(k)}{\sigma_G^2}$$
, em que:

$$\sigma_G^2 = \sum_{i=0}^{L-1} (i - m_G)^2 p_i$$

Í	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$
0	1	0.0625	0.0625	0.0	0.906510
1	3	0.1875	0.2500	0.1875	2.876302
2	1	0.0625	0.3125	0.3125	3.283026
3	4	0.2500	0.5625	1.0625	4.159288
4	0	0.0000	0.5625	1.0625	4.159288
5	2	0.1250	0.6875	1.6875	3.344389
6	3	0.1875	0.8750	2.8125	1.567522
7	2	0.1250	1.0000	3.6875	

$$m_G = 3.6875$$

$$\sigma_G^2 = 5.08984$$

$$P_1(k) = \sum_{i=0}^k p_i$$

$$m(k) = \sum_{i=0}^{k} i p_i$$

$$m_G = \sum_{i=0}^{L-1} i p_i$$

$$\sigma_B^2(k) = \frac{[m_G P_1(k) - m(k)]^2}{P_1(k)[1 - P_1(k)]}$$

$$k^* = \frac{1}{2}(3+4) = 3.5$$

$$\eta(k) = \frac{\sigma_B^2(k)}{\sigma_G^2}$$
, em que:

$$\sigma_G^2 = \sum_{i=0}^{L-1} (i - m_G)^2 p_i$$

i	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$
0	1	0.0625	0.0625	0.0	0.906510
1	3	0.1875	0.2500	0.1875	2.876302
2	1	0.0625	0.3125	0.3125	3.283026
3	4	0.2500	0.5625	1.0625	4.159288
4	0	0.0000	0.5625	1.0625	4.159288
5	2	0.1250	0.6875	1.6875	3.344389
6	3	0.1875	0.8750	2.8125	1.567522
7	2	0.1250	1.0000	3.6875	

 $m_G = 3.6875$

$$(i - m_G)^2 p_i$$

$$0.84985$$

$$1.35425$$

$$0.17798$$

$$0.11816$$

$$0.00000$$

$$0.21533$$

$$1.00269$$

$$1.37158$$

$$\sigma_G^2 = 5.08984$$

 $\eta(k^*) = 0.81717$

				\longrightarrow
2	3	6	5	
3	1	1	1	
6	7	6	3	
5	7	0	3	
0	0	0	0	→
0	0	0	0	
0	0	0	0	
0	0	0	0	

Í	h_i	p_i	$\sigma_B^2(k)$
0	1		
1	3		
2	1		
3	4		
4	0		
5	2		
6	3		
7	2		

7								
6								
5								
4								
3								
2								
1								
	0	1	2	3	4	5	6	7

				\rightarrow
2	3	6	5	
3	1	1	1	
6	7	6	3	
5	7	0	3	
<u> </u>				\longrightarrow
0	0	0	0	
0	0	0	0	
0	0	0	0	
0	0	0	0	

i	h_i	p_i	$\sigma_B^2(k)$
0	1	0.0625	
1	3	0.1875	
2	1	0.0625	
3	4	0.2500	
4	0	0.0000	
5	2	0.1250	
6	3	0.1875	
7	2	0.1250	

				\longrightarrow
2	3	6	5	
3	1	1	1	
6	7	6	3	
5	7	0	3	
/				
0	0	0	0	
0	0	0	0	
0	0	0	0	
0	0	0	0	

i	h_i	p_i	$\sigma_B^2(k)$
0	1	0.0625	0.906510
1	3	0.1875	2.876302
2	1	0.0625	3.283026
3	4	0.2500	4.159288
4	0	0.0000	4.159288
5	2	0.1250	3.344389
6	3	0.1875	1.567522
7	2	0.1250	

				\rightarrow				
5	1	3	3		5	1	3	3
6	1	6	0		6	1	6	0
3	1	7	7		3	1	7	7
2	3	6	5	/	2	3	6	5

Í	h_i	p_i	$\sigma_B^2(k)$
0	1	0.0625	0.906510
1	3	0.1875	2.876302
2	1	0.0625	3.283026
3	4	0.2500	4.159288
4	0	0.0000	4.159288
5	2	0.1250	3.344389
6	3	0.1875	1.567522
7	2	0.1250	

Bibliografia

- MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.
 - Disponível para download no site do autor (Exclusivo para uso pessoal)
 - http://dainf.ct.utfpr.edu.br/~hvieir/pub.html
- GONZALEZ, R.C.; WOODS, R.E.; **Processamento Digital de Imagens.** 3ª edição. Editora Pearson, 2009.
- J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.
 - http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial-PDI.pdf

FIM