

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕ′	Г «Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе №1 по курсу «Моделирование»

на тему: «Изучение функций распределения и плостности распределения» Вариант N 11

Студент <u>ИУ7-71Б</u> (Группа)	(Подпись, дата)	Постнов С. А. (Фамилия И. О.)
Преподаватель	(Подпись, дата)	Рудаков И. В. (Фамилия И. О.)

СОДЕРЖАНИЕ

У	Условие лабораторной работы		
1	Teo	ретическая часть	4
	1.1	Равномерное распределение	4
	1.2	Нормальное распределение	4
2	Пра	актическая часть	5

Условие лабораторной работы

Целью лабораторной работы является изучение и построение графиков функции распределения и функции плостности распределения для следующих распределений:

- равномерное распределение;
- нормальное распределение.

1 Теоретическая часть

1.1 Равномерное распределение

Случайная величина X имеет равномерное распределение на отрезке [a;b], если её функция плотности распределения f(x) имеет вид:

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a;b] \\ 0, & \text{иначе.} \end{cases}$$
 (1.1)

Функция распределения F(x) равна:

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x > b. \end{cases}$$
 (1.2)

Обозначается $X \sim R[a;b]$.

1.2 Нормальное распределение

Случайная величина X имеет нормальное распределение с параметрами μ и σ , если ее функция плотности распределения f(x) имеет вид:

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}, \sigma > 0.$$
 (1.3)

При этом функция распределения F(x) равна:

$$F(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt.$$
 (1.4)

Обозначается $X \sim N(\mu, \sigma^2)$.

2 Практическая часть

На рисунках 2.1 - 2.2 представлены графики функций распределения и плотности распределения для равномерного распределения.

Рисунок 2.1 – Равномерное распределение при a=-5 и b=5

Рисунок 2.2 – Равномерное распределение при a=-3.5 и b=0

На рисунках 2.3 - 2.4 представлены графики функций распределения и плотности распределения для нормального распределения.

Рисунок 2.3 – Нормальное распределение при $\mu=0$ и $\sigma=1$

Рисунок 2.4 – Нормальное распределение при $\mu=0$ и $\sigma=2.5$