myCorpus

Exploring a collection of JP>EN translations by a single translator

Client

Technical translator

Japanese>English

~500 research articles

from 2013-2021

How can NLP improve my translation workflow? How can I apply NLP tools best to add value to language services for Japanese professionals?

Motivation

Use case #1: Translator matcher

User: Contracting agency

Compare source text* with past translations at agency

Prioritize translators most experienced in topic(s)

Use case #2: Genre matcher

User: Translators

Compare source text* with biomedical corpus

Reference terms/language of papers on same topic(s)

Motivation, Ulterior

Machine translation output acceptable:

To check 'gist' of text To inspect rare words NOT PUBLISHABLE

Significant overlap with NLP

Tokenization

Language model training

Neural translation is state-of-the-art

Preprocessing, tokenization, NER

Deep learning ('zero-shot learning')

Corpus

English translations from 2020-2021 (n=110) 90% research articles, 10% abstracts Consistent format (IMRAD), voice Diverse subdomains in medicine, healthcare

Apoptotic effects of a thioether analog of vitamin K3 in a human leukemia cell line Cancer rehabilitation care as provided by designated cancer care hospitals in Japan Effectiveness of employment support program in cooperation with psychiatric day care and Hello Work

Tasks

Clustering: K-means

Topic modeling: SVD NMF LDA

Corpus

English translations from 2020–2021 (n=110) 90% research articles, 10% abstracts Consistent format (IMRAD), voice Diverse subdomains in medicine, healthcare

Apoptotic effects of a thioether analog of vitamin K3 in a human leukemia cell line Cancer rehabilitation care as provided by designated cancer care hospitals in Japan Effectiveness of employment support program in cooperation with psychiatric day care and Hello Work

Tasks

Clustering: K-means

Topic modeling: SVD NMF LDA

PREPROCESSING

num_topics = 16

K-MEANS CLUSTERING

Hyperparameter Decisions

Don't want words unique to single doc min df = 2

Don't want really common words max_df = 0.5

Reward rare words (likely domain-specific)

TfidfVectorizer > CountVectorizer

NMF Tuning

CountVectorizer		TfidfVectorizer min_df=2, max_df=0.5, max_features=1000	
Topic 1	adult, older, physical, environment, factor, population, health, elderly, live, association	Topic 1	older, health, community , adult, literacy, dwelling, cognitive, elderly, frailty, dementia
Topic 2	healthcare, professional, older, study, community, review, experience, approach, relationship, participant	Topic 2	surgery, case, procedure, cancer, operation, laparoscopic, surgical, complication, gastric, underwent
Topic 3	screen, health, rate, cancer, population, score, higher, factor, knowledge, subject	Topic 3	covid, infection, pandemic, emergency, pulmonary, chest, suspect, nurse, sars, cov
Topic 4	cancer, provide, professional, survey, staff, program, set, regard, provider, physical	Topic 4	cell, culture , cartilage, tissue, expression, protein, organ, induce , differentiation, apoptosis

Community Health

 fineresection week cell colon lesion

Cancer

Neuroscience

COVID-19

Surgery

thickness
stresssubjective
significantly
MUSCLE
chest function ultrasound.
sarcopenia
baseline indicator
skeletal
frailty lowersubject

Physiology

SocWelfare

StemCell

num_topics=16

CommHealth Rehabilitation

Surgery

COVID-19 NursingEd

StemCell

Physiology

Cancer

Neuroscience

SocWelfare

ObGyn

Endovascular

Stroke

ClinTrial

PubPolicy

Genomics

num_topics=16

Rehabilitation CommHealth

Surgery

COVID-19 NursingEd

StemCell

Physiology

Cancer

Neuroscience

SocWelfare

ObGyn

Endovascular

Stroke

ClinTrial

PubPolicy

Genomics

num_topics=8

Nursing

Surgery

COVID-19

MolBioTherap

FuncHealth

Cancer

Neuroscience

Rehabilitation

num_topics=16

CommHealth Rehabilitation

ObGyn

Surgery

COVID-19 NursingEd

StemCell Endovascular

Physiology Stroke

Cancer ClinTrial

Neuroscience PubPolicy

SocWelfare Genomics

num_topics=16

CommHealth Rehabilitation

Surgery

COVID-19

StemCell

Physiology

Cancer

Neuroscience

SocWelfare

ObGyn

NursingEd

Endovascular

Stroke

ClinTrial

PubPolicy

Genomics

num_topics=16

CommHealth Rehabilitation

ObGyn

Stroke

Surgery

COVID-19 NursingEd

StemCell Endovascular

Physiology

Cancer ClinTrial

Neuroscience PubPolicy

SocWelfare Genomics

TOPIC-CLUSTER LOADINGS

```
Top Three Topics in Cluster C_6 (mean of docs) ('10.0bGyn', 0.3830142787789891) ('02.Surgery', 0.07472117118840474) ('13.Stroke', 0.02816125709660942)
```

Top Three Docs in Cluster (i.e. nearest to centroid):
Doc 38: Cluster 6
Successful IVF pregnancy and delivery in an infertile patient with true hermaphroditism
Doc 104: Cluster 6
An exploration of factors guiding expectant mothers' decisions to keep or give up their child for icted pregnancies:
Doc 56: Cluster 6
Midwife education programs to foster maternal identity in women who become pregnant with twins via

ctive technology

TOPIC-CLUSTER LOADINGS

```
Top Three Topics in Cluster C_3 (mean of docs) ('13.Stroke', 0.774323278068024) ('10.0bGyn', 0.014845037241769018) ('12.Endovascular', 0.008097451545758697)
```

Top Three Docs in Cluster (i.e. nearest to centroid):
Doc 92: Cluster 3
Development and feasibility of an intervention model for family surrogate decision-makers of acute stroke
Doc 14: Cluster 3
Everyday experiences of wives of elderly stroke victims after home discharge
Doc 72: Cluster 10
Protection Stroke Code for COVID-19 based on Task Calc. Stroke: Ensuring the continued provision of stroke

TOPIC-CLUSTER LOADINGS

```
Top Three Topics in Cluster C_10 (mean of docs) ('03.COVID', 0.3731914206943709) ('13.Stroke', 0.060268688207677966) ('02.Surgery', 0.02998768228506464)
```

Top Three Docs in Cluster (i.e. nearest to centroid):

Doc 74: Cluster 10

Extracorporeal CPR should not be performed on confirmed or suspected COVID-19 patients

Doc 101: Cluster 10

Protection from tuberculosis for infants in the COVID-19 era.

Doc 9: Cluster 10

A case of bilateral pulmonary embolism occurring under self-isolation during the COVID-19 pandemic

Next steps:

- O Same pipeline for Japanese docs
 - O Do same topics emerge?
 - O Do same top words?
- Post-MT topic modeling for paper matching
 - O Syntax not important in BOW models
 - O Requires preprocessing of large corpora
- O Document similarity in neural translation
 - O Topic weights as word features?

THANKS!

Any questions?

Github: streerm mark.streer@gmail.com

appendix Bring the attention of your audience over

a key concept using icons or illustrations

Top Words by Topic (n=16)

Top Words by Topic (n=16 v. n=8) p.1

Top Words by Topic (n=16 v. n=8) p.2

Motivation

Languages express the same ideas using different words and syntax.

EN: I am hungry. PRON-V(to be)-ADJ

DE: Ich habe Hunger. PRON-V(to have)-N

JP: O-naka ga suita. POL-N-PART-V(past)

お腹が空いた

(lit. (my) stomach is empty)

