Example 2.10 (The spectral decomposition of a matrix) Consider the symmetric matrix

$$\mathbf{A} = \begin{bmatrix} 13 & -4 & 2 \\ -4 & 13 & -2 \\ 2 & -2 & 10 \end{bmatrix}$$

The eigenvalues obtained from the characteristic equation $|\mathbf{A} - \lambda \mathbf{I}| = 0$ are $\lambda_1 = 9$, $\lambda_2 = 9$, and $\lambda_3 = 18$ (Definition 2A.30). The corresponding eigenvectors \mathbf{e}_1 , \mathbf{e}_2 , and \mathbf{e}_3 are the (normalized) solutions of the equations $\mathbf{A}\mathbf{e}_i = \lambda_i \mathbf{e}_i$ for i = 1, 2, 3. Thus, $\mathbf{A}\mathbf{e}_1 = \lambda \mathbf{e}_1$ gives

$$\begin{bmatrix} 13 & -4 & 2 \\ -4 & 13 & -2 \\ 2 & -2 & 10 \end{bmatrix} \begin{bmatrix} e_{11} \\ e_{21} \\ e_{31} \end{bmatrix} = 9 \begin{bmatrix} e_{11} \\ e_{21} \\ e_{31} \end{bmatrix}$$

or

$$13e_{11} - 4e_{21} + 2e_{31} = 9e_{11}$$

$$-4e_{11} + 13e_{21} - 2e_{31} = 9e_{21}$$

$$2e_{11} - 2e_{21} + 10e_{31} = 9e_{31}$$

Moving the terms on the right of the equals sign to the left yields three homogeneous equations in three unknowns, but two of the equations are redundant. Selecting one of the equations and arbitrarily setting $e_{11}=1$ and $e_{21}=1$, we find that $e_{31}=0$. Consequently, the normalized eigenvector is $\mathbf{e}_1'=[1/\sqrt{1^2+1^2+0^2},1/\sqrt{1^2+1^2+0^2},0/\sqrt{1^2+1^2+0^2}]=[1/\sqrt{2},1/\sqrt{2},0]$, since the sum of the squares of its elements is unity. You may verify that $\mathbf{e}_2'=[1/\sqrt{18},-1/\sqrt{18},-4/\sqrt{18}]$ is also an eigenvector for $9=\lambda_2$, and $\mathbf{e}_3'=[2/3,-2/3,1/3]$ is the normalized eigenvector corresponding to the eigenvalue $\lambda_3=18$. Moreover, $\mathbf{e}_i'\mathbf{e}_j=0$ for $i\neq j$.

The spectral decomposition of A is then

$$\mathbf{A} = \lambda_1 \mathbf{e}_1 \mathbf{e}_1' + \lambda_2 \mathbf{e}_2 \mathbf{e}_2' + \lambda_3 \mathbf{e}_3 \mathbf{e}_3'$$

or

$$\begin{bmatrix} 13 & -4 & 2 \\ -4 & 13 & -2 \\ 2 & -2 & 10 \end{bmatrix} = 9 \begin{vmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{vmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$+9\begin{bmatrix} \frac{1}{\sqrt{18}} \\ \frac{-1}{\sqrt{18}} \\ \frac{-4}{\sqrt{18}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{18}} & \frac{-1}{\sqrt{18}} & \frac{-4}{\sqrt{18}} \end{bmatrix} + 18\begin{bmatrix} \frac{2}{3} \\ -\frac{2}{3} \\ \frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

$$= 9 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} + 9 \begin{vmatrix} \frac{1}{18} & -\frac{1}{18} & -\frac{4}{18} \\ -\frac{1}{18} & \frac{1}{18} & \frac{4}{18} \\ -\frac{4}{18} & \frac{4}{18} & \frac{16}{18} \end{vmatrix}$$

as you may readily verify.