

Probability

- The most common way that people think about probability is in term of *outcomes*, or *set of outcomes*, of an experiment
- Suppose we have an experiment that has N possible outcomes and we conduct the experiment n_T times
- If the outcome w_i occurs n_i times,
 - \square we say that the *relative frequency of occurrence* of the outcome w_i is

$$\frac{n_i}{n_T}$$

 \square we can then define the *probability of occurrence* of the outcome w_i as

$$P(w_i) = \lim_{n_T \to \infty} \frac{n_i}{n_T}$$

© Mahmoud R. El-Sakka

60

CS 4481/9628: Image Compression

Topic 03: Codeword Encoding--Huffman Encoding

Probability

- In practice, we do not have the ability to conduct an experiment an infinite number of times and hence the probability of occurrence can not be calculated
- Instead of calculating the probability of occurrence as defined before, we often use the *relative frequency of occurrence* as *an approximation or an estimate* to the *probability of occurrence*

© Mahmoud R. El-Sakka

Topic 03: Codeword EncodingHuffman Encoding						
Probability						
Example 1:						
■ Suppose that we turn on a television 1,000,000 times						
□ 200,000 times the television was turned on during						
a commercial and						
□ 800,000 times the television was turned on during						
a noncommercial						
Our experiment here is turning on a television set						
■ The outcomes are commercial or noncommercial						
■ We could say that the <i>relative frequency of occurrence</i> , or						
the estimate of the probability of occurrence, of						
\Box turning on a television set in the middle of a commercial is 0.2						
□ turning on a television set in a noncommercial is 0.8						
© Mahmoud R. El-Sakka 62 CS 4481/9628: Image Compression						

Topic 03: Codeword EncodingHuffman Encoding Probability						
Example 2:						
Suppose that we turn on a television 10 times						
□ 2 times the television was turned on during a commercial and						
□ 8 times the television was turned on during a noncommercial						
■ We could say that the <i>relative frequency of occurrence</i> , or						
the estimate of the probability of occurrence, of						
□ turning on a television set in the middle of a commercial is 0.2						
□ turning on a television set in a noncommercial is 0.8						
■ What is the difference between the two examples?						
Mahmoud R. El-Sakka 63 CS 4481/9628: Image Compression						

Probability

- Each example gives an *estimate of the probability of occurrence*
- The *relatively larger* the number of experiment repetition, the better the probability of occurrence approximation, or estimation, is

© Mahmoud R. El-Sakka

64

CS 4481/9628: Image Compression

Topic 03: Codeword Encoding--Huffman Encoding

Measuring Information

- Suppose that we have an event A
- If P_A is the probability that the event A will occur, then the *self-information* associated with A is given by

$$i(A) = log_2(1/P_A) = -log_2(P_A)$$
 bits

- If the probability of an event is *low*, the amount of self-information associated with it is *high*
- If the probability of an event is *high*, the amount of self-information associated with it is *low*

© Mahmoud R. El-Sakka

65

Measuring Information

- Consider a process which produces either A or B output (only one of them occurs at a time)
 - \Box The probability of A to be produced = P_A
 - \Box The probability of B to be produced = P_B
- The amount of information you will get
 - \square When seeing A produced = $-\log_2(P_A)$ bits
 - \square When seeing B produced = $-\log_2(P_B)$ bits
- The average information you will get per event is: $-P_A \times \log_2(P_A) - P_B \times \log_2(P_B)$ bits per output

Mahmoud P El Sakka

61

CS 4481/9628: Image Compression

Topic 03: Codeword Encoding--Huffman Encoding

Measuring Information

Example 1: If $P_A = 1/2$ and $P_B = 1/2$

- The amount of information you will get
 - □ When seeing A produced = $-\log_2(1/2) = 1$ bits
 - □ When seeing B produced = $-\log_2(1/2) = 1$ bits
- On average, you will get

$$1/2 \times 1 + 1/2 \times 1 = 1$$
 bits per output

© Mahmoud R. El-Sakka

.7

Measuring Information

Example 2: If $P_A = 1/8$ and $P_B = 7/8$

- The amount of information you will get
 - \square When seeing A produced = $-\log_2(1/8) = 3$ bits
 - \square When seeing B produced = $-\log_2(7/8) = 0.19$ bits
- On average, you will get

$$1/8 \times 3 + 7/8 \times 0.19 = 0.54$$
 bits per output

© Mahmoud R. El-Sakka

68

CS 4481/9628: Image Compression

Topic 03: Codeword Encoding--Huffman Encoding

Measuring Information

Example 3:

What will happen if P_A is very small and P_B is very large?

© Mahmoud R. El-Sakka

69

© Mahmoud R. El-Sakka

70

 $-P_A \times log_2(P_A) - P_B \times log_2(P_B) - P_C \times log_2(P_C) - P_D \times log_2(P_D)$ bits per output

CS 4481/9628: Image Compression

Topic 03: Codeword Encoding--Huffman Encoding

Measuring Information

Example 1: If $P_A = 1/4$, $P_B = 1/4$, $P_C = 1/4$, and $P_D = 1/4$

■ The amount of information you will get

■ The average information you will get per event is:

- \square When seeing A produced = $-\log_2(1/4) = 2$ bits
- \square When seeing B produced = $-\log_2(1/4) = 2$ bits
- □ When seeing C produced = $-\log_2(1/4) = 2$ bits
- \square When seeing D produced = $-\log_2(1/4) = 2$ bits
- On average, you will get

$$1/4 \times 2 + 1/4 \times 2 + 1/4 \times 2 + 1/4 \times 2 = 2$$
 bits per output

© Mahmoud R. El-Sakka

Measuring Information

Example 1: If $P_A = 1/8$, $P_B = 1/8$, $P_C = 1/4$, and $P_D = 1/2$

- The amount of information you will get
 - □ When seeing A produced = $-\log_2(1/8) = 3$ bits
 - □ When seeing B produced = $-\log_2(1/8) = 3$ bits
 - \square When seeing C produced = $-\log_2(1/4) = 2$ bits
 - □ When seeing D produced = $-\log_2(1/2) = 1$ bits
- On average, you will get

$$1/8 \times 3 + 1/8 \times 3 + 1/4 \times 2 + 1/2 \times 1 = 1.75$$
 bits per output

© Mahmoud R. El-Sakka

72

CS 4481/9628: Image Compression

Topic 03: Codeword Encoding--Huffman Encoding

Measuring Information

■ The quantity

$$-\sum_{i=1}^{L} P_i \times \log_2(P_i)$$

- is called the *entropy*, or the *uncertainty*, associated with the experiment, or the event
- *Entropy is* the amount of information, <u>on average</u>, that a certain experiment, or event, can deliver
- It is also the *theoretical lower bound* for the *required bit rate for codeword encoding*

© Mahmoud R. El-Sakka

Measuring Information

- It is proved (see the information theory if you wish) that the maximum entropy (uncertainty) occurs when all the outputs has the same equal probability
- Applying this principle to Huffman encoder, you can see that the maximum bit rate to encode data occurs when all possible data elements have the same probability (equiprobable outputs)

© Mahmoud R. El-Sakka

7/

CS 4481/9628: Image Compression

Topic 03: Codeword Encoding--Huffman Encoding

Measuring Information

- When probability values are equal 2^{-n} , where n is a positive integer number, Huffman encoder produces an optimal codeword assignment, i.e, the average bits per symbol = entropy
- If probability values are not equal 2⁻ⁿ and each output is encoded separately, it is not possible to design a code with average bit rate equals the entropy
- In this case, Huffman will generate a near optimal codeword assignment (i.e., close to the entropy)
- In the first Huffman example (slide # 32), the average number of bits per value was 1.813 bits, while the entropy was 1.7516 bits
- In the second and third Huffman examples (slides #55 and #59), the average number of bits per value is equal to the entropy

© Mahmoud R. El-Sakka

Another Huffman Example

- The difference between the average code length and the entropy is called *code redundancy*
- In this example, the *code redundancy* is 0.715 bits/symbol, i.e., 213% of the entropy!!!
- Is there a way to improve this situation?

© Mahmoud R. El-Sakka

7

String Versus Individual Symbols Encoding

- Encoding each symbol individually needs, at least, 1 bit per symbol
- In the previous Huffman example, consider generating all strings of two symbols, i.e., AA, AB, AC, BA, BB, BC, CA, CB, and CC
- The associated probability for these symbols are: $P_A P_A = 0.9025$, $P_A P_B = 0.0190$, $P_A P_C = 0.0285$, $P_B P_A = 0.0190$, $P_B P_B = 0.0004$, $P_B P_C = 0.0006$, $P_C P_A = 0.0285$, $P_C P_B = 0.0006$, $P_C P_C = 0.0009$
- Using Huffman scheme, the following codewords 0, 111, 100, 1101, 110011, 110001, 101, 110010, 110000, may be assigned to AA, AB, AC, BA, BB, BC, CA, CB, and CC, respectively
- In this case, the average length for each string of two symbols is 1.222 bits/symbol
- Hence, each symbol needs 0.611 bits/symbol, in average

© Mahmoud R. El-Sakka

78

CS 4481/9628: Image Compression

Topic 03: Codeword Encoding--Huffman Encoding

String Versus Individual Symbols Encoding

- As more symbols are combined, codewords become longer, and the average bits/symbol gets better
- In brief, dealing with strings (combined symbols), rather than individual symbols, can, in principle, yield better bits/symbol results
- How about complexity?

© Mahmoud R. El-Sakka

Topic 03: Codeword EncodingHuffman Encoding String Versus Individual Symbols Encoding
 When combining more symbols together, the number of <i>all possible combinations</i> dramatically increases: □ Each individual symbol by itself → 3 possible strings □ All strings of 2 symbols together → 9 possible strings □ All strings of 3 symbols together → 27 possible strings □ All strings of 4 symbols together → 81 possible strings □ All strings of 5 symbols together → 243 possible strings □ All strings of 6 symbols together → 729 possible strings □ All strings of 7 symbols together → 2187 possible strings □ All strings of 8 symbols together → 6561 possible strings
© Mahmoud R. El-Sakka 80 CS 4481/9628: Image Compression

String Versus	•	word EncodingHuffman Encoding mbols Encoding				
 Even though combining more symbols yield smaller average bits/symbol, they may not be practical: Storing a large code requires a huge amount of memory Decoding a Huffman code of this large size would be a highly inefficient and time-consuming procedure 						
 To overcome this problem, we need a way of assigning codewords to particular strings without having to generate codes for <i>all</i> strings of similar length The <i>arithmetic</i> encoding scheme fulfills this requirement 						
© Mahmoud R. El-Sakka	81	CS 4481/9628: Image Compression				

Huffman Encoding

- So far, we assumed that the probability of each symbol is provided
- What if we do not have these probabilities?
 - ☐ For simplicity, can we assume that all symbols will have same probability?

© Mahmoud R. El-Sakka

82

CS 4481/9628: Image Compression

Topic 03: Codeword Encoding--Huffman Encoding

Huffman Encoding

- Assuming that all symbols will have same probability will not lead us to any compression
- Using a prior knowledge about probability might achieve a small amount of compression, based on how good the prior knowledge is
- One solution to this issue is to make Huffman a two-pass procedure:
 - ☐ The first pass to collect statistics
 - ☐ The second pass to encode
- The other solution is to utilize an adaptive procedure to construct Huffman in one-pass

© Mahmoud R. El-Sakka

83