

Earth Observation Mission CFI Software

EO_ORBIT SOFTWARE USER MANUAL

Code: EO-MA-DMS-GS-0004

Issue: 4.17

Date: 10/05/2019

	Name	Function	Signature
Prepared by:	Mariano Sánchez-Nogales	Project Engineer	
	Sara Cuenda Cuenda	Project Engineer	
	José Antonio González Abeytua	Project Manager	
	Juan Jose Borrego Bote	Project Engineer	
Checked by:	José Antonio González Abeytua	Project Manager	
Approved by:	José Antonio González Abeytua	Project Manager	

DEIMOS Space S.L.U. Ronda de Poniente, 19 Edificio Fiteni VI, Portal 2, 2ª Planta 28760 Tres Cantos (Madrid), SPAIN Tel.: +34 91 806 34 50

Fax: +34 91 806 34 51 E-mail: deimos@deimos-space.com

© DEIMOS Space S.L.U

All Rights Reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of DEIMOS Space S.L. or ESA.

Date: 10/05/2019 Issue: 4.17

2

Page:

DOCUMENT INFORMATION

Contract Data		Classification	
		Internal	
Contract Number:	4000102614/1O/NL/FF/ef	Public	
		Industry	Х
Contract Issuer:	ESA / ESTEC	Confidential	

External Distribution		
Name	Organisation	Copies

Electronic handling		
Word Processor:	LibreOffice 5.2.3.3	
Archive Code:	P/SUM/DMS/01/026-011	
Electronic file name:	eo-ma-dms-gs-004-21	

Date: 10/05/2019 Issue: 4.17

Page: 3

DOCUMENT STATUS LOG

Issue	Change Description	Date	Approval
1.0	New document	08/11/01	
1.1	 New xo_orbit_to_time, xo_time_to_orbit and xo_free_osf_records functions. xo_cart_extra removal 	23/05/02	
1.2 Draft	Cosmetic changesUpdated error handling	19/07/02	
2.0	Maintenance release.	29/11/02	
2.1	Maintenance release.	13/05/03	
2.2	 New options for xo_propag_init_file and xo_interpol_init_file functions. Maintenance release. 	30/09/03	
2.2.2	 Option to use a simplified algorithm to initialise using xo_propag_init_def Absolute orbit and time since ANX calculated within xo_propag_extra and xo_interpol_extra functions. Nodal period calculated by xo_orbit_info_from_<source/> functions Use of enumerations to size extra results arrays 	26/04/04	
3.0	 New initialisation strategy for orbit calculations, propagation and interpolation. New interfaces 	21/07/04	
3.1	Maintenance release	13/10/04	
3.2	Maintenance release	15/11/04	
3.3	Maintenance release New features: Changes for dealing with the new library explorer_data_handling Identifier accessors. Support for ENVISAT ASCII files removed	11/07/05	
3.4	 Maintenance release New features: Orbit file generation functions moved to this 	18/11/05	

Date: 10/05/2019 Issue: 4.17 Page: 4

4

	library		
	Maintenance release		
	New features:		
3.5	time-orbit conversion executable	26/05/06	
	Support for SWARM and EARTHCARE		
	Maintenance release		
	New features:		
3.6	- xo gen oef	24/11/06	
	– xo_check_osf and xo_check_oef		
	Maintenance release		
	New features:		
3.7	Function expcfi_check_libs	13/07/06	
	Library version for MAC OS X on Intel (32		
	and 64-bits)		
	Maintenance release		
3.7.2	New features:	31/07/08	
0.7.2	TLE data for orbit operations and propagation	01/01/00	
	New executable: gen_oef		
	Maintenance release		
4.0	New features:	19/01/09	
	Numerical propagator		
	New interfaces for propagation/interpolation		
	Maintenance release		
4.1	New features:	07/05/10	
	Time correlation compatibility check between time_id and orbit file data		
	Maintenance release		
4.2	New features:	31/01/2011	
	- Support for curved MLST in Orbit Scenario files		
	Maintenance release		
4.3	New features:	06/02/12	
	 New initialization function for the OrbitID: xo_orbit_id_init 		
4.4	Maintenance release		
	New features:		
	- Support for GEO orbits (including new functions xo_orbit_init_geo,		

Date: 10/05/2019 Issue: 4.17

Page: 5

		xo orbit (get/set) geo orbit info).		
		- xo_position_on_orbit_to_time		
		Maintenance release		
		New features:		
4.5		- New function xo_orbit_data_filter		
		- Acceleration vector is computed for TLE and numeric propagators		
		Maintenance release		
	•	New features:		
4.6		- SDP4 TLE propagator		
4.0		- Executable to generate TLE files		
		 Fitting method to compute TLE in xo_osv_to_tle function. 		
	•	Maintenance release.		
	•	New features:		
		 Spacecraft Midnight computed by xo_orbit_info. 		
4.7		 New function xo_orbit_id_change, xo_orbit_info_configure 	28/03/14	
		 Support for SENTINEL-5P, Metop-SG, and Jason-CS satellites. 		
1.0				
4.8	•	Maintenance release.	29/10/2014	
		Maintenance release.		
4.9	•	New features:	23/04/2015	
		 Support for Orbit Ephemeris Message files 		
4.40				
4.10	•	Maintenance release	29/10/2015	
4.11	•	Maintenance release	15/04/2016	

Issue:

10/05/2019 4.17

Page: 6

4.12	 Maintenance release New features: Function xo_osv_check 	03/11/2016
4.13	Maintenance release	05/04/2017
4.14	Maintenance release	16/11/2017
4.15	Maintenance release	20/04/2018
4.16	 Maintenance release New features: TLE support for Sentinel-5P, Sentinel-3B, Aeolus 	09/11/2018
4.17	Maintenance release	10/05/2019

Date: 10/05/2019 Issue: 4.17

7

Page:

TABLE OF CONTENTS

DOCUMENT INFORMATION	2
DOCUMENT STATUS LOG	3
TABLE OF CONTENTS	7
LIST OF TABLES	21
LIST OF FIGURES	24
1 SCOPE	25
2 ACRONYMS, NOMENCLATURE AND TERMINOLOGY	26
2.1 Acronyms	26
2.2 Nomenclature	26
2.3 Note on Terminology	27
3 APPLICABLE AND REFERENCE DOCUMENTS	28
3.1 Applicable Documents	28
3.2 Reference Documents	
4 INTRODUCTION	29
4.1 Functions Overview	29
4.1.1 Orbit Initialisation	29
4.1.2 State Vector Computation (Propagation/Interpolation)	31
4.1.3 Ancillary Results Computation	32
4.1.4 Time/Orbit Transformation	32
4.1.5 Orbit Information Parameters	32
4.1.6 File Generation.	32
4.1.7 Clean-up Memory	33
4.1.8 Check Orbit files	33
4.2 State Vector Computation Calling Sequence (Propagation/Interpolation)	34

Code:	EO-MA-DMS-GS-0004
Date:	10/05/2019
Issue:	4.17

Page:

8

4.3 Time/Orbit Transformation and Orbit Information Parameters Calling Sequenc	e34
4.4 File Generation Calling Sequence	35
5 LIBRARY INSTALLATION	37
6 LIBRARY USAGE	38
6.1 Usage hints	40
6.2 General enumerations	41
6.3 Data Structures	45
7 CFI FUNCTIONS DESCRIPTION	51
7.1 xo_orbit_init_def	52
7.1.1 Overview	52
7.1.2 Calling interface	53
7.1.3 Input parameters	54
7.1.4 Output parameters	
7.1.5 Warnings and errors	56
7.2 xo_orbit_init_def_2	57
7.2.1 Overview	57
7.2.2 Calling interface	58
7.2.3 Input parameters	59
7.2.4 Output parameters	59
7.2.5 Warnings and errors	60
7.3 xo_orbit_cart_init	61
7.3.1 Overview	
7.3.2 Calling interface	61
7.3.3 Input parameters	62
7.3.4 Output parameters	62
7.3.5 Warnings and errors	63
7.4 xo_orbit_cart_init_precise	64
7.4.1 Overview	64
7.4.2 Calling interface	64

Code:	EO-MA-DMS-GS-0004
Date:	10/05/2019
Issue:	4.17
Page:	9

7.4.3	Input parameters	65
7.4.4	Output parameters	66
7.4.5	Warnings and errors	67
7.5 xo_	orbit_init_file	68
7.5.1	Overview	68
7.5	.1.1 Recommendations on Orbit Files Usage	69
7.5.2	Calling interface	71
7.5.3	Input parameters	73
7.5.4	Output parameters	75
7.5.5	Warnings and errors.	77
7.6 xo	orbit init file precise	79
7.6.1	Overview	79
7.6.2	Calling interface	81
	Input parameters	
7.6.4	Output parameters	83
7.6.5	Warnings and errors	84
7.7 xo_	orbit_id_init	85
7.7.1	Overview	85
7.7.2	Calling interface	86
7.7.3	Input parameters	88
7.7.4	Output parameters	90
7.7.5	Warnings and errors	91
7.8 xo_	_orbit_init_geo	94
7.8.1	Overview	94
7.8.2	Calling interface	94
7.8.3	Input parameters	95
7.8.4	Output parameters	95
7.8.5	Warnings and errors	96
7.9 xo_	orbit_close	97
	Overview	
7.9.2	Calling interface	97
7.9.3	Input parameters	97

Code:	EO-MA-DMS-GS-0004
Date:	10/05/2019
Issue:	4.17
Page:	10

7.9.4	Output parameters	97
7.9.5	Warnings and errors	98
7.10 xo	o_orbit_get_osv	99
7.10.1	Overview	99
7.10.2	Calling interface	99
7.10.3	Input parameters	99
7.10.4	Output parameters	99
7.10.5	Warnings and errors	100
7.11 xo	o_orbit_set_osv	101
7.11.1	Overview	101
7.11.2	Calling interface	101
7.11.3	Input parameters	101
7.11.4	Output parameters	101
7.11.5	Warnings and errors	102
7.12 xo	o_orbit_get_anx	103
7.12.1	Overview	103
7.12.2	Calling interface	103
7.12.3	Input parameters	103
7.12.4	Output parameters	104
7.12.5	Warnings and errors	104
7.13 xo	o_orbit_set_anx	105
7.13.1	Overview	105
7.13.2	Calling interface	105
7.13.3	Input parameters	105
7.13.4	Output parameters	106
7.13.5	Warnings and errors	106
7.14 xo	o_orbit_get_osf_rec	107
7.14.1	Overview	107
7.14.2	Calling interface	107
7.14.3	Input parameters	107
7.14.4	Output parameters	107
7.14.5	Warnings and errors	108

Code:	EO-MA-DMS-GS-0004
Date:	10/05/2019
Issue:	4.17
Page:	11

7.15 xo	_orbit_set_osf_rec	109
7.15.1	Overview	109
7.15.2	Calling interface	109
7.15.3	Input parameters	109
7.15.4	Output parameters	109
7.15.5	Warnings and errors	110
7.16 xo	_orbit_get_val_time	111
7.16.1	Overview	111
7.16.2	Calling interface	111
7.16.3	Input parameters	111
7.16.4	Output parameters	111
7.16.5	Warnings and errors	112
7.17 xo	orbit_set_val_time	113
7.17.1	Overview	113
7.17.2	Calling interface	113
7.17.3	Input parameters	113
7.17.4	Output parameters	113
7.17.5	Warnings and errors	114
7.18 xo	_orbit_get_precise_propag_config	115
7.18.1	Overview	115
7.18.2	Calling interface	115
7.18.3	Input parameters	115
7.18.4	Output parameters	115
7.18.5	Warnings and errors	116
7.19 xo	_orbit_set_precise_propag_config	117
7.19.1	Overview	117
7.19.2	Calling interface	117
7.19.3	Input parameters	117
7.19.4	Output parameters	117
7.19.5	Warnings and errors	118
7.20 xo	orbit_get_time_id	119
	Overview	

Code:	EO-MA-DMS-GS-0004
Date:	10/05/2019
Issue:	4.17
Page:	12

7.20.2	Calling interface	119
7.20.3	Input parameters	119
7.20.4	Output parameters	119
7.20.5	Warnings and errors	119
7.21 xo_	orbit_get_model_id	121
7.21.1	Overview	121
7.21.2	Calling interface	121
7.21.3	Input parameters	121
7.21.4	Output parameters	121
7.21.5	Warnings and errors	121
7.22 xo_	orbit_get_osv_compute_validity	123
7.22.1	Overview	123
7.22.2	Calling interface	123
7.22.3	Input parameters	123
7.22.4	Output parameters	123
7.22.5	Warnings and errors	124
7.23 xo_	orbit_get_propag_mode	125
7.23.1	Overview	125
7.23.2	Calling interface	125
7.23.3	Input parameters	125
	input parameters	
7.23.4	Output parameters	
		125
7.23.5	Output parameters	125
7.23.5 7.24 xo_	Output parameters Warnings and errors	125 126
7.23.5 7.24 xo 7.24.1	Output parameters Warnings and errors orbit_get_interpol_mode	125126127
7.23.5 7.24 xo 7.24.1 7.24.2	Output parameters Warnings and errors orbit_get_interpol_mode Overview	125126127
7.23.5 7.24 xo_ 7.24.1 7.24.2 7.24.3	Output parameters Warnings and errors orbit_get_interpol_mode Overview Calling interface	125126127127
7.23.5 7.24 xo_ 7.24.1 7.24.2 7.24.3 7.24.4	Output parameters Warnings and errors orbit_get_interpol_mode Overview Calling interface Input parameters	125126127127127
7.23.5 7.24 xo_ 7.24.1 7.24.2 7.24.3 7.24.4 7.24.5	Output parameters Warnings and errors orbit_get_interpol_mode Overview Calling interface Input parameters Output parameters	125126127127127127127
7.23.5 7.24 xo_ 7.24.1 7.24.2 7.24.3 7.24.4 7.24.5 7.25 xo_	Output parameters Warnings and errors orbit_get_interpol_mode Overview Calling interface Input parameters Output parameters Warnings and errors	125126127127127127127128
7.23.5 7.24 xo_ 7.24.1 7.24.2 7.24.3 7.24.4 7.24.5 7.25 xo_ 7.25.1	Output parameters Warnings and errors orbit_get_interpol_mode Overview Calling interface Input parameters Output parameters Warnings and errors orbit_get_propag_config	125126127127127127127129

Code:	EO-MA-DMS-GS-0004
Date:	10/05/2019
Issue:	4.17
Page:	13

7.25.4	Output parameters	129
7.25.5	Warnings and errors	130
7.26 xo_	_orbit_get_interpol_config	131
7.26.1	Overview	131
7.26.2	Calling interface	131
7.26.3	Input parameters	131
7.26.4	Output parameters	131
7.26.5	Warnings and errors	132
7.27 xo_	_orbit_get_geo_orbit_info	133
7.27.1	Overview	133
7.27.2	Calling interface	133
7.27.3	Input parameters	133
7.27.4	Output parameters	133
7.27.5	Warnings and errors	134
7.28 xo_	orbit_set_geo_orbit_info	135
7.28.1	Overview	135
7.28.2	Calling interface	135
7.28.3	Input parameters	135
7.28.4	Output parameters	135
7.28.5	Warnings and errors	136
7.29 xo_	orbit_id_clone	137
7.29.1	Overview	137
7.29.2	Calling interface	137
7.29.3	Input parameters	137
7.29.4	Output parameters	137
7.29.5	Warnings and errors	137
7.30 xo_	_run_init	139
7.30.1	Overview	139
7.30.2	Calling interface	139
7.30.3	Input parameters	139
7.30.4	Output parameters	139
7.30.5	Warnings and errors	140

Code:	EO-MA-DMS-GS-0004
Date:	10/05/2019
Issue:	4.17
Page:	14

7.31 xo_	_run_get_ids	141
7.31.1	Overview	141
7.31.2	Calling interface	141
7.31.3	Input parameters	141
7.31.4	Output parameters.	141
7.31.5	Warnings and errors	141
7.32 xo_	_run_close	143
7.32.1	Overview	143
7.32.2	Calling interface	143
7.32.3	Input parameters	143
7.32.4	Output parameters	143
7.32.5	Warnings and errors	143
7.33 xo_	_osv_compute	144
7.33.1	Overview	144
7.33.2	Computation methods (Propagation/interpolation)	144
7.33	.2.1 Propagation methods	146
7.33	.2.2 Interpolation methods	148
7.33.3	Calling interface	151
7.33.4	Input parameters	151
7.33.5	Output parameters	152
7.33.6	Warnings and errors	153
7.34 xo_	_osv_compute_extra	154
7.34.1	Overview	154
7.34.2	Calling interface	154
7.34.3	Input parameters	155
7.34.4	Output parameters	156
7.34.5	Results vectors	157
7.34.6	Warnings and errors	162
7.35 xo_	_orbit_to_time	163
7.35.1	Overview	163
7.35.2	Calling sequence of xo_orbit_to_time:	163
7.35.3	Input parameters	164

Code:	EO-MA-DMS-GS-0004
Date:	10/05/2019
Issue:	4.17
Page:	15

7.35.4	Output parameters	164
7.35.5	Warnings and errors	164
7.35.6	Executable Program	165
7.36 xo_	_time_to_orbit	166
7.36.1	Overview	166
7.36.2	Calling sequence	167
7.36.3	Input parameters	168
7.36.4	Output parameters	168
7.36.5	Warnings and errors	168
7.36.6	Executable Program.	169
7.37 xo_	orbit_info	171
	Overview	
7.37.2	Calling sequence	171
7.37.3	Input parameters	172
7.37.4	Output parameters	172
7.37.5	Warnings and errors	174
7.38 xo_	orbit_info_configure	175
_	orbit_info_configure Overview	
7.38.1		175
7.38.1 7.38.2	Overview	175
7.38.1 7.38.2 7.38.3	Overview Calling sequence	
7.38.1 7.38.2 7.38.3 7.38.4	Overview Calling sequence Input parameters	
7.38.1 7.38.2 7.38.3 7.38.4 7.38.5	Overview Calling sequence Input parameters Output parameters	
7.38.1 7.38.2 7.38.3 7.38.4 7.38.5 7.39 xo_	Overview Calling sequence Input parameters Output parameters Warnings and errors.	
7.38.1 7.38.2 7.38.3 7.38.4 7.38.5 7.39 xo	Overview Calling sequence Input parameters Output parameters Warnings and errors orbit_rel_from_abs.	
7.38.1 7.38.2 7.38.3 7.38.4 7.38.5 7.39 xo	Overview Calling sequence Input parameters Output parameters Warnings and errors orbit_rel_from_abs Overview	
7.38.1 7.38.2 7.38.3 7.38.4 7.38.5 7.39 xo _ 7.39.1 7.39.2 7.39.3	Overview Calling sequence Input parameters Output parameters Warnings and errors orbit_rel_from_abs Overview Calling sequence	
7.38.1 7.38.2 7.38.3 7.38.4 7.38.5 7.39 xo _ 7.39.1 7.39.2 7.39.3 7.39.4	Overview Calling sequence Input parameters Output parameters Warnings and errors orbit_rel_from_abs Overview Calling sequence Input parameters	
7.38.1 7.38.2 7.38.3 7.38.4 7.38.5 7.39 xo 7.39.1 7.39.2 7.39.3 7.39.4 7.39.5	Overview Calling sequence Input parameters Output parameters warnings and errors orbit_rel_from_abs Overview Calling sequence Input parameters Output parameters Output parameters	
7.38.1 7.38.2 7.38.3 7.38.4 7.38.5 7.39 xo 7.39.1 7.39.2 7.39.3 7.39.4 7.39.5 7.40 xo	Overview Calling sequence Input parameters Output parameters Warnings and errors orbit_rel_from_abs Overview Calling sequence Input parameters Output parameters Warnings and errors	
7.38.1 7.38.2 7.38.3 7.38.4 7.38.5 7.39 xo 7.39.1 7.39.2 7.39.3 7.39.4 7.39.5 7.40 xo 7.40.1	Overview Calling sequence Input parameters Output parameters varnings and errors orbit_rel_from_abs Overview Calling sequence Input parameters Output parameters	

Code:	EO-MA-DMS-GS-0004
Date:	10/05/2019
Issue:	4.17

Page: 16

7.40.4	Output parameters	182
7.40.5	Warnings and errors	183
7.41 xo_	orbit_abs_from_phase	184
7.41.1	Overview	184
7.41.2	Calling sequence	184
7.41.3	Input parameters	185
7.41.4	Output parameters	185
7.41.5	Warnings and errors	186
7.42 xo_	osv_to_tle	187
7.42.1	Overview	187
7.42.2	Calling sequence	187
7.42.3	Input parameters	188
7.42.4	Output parameters.	188
7.42.5	Warnings and errors	189
7.43 xo_	gen_osf_create	190
7.43.1	Overview	190
7.43.2	Calling interface	190
7.43.3	Input parameters	192
7.43.4	Output parameters	193
7.43.5	Warnings and errors	194
7.43.6	Executable Program	196
7.44 xo_	gen_osf_create_2	198
7.44.1	Overview	198
7.44.2	Calling interface	198
7.44.3	Input parameters	200
7.44.4	Output parameters	201
7.44.5	Warnings and errors	201
7.45 xo_	gen_osf_append_orbit_change	202
7.45.1	Overview	202
7.45.2	Calling interface	202
7.45.3	Input parameters	204
7.45.4	Output parameters	205

Code:	EO-MA-DMS-GS-0004
Date:	10/05/2019
Issue:	4.17
Page:	17

7.45.5	Warnings and errors	206
7.45.6	Executable Program	208
7.46 xo_	gen_osf_append_orbit_change_2	210
7.46.1	Overview	210
7.46.2	Calling interface	210
7.46.3	Input parameters	212
7.46.4	Output parameters	213
7.46.5	Warnings and errors	214
7.47 xo_	gen_osf_change_repeat_cycle	215
7.47.1	Overview	215
7.47.2	Calling interface	215
7.47.3	Input parameters	217
7.47.4	Output parameters	218
7.47.5	Warnings and errors	219
7.47.6	Executable Program	221
7.48 xo_	gen_osf_change_repeat_cycle_2	223
7.48.1	Overview	223
7.48.2	Calling interface	223
7.48.3	Input parameters	225
7.48.4	Output parameters	226
7.48.5	Warnings and errors	227
7.49 xo	gen_osf_add_drift_cycle	228
	Overview	
7.49.2	Calling interface	228
	Input parameters	
7.49.4	Output parameters	231
7.49.5	Warnings and errors	231
7.49.6	Executable Program	234
7.50 xo	gen_rof	236
	Overview	
	Calling interface	
	Input parameters	

Code:	EO-MA-DMS-GS-0004
Date:	10/05/2019
Issue:	4.17
Page:	18

7.50.4	Output parameters	241
7.50.5	Warnings and errors	241
7.50.6	Executable Program	243
7.51 xo_	_gen_rof_prototype	245
	Overview	
7.51.2	Calling interface	245
7.51.3	Input parameters	247
7.51.4	Output parameters	249
7.51.5	Warnings and errors	249
7.52 xo_	_gen_pof	251
7.52.1	Overview	251
7.52.2	Calling interface	251
7.52.3	Input parameters	253
7.52.4	Output parameters	254
7.52.5	Warnings and errors	255
7.52.6	Executable Program	257
7.53 xo_	_gen_oef	259
7.53.1	Ov erview	259
7.53.2	Calling interface	259
7.53.3	Input parameters	259
7.53.4	Output parameters	260
7.53.5	Warnings and errors	260
7.53.6	Executable Program	262
7.54 xo_	_gen_dnf	263
7.54.1	Overview	263
7.54.2	Calling interface	263
7.54.3	Input parameters	265
7.54.4	Output parameters	267
7.54.5	Warnings and errors	268
7.54.6	Executable Program	270
7.55 xo	_gen_tle	272
	Overview	

Code:	EO-MA-DMS-GS-0004
Date:	10/05/2019
Issue:	4.17
Page:	19

7.55.2	Calling interface	272
7.55.3	Input parameters	273
7.55.4	Output parameters	275
7.55.5	Warnings and errors	275
7.55.6	Executable Program	277
7.56 xo_	_check_osf	279
7.56.1	Overview	279
7.56.2	Calling interface	279
7.56.3	Input parameters	280
7.56.4	Output parameters	280
7.56.5	Warnings and errors	281
7.57 xo_	_check_oef	283
7.57.1	Overview	283
7.57.2	Calling interface	283
7.57.3	Input parameters	284
7.57.4	Output parameters	285
7.57.5	Warnings and errors	286
7.58 xo_	position_on_orbit_to_time	287
7.58.1	Overview	287
7.58.2	Calling Interface	287
7.58.3	Input Parameters	288
7.58.4	Output Parameters	288
7.58.5	Warnings and errors	289
7.59 xo_	orbit_data_filter	290
	Overview	
7.59.	1.1 Outliers filter	290
7.59.2	Calling Interface	290
7.59.3	Input Parameters	290
7.59.4	Output Parameters	291
7.59.5	Warnings and errors	291
7.60 xo_	orbit_id_change	292
	Overview	

Code:	EO-MA-DMS-GS-0004
Date:	10/05/2019
Issue:	4.17
Page:	20

7.60.2	Calling Interface	292
7.60.3	Input Parameters	292
7.60.4	Output Parameters	293
7.60.5	Warnings and errors	293
7.61 xo_	_osv_check	295
7.61.1	Overview	295
7.61.2	Calling Interface	295
7.61.3	Input Parameters	295
7.61.4	Output Parameters	296
7.61.5	Warnings and errors	296
7.62 xo_	orbit_id_check	297
7.62.1	Overview	297
7.62.2	Calling Interface	298
7.62.3	Input Parameters	298
7.62.4	Output Parameters	298
7.62.5	Warnings and errors	299
8 RUNT	IME PERFORMANCES	300
9 I IBR/	ARY PRECAUTIONS	303

Date: 10/05/2019 Issue: 4.17

Page: 21

LIST OF TABLES

Table 1: CFI functions included within EO ORBIT library	39
Table 2: Some enumerations within EO ORBIT library	
Table 3: EO ORBIT structures	
Table 4: Input parameters of xo_orbit_init_def function	
Table 5: Output parameters of xo_orbit_init_def function	
Table 6: Error messages of xo orbit init def function	
Table 7: Input parameters of xo_orbit_init_def_2 function	
Table 8: Output parameters of xo_orbit_init_def_2 function	
Table 9: Input parameters of xo orbit cart init function	
Table 10: Output parameters of xo_orbit_cart_init function	
Table 11: Error messages of xo orbit cart init function	
Table 12: Input parameters of xo orbit cart init precise function	
Table 13: Output parameters of xo_orbit_cart_init_precise function	
Table 14: Error messages of xo orbit cart init precise function	
Table 15: User requested time range in xo orbit init file	
Table 16: Validity periods for xo_orbit_init_file	
Table 17: OSV diagnostics behavior at orbit initialization	
Table 18: Input parameters of xo_orbit_init_file function	
Table 19: Output parameters of xo_orbit_init_file function	
Table 20: Error messages of xo orbit init file function	
Table 21: User requested time range in xo_orbit_init_file_precise	
Table 22: Validity periods for xo orbit init file precise	
Table 23: Input parameters of xo_orbit_init_file_precise function	
Table 24: Output parameters of xo orbit init file precise function	
Table 25: Error messages of xo_orbit_init_file_precise function	
Table 26: User requested time range in xo_orbit_id_init	
Table 27: Validity periods for xo_orbit_id_init	86
Table 28: Input parameters of xo orbit id init function	
Table 29: Output parameters of xo_orbit_id_init function	
Table 30: Error messages of xo orbit id init function	
Table 31: Input parameters of xo orbit init geo function	
Table 32: Output parameters of xo orbit init geo function	
Table 33: Error messages of xo orbit init geo function	
Table 34: Input parameters of xo orbit close function	
Table 35: Output parameters of xo orbit close function	
Table 36: Error messages of xo orbit close function	
Table 37: Input parameters of xo_orbit_get_osv function	
Table 38: Output parameters of xo orbit get osv function	
Table 39: Input parameters of xo orbit set osv function	
Table 40: Output parameters of xo orbit set osv function	
Table 41: Input parameters of xo orbit get anx function	
Table 42: Output parameters of xo orbit get anx function	
Table 43: Input parameters of xo orbit set anx function	
Table 44: Output parameters of xo_orbit_set_anx function	
Table 45: Input parameters of xo orbit get osf rec function	
Table 46: Output parameters of xo orbit get osf rec function	

Code:	EO-MA-DMS-GS-0004
Date:	10/05/2019
Issue:	4.17

Page: 22

Table 47: Input parameters of xo_orbit_set_osf_rec function	109
Table 48: Output parameters of xo_orbit_set_osf_rec function	110
Table 49: Input parameters of xo_orbit_get_val_time function	.111
Table 50: Output parameters of xo_orbit_get_val_time function	.111
Table 51: Input parameters of xo orbit set val time function	
Table 52: Output parameters of xo orbit set val time function	113
Table 53: Input parameters of xo_orbit_get_precise_propag_config function	.115
Table 54: Output parameters of xo_orbit_get_precise_propag_config function	.115
Table 55: Input parameters of xo_orbit_set_precse_propag_config function	
Table 56: Output parameters of xo_orbit_set_precse_propag_config function	
Table 57: Input parameters of xo orbit get time id function	
Table 58: Output parameters of xo orbit get time id function	
Table 59: Input parameters of xo orbit get model id function	
Table 60: Output parameters of xo_orbit_get_model_id function	
Table 61: Input parameters of xo_orbit_get_osv_compute_validity function	123
Table 62: Output parameters of xo_orbit_get_osv_compute_validity function	123
Table 63: Input parameters of xo orbit get propag mode function	
Table 64: Output parameters of xo_orbit_get_propag_mode function	
Table 65: Input parameters of xo_orbit_get_interpol_mode function	
Table 66: Output parameters of xo_orbit_get_interpol_mode function	
Table 67: Input parameters of xo_orbit_get_propag_config function	129
Table 68: Output parameters of xo_orbit_get_propag_config function	129
Table 69: Input parameters of xo orbit get interpol config function	
Table 70: Output parameters of xo_orbit_get_interpol_config function	
Table 71: Input parameters of xo_orbit_get_geo_orbit_info function	
Table 72: Output parameters of xo orbit get geo orbit info function	
Table 73: Input parameters of xo orbit set geo orbit info function	
Table 74: Output parameters of xo_orbit_set_geo_orbit_info function	
Table 75: Input parameters of xo_orbit_id_clone function	137
Table 76: Output parameters of xo_orbit_id_clone function	
Table 77: Input parameters of xo_run_init function	
Table 78: Output parameters of xo_run_init function	
Table 79: Error messages of xo_run_init function	
Table 80: Input parameters of xo_run_get_ids function	141
Table 81: Output parameters of xo_run_get_ids function	141
Table 82: Input parameters of xo_run_close function	143
Table 83: Output parameters of xo_run_close function	143
Table 84: OSV computation methods	
Table 85: Validity Time Intervals for Propagation	
Table 86: Input parameters of xo_osv_compute function	151
Table 87: Output parameters of xo_osv_compute function	152
Table 88: Error messages of xo_osv_compute function	153
Table 89: Input parameters of xo_osv_compute_extra	155
Table 90: Enumeration values of extra_choice input flag	155
Table 91: Output parameters of xo_osv_compute_extra	
Table 92: Ancillary results vector. Model-dependent parameters	157
Table 93: Ancillary results vector. Model-independent parameters	158
Table 94: Error messages of xo_osv_compute_extra function	162
* * = = *	164

Code:	EO-MA-DMS-GS-0004
Date:	10/05/2019
Issue:	4.17
Page:	23

Table 96: Output parameters for xo_orbit_to_time	
Table 97: Error messages of xo_orbit_to_time function	
Table 98: Input parameters for xo_time_to_orbit function	
Table 99: Output parameters for xo_time_to_orbit	168
Table 100: Error messages of xo_time_to_orbit function	169
Table 101: Input parameters for xo orbit info	
Table 102: Output parameters for xo_orbit_info	172
Table 103: Error messages of xo_orbit_info function	
Table 104: Input parameters for xo_orbit_info_configure	
Table 105: Output parameters for xo orbit info configure	
Table 106: Error messages of xo_orbit_info_configure function	
Table 107: Input parameters for xo_orbit_rel_from_abs	
Table 108: Output parameters for xo_orbit_rel_from_abs	
Table 109: Error messages of xo_orbit_rel_from_abs function	
Table 110: Input parameters for xo_orbit_abs_from_rel	
Table 111: Output parameters for xo_orbit_abs_from_rel	182
Table 112: Error messages of xo_orbit_abs_from_rel function	
Table 113: Input parameters for xo_orbit_abs_from_phase	
Table 114: Output parameters for xo_orbit_abs_from_phase	185
Table 115: Error messages of xo_orbit_abs_from_phase function	
Table 116: Input parameters for xo osv to tle	
Table 117: Output parameters for xo_osv_to_tle	
Table 118: Error messages of xo_osv_to_tle function	
Table 119: Input parameters of xo_gen_osf_create function	102
Table 120: Output parameters of xo_gen_osf_create function	
Table 121: Error messages of xo_gen_osf_create function	
Table 122: Input parameters of xo_gen_osf_create_2 function	
Table 123: Output parameters of xo_gen_osf_create_2 function	
Table 124: Input parameters of xo_gen_osf_append_orbit_change function	
Table 125: Output parameters of xo_gen_osf_append_orbit_change function	
Table 126: Error messages of xo_gen_osf_append_orbit_change function	
Table 127: Input parameters of xo_gen_osf_append_orbit_change_2 function	
Table 128: Output parameters of xo_gen_osf_append_orbit_change_2 function	
Table 129: Input parameters of xo_gen_osf_change_repeat_cycle function	
Table 130: Output parameters of xo_gen_osf_change_repeat_cycle function	
Table 131: Error messages of xo_gen_osf_change_repeat_cycle function	
Table 132: Input parameters of xo_gen_osf_change_repeat_cycle_2 function	
Table 133: Output parameters of xo_gen_osf_change_repeat_cycle_2 function	226
Table 134: Input parameters of xo_gen_osf_add_drift_cycle function	230
Table 135: Output parameters of xo_gen_osf_add_drift_cycle function	231
Table 136: Error messages of xo_gen_osf_add_drift_cycle function	
Table 137: Input parameters of xo gen rof function	
Table 138: Output parameters of xo_gen_rof function	
Table 139: Error messages of xo_gen_rof function	
Table 140: Input parameters of xo_gen_rof_prototype function	
Table 141: Output parameters of xo_gen_rof_prototype function	
Table 142: Error messages of xo gen rof prototype function	
Table 143: Input parameters of xo gen pof function	
Table 144: Output parameters of xo gen pof function	

Code:	EO-MA-DMS-GS-0004
Date:	10/05/2019
Issue:	4.17
Page:	24

Table 145: Error messages of xo gen pof function	255
Table 146: Input parameters of xo_gen_oef function	259
Table 147: Output parameters of xo_gen_oef function	260
Table 148: Error messages of xo_gen_oef function	
Table 149: Input parameters of xo gen dnf function	265
Table 150: Output parameters of xo gen dnf function	267
Table 151: Error messages of xo_gen_dnf function	268
Table 152: Input parameters of xo_gen_tle function	273
Table 153: Output parameters of xo_gen_tle function	275
Table 154: Error messages of xo_gen_tle function	275
Table 155: Input parameters of xo_check_osf function	280
Table 156: Output parameters of xo_check_osf function	280
Table 157: Error messages of xo_ckeck_osf function	281
Table 158: Input parameters of xo_check_oef function	284
Table 159: Output parameters of xo_check_oef function	285
Table 160: Error messages of xo_ckeck_oef function	286
Table 161: Input parameters of xo_position_on_orbit_to_time function	288
Table 162: Output parameters of xo_position_on_orbit_to_time function	
Table 163: Error messages of xo_position_on_orbit_to_time function	289
Table 164: Input parameters of xo_orbit_data_filter function	
Table 165: Output parameters of xo_orbit_data_filter function	291
Table 166: Error messages of xo_orbit_data_filter function	291
Table 167: Input parameters of xo_orbit_id_change function	293
Table 168: Output parameters of xo_orbit_id_change function	293
Table 169: Error messages of xo_orbit_id_change function	293
Table 170: Input parameters of xo_osv_check function	295
Table 171: Output parameters of xo_osv_check function	296
Table 172: Error messages of xo_osv_check function	296
Table 173: Input parameters of xo_orbit_id_check function	298
Table 174: Output parameters of xo_orbit_id_check function	298
Table 175: Error messages of xo_orbit_id_check function	299
LIST OF FIGURES	
Figure 1: Orbit Calling Sequence	35
Figure 2: File Generation Calling Sequence	
Figure 3: Weight Function for Double Propagation Model	
Figure 4: Performances of the interpolation algorithm	

Date: 10/05/2019 Issue: 4.17

Page: 25

1 SCOPE

The EO_ORBIT Software User Manual provides a detailed description of usage of the CFI functions included within the EO_ORBIT CFI software library.

Date: 10/05/2019 Issue: 4.17

Page: 26

2 ACRONYMS, NOMENCLATURE AND TERMINOLOGY

2.1 Acronyms

ANX Ascending Node Crossing

AOCS Attitude and Orbit Control Subsystem

CFI Customer Furnished Item

EF Earth Fixed reference frame

EOCFI Earth Observation CFI

ESA European Space Agency

ESTEC European Space Technology and Research Centre

FOS Flight Operations Segment

GS Ground Station

OBT On-board Binary Time

OEF Orbit Event File

OSF Orbit Scenario File

OSV Orbit State Vector

POF Predicted Orbit File

ROF Restituted Orbit File

SSP Sub-Satellite Point

SRAR Satellite Relative Actual Reference

SUM Software User Manual

TLE Two Line Elements

TOD True of Date reference frame
UTC Universal Time Coordinated

UT1 Universal Time UT1

WGS[84] World Geodetic System 1984

2.2 Nomenclature

CFI A group of CFI functions, and related software and documentation that will be distributed

by ESA to the users as an independent unit

CFI function A single function within a CFI that can be called by the user

Library A software library containing all the CFI functions included within a CFI plus the

supporting functions used by those CFI functions (transparently to the user)

Date: 10/05/2019 Issue: 4.17

Page: 27

2.3 Note on Terminology

In order to keep compatibility with legacy CFI libraries, the Earth Observation Mission CFI Software makes use of terms that are linked with missions already or soon in the operational phase like the Earth Explorers.

This may be reflected in the rest of the document when examples of Mission CFI Software usage are proposed or description of Mission Files is given.

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

Page: 28

3 APPLICABLE AND REFERENCE DOCUMENTS

3.1 Applicable Documents

No applicable documents.

3.2 Reference Documents

[MCD]	Earth Observation Mission CFI Software. Conventions Document. EO-MA-DMS-GS-0001.	
[MSC]	Earth Observation Mission CFI Software. Mission Specific Customizations Document. EO-MA- DMS-GS-0018.	
[GEN_SUM]	Earth Observation Mission CFI Software. General Software User Manual. EO-MA-DMS-GS-0002.	
[F_H_SUM]	Earth Observation Mission CFI Software. EO_FILE_HANDLING Software User Manual. EO-MA-DMS-GS-0008.	
[D_H_SUM]	Earth Observation Mission CFI Software. EO_DATA_HANDLING Software User Manual. EO-MA-DMS-GS-007.	
[LIB_SUM]	Earth Observation Mission CFI Software. EO_LIB Software User Manual. EO-MA-DMS-GS-003.	
[FORMATS]	Earth Explorer File Format Guidelines. CS-TN-ESA-GS-0148.	
[EO_OPS]	Earth Observation OPS Commanding. <u>Link to Technical note</u>	

The latest applicable version of [MCD], [MSC], [GEN_SUM], [F_H_SUM], [D_H_SUM], [LIB_SUM] is v4.17 and can be found at: http://eop-cfi.esa.int/REPO/PUBLIC/DOCUMENTATION/CFI/EOCFI/BRANCH_4X/

Issue: 4.17

Page: 29

4 INTRODUCTION

4.1 Functions Overview

This software library contains:

- CFI functions allowing accurate computation of orbit state vectors, either at ascending node or (by propagation) at any point in the orbit of any Earth Observation satellite.
- The orbit propagation may be performed based on different propagation models. The initial set of models supported are:
 - Mean Keplerian model
 - TLE model
 - Numerical model
- It includes an interpolator and orbit propagators.
- CFI functions required to compute the orbit scenario file, used for Earth Observation mission planning purposes, and several orbit files useful for testing purposes (Predicted Orbit File, Restituted Orbit File, DORIS Navigator Files).
- It contains:
 - a library of functions which can be called from a main executable program
 - a set of executable programs (1 for each function) with the exact same functionality as the functions

The following sections summarize the set of functions in this library:

4.1.1 Orbit Initialisation

Before doing any orbit calculation, the orbit should be initialized using one of the following functions:

- xo_orbit_init_def: this software generates a cartesian state vector around the true ascending node crossings as a function of the date (processing time), the longitude of the ascending node, the satellite Repeat Cycle Length, the mean local solar time and either the drift in mean local solar time or the inclination.
- xo_orbit_cart_init, xo_orbit_cart_init_precise: This software initializes the orbit using as input a cartesian orbit state vector. The "precise" function allows the introduction of data to propagate a state vector with a numeric propagator (see 4.1.2). Numerical propagator uses external files for the configuration of gravity model and F10.7 coefficient and Geomagnetic Activity index values. You can find some files that can be used in files/models directory of the Earth Observation CFI package, and following you can find some references for them:
 - Gravity model egm96:
 - http://cddisa.gsfc.nasa.gov/926/egm96/egm96.html
 - F10.7 coefficient and Geomagnetic Activity index: ECSS-E-10-04A Space Environment
 - (http://www.spacelab.dti.supsi.ch/Tecnica/ECSS-E-10-04ASpaceEnvironment1.pdf).
- xo_orbit_init_file, xo_orbit_init_file_precise: This software initializes the orbit using a set of files containing the orbital information (state vectors, orbital geometry or TLE data). The "precise"

Date: 10/05/2019 Issue: 4.17

Page: 30

function allows the introduction of data to propagate an state vector with a numeric propagator (see 4.1.2). The following input file types are accepted:

- Flight Dynamics predicted ascending node state vectors.
- DORIS Navigator Data
- FOS Restituted Orbit Files
- DORIS Preliminary Orbit
- DORIS Precise Orbit
- Ascending node state vectors from the Orbit Scenario File
- TLE files (not for precise propagator)
- SP3 files (not for precise propagator)
- xo_orbit_id_init: This software initializes the orbit using a data structure that contain a set of data read from files containing the orbital information (from Orbit files, DORIS navigator, Orbit Scenario files or SP3 files).
- xo_orbit_init_geo: This software initializes the orbit for a geostationary orbit using as input fixed longitude coordinates of the satellite.

In all cases a variable of the type xo_orbit_id (*Orbit ID*.) is returned. This variable is a CFI Identifier of the type described in [GEN_SUM]. This variable keeps internally the orbit information that will be used for further calculations. That orbit information can be retrieved by calling the following CFI functions:

CFI Function ¹	Orbit ID data	Condition to get the data
xo_orbit_init_status	Orbit ID initialisation status	Always
xo_orbit_get_sat_id	Satellite ID	The Orbit ID is initialised.
xo_orbit_get_mode	Mode used for the Orbit ID initialisation	The Orbit ID is initialised.
xo_orbit_get_osv	OSV stored in the Orbit ID	The Orbit ID has bee initialised with state vectors.
xo_orbit_get_anx	ANX data stored in the Orbit ID	The Orbit ID has bee initialised with state vectors that are not located at the ANX (Restituted orbit files, DORIS Navigator files)
xo_orbit_get_osf_rec	Orbital Geometry data stored in the Orbit ID	The Orbit ID has bee initialised with orbit geometry data.
xo_orbit_get_val_time	Validity time interval where the Orbit ID can be used except for xo_osv_compute and xo_osv_compute_extra	The Orbit ID is initialised.
xo_orbit_get_precise_ propag_config	Configuration for the precise propagator	The Orbit ID has been initialised with xo_orbit_init_file_precise or xo_orbit_cart_init_precise

1 These functions are defined in the current SUM (section 7) or in [GEN_SUM].

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17
Page: 31

xo_orbit_get_time_id	Time ID used for the Orbit ID initialisation	The Orbit ID is initialised.
xo_orbit_get_model_id	Model ID used for the Orbit ID initialisation	The Orbit ID is initialised.
xo_orbit_get_osv_com pute_validity	Validity time interval where the Orbit ID can be used to call xo_osv_compute and xo_osv_compute_extra	The Orbit ID is initialised.
xo_orbit_get_propag_ mode	Propagation model used when calling xo_osv_compute	Orbit Id is configured for propagation (see section 4.1.2)
xo_orbit_get_interpol_ mode	Interpolation model used when calling xo_osv_compute	Orbit Id is configured for interpolation (see section 4.1.2)
xo_orbit_get_propag_ config	Configuration data for the propagator	Orbit Id is configured for propagation (see section 4.1.2)
xo_orbit_get_interpol_ config	Configuration data for the interpolator	Orbit Id is configured for interpolation (see section 4.1.2)

Finally, note that it is possible to create a copy of Orbit ID with xo_orbit_id_clone .

4.1.2 State Vector Computation (Propagation/Interpolation)

The software provides a set of functions to compute orbit state vectors at a given time:

- xo_osv_compute: This software computes the state vector at the requested time. The method used to compute that vector is transparent for the user and depends on the data type used for the orbit initialisation. Propagation is performed when the orbit_id is initialised with:
 - One Orbit State Vector (xo_orbit_cart_init)
 - Orbit Geometry (xo orbit init def)
 - Orbit Scenario File
 - Predicted orbit file (plus an optional DORIS Navigator file)
 - Orbit Event Files (Note: Orbit Event File is deprecated, only supported for CRYOSAT mission).
 - TLE files

Interpolation is used in these other cases:

- DORIS Navigator Data
- FOS Restituted Orbit Files
- DORIS Preliminary Orbit
- DORIS Precise Orbit

Issue: 10/05/2019 4.17

Page: 32

- SP3 files

4.1.3 Ancillary Results Computation

• xo_osv_compute_extra: This software returns ancillary results, i.e. mean and osculating Keplerian orbit state vectors, satellite osculating true latitude, latitude rate and latitude rate-rate, Sun zenith angle and many more.

4.1.4 Time/Orbit Transformation

- xo_time_to_orbit: This software calculates the absolute orbit, number of seconds and number of microseconds since ascending node that corresponds to a given time in processing format.
- xo_orbit_to_time: This software calculates the time, in processing format, that corresponds to a given absolute orbit, number of seconds and number of microseconds since ascending node.

4.1.50rbit Information Parameters

- xo_orbit_rel_from_abs: This software calculates the relative orbit, the phase number giving as input an absolute orbit number.
- xo_orbit_abs_from_rel: This software calculates the absolute orbit number giving as input a relative orbit number and its cycle number.
- xo_orbit_abs_from_phase: This software calculates the absolute orbit number, the relative orbit, the phase number giving as input a phase number.
- xo_orbit_info: This software calculates orbit related parameters providing as input the absolute orbit number.

4.1.6File Generation

- xo_gen_osf_create/xo_gen_osf_create_2: generates the orbit scenario file with user provided inputs
- xo_gen_osf_append_orbit_change/xo_gen_osf_append_orbit_change_2: adds an orbit change to a previously generated OSF
- xo_gen_osf_change_repeat_cycle/xo_gen_osf_change_repeat_cycle_2: adds an orbit change for a given target orbit to an existing OSF.
- xo_gen_osf_add_drift_cycle: adds an orbit change for a requested orbit with a particular ascending node longitude and an orbit for the manoeuvre.
- xo gen pof: generates a Predicted Orbit File from several different reference input files.
- xo_gen_rof and xo_gen_rof_prototype: generates a Restituted Orbit File from several different reference input files.
- xo_gen_oef generates an orbit event file from an orbit scenario file and a predicted orbit file. Note: Orbit Event File is deprecated, only supported for CRYOSAT mission
- xo_gen_dnf: generates a DORIS Navigator File from several different reference input files.
- xo gen tle: generates a TLE file from a Predicted or Restituted Orbit file.

Issue:

Page: 33

4.17

4.1.7Clean-up Memory

• *xo_orbit_close*: This software frees the memory allocated by the orbit initialization routines. It closes the xo orbit id, so that it cannot be used for further computations.

4.1.8 Check Orbit files

- xo_check_osf: checks the continuity between the last orbit of an orbital change and the next orbit in an orbit scenario file.
- xo_check_oef: checks the consistency between the list of the orbital changes and the list of orbit state vectors in an orbit event file. Note: Orbit Event File is deprecated, only supported for CRYOSAT mission

Issue: 10/05/2019 4.17

Page: 34

4.2 State Vector Computation Calling Sequence (Propagation/Interpolation)

A complete propagation sequence consists of:

- A call to any of the initialization routines for orbit, xo_orbit_init_def, xo_orbit_init_def_2, xo_orbit_init_file[_precise] or xo_orbit_cart_init[_precise], xo_orbit_id_init, xo_orbit_init_geo to generate the internal data necessary for whatever calculation involving orbits.
- An optional call to *xo_osv_compute_extra* to calculate any desired ancillary result related to the initializing state vector.
- A call to the *xo_osv_compute* function to compute the orbit state vector at a requested time (Optionally, the user can check if the requested time is within the validity interval by calling the function *xo_orbit_get_osv_compute_validity*).
- To obtain some ancillary results associated to the computed OSV, the user might call the *xo osv compute extra* function.
- At the end of a sequence is mandatory to call xo orbit close to free the memory allocated.

The possible propagation sequences of calls allowing to produce an orbit state vector are shown in Figure 1.

4.3 Time/Orbit Transformation and Orbit Information Parameters Calling Sequence

A complete time/orbit transformation and orbit information parameters sequence consists of:

- A call to any of the initialization routines for orbit, xo_orbit_init_def, xo_orbit_init_file[_precise] or xo_orbit_cart_init[_precise], xo_orbit_id_init, to generate the internal data necessary for whatever calculation involving orbits. Note that time to orbit transformations cannot be computed if the orbit was initialised with xo orbit cart init.
- A call to a time/orbit transformation or an orbit information parameters routine.
- When no more *time/orbit transformations* and *orbit information parameters* routines are going to be used, call to *xo_orbit_close* to free the memory allocated.
- The possible time/orbit transformation and orbit information parameters sequences of calls allowing to produce an orbit state vector are shown in Figure 1.
- A detailed description of each function is provided in section 7. Please refer also to:
- [MCD] for a detailed description of the time references and formats, reference frames, parameters and models used in this document.
- [GEN_SUM] for a complete overview of the CFI, and in particular the detailed description of the *Id* concept and the error handling functions.

Issue: 4.17

Page: 35

Orbit Routines Data Flow

Figure 1: Orbit Calling Sequence

4.4 File Generation Calling Sequence

The calling sequence for the file generators consists of:

- One call to a time initialization routine
- One call to the generation routine providing the input parameters. For xo_gen_pof, xo_gen_rof, xo_gen_oef and xo_gen_dnf a reference orbit file has to be provided as well.

Date: 10/05/2019 Issue: 4.17

Page: 36

The following figure shows an schema of the calling sequence:

Figure 2: File Generation Calling Sequence

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

37

Page:

5 LIBRARY INSTALLATION

For a detailed description of the installation of any CFI library, please refer to [GEN_SUM].

Issue: 4.17

Page: 38

6 LIBRARY USAGE

The EO ORBIT software library has the following dependencies:

- Other EOCFI libraries:
 - EO FILE HANDLING (See [F H SUM]).
 - EO DATA HANDLING (See [D H SUM]).
 - EO_LIB (See [LIB_SUM]).
- Third party libraries:
 - POSIX thread library: libpthread.so (Note: this library is normally pre-installed in Linux and MacOS platforms. For Windows platforms, pthread.lib is included in the distribution package, with license LGPL);
 - GEOTIFF, TIFF, PROJ, LIBXML2 libraries (these libraries are included in the distribution package. Their usage terms and conditions are available in the file "TERMS AND CONDITIONS.TXT" which is part of the distribution package).

The following is required to compile and link a Software application that uses the EO_ORBIT software library functions (it is assumed that the required EOCFI and third-part libraries are located in directory *cfi_lib_dir* and the required header files are located in *cfi_include*, see [GEN_SUM] for installation procedures):

- 1) include the following header files in the source code:
 - explorer orbit.h (for a C application)
- 2) use the following compile and link options:

Linux and MacOS platforms:

- -Icfi include dir -Lcfi lib dir -lexplorer orbit
- -lexplorer_lib lexplorer_data_dandling -lexplorer_file_handling -lgeotiff -ltiff -lproj -lxml2 -lm -lc -lpthread

Windows platforms:

/I "cfi include dir" /libpath: "cfi lib dir" libexplorer orbit.lib

libexplorer_lib.lib libexplorer_data_handling.lib libexplorer_file_handling.lib libgeotiff.lib libtiff.lib libproj.lib libxml2.lib pthread.lib Ws2 32.lib

All functions described in this document have a name starting with the prefix xo.

To avoid problems in linking a user application with the EO_ORBIT software library due to the existence of names multiple defined, the user application should avoid naming any global software item beginning with either the prefix XO or xo.

This is summarized in Table 1.

Date: 10/05/2019 Issue: 4.17

Table 1: CFI functions included within EO_ORBIT library

Function Name	Enumeration value	long
Main CFI Functions		
xo_orbit_init_def	XO_ORBIT_INIT_DEF_ID	0
xo_orbit_cart_init	XO_ORBIT_CART_INIT_ID	1
xo_orbit_cart_init_precise	XO_ORBIT_CART_INIT_PRECISE_ID	2
xo_orbit_id_init	XO_ORBIT_ID_INIT_ID	3
xo_orbit_init_file	XO_ORBIT_INIT_FILE_ID	4
xo_orbit_init_file_precise	XO_ORBIT_INIT_FILE_PRECISE_ID	5
xo_orbit_close	XO_ORBIT_CLOSE_ID	6
xo_osv_compute	XO_OSV_COMPUTE_ID	7
xo_osv_compute_extra	XO_OSV_COMPUTE_EXTRA_ID	8
xo_orbit_to_time	XO_ORBIT_TO_TIME_ID	9
xo_time_to_orbit	XO_TIME_TO_ORBIT_ID	10
xo_orbit_abs_from_rel	XO_ORBIT_ABS_FROM_REL_ID	11
xo_orbit_rel_from_abs	XO_ORBIT_REL_FROM_ABS_ID	12
xo_orbit_abs_from_phase	XO_ORBIT_ABS_FROM_PHASE_ID	13
xo_orbit_info	XO_ORBIT_INFO_ID	14
xo_osv_to_tle	XO_OSV_TO_TLE_ID	15
xo_run_init	XO_RUN_INIT_ID	16
xo_gen_oef	XO_GEN_OEF_ID	17
xo_gen_osf_create	XO_GEN_OSF_CREATE_ID	18
xo_gen_osf_append_orbit_ch ange	XO_GEN_OSF_APPEND_ORBIT_CHANGE_ID	19
xo_gen_osf_change_repeat_ cycle	XO_GEN_OSF_CHANGE_REPEAT_CYCLE_ID	20
xo_gen_osf_add_drift_cycle	XO_GEN_OSF_ADD_DRIFT_CYCLE_ID	21
xo_gen_pof	XO_GEN_POF_ID	22
xo_gen_rof	XO_GEN_ROF_ID	23
xo_gen_rof_prototype	XO_GEN_ROF_PROTOTYPE_ID	24
xo_gen_dnf	XO_GEN_DNF_ID	25
xo_gen_tle	XO_GEN_TLE_ID	26
xo_check_osf	XO_CHECK_OSF_ID	27

Date: 10/05/2019 Issue: 4.17

Page: 40

xo_check_oef	XO_CHECK_OEF_ID	28
xo_position_on_orbit_to_time	XO_POSITION_ON_ORBIT_TO_TIME_ID	29
xo_orbit_data_filter	XO_ORBIT_DATA_FILTER_ID	30
xo_orbit_id_init_data_close	XO_ORBIT_ID_INIT_DATA_CLOSE_ID	31
xo_orbit_id_change	XO_ORBIT_ID_CHANGE_ID	32
xo_orbit_info_configure	XO_ORBIT_INFO_CONFIGURE_ID	33
xo_osv_check	XO_OSV_CHECK_ID	34
xo_orbit_id_check	XO_ORBIT_ID_CHECK_ID	35
Error Handling Functions		
xo_verbose	not applicable	
xo_silent		
xo_get_code		
xo_get_msg		
xo_print_msg		

Notes about the table:

- To transform the status vector returned by a CFI function to either a list of error codes or list of error messages, the enumeration value (or the corresponding integer value) described in the table must be used.
- The error handling functions have no enumerated value.
- Orbit Event File is deprecated, only supported for CRYOSAT mission

6.1 Usage hints

Every CFI function has a different length of the Error Vector, used in the calling I/F examples of this SUM and defined at the beginning of the library header file. In order to provide the user with a single value that could be used as Error Vector length for every function, a generic value has been defined (XO_ERR_VECTOR_MAX_LENGTH) as the maximum of all the Error Vector lengths. This value can therefore be safely used for every call of functions of this library.

Date: 10/05/2019 Issue: 4.17

Page: 41

6.2 General enumerations

The aim of the current section is to present the enumeration values that can be used rather than integer parameters for some of the input parameters of the EO_ORBIT routines, as shown in the table below. The enumerations presented in [GEN_SUM] are also applicable

Table 2: Some enumerations within EO_ORBIT library

Input	Description	Enumeration value	Long
Propagation model	Propagation not initialized	XO_PROPAG_MODEL_NOT_INITIALIZED	-1
	Mean Kepler elements model	XO_PROPAG_MODEL_MEAN_KEPL	0
	SPOT elements model (this model is not implemented)	XO_PROPAG_MODEL_SPOT	1
	TLE model	XO_PROPAG_MODEL_TLE	2
	Precise model (analytical propagator)	XO_PROPAG_MODEL_PRECISE	3
	Auto initialization mode	XO_PROPAG_MODEL_AUTO	10
	Double initialization mode	XO_PROPAG_MODEL_DOUBLE	100
Non Sun-synchronous	MLST drift	XO_NOSUNSYNC_DRIFT	0
orbit characterisation	Inclination	XO_NOSUNSYNC_INCLINATION	1
	MLST non linear drift	XO_NOSUNSYNC_DRIFT_NONLINEAR	2
	Selection of simplified algorithm (additive value)	XO_NOSUNSYNC_USE_SIM_MODEL	10
Time inputs selection	Select the whole file	XO_SEL_FILE	0
	Time	XO_SEL_TIME	1
	Orbit	XO_SEL_ORBIT	2
	Default value	XO_SEL_DEFAULT	3
Interpolation model	Default	XO_INTERPOL_MODEL_DEFAULT	0
Orbit Init Model	Unknown mode	XO_ORBIT_INIT_UNKNOWN_MODE	-1
	Automatic detection of file	XO_ORBIT_INIT_AUTO	0
	Orbit Change mode	XO_ORBIT_INIT_ORBIT_CHANGE_MODE	1
	State Vector mode	XO_ORBIT_INIT_STATE_VECTOR_MODE	2
	Orbit Scenario File mode	XO_ORBIT_INIT_OSF_MODE	3
	Predicted Orbit File mode	XO_ORBIT_INIT_POF_MODE	4
	Restituted Orbit File mode	XO_ORBIT_INIT_ROF_MODE	5
	DORIS mode	XO_ORBIT_INIT_DORIS_MODE	6
	POF refined with DORIS mode	XO_ORBIT_INIT_POF_N_DORIS_MODE	7
	OSF part of the OEF mode	XO_ORBIT_INIT_OEF_OSF_MODE	8
	POF part of the OEF mode	XO_ORBIT_INIT_OEF_POF_MODE	9

Date: 10/05/2019 Issue: 4.17

Page: 42

TLE file	XO_ORBIT_INIT_TLE_MODE	11
	XO_ORBIT_INIT_TLE_SGP4_MODE	36
	XO_ORBIT_INIT_TLE_SDP4_MODE	37
SP3 file mode	XO_ORBIT_INIT_SP3_MODE	28
OEM file mode	XO_ORBIT_INIT_OEM_MODE	32
State Vector plus precise mode	XO_ORBIT_INIT_STATE_VECTOR_PRECI SE_MODE	33
Predicted Orbit File plus precise mode	XO_ORBIT_INIT_POF_PRECISE_MODE	34
Restituted Orbit File plus precise mode	XO_ORBIT_INIT_ROF_PRECISE_MODE	35
DORIS plus precise mode	XO_ORBIT_INIT_DORIS_PRECISE_MODE	36
Orbit Event File plus precise mode	XO_ORBIT_INIT_OEF_POF_PRECISE_MO DE	37
POF and DORIS files plus pre cise mode	XO_ORBIT_INIT_POF_N_DORIS_PRECISE _MODE	38
Geostationary satellite with fixed longitude and altitude	XO_ORBIT_INIT_GEO_LON_ALT_MODE	39
TLE initialization with SGP4 propagator	XO_ORBIT_INIT_TLE_SGP4_MODE	40
TLE initialization with SDP4 propagator	XO_ORBIT_INIT_TLE_SDP4_MODE	41
Initialization with a generic list of state vectors	XO_ORBIT_INIT_USER_OSV_LIST_MODE	42
Initialize with POF but update the state vector orbit numbers with the information of OSF	XO_ORBIT_INIT_POF_ORBNUM_ADJ_MO DE	43
Initialize with ROF but update the state vector orbit numbers with the information of OSF	XO_ORBIT_INIT_ROF_ORBNUM_ADJ_MO DE	44
Initialize with DORIS but update the state vector orbit numbers with the information of OSF	XO_ORBIT_INIT_DORIS_ORBNUM_ADJ_M ODE	45
Initialize with OEM but update the state vector orbit numbers with the information of OSF	XO_ORBIT_INIT_OEM_ORBNUM_ADJ_MO DE	46
Maximum value of enumeration	XO_ORBIT_INIT_MAX_VALUE	47
Do not increment phase number at next orbit change	XO_NO_PHASE_INCREMENT	0
Do increment phase number at next orbit change	XO_PHASE_INCREMENT	1

Phase increment

Date: 10/05/2019 Issue: 4.17

Orbit change search	Search forward	XO_SEARCH_FORWARD	1
direction	Search backward	XO_SEARCH_BACKWARD	-1
File Type	Orbit Scenario File	XO_REF_FILETYPE_OSF	1
	OSF from an Orbit Event File	XO_REF_FILETYPE_OEF_OSF	2
	FOS Predicted Orbit File	XO_REF_FILETYPE_POF	3
	POF from an Orbit Event File	XO_REF_FILETYPE_OEF_POF	4
	DORIS Navigator File	XO_REF_FILETYPE_DORIS_NAV	5
	FOS Restituted Orbit File	XO_REF_FILETYPE_ROF	6
	DORIS Preliminary Orbit File	XO_REF_FILETYPE_DORIS_PREM	7
	DORIS Precise Orbit File	XO_REF_FILETYPE_DORIS_PREC	8
	Default value, non-precise	XO_OSV_PRECISE_NO	1
DORIS state vectors times	Precise location every integer minute	XO_OSV_PRECISE_MINUTE	2
	Precise location every ten seconds	XO_OSV_PRECISE_TEN_SECONDS	3
Number of parameters for Orbit file checking	Number of parameters to check in the functions for checking orbit files	XO_NUM_CHECK_PARAMS	6
TLE generation mode	The OSVs in the requested range are fitted to one TLE. For POF files, the set of OSVs to fit are generated with propagation.	XO_FIT_TLE	0
	For ROF files, the set of OSVs are taken from the file.		
	The OSVs in the requested range are fitted to one TLE. The OSVs are taken from the file.	XO_FIT_TLE_LIST	1
	One TLE is generated for every OSV	XO_ONE_TLE_PER_OSV	2
Precise propagator user flag	Use predefined default values for some parameters	XO_DEFAULT_VALUES	0
	Use values introduced by use	XO_USER_VALUES	1
Precise propagator	Do not select contribution	XD_NOT_SELECT	0
propagation contribution selection	Select contribution	XD_SELECT	1
Precise propagator	Use SGA input parameter	XO_SGA_USE_PARAMETERS	0
propagation SGA input data	Read SGA values from files	XO_SGA_READ_VALUES_FROM_FILE	1
Reference time of	TAI reference	XO_TIME_REF_OF_TAI	0
records	UTC reference	XO_TIME_REF_OF_UTC	1

Issue: 4.17

Page: 44

	UT1 reference	XO_TIME_REF_OF_UT1	2
Orbit id change enumeration	Update orbit numbers using OSF	XO_ORBIT_ID_CHANGE_OSF	0
	Update orbit number using input time+orbit	XO_ORBIT_ID_CHANGE_TIME_ORBIT	1
GEO input geodetic coordinates type	Only input longitude is taken into account for initialization	XO_GC_LONGITUDE_ONLY	0
Data filter type	Outliers filter	XO_FILTER_OUTLIERS	0
Data filter action	Remove the sample	XO_REMOVE	
Orbit info items	Spacecraft midnight (SMX)	XO_ORBIT_INFO_ITEM_SMX	0
Orbit info flag for	Deactivate computation	XO_DEACTIVATE_ITEM	0
activation/deactivation of computation of xo_orbit_info items	Activate computation	XO_ACTIVATE_ITEM	1
Orbit type: Absolute or	Absolute Orbit	XO_ORBIT_ABS	0
relative (XO_Orbit_type_enum)	Relative Orbit	XO_ORBIT_REL	1
Time type	Only UTC time info is provided	XO_UTC_TYPE	0
(XO_Time_type_enum	Only orbit info is provided	XO_ORBIT_TYPE	1
)	UTC time and orbit info is provided	XO_BOTH_TYPE	2

Note: Orbit Event File is deprecated, only supported for CRYOSAT mission

The use of the previous enumeration values could be restricted by the particular usage within the different CFI functions. The actual range to be used is indicated within a dedicated reference named **allowed range**. When there are not restrictions to be mentioned, the allowed range column is populated with the label **complete**.

Date: 10/05/2019 Issue: 4.17

Page: 45

6.3 Data Structures

The aim of the current section is to present the data structures that are used in the EO_ORBIT library. The structures are currently used for the CFI Identifiers accessor functions. The following table show the structures with their names and the data that contain:

Table 3: EO_ORBIT structures

Structure name	Data		
	Variable Name	C type	Description
xo_osv_rec	tai_time	double	TAI time for the state vector
	utc_time	double	UTC time for the state vector
	ut1_time	double	UT1 time for the state vector
	abs_orbit	long	Absolute orbit number
	ref_frame	long	Reference frame of the OSV
	time_ref_of	long	Reference time of the OSV
	pos	double[3]	position of the OSV (x, y, z) components
	vel	double[3]	velocity of the OSV (x, y, z) components
	quality	double	Quality index
xo_anx_extra_info	abs_orbit	long	Absolute orbit number
	tanx	double	ANX time (UT1)
	tnod	double	Nodal period of the orbit
xo_mission_info	abs_orbit	long	Absolute orbit number
	rel_orbit	long	Relative orbit number
	cycle_num	long	Cycle number
	phase_num	long	Phase number
xo_ref_orbit_info	drift_mode	long	Non Sun-synchronous orbit characterisation (see Table 2 for possible values)
	inclination	double	Orbit inclination
	rep_cycle	long	Repeat cycle (days)
	cycle_len	long	Cycle length (orbits)
	ANX_long	double	ANX longitude
	mlst	double	MLST for the ANX
	mlst_drift	double	MLST drift
	mlst_nonlinear_drift	xo_mlst_nonlinear_dri ft	MLST non linear drift
xo_anx_info	anx_tai	double	TAI time for the ANX
	anx_utc	double	UTC time for the ANX

Date: 10/05/2019 Issue: 4.17

	anx_ut1	double	UT1 time for the ANX
	time_ref_of	long	Reference time of the ANX
	anx_pos	double[3]	Position vector
	anx_vel	double[3]	Velocity vector
	kepl	double[6]	Keplerian elements
	tnod	double	Nodal period
xo_osf_records	mission_info	xo_mission_info	Orbit numbers
	ref_orbit_info	xo_ref_orbit_info	Orbit Geometry data
	anx_info	xo_anx_info	ANX Data
xo_validity_time	time_ref	long	Time reference
	start	double	Validity star time
	stop	double	Validity stop time
xo_uni_propag	time_ref	long	Time reference in use
	val_time	xo_validity_time	validity propagation time range in UT1 time
	abs_orbit	long	Predicted Absolute orbit
	time_since_anx	double	Time since ANX
	time	double	Predicted time (UT1)
	pos	double[3]	Osculating position vector at pred. time (EF)
	vel	double[3]	Osculating velocity vector at pred. time (EF)
	acc	double[3]	Osculating acceleration vector at pred. time (EF)
	х	double[6];	Osculating keplerian elements at pred. time (TOD)
xo_propag_id_data	double_propag_flag	long	XL_TRUE if the using double propagation
	accu_mode	long	Flag to indicate if using high or low accuracy mode: 1 = low accuracy 2= high accuracy
	propag_osv	xo_uni_propag	Reference data for propagation
xo interpol id data	time_ref	long	Time reference
	time	double	Time for the interpol reference state vector
	abs_orbit	long	Absolute orbit number
	time_since_anx	double	Time since ANX
	pos	double[3]	Position vector

Date: 10/05/2019 Issue: 4.17

	vel	double[3]	Velocity vector
	acc	double[3]	Acceleration vector
	kep	double[6]	Keplerian elements
	val_time	xo_validity_time	Interpolation validity time range
xo_propag_precise_ config	user_flag	long	Indicates if default (XO_DEFAULT_VALUES) or user-defined (XO_USER_VALUES) values are used for some parameters.
	models_path	char[256]	Path where files necessary for models are looked for.
	gravity_flag	long	Gravity perturbation used (XO_SELECT) or not (XO_NOT_SELECT).
	thirdbody_flag	long	Third bodies (Sun and Moon) perturbation used (XO_SELECT) or not (XO_NOT_SELECT).
	atmos_flag	long	Atmosphere perturbation used (XO_SELECT) or not (XO_NOT_SELECT).
	srp_flag	long	Solar radiation pressure perturbation used (XO_SELECT) or not (XO_NOT_SELECT).
	step	double	Simulation step (seconds).
	grav_file	char[256]	File with data of gravitational model.
	grav_degree	long	Degree used gravity model.
	grav_order	long	Order used in gravity model.
	sga_flag	long	ap, f107 and f107a parameters used (XD_SGA_USE_PARAMETERS) or data read from files sga_ap_file and sga_f107_file (XD_SGA_READ_VALUES_FROM_FILE)
	sga_ap_file	char[256]	File with Geomagnetic Activity index values.
	sga_f107_file	char[256]	File with F10.7 Solar Activity index values.
	ар	double	Geomagnetic Activity Index (daily value).
	f107	double	F10.7 Index Solar Activity Index (daily value).
	f107a	double	F10.7 Index Solar Activity Index (value averaged over 3 months).
	sc_mass	double	S/C mass [kg].
	sc_drag_area	double	S/C effective drag area [m2].

Date: 10/05/2019 Issue: 4.17

	sc_drag_coeff	double	S/C drag coefficient.
	sc_srp_area	double	S/C effective Solar Radiation Pressure area [m2].
	sc_srp_coeff	double	S/C Solar Radiation Pressure coefficient
xo_mlst_nonlinear_ drift	linear_approx_validity	long	Number of orbits in which MLST linear approximation is valid
	quadratic_term	double	MLST quadratic term
	nof_harmonics	long	Number of harmonics
	mlst_harmonics	xd_mlst_harmonics	Harmonics
xo_orbit_id_init_dat a_union	file_set	xd_eocfi_file_set	Set of data structures with the data read from files
xo_orbit_id_init_dat	data_type	long	Enumeration: only XO_FILE_DATA
а	orbit_id_init_data	xo_orbit_id_init_data_ union	Set of orbit data read from files
	change_data	xo_orbit_id_change_ data	Values to be used to update the orbit numbers in the state vectors, if needed
xo_geo_geod_coor	gc_longitude	double	Geostationary geocentric longitude [deg]
	gd_latitude	double	Geostationary geodetic latitude [deg]
	gd_altitude	double	Geostationary geodetic altitude [m]
xo_geo_orbit_info	geod_coord	xo_geo_geod_coord	Geostationary geodetic corrdinates
xo_geo_orbit_init_d ata	init_type	long	GEO orbit info type (see XO_Geo_coord_enum)
	geo_orbit_info	xo_geo_orbit_info	Geostationary orbit information
xo_orbit_filter_cfg_u nion	outliers_cfg	xo_orbit_filter_outliers _cfg	Outliers filter configuration
xo orbit filter settin	type	long	Filter type (Data filter type enumeration)
gs	filter_cfg	xo_orbit_filter_cfg_uni on	Filter configuration
xo_orbit_filter_repor t_union	outliers_report	xo_orbit_filter_outliers _report	Outliers filter report
xo orbit filter repor	type	long	Filter type (Data filter type enumeration)
t ·	filter_report	xo_orbit_filter_report_ union	Filter report
xo_orbit_filter_outlie	threshold_pos	double	Threshold in position [m]
rs_cfg	threshold_vel	double	Threshold in velocity [m/s]
	action	long	Action to be taken (Data filter action enumeration)

Date: 10/05/2019 Issue: 4.17

xo_orbit_filter_outlie	nof_OSV_in	long	Number of input state vectors
rs_report	nof_OSV_filtered	long	Number of filtered state vectors
	min_time_gap	double	Minimum time gap between state vectors [seconds]
	max_time_gap	double	Maximum time gap between state vectors [seconds]
	min_RMS_pos	double	Minimum RMS for position.
	max_RMS_pos	double	Maximum RMS for position.
	min_RMS_vel	double	Minimum RMS for velocity.
	max_RMS_vel	double	Maximum RMS for velocity.
xo_orbit_id_change	change_mode	long	See Orbit id change enum
_data	eocfi_file	xd_eocfi_file	File to be used as reference for orbit update
	change_time_ref	long	Time reference
	change_time	double	Time corresponding to change_orbit (in change_time_ref reference time)
	change_orbit	long	Orbit corresponding to change_time
xo_time	type	long	Time value. According to XV_Time_type_enum, the time can be given as:
			A UTC time value
			 An orbit number plus the time elapsed since the ANX
			Both values above.
			The struct values below are filled according to the type given in this field.
	utc_time	double	UTC time value
	orbit_type	long	Orbit type number or orbit_num (according to XO_Orbit_type_enum)
	orbit_num	long	Orbit number (absolute or relative)
	cycle	long	Cycle number (if orbit type is a relative orbit)
	sec	long	Seconds after ANX
	msec	long	Microseconds after ANX
xo_time_interval	tstart	xo_time	Time interval start
_	tstop	xo_time	Time interval stop
xo_orbit_id_check _osv_report	num_osvs_outside_lo	long	Number of state vectors outside of loose tolerance
	index_osvs_outside_ loose_tolerance	long *	Array with indices of state vectors outside of loose tolerance

Date: 10/05/2019 Issue: 4.17

	num_osvs_outside_ti ght_tolerance	long	Number of state vectors outside of tight tolerance
	<pre>index_osvs_outside_ tight_tolerance</pre>	long *	Array with indices of state vectors ouside of tight tolerance
xo_orbit_id_check _report		xd_orbit_file_diag nostics_report	Diagnostics data from xd_orbit_file_diagnostics
		xo_orbit_id_check_ osv_report	Diagnostics data from xo_osv_check

Issue: 4.17

Page: 51

7 CFI FUNCTIONS DESCRIPTION

The following sections describe each CFI function.

Input and output parameters of each CFI function are described in tables, where C programming language syntax is used to specify:

- Parameter types (e.g. long, double)
- Array sizes of N elements (e.g. param[N])
- Array element M (e.g. [M])

Issue: 4.17

Page: 52

7.1 xo_orbit_init_def

7.1.1 Overview

The **xo_orbit_init_def** routine generates a Cartesian orbit state vector around the true ascending node crossings. The result is stored and returned through the xo_orbit_id variable so that can fed other routines involving orbit calculations. The data generated by the **xo orbit init def** function is based on:

- Date (processing time),
- Longitude of the ascending node,
- Satellite Repeat Cycle and Cycle Length
- Mean local solar time at ascending node
- Drift of mean local solar time or the inclination

The user should take into account that **xo orbit init def** only retrieve and stores internal data for one orbit.

The validity start and stop times of the initialization (*val_time0* and *val_time1* output parameters) represents the allowed time window for orbit calculations. If the **xo_orbit_init_def** function is called, this time window starts at 01/01/1950 00:00:00 and ends at 31/12/2099 23:59:59.

Before calling this function it is required to initialise the time correlations, using either **xl_time_ref_init** or **xl_time_ref_init_file** EO_LIB functions (see [LIB_SUM]).

In order to obtain results consistent with the ones obtained initializing the orbit id with an equivalent Orbit Scenario file, the drift_mode flag has to be set to drift_mode = XO_NOSUNSYNC_DRIFT + XO_NOSUNSYNC_USE_SIM_MODEL.

Warning: The algorithm used in this function is only valid for satellites with a finite valid range for the inclination and the semi-major axis of the orbit. In CRYOSAT, for example, as there are no minimum and maximum values defined of these two orbital elements, there are defined provisional ranges of the same size as the ones defined in ENVISAT until new requirements are defined. The nominal values have been taken from the [MCD]. There is not available any other nominal orbital element for any other satellite, so this routine is only valid (at this moment) for both CRYOSAT and ENVISAT.

A complete calling sequence of the orbit calculations procedure is presented in section 4.2.

Note: function xo orbit init def is deprecated. It is recommended to use xo orbit init def 2 instead.

Issue: 10/05/2019 4.17

Page: 53

7.1.2 Calling interface

The calling interface of the **xo_orbit_init_def** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer orbit.h>
  long sat id, propag model, time ref, time init mode;
  xl model id model id = {NULL};
  xl time id time id = {NULL};
  xo orbit id orbit id = {NULL};
  long drift mode, irep, icyc;
  long orbit0, orbit;
  double time0, time, val time0, val time1;
  double ascmlst drift, inclination, rlong, ascmlst;
  long status, ierr[XO NUM ERR ORBIT INIT DEF];
  status = xo orbit init def (&sat id, &model id, &time id,
                                   &time ref, &timeO, &orbitO,
                                   &drift mode,
                                   &ascmlst drift, &inclination,
                                   &irep, &icyc, &rlong, &ascmlst,
                                   &val time0, &val time1,
                                   &orbit id, ierr);
}
```


Date: 10/05/2019 Issue: 4.17

Page: 54

7.1.3 Input parameters

The **xo_orbit_init_def** CFI function has the following input parameters:

Table 4: Input parameters of xo_orbit_init_def function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
model_id	xl_mod el_id*	-	Model ID	-	-
time_id	xl_time _id*	-	Structure that contains the time correlations	-	-
time_ref	long*	-	Time reference ID	-	Complete
time0	double*	-	Reference time	Decimal days (Processing format)	[-18262.0,36524.0]
orbit0	long*	-	Absolute orbit number of the reference orbit	-	>= 0
drift_mode	long*	-	Flag to select between drift in mean local solar time and inclination as input characterization of the reference	-	XO_NOSUNSYNC _DRIFT,
			orbit.		XO_NOSUNSYNC _INCLINATION,
			Note: When initializing a Sunsynchronous orbit, the selected drift mode must be XO_NOSUNSYNC_DRIFT and the ascmlst_drift parameter must be set to zero.		XO_NOSUNSYNC _DRIFT + XO_NOSUNSYNC _USE_SIM_MODE L,
			Note 2: Add XO_NOSUNSYNC_USE_SIM_M ODEL to the drift mode to select the simplified model in the algorithm.		XO_NOSUNSYNC _INCLINATION + XO_NOSUNSYNC _USE_SIM_MODE L
ascmlst_drift	double*	-	If drift_mode = XO_NOSUNSYNC_DRIFT	seconds/day	TBD
			Drift in mean local solar time of the reference orbit:		
			· MLST[N+1]=MLST[N] +MLSTdrift		
			See drift_mode entry in this table.		
inclination	double*	-	If drift_mode =	deg	[0,180]

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

Page: 55

			\(\alpha\)		
			XO_NOSUNSYNC_INCLINATION		
			Inclination of the reference orbit		
irep	long *	1	Repeat cycle of the reference orbit	days	> 0
			The actual repeat cycle is calculated as per definition included in [MCD]		
icyc	long *	-	Cycle length of the reference orbit	orbits	> 0
rlong	double*	-	Geocentric longitude of the [Earth fixed] ascending node (Earth fixed CS)	deg	[0,360)
ascmlst	double*	-	Mean local solar time at ascending node	Decimal hours	[0, 24)

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Satellite ID: sat_id. See [GEN_SUM].
- Time reference ID: time_ref. See [GEN_SUM].
- Time initialisation mode: time_init_mode. See [GEN_SUM].
- Drift mode: drift mode. Current document, section 6.2.

7.1.4 Output parameters

The output parameters of the **xo_orbit_init_def** CFI function are:

Table 5: Output parameters of xo_orbit_init_def function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_init_def	long	-	Main status flag	-	-1, 0, +1
val_time0	double*	-	Validity start time of the initialization	Decimal days (Processing format)	[-18262.0,36524.0]
val_time1	double*	-	Validity stop time of the initialization	Decimal days (Processing format)	[-18262.0,36524.0]
orbit_id	xo_orbi t _id*	-	Structure that contains the orbit initialization.	-	-
ierr[XO_NUM_ER R_ORBIT_INIT_D EF]	long	all	Status vector	-	-

Date: 10/05/2019 Issue: 4.17

Page: 56

7.1.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_orbit_init_def** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_orbit_init_def** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 6: Error messages of xo_orbit_init_def function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Wrong satellite flag	No calculation performed	XO_CFI_ORBIT_INIT_DEF_ SAT_ERR	0
ERR	Geostationary satellite currently not supported for this function	No calculation performed	XO_CFI_ORBIT_INIT_DEF_ GEO_SAT_ERR	1
ERR	Wrong input flag: %s	No calculation performed	XO_CFI_ORBIT_INIT_DEF_F LAG_ERR	2
ERR	Could not perform a time transformation	No calculation performed	XO_CFI_ORBIT_INIT_DEF_T IME_CHANGE_ERR	3
ERR	Input out of range: %s	No calculation performed	XO_CFI_ORBIT_INIT_DEF _INPUTS_ERR	4
ERR	An error ocurred in the genstate routine	No calculation performed	XO_CFI_ORBIT_INIT_DEF _GENSTATE_ERR	5
ERR	Memory Error	No calculation performed	XO_CFI_ORBIT_INIT_DEF_ MEMORY_ERR	6
ERR	Propagation cannot be initialised	No calculation performed	XO_CFI_ORBIT_INIT_DEF_ PROPAG_INIT_ERR	7

Issue: 4.17 Page: 57

7.2 xo_orbit_init_def_2

7.2.1 Overview

The xo_orbit_init_def_2 is equivalent to xo_orbit_init_def except for the fact that this one allows to introduce as inputs non linear terms of Mean Local Solar Time.

Issue:

Page: 58

4.17

7.2.2 Calling interface

The calling interface of the **xo_orbit_init_def_2** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_orbit.h>
{
  long sat_id, time_ref;
  xl_model_id model_id = {NULL};
  xl_time_id time_id = {NULL};
  xo_orbit_id orbit_id = {NULL};
  long orbit0;
  double time0;
  xo_ref_orbit_info ref_orbit_info;
  long status, ierr[XO_NUM_ERR_ORBIT_INIT_DEF];
  status = xo_orbit_init_def_2(&sat_id, &model_id, &time_id, &time_ref, &time0, &orbit0, &ref_orbit_info, &val_time0, &val_time1, &orbit_id, ierr);
}
```


Date: 10/05/2019 Issue: 4.17

Page: 59

7.2.3 Input parameters

The xo orbit init def 2 CFI function has the following input parameters:

Table 7: Input parameters of xo_orbit_init_def_2 function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
model_id	xl_mod el_id*	-	Model ID	-	-
time_id	xl_time _id*	-	Structure that contains the time correlations	-	-
time_ref	long*	-	Time reference ID	-	Complete
time0	double*	-	Reference time	Decimal days (Processing format)	[-18262.0,36524.0]
orbit0	long*	-	Absolute orbit number of the reference orbit	-	>= 0
ref_orbit_info	xo_ref_ orbit_in fo*	-	Struct with inputs for the function. The parameters are equivalent to the ones in xo_orbit_init_def (see table 4) but also MLST non linear terms can be introduced.	-	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Satellite ID: sat_id. See [GEN_SUM].
- Time reference ID: time ref. See [GEN SUM].

7.2.4 Output parameters

The output parameters of the xo_orbit_init_def_2 CFI function are:

Table 8: Output parameters of xo_orbit_init_def_2 function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_init_def_2	long	-	Main status flag	-	-1, 0, +1
val_time0	double*	-	Validity start time of the initialization	Decimal days (Processing format)	[-18262.0,36524.0]
val_time1	double*	-	Validity stop time of the initialization	Decimal days (Processing format)	[-18262.0,36524.0]
orbit_id	xo_orbi	-	Structure that contains	-	-

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

Page: 60

	t_id*		the orbit initialization.		
ierr[XO_NUM_ER R_ORBIT_INIT_D EF]	•	all	Status vector	-	-

7.2.5 Warnings and errors

Warning and errors are the same as in function xo_orbit_init_def (see section 7.1.5).

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

Page: 61

7.3 xo_orbit_cart_init

7.3.1 Overview

This software initializes the orbit data using as input a Cartesian orbit state vector.

The validity start and stop times of the initialization (*val_time0* and *val_time1* output parameters) represents the allowed time window for orbit calculations. If the **xo_orbit_cart_init** function is called, this time window starts at 01/01/1950 00:00:00 and ends at 31/12/2099 23:59:59.

Before calling this function it is required to initialise the time correlations, using either xl_time_ref_init or xl time ref init file EO LIB functions (see [LIB SUM]).

A complete calling sequence of the orbit calculations procedure is presented in section 4.2.

7.3.2 Calling interface

The calling interface of the **xo_orbit_cart_init** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_orbit.h>
{
    xl_model_id model_id = {NULL};
    xl_time_id time_id = {NULL};
    xo_orbit_id orbit_id = {NULL};
    long sat_id, time_ref, abs_orbit;
    double time, pos[3], vel[3], val_time0, val_time1;
    long status, ierr[XO_NUM_ERR_ORBIT_CART_INIT];

status = xo_orbit_cart_init(&sat_id, &model_id, &time_id, &time_ref, &time, pos, vel, &abs_orbit, &val_time0, &val_time1, &val_time0, &val_time1, &val_time0, &val_time1, &val_time
```


Issue: 4.17

Page: 62

7.3.3 Input parameters

The xo_orbit_cart_init CFI function has the following input parameters:

Table 9: Input parameters of xo_orbit_cart_init function

C name	C type	Array Element	Description Unit (Reference) (Format)		Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
model_id	xl_model _id*	-	Model ID	-	-
time_id	xl_time_i d*	-	Structure that contains the time - correlations -		-
time_ref	long*	-	Time reference ID	e reference ID - (
time	double*	-	Reference time Decimal days (Processing format)		[-18262.0,36524.0]
pos	double[3]	all	Initial osculating position vector (X, Y, Z)	m	-
			(EF reference frame)		
vel	double[3]	all	Initial osculating velocity vector (X, Y, Z)	velocity vector m/s	
			(EF reference frame)		
abs_orbit	long*	-	Orbit of the state vector	-	> 0

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Satellite ID: sat_id. See [GEN_SUM].
- Time reference ID: time ref. See [GEN SUM].

7.3.4 Output parameters

The output parameters of the **xo_orbit_cart_init** CFI function are:

Table 10: Output parameters of xo_orbit_cart_init function

C name	C type	Array	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	
xo_orbit_cart_init	long	-	Main status flag	-	-1, 0, +1
val_time0	double*	-	Validity start time of the initialization	Decimal days (Processing format)	[-18262.0,36524.0]
val_time1	double*	-	Validity stop time of the initialization	Decimal days (Processing format)	[-18262.0,36524.0]

Date: 10/05/2019 Issue: 4.17

Page: 63

orbit_id	xo_orbit_id	-	Structure that contains the orbit initialization.	-	-
ierr[XO_NUM_ERR _ORBIT_CART_INI T]	•	all	Status vector	-	-

7.3.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_orbit_cart_init** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_orbit_cart_init** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 11: Error messages of xo_orbit_cart_init function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Wrong Satellite Id.	No calculation performed	XO_CFI_ORBIT_CART_I NIT_SAT_ERR	0
ERR	Geostationary satellite currently not supported for this function	No calculation performed	XO_CFI_ORBIT_CART_INI T_GEO_SAT_ERR	1
ERR	Wrong input flag	No calculation performed	XO_CFI_ORBIT_CART_INI T_FLAG_ERR	2
ERR	Input Time Id. is not initialized.	No calculation performed	XO_CFI_ORBIT_CART_I NIT_TIME_STATUS_ER R	3
ERR	Orbit ld is already initialized.	No calculation performed	XO_CFI_ORBIT_CART_I NIT_STATUS_ERR	4
ERR	Time conversion error.	No calculation performed	XO_CFI_ORBIT_CART_I NIT_TIME_TRANSFOR MING_ERR	5
ERR	Time out of limits.	No calculation performed	XO_CFI_ORBIT_CART_I NIT_TIME_RANGE_ERR	
ERR	Memory allocation error.	No calculation performed	XO_CFI_ORBIT_CART_I NIT_MEMORY_ERR	7

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

64

Page:

7.4 xo_orbit_cart_init_precise

7.4.1 Overview

This software initializes the orbit data using as input a Cartesian orbit state vector for precise propagation (the state vectors will be computed with a numeric propagator).

The validity start and stop times of the initialization (*val_time0* and *val_time1* output parameters) represents the allowed time window for orbit calculations. If the **xo_orbit_cart_init_precise** function is called, this time window starts at the time of the state vector and ends at 31/12/2099 23:59:59.

Before calling this function it is required to initialise the time correlations, using either xl_time_ref_init or xl time ref init file EO LIB functions (see [LIB SUM]).

A complete calling sequence of the orbit calculations procedure is presented in section 4.2.

7.4.2 Calling interface

The calling interface of the **xo_orbit_cart_init_precise** CFI function is the following (input parameters are underlined):

```
#include <explorer orbit.h>
{
  xl model id model id = {NULL};
  xl time id time id = {NULL};
  xo orbit id orbit id = {NULL};
  long sat id, time ref, abs orbit;
  double time, pos[3], vel[3], val time0, val time1;
  xo propag precise config precise conf;
  long status, ierr[XO NUM ERR ORBIT CART INIT];
  status = xo orbit cart init precise(&sat id, &model id,
                                        &time id,
                                             &time ref, &time,
                                              pos, vel, &abs orbit,
                                         &precise conf,
                                             &val time0, &val time1,
                                             &orbit id, ierr);
}
```


Date: 10/05/2019 Issue: 4.17

Page: 65

7.4.3 Input parameters

The **xo_orbit_cart_init_precise** CFI function has the following input parameters:

Table 12: Input parameters of xo_orbit_cart_init_precise function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
model_id	xl_model_i d*	-	Model ID	-	-
time_id	xl_time_id	-	Structure that contains the time correlations	-	-
time_ref	long*	-	Time reference ID	-	Complete
time	double*	-	Reference time	Decimal days (Processing format)	[-18262.0,36524.0]
pos	double[3]	all	Initial osculating position vector (X, Y, Z) (EF reference frame)	m	-
vel	double[3]	all	Initial osculating velocity vector (X, Y, Z) (EF reference frame)	m/s	-
abs_orbit	long*	-	Orbit of the state vector	-	> 0
precise_conf	xo_propag _precise_c		Configuration parameters for precise propagator.	-	struct members with restrictions:
	onfig*				- All flags: 0 or 1.
					- step: > 0.
					- grav_degree, grav_order > 0.
					- ap, f107, f107a: >= 0.
					- sc_mass: > 0.
					- sc_drag_area: > 0.
					- sc_drag_coeff: > 0.
					- sc_srp_area: > 0.
					- sc_srp_coeff: > 0.

In precise_conf parameter, at least user_flag, models_path and satellite values (sc_mass, sc_drag_area, sc_drag_coeff, sc_srp_area, sc_srp_coeff) must be provided. The other values must be provided just in case the user does not want to use default values (user_flag = XO_USER_VALUES). If default values are seleted (user_flag = XO_DEFAULT_VALUES), then the following values are used:

- gravity flag = XO SELECT;
- thirdbody_flag = XO_SELECT;

Date: 10/05/2019 Issue: 4.17

Page: 66

- atmos flag = XO SELECT;
- srp_flag = XO_SELECT;
- step = 10. [s];
- grav file = egm96.grv;
- grav degree = 10;
- grav order = 10;
- sga flag = XO SGA READ VALUES FROM FILE (Use files, not constant values for AP and F107A);
- sga ap file = ap esa ecss jan2000 mean.sga;
- sga_f107_file = f107_esa_ecss_jan2000_mean.sga;
- ap = 0.;
- f107 = 0.;
- f107a = 0.;

Some files that can be used or taken as example by the user are provided in the files/models directory of the EOCFI libraries. There are files for gravity model (egm96.grv), F10.7 index (f107_*.sga) and Geomagnetic activity index (ap_*.sga).

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Satellite ID: sat id. See [GEN SUM].
- Time reference ID: time_ref. See [GEN_SUM].

7.4.4 Output parameters

The output parameters of the **xo** orbit cart init precise CFI function are:

Table 13: Output parameters of xo_orbit_cart_init_precise function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_cart_init_p recise	long	-	Main status flag	-	-1, 0, +1
val_time0	double*	-	Validity start time of the initialization	Decimal days (Processing format)	[-18262.0,36524.0]
val_time1	double*	-	Validity stop time of the initialization	Decimal days (Processing format)	[-18262.0,36524.0]
orbit_id	xo_orbit_i d *	-	Structure that contains the orbit initialization.	-	-
ierr[XO_NUM_ERR _ORBIT_CART_INI T_PRECISE]		all	Status vector	-	-

Issue: 10/05/2019 4.17

Page: 67

7.4.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_orbit_cart_init_precise** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_orbit_cart_init_precise** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 14: Error messages of xo_orbit_cart_init_precise function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Error in call to function xo_orbit_cart_init.	No calculation performed	XO_CFI_ORBIT_CART_INIT_ FLAG_ERR	0
ERR	Error initialising propagation.	No calculation performed	XO_CFI_ORBIT_CART_INIT_ PRECISE_PROPAG_INIT_ER R	1
ERR	Time conversion error.	No calculation performed	XO_CFI_ORBIT_CART_INIT_ PRECISE_TIME_CONVERSI O N_ERR	2
ERR	Error in precise propagator input parameters	No calculation performed	XO_CFI_ORBIT_CART_INIT_ PRECISE_PRECISE_PARAM S_ERR	3

Code: EO-MA-DMS-GS-0004 Date:

10/05/2019 Issue: 4.17

Page: 68

7.5 xo_orbit_init_file

7.5.1 Overview

The **xo** orbit init file function is used for initializing the orbit calculations using one of these orbit files:

- One Orbit Scenario File providing orbital changes.
- TLE files. xo orbit init file extracts and uses only those TLE entries with the default NORAD satellite designator correspondent to the input satellite Id. The correspondence table between satellite ids and default NORAD satellite designators is given in table 224 from the section 9.17, [D H SUM]. In case the input file is not compliant with this correspondence, the default designator can be changed by using function xl set tle sat data, section 7.48 [LIB SUM].
- Files containing a list of state vectors (see also note below):
 - One or more FOS Predicted ascending node cartesian state vectors file. In case multiple files are used, the files should be time ordered and the gap between them (i.e. time difference between the last vector of nth file and the first vector of the nth+1 file) should be less than two orbital periods.
 - One FOS Predicted Orbit File plus a DORIS Navigator unconsolidated level-0 products file.
 - One or more Orbit Event files. Note: Orbit Event File is deprecated, only supported for **CRYOSAT** mission
 - One or more FOS Restituted orbit files.
 - One or more DORIS Navigator files. DORIS files are supported in 3 formats: Cryosat, Sentinel 3 and Jason CS, the type being automatically detected (see [D H SUM] for further details). Note: since Sentinel 3 and Jason CS DORIS orbit numbers start at 1 (due to the lack of information within the file itself), the orbit number can be changed using the function xd orbit id change (section 7.60).
 - One or more DORIS Predicted files.
 - One or more DORIS Preliminary files.
 - One or more generic OSVS lists. In this case any file with a list of state vectors can be used, but the propagator is not initialized.
 - One or more SP3 files.
 - One or more OEM files. Of the fields read with the funcion xd read oem (see section 9.21 of [D H SUM]), the ones that are relevant for the orbit initialisation are: REF FRAME, TIME SYSTEM, Epoch, X, Y, Z, X DOT, Y_DOT, Z_DOT.
- One Orbit Scenario file plus files containing a list of state vectors (i.e. FOS Predicted, FOS Restituted or DORIS files): in this case, the orbit id is initialized with state vectors, but the orbit number of every state vector is corrected to be consistent with the one expected from OSF. In this case, the OSF shall be the first item of the input files input array; the orbit file mode must be set XO ORBIT INIT POF ORBNUM ADJ MODE, explicitly respectively XO ORBIT INIT ROF ORBNUM ADJ MODE,

XO ORBIT INIT DORIS ORBNUM ADJ MODE,

XO ORBIT INIT OEM ORBNUM ADJ MODE.

NOTE: OSVs are considered restituted if the time interval between one OSV and the next does not exceed 1800sec. In this case following OSV computation will be done via interpolation. In any other case, propagation will be used.

Date: 10/05/2019 Issue: 4.17

Page: 69

The format of the above files is described in [FORMATS].

In order to read files, xo_orbit_init_file function internally uses Data Handling functions. Please refer to [D H SUM], in particular sections 4.2 and 4.3, for further details.

Before calling this function it is required to initialise the time correlations, using either xl_time_ref_init, xl time ref init file or xl time id init EO LIB functions (see [LIB SUM]).

The user can select the time interval to be used from the input file(s) using three different ways:

Table 15: User requested time range in xo_orbit_init_file

time_mode (see 7.33.4)	input parameter	requested start time (t_req_start)	requested stop time (t_req_stop)
XL_SEL_TIME	time0 / time1	time0	time1
XL_SEL_ORBIT	orbit0 / orbit1	tANX(orbit0)	tANX(orbit1)
XL_SEL_FILE	-	first state vector in the file(s)	last state vector in the file(s)

The validity start and stop times of the initialization (val_time0 and val_time1 output parameters) represents the allowed time window for orbit calculation. The following table shows the validity time interval for the different input files:

Table 16: Validity periods for xo_orbit_init_file

Input file type	val_time0	val_time1
Orbit file providing Orbit changes	ANX Time of the first orbital change	Infinity
Orbit files providing a list of orbital state vectors (Predicted Orbit Files, Restituted Orbit Files, DORIS files, SP3 files)	time of the first state vector	Time of the last state vector
TLE files	time of the first TLE	Time of the last TLE + 1day

A complete calling sequence of the orbit calculation procedure is presented in section 4.2.

7.5.1.1 Recommendations on Orbit Files Usage

7.5.1.1.1 Reference Frames

The main usage of the Orbit Library is to support geo-location. As a consequence an Earth-Fixed frame is the natural reference frame to use, end-to-end. On the other hand, accurate conversion between inertial and earth-fixed frames happens only when polar motion data is available, more precisely when the time_id has been previously initialized with a IERS Bulletin.

Therefore, when polar motion data is not available, the user is recommended to initialize the orbit id by providing Orbit files with Earth-Fixed frame data (orbit state vectors), and to compute geo-location

Date: 10/05/2019 Issue: 4.17

Page: 70

information in Earth-Fixed. This provides accurate computations. For any other usage the user shall be aware of the consequences and accept small inaccuracies, In particular:

- •initializing the orbit id with inertial orbit data, and computing inertial parameters, is also supported and is accurate;
- •initializing the orbit id with earth-fixed orbit data, and computing inertial parameters (or vice-versa), leads to slightly inaccurate computations and should be avoided unless ignoring polar motion is acceptable.

7.5.1.1.2 Time correlations

In order to get consistent results, the time correlations defined in the time_id shall be identical to those defined in the orbit file. In order to achieve this, the user is strongly recommended to initialize the time_id using the same orbit file with the function xl_time_ref_init_file. If time correlations in the time_id and the orbit file are not matching, xo orbit init file issues a warning and recomputes the

times of the orbit file records to make them compatible with the time_id correlations. Therefore, the user shall be aware that, in case time correlations provided in the time_id and orbit_id initialization do not match, the time correlations provided in the time_id initialization will prevail and a warning will be raised during orbit id initialization.

The value defined in the "Time_Reference" field in the variable header of the orbit file is used as base time for such re-computation. If this value is not provided, the input parameter time_ref is used.

For example, if the orbit file is a POF and time_ref is UTC, the UTC times are left unchanged but the TAI and UT1 times are recomputed applying to the UTC times the time_id correlations.

For Orbit Scenario Files (OSF), the time reference is always UT1 and, in case the time correlation defined in the time_id differs from the one defined in the OSF, a warning is issued and, in computations using the orbit id, the time correlation defined in the time id will prevail. For example, in the

computation of a state vector at a given UTC time, the input UTC time is converted to UT1 using the time correlation in the time_id and not the one in the OSF. Therefore, the user must be aware that, using a time id with a time correlation different from the one defined in the OSF, he is altering the

orbit model defined in the OSF and he has to expect results different from those computed by systems that are using the OSF with the correct time correlation (this is often the case of planning systems). In order to avoid this inconsistency, it is always strongly advised to initialize the time id using the same OSF file.

7.5.1.1.3 Delta UTC-UT1 in Orbit Scenario Files

The Reference Orbit defined within the Orbit Scenario File is based on the assumption that the Delta UTC-UT1 is zero and does not change across orbital changes.

Introducing changes in Delta UTC-DUT1 across consecutive orbital changes (for example, by using different time correlations in two consecutive orbital changes) may introduce discontinuities in orbit computations at the transition from one orbital change to the other.

7.5.1.1.4 Computing orbit diagnostics

Date: 10/05/2019 Issue: 4.17 Page: 71

The function computes internally diagnostics of OSV records for OEM/SP3/Doris/orbit files to check the parts of the file that are usable for orbit initialization. The following table describes the types of errors that are checked and the behaviour of the function when a particular error is found:

Table 17: OSV diagnostics behavior at orbit initialization

Type of error	Behavior
Repeated OSV	Warning at 1 st inconsistency
ABS [OSV_TIME(N) – OSV_TIME(N-1)] < 1 microsecond	Action: Discard OSV
Going back OSV	Warning at 1 st inconsistency
OSV_TIME(N-1) - OSV_TIME(N) >= 1 microsecond	Action: discard OSV
GAP	Warning at 1 st gap found
ROF and DORIS: OSV_TIME(N) – OSV_TIME(N-1) > 330 seconds	Action: stop loading OSVs at 1 st gap found.
OEM and SP3: OSV_TIME(N) – OSV_TIME(N-1) > 30 minutes	
Orbit number not consistent:	one warning at first inconsistency.
orbit number should not decrease.	Action: adjust orbit number.

NOTE: For POF files the diagnostics are not computed.

7.5.2 Calling interface

The calling interface of the **xo_orbit_init_file** CFI function is the following (input parameters are <u>underlined</u>):

Issue: 4.17 Page: 72

&val_time0, &val_time1,
&orbit_id, ierr);

}

Date: 10/05/2019 Issue: 4.17

Page: 73

7.5.3 Input parameters

The **xo_orbit_init_file** CFI function has the following input parameters:

Table 18: Input parameters of xo_orbit_init_file function

C name	C type	_	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	
sat_id	long *	-	Satellite ID	-	Complete (Geostationary satellites can only be used with TLE files)
					For SP3 files, see an explanation under the table.
model_id	xo_mo del_id*	-	Model ID	-	-
time_id	xo_tim e _id*	-	Structure that contains the time correlations	-	-
orbit_file_mode	long*	-	Flag that indicates the type of the input orbit file.	-	XO_ORBIT_INIT_A UTO
			 There exists the possibility of detecting automatically the type of the files using the value XO_ORBIT_INIT_AUTO. The Orbit Event files are used as Orbit Scenario files if the AUTO mode is selected. In case they want to be used as Predicted orbit files, the option XO_ORBIT_INIT_OEF_POF_MO DE should be chosen. 		XO_ORBIT_INIT_O SF_ MODE XO_ORBIT_INIT_P OF_ MODE XO_ORBIT_INIT_R OF_ MODE XO_ORBIT_INIT_D ORIS_ MODE XO_ORBIT_INIT_P OF_N _DORIS_MODE XO_ORBIT_INIT_P XO_ORBIT_INIT_P XO_ORBIT_INIT_P XO_ORBIT_INIT_O
			 If the AUTO mode is selected and the file type is a list of OSV (POF or ROF), the Software configures the orbit_id for propagation if the time interval between an OSV and the next is 1800 seconds (half an hour), for interpolation otherwise. The user can verify this configuration by calling xo_orbit_get_propag_mode. In case the type of initialization is XO_ORBIT_INIT_USER_OSV_LIST_MODE, the propagator/interpolator is not initialized, so any operation involving these computations will 		EF_O SF_MODE XO_ORBIT_INIT_O EF_P OF_MODE XO_ORBIT_INIT_T LE_MODE XO_ORBIT_INIT_T LE_SGP4_MODE XO_ORBIT_INIT_T LE_SDP4_MODE XO_ORBIT_INIT_U SER_OSV_LIST_M ODE XO_ORBIT_INIT_S

Date: 10/05/2019 Issue: 4.17

Page: 74

			return error. • In case the type of initialization is XO_ORBIT_INIT_(POF/ROF/DORIS /OEM)_ORBNUM_ADJ_MODE, the OSF shall be the first item of the input files input array; the orbit file mode must be set explicitly, AUTO mode is not supported for these types. A description of the propagation models is given in section 7.33.2		P3_MODE XO_ORBIT_INIT_P OF_ORBNUM_ADJ MODE XO_ORBIT_INIT_R OF_ORBNUM_ADJ _MODE XO_ORBIT_INIT_D ORIS_ORBNUM_A DJ_MODE XO_ORBIT_INIT_O EM_MODE XO_ORBIT_INIT_O EM_MODE XO_ORBIT_INIT_O EM_MODE
n_files	long	-	Number of input files	-	>=1
input_files	char**	-	Vector of orbit files. In case multiple files are used, they should be time ordered. If there is overlap between files, the newest data have precedence.	-	-
time_init_mode	long*	-	Flag for selecting the time range of the initialisation. For TLE files, the whole file is always selected (this flag and the parameters time0/time1, orbit0/orbit1 are dummies)	-	Select either: · XO_SEL_FILE · XO_SEL_ORBIT · XO_SEL_TIME For DORIS Navigator files and SP3 files, XO_SEL_ORBIT is not allowed
time_ref	long*	-	Time reference ID	-	Complete When using DORIS Navigator files and time_mode is XO_SEL_TIME, only XL_TIME_UTC is allowed.
time0	double*	-	Start time. See section 7.33.1. Used only if: · time_init_mode=XO_SEL_TIME	Decimal days (Processing format)	[-18262.0,36524.0]
time1	double*	-	Stop time. Used only if: · time_init_mode=XO_SEL_TIME	Decimal days (Processing format)	[-18262.0,36524.0]

Code: EO-MA-DMS-GS-0004
Date: 10/05/2010

Date: 10/05/2019 Issue: 4.17

Page: 75

orbit0	long*	-	Absolute orbit number of the start orbit. Used only if: · time init mode=XO SEL ORBIT	-	-
orbit1	long*		Absolute orbit number of the stop orbit. Used only if:	-	-
			· time_init_mode=XO_SEL_ORBIT		

Note: Orbit Event File is deprecated, only supported for CRYOSAT mission

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Satellite ID: sat_id. See [GEN_SUM].
- Orbit init mode: orbit init mode. Current document, section 6.2.
- Time mode: time init mode. See [GEN SUM].
- Time reference ID: time ref. See [GEN SUM].

Note: For SP3 files, the sat_id must have the value XO_SAT_GENERIC_MEO plus the order of the satellite in the SP3 file in zero-based value. For example:

- If the satellite to be used in initialization is the 1st one in the SP3 file, then sat_id= XO SAT GENERIC MEO.
- If the satellite to be used in initialization is the 10th in the SP3 file, then sat_id= XO SAT GENERIC MEO+9

The order does not take into account type and identifier but only in which sequence state vectors are provided. For example, if rows 3 and 4 of the SP3 file are:

- + 28 G01G03G04G05G06G07G08G09G10G11G13G14G15G16G17G18G19
- + G20G21G22G23G24G25G26G27G28G29G30 0 0 0 0 0

And sat id = XO SAT GENERIC MEO+9, OSVs associated to satellite G11 will be selected.

7.5.4 Output parameters

The output parameters of the **xo orbit init file** CFI function are:

Table 19: Output parameters of xo_orbit_init_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_init_file	long	-	Main status flag	-	-1, 0, +1
val_time0	double*	-	Validity start time of the initialization	Decimal days (Processing format)	See 7.33.1
val_time1	double*	-	Validity stop time of the initialization	Decimal days (Processing format)	See 7.33.1
orbit_id	xo_orbi t_id*	-	Structure that contains the orbit initialization data	-	-
ierr[XO_NUM_ER	long	all	Status vector	-	-

Date: 10/05/2019 Issue: 4.17

Page: 76

R_ORBIT_INIT_FI			
LE]			

Date: 10/05/2019 Issue: 4.17

Page: 77

7.5.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_orbit_init_file** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_orbit_init_file** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 20: Error messages of xo_orbit_init_file function

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Wrong satellite flag.	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_SAT_ERR	0
ERR	Geostationary satellite currently not supported for this function.	No calculation performed	XO_CFI_ORBIT_INIT_FILE_G EO_SAT_ERR	1
ERR	Wrong input flag.	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_FLAG_ERR	2
ERR	The Time Id was not initialized.	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_TIME_STATUS_ERR	3
ERR	The Orbit Id is already initialized.	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_ORBIT_STATUS_ER R	4
ERR	Memory allocation error.	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_MEMORY_ERR	5
ERR	Could not detect input files.	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_INPUT_FILES_ERR	6
ERR	Error reading OSF.	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_WRONG_OSF_FILE_ FORMAT_ERR	7
ERR	Wrong time on input.	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_TIME_INPUT_INCO RR_ERR	8
ERR	Error while processing DORIS file.	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_DORIS_INIT_ERR	9
ERR	Time Conversion Error.	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_TIME_CONVERSION _ERR	10
ERR	Error reading input files.	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_READ_FILES_ERR	11
ERR	No data read within the input range.	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_NO_ENOUGH_DATA _ERR	12

Date: 10/05/2019 Issue: 4.17

Page: 78

ERR	Error while computing ANX data for the state vectors	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_INTERPOL_INIT_AN X_ERR	13
ERR	Error computing the orbit number for every state vector	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_CALC_ORBIT_ERR	14
ERR	Propagation cannot be initialised	No calculation performed	XO_CFI_ORBIT_INIT_FILE_P ROPAG_INIT_ERR	15
ERR	Interpolation cannot be initialised	No calculation performed	XO_ORBIT_INIT_FILE_INTER POL_INIT_ERR	16
WARN	Warnings while computing ANX data	Calculation performed.	XO_CFI_ORBIT_INIT_FI LE_INTERPOL_INIT_AN X_WARN	17
WARN	Warnings during DORIS initialization	Calculation performed.	XO_CFI_ORBIT_INIT_FI LE_DORIS_INIT_WARN	18
WARN	Warnings while reading the input file list	Calculation performed.	XO_CFI_ORBIT_INIT_FI LE_READ_FILES_WARN	19
WARN	Input time correlations not compatible with input file(s) time correlations	Calculation performed.	XO_CFI_ORBIT_INIT_FILE_W RONG_TIME_CORRELATION S_WARN	20
WARN	Overriding file time correlations	Calculation performed.	XO_CFI_ORBIT_INIT_FILE_FI LE_TIME_CORR_OVERRIDE_ WARN	21
ERR	Error performing time conversion with reference	No calculation performed	XO_CFI_ORBIT_INIT_FILE_TI ME_CONVERSION_WITH_RE F_ERR	22
WARN	There is a discontinuity between overlapped files. Found in discarded OSV %s.	Calculation performed A message informs the user that there is a discontinuity between the input files.	XO_CFI_ORBIT_INIT_FILE_DI SCARDED_OSV_WARN	23
WARN	The TLE SGP4 propagator will be used for the geostationary orbit	Calculation performed. When using calling xo_osv_compute, the OSV will be propagated with the SGP4 algorithm.	XO_CFI_ORBIT_INIT_FILE_G EO_AND_TLE_WARN	24
ERR	Cannot use XO_ORBIT_INIT_TLE_MODE for orbital periods >200 and <250 min	No calculation performed	XO_CFI_ORBIT_INIT_FILE_TL E_AUTO_ERR	25
ERR	Error reading OSF File to change Orbit_Id.	No calculation performed	XO_CFI_ORBIT_INIT_FILE_R EAD_OSF_ERR	26
ERR	Error changing Orbit Id orbit numbers	No calculation performed	XO_CFI_ORBIT_INIT_FILE_O RBIT_ID_CHANGE_ERR	27
WARN	Input DORIS files are not consistent with the Satellite ID.	Calculation performed.	XO_CFI_ORBIT_INIT_FILE_D ORIS_TYPE_WARN	32

Page: 79

WARN	No Orbit Number specified in DORIS file. Assuming orbit=1 for the 1st OSV	Calculation performed	XO_CFI_ORBIT_INIT_FILE_D EFAULT_ORBIT_WARN	33
ERR	Error analysing orbit diagnostics	No calculation performed	XO_CFI_ORBIT_INIT_FILE_A NALYZE_ORBIT_DIAGNOSTI CS_ERR	34
WARN	Gaps detected. All the OSVs that follows the first gap are discarded.	Calculation performed	XO_CFI_ORBIT_INIT_FILE_G APS_WARN	35
WARN	Time going back or repeated OSVs detected. Those OSVs (going bank or repeated) are discarded.	Calculation performed	XO_CFI_ORBIT_INIT_FILE_D UPLICATED_GOING_BACK_O SV_WARN	
WARN	Inconsistent orbit number detected. The orbit number is recomputed.	Calculation performed	XO_CFI_ORBIT_INIT_FILE_IN CONSISTENT_ORBIT_NUM_ WARN	37

7.6 xo_orbit_init_file_precise

7.6.1 Overview

The **xo_orbit_init_file_precise** function is used for initializing the orbit calculations in the same way as **xo_orbit_init_file**, but in this case precise propagation will be used in state vector propagation. One of these orbit files can be used:

- One or more FOS Predicted ascending node cartesian state vectors file. In case multiple files are used, the files should be time ordered and the gap between them (i.e. time difference between the last vector of nth file and the first vector of the nth+1 file) should be less than two orbital periods.
- One FOS Predicted Orbit File plus a DORIS Navigator unconsolidated level-0 products file.
- One or more FOS Restituted orbit files.
- One or more DORIS Navigator files. DORIS files are supported in 3 formats: Cryosat, Sentinel 3 and Jason CS, the type being automatically detected (see [D_H_SUM] for further details). Note: since Sentinel 3 and Jason CS DORIS orbit numbers start at 1 (due to the lack of information within the file itself), the orbit number can be changed using the function xd_orbit_id_change (section 7.60).
- One or more DORIS Predicted files.
- One or more DORIS Preliminary files.

The format of the above files is described in [FORMATS].

In order to read files, xo_orbit_init_file_precise function internally uses Data Handling functions. Please refer to [D_H_SUM], in particular sections 4.2 and 4.3, for further details.

Before calling this function it is required to initialise the time correlations, using either xl_time_ref_init, xl time ref init file or xl time id init EO LIB functions (see [LIB SUM]).

The user can select the time interval to be used from the input file(s) using three different ways:

Date: 10/05/2019 Issue: 4.17

Page: 80

Table 21: User requested time range in xo_orbit_init_file_precise

time_mode input parameter		requested start time	requested stop time
(see 7.33.4)		(t_req_start)	(t_req_stop)
XL_SEL_TIME	time0 / time1	time0	time1
XL_SEL_ORBIT	orbit0 / orbit1	tANX(orbit0)	tANX(orbit1)
XL_SEL_FILE	-	first state vector in the file(s)	last state vector in the file(s)

The validity start and stop times of the initialization (val_time0 and val_time1 output parameters) represents the allowed time window for orbit calculation. The following table shows the validity time interval for the different input files:

Table 22: Validity periods for xo_orbit_init_file_precise

Input file type	val_time0	val_time1
Any	time of the first state vector	Infinity

A complete calling sequence of the orbit calculation procedure is presented in section 4.2. See Recommendations on Orbit Files Usage in 69

Page: 81

7.6.2 Calling interface

The calling interface of the **xo_orbit_init_file_precise** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer orbit.h>
  xl model id time id = {NULL};
  xl time id time id = {NULL};
  xo orbit id orbit id = {NULL};
  long sat id, orbit file mode, n files, time mode;
  long time ref, orbit0, orbit1;
  char **input files;
  xo propag precise config precise conf;
  double time0, time1, val time0, val time1;
  long status, ierr[XO NUM ERR ORBIT INIT FILE];
  status = xo orbit init file precise (&sat id, &model id,
                                     &time id,
                                     &orbit file mode, &n files,
                                     input files,
                                     &time mode, &time ref,
                                     &timeO, &time1, &orbitO, &orbit1,
                                     &precise conf,
                                    &val time0, &val time1,
                                    &orbit id, ierr);
}
```


Code: EO-MA-DMS-GS-0004 Date: 10/05/2019

Issue: 4.17 Page: 82

7.6.3 Input parameters

The **xo_orbit_init_file_precise** CFI function has the following input parameters:

Table 23: Input parameters of xo_orbit_init_file_precise function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
model_id	xo_mod el_id*	-	Model ID	-	-
time_id	xo_time _id*	-	Structure that contains the time correlations	-	-
orbit_file_mode	long*	-	Flag that indicates the type of the input orbit file.	-	XO_ORBIT_INIT_A UTO
			- There exists the possibility of detecting automatically the type of the files using the value		XO_ORBIT_INIT_P OF_P RECISE_MODE
			XO_ORBIT_INIT_AUTO.		XO_ORBIT_INIT_R OF_P RECISE_MODE
					XO_ORBIT_INIT_D ORIS _PRECISE_MODE
					XO_ORBIT_INIT_O EF_P OF_PRECISE_MO DE
					XO_ORBIT_INIT_P OF_N _DORIS_PRECISE _MO DE
n_files	long	-	Number of input files	-	>=1
input_files	char**	-	Vector of orbit files	-	-
time_init_mode	long*	-	Flag for selecting the time range of the initialisation. For TLE files, the whole file is always selected (this flag and the parameters time0/time1, orbit0/orbit1 are dummies)	-	Select either: · XO_SEL_FILE · XO_SEL_ORBIT · XO_SEL_TIME
					For DORIS Navigator files, XO_SEL_ORBIT is
					not allowed
time_ref	long*	-	Time reference ID	-	Complete

Code: EO-MA-DMS-GS-0004 Date: 10/05/2019

Issue: 4.17
Page: 83

					When using DORIS Navigator files and time_mode is XO_SEL_TIME, only XL_TIME_UTC is allowed.
time0	double*	-	Start time. See section 7.33.1. Used only if: · time_init_mode=XO_SEL_TIME	Decimal days (Processing format)	[-18262.0,36524.0]
time1	double*	-	Stop time. Used only if: · time_init_mode=XO_SEL_TIME	Decimal days (Processing format)	[-18262.0,36524.0]
orbit0	long*	-	Absolute orbit number of the start orbit. Used only if: · time_init_mode=XO_SEL_ORBIT	-	-
orbit1	long*		Absolute orbit number of the stop orbit. Used only if: time_init_mode=XO_SEL_ORBIT	-	-
precise_conf	xo_prop ag_preci se_confi g*		Configuration parameters for precise propagator.	-	-

For precise conf, the same rules than in xo_orbit_cart_init_precise apply.

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Satellite ID: sat_id. See [GEN_SUM].
- Orbit init mode: orbit_init_mode. Current document, section 6.2.
- Time mode: time_init_mode. See [GEN_SUM].
- Time reference ID: time ref. See [GEN SUM].

7.6.4 Output parameters

The output parameters of the **xo_orbit_init_file_precise** CFI function are:

Table 24: Output parameters of xo_orbit_init_file_precise function

C name	C type	Array	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	
xo_orbit_init_file_p recise	long	-	Main status flag	-	-1, 0, +1
val_time0	double*	-	Validity start time of the initialization	Decimal days (Processing format)	See 7.33.1
val_time1	double*	-	Validity stop time of	Decimal days	see 7.33.1

Issue: 4.17 Page: 84

			the initialization	(Processing format)	
orbit_id	xo_orbi t_id*	-	Structure that contains the orbit initialization data	-	-
ierr[XO_NUM_ER R_ORBIT_INIT_FI LE_PRECISE]	long	all	Status vector	-	-

7.6.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_orbit_init_file_precise** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO ORBIT software library **xo get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_orbit_init_file_precise** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 25: Error messages of xo_orbit_init_file_precise function

Error type	Error message	Cause and impact	Error Code	Error No
ERR	File type not allowed for precise propagator initialisation	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_PRECISE_NOT_ALL OWED_FILE_TYPE_ERR	0
ERR	Error initialising orbit.	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_PRECISE_INIT_FILE _ERR	1
ERR	Error initialising propagator.	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_PRECISE_PROPAG_I NIT_ERR	2
ERR	Could not detect input files.	No calculation performed	XO_CFI_ORBIT_INIT_FI LE_PRECISE_INPUT_FIL ES_ERR	3
ERR	Error in precise propagator input parameters	No calculation performed	XO_CFI_ORBIT_INIT_FILE _PRECISE_PRECISE_PAR AMS_ERR	4

Date: 10/05/2019 Issue: 4.17

Page: 85

7.7 xo_orbit_id_init

7.7.1 Overview

The **xo_orbit_id_init** function is used for initializing the orbit calculations using a set of data structures that have been read for one of these orbit files:

- One or more orbit files (Predicted, Restituted Orbit Files or generic OSV list. In the last case, propagator is not initialized).
- One Orbit Scenario File providing orbital changes.
- One or more DORIS Navigator files. DORIS files are supported in 3 formats: Cryosat, Sentinel 3 and Jason CS, the type being automatically detected (see [D_H_SUM] for further details). Note: since Sentinel 3 and Jason CS DORIS orbit numbers start at 1 (due to the lack of information within the file itself), the orbit number can be changed using the function xd_orbit_id_change (section 7.60).
- One or more SP3 files
- TLE files. xo_orbit_id_init uses only those TLE entries with the default NORAD satellite designator correspondent to the input satellite Id. The correspondence table between satellite ids and default NORAD satellite designators is given in table 224 from the section 9.17, [D_H_SUM]. In case the input file is not compliant with this correspondence, the default designator can be changed by using function xl_set_tle_sat_data, section 7.48 [LIB_SUM].
- One or more OEM files. Of the fields read with the funcion xd_read_oem (see section 9.21 of [D_H_SUM]), the ones that are relevant for the orbit initialisation are: REF_FRAME, TIME SYSTEM, Epoch, X, Y, Z, X DOT, Y DOT, Z DOT.

Note: for Predicted, Restituted, DORIS files or OEM files, the *change_data* struct of *xo_orbit_id_init_data* can be used. The field *change_data* is used only if orbit init mode is set to XO_ORBIT_INIT_(POF/ROF/DORIS/OEM)_ORBNUM_ADJ_MODE and the corresponding POF/ROF/DORIS file is used as input. If these orbit modes are introduced, the orbit number of the state vectors will be updated with the information in *change data* structure, as per function **xo_orbit_id_change** (see section 7.60).

This function provide an alternative to initialize the orbit_id that is completely equivalent to **xo_orbit_init_file** with the difference that this function does not need to read the input files, so that the runtime of the function is improved (See section 68 for details about the orbit id initialization)

This function is specially useful when the input time_id is initialized with the same set of input files. In this case it is better to do the following calling sequence, so that input files are read once:

- •Read input file (EO DATA HANDLING functions)
- •Initialize time id with xl time id init.
- •Initialize the orbit id with **xo_orbit_id_init.**
- •Clean the read data.

Before calling this function it is required to initialise the time correlations, using either xl_time_ref_init, xl_time_ref_init_file or xl_time_id_init_EO LIB functions (see [LIB_SUM]).

The user can select the time interval to be used from the input file(s) using three different ways:

Table 26: User requested time range in xo_orbit_id_init

time_mode (see input parameter	requested start time	requested stop time
--------------------------------	----------------------	---------------------

Page: 86

7.33.4)		(t_req_start)	(t_req_stop)	
XL_SEL_TIME	time0 / time1	time0	time1	
XL_SEL_ORBIT	orbit0 / orbit1	tANX(orbit0)	tANX(orbit1)	
XL_SEL_FILE	-	first state vector in the file(s)	last state vector in the file(s)	

The validity start and stop times of the initialization (val_time0 and val_time1 output parameters) represents the allowed time window for orbit calculation. The following table shows the validity time interval for the different input files:

Table 27: Validity periods for xo_orbit_id_init

Input data type	val_time0	val_time1	
Orbit data from Orbit Scenario	ANX Time of the first orbital change	Infinity	
List of orbital state vectors	time of the first state vector	Time of the last state vector	

A complete calling sequence of the orbit calculation procedure is presented in section 4.2.

See Recommendations on Orbit Files Usage in section 7.5.1.1

The function computes diagnostics of OSV records for OEM/SP3/Doris/orbit files. The behaviour at orbit initialization is defined in the table 17, see section 7.5.1.1.

7.7.2 Calling interface

The calling interface of the **xo_orbit_id_init** CFI function is the following (input parameters are <u>underlined</u>):

Page: 87

&val_time0, &val_time1,
&orbit_id, ierr);

}

Page: 88

7.7.3 Input parameters

The **xo_orbit_id_init** CFI function has the following input parameters:

Table 28: Input parameters of xo_orbit_id_init function

C name	C type	Array	Description	Unit	Allowed Range
		Element		(Format)	
sat_id	long *	-	Satellite ID	-	Complete. For SP3 files, see a description on how to set sat_id value under the present table.
model_id	xo_mo del_id*	-	Model ID	-	-
time_id	xo_time _id*	-	Structure that contains the time correlations	-	-
orbit_file_ mode	long*	-	Flag that indicates the type of the input orbit file data. In case the type of initialization is XO_ORBIT_INIT_USER_OSV_LIST_MODE, the propagator/interpolator is not initialized, so any operation involving these computations will return error.	-	XO_ORBIT_INIT_AUTO XO_ORBIT_INIT_OSF_ MODE XO_ORBIT_INIT_POF_ MODE XO_ORBIT_INIT_ROF_ MODE XO_ORBIT_INIT_DORIS _MODE XO_ORBIT_INIT_OEF_O SF_MODE XO_ORBIT_INIT_OEF_P OF_MODE XO_ORBIT_INIT_USER_ OSV_LIST_MODE XO_ORBIT_INIT_SP3_M ODE XO_ORBIT_INIT_SP3_M ODE XO_ORBIT_INIT_POF_O RBNUM_ADJ_MODE XO_ORBIT_INIT_ROF_ ORBNUM_ADJ_MODE XO_ORBIT_INIT_DORIS _ORBIT_INIT_DORIS _ORBNUM_ADJ_MODE XO_ORBIT_INIT_OEM_ MODE XO_ORBIT_INIT_OEM_ MODE XO_ORBIT_INIT_OEM_ MODE XO_ORBIT_INIT_OEM_ ORBNUM_ADJ_MODE
orbit_data	xo_orbit_id_ini t_data*	-	Vector of orbit files	-	-
time_init_	long*	-	Flag for selecting the time range	-	Select either:

Date: 10/05/2019 Issue: 4.17

Page:	89
-------	----

mode			of the initialisation.		· XO_SEL_FILE
					· XO_SEL_ORBIT
					· XO_SEL_TIME
					For DORIS Navigator files and SP3 files, XO_SEL_ORBIT is not allowed
time_ref	long*	-	Time reference ID	-	Complete
					When using DORIS Navigator files and time_mode is XO_SEL_TIME, only XL_TIME_UTC is allowed.
time0	double*	-	Start time. See section 7.33.1. Used only if:	Decimal days	[-18262.0,36524.0]
			time_init_mode=XO_SEL_TIME	(Processing format)	
time1	double*	-	Stop time. Used only if:	Decimal	[-18262.0,36524.0]
			time_init_mode=XO_SEL_TIME	days (Processing format)	
orbit0	long*	-	Absolute orbit number of the start orbit. Used only if:	-	-
			time_init_mode=XO_SEL_ORBIT		
orbit1	long*		Absolute orbit number of the stop orbit. Used only if:	-	-
			time_init_mode=XO_SEL_ORBIT		

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Satellite ID: sat id. See [GEN SUM].
- Orbit init mode: orbit_init_mode. Current document, section 6.2.
- Time mode: time init mode. See [GEN SUM].
- Time reference ID: time ref. See [GEN SUM].

Note: For SP3 files, the sat_id must have the value XO_SAT_GENERIC_MEO plus the order of the satellite in the SP3 file in zero-based value. For example:

- If the satellite to be used in initialization is the 1st one in the SP3 file, then sat_id= XO SAT GENERIC MEO.
- If the satellite to be used in initialization is the 10th in the SP3 file, then sat_id= XO_SAT_GENERIC_MEO+9

Date: 10/05/2019 Issue: 4.17

Page: 90

7.7.4 Output parameters

The output parameters of the **xo_orbit_id_init** CFI function are:

Table 29: Output parameters of xo_orbit_id_init function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_id_init	long	-	Main status flag	-	-1, 0, +1
val_time0	double*	-	Validity start time of the initialization	Decimal days (Processing format)	See 7.33.1
val_time1	double*	-	Validity stop time of the initialization	Decimal days (Processing format)	See 7.33.1
orbit_id	xo_orbi t_id*	-	Structure that contains the orbit initialization data	-	-
ierr[XO_NUM_ER R_ORBIT_ID_INIT]	long	all	Status vector	-	-

Date: 10/05/2019 Issue: 4.17

Page: 91

7.7.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_orbit_id_init** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_orbit_id_init** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 30: Error messages of xo_orbit_id_init function

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Wrong satellite flag	No calculation performed	XO_CFI_ORBIT_ID_INIT SAT_ERR	0
ERR	Geostationary satellite currently not supported for this function.		XO_CFI_ORBIT_ID_INIT _GEO_SAT_ERR	1
ERR	Wrong input orbit file mode	No calculation performed	XO_CFI_ORBIT_ID_INIT _FLAG_ERR	2
ERR	The Time Id was not initialized	No calculation performed	XO_CFI_ORBIT_ID_INIT _TIME_STATUS_ERR	3
ERR	The Orbit Id is already initialized	No calculation performed	XO_CFI_ORBIT_ID_INIT ORBIT_STATUS_ERR	4
ERR	Memory allocation error.	No calculation performed	XO_CFI_ORBIT_ID_INIT MEMORY_ERR	5
ERR	No data in the input structures	No calculation performed	XO_CFI_ORBIT_ID_INIT NO_DATA_ERR	6
ERR	Orbit model is not correct	No calculation performed	XO_CFI_ORBIT_ID_INIT _WRONG_ORBIT_MODE L_ERR	7
ERR	input data structure contains data for diferent file types	No calculation performed	XO_CFI_ORBIT_ID_INIT _INCONSISTENT_FILES_ ERR	8
ERR	Error loading input xo_orbit_id_init_data structure	No calculation performed	XO_CFI_ORBIT_ID_INIT _LOAD_FILES_ERR	9
ERR	Wrong time on input.	No calculation performed	XO_CFI_ORBIT_ID_INIT _TIME_INPUT_INCORR_ ERR	10

Date: 10/05/2019 Issue: 4.17

Page: 92

ERR	Error performing time conversion with reference.	No calculation performed	XO_CFI_ORBIT_ID_INIT _TIME_CONVERSION_W ITH_REF_ERR	11
ERR	No data read within the input range		XO_CFI_ORBIT_ID_INIT _NO_ENOUGH_DATA_E RR	12
ERR	ANX data for the state vectors		XO_CFI_ORBIT_ID_INIT _INTERPOL_INIT_ANX_ ERR	13
ERR	Error computing the orbit number for every state vector	No calculation performed	XO_CFI_ORBIT_ID_INIT _CALC_ORBIT_ERR	14
ERR	Time Conversion Error.	No calculation performed	XO_CFI_ORBIT_ID_INIT _TIME_CONVERSION_E RR	15
ERR	Interpolation cannot be initialised	No calculation performed	XO_CFI_ORBIT_ID_INIT INTERPOL_INIT_ERR	16
ERR	Propagation cannot be initialised	No calculation performed	XO_CFI_ORBIT_ID_INIT PROPAG INIT ERR	17
WARN	There is a discontinity between overlapped files. Found in discarded OSV %s.	Calculation performed. A message informs the user that there is a discontinuity between the input files.	XO_CFI_ORBIT_ID_INIT _DISCARDED_OSV_WA RN	18
WARN	Only one OSF file is admitted for this initialisation mode	data tram the tiret ()CL	XO_CFI_ORBIT_ID_INIT _ONLY_FIRST_OSF_WA RN	19
WARN	Input time correlations not compatible with input file(s) time correlations.	Calculation performed.	XO_CFI_ORBIT_ID_INIT _WRONG_TIME_CORRE LATIONS_WARN	20
WARN	Overriding file time correlations.		XO_CFI_ORBIT_ID_INIT _FILE_TIME_CORR_OVE RRIDE_WARN	21
WARN	Warnings while computing ANX data	No calculation performed	XO_CFI_ORBIT_ID_INIT _INTERPOL_INIT_ANX_ WARN	22
ERR	Error changing Orbit Id orbit numbers.	No calculation performed	XO_CFI_ORBIT_ID_INIT _ORBIT_ID_CHANGE_E RR	23
WARN	No Orbit Number specified in DORIS file. Assuming orbit=1 for the 1st OSV	Calculation performed	XO_CFI_ORBIT_ID_INIT _DEFAULT_ORBIT_WAR N	24

EO-MA-DMS-GS-0004

Date: 10/05/2019 4.17 Issue:

93

Page:

WARN	Input DORIS files are not consistent with the Satellite ID.		XO_CFI_ORBIT_ID_INIT _DORIS_TYPE_WARN	25
ERR	Invalid file type. Orbit mode can not be automatically detected.	No calculation performed	XO_CFI_ORBIT_ID_INIT _INVALID_FILE_TYPE_E RR	26
ERR	Only one TLE file is admitted for this initialisation mode	No calculation performed	XO_CFI_ORBIT_ID_INIT _ONLY_FIRST_TLE_WA RN	32
ERR	Cannot use XO_ORBIT_INIT_TLE_M ODE for orbital periods >200 and <250 min	No calculation performed	XO_CFI_ORBIT_ID_INIT _TLE_AUTO_ERR	33
ERR	Error analysing orbit diagnostics	No calculation performed	XO_CFI_ORBIT_ID_INIT _ANALYZE_ORBIT_DIA GNOSTICS_ERR	34
WARN	Gaps detected. All the OSVs that follows the first gap are discarded.	Calculation performed	XO_ORBIT_ID_INIT_GA PS_WARN	35
WARN	Time going back or repeated OSVs detected. Those OSVs (going bank or repeated) are discarded.		XO_ORBIT_ID_INIT_DU PLICATED_GOING_BAC K_OSV_WARN	36
WARN	Inconsistent orbit number detected. The orbit number is recomputed.		XO_ORBIT_ID_INIT_INC ONSISTENT_ORBIT_NU M_WARN	37

Page: 94

7.8 xo_orbit_init_geo

7.8.1 Overview

This software initializes the orbit data of a geostationary orbit using as input the geodetic coordinates. The only input geodetic coordinate taken into account in initialization is the geocentric longitude; the latitude is set to 0. degrees and the altitude is set to 35786 km independently of the inputs.

The validity start and stop times of the initialization (*val_time0* and *val_time1* output parameters) represents the allowed time window for orbit calculations. If the **xo_orbit_init_geo** function is called, this time window starts at 01/01/1950 00:00:00 and ends at 31/12/2099 23:59:59.

Before calling this function it is required to initialise the time correlations, using either xl_time_ref_init or xl time ref init file EO LIB functions (see [LIB SUM]).

A complete calling sequence of the orbit calculations procedure is presented in section 4.2.

7.8.2 Calling interface

The calling interface of the **xo_orbit_init_geo** CFI function is the following (input parameters are underlined):

```
#include <explorer_orbit.h>
{
    xl_model_id model_id = {NULL};
    xl_time_id time_id = {NULL};
    xo_orbit_id orbit_id = {NULL};
    long sat_id;
    xo_geo_orbit_init_data geo_orbit_init_data;
    double val_time0, val_time1;
    long status, ierr[XO_NUM_ERR_ORBIT_INIT_GEO];

status = xo_orbit_init_geo(&sat_id, &model_id, &time_id, &geo_orbit_init_data, &val_time0, &val_time1, &orbit_id, ierr);
}
```


Date: 10/05/2019 Issue: 4.17

Page: 95

7.8.3 Input parameters

The **xo_orbit_init_geo** CFI function has the following input parameters:

Table 31: Input parameters of xo_orbit_init_geo function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	- (1 01 mat)	Complete
model_id	xl_model _id*	-	Model ID	-	-
time_id	xl_time_i d*	-	Structure that contains the time correlations	-	-
geo_orbit_info	xo_geo_ orbit_info *	-	Input geodetic coordinates	Longitude, latitude → degress Altitude → meters	0 ≤ lon < 360. latitude and altitude are dummy parameters. They are set internally to default values (see section 7.8.1)

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Satellite ID: sat_id. See [GEN_SUM].

7.8.4 Output parameters

The output parameters of the xo_orbit_init_geo CFI function are:

Table 32: Output parameters of xo_orbit_init_geo function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_init_geo	long	-	Main status flag	-	-1, 0, +1
val_time0	double*	-	Validity start time of the initialization	Decimal days (Processing format)	[-18262.0,36524.0]
val_time1	double*	-	Validity stop time of the initialization	Decimal days (Processing format)	[-18262.0,36524.0]
orbit_id	xo_orbit_id	-	Structure that contains the orbit initialization.	-	-
ierr[XO_NUM_ERR _ORBIT_INIT_GE O]	long	all	Status vector	-	-

Date: 10/05/2019 Issue: 4.17

Page: 96

7.8.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_orbit_init_geo** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_orbit_init_geo** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 33: Error messages of xo_orbit_init_geo function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Wrong Satellite Id.	No calculation performed	XO_CFI_ORBIT_INIT_G EO_SAT_ERR	0
ERR	Wrong longitude: out of range [0, 360.)	No calculation performed	XO_CFI_ORBIT_INIT_G EO_LON_ERR	1
ERR	Wrong geo orbit init type	No calculation performed	XO_CFI_ORBIT_INIT_G EO_TYPE_ERR	2
ERR	Input Time Id. is not initialized.	No calculation performed	XO_CFI_ORBIT_INIT_G EO_TIME_STATUS_ERR	3
ERR	Orbit ld is already initialized.	No calculation performed	XO_CFI_ORBIT_INIT_G EO_STATUS_ERR	4
ERR	Memory allocation error.	No calculation performed	XO_CFI_ORBIT_INIT_G EO_MEMORY_ERR	5
ERR	Error converting geodetic coordinates to cartesian coordinates	No calculation performed	XO_CFI_ORBIT_INIT_G EO_GEOD_TO_CART_E RR	6
ERR	Error initializing propagator	No calculation performed	XO_CFI_ORBIT_INIT_G EO_PROPAG_INIT_ERR	7

Page: 97

7.9 xo_orbit_close

7.9.1 Overview

The **xo_orbit_close** function is used to free the memory allocated by the other orbit initialization routines, and it must be called after using them.

A complete calling sequence of the propagation procedure is presented in section 4.2.

7.9.2 Calling interface

The calling interface of the **xo_orbit_close** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_orbit.h>
{
    xo_orbit_id orbit_id = {NULL};
    long ierr[XO_NUM_ERR_ORBIT_CLOSE]
    long status;

status = xo_orbit_close (&orbit_id, ierr);
}
```

7.9.3 Input parameters

The **xo orbit close** CFI function has the following input parameters:

Table 34: Input parameters of xo_orbit_close function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id	-	Structure that contains the orbit initialization	-	-

7.9.4 Output parameters

The output parameters of the xo orbit close CFI function are:

Table 35: Output parameters of xo_orbit_close function

C name	C type	Array	Description	Unit	Allowed
		Element	(Reference)	(Format)	Range
ierr[XO_NUM_ER R_ORBIT_CLOSE]	long	all	Status vector	-	-
xo_orbit_close	long	-	Main status flag	-	-1, 0, +1

Date: 10/05/2019 Issue: 4.17

Page: 98

7.9.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_orbit_close** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_orbit_close** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 36: Error messages of xo_orbit_close function

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Could not close the Orbit Id.	The Orbit Id. was not closed.	XO_CFI_ORBIT_CLOSE_ WRONG_ID_ERR	0

Date: 10/05/2019 Issue: 4.17

Page: 99

7.10 xo_orbit_get_osv

7.10.1 Overview

The **xo_orbit_get_osv** CFI function returns a data structure containing the list of state vectors used for the initialisation of an orbit_id. This function only can be called if the orbit_id was initialized with orbital state vectors (i.e., with **xo_orbit_cart_init** or with **xo_orbit_init_file** and a file containing a list of state vectors such as predicted orbit file, a restituted orbit file...)

7.10.2 Calling interface

The calling interface of the **xo_orbit_get_osv** CFI function is the following (input parameters are <u>underlined</u>):

7.10.3 Input parameters

The xo orbit get osv CFI function has the following input parameters:

Table 37: Input parameters of xo_orbit_get_osv function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_id	xo_orbit_id*	-	Structure for orbit initiaization	-	-

7.10.4 Output parameters

The output parameters of the **xo orbit get osv** CFI function are:

Table 38: Output parameters of xo_orbit_get_osv function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_get_osv	long	-	Status flag	-	-
num_rec	long	-	Number of records in the data array	-	-

Code: EO-MA-DMS-GS-0004 Date: 10/05/2019

Issue: 4.17

Page: 100

data	xo_osv_rec	all	Dinamic array with	-	-
			the state vectors		

The data structure xo osv rec can be seen in Table 3.

Note: The output *data* array is a pointer, not a static array. The memory for this dynamic array is allocated within the CFI function. So the user will only have to declare that pointer but not to allocate memory for it. However, once the function has returned without error, the user will have the responsibility of freeing the memory when it is not being used any more. For freeing the memory just call to (in a C program):

free (data);

7.10.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The orbit id was not initialised.
- The orbit id was initialised with orbital changes, instead of state vectors.

Code: EO-MA-DMS-GS-0004
Date: 10/05/2010

Date: 10/05/2019
Issue: 4.17
Page: 101

7.11 xo_orbit_set_osv

7.11.1 Overview

The **xo_orbit_set_osv** CFI function changes the list of state vectors used for the initialisation within an orbit_id. This function only can be called if the orbit_id was initialized with orbital state vectors (i.e., with **xo_orbit_cart_init** or with **xo_orbit_init_file** and a file containing a list of state vectors such as predicted orbit file, a restituted orbit file...)

7.11.2 Calling interface

The calling interface of the **xo_orbit_set_osv** CFI function is the following (input parameters are <u>underlined</u>):

7.11.3 Input parameters

The **xo orbit set osv** CFI function has the following input parameters:

Table 39: Input parameters of xo_orbit_set_osv function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure for orbit initialization (input / output parameter)	-	-
num_rec	long	-	Number of records in the data array	-	-
data	xo_osv_rec	all	Dynamic array with the state vectors	-	-

7.11.4 Output parameters

The output parameters of the **xo orbit set osv** CFI function are:

Date: 10/05/2019 Issue: 4.17

Page: 102

Table 40: Output parameters of xo_orbit_set_osv function

C name	C type	Array	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	
xo_orbit_set_osv	long	-	Status flag	-	-
orbit_id	xo_orbit_id*	-	Structure for orbit initialization (input / output parameter)	-	-

7.11.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The orbit id was not initialised.
- The orbit_id was initialised with orbital changes, instead of state vectors.

Page: 103

7.12 xo_orbit_get_anx

7.12.1 Overview

When initialising an orbit_id with a list of state vectors that are not in the ANX (restituted orbit file, DORIS Navigator files, SP3 files), the information about the ANX of the orbits of those state vectors are stored in the orbit id. The **xo orbit get anx** CFI function allows to retrieve that information.

This function only can be called if the orbit id was initialized with orbital state vectors coming from:

- Restituted orbit file
- DORIS Navigator file. DORIS files are supported in 2 formats: Cryosat and Sentinel 3, the type being automatically detected (see [D_H_SUM] for further details). Note: since Sentinel 3 DORIS orbit numbers start at 1 (due to the lack of information within the file itself), the orbit number can be changed using the function xd_orbit_id_change (section 7.60).
- SP3 files. Note: since SP3 files has no orbit information inside the file itself, the orbit numbers for ANX start at 0.

7.12.2 Calling interface

The calling interface of the **xo_orbit_get_anx** CFI function is the following (input parameters are <u>underlined</u>):

7.12.3 Input parameters

The xo_orbit_get_anx CFI function has the following input parameters:

Table 41: Input parameters of xo_orbit_get_anx function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure for orbit initialization	-	-

Date: 10/05/2019 Issue: 4.17

Page: 104

7.12.4 Output parameters

The output parameters of the **xo_orbit_get_anx** CFI function are:

Table 42: Output parameters of xo_orbit_get_anx function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_get_anx	long	-	Status flag	-	-
num_rec	long	-	Number of records in the data array	-	-
extra_info	xo_anx_extra_info	all	Dinamic array with the ANX information	-	-

The data structure xo_osv_rec can be seen in Table 3.

Note: The output *extra_info* array is a pointer, not a static array. The memory for this dynamic array is allocated within the CFI function. So the user will only have to declare that pointer but not to allocate memory for it. However, once the function has returned without error, the user will have the responsibility of freeing the memory when it is not being used any more. For freeing the memory just call to (in a C program):

free(extra info);

7.12.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The orbit id was not initialised.
- The orbit id was not initialised with the suitable file

105

Page:

7.13 xo_orbit_set_anx

7.13.1 Overview

The **xo_orbit_set_anx** CFI function changes the ANX info that is stored in an orbit_id when this orbit id was initialised with a restituted orbit file, a DORIS Navigator file or a SP3 file.

DORIS files are supported in 3 formats: Cryosat, Sentinel 3 and Jason CS, the type being automatically detected (see [D_H_SUM] for further details). Note: since Sentinel 3 and Jason CS DORIS orbit numbers start at 1 (due to the lack of information within the file itself), the orbit number can be changed using the function xd orbit id change (section 7.60).

Note: since SP3 files has no orbit information inside the file itself, the orbit numbers for ANX start at 0.

7.13.2 Calling interface

The calling interface of the **xo_orbit_set_anx** CFI function is the following (input parameters are <u>underlined</u>):

7.13.3 Input parameters

The **xo_orbit_set_anx** CFI function has the following input parameters:

Table 43: Input parameters of xo_orbit_set_anx function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure for orbit initialization (input / output parameter)	-	-
num_rec	long	-	Number of records in the data array	-	-
extra_info	xo_anx_extra_info	all	Dynamic array with the state vectors	-	-

Code: EO-MA-DMS-GS-0004 Date: 10/05/2019

Issue: 4.17 Page: 106

7.13.4 Output parameters

The output parameters of the **xo orbit set anx** CFI function are:

Table 44: Output parameters of xo_orbit_set_anx function

C name	C type	Array	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	
xo_orbit_set_anx	long	-	Status flag	-	-
orbit_id	xo_orbit_id*	-	Structure for orbit initialization (input / output parameter)	-	-

7.13.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The orbit_id was not initialised.
- The orbit id was initialised with orbital changes, instead of state vectors.

Page: 107

7.14 xo_orbit_get_osf_rec

7.14.1 Overview

The **xo_orbit_get_osf_rec** CFI function returns a data structure containing the list of orbital changes used for the initialisation of an orbit_id. This function only can be called if the orbit_id was initialized with orbital changes(i.e., with **xo orbit init def** or with **xo orbit init file** and an orbit scenario file)

7.14.2 Calling interface

The calling interface of the **xo_orbit_get_osf_rec** CFI function is the following (input parameters are underlined):

7.14.3 Input parameters

The **xo orbit get osf rec** CFI function has the following input parameters:

Table 45: Input parameters of xo_orbit_get_osf_rec function

C name	C type	Array	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	
orbit_id	xo_orbit_id*	-	Structure for orbit initialization	-	-

7.14.4 Output parameters

The output parameters of the xo orbit get osf rec CFI function are:

Table 46: Output parameters of xo_orbit_get_osf_rec function

C name	C type	Array	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	
xo_orbit_get_osf_rec	long	-	Status flag	-	-
num_rec	long	-	Number of records in the data array	-	-
data	xo_osf_rec	all	Dinamic array with	-	-

Date: 10/05/2019 Issue: 4.17

Page: 108

	the orbital changes	

The data structure xo osf rec can be seen in Table 3.

Note: The output *data* array is a pointer, not a static array. The memory for this dynamic array is allocated within the CFI function. So the user will only have to declare that pointer but not to allocate memory for it. However, once the function has returned without error, the user will have the responsibility of freeing the memory when it is not being used any more. For freeing the memory just call to (in a C program):

free (data);

7.14.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The orbit_id was not initialised.
- The orbit_id was not initialised with orbital changes.

Page: 109

7.15 xo_orbit_set_osf_rec

7.15.1 Overview

The **xo_orbit_set_osf_rec** CFI function changes the list of orbital changes used for the initialisation within an orbit_id. This function only can be called if the orbit_id was initialized with **xo_orbit_init_def** or with **xo_orbit_init_file** and an orbit scenario file.

7.15.2 Calling interface

The calling interface of the **xo_orbit_set_osf_rec** CFI function is the following (input parameters are underlined):

7.15.3 Input parameters

The xo orbit set osf rec CFI function has the following input parameters:

Table 47: Input parameters of xo_orbit_set_osf_rec function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure for orbit initialization (input / output parameter)	-	-
num_rec	long	-	Number of records in the data array	-	-
data	xo_osf_rec	all	Dinamic array with the orbital changes	-	-

7.15.4 Output parameters

The output parameters of the **xo_orbit_set_osf_rec** CFI function are:

Code: EO-MA-DMS-GS-0004

Date: 10/05/2019 Issue: 4.17

Page: 110

Table 48: Output parameters of xo_orbit_set_osf_rec function

C name	C type	Array	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	
xo_orbit_set_osf_rec	long	-	Status flag	-	-
orbit_id	xo_orbit_id*	-	Structure for orbit initialization (input / output parameter)	-	-

7.15.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The orbit id was not initialised.
- The orbit_id was not initialised with orbital changes.

Issue: 4.17 Page: 111

7.16 xo_orbit_get_val_time

7.16.1 Overview

The xo orbit get val time CFI function returns the validity period of an orbit id.

7.16.2 Calling interface

The calling interface of the **xo_orbit_get_val_time** CFI function is the following (input parameters are <u>underlined</u>):

7.16.3 Input parameters

The **xo_orbit_get_val_time** CFI function has the following input parameters:

Table 49: Input parameters of xo_orbit_get_val_time function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure for orbit initialization	-	-

7.16.4 Output parameters

The output parameters of the **xo orbit get val time** CFI function are:

Table 50: Output parameters of xo_orbit_get_val_time function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_get_val_time	long	-	Status flag	-	-
val_time	xo_validity_ti me	- Validity Time structure		-	-

The data structure xo_validity_time can be seen in Table 3.

7.16.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

• The orbit_id was not initialised.

Page: 113

7.17 xo_orbit_set_val_time

7.17.1 Overview

The xo_orbit_set_val_time CFI function changes the validity period of an orbit_id.

7.17.2 Calling interface

The calling interface of the **xo_orbit_set_val_time** CFI function is the following (input parameters are <u>underlined</u>):

7.17.3 Input parameters

The xo_orbit_set_val_time CFI function has the following input parameters:

Table 51: Input parameters of xo_orbit_set_val_time function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure for orbit initialization (input / output parameter)	- (Format)	-
val_time	xo_validity_time	-	Validity Time structure	-	-

7.17.4 Output parameters

The output parameters of the **xo orbit set val time** CFI function are:

Table 52: Output parameters of xo_orbit_set_val_time function

C name	C type	Array	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	
xo_orbit_set_val_time	long	-	Status flag	-	-
orbit_id	xo_orbit_id*	-	Structure for orbit initialization (input / output parameter)	-	-

Page: 114

4.17

Issue:

7.17.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

• The orbit id was not initialised.

Page: 115

7.18 xo_orbit_get_precise_propag_config

7.18.1 Overview

The **xo_orbit_get_precise_propag_config** CFI function returns the configuration structure of precise propagation.

7.18.2 Calling interface

The calling interface of the **xo_orbit_get_precise_propag_config** CFI function is the following (input parameters are <u>underlined</u>):

7.18.3 Input parameters

The xo orbit get precise propag config CFI function has the following input parameters:

Table 53: Input parameters of xo_orbit_get_precise_propag_config function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure for orbit initialization (input / output parameter)	-	-

7.18.4 Output parameters

The output parameters of the xo orbit get precise propag config CFI function are:

Table 54: Output parameters of xo_orbit_get_precise_propag_config function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_get_precise _propag_config	long	-	Status flag	-	-
precise_conf	xo_propag_preci se_config	-	Precise propagator configuration	-	-

Date: 10/05/2019 Issue: 4.17

Page: 116

	structure	

7.18.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

• The orbit_id was not initialised.

7.19 xo_orbit_set_precise_propag_config

7.19.1 Overview

The **xo_orbit_set_precise_propag_config** CFI function sets the configuration structure of precise propagation.

7.19.2 Calling interface

The calling interface of the **xo_orbit_set_precise_propag_config** CFI function is the following (input parameters are <u>underlined</u>):

7.19.3 Input parameters

The **xo orbit set precise propag config** CFI function has the following input parameters:

Table 55: Input parameters of xo_orbit_set_precse_propag_config function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure for orbit initial- ization (input / output parameter)	-	-
precise_conf	xo_propag_prec ise_config	-	Precise propagator configuration structure	-	-

7.19.4 Output parameters

The output parameters of the **xo_orbit_get_precise_propag_config** CFI function are:

Table 56: Output parameters of xo_orbit_set_precse_propag_config function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_set_precise_ propag_config	long	-	Status flag	-	-

Issue: 4.17 Page: 118

orbit_id	xo_orbit_id*	-	Structure for orbit	-	-
			initialization (input /		
			output parameter)		

7.19.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

• The orbit_id was not initialised.

Page: 119

7.20 xo_orbit_get_time_id

7.20.1 Overview

The xo orbit get time id CFI function returns the time id structure used for the orbit id initialisation.

7.20.2 Calling interface

The calling interface of the **xo_orbit_get_time_id** CFI function is the following (input parameters are underlined):

7.20.3 Input parameters

The **xo_orbit_get_time_id** CFI function has the following input parameters:

Table 57: Input parameters of xo_orbit_get_time_id function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure for orbit initialization	-	-

7.20.4 Output parameters

The output parameters of the xo_orbit_get_time_id CFI function are:

Table 58: Output parameters of xo_orbit_get_time_id function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_get_time_id	xl_time_id	-	time id used for the orbit_id initialisation	-	-

7.20.5 Warnings and errors

This function does not return any error/warning code. In case of error, an empty time_id is returned (initialised with NULL)

Code: EO-MA-DMS-GS-0004

Date: 10/05/2019 Issue: 4.17

Page: 120

The possible causes of error are:

• The orbit_id was not initialised

Issue: 4.17 Page: 121

7.21 xo_orbit_get_model_id

7.21.1 Overview

The xo_orbit_get_model_id CFI function returns the model_id structure used for the orbit_id initialisation.

7.21.2 Calling interface

The calling interface of the **xo_orbit_get_model_id** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_orbit.h>
{
            xo_orbit_id orbit_id = {NULL};
            xl_model_id model_id = {NULL};
            model_id = xo_orbit_get_model_id(&orbit_id);
}
```

7.21.3 Input parameters

The **xo orbit get model id** CFI function has the following input parameters:

Table 59: Input parameters of xo_orbit_get_model_id function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure for orbit initialization	-	-

7.21.4 Output parameters

The output parameters of the **xo orbit get model id** CFI function are:

Table 60: Output parameters of xo_orbit_get_model_id function

C name	C type	Array	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	
xo_orbit_get_model_id	xl_model_id	-	model id used for the orbit_id initialisation	-	-

7.21.5 Warnings and errors

This function does not return any error/warning code. In case of error, an empty time_id is returned (initialised with NULL)

The possible causes of error are:

Code: EO-MA-DMS-GS-0004

Date: 10/05/2019 Issue: 4.17

Page: 122

• The orbit_id was not initialised.

Page: 123

7.22 xo_orbit_get_osv_compute_validity

7.22.1 Overview

The **xo_orbit_get_osv_compute_validity** CFI function returns the validity time interval where it is possible to compute an state vector using the CFI function **xo_osv_compute**. Out of this interval, the functions would return an error.

The validity interval for using **xo_osv_compute** depends on the type of data used for the orbit initialisation. In general, that interval will be different from the validity of the input orbit_id. More information about the validity interval for **xo osv compute** can be found in section 7.33.2.

7.22.2 Calling interface

The calling interface of the **xo_orbit_get_osv_compute_validity** CFI function is the following (input parameters are <u>underlined</u>):

7.22.3 Input parameters

The xo_orbit_get_osv_compute_validity CFI function has the following input parameters:

Table 61: Input parameters of xo_orbit_get_osv_compute_validity function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure for orbit initialization	-	-

7.22.4 Output parameters

The output parameters of the **xo orbit get osv compute validity** CFI function are:

Table 62: Output parameters of xo_orbit_get_osv_compute_validity function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_get_osv_co mpute_validity	xo_validity_ time		validity time interval for the function xo_osv_compute	-	-

124

Page:

The data structure xo_validity_time can be seen in Table 3.

7.22.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

• The orbit_id was not initialised.

Issue: 4.17 Page: 125

7.23 xo_orbit_get_propag_mode

7.23.1 Overview

The **xo_orbit_get_propag_mode** CFI function returns the propagation mode that will be used to propagate the state vector when using the input orbit_id.

7.23.2 Calling interface

The calling interface of the **xo_orbit_get_propag_mode** CFI function is the following (input parameters are underlined):

7.23.3 Input parameters

The xo orbit get propag mode CFI function has the following input parameters:=

Table 63: Input parameters of xo_orbit_get_propag_mode function

C name	C type	Array Element	Description (Reference)		Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure for orbit initialization	-		-

7.23.4 Output parameters

The output parameters of the **xo_orbit_get_propag_mode** CFI function are:

Table 64: Output parameters of xo_orbit_get_propag_mode function

C name	C type	Array	Description (Personne)	Unit	Allowed Range
		Element	(Reference)	(Format)	
xo_orbit_get_propag _mode	long	-	propagation mode1 if the orbit id is not	-	-
			initialised for propagation.		

Page: 126

7.23.5 Warnings and errors

This function does not return any error/warning code. If the orbit_id is not initialised or it is not initialised with propagation data, then the returned mode is -1.

Page: 127

7.24 xo_orbit_get_interpol_mode

7.24.1 Overview

The **xo_orbit_get_interpol_mode** CFI function returns the interpolation mode that will be used to interpolate the state vector when using the input orbit_id.

7.24.2 Calling interface

The calling interface of the **xo_orbit_get_interpol_mode** CFI function is the following (input parameters are underlined):

7.24.3 Input parameters

The **xo orbit get interpol mode** CFI function has the following input parameters:

Table 65: Input parameters of xo_orbit_get_interpol_mode function

C name	C type	Array Element	Description (Reference)		Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure for orbit initialization	-		-

7.24.4 Output parameters

The output parameters of the **xo orbit get interpol mode** CFI function are:

Table 66: Output parameters of xo_orbit_get_interpol_mode function

C name	C type	Array	Description (Personne)	Unit	Allowed Range
		Element	(Reference)	(Format)	
xo_orbit_get_interpol	long	_	propagation mode.	-	-
_mode			-1 if the orbit_id is not		
			initialised for interpolations.		

Page: 128

7.24.5 Warnings and errors

This function does not return any error/warning code. If the orbit_id is not initialised or it is not initialised with interpolation data, then the returned mode is -1.

Page: 129

7.25 xo_orbit_get_propag_config

7.25.1 Overview

The **xo_orbit_get_propag_config** CFI function returns the propagation data that will be used to propagate the state vector when using the input orbit id.

7.25.2 Calling interface

The calling interface of the **xo_orbit_get_propag_config** CFI function is the following (input parameters are <u>underlined</u>):

7.25.3 Input parameters

The **xo orbit get propag config** CFI function has the following input parameters:

Table 67: Input parameters of xo_orbit_get_propag_config function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure for orbit initialization	-	-

7.25.4 Output parameters

The output parameters of the **xo_orbit_get_propag_config** CFI function are:

Table 68: Output parameters of xo_orbit_get_propag_config function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_get_propag _config	long	-	status	-	-
propag_data	xo_propag_ id_data	-	Configuration data used to launch the propagation	-	-

7.25.5 Warnings and errors

The data structure xo_propag_id_data can be seen in Table 3.

This function does not return any error/warning code. If the orbit_id is not initialised or it is not initialised with propagation data, then the returned status is -1.

Issue: 4.17 Page: 131

7.26 xo_orbit_get_interpol_config

7.26.1 Overview

The **xo_orbit_get_interpol_config** CFI function returns the propagation data that will be used to interpoloate the state vector when using the input orbit id.

7.26.2 Calling interface

The calling interface of the **xo_orbit_get_interpol_config** CFI function is the following (input parameters are underlined):

7.26.3 Input parameters

The **xo orbit get interpol config** CFI function has the following input parameters:

Table 69: Input parameters of xo_orbit_get_interpol_config function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure for orbit initialization	-	-

7.26.4 Output parameters

The output parameters of the **xo_orbit_get_interpol_config** CFI function are:

Table 70: Output parameters of xo_orbit_get_interpol_config function

C name	C type	Array	Array Description		Allowed Range
		Element	(Reference)	(Format)	
xo_orbit_get_propag _config	long	-	status	-	-
interpol_data	xo_interpol_ id_data	-	Configuration data used to launch the interpolation	-	-

Page: 132

The data structure xo interpol id data can be seen in Table 3.

7.26.5 Warnings and errors

This function does not return any error/warning code. If the orbit_id is not initialised or it is not initialised with propagation data, then the returned status is -1.

Page: 133

7.27 xo_orbit_get_geo_orbit_info

7.27.1 Overview

The **xo_orbit_get_geo_orbit_info** CFI function returns the geostationary geodetic coordinates from orbit_id initialized with a geostationary satellite.

7.27.2 Calling interface

The calling interface of the **xo_orbit_get_geo_orbit_info** CFI function is the following (input parameters are underlined):

7.27.3 Input parameters

The xo orbit get geo orbit info CFI function has the following input parameters:

Table 71: Input parameters of xo_orbit_get_geo_orbit_info function

C name	C type	Array	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	
orbit_id	xo_orbit_id*	-	Structure for orbit initialization	-	-

7.27.4 Output parameters

The output parameters of the xo orbit get geo orbit info CFI function are:

Table 72: Output parameters of xo_orbit_get_geo_orbit_info function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_get_geo_or bit_info	long	-	status	-	-
xo_geo_orbit_info	xo_geo_orbi t_info	-	Geodetic coordinates of geostationary satellite	-	-

The data structure xo_geo_orbit_info can be seen in Table 3.

7.27.5 Warnings and errors

This function does not return any error/warning code. If the orbit_id is not initialized or it is not initialized with geostationary satellite, then the returned status is -1.

Issue: 4.17 Page: 135

7.28 xo_orbit_set_geo_orbit_info

7.28.1 Overview

The **xo_orbit_set_geo_orbit_info** CFI function sets the geostationary geodetic coordinates for an orbit_id initialized with a geostationary satellite.

7.28.2 Calling interface

The calling interface of the **xo_orbit_set_geo_orbit_info** CFI function is the following (input parameters are <u>underlined</u>):

7.28.3 Input parameters

The **xo orbit set geo orbit info** CFI function has the following input parameters:

Table 73: Input parameters of xo_orbit_set_geo_orbit_info function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure for orbit initialization	-	-
geo_orbit_in fo	xo_geo_orbit_i nfo*	-	Input geodetic coordinates	Longitude, latitude → degress Altitude → meters	0 ≤ lon < 360. -90. ≤ lat ≤ 90. 0.≤ altitude

7.28.4 Output parameters

The output parameters of the xo orbit set geo orbit info CFI function are:

Table 74: Output parameters of xo_orbit_set_geo_orbit_info function

C name	C type	Array	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	

Date: 10/05/2019 Issue: 4.17

Page: 136

xo_orbit_set_geo_or	long	-	status	-	-
bit_info					

The data structure xo_geo_orbit_info can be seen in Table 3.

7.28.5 Warnings and errors

This function does not return any error/warning code. The returned status is -1 in the following cases:

- The orbit id is not initialized.
- The orbit id is not initialized with a geostationary satellite.
- The input parameters are not inside the allowed ranges.

137

Page:

7.29 xo_orbit_id_clone

7.29.1 Overview

The xo orbit id clone CFI function copies the input orbit id structure to the output one.

7.29.2 Calling interface

The calling interface of the **xo_orbit_id_clone** CFI function is the following (input parameters are underlined):

7.29.3 Input parameters

The **xo orbit id clone** CFI function has the following input parameters:

Table 75: Input parameters of xo_orbit_id_clone function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id_in	xo_orbit_id*	-	Structure for orbit initialization	_	-

7.29.4 Output parameters

The output parameters of the **xo_orbit_id_clone** CFI function are:

Table 76: Output parameters of xo_orbit_id_clone function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_id_clone	long	-	status	-	-
orbit_id_out	xo_orbit_id	-	Output orbit_id	-	-

7.29.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

Code: EO-MA-DMS-GS-0004

Date: 10/05/2019 Issue: 4.17

Page: 138

The possible causes of error are:

• The orbit_id was not initialised.

Issue: 10/05/2019 4.17

Page: 139

7.30 xo_run_init

7.30.1 Overview

The **xo_run_init** CFI function adds to the *run Id* the *orbit id*.

7.30.2 Calling interface

The calling interface of the **xo run init** CFI function is the following:

7.30.3 Input parameters

The **xo run init** CFI function has the following input parameters:

Table 77: Input parameters of xo_run_init function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
run_id	long *	-	Run ID	-	>=0
orbit_id	xo_orbit_id*	-	Structure that contains the orbit data	-	-

7.30.4 Output parameters

The output parameters of the **xo_run_init** CFI function are:

Table 78: Output parameters of xo_run_init function

C name	C type	Array	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	
xo_run_init	long	-	Status flag	-	-
run_id	long *	-	Run ID	-	>=0
ierr	long	-	Error vector	-	-

Issue: 10/05/2019 4.17

Page: 140

7.30.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_run_init** CFI function after translating the returned extended status flag into the equivalent list of error messages by calling the function of the EO ORBIT software library **xo get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained translating the extended status flag returned by the **xo_run_init** function by calling the function of the EO_ORBIT software library **xo get code** (see [GEN SUM])

Table 79: Error messages of xo_run_init function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Inputs Id no initialized or incompatible.	No calculation performed	XO_CFI_RUN_INIT_STA TUS_ERR	0
ERR	Memory allocation error.	No calculation performed	XO_CFI_RUN_INIT_ME MORY_ERR	1
ERR	Input Ids incompatible with the run_id.	No calculation performed	XO_CFI_RUN_INIT_INC ONSISTENCY_ERR	2

Code: EO-MA-DMS-GS-0004

Date: 10/05/2019 Issue: 4.17

Page: 141

7.31 xo_run_get_ids

7.31.1 Overview

The xo_run_get_ids CFI function returns the ids being used..

7.31.2 Calling interface

The calling interface of the **xo run get ids** CFI function is the following:

7.31.3 Input parameters

The xo run get ids CFI function has the following input parameters:

Table 80: Input parameters of xo_run_get_ids function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
run_id	long *	-	Run ID	-	>=0

7.31.4 Output parameters

The output parameters of the xo run get ids CFI function are:

Table 81: Output parameters of xo_run_get_ids function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_run_get_ids	void	-	-	-	-
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-

7.31.5 Warnings and errors

This function does not return any error/warning code.

Code: EO-MA-DMS-GS-0004

Date: 10/05/2019 Issue: 4.17

Page: 142

Issue: 4.17

Page: 143

7.32 xo_run_close

7.32.1 Overview

The **xo** run close CFI function cleans up any memory allocation performed by the initialization functions.

7.32.2 Calling interface

The calling interface of the **xo run close** CFI function is the following:

```
#include <explorer_orbit.h>
{
        long run_id;
        xo_run_close (&run_id);
}
```

7.32.3 Input parameters

The xo_run_close CFI function has the following input parameters:

Table 82: Input parameters of xo_run_close function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
run_id	long *	-	Run ID	-	>=0

7.32.4 Output parameters

The output parameters of the **xo_run_close** CFI function are:

Table 83: Output parameters of xo_run_close function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_run_close	void	-	-	-	-

7.32.5 Warnings and errors

This function does not return any error/warning code.

7.33 xo_osv_compute

7.33.1 Overview

The xo_osv_compute function computes accurate state vectors for user requested times.

This function needs as input an orbit_id that contains the orbit initialisation data. The behavior of the function depends strongly in the way in which the orbit id was initialised (see section 7.33.2).

During the computation, some results are stored in the input orbit_id. Those results can be used afterwards for other computations (in **xo_osv_compute** or **xo_osv_compute_extra**). This has to be taken into account when working with **multi-threads programs**. In those cases a different orbit_id has to be used in every thread to avoid problems. The orbit id can be initialised in every thread or copied (this is more efficient) to different orbit id variables with **xo orbit id clone**.

An OSV can be computed within a validity time range that also depends on input orbit_id variable. This validity time range can be retrieved with the CFI function **xo_orbit_get_osv_compute_validty** (see section 7.22).

For a general description of the initialization routines and how to use them in conjunction to the **xo_osv_compute** function, see section 4.1.2.

7.33.2 Computation methods (Propagation/interpolation)

The methods used to compute the state vector depend on the way in which the orbit was initialised. Note that the computation method is selected automatically by the routine. The Table 84 summarises the dependency of the computation method with the orbit initialisation. The first column indicates the orbit mode which is a parameter that can be get with the CFI function **xo_orbit_get_mode**. The methods in the second column are described in detail in the following subsections.

Table 84: OSV computation methods

Orbit initialisation mode	OSV computation method		
XO_ORBIT_INIT_ORBIT_CHANGE_MODE	Mean Keplerian Propagation Model with		
Initialised with xo_orbit_init_def	"AUTO" and "DOUBLE" modes		
	(see section 7.33.2.1 and Table 85)		
XO_ORBIT_INIT_OSF_MODE			
XO_ORBIT_INIT_OEF_OSF_MODE			
Initialised with xo_orbit_init_file with an OSF			
(or an OEF but reading the list of orbital changes in the data block of the file)			
XO_ORBIT_INIT_POF_MODE			
XO_ORBIT_INIT_OEF_POF_MODE			
Initialised with xo_orbit_init_file with a POF			
(or an OEF but reading the list of State Vectors in the data block			

EO-MA-DMS-GS-0004 Date:

10/05/2019 4.17 Issue: Page:

145

of the file)	
XO_ORBIT_INIT_STATE_VECTOR_MODE	Mean Keplerian Propagation Model
Initialised with xo_orbit_cart_init	(see section 7.33.2.1 and Table 85)
XO_ORBIT_INIT_POF_N_DORIS_MODE:	
Initialised with xo_orbit_init_file with a POF and a DORIS file	
XO_ORBIT_INIT_TLE_MODE	TLE propagation mode with "AUTO"
Initialised with xo_orbit_init_file with a TLE file	mode
	(see section 7.33.2.1 and Table 85)
XO_ORBIT_INIT_TLE_SGP4_MODE	TLE propagation mode with "SGP4" mode
Initialised with xo_orbit_init_file with a TLE file	(see section 7.33.2.1 and Table 85)
XO_ORBIT_INIT_TLE_SDP4_MODE	TLE propagation mode with "SDP4" mode
Initialised with xo_orbit_init_file with a TLE file	(see section 7.33.2.1 and Table 85)
XO_ORBIT_INIT_POF_PRECISE_MODE	Numerical propagator with "AUTO" mode
XO_ORBIT_INIT_OEF_POF_PRECISE_MODE	(see section 7.33.2.1 and Table 85)
Initialised with xo_orbit_init_file_precise with a POF	
(or an OEF but reading the list of State Vectors in the data block of the file)	
XO_ORBIT_INIT_ROF_PRECISE_MODE	
Initialised with xo_orbit_init_file_precise with a ROF file	
XO_ORBIT_INIT_DORIS_PRECISE_MODE	
Initialised with xo_orbit_init_file_precise with a DORIS Navigator file	
XO_ORBIT_INIT_STATE_VECTOR_PRECISE_MODE	Numerical propagator
Initialised with xo_orbit_cart_init_precise	(see section 7.33.2.1 and Table 85)
XO_ORBIT_INIT_POF_N_DORIS_PRECISE_MODE	
Initialised with xo_orbit_init_file_precise with a POF and a DORIS Navigator file	
XO_ORBIT_INIT_ROF_MODE	Interpolation
Initialised with xo_orbit_init_file with a ROF file	(see section 7.33.2.2)
XO_ORBIT_INIT_DORIS_MODE	
Initialised with xo_orbit_init_file with a DORIS Navigator file	
XO_ORBIT_INIT_SP3_MODE	
Initialised with xo_orbit_init_file with a SP3 file	
XO_ORBIT_INIT_OEM_MODE	
Initialised with xo_orbit_init_file with OEM file	
XO_ORBIT_INIT_GEO_LON_ALT_MODE	No propagation is performed. The state
Initialized with xo_orbit_init_geo	vector corresponding to orbit initialization values is returned

Date: 10/05/2019 Issue: 4.17

Page: 146

Note: Orbit Event File is deprecated, only supported for CRYOSAT mission

7.33.2.1Propagation methods

For the time being, the following propagation models are supported:

- Mean Keplerian model. It implies the use of a formulation for the time rates of change for the different mean Kepler elements as functions of a given initial set of mean Kepler elements. Using the above time rates of change, the mean orbital elements can be propagated forward or backward in time by extrapolating the individual time slopes of the superimposed secular and long-periodic perturbations functions. As the long periodic variations have typically periods on the order of months, a near-linear time slope for prediction intervals of many orbits is warranted.
- *TLE model*. This model propagates the state vector using the NORAD "two line elements" (TLE) and the SGP4 or SDP4 propagation algorithm. This theory was designed for near Earth Satellites (nodal period less than 225 minutes). The SGP4 theory uses an Earth gravitational field through zonal terms J2, J3 and J4 and a power density function for the atmospheric model (assuming a nonrotating spherical model).

The algorithm to be used in the propagation is selected based on the input Orbit Init Mode:

- XO ORBIT INIT TLE SGP4 MODE Forces to use the SGP4 algorithm
- XO ORBIT INIT TLE SDP4 MODE-Forces to use the SDP4 algorithm
- XO_ORBIT_INIT_TLE_MODE Chooses the algorithm depending or the orbital period: if less than 200minutes, the SGP4 is selected, if greater than 250 minutes, the SDP4 algorithm is chosen. If the orbital period is between 200 and 250 minutes the user cannot use this mode, it is mandatory to use one of the specific SDP4/SGP4 forcing modes, otherwise the CFI will return an error .XO ORBIT INIT FILE TLE AUTO ERR..
- *Numerical propagator*. This model consists on a numerical propagator that integrates the movement equations using a Runge-Kutta algorithm of 8th order. This propagator is expected to produce more precise results than the other models as it can be configured by the user (through the orbit initialisation function) to take into account the following perturbations:
 - Non-spherical gravity: the model Earth Gravity Model 1996 is used. The file with the coefficients of the spherical harmonics must be provided by the user, besides the order and degree to be used in the calculations.
 - Atmospheric drag: MSIS-E-90 atmospheric density model is used. The user must provide the Solar Geomagnetic Activity and F107 coefficient, either as input files or with constant values. The values can be obtained from ESA-ECSS or NASA documentation. The user must provide the drag effective area and drag coefficient of the satellite, besides the mass of the satellite.
 - Solar radiation pressure: it is calculated using the solar radiation pressure effective area and solar radiation pressure coefficient of the satellite provided by the user.
 - Third body perturbations: the perturbations produced by the Sun and the Moon gravities are calculated.

Apart from these models, in table there are two additional modes: "AUTO" and "DOUBLE". They refer to the way in which the seed (initial state vector used as reference to begin the propagation) is taken:

- AUTO mode: The seed is taken to be the closer ANX or OSV to the requested time. The propagation seed could change from one propagation to the following.
- DOUBLE mode: the two ANX covering the propagation time are used as seeds. When calling xo_osv_compute, the propagation is performed from each of the ANX and then a weighted average is done. The weight function is

$$\cos^2\!\left(\frac{\pi}{2}\cdot\frac{\Delta t}{T}\right)$$

Code: EO-MA-DMS-GS-0004 Date: 10/05/2019 Issue: 4.17

Page: 147

where Dt = t - tANX and T is the nodal period of the orbit.

Figure 3: Weight Function for Double Propagation Model

This propagation method removes any discontinuity that may arise when changing the state vector around the true ascending node crossing used as seed for the propagation.

Validity time interval Requested **Propag Propagation seed** model² time Mean The two ANX t_start [t_start - 2 orbits, t_stop + 2 orbits]; (ANX, ANX + 1 orbit) Keplerian + that are before < t0 < I ANY ANX+1 AUTO+ and after t0 t stop **DOUBLE** Mode [t start - 2 orbits, t stop + 2 orbits]; t0 < t start The first ANX in the orbit id I [I] I (ANX - 2 orbits, ANX) $t0 > t_stop$ The last ANX in [t_start - 2 orbits, t_stop + 2 orbits]; the orbit_id (ANX, ANX + 2 orbits) Mean t start - 2 orbits The state vector [t start - 2 orbits, t stop + 2 orbits] used to initialise Keplerian

Table 85: Validity Time Intervals for Propagation

2 This column relates with the "OSV computation method" column in Table 84.

Date: 10/05/2019 Issue: 4.17

Page: 148

Mode	< t0 < t_stop+2orbits Note that t_start = t_stop as there is only one OSV	the orbit_id (there is only one)	I I I I I I I I I I I I I I I I I I I
TLE + AUTO Mode	t_start < t0 < t_stop	TLE that is before t0	[1st.TLE - 1day, Last TLE+ 1 day] (-1 TLE, +1 TLE)
	t0 < t_start	First TLE	[1st.TLE - 1day, Last TLE+ 1 day] (TLE - 1day, + 1 TLE)
	t0 > t_stop	Last TLE	[1st.TLE - 1day, Last TLE+ 1 day] (-1 TLE, TLE + 1 day)
Numerical + AUTO Mode	t_start < t0 < t_stop	OSV that is before t0	[t_start, Infinity]; (OSV, Next OSV)
	t0 < t_start	Propagation is not possible	-
	t0 > t_stop	Last OSV	[t_start, Infinity]; (OSV, Infinity)

Note that the cases with "NO AUTO" mode are similar to those with "AUTO" mode with one OSV.

The precise propagator stores the result of the last propagation, so that the next propagation begins from that point if the time begins after the last propagation (it saves computation time). If the propagation is requested at a time that is before the time of the previous propagation time, then the original seed is taken.

7.33.2.2 Interpolation methods

The function **xo_osv_compute** computes the OSV using an interpolation algorithm when the orbit_id is initialised with **xo_orbit_init_file** plus ROF's, DORIS Navigator files or SP3 files.

Date: 10/05/2019 Issue: 4.17

Page: 149

The interpolation is highly accurate (1 mm. accuracy TBC) when it is performed between 4 OSV's time intervals after start of file(s) and before end of file(s), but it <u>degrades in the first 4 OSV's time intervals of the file and the last 4 OSV's time intervals of the file</u>. The degradation depends strongly in the length of the OSV's time intervals: it can be of the order of mm. for 1 second up to some cm. for 60 seconds. Figure 4 provides a graphical explanation.

The **xo_osv_compute** function allows to extrapolate, that is, compute results for at least 60 seconds before start of the input file(s) and after end of the input file. Anyway, extrapolation is not recommended. In this case, the extrapolation window is NOT included in the valid time interval. The following table shows some values for the degradation of the extrapolation:

Time out of	Error in position [m] as a function of the OSV time step							
validity interval	1 sec 10 sec 30 sec 60 sec							
[number of OSV time steps]								
1	0.01	0.05	0.06	0.09				
2	0.22	0.39	0.40	0.56				
3	1.16	1.65	1.68	2.25				
4	4.21	5.23	5.20	6.89				

When the interpolation is in "degraded" mode, that is, when extrapolation is used, or when there is less than four orbit state vectors available in the input file before or after the requested time, **xo_osv_compute** function will issue different warnings messages indicating that a degraded interpolation or extrapolation is performed. If the requested time is out the allowed extrapolation range, the function will return an error message.

Figure 4: Performances of the interpolation algorithm

Date: 10/05/2019 Issue: 4.17

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

Page: 151

7.33.3 Calling interface

The calling interface of the **xo_osv_compute** CFI function is the following (input parameters are <u>underlined</u>):

7.33.4 Input parameters

The **xo osv compute** CFI function has the following input parameters:

Table 86: Input parameters of xo_osv_compute function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure that contains the orbit data	-	-
mode	long *	-	Propagation model. Dummy input for	-	-
			current version.		
time_ref	long*	-	Time reference ID	-	Complete
time	double*	-	Reference time	Decimal days (Processing format)	[-18262.0,36524.0]

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Time reference ID: time_ref. See [GEN_SUM].

Date: 10/05/2019 Issue: 4.17

Page: 152

7.33.5 Output parameters

The output parameters of the **xo_osv_compute** CFI function are:

Table 87: Output parameters of xo_osv_compute function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_osv_co mpute	long	-	Main status flag	-	-1, 0, +1
pos_out[3]	double	all	Osculating position vector at predicted time (Earth fixed CS)	m	-
vel_out[3]	double	all	Osculating velocity vector at predicted time (Earth fixed CS)	m/s	-
acc_out[3]	double	all	Osculating acceleration vector at predicted time (Earth fixed CS)	m/s ²	-
ierr[XO_NU M_ERR_P R OPAG]	long	all	Status vector	-	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Time reference ID: time_ref. See [GEN_SUM].

Issue: 10/05/2019 4.17

Page: 153

7.33.6 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_osv_compute** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_osv_compute** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 88: Error messages of xo_osv_compute function

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Could not initialise the propagation	No calculation performed	XO_CFI_OSV_COMPUTE_ PROPAG_INIT_ERR	0
ERR	The internal data were not initialized	No calculation performed	XO_CFI_OSV_COMPUTE_ NOT_INTERNAL_DATA_ER R	1
ERR	Could not propagate the state vector	No calculation performed	XO_CFI_OSV_COMPUTE_ PROPAG_ERR	2
ERR	Could not interpolate the state vector	No calculation performed	XO_CFI_OSV_COMPUTE_I NTERPOL_ERR	3
ERR	Warnings during the propagation	No calculation performed	XO_CFI_OSV_COMPUTE_ PROPAG_WARN	4
ERR	Warnings during the interpolation	No calculation performed	XO_CFI_OSV_COMPUTE_I NTERPOL_WARN	5
ERR	Neither propagation nor interpolation can be performed with USER OSV LIST orbit initialization	No calculation performed	XO_CFI_OSV_COMPUTE_ USER_OSV_LIST_ERR	6
WARN	Warnings during the propagation using a TLE File.	No calculation performed	XO_CFI_OSV_COMPUTE_ TLE_OSV_GAP_WARN	7
WARN	Warnings during the acceleration computation	No calculation performed	XO_CFI_OSV_COMPUTE_I NTERPOL_ACCELERATIO N_WARN	8

Code: EO-MA-DMS-GS-0004 Date: 10/05/2019 Issue: 4.17

Page: 154

7.34 xo_osv_compute_extra

7.34.1 Overview

This software returns ancillary results derived from an orbit state vector obtained from the **xo_osv_compute** routine (stored within the *orbit Id*). This state vector depends on which is the last function called:

- when calling **xo_osv_compute_extra** after initialising the *orbit Id*, the selected state vector is:
 - the one that is selected as seed for the propagation.
 - the first OSV stored in the orbit id if it is initialised for interpolation.
- when calling after **xo_osv_compute**, the Cartesian orbit state vector is the one predicted at the requested time in that routine.

A description of the ancillary results may be found in the section 7.34.5.

A complete calling sequence of the computation procedure is presented in section 4.2.

Note: model dependent para meters are not applicable to geostationary satellites and therefore are not computed.

7.34.2 Calling interface

The calling interface of the **xo osv compute extra** CFI function is the following:

Date: 10/05/2019 Issue: 4.17

Page: 155

7.34.3 Input parameters

The xo_osv_compute_extra CFI function has the following input parameters:

Table 89: Input parameters of xo_osv_compute_extra

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure that contains the orbit initialisation data	-	-
extra_choice	long *	-	Flag to allow an ancillary results choice	-	[0, 4095]

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Flag to select ancillary results: extra choice. See tables below:

Table 90: Enumeration values of extra_choice input flag

Model independant	Description	Long
XO_ORBIT_EXTRA_NO_RESULTS	No extra results	0
XO_ORBIT_EXTRA_GEOLOCATION	Geolocation results	1
XO_ORBIT_EXTRA_GEOLOCATION_D	Geolocation rate results	2
XO_ORBIT_EXTRA_GEOLOCATION_2D	Geolocation rate-rate results	4
D_ORBIT_EXTRA_GEOLOCATION_EXTRA Geolocation extra results		8
D_ORBIT_EXTRA_EARTH_FIXED_D Earth fixed velocity re-		16
XO_ORBIT_EXTRA_EARTH_FIXED_2D	Earth fixed acceleration results	32
XO_ORBIT_EXTRA_SUN	Sun results	64
XO_ORBIT_EXTRA_MOON	Moon results	128
XO_ORBIT_EXTRA_OSCULATING_KEPLER	Osculating keplerian elements	256
XO_ORBIT_EXTRA_INERTIAL_AUX	Inertial auxiliary results	512
Model dependant (Mean Keplerian model)	Description	Long
XO_ORBIT_EXTRA_DEP_ANX_TIMING	ANX timing results	1024
XO_ORBIT_EXTRA_DEP_MEAN_KEPLER	Mean keplerian elements	2048

To calculate all results there is an extra enumeration value, defined as the addition of all the enumeration result values:

Enumeration value	Description	Long
XO_ORBIT_EXTRA_ALL_RESULTS	All results	4095

Date: 10/05/2019 Issue: 4.17

Page: 156

The elements calculated in each case are shown in section 7.34.5. It is possible to select the calculation of different sets of output parameters, or to make any combination of them by adding the results enumeration desired. In order to calculate some elements it might be necessary to calculate elements which have not been explicitly requested. The function identifies internally all the dependencies and those elements are also returned in the result vectors.

7.34.4 Output parameters

The output parameters of the xo_osv_compute_extra CFI function are:

Table 91: Output parameters of xo_osv_compute_extra

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_osv_compute_extra	long	-	Main status flag	-	-1, 0, +1
model_out[XO_ORBIT_ EXTRA_NUM_DEP_EL EMENTS]	double	all	Vector of model-dependent parameters	-	-
extra_out[XO_ORBIT_E XTRA_NUM_INDEP_E LEMENTS]	double	all	Vector of model-independent parameters. It depends upon extra-choice	-	-
ierr[XO_NUM_ERR_OS V_COMPUTE_EXTRA]	long	all	Status vector	-	-

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

Page: 157

7.34.5 Results vectors

The following tables describe the set of parameters are computed with **xo osv compute extra**.

The model-dependent parameters vector (note that there is an enumeration associated to the elements of the results vectors) is in Table 92. These parameters depends on the way in which the input orbit_id was initialised (the orbit mode). So, in table a column "OSV compute model" indicates the models for which that parameter can be computed. To simplify, the models are indicated with the following correspondence:

Orbit initialisation mode	OSV compute model
XO_ORBIT_INIT_ORBIT_CHANGE_MODE	Mean Kepler
XO_ORBIT_INIT_OSF_MODE	
XO_ORBIT_INIT_OEF_OSF_MODE	
XO_ORBIT_INIT_POF_MODE	
XO_ORBIT_INIT_OEF_POF_MODE	
XO_ORBIT_INIT_STATE_VECTOR_MODE	
XO_ORBIT_INIT_POF_N_DORIS_MODE	
XO_ORBIT_INIT_TLE_MODE	TLE
XO_ORBIT_INIT_TLE_SGP4_MODE	
XO_ORBIT_INIT_TLE_SDP4_MODE	
XO_ORBIT_INIT_POF_PRECISE_MODE	Precise
XO_ORBIT_INIT_OEF_POF_PRECISE_MODE	
XO_ORBIT_INIT_ROF_PRECISE_MODE	
XO_ORBIT_INIT_DORIS_PRECISE_MODE	
XO_ORBIT_INIT_STATE_VECTOR_PRECISE_MODE	
XO_ORBIT_INIT_POF_N_DORIS_PRECISE_MODE	
XO_ORBIT_INIT_ROF_MODE	Interpolation
XO_ORBIT_INIT_DORIS_MODE	
XO_ORBIT_INIT_SP3_MODE	
XO_ORBIT_INIT_OEM_MODE	

Table 92: Ancillary results vector. Model-dependent parameters

Result parameter	Set	Description	Unit	Allowed	OSV compute
		(Reference)	(Format)	Range	model
[0]	ANX	Nodal period	s	>= 0	Mean KeplerInterpolation
XO_ORBIT_EXTRA_DEP_NODAL_PERIOD	Timing	Time of current	decimal	-	into polation
[1]		ANX	days (Processing		

Date: 10/05/2019 Issue: 4.17 Page: 158

XO_ORBIT_EXTRA_DEP_UTC_CURRENT_ ANX			format)		
[2] XO_ORBIT_EXTRA_DEP_ORBIT_NUMBER		Absolute Orbit Number		> 0	Mean Kepler
[3] XO_ORBIT_EXTRA_DEP_SEC_SINCE_ANX		Time since ANX	s	>= 0 < Nodal Period	TLE Interpolation Precise
[4:9] XO_ORBIT_EXTRA_DEP_MEAN_KEPL_A XO_ORBIT_EXTRA_DEP_MEAN_KEPL_E XO_ORBIT_EXTRA_DEP_MEAN_KEPL_I XO_ORBIT_EXTRA_DEP_MEAN_KEPL_RA XO_ORBIT_EXTRA_DEP_MEAN_KEPL_W XO_ORBIT_EXTRA_DEP_MEAN_KEPL_M	Mean Kepler ^b	Mean Kepler elements of the propagated OSV (True of Date)	-	-	Mean Kepler Precise

a. For TLE and Precise, these parameters can be computed by calling the CFI function xo_orbit_info.

The model-independent parameters vector (note that there is an enumeration associated to the elements of the results vectors) is in Table 93:

Table 93: Ancillary results vector. Model-independent parameters

Result parameter (res element)	Set	Description (Reference)	Unit (Format)	Allowed Range
[0]	Geolocation	Geocentric longitude of satellite	deg	>= 0
XO_ORBIT_EXTRA_GEOC_LONG		and SSP (EF frame)		< 360
[1]		Geodetic latitude of satellite and	deg	>= -90
XO_ORBIT_EXTRA_GEOD_LAT		SSP (EF frame)		<= +90
[2]		Geodetic altitude of the satellite	m	-
XO_ORBIT_EXTRA_GEOD_ALT		(EF frame)		
[3]	Geolocation	Geocentric longitude rate of	deg/s	-
XO_ORBIT_EXTRA_GEOC_LONG_D	rate	rate satellite and SSP (EF frame)		
[4]		Geodetic latitude rate of satellite	deg/s	-
XO_ORBIT_EXTRA_GEOD_LAT_D		and SSP (EF frame)		
[5]		Geodetic altitude rate of the	m/s	-
XO_ORBIT_EXTRA_GEOD_ALT_D		satellite (EF frame)		
[6]	Geolocation	Geocentric longitude rate-rate of	deg/s2	-
XO_ORBIT_EXTRA_GEOC_LONG_2D	rate rate	satellite and SSP (EF frame)		
[7]		Geodetic latitude rate-rate of	deg/s2	-
XO_ORBIT_EXTRA_GEOD_LAT_2D		satellite and SSP (EF frame)		

³ These parameters are calculated only when initialising with xo_orbit_init_file and xo_orbit_init_def

b. For TLE and Interpolation, these parameters can be computed by calling the CFI function xo_orbit_info.

Date: 10/05/2019 Issue: 4.17

[8] XO ORBIT EXTRA GEOD ALT 2D		Geodetic altitude rate-rate of the satel lite (EF frame)	m/s2	-
[9] XO_ORBIT_EXTRA_RAD_CUR_PARA LLE L_MERIDIAN		Radius of curvature parallel to meridian at the SSP (EF frame)	m	>= 0
[10] XO_ORBIT_EXTRA_RAD_CUR_ORTH O_MERIDIAN		Radius of curvature orthogonal to meridian at the SSP (EF frame)	m	>= 0
[11] XO_ORBIT_EXTRA_RAD_CUR_ALON G_G ROUNDTRACK		Radius of curvature along groundtrack at the SSP (EF frame)	m	>= 0
[12] XO_ORBIT_EXTRA_NORTH_VEL	Earth-fixed velocity	Northward component of the velocity relative to the Earth of the SSP (Topocentric frame)	m/s	-
[13] XO_ORBIT_EXTRA_EAST_VEL		Eastward component of the velocity relative to the Earth of the SSP (Topocentric frame)	m/s	-
[14] XO_ORBIT_EXTRA_MAG_VEL		Magnitude of the velocity relative to the Earth of the SSP (Topocentric frame)	m/s	>= 0
[15] XO_ORBIT_EXTRA_AZ_VEL		Azimuth of the velocity relative to the Earth of the SSP (Topocentric frame)		>= 0 < 360
[16] XO_ORBIT_EXTRA_NORTH_ACC	Earth-fixed acceleration	Northward component of the accelera tion relative to the Earth of the SSP (Topocentric frame)	m/s2	-
[17] XO_ORBIT_EXTRA_EAST_ACC		Eastward component of the accelera tion relative to the Earth of the SSP (Topocentric frame)	m/s2	-
[18] XO_ORBIT_EXTRA_GROUNDTRACK _TA NG_ACC		Groundtrack tangential component of the acceleration relative to the Earth of the SSP (Topocentric frame)	m/s2	-
[19] XO_ORBIT_EXTRA_AZ_ACC		Azimuth of the acceleration relative to the Earth of the SSP (Topocentric frame)	deg	>= 0 < 360
[20] XO_ORBIT_EXTRA_SAT_ECLIPSE_F LAG	Sun	Satellite eclipse flag 0 = No 1 = Yes		0, 1
[21] XO_ORBIT_EXTRA_SZA		Sun Zenith Angle	deg	>= 0 < 180
[22]		Mean local solar time at the SSP	decimal hour	>= 0

Date: 10/05/2019 Issue: 4.17

160

XO_ORBIT_EXTRA_MLST				< 24
[23]		True local solar time at the SSP	decimal	>= 0
XO_ORBIT_EXTRA_TLST			hour	< 24
[24]		True Sun's (centre) right	deg	>= 0
XO_ORBIT_EXTRA_TRUE_SUN_RA		ascension (TOD frame)		< 360
[25]		True Sun's (centre) declination	deg	>= -90
XO_ORBIT_EXTRA_TRUE_SUN_DEC		(TOD frame)		<= +90
[26]		True Sun's semi-diameter	deg	>= 0
XO_ORBIT_EXTRA_TRUE_SUN_SEM I_DI AM				
[27]	Moon	Moon's (centre) right ascension	deg	>= 0
XO_ORBIT_EXTRA_MOON_RA		(TOD frame)		< 360
[28]		Moon's (centre) declination (TOD	deg	>= -90
XO_ORBIT_EXTRA_MOON_DEC		frame)		<= +90
[29]		Moon's semi-diameter	deg	>= 0
XO_ORBIT_EXTRA_MOON_SEMI_DI AM				
[30]		Area of Moon lit by Sun		>= 0
XO_ORBIT_EXTRA_MOON_AREA_LI				<= 1
[31:36]	Osculating	Osculating Keplerian elements of		
XO_ORBIT_EXTRA_OSC_KEPL_A	Kepler	the OSV (TOD frame)		
XO_ORBIT_EXTRA_OSC_KEPL_E				
XO_ORBIT_EXTRA_OSC_KEPL_I				
XO_ORBIT_EXTRA_OSC_KEPL_RA				
XO_ORBIT_EXTRA_OSC_KEPL_W				
XO_ORBIT_EXTRA_OSC_KEPL_M				
[37]	Inertial Aux	Orbit radius	m	>= 0
XO_ORBIT_EXTRA_ORBIT_RAD		(TOD frame)		
[38]		Radial orbit velocity component	m/s	-
XO_ORBIT_EXTRA_RADIAL_ORB_V EL		(TOD frame)		
[39]		Transversal orbit velocity	m/s	-
XO_ORBIT_EXTRA_TRANS_ORB_VE		component		
L		(TOD frame)		
[40]		Orbit velocity magnitude	m/s	>= 0
XO_ORBIT_EXTRA_ORB_VEL_MAG		(TOD frame)		
[41]		Right ascension of the satellite	deg	>= 0

Date: 10/05/2019 Issue: 4.17

XO_ORBIT_EXTRA_RA_SAT
[42]
XO_ORBIT_EXTRA_DEC_SAT
[43]
XO_ORBIT_EXTRA_EARTH_ROTATI ON_ ANGLE
[44]
XO_ORBIT_EXTRA_RA_SAT_D
[45]
XO_ORBIT_EXTRA_RA_SAT_2D
[46]
XO_ORBIT_EXTRA_OSC_TRUE_LAT
[47]
XO_ORBIT_EXTRA_OSC_TRUE_LAT _D
[48]
XO_ORBIT_EXTRA_OSC_TRUE_LAT _2D

(TOD frame)		< 360
Declination of the satellite	deg	>= -90
(TOD frame)		<= +90
Earth rotation angle [H]	deg	>= 0
		< 360
Right ascension rate of the satellite (TOD frame)	deg/s	-
Right ascension rate-rate of the satellite (TOD frame)	deg/s2	-
Satellite osculating true latitude	deg	>= 0
(EF frame)		< 360
Satellite osculating true latitude rate (EF frame)	deg/s	-
Satellite osculating true latitude rate-rate (EF frame)	deg/s2	-

Date: 10/05/2019
Issue: 4.17
Page: 162

7.34.6 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_osv_compute_extra** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_osv_compute_extra** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 94: Error messages of xo_osv_compute_extra function

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Could not initialise the propagation	No calculation performed	XO_CFI_OSV_COMPUTE_ EXTRA_PROPAG_INIT_ER R	0
ERR	The internal data were not initialized	No calculation performed	XO_CFI_OSV_COMPUTE_ EXTRA_NOT_INTERNAL_ D ATA_ERR	1
ERR	Could not propagate the state vector	No calculation performed	XO_CFI_OSV_COMPUTE_ EXTRA_PROPAG_ERR	2
ERR	Could not interpolate the state vector	No calculation performed	XO_CFI_OSV_COMPUTE_ EXTRA_INTERPOL_ERR	3

Code: EO-MA-DMS-GS-0004 Date: 10/05/2019 Issue: 4.17

Page: 163

7.35 xo_orbit_to_time

7.35.1 Overview

The xo_orbit_to_time function converts an orbit-relative time into processing time.

7.35.2 Calling sequence of xo_orbit_to_time:

For C programs, the call to **xo orbit to time** is (<u>input</u> parameters are <u>underlined</u>):

```
#include <explorer orbit.h>
  xo orbit id orbit id = {NULL};
  long time ref;
  long orbit, second, microsec;
  long status, ierr[XO NUM ERR ORBIT TO TIME];
  double
           time;
  status = xo orbit to time (&orbit id,
                              &orbit, &second, &microsec,
                              &time ref,
                              &time,
                                        ierr);
  /* Or, using the run id */
  long run id;
  status = xo orbit_to_time_run (&<u>run_id___</u>,
                                  &orbit, &second, &microsec,
                                  &time ref,
                                  &time,
                                            ierr);
}
```


Date: 10/05/2019 Issue: 4.17

Page: 164

7.35.3 Input parameters

Table 95: Input parameters for xo_orbit_to_time

C name	C type	Array Element	Description (Reference)	Unit (For mat)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
orbit	long*		Absolute orbit number		> 0
second	long*		Seconds since ascending node	S	>= 0 <orbital period</orbital
microsec	long*		Micro seconds within second	μs	0 =< =< 999999
time_ref	long*		Time reference ID	-	Complete

7.35.4 Output parameters

Table 96: Output parameters for xo_orbit_to_time

C name	C type	Array Eleme nt	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_to_time	long		Main status flag		-1, 0, 1
time	double*		Resulting time	Dedimal days (processing format)	[-18262.0, +36519.0]
ierr[XO_NUM_ERR _ORBIT_TO_TIME]	long		Error status flags		

7.35.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_orbit_to_time** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_orbit_to_time** CFI function by calling the function of the EO_ORBIT software library **xo get code** (see [GEN SUM]).

Date: 10/05/2019 Issue: 4.17

Page: 165

Table 97: Error messages of xo_orbit_to_time function

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Wrong input flag	Computation not performed	XO_CFI_ORBIT_TO_TIM E_FLAG_ERR	0
ERR	Input incorrect: negative orbit number	Computation not performed	XO_CFI_ORBIT_TO_TIM E_ORB_NUM_1ST_ERR	1
ERR	Orbit Id. is not initialised.	Computation not performed	XO_CFI_ORBIT_TO_TIM E_ORBIT_STATUS_ERR	2
ERR	Seconds and microseconds greater than nodal period	Computation not performed	XO_CFI_ORBIT_TO_TIM E_SEC_MICROSEC_ERR	3
ERR	Requested orbit less than the first orbital change	Computation not performed	XO_CFI_ORBIT_TO_TIM E_ORB_ERR	4
ERR	Input incorrect: negative number of seconds	Computation not performed	XO_CFI_ORBIT_TO_TIM E_SEC_ERR	5
ERR	Input incorrect: number of microseconds out of range	Computation not performed	XO_CFI_ORBIT_TO_TIM E_MICROSEC_ERR	6
ERR	Error computing time.	Computation not performed	XO_CFI_ORBIT_TO_TIM E_COMPUTE_ERR	7
ERR	Could not make a time transformation	Computation not performed	XO_CFI_ORBIT_TO_TIM E_TIME_CHANGE_ERR	8
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XO_CFI_ORBIT_TO_TIME _GEO_SAT_ERR	9
ERR	SP3 files do not have orbit information	Computation not performed	XO_CFI_ORBIT_TO_TIME _SP3_ERR	10

7.35.6 Executable Program

The conversion from orbit to time described before can be carried out by the **orbit_to_time** executable program as follows:

orbit_to_time -sat satellite_name
-file Orbit file
-tref time_ref
-orb orbit
-anx anx_time (seconds)

[-v]

[-xl_v]

[-xo_v]

[-help]

Issue: 4.17

Page: 166

```
[-show]
{ (-tai TAI_time -gps GPS_time -utc UTC_time -ut1 UT1_time) |
    (-tmod time_model -tfile time_file -trid time_reference
    {(-tm0 time0 -tm1 time1) | (-orb0 orbit0 -orb1 orbit1) } ) }
```

Note that:

- Order of parameters does not matter.
- Bracketed parameters are not mandatory.
- Options between curly brackets and separated by a vertical bar are mutually exclusive.
- [-xl_v] option for EO_LIB Verbose mode.
- [-xo_v] option for EO_ORBIT Verbose mode.
- [-v] option for Verbose mode for all libraries (default is Silent).
- [-show] displays the inputs of the function and the results.
- Possible values for satellite_name: ERS1, ERS2, ENVISAT, METOP1, METOP2, METOP3, CRYOSAT, ADM, GOCE, SMOS, TERRASAR, EARTHCARE, SWARM_A, SWARM_B, SWARM_C, SENTINEL_1A, SENTINEL_1B, SENTINEL_1C, SENTINEL_2A, SENTINEL_2B, SENTINEL_2C, SENTINEL_3A, SENTINEL_3B, SENTINEL_3C, JASON_CSA, JASON_CSB, METOP_SG_A1, METOP_SG_A2, METOP_SG_A3, METOP_SG_B1, METOP_SG_B2, METOP_SG_B3, SENTINEL_5P, SENTINEL_5, BIOMASS, SAOCOM_CS, FLEX, SEOSAT, GENERIC.
- Possible values for *time_model*: USER, NONE, IERS_B_PREDICTED, IERS_B_RESTITUTED, FOS_PREDICTED, FOS_RESTITUTED, DORIS_PRELIMINARY, DORIS_PRECISE, DORIS_NAVIGATOR, OSF
- Possible values for time ref and time reference: UNDEF, TAI, UTC, UT1, GPS.
- Data for initialising the time references are needed only when using an Orbit Scenario file. For other files the data is optional. In that case, if the initialization parameters are not provided, the time correlations are initialised with the input orbit file.

The inputs needed for time initialization are provided in the last three lines of parameters. Note that only one set of parameters should be introduced:

- TAI, GPS, UTC and UT1 input times (as in xl_time_ref_init)
- A file with time reference data, the time mode, the time reference name and a time range (as in xl time ref init file)
- Example:

```
orbit_to_time -sat CRYOSAT -file EARTH_EXPLORER_FPO -tref UTC -orb 1001 -anx 0.0 -show -v
```

7.36 xo_time_to_orbit

7.36.1 Overview

The xo_time_to_orbit function converts an orbit-relative time into processing time.

Code: EO-MA-DMS-GS-0004 Date: 10/05/2019 Issue: 4.17

Page: 167

7.36.2 Calling sequence

For C programs, the call to **xo_time_to_orbit** is (<u>input</u> parameters are <u>underlined</u>):

```
#include <explorer orbit.h>
  xo orbit id
              orbit id = {NULL};
  long time ref;
  long orbit, second, microsec;
  long status, ierr[XO NUM ERR ORBIT TO TIME];
  double time;
  status = xo time to orbit ( &orbit id,
                               &time ref, &time,
                               &orbit, &second, &microsec,
                               ierr);
  /* Or, using the run id */
  long run id;
  status = xo time to orbit run ( & run id,
                                   &time ref, &time,
                                   &orbit, &second, &microsec,
                                   ierr);
```


Date: 10/05/2019 Issue: 4.17

Page: 168

7.36.3 Input parameters

Table 98: Input parameters for xo_time_to_orbit function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
time_ref	long*		Time reference ID	-	Complete
time	double*		Requested time	Decimal days (processing format)	[-18262.0, +36519.0]

7.36.4 Output parameters

Table 99: Output parameters for xo_time_to_orbit

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_time_to_orbit	long		Main status flag		-1, 0, 1
orbit	long*		Absolute orbit number		> 0
second	long*		Seconds since ascending node	s	>= 0 <orbital period</orbital
microsec	long*		Micro seconds within second	μs	0 =< =< 999999
ierr[XO_NUM_ERR_TI ME_TO_ORBIT]	long		Error status flags		

7.36.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_time_to_orbit** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_time_to_orbit** CFI function by calling the function of the EO_ORBIT software library **xo get code** (see [GEN_SUM]).

Date: 10/05/2019 Issue: 4.17

Page: 169

Table 100: Error messages of xo_time_to_orbit function

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Wrong input flag	Computation not performed	XO_CFI_TIME_TO_ORBI T_FLAG_ERR	0
ERR	Orbit Id. was not initialized.	Computation not performed	XO_CFI_TIME_TO_OR BIT_ORBIT_STATUS_ ERR	1
ERR	Input incorrect: time out of range.	Computation not performed	XO_CFI_TIME_TO_OR BIT_TIME_ERR	2
ERR	Input time smaller than the first ANX time.	Computation not performed	XO_CFI_TIME_TO_OR BIT_BEFORE_RANGE _ERR	3
ERR	Could not compute the orbit number.	Computation not performed	XO_CFI_TIME_TO_OR BIT_COMPUTE_ERR	4
ERR	The current orbit initialization does not allow to compute the time.	Computation not performed	XO_CFI_TIME_TO_OR BIT_WRONG_ORBIT_ MODE_ERR	5
WARN	Input time before first orbit.	Computation performed	XO_CFI_TIME_TO_OR BIT_TIME_BEFORE_R ANGE_WARN	6
WARN	Input time after first orbit.	Computation performed	XO_CFI_TIME_TO_OR BIT_TIME_AFTER_RA NGE_WARN	7
WARN	Orbit number computed with warnings.	Computation performed	XO_CFI_TIME_TO_OR BIT_COMPUTE_WAR N	8
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XO_CFI_TIME_TO_ORB IT_GEO_SAT_ERR	9
ERR	SP3 files do not have orbit information	Computation not performed	XO_CFI_TIME_TO_ORB IT_SP3_ERR	10

7.36.6 Executable Program

The conversion from time to orbit described before can be carried out by the **time_to_orbit** executable program as follows:

time_to_orbit -sat satellite_name

-file Orbit file

-tref time ref

Issue: 10/05/2019 4.17

Page: 170

```
{-time time (days) | -atime time (CCSDSA format)}

[-v]

[-xl_v]

[-xo_v]

[-help]

[-show]

{ (-tai TAI_time -gps GPS_time -utc UTC_time -ut1 UT1_time) |
    (-tmod time_model -tfile time_file -trid time_reference
    {(-tm0 time0 -tm1 time1) | (-orb0 orbit0 -orb1 orbit1) } ) }
```

Note that:

- Order of parameters does not matter.
- Bracketed parameters are not mandatory.
- Options between curly brackets and separated by a vertical bar are mutually exclusive.
- [-xl v] option for EO LIB Verbose mode.
- [-xo v] option for EO ORBIT Verbose mode.
- [-v] option for Verbose mode for all libraries (default is Silent).
- [-show] displays the inputs of the function and the results.
- Possible values for satellite_name: ERS1, ERS2, ENVISAT, METOP1, METOP2, METOP3, CRYOSAT, ADM, GOCE, SMOS, TERRASAR, EARTHCARE, SWARM_A, SWARM_B, SWARM_C, SENTINEL_1A, SENTINEL_1B, SENTINEL_1C, SENTINEL_2A, SENTINEL_2B, SENTINEL_2C, SENTINEL_3A, SENTINEL_3B, SENTINEL_3C, JASON_CSA, JASON_CSB, METOP_SG_A1, METOP_SG_A2, METOP_SG_A3, METOP_SG_B1, METOP_SG_B2, METOP_SG_B3, SENTINEL_5P, SENTINEL_5, BIOMASS, SAOCOM_CS, SEOSAT, GENERIC.
- Possible values for time_model: USER, NONE, IERS_B_PREDICTED, IERS_B_RESTITUTED, FOS_PREDICTED, FOS_RESTITUTED, DORIS_PRELIMINARY, DORIS_PRECISE, DORIS_NAVIGATOR, OSF.
- Possible values for time ref and time reference: UNDEF, TAI, UTC, UT1, GPS.
- Data for initialising the time references are needed only when using an Orbit Scenario file. For other files the data are optional. In that case, if the initialization parameters are not provided, the time correlations are initialised with the input orbit file

The inputs needed for time initialization are provided in the last three lines of parameters. Note that only one set of parameters should be introduced:

- TAI, GPS, UTC and UT1 input times (as in x1 time ref init)
- A file with time reference data, the time mode, the time reference name and a time range (as in xl time ref init file)

Example:

```
time_to_orbit -sat CRYOSAT -file EARTH_EXPLORER_FPO -tref UTC -time -2010.108657407 -show -v
```


Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

171

Page:

7.37 xo_orbit_info

7.37.1 Overview

The **xo_orbit_info** function retrieves from the orbit initialisation, information related with a certain orbit (specified by means of absolute orbit number).

Note: the computation of the parameter Spacecraft Midnight (SMX) is disabled by default. To enable the computation of this parameter the function **xo orbit info configure** must be used (see section 7.38).

7.37.2 Calling sequence

For C programs, the call to **xo_orbit_info** is (input parameters are underlined, some may be input or output depending on the calling mode):

```
#include <explorer orbit.h>
  xo orbit id orbit id = {NULL};
  long
               abs orbit;
  lona
               ierr[XO NUM ERR ORBIT INFO], status;
  double
               result vector[XO ORBIT INFO EXTRA NUM ELEMENTS];
  status = xo orbit info (&orbit id,
                           &abs orbit,
                           result vector, ierr);
  /* Or, using the run id */
  long run id;
  status = xo orbit info run (& run id,
                                &abs orbit,
                                result vector, ierr);
}
```


Date: 10/05/2019 Issue: 4.17

Page: 172

7.37.3 Input parameters

Table 101: Input parameters for xo_orbit_info

C name	C type	Array	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	
orbit_id	xo_orbit_id*	-	Structure that contains the orbit data.	-	-
abs_orbit	long *		Absolute orbit number		within orbit_id range

7.37.4 Output parameters

Table 102: Output parameters for xo_orbit_info

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_info	long		Main status flag,		-1, 0, 1
result_vector [XO_	double	XO_ORBIT_INFO_EXTRA_REPEAT_CYCLE	repeat_cycle ⁴	days	>0
ORBIT_INFO_EXT RA_NUM_ELEME		XO_ORBIT_INFO_EXTRA_CYCLE_LENGTH	cycle_lengtha	orbits	>0
NTS]		XO_ORBIT_INFO_EXTRA_MLST_DRIFT	MLST drift	s/day	
		XO_ORBIT_INFO_EXTRA_MLST	MLST ⁵	hours	>0
					<24
		XO_ORBIT_INFO_EXTRA_ANX_LONG	phasing	deg	>0
					<360
		XO_ORBIT_INFO_EXTRA_UTC_ANX	UTC time at ascending node	days (processi ng format)	
		XO_ORBIT_INFO_EXTRA_POS_X XO_ORBIT_INFO_EXTRA_POS_Y XO_ORBIT_INFO_EXTRA_POS_Z	position at ANX	m	
		XO_ORBIT_INFO_EXTRA_VEL_X XO_ORBIT_INFO_EXTRA_VEL_Y XO_ORBIT_INFO_EXTRA_VEL_Z	velocity at ANX	m/s	
		XO_ORBIT_INFO_EXTRA_MEAN_KEPL_A XO_ORBIT_INFO_EXTRA_MEAN_KEPL_E XO_ORBIT_INFO_EXTRA_MEAN_KEPL_I XO_ORBIT_INFO_EXTRA_MEAN_KEPL_RA XO_ORBIT_INFO_EXTRA_MEAN_KEPL_W XO_ORBIT_INFO_EXTRA_MEAN_KEPL_M	mean keplerian elements at ANX		
		XO_ORBIT_INFO_EXTRA_OSC_KEPL_A	osculating		

⁴ This parameter is only computed if the input orbit_id was computed either with an Orbit Scenario File using xo orbit_init_file or with xo orbit_init_def

⁵ This parameter is not computed if the input orbit_id was computed using a Restituted Orbit file or a DORIS file

Date: 10/05/2019 Issue: 4.17

Page: 173

		XO_ORBIT_INFO_EXTRA_OSC_KEPL_E XO_ORBIT_INFO_EXTRA_OSC_KEPL_I XO_ORBIT_INFO_EXTRA_OSC_KEPL_RA XO_ORBIT_INFO_EXTRA_OSC_KEPL_W XO_ORBIT_INFO_EXTRA_OSC_KEPL_M	keplerian elements ments at ANX		
		XO_ORBIT_INFO_EXTRA_NODAL_PERIOD	Nodal period	s	
		XO_ORBIT_INFO_EXTRA_UTC_SMX	UTC time of Spacecraft Midnight (see below the table for more information)	days (processi ng format)	
ierr[XO_ORBIT_I NFO FROM ABS]	long	all	Error status flags		

Note: the Spacecraft Midnight (SMX) is the time just halfway the nadir day \rightarrow night transition (the first transition of this type after ANX of the orbit) and the nadir night \rightarrow day transition (the first transition of this type after the previous day \rightarrow night transition). Such transitions are times at which the Sun Zenith Angle (SZA, angle satellite-nadir-sun) is 90 deg. In the day \rightarrow night transition, the SZA is increasing (i.e. there is a transition from SZA<90 to SZA>90). In the night \rightarrow day transition the SZA is decreasing (i.e. there is a transition from SZA>90 to SZA<90).

Date: 10/05/2019 Issue: 4.17

Page: 174

7.37.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_orbit_info** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the pv_utcanx CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 103: Error messages of xo_orbit_info function

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Orbit Id. No initialised.	Computation not performed	XO_CFI_ORBIT_INFO _ORBIT_INIT_ERR	0
ERR	Orbit out of initialised limits.	Computation not performed	XO_CFI_ORBIT_INFO _OUT_OF_LIMITS_ER R	1
ERR	Could not compute extra results	Computation not performed	XO_CFI_ORBIT_INFO _RESULTS_ERR	2
ERR	Geostationary satellite not allowed for this function.	Computation not performed	XO_CFI_ORBIT_INFO_G EO_SAT_ERR	3
ERR	Input orbit mode not allowed	Computation not performed	XO_CFI_ORBIT_INFO_O RBIT_MODE_NOT_ALL OWED_ERR	4
ERR	Error computing Spacecraft Midnight	Computation not performed	XO_CFI_ORBIT_INFO_S MX_ERR	5
WARN	No Spacecraft Midnight point found for the orbit	Computation performed. This is true except for SMX parameter, which is set to 0.	XO_CFI_ORBIT_INFO_N O_SMX_WARN	6

Issue: 4.17

Page: 175

7.38 xo_orbit_info_configure

7.38.1 Overview

The **xo_orbit_info_configure** function can be used to activate (or deactivate) the computation of several parameters in xo_orbit_info function. Some parameters computed by xo_orbit_info require a significant computation time, so their computation is disabled by default and must be activated with **xo orbit info configure** function. The parameters that can be activated currently are the following ones:

- Spacecraft Midnight (SMX)

7.38.2 Calling sequence

For C programs, the call to **xo_orbit_info_configure** is (input parameters are underlined, some may be input or output depending on the calling mode):

Date: 10/05/2019 Issue: 4.17

Page: 176

7.38.3 Input parameters

Table 104: Input parameters for xo_orbit_info_configure

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure that contains the orbit data.	-	-
Item	long *	-	Item to be activated/deactivated	-	Orbit items enumeration. (see Table 2)
flag	long *	-	Flag that indicates if the item must be activated or deactivated	-	Orbit flag enumeration (see Table 2)

7.38.4 Output parameters

Table 105: Output parameters for xo_orbit_info_configure

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_info_config ure	long		Main status flag,		-1, 0, 1
ierr[XO_ORBIT_I NFO_CONFIGUR E]	long	all	Error status flags		

Date: 10/05/2019 Issue: 4.17

Page: 177

7.38.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_orbit_info_configure** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the pv_utcanx CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 106: Error messages of xo_orbit_info_configure function

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Orbit Id not initialised.	Computation not performed	XO_ORBIT_INFO_CONF IGURE_ORBIT_INIT_ST ATUS_ERR	0
ERR	Wrong input option	Computation not performed	XO_ORBIT_INFO_CONF IGURE_WRONG_OPTIO N_ERR	1
ERR	Wrong input item	Computation not performed	XO_ORBIT_INFO_CONF IGURE_WRONG_ITEM_ ERR	2

Issue: 4.17

Page: 178

7.39 xo_orbit_rel_from_abs

7.39.1 Overview

The **xo_orbit_rel_from_abs** function retrieves from an Orbit Scenario File (previously initialised through the *orbit Id*) the relative orbit corresponding to a given absolute orbit number.

7.39.2 Calling sequence

For C programs, the call to **xo_orbit_rel_from_abs** is (input parameters are underlined, some may be input or output depending on the calling mode):

```
#include <explorer orbit.h>
                 orbit id = {NULL};
  xo orbit id
                       abs orbit, rel orbit, cycle, phase;
  long
                  ierr[XO NUM ERR ORBIT REL FROM ABS], status;
  long
  status = xo orbit rel from abs (&orbit id,
                                    &abs orbit,
                                    &rel orbit, &cycle,
                                    &phase, ierr);
  /* Or, using the run id */
  long run id;
  status = xo orbit rel from abs run (& run id,
                                         &abs orbit,
                                         &rel orbit, &cycle,
                                         &phase, ierr);
}
```


Date: 10/05/2019 Issue: 4.17

Page: 179

7.39.3 Input parameters

Table 107: Input parameters for xo_orbit_rel_from_abs

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
abs_orbit	long *		Absolute orbit number		within orbit_id range

7.39.4 Output parameters

Table 108: Output parameters for xo_orbit_rel_from_abs

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_rel_from_ abs	long		Main status flag,		-1, 0, 1
rel_orbit	long *		Relative orbit number		
cycle	long *		Cycle number		
phase	long *		Phase number		
ierr[XO_ORBIT_REL _FROM_ABS]	long	all	Error status flags		

Date: 10/05/2019 Issue: 4.17

Page: 180

7.39.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_orbit_rel_from_abs** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the pv_utcanx CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 109: Error messages of xo_orbit_rel_from_abs function

Error	Error message	Cause and impact	Error Code	Error
type				No
ERR	Orbit Id. is not initialised.	Computation not performed	XO_CFI_ORBIT_REL_ FROM_ABS_ORBIT_I NIT_ERR	0
ERR	The relative orbit could not be computed with the current orbit initialization.	Computation not performed	XO_CFI_ORBIT_REL_ FROM_ABS_ORBIT_W RONG_MODE_ERR	1
ERR	Wrong input orbit number	Computation not performed	XO_CFI_ORBIT_REL_ FROM_ABS_WRONG_ ORBIT	2

Page: 181

7.40 xo_orbit_abs_from_rel

7.40.1 Overview

The **xo_orbit_abs_from_rel** function retrieves from an Orbit Scenario File (previously initialised through the *orbit Id*) the absolute orbit corresponding to a given relative orbit number and cycle.

7.40.2 Calling sequence

For C programs, the call to **xo_orbit_abs_from_rel** is (input parameters are underlined, some may be input or output depending on the calling mode):

Date: 10/05/2019 Issue: 4.17

Page: 182

7.40.3 Input parameters

Table 110: Input parameters for xo_orbit_abs_from_rel

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
rel_orbit	long *		Relative orbit number		
cycle	long *		Cycle number		

7.40.4 Output parameters

Table 111: Output parameters for xo_orbit_abs_from_rel

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_abs_from_r el	long		Main status flag,		-1, 0, 1
abs_orbit	long *		Absolute orbit number		within orbit_id range
phase	long *		Phase number		
ierr[XO_ORBIT_ABS _FROM_REL]	long	all	Error status flags		

Date: 10/05/2019 Issue: 4.17

Page: 183

7.40.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_orbit_abs_from_rel** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the pv_utcanx CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 112: Error messages of xo_orbit_abs_from_rel function

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Orbit Id. is not initialised.	Computation not performed	XO_CFI_ORBIT_ABS_FR OM_REL_ORBIT_INIT_E RR	0
ERR	The orbit numbers could not be computed with the current orbit initialization.	Computation not performed	XO_CFI_ORBIT_ABS_FR OM_REL_ORBIT_WRON G_MODE_ERR	1
ERR	Wrong input relative orbit and/or cycle.	Computation not performed	XO_CFI_ORBIT_ABS_FR OM_REL_INPUT_PARAM ETER_ERR	2

184

Page:

7.41 xo_orbit_abs_from_phase

7.41.1 Overview

The **xo_orbit_abs_from_phase** function retrieves from an Orbit Scenario File (previously initialised through the *orbit Id*) the absolute orbit corresponding to a given phase.

7.41.2 Calling sequence

For C programs, the call to **xo_orbit_abs_from_phase** is (input parameters are underlined, some may be input or output depending on the calling mode):

```
#include <explorer orbit.h>
  xo orbit id orbit id = {NULL};
               abs_orbit, rel_orbit, cycle, phase;
  long
               ierr[XO NUM ERR ORBIT ABS FROM REL], status;
  long
  status = xo orbit abs from phase (&orbit id,
                                       &phase,
                                      &abs orbit,
                                      &rel orbit, &cycle,
                                      ierr);
  /* Or, using the run id */
  long run id;
  status = xo orbit abs from phase run (& run id,
                                           &phase,
                                           &abs orbit,
                                           &rel orbit, &cycle,
                                           ierr);
}
```


Date: 10/05/2019 Issue: 4.17

Page: 185

7.41.3 Input parameters

Table 113: Input parameters for xo_orbit_abs_from_phase

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit _id*	-	Structure that contains the orbit data	-	-
phase	long *		Phase number		

7.41.4 Output parameters

Table 114: Output parameters for xo_orbit_abs_from_phase

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_orbit_abs_from _phase	long		Main status flag,		-1, 0, 1
abs_orbit	long *		Absolute orbit number		within orbit_id range
rel_orbit	long *		Relative orbit number		
cycle	long *		Cycle number		
ierr[XO_ORBIT_AB S_FROM_PHASE]	long	all	Error status flags		

Date: 10/05/2019 Issue: 4.17

Page: 186

7.41.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_orbit_abs_from_phase** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the pv_utcanx CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 115: Error messages of xo_orbit_abs_from_phase function

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Orbit Id. is not initialised.	Computation not performed	XO_CFI_ORBIT_ABS_FR OM_PHASE_ORBIT_INIT _ERR	0
ERR	The orbit numbers could not be computed with the current orbit initialization.	Computation not performed	XO_CFI_ORBIT_ABS_FR OM_PHASE_ORBIT_WR ONG_MODE_ERR	1
ERR	Wrong input phase number.	Computation not performed	XO_CFI_ORBIT_ABS_FR OM_PHASE_INPUT_PAR AMETER_ERR	2

187

Page:

7.42 xo_osv_to_tle

7.42.1 Overview

The **xo_osv_to_tle** function generates a TLE by fitting the set of orbit state vectors stored in the orbit_id. This set of OSVs are selected from the input orbit_id for the orbit/time requested range in the following way:

- If the orbit_id mode is XO_ORBIT_INIT_USER_OSV_LIST_MODE, XO_ORBIT_INIT_ROF_MODE or XO_ORBIT_INIT_DORIS_MODE, all the OSVs in the input interval are fitted to the TLE by the Least Square method.
- In other cases (Predicted Orbit files), the input interval is populated with propagated OSV's. These OSV's are fitted to a single TLE by the Least Square method.

7.42.2 Calling sequence

For C programs, the call to **xo_osv_to_tle** is (input parameters are underlined, some may be input or output depending on the calling mode):

```
#include <explorer orbit.h>
  xo orbit id
                 orbit id = {NULL};
                 tle rec;
  xd tle rec
  long
                       time mode, time ref, orbit0, orbit1;
      double
                      time0, time1;
                  ierr[XO NUM ERR OSV TO TLE], status;
  long
  status = xo osv to tle (&orbit id,
                                &time mode, &time ref,
                                &time0, &time1,
                                &orbit0, &orbit1,
                                /* outputs */
                                &tle rec,
                                ierr);
}
```


Date: 10/05/2019 Issue: 4.17

Page: 188

7.42.3 Input parameters

Table 116: Input parameters for xo_osv_to_tle

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	Structure that contains the orbit data	-	-
time_mode	long	-	time/orbit selection mode. For the XL_SEL_DEFAULT mode, the whole range of orbits stored in the orbit_id is selected	-	XO_SEL_TIME XO_SEL_ORBIT XO_SEL_DEFAUL T
time_ref	long	-	time reference (only used if time_mode is XO_SEL_TIME	-	Complete
time0	double	-	Start time	days	Start validity time for the orbit_id
time1	double	-	Output time	days	Stop validity time for the orbit_id
orbit0	long	-	Start orbit	-	First orbit stored in the orbit_id
orbit1	long	-	Stop orbit	-	Last orbit stored in the orbit_id

It is possible to use enumeration values rather than integer values for some of the input arguments:

- time_mode: See [LIB_SUM], section 6.2 (Time Initialization)
- time_ref: See [LIB_SUM], section 6.2 (Time reference).

7.42.4 Output parameters

Table 117: Output parameters for xo_osv_to_tle

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_osv_to_tle	long	-	Main status flag	-	-1, 0, 1
tle_rec	xd_tle_rec	-	TLE record data	-	-
ierr	long	all	error array	-	-

Date: 10/05/2019 Issue: 4.17

Page: 189

7.42.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_osv_to_tle** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 118: Error messages of xo_osv_to_tle function

Error type	Error message	Cause and impact	Error Code	Error No
ERR	Input orbit_id is initialised with an incorrect model	Computation not performed	XO_CFI_OSV_TO_TLE_ WRONG_FILE_MODEL_ ERR	0
ERR	The input time/orbit interval is not correct	Computation not performed	XO_CFI_OSV_TO_TLE_ WRONG_INPUT_INTERV AL_ERR	1
ERR	Error in a time transformation	Computation not performed	XO_CFI_OSV_TO_TLE_T IME_TRANS_ERR	2
ERR	Incorrect input time mode	Computation not performed	XO_CFI_OSV_TO_TLE_ WRONG_TIME_MODEL_ ERR	3
ERR	Could not change from EF CS to TEME CS	Computation not performed	XO_CFI_OSV_TO_TLE_ CHANGE_CS_ERR	4
ERR	Could not get keplerian elements for absolute orbit	Computation not performed	XO_CFI_OSV_TO_TLE_ CART_TO_KEPLER_ERR	5
ERR	Error fitting OSVs to compute TLE	Computation not performed	XO_CFI_OSV_TO_TLE_FIT _ERR	6

Issue: 4.17 Page: 190

7.43 xo_gen_osf_create

7.43.1 Overview

The **xo_gen_osf_create** CFI function creates a reference Orbit Scenario File (OSF) with one orbit change data structure using only user inputs in the calling interface. This data structure characterizes the reference orbit by means of the following parameters:

- Absolute orbit number
- Relative orbit number
- · Cycle number
- Phase number
- Repeat cycle (days)
- Cycle length (orbits)
- · Ascending crossing node longitude
- Mean local solar time of the ascending crossing node
- Mean local solar time drift (seconds per day)
- Time of the ascending crossing node (TAI, UTC and UT1)

In order to write files, xo_gen_osf_create function internally uses Data Handling functions. Please refer to [D H SUM], in particular sections 4.2 and 4.3, for further details.

Note: function xo gen osf create is deprecated. It is recommended to use xo gen osf create 2 instead.

7.43.2 Calling interface

The calling interface of the **xo_gen_osf_create** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer orbit.h>
{
  long sat id;
  xl model id model id = {NULL};
  xl time id time id = {NULL};
  long abs orbit number, cycle number, phase number,
       repeat cycle, cycle length, drift mode, version number;
  double anx long, inclination, mlst drift, mlst, date;
  char output dir[XD MAX STR], output filename[XD MAX STR];
  char *file class, *fh system;
  long status, ierr[XO ERR VECTOR MAX LENGTH];
  status = xo gen osf create (&sat id, &model id, &time id,
                                &abs orbit number,
                                &cycle number, &phase number,
                                & repeat cycle, & cycle length,
                                &anx long, &drift mode,
```


Issue: 4.17

Page: 191

```
&inclination, &mlst_drift,
&mlst, &date,
output_dir, output_filename,
file_class, &version_number,
fh_system,
ierr);
```


Issue: 4.17 Page: 192

7.43.3 Input parameters

The **xo_gen_osf_create** CFI function has the following input parameters:

Table 119: Input parameters of xo_gen_osf_create function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
model_id	xl_model_id	-	Model ID	-	Complete
time_id	xl_time_id*	-	Structure that contains the time correlations.	-	-
abs_orbit_numbe r	long*	-	Orbit number in OSF first orbit change	-	>= 1
cycle_number	long*	-	Cycle number in OSF first orbit change	-	>= 1
phase_number	long*	-	Phase number in OSF first orbit change	-	>= 1
repeat_cycle	long*	-	Repeat cycle of the reference orbit	days	>= 1
cycle_length	long*	-	Cycle length of the reference orbit	orbits	>= 14
anx_long	double*	-	Reference orbit ascending node crossing longitude	deg	[-180, 180]
drift_mode	long*	-	Flag to select between drift in mean local solar time and inclination as input characterization of the reference orbit	-	[0,1]
inclination	double*	-	If drift_mode = XO_NOSUNSYNC_INCLINATION	deg	[0,180]
			Inclination of the reference orbit		
mlst_drift	double*	-	If drift_mode = XO_NOSUNSYNC_DRIFT	seconds/day	TBD
			Drift in mean local solar time of the reference orbit:		
			· MLST[N+1]=MLST[N]+MLST drift		
mlst	double*	-	Mean local solar time at	decimal	[0,24)
			ascending node	hours	
date	double*	-	ANX date	decimal days	-
output_dir	char*	-	Directory where the resulting OSF is written (if empty (i.e. ""), the current directory is used)	-	-

output_filename	char*	-	Output OSF name	-	-
			if empty (i.e. ""), the software will generate the filename according to file name specification pre sented in [FORMATS]. In such case, the generated name is returned in this variable		
file_class	char*	-	File class for output Orbit file	-	-
version_number	long*	-	Version number of output Orbit file	-	>= 1
fh_system	char*	-	System field of the output Orbit file fixed header	-	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Satellite ID: sat_id.

Drift mode: mlst_drift.

This CFI can generate Orbit Scenario Files for both sun-synchronous orbits and quasi-sun-synchronous orbits.

Use drift mode=XO NOSUNSYNC DRIFT and mlst drift = 0.0 for a sun-synchronous orbit.

Use any other combination for the general case of quasi-sun-synchronous orbit.

7.43.4 Output parameters

The output parameters of the **xo_gen_osf_create** CFI function are:

Table 120: Output parameters of xo_gen_osf_create function

C name	C type	Array Element	Description (Reference)		Unit (Format)	Allowed Range
output_filename	char*	-	Name for output file. This is only an output parameter when it is empty (i.e. ""; see description of this parameter in Table 119)	-		-
ierr[XO_ERR_VECTOR_ MAX_LENGTH]	long	all	Status vector	-		-

Issue: 4.17 Page: 194

7.43.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_gen_osf_create** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_gen_osf_create** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 121: Error messages of xo_gen_osf_create function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Wrong input values	Wrong value of one or more of the following input parameters:	XO_CFI_GEN_OSF_CREA TE_INPUTS_ERR	0
		abs_orbit_number,		
		cycle_number,		
		phase_number,		
		repeat_cycle,		
		cycle_length,		
		mlst		
		Computation not performed		
ERR	Time ID is not initialized	Time correllations were not initialized.	XO_CFI_GEN_OSF_CREA TE_TIME_INIT_ERR	1
		Computation not performed		
ERR	Memory allocation error	Memory allocation error for the orbit change data structure	XO_CFI_GEN_OSF_CREA TE_ALLOC_ERR	2
		Computation not performed		
ERR	Wrong drift mode	Wrong drift mode flag value for charaterization of non-sun.synchronous orbits	XO_CFI_GEN_OSF_CREA TE_DRIFT_MODE_ERR	3
		Computation not performed		
ERR	Error calculating MLST drift	Error calculating MLST drift from inclination	XO_CFI_GEN_OSF_CREA TE_DRIFT_CALC_ERR	4
		Computation not performed		
ERR	Error calculating UTC of ANX	Error calculating the UTC time of the orbit ascending	XO_CFI_GEN_OSF_CREA TE_UTC_CALC_ERR	5

Date: 10/05/2019 Issue: 4.17

Page: 195

		node		
		Computation not performed		
ERR	Error calculating TAI of ANX	Error calculating the TAI time of the orbit ascending node	XO_CFI_GEN_OSF_CREA TE_TAI_CALC_ERR	6
		Computation not performed		
ERR	Error calculating UT1 of ANX	Error calculating the UT1 time of the orbit ascending node	XO_CFI_GEN_OSF_CREA TE_UT1_CALC_ERR	7
		Computation not performed		
ERR	Error calculating the Fixed Header data	Error getting the data for the Fixed Header.	XO_CFI_GEN_OSF_CREA TE_GET_FH_ERR	8
		Computation not performed		
ERR	Error writing file to disk	Error writing the data structure to a file on disk	XO_CFI_GEN_OSF_CREA TE_WRITE_ERR	9
		Computation not performed		

7.43.6 Executable Program

The gen osf create executable program can be called from a Unix shell as:

```
gen osf create
                                -sat satellite name
                                -orbit abs orbit number
                                -cyc cycle number
                                -pha phase number
                                -repcyc repeat cycle(days)
                                -cyclen cycle length(orbits)
                                -anx anx long(deg)
                                { -mlstdr mlst drift | -inc inclination }
                                -mlst mlst
                                -date anx date
                                [-phinc]
                                [-dir dir name] (current directory by default)
                                [-osf output filename] (default: name generated automatically)
                                [-flcl file class] (empty string by default)
                                [-vers version] (version = 1 by default)
                               [-eoffs ffs version] (Earth Observation File Format Standard Version)
                                [-fhsys fh system] (empty string by default)
                                [ -v ]
                                \begin{bmatrix} -xl_v \end{bmatrix}
                                [-xo_v]
                                [-help]
                                [-show]
                                [-with_xslt] (add xslt reference with default style sheet)
                                 { (-tai TAI time -gps GPS time -utc UTC time -ut1 UT1 time) |
                                  (-tmod time model -tfile time file -trid time reference
                                   {(-tm0 time0 -tm1 time1) | (-orb0 orbit0 -orb1 orbit1) } ) }
```

Note that:

- Order of parameters does not matter.
- Bracketed parameters are not mandatory.

Date: 10/05/2019 Issue: 4.17

Page: 197

- Options between curly brackets and separated by a vertical bar are mutually exclusive.
- [-phinc] option for phase_increment. Default value for phase_increment is xo_NO_PHASE_INCREMENT. When the option is written, phase_increment is xo_PHASE_INCREMENT.
- [-xl v] option for EO LIB Verbose mode.
- [-xo v] option for EO ORBIT Verbose mode.
- [-v] option for Verbose mode for all libraries (default is Silent).
- [-show] displays the inputs of the function and the results.
- Possible values for satellite_name: ERS1, ERS2, ENVISAT, METOP1, METOP2, METOP3, CRYOSAT, ADM, GOCE, SMOS, TERRASAR, EARTHCARE, SWARM_A, SWARM_B, SWARM_C, SENTINEL_1A, SENTINEL_1B, SENTINEL_1C, SENTINEL_2A, SENTINEL_2B, SENTINEL_2C, SENTINEL_3A, SENTINEL_3B, SENTINEL_3C, JASON_CSA, JASON_CSB, METOP_SG_A1, METOP_SG_A2, METOP_SG_A3, METOP_SG_B1, METOP_SG_B2, METOP_SG_B3, SENTINEL_5P, SENTINEL_5, BIOMASS, SAOCOM_CS, SEOSAT, GENERIC.
- Possible values for *time_model*: USER, NONE, IERS_B_PREDICTED, IERS_B_RESTITUTED, FOS_PREDICTED, FOS_RESTITUTED, DORIS_PRELIMINARY, DORIS_PRECISE, DORIS_NAVIGATOR, OSF.
- Possible values for *ffs_version*: 0 (Default FFS), 1 (FFS version 1), 2 (FFS version 2), 3 (FFS version 3).
- Possible values for *time_reference*: UNDEF, TAI, UTC, UT1, GPS.
- The last three lines of parameters are used to initialize the time references. In order to do this, only one set of parameters should be introduced:
 - TAI, GPS, UTC and UT1 input times (as in x1 time ref init)
 - A file with time reference data, the time mode, the time reference name and a time range (as in xl time ref init file)

Example:

Page:

198

7.44 xo_gen_osf_create_2

7.44.1 Overview

{

The xo gen osf create 2 behaves the same way as xo gen osf create with the difference that it supports Mean Local Solar Time non linear parameters as input.

In order to write files, xo gen osf create 2 function internally uses Data Handling functions. Please refer to [D H SUM], in particular sections 4.2 and 4.3, for further details.

7.44.2 Calling interface

The calling interface of the xo_gen_osf_create_2 CFI function is the following (input parameters are underlined):

```
#include <explorer_orbit.h>
  long sat id;
  xl model id model id = {NULL};
  xl time id time id = {NULL};
  xo mission info mission info;
  double date;
  xo ref orbit info ref orbit info;
  char output dir[XD MAX STR], output filename[XD MAX STR];
  char *file class, *fh system;
  long status, ierr[XO ERR VECTOR_MAX_LENGTH];
  status = xo gen osf create 2(&sat id, &model id, &time id,
                                &date,
                                &mission info, &ref orbit info,
                               output dir, output filename,
                                file class, &version number,
                                fh system,
                              ierr);
  /* Or, using the run_id */
  long run id;
  status = xo gen osf create run 2 (&run id, &date,
                                &mission info, &ref orbit info,
                               output dir, output filename,
                                file class, &version number,
                               fh system,
                              ierr);
```


Date: 10/05/2019 Issue: 4.17

Page: 199

}

Date: 10/05/2019 Issue: 4.17

Page: 200

7.44.3 Input parameters

The xo_gen_osf_create2 CFI function has the following input parameters:

Table 122: Input parameters of xo_gen_osf_create_2 function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
model_id	xl_model_id	-	Model ID	-	Complete
time_id	xl_time_id*	-	Structure that contains the time correlations.	-	-
date	double*	-	ANX date	decimal days	-
mission_info	xo_mission _info*	-	Information about the orbit (equivalent to orbit information in xo_gen_osf_create, see table 119)	-	-
ref_orbit_info	xo_ref_orbit _info*	-	Struct with inputs for the function. The parameters are equivalent to the ones in xo_orbit_init_def (table 119) but also MLST non linear terms can be introduced.	-	-
output_dir	char*	-	Directory where the resulting OSF is written (if empty (i.e. ""), the current directory is used)	-	-
output_filename	char*	-	Output OSF name if empty (i.e. ""), the software will generate the filename according to file name specification pre sented in [FORMATS]. In such case, the generated name is returned in this variable	-	-
file_class	char*	-	File class for output Orbit file	-	-
version_number	long*	-	Version number of output Orbit file	-	>= 1
fh_system	char*	-	System field of the output Orbit file fixed header	-	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Satellite ID: sat_id.

Drift mode: mlst_drift.

Issue: 4.17 Page: 201

This CFI can generate Orbit Scenario Files for both sun-synchronous orbits and quasi-sun-synchronous orbits.

Use drift_mode=XO_NOSUNSYNC_DRIFT, mlst_drift = 0.0 and zero MLST non linear parameters for a sun-synchronous orbit.

Use any other combination for the general case of quasi-sun-synchronous orbit.

7.44.4 Output parameters

The output parameters of the xo_gen_osf_create_2 CFI function are:

Table 123: Output parameters of xo_gen_osf_create_2 function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
output_filename	char*	-	Name for output file. This is only an output parameter when it is empty (i.e. ""; see description of this parameter in Table 122)	-	-
ierr[XO_ERR_VECTOR_ MAX_LENGTH]	long	all	Status vector	-	-

7.44.5 Warnings and errors

Errors and warnings are the same as for function **xo gen osf create** (see section 194).

Page: 202

7.45 xo_gen_osf_append_orbit_change

7.45.1 Overview

The **xo_gen_osf_append_orbit_change** CFI function appends an orbit change to an existing reference Orbit Scenario File (OSF). The user must provide in the calling interface the name of the existing OSF, the parameters describing the new orbit change and the output file name where the old OSF with the appended orbit change will be written. No output file is generated if the resulting orbit is discontinuous in terms of ascending node longitude, mean local solar time.

Note: function xo_gen_osf_append_orbit_change is deprecated. It is recommended to use xo_gen_osf_append_orbit_change_2 instead.

In order to read and write files, xo_gen_osf_append_orbit_change function internally uses Data Handling functions. Please refer to [D H SUM], in particular sections 4.2 and 4.3, for further details.

7.45.2 Calling interface

The calling interface of the **xo_gen_osf_append_orbit_change** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer orbit.h>
  long sat id;
  xl time id time id = {NULL};
  xl model id model id = {NULL};
  long abs orbit number,
                                 repeat cycle, cycle length,
       drift mode, phase increment, version number;
  double anx long, inclination, mlst drift, mlst;
  char input filename[XD MAX STR],
       output dir[XD MAX STR], output filename[XD MAX STR];
  char *file class, *fh system;
  long status, ierr[XO ERR VECTOR MAX LENGTH];
  status = xo gen osf append orbit change (&sat id, &model id,
                                &time id,
                                &input filename,
                                    &abs orbit number,
                                & repeat cycle, & cycle length,
                                &anx long, &drift mode,
                                &inclination, &mlst drift,
                                &mlst, &phase increment,
                                output dir, output filename,
                                file class, &version number,
                                fh system,
```


}

Code: EO-MA-DMS-GS-0004

Date: 10/05/2019 Issue: 4.17

Page: 203

ierr);

Date: 10/05/2019 Issue: 4.17

Page: 204

7.45.3 Input parameters

The xo gen_osf_append_orbit_change CFI function has the following input parameters:

Table 124: Input parameters of xo_gen_osf_append_orbit_change function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range	
sat_id	long *	-	Satellite ID	-	Complete	
model_id	long *	-	Model ID	-	-	
time_id	xl_time _id*	-	Structure that contains the time correlations.	-	-	
input_filename	char*	-	Input OSF to which the orbit change is appended			
abs_orbit_number	long*	-	Absolute orbit number of the new orbit change	-	> abs orbit number in input OSF last orbit change	
repeat_cycle	long*	-	Repeat cycle of the new reference orbit	days	>= 1	
cycle_length	long*	-	Cycle length of the new reference orbit	orbits	>= 14	
anx_long	double*	-	Requested orbit ascending node crossing longitude	deg	[-180, 180]	
drift_mode	long*	-	Flag to select between drift in mean local solar time and inclination as input characterization of the reference orbit	-	[0,1]	
inclination	double*	-	If drift_mode = XO_NOSUNSYNC_INCLINATION	deg	[0,180]	
			Inclination of the reference orbit			
mlst_drift	double*	-	If drift_mode = XO_NOSUNSYNC_DRIFT	seconds/day	TBD	
			Drift in mean local solar time of the reference orbit:			
			· MLST[N+1]=MLST[N]+MLST drift			
mlst	double*	-	Mean local solar time at	decimal hours	[0,24)	
			ascending node			
phase_increment	long*	-	If 1 then	-	[0, 1]	
			phase [N+1] = phase [N] + 1			
			If 0 then			
			phase [N+1] = phase [N]			

Page: 205

output_dir	char*	-	Directory where the resulting OSF is written (if empty (i.e. ""), the current directory is used)	-	-
output_filename	char*	-	Output OSF name if empty (i.e. ""), the software will generate the filename according to file name specification pre sented in [FORMATS]. In such case, the generated name is returned in this variable	-	-
file_class	char*	-	File class for output Orbit file	-	-
version_number	long*	-	Version number of output Orbit file	-	>= 1
fh_system	char*	-	System field of the output Orbit file fixed header	-	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Satellite ID: sat_id. See [GEN_SUM].
- Drift mode: mlst_drift.
- Phase increment.

This CFI can append orbit changes for both sun-synchronous orbits and quasi-sun-synchronous orbits.

Use drift mode=XO NOSUNSYNC DRIFT and mlst drift = 0.0 for a sun-synchronous orbit.

Use any other combination for the general case of quasi-sun-synchronous orbit.

7.45.4 Output parameters

The output parameters of the xo_gen_osf_append_orbit_change CFI function are:

Table 125: Output parameters of xo_gen_osf_append_orbit_change function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
output_filename	char*	-	Name for output file. This is only an output parameter when it is empty (i.e. ""; see description of this parameter in Table 124)	-	-
ierr[XO_ERR_VECTOR_ MAX_LENGTH]	long	all	Status vector	-	-

Page: 206

7.45.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_gen_osf_append_orbit_change** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_gen_osf_append_orbit_change** CFI function by calling the function of the EO ORBIT software library **xo get code** (see [GEN SUM]).

Table 126: Error messages of xo_gen_osf_append_orbit_change function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Wrong input values	Wrong value of one or more of the following input parameters:	XO_CFI_GEN_OSF_APPE ND_INPUTS_ERR	0
		abs_orbit_number,		
		repeat_cycle,		
		cycle_length,		
		mlst,		
		phase_increment		
		Computation not performed		
ERR	Time ID is not initialized	Time correlations were not initialized.	XO_CFI_GEN_OSF_APPE ND_TIME_INIT_ERR	1
		Computation not performed		
ERR	Cannot read input OSF	Computation not performed	XO_CFI_GEN_OSF_APPE ND_READ_IN_OSF_ERR	2
WARN	Very large ANX long jump (%lf deg)	Requested ANX long leads to an orbit discontinuity.	XO_CFI_GEN_OSF_APPE ND_ANX_LONG_WARN	3
		Computation performed		
WARN	Very large MLST jump (%lf hours)	Requested MLST leads to an orbit discontinuity.	XO_CFI_GEN_OSF_APPE ND_MLST_WARN	4
		Computation performed		
ERR	Wrong drift mode	Wrong drift mode flag value for charaterization of non-sun.synchronous orbits	XO_CFI_GEN_OSF_APPE ND_DRIFT_MODE_ERR	5
		Computation not performed		
ERR	Error calculating MLST drift	Error calculating MLST drift from inclination	XO_CFI_GEN_OSF_APPE ND_DRIFT_CALC_ERR	6
		Computation not performed		

Date: 10/05/2019 Issue: 4.17

Page: 207

ERR	Error calculating UTC of ANX	Error calculating the UTC time of the orbit ascending node	XO_CFI_GEN_OSF_APPE ND_UTC_CALC_ERR	7
		Computation not performed		
ERR	Error calculating TAI of ANX	Error calculating the TAI time of the orbit ascending node	XO_CFI_GEN_OSF_APPE ND_TAI_CALC_ERR	8
		Computation not performed		
ERR	Error calculating UT1 of ANX	Error calculating the UT1 time of the orbit ascending node	XO_CFI_GEN_OSF_APPE ND_UT1_CALC_ERR	9
		Computation not performed		
ERR	Memory allocation error	Computation not performed	XO_CFI_GEN_OSF_APPE ND_ALLOC_ERR	10
ERR	Error calculating the Fixed Header data	Computation not performed	XO_CFI_GEN_OSF_APPE ND_GET_FH_ERR	11
ERR	Error writing file to disk	Error writing the data structure to a file on disk	XO_CFI_GEN_OSF_APPE ND_WRITE_ERR	12
		Computation not performed		

7.45.6 Executable Program

The gen osf append orbit change executable program can be called from a Unix shell as:

```
gen osf append orbit change -sat satellite name
                                 -inosf input filename
                                -orbit abs orbit number
                                -repcyc repeat cycle(days)
                                -cyclen cycle length(orbits)
                                -anx anx long(deg)
                                 { -mlstdr mlst drift | -inc inclination }
                                -mlst mlst
                                [-phinc]
                                [-dir output dir] (current directory by default)
                                 [-osf output filename] (default: name generated automatically)
                                [-flcl file class] (empty string by default)
                                [-vers version] (version = 1 by default)
                               [-eoffs ffs version] (Earth Observation File Format Standard Version)
                                [-fhsys fh system] (empty string by default)
                                [ -v ]
                                [-xl_v]
                                \begin{bmatrix} -xo & v \end{bmatrix}
                                [-help]
                                [-show]
                                 [-with xslt] (add xslt reference with default style sheet)
                                 { (-tai TAI time -gps GPS time -utc UTC time -ut1 UT1 time) |
                                  (-tmod time model -tfile time file -trid time reference
                                   {(-tm0 time0 -tm1 time1) | (-orb0 orbit0 -orb1 orbit1) } ) }
```

Note that:

- Order of parameters does not matter.
- Bracketed parameters are not mandatory.
- Options between curly brackets and separated by a vertical bar are mutually exclusive.

Date: 10/05/2019 Issue: 4.17

Page: 209

phase increment. Default value for phase increment [-phinc] option for is xo NO PHASE INCREMENT. When option is written. phase increment is xo PHASE INCREMENT.

- [-xl v] option for EO LIB Verbose mode.
- [-xo v] option for EO ORBIT Verbose mode.
- [-v] option for Verbose mode for all libraries (default is Silent).
- [-show] displays the inputs of the function and the results.
- Possible values for satellite_name: ERS1, ERS2, ENVISAT, METOP1, METOP2, METOP3, CRYOSAT, ADM, GOCE, SMOS, TERRASAR, EARTHCARE, SWARM_A, SWARM_B, SWARM_C, SENTINEL_1A, SENTINEL_1B, SENTINEL_1C, SENTINEL_2A, SENTINEL_2B, SENTINEL_2C, SENTINEL_3A, SENTINEL_3B, SENTINEL_3C, JASON_CSA, JASON_CSB, METOP_SG_A1, METOP_SG_A2, METOP_SG_A3, METOP_SG_B1, METOP_SG_B2, METOP_SG_B3, SENTINEL_5P, SENTINEL_5, BIOMASS, SAOCOM_CS, SEOSAT, GENERIC.
- Possible values for *time_model*: USER, NONE, IERS_B_PREDICTED, IERS_B_RESTITUTED, FOS_PREDICTED, FOS_RESTITUTED, DORIS_PRELIMINARY, DORIS_PRECISE, DORIS_NAVIGATOR, OSF.
- Possible values for *ffs_version*: 0 (Default FFS), 1 (FFS version 1), 2 (FFS version 2), 3 (FFS version 3).
- Possible values for time reference: UNDEF, TAI, UTC, UT1, GPS.
- The last three lines of parameters are used to initialize the time references. In order to do this, only one set of parameters should be introduced:
 - TAI, GPS, UTC and UT1 input times (as in xl time ref init)
 - A file with time reference data, the time mode, the time reference name and a time range (as in xl_time_ref_init_file)

Example:

Page: 210

7.46xo_gen_osf_append_orbit_change_2

7.46.1 Overview

The **xo_gen_osf_append_orbit_change_2** CFI function appends an orbit change to an existing reference Orbit Scenario File (OSF) in the same way as **xo_gen_osf_append_orbit_change**, but allowing the introduction and management of Mean Local Solar Time non linear terms.

In order to read and write files, xo_gen_osf_append_orbit_change_2 function internally uses Data Handling functions. Please refer to [D_H_SUM], in particular sections 4.2 and 4.3, for further details.

7.46.2 Calling interface

The calling interface of the **xo_gen_osf_append_orbit_change_2** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer orbit.h>
  long sat id;
  xl time id time id = {NULL};
  xl model id model id = {NULL};
  long abs orbit number, phase increment, version number;
  char input filename[XD MAX STR],
       output dir[XD MAX STR], output filename[XD MAX STR];
  char *file class, *fh system;
  long status, ierr[XO ERR VECTOR MAX LENGTH];
  status = xo gen osf append orbit change 2 (&sat id, &model id,
                                &time id,
                                & input filename,
                                    &abs orbit number,
                                & ref orbit info, & phase_increment,
                               output dir, output filename,
                                file class, &version number,
                               fh system,
                              ierr);
  /* Or, using the run id */
  long run id;
  status = xo gen osf append orbit change run 2 (& run id,
                                & input filename,
                                    &abs orbit number,
                                &&ref orbit info, &phase increment,
```


Date: 10/05/2019 Issue: 4.17

Page: 211

output_dir, output_filename,
file_class, &version_number,
fh_system,
ierr);

}

Date: 10/05/2019 Issue: 4.17

Page: 212

7.46.3 Input parameters

The xo_gen_osf_append_orbit_change_2 CFI function has the following input parameters:

Table 127: Input parameters of xo_gen_osf_append_orbit_change_2 function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
model_id	long *	-	Model ID	-	-
time_id	xl_time _id*	-	Structure that contains the time correlations.	-	-
input_filename	char*	-	Input OSF to which the orbit change is appended		
abs_orbit_number	long*	-	Absolute orbit number of the new orbit change	-	> abs orbit number in input OSF last orbit change
ref_orbit_info	xo_ref_ orbit_in fo*	-	Struct with inputs for the function. The parameters are equivalent to the ones in xo_orbit_init_def (see table 124) but also MLST non linear terms can be introduced.	-	-
phase_increment	long*	-	If 1 then	-	[0, 1]
			phase [N+1] = phase [N] + 1		
			If 0 then		
			phase [N+1] = phase [N]		
output_dir	char*	-	Directory where the resulting OSF is written (if empty (i.e. ""), the current directory is used)	-	-
output_filename	char*	-	Output OSF name	-	-
			if empty (i.e. ""), the software will generate the filename according to file name specification pre sented in [FORMATS]. In such case, the generated name is returned in this variable		
file_class	char*	-	File class for output Orbit file	-	-
version_number	long*	-	Version number of output Orbit file	-	>= 1
fh_system	char*	-	System field of the output Orbit file fixed header	-	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

Date: 10/05/2019 Issue: 4.17

Page: 213

• Satellite ID: sat id. See [GEN SUM].

• Drift mode: mlst_drift.

Phase increment.

This CFI can append orbit changes for both sun-synchronous orbits and quasi-sun-synchronous orbits.

Use drift_mode=XO_NOSUNSYNC_DRIFT, mlst_drift = 0.0 and zero MLST non linear terms for a sun-synchronous orbit.

Use any other combination for the general case of quasi-sun-synchronous orbit.

7.46.4 Output parameters

The output parameters of the xo_gen_osf_append_orbit_change_2 CFI function are:

Table 128: Output parameters of xo_gen_osf_append_orbit_change_2 function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
output_filename	char*	-	Name for output file. This is only an output parameter when it is empty (i.e. ""; see description of this parameter in Table 127)	-	-
ierr[XO_ERR_VECTOR_ MAX_LENGTH]	long	all	Status vector	-	-

Date: 10/05/2019 Issue: 4.17

Page: 214

7.46.5 Warnings and errors

Errors and warning are the same as in the function **xo_gen_osf_append_orbit_change**. See section 206 for details.

215

Page:

7.47 xo_gen_osf_change_repeat_cycle

7.47.1 Overview

Given a reference orbit from an existing OSF and a new target orbit (repeat cycle, cycle length, ascending node longitude and inclination or mean local solar time drift), the **xo_gen_osf_change_repeat_cycle** CFI function finds an optimum orbit change such that the target orbit can be reached from the found orbit change. This function will write a new OSF with the found orbit change appended to the content of the old OSF.

In order to read and write files, xo_gen_osf_change_repeat_cycle function internally uses Data Handling functions. Please refer to [D_H_SUM], in particular sections 4.2 and 4.3, for further details.

Note: function xo_gen_osf_change_repeat_cycle is deprecated. It is recommended to use xo gen osf change repeat cycle 2 instead.

7.47.2 Calling interface

The calling interface of the **xo_gen_osf_change_repeat_cycle** CFI function is the following (input param eters are <u>underlined</u>):

```
#include <explorer orbit.h>
  long sat id;
  xl model id model id = {NULL};
  xl time id time id = {NULL};
  long abs orbit number, search direction, repeat cycle,
       cycle length, drift mode, phase increment, version number;
  double anx long, inclination, mlst drift;
  char input filename[XD MAX STR],
       output dir[XD MAX STR], output filename[XD MAX STR];
  char *file class, *fh system;
  long status, ierr[XO ERR VECTOR MAX LENGTH];
  status = xo gen osf change repeat cycle (&sat id, &model id,
                               &time id, &input filename,
                               &abs orbit number,
                               &search direction,
                               & repeat cycle, & cycle length,
                               &anx long, &drift mode,
                               &inclination, &mlst drift,
                               &phase increment,
                               output dir, output filename,
                               file class, &version number,
```


}

Code: EO-MA-DMS-GS-0004

Date: 10/05/2019 Issue: 4.17

Page: 216

fh_system,
ierr);

Code: EO-MA-DMS-GS-0004 Date: 10/05/2019

Issue: 4.17

Page: 217

7.47.3 Input parameters

The xo gen osf change repeat cycle CFI function has the following input parameters:

Table 129: Input parameters of xo_gen_osf_change_repeat_cycle function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
model_id	xl_mod el_id*	-	Model ID	-	-
time_id	xl_time _id*	-	Structure that contains the time correlations.	-	-
input_filename	char*	-	Input OSF to which the orbit change is appended		
abs_orbit_number	long*	-	Absolute orbit number from which the optimum transition search starts	-	> abs orbit number in input OSF last orbit change
search_direction	long*	-	Search for optimum transition after or before abs_orbit_number		{-1, 1}
repeat_cycle	long*	-	Repeat cycle of the new reference orbit	days	>= 1
cycle_length	long*	-	Cycle length of the new reference orbit	orbits	>= 14
anx_long	double*	-	Target orbit ascending node crossing longitude	deg	[-180, 180]
drift_mode	long*	-	Flag to select between drift in mean local solar time and inclination as input characterization of the reference orbit	-	[0,1]
inclination	double*	-	If drift_mode = XO_NOSUNSYNC_INCLINATION	deg	[0,180]
			Inclination of the reference orbit		
mlst_drift	double*	-	If drift_mode = XO_NOSUNSYNC_DRIFT	seconds/day	TBD
			Drift in mean local solar time of the reference orbit:		
			· MLST[N+1]=MLST[N]+MLST drift		
phase_increment	long*	-	If 1 then	-	[0, 1]
			phase [N+1] = phase [N] + 1		
			If 0 then		
			phase [N+1] = phase [N]		

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

Page: 218

output_dir	char*	-	Directory where the resulting OSF is written (if NULL, the cur rent directory is used)	-	-
output_filename	char*	-	Output OSF name if empty (i.e. ""), the software will generate the filename according to file name specification presented in [FORMATS]. In such case, the generated name is returned in this variable	-	-
file_class	char*	-	File class for output Orbit file	-	-
version_number	long*	-	Version number of output Orbit file	-	>= 1
fh_system	char*	-	System field of the output Orbit file fixed header	-	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Satellite ID: sat id.
- · Search direction.
- Drift mode: mlst drift.
- Phase increment.

This CFI can append orbit changes for both sun-synchronous orbits and quasi-sun-synchronous orbits.

Use drift mode=XO NOSUNSYNC DRIFT and mlst drift = 0.0 for a sun-synchronous orbit.

Use any other combination for the general case of quasi-sun-synchronous orbit.

7.47.4 Output parameters

The output parameters of the xo gen_osf_change_repeat_cycle CFI function are:

Table 130: Output parameters of xo_gen_osf_change_repeat_cycle function

C name	C type	Array Element	Description (Reference)	(Unit Format)	Allowed Range
output_filename	char*	-	Name for output file. This is only an output parameter when it is empty (i.e. ""; see description of this parameter in Table 129)	-		-
ierr[XO_ERR_VECTOR_ MAX_LENGTH]	long	all	Status vector	-		-

Code: EO-MA-DMS-GS-0004 Date: 10/05/2010

Date: 10/05/2019
Issue: 4.17
Page: 219

7.47.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_gen_osf_change_repeat_cycle** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_gen_osf_change_repeat_cycle** CFI function by calling the function of the EO ORBIT software library **xo get code** (see [GEN SUM]).

Table 131: Error messages of xo_gen_osf_change_repeat_cycle function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Wrong input values	Wrong value of one or more of the following input parameters:	XO_CFI_GEN_OSF_CHAN GE_INPUTS_ERR	0
		abs_orbit_number,		
		search_direction,		
		repeat_cycle,		
		cycle_length,		
		phase_increment		
		Computation not performed		
ERR	Time ID is not initialized	Computation not performed	XO_CFI_GEN_OSF_CHAN GE_TIME_INIT_ERR	1
ERR	Cannot read input OSF	Computation not performed	XO_CFI_GEN_OSF_CHAN GE_READ_IN_OSF_ERR	2
ERR	Wrong drift mode	Wrong drift mode flag value for charaterization of non-sun-synchronous orbits	XO_CFI_GEN_OSF_CHAN GE_DRIFT_MODE_ERR	3
		Computation not performed		
ERR	Error calculating MLST drift	Error calculating MLST drift from inclination	XO_CFI_GEN_OSF_CHAN GE_DRIFT_CALC_ERR	4
		Computation not performed		
ERR	No transition found	No optimum transition found keeping orbit continuity	XO_CFI_GEN_OSF_CHAN GE_NO_TRANSITION_ER	5
		Computation not performed	R	
ERR	Error calculating UTC of ANX	Error calculating the UTC time of the orbit ascending node	XO_CFI_GEN_OSF_CHAN GE_UTC_CALC_ERR	6
		Computation not performed		
ERR	Error calculating TAI of ANX	Error calculating the TAI	XO_CFI_GEN_OSF_CHAN	7

Date: 10/05/2019 Issue: 4.17

Page: 220

		time of the orbit ascending node	GE_TAI_CALC_ERR	
		Computation not performed		
ERR	Error calculating UT1 of ANX	Error calculating the UT1 time of the orbit ascending node	XO_CFI_GEN_OSF_CHAN GE_UT1_CALC_ERR	8
		Computation not performed		
ERR	Memory allocation error	Computation not performed	XO_CFI_GEN_OSF_CHAN GE_ALLOC_ERR	9
ERR	Error calculating the Fixed Header data	Computation not performed	XO_CFI_GEN_OSF_CHAN GE_GET_FH_ERR	10
ERR	Error writing file to disk	Error writing the data structure to a file on disk	XO_CFI_GEN_OSF_CHAN GE_WRITE_ERR	11
		Computation not performed		
WARN	Function xo_gen_osf_change_repeat _cycle is deprecated. Use xo_gen_osf_change_repeat _cycle_2 instead	Computation performed	XO_GEN_OSF_CHANGE_ DEPRECATED_WARN	12
ERR	Error in selecting schema	Computation not performed	XO_CFI_GEN_OSF_CHAN GE_SELECT_SCHEMA_ER R	

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

221

Page:

7.47.6 Executable Program

The gen osf change repeat cycle executable program can be called from a Unix shell as:

```
gen osf change repeat cycle -sat satellite name
                                -inosf input filename
                                -orbit abs orbit number
                                [-back]
                                -repcyc repeat cycle(days)
                                -cyclen cycle length(orbits)
                                -anx anx long(deg)
                                { -mlstdr mlst drift | -inc inclination }
                                [-phinc]
                                [-dir output dir] (current directory by default)
                                [-osf output filename] (default: name generated automatically)
                                [-flcl file class] (empty string by default)
                                [-vers version] (version = 1 by default)
                               [-eoffs ffs version] (Earth Observation File Format Standard Version)
                                [-fhsys fh system] (empty string by default)
                                [-v]
                                [-xl_v]
                                \begin{bmatrix} -xo & v \end{bmatrix}
                                [-help]
                                [-show]
                                [-with xslt] (add xslt reference with default style sheet)
                                { (-tai TAI_time -gps GPS time -utc UTC time -ut1 UT1 time) |
                                 (-tmod time model -tfile time file -trid time reference
```

Note that:

- Order of parameters does not matter.
- Bracketed parameters are not mandatory.
- Options between curly brackets and separated by a vertical bar are mutually exclusive.
- [-back] option for search_direction. Default value is xo_SEARCH_FORWARD. When the option is written, search_direction value is xo_SEARCH_BACKWARD.

{(-tm0 time0 -tm1 time1) | (-orb0 orbit0 -orb1 orbit1) }) }

• [-phinc] option for phase_increment. Default value is xo_NO_PHASE_INCREMENT. When the option is written, phase increment value is xo_PHASE_INCREMENT.

Date: 10/05/2019 Issue: 4.17

Page: 222

- [-xl v] option for EO LIB Verbose mode.
- [-xo_v] option for EO ORBIT Verbose mode.
- [-v] option for Verbose mode for all libraries (default is Silent).
- [-show] displays the inputs of the function and the results.
- Possible values for satellite_name: ERS1, ERS2, ENVISAT, METOP1, METOP2, METOP3, CRYOSAT, ADM, GOCE, SMOS, TERRASAR, EARTHCARE, SWARM_A, SWARM_B, SWARM_C, SENTINEL_1A, SENTINEL_1B, SENTINEL_1C, SENTINEL_2A, SENTINEL_2B, SENTINEL_2C, SENTINEL_3A, SENTINEL_3B, SENTINEL_3C, JASON_CSA, JASON_CSB, METOP_SG_A1, METOP_SG_A2, METOP_SG_A3, METOP_SG_B1, METOP_SG_B2, METOP_SG_B3, SENTINEL_5P, SENTINEL_5, BIOMASS, SAOCOM_CS, SEOSAT, GENERIC.
- Possible values for *time_model*: USER, NONE, IERS_B_PREDICTED, IERS_B_RESTITUTED, FOS_PREDICTED, FOS_RESTITUTED, DORIS_PRELIMINARY, DORIS_PRECISE, DORIS_NAVIGATOR, OSF.
- Possible values for *ffs_version*: 0 (Default FFS), 1 (FFS version 1), 2 (FFS version 2), 3 (FFS version 3).
- Possible values for *time reference*: UNDEF, TAI, UTC, UT1, GPS.
- The last three lines of parameters are used to initialize the time references. In order to do this, only one set of parameters should be introduced:
 - TAI, GPS, UTC and UT1 input times (as in xl time ref init)
 - A file with time reference data, the time mode, the time reference name and a time range (as in xl_time_ref_init_file)

Example:

Code: EO-MA-DMS-GS-0004

Date: 10/05/2019

Issue: 4.17

223

Page:

7.48 xo_gen_osf_change_repeat_cycle_2

7.48.1 Overview

Performs the same operations as **xo_gen_osf_change_repeat_cycle** but adding support for Mean Local Solar Time non linear drift.

In order to read and write files, xo_gen_osf_change_repeat_cycle_2 function internally uses Data Handling functions. Please refer to [D H SUM], in particular sections 4.2 and 4.3, for further details.

7.48.2 Calling interface

The calling interface of the **xo_gen_osf_change_repeat_cycle_2** CFI function is the following (input param eters are <u>underlined</u>):

```
#include <explorer_orbit.h>
{
  long sat id;
  xl model id model id = {NULL};
  xl time id time id = {NULL};
  long abs orbit number, search direction, phase increment,
version number;
  xo ref orbit info ref orbit info;
  char input filename[XD MAX STR],
       output dir[XD MAX STR], output filename[XD MAX STR];
  char *file class, *fh system;
  long status, ierr[XO ERR VECTOR MAX LENGTH];
  status = xo gen osf change repeat cycle 2 (&sat id, &model id,
                                &time id, &input filename,
                               &abs orbit number,
                                &search direction,
                                &ref orbit info,
                                &phase increment,
                               output dir, output filename,
                                file class, &version number,
                               fh system,
                               ierr);
  /* Or, using the run id */
  long run id;
  status = xo gen osf change repeat cycle run 2 (& run id,
```


Date: 10/05/2019 Issue: 4.17

Page: 224

&input_filename, &abs_orbit_number,
&search_direction,
&ref_orbit_info,
&phase_increment,
output_dir, output_filename,
file_class, &version_number,
fh_system,
ierr);

}

Date: 10/05/2019 Issue: 4.17

Page: 225

7.48.3 Input parameters

The xo_gen_osf_change_repeat_cycle_2 CFI function has the following input parameters:

Table 132: Input parameters of xo_gen_osf_change_repeat_cycle_2 function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
model_id	xl_mod el_id*	-	Model ID	-	-
time_id	xl_time _id*	-	Structure that contains the time correlations.	-	-
input_filename	char*	-	Input OSF to which the orbit change is appended		
abs_orbit_number	long*	-	Absolute orbit number from which the optimum transition search starts	-	> abs orbit number in input OSF last orbit change
search_direction	long*	-	Search for optimum transition after or before abs_orbit_number		{-1, 1}
ref_orbit_info	xo_ref_ orbit_in fo*	-	Struct with inputs for the function. The parameters are equivalent to the ones in xo_gen_osf_change_repeat_cycl e (see table 129) but also MLST non linear terms can be introduced.	-	-
phase_increment	long*	-	If 1 then phase [N+1] = phase [N] + 1 If 0 then phase [N+1] = phase [N]	-	[0, 1]
output_dir	char*	-	Directory where the resulting OSF is written (if NULL, the cur rent directory is used)	-	-
output_filename	char*	-	Output OSF name if empty (i.e. ""), the software will generate the filename according to file name specification presented in [FORMATS]. In such case, the generated name is returned in this variable	-	-
file_class	char*	-	File class for output Orbit file	-	-
version_number	long*	-	Version number of output Orbit file	-	>= 1
fh_system	char*	-	System field of the output Orbit	-	-

Code: EO-MA-DMS-GS-0004 Date: 10/05/2010

Date: 10/05/2019 Issue: 4.17 Page: 226

file fixed header		
-------------------	--	--

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Satellite ID: sat id.
- Search direction.
- Drift mode: mlst_drift.
- Phase increment.

This CFI can append orbit changes for both sun-synchronous orbits and quasi-sun-synchronous orbits.

Use drift mode=XO NOSUNSYNC DRIFT and mlst drift = 0.0 for a sun-synchronous orbit.

Use any other combination for the general case of quasi-sun-synchronous orbit.

7.48.4 Output parameters

The output parameters of the xo_gen_osf_change_repeat_cycle CFI function are:

Table 133: Output parameters of xo_gen_osf_change_repeat_cycle_2 function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
output_filename	char*	-	Name for output file. This is only an output parameter when it is empty (i.e. ""; see description of this parameter in Table 132)	-	-
ierr[XO_ERR_VECTOR_ MAX_LENGTH]	long	all	Status vector	-	-

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17
Page: 227

7.48.5 Warnings and errors

The warnings and errors are the same as for function **xo_gen_osf_change_repeat_cycle** (see section 219).

Code: EO-MA-DMS-GS-0004 Date: 10/05/2019 Issue: 4.17

Page: 228

7.49 xo_gen_osf_add_drift_cycle

7.49.1 Overview

Given a reference orbit from an existing OSF, a new requested orbit with a particular ascending node longitude and an orbit for the manoeuvre, the **xo_gen_osf_add_drift_cycle** CFI function fits a repeat cycle/cycle length between the manoeuvre orbit (drift start) and the requested orbit (drift stop) such that the longitude of the ascending node at the drift stop orbit be the one requested.

The drift orbit is constrained by a maximum altitude difference with respect to the reference orbit.

Furthermore, if the reference orbit is sun-synchronous, the drift orbit shall also be sun-synchronous; but if the reference orbit is not sun-synchronous, the drift orbit shall keep the inclination constant.

This CFI appends two orbit changes to the existing OSF:

- The first one for the drift manoeuvre
- The second one for restoring the old reference orbit characteristics at the requested ascending node longitude

In order to read and write files, xo_gen_osf_add_drift_cycle function internally uses Data Handling functions. Please refer to [D H SUM], in particular sections 4.2 and 4.3, for further details.

Note: function xo_gen_osf_add_drift_cycle is deprecated. It is recommended to use xo_gen_osf_add_drift_cycle_2 instead.

7.49.2 Calling interface

The calling interface of the **xo_gen_osf_add_drift_cycle** CFI function is the following (input parameters are underlined):

```
#include <explorer orbit.h>
  long sat id;
  xl model id model id = {NULL};
  xl time id time id = {NULL};
  long drift start orbit, drift stop orbit,
       phase inc start, phase inc stop, version number;
  double drift stop anx long, max altitude change;
  char input filename[XD MAX STR],
       output dir[XD MAX STR], output filename[XD MAX STR];
  char *file class, *fh system;
  long status, ierr[XO ERR VECTOR MAX LENGTH];
  status = xo gen osf add drift cycle (&sat id, &model id,
                            &time id,
                                & input filename,
                                &drift start orbit,
                                &drift stop orbit,
```


}

Code: EO-MA-DMS-GS-0004 Date: 10/05/2019

Issue: 4.17

Page: 229

```
&drift_stop_anx_long,

&max_altitude_change,

&phase_inc_start, &phase_inc_stop,

output_dir, output_filename,

file_class, &version_number,

fh_system,

ierr);
```


Date: 10/05/2019 Issue: 4.17

Page: 230

7.49.3 Input parameters

The xo_gen_osf_add_drift_cycle CFI function has the following input parameters:

Table 134: Input parameters of xo_gen_osf_add_drift_cycle function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
model_id	xl_mod el_id*	-	Model ID	-	-
time_id	xl_time _id*	-	Structure that contains the time correlations.	-	-
input_filename	char*	-	Input OSF to which the orbit changes are appended		
drift_start_orbit	long*	-	Absolute orbit number at the drift start	-	> abs orbit number in input OSF last orbit change
drift_stop_orbit	long*	-	Absolute orbit number at the drift stop	-	> drift_start_orbit
drift_stop_anx_long	double*	-	Drift stop orbit ascending node crossing longitude	deg	[-180, 180]
max_altitude_change	double*	-	Maximum variation in altitude between the reference orbit and the drift orbit	m	
phase_inc_start	long*	-	Phase increment at drift start	-	[0, 1]
			If 1 then		
			phase [N+1] = phase [N] + 1		
			If 0 then		
			phase [N+1] = phase [N]		
phase_inc_stop	long*	-	Phase increment at drift stop	-	[0, 1]
			If 1 then		
			phase [N+1] = phase [N] + 1		
			If 0 then		
			phase [N+1] = phase [N]		
output_dir	char*	-	Directory where the resulting OSF is written (if empty (i.e. ""), the current directory is used)	-	-
output_filename	char*	-	Output OSF name	-	-
			if empty (i.e. ""), the software will generate the filename according to file name specification pre sented in [FORMATS]. In such		

Code: EO-MA-DMS-GS-0004
Date: 10/05/2010

Issue: 10/05/2019 4.17

Page: 231

			case, the generated name is returned in this variable		
file_class	char*	-	File class for output Orbit file	-	-
version_number	long*	-	Version number of output Orbit file	-	>= 1
fh_system	char*	-	System field of the output Orbit file fixed header	-	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Satellite ID: sat id.
- · Search direction.
- · Drift mode: mlst drift.
- Phase increment.

7.49.4 Output parameters

The output parameters of the xo_gen_osf_add_drift_cycle CFI function are:

Table 135: Output parameters of xo_gen_osf_add_drift_cycle function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
output_filename	char*	-	Name for output file. This is only an output parameter when it is empty (i.e. ""; see description of this parameter in Table 134)	-	-
ierr[XO_ERR_VECTOR_ MAX_LENGTH]	long	all	Status vector	-	-

7.49.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_gen_osf_add_drift_cycle** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO ORBIT software library **xo get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_gen_osf_add_drift_cycle** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 136: Error messages of xo_gen_osf_add_drift_cycle function

|--|

Date: 10/05/2019 Issue: 4.17

Page: 232

type				No
ERR	Wrong input values	Wrong value of one or more of the following input parameters:	XO_CFI_GEN_OSF_DRIFT _INPUTS_ERR	0
		drift_start_orbit,		
		drift_stop_orbit,		
		phase_inc_start,		
		phase_inc_stop,		
		Computation not performed		
ERR	Time ID is not initialized	Computation not performed	XO_CFI_GEN_OSF_DRIFT _TIME_INIT_ERR	1
ERR	Cannot read input OSF	Computation not performed	XO_CFI_GEN_OSF_DRIFT _READ_IN_OSF_ERR	2
ERR	No drift orbit necessary	Computation not performed	XO_CFI_GEN_OSF_DRIFT _NO_ADD_ERR	3
ERR	Error calculating inclination	Error calculating inclination for a no sun-synchronous orbit in order to keep inclination constant during the drift phase	XO_CFI_GEN_OSF_DRIFT _INCL_CALC_ERR	4
		Computation not performed		
ERR	No drift orbit found	No drift orbit has been found that matches the drift start and stop ANX longitude	XO_CFI_GEN_OSF_DRIFT _NOT_FOUND_ERR	5
		Computation not performed		
ERR	Error calculating UTC of ANX	Error calculating the UTC time of the orbit ascending node	XO_CFI_GEN_OSF_DRIFT _UTC_CALC_ERR	6
		Computation not performed		
ERR	Error calculating TAI of ANX	Error calculating the TAI time of the orbit ascending node	XO_CFI_GEN_OSF_DRIFT _TAI_CALC_ERR	7
		Computation not performed		
ERR	Error calculating UT1 of ANX	Error calculating the UT1 time of the orbit ascending node	XO_CFI_GEN_OSF_DRIFT _UT1_CALC_ERR	8
		Computation not performed		
ERR	Memory allocation error	Computation not performed	XO_GEN_OSF_DRIFT_ALL OC_ERR	9
ERR	Error calculating the Fixed Header data	Computation not performed	XO_GEN_OSF_DRIFT_GE T_FH_ERR	10
ERR	Error writing file to disk	Error writing the data structure to a file on disk	XO_CFI_GEN_OSF_DRIFT _WRITE_ERR	11

Date: 10/05/2019 Issue: 4.17

Page: 233

Computation not performed

Code: EO-MA-DMS-GS-0004

Date: 10/05/2019

Issue: 4.17

Page: 234

7.49.6 Executable Program

The **gen_osf_add_drift_cycle** executable program can be called from a Unix shell as:

```
gen osf add drift cycle
                               -sat satellite name
                               -inosf input filename
                               -drorb0 drift start orbit
                               -drorb1 drift stop orbit
                               -anx drift stop anx long (deg)
                               -alt max altitude change (m)
                               [-phinc0]
                               [-phinc1]
                                [-dir output dir] (current directory by default)
                                [-osf output filename] (default: name generated automatically)
                               [-flcl file class] (empty string by default)
                                [-vers version] (version = 1 by default)
                              [-eoffs ffs version] (Earth Observation File Format Standard Version)
                                [-fhsys fh system] (empty string by default)
                               [ -v ]
                               [-xl \ v]
                               [-xo_v]
                               [-help]
                               [-show]
                                [-with xslt] (add xslt reference with default style sheet)
                                { (-tai TAI time -gps GPS time -utc UTC time -ut1 UT1 time) |
                                (-tmod time model -tfile time file -trid time reference
                                {(-tm0 time0 -tm1 time1) | (-orb0 orbit0 -orb1 orbit1) } )}
```

Note that:

- Order of parameters does not matter.
- Bracketed parameters are not mandatory.
- Options between curly brackets and separated by a vertical bar are mutually exclusive.
- [-phinc0] option for phase_inc_start. Default value is xo_NO_PHASE_INCREMENT. When the option is written, phase_inc_start value is xo_PHASE_INCREMENT.
- [-phinc1] option for phase_inc_stop. Default value is xo_NO_PHASE_INCREMENT. When the option is written, phase_inc_stop value is xo_PHASE_INCREMENT.
- [-xl_v] option for EO LIB Verbose mode.

Date: 10/05/2019 Issue: 4.17

Page: 235

- [-xo v] option for EO ORBIT Verbose mode.
- [-v] option for Verbose mode for all libraries (default is Silent).
- [-show] displays the inputs of the function and the results.
- Possible values for satellite_name: ERS1, ERS2, ENVISAT, METOP1, METOP2, METOP3, CRYOSAT, ADM, GOCE, SMOS, TERRASAR, EARTHCARE, SWARM_A, SWARM_B, SWARM_C, SENTINEL_1A, SENTINEL_1B, SENTINEL_1C, SENTINEL_2A, SENTINEL_2B, SENTINEL_2C, SENTINEL_3A, SENTINEL_3B, SENTINEL_3C, JASON_CSA, JASON_CSB, METOP_SG_A1, METOP_SG_A2, METOP_SG_A3, METOP_SG_B1, METOP_SG_B2, METOP_SG_B3, SENTINEL_5P, SENTINEL_5, BIOMASS, SAOCOM_CS, SEOSAT, GENERIC.
- Possible values for *time_model*: USER, NONE, IERS_B_PREDICTED, IERS_B_RESTITUTED, FOS_PREDICTED, FOS_RESTITUTED, DORIS_PRELIMINARY, DORIS_PRECISE, DORIS_NAVIGATOR, OSF.
- Possible values for *ffs_version*: 0 (Default FFS), 1 (FFS version 1), 2 (FFS version 2), 3 (FFS version 3).
- Possible values for *time reference*: UNDEF, TAI, UTC, UT1, GPS.
- The last three lines of parameters are used to initialize the time references. In order to do this, only one set of parameters should be introduced:
 - TAI, GPS, UTC and UT1 input times (as in x1 time ref init)
 - A file with time reference data, the time mode, the time reference name and a time range (as in xl_time_ref_init_file)

Example:

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

Page: 236

7.50 xo_gen_rof

7.50.1 Overview

The **xo_gen_rof** CFI function creates a Restituted Orbit File (ROF) using as input one of the following reference file types:

- Orbit Scenario File
- FOS Predicted Orbit File
- DORIS Navigator File. DORIS files are supported in 3 formats: Cryosat, Sentinel 3 and Jason CS, the type being automatically detected (see [D_H_SUM] for further details). Note: since Sentinel 3 and Jason CS DORIS orbit numbers start at 1 (due to the lack of information within the file itself), the orbit number can be changed using the function xd orbit id change (section 7.60).
- FOS Restituted Orbit File
- DORIS Preliminary Orbit File
- DORIS Precise Orbit FileTime of the ascending crossing node (TAI, UTC and UT1)
- The accepted output file types are:
- FOS Restituted Orbit File
- DORIS Preliminary Orbit File
- DORIS Precise Orbit FileTime
- TLE File

The time interval between consecutive OSVs can be selected by the user by means of a parameter in the calling interface. A flag for precise location of OSVs at "integer intervals" (e.g. every exact minute) is also available. If the reference file and the Restituted Orbit File contain OSVs at the same time, these OSVs will be identical.

In order to read and write files, xo_gen_rof function internally uses Data Handling functions. Please refer to [D H SUM], in particular sections 4.2 and 4.3, for further details.

The value of the tag Time_Reference in variable header is set using the input parameter time_ref.Note: when using an OSF or Predicted Orbit file, the maximum time interval within the output Restituted orbit file is limited to 2 orbital periods before and after the middle point of the user requested time range.

7.50.2 Calling interface

The calling interface of the **xo_gen_rof** CFI function is the following (input parameters are <u>underlined</u>):

}

Code: EO-MA-DMS-GS-0004

Date: 10/05/2019

Issue: 4.17

Page: 237

```
reference file[XD MAX STR], output dir[XD MAX STR],
char
          rof filename[XD MAX STR], precise conf file[XD MAX STR];
     *file class, *fh system;
      status, ierr[XO ERR VECTOR MAX LENGTH];
status = xo gen rof(&sat id, &model id, &time id, &time init,
                         &time ref, &start time,
                                                  &stop time,
                         &start orbit, &stop orbit,
                         &osv interval, &osv precise,
                         &ref filetype, reference file,
                        precise conf file,
                        & rof filetype, output dir, rof filename,
                        file class, &version number, fh system,
                        /* output */
                        ierr);
/* Or, using the run id */
long run id;
status = xo gen rof run(&run id, &time init, &time ref,
                            &start time, &stop time,
                            &start orbit, &stop orbit,
                            &osv interval, &osv precise,
                            & ref filetype, reference file,
                            precise conf file,
                            &rof filetype,
                        output dir, rof filename,
                            file class, &version number, fh system,
                           /* output */
                           ierr);
```


Date: 10/05/2019 Issue: 4.17

Page: 238

7.50.3 Input parameters

The **xo_gen_rof** CFI function has the following input parameters:

Table 137: Input parameters of xo_gen_rof function

C name	C type	Array	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	
sat_id	long *	-	Satellite ID	-	Complete
model_id	xl_mod el_id*	-	Model ID	-	-
time_id	xl_time _id*	-	Structure that contains the time correlations.	-	-
			NOTE: If time_id is not initialized, then time correlations will be initialized internally using the input reference file.		
time_init	long*	-	Flag for selecting the time range	-	Select either:
			of the initialisation.		· XO_SEL_ORBIT
					· XO_SEL_TIME
time_ref	long*	-	Time reference ID (see note in	-	Select either:
			the ref_file type field)		· XO_TIME_TAI
					· XO_TIME_UTC
					· XO_TIME_UT1
start_time	double*	-	Processing time corresponding	Decimal days,	[-18262.0,36524.0]
			to the beginning of the required interval	MJD2000	
stop_time	double*	-	Processing time corresponding	Decimal days,	[-18262.0,36524.0]
			to the end of the required	MJD2000	
start_orbit	long*	-	Orbit number corresponding to the beginning of the required interval	orbits	>= 1
stop_orbit	long*	-	Orbit number corresponding to the end of the required interval	orbits	>= 1
osv_interval	double*	-	Interval between consecutive state vector.	secs	>=0
			This parameter should be coherent with the osv_precise flag (see below). If osv_precise is set to:		
			• xo_OSV_PRECISE_MIN U TE: osv will be forced to be a multiple of 60		

Date: 10/05/2019 Issue: 4.17

Page: 239

				1	
			seconds. • xo_OSV_PRECISE_TEN SECONDS: osv will be forced to be a multiple of 10 seconds.		
osv_precise	long*	-	Flag to indicate if state vectors should be placed at exact time locations	-	Complete
ref_filetype	long*	-	File type of the input reference file. (Note: When generating a ROF file from a DORIS NAVIGATOR file, the input times should be expressed in UTC)	-	Complete
reference_filename	char*	-	Reference File name	-	
precise_conf_file	char*	-	File with configuration parameters for precise propagator	-	If it is neither NULL nor "", precise propation will be used
rof_filetype	long*	-	File type of the output reference file	-	xo_REF_FILETYP E_ROF xo_REF_FILETYP E_DORIS_PREM xo_REF_FILETYP E_DORIS_PREC
output_dir	char*	-	Directory where the resulting ROF is written (if NULL, the cur rent directory is used)	-	-
rof_filename	char*	-	Output ROF name if empty (i.e. ""), the software will generate the filename according to file name specification pre sented in [FORMATS]. In such case, the generated name is returned in this variable		_
file_class	char*	-	File class for output Restituted file	-	-
version_number	long*	-	Version number of output Restituted file	-	>= 1
fh_system	char*	-	System field of the output Restituted file fixed header	-	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

Date: 10/05/2019 Issue: 4.17

Page: 240

• Satellite ID: sat_id.

• Time initialisation: time_init.

• Time reference: time_ref.

• OSV precise: osv_precise. See this SUM.

• File type: ref_filetype and rof_filetype. See this SUM.

Date: 10/05/2019 Issue: 4.17

Page: 241

7.50.4 Output parameters

The output parameters of the **xo gen rof** CFI function are:

Table 138: Output parameters of xo_gen_rof function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
rof_filename	char*	-	Name for the output file. This is only an output parameter when it is empty (i.e. ""; see description of this parameter in Table 137)	-	-
ierr[XO_ERR_VECTOR_ MAX_LENGTH]	long	all	Status vector	-	-

7.50.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_gen_rof** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO ORBIT software library **xo get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_gen_rof** CFI function by calling the function of the EO_ORBIT software library **xo get code** (see [GEN SUM]).

Table 139: Error messages of xo_gen_rof function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Wrong satellite flag	Computation not performed	XO_CFI_GEN_ROF_WRON G_SAT_ID_ERR	
ERR	Wrong input flag	Computation not performed	XO_CFI_GEN_ROF_WRON G_FLAG_ERR	1
ERR	Time ID is not initialized	Computation not performed	XO_CFI_GEN_ROF_TIME_ I NIT_ERR	2
ERR	Could not initialise the time reference	Computation not performed	XO_CFI_GEN_ROF_TIME_ I NITIALIZATION_ERR	3
ERR	Cannot initialise orbit ID	Computation not performed	XO_CFI_GEN_ROF_ORBIT _INIT_FILE_ERR	4
ERR	Cannot initialise the propagator	Computation not performed	XO_CFI_GEN_ROF_PROP AG_INIT_ERR	5

Date: 10/05/2019 Issue: 4.17

Page: 242

ERR	Could not perform a time <- > orbit transformation	Computation not performed	XO_CFI_GEN_ROF_TIME_ ORBIT_ERR	6
ERR	Cannot initialise interpolation	Computation not performed	XO_CFI_GEN_ROF_INTER POL_INIT_ERR	7
ERR	Cannot calculate state vector	Computation not performed	XO_CFI_GEN_ROF_CALC ULATING_STATE_VECTOR _ERR	8
ERR	Cannot convert time to processing format	Computation not performed	XO_CFI_GEN_ROF_TIME_ ERR	9
ERR	Cannot convert time from processing to external	Computation not performed	XO_CFI_GEN_ROF_TIME_ TO_EXTERNAL_ERR	10
ERR	Cannot write ROF file to disk	Computation not performed	XO_CFI_GEN_ROF_WRIT E_ERR	11
ERR	Error freeing memory	Computation not performed	XO_CFI_GEN_ROF_CLOS E_ERR	12
ERR	Memory allocation error	Computation not performed	XO_CFI_GEN_ROF_MEMO RY_ERR	13
ERR	Error getting fixed header	Computation not performed	XO_CFI_GEN_ROF_GET_ F H_ERR	14
ERR	OSV interval is not compatible with OSV Precise flag. The OSV Interval will be set to %f seconds.	Computation performed with a different value for the osv_interval	XO_CFI_GEN_ROF_WRON G_INTERVAL_WARN	15
ERR	OSV Interval is < 0	Computation not performed	XO_CFI_GEN_ROF_WRON G_OSV_INTERVAL_ERR	16
ERR	Error reading precise propagator configuration file	Computation not performed	XO_CFI_GEN_ROF_READ _PRECISE_FILE_ERR	17
ERR	Time reference ID is not allowed	Computation not performed	XO_CFI_GEN_ROF_TIME_ ID_NOT_ALLOWED_ERR	18
ERR	With TLE Orbit File, the Time instance should be initialized	Computation not performed	XO_CFI_GEN_ROF_TIME_ TLE_INITIALIZATION_ERR	19
ERR	Error in selecting schema	Computation not performed	XO_CFI_GEN_ROF_SELE CT_SCHEMA_ERR	20

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17
Page: 243

7.50.6 Executable Program

The **gen_rof** executable program can be called from a Unix shell as:

```
-sat satellite name
gen rof
               -tref time ref
                { -tstart start time -tstop stop time (decimal days) |
                -tastart start time -tastop stop time (CCSDSA format)
                -ostart start orbit -ostop stop orbit (orbits) }
               -osvint osv interval
               [-osvpre]
               -reftyp ref file type
               -ref reference file
               -roftyp rof file type
               [-precfile precise conf file] (empty string by default)
               [-dir output dir] (current directory by default)
               [-rof output filename] (default: name generated automatically)
               [-flcl file class] (empty string by default)
               [-vers version] (version= 1 by default)
               [-eoffs ffs version] (Earth Observation File Format Standard Version)
               [-fhsys fh system] (empty string by default)
               [-v]
               [-xl \ v]
               [-xo_v]
               [-help]
               [-show]
               [-with xslt] (add xslt reference with default style sheet)
               [(-tai TAI time -gps GPS time -utc UTC time -ut1 UT1 time)]
               (-tmod time model -tfile time file -trid time reference
                {(-tm0 time0 -tm1 time1) | (-orb0 orbit0 -orb1 orbit1) } ) ]
```

Note that:

- Order of parameters does not matter.
- Bracketed parameters are not mandatory.
- Options between curly brackets and separated by a vertical bar are mutually exclusive.
- [-osvpre] option for osv_precise.Default value is xo_OSV_PRECISE_NO. When the option is written, ovs precise value is xo_OSV_PRECISE_MINUTE.

Date: 10/05/2019 Issue: 4.17

Page: 244

- [-xl v] option for EO LIB Verbose mode.
- [-xo_v] option for EO ORBIT Verbose mode.
- [-v] option for Verbose mode for all libraries (default is Silent).
- [-show] displays the inputs of the function and the results.
- Possible values for satellite_name: ERS1, ERS2, ENVISAT, METOP1, METOP2, METOP3, CRYOSAT, ADM, GOCE, SMOS, TERRASAR, EARTHCARE, SWARM_A, SWARM_B, SWARM_C, SENTINEL_1A, SENTINEL_1B, SENTINEL_1C, SENTINEL_2A, SENTINEL_2B, SENTINEL_2C, SENTINEL_3A, SENTINEL_3B, SENTINEL_3C, JASON_CSA, JASON_CSB, METOP_SG_A1, METOP_SG_A2, METOP_SG_A3, METOP_SG_B1, METOP_SG_B2, METOP_SG_B3, SENTINEL_5P, SENTINEL_5, BIOMASS, SAOCOM_CS, SEOSAT, GENERIC.
- Possible values for *time_model*: USER, NONE, IERS_B_PREDICTED, IERS_B_RESTITUTED, FOS_PREDICTED, FOS_RESTITUTED, DORIS_PRELIMINARY, DORIS_PRECISE, DORIS_NAVIGATOR, OSF.
- Possible values for ref_file_type: OSF, POF, DORISNAV, ROF, TLE, DORISPREM, DORISPREC.
- Possible values for *rof_file_type*: ROF, DORISPREM, DORISPREC.
- Possible values for *ffs_version*: 0 (Default FFS), 1 (FFS version 1), 2 (FFS version 2), 3 (FFS version 3).
- Possible values for *time_ref* and *time_reference*: UNDEF, TAI, UTC, UT1.
- The value of the tag Time Reference in variable header is set using the input parameter *time ref.*
- Time references need to be initialized only when using OSF as the type of the input reference file. The inputs needed for this issue are provided in the last three lines of parameters. Note that only one set of parameters should be introduced:
 - TAI, GPS, UTC and UT1 input times (as in xl_time_ref_init)
 - A file with time reference data, the time mode, the time reference name and a time range (as in xl time ref init file)
- Precise propagation is used if precfile is provided.

Example:

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

245

Page:

7.51 xo_gen_rof_prototype

7.51.1 Overview

The **xo_gen_rof_prototype** CFI function creates a Restituted Orbit File (ROF) using the following input parameters:

- Date (processing time) and orbit
- · Longitude of the ascending node,
- Satellite Repeat Cycle and Cycle Length
- · Mean local solar time at ascending node
- Drift of mean local solar time or the inclination

The time interval between consecutive OSVs can be selected by the user by means of a parameter in the calling interface.

A file with the configuration parameters for precise propagator can be introduced. In this case, the numeric propagator is used.

In order to write files, xo_gen_rof_prototype function internally uses Data Handling functions. Please refer to [D_H_SUM], in particular sections 4.2 and 4.3, for further details.

7.51.2 Calling interface

The calling interface of the **xo_gen_rof_prototype** CFI function is the following (input parameters are underlined):

```
#include <explorer orbit.h>
  long sat id;
  xl model id model id = {NULL};
  xl time id time id = {NULL};
  long propag model, time ref, time init mode;
  long orbit0, drift mode, irep, icyc, start orbit, stop orbit;
  double time0, start time, stop orbit, osv interval;
  double ascmlst drift, inclination, rlong, ascmlst;
         output dir[XD MAX STR], rof filename[XD MAX STR];
  char
        *file class, *fh system;
  long status, ierr[XO ERR VECTOR MAX LENGTH], version number;
  status = xo gen rof prototype (&sat id, &model id, &time id,
                                     &propag model, &time ref,
                                     &timeO, &orbitO, &time init mode,
                                     &start time, &start orbit
                                     &stop time, &stop orbit,
                                     &drift mode,
```


}

Code: EO-MA-DMS-GS-0004
Date: 10/05/2010

Date: 10/05/2019 Issue: 4.17

Page: 246

```
&ascmlst drift, &inclination,
                                  &irep, &icyc, &rlong, &ascmlst,
                                  &osv interval
                                  output dir,
                                                   rof filename,
                                  file class, &version number,
                                  fh system,
                             /* output */
                             ierr);
/* Or, using the run id */
long run id;
status = xo gen rof prototype run (&run id,
                                  &propag model, &time ref,
                                  &timeO, &orbitO, &time init mode,
                                  &start time, &start_orbit
                                  &stop time, &stop orbit,
                                  &drift mode,
                                  &ascmlst drift, &inclination,
                                  &irep, &icyc, &rlong, &ascmlst,
                                  &osv interval
                                  output dir,
                                                   rof filename,
                                  file class, &version number,
                                  fh system,
                             /* output */
                             ierr);
```


Date: 10/05/2019 Issue: 4.17

Page: 247

7.51.3 Input parameters

The **xo_gen_rof_prototype** CFI function has the following input parameters:

Table 140: Input parameters of xo_gen_rof_prototype function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
model_id	xl_mod el_id*	-	Model ID	-	-
time_id	xl_time _id*	-	Structure that contains the time correlations.	-	-
propag_model	long*	-	Propagation model ID	-	Complete
time_ref	long*	-	Time reference ID	-	Complete
time0	double*	-	Reference time	Decimal days (Processing for mat)	[-18262.0,36524.0]
orbit0	long*	-	Absolute orbit number of the reference orbit	-	>= 0
time_init_mode	long*	-	Flag for selecting the time range	-	Select either:
			of the initialisation.		· XO_SEL_ORBIT
					· XO_SEL_TIME
start_time	double*	-	Processing time corresponding to the beginning of the required	Decimal days,	[-18262.0,36524.0]
				MJD2000	
start_orbit	long*	-	Orbit number corresponding to the beginning of the required interval	orbits	>= 1
stop_time	double*	-	Processing time corresponding	Decimal days,	[-18262.0,36524.0]
			to the end of the required interval	MJD2000	
stop_orbit	long*	-	Orbit number corresponding to the end of the required interval	orbits	>= 1
drift_mode	long*	-	Flag to select between drift in mean local solar time and incli nation as input characterization of the reference orbit	-	Complete
ascmlst_drift	double*	-	If drift_mode = XO_NOSUNSYNC_MLST	seconds/day	TBD
			Drift in mean local solar time of the reference orbit		
inclination	double*	-	If drift_mode = XO_NOSUNSYNC_INCLINATION	deg	[0,180]

Code: EO-MA-DMS-GS-0004 Date: 10/05/2010

Date: 10/05/2019 Issue: 4.17

Page: 248

			Inclination of the reference orbit		
irep	long *	-	Repeat cycle of the reference orbit	days	> 0
			The actual repeat cycle is calculated as per definition included in Error: Reference source not found.		
icyc	long *	-	Cycle length of the reference orbit	orbits	> 0
rlong	double*	-	Geocentric longitude of the [Earth fixed] ascending node	deg	[0,360)
			(Earth fixed CS)		
ascmlst	double*	-	Mean local solar time at	hours	[0, 24)
			ascending node		
osv_interval	double*	-	Interval between consecutive state vector	secs	>=0
output_dir	char*	-	Directory where the resulting ROF is written (if NULL, the cur rent directory is used)	-	-
rof_filename	char*	-	Output ROF name	-	-
			if empty (i.e. ""), the software will generate the filename according to file name specification pre sented in [FORMATS]. In such case, the generated name is returned in this variable		
file_class	char*	-	File class for output Restituted file	-	-
version_number	long*	-	Version number of output Restituted file	-	>= 1
fh_system	char*	-	System field of the output Restituted file fixed header	-	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Satellite ID: sat_id.

• Time initialisation: time_init.

• Time reference: time_ref.

• Drift Mode: drift_mode.

Date: 10/05/2019 Issue: 4.17

Page: 249

7.51.4 Output parameters

The output parameters of the **xo gen rof prototype** CFI function are:

Table 141: Output parameters of xo_gen_rof_prototype function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
rof_filename	char*	-	Name for the output file. This is only an output parameter when it is empty (i.e. ""; see description of this parameter in Table 143)	-	-
ierr[XO_ERR_VECTOR_ MAX_LENGTH]	long	all	Status vector	-	-

7.51.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_gen_rof_prototype** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO ORBIT software library **xo get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_gen_rof_prototype** CFI function by calling the function of the EO_ORBIT software library **xo get code** (see [GEN_SUM]).

Table 142: Error messages of xo_gen_rof_prototype function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Wrong satellite flag	Computation not performed	XO_CFI_GEN_ROF_PRO TOTYPE_WRONG_SAT_ ID_ERR	0
ERR	Time ID is not initialized	Computation not performed	XO_CFI_GEN_ROF_PRO TOTYPE_TIME_ID_ERR	1
ERR	Wrong input flag	Computation not performed	XO_CFI_GEN_ROF_PRO TOTYPE_WRONG_FLA G_ERR	2
ERR	Cannot initialise propagator	Computation not performed	XO_CFI_GEN_ROF_PRO TOTYPE_PROPAG_INIT _DEF_ERR	3
ERR	Cannot calculate state vector	Computation not performed	XO_CFI_GEN_ROF_PRO TOTYPE_CALCULATIN	3

Date: 10/05/2019 Issue: 4.17

Page: 250

			G_STATE_VECTOR_ER R	
ERR	Cannot convert time in processing reference	Computation not performed	XO_CFI_GEN_ROF_PRO TOTYPE_TIME_ERR	5
ERR	Cannot convert time from processing to external	Computation not performed	XO_CFI_GEN_ROF_PRO TOTYPE_TIME_TO_EXT ERNAL_ERR	6
ERR	Error freeing memory	Computation not performed	XO_CFI_GEN_ROF_PRO TOTYPE_CLOSE_ERR	7
ERR	Error creating the fixed header	Computation not performed	XO_CFI_GEN_ROF_PROT OTYPE_GET_FH_ERR	8
ERR	Memory allocation error	Computation not performed	XO_CFI_GEN_ROF_PROT OTYPE_MEMORY_ERR	9
ERR	Cannot write ROF XML file	Computation not performed	XO_CFI_GEN_ROF_PRO TOTYPE_WRITE_ERR	10
ERR	Error in selecting schema	Computation not performed	XO_CFI_GEN_ROF_PROT OTYPE_SELECT_SCHEMA _ERR	

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

Page: 251

7.52 xo_gen_pof

7.52.1 Overview

The **xo_gen_pof** CFI function creates a Predicted Orbit File (POF) with one state vector per orbit using as input one of the following reference file types:

- · Orbit Scenario File
- FOS Predicted Orbit File
- DORIS Navigator File. DORIS files are supported in 3 formats: Cryosat, Sentinel 3 and Jason CS, the type being automatically detected (see [D_H_SUM] for further details). Note: since Sentinel 3 DORIS and Jason CS orbit numbers start at 1 (due to the lack of information within the file itself), the orbit number can be changed using the function xd orbit id change (section 7.60).
- FOS Restituted Orbit File
- DORIS Preliminary Orbit File
- DORIS Precise Orbit FileTime of the ascending crossing node (TAI, UTC and UT1)
- TLE File

The location of the state vector within the orbit can be selected by the user by means of a parameter in the calling interface. If the reference file and the Predicted Orbit File contain OSVs at the same time, these OSVs will be identical.

A file with the configuration parameters for precise propagator can be introduced. In this case, the numeric propagator is used.

In order to read and write files, xo_gen_pof function internally uses Data Handling functions. Please refer to [D H SUM], in particular sections 4.2 and 4.3, for further details.

The value of the tag Time Reference in variable header is set using the input parameter time ref.

7.52.2 Calling interface

The calling interface of the **xo gen pof** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer orbit.h>
         sat id;
  long
  xl model id model id = {NULL};
  xl time id time id = {NULL};
         time init, time ref, start orbit, stop orbit,
  long
             ref filetype, pof filetype, version number;
  double start time, stop time, osv location;
         reference file[XD MAX STR], output dir[XD MAX STR],
  char
             pof filename[XD MAX STR], precise conf file[XD MAX STR];
        *file class, *fh system;
  char
         status, ierr[XO ERR VECTOR MAX LENGTH];
  long
```


}

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

Page: 252

```
status = xo gen pof(&sat id, &model id, &time id,
                         &time init, &time ref,
                         &start time, &stop time,
                         &start orbit, &stop orbit, &osv location,
                         & ref filetype, reference file,
                         precise conf file,
                         &pof filetype, output dir,
pof filename,
                        file class, &version number, fh system,
                     /* output */
                        ierr);
/* Or, using the run id */
long run id;
status = xo gen pof run(&run id,
                            &time init, &time ref,
                            &start time, &stop time,
                            &start orbit, &stop orbit,
                            &osv location,
                            &ref filetype, reference file,
                            precise conf file,
                       &pof filetype, output dir,
                            pof filename,
                            file class, &version number, fh system,
                       /* output */
                       ierr);
```


Date: 10/05/2019 Issue: 4.17

Page: 253

7.52.3 Input parameters

The **xo_gen_pof** CFI function has the following input parameters:

Table 143: Input parameters of xo_gen_pof function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
model_id	xl_mod el_id	-	Model ID	-	Complete
time_id	xl_time _id*	-	Structure that contains the time correlations.	-	-
			NOTE: If time_id is not initialized, then time correlations will be initialized internally using the input reference file		
time_init	long*	-	Flag for selecting the time range	-	Select either:
			of the initialisation.		· XO_SEL_ORBIT
					· XO_SEL_TIME
time_ref	long*	-	Time reference ID. (See note in	-	Select either:
			the ref_filetype field)		· XO_TIME_TAI
					· XO_TIME_UTC
					· XO_TIME_UT1
start_time	double*	-	Processing time corresponding to the beginning of the required interval	Decimal days, MJD2000	[-18262.0,36524.0]
stop_time	double*	-		Decimal days, MJD2000	[-18262.0,36524.0]
start_orbit	long*	-	Orbit number corresponding to the beginning of the required interval	orbits	>= 1
stop_orbit	long*	-	Orbit number corresponding to the end of the required interval	orbits	>= 1
osv_location	double*	-	Location of the state vector	secs	>=0
			within the orbit		< 1 nodal period
ref_filetype	long*	-	File type of the input reference file.	-	Complete
			(Note: When generating a POF file from a DORIS NAVIGATOR file, the input times should be expressed in UTC)		

EO-MA-DMS-GS-0004 Date: 10/05/2019 Issue:

Page: 254

4.17

reference_filename	char*	-	Reference File name	-	
precise_conf_file	char*	-	File with precise propagator con figuration	-	If it is not neither NULL nor "", precise propagation will be used
pof_filetype	long*	-	File type of the output reference file	-	XO_REF_FILETY PE_POF
output_dir	char*	-	Directory where the resulting POF is written (if NULL, the cur rent directory is used)	-	-
pof_filename	char*	-	Output POF name	-	-
			if empty (i.e. ""), the software will generate the filename according to file name specification presented in [FORMATS]. In such case, the generated name is returned in this variable		
file_class	char*	-	File class for output Predicted file	-	-
version_number	long*	-	Version number of output Predicted file	-	>= 1
fh_system	char*	-	System field of the output Predicted file fixed header	-	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

Satellite ID: sat id.

Time initialisation: time_init.

Time reference: time_ref.

File type: ref_filetype and pof_filetype. See section 6.2 in this SUM.

7.52.4 Output parameters

The output parameters of the **xo_gen_pof** CFI function are:

Table 144: Output parameters of xo_gen_pof function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
pof_filename	char*	-	Name for the output file. This is only an output parameter when it is empty (i.e. ""; see description of this parameter in Table 140)	-	-
ierr[XO_ERR_VECTOR_	long	all	Status vector	-	-

Issue: 10/05/2019 4.17

Page: 255

MAX_LENGTH]				
-------------	--	--	--	--

7.52.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_gen_pof** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_gen_pof** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 145: Error messages of xo_gen_pof function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Wrong satellite flag	Computation not performed	XO_CFI_GEN_POF_WR ONG_SAT_ID_ERR	0
ERR	Wrong input flag	Computation not performed	XO_CFI_GEN_POF_WR ONG_FLAG_ERR	1
ERR	Time ID is not initialized	Computation not performed	XO_CFI_GEN_POF_TIM E_INIT_ERR	2
ERR	Could not initialise the time reference	Computation not performed	XO_CFI_GEN_POF_TIM E_INITIALIZATION_ER R	3
ERR	Cannot initialise orbit	Computation not performed	XO_CFI_GEN_POF_ORB IT_INIT_FILE_ERR	4
ERR	Cannot initialise propagation	Computation not performed	XO_CFI_GEN_POF_PRO PAG_INIT_ERR	5
ERR	Cannot initialise interpolation	Computation not performed	XO_CFI_GEN_POF_INTE RPOL_INIT_ERR	6
ERR	Wrong interpol initialisation	Computation not performed	XO_CFI_GEN_POF_INTE RNAL1_ERR	7
ERR	Cannot calculate state vector	Computation not performed	XO_CFI_GEN_POF_CAL CULATING_STATE_VE CTOR_ERR	8
ERR	Error freeing memory	Computation not performed	XO_CFI_GEN_POF_CLO SE_ERR	9
ERR	Time transformation error	Computation not performed	XO_CFI_GEN_POF_TIM E_TRANS_ERR	10
ERR	Memory allocation error	Computation not performed	XO_CFI_GEN_POF_ME MORY_ERR	11
ERR	Error creating the fixed header	Computation not performed	XO_CFI_GEN_POF_GET _FH_ERR	12
ERR	Error writing POF file to disk	Computation not performed	XO_CFI_GEN_POF_WRI	13

Date: 10/05/2019 Issue: 4.17

Page: 256

			TE_ERR	
ERR	Error reading configuration file for precise propagation	Computation not performed	XO_CFI_GEN_POF_READ _ PRECISE_FILE_ERR	14
ERR	Error converting time to orbit or orbit to time	Computation not performed	XO_CFI_GEN_POF_ORBIT _TIME_ERR	15
ERR	Time reference ID is not allowed	Computation not performed	XO_CFI_GEN_POF_TIME_I D_NOT_ALLOWED_ERR	16

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

Page: 257

7.52.6 Executable Program

The **gen_pof** executable program can be called from a Unix shell as:

```
-sat satellite name
gen pof
                -tref time ref
                { -tstart start time -tstop stop time (decimal days) |
                -tastart start time -tastop stop time (CCSDSA format)
                -ostart start orbit -ostop stop orbit (orbits) }
                -osvloc osv location (secs)
                -reftyp ref file type
                -ref reference file
                -poftyp pof file type
                [-precfile precise conf file] (empty string by default)
                [-dir output dir] (current directory by default)
                [-pof output filename] (default: name generated automatically)
                [-flcl file class] (empty string by default)
                [-vers version] (version = 1 by default)
               [-eoffs ffs version] (Earth Observation File Format Standard Version)
                [-fhsys fh system] (empty string by default)
                [ -v ]
                [-xl_v]
                \begin{bmatrix} -xo & v \end{bmatrix}
                [-help]
                [-show]
                [-with xslt] (add xslt reference with default style sheet)
                [ (-tai TAI time -gps GPS time -utc UTC time -ut1 UT1 time) |
                (-tmod time model -tfile time file -trid time reference
                {(-tm0 time0 -tm1 time1) | (-orb0 orbit0 -orb1 orbit1) } ) ]
```

Note that:

- Order of parameters does not matter.
- Bracketed parameters are not mandatory.
- Options between curly brackets and separated by a vertical bar are mutually exclusive.
- [-xl v] option for EO LIB Verbose mode.
- [-xo v] option for EO ORBIT Verbose mode.

Date: 10/05/2019 Issue: 4.17

Page: 258

- [-v] option for Verbose mode for all libraries (default is Silent).
- [-show] displays the inputs of the function and the results.
- Possible values for satellite_name: ERS1, ERS2, ENVISAT, METOP1, METOP2, METOP3, CRYOSAT, ADM, GOCE, SMOS, TERRASAR, EARTHCARE, SWARM_A, SWARM_B, SWARM_C, SENTINEL_1A, SENTINEL_1B, SENTINEL_1C, SENTINEL_2A, SENTINEL_2B, SENTINEL_2C, SENTINEL_3A, SENTINEL_3B, SENTINEL_3C, JASON_CSA, JASON_CSB, METOP_SG_A1, METOP_SG_A2, METOP_SG_A3, METOP_SG_B1, METOP_SG_B2, METOP_SG_B3, SENTINEL_5P, SENTINEL_5, BIOMASS, SAOCOM_CS, SEOSAT, GENERIC.
- Possible values for *time_model*: USER, NONE, IERS_B_PREDICTED, IERS_B_RESTITUTED, FOS_PREDICTED, FOS_RESTITUTED, DORIS_PRELIMINARY, DORIS_PRECISE, DORIS_NAVIGATOR, OSF.
- Possible values for *ref_file_type* and *pof_file_type*: OSF, POF, DORISNAV, ROF, TLE, DORISPREM, DORISPREC.
- Possible values for *ffs_version*: 0 (Default FFS), 1 (FFS version 1), 2 (FFS version 2), 3 (FFS version 3).
- Possible values for *time_ref* and *time_reference*: UNDEF, TAI, UTC, UT1.
- The value of the tag Time Reference in variable header is set using the input parameter *time ref*.
- Time references need to be initialized only when using OSF as the type of the input reference file. The inputs needed for this issue are provided in the last three lines of parameters. Note that only one set of parameters should be introduced:
 - TAI, GPS, UTC and UT1 input times (as in xl_time_ref_init)
 - A file with time reference data, the time mode, the time reference name and a time range (as in xl time ref init file)
- Precise propagation is used if precfile is provided.

Example:

Issue: 4.17 Page: 259

7.53 xo_gen_oef

7.53.10v erview

The **xo_gen_oef** CFI function creates an Orbit Event by merging an Orbit Scenario file (OSF) and a Predicted Orbit File.

In order to read and write files, xo_gen_oef function internally uses Data Handling functions. Please refer to [D H SUM], in particular sections 4.2 and 4.3, for further details.

Orbit Event File is deprecated and is only supported for Cryosat mission.

7.53.2 Calling interface

The calling interface of the **xo_gen_oef** CFI function is the following (input parameters are <u>underlined</u>):

7.53.3 Input parameters

The **xo gen oef** CFI function has the following input parameters:

Table 146: Input parameters of xo_gen_oef function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
oef	char[]	-	Output OEF name. If empty (i.e. ""), the software will generate the filename according to file name specification presented in [FORMATS]. In such case, the generated name is returned in this variable	_	-
osf	char*	-	Orbit Scenario File name	-	-
pof	char*	-	Predicted Orbit File name	-	-

Issue: 4.17 Page: 260

file_class	char*	-	File class for output file (dummy in the current version)	-	-
version_number	long*	-	Version number of output file (dummy in the current version)	-	>= 1
fh_system	char*	-	System field of the output file fixed header (dummy in the current version)	-	-

7.53.4 Output parameters

The output parameters of the **xo_gen_oef** CFI function are:

Table 147: Output parameters of xo_gen_oef function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_gen_oef	long	-	Main status flag	-	-1, 0, +1
oef	char*	-	Name for the output file. This is only an output parameter when it is empty (i.e. ""; see description of this parameter in Table 146)	-	-
ierr[]	long	all	Status vector	-	-

7.53.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_gen_oef** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO ORBIT software library **xo_get_msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_gen_oef** CFI function by calling the function of the EO_ORBIT software library **xo get code** (see [GEN SUM]).

Table 148: Error messages of xo_gen_oef function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Could not open output file for writing	Computation not performed	XO_CFI_GEN_OEF_OPEN _FILE_ERR	0
ERR	Could not copy the Orbit Scenario file	Computation not performed	XO_CFI_GEN_OEF_COPY _FILE_ERR	1
ERR	Could not copy	Computation not performed	XO_CFI_GEN_OEF_COPY	2

Date: 10/05/2019 Issue: 4.17

Page: 261

	"List_of_OSVs" in the output file		_NODE_ERR	
ERR	Could not close output file	Computation not performed	XO_CFI_GEN_OEF_CLOS E_ERR	3
ERR	Error reading the fixed header from the Orbit Scenario file	Computation not performed	XO_CFI_GEN_OEF_READ _OSF_ERR	4
ERR	Error reading the fixed header from the Predicted Orbit file	Computation not performed	XO_CFI_GEN_OEF_READ _ POF_ERR	5
ERR	Could not write the Orbit Event file	Computation not performed	XO_CFI_GEN_OEF_WRITE _ERR	6
ERR	Could not get the current time	Computation not performed	XO_CFI_GEN_OEF_CURR ENT_TIME_ERR	7
WARN	Cannot write schema in the file	Computation performed. The output file does not contain the schema reference in the root tag	XO_CFI_GEN_OEF_SET_S CHEMA_WARN	8

Code: EO-MA-DMS-GS-0004 Date: 10/05/2019 Issue: 4.17

Page: 262

7.53.6 Executable Program

The **gen_oef** executable program can be called from a Unix shell as:

Note that:

- Order of parameters does not matter.
- Bracketed parameters are not mandatory.
- Options between curly brackets and separated by a vertical bar are mutually exclusive.
- [-xl v] option for EO LIB Verbose mode.
- [-xo v] option for EO ORBIT Verbose mode.
- [-v] option for Verbose mode for all libraries (default is Silent).
- [-show] displays the inputs of the function and the results.
- Possible values for ffs_version: 0 (Default FFS), 1 (FFS version 1), 2 (FFS version 2), 3 (FFS version 3).

Example:

Issue: 10/05/2019 4.17

Page: 263

7.54 xo_gen_dnf

7.54.1 Overview

The **xo_gen_dnf** CFI function creates a DORIS Navigator File using as input one of the following reference file types:

- Orbit Scenario File
- FOS Predicted Orbit File
- FOS Restituted Orbit File
- DORIS Navigator File. DORIS files are supported in 3 formats: Cryosat, Sentinel 3 and Jason CS, the type being automatically detected (see [D_H_SUM] for further details). Note: since Sentinel 3 and Jason CS DORIS orbit numbers start at 1 (due to the lack of information within the file itself), the orbit number can be changed using the function xd orbit id change (section 7.60).
- DORIS Preliminary Orbit File
- DORIS Precise Orbit FileTime of the ascending crossing node (TAI, UTC and UT1)
- The accepted output file types are:
- FOS Restituted Orbit File
- DORIS Preliminary Orbit File
- DORIS Precise Orbit FileTime

The time interval between consecutive OSVs can be selected by the user by means of a parameter in the calling interface. A flag for precise location of OSVs at "integer intervals" (e.g. every exact minute or every ten seconds) is also available. If the reference file and the DORIS Navigator File contain OSVs at the same time, these OSVs will be identical.

An optional control file can be introduced to correct the state vectors. This file contains the corrections for position and velocity in the along, across and radial directions. The format of this file is shown in [D_H_SUM].

A file with the configuration parameters for precise propagator can be introduced. In this case, the numeric propagator is used.

In order to read and write files, xo_gen_dnf function internally uses Data Handling functions. Please refer to [D_H_SUM], in particular sections 4.2 and 4.3, for further details.

Note: when using an OSF or Predicted Orbit file, the maximum time interval within the output Doris Navigator file is limited to 2 orbital periods before and after the middle point of the user requested time range.

7.54.2 Calling interface

The calling interface of the **xo gen dnf** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_orbit.h>
{
   long sat id;
```


Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17
Page: 264

```
xl time id time id = {NULL};
xl model id model id = {NULL};
      time init, time ref, start orbit, stop orbit,
          ref filetype, dnf filetype, osv precise, version number;
double start time, stop time, osv interval;
      reference file[XD MAX STR], output dir[XD MAX STR],
          dnf filename[XD MAX STR], ctrl file[XD MAX STR],
          precise conf file[XD MAX STR];
      *file class, *fh system;
      status, ierr[XO ERR VECTOR MAX LENGTH];
long
status = xo gen dnf(&sat id, &model id, &time id,
                          &time init, &time ref,
                          &start time, &stop time,
                     &start orbit, &stop orbit,
                          &osv interval, &osv precise,
                          &ref filetype, reference file, ctrl file,
                          precise conf file,
                          &dnf filetype, output dir, dnf filename,
                          file class, &version number, fh system,
                          /* output */
                          ierr);
/* Or, using the run id */
long run id;
status = xo gen dnf run(&run id,
                             &time init, &time ref,
                             &start time, &stop time,
                        &start orbit, &stop orbit,
                            &osv interval, &osv precise,
                            & ref filetype, reference file, ctrl file,
                            precise conf file,
                            &dnf filetype, output dir, dnf filename,
                            file class, &version number, fh system,
                            /* output */
                            ierr);
```

}

Date: 10/05/2019 Issue: 4.17

Page: 265

7.54.3 Input parameters

The **xo_gen_dnf** CFI function has the following input parameters:

Table 149: Input parameters of xo_gen_dnf function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
model_id	xl_mod el_id	-	Model ID	-	-
time_id	xl_time _id*	-	Structure that contains the time correlations. NOTE: If time_id is not initialized, then time correlations will be initialized internally using the input reference file	-	-
time_init	long*	-	Flag for selecting the time range of the initialisation.	-	Select either: · XO_SEL_ORBIT · XO_SEL_TIME
time_ref	long*	-	Time reference ID (see note in the ref_filetype field)	-	Complete
start_time	double*	-	Processing time corresponding	Decimal days,	[-18262.0,36524.0]
			to the beginning of the required interval	MJD2000	
stop_time	double*	-	Processing time corresponding to the end of the required interval	Decimal days, MJD2000	[-18262.0,36524.0]
start_orbit	long*	-	Orbit number corresponding to the beginning of the required interval	orbits	>= 1
stop_orbit	long*	-	Orbit number corresponding to the end of the required interval	orbits	>= 1
osv_interval	double*	-	Interval between consecutive state vector. This parameter should be coher ent with the osv_precise flag (see below). If osv_precise is set to: • xo_OSV_PRECISE_MIN_UTE: osv will be forced to be a multiple of 60 seconds. • xo_OSV_PRECISE_TEN_SECONDS: osv will be forced to be a multiple of	secs	>=0

Date: 10/05/2019 Issue: 4.17

Page: 266

			10 seconds.		
osv_precise	long*	-	Flag to indicate if state vectors should be placed at exact time locations	-	Complete
ref_filetype	long*	-	File type of the input reference file.	-	Complete
			(Note: When generating a DNF file from another DORIS NAVIGA TOR file, the input times should be expressed in UTC)		
reference_filename	char*	-	Reference File name	-	
ctrl_file	char*	-	Control File in xml format. This file contains the corrections for position and velocity in the along, across and radial directions together with the position accuracy(see [D_H_SUM].)	-	-
			If empty string (""), no corrections will be performed and the accu racy (quality index in the DNF)will be set to 1.		
precise_conf_file	char*	-	File with precise propagator con figuration	-	If it is not neither NULL nor "", precise propagation will be used
dnf_filetype	long*	-	File type of the output DORIS Navigator file	-	xo_REF_FILETYP E_DORIS_NAV
output_dir	char*	-	Directory where the resulting DNF is written (if NULL, the cur rent directory is used)	-	-
dnf_filename	char*	-	Output DNF name	-	-
			if empty (i.e. ""), the software will generate the filename according to file name specification pre sented in [FORMATS]. In such case, the generated name is returned in this variable		
file_class	char*	-	File class for output file (dummy in the current version)	-	-
version_number	long*	-	Version number of output file (dummy in the current version)	-	>= 1
fh_system	char*	-	System field of the output file fixed header (dummy in the current version)	-	-

Date: 10/05/2019 Issue: 4.17

Page: 267

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Satellite ID: sat id.

• Time initialisation: time_init.

• Time reference: time_ref.

• OSV precise: osv_precise. See this SUM.

• File type: ref_filetype and rof_filetype. See this SUM.

7.54.4 Output parameters

The output parameters of the xo gen dnf CFI function are:

Table 150: Output parameters of xo_gen_dnf function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
dnf_filename	char*	-	Name for the output file. This is only an output parameter when it is empty (i.e. ""; see description of this parameter in Table 149)	-	-
ierr[XO_ERR_VECTOR_ MAX_LENGTH]	long	all	Status vector	-	-

Issue: 4.17 Page: 268

7.54.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_gen_dnf** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_gen_dnf** CFI function by calling the function of the EO_ORBIT software library **xo get code** (see [GEN SUM]).

Table 151: Error messages of xo_gen_dnf function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Wrong satellite flag	Computation not performed	XO_CFI_GEN_DNF_WRON G_SAT_ID_ERR	0
ERR	Wrong input flag	Computation not performed	XO_CFI_GEN_DNF_WRON G_FLAG_ERR	1
ERR	Time ID is not initialized	Computation not performed	XO_CFI_GEN_DNF_TIME_I NIT_ERR	2
ERR	Could not initialise the time reference	Computation not performed	XO_CFI_GEN_DNF_TIME_I NITIALIZATION_ERR	3
ERR	Cannot initialise orbit ID	Computation not performed	XO_CFI_GEN_DNF_ORBIT _INIT_FILE_ERR	4
ERR	Cannot initialise the propagator	Computation not performed	XO_CFI_GEN_DNF_PROP AG_INIT_ERR	5
ERR	Cannot initialise interpolation	Computation not performed	XO_CFI_GEN_DNF_INTER POL_INIT_ERR	6
ERR	Could not perform a time <-> orbit transformation	Computation not performed	XO_CFI_GEN_DNF_TIME_ ORBIT_ERR	7
ERR	Error in a time transformation function	Computation not performed	XO_CFI_GEN_DNF_TIME_ ERR	8
ERR	Memory allocation error	Computation not performed	XO_CFI_GEN_DNF_MEMO RY_ERR	9
ERR	Cannot calculate state vector	Computation not performed	XO_CFI_GEN_DNF_CALC ULATING_STATE_VECTOR _ERR	10
ERR	Error reading the Control File	Computation not performed	XO_CFI_GEN_DNF_READ _ CONTROL_FILE_ERR	11
ERR	Cannot correct state vector	Computation not performed	XO_CFI_GEN_DNF_CORR ECT_OSV_ERR	12
ERR	Error changing state vector	Computation not performed	XO_CFI_GEN_DNF_CHAN	13

Date: 10/05/2019 Issue: 4.17

Page: 269

	from EF to J2000		GE_COORD_ERR	
ERR	Error creating the DORIS header	Computation not performed	XO_CFI_GEN_DNF_COMP UTE_HEADER_ERR	14
ERR	Error freeing memory	Computation not performed	XO_CFI_GEN_DNF_CLOS E_ERR	15
ERR	Cannot write DORIS Data Block file	Computation not performed	XO_CFI_GEN_DNF_WRITE _FILE_ERR	16
WARN	OSV interval is not compatible with OSV Precise flag. The OSV Interval will be set to %f seconds.	Computation performed with a different value for the osv_interval	XO_CFI_GEN_DNF_WRON G_INTERVAL_WARN	17
ERR	Error reading precise propagator configuration file	Computation not performed	XO_CFI_GEN_DNF_READ _ PRECISE_FILE_ERR	18

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

Page: 270

7.54.6 Executable Program

The **gen_dnf** executable program can be called from a Unix shell as:

```
-sat satellite name
gen dnf
               -tref time ref
                { -tstart start time -tstop stop time (decimal days) |
                 -tastart start time -tastop stop time (CCSDSA format)
                 -ostart start orbit -ostop stop orbit (orbits) }
               -osvint osv interval
               [-osvpre]
               -reftyp ref file type
               -ref reference file
               [-ctrl control file]
               [-precfile precise conf file] (empty string by default)
               [-dir output dir] (current directory by default)
               [-dnf output filename] (default: name generated automatically)
               [-flcl file class] (empty string by default)
               [-vers version] (version = 1by default)
               [-eoffs ffs version] (Earth Observation File Format Standard Version)
               [-fhsys fh system] (empty string by default)
               [-v]
               [-xl \ v]
               [-xo_v]
               [-help]
               [-show]
               [(-tai TAI time -gps GPS time -utc UTC time -ut1 UT1 time)]
               (-tmod time model -tfile time file -trid time reference
                {(-tm0 time0 -tm1 time1) | (-orb0 orbit0 -orb1 orbit1) } ) ]
```

Note that:

- Order of parameters does not matter.
- Bracketed parameters are not mandatory.
- Options between curly brackets and separated by a vertical bar are mutually exclusive.
- [-osvpre] option for osv_precise.Default value is xo_OSV_PRECISE_NO. When the option is written, ovs precise value is xo_OSV_PRECISE_MINUTE.
- [-xl v] option for EO LIB Verbose mode.

Date: 10/05/2019 Issue: 4.17

Page: 271

- [-xo v] option for EO ORBIT Verbose mode.
- [-v] option for Verbose mode for all libraries (default is Silent).
- [-show] displays the inputs of the function and the results.
- Possible values for satellite_name: ERS1, ERS2, ENVISAT, METOP1, METOP2, METOP3, CRYOSAT, ADM, GOCE, SMOS, TERRASAR, EARTHCARE, SWARM_A, SWARM_B, SWARM_C, SENTINEL_1A, SENTINEL_1B, SENTINEL_1C, SENTINEL_2A, SENTINEL_2B, SENTINEL_2C, SENTINEL_3A, SENTINEL_3B, SENTINEL_3C, JASON_CSA, JASON_CSB, METOP_SG_A1, METOP_SG_A2, METOP_SG_A3, METOP_SG_B1, METOP_SG_B2, METOP_SG_B3, SENTINEL_5P, SENTINEL_5, BIOMASS, SAOCOM_CS, SEOSAT, GENERIC.
- Possible values for time_model: USER, NONE, IERS_B_PREDICTED, IERS_B_RESTITUTED, FOS_PREDICTED, FOS_RESTITUTED, DORIS_PRELIMINARY, DORIS_PRECISE, DORIS_NAVIGATOR, OSF.
- Possible values for ref file type: OSF, POF, DORISNAV, ROF, DORISPREM, DORISPREC.
- Possible values for *ffs_version*: 0 (Default FFS), 1 (FFS version 1), 2 (FFS version 2), 3 (FFS version 3).
- Possible values for time ref and time reference: UNDEF, TAI, UTC, UT1, GPS.
- Time references need to be initialized only when using OSF as the type of the input reference file. The inputs needed for this issue are provided in the last three lines of parameters. Note that only one set of parameters should be introduced:
 - TAI, GPS, UTC and UT1 input times (as in xl time ref init)
 - A file with time reference data, the time mode, the time reference name and a time range (as in xl_time_ref_init_file)
- Precise propagation is used if precfile is provided.

Example:

```
gen_dnf -sat CRYOSAT -tref UTC -tstart 0.99650462962963
    -tstop 01386574074708 -osvint 20 -reftyp ROF
    -ref EARTH_EXPLORER_FRO_TO_DORIS_2000
    -ctrl CONTROL_FILE.xml -dir ./gen_dnf/ -dnf doris_nav_at_308
    -tai 0.000000 -utc -4.0509259e-4 -utl -4.1435185185e-4
    -gps 2.1991e-4 -show
```


Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

272

Page:

7.55 xo_gen_tle

7.55.1 Overview

The **xo_gen_tle** CFI function creates TLE File using as input a Predicted or Restituted Orbit File. It is possible to select the way in which the TLE records are generated:

- Generate a TLE record per OSV in the orbit file (XO ONE TLE PER OSV).
- Find the best TLE record which fits to the OSVs in the orbit file (XO FIT TLE/XO FIT TLE LIST).

These modes are explained in more detail in section 7.55.3.

In order to read and write files, xo_gen_tle function internally uses Data Handling functions. Please refer to [D_H_SUM], in particular sections 4.2 and 4.3, for further details.

7.55.2 Calling interface

The calling interface of the **xo_gen_tle** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_orbit.h>
  long
         sat id;
  xl time id time id = {NULL};
         fit mode, time mode, time ref, start orbit, stop orbit;
  double start time, stop time;
  char
         reference file[XD MAX STR], tle filename[XD MAX STR];
         status, ierr[XO ERR VECTOR MAX LENGTH];
  long
  status = xo gen tle (&sat id, &fit mode,
                            &time mode, &time ref,
                            &start time, &stop time,
                            &start orbit, &stop orbit,
                            reference file, tle filename,
                            ierr);
}
```


Issue: 4.17

Page: 273

7.55.3 Input parameters

The **xo_gen_tle** CFI function has the following input parameters:

Table 152: Input parameters of xo_gen_tle function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
fit_mode	long*	-	fitting mode	-	XO_FIT_TLE
					XO_FIT_TLE_LIST
					XO_ONE_TLE_PER _OSV
time_mode	long*	-	Flag for selecting the time range of the initialization.	-	Select either: • XO_SEL_ORBIT
					XO_SEL_TIME XO_SEL_DEFAU L
time_ref	long*	-	Time reference for the input start_time and stop_time	-	Complete
start_time	double*	-	to the beginning of the required	Decimal days,	[-18262.0,36524.0]
			interval	MJD2000	
stop_time	double*	-	Processing time corresponding to the end of the required	Decimal days,	[-18262.0,36524.0]
				MJD2000	
start_orbit	long*	-	Orbit number corresponding to the beginning of the required interval	orbits	>= 1
stop_orbit	long*	-	Orbit number corresponding to the end of the required interval	orbits	>= 1
reference_file	char*	-	Reference File name	-	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Fitting mode: fit_mode. See this SUM.
- Satellite ID: sat id.
- Time initialisation: time mode.
- Time reference: time_ref.

The behavior of the generator depends on the input arguments *fitmode* and *input file type*:

- XO_ONE_TLE_PER_OSV: one TLE record will be computed for each Orbit State Vector in the input file and written into the output TLE file.
- XO_FIT_TLE: a single TLE record will be computed and written in the output TLE file by fitting a list of OSVs obtained as follows:

Date: 10/05/2019 Issue: 4.17

Page: 274

• If the input is a POF, the list will be generated by propagating in the selected time interval,

• otherwise (ROF), the list will be taken from the file in the selected time interval as it is.

• XO_FIT_TLE_LIST: a single TLE record will be computed and written in the output TLE file by fitting a list of OSVs taken from the file in the selected time interval as it is.

Date: 10/05/2019 Issue: 4.17

Page: 275

7.55.4 Output parameters

The output parameters of the xo_gen_tle CFI function are:

Table 153: Output parameters of xo_gen_tle function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
tle_filename	char*	-	Name for the output file.	-	-
ierr[XO_ERR_VECTOR_M AX_LENGTH]	long	all	Status vector	-	-

7.55.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_gen_tle** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO ORBIT software library **xo get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_gen_tle** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 154: Error messages of xo_gen_tle function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Wrong satellite ID.	Computation not performed	XO_CFI_GEN_TLE_WRON G_SAT_ID_ERR	0
ERR	Wrong input time reference	Computation not performed	XO_CFI_GEN_TLE_WRON G_FLAG_ERR	1
ERR	Wrong input fitting mode	Computation not performed	XO_CFI_GEN_TLE_WRON G_FIT_MODE_ERR	2
ERR	Could not initialise the time correlations from input file: %s	Computation not performed	XO_CFI_GEN_TLE_TIME_I NITIALIZATION_ERR	3
ERR	Could not initialise the orbit data from input file: %s	Computation not performed	XO_CFI_GEN_TLE_ORBIT _INIT_FILE_ERR	4
ERR	Memory allocation error	Computation not performed	XO_CFI_GEN_TLE_MEMO RY_ERR	5
ERR	Could not generate the TLE for orbit %ld	Computation not performed	XO_CFI_GEN_TLE_OSV_T O_TLE_ERR	6
ERR	Could not close an ID	Computation not performed	XO_CFI_GEN_TLE_CLOSE	7

Date: 10/05/2019 Issue: 4.17

Page: 276

			_ERR	
ERR	Could not write output file to disk	Computation not performed	XO_CFI_GEN_TLE_WRITE _FILE_ERR	8
ERR	Could not propagate orbit for time	Computation not performed	XO_GEN_TLE_OSV_COM PUTE_ERR	9
ERR	Error getting orbit for provided time	Computation not performed	XO_GEN_TLE_TIME_TO_O RBIT_ERR	10
ERR	Cannot generate TLE with input XD_USER_OSV_LIST_TYP E and Fit mode XO_ONE_TLE_PER_OSV	Computation not performed	XO_GEN_TLE_INVALID_INI T_MODE_ERR	11
WARN	Error generating the output filename. Creating file: %s	File generated with auxiliary name and not following the file format standard	XO_GEN_TLE_FILENAME_ WARN	12
		convention		

Issue: 4.17 Page: 277

7.55.6 Executable Program

The **gen_tle** executable program can be called from a Unix shell as:

Note that:

- Order of parameters does not matter.
- Bracketed parameters are not mandatory.
- Options between curly brackets and separated by a vertical bar are mutually exclusive.
- [-xl_v] option for EO LIB Verbose mode.
- [-xo_v] option for EO ORBIT Verbose mode.
- [-v] option for Verbose mode for all libraries (default is Silent).
- [-show] displays the inputs of the function and the results.
- Possible values for satellite_name: ERS1, ERS2, ENVISAT, METOP1, METOP2, METOP3, CRYOSAT, ADM, GOCE, SMOS, TERRASAR, EARTHCARE, SWARM_A, SWARM_B, SWARM_C, SENTINEL_1A, SENTINEL_1B, SENTINEL_1C, SENTINEL_2A, SENTINEL_2B, SENTINEL_2C, SENTINEL_3A, SENTINEL_3B, SENTINEL_3C, JASON_CSA, JASON_CSB, METOP_SG_A1, METOP_SG_A2, METOP_SG_A3, METOP_SG_B1, METOP_SG_B2, METOP_SG_B3, SENTINEL_5P, SENTINEL_5, BIOMASS, SAOCOM_CS, SEOSAT, GENERIC.
- Possible values for *ffs_version*: 0 (Default FFS), 1 (FFS version 1), 2 (FFS version 2), 3 (FFS version 3).
- Possible values for *time ref* and *time reference*: UNDEF, TAI, UTC, UT1.
- Possible values for *fitmode*:
 - ONE TLE PER OSV: one TLE record will be computed for each Orbit State Vector in the

Date: 10/05/2019 Issue: 4.17

Page: 278

input file and written into the output TLE file.

- FIT: a single TLE record will be computed and written in the output TLE file by fitting a list of OSVs obtained as follows:
 - If the input is a POF, the list will be generated by propagating in the selected time interval,
 - otherwise (ROF), the list will be taken from the file in the selected time interval as it is.
- FIT_LIST: a single TLE record will be computed and written in the output TLE file by fitting a list of OSVs taken from the file in the selected time interval as it is.
- If *tstep* is defined, one TLE record will be computed for each *tstep* time interval, from start_time until stop time, and written in the output TLE file.

Depending on the inputs the output will change:

- ONE_TLE_PER_OSV: the generator will propagate and generate one OSV every *tstep* time, from start time until stop time, and then, for each OSV it will create one TLE record
- FIT: One TLE to be generated every *tstep* time, from start_time until stop_time, by fitting a list of OSVs obtained as described above.
- FIT_LIST: FIT_LIST: for each *tstep* interval, a single TLE record will be computed (and written in the output TLE file) by fitting a list of OSVs taken from the file within the selected *tstep* time interval.

Example:

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

279

Page:

7.56 xo_check_osf

7.56.1 Overview

The **xo_check_osf** CFI function checks the continuity of the orbital parameters at the transition from one orbital change and the next one in an Orbit Scenario file.

In order to read and write files, xo_check_osf function internally uses Data Handling functions. Please refer to [D_H_SUM], in particular sections 4.2 and 4.3, for further details.

7.56.2 Calling interface

The calling interface of the **xo_check_osf** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer orbit.h>
         sat id;
  long
  xl model id model id = {NULL};
  xl time id time id = {NULL};
  char *osf file;
  long transition number;
      double threshold[XO NUM_CHECK_PARAMS],
             diffs[XO NUM CHECK PARAMS];
  long status, ierr[XO ERR VECTOR MAX LENGTH];
  status = xo check osf(&sat id, &model id, &time id,
                              osf file, &transition number,
                              threshold,
                              /* output */
                              diffs, ierr);
  /* Or, using the run id */
  long run id;
  status = xo check osf run(&run id,
                                  osf file, &transition number,
                                  threshold,
                                  /* output */
                                  diffs, ierr);
}
```


Date: 10/05/2019 Issue: 4.17

Page: 280

7.56.3 Input parameters

The **xo_check_osf** CFI function has the following input parameters:

Table 155: Input parameters of xo_check_osf function

C name	C type	Array	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	
sat_id	long *	-	Satellite ID	-	Complete
model_id	xl_model_id*	-	Model ID	-	-
time_id	xl_time_id*	-	Structure that contains the time correlations.	-	-
osf_file	char*	-	Orbit Scenario file to be checked	-	-
transition_ number	long*	-	Number of the transition to be checked.	-	>1 <=Number of
			If 0, the last transition is checked		transitions
threshold	double [XO_NUM_CHEC K_PARAMS]	0	Threshold for the time at ANX	S	>0
		1	Threshold for the ANX longitude	deg	
		2	Threshold for the MLST	s	
		3	Threshold for the osculating semi-axis major	m	
		4	Threshold for the osculating inclination	deg	
		5	Threshold for the nodal period	s	

7.56.4 Output parameters

The output parameters of the **xo_check_osf** CFI function are:

Table 156: Output parameters of xo_check_osf function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xo_check_osf	long	-	Status	-	-1, 0, 1
diffs	double [XO_NU M_CHEC K_PARA MS]	0	Difference for the time at ANX	S	>0
		1	Difference for the ANX longitude	deg	

Issue: 10/05/2019 4.17

Page: 281

		2	Difference for the MLST	S	
		3	Difference for the osculating semi-axis major	m	
		4	Difference for the osculating inclination	deg	
		5	Difference for the nodal period	S	
ierr	long*	all	Status vector	-	

7.56.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_check_osf** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_check_osf** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 157: Error messages of xo_ckeck_osf function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Time correlations are not initialized	Computation not performed	XO_CFI_CHECK_OSF_TIM E_INIT_ERR	0
ERR	Error reading the Orbit Scenario file	Computation not performed	XO_CFI_CHECK_OSF_OS F_READ_ERR	1
ERR	Wrong transition number	Computation not performed	XO_CFI_CHECK_OSF_WR ONG_TRANSITION_ERR	2
ERR	Couldn't initialize the orbit	Computation not performed	XO_CFI_CHECK_OSF_OR BIT_INIT_ERR	3
ERR	Error in xo_orbit_info	Computation not performed	XO_CFI_CHECK_OSF_OR BIT_INFO_ERR	4
WARN	UTC at ANX exceeds the input threshold	Computation performed	XO_CFI_CHECK_OSF_UT C_WARN	5
WARN	ANX Longitude exceeds the input threshold	Computation performed	XO_CFI_CHECK_OSF_AN X_LONG_WARN	6
WARN	MLST exceeds the input threshold	Computation performed	XO_CFI_CHECK_OSF_ML ST_WARN	7
WARN	Osculating semi-major axis exceeds the input threshold	Computation performed	XO_CFI_CHECK_OSF_OS C_A_WARN	8
WARN	Osculating inclination	Computation performed	XO_CFI_CHECK_OSF_OS	9

Date: 10/05/2019 Issue: 4.17

Page: 282

	exceeds the input threshold		C_I_WARN	
WARN	Nodal period exceeds the input threshold	Computation performed	XO_CFI_CHECK_OSF_TN OD_WARN	10

Code: EO-MA-DMS-GS-0004

Date: 10/05/2019

Issue: 4.17

Page: 283

7.57 xo_check_oef

7.57.1 Overview

The **xo_check_oef** CFI function checks the consistency between the list of orbital changes and the list of state vectors in an Orbit Event file.

In order to read and write files, xo_check_oef function internally uses Data Handling functions. Please refer to [D H SUM], in particular sections 4.2 and 4.3, for further details.

Note: Orbit Event File is deprecated, only supported for CRYOSAT mission

7.57.2 Calling interface

The calling interface of the **xo_check_oef** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer orbit.h>
  long
        sat id;
  xl time id time id = {NULL};
  xl model id model id = {NULL};
  char *oef file;
        time mode, time ref;
  long
  double start time, stop time;
             start orbit, stop orbit;
      long
  double threshold[XO NUM CHECK PARAMS],
             max diffs[XO NUM CHECK PARAMS],
             rms[XO NUM CHECK PARAMS];
  long status, ierr[XO ERR VECTOR MAX LENGTH];
  status = xo check oef(&sat id, &model id, &time id,
                             &time mode, &time ref,
                              &start time, &stop time,
                             &start orbit, &stop orbit,
                              oef file, threshold,
                              /* output */
                              max diffs, rms, ierr);
  /* Or, using the run id */
  long run id;
  status = xo check oef run(&run id,
                                  time mode, &time ref,
                                   &start time, &stop time,
                                   &start orbit, &stop orbit,
```


Issue: 4.17 Page: 284

```
oef_file, threshold,
/* output */
max_diffs, rms, ierr);
```

7.57.3 Input parameters

The **xo_check_oef** CFI function has the following input parameters:

Table 158: Input parameters of xo_check_oef function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
model_id	xl_model_id*	-	Model ID	-	-
time_id	xl_time_id*	-	Structure that contains the time correlations.	-	-
time_mode	long*	-	Flag for the input time range selection: whole file, time or orbits	-	XO_SEL_FILE, XO_SEL_TIME, XO_SEL_ORBIT
time_ref	long*	-	Time reference for the star_time and stop_time input parameters (only needed if time_mode is XO_SEL_TIME)	-	Complete
start_time	double*	-	Start time for the time range to be checked (only needed if time_mode is XO_SEL_TIME)	days	[-18262.0, 36524.0]
stop_time	double*	-	Stop time for the time range to be checked (only needed if time_mode is XO_SEL_TIME)	days	[-18262.0, 36524.0]
start_orbit	long*	-	Start orbit for the orbit range to be checked (only needed if time_mode is XO_SEL_ORBIT)	-	file range
stop_orbit	long*	-	Stop orbit for the orbit range to be checked (only needed if time_mode is XO_SEL_ORBIT)	-	file range
oef_file	char*	-	Orbit Event file to be checked	-	-
threshold	double	0	Threshold for the time at ANX	s	>0
	[XO_NUM_CHE CK_PARAMS]	[XO_NUM_CHE CK_PARAMS] 1	Threshold for the ANX longitude	deg	
				Threshold for the MLST	s
		3	Threshold for the osculating semi-axis major	m	
		4	Threshold for the osculating inclination	deg	

Issue: 4.17 Page: 285

5 Thres	hold for the nodal period s	6	
---------	-----------------------------	---	--

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Satellite ID: sat_id.

• Time inputs selection: time_mode

• Time reference: time_ref.

7.57.4 Output parameters

The output parameters of the **xo_check_oef** CFI function are:

Table 159: Output parameters of xo_check_oef function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range	
xo_check_oef	long	-	Status	-	-1, 0, 1	
max_diffs	double [XO_NUM_CHEC K_PARAMS]	All	The following parameters are computed using the list of orbital changes and the list of state vectors.	-	>0	
			The maximum value of these differences for the requested interval are returned in this array.			
		0	Time at ANX	s		
		1	ANX longitude	deg		
		2	MLST	s		
		3	Osculating semi-axis major	m		
		4	Osculating inclination	deg		
		5	Nodal period	s		
rms	double [XO_NUM_CHECK _PARAMS]	All	The following parameters are computed using the list of orbital changes and the list of state vectors.	_	>0	
		1		The standard deviation of these differences for the requested interval are returned in this array.		
			ANX longitude	deg		
		2	MLST	s		
		3	Osculating semi-axis major	m		
		4	Osculating inclination	deg		

Date: 10/05/2019 Issue: 4.17

Page: 286

		5	Nodal period	s	
ierr	long*	all	Status vector	_	

7.57.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_check_oef** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_check_oef** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 160: Error messages of xo_ckeck_oef function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Error in xo_orbit_info	Computation not performed	XO_CFI_CHECK_OEF_OR BIT_INIT_ERR	0
ERR	Couldn't initialize the orbit	Computation not performed	XO_CFI_CHECK_OEF_OR BIT_INFO_ERR	1
ERR	Memory allocation error	Computation not performed	XO_CFI_CHECK_OEF_ME M_ERR	2
WARN	UTC at ANX exceeds the input threshold	Computation performed	XO_CFI_CHECK_OEF_UT C_WARN	3
WARN	ANX Longitude exceeds the input threshold	Computation performed	XO_CFI_CHECK_OEF_AN X_LONG_WARN	4
WARN	MLST exceeds the input threshold	Computation performed	XO_CHECK_OEF_MLST_ W ARN	5
WARN	Osculating semi-major axis exceeds the input threshold	Computation performed	XO_CFI_CHECK_OEF_OS C_A_WARN	6
WARN	Osculating inclination exceeds the input threshold	Computation performed	XO_CFI_CHECK_OEF_OS C_I_WARN	7
WARN	Nodal period exceeds the input threshold	Computation performed	XO_CFI_CHECK_OEF_TN OD_WARN	8

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

Page: 287

7.58 xo_position_on_orbit_to_time

7.58.1 Overview

The **xo_position_on_orbit_to_time** calculates the time, position and velocity vectors in Earth-Fixed associated to a given position on orbit. This position on orbit is defined as the angle between the satellite position and the intersection of the orbital plane with a reference plane (the reference plane is the equator in GM2000, ToD or EF CS).

COMPATIBILITY NOTE: the output of this function is consistent with the calculation of orbit number and time from ANX within the EO CFI only when the input angle is compliant with [EO_OPS] and [MCD] i.e. either ToD or EF. Using other angle types (e.g. J2000) will result in an output time that cannot be used as input elsewhere in the EO CFI, notably in the xo_time_to_orbit function.

7.58.2 Calling Interface

The calling interface of the **xo_position_on_orbit_to_time** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer orbit.h>
  xo orbit id orbit id = {NULL};
  long * abs orbit number,
         angle_type,
         deriv,
         time ref;
  double * angle,
           angle rate,
           angle rate rate,
           time;
  double pos[3],
         vel[3],
         acc[3];
  long status,
       ierr[XO ERR VECTOR MAX LENGTH];
  status = xo position on orbit to time (&orbit id,
                    &abs orbit number, &angle type,
                    angle, &angle rate, &angle rate rate,
                    &deriv, &time ref,
                    /* Output */
                    &time, pos, vel, acc,
                    ierr);
```


Date: 10/05/2019 Issue: 4.17

Page: 288

}

7.58.3 Input Parameters

The xo_position_on_orbit_to_time CFI function has the following input parameters:

Table 161: Input parameters of xo_position_on_orbit_to_time function

C name	C type	Array	Description	Unit	Allowed Range
Chame	Ctype	Element	_	(Format)	7 mowed Range
orbit_id	xo_orbit_id *	-	Orbit ID	-	Complete
abs_orbit_number	long *	-	Absolute orbit number	-	Complete
angle_type	long *	-	Type of angle	-	XL_ANGLE_TYPE _TRUE_LAT_TOD
					XL_ANGLE_TYPE _TRUE_LAT_GM2 000
					XL_ANGLE_TYPE _TRUE_LAT_EF
angle	double *	-	Angle describing the position in the orbit	-	-
angle_rate	double *	-	1st derivate from Angle	-	-
angle_rate_rate	double *	-	2nd derivate from Angle	-	-
deriv	long *	-	Derivative ID	-	Allowed values:
					(0) XP_NO_DER
					(1) XP_DER_1ST
					(2) XP_DER_2ND
time_ref	long *	-	Time Reference		Complete

7.58.4 Output Parameters

The output parameters of the **xo_position_on_orbit_to_time** CFI function are:

Table 162: Output parameters of xo_position_on_orbit_to_time function

C name	C type	Array	Description		Allowed
		Element	(Reference)	(Format)	Range
time	double *	-	Resulting time	Decimal days (processing format)	-
pos	double[3]	all	Satellite position vector (Earth Fixed CS)	m	-
vel	double[3]	all	Satellite velocity vector	m/s	-

Issue: 4.17 Page: 289

			(Earth Fixed CS)		
acc	double[3]	all	Satellite acceleration vector (Earth Fixed CS)	m/s2	ı
ierr	long		Error vector	-	-

7.58.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xo_position_on_orbit_to_time** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_position_on_orbit_to_time** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 163: Error messages of xo_position_on_orbit_to_time function

Error type	Error message	Cause and impact	Error code	Error No
ERR	The Orbit Id was not initialized.	Computation not performed	XO_POSITION_ON_ORBIT _ORBIT_INIT_STATUS_ER R	0
ERR	Error calculating orbit info	Computation not performed	XO_POSITION_ON_ORBIT _ORBIT_INFO_ERR	1
ERR	Could not compute the ANX time for the requested orbit	Computation not performed	XO_POSITION_ON_ORBIT _ORBIT_TO_TIME_ERR	2
ERR	Could not compute orbit state vectors	Computation not performed	XO_POSITION_ON_ORBIT _OSV_COMPUTE_ERR	3
ERR	Error calculating satellite position	Computation not performed	XO_POSITION_ON_ORBIT _POSITION_ON_ORBIT_E RR	4
ERR	Error calculating time: maximum iterations reached	Computation not performed	XO_POSITION_ON_ORBIT _MAX_ITERATIONS_ERR	5

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

Page: 290

7.59 xo_orbit_data_filter

7.59.1 Overview

The function **xo_orbit_data_filter** filters data stored in the *xo_orbit_id_init_data* input structures and returns the result of such filtering in *xo_orbit_id_init_data* output structure and associated statistics in *xo_orbit_filter_report* report structure. The user can select the filter and set its configuration via the filter setting structure.

7.59.1.1 Outliers filter

The outliers filter works this way:

- For every input state vector time, a new state vector is computed using interpolation, taking as input for interpolation the 10 state vectors around that time.
- The interpolated state vector is compared with the one present in the file. If the difference between them (in position or velocity) is bigger than the input thresholds, the state vector is removed.

7.59.2 Calling Interface

The calling interface of the **xo_orbit_data_filter** CFI function is the following (input parameters are underlined):

Note that it is necessary to call xo_orbit_data_filter_close() to free the memory reserved inside the orbit data filter function for the output data.

7.59.3 Input Parameters

The **xo_orbit_data_filter** CFI function has the following input parameters:

Table 164: Input parameters of xo_orbit_data_filter function

C name	C type	Array	Description	Unit	Allowed Range

Issue: 4.17 Page: 291

		Element	(Reference)	(Format)	
orbit_data_in	xo_orbit_id_init_data		Input data structure	-	
filter_settings	xo_orbit_filter_settings		Input filter structure	-	

7.59.4 Output Parameters

The **xo_orbit_data_filter** CFI function has the following output parameters:

Table 165: Output parameters of xo_orbit_data_filter function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_data_out	xo_orbit_id_init_data		Output data structure with filtered samples	-	
report	xo_orbit_filter_report		Output Report	-	
ierr	long		Error vector	-	-

7.59.5 Warnings and errors

The next table lists the possible error messages that can be returned by the **xo_orbit_data_filter** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO ORBIT software library **xo get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_orbit_data_filter** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 166: Error messages of xo orbit data filter function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Unknown Filter provided	Input filter not recognized. Execution aborted	XO_ORBIT_DATA_FILTER_ UNKNOWN_FILTER_ERR	0
ERR	The Input Orbit file does not contain any OSV	the input files.	XO_ORBIT_DATA_FILTER_ NO_OSV_ERR	1
EDD	lour of file week accommended	Execution aborted.	VO ODDIT DATA FILTED	0
ERR	Input file not supported: Orbit or Doris only	Input file is neither an Orbit nor a Doris file.	XO_ORBIT_DATA_FILTER_ FILE_ERR	2
		Execution Aborted.		
ERR	Error Interpoling OSV for orbit <orbit #=""></orbit>	Execution Aborted.	XO_ORBIT_DATA_FILTER_ INTERPOL_ERR	3

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

Page: 292

ERR	Error analysing sample to validate OSV	Execution Aborted.	XO_ORBIT_DATA_FILTER_ ANALYSE_OSV_SAMPLE_ ERR	4
ERR	Could not find 10 valid OSV samples to interpolate point at <time></time>	Execution Aborted.	XO_ORBIT_DATA_FILTER_ SAMPLES_ERR	5

7.60 xo_orbit_id_change

7.60.1 Overview

The function **xo_orbit_id_change** updates the orbit number in the state vectors of an orbit id that has been previously initialized with Predicted Orbit, Restituted Orbit or DORIS files. The correction to be applied to orbit numbers is calculated depending on the input provided in the *change data* input parameter:

- With an OSF (change_data.change_mode = XO_ORBIT_ID_CHANGE_OSF). In this case, the time of the first state vector in the orbit id is used to compute the orbit number that the OSF file predicts for that time. All the state vector orbit numbers are corrected accordingly: if the orbit number and time of the first OSV in the orbit id are respectively N and T and the orbit number of the OSV computed at the same time T using the OSF is M, then the orbit numbers of all OSVs in the orbit id are increased of M-N. The field change_data.eocfi_file is of type xd_eocfi_file (only OSF file type is supported).
- With an input TIME+ORBIT (change_data.change_mode = XO_ORBIT_ID_CHANGE_TIME_ORBIT). In this case, if T and M are respectively time and orbit provided by the user, the function first computes the OSV at time T and the corresponding orbit number N, then the orbit numbers of all OSVs in the orbit id are increased of M-N. Time T shall be within the orbit id validity.

7.60.2 Calling Interface

The calling interface of the **xo_orbit_id_change** CFI function is the following (input parameters are underlined):

```
#include <explorer_orbit.h>
{
  long ierr[XO_ERR_VECTOR_MAX_LENGTH];
  xo_orbit_id_change_data change_data;
  xo_orbit_id orbit_id;

status = xo_orbit_id_change(&orbit_id, &change_data, ierr);
}
```

7.60.3 Input Parameters

The **xo_orbit_id_change** CFI function has the following input parameters:

Date: 10/05/2019 Issue: 4.17

Page: 293

Table 167: Input parameters of xo_orbit_id_change function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*		Input orbit id	-	
change_data	xo_orbit_change_data*		Input orbit correction structure	-	

7.60.4 Output Parameters

The **xo orbit id change** CFI function has the following output parameters:

Table 168: Output parameters of xo_orbit_id_change function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xo_orbit_id*	-	This parameter is also an output parameter, since the orbits of the state vectors stored internally are changed according to input parameters to the function		
ierr	long		Error vector	-	-

7.60.5 Warnings and errors

The next table lists the possible error messages that can be returned by the **xo_orbit_id_change** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_orbit_id_change** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 169: Error messages of xo_orbit_id_change function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Invalid Change mode provided.	No computation performed	XO_CFI_ORBIT_ID_CHAN GE_MODE_ERR	0
ERR	Provided Orbit Id change data is not valid.	No computation performed	XO_CFI_ORBIT_ID_CHAN GE_CHANGE_DATA_ERR	1
ERR	Provided Orbit Id is NULL.	No computation performed	XO_CFI_ORBIT_ID_CHAN GE_ID_NULL_ERR	2

Date: 10/05/2019 Issue: 4.17

Page: 294

ERR	Could not initialize time id with the provided OSF.	No computation performed	XO_CFI_ORBIT_ID_CHAN GE_TIME_ID_ERR	3
ERR	Could not initialize orbit id with the provided OSF.	No computation performed	XO_CFI_ORBIT_ID_CHAN GE_ORBIT_ID_ERR	4
ERR	Error propagating time of first OSV of the Orbit file using the provided OSF.	No computation performed	XO_CFI_ORBIT_ID_CHAN GE_PROPAG_ERR	5
ERR	Error propagating time %f using the provided OSF.	No computation performed	XO_CFI_ORBIT_ID_CHAN GE_PROP_TIME_ERR	6
ERR	Error closing orbit_id initialized with the provided OSF for orbit change.	No computation performed	XO_CFI_ORBIT_ID_CHAN GE_CLOSE_ORBIT_ID_ER R	7
ERR	Error closing time_id initialized with the provided Orbit file for orbit change.	No computation performed	XO_CFI_ORBIT_ID_CHAN GE_CLOSE_TIME_ID_ERR	8

Issue: 4.17 Page: 295

7.61 xo_osv_check

7.61.1 Overview

The function **xo_osv_check** provides a way to check if an orbit state vector (OSV) is compatible with the nominal orbit of a given satellite. The function checks that semi-major axis, inclination and eccentricity corresponding to the OSV are within certain tolerances. Two types of tolerances are defined (the values for each satellite can be found in section 5 of [MSC]):

- *Tight tolerances*: these are tolerances very close to the nominal orbit expected for the satellite. If the state vector values are inside the interval defined by these tolerances, the state vector is considered valid. If is outside the interval but inside the interval defined by loose tolerances (see next point), the state vector is considered correct but slightly away from nominal orbit. A warning is returned in this case (XO_CFI_OSV_CHECK_TIGHT_TOLERANCE_WARN).
- Loose tolerances: these are wider tolerances. If the state vector values are outside the interval defined by these tolerances, the state vector is considered wrong and an error is returned (XO CFI OSV CHECK LOOSE TOLERANCE ERR).

7.61.2 Calling Interface

The calling interface of the **xo osv check** CFI function is the following (input parameters are <u>underlined</u>):

7.61.3 Input Parameters

The **xo_osv_check** CFI function has the following input parameters:

Table 170: Input parameters of xo_osv_check function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
model_id	xl_model_id*		Input model id	-	
sat_id	long		Input satellite id	-	See enum satellite in Table 2

Date: 10/05/2019 Issue: 4.17

Page: 296

time_id	xl_time_id*	Input time id	-	
time_ref	long	Time reference	-	See enum time reference in Table 2
time	double	Time	days	
pos	double*	Position of the satellite in Earth Fixed reference frame	meters	
vel	double*	Velocity of the satellite in Earth Fixed reference frame	meters/ second	

7.61.4 Output Parameters

The xo_osv_check CFI function has the following output parameters:

Table 171: Output parameters of xo_osv_check function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
ierr	long		Error vector	-	-

7.61.5 Warnings and errors

The next table lists the possible error messages that can be returned by the **xo_osv_check** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_osv_check** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 172: Error messages of xo_osv_check function

Error	Error message	Cause and impact	Error code	Error
type				No
ERR	Error transforming to TOD frame	No computation performed	XO_CFI_OSV_CHECK_CH ANGE_CART_CS_ERR	0
ERR	Orbit radius = 0	No computation performed	XO_CFI_OSV_CHECK_OR BIT_RADIUS_ZERO_ERR	1
ERR	Orbit velocity = 0	No computation performed	XO_CFI_OSV_CHECK_OR BIT_VEL_ZERO_ERR	2
ERR	Orbit semi-major axis	No computation performed	XO_CFI_OSV_CHECK_SE	3

Code: EO-MA-DMS-GS-0004
Date: 10/05/2019
Issue: 4.17

Page: 297

	undefined		MI_MAJOR_AXIS_ERR	
WARN	Inclination = 0 or 180 deg	Computation performed	XO_CFI_OSV_CHECK_INC LINATION_WARN	4
ERR	Error getting satellite information	No computation performed	XO_CFI_OSV_CHECK_SAT _ARRAY_ERR	5
ERR	Loose tolerances are not met	No computation performed	XO_CFI_OSV_CHECK_LO OSE_TOLERANCE_ERR	6
WARN	Tight tolerances are not met	Computation performed	XO_CFI_OSV_CHECK_TIG HT_TOLERANCE_WARN	7

7.62 xo_orbit_id_check

7.62.1 Overview

The **xo_orbit_id_check** CFI function computes diagnostics data related to the OSVs contained in orbit id. The following information is returned:

- Size of the interval covered by the file.
- Times of first and last OSV.
- Number and interval of GAPs in the file.
- Number and indexes of duplicated OSVs, i.e. OSVs whose time is the same as the one of previous OSV; i.e. if *time_osv1* and *time_osv2* are the times of one OSV and the following one respectively, the duplicated OSVs fulfill the following condition:
 - |time osv2-time osv1| < diagnostics settings.duplicated osv threshold
 - being *diagnostics_settings* one input parameter to the function (check section Error: Reference source not found).
- Number and indexes of the OSVs going back in time, i.e. OSVs whose time is in the past with respect to the previous one; i.e. the OSVs are not identified as duplicated OSVs and fulfill the following conditions:
 - 1) $time_osv2$ - $time_osv1 < 0$.
 - 2) $|time\ osv2$ -time\ $osv1| > diagnostics\ settings.duplicated\ osv\ threshold$
- Number and indexes of OSVs with inconsistent orbit number (i.e. OSVs whose number is not correlated with its neighbours OSVs).
- Number and indexes of OSVs with non-equally spaced OSVs (i.e. OSVs that are separated from its neighbours a different step from the one expected).
- Number and indexes of OSVs whose orbit parameters are beyond loose tolerances for corresponding satellite.
- Number and indexes of OSVs whose orbit parameters are beyond tight tolerances for corresponding satellite.

Date: 10/05/2019 Issue: 4.17

Page: 298

For DORIS files only EF OSVS are checked, because they are the ones used by orbit initialization.

7.62.2 Calling Interface

The calling interface of the **xo_orbit_id_check** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_orbit.h>
{
  long ierr[XO_NUM_ERR_ORBIT_ID_CHECK];
  xo_orbit_id orbit_id;
  xd_orbit_file_diagnostics_settings diag_settings;
  xo_orbit_id_check_report report;

status = xo_orbit_id_check(&orbit_id, &diag_settings, &report, ierr);
}
```

7.62.3 Input Parameters

The xo_orbit_id_check CFI function has the following input parameters:

Table 173: Input parameters of xo_orbit_id_check function

C name	C type	Array	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	
orbit_id	xo_orbit_id*		Input orbit id	-	
diag_settings	xd_orbit_file_diagnostics		Input settings struct	-	
	_settings*		(see [D_H_SUM] for details)		

7.62.4 Output Parameters

The **xo_orbit_id_check** CFI function has the following output parameters:

Table 174: Output parameters of xo_orbit_id_check function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
report	xo_orbit_id_check_repo rt*		Output data structure for diagnostics results		
ierr	long		Error vector	-	-

Date: 10/05/2019 Issue: 4.17

Page: 299

7.62.5 Warnings and errors

The next table lists the possible error messages that can be returned by the **xo_orbit_id_check** CFI function after translating the returned status vector into the equivalent list of error messages by calling the function of the EO_ORBIT software library **xo_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation, mainly on the results vector.

The table is completed by the error code and value. These error codes can be obtained translating the status vector returned by the **xo_orbit_id_check** CFI function by calling the function of the EO_ORBIT software library **xo_get_code** (see [GEN_SUM]).

Table 175: Error messages of xo_orbit_id_check function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Orbit id is not initialised.	No computation performed	XO_CFI_ORBIT_ID_CHEC K_ORBIT_ID_UNINITIALIZ ED_ERR	0
ERR	Output report is null.	No computation performed	XO_ORBIT_ID_CHECK_NU LL_OUTPUT_ERR	1
ERR	No OSVs found in given orbit id	No computation performed	XO_ORBIT_ID_CHECK_NO _OSVS_ERR	2
ERR	Couldn't retrieve time id from orbit id	No computation performed	XO_ORBIT_ID_CHECK_NO _TIME_ID_ERR	3
ERR	Error in xd_orbit_file_diagnostics()	No computation performed	XO_ORBIT_ID_CHECK_FIL E_DIAGNOSTICS_ERR	4
ERR	Error in xo_osv_check()	No computation performed	XO_ORBIT_ID_CHECK_OS V_CHECK_ERR	5
ERR	Memory allocation error	No computation performed	XO_ORBIT_ID_CHECK_ME M_ALLOC_ERR	6

Date: 10/05/2019 Issue: 4.17

Page: 300

8 RUNTIME PERFORMANCES

The library performance has been measured by dedicated test procedures run in 5 different platforms under the below specified machines:

OS ID	Processor	os	RAM
LINUX64	Intel(R) Xeon(R) CPU E5- 2609 v4 @ 1.70GHz (8 cores)	GNU LINUX 4.10.0-42-generic (Ubuntu 17.04)	64 GB
LINUX64_LEGACY	Intel(R) Xeon(R) CPU E5- 2470 0 @ 2.30GHz (16 cores)	GNU LINUX 2.6.24-16-generic (Ubuntu 10.04)	16 GB
MACIN64	Intel Core i7 4 cores @2,6 GHz	MACOSX 10.12	16 GB
WINDOWS64	Intel(R) Xeon(R)CPU ES- 2630 @ 2.40GHz 2.40GHz	Microsoft Windows 7	16 GB

The table below shows the time (in miliseconds - ms) each function takes to be run under each platform:

Function ID	WINDOWS64	LINUX64	LINUX64	MACIN64
			LEGACY	
xo_orbit_init_def	0.255100	0.208000	0.273000	0.087000
xo_osv_compute_extra	0.080300	0.051000	0.081000	0.029000
xo_osv_compute * (PROPAGATION)	0.033700	0.016000	0.022000	0.009000
xo_orbit_cart_init	0.082000	0.038000	0.049000	0.024000
xo_orbit_init_file * 3 OSVs read.	0.756300	0.390000	0.429000	0.282000
xo_osv_compute	0.015300	0.006000	0.011000	0.005000
xo_orbit_to_time	0.052120	0.074200	0.080620	0.020750
xo_time_to_orbit	0.155800	0.222000	0.242000	0.062000
xo_orbit_rel_from_abs	0.000044	0.000040	0.000030	0.000020
xo_orbit_info	0.054500	0.076000	0.082000	0.021000
xo_orbit_abs_from_rel	0.000049	0.000040	0.000030	0.000020
xo_orbit_abs_from_phase	0.000032	0.000020	0.000030	0.000010

Date: 10/05/2019 Issue: 4.17

Page: 301

xo_orbit_init_status	0.000005	0.000000	0.000000	0.000000
xo_orbit_get_sat_id	0.000004	0.000004	0.000003	0.000003
xo_orbit_get_mode	0.000005	0.000010	0.000000	0.000000
xo_orbit_get_osf_rec	0.000614	0.000280	0.000140	0.000170
xo_orbit_set_osf_rec	0.000676	0.000580	0.000270	0.000390
xo_orbit_get_val_time	0.000009	0.000010	0.000010	0.000010
xo_orbit_set_val_time	0.000010	0.000010	0.000010	0.000000
xo_orbit_get_propag_config	0.000075	0.000030	0.000030	0.000020
xo_interpol_get_id_data	0.000060	0.000010	0.000020	0.000010
xo_gen_osf_create_2	1.360000	0.900000	0.600000	0.500000
xo_gen_osf_append_orbit_change	1.940000	1.300000	1.000000	0.900000
xo gen osf change repeat cycle	2.710000	1.700000	1.400000	1.300000
xo_gen_osf_add_drift_cycle	2.990000	2.800000	2.400000	1.600000
xo_gen_rof	29.450001	31.500000	38.200001	31.200001
xo_gen_pof *				
16 OSVs generated	3.860000	3.900000	4.000000	2.600000
xo_gen_dnf	146.619995	226.800003	270.399994	205.600006
xo_gen_oef * 16 OSVs generated	4.070000	3.600000	2.900000	2.900000
	1.097700	0.833000	0.975000	0.453000
xo_check_osf	4.486800	3.844000		
xo_check_oef			4.312000	2.125000
xo_gen_tle	3.500000	1.700000	1.700000	1.300000
xo_orbit_init_def_2	0.260000	0.200000	0.400000	0.100000
xo_orbit_init_file_precise * Includes xo_orbit_close	2.140000	2.400000	2.600000	1.700000
xo orbit cart init precise *				
Includes xo_orbit_close	0.009000	0.000000	0.010000	0.000000
xo_orbit_set_osv	0.105925	0.049544	0.063071	0.029011
xo orbit_set precise_propag_config	0.000147	0.000190	0.000200	0.000180
xo_osv_to_tle	0.203600	0.118000	0.166000	0.085000
xo_orbit_init_geo	0.007600	0.003000	0.003000	0.003000
xo_position_on_orbit_to_time	0.185200	0.084000	0.122000	0.056000
xo_orbit_data_filter * Processing 1600 OSV	0.000500	0.001000	0.000000	0.000000

Date: 10/05/2019 Issue: 4.17

Page: 302

xo orbit data filter	0.090000	0.100000	0.100000	0.100000	I
----------------------	----------	----------	----------	----------	---

Note that when the value "0.000000" is defined for a function in a certain platform, it means that its running time is lower than 1 nano-second and so it can be considered as "0".

Date: 10/05/2019 Issue: 4.17

Page: 303

9 LIBRARY PRECAUTIONS

The following precautions shall be taken into account when using EO ORBIT software library:

• When a message like

<LIBRARY NAME>>>> ERROR in xo_function: Internal computation error # n
or

<LIBRARY NAME> >>> WARNING in xo_function: Internal computation warning # n appears, run the program in verbose mode for a complete description of warnings and errors, and call for maintenance if necessary.