Session 68: Linear Recurrence Relations

- Linear Homogeneous Recurrence Relations
- Solving Linear Homogeneous Recurrence Relations

Linear Homogeneous Recurrence Relations

Definition: A **linear homogeneous recurrence relation of degree** k **with constant coefficients** is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

where $c_1, c_2,, c_k$ are real numbers, and $c_k \neq 0$

By strong induction, a sequence satisfying such a recurrence relation is uniquely determined by the recurrence relation and the k initial conditions

$$a_0 = C_1$$
, $a_0 = C_1$,..., $a_{k-1} = C_{k-1}$.

Terminology explained

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

- is **linear** because the right-hand side is a sum of the previous terms of the sequence each multiplied by a function of *n*.
- is **homogeneous** because no terms occur that are not multiples of the a_i s.
- has constant coefficients $c_1, c_2,, c_k$.
- the **degree** is k because a_n is expressed in terms of the previous k terms of the sequence.

Examples

$$P_n = (1.11)P_{n-1}$$

$$f_n = f_{n-1} + f_{n-2}$$

$$a_n = a_{n-1} + a_{n-2}^2$$

$$H_n = 2H_{n-1} + 1$$

$$B_n = nB_{n-1}$$

linear homogeneous recurrence relation of degree one

linear homogeneous recurrence relation of degree two

not linear

not homogeneous

coefficients are not constants

Characteristic Equation

Given the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$ assume $a_n = r^n$, where r is a constant

Substituting into the recurrence relation gives

$$r^n = c_1 r^{n-1} + c_2 r^{n-2} + \cdots + c_k r^{n-k}$$

Algebraic manipulation yields the characteristic equation:

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \cdots - c_{k-1}r - c_{k} = 0$$

Solving Linear Homogeneous Recurrence Relations

The sequence $\{a_n\}$ with $a_n = r^n$ is a solution if and only if r is a solution to the characteristic equation.

- The solutions to the characteristic equation are called the characteristic roots of the recurrence relation.
- The roots can be used to give an closed formula for the recurrence relation.

Solving Linear Homogeneous Recurrence Relations of Degree Two

Theorem 1: Let c_1 and c_2 be real numbers. Suppose that

$$r^2 - c_1 r - c_2 = 0$$

has two distinct roots r_1 and r_2 . Then the sequence $\{an\}$ is a solution to the recurrence relation $a_n=c_1a_{n-1}+c_2a_{n-2}$ if and only if

$$a_n = \alpha r_1^n + \alpha_2 r_2^n$$

for $n=0,1,2,\ldots$, where α_1 and α_2 are constants.

Example

What is the solution to the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2$ and $a_1 = 7$?

Example: Fibonacci Numbers

The sequence of Fibonacci numbers satisfies the recurrence relation

$$f_n = f_{n-1} + f_{n-2}$$
 with the initial conditions: $f_0 = 0$ and $f_1 = 1$.

Summary

- Linear Homogeneous Recurrence Relations
 - Characteristic equation
 - Characteristic roots
- Solving Linear Homogeneous Recurrence Relations of degree 2 with Constant Coefficients