Boosting Spark Performance on Many-Core Machines

Qifan Pu Sameer Agarwal (Databricks) Reynold Xin (Databricks) Ion Stoica

Me

- Ph.D. Student in AMPLab, advised by Prof. Ion Stoica
 - Spark-related research projects
 - e.g., how to run Spark in a geo-distributed fashion
 - Big data storage (e.g., Alluxio)
 - how to do memory management for multiple users

Intern at Databricks in the past summer

- Spark SQL team: aggregates, shuffle

This project

Spark performance on many-core machines

- Ongoing research, feedbacks are welcome
- Focus of this talk:
 - understand shuffle performance
 - Investigate and implement In-memory shuffle

Moving beyond research

- Hope is to get into Spark (but no guarantee yet)

Why do we care about many-core machines?

Spark started as a cluster computing framework

Spark on cluster

- Spark's one big success has been high scalability
 - Largest cluster known is 8000
 - Winner of 2014 Daytona GraySort Benchmark

- Typical cluster sizes in practice:
 - "Our observation is that companies typically experiment with cluster size of under 100 nodes and expand to **200 or more nodes** in the *production* stages."
 - -- Susheel Kaushik (Senior Director at Pivotal)

Increasingly powerful single node machines

- More cores packed on single chip
 - Intel Xeon Phi: 64-72 cores
 - Berkeley FireBox Project: ~100 cores

- Larger instances in the Cloud
 - Various 32-core instances on EC2, Azure & GCE
 - EC2 X-Instance with 128 cores, 2TB (May 2016)

Cost of many-core nodes

	Memory (GB)	vCPUs	Hourly Cost (\$)	Cost/100GB	Cost/8vCPU
x1.32xlarge	1952	128	13.338	0.68	0.83
g2.2xlarge	15	8	0.65	4.33	0.65
i2.2xlarge	61	8	1.705	2.80	1.70
m3.2xlarge	30	8	0.532	1.78	0.53
c3.2xlarge	15	8	0.42	2.80	0.42

1 x1.32xlarge instance is a small cluster (with more memory, fast inter-core network)

Spark's design was based on many nodes

Focus of this talk

- Data communication (a.k.a. shuffle)
 - Store intermediate data on disk
 - Serialization/deserialization needed across nodes
 - Now: much memory to spare, intra-node shuffle
- Resource management
 - Designed to handle moderate amount on each node
 - Now: 1 executor for 100 cores + 2TB memory?

Can we improve shuffle on single, multi-core machines?

- 1, Memory is fast
- 2, We can use memory for shuffle

3, Therefore,
Shuffle will be fast

Will this "common sense" work?

Put in practice...

- Spark: write to a file stream, and save all bytes to disk
- Solution: ..., to memory (bytes on heap)

spark.range(16M).repartition(1).selectExpr("sum(id)").collect()

Why zero improvement?

Why zero improvement?

1, I/O throughput is not the bottleneck (in this job)

Buffer cache: memory is being exploited by disk-based shuffle

Understanding Shuffle Performance

Understanding Shuffle Performance

Reducers

More complications

Sort vs. hash-based shuffle

Spill when memory runs out

Clear data after shuffle

. . .

Case 2: writing/reading file streams is slow

Case study 2

Case 3: I/O contentions

Our first attempt should work in this case!

Can we improve case 2?

Attempt 2: get rid of ser/deser, etc

Attempt 2: create NxM queues (N=mappers, M=reducers)
 push corresponding records into queues

- No serialization
- No copy (data structure shared by both sides)

Attempt 2: get rid of ser/deser, etc

Attempt 2: create NxM queues (N=mappers, M=reducers)
 push corresponding records into queues

Attempt 2: get rid of ser/deser, etc

Attempt 2: create NxM queues (N=mappers, M=reducers)
 push corresponding records into queues

Attempt 3: avoiding GC

Attempt 3: instead of queue, copy records to memory pages

Number of objects: ~records → ~pages NxM pages, or alternatively, one page per reducer

Spark SQL

Unsafe Row (a buffer-backed row format):

row.pointTo(buffer)

Instantaneous creation of unsafe rows by pointing to different offsets In the page

Attempt 3: avoiding GC

Attempt 3: copy records onto large memory pages

Consistent improvement with varying size

spark.range(N).repartition().selectExpr("sum(id)").collect() Use N from 2^ 20 to 2^27

TPC-DS performance (single node)

27/33 queries improve with a median of 31%

Extending to multiple nodes

- Implementation
 - All data goes to memory
 - For remote transfer, copy from memory to network buffer
- A more memory-preserving way...
 - Local transfer goes to memory
 - Remote transfer goes to disk
 - Cons1: have to enforce stricter locality on reducers
 - Cons2: cannot avoid I/O contentions

Simple shuffle job

spark.range(N).repartition().selectExpr("sum(id)").collect()

TPC-DS performance (x1.xlarge32)

- SF=100
- Pick top 5 queries from single node experiment
- Best of 10 runs

Many other performance bottlenecks need investigation!

Summary

Spark on many-core requires many architectural changes

- In-memory shuffle
 - How to improve shuffle performance with memory
 - 31% improvement over Spark

- On-going research
 - Identify other performance bottlenecks

Thank you

Qifan Pu qifan@cs.berkeley.edu