Вопросы на защиту лабораторной работы № 1 (Интерференция)

- 1. Лучи двух когерентных источников сходятся в точке А. Первый луч проходит в среде с показателем преломления n1 расстояние S1, второй луч проходит в среде с показателем преломления n2 расстояние S2. Определите:
- А) Будет в точке А наблюдаться мах или min.
- Б) Порядок интерференции в точке А.

Решение:

- A) В точке A будет наблюдаться максимум при условии, что оптическая разность хода волн от двух когерентных источников (то есть S1*n1 S2*n2) по модулю кратна целому числу длин волн (то есть если S1*n1 S2*n2 = λn, n целое число), если же она кратна целому числу длин полуволн (и при этом не кратна целому числу длин волн), то в точке A будет наблюдаться минимум.
- Б) Порядок интерференции в случае, когда в точке А наблюдается максимум, будет определяться формулой

$$n = \frac{|S1 * n1 - S2 * n2|}{\lambda}$$

Если же в точке А определяется минимум, то порядок интерференции равен

$$n = \frac{\left|S1 * n1 - S2 * n2 + \frac{\lambda}{2}\right|}{\lambda}$$

- 2. Разберите интерференционную схему "бизеркала Френеля". Все размеры даны. (см. учебник скан прилагаю)
- А) как определить расстояние между мнимыми источниками.
- б) как определить ширину интерференционной полосы, если известно расстояние между мнимыми источниками. Длина волны и расстояние от мнимых источников до экрана. Подсказка (схема Юнга)

Решение:

- A) Расстояние между мнимыми источниками можно определить исходя из расстояния от источника до угла между зеркалами (а) и угла между зеркалами (α). Так, поскольку тангенс угла между зеркалами равен отношению половины расстояния между мнимыми источниками к расстоянию от источника до угла между зеркалами ($tg\alpha = d/(2*a)$) то можем сделать вывод что $d = 2*a*tg\alpha$, или, если угол мал, то $d = 2*a*\alpha$.
- Б) В схеме Юнга:

$$\frac{\Delta x d}{L} = \lambda$$

В нашем случае формула та же самая, поскольку имеет место тот же факт, связанный с равенством тангенсов двух углов с взаимно перпендикулярными сторонами (и в схеме Юнга, и в схеме бизеркал x/L = d/Δs где x — расстояние от центра интерференционной картины до определенной полосы, L— расстояние от источников до экрана, d— расстояние между источниками и Δs— разность хода) соответственно

$$\Delta x = \frac{\lambda L}{d}$$

3. В схеме Юнга в один из лучей ввели стеклянную пластинку толщиной X с показателем преломления n. Длина волны источников в воздухе λ . На сколько единиц изменится порядок интерференции в бывшем центре интерференционной картины.

Решение:

Предположим, что порядок интерференции изменится на m единиц, в таком случае необходимо, чтобы оптическая разность хода двух лучей была равна нулю, а поскольку при введении пластинки у одного луча оптическая длина пройденного пути осталась неизменной (l1=r1) и у второго увеличилась (l2=r2+(n-1)*x), то имеем соотношение

$$r1 = r2 + (n-1) * x$$

$$r1 - r2 = (n-1) * x = m\lambda$$

Здесь 11 и 12 – оптические разности хода, r1 и r2 – геометрические разности хода. Из последнего выражения можно найти m:

$$m = \frac{(n-1) * x}{\lambda}$$

4. Какие условия должны быть выполнены, чтобы можно было наблюдать интерференцию.

Ответ:

- 1) Временная когерентность: волны должны иметь одинаковые (или близкие) частоты, чтобы картина, получающаяся в результате наложения волн, не менялась во времени (или менялась не очень быстро, что бы её можно было успеть зарегистрировать)
- 2) Пространственная когерентность: волны должны быть однонаправленными (или иметь близкое направление); две перпендикулярные волны никогда не дадут интерференции. Иными словами, складываемые волны должны иметь одинаковые волновые векторы (или близконаправленные).
- 3) Разность начальных фаз постоянна в течение всего времени наблюдения

Вопросы на защиту лабораторной работы № 2 (Дифракция)

1. Дистанция Релея - вспомогательное понятие, которое используют для того, чтобы условно отделить область дифракции Френеля от дифракции Фраунгофера. Это расстояние от отверстия диаметром D до точки наблюдения R=D*D/ λ. Посчитайте, сколько зон Френеля открыто в этом случае.

Решение:

Радиус т-й зоны Френеля определяется формулой

$$r = \sqrt{\frac{ma * b}{(a+b)}\lambda}$$

Откуда следует, что

$$m = \frac{r^2(a+b)}{a*b*\lambda}$$

В условиях нашей задачи $b = R = r*r/\lambda$

Поскольку расстояние а в данном случае велико по сравнению с b

$$m \approx \frac{r^2}{b * \lambda} = 1$$

Так, открыта 1 зона Френеля

2. Нарисуйте, как выглядит вектор-амплитуда, если для точки наблюдения на оси за круглым отверстием открыто 1,5 2.5 0.5 зон Френеля. Во сколько раз увеличится интенсивность света в этой точке по сравнению с полностью открытым волновым фронтом.

Решение:

Интенсивность света увеличится приблизительно в √2 раз

3. Если осветить решётку белым светом, красные или синие максимумы будут отклонены на больший угол.

Решение:

Если на дифракционную решетку падает свет определенной длины волны λ , отклоняясь при этом на угол θ , то разность хода между первым и последним лучом, проходящими соответственно через левый и правый края щели (или наоборот), будет равна

$$\Delta = b \sin \theta$$

 Γ де b — ширина щели. Соответственно, поскольку разность фаз равна произведению волнового числа на разность хода, для разности фаз получим

$$\delta = \frac{2\pi}{\lambda} \Delta = \frac{b \sin \theta 2\pi}{\lambda}$$

Так как нас интересуют максимумы, то разность хода лучей от одного и другого края должна составить $\pi(2m+1)$. Это следует, в свою очередь, из того факта, что амплитуда пропорциональ на синусу половины разности фаз.

$$\frac{bsin\theta 2\pi}{\lambda} = \pi(2m+1), m \in Z$$

Теперь установим зависимость между синусом угла отклонения θ и длиной волны λ :

$$sin\theta = \frac{\lambda \pi (2m+1)}{2\pi b} = \frac{\lambda (2m+1)}{2b} \sim \lambda$$

На основании этого делаем вывод, что с ростом длины волны растет синус угла отклонения, а на основании того, что синус угла отклонения не может превышать 90 градусов, делаем вывод, что с ростом длины волны растет угол отклонения, то есть красные максимумы будут отклонены на больший угол по сравнению с синими

4. Наблюдается спектр дифр. решётки при освещении её монохроматическим светом с длиной волны λ. Наблюдение можно вести под любыми углами. Сколько всего главных максимумов можно наблюдать?

Решение:

Продолжая рассуждения из предыдущего задания:

$$(2m+1) = \frac{2bsin\theta}{\lambda}$$

Теперь можно сделать вывод о том, что чем больше синус угла (а значит чем больше сам угол θ) тем больше порядок наблюдаемого максимума (то есть тем больще m). Однако максимальное значение $\sin\theta = 1$, пользуясь этим условием, можем найти максимальное число m:

$$m = \frac{1}{2} \left(\frac{2b - \lambda}{\lambda} \right)$$

Полученное выражение дает количество максимумов по одну сторону от центрального максимума

Умножив на 2 и прибавив единицу найдем общее количество главных максимумов:

$$N = 2m + 1 = \frac{2b}{\lambda} - 1 + 1 = \frac{2b}{\lambda}$$

Вопросы на защиту лабораторной работы № 3 (Поляризация)

1. Естественный свет проходит через 2 поляроида, угол между осями которых равен альфа. Во сколько раз уменьшится его интенсивность?

Решение:

После прохождения первого поляроида интенсивность света уменьшается в 2 раза, то есть I1 = I/2

После прохождения второго поляроида интенсивность света уменьшается в $\frac{1}{(\cos \alpha)^2}$ раз, то есть $I2 = I1*(\cos(\alpha))^2 = (I/2)*(\cos(\alpha))^2$

Для того чтобы узнать, во сколько раз уменьшится интенсивность после прохождения двух поляроидов, найдем отношение I/I2, оно будет равно $\frac{2}{(\cos \alpha)^2}$

2. Рассматриваем пластинки $\lambda/2$ и $\lambda/4$.

Что это за пластинки, как они вырезаны. Какой дополнительный сдвиг фаз между падающими компонентами они дают?

Допустим, у вас есть такие пластинки и источники линейно и цирулярно поляризованного света.

Что вы можете сделать и как.

- А) Превратить линейную поляризацию в циркулярную
- Б) Превратить циркулярную поляризацию в линейную.
- В) Превратить правую циркулярную поляризацию в левую.
- Г) Повернуть плоскость линейной поляризации на желаемый угол.

Решение:

Фазовые пластинки изготавливаются из двух пластинок высококачественного кристаллического кварца. При этом очень точно рассчитываются толщины составных элементов и эта точность реализовывается при изготовлении. Полученные элементы склеиваются между собой, причём их оптические оси должны проходить строго перпендикулярно друг другу.

Четверть волновой фазовой пластиной называется пластина, создающая между обыкновенным и необыкновенным лучами разность хода в четверть длины волны (или разность фаз 90).

Полуволновой фазовой пластиной называется пластина анизотропного вещества, вводящая между обыкновенным и необыкновенным лучами разность хода, равную половине длине волны. Пластина в полволны сдвигает фазу одного колебания относительно фазы другого колебания на 180 °.

- А) Необходимо использовать четвертьволновую пластинку, которая создаст дополнительную разность фаз между обыкновенным и необыкновенным лучами
- Б) Также, необходимо использовать четвертьволновую пластинку, но теперь уже для того, чтобы выровнять фазы обыкновенного и необыкновенного лучей.
- В) Необходимо использовать полуволновую пластинку, поскольку она даст желаемый результат, развернув фазу одного из колебаний на 180 градусов

 Γ) Можно использовать, опять же, полуволновую пластинку, которая развернет плоскость поляризации на угол 2α (α – угол между плоскостью поляризации и положительным направлением оси OY).

3. Луч света поляризован частично. У вас есть очень хороший поляроид и устройство для измерения интенсивности света. Как вы можете вычислить степень поляризации луча.

Поворачивая поляроид, можно найти наибольшее и наименьшее значение, показываемое устройством для измерения интенсивности света, прошедшего через поляроид. Затем можно разделить разность полученных величин на их сумму – найдем степень поляризации луча.

Вот почему мы можем применить этот метод в данной ситуации: максимальное значение при повороте поляроида соответствует сумме поляризованной составляющей света и половины естественной составляющей, иными словами

$$I_{\text{max}} = I_{\text{поляр}} + \frac{I_{\text{ест}}}{2}$$

Это обусловлено тем, что естественная составляющая света всегда делится пополам при прохождении через поляроид, а поляризованная составляющая в точке максимума не меняется, в отличие от точки минимума, где она равна нулю:

$$I_{\min} = \frac{I_{\text{ect}}}{2}$$

Встает вопрос, как найти отношение поляризованной составляющей и интенсивности света до попадания в поляроид:

$$P = \frac{I_{\text{поляр}}}{I_{\text{ест}}} = \frac{I_{max} - \frac{I_{\text{ест}}}{2}}{I_{max} + \frac{I_{\text{ест}}}{2}} = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

4. Что такое угол Брюстера. Как вычислить величину этого угла, если свет идёт из среды с показателем преломления n1 в среду с показателем преломления n2. Какой угол между отражённым и преломленным лучами.

Угол Брюстера — угол падения луча на границу раздела двух диэлектриков, при котором свет, *отраженный* от границы раздела диэлектриков, будет *полностью поляризованным в плоскости, перпендикулярной плоскости падения*. При этом *преломлённый* луч *частично поляризуется в плоскости падения, и его поляризация достигает наибольшего значения* (но не 100 %, поскольку от границы отразится лишь часть света, поляризованного перпендикулярно к плоскости падения, а оставшаяся часть войдёт в состав преломлённого луча).

Закон Брюстера записывают в виде

$$tg\alpha = n_{21} = \frac{n_2}{n_1}$$

 Γ де n_{21} — показатель преломления второй среды относительно первой, n_2 — абсолютный показатель преломления второй среды, n_1 — абсолютный показатель преломления первой среды

Отсюда следует, в частности, что:

$$\frac{\sin\alpha}{\sin\beta} = tg\alpha = \frac{\sin\alpha}{\cos\alpha}$$

Что указывает на равенство синуса угла преломления косинусу угла падения.

$$\cos\alpha = \sin\beta = \sin\left(\frac{\pi}{2} - \alpha\right)$$

Откуда следует, что сумма угла падения и угла преломления равна 90 градусов, следовательно, угол между отраженным и преломленным лучом также равен 90 градусов.