Kerneles SVM

Dr. Misael López Ramírez

m.lopezramirez87@gmail.com

m.lopezramirez@ugto.mx

Tel: 464 128 09 28

SVM

```
# Entrenamiento SVM
from sklearn.svm import SVC
classifier = SVC(kernel = 'linear', random_state = 0)
classifier.fit(X_train, y_train)
```

Resultados

SVM

Por que Utilizarlos

Por que Utilizarlos

Idea del uso de Kernel

1

Aumentando dimensiones

SVM a una Dimensión Superior

SVM a una Dimensión Superior

SVM a una Dimensión Superior

Transformar una variable a un Espacio de Dimension Superior puede ser muy costoso computacionalmente

Kernel Gaussiano RBF

Kernel Gaussiano RBF

Media= Punto Central

Kernel Gaussiano RBF

Tipos de kernel

Kernel Gaussiano RBF

$$K\left(\overrightarrow{x},\overrightarrow{l}^i\right) = e^{-\frac{\left\|\overrightarrow{x}-\overrightarrow{l}^i\right\|^2}{2\sigma^2}}$$

Kernel Sigmoide

$$K(X,Y) = \tanh(\gamma \cdot X^T Y + r)$$

Kernel Polinómico

$$K(X,Y) = \left(\gamma \bullet X^T Y + r\right)^d, \; \gamma > 0$$

class sklearn.svm.svc(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random state=None)

C: float, default=1.0

Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a squared I2 penalty.

kernel: {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'} or callable, default='rbf'

Specifies the kernel type to be used in the algorithm. If none is given, 'rbf' will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape (n_samples, n_samples).

degree : int, default=3

Degree of the polynomial kernel function ('poly'). Ignored by all other kernels.

gamma : {'scale', 'auto'} or float, default='scale'

Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.

- if gamma='scale' (default) is passed then it uses 1 / (n_features * X.var()) as value of gamma,
- if 'auto', uses 1 / n_features.

Changed in version 0.22: The default value of gamma changed from 'auto' to 'scale'.

coef0 : float, default=0.0

Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'.

shrinking: bool, default=True

Whether to use the shrinking heuristic. See the User Guide.

class sklearn.svm.SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None) [source]

Entrenamiento SVM from sklearn.svm import SVC classifier = SVC(kernel = 'rbf', random_state = 0) classifier.fit(X_train, y_train)

class sklearn.svm.SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None) [source]

Entrenamiento SVM from sklearn.svm import SVC classifier = SVC(kernel = 'poly', random_state = 0) classifier.fit(X_train, y_train)

class sklearn.svm.SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None) [source]

Entrenamiento SVM

from sklearn.svm import SVC
classifier = SVC(kernel = 'sigmoid', random_state = 0)
classifier.fit(X_train, y_train)

Continuara.....

