Semi-Supervised Locally Linear Embedding (SSLLE)

Application & Sensitivity Analysis of Critical Hyperparameters

0 AGENDA

- 1 Problem
- 2 Local graph-based manifold learning (LGML)
- 3 Techniques
 - 1 Unsupervised
 - 2 Semi-supervised SSLLE
 - 3 Challenges
- 4 Sensitivity analysis
 - 1 Setup
 - 2 Results
- 5 Discussion

1 PROBLEM MANIFOLD LEARNING

Situation. Rapidly increasing amount of data thanks to novel applications and data sources

Problem. High data dimensionality detrimental to

- → Model functionality
- → Interpretability
- → Generalization ability

Manifold assumption. Data in high-dimensional observation space truly sampled from low-dimensional manifold

How to find a meaningful, structure-preserving embedding?

1 PROBLEM MANIFOLD LEARNING

Formal goal of manifold learning.

- ightarrow **Given.** Data $\mathcal{X}=(\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_N)$, with $\mathbf{x}_i\in\mathbb{R}^D\ \forall i\in\{1,2,...,N\}$ and $N,D\in\mathbb{N}$, supposedly lying on d-dimensional manifold \mathcal{M} $\Rightarrow \psi:\mathcal{M}\to\mathbb{R}^d$ with $d\ll D,d\in\mathbb{N}$ $\Rightarrow \mathcal{X}\sim\mathcal{M}\subset\mathbb{R}^D$
- ightarrow Goal. Find *d*-dimensional Euclidean representation $\Rightarrow \mathcal{Y} = (\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_N)$, with $\mathbf{y}_i = \psi(\mathbf{x}_i) \in \mathbb{R}^d \ \forall i \in \{1, 2, ..., N\}$.

2 LGML

2 LGML TAXONOMY

Landscape. Various approaches, many of which may be translated into one another

Laplacian eigenmaps Locally linear embedding

2 LGML CONCEPT

Idea. Capture intrinsic geometry, find principal axes of variability, retain most salient ones

2 LGML CONCEPT

Graph representation. Constructing a skeletal model of the manifold in \mathbb{R}^D

Vertices. Given by observations **Edges.** Present between neighboring points

- \rightarrow Typically, k-neighborhoods
- \rightarrow Edge weights determined by nearness

Graph functional. Belief about intrinsic manifold properties at the heart of each method

- ightarrow Smoothness LEM
- → Local linearity LLE SSLLE
- → Curvature HLLE
- ightarrow ...

2 LGML CONCEPT

Eigenanalysis. Finding axes of variability in intrinsic manifold structure

- → Matrix representation of manifold properties
- → Assessment through eigenanalysis
 - → Directions of variability ⇒ eigenvectors
 - → Respective degrees of variability ⇒ eigenvalues

Dimensionality reduction. Projection into subspace spanned by *d* principal eigenvectors

3 TECHNIQUES

3.1 UNSUPERVISED LEM

Proposal. Donoho and Grimes (2003)

Idea. Forcing nearby inputs to be mapped to nearby outputs

- \rightarrow Notion of smoothness in mapping function

Graph Laplacian. Coercing neighborhood graph information into a matrix

- \rightarrow Weight matrix. $\mathbf{W} = (\mathbf{w})_{ij} \in \mathbb{R}^{N \times N}$, where $\mathbf{w}_{ij} = \mathbf{w}_{ij} (\|\mathbf{x}_i \mathbf{x}_i\|^2)$
- \rightarrow Diagonal matrix of row sums. $\mathbf{D} = diag(\sum_i w_{ij}) \in \mathbb{R}^{N \times N}$
- ightarrow Graph Laplacian. $oldsymbol{L} = oldsymbol{D} oldsymbol{W} \in \mathbb{R}^{N imes N}$

Generalized eigenvalue problem.

$$\min_{\mathcal{Y}} trace(\mathcal{Y}^{T} \mathbf{L} \mathcal{Y}), \quad \text{s.t. } \mathcal{Y}^{T} \mathbf{D} \mathcal{Y} = \mathbf{I}$$
 (1)

3.1 UNSUPERVISED LLE

Proposal. Roweis and Saul (2000)

Idea. Preserving locally linear reconstructions

- ightarrow Linear reconstruction of points in \mathbb{R}^D by their neighbors
- → Reconstruction weights = topological properties
- → Neighborhood patches invariant to dimensionality reduction

3.2 SEMI-SUPERVISED SSLLE

3.3 CHALLENGES NEIGHBORHOOD RELATIONS

4 SENSITIVITY ANALYSIS

4.1 SETUP SCENARIOS

4.1 SETUP EVALUATION

4.2 RESULTS FOO

5 DISCUSSION

5 DISCUSSION FOO

Donoho, D. L. and Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data, *Proceedings of the National Academy of Sciences of the United States of America* **100**(10): 5591–5596.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding, *Science* **290**(5500): 2323–2326.