Probability of detecting co-clusters and setting parameters

1 Notation

- $A \in \mathbb{R}^{M \times N}$ is a matrix with K co-clusters (co-cluster set $C = \{C_k\}_{k=1}^K$);
- A is partitioned into $m \times n$ blocks, each block has size $\phi_i \times \psi_j$, that is, $M = \sum_{i=1}^m \phi_i$ and $N = \sum_{j=1}^n \psi_j$;
- thus block set $B = \{B_{(i,j)}\}_{i=1}^m, \sum_{j=1}^n$;
- the size of co-cluster $C_k \in \mathbb{R}^{M^{(k)} \times N^{(k)}}$ that falls into block $B_{(i,j)}$ is $M_{(i,j)}^{(k)} \times N_{(i,j)}^{(k)}$;
- T_m is the minimum number of rows, T_n is the minimum number of columns.

2 Probability

Consider co-cluster C_k ,

$$P(M_{(i,j)}^{(k)} = \alpha) = \frac{\binom{M^{(k)}}{\alpha} \binom{M - M^{(k)}}{\phi_i - \alpha}}{\binom{M}{\phi_i}}$$
$$P(N_{(i,j)}^{(k)} = \beta) = \frac{\binom{N^{(k)}}{\beta} \binom{N - N^{(k)}}{\psi_j - \beta}}{\binom{N}{\psi_j}}$$

The tail probability of $M_{(i,j)}^{(k)}$ and $N_{(i,j)}^{(k)}$ are

$$P(M_{(i,j)}^{(k)} < T_m) = \sum_{\alpha=1}^{T_m - 1} P(M_{(i,j)}^{(k)} = \alpha)$$

$$\leq \exp(-2(s_i^{(k)})^2 \phi_i)$$

where $s_i^{(k)} = \frac{M^{(k)}}{M} - \frac{T_m - 1}{\phi_i}$, and

$$P(N_{(i,j)}^{(k)} < T_n) = \sum_{\beta=1}^{T_n-1} P(N_{(i,j)}^{(k)} = \beta)$$

$$\leq \exp(-2(t_j^{(k)})^2 \psi_j)$$

where
$$t_j^{(k)} = \frac{N^{(k)}}{N} - \frac{T_n - 1}{\psi_i}$$
.

The joint probability of $M_{(i,j)}^{(k)}$ and $N_{(i,j)}^{(k)}$ are

$$P(M_{(i,j)}^{(k)} < T_m, N_{(i,j)}^{(k)} < T_n) = \sum_{\alpha=1}^{T_m-1} \sum_{\beta=1}^{T_n-1} P(M_{(i,j)}^{(k)} = \alpha) P(N_{(i,j)}^{(k)} = \beta)$$

$$\leq \exp[-2(s_i^{(k)})^2 \phi_i + -2(t_j^{(k)})^2 \psi_j]$$

If $\phi_i = p$ and $\psi_j = q$ for all i and j, then

Suppose event ω_k is that co-cluster C_k can't be find in any block $B_{(i,j)}$, then

$$P(\omega_k) = \prod_{i=1}^m \prod_{j=1}^n P(M_{(i,j)}^{(k)} < T_m, N_{(i,j)}^{(k)} < T_n)$$

$$\leq \prod_{i=1}^m \prod_{j=1}^n \exp\{-2\left[(s_i^{(k)})^2 \phi_i + (t_j^{(k)})^2 \psi_j\right]\}$$

$$= \exp\{-2\sum_{i=1}^m \sum_{j=1}^n \left[(s_i^{(k)})^2 \phi_i + (t_j^{(k)})^2 \psi_j\right]\}$$

If $\phi_i = \phi$ and $\psi_j = \psi$ for all i and j, then

$$s_i^{(k)} = s^{(k)} = \frac{M^{(k)}}{M} - \frac{T_m - 1}{\phi}$$
$$t_j^{(k)} = t^{(k)} = \frac{N^{(k)}}{N} - \frac{T_n - 1}{\psi}$$

$$P(\omega_k) \le \exp\left\{-2[\phi m(s^{(k)})^2 + \psi n(t^{(k)})^2]\right\}$$

And if we do T_p times of random sampling, the Probability of detecting the co-cluster is

$$P = 1 - P(\omega_k)^{T_p}$$

$$\geq 1 - \exp\left\{-2T_p[\phi m(s^{(k)})^2 + \psi n(t^{(k)})^2]\right\}$$

according to which, we can set $m, n, \phi, \psi, T_m, T_n$ and T_p to ensure the probability of detecting the co-cluster is larger than a given threshold.

3 Nosiy case

3.1 Assumption

Assume each noise n_{ij} complies with a normal distribution $N(0, \sigma^2)$, i.i.d. for all i and j. Suppose $\exists \lambda > 0$, such that

$$\lambda \leq \max(||B||_1, ||B^{\top}||_1)/\sigma^2$$

3.2 Score

The score of a submatrix $A_{I,J}$ is defined as

$$S(I,J) = \min(S_{row}(I,J), S_{col}(I,J)) \tag{1}$$

$$S_{row}(I,J) = \min_{i_1, i_2 \in I} \left(1 - \frac{1}{|I| - 1} \sum_{i_2 \in I, i_2 \neq i_1} \langle x_{i_1,J}, x_{i_2,J} \rangle \right)$$
 (2)

$$S_{col}(I,J) = \min_{j_1,j_2 \in J} \left(1 - \frac{1}{|J| - 1} \sum_{j_2 \in J, j_2 \neq j_1} \langle x_{I,j_1}, x_{I,j_2} \rangle \right)$$
(3)

where $x_{i,J}$ is the i-th row of $A_{I,J}$. Here we define the inner product of two vectors x and y as

$$\langle x, y \rangle = \exp(-\frac{||x - y||_1^2}{2\alpha ||x||_1 ||y||_1})$$

Suppose A is a hidden co-cluster matrix, and E is the noise matrix. Then the observed matrix is B = A + E. Consider co-cluster $B_{I,J}$, denote $1 - \frac{1}{|I|-1} \sum_{i_2 \in I, i_2 \neq i_1} \langle x_{i_1,J}, x_{i_2,J} \rangle$ as $s_{row}(i_1, i_2, J)$, then

$$\mathbb{E}(s_{row}(i_{1}, i_{2}, J)) = 1 - \frac{1}{|I| - 1} \sum_{i_{2} \in I, i_{2} \neq i_{1}} \mathbb{E}(\langle x_{i_{1}, J}, x_{i_{2}, J} \rangle)$$

$$= 1 - \frac{1}{|I| - 1} \sum_{i_{2} \in I, i_{2} \neq i_{1}} \exp(-\frac{||x_{i_{1}, J} - x_{i_{2}, J}||_{1}^{2}}{2\alpha ||x_{i_{1}, J}||_{1} ||x_{i_{2}, J}||_{1}})$$

$$\geq 1 - \exp(-\frac{2}{\alpha \min(||x_{i_{1}, J}||_{1}, ||x_{i_{2}, J}||_{1}}))$$

$$\geq 1 - \exp(-\frac{2}{\alpha \max(||B||_{1}, ||B^{\top}||_{1}}))$$

$$\sigma^{2}(s_{row}(i_{1}, i_{2}, J)) = \frac{1}{|I| - 1} \sum_{i_{2} \in I, i_{2} \neq i_{1}} \sigma^{2}(\langle x_{i_{1}, J}, x_{i_{2}, J} \rangle)$$

$$= \frac{1}{|I| - 1} \sum_{i_{2} \in I, i_{2} \neq i_{1}} \exp(-\frac{||x_{i_{1}, J} - x_{i_{2}, J}||_{1}^{2}}{2\alpha ||x_{i_{1}, J}||_{1} ||x_{i_{2}, J}||_{1}})$$

$$\leq \sigma^{2} \exp(-\frac{2}{\alpha \min(||x_{i_{1}, J}||_{1}, ||x_{i_{2}, J}||_{1}}))$$

$$\leq \sigma^{2} \exp(-\frac{2}{\alpha \max(||B||_{1}, ||B^{\top}||_{1}}))$$

Thus the expected value of $S_{row}(I, J)$ satisfies

$$\mathbb{E}(S_{row}(I,J)) \ge |J||I| \left(1 - \exp(-\frac{2}{\alpha \max(||B||_1, ||B^\top||_1)})\right)$$
$$\sigma^2(S_{row}(I,J)) \le |I||J|\sigma^2 \exp(-\frac{2}{\alpha \max(||B||_1, ||B^\top||_1)})$$

Similarly, we can get

$$\mathbb{E}(S_{col}(I,J)) \ge |J||I| \left(1 - \exp(-\frac{2}{\alpha \max(||B||_1, ||B^\top||_1)})\right)$$
$$\sigma^2(S_{col}(I,J)) \le |I||J|\sigma^2 \exp(-\frac{2}{\alpha \max(||B||_1, ||B^\top||_1)})$$

Then since $x^2 \le x$ for $x \in (0,1)$, we have

$$\mathbb{E}(S(I,J)) \ge 1 - \exp(-\frac{2}{\alpha \max(||B||_1, ||B^\top||_1)})$$
$$\sigma^2(S(I,J)) \le |I||J|\sigma^2 \exp(-\frac{2}{\alpha \max(||B||_1, ||B^\top||_1)})$$

According to the Chernoff bound, we have

$$P(S(I,J) \le \mathbb{E}(S(I,J)) - \epsilon) \ge \exp(-\frac{\epsilon^2}{2|I||J|\sigma^2 \exp(-\frac{2}{\sigma\lambda})})$$

Thus if we set $\epsilon = \sqrt{2|I||J|\sigma^2 \exp(-\frac{2}{\alpha\lambda})\log(1/\delta)}$, then

$$P(S(I, J) \ge \mathbb{E}(S(I, J)) - \epsilon) \ge \delta$$

Combine with the probability control of T_p , we can select parameters to ensure the probability of detecting the co-cluster is larger than a given threshold.