ABELIAN VARIETIES- 15 MARCH 2016

FARBOD SHOKRIEH

1. THE POINCARE-BUNDLE AS A BIEXTENSION

. All abelian varieties in this lecture are over the complex numbers. The following definition of biextensions can be found for instance in Mumford's paper 'Biextensions of Formal Groups'

Definition 1.1. Let A, B, C be abelian groups. A biextension of $B \times C$ by A is a set G along with 1. An action of A on G.

2. A surjective map $\pi: G \to B \times C$,

$$\pi(g) = (\pi_B(g), \pi_C(g))$$

which induces a bijection $G/A \xrightarrow{\sim} B \times C$

3. Maps

$$+_1: G \times_B G \to G$$

 $+_2: G \times_C G \to G$

so that the following conditions are satisfied

- 1. $\forall b \in B$, the fibre over $b \times C$ in G, $G'_b := \pi_B^{-1}(b) = \pi^{-1}(b \times C)$ is an abelian group with respect to the restriction of $+_1$. π_C is a surjective homomorphism of G'_b onto C, the kernel of π_C is isomorphic to A.
- 2.Likewise, the fibre G_c over $B \times c$ for $c \in C$ is an abelian group with respect to the restriction of $+_2$. π_B is a surjective homomorphism of G_c onto B, the kernel of π_B is isomorphic to A.
- 3. Given $x, y, u, v \in G$, with

$$\pi(x) = (b_1, c_1), \pi(y) = (b_1, c_2), \pi(u) = (b_2, c_1), \pi(v) = (b_2, c_2)$$

the following compatibility relation holds

$$(x +1 y) +2 (u +1 v) = (x +2 u) +1 (y +2 v)$$

$$(G \times_B G \text{ is the fibred product } G \times_B G := \{(g_1,g_2) \in G \times G \mid \pi_B(g_1) = \pi_B(g_2)\}, \text{ likewise, the set } G \times_C G := \{(g_1,g_2) \in G \times G \mid \pi_C(g_1) = \pi_C(g_2)\})$$

The definition of a biextension seems hard to grasp at first glance. The example of the Poincare Bundle with the zero-section removed as a bi-extension of an abelian variety and its dual by \mathbb{C}^{\times} should be understood to put the definition in perspective. Let $X = V/\Lambda$ be an abelian variety and $\hat{X} = \Omega/\hat{\Lambda}$ be the dual abelian variety. Let $P \to X \times \hat{X}$ be the Poincare-Bundle on $X \times \hat{X}$. The example we have in mind is that of the Poincare Bundle with the zero-section removed, ie, $A = \mathbb{C}^{\times}$, B = X, $C = \hat{X}$ and $G = P/\{0\}$ with

 $\pi: P/\{0\} \to X \times \hat{X}$ the projection map restricted to the complement of the zero section, A acts by scalar multiplication. We note in passing that the trivial \mathbb{C}^{\times} bundle on a vector space W, $L_0 := \mathbb{C}^{\times} \times W$ is an abelian group with group operation

$$(l_1, w_1) + (l_2, w_2) := (l_1 l_2, w_1 + w_2)$$

with identity (1,0) and inverse $(l,w)^{-1}=(\frac{1}{l},-w)$. If $\Pi:L\to W/\Lambda$ is any line bundle on an abelian variety, then $\Pi^*(L/\{0\})\simeq \mathbb{C}^\times\times W$ is an abelian group and this group structure descends to a natural group structure on $L/\{0\}$. $G_L\simeq L\{0\}$ by hypothesis, G_χ' is a line bundle on \hat{X} with zero section removed. Points of $G\times_C G$ (resp $G\times_B G$) correspond to pairs of points (l_1,l_2) on a line bundle over the abelian variety X (resp \hat{X}), the maps $+_1$ and $+_2$ are determined so as to correspond to the group operations on the line bundles with zero section removed. The reader need not work out condition 3, it is in fact a nontrivial result which follows from Lang Duality.

. Equivalence classes of biextensions can be suitably expressed in the context of cohomology, we do not however pursue this theme any further.

2. COHOMOLOGIES OF LINE BUNDLES ON COMPLEX TORI

. We will now proceed to discuss the notions of characteristics of line bundles L on X, theta-functions as sections of line-bundles and more generally describe all the cohomology groups $H^i(X,L)$. We shall then prove some vanishing theorems for cohomology and compute the alternating sums of the cohomological dimensions from which we can deduce Riemann-Roch.

. Fix $H \in NS(X)$, let $Pic^H(X)$ denote the line bundles on X with chern class H. Given a suitable decomposition of $\Lambda = \Lambda_1 \oplus \Lambda_2$ (which are in some way orthogonal) we can distinguish a line-bundle $L_0 \in Pic^H(X)$. If H is nondegenerate, $L \in Pic^H(X)$ is a translate $L = t_c^*L_0$ and c is called the characteristic of L_0 with respect to the decomposition of Λ . This will allow us to explicitly describe $K(L) = ker\varphi_L$. Let E = ImH, this is a $\mathbb Z$ valued alternating form.

Lemma 2.1. Suppose that 2g is the rank of the lattice Λ . There exists a \mathbb{Z} -basis for Λ , $U = \{\lambda_1, \ldots, \lambda_g, \mu_1, \ldots, \mu_g\}$ such that the matrix for E wrt U is

Proof. Pick any basis to begin with. Since H is hermitian, E is skew symmetric, so the matrix for E in this arbitrary basis looks like

$$\left(\begin{array}{cc}
\mathsf{F} & \mathsf{A} \\
-\mathsf{A}^\mathsf{T} & \mathsf{G}
\end{array}\right)$$

where F and G are also skew symmetric. It's easy to see that we may further assume that F=G=0. By row and column operations over $\mathbb Z$ we may reduce A to a diagonal matrix, over $\mathbb Z$ we essentially use the fact that the gcd of two numbers can be expressed as a linear combination of these numbers. So $\exists U, V \in GL_n(\mathbb Z)$ such that $UAV = diag(d_1, d_2, \ldots, d_g)$ with d_i dividing d_{i+1} (note that in the case where we work over a field we may in fact

insist that $V = U^{-1}$).

$$\left(\begin{array}{cc} U & 0 \\ 0 & V^T \end{array}\right) \left(\begin{array}{cc} 0 & A \\ -A^T & 0 \end{array}\right) \left(\begin{array}{cc} U^T & 0 \\ 0 & V \end{array}\right) = \left(\begin{array}{cc} 0 & D \\ -D & 0 \end{array}\right)$$

 (d_1, \ldots, d_g) is uniquely determined by E or H or L.

Definition 2.2. We call the tuple (d_1, \ldots, d_g) the type of E or H or L and if all the $d_i = 1$ we call L a principle polarization.

We see that $K(\Lambda)=\ker \varphi_L\simeq K_1\oplus K_2$ with $K_{\mathfrak i}\simeq \oplus \mathbb{Z}/d_{\mathfrak i}\mathbb{Z}.$ If all $d_{\mathfrak i}>0$ then H or L or E is non-degenerate.

Definition 2.3. A basis $\{\lambda_1,\ldots,\lambda_g,\mu_1,\ldots,\mu_g\}$ be as before giving rise to the matrix $\begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix}$ is called a canonical or symplectic-basis for Λ . A sub-lattice $\Lambda_1\subset \Lambda$ is called totally isotropic for E if $E(\lambda,\lambda')=0$ $\forall \lambda,\lambda'\in \Lambda$.

Definition 2.4. A decomposition $\Lambda = \Lambda_1 \oplus \Lambda_2$ is called a decomposition for E or H or L if both Λ_1 and Λ_2 are totally isotropic.

Definition 2.5. A decomposition $V = V_1 \oplus V_2$ of V into real vector spaces such that $(V_1 \cap \Lambda) \oplus (V_2 \cap \Lambda)$ is a decomposition for Λ is called the decomposition of V for E or H or L.

Let $H\in NS(X),\, V=V_1\oplus V_2$ a decomposition for H, define $\chi_0:V\to T_1$ by

$$\chi_0(v) = e^{\pi i \operatorname{Im} H(v_1, v_2)} = e^{\pi i E(v_1, v_2)}$$

where $v = v_1 + v_2$ with $v_1 \in V_1$ and $v_2 \in V_2$. It is easily seen that for $v, w \in V$,

$$\chi_0(v+w) = \chi_0(v)\chi_0(w)e^{\pi i E(v,w)}e^{-2\pi i E(v_2,w_1)}$$

(keep in mind that $E(\lambda,\mu)\in\mathbb{Z}$ for $\lambda,\mu\in\Lambda)$

Corollary 2.6. $(\chi_0)_{|\Lambda}$ is a semicharacter for H

Definition 2.7. $L_0 := L(H, \chi_0) \in Pic^H(X)$ is a distinguished element of $Pic^H(X)$ with respect to the decomposition of V.