Введение в теорию вероятностей

Лектор: проф. Булинский Александр Вадимович 8 октября 2025 г.

Содержание

1	Лекция 1		3
	1.1	Алгебра и сигма-алгебра	3
	1.2	Вероятностная мера	4
	1.3	Дискретные вероятностные пространства	4
	1.4	Пи-системы и лямбда-системы	5
2	Лекция 2		
	2.1	Простейшие свойства конечно-аддитивной вероятностной меры	
		на алгебре	6
	2.2	Непрерывность сверху и снизу	7
	2.3	Условные вероятности	9
3	Лекция 3		
	3.1	Независимые события	10

1 Лекция 1

1.1 Алгебра и сигма-алгебра

Определение. Множество Ω называется множеством элементарных исходов. Множество $A \in 2^{\Omega}$ назывется событием.

Определение. Множество $\mathcal{A} \in 2^{\Omega}$ такое, что $\mathcal{A} \neq \varnothing$ называется алгеброй, если

- 1. $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{A} \Rightarrow \bar{A} = \Omega \setminus A \in \mathcal{A}$
- 3. $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$

Утверждение. (Следствия из определения алгебры)

- 1. $\Omega \in \mathcal{A}$, так как для непустого $A \in \mathcal{A} : \bar{A} \in \mathcal{A} \Rightarrow A \cup \bar{A} = \Omega \in \mathcal{A}$
- 2. $\varnothing \in \mathcal{A}$, так как $\Omega \in \mathcal{A} \Rightarrow \bar{\Omega} = \varnothing \in \mathcal{A}$
- 3. $A_1, \ldots, A_n \in \mathcal{A} \Rightarrow \bigcup_{i=1}^n A_i \in \mathcal{A}$
- 4. $A\cap B\in\mathcal{A},$ если $A,B\in\mathcal{A},$ так как $A\cap B=\overline{\overline{A}\cup\overline{B}}$
- 5. $A_1, \ldots, A_n \in \mathcal{A} \Rightarrow \bigcap_{i=1}^n A_i \in \mathcal{A}$
- 6. $A \setminus B \in \mathcal{A}$, так как $A \setminus B = A \cap \bar{B}$

Определение. Множество $\mathcal{F} \in 2^{\Omega}$ такое, что $\mathcal{F} \neq \varnothing$ называется σ -алгеброй, если

- 1. $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{F} \Rightarrow \bar{A} \in \mathcal{F}$
- 3. $\forall i \in \mathbb{N} : A_i \in \mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_i \in \mathcal{F}$

Замечание. \mathcal{F} - σ -алгебра $\Rightarrow \mathcal{F}$ - алгебра.

Замечание. Наименьшая по включению σ -алгебра, содержащая M, обозначается $\sigma\{M\} = \bigcap_{\alpha} g_{\alpha}$, где g_{α} - σ -алгебра, содержащая все элементы M.

1.2 Вероятностная мера

Определение. Мерой на системе множеств U называется функция $\mu:U\to [0,+\infty]$ такая, что

1. $\forall n : A_n \in U$

2.

$$\bigcup_{n=1}^{\infty} A_n \in U$$

3. $\forall i \neq j : A_i \cap A_j = \emptyset$

4. Выполнено свойство счетной аддитивности (такая мера называется счетноаддитивной):

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n)$$

Замечание. Если U - σ -алгебра, то условие

$$\bigcup_{n=1}^{\infty} A_n \in U$$

можно упустить.

Пример. (Мера Дирака)

Пусть $B \subset S$

$$\delta_x(B) = \begin{cases} 1, & x \in B, \\ 0, & x \notin B \end{cases}$$

Упражнение: доказать, что $\delta_x(.)$ является мерой на 2^S

Определение. Мера P на пространтсве (Ω, \mathcal{F}) такая, что $P(\Omega) = 1$ называется вероятностью.

1.3 Дискретные вероятностные пространства

Определение. Пусть $\Omega = \{\omega_n\}_{n \in J}$ не более чем счетно, $\mathcal{F} = 2^{\Omega}$, причем

$$P_n = P(\{\omega_n\}) \ge 0, \ \sum_{n \in J} P_n = 1$$

Пусть $A \subset \Omega$, определим вероятность так:

$$P(A) = \sum_{k:\omega_k \in A}^n P_k$$

такое вероятностное пространство называется дискретным.

Упражнение. Доказать, что определенное выше P является вероятностью.

Определение. (Классическое определение вероятности)

Пусть $|\Omega| = N < \infty$ и положим $P_k = P(\{\omega_k\}) = \frac{1}{N}$. Тогда

$$P(A) = \sum_{k:\omega_k \in A}^n P_k = \frac{|A|}{N} = \frac{|A|}{|\Omega|}$$

1.4 Пи-системы и лямбда-системы

Определение. Система M подмножеств множества S называется π -системой, если $A,B\in M\Rightarrow A\cap B\in M$

Определение. Сисмтема M подмножеств множества S называется λ -системой, если

- 1. $S \in M$
- 2. $A, B \in M \Rightarrow B \setminus A \in M$
- 3. $A_1, A_2, \dots \in M$ и $A_n \nearrow A$, то $A \in M$. $(A_n \nearrow A \Leftrightarrow A_n \subset A_{n+1}, \ \forall n \in \mathbb{N} \ \text{и} \ A = \bigcup_{n=1}^{\infty} A_n)$

Теорема. Система $\mathcal F$ подмножеств S является σ -алгеброй $\Leftrightarrow \mathcal F$ одновременно π -система и λ -система.

Доказательство.

- (\Rightarrow) : По следствию из определения алгебры: $A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$, значит, \mathcal{F} является π -системой. Теперь проверим условия λ -системы:
 - 1. $S \in \mathcal{F}$ выполнено по проеделению алгебры.
 - 2. $A, B \in \mathcal{F}, A \subset B$, причем $B \setminus A = B \cap \bar{A} \Rightarrow B \setminus A \in \mathcal{F}$.
 - 3. $A_1, A_2, \dots \in \mathcal{F}, \ A = \bigcup_{n=1}^{\infty} A_n \Rightarrow$ по свойству σ -алгебры $A \in \mathcal{F}$.
- (\Leftarrow) : Проверим определению σ -алгебры:
 - 1. $S \in \mathcal{F}$ выполнено по первому свойству λ -системы.
 - 2. $S \in \mathcal{F}, A \subset S \Rightarrow S \setminus A \in \mathcal{F}$ выполнено по второму свойству λ -системы.
 - 3. Пусть $B_1, B_2, \dots \in \mathcal{F}, \ A_m := \bigcup_{n=1}^m B_n$ при этом

$$A_m = \bigcup_{n=1}^m B_n = \overline{\left(\bigcap_{n=1}^m \overline{B}_n\right)} \in \mathcal{F} \Rightarrow A_m \nearrow \bigcup_{n=1}^\infty B_n \Rightarrow \bigcup_{n=1}^\infty B_n \in \mathcal{F}$$

Теорема. Пусть М - π -система, D - λ -система и $M \subset D$. Тогда

$$\sigma\{M\} = \lambda\{M\} \subset D$$

2 Лекция 2

2.1 Простейшие свойства конечно-аддитивной вероятностной меры на алгебре

Теорема. Пусть P - конечно-аддитивная вероятностная мера на алгебре \mathcal{A} , $P(\Omega) = 1, \ P(A \cup B) = P(A) + P(B), \ A \cap B = \emptyset$. Пусть $A, B \in \mathcal{A}$, тогда

1.
$$A \subset B \Rightarrow P(B \setminus A) = P(B) - P(A)$$

2.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

3. Субаддитивность:

$$P\left(\bigcup_{k=1}^{n} A_k\right) \le \sum_{k=1}^{n} P(A_k)$$

4. Если P - вероятностная мера на σ -алгебре \mathcal{F} , то

$$P\left(\bigcup_{k=1}^{\infty} A_k\right) \le \sum_{k=1}^{\infty} P(A_k)$$

Доказательство.

1.
$$B = A \cup (B \setminus A)$$
 u $A \cap (B \setminus A) = \emptyset \Rightarrow P(B) = P(A) + P(B \setminus A)$

2.
$$A \cup B = A \cup (B \setminus A)$$
 if $A \cap (B \setminus A) = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B \setminus A)$, $P(B \setminus A) = P(B) - P(A \cap B) \Rightarrow P(A \cup B) = P(A) + P(B) - P(A \cap B)$

3. По индукции. База n=2: $P(A\cup B)=P(A)+P(B)-P(A\cup B)\leq P(A)+P(B), \text{ так как } P(A\cup B)\geq 0$ Пусть верно для n-1, тогда

$$P\left(\bigcup_{k=1}^{n} A_k\right) = P\left(\bigcup_{k=1}^{n-1} A_k \cup A_n\right) \le \sum_{k=1}^{n-1} P(A_k) + P(A_n) = \sum_{k=1}^{n} P(A_k)$$

4. будет позже

2.2 Непрерывность сверху и снизу

Определение. Конечная неотрицательная функция μ , заданная на алгебре \mathcal{A} , называется непрерывной в \emptyset , если $\forall A_n$:

$$A_n \downarrow \varnothing \ (A_{n+1} \subset A_n, \ \forall n \in \mathbb{N} : \bigcap_{n=1}^{\infty} A_n = \varnothing) \Rightarrow \mu(A_n) \to 0$$

Определение. Конечная неотрицательная функция μ на алгебре ${\mathcal A}$ называется

1. непрерывной сверху на $A \in \mathcal{A}$, если $\forall A_n : A_n \downarrow A \Rightarrow \mu(A_n) \rightarrow \mu(A)$.

$$A_n \downarrow A \Leftrightarrow A_{n+1} \subset A_n, \ \forall n \in \mathbb{N} : \bigcap_{n=1}^{\infty} A_n = A$$

2. непрерывной снизу на $A \in \mathcal{A}$, если $\forall A_n : A_n \uparrow A \Rightarrow \mu(A_n) \rightarrow \mu(A)$.

$$A_n \uparrow A \Leftrightarrow A_n \subset A_{n+1}, \ \forall n \in \mathbb{N} : \bigcup_{n=1}^{\infty} A_n = A$$

Лемма. Пусть μ - конечная неотрицательная конечно-аддитивная функция на алгебре \mathcal{A} . Тогда μ непрерывно сверху и снизу на любом $A \in \mathcal{A}$.

Доказательство. Докажем непрерывность сверху. Рассмотрим последовательность $A_n \downarrow A \Rightarrow A_n \setminus A \downarrow \varnothing \Rightarrow \mu(A_n \setminus A) = \mu(A_n) - \mu(A) \to 0$. Аналогично, рассмотрим $A_n \uparrow A \Rightarrow A \setminus A_n \downarrow \varnothing \Rightarrow \mu(A \setminus A_n) = \mu(A) - \mu(A_n) \to 0$.

Теорема. Пусть μ - конечная неотрицательная функция на алгебре \mathcal{A} . Тогда μ является счетно-аддитивной на \mathcal{A} тогда и только тогда, когда

- $1.~\mu$ является конечно-аддитивной.
- $2.~\mu$ непрерывна в \varnothing .

Доказательство.

 (\Rightarrow) : Пусть μ - счетно-аддитивная на \mathcal{A} . Рассмотрим $A_n \downarrow \varnothing$, $n \to \infty$ и введем $B_n = A_n \setminus A_{n+1}, \ n \in \mathbb{N}$. Эти слои не пересекаются и $\bigcup_{n=N}^{\infty} B_n = A_N$. Применим счетную аддитивность:

$$\mu(A_N) = \sum_{n=N}^{\infty} \mu(B_n) < \infty$$

Этот ряд сходится, значит последовательность (остаточных рядов)

$$S_N = \sum_{n=N}^{\infty} \mu(B_n) \to 0$$

(\Leftarrow): (mym пока что лажа) Пусть $A_i \neq A_j, \ i \neq j$. Введем $C_n = \bigcup_{k=n}^{\infty} A_k \Rightarrow C_n \downarrow$ Ø. При этом

 $A_1 = C_1 \cup \cdots \cup C_{n-1} \cup C_n$, причем $A_1 \in \mathcal{A}$ и $C_1, \ldots, C_{n-1} \in \mathcal{A}$. Таким образом, $C_n \in \mathcal{A}$, $\forall n \in \mathbb{N}$.

$$\bigcup_{k=1}^{\infty} A_k = A_1 \cup \dots \cup A_{n-1} \cup C_n$$

Отсюда

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \mu(A_1) + \dots + \mu(A_{n-1}) + \mu(C_n) = \sum_{k=1}^{n-1} \mu(A_k) + \mu(C_n)$$

при $n \to \infty, \; \mu(C_n) \to 0, \;$ получим

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \mu(A_k)$$

Теорема. Пусть P,Q - меры на (Ω,\mathcal{F}) и P=Q на алгебре \mathcal{A} . Тогда P=Q на алгебре $\sigma\{\mathcal{A}\}$.

Доказательство. Воспользуемся теоремой из прошлой лекции. Алгебра является π -системой, рассмотрим $D=\{B\in\mathcal{F}: P(B)=Q(B)\},\ \mathcal{A}\subset D$. Проверим, что D является λ -системой:

1. $P(\Omega) = Q(\Omega) = 1 \Rightarrow \Omega \in D$

2. $P(B \setminus A) = P(B) - P(A), \ Q(B \setminus A) = Q(B) - Q(A), \$ причем $P(A) = Q(A), \ P(B) = Q(B) \Rightarrow P(B \setminus A) = Q(B \setminus A) \Rightarrow B \setminus A \in D.$ $A_n \in D, \ A_n \uparrow A = \bigcup_{n=1}^{\infty} A_n. \$ По свойству непрерывности $P(A_n) \to P(A), \ Q(A_n) \to Q(A) \Rightarrow A \in D.$ Значит $\sigma\{A\} \subset D.$

2.3 Условные вероятности

Определение. Пусть (Ω, \mathcal{F}, P) - вероятностное пространство и $A, B \in \mathcal{F}, P(B) \neq 0$. Тогда вероятностью события A при условии B называется

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Определение. (Условная вероятность в классическом определении) Пусть (Ω, \mathcal{F}, P) вероятностьное пространство, $|\Omega| = N < \infty, \ P(\{\omega_k\}) = \frac{1}{N}$ и $P(B) = \frac{|B|}{N}$. Тогда

$$P(A|B) = \frac{|A \cap B|}{|B|} = \frac{\frac{1}{N} \cdot |A \cap B|}{\frac{1}{N} \cdot |B|} = \frac{P(A \cap B)}{P(B)}$$

Пример. Три раза бросается правильная монетка. Рассмотрим события: A - при первом броске выпал герб, B - при трех бросаниях выпало два герба.

$$\Omega = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,1), (1,1,0), (1,1,1)\}$$

$$A = \{(1,0,0), (1,1,0), (1,0,1), (1,1,1)\}$$

$$B = \{(1,1,0), (1,0,1), (0,1,1)\}$$

$$A \cap B = \{(1,1,0), (1,0,1)\}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{2}{8}}{\frac{2}{8}} = \frac{2}{3}$$

Теорема. (Формула полной вероятности)

Пусть $\Omega = B_1 \cup B_2 \cup ...$, $B_k \in \mathcal{F}$, $P(B_k) > 0$. Тогда определены $P(A|B_k)$, причем для $A \in \mathcal{F}$ верна формула

$$P(A) = \sum_{k} P(A|B_k)P(B_k)$$

Доказательство.

$$P(A) = P\left(\bigcup_{k} (A \cap B_{k})\right) = \sum_{k} P(A \cap B_{k}), \ (A \cap B_{k}) \cap (A \cap B_{m}) = \emptyset, \ k \neq m$$
$$P(A|B_{k}) = \frac{P(A \cap B_{k})}{P(B_{k})} \Rightarrow P(A \cap B_{k}) = P(A|B_{k})P(B_{k})$$

отсюда

$$P(A) = \sum_{k} P(A|B_k)P(B_k)$$

Теорема. (Формула Байеса)

Пусть $P(A) \neq 0$, тогда верна формула

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{\sum_k P(A|B_n)P(B_n)}$$

Доказательство. По определению условной вероятности и формуле полной вероятности, получим

$$P(B_k|A) = \frac{P(B_k \cap A)}{P(A)} = \frac{P(A|B_k)P(B_k)}{\sum_{k} P(A|B_k)P(B_k)}$$

3 Лекция 3

3.1 Независимые события

Определение. Если P(A|B) = P(A), то при $P(B) \neq 0$ выполнено

$$P(A \cap B) = P(A)P(B)$$

В этом случае события A и B называются независимыми.

Пример. В колоде 36 карт. Выбираем одну карту из колоды. Рассмотрим события: A - вытянули карту масти треф, B - вытянули туз.

$$P(A) = \frac{1}{4}, \ P(B) = \frac{4}{36} = \frac{1}{9}, \ P(A \cap B) = \frac{1}{36}$$

$$P(A)P(B) = \frac{1}{4} \cdot \frac{1}{9} = \frac{1}{36} = P(A \cap B)$$

значит события независимы.

Определение. Пусть A_1, \dots, A_n - события. Они называются независимыми в совокупности, если $\forall i_1 < i_2 < \dots < i_n \leq n$:

$$P(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}) = P(A_{i_1})P(A_{i_2})\dots P(A_{i_k})$$

Определение. Пусть A_1, \ldots, A_n - события. Они называются попарно независимыми, если $\forall i, j \in \{1, \ldots, n\}, i \neq j$:

$$P(A_i \cap A_i) = P(A_i)P(A_i)$$

Пример. Рассмотрим (Ω, \mathcal{F}, P) в рамках классического определения:

$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}, A_1 = \{\omega_1, \omega_2\}, A_2 = \{\omega_1, \omega_3\}, A_3 = \{\omega_1, \omega_4\}, A_i \cap A_j = \{\omega_1\}$$

Тогда

$$P(A_i \cap A_j) = P(\{\omega_1\}) = \frac{1}{4}$$

но с другой стороны

$$P(A_1 \cap A_2 \cap A_3) = \frac{1}{4} \neq \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

Определение. Система $\{A_t, t \in T\}$ состоит из независимых событий, если для любого конечного $F \subset T, F = \{t_1, \ldots, t_n\}$, события A_{t_1}, \ldots, A_{t_n} независимы в совокупности.

Лемма. Пусть A_1, \ldots, A_n - независимые события. Рассмотрим B_1, \ldots, B_n такие, что $B_i = A_i$ или $B_i = \overline{A_i}$. Тогда B_1, \ldots, B_n - независимые события.

Доказательство. Достаточно рассмотреть случай $B_j = \overline{B_j}, \ B_i = A_i,$ $\forall i \neq j$. Возьмем $I = \{i_1, \dots, i_k\}, \ 1 \leq i_1 < \dots < i_k \leq n$ и проверим, что

$$P(B_{i_1} \cap \dots \cap B_{i_k}) = P(B_{i_1}) \dots P(B_{i_k}) \tag{*}$$

Рассмотрим случаи:

- 1. $j \notin I$. Тогда $B_i = A_i$ и (∗) выполнено.
- 2. $j \in I \Rightarrow \exists \ m: j=i_m$. Тогда

$$P(B_{i_{1}} \cap \cdots \cap B_{i_{k}}) = P(A_{i_{1}} \cap \cdots \cap \overline{A_{i_{m}}} \cap \cdots \cap A_{i_{k}}) =$$

$$= P((A_{i_{1}} \cap \cdots \cap A_{i_{m-1}} \cap A_{i_{m+i}} \cap A_{i_{k}}) \setminus (A_{i_{1}} \cap \cdots \cap A_{i_{m-1}} \cap A_{i_{m}} \cap A_{i_{m+1}} \cap \cdots \cap A_{i_{k}})) \stackrel{(1)}{=}$$

$$\stackrel{(1)}{=} P(A_{i_{1}} \cap \cdots \cap A_{i_{m-1}} \cap A_{i_{m+i}} \cap A_{i_{k}}) - P(A_{i_{1}} \cap \cdots \cap A_{i_{k}}) =$$

$$= (P(A_{i_{1}}) \dots P(A_{i_{m-1}}) P(A_{i_{m+1}}) \dots P(A_{i_{k}})) - (P(A_{i_{1}}) \dots P(A_{i_{k}})) \stackrel{(2)}{=}$$

$$\stackrel{(2)}{=} P(A_{i_{1}}) \dots P(A_{i_{m-1}}) P(A_{i_{m+1}}) \dots P(A_{i_{k}}) (1 - P(A_{i_{m}})) =$$

$$= P(B_{i_{1}}) \dots P(B_{i_{m}}) \dots P(B_{i_{k}})$$

- (1): Пользуемся тем, что:
 - $\bullet \ A \cap \overline{C} = A \setminus (A \cap C)$
 - $A \subset B \Rightarrow P(B \setminus A) = P(B) P(A)$
- (2): Выносим общий множитель за скобку.

Теорема. Пусть $\varphi(n)$ - функция Эйлера, p_i - i-е простое число. Тогда

$$\varphi(n) = n \cdot \prod_{i=1}^{m} \left(1 - \frac{1}{p_i} \right)$$

Доказательство. Введем $\Omega = \{1, \dots n\}, \ \mathcal{F} = 2^{\Omega}, \ P(\{i\}) = \frac{1}{n}, \ i = 1, \dots, n.$ Проведем следующий эксперимент: из чисел $1, \dots, n$ наугад выбирается число. Рассмотрим событие A - выбрано число, взаимно простое с n. Тогда

$$P(A) = \frac{\varphi(n)}{n}$$

Рассмотрим события A_i - выбраное число делится на p_i . Отсюда

$$A_i = \{p_i, \ 2p_i, \ \dots, \ \frac{n}{p_i} \cdot p_i\} \Rightarrow P(A_i) = \frac{\frac{n}{p_i}}{n} = \frac{1}{p_i}$$

Для любых $1 \le i_1 < \cdots < i_k \le n$:

$$A_{i_1} \cap \cdots \cap A_{i_k} = \{ p_{i_1} \dots p_{i_k}, \ 2p_{i_1} \dots p_{i_k}, \ \dots, \ \frac{n}{p_{i_1} \dots p_{i_k}} \cdot p_{i_1} \dots p_{i_k} \}$$

$$P(A_{i_1} \cap \dots \cap A_{i_k}) = \frac{\frac{n}{p_{i_1} \dots p_{i_k}}}{n} = \frac{1}{p_{i_1} \dots p_{i_k}} = P(A_{i_1}) \dots P(A_{i_k})$$

Значит A_{i_1},\ldots,A_{i_k} независимы \Rightarrow по лемме $\overline{A_{i_1}},\ldots,\overline{A_{i_k}}$ независимы. Тогда

$$P(A) = P(\overline{A_{p_1}} \cap \overline{A_{p_2}} \cap \dots \cap \overline{A_{p_m}}) = P(\overline{A_{p_1}}) P(\overline{A_{p_2}}) \dots P(\overline{A_{p_n}}) =$$

$$= (1 - P(A_{p_1}))(1 - P(A_{p_2})) \dots (1 - P(A_{p_m})) = \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right)$$

значит

$$\prod_{i=1}^{m} \left(1 - \frac{1}{p_i} \right) = \frac{\varphi(n)}{n} \implies \varphi(n) = n \cdot \prod_{i=1}^{m} \left(1 - \frac{1}{p_i} \right)$$

Определение. Системы событий $\mathcal{G}_1, \ldots, \mathcal{G}_n$ называются независимыми, если $\forall 1 \leq i_1 < \cdots < i_k \leq n$ и $\forall A_i \in \mathcal{G}_i : A_{i_1}, \ldots, A_{i_k}$ независимы. Если все \mathcal{G}_k содержат Ω (например \mathcal{G}_k - алгебры), то это определение равносильно следующему:

$$P(A_1 \cap \cdots \cap A_n) = P(A_1) \dots P(A_n), \ \forall A_i \in \mathcal{G}_i$$

Теорема. Пусть π -системы M_1, \ldots, M_n (подмножества Ω из \mathcal{F}) независимы. Тогда независимы $\sigma\{M_1\}, \ldots, \sigma\{M_n\}$.

Доказательство. Рассмотрим все события B_1 такие, что

$$P(B_1 \cap B_2 \cap \dots \cap B_n) = P(B_1) \dots P(B_n) \tag{*}$$

для $B_2 \in M_2, \ldots, B_n \in M_n$. Назовем такие B_1 системой D_1 . Покажем, что D_1 является λ -системой: $(\delta y \partial em\ nos \varkappa e)$

Тогда, поскольку
$$M_1\subset D_1$$
, то $\sigma\{M_1\}\subset D_1$