# The effect of rounding on the learnability of backness vowel harmony/disharmony

Hailang Jiang, Jiangyue Zhu, Susan Lu

## **Research question**

- The effect of vowel rounding on learnability of vowel harmony or disharmony

## **Vowel Harmony**

- Vowel Harmony: vowels of a given domain (usually a word) be in the same natural class.
- A common case: backness harmony
- Two consequences of backness harmony:

Vowels in roots agree: FF or BB;

Vowels in affixes also harmonize: FF-F; BB-B.

(Van der Hulst, 2016)

General harmony and disharmony rules (constraints)

- a. Harmony:  $V \rightarrow [\alpha F]/[\alpha F]$  (or \* $[\alpha F][-\alpha F]$ )
- b. Disharmony:  $V \to [-\alpha F]/[\alpha F]$  (or  $*[\alpha F][\alpha F]$ )

(Martin & White, 2021)

## Background

- Martin & White (2021): vowel disharmony patterns are harder to learn than vowel harmony patterns.
- Their research is based on experiments with English speakers learning an artificial language with a subset of English vowel inventory.

## Martin & White's (2021) artificial language learning experiment

Vowel Inventory of both Harmony/Disharmony conditions

Front Back
i u
e o

Suffix 1

front allomorph: -pe back allomorph: -po

Suffix 2

front allomorph: -fi back allomorph: -fu

Well-formed words in harmony condition

FF-F-F, BB-B-B

Well-formed words in disharmony condition

FB-F-B, BF-B-F

## **Rounding as a redundant feature**

Contrastive feature Front Back

Redundant feature Unrounded Rounded

ι

e

## The artificial languages in our research

| No Rounding Control |      | Rounding Controlled |      |  |
|---------------------|------|---------------------|------|--|
| Front               | Back | Front               | Back |  |
| i                   | u    | y                   | u    |  |
| е                   | 0    | Ø                   | 0    |  |

#### **Hypothesis**

- Rounding distinction has a positive effect on the learnability of vowel harmony and disharmony pattern.

### **Experiment design**

- 32 training stems & 16 test stems
- Different stems in the training and test phases, same suffixes CVCV CV
- Single/double suffix trials
- Consonants for stems from [p, t, k, d, r, n, s, z], vowels from [i, e, y, ø, u, o]
- Two suffixes for plural/diminutive: /f/ + [i, u, y]; /b/ + [e, o, ø]
- Audio stimuli and pictures

## **Experiment design**

| Conditions          | Harmony                          | Disharmony                            |
|---------------------|----------------------------------|---------------------------------------|
| No rounding control | Same backness back vowel rounded | Different backness back vowel rounded |
| Rounding controlled | Same backness all vowels rounded | Different backness all vowels rounded |

No rounding control: [i]/[u] Rounding controlled: [y]/[u]

## **Experiment design**

| Single suffix items | Harmony         | Disharmony      |
|---------------------|-----------------|-----------------|
| No rounding control | Pinefi, *pinefu | Pinofi, *pinofu |
| Rounding controlled | Pynøfy, *pynøfu | Pynofy, *pynofu |

| Double suffix items | Harmony                                   | disharmony                                |
|---------------------|-------------------------------------------|-------------------------------------------|
| No rounding control | pekefibe *pekefibo<br>*pekefube *pekefubo | pekofibo *pekofibe<br>*pekofubo *pekofube |
| Rounding controlled | pøkøfybø *pøkøfybo<br>*pøkøfubø*pøkøfubo  | pøkofybo *pøkofybø<br>*pøkofubo *pøkofubø |









- Training: select an answer and receive feedback, press "next" to continue
- Test: select an answer and proceed to next question







- 4 attention check trials intermixed with test trials

Press "Enter" to continue

#### Results

- The experiment collected the data of 60 participants
  - 48 participants were analysed (9 failed attention checks, 3 unmatched linguistic backgrounds)
- The data were analysed using the logit mixed model implemented in R
  - All models contained random intercepts for participants

## Single suffix test trials



## Single suffix test trials





## Single suffix test trials



#### **Double suffix test trials**





#### **Double suffix test trials**



#### **Discussions**

- Control on rounding feature does not affect the learnability of vowel harmony/disharmony
- Asymmetric tendency toward harmony pattern (in double suffix trial)
  - Aligned with previous study (Martin & White, 2021).
- Similar effect found in other study: Finley & Badecker (2009)
  - Participants were able to pick up a backness harmony rule before and after eliminating rounding

## **Limitations & further implications**

- More samples are required to further investigate the relationship between rounding and vowel harmony
- Can further investigate predisposed preference among participants
  - Participants might prefer harmony rule even without training

#### **Reference List**

Finley, S., & Badecker, W. (2009). Artificial language learning and feature-based generalization. Journal of Memory and Language, 61(3), 423–437.

Martin, A., & White, J. (2021). Vowel harmony and disharmony are not equivalent in learning. Linguistic Inquiry, *52*(1), 227–239.

Van der Hulst, H. (2016). Vowel harmony. In Oxford research encyclopedia of linguistics. Available at:

https://oxfordre.com/linguistics/display/10.1093/acrefore/9780199384655.001.00 01/acrefore-9780199384655-e-38;jsessionid=A6209BD2D93354BABC825CCB24 04A569

## Q&A