Diszkrét matematika 1

3. előadás Relációk II.

Mérai László merai@inf.elte.hu

Komputeralgebra Tanszék

2024 tavasz

Relációk II.

Binér reláció

Definíció

- Legyen X, Y két tetszőleges halmaz. Ekkor az R C X × Y egy (binér) reláció az X, Y halmaz között.
- Ha X = Y, akkor $R \subset X \times X$ egy (binér) reláció X-en.

- egyenlőség reláció: $\mathbb{I}_X = \{(x, x) : x \in X\}$
- részhalmaz reláció X-en: $\{(A,B) \in 2^X \times 2^X : A \subset B : A,B \in 2^X\}$
- altér reláció: $\{(U, V) : U, V \leq \mathbb{R}^5, U \text{ altere } V\text{-nek}\}$
- sajátvektor reláció $\{(\mathbf{v}, M) \in \mathbb{R}^2 \times \mathbb{R}^{2 \times 2} : \exists \lambda : M\mathbf{v} = \lambda \mathbf{v}\}$
- \sin függvény relációja: $\{(x, \sin x) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}$

Értelmezési tartomány, értékkészlet

Definíció

Legyen $R \subset X \times Y$ egy reláció. Ekkor

- R éretelmezési tartománya ('domain'): $dmn(R) = \{x \in X : \exists y \in Y : (x, y) \in R\}.$
- R értékkészlete ('range'): $\operatorname{rng}(R) = \{ y \in Y : \exists x \in X : (x, y) \in R \}.$

- Legyen $R \subset \{a, b, c, d, e\} \times \{1, 2, 3, 4, 5, 6\}$. dmn $(R) = \{a, b, d, e\}$, rng $(R) = \{1, 3, 6\}$.
- $N = \{(x^2, x) : x \in \mathbb{R}\} \operatorname{dmn}(N) = \mathbb{R}_0^+, \operatorname{rng}(R) = \mathbb{R}.$

Definíció

Legyen $R, S \subset X \times Y$ két binér reláció.

 R az S kiterjesztése (és S az R leszűkítése), ha S ⊂ R.

Definíció

Legyen $R, S \subset X \times Y$ két binér reláció.

- R az S kiterjesztése (és S az R leszűkítése), ha S ⊂ R.
- Ha A ⊂ X, akkor R reláció A-ra való leszűkítése (A-ra való megszorítása)

$$R|_A = \{(x, y) \in R : x \in A\}.$$

Definíció

Legyen $R, S \subset X \times Y$ két binér reláció.

- R az S kiterjesztése (és S az R leszűkítése), ha S ⊂ R.
- Ha A ⊂ X, akkor R reláció A-ra való leszűkítése (A-ra való megszorítása)

$$R|_A = \{(x, y) \in R : x \in A\}.$$

Definíció

Legyen $R, S \subset X \times Y$ két binér reláció.

- R az S kiterjesztése (és S az R leszűkítése), ha S ⊂ R.
- Ha A ⊂ X, akkor R reláció A-ra való leszűkítése (A-ra való megszorítása)

$$R|_A = \{(x, y) \in R : x \in A\}.$$

Példa

• $N = \{(x, x^2) : x \in \mathbb{R}\}$ és $S = \{(x, x^2) : x \in \mathbb{R}_0^+\} = \{(\sqrt{x}, x) : x \in \mathbb{R}_0^+\}.$ Ekkor $S \subset N$

Definíció

Legyen $R, S \subset X \times Y$ két binér reláció.

- R az S kiterjesztése (és S az R leszűkítése), ha S ⊂ R.
- Ha A ⊂ X, akkor R reláció A-ra való leszűkítése (A-ra való megszorítása)

$$R|_A = \{(x, y) \in R : x \in A\}.$$

- $N = \{(x, x^2) : x \in \mathbb{R}\}$ és $S = \{(x, x^2) : x \in \mathbb{R}_0^+\} = \{(\sqrt{x}, x) : x \in \mathbb{R}_0^+\}.$ Ekkor $S \subset N$
- $N|_{\mathbb{R}^+_0} = S$.

Definíció

Legyen $R, S \subset X \times Y$ két binér reláció.

- R az S kiterjesztése (és S az R leszűkítése), ha S ⊂ R.
- Ha A ⊂ X, akkor R reláció A-ra való leszűkítése (A-ra való megszorítása)

$$R|_A = \{(x, y) \in R : x \in A\}.$$

- $N = \{(x, x^2) : x \in \mathbb{R}\}$ és $S = \{(x, x^2) : x \in \mathbb{R}_0^+\} = \{(\sqrt{x}, x) : x \in \mathbb{R}_0^+\}.$ Ekkor $S \subset N$
- $\bullet |N|_{\mathbb{R}^+} = S.$
- '<' a '=' kiterjesztése.

Definíció

Egy $R \subset X \times Y$ reláció inverze az

$$R^{-1} = \{ (y, x) \in Y \times X : (x, y) \in R \}.$$

Definíció

Egy $R \subset X \times Y$ reláció inverze az

$$R^{-1} = \{ (y, x) \in Y \times X : (x, y) \in R \}.$$

Példa

• $R = \{(a,3), (b,1), (b,6), (d,1), (e,6)\}$ és $R^{-1} = \{(1,b), (1,d), (3,a), (6,b), (6,e)\}$

Definíció

Egy $R \subset X \times Y$ reláció inverze az

$$R^{-1} = \{ (y, x) \in Y \times X : (x, y) \in R \}.$$

- $R = \{(a,3), (b,1), (b,6), (d,1), (e,6)\}$ és $R^{-1} = \{(1,b), (1,d), (3,a), (6,b), (6,e)\}$
- Legyen $R = \{(x, x^2) : x \in \mathbb{R}\}$ Ekkor

$$R^{-1} = \{(x^2, x) : x \in \mathbb{R}\} \neq \{(x, \sqrt{x}) : x \in \mathbb{R}_0^+\}$$

Definíció

Legyen R egy binér reláció.

Definíció

Legyen R egy binér reláció.

Az A halmaz képe az

$$R(A) = \{ y : \exists x \in A : (x, y) \in R \}.$$

Definíció

Legyen R egy binér reláció.

Az A halmaz képe az

$$R(A) = \{ y : \exists x \in A : (x, y) \in R \}.$$

Definíció

Legyen R egy binér reláció.

- Az A halmaz képe az $R(A) = \{y : \exists x \in A : (x, y) \in R\}.$
- Adott B halmaz inverz képe, vagy teljes ősképe az R⁻¹(B), a B halmaz képe az R⁻¹ reláció esetén.

Definíció

Legyen R egy binér reláció.

- Az A halmaz képe az $R(A) = \{y : \exists x \in A : (x, y) \in R\}.$
- Adott B halmaz inverz képe, vagy teljes ősképe az R⁻¹(B), a B halmaz képe az R⁻¹ reláció esetén.

Definíció

Legyen R egy binér reláció.

- Az A halmaz képe az $R(A) = \{y : \exists x \in A : (x, y) \in R\}.$
- Adott B halmaz inverz képe, vagy teljes ősképe az $R^{-1}(B)$, a B halmaz képe az R^{-1} reláció esetén.

Példa

• $R = \{(a,3), (b,1), (b,6), (d,1), (e,6)\}$. Ekkor $R(\{a,b,c\}) = \{1,3,6\}$

Definíció

Legyen R egy binér reláció.

- Az A halmaz képe az $R(A) = \{y : \exists x \in A : (x, y) \in R\}.$
- Adott B halmaz inverz képe, vagy teljes ősképe az $R^{-1}(B)$, a B halmaz képe az R^{-1} reláció esetén.

- $R = \{(a,3), (b,1), (b,6), (d,1), (e,6)\}$. Ekkor $R(\{a,b,c\}) = \{1,3,6\}$
- Legyen $R = \{(x, x^2) : x \in \mathbb{R}\}.$ Ekkor $R(\{2\}) = \{4\}$ (vagy (R(2) = 4)) és $R^{-1}(\{4\}) = \{-2, +2\}$ (vagy $R^{-1}(4) = \{-2, +2\}$).

Legyen

$$R = \{(a,3), (b,1), (b,6), (c,2), (c,7), (d,1), \\ (d,7), (e,4), (e,6)\}$$

Legyen

$$R = \{(a,3), (b,1), (b,6), (c,2), (c,7), (d,1), \\ (d,7), (e,4), (e,6)\}$$

Ekkor

 \bullet dmn(R) =

Legyen

$$\mathbf{R} = \{(a,3), (b,1), (b,6), (c,2), (c,7), (d,1), (d,7), (e,4), (e,6)\}$$

Ekkor

Legyen

$$R = \{(a,3), (b,1), (b,6), (c,2), (c,7), (d,1), (d,7), (e,4), (e,6)\}$$

- $\bullet \ \operatorname{dmn}(R) = \{a, b, c, d, e\}$
- $\operatorname{rng}(R) =$

Legyen

- $\bullet \operatorname{dmn}(R) = \{a, b, c, d, e\}$
- $\operatorname{rng}(R) = \{1, 2, 3, 4, 6, 7\}$

Legyen

- $\bullet \operatorname{dmn}(R) = \{a, b, c, d, e\}$
- $rng(R) = \{1, 2, 3, 4, 6, 7\}$
- $R|_{\{a,e,f\}} =$

Legyen

- $\bullet \operatorname{dmn}(R) = \{a, b, c, d, e\}$
- \bullet rng(R) = {1, 2, 3, 4, 6, 7}
- $P|_{\{a,e,f\}} = \{(a,3), (e,4), (e,6)\}$

Legyen

- $\bullet \operatorname{dmn}(R) = \{a, b, c, d, e\}$
- \bullet rng(R) = {1, 2, 3, 4, 6, 7}
- \bullet $R|_{\{a,e,f\}} = \{(a,3), (e,4), (e,6)\}$
- $R(\{a,b,c\}) =$

Legyen

- $\bullet \operatorname{dmn}(R) = \{a, b, c, d, e\}$
- \bullet rng(R) = {1, 2, 3, 4, 6, 7}
- $P|_{\{a,e,f\}} = \{(a,3), (e,4), (e,6)\}$
- $R(\{a,b,c\}) = \{1,2,3,6,7\}$

Legyen

- $\bullet \operatorname{dmn}(R) = \{a, b, c, d, e\}$
- \bullet rng(R) = {1, 2, 3, 4, 6, 7}
- $P|_{\{a,e,f\}} = \{(a,3), (e,4), (e,6)\}$
- $R({a,b,c}) = {1,2,3,6,7}$
- $R^{-1}(\{1,2,3\}) =$

Legyen

- $\bullet \operatorname{dmn}(R) = \{a, b, c, d, e\}$
- \bullet rng(R) = {1, 2, 3, 4, 6, 7}
- \bullet $R|_{\{a,e,f\}} = \{(a,3), (e,4), (e,6)\}$
- $R(\{a,b,c\}) = \{1,2,3,6,7\}$
- \bullet $R^{-1}(\{1,2,3\}) = \{a,b,c,d\}$

Relációk kompozíciója

Definíció

Legyenek R és S binér relációk. Ekkor az $R \circ S$ kompozíció (összetétel, szorzat) reláció:

$$R \circ S = \{(x, y) : \exists z : (x, z) \in S, (z, y) \in R\}.$$

Relációk kompozíciója

Definíció

Legyenek R és S binér relációk. Ekkor az $R \circ S$ kompozíció (összetétel, szorzat) reláció:

$$R \circ S = \{(x, y) : \exists z : (x, z) \in S, (z, y) \in R\}.$$

Relációk kompozíciója

Definíció

Legyenek R és S binér relációk. Ekkor az $R \circ S$ kompozíció (összetétel, szorzat) reláció:

$$R \circ S = \{(x, y) : \exists z : (x, z) \in S, (z, y) \in R\}.$$

Figyelem! Kompozíció esetén a relációkat "jobbról-balra írjuk".

Relációk kompozíciója

Definíció

Legyenek R és S binér relációk. Ekkor az $R \circ S$ kompozíció (összetétel, szorzat) reláció:

$$R \circ S = \{(x, y) : \exists z : (x, z) \in S, (z, y) \in R\}.$$

Figyelem! Kompozíció esetén a relációkat "jobbról-balra írjuk".

• Legyen
$$R_{\sin} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : \sin x = y\},\$$

 $S_{\log} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : \log x = y\}.$

Relációk kompozíciója

Definíció

Legyenek R és S binér relációk. Ekkor az $R \circ S$ kompozíció (összetétel, szorzat) reláció:

$$R \circ S = \{(x, y) : \exists z : (x, z) \in S, (z, y) \in R\}.$$

Figyelem! Kompozíció esetén a relációkat "jobbról-balra írjuk".

Példa

• Legyen
$$R_{\sin} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : \sin x = y\},\$$

 $S_{\log} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : \log x = y\}.$

Ekkor

$$R_{\sin} \circ S_{\log} = \{(x, y) : \exists z : \log x = z, \sin z = y\}$$

= \{(x, y) \in \mathbb{R} \times \mathbb{R} : \sin \log x = y\}.

beosztás	alkalmazott
menedzser	A, B
fejlesztő	C, D, E, F, G
tesztelő	H, I,
HR	J
marketing	K, L
tech. dolgozó	M

projekt	alkalmazott	határidő
BANK	A, C, D, F,G, H	'24.03.24.
JÁTÉK	B, D, E, F, G, I	'24.03.31.

Példa

beosztás	alkalmazott
menedzser	A, B
fejlesztő	C, D, E, F, G
tesztelő	H, I,
HR	J
marketing	K, L
tech. dolgozó	M

projekt	alkalmazott	határidő
BANK	A, C, D, F,G, H	'24.03.24.
JÁTÉK	B, D, E, F, G, I	'24.03.31.

 B ∈ alkalmazottak × beosztás a beosztás reláció: például A B menedzser.

projekt	alkalmazott	határidő
BANK	A, C, D, F,G, H	'24.03.24.
JÁTÉK	B, D, E, F, G, I	'24.03.31.

- B ∈ alkalmazottak × beosztás a beosztás reláció: például A B menedzser.
- P ∈ alkalmazottak × projekt a projekt reláció: például A P BANK

projekt	alkalmazott	határidő
BANK	A, C, D, F,G, H	'24.03.24.
JÁTÉK	B, D, E, F, G, I	'24.03.31.

- B ∈ alkalmazottak × beosztás a beosztás reláció: például A B menedzser.
- P ∈ alkalmazottak × projekt a projekt reláció: például A P BANK
- • H ∈ projekt × határidő a határidő reláció: például BANK H 2024.03.24.

projekt	alkalmazott	határidő
BANK	A, C, D, F,G, H	'24.03.24.
JÁTÉK	B, D, E, F, G, I	'24.03.31.

• Kik dolgoznak a BANK projekten?

- B ∈ alkalmazottak × beosztás a beosztás reláció: például A B menedzser.
- P ∈ alkalmazottak × projekt a projekt reláció: például A P BANK
- • H ∈ projekt × határidő a határidő reláció:
 például BANK H 2024.03.24.

projekt	alkalmazott	határidő
BANK	A, C, D, F,G, H	'24.03.24.
JÁTÉK	B, D, E, F, G, I	'24.03.31.

- B ∈ alkalmazottak × beosztás a beosztás reláció: például A B menedzser.
- P ∈ alkalmazottak × projekt a projekt reláció: például A P BANK
- H ∈ projekt × határidő a határidő reláció: például BANK H 2024.03.24.
- Kik dolgoznak a BANK projekten? $P^{-1}(BANK)$

projekt	alkalmazott	határidő
BANK	A, C, D, F,G, H	'24.03.24.
JÁTÉK	B, D, E, F, G, I	'24.03.31.

- B ∈ alkalmazottak × beosztás a beosztás reláció: például A B menedzser.
- P ∈ alkalmazottak × projekt a projekt reláció: például A P BANK
- H ∈ projekt × határidő a határidő reláció: például BANK H 2024.03.24.
- Kik dolgoznak a BANK projekten? $P^{-1}(BANK)$
- Kik a tesztelők?

projekt	alkalmazott	határidő
BANK	A, C, D, F,G, H	'24.03.24.
JÁTÉK	B, D, E, F, G, I	'24.03.31.

- B ∈ alkalmazottak × beosztás a beosztás reláció: például A B menedzser.
- P ∈ alkalmazottak × projekt a projekt reláció: például A P BANK
- H ∈ projekt × határidő a határidő reláció: például BANK H 2024.03.24.
- Kik dolgoznak a BANK projekten? $P^{-1}(BANK)$
- Kik a tesztelők? B^{-1} (tesztelő)

projekt	alkalmazott	határidő
BANK	A, C, D, F,G, H	'24.03.24.
JÁTÉK	B, D, E, F, G, I	'24.03.31.

- B ∈ alkalmazottak × beosztás a beosztás reláció: például A B menedzser.
- P ∈ alkalmazottak × projekt a projekt reláció: például A P BANK
- H ∈ projekt × határidő a határidő reláció: például BANK H 2024.03.24.
- Kik dolgoznak a BANK projekten? $P^{-1}(BANK)$
- Kik a tesztelők? B^{-1} (tesztelő)
- Milyen határidejei vannak az alkalmazottaknak?

projekt	alkalmazott	határidő
BANK	A, C, D, F,G, H	'24.03.24.
JÁTÉK	B, D, E, F, G, I	'24.03.31.

- B ∈ alkalmazottak × beosztás a beosztás reláció: például A B menedzser.
- P ∈ alkalmazottak × projekt a projekt reláció: például A P BANK
- H ∈ projekt × határidő a határidő reláció: például BANK H 2024.03.24.
- Kik dolgoznak a BANK projekten? $P^{-1}(BANK)$
- Kik a tesztelők? B^{-1} (tesztelő)
- Milyen határidejei vannak az alkalmazottaknak? H o P

projekt	alkalmazott	határidő
BANK	A, C, D, F,G, H	'24.03.24.
JÁTÉK	B, D, E, F, G, I	'24.03.31.

- B ∈ alkalmazottak × beosztás a beosztás reláció: például A B menedzser.
- P ∈ alkalmazottak × projekt a projekt reláció: például A P BANK
- • H ∈ projekt × határidő a határidő reláció:
 például BANK H 2024.03.24.
- Kik dolgoznak a BANK projekten? $P^{-1}(BANK)$
- Kik a tesztelők? B^{-1} (tesztelő)
- Milyen határidejei vannak az alkalmazottaknak? H o P
- Milyen határidejei vannak a tesztelőknek?

projekt	alkalmazott	határidő
BANK	A, C, D, F,G, H	'24.03.24.
JÁTÉK	B, D, E, F, G, I	'24.03.31.

- B ∈ alkalmazottak × beosztás a beosztás reláció: például A B menedzser.
- P ∈ alkalmazottak × projekt a projekt reláció: például A P BANK
- • H ∈ projekt × határidő a határidő reláció: például BANK H 2024.03.24.
- Kik dolgoznak a BANK projekten? $P^{-1}(BANK)$
- Kik a tesztelők? B^{-1} (tesztelő)
- Milyen határidejei vannak az alkalmazottaknak? $H \circ P$
- Milyen határidejei vannak a tesztelőknek? H ∘ P ∘ B⁻¹(tesztelő)

Tétel

Legyenek R, S, T relációk. Ekkor

• $(R \circ S) \circ T = R \circ (S \circ T)$ (a kompozíció asszociatív).

Tétel

Legyenek R, S, T relációk. Ekkor

• $(R \circ S) \circ T = R \circ (S \circ T)$ (a kompozíció asszociatív).

Tétel

Legyenek R, S, T relációk. Ekkor

• $(R \circ S) \circ T = R \circ (S \circ T)$ (a kompozíció asszociatív).

Tétel

Legyenek R, S, T relációk. Ekkor

• $(R \circ S) \circ T = R \circ (S \circ T)$ (a kompozíció asszociatív).

Bizonyítás.

• Legyen $(x, y) \in (R \circ S) \circ T$.

Tétel

Legyenek R, S, T relációk. Ekkor

• $(R \circ S) \circ T = R \circ (S \circ T)$ (a kompozíció asszociatív).

- Legyen $(x, y) \in (R \circ S) \circ T$.
- Ekkor $\exists z \in \operatorname{rng}(T) \cap \operatorname{dmn}(R \circ S) :$ $(x, z) \in T \land (z, y) \in R \circ S$

Tétel

Legyenek R, S, T relációk. Ekkor

• $(R \circ S) \circ T = R \circ (S \circ T)$ (a kompozíció asszociatív).

- Legyen $(x, y) \in (R \circ S) \circ T$.
- Ekkor $\exists z \in \operatorname{rng}(T) \cap \operatorname{dmn}(R \circ S)$: $(x,z) \in T \land (z,y) \in R \circ S$
- Ekkor $\exists w \in \operatorname{rng}(S) \cap \operatorname{dmn}(R)$: $(z, w) \in S \land (w, v) \in R$

Tétel

Legyenek R, S, T relációk. Ekkor

• $(R \circ S) \circ T = R \circ (S \circ T)$ (a kompozíció asszociatív).

- Legyen $(x, y) \in (R \circ S) \circ T$.
- Ekkor $\exists z \in \operatorname{rng}(T) \cap \operatorname{dmn}(R \circ S) :$ $(x, z) \in T \wedge (z, y) \in R \circ S$
- Ekkor $\exists w \in \operatorname{rng}(S) \cap \operatorname{dmn}(R) :$ $(z, w) \in S \wedge (w, y) \in R$
- Ekkor $(x, z) \in T \land (z, w) \in S \Rightarrow (x, z) \in (S \circ T)$

Tétel

Legyenek R, S, T relációk. Ekkor

• $(R \circ S) \circ T = R \circ (S \circ T)$ (a kompozíció asszociatív).

- Legyen $(x, y) \in (R \circ S) \circ T$.
- Ekkor $\exists z \in \operatorname{rng}(T) \cap \operatorname{dmn}(R \circ S) :$ $(x, z) \in T \land (z, y) \in R \circ S$
- Ekkor $\exists w \in \operatorname{rng}(S) \cap \operatorname{dmn}(R) :$ $(z, w) \in S \wedge (w, y) \in R$
- Ekkor $(x, z) \in T \land (z, w) \in S \Rightarrow (x, z) \in (S \circ T)$
- Ha $(x,z) \in S \circ T \land (z,y) \in R \Rightarrow (x,z) \in R \circ (S \circ T)$

Tétel

Legyenek R, S, T relációk. Ekkor

• $(R \circ S) \circ T = R \circ (S \circ T)$ (a kompozíció asszociatív).

- Legyen $(x, y) \in (R \circ S) \circ T$.
- Ekkor $\exists z \in \operatorname{rng}(T) \cap \operatorname{dmn}(R \circ S) :$ $(x, z) \in T \wedge (z, y) \in R \circ S$
- Ekkor $\exists w \in \operatorname{rng}(S) \cap \operatorname{dmn}(R) :$ $(z, w) \in S \wedge (w, y) \in R$
- Ekkor $(x, z) \in T \land (z, w) \in S \Rightarrow (x, z) \in (S \circ T)$
- Ha $(x,z) \in S \circ T \land (z,y) \in R \Rightarrow (x,z) \in R \circ (S \circ T)$

Tétel

Legyenek R, S relációk. Ekkor

•
$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}$$
.

Tétel

Legyenek R, S relációk. Ekkor

•
$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}$$
.

Tétel

Legyenek R, S relációk. Ekkor

•
$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}$$
.

Tétel

Legyenek R, S relációk. Ekkor

$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}$$
.

Bizonyítás.

• Legyen $(x, y) \in (R \circ S)^{-1} \iff (y, x) \in R \circ S$.

Tétel

Legyenek R, S relációk. Ekkor

 $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$.

- $\bullet \ \ \mathsf{Legyen} \ (x,y) \in (R \circ S)^{-1} \iff (y,x) \in R \circ S.$
- $\bullet \iff \exists z : (y,z) \in S \land (z,x) \in R$

Tétel

Legyenek R, S relációk. Ekkor

 $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$.

- Legyen $(x, y) \in (R \circ S)^{-1} \iff (y, x) \in R \circ S$.
- $\bullet \iff \exists z : (y,z) \in S \land (z,x) \in R$
- $\bullet \iff (z,y) \in S^{-1} \land (x,z) \in R^{-1}$

Tétel

Legyenek R, S relációk. Ekkor

 $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$.

- Legyen $(x, y) \in (R \circ S)^{-1} \iff (y, x) \in R \circ S$.
- $\bullet \iff \exists z : (y,z) \in S \land (z,x) \in R$
- $\bullet \iff (z,y) \in S^{-1} \land (x,z) \in R^{-1}$
- $\bullet \iff (x,y) \in S^{-1} \circ R^{-1}$

Legyen R egy reláció X-en, azaz $R \subset X \times X$.

Legyen R egy reláció X-en, azaz $R \subset X \times X$.

Legyen R egy reláció X-en, azaz $R \subset X \times X$.

Példa

• =, \leq , < relációk \mathbb{R} -en

Legyen R egy reláció X-en, azaz $R \subset X \times X$.

- \bullet =, \leq , < relációk \mathbb{R} -en
- c halmazokon

Legyen R egy reláció X-en, azaz $R \subset X \times X$.

- \bullet =, \leq , < relációk \mathbb{R} -en
- c halmazokon
- oszthatóság Z-en

Legyen R egy reláció X-en, azaz $R \subset X \times X$.

- $\bullet = , \leq , < \text{relációk } \mathbb{R}$ -en
- c halmazokon
- oszthatóság Z-en
- $K = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x y| \le 1\}$ ("közelségi reláció")

Legyen R egy reláció X-en, azaz $R \subset X \times X$.

Példa

- $\bullet = < <$ relációk \mathbb{R} -en
- c halmazokon
- oszthatóság Z-en
- $K = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x y| \le 1\}$ ("közelségi reláció")

Definíció (szimmetrikusság)

Legyen R egy reláció X-en, azaz $R \subset X \times X$.

Példa

- $\bullet = , \leq , < \text{relációk } \mathbb{R}$ -en
- c halmazokon
- oszthatóság Z-en
- $K = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x y| \le 1\}$ (,,közelségi reláció")

Definíció (szimmetrikusság)

• R reláció szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$ Példa: =, K, ellenpélda: $\leq, <, \subset, |$

Legyen R egy reláció X-en, azaz $R \subset X \times X$.

Példa

- \bullet =, \leq , < relációk \mathbb{R} -en
- c halmazokon
- | oszthatóság Z-en
- $K = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x y| \le 1\}$ ("közelségi reláció")

Definíció (szimmetrikusság)

- R reláció szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$ Példa: =, K, ellenpélda: $\leq, <, \subset, |$
- R reláció antiszimmetrikus, ha $\forall x,y \in X: (xRy \land yRx) \Rightarrow x = y$ Példa: $=, \leq, \subset$ ellenpélda: K

Legyen R egy reláció X-en, azaz $R \subset X \times X$.

Példa

- \bullet =, \leq , < relációk \mathbb{R} -en
- c halmazokon
- | oszthatóság Z-en
- $K = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x y| \le 1\}$ ("közelségi reláció")

Definíció (szimmetrikusság)

- R reláció szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$ Példa: =, K, ellenpélda: $\leq, <, \subset, |$
- R reláció antiszimmetrikus, ha $\forall x,y \in X: (xRy \land yRx) \Rightarrow x = y$ Példa: $=, \leq, \subset$ ellenpélda: K
- R reláció szigorúan antiszimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow \neg(yRx)$ Példa: < ellenpélda: $=, \leq, K$

Definíció (reflexivitás)

Definíció (reflexivitás)

• R reláció reflexív, ha $\forall x \in X : xRx$ Példa: $=, \leq, \subset, |, K$ ellenpélda: <

Definíció (reflexivitás)

- R reláció reflexív, ha $\forall x \in X : xRx$ Példa: $=, \leq, \subset, |, K$ ellenpélda: <
- R reláció irreflexív, ha $\forall x \in X : \neg(xRx)$ Példa: < ellenpélda: $=, \leq, \subset, |, K$

Definíció (reflexivitás)

- R reláció reflexív, ha $\forall x \in X : xRx$ Példa: $=, \leq, \subset, |, K$ ellenpélda: <
- R reláció irreflexív, ha $\forall x \in X : \neg(xRx)$ Példa: < ellenpélda: $=, \leq, \subset, |, K$

Definíció (reflexivitás)

- R reláció reflexív, ha $\forall x \in X : xRx$ Példa: $=, \leq, \subset, |, K$ ellenpélda: <
- R reláció irreflexív, ha $\forall x \in X : \neg(xRx)$ Példa: < ellenpélda: $=, \leq, \subset, |, K$

irreflexív

Definíció (tranzitivitás)

Definíció (reflexivitás)

- R reláció reflexív, ha $\forall x \in X : xRx$ Példa: $=, \leq, \subset, |, K$ ellenpélda: <
- R reláció irreflexív, ha $\forall x \in X : \neg(xRx)$ Példa: < ellenpélda: $=, \leq, \subset, |, K$

irreflexív

Definíció (tranzitivitás)

• R reláció tranzitív, ha $\forall x, y, z \in X : xRy \land yRz \Rightarrow xRz$ Példa: $=, \leq, \subset, |, <$ ellenpélda: K

Elemek összehasoníthatósága:

Elemek összehasoníthatósága:

Definíció

• R reláció dichotóm, ha $\forall x, y \in X$ esetén $xRy \lor yRx$ (megengedő "vagy"!) Példa: \leq ellenpélda: \subset , |

Elemek összehasoníthatósága:

Definíció

• R reláció dichotóm, ha $\forall x, y \in X$ esetén $xRy \lor yRx$ (megengedő "vagy"!) Példa: < ellenpélda: \subset ,

Elemek összehasoníthatósága:

Elemek összehasoníthatósága:

Definíció

• R reláció trichotóm, ha $\forall x,y \in X$ esetén x=y, xRy és yRx közül pontosan egy teljesül Példa: < ellenpélda: $=, \leq, K$

Elemek összehasoníthatósága:

Definíció

• R reláció trichotóm, ha $\forall x,y \in X$ esetén x=y, xRy és yRx közül pontosan egy teljesül Példa: < ellenpélda: $=, \leq, K$

szimmetrikus	reflexív	
antiszimmetrikus	irreflexív	
szig. antiszimmetrikus	tranzitív	
dichotóm	trichotóm	

szimmetrikus	×	aRb , $\neg(bRa)$	reflexív	
antiszimmetrikus			irreflexív	
szig. antiszimmetrikus			tranzitív	
dichotóm			trichotóm	

szimmetrikus	×	aRb , $\neg(bRa)$	reflexív	
antiszimmetrikus	\checkmark		irreflexív	
szig. antiszimmetrikus			tranzitív	
dichotóm			trichotóm	

szimmetrikus	×	aRb , $\neg(bRa)$	reflexív	
antiszimmetrikus	\checkmark		irreflexív	
szig. antiszimmetrikus	×	aRa	tranzitív	
dichotóm			trichotóm	

szimmetrikus	×	aRb , $\neg(bRa)$	reflexív	
antiszimmetrikus	✓		irreflexív	
szig. antiszimmetrikus	×	aRa	tranzitív	
dichotóm	×	$\neg(cRc)$	trichotóm	

szimmetrikus	×	aRb , $\neg(bRa)$	reflexív	×	$\neg(bRb)$
antiszimmetrikus	✓		irreflexív		
szig. antiszimmetrikus	×	aRa	tranzitív		
dichotóm	×	$\neg(cRc)$	trichotóm		

szimmetrikus	×	aRb , $\neg(bRa)$	reflexív	×	$\neg(bRb)$
antiszimmetrikus	✓		irreflexív	×	aRa
szig. antiszimmetrikus	×	aRa	tranzitív		
dichotóm	×	$\neg(cRc)$	trichotóm		

szimmetrikus	×	aRb , $\neg(bRa)$	reflexív	×	$\neg(bRb)$
antiszimmetrikus	\checkmark		irreflexív	×	aRa
szig. antiszimmetrikus	×	aRa	tranzitív	×	$aRb, bRc, \neg(aRc)$
dichotóm	×	$\neg(cRc)$	trichotóm		

szimmetrikus	×	aRb , $\neg(bRa)$	reflexív	×	$\neg(bRb)$
antiszimmetrikus	√		irreflexív	×	aRa
szig. antiszimmetrikus	×	aRa	tranzitív	×	$aRb, bRc, \neg(aRc)$
dichotóm	×	$\neg(cRc)$	trichotóm	×	aRa

Relációk tulajdonságai, összefoglalás.

Legyen R egy reláció X-en, azaz $R \subset X \times X$.

- R reláció szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$ (Példa: =, K)
- R reláció antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx \Rightarrow x = y \text{ (Példa: =, <, <)})$
- R reláció szigorúan antiszimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow \neg(yRx)$ (Példa: <)
- R reláció reflexív, ha $\forall x \in X : xRx$ (Példa: =, \leq , \subset , |, K)
- R reláció irreflexív, ha $\forall x \in X : \neg(xRx)$ (Példa: <)
- R reláció tranzitív, ha $\forall x, y, z \in X : xRy \land yRz \Rightarrow xRz$ (Példa: =, \leq , \subset , |)
- R reláció dichotóm, ha $\forall x, y \in X$ esetén $xRy \lor yRx$ (megengedő "vagy"!) (Példa: <)
- R reláció trichotóm,
 ha ∀x, y ∈ X esetén x = y, xRy és yRx közül pontosan egy teljesül (Példa: <)

Speciális relációk

Halmaz elemeit csoportosítjuk, a csoporton belül az elemeket azonosnak tekintjük

Halmaz elemeit csoportosítjuk, a csoporton belül az elemeket azonosnak tekintjük **Példa**

Halmaz elemeit csoportosítjuk, a csoporton belül az elemeket azonosnak tekintjük **Példa**

• egyetemi hallgatók osztályozása évfolyam szerint

Halmaz elemeit csoportosítjuk, a csoporton belül az elemeket azonosnak tekintjük **Példa**

- egyetemi hallgatók osztályozása évfolyam szerint
- cég dolgozói osztályozása beosztás szerint

Halmaz elemeit csoportosítjuk, a csoporton belül az elemeket azonosnak tekintjük **Példa**

- egyetemi hallgatók osztályozása évfolyam szerint
- cég dolgozói osztályozása beosztás szerint
- sík egyeneseit irányonként osztályozzuk

Halmaz elemeit csoportosítjuk, a csoporton belül az elemeket azonosnak tekintjük Példa

- egyetemi hallgatók osztályozása évfolyam szerint
- cég dolgozói osztályozása beosztás szerint
- sík egyeneseit irányonként osztályozzuk

d

R reláció hurokélek nélkül

Halmaz elemeit csoportosítjuk, a csoporton belül az elemeket azonosnak tekintjük

- egyetemi hallgatók osztályozása évfolyam szerint
- cég dolgozói osztályozása beosztás szerint
- sík egyeneseit irányonként osztályozzuk

Definíció

Egy *R* reláció ekvivalencia reláció, ha reflexív; tranzitív és szimmetrikus.

d

R reláció hurokélek nélkül

Halmaz elemeit csoportosítjuk, a csoporton belül az elemeket azonosnak tekintjük Példa

- egyetemi hallgatók osztályozása évfolyam szerint
- cég dolgozói osztályozása beosztás szerint
- sík egyeneseit irányonként osztályozzuk

Definíció

Egy *R* reláció ekvivalencia reláció, ha reflexív; tranzitív és szimmetrikus.

Példa

d

R reláció hurokélek nélkül

Halmaz elemeit csoportosítjuk, a csoporton belül az elemeket azonosnak tekintjük Példa

- egyetemi hallgatók osztályozása évfolyam szerint
- cég dolgozói osztályozása beosztás szerint
- sík egyeneseit irányonként osztályozzuk

Definíció

Egy *R* reláció ekvivalencia reláció, ha reflexív; tranzitív és szimmetrikus.

Példa

• $H_1 \sim H_2$, ha H_1 és H_2 évfolyamtársak

d

Halmaz elemeit csoportosítjuk, a csoporton belül az elemeket azonosnak tekintjük Példa

- egyetemi hallgatók osztályozása évfolyam szerint
- cég dolgozói osztályozása beosztás szerint
- sík egyeneseit irányonként osztályozzuk

Definíció

Egy *R* reláció ekvivalencia reláció, ha reflexív; tranzitív és szimmetrikus.

Példa

- $H_1 \sim H_2$, ha H_1 és H_2 évfolyamtársak
- $M_1 \sim M_2$, ha M_1 és M_2 beosztása megegyezik

d

Halmaz elemeit csoportosítjuk, a csoporton belül az elemeket azonosnak tekintjük Példa

- egyetemi hallgatók osztályozása évfolyam szerint
- cég dolgozói osztályozása beosztás szerint
- sík egyeneseit irányonként osztályozzuk

Definíció

Egy *R* reláció ekvivalencia reláció, ha reflexív; tranzitív és szimmetrikus.

Példa

- $H_1 \sim H_2$, ha H_1 és H_2 évfolyamtársak
- $M_1 \sim M_2$, ha M_1 és M_2 beosztása megegyezik
- $\ell_1 \sim \ell_2$, ha ℓ_1 és ℓ_2 párhuzamosak

d

Definíció

Egy X halmaz részhalmazainak \mathcal{O} rendszerét osztályozásnak nevezzük, ha

- O elemei páronként diszjunkt nemüres halmazok;
- $\bullet \cup \mathcal{O} = X$.

Definíció

Egy X halmaz részhalmazainak \mathcal{O} rendszerét osztályozásnak nevezzük, ha

- O elemei páronként diszjunkt nemüres halmazok;
- $\bullet \cup \mathcal{O} = X$.

Definíció

Egy X halmaz részhalmazainak \mathcal{O} rendszerét osztályozásnak nevezzük, ha

- O elemei páronként diszjunkt nemüres halmazok;
- $\bullet \cup \mathcal{O} = X$.

Példa

Definíció

Egy *X* halmaz részhalmazainak *O* rendszerét osztályozásnak nevezzük, ha

- O elemei páronként diszjunkt nemüres halmazok;
- $\bullet \cup \mathcal{O} = X$.

Példa

- hallgatók:
 - {1. évf. hallgatók, 2. évf. hallgatók, 3. évf. hallgatók}

Definíció

Egy X halmaz részhalmazainak \mathcal{O} rendszerét osztályozásnak nevezzük, ha

- O elemei páronként diszjunkt nemüres halmazok;
- $\bullet \cup \mathcal{O} = X$.

Példa

- hallgatók:
 - {1. évf. hallgatók, 2. évf. hallgatók, 3. évf. hallgatók}
- dolgozók: {fejlesztők, marketing, tesztelők, HR, ...}

Definíció

Egy *X* halmaz részhalmazainak *O* rendszerét osztályozásnak nevezzük, ha

- O elemei páronként diszjunkt nemüres halmazok;
- $\bullet \cup \mathcal{O} = X$.

Példa

- hallgatók:
 - {1. évf. hallgatók, 2. évf. hallgatók, 3. évf. hallgatók}
- $\bullet \ \, \text{dolgoz\'ok:} \ \{\text{fejleszt\'ok}, \text{marketing}, \text{tesztel\'ok}, \text{HR}, \dots \}$
- egyenesek lehetséges irányai

Definíció

Legyen \sim egy ekvivalencia reláció az X halmazon. Tetszőleges $x \in X$ esetén legyen

$$\tilde{x} = [x] = \{ y \in X : y \sim x \}$$

az x ekvivalencia osztályának nevezzük.

Definíció

Legyen \sim egy ekvivalencia reláció az X halmazon. Tetszőleges $x \in X$ esetén legyen

$$\tilde{x} = [x] = \{ y \in X : y \sim x \}$$

az x ekvivalencia osztályának nevezzük.

Példa

• $\{[\ell] : \ell \text{ a sík egyenese}\}$ az irányok halmaza.

Definíció

Legyen \sim egy ekvivalencia reláció az X halmazon. Tetszőleges $x \in X$ esetén legyen

$$\tilde{x} = [x] = \{ y \in X : y \sim x \}$$

az x ekvivalencia osztályának nevezzük.

Példa

• $\{[\ell] : \ell \text{ a sík egyenese}\}$ az irányok halmaza.

Tétel

Definíció

Legyen \sim egy ekvivalencia reláció az X halmazon. Tetszőleges $x \in X$ esetén legyen

$$\tilde{x} = [x] = \{ y \in X : y \sim x \}$$

az x ekvivalencia osztályának nevezzük.

Példa

• $\{[\ell] : \ell$ a sík egyenese $\}$ az irányok halmaza.

Tétel

• Egy X halmazon értelmezett \sim ekvivalencia reláció esetén $\{[x]:x\in X\}$ egy osztályozás.

Definíció

Legyen \sim egy ekvivalencia reláció az X halmazon. Tetszőleges $x \in X$ esetén legyen

$$\tilde{x} = [x] = \{ y \in X : y \sim x \}$$

az x ekvivalencia osztályának nevezzük.

Példa

• $\{[\ell] : \ell \text{ a sík egyenese}\}$ az irányok halmaza.

Tétel

- Egy X halmazon értelmezett \sim ekvivalencia reláció esetén $\{[x]: x \in X\}$ egy osztályozás.
- Tekintsük egy X halmaz $\mathcal O$ osztályozását. Ekkor az $R = \{(x,y): x \text{ \'es } y \text{ ugyanazon } \mathcal O \text{ osztályban vannak}\}$ egy ekvivalencia reláció.

Bizonyítás. Legyen $\mathcal{O} = \{[x] : x \in X\}$ ahol $[x] = \{y \in X : y \sim x\}$

- 1. feltétel: $\cup \mathcal{O} = X$. Mivel $\sim \text{reflex}(v \Rightarrow x \in [x] \Rightarrow \cup \{[x] : x \in X\} = X$.
- 2. feltétel: ∪Ø elemei páronként diszjunktak.
 - Tegyük fel hogy $[x] \cap [y] \neq \emptyset$. Megmutatjuk, hogy [x] = [y].
 - Legyen $z \in [x] \cap [y]$. Akkor (definíció szerint) $z \sim x$ és $z \sim y$.
 - Mivel \sim szimmetrikus $\Rightarrow x \sim z$.
 - Mivel \sim tranzitív, ezért $x \sim z$ és $z \sim y \implies x \sim y$, azaz $x \in [y]$.
 - Ha $x' \in [x]$, akkor $x' \sim x$ és a tranzitivitás miatt $\Rightarrow x' \sim y$, azaz $x' \in [y]$.
 - Tehát $[x] \subset [y]$.
 - x és y szerepének felcserélésével $[y] \subset [x]$, azaz [x] = [y].

Bizonyítás. Legyen $R = \{(x, y) : x \text{ \'es } y \text{ ugyanazon } \mathcal{O} \text{ osztályban vannak} \}$

- reflexivitás: Minden x ugyanabban az osztályban van, mint saját maga: xRx. Továbbá, mivel $\cup \mathcal{O} = X$, így minden x benne van valamely osztályban.
- szimmetrikusság: ha xRy, akkor x és y ugyanabban az osztályban vannak, speciálisan yRx.
- tranzitivitás Ha xRy és yRz, akkor mind x és y, mind y és z ugyanabban az osztályban vannak, speciálisan x és z is ugyanabban az osztályán vannak, azaz xRz.

24

Példák

alaphalmaz	reláció	osztályozás
\mathbb{R}	=	$\{\{x\}:x\in\mathbb{R}\}$, 'azonosság'
\mathbb{R}	x = y	$\{\{\pm x\}: x \in \mathbb{R}\}$, 'abszolút érték'
sík egyenesei	párhuzamosság	irányok
sík szakaszai	hossz	egybevágóság

Részebenrendezés

Szeretnénk a ≤, ⊂, | (osztója) relációkat általánosítani.

Definíció

- Egy R reláció részbenrendezés, ha reflexív; tranzitív és antiszimmetrikus.
- Ha valamely $x, y \in X$ párra $x \leq y$ vagy $y \leq x$, akkor x és y összehasonlítható.
- Ha minden (x, y) pár összehasonlítható (azaz ≤ dichotóm), akkor ≤ rendezés.

Példa

- $(\mathbb{N}, |), (2^X, \subset), (\mathbb{R}^5 \text{ alterei, alter relacio})$: részbenrendezés
- (<, ℝ): rendezés

Részbenrendezés, speciális elemek

Legyen \leq egy részbenrendezés az X halmazon.

- legkisebb elem: $x \in X : \forall y \in X \ x \leq y$
- legnagyobb elem: $x \in X : \forall y \in X \ y \leq x$
- minimális elem: $x \in X : \neg \exists y \in X \ y \leq x$
- maximális elem: $x \in X : \neg \exists y \in X \ x \leq y$

Példa

- legkisebb elem: a
- legnagyobb elem: nincs
- minimális elem: a
- maximális elem: f, i, h

Függvények

Definíció

Legyen $f \subset X \times Y$ egy (binér) reláció. Ha egyelemű halmaz képe legfeljebb egyelemű, azaz

$$xfy \land xfz \Rightarrow y = z,$$

akkor azf-et függvénynek hívjuk.

Speciálisan az xfy helyett a f(x) = y használjuk.

Példa

- $(x^2, x) \subset \mathbb{R} \times \mathbb{R}$ nem függvény
- $(x, \sqrt{x}) \subset \mathbb{R} \times \mathbb{R}$ és $(x, -\sqrt{x}) \subset \mathbb{R} \times \mathbb{R}$ függvények.
- Legyen $M \in \mathbb{R}^{2 \times 2}$. Ekkor $\{(\mathbf{v}, M\mathbf{v}) : \mathbf{v} \in \mathbb{R}^2\}$ egy függvény.
- Legyen $M \in \mathbb{R}^{2 \times 2}$. Ekkor $\{(M\mathbf{v}, \mathbf{v}) : \mathbf{v} \in \mathbb{R}^2\}$ függvény $\iff \det M \neq 0$.
- Legyen $R \subset X \times Y$ egy reláció. Ekkor $\{(A, R(A)) : A \subset X\} \subset 2^X \times 2^Y$ egy függvény.