LMAT1323 Topologie: examen janvier 2018

8 janvier 2018

1. Vrai ou faux :

- a) Tout sous-ensemble fini est compact.
- b) Un ensemble muni de la topologie indiscrète est connexe.
- c) Tout espace connexe est connexe par arc.
- d) Si τ_{α} est une topologie pour tout $\alpha \in A$, alors $\bigcap_{\alpha \in A} \tau_{\alpha}$ est une topologie.
- e) Soit (X, τ) et (Y, σ) deux espaces topologiques et $f: X \to Y$. Si f est un homéomorphisme alors $U \in \tau \Rightarrow f(U) \in \sigma$
- f) Soit (X, τ) un espace topologique. Si les singletons $\{x\}$ sont fermés, alors (X, τ) est Hausdorff.
- 2. Montrer que tout sous-espace d'un espace de Hausdorff l'est aussi.
- 3. Soit (X, τ) un espace topologique, K, F deux sous-ensembles de X. Montrer que si K est compact et F est fermé, alors $K \cap F$ est compact.
- 4. Soit $(A_n)_{n\geq 0}$ une suite de parties connexes telles que $A_n\cap A_{n+1}\neq\emptyset$. Montrer que $\bigcup_{n\geq 0}A_n$ est connexe.
- 5. La topologie cofinie τ_{cof} est définie comme suit : $\tau_{cof} = \{U \subseteq X : X \setminus U \text{ est fini ou } U = \emptyset\}$. Montrer que la fonction identité de (X, τ) dans (X, τ_{cof}) est continue ssi les singletons $\{x\}$ sont fermés dans (X, τ) .