Turing Degrees and the Friedberg-Muchnik Theorem

Mathematical Logic for Computer Science

Master's Degree in Computer Science Simone Bianco (1986936)

Academic Year 2024/2025

Table of Contents

1 Introduction

▶ Introduction

- Degrees of Unsolvability
- Post's problen

- $\Phi_{i,s}^A(x)\downarrow$: the computation halts after s steps
- $\Phi_i^A(x)\downarrow$: there is a $s\in\mathbb{N}$ such that $\Phi_{i,s}^A(x)\downarrow$
- $\Phi_i^A(x) \uparrow$: there is no $s \in \mathbb{N}$ such that $\Phi_{i,s}^A(x) \downarrow$
- $\phi_i^A(x)$: output of the computation (defined iff $\Phi_i^A(x) \downarrow$)

- $\Phi^A_{i,s}(x)\downarrow$: the computation halts after s steps
- $\Phi_i^A(\mathbf{x})\downarrow$: there is a $s\in\mathbb{N}$ such that $\Phi_{i,s}^A(\mathbf{x})\downarrow$
- $\Phi_i^A(x) \uparrow$: there is no $s \in \mathbb{N}$ such that $\Phi_{i,s}^A(x) \downarrow$
- $\phi_i^A(x)$: output of the computation (defined iff $\Phi_i^A(x) \downarrow$)

- $\Phi^A_{i,s}(x)\downarrow$: the computation halts after s steps
- $\Phi_i^A(x)\downarrow$: there is a $s\in\mathbb{N}$ such that $\Phi_{i,s}^A(x)\downarrow$
- $\Phi_i^A(x) \uparrow$: there is no $s \in \mathbb{N}$ such that $\Phi_{i,s}^A(x) \downarrow$
- $\phi_i^A(x)$: output of the computation (defined iff $\Phi_i^A(x) \downarrow$)

- $\Phi_{i,s}^A(x)\downarrow$: the computation halts after s steps
- $\Phi_i^A(x)\downarrow$: there is a $s\in\mathbb{N}$ such that $\Phi_{i,s}^A(x)\downarrow$
- $\Phi_i^A(x) \uparrow$: there is no $s \in \mathbb{N}$ such that $\Phi_{i,s}^A(x) \downarrow$
- $\phi_i^A(x)$: output of the computation (defined iff $\Phi_i^A(x) \downarrow$)

- $\Phi_{i,s}^A(x)\downarrow$: the computation halts after s steps
- $\Phi_i^A(x)\downarrow$: there is a $s\in\mathbb{N}$ such that $\Phi_{i,s}^A(x)\downarrow$
- $\Phi_i^A(x)\uparrow$: there is no $s\in\mathbb{N}$ such that $\Phi_{i,s}^A(x)\downarrow$
- $\phi_i^A(x)$: output of the computation (defined iff $\Phi_i^A(x) \downarrow$)

- Semi-decidable if $\exists i \in \mathbb{N}$ such that $\forall x \in S$ it holds that $\Phi_i(x) \downarrow$ and $\phi_i(x) = 1$.
- **Decidable** if $\exists i \in \mathbb{N}$ such that $\forall x \in \mathbb{N}$ it holds that $\Phi_i(x) \downarrow$ and $\phi_i(x) = 1$ if $x \in S_i$ otherwise $\phi_i(x) = 0$.
- Recursively enumerable if there is an algorithmic procedure $\mathcal{A}:\mathbb{N}\to\{0,1\}$ such that $\mathcal{S}=\{A(0),A(1),A(2),\ldots\}$

Obs. 1: S is semi-decidable if and only if it is r.e.

Obs. 2: S is decidable if and only if both S and \overline{S} are semi-decidable

- Semi-decidable if $\exists i \in \mathbb{N}$ such that $\forall x \in S$ it holds that $\Phi_i(x) \downarrow$ and $\phi_i(x) = 1$.
- **Decidable** if $\exists i \in \mathbb{N}$ such that $\forall x \in \mathbb{N}$ it holds that $\Phi_i(x) \downarrow$ and $\phi_i(x) = 1$ if $x \in S$, otherwise $\phi_i(x) = 0$.
- Recursively enumerable if there is an algorithmic procedure $\mathcal{A}:\mathbb{N}\to\{0,1\}$ such that $\mathcal{S}=\{A(0),A(1),A(2),\ldots\}$

Obs. 1: S is semi-decidable if and only if it is r.e.

Obs. 2: S is decidable if and only if both S and S are semi-decidable.

- Semi-decidable if $\exists i \in \mathbb{N}$ such that $\forall x \in S$ it holds that $\Phi_i(x) \downarrow$ and $\phi_i(x) = 1$.
- **Decidable** if $\exists i \in \mathbb{N}$ such that $\forall x \in \mathbb{N}$ it holds that $\Phi_i(x) \downarrow$ and $\phi_i(x) = 1$ if $x \in S$, otherwise $\phi_i(x) = 0$.
- Recursively enumerable if there is an algorithmic procedure $\mathcal{A}:\mathbb{N}\to\{0,1\}$ such that $\mathcal{S}=\{A(0),A(1),A(2),\ldots\}$

Obs. 1: S is semi-decidable if and only if it is r.e.

Obs. 2: *S* is decidable if and only if both *S* and *S* are semi-decidable

- Semi-decidable if $\exists i \in \mathbb{N}$ such that $\forall x \in S$ it holds that $\Phi_i(x) \downarrow$ and $\phi_i(x) = 1$.
- **Decidable** if $\exists i \in \mathbb{N}$ such that $\forall x \in \mathbb{N}$ it holds that $\Phi_i(x) \downarrow$ and $\phi_i(x) = 1$ if $x \in S$, otherwise $\phi_i(x) = 0$.
- Recursively enumerable if there is an algorithmic procedure $\mathcal{A}:\mathbb{N}\to\{0,1\}$ such that $\mathcal{S}=\{A(0),A(1),A(2),\ldots\}$

Obs. 1: *S* is semi-decidable if and only if it is r.e.

Obs. 2: *S* is decidable if and only if both *S* and \overline{S} are semi-decidable.

- Some sets that are semi-decidable but undecidable (e.g. $H = \{(i, x) \mid \Phi_i(x) \downarrow \}$).
- Some sets cannot be semi-decided (e.g. \overline{H}).

This gives three degrees of computability: **solvable** problems, **semi-solvable** problems and **unsolvable** problems.

- Some sets that are semi-decidable but undecidable (e.g. $H = \{(i, x) \mid \Phi_i(x) \downarrow \}$).
- Some sets cannot be semi-decided (e.g. \overline{H}).

This gives three degrees of computability: **solvable** problems, **semi-solvable** problems and **unsolvable** problems.

- Some sets that are semi-decidable but undecidable (e.g. $H = \{(i, x) \mid \Phi_i(x) \downarrow \}$).
- Some sets cannot be semi-decided (e.g. \overline{H}).

This gives three degrees of computability: **solvable** problems, **semi-solvable** problems and **unsolvable** problems.

- Some sets that are semi-decidable but undecidable (e.g. $H = \{(i, x) \mid \Phi_i(x) \downarrow \}$).
- Some sets cannot be semi-decided (e.g. \overline{H}).

This gives three degrees of computability: **solvable** problems, **semi-solvable** problems and **unsolvable** problems.

Table of Contents

2 Degrees of Unsolvability

Introduction

- ► Degrees of Unsolvability
- Post's problen

Post [Pos44] formalized the idea of computability degrees through **Turing reductions**.

- Turing reducibility: $A \leq_T B$ when $\exists i \in \mathbb{N}$ such that $\Phi_i^B(x) \downarrow$ for all $x \in \mathbb{N}$ and $\phi_i^B = A$.
- Turing equivalence: $A \equiv_T B$ when $A \equiv_T B$, when $A \leq_T B$ and $B \leq_T A$
- The set $\mathcal{D}=2^{\mathbb{N}}/_{\equiv_{\mathcal{T}}}$ is referred to as the set of **Turing degrees**.

Post [Pos44] formalized the idea of computability degrees through **Turing reductions**.

- Turing reducibility: $A \leq_T B$ when $\exists i \in \mathbb{N}$ such that $\Phi_i^B(x) \downarrow$ for all $x \in \mathbb{N}$ and $\phi_i^B = A$.
- Turing equivalence: $A \equiv_T B$ when $A \equiv_T B$, when $A \leq_T B$ and $B \leq_T A$
- The set $\mathcal{D}=2^{\mathbb{N}}/_{\equiv_{\mathcal{T}}}$ is referred to as the set of **Turing degrees**.

Post [Pos44] formalized the idea of computability degrees through **Turing reductions**.

- Turing reducibility: $A \leq_T B$ when $\exists i \in \mathbb{N}$ such that $\Phi_i^B(x) \downarrow$ for all $x \in \mathbb{N}$ and $\phi_i^B = A$.
- Turing equivalence: $A \equiv_T B$ when $A \equiv_T B$, when $A \leq_T B$ and $B \leq_T A$
- The set $\mathcal{D}=2^{\mathbb{N}}/_{\equiv_T}$ is referred to as the set of **Turing degrees**.

 \preceq is a (partial) order over the set $\mathcal D$, forming an hierarchy of unsolvability degrees

Prop. 1: There is an unique degree containing all the decidable problems
 This unique class is referred to as the 0 degree (formally 0 = |∅|)

Prop. 2: There is no degree below 0

- If $|A| \leq 0$ then A is decidable, thus |A| = 0

 \preceq is a (partial) order over the set \mathcal{D} , forming an hierarchy of unsolvability degrees.

Prop. 1: There is an unique degree containing all the decidable problems

— This unique class is referred to as the 0 degree (formally $0 = [\varnothing]$)

Prop. 2: There is no degree below 0

- If $|A| \leq 0$ then A is decidable, thus |A| = 0

 \preceq is a (partial) order over the set \mathcal{D} , forming an hierarchy of unsolvability degrees.

Prop. 1: There is an unique degree containing all the decidable problems

— This unique class is referred to as the 0 degree (formally $0 = [\varnothing]$)

Prop. 2: There is no degree below 0

- If $|A| \leq 0$ then A is decidable, thus |A| = 0

 \leq is a (partial) order over the set \mathcal{D} , forming an hierarchy of unsolvability degrees.

Prop. 1: There is an unique degree containing all the decidable problems

— This unique class is referred to as the 0 degree (formally $0 = [\varnothing]$)

Prop. 2: There is no degree below 0

— If $|A| \leq 0$ then A is decidable, thus |A| = 0

 \preceq is a (partial) order over the set \mathcal{D} , forming an hierarchy of unsolvability degrees.

Prop. 1: There is an unique degree containing all the decidable problems

— This unique class is referred to as the 0 degree (formally $0 = [\varnothing]$)

Prop. 2: There is no degree below 0

- If [A] ≤ 0 then A is decidable, thus [A] = 0

Turing degrees

We say that [A] is **lower** than [B], written as $[A] \leq [B]$, if $A \leq_T B$.

 \leq is a (partial) order over the set \mathcal{D} , forming an hierarchy of unsolvability degrees.

Prop. 1: There is an unique degree containing all the decidable problems

— This unique class is referred to as the 0 degree (formally $0 = [\varnothing]$)

Prop. 2: There is no degree below 0

— If $[A] \leq 0$ then A is decidable, thus [A] = 0

The jump operator

The strict relation $[A] \prec [B]$ between degrees can be easily forced through **Turing jumps**.

- Given a set $X \subseteq \mathbb{N}$, the Turing jump of X is the set $X' = \{i \mid \Phi^X_i(i) \downarrow\}$
 - $-X <_T X'$ since X' is obtained by forcing a variant of the Halting problem on TMs with X as an oracle
- Obs.: The jump 0' of 0 is exactly the class containing the Halting problem

$$\varnothing' = \{i \mid \Phi_i^{\varnothing}(i) \downarrow\} = \{i \mid \Phi_i(i) \downarrow\} \equiv_T H$$

The jump operator

The strict relation $[A] \prec [B]$ between degrees can be easily forced through **Turing jumps**.

- Given a set $X \subseteq \mathbb{N}$, the Turing jump of X is the set $X' = \{i \mid \Phi^X_i(i) \downarrow\}$
 - $X <_T X'$ since X' is obtained by forcing a variant of the Halting problem on TMs with X as an oracle
- Obs.: The jump 0' of 0 is exactly the class containing the Halting problem

$$\varnothing' = \{i \mid \Phi_i^{\varnothing}(i) \downarrow\} = \{i \mid \Phi_i(i) \downarrow\} \equiv_T H$$

The jump operator

The strict relation $[A] \prec [B]$ between degrees can be easily forced through **Turing jumps**.

- Given a set $X \subseteq \mathbb{N}$, the Turing jump of X is the set $X' = \{i \mid \Phi_i^X(i) \downarrow\}$
 - $X <_T X'$ since X' is obtained by forcing a variant of the Halting problem on TMs with X as an oracle
- Obs.: The jump 0' of 0 is exactly the class containing the Halting problem

$$\varnothing' = \{i \mid \Phi_i^{\varnothing}(i) \downarrow\} = \{i \mid \Phi_i(i) \downarrow\} \equiv_T H$$

- Thm.: $[A] \leq_m H$ if and only if A is r.e.
 - If $A ≤_m H$ then A is trivially r.e. since H is r.e.
 - If A is r.e. then it has a semi-decider M_i . Let M_j be a new semi-decider such that $\Phi_j(x) \downarrow$ if $\phi_i(x) = 1$, otherwise $\Phi_j(x) \uparrow$.
- Cor.: Every degree containing a r.e. set is below 0'
- Obs.: If a degree contains a r.e. set, the other sets <u>aren't</u> forced to also be r.e.
 - E.g.: $H \in 0'$, but H is not r.e

- Thm.: $[A] \leq_m H$ if and only if A is r.e.
 - If $A ≤_m H$ then A is trivially r.e. since H is r.e.
 - If A is r.e. then it has a semi-decider M_i . Let M_j be a new semi-decider such that $\Phi_j(x) \downarrow$ if $\phi_i(x) = 1$, otherwise $\Phi_j(x) \uparrow$.
- Cor.: Every degree containing a r.e. set is below 0'
- Obs.: If a degree contains a r.e. set, the other sets <u>aren't</u> forced to also be r.e.
 - E.g.: $H \in O'$, but H is not r.e

- Thm.: $[A] \leq_m H$ if and only if A is r.e.
 - If $A ≤_m H$ then A is trivially r.e. since H is r.e.
 - If A is r.e. then it has a semi-decider M_i . Let M_j be a new semi-decider such that $\Phi_j(x) \downarrow$ if $\phi_i(x) = 1$, otherwise $\Phi_j(x) \uparrow$.
- Cor.: Every degree containing a r.e. set is below 0'
- Obs.: If a degree contains a r.e. set, the other sets <u>aren't</u> forced to also be r.e
 - E.g.: $H \in 0'$, but H is not r.e

- Thm.: $[A] \leq_m H$ if and only if A is r.e.
 - If $A ≤_m H$ then A is trivially r.e. since H is r.e.
 - If A is r.e. then it has a semi-decider M_i . Let M_j be a new semi-decider such that $\Phi_j(x) \downarrow$ if $\phi_i(x) = 1$, otherwise $\Phi_j(x) \uparrow$.
- Cor.: Every degree containing a r.e. set is below 0'
- Obs.: If a degree contains a r.e. set, the other sets <u>aren't</u> forced to also be r.e
 - E.g.: $H \in 0'$, but H is not r.e

- Thm.: $[A] \leq_m H$ if and only if A is r.e.
 - If $A ≤_m H$ then A is trivially r.e. since H is r.e.
 - If A is r.e. then it has a semi-decider M_i . Let M_j be a new semi-decider such that $\Phi_j(x) \downarrow$ if $\phi_i(x) = 1$, otherwise $\Phi_j(x) \uparrow$.
- Cor.: Every degree containing a r.e. set is below 0'
- Obs.: If a degree contains a r.e. set, the other sets aren't forced to also be r.e.
 - E.g.: $\overline{H} \in 0'$, but \overline{H} is not r.e

- Thm.: $[A] \leq_m H$ if and only if A is r.e.
 - If $A ≤_m H$ then A is trivially r.e. since H is r.e.
 - If A is r.e. then it has a semi-decider M_i . Let M_j be a new semi-decider such that $\Phi_j(x) \downarrow$ if $\phi_i(x) = 1$, otherwise $\Phi_j(x) \uparrow$.
- Cor.: Every degree containing a r.e. set is below 0'
- **Obs.**: If a degree contains a r.e. set, the other sets <u>aren't</u> forced to also be r.e.
 - E.g.: $\overline{H} \in 0'$, but \overline{H} is not r.e

Table of Contents

3 Post's problem

Introduction

- Degrees of Unsolvability
- ► Post's problem

- The jump operator can be iteratively applied to get infinite levels of the hierarchy, i.e. $0 \prec 0' \prec 0'' \prec \dots$ This makes "going upwards" not so interesting.
- Post [Pos44] proved that for each degree *A* there is another degree *B* that is incomparable with *A*.
 - Con: There is at least one Turing degree that is incomparable with both 0 and 0'
- Post's problem: is there a degree d such that $0 \prec d \prec 0'$?

- The jump operator can be iteratively applied to get infinite levels of the hierarchy, i.e. $0 \prec 0' \prec 0'' \prec \dots$ This makes "going upwards" not so interesting.
- Post [Pos44] proved that for each degree *A* there is another degree *B* that is incomparable with *A*.
 - Cor.: There is at least one Turing degree that is incomparable with both 0 and 0'
- **Post's problem**: is there a degree d such that 0 < d < 0'?

- The jump operator can be iteratively applied to get infinite levels of the hierarchy, i.e. $0 \prec 0' \prec 0'' \prec \dots$ This makes "going upwards" not so interesting.
- Post [Pos44] proved that for each degree *A* there is another degree *B* that is incomparable with *A*.
 - Cor.: There is at least one Turing degree that is incomparable with both 0 and 0'
- **Post's problem**: is there a degree d such that 0 < d < 0'?

- The jump operator can be iteratively applied to get infinite levels of the hierarchy, i.e. $0 \prec 0' \prec 0'' \prec \dots$ This makes "going upwards" not so interesting.
- Post [Pos44] proved that for each degree *A* there is another degree *B* that is incomparable with *A*.
 - Cor.: There is at least one Turing degree that is incomparable with both 0 and 0'
- **Post's problem**: is there a degree d such that 0 < d < 0'?

- Post's problem was solved 12 years later independently by Friedberg [Fri57] and Muchnik [Muc56] through the finite injury priority method.
- The method is an improvement on the finite extension method developed by Post in his original works
- Since the FIP method involves constructions that are way more complex than those of the FE method, we'll first give an example of the latter

- Post's problem was solved 12 years later independently by Friedberg [Fri57] and Muchnik [Muc56] through the finite injury priority method.
- The method is an improvement on the finite extension method developed by Post in his original works
- Since the FIP method involves constructions that are way more complex than those of the FE method, we'll first give an example of the latter

- Post's problem was solved 12 years later independently by Friedberg [Fri57] and Muchnik [Muc56] through the finite injury priority method.
- The method is an improvement on the finite extension method developed by Post in his original works
- Since the FIP method involves constructions that are way more complex than those
 of the FE method, we'll first give an example of the latter

- Given a set A, we want to define a countable list of **requirements** $\{R_i\}_{i\in\mathbb{N}}$, each to be satisfied by a string.
- Strings are to be considered as an infinite tape of cells, each marked by an index and containing either a 0, a 1 or an undefined value.
 - In some sense, each string can be viewed as a partial function on $\{0,1\}$
- We start with the empty string and on each step $s \in \mathbb{N}$, we construct a new finite string A_{s+1} that extends A_s and satisfies $R_0, R_1, \ldots, R_{s+1}$.

- Given a set A, we want to define a countable list of **requirements** $\{R_i\}_{i\in\mathbb{N}}$, each to be satisfied by a string.
- Strings are to be considered as an infinite tape of cells, each marked by an index and containing either a 0, a 1 or an undefined value.
 - In some sense, each string can be viewed as a partial function on $\{0, 1\}$.
- We start with the empty string and on each step $s \in \mathbb{N}$, we construct a new finite string A_{s+1} that extends A_s and satisfies $R_0, R_1, \ldots, R_{s+1}$.

- Given a set A, we want to define a countable list of **requirements** $\{R_i\}_{i\in\mathbb{N}}$, each to be satisfied by a string.
- Strings are to be considered as an infinite tape of cells, each marked by an index and containing either a 0, a 1 or an undefined value.
 - In some sense, each string can be viewed as a partial function on $\{0, 1\}$.
- We start with the empty string and on each step $s \in \mathbb{N}$, we construct a new finite string A_{s+1} that extends A_s and satisfies $R_0, R_1, \ldots, R_{s+1}$.

- Given a set A, we want to define a countable list of **requirements** $\{R_i\}_{i\in\mathbb{N}}$, each to be satisfied by a string.
- Strings are to be considered as an infinite tape of cells, each marked by an index and containing either a 0, a 1 or an undefined value.
 - In some sense, each string can be viewed as a partial function on $\{0, 1\}$.
- We start with the empty string and on each step $s \in \mathbb{N}$, we construct a new finite string A_{s+1} that extends A_s and satisfies $R_0, R_1, \ldots, R_{s+1}$.

The Kleene-Post theorem

- For each $i\in\mathbb{N}$, we define the requirement R_{2i} as $\phi_i^A
 eq B$ and R_{2i+1} as $\phi_i^B
 eq A$
 - When $\Phi_i^A(x) \uparrow$ or $\Phi_i^B(x) \uparrow$, the requirements R_{2i}, R_{2i+1} are considered to be satisfied
- Let $\{R_i\}_{i\in\mathbb{N}}$ be the list of requirements
- Let $A_0 = B_0 = \varepsilon$

The Kleene-Post theorem

- For each $i \in \mathbb{N}$, we define the requirement R_{2i} as $\phi_i^A \neq B$ and R_{2i+1} as $\phi_i^B \neq A$
 - When $\Phi_i^A(x) \uparrow$ or $\Phi_i^B(x) \uparrow$, the requirements R_{2i}, R_{2i+1} are considered to be satisfied.
- Let $\{R_i\}_{i\in\mathbb{N}}$ be the list of requirements
- Let $A_0 = B_0 = \varepsilon$

The Kleene-Post theorem

- For each $i \in \mathbb{N}$, we define the requirement R_{2i} as $\phi_i^A \neq B$ and R_{2i+1} as $\phi_i^B \neq A$
 - When $\Phi_i^A(x) \uparrow$ or $\Phi_i^B(x) \uparrow$, the requirements R_{2i}, R_{2i+1} are considered to be satisfied.
- Let $\{R_i\}_{i\in\mathbb{N}}$ be the list of requirements
- Let $A_0 = B_0 = \varepsilon$

The Kleene-Post theorem

- For each $i\in\mathbb{N}$, we define the requirement R_{2i} as $\phi_i^A
 eq B$ and R_{2i+1} as $\phi_i^B
 eq A$
 - When $\Phi_i^A(x) \uparrow$ or $\Phi_i^B(x) \uparrow$, the requirements R_{2i}, R_{2i+1} are considered to be satisfied.
- Let $\{R_i\}_{i\in\mathbb{N}}$ be the list of requirements
- Let $A_0 = B_0 = \varepsilon$

The Kleene-Post theorem

• Consider a generic step $s \in \mathbb{N}$

- We assume that s = 2i since the case 2i + 1 is symmetrically constructed
- Choose any index $x \in \mathbb{N}$ such that $B_s(x) = *$
 - Guaranteed to exist!
- If there is any finite extension A' of A_s such that $\Phi_i^{A'}(x) \downarrow$ then we set:

$$A_{s+1} = A'$$
 $B_{s+1}(y) = \left\{egin{array}{ll} B_s(y) & ext{if } y
eq x \ 1 - \phi_i^{A'}(x) & ext{if } y = x \end{array}
ight.$

The Kleene-Post theorem

- Consider a generic step $s \in \mathbb{N}$
 - We assume that s = 2i since the case 2i + 1 is symmetrically constructed
- Choose any index $x \in \mathbb{N}$ such that $B_s(x) = *$
- If there is any finite extension A' of A_s such that $\Phi_i^{A'}(x) \downarrow$ then we set:

$$A_{s+1} = A'$$
 $B_{s+1}(\gamma) = \left\{ egin{array}{ll} B_s(\gamma) & ext{if } \gamma
eq x \ 1 - \phi_i^{A'}(x) & ext{if } \gamma = x \end{array}
ight.$

The Kleene-Post theorem

- Consider a generic step $s \in \mathbb{N}$
 - We assume that s = 2i since the case 2i + 1 is symmetrically constructed
- Choose any index $x \in \mathbb{N}$ such that $B_s(x) = *$
 - Guaranteed to exist!
- If there is any finite extension A' of A_s such that $\Phi_i^{A'}(x) \downarrow$ then we set:

$$A_{s+1} = A'$$
 $B_{s+1}(y) = \left\{ egin{array}{ll} B_s(y) & ext{if } y
eq x \ 1 - \phi_i^{A'}(x) & ext{if } y = x \end{array}
ight.$

The Kleene-Post theorem

- Consider a generic step $s \in \mathbb{N}$
 - We assume that s = 2i since the case 2i + 1 is symmetrically constructed
- Choose any index $x \in \mathbb{N}$ such that $B_s(x) = *$
 - Guaranteed to exist!
- If there is any finite extension A' of A_s such that $\Phi_i^{A'}(x) \downarrow$ then we set:

$$A_{s+1} = A'$$
 $B_{s+1}(y) = \left\{ egin{array}{ll} B_s(y) & ext{if } y
eq x \ 1 - \phi_i^{A'}(x) & ext{if } y = x \end{array}
ight.$

The Kleene-Post theorem

- Consider a generic step $s \in \mathbb{N}$
 - We assume that s = 2i since the case 2i + 1 is symmetrically constructed
- Choose any index $x \in \mathbb{N}$ such that $B_s(x) = *$
 - Guaranteed to exist!
- If there is any finite extension A' of A_s such that $\Phi_i^{A'}(x) \downarrow$ then we set:

$$A_{s+1} = A'$$
 $B_{s+1}(y) = \left\{ egin{array}{ll} B_s(y) & ext{if } y
eq x \ 1 - \phi_i^{A'}(x) & ext{if } y = x \end{array}
ight.$

The Kleene-Post theorem

- Consider a generic step $s \in \mathbb{N}$
 - We assume that s = 2i since the case 2i + 1 is symmetrically constructed
- Choose any index $x \in \mathbb{N}$ such that $B_s(x) = *$
 - Guaranteed to exist!
- If there is any finite extension A' of A_s such that $\Phi_i^{A'}(x) \downarrow$ then we set:

$$A_{s+1} = A'$$
 $B_{s+1}(\gamma) = \left\{ egin{array}{ll} B_s(\gamma) & ext{if } \gamma
eq x \ 1 - \phi_i^{A'}(x) & ext{if } \gamma = x \end{array}
ight.$

- If no such finite extension A' of A_s exists, then $\Phi_i^{A'}(x) \uparrow$ for all A'.
- Hence, we can trivially set

$$A_{s+1} = A_s$$
 $B_{s+1}(y) = \left\{egin{array}{ll} B_s(y) & ext{if } y
eq x \ ext{rand}(\{0,1\}) & ext{if } y = x \end{array}
ight.$

- The requirement R_{2i} is automatically satisfied since $\Phi_i^{A_{s+1}}(x) \uparrow$.
- $A = \bigcup_{i \in \mathbb{N}} A_i$ and $B = \bigcup_{i \in \mathbb{N}} B_i$ are such that $\Phi_s^A(x) \neq B$ and $\Phi_s^B(x) \neq A$ for all $s \in \mathbb{N}$

- If no such finite extension A' of A_s exists, then $\Phi_i^{A'}(x) \uparrow$ for all A'.
- Hence, we can trivially set

$$A_{s+1} = A_s$$
 $B_{s+1}(\gamma) = \begin{cases} B_s(\gamma) & \text{if } \gamma \neq x \\ \text{rand}(\{0,1\}) & \text{if } \gamma = x \end{cases}$

- The requirement R_{2i} is automatically satisfied since $\Phi_i^{A_{s+1}}(x) \uparrow$.
- $A = \bigcup_{i \in \mathbb{N}} A_i$ and $B = \bigcup_{i \in \mathbb{N}} B_i$ are such that $\Phi_s^A(x) \neq B$ and $\Phi_s^B(x) \neq A$ for all $s \in \mathbb{N}$

- If no such finite extension A' of A_s exists, then $\Phi_i^{A'}(x) \uparrow$ for all A'.
- Hence, we can trivially set

$$A_{s+1} = A_s$$
 $B_{s+1}(y) = \begin{cases} B_s(y) & \text{if } y \neq x \\ \text{rand}(\{0,1\}) & \text{if } y = x \end{cases}$

- The requirement R_{2i} is automatically satisfied since $\Phi_i^{A_{s+1}}(x) \uparrow$.
- $A = \bigcup_{i \in \mathbb{N}} A_i$ and $B = \bigcup_{i \in \mathbb{N}} B_i$ are such that $\Phi_s^A(x) \neq B$ and $\Phi_s^B(x) \neq A$ for all $s \in \mathbb{N}$

- If no such finite extension A' of A_s exists, then $\Phi_i^{A'}(x) \uparrow$ for all A'.
- Hence, we can trivially set

$$A_{s+1} = A_s$$
 $B_{s+1}(y) = \begin{cases} B_s(y) & \text{if } y \neq x \\ \text{rand}(\{0,1\}) & \text{if } y = x \end{cases}$

- The requirement R_{2i} is automatically satisfied since $\Phi_i^{A_{s+1}}(x) \uparrow$.
- $A=igcup_{i\in\mathbb{N}}A_i$ and $B=igcup_{i\in\mathbb{N}}B_i$ are such that $\Phi^A_s(x)
 eq B$ and $\Phi^B_s(x)
 eq A$ for all $s\in\mathbb{N}$

- We observe that this general method can be easily modified and extended.
 - E.g.: we can force that $[A], [B] \leq 0'$ or even $[A'], [B'] \leq 0'$
- However, the construction used can never guarantee the recursive enumerability of the two sets.
- This problem is fixed by the finite injury priority method

Strenghts and weaknesses

- We observe that this general method can be easily modified and extended.
 - − E.g.: we can force that $[A], [B] \le 0'$ or even $[A'], [B'] \le 0'$
- However, the construction used can never guarantee the recursive enumerability of the two sets.
- This problem is fixed by the finite injury priority method

Strenghts and weaknesses

- We observe that this general method can be easily modified and extended.
 - − E.g.: we can force that $[A], [B] \le 0'$ or even $[A'], [B'] \le 0'$
- However, the construction used can never guarantee the recursive enumerability of the two sets.
- This problem is fixed by the finite injury priority method

Strenghts and weaknesses

- We observe that this general method can be easily modified and extended.
 - − E.g.: we can force that $[A], [B] \le 0'$ or even $[A'], [B'] \le 0'$
- However, the construction used can never guarantee the recursive enumerability of the two sets.
- This problem is fixed by the finite injury priority method

- Injury: a requirement gets injured when its satisfaction is not guaranteed anymore.
- The key idea is to assign a priority level to each requirement and force two
 conditions during the construction of the set A:
 - Each requirement has finitely many requirements with higher priority
 - Each requirement can be injured only by requirements with higher priority

- Injury: a requirement gets injured when its satisfaction is not guaranteed anymore.
- The key idea is to assign a priority level to each requirement and force two conditions during the construction of the set *A*:
 - Each requirement has finitely many requirements with higher priority
 - 2. Each requirement can be injured only by requirements with higher priority

- Injury: a requirement gets injured when its satisfaction is not guaranteed anymore.
- The key idea is to assign a priority level to each requirement and force two conditions during the construction of the set *A*:
 - 1. Each requirement has finitely many requirements with higher priority
 - 2. Each requirement can be injured only by requirements with higher priority

- Injury: a requirement gets injured when its satisfaction is not guaranteed anymore.
- The key idea is to assign a priority level to each requirement and force two conditions during the construction of the set A:
 - 1. Each requirement has finitely many requirements with higher priority
 - 2. Each requirement can be injured only by requirements with higher priority

The guery function

- To keep track of injuries, we'll use the following query function
- Let $A \subseteq \mathbb{N}$ and let $i, s, x \in \mathbb{N}$. The query function $\omega_{i,s}^A$ is defined as:

$$\omega_{i,s}^A(x) = \left\{ egin{array}{ll} \max\{z \in \mathbb{N} \mid A(z) ext{ is queried in } \Phi_{i,s}^A\} & ext{if } \Phi_{i,s}^A(x) \\ -1 & ext{otherwise} \end{array}
ight.$$

The query function

- To keep track of injuries, we'll use the following query function
- Let $A \subseteq \mathbb{N}$ and let $i, s, x \in \mathbb{N}$. The query function $\omega_{i,s}^A$ is defined as:

$$\omega_{i,s}^A(\mathbf{x}) = \left\{ \begin{array}{ll} \max\{z \in \mathbb{N} \mid A(z) \text{ is queried in } \Phi_{i,s}^A\} & \text{if } \Phi_{i,s}^A(\mathbf{x}) \downarrow \\ -1 & \text{otherwise} \end{array} \right.$$

[Fri57; Muc56] Thm.: There are two r.e. sets A and B that are incomparable

- The requirements are defined as in the previous theorem
- We say that an index x is a witness for the requirement R_{2i} at step s if $\Phi_{i,s}^{B_s}(x) \downarrow$ and $\phi_{i,s}^{B_s}(x) \neq A_s(x)$ (symmetric definition for R_{2i+1})

The Friedberg-Muchnik theorem

[Fri57; Muc56] Thm.: There are two r.e. sets A and B that are incomparable

- The requirements are defined as in the previous theorem
- We say that an index x is a **witness** for the requirement R_{2i} at step s if $\Phi_{i,s}^{B_s}(x) \downarrow$ and $\phi_{i,s}^{B_s}(x) \neq A_s(x)$ (symmetric definition for R_{2i+1})

- On each step $s \in \mathbb{N}$, for each $j \in \mathbb{N}$ we compute:
 - A witness $w_{i,s}$ for R_i at step s
 - A restriction index $r_{j,s}$ to dictate the priority of the requirements
- ullet We'll enforce that $w_{j,s}=r_{j,s}=-1$ holds when no witness is known for R_j at step s

- On each step $s \in \mathbb{N}$, for each $j \in \mathbb{N}$ we compute:
 - A witness $w_{j,s}$ for R_j at step s
 - A restriction index $r_{j,s}$ to dictate the priority of the requirements
- We'll enforce that $w_{j,s} = r_{j,s} = -1$ holds when no witness is known for R_j at step s

- On each step $s \in \mathbb{N}$, for each $j \in \mathbb{N}$ we compute:
 - A witness $w_{j,s}$ for R_j at step s
 - A restriction index $r_{j,s}$ to dictate the priority of the requirements
- We'll enforce that $w_{j,s}=r_{j,s}=-1$ holds when no witness is known for R_j at step s

- On each step $s \in \mathbb{N}$, for each $j \in \mathbb{N}$ we compute:
 - A witness $w_{j,s}$ for R_j at step s
 - A restriction index $r_{j,s}$ to dictate the priority of the requirements
- ullet We'll enforce that $w_{j,s}=r_{j,s}=-1$ holds when no witness is known for R_j at step s

- Let $A_0=B_0=arepsilon$ and let $w_{j,0}=r_{j,0}=-1$ for each $j\in\mathbb{N}.$
- Consider a generic step $s \in \mathbb{N}$.
- Assume s = 2i.
- If $w_{2i,s} \neq -1$ we propagate the previous values because R_{2i} already has a witness.
 - We set $A_{s+1}=A_s$, $B_{s+1}=B_s$, $w_{2i,s+1}=w_{2i,s}$ and $r_{2i,s+1}=r_{2i,s}$

- Let $A_0=B_0=arepsilon$ and let $w_{j,0}=r_{j,0}=-1$ for each $j\in\mathbb{N}.$
- Consider a generic step $s \in \mathbb{N}$.
 - Assume s=2i.
- If $w_{2i,s} \neq -1$ we propagate the previous values because R_{2i} already has a witness.
 - We set $A_{s+1}=A_s,\,B_{s+1}=B_s,\,W_{2i,s+1}=W_{2i,s}$ and $r_{2i,s+1}=r_{2i,s}$

- Let $A_0=B_0=arepsilon$ and let $w_{j,0}=r_{j,0}=-1$ for each $j\in\mathbb{N}.$
- Consider a generic step $s \in \mathbb{N}$.
 - Assume s = 2i.
- If $w_{2i,s} \neq -1$ we propagate the previous values because R_{2i} already has a witness.
 - We set $A_{s+1}=A_s$, $B_{s+1}=B_s$, $W_{2i,s+1}=W_{2i,s}$ and $r_{2i,s+1}=r_{2i,s}$

- Let $A_0=B_0=arepsilon$ and let $w_{j,0}=r_{j,0}=-1$ for each $j\in\mathbb{N}$.
- Consider a generic step $s \in \mathbb{N}$.
 - Assume s = 2i.
- If $w_{2i,s} \neq -1$ we propagate the previous values because R_{2i} already has a witness.
 - We set $A_{s+1} = A_s$, $B_{s+1} = B_s$, $w_{2i,s+1} = w_{2i,s}$ and $r_{2i,s+1} = r_{2i,s}$

- Let $A_0=B_0=arepsilon$ and let $w_{j,0}=r_{j,0}=-1$ for each $j\in\mathbb{N}$.
- Consider a generic step $s \in \mathbb{N}$.
 - Assume s = 2i.
- If $w_{2i,s} \neq -1$ we propagate the previous values because R_{2i} already has a witness.
 - We set $A_{s+1} = A_s$, $B_{s+1} = B_s$, $w_{2i,s+1} = w_{2i,s}$ and $r_{2i,s+1} = r_{2i,s}$

- Assume that $w_{2i,s} = -1$. Let x be the minimum index such that $A_s(x) = *$ and such that for all k < 2i it holds that $x > r_{k,s}$.
- If $\neg \Phi_{i,s}^{B_s}(x) \downarrow$, we preserve that $w_{2i,s+1} = r_{2i,s+1} = -1$ and propagate $A_{s+1} = A_s$, $B_{s+1} = B_s$. This trivially satisfies the requirement R_{2i} .
- Otherwise, we set $w_{2i,s+1} = x$ and $r_{2i,s+1} = \max(x, \omega_{i,s}^{B_s}(x))$, propagate $B_{s+1} = B_s$ and set:

$$A_{s+1}(y) = \left\{ egin{array}{ll} A_s(y) & ext{if } y
eq x \ & ext{if } y = x ext{ and } \phi_{i,s}^{B_s}(x) = 0 \ 1 & ext{if } y = x ext{ and } \phi_{i,s}^{B_s}(x) = 0 \ \end{array}
ight.$$

- Assume that $w_{2i,s} = -1$. Let x be the minimum index such that $A_s(x) = *$ and such that for all k < 2i it holds that $x > r_{k,s}$.
- If $\neg \Phi_{i,s}^{B_s}(x) \downarrow$, we preserve that $w_{2i,s+1} = r_{2i,s+1} = -1$ and propagate $A_{s+1} = A_s$, $B_{s+1} = B_s$. This trivially satisfies the requirement R_{2i} .
- Otherwise, we set $w_{2i,s+1} = x$ and $r_{2i,s+1} = \max(x, \omega_{i,s}^{B_s}(x))$, propagate $B_{s+1} = B_s$ and set:

$$A_{s+1}(y) = \left\{egin{array}{ll} A_s(y) & ext{if } y
eq x \ st & ext{if } y = x ext{ and } \phi_{i,s}^{B_s}(x) = 0 \ 1 & ext{if } y = x ext{ and } \phi_{i,s}^{B_s}(x) = 0 \ \end{array}
ight.$$

- Assume that $w_{2i,s} = -1$. Let x be the minimum index such that $A_s(x) = *$ and such that for all k < 2i it holds that $x > r_{k,s}$.
- If $\neg \Phi_{i,s}^{B_s}(x) \downarrow$, we preserve that $w_{2i,s+1} = r_{2i,s+1} = -1$ and propagate $A_{s+1} = A_s$, $B_{s+1} = B_s$. This trivially satisfies the requirement R_{2i} .
- Otherwise, we set $w_{2i,s+1} = x$ and $r_{2i,s+1} = \max(x, \omega_{i,s}^{B_s}(x))$, propagate $B_{s+1} = B_s$ and set:

$$A_{s+1}(y) = \left\{egin{array}{ll} A_s(y) & ext{if } y
eq x \ * & ext{if } y = x ext{ and } \phi^{B_s}_{i,s}(x) = 1 \ 1 & ext{if } y = x ext{ and } \phi^{B_s}_{i,s}(x) = 0 \end{array}
ight.$$

The Friedberg-Muchnik theorem

Claim: For each $j \in \mathbb{N}$ it holds that:

- 1. R_j is injured a finite number of times
- 2. There is a step s_0 such that for all $s \ge s_0$ and for all k < j no new index is added to A_s *Proof.*
 - The requirement R_j is injured at step s if some $x \le r_{j,s}$ is added to A_s , which happens only when there is a k < j that adds a new index to A_s , i.e. when

$$w_{j,k} = -1$$
 $\Phi_{j,s}^{B_s} \downarrow \phi_{j,s}^{B_s}(x) = 0$

In other words, statement (2) of the claim follows from statement (1) by construction.

The Friedberg-Muchnik theorem

Claim: For each $j \in \mathbb{N}$ it holds that:

- 1. R_j is injured a finite number of times
- **2.** There is a step s_0 such that for all $s \ge s_0$ and for all k < j no new index is added to A_s *Proof.*
 - The requirement R_j is injured at step s if some $x \le r_{j,s}$ is added to A_s , which happens only when there is a k < j that adds a new index to A_s , i.e. when

$$w_{j,k} = -1$$
 $\Phi_{j,s}^{B_s} \downarrow \quad \phi_{j,s}^{B_s}(x) = 0$

• In other words, statement (2) of the claim follows from statement (1) by construction.

The Friedberg-Muchnik theorem

- ullet Let $g_{j,s} = \sum\limits_{\substack{k < j \ s.t. \ w_k, s
 eq -1}} 2^{-(k+1)}$ be the injure value of R_j at step s
- When R_j is injured at step s, the smallest value k < j such that $w_{k,s} \neq w_{k,s+1}$ must satisfy $w_{k,s} = -1$ and $w_{k,s+1} \neq -1$ by construction. Thus:

$$g_{j,s+1} - g_{j,s} \geq 2^{-(j+1)} - \sum_{k < h < j} 2^{-(h+1)} = 2^{-j}$$

• Hence, for each step s we have that $0 \le g_{j,s} \le 1 - 2^{-j}$, concluding that R_j can be injured at most $2^j - 1$ times

The Friedberg-Muchnik theorem

- Let $g_{j,s} = \sum\limits_{\substack{k < j \ s.t. \\ w_k, s \neq -1}} 2^{-(k+1)}$ be the injure value of R_j at step s
- When R_j is injured at step s, the smallest value k < j such that $w_{k,s} \neq w_{k,s+1}$ must satisfy $w_{k,s} = -1$ and $w_{k,s+1} \neq -1$ by construction. Thus:

$$g_{j,s+1} - g_{j,s} \ge 2^{-(j+1)} - \sum_{k < h < j} 2^{-(h+1)} = 2^{-j}$$

• Hence, for each step s we have that $0 \le g_{j,s} \le 1 - 2^{-j}$, concluding that R_j can be injured at most $2^j - 1$ times

The Friedberg-Muchnik theorem

- Let $g_{j,s} = \sum\limits_{\substack{k < j \ s.t. \ w_k, s
 eq -1}} 2^{-(k+1)}$ be the injure value of R_j at step s
- When R_j is injured at step s, the smallest value k < j such that $w_{k,s} \neq w_{k,s+1}$ must satisfy $w_{k,s} = -1$ and $w_{k,s+1} \neq -1$ by construction. Thus:

$$g_{j,s+1} - g_{j,s} \ge 2^{-(j+1)} - \sum_{k < h < j} 2^{-(h+1)} = 2^{-j}$$

• Hence, for each step s we have that $0 \le g_{j,s} \le 1-2^{-j}$, concluding that R_j can be injured at most 2^j-1 times

The Friedberg-Muchnik theorem

- We observe that there is always a large enough step s_0^* satisfying statements (1) and (2) of the Claim. This step guarantees that for each $j \in \mathbb{N}$ it holds that $\lim_{s \to +\infty} w_{j,s}$ and $\lim_{s \to +\infty} r_{j,s}$ exist and are finite.
- This concludes that, eventually, each requirement R_j will be satisfied by the construction. Thus, $A=\bigcup\limits_{i\in\mathbb{N}}A_i$ and $B=\bigcup\limits_{i\in\mathbb{N}}B_i$ are such that $\Phi_s^A(x)\neq B$ and $\Phi_s^B(x)\neq A$ for all $s\in\mathbb{N}$
- Moreover, the use of the restriction values $r_{j,s}$ allows us to recursively enumerate the sets A and B by restricting our interest to the indexes between 0 and $r_{j,s}$ for each $j \in \mathbb{N}$

26/28

The finite injury priority method Other results

- Infinite Injury Priority Argument: Sacks [Sac64] proved that the above construction can be extended to a countably infinite argument
- Density of r.e. sets: For each pair of r.e. sets A, B there is another r.e. set such that
 A <_T C <_T B
- Simpson [Sim77] proved that the first-order theory of $\mathcal D$ over the language $(\preceq, =)$ is many-one equivalent to the theory of true second-order arithmetic.

The finite injury priority method Other results

- Infinite Injury Priority Argument: Sacks [Sac64] proved that the above construction can be extended to a countably infinite argument
- Density of r.e. sets: For each pair of r.e. sets A,B there is another r.e. set such that $A <_T C <_T B$
- Simpson [Sim77] proved that the first-order theory of $\mathcal D$ over the language $(\preceq,=)$ is many-one equivalent to the theory of true second-order arithmetic.

- Infinite Injury Priority Argument: Sacks [Sac64] proved that the above construction can be extended to a countably infinite argument
- Density of r.e. sets: For each pair of r.e. sets A, B there is another r.e. set such that
 A < T C < T B
- Simpson [Sim77] proved that the first-order theory of \mathcal{D} over the language $(\preceq, =)$ is many-one equivalent to the theory of true second-order arithmetic.

Bibliography

[Fri57] Richard M. Friedberg. "Two recursively enumerable sets of incomparable degrees of unsolvability (solution of Post's problem, 1944)". In: (1957).

[KP54] Stephen C. Kleene and Emil L. Post. "The upper semi-lattice of degrees of recursive unsolvability". In: (1954).

[Muc56] Albert A. Muchnik. "On the unsolvability of the problem of reducibility in the theory of algorithms". In: (1956).

[Pos44] Emil L. Post. "Recursively enumerable sets of positive integers and their decision problems". In: (1944).

[Sac64] Gerald E. Sacks. "The Recursively Enumerable Degrees are Dense". In: (1964).

[Sim77] Stephen G. Simpson. "First-Order Theory of the Degrees of Recursive Unsolvability". In: (1977).

[Tur37] Alan M. Turing. "On Computable Numbers, with an Application to the Entscheidungsproblem". In: (1937).