This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Hiroshi; Apartment 8, 6108 S.W. 18th Drive, Portland, OR

(74) Agents: BLASDALE, John, H., C. et al.; Schering-Plough Corporation, Patent Department K-6-1 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).

	INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)									
	(51) International Patent Classification 6:		(1	11) International Publication Number: WO 95/02053						
	C12N 15/12, C07K 16/18, 14/47, A61K 38/17, G01N 33/68, 33/53, C12Q 1/68	A1	(4	13) International Publication Date: 19 January 1995 (19.01.95)						
4	(21) International Application Number: PCT/USS			(81) Designated States: AM, AU, BB, BG, BR, BY, CA, CN, CZ, FI, GE, HU, JP, KG, KR, KZ, LK, LT, LV, MD, MG,						
	(22) International Filing Date: 5 July 1994 (4)							
	(30) Priority Data:			CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO						
	08/088,483 6 July 1993 (06.07.93)		JS	patent (KE, MW, SD).						
ļ	08/099,998 30 July 1993 (30.07.93)	_	JS							
1	08/113,971 30 August 1993 (30.08.93)	J	JS							
1	08/148,061 5 November 1993 (05.11.93) (JS	Published						
1	08/222,626 4 April 1994 (04.04.94)	Ţ	JS	With international search report.						
				Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of						
	(71) Applicant: SCHERING CORPORATION [US/US]; 2 loping Hill Road, Kenilworth, NJ 07033 (US).	2000 Ga								
	(72) Inventors: ARAI, Naoko; 648 Georgia Avenue, Palo 94306 (US). MASUDA, Esteban, S.; 2250 Latha #29, Mountain View, CA 94040 (US). TOKI	ım Stre	et							

(54) Title: PURIFIED COMPONENTS OF MAMMALIAN TRANSCRIPTION REGULATION COMPLEXES, AND ANALOGS

(57) Abstract

97201 (US).

Components of transcription regulation factors from a mammal, reagents related thereto including purified proteins, specific antibodies, and nucleic acids encoding said protein are provided. Methods of using said reagents and diagnostic kits are also provided.

.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑÜ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Beain	IT	Italy	PL	Poland
BR	Brazil .	JР	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo.		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	u	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		•		

PURIFIED COMPONENTS OF MAMMALIAN TRANSCRIPTION REGULATION COMPLEXES, AND ANALOGS

FIELD OF THE INVENTION

The present invention provides compositions related to proteins which function in controlling development and differentiation of mammalian cells, e.g., cells of a mammalian immune system. In particular, it provides proteins and mimetics which regulate development, differentiation, and expression of various genes, including various cytokines.

BACKGROUND OF THE INVENTION

Rapid induction of cytokine production, including interleukin-2 (IL-2) and 10 granulocyte-macrophage colony-stimulating factor (GM-CSF) by the stimulation of antigen-specific receptors of T lymphocytes, is an essential feature for acquired immune and inflammatory responses. Extensive studies have shown that antigen stimulation of the T-cell receptor triggers two types of signal transduction systems which result in induction of the lymphokine genes. One 15 pathway is mediated by mobilization of intracellular Ca2+ promoted by phosphoinositol-turnover coupled to T-cell receptor/CD3 complex stimulation. and the other is the activation of protein kinase C. These two pathways, which are required for transcriptional activation of the lymphokine genes, can be mimicked by the Ca²⁺ ionophore A23187 and phorbol myristic acid (PMA). The 20 immunosuppressive drugs cyclosporin A (CsA) and FK506 inhibit the stimulation elicited by A23187 and PMA.

The properties of one of the nuclear factors (here referred to as NF-CLEO_Y) that binds to the Conserved Lymphokine gene Element Q (CLEO) resembles that of the Nuclear Factor of Activated I cells (NF-AT), i.e. it exhibits inducibility by both PMA) and A23187 and sensitivity to CsA or cycloheximide.

25

The transcription regulation is mediated by quaternary protein complexes comprising a number of proteins. The AP-1 subcomponent of an NF-AT complex

10

15

20

25

30

35

is made up of two proteins, a representative of the jun family, and a representative of the fos family; see Jain et al. (1992) <u>Nature</u> 356:801-804. The lack of complete characterization of the other components of the NF-AT complex has led to the inability to understand the important components and interactions which regulate cytokine transcription and expression.

NF-AT is a lymphoid-specific transcription factor involved in regulation of the IL-2 gene and is considered to be an important regulator in early T cell activation. Recent studies have shown that NF-AT is a multimeric protein complex composed of the previously identified transcription factor AP-1 and a cytoplasmic component. See: Jain et al. (1992) Nature 356:801-804; Northrop et al. (1993) J. Biol. Chem. 268:2917-2923; and McCaffrey et al. (1993) J. Biol. Chem. 268:3747-3752. It has been reported that the appearance of the cytoplasmic component of NF-AT in the nucleus occurs in a Ca²⁺-dependent manner and is blocked by CsA and FK-506 through inhibition of the Ca²⁺/calmodulin-dependent protein phosphatase, calcineurin. However, the component of NF-AT which is associated with AP-1 has not been well characterized biochemically.

Isolation of these components is difficult because the amounts are very low within cells. Biochemical characterization has been blocked by the inability to produce sufficient amounts of purified proteins to perform *in vitro* studies. Thus, the mechanisms of transcriptional regulation of cytokines have been poorly understood. As cytokine and immune regulation are closely related and are basic features of immune physiology, understanding the control mechanisms will reap great benefits for medically relevant abnormalities in immune responsiveness.

SUMMARY OF THE INVENTION

The present invention is based, in part, upon the isolation of various components of a complex of proteins which interact to function as a transcription regulatory entity. The purified component, designated NF-AT120, interacts with AP-1 proteins (comprising a member of each of the jun and fos protein families) to form a multiprotein complex which binds to an NF-AT recognition sequence. The invention identifies a common factor that regulates transcriptional activation of the GM-CSF and IL-2 genes upon T cell activation. In fact, there exist at least three closely related subfamilies of NF-AT proteins, designated herein as type C, type P, and type X subfamilies. Each subfamily consists of closely related variants.

PCT/US94/07297

5

10

15

20

25

30

35

The invention embraces purified natural forms as well as analogues and homologues, e.g., mutations (muteins) of the natural sequence, fusion proteins, chemical mimetics, antibodies, and other structural or functional analogues. It is also directed to isolated genes encoding proteins of the invention. Various uses of these different protein or nucleic acid compositions are also provided.

The present invention provides a substantially pure component of an NF-AT protein complex, or peptide thereof, or a fusion protein comprising NF-AT120 protein sequence; an antibody specific for binding to an NF-AT120 protein; and a nucleic acid encoding an NF-AT120 protein or fragment thereof.

In embodiments encompassing a substantially pure NF-AT120 protein or peptide thereof, the protein or peptide can be from a warm blooded animal selected from the group of birds and mammals, including a mouse, rat, or human; can comprise at least one polypeptide segment of SEQ ID NO: 1 through 5, 35, 37, 39 and 41; can exhibit a post-translational modification pattern distinct from natural NF-AT120 protein; can exhibit at least one of the features disclosed in Table 1; or can induce transcription of a cytokine. (All SEQ IDs are given together immediately before the Claims.) A further embodiment is a composition comprising such a protein and a pharmaceutically acceptable carrier.

In antibody embodiments, the antigen can be a mammalian protein, e.g., from a mouse, rat, or human; the antibody can be raised against a peptide sequence of SEQ ID NO: 1 through 5, 35, 37, 39 and 41; the antibody can be a monoclonal antibody; or the antibody can be labeled.

In nucleic acid embodiments, the nucleic acid can comprise a sequence of SEQ ID NO: 6 through 24, 34, 36, 38 and 40.

The invention also embraces a kit comprising a substantially pure NF-AT120 protein or fragment, e.g., as a positive control; an antibody which specifically binds an NF-AT120 protein; or a nucleic acid encoding an NF-AT120 protein or peptide.

The availability of these reagents also provides methods of modulating physiology or development of a cell comprising contacting said cell with an NF-AT120 protein or with an analogue or homologue thereof, e.g., by introducing said NF-AT120 protein or analogue or homologue thereof into a cell. For example, an inhibitor might be an antibody against a mammalian NF-AT120 protein or the cell may be a hematopoietic cell, including a lymphoid cell.

5

10

15

20

25

30

35

-4-

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a mobility shift assay of affinity-purified NF-AT. Nuclear extracts of PMA/A23187-stimulated Jurkat cells (NE) were assayed in the presence of 250 ng/µl poly-dldC (lanes 1 and 5). Mobility shift assays of affinity-purified NF-AT (30 ng) were carried out without poly-dldC (lanes 2-4, and 6-11) using ³²P-labeled NF-AT and CLE0 oligonucleotide as probes. The probes are listed at the top with the competitors identified below each probe.

Figure 2 shows a purification of the 120 kDa component of NF-AT (NF-AT120) by Mono Q chromatography. Affinity-purified NF-AT was applied in the presence of 6 M urea and eluted by KCl gradient (0.05 - 0.8 M) from a Mono Q column. Mobility shift assays were carried out in a solution containing 1 μl of each fraction, 100 ng/μl polydldC in the absence (Figure 2A) or presence (Figure 2B) of 10 ng of affinity-purified Jurkat AP-1. The right lane in Figure 2B shows NF-AT binding of 10 ng of affinity-purified Jurkat AP-1. Figure 2C shows analysis by SDS-7.5% PAGE (polyacrylamide gel electrophoresis) of each fraction from Mono Q chromatography. The left lane (M) indicates molecular weight standards (kDa). Fraction numbers are listed below each figure.

Figure 3 shows that recombinant cJun/cFos heterodimer reconstitutes NF-AT DNA-binding with the NF-AT120 protein. Mobility shift assays were carried out using NF-AT DNA probe in a solution containing 10 ng of affinity-purified Jurkat AP-1 (lane 2) or various combinations of recombinant cJun (0.2 μ M) and cFos (0.2 μ M) in either the presence (+) or absence (–) of the Mono Q-purified 120 kDa protein (1 μ I). The proteins are listed on top.

Figure 4 shows that NF-AT120 reconstitutes the DNA-binding activity to NF-AT and CLE0 elements with AP-1. Figure 4A shows analysis by SDS-7.5 % PAGE of purified NF-AT120 (lane 1). The left lane (M) indicates molecular weight standards (kDa). Figure 4B shows mobility shift assays carried out using NF-AT DNA probe and CLE0 DNA probe. The reaction solutions contain the 120 kDa protein from Mono Q fraction ((Q), lanes 2, 3, 7, 8,) or renatured NF-AT120 protein from gel slice ((G), lanes 4, 5, 9, 10) in either the presence (+AP-1) or absence of 10 ng of affinity-purified Jurkat AP-1. NF-AT DNA binding of affinity-purified NF-AT (30 ng) is indicated in lane 1.

Figure 5 is a diagrammatic representation showing how proteins of the present invention are currently believed to bind to dsDNA. However, the validity of the claims of the present invention is not dependent upon the correctness of this belief. In this Figure, PKC represents protein kinase C, CHX represents cyclohexamide, A is AP-1 as defined herein, CsA is cyclosporin A, and B

(NF-ATc) represents the C family of NF-AT, which is further defined in the Sequence Listing.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

GENERAL

5 The present invention provides the amino acid sequences of and DNA sequences encoding various mammalian proteins which exhibit properties of regulating transcription of immunologically relevant proteins, e.g., cytokines. These proteins are designated components of a Nuclear Factor of Activated I cells (NF-AT) because they were initially characterized as proteins which 10 associate in a complex and regulate transcription of various cytokines, e.g., IL-2 and GM-CSF. The proteins are one component, referred to herein as NF-AT120, and exhibit features characteristic of a transcriptional regulatory factor component, e.g., specific association with particular genetic regulatory sequences when associated with other components, i.e., AP-1, of the complex. The best characterized embodiment was initially described in humans, and 15 various subclasses have been identified herein. Similar sequences for proteins in other mammalian species, e.g., monkeys, rats, and mice, should also be available. The descriptions below are directed, for exemplary purposes, to human NF-AT120 proteins, but are likewise applicable to related embodiments 20 from other species.

Purified NF-AT120 proteins

The present invention provides substantially purified NF-AT120 proteins, derived from either natural sources or recombinant sources. The proteins exhibit properties as described, both physicochemical and biological. See Table 1:

10

15

20

25

30

35

Table 1: Physical properties of human NF-AT120 protein.

SDS-Polyacrylamide gel electrophoresis: reduced migration approximately 120 Kd.

Precipitation of the NF-AT complex with ammonium sulfate (at 4°C.): found in 20-40% saturated (NH₄)₂SO₄ pellet.

Affinity binding of NF-AT complex to a CLE0 DNA sequence or NF-AT DNA binding sequence, but competed by oligonucleotides containing NF-AT DNA binding and AP-1 DNA binding sites.

Reconstitution with AP-1 (recombinant cJun/cFos heterodimer) provides NF-AT complex.

Anion Exchange Chromatography (KCl gradient in 6 M urea, 50 mM KCl, 20 mM HEPES (pH 7.9), 1 mM EGTA, 1 mM EDTA) on Mono Q column): activity eluted between 200 and 300 mM KCl.

Gel Filtration (SUPEROSE 6 column, Pharmacia HR16/50): the NF-AT complex ran with an apparent molecular weight of 440 kD, in 0.1 M KCl, 20 mM HEPES (pH 7.9), 1 mM EDTA, 1 mM EGTA, 1 mM DTT, 0.1 mM PMSF, 10 μ g/ml leupeptin, 5% glycerol.

NF-AT DNA binding affinity chromatography in 0.2% NP-40, washed with 1 M urea, elutes in 0.3 M KCl without urea.

Lys C protease fragments of a purified human NF-AT120 protein amino acid sequence are presented as SEQ ID NO: 1 through 5, reading from the amino to the carboxy end. Other peptide sequences are provided by sequences from cloned nucleic acids encoding the proteins; see SEQ ID NO: 35, 37, 39, and 41. These amino acid sequences are important in providing partial sequence information in the protein, to enable the protein to be distinguished from other proteins. Moreover, the peptide sequences allow preparation of peptides to generate antibodies that recognize such segments, and/or allow preparation of oligonucleotide probes, both of which are strategies for isolation, e.g., cloning, of genes encoding such sequences. In addition, another peptide-sequencing experiment showed two peptides, whose overlapped sequence reads, by amino acid cycle:

1:V,P; 2:A,Y; 3:S,N; 4:P,P; 5:P,L; 6:A,S; 7:G,S; 8:P,L; 9:A,S; 10:Y,G; 11:P,E; 12:P,D; 13:D,P; 14:G,V; 15:R,L; 16:D,F; 17:G,Y; 18:E,P; 19:P,L; 20:D,K; 21:R.

As used herein, the term "human NF-AT120 protein" shall encompass, when used in a protein context, a protein containing at least some of the amino acid sequences of SEQ ID NO: 1 through 5, 35, 37, 39, or 41, or a significant fragment of such a protein, or protein sequences encoded by isolated NF-AT120 genes or transcripts. SEQ ID NO: 1 corresponds to residues 389-395 of SEQ ID NO: 36; SEQ ID NO: 3 corresponds to residues 279-287; residues 2-15 of SEQ ID NO: 4 correspond to residues 415-428; and residues 1-5 of SEQ ID NO: 5 correspond to residues 677-681. SEQ ID NO: 5 may be encoded by an alternative splicing variant of a message.

The term also refers to a human-derived polypeptide which exhibits similar biological function or interacts with NF-AT120 protein-specific binding components, including AP-1 proteins. The specific binding components, which include antibodies, typically bind to an NF-AT120 protein with high affinity, e.g., at better than about 100 nM, usually at better than about 30 nM or about 10 nM, and more preferably at better than about 3 nM. Under certain circumstances, the binding may require additional physiologically relevant cofactors or components. Homologous proteins would be found in mammalian species other than human, e.g., in other primates, in rats, and in mice. Non-mammalian species should also possess structurally or functionally related genes and proteins.

The term "polypeptide" as used herein includes a significant fragment or segment, and encompasses a stretch of amino acid residues of at least about 8 amino acids, generally at least 12 or 16 amino acids, preferably at least 20 or 24 amino acids, and, in particularly preferred embodiments, at least 28 or even 30 or more amino acids.

The term "binding agent" or "binding composition" refers to molecules that bind with specificity to NF-AT120. One embodiment includes antibodies that bind specifically to NF-AT120. A second embodiment includes proteins, like protein complex AP-1, that complex specifically with NF-AT120 protein or specifically associate with it, as in a natural physiologically relevant protein-protein interaction. The binding agent or binding composition may be a polymer or a chemical reagent. A functional analog thereto may be a protein with structural modifications, or may be a wholly unrelated molecule, e.g., one which has a molecular shape which interacts with the appropriate binding determinants, preferably exhibiting similar biological properties.

Solubility of a polypeptide or fragment depends upon the environment and the polypeptide. Various soluble fragments of the NF-AT120 are also included. Many variables affect polypeptide solubility, including temperature,

10

15

5

20

25

30

35

PCT/US94/07297

10

15

20

25

30

35

electrolyte environment, size and molecular characteristics of the polypeptide, and nature of the solvent. Typically, the temperature at which the polypeptide is used ranges from about 4°C to about 65°C. Usually the temperature at use is higher than about 18°C and more usually higher than about 22°C. For diagnostic purposes, the temperature will usually be about room temperature or higher, but less than the denaturation temperature of components in the assay. For therapeutic purposes, the temperature will usually be body temperature, typically about 37°C for humans, though under certain situations the temperature may be raised or lowered *in situ* or *in vitro*.

The electrolytes will usually approximate *in situ* physiological conditions, but may be modified to higher or lower ionic strength where advantageous. The actual ions may be modified, e.g., to conform to standard buffers used in physiological or analytical contexts.

The size and structure of the polypeptide should generally be in a substantially stable state, and usually not in a denatured state. The polypeptide may be associated with other polypeptides in a quaternary structure, e.g., to form an NF-AT complex, or to confer solubility, or associated with lipids or detergents in a manner which approximates natural lipid bilayer interactions.

Physiologically, the NF-AT120 typically associates with AP-1 proteins to confermany of its natural biological functions.

The solvent will usually be a biologically compatible buffer, of a type used for preservation of biological activities, and will usually approximate a physiological solvent. Usually the solvent will have a pH near neutrality, typically between about 5 and 10, and preferably about 7.5. On some occasions, a detergent will be added, typically a mild non-denaturing one, e.g., CHS or CHAPS, in a concentration low enough to avoid significant disruption of structural or physiological properties of the protein.

Solubility is reflected by sedimentation measured in Svedberg units, which are a measure of the sedimentation velocity of a molecule under particular conditions. The determination of the sedimentation velocity was classically performed in an analytical ultracentrifuge, but is typically now performed in a standard ultracentrifuge; see: Freifelder (1982) Physical Biochemistry (2d ed.), W.H. Freeman; and Cantor and Schimmel (1980) Biophysical Chemistry, parts 1-3, W.H. Freeman & Co., San Francisco; each of which is hereby incorporated herein by reference. As a crude determination, a sample containing a putatively soluble polypeptide is spun in a standard full sized ultracentrifuge at about 50K rpm for about 10 minutes, and soluble molecules will remain in the supernatant.

A soluble particle or polypeptide will typically be less than about 30S, usually less than about 15S or even 10S, preferably less than about 6S, and, in particular preferred embodiments, less than about 4S or even 3S.

The NF-AT120 protein exhibits important structural and physical characteristics which confer an important biological function. The first is an ability to associate with other components, e.g., AP-1 proteins, to form a complex having affinity for specific DNA sequences. This specificity of binding provides a biological function in regulation of both IL-2 and GM-CSF cytokine expression. These two features have been utilized to isolate NF-AT120.

10 Physical Variants

5

15

20

25

30

35

This invention also encompasses proteins or peptides having substantial amino acid sequence homology with the amino acid sequences of the NF-AT120 protein. The variants include species or allelic variants.

Amino acid sequence homology, or sequence identity, is determined by optimizing residue matches, if necessary introducing gaps as required. This changes when conservative substitutions are considered to be matches. Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid; asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. Homologous amino acid sequences are typically intended to include natural allelic and interspecies variations in each respective protein sequence.

Typical homologous proteins or peptides will have from 25-100% homology (if gaps can be introduced) to 50-100% homology (if conservative substitutions are included) with the amino acid sequence of the NF-AT120 protein. Homology measures will be at least about 35%, generally at least 45%, often at least 55%, typically at least 65%, usually at least 75%, preferably at least 80%, and in particularly preferred embodiments, at least 85% or more. See also: Needleham et al. (1970) J. Mol. Biol., 48:443-453; Sankoff et al. (1983) Chapter One in Time Warps. String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison, Addison-Wesley, Reading, MA; and software packages from IntelliGenetics, Mountain View, CA, and from the University of Wisconsin Genetics Computer Group, Madison, WI.

The isolated NF-AT120 protein DNA can be readily modified by nucleotide substitutions, nucleotide deletions, nucleotide insertions, and inversions of nucleotide stretches. These modifications result in novel DNA

5

10

15

20

25

30

35

sequences which encode these antigens, their derivatives, or proteins having similar physiological, immunogenic, or antigenic activity. These modified sequences can be used to produce mutant antigens or to enhance expression. Enhanced expression may involve gene amplification, increased transcription. increased translation, and other mechanisms. Such mutant NF-AT120 protein derivatives include predetermined or site-specific mutations of the respective protein or its fragments. "Mutant NF-AT120 protein" encompasses a polypeptide otherwise falling within the homology definition of the human NF-AT120 protein as set forth above, but having an amino acid sequence which differs from that of NF-AT120 protein as found in nature, whether by way of deletion, substitution, or insertion. In particular, "site specific mutant NF-AT120 protein" generally includes proteins having significant homology with a protein having sequences of SEQ ID NO: 1 through 5, 35, 37, 39 or 41, and sharing various biological activities, e.g., antigenic or immunogenic, with those sequences, and preferred embodiments thereof contain most of the disclosed sequences. Similar concepts apply to different NF-AT120 proteins, particularly those found in various warm blooded animals, e.g., mammals and birds. As stated before, it is emphasized that descriptions are generally meant to encompass all NF-AT120 proteins, not limited to the embodiment specifically discussed.

Although site-specific mutation sites are predetermined, mutants need not be site specific. NF-AT120 protein mutagenesis can be conducted by making amino acid insertions or deletions. Substitutions, deletions, insertions, or any combinations may be generated to arrive at a final construct. Insertions include amino- or carboxy-terminal fusions. Random mutagenesis can be conducted at a target codon and the expressed mutants can then be screened for the desired activity. Methods for making substitution mutations at predetermined sites in DNA having a known sequence are well known in the art, e.g., by M13 primer mutagenesis or polymerase chain reaction (PCR) techniques; see also Sambrook et al. (1989) and Ausubel et al. (1987 and Supplements).

The mutations in the DNA normally should not place coding sequences out of reading frames and preferably will not create complementary regions that could hybridize to produce secondary mRNA structure such as loops or hairpins.

The present invention also provides recombinant proteins, e.g., heterologous fusion proteins using segments from these proteins. A heterologous fusion protein is a fusion of proteins or segments which naturally are not normally fused in the same manner. Thus, the fusion product of an immunoglobulin with an NF-AT120 protein polypeptide is a continuous protein

10

15

20

25

30

35

molecule having sequences fused in a typical peptide linkage, typically made as a single translation product and exhibiting properties derived from each source peptide. A similar concept applies to heterologous nucleic acid sequences.

In addition, new constructs may be made by combining similar functional domains from other proteins. For example, DNA-binding or other segments may be "swapped" between different new fusion polypeptides or fragments; see, e.g.: Cunningham et al. (1989) Science, 243:1330-1336; and O'Dowd et al. (1988) J.Biol. Chem., 263:15985-15992, each of which is incorporated herein by reference. Thus, new chimeric polypeptides exhibiting new combinations of specificities will result from the functional linkage of DNA-binding specificities or protein-binding specificities and other functional domains.

The phosphoramidite method described by Beaucage and Carruthers in (1981) <u>Tetra. Letts.</u> 22:1859-1862, will produce suitable synthetic DNA fragments. A double-stranded fragment will often be obtained either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence, e.g., by PCR techniques.

Functional Variants

The blocking of physiological response to NF-AT120 proteins may result from the inhibition of binding of the protein to either DNA or other components of the NF-AT complex, likely through competitive inhibition. Thus, *in vitro* assays of the present invention will often use isolated protein, membranes from cells expressing a recombinant membrane associated NF-AT120 protein, soluble fragments comprising DNA or AP-1 protein binding segments of these proteins, or fragments attached to solid phase substrates. These assays will also allow for the diagnostic determination of the effects of either DNA- or protein-binding segment mutations and modifications, or compounds which can disrupt or facilitate such interactions.

This invention also contemplates the use of competitive drug screening assays, e.g., where neutralizing antibodies to NF-AT120 or AP-1 protein fragments compete with a test compound for binding to the protein. In this manner, the antibodies can be used to detect the presence of any polypeptide which shares one or more antigenic binding sites of the NF-AT120 and can also be used to occupy binding sites on the protein that might otherwise interact with another component of an NF-AT complex.

10

15

20

25

30

35

Additionally, neutralizing antibodies against the NF-AT120 protein and soluble fragments of the protein which contain a high affinity binding site to specific targets can be used to inhibit transcriptional function in tissues, e.g., tissues experiencing abnormal physiology.

"Derivatives" of the NF-AT120 protein antigens include amino acid sequence mutants, glycosylation variants, and covalent or aggregate conjugates with other chemical moieties. Covalent derivatives can be prepared by linkage of functionalities to groups which are found in the NF-AT120 protein amino acid side chains or at the N- or C-termini, by means which are well known in the art. These derivatives can include, without limitation, aliphatic esters or amides of the carboxyl terminus, or of residues containing carboxyl side chains, O-acyl derivatives of hydroxyl group-containing residues, and N-acyl derivatives of the amino terminal amino acid or amino-group containing residues, e.g., lysine or arginine. Acyl groups are preferably selected from the group of alkanoyl moieties including C2 to C18 normal alkanoyl. Covalent attachment to carrier proteins may be important when immunogenic moieties are haptens.

In particular, glycosylation alterations are included, e.g., made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing, or in further processing steps. Particularly preferred means for accomplishing this are by exposing the polypeptide to glycosylating enzymes derived from cells which normally provide such processing, e.g., mammalian glycosylation enzymes. Deglycosylation may be effected by appropriate enzymes. Also embraced are versions of the same primary amino acid sequence which have other minor modifications, including phosphorylated amino acid residues, e.g., phosphotyrosine, phosphoserine, or phosphothreonine.

A major group of derivatives comprises covalent conjugates of the NF-AT120 protein or fragments thereof with other proteins or polypeptides. These derivatives can be synthesized in recombinant culture such as N- or C-terminal fusions or by the use of agents known in the art for their usefulness in cross-linking proteins through reactive side groups. Preferred protein derivatization sites with cross-linking agents are at free amino groups, carbohydrate moieties, and cysteine residues.

Fusion polypeptides between the NF-AT120 proteins and other homologous or heterologous proteins are also provided. Homologous polypeptides may be fusions between different nuclear proteins, resulting in, e.g., a hybrid protein exhibiting DNA binding specificity or nuclear factor binding

15

20

25

30

35

specificity. Likewise, heterologous fusions may be constructed which would exhibit a combination of properties or activities of the derivative proteins. Typical examples are fusions of a reporter polypeptide, e.g., luciferase, with a segment or domain of a protein, e.g., a DNA-binding segment, so that the presence or location of the fusion protein may be easily determined; see, e.g., Dull et al., U.S. Patent No. 4,859,609. Other gene fusion partners include bacterial β -galactosidase, trpE, Protein A, β -lactamase, alpha amylase, alcohol dehydrogenase, and yeast alpha mating factor; see, e.g., Godowski et al. (1988) Science 241:812-816.

Some polypeptides may also have amino acid residues which have been chemically modified by phosphorylation, sulfonation, biotinylation, or the addition or removal of other moieties, particularly those which have molecular shapes similar to phosphate groups. In some embodiments, the modifications will be useful labeling reagents, or serve as purification targets, e.g., affinity ligands, or fusions allowing for simple purification and processing.

Fusion proteins will typically be made either by recombinant nucleic acid methods or by synthetic polypeptide methods. Techniques for nucleic acid manipulation and expression are described generally in, for example, Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed.), Vols. 1-3, Cold Spring Harbor Laboratory. Techniques for synthesis of polypeptides are described in, for example: Merrifield (1963) J. Amer. Chem. Soc., 85:2149-2156; Merrifield (1986) Science 232:341-347; and Atherton et al. (1989) Solid Phase Peptide Synthesis: A Practical Approach, IRL Press, Oxford.

This invention also contemplates the use of derivatives of the NF-AT120 proteins other than variations in amino acid sequence or glycosylation. Such derivatives may involve covalent or aggregative association with chemical moieties. These derivatives generally fall into the three classes: (1) salts, (2) side-chain covalent modifications and terminal residue covalent modifications, and (3) adsorption complexes, for example with cell membranes. Such covalent or aggregative derivatives are useful as immunogens, as reagents in immunoassays, or in purification methods such as affinity purification of binding partners. For example, an NF-AT120 protein antigen can be immobilized by covalent bonding to a solid support such as cyanogenbromide-activated SEPHAROSE, by methods which are well known in the art, or adsorbed onto polyolefin surfaces, with or without glutaraldehyde cross-linking, for use in the assay or purification of anti-NF-AT120 protein antibodies or its binding partners. The NF-AT120 proteins can also be labeled with a detectable

5

10

15

20

25

30

35

group, for example radioiodinated by the chloramine T procedure, covalently bound to rare earth chelates, or conjugated to another fluorescent moiety for use in diagnostic assays. Purification of NF-AT120 protein may be effected by immobilized antibodies or binding partners.

A solubilized NF-AT120 protein or fragment of this invention can be used as an immunogen for the production of antisera or antibodies specific for the protein or any fragments thereof. The purified proteins can be used to screen monoclonal antibodies or antigen-binding fragments prepared by immunization with various forms of impure preparations containing the protein. In particular, the term "antibodies" also encompasses antigen-binding fragments of natural antibodies. The purified NF-AT120 proteins can also be used as a reagent to detect any antibodies generated in response to the presence of elevated levels of the protein, protein complex, or cell fragments containing the protein, each of which may be diagnostic of an abnormal or specific physiological or disease condition, e.g., autoimmunity. Additionally, protein fragments may also serve as immunogens to produce the antibodies of the present invention, as described immediately below. For example, this invention contemplates antibodies raised against amino acid sequences shown in Table 1, or fragments of proteins containing them.

The present invention contemplates the isolation of additional closely related species variants. Southern, Northern, and Western blot analysis should establish that similar genetic entities exist in other mammals. It is likely that the NF-AT120 proteins are widespread in various orders and species, e.g., rodents, lagomorphs, carnivores, artiodactyla, perissodactyla, and primates.

The invention also provides means to isolate a group of related antigens displaying both distinctness and similarities in structure, expression, and function. Elucidation of many of the physiological effects and mechanism of action of the proteins will be greatly accelerated by the isolation and characterization of distinct species variants of the proteins. In particular, the present invention provides useful probes for identifying additional homologous genetic entities in different species.

The isolated genes will allow transformation of cells lacking expression of a corresponding NF-AT120 protein, e.g., either species types or cells which lack corresponding proteins and exhibit negative background activity. Expression of transformed genes will allow isolation of antigenically pure cell lines, with defined or single species variants. This approach will allow for more sensitive detection and discrimination of the physiological effects of proteins regulating

10

15

20

25

30

35

nuclear transcription. Subcellular fragments, e.g., cytoplasts or membrane fragments, can be isolated and used in appropriate assays.

Dissection of the critical structural elements which effect the various differentiation functions provided by this factor is possible using standard techniques of modern molecular biology, particularly in comparing members of the related class. See, e.g.: the homolog-scanning mutagenesis technique described by Cunningham et al. (1989) <u>Science</u>, 243:1339-1336; and approaches used by O'Dowd et al. (1988) <u>J. Biol. Chem.</u>, 263:15985-15992; and by Lechleiter et al. (1990) <u>EMBO J.</u>, 9:4381-4390; each of which is incorporated herein by reference.

In particular, DNA-binding segments or AP-1 binding segments can be substituted between species variants to determine what structural features are important in both DNA binding affinity and specificity, as well as transcriptional activation. An array of different NF-AT120 variants will be used to screen for factors exhibiting combined properties of interaction with different DNA or AP-1 species variants.

Various functions would probably involve segments of the factor which are normally accessible to DNA or protein binding. Dissection of what domains of the protein are involved in DNA binding or AP-1 protein interaction can be performed, along with elucidation of other NF-AT components. The specific segments of interaction of NF-AT120 protein with other components may be identified by mutagenesis or direct biochemical means, e.g., cross-linking or affinity methods. Structural analysis by crystallographic or other physical methods will also be applicable. Further investigation of the mechanism of activation or suppression of transcription will include study of associated components which may be isolatable by affinity methods or by genetic means, e.g., complementation analysis of mutants.

Further study of the expression and control of NF-AT120 protein will be pursued. The controlling elements associated with the factors may exhibit differential developmental, tissue-specific, or other expression patterns. Upstream or downstream genetic regions, e.g., control elements, are of interest. Structural studies of the factors will lead to design of new factors, particularly analogues exhibiting constitutive suppression of activation of transcription. This can be combined with previously described screening methods to isolate proteins exhibiting desired spectra of activities.

Expression in other cell types will often result in different glycosylation in a particular factor. Various species variants may exhibit distinct functions based

upon structural differences other than amino acid sequence. Differential modifications may be responsible for differential function, and elucidation of the effects are now made possible.

Thus, the present invention provides important reagents related to a physiological NF-AT120 interaction with AP-1 and/or regulatory DNA segments. Although the foregoing description has focused primarily upon a human NF-AT120 protein, those of skill in the art will immediately recognize that the invention encompasses other species variants, e.g., rat and other mammalian species or allelic variants, as well as other variants thereof.

10 Antibodies

5

15

20

25

30

35

Antibodies can be raised to the various NF-AT120 proteins, including species or allelic variants, and fragments thereof, both in their naturally occurring forms and in their recombinant forms. Additionally, antibodies can be raised to NF-AT120 proteins either in their active forms or in their inactive forms. Anti-idiotypic antibodies are also contemplated.

Antibodies, including binding fragments, e.g., Fab, Fab², Fv, etc., and single-chain versions, against predetermined fragments of the proteins can be raised by immunization of animals with conjugates of the fragments with immunogenic proteins. Monoclonal antibodies are isolated from cells secreting the desired antibody. These antibodies can be screened for binding to normal or mutant NF-AT120 proteins, or screened for suppressive or helper activity. These monoclonal antibodies will usually bind with a K_D of at most about 1 mM but more usually with stronger binding, e.g., with a K_D of at most about 300 μ M, typically at most about 10 μ M, more typically at most about 30 μ M, preferably at most about 10 μ M, and more preferably at most about 3 μ M or better.

The antibodies, including antigen-binding fragments, e.g., Fab, Fab², Fv, etc., of this invention can have significant diagnostic or therapeutic value. They can be potent inhibitors that bind to the protein or complex and inhibit a biological response. They also can be useful as non-neutralizing antibodies and can be coupled to toxins or radionuclides so that, when the antibody binds to the protein, which can also be expressed on a cell surface or secreted into the proximal environment, the cell or nearby cells are killed. Further, these antibodies can be conjugated to drugs or other therapeutic agents, either directly or indirectly by means of a linker, and may effect drug targeting or cell labeling.

The antibodies of this invention can also be useful in diagnostic applications. As capture or non-neutralizing antibodies, they can be screened

for ability to bind to the proteins without inhibiting biological function. As neutralizing antibodies, they can be useful in competitive binding assays. They will also be useful in detecting or quantifying NF-AT120 protein or its complexes. See, e.g., Chan (ed.) (1987) lmmunoassay: A Practical Guide. Academic Press, Orlando, FL; Price and Newman (eds.) (1991) Principles and Practice of Immunoassay. Stockton Press, N.Y.; and Ngo (ed.) (1988) Monisotopic Immunoassay. Plenum Press, N.Y.

Protein fragments may be joined to other materials, particularly polypeptides, as fused or covalently joined polypeptides to be used as immunogens. A protein or its fragments may be fused or covalently linked to a variety of immunogens, such as keyhole limpet hemocyanin, bovine serum albumin, tetanus toxoid, etc. See: Microbiology, Hoeber Medical Division, Harper and Row, 1969; Landsteiner (1962) Specificity of Serological Reactions, Dover Publications, New York, and Williams et al. (1967) Methods in Immunology and Immunochemistry, Vol. 1, Academic Press, New York, for descriptions of methods of preparing polyclonal antisera. A typical method involves hyperimmunization of an animal with an antigen. The blood of the animal is then collected shortly after the repeated immunizations and the gamma globulin is isolated.

20 It is sometimes desirable to prepare monoclonal antibodies from various mammalian hosts, such as mice, rodents, primates, humans, etc. Description of techniques for preparing such monoclonal antibodies may be found in, e.g., Stites et al. (eds.) Basic and Clinical Immunology (4th ed.), Lange Medical Publications, Los Altos, CA, and references cited therein: Harlow and Lane 25 (1988) Antibodies: A Laboratory Manual, CSH Press; Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed.) Academic Press, New York: and particularly in Kohler and Milstein (1975) in Nature 256:495-497, which discusses one method of generating monoclonal antibodies. Summarized briefly, this method involves injecting an animal with an 30 immunogen. The animal is then sacrificed and cells taken from its spleen, which are then fused with myeloma cells. The result is a hybrid cell or "hybridoma" that is capable of reproducing in vitro. The population of hybridomas is then screened to isolate individual clones, each of which secretes a single antibody species to the immunogen. In this manner, the individual antibody species obtained are the products of immortalized and cloned single B cells from the 35 immune animal generated in response to a specific site recognized on the immunogenic substance.

Other suitable techniques involve in vitro exposure of lymphocytes to the antigenic polypeptides or alternatively to selection of libraries of antibodies in phage or similar vectors. See: Huse et al. (1989) "Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda." Science 246:1275-1281; and Ward et al. (1989) Nature 341:544-546. The polypeptides and antibodies of the present invention may be used with or without modification, including chimeric or humanized antibodies. Frequently, the polypeptides and antibodies will be labeled by joining, either covalently or non-covalently, a substance which provides for a detectable signal. A wide variety of labels and conjugation techniques are known and are reported extensively in both the scientific and patent literature. Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, chemiluminescent moieties, magnetic particles, and the like. Patents teaching the use of such labels include: U.S. Patents Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241. Also, recombinant immunoglobulins may be produced; see Cabilly, U.S. Patent No. 4,816,567.

The antibodies of this invention can also be used for affinity chromatography in isolating proteins. Columns can be prepared where the antibodies are linked to a solid support, e.g., particles, such as agarose, SEPHADEX, or the like, where a cell lysate may be passed through the column, and the column is washed and then eluted with increasing concentrations of a mild denaturant, whereby the purified NF-AT120 protein or NF-AT will be released.

The antibodies may also be used to screen expression libraries for particular expression products. Usually the antibodies used in such a procedure will be labeled with a moiety allowing easy detection of presence of antigen by antibody binding.

Antibodies raised against an NF-AT120 protein will also be useful to raise anti-idiotypic antibodies. These will be useful in detecting or diagnosing various immunological conditions related to expression of the respective antigens.

Nucleic Acids

5

10

15

20

25

30

35

The described peptide sequences and the related reagents are useful in isolating a DNA clone encoding NF-AT120 protein, e.g., from a natural source. Typically, it will be useful in isolating a gene from human, and similar procedures will be applied to isolate genes from other species, e.g., warm blooded animals, such as birds and mammals. Cross hybridization will allow isolation of

10

15

20

25

30

35

analogous factors from other species. A number of different approaches should be available to successfully isolate a suitable nucleic acid clone.

The purified protein or defined peptides are useful for generating antibodies by standard methods, as described above. Synthetic peptides or purified protein can be presented to an immune system to generate monoclonal or polyclonal antibodies. See, e.g.: Coligan (1991) Current Protocols in Immunology Wiley/Greene; and Harlow and Lane (1989) Antibodies: A Laboratory Manual Cold Spring Harbor Press. Alternatively, the AP-1 complex can be used as a specific binding reagent, and advantage can be taken of its specificity of binding, very much as an antibody would be used.

For example, a specific binding composition will be useful for screening an expression library made from a cell line which expresses an NF-AT120 protein. The screening can be standard staining of surface-expressed protein, or panning. Screening of intracellular expression can also be performed by various staining or immunofluorescence procedures. The binding compositions could be used to affinity purify or sort out cells expressing the protein.

The peptide segments can also be used to predict appropriate oligonucleotides to screen a library. The genetic code can be used to select appropriate oligonucleotides useful as probes for screening; see, e.g., SEQ ID NO: 6 through 24. In combination with polymerase chain reaction (PCR) techniques, synthetic oligonucleotides were useful in selecting correct clones from a library, e.g., inserts with sequences described in SEQ ID NO: 34, 36, 38 or 40. Complementary sequences will also be used as probes, primers, or antisense molecules. It is recognized that minimally degenerate primers will typically be preferred, so long as the primers are of sufficient length, e.g., preferably at least about 18 nucleotides.

This invention contemplates use of isolated DNA or fragments to encode a biologically active corresponding NF-AT120 protein polypeptide. In addition, this invention covers isolated or recombinant DNA which encodes a biologically active protein or polypeptide which is capable of hybridizing under appropriate conditions with the DNA sequences described herein. Said biologically active protein or polypeptide can be an intact factor, or fragment, and have an amino acid sequence as disclosed in SEQ ID NO: 1 through 5, 35, 37, 39 or 41. Further, this invention covers the use of isolated or recombinant DNA, or fragments thereof, which encode proteins that are homologous to an NF-AT120 protein or which was isolated using cDNA encoding an NF-AT120 protein as a probe, e.g., other members of the subfamilies of NF-AT120. The isolated DNA

can have the respective regulatory sequences in the 5'- and 3'-flanks, e.g., promoters, enhancers, poly-A addition signals, and others.

5

10

15

20

25

30

35

The phosphoramidite method described by Beaucage and Carruthers (1981) <u>Tetra. Letts.</u> 22:1859-1862, will produce suitable synthetic DNA fragments. A double-stranded fragment will often be obtained either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence, e.g., by PCR techniques.

An "isolated" nucleic acid is a nucleic acid, e.g., an RNA, DNA, or a mixed polymer, which is substantially separated from other components that naturally accompany a native sequence, e.g., ribosomes, polymerases and flanking genomic sequences from the originating species. The term embraces a nucleic acid sequence which has been removed from its naturally occurring environment, and includes recombinant or cloned DNA isolates and chemically synthesized analogues or analogues biologically synthesized by heterologous systems. A substantially pure molecule includes isolated forms of the molecule.

An isolated nucleic acid will generally be a homogeneous composition of molecules, but will, in some embodiments, contain minor heterogeneity. This heterogeneity is typically found at the polymer ends or portions not critical to a desired biological function or activity.

A "recombinant" nucleic acid is defined either by its method of production or by its structure. In reference to its method of production, e.g., a process for making a product, the process is use of recombinant nucleic acid techniques, e.g., involving human intervention in the nucleotide sequence, typically selection or production, and generally using some *in vitro* steps. In reference to its structure, it can be a nucleic acid made by fusion of two fragments which are not naturally contiguous to each other, but it is meant to exclude products of nature, e.g., naturally occurring mutants. Thus, for example, products made by transforming cells with any unnaturally occurring vector are encompassed, as are nucleic acids comprising sequences derived using any synthetic oligonucleotide process. Such a process is often used to replace a codon with a redundant codon encoding the same or a conservative amino acid, while typically introducing or removing a sequence-recognition site.

Alternatively, it is performed to join together nucleic acid segments of desired functions to generate a single genetic entity comprising a desired combination of functions not found in the commonly available natural forms. Restriction enzyme recognition sites are often the target of such artificial

20

25

30

35

manipulations, but other site-specific targets, e.g., promoters, DNA replication sites, regulation sequences, control sequences, or other useful features, may be incorporated by design. A similar concept is intended for a recombinant polypeptide, e.g., a fusion polypeptide. Specifically included are synthetic nucleic acids which, by genetic code redundancy, encode polypeptides similar to fragments of these antigens, and fusions of sequences from various different species variants.

A significant "fragment" in a nucleic acid context is a contiguous segment of at least about 17 nucleotides nucleotides, generally at least 23 or 29 nucleotides, often at least 35 or 41 nucleotides, preferably at least 47 or 53 nucleotides, and in particularly preferred embodiments will be of 56 or more nucleotides.

A DNA which codes for an NF-AT120 protein will be particularly useful to identify genes, mRNA, and cDNA species which code for related or homologous proteins, e.g., the members of the C, P and X subfamilies, as well as DNAs which code for homologous proteins from different species. There are likely homologues in other orders and species, including primates and rodents. Various NF-AT120 proteins should be homologous and are encompassed herein. However, even proteins that have a more distant evolutionary relationship to the NF-AT120 protein can readily be isolated under appropriate conditions using these sequences if they are sufficiently homologous. Primate NF-AT120 proteins are of particular interest.

This invention further covers recombinant DNA molecules and fragments having a DNA sequence identical to or highly homologous to the isolated DNAs set forth herein. In particular, the sequences will often be operably linked to DNA segments which control transcription, translation, and DNA replication. Alternatively, recombinant clones derived from the genomic sequences, e.g., containing introns, will be useful for transgenic studies, including, e.g., transgenic cells and organisms, and for gene therapy. See, e.g.: Goodnow (1992) "Transgenic Animals" in Roitt (ed.) Encyclopedia of Immunology Academic Press, San Diego, pp. 1502-1504; Travis (1992) Science 256:1392-1394; Kuhn et al. (1991) Science 254:707-710; Capecchi (1989) Science 244:1288; Robertson (1987) (ed.) Teratocarcinomas and Embryonic Stem Cells: A Practical Approach IRL Press, Oxford; and Rosenberg (1992) J. Clinical Oncology 10:180-199.

Homologous nucleic acid sequences, when compared, exhibit significant similarity. The standards for homology in nucleic acids either are measures for

• 5

10

15

20

25

30

35

homology generally used in the art by sequence comparison or are based upon hybridization conditions. The hybridization conditions are described in greater detail below.

Substantial homology in the context of comparing nucleic acid sequences means that the segments are identical when optimally aligned, allowing for appropriate nucleotide insertions or deletions, in at least about 50% or even 59% of the nucleotides, generally at least 65% or even 71%, usually at least about 77% or even 85%, preferably at least about 95 to 98% or more, and, in particular embodiments, as many as about 99% or more of the nucleotides. Since dsDNA uses specific nucleotide pairing, the comparison can also be made on the basis of a complementary strand.

Alternatively, substantial homology exists when the segments will hybridize under selective hybridization conditions to a strand or its complement, typically using a sequence derived from SEQ ID NO: 6 through 24, 34, 36, 38 and 40. Typically, selective hybridization will occur when there is at least about 55% homology over a stretch of at least about 40 nucleotides, preferably at least about 75% over a stretch of at least about 25 nucleotides, and most preferably at least about 90%. See Kanehisa (1984) Nucl. Acids Res., 12:203-213. The length of homology comparison, as described, may be over longer stretches, and in certain embodiments will be over a stretch of at least about 17 nucleotides, usually at least about 24 nucleotides, typically at least about 40 nucleotides, and preferably at least about 75 to 100 or more nucleotides.

Stringent conditions, in referring to homology in the hybridization context, will be stringent combined conditions of salt, temperature, organic solvents, and other variables, typically those controlled in hybridization reactions. Stringent temperature conditions will usually include temperatures in excess of about 30°C, usually in excess of about 37°C, typically in excess of about 55°C, and preferably in excess of about 70°C. Stringent salt conditions will ordinarily be less than about 1000 mM, usually less than about 400 mM, typically less than about 300 mM, and preferably less than about 150 mM. However, the combination of variables is much more important than the measure of any single variable: see, e.g., Wetmur and Davidson (1968) J. Mol. Biol. 31:349-370.

NF-AT120 protein from other mammalian species can be cloned and isolated by cross-species hybridization of closely related species. Homology may be relatively low between distantly related species, and thus hybridization of relatively closely related species is advisable. Alternatively, preparation of an

antibody which exhibits less species specificity may be useful in expression cloning approaches.

Making NF-AT120 protein: Mimetics

5

10

15

20

25

30

35

DNA which encodes an NF-AT120 protein or fragments thereof can be obtained by chemical synthesis, by screening cDNA libraries, or by screening genomic libraries prepared from a wide variety of cell lines or tissue samples.

This DNA can be expressed in a wide variety of host cells for the synthesis of a full-length protein or fragments which can in turn, for example, be used to generate polyclonal or monoclonal antibodies; for binding studies; for construction and expression of modified molecules; and for structure/function studies. Each antigen or its fragments can be expressed in host cells that are transformed or transfected with appropriate expression vectors. These molecules can be substantially purified to be free of protein or cellular contaminants, other than those derived from the recombinant host, and therefore are particularly useful in pharmaceutical compositions when combined with a pharmaceutically acceptable carrier and/or diluent. The antigen, or portions thereof, may be expressed as fusions with other proteins.

Expression vectors are typically self-replicating DNA or RNA constructs containing the desired antigen gene or its fragments, usually operably linked to suitable genetic control elements that are recognized in a suitable host cell. These control elements are capable of effecting expression within a suitable host. The specific type of control elements necessary to effect expression will depend upon the eventual host cell used. Generally, the genetic control elements can include a prokaryotic promoter system or a eukaryotic promoter expression control system, and typically include a transcriptional promoter, an optional operator to control the onset of transcription, transcription enhancers to elevate the level of mRNA expression, a sequence that encodes a suitable ribosome binding site, and sequences that terminate transcription and translation. Expression vectors also usually contain an origin of replication that allows the vector to replicate independently of the host cell.

The vectors of this invention contain DNA which encodes an NF-AT120 protein, or a fragment thereof, typically encoding a biologically active polypeptide. The DNA can be under the control of a viral promoter and can encode a selection marker. This invention further contemplates use of such expression vectors which are capable of expressing eukaryotic cDNA coding for an NF-AT120 protein in a prokaryotic or eukaryotic host, where the vector is

5

15

20

25

30

35

compatible with the host and where the eukaryotic cDNA coding for the protein is inserted into the vector such that growth of the host containing the vector expresses the cDNA in question. Usually, expression vectors are designed for stable replication in their host cells or for amplification to greatly increase the total number of copies of the desirable gene per cell. It is not always necessary to require that an expression vector replicate in a host cell: e.g., it is possible to effect transient expression of the protein or its fragments in various hosts using vectors that do not contain an origin of replication that is recognized by the host cell. It is also possible to use vectors that cause integration of an NF-AT120 10 protein gene or its fragments into the host DNA by recombination, or to integrate a promoter which controls expression of an endogenous gene.

Vectors, as used herein, comprise plasmids, viruses, bacteriophage, integratable DNA fragments, and other vehicles which enable the integration of DNA fragments into the genome of the host. Expression vectors are specialized vectors which contain genetic control elements that effect expression of operably linked genes. Plasmids are the most commonly used form of vector, but all other forms of vectors which serve an equivalent function and which are, or become, known in the art are suitable for use herein. See, e.g., Pouwels et al. (1985 and Supplements) Cloning Vectors: A Laboratory Manual, Elsevier, N.Y., and Rodriquez et al. (1988) (eds.) <u>Vectors:</u> A Survey of Molecular Cloning Vectors and Their Uses, Buttersworth, Boston, MA.

Transformed cells include cells, preferably mammalian, that have been transformed or transfected with vectors that contain the NF-AT120 protein gene and have been constructed using recombinant DNA techniques. Transformed host cells usually express the protein or its fragments; however, for purposes of cloning, amplifying, and manipulating its DNA, they do not need to express the protein. This invention further contemplates culturing transformed cells in a nutrient medium, thus permitting the protein to accumulate in the culture. The protein can be recovered, either from the culture or from the culture medium.

For purposes of this invention, DNA sequences are operably linked when they are functionally related to each other. For example, DNA for a presequence or secretory leader is operably linked to a polypeptide if it is expressed as a preprotein or participates in directing the polypeptide to the cell membrane or in secretion of the polypeptide. A promoter is operably linked to a coding sequence if it controls the transcription of the polypeptide; a ribosome binding site is operably linked to a coding sequence if it is positioned to permit translation. Usually, "operably linked" means contiguous and in reading frame;

10

15

20

25

30

35

however, certain genetic elements such as repressor genes are not contiguously linked but still bind to operator sequences that in turn control expression.

Suitable host cells include prokaryotes, lower eukaryotes, and higher eukaryotes. Prokaryotes include both gram negative and gram positive organisms, e.g., *E. coli* and *B. subtilis*. Lower eukaryotes include yeasts, e.g., *S. cerevisiae* and *Pichia*, and species of the genus *Dictyostelium*. Higher eukaryotes include established tissue culture cell lines from animal cells, both of non-mammalian origin, e.g., insect cells, and birds, and of mammalian origin, e.g., human, primates, and rodents.

Prokaryotic host-vector systems include a wide variety of vectors for many different species. As used herein, *E. coli* and its vectors will be used generically to include equivalent prokaryotes and vectors used therein. A representative vector for amplifying DNA is pBR322 or many of its derivatives. Vectors that can be used to express the NF-AT120 proteins or its fragments include, but are not limited to, such vectors as: those containing the lac promoter (pUC-series); trp promoter (pBR322-trp); Ipp promoter (the pIN-series); lambda-pP or pR promoters (pOTS); or hybrid promoters such as ptac (pDR540). See Brosius et al. (1988) "Expression Vectors Employing Lambda-, trp-, lac-, and Ipp-derived Promoters", in Rodriguez and Denhardt (eds.) Vectors: A Survey of Molecular Cloning Vectors and Their Uses, Buttersworth, Boston, Chapter 10, pp. 205-236; and Balbas and Bolivar (1990) Methods in Enzymology, 185:14-37.

Lower eukaryotes, e.g., yeasts and *Dictyostelium*, may be transformed with NF-AT120 protein sequence containing vectors. For purposes of this invention, the most common lower eukaryotic host is the baker's yeast, *Saccharomyces cerevisiae*. It will be used to generically represent lower eukaryotes, although a number of other strains and species are also available. Yeast vectors typically consist of a replication origin (unless they are of the integrating type), a selection gene, a promoter, DNA encoding the desired protein or its fragments, and sequences for termination of translation, polyadenylation, and termination of transcription. Suitable expression vectors for yeast include such constitutive promoters as 3-phosphoglycerate kinase and various other glycolytic enzyme gene promoters or such inducible promoters as the alcohol dehydrogenase-2 promoter or metallothionine promoter: see, e.g., Stearns et al. (1990) Methods in Enzymology 185:280-297; and chapter 29 in Wu et al. (eds.) (1989) Recombinant DNA Methodology, Academic Press, San Diego.

5

10

15

20

25

30

35

Higher eukaryotic tissue culture cells are the preferred host cells for expression of the functionally active NF-AT120 protein. In principle, any higher eukaryotic tissue culture cell line is workable, e.g., insect baculovirus expression systems, whether from an invertebrate or vertebrate source: see, e.g., Miller (1988) Ann. Rev. Microbiol. 42:177-99. However, mammalian cells are generally preferred for their protein processing patterns, both cotranslational and posttranslational. Transformation or transfection and propagation of such cells is described in, e.g., Ausubel, et al. (eds.) (1987 and Supplements) Current Protocols in Molecular Biology, Greene/Wiley, New York.

Examples of useful cell lines include HeLa cells, Chinese hamster ovary (CHO) cell lines, baby rat kidney (BRK) cell lines, insect cell lines, bird cell lines, and monkey (COS) cell lines. Expression vectors for such cell lines usually include an origin of replication, a promoter, a site for initiation of translation, RNA splice sites (if genomic DNA is used), a polyadenylation site, and a site for termination of transcription. These vectors also usually contain a selection gene or amplification gene.

Suitable expression vectors may be plasmids, viruses, or retroviruses carrying promoters derived, e.g., from such sources as adenovirus, SV40, parvoviruses, vaccinia virus, or cytomegalovirus. Representative examples of suitable expression vectors include pCDNA1; pCD [see Okayama et al. (1985) Mol. Cell Biol., 5:1136-1142]; pMC1neo Poly-A [see Thomas et al. (1987) Cell, 51:503-512]; and a baculovirus vector such as pAC 373 or pAC 610.

It will often be desired to express an NF-AT120 protein polypeptide in a system which provides a specific or defined glycosylation pattern. In this case, the usual pattern will be that provided naturally by the expression system. However, the pattern will be modifiable by exposing the polypeptide, e.g., an unglycosylated form, to appropriate glycosylating proteins introduced into a heterologous expression system. For example, the NF-AT120 protein gene may be co-transformed with one or more genes encoding mammalian or other glycosylating enzymes. Using this approach, certain mammalian glycosylation patterns will be achievable or approximated in prokaryote or other cells.

The NF-AT120 protein, or a fragment thereof, may be engineered to be linked by phosphatidylinositol (PI) to a cell membrane, but can be removed from membranes by treatment with a phosphatidylinositol-cleaving enzyme, e.g., phosphatidylinositol phospholipase-C. This releases the antigen in a biologically active form, and allows purification by standard procedures of protein chemistry. See, e.g.: Low (1989) <u>Biochim. Biophys. Acta</u>, 988:427-454;

5

10

15

20

25

30

35

Tse et al. (1985) <u>Science</u>, 230:1003-1008; and Brunner et al. (1991) <u>J. Cell Biol.</u>, 114:1275-1283.

Now that NF-AT120 proteins have been characterized, fragments or derivatives thereof can be prepared by conventional processes for synthesizing peptides. These include processes such as are described by: Stewart and Young in Solid Phase Peptide Synthesis (1984), Pierce Chemical Co., Rockford, IL; Bodanszky and Bodanszky, The Practice of Peptide Synthesis, (1984), Springer-Verlag, New York; and Bodanszky, The Principles of Peptide Synthesis. (1984), Springer-Verlag, New York. For example, an azide process, an acid chloride process, an acid anhydride process, a mixed anhydride process, an active ester process (for example, 4-nitrophenyl ester, N-hydroxy-succinimide ester, or cyanomethyl ester), a carbodiimidazole process, an oxidative-reductive process, or a dicyclohexylcarbodiimide/additive process, can be used. Solid-phase and solution-phase syntheses are both applicable to the foregoing processes.

The NF-AT120 protein, fragments, or derivatives are suitably prepared in accordance with the above processes as typically employed in peptide synthesis, generally either by a so-called stepwise process which comprises condensing an amino acid to the terminal amino acid, one by one in sequence, or by coupling peptide fragments to the terminal amino acid. Amino groups that are not being used in the coupling reaction are typically protected to prevent coupling at an incorrect location.

If a solid phase synthesis is adopted, the C-terminal amino acid is bound to an insoluble carrier or support through its carboxyl group. The insoluble carrier is not particularly limited as long as it has a binding capability to a reactive carboxyl group. Examples of such insoluble carriers include halomethyl resins, such as chloromethyl resin or bromomethyl resin, hydroxymethyl resins, phenol resins, tert-alkyloxycarbonyl-hydrazide resins, and the like.

An amino group-protected amino acid is bound in sequence through condensation of its activated carboxyl group and the reactive amino group of the previously formed peptide or chain, to synthesize the peptide step-by-step. After the complete sequence has been synthesized, the peptide is split off from the insoluble carrier to produce the peptide. This solid-phase approach is generally described by Merrifield et al. (1963) in <u>J. Am. Chem. Soc.</u>, 85:2149-2156.

The prepared protein and fragments thereof can be isolated and purified from the reaction mixture by means of peptide separation, for example, by extraction, precipitation, electrophoresis and various forms of chromatography.

and the like. The NF-AT120 proteins of this invention can be obtained in varying degrees of purity depending upon their desired use. Purification can be accomplished by use of the protein purification techniques disclosed herein or by the use of the antibodies herein described in immunoabsorbant affinity chromatography. This immunoabsorbant affinity chromatography is carried out by first linking the antibodies to a solid support and then contacting the linked antibodies with solubilized lysates of appropriate source cells, lysates of other cells expressing the protein, or lysates or supernatants of cells producing the NF-AT120 protein as a result of DNA techniques; see below.

10 Uses

15

20

25

30

35

The present invention provides reagents which will find use in diagnostic applications as described elsewhere herein, e.g., in the general description for developmental abnormalities, or below in the description of kits for diagnosis.

This invention also provides reagents with significant therapeutic value. NF-AT120 proteins (naturally occurring or recombinant), fragments thereof and antibodies thereto, along with compounds identified as having binding affinity to NF-AT120 protein, should be useful in the treatment of conditions associated with abnormal physiology or development, including abnormal proliferation, e.g., cancerous conditions, or degenerative conditions. In particular, modulation of expression of cytokine genes is possible, but an NF-AT120 may be a component in regulatory proteins affecting other genes. Abnormal proliferation, regeneration, degeneration, and atrophy may be modulated by appropriate therapeutic treatment using the compositions provided herein. For example, a disease or disorder associated with abnormal transcriptional regulation by an NF-AT120 protein should be a likely target for an inhibitor or stimulator. The factor probably plays a role in regulation or development of hematopoietic cells, e.g., lymphoid cells, which affect immunological responses, e.g., autoimmune or immunodeficiency disorders.

Antibodies raised to recombinant NF-AT120 protein can be prepared and purified and then administered to a patient. These reagents can be combined for therapeutic use with additional active or inert ingredients, e.g., in conventional pharmaceutically acceptable carriers or diluents, e.g., immunogenic adjuvants, along with physiologically innocuous stabilizers and excipients. These combinations can be filtered sterile and placed into dosage forms by lyophilization in dosage vials or storage in stabilized aqueous

10

15

20

25

30

. 35

preparations. This invention also contemplates use of antibodies or binding fragments thereof, including forms which do not bind complement.

Drug screening using NF-AT120 or fragments thereof can be performed to identify compounds having binding affinity to NF-AT120 protein, including isolating associated components. Similar screening for compounds which interact with AP-1 will identify proteins which modulate NF-AT function. Subsequent biological assays can then be utilized to determine if the compound has intrinsic modulatory activity and is therefore useful in that it blocks the activity of the protein. Likewise, a compound having intrinsic stimulating activity can activate the receptor and is thus an agonist in that it simulates the activity of NF-AT120 protein. This invention further contemplates the therapeutic use of antibodies to NF-AT120 protein as transcription modulators. This approach should be particularly useful with other NF-AT120 protein species variants.

The quantities of reagents necessary for effective therapy will depend upon many different factors, including means of administration, target site, physiological state of the patient, and other medicants administered. Thus, treatment dosages should be titrated to optimize safety and efficacy. Typically, dosages used in vitro may provide useful guidance in the amounts useful for in situ administration of these reagents. Animal testing of effective doses for treatment of particular disorders will provide further predictive indication of human dosage. Various considerations are described, e.g., in Gilman et al. (eds.) (1990) Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 8th Ed., Pergamon Press; and Remington's Pharmaceutical Sciences, 17th ed. (1990), Mack Publishing Co., Easton, Penn. Methods for administration are discussed therein and below, e.g., oral, intravenous, intraperitoneal, or intramuscular administration, transdermal diffusion, and others. Pharmaceutically acceptable carriers will include water, saline, buffers, and other compounds described, e.g., in The Merck Index, Merck & Co., Rahway, New Jersey. Dosage ranges would ordinarily be expected to be in amounts lower than 1 mM concentrations, typically less than about 10 μ M concentrations, usually less than about 100 nM, preferably less than about 10 pM (picomolar). and most preferably less than about 1 fM (femtomolar), with an appropriate carrier. Slow-release formulations or a slow-release apparatus will often be utilized for continuous administration; see also Langer, (1990) Science 249:1527-1533.

NF-AT120 protein, fragments thereof, and antibodies to it or its fragments may be administered directly to the host to be treated. Alternatively, depending

PCT/US94/07297

5

10

15

20

25

30

35

on the size of the compounds, it may be desirable to conjugate them to carrier proteins such as ovalbumin or serum albumin prior to their administration. Therapeutic formulations may be administered in many conventional dosage formulations.

Whereas it is possible for the active ingredient to be administered alone, it is preferable to present it as a pharmaceutical formulation. Formulations typically comprise at least one active ingredient, as defined above, together with one or more acceptable carriers thereof. Each carrier should be both pharmaceutically and physiologically acceptable in the sense of being compatible with the other ingredients and not injurious to the patient. Formulations include those suitable for oral, rectal, nasal, or parenteral administration (including subcutaneous, intramuscular, intravenous and intradermal administration).

The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. See, e.g.: Gilman et al. (eds.) (1990) Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 8th Ed., Pergamon Press; and Remington's Pharmaceutical Sciences, 17th ed. (1990), Mack Publishing Co., Easton, Penn.; Avis et al. (eds.) (1993) Pharmaceutical Dosage Forms: Parenteral Medications, Dekker, New York; Lieberman et al. (eds.) (1990) Pharmaceutical Dosage Forms: Tablets, Dekker, New York; and Lieberman et al. (eds.) (1990) Pharmaceutical Dosage Forms: Disperse Systems, Dekker, New York. The therapy of this invention may be combined with or used in association with other chemotherapeutic or chemopreventive agents.

Both the naturally occurring and the recombinant form of the NF-AT120 proteins of this invention are particularly useful in kits and assay methods which are capable of screening compounds for binding activity to the proteins, or the AP-1 complex or DNA. Several methods of automating assays have been developed in recent years so as to permit screening of tens of thousands of compounds in a short period. See, e.g., Fodor et al., (1991) Science
251:767-773, which describes means for testing of binding affinity by a plurality of defined polymers synthesized on a solid substrate. Structural diversity libraries can be used. The development of suitable assays can be greatly facilitated by the availability of large amounts of purified, soluble NF-AT120 protein as provided by this invention.

For example, modulators can normally be found once the protein or complex has been structurally defined. Testing of potential protein analogues is now possible with the development of highly automated assay methods using

10

15

20

25

30

35

the information provided herein. In particular, new agonists and antagonists will be discovered by using screening techniques described herein. Of particular importance are compounds found to have a combined binding affinity for multiple AP-1 types, e.g., compounds which can serve as modulators for species variants of NF-AT120 protein.

This invention is particularly useful for screening compounds by using recombinant NFAT120 in a variety of drug-screening techniques. The advantages of using a recombinant protein in screening for specific proteins include: (a) improved renewable source of the protein from a specific source; (b) potentially greater number of NF-AT120 proteins per cell giving better signal-to-noise ratio in assays; and (c) species variant specificity (theoretically giving greater biological and disease specificity).

One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant DNA molecules expressing the protein. Cells may be isolated which express the protein in isolation from others. Such cells, either in viable or fixed form, can be used for standard binding assays. See also: Parce et al. (1989) Science, 246:243-247; and Owicki et al. (1990) Proc. Nat'l Acad. Sci. USA, 87:4007-4011; which describe sensitive methods to detect cellular responses. Competitive assays are particularly useful, where the cells (source of NF-AT120 protein) are contacted and incubated with a labeled receptor or antibody having known binding affinity to the protein, such as ¹²⁵I-antibody, and a test sample whose binding affinity to the binding composition is being measured. The bound and the free labeled binding compositions are then separated to assess the degree of protein binding. The amount of test compound bound is inversely proportional to the amount of labeled receptor binding to the known source. Any one of numerous techniques can be used to separate bound from free protein to assess the degree of protein binding. This separation step could typically involve a procedure such as adhesion to filters followed by washing, adhesion to plastic followed by washing, or centrifugation of the cell membranes. Viable cells could also be used to screen for the effects of drugs on NF-AT120 protein mediated functions: e.g., second messenger levels, i.e., Ca2+; cell proliferation; inositol phosphate pool changes; and others. Some detection methods allow for elimination of a separation step, e.g., a proximity sensitive detection system. Calcium sensitive dyes will be useful for detecting Ca²⁺ levels, with a fluorimeter or a fluorescence cell sorting apparatus.

Another method utilizes membranes from transformed eukaryotic or prokaryotic host cells as the source of the NF-AT120 protein. These cells are stably transformed with DNA vectors directing the expression of an NF-AT120 protein, e.g., an engineered membrane bound form. Essentially, the membranes would be prepared from the cells and used in a binding assay such as the competitive assay set forth above.

Still another approach is to use solubilized and unpurified NF-AT120 protein or solubilized and purified NF-AT120 protein from transformed eukaryotic or prokaryotic host cells. This allows for a "molecular" binding assay with the advantages of increased specificity, the ability to automate, and high drug test throughput.

10

15

20

25

30

Another technique for drug screening involves an approach which provides high throughput screening for compounds having suitable binding affinity to NF-AT120 and is described in detail International Patent Application no. WO 84/03564 (Commonwealth Serum Labs.), published on September 13 1984. First, large numbers of different small peptide test compounds are synthesized on a solid substrate, e.g., plastic pins or some other appropriate surface; see Fodor et al. (1991). Then all the pins are reacted with solubilized and unpurified NF-AT120, or with solubilized and purified NF-AT120, and washed. The next step involves detecting bound NF-AT120.

Rational drug design may also be based upon structural studies of the molecular shapes of the NF-AT120 protein and other binding partners. These may be other proteins which mediate other functions in response to NF-AT120 binding, or other proteins which normally interact with the factor, or even DNA segments. One means for determining which sites interact with specific other proteins is a physical structure determination, e.g., x-ray crystallography or two-dimensional NMR techniques. These will provide guidance as to which amino acid residues form molecular contact regions. For a detailed description of protein structural determination, see, e.g., Blundell and Johnson (1976) Protein Crystallography, Academic Press, New York.

Purified NF-AT120 protein can be coated directly onto plates for use in the aforementioned drug-screening techniques. However, non-neutralizing antibodies to these factors can be used as capture antibodies to immobilize the respective factor on the solid phase.

10

15

20

25

30

35

Kits

This invention also contemplates use of NF-AT120 proteins, fragments thereof, peptides, and their fusion products in a variety of diagnostic kits and methods for detecting the presence of an NF-AT120. Typically the kit will have a compartment containing either a defined NF-AT120 protein peptide or gene segment or a reagent which recognizes one or the other, e.g., antibodies or fragments thereof.

A kit for determining the binding affinity of a test compound to an NF-AT120 protein would typically comprise: a test compound; a labeled compound, for example an antibody having known binding affinity for the protein; a source of NF-AT120 protein (naturally occurring or recombinant); and a means for separating bound from free labeled compound, such as a solid phase for immobilizing the protein. Once compounds are screened, those having suitable binding affinity to the protein can be evaluated in suitable biological assays to determine whether they act as modulators of transcription. The availability of recombinant NF-AT120 polypeptides also provide well-defined standards for calibrating such assays.

A preferred kit for determining the concentration of, for example, an NF-AT120 protein in a sample would typically comprise a labeled compound, e.g., AP-1 or antibody, having known binding affinity for the protein, a source of NF-AT120 (naturally occurring or recombinant) and a means for separating the bound from free labeled compound, for example, a solid phase for immobilizing the NF-AT120 protein. Compartments containing reagents, and instructions, will normally be provided.

Antibodies, including antigen-binding fragments, specific for the NF-AT120 protein or fragments are useful in diagnostic applications to detect the presence of elevated levels of NF-AT120 protein and/or its fragments. Such diagnostic assays can employ lysates, live cells, fixed cells, immuno-fluorescence, cell cultures, and body fluids, and further can involve the detection of antigens related to the NF-AT120 in serum, or the like. Diagnostic assays may be homogeneous (without a separation step between free reagent and bound complex) or heterogeneous (with a separation step). Various commercial assays exist, such as radioimmunoassay (RIA), enzyme-linked immunoassay technique (EMIT), substrate-labeled fluorescent immunoassay (SLFIA), and the like. For example, unlabeled antibodies can be employed by using a second antibody which is labeled and which recognizes the antibody to an NF-AT120

5

10

15

20

25·

30

35

protein or to a particular fragment thereof. Similar assays have also been extensively discussed in the literature. See, e.g., Harlow and Lane (1988) Antibodies: A Laboratory Manual, CSH.

Anti-idiotypic antibodies may have similar use to diagnose presence of antibodies against an NF-AT120 protein, since the latter antibodies may be diagnostic of various abnormal states, e.g., autoimmune conditions. For example, overproduction of NF-AT120 protein may result in production of various immunological reactions which may be diagnostic of abnormal physiological states, particularly in proliferative cell conditions such as cancer or abnormal differentiation.

Frequently, the reagents for diagnostic assays are supplied in kits, so as to optimize the sensitivity of the assay. For the subject invention, depending upon the nature of the assay, the protocol, and the label, either labeled or unlabeled antibody or labeled NF-AT120 protein is provided. This is usually in conjunction with other additives, such as buffers, stabilizers, materials necessary for signal production such as substrates for enzymes, and the like. Preferably, the kit will also contain instructions for proper use and disposal of the contents after use. Typically the kit has compartments for each useful reagent. Desirably, the reagents are provided as a dry lyophilized powder, and may be reconstituted in an aqueous medium providing appropriate concentrations of reagents for performing the assay.

Any of the aforementioned constituents of the drug-screening assay and the diagnostic assay may be used without modification or may be modified in a variety of ways. For example, labeling may be achieved by covalently or non-covalently joining a moiety which directly or indirectly provides a detectable signal. In any of these assays, the test compound, NF-AT120 protein, or antibodies thereto can be labeled either directly or indirectly. Possibilities for direct labeling include label groups: radiolabels such as ¹²⁵I, enzymes (U.S. Pat. No. 3,645,090) such as peroxidase and alkaline phosphatase, and fluorescent labels (U.S. Pat. No. 3,940,475) capable of monitoring the change in fluorescence intensity, wavelength shift, or fluorescence polarization. Possibilities for indirect labeling include biotinylation of one constituent followed by binding to avidin coupled to one of the above label groups.

There are also numerous methods of separating the bound from the free antibody, or alternatively the bound from the free test compound. The NF-AT120 protein can be immobilized on various matrixes followed by washing. Suitable matrixes include plastic such as an ELISA plate, filters, and beads. Methods of

5

10

15

20

25

30

35

immobilizing the NF-AT120 protein to a matrix include, without limitation, direct adhesion to plastic, use of a capture antibody, chemical coupling, and biotin-avidin. The last step in this approach generally involves the precipitation of protein/binding partner or protein/antibody complex by various methods including those utilizing, e.g., an organic solvent such as polyethylene glycol or a salt such as ammonium sulfate. Other suitable separation techniques include, without limitation, the fluorescein antibody magnetizable particle method described in Rattle et al. (1984) Clin. Chem. 30:1457-1461, and the double antibody magnetic particle separation as described in U.S. Pat. No. 4,659,678.

Methods for linking proteins or their fragments to the various labels have been extensively reported in the literature. Many of the techniques involve the use of activated carboxyl groups either through the use of carbodiimide or active esters to form peptide bonds, the formation of thioethers by reaction of a mercapto group with an activated halogen such as chloroacetyl, or an activated olefin such as maleimide, for linkage, or the like. Fusion proteins will also find use in these applications.

Another diagnostic aspect of this invention involves use of oligonucleotide or polynucleotide sequences taken from the sequence of an NF-AT120 protein. These sequences can be used as probes for detecting levels of the message in samples from patients suspected of having an abnormal condition, e.g., cancer or developmental problem. The preparation of both RNA and DNA nucleotide sequences, the labeling of the sequences, and the preferred size of the sequences has been described above. Normally an oligonucleotide probe should have at least about 14 nucleotides and usually at least about 18 nucleotides, and the polynucleotide probes may be up to several kilobases. Various labels may be employed, most commonly radionuclides, particularly ³²P.

Other techniques may also be employed, such as using biotin modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionuclides, fluorescers, enzymes, or the like. Alternatively, antibodies may be employed which can recognize specific duplexes, including DNA duplexes, RNA duplexes, DNA-RNA hybrid duplexes, or DNA-protein duplexes. The antibodies in turn may be labeled and the assay carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected. The use of probes to the novel anti-sense RNA may be carried out in any conventional techniques such as nucleic acid hybridization, plus and minus

- 36 -

screening, recombinational probing, hybrid released translation (HRT), and hybrid arrested translation (HART). This also includes amplification techniques such as polymerase chain reaction (PCR).

Diagnostic kits which also test for the qualitative or quantitative presence of other markers are also contemplated. Diagnosis or prognosis may depend on the combination of multiple indications used as markers. Thus, kits may test for combinations of markers; see, e.g., Viallet et al. (1989) <u>Progress in Growth Factor Res.</u>, 1:89-97.

EXAMPLES

The broad scope of this invention is best understood with reference to the following Examples, which are intended to illustrate and not to limit the invention to specific embodiments. In particular, the selected vectors and hosts, the concentration of reagents, the temperatures, and the values of other variables are only to exemplify the application of the present invention and are not to be considered limitations thereof.

General Methods

5

20

25

30

Some of the standard methods are described or referenced, e.g., in Maniatis et al. (1982) Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor Press; Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, (2d ed.), vols 1-3, CSH Press, NY; Ausubel et al., Biology, Greene Publishing Associates, Brooklyn, NY; Ausubel et al. (1987 and Supplements) Current Protocols in Molecular Biology, Greene/Wiley, New York; Innis et al. (eds.) (1990) PCR Protocols: A Guide to Methods and Applications, Academic Press, N.Y.; and Coligan, et al. (1991 and Supplements) Current Protocols in Immunology, Greene/Wiley, N.Y.

Methods for protein purification include such methods as precipitation with ammonium sulfate, column chromatography, electrophoresis, centrifugation, crystallization, and others. See, e.g.: Ausubel et al. (1987 and periodic supplements); Deutscher (1990) "Guide to Protein Purification" in Methods in Enzymology, vol. 182, and other volumes in this series; and manufacturers' literature on use of protein purification products, e.g., Pharmacia, Piscataway, N.J., or Bio-Rad, Richmond, CA. Combination with recombinant techniques allows fusion to appropriate segments, e.g., to a FLAG sequence or an equivalent which can be fused through a protease-removable sequence. See,

e.g.: Hochuli (1989) <u>Chemische Industrie</u>, 12:69-70; Hochuli (1990)
"Purification of Recombinant Proteins with Metal Chelate Absorbent" in Setlow (ed.) <u>Genetic Engineering</u>. <u>Principle and Methods</u>, 12:87-98, Plenum Press, N.Y.; and Crowe et al. (1992) <u>QIAexpress</u>: <u>The High Level Expression & Protein Purification System</u>, QUIAGEN, Inc., Chatsworth, CA.

FACS analyses are described in: Melamed et al. (1990) Flow Cytometry and Sorting, Wiley-Liss, Inc., New York, NY; Shapiro (1988) Practical Flow Cytometry, Liss, New York, NY; and Robinson et al. (1993) Handbook of Flow Cytometry Methods, Wiley-Liss, New York, NY.

10 Production and Sequencing of the NF-AT120 protein

Protein Preparation

5

30

35

Purification of proteins was carried out at 4°C. Nuclear extracts from Jurkat cells stimulated for 2 hours with PMA at 50 ng/ml and A23187 at 1.0 μM were prepared by the method of Dignam et al. (1983) Nucleic Acids Res., 11:1475-1489, using 0.2 % NP-40 to disrupt the cells. Purification of the 120 15 kDa component of NF-AT was as follows. Nuclear extracts from PMA/A23187stimulated Jurkat cells (5 x 1010 cells) were fractionated by addition of solid ammonium sulfate (40% saturation) and then centrifuged at 10,000 x g for 20 min. The pellet was dissolved with 7-8 ml of Buffer A (20 mM HEPES (pH 7.9), 0.1 M KCl, 1 mM EDTA, 1 mM EGTA, 5% glycerol, 1 mM DTT, 10 μ g/ml 20 leupeptin, and 0.1 mM PMSF), and 2 ml of the sample was applied to a SUPEROSE 6 gel filtration column (HR 16/50, Pharmacia Co.) on an FPLC system at a flow rate of 0.3 ml/min. Each fraction was subjected to mobility shift assay using ³²P-labeled NF-AT oligonucleotide as a probe. NP-40 and polydldC were added to the fractions containing NF-AT binding at 0.2 % and 25 13 μg/ml, respectively.

The sample, after gel-filtration, was divided into five parts, and each of the protein solutions was applied to NF-AT oligonucleotide-coupled SEPHAROSE 4B (1 ml gel volume) which had been equilibrated with Buffer A containing 0.2 % NP-40 (Buffer B) at gravity flow. The column was washed with more than 10 column volumes of Buffer B containing 1 M urea and then 10 column volumes of Buffer B containing 0.2 M KCl, and was then eluted with Buffer B containing 0.3 M KCl.

Fractions containing NF-AT binding activity were collected and dialyzed against Buffer C (6 M urea, 0.05 M KCl, 20 mM HEPES (pH 7.9), 1 mM EGTA.

1 mM EDTA). The dialysate was applied to a Mono Q column (HR 5/10, Pharmacia Co.) on an FPLC system which had been equilibrated with Buffer C. Elution was by KCl gradient (0.05 M - 0.8 M); 0.5 ml fractions were collected and assayed by mobility shift assay.

Affinity-purified AP-1 was prepared from nuclear extracts of Jurkat cells stimulated with PMA/A23187 by the method of Lee et al. (1987) <u>Cell</u>, 49:741-52, with slight modifications. Recombinant cJun and cFos proteins, which were expressed as histidine fusion proteins in *E. coli* and purified by nickel chelate chromatography (see Abate et al. (1990) <u>Proc. Natl. Acad. Sci.</u>, 87:1032-1036), were kindly provided by T. Curran and T. Kerppola (Roche Institute of Molecular Biology).

Oligonucleotides

5

10

25

The oligonucleotides used for competition and mobility shift assays contained the following sequences (only one strand is shown; sequence overhangs are in lower-case letters):

CLE0 element: 5'-gatcGTCACCATTAATCATTTCCTCTAACTGT-3'; see Miyatake et al. (1991) Mol. Cell. Biol., 11:5894-901, and SEQ ID NO: 25:

AP-1 site: 5'-tcgaGCTATGACTCATCCG-3'; see Nakabeppu et al. (1988) <u>Cell</u>, 55:907-15, and SEQ ID NO: 26:

20 NF-AT site: 5'-gatcGGAGGAAAACTGTTTCATACAGAAGGCGT-3'; see Emmel et al. (1989) <u>Science</u>, 246:1617-20, and SEQ ID NO: 27.

Mobility shift assay

The DNA binding reactions were performed at room temperature for 30 min in a solution (10 µl) containing 10 mM HEPES (pH 7.9), 1 mM EDTA, 1 mM DTT, 10% glycerol, KCl adjusted to 100 mM, 0.5 ng of ³²P-labeled probe (50,000 cpm), and protein sample as indicated in the figure legend, with or without 100 ng/µl of polydldC. Samples were analyzed on 4% native polyacrylamide gels (Tris-glycine-EDTA buffer) at 120 v, which were dried and exposed to Kodak X-OMAT film.

Denaturation and renaturation of the 120 kDa component of NF-AT

Denaturation and renaturation was as described by McCaffrey et al. (1993) J. Biol. Chem., 268:3747-3752, with slight modifications. The fraction from Mono Q column chromatography which contained the NF-AT120 was concentrated with a microconcentrator (CENTRICONTM30, Amicon) and 5 subjected to SDS- 7.5% polyacrylamide gel electrophoresis along with a prestained molecular weight marker. The gel piece corresponding to NF-AT120 was excised and eluted overnight with 200 µl of 20 mM HEPES (pH 7.9), 1 mM EDTA, 1 mM EGTA, 2 mM DTT, 5% glycerol, 0.1% SDS and 0.1 mg/ml BSA. 10 The eluted protein was precipitated with 5 volumes of acetone at -20°C and then washed with cold methanol. The protein precipitate was dissolved with 3 µl of 8 M urea, diluted with buffer B, and left overnight at 4°C to renature. Reconstituted NF-AT binding was assayed by mixing 1 µl of renatured 120 kDa protein with 10 ng of affinity-purified Jurkat AP-1 proteins. Mobility shift conditions were as described above in the presence of 100 ng/µl of polydldC.

Other Methods

15

20

25

30

35

NF-AT oligonucleotide-coupled SEPHAROSE 4B (50 µg of DNA per ml of resin) was prepared by the method of Kadonaga and Tijan (1986) Proc. Natl. Acad. Sci. U.S.A., 83:5889-5893 using CNBr-activated SEPHAROSE 4B (Pharmacia Co.). SDS-polyacrylamide gel electrophoresis was performed according to Laemmli (1970) Nature (London), 227:680-685. Protein concentration was determined by the method of Bradford (1976) Anal. Biochem., 72:248-254, using bovine serum albumin as a standard. All other chemicals were reagent grade or better.

A combination of both phorbol ester (PMA) and calcium ionophore (A23187) elicits maximum production of cytokines that include IL-2 and GM-CSF. Production of these cytokines is inhibited by the immunosuppressive drug CsA. Previous studies have shown that the NF-AT binding site in IL-2 promoter is an essential cis-acting element for PMA/ionomycin-dependent expression and that the nuclear protein which binds to this sequence is a target for CsA action.

Recently, the CLEO element (position -54 to -40) was shown to be essential for induction of transcription at the GM-CSF promoter in a stimulationdependent manner. Interestingly, the 3'-half of the CLE0 sequence is identical to that of the NF-AT element (Table 2), which is important for NF-AT binding.

5

One of the CLE0 binding nuclear factors (NF-CLE0 γ) is inducible with PMA/A23187 and sensitive to cycloheximide and CsA, suggesting that this factor is related to NF-AT. Table 3 provides further data on the specificity of binding of NF-AT to the CLE0 binding sequence.

Table 2: Comparison of the NF-AT and CLE0 Elements

		NF-AT Elementa	CLE0 Element ^b
Regulated G	ene	IL-2	GM-CSF
Locationc		h, -272/-289; m,-275/-292	h,-33/-47; m,-40/-54
Sequence	Human Murine	TGAAACAGTTTTTCCTCC (1) TGAAACAAATTTTCCTCC (3)	ATTAATCATTTCCTC (2)
Inducible nuc	clear factor	NF-AT	ATTAATCATTTCCTC (4) NF-CLE0γ
Requirement for induction		Ca ionophore/PMA	Ca ionophore/PMA

a,b References:

NF-AT Element: Crabtree, *Science* (1989), 243:355-361, Ullman et al., *Ann. Rev. Immunol.* (1990), 8:421-452, and Jain et al., *Nature* (1992), 356:801-804;

- 10 CLE0 Element: Arai et al., *Pharmac. Ther.* (1992), 55:303-318, and Miyatake et al., *Mol. Cell. Biol.* (1991), 11:5894-5901.
 - ^c The NF-AT and CLE0 elements show the sequence of the non-coding strand. Large dots indicate the identical sequence between NF-AT and CLE0 element. h = human; m = murine.
- 15 (1) (4) Sequences of this Table 2 correspond to (1) SEQ ID NO: 28; (2) residues 7-21 of SEQ ID NO: 29; (3) SEQ ID NO: 30; and (4) SEQ ID NO: 31.

Table 3: Analysis of NF-CLE0 Binding Sequence:

Sequences of oligonucleotides of the wild type CLE0 Sequence and
of a series of double base substitutions (GM40.41 to GM52.53)

[The CLE0 Sequence (with flanking nucleotides) is given in SEQ ID NO: 29,
where it consists of residues 7-21.]

5

10

15

20

Probe	Sequence	γ Binding
CLEO	GTCACCATTAATCATTTCCTCTAACTGT	+ .
GM40.41	GA	+
GM42.43	AA	_
GM44.45		_
GM46.47		+
GM48.49		+
GM50.51	cc	_
GM52.53	GA	_
GM54.55	AC	+
GM43.47		_
GM47		+

Notes: Dashes show unchanged bases. The CLE0 sequence is boxed. These oligonucleotide probes were labeled, subjected to electromobility shift assay and checked for NF-CLE0 γ binding. The results are shown in the right column: (+) indicates that NF-CLE0 γ binding was observed; (–) indicates the absence of NF-CLE0 γ binding.

To characterize the relationship between NF-CLE0 γ and NF-AT, affinity-purified NF-AT were prepared from nuclear extracts of Jurkat cells stimulated with PMA and A23187. After precipitation with ammonium sulfate and gel filtration with SUPEROSE 6, the fractions containing NF-AT-binding activity were applied to the NF-AT oligonucleotide coupled to a SEPHAROSE 4B column. The column was washed, and elution was carried out with 0.3 M KCI-containing buffer. An elution profile of the affinity purified NF-AT, when compared to the protein concentration of each fraction, yielded a single peak.

The eluted fractions were then subjected to a mobility shift assay using ³²P-labeled NF-AT oligonucleotides as a probe, which showed that affinity-purified NF-AT shifts the probe as a single band in either the absence (Figure 1,

lanes 2 and 10) or the presence of polydIdC, and the mobility of the band is the same as that of Jurkat nuclear extracts stimulated with PMA/A23187 (Figure 1, lane 1). Consistent with previous studies which showed that the NF-AT contained AP-1 proteins, the mobility shift band of affinity-purified NF-AT was inhibited by oligonucleotides containing NF-AT and AP-1 binding sequences (Figure 1, lanes 2-4). The NF-AT DNA-binding activity was not inhibited by addition of 10 ng of Sp1 oligonucleotide.

Multiple factors of different sequence specificities are induced to bind the CLEO element. One of them was identified as a transcription factor AP-1 (see Figure 4B, lane 11), which was induced mainly by PMA alone. Another CLEO-binding protein (NF-CLEOγ), mainly observed in the nuclear extracts from Jurkat cells stimulated with both PMA and A23187 (Figure 1, lane 5), is blocked by CsA treatment. As shown in Figure 1, affinity-purified NF-AT can bind the CLEO probe strongly and shifts the probe to a position that corresponds to NF-CLEOγ. This binding is a specific interaction between NF-AT120 proteins and CLEO sequence, because it was blocked with NF-AT and AP-1 oligonucleotides (Figure 1, lanes 8 and 9), but not with the Sp1 sequence.

10

15

20

25

30

35

Conversely, NF-AT DNA binding by this protein complex could also be inhibited by a CLE0 sequence (Figure 1, lane 11). These results were consistent with previous results using nuclear extracts from PMA/A23187-stimulated Jurkat cells and strongly suggested that NF-CLE07, which was induced by PMA/A23187, was identical to NF-AT.

NF-AT was purified to near homogeneity to determine whether the NF-CLEOγ shared the same component with NF-AT. Affinity-purified NF-AT was dialyzed against a buffer containing 6 M urea, 20 mM HEPES (pH 7.9), 1 mM EGTA, and 1 mM EDTA to dissociate the AP-1 components from the other component of NF-AT, and was then subjected to Mono-Q chromatography in the presence of 6 M urea. After elution by a KCl gradient (0.05 – 0.8 M), each fraction was assayed by mobility shift in either the absence or the presence of affinity-purified AP-1 proteins from activated Jurkat cells. As shown in Figure 2A and Figure 2B, the Mono Q fractions at a position of 0.2 M KCl contained a protein, which reconstituted NF-AT DNA binding activity with AP-1 proteins (fractions 13 – 19).

Analysis by SDS-PAGE of each fraction (Figure 2C) showed that the appearance of the 120 kDa protein band correlated well with the ability to reconstitute NF-AT DNA binding activity in the presence of AP-1 (Figure 2B). Although another 120 kDa protein was eluted at a position with a slightly higher

5

10

15

20

25

30

35

concentration of KCI (fractions 20-24), that protein failed to reconstitute the NF-AT DNA-binding activity. Approximately 1 to 2 μ g of the 120 kDa protein was purified from 100 liters of PMA/A23187-stimulated Jurkat cells as a single polypeptide which was more than 95% homogeneous judging from the protein staining of an SDS-PAGE gel (see Figure 4A).

These observations agree with the range of molecular mass reported previously. The DNA-binding component of NF-AT (NF-AT120) was detected in a cytoplasmic fraction of Jurkat cells by elution and renaturation after SDS-PAGE; it has a molecular mass between 94 and 116 kDa. It was also detected by the same method in nuclear extracts of an activated murine T-cell clone, Ar-5, whose apparent molecular mass was between 90 and 125 kDa (NF-ATp).

To eliminate the possibility of additional components derived from the affinity-purified AP-1 used for the reconstitution, whether the purified 120 kDa protein was able to reconstitute the NF-AT DNA-binding activity with recombinant cJun and cFos was tested. As shown in Figure 3, cJun/cFos heterodimer reconstituted the NF-AT complex in combination with the 120 kDa protein and shifted the probe to the same position as the purified Jurkat AP-1 plus the component (lanes 2 and 3) corresponding to the nuclear form of NF-AT (see Figure 4B, lanes 1 and 3). This heterodimer formed a weak DNA binding complex without the 120 kDa protein, whose mobility was faster than that of NF-AT (lane 4). Although cFos alone did not affect the reconstitution of NF-AT DNA binding (lane 7), cJun homodimer gave a weak reconstitution signal (lane 5). These results showed that the affinity of the Jun/Fos heterodimer to the component was apparently higher than that of the Jun/Jun homodimer, which is consistent with previous results that both the Fos and Jun antibodies affected the NF-AT binding; see Jain et al. (1992) Nature 356:801-804.

In order to determine whether the 120 kDa protein is a component of both NF-AT and NF-CLE0y, the protein band corresponding to 120 kDa on SDS-PAGE after the Mono Q fraction was excised. The protein was eluted from the gel slice, denatured with 8 M urea and renatured by dilution. The 120 kDa protein, eluted and renatured from the gel, reconstituted both NF-AT and CLE0 DNA-binding activity with AP-1 proteins as well as the protein fraction from Mono Q chromatography (Figure 4B). Faint NF-AT binding in Mono Q fraction, detected without the addition of exogenous AP-1 proteins (Figure 2A and Figure 4B, lane 2), is apparently due to a trace amount of contamination of AP-1 proteins in this fraction. This fraction gave weak CLE0 binding activity which was identified as AP-1 protein-CLE0 DNA complex (Figure 4B, lane 7).

However, the renatured 120 kDa protein from the gel did not contain AP-1 DNA-binding activity (Figure 4B, lane 9). These results suggest that the affinity of the NF-AT component to the NF-AT DNA binding sequence, which appears to be below the detection level in this binding assay, is allosterically induced by AP-1 proteins. A recent report showed that NF-ATp from a murine T cell clone bound the NF-AT sequence even in the absence of exogenous proteins, such as AP-1 proteins; see Jain et al. (1992) Nature 356, 801-804.

Direct binding of 120 kDa protein eluted from the gel slice to the NF-AT sequence was not observed. Further characterization of the component will explain this discrepancy. Interestingly, two bands with different mobility were observed in CLEOγ-binding reconstituted with the 120 kDa protein and AP-1 proteins. This may be due to the heterogeneous forms of AP-1 proteins reconstituting the DNA-binding complex.

10

15

20

25

35

Although the binding of both native and reconstituted NF-CLE0γ to the CLE0 sequence seemed to be weaker than that of AP-1 *in vitro* (Figure 1, lane 5, and Figure 4B, lanes 8 and 10), NF-AT binding to the CLE0 sequence (CLE0γ) is propably important in the stimulation dependency of this element. The transfection experiments using plasmids with mutations in the 3'-half of the CLE0 element, which is identical to that in the NF-AT sequence (Table 2), completely abolished PMA/A23187-dependent promoter activity.

Thus, the present results demonstrate that NF-AT binds directly to the CLEO element on the GM-CSF promoter region and that both NF-CLEO_Y and NF-AT share the same nuclear component, NF-AT120, which can reconstitute the DNA-binding *in vitro* with AP-1 proteins, including recombinant cJun/cFos heterodimer. These results strongly suggest that the NF-AT may contribute to coordinate regulation of the expression of both IL-2 and GM-CSF genes in T-cells. The procedure for isolation of the 120 kDa component of NF-AT described here is helpful in elucidating the regulation of cytokine gene expression upon T cell activation.

30 Generation and purification of proteolytic peptides of the NF-AT120 protein

The prep gel slice containing protein was briefly rinsed with water and acetonitrile to remove excess SDS, smashed into tiny fragments, taken to dryness under vacuum on a SpeedVac (Savant), and then solubilized in 0.2 ml 25 mM Tris buffer (pH 7.5) containing 0.7 µg LysC. The cleavage reaction was carried out at 37°C for 24 hours. The reaction mix was spun at 13,000 rpm and loaded onto a 2.1 x 100 mm AQUAPORE RP-300 reversed phase column, and

peptides eluted with a linear 4-44% acetonitrile gradient (with constant 0.1% TFA). Eluting peptides were monitored at 214 nm and were collected by hand.

Determination of the amino acid sequence of peptides of the NF-AT120

Peptide sequences were determined using an Applied Biosystems 477A

5 Sequencer. Fragments provided peptide sequences of SEQ ID NOs: 1 through

5.

Isolation of a DNA clone encoding NF-AT120 protein.

10

15

20

25

30

A 437 bp DNA fragment was amplified from Jurkat cDNA by PCR using degenerate oligonucleotides. The two oligonucleotides of SEQ ID NOs: 32 and 33 were used. After an initial denaturing step of 5 min at 95°C, the amplification was performed using the "step-cycle" program on a PCR THERMOCYCLER machine set to denature at 94°C for 1 min, anneal at 40°C for 1 min, and extend at 72°C for 10 sec, for a total of 40 cycles.

The 437 bp fragment was purified and cloned into the pCRTMII plasmid vector obtained from Invitrogen Corp. and sequenced by the chain-termination sequencing method.

The resulting sequence showed that the fragment contained the primers at its ends as expected. The fact that the resulting open reading frame contained the sequence KVVFTEK, which corresponds to the L11 peptide of SEQ ID NO: 1, established that this fragment belonged to cDNA encoding our purified 120 kDa protein. SEQ ID NO: 34 represents the NF-AT120 nucleotide sequence and SEQ ID NO: 35 is the encoded amino acid sequence.

This nucleotide segment can be used to screen for related NF-AT proteins by hybridization. This has led to the discovery that there are three related subfamilies, designated class C, class P, and class X; see SEQ ID NO: 36, 38, and 40 respectively for the encoding DNA sequences and SEQ ID NO: 37, 38, and 41 respectively for the amino acid sequences. The X class has been shown in Northern blots to be highly expressed in the thymus.

The purified protein or defined peptides are useful for generating antibodies by standard methods, as described above. Synthetic peptides or purified protein are presented to an immune system to generate monoclonal or polyclonal antibodies. See, e.g.: Coligan (1991 and Supplements) <u>Current Protocols in Immunology</u>, Wiley/Greene; and Harlow and Lane (1989) <u>Antibodies: A Laboratory Manual</u>, Cold Spring Harbor Press. Alternatively, AP-1

5

10

15

20

25

30

35

is used as a specific binding reagent, and advantage can be taken of its specificity of binding, much as an antibody would be used. In either case, the binding reagent is either labeled as described above, e.g., for fluorescence or otherwise, or immobilized to a substrate for panning methods.

The binding composition is used for screening of an expression library made from a cell line which expresses an NF-AT120 protein. Standard staining techniques are used to detect or sort intracellular or surface-expressed protein, or surface-expressing transformed cells are screened by panning.

Screening of intracellular expression is performed by various staining or immunofluorescence procedures; see also McMahan et al. (1991) <u>EMBO J.</u>, 10:2821-2832. For example, on day 0, precoat two-chamber permanox slides with 1 ml per chamber of fibronectin, 10 ng/ml in PBS, for 30 min at room temperature. Rinse once with PBS. Then plate COS cells at 2-3 x 10⁵ cells per chamber in 1.5 ml of growth media. Incubate overnight at 37°C.

On day 1 for each sample, prepare 0.5 ml of a solution of $66 \,\mu\text{g/ml}$ DEAE-dextran, $66 \,\mu\text{M}$ chloroquine, and $4 \,\mu\text{g}$ DNA in serum-free DME. For each set, prepare a positive control, e.g., of a known positive cDNA at 1 and 1/200 dilution, and a negative mock. Rinse cells with serum free DME. Add the DNA solution and incubate 5 hours at 37°C. Remove the medium and add 0.5 ml 10% DMSO in DME for 2.5 min. Remove and wash once with DME. Add 1.5 ml growth medium and incubate overnight.

On day 2, change the medium. On day 3 or 4, fix and stain the cells. Rinse the cells twice with Hank's Buffered Saline Solution (HBSS) and fix in 4% paraformaldehyde/glucose for 5 min. Wash 3X with HBSS. The slides may be stored at -80°C after all liquid is removed. For each chamber, 0.5 ml incubations are performed as follows. Add HBSS/saponin(0.1%) with 32 µl/ml of 1M NaN3 for 20 min. Cells are then washed with HBSS/saponin 1X. Add specific binding reagent, e.g., antibody, to cells and incubate for 30 min. Wash cells twice with HBSS/saponin. Add second antibody, e.g., anti-mouse antibody (e.g., from Vector), at 1/200 dilution, and incubate for 30 min. Prepare ELISA solution, e.g., VECTOR ELITE ABC horseradish peroxidase solution, and preincubate for 30 min. Use, e.g., 1 drop of solution A (avidin) and 1 drop solution B (biotin) per 2.5 ml HBSS/saponin. Wash cells twice with HBSS/saponin. Add ABC HRP solution and incubate for 30 min. Wash cells once with HBSS, and then a second time for 2 min, to close the cells. Then add VECTOR diaminobenzoic acid (DAB) for 5 to 10 min. Use 2 drops of buffer plus 4 drops DAB plus 2 drops of H₂O₂ per 5 ml of glass-distilled water. Carefully remove chamber and rinse

5

10

15

20

25

30

35

slide in water. Air dry for a few minutes, and then add 1 drop of CRYSTAL MOUNT and a cover slip. Bake for 5 min at 85-90°C.

Alternatively, the binding compositions are used to affinity purify or sort out cells expressing the protein; see, e.g., Sambrook et al. or Ausubel et al.

In another method, the peptide segments are used to predict appropriate oligonucleotides to screen a library. The genetic code is used to select appropriate oligonucleotides useful as probes for directly screening a library; see, e.g., SEQ ID NO: 1 through 24. Alternatively, polymerase chain reaction (PCR) techniques will be applied. Synthetic oligonucleotides in appropriate orientations are used as primers to select correct clones from a library. Various combinations of upstream/downstream sense/antisense combinations are tested until an appropriate clone is amplified and detected. 3'- or 5'-anchor PCR techniques can also be applied.

Another strategy is to screen for a membrane-bound expression product by panning. The cDNA library is constructed in an expression vector which attaches the product to the cell membrane. The soluble binding partner or antibodies raised against the defined peptide fragments can be immobilized and used to immobilize expressing cells. Immobilization may be achieved by use of appropriate antibodies which recognize, e.g., the soluble receptor construct, or by use of antibodies raised against the first antibodies. Recursive cycles of selection and amplification lead to enrichment of appropriate clones and eventual isolation of appropriate expressing clones.

Phage expression libraries can be screened by soluble AP-1 or antifragment antibodies. Appropriate label techniques, e.g., antibodies, will allow specific labeling of appropriate clones.

Screening by hybridization using degenerate probes based upon the peptide sequences will also allow isolation of appropriate clones. Alternatively, use of appropriate primers for PCR screening will yield enrichment of appropriate nucleic acid clones.

Similar methods are applicable to isolate either species or allelic variants. Species variants are isolated using cross-species hybridization techniques based upon isolation of a full-length isolate or fragment from one species as a probe. Alternatively, similar assays can be developed, e.g., in mouse cells for isolation of a corresponding NF-AT120 protein.

All references cited herein are incorporated herein by reference to the same extent as if each individual publication or patent application was

- 48 -

specifically and individually indicated to be incorporated by reference in its entirety for all purposes.

Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the invention is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled.

- 49 -

SEQUENCE LISTING

```
5
            SEQ ID NO: 1 is NF-AT120 peptide 1 sequence.
            SEQ ID NO: 2 is NF-AT120 peptide 2 sequence.
            SEQ ID NO: 3 is NF-AT120 peptide 3 sequence.
            SEQ ID NO: 4 is NF-AT120 peptide 4 sequence.
            SEQ ID NO: 5 is NF-AT120 peptide 5 sequence.
10
            SEQ ID NO: 6 is nucleotide sequence for NF-AT peptide 1.
            SEQ ID NO: 7 is nucleotide sequence for NF-AT peptide 2.
            SEQ ID NO: 8 is nucleotide sequence for NF-AT peptide 2.
            SEQ ID NO: 9 is nucleotide sequence for NF-AT peptide 3.
            SEQ ID NO: 10 is nucleotide sequence for NF-AT peptide 3.
15
            SEQ ID NO: 11 is nucleotide sequence for NF-AT peptide 3.
            SEQ ID NO: 12 is nucleotide sequence for NF-AT peptide 3.
            SEQ ID NO: 13 is nucleotide sequence for NF-AT peptide 4.
            SEQ ID NO: 14 is nucleotide sequence for NF-AT peptide 4.
            SEQ ID NO: 15 is nucleotide sequence for NF-AT peptide 4.
20
            SEQ ID NO: 16 is nucleotide sequence for NF-AT peptide 4.
           SEQ ID NO: 17 is nucleotide sequence for NF-AT peptide 5.
           SEQ ID NO: 18 is nucleotide sequence for NF-AT peptide 5.
           SEQ ID NO: 19 is nucleotide sequence for NF-AT peptide 5.
           SEQ ID NO: 20 is nucleotide sequence for NF-AT peptide 5.
25
           SEQ ID NO: 21 is nucleotide sequence for NF-AT peptide 5.
           SEQ ID NO: 22 is nucleotide sequence for NF-AT peptide 5.
           SEQ ID NO: 23 is nucleotide sequence for NF-AT peptide 5.
           SEQ ID NO: 24 is nucleotide sequence for NF-AT peptide 5.
           SEQ ID NO: 25 is CLEO nucleotide sequence.
30
           SEQ ID NO: 26 is AP-1 site.
           SEQ ID NO: 27 is NF-AT site.
           SEQ ID NO: 28 is huNF-AT element.
           SEQ ID NO: 29 is huCLE0 element.
           SEQ ID NO: 30 is moNF-AT element.
35
           SEQ ID NO: 31 is moCLE0 element.
           SEQ ID NO: 32 is L27-1S oligonucleotide.
           SEQ ID NO: 33 is L33-4A oligonucleotide.
           SEQ ID NO: 34 is huNF-AT120, P subfamily, nucleotide sequence
           SEQ ID NO: 35 is huNF-AT120, P subfamily, amino acid sequence
40.
           SEQ ID NO: 36 is huNF-AT120, C subfamily, nucleotide sequence
           SEQ ID NO: 37 is huNF-AT120, C subfamily, amino acid sequence
           SEQ ID NO: 38 is huNF-AT120, P subfamily, nucleotide sequence
           SEQ ID NO: 39 is huNF-AT120, P subfamily, amino acid sequence
           SEQ ID NO: 40 is huNF-AT120, X subfamily, nucleotide sequence
45
           SEQ ID NO: 41 is huNF-AT120, X subfamily, amino acid sequence
```

	(1) GENER	RAL INFORMATION:
5	(i)	INVENTOR: Arai, Naoko Masuda, Esteban S. Tokumitsu, Hiroshi
10	(i)	APPLICANT: Schering Corporation
10	(ii)	TITLE OF INVENTION: PURIFIED COMPONENTS OF MAMMALIAN TRANSCRIPTION REGULATION COMPLEXES, AND ANALOGS
15	(iii)	NUMBER OF SEQUENCES: 41
15		CORRESPONDENCE ADDRESS: (A) ADDRESSEE: John H. C. Blasdale, Schering-Ploughon, M-3-W
20	550 p 57 57 5	(B) STREET: One Giralda Farms
20		(C) CITY: Madison (D) STATE: New Jersey
·		(E) COUNTRY: USA (F) ZIP: 07940-1000
25	(v)	COMPUTER READABLE FORM:
		(A) MEDIUM TYPE: Floppy disk (B) COMPUTER: Apple Macintosh IIci
		(C) OPERATING SYSTEM: System Software 7.1
30		(D) SOFTWARE: Microsoft Word 5.1a
	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: PCT/US 94/
		(B) FILING DATE: (C) CLASSIFICATION:
35		
	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/222,626
		(B) FILING DATE: 04-APR-1994
40	(vii)	PRIOR APPLICATION DATA:
		(A) APPLICATION NUMBER: US 08/148,061 (B) FILING DATE: 05-NOV-1993
	(vii)	PRIOR APPLICATION DATA:
45		(A) APPLICATION NUMBER: US 08/113,971
		(B) FILING DATE: 30-AUG-1993
	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/099,998
50		(B) FILING DATE: 30-JUL-1993
	(vii)	PRIOR APPLICATION DATA:
		(A) APPLICATION NUMBER: US 08/088,483 (B) FILING DATE: 06-JUL-1993
55	(ATTODNEY /ACENT INCODMATTON

```
(A) NAME: Blasdale, John H. C.
                 (B) REGISTRATION NUMBER: 31,895
                 (C) REFERENCE/DOCKET NUMBER: DX0392K4
  5
          (ix) TELECOMMUNICATION INFORMATION:
                 (A) TELEPHONE: 201-822-7398
                 (B) TELEFAX: 201-822-7039
 10
      (2) INFORMATION FOR SEQ ID NO:1:
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 7 amino acids
                (B) TYPE: amino acid
 15
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
 20
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
           Lys Val Val Phe Thr Glu Lys
25
      (2) INFORMATION FOR SEQ ID NO:2:
           (i) SEQUENCE CHARACTERISTICS:
30
                (A) LENGTH: 8 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
35
          (ii) MOLECULE TYPE: peptide
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
          Ala Arg Asn Gln Thr Pro Ser Lys
40
     (2) INFORMATION FOR SEQ ID NO:3:
45
          (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 9 amino acids
                (B) TYPE: amino acid
                (C) STRANDEDNESS: single
50
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
55
```

55

Val Leu Glu Ile Pro Leu Glu Pro Lys 1 5

5	
	(2) INFORMATION FOR SEQ ID NO:4:
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
15	(ii) MOLECULE TYPE: peptide
20	<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 12 (D) OTHER INFORMATION: /label= variation</pre>
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
25	Trp Gln Pro Asn Met Leu Phe Val Glu Ile Pro Glu Tyr Arg Asn 1 5 10 15
30	(2) INFORMATION FOR SEQ ID NO:5:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
70	Gln Glu Gln Asn Leu Asp Gln Thr Tyr Leu Asp Gln Val Asn Glu II 1 5 10 15
45	Val Arg Lys
50	(2) INFORMATION FOR SEQ ID NO:6:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid
55	(C) STRANDEDNESS: single(D) TOPOLOGY: linear

- 53 -

	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
5	AARGTNGTNT TYACNGARAA	20
40	(2) INFORMATION FOR SEQ ID NO:7:	,
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
20	GCNAGRAAYC ARACNCC	47
	GCHAGIMATE AIMCITCE	17
25	(2) INFORMATION FOR SEQ ID NO:8:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
	GCNCGNAAYC ARACNCC	17
40	(2) INFORMATION FOR SEQ ID NO:9:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
5 0	(ii) MOLECULE TYPE: peptide	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
	GTNTTRGARA THCCNTTRGA RCCNAAR	27
55		

	(2) INFORMATION FOR SEQ ID NO:10:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: cDNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
	GTNTTRGARA THCCNCUNGA RCCNAAR	27
15		
	(2) INFORMATION FOR SEQ ID NO:11:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
30	GTNCUNGARA THCCNTTRGA RCCNAAR	27
	(2) INFORMATION FOR SEQ ID NO:12:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
40	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
45	GTNCUNGARA THCCNCUNGA RCCNAAR	27
50	(2) INFORMATION FOR SEQ ID NO:13:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 45 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
55	(D) TOPOLOGY: linear	

PCT/US94/07297

- 55 -

	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
5	TGGCARCCNA AYAUGTTRTT YGTNGARATM CCNGARTAYC GNAAY	45
10	(2) INFORMATION FOR SEQ ID NO:14:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
.0	(ii) MOLECULE TYPE: cDNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	4-
	TGGCARCCNA AYAUGTTRTT YGTNGARATM CCNGARTAYA GRAAY	45
25	(2) INFORMATION FOR SEQ ID NO:15:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) \$TRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
40	TGGCARCCNA AYAUGCUNTT YGTNGARATM CCNGARTAYC GNAAY	45
70	(2) INFORMATION FOR SEQ ID NO:16:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
	TGGCARCCNA AYAUGCUNTT YGTNGARATM CCNGARTAYA GRAAY	45
e e		

55

	(2) INFORMATION FOR SEQ ID NO:17:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
	CARGARCARA AYTTRGAYCA RACNTAYTTR CAYCARGTNA AYGARATHGT NCGNAAR	57
15		
	(2) INFORMATION FOR SEQ ID NO:18:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 57 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
30	CARGARCARA AYTTRGAYCA RACNTAYTTR CAYCARGTNA AYGARATHGT NAGRAAR	57
	(2) INFORMATION FOR SEQ ID NO:19:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
40	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
45	CARGARCARA AYTTRGAYCA RACNTAYCTN CAYCARGTNA AYGARATHGT NCGNAAR	57
5 0	(2) INFORMATION FOR SEQ ID NO:20:	
50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 57 base pairs(B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: single	

- 57 -

	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
5	CARGARCARA AYTTRGAYCA RACNTAYCTN CAYCARGTNA AYGARATHGT NAGRAAR	57
10	(2) INFORMATION FOR SEQ ID NO:21:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 base pairs (B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
20	CARGARCARA AYCTNGAYCA RACNTAYTTR CAYCARGTNA AYGARATHGT NCGNAAR	57
25	(2) INFORMATION FOR SEQ ID NO:22:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
	CARGARCARA AYCTNGAYCA RACNTAYTTR CAYCARGTNA AYGARATHGT NAGRAAR	57
40	(2) INFORMATION FOR SEQ ID NO:23:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: cDNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
	CARGARCARA AYCTNGAYCA RACNTAYCTN CAYCARGTNA AYGARATHGT NCGNAAR	57
55		

PCT/US94/07297

	(2) INFORMATION FOR SEQ ID NO:24:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: cDNA	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
	CARGARCARA AYCTNGAYCA RACNTAYCTN CAYCARGTNA AYGARATHGT NAGRAAR	57
15		
	(2) INFORMATION FOR SEQ ID NO:25:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
30	GATCGTCACC ATTAATCATT TCCTCTAACT GT	32
30	(2) INFORMATION FOR SEQ ID NO:26:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
40	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
45	TCGAGCTATG ACTCATCCG	19
50	(2) INFORMATION FOR SEQ ID NO:27:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
55	(D) TOPOLOGY: linear	

	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
5	GATCGGAGGA AAAACTGTTT CATACAGAAG GCGT	34
10	(2) INFORMATION FOR SEQ ID NO:28:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
15	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
20	TGAAACAGTT TTTCCTCC	18
25	(2) INFORMATION FOR SEQ ID NO:29:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
35	<pre>(ix) FEATURE: (A) NAME/KEY: misc_difference (B) LOCATION: replace(2021, "ga") (D) OTHER INFORMATION: /standard_name= "GM40.41"</pre>	
40	<pre>(ix) FEATURE: (A) NAME/KEY: misc_difference (B) LOCATION: replace(1819, "aa") (D) OTHER INFORMATION: /standard_name= "GM42.43"</pre>	
45	(ix) FEATURE: (A) NAME/KEY: misc_difference (B) LOCATION: replace(1617, "gg") (D) OTHER INFORMATION: /standard_name= "GM44.45"	
50	<pre>(ix) FEATURE: (A) NAME/KEY: misc_difference (B) LOCATION: replace(1415, "cg") (D) OTHER INFORMATION: /standard_name= "GM46.47"</pre>	
55	(ix) FEATURE: (A) NAME/KEY: misc_difference	

	(B) LOCATION: replace(1213, "gg")(D) OTHER INFORMATION: /standard_name= "GM48.49"	
5	<pre>(ix) FEATURE: (A) NAME/KEY: misc_difference (B) LOCATION: replace(1011, "cc") (D) OTHER INFORMATION: /standard_name= "GM50.51"</pre>	
10	<pre>(ix) FEATURE: (A) NAME/KEY: misc_difference (B) LOCATION: replace(89, "ga") (D) OTHER INFORMATION: /standard_name= "GM52.53"</pre>	
15	<pre>(ix) FEATURE: (A) NAME/KEY: misc_difference (B) LOCATION: replace(67, "ac") (D) OTHER INFORMATION: /standard_name= "GM54.55"</pre>	
20	<pre>(ix) FEATURE: (A) NAME/KEY: misc_difference (B) LOCATION: replace(1418, "cttta") (D) OTHER INFORMATION: /standard_name= "GM43.47"</pre>	
25 /	<pre>(ix) FEATURE: (A) NAME/KEY: misc_difference (B) LOCATION: replace(1415, "ct") (D) OTHER INFORMATION: /standard_name= "GM47"</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29: GTCACCATTA ATCATTTCCT CTAACTGT	28
35	(2) INFORMATION FOR SEQ ID NO:30: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs	
40	(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
40	TGAAACAAAT TTTCCTCC	18
50	(2) INFORMATION FOR SEQ ID NO:31:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

	(ii) MOLECULE TYPE: cDNA	
_	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
5	ATTAATCATT TCCTC	15
10	(2) INFORMATION FOR SEQ ID NO:32:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
	GARATHCCNY TNGARCC	17
05		
25	(2) INFORMATION FOR SEQ ID NO:33:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
^ -	(ii) MOLECULE TYPE: cDNA	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
	TAYTCNGGDA TYTCNACRAA	20
40		
	(2) INFORMATION FOR SEQ ID NO:34:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 420 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: cDNA	
	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1420	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	

5	GAG Glu 1	Ile	CCG Pro	TTG Leu	GAG Glu 5	CCC Pro	AAA Lys	AAC Asn	AAC Asn	ATG Met 10	AGG Arg	GCA Ala	ACC Thr	ATC	GAC Asp 15	TGT Cys	4	48
	GCG Ala	GGG	ATC Ile	TTG Leu 20	Lys	CTT Leu	AGA Arg	AAC Asn	GCC Ala 25	GAT Asp	ATT Ile	GAG Glu	CTG Leu	CGG Arg 30	AAA Lys	GGC Gly	g	96
10	GAG Glu	ACG Thr	GAC Asp 35	ATT Ile	GGA Gly	AGA Arg	AAG Lys	AAC Asn 40	ACG Thr	CGG Arg	GTG Val	AGA Arg	CTG Leu 45	GTT Val	TTC Phe	CGA Arg	14	14
15 ·	GTT Val	CAC His 50	ATC Ile	CCA Pro	GAG Glu	TCC Ser	AGT Ser 55	GGC Gly	AGA Arg	ATC Ile	GTC Val	TCT Ser 60	TTA Leu	CAG Gln	ACT Thr	GCA Ala	19	2
20	TCT Ser 65	AAC Asn	CCC Pro	ATC Ile	GAG Glu	TGC Cys 70	TCC Ser	CAG Gln	CGA Arg	TCT Ser	CGT Arg 75	CAC His	GAG Glu	CTG Leu	CCC Pro	ATG Met 80	24	0
25	Val	Glu	Arg	Gln	Asp 85	Thr	Asp	Ser	Cys	CTG Leu 90	Val	Tyr	Gly	Gly	Gln 95	Gln	28	8
	ATG Met	ATC Ile	CTC Leu	ACG Thr 100	GGG	CAG Gln	AAC Asn	TTT Phe	ACA Thr 105	TCC Ser	GAG Glu	TCC Ser	AAA Lys	GTT Val 110	GTG Val	TTT Phe	33	6
30	ACT Thr	Glu	AAG Lys 115	ACC Thr	ACA Thr	GAT Asp	Gly	CAG Gln 120	CAA Gln	ATT Ile	TGG Trp	Glu	ATG Met 125	GAA Glu	GCC Ala	ACG Thr	384	4
35	Val	GAT Asp 130	AAG Lys	GAC Asp	AAG Lys	Ser	CAG Gln 135	CCC Pro	AAC Asn	ATG Met	Leu	TTC Phe 140					420	3
40	(2)		RMAT			_											•	
45		(i) S	(A) (B)	LEN TYP		140 mino	ami aci	no a d	cids								
			i) M				-											
50	63								_	ID I								
	Glu :	rre i	rro l	Leu (5 5	ro I	Lys /	Asn A	Asn I	Met / 10	Arg /	Ala 1	Thr :	[le /	15	Cys		
55	Ala (Gly 1	Ile I	_eu l 20	Lys I	Leu A	Arg A	Asn /	Ala / 25	Asp]	[le (Slu (.eu A	Arg i 30	Lys (Gly		

	Glu Thr Asp Ile Gly Arg Lys Asn Thr Arg Val Arg Leu Val Phe Arg 35 40 45	
5	Val His Ile Pro Glu Ser Ser Gly Arg Ile Val Ser Leu Gln Thr Ala 50 55 60	
	Ser Asn Pro Ile Glu Cys Ser Gln Arg Ser Arg His Glu Leu Pro Met 65 70 75 80	
10	Val Glu Arg Gln Asp Thr Asp Ser Cys Leu Val Tyr Gly Gly Gln Gln 85 90 95	
15	Met Ile Leu Thr Gly Gln Asn Phe Thr Ser Glu Ser Lys Val Val Phe 100 105 110	
	Thr Glu Lys Thr Thr Asp Gly Gln Gln Ile Trp Glu Met Glu Ala Thr 115 120 125	
20	Val Asp Lys Asp Lys Ser Gln Pro Asn Met Leu Phe 130 135 140	
	(2) INFORMATION FOR SEQ ID NO:36:	
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 2853 base pairs(B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	•
35	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 3402490	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
40	CGGACGCGTG GGCTTTAAAA AGGCAGGAGG CAGAGCGCGG CCCTGCGTCA GAGCGAGACT	60
	CAGAGGCTCC GAACTCGCCG GCGGAGTCGC CGCGCCAGAT CCCAGCAGCA GGGCGCGGGC	120
	ACCGGGGCGC GGGCAGGCCT CGGAGCCACC GCGCAGGTCC TAGGGCCGCG GCCGGGCCCC	180
45	GCCACGCGCG CACACGCCCC TCGATGACTT TCCTCCGGGG CGCGCGCGC TGAGCCCGGG .	240
	GCGAGGGCTG TCTTCCCGGA GACCCGACCC CGGCAGCGCG GGGCGGCCAC TTCTCCTGTG	300
50	CCTCCGCCCG CTGCTCCACT CCCCGCCGCC GCCGCGCGG ATG CCA AGC ACC AGC Met Pro Ser Thr Ser 1 5	354
55	TTT CCA GTC CCT TCC AAG TTT CCA CTT GGC CCT GCG GCT GCG GTC TTC Phe Pro Val Pro Ser Lys Phe Pro Leu Gly Pro Ala Ala Ala Val Phe 10 15 20	402

																ATG Met	450
5											GCA Ala			Asn		AGC Ser	498
10	CCC Pro	GCC Ala 55	CTG Leu	CCG Pro	CTC Leu	CCC Pro	ACG Thr 60	GCG Ala	CAC His	TCC Ser	ACC Thr	CTG Leu 65	CCG Pro	GCC Ala	CCG Pro	TGC Cys	546
15		Asn									ATC Ile 80						594
20											GGG Gly					TTC Phe	642
	CTC Leu	TCC Ser	TCC Ser	GGC Gly 105	CAC His	ACC Thr	AGG Arg	CCT Pro	GAT Asp 110	GGG Gly	GCC Ala	CCT Pro	GCC Ala	CTG Leu 115	GAG Glu	AGT Ser	690
25											CTG Leu						738
30	CAG Gln	777 Phe 135	TTC Phe	CAC His	GAT Asp	GTG Val	GAG Glu 140	GTG Val	GAA Glu	GAC Asp	GTC Val	CTC Leu 145	CCT Pro	AGC Ser	TCC Ser	AAA Lys	786
35	CGG Arg 150	TCC Ser	CCC Pro	TCC Ser	ACG Thr	GCC Ala 155	ACG Thr	CTG Leu	AGT Ser	CTG Leu	CCC Pro 160	AGC Ser	CTG Leu	GAG Glu	GCC Ala	TAC Tyr 165	834
40	AGA Arg	GAC Asp	CCC Pro	TCG Ser	TGC Cys 170	CTG Leu	AGC Ser	CCG Pro	GCC Ala	AGC Ser 175	AGC Ser	CTG Leu	TCC Ser	TCC Ser	CGG Arg 180	AGC Ser	882
											AAC Asn						930
45	GCG Ala	TCC Ser	CCC Pro 200	CAG Gln	ACG Thr	TCG Ser	CCA Pro	TGG Trp 205	CAG Gln	TCT Ser	CCC Pro	TGC Cys	GTG Val 210	TCT Ser	CCC Pro	AAG Lys	978
50	ACC Thr	ACG Thr 215	GAC Asp	CCC Pro	GAG Glu	GAG Glu	GGC Gly 220	TTT Phe	CCC Pro	CGC Arg	GGG Gly	CTG Leu 225	GGG Gly	GCC Ala	TGC Cys	ACA Thr	1026
5 5										Ser	ACC Thr 240						1074

								GCG Ala 260	Ser	1122
.								CCC Pro		1170
10								CGG Arg		1218
15								ACC Thr		1266
20								AGC Ser		1314
								CTG Leu 340		1362
25								GAC Asp		1410
30								TCC Ser		1458
35								GCG Ala		1506
40								CCT Pro		1554
								CCG Pro 420		1602
45								TCC Ser		1650
50								AAG Lys		1698
5 5								GAG Glu		1746

-66 -

		Pro														CTG Leu 485	1794
5	CTG Leu	CGC Arg	CCG Pro	CAC His	GCC Ala 490	TTC Phe	TAC Tyr	CAG Gln	GTG Val	CAC His 495	Arg	ATC Ile	ACA Thr	GGG	AAG Lys 500		1842
10	GTG Val	TCC Ser	ACC Thr	ACC Thr 505	AGC Ser	CAC His	GAG Glu	GCT Ala	ATC Ile 510	CTC Leu	TCC Ser	AAC Asn	ACC Thr	AAA Lys 515	GTC Val	CTG Leu	1890
15				CTC Leu													1938
20	GCC Ala	GGA Gly 535	ATC Ile	CTG Leu	AAA Lys	CTC Leu	AGA Arg 540	AAC Asn	TCC Ser	GAC Asp	ATT Ile	GAA Glu 545	CTT Leu	CGG Arg	AAA Lys	GGA Gly	1986
	GAG Glu 550	ACG Thr	GAC Asp	ATC Ile	GGG Gly	AGG Arg 555	AAG Lys	AAC Asn	ACA Thr	CGG Arg	GTA Val 560	CGG Arg	CTG Leu	GTG Val	TTC Phe	CGC Arg 565	2034
25	GTT Val	CAC His	GTC Val	CCG Pro	CAA Gln 570	CCC Pro	AGC Ser	GGC Gly	CGC Arg	ACG Thr 575	CTG Leu	TCC Ser	CTG Leu	CAG Gln	GTG Val 580	GCC Ala	2082
30	TCC Ser	AAC Asn	CCC Pro	ATC Ile 585	GAA Glu	TGC Cys	TCC Ser	CAG Gln	CGC Arg 590	TCA Ser	GCT Ala	CAG Gln	GAG Glu	CTG Leu 595	CCT Pro	CTG Leu	2130
35	GTG Val	GAG Glu	AAG Lys 600	CAG Gln	AGC Ser	ACG Thr	GAC Asp	AGC Ser 605	TAT Tyr	CCG Pro	GTC Val	GTG Val	GGC Gly 610	GGG Gly	AAG Lys	AAG Lys	2178
40	ATG Met	GTC Val 615	CTG Leu	TCT Ser	GGC Gly	CAC His	AAC Asn 620	TTC Phe	CTG Leu	CAG Gln	GAC Asp	TCC Ser 625	AAG Lys	GTC Val	ATT Ile	TTC Phe	2226
	GTG Val 630	GAG Glu	AAA Lys	GCC Ala	Pro	GAT Asp 635	GGC Gly	CAC His	CAT His	GTC Val	TGG Trp 640	GAG Glu	ATG Met	GAA Glu	GCG Ala	AAA Lys 645	2274
45	ACT: Thr	GAC Asp	CGG Arg	GAC Asp	CTG Leu 650	TGC Cys	AAG Lys	CCG Pro	AAT Asn	TCT Ser 655	CTG Leu	GTG Val	GTT Val	GAG Glu	ATC Ile 660	CCG Pro	2322
50	CCA Pro	TTT Phe	CGG Arg	AAT Asn 665	CAG Gln	AGG Arg	ATA Ile	ACC Thr	AGC Ser 670	CCC Pro	GTT Val	CAC His	GTC Val	AGT Ser 675	TTC Phe	TAC Tyr	2370
· 55				GGG Gly								Gln					2418

- 67 -

	CTT CCC GCC AAC GGT AAC GCC ATC TTT CTA ACC GTA AGC CGT GAA CAT Leu Pro Ala Asn Gly Asn Ala Ile Phe Leu Thr Val Ser Arg Glu His 695 700 705	2466
5	GAG CGC GTG GGG TGC TTT TTC TAAAGACGCA GAAACGACGT CGCCGTAAAG Glu Arg Val Gly Cys Phe Phe 710 715	2517
10	CAGCGTGGCG TGTTGCACAT TTAACTGTGT GATGTCCCGT TAGTGAGACC GAGCCATCGA	2577
	TGCCCTGAAA AGGAAAGGAA AAGGGAAGCT TCGGATGCAT TTTCCTTGAT CCCTGTTGGG	2637
	GGTGGGGGGC GGGGGTTGCA TACTCAGATA GTCACGGTTA TTTTGCTTCT TGCGAATGTA	2697
15	TAACAGCCAA GGGGAAAACA TGGCTCTTCT GCTCCAAAAA ACTGAGGGGG TCCTGGTGTG	2757
	CATTTGCACC CTAAAGCTGC TTACGGTGAA AAGGCAAATA GGTATAGCTA TTTTGCAGGC	2817
20	ACCTITAGGA ATAAACTTTG CTTTTAAAAA AAAAAA	2853
	(2) INFORMATION FOR SEQ ID NO:37:	
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 716 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
35	Met Pro Ser Thr Ser Phe Pro Val Pro Ser Lys Phe Pro Leu Gly Pro 1 5 10 15	,
	Ala Ala Val Phe Gly Arg Gly Glu Thr Leu Gly Pro Ala Pro Arg 20 25 30	
40	Ala Gly Gly Thr Met Lys Ser Ala Glu Glu Glu His Tyr Gly Tyr Ala 35 40 45	
45	Ser Ser Asn Val Ser Pro Ala Leu Pro Leu Pro Thr Ala His Ser Thr 50 55 60	
	Leu Pro Ala Pro Cys His Asn Leu Gln Thr Ser Thr Pro Gly Ile Ile 65 70 75 80	
50	Pro Pro Ala Asp His Pro Ser Gly Tyr Gly Ala Ala Leu Asp Gly Gly 85 90 95	
	Pro Ala Gly Tyr Phe Leu Ser Ser Gly His Thr Arg Pro Asp Gly Ala 100 105 110	
55	Pro Ala Leu Glu Ser Pro Arg Ile Glu Ile Thr Ser Cys Leu Gly Leu 115 120 125	

- 68 -

	Tyr	His 130	Asn	Asn	Asn	Gln	Phe 135		His	Asp	Val	Glu 140	Val	Glu	Asp	Val
5	Leu 145	Pro	Ser	Ser	Lys	Arg 150	Ser	Pro	Ser	Thr	Ala 155	Thr	Leu	Ser	Leu	Pro 160
10	Ser	Leu	Glu	Ala	Tyr 165	Arg	Asp	Pro	Ser	Cys 170	Leu	Ser	Pro	Ala	Ser 175	Ser
	Leu	Ser	Ser	Arg 180	Ser	Cys	Asn	Ser	Glu 185	Ala	Ser	Ser	Tyr	Glu 190	Ser	Asn
15	Tyr	Ser	Tyr 195	Pro	Tyr	Ala	Ser	Pro 200	Gln	Thr	Ser	Pro	Trp 205	Gln	Ser	Pro
	Cys	Val 210	Ser	Pro	Lys	Thr	Thr 215	Asp	Pro	Glu	Glu	Gly 220	Phe	Pro	Arg	Glý
20	Leu 225	Gly	Ala	Cys	Thr	Leu 230	Leu	Gly	Ser	Pro	Gln 235	His	Ser	Pro	Ser	Thr 240
25	Ser	Pro	Arg	Ala	Ser 245	Val	Thr	Glu	Glu	Ser 250	Trp	Leu	Gly	Ala	Arg 25 5	Ser
20	Ser	Arg	Pro	Ala 260	Ser	Pro	Cys	Asn	Lys 265	Arg	Lys	Tyr	Arg	Leu 270	Asn	Gly
30	Arg	Gln	Pro 275	Pro	Tyr	Ser	Pro	His 280	His	Ser	Pro	Thr	Pro 285	Ser	Pro	His
	Gly	Ser 290	Pro	Arg	Val	Ser	Val 295	Thr	Asp	Asp	Ser	Trp 300	Leu	Gly	Asn	Thr
3 5	Thr 305	Gln	Tyr	Thr	Ser	Ser 310	Ala	Ile	Val	Ala	Ala 315	Ile	Asn	Ala	Leu	Thr 320
40	Thr	Asp	Ser	Ser	Leu 325	Asp	Leu	Gly	Asp	Gly 330	Val	Pro	Val	Lys	Ser 335	Arg
	Lys	Thr	Thr	Leu 340	Glu	Gln	Pro	Pro	Ser 345	Val	Ala	Leu	Lys	Val 350	Glu	Pro
45	Val	Gly	Glu 355	Asp	Leu	Gly	Ser	Pro 360	Pro	Pro	Pro	Ala	Asp 365	Phe	Ala	Pro
	Glu	Asp 370	Tyr	Ser	Ser	Phe	Gln 375	His	Ile	Arg	Lys	Gly 380	Gly	Phe	Cys	Asp
50	Gln 385	Tyr	Leu	Ala	Val	Pro 390	Gln	His	Pro	Tyr	Gln 395	Trp	Ala	Lys	Pro	Lys 400
55	Pro	Leu	Ser		Thr 405	Ser	Tyr	Met	Ser	Pro 410	Thr	Leu	Pro		Leu 415	Asp

Trp Gln Leu Pro Ser His Ser Gly Pro Tyr Glu Leu Arg Ile Glu Val Gln Pro Lys Ser His His Arg Ala His Tyr Glu Thr Glu Gly Ser Arg 5 Gly Ala Val Lys Ala Ser Ala Gly Gly His Pro Ile Val Gln Leu His 10 Gly Tyr Leu Glu Asn Glu Pro Leu Met Leu Gln Leu Phe Ile Gly Thr 470 Ala Asp Asp Arg Leu Leu Arg Pro His Ala Phe Tyr Gln Val His Arg 15 Ile Thr Gly Lys Thr Val Ser Thr Thr Ser His Glu Ala Ile Leu Ser 505 Asn Thr Lys Val Leu Glu Ile Pro Leu Leu Pro Glu Asn Ser Met Arg 20 Ala Val Ile Asp Cys Ala Gly Ile Leu Lys Leu Arg Asn Ser Asp Ile 25 Glu Leu Arg Lys Gly Glu Thr Asp Ile Gly Arg Lys Asn Thr Arg Val 545 Arg Leu Val Phe Arg Val His Val Pro Gln Pro Ser Gly Arg Thr Leu 30 Ser Leu Gln Val Ala Ser Asn Pro Ile Glu Cys Ser Gln Arg Ser Ala Gln Glu Leu Pro Leu Val Glu Lys Gln Ser Thr Asp Ser Tyr Pro Val 35 Val Gly Gly Lys Lys Met Val Leu Ser Gly His Asn Phe Leu Gln Asp 615 Ser Lys Val Ile Phe Val Glu Lys Ala Pro Asp Gly His His Val Trp Glu Met Glu Ala Lys Thr Asp Arg Asp Leu Cys Lys Pro Asn Ser Leu 45 Val Val Glu Ile Pro Pro Phe Arg Asn Gln Arg Ile Thr Ser Pro Val 660 His Val Ser Phe Tyr Val Cys Asn Gly Lys Arg Lys Arg Ser Gln Tyr 50 Gln Arg Phe Thr Tyr Leu Pro Ala Asn Gly Asn Ala Ile Phe Leu Thr 695 55 Val Ser Arg Glu His Glu Arg Val Gly Cys Phe Phe 710

```
(2) INFORMATION FOR SEQ ID NO:38:
 5
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 2839 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
10
         (ii) MOLECULE TYPE: cDNA
         (ix) FEATURE:
15
               (A) NAME/KEY: CDS
               (B) LOCATION: 30..2129
         (ix) FEATURE:
               (A) NAME/KEY: unsure
20
               (B) LOCATION: replace(1574..1576, "gtt")
         (ix) FEATURE:
               (A) NAME/KEY: unsure
               (B) LOCATION: replace(1574..1576, "gat")
25
         (ix) FEATURE:
               (A) NAME/KEY: unsure
               (B) LOCATION: replace(1574..1576, "ggt")
         (ix) FEATURE:
30
               (A) NAME/KEY: unsure
               (B) LOCATION: replace(1833..1835, "ctc")
         (ix) FEATURE:
35
               (A) NAME/KEY: unsure
               (B) LOCATION: replace(1833..1835, "ccc")
         (ix) FEATURE:
               (A) NAME/KEY: unsure
40
               (B) LOCATION: replace(1833..1835, "cac")
         (ix) FEATURE:
               (A) NAME/KEY: unsure
               (B) LOCATION: replace(1864..1866, "tta")
45
         (ix) FEATURE:
               (A) NAME/KEY: unsure
               (B) LOCATION: replace(1869..1871, "tcc")
         (ix) FEATURE:
50
               (A) NAME/KEY: unsure
               (B) LOCATION: replace(1869..1871, "tac")
         (ix) FEATURE:
55
                (A) NAME/KEY: unsure
               (B) LOCATION: replace(1869..1871, "tgc")
```

- 71 -

5		(ix	(ATUR A) N B) L	AME/				(282	42	826,	"at	g")				
3		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:38	:					
10	стс	ATTA	TTC	cccc	AGAA	CC T	CGCC	AATA		Ser				Ser		GCC Ala	53
45			Ser					His					Arg			TCC Ser	101
15	CGC Arg 25	Ser	TCA Ser	TCG Ser	CCT Pro	GGT Gly 30	Ala	AAG Lys	CGG Arg	AGG Arg	CAT His 35	TCG Ser	TGC Cys	GCC Ala	GAG Glu	GCC Ala 40	149
20	TTG Leu	GTT Val	GCC Ala	CTG Leu	CCG Pro 45	CCC Pro	GGA Gly	GCC Ala	TCA Ser	CCC Pro 50	CAG Gln	CGC Arg	TCC Ser	CGG Arg	AGC Ser 55	CCC Pro	197
25	TCG Ser	CCG Pro	CAG Gln	CCC Pro 60	TCA Ser	TCT Ser	CAC His	GTG Val	GCA Ala 65	CCC Pro	CAG Gln	GAC Asp	CAC His	GGC Gly 70	TCC Ser	CCG Pro	245
30	GCT Ala	GGG	TAC Tyr 75	CCC Pro	CCT Pro	GTG Val	GCT Ala	GGC Gly 80	TCT Ser	GCC Ala	GTG Val	ATC Ile	ATG Met 85	GAT Asp	GCC Ala	CTG Leu	293
35	AAC Asn	AGT Ser 90	CTC Leu	GCC Ala	ACG Thr	GAC Asp	TCG Ser 95	CCT Pro	TGT Cys	GGG Gly	ATC Ile	CCC Pro 100	CCC Pro	AAG Lys	ATG Met	TGG Trp	341
3 3	AAG Lys 105	ACC / Thr	AGC (Ser	CCT (Pro	GAC (Asp	CCC Pro 110	TCG (Ser	CCG (Pro	STG 7 Val	TCT (Ser	CC (Ala 115	GCC (Ala	CA T Pro	CC / Ser	AG (Lys	GCC Ala 120	389
40	GGC Gly	CTG Leu	CCT Pro	CGC Arg	CAC His 125	ATC Ile	TAC Tyr	CCG Pro	GCC Ala	GTG Val 130	GAG Glu	TTC Phe	CTG Leu	GGG Gly	CCC Pro 135	TGC Cys	437
45	GAG Glu	CAG Gln	GGC Gly	GAG Glu 140	AGG Arg	AGA Arg	AAC Asn	TCG Ser	GCT Ala 145	CCA Pro	GAA Glu	TCC Ser	ATC Ile	CTG Leu 150	CTG Leu	GTT Val	485
50				TGG Trp													533
55	ATC Ile	CCA Pro 170	GTG Val	ACT Thr	GCA Ala	TCC Ser	CTC Leu 175	CCT Pro	CCA Pro	CTT Leu	GAG Glu	TGG Trp 180	CCG Pro	CTG Leu	TCC Ser	AGT Ser	581

						GTG Val 195				629
5	 					CGA Arg			GCT Ala	677
10						CAT His				725
15						ACA Thr				773
20						CGA Arg				821
						GGC Gly 275				869
25						AGG Arg				917
30						ATT Ile				965
35						GTG Val				1013
40						GTC Val				1061
40						CGT Arg 355				1109
45						GTC Val				1157
50						GAG Glu				1205
55						TGG Trp				1253

- 73 -

			Lys													CCT Pro	1301
5							ATC Ile										1349
10							AAA Lys										1397
15							AAG Lys										1445
20							ACC Thr										1493
	TAC Tyr	CCC Pro 490	CAG Gln	CAC His	CCG Pro	ATG Met	GTG Val 495	GCC Ala	GAG Glu	TCC Ser	CCC Pro	TCC Ser 500	TGC Cys	CTC Leu	GTG Val	GCC Ala	1541
25							CAG Gln										1589
30							AAC Asn										1637
35							CTG Leu										1685
40							GCG Ala										1733
							AGC Ser 575										1781
45							GTG Val										1829
50							CAG Gln		Phe								1877
55			Ala				ACC Thr	Arg									1925

- 74 -

	GGT CAG AGG CTG AGC CCG GGT TCC TAC CCC ACA GTC ATT CAG CAG CAG Gly Gln Arg Leu Ser Pro Gly Ser Tyr Pro Thr Val Ile Gln Gln Gln 635 640 645	1973
5	AAT GCC ACG AGC CAA AGA GCC GCC AAA AAC GGA CCC CCG GTC AGT GAC Asn Ala Thr Ser Gln Arg Ala Ala Lys Asn Gly Pro Pro Val Ser Asp 650 655 660	2021
10	CAA AAG GAA GTA TTA CCT GCG GGG GTG ACC ATT AAA CAG GAG CAG AAC Gln Lys Glu Val Leu Pro Ala Gly Val Thr Ile Lys Gln Glu Gln Asn 665 670 680	2069
15	TTG GAG GCC AAC CCT GGA GTG GAA GTC CTC TGT GGG GTA GGG ATG GCT Leu Glu Ala Asn Pro Gly Val Glu Val Leu Cys Gly Val Gly Met Ala 685 690 695	2117
20	GAT GGG GCA TAGCACTTGT TAGGGGCTGA AGCAGAAGAG TCAGAGTTCT Asp Gly Ala 700	2166
20	GAAGAGTAAG AGAAGATAGT GAAGCCAGCC CACTTGTGAC AGCAGAGGAT AAAGCAGAGG	2226
	AGTTGATTAA ATTGGTGTCA TTGGATGTCA GAAAACCTTT TAACGCAGAC AAAAGAGGAC	2286
25	TGTTCACACC AAGTGGACCG GCAACGCTGG GAGTAGAGCC ACCAGCAATT ACAGGAGTCG	2346
	GGTTGGATAG GCCTTGGGAT GTTGGTGGTA AGGGCAAAGG GAGCCCTGCA AAAACTGATG	2406
30	ACAATGAAGC AGAATTTGGG TTGCTGGTAG AAGCAGCAGA AGAGCTGGTG GAAAAGGGGA	2466
	GGCTAGTGAA AGGTGCAGAA GTAGAAGCAA ATGCTTCACT GGAACCAAGA GTGGACCGTG	2526
	GTGTAGGTCC TGGGGTAGGA GTGGCTGCGG TAGGAGTGGC AGAAGGACCT GGCAGTGACA	2586
35	CTAGGCCAGA AAAAATGGAA GGAACAGGAG TGGTGGTTGT ACTGTGGATG GATGTAACAG	2646
	GTGCAGTGGG CAATGAAGGG GTTCTGATAA CTGTTGGGTT TGGTATTGAT GTCTGAGGTG	2706
40	TGTGAACGGC TGAGGAGACC TCCCCTGGGA ACACAGGAAG GACAGTATTC AGCAGGTTCA	2766
70	TTCCAGAAAC GGTGGCACCT GCTGATGCTG ATGGATGATT AATTCCCTTG ACTGGGGATA	2826
	CAGTAGGAAC AGG	2839
45		
	(2) INFORMATION FOR SEQ ID NO:39:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 699 gmino acids	

(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

	Met 1	Ser	Pro	Arg	Thr 5	Ser	Leu	Ala	Asp	Asp 10	Ser	Cys	Leu	Gly	Arg 15	His
5	Ser	Pro	Val	Pro 20	Arg	Pro	Ala	Ser	Arg 25	Ser	Ser	Ser	Pro	Gly 30	Ala	Lys
10	Arg	Arg	His 35	Ser	Cys	Ala	Glu	Ala 40	Leu	Val	Ala	Leu	Pro 45	Pro	Gly	Ald
	Ser	Pro 50	Gln	Arg	Ser	Arg	Ser 55	Pro	Ser	Pro	Gln	Pro 60	Ser	Ser	His	Vai
15	Ala 65	Pro	Gln	Asp	His	Gly 70	Ser	Pro	Ala	Gly	Tyr 75	Pro	Pro	Val	Ala	Gl y 80
	Ser	Ala	Val	Ile	Met 85	Asp	Ala	Leu	Asn	Ser 90	Leu	Ala	Thr	Asp	Ser 95	Pro
20	Cys	Gly	Ile	Pro 100	Pro	Lys	Met	Trp	Lys 105	Thr	Ser	Pro	Asp	Pro 110	Ser	Pro
25	Val	Ser	Ala 115	Ala	Pro	Ser	Lys	Ala 120	Gly	Leu	Pro	Arg	His 125	Ile	Tyr	Pro
	Ala	Val 130	Glu	Phe	Leu	Gly	Pro 135	Cys	Glu	Gln	Gly	Glu 140	Arg	Arg	Asn	Ser
30	Ala 145	Pro	Glu	Ser	Île	Leu 150	Leu	Val	Pro	Pro	Thr 155	Trp	Pro	Lys ,	Pro	Let 160
	Val	Pro	Ala	Ile	Pro 165	Ile	Cys	Ser	Ile	Pro 170	Val	Thr	Ala	Ser	Leu 175	Pro
35	Pro	Leu	Glu	Trp 180	Pro	Leu	Ser	Ser	Gln 185	Ser	Gly	Ser	Tyr	Glu 190	Leu	Arg
40	Ile	Glu	Val 195	Gln	Pro	Lys	Pro	His 200	His	Arg	Ala	His	Tyr 205	Glu	Thr	Glu
•	Gly	Ser 210	Arg	Gly	Ala	Val	Lys 215	Ala	Pro	Thr	Gly	Gly 220	His	Pro	Val	Val
45	Gln 225	Leu	His	Gly	Tyr	Met 230	Glu	Asn	Lys	Pro	Leu 235	Gly	Leu	Gln	Ile	Phe 240
	Ile	Gly	Thr	Ala	Asp 245	Glu	Arg	Ile	Leu	Lys 250	Pro	His	Ala	Phe	Tyr 255	Glr
50	Val	His	Arg	Ile 260	Thr	Gly	Lys	Thr	Val 265	Thr	Thr	Thr	Ser	Tyr 270	Glu	Lys
55	Ile	Val	Gly 275	Asn	Thr	Lys	Val	Leu 280	Glu	Ile	Pro	Leu	Glu 285	Pro	Lys	Asn

	Asn	Met 290	Arg	Ala	Thr	Ile	Asp 295	Cys	Ala	Gly	Ile	Leu 300	Lys	Leu	Arg	Ası
5	Ala 305	Asp	Ile	Glu	Leu	Arg 310	Lys	Gly	Glu	Thr	Asp 315	Ile	Gly	Arg	Lys	Asr 320
•	Thr	Arg	Val	Arg	Leu 325	Val	Phe	Arg	Val	His 330	Ile	Pro	Glu	Ser	Ser 335	Gly
10	Arg	Ile	Val	Ser 340		Gln	Thr	Ala	Ser 345	Asn	Pro	Ile	Glu	Cys 350	Ser	Glr
15	Arg	Ser	Arg 355	His	Glu	Leu	Pro	Met 360	Val	Glu	Arg	Gln	Asp 365	Thr	Asp	-Ser
15	Cys	Leu 370	Val	Tyr	Gly	Gly	Gln 375	Gln	Met	Ile	Leu	Thr 380	Gly	Gln	Asn	Phe
20	Thr 385	Ser	Glu	Ser	Lys	Val 390	Val	Phe	Thr	Glu	Lys 395	Thr	Thr	Asp	Gly	Gln 400
	Gln	Ile	Trp	Glu	Met 405	Glu	Ala	Thr	Val	Asp 410	Lys	Asp	Lys	Ser	Gln 415	Pro
25	Asn	Met	Leu	Phe 420	Val	Glu	Ile	Pro	Glu 425	Tyr	Arg	Asn	Lys	His 430	Ile	Arg
30	Thr	Pro	Val 435	Lys	Val	Asn	Phe	Tyr 440	Val	Ile	Asn	Gly	Lys 445	Arg	Lys	Arg
	Ser	Gln 450	Pro	Gln	His	Phe	Thr 455	Tyr	His	Pro	Val	Pro 460	Ala	Ile	Lys	Thr
35	Glu 465	Pro	Thr	Asp	Glu	Tyr 470	Asp	Pro	Thr	Leu	Ile 475	Cys	Ser	Pro	Thr	His 480
	Gly	Gly	Leu	Gly	Ser 485	Gln	Pro	Tyr	Tyr	Pro 490	Gln	His	Pro	Met	Val 495	Ala
40	Glu	Ser	Pro	Ser 500	Cys	Leu	Val	Ala	Thr 505	Met	Ala	Pro	Cys	Gln 510	Gln	Phe
45	Arg	Thr	Gly 515	Leu	Ser	Ser	Pro	Asp 520	Ala	Arg	Tyr	Gln	Gln 525	Gln	Asn	Pro
+5	Ala	Gly 5 30	Val	Leu	Tyr	Gln	Arg 5 35	Ser	Lys	Ser	Leu	Ser 540	Pro	Ser	Leu	Leu
50	Gly 5 45	Tyr	Gln	Gln	Pro	Ala 550	Leu	Met	Ala	Ala	Pro 555	Leu	Ser	Leu	Ala	Asp 560
	Ala	His	Arg	Ser	Val 565	Leu	Val	His	Ala	Gly 570	Ser	Gln	Gly	Gln	Ser 575	Ser
55	Ala	Leu	Leu	His 580	Pro	Ser	Pro	Thr	Asn 585	Gln	Lys	Ala	Ser	Pro 590	Val	Ile

His Tyr Ser Pro Thr Asn Gln Gln Leu Arg Trp Gly Ser His Gln Glu 595 600 5 Phe Gln His Ile Met Phe Cys Glu Asn Phe Ala Pro Gly Thr Thr Arg 615 Pro Gly Pro Pro Pro Val Ser Gln Gly Gln Arg Leu Ser Pro Gly Ser 625 635 10 Tyr Pro Thr Val Ile Gin Gin Gin Asn Ala Thr Ser Gin Arg Ala Ala Lys Asn Gly Pro Pro Val Ser Asp Gln Lys Glu Val Leu Pro Ala Gly 15 Val Thr Ile Lys Gln Glu Gln Asn Leu Glu Ala Asn Pro Gly Val Glu 680 20 Val Leu Cys Gly Val Gly Met Ala Asp Gly Ala 695 25 (2) INFORMATION FOR SEQ ID NO:40: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4010 base pairs (B) TYPE: nucleic acid 30 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA 35 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 304..3531 (ix) FEATURE: 40 (A) NAME/KEY: unsure (B) LOCATION: replace(1756..1758, "gta") (ix) FEATURE: (A) NAME/KEY: unsure 45 (B) LOCATION: replace(1756..1758, "gaa") (ix) FEATURE: (A) NAME/KEY: unsure (B) LOCATION: replace(1756..1758, "gga") 50 (ix) FEATURE: (A) NAME/KEY: unsure (B) LOCATION: replace(3090..3092, "agt") 55 (ix) FEATURE:

(A) NAME/KEY: unsure

(B) LOCATION: replace(3090..3092, "aga")

(ix) FEATURE:
 (A) NAME/KEY: unsure
 (B) LOCATION: replace(3090..3092, "agg") 5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

	(×r) JEQUE	MCL DI	-261/11	11011.	ard 1	LD INC	, TU .	•					
10	GAGCGCA	ccc c cc	GCGGC	ST TG	GCGGCGA	c TG1	rggg	GGG	CGGC	GGGG	SAA (CATTO	GGCTAA	60
10	GCCGACA	GTG GA	GCTTA	G CA	CCGGTGG	c GGG	cGGC	TGC	GGTT	ссто	GT (CTG	CTCGGC	120
	GCGCGGC	CAG CTT	TCGGAA	AC GG/	AACGCTC	G GCC	STCGC	:GGG	cccc	GCCC	GG A	LAA G	ITTGCC	180
15	GTGGAGT	CGC GAG	стстт	G CC	cececee	c ccc	GAAT	TAA	GCGG	GGTT	GA (GAG	стсттс	240
	TCGCCGC	TTG CCC	TTGCC	SC CG(ccGccGc	C TGA	AGAG	GAG	CTGC	AGCA	cc (TGG	CCACG	300
20	CCG ATG Met	Thr Th			TGT GGC Cys Gly									348
25	CTC GTC Leu Val													396
30	CGG CCT Arg Pro	Ala As												444
	AAT GTA Asn Val													492
35	CAT CAT His His 65	Gly Le	A CCG u Pro	TCT (Ser l	CAC TCT His Ser 70	TCT Ser	GTT Val	TTG Leu	TCA Ser 75	CCA Pro	TCG Ser	TTT Phe	CAG Gln	540
40	CTC CAA Leu Gln 80													588
45	AAA TAT Lys Tyr													636
50	CAA ATT Gln Ile		r Ile											684
50	GAA GAT Glu Asp								Glu					732

			Arg										Ser			GAG Glu	780
5						AGT Ser 165										TGG Trp 175	828
10						TCT Ser										GAT Asp	876
15						AAT Asn											924
20						GGT											972
20						TAT Tyr											1020
25						CCT Pro 245											1068
30						TCA Ser											1116
35						TCC Ser											1164
40						CCT Pro											1212
40	AGT Ser	GTG Val 305	ACA Thr	GAA Glu	GAT Asp	ACG Thr	TGG Trp 310	CTC Leu	AAT Asn	GCT Ala	TCT Ser	GTC Val 315	CAT His	GGT Gly	GGG Gly	TCA Ser	1260
45	GGC Gly 320	CTT Leu	GGC Gly	CCT Pro	GCA Ala	GTT Val 325	TTT Phe	CCA Pro	TTT Phe	CAG Gln	TAC Tyr 330	TGT Cys	GTA Val	GAG Glu	ACT Thr	GAC Asp 335	1308
50						AGG Arg											1356
55						CTG Leu		Ser					Ser				1404

-80 -

	GCC Ala	CGG Arg	GAG Glu 370	Thr	TCA Ser	ATA Ile	GAT Asp	GAT Asp 375	GGC Gly	CTT Leu	GGA Gly	TCT Ser	CAG Gln 380	TAT Tyr	CCT Pro	TTA Leu	1452
5	AAG Lys	AAA Lys 385	GAT Asp	TCA Ser	TGT Cys	GGT Gly	GAT Asp 390	CAG Gln	TTT Phe	CTT Leu	TCA Ser	GTT Val 395	CCT Pro	TCA Ser	CCC Pro	TTT Phe	1500
10	ACC Thr 400	Trp	AGC Ser	AAA Lys	CCA Pro	AAG Lys 405	CCT Pro	GGC Gly	CAC His	ACC Thr	CCT Pro 410	ATA Ile	TTT Phe	CGC Arg	ACA Thr	TCT Ser 415	1548
15	TCA Ser	TTA Leu	CCT Pro	CCA Pro	CTA Leu 420	GAC Asp	TGG Trp	CCT Pro	TTA Leu	CCA Pro 425	GCT Ala	CAT His	TTT Phe	GGA Gly	CAA Gln 430	नदा Cys	1596
20	GAA Glu	CTG Leu	AAA Lys	ATA Ile 435	GAA Glu	GTG Val	CAA Gln	CCT Pro	AAA Lys 440	ACT Thr	CAT His	CAT His	CGA Arg	GCC Ala 445	CAT His	TAT Tyr	1644
	Glu	Thr	Glu 450	Gly	AGC Ser	Arg	Gly	Ala 4 5 5	Val	Lys	Ala	Ser	Thr 460	Gly	Gly	His	1692
25	CCT Pro	GTT Val 465	GTG Val	AAG Lys	CTC Leu	CTG Leu	GGC Gly 470	TAT Tyr	AAC Asn	GAA Glu	AAG Lys	CCA Pro 475	ATA Ile	AAT Asn	CTA Leu	CAA Gln	1740
30	ATG Met 480	TTT Phe	ATT Ile	GGG Gly	ACA Thr	GCA Ala 485	GAT Asp	GAT Asp	CGA Arg	TAT Tyr	TTA Leu 490	CGA Arg	CCT Pro	CAT His	GCA Ala	TTT Phe 495	1788
35	TAC Tyr	CAG Gln	GTG Val	CAT His	CGA Arg 500	ATC Ile	ACT Thr	GGG Gly	AAG Lys	ACA Thr 505	GTC Val	GCT Ala	ACT Thr	GCA Ala	AGC Ser 510	CAA Gln	1836
40	GAG Glu	ATA Ile	Ile	ATT Ile 515	GCC Ala	AGT Ser	ACA Thr	AAA Lys	GTT Val 520	CTG Leu	GAA Glu	ATT Ile	Pro	CTT Leu 525	CTT Leu	CCT Pro	1884
	GAA Glu	Asn	AAT Asn 530	ATG Met	TCA Ser	GCC Ala	Ser	ATT Ile 535	GAT Asp	TGT Cys	GCA Ala	GGT Gly	ATT Ile 540	TTG Leu	AAA Lys	CTC Leu	1932
45	CGC [*] Arg	AAT Asn 545	TCA Ser	GAT Asp	ATA Ile	Glu	CTT Leu 5 50	CGA Arg	AAA Lys	GGA Gly	GAA Glu	ACT Thr 555	GAT Asp	ATT Ile	GGC Gly	AGA Arg	1980
50	AAG Lys 560	AAT Asn	ACT Thr	AGA Arg	GTA Val	CGA Arg 565	CTT Leu	GTG Val	TTT Phe	Arg	GTA Val 570	CAC His	ATC Ile	CCA Pro	Gln	CCC Pro 575	2028
55	AGT Ser	GGA Gly	AAA Lys	Val	CTT Leu 580	TCT Ser	CTG Leu	CAG Gln	Ile	GCC Ala 585	TCT Ser	ATA Ile	CCC Pro	Val	GAG Glu 590	TGC Cys	2076

					Ala	CAA Gln										ATC Ile	2124
5																TCT Ser	2172
10						TCC Ser										GAT Asp	2220
15						GAG Glu 645											2268
20						GTC Val											2316
20	GTT Val	ACA Thr	GCT Ala	GCA Ala 675	GTG Val	CAG Gln	GTG Val	CAC His	TTT Phe 680	TAT Tyr	CTT Leu	TGC Cys	AAT Asn	GGC Gly 685	AAG Lys	AGG Arg	2364
25						CAA Gln											2412
30						GAG Glu											2460
35	GTG Val 720	CCT Pro	CAT His	CCT Pro	GCT Ala	CAG Gln 725	ACC Thr	CAG Gln	AGG Arg	CCT Pro	TCC Ser 730	TCT Ser	GAT Asp	TCA Ser	GGG Gly	TGT Cys 735	2508
40						CTG Leu											2556
						TCC Ser											2604
45	CAG Gln	TGT Cys	AGA Arg 770	GAT Asp	GAG Glu	AGT Ser	GTT Val	AGT Ser 775	AAA Lys	GAA Glu	CAG Gln	CAT His	ATG Met 780	ATT Ile	CCT Pro	TCT Ser	2652
50	CCA Pro	ATT Ile 785	GTA Val	CAC His	CAG Gln	CCT Pro	TTT Phe 790	CAA Gln	GTC Val	ACA Thr	CCA Pro	ACA Thr 795	CCT Pro	CCT Pro	GTG Val	GGG Gly	2700
55	TCT Ser 800	TCC Ser	TAT Tyr	CAG Gln	CCT Pro	ATG Met 805	CAA Gln	ACT Thr	AAT Asn	GTT Val	GTG Val 810	TAC Tyr	AAT Asn	GGA Gly	CCA Pro	ACT Thr 815	2748

- 82 -

																	•
	TGT Cys	Leu	CCT Pro	ATT	AAT Asn 820	Ala	GCC Ala	TCT Ser	AGT Ser	CAA Gln 825	Glu	TTT Phe	GAT Asp	TCA Ser	GTT Val 830	TGG Trp	2796
5	TTT Phe	CAG Gln	CAG Gln	GAT Asp 835	Ala	ACT Thr	CTT Leu	TCT Ser	GGT Gly 840	TTA Leu	GTG Val	AAT Asn	CTT Leu	GGC Gly 845	TGT Cys	CAA Gln	2844
10	CCA Pro	CTG Leu	TCA Ser 850	TCC Ser	ATA Ile	CCA Pro	TTT Phe	CAT His 855	TCT Ser	TCA Ser	AAT Asn	TCA Ser	GGC Gly 860	TCA Ser	ACA Thr	GGA Gly	2892
15	CAT His	CTC Leu 865	TTA Leu	GCC Ala	CAT His	ACA Thr	CCT Pro 870	CAT His	TCT Ser	GTG Val	CAT His	ACC Thr 875	CTG Leu	CCT Pro	CAT His	CTG Leu	·2940
20	CAA Gln 880	TCA Ser	ATG Met	GGA Gly	TAT Tyr	CAT His 885	TGT Cys	TCA Ser	AAT Asn	ACA Thr	GGA Gly 890	CAA Gln	AGA Arg	TCT Ser	CTT Leu	TCT Ser 895	2988
20	TCT Ser	CCA Pro	GTG Val	GGT Gly	GAC Asp 900	CAG Gln	ATT Ile	ACA Thr	GGT Gly	CAG Gln 905	CCT Pro	TCG Ser	TCT Ser	CAG Gln	TTA Leu 910	CAA Gln	3036
25	CCT Pro	ATT Ile	ACA Thr	TAT Tyr 915	GGT Gly	CCT Pro	TCA Ser	CAT His	TCA Ser 920	GGG Gly	TCT Ser	GTT Val	ACA Thr	ACA Thr 925	GCT Ala	TCC Ser	3084
30	CCA Pro	GCA Ala	GCT Ala 930	TCT Ser	CAT His	CCC Pro	TTG Leu	GGT Gly 935	AGT Ser	TCA Ser	CCG Pro	CTT Leu	TCT Ser 940	GGG Gly	CCA Pro	CCA Pro	3132
35	TCT Ser	CCT Pro 945	CAG Gln	TTT Phe	CAG Gln	Pro	ATG Met 950	CCT Pro	TAC Tyr	CAA Gln	TCT Ser	CCT Pro 955	AGC Ser	TCA Ser	GGA Gly	ACT Thr	3180
40	GGC Gly 960	TCA Ser	TCA Ser	CCG Pro	Ser	CCA Pro 965	GCC Ala	ACC Thr	AGA Arg	ATG Met	CAT His 970	TCT Ser	GGA Gly	CAG Gln	His	TCA Ser 975	3228
	ACT Thr	CAA Gln	GCA Ala	Gln	AGT Ser 980	ACG Thr	GGC Gly	CAG Gln	Gly	GGT Gly 985	CTT Leu	TCT Ser	GCA Ala	CCT Pro	TCA Ser 990	TCC Ser	3276
45	TTA Leu	ATA Ile	TGT Cys	CAC His 995	AGT Ser	TTG Leu	TGT Cys	GAT Asp	CCA Pro 1000	Ala	TCA Ser	TTT Phe	CCA Pro	CCT Pro 1005	Asp	GGG Gly	3324
50	GCA Ala	Thr	GTG Val 1010	Ser	ATT Ile	AAA Lys	Pro	GAA Glu 1015	Pro	GAA Glu	GAT Asp	CGA Arg	GAG Glu 1020	Pro	AAC Asn	TTT Phe	3372
55	Ala	ACC Thr 1025	ATT Ile	GGT Gly	CTG Leu	Gln	GAC Asp 1030	Ile	ACT Thr	TTA Leu	Asp	GAT Asp 1035	Val	AAC Asn	GAG Glu	ATA Ile	3420

	ATT GGG AGA GAC ATG TCC CAG ATT TCT GTT TCC CAA GGA GCA GGG GTG Ile Gly Arg Asp Met Ser Gln Ile Ser Val Ser Gln Gly Ala Gly Val 1040 1045 1050 1055	3468
5	AGC AGG CAG GCT CCC CTC CCG AGT CCT GAG TCC CTG GAT TTA GGA AGA Ser Arg Gln Ala Pro Leu Pro Ser Pro Glu Ser Leu Asp Leu Gly Arg 1060 1065 1070	3516
10	TCT GAT GGG CTC TAACAGTGCT TACTGCAGCC TTGTGTCCAC CACCAACTTC Ser Asp Gly Leu 1075	3568
	TCAGCATGTT TCTCTCCTTG GACCTTGGGT TTCCAACTCT TCAACCTTCA GGTCTGGGGC	3628
15	CAGGAGTGGG ACCCACCATT TGTGGGGAAA GTAGCATTCC TCCACCTCAG GCCTTGGGTA	3688
	GATTTGGCAA AAGAACAGGA GCAGCATAGG CTGTTTGAGC TTTGGGGAAA TGAACTTTGC	3748
	TITTTATATT TAACTAGGAT ACTTITAAAT GATGGGTGCT TTGAGTGTGA ATCCAGCAGG	3808
20	CTCTCTTGTT TCCGAGGTGC TGCTTTTGCA GGTGACCTGG TTACTTAACT AGGAGTGGTG	3868
	ATTTGTACTG CTTTATGGTC ATTTGAAGGG CCCCTTAGTT TTTATGATAA TTTTTAAAAT	3928
25	AGGAACTTTT GATAAGACCT TCTAGAACCC CAAAAAAAAA AAAAAAAAGAA AAAAAAAGAA	3988
	AAACAATAAA AAAAAAAAA GG	4010
30	(2) INFORMATION FOR SEQ ID NO:41:	•
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1075 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
	Met Thr Thr Ala Asn Cys Gly Ala His Asp Glu Leu Asp Phe Lys Leu 1 10 15	
45	Val Phe Gly Glu Asp Gly Ala Pro Ala Pro Pro Pro Pro Gly Ser Arg 20 25 30	
50	Pro Ala Asp Leu Glu Pro Asp Asp Cys Ala Ser Ile Tyr Ile Phe Asn 35 40 45	
	Val Asp Pro Pro Pro Ser Thr Leu Thr Thr Pro Leu Cys Leu Pro His 50 55 60	
55	His Gly Leu Pro Ser His Ser Ser Val Leu Ser Pro Ser Phe Gln Leu 65 70 75 80	

WO 95/02053 PCT/US94/07297

- 84 -

	Gln	Ser	His	Lys	Asn 85	Tyr	Glu	Gly	Thr	Cys 90	Glu	Ile	Pro	Glu	Ser 95	Lys
5	Tyr	Ser	Pro	Leu 100	Gly	Gly	Pro	Lys	Pro 105	Phe	Glu	Cys	Pro	Ser 110	Ile	Gln
	Ile	Thr	Ser 115	Ile	Ser	Pro	Asn	Cys 120	His	Gln	Glu	Leu	Asp 125	Ala	His	Glu
10	Asp	Asp 130	Leu	Gln	Ile	Asn	Asp 135	Pro	Glu	Arg	Glu	Phe 140	Leu	Glu	Arg	Pro
15	Ser 145	Arg	Asp	His	Leu	Tyr 150	Leu	Pro	Leu	Glu	Pro 155	Ser	Tyr	Arg	Glu	Ser 160
	Ser	Leu	Ser	Pro	Ser 165	Pro	Ala	Ser	Ser	Ile 170	Ser	Ser	Arg	Ser	Trp 175	Phe
20	Ser	Asp	Ala	Ser 180	Ser	Cys	Glu	Ser	Leu 185	Ser	His	Ile	Tyr	Asp 190	Asp	Val
	Asp	Ser	Glu 195	Leu	Asn	Glu	Ala	Ala 200	Ala	Arg	Phe	Thr	Leu 205	Gly	Ser	Pro
25	Leu	Thr 210	Ser	Pro	Gly	Gly	Ser 215	Pro	Gly	Gly	Cys	Pro 220	Gly	Glu	Glu	Thr
30	Trp 225	His	Gln	Gln	Tyr	Gly 230	Leu	Gly	His	Ser	Leu 235	Ser	Pro	Arg	Gln	Ser 240
	Pro	Cys	His	Ser	Pro 245	Arg	Ser	Ser	Val	Thr 250	Asp	Glu	Asn	Trp	Leu 255	Ser
35	Pro	Arg	Pro	Ala 260	Ser	Gly	Pro	Ser	Ser 265	Arg	Pro	Thr	Ser	Pro 270	Cys	Gly
	Lys	Arg	Arg 275	His	Ser	Ser	Ala	Glu 280	Val	Cys	Tyr _.	Ala	Gly 285	Ser	Leu	Ser
40	Pro	His 290	His	Ser	Pro	Val	Pro 295	Ser	Pro	Gly	His	Ser 300	Pro	Arg	Gly	Ser
4 5	Val 305	Thr	Glu	Asp	Thr	Trp 310	Leu	Asn	Ala	Ser	Val 315	His	Gly	Gly	Ser	Gly 320
. •	Leu	Gly	Pro	Ala	Val 325	Phe	Pro	Phe	Gln	Tyr 330	Cys	Val	Glu	Thr	Asp 335	Ile
50	Pro	Leu	Lys	Thr 340	Arg	Lys	Thr	Ser	Glu 345	Asp	Gln	Ala	Ala	Ile 350	Leu	Pro
	Gly	Lys	Leu 355	Glu	Leu	Cys		Asp 360	Asp	Gln	Gly	Ser	Leu 365	Ser	Pro	Ala
55	Arg	Glu 370	Thr	Ser	Ile		Asp 375	Gly	Leu	Gly	Ser	Gln 380	Tyr	Pro	Leu	Lys

	Lys 385	Asp	Ser	Cys	Gly	Asp 390	Gln	Phe	Leu	Ser	Val 395	Pro	Ser	Pro	Phe	Th:
5	Trp	Ser	Lys	Pro	Lys 405	Pro	Gly	His	Thr	Pro 410	Ile	Phe	Arg	Thr	Ser 415	Sei
10	Leu	Pro	Pro	Leu 420	Asp	Trp	Pro	Leu	Pro 425	Ala	His	Phe	Gly	Gln 430	Cys	Glu
	Leu	Lys	Ile 435	Glu	Val	Gln	Pro	Lys 440	Thr	His	His	Arg	Ala 445	His	Tyr	Glu
15	Thr	Glu 450	Gly	Ser	Arg	Gly	Ala 455	Val	Lys	Ala	Ser	Thr 460	Gly	Gly	His	Pro
	Val 465	Val	Lys	L _. eu	Leu	Gly 470	Tyr	Asn	Glu	Lys	Pro 475	Ile	Asn	Leu	Gln	Met 480
20	Phe	Ile	Gly	Thr	Ala 485	Asp	Asp	Arg	Tyr	Leu 490	Arg	Pro	His	Ala	Phe 495	Tyr
25	Gln	Val		Arg 500	Ile	Thr	Gly	Lys	Thr 50 5	Val	Ala	Thr	Ala	Ser 510	Gln	Glu
	Ile	Ile	Ile 515	Ala	Ser	Thr	Lys	Val 520	Leu	Glu	Ile	Pro	Leu 525	Leu	Pro	Glu
30	Asn	Asn 530	Met	Ser	Ala	Ser	Ile 535	Asp	Cys	Ala	Gly	Ile 540	Leu	Lys	Leu	Arg
	Asn 545	Ser	Asp	Ile	Glu	Leu 550	Arg	Lys	Gly	Glu	Thr 555	Asp	Ile	Gly	Arg	Lys 560
35	Asn	Thr	Arg	Val	Arg 565	Leu	Val	Phe	Arg	Val 570	His	Ile	Pro	Gln	Pro 575	Ser
40	Gly	Lys	Val	Leu 580	Ser	Leu	Gln	Ile	Ala 585	Ser	Ile	Pro	Val	Glu 590	Cys	Ser
	Gln	Arg	Ser 595	Ala	Gln	Glu	Leu	Pro 600	His	Ile	Glu	Lys	Tyr 605	Ser	Ile	Asn
45	Ser	Cys 610	Ser	Val	Asn	Gly	Gly 615	His	Glu	Met	Val	Val 620	Thr	Gly	Ser	Asn
	Phe 625	Leu	Pro	Glu	Ser	Lys 630	Ile	Ile	Phe	Leu	Glu 635	Lys	Gly	Gln	Asp	Gly 640
50	Arg	Pro	Gln	Trp	Glu 645	Val	Glu	Gly		Ile 650	Ile	Arg	Glu	Lys	Cys 655	Gln
55	Gly	Ala	His	Ile 660	Val	Leu	Glu		Pro 665	Pro	Tyr	His	Asn	Pro 670	Ala	Val

	Thr	· Ala	675	Val	l Gln	Val	His	680		Leu	Cys	Asn	Gly 685		Arg	Lys
5	Lys	Ser 690	Gln	Ser	·Gln	Arg	Phe 695		Tyr	Thr	Pro	Val 700	Leu	Leu	Lys	Gln
	Gl u 705	His	Arg	Glu	ı Glu	Ile 710	Asp	Leu	Ser	Ser	Val 715		Ser	Leu	Pro	Val 720
10	Pro	His	Pro	Ala	Gln 725	Thr	Gln	Arg	Pro	Ser 730		Asp	Ser	Gly	Cys 735	
15	His	Asp	Ser	Val 740	Leu	Ser	Gly	Gln	Arg 745		Leu	Ile	Cys	Ser 750	Ile	Pro
, ,	Gln	Thr	Tyr 755	Ala	Ser	Met	Val	Thr 760	Ser	Ser	His	Leu	Pro 765	Gln	Leu	Gln
20	Cys	Arg 770	Asp	Glu	Ser	Val	Ser 775		Glu	Gln	His	Met 780	Ile	Pro	Ser	Pro
	Ile 785	Val	His	Gln	Pro	Phe 790	Gln	Val	Thr	Pro	Thr 795	Pro	Pro	Val	Gly	Ser 800
25	Ser	Tyr	Gln	Pro	Met 805	Gln	Thr	Asn	Val	Val 810	Tyr	Asn	Gly	Pro	Thr 815	Cys
30	Leu	Pro	Ile	Asn 820	Ala	Ala	Ser	Ser	Gln 825	Glu	Phe	Asp	Ser	Val 830	Trp	Phe
	Gln	Gln	Asp 835	Ala	Thr	Leu	Ser	Gly 840	Leu	Val	Asn	Leu	Gly 845	Cys	Gln	Pro
35	Leu	Ser 850	Ser	Ile	Pro	Phe	His 855	Ser	Ser	Asn	Ser	Gly 860	Ser	Thr	Gly	His
	Leu 865	Leu	Ala	His	Thr	Pro 870	His	Ser	Val	His	Thr 875	Leu	Pro	His	Leu	Gln 880
40	Ser	Met	Gly	Tyr	His 885	Cys	Ser	Asn	Thr	Gly 890		Arg	Ser	Leu	Ser 895	Ser
45	Pro	Val	Gly	Asp 900	Gln	Ile	Thr	Gly	Gln 905	Pro	Ser	Ser	Gln	Leu 910	Gln	Pro
	Ile	Thr	Tyr 915	Gly	Pro	Ser	His	Ser 920	Gly	Ser	Val		Thr 925	Ala	Ser	Pro
50	Ala	Ala 930	Ser	His	Pro		Gly 935	Ser	Ser	Pro		Ser 940	Gly	Pro	Pro	Ser
	Pro 945	Gln	Phe	Gln	Pro	Met 950	Pro	Tyr	Gln	Ser	Pro 955	Ser	Ser	Gly		Gly 960
55	Ser	Ser	Pro	Ser	Pro 965	Ala	Thr	Arg		His 970	Ser	Gly	Gln		Ser 975	Thr

- Gln Ala Gln Ser Thr Gly Gln Gly Gly Leu Ser Ala Pro Ser Ser Leu 980 985 990
- 5 Ile Cys His Ser Leu Cys Asp Pro Ala Ser Phe Pro Pro Asp Gly Ala 995 1000 1005
 - Thr Val Ser Ile Lys Pro Glu Pro Glu Asp Arg Glu Pro Asn Phe Ala 1010 1015 1020
- Thr Ile Gly Leu Gln Asp Ile Thr Leu Asp Asp Val Asn Glu Ile Ile 1025 1030 1035 1040
- Gly Arg Asp Met Ser Gln Ile Ser Val Ser Gln Gly Ala Gly Val Ser 15 1045 1050 1055
 - Arg Gln Ala Pro Leu Pro Ser Pro Glu Ser Leu Asp Leu Gly Arg Ser 1060 1065 1070
- 20 Asp Gly Leu 1075

CLAIMS:

- 1. A composition selected from the group consisting of:
 - a) a substantially pure NF-AT120 protein or peptide thereof, or a fusion protein comprising NF-AT120 protein sequence;
- 5 b) an antibody specific for binding to an NF-AT120 protein; and
 - c) a nucleic acid encoding an NF-AT120 protein or fragment thereof.
 - 2. A substantially pure NF-AT120 protein or peptide thereof of Claim 1.
 - 3. A protein or peptide of Claim 2, selected from the group consisting of:
 - a) a protein from a mammal, including a human;
- b) a protein comprising at least one polypeptide segment of SEQ ID NO: 1 through 5;
 - c) a protein which exhibits a post-translational modification pattern distinct from natural NF-AT120 protein; and
 - d) a protein which exhibits at least one of the features disclosed in Table 1.
- 4. A composition comprising a protein of Claim 2, and a pharmaceutically acceptable carrier.
 - 5. An antibody of Claim 1.
 - 6. An antibody of Claim 5, wherein:
 - a) said NF-AT120 protein is a mammalian protein, including a human;
- b) said antibody is raised against a peptide sequence of SEQ ID NO: 1 through 5, 35, 37, 39, or 41;
 - c) said antibody is a monoclonal antibody; or
 - d) said antibody is labeled.
 - 7. A nucleic acid of Claim 1.
- 8. A nucleic acid of Claim 7, wherein said nucleic acid comprises a sequence of SEQ ID NO: 6 through 24, 34, 36, 38, or 40.
 - 9. A kit comprising:
 - a) a substantially pure NF-AT120 protein or fragment;
 - b) an antibody which specifically binds an NF-AT120 protein; or
- 30 c) a nucleic acid encoding an NF-AT120 protein or peptide.

WO 95/02053 PCT/US94/07297

- 10. A method of modulating physiology or development of a cell comprising contacting said cell with a modulator of an NF-AT120 protein.
- 11. A method of Claim 10, wherein said modulator is an antibody against a mammalian NF-AT120 protein.
- 5 12. A method of Claim 10, wherein said cell is a hematopoietic cell, including a lymphoid cell.

Figure 1

AP-1

Figure 3

Figure 48

Figure 5

INTERNATIONAL SEARCH REPORT

Interna. .1 Application No PCT/US 94/07297

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12N15/12 C07K1 G01N33/68 A61K38/17 C07K16/18 C07K14/47 G01N33/53 C12Q1/68 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) **CO7K** IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1-3 JOURNAL OF BIOLOGICAL CHEMISTRY, ٨ vol.268, no.4, 5 February 1993, BALTIMORE, MD US pages 2917 - 2923 J.P. NORTHROP ET AL 'Characterization of the Nuclear and cytoplasmic components of the Lymphoid-specific Nuclear Factor of activated T cells (NF-AT) complex' cited in the application see the whole document Patent family members are listed in annex. X Further documents are listed in the continuation of box C. * Special categóries of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search N 2 -12- 1994 21 November 1994 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Ripswijk Td. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Le Cornec, N

3

INTERNATIONAL SEARCH REPORT

Interna al Application No
PCT/US 94/07297

(Continu	ntion) DOCUMENTS CONSIDERED TO BE RELEVANT	
ategory *		Relevant to claim No.
P,X	BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol.196, no.2, 29 October 1993, DULUTH, MINNESOTA US pages 737 - 744 H. TOKUMITSU ET AL 'Purification of the 120 kDa component of the human Nuclear Factor of Activated T cells (NF-AT)' see the whole document	1-4
E	WO,A,94 15964 (DANAFARBER CANCER INSTITUTE, INC.) 21 July 1994 * see the whole document especially sequence ID no 12 and the claims *	1-7,9
P,X	SCIENCE, vol.262, 29 October 1993, LANCASTER, PA US pages 750 - 754 P.G. MCCAFFREY ET AL 'Isolation of the cyclosporin-sensitive T cell transcription factor NFATp' see the whole document	1-3,5,6
X	WO,A,93 04203 (THE BOARD OF TRUSTEES OF THE LELAND STANFORD JR. UNIVERSITY) 4 March 1993	1,2,4,7,
A	see the whole document	10
A	JOURNAL OF BIOLOGICAL CHEMISTRY, vol.268, no.5, 15 February 1993, BALTIMORE, MD US pages 3747 - 3752 P. MCCAFFREY ET AL 'NF-ATp , a T lymphocyte DNA-binding proteinthat is a target for calcineurin and immunosuppressive drugs' cited in the application see the whole document	1-3
P,X	NATURE, vol.369, 9 June 1994, LONDON GB pages 497 - 502 J.P. NORTHROP ET AL 'NF-AT components define a family of transcription factors targeted in T-cell activationt' * see the whole document especially figure 1 *	1,2,4-8
A	NATURE, vol.356, 30 April 1992, LONDON GB pages 801 - 804 J. JAIN ET AL 'Nuclear factor of activated T cells contains Fos and Jun' cited in the application see the whole document	1,7,9

3

INTERNATIONAL SEARCH REPORT

Internation on patent family members

Interna. al Application No PCT/US 94/07297

Patent document cited in search report	Publication date	Patent f membe		Publication date		
WO-A-9415964	21-07-94	NONE				
WO-A-9304203	04-03-93	CA-A-	2114434	04-03-93		

Form PCT/ISA/210 (petent family annex) (July 1992)