

Машинное зрение

Лекция 5. Сверточные сети

Учебные вопросы

- 1. Многослойные нелинейные классификаторы.
- 2. Механизм обратного распространения ошибки (Backpropagation).
- 3. Сверточные сети (Convolution nets).

Материалы для более глубокого изучения:

- cs231n.stanford.edu (Convolution NN for Visual Recognition)
- dlcourse.ai (курс на русском)

Сроки сдачи CodeLab_2 (всего будет 4, по 10 баллов за каждый):

- 3 декабря 2021 г.

What's wrong with linear classification?

Neural networks: also called fully connected network

(**Before**) Linear score function:
$$f = Wx$$

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

(In practice we will usually add a learnable bias at each layer as well)

Многослойные нелинейные

Neural networks: learning 100s of templates

f = Wx(Before) Linear score function:

(Now) 2-layer Neural Network
$$f = W_2 \max(0, W_1 x)$$

Learn 100 templates instead of 10.

Share templates between classes

Neural networks: why is max operator important?

(**Before**) Linear score function:
$$f=Wx$$

(**Now**) 2-layer Neural Network
$$f = W_2 \max(0, W_1 x)$$

The function max(0, z) is called the **activation function**.

Q: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$
 $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

A: We end up with a linear classifier again!

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

ReLU is a good default choice for most problems

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Многослойные нелинейные

Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
    from numpy.random import randn
    N, D in, H, D out = 64, 1000, 100, 10
                                                                 Define the network
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D in, H), randn(H, D out)
    for t in range(2000):
8
      h = 1 / (1 + np.exp(-x.dot(w1)))
9
      y_pred = h.dot(w2)
10
                                                                 Forward pass
      loss = np.square(y_pred - y).sum()
11
      print(t, loss)
12
13
      grad_y pred = 2.0 * (y_pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
                                                                 Calculate the analytical gradients
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
                                                                Gradient descent
      w2 -= 1e-4 * grad w2
20
```


Setting the number of layers and their sizes

Многослойные нелинейные

Do not use size of neural network as a regularizer. Use stronger regularization instead:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Problem: How to compute gradients?

$$s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)$$
 Nonlinear score function

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$
 SVM Loss on predictions

$$R(W) = \sum_k W_k^2 \quad \text{Regularization}$$

$$L = \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2) \quad \text{Total loss: data loss + regularization}$$

If we can compute $\; \frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2} \;$ then we can learn ${\bf W_1}$ and ${\bf W_2}$

Многослойные нелинейные

(Bad) Idea: Derive $\nabla_W L$ on paper

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to change loss? E.g. use softmax instead of SVM? Need to re-derive from scratch =(

Problem: Not feasible for very complex models!

$$\nabla_W L = \nabla_W \left(\frac{1}{N} \sum_{i=1}^N \sum_{j \neq y_i} \max(0, W_{j,:} \cdot x + W_{y_i,:} \cdot x + 1) + \lambda \sum_k W_k^2 \right)$$

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Better Idea: Computational graphs + Backpropagation

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz \hspace{1cm} rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz \hspace{1cm} rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

 $\frac{\partial f}{\partial z}$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:

$$rac{\partial f}{\partial y} = rac{\partial f}{\partial q} rac{\partial q}{\partial y}$$
Upstream Local gradient gradient

$$\frac{\partial f}{\partial y}$$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:

$$rac{\partial f}{\partial x} = rac{\partial f}{\partial q} rac{\partial q}{\partial x}$$
Upstream Local gradient gradient

Computational graph

representation may not

Another example:

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{\left(1 + e^{-x}
ight)^2} = \ \left(rac{1 + e^{-x} - 1}{1 + e^{-x}}
ight) \left(rac{1}{1 + e^{-x}}
ight) = \ \left(1 - \sigma(x)
ight)\sigma(x)$$

CrossEntropy Loss

$$\frac{dL}{ds_i} = \begin{bmatrix} -\frac{p_0}{s_0} \\ 0 \\ 0 \end{bmatrix}$$

$$\frac{ds_0}{dz_0} = d\left(\frac{e^{z_0}}{e^{z_0} + e^{z_1} + e^{z_2}}\right)_{z_0} = \frac{e^{z_0} \cdot (e^{z_0} + e^{z_1} + e^{z_2}) - e^{z_0} \cdot e^{z_0} \cdot (e^{z_0} + e^{z_1} + e^{z_2})^2}{(e^{z_0} + e^{z_1} + e^{z_2})^2} = s_0 - s_0^2 = s_0 (1 - s_0)$$

$$\frac{ds_0}{dz_1} = d\left(\frac{e^{z_0}}{e^{z_0} + e^{z_1} + e^{z_2}}\right)_z = \frac{-e^{z_1}e^{z_0}}{(e^{z_0} + e^{z_1} + e^{z_2})^2} = -s_0s_1 \qquad \frac{ds_0}{dz_2} = -s_0s_2$$

$$\frac{dL}{dz} = \frac{dL}{ds} * \frac{ds}{dz} = \begin{bmatrix} -\frac{1}{s_0} & s_0 (1 - s_0) & -s_0 s_1 & -s_0 s_2 \\ 0 & s_1 (1 - s_1) & -s_1 s_2 & -s_1 s_2 \\ -s_2 s_0 & -s_2 s_1 & s_2 (1 - s_2) \end{bmatrix} = [s_0 - 1, s_1, s_2]$$

ReLU gradient flow

A bit of history: **Gradient-based learning applied to document recognition** [LeCun, Bottou, Bengio, Haffner 1998]

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

the result of taking a dot product between a row of W and the input (a 3072-dimensional dot product)

32x32x3 image

Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

activation map

consider a second, green filter

activation maps 28

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

MAX POOLING

Single depth slice

X	•	1	1	2	4
		5	6	7	8
		3	2	1	0
		1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

- 1.Многослойные нелинейные классификаторы позволяют строить сколь угодно сложные разделяющие гиперповерхности.
- 2. Любую сложную функцию можно представить как суперпозицию более простых. Механизм обратного распространения ошибки позволяет вычислить градиенты для сколь угодно сложных вычислительных графов.
- 3. С помощью сверточных фильтров можно находить на изображении локальные шаблоны (признаки). По их комбинации и взаимному расположению можно многое сказать об изображении.