Thesis Presentation

Felix Sarnthein

15. April 2020

Problem Statement: matrix A

Problem Statement: polynomial chev(x)

Problem Statement: polynomial chev(x)

Problem Statement: matrix D

Problem Statement

Given an integer matrix A

Compute the Jordan-Chevalley decomposition:

- the Chevalley polynomial chev(x)
- the diagonalizable matrix D = chev(A)

Difficulty: we don't know the Jordan normal form of A

Algorithm 4.2: Chevalley iteration on matrices

input: matrix *A* of size $n \times n$

1 $\chi_A(x)$ \leftarrow the characteristic polynomial of A

 $\prod (\lambda_i - x)$

 $\prod (\lambda_i - x)^{\alpha_i}$

- 2 $\mu_D(x) \leftarrow \frac{\chi_A(x)}{\gcd(\chi_A(x), \chi'_A(x))}$, the minimal polynomial of D3 $inv(x) \leftarrow$ the inverse of $\mu'_D(x)$ modulo $\mu_D(x)$
- 4 $S_0 \leftarrow A$
- 5 while $S_{k+1} \neq S_k$ do
- $6 \mid S_{k+1} \leftarrow S_k \mu_D(S_k) \cdot inv(S_k)$
- 7 end
- 8 $D \leftarrow S_{\ell}$, the converged matrix
- 9 return D

Algorithm 4.3: Chevalley iteration on polynomials

input: matrix *A* of size $n \times n$

1 $\chi_A(x)$ \leftarrow the characteristic polynomial of A

 $\prod (\lambda_i - x)^{\alpha_i}$

2 $\mu_D(x) \leftarrow \frac{\chi_A(x)}{\gcd(\chi_A(x),\chi'_A(x))}$, the minimal polynomial of D

 $\prod (\lambda_i - x)$

- 3 inv(x) ← the inverse of $\mu'_D(x)$ modulo $\mu_D(x)$
- 4 $s_0(x) \leftarrow x$, the linear polynomial
- 5 while $s_{k+1}(x) \neq s_k(x)$ do
- $s_{k+1}(x) \leftarrow s_k(x) \mu_D(s_k(x)) \cdot inv(s_k(x)) \pmod{\chi_A(x)}$
- 7 end
- 8 chev(x) $\leftarrow s_{\ell}(x)$, the converged polynomial
- 9 return chev(A)

$$s_0(x) = x$$

$$s_0(x) = x$$

 $s_1(x) = x - muD(x) \cdot inv(x)$

$$s_0(x) = x$$

$$s_1(x) = x - muD(x) \cdot inv(x)$$

$$s_k(x) - muD(s_k(x)) \cdot inv(s_k(x))$$

$$s_0(x) = x$$

$$s_1(x) = x - muD(x) \cdot inv(x)$$

$$s_k(x) - muD(s_k(x)) \cdot inv(s_k(x))$$

Implementation

Structure of the Project

Python Extension

	Step	Method	Accessor
0.	Initialize decomposition	dec = JCDec(A)	decA
1.	characteristic polynomial $chiA(x)$	dec.compute_chiA(string precision, bool round)	decchiA
2.	minimal polynomial $muD(x)$	dec.compute_muD(bool resultant)	decmuD
3.	inverse polynomial $inv(x)$	dec.compute_inv()	decinv
4.	iteration $s_k(x) \to chev(x)$	dec.compute_chev()	decchev
5.	diagonalizable matrix D	dec.compute_D(bool mat)	decD
6.	nilpotent matrix N	dec.compute_N()	decN
	compute all steps	dec.compute()	

Coefficients Bitsizes of Characteristic Polynomial

⇒ Need variable precision integers

dec.compute_chiA()

- Variable precision floating-point implementation in $\mathcal{O}(n^3)$
 - > round coefficients to integers

floating point precision	bits in mantissa	exact for matrix size \leq
single / mp::quad	24	20
double / mp::double	53	40
long double	64	45
mp::quad	113	75
mp::oct	237	130
mp::50	168	100
mp::100	334	175
mp::1000	3324	1260

dec.compute_muD()

$$muD(x) = \frac{chiA(x)}{\gcd(chiA(x), chiA'(x))}$$

- 1. Derivative of monomial in $O(n) \Rightarrow chiA'(x)$
- 2. Euclidean algorithm in $O(n^2) \Rightarrow \gcd(chiA(x), chiA'(x))$
- 3. Polynomial division in $O(n^2) \Rightarrow muD(x)$
 - ⇒ Need rational number type

Resultant algorithm: gcd for integer polynomials

 \Rightarrow Coefficient bitsize grows in $O(n \log n)$

dec.compute_inv()

Extended Euclidean Algorithm in $O(n^2)$ yields Bézout Identity

$$\Rightarrow muD'(x) \cdot inv(x) + muD(x) \cdot v(x) = 1$$

$$\Rightarrow muD'(x) \cdot inv(x) \equiv 1 \pmod{\text{muD}(x)}$$

BUT: coefficient bitsizes might grow very fast

Bitsizes of Intermediate Results (Bernoulli p=1/16)

0 0

2 1

Coefficient Bitsizes of Intermediate Results

dec.compute_D(mat = True)

Algorithm 4.3: Chevalley iteration on matrices

input: matrix *A* of size $n \times n$

1
$$\chi_A(x)$$
 \leftarrow the characteristic polynomial of A

2
$$\mu_D(x) \leftarrow \frac{\chi_A(x)}{\gcd(\chi_A(x),\chi'_A(x))}$$
, the minimal polynomial of D $\prod (\lambda_i - x)$

 $\prod (\lambda_i - x)^{\alpha_i}$

$$S_0 \leftarrow A$$

4 while
$$S_{k+1} \neq S_k$$
 do

5
$$S_{k+1} \leftarrow S_k - \mu_D(S_k) \cdot \mu'_D(S_k)^{-1}$$

- 6 end
- 7 $D \leftarrow S_{\ell}$, the converged matrix
- 8 return D

Runtime of Chevalley Iterations (Bernoulli p=1/16)

Summary

- No need for eigenvalues and multiplicities
 - > exact computation possible

- Bitsize of coefficient grows superlinearly
 - > requires variable precision computation

- Bitsize of chev(x) is significantly larger than D
 - > Iteration on matrices is more efficient

Ideas for Optimization (Meeting Notes)

- Is a floating-point implementation feasible?
 - Other Algorithms for Newton Iteration on matrices
- Sparsity
 - Leverage sparsity for evaluation of matrix polynomials
 - Leverage sparsity for computation of characteristic polynomial
- Alternatives to Horner scheme?
- Use the minimal polynomial of A as a starting point (instead of chiA)?
 - Bitsize complexity would be $O(N_{\lambda} \cdot \log_2 \rho(A))$, where
 - N_{λ} is the number of distinct eigenvalues
 - $\rho(A)$ is the spectral radius, which is bound for example by the nnz of a matrix A

Appendix

Algorithm 4.1: Hermite interpolation

input: matrix *A* of size $n \times n$

- 1 for $i \leftarrow 0$ to m do
- 2 $\lambda_i \leftarrow$ the i^{th} distinct eigenvalue of A
- ℓ_i the Jordan index of eigenvalue λ_i
- 4 end
- 5 chev(x) \leftarrow the solution to the interpolation problem in lemma 3.3
- 6 $D \leftarrow chev(A)$, the evaluation of chev(x) on the matrix A
- 7 return D

Hermite Interpolation

Hermite Interpolation

