Advanced Topics in Machine Learning

Semester Project: Detection of APS Failure at Scania Trucks

Aleksei Baidarov July 02, 2018

Table of Contents

- 1. Introduction
- 2. Dataset Overview
- 3. Pre-Processing
- 4. Algorithms Used
- 5. General Approach
- 6. Results
- 7. Comparison of Results
- 8. Possible Improvements
- 9. Conclusion

Introduction

- Air Pressure System (APS) is critical for trucks (braking, gear changing)
- The cost of missing a faulty truck is 50 times higher than the cost of an unnecessary check of a truck
- · Goal: minimization of APS maintenance costs:

$$Total_Cost = 10 \cdot FP + 500 \cdot FN$$

Dataset Overview

- 1. Unbalanced (59 000 negative instances, 1 000 positive instances)
- 2. Many missing values (59 409 rows have at least one missing value, about 8% of values are missing in total)
- 3. High-dimensional (171 features)

Pre-Processing

Feature Selection:

 Univariate Feature Selection and Removing Features with Low Variance: no improvement → using all features

Handling missing values:

· Filling with mean value

Normalization:

· Using StandardScaler to make computations faster

Algorithms Used

- 1. Logistic Regression
- 2. Decision Tree
- 3. Random Forest
- 4. Support Vector Machines
- 5. LightGBM

General Approach

- · Tools used: Python 3, Pandas, Scikit-learn
- GridSearchCV to find best parameters (Number of CVs = 5)
- · Recall as Scoring function:

$$Recall = \frac{\mathit{TP}}{\mathit{TP} + \mathit{FN}}$$

Results: Logistic Regression

Parameters:

• *C* : 0.0001, **0.001**, 0.01, 0.1, 1, 10, 100, 1000, 10000

- Recall = 94.13%
- Total Costs = 14 840

Results: Decision Tree

Parameters:

- max_depth: 1, 2, 3, 4,5, 6, 7, 8, 9, 10, 15, None
- max_features: 'sqrt', 'log2', 20, 30, 50, 100, 150, 170, None
- min_samples_leaf: 1,3, 5
- criterion : 'entropy', 'gini'

- · Recall = 98.13%
- *Total Costs* = 19 010

Results: Decision Tree (cont.)

Results: Random Forest

Parameters:

- n_estimators : 100, 150, 200
- max_features: 'sqrt', 'log2'
- min_samples_leaf: 1,3, 5
- max_depth : 20, 25, 30

- Recall = 84.27%
- Total Costs = 30 530

Results: SVM (LinearSVC)

Parameters:

• *C* : **0.0001**, 0.001, 0.01, 0.1, 1, 10, 100, 1000

- · Recall = 94.93%
- Total Costs = 13 520

Results: SVM (SGDClassifier)

Parameters:

· alpha: **0.0001**, 0.001, 0.01, 0.01, 1, 10, 100, 1000

- · Recall = 96.80%
- Total Costs = 13 140

Results: SVM (Non-linear)

Kernels:

• RBF (Radial Basis Function):

$$K = exp(-\gamma||x - x'||^2)$$

sigmoid:

$$K = tanh(\gamma < x, x' >)$$

poly (polynomial):

$$K = (\gamma < X, X' >)^3$$

Results: SVM (Non-linear) (cont.)

Parameters:

kernel: 'rbf', 'sigmoid', 'poly'

· gamma: 0.0001, 0.001

• *C* : 0.001, 0.01, 0.1, 1, 10, 100, **1000**

- · Recall = 74.93%
- Total Costs = 47 500

Results: LightGBM

Parameters:

- learning_rate: 0.001,
 0.005, 0.01, 0.1, 1
- n_estimators : **20**, 50, 100
- · num_leaves : **10**, 20, 31

- Recall = 97.60%
- Total Costs = 12 880

Comparison of Results

Algorithm	Recall, %	Cost	Time, s	Comb	T/Comb, s
Logistic Regression	94.13	14 840	37.6	9	4.2
Decision Tree	98.13	19 010	2304	648	3.6
Random Forest	84.27	30 530	9228	108	85.4
SVM (Poly)	74.93	47 500	2136	42	50.9
SVM (LinearSVC)	94.93	13 520	444	8	55.5
SVM (SGDClassifier)	96.80	13 140	7.3	8	0.9
LightGBM	97.60	12 880	378	45	8.4

Possible Improvements

Pre-Processing:

 Removing outliers and features, that have low correlation with the target attribute

Feature Selection:

· PCA, Recursive Feature Elimination

Parameter Optimization:

RandomizedSearch, HyperOpt

Scoring Function:

· Custom scoring function instead of Recall

Conclusion

Is Predictive Analysis worth it?

- Case 1 ("arrogant"): Total Costs = 375 · 500 = 187 500
- Case 2 ("safe"): Total Costs = 16 000 • 10 = 160 000
- Predictive Analysis:
 Total Costs ≈ 13 000

