#### 1

# Physical Layer Design for a Narrow Band Communication System

### G V V Sharma

Abstract—This a simple document explaining a question about the concept of similar triangles.

Download all python codes from

svn co https://github.com/SiddharthPh/ Summer2020/trunk/geometry/codes

and latex-tikz codes from

svn co https://github.com/gadepall/school/trunk/ ncert/geometry/figs



#### 1 Specifications

## 1.0.1. QPSK

$$\mathbf{y} = \mathbf{s} + \mathbf{n} \tag{1.0.1.1}$$

where  $s \in \{s_0, s_1, s_2, s_3\}$ 

$$s_0 = \begin{pmatrix} \sqrt{E_s} \\ 0 \end{pmatrix} \tag{1.0.1.2}$$

$$s_1 = \begin{pmatrix} 0\\ \sqrt{E_s} \end{pmatrix} \tag{1.0.1.3}$$

$$s_2 = \begin{pmatrix} -\sqrt{E_s} \\ 0 \end{pmatrix} \tag{1.0.1.4}$$

$$s_3 = \begin{pmatrix} 0 \\ -\sqrt{E_s} \end{pmatrix} \tag{1.0.1.5}$$

 $s_0$  denote bits 00,  $s_1$  denote bits 01,  $s_2$  denote 1.0.4. The following code has simulation of QPSk. bits  $11, s_3$  denote bits 10.

1.0.3. Decoding

Let **r** be the received bits,  $\mathbf{r} = [r_1, r_2]$ .

$$r_1 = \begin{cases} 0, & \mathbf{y} \in D1 \cup D2 \Longleftrightarrow y_1 + y_2 > 0 \\ 1, & \mathbf{y} \in D3 \cup D4 \Longleftrightarrow y_1 + y_2 < 0 \end{cases}$$

$$(1.0.3.1)$$

Fig. 1.0.1.1: constellation diagram

$$r_2 = \begin{cases} 0, & \mathbf{y} \in D1 \cup D4 \Longleftrightarrow y_2 - y_1 < 0 \\ 1, & \mathbf{y} \in D2 \cup D3 \Longleftrightarrow y_2 - y_1 > 0 \end{cases}$$

$$(1.0.3.2)$$

From eq.1.0.3.1 and eq.1.0.3.2

For detecting  $s_0$ ,  $y_1 > -y_2$  and  $y_1 > y_2$ .

For detecting  $s_1$ ,  $y_1 > -y_2$  and  $y_1 < y_2$ .

For detecting  $s_2$ ,  $y_1 < -y_2$  and  $y_1 < y_2$ .

For detecting  $s_3$ ,  $y_1 < -y_2$  and  $y_1 > y_2$ .

codes/qpsk.py



Fig. 1.0.3.1: decision regions