Examenul de bacalaureat național 2014 Proba E. c) Matematică M_mate-info Barem de evaluare și de notare

Varianta 3

Varianta 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z^2 = (1+i)^2 = 1+2i+i^2 =$	2p
	=2i	3 p
2.	$\Delta = 16 - 24 = -8$	3p
	Δ < 0, deci parabola asociată funcției f nu intersectează axa Ox	2 p
3.	2x-3=x+1	2p
	x = 4 care verifică ecuația	3 p
4.	Sunt 45 de numere impare de două cifre, deci sunt 45 de cazuri favorabile	2 p
	Sunt 90 de numere de două cifre, deci sunt 90 de cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{45}{90} = \frac{1}{2}$	2p
5.	$\overrightarrow{AM} + \overrightarrow{BN} + \overrightarrow{CP} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} + \frac{1}{2}\overrightarrow{CA} =$	2p
	$= \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} \right) = \overrightarrow{0}$	3 p
6.	$\frac{\sin a - \cos a}{\cos a + \sin a} = \frac{\cos a \left(\frac{\sin a}{\cos a} - 1\right)}{\cos a \left(1 + \frac{\sin a}{\cos a}\right)} = \frac{\operatorname{tg} a - 1}{1 + \operatorname{tg} a} =$	3 p
	$=\frac{\sqrt{3}-1}{1+\sqrt{3}}=2-\sqrt{3}$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{vmatrix}$	•
	$\det(A(1)) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{vmatrix} =$	2p
	=1+2+2-1-4-1=-1	3 p
b)	$\det(A(m)) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & m & 2 \\ 1 & 2 & m \end{vmatrix} = m^2 - 2m$	3p
	$m^2 - 2m = 0 \Leftrightarrow m_1 = 0 \text{ si } m_2 = 2$	2p
c)	$A(a) \cdot A(a) = \begin{pmatrix} 3 & a+3 & a+3 \\ a+3 & a^2+5 & 4a+1 \\ a+3 & 4a+1 & a^2+5 \end{pmatrix}, \ A(a^2) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & a^2 & 2 \\ 1 & 2 & a^2 \end{pmatrix}$	3p
	$\begin{pmatrix} 2 & a+2 & a+2 \\ a+2 & 5 & 4a-1 \\ a+2 & 4a-1 & 5 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 5 & -5 \\ 1 & -5 & 5 \end{pmatrix} \Leftrightarrow a = -1$	2p

2.a)	$1*3=3\cdot 1+3\cdot 3-1\cdot 3-6=$	3p
	= 3	2p
b)	x * y = 3 - xy + 3x + 3y - 9 =	2p
	=3-x(y-3)+3(y-3)=3-(x-3)(y-3) pentru orice numere reale x şi y	3 p
c)	$3 - (x - 3)^{2014} = x$	3p
	$x_1 = 3$ și $x_2 = 2$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{(x-2)'(x^2-4x+5)-(x-2)(x^2-4x+5)'}{(x^2-4x+5)^2} =$	2p
	$= \frac{-x^2 + 4x - 3}{\left(x^2 - 4x + 5\right)^2} = \frac{(1 - x)(x - 3)}{\left(x^2 - 4x + 5\right)^2}, \ x \in \mathbb{R}$	3p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x-2}{x^2 - 4x + 5} = 0$	3р
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2 p
c)	$f'(x) = 0 \Leftrightarrow x_1 = 1$ și $x_2 = 3$	2p
	$f'(x) \le 0$ pentru orice $x \in (-\infty, 1] \Rightarrow f$ este descrescătoare pe $(-\infty, 1]$	1p
	$f'(x) \ge 0$ pentru orice $x \in [1,3] \Rightarrow f$ este crescătoare pe $[1,3]$	1p
	$f'(x) \le 0$ pentru orice $x \in [3, +\infty) \Rightarrow f$ este descrescătoare pe $[3, +\infty)$	1p
2.a)	$I_1 = \int_{1}^{e} x \ln x dx = \frac{x^2}{2} \ln x \Big _{1}^{e} - \frac{1}{2} \int_{1}^{e} x dx =$	3р
	$=\frac{e^2}{2} - \frac{e^2}{4} + \frac{1}{4} = \frac{e^2 + 1}{4}$	2p
b)	$I_{n+1} - I_n = \int_{1}^{e} x(\ln x - 1) \ln^n x dx$	2p
	Pentru orice $n \in \mathbb{N}^*$ și $x \in [1,e]$ avem $\ln x \ge 0$ și $\ln x - 1 \le 0 \Rightarrow I_{n+1} \le I_n$	3 p
c)	$I_{n+1} = \int_{1}^{e} x \ln^{n+1} x dx = \frac{x^2}{2} \ln^{n+1} x \left \frac{e}{1} - \int_{1}^{e} \frac{x^2}{2} \cdot \frac{1}{x} (n+1) \ln^n x dx = \frac{x^2}{2} \ln^{n+1} x \right dx = \frac{x^2}{2} \ln^{n+1} x dx$	3р
	$= \frac{e^2}{2} - \frac{n+1}{2} \int_{1}^{e} x \ln^n x dx \Rightarrow 2I_{n+1} + (n+1)I_n = e^2 \text{ pentru orice număr natural nenul } n$	2p