Assignment-based Subjective Questions

1. From your analysis of the categorical variables from the dataset, what could you infer about their effect on the dependent variable? (3 marks)

Ans.

- -Bike demand is highest in fall.
- -Bike demand takes a dip in Spring
- -Bike demand in year 2019 is higher as compared to 2018.
- -Bike demand is high in the months from May to October
- -Bike demand is high if weather is clear or with misty clouds, while the demand is low when where there is light rain or snow.
- -Bike demand is almost similar throughout the weekdays.
- -Bike demand does not change whether the day is working day or not.
- 2. Why is it important to use drop_first=True during dummy variable creation? (2 mark)

Ans.

- It is important to achieve k-1 dummy variables as it can be used to delete extra columns while creating dummy variables.
- Also, using drop_first=True, significantly helps in reducing multicollinearity between dummy variables.
- 3. Looking at the pair-plot among the numerical variables, which one has the highest correlation with the target variable? (1 mark)

Ans.

- atemp and temp both have same correlation with target variable of 0.63 which is indeed the highest among all numerical values.
- 4. How did you validate the assumptions of Linear Regression after building the model on the training set? (3 marks)

Ans.

We validate the assumptions of Linear Regression firstly by plotting a distplot of the residuals and analyzing them to see if it is a normal distribution or not and if it has mean = 0.
From our analysis we can see that the error terms have a normal distribution with mean =0.

- We also plotted a heatmap and see that there is no multicollinearity observed.
- We also validated the linear relationship using the Component and Component Plus Residual Plot(CCPR).

5. Based on the final model, which are the top 3 features contributing significantly towards explaining the demand of the shared bikes? (2 marks)

Ans.

Following are the top three features contributing significantly towards explaining the demand of shared bikes:

- **Temp** (Temperature) A coefficient value of "0.4777" indicates that a unit increase in the temp variable, increases the bike hire by 0.4777.
- Year A coefficient value of "0.2341" indicates that a unit increase of this variable, will increase the bike hire by 0.2342 units.
- **Light_snowrain(weathersit)** A coefficient value of "-0.2850" indicates that, a unit increase of this variable will decrease the bike hire by -0.2850 units.

General Subjective Questions

1. Explain the linear regression algorithm in detail.

(4 marks)

Ans.

- Linear regression is a statistical method that is used for predictive analysis. Linear regression basically makes predictions for continuous/real or numeric variables such as salary, age, etc.
- Linear regression algorithm shows a linear relationship between a dependent variable (y) and one or more independent variables(x), hence called as linear regression.
- Mathematically, linear regression can be represented as follows:
- Y = B1 + B0X

Where, Y = Dependent Variable

X = Independent Variable

B0 = Intercept of the line

B1 = Linear regression Coefficient

Types of Linear regression:

- Simple Linear Regression:

If a single independent variable is used to predict the value of a numerical dependent variable, then such linear regression is called Simple Linear Regression.

Multiple Linear Regression:

- If more than one dependent variable is used to predict the value of a numerical dependent variable, then such linear regression is called Multiple Linear Regression.

Best Fit Line:

When working with linear regression, our main goal is to find the best fit line which means that the errors between the predicted values and actual values should be minimized.

- -Linear regression has five key assumptions:
- **-Linear Relationship:** There exists a linear relationship between the independent variable x and the dependent variable y
- -Independence: The residuals are independent.
- **Homoscedasticity:** The residual at constant variance at every level of x.
- -Normality: The residuals of model are normally distributed.

2. Explain the Anscombe's quartet in detail.

(3 marks)

Ans.

- Anscombe's quartet is used to illustrate the importance of Exploratory data analysis and the drawbacks of depending upon only the summary statistics.
- These datasets were created by Francis Anscombe in 1973 to demonstrate the importance of visualizing data and show that summary statistics alone can be misleading.
- It also signifies the importance of data visualization to spot trends, outliers and other crucial details that might not be obvious from the summary statistics alone.
- Anscombe's quartet comprises a set of four dataset, having identical descriptive properties in terms of means, variance, R-squared, correlations and linear regression lines but having different representations when we scatter plot on graph.
- The 4 datasets that make up Anscombe's quartet each include 11 x-y pairs of data. When plotted, each dataset seems to have a unique connection between x and y, with unique variability patterns and distinctive correlation strengths.
- Despite these variations, each dataset has the same summary statistics, such as the same x and y mean and variance, x and y correlation coefficient and linear regression line.

3. What is Pearson's R?

(3 marks)

Ans.

- The Pearson's r is a numerical summary of the strength of the linear association between variables.
- If the variables tend to go up and down together, the correlation coefficient will be positive.
- If the variables tend to go up and down in opposition with low values of one variable associated with high values of the other, then the correlation coefficient will be negative.
- The Pearson's correlation coefficient lies between -1 to +1 where:

r=1, means data is perfectly linear with a positive slope

r=-1, means data is perfectly linear with a negative slope

r=0, means there is no linear association

r>0<5, means there is a weak association

r>5<8, means there is a moderate association

r>8, means there is a strong association

4. What is scaling? Why is scaling performed? What is the difference between normalized scaling and standardized scaling? (3 marks)

Ans.

- Scaling is a step of data pre-processing which is applied to the independent variables to normalize the data within a particular range.
- It also helps in speeding up the calculations in an algorithm.
- Most of the times, collected data set contains features highly varying in magnitude, units, and range.
- **If scaling is not done**, the algorithm takes only magnitude in account and not units hence incorrect modelling.
- **To solve this issue**, we must do scaling to bring all the variables to the same level of magnitude.
- Normalized scaling brings all the data in the range of 0 & 1.
- Whereas **standardized scaling** replaces the values by their Z scores. It brings all the data into a standard normal distribution which has mean 0 and standard deviation 1.
- One disadvantage of normalization over standardization is that it loses some information in the data, especially about outliers.

5. You might have observed that sometimes the value of VIF is infinite. Why does this happen? (3 marks)

Ans.

- An infinite value of VIF for a given independent variable indicates that it can be perfectly predicted by other variables in the model.
- As, VIF is given by the below equation:

 $VIF = 1/(1-R^2)$

- We can say that when the value of R^2 approaches to 1, VIF values become infinity.

6. What is a Q-Q plot? Explain the use and importance of a Q-Q plot in linear regression. (3 marks)

Ans.

- Quantile-Quantile plot is a graphical tool to help us access if a set of data plausibly cake from some theoretical distribution such as a Normal, Exponential or Normal Distribution.
- Also, it helps to determine if two data sets come from populations within a common distribution.
- This helps in a **scenario of linear regression** where we have training data and testing data set received separately and then we can confirm using the Q-Q plot, that both the data sets are from populations with same distributions.
- In linear regression, it is used to check the following scenarios:
- If two data sets:
- Come from population with a common distribution
- Have common location and scale
- Have similar distributional shapes
- Have similar tail behavior