Estudio de la Media y la Varianza en una Población					
Situación	Objetivo	Estadístico y distribución	Intervalos de confianza	Contrastes de hipótesis	
$X \in Dig(\mu,\sigma^2ig)$ Distribución D desconocida μ desconocida,	Estudiar μ	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \to N(0,1)$	$I_{(1-\alpha)}(\mu) = \left(\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$ $I_{(1-\alpha)}(\mu) = \left(-\infty; \overline{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)$		
σ^2 conocida $n \ge 30$		/ \n	$I_{(1-\alpha)}(\mu) = \left(\overline{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}}; +\infty\right)$	$\begin{cases} H_0: \mu \geq \mu_0 \\ H_1: \mu < \mu_0 \end{cases}; C_0 = \left(-z_\alpha, +\infty\right)$ Si $Z/H_0 \in C_0$ se acepta H_0	
$X \in D\left(\mu,\sigma^2\right)$ Distribución D desconocida $\mu \ y \ \sigma^2$ desconocidas $n \ge 100$	Estudiar μ	$Z = \frac{\overline{X} - \mu}{S / n} \rightarrow N(0,1)$ donde σ^2 se ha estimado mediante S^2	$I_{(1-\alpha)}(\mu) = \left(\overline{x} \pm z_{\alpha/2} \frac{S}{\sqrt{n}}\right)$ $I_{(1-\alpha)}(\mu) = \left(-\infty; \overline{x} + z_{\alpha} \frac{S}{\sqrt{n}}\right),$ $I_{(1-\alpha)}(\mu) = \left(\overline{x} - z_{\alpha} \frac{S}{\sqrt{n}}; +\infty\right)$	$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}; C_0 = \left(-z_{\alpha/2}, z_{\alpha/2}\right) \\ \begin{cases} H_0: \mu \leq \mu_0 \\ H_1: \mu > \mu_0 \end{cases}; C_0 = \left(-\infty, z_{\alpha}\right) \\ \begin{cases} H_0: \mu \geq \mu_0 \\ H_1: \mu < \mu_0 \end{cases}; C_0 = \left(-z_{\alpha}, +\infty\right) \end{cases}$ Si $Z/H_0 \in C_0$ se acepta H_0	
$X \in N\left(\mu,\sigma^2\right)$ μ desconocida σ^2 conocida \forall n	Estudiar μ	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \in N(0,1)$	$I_{(1-\alpha)}(\mu) = \left(\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$ $I_{(1-\alpha)}(\mu) = \left(-\infty; \overline{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}}\right),$ $I_{(1-\alpha)}(\mu) = \left(\overline{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}}; +\infty\right)$		

		Fabridia Jala	Madia o la Mariana an una Bablación (sentino está	
Situación	Objetivo	ESTUDIO DE IA I	Media y la Varianza en una Población (continuación Intervalos de confianza	Contrastes de hipótesis
$X \in N(\mu, \sigma^2)$ $\mu \ y \ \sigma^2$ desconocidas $n \ge 20$	Estudiar μ	$Z = \frac{\overline{X} - \mu}{S / \sqrt{n}} \in N(0,1)$ donde σ^2 se ha estimado mediante S^2	$I_{(1-\alpha)}(\mu) = \left(\overline{x} \pm z_{\alpha/2} \frac{S}{\sqrt{n}}\right)$ $I_{(1-\alpha)}(\mu) = \left(-\infty; \overline{x} + z_{\alpha} \frac{S}{\sqrt{n}}\right),$ $I_{(1-\alpha)}(\mu) = \left(\overline{x} - z_{\alpha} \frac{S}{\sqrt{n}}; +\infty\right)$	$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}; C_0 = \left(-z_{\alpha/2}, z_{\alpha/2}\right) \\ \begin{cases} H_0: \mu \leq \mu_0 \\ H_1: \mu > \mu_0 \end{cases}; C_0 = \left(-\infty, z_{\alpha}\right) \\ \begin{cases} H_0: \mu \geq \mu_0 \\ H_1: \mu < \mu_0 \end{cases}; C_0 = \left(-z_{\alpha}, +\infty\right) \end{cases}$ Si $Z/H_0 \in C_0$ se acepta H_0
$X \in N(\mu, \sigma^2)$ $\mu \ y \ \sigma^2$ desconocidas $\forall \ n$			$I_{(1-\alpha)}(\mu) = \left(\overline{x} \pm t_{\alpha/2(n-1)} \frac{S}{\sqrt{n-1}}\right) = \left(\overline{x} \pm t_{\alpha/2(n-1)} \frac{\overline{S}}{\sqrt{n}}\right)$ $I_{(1-\alpha)}(\mu) = \left(-\infty; \overline{x} + t_{\alpha(n-1)} \frac{S}{\sqrt{n-1}}\right) = \left(-\infty; \overline{x} + t_{\alpha(n-1)} \frac{\overline{S}}{\sqrt{n}}\right)$ $I_{(1-\alpha)}(\mu) = \left(\overline{x} - t_{\alpha(n-1)} \frac{S}{\sqrt{n-1}}; +\infty\right) = \left(\overline{x} - t_{\alpha(n-1)} \frac{\overline{S}}{\sqrt{n}}; +\infty\right)$	$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}; C_0 = \left(-t_{\alpha/2(n-1)}, t_{\alpha/2(n-1)} \right) \\ \begin{cases} H_0: \mu \leq \mu_0 \\ H_1: \mu > \mu_0 \end{cases}; C_0 = \left(-\infty, t_{\alpha(n-1)} \right) \\ \begin{cases} H_0: \mu \geq \mu_0 \\ H_1: \mu < \mu_0 \end{cases}; C_0 = \left(-t_{\alpha(n-1)}, +\infty \right) \\ \end{cases}$ Si $T/H_0 \in C_0$ se acepta H_0
$X \in N(\mu, \sigma^2)$ μ conocida o no σ^2 desconocida $\forall n$	Estudiar $oldsymbol{\sigma}^2$	$Q = \frac{nS^2}{\sigma^2} = \frac{(n-1)\overline{S}^2}{\sigma^2} \in \chi^2_{(n-1)}$	$I_{(1-\alpha)}(\sigma^{2}) = \left(\frac{nS^{2}}{\chi^{2}_{\alpha/2(n-1)}}; \frac{nS^{2}}{\chi^{2}_{1-\alpha/2(n-1)}}\right) = \left(\frac{(n-1)\overline{S}^{2}}{\chi^{2}_{\alpha/2(n-1)}}; \frac{(n-1)\overline{S}^{2}}{\chi^{2}_{1-\alpha/2(n-1)}}\right)$	$\begin{cases} H_0: \sigma^2 = \sigma_0^2 \\ H_1: \sigma^2 \neq \sigma_0^2 \end{cases}; C_0 = \left(\chi^2_{1-\alpha_2^\prime(n-1)}, \chi^2_{-\alpha_2^\prime(n-1)}\right)$ Si $Q/H_0 \in C_0$ se acepta H_0

Situación	Objetivo	Estadístico y distribución	Intervalos de confianza	
		•	IIILEI VAIUS UE CUIIIIAIIZA	Contrastes de hipótesis
$X \in B(p)$ p desconocido	Estudiar p	$Z = \frac{\hat{p} - p}{\sqrt{\hat{p}\hat{q}/n}} \to N(0,1)$	$I_{(1-\alpha)}(p) = \left(\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}}\right)$ $I_{(1-\alpha)}(p) = \left(-\infty, \hat{p} + z_{\alpha} \sqrt{\frac{\hat{p}\hat{q}}{n}}\right)$	$\begin{cases} H_0: p = p_0 \\ H_1: p \neq p_0 \end{cases}; C_0 = \left(-z_{\alpha/2}, z_{\alpha/2}\right) $ $\begin{cases} H_0: p \leq p_0 \\ H_1: p > p_0 \end{cases}; C_0 = \left(-\infty, z_{\alpha}\right)$
∀n≥30		siendo $\hat{p}=\overline{x}$; $\hat{q}=1-\hat{p}$	$I_{(1-\alpha)}(p) = \left(\hat{p} - z_{\alpha}\sqrt{\frac{\hat{p}\hat{q}}{n}}, +\infty\right)$	$\begin{cases} H_0: p \geq p_0 \\ H_1: p < p_0 \end{cases}; C_0 = \left(-z_\alpha , +\infty\right)$ Si $Z/H_0 \in C_0$ se acepta H_0
$X \in B(p_X)$ $Y \in B(p_Y)$ $p_X y p_Y$ desconocidos $\forall n_x \ge 30$ $\forall n_y \ge 30$	Comparar proporciones	$Z = \frac{(\hat{p}_X - \hat{p}_Y) - (p_X - p_Y)}{\sqrt{\frac{\hat{p}_X \hat{q}_X}{n_X} + \frac{\hat{p}_Y \hat{q}_Y}{n_Y}}} \rightarrow N(0,1)$ $\text{siendo } \hat{p}_X = \overline{X} \; ; \; \hat{p}_Y = \overline{y}$ $\hat{q}_X = 1 - \hat{p}_X \; ; \; \hat{q}_Y = 1 - \hat{p}_Y$	$I_{(1-\alpha)}(p_{X} - p_{Y}) = \left((\hat{p}_{X} - \hat{p}_{Y}) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_{X}\hat{q}_{X}}{n_{X}} + \frac{\hat{p}_{Y}\hat{q}_{Y}}{n_{Y}}} \right)$ $I_{(1-\alpha)}(p_{X} - p_{Y}) = \left(-\infty, (\hat{p}_{X} - \hat{p}_{Y}) + z_{\alpha} \sqrt{\frac{\hat{p}_{X}\hat{q}_{X}}{n_{X}} + \frac{\hat{p}_{Y}\hat{q}_{Y}}{n_{Y}}} \right)$ $I_{(1-\alpha)}(p_{X} - p_{Y}) = \left((\hat{p}_{X} - \hat{p}_{Y}) - z_{\alpha} \sqrt{\frac{\hat{p}_{X}\hat{q}_{X}}{n_{X}} + \frac{\hat{p}_{Y}\hat{q}_{Y}}{n_{Y}}}, +\infty \right)$	$\begin{cases} H_0: p_X = p_Y \\ H_1: p_X \neq p_Y \end{cases}; C_0 = \left(-z_{\alpha/2}, z_{\alpha/2}\right) \\ \begin{cases} H_0: p_X \leq p_Y \\ H_1: p_X > p_Y \end{cases}; C_0 = \left(-\infty, z_{\alpha}\right) \\ \begin{cases} H_0: p_X \geq p_Y \\ H_1: p_X < p_Y \end{cases}; C_0 = \left(-z_{\alpha}, +\infty\right) \\ \end{cases}$ Si $Z/H_0 \in C_0$ se acepta H_0

	Comparación de Medias en Dos Poblaciones Normales Independientes				
Situación	Objetivo	Estadístico y distribución	Intervalos de confianza	Contrastes de hipótesis	
$X \in N\left(\mu_{X}, \sigma_{X}^{2}\right)$ $Y \in N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ $\mu_{X} y \mu_{Y}$ desconocidas $\sigma_{X}^{2} y \sigma_{Y}^{2}$ conocidas $\forall n_{X}, \forall n_{Y}$	Comparar medias	$Z = \frac{\left(\overline{X} - \overline{Y}\right) - \left(\mu_X - \mu_Y\right)}{\sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}} \in N(0, 1)$	$I_{(1-\alpha)}(\mu_{X} - \mu_{Y}) = \left((\overline{X} - \overline{Y}) \pm z_{\alpha/2} \sqrt{\frac{\sigma_{X}^{2} + \sigma_{Y}^{2}}{n_{X}}} \right)$ $I_{(1-\alpha)}(\mu_{X} - \mu_{Y}) = \left(-\infty, (\overline{X} - \overline{Y}) + z_{\alpha} \sqrt{\frac{\sigma_{X}^{2} + \sigma_{Y}^{2}}{n_{X}}} + \frac{\sigma_{Y}^{2}}{n_{Y}} \right)$ $I_{(1-\alpha)}(\mu_{X} - \mu_{Y}) = \left((\overline{X} - \overline{Y}) - z_{\alpha} \sqrt{\frac{\sigma_{X}^{2} + \sigma_{Y}^{2}}{n_{X}}} + \frac{\sigma_{Y}^{2}}{n_{Y}} \right)$	$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X \neq \mu_Y \end{cases}; C_0 = \left(-z_{\alpha_2'}, z_{\alpha_2'}\right) \\ \begin{cases} H_0: \mu_X \leq \mu_Y \\ H_1: \mu_X > \mu_Y \end{cases}; C_0 = \left(-\infty, z_{\alpha}\right) \\ \begin{cases} H_0: \mu_X \geq \mu_Y \\ H_1: \mu_X < \mu_Y \end{cases}; C_0 = \left(-z_{\alpha}, +\infty\right) \\ \end{cases}$ Si $Z/H_0 \in C_0$ se acepta H_0	
$X \in N\left(\mu_{X}, \sigma_{X}^{2}\right)$ $Y \in N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ $\mu_{X} y \mu_{Y}$ desconocidas $\sigma_{X}^{2} y \sigma_{Y}^{2}$ desconocidas e Iguales $\forall n_{X}, \forall n_{Y}$	Comparar medias	$T = \frac{\left(\overline{X} - \overline{Y}\right) - \left(\mu_{X} - \mu_{Y}\right)}{S\sqrt{\frac{1}{n_{X}} + \frac{1}{n_{Y}}}} \in t_{(n)}$ Siendo $n = n_{X} + n_{Y} - 2$ $S^{2} = \frac{n_{X}S_{X}^{2} + n_{Y}S_{Y}^{2}}{n_{X} + n_{Y} - 2} =$ Con: $= \frac{\left(n_{X} - 1\right)\overline{S}_{X}^{2} + \left(n_{Y} - 1\right)\overline{S}_{Y}^{2}}{n_{X} + n_{Y} - 2}$	$I_{(1-\alpha)}(\mu_X - \mu_Y) = \left((\overline{X} - \overline{Y}) \pm t_{\alpha/2(n)} S \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}} \right)$ $I_{(1-\alpha)}(\mu_X - \mu_Y) = \left(-\infty, (\overline{X} - \overline{Y}) + t_{\alpha(n)} S \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}} \right)$ $I_{(1-\alpha)}(\mu_X - \mu_Y) = \left((\overline{X} - \overline{Y}) - t_{\alpha(n)} S \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}, +\infty \right)$	$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X \neq \mu_Y \end{cases}; C_0 = \left(-t_{\alpha_2'(n)}, t_{\alpha_2'(n)}\right) \\ \begin{cases} H_0: \mu_X \leq \mu_Y \\ H_1: \mu_X > \mu_Y \end{cases}; C_0 = \left(-\infty, t_{\alpha(n)}\right) \\ \begin{cases} H_0: \mu_X \geq \mu_Y \\ H_1: \mu_X < \mu_Y \end{cases}; C_0 = \left(-t_{\alpha(n)}, +\infty\right) \\ \end{cases}$ Si $T/H_0 \in C_0 \text{ se acepta } H_0$	
$X \in N\left(\mu_{X}, \sigma_{X}^{2}\right)$ $Y \in N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ $\mu_{X} y \mu_{Y}$ desconocidas $\sigma_{X}^{2} y \sigma_{Y}^{2}$ desconocidas $y \text{distintas}$ $\forall n_{x} , \forall n_{y}$	Comparar medias	$T = \frac{\left(\overline{X} - \overline{Y}\right) - \left(\mu_X - \mu_Y\right)}{\sqrt{\frac{S_X^2}{n_X} + \frac{S_Y^2}{n_Y}}} \in t_{(n)}$ $\text{donde } n \cong n_X + n_Y - 2 \text{ si } n_X \cong n_Y$ $\text{y relativamente grande,}$ $\text{o bien: } n = \frac{\left(\frac{S_X^2}{n_X} + \frac{S_Y^2}{n_Y}\right)^2}{\left(\frac{S_X^2}{n_X}\right)^2 + \left(\frac{S_Y^2}{n_Y}\right)^2}$ $\frac{\left(\frac{S_X^2}{n_X} + \frac{S_Y^2}{n_Y}\right)^2}{n_Y - 1} + \frac{\left(\frac{S_Y^2}{n_Y}\right)^2}{n_Y - 1}$	$I_{(1-\alpha)}(\mu_{X} - \mu_{Y}) = \left((\overline{X} - \overline{Y}) \pm t_{\alpha/2(n)} \sqrt{\frac{S_{X}^{2}}{n_{X}} + \frac{S_{Y}^{2}}{n_{Y}}} \right)$ $I_{(1-\alpha)}(\mu_{X} - \mu_{Y}) = \left(-\infty, (\overline{X} - \overline{Y}) + t_{\alpha(n)} \sqrt{\frac{S_{X}^{2}}{n_{X}} + \frac{S_{Y}^{2}}{n_{Y}}} \right)$ $I_{(1-\alpha)}(\mu_{X} - \mu_{Y}) = \left((\overline{X} - \overline{Y}) - t_{\alpha(n)} \sqrt{\frac{S_{X}^{2}}{n_{X}} + \frac{S_{Y}^{2}}{n_{Y}}}, + \infty \right)$	$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X \neq \mu_Y \end{cases}; C_0 = \left(-t_{\alpha_2'(n)}, t_{\alpha_2'(n)}\right) \\ \begin{cases} H_0: \mu_X \leq \mu_Y \\ H_1: \mu_X > \mu_Y \end{cases}; C_0 = \left(-\infty, t_{\alpha(n)}\right) \\ \begin{cases} H_0: \mu_X \geq \mu_Y \\ H_1: \mu_X < \mu_Y \end{cases}; C_0 = \left(-t_{\alpha(n)}, +\infty\right) \\ \end{cases}$ Si $T/H_0 \in C_0 \text{ se acepta } H_0$	

Comparación de Varianzas en Dos Poblaciones Normales Independientes					
Situación	Objetivo	Estadístico y distribución	Intervalos de confianza	Contrastes de hipótesis	
$X \in N\left(\mu_{X}, \sigma_{X}^{2}\right)$ $Y \in N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ $\sigma_{X}^{2} y \sigma_{Y}^{2}$ desconocidas $\forall n_{X}, \forall n_{Y}$	Comparar varianzas	$F = \frac{(n_{Y} - 1)n_{X}S_{X}^{2}\sigma_{Y}^{2}}{(n_{X} - 1)n_{Y}S_{Y}^{2}\sigma_{X}^{2}} \in F_{(n_{X} - 1, n_{Y} - 1)}$ o bien: $F = \frac{\overline{S}_{X}^{2}\sigma_{Y}^{2}}{\overline{S}_{Y}^{2}\sigma_{X}^{2}} \in F_{(n_{X} - 1, n_{Y} - 1)}$	$I_{(1-\alpha)}\begin{pmatrix} \sigma_{Y}^{2} / \\ / \sigma_{X}^{2} \end{pmatrix} = \begin{cases} \frac{(n_{X} - 1)n_{Y}S_{Y}^{2}}{(n_{Y} - 1)n_{X}S_{X}^{2}} F_{1-\alpha/2(n_{X} - 1, n_{Y} - 1)}; \frac{(n_{X} - 1)n_{Y}S_{Y}^{2}}{(n_{Y} - 1)n_{X}S_{X}^{2}} F_{\alpha/2(n_{X} - 1, n_{Y} - 1)} \end{cases}$	$\begin{cases} H_0: \sigma_X^2 = \sigma_Y^2 \\ H_1: \sigma_X^2 \neq \sigma_Y^2 \end{cases}$ $C_0 = \left(F_{1-\alpha/2(n_X-1,n_Y-1)}, F_{\alpha/2(n_X-1,n_Y-1)}\right)$ $\begin{cases} H_0: \sigma_X^2 \leq \sigma_Y^2 \\ H_1: \sigma_X^2 > \sigma_Y^2 \end{cases}; C_0 = \left(0, F_{\alpha(n_X-1,n_Y-1)}\right)$ $\begin{cases} H_0: \sigma_X^2 \geq \sigma_Y^2 \\ H_1: \sigma_X^2 < \sigma_Y^2 \end{cases}; C_0 = \left(F_{\alpha(n_X-1,n_Y-1)}, +\infty\right)$ Si $F/H_0 \in C_0 \text{ se acepta } H_0$	
	Comparación de Medias y Varianza en Dos Poblaciones Normales Dependientes				

Comparación de Medias y Varianza en Dos Poblaciones Normales Dependientes				
Situación	Objetivo	Estadístico y distribución	Intervalos de confianza	Contrastes de hipótesis
$X \in N(\mu_X, \sigma_X^2)$ $Y \in N(\mu_Y, \sigma_Y^2)$	Comparar medias y varianzas	Realizar un estudio univariante de la nueva variable D = X - Y $D\!\in N\!\left(\mu_{\!\scriptscriptstyle D},\sigma_{\!\scriptscriptstyle D}^2\right)$ Se aplican los Estadísticos estudiados para Una Población	Los obtenidos para Una Población	Los obtenidos para Una Población