Report

Step 1: Import packages Create functions to load data, generate descriptive statistics for data, and generate summary statistics for data.

```
In [1]: import pandas as pd
 import matplotlib.pyplot as plt
 def load_data(url):
     data = pd.read csv(url)
     return data
 def generate_descriptive_statistics(data):
     des_stat = data.describe()
     return des_stat
 def generate_summary_statistics(filter_data):
     summary_stat = {
         "mean": filter_data.mean(),
         "median": filter data.median(),
         "std": filter data.std(),
     return summary_stat
```

Step 2: Load data Filter data into Dataframe format and own the values we want.

```
In [3]: url = "https://media.githubusercontent.com/media/nickeubank/MIDS_Data/master/World_Development_Indicators/wdi_small_tidy_2015.csv"
 df = load_data(url)
 df_filtered = df[
         "Mortality rate, infant (per 1,000 live births)",
         "GDP per capita (constant 2010 US$)",
 df_filtered
```

Out[3]:		Mortality rate, infant (per 1,000 live births)	GDP per capita (constant 2010 US\$)
	0	54.9	574.184114
	1	8.3	4524.684565
	2	21.4	4776.787543
	3	NaN	9835.410319
	4	3.4	41767.526508
	•••		
	212	NaN	29408.055125
	213	18.6	2631.811985
	214	43.2	908.757846
	215	44.2	1641.005482
	216	40.2	1234.103352

217 rows × 2 columns

Using Pandas for descriptive statistics

```
In [4]: des_stat = generate_descriptive_statistics(df_filtered)
 print("Descriptive Statistics:\n", des_stat)
Descriptive Statistics:
        Mortality rate, infant (per 1,000 live births) \
                                             193.000000
count
                                              23.401036
mean
                                              21.063532
std
                                              1.700000
min
25%
                                               6.500000
50%
                                              15.500000
75%
                                              35.100000
                                              91.600000
max
       GDP per capita (constant 2010 US$)
                                198.000000
count
                              15335.724729
mean
                              22881.307340
std
                                228.432544
min
25%
                               1844.387439
50%
                               6134.939066
75%
                              17654.996438
                             189464.583635
max
```

Generate summary statistics (mean, median, standard deviation)

```
In [5]: | summary_stat = generate_summary_statistics(df_filtered)
 print("\nSummary Statistics:\n", summary_stat)
Summary Statistics:
{'mean': Mortality rate, infant (per 1,000 live births)
                                                                23.401036
GDP per capita (constant 2010 US$)
                                                   15335.724729
dtype: float64, 'median': Mortality rate, infant (per 1,000 live births)
                                                                               15.500000
GDP per capita (constant 2010 US$)
                                                   6134.939066
dtype: float64, 'std': Mortality rate, infant (per 1,000 live births)
                                                                             21.063532
GDP per capita (constant 2010 US$)
                                                   22881.307340
dtype: float64}
```

Create one data visualization:

the relationship between GDP per capita (constant 2010 US\$) and Mortality rate, infant (per 1,000 live births):

```
In [6]: df_filtered.plot.scatter(
         x="GDP per capita (constant 2010 US$)",
         y="Mortality rate, infant (per 1,000 live births)",
         title="Infant Mortality Against GDP per Capita",
 print("\nVisualization:\n")
 plt.show()
```

Visualization:

The relationship between "GDP per capita (constant 2010 US\$)" and "Mortality rate, infant (per 1,000 live births)" is non-linear. We can find that some countries have

significantly lower mortality rates than other.