Infrastructure Comparison Tables

Martina Castellucci

Comparison Tables

Docker vs Docker Compose vs Udocker

Feature	Docker	Docker Compose	Udocker
Root Access	Required for	Depends on setup	Not required; runs in
	daemon		user space
Use Case	Running individual	Orchestrating	Running containers in
	containers	multi-container apps	HPC without root
Security	Host-level access	Shares Docker	User-level, no root
	required	context	access
Deployment	CLI or GUI	Uses YAML config	CLI compatible with
		files	Docker images

Cloud Models

Model	Description and Responsibility
IaaS (Infrastruc-	Provides virtualized computing resources over the internet.
ture as a Ser-	The user manages the operating system, storage, deployed ap-
vice)	plications, and runtime. Examples include AWS EC2, Google
	Compute Engine, Microsoft Azure VM.
PaaS (Platform	Provides a platform allowing customers to develop, run, and
as a Service)	manage applications without dealing with infrastructure. The
	provider handles OS, middleware, and runtime. Examples:
	Heroku, Google App Engine.
SaaS (Software	Offers ready-to-use software applications over the web. The
as a Service)	provider manages everything from infrastructure to software.
	Users only interact with the interface. Examples: Gmail,
	Dropbox, Microsoft 365.

Cooling Techniques

Method	Description	
Air Cooling	Uses fans and heat sinks to remove heat from com-	
	ponents. It is the most economical method, ideal	
	for general-purpose systems, but becomes inefficient in	
	high-density setups.	
Liquid Cooling	Employs a coolant fluid circulated via tubes and blocks	
	to draw heat away from processors and components. Of-	
	fers superior thermal performance and quieter opera-	
	tion.	
Immersion Cooling	Submerges entire components or servers in a dielectric	
	fluid. It ensures uniform cooling, reduces noise, and is	
	used in high-performance, energy-efficient data centers.	

File Systems

File System	Usage and Characteristics	
ext4	Widely used local file system on Linux. Supports	
	journaling, fast performance, good for general-purpose	
	servers.	
xfs	High-performance journaling FS for parallel I/O. Effi-	
	cient for large files and used in enterprise Linux systems.	
NFS	Network File System. Enables sharing files over net-	
	work. Suitable for shared storage in clusters.	
GPFS (IBM Spectrum	Parallel file system for HPC. Provides scalability and	
Scale)	high-throughput for large workloads.	
Lustre	Designed for large-scale parallel file systems in super-	
	computers and clusters. Open source and scalable.	

Kubernetes vs Docker

Aspect	Docker	Kubernetes
Function	Tool to build, run, and man-	Orchestration system to de-
	age containers on a single	ploy, scale, and manage con-
	host	tainers across multiple hosts
Scalability	Limited to a single host (or	Designed for scaling across
	Docker Swarm)	many machines and fault
		tolerance
Networking	Provides simple bridge and	Built-in service discovery
	host networking	and load balancing via Ser-
		vices
Use Case	Local development, small	Production-grade orches-
	deployments	tration of microservices at
		scale

Cloud vs Virtualization

Aspect	Description	
Virtualization	Virtualization allows multiple operating systems to run	
	on the same physical hardware by abstracting the hard-	
	ware using a hypervisor (e.g., KVM, VMware ESXi). It	
	forms the basis for cloud computing but can be used	
	independently in on-prem setups.	
Cloud Computing	A service delivery model that provides access to com-	
	puting resources (VMs, storage, databases, etc.) over	
	the internet. Built on top of virtualization, it adds elas-	
	ticity, scalability, APIs, billing, and managed services.	

Recall vs Backfill vs Reservation

Term	Meaning	
Recall	The process of reclaiming allocated but unused or idle	
	resources (e.g., from preemptible or low-priority jobs) so	
	they can be reassigned. Useful in opportunistic environ-	
	ments.	
Backfill	A scheduling strategy where smaller jobs are temporar-	
	ily scheduled in idle gaps between larger reservations,	
	improving overall resource utilization without delaying	
	high-priority jobs.	
Reservation	Explicit allocation of compute resources for a specific	
	user, group, or job at a future time. Ensures resource	
	availability for time-sensitive workloads.	

OSI vs TCP/IP Models

Layer	OSI Model	TCP/IP Model
Layer 7	Application	Application
Layer 6	Presentation	- (merged into Application)
Layer 5	Session	- (merged into Application)
Layer 4	Transport	Transport
Layer 3	Network	Internet
Layer 2	Data Link	Network Access
Layer 1	Physical	Network Access

TOR (The Onion Router) Architecture

Layer	Function
Entry Node	First relay in the TOR network. It knows the user's IP
	address and establishes an encrypted path to the next
	node.
Relay Node	Intermediate node that passes traffic in encrypted form.
	It does not know the source or final destination.
Exit Node	Final node in the circuit. It decrypts the last layer and
	forwards the request to the destination server. It sees
	the destination but not the source.

HTCondor vs SLURM

Feature	HTCondor	SLURM (HPC Sched-
		uler)
Scheduling	Opportunistic scheduling	Resource-reservation with
Model	with late-binding	partitioned scheduling
Target Use	High Throughput Comput-	High Performance Comput-
	ing (HTC), grid environ-	ing (HPC), tightly coupled
	ments	tasks
Fault Tolerance	Supports checkpointing and	Limited fault tolerance; job
	job migration	restarts on failure
Resource Match	Uses ClassAds to match	Uses queues and partitions,
	jobs with resources	less dynamic
Scalability	Scales across heterogeneous	Scales efficiently in tightly
	systems in a grid	integrated clusters

INFN CNAF vs Other Sites

Location	Description	
INFN CNAF	National computing center (Tier-1) in Bologna. Of-	
	fers large-scale storage, computing, and data services	
	for LHC and Italian research. Connected to GRID, pro-	
	vides access to HPC and HTC resources.	
Other Sites	Regional centers (Tier-2 or Tier-3). Focused on local-	
	ized support, smaller infrastructure, often used for pre-	
	processing or analysis tied to larger collaborations.	

Amdahl's Law: Speedup vs Efficiency

Metric	Formula and Explanation
Speedup (S)	$S = \frac{1}{(1-P) + \frac{P}{N}}$ — quantifies how much faster a program
	runs when parallelized, where P is the parallelizable por-
	tion and N the number of processors.
Efficiency (E)	$E = \frac{S}{N}$ — evaluates how effectively the parallel resources
	are being used; close to 1 means optimal utilization.

Power vs Storage

Aspect	Metric / Description	
Power	Measured in Watts. TDP (Thermal Design Power) in-	
	dicates the max heat a component generates; influences	
	cooling requirements.	
Storage	Measured in GB/TB. Performance determined by la-	
	tency, throughput, and IOPS (Input/Output Opera-	
	tions Per Second).	

Node vs Job

Entity	Description	
Node	A compute resource — physical or virtual — in a clus-	
	ter that executes assigned jobs. Often includes CPUs,	
	RAM, and access to shared storage.	
Job	A user-defined task or process submitted to a scheduler	
	for execution on one or more nodes. Can be serial, par-	
	allel, or array-based.	

Server vs Data Center vs Distributed

System Type	Scope and Characteristics	
Server	A single machine offering computing or storage services.	
	Can be physical or virtual and may serve multiple users	
	or applications.	
Data Center	A facility that houses many servers with supporting in-	
	frastructure (cooling, power, security). Centralized and	
	managed IT operations.	
Distributed Comput-	A computing model in which components located on	
ing	networked computers communicate and coordinate to	
	achieve a common goal. Supports scalability and fault	
	tolerance.	

CPU vs GPU

Feature	CPU (Central Processing	GPU (Graphics Processing
	Unit)	Unit)
Purpose	General-purpose computing	Parallel processing, mainly for
		graphics and large-scale computa-
		tions
Cores	Fewer (2–64), optimized for se-	Hundreds to thousands of cores,
	quential tasks	optimized for parallel tasks
Latency	Low latency per task	Higher latency per task
Throughput	Lower overall throughput	Very high throughput
Use Case	OS management, general logic,	Deep learning, image rendering,
	low-latency tasks	matrix operations

Single-core vs Multi-core CPU

Aspect	Single-core CPU	Multi-core CPU
Definition	One execution core per	Multiple cores in a single
	CPU	CPU chip
Parallelism	Executes one thread at a	Executes multiple threads
	time	simultaneously
Performance	Slower for multitasking	Better multitasking and
		parallel computing
Power Con-	Typically lower	More power, but better per-
sumption		formance/watt
Use Cases	Embedded devices, old sys-	Modern desktops, servers,
	tems	smartphones

The 5 Vs of Big Data

V	Description
Volume	Refers to the huge amounts of data generated every sec-
	ond (e.g., terabytes, petabytes)
Velocity	Speed at which data is generated, processed, and ana-
	lyzed
Variety	Different types of data: structured, semi-structured, un-
	structured
Veracity	Quality and trustworthiness of data; presence of noise
	and uncertainty
Value	The usefulness of the data once processed and analyzed

DAS vs NAS vs SAN

Type	Description	
DAS (Direct Attached	Storage attached directly to a server or workstation	
Storage)	without a network	
NAS (Network At-	File-level storage shared over a network; uses protocols	
tached Storage) like NFS, SMB		
SAN (Storage Area	Block-level storage accessed over a high-speed network,	
Network)	typically via Fibre Channel or iSCSI	

Edge vs Fog vs Cloud Computing

Model	Description	
Edge Computing	Processing done near the data source (e.g., sensors); re-	
	duces latency and bandwidth	
Fog Computing	Intermediate layer between edge and cloud; distributes	
	computing/storage closer to edge	
Cloud Computing	Centralized processing in data centers; offers scalability,	
	redundancy, and global access	

AWS and IaaS Example

Service	Description	
AWS EC2	Elastic Compute Cloud; provides resizable compute ca-	
	pacity in the cloud (IaaS)	
AWS S3	Simple Storage Service; object storage with web inter-	
	face, often used with EC2	
AWS VPC	Virtual Private Cloud; isolated network for AWS re-	
	sources	
Relation to IaaS	AWS provides IaaS by allowing users to manage VMs,	
	storage, and networking infrastructure	

Batch Computing vs Cloud Computing

Feature	Batch Computing	Cloud Computing
Job Execution	Scheduled in queues, managed by	On-demand job execution via
	local scheduler	cloud APIs
Resource Alloca-	Static, predefined	Elastic and scalable
tion		
Cost Model	Fixed, shared among users	Pay-per-use (metered billing)
Infrastructure	On-premise or academic clusters	Hosted and managed by provider
		(e.g., AWS, Azure)

Batch Computing vs Grid Computing

Aspect	Batch Computing	Grid Computing
Scope	Typically within a single organi-	Federated, across multiple admin-
	zation or cluster	istrative domains
Resource Shar-	Centralized, static	Decentralized, dynamic sharing
ing		
Middleware	Simple batch schedulers (e.g.,	Grid middleware (e.g., gLite,
	SLURM, PBS)	Globus, ARC)
Security	Based on local users	Often uses certificates and feder-
		ated identities

Scheduler vs Cloud Provider

Aspect	Scheduler (e.g., SLURM,	Cloud Provider (e.g., AWS,
	HTCondor)	Azure)
Responsibility	Manages job queueing, prioritiza-	Provides infrastructure and ser-
	tion, and execution on a cluster	vices for compute, storage, and
		networking
Control	Full control over resource man-	Limited to APIs and services of-
	agement	fered
Location	Local clusters or HPC/HTC sys-	Remote, virtualized data centers
	tems	
Scalability	Bound to physical resources	Virtually unlimited scaling

Dockerfile vs Docker Image

Concept	Dockerfile	Docker Image
Definition	Script with instructions to build	Executable snapshot of a
	an image	container environment
Use	Written by developer to define	Created after Dockerfile is
	build steps	built; used to run contain-
		ers
Example	FROM python:3.8	
COPY . /app	myimage:v1 (result of docker	
	build)	

Digital Twins

Term	Description
Digital Twin	A digital representation of a real-world object or system
	that is updated with real-time data. Used for monitor-
	ing, simulation, and optimization (e.g., industrial IoT,
	smart cities).

Cloud-Aware vs Cloud-Native Efficiency

Aspect	Cloud-Aware	Cloud-Native
Definition	Applications adapted to run in	Applications designed for cloud
	cloud	from the ground up
Architecture	Monolithic or partially container-	Microservices, containers, orches-
	ized	tration (Kubernetes)
Scaling	Manual or limited automation	Automatic, elastic scaling
Efficiency	Limited by legacy architecture	Fully optimized for distributed
		environments

${\bf IP\ vs\ MAC\ Address+Common\ IPs}$

Term	Description
IP Address	Logical address used for routing on network layer (e.g.,
	192.168.0.1)
MAC Address	Physical address tied to network interface; layer 2 iden-
	tifier (e.g., 00:1A:2B:3C:4D:5E)
127.0.0.1	Loopback address (localhost); used for internal testing
0.0.0.0	Non-routable address; binds to all available interfaces

Checksums

Term	Description
Checksum	A value derived from data to detect errors or integrity
	loss. Common algorithms: MD5, SHA-1, SHA-256.
Use Cases	File verification, network transmission, package down-
	loads

BLASTn vs BWA

Tool	BLASTn	BWA
Purpose	Nucleotide sequence similarity	Read alignment to reference
	search	genome
Algorithm	Seed-and-extend; local alignment	Burrows-Wheeler Transform;
		global or semi-global
Speed	Slower, especially with large	Very fast, optimized for NGS
	datasets	data
Use Case	Annotating genes, database com-	DNA-seq data preprocessing,
	parison	variant calling

HTT (High Throughput Technologies)

Term		Description
High	Throughput	Techniques that allow simultaneous processing of a large
Technologies		number of samples or data points (e.g., microarrays,
		NGS, mass spectrometry). Key in omics and screening
		platforms.

WMS (Workflow Management Systems)

System	Description
WMS	Tools that help define, manage, and execute data
	pipelines (e.g., Snakemake, Nextflow, Galaxy). Support reproducibility, scalability, and parallelism in bioinfor-
	matics and big data workflows.

Vocabulary: Key Infrastructure Terms

Term	Definition
Switch	Network device that connects devices within a LAN and
	forwards data based on MAC addresses.
Router	Device that connects multiple networks and routes pack-
	ets based on IP addresses. Often links LANs to WANs.
Hub	Basic network device that broadcasts data to all con-
	nected devices; no intelligence like a switch.
LAN (Local Area Net-	Network covering a small geographic area (e.g., office,
work)	home), typically high-speed.
WAN (Wide Area	Network covering a large area, such as the internet or
Network)	inter-office networks.
Hardware	The physical components of a computer or infrastruc-
	ture (CPU, memory, disk, etc.).
Software	Programs and operating systems that run on hardware
	and control tasks.
Kernel	Core of the operating system that manages system re-
	sources and communication between hardware and soft-
	ware.
Host	A device (physical or virtual) that provides services and
	has an operating system installed.
OS (Operating Sys-	System software that manages computer hardware, soft-
tem)	ware resources, and provides services for applications.
HDD (Hard Disk	Traditional spinning magnetic storage device, high ca-
Drive)	pacity, slower access.
SSD (Solid State	Fast, non-volatile flash memory storage device with no
Drive)	moving parts.
NFS (Network File	Protocol that allows file access over a network as if local;
System)	used in shared UNIX/Linux environments.
NUMA (Non-Uniform	Memory architecture where access time depends on the
Memory Access)	memory's location relative to the processor.
UMA (Uniform Mem-	Architecture where all processors share physical memory
ory Access)	uniformly.
L1 Cache	The smallest and fastest memory level, located closest
	to the CPU core; typically stores instructions and data.
L2 Cache	Larger than L1, slower but still fast; stores data used
	less frequently. Often shared among cores.
L3 Cache	Shared among all cores in a processor; bigger but slower
	than L2, reduces memory latency at higher levels.
RAID (Redundant	A method of storing data on multiple hard disks for re-
Array of Independent	dundancy and performance, using various levels (RAID
Disks)	0, 1, 5, etc.)2

Vocabulary: Key Infrastructure Terms 2)

Storage architecture that uses multiple storage media
(e.g., SSD, HDD, tape) ranked by speed/cost, and data
is moved accordingly.
Intel technology that allows one physical CPU core to
execute two threads simultaneously to improve paral-
lelism.
The amount of data processed in a given time, often
measured in bits per second or IOPS in storage.
Distributed computing model where resources across
multiple locations are federated and used collectively.
Delivery of computing services (compute, storage, net-
working) over the internet on demand.
Processing data close to where it is generated (e.g., IoT
sensors) to reduce latency.
Extends cloud to be closer to edge devices, offering com-
putation, storage, and networking.
Real-time processing of continuous data streams (e.g.,
Kafka, Flink).
Part of the CPU that performs arithmetic and logical
operations.
CPU component that directs operations of the proces-
sor; it fetches, decodes, and executes instructions.
Interface between the computer and external devices;
includes peripherals and network input/output.
Lightweight, portable, and self-sufficient unit that in-
cludes everything needed to run a piece of software.
Popular container platform that automates deployment
of applications inside containers.

Common Command Reference Table

Command	Function / Description
docker pull	Download an image from a Docker registry (e.g., Docker
<image/>	Hub)
docker push	Upload an image to a Docker registry
<image/>	
docker run <image/>	Create and start a container from an image
docker create	Create a container without starting it
<image/>	
docker build -t	Build an image from a Dockerfile in the current directory
<name> .</name>	
docker volume	Create a named volume (persistent storage for contain-
create <name></name>	ers)
docker-compose up	Start all services defined in a docker-compose.yml file
docker-compose	Stop and remove services, networks, volumes defined in
down	the compose file
udocker run	Execute a container without requiring root privileges
<container></container>	(HPC environments)
condor_submit	Submit a job to HTCondor using the specified job de-
<file></file>	scription file
condor_q	View the status of submitted jobs in the queue
condor_status	Show the status of machines in the Condor pool
cat /proc/cpuinfo	Display detailed CPU architecture and core information
free -m	Show memory usage in megabytes
df -h	Show available disk space on mounted file systems (hu-
	man readable)
mount	List all currently mounted filesystems
lsblk	Show all block devices and partitions
md5sum <file></file>	Generate or verify MD5 checksum for a file
time <command/>	Measure the time taken to execute a command (e.g.,
	time blastn)
blastn -query file	Run a nucleotide BLAST search
-db nt -out res	