Задача

Наибольший общий делитель $HO\mathcal{L}(a,b)$ двух положительных целых чисел a и b равняется самому большому целому числу, на которое без остатка делятся оба числа a и b, для решения этой задачи поможет алгоритм Евклида. Немного усложним — нужно найти $HO\mathcal{L}$ среди всех чисел от a до b включительно.

Формально, найдите максимальное целое число, на которое без остатка делится каждое из чисел a, a+1, a+2, ..., b. Чтобы было ещё сложнее, разрешим a и b достигать числа **гугол**, 10^{100} — такие числа не помещаются даже в 64-битный тип целых чисел!

Комментарий: Данная задача может испугать размером входных данных, которые не помещаются в целочисленные типы, но бояться этого не следует, всё гораздо проще, чем можно было подумать.

Дополнительные условия

Входные данные:

В единственной строке входных данных дано два числа a и b ($1 \le a \le b \le 10^{100}$).

Выходные данные:

Выведите одно число — $HO\mathcal{A}$ всех чисел от a до b включительно.

Ограничения: 1 секунда, 256 мегабайт.

Разбор

Для решения данной задачи будет достаточно рассмотреть два случая:

- 1. Входные данные совпадают, т.е. $\mathbf{a} = \mathbf{b}$. Тогда ответ очевиден: $\mathbf{HOД}(\mathbf{a}, \mathbf{b}) = \mathbf{a} = \mathbf{b}$. Выберем что-то одно, например \mathbf{a} , и выведем.
- 2. Входные данные различаются, т.е. $\mathbf{a} < \mathbf{b}$. Заметим, что $\mathbf{HOД}(\mathbf{x}, \mathbf{x} + \mathbf{1}) = \mathbf{1}$ и $\mathbf{HOД}(\mathbf{1}, \mathbf{x}) = \mathbf{1}$, дальше нам это пригодится. Тогда решением является:

$$HOД(a, a + 1, a + 2, ..., b) = HOД(HOД(a, a + 1), a + 2, ..., b) =$$
 $= HOД(1, a + 2, ..., b) = HOД(HOД(1, a + 2), ..., b) = HOД(1, ..., b) = 1$

Следовательно, при a < b ответ равен 1.

Замечание

Так как нет необходимости работать с входными данными как с целыми числами, то достаточно будет их строкового представления.

С этим нам поможет специальный контейнер для строк – **string**.