```
1.
// language: C
// reference: https://www.geeksforgeeks.org/multiply-two-polynomials-2/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
int main() {
  int max_1 = 0, max_2 = 0, max_3 = 0, coef = 0;
  int poly_A[100], poly_B[100], poly_C[100] = {0};
  printf("Enter the power of polynomial A: \n");
  scanf("%d", &max_1);
  printf("Enter each coefficient of polynomial A: (from x^0 to x^n)\n");
  for (int i = 0; i \le max 1; i++) {
     scanf("%d",&poly_A[i]);
  }
  printf("Enter the power of polynomial B: \n");
  scanf("%d",&max_2);
  printf("Enter each coefficient of polynomial B: (from x^0 to x^n)\n");
  for(int i = 0; i \le max_2; i++) {
     scanf("%d",&poly_B[i]);
  }
  // iterative multiplication
  for(int i = 0; i \le max 1; i++){
     for(int j = 0; j \le max_2; j++){
       poly_C[i+j] += poly_A[i] * poly_B[j];
     }
  }
  // print out the result
  max_3 = max_1 + max_2;
  coef = 0;
  for (int i = 0; i <= max 3; i++) {
     printf("a%d: %d\n", coef, poly_C[i]);
     coef++;
  }
  return 0;
}
```

```
2.
// language: C++
// reference: http://algorithm.cs.nthu.edu.tw/~course/Extra Info/
Divide%20and%20Conquer_supplement.pdf
// reference: https://github.com/nextco/cormen-fft/blob/master/pm-divide-and-
conquer.cpp
#include <cstdio>
#include <cstring>
#include <iostream>
#include <chrono>
#include <time.h>
using namespace std;
typedef long long II;
// polynomial coefficients are saved in increasing order of degree
// coefficient of x^{**}i in polynomial p = p[i]
// multiply polynomials p and q, both of size sz,
// where sz is multiple of 2
void karatsuba(II *res, const II *p, const II *q, int sz){
  II t0[sz], t1[sz], r[sz<<1];
  memset(r, 0, (sz << 1) * sizeof(II));
  if (sz <= 4){ // base case, no recursion, do basic school multiplication
     for (int i = 0; i < sz; i++)
     for ( int j = 0; j < sz; j++){
       r[i + j] += p[i] * q[j];
  } else {
    // let p = a^*x^{**}nSz + b
          q = c^*x^{**}nSz + d
          r = ac^*x^{**}sz + ((a+b)^*(c+d) - ac - bd)^*x^{**}nSz + bd
     int nSz = (sz >> 1);
     for ( int i = 0; i < nSz; i++){
       t0[i] = p[i] + p[nSz + i]; // t0 = a + b
       t1[i] = q[i] + q[nSz + i]; // t1 = c + d
       t0[i + nSz] = t1[i + nSz] = 0; // initialize
     }
     karatsuba(r + nSz, t0, t1, nSz); // r[nSz...sz] = (a+b) (c+d)
     karatsuba(t0, p, q, nSz); // t0 = bd
     karatsuba(t1, p + nSz, q + nSz, nSz); // t1 = ac
```

```
for (int i = 0; i < sz; i++){
                                // bd
        r[i] += t0[i];
        r[i + nSz] = t0[i] + t1[i]; // ((a+b)(c+d) - ac - bd) * x**nSz
        r[i + sz] += t1[i];
                           // ac * x**sz
     }
  }
  memcpy(res, r, (sz<<1) * sizeof(II));
// multiply two polynomials p and q, both of size sz = degree + 1
// save the output in array r
// NOTE: the maximum capacity of p, q, r should be power of two
// NOTE: r should be at least double of p or q in size
void polyMult(II *r, II *p, II *q, int sz){
  if (sz & (sz - 1)) { // if size is not power of two
     int k = 1;
     while (k < sz) k <<= 1;
     while ( ++sz <= k ) p[sz - 1] = q[sz - 1] = 0;
     SZ--;
  }
  karatsuba(r, p, q, sz);
}
// print polynomial in descending order of degree
void polyPrint(II *p, int sz){
  while (--sz >= 0) cout << p[sz] << "";
  puts("");
}
int main(){
  II p[4] = \{4,3,2,1\};
  II q[4] = \{4,3,2,1\};
  II r[8];
  int degree = 3;
  polyMult(r, p, q, degree + 1);
  polyPrint(r, degree * 2 + 1);
  return 0;
}
```

```
3.
// language: C++
// reference: https://www.geeksforgeeks.org/fast-fourier-transformation-poynomial-
multiplication/
// reference: https://hk.saowen.com/a/
b6e9f0ca70a669575a8b8e56c746ba63780958c4c12159aec6bfb05a7ff2e409
// http://www.voidcn.com/article/p-rzrkhina-boa.html
#include <cstdio>
#include <cmath>
#include <iostream>
#include <time.h>
const int MAXN = 4 * 1e5 + 10;
double Pi = acos(-1);
struct Complex {
  double r, i;
  Complex() {}
  Complex(double \_r, double \_i) { r = \_r; i = \_i; }
  Complex operator + (const Complex &y) { return Complex(r + y.r, i + y.i); }
  Complex operator - (const Complex &y) { return Complex(r - y.r, i - y.i); }
  Complex operator * (const Complex &y) { return Complex(r*y.r - i * y.i, r*y.i + i * y.r); }
  Complex operator *= (const Complex &y) {
     double t = r:
     return Complex(r = r * y.r - i * y.i, i = t * y.i + i * y.r); }
} a[MAXN], b[MAXN];
void FFT(Complex* a, long length, int op){
  if(length == 1)
  return;
  Complex * a0 = new Complex[length/2];
  Complex * a1 = new Complex[length/2];
  for(long i = 0; i < length; i += 2){
     a0[i/2] = a[i];
     a1[i/2] = a[i+1];
  }
  FFT(a0, length/2, op);
  FFT(a1, length/2, op);
  Complex wn(cos(2*Pi/length),op * sin(2*Pi/length));
  Complex w(1, 0);
  for(long i = 0; i < (length/2); i++){}
     a[i] = a0[i] + w*a1[i];
```

```
a[i+length/2] = a0[i]-w*a1[i];
     w = w*wn;
  }
  delete∏ a0;
  delete∏ a1;
int main(int argc, const char * argv∏) {
  clock t start, finish;
  float duration;
  int ordP1,ordP2,length;
  double inno:
  Complex poly_A[100],poly_B[100],poly_C[100];
  printf("Enter the power of polynomial A: \n");
  scanf("%d",&ordP1);
  printf("Enter each coefficient of polynomial A: (from x^0 to x^n)\n");
  for(int i=0;i<=ordP1;i++){
     scanf("%lf",&innc);
     poly_A[i].r=innc;
     poly_A[i].i=0;
  }
  printf("Enter the power of polynomial B: \n");
  scanf("%d",&ordP2);
  printf("Enter each coefficient of polynomial B: (from x^0 to x^n)\n");
  for(int i=0;i<=ordP2;i++){
     scanf("%lf",&innc);
     poly_B[i].r=innc;
     poly_B[i].i=0.0;
  }
  start = clock();
    FFT ALG
  for(int i=1; i<=abs(ordP1-ordP2) && (ordP1-ordP2!=0) ;i++){
     if(ordP1-ordP2<0){
       poly_A[i+ordP1]*=Complex(0.0,0.0);
     }
     else{
       poly_B[i+ordP2]*=Complex(0.0,0.0);
  }
  length = (ordP1-ordP2)?(ordP1+1):(ordP2+1);
```

```
for(length = 2; length < ordP1+ordP2+2;length*=2);
for(int i =ordP1+1;i<length;i++){</pre>
  poly_A[i] = poly_A[i] * Complex(0.0,0.0);
  poly_B[i] = poly_B[i] * Complex(0.0,0.0);
}
FFT(poly_A,length,1);
FFT(poly_B,length,1);
for (int i =0;i<length;i++){
  poly_C[i]=poly_A[i]*poly_B[i];
}
FFT(poly_C,length,-1);
for (int i =0;i<length;i++){
  poly_C[i].r /= length;
}
finish = clock();
duration = (double)(finish - start) / CLOCKS_PER_SEC;
    printf( "%f seconds\n", duration );
int coef = 0;
for(int i = 0;i < ordP1 + ordP2 + 1;i + +) {
  printf("a%d: %lf \n", coef, poly_C[i].r);
  coef++;
}
printf("\n");
return 0;
```

}

```
4.
```

// classical iterative method

// reference: (Cull, Classnote, p.45)

// reference: http://web.cs.iastate.edu/~cs577/handouts/polymultiply.pdf

$$P(x) = a_0 + a_1x + a_2x^2 + ... + a_{n-1}x^{n-1}$$

$$Q(x) = b_0 + b_1 x + b_2 x^2 + ... + b_{n-1} x^{n-1}$$

$$\mathsf{P}(\mathsf{x})\mathsf{Q}(\mathsf{x}) = \mathsf{c}_0 + \mathsf{c}_1 \mathsf{x} + \ldots + \mathsf{c}_{2\mathsf{n}-2} \mathsf{x}^{2\mathsf{n}-2}, \text{ where } \quad c_i = \sum_{\max\{0, i - (n-1)\} \leq k \leq \min\{i, n-1\}} a_k b_{i-k}.$$

because every a_i is multiply with every b_j , for $0 \le i$, $j \le n-1 \implies \Theta(n^2)$

// divide and conquer method

// reference: http://algorithm.cs.nthu.edu.tw/~course/Extra_Info/

Divide%20and%20Conquer_supplement.pdf

$$P(x) = P_0(x) + P_1(x)x^{n/2}$$

$$Q(x) = Q_0(x) + Q_1(x)x^{n/2}$$

 $P(x)Q(x) = P_0(x)Q_0(x) + (P_0(x)Q_1(x) + P_1(x)Q_0(x))x^{n/2} + P_1(x)Q_1(x)x^n$

where $P_0(x)$, $P_1(x)$, $Q_0(X)$, $Q_1(x)$ are all polynomials of degree n/2 - 1

$$M(n) = 3M(n/2) + cn$$

$$=3^{k}(n/2^{k})+(1+2+4+...+2^{k-1})cn$$

when
$$n/2^k = 1 \Longrightarrow M(1) \Longrightarrow k = log_2 n$$

$$\implies$$
 M(n) = 3^{logn} M(1) + cn(2^{logn} - 1)= 3^{logn} M(1) + cn(n - 1)

$$\Longrightarrow \Theta(3^{logn})$$

$$\Longrightarrow \Theta(n^{\log 3})$$

```
// FFT method
// reference: http://web.cs.iastate.edu/~cs577/handouts/polymultiply.pdf
// reference: (Cull, Classnote, p.50~54)
 RECURSIVE-DFT(a, n)
 1
        if n=1
 2
                then return a
       w_n \leftarrow e^{i\frac{2\pi}{n}}
 3
 4
       w \leftarrow 1
 5 \quad a^{[0]} \leftarrow (a_0, a_2, \dots, a_{n-2})
 6 a^{[1]} \leftarrow (a_1, a_3, \dots, a_{n-1})
       \hat{a}^{[0]} \leftarrow \text{Recursive-DFT}(a^{[0]}, \frac{n}{2})
       \hat{a}^{[1]} \leftarrow \text{Recursive-DFT}(a^{[1]}, \frac{\tilde{n}}{2})
        for k = 0 to \frac{n}{2} - 1 do
                \hat{a}_{k} \leftarrow \hat{a}_{k}^{[0]^{2}} + \omega \hat{a}_{k}^{[1]}\hat{a}_{k+\frac{n}{2}} \leftarrow \hat{a}_{k}^{[0]} - \omega \hat{a}_{k}^{[1]}
 10
 11
 12
                 \omega \leftarrow \omega \omega_n
 13 return (\hat{a}_0, \hat{a}_1, \dots, \hat{a}_{n-1})
\implies T(n, |x|) = 2*T(n/2, |x|) + O(n + |x|)
if T(n/2, |x|/2)
\Longrightarrow T(n) = 2T(n/2) + O(n)
by the formula of Master Theorem
\Longrightarrow \Theta(nlogn)
```

By the big theta of three algorithms, I predict that FFT method will be the fastest for large degree polynomials. Because nlogn will be smaller than n² if n is large.

```
5.
case 1: choose P(x) = 1 + 2x^2 + 3x^3 + 4x^4, Q(x) = 1 + 2x^2 + 3x^3 + 4x^4
// classical iterative method
Enter the power of polynomial A:
Enter each coefficient of polynomial A: (from x^0 to x^n)
Enter the power of polynomial B:
Enter each coefficient of polynomial B: (from x^0 to x^n)
3
a0: 1
a1: 4
a2: 10
a3: 20
a4: 25
a5: 24
a6: 16
Program ended with exit code: 0
// divide and conquer method
from x_n -> constant
16 24 25 20 10 4 1
Program ended with exit code: 0
// FFT method
Enter the power of polynomial A:
Enter each coefficient of polynomial A: (from x^0 to x^n)
Enter the power of polynomial B:
Enter each coefficient of polynomial B: (from x^0 to x^n)
a0: 1.000000
a1: 4.000000
a2: 10.000000
a3: 20.000000
a4: 25.000000
a5: 24.000000
a6: 16.000000
Program ended with exit code: 0
```

```
case 2: choose P(x) = 4 + 3x^1 + 2x^2 + 1x^3,

Q(x) = 4 + 3x^1 + 2x^2 + 1x^3
```

// classical iterative method

```
Enter the power of polynomial A:

3
Enter each coefficient of polynomial A: (from x^0 to x^n)
4
3
2
1
Enter the power of polynomial B:
3
Enter each coefficient of polynomial B: (from x^0 to x^n)
4
3
2
1
a0: 16
a1: 24
a2: 25
a3: 20
a4: 10
a5: 4
a6: 1
Program ended with exit code: 0
```

// divide and conquer method from $x_n \rightarrow$ constant

1 4 10 20 25 24 16 Program ended with exit code: 0

// FFT method

```
Enter the power of polynomial A:

3
Enter each coefficient of polynomial A: (from x^0 to x^n)
4
3
2
1
Enter the power of polynomial B:
3
Enter each coefficient of polynomial B: (from x^0 to x^n)
4
3
2
1
a0: 16.000000
a1: 24.000000
a2: 25.000000
a2: 25.000000
a3: 20.000000
a4: 10.000000
a5: 4.000000
a6: 1.0000000
Program ended with exit code: 0
```

The results are the same.

6.

		divide and	
n i	iterative (sec)	divide and conquer (sec)	FFT (sec)
2	0.000016	0.000024	0.000051
4	0.000002	0.000005	0.000058
8	0.000002	0.000006	0.00011
16	0.000004	0.000007	0.000166
32	0.000006	0.000041	0.000247
64	0.000017	0.000141	0.000421
128	0.000055	0.000219	0.000746
256	0.000175	0.000517	0.001839
512	0.000595	0.003132	0.003755
1024	0.002367	0.007071	0.007828
2048	0.009903	0.031962	0.013254
4096	0.036968	0.07321	0.031336
8192	0.14393	0.187103	0.09269
16384	0.574414	0.530683	0.091832
32768	2.25881	2.353215	0.205122
65536	9.286633	7.879021	0.406042
131072	37.946583	33.402908	0.829161
262144	148.39357	110.21917	1.71501

7.

For a small number of coefficient, classical iterative method is faster than divide and conquer and FFT. However, FFT will be the fastest, and divide and conquer will be faster than iterative.

```
// classical iterative method
c * n<sup>2</sup>
c * (16384)^2 = 0.574414 \implies c \approx 2.10 * 10^{-9}
c * (65536)^2 = 9.286633 \implies c \approx 2.30 * 10^{-9}
c * (131072)^2 = 37.946583 \Longrightarrow c \approx 2.21 * 10^{-9}
c \approx 2.20 * 10^{-9}
\implies 2.20 * 10-9 * n<sup>2</sup>
// divide and conquer method
c * n<sup>2</sup>
c * (16384)^2 = 0.530683 \implies c \approx 1.98 * 10^{-9}
c * (65536)^2 = 9.286633 \Longrightarrow c \approx 2.17 * 10^{-9}
c * (131072)^2 = 37.946583 \implies c \approx 2.21 * 10^{-9}
c \approx 2.12 * 10^{-9}
\implies 2.12 * 10<sup>-9</sup> * n<sup>2</sup>
// FFT method
c * n(logn)
c * 16384(log16384) = 0.091832 \implies c \approx 4.00 * 10^{-7}
c * 32768(log32768) = 2.353215 \implies c \approx 4.17 * 10^{-7}
c * 65536(log65536) = 7.879021 \implies c \approx 3.87 * 10^{-7}
c \approx 4.01 * 10^{-7}
\implies 4.01 * 10<sup>-7</sup> * n(logn)
```

by the plot, the crossover point of iterative method and divide and conquer method is approximately at n = 8192

by the plot, the crossover point of iterative method and FFT method is approximately at n = 4096