

Let $B = \{3, 5, 10, 11, 14\}$. Is the following statement true or false: $3 \in B$ O True	1 / 1 point
True False	
✓ Correct	
Correct The symbol	
Let $A=\{1,3,5\}$ and $B=\{3,5,10,11,14\}$. Which of the following sets is equal to the union $A\cup B$?	1 / 1 poin
○ {1,10,18}	
(3,5,10,11,14) (1,3,5,10,11,14)	
(1,3,5,3,5,10,11,14)	
✓ Correct	
The union of two sets consists precisely of the elements that are in at least one of the two sets. That is precisely what is listed here.	
How many real numbers are there between the integers 1 and 47	1 / 1 poin
2 ightharpoonup infinitely many	
○ None	
O 4	
Correct There are in fact infinitely many real numbers between any pair of distinct integers, or	
indeed any pair of distinct real numbers!	
Suppose I tell you that x and y are two real numbers which make the statement $x \geq y$ true. Which	1/1 point
pair of numbers cannot be values for x and y ? $ x = 2 \text{ and } y = 1 $	
$\bigcirc x = 10 \text{ and } y = 10$	
ⓐ $x = -1$ and $y = 0$ ∴ $x = 5$ and $y = 3.3$	
✓ Correct Recall that the statement x ≥ y means that x is either equal to y or x is to the right of y on the real number line. Since −1 is actually to the left of 0, these cannot be values for	
x and y.	
Suppose that z and w are two positive numbers with $z \le w$. Which of the following inequalities is	1/1 poin
false?	
⊕ -5z < -5wz +3 < w +3	
○ -2 > -w	
○ w - 7 > z - 7	
\checkmark Correct If we start with $z \le w$ and multiply both sides by -5 , we need to flip the less-than sign,	
which would give $-5z>-5w$. For an example, ${\rm try}z=1$ and $y=2$ and see what happens!	
Find the set of all x which solve the inequality $-2x+5 \le 7$ x = -1	1 / 1 poin
0 x≥−6	
$\bigcirc x \le -1$ $\textcircled{0} x \ge -1$	
\checkmark Correct Subtracting 5 from both sides of the given inequality gives $-2x \le 2$. Then we divide both sides by -2 , remembering to flip the inequality sign, and we obtain this answer	
Which of the following real numbers is not in the closed interval [2, 3] (a) 1	1 / 1 poin
○ 2.1	
○ 2 ○ 3	
✓ Correct Recall that the closed interval [2, 3] consists of all real numbers x which satisfy $2 \le x \le 3$. Since $2 \le 1$ is false, $1 \in [2, 3]$	
Which of the following intervals represents the set of all solutions to:	1/1 poin
$-5 \le x + 2 < 10$?	
○ [-7, 8] ⑤ [-7, 8)	
○ [-5,10)	
○ (7,8)	
\checkmark Correct Subtracting 2 from all sides of the inequalities gives $-7 \le x \le 8$, and the set of all real	
numbers x which make that true is exactly the half-open interval $[-7, 8)$.	
Which of the numbers below is equal to the following summation: $\Sigma_{k=2}^5 2k \gamma$	1/1 poin
O 10	
O 4	
2814	
$\label{eq:correct} \text{$\sqrt{$}$ correct}$ We compute $\Sigma_{k=2}^5 2k - 4 + 6 + 8 + 10 = 28.$	
Suppose we already know that $\Sigma_{g=1}^{20} k=210$. Which of the numbers below is equal to $\Sigma_{g=1}^{20} 2k?$	1/1 poin
Suppose we areaby know that $Z_{k=1} \mathbf{k} = 210$. Which is the numbers below is expan to $Z_{k=1} \mathbf{2k}$: (a) 420	
○ 210 ○ 2	
○ 2 ○ 40	
√ Correct	
Correct By applying one of our Sigma notation simplification rules, we can rewrite the summation in question as $2(\Sigma_{i=1}^{20}k) - 2 \times 210 - 420$.	
2-1-1-1 - 1 - 2-1-1 - 1 - 1 - 1 - 1 - 1	
Which of the numbers below is equal to the summation $\Sigma_{i=2}^{10} 7$?	1 / 1 point
○ 70	