Computer Systems Modelling 2004

[Interormed times, random distributions]

(a) $f_{y}(y)$'s as a density, therefore $f_{y}(y) = \int_{0}^{\infty} f_{y}(y) dy = \int_{0}^{\infty} C.y. f_{x}(y) dy$ $= C \int_{0}^{\infty} y \cdot f_{x}(y) \, dy$ $= C. E(X) = C \rho$ \mathcal{L} . $C = \frac{1}{2}$ r) Average interaminal time as seen by randomly oming customer is Joyfy(y)dy = Joy fx(y)dy = = 50 52 fx (n) dy $= \underbrace{E(X^2)}_{\mu} = \underbrace{\sigma^2 + \mu^2}_{\mu}$ So, average waiting time is of the sering one half that of the average interval.

(c)
$$X$$
 deterministic $p = 10$, $o^2 = 0$

average waiting time =
$$\frac{10^2 + 0^2}{2.10} = 5$$

(ii)
$$X$$
 exponential $P = 10^2$

(iii) X general distribution with
$$P = 10$$
, $\sigma^2 = 500$

then average waiting time =
$$\frac{10^2 + 500}{200}$$