(Womanium|Quantum) Hackathon 2022

UCLA Bruinium

Ashley Shin, Amanda Younes, Changling Zhao, Lajoyce Mboning, Lambert Kong, Will Wang

Beginner Trying different backends

Backends	Ground State Energy of LiH (Hartree)*
AerBackend	-0.835072
ProjectQBackend	-0.835072000000006

^{*}at equilibrium bond length, not accounting for energy shifts due to the filling of inner orbitals and the Coulomb repulsion between nuclei

Knowledgeable

Optimizing the Depth of Jordan-Wigner Mapper Ansatz

LiH	Before Optimization	After Optimization
Circuit Depth	9834	8573
Depth CNOT	7964	7330

H ₂	Before Optimization	After Optimization
Circuit Depth	83	65
Depth CNOT	52	44

Advanced

Calculating the ground state energy of LiH

Molecular
$$H = -\sum_{i} \frac{\nabla_{R_i}^2}{2M_i} - \sum_{i} \frac{\nabla_{r_i}^2}{2} - \sum_{i,j} \frac{Z_i}{|R_i - r_i|} + \sum_{i,j>i} \frac{Z_iZ_j}{|R_i - R_j|} + \sum_{i,j>i} \frac{1}{|r_i - r_j|}$$
Assumes...
- Borne-Oppenheimer
- Independent single

KE(n) KE(e) PE(n-e) PE(n-n) PE(e-e)

Second Quantiz<u>ation</u>

particle wavefunctions

$$H = \sum_{\alpha,\beta=1}^{M} t_{\alpha\beta} a_{\alpha}^{\dagger} a_{\beta} + \frac{1}{2} \sum_{\alpha,\beta,\gamma,\delta=1}^{M} u_{\alpha\beta\gamma\delta} a_{\alpha}^{\dagger} a_{\gamma}^{\dagger} a_{\delta} a_{\beta}$$

One-body

Two-body

Hamiltonian Mapping

Second Quantization

$$H = \sum_{\alpha,\beta=1}^{M} t_{\alpha\beta} a_{\alpha}^{\dagger} a_{\beta} + \frac{1}{2} \sum_{\alpha,\beta,\gamma,\delta=1}^{M} u_{\alpha\beta\gamma\delta} a_{\alpha}^{\dagger} a_{\gamma}^{\dagger} a_{\delta} a_{\beta}$$

One-body

Two-body

Qubit
$$H = J \sum_{\langle i,j \rangle} (X_i X_j + Y_i Y_j + Z_i Z_j) + B \sum_i Z_i$$

Nearest neighbor spin-spin interaction

Magnetic field

Circuit Design

Hardware Structure

Hardware-Efficient Ansatz

Approach **F**

Chemistry-inspired simulation of LiH Li-H($1\sigma^2 2\sigma^2$) \cong Li⁺($1s^2$) + Li-H($2\sigma^2$)

Our Hamiltonian $H_{LiH} = H_{LiH(1\sigma^2)} + H_{LiH(2\sigma^2)} \approx H_{Li^+(1s)} + H_{LiH(2\sigma^2)}$ Approach **F**

Potential energy surface of LiH Varying the Hamiltonian for different bond lengths

