Aplikovaná statistika (3)

Hana Skalská

Hypotézy pro dva výběry

Kvantitativní data spojitá:

Test shody středních hodnot (dva výběry navzájem závislé, nebo nezávislé)

Test shody rozptylů (dva nezávislé výběry - vzorky)

Kvalitativní znak – veličina diskrétní Test shody podílů (dva nezávislé výběry - vzorky)

Testy hypotéz o dvou parametrech

Kvantitativní veličina spojitá

- Hypotéza o středních hodnotách závislých výběrů
 Párový t test
- Hypotéza o shodě rozptylů (F test)
- Hypotéza o středních hodnotách nezávislých výběrů, populační rozptyly neznámé
 - t test při shodných rozptylech
 - t test při neshodných rozptylech

Kvalitativní znak binární, veličina: počet výskytů znaku

Hypotéza o parametrech binomického rozdělení

Limitní test

Přesný test binomický – nepovinné téma

Testy hypotéz

Kvantitativní data – spojitá

Jeden výběr (viz prezentace 2)

test hypotézy o střední hodnotě

Dva výběry (prezentace 3), závislé vzorky

test hypotézy o shodě středních hodnot

Dva výběry, nezávislé vzorky (prezentace 3)

- test hypotézy o shodě průměrů pro shodné rozptyly a neshodné rozptyly
- test shody rozptylů

Více než dva výběry

shoda středních hodnot ANOVA – (prezentace 4)

Testy hypotéz

Kvalitativní data (binární proměnná)

Jeden výběr (prezentace 2)

Hypotéza o parametru binomického rozdělení

Dva výběry – navzájem nezávislé (prezentace 3)

Hypotéza o shodě dvou parametrů binomického rozdělení (Test se také nazývá "test shody podílů"):

Zde je vysvětlená limitní metoda, která vyžaduje splnění předpokladů o konvergenci binomického rozdělení k rozdělení normálnímu, jinak se použije přesný test binomický (nepovinný pro studium).

Cíle všech kapitol o testování hypotéz

- Porozumět logice statistického zobecňování výsledků ze vzorků na populaci (statistická inference).
- Pro určitá data (úlohu) rozhodnout, jaké parametry se testují, jak budou formulovány hypotézy a jaký typ testu je vhodný.
- Porozumět principu rozdělení testového kritéria, aplikovat rozhodovací pravidlo, vysvětlit výsledek testu ve vztahu k řešenému problému (interpretovat výsledek testu).

Test hypotézy střední hodnotě

Dvoustranná alternativa versus jednostranná:

Při stejné hladině významnosti:

Různé vymezení kritické oblasti (kritické hodnoty) Kritická hodnota je určena:

- ✓ Pravděpodobnostním rozdělením testového kritéria při platnosti H₀ (souvisí s rozsahem výběru a rozdělením sledované statistiky – testového kritéria)
- ✓ Zvolenou hladinou významnosti
- ✓ Formulací alternativní hypotézy (oboustranná, levostranná, pravostranná)

Párový t-test (Test shody středních hodnot závislých výběrů)

Rozdíly $d_i = x_i^{(2)} - x_i^{(1)}$ mají rozdělení $N(\Delta, \sigma_d^2)$ v populaci, ze které byli jedinci vybráni.

Dvouvýběrový test hypotézy o shodě průměrů je převeden na jednovýběrový t – test o střední hodnotě Δ .

Test H₀: $\Delta = \Delta_0$ proti H₁: $\Delta \neq \Delta_0$ na hladině významnosti α.

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

Průměrný rozdíl odhaduje Δ

$$s_d = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (d_i - \overline{d})^2}$$

 $s_d = \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (d_i - \bar{d})^2$ Výběrová směrodatná odchylka rozdílů

Testové kritérium $T = \frac{\overline{d} - \Delta_0}{s} \sqrt{n}$

$$W_{\alpha} = \left\{ t : \left| t \right| > t_{1 - \alpha/2, n - 1} \right\} = \left\{ t : t < t_{\alpha/2, n - 1} \quad nebo \quad t > t_{1 - \alpha/2, n - 1} \right\}.$$

Příklad – párový t-test (Data k příkladu jsou v Bb)

Hypermarkety A a B v určité lokalitě jsou srovnatelné z hlediska nabízeného sortimentu. Zákazníci se domnívají, že v hypermarketu A jsou vyšší ceny než v B. V obchodě A bylo náhodně vybráno 100 nákupů a zaznamenána jejich cena. Potom byla stanovená cena, jakou by stejný nákup stál v obchodě B (párování pomocí mačování).

Zákazník i	Cena v A	Cena v B	Rozdíly d _i
1	141,5	118,5	23
2	118,5	109,9	8,6
100	195,3	184,3	11

Data – Arltová a kol.: UKAZKY\SKALSKA\...\DATA\prodejny.xls

 $H_0: \Delta = 0$ proti alternativě $H_1: \Delta > 0$ zvolené $\alpha = 0,01$

 $\overline{d} = 8,927 \text{ s}_d^2 = 55,9343$ hodnota testového kritéria t = 11,936

Kritická hodnota: $t_{0,99;(100-1)} = 2,364 = T.INV(0.01;99)$

Na 1% hladině významnosti je prokázána statisticky významně vyšší průměrná úroveň cen hypermarketu A než v hypermarketu B.

Test shody rozptylů F-test

Předpoklad: nezávislé náhodné výběry byly získány z populací s rozdělením N $\left(\mu_1,\sigma_1^2\right)$ a N $\left(\mu_2,\sigma_2^2\right)$. Uvažujme $\sigma_1^2 \geq \sigma_2^2$.

Testujeme $H_0: \sigma_1^2 = \sigma_2^2$ proti $H_1: \sigma_1^2 \neq \sigma_2^2$ na hladině významnosti α .

Pokud platí H₀, má testové kritérium $F = \frac{s_1^2}{s_2^2}$

Snedecorovo F rozdělení pro (n₁ – 1, n₂ – 2) stupňů volnosti.

Kritický obor: $W_{\alpha} = \left\{ F : F > F_{1-\alpha/2, n_1-1, n_2-1} \right\}$

Přesná hladina významnosti při dvoustranné alternativě:

$$p = 2 \cdot \left(1 - F(t)\right) = 2 \cdot \left(1 - \int_{-\infty}^{F} f(x) dx\right) = 2 \cdot \int_{t}^{+\infty} f(x) dx$$

f(x) je hustota F rozdělení při $(n_1 - 1, n_2 - 2)$ stupních volnosti.

Pokud není větší rozptyl v čitateli testového kritéria, je kritický obor testu $W_{\alpha} = \left\{ F; F < F_{\alpha/2} \left(n_1 - 1; n_2 - 1 \right) \right\}$ nebo $F > F_{1-\alpha/2} \left(n_1 - 1; n_2 - 1 \right)$

A3. Hypotéza shody rozptylů (F - test)

	$H_1:\sigma_1^2\neq\sigma_2^2$	$H_1:\sigma_1^2<\sigma_2^2$	$H_1:\sigma_1^2>\sigma_2^2$
$H_0: \sigma_1^2 = \sigma_2^2$ $F = \frac{s_1^2}{s_2^2}$ Volíme označení tak, že $s_1^2 \ge s_2^2$. Potom pro kvantil stačí pravá část rozdělení. Stupně volnosti čitatele a jmenovatele: $n_1 - 1$, $n_2 - 1$	α/2	α	α
Hodnoty kvantilů – příklad: $df_1 = n_1 - 1 = 10$, $df_2 = n_2 - 1 = 25$	$\alpha = 0.05$ F = 2.635	$\alpha = 0.05$ F = 0.3663	$\alpha = 0.05$ F = 2,2365
MsExcel od v. 2010	F.INV.RT(0,025;10;25) F.INV(0,975;10;25)	F.INV(0,05;10;25)	F.INV.RT(0,05;10;25) F.INV(0,95;10;25)

Test shody rozptylů - příklad

Majitel rychlého občerstvení nabízí pečivo s masovou náplní. Rozhodující při výběru ohřívače je zajištění stability (malé variability) teploty náplně během přípravy. Model 2 byl dražší a čekaly se jeho příznivější vlastnosti. Tepelně byly zpracovány za stejných podmínek jednotlivé kusy pečiva, měřena teplota uvnitř náplně po určité době.

Model 1:
$$n_1 = 13$$
 $\overline{x}_1 = 180,7$ $s_1^2 = 8,354$

$$\bar{x}_1 = 180,7$$

$$s_1^2 = 8,354$$

Model 2:
$$n_2 = 15$$
 $\overline{x}_2 = 180,0$ $s_2^2 = 2,367$

$$\bar{x}_2 = 180,0$$

$$s_2^2 = 2,367$$

Testuje se $H_0: \sigma_1^2 = \sigma_2^2$ proti $H_1: \sigma_1^2 > \sigma_2^2$, hladina významnosti $\alpha = 0.05$

$$F = \frac{s_1^2}{s_2^2} = \frac{8,354}{2,367} = 3,53$$
Kritický obor

$$W_{\alpha} = \{F: F > F_{1-0,05,13-1,15-1}\} = F.INV(0,95;12;14) = 2,53$$

Testové kritérium má hodnotu v oblasti zamítání nulové hypotézy. Model 2 má na hladině významnosti 0,05 statisticky významně nižší rozptyl teplot než model 1, doporučíme zakoupit model 2.

Test shody dvou průměrů – nepárový t – test

Sleduje se kvantitativní veličina X, která má přibližně normální rozdělení.

Výběr 1 o rozsahu n_1 z populace, kde rozdělení $X \sim N(\mu_1, \sigma_1^2)$

Výběr 2 o rozsahu n_2 z populace, kde rozdělení $X \sim N(\mu_2, \sigma_2^2)$

Oba výběry (vzorky) jsou navzájem nezávislé a získané prostým náhodným výběrem.

Populační parametry neznámé, budou odhadnuté z výběru.

Testuje se hypotéza o shodě středních hodnot obou populací, ze kterých byly vzorky vybrané.

Test hypotézy o shodě středních hodnot má dvě varianty, při shodných nebo neshodných populačních rozptylech.

Volba varianty t – testu na základě výsledku F – testu.

Nepárový t – test (shody dvou průměrů), neznámé rozptyly shodné

Rozptyly v populacích shodné $\sigma_1^2 = \sigma_2^2 = \sigma$ a neznámé.

Výběr 1: Rozsah n_1 , odhad střední hodnoty \overline{x}_1 a rozptylu s_1^2 .

Výběr 2: Rozsah n₂, odhad střední hodnoty \overline{x}_2 , rozptylu s_2^2 .

Test H_0 : $\mu_1 = \mu_2$ proti H_1 : $\mu_1 \neq \mu_2$, zvolená hladina významnosti α.

Testové kritérium
$$T = \frac{\overline{x}_1 - \overline{x}_2}{s \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
, $s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ odhad σ

T má při platnosti H_0 rozdělení t pro df = $n_1 + n_2 - 2$ stupňů volnosti.

Kritický obor a hodnota **p** testu H_0 proti H_1 : $\mu_1 \neq \mu_2$ hladina významnosti α

$$W_{\alpha} = \left\{t: \left|t\right| > t_{1-\alpha/2;df}\right\} = \left\{t: t < t_{\alpha/2;df} \quad \text{nebo} \quad t > t_{1-\alpha/2;df}\right\}.$$

$$p = 2\left[1 - F_{t-dist}\left(\left|t\right|\right)\right] = 2\int_{\left|t\right|}^{+\infty} f_{t-dist}\left(x\right) dx \text{ , } f_{t-dist}(x) \text{ hustota, } F_{t-dist}(t) \text{ distribuční funkce } t-t$$

rozdělení pro df = $n_1 + n_2 - 2$.

Nepárový t-test, rozptyly neznámé, shodné - příklad

Srovnání cen automobilů (stejné značky a podobného počtu ujetých km) dvou autobazarů. V náhodných výběrech stejného období zjištěné ceny.

Autobazar A: $n_1 = 36$ $\overline{x}_1 = 169,417$ $s_1^2 = 1442,99$

Autobazar B: $n_2 = 34$ $\bar{x}_2 = 162,068$ $s_2^2 = 1022,6$

Test shody rozptylů. H_0 : $\sigma_1^2 = \sigma_2^2$ proti H_1 : $\sigma_1^2 \neq \sigma_2^2$ zvolené $\alpha = 0.05$. F = 1442,99/1022,6 = 1,411. $F_{0,975;df1;df2} = INV(0,975;35;33)$ 1,9886. Nezamítá se H_0 , použijeme nepárový t–test pro shodné rozptyly.

Test shody průměrů. H_0 : $\mu_1 = \mu_2$ proti H_1 : $\mu_1 \neq \mu_2$, zvolené $\alpha = 0.05$.

Test shody průměrů.
$$H_0$$
: $\mu_1 = \mu_2$ proti H_1 : $\mu_1 \neq \mu_2$, zvolené $\alpha = 0.05$.
$$s^2 = \frac{(36-1)1442.99 + (34-1)1022.6}{36+34-2} = 1238.9772 \cdot t = \frac{169.417-162.068}{35.199 \cdot \sqrt{\frac{1}{36} + \frac{1}{34}}} = 0.873.$$

Kritická hodnota $t_{0.975;68}$ = T.INV(0,975;68) = 1,99547 > 0.873, H₀ nezamítáme. $p = 2T.DIST.RT(0.873;68) = 2 \times 0.1929 = 0.3857 > \alpha = 0.05$, proto H₀ nezamítáme.

Obě rozhodovací pravidla vedou ke stejnému závěru: H₀ nelze zamítnout. Závěr: Rozdíl **mezi průměrnými cenami** mezi autobazary A a B nebyl prokázaný na hladině $\alpha = 0.05$ (p = 0.3857).

Nepárový t – test, neshodné rozptyly (rozptyly neznámé)

Rozptyly v populacích neznámé a různé, $\sigma_1^2 \neq \sigma_2^2$ (odhadují se z výběrů).

Výběr 1 o rozsahu n_1 , odhad střední hodnoty \overline{x}_1 , odhad rozptylu s_1^2 .

Výběr 2 o rozsahu n_2 , odhad střední hodnoty \bar{x}_2 , rozptylu s_2^2 .

Test H₀: $\mu_1 = \mu_2$ proti H₁: $\mu_1 \neq \mu_2$ na hladině významnosti α.

Testové kritérium T má při platnosti H₀ Studentovo t-rozdělení s přibližně d¹ stupni volnosti, které zaokrouhlíme dolů na nejbližší celé číslo d⁽²⁾. Test Welchův (Welch's test):

$$T = \frac{\overline{x}_2 - \overline{x}_1}{\sqrt{\frac{s_1^2 + \frac{s_2^2}{n_2}}{n_1 + \frac{s_2^2}{n_2}}}}, d^1 = \frac{(s_1^2 / n_1 + s_2^2 / n_2)^2}{\left[(s_1^2 / n_1)^2 / (n_1 - 1)\right] + \left[(s_2^2 / n_2)^2 / (n_2 - 1)\right]}.$$

Kritický obor a **p** testu H_0 proti H_1 na hladině významnosti α , kvantily t-rozdělení pro df = $d^{(2)}$

Pro dvoustrannou alternativu:

$$\textbf{H_{0} se zamítá, když} \ |t| > t_{1-\alpha/2;d}(2) \text{ , tedy } t < t_{\alpha/2;d}(2) \ \text{ nebo } t > t_{1-\alpha/2;d}(2)$$

$$\begin{aligned} &\textbf{H_0 se zamítá, když} \quad \left|t\right| > t_{1-\alpha/2;d^{\left(2\right)}}, \text{ tedy } t < t_{\alpha/2;d^{\left(2\right)}} \quad \text{nebo } t > t_{1-\alpha/2;d^{\left(2\right)}}, \end{aligned} \\ & \text{přesná hodnota } p = 2 \Big[1 - F_{t-dist} \left(\left|t\right| \right) \Big] = 2 \int\limits_{\left|t\right|}^{+\infty} f_{t-dist} \left(x \right) dx \end{aligned}$$

 $f_{t-dist}(x)$ je hustota t-rozdělení při df = $d^{(2)}$ stupních volnosti.

Nepárový t-test, rozptyly neznámé, neshodné - příklad

Vyslovená je domněnka nižších cen v autobazaru C(3) než A(1). Náhodné výběry srovnatelných automobilů v určitém časovém období, cena v tis. Kč:

Autobazar A: $n_1 = 36$ $\bar{x}_1 = 169,417$ $s_1^2 = 1442,99$

Autobazar C: $n_3 = 36$ $\overline{x}_3 = 148,594$ $s_3^2 = 636,004$

Zvolíme α = 0,05. Testu shody středních hodnot předchází test shody rozptylů.

Shoda rozptylů $H_0:\sigma_1^2=\sigma_3^2$ proti $H_1:\sigma_1^2\neq\sigma_3^2$, $\alpha=0.05$, F=1442.99/636.004=2.269. Kritická hodnota $F_{0.975;35;35}=F.INV.RT(0.025;35;35)=1.9611$, zamítáme H_0 o shodě rozptylů na hladině 0.05. Rozdíl rozptylů statisticky významný. Počítáme t – test pro neshodné rozptyly.

Test H_0 : $\mu_1 = \mu_3$ proti jednostranné H_1 : $\mu_1 > \mu_3$ (viz domněnka), $\alpha = 0.05$

$$t = \frac{\overline{x}_2 - \overline{x}_1}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{20,823}{7,599331} = 2,740 \qquad d^1 = \frac{(1442,99/36 + 636,004/36)^2}{(40,0831)^2/(36-1) + (17,6668)^2/(36-1)} \doteq$$

 $d^{(2)} = 60$. Kritická hodnota $t_{0,95;60} = T.INV(0,95;60) = 1,67$, p = 1 - T.DIST(2,740;60) = 0,004039.

Obě rozhodovací pravidla mají stejný závěr: Zamítnout H₀, přijmout H₁.

Statisticky významný rozdíl cen mezi A a C je prokázaný na hladině 0,05 (p = 0,004).

A4. Hypotéza o shodě středních hodnot – dva nezávislé výběry, populační rozptyly neznámé

H_0 a testové kritérium (TK)	$H_1: \mu_1 \neq \mu_2$	$H_1: \mu_1 < \mu_2$	$H_1: \mu_1 > \mu_2$
$H_0: \mu_1 = \mu_2$ Při platnosti H_0 má TK Studentovo rozdělení pro dané (st.v.). Pro n > 100 rozdělení normální N(0,1), prakticky již pro (st.v.) > 30.	-t 0 t	-t 0	α
Kritické hodnoty (KH) pro t – rozdělení	$-t = t_{\alpha/2;df}$ $t = t_{1-\alpha/2;df}$	$-t = t_{\alpha;df}$	$t = t_{1 - \alpha;df}$

Příklad: Stanovení kritické hodnoty pro α = 0,05, df = 9, různé alternativy

	KH = ∓ 2,2621	KH =-1,8331	t = 1,8331
MsExcel od v. 2010	-t = T.INV(0,025;9) t = T.INV(0,975;9)	T.INV(0,05;9)	T.INV(0,95;9)
Normované normální rozdělení MsExcel od v. 2010	KH = ∓1,9600 NORMSINV(0,975) NORM.S.INV(0,975)	KH = - 1,6449 NORMSINV(0,05) NORM.S.INV(0,0 5)	KH = 1,6449 NORMSINV(0,95) NORM.S.INV(0,95)

Rozdělení (histogramy) a popisné statistiky (v rámečcích) pro300 výběrových průměrů ze dvou normálních rozdělení s různou střední hodnotou a shodným rozptylem 25, směrodatnou odchylkou 5.

Testy hypotéz pro jeden výběr – simulace náhodných výběrů

https://lstat.kuleuven.be/newjava/vestac/

Příklad nastavení (settings)

Skutečný populační průměr: 172

Rozptyl (variance): 25

Hypotézy $H_0: \mu = 172$

 $H_1: \mu \neq 172$

Hladina významnosti 0,05 (5,0 %)

Dvoustranná alternativa (2-Sided)

Simulovat 100 výběrů o rozsahu 30

Pozn: Simulace výběrů z N(172;5²)

Hypotetická rozdělení – dvě populace t-test, nezávislé vzorky, shoda rozptylů

100 simulací, n=30, alfa = 0,05

100 simulací, n=100, alfa = 0,05

Testy hypotéz Kvalitativní data – dva výběry nezávislé

Testy hypotéz - kvalitativní data

Kvalitativní data (binární proměnná)

Jeden výběr

 Test hypotézy o parametru binomického rozdělení (prezentace 2)

Dva výběry – nezávislé vzorky

 Test hypotézy o shodě dvou parametrů binomického rozdělení (nazývaný také test shody podílů)

Zde vysvětleny:

Limitní metody, které vycházejí z konvergence binomického rozdělení k normálnímu. Předpoklady – ověření.

Pokud nejsou splněny podmínky použití limitních metod, je nutné uvažovat přesné testy (vycházejí z binomického nebo jiného modelu rozdělení pravděpodobností)

Test shody dvou parametrů binomického rozdělení

Test označovaný jako test shody podílů

Dva nezávislé náhodné výběry dostatečně velkých rozsahů (zajištění platnosti limitní věty).

Sleduje se počet výskytů znaku (veličina s binomickým rozdělením).

Vzorek 1: Rozsah n₁, vybraný z populace s neznámým π₁, zjištěno m₁ výskytů sledovaného alternativního znaku.

Vzorek 2: Rozsah n₂, vybraný z populace s neznámým π₂, zjištěno m₂ výskytů sledovaného alternativního znaku.

Testuje se hypotéza $H_0: \pi_1 = \pi_2$ proti alternativě $H_0: \pi_1 \neq \pi_2$

Test na hladině významnosti α.

Odhady obou neznámých pravděpodobností jsou dány relativními četnostmi

$$p_1 = \frac{m_1}{n_1}, p_2 = \frac{m_2}{n_2}$$

Test shody dvou parametrů binomického rozdělení (2)

Test hypotézy

 $H_0: \pi_1 = \pi_2$ proti alternativě $H_0: \pi_1 \neq \pi_2$, hladina významnosti α .

Pokud jsou splněny předpoklady pro alespoň přibližnou platnost limitní věty, má testové kritérium U přibližně normované normální rozdělení.

$$U = \frac{p_1 - p_2}{\sqrt{\overline{p}(1 - \overline{p})}} \sqrt{\frac{n_1 \cdot n_2}{n_1 + n_2}}, \qquad \overline{p} = \frac{m_1 + m_2}{n_1 + n_2}$$

p odhaduje společný podíl znaku v obou populacích, kdyby platila H₀.

Kritický obor testu H_0 proti oboustranné alternativě na hladině významnosti α určují kvantily rozdělení N(0,1):

$$W_{\alpha} = \left\{ u : u < u_{\alpha/2} \quad \text{nebo} \quad u > u_{1-\alpha/2} \right\}$$

Například pro α = 0,05 je kritická hodnota $u_{0,975}$ = 1,959964 \doteq 1,96.

Přesná pravděpodobnost (při dvoustranné alternativě):

$$p = 2 \cdot (1 - \Phi(u)) = 2 \cdot \left(1 - \int_{-\infty}^{u} f(x) dx\right) = 2(1 - NORM.S.DIST(u;1)).$$

Test shody dvou parametrů binomického rozdělení - Příklad

Výběrové šetření má odpovědět na otázku, zda zhoršení ekonomické situace je ve dvou věkových kategoriích pociťováno odlišně.

Náhodné výběry:

231 osob náhodně vybráno z populace 14-25letých, znak zhoršení uvedlo 54, 173 osob z populace 36-45letých, sledovaný znak vykázalo 49 osob.

Výběrové podíly $p_1 = 54/231 = 0.234$; $p_2 = 49/173 = 0.283$;

Test H_0 : $\pi_1 = \pi_2$ proti H_1 : $\pi_1 \neq \pi_2$, volíme $\alpha = 0.05$

 H_{0-} říká: Vzorky byly vybrány z populací se shodnými podíly osob, kterým se zhoršila ekonomická situace (pozorovaný rozdíl mezi výběrovými podíly je pouze nahodilý, způsobený výběrovou chybou).

Hodnota testového kritéria

$$u = \frac{|0.234 - 0.281|}{\sqrt{0.255(1 - 0.255)}} \sqrt{\frac{231 \cdot 173}{231 + 173}} = 1.07$$

nedosahuje kritické hodnoty 1,96.

Nelze zamítnout H₀ na hladině významnosti 0,05,

p = 2*(1-NORM.S.DIST(1,07;1)) = 0.285 > 0.05

Na hladině významnosti 0,05 nebyl mezi oběma věkovými skupinami prokázaný statisticky významný rozdíl v podílech osob se sledovaným znakem.

Určení kritické hodnoty pro různé alternativní hypotézy Pro jednostranné alternativy není v čitateli testového kritéria absolutní hodnota.

A5. Hypotéza o shodě parametrů binomického rozdělení – dva nezávislé výběry

$H_0: \pi_1 = \pi_2$	$H_1\colon \pi_1 \neq \pi_2$	$H_1: \pi_1 < \pi_2$	$H_1: \pi_1 > \pi_2$
Testové kritérium má při platnosti H_0 rozdělení $N(0,1)$ $u = \frac{\left p_1 - p_2\right }{\sqrt{\overline{p}(1-\overline{p})}} \sqrt{\frac{n_1 \cdot n_2}{n_1 + n_2}}$ $p_1 = \frac{m_1}{n_1}, \ p_2 = \frac{m_2}{n_2}, \ \overline{p} = \frac{m_1 + m_2}{n_1 + n_2}$	α/2	α	α
	α = 0,05	α = 0,05	$\alpha = 0.05$
Ověření platnosti CLV: np ≥ 5, n(1 – p) ≥ 5. Kritické hodnoty pro N(0; 1)	KH = ± 1,96	KH = - 1,6449	KH = 1,6449
MsExcel od v. 2010	NORM.S.INV(0,975)	NORM.S.INV(0,05)	NORM.S.INV(0,95)