PROGRAMAÇÃO APLICADA

Trabalho 2

Antenor Barros Leal Guilherme Montenegro Banharo

Resumo

Este trabalho detalha o processamento e análise de dados meteorológicos e de voos de aeroportos do sudeste brasileiro. A análise tem como objetivo identificar como as condições climáticas influenciam nos atrasos de voos.

Para responder esta pergunta usamos vários dataframes: um com as condições climáticas em um aeroporto e outros com as partidas e chegadas deste aeroporto.

O aeroporto escolhido será o do Galeão, por ter um maior movimento que o Santos Dumont, portanto mais dados para serem analisados. Este aeroporto possui código ICAO SBGL que será usado ao longo do código para se referir a este aeroporto.

Também serão comparados os atrasos com o aeroporto Santos Dumont, Congonhas e Guarulhos.

Bases de dados

Base: Tempo

Possui as informações históricas metereológicas. É obtido acessando o endereço: http://a4barros.com/public/prog-aplicada/tempo.zip

São quatro arquivos no formato 'dataset_ICAO.xlsx' onde

- ICAO=SBGL: Galeão
- ICAO=SBGR: Guarulhos
- ICAO=SBRJ: Santos Dumont
- ICAO=SBSP: Congonhas

Descrição de colunas

- wind direction: Direção de onde o vento sopra em graus;
- wind_speed: Velocidade do vento em nós (milhas nauticas por hora);
- temperature: Temperatura em graus Célsius;
- dew_point: Ponto de orvalho em graus Célsius;
- qnh: Referência para o altímetro;

- clouds_few: Alturas em pés separadas por vírgulas das altitudes que existem nuvens few (1/8 a 2/8 do céu) presentes;
- clouds_scattered: O mesmo, mas para nuvens scattered (3/8 a 4/8 do céu):
- clouds_broken: O mesmo, mas para nuvens broken (5/8 a 7/8 do céu);
- clouds overcast: O mesmo, mas para nuvens overcast (encoberto);
- timestamp: Data e hora destas condições.

Base: Voos

Contém dados de pousos e decolagens em vários aeroportos do sudeste. Pode ser obtida em http://a4barros.com/public/prog-aplicada/voos.zip

São vários arquivos no formato: 'YYYY-MM-DD-ICAO-arrivals.xlsx' ou 'YYYY-MM-DD-ICAO-departures.xlsx'.

Arrivals se refere as chegadas e departures as partidas.

Por exemplo: 2024-10-29-SBGL-arrivals.xlsx São as chegadas para o Galeão do dia 29 de outubro.

Descrição de colunas

- flight date: Data no formato YYYY-MM-DD.
- flight_status: status do voo pode ser: active, landed, diverted, scheduled, cancelled, unknown;
- departure airport: Nome popular do aeroporto.
- departure_timezone: Fuso horário do aeroporto (ex.: America/Sao Paulo);
- departure_iata: Código IATA do aeroporto de partida. (ex.: SDU);
- departure_icao: Código ICAO do aeoporto de partida (ex.: SBRJ);
- departure_terminal: Terminal de partida do voo;
- departure_gate: Portão de embarque de onde o voo parte (ex.: C02);
- departure_scheduled: Horário programado para a partida do voo no formato de hora UTC (YYYY-MM-DDTHH:MM:SS+00:00);
- departure_estimated: Horário estimado para a partida do voo no formato de hora UTC;
- arrival_airport: Nome popular do aeroporto de chegada;
- arrival_timezone: Fuso horário do aeroporto de chegada, no formato de região. Ex.: America/Sao_Paulo;
- arrival iata: Código IATA do aeroporto de chegada (ex.: GRU);
- arrival icao: Código ICAO do aeroporto de chegada (ex.: SBGR);
- arrival terminal: Terminal de chegada do voo;
- arrival_gate: Portão de desembarque onde o voo chega (ex.: A02);
- arrival_baggage: Número da esteira onde as bagagens do voo serão disponibilizadas (ex.: 04);
- arrival_delay: Atraso na chegada do voo em minutos, considerando o horário programado.

- arrival_scheduled: Horário programado para a chegada do voo no formato de hora UTC;
- arrival_estimated: Horário estimado para a chegada do voo no formato de hora UTC;
- airline_name: Nome da companhia aérea operadora do voo (ex.: LATAM Airlines);
- airline iata: Código IATA da companhia aérea (ex.: LA para LATAM);
- airline icao: Código ICAO da companhia aérea (ex.: TAM para LATAM);
- flight_number: Número único do voo designado pela companhia aérea (ex.: 1234);
- flight_iata: Código IATA completo do voo, formado pelo código da companhia e o número do voo (ex.: LA1234);
- flight_icao: Código ICAO completo do voo, formado pelo código ICAO da companhia e o número do voo (ex.: TAM1234).

Perguntas respondidas

- 1. Quando os valores de vento não aparecem, significa que não há vento. Complete os valores ausentes de velocidade do vento com zero e os valores ausentes de direção com com a mediana das direções. Completar com a mediana é usada para que ouliers não afetem algum cálculo de média feito com a direção do vento. Mostre os 10 maiores e os 10 menores valores ordenados por velocidade de vento.
- Objetivos: Preparar a coluna de vento para posterior análise. Ter uma ideia dos extremos de vento.
- Requisitos atendidos: 2 (preenchimento de valores ausentes), 8 (medidas de sumarização: mediana), 1 (Concatenação)
- 2. Os valores de nuvens few (poucas), scatered (espalhadas), broken (muitas) e overcast (encoberto) são listas de números separados por vírgula com a altitude de cada nuvem. Por exemplo, few com valor "10000,12000" indicam poucas nuvens em 10 mil pés e 12 mil pés.

Crie uma coluna 'nivel_nuvem' com o valor do tipo de nuvem mais encoberto seguindo a ordem few < scatered < broken < overcast. Para garantir que as nuvens realmente afetam o aeroporto, considere APENAS nuvens abaixo de 10 mil pés.

Qual o mais nebuloso (mais fechado) tipo de formação para cada valor de temperatura? Parece haver relação entre a nebulosidade e a temperatura?

• Objetivo: Filtrar os dados de nuvem para os que podem influenciar o aeroporto. Juntar dados de nuvem que estavam espalhados em quatro colunas em apenas uma coluna com o tipo de nuvem mais crítico.

- Requisitos atendidos: 3 (apply), 8 (medidas de sumarização (grupos simples)), 7 (gráfico barra)
- 3. A velocidade de vento está expressa em nós (milhas náuticas por hora), converta para km/h. Crie as seguintes categorias para a velocidade do vento:

• Calmo: Menor ou igual à 2km/h

Bafagem: 2 à 5 km/h
Brisa leve: 6 a 11km/h
Brisa fraca: 12 a 19km/h
Brisa moderada: 20 a 28km/h

Brisa forte: 29 a 38km/h
Vento fresco: 39 a 49km/h
Vento forte: 50 a 61km/h

Ventania: 62 a 74km/hVentania forte: 75 a 88km/h

ventania iorte: 75 a 88km/n
Tempestade: 89 a 102km/h

• Tempestade violenta: 103 a 117km/h

• Furacao: Maior que 118km/h

Esta é chamada de Escala de Beaufort.

- 3.1. Faça uma tabela de frequências destas categorias e mostre em um gráfico pizza. Qual é o tipo de vento mais presente?
- 3.2. Mostre uma tabela de frequência com o cruzamento das categorias de vento com os valores de temperatura. Em qual faixa de temperatura ocorrem mais ventos?
- 3.3. Parece haver relação entre velocidade do vento e temperatura?
 - Objetivo: Discretizar as velocidades de vento em categorias comumente usadas na meteorologia e verificar a existência de relação entre a velocidade do vento e a temperatura.
 - Requisitos atendidos: 4 (categorização com pd.cut), 3 (apply), 9 (cruzamento simples), 7 (gráfico pizza), 6 (tabela de frequência com valores absolutos)
 - 4. Junte os dataframes de dados de voo do aeroporto do Galeão. Faça um Merge da tabela de condições meteorológicas com os atrasos. Crie as colunas atraso_chegada e atraso_partida.

Faça o cruzamento de frequência entre o nível do vento e os atrasos e entre a pior formação de nuvens e os atrasos. Parece haver uma correlação?

- Objetivo: Verificar a possível relação entre a piora das condições de tempo com atrasos de voo.
- Requisitos atendidos: 1 (Concatenação), 2 (preenchimento de valores ausentes), 4 (categorização com pd.cut), 9 (cruzamento simples)
- 5. Calculando a diferença entre a temperatura e o ponto de orvalho temos um valor que quanto mais baixo, maior chance de chuva. Quando a diferença é zero, temos 100% de chance de chuva. Retire valores maiores de 10 graus, porque são outliers e filtre por tempo muito nebuloso ou visibiliade menor que 5km.
- Objetivo: Criar uma medida proporcional a chance a chuva e verificar se esta medida influencia nos atrasos em condições adversas de tempo.
- Requisitos atendidos: 9 (cruzamento estruturado), 5 (filtro)
- 6. Crie uma tabela no seguinte formato em que cada coluna é um aeroporto e cada linha é uma hora. Como valores, temos a média de atraso naquele aeroporto naquela hora. Mostre apenas as linhas que possuem em algum aeroporto atrasos maiores que 1h. Destes qual aeroporto tem o maior atraso acumulado?
- Objetivo: Ver qual aeroporto tem o pior somatório de atrasos extremos.
- Requisitos atendidos: 9 (cruzamento estruturado), 5 (filtro), 8 (medidas de sumarização)
- 7. Qual foi o pior atraso no aeroporto de congonhas no último dia de outubro?
- Objetivo: Ver o pior atraso de um dia específico em um aeroporto específico
- Requisitos atendidos: 5 (filtro de índice e filtro de valor)
- 8. Qual o tempo médio de atrasos médios diários do SBGL e qual a correlação com Nível de Nuvem?
- Objetivo: Encontrar o tempo médio de atrasos médios diários do SBGL e relacionar como nível das nuvens, por meio de uma análise gráfica e a correlação entre eles.
- Requisitos atendidos: 8 (Sumarização), 7 (Gráfico de linhas)

Conclusões

1

O aeroporto do Galeão, em relação a velocidade de vento, teve um outlier em que o vento chegou a 63 nós no dia 29/10/2024 as 23h (UTC). O segundo vento

mais veloz foi 19 nós dia 26/10 as 19h (UTC). *Nota:* O dado original está com a velocidade do vento em nós, mais na frente iremos converter para km/h.

	wind_direction	wind_speed	temperature	dew_point	
timestamp					
2024-10-29 23:00:00+00:00	90.0	63.0	23	19	
2024-10-26 19:00:00+00:00	210.0	19.0	32	20	
2024-10-30 16:00:00+00:00	160.0	18.0	28	19	

$\mathbf{2}$

Para o aeroporto do Galeão temos uma correlação entre o pior tipo de nuvem e a temperatura de -0.5444268973056255, isto significa uma correlação inversa moderada.

Vendo por nível de temperatura, é fácil perceber esta correlação negativa: Para temperatura menores (20 a 26) temos nuvens encobertas e acima de 33 graus temos apenas nuvens esparsas.

---- Pior nível de nuvem abaixo de 10 mil por temperatura ----- nivel_nuvem

temperature	
20	overcast
21	overcast
22	overcast
23	overcast
24	overcast
25	overcast
26	overcast
27	broken
28	broken
29	broken
30	scattered
31	broken
32	broken
33	scattered
34	scattered
35	scattered
36	few

Porém na maior parte do tempo tivemos poucas nuvens como mostra o gráfico de frequência.

Figure 1: Galeão Distribuição das categorias de nuvem

3.1

Para este aeroporto temos a grande predominância de ventos leves como mostra a tabela de frequência abaixo:

---- tabela de frequencia numérica de tipos de vento -----Brisa leve 199 Brisa fraca 185 Brisa Moderada 54 Bafagem 40 Calmo 13 Brisa forte 8 Tempestade violenta 1 Vento fresco 0 Vento forte 0 Ventania 0 Ventania fote 0 Tempestade 0 Furacao Name: cat_vento, dtype: int64

Os tipos de ventos mais presentes são os mais fracos.

Vendo a mesma informação em forma de gráfico pizza temos:

3.2

A maior quantidade de ventos de qualquer tipo ocorre em 22 graus e diminui monotonicamente com o aumento da temperatura.

cat_vento	Calmo	Bafagem	Brisa leve	Brisa fraca	Brisa Moderada	Brisa forte	Tempestade violenta	total
temperature								
22	3	7	39	21	1	0	0	71
23	1	11	23	20	1	0	1	57
25	0	3	21	26	6	0	0	56
24	0	7	25	19	4	0	0	55
26	1	3	14	23	5	0	0	46
21	1	4	27	5	1	0	0	38
27	3	1	7	10	10	2	0	33
28	0	0	12	11	7	1	0	31
29	1	0	7	9	6	0	0	23
30	0	0	3	10	7	0	0	20
20	1	4	9	3	0	0	0	17
31	0	0	4	8	2	0	0	14
33	0	0	6	5	1	2	0	14
32	0	0	1	6	1	2	0	10
34	1	0	1	5	1	1	0	9
35	1	0	0	3	1	0	0	5
26								

3.3

A correlação entre a temperatura e a velocidade do vento é de 0.3029027092833759. Ou seja, há uma correlação, mas ela é leve.

Distribuição das Categorias de Vento

Figure 2: Galeão Distribuição das categorias de vento

Para partidas, nuvem do tipo few (poucas) parece influenciar muito atraso médio (10 a 30 min). Para chegadas o mesmo tipo few incluencia baixo atraso (menor que 10 min).

Para as categorias de vento a brisa leve parece causar atrasos médios nas partidas. Nas chegadas ela causa atrasos baixos.

Crosstab ní	vel de	nuvem x a	atraso parti	da		
nivel_nuvem	broken	few c	vercast sc	attered		
atraso_partida						
baixo atraso	82	394	192	141		
médio atraso	178	1387	0	342		
alto atraso	0	253	0	6		
altíssimo atraso	12	82	0	39		
Crosstab ní	vel de :	nuvem x a	traso chega	da		
nivel_nuvem	broken	few c	vercast sc	attered		
atraso_chegada						
baixo atraso	251	1951	167	455		
médio atraso	6	120	15	73		
alto atraso	15	29	0	0		
altíssimo atraso	0	16	10	0		
Crosstab ca	tegoria	do vento	x atraso p	artida		
cat_vento	Calmo	Bafagem	Brisa leve	Brisa fraca	Brisa Moderada	Brisa forte
atraso_partida						
baixo atraso	0	90	528	286	18	0
médio atraso	242	248	1569	350	63	3
alto atraso	0	48	149	71	6	0
altíssimo atraso	0	38	0	103	0	0
Crosstab ca	ategoria	do vento	x atraso c	hegada		
cat_vento	Calmo	Bafagem	Brisa leve	Brisa fraca	Brisa Moderada	Brisa forte
atraso_chegada						
baixo atraso	242	420	2068	703	77	3
médio atraso	0	4	141	78	6	0
alto atraso	0	0	15	29	0	0
artt atrabt						

5

Uma maior chance de chuva influencia na quantidade de atrasos como mostra a tabela abaixo. Mas os mais longos atrasos e a maior quantidade de atrasos se concentram quando a diferença é de 4 graus.

nivel_nuvem	overcast								total_atrasos
atraso	2.0	4.0	5.0	6.0	10.0	12.0	124.0	126.0	
diff_temp									
3	0	6	0	0	0	12	0	0	18

4	24	6	0	0	0	0	8	2	40
6	0	1	4	1	2	0	0	0	8

Nota-se que existem mais atrasos superiores a uma hora nas partidas. Vide as tabelas Atraso médio por hora das partidas e Atraso médio por hora das chegadas no final da página. Para as horas que não apareceram nestas tabelas foi devido a todos os quatro aeroportos não terem tido atrasos.

Em atraso durante todo o período analisado nas partidas o aeroporto de Congonhas possui o maior somatório. Nas chegadas é o Santos Dumont.

atraso_partida_total	pior_atras	o_partida	atraso_chegad	a_total]	pior_atraso_chegada
SBGL 16670.0	1	245.0		3572.0	244.0
SBGR 19574.0		1042.0		420.0	22.0
SBRJ 13691.0		260.0		6581.0	95.0
SBSP 27915.0		162.0		4008.0	123.0
				1000.0	120.0
Atraso médio por hor	-				
ICAO	SBGL	SBGR	SBRJ	SB	SP
row_0					
2024-10-30 17:00:00+00:00	245.000000	0.00000		38.2857	
2024-10-31 02:00:00+00:00	237.500000	0.000000		0.0000	
2024-10-31 04:00:00+00:00	0.000000	135.666667		0.0000	
2024-10-31 05:00:00+00:00	0.000000	102.294118		0.0000	
2024-10-31 07:00:00+00:00	18.000000	7.333333		15.2500	
2024-11-01 01:00:00+00:00	14.500000	61.789474		0.0000	
2024-11-01 23:00:00+00:00	65.000000	0.000000		0.0000	
2024-11-02 06:00:00+00:00	7.000000	63.300000		6.9230	
2024-11-03 20:00:00+00:00	95.000000	0.000000		13.5000	00
2024-11-04 09:00:00+00:00	12.000000	0.000000	10.428571	61.0000	00
2024-11-04 10:00:00+00:00	20.000000	0.000000	44.333333	82.6666	37
2024-11-04 11:00:00+00:00	20.000000	0.000000	38.500000	65.3750	00
2024-11-04 13:00:00+00:00	0.000000	0.000000	28.800000	62.6666	37
2024-11-04 14:00:00+00:00	0.000000	0.000000	31.625000	67.6666	67
2024-11-04 16:00:00+00:00	10.000000	0.000000	2.000000	82.6666	67
2024-11-04 18:00:00+00:00	36.000000	0.000000	50.250000	72.8750	00
2024-11-05 01:00:00+00:00	81.000000	42.200000	0.000000	0.0000	00
2024-11-06 10:00:00+00:00	63.600000	0.000000	26.333333	20.1666	67
2024-11-06 12:00:00+00:00	14.000000	0.000000	132.000000	30.6666	67
2024-11-06 14:00:00+00:00	45.000000	0.000000	26.571429	72.0000	00
2024-11-06 18:00:00+00:00	86.000000	0.000000	28.250000	41.4444	14
2024-11-06 21:00:00+00:00	74.333333	22.000000	13.666667	15.0000	00
2024-11-07 07:00:00+00:00	70.000000	13.166667	16.000000	42.0000	00
2024-11-07 11:00:00+00:00	14.000000	0.000000	36.000000	65.5714	29

2024-11-07	12:00:00+00:00	77.000000	0.000000	6.666667	83.400000
2024-11-07	13:00:00+00:00	0.000000	0.000000	59.600000	77.333333
2024-11-07	14:00:00+00:00	0.000000	0.000000	31.666667	85.666667
2024-11-07	16:00:00+00:00	17.000000	23.000000	24.000000	103.500000
2024-11-07	17:00:00+00:00	0.000000	0.000000	31.250000	65.000000
2024-11-07	18:00:00+00:00	31.666667	0.000000	51.666667	85.400000

Atraso médio por hora das chegadas							
ICAO		SBGL	SBGR	SBRJ	SBSP		
row_0							
2024-10-29	10:00:00+00:00	73.000000	0.0	2.00	0.000000		
2024-10-29	17:00:00+00:00	0.000000	0.0	69.00	0.000000		
2024-10-30	10:00:00+00:00	244.000000	0.0	0.00	19.500000		
2024-10-31	14:00:00+00:00	0.000000	0.0	15.75	123.000000		
2024-11-01	19:00:00+00:00	64.000000	0.0	7.00	0.000000		
2024-11-03	09:00:00+00:00	0.000000	0.0	82.00	0.000000		
2024-11-03	18:00:00+00:00	198.000000	0.0	0.00	14.000000		
2024-11-06	08:00:00+00:00	4.375000	1.0	82.00	0.000000		
2024-11-07	10:00:00+00:00	2.428571	0.0	62.00	17.571429		

O pior atraso no aeroporto de congonhas no último dia de outubro foi do TAP5239 com 64 minutos de atraso.

8

Por meio da análise do gráfico abaixo, e a correlação de 0.7048088948027401, podemos ver que existe uma correlação forte entre o atraso dos voos, com o nível das nuvens, sugerindo que condições meteorológicas relacionadas ao tipo de nuvem podem estar associadas a aos atrasos em voos. Isso é visto, à medida que quando o nível de nuvens se torna mais carregado(overcast), os atrasos tendem a ser maiores.

Aqui está o atraso médio por dia no aeroporto Galeão:

${\tt timestamp_Dia}$

```
2024-10-29 00:00:00+00:00
                            15.50
2024-10-30 00:00:00+00:00
                            14.43
2024-10-31 00:00:00+00:00
                            10.61
2024-11-01 00:00:00+00:00
                            11.69
2024-11-02 00:00:00+00:00
                             9.71
2024-11-03 00:00:00+00:00
                             9.81
2024-11-04 00:00:00+00:00
                            12.80
2024-11-05 00:00:00+00:00
                            12.79
2024-11-06 00:00:00+00:00
                            13.82
2024-11-07 00:00:00+00:00
                             9.02
```

Name: atraso_medio, dtype: float64

Gráfico que mostra o atraso médio e o ponto máximo do nível das nuvens no dia. Mostrando que os maiores atrasos foram dias com nuvens mais carregadas e o de menor atraso com o céu mais limpo.

