

Advanced Signal and Image Processing

RGB-to-Spectra D/L USING PCA

Rene L. Principe Jr. 2015-04622

Dr. Maricor N. Soriano

Compute the eigenspectral of paint pigments from the Munsell Color Chips database

Convert a color camera into a spectral imager using principal components analysis

key take-aways

- We can accurately depict large datasets with only a few representative values through Principal Components Analysis.
- RGB digital counts were found to be sufficient in reconstructing the high-dimensional spectral information even with a novel set.
- Spectral (RMSE, SAM) and color error metrics (ΔE_{76}) should all be used in evaluating reconstruction as one supplements the other.

SOURCE CODE

- Physics-301/Activity 4 RGB-to-Spectra using PCA.ipynb at main · reneprincipejr/Physics-301 (github.com)
- https://drive.google.com/file/d/11YbzA_dpg4L-_9xB1E44XnfDiXXtFVsc/view?usp=sharing

Background

$$C(\lambda) = \sum P(\lambda)R(\lambda)$$

$$q_n = \sum C_n S_n(\lambda)$$

Recalling trinity of color, the RGB values or q_n are obtained by multiplying the color signal $C_n(\lambda)$ with spectral sensitivities $S_n(\lambda)$ [1].

Suppose we have a spectral reflectance database and a default source, then we can represent the color signal as a linear superposition of the eigenvectors e_i and weights a_i by PCA's dimensional reduction given by

$$C(\lambda) \approx \sum_{i=1}^{m} a_i e_i(\lambda)$$
.

Background

The RGB $[q_R, q_G, q_B]$ values can then be obtained using:

$$q_{R} = a_{1} \sum e_{1}(\lambda)S_{R}(\lambda) + a_{2} \sum e_{2}(\lambda)S_{R}(\lambda)t \dots + a_{m} \sum e_{m}(\lambda)S_{R}(\lambda)$$

$$q_{G} = a_{1} \sum e_{1}(\lambda)S_{G}(\lambda) + a_{2} \sum e_{2}(\lambda)S_{G}(\lambda)t \dots + a_{m} \sum e_{m}(\lambda)S_{G}(\lambda)$$

$$q_{B} = a_{1} \sum e_{1}(\lambda)S_{B}(\lambda) + a_{2} \sum e_{2}(\lambda)S_{B}(\lambda)t \dots + a_{m} \sum e_{m}(\lambda)S_{B}(\lambda)$$

$$\begin{bmatrix} q_{R} \\ q_{G} \\ q_{B} \end{bmatrix} = \begin{bmatrix} e_{1} \cdot S_{R} & e_{2} \cdot S_{R} & \cdots & e_{m} \cdot S_{R} \\ e_{1} \cdot S_{G} & e_{2} \cdot S_{G} & \cdots & e_{m} \cdot S_{G} \\ e_{1} \cdot S_{B} & e_{2} \cdot S_{B} & \cdots & e_{m} \cdot S_{B} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{m} \end{bmatrix}.$$

Here we see an association between the weights (eigenvalues) and the RGB value through the transformation matrix T. Weiner estimation method then allows us the obtain the weights a:

$$\mathbf{q} = \mathbf{T}\mathbf{a}$$
$$\mathbf{a} = (\mathbf{T}^T \mathbf{T})^{-1} \mathbf{T}^T \mathbf{q}.$$

Since the eigenvectors are already established and the weights can be determined using RGB, then the spectrum of the color signal can be recreated [1].

Background

Like the compression demonstrated in facial reconstruction using Principal Components Analysis (PCA) [2], here we attempt to reduce the reflectance database into a few representative eigenspectra which yields the transformation matrix T necessary to represent the spectral reflectance using only the input digital color [1].

To facilitate this process called spectral super-resolution, we use the 1269 Munsell color chips ensemble and then, we attempt to recover the spectra of 24 Macbeth color patches using the rendered RGB values [3].

Transformation Matrix

Show below are the illuminants to be tested and the spectral sensitivity to be used in obtaining the transformation matrix T.

To quantify the reconstruction accuracies, we employed Root-Mean-Square-Error (RMSE) and Spectral-Angle-Mapper (SAM) metrics which measures the residual error and structure shape similarity respectively between the actual \hat{r} and reconstructed r spectra [4]:

$$RMSE = \sqrt{\frac{\sum_{N}(r(N) - \hat{r}(N))}{n}} \qquad SAM = \cos^{-1}\left(\frac{\sum_{N}r(N) * \hat{r}(N)}{\sqrt{\sum_{N}r(N)}\sqrt{\sum_{N}\hat{r}(N)}}\right).$$

Percent Explained

Taking the cumulative sum of the normalized eigenvalues, we can see that three (3) principal components can represent 95% of the variance in the Munsell reflectance database. Therefore, we expect a spectrum to be properly represented using only three input values.

Reconstruction

Shown below is the sample reconstruction of a random Munsell reflectance spectrum using increasing number of principal components. At N = 3, the residual error of the reconstruction was reduced by almost tenfolds and the shape similarity has improved by seven-folds. At N = 6 onwards, the reconstruction is almost perfect with imperceivable errors.

Reconstructing Macbeth

Shown below are the accuracies for the reconstruction of the 24 reflectance spectra from the Macbeth color chart. At N = 3, majority of the patches have RMSE < 0.1 and SAM < 0.2, quite low even though these were not part of the PCA ensemble where eigenvectors were obtained.

Aside from spectral accuracy, we employed color difference ΔE_{76} which measures the Euclidean distance between the two spectra transformed in the CIELAB uniform color space [5]. In short, ΔE_{76} quantifies how perceptually different the actual Macbeth color signals are from the PCA reconstructed spectra. From here onwards, we use (N = 3) three principal components.

Physics 301 - Advanced Signal and Image Processing

Illuminant A

1.0

0.5

Physics 301 - Advanced Signal and Image Processing

Source Canon Red

Flourescent

1.0

0.5

Physics 301 - Advanced Signal and Image Processing

Source Canon Red

Discussion

Overall, we successfully reconstructed the never-before-seen Macbeth color spectra using the Transformation Matrix derived from the Munsell ensemble's eigenvectors. Across different illuminants, majority of the reconstructions returned imperceivable color difference ($\Delta E_{76} < 10$) [5], with a few exceptions due to Illuminant A which has a skewed power spectrum.

Conclusions

Both the spectral (RMSE, SAM) and colorimetric (ΔE_{76}) accuracy has shown how we can accurately depict large datasets with only a few representative values through Principal Components Analysis.

In this activity, we were able to convert a digital camera into a spectral imager where the RGB digital counts were found sufficient to reconstruct the high-dimensional spectral information using PCA.

As mentioned previously, I have used PCA before in spectral resolution but in this report, I was able to compare how the method fared across all different light sources. The visualizations were stand-alone and self-explanatory. One important finding is that it turns out, the skewed power distribution contributed to rendering spectra with large color difference. The take-away here is the same as what my undergraduate thesis proposed; we should implement both spectral and color error metrics to evaluate the spectral reconstruction.

In this activity, I'd give myself a score of 96/100.

li!! references

- [1] M. Soriano, Physics 301 RGB-to-Spectra using PCA, (2022).
- [2] sklearn.decomposition.PCA scikit-learn 1.1.1 documentation
- [3] J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, Characteristic spectra of Munsell colors, J. Opt. Soc. Am. 6, 318 (1989).
- [4] P. E. Dennison, K. Q. Halligan, and D. A. Roberts, A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper, Remote Sens. Environ. 93, 359 (2004).
- [5] W. Mokrzycki and M. Tatol, Color difference Delta E A survey, Mach. Graph. Vis. 20, 383 (2011).