

Whole genome sequencing as a diagnostic tool for Lynch syndrome

InSiGHT 2017, Florence, Italy

Bernard Pope
Lead Bioinformatician (Cancer Genomics, Clinical Genomics)
Melbourne Bioinformatics
The University of Melbourne, Australia
bjpope@unimelb.edu.au

MMR deficient CRC

MMR deficient CRC <50 years

MMR deficient CRC ≥50 years

Colon Cancer Family Registry

Aim

Investigate whole genome sequencing (WGS) for identifying novel germline causes of tumour MMR-deficiency.

Causes considered:

- Single nucleotide variants (SNVs)
- Short insertions and deletions (INDELS)
- Structural variants (SVs)

Methods

WGS for 16 suspected Lynch syndrome patients and 2 positive controls.

Group included 2 relative pairs.

Selection criteria:

- MMR deficient tumour (MMR IHC and MSI-H)
- Family history of CRC and/or young age at diagnosis.
- Negative for MLH1 promoter methylation.
- No identified MMR gene germline mutation.
- No double somatic mutation in tumour.

Positive controls:

- 1. MSH2 deletion exon 6 identified by MLPA
- 2. Intronic splice site *MSH2* mutation (Clendenning et al, 2011).

Methods

- SNVs and INDELs were called using the GATK Best Practices Pipeline.
- SVs were called by DELLY, LUMPY, Socrates, and GRIDSS.
- Variants filtered to those intersecting 4 tiers of genes:
 - 1. MMR genes (MLH1, MSH2, MSH6, PMS2, EPCAM).
 - MMR-related genes from literature (MUTYH, POLE, POLD1, MSH3, MLH3, EXO1).
 - 3. DNA repair genes from literature.
 - 4. Genes with any rare loss of function variant identified.

SNVs and INDELs summary

SNVs and INDELs called across 18 whole genomes

12.7 million total

1094 LOF variants, 0 found in tiers 1-3 genes

9631 filtered to tiers 1-3 genes

81.4% intronic, control splice site variant detected but not predicted pathogenic

88 filtered to coding regions of tiers 1-3 genes

SVs summary

SVs intersecting tier 1-3 genes, called by at most N tools

All 4 tools called:

- 9.5 Mb inversion affecting exons
 1-7 of MSH2 in mother-daughter
 pair (validated).
- 1927 base deletion of exon 6 in woman with endometrial cancer (positive control).
- 2 other variants which may be artefacts.

Highlighted germline variants

ID	Age	Cancer	MMR IHC	MSI	Gene	Fam History	Tier	Germline Variant	CADD	REVEL	ExAC
9	47	CRC	MSH2/MSH6 loss	MSI-H	MSH2	CRC FDR	2	POLE p.Arg680Cys	34	0.638	8.7E-6
11	40	CRC breast	MSH2/MSH6 loss (CRC)	NT	MSH2	CRC FDR	1	MSH2 inversion ex1-7			
12	35	CRC	MSH2/MSH6 loss	MSI-H	MSH2	CRC FDR	1	MSH2 inversion ex1-7			

9.5 Mb MSH2 inversion reported in: Wagner *et al, Genes Chromosomes Cancer* (2002). See also Rhees *et al, Fam Cancer* (2014), and Mork *et al, Fam Cancer* (2017).

9.5 Mb inversion exons 1-7 of MSH2

9.5 Mb inversion exons 1-7 of *MSH2*

POLE p.Arg680Cys

Hypothesis: germline POLE mutations can result in two somatic mutations in one of the DNA MMR genes causing loss of protein expression (Elsayed *et al*, Eur J Hum Genet, 2015).

POLE p.Arg680Cys

Conclusions

- WGS can identify novel germline causes of tumour MMR-deficiency.
- As cost continues to fall, may replace existing biochemical diagnostic assays.
- Can detect complex structural variants
 - Use of multiple tools and concordance reduces false positive rate.
- Can detect likely pathogenic mutations outside the current gene screening paradigm.
- Variant interpretation in non-coding regions and novel genes remains challenging.

Acknowledgements

Colorectal Oncology Group, UoM

- Dr Dan Buchanan
- Dr Mark Clendenning
- Assoc. Prof. Christophe Rosty
- Dr Harindra Jayasekara
- Neil O'Callaghan
- Susan Preston
- Marie Lorans

Melbourne Bioinformatics

- Dr Khalid Mahmood
- Assoc. Prof. Daniel Park
- Dr Michael Kuiper

Genetic Epidemiology Laboratory, UoM

- Prof. Melissa Southey
- Dr Eric Joo
- Dr Ming Wong

Royal Melbourne Hospital

- Prof. Ingrid Winship
- Prof. Finlay Macrae

Centre for Epidemiology & Biostatistics, UoM

- Prof. Mark Jenkins
- Prof. John Hopper
- Dr Aung Ko Win

Cancer Council Victoria (MCCS)

- Prof. Graham Giles
- Assoc. Prof Roger Milne
- Prof. Dallas English

Molecular Epidemiology Laboratory, QIMR

- Assoc. Prof. Amanda Spurdle
- Rhiannon Walters

Australasian Colorectal Cancer Family Registry (ACCFR)

Australian National Endometrial Cancer Study (ANECS)

Lynch Syndrome Australia (www.lynchsyndrome.org.au)

National Health and Medical Research Council, Australia (NHMRC), APP1125269.