

ARUNAI ENGINEERING COLLEGE

(Affiliated to Anna University) Velu Nagar,Thiruvannamalai-606 603 www.arunai.org

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

BACHELOR OF TECHNOLOGY

2023-2024

THIRD SEMESTER

AD3301- DATA EXPLORATION AND VISUALIZATION LAB

ARUNAI ENGINEERING COLLEGE THIRUVANAMALAI -606 603

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

	<u>CERTIFICA </u>	<u>ΓΕ</u>						
CERTIFIED THAT THIS IS A BO	CERTIFIED THAT THIS IS A BONAFIDE RECORD OF WORK DONE BY							
NAME	:							
UNIVERSITY REG.NO	:							
SEMESTER	:							
BRANCH	:							
YEAR	:							
STAFF-IN-CHARGE		HEAD OF THE DEPARTMENT						
SUBMITTED FOR THE								
PRACTICAL EXAMINATION H	HELD ON							

EXTERNAL EXAMINER

INTERNAL EXAMINER

INDEX

Ex.No	Name Of The Experiment	Page.No	Staff Sign

Ex.No:1 DATE

Installation of Data Analysis And Visualization Tool: Python

Packages that we will need

Python3 and the following Python libraries / packages are needed for data exploration and visualization:

- jupyter
- jupyterlab
- numpy
- scipy
- pandas
- matplotlib
- seaborn

How to install Python and the packages

Install Anaconda which will give you a Python3 environment and all the above required

Packages . After you have installed Anaconda , please verify the installation. \$ conda install -cconda - forgealtairvega_datasets

Howtoverifyyourinstallation

- 1. Open the AnacondaNavigator.
- 2. Findthe Jupyter Labtileand "launch" it.

 $If you are on Linux or mac OS, you can open Jupy ter Lab from the \ terminal by typing jupy ter-lab.$

OnceyouclickedthePython3tileitshouldlook like this:

Type thefollowing:

import numpy import scipy import pandas importmatplotli b import seaborn print("allgood")

clickonthe "play"/"run"icon.

Result:

Thus the python tool were installed and verified successfully.

Exploratory Data Analysis

Aim:

To perform exploratory data analysis(EDA) on with datasets.

Procedure:

- 1. Import the dataset
- 2. View the head of the data
- 3. View the basic information of data and description of data
- 4. Find the unique value of data and verify the duplication of data
- 5. Plot a graph for unique value of dataset
- 6. Verify the presence of null value and replace the null value
- 7. Visualize the needed data

Program:

```
#Load the required
libraries
importpandasaspdimp
ort numpy as np
importseabornassns
#Loadthedata
df=pd.read_csv('titanic.csv')
#Viewthedata
df.head()
df.info()
df.describe()
#Findtheduplicate
\mathbf{S}
df.duplicated().sum(
)
#unique values
df['Pclass'].unique()
df['Survived'].unique()
df['Sex'].unique()
#Plot the unique values
sns.countplot(df['Pclass']).unique()
```

#Findtheduplicates

```
df.duplicated().sum()
#unique values
df['Pclass'].unique()
df['Survived'].unique()
df['Sex'].unique()
#Plot the unique values
sns.countplot(df['Pclass']).unique()
#Findnullvalues
df.isnull().sum()
#Replace null values
df.replace(np.nan,'0',inplace = True)
#Checkthechangesnow
df.isnull().sum()
#Filter data
df[df['Pclass']==1].head(
)
#Boxplotdf[['Fare']]
.boxplot()
```

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	- 1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	C
2	3	1	3	Helkkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	s
3	4	1		Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	s
	500	(34)	500		200	444	8540	300	Cheb	1010	922	60
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13,0000	NaN	s
887	888	1		Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	s
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23,4500	NaN	s
889	890	1		Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	C
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
                                      Non-Null Count
#
          Column
                                                                         Dtype
          PassengerId 891 non-null Survived 891 non-null Pclass 891 non-null Name 891 non-null
                                                                         int64
  9
                                                                         int64
int64
int64
object
  1
  2
           Sex
Age
SibSp
                                              non-null
  4 5
                                       891
714
                                                                         float64
                                       891 non-null
                                                                          int64
  7
                                                                         int64
           Parch
  8
           Ticket
                                       891
                                              non-null
                                                                         object
9 Fare 891 non-null object
10 Cabin 204 non-null object
11 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
                                                                         float64
```

	Passengerid	Survived	Pclass	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	8.000000	6.000000	512.329200


```
array([3,1,2],dtype=int64)
array([0, 1], dtype=int64)
array(['male','female'],dtype=o
bject)
```

0

PassengerId							
Survived	0						
Pclass	0						
Name	0						
Sex Age	0						
SibSp Parch	177 0 0						
Ticket Fare	Ŏ O						
Cabin Embark ed	687 2						

dtype: int64

PassengerId0
Survived 0
Pclass 0
Name 0
Sex 0
Age 0
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 0
Embark 0

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38	1	0	PC 17599	71.2833	C85	С
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.1000	C123	S
6	7	0	1	McCarthy, Mr. Timothy J	male	54	0	0	17463	51.8625	E46	S
11	12	1	1	Bonnell, Miss. Elizabeth	female	58	0	0	113783	26.5500	C103	S
23	24	1	1	Sloper, Mr. William Thompson	male	28	0	0	113788	35.5000	A6	S

Result:	
ACSUIT:	(TDA)
	sis (EDA) on with datasets was
Thus the program to perform exploratory data analy	, , , , , , , , , , , , , , , , , , , ,
Thus the program to perform exploratory data analy	, , , , , , , , , , , , , , , , , , , ,
Thus the program to perform exploratory data analy executed.	, , , , , , , , , , , , , , , , , , , ,
Thus the program to perform exploratory data analy	
Thus the program to perform exploratory data analy	
Thus the program to perform exploratory data analy	

Aim:

To write a program to work with Numpy arrays.

Procedure:

- 1. Create array using numpy
- 2. Access the element in the array
- 3. Retrieve element using slice operation
- 4. Compute calculation in the array

Program:

```
import numpy as np
```

```
a = np.array([1, 2, 3]) # Create a rank 1 array
print(type(a))
                  #Prints"<class'numpy.ndarra
y'>"print(a.shape) # Prints "(3,)"
print(a[0],a[1],a[2])#Prints"123"
a[0]=5
                 #Changeanelementofthearray
                 #Prints"[5,2,3]"
print(a)
b = np.array([[1,2,3],[4,5,6]]) # Create a
rank 2 array print(b.shape)
                                # Prints "(2,
3)"
print(b[0,0],b[0,1],b[1,0])
#Createthefollowingrank2arraywithshape(3,4
) # [[ 1234]
#[5678]
#[9101112]]
a=np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
#Use slicingto pull out the subarray consisting
ofthefirst2 rows # and columns 1 and 2; b is the
following array of shape (2, 2):
#[[23]
#[67]]
b=a[:2, 1:3]
#Asliceofanarrayisaviewintothesamedata,somodifyin
git # will modify the original array.
print(a[0,1])#Prints"2"
b[0, 0] = 77 \# b[0, 0] is the same piece of data
as a[0, 1] print(a[0, 1])
a=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
print(a)#prints"array([[1,2,3],
       #
                 [4,5,6],
       #
                 [7,8,9],
     #
               [10,11, 12]])"
#Createanarrayofindic
es b = np.array([0, 2,
0, 11
```

```
#Selectoneelementfromeachrowofausingtheindicesinb
print(a[np.arange(4), b])# Prints "[ 167 11]"
# Mutate one element from each row of a using the
indices in ba[np.arange(4), b] += 10
print(a)
x = \text{np.array}([1, 2]) \# \text{Let numpy choose}
the datatype print(x.dtype)
                               # Prints
"int64"
x=np.array([[1,2],[3,4]],dtype=np.float64)
y=np.array([[5,6],[7,8]],dtype=np.float64)
# Elementwise
sum;bothproducethearray # [[ 6.08.0]
#[10.012.0]]
print(x + y)
print(np.add(x,y))
x=np.array([[1,2],[3,4]])
print(np.sum(x)) # Compute sum ofallelements;
prints"10" print(np.sum(x,axis=0)) #Computesum of each
column; prints"[4 6]"
print(np.sum(x,axis=1))#Computesumofeachrow;prints"[
37]"
```

Output:

<class'numpy.nparra

(3,)

123

[523]

(2,3)

124

2 77

[[123] [456]

[789]

[101112]] [16711] [[1123] [4516]

[1789] [102112]]

int32

[[6.8.]

[10.12.]]

[[6.8.]

[10.12.]]

10

[46]

[37]

Result:
Result: Thus, the program is executed successfully.
Result: Thus, the program is executed successfully
Result: Thus, the program is executed successfully
Result: Thus, the program is executed successfully
Result: Thus, the program is executed successfully
Result: Thus, the program is executed successfully
Result: Thus, the program is executed successfully
Result: Thus, the program is executed successfully
Result: Thus, the program is executed successfully
Result: Thus, the program is executed successfully
Result: Thus, the program is executed successfully
Result: Thus, the program is executed successfully

Pandas Data Frames

DATE

Aim:

To write a program for working with pandas data frames.

Procedure:

- 1. Import pandas library
- 2. Construct a pandas data frame
- 3. Modify ,drop columns in data frame
- 4. Calculate median in the data frame

Program:

```
import pandas as pd
data=pd.DataFrame({"x1":["y","x","y","x","y"],#ConstructapandasDataFrame
          "x2":range(16,22),
          "x3":range(1,7),
          "x4":["a","b","c","d","e","f
          "], "x5":range(30, 24, -
           1)})
print(data)
data_row=data[data.x2<20]
                                       #Removeparticularrows
print(data row)
                                  #PrintpandasDataFramesubset
data_col=data.drop("x1",axis=1)
                                       #DropcertainvariablefromDataFrame
print(data_col)
data_col=data.drop("x1",axis=1)
                                       #DropcertainvariablefromDataFrame
print(data_col)
data_med=data["x5"].median() print(data_med)
                                       #Calculatemedian
```

Output:

27.5

Table 1

	x1	x2	х3	х4	х5
0	у	16	1	а	30
1	Χ	17	2	b	29
2	у	18	3	С	28
3	Χ	19	4	d	27
4	X	20	5	е	26
5	у	21	6	f	25

Table 2

	х1	x2	х3	х4	х5
0	у	16	1	a	30
1	X	17	2	b	29
2	у	18	3	С	28
3	Χ	19	4	d	27

	x2	х3	x4	х5
0	16	1	а	30
1	17	2	b	29
2	18	3	С	28
3	19	4	d	27
4	20	5	е	26
5	21	6	f	25

Result:	
Result:	
Result: Thus, the program to work with pandas dataframe was executed.	
Result: Thus, the program to work with pandas dataframe was executed.	
Result: Thus, the program to work with pandas dataframe was executed.	
Result: Thus, the program to work with pandas dataframe was executed.	
Result: Thus, the program to work with pandas dataframe was executed.	
Result: Thus, the program to work with pandas dataframe was executed.	
Result: Thus, the program to work with pandas dataframe was executed.	
Result: Thus, the program to work with pandas dataframe was executed.	
Result: Thus, the program to work with pandas dataframe was executed.	
Result: Thus, the program to work with pandas dataframe was executed.	

Ex.No:3.3 DATE

Basic Plots Using Matplotlib

Aim:

To write a program to visualize basic plots using Matplotlib.

Procedure:

- 1. Import matplotlib library
- 2. Define x, y axis
- 3. Label the axis
- 4. Visualize the data using lineplot

Program:

import matplotlib.pyplot s plt import numpy as np x=[20,25,37] y=[25000,40000,600] plt.plot(x,y) plt.xlabel("Age") plt.ylabel('salary') plt.title('Salarybyage') plt.show()

Result:	
Result:	
Result: Thus, the program to plot the basic plots using Matplotlib was executed.	
Result: Thus, the program to plot the basic plots using Matplotlib was executed.	
Result: Thus, the program to plot the basic plots using Matplotlib was executed.	
Result: Thus, the program to plot the basic plots using Matplotlib was executed.	
Result: Thus, the program to plot the basic plots using Matplotlib was executed.	
Result: Thus, the program to plot the basic plots using Matplotlib was executed.	
Result: Thus, the program to plot the basic plots using Matplotlib was executed.	
Result: Thus, the program to plot the basic plots using Matplotlib was executed.	
Result: Thus, the program to plot the basic plots using Matplotlib was executed.	
Result: Thus, the program to plot the basic plots using Matplotlib was executed.	
Result: Thus, the program to plot the basic plots using Matplotlib was executed.	
Result: Thus, the program to plot the basic plots using Matplotlib was executed.	

Aim:

To explore various variable and row filters, plot features in R for cleaning data and visualize it.

Procedure:

- 1. Import dplyr and ggplot2 library
- 2. Import iris dataset
- 3. Using dplyr select and filter functions rearrange the data
- 4. Using plotting visualize the selected data

Program:

```
> data(iris)
> head(iris,5)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1
          5.1
                    3.5
                                1.4
                                            0.2 setosa
2
          4.9
                    3.0
                                1.4
                                            0.2 setosa
          4.7
3
                    3.2
                                1.3
                                            0.2 setosa
          4.6
                    3.1
                                1.5
                                            0.2 setosa
                                            0.2 setosa
5
          5.0
                     3.6
                                1.4
> summary(iris)
               Sepal.Width
                               Petal.Length
 Sepal. Length
                                             Petal.Width
                                                                 Species
       :4.300
               Min.
                     :2.000
                              Min.
                                    :1.000
                                             Min.
                                                  :0.100
                                                           setosa
                                                                    :50
 1st Qu.:5.100
               1st Qu.: 2.800
                              1st Qu.:1.600
                                             1st Qu.: 0.300
                                                           versicolor:50
Median :5.800
               Median:3.000
                              Median :4.350
                                             Median :1.300
                                                           virginica:50
                     :3.057
Mean
      :5.843
               Mean
                              Mean :3.758
                                             Mean :1.199
 3rd Qu.:6.400
               3rd Qu.:3.300
                              3rd Qu.:5.100
                                             3rd Qu.:1.800
       :7.900
                     :4.400
                                   :6.900
                                                   :2.500
Max.
               Max.
                              Max.
                                             Max.
> mean(iris$Sepal.Length)
[1] 5.843333
> library(dplyr)
> a<-select(iris,Sepal.Length)
  head(a,5)
  Sepal.Length
1
            5.1
2
            4.9
3
            4.7
4
            4.6
5
            5.0
>
  c<-filter(iris,Sepal.Length>5)
  tail(c,5)
    Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                              species
                                5.2 2.3 virginica
              6.7
                      3.0
                            2.5
                                                       1.9 virginica
115
              6.3
                                          5.0
                            3.0
116
              6.5
                                          5.2
                                                      2.0 virginica
              6.2
117
                                          5.4
                                                       2.3 virginica
                            3.4
              5.9
                                          5.1
                                                       1.8 virginica
118
                            3.0
> library(ggplot2)
```

plot(iris\$Sepal.Length)

Result:	
Thus, the program for cleaning and visualizing the data using R was executed.	

Ex.No:5 DATE

Time Series

Aim:

To write a program to visualize time series analysis.

Procedure:

- 1. Import the temperature dataset
- 2. Import pandas and matplotlib library
- 3. Visualize the data using lineplot, histogram and boxplot

```
Program:
```

displaying the first five rows of dataset df.head()

```
from pandas import read_csv
from matplotlibimport pyplot
series = read_csv('daily-minimum-temperatures.csv', header=0, index_col=0,
parse_dates=True,squeeze=True)print(series.head())

from pandas import read_csv
from matplotlibimport pyplot
series= read_csv('daily-minimum-temperatures.csv', header=0,
index_col=0,parse_dates=True, squeeze=True)
series.plot()pyplot.show()
```

from pandas import read_csv from matplotlibimport pyplot series = read_csv('daily-minimum-temperatures.csv', header=0, index_col=0, parse_dates=True,squeeze=True) series.plot(style='k.') pyplot.show()

from pandas import read_csv from matplotlibimport pyplot series=read_csv('daily-minimumtemperatures.csv',header=0,index_col=0,parse_dates=True,squeeze=True) series.hist() pyplot.show()

Result:	
Acsuit.	
Thus, the program to visualize time series analysis was executed.	
Thus, the program to visualize time series analysis was executed.	

InteractiveMapVisualization

Aim:

To represent on a Map using various Map datasets with Mouse Rollover effect.

Procedure:

- 1. Import the library
- 2. Import map dataset
- 3. Specify the width, height, title form a use rollover
- 4. visualizethe map

Program:

```
pip install pyecharts
pip install echarts-countries-pypkg
pip install echarts-china-provinces-
pypkg pip install echarts-china-
cities-pypkg
pipinstallecharts-china-counties-
pypkg importpyecharts
print(pyecharts.version
) importpandas as pd
frompyecharts.charts
importMap
frompyechartsimportoptionsas
opts data =
pd.read_excel('GDP.xlsx')
province =
list(data["province"])
gdp=list(data["2019_gdp"])
list=
[list(z)forzinzip(province,gdp)]
c = (
  Map(init_opts=opts.InitOpts(width="1000px",height="600px"))#Initializemapsize
  .set_global_opts(
    title opts=opts. TitleOpts(title="2019ProvincesinGDPDistributionunit:100mill
ionyuan"), #Configuration title
    visualmap opts=opts.VisualMa
      pOpts(type_=
      "scatter"#Scatter type
)
  .add("GDP",list,maptype="china")#takelistImported,maptypeisChinaMap
  .render("Map1.html")
)
```


Result:	
Result:	
Result: Thus, the program form a userollover in man visualization was ex	
Result: Thus, the program form a userollover in map visualization was ex	
Result: Thus, the program form a userollover in map visualization was ex	
Result: Thus, the program form a userollover in map visualization was ex	
Result: Thus, the program form a userollover in map visualization was ex	
Result: Thus, the program form a userollover in map visualization was ex	
Result: Thus, the program form a userollover in map visualization was ex	
Result: Thus, the program form a userollover in map visualization was ex	
Result: Thus, the program form a userollover in map visualization was ex	
Result: Thus, the program form a userollover in map visualization was ex	
Result: Thus, the program form a userollover in map visualization was ex	

CartographicVisualization

Aim:

To build cartographic visualization for multiple datasets in volving states and districts in India

Procedure:

- 1. Import base map and library
- 2. Import the state data and map
- 3. Using matplotlib add the title and attributes to display the map

Program:

```
from mpl toolkits.basemap import
Basemap import matplotlib.pyplot as
plt
map = Basemap()
map.drawcoastline
s() plt.show()
plt.savefig('test.png')
pipinstallgeopand
as import numpy
as np import
pandas as pd
importmatplotlib.pyplotas
plt import seaborn as sns
importgeopandasasgp
d import shapefile as
shp
from shapely.geometry import Point
sns.set_style('whitegrid')
fp=r'Maps_with_python\india-
polygon.shp' map_df =
gpd.read_file(fp)
map_df_copy=gpd.read_file(fp)
map_df.head()
map_df.plot()
df=pd.read_csv('globallandslides.csv')
state_df = state_df.to_frame()
state_df.reset_index(level=0,inplace=
True) state_df.columns = ['State',
'Count'] state_df.at[15,"Count"] = 69
state_df.at[0,"State"] = "Jammu and Kashmir"
                                        state_df.at[20,"State"] =
"Delhi"state_df.drop(7)
```

```
pd.set option('display.max column
s', None) df =
df[df.country name=="India"]
df["Year"]=pd.to datetime(df["event dat
e"]).dt.year df =
df[df.landslide_category=="landslide"]
ls_df["admin_division_name"].replace("Nāgāland","Nagaland",inplace=True)
ls df["admin division name"].replace("Meghālaya", "Meghalaya",inplace = True)
ls_df["admin_division_name"].replace("TamilNādu","TamilNadu",inplace=True)
ls df["admin division name"].replace("Karnātaka", "Karnataka",inplace = True)
ls df["admin division name"].replace("Gujarāt","Gujarat",inplace=True)
ls df["admin division name"].replace("ArunāchalPradesh","ArunachalPradesh",i
nplace=True) state df = ls df["admin division name"].value counts()
#Mergingthedata
merged=map_df.set_index('st_nm').join(state_df.set_i
ndex('State')) merged['Count'] =
merged['Count'].replace(np.nan,0) merged.head()
#CreatefigureandaxesforMatplotlibandsetth
etitle fig, ax = plt.subplots(1, figsize=(10,
10))
ax.axis('off')
ax.set title('Number of landslides in India state-wise', fontdict={'fontsize':'20',
'fontweight': '10'})# Plot the figure
merged.plot(column='Count',cmap='YlOrRd', linewidth=0.8, ax=ax,
edgecolor='0',legend=True,markersize=[39.739192,-
104.990337],legend_kwds={'label':"Number of landslides"})
```


	id	st_nm	geometry
0	None	Andaman and Nicobar Islands	MULTIPOLYGON (((93.84831 7.24028, 93.92705 7.0
1	None	Arunachal Pradesh	POLYGON ((95.23643 26.68105, 95.19594 27.03612
2	None	Assam	POLYGON ((95.19594 27.03612, 95.08795 26.94578
3	None	Bihar	POLYGON ((88.11357 26.54028, 88.28006 26.37640
4	None	Chandigarh	POLYGON ((76.84208 30.76124, 76.83758 30.72552

<matplotlib.axes._subplots.AxesSubplot at 0x254015d94e0>

	State	Count
0	Kashmir	189
1	Uttarakhand	167
2	Himachal Pradesh	137
3	Assam	74
4	Nagaland	65
5	Maharashtra	54
6	Manipur	47
8	Kerala	43
9	Arunachal Pradesh	40
10	Tamil Nadu	32
11	Sikkim	28
12	Karnataka	28
13	Meghalaya	25
14	Mizoram	25
15	West Bengal	69
16	Goa	19
17	Andhra Pradesh	15
18	Rajasthan	5
19	Odisha	5
20	NCT	3
21	Orissa	3
22	Uttar Pradesh	2
23	Gujarat	2
24	Tripura	2
25	Haryana	2
26	State of Odisha	1
27	Madhya Pradesh	1
28	Bihar	1
29	Jharkhand	1

id geometry Count

st nm

34211111			
Andaman and Nicobar Islands	None	MULTIPOLYGON (((93.84831 7.24028, 93.92705 7.0	0.0
Arunachal Pradesh	None	POLYGON ((95.23643 26.68105, 95.19594 27.03612	40.0
Assam	None	POLYGON ((95.19594 27.03612, 95.08795 26.94578	74.0
Bihar	None	POLYGON ((88.11357 26.54028, 88.28006 26.37640	1.0
Chandigarh	None	POLYGON ((76.84208 30.76124, 76.83758 30.72552	0.0

Result:
Thus the presume to display the soute anothic visualization of I. I'm according to
Thus, the program to display the cartographic visualization of India was executed
successfully.

Ex.No:8 DATE

EDA on Wine Quality Data Set

Aim:

To write a python program for EDA on Wine Quality Data Set.

Procedure:

- 1. Import library
- 2. Import wine dataset
- 3. Perform EDA to display information, description of data.
- 4. Analyse the content of alcohol consumption and visualize it

Program:

df_red.dtypes

```
fixed acidity
float64
volatileacidityfloat6
4 citric acid float64
residual sugar
float64 chlorides
float64
free sulfur dioxide
float64
totalsulfurdioxidefloat6
4 density float64
pH float64
sulphatesfloat
64 alcohol
float64
quality int64
dtype: object
```

df_red.describe()

volatileacidity1599non-nullfloat64 citric acid 1599 non-null float64 residualsugar1599non-nullfloat64 chlorides 1599 non-null float64 free sulfur dioxide 1599 non-null float64 totalsulfurdioxide1599non-nullfloat64 density 1599 non-null float64 pH 1599 non-null float64 sulphates1599non-nullfloat64 alcohol 1599 non-null float64 quality 1599 non-null int64 dtypes: float64(11), int64(1) memory usage: 150.0 KB import seaborn as sns sns.set(rc={'figure.figsize': (14, 8)}) sns.countplot(df_red['quality']) Sns.distplot(df red['alchol'])

- 1	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	₽H	sulphates	alcohol	quality
100	8.3	0.610	0.30	2.1	0.084	11.0	50.0	0.9972	3.40	0.61	10.2	6
101	7.8	0.500	0.30	1.9	0.075	8.0	22.0	0.9959	3.31	0.56	10.4	6
102	8.1	0,545	0.18	1.9	0.080	13.0	35.0	0.9972	3.30	0.59	9.0	. 8
103	8,1	0.575	0.22	2.1	0.077	12.0	65.0	0.9967	3.29	0.51	9.2	5
104	7.2	0.490	0.24	2.2	0.070	5.0	36.0	0.9960	3.33	0.48	9.4	
105	8.1	0.575	0.22	2.1	0.077	12.0	65.0	0.9967	3.29	0.51	9.2	. 5
106	7.8	0.410	0.68	1,7	0.467	18.0	69.0	0.9973	3.08	1.31	9.3	5
107	6.2	0.630	0.31	1.7	0.088	15.0	64.0	0.9969	3.46	0.79	9.3	5
108	8.0	0.330	0.53	2.5	0.091	18.0	80.0	0.9976	3.37	0.80	9.6	6
109	B.1	0.785	0.52	2.0	0.122	37.0	153.0	0.9969	3.21	0.69	9.3	5

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рĦ	sulphates	alcohol	quality
count	159 9.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	45.467792	0.996747	3.311113	0.658149	10.422983	5,636023
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	0.169507	1.065668	0.807569
min	4.600000	0.120000	0.000000	0.900000	0.012000	1,000000	6.000000	0.990070	2.740000	0.330000	8.400000	3.000000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	0.550000	9.500000	5.000000
50%	7,900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	0.620000	10.200000	6.000000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400000	0.730000	11.100000	6,000000
max	15.900000	1.580000	1,000000	15.500000	0.611000	72.000000	289.000000	1.003690	4.010000	2.000000	14.900000	8.000000

Resul	lt:	
ittsul		
	Thus, the program to execute the EDA on wine data set was executed succe	essfully.
		-

Ex.No:9 DATE

Case Study on aDataSettopresentanAnalysis Report

Aim:

To analysis following using the diabetes dataset from UCI and Pima Indians Diabetes dataset for performing the following

Procedure:

- a. Univariateanalysis:Frequency,Mean,Median,Mode,Variance,StandardDeviation, Skewness and Kurtosis.
- b. Bivariate analysis: Linear and logistic regression modeling
- c. Multiple Regression analysis
- d. Also compare the results of the above analysis for the two data sets.

Program:

a. Univariateanalysis:Frequency,Mean,Median,Mode,Variance,StandardDeviation, Skewness and Kurtosis.

```
import
        pandas
                  as
                      pd
import
        numpy
                  as
                      np
import statistics as st\\
# Loadthedata
df=pd.read_csv("data_desc.csv") print(df.shape)
print(df.info())
python
Output:
1Dependent
               0.748333
2Income
            705541.3333
            33
3Loan_amount 323793.666667
4Term_months 183.350000
5Age
            49.450000
```

Output:		
(600, 10)		
(600, 10)		

<class'pandas.core.frame.DataFrame'>
RangeIndex: 600 entries, 0 to 599
Datacolumns(total10columns):
Marital_status 600 non-null

object Dependents

600 non-null int64

Is_graduate 600 non-null object Income 600 non-null int64

Loan_amount 600non-

nullint64 Term_months

600non-nullint64

Credit_score 600 non-null object

approval_status

600non-nullobject Age 600

non-null int64

Sex 600non-nullobject

dtypes: int64(5), object(5) memory

usage: 47.0+ KB

None

MeasuresofCentralTendency

Measures of central tendency describe the center of the data , and are often represented by the mean, the median, and the mode.

Mean

df.mean()

6dtype:float64

Itisalsopossibletocalculatethemeanofaparticularvariableinadata,as shownbelow,wherewe calculate the mean of the variables 'Age' and 'Income'.

print(df.loc[:,'Age'].mean())
print(df.loc[:,'Income'].mean())

python

Output:		
149.45		
2705541.33		
27000 11.00		

It is also possible to calculate the mean of the rows by specifying the $(axis = 1)$ argument. The code below calculates the mean of the first five rows.
df.mean(axis=1)[0:5]
python

Output: 10 70096.0 21 161274. 0 32 125113. 4 43 119853. 8 54 120653. 8 6dtype:float64

Median df.median()

python

Output:

1 Dependents 0.0

2 Income 508350.0

3 Loan_amount 76000.0

4 Term_months 192.0

5 Age 51.0

6 dtype:float64

Mode

df.mode()

python

Output:

1	Marital_stat us	Dependen ts	Is_gradua te	Income	Loan_amou nt	Term_mont hs	Credit_scor e	approval_stat us	Ag e	Se x
2										
2	-	0	-	22220	70000	102.0	-		~ ~	3.6
3	yes	0	yes	33330	70000	192.0	satisfacto ry	yes	55	M

Measures of Dispersion

Themost popularmeasures of dispersion are standard deviation, variance, and the interquartile range.

Median df.median()

python

Output:

7 Dependents 0.0

8 Income 508350.0

9 Loan_amount 76000.0

10 Term_months 192.0

11 Age 51.0

12 dtype:flo

at64 **Mode**

df.mode()

python

Output:

1	Marital_stat us	Dependen ts	Is_gradua te	Income	Loan_amou nt	Term_mont hs	Credit_scor e	approval_stat us	Ag e	Se x
2										
	-		-				-			
3	yes	0	yes	33330	70000	192.0	satisfacto	yes	55	M
				U			ry			

MeasuresofDispersion

Themost popularmeasures of dispersion are standard deviation, variance, and the interquartile range.

Standard Deviation df.std() python Output: 1Dependents 1.026362 2Income 711421.814154 3 Loan amount 724293.480782 4 Term_months 31.933949 5 Age 14.728511 6 dtype:float64 Variance df.var() python Output: 1 Dependents 1.053420e+00 2 Income 5.061210e+11 3 Loan amount 5.246010e+11 4 Term months 1.019777e+03 5 Age 2.169290e+02 6 dtype:float64 InterquartileRange (IQR) fromscipy.statsimportiqr iqr(df['Age']) python Output: 125.0 **Skewness** print(df.skew()) python Output: 1 Dependents 1.169632 2 Income 5.344587 3 Loan_amount 5.006374

4 Term months-2.471879

-0.055537

5 Age

6 dtype:float64

Theskewnessvalues canbeinterpretedin thefollowing manner:

- **Highlyskeweddistribution**:Iftheskewnessvalueislessthan—lorgreaterthan+1.
- **Moderatelyskeweddistribution**:Iftheskewnessvalueisbetween-1and-½orbetween+½ and +1.
- **Approximately symmetric distribution**: If the skewness value is between $-\frac{1}{2}$ and $+\frac{1}{2}$.

PuttingEverythingTogether

df.describe()

python
Output:

1 2	Dependents	Income	Loan_amount 	Term_months	Age
3 coun t	600.000000	6.000000e+02	6.000000e+02	600.000000	600.00000 0
4 mean	0.748333	7.055413e+05	3.237937e+05	183.350000	49.450000
5 std	1.026362	7.114218e+05	7.242935e+05	31.933949	14.728511
6 min	0.000000	3.000000e+04	1.090000e+04	18.000000	22.000000
7 25%	0.000000	3.849750e+05	6.100000e+04	192.000000	36.000000
8 50%	0.000000	5.083500e+05	7.600000e+04	192.000000	51.000000
9 75%	1.000000	7.661000e+05	1.302500e+05	192.000000	61.000000
10 max	6.000000	8.444900e+06	7.780000e+06	252.000000	76.000000

df.describe(include='all')

b. Bivariateanalysis:Linearandlogisticregressionmodeling

Linear Regression

```
importmatplotlib.pyplotasplt
from scipy import stats

x=[5,7,8,7,2,17,2,9,4,11,12,9,6]
y=[99,86,87,88,111,86,103,87,94,78,77,85,86]

slope,intercept,r,p,std_err=stats.linregress(x,y) def

myfunc(x):
   returnslope *x+intercept

mymodel=list(map(myfunc,x)) plt.scatter(x,

y)
plt.plot(x,mymodel)
plt.show()
```


Logistic Regression

import numpy
fromsklearnimportlinear_model

 $X = numpy.array([3.78, 2.44, 2.09, 0.14, 1.72, 1.65, 4.92, 4.37, 4.96, 4.52, 3.69, 5.88]).reshape(-1,1)\\ y = numpy.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1])$

logr=linear_model.LogisticRegression()
logr.fit(X,y)

deflogit2prob(logr,X):
 log_odds=logr.coef_*X+logr.intercept_ odds =
 numpy.exp(log_odds)
 probability=odds/(1+odds)
 return(probability)

print(logit2prob(logr,X))
OUTPUT:

[[0.60749955]

[0.19268876]

[0.12775886]

[0.00955221]

[0.08038616]

[0.07345637]

[0.88362743]

[0.77901378]

[0.88924409]

[0.81293497]

[0.57719129]

[0.57717127]

[0.96664243]]

Results Explained

- 3.780.61 Theprobabilitythat atumor withthesize 3.78cm iscancerous is 61%.
- 2.440.19 The probability that a tumor with the size 2.44 cm is cancerous is 19%.
- 2.90.13 The probability that a tumor with the size 2.09 cm is cancerous is 13%.

c.MultipleRegression analysis

Multipleregressionworksbyconsideringthevaluesoftheavailablemultipleindependent variables and predicting the value of one dependent variable.

```
importpandasaspd
fromsklearnimportlinear_model import
statsmodels.api as sm
data = \{ 'year' :
16,2016,2016,2016,2016,2016],
    'month':[12,11,10,9,8,7,6,5,4,3,2,1,12,11,10,9,8,7,6,5,4,3,2,1],
    'interest rate':
'unemployment rate':
[5.3,5.3,5.3,5.3,5.4,5.6,5.5,5.5,5.5,5.5,5.5,5.6,5.7,5.9,6,5.9,5.8,6.1,6.2,6.1,6.1,6.1,5.9,6.2,6.2,6.1],
    'index price':
[1464,1394,1357,1293,1256,1254,1234,1195,1159,1167,1130,1075,1047,965,943,958,971,949,884,866,
876,822,704,7191
    }
df = pd.DataFrame(data)
x=df[['interest_rate','unemployment_rate']] y
= df['index_price']
# with sklearn
regr=linear model.LinearRegression()
regr.fit(x, y)
print('Intercept:\n',regr.intercept_)
print('Coefficients: \n', regr.coef_)
# with statsmodels
x=sm.add_constant(x) #addingaconstant
model = sm.OLS(y, x).fit()
predictions=model.predict(x)
print model=model.summary()
print(print_model)
```

Intercept:

1798.4039776258564

Coefficients:

[345.54008701 -250.14657137]

OLSRegressionResults

Dep. Variable: 0.898 index_priceR-squared: Model: OLSAdj. R-squared: 0.888 Method: LeastSquaresF-statistic: 92.07 Sat, 30 Jul 2022Prob (F-statistic): Date: 4.04e-11 13:47:01Log-Likelihood: Time: -134.61 24AIC: No. Observations: 275.2 DfResiduals: 21BIC: 278.8

Df Model: 2

CovarianceType: nonrobust

	coef	std err	t I	?> t [(0.025 0.	975]
,	1700 4040	000 240	2 000	0.050	71 (05	200

3668.493 0.059 -71.685 const 1798.4040 899.248 2.000 111.367 3.103 0.005 113.940 577.140 interest_rate 345.5401 unemployment_rate -250.1466 117.950 -2.121 0.046 -495.437 -4.856

Omnibus: 2.691Durbin-Watson: 0.530 Prob(Omnibus): 0.260Jarque-Bera(JB): 1.551

Skew: -0.612Prob(JB): 0.461 Kurtosis: 3.226Cond. No. 394.

Result <u>:</u>	
Thus the Univariate, Bivariate and Multiple Regression Analysis using the diabetes data set from UCI and Pima Indians Diabetes data set was completed and verified successfully	
LICI and Dima Indiana Diabatas data act was completed and varified successfully	
OCI and Finia indians Diabetes data set was completed and verified successfully	