Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Лабораторна робота №2 з дисципліни «Архітектура комп'ютерів» на тему «Синтез керуючих автоматів з програмованою логікою» Варіант №4

> Виконав: студент ННІКІТ СП-225 Клокун В. Д. Перевірив: Зіньков Ю. Г.

1 Мета роботи

Закріплення теоретичних знань з синтезу керуючих автоматів із програмованою логікою.

2 Хід роботи

Виконаємо кодування мікрооперацій. Для цього використаємо метод прямого включення. Спочатку з'ясуємо, які мікрооперації сумісні, а які ні. Для цього побудуємо матрицю сумісності S за таким принципом:

$$S = \left[egin{array}{cccccc} 0 & S_{12} & \dots & S_{1M}, \\ S_{21} & 0 & \dots & S_{1M}, \\ \vdots & \vdots & \ddots & \vdots \\ S_{M1} & S_{12} & \dots & 0 \end{array}
ight], \quad S_{ij} = \left\{ egin{array}{ccccc} 1, \ \text{якщо} \ y_i \ \text{і} \ y_j \ \text{сумісні}, \\ 0, \ \text{якщо} \ y_i \ \text{і} \ y_j \ \text{несумісні}. \end{array}
ight.$$

В результаті отримали булеву симетричну матрицю сумісності *S*:

Тепер переходимо до методу прямого включення. Його суть полягає в тому, що процес розподілу мікрооперацій $Y=(y_1,\ldots,y_M)$ по полях Y_1,Y_2,\ldots,Y_k мікрокоманди розділяється на M кроків. На кожному кроці чергової мікрооперації y_i відшукується поле Y_p , причому мікрооперація y_i повинна бути несумісною з жодною з мікрооперацій цього поля. Якщо серед полів Y_1,Y_2,\ldots,Y_t такого поля не існує, то для цієї мікрооперації вводиться нове поле Y_{t+1} .

Стан процесу включення на кожному кроці характеризується матрицею включення R, яка будується за таким принципом:

$$R = \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1M} \\ \vdots & \vdots & \vdots & \vdots \\ r_{k1} & r_{k2} & \dots & r_{kM} \end{bmatrix}, \quad r_{ij} = \begin{cases} 1, \text{ при } y_i \in Y_p, \\ 0, \text{ при } y_i \notin Y_p. \end{cases}$$

Таким чином, умова включення мікрооперації y_i в поле Y_p формулюється так: мікрооперація y_i включається в поле Y_p , якщо i-й рядок S_i матриці S не перетинається з p-м рядком R_p матриці R, тобто $S_i \cap R_p = \emptyset$. Будуємо матрицю включення R:

Бачимо, що кожна мікрооперація ввійшла до одного з полів один і тільки один раз, тобто розподіл виконано вірно. Отже, отримали такі підмножини:

$$Y_1 = \{y_1, y_3, y_4, y_6, y_8, y_9, y_{10}, y_{11}, y_{13}\},$$

$$Y_2 = \{y_2, y_5, y_7, y_{12}, y_{14}, y_{15}, y_{16}\},$$

$$Y_3 = \{y_{17}\}.$$

Визначимо довжину операційної частини мікрокоманди. Для цього обчислимо $n=\left[\log_2(M_1+1)\right]+\left[\log_2(M_2+1)\right]+\left[\log_2(M_3+1)\right]=4+3+1=8$. Закодуємо мікрооперації в підмножинах (табл. 1).

	Y_1		Y_2		Y_3
y_i	$K(Y_1)$	y_i	$K(Y_2)$	y_i	$K(Y_3)$
_	0000	_	000	_	0
y_1	0001	y_2	001	y_{17}	1
y_3	0010	y_5	010		
y_4	0011	y_7	011		
y_6	0100	y_{12}	100		
y_8	0101	y_{14}	101		
y_9	0110	y_{15}	110		
y_{10}	0111	y_{16}	111		
y_{11}	1000				
<i>y</i> ₁₃	1001				

Табл. 1: Кодування мікрооперацій за множинами

Визначимо довжину поля B — адреси переходу на віддалену мікрокоманду для керуючих мікрокоманд. Оскільки загальна кількість мікрокоманд P=23, то $n_b=\log_2 23=5$.

Визначимо довжину сигналів логічних умов та закодуємо їх. Нехай N — число оригінальних сигналів логічних умов, тоді при N=8, довжина сигналу логічних умов $n_x=\left[\log_2(N+1)\right]=4$.

x_i	X
_	0000
x_1	0001
x_2	0010
x_3	0011
x_4	0100
x_5	0101
x_6	0110
x_7	0111
<i>x</i> ₈	1000

Табл. 2: Кодування сигналів логічних умов

Сформуємо розрядну структуру керуючих та операційних мікрокоманд. Оскільки розрядна сітка має бути однаковою як для керуючих, так і для операційних мікрокоманд, то щоб вирівняти керуючі мікрокоманди з операційними, до перших вводиться один додатковий біт. Також, керуючі і операційні команди мають біт S. Для керуючих мікрокоманд S=1, а для операційних S=0. Біт U в сітці операційних мікрокоманд вводиться для завершення операцій.

Поле	Кількість розрядів	-	Поле	Кількість розрядів
S	1		\overline{S}	1
Y_1	4	_	X	4
Y_2	3		B	5
Y_3 U	1 1	_		б)
	a)			

Табл. 3: Структура мікрокоманд: а — операційних, б — керуючих

Складаємо та оформлюємо текст мікропрограми (табл. 4) на основі даних, отриманих у попередніх кроках. За допомогою програмного продукту «Мікрокод» перевіряємо отримані дані, а саме матрицю включення, її контрольну суму, тобто той факт, що кожна мікрооперація міститься лише в одному з полів, та результат кодування мікрооперацій за множинами. Аналізуємо результат (рис. 1). Бачимо, що результат програмної обробки вхідних даних повністю збігається з результатами, які були отримані вручну.

Nº	Адреса мікрокоманди	S	Мікрокоманда
1	00001	1	1000.00.00001
2	00010	0	0001.001.1.0
3	00011	1	0001.00.00101
4	00100	0	0010.100.1.0
5	00101	0	0011.010.0.0
6	00110	1	0010.00.00011
7	00111	1	0011.00.10001
8	01000	0	0100.011.0.0
9	01001	1	0111.00.10110
10	01010	0	0000.001.0.0
11	01011	1	0100.00.01101
12	01100	0	0111.111.0.0
13	01101	1	0101.00.10100
14	01110	0	1001.001.0.0
15	01111	0	1000.101.0.0
16	10000	1	0000.00.00111
17	10001	1	0110.00.01101
18	10010	0	0101.011.0.0
19	10011	1	0000.00.01101
20	10100	0	0010.001.0.0
21	10101	0	0100.011.0.1
22	10110	0	0110.110.0.0
23	10111	1	0000.00.01101

Табл. 4: Мікропрограма

Рис. 1: Результат обробки початкових даних програмою «Мікрокод»

3 Висновок

Під час виконання даної лабораторної роботи ми закріпили теоретичні знання з синтезу керуючих автоматів з програмованою логікою, навчились синтезувати мікрокоманди, будувати закодовану мікропрограму та розробляти структурну схему керуючого автомата з програмованою логікою.