What is claimed is:

- 1. A system for integrated circuit (IC) design comprising:
- at least one structural multi-project wafer (SMPW) comprising a plurality of premanufactured and pre-validated functional blocks; and
- a streamlined IC design flow incorporating the SMPW and having no IP integration or floor planning requirements.
- 2. The system of claim 1, wherein the functional blocks of the SMPW comprise structural arrays.
- 3. The system of claim 1, wherein the SMPW is pre-fabricated up to a contact layer so that a user can customize and program different blocks of the SMPW to the user's requirements.
- 4. The system of claim 1, wherein the IC design flow has a cycle time of approximately 1-3 months.
- 5. The system of claim 1, wherein the functional blocks are chosen from a group comprising: metal programmable PLLs; master/slave DLLs; metal programmable I/O elements; sea of gates; memory; and high speed serial links.

6. A component architecture for use in a streamlined integrated circuit (IC) design process comprising:

a plurality of sub-blocks targeted to specific applications, wherein the architecture is pre-fabricated up to a contact layer in order to allow a user to customize and program the sub-blocks to the user's requirements through metallization.

- 7. The component architecture of claim 6, wherein the sub-blocks are structural arrays.
- 8. The component architecture of claim 6, wherein the sub-blocks are chosen from a group comprising: metal programmable PLLs; master/slave DLLs; metal programmable I/O elements; sea of gates; memory; and high speed serial links
 - 9. A method for designing an integrated circuit (IC) comprising:

providing a plurality of structural multi-project wafers (SMPWs), each SMPW comprising a plurality of pre-manufactured and pre-validated functional blocks;

if one of the plurality of SMPWs meets an IC designer's requirements, proceeding to a streamlined design flow and production;

if one of the plurality of SMPWs is usable as an intermediate step, extracting usable SMPW component(s) for use in a normal COT flow; and

if one of the plurality of SMPWs does not meet a user's requirement and is not usable as an intermediate step, extracting any usable IP from the plurality of SMPWs for use in a normal COT flow.

- 10. The method of claim 9, wherein the streamlined design flow has a cycle time of 1-3 months and wherein the normal COT design flow has a cycle time of 12-24 months.
- 11. A method for providing integrated circuit design assistance comprising:
 maintaining an inventory of structural multi-project wafers (SMPWs), each
 SMPW comprising a plurality of pre-manufactured and pre-validated functional blocks.
- 12. A method as claimed in claim 11, wherein the functional blocks are metal programmable to a user's specific requirements.
 - 13. A method as claimed in claim 11, further comprising:

determining whether one of the inventory of SMPWs can meet all of a user's IC design requirements or can serve an intermediate step in a user's IC design process, such as market/concept validation or IP validation.

14. A method as claimed in claim 13, further comprising:

determining whether any IP useful to a user's requirement is contained within the inventory of SMPWs.

- 15. A method as claimed in claim 11, and further comprising:
 reducing manufacturing costs to users by sharing the SMPWs among multiple users.
 - 16. A method as claimed in claim 11, and further comprising:
 maintaining a pool of validated IP that is embodied in the inventory of SMPWs.
- 17. A method as claimed in claim 16, and further comprising:
 transferring an IP component from the pool of validated IP to programmable logic for use in COT flow.
 - 18. A method as claimed in claim 11, and further comprising: facilitating migration to a COT flow with the inventory of SMPWs.
 - 19. A method as claimed in claim 11, and further comprising: providing multiple packaging and assembly options for SMPW users.

20. A method as claimed in claim 19, wherein the packaging and assembly options are chosen from a group comprising: wire bond, flip chip, BGA, plastics and ceramics.