Unit conversion in LBM

Timm Krüger

Department of Microstructure Physics and Metal Forming 40237 Düsseldorf, Germany

t.krueger@mpie.de

LBM Workshop (Edmonton, Canada), August 22-26, 2011

Outline

- Introduction & motivation
- Example discussion
- 3 Hands-on experience

Outline

- Introduction & motivation
- 2 Example discussion
- 3 Hands-on experience

Physical observables and units

physical observables

- usually dimensional, i.e., a number plus a dimension
- measuring means comparing with a reference scale (e.g., measuring tape)

physical units

- fundamental units, e.g., meter, second, kilogram (SI)
- uniquely derived units, e.g., newton, joule, watt

bethlehem-news.de

Computers and physical units

- computers can only process binary numbers
- numbers are dimensionless
- user has to provide unit conversion (physical unit \leftrightarrow number)

Computers and physical units

- computers can only process binary numbers
- numbers are dimensionless
- user has to provide unit conversion (physical unit ↔ number)

mg.enowcan.com

proper unit conversions are required to

- set up a computer simulation
- interpret the results afterwards

dimensionless Navier-Stokes equations

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) = -\nabla p + \rho \nu \nabla^2 \mathbf{u}$$

Hydrodynamics and the law of similarity (1)

dimensionless Navier-Stokes equations

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) = -\nabla p + \rho \nu \nabla^2 \mathbf{u}$$

$$\frac{\partial \tilde{\boldsymbol{u}}}{\partial \tilde{t}} + (\tilde{\boldsymbol{u}} \cdot \tilde{\nabla}) \tilde{\boldsymbol{u}} = -\tilde{\nabla} \tilde{\boldsymbol{p}} + \frac{1}{\mathsf{Re}} \tilde{\nabla}^2 \tilde{\boldsymbol{u}}$$

$$\tilde{\boldsymbol{u}} = \boldsymbol{u}/u_m, \quad \tilde{p} = p/(\rho u_m^2), \quad \tilde{t} = t u_m/H, \quad \tilde{\nabla} = \nabla H, \quad \text{Re} = \frac{u_m H}{\nu}$$

Hydrodynamics and the law of similarity (1)

dimensionless Navier-Stokes equations

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) = -\nabla \rho + \rho \nu \nabla^2 \mathbf{u}$$

$$\frac{\partial \tilde{\boldsymbol{u}}}{\partial \tilde{t}} + (\tilde{\boldsymbol{u}} \cdot \tilde{\nabla}) \tilde{\boldsymbol{u}} = -\tilde{\nabla} \tilde{\boldsymbol{p}} + \frac{1}{\mathsf{Re}} \tilde{\nabla}^2 \tilde{\boldsymbol{u}}$$

$$\tilde{\boldsymbol{u}} = \boldsymbol{u}/u_m, \quad \tilde{p} = p/(\rho u_m^2), \quad \tilde{t} = t u_m/H, \quad \tilde{\nabla} = \nabla H, \quad \text{Re} = \frac{u_m H}{\nu}$$

significance of Reynolds number

- only dimensionless number constructible from u_m , H, and ν
- characterizes solutions of Navier-Stokes equations
- flows with same Re are equivalent, even if u_m , H, and ν are different

Hydrodynamics and the law of similarity (2)

- concept of characteristic dimensionless numbers can be generalized to more complicated hydrodynamic problems
- example: presence of diffusive tracer with diffusivity D
- additional dimensionless number (Schmidt number): $Sc = \nu/D$
- flows with same Re and Sc are equivalent

Hydrodynamics and the law of similarity (2)

- concept of characteristic dimensionless numbers can be generalized to more complicated hydrodynamic problems
- example: presence of diffusive tracer with diffusivity D
- additional dimensionless number (Schmidt number): $Sc = \nu/D$
- flows with same Re and Sc are equivalent

general recommended approach

always find all independent dimensionless numbers for given problem before anything else is done

Conversion principle (1)

for each physical quantity Q, one can write

$$Q = \tilde{Q} \times C_Q$$

 $\begin{array}{ll} Q & [Q] & \text{physical value (incl. unit)} \\ \tilde{Q} & [\tilde{Q}] = 1 & \text{dimensionless value} \\ C_Q & [C_Q] = [Q] & \text{conversion factor (incl. unit)} \\ \end{array}$

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Conversion principle (1)

for each physical quantity Q, one can write

$$Q = \tilde{Q} \times C_Q$$

user's task: find all required conversion factors C_Q , but

- relevant dimensionless parameters must be correct
- simulation parameters must be valid

Conversion principle (2)

example for velocity conversion

$$u = \tilde{u} \times C_u$$

$$u = 10 \, \frac{\text{m}}{\text{s}}, \quad \tilde{u} = 0.1 \quad \Longrightarrow \quad C_u = 100 \, \frac{\text{m}}{\text{s}}$$

Conversion principle (2)

example for velocity conversion

$$u = \tilde{u} \times C_u$$

$$u = 10 \, \frac{\text{m}}{\text{s}}, \quad \tilde{u} = 0.1 \quad \Longrightarrow \quad C_u = 100 \, \frac{\text{m}}{\text{s}}$$

conversion of dimensionless numbers

dimensionless numbers should generally be invariant, e.g.,

$$Re = \widetilde{Re} \iff C_{Re} \stackrel{!}{=} 1$$

possible exceptions: e.g., Mach number (next slide).

LBM and the Mach number

- usually, LBM Mach number is larger than in reality
- otherwise, simulations would be too expensive (too many time steps)
- no problem since Ma is not important
- Ma [!] 1, e.g., Ma < 0.3

www.allmystery.de

Approaching a hydrodynamic problem

- identify relevant dimensionless numbers (e.g., Reynolds or Péclet number)
- write down their definitions, e.g., Re = $\frac{uH}{dt}$
- make use of their invariance during unit conversion, e.g., Re = Re and $C_{Bo} = 1$
- from this, it is possible to construct a unique set of unit conversions

Approaching a hydrodynamic problem

- identify relevant dimensionless numbers (e.g., Reynolds or Péclet number)
- write down their definitions, e.g., Re = $\frac{uH}{dt}$
- make use of their invariance during unit conversion, e.g., Re = Re and $C_{Bo} = 1$
- from this, it is possible to construct a unique set of unit conversions

Explicit examples will be shown later!

Primary conversion factors

for mechanical problems, all quantities have units $m^{q_l}s^{q_t}kg^{q_m}$

quantity	unit	q_l	q_t	q_m
velocity	<u>m</u> s	1	-1	0
force	$kg\frac{m}{s^2}$	1	-2	1
kinematic viscosity	M9 s ² m ² s	2	-1	0

Primary conversion factors

for mechanical problems, all quantities have units $m^{q_l} s^{q_t} kg^{q_m}$

quantity	unit	q_I	q_t	q_m
velocity	<u>m</u>	1	-1	0
force	$kg\frac{m}{s^2}$	1	-2	1
kinematic viscosity	$\frac{m^2}{s}$	2	-1	0

three independent primary conversion factors required, e.g., for

- length, time, mass
- length, velocity, energy
- length, time, density

Primary conversion factors

for mechanical problems, all quantities have units $m^{q_l} s^{q_t} kg^{q_m}$

quantity	unit	q_I	q_t	q_m
velocity	<u>m</u> s	1	-1	0
force	kg ^m / _{s²}	1	-2	1
kinematic viscosity	$\frac{KY_{\frac{S^2}{S^2}}}{S}$	2	-1	0

three independent primary conversion factors required, e.g., for

- length, time, mass
- length, velocity, energy
- length, time, density

All other (secondary) conversion factors are uniquely derived.

Finding secondary conversion factors

- set primary conversion factors, e.g., for length, time, and density (C_1, C_1, C_2)
- express secondary units in terms of primary units, e.g., for the energy

$$[E] = \frac{\text{kg m}^2}{\text{s}^2} = \frac{\text{kg m}^5}{\text{m}^3} \frac{\text{m}^5}{\text{s}^2} = \frac{[\rho][I]^5}{[I]^2} = \frac{[C_\rho][C_I]^5}{[C_I]^2}$$

read off secondary conversion factor, e.g., for the energy

$$C_E = rac{C_
ho C_l^5}{C_t^2}$$

Finding secondary conversion factors

- set primary conversion factors, e.g., for length, time, and density (C_1, C_1, C_2)
- express secondary units in terms of primary units, e.g., for the energy

$$[E] = \frac{\text{kg m}^2}{\text{s}^2} = \frac{\text{kg m}^5}{\text{m}^3} \frac{\text{m}^5}{\text{s}^2} = \frac{[\rho][I]^5}{[I]^2} = \frac{[C_\rho][C_I]^5}{[C_I]^2}$$

read off secondary conversion factor, e.g., for the energy

$$C_E = rac{C_
ho C_l^5}{C_t^2}$$

Only the unit of the secondary quantity has to be known!

Outline

- Introduction & motivation
- 2 Example discussion
- 3 Hands-on experience

Gravity-driven planar Poiseuille flow

relevant input parameters

channel height (wall distance)	Н
viscosity	ν
density	ho
gravity (force per volume)	$f = \rho g$

relevant output parameters

maximum velocity (Poiseuille law):

Reynolds number:

$$u_m = \frac{fH^2}{8\alpha\nu}$$

$$Re := \frac{u_m H}{\nu} = \frac{g H^3}{8\nu^2}$$

Physical parameters

example input parameters			
channel height	Н	$10^{-3}{\rm m}$	
viscosity	ν	$10^{-6} \frac{m^2}{s}$ $10^3 \frac{kg}{m^3}$ $10 \frac{m}{s^2}$	
density	ho	$10^3 \frac{\text{kg}}{\text{m}^3}$	
gravity	g	10 m	

Physical parameters

example input parameters			
channel height	Н	$10^{-3}{\rm m}$	
viscosity	u	$10^{-6} \frac{m^2}{s}$ $10^3 \frac{kg}{m^3}$ $10 \frac{m}{s^2}$	
density	ho	$10^3 \frac{\text{kg}}{\text{m}^3}$	
gravity	g	$10 \frac{m}{s^2}$	

resulting output parameters

$$u_m = 1.25 \, \frac{\text{m}}{\text{s}}, \quad \text{Re} = 1250$$

These values are defined by the physical problem!

Choose simulation parameters

$$\tilde{H} = 20$$
, $H = 10^{-3} \,\mathrm{m}$ \implies $C_H = 5 \times 10^{-5} \,\mathrm{m}$

Choose simulation parameters

resolution

$$\tilde{H} = 20$$
, $H = 10^{-3} \,\mathrm{m}$ \Longrightarrow $C_H = 5 \times 10^{-5} \,\mathrm{m}$

density

$$\tilde{\rho} = 1, \quad \rho = 10^3 \, \frac{\text{kg}}{\text{m}^3} \quad \Longrightarrow \quad C_{\rho} = 10^3 \, \frac{\text{kg}}{\text{m}^3}$$

Choose simulation parameters

$$\tilde{H} = 20, \quad H = 10^{-3} \,\mathrm{m} \implies C_H = 5 \times 10^{-5} \,\mathrm{m}$$

density

$$\tilde{
ho} = 1, \quad \rho = 10^3 \, rac{\mathrm{kg}}{\mathrm{m}^3} \quad \Longrightarrow \quad C_{
ho} = 10^3 \, rac{\mathrm{kg}}{\mathrm{m}^3}$$

relaxation time

$$\tau = 0.6$$

The user may choose any other set of parameters!

Make use of Reynolds number

Reynolds number in physical and dimensionless systems

$$Re = \frac{u_m H}{v}, \quad \widetilde{Re} = \frac{\widetilde{u}_m \widetilde{H}}{\widetilde{v}}$$

Make use of Reynolds number

Reynolds number in physical and dimensionless systems

$$Re = \frac{u_m H}{v}, \quad \widetilde{Re} = \frac{\widetilde{u}_m \widetilde{H}}{\widetilde{v}}$$

equality of Reynolds numbers

$$\operatorname{Re} \stackrel{!}{=} \widetilde{\operatorname{Re}} \implies \frac{\nu}{\widetilde{\nu}} = \frac{u_m}{\widetilde{u}_m} \frac{H}{\widetilde{H}} \implies C_{\nu} = C_u C_H$$

Make use of Reynolds number

Reynolds number in physical and dimensionless systems

$$Re = \frac{u_m H}{v}, \quad \widetilde{Re} = \frac{\widetilde{u}_m \widetilde{H}}{\widetilde{v}}$$

equality of Reynolds numbers

$$\operatorname{\mathsf{Re}} \stackrel{!}{=} \widetilde{\operatorname{\mathsf{Re}}} \quad \Longrightarrow \quad \frac{
u}{\widetilde{
u}} = \frac{u_m}{\widetilde{
u}_m} \frac{H}{\widetilde{H}} \quad \Longrightarrow \quad C_{
u} = C_u C_H$$

consistency check

$$[C_{\nu}] = [C_{u}][C_{H}] = \frac{\mathsf{m}^{2}}{\mathsf{s}} \quad \checkmark$$

Get time conversion factor

lattice spacing and time step

for convenience, choose $\widetilde{\Delta x} = 1$ and $\widetilde{\Delta t} = 1$

$$\implies$$
 $\Delta x = C_H, \quad \Delta t = C_t$

Get time conversion factor

lattice spacing and time step

for convenience, choose $\widetilde{\Delta x} = 1$ and $\widetilde{\Delta t} = 1$

$$\implies$$
 $\Delta x = C_H, \quad \Delta t = C_t$

LBM viscosity

$$\nu = \left(\tau - \frac{1}{2}\right) c_s^2 \Delta t, \quad c_s^2 = \frac{1}{3} \frac{\Delta x^2}{\Delta t^2} \quad \Longrightarrow \quad \nu = \underbrace{\frac{\tau - \frac{1}{2}}{3}}_{\tilde{\nu}} \frac{C_H^2}{C_t}$$

Get time conversion factor

lattice spacing and time step

for convenience, choose $\widetilde{\Delta x} = 1$ and $\widetilde{\Delta t} = 1$

$$\implies \Delta x = C_H, \quad \Delta t = C_t$$

LBM viscosity

$$\nu = \left(\tau - \frac{1}{2}\right) c_s^2 \Delta t, \quad c_s^2 = \frac{1}{3} \frac{\Delta x^2}{\Delta t^2} \quad \Longrightarrow \quad \nu = \underbrace{\frac{\tau - \frac{1}{2}}{3}}_{\tilde{\nu}} \frac{C_H^2}{C_t}$$

time conversion factor

$$C_t = \frac{\tau - \frac{1}{2}}{3} \frac{C_H^2}{\nu} = 8.\overline{3} \times 10^{-5} \,\mathrm{s}$$

Get velocity conversion factor

secondary conversion factor

$$[u] = \frac{[H]}{[t]} \implies C_u = \frac{C_H}{C_t} \implies C_u = 0.6 \frac{m}{s}$$

Get velocity conversion factor

secondary conversion factor

$$[u] = \frac{[H]}{[t]} \implies C_u = \frac{C_H}{C_t} \implies C_u = 0.6 \frac{\text{m}}{\text{s}}$$

compute maximum lattice velocity

$$\tilde{u}_m = u_m/C_u \implies \tilde{u}_m = 2.08\overline{3}$$

Get velocity conversion factor

secondary conversion factor

$$[u] = \frac{[H]}{[t]} \implies C_u = \frac{C_H}{C_t} \implies C_u = 0.6 \frac{m}{s}$$

compute maximum lattice velocity

$$\tilde{u}_m = u_m/C_u \implies \tilde{u}_m = 2.08\bar{3}$$

consistency of Reynolds number

$$Re = \frac{u_m H}{v} \stackrel{!}{=} \frac{\tilde{u}_m \tilde{H}}{\tilde{v}} = 1250 \quad \checkmark$$

Correct simulation parameters

problem

Simulation parameters are consistent, but not valid for LBM simulations ($\tilde{u}_m \gg 0.3$).

Correct simulation parameters

problem

Simulation parameters are consistent, but not valid for LBM simulations ($\tilde{u}_m \gg 0.3$).

correction approach

$$C_u = \frac{C_H}{C_t} = \frac{3}{\tau - \frac{1}{2}} \frac{\nu}{C_H}$$

- decrease $C_H \Longrightarrow$ more expensive
- decrease $\tau \Longrightarrow \mathsf{LBM}$ may become unstable

User has to find a consistent and valid set of parameters!

Example correction

change resolution and relaxation parameter

- $C_H = 5 \times 10^{-5} \,\mathrm{m} \to C_H^* = 1 \times 10^{-5} \,\mathrm{m}$
- $\bullet \ \tau = 0.6 \rightarrow \tau^* = 0.55$

Example correction

change resolution and relaxation parameter

•
$$C_H = 5 \times 10^{-5} \,\mathrm{m} \to C_H^* = 1 \times 10^{-5} \,\mathrm{m}$$

•
$$\tau = 0.6 \rightarrow \tau^* = 0.55$$

corrected velocity conversion factor

$$C_u^* = \frac{3}{\tau^* - \frac{1}{2}} \frac{\nu}{C_H^*} = 6 \frac{m}{s} \implies \tilde{u}_m^* = 0.208\bar{3} \quad \checkmark$$

Example correction

change resolution and relaxation parameter

•
$$C_H = 5 \times 10^{-5} \,\mathrm{m} \to C_H^* = 1 \times 10^{-5} \,\mathrm{m}$$

•
$$\tau = 0.6 \rightarrow \tau^* = 0.55$$

corrected velocity conversion factor

$$C_u^* = \frac{3}{\tau^* - \frac{1}{2}} \frac{\nu}{C_H^*} = 6 \frac{m}{s} \implies \tilde{u}_m^* = 0.208\bar{3} \quad \checkmark$$

consistency of Reynolds number

$$Re = \frac{u_m H}{\nu} \stackrel{!}{=} \frac{\tilde{u}_m^* \tilde{H}^*}{\tilde{\nu}^*} = 1250 \quad \checkmark$$

The user has found a consistent and valid parameter set.

Get force conversion factor

secondary conversion factor

$$[f] = \frac{[\rho][H]}{[t]^2} \quad \Longrightarrow \quad C_f = \frac{C_\rho C_H}{C_t^2} \quad \Longrightarrow \quad C_f = 3.6 \times 10^9 \, \frac{\text{N}}{\text{m}^3}$$

Get force conversion factor

secondary conversion factor

$$[f] = \frac{[\rho][H]}{[t]^2} \quad \Longrightarrow \quad C_f = \frac{C_\rho C_H}{C_t^2} \quad \Longrightarrow \quad C_f = 3.6 \times 10^9 \, \frac{\text{N}}{\text{m}^3}$$

compute lattice force density

$$\tilde{f} = f/C_f \implies \tilde{f} = 2.\bar{7} \times 10^{-6}$$

Everything for a successful simulation is prepared!

Alternative routes

start with \tilde{H} and \tilde{u}_m

- choose \tilde{H} and $\tilde{u}_m \Longrightarrow C_H$, C_u
- 2 find viscosity conversion factor $C_{\nu}=C_{H}^{2}/C_{t}\Longrightarrow ilde{
 u}$
- 3 identify relaxation time τ from $\tilde{\nu} = (\tau \frac{1}{2})/3$
- find remaining conversion factors & check validity

Alternative routes

start with \tilde{H} and \tilde{u}_m

- ① choose \tilde{H} and $\tilde{u}_m \Longrightarrow C_H$, C_u
- 2 find viscosity conversion factor $C_{
 u}=C_H^2/C_t\Longrightarrow ilde{
 u}$
- 3 identify relaxation time τ from $\tilde{\nu} = (\tau \frac{1}{2})/3$
- 4 find remaining conversion factors & check validity

start with \tilde{u}_m and τ

- ① choose \tilde{u}_m and $\tau \Longrightarrow C_u$, $\tilde{\nu}$
- 2 find viscosity conversion factor C_{ν} from $\tilde{\nu}$
- 3 find length conversion factor $C_H = C_{\nu}/C_u \Longrightarrow \tilde{H}$
- 4 find remaining conversion factors & check validity

Alternative routes

start with \tilde{H} and \tilde{u}_m

- choose \tilde{H} and $\tilde{u}_m \Longrightarrow C_H$. C_H
- 2 find viscosity conversion factor $C_{\nu}=C_{\rm H}^2/C_t\Longrightarrow \tilde{\nu}$
- 3 identify relaxation time τ from $\tilde{\nu} = (\tau \frac{1}{2})/3$
- find remaining conversion factors & check validity

start with \tilde{u}_m and τ

- choose \tilde{u}_m and $\tau \Longrightarrow C_u$, $\tilde{\nu}$
- find viscosity conversion factor C_{ν} from $\tilde{\nu}$
- find length conversion factor $C_H = C_{\nu}/C_u \Longrightarrow \tilde{H}$
- find remaining conversion factors & check validity

and so on...

Outline

- 1 Introduction & motivation
- 2 Example discussion
- 3 Hands-on experience

Gravity-driven Poiseuille flow with diffusive tracer

relevant input parameters

 $\begin{array}{ll} \text{channel height (wall distance)} & \mathcal{H} \\ \text{viscosity} & \nu \\ \text{tracer diffusivity} & \mathcal{D} \\ \text{density} & \rho \\ \text{gravity (force per volume)} & f = \rho g \end{array}$

relevant dimensionless parameters

Reynolds number:

Schmidt number:

Re :=
$$\frac{u_m H}{u_m} = \frac{g H^3}{8 u^2}$$

$$Sc := \frac{\nu}{D}$$

Formulary

dimensionless parameters

$$\mathsf{Re} = rac{ ilde{u}_m ilde{H}}{ ilde{
u}} = rac{ ilde{g} ilde{H}^3}{8 ilde{
u}^2}, \quad \mathsf{Sc} = rac{ ilde{
u}}{ ilde{D}}$$

dimensionless viscosity and diffusivity

$$ilde{
u}=rac{ au_
u-rac{1}{2}}{3},\quad ilde{D}=rac{ au_D-rac{1}{2}}{3}.$$

gravity

$$\tilde{f} = \tilde{\rho}\tilde{g}$$

Physical parameters and numerical restrictions

physical parameters

$$Re = 100, Sc = 3$$

Physical parameters and numerical restrictions

physical parameters

$$Re = 100, Sc = 3$$

numerical restrictions

- relaxation times τ_{ν} and τ_{D} shall both be at least 0.55 (stability)
- center velocity shall be $\tilde{u}_m \leq 0.05$ (compressibility)
- system height shall be $\tilde{H} \leq 150$ (efficiency)

Physical parameters and numerical restrictions

physical parameters

Re = 100, Sc = 3

numerical restrictions

- relaxation times τ_{ν} and τ_{D} shall both be at least 0.55 (stability)
- center velocity shall be $\tilde{u}_m \leq 0.05$ (compressibility)
- system height shall be $\tilde{H} \leq$ 150 (efficiency)

task

Find a conclusive and valid set of simulation parameters! $\tilde{\rho}, \tau_{\nu}, \tau_{D}, \tilde{H}, \tilde{u}_{m}, \tilde{f}$

identify minimum relaxation parameters

$$\operatorname{Sc} = \frac{\tilde{\nu}}{\tilde{D}} \implies \operatorname{Sc} = \frac{\tau_{\nu} - \frac{1}{2}}{\tau_{D} - \frac{1}{2}} \implies \tau_{\nu} = \operatorname{Sc}(\tau_{D} - 0.5) + 0.5$$

$$\tau_{D,\text{min}} = 0.55, \text{ Sc} = 3 \implies \tau_{\nu,\text{min}} = 0.65$$

identify minimum relaxation parameters

$$\operatorname{Sc} = \frac{\tilde{\nu}}{\tilde{D}} \implies \operatorname{Sc} = \frac{\tau_{\nu} - \frac{1}{2}}{\tau_{D} - \frac{1}{2}} \implies \tau_{\nu} = \operatorname{Sc}(\tau_{D} - 0.5) + 0.5$$

$$\tau_{D,\text{min}} = 0.55, \text{ Sc} = 3 \implies \tau_{\nu,\text{min}} = 0.65$$

identify minimum resolution

$$\mathsf{Re} = rac{ ilde{u}_m ilde{H}}{ ilde{
u}} \quad \Longrightarrow \quad ilde{H} = \mathsf{Re} rac{ au_
u - 0.5}{3 ilde{u}_m}$$

$$au_{\nu, \text{min}} = 0.65, \ \tilde{u}_{m, \text{max}} = 0.05, \ \text{Re} = 100 \quad \Longrightarrow \quad \tilde{H}_{\text{min}} = 100$$

chosen set of simulation parameters

$$\tau_{\nu} = 0.65, \quad \tau_{D} = 0.55, \quad \tilde{H} = 100, \quad \tilde{u}_{m} = 0.05$$

chosen set of simulation parameters

$$\tau_{\nu} = 0.65, \quad \tau_{D} = 0.55, \quad \tilde{H} = 100, \quad \tilde{u}_{m} = 0.05$$

validity and consistency already assured

$$Re = \frac{\tilde{u}_m \tilde{H}}{\tilde{\nu}} = 100, \quad Sc = \frac{\tilde{\nu}}{\tilde{D}} = 3 \quad \checkmark$$

chosen set of simulation parameters

$$\tau_{\nu} = 0.65, \quad \tau_{D} = 0.55, \quad \tilde{H} = 100, \quad \tilde{u}_{m} = 0.05$$

validity and consistency already assured

$$ext{Re} = rac{ ilde{u}_m ilde{H}}{ ilde{
u}} = 100, \quad ext{Sc} = rac{ ilde{
u}}{ ilde{D}} = 3 \quad \checkmark$$

set density

$$\tilde{\rho} = 1$$
 (arbitrary)

Hands-on experience

chosen set of simulation parameters

$$\tau_{\nu} = 0.65, \quad \tau_{D} = 0.55, \quad \tilde{H} = 100, \quad \tilde{u}_{m} = 0.05$$

validity and consistency already assured

$$\mathrm{Re} = rac{ ilde{u}_m ilde{H}}{ ilde{
u}} = 100, \quad \mathrm{Sc} = rac{ ilde{
u}}{ ilde{D}} = 3 \quad \checkmark$$

set density

$$\tilde{\rho} = 1$$
 (arbitrary)

set gravity

$$\mathsf{Re} = \frac{\tilde{g}\tilde{H}^3}{8\tilde{\nu}^2} \quad \Longrightarrow \quad \tilde{f} = \tilde{\rho}\tilde{g} = \frac{8\tilde{\rho}\tilde{\nu}^2}{\tilde{H}^3} \mathsf{Re} = 2 \times 10^{-6}$$

Further comments

- systems with identical Re and Sc are equivalent
 no explicit conversion factors required at this point!
- scale can be introduced afterwards, e.g.,

$$H = 10^{-3} \,\mathrm{m} \quad \Longrightarrow \quad C_H = 10^{-5} \,\mathrm{m}$$

 all other conversion factors are then obtained as in the example discussion