Chapitre 1

Module: Algorithmique & Programmation en C

- 1. Introduction
- 2. Structure d'un algorithme
- 3. Instructions de base
- 4. Organigramme

Introduction

Introduction (suite)

- Algorithmique : consiste à concevoir et mettre au point des algorithmes décrivant les solutions d'un certain type de problèmes.
- •L'algorithmique comporte deux grandes phases: (Analyse et Conception).
- •Algorithme: est une suite finie d'instructions à appliquer dans un ordre déterminé sur des données afin d'aboutir à un certain résultat en un temps fini.

Introduction (suite)

- Analyse: le dégagement des entrées, des sorties et du traitement.
- Conception: l'organisation dans un ordre convenable afin d'aboutir aux résultats attendus.
- Compilation: transformation en langage machine d'un programme écrit en langage évolué
- **Exécution**: l'ordinateur exécute les instructions d'un programme en langage « binaire » ,pour fournir le résultat.

Structure d'un algorithme

Un algorithme peut être structuré en trois parties principales:

- •L'en-tête
- •La partie Déclarations
- •Le corps de l'algorithme

Structure d'un algorithme (suite)

Exemple:

```
Algorithme Cercle;
                                       En-tête
Variable Rayon, Surface: Réel;
                                       Partie déclarations
Constante Pi \leftarrow 3.14;
Début
Lire (Rayon);
                                       Corps
Surface ← Rayon*Rayon*Pi;
Ecrire (Surface);
Fin
```


Instructions de base

- •Donnée
- Affectation
- •Entrées
- Sorties

Donnée

Une donnée est caractérisée par trois attributs:

- Identificateur
- Valeur
- Type

Donnée (suite)

Exemple:

Donnée (suite)

Type (en algorithmique):

<u>Type</u>	<u>Description</u>
Entier	Une donnée de ce type prend ses valeurs dans [-32768,32767]
Réel	Prend ses valeurs dans l'échelle 2.9x10 ⁻³⁹ à 1.7x 10 ⁺³⁸ avec 11 chiffres significatifs après la virgule
Caractère	Prend ses valeurs dans la table des codes ASCII exp 'A' ,'S'
logique	Peut prendre la valeur Vrai ou Faux et on a Faux < Vrai

10

Donnée (suite)

Une donnée est divisée en deux catégories:

- Variable: donnée dont la valeur est susceptible de varier.
- Constante: donnée dont la valeur est fixe.

Donnée (algorithmique)

Syntaxe (variable):

variable identificateur_var: type;

Exemple: variable surface : réel;

Syntaxe (constante):

constante identificateur const

—valeur;

Exemple: constante Pi \leftarrow 3.14;

Affectation

- •Une <u>affectation</u> est l'opération qui permet de ranger la <u>valeur</u> d'une <u>expression</u> dans une variable.
- •Une <u>expression</u> est une combinaison d'<u>opérandes</u> et d'<u>opérateurs</u>.

Quelques opérateurs arithmétiques:

<u>Opérateur</u>	<u>Signification</u>
+	Addition
_	Soustraction
*	Multiplication
/	Division
mod	Reste de la division entière

Quelques opérateurs relationnels:

<u>Opérateur</u>	<u>Signification</u>
=	Egal
<>	Différent
<	Inferieur
>	Supérieur
<=	Inferieur ou égal
>=	Supérieur ou égal

Quelques opérateurs logiques:

<u>Opérateur</u>	<u>Signification</u>
Non	
OU	
ET	


```
Syntaxe (algorithmique):

Identificateur_var ← expression;

Exemple: Pi ← 3.14;

Surface ← Rayon*Rayon*Pi;
```


Entrées / Sorties

- •Instruction d'entrée: acquérir une valeur.
- •Instruction de sortie: afficher un message sur l'écran et restituer la valeur d'une variable.

Entrées

```
Syntaxe (algorithmique):
```

Lire (identificateur_var);

Exemple: Lire (Rayon);

Sorties

Exercice 1

Etant donnés le prix hors taxe (PHT) d'un produit et la taxe sur la valeur ajoutée (TVA) 20%.

Ecrire un algorithme qui affiche le prix (TTC).

Exercice 1 (Solution)

Analyse:

- Données d'entrée: PHT
- Données de sortie: TVA, TTC
- Traitement:
 - TVA = 0.2*PHT
 - TTC = TVA + PHT

Exercice 1 (Solution)

Conception:

```
Algorithme Produit;
Variable PHT, TVA, TTC: Réel;
Début
Ecrire ('Entrer le prix PHT:');
Lire (PHT);
TVA \leftarrow 0.2 * PHT;
TTC \longleftarrow TVA + PHT;
Ecrire ('Le prix est: ',TTC);
Fin
```

23

Organigramme

•Un organigramme (ou bien un logigramme) est une représentation graphique de l'algorithme en utilisant un ensemble de figures.

Organigramme (suite)

<u>Figure</u>	<u>Signification</u>
	Début et Fin
	Lire et Ecrire
	Traitement
	Condition
	Sens du traitement

Organigramme (suite)

Exemple:

Algorithme Cercle;

Variable Rayon, Surface: Réel;

Constante Pi \leftarrow 3.14;

Début

Lire (Rayon);

Surface ← Rayon*Rayon*Pi;

Ecrire (Surface);

Fin

Donner
l'organigramme
correspondant à
cet algorithme?

Organigramme (suite)

Exercice 2

Ecrire un algorithme qui calcule et affiche la surface et le périmètre d'un rectangle dont on saisi la longueur et la largeur. On suppose que ces valeurs sont des entiers

Exercice 2 (Solution)

Analyse:

- Données d'entrée: Long, Larg
- Données de sortie: Per, Sur
- Traitement:
 - Per = 2 * (Long + Larg)
 - Sur = Long * Larg

Exercice 2 (Solution)

Conception:

```
Algorithme Rectangle;
Variable Long, Larg, Per, Sur: Entier;
Début
Ecrire ('Entrer Longueur et Largeur:');
Lire (Long, Larg);
Per \leftarrow 2 * (Long + Larg);
Sur ← Long * Larg;
Ecrire ('Périmètre: ',Per);
Ecrire ('Surface: ',Sur);
Fin
```

Prof: R. EL AYACHI

Exercice 2 (Solution)

31

Exercice 3

Ecrire un algorithme qui calcule et affiche la surface (S) et le périmètre (P) d'un cercle dont on saisi le rayon (R).

Exercice 3 (Solution)

Analyse:

- Données d'entrée: R, Pi=3.14
- Données de sortie: P, S
- Traitement:

$$- P = 2 * Pi * R$$

$$-S = R * R * Pi$$

Exercice 3 (Solution)

Conception:

```
Algorithme Cercle;
Variable R, S, P: Réel;
Constante Pi \leftarrow 3.14;
Début
Ecrire ('Entrer le rayon:'); Lire (R);
P \leftarrow 2 * Pi * R;
S \longleftarrow R * R * Pi;
Ecrire ('Périmètre: ',P);
Ecrire ('Surface: ',S);
Fin
```

Prof: R. EL AYACHI

Exercice 3 (Solution)

