This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 048 732 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

- (43) Veröffentlichungstag: 02.11.2000 Patentblatt 2000/44
- (21) Anmeldenummer: 99107412.1
- (22) Anmeldetag: 26.04.1999

- (51) Int CI.7: **C12N 15/58**, C12N 15/62, C12N 15/31, C12N 9/72, C07K 14/245, C07K 1/113, C12N 1/20, C12N 15/70, C12P 21/02
- (84) Benannte Vertragsstaaten:
 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
 MC NL PT SE
 Benannte Erstreckungsstaaten:
 AL LT LV MK RO SI
- (71) Anmelder: F. HOFFMANN-LA ROCHE AG 4070 Basel (CH)
- (72) Erfinder: Die Erfindernennung liegt noch nicht vor
- (74) Vertreter: Schreiner, Siegfried, Dr. et al Roche Diagnostics GmbH, Patent Department Pharma (TR-E), P.O. Box 1152 82372 Penzberg (DE)
- (54) Verfahren zur Herstellung von natürlich gefalteten und sekretierten Proteinen
- (57) Ein Verfahren zur Herstellung eines wasserlöslichen, natürlich gefalteten eukaryontischen Polypeptids, enthaltend zwei oder mehrere über Disulfidbrücken verknüpfte Cysteine, durch Kultivierung prokaryontischer Zellen, a) wobei die genannten prokaryontischen Zellen einen Expressionsvektor enthalten, der für das genannte Polypeptid, das am N-Terminus eine prokaryontische Signalsequenz enthält, codiert, b) unter Bedingungen, bei denen das Polypeptid in das Periplasma oder das Medium sekretiert wird, c) Abspaltung der Si-

gnalsequenz und Isolierung des Polypeptids aus dem Periplasma oder dem Medium, dadurch gekennzeichnet, daß die Kultivierung in Gegenwart von Arginin oder einer Verbindung der allgemeinen Formel I $\rm R_2\text{-}CO\text{-}NRR_1$ (I) erfolgt, wobei R und $\rm R_1$ Wasserstoff oder eine gesättigte oder ungesättigte verzweigte oder unverzweigte $\rm C_1$ - $\rm C_4\text{-}Alkylkette$ und $\rm R_2$ Wasserstoff, NHR $_1$ oder eine gesättigte oder ungesättigte verzweigte oder unverzweigte $\rm C_1$ - $\rm C_3\text{-}Alkylkette$ darstellen, ist zur rekombinanten Herstellung von Polypeptiden in Prokaryonten mit hoher Ausbeute geeignet.

Fig. 2

Beschreibung

5

10

15

20

30

35

40

45

50

55

[0001] Die Erfindung betrifft ein Verfahren zur Herstellung von wasserlöslichen, natürlich gefalteten und sekretrierten Polypeptiden nach Expression in prokaryontischen Zellen.

[0002] In prokaryontischen Organismen findet die Proteinsynthese, auch Translation genannt, an den Ribosomen im Cytoplasma statt. Bei einer Expression rekombinanter DNA in prokaryontischen Wirtsorganismen ist es oft wünschenswert, daß das dabei erhaltene rekombinante Genprodukt bzw. Protein aus dem Cytoplasma durch die innere bakterielle Membran in den periplasmatischen Raum zwischen innerer und äußerer Membran sekretiert wird. Vom Periplasma können sekretierte Proteine dann z.B. durch einen osmotischen Schock in das Nährmedium freigesetzt werden. Ein Nachteil dieses Verfahrens ist, daß die sezernierten Polypeptide häufig nicht die native, biologisch aktive. Konformation ausbilden (Hockney, TIBTECH 12 (1994) 456 - 463).

[0003] In jüngster Zeit wurden molekulare Chaperone und Faltungskatalysatoren, wie Peptidyl-Prolyl-cis/trans-Isomerasen oder Proteindisulfidisomerasen (Glockshuber et al., EP-A 0 510 658) eingesetzt, um die Ausbeute an nativem rekombinanten Protein bei der Faltung in vivo zu erhöhen (Thomas et al., Appl. Biochem. Biotechnol. 66 (1997) 197-238). Dies führte teilweise zu erheblichen Verbesserungen bei der Expression z.B. von Ribulosebisphosphat-Carboxylase (RUBISCO; Goloubinoff et al., Nature 337 (1989) 44-47), humaner Procollagenase (Lee & Olins, J. Biol. Chem. 267 (1992) 2849-2852) oder neuronaler Stickstoffoxidsynthase aus Ratten (Roman et al., Proc. Natl. Acad. Sci. USA 92 (1995) 8428-8432). In diesen Beispielen wurden GroEL/ES bzw. das DnaK-System aus E. coli im Cytosol co-überexprimiert. Der positive Effekt liegt dabei meist in einer erhöhten Anreicherung des gewünschten Proteins in löstlicher Form.

[0004] Auch bei der Sekretion rekombinanter Proteine ins Periplasma von E. coli wurde die Co-Expression von Chaperone untersucht. Hier wurde jedoch nur eine cytosolische Überexpression von Chaperone erprobt, um die Sekretion ins Periplasma zu optimieren (Perez-Perez et al., Biochem. Biophys. Res. Commun. 210 (1995) 524-529; Sato et al., Biochem. Biophys. Res. Commun. 202 (1994) 258-264; Berges et al., Appl. Environ. Microbiol. 62 (1996) 55-60). Bisherige Versuche zur Co-Sekretion in E. coli betrafen nur Faltungshelfer-Proteine, wie z. B. Proteindisulfidisomerase (PDI; Glockshuber et al., EP-A 0 510 658) oder Peptidyl-Prolyl-cis/trans-Isomerasen oder Dsb-Proteine (Knappik et al., Bio/Technology 11(1993) 77-83; Qiu et al., Appl. Environm. Microbiol. 64 (1998) 4891-4896 und Schmidt et al., Prot. Engin. 11 (1998) 601 - 607.

[0005] Verbindungen wie Harnstoff oder Harnstoffderivate, Formamid, Acetamid oder L-Arginin werden bei Verfahren zur in vitro Renaturierung von unlöslichen Proteinaggregaten (Inclusion bodies - Einschlußkörper) eingesetzt, die bei der cytoplasmatischen Expression von rekombinanter DNA in prokaryontischen Zellen entstehen. L-Arginin kann als Zusatz bei der Renaturierung in vitro die Ausbeute an nativ gefalteten Proteinen erheblich verbessern (Rudolph et al., US-Patent Nr. 5,593,865; Buchner & Rudolph, Bio/Technology 9 (1991)157-162; Brinkmann et al., Proc. Natl. Acad. Sci USA 89 (1992) 3075-3079; Lin & Traugh, Prot. Express. Purif. 4 (1993) 256-264).

[0006] Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung von wasserlöslichen, natürlich gefalteten eukaryontischen Polypeptiden nach Expression in Prokaryonten zur Verfügung zu stellen, welches auf einfache Weise durchführbar ist und bei dem eine aufwendige in vitro-Nachbehandlung, wie Auflösung von inclusion bodies, Reduktion und Naturierung, nicht erforderlich ist.

[0007] Die Aufgabe wird gelöst durch ein Verfahren zur Herstellung eines wasserlöslichen, natürlich gefalteten eukaryontischen Polypeptids, enthaltend zwei oder mehrere über Disulfidbrücken verknüpfte Cysteine, durch Kultivierung prokaryontischer Zellen,

- a) wobei die genannten prokaryontischen Zellen einen Expressionsvektor enthalten, der für das genannte Polypeptid, das am N-Terminus eine prokaryontische Signalsequenz enthält, codiert
- b) unter Bedingungen, bei denen das Polypeptid in das Periplasma oder das Medium sekretiert wird,
- c) Abspaltung der Signalsequenz und Isolierung des Polypeptids aus dem Periplasma oder dem Medium,

dadurch gekennzeichnet, daß die Kultivierung in Gegenwart von Arginin oder einer Verbindung der allgemeinen Formel I

 R_2 -CO-NRR₁ (I)

erfolgt, wobei

R und R₁ Wasserstoff oder eine gesättigte oder ungesättigte verzweigte oder unverzweigte C₁-C₄-Alkylkette und

 R_2 Wasserstoff, NHR₁ oder eine gesättigte oder ungesättigte verzweigte oder unverzweigte C_1 - C_3 -Alkylkette darstellen.

[0008] Vorzugsweise beträgt die Konzentration von Arginin oder der Verbindung der allgemeinen Formel I mindestens 0,1 mol/l, kann aber auch deutlich höher sein, solange die Löslichkeit von Arginin oder der genannten Verbindung gewährleistet ist. Bevorzugt werden Arginin oder die Verbindungen der allgemeinen Formel I in einer Konzentration von 0,1 bis 1,5 mol/l verwendet.

[0009] Als Verbindungen der allgemeinen Formel I werden vorzugsweise Formamid, Acetamid, Harnstoff oder Harnstoffderivate, wie Ethylharnstoff oder Methylharnstoff zum Nährmedium, welches für die Kultivierung der prokaryontischen Zellen verwendet wird, zugesetzt. Arginin kann beispielsweise als Hydrochlorid oder als andere titrierte Form der Base Arginin verwendet werden. Vorzugsweise wird jedoch L-Arginin, besonders bevorzugt die Hydrochloridform von L-Arginin, verwendet.

[0010] In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden dem zur Kultivierung der prokaryontischen Zellen verwendeten Nährmedium (Fermentationsmedium) zusätzlich reduzierende Thiolreagenzien, welche SH-Gruppen enthalten, zugesetzt, wobei die Ausbeute an rekombinant gewonnenem Protein weiter erhöht wird. Vorzugsweise werden 0,1-15 mmol/l Thiolreagenz zugesetzt. Erfindungsgemäß ist unter dem Begriff "Thiolreagenz" entweder ein reduzierendes (reduziertes) Thiolreagenz mit SH-Gruppen oder ein Gemisch von reduzierenden Thiolreagenzien mit SH-Gruppen und oxidierenden Thiolreagenzien mit Disulfidgruppen zu verstehen. Bevorzugte Substanzen sind reduziertes Glutathion (GSH), Cystein, N-Acetylcystein, Cysteamin, β-Mercaptoethanol und āhnliche Verbindungen. Die Thiolreagenzien können sowohl einzeln als auch in Gemischen verwendet werden. Besonders geeignet sind Thiolreagenzien wie beispielsweise Glutathion (GSH), die eine einzige SH-Gruppe pro Molekūl aufweisen. Thiolreagenzien wie Glutathion, sind für die Verbesserung der Ausbeute nativ gefalteter Proteine bei der Expression rekombinanter DNA in prokaryontischen Zellen bekannt (Glockshuber et al., EP-A 0 510 658).

[0011] In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden zusätzlich molekulare Chaperone überexprimiert und cosekretiert. Unter Chaperonen gemäß der Erfindung sind Proteine zu verstehen, die andere, nicht-native Proteine in vivo vor Aggregation schützen und die Ausbildung ihrer nativen Konformation fördern. Molekulare Chaperone werden im Stand der Technik eingesetzt, um Proteine zu stabilisieren und damit vor Aggregation und Inaktivierung zu schützen (Buchner et al., EP-A 0 556 726 A1). Vorzugsweise werden ATP-unabhängige Chaperone des HSP40-Typs (Molmasse ca. 40 kDa) oder ein kleines Hitzeschockprotein (sHSP) verwendet. DnaJ ist ein 40 kDa Hitzeschockprotein, das im Cytoplasma von E. coli vorkommt und Teil des sogenannten Hsp70-Chaperonsystems ist (Bukau, B. & Horwich, A., Cell 92 (1998) 351-366). Zu diesem System gehören außerdem DnaK (Hsp70) und GrpE. Bestimmte Proteine werden durch das DnaK-System in einem ATP-abhängigen Prozeß zur nativen Konformation gefaltet (Schröder et al., EMBO J. 12 (1993) 4137-4144; Langer et al., Nature 356 (1992) 683 -689). Zur Rückfaltung denaturierter Proteine benötigt dieses System zusätzlich ATP. DnaJ schützt in Abwesenheit von DnaK und ATP nicht-native Proteine vor Aggregation und vermittelt einen Faltungs-kompetenten Zustand (Schröder et al., EMBO J. 12 (1993) 4137-4144). Weiterhin bevorzugt ist die Co-Sekretion eines N-terminalen Fragmentes von DnaJ, das die Aminosäuren 1-108 umfaßt und im Folgenden als "J-Domäne" (Kelley, TIBS 23 (1998) 222-227) bezeichnet wird. In diesem Bereich befinden sich die J-Domäne und eine G/F-reiche Domäne, die Wechselwirkungen mit DnaK ausüben (Wall et al., J. Biol. Chem. 270 (1995) 2139-2144). Es wurde gezeigt, daß die Co-Expression von DnaJ im Cytosol zur Erhöhung der Ausbeute an löslichem Protein führen kann (Yokoyama et al., Microbiol. Ferment. Technol. 62 (1998) 1205-1210).

[0012] Hsp25 (z.B. aus der Maus) ist ein Vertreter der kleinen Hitzeschockproteine (Gaestel et al., Eur. J. Biochem. 179 (1989) 209-213), einer Klasse von Chaperonen, die ubiquitär verbreitet ist: Die Molmasse dieser Proteine liegt zwischen 15 und 30 kDa. Bei Hitzeschock werden die sHsps in der Zelle stark angereichert (bis zu 1% des Gesamtzellproteins - Arrigo & Landry (1994), In Morimoto (Hrsg.): The Biology of Heat Shock Proteins and Molecular Chaperones, Cold Spring Harbour Press, 335-373). Wie DnaJ-Proteine besitzen sHsps die Eigenschaft, die Aggregation von nichtnativen Proteinen zu verhindern und diese in einem faltungskompetenten Zustand zu halten (Jakob et al., J. Biol. Chem. 268 (1993) 1517-1520; Ehrsperger et al., EMBO J. 16 (1997) 221-229).

[0013] Der Begriff "Überexpression" gemäß vorliegender Erfindung bedeutet eine Steigerung der Expression der sekretierten Proteine wie z.B. DnaJ- und Hsp25 (vorzugsweise um mindestens 100%) im Vergleich zur Expression im Wildtyp des jeweils verwendeten prokaryontischen Wirtsorganismus. Eine solche Überexpression läßt sich z.B. dadurch erreichen, daß sich die Gene (für das Protein, Chaperon und/oder Signalpeptid) unter Kontrolle eines starken prokaryontischen, vorzugsweise induzierbaren Expressionssignals (z.B. eines lac- oder T7-Promotors oder eines Derivates davon) befinden.

[0014] Das Sekretionskonstrukt für die Überexpression der Polypeptide (Proteine) samt regulatorischer Regionen (Promotor und Terminator) auf der rekombinanten DNA ist vorzugsweise in einen Vektor, welcher zusätzlich die in

5

10

15

20

30

35

40

45

Prokaryonten seltene Arginin-tRNA _{AGA/AGG} codiert integriert oder wird mit einem Vektor, welcher diese tRNA codiert, co-exprimiert (Brinkmann et al., Gene 85 (1989) 109-114). Dies ermöglicht sowohl die Co-Überexpression der jeweiligen Proteine ins bakterielle Periplasma als auch die Transkription der seltenen tRNA^{Arg}_{AGA/AGG}, was eine erhöhte Synthese des gewünschten Proteins im bakteriellen Wirtsorganismus zur Folge hat.

[0015] Unter einer prokaryontischen Signalsequenz im Sinne der Erfindung ist ein Nukleinsäurefragment zu verstehen, welches aus Prokaryonten, vorzugsweise aus gramnegativen Bakterien, abgeleitet ist und das Durchdringen von an das Signalpeptid gebundenen Proteinen durch die inneren bakteriellen Membranen gewährleistet. Dadurch werden die Proteine im Periplasma bzw. im Zellüberstand lokalisiert. Solche Signalsequenzen haben üblicherweise eine Länge von 18 - 30 Aminosäuren und sind beispielsweise beschrieben in Murphy & Beckwith: Export of Proteins to the Cell Envelope in Escherichia coli und in Neidhardt et al. (Hrsg.): Escherichia coli and Salmonella, Second Edition, Vol. 1, ASM Press, Washington, 1996, S. 967-978. Die Abspaltung von bakteriellen Signalsequenzen kann z.B. nach einer Sequenz Ala-X-Ala stattfinden (von Heijne et al., J. Mol. Biol. 184 (1985) 99-105). Die Struktur der bakteriellen Signalpeptidase ist beschrieben in Paetzel et al., Nature 396 (1998) 186-190. Vorzugweise werden Signalsequenzen verwendet, welche durch im Periplasma von prokaryontischen Zellen lokalisierten Proteasen vom gewünschten Protein wieder abgespalten werden. Alternativ kann durch Zugabe solcher Proteasen zum Zellüberstand oder zum isolierten Protein die Abspaltung der Signalsequenz erfolgen.

[0016] Mit dem erfindungsgemäßen Verfahren kann die heterologe Expression einer Vielzahl von eukaryontischen Proteinen wie z.B. Proteasen, Interferone, Proteinhormone, Antikörper oder Fragmenten davon verbessert werden. Besonders geeignet ist das Verfahren für die heterologe Herstellung von Proteinen, die im nativen Zustand mindestens zwei über eine Disulfidbrücke verknüpfte Cysteine enthalten und dann, wenn sie N-terminal keine fusionierte prokaryontische Signalsequenz besitzen, bei der prokaryontischen Expression als unlösliche inclusion bodies entstehen. Besonders geeignet ist das Verfahren für Proteine, die mehr als 5 Disulfidbrücken in nativem Zustand enthalten. Ein solches Protein ist beispielsweise ein rekombinanter Plasminogenaktivator (im folgenden rPA genannt, Martin et al., Cardiovasc. Drug Rev. 11 (1993) 299-311, US-Patent Nr. 5,223,256). rPA besitzt 9 Disulfidbrücken, die im reduzierenden Cytosol von E. coli nicht ausgebildet werden.

[0017] Dabei wird die periplasmatische Lokalisation des Proteins, und gegebenenfalls des Chaperons, durch "operative Verknüpfung" mit einem Signalpeptid zum Durchdringen innerer bakterieller Membranen gewährleistet.

[0018] Bei der Expression eines solchen Plasminogenaktivators stellte sich eine Konzentration von 0,4 mol/l L-Arginin und 5 mmol/l Glutathion (bei Co-Sekretion von DnaJ, J-Domäne, Hsp25 sowie ScFv) bzw. 0,4 mol/l L-Arginin ohne Glutathion (ohne Co-Sekretion von DnaJ) als optimal heraus.

[0019] Zur Gewinnung des sekretorischen rPA-Proteins in funktionaler Form in E. coli wurde das Gen für dieses Protein aus dem Plasmid pA27fd7 (Kohnert et al., Protein Engineering 5 (1992) 93-100) mit gentechnologischen Mitteln an eine prokaryontische Signalsequenz gramnegativer Bakterien, beispielsweise an die Signalsequenz von Pectatlyase B (PelB) von Erwinia amylovora, fusioniert. Die Genfusion wurde durch Klonierung in den Vektor pET20b(+) (Novagen Inc., Madison, USA) hergestellt. Damit unterliegt die Genexpression der Kontrolle des T7-Promotors. Die im Fusionsprotein vorhandene Signalsequenz bewirkt die Sekretion ins Periplasma. Während oder nach der Sekretion wird die Signalsequenz durch eine in der inneren Membran lokalisierte Peptidase abgespalten. Sezerniertes Protein kann dann im Periplasma falten. Die oxidierenden Bedingungen dieses Kompartiments ermöglichen die Ausbildung von Disulfidbrücken. Durch den erfindungsgemäßen Zusatz von niedermolekularen faltungsverbessernden Proteinen und Thiolragenzien im Nährmedium und gleichzeitiger Co-Überexpression von DnaJ, J-Domäne oder Hsp25 im Periplasma gelingt es, die Ausbeute an funktionalen Protein um mehr als das 100-fache zu steigern.

[0020] Weitere Beispiele von erfindungsgemäßen Polypeptiden sind Antikörper oder Antikörperfragmente, beispielsweise ein Single-Chain F_V-Fragment (ScF_v, z.B. gegen das Schilddrüsenstimulierende Hormon (thyroide stimulating hormone, TSH). ScFvs sind verkürzte Antikörper, die nur aus den variablen Abschnitten (F_V) der schweren und leichten Kette eines Antikörpers bestehen, die über einen kurzen (meist Gly₄Ser₃) Linker künstlich fusioniert sind (Hudson, Curr. Opin Biotechnol. 9 (1998) 395-402). ScF_Vs haben normalerweise die gleiche Affinität zum Antigen wie die paternalen Fv-Stränge, können jedoch in E. coli überexprimiert werden. Da sie stabilisierende Intradomänen-Disulfidbrükken besitzen, die essentiell für die Stabilität sind, führt eine Expression im Cytosol meist zur Bildung von Inclusion Bodies (Übersichtsartikel: Shibui et al., Appl. Microbiol. Biotechnol. 37 (1992) 352-357). ScF_Vs können durch Zufallsmutationen und anschließende Phage-Display-Selektion auf Bindung gewünschter Antigene gezielt optimiert werden (Übersichtsartikel: Allen et al., TIBS 20 (1995) 511-516). Durch Zugabe von 5 mM GSH und 0,4 M L-Arginin konnte die Ausbeute an funktionellem ScFv-TSH im Periplasma um das 10-fache und im Medienüberstand um das 40-fache gegenüber einer Kultivierung ohne Zusätze verbessert werden.

[0021] Die folgenden Beispiele, Publikationen, das Sequenzprotokoll und die Abbildungen erläutern die Erfindung, deren Schutzumfang sich aus den Patentansprüchen ergibt, weiter. Die beschriebenen Verfahren sind als Beispiele zu verstehen, die auch noch nach Modifikationen den Gegenstand der Erfindung beschreiben.

35

45

Beschreibung des Sequenzprotokolls

[0022] SEQ ID NO: 1 und 2 zeigen die Sequenz des Teils des Expressionsplasmides pUBS520-pIN-dnaJ. der für das Fusionsprotein aus OmpA-Signalsequenz und DnaJ codiert, zusammen mit den regulatorischen Sequenzen (Promotor, Terminator), die aus pIN III ompA3-dnaJ amplifiziert wurden.

[0023] SEQ ID NO: 3 und 4 zeigen die Sequenz des Teils des Expressionsplasmides pUBS520-pIN-J-Domain, der für das Fusionsprotein aus OmpA-Signalsequenz und J-Domäne codiert, zusammen mit den regulatorischen Sequenzen (Promotor, Terminator), die aus pIN III ompA3-dnaJ amplifiziert wurden.

[0024] SEQ ID NO: 5 und 6 zeigen die Sequenz des Teils des Expressionsplasmides pUBS520-pIN-hsp25, der für das Fusionsprotein aus OmpA-Signalsequenz und Hsp25 codiert, zusammen mit den regulatorischen Sequenzen (Promotor, Terminator), die aus pIN III ompA3-hsp25 amplifiziert wurden.

[0025] SEQ ID NO: 7 und 8 zeigen die Sequenz des Teils des Expressionsplasmides pUBS520-ScFvOx, der für das Fusionsprotein aus PelB-Signalsequenz und ScFvOxazolon codiert, zusammen mit den regulatorischen Sequenzen (Promotor, Terminator), die aus pHEN-ScFv bzw. pIN III ompA3 amplifiziert wurden.

15 [0026] SEQ ID NO: 9 und 10 zeigen die Sequenz des Teils des Expressionsplasmides pET20b(+)-rPA, der für das Fusionsprotein aus PelB-Signalsequenz und rPA codiert.

Beschreibung der Figuren

[0027] Fig. 1 zeigt die Abhängigkeit der Expression von nativem rPA im Periplasma von E. coli bei 5 mM GSH in Abhängigkeit von der L-Argininkonzentration und verschiedener Co-Sekretionskonstrukte.

[0028] Fig. 2 zeigt einen Vergleich der Expression von rPA im Periplasma von E. coli BL21(DE3) bei Co-Sekretion von DnaJ und bei Zusatz von GSH und verschiedenen niedermolekularen faltungsverbessernden Stoffen zum Medium.

[0029] Fig. 3 zeigt eine schematische Darstellung des Expressionsplasmides pUBS520-pIN-dnaJ.

[0030] Fig. 4 zeigt eine schematische Darstellung des Expressionsplasmides pUBS520-pIN-J-Domain.

[0031] Fig. 5 zeigt eine schematische Darstellung des Expressionsplasmides pUBS520-pIN-hsp25.

[0032] Fig. 6 zeigt eine schematische Darstellung des Expressionsplasmides pUBS520-ScFvOx.

[0033] Fig. 7 zeigt eine schematische Darstellung des Expressionsplasmides pET20b(+)-rPA.

[0034] Fig. 8 zeigt die Abhängigkeit der Expression von funktionellem ScFv-TSH von der Konzentration von L-Arginin und GSH im Kulturmedium.

[0035] (Werte wurden als relative Mengen bezüglich der Probe ohne Medienzusätze (:1) berechnet.)

[0036] Fig. 9 zeigt die Abhängigkeit der Expression von funktionellem ScFv-TSH von der Konzentration von L-Arginin und GSH im Periplasma von E. coli.

[0037] (Werte wurden als relative Mengen bezüglich der Probe ohne Medienzusätze (:1) berechnet.)

Allgemeines:

30

40

[0038] Zur periplasmatischen Überexpression von DnaJ, der J-Domäne sowie Hsp25 in E. coli wurde die DNA, die für diese Proteine codiert, mit gentechnologischen Mitteln an die Signalsequenz des Outer Membrane Proteins A (OmpA) von E. coli fusioniert und die Fusion auf einem rekombinanten Plasmid unter Kontrolle des lac-lpp-Promotors in E. coli exprimiert. Somit werden die Polypeptidkette von DnaJ und Hsp25 ins Periplasma des prokaryontischen Wirtsorganismus transportiert und dort nativ gefaltet. Die Lokalisation und native Faltung konnte dabei durch limitierte Proteolyse mit Trypsin und Western Blot nachgewiesen werden.

45 Beispiel 1:

Konstruktion des Expressionsplasmides pIN III omp A3-dnaJ

[0039] Molekulargenetische Techniken beruhten auf Ausubel et al. (Hrsg.), J. Wiley & Sons, 1997, Curr. Protocols of Molecular Biology. Oligonucleotide wurden von den Firmen MWG Biotech, Ebersberg oder GIBCO Life Sciences, Eggenstein, DE bezogen.

[0040] Das Gen, das für DnaJ codiert, Gene Bank Accession No. M 12565, wurde über die Restriktionsschnittstellen EcoRI und BamHI in das Expressionsplasmid pIN III ompA3 (Ghayreb et al., EMBO J. 3 (1984) 2437-2442) kloniert. Die Sequenz des klonierten PCR-Fragments wurde durch Didesoxy-Sequenzierung (LiCor DNA-Sequencer 4000, MWG Biotech, Ebersberg) überprüft. Das resultierende Plasmid wurde pIN III ompA3-dnaJ bezeichnet. Die Sequenz des periplasmatisch exprimierten DnaJ unterscheidet sich von dem Wildtyp-Protein dahingehend, daß die Polypeptidsequenz mit Gly-IIe-Pro beginnt statt mit Met, es fand somit eine Verlängerung des N-Terminus um 2 Aminosäuren statt. DnaJ befindet sich damit unter Kontrolle des lac-Ipp-Promotors, der mit IPTG (IsopropyI-β-D-Thiogalactosid)

induziert wird.

Beispiel 2:

5 Konstruktion des Expressionsplasmides pUBS520-plN-dnaJ

[0041] Mittels PCR wurde der Bereich aus dem Plasmid pIN III ompA3-dnaJ amplifiziert, der für das lac-lpp Operon, die Signalsequenz, das dnaJ-Gen und die Terminator-Region des Operons codiert (SEQ ID NO: 1). Das PCR-Produkt wurde mit der Restriktionsendonuclease BgllI geschnitten und in den mit der Restriktionsendonuclease BamHI linearisierten Vektor pUBS520 kloniert. Das resultierende Plasmid wurde pUBS520-pIN-dnaJ bezeichnet (Fig. 3).

Beispiel 3:

10

15

20

30

35

Konstruktion des Expressionsplasmides pUBS 520-plN-J-Domain

[0042] Mittels des QuikChange-Mutagenese-Systems (Promega, Mannheim, DE) wurden im Plasmid pUBS 520-pIN-dnaJ nach dem Nucleotid 324 zwei Stop-Codone eingefügt, so daß nur noch die ersten 108 Aminosäuren exprimiert werden. Die Sequenz des mutagenisierten Bereiches wurde durch Didesoxy-Sequenzierung (LiCor DNA-Sequencer 4000, MWG Biotech, Ebersberg) und die Expression des verkürzten Proteinfragments durch Western Blotting und Detektion mit einem Anti-DnaJ-Antikörper nachgewiesen. Das entstandene Plasmid wurde mit pUBS 520-pIN-J-Domain (Fig. 4) bezeichnet.

Beispiel 4:

25 Konstruktion des Expressionsplasmides pIN III ompA3-hsp25

[0043] Das Gen, das für Hsp25 codiert, Gene Bank Accession No.: L 07577, wurde über die Restriktionsschnittstellen EcoRl und BamHl in das Expressionsplasmid plN III ompA3 (Ghayreb *et al.*, EMBO J. 3 (1984) 2437-2442) kloniert. Die Sequenz des klonierten PCR-Fragments wurde durch Didesoxy-Sequenzierung (LiCor DNA-Sequencer 4000, MWG Biotech, Ebersberg) überprüft. Das resultierende Plasmid wurde plN III ompA3-hsp25 bezeichnet. Die Sequenz des periplasmatisch exprimierten Hsp25 unterscheidet sich von dem Wildtyp-Protein dahingehend, daß die Polypeptidsequenz mit Gly-IIe-Leu beginnt statt mit Met, es fand somit eine Verlängerung des N-Terminus um 2 Aminosduren statt. Hsp25 befindet sich damit unter Kontrolle des lac-lpp-Promotors, der mit IPTG (Isopropyl-β-D-Thiogalactosid) induziert wird.

Beispiel 5:

Konstruktion des Expressionsplasmides pUBS520-plN-hsp25

[0044] Mittels PCR wurde der Bereich aus dem Plasmid pIN III ompA3-hsp25 amplifiziert, der für das lac-lpp Operon, die Signalsequenz, das hsp25-Gen und die Terminator-Region des Operons codiert (SEQID NO: 5). Das PCR-Produkt wurde mit der Restriktionsendonuclease BgllI geschnitten und in den mit der Restriktionsendonuclease BamHI linearisierten Vektor pUBS520 kloniert. Das resultierende Plasmid wurde pUBS520-pIN-hsp25 bezeichnet (Fig. 5).

45 Beispiel 6:

Konstruktion des Expressionsplasmides pUBS520-ScFvOx

[0045] Als negativ-Kontrolle wurde die Co-Expression eines Single-Chain-Fv-Fragmentes, das gegen das Hapten Oxazolon gerichtet ist (ScFvOxazolon; Fiedler und Conrad, Bio/Technology 13 (1995) 1090-1093 untersucht, das keine Chaperon-Eigenschaften besitzt.

[0046] Mittels PCR wurde der Bereich aus dem Plasmid pHEN-ScFvOx amplifiziert, der für den lac-Promotor, die Signalsequenz pelB und das scfvox-Gen codiert. In einer zweiten PCR wurde der Bereich aus dem Plasmid plN III ompA3 amplifiziert, der für den lpp-Terminator codiert. In einer anschließenden PCR wurden die beiden Fragmente fusioniert. Das so entstandene PCR-Produkt (SEQ ID NO: 7) wurde mit der Restriktionsendonuclease BglII geschnitten und in den mit der Restriktionsendonuclease BamHI linearisierten Vektor pUBS520 kloniert. Das resultierende Plasmid wurde pUBS520-ScFvOx bezeichnet (Fig. 6).

Beispiel 7:

Konstruktion des Expressionsplasmides pET20b(+)-rPA

[0047] Mit Hilfe der PCR-Methode wurde das Gen eines Plasminogenaktivators (rPA) aus dem Plasmidvektor pA27fd7 (Kohnert et al., Protein Engineering 5 (1992) 93-100) amplifiziert. Das PCR-Produkt wurde mit den Restriktionsendonucleasen Ncol und BamHI gespalten und in den Plasmidvektor pET20b(+) (Novagen Inc., Madison, USA) kloniert. Das Plasmid codiert für ein Fusionsprotein, welches aus der Signalsequenz von PelB (Pectatlyase aus Erwinia amylovora) und rPA besteht und die Sekretion von rPA ins Periplasma Didesoxy-Sequenzierung (LiCor DNA-Sequencer 4000, MWG Biotech, Ebersberg, DE) überprüft. Das Konstrukt wurde als pET20b(+)-rPA bezeichnet (Fig. 7). In dem Plasmid wird rPA unter Kontrolle des T7-Promotors exprimiert, wobei die T7-RNA-Polymerase im Stamm E. coli BL21(DE3) der Kontrolle des lacUV5-Promotors unterliegt. Die Induktion erfolgt durch Zugabe von IPTG. Das periplasmatisch exprimierte rPA unterscheidet sich von dem bei Kohnert et al beschriebenen Plasminogenaktivator durch Austausch der zweiten Aminosäure (Ser) gegen Ala.

Beispiel 8:

10

15

20

25

30

35

40

Funktionale Expression von rPA im Periplasma von *E. coli* unter Verwendung der Medienzusätze Glutathion und L-Arginin

[0048] Eine stationare Übernachtkultur von E. coli BL21(DE3) (Studier & Moffat, J. Mol. Biol. 189 (1986) 113-130), die mit pET20p(+)-rPA und pUBS520-pIN-dnaJ transformiert wurde (Co-Expression von DnaJ), eine Übernachtkultur von E. coli BL21(DE3) die mit pET20b(+)-rPA und pUBS520-pIN-J-Domain transformiert wurde (Co-Expression der J-Domäne), eine Übernachtkultur von E. coli BL21(DE3), die mit pET20b(+)-rPA und pUBS520-pIN-hsp25 transformiert wurde (Co-Expression von Hsp25), eine Übernachtkultur von E. coli BL21(DE3), die mit pET20b(+)-rPA und pUBS520-ScFvOx transformert wurde (Co-Expression von ScFvOx), eine Übernachtkultur von E. coli BL21(DE3), die mit pET20b(+)-rPA und aUBS520 transformiert wurde bzw. eine Übernachtkultur von E. coli BL21(DE3), die mit pET20b (+) und pUBS520 transformert wurde (Kontrollkultur), wurde im Verhältnis 1:50 in 100 ml LB-Medium mit Ampicillin (100 μg/ml) und Kanamycin (50 μg/ml, Fluka Chemica, Neu-Ulm, DE) verdünnt und bei 24°C und 170 rpm geschüttelt. Nach 3 h Wachstum wurden ie 5ml der Kultur zu je 10 ml LB-Medium mit o.g. Mengen an Ampicillin und Kanamycin und verschiedenen Konzentrationen von GSH (0-10 mM, Fluka, DE) und L-Arginin HCI (0-0,4 M, ICN) gegeben und mit jeweils 1mM IPTG (IsopropyI-β-D-Thiogalactosid, AppliChem, Darmstadt, DE) induziert. Die Zellen wurden weitere 21 h bei 24 °C und 170 rpm geschüttelt und nach Bestimmung der OD600 eine 1 ml-Probe genommen. Diese 1ml-Zellproben wurden nach einer modifizierten Vorschrift nach Jacobi et al. (J. Biol. Chem. 272 (1997) 21692-21699) in 2 ml-Eppendorf-Reaktionsgeläßen fraktioniert. Im Detail wurde das Zellpellet mit 500 μl Fraktionierungspuffer (150 mM NaCl (Roth GmbH), 50 mM Tris/HCl (Roth GmbH, 5mM EDTA (Biomol) und 1 mg/ml Polymyxin-B-Sulfat (Sigma), pH 7,5) versetzt, 1 h bei 10 °C auf einem Eppendorf-Thermoschüttler bei 1400 rpm geschüttelt und dann 15 min bei 14 000 rpm in einer auf 10°C gekühlten Eppendorf-Mikrozentrifuge zentrifugiert, so daß eine Fraktion mit den löslichen periplasmatischen Proteinen (Überstand) und eine Restfraktion (Pellet) entstand.

[0049] Die Bestimmung von der Aktivität von rPA erfolgte im wesentlichen nach der Methode von Verheijen et al. Thromb. Haemostasis 48 (1982) 266-269).

[0050] Alle ermittelten rPA-Konzentrationen in den Zellextrakten wurden auf Zellsuspensionen von OD₆₀₀=1 normiert, um den Fehler, der bei der Messung in verschiedenen Puffern auftritt, zu korrigieren.

45 Beispiel 9:

Funktionale Expression von rPA im Periplasma von E. *coll* unter Verwendung von Gemischen aus Glutathion mit Formamid, Methylformamid, Acetamid, Methylharnstoff sowie Ethylharnstoff als Medienzusätze

[0051] Eine stationäre Übernachtkultur von E. coli BL21(DE3), die mit pET20b(+)-rPA und pUBS520-pIN-dnaJ transformiert wurde (Co-Expression von DnaJ), wurde wie in Beispiel 8 angegeben kultiviert. Zusätzlich wurden Verbindungen der Formel I und jeweils 5 mM Glutathion dem Kulturmedium zugesetzt. Eine Kontrollkultur wurde in LB ohne Zusätze kultiviert. Die Verbindungen der Formel I und ihre eingesetzte Konzentration sind in Tabelle 3 aufgeführt. Die Probenaufbereitung, Periplasmafraktionierung und der Enzymtest auf tPA-Aktivität wurden wie in Beispiel 8 ausgeführt.
 [0052] Die Ergebnisse zur rPA Expression zeigen die Tabellen 1 und 2 sowie die Figuren 1 und 2.

50	40 45	35	25 30	20	10	5
			Tabelle 1:		٠	
	Effekt von L-Arginin ir	m Fermentationsme	rginin im Fermentationsmedium auf die Ausbildung von nativem rPA im Periplasma	ng von nativem rPA	im Periplasma	
o-sekretiertes Protein	OM L-Arginin	rginin	0,2 M L-Arginin	\rginin	0,4 M L-Arginin	Arginin
	rPA in ng/ml*OD ₆₀₀	Stimulationsfaktor	rPA in ng/ml*OD ₆₀₀	Stimulationsfaktor	rPA in ng/ml*OD ₆₀₀	Stimulationsfaktor
	0,030 ± 0,001	58	0,044 ± 0,090	20	0,170 ± 0,005	23
DnaJ	0,197 ± 0,019	59	0,730 ± 0,150	27	3,978 ± 1,000	18
J-Domäne	200'0 ∓ 666'0	16	0,625 ± 0,213	17	4,398 ± 0,165	15
Hsp25	0,053 ± 0,002	27	0,140 ± 0,001	17	2,850 ± 0,214	17
ScFvOxazolon	0,041 ± 0,003	13	0,144 ± 0,047	8	0,713±0,113	10

[0053] Die Kultivierung erfolgte in Gegenwart von 5 mM GSH.

Tabelle 2:

Zusatz	Konzentration im	Menge rPA in ng/ml*OD ₆₀₀	Stimulationsfaktor	OD ₆₀₀ bei Zellernte	Konzentration GSH im Medium
	Kulturmedium	im Periplasma		·	
ohne Zusätze	-	0,153	24	4,52	0 mM
Arginin	0,2 M	0,560	21	4,45	5 mM
	0,4 M	3,880	. 17	1,78	5 mM
Formamid	0,6 M	0,208	17	4,96	5 mM
	1,0 M	0,219	10	4,71	5 mM
Methylformamid	0,3 M	0,141	15	4,57	5 mM
	0,6 M	0,790	17	1,04	5 mM
Acetamid	0,6 M	0,150	24	5,34	5 mM
	1,0 M	1,321	16	1,57	5 mM
Methylharnstoff	0,3 M	0,168	24	4,67	5 mM
	0,6 M	0,830	22	4,59	5 mM
Ethylharnstoff	0,3 M	0,266	23	4,20	5 mM
	0,6 M	1,209	17	0,82	5 mM

Beispiel 10:

5

10

15

20

25

30

35

40

50

55

Expression eines funktionellen Single-Chain-Fv-Fragmentes unter Zusatz von reduziertem Glutathion und L-Arginin zum Kulturmedium

[0054] Eine stationäre Übernachtkultur von E. coli BL21(DE3), die mit einem Plasmid, welches für ein Single-chain-F_v-Fragment eines anti-TSH Antikörpers codiert und pUBS520 transformiert wurde, wurde im Verhältnis 1:50 in 100 ml LB-Medium mit Ampicillin (100 μg/ml) und Kanamycin (50 μg/ml, Fluka Chemica, Neu-Ulm) verdünnt und bei 24°C und 170 rpm geschüttelt. Nach 3 h Wachstum wurden je 5ml der Kultur zu je 10 ml LB-Medium mit o.g. Mengen an Ampicillin und Kanamycin und verschiedenen Konzentrationen von GSH (0-10 mM, Fluka) und L-Arginin HCI (0-0,4 M, ICN) gegeben und mit jeweils 1mM IPTG (Isopropyl-β-D-Thiogalactosid, AppliChem, Darmstadt) induziert. Die Zellen wurden weitere 21 h bei 24 °C und 170 rpm geschüttelt und nach Bestimmung der OD₆₀₀ eine 1 ml-Probe genommen. Diese 1 ml-Zellproben wurden nach einer modifizierten Vorschrift nach Jacobi et al. (J. Biol. Chem. 272 (1997) 21692-21699) in 2 ml-Eppendorf-Reaktionsgefäßen fraktioniert (s. Beispiel 8). Weiterhin wurde eine Probe des Medienüberstandes (1 ml) genommen. Zur Analyse der Proben auf funktionellen Antikörpern wurden sie einem ELISA-Test unterzogen.

[0055] Der Zusatz von L-Arginin und GSH zum Kulturmedium im Falle der Expression von ScFv-TSH hatte ebenfalls einen positiven Einfluß auf die Ausbeute an nativem ScFv-TSH im Periplasma und im Medium-Überstand von E. coli. Bei Zugabe von 0,4 M L-Arginin und 5 mM GSH konnte die Menge an mittels ELISA detektiertem Antikörperfragment im Medien-Überstand um das 39-fache (Fig. 8) und in der periplasmatischen Fraktion um das 10-fache (Fig. 9) gegenüber einer Kultivierung ohne Medienzusätze gesteigert werden.

Referenzliste

[0056]

Allen et al., TIBS 20 (1995) 511-516

Arrigo & Landry (1994) In Morimoto (Hrsg.): The Biology of Heat Shock Proteins and Molecular Chaperones, Cold Spring Harbour Press, 335-373

Ausubel et al. (Hrsg.) Current Protocols in Molecular Biology, J. Wiley & Sons, 1997 Berges et al., Appl. Environ. Microbiol. 62 (1996) 55-60

	Brinkmann et al., Gene 85 (1989) 109 - 114
	Brinkmann et al., Proc. Natl. Acad. Sci USA 89 (1992) 3075-3079
	Buchner & Rudolph, Bio/Technology 9 (1991)157-162
•	Bukau, B. & Horwich, A., Cell 92 (1998) 351-366
5	Ehrsperger et al., EMBO J. 16 (1997) 221-229
	EP-A 0 510 658
	EP-A 0 556 726
	Fiedler und Conrad, Bio/Technology 13 (1995) 1090 - 1093
	Gaestel et al., Eur. J. Biochem. 179 (1989) 209-213
10	Ghayreb et al., EMBO J. 3 (1984) 2437-2442
	Goloubinoff et al., Nature 337 (1989) 44-47
	Hockney, TIBTECH 12 (1994) 456- 463
	Hudson, Curr. Opin Biotechnol. 9 (1998) 395-402
	Jacobi et al. (J. Biol. Chem. 272 (1997) 21692-21699
15	Jakob et al., J. Biol. Chem. 268 (1993) 1517-1520
	Kelley, TIBS 23 (1998) 222-227
	Knappik et al., Bio/Technology 11(1993) 77-83
	Kohnert et al., Protein Engineering 5 (1992) 93-100
	Langer et al., Nature 356 (1992) 683 - 689
20	Lee & Olins, J. Biol. Chem. 267 (1992) 2849-2852
	Lin & Traugh, Prot. Express. Purif. 4 (1993) 256-264).
	Martin et al., Cardiovasc. Drug Rev. 11(1993) 299-311
	Murphy & Beckwith: Export of Proteins to the Cell Envelope in Escherichia coli
	Neidhardt et al. (Hrsg.): Escherichia coli and Salmonella, Second Edition, Vol. 1, ASM Press, Washington, 1996
25	S. 967-978
	Paetzel et al., Nature 396(1998) 186- 190
	Perez-Perez et al., Biochem. Biophys. Res. Commun. 210 (1995) 524-529
	Qiu et al., Appl. Environm. Microbiol. 64 (1998) 4891 - 4896
	Roman et al., Proc. Natl. Acad. Sci. USA 92 (1995) 8428-8432
30	Sato et al., Biochem. Biophys. Res. Commun. 202 (1994) 258-264
	Schmidt et al., Prot. Engin. 11(1998) 601- 607
	Schröder et al., EMBO J. 12 (1993) 4137-4144
	Shibui et al., Appl. Microbiol. Biotechnol. 37 (1992) 352 - 357
	Studier & Moffat, J. Mol. Biol. 189 (1986) 113-130
35	Thomas et al., Appl. Biochem. Biotechnol. 66 (1997) 197-238
	US-Patent Nr. 5,223,256
	US-Patent Nr. 5,593,865
	Verheijen et al. Thromb. Haemostasis 48 (1982) 266-269
	Wall et al., J. Biol. Chem. 270 (1995) 2139-2144
40	Yokoyama et al., Microbiol. Ferment. Technol. 62 (1998) 1205-1210

SEQUENZPROTOKOLL

5	<110>	F. Hoffmann-La Roche AG	
	<120>	Verfahren zur Herstellung von natuerlich gefalteten und sekretierten Proteinen	
10 .	<130>	Case 20379	
	<160>	10	
	<210>	1	
15	<211>	1881	
	<212>	DNA	
	<213>	E. coli	
	<220>		
20	<221>	CDS	
	<222>	(392)(1591)	
	<400>	1	
25	TAGGCGTATC	ACGAGGCCCT TTGGATAACC AGAAGCAATA AAAAATCAAA TCGGATTTCA	60
	CTATATAATC	TCACTTTATC TAAGATGAAT CCGATGGAAG CATCCTGTTT TCTCTCAATT	120
	TTTTTATCTA	AAACCCAGCG TTCGATGCTT CTTTGAGCGA ACGATCAAAA ATAAGTGCCT	180
30			
	TCCCATCAAA .	AAAATATTCT CAACATAAAA AACTTTGTGT AATACTTGTA ACGCTACATG	240
	GAGATTAACT	CAATCTAGCT AGAGAGGCTT TACACTTTAT GCTTCCGGCT CGTATAATGT	300
35	GTGGAATTGT	GAGCGGATAA CAATTTCACA CAGGAAACAG CTATGACCAT GATTACGGAT	360
	maxamaaxxa		
	TCACTGGAAC	TCTAGATAAC GAGGGCAAAA A ATG AAA AAG ACA GCT ATC GCG	412
		Met Lys Lys Thr Ala Ile Ala 1 5	
40			
,,,	ATT GCA GTG	GCA CTG GCT GGT TTC GCT ACC GTA GCG CAG GCC GGA ATT	460
	Ile Ala Val	Ala Leu Ala Gly Phe Ala Thr Val Ala Gln Ala Gly Ile	
	10	15 20	
	CCA GCT AAG	CAA GAT TAT TAC GAG ATT TTA GGC GTT TCC AAA ACA GCG	
45	Pro Ala Lys	Gln Asp Tyr Tyr Glu Ile Leu Gly Val Ser Lys Thr Ala	508
	25	30 35	
	a		
	GAA GAG CGT	GAA ATC AGA AAG GCC TAC AAA CGC CTG GCC ATG AAA TAC	556
50	40	Glu Ile Arg Lys Ala Tyr Lys Arg Leu Ala Met Lys Tyr	
		45 50 55	
	CAC CCG GAC	CGT AAC CAG GGT GAC AAA GAG GCC GAG GCG AAA TTT AAA	604
	His Pro Asp	Arg Asn Gln Gly Asp Lys Glu Ala Glu Ala Lys Phe Lys	004
55		60 65 70	

														AAA Lys 85			652
5														GGC Gly			700
10														TTT Phe			748
15														CGT Arg			796
20	Arg	Gly	Ala	Asp	Leu 140	Arg	Tyr	Asn	Met	Glu 145	Leu	Thr	Leu	GAA Glu	Glu 150	Ala	844
25	_													GAA Glu 165			892
20														CCG Pro			940
30	Суѕ	Pro 185	Thr	Cys	His	Gly	Ser 190	Gly	Gln	Val	Gln	Met 195	Arg	CAG Gln	Gly	Phe	988
35	Phe 200	Ala	Val	Gln	Gln	Thr 205	Cys	Pro	His	Cys	Gln 210	Gly	Arg	GGT Gly	Thr	Leu 215	1036
40														GTT Val			1084
	AGC Ser	AAA Lys	ACG Thr	CTG Leu 235	TCC Ser	GTT Val	AAA Lys	ATC Ile	CCG Pro 240	GCA Ala	GGG Gly	GTG Val	GAC Asp	ACT Thr 245	GGA Gly	GAC Asp	1132
45														GGC Gly			1180
50														CCG Pro			1228
55		Arg												AAC Asn			1276

	ATG GCG Met Ala	GCG Ala	CTG Leu	GGT Gly 300	GGC Gly	GAA Glu	ATC Ile	GAA Glu	GTA Val 305	CCG Pro	ACC Thr	CTT Leu	GAT Asp	GGT Gly 310	CGC Arg	1324
	GTC AAA Val Lys	CTG Leu	AAA Lys 315	GTG Val	CCT Pro	GGC Gly	GAA Glu	ACC Thr 320	CAG Gln	ACC Thr	GGT. Gly	AAG Lys	CTA Leu 325	TTC Phe	CGT Arg	1372
	ATG CGC Met Arg	GGT Gly 330	AAA Lys	GGC Gly	GTC Val	AAG Lys	TCT Ser 335	GTC Val	CGC Arg	GGT Gly	GGC Gly	GCA Ala 340	CAG Gln	GGT Gly	GAT Asp	1420
	TTG CTG Leu Leu 345	TGC Cys	CGC Arg	GTT Val	GTC Val	GTC Val 350	GAA Glu	ACA Thr	CCG Pro	GTA Val	GGC Gly 355	CTG Leu	AAC Asn	GAA Glu	AGG Arg	1468
	CAG AAA Gln Lys 360	CAG Gln	CTG Leu	CTG Leu	CAA Gln 365	GAG Glu	CTG Leu	CAA Gln	GAA Glu	AGC Ser 370	TTC Phe	GGT Gly	GGC Gly	CCA Pro	ACC Thr 375	1516
***	GGC GAG Gly Glu	CAC His	AAC Asn	AGC Ser 380	CCG Pro	CGC Arg	TCA Ser	AAG Lys	AGC Ser 385	TTC Phe	TTT Phe	GAT Asp	GGT Gly	GTG Val 390	AAG Lys	1564
4	AAG TTT Lys Phe	TTT Phe	GAC Asp 395	GAC Asp	CTG Leu	ACC Thr	CGC Arg	TAA * 400	GGAT	rccgo	SCT (GAGC#	ACGA	AC.		1611
20	GTGAACG	CAA :	rgcgi	TCCC	SA CC	TTC	AGGCT	r GCI	CAAAC	SATG	ACGO	AGCI	CG 1	rgct <i>i</i>	AACCAG	1671
	CGTCTGG	ACA A	ACATO	GCT	AC TA	TAAL	ACCG	AAC	TAAT	TAGT	ACCI	GTGA	AG 1	GAA	AAATGG	1731
25	CGCACAT	TGT (GCGAC	CATTI	T TI	TTGT	CTG	CGI	TTAC	CCGC	TACT	GCGT	CA C	GCGT	TAACAT	1791
35	ATTCCCT	rgc :	rctgo	STTCA	AC CA	TTCI	rgcgc	TGA	CTCI	ACT	GAAG	GCGC	r ta	GCTC	GCTGC	1851
	GGGAGTT	GCT (CCACI	GCTC	A CC	GAAA	ACCGG	3							-	1881
40															•	
45	<210><211><212><213>		2 400 PRT E. c	oli												
	<400>		2						•							
50	Met Lys 1	Lys	Thr	Ala 5	Ile	Ala	Ile	Ala	Val 10	Ala	Leu	Ala	Gly	Phe 15	Ala	
	Thr Val	Ala	Gln 20	Ala	Gly	Ile	Pro	Ala 25	Lys	Gln	Asp	Tyr	Tyr 30	Glu	Ile	
55	Leu Gly	Val 35	Ser	Lys	Thr	Ala	Glu 40	Glu	Arg	Glu	Ile	Arg 45	Lys	Ala	Tyr	

	Lys	Arg 50	Leu	Ala	Met	Lys	Tyr 55	His	Pro	Asp	Arg	Asn 60	Gln	Gly	Asp	Lys
5	Glu .65	Ala	Glu	Ala	Lys	Phe 70	Lys	Glu	Ile	Lys	Glu 75	Ala	Tyr	Glu	Val	Leu 80
	Thr	Asp	Ser	Gln	Lys 85	Arg	Ala	Ala	Tyr	Asp 90	Gln	Tyr	Gly	His	Ala 95	Ala
10	Phe	Glu	Gln	Gly 100	Gly	Met	Gly	Gly	Gly 105	Gly	Phe	Gly	Gly	Gly 110	Ala	Asp
15	Phe	Ser	Asp 115	Ile	Phe	Gly	Asp	Val 120	Phe	Gly	Asp	Ile	Phé 125	Gly	Gly	Gly
	Arg	Gly 130	Arg	Gln	Arg	Ala	Ala 135	Arg	Gly	Ala	qaA	Leu 140	Arg	Tyr	Asn	Met
20	Glu 145	Leu	Thr	Leu	Glu	Glu 150	Ala	Val	Arg	Gly	Val 155	Thr	Lys	Glu	Ile	Arg 160
	Ile	Pro	Thr	Leu	Glu 165	Glu	Cys	Asp	Val	Cys 170	His	Gly	Ser	Gly	Ala 175	Lys
25	Pro	Gly	Thr	Gln 180	Pro	Gln	Thr	Cys	Pro 185	Thr	Суз	His	Gly	Ser 190	Gly	Gln
30	Val	Gln	Met 195	Arg	Gln	Gly	Phe	Phe 200	Ala	Val	Gln	Gln	Thr 205	Cys	Pro	His
	Cys	Gln 210	Gly	Arg	Gly	Thr	Leu 215	Ile	Lys	Asp	Pro	Суs 220	Asn	Lys	Cys	His
35	Gly 225	His	Gly	Arg	Val	Glu 230	Arg	Ser	Lys	Thr	Leu 235	Ser	Val	Lys	Ile	Pro 240
	Ala	Gly	Val	Asp	Thr 245	Gly	Asp	Arg	Ile	Arg 250	Leu	Ala	Gly	Glu	Gly 255	Glu
40			Glu	260					265					270		
	Val	Lys	Gln 275	His	Pro	Ile	Phe	Glu 280	Arg	Glu	Gly	Asn	Asn 285	Leu	Tyr	Cys
45	Glu	Val 290	Pro	Ile	Asn	Phe	Ala 295	Met	Ala	Ala	Leu	Gly 300	Gly	Glu	Ile	Glu
50	Val 305	Pro	Thr	Leu	Asp	Gly 310		Val	Lys	Leu	Lys 315	Val	Pro	Gly	Glu	Thr 320
	Gln	Thr	Gly	Lys	Leu 325	Phe	Arg	Met	Arg	Gly 330	Lys	Gly	Vаl	Lys	Ser 335	Val
55	Arg	Gly	Gly	Ala 340		Gly	Asp	Leu	Leu 345	Cys	Arg	Val	Val	Val 350	Glu	Thr

	Pro Val Gly Leu Asn Glu Arg Gln Lys Gln Leu Leu Gln Glu Leu Gln 355 360 365	
5	Glu Ser Phe Gly Gly Pro Thr Gly Glu His Asn Ser Pro Arg Ser Lys 370 375 380	
. 10	Ser Phe Phe Asp Gly Val Lys Lys Phe Phe Asp Asp Leu Thr Arg * 385 390 395 400	
15	<210> 3 <211> 1881 <212> DNA <213> E. coli	
20	<220> <221> CDS <222> (392)(790) <400> 3	
25	TAGGCGTATC ACGAGGCCCT TTGGATAACC AGAAGCAATA AAAAATCAAA TCGGATTTCA	60
	TITTED TOTA AND COCACO TROCCATOCOTTO CONTROL C	120 180
30		240
	GTGGAATTGT CACCCCATAA CAATTTCACA CACCAAAAA	300
<i>35</i>	TCACTGGAAC TCTACATAAC CACGGGAAAA A AMG AAA AAA	360 412
	1 5	
40	ATT GCA GTG GCA CTG GCT GGT TTC GCT ACC GTA GCG CAG GCC GGA ATT Ile Ala Val Ala Leu Ala Gly Phe Ala Thr Val Ala Gln Ala Gly Ile 10 15 20	460
45	CCA GCT AAG CAA GAT TAT TAC GAG ATT TTA GGC GTT TCC AAA ACA GCG Pro Ala Lys Gln Asp Tyr Tyr Glu Ile Leu Gly Val Ser Lys Thr Ala 25 30 35	508
	GAA GAG CGT GAA ATC AGA AAG GCC TAC AAA CGC CTG GCC ATG AAA TAC Glu Glu Arg Glu Ile Arg Lys Ala Tyr Lys Arg Leu Ala Met Lys Tyr 40 45 50 55	556
50	CAC CCC CAC CCT AND CAG CCC CAG AND CAG TO THE	604

15

					TCG CAA AAA CGT GCG Ser Gln Lys Arg Ala 85	652
	GCA TAC GAT Ala Tyr Asp 90	Gln Tyr G	GT CAT GCT Ly His Ala 95	GCG TTT GAG Ala Phe Glu	CAA GGT GGC ATG GGC Gln Gly Gly Met Gly 100	700
	GGC GGC GGT Gly Gly Gly 105	TTT GGC GG	GC GGC GCA ly Gly Ala 110	GAC TTC AGC Asp Phe Ser	GAT ATT TTT GGT GAC Asp Ile Phe Gly Asp 115	748
		Asp Ile Pl		GGA CGT GGT Gly Arg Gly 130	CGT TAA TAG Arg * *	790
	GCGGCGCGCG	GTGCTGATTT	ACGCTATAAC	: ATGGAGCTCA	CCCTCGAAGA AGCTGTACGT	850
٠	GGCGTGACCA	AAGAGATCCG	CATTCCGACT	CTGGAAGAGT	GTGACGTTTG CCACGGTAGC	910
	GGTGCAAAAC	CAGGTACACA	GCCGCAGACT	TGTCCGACCT	GTCATGGTTC TGGTCAGGTG	970
	CAGATGCGCC	AGGGATTCTT	CGCTGTACAG	CAGACCTGTC	CACACTGTCA GGGCCGCGGT	1030
	ACGCTGATCA	AAGATCCGTG	CAACAAATGT	CATGGTCATG	CTCCTCTTGA GCGCAGCAAA	. 1090
	ACGCTGTCCG	TTAAAATCCC	GGCAGGGGTG	GACACTGGAG	ACCGCATCCG TCTTGCGGGC	1150
	GAAGGTGAAG	CGGGCGAGCA	TGGCGCACCG	GCAGGCGATC	TGTACGTTCA GGTTCAGGTT	1210
	AAAĊAGCACC	CGATTTTCGA	GCGTGAAGGC	AACAACCTGT	ATTGCGAAGT CCCGATCAAC	1270
	TTCGCTATGG	CGGCGCTGGG	TGGCGAAATC	GAAGTACCGA	CCCTTGATGG TCGCGTCAAA	1330
	CTGAAAGTGC	CTGGCGAAAC	CCAGACCGGT	· AAGCTATTCC	GTATGCGCGG TAAAGGCGTC	1390
	AAGTCTGTCC	GCGGTGGCGC	ACAGGGTGAT	TTGCTGTGCC	GCGTTGTCGT CGAAACACCG	1450
	GTAGGCCTGA .	ACGAAAGGCA	GAAACAGCTG	CTGCAAGAGC	TGCAAGAAAG CTTCGGTGGC	1510
	CCAACCGGCG	AGCACAACAG	CCCGCGCTCA	AAGAGCTTCT	TTGATGGTGT GAAGAAGTTT	1570
	TTTGACGACC	TGACCCGCTA	AGGATCCGGC	TGAGCAACGA	CGTGAACGCA ATGCGTTCCG	1630
	ACGTTCAGGC	TGCTAAAGAT	GACGCAGCTC	GTGCTAACCA	GCGTCTGGAC AACATGGCTA	1690
	CTAAATACCG	CAAGTAATAG	TACCTGTGAA	GTGAAAAATG	GCGCACATTG TGCGACATTT	1750
	TTTTTGTCTG	CCGTTTACCG	CTACTGCGTC	ACGCGTAACA	TATTCCCTTG CTCTGGTTCA	1810
	CCATTCTGCG	CTGACTCTAC	TGAAGGCGCA	TTGCTGGCTG	CGGGAGTTGC TCCACTGCTC	1870
	ACCGAAACCG	G				1881

	<210	J >		4													
	<21	1 >		133													
	<212			PRT													
					٠.												•
5	<21.	3 >		E. (coli												
	<400) >		4													
	Mon	T	T ~	σъ								_	_	_			
	met	تys	Lys	Thr	Ala	He	Ala	Ile	Ala	Val	Ala	Leu	Ala	Gly	Phe	Ala	
10	1				5					10					15		
10																	
	Thr	17 = 1	Λla	Cln	7 J -	C1	71-	D	N 3 -	v		.	.	-	~ 3		
	1111	Vai			Ala	GIY	116	PIO		rys	Gin	Asp	Tyr	lyr	Glu	TTE	
				. 20					25					30			
	Leu	Gly	Val	Ser	Lvs	Thr	Ala	Glu	Glu	Ara	Glu	Tle	Ara	Live	Ala	Titr	
15		,	35		/ -				014	9	014	110		Lys	AId	13.7	
			33					40					45				
	Lys	Arg	Leu	Ala	Met	Lys	Tyr	His	Pro	Asp	Arg	Asn	Gln	Glv	Asp	Lvs	
		50				_	55			•	_	60		4	F	-4-	
												00					
20	~1				_												
20	GIu	Ala	Glu	Ala	Lys	Phe	Lys	Glu	Ile	Lys	Glu	Ala	Tyr	Glu	Val	Leu	
	65					70					75		_			80	
																00	
	Thr) en	602	C1 =	7	7			_	_	~3						
	1112	Asp	361	GIII		Arg	ATA	Ala	Tyr	Asp	GIn	Tyr	GIÀ	Hıs	Ala	Ala	
					85					90					95		
25																	
	Phe	Glu	Gln	Glv	Glv	Met	ดาง	Gly	Gly	Gly	Dhe	Gly	GIV	C1	Ala	N	
				100	017		O. y	Cly		Gly	FIIC	Gry	Giy		Ald	ASP	
				100					105					110			
	Phe	Ser	Asp	Ile	Phe	Gly	Asp	Val	Phe	Glv	Asp	Ile	Phe	Glv	Gly	Glv	
20			115			•		120		,				,		OI y	
30								120					125				
	_																
	Arg	Gly	Arg	*	*												
		130			•												
35																	
	<210) >		5													
	<211	L >		1379	•												
	<212			DNA													
					٠.												
40	<213	>		E. 0	2011												
40																	
	<220) >															
	<221	١ <		CDS													
	<222	: >		(392	2)	(109	90)										
45	<400) >		5													
	TACC	COT	· TC ,														
	IMGC	30014	AIC A	ACGAC	GCCC	T T	rgga i	TAACC	AGP	AGCA	ATA	AAAA	ATCA	raa 1	CGGA	TTTCA	. 6
	CTAT	TATA	ATC 3	CAC1	TATE	CTA	AGAT	CAAT	CCC	ATGG	2445	CATC	نالب	ل طحلہ -	ירידריז	CAATT	10
50												CHIC		1 1	CICI	CAAII	12
30		om n me															
	1.1.1	TAT	TA	AAACC	CAGC	C TI	CGAT	GCTI	CTI	TGAG	CGA	ACGA	TCAA	AA	TAAC	TGCCT	18
	TCCC	ATC	AA A	LAAA	TATTO	T C	רמים	ימממי	ממ ו	تالململم	ጥርጥ	ייעממ	رسبتر	א מידיי	CCC	'ACATG	•
•			- •						. ~~		,1	WWIN	~ 1 I C	IH P	LUGC'I	ACATG	24
	a		-														
55	GAGA	TAP	ACT (LAATO	TAGO	T AC	BAGAC	GCTT	TAC	ACTI	TAT	GCTT	CCGG	CT C	GTAT	`AATGT	300
														_			20.

	GTG	GAAT	TGT	GAGC	GGAT.	AA C	AATT	TCAC	A CA	GGA	ACAC	CTA	TGAC	CAT	GATI	'ACGGA'	г	360
5	TCA	CTGG	AAC	TCTA	GATA.	AC G	AGGG	CAAA	АА			AAG Lys						412
10	ATT Ile	GCA Ala	GTG Val 10	GCA Ala	CTG Leu	GCT Ala	GGT Gly	TTC Phe 15	GCT	ACC Thr	GTA Val	GCG Ala	CAG Gln 20	Ala	GGA Gly	ATT		460
15	CTC Leu	ACC Thr 25	GAG Glu	CGC Arg	CGC Arg	GTG Val	CCC Pro 30	TTC Phe	TCG Ser	CTG	CTG Leu	CGG Arg	Ser	CCG Pro	AGC Ser	TGG Trp		508
73	GAA Glu 40	CCA Pro	TTC Phe	CGG Arg	GAC Asp	TGG Trp 45	TAC Tyr	CCT Pro	GCA Ala	CAC His	AGC Ser 50	Arg	CTC Leu	TTC Phe	GAT Asp	CAA Gln 55		556
20	GCT Ala	TTC Phe	GGG Gly	GTG Val	CCC Pro 60	CGG Arg	TTG Leu	CCC Pro	GAT Asp	GAG Glu 65	Trp	TCG Ser	CAG Gln	TG3 Trp	TTC Phe 70	AGC		604
25	GCC Ala	GCT Ala	GGG Gly	TGG Trp 75	CCC Pro	GGA Gly	TAC Tyr	GTG Val	CGC Arg 80	Pro	CTG Leu	CCC Pro	GCC Ala	GCG Ala 85	ACC Thr	GCC Ala		652
30	GAG Glu	GGC Gly	CCC Pro 90	GCG Ala	GCG Ala	GTG Val	ACC Thr	CTG Leu 95	GCC Ala	GCA Ala	CCA Pro	GCC Ala	TTC Phe 100	AGC Ser	CGA Arg	GCG Ala		700
	CTC Leu	AAC Asn 105	CGA Arg	CAG Gln	CTC Leu	AGC Ser	AGC Ser 110	GGG Gly	GTC Val	TCG Ser	GAG Glu	ATC Ile 115	CGA Arg	CAG Gln	ACG Thr	GCT Ala		748
35	GAT Asp 120	CGC Arg	TGG Trp	CGC Arg	GTG Val	TCC Ser 125	CTG Leu	GAC Asp	GTC Val	AAC Asn	CAC His 130	TTC Phe	GCT Ala	CCG Pro	GAG Glu	GAG Glu 135		796
40	CTC Leu	ACA Thr	GTG Val	AAG Lys	ACC Thr 140	AAG Lys	GAA Glu	GGC Gly	GTG Val	GTG Val 145	GAG Glu	ATC Ile	ACT Thr	GGC Gly	AAG Lys 150	CAC His		844
45	GAA Glu	GAA Glu	AGG Arg	CAG Gln 155	GAC Asp	GAA Glu	CAT His	GGC Gly	TAC Tyr 160	ATC Ile	TCT Ser	CGG Arg	TGC Cys	TTC Phe 165	ACC Thr	CGG Arg		892
50	AAA Lys	TAC Tyr	ACG Thr 170	CTC Leu	CCT Pro	CCA Pro	GGT Gly	GTG Val 175	GAC Asp	CCC Pro	ACC Thr	CTA Leu	GTG Val 180	TCC Ser	TCT Ser	TCC Ser		940
	CTA Leu	TCC Ser 185	CCT Pro	GAG Glu	GGC Gly	ACA Thr	CTT Leu 190	ACC Thr	GTG Val	GAG Glu	GCT Ala	CCG Pro 195	TTG Leu	CCC Pro	AAA Lys	CCA Ala	:	988

18

	GTC ACG CAG TCA GCG GAG ATC ACC ATT CCG GTT ACT TTC GAG GCC CGC Val Thr Gln Ser Ala Glu Ile Thr Ile Pro Val Thr Phe Glu Ala Arg 200 215	36
5	GCC CAA ATT GGG GGC CCA GAA GCT GGG AAG TCT GAA CAG TCT GGA GCC Ala Gln Ile Gly Gly Pro Glu Ala Gly Lys Ser Glu Gln Ser Gly Ala 220 225 230	34
10	AAG TAG GATCCGGCTG AGCAACGACG TGAACGCAAT GCGTTCCGAC GTTCAGGCTG Lys *	10
·	CTAAAGATGA CGCAGCTCGT GCTAACCAGC GTCTGGACAA CATGGCTACT AAATACCGCA 120	00
15	AGTAATAGTA CCTGTGAAGT GAAAAATGGC GCACATTGTG CGACATTTTT TTTGTCTGCC 126	50
	GTTTACCGCT ACTGCGTCAC GCGTAACATA TTCCCTTGCT CTGGTTCACC ATTCTGCGCT 132	90
20	GACTCTACTG AAGGCGCATT GCTGGCTGCG GGAGTTGCTC CACTGCTCAC CGAAACCGG 137	19
	<210> 6	
25	<210> 6 <211> 233 <212> PRT	
	<213> E 701i	
	<400> 6	
30	Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala 1 5 10 15	
	Thr Val Ala Gln Ala Gly Ile Leu Thr Glu Arg Arg Val Pro Phe Ser 20 25 30	
35	Leu Leu Arg Ser Pro Ser Trp Glu Pro Phe Arg Asp Trp Tyr Pro Ala 35 40 45	
40	His Ser Arg Leu Phe Asp Gln Ala Phe Gly Val Pro Arg Leu Pro Asp 50 55 60	
	Glu Trp Ser Gln Trp Phe Ser Ala Ala Gly Trp Pro Gly Tyr Val Arg 65 70 75 80	
45	Pro Leu Pro Ala Ala Thr Ala Glu Gly Pro Ala Ala Val Thr Leu Ala 85 90 95	
·	Ala Pro Ala Phe Ser Arg Ala Leu Asn Arg Gln Leu Ser Ser Gly Val 100 105 110	
50	Ser Glu Ile Arg Gln Thr Ala Asp Arg Trp Arg Val Ser Leu Asp Val 115 120 125	
	Asn His Phe Ala Pro Glu Glu Leu Thr Val Lys Thr Lys Glu Gly Val	
55		

	Val Glu Ile 145	Thr Gly Lys	His Glu Glu	Arg Gln Asp Glu His Gly Tyr 155 160	
5	Ile Ser Arg	Cys Phe Thr 165	Arg Lys Tyr	Thr Leu Pro Pro Gly Val Asp 170 175	
10	Pro Thr Leu	Val Ser Ser 180	Ser Leu Ser 185	Pro Glu Gly Thr Leu Thr Val	
10	Glu Ala Pro 195	Leu Pro Lys	Ala Val Thr 200	Gln Ser Ala Glu Ile Thr Ile 205	
15	Pro Val Thr 210	Phe Glu Ala	Arg Ala Gln 215	Ile Gly Gly Pro Glu Ala Gly 220	
	Lys Ser Glu 225	Gln Ser Gly 230	Ala Lys *		
20	<210> <211> <212> <213>	7 1256 DNA E. coli			
25	<220> <221> <222>	CDS (199)(969))		
	<400>	7			
30				ATGTTGT GTGGAATTGT GAGCGGATAA	60
				TACGCCA AGCTTGCATG CAAATTCTAT	120
35				CCTACGG CAGCCGCTGG ATTGTTATTA	180
	Crededdec A	AGCCGGCC ATG Met 1	GCC GAG GTC Ala Glu Val	AAG CTG CAG GAG TCT GGG GGA Lys Leu Gln Glu Ser Gly Gly 5 10	231
40	GGC TTA GTG Gly Leu Val	CAG CCT GGA Gln Pro Gly 15	GGG TCC CGG Gly Ser Arg 20	AAA CTC TCC TGT GCA GCC TCT Lys Leu Ser Cys Ala Ala Ser 25	279
45	GGA TTC ACT Gly Phe Thr 30	TTC AGT AGC Phe Ser Ser	TTT GGA ATG Phe Gly Met 35	CAC TGG GTT CGT CAG GCT CCA His Trp Val Arg Gln Ala Pro 40	327
50	GAG AAG GGG Glu Lys Gly 45	CTG GAG TGG Leu Glu Trp	GTC GCA TAT Val Ala Tyr 50	ATT AGT AGT GGC AGT AGT ACC Ile Ser Ser Gly Ser Ser Thr 55	375
	ATC TAC TAT Ile Tyr Tyr 60	GCA GAC ACA Ala Asp Thr 65	GTG AAG GGC Val Lys Gly	CGA TTC ACC ATC TCC AGA GAC Arg Phe Thr Ile Ser Arg Asp 70 75	423
				13	

				AAC Asn	Thr					Met					Ser		471
5	GAC	ACG	GCC	ATG	80 TAT	TAC	TGC	GCA	מסמ	85 GAT	TAC	GGG	CCT	ምአ ም	90	666	510
				Met 95													519
10	CAA Gln	GGG Gly	ACC Thr 110	ACG Thr	GTC Val	ACC Thr	GTC Val	TCC Ser 115	TCA Ser	GGT Gly	GGA Gly	GGC Gly	GGT Gly 120	TCA Ser	GGC Gly	GGA Gly	567
15				GGC Gly													615
20	GCA Ala 140	ATC Ile	ATG Met	TCT Ser	GCA Ala	TCT Ser 145	CCA Pro	GGG Gly	GAG Glu	AAG Lys	GTC Val 150	ACC Thr	ATG Met	ACC Thr	TGC Ċys	AGT Ser 155	663
20				AGT Ser													711
25	ACC Thr	TCC Ser	ccc Pro	AAÁ Lys 175	AGA Arg	TGG Trp	ATT Ile	TAT Tyr	GAC Asp 180	ACA Thr	TCC Ser	AAA Lys	CTG Leu	TCT Ser 185	TCT Ser	GGA Gly	759
30	GTC Val	CCT Pro	GCT Ala 190	CGC Arg	TTC Phe	AGT Ser	GGC Gly	AGT Ser 195	GGG Gly	TCT Ser	GGG Gly	ACC Thr	TCT Ser 200	TAC Tyr	TCT Ser	CTC Leu	807
35	ACA Thr	ATC Ile 205	AGC Ser	AGC Ser	ATG Met	GAG Glu	GCT Ala 210	GAA Glu	GAT Asp	GCT Ala	GCC Ala	ACT Thr 215	TAT Tyr	TAC Tyr	TGC Cys	CAG Gln	855
	CAG Gln 220	TGG Trp	AGT Ser	AGT Ser	AAT Asn	CCA Pro 225	CTC Leu	ACT Thr	TTC Phe	GGT Gly	GCT Ala 230	GGG Gly	ACC Thr	AAG Lys	CTG Leu	GAG Glu 235	903
40	CTG Leu	AAA Lys	CGG Arg	GCG Ala	GCC Ala 240	GCA Ala	GAA Glu	CAA Gln	AAA Lys	CTC Leu 245	ATC Ile	TCA Ser	GAA Glu	GAG Glu	GAT Asp 250	CTG Leu	951
45	AAT Asn	GGG Gly	GCC Ala	GCA Ala 255	TAG *	TAA *	CTGA	\GCA.	ACG P	CGTC	SAACG	C AA	TGCC	TTCC	?		999
	GACC	STTCA	NGG (TGCI	'AAAC	SA TO	BACGO	AGC1	CGT	GCTA	ACC	AGCG	тсто	GA C	CAACA	TGGCT	1059
50	ACTA	LAAT <i>I</i>	ACC C	CAAC	TAAT	A GI	PACCI	GTGA	AGI	GAAA	TAAL	GGCG	CACA	TT C	TGCG	SACATT	1119
	TTTT	TTGI	CT (CCGT	TTAC	C GC	TACI	GCGT	CAC	GCGT	CAAC	ATAT	TCCC	TT G	стст	GGTTC	1179
EE	ACCA	TTCI	GC C	CTGA	CTCT	A CT	GAAG	GCGC	TTA	GCTG	GCT	GCGG	GAGT	TG C	TCCA	CTGCT	1239

1256

5 <210> 8 <211> 257 <212> PRT <213> E. coli 10 <400> 8 Met Ala Glu Val Lys Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Pro-15 Gly Gly Ser Arg Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Phe Gly Met His Trp Val Arg Gln Ala Pro Glu Lys Gly Leu Glu 20 Trp Val Ala Tyr Ile Ser Ser Gly Ser Ser Thr Ile Tyr Tyr Ala Asp Thr Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Pro Lys Asn Thr 25 Leu Phe Leu Glr. Met Thr Ser Leu Arg Ser Glu Asp Thr Ala Met Tyr Tyr Cys Ala Arg Asp Tyr Gly Ala Tyr Trp Gly Gln Gly Thr Thr Val 30 Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly 35 Gly Gly Ser Asp Ile Glu Leu Thr Gln Ser Pro Ala Ile Met Ser Ala 135 Ser Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val 150 40 Arg Tyr Met Asn Trp Phe Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg 165 170

CACCGAAACC GGAGATC

Trp Ile Tyr Asp Thr Ser Lys Leu Ser Ser Gly Val Pro Ala Arg Phe 45 180 185 Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met 200 Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn 50 220 Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys Arg Ala Ala 230 235

22

	Ala Glu	Gln	Lys	Leu 245	Ile	Ser	Glu	Glu	Asp 250	Leu	Asn	Gly	Ala	Ala 255	*	
5	* .									; -						
10	<210><211><212><213>		9 113 DNA E. (
15	<220> <221> <222>		CDS (1)	(:	1137))										
	<400>		9													
20	ATG AAA Met Lys 1	TAC Tyr	CTG Leu	CTG Leu 5	CCG Pro	ACC Thr	GCT Ala	GCT Ala	GCT Ala 10	GGT Gly	CTG Leu	CTG Leu	CTC Leu	CTC Leu 15	GCT Ala	48
25	GCC CAG Ala Gln															96
	TTT GGG Phe Gly															144
30	GGT GCC Gly Ala 50	Ser														192
35	TAC ACA Tyr Thr 65															240
40	AAT TAC Asn Tyr	TGC Cys	CGG Arg	AAT Asn 85	CCT Pro	GAT Asp	GGG Gly	GAT Asp	GCC Ala 90	AAG Lys	CCC Pro	TGG Trp	TGC Cys	CAC His 95	GTG Val	288
45	CTG ACG															336
	TCC ACC															384
50	GGA GGG Gly Gly 130	Leu	TTC Phe	GCC Ala	GAC Asp	ATC Ile 135	GCC Ala	TCC Ser	CAC His	CCC Pro	TGG Trp 140	CAG Gln	GCT Ala	GCC Ala	ATC Ile	432

					AGG Arg											GGC Gly 160	4.8	3 0
5					TCC Ser 165												52	8 :
10					CCC Pro												57	'6
15	Arg	Val	Val 195	Pro	GGC Gly	Glu	Glu	Glu 200	Gln	Lys	Phe	Glu	Val 205	Glu	Lys	Tyr	62	! 4 -
20	ATT Ile	GTC Val 210	CAT His	AAG Lys	GAA Glu	TTC Phe	GAT Asp 215	GAT Asp	GAC Asp	ACT Thr	TAC Tyr	GAC Asp 220	AAT Asn	GAC Asp	ATT Ile	GCG Ala	67	'2
					AAA Lys												72	:0
25					GTG Val 245												76	8
30					GAG Glu												81	6
35 _.	CCT Pro	TTC Phe	TAT Tyr 275	TCG Ser	GAG Glu	CGG Arg	CTG Leu	AAG Lys 280	GAG Glu	GCT Ala	CAT His	GTC Val	AGA Arg 285	CTG Leu	TAC Tyr	CCA Pro	86	4
	TCC Ser	AGC Ser 290	CGC Arg	TGC Cys	ACA Thr	TCA Ser	CAA Gln 295	CAT His	TTA Leu	CTT Leu	AAC Asn	AGA Arg 300	ACA Thr	GTC Val	ACC Thr	GAC Asp	91	2
40	AAC Asn 305	ATG Met	CTG Leu	TGT Cys	GCT Ala	GGA Gly 310	GAC Asp	ACT Thr	CGG Arg	AGC Ser	GGC Gly 315	GGG Gly	CCC Pro	CAG Gln	GCA Ala	AAC Asn 320	96	0
45	TTG Leu	CAC His	GAC Asp	GCC Ala	TGC Cys 325	CAG Gln	GGC Gly	GAT Asp	TCG Ser	GGA Gly 330	GGC Gly	CCC Pro	CTG Leu	GTG Val	TGT Cys 335	CTG Leu	100	8
50	AAC Asn	GAT Asp	GGC Gly	CGC Arg 340	ATG Met	ACT Thr	TTG Leu	GTG Val	GGC Gly 345	ATC Ile	ATC Ile	AGC Ser	TGG Trp	GGC Gly 350	CTG Leu	GGC Gly	105	6
	TGT Cys	GGA Gly	CAG Gln 355	AAG Lys	GAT Asp	GTC Val	CCG Pro	GGT Gly 360	GTG Val	TAC Tyr	ACC Thr	AAG Lys	GTT Val 365	ACC Thr	AAC Asn	TAC Tyr	110	4
55																		

1137

CTA GAC TGG ATT CGT GAC AAC ATG CGA CCG TGA

	Leu	Asp 370	Trp	Ile	Arg	Asp	Asn 375	Met	Arg	Pro	*						113
	<210 <210 <210 <210	1 > 2 >		10 379 PRT E. 0	coli												
	<400	0>		10													
	Met 1		Tyr	Leu	Leu 5	Pro	Thr	Ala	Ala	Ala 10	Gly	Leu	Leu	Leu	Leu 15	Ala	
	Ala	Gln	Pro	Ala 20	Met	Ala	Met	Ala	Tyr 25	Gln	Gly	Asn	Ser	qaA 0 E	Cys	Tyr	
	Phe	Gly	Asn 35	Gly	Ser	Ala	Tyr	Arg 40	Gly	Thr	His	Ser	Leu 45	Thr	Glu	Ser	
; -	Gly	Ala 50	Ser	Cys	Leu	Pro	Trp 55	Asn	Ser	Met	lle	Leu 60	Ile	Glγ	Lys	Val	
The state of the s	Tyr 65	Thr	Ala	Gln	Asn	Pro 70	Ser	Ala	Gln	Ala	Leu 75	Gly	Leu	Gly	Lys	His 80	
<i>30</i>	Asn	Tyr	Cys	Arg	Asn 85	Pro	Asp	Gly	Asp	Ala 90	Lys	Pro	Trp	Cys	His 95	Val	
	Leu	Thr	Asn	Arg 100	Arg	Leu	Thr		Glu 105	Tyr	Cys	Asp	Val	Pro 110	Ser	Cys	
35	Ser	Thr	Cys 115	Gly	Leu	Arg	Gln	Tyr 120	Ser	Gln	Pro	Gln	Phe 125	Arg	Ile	Lys	
	Gly	Gly 130	Leu	Phe	Ala	Asp	Ile 135	Ala	Ser	His	Pro	Trp 140	Gln	Ala	Ala	Ile	
40	Phe 145	Ala	Lys	His	Arg	Arg 150	Ser	Pro	Gly	Glu	Arg 155	Phe	Leu	Cys	Gly	Gly 160	
45	Ile	Leu	Ile	Ser	Ser 165	Cys	Trp	Ile	Leu	Ser 170	Ala	Ala	His	Cys	Phe 175	Gln	
70	Glu	Arg	Phe	Pro 180	Pro	His	His	Leu	Thr 185	Val	Ile	Leu	Gly	Arg 190	Thr	Tyr	
50	Arg	Val	Val 195	Pro	Gly	Glu	Glu	Glu 200	Gln	Lys	Phe	Glu	Val 205	Glu	Lys	Tyr	
	Ile	Val 210	His	Lys	Glu	Phe	Asp 215	Asp	Asp	Thr	Tyr	Asp 220	Asn	Asp	Ile	Ala	
55	:											<u>_</u> £					

	Leu 225	Leu	Gln	Leu	Lys	Ser 230	Asp	Ser	Ser	Arg	Cys 235	Ala	Gln	Glu	Ser	Ser 240
5	Val	Val	Arg	Thr	Val 245	Cys	Leu	Pro	Pro	Ala 250	Asp	Leu	Gln	Leu	Pro 255	Asp
10	Trp	Thr	Glu	Суs 260	Glu	Leu	Ser	Gly	Tyr 265	Gly	Lys	His	Glu	Ala 270	Leu	Ser
10	Pro	Phe	Tyr 275	Ser	Glu	Arg	Leu	Lys 280	Glu	Ala	His	Val	Arg 285	Leu	Tyr	Pro
15	Ser	Ser 290	Arg	Cys	Thr	Ser	Gln 295	His	Leu	Leu	Asn	Arg 300	Thr	Val	Thr	Asp
	Asn 305	Met	Leu	Cys	Ala	Gly 310	Asp	Thr	Arg	Ser	Gly 315	Gly	Pro	Gln	Ala	Asn 320
20	Leu	His	Asp	Ala	Cys 325	Gln	Gly	Asp	Ser	Gly 330	Gly	Pro	Leu	Val	Cys 335	Leu
	Asn	Asp	Gly	Arg 340	Met	Thr	Leu	Val	Gly 345	Ile	Ile	Ser	Trp	Gly 350	Leu	Gly
25	Cys	Gly	Gln 355	Lys	Asp	Val	Pro	Gly 360	Val	Tyr	Thr	Lys	Val 365	Thr	Asn	Туг
30	Leu	Asp 370	Trp	Ile	Arg	Asp	Asn 375	Met	Arg	Pro	*					
35	-															
40																
45																
45																
50																
55																

Patentansprüche

5

10

30

- Verfahren zur Herstellung eines wasserlöslichen, natürlich gefalteten eukaryontischen Polypeptids, enthaltend zwei oder mehrere über Disulfidbrücken verknüpfte Cysteine, durch Kultivierung prokaryontischer Zellen,
 - a) wobei die genannten prokaryontischen Zellen einen Expressionsvektor enthalten, der für das genannte Polypeptid, das am N-Terminus eine prokaryontische Signalsequenz enthält, codiert,
 - b) unter Bedingungen, bei denen das Polypeptid in das Periplasma oder das Medium sekretiert wird,
 - c) Abspaltung der Signalsequenz und Isolierung des Polypeptids aus dem Periplasma oder dem Medium,
- dadurch gekennzeichnet, daß die Kultivierung in Gegenwart von Arginin oder einer Verbindung der allgemeinen Formel I

$$R_2$$
-CO-NRR₁ (I),

- erfolgt, wobei R und R₁ Wasserstoff oder eine gesättigte oder ungesättigte verzweigte oder unverzweigte C₁-C₄-Alkylkette und R₂ Wasserstoff, NHR₁ oder eine gesättigte oder ungesättigte verzweigte oder unverzweigte C₁-C₃-Alkylkette darstellen.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Arginin als Hydrochlorid oder als andere titrierte Form verwendet wird.
 - Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß dem N\u00e4hrmedium ein reduzierendes Thiolreagenz zugesetzt wird.
 - Verlahren nach Anspruch 3, dadurch gekennzeichnet, daß als reduzierendes Thiolreagenz Glutathion (GSH) verwendet wird.
- Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Signalsequenz aus gramnegativen
 Bakterien stammt.
 - 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die prokaryontische Zelle einen weiteren Expressionsvektor, der für ein molekulares Chaperon codiert, enthält.
- Verlahren nach Anspruch 6, dadurch gekennzeichnet, daß das molekulare Chaperon DNAJ aus E. coli oder HSP25
 ist.
 - 8. Verfahren nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, daß die für das molekulare Chaperon codierende rekombinante DNA in operativer Verknüpfung mit einem DNA-Fragment steht, das ein Signalpeptid zum Durchdringen der inneren bakteriellen Membran codiert.
 - Verlahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß sich die für das sekretierte molekulare Chaperon und/oder für das sekretierte Protein codierende DNA unter Kontrolle eines induzierbaren Expressionssignals befindet.
 - 10. Verlahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Polypeptid ein Antikörper, Antikörperfragment, Interferon, Proteinhormon oder eine Protease ist.

55

45

Fig. 1

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 99 10 7412

Kategorie	Kennzeichnung des Dokut der maßgeblich	ments mit Angabe, soweit erforderlich,			KLASSIFIKATION DER ANMELDUNG
Χ	WO 98 18946 A (GEN		Anspru		C12N15/58
^	7. Mai 1998 (1998-0		8-10		C12N15/50 C12N15/62
Υ	* das ganze Dokumer		2,4,7		C12N15/62 C12N15/31
		· · · · · · · · · · · · · · · · · · ·	[2,7,7		C12N9/72
X	WO 96 14422 A (GEN	ENTECH INC)	1.3.5		C07K14/245
	17. Mai 1996 (1996-	-05-17)	8-10		C07K1/113
Υ	* das ganze Dokumer	nt *	2,4,7		C12N1/20
				- 1	C12N15/70
Y	EP 0 725 140 A (SAI		1,2,10)	C12P21/02
	7. August 1996 (199	96-08-07)	1		
	* das ganze Dokumer	1E *			
Υ	US 4 757 013 A (TN)	DUYE MASAYORI ET AL)	1 2 10		
'	12. Juli 1988 (1988	R-07-12)	1,2,10	,	
	* Spalte 49 Zeile	7 - Spalte 62, Zeile 64			
	* .	, opure 02, zerre 04	1		
			1		
Y	EP 0 219 874 A (BO	HRINGER MANNHEIM GMBH)	2,4		
	29. April 1987 (198	37-04-29)			
	* das ganze Dokumer	it *	1	L	
v	V TOUT VOYOVANA CO		_		RECHERCHIERTE SACHGEBIETE
Y	of Dool in Foobouis	AL.: "Overproduction	7	-	
	vivo solubility of	chia coli improves in			C12N
	Fish-derived transq				C07K C12P
	BIOSCIENCE BIOTECH	OLOGY BIOCHEMISTRY,		'	L 12 F
	Bd. 62, Nr. 6, Juni	1998 (1998-06), Seiten	i		
	1205-1210, XP002114	1992			
	TOKYO JP				
	* das ganze Dokumer	it *		1	
Υ	EP 0 99E 067 A (US	RESEARCH INST INC)	_		
•	23. Dezember 1998 (1008-12-23)	7		•
	* das ganze Dokumer	1556 12 25)			
	gamer				
A	WO 89 06283 A (INGE	NE INTERNATIONAL	1-10		
i	GENETIC E) 13. Juli	1989 (1989-07-13)		- 1	
	* das ganze Dokumer	t *		ı	
		-/			
			1		
Der vo	Recherchenori	rde für alle Patentansprüche erstellt	<u> </u>		
		Abschluftdatum der Recherche			Profer
	DEN HAAG	10. September 199	19 H	orni	ig, H
K	ATEGORIE DER GENANNTEN DOK		runde lieger	nde The	orien oder Grundsatze
X : von	besonderer Bedeutung allein betrach		ladatum vert	offentic	cht worden ist
ande	besonderer Bedeutung in Verbindung ren Veröffentlichung derselben Kate		angeführtes	s Dokui	ment
A : tech	nologischer Hintergrund tschriftliche Offenbarung				

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 99 10 7412

:	EINSCHLÄGIGE							
Kategorie	Kennzeichnung des Dokum der maßgeblich	nents mit Angabe, soweit erforderlich, en Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG				
Α	EP 0 774 512 A (IMA 21. Mai 1997 (1997- * das ganze Dokumen	05-21)	1-10					
Α	EP 0 510 658 A (BOE 28. Oktober 1992 (1 * das ganze Dokumen		1-10					
	·			RECHERCHIERTE SACHGEBIETE				
		-						
····								
Der vo	orliegende Recherchenbericht wu	rde für alle Patentansprüche erstellt						
	Recharchenori	Abschlußdatum der Recherche		PrOter				
	DEN HAAG	10. September 1	999 Ho	ornig, H				
X : vor Y : vor and A : tec O : nic	CATEGORIE DER GENANNTEN DOK in besonderer Bedeutung allein betrach in besonderer Bedeutung in Verbindum leren Veröffentlichung derselben Kate hnologischer Hintergrund http://doi.org/10.0000/10.000000000000000000000000000	UMENTE T: der Erlindung E: äkeres Patent nach dem Ann g mit einer D: in der Anmeld gorie L: aus anderen 0	E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist					

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 99 10 7412

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten

Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

10-09-1999

	Im Recherchenberio angeführtes Patentdokt		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
	WO 9818946	Α	07-05-1998	. US AU	5789199 A 4816397 A	04-08-1998 22-05-1998
	WO 9614422	A	17-05-1996	US CA EP JP US	5639635 A 2203373 A 0786009 A 10508203 T 5789199 A	17-06-1997 17-05-1996 30-07-1997 18-08-1998 04-08-1998
	EP 0725140	A	07-08-1996	FR AU BR CA CN CZ EA FI HU JP NO NZ PL SK US ZA	2729972 A 700509 B 4224496 A 9600270 A 2168382 A 1142502 A 9600290 A 960027 A 9600209 A 8242879 A 960396 A 280919 A 312543 A 10696 A 5700665 A 5856142 A 9600734 A	02-08-1996 07-01-1999 08-08-1996 23-12-1997 01-08-1996 12-02-1997 14-08-1996 01-07-1996 01-08-1996 28-05-1997 24-09-1996 01-08-1996 27-07-1997 05-08-1996 23-12-1997 05-01-1999 16-08-1996
	US 4757013	A	12-07-1988	US	4643969 A	17-02-1987
EPO FOINM PO461	EP 0219874	A	29-04-1987	DE AT AU AU AU CA CZ DE DK WO EP EP	3537708 A 98648 T 131489 T 607083 B 4132189 A 590029 B 6599386 A 1329157 A 8607526 A 3650449 D 3689404 D 320387 A 8702673 A 0253823 A 0393725 A 2061434 T	23-04-1987 15-01-1994 15-12-1995 21-02-1991 04-01-1990 26-10-1989 19-05-1987 03-05-1994 17-01-1996 25-01-1996 27-01-1994 23-06-1987 07-05-1987 27-01-1988 24-10-1990 16-12-1994

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr. 12/82

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 99 10 7412

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

10-09-1999

	Im Recherchenberic angeführtes Patentdoku		Datum der Veröffentlichung	ı	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
	EP 0219874	A		ES FI FI GR HK HR IE JP JP JP JP LV PT SK US	2020498 T 872753 A,B, 933868 A,B, 92300062 T 3018410 T 153496 A 153596 A 921075 A 62634 B 2117325 C 4218387 A 8024594 B 7028745 B 62502895 T 5289 A 83609 A,B 8611796 A,B 752686 A 5453363 A 5593865 A	01-04-1996 22-06-1987 03-09-1993 31-08-1992 31-03-1996 16-08-1996 30-06-1995 22-02-1995 06-12-1996 07-08-1992 13-03-1996 05-04-1995 19-11-1987 10-10-1993 01-11-1986 31-10-1996 01-10-1996 26-09-1995 14-01-1997
	EP 0885967	 -	23-12-1998	YU JP CA	179686 A 11009274 A 2235468 A	30-06-1988
	WO 8906283	A	13-07-1989	AT AU CA DE DE EP JP US US US US US	140731 T 2937789 A 1338807 A 68926882 D 68926882 T 0396612 A 4503151 T 5618920 A 5595898 A 5576195 A 5693493 A 5698417 A 5698435 A 5846818 A	15-08-1996 01-08-1989 24-12-1996 29-08-1996 13-02-1997 14-11-1990 11-06-1992 08-04-1997 21-01-1997 19-11-1996 02-12-1997 16-12-1997 08-12-1998
}	EP 0774512	Α	21-05-1997	JP	9173078 A	08-07-1997
EPO FORM P0461	EP 0510658	A	28-10-1992	DE AT AU AU	4113750 A 109205 T 636537 B 1515992 A	29-10-1992 15-08-1994 29-04-1993 19-11-1992

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 99 10 7412

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unternchtung und erfolgen ohne Gewähr.

10-09-1999

	Recherchenberi hrtes Patentdok		Datum der Veröffentlichung		Mitglied(er) der Patentlamilie	Datum der Veröffentlichun
EP	0510658	A		CA DE DK ES FI IE JP JP KR	2066370 A,C 59200312 D 510658 T 2057944 T 921838 A 65792 B 2033750 C 5268983 A 7053118 B 9602869 B	27-10-199 01-09-199 28-11-199 16-10-199 27-10-199 29-11-199 19-03-199 07-06-199 27-02-199
	~					
					·	

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82