

MCMC Methods

Varga Katalin (Ph.D.)

BUTE

2016 Autumn

Gibbs Sampling

Gibbs Sampling

- Easily implemented methods for sampling from multivariate distributions, $p(\theta_1, ..., \theta_k)$, which are typically a posterior distributions.
- Requirements: easily sampled full conditional posteriors:
 - $p(\theta_1|\theta_2,\theta_3,...,\theta_k)$
 - $p(\theta_2|\theta_1,\theta_3,...,\theta_k)$
 - •
 - $p(\theta_k|\theta_1,\theta_2,...,\theta_{k-1})$

Gibbs Sampling Algorithm

- A: Choose initial values $\theta_2^{(0)}$, $\theta_3^{(0)}$, ..., $\theta_n^{(0)}$.
- B:
 - B1: Draw $\theta_1^{(1)}$ from $p(\theta_1 | \theta_2^{(0)}, \theta_3^{(0)}, ..., \theta_n^{(0)})$
 - B2: Draw $\theta_2^{(1)}$ from $p(\theta_2|\theta_1^{(1)},\theta_3^{(0)},\dots,\theta_n^{(0)})$ eloszlásból
 - Bn: Draw $\theta_n^{(1)}$ from $p(\theta_n | \theta_1^{(1)}, \theta_2^{(1)}, \dots, \theta_{n-1}^{(1)})$
- C: Repeat step B N times.

Gibbs Sampling Algorithm

• The $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(N)}$ Gibbs draws are dependent, but arithmetic means converge to expected values:

$$\frac{1}{N} \sum_{t=1}^{N} \theta_j^{(t)} \to E(\theta_j)$$

$$\frac{1}{N} \sum_{t=1}^{N} g(\theta_j^{(t)}) \to E[g(\theta_j)]$$

- More generally, $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(N)}$ Gibbs sequence converge in distribution to the target posterior $P(\theta_1, \dots, \theta_k)$.
- θ_j (1), θ_j (2), ..., θ_j (N) converge to the marginal distribution of to $P(\theta_i)$.

Examples of Gibbs Sampling

- Bivariate normal:
 - Joint distribution:

$$\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \sim N_2 \begin{bmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \end{bmatrix}$$

Full conditional posteriors:

$$\theta_1 | \theta_2 \sim N[\mu_1 + \rho(\theta_2 - \mu_2), 1 - \rho^2]$$

$$\theta_2 | \theta_1 \sim N[\mu_2 + \rho(\theta_1 - \mu_1), 1 - \rho^2]$$

Bivariate Normal – Initial Values don't Matter

Bivariate Normal – Initial Values don't Matter

Metropolis Algorithm

- A. Initialize with $\theta = \theta_0$
- B. For t = 1,2, sample a proposal draw:

$$\theta^* | \theta^{(t-1)} \sim q_t (\theta^* | \theta^{(t-1)})$$

C. Accept θ^* with probability:

$$r(\theta^{(t-1)} \to \theta^*) = min\left[\frac{P(\theta^*|y)}{P(\theta^{(t-1)}|y)}, 1\right]$$

- D. If proposal is accepted, set $\theta^{(t)} = \theta^*$, otherwise set $\theta^{(t)} = \theta^{t-1}$.
 - Every proposal θ^* that lies uphill is always accepted, downhill moves θ^* accepted with probability $r(\theta^{(t-1)} \to \theta^*)$.
 - It is enough if we can compute the **unnormalized** posterior density, $P(y|\theta)P(\theta)$ for any θ .
 - $q_t(\theta^*|\theta^{(t-1)})$ must be symmetric i.e. $q_t(\theta_a|\theta_b) = q_t(\theta_b|\theta_a)$.

Metropolis - Choosing the Proposal Distribution

• Common choice of proposal distribution:

$$q_t(\theta^*|\theta^{(t-1)}) = N[\theta^{(t-1)}, c^2J^{-1}(\hat{\theta})]$$

• Where c is a tuning constant and J is the observed Fisher information:

$$J_{y} = -\frac{\partial^{2} ln P(\theta|y)}{\partial \theta^{2}} |\theta = \hat{\theta}$$

- A good proposal, $q_t (\theta^* | \theta^{(t-1)})$ should have the following properties:
 - · Easy to sample
 - Easy to compute $r(\theta^{(t-1)} \to \theta^*)$
 - Takes reasonably large jumps in the parameter space
 - · Jumps are rejected not too frequently
 - Set c to that average acceptance probability is shomewhere between 0,2 and 0,4

Practical Implementation of MCMC Algorithms

The **autocorrelation** in the simulated sequence $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(n)}$ makes it shomewhat problematic to define the effective number of simulation draws.

• Inefficiency factor:

$$IF = 1 + 2\sum_{i=1}^{\infty} \rho_i$$

- Where ρ_i is the autocorrelation at lag i.
- Effective sample size:

$$ESS = \frac{N}{IF}$$

- When do we stop sampling?
- How many burn-in iterations to discard?
- Several short sequences or a single long sequence? To thin out or not to thin out?
- Convergence diagnostics.

The Metropolis-Hastings Algorithm

- Generalization of the Metropolis algorithm to non-symmetric proposals.
- The acceptance probability is slightly more complicated:

$$r(\theta^{(t-1)} \to \theta^*) = min \left[\frac{P(\theta^*|y)/q_t(\theta^*|\theta^{(t-1)})}{P(\theta^{(t-1)}|y)/q_t(\theta^{(t-1)}|\theta^*)}, 1 \right]$$

- Gibbs sampling is a special case of the MH algorithm where the proposal is the full conditional posterior and every draw is accepted.
- Independence MH: $q_t(\theta^* | \theta^{(t-1)}) = q_t(\theta^*)$. Example: $\theta^* \sim \mathbb{N}[\hat{\theta}, J^{-1}(\hat{\theta})]$.
- Metropolis-Hastings-within-Gibbs:
 - $P(\theta_1|\theta_2,y)$ is an easily sampled distribution
 - $P(\theta_2|\theta_1,y)$ is not easily sampled. MH updating step.

Bayesian Model Inference

- Comparing two models $P_1(x|\theta_1)$ and $P_2(x|\theta_2)$ would be easy if θ_1 and θ_2 were known. Usually they aren't.
- Bayes: average with respect to the prior. Marginal likelihood:

$$P(\mathbf{x}) = \int (x|\theta)P(\theta)d\theta$$

Bayes factor to compare models:

$$BF_{12}(x) = \frac{P_1(x)}{P_2(x)}$$

• Marginal likelihood is a measure of out-of-sample forecasting performance:

$$P(y_t|y_1,...,y_{t-1}) = \int (y_t|\theta)(\theta|y_1,...,y_t)d\theta$$

- Marginal likelihood is usually very sensitive to the prior.
- Log Predictive Score (LPS).

Model Averaging

Collection of models: $M_1, ..., M_q$.

Posterior model probabilities: $P_{post}(M_i|x) \propto P(x|M_i)P(M_i)$.

Bayesian model averaging: let ξ be any unknown quantity whose interpretation is the same across models:

$$p(\xi) = \sum_{i=1}^{q} P_{post}(M_i|x)p(\xi|M_i)$$

Bayesian prediction (ξ = future value of the process) takes into account

- i) population uncertainty (the error variance)
- ii) parameter uncertainty
- iii) model uncertainty