CMPE 185 Autonomous Mobile Robots

Perception: Learning Based Object Classification and Detection

Dr. Wencen Wu
Computer Engineering Department
San Jose State University

Computer Vision

 Enable robot vision to build environment maps and localize your mobile robot

Waymo Experience – Sensor Fusion

Example: Autonomous Parking

Image Classification

- K classes
- Task: assign correct class label to the whole image

Digit classification (MNIST)

Object recognition (Caltech-101)

Classification v.s. Detection

Classification

Detection

Problem Formulation

- When performing object detection, we wish to obtain:
 - A **list of bounding boxes**, or the (x, y)-coordinates for each object in an image
 - The class label associated with each bounding box
 - The **probability/confidence score** associated with each bounding box and class

{ airplane, bird, motorbike, person, sofa }

Object Detection in Autonomous Driving

Evaluating a Detector

Test image (previously unseen)

First Detection

person' detector predictions

Second Detection

person' detector predictions

Third Detection

person' detector predictions

Compare to Ground Truth

ground truth 'person' boxes

Sort by Confidence

duplicate)

Evaluation Metric

$$precision@t = \frac{\#true\ positives@t}{\#true\ positives@t + \#false\ positives@t} \qquad \frac{\checkmark}{\checkmark + \updays_{\bullet}}$$

$$recall@t = \frac{\#true\ positives@t}{\#ground\ truth\ objects}$$

Machine Learning Based Object Detection

Traditional Programming v.s. Machine Learning

ML gives computers the ability to learn without explicit

programming

Traditional Programming

Machine Learning

Traditional programming

Why Machine Learning is Hard?

A brown trunk moving upwards and branching with leaves...?

Is this a tree?

Defining is Hard: Recognizing is Easy

- Hard to give a complete mathematical definition of a tree
- Even a 3 year old can tell a tree from a non-tree
- The 3 year old has learned from data

Key Essence of Machine Learning

- Exists some 'underlying pattern' to be learned
 - So 'performance measure' can be improved
- But no programmable (easy) definition
 - So 'ML' is needed
- Somehow there is data about the pattern
 - So ML has some 'inputs' to learn from

Key essence: help decide whether to use ML

Fun Time

Which of the following is best suited for machine learning?

- A. Predicting whether the next cry of the baby girl happens at an even-numbered minute or not
- B. Determining whether a given graph contains a cycle
- C. Deciding whether to approve credit card to some customers
- D. Guessing whether the earth will be destroyed by the misuse of nuclear power in the next ten years

Types of Learning

- Supervised learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Reinforcement learning
 - Rewards from sequence of actions
- Generative Al

Figure from DeepLearning.AI

Supervised Learning: Classification

- Given $[x_1, y_1), [x_2, y_2), z_{n}, [x_n, y_n)$
- Learn a function f(x) to predict y given x
 - y is categorical == classification

Supervised Learning: Classification

- x can be multi-dimensional
 - each dimension corresponds to an attribute:
 - clump thickness
 - o color
 - distance from optic nerve
 - 0 ...

- Cell type is the most telling feature, but it's risky to do a biopsy of the eye
 - ML can help determine when a feature is needed

Supervised Learning: Multiclass Classification

- Multiclass classification problems
 - Written digits → 0, 1, ..., 9
 - Pictures → apple, orange, strawberry
 - Emails → spam, primary, social, promotion

Example Data from ImageNet

Machine Learning Example

Digit recognition

Each digit is a 16×16 image.

$$\mathbf{x} = (1, x_1, \dots, x_{256}) \leftarrow \text{input}$$

The Key Players

- Pictures
 - input $\mathbf{x} \in Rd = X$
- Classes: cat, dog, desk, etc....
 - output $y \in \{1, 2, ...\} = Y$
- True relationship between x and y
 - target function $f: X \rightarrow Y$
- Data
 - data set $D = (\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$
 - $\mathbf{y}_n = f(\mathbf{x}_n)$

 X, Y, and D are given by the learning problem; the target f is fixed but unknown

We learn the function f from the data **D**

Learning

 Start with a set of candidate hypotheses H which you think are likely to represent f

$$H = \{h_1, h_2, ...,\}$$

H is called the hypothesis set or model

- Select a hypothesis h from H. The way we do this is called a *learning algorithm*
- Use *h* for new input. We hope $h \approx f$
- Again, X, Y, and D are given by the learning problem;
 the target f is fixed but unknown

We choose *H* and the learning algorithm

This is a very general setup (e.g. choose *H* to be all possible hypotheses)

Revisit: Digit Recognition Problem

Digit recognition

Each digit is a 16×16 image.

$$\mathbf{x} = (1, x_1, \dots, x_{256}) \leftarrow \text{input}$$

 $\mathbf{w} = (w_0, w_1, \dots, w_{256}) \leftarrow \text{linear model}$

Hypothesis:
$$h = g(\mathbf{w}^T \mathbf{x})$$

e.g.,:
$$h = sign(\mathbf{w}^T \mathbf{x})$$

Supervised Learning Example

 Feature: an important property of the input that you think is useful for classification, e.g.,

Neural Network

How does a neural network work?

hidden layer

Input $\mathbf{x} = (x_1, x_2 \dots,)^T$ $a_i = g(\mathbf{w}_i^T \mathbf{x})$

Activation function

$$a_j = g(\boldsymbol{w}_j^T \boldsymbol{x})$$

Example:

$$g(t) = \frac{1}{1 + e^{-t}}$$

Goal: learn w!

Neural Network for Object Classification

when pedestrian

when motorcycle

when car

when truck

Neural Network for Object Classification

We want

$$h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
 when pedestrian when car when motorcycle when truck

- Given $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)\}$
- Must convert labels to 1-of-K representation
 - e.g., $y_i = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}^T$ when motorcycle, $y_i = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}^T$ when car

ML vs. Deep Learning

- Most machine learning methods work well because of human-designed representations and input features
- ML becomes just optimizing weights to best make a final prediction

What is Deep Learning (DL)?

- A machine learning subfield of learning representations of data. Exceptional effective at learning patterns.
- Deep learning algorithms attempt to learn (multiple levels of) representation by using a hierarchy of multiple layers
- If you provide the system tons of information, it begins to understand it and respond in useful ways.

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

Example: Learned low-level filters

A Fully-Connected Neural Network

- Do we really need all the edges in a fully connected NN?
- Can some of these be shared?

- From NN to CNN
 - Local connectivity
 - Shared ("tied") weights
 - Multiple feature maps
 - Pooling

Various Architectures of Deep Learning

Convolutional Neural Networks (CNNs)

- Primarily used for image and video recognition tasks.
- Convolution layers extract spatial features from the input.

Recurrent Neural Networks (RNNs)

- Designed for sequential data such as time series or natural language.
- Capable of handling temporal dependencies by maintaining a memory of previous inputs.
- LSTMs, GRUs

Transformers

- Architecture designed for handling sequential data, replacing traditional RNNs and LSTMs.
- Used in NLP tasks like machine translation and text generation (e.g., GPT, BERT).

Others

Scene Labeling via Deep Learning

[Farabet et al. ICML 2012, PAMI 2013]

• Thank You!