随机过程讲义

(内部交流)

目 录

1	Pois	sson 过程	1
	1.1	定义	1
	1.2	另一个等价定义	3
	1.3	Poisson过程的其它性质	5
		1.3.1 顺序统计量	5
		1.3.2 过程的稀疏	6
	1.4	复合Poisson过程及应用	7
		1.4.1 复合Poisson过程	7
		1.4.2 复合Poisson过程在保险风险理论中的应用	8
	1.5	Poisson 过程的其它扩展	10
		1.5.1 非齐次 Poisson 过程	10
		1.5.2 条件 Poisson 过程	10
		1.5.3 Poisson 随机测度	11
2	离散	村间马氏链	12
	2.1	定义与例	12
	2.2	状态分类	14
		2.2.1 状态空间的分解	14
		2.2.2 状态的常返	15
		2.2.3 状态的周期性	20
	2.3	不变测度和平稳分布	20
	2.4	极限定理	23
		2.4.1 极限分布	23
		2.4.2 比率定理	26
	2.5	一些例子	27
3	连续	时间马氏链	33
	3.1		33
			33
			35
	3.2		36
	3.3		39
	3.4		43
	3.5		46
	3.6	强马氏性	48

第一章 Poisson 过程

称随机变量 X 服从参数为 λ 的 Poisson 分布,若 $P(X = k) = e^{-\lambda \frac{\lambda^k}{k!}}, k = 0, 1, \dots$ 称随机变量 X 服从参数为 λ 的指数分布,若 $P(X > t) = e^{-\lambda t}$. 此时,X 的密度函数为 $\lambda e^{-\lambda t}$, t > 0, 分布函数为 $1 - e^{-\lambda t}$, t > 0. 指数分布满足无记忆性,即

$$P(X > t + s) = P(X > t)P(X > s).$$

引理 1.1 设随机变量 X, Y 独立, $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ 有界可测。令 g(x) = E[f(x,Y)]. 则 g(X) 可积,且

$$E[f(X,Y)] = E[g(X)].$$

称 $\{N(t), t \geq 0\}$ 为计数过程,若 N(t) 表示在时刻 t 之前发生事件的次数。因此,计数过程 N(t) 满足:

- (i) $N(t) \ge 0$;
- (ii) N(t) 为整数值;
- (iii) $\forall t \mid 0 \ge s \le t, N(s) \le N(t);$
- (iv) 对 $0 \le s < t$, N(t) N(s) 表在区间 (s, t] 发生事件的次数。

§1.1 定义

定义 1.1 称 $\{N(t), t > 0\}$ 为参数为 λ 的(齐次) Poisson 过程,若

- (i) N(t)是计数过程, N(0) = 0;
- (ii) N(t) 具有平稳独立增量,即对任意的 $0 \le t_0 < t_1 < \dots < t_n, t \ge 0, h > 0$,有 $N(t_1) N(t_0), \dots, N(t_n) N(t_{n-1})$ 独立,且 N(t+h) N(t) 与 N(h) 同分布;
- (iii) 当 h 1 0 时,

$$P(N(h) = 1) = \lambda h + o(h), \quad P(N(h) \ge 2) = o(h).$$
 (1.1)

定理 1.2 设 N(t) 是参数为 λ 的 Poisson 过程,则对任意的 h > 0,

$$P(N(t+h) - N(t) = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}, \quad k = 0, 1, \dots$$
 (1.2)

证明 记 $p_n(t) = P(N(t) = n) = P(N(t+s) - N(s) = n)$.

i) 先考虑 n = 0 的情形。对 h > 0, 有

$$p_0(t+h) = P(N(t+h) = 0) = P(N(t) = 0, N(t+h) - N(t) = 0)$$
$$= P(N(t) = 0)P(N(t+h) - N(t) = 0) = p_0(t)p_0(h).$$

应用

$$p_0(h) = P(N(h) = 0) = 1 - P(N(h) = 1) - P(N(h) \ge 2) = 1 - \lambda h + o(h),$$

得

$$p_0(t+h) - p_0(t) = (1 - p_0(h))p_0(t) = \lambda h p_0(t) + o(h).$$

从而 $p_0(t)$ 在 t 右可导,且右导数为 $-\lambda p_0(t)$. 而

$$\frac{p_0(t-h) - p_0(t)}{h} = \frac{p_0(t-h) - p_0(t-h)p_0(h)}{h}$$
$$= \frac{1 - p_0(h)}{h} \frac{p_0(t)}{p_0(h)},$$

令 $h \to 0$ 可得 $p_0(t)$ 在 t 的左导数也存在,且为 $-\lambda p_0(t)$. 这样

$$p_0'(t) = -\lambda p_0(t), \quad p_0(0) = 1,$$

于是 $p_0(t) = e^{-\lambda t}$.

ii) 当 n > 0 时

$$p_n(t+h) = P(N(t+h) = n)$$

$$= P(N(t) = n, \ N(t+h) - N(t) = 0) + P(N(t) = n - 1, \ N(t+h) - N(t) = 1)$$

$$+ P(N(t+h) = n, \ N(t+h) - N(t) \ge 2)$$

$$= p_n(t)p_0(h) + p_{n-1}(t)p_1(h) + o(h)$$

$$= (1 - \lambda h)p_n(t) + \lambda hp_{n-1}(t) + o(h).$$

对 h > 0, 有

$$\frac{p_n(t+h) - p_n(t)}{h} = -\lambda p_n(t) + \lambda p_{n-1}(t) + \frac{o(h)}{h},$$

从而 $p_n(t)$ 在 t 的右导数为 $-\lambda p_n(t) + \lambda p_{n-1}(t)$. 类似的可知 $p_n(t)$ 的左导数也存在。这样

$$p'_n(t) = -\lambda p_n(t) + \lambda p_{n-1}(t), \quad p_n(0) = 0, \quad n \ge 1.$$

上面方程等价于

$$(e^{\lambda t}p_n(t))' = e^{\lambda t}p_{n-1}(t).$$

容易得到

$$p_n(t) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}.$$

这样, Poisson 过程有如下的等价定义。

定义 1.2 称 $\{N(t), t \geq 0\}$ 为参数为 λ 的 Poisson 过程, 若

- (i) N(t) 是计数过程,且 N(0) = 0;
- (ii) N(t) 是独立增量过程;
- (iii) 对任意的 t > 0, h > 0, 有

$$P(N(t+h) - N(t) = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}, \quad k = 0, 1, \dots$$

§1.2 另一个等价定义

设 N(t) 是参数为 λ 的 Poisson 过程。 令 $S_0=0,\ S_n=\inf\{t>0,\ N(t)\geq n\},$ $T_n=S_n-S_{n-1},\ n=1,2,\ldots$

定理 1.3 T_n , $n=1,2,\ldots$ 独立同分布且服从参数 λ 的指数分布。

证明 由

$$P(T_1 > t) = P(N(t) = 0) = e^{-\lambda t}$$

 T_1 服从参数为 λ 的指数分布。对 $0 < t_1 < t_2$ 和充分小的 $h_1, h_2 > 0$,

$$P(t_1 - h_1 < S_1 \le t_1 + h_1, \ t_2 - h_2 < S_2 \le t_2 + h_2)$$

$$= P(N(t_1 - h_1) = 0, \ N(t_1 + h_1) - N(t_1 - h_1) = 1, \ N(t_2 - h_2) - N(t_1 + h_1) = 0,$$

$$N(t_2 + h_2) - N(t_2 - h_2) = 1)$$

$$= e^{-\lambda(t_1 - h_1)} \cdot \lambda 2h_1 e^{-2\lambda h_1} \cdot e^{-\lambda(t_2 - h_2 - t_1 - h_1)} \cdot \lambda 2h_2 e^{-2\lambda h_2}$$

$$= 4\lambda^2 h_1 h_2 e^{-\lambda(t_2 + h_2)}.$$

所以, (S_1, S_2) 的联合密度函数为

$$g(s_1, s_2) = \begin{cases} \lambda^2 e^{-\lambda s_2}, & 0 < s_1 < s_2; \\ 0, & \not \exists \dot{\Sigma}_{\circ} \end{cases}$$
 (1.3)

由 $T_1 = S_1, T_2 = S_2 - S_1, (T_1, T_2)$ 的联合密度函数为

$$f(t_1, t_2) = \begin{cases} \lambda^2 e^{-\lambda(t_1 + t_2)}, & t_i \ge 0; \\ 0, & \sharp \dot{\Sigma}_{\circ} \end{cases}$$

这样, T₁, T₂ 独立同分布。一般的情形类似可证。

定理 1.4 设 T_1 , T_2 ,... 独立同分布且同服从参数为 λ 的指数分布。令 $S_0=0$, $S_n=T_1+\cdots+T_n$, $n=1, 2,\ldots$ 则 $N(t)=\sup\{n: S_n\leq t\}$ 是参数为 λ 的 Poisson 过程。

证明 当 $h \rightarrow 0$ 时,有

$$P(N(h) \ge 2) = P(S_2 \le h) = \int_0^h \lambda^2 s e^{-\lambda s} ds \le \lambda^2 h \int_0^h e^{-\lambda s} ds = o(h).$$

及

$$P(N(h) = 1) = P(S_1 \le h < S_2) = P(S_1 \le h) + o(h) = 1 - e^{-\lambda h} + o(h) = \lambda h + o(h),$$

为使得定理成立,只需要再证明 N(t) 具有平稳独立增量。我们只证明对任意的 n, k,

$$P(N(t+s) - N(t) = k, \ N(t) = n) = P(N(s) = k, \ N(t) = n).$$

一般情形类似可证。注意到

$${S(n) \le t} = {N(t) \ge n}.$$
 (1.4)

我们分下面几种情况来讨论。

(i) 设 k=0, n=0. 由指数分布的无记忆性,

$$P(N(t+s) - N(t) = 0, N(t) = 0) = P(N(t+s) = 0) = P(S_1 > t+s)$$

= $P(S_1 > s)P(S_1 > t) = P(N(s) = 0)P(N(t) = 0).$

(ii) 设k = 0, n > 1.

$$P(N(t+s) - N(t) = 0, \ N(t) = n) = P(S_n \le t < t + s < S_{n+1})$$

$$= P(S_n \le t < t + s < S_n + T_{n+1}) = \int_0^t P(t+s < u + T_{n+1}) dP(S_n \le u)$$

$$= \int_0^t P(S_1 > s) P(T_{n+1} > t - u) dP(S_n \le u) = P(N(s) = 0) P(N(t) = n).$$

(iii) \emptyset *k* ≥ 1, *n* = 0.

$$P(N(t+s) - N(t) = k, \ N(t) = 0) = P(t < S_1 \le S_k \le t + s < S_{k+1})$$

$$= P(t < S_1 \le S_1 + \sum_{i=2}^k T_i \le t + s < S_1 + \sum_{i=2}^{k+1} T_i)$$

$$= \int_0^s P(\sum_{i=2}^k T_i \le s - u < \sum_{i=2}^{k+1} T_i) dP(S_1 \le t + u).$$

由

$$dP(S_1 \le t + u) = -dP(S_1 > t + u) = -P(S_1 > t)dP(S_1 > u) = P(S_1 > t)dP(S_1 \le u),$$
可得

$$P(N(t+s) - N(t) = k, N(t) = 0)$$

$$=P(S_1 > t) \int_0^s P(\sum_{i=2}^k T_i \le s - u < \sum_{i=2}^{k+1} T_i) dP(S_1 \le u)$$

$$=P(N(s) = k)P(N(t) = 0).$$

(iv) \emptyset *k* ≥ 1, *n* ≥ 1.

$$P(N(t+s) - N(t) = k, \ N(t) = n) = P(S_n \le t < S_{n+1} \le S_{n+k} \le t + s < S_{n+k+1})$$

$$= \int_0^t P(t - u < S_1 \le S_k \le t + s - u < S_{k+1}) dP(S_n \le u)$$

$$= P(N(s) = k) \int_0^t P(N(t - u) = 0) dP(S_n \le u) = P(N(s) = k) P(N(t) = n).$$

§1.3 Poisson过程的其它性质

§1.3.1 顺序统计量

假定 Poisson 过程在时刻 t 之前恰好有一次事件发生,即 N(t) = 1. 由于 N(t) 具有独立增量,事件发生的时刻应服从 (0, t] 上的均匀分布。事实上,

$$P(S_1 < s | N(t) = 1) = \frac{P(S_1 < s, N(t) = 1)}{P(N(t) = 1)}$$

$$= \frac{P(N(s) = 1, N(t) - N(s) = 0)}{P(N(t) = 1)} = \frac{\lambda s e^{-\lambda s} e^{-\lambda (t - s)}}{\lambda t e^{-\lambda t}}$$

$$= \frac{s}{t}.$$

为推广这一结果,我们引入顺序统计量的概念。

设 Y_1, Y_2, \ldots, Y_n 是 n 个随机变量, $\{Y_{(1)}, Y_{(2)}, \ldots, Y_{(n)}\} = \{Y_1, Y_2, \ldots, Y_n\}$,且 $Y_{(1)} \leq Y_{(2)} \leq \cdots \leq Y_{(n)}$,则称 $Y_{(1)}, \ldots, Y_{(n)}$ 为对应于 Y_1, Y_2, \ldots, Y_n 的顺序统计量。若 Y_1, \ldots, Y_n 独立同分布,且具有密度函数 f(x),则 $Y_{(1)}, \ldots, Y_{(n)}$ 的密度函数为

$$f(y_1, \dots, y_n) = n! \prod_{i=1}^n f(y_i), \quad y_1 < \dots < y_n.$$

特别的, 当服从 (0, t) 上均匀分布时, 密度函数为

$$f(y_1, \dots, y_n) = \frac{n!}{t^n}, \quad 0 < y_1 < \dots < y_n < t.$$

定理 1.5 假设在时间 t > 0 前已经发生了 n 次事件,即已知 N(t) = n,则随机向量 $(S_1, S_2, ..., S_n)$ 的分布与区间 [0, t] 上 n 个独立均匀分布的顺序统计量具有相同的分布,即它的联合密度函数为

$$f(t_1, \dots, t_n) = \frac{n!}{t^n}, \quad 0 < t_1 < \dots < t_n < t.$$

证明 我们只对 n=2 证明。由于 $S_1, ..., S_n$ 的联合密度为

$$g(s_1, \ldots, s_n) = \lambda^n e^{-\lambda s_n}, \quad s_1 < \cdots < s_n,$$

所以

$$P(S_1 \le s_1, S_2 \le s_2, N(t) = 2) = P(S_1 \le s_1, S_2 \le s_2, S_2 \le t < S_3)$$

$$= \int_0^{s_1} \int_{x_1}^{s_2} \int_t^{\infty} \lambda^3 e^{-\lambda x_3} dx_3 dx_2 dx_1$$

$$= \lambda^2 e^{-\lambda t} (s_1 s_2 - s_1^2 / 2).$$

因此,

$$P(S_1 \le s_1, S_2 \le s_2 | N(t) = 2) = \frac{\lambda^2 e^{-\lambda t} (s_1 s_2 - s_1^2 / 2)}{\lambda^2 t^2 e^{-\lambda t} / 2} = \frac{2}{t^2} (s_1 s_2 - s_1^2 / 2).$$

§1.3.2 过程的稀疏

定理 1.6 设 Poisson 过程 N(t) 表示到 t 时刻发生的事件个数。如果每个事件被记录的概率为 p, 且是否被记录是独立的,则被记录的事件个数 $N_1(t)$ 是强度为 λp 的 Poisson 过程。

证明 由全概率公式,

$$P(N_{1}(t) = n) = \sum_{m=0}^{\infty} P(N_{1}(t) = n | N(t) = m + n) P(N(t) = m + n)$$

$$= \sum_{m=0}^{\infty} {m+n \choose n} p^{n} (1-p)^{m} e^{-\lambda t} \frac{(\lambda t)^{m+n}}{(m+n)!}$$

$$= e^{-\lambda t} \frac{(\lambda pt)^{n}}{n!} \sum_{m=0}^{\infty} \frac{(\lambda t(1-p))^{m}}{m!} = e^{-\lambda t} \frac{(\lambda pt)^{n}}{n!} e^{\lambda t(1-p)}$$

$$= e^{-\lambda pt} \frac{(\lambda pt)^{n}}{n!}.$$

下面假设事件被记录的概率与发生的时间有关。具体的说,若某次事件发生在时刻 t, 则以概率 p(t) 被记录,并且与其它事件是否被记录独立。记 $N_1(t)$ 为到时刻 t 被记录的事件个数, $N_2(t) = N(t) - N_1(t)$ 为未记录事件的个数。

命题 1.7 $N_1(t)$ 与 $N_2(t)$ 是相互独立的 Poisson 随机变量,且分别以 λtp 和 $\lambda t(1-p)$ 为参数,其中

$$p = \frac{1}{t} \int_0^t p(s) ds.$$

证明 考虑在 [0, t] 中发生的任一事件,它发生的时间服从 [0, t] 上的均匀分布。因测它被记录的概率为

$$p = \frac{1}{t} \int_0^t p(s) ds.$$

这样,

$$P(N_t(t) = n | N(t) = n + k) = \binom{n+k}{n} p^n (1-p)^k.$$

于是

$$P(N_1(t) = n, N_2(t) = k) = P(N_1(t) = n, N_2(t) = k | N(t) = n + k) P(N(t) = k)$$

$$= \frac{(n+k)!}{n!k!} p^n (1-p)^k \frac{(\lambda t)^{n+k}}{(n+k)!} e^{-\lambda t} = e^{-\lambda t p} \frac{(\lambda t p)^n}{n!} \cdot e^{-\lambda t (1-p)} \frac{(\lambda t (1-p))^k}{k!}.$$

例 无穷多个服务员的 Poisson 排队系统 设顾客按照强度为 λ 的 Poisson 过程到达一服务站。顾客到达后,不需等待,即可由某一服务员提供服务,且服务时间是独立的,有共同的分布 G.

设在时刻 t 服务完毕的顾客数为 $N_1(t)$, 尚在服务的顾客数为 $N_2(t)$. 若顾客在时刻 s 到达,如果服务时间小于 t-s, 他将会在 t 服务完毕,这个概率是

$$p(s) = G(t - s), \ s \le t.$$

从而由上面命题知 $N_1(t)$ 与 $N_2(t)$ 独立,且 $N_1(t)$ 和 $N_2(t)$ 分别服从参数为 $\lambda \int_0^t G(y) dy$ 和 $\lambda \int_0^t (1 - G(y)) dy$ 的 Poisson 分布。

§1.4 复合Poisson过程及应用

§1.4.1 复合Poisson过程

定义 1.3 设 Y_n , $n \ge 1$ 是一列独立同分布的随机变量,且与 N(t) 独立。称过程 $S(t) = \sum_{i=1}^{N(t)} Y_i$ 为复合 Poisson 过程。

定理 1.8 复合 Poisson 过程 S(t) 具有如下性质:

- (i) 它是平稳独立增量过程;
- (ii) 若 $\mu = E[Y_i] < \infty$, 则 $E[S(t)] = \lambda t \mu$; 若 $Var[Y_i] < \infty$, 则 $Var(S(t)) = \lambda t E(Y_i^2)$.

(iii) 对任意 $\xi \in \mathbb{R}$, $E[e^{i\xi S(t)}] = e^{-t\psi(\xi)}$, 其中

$$\psi(\xi) = \lambda \int_{-\infty}^{\infty} (1 - e^{i\xi x}) dF(x).$$

证明 先证平稳独立增量性。记 F 为 Y_i 的分布函数, F^{*k} 为 F 的 k 重卷积。对任意的 $0 \le t_0 < \cdots < t_n$ 和 x_i ,有

$$\begin{split} &P(S(t_0) \leq x_0, \ S(t_1) - S(t_0) \leq x_1, \dots, S(t_n) - S(t_{n-1}) \leq x_n) \\ &= P(\sum_{i=1}^{N(t_0)} Y_i \leq x_0, \dots, \sum_{i=N(t_{n-1})+1}^{N(t_n)} Y_i \leq x_n) \\ &= \sum_{k_0, \dots, k_n} \prod_{j=0}^n F^{*k_j}(x_j) P(N(t_0) = k_0, \ N(t_1) - N(t_0) = k_1, \dots, N(t_n) - N(t_{n-1}) = k_n) \\ &= \sum_{k_0, \dots, k_n} \prod_{j=0}^n F^{*k_j}(x_j) P(N(t_0) = k_0) P(N(t_1) - N(t_0) = k_1) \cdots P(N(t_n) - N(t_{n-1}) = k_n) \\ &= P(S(t_0) \leq x_1) P(S(t_1 - t_0) \leq x_2) \cdots P(S(t_n - t_{n-1}) \leq x_n). \end{split}$$

$$\vec{\mathbb{R}} \text{ iif. (ii)}.$$

$$E[S(t)] = \sum_{n=1}^{\infty} E[\sum_{i=1}^{n} Y_i | N(t) = n] P(N(t) = n)$$
$$= \sum_{n=1}^{\infty} n\mu P(N(t) = n) = \mu \lambda t$$

相同方法可以得到方差表达式。

(iii) 记 \hat{F} 为分布F 的特征函数,即

$$\hat{F}(\xi) = \int_{-\infty}^{\infty} e^{i\xi x} dF(x).$$

$$E[e^{i\xi S(t)}] = \sum_{n=0}^{\infty} E[\exp(i\xi \sum_{j=1}^{n} Y_j) | N(t) = n] P(N(t) = n)$$

$$= \sum_{n=0}^{\infty} \hat{F}(\xi)^n \frac{(\lambda t)^n}{n!} e^{-\lambda t} = \exp\left(-\lambda t \left(\int_{-\infty}^{\infty} (1 - e^{i\xi x}) dF(x)\right)\right).$$

§1.4.2 复合Poisson过程在保险风险理论中的应用

古典风险过程:

$$R(t) = u + ct - \sum_{i=1}^{N(t)} Y_i,$$

其中 u > 0, c > 0, Y_n 是独立同分布的非负随机变量,N(t) 是强度为 λ 的 Poisson 过程。记 F 为 Y_i 的分布函数, μ 为 Y_i 的期望, $M(r) = E[e^{rY_i}]$. 假设

- 存在 $0 < \gamma \le \infty$, 使得当 $r < \gamma$ 时, $M(r) < \infty$, 并且 $\lim_{r \to \gamma^-} M(r) = \infty$.
- $c > \lambda \mu$.

此时, 关于r的方程

$$\lambda M(r) = \lambda + cr$$

有唯一的正实根 R(证明留作练习)。称 R 为 Lundberg 指数(调节系数)。 风险过程 R(t) 的破产时 T 定义为

$$T = \inf\{t > 0, \ R(t) < 0\}.$$

显然的,

$$\{T < \infty\} = \bigcup_{n} \{T = S_n\}.$$

下面我们给出 $P(T<\infty)$ 的一个估计。记 $A_n=\{T\leq S_n\},\ \psi_n(u)=P(A_n),\ 则$ $P(T<\infty)=\lim_{n\to\infty}\psi(u),$

$$A_n = \{u + cT_1 - Y_1 < 0, \ \ \ \, \exists u + cT_1 + cT_2 - Y_1 - Y_2, \cdots, \ \, \exists u + cT_1 + \cdots + cT_n - \sum_{k=1}^n Y_k < 0\}.$$

于是

$$\psi_{n+1}(u) = P(A_{n+1}) = P(T = S_1) + P(S_1 < T \le S_{n+1})$$

$$= P(u + cT_1 - Y_1 < 0) +$$

$$P(u + cT_1 - Y_1 \ge 0, \exists 2 \le k \le n+1, u + cT_1 - Y_1 + \sum_{i=2}^{k} (cT_i - Y_i) < 0)$$

$$= \int_0^\infty \int_{u+cs}^\infty \lambda e^{-\lambda s} dF(y) ds$$

$$+ \int_0^\infty \int_0^{u+cs} P(\exists 2 \le k \le n+1, u + cs - y + \sum_{i=2}^{k} (cT_i - Y_i) < 0) \lambda e^{-\lambda s} dF(y) ds$$

$$= \int_0^\infty \int_{u+cs}^\infty \lambda e^{-\lambda s} dF(y) ds + \int_0^\infty \int_0^{u+cs} \psi_n(u + cs - y) \lambda e^{-\lambda s} dF(y) ds.$$

因为当 y > u + cs 时, $e^{-R(u+cs-y)} \ge 1$, 因此

$$\psi_1(u) = \int_0^\infty \int_{u+cs}^\infty \lambda e^{-\lambda s} dF(y) ds \le \int_0^\infty \int_{u+cs}^\infty \lambda e^{-\lambda s} e^{-R(u+cs-y)} dF(y) ds$$
$$\le \int_0^\infty \int_0^\infty \lambda e^{-\lambda s} e^{-R(u+cs-y)} dF(y) ds = e^{-Ru} \frac{\lambda M(R)}{\lambda + cR} = e^{-Ru}.$$

假设 $\psi_n(u) < e^{-Ru}$, 则

$$\psi_{n+1}(u) \le \int_0^\infty \int_0^\infty \lambda e^{-\lambda s} e^{-R(u+cs-y)} dF(y) ds = e^{-Ru}$$

这就证明了对任意的 n, 都有 $\psi(u) \leq e^{-Ru}$. 从而

命题 1.9

$$P(T < \infty) \le e^{-Ru}. (1.5)$$

§1.5 Poisson 过程的其它扩展

§1.5.1 非齐次 Poisson 过程

定义 1.4 称 N(t) 为具有强度 $\lambda(t)$ 的非齐次 Poisson 过程, 若

- (i) N(t) 是计数过程, N(0) = 0;
- (ii) N(t) 具有独立增量;
- (iii) 当 $h\downarrow 0$ 时,

$$P(N(t+h) - N(t) \ge 2) = o(h), \quad P(N(t+h) - N(t) = 1) = \lambda(t)h + o(h).$$
 (1.6)

令

$$m(t) = \int_0^t \lambda(s)ds,\tag{1.7}$$

则 N(t+s)-N(t) 服从参数为 m(t+s)-m(t) 的 Poisson 分布。当强度 $\lambda(t)$ 有界,即存在 λ 使得 $\lambda(t) \leq \lambda$ 时,可看作是齐次 Poisson 过程的随机取样。考虑强度为 λ 的 Poisson 过程,若某一事件发生在时刻 t,则以概率 $\lambda(t)/\lambda$ 被记录,得到的过程即为强度为 $\lambda(t)$ 的非齐次 Poisson 过程(见命题 1.7)。

§1.5.2 条件 Poisson 过程

定义 1.5 设正值随机变量 Λ 分布函数为 G, N(t) 为计数过程。称 N(t) 为条件 Poisson 过程,若在 $\Lambda = \lambda$ 的条件下, N(t) 是以 λ 为强度的 Poisson 过程。

容易证明, N(t) 具有平稳增量, 但不是独立增量过程, 且

$$P(\Lambda \le x | N(t) = n) = \frac{\int_0^x e^{-\lambda t} (\lambda t)^n dG(\lambda)}{\int_0^\infty e^{-\lambda t} (\lambda t)^n dG(\lambda)}.$$

§1.5.3 Poisson 随机测度

定义 1.6 设 ν 是空间 (S,\mathcal{B}) 上 σ -有限的测度。称随机测度 N 为以 ν 为强度的 *Poisson* 随机测度,若

- (i) 对任意的 $B \in \mathcal{B}$, $\nu(B) < \infty$, 则 N(B) 是参数为 $\nu(B)$ 的 Poisson 随机变量;
- (ii) 对互不相交的集合 $B_1, \ldots, B_n \in \mathcal{B}, N(B_1), \ldots, N(B_n)$ 相互独立。

对 (S, \mathcal{B}) 上非负可测函数 f, 定义

$$\psi_N(f) = E[\exp(-N(f))].$$

可以证明,若 $\int_S (1-e^{-f(x)})\nu(dx) < \infty$, 则

$$\Psi_N(f) = \exp\left\{-\int_S (1 - e^{-f(x)})\nu(dx)\right\}.$$

第二章 离散时间马氏链

§2.1 定义与例

定义 2.1 设随机过程 $\{X_n, n=0,1,\ldots\}$ 的状态空间 I 离散(有限或可数)。如果对任意的 $n\geq 0$ 和状态 $i_0,\,i_1,\,\ldots,\,i_{n+1},\,$ 只要 $P(X_0=i_0,\ldots,X_{n+1}=i_{n+1})>0,\,$ 就有

$$P(X_{n+1} = i_{n+1} | X_0 = i_0, \dots, X_n = i_n) = P(X_{n+1} = i_{n+1} | X_n = i_n),$$
 (2.1)

则称它为离散时间马氏链(Markov 链)。如果对任意的 m, n 及状态 $i, j \in I$,只要 $P(X_m = i) > 0, P(X_n = i) > 0$,就有

$$P(X_{m+1} = j | X_m = i) = P(X_{n+1} = j | X_n = i),$$
(2.2)

则称它为齐次的。

本章我们只考虑齐次马氏链,并且总假定构成条件的事件具有正概率。记

$$p_{ij} = P(X_{n+1} = j | X_n = i), (2.3)$$

称它为单步转移概率。称 $P = (p_{ij})_{i,i \in I}$ 为转移矩阵。明显的,单步转移概率满足

- (i) $p_{ij} \ge 0, i, j \in I$
- (ii) $\sum_{j \in I} p_{ij} = 1, i \in I$

令 $\mathcal{F}_n = \sigma\{X_m, m \leq n\}$, $\mathcal{F}^n = \sigma\{X_m, m \geq n\}$. 下面我们给出马氏性的一些等价条件。

定理 2.1 下面条件等价:

- (i) 马氏性 (2.1) 成立;
- (ii) 对任意的 $r, m, k, n_1 < n_2 < \dots < n_r < m,$ 以及任意状态 $i_1, \dots, i_r, i_m, i_{m+k}$ 有 $P(X_{m+k} = i_{m+k} | X_{n_1} = i_1, \dots, X_{n_r} = i_r, X_m = i_m) = P(X_{m+k} = i_{m+k} | X_m = i_m). \tag{2.4}$
- (iii) 对任意的 m, 状态 i 和 $F \in \mathcal{F}_{m-1}$, $G \in \mathcal{F}^{m+1}$, 有

$$P(G|F, X_m = i) = P(G|X_m = i).$$
 (2.5)

(iv) 对任意的 m, 状态 i 和 $F \in \mathcal{F}_{m-1}$, $G \in \mathcal{F}^{m+1}$, 有

$$P(FG|X_m = i) = P(F|X_m = i)P(G|X_m = i).$$
(2.6)

证明 只证明 (i) \Rightarrow (ii). 为简单起见,设 r=1,一般情形完全相同。由马氏性 (i),

$$P(X_{n_1} = i_{n_1}, X_m = i_m, X_{m+k} = i_{n+k})$$

$$= \sum_{j_s, s < m+k, s \neq n_1, m} P(X_0 = j_0, \dots, X_{n_1} = i_1, X_{n_1+1} = j_{n_1+1}, \dots, X_{m+k} = i_{m+k})$$

$$= \sum_{j_s, m < s < m+k} P(X_{m+k} = i_{m+k} | X_{m+k-1} = j_{m+k-1}) \cdot P(X_{m+k-1} = j_{m+k-1} | X_{m+k-2} = j_{m+k-2})$$

$$\cdot \dots \cdot P(X_{m+1} = j_{m+1} | X_m = i_m) \cdot P(X_{n_1} = i_{n_1}, X_m = i_m).$$

于是

$$P(X_{m+k} = i_{m+k} | X_{n_1} = i_1, \dots, X_{n_r} = i_r, \ X_m = i_m)$$

$$= \sum_{j_s, \ m < s < m+k} P(X_{m+k} = i_{m+k} | X_{m+k-1} = j_{m+k-1}) \cdot \dots \cdot P(X_{m+1} = j_{m+1} | X_m = i_m).$$

同理可证上式右方等于(2.4)右方。

称

$$p_{ij}^{(k)} = P(X_{n+k} = j | X_n = i), \ k = 1, 2, \dots$$
 (2.7)

为 k 步转移概率,它表示马氏链从状态 i 出发,经 k 步到达 j 的概率。约定 $p_{ij}^{(0)} = \delta_{ij}$. 注意 $p_{ij}^{(1)} = p_{ij}$. 记 $P^{(k)} = (p_{ij}^{(k)})$.

Ш

$$P(X_{n+k} = j | X_n = i) = \sum_{i_1, \dots, i_{k-1}} P(X_{n+1} = i_1, X_{n+k-1} = i_{k-1}, X_{n+k} = j | X_n = i)$$

$$= \frac{1}{P(X_n = i)} P(X_{n+k} = j | X_{n+k-1} = i_{k-1}) \cdot \dots \cdot P(X_{n+1} = i_1 | X_n = i) \cdot P(X_n = i)$$

$$= p_{i,i_1} \cdot p_{i_1,i_2} \cdot \dots \cdot p_{i_{k-1},j},$$

可知 $P^{(k)} = P^k$. 特别的, $P^{(m+k)} = P^{(m)}P^{(k)}$.

引理 $2.2 p_{ij}^{(k)}$ 具有性质:

(i)
$$0 \le p_{ij}^{(k)} \le 1$$
;

(ii)
$$\sum_{j} p_{ij}^{(k)} = 1;$$

(iii) 对任意 m, k 及状态 i, j, 有

$$p_{ij}^{(m+k)} = \sum_{r} p_{ir}^{(m)} p_{rj}^{(k)}.$$
 (2.8)

(2.8) 称为 C–K (Chapman–Kolmogorov) 方程。它来源于英国 S. Chapman 对候鸟迁移规律的研究。它的直观意思是从状态 i 经 m+k 步到达 j 可分为两个步骤完成,首先由 i 经 m 步转到某一中间 r, 再由 r 经 k 步到 j。对一切可能的状态求和即可得到 (2.8) 的右方。

下面命题指出,马氏链 X_n 的有限维分布族,可以由初始分布 $q_i = P(X_0 = i)$ 及转移概率 p_{ij} 完全确定。

命题 **2.3** (i)
$$P(X_n = j) = \sum_i q_i p_{ij}^{(n)}$$
.

(ii) 对
$$n_1 < n_2 < \cdots < n_k$$
 及状态 i_1, i_2, \ldots, i_k , 有

$$P(X_{n_1} = i_1, X_{n_2} = i_2, \dots, X_{n_k} = i_k) = P(X_{n_1} = i_1) p_{i_1, i_2}^{(n_2 - n_1)} \cdots p_{i_{k-1}, i_k}^{(n_k - n_{k-1})}.$$

证明 (i)

$$P(X_n = j) = \sum_{i} P(X_0 = i, \ X_n = j) = \sum_{i} q_i P(X_n = j | X_0 = i) = \sum_{i} q_i p_{ij}^{(n)}.$$

(ii) 由马氏性,

$$P(X_{n_1} = i_1, \dots, X_{n_k} = i_k)$$

$$= P(X_{n_k} = i_k | X_{n_{k-1} = i_{k-1}}) P(X_{n_{k-1}} = i_{k-1} | X_{n_{k-2} = i_{k-2}}) \cdots P(X_{n_2} = i_2 | X_{n_1} = i_1)$$

$$= P(X_{n_1} = i_1) p_{i_1, i_2}^{(n_2 - n_1)} \cdots p_{i_{k-1}, i_k}^{(n_k - n_{k-1})}.$$

定理 2.4 (存在性定理) 任给概率分布 $\{p_i\}$ 及满足 $0 \le p_{ij} \le 1$, $\sum_j p_{ij} = 1$ 的矩阵 (p_{ij}) , 则存在概率空间 (Ω, \mathcal{F}, P) 以及其上的马氏链 $\{X_n, n \ge 0\}$, 使得它的初始分布为 $\{p_i\}$, 转移矩阵为 (p_{ij}) .

§2.2 状态分类

§2.2.1 状态空间的分解

设 X_n 是以 I 为状态空间的马氏链, $B \subset I$. 令

$$\tau_B = \inf\{n \ge 0, \ X_n \in B\},\$$

称为 B 的首中时。记 $\tau_j = \tau_{\{j\}}$.

定义 2.2 设 $i, j \in I$. 称 i 可达 j, 记为 $i \to j$, 若 $P_i(\tau_j < \infty) > 0$. 称 i 与 j 互通,记 为 $i \leftrightarrow j$, 若 $i \to j$ 且 $j \to i$.

注意到

$$\{\tau_j = n\} \subset \{X_n = j\} \subset \{\tau_j \le n\} \subset \{\tau_j < \infty\}.$$

若存在 n 使 $p_{ij}^{(n)} > 0$, 则 $P_i(\tau_j < \infty) \ge p_{ij}^{(n)} > 0$. 反过来,若 $P_i(\tau_j < \infty) > 0$, 则存在 n 使 $P_i(\tau_j = n) > 0$, 从而 $p_{ij}^{(n)} \ge P_i(\tau_j = n) > 0$. 这样,我们证明了 $i \to j$ 当且仅当存在 n 使 $p_{ij}^{(n)} > 0$.

命题 2.5 互通关系是 I 上等价关系, 即

- (i) $i \leftrightarrow j$;
- (ii) $i \leftrightarrow j$ 当且仅当 $j \leftrightarrow i$;
- (iii) 若 $i \leftrightarrow j$, $j \leftrightarrow k$, 则 $i \leftrightarrow k$.

证明 只须证明传递性。设 $i \to j, j \to k$, 则存在 m, n, 使得 $p_{ij}^{(m)} > 0, p_{jk}^{(n)} > 0$. 于是由 C–K 方程,

$$p_{ik}^{(m+n)} = \sum_{r} p_{ir}^{(m)} p_{rk}^{(n)} \ge p_{ij}^{(m)} p_{jk}^{(n)} > 0.$$

按照互通关系,I 可分解为 $I = \bigcup_{\lambda} C_{\lambda}$,其中 C_{λ} 中任两状态互通,且当 $\lambda \neq \mu$ 时, $C_{\lambda} \bigcap C_{\mu} = \emptyset$.

称 X_n 为不可约马氏链,若 I 中任两状态互通,即上面分解中只有一个等价类。 称 $C \subset I$ 为闭集,若对任意 $i \in I$, $P_i(\tau_{C^c} = \infty) = 1$. 若 $\{j\}$ 为闭集,则称 j 为吸收态。

命题 2.6 (i) C 是闭集等价于对任意的 $i \in C$, $j \in C^c$, 有 $p_{ij} = 0$.

(ii) j 吸收等价于 $p_{ij}=1$.

证明 必要性显然。设对 $i \in C, j \in C^c, p_{ij} = 0$. 则

$$P_i(\tau_{C^c} = 1) = \sum_{j \in C^c} p_{ij} = 0,$$

$$P_i(\tau_{C^c} = 2) = P_i(X_1 \in C, \ X_2 \in C^c) = \sum_{j \in C^c} \sum_{k \in C} p_{ik} p_{kj} = 0.$$

归纳即得 $P_i(\tau_{C^c} \leq n) = 0$.

§2.2.2 状态的常返

$$\diamondsuit \tau_i(0) = 0,$$

$$\tau_i(1) = \inf\{m \ge 1, \ X_m = i\},\$$

在 $\{\tau_i(1) < \infty\}$ 上,令

$$\tau_i(2) = \inf\{m > \tau_i(1), \ X_m = i\},\$$

归纳的,在 $\{\tau_i(1) < \infty, \dots, \tau_i(n) < \infty\}$ 上,令

$$\tau_i(n+1) = \inf\{m > \tau_i(n), \ X_m = i\}.$$

应用马氏性,

$$\begin{split} &P_i(\tau_i(1) = m, \ \tau_i(2) - \tau_i(1) = n) \\ &= P_i(X_s \neq i, \ 1 \leq s < m, \ X_m = i, \ X_u \neq i, \ m+1 \leq u < m+n, \ X_{m+n} = i) \\ &= P_i(X_s \neq i, \ 1 \leq s < m, \ X_m = i) P_i(X_u \neq i, \ m+1 \leq u < m+n, \ X_{m+n} = i) \\ &= P_i(\tau_i(1) = m) P_i(\tau_i(1) = n). \end{split}$$

上式中对m和n求和,有

$$P_i(\tau_i(1) < \infty, \ \tau_i(2) < \infty) = P_i(\tau_i(1) < \infty)^2.$$

这样,

$$P_i(\tau_i(1) = m, \ \tau_i(2) - \tau_i(1) = n | \tau_i(1) < \infty, \ \tau_i(2) < \infty)$$

= $P_i(\tau_i(1) = m | \tau_i(1) < \infty) P_i(\tau_i(1) = n | \tau_i(1) < \infty),$

即,在概率 $P(\cdot|\tau_i(1) < \infty, \tau_i(2) < \infty)$ 下, $\tau_i(1)$ 与 $\tau_i(2) - \tau_i(1)$ 独立同分布。一般的,我们有

命题 2.7 在概率 $P_i(\cdot|\tau_i(1) < \infty, ..., \tau_i(k) < \infty)$ 下,随机变量 $\tau_i(1), \tau_i(2) - \tau_i(1), ..., \tau_i(k) - \tau_i(k-1)$ 独立同分布。

类似于上面的方法,可以证明下面的结果。

推论 2.8 对任意的 m, k 及状态 $i_1, \ldots, i_m,$ 有

$$P_i(\tau_i(1) = k, X_{\tau_i(1)+l} = i_l, 1 \le l \le m) = P_i(\tau_i(1) = k)P_i(X_l = i_l, 1 \le l \le m).$$

定义 2.3 设 $i \in I$. 如果 $P_i(\tau_i(1) < \infty) = 1$, 则称状态 i 是常返的,反之称为非常返的(暂留得)。如果 $E_i\tau_i(1) < \infty$, 则称 i 为正常返的,反之称为零常返的。

对 $n \ge 1$, 记

$$f_{ij}^{(n)} = P_i(\tau_j(1) = n) = P_i(X_s \neq j, \ 1 \le k < n, \ X_n = j). \tag{2.9}$$

约定 $f_{ij}^{(0)} = 0$. 这样,

$$f_{ij} = \sum_{n=1}^{\infty} f_{ij}^{(n)} \tag{2.10}$$

表示从i出发,经有限步到达j的概率。记

$$m_i = E_i \tau_i(1) = \sum_{n=0}^{\infty} n f_{ii}^{(n)}.$$
 (2.11)

显然, i 常返等价于 $f_{ii} = 1$, i 正常返等价于 $m_i < \infty$.

定理 2.9 (初次进入的分解公式)

$$p_{ij}^{(n)} = \sum_{k=1}^{n} f_{ij}^{(k)} p_{jj}^{(n-k)}$$
(2.12)

证明 由 $\{X_n = j\} = \bigcup_{k=1}^n \{X_1 \neq j, \dots, X_{k-1} \neq j, X_k = j, X_n = j\},$

$$p_{ij}^{(n)} = P(X_n = j | X_0 = i) = \sum_{k=1}^n P(X_n = j, \tau_j(1) = k | X_0 = i)$$

$$= \sum_{k=1}^n P(X_1 \neq j, \dots, X_{k-1} \neq j, X_k = j, X_n = j | X_0 = i)$$

$$= \sum_{k=1}^n P(X_1 \neq j, \dots, X_{k-1} \neq j, X_k = j | X_0 = i)$$

$$P(X_n = j | X_0 = i, X_1 \neq j, \dots, X_{k-1} \neq j, X_k = j)$$

$$= \sum_{k=1}^n f_{ij}^{(k)} p_{jj}^{(n-k)}$$

推论 2.10 状态 i 可达 j 的充分必要条件是 $f_{ij} > 0$.

证明 由
$$p_{ij}^{(n)} = \sum_{k=1}^{n} f_{ij}^{(k)} p_{jj}^{(n-k)}$$
 立得。

记 $f_{ij}^{(n)}$ 和 $p_{ij}^{(n)}$ 的生成函数分别为

$$F_{ij}(s) = \sum_{n=1}^{\infty} f_{ij}^{(n)} s^n, \quad 0 \le s \le 1,$$

$$P_{ij}(s) = \sum_{n=0}^{\infty} p_{ij}^{(n)} s^n, \quad 0 \le s < 1.$$

由 (2.12),

$$P_{ij}(s) = \delta_{ij} + \sum_{n=1}^{\infty} p_{ij}^{(n)} s^n = \delta_{ij} + \sum_{n=1}^{\infty} \sum_{k=1}^{n} f_{ij}^{(k)} s^k p_{jj}^{n-k} s^{n-k}$$
$$= \delta_{ij} + \sum_{k=1}^{\infty} f_{ij}^{(k)} s^k \sum_{n=k}^{\infty} p_{jj}^{(n-k)} s^{n-k} = \delta_{ij} + F_{ij}(s) P_{jj}(s).$$

当i = j时,有

$$P_{ii}(s) = \frac{1}{1 - F_{ii}(s)}. (2.13)$$

而当 $i \neq j$ 时,

$$P_{ij}(s) = \frac{F_{ij}(s)}{1 - F_{ij}(s)}. (2.14)$$

定理 2.11 状态 i 常返等价于 $\sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty; i$ 非常返等价于 $\sum_{n=0}^{\infty} p_{ii}^{(n)} < \infty.$

证明 在 (2.13) 中令 $s \to 1$,

$$\sum_{n=0}^{\infty} p_{ii}^{(n)} = \frac{1}{1 - f_{ii}}.$$

推论 2.12 设j非常返。则 $\lim_{n\to\infty} p_{ij}^{(n)} = 0$.

证明 由 j 非常返知 $f_{jj} < 1$. 在 (2.14) 中令 $s \to 1$,

$$\sum_{n=0}^{\infty} p_{ij}^{(n)} = \delta_{ij} + \frac{f_{ij}}{1 - f_{jj}} < \infty,$$

从面 $\lim_{n\to\infty} p_{ij}^{(n)} = 0.$

$$N_j = \sum_{n=1}^{\infty} 1_{\{X_n = j\}},$$

它表示 X_n 到达 j 的次数。由 $E[N_j] = \sum_{n=1}^\infty p_{ij}^{(n)}$ 可知 i 常返等价于到达 i 的平均次数是无穷。

推论 2.13 有限状态马氏链必有常返状态。

证明 设 $I = \{1, 2, ..., m\}$. 若 I 中所有状态非常返,则对任意的 $i, j \in I$, 有 $\lim_{n\to\infty} p_{ij}^{(n)} = 0$. 对 j 求和,

$$1 = \sum_{j=1}^{m} p_{ij}^{(n)} \to 0 \quad (n \to \infty).$$

记 $g_{ij} = P_i(N_j = \infty) = P_i(X_n = j \text{ i.o.})$ 为到达 j 无穷多次的概率。

引理 2.14 $g_{ij} = f_{ij}g_{jj}$.

证明

$$g_{ij} = \sum_{n=1}^{\infty} P_i(X_s \neq j, \ 1 \leq k < n, \ X_n = j, \ X_{n+u} = j \text{ i.o.})$$

$$= \sum_{n=1}^{\infty} P_i(X_s \neq j, \ 1 \leq k < n, \ X_j = j) P_j(X_s = j \text{ i.o.})$$

$$= \sum_{n=1}^{\infty} f_{ij}^{(n)} g_{jj} = f_{ij} g_{ij}.$$

定理 2.15

$$g_{ij} = \begin{cases} f_{ij}, & j \text{ 常返} \\ 0, & j \text{ 非常返} \end{cases}$$

证明 对 $m \ge 1$, 令 $g_{ij}(m) = P_i(N_j \ge m) = P_i(X_n = j$ 至少取到m 次). 类似于上面的 证明,

$$g_{ij}(m+1) = f_{ij}g_{jj}(m) = \cdots = f_{ij}(f_{jj})^m$$
.

推论 2.16 若 i 常返,则 $g_{ii} = 1$;若 i 非常返,则 $g_{ii} = 0$.

这样, i 常返当且仅当马氏链 X_n 从 i 出发, 以概率 1 回到 i 无穷多次。

定理 2.17 设 $i \neq j$, i 常返, $i \rightarrow j$, 则

- (i) j 常返;
- (ii) $i \leftrightarrow j$;
- (iii) $f_{ij} = f_{ji} = 1$.

证明 (ii) 由 i 常返知 $g_{ii} = P_i(X_n = i \text{ i.o.}) = 1$. 对任意的 m > 0, 有 $P_i(X_{m+n} \neq i, n \geq i)$ 1) = 0. 由 $i \to j$, 存在 m 使得 $f_{ij}^{(m)} > 0$. 这样,

$$0 = P_i(X_{n+m} \neq i, \ n \ge 1) \ge P_i(\tau_j(1) = m, \ X_{n+m} \neq i, \ n \ge 1)$$
$$= f_{ij}^{(m)} P_j(\tau_i(1) = \infty) = f_{ij}^{(m)} (1 - f_{ji}),$$

故 $f_{ji}=1$, 从而 $j\to i$. (i) 设 $p_{ji}^{(n)}>0$, $p_{ij}^{(k)}>0$. 由 C–K 方程,

$$p_{jj}^{n+k+l} = \sum_{r.\ s} p_{jr}^{(n)} p_{rs}^{(l)} p_{sj}^{(k)} \ge (p_{ji}^{(n)} p_{ij}^{(k)}) p_{ii}^{(l)}.$$

于是

$$\sum_{l=1}^{\infty} p_{jj}^{(l)} \ge \sum_{l=1}^{\infty} p_{jj}^{(n+k+l)} \ge (p_{ji}^{(n)} p_{ij}^{(k)} \sum_{l=1}^{\infty} p_{ii}^{(l)} = \infty.$$

这就证明了j常返。

(iii) 由 (ii) 的证明及 j 常返可得。

推论 2.18 互通的状态具有相同的常返性。

以后我们将会看到,互通的状态如果是常返,则同为正常返或者同为零常返。

§2.2.3 状态的周期性

定义 2.4 $\{n: n \ge 1, p_{ii}^{(n)} > 0\}$ 的最大公约数 d_i 称为 i 的周期。若 $d_i > 1$,称 i 为周期的;若 $d_i = 1$,则称 i 为非周期的。若 i 正常返且非周期,则称为 i 为遍历状态。

命题 2.19 若 $i \leftrightarrow j$, 则 $i \rightarrow j$ 具有相同的周期或者同为非周期的。

证明 设 i 周期为 d, j 周期为 t. 由 $i \leftrightarrow j$, 故存在 s, t, 使得 $p_{ij}^{(s)} > 0$, $p_{ji}^{(t)} > 0$. 若 $p_{ij}^{(n)} > 0$, 则

$$p_{ii}^{(n+r+s)} \ge p_{ij}^{(s)} p_{jj}^{(n)} p_{ji}^{(r)} > 0.$$

这样,n+r+s 能被 d 整除,但 $p_{ii}^{(r+s)} \ge p_{ji}^{(r)} p_{ij}^{(s)} > 0$,所以 r+s 能被 d 整除。于是 n 能被 d 整除,从而 t 能被 d 整除。

同理,
$$d$$
 能被 t 整除。因此, $d = t$.

定理 2.20 状态空间 I 可分解为

$$I = T \bigcup C_1 \bigcup C_2 \bigcup \cdots,$$

其中T是所有非常返状态组成的集合,每个 C_i 均为常返闭集,其中状态互通且有相同的周期。

§2.3 不变测度和平稳分布

定义 2.5 称随机过程 $\{Y_n, n \ge 0\}$ 为平稳过程, 若对任意 $m \ge 0, k > 0$, 有

$$(Y_0,\ldots,Y_m)\stackrel{d}{=}(Y_k,\ldots,Y_{m+k}).$$

设马氏链 X_n 状态空间为 I, 转移矩阵为 P. 对给定的测度 $\nu = \{\nu_j, j \in I\}$, 定义一个新的测度

$$\nu P = \{ (\nu P)_j = \sum_{i \in I} \nu_i p_{ij}, \ j \in I \}.$$

定义 2.6 称测度 ν 为不变测度,若 $\nu = \nu P$; 若 ν 还是一个概率分布,则称 ν 为一个平稳分布。

设 π 是概率分布。当马氏链 X_n 以 π 为初始分布时,记它的分布为 P_{π} . 此时,

$$P_{\pi}(\cdot) = \sum_{i} P(\cdot|X_0 = i)\pi_i.$$

命题 2.21 设 π 是平稳分布。在概率 P_{π} 下,马氏链 X_n 是一个平稳过程。

证明 由 $\pi = \pi P$ 可知 $\pi = \pi P^n$. 于是

$$P_{\pi}(X_n = i_0, \dots, X_{n+k} = i_k) = \pi_{i_0} p_{i_0 i_1} \cdots p_{i_{k-1} i_k} = P_{\pi}(X_0 = i_0, \dots, X_k = i_k).$$

下面我们研究不变测度(平稳分布)的存在性和唯一性。首先引入另一个分解公式。令 $h_{ij}^{(1)}=p_{ij},$

$$h_{ij}^{(n)} = P_i(X_s \neq i, \ 1 \le s \le n-1, \ X_n = j), \ 2 \le n < \infty.$$

当 i = j 时, $f_{ii}^{(n)} = g_{ii}^{(n)}$.

引理 2.22 对任意状态 i, j 及 n > 1, 有

$$p_{ij}^{(n)} = \sum_{k=0}^{n-1} p_{ii}^{(k)} h_{ij}^{(n-k)}.$$

证明 当 i=j 时,此即初次进入的分解公式。设 $i \neq j$. 对 $n \geq 1$,

$$p_{ij}^{(n)} = P_i(X_n = j)$$

$$= P_i(X_s \neq i, \ 1 \leq s \leq n, \ X_n = j) + \sum_{k=1}^{n-1} P_i(X_k = i, \ X_s \neq i, \ k+1 \leq s \leq n-1, \ X_n = j)$$

$$= h_{ij}^{(n)} + \sum_{k=1}^{n-1} p_{ii}^{(k)} h_{ij}^{(n-k)} = \sum_{k=1}^{n-1} p_{ii}^{(k)} h_{ij}^{(n-k)}.$$

命题 2.23 设i常返。对 $j \in I$,定义

$$\nu_j = E_i\left[\sum_{n=1}^{\tau_i(1)} 1_{\{X_n = j\}}\right] = \sum_{n=1}^{\infty} P_i(X_n = j, \ \tau_i(1) \le n) = \sum_{n=1}^{\infty} h_{ij}^{(n)}.$$

则 ν 是不变测度。若 i 正常返,即 $m_i = E_i[\tau_i(1)] < \infty$,则

$$\pi_j = \frac{\nu_j}{m_i} = \frac{E_i[\sum_{1 \le n \le \tau_i(1)} 1_{\{X_n = j\}}]}{E_i[\tau_i(1)]}$$

是平稳分布。

证明 显然 $\nu_i = 1$. 于是

$$\sum_{j} \nu_{j} p_{jk} = \nu_{i} p_{ik} + \sum_{j \neq i} \sum_{n=1}^{\infty} h_{ij}^{(n)} p_{jk} = h_{ik}^{(1)} + \sum_{n=1}^{\infty} h_{ik}^{(n+1)} = \nu_{k},$$

即 ν 是不变测度。若i正常返,由单调收敛定理,

$$\sum_{j} \nu_{j} = \sum_{j} E_{i} \left[\sum_{n=0}^{\tau_{i}(1)-1} 1_{\{X_{n}=j\}} \right] = E_{i} \left[\sum_{n=0}^{\tau_{i}(1)-1} \sum_{j} 1_{\{X_{n}=j\}} \right] = E_{i} [\tau_{i}(1)] < \infty.$$

这就证明了 π 是平稳分布。

命题 2.24 设 X_n 不可约,常返。则存在不变测度 ν ,满足 $0 < \nu_j < \infty$, $j \in I$. 并且,在差一个常数倍意义下,不变测度唯一。进一步的,若马氏链不可约,正常返,则具有唯一的平稳分布 π ,且

$$\pi_j = 1/E_j[\tau_j(1)] = 1/m_j.$$

证明 设 ν 如命题 2.23 中构造。对任意 $j \in I$, 由不可约性知存在 m, n 使得 $p_{ji}^{(m)} > 0$, $p_{ij}^{(n)} > 0$. 于是

$$\nu_i = 1 = \sum_k \nu_k p_{ki}^{(m)} \ge \nu_j p_{ji}^{(m)},$$

故 $\nu_i < \infty$. 又

$$\nu_j = \sum_k \nu_k p_{kj}^{(n)} \ge \nu_i p_{ij}^{(n)} > 0.$$

设 μ 是另一个不变测度,满足 $0<\mu_j<\infty,\,j\in I,$ 且 $\mu_i=1.$ 下面证明 $\nu=\mu.$ 首先验证 $\mu_j\geq\nu_j.$

记 $^{(i)}P$ 为将矩阵 P 第 i 列置 0. 其它列不变得到的新矩阵。注意到

$$\mu_j = \delta_{ij} + \sum_k \mu_k^{(i)} p_{kj},$$

$$\left((^{(i)}P)^n \right)_{kj} = P_k(X_n = j, \ \tau_i(1) > n), \ k \neq j,$$

及

$$u_j = \sum_{n=0}^{\infty} P_i(X_n = j, \ \tau_i(1) > n) = \sum_{n=0}^{\infty} \left(\binom{(i)}{p}^n \right)_{ij}.$$

令 $\delta_i = \{\delta_{ij}, j \in I\}, 则$

$$\mu = \delta_i + \mu^{(i)}P = \delta_i + (\delta_i + \mu^{(i)}P)^{(i)}P = \delta_i + \delta_i^{(i)}P + \mu^{(i)}P)^2$$
$$= \dots = \sum_{n=0}^{N} \delta_i({}^{(i)}P)^n + \mu({}^{(i)}P)^{N+1}.$$

$$\mu \ge \sum_{n=0}^{\infty} \delta_i(^{(i)}P)^n,$$

从而

$$\mu_j \ge \sum_{n=0}^{\infty} ((^{(i)}P)^n)_{ij} = \nu_j.$$

为证明 $\mu_j = \nu_j$, 令 $\Delta_j = \mu_j - \nu_j$. 注意到 $\Delta = \Delta P$ 及 $\Delta_i = \mu_i - \nu_i = 0$. 若有某个 k 使得 $\Delta_k > 0$, 从前面的讨论可以知道对任意的 $j \in I$, $\Delta_j > 0$, 与 $\Delta_i = 0$ 矛盾。故 $\mu = \nu$.

若此马氏链正常返,则具有唯一的平稳分布 π . 注意到 $\pi_i = 1/m_i$, 而任意状态 j都可以作为最初的参考状态 i, 故 $\pi_i = 1/m_i$, $j \in I$.

命题 2.25 设马氏链 X_n 不可约,且存在平稳分布 π .则此马氏链正常返。

证明 若 X_n 非常返,则对任意 $i, j \in I$, 有 $p_{ij}^{(n)} \to 0 \ (n \to \infty)$. 由控制收敛定理,

$$\pi_j = \sum_i \pi_i p_{ij}^{(n)} \to 0,$$

这与 $\sum_j \pi_j = 1$ 矛盾。从而 X_n 不可约,常返。于是存在唯一的不变测度(差常数倍意义下)。这样,存在常数c > 0使得

$$\nu_j = E_i[\sum_{n=0}^{\tau_i(1)} 1_{\{X_n=j\}}] = c\pi_j.$$

于是

$$\infty > \sum_{j} \nu_j = E_i[\tau_i(1)].$$

这就证明了此马氏链正常返。

§2.4 极限定理

§2.4.1 极限分布

下面我们来研究极限 $\lim_{n\to\infty} p_{ij}^{(n)}$ 是否存在,若存在,是否与 i 有关。若状态 j 的周期 $d_j > 1$,则 $p_{jj}^{(dn+k)} = 0$, $1 \le k < d$,于是若此极限存在,必为 0. 因此,假设 j 非周期是比较自然的要求。

引理 2.26 设 X_n 不可约,非周期。则对任意的 $i, j \in I$,存在 $n_0 = n_0(i, j)$,使得当 $n \ge n_0$ 时,就有 $p_{ij}^{(n)} > 0$.

证明 证明留作练习。

定理 2.27 设 X_n 不可约, 非周期, 且存在平稳分布 π . 则对任意 $i, j \in I$, 有

$$\lim_{n \to \infty} p_{ij}^{(n)} = \pi_j.$$

证明 设马氏链 Y_n 与 X_n 独立,具有相同的转移矩阵 P,且以 π 为初始分布。令 $\xi_n = (X_n, Y_n)$,则 ξ_n 是以 $I \times I$ 为状态空间,以

$$P(\xi_{n+1} = (k, l)|\xi_n = (i, j)) = p_{ik}p_{jl}$$

为转移矩阵的马氏链,且

$$P(\xi_n = (k, l)|\xi_0 = (i, j)) = p_{ik}^{(n)} p_{jl}^{(n)}.$$

由上面的引理, 当 n 充分大时, $p_{ik}^{(n)}p_{jl}^{(n)}>0$. 于是, ξ_n 不可约, 非周期。 记 $\pi_{(k,l)}=\pi_k\pi_l$, 则

$$\sum_{i,j} \pi_{(i,j)} P(\xi_{n+1} = (k,l) | \xi_n = (i,j)) = \pi_k \pi_l = \pi_{(k,l)}.$$

从而 $\{\pi_{(k,l)}\}$ 是 ξ_n 的平稳分布,于是 ξ_n 正常返。

固定 $i_0 \in I$. 令

$$\tau = \pi_{(i_0, i_0)} = \inf\{n \ge 0, \ \xi_n = (i_0, i_0)\}.$$

则 $P(\tau < \infty) = 1$.

下面假设 X_n 从 i 出发,即 $P(\xi_0 = (k, l)) = \delta_{ki}\pi_l$. 由推论 2.8,

$$P(X_n = j, \ \tau \le n) = \sum_k \sum_{m=0}^n P(\xi_n = (j, k), \ \tau = m)$$

$$= \sum_k \sum_{m=0}^n P(\tau = m) P_{(i_0, i_0)}(\xi_{n-m} = (j, k))$$

$$= \sum_k \sum_{m=0}^n P(\tau = m) p_{i_0 j}^{(n-m)} p_{i_0 k}^{(n-m)} = \sum_{m=0}^n P(\tau = m) p_{i_0 j}^{(n-m)}.$$

类似的,

$$P(Y_n = j, \ \tau \le n) = \sum_{k=0}^{n} P(\xi_n = (k, j), \ \tau = m) = \sum_{m=0}^{n} P(\tau = m) p_{i_0 j}^{(n-m)}.$$

这样,我们证明了

$$P(X_n = j, \ \tau \le n) = P(Y_n, \ \tau \le n).$$

于是,

$$|p_{ij}^{(n)} - \pi_j| = |P(X_n = j) - P(Y_n = j)|$$

$$= |P(X_n = j, \ \tau \le n) - P(Y_n = j, \ \tau \le n) + P(X_n = j, \ \tau > n) - P(Y_n = j, \ \tau > n)|$$

$$= |E[(1_{\{X_n = j\}} - 1_{\{Y_n = j\}})1_{\{\tau > n\}}]| \le P(\tau > n) \to 0, \ (n \to \infty).$$

命题 2.28 假设

$$\lim_{n \to \infty} p_{ij}^{(n)} = \pi_j, \quad \sum_{i} \pi_j = 1.$$

则 π 是 X_n 的平稳分布。

证明 由

$$\pi_j = \lim_{n \to \infty} p_{ij}^{(n+1)} = \lim_{n \to \infty} \sum_k p_{ik}^{(n)} p_{kj}$$

及 Fatou 引理知,

$$\pi_j \ge \sum_k \pi_k p_{kj}, \quad \forall j \in I.$$

上式两边对j求和,有

$$1 = \sum_{j} \pi_{j} \ge \sum_{j} \sum_{k} \pi_{k} p_{kj} = \sum_{k} \pi_{k} \sum_{j} p_{kj} = 1.$$

于是所有的不等式均取等号。这就证明了 π 是平稳分布。

下面命题的证明类似于定理 2.27, 我们略去它的证明。

命题 2.29 设 X_n 不可约,非周期,且零常返或者非常返,则对任意 $i,j \in I$,有

$$\lim_{n \to \infty} p_{ij}^{(n)} = 0.$$

一般的,我们有下面的结论。

定理 2.30 (i) 若 j 非常返或者零常返,则对任意 $i \in I$,有

$$\lim_{n \to \infty} p_{ij}^{(n)} = 0.$$

(ii) 若 j 正常返且非周期,则

$$\lim_{n \to \infty} p_{ij}^{(n)} = \frac{f_{ij}}{m_i}.$$

(iii) 若j 正常返且周期 d>1, 极限 $\lim_{n\to\infty}p_{ij}^{(n)}$ 不一定存在。

证明 (i) (ii) 由下面的引理及

$$p_{ij}^{(n)} = \sum_{k=1}^{n} f_{ij}^{(k)} p_{jj}^{(n-k)},$$

$$\lim_{n \to \infty} p_{jj}^{(n)} = \frac{1}{m_j}$$

可得。

引理 2.31 若 $a_v \ge 0$, $b_v \ge 0$, 满足

$$(i)$$
 $\sum_{v=0}^{\infty} < \infty$ 或 $\sum_{v=0}^{\infty} a_v = \infty$, 但 a_v 有界;

(ii)
$$\lim_{v\to\infty} b_v = b < \infty$$
, \mathbb{N}

$$\lim_{n \to \infty} \frac{\sum_{v=0}^{n} a_v b_{n-v}}{\sum_{v=0}^{n} a_v} = b.$$

证明 证明留作练习。

推论 2.32 若马氏链有一个零常返状态,则必有无穷多个零常返状态。特别的,不可约有限状态马氏链必是正常返的。

证明 设 i 零常返,则 $C = \{j, i \rightarrow j\}$ 为不可约闭集,其所有状态零常返。若 C 有限,则

$$1 = \sum_{i \in C} p_{ij}^{(n)} \to 0,$$

矛盾。故C无限。

§2.4.2 比率定理

命题 2.33

$$\lim_{N \to \infty} \frac{\sum_{i=1}^{N} p_{ij}^{(n)}}{\sum_{i=0}^{N} p_{ij}^{(n)}} = f_{ij}.$$

证明 在 $p_{ij}^{(n)} = \sum_{k=0}^{n} f_{ij}^{(k)} p_{jj}^{(n-k)}$ 两边对 n 求和,有

$$\sum_{n=1}^{N} p_{ij}^{(n)} = \sum_{k=0}^{N} p_{jj}^{(k)} \sum_{n=k}^{N} f_{ij}^{(n-k)} = \sum_{k=0}^{N} p_{jj}^{(k)} \sum_{n=1}^{N-k} f_{ij}^{(n)}.$$

在引理 2.31 中令 $a_k = p_{jj}^{(k)}, b_k = \sum_{n=1}^k f_{ij}^{(n)}$ 即得。

推论 2.34 若 i 非常返,则 $\sum_{n=0}^{\infty} p_{ii}^{(n)} = (1 - f_{ii})^{-1}$.

定理 2.35 $\sum_{n=0}^{\infty} p_{ij}^{(n)} < \infty$ 当且仅当 $g_{ij} = 0$. 相应的, $\sum_{n=0}^{\infty} p_{ij}^{(n)} = \infty$ 当且仅当 $g_{ij} > 0$.

证明 若 $g_{ij} > 0$, 则由 $g_{ij} = f_{ij}g_{jj}$ 知 $g_{jj} > 0$. 于是 j 常返, $f_{ij} \ge g_{ij} > 0$. 根据上面定理知结论成立。

若 $g_{ij}=0$,由 $g_{ij}=f_{ij}g_{jj}=0$ 知 $f_{ij}=0$ 或 $g_{jj}=0$. 如果 $g_{jj}=0$,则 j 非常 返, $\sum_{n=0}^{\infty}p_{jj}<\infty$. 应用上面定理即得。

推论 2.36 在常返类中 $\sum_{n=0}^{\infty}p_{ij}^{(n)}$ 发散,在非常返类中 $\sum_{n=0}^{\infty}p_{ij}^{(n)}$ 收敛。

ਪੋਟੀ
$$h_{ij} = \sum_{n=1}^{\infty} h_{ij}^{(n)}$$
.

引理 2.37 若 $j \rightarrow i$, 则 $h_{ij} < \infty$.

证明 当 i = j 时, $h_{ii} = f_{ii} \le 1$. 设 $i \ne j$. 由 $j \to i$, 存在 $m \ge 1$, 使 $f_{ji}^{(m)} > 0$. 于是,

$$h_{ij}^{(n)} f_{ii}^{(m)} \le P_i(X_v \ne i, \ 1 \le v < n+m, \ X_{n+m} = i) = f_{ii}^{(n+m)}.$$

因此,

$$h_{ij}f_{ji}^{(m)} \le \sum_{n=1}^{\infty} h_{ij}^{(n)}f_{ji}^{(m)} \le \sum_{n=1}^{\infty} f_{ii}^{(n+m)} \le 1,$$

故

$$h_{ij} \le \frac{1}{f_{ji}^{(m)}} < \infty.$$

定理 2.38 若状态i与j互通,则

$$\lim_{N \to \infty} \frac{\sum_{n=0}^{N} p_{ii}^{(n)}}{\sum_{n=0}^{N} p_{jj}^{(n)}} = \frac{f_{ij}}{h_{ij}}.$$

且此极限值非零且有限。

证明 由 $i \to j$, 故 $f_{ij} > 0$, $0 < h_{ij} < \infty$. 从而 f_{ij}/h_{ij} 非零且有限。类似于命题 2.33 的证明,

$$\lim_{N \to \infty} \frac{\sum_{n=1}^{N} p_{ij}^{(n)}}{\sum_{n=1}^{N} p_{ii}^{(n)}} = h_{ij}.$$

推论 2.39 设 i, j, k 同属于一个常返类,则

$$h_{ij}h_{jk} = h_{ik}$$
.

§2.5 一些例子

例 2.1 (简单随机游动) 设 X_n 是独立同分布随机变量序列,且

$$S_n = \sum_{k=1}^n X_k$$
, $P(X_n = 1) = p$, $P(X_n = -1) = q$, $p + q = 1$.

当 p = 0 或 q = 0 时,显然有 S_n 所有状态非常返。下面设 0 . 由强大数定律,

$$P(\lim_{n\to\infty}\frac{S_n}{n}=E[X_1])=1.$$

若 p > q, 则 $E[X_1] = p - q > 0$. 这样,

$$P(\lim_{n\to\infty} S_n = \infty) = 1.$$

从而 S_n 以概率 1 到达 0 有限次,即 0 常返。此时所有状态互通,均为非常返。若 p < q,类似可得。当 $p = q = \frac{1}{2}$ 时,

$$p_{00}^{(2n+1)} = 0, \quad p_{00}^{(2n)} = {2n \choose n} \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^n.$$

由 Stirling 公式

$$n! \sim \sqrt{2\pi}e^{-n}n^{n+1/2}, \quad n \to \infty$$

可得,

$$\binom{2n}{n} \sim (\pi n)^{-1/2} 4^n, \quad n \to \infty.$$

这样,

$$p_{00}^{(2n)} \sim (\pi n)^{-1/2},$$

从而 $\sum_{k=1}^{\infty} p_{00}^{(k)} = \infty, 0$ 常返。

令 $\nu_j = 1$. 显然 ν 是 S_n 的不变测度。又 $\sum_j \nu_j = \infty$,故 S_n 不是正常返的。令 $\mu_j = (p/q)^j$,容易验证 μ 也是此链的不变测度,并且它不是 ν 的常数倍。从而 S_n 的不变测度不具有唯一性。

例 2.2 (简单分枝过程) 设 $Z_{n,j}$, $n \ge 1$, $j \ge 1$ 是独立同分布非负整数值随机变量序列, 具有共同的分布 $\{p_k\}$. 定义分枝过程

$$Z_0 = 1, \ Z_1 = Z_{1,1}, \ Z_2 = Z_{2,1} + \cdots + Z_{2,Z_1}, \ \ldots, \ Z_n = Z_{n,1} + \cdots + Z_{n,Z_{n-1}}.$$

我们假设 $p_1 \neq 1$. 显然状态 0 是吸收的,故常返。若 $p_0 = 0$,则 $Z_{n,j} \geq 1$,从而 Z_n 是单增的。这样,对 k > 1,

$$f_{kk} = P(Z_{n+1} = k | Z_n = k) = P(Z_{n+1,j} = 1, j = 1, ..., k) = p_1^k < 1,$$

即 k 非常返。若 $p_0 = 1$, 则 $f_{kk} = 0$, 故非常返。若 $0 < p_0 < 1$, 则

$$P(Z_{n+1} = 0 | Z_n = k) = P(Z_{n+1,j} = 0, 1 \le j \le k) = p_0^k > 0,$$

即 $k \to 0$. 但 0 吸收,故 k 非常返。

对任意 N, 由 1, ..., N 非常返, Z_n 以概率 1 到达这 N 个状态有限次。故当 n 充分大时 $Z_n = 0$ 或 $Z_n > N$. 这样,

$$P(\lim_{n\to\infty} Z_n = 0 \ \vec{\boxtimes} \ \infty) = 1.$$

练习 求 $P(\lim_{n\to\infty} Z_n = 0)$.

例 2.3 设马氏链状态空间为 $I = \{0, 1, ...\}$, 转移矩阵为

$$p_{00} = 1 - p$$
, $p_{i,i+1} = p$, $p_{i0} = 1 - p$, $i \in I$,

其中0 . 转移概率如图:

对任意两状态 $i, j \in E$, 不妨设 i < j. 则 $p_{ij}^{(j-i)} \ge p^{j-i} > 0$, $p_{ji}^{(i+1)} \ge (1-p)p^i > 0$, 故 i = j 互通。从而此马氏链不可分,状态空间仅有一个闭子集 E. 由 $p_{00} = 1 - p > 0$, 0 = 1 非周期。又 $f_{00}^{(n)} = (1-p)p^{n-1}$, $n \ge 1$, 故

$$f_{00} = \sum_{n=1}^{\infty} f_{00}^{(n)} = \sum_{n=1}^{\infty} (1-p)p^{n-1} = 1,$$

$$\mu_0 = \sum_{n=1}^{\infty} n f_{00}^{(n)} = \sum_{n=1}^{\infty} (1-p) n p^{n-1} = \frac{1}{1-p} < \infty.$$

故 0 为正常返状态。从而 E 中所有状态都遍历。设 $\{\pi_j\}$ 为此马氏链唯一的平稳分布。则 $\pi_0 = 1/\mu_0 = 1 - p$. 又对任意的 $j \ge 1$,

$$\pi_j = \sum_i \pi_i p_{ij} = p \pi_{j-1},$$

从而 $\pi_j = p^j \pi_0 = (1-p)p^j$.

例 2.4 设坛子里装有 2N 个球,它们是红色或白色的,每次随机从坛子里拿出一个球,把它改变颜色后放回去。设 X_n 为第 n 次后坛中的红球数,则 X_n 状态空间 $I = \{1, 2, ..., 2N\}$,转移概率为

$$p_{ii} = 0, \ p_{i,i+1} = \frac{2N-i}{2N}, \ p_{i,i-1} = \frac{i}{2N}, \ i = 0, \dots, 2N.$$

显然 X_n 不可约且正常返。下面我们求它的平稳分布。令

$$\pi_0 = \frac{\pi_1}{2N},$$

$$\pi_k = \pi_{k-1} \frac{2N - k + 1}{2N} + \pi_{k+1} \frac{k + 1}{2N}, \ 1 \le k \le 2N - 1,$$

$$\pi_{2N} = \frac{\pi_{2N-1}}{2N}.$$

解得

$$\pi_k = \binom{2N}{k} \pi_0.$$

由 $\sum_k \pi_k = 1$ 可知 $\pi_0 = 1/(2^{2N})$. 于是此链的平稳分布为

$$\pi_k = \binom{2N}{k} 2^{-2N}, \quad k = 0, \dots, 2N.$$

例 2.5 (生灭链) 设马氏链 X_n 状态空间 $I = \{0, 1, ...\}$, 转移概率为

$$p_{ii} = r_i, \quad p_{i,i+1} = b_i, \quad p_{i,i-1} = a_i,$$

其中 $a_0 = 0$, $a_i + b_i + r_i = 1$. 我们假设 $X_0 = 1$, $a_i > 0$ $(i \ge 1)$, $b_i > 0$ $(i \ge 0)$. 此时 X_n 不可约。

(i) X_n 常返当且仅当

$$\sum_{k=1}^{\infty} \frac{a_1 a_2 \cdots a_k}{b_1 b_2 \cdots b_k} = \infty.$$

记

$$\tau_i = \inf\{n, X_n = i\}.$$

对固定的状态 k, 记

$$u(i) = P_i(\tau_0 < \tau_k), \quad 0 < i < k,$$

则

$$u(i) = b_i u(i+1) + a_i u(i-1) + r_i u(i), \quad 0 < i < k.$$

应用 $r_i = 1 - a_i - b_i$,

$$u(i+1) - u(i) = \frac{a_i}{b_i}[u(i) - u(i-1)] = \dots = \frac{a_1 \cdots a_i}{b_1 \cdots b_i}[u(1) - u(0)].$$

 \diamondsuit $\beta_0 = 1$, $\beta_i = \frac{a_1 \cdots a_i}{b_1 \cdots b_i}$, u(0) = 1, 则

$$u(i) - u(i+1) = \beta_i(1 - u(1)), \quad 0 \le i < k.$$

于是

$$1 = (1 - u(1)) \sum_{i=0}^{k-1} \beta_i,$$

$$u(i) = \sum_{j=i}^{k-1} [u(j) - u(j+1)] = \sum_{j=i}^{k-1} \beta_i / \sum_{j=0}^{k-1} \beta_j.$$

由 $\{\tau_0 < \tau_k\} \uparrow \{\tau_0 < \infty\}$, 当 $\sum_{k=1}^{\infty} \beta_k < \infty$ 时,

$$P_1(\tau_0 < \infty) = \lim_{k \to \infty} P_1(\tau_0 < \tau_k) = \lim_{k \to \infty} \left[1 - \left(\sum_{j=0}^{k-1} \beta_j \right)^{-1} \right] = 1.$$

又 $P_1(\tau_0 < \infty) = f_{10}$, 故

$$f_{00} = p_{00} + p_{01}f_{10} = r_0 + b_0 = 1.$$

从而 0 常返。

反过来, 若 0 常返, 由 $f_{10} = 1$ 知

$$\sum_{k=1}^{\infty} \beta_k = \infty.$$

(ii) 令

$$\gamma_0 = 0, \ \gamma_k = \frac{b_0 b_1 \cdots b_{k-1}}{a_1 a_2 \cdots a_k}, \ k \ge 1.$$

则 X_n 正常返当且仅当 $\sum_{k=0}^{\infty} \gamma_k < \infty$.

由 X_n 不可约,故正常返等价于平稳分布存在。设

$$\pi_0 = \pi_0 r_0 + \pi_1 a_1,$$

$$\pi_k = \pi_{k-1} b_{k-1} + \pi_k r_k + \pi_{k+1} a_{k+1}, \ k \ge 1.$$

因 $a_k + r_k + b_k = 1$, 故

$$a_1\pi_1 - b_0\pi_0 = 0,$$

$$a_{k+1}\pi_{k+1} - b_k\pi_k = a_k\pi_k - b_{k-1}\pi_{k-1}, \ k \ge 1.$$

于是

$$\pi_k = \frac{b_{k-1}\pi_{k-1}}{a_k} = \dots = \frac{b_0 \cdots b_{k-1}}{a_1 \cdots a_k} \pi_0 = \gamma_k \pi_0.$$

这样,

$$\sum_{k} \pi_k = \pi_0 \sum_{k} \gamma_k.$$

这就证明了 π_k 是平稳分布当且仅当 $\sum_k \gamma_k < \infty$.

例 2.6 设马氏链 X_n 状态空间 $I = \{0, 1, ...\}$, 转移概率为

$$p_{00} = q_0, \ p_{i,i+1} = p_i, \ p_{i,i-1} = q_i,$$

其中 $0 < p_i < 1, p_i + q_i = 1$. 显然 X_n 不可约,故只需研究 0 是否常返。 容易看出

$$f_{00}^{(n)} = P_0(X_1 = 1, X_2 = 2, \dots, X_{n-1} = n-1, X_n = 0) = p_0 p_1 \cdots p_{n-2} q_{n-1}.$$

记

$$u_n = \prod_{i=0}^n p_i, \quad n \ge 0,$$

则

$$f_{00}^{(n)} = u_{n-2} - u_{n-1}, \quad n \ge 2.$$

于是

$$\sum_{n=1}^{N+1} = q_0 + u_0 - u_N = 1 - u_N.$$

这样,0 常返当且仅当 $u_N \to 0$ $(N \to \infty)$. 应用下面的引理,这也等价于 $\sum_i (1-p_i) = \infty$.

引理 2.40 设 $0 < p_i < 1$,则 $u_N = \prod_{i=0}^N p_i \to 0$ 当且仅当 $\sum_i q_i = \sum_i (1-p_i) = \infty$; $\prod_{i=0}^\infty p_i > 0$ 当且仅当 $\sum_i q_i = \sum_i (1-p_i) < \infty$..

证明 注意到 $\prod_i p_i > 0$ 当且仅当 $\sum_i -\log(1-q_i) < \infty$,当且仅当 $\sum_i q_i < \infty$.

设 μ 是 X_n 的不变测度,则

$$\mu_0 = \sum_{k=0}^{\infty} \mu_k q_k, \quad \mu_i = \mu_{i-1} p_{i-1}, \ i \ge 1.$$

于是

$$\mu_i = \mu_0 \sum_{j=0}^{i-1} p_j.$$

不失一般性,设 $\mu_0 = 1$, 则

$$\begin{split} 1 &= \sum_{k=0}^{\infty} \mu_k q_k = q_0 + \sum_{k=1}^{\infty} \prod_{j=0}^{k-1} p_j q_k = q_0 + \sum_{k=1}^{\infty} (\prod_{j=0}^{k-1} p_j - \prod_{j=0}^{k} p_j) \\ = & q_0 + \lim_{N \to \infty} (p_0 + \prod_{j=0}^{N} p_j) = 1 + \lim_{N \to \infty} \prod_{j=0}^{N} p_j. \end{split}$$

若 X_n 非常返,即 $\prod_{j=0}^{\infty} p_j > 0$,与上式矛盾。这说明此时 X_n 不存在不变测度。若 X_n 常返,容易验证

$$\mu_0 = 1, \quad \mu_i = \prod_{j=0}^{i-1} p_j, \ i \ge 1,$$

是 X_n 的不变测度。

第三章 连续时间马氏链

§3.1 定义

§3.1.1 马氏性与等价条件

给定概率空间 (Ω, \mathcal{F}, P) , 考虑其上的随机过程 $\{X_t, t \in [0, \infty)\}$, 其状态空间 I 离散。本章我们总假定时间参数 t 取值于 $[0, \infty)$.

定义 3.1 称 X_t 为连续参数马氏链,若对任意的 $t_1 < t_2 < \cdots < t_n$, i_1 , i_2 , ... $i_n \in I$, 只要 $P(X_{t_1} = i_1, X_{t_2} = i_2, \dots, X_{t_{n-1}} = i_{n-1}) > 0$, 就有

$$P(X_{t_n} = i_n | X_{t_1} = i_1, \dots, X_{t_{n-1}} = i_{n-1}) = P(X_{t_n} = i_n | X_{t_{n-1}} = i_{n-1}).$$
(3.1)

 $\Leftrightarrow \mathcal{F}^t = \sigma\{X_s, \ s \ge t\}, \ \mathcal{F}_t = \sigma\{X_s, \ s \le t\}.$

定理 3.1 马氏性 (3.1) 成立的等价条件为;

- (i) (3.1)成立。
- (ii) 对任意的 $A \in \mathcal{F}^t$, $B \in \mathcal{F}_t$, 只要 $P(B, X_t = i) > 0$, 就有

$$P(A|B, X_t = i) = P(A|X_t = i).$$

(iii) 对任意的 $A \in \mathcal{F}^t$, $B \in \mathcal{F}_t$, 只要 $P(X_t = i) > 0$, 就有

$$P(AB|X_t = i) = P(A|X_t = i)P(B|X_t = i).$$

(*iv*) 对 $t_1 < t_2 < \cdots < t_n$, 有

$$P(X_{t_n} = i | X_{t_1}, X_{t_2}, \dots, X_{t_{n-1}}) = P(X_{t_n} = i | X_{t_{n-1}}).$$

(v) 对任意的 $\xi \in \mathcal{F}^t$, 设 $E|\xi| < \infty$, 则有

$$E[\xi|\mathcal{F}_t] = E[\xi|X_t].$$

证明 (1) (ii) 与 (iii) 的等价性由下式

$$P(AB|X_t = i) = \frac{P(B, X_t = i)}{P(X_t = i)} \frac{P(A, B, X_t = i)}{P(B, X_t = i)}$$
$$= P(A|B, X_t = i)P(B|X_t = i)$$

即得。

(2) 下面证明 (i) 和 (iv) 的等价性。先证明 (iv)⇒(i). 由条件期望的定义,容易知道

$$P(X_{t_n} = i_n | X_{t_1}, \dots, X_{t_{n-1}})$$

$$= \sum_{i_1, \dots, i_{n-1}} P(X_{t_n} = i_n | X_{t_1} = i_1, \dots, X_{t_{n-1}} = i_{n-1}) 1_{\{X_{t_1} = i_1, \dots, X_{t_{n-1}} = i_{n-1}\}}.$$
(3.2)

事实上,记

$$Y = \sum_{i_1,\dots,i_{n-1}} P(X_{t_n} = i_n | X_{t_1} = i_1,\dots,X_{t_{n-1}} = i_{n-1}) 1_{\{X_{t_1} = i_1,\dots,X_{t_{n-1}} = i_{n-1}\}},$$

则对任意的 i_1,\ldots,i_{n-1} , 令 $A=\{X_{t_1}=i_1,\ldots,X_{t_{n-1}=i_{n-1}}\}$, 有

$$\int_{A} P(X_{t_n} = i_n | X_{t_1}, \dots, X_{t_{n-1}}) dP = \int_{A} 1_{\{X_{t_n} = i_n\}} dP$$

$$= P(X_{t_1} = i_1, \dots, X_{t_n} = i_n) = \int_{A} P(X_{t_n} = i_n | X_{t_1} = i_1, \dots, X_{t_{n-1}} = i_{n-1}) dP = \int_{A} Y dP.$$

进一步的,上式对任意的 $A \in \sigma(X_{t_1}, \ldots, X_{t_{n-1}})$ 成立,即 $P(X_{t_n} = i_n | X_{t_1}, \ldots, X_{t_{n-1}}) = Y$.

这样, 若(i)成立,则

$$P(X_{t_n} = i_n | X_{t_1}, \dots, X_{t_{n-1}})$$

$$= \sum_{i_1, \dots, i_{n-1}} P(X_{t_n} = i_n | X_{t_1} = i_1, \dots, X_{t_{n-1}} = i_{n-1}) 1_{\{X_{t_1} = i_1, \dots, X_{t_{n-1}} = i_{n-1}\}}$$

$$= \sum_{i_{n-1}} P(X_{t_n} = i_n | X_{t_{n-1}} = i_{n-1}) 1_{\{X_{t_{n-1}} = i_{n-1}\}} = P(X_{t_n} = i_n | X_{t_{n-1}}).$$

反过来, 若 (iv) 成立, 则由

$$\int_{A} P(X_{t_n} = i_n | X_{t_1} \dots, X_{t_{n-1}}) dP = \int_{A} P(X_{t_n} = i_n | X_{t_{n-1}}) dP$$

即得(i).

(3) 接下来证 (iv)⇒(v). 先证对任意的 $u \ge t$, $B \subset I$, 有

$$P(X_u \in B | \mathcal{F}_t) = P(X_u \in B | X_t),$$

即对任意的 $A \in \mathcal{F}_t$,

$$P(X_u \in B, A) = \int_A P(X_u = i|X_t)dP.$$

由 (iv), 上式对任意的 $A = \{X_{t_1} = i_1, \dots, X_{t_n} = i_n\}, t_1 < \dots < t_n \leq t$ 成立,由 λ - π 方法易知对任意 $A \in \mathcal{F}_t$ 也成立。

进一步的,应用归纳法可以证明对任意的 $t \le u_1 < u_2 < \cdots < u_m$ 及 $B_1, \ldots, B_m \subset I$,有

$$P(X_{u_1} \in B_1, \dots, X_{u_m} \in B_m | \mathcal{F}_t) = P(X_{u_1} \in B_1, \dots, X_{u_m} \in B_m | X_t).$$

最后应用 C-系方法可以证明 (v).

(4) (v)⇒(ii). 设 $A \in \mathcal{F}^t$, $B \in \mathcal{F}_t$. 由 (v), $P(A|\mathcal{F}_t) = P(A|X_t)$. 因此

$$P(A, B, X_t = i) = \int_{B \cap \{X_t = i\}} P(A|\mathcal{F}_t) dP$$

= $\int_{B \cap \{X_t = i\}} P(A|X_t) dP = P(A|X_t = i) P(B, X_t = i).$

§3.1.2 转移概率

若 $P(X_s = i) > 0$, 记 $p_{ij}(s, s + t) = P(X_{s+t} = j | X_s = i)$. 若 $p_{ij}(s, s + t)$ 只依赖于 t, 则称相应的马氏链为齐次马氏链。此时,记 $p_{ij}(t) = p_{ij}(s, s + t)$. 本章我们只考虑奇次马氏链。记 $P(t) = (p_{ij}(t))$ 为马氏链的转移矩阵。

命题 3.2 转移函数满足

- $0 \le p_{ij}(t) \le 1$;
- $\sum_{i} p_{ij}(t) = 1;$
- $p_{ij}(s+t) = \sum_k p_{ik}(s)p_{kj}(t);$
- $\bullet \ p_{ij}(0) = \delta_{ij}.$

定理 3.3 设 (P(t)) 满足上述命题中的四个条件, $q_i \ge 0$, $\sum_i q_i = 1$. 则存在概率空间 (Ω, \mathcal{F}, P) 及其上的齐次马氏链 X_t 满足

$$P(X_0 = i) = q_i, \ P(X_{s+t} = j | X_s = i) = p_{ij}(t).$$

证明 构造相容的分布函数族

$$F_{t_1,t_2,\cdots,t_n}(i_1,i_2,\cdots,i_n) = \sum_i q_i p_{ii_1}(t_1) p_{i_1i_2}(t_2-t_1) \cdots p_{i_{n-1}i_n}(t_n-t_{n-1}).$$

不妨设 $t_1 < t_2 < \cdots < t_n$. 当 m < n 时,

$$F_{t_1,t_2,\dots,t_m}(i_1,i_2,\dots,i_m) = \sum_{i_{m+1},\dots,i_n} F_{t_1,t_2,\dots,t_n}(i_1,i_2,\dots,i_n),$$

所以存在概率空间 (Ω, \mathcal{F}, P) 以及 $X_t(\omega)$, 满足

$$P(X_{t_1} = i_1, \dots, X_{t_n} = i_n) = F_{t_1, t_2, \dots, t_n}(i_1, i_2, \dots, i_n).$$

此时 $P(X_0 = i) = \sum_i q_i p_{ii_1}(0) = q_{i_1}$, 且

$$\begin{split} &P(X_{t_n}=i_n|X_{t_1}=i_1,\ldots,X_{t_{n-1}}=i_{n-1})\\ &=\frac{\sum_i q_i p_{ii_1}(t_1)\cdots p_{i_{n-2}i_{n-1}}(t_{n-1}-t_{n-2})p_{i_{n-1}i_n}(t_n-t_{n-1})}{\sum_i q_i p_{ii_1}(t_1)\cdots p_{i_{n-2}i_{n-1}}(t_{n-1}-t_{n-2})}\\ &=p_{i_{n-1}i_n}(t_n-t_{n-1})=\frac{\sum_i q_i p_{ii_{n-1}}(t_{n-1})p_{i_{n-1}i_n}(t_n-t_{n-1})}{\sum_i q_i p_{ii_{n-1}}(t_{n-1})}=P(X_{t_n}=i_n|X_{t_{n-1}}=i_{n-1}). \end{split}$$

定理 3.4 设 X_t 是齐次马氏链, 转移概率为 P(t), 则

$$P(X_{t_1} = i_1, \dots, X_{t_n} = i_n) = \sum_{i} q_i p_{ii_1}(t_1) p_{i_1 i_2}(t_2 - t_1) \cdots p_{i_{n-1} i_n}(t_n - t_{n-1}).$$

§3.2 标准转移矩阵的分析性质

定义 3.2 若 $\lim_{t\to 0+} p_{ij}(t) = \delta_{ij}$,则称 $P(t) = (p_{ij}(t))$ 为标准转移矩阵。这等价于 $\lim_{t\to 0+} p_{ii}(t) = 1$.

定理 3.5 设 $(p_{ij}(t))$ 标准。则

- (i) 对任意的 $i \in I$ 和 t > 0. $p_{ii}(t) > 0$.
- (*ii*) 对任意的 $i, j \in I$ 和 t > 0, 若 |h| < t, 则

$$|p_{ii}(t+h) - p_{ii}(t)| \le 1 - p_{ii}(|h|). \tag{3.3}$$

这样, $p_{ij}(t)$ 在 $t \ge 0$ 上一致连续且对一切 j 也一致成立。

(iii) 对任意的 $i, j \in I$, 或者对一切 t > 0, $p_{ij}(t) = 0$; 或者对一切 t > 0, $p_{ij}(t) > 0$.

证明 (i) 由 $(p_{ij}(t))$ 标准,对任意的 $i \in I$ 和 t > 0,有正整数 n 使得 $p_{ii}(t/n) > 0$. 这样,由 C-K 方程, $p_{ii}(t) \ge (p_{ii}(t/n))^n > 0$.

(ii) 对任意的 h > 0, 由

$$p_{ij}(t+h) - p_{ij}(t) = \sum_{k} p_{ik}(h)p_{kj}(t) - p_{ij}(t)$$
$$= \sum_{k \neq i} p_{ik}(h)p_{kj}(t) - p_{ij}(t)(1 - p_{ii}(h)).$$

这样,

$$p_{ij}(t+h) - p_{ij}(t) \le \sum_{k \ne i} p_{ik}(h) p_{kj}(t) \le \sum_{k \ne i} p_{ik}(h)$$

=1 - $p_{ii}(h)$,

$$p_{ij}(t+h) - p_{ij}(t) \ge -p_{ij}(t)(1-p_{ii}(h)) \ge -(1-p_{ii}(h)),$$

从而

$$|p_{ij}(t+h) - p_{ij}(t)| \le 1 - p_{ii}(h).$$

类似的, 当 h < 0 且 |h| < t 时, 有

$$|p_{ij}(t) - p_{ij}(t+h)| \le 1 - p_{ij}(|h|).$$

上面两式右方与 j 和 t 无关,因此 $p_{ij}(t)$ 一致连续且关于 j 一致。 (iii) 证明略。

定理 3.6 设 $(p_{ij}(t))$ 标准,则

$$\lim_{t \to 0+} \frac{1 - p_{ii}(t)}{t} = q_i$$

存在,但可能等于 $+\infty$.

$$f(s+t) \le f(s) + f(t).$$

于是对 $t>0,\, h>0,\,$ 取 n 使得 $t=nh+\varepsilon,\, 0\leq \varepsilon < h,\,$ 则有

$$\frac{f(t)}{t} \le \frac{nf(h)}{t} + \frac{f(\epsilon)}{t} = \frac{nh}{t} \frac{f(h)}{h} + \frac{f(\epsilon)}{t}.$$

$$\frac{f(t)}{t} \le \liminf_{h \to 0+} \frac{f(h)}{h}.$$

这样,

$$\limsup_{h \to 0+} \frac{f(h)}{h} \le \sup_{t} \frac{f(t)}{t} \le \liminf_{h \to 0+} \frac{f(h)}{h}.$$

从而极限

$$\lim_{h \to 0+} \frac{f(h)}{h} = q_i$$

存在, 其中 $q_i = \sup_{t>0} \frac{f(t)}{t}$. 因此, 当 $h \to 0+$ 时,

$$\frac{1 - p_{ii}(t)}{t} = \frac{1 - e^{-f(t)}}{t} = (1 + o(1)) \frac{f(t)}{t} \to q_i.$$

定理 3.7 设 $(p_{ij}(t))$ 标准,则对 $i \neq j$,

$$\lim_{t \to 0+} \frac{p_{ij}(t)}{t} = q_{ij}$$

存在且有限。

证明 取 $0 < \epsilon < 1/3$, 由标准性知存在 $\delta > 0$ 使当 $t \le \delta$ 时, $p_{ii}(t) > 1 - \epsilon$, $p_{jj}(t) > 1 - \epsilon$. 先证明对任意的 t, h > 0, 只要 $h \le t \le \delta$, 就有

$$p_{ij}(h) \le \frac{p_{ij}(t)}{n} \cdot \frac{1}{1 - 3\varepsilon},\tag{3.4}$$

其中 $n = \left[\frac{t}{h}\right]$. 为此,记

$$_{j}p_{ik}(h) = p_{ik}(h),$$

 $_{j}p_{ik}((l+1)h) = \sum_{r \neq j} {}_{j}p_{ir}(lh)p_{rk}(h).$

即 $_{j}p_{ik}(mh)$ 表示在时刻 mh 处在状态 k, 但在时刻 h, 2h, ..., (m-1)h 不处于 j 的概率。这样,

$$p_{ik}(mh) = \sum_{l=1}^{m-1} {}_{j}p_{ij}(lh)p_{jk}((m-l)h) + {}_{j}p_{ik}(mh).$$
 (3.5)

对 $\delta \geq t \geq h$, $n = \left\lceil \frac{t}{h} \right\rceil$, 有

$$\varepsilon > 1 - p_{ii}(t) = \sum_{k \neq i} p_{ik}(t) \ge p_{ij}(t)$$

$$\geq \sum_{m=1}^{n} {}_{j}p_{ij}(mh)p_{jj}(t-mh) \geq (1-\varepsilon)\sum_{m=1}^{n} {}_{j}p_{ij}(mh).$$

因此

$$\sum_{m=1}^{n} {}_{j} p_{ij}(mh) \le \frac{\varepsilon}{1-\varepsilon}.$$
(3.6)

其次,由

$$p_{ii}(mh) = {}_{j}p_{ii}(mh) + \sum_{l=1}^{m-1} {}_{j}p_{ij}(lh)p_{ji}((m-1)h)$$

及 (3.6), 得

$$_{j}p_{ii}(mh) \ge p_{ii}(mh) - \sum_{l=1}^{m-1} {}_{j}p_{ij}(lh) \ge 1 - \varepsilon - \frac{\varepsilon}{1 - \varepsilon}.$$
 (3.7)

从而由 (3.6), (3.7),

$$p_{ij}(t) \ge \sum_{m=1}^{n} {}_{j}p_{ij}((m-1)h)p_{ij}(h)p_{jj}(t-mh)$$

$$\geq n(1-\varepsilon-\frac{\varepsilon}{1-\varepsilon})p_{ij}(h)(1-\varepsilon) \geq n(1-3\varepsilon)p_{ij}(h).$$

这就证明了 (3.4).

这样,

$$\frac{p_{ij}(h)}{h} \le \frac{1}{1 - 3\varepsilon} \frac{p_{ij}(t)}{nh}.$$

当 $h \rightarrow 0+$ 时, $nh \rightarrow t$, 而 $p_{ij}(t)$ 关于 t 连续, 故

$$\limsup_{h \to 0+} \frac{p_{ij}(h)}{h} \le \frac{1}{1 - 3\varepsilon} \frac{p_{ij}(t)}{t}.$$

$$\limsup_{h \to 0+} \frac{p_{ij}(h)}{h} \le \frac{1}{1 - 3\varepsilon} \liminf_{t \to 0^+} \frac{p_{ij}(t)}{t}.$$

由 ε 的任意性可知极限

$$q_{ij} = \lim_{t \to 0+} \frac{p_{ij}(t)}{t}$$

存在且有限。

推论 3.8 设 $(p_{ij}(t))$ 标准,则

$$\sum_{j \neq i} q_{ij} \le q_i.$$

证明 因

$$\sum_{j \neq i} \frac{p_{ij}(t)}{t} = \frac{1 - p_{ii}(t)}{t},$$

$$q_i = \liminf_{t \to 0+} \sum_{j \neq i} \frac{p_{ij}(t)}{t} \ge \sum_{j \neq i} q_{ij}.$$

§3.3 Q 矩阵及其概率意义

在概率论中我们经常需要研究下面这种类型的集合

$$B = \{\omega, \bigcap_{t \in \Lambda} (X_t(\omega) \in \Gamma)\}.$$

 $\exists \Lambda$ 不可数时,通常 B 是不可测的。这就需要我们引入可分性的概念。

定义 3.3 称取值于 \mathbb{R} 的函数 y(t), $t \in T$ 关于 T 的可数稠密子集 S 可分,若对任意 $t \in T$, 有 S 中子列 $\{r_n\}$, 使得 $r_n \to t$ 且 $y(r_n) \to y(t)$. 称 S 为此函数的可分集。

定义 3.4 称随机过程 $\{X_t\}_{t\in T}$ 可分,若存在零概率集 N 和 T 的可数稠密子集 S,使对一切 $\omega \not\in N$,样本函数 $X_t(\omega)$ 关于 S 可分。称 S 为可分集, N 为例外集。

定义 3.5 称 $\{X_t(\omega)\}_{t\in T}$ 是完全可分的,若它关于 T 的任一可数稠密子集可分。

定理 3.9 任意随机过程必存在可分修正。

定理 3.10 若可分过程 $\{X_t\}$ 随机连续,即 $\lim_{t\to t_0}X_t\stackrel{P}{=}X_{t_0}$,则此过程是完全可分的。

证明 首先,对任意的 $\{t_i\}\subset T$, $t_i\to t_0$,有 $X_{t_i}\stackrel{P}{\to} X_{t_0}$. 所以存在子列 t_i' 使得 $X_{t_i'}\stackrel{a.s.}{\to} X_{t_0}$.

由可分性,存在 T 的可数稠集 S 及零概率集 N,使得当 $\omega \notin N$ 时,对任意的 $t \in T$,有 $s_n \in S$, $s_n \to t$,且 $X_{s_n}(\omega) \to X_t(\omega)$.

设 R 是 T 的任意可数稠集。此时存在一个零概率集 N_1 使得,当 $\omega \notin N_1$ 时,对任意的 $s \in S$,存在 $r_n \in R$, $r_n \to s$ 且 $X_{r_n}(\omega) \to X_s(\omega)$. 这样,当 $\omega \notin N \bigcup N_1$ 时,对上面的 s_n ,有 r_{mn} ,使得当 $m \to \infty$ 时, $r_{mn} \to s_n$,且 $X_{r_{mn}}(\omega) \to X_{s_n}(\omega)$. 容易看出,存在 $\{r_{mn}\}$ 的子列 r'_n ,满足 $r'_n \to t$,且 $X_{r'_n}(\omega) \to X_t(\omega)$. 这就证明了 X_t 关于 R 可分。

引理 3.11 设 $(p_{ij}(t))$ 标准的,则 X_t 随机连续。

证明 当 h < 0 时,

$$P(X_{t+h} = X_t) = \sum_{j} P(X_t = j | X_{t+h} = j) P(X_{t+h} = j) = \sum_{j} P(X_{t+h} = j) p_{jj}(-h).$$

由 Fatou 引理,

$$\liminf_{h \to 0^{-}} P(X_{t+h} = X_t) \ge \sum_{j} P(X_t = j) = 1.$$

故

$$\lim_{t \to 0} P(X_{t+h} = X_t) = 1.$$

而当 h > 0 时,类似的,应用控制收敛定理可得

$$\lim_{h \to 0+} P(X_{t+h} = X_t) = 1.$$

这样,

$$\lim_{h\to 0} P(X_{t+h} \neq X_t) = 0.$$

从而对任意的 $\varepsilon > 0$,

$$\lim_{h\to 0} P(|X_{t+h} - X_t| > \varepsilon) \le \lim_{h\to 0} P(X_{t+h} \ne X_t) = 0.$$

定理 3.12 对任意的 $i \in I$, 有

$$P^{i}(X_{s} = i, \ 0 \le s \le t) = e^{-q_{i}t}.$$

证明 取可分集

$$\left\{\frac{kt}{2^n},\ k=0,1,\ldots,2^n;\ n=0,1,\ldots\right\},$$

由完全可分性,

$$P^{i}(X_{u} = i, \ 0 \le u \le t) = P^{i}(\bigcap_{n=1}^{\infty} \{X_{\frac{kt}{2^{n}}} = i, \ 0 \le k \le 2^{n}\})$$

$$= \lim_{n \to \infty} P^{i}(X_{tk/2^{n}} = i, \ 0 \le k \le 2^{n}) = \lim_{n \to \infty} \left[p_{ii}\left(\frac{t}{2^{n}}\right)\right]^{2^{n}}$$

$$= \lim_{n \to \infty} \exp\left\{\frac{\ln p_{ii}(\frac{t}{2^{n}})}{\frac{t}{2^{n}}} \frac{t}{2^{n}} 2^{n}\right\} = e^{-q_{i}t}.$$

由上面定理,若 $q_i=0$,则从状态 i 出发,以概率 1 停留在 i; 若 $q_i=\infty$,则从 i 出发立刻离开 i; 若 $0<q_i<\infty$,则从 i 出发,在 i 停留一段时间之后离开 i.

�

$$\tau = \inf\{t: \ X_t \neq X_0\}.$$

则 τ 表示马氏链停留在初始状态的时间。由马氏链可分,故 τ 是 \mathcal{F}_{∞} 可测的,这里 $\mathcal{F}_{\infty} = \sigma(X_s, s \geq 0)$.

对任意的 t > 0, 有

$${X_u = i, \ 0 \le u \le t} \supset {\tau > t} \supset {X_u = i, \ 0 \le u \le t + \frac{1}{n}}.$$

所以

$$e^{-q_i t} \ge P^i(\tau > t) \ge e^{-q_i(t+1/n)}$$
.

 $\Diamond n \to \infty$, 在 τ 的分布函数的连续点上有

$$P^i(\tau > t) = e^{-q_i t}.$$

因 $e^{-q_i t}$ 连续, 故上式对一切 $t \ge 0$ 成立。特别的,

$$E^i[\tau] = q_i^{-1}.$$

因此, q_i^{-1} 是在状态 i 的期望停留时间。

我们不加证明的给出下面定理。

定理 3.13 若马氏链 X_t 的一切 $q_i < \infty$, 则它必存在一个修正, 该修正的全部样本函数在 $I \cup \{\infty\}$ 中右连续。

下面我们总假定 X_t 的样本函数是右连续的。这样,对任意 $j \in I$,

$${X_{\tau} = j} \bigcap {\tau < \infty} \in \mathcal{F}_{\infty}.$$

定理 3.14 设 $q_i < \infty, j \neq i$. 则对任意 $t \geq 0$, 有

$$P^{i}(\tau \le t, X_{\tau} = j) = (1 - e^{-q_{i}t}) \frac{q_{ij}}{q_{i}}.$$
 (3.8)

证明 对 $n \ge 1$, 令

$$\tau = \begin{cases} \frac{kt}{2^n}, & \stackrel{\text{H}}{\underline{\tau}} \frac{(k-1)t}{2^n} < \tau \le \frac{kt}{2^n}, \ k = 0, 1, \dots, \\ \infty, & \stackrel{\text{H}}{\underline{\tau}} \tau = \infty. \end{cases}$$

易见 $\tau_n\in\mathcal{F}_{\infty}$,且当 $n\to\infty$ 时, $\tau_n\downarrow\tau$. 由 $P^i(\tau<\infty)=1$ 及 X_t 右连续,故 $\lim_{n\to\infty}X_{\tau_n}=X_{\tau},\,P^j$ -a.s.. 因此,

$$\{\tau < t, \ X_{\tau} = j\} \subset \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} \{\tau_{n} \le t, \ X_{\tau_{n}} = j\}$$
$$= \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \{\tau_{n} \le t, \ X_{\tau_{n}} = j\} \subset \{\tau \le t, \ X_{\tau} = j\}.$$

注意到 $P^i(\tau = t) = 0$, 故

$$\lim_{n \to \infty} P^{i}(\tau_{n} \le t, \ X_{\tau_{n}} = j) = P^{i}(\tau \le t, \ X_{\tau} = j).$$

这样,

$$P^{i}(\tau_{n} \leq t, X_{\tau_{n}} = j) = \sum_{l=1}^{2^{n}} P^{i}(\frac{(l-1)t}{2^{n}} < \tau \leq \frac{lt}{2^{n}}, X_{\frac{lt}{2^{n}}} = j)$$

$$= \sum_{l=1}^{2^{n}} P^{i}(\tau > \frac{(l-1)t}{2^{n}}, X_{\frac{lt}{2^{n}}} = j) = \sum_{l=1}^{2^{n}} P^{i}(X_{s} = i, 0 \leq s \leq \frac{(l-1)t}{2^{n}}, X_{\frac{lt}{2^{n}}} = j)$$

$$= \sum_{l=1}^{2^{n}} e^{-q_{i}\frac{(l-1)t}{2^{n}}} p_{ij}(\frac{t}{2^{n}}) = \frac{1 - e^{-q_{i}t}}{1 - e^{-q_{i}\frac{t}{2^{n}}}} p_{ij}(\frac{t}{2^{n}})$$

$$\to (1 - e^{-q_{i}t}) \frac{q_{ij}}{q_{i}} (n \to \infty).$$

这样, $\diamondsuit t \to \infty$, 可以得到

$$P^i(X_\tau = j) = \frac{q_{ij}}{q_i}.$$

上式的直观意思是说,马氏链 X_t 在首次离开初始状态 i 之后,以概率 $\frac{q_i}{q_i}$ 跳到状态 j. 若

$$q_i = \sum_{j \neq i} q_{ij} < \infty,$$

则

$$P^{i}(X_{\tau} \in (I - \{i\})) = \sum_{j \neq i} \frac{q_{ij}}{q_{i}} = 1,$$

即以 P^i 概率 $1, \tau$ 是跳跃点。

§3.4 向前与向后微分方程组

记 $q_{ii} = -q_i$, $Q = (q_{ij})$.

定义 3.6 若 $\sum_{j\neq i} q_{ij} = q_i < \infty$, 则称相应的 Q 矩阵是保守的。

推论 3.15 有限马氏链是保守的。

证明 在

$$\sum_{j \neq i} \frac{p_{ij}(t)}{t} = \frac{1 - p_{ii}(t)}{t}$$

两边直接令 $t \to 0+$ 即可。

由于 $\frac{p_{ij}(t)}{1-p_{ii}(t)} = \frac{q_{ij}t+o(t)}{q_{i}t+o(t)} \to \frac{q_{ij}}{q_i}$, 表示在 t 时刻离开 i 的条件下,下一个转移到 j 的条件概率,因此假设 $\frac{\sum_{j\neq i}q_{ij}}{q_i} = 1$ 是一个合理的条件,也是实际问题中常遇到的情况。

定义 3.7 $R = (r_{ij})$ 称为跳跃矩阵, 其中

$$r_{ij} = \begin{cases} (1 - \delta_{ij}) \frac{q_{ij}}{q_i}, & q_i > 0; \\ \delta_{ij}, & q_i = 0. \end{cases}$$
 (3.9)

引理 3.16 若 f(x) 为 (a,b) 上连续函数, 且 $f'_+(x)$ 连续, 则 f(x) 在 (a,b) 上可导。

定理 3.17 设 $(p_{ij}(t))$ 标准,且一切 $q_i < \infty$. 则 Q 保守当且仅当向后方程组 P'(t) = QP(t) 成立。

证明 由 C-K 方程,

$$\frac{p_{ij}(t+h) - p_{ij}(t)}{h} = -\frac{1 - p_{ii}(h)}{h} p_{ij}(t) + \sum_{k \neq i} \frac{p_{ik}(h)}{h} p_{kj}(t).$$

由 Fatou 引理,

$$\liminf_{h \to 0+} \frac{p_{ij}(t+h) - p_{ij}(t)}{h} \ge \sum_{k} q_{ik} p_{ij}(t).$$

对任意的 N > i, 有

$$\limsup_{h \to 0+} \sum_{k \neq i} \frac{p_{ik}(h)}{h} p_{kj}(t) \le \limsup_{h \to 0+} \sum_{k \neq i, k < N} \frac{p_{ik}(h)}{h} p_{kj}(t) + \limsup_{h \to 0+} \sum_{k > N} \frac{p_{ik}(h)}{h}$$

$$\leq \sum_{k \neq i, k < N} q_{ik} p_{kj}(t) + \limsup_{h \to 0+} \frac{1 - p_{ii}(h)}{h} - \liminf_{h \to 0+} \sum_{k \neq i, k < N} \frac{p_{ik}(h)}{h} \\
\leq \sum_{k \neq i, k < N} q_{ik} p_{kj}(t) + q_i - \sum_{k \neq i, k < N} q_{ik}.$$

$$\limsup_{h \to 0+} \frac{p_{ij}(t+h) - p_{ij}(t)}{h} \le \sum_{k} q_{ik} p_{kj}(t).$$

这样,

$$\lim_{h \to 0+} \frac{p_{ij}(t+h) - p_{ij}(t)}{h} = \sum_{k} q_{ik} p_{kj}(t).$$

由保守性,上式右方关于 t 一致收敛,故为 t 的连续函数。由上面引理可知向后方程组成立。

下面设向后方程组成立。由定理 3.6 的证明,

$$q_i = \sup_{t>0} \frac{f(t)}{t},$$

其中 $f(t) = -\log p_{ii}(t)$. 这样,

$$p_{ii}(t) \ge e^{-q_i t} \ge 1 - q_i t. \tag{3.10}$$

对 t > s > 0, 有

$$p_{ij}(t) \ge p_{ii}(t-s)p_{ij}(s) \ge e^{-q_i(t-s)}p_{ij}(s).$$

故 $e^{q_it}p_{ij}(t)$ 是关于 t 的增函数。应用 Fubini 定理(定理 3.18),对

$$\sum_{i} e^{q_i t} p_{ij}(t) = e^{q_i t}$$

逐项求导可得,

$$\sum_{i} p'_{ij}(t) = 0, \quad \text{a.s..}$$

在向后方程组

$$p'_{ij}(t) = \sum_{k} q_{ik} p_{kj}(t)$$

两边对j求和,有

$$0 = \sum_{i} p'_{ij}(t) = \sum_{k} q_{ik}$$
 a.s..

这样就得到了Q的保守性,并且上式对所有的t都成立。

定理 3.18 若 $f_n(t)$ 单增, 且 $f(t) = \sum_n f_n(t)$ 有限, 则

$$f'(t) = \sum_{n} f'_{n}(t) \quad a.s..$$

定理 3.19 设 Q 保守, $q = \sup_i q_i < \infty$, 则向前方程组 P'(t) = P(t)Q 成立。

证明

$$\frac{p_{ij}(t+h) - p_{ij}(t)}{h} = p_{ij}(t)\frac{p_{jj}(h) - 1}{h} + \sum_{k \neq j} p_{ik}(t)\frac{p_{kj}(h)}{h}$$
(3.11)

由于

$$0 \le \frac{p_{kj}(h)}{h} \le \sum_{l \ne k} \frac{p_{kl}(h)}{h} = \frac{1 - p_{kk}(h)}{h} \le q_k \le q < \infty,$$

应用控制收敛定理,在 (3.11) 中令 $h \rightarrow 0+$ 即得。

实际上,条件 $q = \sup_i q_i < \infty$ 能够推出 Q 的保守性。

推论 3.20 有限状态马氏链向前向后方程组均成立。

这样, 若马氏链状态有限, 则

$$P'(t) = QP(t), \quad P(0) = E,$$

其中 E 是单位矩阵。容易知道,

$$P(t) = e^{Qt} = \sum_{m=0}^{\infty} \frac{t^m}{m!} Q^m.$$

例 3.1 设马氏链的状态空间 $I = \{0, 1, 2, ...\}$, 转移矩阵 $(p_{ij}(t))$ 标准,密度矩阵 Q 满足

$$\begin{cases} q_i = b, & i \ge 0, \\ q_{i,i+1} = b, & i \ge 0, \\ q_{ij} = 0, & j \ne i, \ j \ne i+1, \ i \ge 0, \ j \ge 0, \end{cases}$$

其中b>0为常数。

此马氏链的 Kolmogorov 向前方程组为

$$\begin{cases} p'_{i0}(t) = -bp_{i0}(t), & i \ge 0 \\ p'_{ij}(t) = bp_{i,j-1}(t) - bp_{ij}(t), & i \ge 0, \ j \ge 1 \\ p_{ij}(0) = \delta_{ij}, & i, \ j \ge 0 \end{cases}$$

于是 $p_{00}(t) = e^{-bt}$, $p_{i0}(t) = 0$, $i \ge 1$. 对 $j \ge 1$, 令

$$r_{ij}(t) = e^{bt} p_{ij}(t).$$

则

$$r'_{ij}(t) = be^{bt}p_{ij}(t) + e^{bt}p'_{ij}(t) = br_{i,j-1}(t).$$

于是对 j < i,

$$r_{ij}^{(j)}(t) = b^j r_{i0}(t) = 0, \ r_{ij}^{(k)}(0) = 0, \ 0 \le k \le j,$$

故 $r_{ij}(t) = 0$, 即 $p_{ij}(t) = 0$. 这样 $r'_{ii}(t) = 0$, $r_{ii}(0) = 1$, 从而 $r_{ii}(t) = 1$, $p_{ii}(t) = e^{-bt}$. 对 j > i, 有

$$r_{ij}^{(j-i)}(t) = b^{j-i}r_{ii}(t) = b^{j-i},$$

$$r_{ij}^{(k)}(0) = b^k r_{i,j-k}(0) = 0, \ 0 \le k \le j-i+1, \ r_{ij}^{(j-i)}(0) = b^{j-i},$$

从而 $r_{ij}(t) = \frac{(bt)^{j-i}}{(j-i)!}$,即 $p_{ij}(t) = e^{-bt} \frac{(bt)^{j-i}}{(j-i)!}$.这样,

$$p_{ij}(t) = \begin{cases} 0, & j < i \\ e^{-bt} \frac{(bt)^{j-i}}{(j-i)!}, & j \ge i. \end{cases}$$

容易看出,此马氏链是参数为 b 的 Poisson 过程。

例 3.2 设马氏链状态空间 $I = \{0, 1\}$, 密度矩阵

$$Q = \left(\begin{array}{cc} -p & p \\ q & -q \end{array} \right),$$

其中 p > 0, q > 0.

此马氏链的向后方程组为

$$P'(t) = QP(t), \qquad P(0) = I.$$

由 $\det(\lambda I - Q) = \lambda(\lambda + p + q)$ 知 Q 的特征根为 0 和 -p - q, 它们的特征向量分别是 $(1,1)^T$ 和 $(p,-q)^T$. 令

$$T = \begin{pmatrix} 1 & p \\ 1 & -q \end{pmatrix}.$$

则 $T^{-1}QT = diag(0, -p-q)$. 于是

$$\begin{split} P(t) &= e^{tQ} = Te^{t\mathrm{diag}(0, -p-q)}T^{-1} = T\mathrm{diag}(1, e^{-(p+q)t})T^{-1} \\ &= \frac{1}{p+q} \begin{pmatrix} q + pe^{-(p+q)t} & p - pe^{-(p+q)t} \\ q - qe^{-(p+q)t} & p + qe^{-(p+q)t} \end{pmatrix} \end{split}$$

§3.5 一类马氏链的构造

设

- (i) Z_n 为离散参数马氏链,转移概率为 u_{ij} ,且 $u_{ii}=0$;
- (ii) T_n , $n \ge 0$ 独立同分布,且与 Z_n 独立,在概率 $P^i = P(\cdot|Z_0 = i)$ 下, T_n 服从参数为 q_i 的指数分布,其中 $0 < q_i < \infty$, $q = \sup_i q_i < \infty$.

定理 3.21 令 $\tau_n = \sum_{k \le n} T_n, \ q_{ii} = -q_i, \ q_{ij} = q_i u_{ij}, \ i \ne j,$

$$X_t = \sum_{n=0}^{\infty} Z_n 1_{[\tau_n, \tau_{n+1})}(t).$$

则在概率 P 下, X_t 是以 Q 为密度矩阵的连续参数马氏链。

引理 3.22 设 Y_n 独立同分布,且服从参数为 $\lambda(n)$ 的指数分布,则 $\sum_n Y_n < \infty$ a.s. 当且仅当 $\sum_n \lambda(n)^{-1} < \infty$.

证明 若 $\sum_{n} \lambda(n)^{-1} < \infty$, 则

$$E[\sum_{n} Y_n] = \sum_{n} E[Y_n] = \sum_{n} \lambda(n)^{-1} < \infty,$$

故 $\sum_{n} Y_n < \infty$ a.s..

反过来,由

$$0 < E[e^{-s\sum_{n} Y_{n}}] = \prod_{n} E[e^{-sY_{n}}] = \prod_{n} \frac{\lambda(n)}{s + \lambda(n)},$$

可知

$$\sum_{n} (1 - \frac{\lambda(n)}{s + \lambda(n)}) = \sum_{n} \frac{s}{s + \lambda(n)} < \infty.$$

显然 $\lambda(n) \to \infty$, 不妨设 $\frac{\lambda(n)}{1+\lambda(n)} \ge \frac{1}{2}$. 于是

$$\sum_{n} \lambda(n)^{-1} \le 2 \sum_{n} \frac{1}{1 + \lambda(n)} < \infty.$$

这样, $P(\tau_{\infty} = \infty) = 1$. 令 $N_t = \sup\{n, \tau_n \leq t\}$, 则在概率 P^i 下, N_t 是参数为 q_i 的 Poisson 过程。令 $p_{ij}(t) = P^i(X_t = j)$. 下面我们证明 X_t 的马氏性,即

$$P^{i}(X_{t_{1}}=i_{1},\ldots,X_{t_{n}}=i_{n})=p_{ii_{1}}(t_{1})p_{i_{1}i_{2}}(t_{2}-t_{1})\cdot p_{i_{n-1}i_{n}}(t_{n}-t_{n-1}).$$

我们只对n=2证明。这由下面的式子得到:

$$P^{i}(X_{s} = j, X_{t} = k) = \sum_{n,m} P^{i}(X_{s} = j, X_{t} = k, \tau_{n} \leq s < \tau_{n+1} \leq \tau_{n+m} \leq t < \tau_{n+m+1})$$

$$= \sum_{n,m} P^{i}(\tau_{n} \leq s < \tau_{n+1} \leq \tau_{n+m} \leq t < \tau_{n+m+1}) P^{i}(X_{n} = j, X_{n+m} = k)$$

$$= \sum_{n,m} P^{i}(N_{s} = n, N_{t} = n + m) P^{i}(Z_{n} = j) P^{j}(Z_{m} = k)$$

$$= \sum_{n,m} P^{i}(N_{s} = n) P^{i}(N_{t-s} = m) P^{i}(Z_{n} = j) P^{j}(Z_{m} = k)$$

$$=P^{i}(X_{s}=j)P^{j}(X_{t-s}=k)=p_{ij}(s)p_{jk}(t-s).$$

从上式中我们可以知道

$$p_{ij}(t) = P^{i}(X_{t} = j) = \sum_{n} \frac{(q_{i}t)^{n}}{n!} e^{-q_{i}t} u_{ij}^{(n)}.$$

两边对t求导,并令t=0可得

$$p'_{ij}(0) = q_i u_{ij} - q_i u_{ij}^{(0)} = q_{ij},$$

即马氏链 X_t 以 Q 为密度矩阵。

§3.6 强马氏性

定义 3.8 称马氏链 X_t 具有强马氏性, 若

- (i) X_t 是可测过程;
- (ii) 对任意停时 τ , 在 $\{\tau < \infty\}$ 上成立

$$P^{i}(X(t+\tau)=j|\mathcal{F}_{\tau})=P_{X_{\tau},j}(t)$$
 P^{i} -a.s..

定理 3.23 右连续齐次马氏链具有强马氏性。