CS 223 – Digital Logic and Design

Week 11 Lecture 1 Signed Binary Numbers

**Sameer Akram** 

Week 11 Lecture 1
Signed Binary Numbers



#### **Signed Binary Numbers**

- Positive integers (including zero) can be represented as unsigned numbers.
- However, to represent negative integers, we need a notation for negative values. In ordinary arithmetic, a negative number is indicated by a minus sign and a positive number by a plus sign.
- Because of hardware limitations, computers must represent everything with binary digits.
- It is customary to represent the sign with a bit placed in the leftmost position of the number.
- Sign bit 0 for positive and 1 for negative.

## ۲

#### **Signed Binary Numbers** (Contd.)

- It is important to realize that both signed and unsigned binary numbers consist of a string of bits when represented in a computer.
- The user determines whether the number is signed or unsigned.
- If the binary number is signed, then the leftmost bit represents the sign and the rest of the bits represent the number.
- If the binary number is assumed to be unsigned, then the leftmost bit is the most significant bit of the number.
- For example, the string of bits 01001 can be considered as 9 (unsigned binary) or as +9 (signed binary) because the leftmost bit is 0.
- The string of bits 11001 represents the binary equivalent of 25 when considered as an unsigned number and the binary equivalent of -9 when considered as a signed number.



#### Signed-magnitude convention

In this notation, the number consists of a magnitude and a symbol (+ or -) or a bit (0 or 1) indicating the sign. This is the representation of signed numbers used in ordinary arithmetic.



#### **Signed-complement system**

- When arithmetic operations are implemented in a computer, it is more convenient to use a different system, referred to as the signedcomplement system, for representing negative numbers.
- In this system, a negative number is indicated by its complement.
- Whereas the signed-magnitude system negates a number by changing its sign, the signed-complement system negates a number by taking its complement.
- Since positive numbers always start with 0 (plus) in the leftmost position, the complement will always start with a 1, indicating a negative number.
- The signed-complement system can use either the 1's or the 2's complement, but the 2's complement is the most common.

## ۲

#### Signed-complement system – Example

- Consider the number 9, represented in binary with eight bits.
- +9 is represented with a sign bit of 0 in the leftmost position, followed by the binary equivalent of 9, which gives 00001001.
- Note that all eight bits must have a value; therefore, 0's are inserted following the sign bit up to the first 1.
- Although there is only one way to represent +9, there are three different ways to represent -9 with eight bits:
- signed-magnitude representation: 10001001
- signed-1's-complement representation: 11110110
- signed-2's-complement representation: 11110111

# ۲

### **Signed-complement system – Example** (Contd.)

- signed-magnitude representation: 10001001
- signed-1's-complement representation: 11110110
- signed-2's-complement representation: 11110111
- In signed-magnitude, -9 is obtained from +9 by changing only the sign bit in the leftmost position from 0 to 1.
- In signed-1's-complement, -9 is obtained by complementing all the bits of +9, including the sign bit.
- The signed-2's-complement representation of -9 is obtained by taking the 2's complement of the positive number, including the sign bit.

### Ŋ

#### Table 1.3

- Table 1.3 lists all possible four-bit signed binary numbers in the three representations.
- The equivalent decimal number is also shown for reference.
- Note that the positive numbers in all three representations are identical and have 0 in the leftmost position.
- The signed-2's-complement system has only one representation for 0, which is always positive.
- The other two systems have either a positive 0 or a negative 0, something not encountered in ordinary arithmetic.
- Note that all negative numbers have a 1 in the leftmost bit position; that is the way we distinguish them from the positive numbers.

**Table 1.3** *Signed Binary Numbers* 

| Decimal | Signed-2's<br>Complement | Signed-1's<br>Complement | Signed<br>Magnitude |
|---------|--------------------------|--------------------------|---------------------|
| +7      | 0111                     | 0111                     | 0111                |
| +6      | 0110                     | 0110                     | 0110                |
| +5      | 0101                     | 0101                     | 0101                |
| +4      | 0100                     | 0100                     | 0100                |
| +3      | 0011                     | 0011                     | 0011                |
| +2      | 0010                     | 0010                     | 0010                |
| +1      | 0001                     | 0001                     | 0001                |
| +0      | 0000                     | 0000                     | 0000                |
| -0      | _                        | 1111                     | 1000                |
| -1      | 1111                     | 1110                     | 1001                |
| -2      | 1110                     | 1101                     | 1010                |
| -3      | 1101                     | 1100                     | 1011                |
| -4      | 1100                     | 1011                     | 1100                |
| -5      | 1011                     | 1010                     | 1101                |
| -6      | 1010                     | 1001                     | 1110                |
| -7      | 1001                     | 1000                     | 1111                |
| -8      | 1000                     | _                        | _                   |

■ That's end of the presentation! ©