Math 76 Exercises - 7.3B Graphing Polar Curves

Sketch the curve with the given polar equation. Use r-value analysis when necessary. Identify the type of polar curve (rose, lemniscate, cardioid, spiral, etc.)

1.
$$r = \sin(2\theta)$$
 Period = $\frac{2\pi}{2} = \pi$

3.
$$r = \cos(3\theta)$$
 Period = $\frac{2\pi}{3}$

4:
$$r = \frac{5}{2}\cos(4\theta)$$
 Period = $\frac{2\pi}{4} = \frac{\pi}{2}$

8-leaf rose

5.
$$r^2 = \sin(3\theta)$$
 Period = $\frac{2\pi}{3}$

		i i		6	
r<0	r70	9	r<0	1>0	0
0	0	0	undef	under	7 11 6
-1	1	16	0	0	411
0	0	13	-1	1	311
undef.	under.	1 2	0	0	<u>5π</u>
O	0	277	undal	undef	1111
-1	1	511	undef		6
0	0	π	0	0	2π

Lemniscate with 6 leaves

6.
$$r^2 = \cos(2\theta)$$
 Period = $\frac{2\pi}{2} = \pi$

r<0	770	0	r<0	1>0	0
-1	1	0	0	0	511
0	0	T 4 T 2	undef.	undez.	<u>5π</u> 2
under.	undef.	311	0	0	711
-1	1	π	-1	1	211
3.			, i		

Lemniscate with 2 leaves

$$7. \ r = 1 + 3\cos(2\theta)$$

period =
$$\frac{2\pi}{z} = \pi$$
.

Where is r=0? let $d=\cos^{-1}(\frac{1}{3})\approx 1.91$

$$\cos(20) = -\frac{1}{3}$$

 $2\theta = \cos^{-1}(-\frac{1}{3}) = \alpha \quad \text{or} \quad \pi - \alpha \quad \text{or} \quad 2\pi - \alpha \quad \text{or} \quad \pi + \alpha$ $So \quad \theta = \frac{\pi}{2} \approx 0.96 \quad \text{or} \quad \frac{\pi - \alpha}{2} \approx 0.615 \quad \text{or} \quad \frac{2\pi - \alpha}{2} \approx 2.19 \quad \text{or} \quad \frac{\pi + \alpha}{2} \approx 2.19 \quad \text{or} \quad \frac{\pi + \alpha}{2} \approx 2.53$ $e^{-1} = \frac{\pi}{2} \approx 1.53$

Note that r>0 for all 0.

9.
$$r = \theta \quad (\theta \ge 0)$$

Spiral opening Counter-clockwise

10.
$$r = \theta \quad (\theta \le 0)$$

_ ~	0 ≤ 0	r	0
0	0	0	0
-1.5	- 1.5	1.5	-1.5+m
-3	-3	3	-3+n
-4.5	4, 5	4,5	-4,5+T
-6	-6	6	-6+ TT

equivalent points

Spiral opening clockwise