A. Discovery of New Genes related to Leishmania Pathogenesis and as Biomarkers of Attenuation Using a Genomic Microarray

B. Multiplex PCR Microarray Assay to Detect Pathogens in Blood

Robert Duncan, PhD Site Visit Presentation

Meeting the Challenge of Leishmaniasis: harvesting the benefits of the genomic era

Our knowledge of the Leishmania genome:

8333	Open Reading Frames
307 (4%)	Experimentally characterized
2618 (31%)	Inferred from homology
4673 (56%)	Conserved hypothetical

A method to rapidly identify virulence related genes: The Microarray

Goals:

- Genetic mechanisms of Leishmania pathogenesis
- Genetic characterization of live attenuated vaccine candidates
- Better diagnostics based on genetic technology
- Biomarkers of vaccine safety

Rationale for microarray characterization of the centrin-deleted cell line

- Urgent need for a vaccine against leishmaniasis—live, attenuated approach
- Vaccine candidate must be safe genetically stable to avoid reversion
- Global gene expression and identified biomarkers to measure genetic stability
- Focus CBER research to make a unique scientific contribution

L. d. Argininosuccinate synthase (22C7)

Placement on a critical metabolic pathway and reproducible pattern of expression make *L.d.* argininosuccinate synthase a potential biomarker of attenuation

The hypothetical conserved, 27.6kD protein

(46G8) L. d. homologue of LmjF28.0980

Trypanosomatid restriction and high level of conservation suggest a critical function unique to the flagellated parasite physiology and the reproducible pattern of expression make *L.d.* p27 a potential biomarker of attenuation

Summary: characterization of gene expression in the centrin-deleted cell line

- Differentially expressed genes identified and validated
- Selected genes with potential as biomarkers of attenuation further characterized
- Characterized genes reveal physiological correlates of centrin deletion
- •Characterization of newly described gene function may lead to better understanding of *Leishmania* pathogenesis

Meeting the Challenge of Blood Safety: harvesting the benefits of new technologies

- Transfusion blood safety has improved with pathogen testing
- Increasing number of known potential infectious agents and emerging threats, including bioterrorism increases the burden of testing
- Urgent need for methods to streamline and consolidate testing: nucleic acid tests (NAT), real-time PCR, microarrays, nanotechnology
- Multiplex potential of a pathogen detection microarray assay

Microarray for Detection of Blood-borne and BT Pathogens

Bacteria, and Parasites

Ba: Bacillus anthracis (anthrax)

Ft: Francisella tularensis (tularemia)

LT: Leishmania /Trypanosoma

Yp: Yersinia pestes and pseudotuberculosis (plague)

Bioterror Viruses

POX: Pox viruses VAC: Vaccinia

VAR: Variola (Smallpox) MPV: Monkeypox Viruses CPV: Cowpox Viruses

NOVAC: All Pox viruses but Vaccinia

EBO: Ebola Viruses

VE: Venezuelan Equine Enceph. Virus

VETD: VE Trinidad Donkey

MBG: Marburg Viruses

Blood Borne Viruses

WNV: West Nile Viruses HCV: Hepatitis C Viruses HBV: Hepatitis B Viruses

HIV: Human Immunodeficiency Viruses HTLV: Human T-cell Leukemia Viruses

4 internal control probes (Human rRNA gene)

Results of detection in pathogen-spiked blood – 50 cells/ml

Bacillus anthracis

livestock vaccine strain

Francisella tularensis

Live Vaccine Strain

Yersinia pseudotub.

