Bayesian Classification

Naive Bayes classifiers are built on Bayesian classification methods. These rely on Bayes's theorem, which is an equation describing the relationship of conditional probabilities of statistical quantities. In Bayesian classification, we're interested in finding the probability of a label given some observed features, which we can write as $P(L \mid \text{features})$. Bayes's theorem tells us how to express this in terms of quantities we can compute more directly:

$$P(L \mid \text{features}) = \frac{P(\text{features} \mid L)P(L)}{P(\text{features})}$$

If we are trying to decide between two labels—let's call them L_1 and L_2 —then one way to make this decision is to compute the ratio of the posterior probabilities for each label:

$$\frac{P(L_1 \mid \text{features})}{P(L_1 \mid \text{features})} = \frac{P(\text{features} \mid L_1)}{P(\text{features} \mid L_2)} \frac{P(L_1)}{P(L_2)}$$

All we need now is some model by which we can compute $P(\text{features} \mid L_i)$ for each label. Such a model is called a *generative model* because it specifies the hypothetical random process that generates the data. Specifying this generative model for each label is the main piece of the training of such a Bayesian classifier. The general version of such a training step is a very difficult task, but we can make it simpler through the use of some simplifying assumptions about the form of this model.

This is where the "naive" in "naive Bayes" comes in: if we make very naive assumptions about the generative model for each label, we can find a rough approximation of the generative model for each class, and then proceed with the Bayesian classification. Different types of naive Bayes classifiers rest on different naive assumptions about the data, and we will examine a few of these in the following sections. We begin with the standard imports:

```
In[1]: %matplotlib inline
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns; sns.set()
```

Gaussian Naive Bayes

Perhaps the easiest naive Bayes classifier to understand is Gaussian naive Bayes. In this classifier, the assumption is that *data from each label is drawn from a simple Gaussian distribution*. Imagine that you have the following data (Figure 5-38):

```
In[2]: from sklearn.datasets import make_blobs
    X, y = make_blobs(100, 2, centers=2, random_state=2, cluster_std=1.5)
    plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='RdBu');
```


Figure 5-38. Data for Gaussian naive Bayes classification

One extremely fast way to create a simple model is to assume that the data is described by a Gaussian distribution with no covariance between dimensions. We can fit this model by simply finding the mean and standard deviation of the points within each label, which is all you need to define such a distribution. The result of this naive Gaussian assumption is shown in Figure 5-39.

Figure 5-39. Visualization of the Gaussian naive Bayes model

The ellipses here represent the Gaussian generative model for each label, with larger probability toward the center of the ellipses. With this generative model in place for each class, we have a simple recipe to compute the likelihood $P(\text{features} \mid L_1)$ for any data point, and thus we can quickly compute the posterior ratio and determine which label is the most probable for a given point.

This procedure is implemented in Scikit-Learn's sklearn.naive_bayes.GaussianNB estimator:

```
In[3]: from sklearn.naive_bayes import GaussianNB
    model = GaussianNB()
    model.fit(X, y);
```

Now let's generate some new data and predict the label:

Now we can plot this new data to get an idea of where the decision boundary is (Figure 5-40):

```
In[5]: plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='RdBu')
    lim = plt.axis()
    plt.scatter(Xnew[:, 0], Xnew[:, 1], c=ynew, s=20, cmap='RdBu', alpha=0.1)
    plt.axis(lim);
```


Figure 5-40. Visualization of the Gaussian naive Bayes classification

We see a slightly curved boundary in the classifications—in general, the boundary in Gaussian naive Bayes is quadratic.

A nice piece of this Bayesian formalism is that it naturally allows for probabilistic classification, which we can compute using the predict_proba method:

```
In[6]: yprob = model.predict proba(Xnew)
     yprob[-8:].round(2)
Out[6]: array([[ 0.89, 0.11],
            [1., 0.],
            [1., 0.],
            [1., 0.],
            [1., 0.],
            [ 1.
            [0.,1.],
            [0.15, 0.85]
```

The columns give the posterior probabilities of the first and second label, respectively. If you are looking for estimates of uncertainty in your classification, Bayesian approaches like this can be a useful approach.

Of course, the final classification will only be as good as the model assumptions that lead to it, which is why Gaussian naive Bayes often does not produce very good results. Still, in many cases—especially as the number of features becomes large—this assumption is not detrimental enough to prevent Gaussian naive Bayes from being a useful method.

Multinomial Naive Bayes

The Gaussian assumption just described is by no means the only simple assumption that could be used to specify the generative distribution for each label. Another useful example is multinomial naive Bayes, where the features are assumed to be generated from a simple multinomial distribution. The multinomial distribution describes the probability of observing counts among a number of categories, and thus multinomial naive Bayes is most appropriate for features that represent counts or count rates.

The idea is precisely the same as before, except that instead of modeling the data distribution with the best-fit Gaussian, we model the data distribution with a best-fit multinomial distribution.

Example: Classifying text

One place where multinomial naive Bayes is often used is in text classification, where the features are related to word counts or frequencies within the documents to be classified. We discussed the extraction of such features from text in "Feature Engineering" on page 375; here we will use the sparse word count features from the 20 Newsgroups corpus to show how we might classify these short documents into categories.

Let's download the data and take a look at the target names:

```
In[7]: from sklearn.datasets import fetch 20newsgroups
```