-					
П					
- 1					
-1					
- 1					
- 1					
L	 	 	 	 	

Academic year 2023-2024 (Odd Sem)

DEPARTMENT OF MECHANICAL ENGINEERING CIE I

Date	8 th January 2024	Maximum Marks	50
Course Code	ME232AT	Duration	90 Minutes
Course Name	MATERIALS SCIENCE	FOR ENGINEERS	Sem: 3

Q. No.	Questions	M	BT	СО
1.	Describe all the primary and secondary bonds with examples.	10	2	1
2.	Explain energy bands for metals, Semiconductors, and insulators with a neat sketch.	10	3	1
3.	Calculate Atomic packing factor for FCC unit cell. Define the following with respect to solid materials: i) space lattice, ii) unit	04	4	1
	cell iii) Atomic Packing Factor. 6m	00	1	1
4.	Explain properties and applications of ceramics and composites with examples.	10	2	1
5.	Explain the following defects: vacancy, edge dislocations, grain boundary.	10	2	1

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

	Particulars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Marks	TENER LANGE	50					20	1.0	4		
Distribution	TES Marks	50	-	-	-	06	30	10	4		

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

080 - 6818 8127

dean.academics@rvce.edu.in www.rvce.edu.in Go, change the world*

Technological University, Belagavi

<i>G0,</i>	change	the	work	d
------------	--------	-----	------	---

-		$\overline{}$		$\overline{}$	

Academic year 2023-2024 (Odd Sem)

DEPARTMENT OF MECHANICAL ENGINEERING CIE II

Date	20 th February 2024	Maximum Marks	50
Course Code	ME232AT	Duration	90 Minutes
Course Name	MATERIALS SCIENCE	Sem: 3	

Q. No.	Questions	M	BT	CO
1a.	With the help of a stress-strain diagram explain toughness and ductility of a material	04	3	2
1b.	Using stress-strain diagram distinguish ductile and brittle fracture	06	2	2
2.	Explain the following properties: thermal expansion coefficient, thermocouple. luminescence, optical fibres	10	3	2
3.	Describe the following: ferroelectricity, piezoelectricity, superconductor,	10	4	2
4.	Explain the properties and applications of following materials with examples. Ceramics and Fiber reinforced composites	10	3	2
5.	Explain the properties and applications of following materials. stainless steel, cast iron and titanium alloys.	10	3	2

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

	Part	iculars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Marks												
Distribution	TEST	Marks	1	50	-	-	06	30	10	4		

Mysore Road, RV Vidyaniketan Post, Bengaluru - 560059, Karnataka, India

080 - 6818 8127

www.rvce.edu.in

dean.academics@rvce.edu.in Go, change the world

Department of Mechanical Engineering

CIE – Improvement

Date	March 2024	Maximum Marks	50
Course Code	ME232AT	Duration	90 Min
Course Name	Materials Science for	USN:	Sem: 3
	Engineers		

Q. No.	Questions	M	ВТ	СО
1a.	Define heat treatment and explain the purpose of heat treatment.	5	2	3
1b.	Discuss the advantages and applications of rapid thermal processing for electronic devices.	5	2	3
2a.	Differentiate between annealing and normalising heat treatment processes.	5	3	3
2b.	Describe the full annealing heat treatment process for ferrous materials.	5	3	3
3a.	Explain the steps involved in thermal oxidation of semiconductor devices.	6	3	3
3b.	Describe the defects of heat treatment process for different materials.	4	2	3
4.	With the help of TTT diagram explain hardening process.	10	3	3
5.	Explain the following heat treatment processes with neat sketches: i) Flame hardening and ii) carburising	10	3	3

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

Marks Distribution	Particulars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
	TEST Marks	-	-	50	-	-	14	36			

USN	1	R	N	2	2	A	\mathcal{I}	0	(1

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU)
III Semester B. E. Examinations April/May-2024

Common to All Branches MATERIAL SCIENCE FOR ENGINEERS

Time: 03 Hours
Instructions to candidates:

Maximum Marks: 100

M BT CO

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.

PART-A

		212	~ 1	
1 1.1	Ceramic materials are generally having type of bonds.	01	1	1
1.2	When the electrical behaviour of the material are dominated by		•	•
	the electronic structure of pure metal, the material can be called			
7.7	as semi-conductors.	01	1	1
1.3	Give an example of natural composite.	01	1	1
1.4	T_i is having crystal structure at room temperature.	01	1	1
1.5	For the application of extremely high temperatures, type	7		- -
	of basic materials are used.	01	1	1
1.6	Cu - Ni alloys are an example of type of defect.	01	1	1
1.7	Deformations by twins are commonly observed in type			
	of metals.	01	1	1
1.8	Calculate the co-ordination number of <i>BCC</i> crystal systems.	01	1	1
1.9	External surfaces are an example of type of defects in		6	
	crystal systems.	01	1	2
1.10	Viscoelastic deformation is observed significantly in			
	basic material.	01	1	2
1.11	Diamond pyramid indenter is used in hardness			*
	testing.	01	1	2
1.12	Addition of chromium (Cr) to steel enhances property.	01	1	2
1.13	Which property of dielectric materials is measured in materials			
	testing?	01	1	2
1.14	Photodiodes serves as a in optical communication			
	systems.	01	1	2
1.15	Name the hardening process which introduces nitrogen into the			
	surface layer of steel to produce nitrides at the surface layer of			
	the component.	01	1	3
1.16	is a critical process in electronics manufacturing			9
	primarily used in surface-mount technology.	01	1	3
1.17	Aggregated composites possess strength compared to			
	fiber reinforced composites.	01	1	3
1.18	Sol-gel process is an example of approach of synthesis			
2.20	of nanomaterials.	01	1	4
1.19	Crystalline structures of materials are measured on the basis of			
1.17	lattice spacing and electron interaction with it, in			
	characterization technique.	01	1	4
1.20	Name characterization technique for nanostructure in which			
1.20	atomic structures of the materials are observed using electrons			
	passing through ultra-thin specimens.	01	1	4
	passing unough and and specimens.	1		

PART-B

2	a	Describe the following bonds for solid materials with examples.			
		i) Ionic bonds ii) Secondary bonds and		8	
		iii) Metallic bonds.	08		١.
	b	Explain the following crystallographic features of a	08	2	1
	D	Solid material.			
		i) FCC crystal structure with example			
		ii) Energy bands in insulator			
		iii) Edge dislocation in a metal.	08	2	1
3	a	Define and explain the following thermal properties of a material.			
		i) Thermo-electric effect			
		ii) Linear thermal expansion coefficient			
		iii) Thermal shock.	08	2	2
	b	Explain the principle of working of following materials.			-
		i) Piezoelectric materials and	00	_	
		ii) Thermocouples.	08	3	2
4	а	OR With a strong stroin sums and in the following properties of a			
т.	а	With a stress-strain curve, explain the following properties of a material.	5		
		i) Young's Modulus			
		ii) Ultimate Tensile Strength and			
		iii) Toughness.	08	3	2
	b	Define the following mechanical properties of a solid material.			
		i) Fracture toughness			
		ii) Hardness			>
		iii) Fatigue limit.	08	2	2
		Evaluing the appropriate and applications of stainless starl	06	0	0
5	a L	Explain the properties and applications of stainless steel. Mention the dopant used for p-type and n-type semiconductors.	06 04	2	2 2
	b	Explain the properties and applications of ceramics.	06	2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	С	OR	00	2	
6	а	Explain the properties and applications of fiber reinforced		,	
J	u	composites.	08	2	2
	b	Classify forming processes of structural materials and explain			
		any two forming processes.	08	2	2
7	a	Explain the steps involved in thermal oxidation method of			П
		semiconductor devices.	08	3	3
	b	Describe the cause, effect and prevention methods of any two			
		defects of heat treatment process of metals.	08	2	3
_		OR			
8	а	Differentiate between annealing and normalizing process of	00	2	2
	L	ferrous materials.	08 08	3 2	3 3
	b	Describe hardening of steel with the help of TTT diagram.	Uð		3
9	2	Define nanomaterials and describe the applications of			
J	a	nanomaterials with example.	08	2	4
	b	Describe the effect of particle size and surface area of		-	
		nanomaterials on the mechanical and optical properties of it.	08	2	4
		OR			
10	а	Describe the significant properties and applications of carbon			
		nanotubes.	08	2	4
	b	Describe the principle of working of X-Ray Diffraction (XRD)	00	_	
		techniques for the characterization of solid materials.	08	3	4