Double Descent

Reconciling modern machine learning practice and the bias-variance trade-off ¹

Surprises in High-Dimensional Ridgeless Least Squares Interpolation ²

¹Mikhail Belkin, Daniel Hsu, Siyuan Ma, Soumik Mandal ²Trevor Hastie, Andrea Montanari, Saharon Rosset, Ryan J. Tibshirani https://simons.berkeley.edu/sites/default/files/docs/14172/ slides1.pdf http://www.stat.cmu.edu/~ryantibs/talks/ls-inter-2019.pdf

> STAT 991 Junhui Cai

The double descent curve

Then and now Empirical evidence

Ridgeless regression

Underparametrized vs Overparametrized Misspecified model

The double descent curve

Then and now Empirical evidence

Ridgeless regression

Underparametrized vs Overparametrized Misspecified model

The double descent curve
Then and now
Empirical evidence

Ridgeless regression
Underparametrized vs Overparametrized
Misspecified model

Then and now

- ► Given $\{(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}\}_{i=1}^n \stackrel{i.i.d.}{\sim} P$
- ▶ Find a predictor $h_n : \mathbb{R}^d \to \mathbb{R}$ such that

$$\underset{h}{\operatorname{arg\,min}} \ \mathbb{E}_{(x^*,y^*)\sim P}\big[\ell(h(x^*),y^*)\big]$$

for some loss function ℓ .

Empirical risk minimization

$$\underset{h\in\mathcal{H}}{\operatorname{arg\,min}} \,\,\hat{\mathbb{E}}_n\big[\ell(h(x_i),y_i)\big].$$

Problem	Solution: then	Solution: now	
Representation	Representation More parameters		
Optimization	Convexify	More parameters!!	
Generalization	Regularization	More parameters!!!	

Understanding deep learning requires rethinking generalization (2016)

Zhang, Bengio, Hardt, Recht, Vinyals

Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset. Performance with and without data augmentation and weight decay are compared. The results of fitting random labels are also included.

model	# params	random crop	weight decay	train accuracy	test accuracy
Inception	1,649,402	yes	yes	100.0	89.05
		yes	no	100.0	89.31
		no	yes	100.0	86.03
		no	no	100.0	85.75
(fitting random labels)		no	no	100.0	9.78
Inception w/o BatchNorm	1,649,402	no	yes	100.0	83.00
		no	no	100.0	82.00
(fitting random labels)		no	no	100.0	10.12
Alexnet	1,387,786	yes	yes	99.90	81.22
		yes	no	99.82	79.66
		no	yes	100.0	77.36
		no	no	100.0	76.07
(fitting random labels)		no	no	99.82	9.86
MLP 3x512	1,735,178	no	yes	100.0	53.35
		no	no	100.0	52.39
(fitting random labels)		no	no	100.0	10.48
MLP 1x512	1,209,866	no	yes	99.80	50.39
		no	no	100.0	50.51
(fitting random labels)		no	no	99.34	10.61

The bias-variance tradeoff (U-shaped)

Interpolation, yet not overfitting

on a one-layer neural network

Double descent (W-shaped)

Belkin, Hsu, Ma, and Mandal (2018), "Reconciling modern machine learning and the bias-variance trade-off"

Double descent

- ► The double descent risk curve appears ubiquitously in a wide spectrum models and datasets.
- High risk at interpolation threshold, but decreasing risk as the function class capacity increasing (lower than the "classical" sweet spot?)
- Intuition: regularization restricts function classes.

Double descent

- Peak at the interpolation threshold
- Global minimum in the overparametrized regime
- Monotone decreasing in the overparametrized regime
- Vanishing (explicit) regularization

The double descent curve

Then and now

Empirical evidence

Ridgeless regression

Underparametrized vs Overparametrized Misspecified model

Neural networks

Random Fourier features

Random Fourier features family \mathcal{H}_N with N parameters.

$$h(x) = \sum_{k=1}^{N} a_k \phi(x; v_k)$$
 where $\phi(x; v) := e^{\sqrt{-1}\langle v, x \rangle}$,

where the vectors v_1, \ldots, v_N are sampled independently from the standard normal distribution in \mathbb{R}^d .

- Two-layer neural networks with fixed weights in the first layer
- Find $h_{n,N} = \arg\min_{h \in \mathcal{H}_N} \frac{1}{n} \sum_{i=1}^n (h(x_i) y_i)^2$
- ▶ N > n not unique, choose $h_{n,N}$ with smallest $||a||_2$

MNIST ($n = 10^4$) with RFF

MNIST ($n = 10^4$) with random ReLU

Tree and ensembles

The double descent curve

Then and now Empirical evidence

Ridgeless regression

Underparametrized vs Overparametrized Misspecified model

The double descent curve
Then and now
Empirical evidence

Ridgeless regression Underparametrized vs Overparametrized Misspecified model

Setup

Given i.i.d. $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$, i = 1, ..., n, where

$$(x_i, \epsilon_i) \sim P_x \times P_{\epsilon}$$
 and $y_i = x_i^T \beta + \epsilon_i$

and $\mathbb{E}(\epsilon_i) = 0$ and $Var(\epsilon_i) = \sigma^2$

- ▶ **Linear model.** $x_i = \Sigma^{1/2} z_i$, where $z_i \in \mathbb{R}^p$ has i.i.d. entries with zero mean and unit variance and $\Sigma \in \mathbb{R}^{p \times p}$ deterministic and positive definite.
- ▶ **Nonlinear model.** $x_i = \varphi(Wz_i)$, where $z_i \in \mathbb{R}^d$ has i.i.d. entries from N(0,1), $W \in \mathbb{R}^{p \times d}$ has i.i.d. entries from N(0,1/d), and φ is an activation function acting componentwise.

For nonlinear features, if $\mathbb{E}[y_i|z_i] = f(\theta; z_i)$,

$$\mathbb{E}[y_i|z_i] \approx \underbrace{\nabla_{\theta} f(z_i;\theta_0)^T}_{x_i} \underbrace{\theta - \theta_0}_{\beta}$$

Prediction risk

Consider a test point $x_0 \sim P_x$, independent of the training data. For an estimator $\hat{\beta}$ (a function of the training data X, y), we define its out-of-sample prediction risk (or simply, risk) as

$$R_X(\hat{\beta};\beta) = \mathbb{E}\left[(x_0^T \hat{\beta} - x_0^T \beta)^2 \,|\, X \right] = \mathbb{E}\left[\|\hat{\beta} - \beta\|_{\Sigma}^2 \,|\, X \right],$$

where $||x||_{\Sigma}^2 = x^T \Sigma x$. Note that our definition of risk is conditional on X (as emphasized by our notation R_X). Note also that we have the bias-variance decomposition

$$R_X(\hat{\beta};\beta) = \underbrace{\|\mathbb{E}(\hat{\beta}|X) - \beta\|_{\Sigma}^2}_{B_X(\hat{\beta};\beta)} + \underbrace{\operatorname{tr}[\operatorname{Cov}(\hat{\beta}|X)\Sigma]}_{V_X(\hat{\beta};\beta)}.$$

Ridgeless least square estimator

$$\begin{split} \hat{\beta} &= (X^TX)^+ X^T y \\ \hat{\beta}_{\lambda} &= \underset{b \in \mathbb{R}^p}{\text{arg min}} \left\{ \frac{1}{n} \|y - Xb\|_2^2 + \lambda \|b\|_2^2 \right\} \\ &= \underset{\lambda \to 0^+}{\text{lim}} \beta_{\lambda}, \quad \text{where } \beta_{\lambda} = \underset{b \in \mathbb{R}^p}{\text{arg min}} \left\{ \frac{1}{n} \|y - Xb\|_2^2 + \lambda \|b\|_2^2 \right\} \\ &= \underset{k \to \infty}{\text{lim}} \beta^{(k)}, \quad \text{where } \beta^{(k)} = \beta^{(k-1)} + t_k X^T (y - X\beta^{(k-1)}) \end{split}$$

The bias and variance of ridgeless estimator is

$$B_X(\hat{\beta}; \beta) = \beta^T \Pi \Sigma \Pi \beta$$
 and $V_X(\hat{\beta}; \beta) = \frac{\sigma^2}{n} \operatorname{tr}(\hat{\Sigma}^+ \Sigma),$

where $\hat{\Sigma} = X^T X/n$ is the (uncentered) sample covariance of X, and $\Pi = I - \hat{\Sigma}^+ \hat{\Sigma}$ is the projection onto the null space of X.

Classical regime (p < n)

- ▶ $x = \Sigma^{1/2}z$, where $z \in \mathbb{R}^p$ is a random vector with i.i.d. entries with $\mathbb{E}[z_{ij}] = 0$, $\mathbb{E}[z_{ij}^2] = 1$ and $\mathbb{E}[z_{ij}^{2+\delta}] < \infty$
- ▶ $\lambda_{\min}(\Sigma) \ge c > 0$, for all n, p and a constant c
- ▶ $F_{\Sigma} = \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}(\Sigma)}$ converges weakly to a measure H.

Theorem (Girko 1990s, Verdu and Tse 1990s)

As $n,p\to\infty$, such that $p/n\to\gamma<1$, the risk of the least squares estimator satisfies, almost surely,

$$R_X(\hat{\beta};\beta) \to \sigma^2 \frac{\gamma}{1-\gamma}.$$

$$R_X(\hat{\beta};\beta) = \sigma^2 \operatorname{tr}(\hat{\Sigma}^{-1}\Sigma) = \sigma^2 \operatorname{tr}((Z^T Z)^{-1}) \to \sigma^2 \gamma \int \frac{1}{s} dF_{\gamma}(s).$$

Isotropic with p > n

Theorem

Further assume $\Sigma = I$ and $\|\beta\|_2^2 = r^2$ for all n, p. As $n, p \to \infty$, such that $p/n \to \gamma > 1$, the risk of the least squares estimator satisfies, almost surely,

$$R_X(\hat{\beta};\beta) \rightarrow r^2(1-1/\gamma) + \frac{\sigma^2}{\gamma-1}.$$

Bias: consider X is rotationally invariant, then $X \stackrel{d}{=} XU$ for any orthogonal U. Take U such that $U\beta = re_i$.

$$B_X(\hat{\beta}; \beta) = \beta^T (I - (X^T X)^+ X^T X) \beta$$

$$\stackrel{d}{=} \beta^T (I - U^T (X^T X)^+ U U^T X^T X U) \beta$$

$$= r^2 - (U\beta)^T (X^T X)^+ X^T X (U\beta)$$

$$\stackrel{d}{=} r^2 [1 - \operatorname{tr}((X^T X)^+ X^T X)/\rho] = r^2 (1 - n/\rho).$$

Isotropic with p > n

Theorem

Further assume $\Sigma = I$ and $\|\beta\|_2^2 = r^2$ for all n, p. As $n, p \to \infty$, such that $p/n \to \gamma > 1$, the risk of the least squares estimator satisfies, almost surely,

$$R_X(\hat{\beta};\beta) \rightarrow r^2(1-1/\gamma) + \frac{\sigma^2}{\gamma-1}.$$

Variance: let $s_i = \lambda_i(X^TX/n)$, $t_i = \lambda_i(XX^T/p)$.

$$V_X(\hat{\beta}; \beta) = \frac{\sigma^2}{n} \sum_{i=1}^n \frac{1}{s_i} = \frac{\sigma^2}{p} \sum_{i=1}^n \frac{1}{t_i} = \frac{\sigma^2 n}{p} \int \frac{1}{t} dF_{XX^T/p}(t)$$
$$\rightarrow \frac{\sigma^2}{\gamma - 1}.$$

Risk curve

$$R(\gamma) = \begin{cases} \sigma^2 \frac{\gamma}{1-\gamma} & \text{for } \gamma < 1, \\ r^2 \left(1 - \frac{1}{\gamma}\right) + \sigma^2 \frac{1}{\gamma - 1} & \text{for } \gamma > 1. \end{cases}$$

Risk curve: double descent?

- √ Peak at the interpolation threshold
- X Global minimum in the overparametrized regime
- × Monotone decreasing in the overparametrized regime
- √ Vanishing (explicit) regularization

The double descent curve Then and now Empirical evidence

Ridgeless regression Underparametrized vs

Misspesified model

Misspecified model

Misspecified model

Given Given i.i.d. $(x_i, w_i, y_i) \in \mathbb{R}^p \times \mathbb{R}^q \times \mathbb{R}, i = 1, ..., n$, where $((x_i, w_i), \epsilon_i) \sim P_{x,w} \times P_{\epsilon}$, and $y_i = x_i^T \beta + w_i^T \theta + \epsilon_i$

and $\mathbb{E}(\epsilon_i) = 0$ and $Var(\epsilon_i) = \sigma^2$. Then the prediction risk is

$$R_{X}(\hat{\beta}; \beta, \theta) = \mathbb{E}\left[\left(x_{0}^{T} \hat{\beta} - x_{0}^{T} \beta - w_{0}^{T} \theta\right)^{2} \mid X\right] = \underbrace{\mathbb{E}\left[\left(x_{0}^{T} \hat{\beta} - \mathbb{E}(y_{0} \mid x_{0})\right)^{2} \mid X\right]}_{R_{X}^{*}(\hat{\beta}; \beta, \theta)} + \underbrace{\mathbb{E}\left[\left(\mathbb{E}(y_{0} \mid x_{0}) - \mathbb{E}(y_{0} \mid x_{0}, w_{0})\right)^{2}\right]}_{M(\beta, \theta)}.$$

Misspecified model: isotropic features

If we are willing to assume $\Sigma = I$, then

$$y_i = x_i^T \beta + \delta_i, \quad i = 1, \ldots, n,$$

where δ_i is independent of x_i , $\mathbb{E}[\delta_i] = 0$ and $\mathbb{E}[\delta_i^2] = \sigma^2 + \|\theta\|_2^2$. Denote

- total signal by $r^2 = \|\beta\|_2^2 + \|\theta\|_2^2$
- fraction of the signal captured by the observed features by $\kappa = \|\beta\|_2^2/r^2$.

Theorem

As $n, p \to \infty$, with $p/n \to \gamma$, it holds almost surely that

$$R_X(\hat{\beta};\beta,\theta) \rightarrow \begin{cases} \gamma < 1: & r^2(1-\kappa) + \left(r^2(1-\kappa) + \sigma^2\right) \frac{\gamma}{1-\gamma} \\ \gamma > 1: & \\ r^2(1-\kappa) + r^2\kappa\left(1 - \frac{1}{\gamma}\right) + \left(r^2(1-\kappa) + \sigma^2\right) \frac{1}{\gamma-1} \end{cases}$$

Risk curve

Risk curve

- √ Peak at the interpolation threshold
- √ Global minimum in the overparametrized regime
- ×, ✓ Monotone decreasing in the overparametrized regime
 - √ Vanishing (explicit) regularization

What about nonlinear

 $x_i = \varphi(Wz_i)$, where $z_i \in \mathbb{R}^d$ has i.i.d. entries from N(0,1), $W \in \mathbb{R}^{p \times d}$ has i.i.d. entries from N(0,1/d), and φ is an activation function acting componentwise.

The double descent curve

Then and now Empirical evidence

Ridgeless regression

Underparametrized vs Overparametrized Misspecified model

The generalization error of random features regression: Precise asymptotics and double descent curve (2019)

Mei, Montanari

▶ Given i.i.d $(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$

$$\mathbf{x}_i \sim \mathsf{Unif}(\mathbb{S}^{d-1}(\sqrt{d}))$$
 and $\mathbf{y}_i = f_{\star}(\mathbf{x}_i)$

Recall the random features (RF) model

$$\mathcal{F}_{\mathsf{RF}}(\mathbf{W}) \equiv \left\{ f(\mathbf{x}) = \sum_{i=1}^{N} a_i \, \sigma(\langle \mathbf{w}_i, \mathbf{x} \rangle) : a_i \in \mathbb{R} \, \forall i \leq N \right\}.$$

where $\mathbf{w}_i \sim \mathsf{Unif}(\mathbb{S}^{d-1}(\sqrt{1}))$

Kernel ridge regression

$$\hat{a}(\lambda) = \underset{\boldsymbol{a} \in \mathbb{R}^N}{\text{arg min}} \left\{ \hat{\mathbb{E}}_n \left[(y - \sum_{i=1}^N \sigma(\langle \boldsymbol{w}_i, \boldsymbol{x} \rangle))^2 \right] + \frac{N\lambda}{d} \|\boldsymbol{a}\|^2 \right\}$$

RF with ReLU for quadratic d = 20, 30, 50, 100

RF with ReLU

- $f_d(\mathbf{x}) = \langle \beta_1, \mathbf{x} \rangle$ with $\|\beta_1\|_2^2 = 1$.
- ► SNR: $\|\beta_1\|_2^2/\tau^2 \equiv \rho = 2$

References

- Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O. (2016). Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530.
- [2] Belkin, M, Hsu, D., Ma S., Mandal, S. (2019). Reconciling modern machine-learning practice and the classical bias-variance trade-off. Proceedings of the National Academy of Sciences, 116(32), 15849-15854.
- [3] Hastie, T., Montanari, A., Rosset, S., Tibshirani, R. J. (2019). Surprises in high-dimensional ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560.
- [4] Ghorbani, B., Mei, S., Misiakiewicz, T., Montanari, A. (2019). Linearized two-layers neural networks in high dimension. arXiv preprint arXiv:1904.12191.
- [5] Mei, S., Montanari, A. (2019).The generalization error of random features regression: Precise asymptotics and double descent curve. arXiv preprint arXiv:1908.05355.
- [6] Belkin's slides at Simons Institute (2019) https://simons.berkeley.edu/sites/default/files/docs/14172/slides1.pdf
- [6] Tibshirani's slides http://www.stat.cmu.edu/~ryantibs/talks/ls-inter-2019.pdf