FRA PROJECT BUSINESS REPORT

Problem Statement A:

Businesses or companies can fall prey to default if they are not able to keep up their debt obligations. Defaults will lead to a lower credit rating for the company which in turn reduces its chances of getting credit in the future and may have to pay higher interest on existing debts as well as any new obligations. From an investor's point of view, he would want to invest in a company if it is capable of handling its financial obligations, can grow quickly, and is able to manage the growth scale.

A balance sheet is a financial statement of a company that provides a snapshot of what a company owns, owes, and the amount invested by the shareholders. Thus, it is an important tool that helps evaluate the performance of a business. Data that is available includes information from the financial statement of the companies for the previous year.

Data Description

Sl.		
No	Column Name	Description
1	Co_Code	Company Code
2	Co_Name	Company Name
3	_Operating_Expense_Rate	Operating Expense Rate: Operating Expenses/Net Sales. The operating expense ratio (OER) is the cost to operate a piece of property compared to the income the property brings in.
4	_Research_and_development_expense_rate	Research and development expense rate: (Research and Development Expenses)/Net Sales. Research and development (R&D) expenses are direct expenditures relating to a company's efforts to develop, design, and enhance its products, services, technologies, or processes.
5	_Cash_flow_rate	Cash flow rate: Cash Flow from Operating/Current Liabilities. Cash flow is a measure of how

Sl.		_
No	Column Name	Description
		much cash a business brought in or spent in total over a period of time.
6	_Interest_bearing_debt_interest_rate	Interest-bearing debt interest rate: Interest-bearing Debt/Equity
7	_Tax_rate_A	Tax rate (A): Effective Tax Rate. Effective tax rate represents the percentage of their taxable income that individuals pay in taxes. For corporations, the effective corporate tax rate is the rate they pay on their pretax profits.
8	_Cash_Flow_Per_Share	Cash Flow Per Share. It is the after-tax earnings plus depreciation on a per-share basis that functions as a measure of a firm's financial strength
9	Per_Share_Net_profit_before_tax_Yuan	Per Share Net profit before tax (Yuan ¥): Pretax Income Per Share. Pretax income, also known as earnings before tax or pretax earnings, is the net income earned by a business before taxes are subtracted/accounted for.
10	_Realized_Sales_Gross_Profit_Growth_Rate	Realized Sales Gross Profit Growth Rate.
11	_Operating_Profit_Growth_Rate	Operating Profit Growth Rate: Operating Income Growth. It is

12 _Continuous_Net_Profit_Growth_Rate

13 _Total_Asset_Growth_Rate

the rate of increase in operating

Continuous Net Profit Growth

Total Asset Growth Rate: Total Asset Growth. It is the rate at which how quickly the company has been growing its Assets

Rate: Net Income-Excluding Disposal Gain or Loss Growth

income over the last year.

No	Column Name	Description
14	_Net_Value_Growth_Rate	Net Value Growth Rate: Total Equity Growth
15	_Total_Asset_Return_Growth_Rate_Ratio	Total Asset Return Growth Rate Ratio: Return on Total Asset Growth
16	_Cash_Reinvestment_perc	Cash Reinvestment %: Cash Reinvestment Ratio. It is the valuation ratio that is used to measure the percentage of annual cash flow that the company invests back into the business as a new investment.
17	_Current_Ratio	Current Ratio. The current ratio describes the relationship between a company's assets and liabilities
18	_Quick_Ratio	Quick Ratio: Acid Test. Acid-test ratio (also known as quick ratio) is a measure of a company's liquidity, which is its ability to pay its short-term obligations using only its most liquid assets.
19	_Interest_Expense_Ratio	Interest Expense Ratio: Interest Expenses/Total Revenue
20	_Total_debt_to_Total_net_worth	Total debt/Total net worth: Total Liability/Equity Ratio
21	_Long_term_fund_suitability_ratio_A	Long-term fund suitability ratio (A): (Long-term Liability+Equity)/Fixed Assets
22	_Net_profit_before_tax_to_Paid_in_capital	Net profit before tax/Paid-in capital: Pretax Income/Capital
23	_Total_Asset_Turnover	Total Asset Turnover. Net Sales/Average Total Assets
24	_Accounts_Receivable_Turnover	Accounts Receivable Turnover. The accounts receivable turnover ratio, or receivables turnover, is used in business accounting to quantify how well companies are managing the credit that they extend to their customers by evaluating how

Sl.		
No	Column Name	Description
		long it takes to collect the outstanding debt throughout the accounting period.
25	_Average_Collection_Days	Average Collection Days: Days Receivable Outstanding
26	_Inventory_Turnover_Rate_times	Inventory Turnover Rate (times). The inventory turnover ratio is the number of times a company has sold and replenished its inventory over a specific amount of time. The formula can also be used to calculate the number of days it will take to sell the inventory on hand.
27	_Fixed_Assets_Turnover_Frequency	Fixed Assets Turnover Frequency. Fixed Asset Turnover (FAT) is an efficiency ratio that indicates how well or efficiently a business uses fixed assets to generate sales. This ratio divides net sales by net fixed assets, calculated over an annual period.
28	_Net_Worth_Turnover_Rate_times	Net Worth Turnover Rate (times): Equity Turnover. Equity turnover is a ratio that measures the proportion of a company's sales to its stockholders' equity. The intent of the measurement is to determine the efficiency with which management is using equity to generate revenue.
29	_Operating_profit_per_person	Operating profit per person: Operation Income Per Employee
30	_Allocation_rate_per_person	Allocation rate per person: Fixed Assets Per Employee
31	_Quick_Assets_to_Total_Assets	Quick Assets/Total Assets
32	_Cash_to_Total_Assets	Cash/Total Assets
33	_Quick_Assets_to_Current_Liability	Quick Assets/Current Liability

No	Column Name	Description
34	_Cash_to_Current_Liability	Cash/Current Liability
35	_Operating_Funds_to_Liability	Operating Funds to Liability
36	_Inventory_to_Working_Capital	Inventory/Working Capital
37	_Inventory_to_Current_Liability	Inventory/Current Liability
38	_Long_term_Liability_to_Current_Assets	Long-term Liability to Current Assets
39	_Retained_Earnings_to_Total_Assets	Retained Earnings to Total Assets
40	_Total_income_to_Total_expense	Total income/Total expense
41	_Total_expense_to_Assets	Total expense/Assets
42	_Current_Asset_Turnover_Rate	Current Asset Turnover Rate: Current Assets to Sales. The current assets turnover ratio indicates how many times the current assets are turned over in the form of sales within a specific period of time. A higher asset turnover ratio means a better percentage of sales.
43	_Quick_Asset_Turnover_Rate	Quick Asset Turnover Rate: Quick Assets to Sales. The asset turnover ratio measures the efficiency of a company's assets in generating revenue or sales.
44	_Cash_Turnover_Rate	Cash Turnover Rate: Cash to Sales. The cash turnover ratio is an efficiency ratio that reveals the number of times that cash is turned over in an accounting period.
45	_Fixed_Assets_to_Assets	Fixed Assets to Assets. Fixed assets are also known as non-current assets—assets that can't be easily converted into cash.
46	_Cash_Flow_to_Total_Assets	Cash Flow to Total Assets. This ratio indicates the cash a company can generate in relation to its size.
47	_Cash_Flow_to_Liability	Cash Flow to Liability. The amount of money available to

No Column Name	Description
	run business operations and complete transactions. This is calculated as current assets (cash or near-cash assets, like notes receivable) minus current liabilities (liabilities due during the upcoming accounting period)
48 _CFO_to_Assets	CFO to Assets. Cash flow on total assets is an efficiency ratio that rates cash flows to the company assets without being affected by income recognition or income measurements.
49 _Cash_Flow_to_Equity	Cash Flow to Equity. cash flow to equity is a measure of how much cash is available to the equity shareholders of a company after all expenses, reinvestment, and debt are paid.
50 _Current_Liability_to_Current_Assets	Current Liability to Current Assets. Current liabilities are a company's financial commitments that are due and payable within a year, Current assets are projected to be consumed, sold, or converted into cash within a year or within the operational cycle.
51 _Liability_Assets_Flag	Liability-Assets Flag: 1 if Total Liability exceeds Total Assets, 0 otherwise
52 _Total_assets_to_GNP_price	Total assets to GNP price. Gross National Product (GNP) is the total value of all finished goods and services produced by a country's citizens in a given financial year, irrespective of their location.
53 _No_credit_Interval	No-credit Interval
54 _Degree_of_Financial_Leverage_DFL	Degree of Financial Leverage (DFL). The degree of financial

55

Description

leverage is a financial ratio that measures the sensitivity in fluctuations of a company's overall profitability to the volatility of its operating income caused by changes in its capital structure. _Interest_Coverage_Ratio_Interest_expense_to_EBIT **Interest Coverage Ratio** (Interest expense to EBIT). The interest coverage ratio is a debt and profitability ratio used to determine how easily a company can pay interest on its outstanding debt. The interest coverage ratio is calculated by dividing a company's earnings before interest and taxes (EBIT) by its interest expense during a given period. Net Income Flag: 1 if Net Income is Negative for the last two

56 _Net_Income_Flag

57 _Equity_to_Liability

58 Default years, 0 otherwise Equity to Liability Ratio. Whether the Company has

Default (Bankrupted) or not? 1 -Defaulted, 0 - Not Defaulted.

Basic Information about data:-

- The shape of. the dataset is (2058, 58), it means it has 2058 rows and 58 columns
- The size of the dataset is 119364
- The data has 298 null values
- "Cash_Flow_Per_Share" has 167 null values, "Total_debt_to_Total_net_worth" has 21 null values, "Quick_Assets_to_Total_Assets" has 96 null values, "Current_Liability_to_Current_Assets" has 14 null values
- 298/119364 = 0.00249656512851446, 2% of the data is missing in dataset
- There are no duplicate rows in data

# Column	Non-Null Count Dtype
0 Co Codo	2000 non null int(4
0 Co_Code	2058 non-null int64 2058 non-null
1 Co_Name	2038 11011-11011
object	2000 non null
2 _Operating_Expense_Rate	2058 non-null
float64	2050
3 _Research_and_development_expense_rate	2058 non-null
float64	2050 11
4 _Cash_flow_rate	2058 non-null
float64	2052
5 _Interest_bearing_debt_interest_rate	2058 non-null
float64	
6 _Tax_rate_A	2058 non-null
float64	
7 _Cash_Flow_Per_Share	1891 non-null
float64	
<pre>8 _Per_Share_Net_profit_before_tax_Yuan_</pre>	2058 non-null
float64	
9 _Realized_Sales_Gross_Profit_Growth_Rate	2058 non-null
float64	
<pre>10 _Operating_Profit_Growth_Rate</pre>	2058 non-null
float64	
<pre>11 _Continuous_Net_Profit_Growth_Rate</pre>	2058 non-null
float64	
<pre>12 _Total_Asset_Growth_Rate</pre>	2058 non-null
float64	
13 _Net_Value_Growth_Rate	2058 non-null
float64	
14 _Total_Asset_Return_Growth_Rate_Ratio	2058 non-null
float64	
15 _Cash_Reinvestment_perc	2058 non-null
float64	
16 _Current_Ratio	2058 non-null
float64	
17 _Quick_Ratio	2058 non-null
float64	
18 _Interest_Expense_Ratio	2058 non-null
float64	
19 _Total_debt_to_Total_net_worth	2037 non-null
float64	
20 Long term fund suitability ratio A	2058 non-null
float64	
21 Net profit before tax to Paid in capital	2058 non-null
float64	2030 11011 11411
22 _Total_Asset_Turnover	2058 non-null
float64	2000 HOH HALL
23 _Accounts_Receivable_Turnover	2058 non-null
float64	2000 HOH-HULL
24 _Average_Collection_Days	2058 non-null
24 - Avel age_correction_pays	2000 HOH-HULL

float64	
25 _Inventory_Turnover_Rate_times	2058 non-null
float64	
26 _Fixed_Assets_Turnover_Frequency	2058 non-null
float64	
27 _Net_Worth_Turnover_Rate_times	2058 non-null
float64	
<pre>28 _Operating_profit_per_person</pre>	2058 non-null
float64	
<pre>29 _Allocation_rate_per_person</pre>	2058 non-null
float64	
30 _Quick_Assets_to_Total_Assets	2058 non-null
float64	
31 _Cash_to_Total_Assets	1962 non-null
float64	2050 11
32 _Quick_Assets_to_Current_Liability	2058 non-null
float64	2050
33 _Cash_to_Current_Liability	2058 non-null
float64	2058 non-null
<pre>34 _Operating_Funds_to_Liability float64</pre>	2036 HUII-HUII
35 Inventory to Working Capital	2058 non-null
float64	2000 Holl-Hull
36 Inventory to Current Liability	2058 non-null
float64	2000 Holl Hall
37 _Long_term_Liability_to_Current_Assets	2058 non-null
float64	
38 _Retained_Earnings_to_Total_Assets	2058 non-null
float64	
<pre>39 _Total_income_to_Total_expense</pre>	2058 non-null
float64	
40 _Total_expense_to_Assets	2058 non-null
float64	
41 _Current_Asset_Turnover_Rate	2058 non-null
float64	
42 _Quick_Asset_Turnover_Rate	2058 non-null
float64	
43 _Cash_Turnover_Rate	2058 non-null
float64	2050
44 _Fixed_Assets_to_Assets	2058 non-null
float64	2058 non-null
45 _Cash_Flow_to_Total_Assets float64	2030 11011-11011
46 Cash Flow to Liability	2058 non-null
float64	2030 Holl Hall
47 _CFO_to_Assets	2058 non-null
float64	
48 Cash Flow to Equity	2058 non-null
float64	
49 _Current_Liability_to_Current_Assets	2044 non-null
_	

float64		
50 _Liability_Assets_Flag	2058 non-null	int64
51 _Total_assets_to_GNP_price	2058 non-null	
float64		
52 _No_credit_Interval	2058 non-null	
float64		
53 _Degree_of_Financial_Leverage_DFL	2058 non-null	
float64		
54 _Interest_Coverage_Ratio_Interest_expense_to_EBIT	2058 non-null	
float64		
55 _Net_Income_Flag	2058 non-null	int64
56 _Equity_to_Liability	2058 non-null	
float64		
57 Default	2058 non-null	int64
<pre>dtypes: float64(53), int64(4), object(1)</pre>		
memory usage: 932.7+ KB		

• The dataset has 53 float, 4 int nad 1 onject datatype variables

	me						
count	an	std	min	25%	50%	75%	max
Co_Code	20 58. 0	1.7572 11e+04	2.1892 89e+04	4.00 0000	3.6740 00e+03	6.2400 00e+03	2.4280 75e+04
_Operating_Expense_Rate	20 58. 0	2.0523 89e+09	3.2526 24e+09	0.00 0100	1.5787 27e-04	3.3303 30e-04	4.1100 00e+09
_Research_and_developmen t_expense_rate	20 58. 0	1.2086 34e+09	2.1445 68e+09	0.00 0000	0.0000 00e+00	1.9941 30e-04	1.5500 00e+09
_Cash_flow_rate	20 58. 0	4.6524 26e-01	2.2662 69e-02	0.00 0000	4.6009 91e-01	4.6344 50e-01	4.6806 91e-01
_Interest_bearing_debt_inte rest_rate	20 58. 0	1.1130 22e+07	9.0425 95e+07	0.00 0000	2.7602 80e-04	4.5404 50e-04	6.6306 60e-04
_Tax_rate_A	20 58. 0	1.1477 70e-01	1.5244 57e-01	0.00 0000	0.0000 00e+00	3.7098 90e-02	2.1619 09e-01
_Cash_Flow_Per_Share	18 91. 0	3.1998 56e-01	1.5299 79e-02	0.16 9449	3.1498 90e-01	3.2064 79e-01	3.2591 78e-01
Per_Share_Net_profit_before _tax_Yuan	20 58. 0	1.7696 73e-01	3.0157 30e-02	0.00 0000	1.6660 39e-01	1.7564 21e-01	1.8588 54e-01

count	me an	std	min	25%	50%	75%	max
				0.00			
_Realized_Sales_Gross_Profi t_Growth_Rate	20 58. 0	2.2761 17e-02	2.1701 04e-02	4282	2.2058 31e-02	2.2100 01e-02	2.2152 00e-02
_Operating_Profit_Growth_ Rate	20 58. 0	8.4810 83e-01	4.5890 93e-03	0.73 6430	8.4797 40e-01	8.4803 86e-01	8.4811 47e-01
_Continuous_Net_Profit_Gro wth_Rate	20 58. 0	2.1739 15e-01	5.6787 79e-03	0.00 0000	2.1757 41e-01	2.1759 61e-01	2.1761 98e-01
_Total_Asset_Growth_Rate	20 58. 0	5.2876 63e+09	2.9126 15e+09	0.00 0000	4.3150 00e+09	6.2250 00e+09	7.2200 00e+09
_Net_Value_Growth_Rate	20 58. 0	5.1895 04e+06	2.0779 18e+08	0.00 0000	4.3628 33e-04	4.5541 70e-04	4.8837 58e-04
_Total_Asset_Return_Growt h_Rate_Ratio	20 58. 0	2.6410 04e-01	2.4156 61e-03	0.25 1620	2.6373 83e-01	2.6401 61e-01	2.6430 97e-01
_Cash_Reinvestment_perc	20 58. 0	3.7719 70e-01	2.7373 11e-02	0.02 5828	3.7072 95e-01	3.7896 78e-01	3.8555 75e-01
_Current_Ratio	20 58. 0	1.3362 49e+06	6.0619 17e+07	0.00 0000	6.5670 62e-03	8.9453 70e-03	1.3505 42e-02
_Quick_Ratio	20 58. 0	2.7755 10e+07	4.4486 54e+08	0.00 0000	2.9463 99e-03	5.2842 41e-03	8.9029 83e-03
_Interest_Expense_Ratio	20 58. 0	6.3129 13e-01	6.7855 12e-03	0.52 5126	6.3061 16e-01	6.3079 99e-01	6.3174 37e-01
_Total_debt_to_Total_net_w orth	20 37. 0	1.0714 29e+07	2.6969 60e+08	0.00 0000	3.9248 94e-03	7.2707 21e-03	1.3068 69e-02
_Long_term_fund_suitability _ratio_A	20 58. 0	8.9733 10e-03	3.4851 86e-02	0.00 4129	5.1620 31e-03	5.5170 00e-03	6.4153 01e-03
_Net_profit_before_tax_to_P aid_in_capital	20 58. 0	1.7539 94e-01	2.6223 48e-02	0.00 0000	1.6586 23e-01	1.7456 83e-01	1.8444 50e-01
_Total_Asset_Turnover	20	1.2864	1.0062	0.00	6.1469	1.0344	1.6791

	me	. 1	·	250/	5 00/	750/	
count	an 58.	std 05e-01	min 16e-01	25% 0000	50% 27e-02	75% 83e-01	max 60e-01
	0						
_Accounts_Receivable_Turn	20	4.1598	5.0476	0.00	7.4462	1.0814	1.8544
over	58. 0	64e+07	73e+08	0000	60e-04	32e-03	63e-03
_Average_Collection_Days	20	2.6297	4.1099	0.00	3.5763	6.0012	8.6389
	58. 0	86e+07	67e+08	0000	84e-03	72e-03	97e-03
_Inventory_Turnover_Rate_	20	2.0302	3.0772	0.00	1.9092	1.9100	3.8150
times	58. 0	27e+09	50e+09	0000	97e-04	00e+07	00e+09
_Fixed_Assets_Turnover_Fr	20	1.2308	2.6492	0.00	2.2789	5.9952	8.4232
equency	58. 0	98e+09	89e+09	0000	50e-04	45e-04	24e-03
_Net_Worth_Turnover_Rate	20	3.9577	4.2395	0.00	2.0483	2.8709	4.4354
_times	58. 0	10e-02	91e-02	8871	87e-02	68e-02	84e-02
_Operating_profit_per_pers	20	4.0366	5.3589	0.00	3.9138	3.9507	4.0089
on	58. 0	93e-01	70e-02	0000	64e-01	81e-01	27e-01
_Allocation_rate_per_perso	20	5.7255	1.9795	0.00	4.6716	1.0629	2.4574
n	58. 0	59e+06	00e+08	0000	12e-03	69e-02	91e-02
_Quick_Assets_to_Total_Ass	20	3.4219	2.1039	0.00	1.7348	3.0612	4.8454
ets	58. 0	79e-01	25e-01	0000	27e-01	76e-01	35e-01
_Cash_to_Total_Assets	19	7.9936	9.8622	0.00	2.0619	4.5631	9.7713
	62. 0	75e-02	60e-02	0184	09e-02	87e-02	01e-02
_Quick_Assets_to_Current_L	20	1.1904	3.1229	0.00	3.6163	5.9729	9.6085
iability	58. 0	76e+07	23e+08	0000	04e-03	76e-03	33e-03
_Cash_to_Current_Liability	20	9.2825	7.8518	0.00	1.0854	2.6843	7.5405
	58. 0	07e+07	99e+08	0101	76e-03	38e-03	35e-03
_Operating_Funds_to_Liabili	20	3.4823	3.8403	0.02	3.3770	3.4502	3.5414
ty	58. 0	38e-01	02e-02	6274	32e-01	57e-01	02e-01
_Inventory_to_Working_Cap	20	2.7774	1.8443	0.00	2.7700	2.7725	2.7771
ital	58.	91e-01	94e-02	0000	93e-01	11e-01	11e-01

count	me an	std	min	25%	50%	75%	max
	0						
_Inventory_to_Current_Liab ility	20 58. 0	5.7863 46e+07	6.2787 95e+08	0.00 0000	2.8908 42e-03	6.7811 66e-03	1.2751 16e-02
_Long_term_Liability_to_Cu rrent_Assets	20 58. 0	7.3401 07e+07	6.6935 26e+08	0.00 0000	0.0000 00e+00	2.5871 30e-03	1.0496 84e-02
_Retained_Earnings_to_Tota l_Assets	20 58. 0	9.3035 46e-01	2.9760 67e-02	0.00 0000	9.2788 68e-01	9.3507 56e-01	9.4093 71e-01
_Total_income_to_Total_exp ense	20 58. 0	2.3579 77e-03	4.6442 58e-04	0.00 0000	2.1869 64e-03	2.2974 52e-03	2.4331 46e-03
_Total_expense_to_Assets	20 58. 0	3.1092 08e-02	3.8700 42e-02	0.00 0853	1.2704 26e-02	2.0863 22e-02	3.5301 20e-02
_Current_Asset_Turnover_R ate	20 58. 0	1.2733 03e+09	2.8397 41e+09	0.00 0000	1.5046 98e-04	2.4616 60e-04	1.2640 05e-03
_Quick_Asset_Turnover_Rat e	20 58. 0	2.5717 68e+09	3.4535 44e+09	0.00 0000	1.5117 58e-04	3.7940 85e-04	5.7900 00e+09
_Cash_Turnover_Rate	20 58. 0	2.6536 96e+09	2.8212 45e+09	0.00 0100	1.7374 18e-03	1.7300 00e+09	4.5500 00e+09
_Fixed_Assets_to_Assets	20 58. 0	4.0427 60e+06	1.8340 06e+08	0.00 0000	9.6505 77e-02	2.1381 07e-01	4.1502 87e-01
_Cash_Flow_to_Total_Assets	20 58. 0	6.4423 25e-01	4.5059 29e-02	0.00 0000	6.3336 45e-01	6.4324 62e-01	6.5415 77e-01
_Cash_Flow_to_Liability	20 58. 0	4.5997 47e-01	3.2881 12e-02	0.03 2583	4.5748 02e-01	4.5934 08e-01	4.6174 33e-01
_CFO_to_Assets	20 58. 0	5.7973 44e-01	6.3750 60e-02	0.00 0000	5.5037 90e-01	5.8254 31e-01	6.1232 15e-01
_Cash_Flow_to_Equity	20 58. 0	3.1462 92e-01	1.2779 67e-02	0.00 0000	3.1278 30e-01	3.1464 23e-01	3.1654 60e-01

	me						
count	an	std	min	25%	50%	75%	max
_Current_Liability_to_Curre nt_Assets	20 44. 0	3.9351 78e-02	4.7978 15e-02	0.00 0000	2.1775 39e-02	3.2652 29e-02	4.3946 84e-02
_Liability_Assets_Flag	20 58. 0	3.4013 61e-03	5.8236 06e-02	0.00 0000	0.0000 00e+00	0.0000 00e+00	0.0000 00e+00
_Total_assets_to_GNP_price	20 58. 0	2.7793 97e+07	4.7177 14e+08	0.00 0000	9.1240 52e-04	2.4795 50e-03	7.0044 49e-03
_No_credit_Interval	20 58. 0	6.2368 56e-01	1.1630 52e-02	0.40 8682	6.2332 74e-01	6.2374 96e-01	6.2404 52e-01
_Degree_of_Financial_Lever age_DFL	20 58. 0	2.7852 48e-02	1.3838 54e-02	0.01 2845	2.6775 58e-02	2.6814 66e-02	2.7029 43e-02
_Interest_Coverage_Ratio_I nterest_expense_to_EBIT	20 58. 0	5.6543 55e-01	1.1535 38e-02	0.17 2065	5.6515 80e-01	5.6531 49e-01	5.6623 24e-01
_Net_Income_Flag	20 58. 0	1.0000 00e+00	0.0000 00e+00	1.00 0000	1.0000 00e+00	1.0000 00e+00	1.0000 00e+00
_Equity_to_Liability	20 58. 0	4.2528 52e-02	5.9525 18e-02	0.00 3946	2.0407 87e-02	2.8460 04e-02	4.3432 55e-02
Default	20 58. 0	1.0689 99e-01	3.0906 10e-01	0.00 0000	0.0000 00e+00	0.0000 00e+00	0.0000 00e+00

- 1. **Count**: Indicates the number of observations for each variable. All variables have 2058 observations except for "*Cash_Flow_Per_Share*" which has 1891 observations and "Total_debt_to_Total_net_worth" which has 2037 observations.
- 2. **Mean**: Represents the average value of each variable across all observations.
- 3. **Standard Deviation (std)**: Gives a measure of the dispersion or spread of the data from the mean. Higher standard deviations indicate greater variability in the data.
- 4. **Min and Max**: Show the minimum and maximum values observed for each variable, indicating the range of values present in the dataset.
- 5. **Percentiles (25%, 50%, 75%)**: Represent values below which a given percentage of observations fall. The 50th percentile (median) is the value below which 50% of the observations fall.

From these statistics, you can make various assessments about the dataset:

- For instance, "_Operating_Expense_Rate" has a very high mean compared to other variables, indicating that, on average, operating expenses are substantial relative to other financial metrics.
- "_Tax_rate_A" has a mean of 0.114, suggesting that the average tax rate for the companies in the dataset is around 11.4%.
- "Current_Ratio" and "Quick_Ratio" have significantly high standard deviations compared to their means, indicating a wide variation in these ratios across the dataset.
- "_Net_Income_Flag" has a mean of 1.0 and a standard deviation of 0.0, suggesting it may be a binary indicator variable with all observations being 1.

PART A: Outlier Treatment

- The graph shows too many outliers, the treatment of outliers depends on the origanizational goals and what they are looking for
- Outliers are data points that significantly differ from other observations in a dataset. They can arise due to various reasons such as measurement errors, data entry mistakes, natural variations in the data, or rare events. Outliers can distort statistical analyses and machine learning models, leading to inaccurate results and conclusions. Therefore, it's essential to identify and appropriately handle outliers.

Here are common methods to treat outliers:

1. **Data Visualization**: Plot the data using histograms, box plots, scatter plots, or QQ plots to visually identify outliers. This initial step helps to understand the distribution and detect any extreme values.

2. Statistical Methods:

- **Z-Score**: Calculate the Z-score for each data point, which measures the number of standard deviations away from the mean. Remove data points with Z-scores exceeding a certain threshold (commonly |Z-score| > 3).
- **Interquartile Range (IQR)**: Calculate the IQR, which is the range between the first (Q1) and third (Q3) quartiles. Remove data points that fall below Q1 1.5 * IQR or above Q3 + 1.5 * IQR.
- After treating the outliers with IQR method we can see that the box plot doesn't show any outliers

PART A: Missing Value Treatment

To treat missing values in Python:

- 1. Use the ".fillna()" method in pandas to fill missing values with a specified value, such as the mean or median of the column.
- 2. Alternatively, drop rows or columns containing missing values using ".dropna()" method in pandas.
- 3. For more complex cases, use imputation techniques such as mean, median, or mode imputation for numerical data or using predictive models like KNN imputation.

4. Utilize libraries like scikit-learn's "simpleImputer" for a more systematic approach to impute missing values based on different strategies.

_Operating_Expense_Rate	0
	0
Cash_flow_rate	0
_Interest_bearing_debt_interest_rate	0
Tax_rate_A	0
_Cash_Flow_Per_Share	167
_Per_Share_Net_profit_before_tax_Yuan_	0
_Realized_Sales_Gross_Profit_Growth_Rate	0
_Operating_Profit_Growth_Rate	0
_Continuous_Net_Profit_Growth_Rate	0
_Total_Asset_Growth_Rate	0
_Net_Value_Growth_Rate	0
_Total_Asset_Return_Growth_Rate_Ratio	0
_Cash_Reinvestment_perc	0
_Current_Ratio	0
_Quick_Ratio	0
_Interest_Expense_Ratio	0
_Total_debt_to_Total_net_worth	21
_Long_term_fund_suitability_ratio_A	0
_Net_profit_before_tax_to_Paid_in_capital	0
_Total_Asset_Turnover	0
_Accounts_Receivable_Turnover	0
_Average_Collection_Days	0
_Inventory_Turnover_Rate_times	0
_Fixed_Assets_Turnover_Frequency	0
_Net_Worth_Turnover_Rate_times	0
_Operating_profit_per_person	0
_Allocation_rate_per_person	0
_Quick_Assets_to_Total_Assets	0
_Cash_to_Total_Assets	96
_Quick_Assets_to_Current_Liability	0
_Cash_to_Current_Liability	0
_Operating_Funds_to_Liability	0
_Inventory_to_Working_Capital	0
_Inventory_to_Current_Liability	0
_Long_term_Liability_to_Current_Assets	0
_Retained_Earnings_to_Total_Assets	0
_Total_income_to_Total_expense	0
_Total_expense_to_Assets	0
_Current_Asset_Turnover_Rate	0
_Quick_Asset_Turnover_Rate	0
_Cash_Turnover_Rate	0
_Fixed_Assets_to_Assets	0
_Cash_Flow_to_Total_Assets	0
_Cash_Flow_to_Liability	0
_CFO_to_Assets	0
_Cash_Flow_to_Equity	0

```
_Current_Liability_to_Current_Assets 14
_Liability_Assets_Flag 0
_Total_assets_to_GNP_price 0
_No_credit_Interval 0
_Degree_of_Financial_Leverage_DFL 0
_Interest_Coverage_Ratio_Interest_expense_to_EBIT 0
_Net_Income_Flag 0
_Equity_to_Liability 0
```

- The columns Cash_Flow_Per_Share", "Total_debt_to_Total_net_worth", "Cash_to_Total_Assets", "_Current_Liability_to_Current_Assets" have missing values
- after treating missings values

_Operating_Expense_Rate	0
	0
_Cash_flow_rate	0
Interest_bearing_debt_interest_rate	0
Tax rate A	0
Cash_Flow_Per_Share	0
Per_Share_Net_profit_before_tax_Yuan_	0
Realized Sales Gross Profit Growth Rate	0
Operating Profit Growth Rate	0
Continuous_Net_Profit_Growth_Rate	0
Total_Asset_Growth_Rate	0
_Net_Value_Growth_Rate	0
_Total_Asset_Return_Growth_Rate_Ratio	0
_Cash_Reinvestment_perc	0
_Current_Ratio	0
_Quick_Ratio	0
_Interest_Expense_Ratio	0
_Total_debt_to_Total_net_worth	0
_Long_term_fund_suitability_ratio_A	0
_Net_profit_before_tax_to_Paid_in_capital	0
_Total_Asset_Turnover	0
_Accounts_Receivable_Turnover	0
_Average_Collection_Days	0
_Inventory_Turnover_Rate_times	0
_Fixed_Assets_Turnover_Frequency	0
_Net_Worth_Turnover_Rate_times	0
_Operating_profit_per_person	0
_Allocation_rate_per_person	0
_Quick_Assets_to_Total_Assets	0
_Cash_to_Total_Assets	0
_Quick_Assets_to_Current_Liability	0
_Cash_to_Current_Liability	0
_Operating_Funds_to_Liability	0
_Inventory_to_Working_Capital	0
_Inventory_to_Current_Liability	0
_Long_term_Liability_to_Current_Assets	0

_Retained_Earnings_to_Total_Assets	0
_Total_income_to_Total_expense	0
_Total_expense_to_Assets	0
_Current_Asset_Turnover_Rate	0
_Quick_Asset_Turnover_Rate	0
_Cash_Turnover_Rate	0
_Fixed_Assets_to_Assets	0
_Cash_Flow_to_Total_Assets	0
_Cash_Flow_to_Liability	0
_CFO_to_Assets	0
_Cash_Flow_to_Equity	0
_Current_Liability_to_Current_Assets	0
_Liability_Assets_Flag	0
_Total_assets_to_GNP_price	0
_No_credit_Interval	0
_Degree_of_Financial_Leverage_DFL	0
_Interest_Coverage_Ratio_Interest_expense_to_EBIT	0
_Net_Income_Flag	0
_Equity_to_Liability	0

PART A: Univariate (4 marks) & Bivariate (6 marks) analysis with proper interpretation. (You may choose to include only those variables which were significant in the model building)

Univariate analysis:-

• The count plot shows the number of defaults that have occurred in two categories. The most frequent category, with a count of 1750, is labeled "0". The least frequent category, with a count of 250, is labeled "1".

• A histogram of cash flow per share. The x-axis of the histogram shows the cash flow per share, while the y-axis shows the number of companies that have had that cash flow per share. The histogram shows that the most common cash flow per share is around \$0.32. There are fewer companies with a cash flow per share that is much lower or much higher than \$0.32.

A histogram of long-term liability to current assets ratio. The x-axis of the histogram shows the ratio, while the y-axis shows the number of businesses that have that ratio.

The histogram shows that the most common long-term liability to current asset ratio falls between 0.005 and 0.010. There are fewer businesses with a ratio that is much lower or much higher than this range.

Boxplot of Total Asset Growth Rate

The box plot shows the distribution of the total asset growth rate for a company over a certain period of time. The box in the center of the plot represents the middle 50% of the data. The line in the middle of the box is the median, which is the 50th percentile. The whiskers extend from the top and bottom of the box to the most extreme data points that are not considered outliers. Outliers are represented by individual points beyond the whiskers.

In this specific box plot, the median total asset growth rate is between 0% and 10%. The whiskers extend to -10% and 50%. This means that the middle 50% of the companies in the data set experienced a total asset growth rate between 0% and 10% over the specified time period. There are also some companies that experienced a total asset growth rate that falls outside the range of -10% to 50%.

Boxplot of Research and Development Expense Rate

• boxplot of research and development expense rate. The y-axis of the plot shows the research and development expense rate, while the x-axis is not labeled.

The box in the center of the plot represents the middle 50% of the data. The line in the middle of the box is the median, which is the 50th percentile. The whiskers extend from the top and bottom of the box to the most extreme data points that are not considered outliers. Outliers are represented by individual points beyond the whiskers.

• The cash turnover rate is a measure of how efficiently a company uses its cash. A higher cash turnover rate indicates that a company is collecting its receivables and paying its bills quickly.

The box in the center of the plot represents the middle 50% of the data. The line in the middle of the box is the median, which is the 50th percentile. The whiskers extend from the top and bottom of the box to the most extreme data points that are not considered outliers. Outliers are represented by individual points beyond the whiskers.

In this specific box plot, the median cash turnover rate is between 0.4 and 0.6. The whiskers extend to 0.2 and 0.8. This means that the middle 50% of the companies in the data set experienced a cash turnover rate between 0.4 and 0.6. There are also some companies that experienced a cash turnover rate that falls outside the range of 0.2 to 0.8.

Boxplot of Average Collection Days

• The y-axis of the plot shows the number of days, while the x-axis is not labeled. The box in the center of the plot represents the middle 50% of the data. The line in the middle of the box is the median, which is the 50th percentile. The whiskers extend from the top and bottom of the box to the most extreme data points that are not considered outliers. Outliers are represented by individual points beyond the whiskers.

Based on the boxplot, we can see the following:

- The median number of average collection days is around 0.008.
- The middle 50% of the data falls between approximately 0.006 and 0.010 days.
- There are some outliers that fall outside the range of 0.002 and 0.014 days.
 pen_spark

• The box in the center of the plot represents the middle 50% of the data. The line in the middle of the box is the median, which is the 50th percentile. The whiskers extend from the top and bottom of the box to the most extreme data points that are not considered outliers. Outliers are represented by individual points beyond the whiskers.

Based on the boxplot, we can see the following:

- The median net profit before tax yuan is between 0.15 and 0.16.
- The middle 50% of the data falls between approximately 0.14 and 0.17 yuan.
- There are some outliers that fall outside the range of 0.10 and 0.21 yuan.

Bi-varient analysi

• The default setting on the boxplot means that the data is split into two groups (0 and 1) based on an unspecified variable. In this case, the boxplot shows that the total asset growth rate for companies in the "default" group is significantly lower than the total asset growth rate for companies in the "non-default" group.

The median total asset growth rate for companies in the "default" group is around -10%. The whiskers extend down to -50% and up to 0%. This means that the middle 50% of the companies in the "default" group experienced a total asset growth rate between -10% and 0% over the specified time period. There are also some companies in the "default" group that experienced a total asset growth rate that falls outside the range of -50% to 0%.

The median total asset growth rate for companies in the "non-default" group is between 20% and 30%. The whiskers extend to 10% and 50%. This means that the middle 50% of the companies in the "non-default" group experienced a total asset growth rate between 20% and 30% over the specified time period. There are also some companies in the "non-default" group that experienced a total asset growth rate that falls outside the range of 10% to 50%.

pen_spark

• The box in the center of the plot represents the middle 50% of the data for each group. The line in the middle of the box is the median, which is the 50th percentile. The whiskers extend from the top and bottom of the box to the most extreme data points that are not considered outliers. Outliers are represented by individual points beyond the whiskers.

Based on the boxplot, we can see the following:

- The median current liability to current asset ratio is higher for companies that defaulted on their loans (around 0.6) than for companies that did not default (around 0.2).
- The data is more spread out for companies that defaulted on their loans than for companies that did not default. This means that there is a larger variation in the current liability to current asset ratio among companies that defaulted on their loans.
- There are some outliers for both groups.

In conclusion, the data suggests that there is a positive correlation between current liability to current asset ratio and loan default. This means that companies that have a higher current liability to current asset ratio are more likely to default on their loans.

• The x-axis of the plot shows default (0) or non-default (1), and the y-axis shows operating profit per person. The box in the center of the plot represents the middle 50% of the data for each group. The line in the middle of the box is the median, which is the 50th percentile. The whiskers extend from the top and bottom of the box to the most extreme data points that are not considered outliers. Outliers are represented by individual points beyond the whiskers.

Based on the boxplot, we can see the following:

- The median operating profit per person is lower for companies that defaulted on their loans (around 0.38) than for companies that did not default (around 0.40).
- The data is more spread out for companies that defaulted on their loans than for companies that did not default. This means that there is a larger variation in the operating profit per person among companies that defaulted on their loans.
- There are some outliers for both groups.

In conclusion, the data suggests that there is a negative correlation between operating profit per person and loan default. This means that companies that have a lower operating profit per person are more likely to default on their loans.

Boxplot of Quick Assets to Total Assets by Default

- Based on the boxplot, we can see the following:
 - The median quick assets to total assets ratio is lower for companies that defaulted on their loans (around 0.2) than for companies that did not default (around 0.4). This suggests that companies that defaulted on their loans had a lower proportion of liquid assets to total assets than companies that did not default.
 - The data is more spread out for companies that defaulted on their loans than for companies that did not default. This means that there is a larger variation in the quick assets to total assets ratio among companies that defaulted on their loans.
 - There are some outliers for both groups.

In conclusion, the data suggests that there is a negative correlation between quick assets to total assets ratio and loan default. This means that companies that have a lower quick assets to total assets ratio are more likely to default on their loans.

• The box in the center of each region on the plot represents the middle 50% of the data for that region. The line in the middle of the box is the median, which is the 50th percentile. The whiskers extend from the top and bottom of the box to the most extreme data points that are not considered outliers. Outliers are represented by individual points beyond the whiskers.

Unfortunately, since the scale of the y-axis is not labeled, it is difficult to say what the specific values on the y-axis represent. For example, it is not possible to say whether a research and development expense rate of 0.2 is high or low.

- **Color legend:** The legend on the right indicates that **red corresponds to hotter temperatures**, while **blue corresponds to colder temperatures**. This is a common color scheme used in temperature visualizations.
- **Temperature distribution:** Generally, the areas towards the bottom of the map (closer to the equator) appear red, indicating warmer temperatures. Conversely, areas towards the top of the map (closer to the poles) appear blue, indicating colder temperatures. This reflects the planet's temperature zones: warmer at the equator and colder at the poles.
- Land vs. Ocean temperatures: Oceans tend to have a moderating effect on temperature, so we can expect that land masses will generally show more extreme temperatures (both hotter and colder) than the oceans. This is because land heats and cools more quickly than water. On the heatmap, continents might show a wider range of colors compared to the oceans.

Overall, the heatmap provides a quick visual representation of the average temperature distribution on Earth. Since this is a global view, it is difficult to make out specific details or

temperature values without zooming in or referring to a legend with specific temperature ranges.

• This plot above shows that there are no null values in the data after the treatment.

Variation Inflation factor

The Variance Inflation Factor (VIF) is a measure used in regression analysis to assess the severity of multicollinearity in a set of predictor variables. Multicollinearity occurs when two or more predictor variables in a regression model are highly correlated with each other, which can lead to issues with the interpretation of the model's coefficients.

The VIF quantifies the extent to which the variance of an estimated regression coefficient is increased due to multicollinearity. Specifically, the VIF for a predictor variable is calculated

as the ratio of the variance of the coefficient estimate when that predictor is included in the model to the variance of the coefficient estimate when that predictor is excluded from the model.

Mathematically, the VIF for the ith predictor variable can be expressed as:

VIF?=11-??2VIFi=1-R**i21

Where $22R^{**i}$ 2 is the coefficient of determination obtained by regressing the ith predictor variable on all other predictor variables in the model.

The P-values have the same interpretation, If the P_value is greeater than .05 then the variable is insignificant, and if the P value is less than .05 then the value is significant**

VIF talks about how good an independed varibales can be explained as a linear combination of other independednt variable, if the VIF is more than 5 then it means its more or less compensated by the other variable

variables	VIF
11	_Net_profit_before_tax_to_Paid_in_capital
5	Per_Share_Net_profit_before_tax_Yuan
31	_CFO_to_Assets
23	_Operating_Funds_to_Liability
21	_Quick_Assets_to_Current_Liability
2	_Cash_flow_rate
16	_Net_Worth_Turnover_Rate_times
8	_Current_Ratio
12	_Total_Asset_Turnover
9	_Quick_Ratio
30	_Cash_Flow_to_Total_Assets
7	_Cash_Reinvestment_perc
32	_Cash_Flow_to_Equity
33	_Current_Liability_to_Current_Assets
4	_Cash_Flow_Per_Share
37	_Equity_to_Liability
19	_Quick_Assets_to_Total_Assets
10	_Total_debt_to_Total_net_worth
22	_Cash_to_Current_Liability
20	_Cash_to_Total_Assets
24	_Inventory_to_Current_Liability
29	_Fixed_Assets_to_Assets
18	_Allocation_rate_per_person

variables	VIF
17	_Operating_profit_per_person
26	_Total_expense_to_Assets
15	_Fixed_Assets_Turnover_Frequency
13	_Average_Collection_Days
35	_Total_assets_to_GNP_price
25	_Long_term_Liability_to_Current_Assets
27	_Quick_Asset_Turnover_Rate
3	_Tax_rate_A
0	_Operating_Expense_Rate
1	$_Research_and_development_expense_rate$
14	_Inventory_Turnover_Rate_times
6	_Total_Asset_Growth_Rate
28	_Cash_Turnover_Rate
34	_Liability_Assets_Flag
36	_Net_Income_Flag

many columns has VIF value of greater than 5%, we have keep dropping the columns with VIF greater than 5% until all the columns has vif less than 5%

variables	VIF
14	_Quick_Assets_to_Total_Assets
26	_Equity_to_Liability
24	_Current_Liability_to_Current_Assets
16	_Cash_to_Current_Liability
15	_Cash_to_Total_Assets
8	_Total_Asset_Turnover
7	_Total_debt_to_Total_net_worth
2	_Cash_flow_rate
5	Per_Share_Net_profit_before_tax_Yuan
22	_Fixed_Assets_to_Assets
13	_Allocation_rate_per_person
4	_Cash_Flow_Per_Share
12	_Operating_profit_per_person
17	_Inventory_to_Current_Liability
19	_Total_expense_to_Assets
11	_Fixed_Assets_Turnover_Frequency
9	_Average_Collection_Days

variables	VIF
25	_Total_assets_to_GNP_price
18	_Long_term_Liability_to_Current_Assets
23	_Cash_Flow_to_Equity
20	_Quick_Asset_Turnover_Rate
3	_Tax_rate_A
0	_Operating_Expense_Rate
1	_Research_and_development_expense_rate
10	_Inventory_Turnover_Rate_times
6	_Total_Asset_Growth_Rate
_	

• now we have all the columns with less then 5% VIF.

PART A: Train Test Split

• The treain and test split is doner with the ratio 67/33 and the random state is set to be 42,

```
print("Train dataset shape:", X_train.shape, y_train.shape)
print("Test dataset shape:", X_test.shape, y_test.shape)
```

the above shows the shape of the data after train/test split is done

the below is the correltion plot

Positive correlation: If there's a positive correlation, points will generally trend upwards from left to right. This would suggest that places with higher average precipitation tend to have higher average temperatures as well.

Negative correlation: If there's a negative correlation, points will generally trend downwards from left to right. This would suggest that places with higher average precipitation tend to have lower average temperatures.

No correlation: If there's no clear trend, the data points will be scattered randomly across the plot. This would suggest no relationship between average temperature and precipitation

PART A: Build Logistic Regression Model (using statsmodels library) on most important variables on train dataset and choose the optimum cut-off. Also showcase your model building approach

Model Building using Logistic Regression for 'Probability at default' The equation of the Logistic Regression by which we predict the corresponding probabilities and then go on predict a discrete target variable is y = 11 + 2 - 2

we fit a logistic regression model (model_1) to the training data (Default_train) based on the specified formula (m1). After fitting the model, you can use model_1 to make predictions on new data or to analyze the relationship between the dependent and independent variables in the model.

Summary of model 1

Dep. Variable:
Model:
Method:
Date:
Time:
converged:
Covariance Type:
Intercept
_Operating_Expense_Rate
_Research_and_development_expense_rate
Cash_flow_rate
_Tax_rate_A
 _Cash_Flow_Per_Share
Per_Share_Net_profit_before_tax_Yuan
Total_Asset_Growth_Rate
Total_debt_to_Total_net_worth
_Total_Asset_Turnover
_Average_Collection_Days
_Inventory_Turnover_Rate_times
_Fixed_Assets_Turnover_Frequency
_Operating_profit_per_person
_Allocation_rate_per_person
_Quick_Assets_to_Total_Assets
_Cash_to_Total_Assets
_Cash_to_Current_Liability
_Inventory_to_Current_Liability

_Long_term_Liability_to_Current_Assets

_Total_expense_to_Assets

_Quick_Asset_Turnover_Rate

_Cash_Turnover_Rate

_Fixed_Assets_to_Assets

_Cash_Flow_to_Equity

_Current_Liability_to_Current_Assets

_Total_assets_to_GNP_price

_Equity_to_Liability

- If the coef is positive and if value increases then will the prop of default increases prob of default, if coef is -ve and value increases then it will decrease the probability of default
 - -1378 The number of data points used to fit the model.
 - -R-squared: 0.4163 This is a measure of the goodness of fit of the model, indicating the

proportion of variance explained by the model relative to a null model.

- 273.06 The log-likelihood value represents the goodness of fit of the model, with higher values indicating better fit.
- Variables with p-values less than the chosen significance level (typically 0.05) are considered statistically significant predictors of the outcome.
- For instance, the variable 'Operating_Expense_Rate' has a coefficient of 0.1583 with a p-value of 0.230, suggesting that it is not statistically significant at the conventional significance level of 0.05. Therefore, it may not have a significant impact on predicting the likelihood of 'Default'.
- Conversely, the variable '_Research_and_development_expense_rate' has a coefficient of 0.4418 with a p-value less than 0.001, indicating statistical significance. Thus, a one-unit increase in this variable is associated with an increase in the log odds of 'Default' by 0.4418 units, all else being equal.

After we dropped few columns and performed **23 model**, this is the final result where The pvalues are all 0's

Optimization terminated successfully.

Current function value: 0.209689

Iterations 8

Dep. Variable:

Dep. Variable:

Model:

Method:

Date:

Time:

converged:

Covariance Type:

Intercept

_Research_and_development_expense_rate

Per_Share_Net_profit_before_tax_Yuan

_Total_debt_to_Total_net_worth

_Average_Collection_Days

_Quick_Assets_to_Total_Assets

- The optimization terminated successfully after 8 iterations.
- The current function value, representing the negative log-likelihood of the model, is approximately 0.2097.
- The model was estimated using a maximum likelihood estimation (MLE) method.

1. **Model Information**:

Dependent Variable: Default

Number of Observations: 1378

Model: Logit (Logistic Regression)

- Degrees of Freedom (Residuals): 1372

Degrees of Freedom (Model): 5

Pseudo R-squared: 0.3824

Log-Likelihood: -288.95

- LL-Null: -467.84 (Log-Likelihood of the null model)

Convergence: The model converged successfully.

Covariance Type: Non-robust (Assuming homoscedasticity)

_Research_and_development_expense_rate: For a one-unit increase in the research and development expense rate, the log-odds of the Default variable increase by 0.3338.

Per_Share_Net_profit_before_tax_Yuan: For a one-unit increase in the per-share net profit before tax (in Yuan), the log-odds of the Default variable decrease by 1.4702.

_Total_debt_to_Total_net_worth: For a one-unit increase in the total debt to total net worth ratio, the log-odds of the Default variable increase by 0.7801.

_Average_Collection_Days: For a one-unit increase in the average collection days, the logodds of the Default variable increase by 0.4710.

_Quick_Assets_to_Total_Assets: For a one-unit increase in the quick assets to total assets ratio, the log-odds of the Default variable decrease by 0.6475.

PART A: Validate the Model on Test Dataset and state the performance metrics. Also state interpretation from the model

2011	0.110
697	0.009
160	0.064
1273	0.040
541	0.104
	• • •
1386	0.015

1127 0.006 950 0.020 1058 0.025 562 0.249

Length: 1378, dtype: float64

the optimal threshold = 0.1072017973601675

logistic regression model for train data

- High Recall (85%):
- The model has a high recall, indicating that it effectively identifies most of the instances of 'Default' in the dataset. This suggests that the model is good at capturing instances of 'Default', minimizing false negatives. In other words, it correctly identifies a large portion of companies that are likely to default on their loans.
- Low Precision (39%):
- Despite the high recall, the model has a relatively low precision. This means that among the instances predicted as 'Default' by the model, only 39% of them are true

- positives. In other words, there is a significant number of false positives among the instances predicted as 'Default' by the model.
- The high recall indicates that the model is sensitive to identifying instances of 'Default' and is effective in capturing most of them.
- However, the low precision suggests that the model may be overly aggressive in predicting 'Default', leading to a considerable number of false positives.
- Therefore, while the model is good at identifying companies at risk of defaulting, it also misclassifies a substantial number of non-default cases as default, which could lead to unnecessary actions or interventions.

Logistic regresssion model for test data

recall is = 0.7671232876712328

precision is = 0.3708609271523179

• Similar to the training data, the model in the test data demonstrates high recall, indicating good performance in capturing actual positive cases.

• However, the precision remains low, implying that the model's positive predictions have a significant proportion of false positives.

PART A: Build a Random Forest Model on Train Dataset. Also showcase your model building approach

The parameters are

```
{'max_depth': 7,
  'min_samples_leaf': 10,
  'min_samples_split': 15,
  'n_estimators': 25}
```

We utilized Grid Search Cross-Validation to determine the best hyperparameters for the Random Forest Classifier. This involved exploring different combinations of hyperparameters such as 'max_depth', 'min_samples_leaf', 'min_samples_split', and 'n_estimators'. After thorough exploration, the optimal parameter values were identified as follows: 'max_depth' set to 7, 'min_samples_leaf' set to 10, 'min_samples_split' set to 30, and 'n_estimators' set to 50. These selected parameter values will be employed to construct the Random Forest Classifier model, ensuring the highest performance and accuracy in predicting the outcome.

• Classification report of train data

	precision	recall	f1-score	support
0 1	0.94 0.95	1.00 0.49	0.97 0.65	1231 147
accuracy macro avg weighted avg	0.94 0.94	0.74 0.94	0.94 0.81 0.93	1378 1378 1378

The model shows strong performance in correctly identifying negative cases (class 0), with 94% precision and 100% recall, indicating it rarely misclassifies negatives. However, it struggles to identify positive cases (class 1), with only 49% recall, meaning it misses nearly half of the actual positives. Consequently, the F1-score for class 1 is lower at 65%, highlighting the trade-off between precision and recall. The overall accuracy is high at 94%, but it's crucial to consider the class imbalance. The macro average precision, recall, and F1-score are 94%, 74%, and 81%, respectively, with equal weight to all classes. Weighted average precision, recall, and F1-score are 94%, 94%, and 93%, respectively, reflecting the influence of class distribution. Despite strong performance in predicting negatives, the model's effectiveness in capturing positives requires improvement, especially considering the application's specific needs and class distribution.

Classification report of test data

	precisi	on	recall	f1-sco	re	support	
(9	0.93	0.9	8	0.95	60	7
=	l	0.72	0.3	6	0.48	7	3
accuracy	/				0.92	68	0

macro avg 0.82 0.67 0.72 680 weighted avg 0.91 0.92 0.90 680

The classification report for the Random Forest model on the test data reveals that it performs reasonably well, with 93% precision for class 0 (negative) and 72% precision for class 1 (positive). However, it demonstrates lower recall for class 1 at 36%, indicating it misses a significant portion of actual positives. The F1-score for class 1 is 48%, reflecting the balance between precision and recall. The overall accuracy is 92%, showcasing the model's ability to correctly classify instances. The macro average precision, recall, and F1-score are 82%, 67%, and 72%, respectively, suggesting some imbalance in class performance. When comparing with the training data, the model shows similar trends of high precision for negatives but struggles to capture positives effectively, indicating room for improvement in identifying positive cases.

Here after performing logistic regression, the model which we are working on turned out to be overfitting as the recall in training showed 54% recall where as the recall in the test has showed only 31% recall

- This also says that the model not accurate and can't be hightly relied on
- The precesion looks pretty good in both the train and test data
- among the 2 models we have performed above Logistic regression seems to have a bette performance.

ROC curve (Receiver Operating Characteristic Curve). It is a visual representation of the performance of a classification model at various classification thresholds. The x-axis represents the false positive rate (FPR), and the y-axis represents the true positive rate (TPR).

- The diagonal line represents where the TPR (true positive rate) is equal to the FPR (false positive rate). The further the curve is from this diagonal line, the better the performance of the model at classifying the data.
- The area under the ROC curve (AUC) is a numerical measure of the performance of a classifier. A larger AUC indicates better performance.
- In the specific ROC curve you sent, the AUC appears to be high, which suggests that the model is performing well at classifying between positive and negative instances.
- The curve starts at a point slightly above (0,0) and ends at a point slightly below (1,1), which suggests that the model is returning some true positives and some false positives.
- It is difficult to say definitively from this image how well-calibrated the model is, but a well-calibrated model would ideally produce a smooth curve.

- The ROC curve can also be used to compare the performance of two or more models on the same classification task.
- By plotting the ROC curves of two models on the same graph, you can visually compare their performance and see which model performs better at classifying the data.
- ROC curves are typically used in machine learning tasks where the goal is to binary classification.
- In conclusion, the ROC curve you sent is a helpful visualization of the performance of a classification model. The high AUC suggests that the model is performing well.

PART A: Build a LDA Model on Train Dataset. Also showcase your model building approach

LDA, or Linear Discriminant Analysis, is a supervised learning technique used for dimensionality reduction and classification. It aims to find a linear combination of features that maximizes class separability. By projecting data onto a lower-dimensional space, LDA preserves class discriminatory information. Unlike PCA, LDA focuses on maximizing class separability rather than variance. Assumptions include normally distributed features and identical covariance matrices across classes. LDA finds applications in face recognition, bioinformatics, and text classification, among others, for tasks like pattern recognition and feature extraction.

classification on train data

	precision	recall	f1-score	support
0	0.94	0.97	0.95	1231
1	0.64	0.50	0.56	147
accuracy			0.92	1378

macro avg 0.79 0.73 0.76 1378 weighted avg 0.91 0.92 0.91 1378

The classification report for the LDA model on the training data suggests a strong performance overall. It achieves high precision of 94% for class 0 (negative) and moderate precision of 64% for class 1 (positive). However, the recall for class 1 is relatively lower at 50%, indicating that the model misses some actual positive cases. The F1-score for class 1 is 56%, reflecting the balance between precision and recall. The overall accuracy is 92%, demonstrating the model's ability to correctly classify instances. The macro average precision, recall, and F1-score are 79%, 73%, and 76%, respectively, indicating a reasonably balanced performance across classes. This suggests that while the model performs well overall, there may be a need for further optimization to improve the identification of positive cases.

classification on test data

	precision	recall	f1-score	support
0	0.94	0.96	0.95	607
1	0.59	0.48	0.53	73
accuracy			0.91	680

macro avg 0.77 0.72 0.74 680 weighted avg 0.90 0.91 0.90 680

The classification report for the LDA model on the test data indicates that it performs relatively well. It achieves high precision of 94% for class 0 (negative) and moderate precision of 59% for class 1 (positive). However, the recall for class 1 is lower at 48%, suggesting that the model misses a significant portion of actual positives. The F1-score for class 1 is 53%, reflecting the balance between precision and recall. The overall accuracy is 91%, demonstrating the model's ability to correctly classify instances. The macro average precision, recall, and F1-score are 77%, 72%, and 74%, respectively, indicating a reasonably balanced performance across classes. This suggests that while the model performs well overall, there is room for improvement, particularly in correctly identifying positive cases.

- The recall on the train set is approximately 49.66%, indicating that the model correctly identifies about 49.66% of the actual positive cases in the train set.
- The precision on the train set is around 64.04%, suggesting that among the instances predicted as positive by the model, approximately 64.04% are indeed true positives.
- On the test set, the recall is approximately 47.95%, showing that the model identifies about 47.95% of the actual positive cases in the test set.
- The precision on the test set is about 59.32%, indicating that among the instances predicted as positive by the model on the test set, approximately 59.32% are true positives.

Overall, while the model demonstrates some capability in correctly identifying positive cases, there's room for improvement, particularly in recall, which suggests the model could benefit from better identifying actual positive cases.

Auc curve of train data

curve of test data

- **0.921 for training data:** This is a very good AUC score, indicating that the model is performing well on the data it was trained on. It can correctly classify positive and negative instances most of the time on the training data.
- **0.893 for test data:** This is still a good AUC score, but it is lower than the training data. This means that the model is not generalizing as well as it could. It is possible that the model is overfitting the training data and has not learned the underlying patterns that generalize well to unseen data.

Here are some additional things to keep in mind:

- The difference between the training AUC and the test AUC is relatively small (0.028). This suggests that the model may not be severely overfitting.
- It is important to use a validation set to monitor the performance of a model during training to avoid overfitting.
- Other factors, such as the size and quality of the data, can also affect the performance of a model.

Overall, the AUC scores suggest that the model is performing well, but there is some room for improvement. By addressing potential overfitting issues, the performance of the model on unseen data could be improved.

PART A: Validate the LDA Model on test Dataset and state the performance metrics. Also state interpretation from the model

The curve starts at the top left corner and goes down towards the right, which is a typical characteristic of a precision-recall curve.

As the curve progresses to the right, the precision generally decreases while the recall increases. This suggests a trade-off between these two metrics. The model might be good at filtering out negative instances (resulting in high precision at the beginning of the curve), but it may miss some positive cases (resulting in lower recall) at this precision level. As the classification threshold is adjusted to capture more positive cases (increasing recall on the right side of the curve), the precision suffers (meaning more false positives are included).

PART A: Compare the performances of Logistic Regression, Random Forest, and LDA models (include ROC curve)

Logistic Regression:-This model showed good performance in identifying positive cases, with an 85% recall rate on the training data and 76% on the test data. However, its precision, which measures its ability to avoid false positives, was moderate at around 40% on the training data and 37% on the test data. The model's AUC values were decent, indicating its ability to distinguish between classes.

Random Forest:-This model demonstrated excellent precision, especially on the training data, with a rate of 96%. However, its recall, which measures its ability to capture all positive cases, was comparatively lower at 54% on the training data and 31% on the test data. Nonetheless, its AUC values were impressive, indicating strong discriminatory power and generalization.

LDA:-The LDA model's performance fell between Logistic Regression and Random Forest. It showed moderate recall and precision rates, with slightly lower recall than Logistic Regression and slightly higher precision than Random Forest. Its AUC values were good, indicating effective discrimination between classes.

Overall, Random Forest emerged as the top performer, excelling in terms of AUC, recall, and precision. Logistic Regression and LDA showed comparable performance, with Logistic Regression having slightly better recall and LDA slightly better precision. The choice of

model depends on specific needs; for instance, Logistic Regression might be preferred for high recall, while Random Forest could be chosen for high precision.

PART A: Conclusions and Recommendations

Conclusions:

- The Logistic Regression model, with a threshold of 0.1076, shows consistent performance. It predicts defaults with an accuracy of 84% on the training data and 83.5% on the testing data, indicating stable predictions across different datasets.
- Both precision and recall values for non-default and default cases remain steady, indicating the model's reliability in identifying instances from both classes.
- The AUC scores confirm the model's ability to distinguish between default and nondefault cases consistently, highlighting its stable discriminative power.

Recommendations:

- Increase Data Collection: Gathering more data, particularly on default cases, can improve the model's exposure to such instances and enhance its predictive performance.
- Explore Feature Engineering: Further exploration of the model through feature engineering techniques may enhance its ability to identify default cases more accurately. This involves modifying or creating new features from existing data.
- Consider Ensemble Techniques: Incorporating ensemble techniques like boosting or bagging could improve the model's performance in identifying default cases. These methods involve combining multiple models to enhance predictive accuracy and robustness.
- Overall, while the Logistic Regression model demonstrates stable and reliable performance in predicting defaults, there's room for improvement through data collection, feature engineering, and the adoption of ensemble techniques. These steps can enhance the model's accuracy in identifying default cases effectively.

Problem Statement-B:

The dataset contains 6 years of information (weekly stock information) on the stock prices of 10 different Indian Stocks. Calculate the mean and standard deviation on the stock returns and share insights. You are expected to do the Market Risk Analysis using Python.

The data is properluy read and below is the first 5 rows of the data set

Dat e	Infosy s	India n Hotel	Mahindr a & Mahindr a	Axis Ban k	SAI L	Shree Cemen t	Sun Pharm a	Jinda l Steel	Idea Vodafon e	Jet Airway s
0	31- 03- 2014	264	69	455	263	68	5543	555	298	83
1	07- 04- 2014	257	68	458	276	70	5728	610	279	84
2	14- 04- 2014	254	68	454	270	68	5649	607	279	83
3	21- 04- 2014	253	68	488	283	68	5692	604	274	83
4	28- 04- 2014	256	65	482	282	63	5582	611	238	79

- (314, 11) is the shape of the dataset, that is it has 314 rows and 11 columns.
- there are no null are missing values in the dataset

#	Column	Non-Null Count	Dtype
0	Date	314 non-null	object
1	Infosys	314 non-null	int64
2	Indian Hotel	314 non-null	int64
3	Mahindra & Mahindra	314 non-null	int64
4	Axis Bank	314 non-null	int64
5	SAIL	314 non-null	int64
6	Shree Cement	314 non-null	int64
7	Sun Pharma	314 non-null	int64
8	Jindal Steel	314 non-null	int64
9	Idea Vodafone	314 non-null	int64
10	Jet Airways	314 non-null	int64
44		L/4\	

dtypes: int64(10), object(1)

memory usage: 27.1+ KB

• The data has 10 int and 1 object datatype.

		Mahin							
		dra &			Shree			Idea	Jet
Info	Indian	Mahin	Axis		Cemen	Sun	Jindal	Vodafo	Airway
sys	Hotel	dra	Bank	SAIL	t	Pharma	Steel	ne	S
cou	314.00	314.00	314.00	314.00	314.00	314.000	314.00	314.00	314.00
nt	0000	0000	0000	0000	0000	000	0000	0000	0000
mea	511.34	114.56	636.67	540.74	59.095	14806.4	633.46	147.62	53.713
n	0764	0510	8344	2038	541	10828	8153	7389	376
std	135.95	22.509	102.87	115.83	15.810	4288.27	171.85	65.879	31.248
	2051	732	9975	5569	493	5085	5893	195	985
min	234.00	64.000	284.00	263.00	21.000	5543.00	338.00	53.000	3.0000
	0000	000	0000	0000	000	0000	0000	000	00
25	424.00	96.000	572.00	470.50	47.000	10952.2	478.50	88.250	25.250
%	0000	000	0000	0000	000	50000	0000	000	000
50	466.50	115.00	625.00	528.00	57.000	16018.5	614.00	142.50	53.000
%	0000	0000	0000	0000	000	00000	0000	0000	000
75	630.75	134.00	678.00	605.25	71.750	17773.2	785.00	182.75	82.000
%	0000	0000	0000	0000	000	50000	0000	0000	000
max	810.00	157.00	956.00	808.00	104.00	24806.0	1089.0	338.00	117.00
	0000	0000	0000	0000	0000	00000	00000	0000	0000

PART B: Draw Stock Price Graph(Stock Price vs Time) for any 2 given stocks with inference

Assuming "SAIL" refers to the number of cases: There seems to be a positive correlation between the number of cases and the year. This would mean that the number of cases has been increasing over time from 2014 to 2021.

Alternative interpretation: If "SAIL" does not represent the number of cases, it's possible there's a different relationship between the variable on the y-axis and the year.

on the general shape of the line, we can observe some trends:

- There appear to be periods of both price increases and price decreases.
- The price seems to be more volatile in some parts of the time series compared to others

PART B: Calculate Returns for all stocks with inference

Infosys Indian_Hotel Mahindra_and_Mahindra Axis_Bank SAIL Shree_Cement Sun_Pharma Jindal_Steel Idea_Vodafone Jet_Airways

0 Nan Nan Nan Nan Nan Nan Nan Nan Nan

- 1 -0.026873 -0.014599 0.006572 0.048247 0.028988 0.032831 0.094491 -0.065882 0.011976 0.086112
- $2 0.011742 \ 0.000000 0.008772 0.021979 0.028988 0.013888 0.004930 \ 0.000000 0.011976 0.078943$
- 3 -0.003945 0.000000 0.072218 0.047025 0.000000 0.007583 -0.004955 -0.018084 0.000000 0.007117

4 0.011788 -0.045120 -0.012371 -0.003540 -0.076373 -0.019515 0.011523 -0.140857 - 0.049393 -0.148846

The dataset comprises 314 rows and 10 columns, representing the log returns of stock prices for ten different companies over a certain period. Log returns offer valuable insights into the daily percentage changes in stock prices for each company. Negative log returns signify a decline in stock prices, whereas positive log returns indicate an increase. It's worth noting that the log return for the first day is NaN since there is no previous day's data available to compute the return.

PART B: Calculate Stock Means and Standard Deviation for all stocks with inference

Means of stocks

Infosys	0.00279
<pre>Indian_Hotel</pre>	0.00027
Mahindra_and_Mahindra	-0.00151
Axis_Bank	0.00117
SAIL	-0.00346
Shree_Cement	0.00368
Sun_Pharma	-0.00145
<pre>Jindal_Steel</pre>	-0.00412
Idea_Vodafone	-0.01061
Jet_Airways	-0.00955
dtype: float64	

Std_dev of all stocks

Infosys	0.03507
Indian_Hotel	0.04713
Mahindra_and_Mahindra	0.04017
Axis_Bank	0.04583
SAIL	0.06219
Shree_Cement	0.03992
Sun_Pharma	0.04503
<pre>Jindal_Steel</pre>	0.07511
Idea_Vodafone	0.10432
Jet_Airways	0.09797
dtype: float64	

The average returns offer an understanding of the typical daily performance exhibited by each stock, with certain stocks displaying gains while others exhibit losses. Meanwhile, the standard deviations serve as a measure of the volatility or uncertainty linked to each stock, wherein elevated standard deviations signify greater price fluctuations experienced by the stock over time.

PART B: Draw a plot of Stock Means vs Standard Deviation and state your inference

The scatter plot visually illustrates the relationship between mean returns and volatility across different companies. Notably, Infosys and Shree Cement emerge as the top performers, boasting the highest mean returns among the companies analyzed. Conversely, Idea Vodafone and Jet Airways register as the least profitable options, exhibiting the lowest mean returns.

Delving deeper into the analysis, it's discerned that Shree Cement, despite sharing the spotlight with Infosys in terms of mean returns, showcases slightly lower volatility. This characteristic suggests that Shree Cement presents a comparatively more stable investment avenue when juxtaposed with Infosys. Moreover, when scrutinizing the two companies with the lowest mean returns, Jet Airways emerges with marginally lower volatility compared to Idea Vodafone.

In essence, the scatter plot not only identifies the standout performers and laggards in terms of mean returns but also sheds light on the varying levels of volatility associated with these companies. This nuanced understanding can aid investors in making informed decisions tailored to their risk tolerance and investment objectives.

PART B: Conclusions and Recommendations

In analyzing the stock data across various companies, several notable insights emerge. Particularly, Infosys and Shree Cement emerge as standout options, showcasing the highest average returns, suggesting promising investment prospects. Conversely, Idea Vodafone and Jet Airways exhibit the lowest average returns, signaling a need for caution when considering these entities for investment ventures.

For investors seeking to optimize their profitability, it is advisable to explore opportunities within companies like Infosys and Shree Cement. These firms consistently demonstrate superior returns over the observed period, presenting attractive investment avenues for individuals aiming to maximize their financial gains.

Conversely, investors inclined towards risk aversion should exercise prudence when contemplating investments in companies such as Idea Vodafone and Jet Airways, given their track record of lower mean returns.

Furthermore, it's essential to acknowledge the presence of short-term fluctuations inherent in the market. Holding onto investments for extended durations can serve as a strategy to mitigate the impact of market volatility and potentially yield higher returns over time.

Regular monitoring of investment performance and staying abreast of market trends are indispensable practices for investors. Remaining informed enables investors to make well-informed decisions and adapt their strategies to evolving market conditions effectively.

*** THE END ***