Titanic survival prediction

In [2]: import pandas as pd

Explonatory Data Analysis

In [3]: df=pd.read_csv("D:\datset\Titanic-Dataset.csv")

In [4]: df.head()

Out[4]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emba
0	1	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
2	3	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
3	4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
4	5	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	
			_								

In [5]: df.tail()

Out[5]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarke
886	887	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	NaN	(
887	888	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	B42	\$
888	889	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45	NaN	:
889	890	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00	C148	(
890	891	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.75	NaN	(
4										1	

In [6]: df.shape

Out[6]: (891, 12)

In [7]: df.columns

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Pclass	891 non-null	int64
2	Name	891 non-null	object
3	Sex	891 non-null	object
4	Age	714 non-null	float64
5	SibSp	891 non-null	int64
6	Parch	891 non-null	int64
7	Ticket	891 non-null	object
8	Fare	891 non-null	float64
9	Cabin	204 non-null	object
10	Embarked	889 non-null	object
11	survived	891 non-null	int64
d+\/n	oc. float64/2	$\frac{1}{2}$	oc+(E)

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [9]: df.describe().T

Out[9]:

	count	mean	std	min	25%	50%	75%	max
Passengerld	891.0	446.000000	257.353842	1.00	223.5000	446.0000	668.5	891.0000
Pclass	891.0	2.308642	0.836071	1.00	2.0000	3.0000	3.0	3.0000
Age	714.0	29.699118	14.526497	0.42	20.1250	28.0000	38.0	80.0000
SibSp	891.0	0.523008	1.102743	0.00	0.0000	0.0000	1.0	8.0000
Parch	891.0	0.381594	0.806057	0.00	0.0000	0.0000	0.0	6.0000
Fare	891.0	32.204208	49.693429	0.00	7.9104	14.4542	31.0	512.3292
survived	891.0	0.383838	0.486592	0.00	0.0000	0.0000	1.0	1.0000

```
In [10]: df.isna().sum()
```

Out[10]: PassengerId 0
Pclass 0
Name 0
Sex 0

177 Age SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 2 survived 0

dtype: int64

```
In [11]: df['Age'].fillna(df['Age'].median() , inplace=True)
In [12]: df.drop(columns=['PassengerId','Cabin','Name'], inplace=True)
In [13]: df['Embarked'].value_counts()
Out[13]: Embarked
         S
              644
         C
              168
               77
         Name: count, dtype: int64
In [14]: df['Embarked'].fillna('S', inplace=True) # because S is majourly used
In [15]: df.isna().sum()
Out[15]: Pclass
                     0
         Sex
                     0
         Age
                     0
         SibSp
         Parch
                     0
         Ticket
                     0
         Fare
                     0
         Embarked
         survived
         dtype: int64
In [16]: df.shape
Out[16]: (891, 9)
```

Label Encoding

```
In [17]: df.dtypes
Out[17]: Pclass
                       int64
         Sex
                     object
                     float64
         Age
         SibSp
                       int64
                       int64
         Parch
         Ticket
                     object
         Fare
                     float64
         Embarked
                      object
         survived
                       int64
         dtype: object
```

```
In [18]: from sklearn.preprocessing import LabelEncoder
le= LabelEncoder()

In [19]: df['Sex']=le.fit_transform(df['Sex'])

In [20]: df['Ticket'] =le.fit_transform(df['Ticket'])

In [21]: df['Embarked'] =le.fit_transform(df['Embarked'])
```

selecting dependent and independent variable

```
In [22]: x=df.iloc[:,0:8]
x
```

Out[22]:

Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
3	1	22.0	1	0	523	7.2500	2
1	0	38.0	1	0	596	71.2833	0
3	0	26.0	0	0	669	7.9250	2
1	0	35.0	1	0	49	53.1000	2
3	1	35.0	0	0	472	8.0500	2
2	1	27.0	0	0	101	13.0000	2
1	0	19.0	0	0	14	30.0000	2
3	0	28.0	1	2	675	23.4500	2
1	1	26.0	0	0	8	30.0000	0
3	1	32.0	0	0	466	7.7500	1
	3 1 3 1 3 2 1 3	3 1 1 0 3 0 1 0 3 1 2 1 1 0 3 0 1 1	3 1 22.0 1 0 38.0 3 0 26.0 1 0 35.0 3 1 35.0 2 1 27.0 1 0 19.0 3 0 28.0 1 1 26.0	3 1 22.0 1 1 0 38.0 1 3 0 26.0 0 1 0 35.0 1 3 1 35.0 0 2 1 27.0 0 1 0 19.0 0 3 0 28.0 1 1 1 26.0 0	3 1 22.0 1 0 1 0 38.0 1 0 3 0 26.0 0 0 1 0 35.0 1 0 3 1 35.0 0 0 2 1 27.0 0 0 1 0 19.0 0 0 3 0 28.0 1 2 1 1 26.0 0 0	3 1 22.0 1 0 523 1 0 38.0 1 0 596 3 0 26.0 0 0 669 1 0 35.0 1 0 49 3 1 35.0 0 0 472 2 1 27.0 0 0 101 1 0 19.0 0 0 14 3 0 28.0 1 2 675 1 1 26.0 0 0 8	1 0 38.0 1 0 596 71.2833 3 0 26.0 0 0 669 7.9250 1 0 35.0 1 0 49 53.1000 3 1 35.0 0 0 472 8.0500 2 1 27.0 0 0 101 13.0000 1 0 19.0 0 0 14 30.0000 3 0 28.0 1 2 675 23.4500 1 1 26.0 0 0 8 30.0000

891 rows × 8 columns

```
In [23]: y=df['survived']
Out[23]: 0
                 0
                 1
         1
                 1
         3
                 1
          4
                 0
         886
         887
                1
         888
                0
         889
                 1
         890
         Name: survived, Length: 891, dtype: int64
```

splitting the dataset

```
In [24]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train, y_test= train_test_split(x,y,random_state=101,test_size
```

In [25]: x_train

Out[25]:

	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
733	2	1	23.0	0	0	228	13.0000	2
857	1	1	51.0	0	0	23	26.5500	2
81	3	1	29.0	0	0	311	9.5000	2
319	1	0	40.0	1	1	81	134.5000	0
720	2	0	6.0	0	1	155	33.0000	2
575	3	1	19.0	0	0	420	14.5000	2
838	3	1	32.0	0	0	80	56.4958	2
337	1	0	41.0	0	0	81	134.5000	0
523	1	0	44.0	0	1	7	57.9792	0
863	3	0	28.0	8	2	568	69.5500	2

712 rows × 8 columns

standardisation

```
In [26]: from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
```

```
In [27]: x_train=sc.fit_transform(x_train)
         x_test=sc.transform(x_test)
```

```
Random forest
         random forest is used for prediction
In [28]: | from sklearn.ensemble import RandomForestClassifier
         rf=RandomForestClassifier()
         rf.fit(x_train,y_train)
Out[28]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [30]: y_pred=rf.predict(x_test)
         y_pred
Out[30]: array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0,
                1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0,
                0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0,
                1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
                0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0,
                0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1,
                1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0,
                0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
                1, 0, 0], dtype=int64)
In [31]: from sklearn.metrics import accuracy_score
         print(accuracy_score(y_test,y_pred))
         0.8379888268156425
In [32]: import warnings
         warnings.filterwarnings("ignore", message="X does not have valid feature names
In [33]: | sample_data=[[3,1,16.0,0,0,504,9.2167,2]]
         sample_data_scaled=sc.transform(sample_data)
         prediction=rf.predict(sample_data_scaled)
         print("final prediction : ",prediction)
```

final prediction: [0]

```
In [34]: sample_data=[[3,1,26.0,0,0,216,18.7875,0]]
    sample_data_scaled=sc.transform(sample_data)
    prediction=rf.predict(sample_data_scaled)
    print("final prediction : ",prediction)
```

final prediction : [1]