Grupo I

Relativamente às questões deste grupo, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), assinalando a opção conveniente.

- 1. Para quaisquer $A, B \in \mathcal{M}_{3\times 3}(\mathbb{R})$, se A é uma matriz simétrica e B é uma \square \square matriz antissimétrica, então BAB é uma matriz simétrica.
- 2. Para quaisquer $n \in \mathbb{N}$ e $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$, se car(A) = car(B) = n, então \square \square A + B é invertível.
- 3. Para quaisquer $n \in \mathbb{N}$ e $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$, se $A^2 = B^2 = I_n$, então AB é invertível e $(AB)^{-1} = BA$.
- 4. O conjunto $\{A \in \mathcal{M}_{3\times 3}(\mathbb{R}) \mid A \text{ \'e sim\'etrica}\}$ \'e um subespaço vetorial do espaço vetorial real $\mathcal{M}_{3\times 3}(\mathbb{R})$.
- 5. Para qualquer espaço vetorial real V e para quaisquer $v_1,...,v_{n-1},v_n\in V$, se \square \square $V=< v_1,...,v_{n-1}>$, então $V=< v_1,...,v_{n-1},v_n>$.
- 6. Para qualquer espaço vetorial real V e para quaisquer $v_1, v_2 \in V \setminus \{0_V\}$, se \square existem $\lambda_1, \lambda_2 \in \mathbb{R}$ tais que $\lambda_1 v_1 + \lambda_2 v_2 = 0_V$, então a sequência (v_1, v_2) é linearmente independente.
- 7. Existe uma aplicação linear $f: \mathbb{R}^2 \to \mathbb{R}^3$ tal que f(2,2)=(1,2,3) e f(3,3)=(0,1,0).
- 8. Para qualquer matriz A do tipo 5×5 , se det A = 1, então $car(A) \neq 4$.

Grupo II

Resolva cada uma das questões deste grupo na folha de exame. Justifique as suas respostas.

1. Sejam

$$A_k = \begin{bmatrix} -1 & 0 & -1 \\ 1 & 1 & k+2 \\ 0 & -k & 0 \end{bmatrix}$$
, onde $k \in \mathbb{R}$, e $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$.

- (a) Justifique que a matriz A_k é invertível se e só se $k \in \mathbb{R} \setminus \{0, -1\}$.
- (b) Utilizando o método de eliminação de Gauss-Jordan, determine a inversa de A_1 .
- (c) Justifique que, para qualquer $b \in \mathcal{M}_{3\times 1}(\mathbb{R})$, o sistema $A_0x = b$ ou é impossível ou é possível indeterminado. Dê exemplo de $b \in \mathcal{M}_{3\times 1}(\mathbb{R})$ tal que o sistema $A_0x = b$ seja:
 - i. ímpossível;
 - ii. possível indeterminado.

F

2. Considere as bases de \mathbb{R}^3

$$\mathcal{B} = ((1,1,1), (1,1,0), (1,0,0)),$$

$$\mathcal{B}' = ((-1,1,1), (0,2,0), (1,0,0))$$

e a base de \mathbb{R}^4

$$\mathcal{B}'' = ((1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)).$$

Seja $g: \mathbb{R}^4 \to \mathbb{R}^3$ a aplicação linear definida por

$$M(g; \mathcal{B}'', \mathcal{B}) = \begin{bmatrix} 2 & 0 & -2 & 0 \\ 0 & 1 & 1 & -1 \\ 1 & 1 & 0 & -1 \end{bmatrix}.$$

(a) Mostre que, para todo $(a, b, c, d) \in \mathbb{R}^4$,

$$g(a, b, c, d) = (3a + 2b - c - 2d, 2a + b - c - d, 2a - 2c).$$

- (b) Determine uma base de Nuc g e a dimensão de Im g. Diga se g é injetiva e se é sobrejetiva.
- (c) Determine um subespaço S de \mathbb{R}^4 tal que $\operatorname{Nuc} g \bigoplus S = \mathbb{R}^4$.
- (d) Determine as matrizes $M(id_{\mathbb{R}}^3; \mathcal{B}, \mathcal{B}')$ e $M(g; \mathcal{B}'', \mathcal{B}')$.
- 3. Sejam

$$A = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 2 & 4 & 1 \\ 2 & 2 & 2 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix} \quad \mathbf{e} \quad B = \begin{bmatrix} -1 & -1 & 5 & 0 \\ 0 & 1 & 5 & 4 \\ 0 & 0 & 1 & 3/2 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

- (a) Calcule $\det A$.
- (b) Justifique que B é invertível e calcule $\det(2B^{-2}B^TA^2)$.
- 4. Sejam \mathcal{B} a base canónica de \mathbb{R}^3 e h o endomorfismo de \mathbb{R}^3 definido por

$$M(h, \mathcal{B}, \mathcal{B}) = \begin{bmatrix} -1 & 1 & -1 \\ 0 & -2 & 0 \\ -1 & -1 & -1 \end{bmatrix}.$$

- (a) Verifique que (-1,0,1) é um vetor próprio de h e indique a que valor próprio está associado.
- (b) Justifique que -2 é um valor próprio de h e determine uma base do subespaço próprio de h associado a este valor próprio.
- (c) Justifique que h é diagonalizável. Dê exemplo de uma base \mathcal{B}' de \mathbb{R}^3 tal que $M(h; \mathcal{B}', \mathcal{B}')$ seja diagonal.