INN Hotels Project

Context

A significant number of hotel bookings are called-off due to cancellations or no-shows. The typical reasons for cancellations include change of plans, scheduling conflicts, etc. This is often made easier by the option to do so free of charge or preferably at a low cost which is beneficial to hotel guests but it is a less desirable and possibly revenue-diminishing factor for hotels to deal with. Such losses are particularly high on last-minute cancellations.

The new technologies involving online booking channels have dramatically changed customers' booking possibilities and behavior. This adds a further dimension to the challenge of how hotels handle cancellations, which are no longer limited to traditional booking and guest characteristics.

The cancellation of bookings impact a hotel on various fronts:

- Loss of resources (revenue) when the hotel cannot resell the room.
- Additional costs of distribution channels by increasing commissions or paying for publicity to help sell these rooms.
- Lowering prices last minute, so the hotel can resell a room, resulting in reducing the profit margin.
- · Human resources to make arrangements for the guests.

Objective

The increasing number of cancellations calls for a Machine Learning based solution that can help in predicting which booking is likely to be canceled. INN Hotels Group has a chain of hotels in Portugal, they are facing problems with the high number of booking cancellations and have reached out to your firm for data-driven solutions. You as a data scientist have to analyze the data provided to find which factors have a high influence on booking cancellations, build a predictive model that can predict which booking is going to be canceled in advance, and help in formulating profitable policies for cancellations and refunds.

Data Description

The data contains the different attributes of customers' booking details. The detailed data dictionary is given below.

Data Dictionary

- Booking_ID: unique identifier of each booking
- · no of adults: Number of adults
- no_of_children: Number of Children
- · no_of_weekend_nights: Number of weekend nights (Saturday or Sunday) the guest stayed or booked to stay at the hotel
- no_of_week_nights: Number of week nights (Monday to Friday) the guest stayed or booked to stay at the hotel
- type_of_meal_plan: Type of meal plan booked by the customer:
 - o Not Selected No meal plan selected
 - o Meal Plan 1 Breakfast
 - o Meal Plan 2 Half board (breakfast and one other meal)
 - o Meal Plan 3 Full board (breakfast, lunch, and dinner)
- required_car_parking_space: Does the customer require a car parking space? (0 No, 1- Yes)
- room_type_reserved: Type of room reserved by the customer. The values are ciphered (encoded) by INN Hotels.
- lead_time: Number of days between the date of booking and the arrival date
- arrival_year: Year of arrival date
- arrival_month: Month of arrival date
- arrival_date: Date of the month
- market_segment_type: Market segment designation.
- repeated_guest: Is the customer a repeated guest? (0 No, 1- Yes)
- no_of_previous_cancellations: Number of previous bookings that were canceled by the customer prior to the current booking
- no_of_previous_bookings_not_canceled: Number of previous bookings not canceled by the customer prior to the current booking
- avg_price_per_room: Average price per day of the reservation; prices of the rooms are dynamic. (in euros)
- no_of_special_requests: Total number of special requests made by the customer (e.g. high floor, view from the room, etc)
- booking_status: Flag indicating if the booking was canceled or not.

Importing necessary libraries and data

```
# Installing the libraries with the specified version.
!pip install pandas==2.0.3 numpy==1.25.2 matplotlib==3.7.1 seaborn==0.13.1 scikit-learn==1.2.2 statsmodels==0.14.1 -q --user
```

Note: After running the above cell, kindly restart the notebook kernel and run all cells sequentially from the start again.

```
# Libraries to help with reading and manipulating data import pandas as pd import numpy as np

# libaries to help with data visualization import matplotlib.pyplot as plt import seaborn as sns

# Removes the limit for the number of displayed columns pd.set_option("display.max_columns", None)

# Sets the limit for the number of displayed rows pd.set_option("display.max_rows", 200)

# setting the precision of floating numbers to 5 decimal points pd.set_option("display.float_format", lambda x: "%.5f" % x)

# Library to split data from sklearn.model_selection import train_test_split

# To build model for prediction import statsmodels.stats.api as sms from statsmodels.stats.outliers influence import variance inflation factor
```

```
import statsmodels.api as sm
from \ statsmodels.tools.tools \ import \ add\_constant
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
# To tune different models
from sklearn.model_selection import GridSearchCV
# To get diferent metric scores
from sklearn.metrics import (
    f1_score,
    accuracy_score,
    recall score,
    precision_score,
    confusion_matrix,
    roc_auc_score,
    precision_recall_curve,
    roc_curve,
make_scorer,
import warnings
warnings.filterwarnings("ignore")
from statsmodels.tools.sm_exceptions import ConvergenceWarning
warnings.simplefilter("ignore", ConvergenceWarning)

    Loading the dataset
```

from google.colab import drive
drive.mount('/content/drive')

→ Mounted at /content/drive

original data

df = pd.read_csv('/content/drive/My Drive/Colab Notebooks/4 - Supervised Learning - Classification/Final Project/INNHotelsGroup.csv')

Data Overview

- Observations
- · Sanity checks

Loading the dataset

df.head()

₹		Booking_ID	no_of_adults	no_of_children	no_of_weekend_nights	no_of_week_nights	type_of_meal_plan	required_car_parking_space	room_type_reserved	lead_time	arrival_
	0	INN00001	2	0	1	2	Meal Plan 1	0	Room_Type 1	224	
	1	INN00002	2	0	2	3	Not Selected	0	Room_Type 1	5	
	2	INN00003	1	0	2	1	Meal Plan 1	0	Room_Type 1	1	
	3	INN00004	2	0	0	2	Meal Plan 1	0	Room_Type 1	211	
	4	INN00005	2	0	1	1	Not Selected	0	Room_Type 1	48	
4)

Shape of the dataset

df.shape

→ (36275, 19)

Observations - There are 36,275 rows and 19 columns in the dataset

Next steps: Generate code with df View recommended plots New interactive sheet

Info regarding column datatypes

<pr

df.info()

```
RangeIndex: 36275 entries, 0 to 36274
Data columns (total 19 columns):
# Column
                                                                            Non-Null Count Dtype
       Booking_ID
no_of_adults
no_of_children
no_of_weekend_nights
no_of_week_nights
                                                                                                       object
int64
                                                                             36275 non-null
                                                                            36275 non-null
36275 non-null
                                                                                                        int64
                                                                            36275 non-null
36275 non-null
        type_of_meal_plan
required_car_parking_space
                                                                            36275 non-null
36275 non-null
                                                                                                       object
int64
        room_type_reserved
lead_time
arrival_year
                                                                                                       object
int64
int64
                                                                            36275 non-null
                                                                            36275 non-null
36275 non-null
       arrival_month
arrival_date
                                                                            36275 non-null
36275 non-null
                                                                                                        int64
int64
  10
  12 market_segment_type
                                                                            36275 non-null
                                                                                                        object
        repeated_guest
no_of_previous_cancellations
                                                                            36275 non-null
36275 non-null
                                                                                                        int64
int64
 15 no_of_previous_bookings_not_canceled 36275 non-null
16 avg_price_per_room 36275 non-null
17 no_of_special_requests 36275 non-null
                                                                                                        int64
                                                                           36275 non-null int64
```

18 booking_status dtypes: float64(1), int64(13), object(5) memory usage: 5.3+ MB 36275 non-null object

Observations - There are 14 numerical (13 int64 & 1 float64) and 5 object type columns in the dataset

Statistics summary for the numerical columns

df.describe()

		no_of_adults	no_of_children	no_of_weekend_nights	no_of_week_nights	required_car_parking_space	lead_time	arrival_year	arrival_month	arrival_date	repeated_g
	count	36275.00000	36275.00000	36275.00000	36275.00000	36275.00000	36275.00000	36275.00000	36275.00000	36275.00000	36275.0
	mean	1.84496	0.10528	0.81072	2.20430	0.03099	85.23256	2017.82043	7.42365	15.59700	0.0
	std	0.51871	0.40265	0.87064	1.41090	0.17328	85.93082	0.38384	3.06989	8.74045	0.1
	min	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	2017.00000	1.00000	1.00000	0.0
	25%	2.00000	0.00000	0.00000	1.00000	0.00000	17.00000	2018.00000	5.00000	8.00000	0.0
	50%	2.00000	0.00000	1.00000	2.00000	0.00000	57.00000	2018.00000	8.00000	16.00000	0.0
	75%	2.00000	0.00000	2.00000	3.00000	0.00000	126.00000	2018.00000	10.00000	23.00000	0.0
	max	4.00000	10.00000	7.00000	17.00000	1.00000	443.00000	2018.00000	12.00000	31.00000	1.0
4											>

Checking missing values

df.isnull().sum()

Observations - There is no missing values in the data

Check for duplicates in the dataset

print("There are",df.duplicated().sum(),"duplicated rows")

 \rightarrow There are 0 duplicated rows

Dropping the columns with all unique values

df.Booking_ID.nunique()

→ 36275

Observations - the Booking_ID column contains only unique values, so we can drop it

#drop the Booking_ID column df = df.drop(["Booking_ID"], axis=1)

 $\verb|#get info after dropping the Booking_ID column|\\$

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 36275 entries, 0 to 36274 Data columns (total 18 columns):

Non-Null Count Dtype # Column 0 no_of_adults
1 no_of_children
2 no_of_weekend_nights 36275 non-null int64 36275 non-null int64 36275 non-null int64

```
no_of_week_nights
type_of_meal_plan
required_car_parking_space
                                                                                                                                                                                                                                                                                                             36275 non-null int64
                                                                                                                                                                                                                                                                                                             36275 non-null
36275 non-null
                                                                                                                                                                                                                                                                                                                                                                                                                          object
int64
                                   room_type_reserved lead_time
                                                                                                                                                                                                                                                                                                                                                                                                                           object
int64
                                                                                                                                                                                                                                                                                                               36275 non-null
                                                                                                                                                                                                                                                                                                               36275 non-null
                                   arrival vear
                                                                                                                                                                                                                                                                                                             36275 non-null
                                                                                                                                                                                                                                                                                                                                                                                                                           int64
       9 arrival_month
10 arrival_date
                                                                                                                                                                                                                                                                                                             36275 non-null int64
36275 non-null int64
       11 market_segment_type
12 repeated_guest
                                                                                                                                                                                                                                                                                                                                                                                                                          object
int64
                                                                                                                                                                                                                                                                                                               36275 non-null
                                                                                                                                                                                                                                                                                                               36275 non-null
| 13 | no_of_previous_cancellations | 36275 | non-null | int64 |
| 14 | no_of_previous_bookings_not_canceled | 36275 | non-null | int64 |
| 15 | avg_price_per_room | 36275 | non-null | float64 |
| 16 | no_of_special_requests | 36275 | non-null | int64 |
| 17 | booking_status | 36275 | non-null | object |
| 18 | object | 36275 | non-null | object |
| 19 | object | 36275 | non-null | int64 |
| 19 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 11 | object | 36275 | non-null | int64 |
| 12 | object | 36275 | non-null | int64 |
| 13 | object | 36275 | non-null | int64 |
| 14 | object | 36275 | non-null | int64 |
| 15 | object | 36275 | non-null | int64 |
| 16 | object | 36275 | non-null | int64 |
| 17 | object | 36275 | non-null | int64 |
| 18 | object | 36275 | non-null | int64 |
| 19 | object | 36275 | non-null | int64 |
| 19 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 36275 | non-null | int64 |
| 10 | object | 362
 memory usage: 5.0+ MB
```

Observations - There are 14 numerical (13 int64 & 1 float64) and 4 object type columns in the dataset

Exploratory Data Analysis (EDA)

- EDA is an important part of any project involving data.
- It is important to investigate and understand the data better before building a model with it.
- A few questions have been mentioned below which will help you approach the analysis in the right manner and generate insights from
 the data.
- A thorough analysis of the data, in addition to the questions mentioned below, should be done.

Statistical summary of the data

Barplot with percentage at the top

df.describe().T

_

•	count	mean	std	min	25%	50%	75%	max	
no_of_adults	36275.00000	1.84496	0.51871	0.00000	2.00000	2.00000	2.00000	4.00000	ıl.
no_of_children	36275.00000	0.10528	0.40265	0.00000	0.00000	0.00000	0.00000	10.00000	
no_of_weekend_nights	36275.00000	0.81072	0.87064	0.00000	0.00000	1.00000	2.00000	7.00000	
no_of_week_nights	36275.00000	2.20430	1.41090	0.00000	1.00000	2.00000	3.00000	17.00000	
required_car_parking_space	36275.00000	0.03099	0.17328	0.00000	0.00000	0.00000	0.00000	1.00000	
lead_time	36275.00000	85.23256	85.93082	0.00000	17.00000	57.00000	126.00000	443.00000	
arrival_year	36275.00000	2017.82043	0.38384	2017.00000	2018.00000	2018.00000	2018.00000	2018.00000	
arrival_month	36275.00000	7.42365	3.06989	1.00000	5.00000	8.00000	10.00000	12.00000	
arrival_date	36275.00000	15.59700	8.74045	1.00000	8.00000	16.00000	23.00000	31.00000	
repeated_guest	36275.00000	0.02564	0.15805	0.00000	0.00000	0.00000	0.00000	1.00000	
no_of_previous_cancellations	36275.00000	0.02335	0.36833	0.00000	0.00000	0.00000	0.00000	13.00000	
no_of_previous_bookings_not_canceled	36275.00000	0.15341	1.75417	0.00000	0.00000	0.00000	0.00000	58.00000	
avg_price_per_room	36275.00000	103.42354	35.08942	0.00000	80.30000	99.45000	120.00000	540.00000	
no_of_special_requests	36275.00000	0.61966	0.78624	0.00000	0.00000	0.00000	1.00000	5.00000	

```
The below functions are needed to be defined to carry out the EDA
# the functions below were copied from "MLS 2 - Decision Tree: Session Notebook - Machine Failure Prediction" to help with the Exploratory Data Analysis (EDA)
# function to create histogram boxplot
def histogram_boxplot(data, feature, figsize=(15, 10), kde=False, bins=None):
    Boxplot and histogram combined
    data: dataframe
    feature: dataframe column
    figsize: size of figure (default (15,10))
    kde: whether to show the density curve (default False) bins: number of bins for histogram (default None)
    f2, (ax_box2, ax_hist2) = plt.subplots(
    nrows=2, # Number of rows of the subplot grid= 2
         sharex=True, # x-axis will be shared among all subplots gridspec_kw={"height_ratios": (0.2, 0.5)},
         figsize=figsize,
     ) # creating the 2 subplots
    sns.boxplot(
         data=data, x=feature, ax=ax_box2, showmeans=True, color="darkseagreen"
     ) # boxplot will be created and a triangle will indicate the mean value of the column
    sns.histplot(
         data=data, x=feature, kde=kde, ax=ax_hist2, bins=bins
    ) if bins else sns.histplot(
data=data, x=feature, kde=kde, ax=ax_hist2
      # For histogram
    ax_hist2.axvline(
         data[feature].mean(), color="green", linestyle="--"
      # Add mean to the histogram
    ax_hist2.axvline(
         data[feature].median(), color="black", linestyle="-"
    ) # Add median to the histogram
# function to create labeled barplots
def labeled_barplot(data, feature, perc=False, n=None):
```

```
data: dataframe
    perc: whether to display percentages instead of count (default is False)
    n: displays the top n category levels (default is None, i.e., display all levels)
    total = len(data[feature]) # length of the column
    count = data[feature].nunique()
    if n is None:
       plt.figure(figsize=(count + 2, 6))
    else:
        plt.figure(figsize=(n + 2, 6))
    plt.xticks(rotation=90, fontsize=15)
    ax = sns.countplot(
        data=data,
        x=feature,
palette="Paired",
        order=data[feature].value_counts().index[:n],
    for p in ax.patches:
        ) # percentage of each class of the category
        else:
           label = p.get_height() # count of each level of the category
        x = p.get_x() + p.get_width() / 2 # width of the plot
        y = p.get\_height() # height of the plot
        ax.annotate(
            label,
            (x, y),
ha="center",
va="center",
            xytext=(0, 5),
            textcoords="offset points",
        ) # annotate the percentage
    plt.show() # show the plot
# function to plot distributions wrt target
def distribution_plot_wrt_target(data, predictor, target):
    fig, axs = plt.subplots(2, 2, figsize=(12, 10))
    target uniq = data[target].unique()
    axs[0,\ 0].set\_title("Distribution\ of\ target\ for\ target="\ +\ str(target\_uniq[0]))
    sns.histplot(
        data=data[data[target] == target_uniq[0]],
        x=predictor,
        kde=True.
        ax=axs[0, 0],
        color="teal",
stat="density",
    axs[0, 1].set_title("Distribution of target for target=" + str(target_uniq[1]))
        data=data[data[target] == target_uniq[1]],
        x=predictor,
        kde=True,
        ax=axs[0, 1],
        color="orange
        stat="density",
    axs[1, 0].set_title("Boxplot w.r.t target")
    sns.boxplot(data=data, x=target, y=predictor, ax=axs[1, 0], palette="gist_rainbow")
    axs[1, 1].set_title("Boxplot (without outliers) w.r.t target")
    sns.boxplot(
        data=data,
        x=target.
        y=predictor,
        ax=axs[1, 1],
        showfliers=False.
        palette="gist_rainbow",
    )
    plt.tight_layout()
    plt.show()
# function to plot stacked barplot
def stacked_barplot(data, predictor, target):
    Print the category counts and plot a stacked bar chart
    data: dataframe
    predictor: independent variable
    target: target variable
    count = data[predictor].nunique()
    sorter = data[target].value_counts().index[-1]
    tab1 = pd.crosstab(data[predictor], data[target], margins=True).sort_values(
        by=sorter, ascending=False
    print(tab1)
print("-" * 120)
    tab = pd.crosstab(data[predictor], data[target], normalize="index").sort_values(
```

```
by=sorter, ascending=False
)
tab.plot(kind="bar", stacked=True, figsize=(count + 5, 5))
plt.legend(
    loc="lower left", frameon=False,
)
plt.legend(loc="upper left", bbox_to_anchor=(1, 1))
plt.show()
```

Univariate Analysis

lead_time field

histogram_boxplot(df, "lead_time")

Observations:

- The lead_time distribution is left skewed and it presents outliners

avg_price_per_room field

histogram_boxplot(df, "avg_price_per_room")

Observations:

 $\hbox{-} \textit{The avg_price_per_room distribution is slightly left skewed and it presents outliners}$

df[df["avg_price_per_room"] == 0]

→											
<u> </u>	r	no_of_adults	no_of_children	no_of_weekend_nights	no_of_week_nights	type_of_meal_plan	required_car_parking_space	room_type_reserved	lead_time	arrival_year	ar
	63	1	0	0	1	Meal Plan 1	0	Room_Type 1	2	2017	
	145	1	0	0	2	Meal Plan 1	0	Room_Type 1	13	2018	
:	209	1	0	0	0	Meal Plan 1	0	Room_Type 1	4	2018	
:	266	1	0	0	2	Meal Plan 1	0	Room_Type 1	1	2017	
:	267	1	0	2	1	Meal Plan 1	0	Room_Type 1	4	2017	
3	5983	1	0	0	1	Meal Plan 1	0	Room_Type 7	0	2018	
3	6080	1	0	1	1	Meal Plan 1	0	Room_Type 7	0	2018	
3	6114	1	0	0	1	Meal Plan 1	0	Room_Type 1	1	2018	
3	6217	2	0	2	1	Meal Plan 1	0	Room_Type 2	3	2017	
3	6250	1	0	0	2	Meal Plan 2	0	Room_Type 1	6	2017	
54	5 rows >	× 18 columns									
4											•

df.loc[df["avg_price_per_room"] == 0, "market_segment_type"].value_counts()

dtype: int64

Q1 = df["avg_price_per_room"].quantile(0.25) # 25th quantile Q3 = df["avg_price_per_room"].quantile(0.75) # 75th quantile

Calculating IQR
IQR = Q3 - Q1

Calculating value of upper whisker Upper_Whisker = Q3 + 1.5 * IQR Upper_Whisker

→ 179.55

 $\label{eq:df_def} $$ df.loc[df["avg_price_per_room"] >= 500$, $$ "avg_price_per_room"] = Upper_Whisker $$ $$ (avg_price_per_room") = Upper_Whisker $$ (avg_price_per_room") = Upper_Whis$

no_of_previous_cancellations field

stacked_barplot(df, "no_of_previous_cancellations", "booking_status")

₹	booking_status no_of_previous_cancellations	Canceled	Not_Canceled	All
	All	11885	24390	36275
	0	11869	24068	35937
	1	11	187	198
	13	4	0	4
	3	1	42	43
	2	0	46	46
	4	0	10	10
	5	0	11	11
	6	0	1	1
	11	0	25	25

$no_of_previous_bookings_not_canceled\ field$

labeled_barplot(df, "no_of_previous_bookings_not_canceled", perc=True)

#combine greater than 11 into 11 for better analysis
data = df.copy()
data.loc[data['no_of_previous_bookings_not_canceled'] > 11,'no_of_previous_bookings_not_canceled'] = 11
labeled_barplot(data, "no_of_previous_bookings_not_canceled", perc=True)

no_of_adults field

labeled_barplot(df, "no_of_adults", perc=True)

no_of_children field

labeled_barplot(df, "no_of_children", perc=True)

#combine 9 & 10 to 3 for better analysis
df["no_of_children"] = df["no_of_children"].replace([9, 10], 3)
labeled_barplot(df, "no_of_children", perc=True)

no_of_week_nights field

labeled_barplot(df, "no_of_week_nights", perc=True)

no_of_weekend_nights field

labeled_barplot(df, "no_of_weekend_nights", perc=True)

required_car_parking_space field

labeled_barplot(df, "required_car_parking_space", perc=True)

#changed label as per data description - (0 - No, 1- Yes)
data = df.copy()
data["required_car_parking_space"] = data["required_car_parking_space"].apply(lambda x: "No" if x == 0 else "Yes")
labeled_barplot(data, "required_car_parking_space", perc=True)

arrival_year field

labeled_barplot(df, "arrival_year", perc=True)

arrival_month field

labeled_barplot(df, "arrival_month", perc=True)

repeated_guest field

labeled_barplot(df, "repeated_guest", perc=True)

#changed label as per data description - (0 - No, 1- Yes)
data = df.copy()
data["repeated_guest"] = data["repeated_guest"].apply(lambda x: "No" if x == 0 else "Yes")
labeled_barplot(data, "repeated_guest", perc=True)

no_of_special_requests field

labeled_barplot(df, "no_of_special_requests", perc=True)

→ Bivariate Analysis

Heatmap

```
cols_list = df.select_dtypes(include=np.number).columns.tolist()
plt.figure(figsize=(12, 7))
sns.heatmap(
    df[cols_list].corr(), annot=True, vmin=-1, vmax=1, fmt=".2f", cmap="Spectral"
plt.show()
∓*
                                                                                                                                                                                          1.00
                                      no_of_adults -
                                                               -0.02
                                                                        0.10
                                                                                0.11
                                                                                         0.01
                                                                                                  0.10
                                                                                                          0.08
                                                                                                                   0.02
                                                                                                                           0.03
                                                                                                                                    -0.19
                                                                                                                                            -0.05
                                                                                                                                                     -0.12
                                                                                                                                                              0.30
                                                                                                                                                                      0.19
                                                                        0.03
                                                                                 0.02
                                   no_of_children - -0.02
                                                                                         0.04
                                                                                                  -0.05
                                                                                                          0.05
                                                                                                                   -0.00
                                                                                                                           0.03
                                                                                                                                    -0.04
                                                                                                                                            -0.02
                                                                                                                                                     -0.02
                                                                                                                                                              0.35
                                                                                                                                                                       0.13
                                                                                                                                                                                          0.75
                                                                                 0.18
                          no of weekend nights - 0.10
                                                                0.03
                                                                                         -0.03
                                                                                                  0.05
                                                                                                          0.06
                                                                                                                   -0.01
                                                                                                                           0.03
                                                                                                                                    -0.07
                                                                                                                                            -0.02
                                                                                                                                                     -0.03
                                                                                                                                                              -0.00
                                                                                                                                                                      0.06
                              no_of_week_nights - 0.11
                                                                0.02
                                                                        0.18
                                                                                         -0.05
                                                                                                  0.15
                                                                                                          0.03
                                                                                                                   0.04
                                                                                                                           -0.01
                                                                                                                                    -0.10
                                                                                                                                             -0.03
                                                                                                                                                     -0.05
                                                                                                                                                              0.02
                                                                                                                                                                       0.05
                                                                                                                                                                                          0.50
                    required_car_parking_space - 0.01
                                                               0.04
                                                                        -0.03
                                                                                -0.05
                                                                                                  -0.07
                                                                                                          0.02
                                                                                                                   -0.02
                                                                                                                                    0.11
                                                                                                                                             0.03
                                                                                                                                                     0.06
                                                                                                                           -0.00
                                                                                                                                                              0.06
                                                                                                                                                                      0.09
                                                                                                                                                                                          - 0.25
                                         lead time - 0.10
                                                               -0.05
                                                                        0.05
                                                                                 0.15
                                                                                         -0.07
                                                                                                          0.14
                                                                                                                   0.14
                                                                                                                           0.01
                                                                                                                                    -0.14
                                                                                                                                            -0.05
                                                                                                                                                     -0.08
                                                                                                                                                             -0.06
                                                                                                                                                                      -0.10
                                       arrival_year - 0.08
                                                                0.05
                                                                        0.06
                                                                                 0.03
                                                                                         0.02
                                                                                                  0.14
                                                                                                                   -0.34
                                                                                                                            0.02
                                                                                                                                    -0.02
                                                                                                                                             0.00
                                                                                                                                                     0.03
                                                                                                                                                              0.18
                                                                                                                                                                                         - 0.00
                                    arrival month - 0.02
                                                               -0.00
                                                                        -0.01
                                                                                                  0.14
                                                                                                                            -0.04
                                                                                                                                    0.00
                                                                                                                                            -0.04
                                                                                                                                                     -0.01
                                                                                0.04
                                                                                         -0.02
                                                                                                          -0.34
                                                                                                                                                              0.05
                                                                                                                                                                      0.11
                                       arrival_date - 0.03
                                                               0.03
                                                                        0.03
                                                                                -0.01
                                                                                         -0.00
                                                                                                  0.01
                                                                                                          0.02
                                                                                                                   -0.04
                                                                                                                            1.00
                                                                                                                                    -0.02
                                                                                                                                             -0.01
                                                                                                                                                     -0.00
                                                                                                                                                              0.02
                                                                                                                                                                      0.02
                                                                                                                                                                                           -0.25
                                  repeated_guest - -0.19
                                                               -0.04
                                                                        -0.07
                                                                                 -0.10
                                                                                         0.11
                                                                                                          -0.02
                                                                                                                   0.00
                                                                                                                            -0.02
                                                                                                                                             0.39
                                                                                                                                                     0.54
                                                                                                                                                                      -0.01
                                                                                                                                                     0.47
                   no_of_previous_cancellations - -0.05 -0.02
                                                                                         0.03
                                                                                                                                    0.39
                                                                        -0.02
                                                                                -0.03
                                                                                                  -0.05
                                                                                                          0.00
                                                                                                                   -0.04
                                                                                                                           -0.01
                                                                                                                                                              -0.06
                                                                                                                                                                      -0.00
                                                                                                                                                                                           -0.50
        no_of_previous_bookings_not_canceled - -0.12 -0.02
                                                                        -0.03
                                                                                -0.05
                                                                                         0.06
                                                                                                  -0.08
                                                                                                          0.03
                                                                                                                   -0.01
                                                                                                                           -0.00
                                                                                                                                    0.54
                                                                                                                                             0.47
                                                                                                                                                              -0.11
                                                                                                                                                                      0.03
                             avg_price_per_room - 0.30
                                                               0.35
                                                                        -0.00
                                                                                 0.02
                                                                                         0.06
                                                                                                  -0.06
                                                                                                          0.18
                                                                                                                   0.05
                                                                                                                           0.02
                                                                                                                                    -0.18
                                                                                                                                             -0.06
                                                                                                                                                     -0.11
                                                                                                                                                                      0.18
                          no_of_special_requests - 0.19
                                                               0.13
                                                                        0.06
                                                                                 0.05
                                                                                         0.09
                                                                                                          0.05
                                                                                                                           0.02
                                                                                                                                    -0.01
                                                                                                                                                     0.03
                                                                                                                                                              0.18
                                                                                                  -0.10
                                                                                                                   0.11
                                                                                                                                             -0.00
                                                                                                                                                                                            -1.00
                                                                                  no_of_week_nights
                                                                                           required_car_parking_space
                                                                                                                             arrival date
                                                                                                                                                      no_of_previous_bookings_not_canceled
                                                                                                                                                                        no of special requests
                                                        no_of_adults
                                                                 no_of_children
                                                                         no_of_weekend_nights
                                                                                                   lead_time
                                                                                                            arrival_year
                                                                                                                    arrival month
                                                                                                                                     repeated_guest
                                                                                                                                              no_of_previous_cancellations
                                                                                                                                                               avg_price_per_room
```

market_segment_type vs booking_status

stacked_barplot(df, "market_segment_type", "booking_status")

avg_price_per_room vs booking_status

 ${\tt distribution_plot_wrt_target(df, "avg_price_per_room", "booking_status")}$

no_of_week_nights vs room_type_reserved

stacked_barplot(df, "no_of_week_nights", "room_type_reserved")

28130 692 7 6057 9111 215 3 1723 7620 187 3 1271 1044 35 1 457 13 0 0 4 2 0 0 0 0 1 1 0 0 1 8 0 0 2 6 0 0 1 4 0 0 1 4 0 0 0 1 4 0 0 0 1 7 0 0 0 2 2058 22 0 231 38 2 0 16 81 2 0 25 139 2 0 16 81 2 0 25 139 2 0 41 2094 62 0 707 5845 161 0 1553 21 2 0 8	room_type_reserved	Poom Type 1	Poom Type 2	Poom Typo 3	Poom Tur	0 4								
1111 215 3 1723 7626 187 3 1271 1844 35 1 457 457 13 0 0 4 4 2 0 0 1 1 0 0 0 1 1 0 0	no_of_week_nights	KOOIII_TYPE I	KOOIII_TYPE 2											
7620 187 3 1271 1844 35 1 457 13 0 0 0 4 2 0 0 0 0 1 0 0 1 8 0 0 2 6 0 0 0 1 4 0 0 0 1 7 0 0 0 2 2058 22 0 16 81 2 0 16 81 2 0 16 81 2 0 16 81 2 0 16 81 2 0 41 2094 62 0 707 5245 161 0 1553 21 2 0 8 type_reserved Room_Type 5 Room_Type 6 Room_Type 7 All	All													
1944 35 1 457 13 0 0 0 4 2 0 0 0 1 8 0 0 1 8 0 0 0 1 8 0 0 0 1 4 0 0 0 1 7 0 0 0 2 2058 22 0 231 38 2 0 14 38 2 0 16 81 2 0 20 2858 22 0 16 81 2 0 6 81 2 0 6 81 2 0 8 81 2 0 8 81 2 0 8 81 2 0 8 81 2 0 8 81 2 0 8 81 2 0 8 81 2 0 8 81 2 0 8 81 2 0 8 81 2 0 8 81 2 0 8 81 3 9 2 0 8 81 3 9 2 0 8 81 3 9 2 0 8 81 3 9 2 0 8 81 8 9 8 9 8 8 9 8 9 8 9 8 8 9 8 9 8 9 8 8 9 8 9	2													
13	1													
2	5													
1	11													
8	17													
6	16													
## 4	15	8	0	0		2								
7 0 0 2 2058 22 0 231 38 2 0 14 38 2 0 16 81 2 0 25 139 2 0 41 2094 62 0 707 5845 161 0 1553 21 2 0 8 _type_reserved Room_Type 5 Room_Type 6 Room_Type 7 All f_week_nights 265 966 158 36275 79 266 47 11444 68 288 51 9488 18 52 7 1614 0 0 0 17 1 0 0 0 3 0 0 0 0 0 17 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14	6	0	0		1								
2058 22 0 114 38 2 0 14 38 2 0 0 16 81 2 0 25 139 2 0 41 2094 62 0 707 5845 161 0 1553 21 2 0 8 type_reserved rewek_nights 265 966 158 36275 79 266 47 11444 68 288 51 9488 51 9488 51 9488 51 9488 51 0 0 0 17 1 0 0 0 3 0 0 0 0 17 1 1 0 0 0 3 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13													
38 2 0 14 38 2 0 16 61 2 0 25 139 2 0 41 2094 62 0 707 5845 161 0 1553 21 2 0 8 type_reserved Rom_Type 5 Rom_Type 6 Rom_Type 7 All f_week_nights 265 966 158 36275 79 266 47 11444 68 288 51 9488 18 52 7 1614 0 0 0 17 1 0 0 0 3 0 0 0 0 17 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12	7	0	0		2								
38 2 0 16 81 2 0 25 139 2 0 41 2094 62 0 707 5845 161 0 1553 21 2 0 8 _type_reserved room_Type 5 room_Type 6 room_Type 7 All f_week_nights 265 966 158 36275 79 266 47 11444 68 288 51 9488 18 52 7 1614 0 0 0 0 17 1 0 0 0 3 0 0 0 0 0 0 17 1 0 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0	0	2058		0		231								
81 2 0 25 139 2 0 41 2694 62 0 707 5845 161 0 1553 21 2 0 8 _type_reserved Room_Type 5 Room_Type 6 Room_Type 7 All f_week_nights 265 966 158 36275 79 266 47 11444 68 288 51 9488 18 52 7 1614 0 0 0 17 1 0 0 0 3 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0	10													
139 2 0 41 2094 62 0 707 5845 161 0 1553 21 2 0 8 type_reserved Room_Type 5 Room_Type 6 Room_Type 7 All f_week_nights 265 966 158 36275 79 266 47 11444 68 288 51 9488 18 52 7 1614 68 288 51 9488 18 52 7 1614 1 0 0 0 17 1 0 0 0 3 0 0 0 17 1 1 0 0 0 3 0 0 0 0 17 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	38	2	0		16								
2094 62 0 707 5845 161 0 1553 21 2 0 8 Ltype_reserved Room_Type 5 Room_Type 6 Room_Type 7 All F_week_nights 265 966 158 36275 79 266 47 11444 68 288 51 9488 18 52 7 1614 0 0 0 0 17 1 0 0 0 3 0 0 0 0 17 1 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7	81	2	0		25								
S845	6													
type_reserved	4		62											
Type_reserved Room_Type 5 Room_Type 6 Room_Type 7 All f_week_nights 265 966 158 36275 79 266 47 11444 68 288 51 9488 18 52 7 1614 0 0 0 17 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	5845	161	0	1	.553								
f_week_nights 265	9	21	2	0		8								
79	room_type_reserved no_of_week_nights	Room_Type 5	Room_Type 6	Room_Type 7	A11									
79	A11	265	966											
18 52 7 1614 0 0 0 17 1 0 0 3 0 0 0 0 2 0 0 0 10 0 0 0 7 0 0 0 0 5 0 0 0 9 27 39 10 2387 0 7 1 62 2 3 1 62 2 3 1 62 0 4 1 113 0 6 1 189 23 92 12 2990 47 206 27 7839 0 3 0 34	2	79	266	47	11444									
0 0 0 17 1 0 0 3 0 0 0 2 0 0 0 10 0 0 0 7 0 0 0 5 0 0 0 5 0 0 0 9 27 39 10 2387 0 7 1 62 2 3 1 62 2 3 1 62 0 4 1 113 0 6 1 189 23 92 12 2990 47 206 27 7839 0 3 0 34	1	68	288	51	9488									
1 0 0 3 0 0 0 2 0 0 0 10 0 0 0 7 0 0 0 0 5 0 0 0 9 27 39 10 2387 0 7 1 62 2 3 1 62 2 3 1 62 0 4 1 113 0 6 1 189 23 92 12 2990 47 206 27 7839 0 3 0 34	5	18	52	7	1614									
0 0 0 0 10 0 0 0 7 0 0 0 5 0 0 0 9 27 39 10 2387 0 7 1 62 2 3 1 62 2 3 1 62 0 6 1 189 23 92 11 2990 47 206 27 7839 0 3 0 34	11	0	0	0										
0 0 0 10 0 0 0 5 0 0 0 5 0 0 0 9 27 39 10 2387 0 7 1 62 2 3 1 62 0 4 1 113 0 6 1 189 23 92 12 2990 47 206 27 7839 0 3 0 34	17	1	0	0	3									
0 0 0 7 0 0 0 9 0 0 9 27 39 10 2387 0 7 1 62 2 3 1 62 0 4 1 113 0 6 1 189 23 92 12 2990 47 206 27 7839 0 3 0 34	16	0	0	0	2									
0 0 0 5 0 0 0 9 27 39 10 2387 0 7 1 62 2 3 1 62 0 4 1 113 0 6 1 189 23 92 12 2990 47 206 27 7839 0 3 0 34	15	0	0	0										
0 0 0 9 27 39 10 2387 0 7 1 62 2 3 1 62 0 4 1 113 0 6 1 189 23 92 12 2990 47 206 27 7839 0 3 0 34	14	0	0	0										
27 39 10 2387 0 7 1 62 2 3 1 62 0 4 1 113 0 6 1 189 23 92 12 2990 47 206 27 7839 0 3 0 34	13	0	0	0	5									
0 7 1 62 2 3 1 62 0 4 1 113 0 6 1 189 23 92 12 2990 47 206 27 7839 0 3 0 34	12	0	0	0	9									
2 3 1 62 0 4 1 113 0 6 1 189 23 92 12 2990 47 206 27 7839 0 3 0 34	0	27		10	2387									
0 4 1 113 0 6 1 189 23 92 12 2990 47 206 27 7839 0 3 0 34	10	0												
0 6 1 189 23 92 12 2990 47 206 27 7839 0 3 0 34	8	2	3	1	62									
23 92 12 2990 47 206 27 7839 0 3 0 34	7													
47 206 27 7839 0 3 0 34	6													
0 3 0 34														
	3													
	9	0	3	0	34									
	4		23 47	23 92 47 206	23 92 12 47 206 27	23 92 12 2990 47 206 27 7839	23 92 12 2990 47 206 27 7839 0 3 0 34	23 92 12 2990 47 206 27 7839 0 3 0 34	23 92 12 2990 47 206 27 7839 0 3 0 34	23 92 12 2990 47 206 27 7839 0 3 0 34	23 92 12 2990 47 206 27 7839 0 3 0 34	23 92 12 2990 47 206 27 7839 0 3 0 34	23 92 12 2990 47 206 27 7839 0 3 0 34	23 92 12 2990 47 206 27 7839 0 3 0 34
	0.8 -													
	0.6 -													
	0.4 -													
	0.2 -													

$no_of_weekend_nights\ vs\ room_type_reserved$

stacked_barplot(df, "no_of_weekend_nights", "room_type_reserved")

Leading Questions:

- 1. What are the busiest months in the hotel?
- 2. Which market segment do most of the guests come from?
- 3. Hotel rates are dynamic and change according to demand and customer demographics. What are the differences in room prices in different market segments?
- 4. What percentage of bookings are canceled?
- 5. Repeating guests are the guests who stay in the hotel often and are important to brand equity. What percentage of repeating guests cancel?
- 6. Many guests have special requirements when booking a hotel room. Do these requirements affect booking cancellation?

```
#1 - What are the busiest months in the hotel?
data = df.groupby(["arrival_month"])["booking_status"].count()
data = pd.DataFrame({"Month": list(data.index), "Total guests": list(data.values)})
plt.figure(figsize=(10, 5))
sns.barplot(data=data, x="Month", y="Total guests")
plt.show()
```


Observations: October is the busiest month

#2. Which market segment do most of the guests come from?
stacked_barplot(df, "market_segment_type", "booking_status")

	booking_status market_segment_type	Canceled	Not_Canceled	All
	A11	11885	24390	36275
	Online	8475	14739	23214
	Offline	3153	7375	10528
	Corporate	220	1797	2017
	Aviation	37	88	125
	Complementary	0	391	391

Observations: Online is the market segment most of the guests come from

#3. Hotel rates are dynamic and change according to demand and customer demographics. What are the differences in room prices in different market segments?
plt.figure(figsize=(8, 5))
sns.boxplot(data=df, x="market_segment_type", y="avg_price_per_room")
plt.show()

#4. What percentage of bookings are canceled?
stacked_barplot(df, "arrival_month", "booking_status")

#5. Repeating guests are the guests who stay in the hotel often and are important to brand equity. What percentage of repeating guests cancel? stacked_barplot(df, "repeated_guest", "booking_status")

#6. Many guests have special requirements when booking a hotel room. Do these requirements affect booking cancellation? stacked_barplot(df, "no_of_special_requests", "booking_status")

Data Preprocessing

- Missing value treatment (if needed)
- Feature engineering (if needed)
- Outlier detection and treatment (if needed)
- Preparing data for modeling
- Any other preprocessing steps (if needed)

```
df["booking_status"] = df["booking_status"].apply(
    lambda x: 1 if x == "Canceled" else 0
)

num_cols = df.select_dtypes(include=np.number).columns.tolist()
# drop booking_status
num_cols.remove("booking_status")

plt.figure(figsize=(15, 12))

for i, variable in enumerate(num_cols):
    plt.subplot(4, 4, i + 1)
    sns.boxplot(df[variable], whis=1.5)
    plt.tight_layout()
    plt.title(variable)

plt.show()
```


✓ EDA

• It is a good idea to explore the data once again after manipulating it.

```
df.shape

→ (36275, 18)
```

df.info()

₹	Rang	ss 'pandas.core.frame.DataFrame'> eIndex: 36275 entries, 0 to 36274 columns (total 18 columns):		
	#	Column	Non-Null Count	Dtype
	0	no_of_adults	36275 non-null	int64
	1	no_of_children	36275 non-null	int64
	2	no_of_weekend_nights	36275 non-null	int64
	3	no_of_week_nights	36275 non-null	int64
	4	type_of_meal_plan	36275 non-null	object
	5	required_car_parking_space	36275 non-null	int64
	6	room_type_reserved	36275 non-null	object
	7	lead_time	36275 non-null	int64
	8	arrival_year	36275 non-null	int64
	9	arrival_month	36275 non-null	int64
	10	arrival_date	36275 non-null	int64
	11	market_segment_type	36275 non-null	object
	12	repeated_guest	36275 non-null	int64
	13	no_of_previous_cancellations	36275 non-null	int64
	14	no_of_previous_bookings_not_canceled	36275 non-null	int64
	15	avg_price_per_room	36275 non-null	float64
	16	no_of_special_requests	36275 non-null	int64
	17	booking_status	36275 non-null	int64
	dtyp	es: float64(1), int64(14), object(3)		
	memo	ry usage: 5.0+ MB		

df.describe()

$\overline{\Rightarrow}$		no_of_adults	no_of_children	no_of_weekend_nights	no_of_week_nights	required_car_parking_space	lead_time	arrival_year	arrival_month	arrival_date	repeated_g
	count	36275.00000	36275.00000	36275.00000	36275.00000	36275.00000	36275.00000	36275.00000	36275.00000	36275.00000	36275.0
	mean	1.84496	0.10476	0.81072	2.20430	0.03099	85.23256	2017.82043	7.42365	15.59700	0.0
	std	0.51871	0.39466	0.87064	1.41090	0.17328	85.93082	0.38384	3.06989	8.74045	0.1
	min	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	2017.00000	1.00000	1.00000	0.0
	25%	2.00000	0.00000	0.00000	1.00000	0.00000	17.00000	2018.00000	5.00000	8.00000	0.0
	50%	2.00000	0.00000	1.00000	2.00000	0.00000	57.00000	2018.00000	8.00000	16.00000	0.0
	75%	2.00000	0.00000	2.00000	3.00000	0.00000	126.00000	2018.00000	10.00000	23.00000	0.0
	max	4.00000	3.00000	7.00000	17.00000	1.00000	443.00000	2018.00000	12.00000	31.00000	1.0
	4)

check for missing values
df.isnull().sum()

→ Logistic Regression

```
\hbox{\tt\#function copied from "Session Notebook - WHO Case Study" session}
# defining a function to compute different metrics to check performance of a classification model built using statsmodels
def model_performance_classification_statsmodels(model, predictors, target, threshold=0.5):
    Function to compute different metrics to check classification model performance
    model: classifier
    predictors: independent variables
    target: dependent variable
    threshold: threshold for classifying the observation as class {\bf 1}
    # checking which probabilities are greater than threshold
    pred_temp = model.predict(predictors) > threshold
    # rounding off the above values to get classes
    pred = np.round(pred temp)
    acc = accuracy_score(target, pred) # to compute Accuracy
recall = recall_score(target, pred) # to compute Recall
precision = precision_score(target, pred) # to compute Precision
    f1 = f1_score(target, pred) # to compute F1-score
    # creating a dataframe of metrics
    index=[0],
    return df_perf
```

```
#function copied from "Session Notebook - WHO Case Study" session
# defining a function to plot the confusion_matrix of a classification model
{\tt def \ confusion\_matrix\_stats models (model, \ predictors, \ target, \ threshold=0.5):}
     To plot the confusion_matrix with percentages
    model: classifier
    predictors: independent variables
     target: dependent variable
     threshold: threshold for classifying the observation as class 1
    y\_pred = model.predict(predictors) > threshold
     cm = confusion_matrix(target, y_pred)
     labels = np.asarray(
         [
              ["{0:0.0f}".format(item) + "\n{0:.2%}".format(item / cm.flatten().sum())]
              for item in cm.flatten()
     ).reshape(2, 2)
    plt.figure(figsize=(6, 4))
     sns.heatmap(cm, annot=labels, fmt="")
    plt.ylabel("True label")
plt.xlabel("Predicted label")

→ Data Preparation for Modeling

    · We want to predict if bookings will be canceled
X = df.select_dtypes(include=['number'])
X = X.drop(["booking status"], axis=1)
Y = df["booking_status"]
X = pd.get_dummies(X, drop_first=True)
X = sm.add_constant(X)
# Splitting data in train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.30, random_state=1)
print("Shape of Training set : ", X_train.shape)
print("Shape of test set : ", X_test.shape)
→ Shape of Training set : (25392, 15)
Shape of test set : (10883, 15)
print("Percentage of classes in training set:")
print(y_train.value_counts(normalize=True))
print("Percentage of classes in test set:")
print(y_test.value_counts(normalize=True))
 → Percentage of classes in training set:
      booking status
          0.67064
0.32936
      Name: proportion, dtype: float64
Percentage of classes in test set:
      booking status
          0.67638
0.32362
      Name: proportion, dtype: float64

→ Building a Logistic Regression model

# fitting logistic regression model
logit = sm.Logit(y_train, X_train.astype(float))
lg = logit.fit(disp=False)
print(lg.summary())
                                   Logit Regression Results
      Dep. Variable: booking_status No. Observations:
                                                                                          25392
                               Logit
                                                   Df Residuals:
Df Model:
      Method:
                              Sat, 22 Feb 2025 Pseudo R-squ.: 15:05:44 Log-Likelihood:
      Date:
Time:
                                                                                         0.2737
      converged:
                                            True LL-Null:
                                                                                        -16091.
                                     nonrobust LLR p-value:
                                                                                                    [0.025
                                                   coef std err z
                                                                                                                      0.975]
                                                                                            P> | z |
                                                                                                     -2045.197 -1
                                                                108.550
                                                                                                                  -1619.690
                                                                                            0.000
                                                -1832.4436
                                                                             -16.881
      const
      const
no_of_adults
no_of_children
no_of_weekend_nights
no_of_week_nights
required_car_parking_space
                                                   0.1948
                                                                 0.034
                                                                               5.717
                                                     0.0384
                                                                   0.044
                                                                                0.874
                                                                                            0.382
                                                                                                         -0.048
                                                                                                                        0.125
                                                                               7.565
4.578
                                                     0.1415
                                                                   0.019
                                                                                            0.000
                                                                                                          0.105
                                                                                                                         0.178
                                                     0.0532
                                                                                            0.000
                                                                   0.012
                                                                                                          0.030
                                                                                                                        0.076
                                                   -1.3107
                                                                   0.134
                                                                               -9.806
                                                                                            9.999
                                                                                                         -1.573
                                                                                                                       -1.049
      lead_time
                                                     0.0123
                                                                               55.746
                                                                                             0.000
                                                                                                          0.012
                                                                                                                        0.013
      arrival_year
arrival_month
arrival_date
                                                                               16.849
                                                     0.9063
                                                                   0.054
                                                                                            0.000
                                                                                                          0.801
                                                                                                                        1.012
                                                                   0.006
0.002
                                                                               -4.544
1.021
                                                                                                         -0.039
-0.002
                                                    -0.0275
                                                                                             0.000
                                                                                                                        -0.016
                                                     0.0019
                                                                                             0.307
                                                                                                                        0.006
      repeated_guest
no_of_previous_cancellations
                                                   -2.2201
                                                                   0.526
                                                                               -4.225
                                                                                            9.999
                                                                                                         -3.250
                                                                                                                       -1.190
                                                                   0.092
                                                                                2.761
                                                                                                          0.074
      no_of_previous_bookings_not_canceled
avg_price_per_room
no_of_special_requests
                                                   -0.1978
                                                                   0.164
                                                                               -1.204
                                                                                             0.229
                                                                                                         -0.520
                                                                                                                         0.124
                                                                                            0.000
                                                                   0.027
                                                    -1.1064
                                                                              -41.488
                                                                                                         -1.159
                                                                                                                       -1.054
```

```
        Training performance:
        Accuracy
        Recall
        Precision
        F1
        Ⅲ

        0
        0.78379
        0.55494
        0.72414
        0.62835
```

print("Confusion matrix:")
confusion_matrix_statsmodels(lg, X_train, y_train)

 \longrightarrow Confusion matrix:

Checking Multicollinearity

• In order to make statistical inferences from a logistic regression model, it is important to ensure that there is no multicollinearity present in the data.

```
# Function to check VIF
def checking_vif(predictors):
    vif = pd.DataFrame()
    vif["feature"] = predictors.columns

vif["VIF"] = [
        variance_inflation_factor(predictors.values, i)
        for i in range(len(predictors.columns))
    ]
    return vif
```

checking_vif(X_train)

VIF	feature	
34866123.37597	const	0
1.21461	no_of_adults	1
1.17572	no_of_children	2
1.05287	no_of_weekend_nights	3
1.06931	no_of_week_nights	4
1.03415	required_car_parking_space	5
1.15845	lead_time	6
1.26424	arrival_year	7
1.24097	arrival_month	8
1.00486	arrival_date	9
1.56324	repeated_guest	10
1.37579	no_of_previous_cancellations	11
1.63420	no_of_previous_bookings_not_canceled	12
1.39658	avg_price_per_room	13
1.11675	no_of_special_requests	14

→ Drop high p-value

```
# initial list of columns
cols = X_train.columns.tolist()

# setting an initial max p-value
max_p_value = 1

while len(cols) > 0:
    # defining the train set
    x_train_aux = X_train[cols]

# fitting the model
model = sm.Logit(y_train, x_train_aux).fit(disp=False)

# getting the p-values and the maximum p-value
p_values = model.pvalues
max_p_value = max(p_values)

# name of the variable with maximum p-value
feature_with_p_max = p_values.idxmax()

if max_p_value > 0.05:
    cols.remove(feature_with_p_max)
```

```
else:
    break

selected_features = cols
print(selected_features)

['const', 'no_of_adults', 'no_of_weekend_nights', 'no_of_week_nights', 'required_car_parking_space', 'lead_time', 'arrival_wear', 'arrival_month', 'repeated_guest', 'no_of_

X_train1 = X_train[selected_features]
X_test1 = X_test[selected_features]

# fitting logistic regression model
logit1 = sm.logit(y_train, X_train1.astype(float))
lg1 = logit1.fit(disp=False)
```

-	Logit Regre	ssion Results	
Dep. Variable:	booking status	No. Observations:	25392
Model:		Df Residuals:	25380
Method:	MLE	Df Model:	11
Date:	Sat, 22 Feb 2025	Pseudo R-squ.:	0.2735
Time:	15:05:46	Log-Likelihood:	-11691.
converged:	True	LL-Null:	-16091.
Covariance Type:	nonrobust	LLR p-value:	0.000

coef	std err	z	P> z	[0.025	0.975]
-1828.8682	108.606	-16.840	0.000	-2041.732	-1616.005
0.1905	0.034	5.682	0.000	0.125	0.256
0.1429	0.019	7.656	0.000	0.106	0.179
0.0533	0.012	4.590	0.000	0.031	0.076
-1.3089	0.133	-9.805	0.000	-1.571	-1.047
0.0124	0.000	55.866	0.000	0.012	0.013
0.9046	0.054	16.807	0.000	0.799	1.010
-0.0280	0.006	-4.637	0.000	-0.040	-0.016
-2.6583	0.460	-5.774	0.000	-3.561	-1.756
0.2101	0.077	2.727	0.006	0.059	0.361
0.0181	0.001	32.838	0.000	0.017	0.019
-1.1046	0.027	-41.551	0.000	-1.157	-1.053
	-1828.8682 0.1905 0.1429 0.0533 -1.3089 0.0124 0.9046 -0.0280 -2.6583 0.2101 0.0181	-1828.8682 108.606 0.1905 0.034 0.1429 0.019 0.0533 0.012 -1.3889 0.133 0.0124 0.000 0.9046 0.054 -0.0280 0.006 -2.6583 0.460 0.2101 0.077 0.0181 0.001	-1828.8682 108.606 -16.840 0.1905 0.034 5.682 0.1429 0.019 7.656 0.0533 0.012 4.590 -1.3089 0.133 -9.805 0.0124 0.000 55.866 0.9046 0.054 16.807 -0.0280 0.006 -4.637 -2.6583 0.460 -5.774 0.2101 0.077 2.727 0.0181 0.001 32.838	-1828.8682 108.606 -16.840 0.000 0.1905 0.034 5.682 0.000 0.1429 0.019 7.656 0.000 0.0533 0.012 4.590 0.000 -1.3809 0.133 -9.805 0.000 0.0124 0.000 55.866 0.000 0.9046 0.054 16.807 0.000 -0.0280 0.006 -4.637 0.000 -2.6583 0.460 -5.774 0.000 0.2101 0.077 2.727 0.006 0.0181 0.001 32.838 0.000	-1828.8682 108.606 -16.840 0.000 -2041.732 0.1905 0.034 5.682 0.000 0.125 0.1429 0.019 7.656 0.000 0.106 0.0533 0.012 4.590 0.000 -1.571 0.0124 0.000 55.866 0.000 -1.571 0.0124 0.000 55.866 0.000 0.012 0.9046 0.054 16.807 0.000 0.799 -0.0280 0.006 -4.637 0.000 -0.040 -2.6583 0.460 -5.774 0.000 -3.561 0.2101 0.077 2.727 0.006 0.059 0.0181 0.001 32.838 0.000 0.017

Converting coefficients to odds

```
odds = np.exp(lg1.params)
# finding the percentage change
perc_change_odds = (np.exp(lg1.params) - 1) * 100
# removing limit from number of columns to display
pd.set_option("display.max_columns", None)
# adding the odds to a dataframe
pd.DataFrame({"Odds": odds, "Change_odd%": perc_change_odds}, index=X_train1.columns).T
```

₹		const	no_of_adults	no_of_weekend_nights	no_of_week_nights	required_car_parking_space	lead_time	arrival_year	arrival_month	repeated_guest	no_of_p
	Odds	0.00000	1.20985	1.15361	1.05479	0.27013	1.01244	2.47090	0.97240	0.07007	
	Change odd%	-100 00000	20 08540	15 361/10	5 // 7856	-79 08798	1 2///05	1/17 09079	-2 75000	-02 00204	
	4										•

Model performance evaluation

creating confusion matrix
confusion_matrix_statsmodels(lg1, X_train1, y_train)


```
print("Training performance:")
log_reg_model_train_perf = model_performance_classification_statsmodels(lg1, X_train1, y_train)
log_reg_model_train_perf
```

→ Training performance:


```
print("Testing performance:")
log_reg_model_test_perf = model_performance_classification_statsmodels(lg1, X_test1, y_test)
log_reg_model_test_perf
```

∨ ROC Curve and ROC-AUC

ROC-AUC on training set

```
logit_roc_auc_train = roc_auc_score(y_train, lg1.predict(X_train1))
fpr, tpr, thresholds = roc_curve(y_train, lg1.predict(X_train1))
plt.figure(figsize=(7, 5))
plt.plot(fpr, tpr, label="Logistic Regression (area = %0.2f)" % logit_roc_auc_train)
plt.plot([0, 1], [0, 1], "r--")
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("Receiver operating characteristic")
plt.slegend(loc="lower right")
plt.show()
```


Optimal threshold using AUC-ROC curve

```
# Optimal threshold as per AUC-ROC curve
# The optimal cut off would be where tpr is high and fpr is low
fpr, tpr, thresholds = roc_curve(y_train, lg1.predict(X_train1))

optimal_idx = np.argmax(tpr - fpr)
optimal_threshold_auc_roc = thresholds[optimal_idx]
print(optimal_threshold_auc_roc)
```

0.33084253659807417

Checking model performance on training set

```
# creating confusion matrix
confusion_matrix_statsmodels(
    lg1, X_train1, y_train, threshold=optimal_threshold_auc_roc
)
```



```
# checking model performance for this model
log_reg_model_train_perf_threshold_auc_roc = model_performance_classification_statsmodels(
    lg1, X_train1, y_train, threshold=optimal_threshold_auc_roc )
print("Training performance:")
log_reg_model_train_perf_threshold_auc_roc
```


ROC-AUC on test set

```
logit_roc_auc_train = roc_auc_score(y_test, lg1.predict(X_test1))
fpr, tpr, thresholds = roc_curve(y_test, lg1.predict(X_test1))
plt.figure(figsize=(7, 5))
plt.plot(fpr, tpr, label="Logistic Regression (area = %0.2f)" % logit_roc_auc_train)
plt.plot([0, 1], [0, 1], "r--")
plt.xlim([0.0, 1.0])
plt.xlim([0.0, 1.0])
plt.xlabel("False Positive Rate")
plt.tylabel("True Positive Rate")
plt.title("Receiver operating characteristic")
plt.legend(loc="lower right")
plt.show()
```


Optimal threshold using AUC-ROC curve

```
# Optimal threshold as per AUC-ROC curve
# The optimal cut off would be where tpr is high and fpr is low
fpr, tpr, thresholds = roc_curve(y_test, lg1.predict(X_test1))

optimal_idx = np.argmax(tpr - fpr)
optimal_threshold_auc_roc = thresholds[optimal_idx]
print(optimal_threshold_auc_roc)

0.3758934440156464
```

Checking model performance on testing set

```
# creating confusion matrix
confusion_matrix_statsmodels(
    lg1, X_test1, y_test, threshold=optimal_threshold_auc_roc
)
```



```
# checking model performance for this model
log_reg_model_test_perf_threshold_auc_roc = model_performance_classification_statsmodels(
    lg1, X_test1, y_test, threshold=optimal_threshold_auc_roc
)
print("Testing performance:")
log_reg_model_test_perf_threshold_auc_roc

Testing performance:

Accuracy Recall Precision F1

0 0.77773 0.69989 0.64411 0.67084
```

setting the threshold
optimal_threshold_curve = 0.42

0.0

0.0

Checking model performance on training set

 $\label{thm:confusion_matrix} \mbox{$\tt # creating confusion_matrix_statsmodels(lg1, X_train1, y_train, threshold_eptimal_threshold_curve)$}$

0.8

0.6

Threshold

1.0

0.2

log_reg_model_train_perf_threshold_curve = model_performance_classification_statsmodels(
 lg1, X_train1, y_train, threshold=optimal_threshold_curve
)
print("Training performance:")
log_reg_model_train_perf_threshold_curve

Checking model performance on test set

creating confusion matrix
confusion_matrix_statsmodels(lg1, X_test1, y_test, threshold=optimal_threshold_curve)

```
₹
                                                                          - 6000
                       6242
57.36%
                                                  1119
10.28%
                                                                           5000
       True label
                                                                           4000
                                                                           3000
                       1231
11.31%
                                                   2291
21.05%
                                                                           2000
                          0
                                                     1
                                 Predicted label
log reg model test perf threshold curve = model performance classification statsmodels(
    lg1, X_test1, y_test, threshold=optimal_threshold_curve
print("Test performance:")
log_reg_model_test_perf_threshold_curve

→ Test performance:
         Accuracy Recall Precision
                                                     \blacksquare
          0.78407 0.65048
                                0.67185 0.66099

    Final Model Summary

# training performance comparison
models_train_comp_df = pd.concat(
    Γ
         log_reg_model_train_perf.T,
         log_reg_model_train_perf_threshold_auc_roc.T,
log_reg_model_train_perf_threshold_curve.T,
    axis=1,
models_train_comp_df.columns = [
     \hbox{"Logistic Regression-default Threshold",}\\
     "Logistic Regression-0.37 Threshold",
     "Logistic Regression-0.42 Threshold",
print("Training performance comparison:")
models_train_comp_df
\longrightarrow Training performance comparison:
                  Logistic Regression-default Threshold Logistic Regression-0.37 Threshold Logistic Regression-0.42 Threshold
                                                                                                                                               \blacksquare
                                                    0.78328
                                                                                            0.75650
                                                                                                                                    0.77457
       Accuracy
                                                                                                                                               ıl.
        Recall
                                                    0.55267
                                                                                            0.74734
                                                                                                                                    0.63649
       Precision
                                                    0.72400
                                                                                            0.60562
                                                                                                                                    0.66479
                                                    0.62684
                                                                                            0.66906
                                                                                                                                    0.65034
 Next steps: Generate code with models_train_comp_df View recommended plots
                                                                                          New interactive sheet
# testing performance comparison
models_test_comp_df = pd.concat(
         log_reg_model_test_perf.T,
log_reg_model_test_perf_threshold_auc_roc.T,
log_reg_model_test_perf_threshold_curve.T,
    axis=1,
models_test_comp_df.columns = [
    "Logistic Regression-default Threshold",
     "Logistic Regression-0.37 Threshold",
     "Logistic Regression-0.42 Threshold",
print("Test set performance comparison:")
models_test_comp_df
 Test set performance comparison:
                 Logistic Regression-default Threshold Logistic Regression-0.37 Threshold Logistic Regression-0.42 Threshold
                                                                                                                                               0.79059
                                                                                            0.77773
                                                                                                                                    0.78407
                                                                                                                                               ıl.
                                                    0.56360
                                                                                            0.69989
                                                                                                                                    0.65048
        Recall
       Precision
                                                    0.72791
                                                                                            0.64411
                                                                                                                                    0.67185
          F1
                                                    0.63530
                                                                                            0.67084
                                                                                                                                    0.66099
 Next steps: Generate code with models_test_comp_df  

• View recommended plots  

New interactive sheet
```

Building a Decision Tree model

```
X = df.select_dtypes(include=['number'])
X = X.drop(["booking_status"], axis=1)
Y = df["booking_status"]
X = pd.get_dummies(X, drop_first=True)
X = sm.add_constant(X)
# Splitting data in train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.30, random_state=1)
print("Shape of Training set : ", X_train.shape)
print("Shape of test set : ", X_test.shape)
print("Percentage of classes in training set:")
print(y_train.value_counts(normalize=True))
print("Percentage of classes in test set:")
print(y_test.value_counts(normalize=True))
     Shape of Training set: (25392, 15)
Shape of test set: (10883, 15)
Percentage of classes in training set:
      booking status
          0.67064
          0.32936
      Name: proportion, dtype: float64
Percentage of classes in test set:
      booking status
          0.67638
          0.32362
      Name: proportion, dtype: float64
Functions
#function copied from "Session Notebook - Machine Failure Prediction" session
# defining a function to compute different metrics to check performance of a classification model built using sklearn def model_performance_classification_sklearn(model, predictors, target):
    Function to compute different metrics to check classification model performance
    model: classifier
    predictors: independent variables
    target: dependent variable
    # predicting using the independent variables
    pred = model.predict(predictors)
    acc = accuracy_score(target, pred) # to compute Accuracy
    recall = recall_score(target, pred) # to compute Recall
precision = precision_score(target, pred) # to compute Precision
    f1 = f1_score(target, pred) # to compute F1-score
    # creating a dataframe of metrics
    df_perf = pd.DataFrame(
         {"Accuracy": acc, "Recall": recall, "Precision": precision, "F1": f1,},
         index=[0],
    return df_perf
#function copied from "Session Notebook - Machine Failure Prediction" session
def confusion_matrix_sklearn(model, predictors, target):
    To plot the confusion_matrix with percentages
    model: classifier
    predictors: independent variables
    target: dependent variable
    y_pred = model.predict(predictors)
    cm = confusion_matrix(target, y_pred)
    labels = np.asarray(
              ["\{0:0.0f\}".format(item) + "\n\{0:.2\%\}".format(item / cm.flatten().sum())]
              for item in cm.flatten()
    ).reshape(2, 2)
    plt.figure(figsize=(6, 4))
sns.heatmap(cm, annot=labels, fmt="")
    plt.ylabel("True label")
    plt.xlabel("Predicted label")
model = DecisionTreeClassifier(criterion="gini", random_state=1)
model.fit(X_train, y_train)
<del>→</del>
                DecisionTreeClassifier
      DecisionTreeClassifier(random_state=1)
Checking performance on training set
```

confusion_matrix_sklearn(model, X_train, y_train)


```
decision_tree_perf_train = model_performance_classification_sklearn(
    model, X_train, y_train
)
decision_tree_perf_train
```

∑ *		Accuracy	Recall	Precision	F1	
	0	0.99354	0.98529	0.99505	0.99015	1

Checking performance on test set

confusion_matrix_sklearn(model, X_test, y_test)


```
decision_tree_perf_test = model_performance_classification_sklearn(
    model, X_test, y_test
)
decision_tree_perf_test
```


Checking importance feature

```
feature_names = list(X_train.columns)
importances = model.feature_importances_
indices = np.argsort(importances)
print(feature_names)
```

```
('const', 'no_of_adults', 'no_of_children', 'no_of_weekend_nights', 'no_of_week_nights', 'required_car_parking_space', 'lead_time', 'arrival_year', 'arrival_month', 'arrival_weekend_nights', 'required_car_parking_space', 'lead_time', 'arrival_year', 'arrival_month', 'arrival_weekend_nights', 'required_car_parking_space', 'lead_time', 'arrival_year', 'arrival_month', 'arrival_weekend_nights', 'required_car_parking_space', 'lead_time', 'arrival_year', 'arrival_weekend_nights', 'required_car_parking_space', 'lead_time', 'arrival_year', 'arrival_month', 'arrival_weekend_nights', 'required_car_parking_space', 'lead_time', 'arrival_year', 'arrival_month', 'arrival_weekend_nights', 'required_car_parking_space', 'lead_time', 'arrival_year', 'arrival_weekend_nights', 'required_car_parking_space', 'lead_time', 'lead_
```

```
plt.figure(figsize=(8, 8))
plt.title("Feature Importances")
plt.barh(range(len(indices)), importances[indices], color="violet", align="center")
plt.yticks(range(len(indices)), [feature_names[i] for i in indices])
plt.xlabel("Relative Importance")
plt.show()
```


Do we need to prune the tree?

```
# Choose the type of classifier.
estimator = DecisionTreeClassifier(random_state=1)

# Grid of parameters to choose from
parameters = {
    "class_weight": [None, "balanced"],
    "max_depth": nn.arange(2, 7, 2),
    "max_leaf_nodes": [50, 75, 150, 250],
    "min_samples_split": [10, 30, 50, 70],
}

# Type of scoring used to compare parameter combinations
acc_scorer = make_scorer(recall_score)

# Run the grid search
grid_obj = GridSearchCV(estimator, parameters, scoring=acc_scorer, cv=5)
grid_obj = grid_obj.fit(X_train, y_train)

# Set the clf to the best combination of parameters
estimator = grid_obj.best_estimator_

# Fit the best algorithm to the data.
estimator.fit(X_train, y_train)

DecisionTreeClassifier

DecisionTreeClassifier

DecisionTreeClassifier

DecisionTreeClassifier(class_weight='balanced', max_depth=2, max_leaf_nodes=50,
    min_samples_split=10, random_state=1)
```

Checking performance on training set

Start coding or $\underline{\text{generate}}$ with AI.

 $confusion_matrix_sklearn(estimator, X_train, y_train)$

Checking performance on test set

confusion_matrix_sklearn(estimator, X_test, y_test)

 $\label{thm:continuity} decision_tree_tune_perf_test = model_performance_classification_sklearn(estimator, X_test, y_test) \\ decision_tree_tune_perf_test$

Visualizing the Decision Tree

```
plt.figure(figsize=(20, 10))
out = tree.plot_tree(
    estimator,
    feature_names=feature_names,
    filled=True,
    fontsize=0,
    node_ids=False,
    class_names=None,
)
# below code will add arrows to the decision tree split if they are missing
for o in out:
    arrow = o.arrow_patch
    if arrow is not None:
        arrow.set_edgecolor("black")
        arrow.set_edgecolor("black")
        arrow.set_edgecolor()
plt.show()
```


4

Decision Tree (Post pruning)

Total impurity of leaves vs effective alphas of pruned tree

```
clf = DecisionTreeClassifier(random_state=1, class_weight="balanced")
path = clf.cost_complexity_pruning_path(X_train, y_train)
ccp_alphas, impurities = abs(path.ccp_alphas), path.impurities
```

pd.DataFrame(path)

plt.show()

→

_		ccp_alphas	impurities			
	0	0.00000	0.00918			
	1	0.00000	0.00918			
	2	0.00000	0.00918			
	3	0.00000	0.00918			
	4	0.00000	0.00918			
	2084	0.00980	0.36112			
	2085	0.01099	0.37210			
	2086	0.01779	0.38990			
	2087	0.02893	0.41882			
	2088	0.08118	0.50000			
	2089 rows × 2 columns					

fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(ccp_alphas[:-1], impurities[:-1], marker="o", drawstyle="steps-post")
ax.set_xlabel("effective alpha")
ax.set_ylabel("total impurity of leaves")
ax.set_title("Total Impurity vs effective alpha for training set")

Total Impurity vs effective alpha for training set

0.4

0.4

0.00

0.00

0.005

0.010

0.015

0.020

0.025

0.030

```
ax[0].set_title("Number of nodes vs alpha")
ax[1].lot((cp_alphas, depth, marker="o", drawstyle="steps-post")
ax[1].set_xlabel("alpha")
ax[1].set_ylabel("depth of tree")
ax[1].set_title("Depth vs alpha")
{\tt fig.tight\_layout()}
<del>____</del>
                                                                             Number of nodes vs alpha
            7000
           6000
        number of nodes
           5000
           4000
           3000
           2000
            1000
                0
                      0.000
                                              0.005
                                                                      0.010
                                                                                              0.015
                                                                                                                      0.020
                                                                                                                                              0.025
                                                                                                                                                                      0.030
                                                                                    Depth vs alpha
              30
              25
           depth of tree
              10
```

F1 Score vs alpha for training and testing sets

0.000

0

```
f1_train = []
for clf in clfs:
    pred_train = clf.predict(X_train)
    values_train = f1_score(y_train, pred_train)
    f1_train.append(values_train)

f1_test = []
for clf in clfs:
    pred_test = clf.predict(X_test)
    values_test = f1_score(y_test, pred_test)
    f1_test.append(values_test)

fig, ax = plt.subplots(figsize=(15, 5))
ax.set_xlabel("alpha")
ax.set_ylabel("F1 Score")
ax.set_ylabel("F1 Score vs alpha for training and testing sets")
ax.plot(ccp_alphas, f1_train, marker="o", label="train", drawstyle="steps-post")
ax.legend()
plt.show()
```

0.005

0.010

0.015

alpha

0.020

0.025

0.030

index_best_model = np.argmax(f1_test)
best_model = clfs[index_best_model]
print(best_model)

DecisionTreeClassifier(ccp_alpha=7.329852678870992e-05, class_weight='balanced', random_state=1)

Model Performance Comparison and Conclusions

Checking performance on training set

confusion_matrix_sklearn(best_model, X_train, y_train)

 $\label{thm:continuous} \begin{tabular}{ll} decision_tree_post_perf_train = model_performance_classification_sklearn(best_model, X_train, y_train) \\ decision_tree_post_perf_train \\ \end{tabular}$

Checking performance on test set

confusion_matrix_sklearn(best_model, X_test, y_test)

 $\label{thm:continuity} \mbox{decision_tree_post_perf_test} = \mbox{model_performance_classification_sklearn(best_model, X_test, y_test)} \\ \mbox{decision_tree_post_perf_test}$

Post-pruned tree

#print decision tree with max_depth=3 to accommodate image size
plt.figure(figsize=(20, 10))
out = tree.plot_tree(
 best_model,
 feature_names=feature_names,
 filled=True,