Verwendung von perfluoralkylhaltig n Metallkomplexen als Kontrastmittel im MR-Imaging zur Darstellung von Intravasalen Thromben

5

10

15

20

25

30

Die Erfindung betrifft den in den Patentansprüchen gekennzeichneten Gegenstand, das heißt die Verwendung von perfluoralkylhaltigen Metallkomplexen, die eine kritische Mizellbildungskonzentration $< 10^{-3}$ mol/l, einen hydro- dynamischen Mizelldurchmesser (2 Rh) > 1 nm und eine Protonen-Relaxivity im Plasma (R¹) > 10 l /mmol·s aufweisen, als Kontrastmittel im MR-Imaging zur Darstellung von intravasalen Thromben.

Unter Thrombose versteht man die Bildung eines Blutgerinnsels (Thrombus) in einem Blutgefäß und die dadurch hervorgerufene Einengung bzw. Verstopfung dieses Gefäßes. Am häufigsten finden sich Thrombosen in den Venen (Phlebothrombose). Betroffen sind hier bevorzugt die Venen der unteren Körperhälfte (tiefe Bein- und Beckenvenen). Andere Teile des Kreislaufsystems können jedoch ebenfalls betroffen sein: Herzklappen, Herzspitze, Herzkranzgefäße, Hirn-gefäße, Arterien im Bereich des Darmes, Beinarterien sowie Venen von Bein und Becken, des Mastdarms (Hämorrhoiden) und des Armes. Durch Verschleppung des Thrombus kann es zu einer Lungenembolie kommen, die im ungünstigsten Fall tödlich endet.

Thrombosen der tiefen Leitvenen stellen ein großes sozialmedizinisches Problem dar. In Deutschland werden pro Jahr 60.000 Menschen wegen Thrombosen und ihrer Folgeerscheinungen behandelt. In den USA tritt jährlich bei 48 von 100.000 Einwohnern eine akute Thrombose der tiefen Leitvenen des Beines und des Beckens auf. Etwa 12% aller stationären Patienten entwickeln klinisch erkannte tiefe Bein- oder Beckenvenenthrombosen. Etwa 20 bis 30% aller allgemeinchirurgischer Patienten und mehr als 50% aller Patienten nach orthopädisch/unfallchirurgischen Eingriffen erleiden tiefe Beinvenenthrombosen, wobei bei ca. 1% dieser Patienten eine Lungenembolie mit klinischer Symptomatik auftritt (Leitlinien zu Diagnostik und Therapie in der Gefäßchirurgie,

15

20

25

30

herausgegeben vom Vorstand der Dt. Ges. f. Gefäßchirurgie; Deutscher Ärzteverlag, Köln 1998).

Die entscheidenden, eine Thrombose verursachenden Mechanismen, wurden schon 1856 von Rudolf Virchow beschrieben und als Virchow'sche Trias nach ihm benannt. Dabei handelt es sich um eine Schädigung der Gefäßwand, die Verlangsamung des Blutflusses und eine erhöhte Gerinnungsneigung des Blutes infolge einer Veränderung der Blutzusammensetzung. Während für die venöse Thrombose (Phlebothrombose) die Verlangsamung des Blutflusses und eine erhöhte Gerinnungsneigung im Vordergrund stehen, ist bei der Entstehung der selteneren arteriellen Thrombose die Schädigung der Gefäßwand, meist als Folge der Arteriosklerose, mit der Ablagerung von Blutplättchen (Thrombozyten) von entscheidender Bedeutung.

Der Thrombus bleibt nur wenige Tage in seiner ursprünglichen Form erhalten. Nach einem Strukturwandel ist er in seinem Endzustand narbig umgewandelt und das Gefäß teilweise wieder durchgängig (rekanalisiert). Das Ziel der Therapie ist in erster Linie die Wiederherstellung des Blutflusses. Diese Therapie ist vom Alter des Thrombus abhängig und nur innerhalb der ersten 10 Tage nach Entstehung des Thrombus erfolgreich. Die Wiederherstellung des Blutflusses kann zum einen durch eine medikamentöse Auflösung der Thromben (Thrombolyse) erfolgen. Zum anderen stehen chirurgische Methoden zur Verfügung, entweder die Beseitigung des Verschlusses durch Entfernung des Gerinnsels (Thrombektomie) oder die Überbrückung des verschlossenen Gefäßabschnittes durch eine Gefäßplastik (Bypass). In zweiter Linie zielt die Therapie der Thrombose darauf ab, ein weiteres Wachstum des Thrombus zu verhindern und Spätfolgen bzw. Komplikationen zu vermeiden.

Die Diagnose von Thrombosen in der klinischen Praxis erfolgt hauptsächlich durch bildgebende Verfahren. Eine sehr gut geeignete Methode zum Nachweis einer Thrombose sowie zur Feststellung ihrer Ausdehnung ist die röntgenologische Kontrastmitteluntersuchung (Phlebographie). Nachteile sind die Exposition mit ionisierenden Strahlen und die mit jodhaltigen Kontrastmitteln verbundenen Nebenwirkungen. Daher ist die initiale Untersuchungsmethode bei

15

20

30

Verdacht auf tiefe Beinvenenthrombose in vielen klinischen Einrichtungen die farbkodierte Duplexsonographie (B-Scan plus PW-Doppler), die jedoch extrem untersucherabhängig ist. Weitere nicht-invasive, bildgebende Verfahren zur Darstellung von luminalen Gefäßveränderungen sind die Arteriographie, CT-Angiographie und MR-Angiographie, sowie Methoden der Nuklearmedizin.

So können Thromben durch mit Indium-111 markierten Blutkörperchen als imaging agens dargestellt werden (Thakur et al., Thromb. Res. 9: 345, 1976; Powers et al., Neurology 32: 938, 1982). Auch die Jodisotope J-125 und J-131 sind für Imagingzwecke geeignet (Pang, US 5,011,686, 1991). Eine weite Verbreitung als label hat das Technetiumisotop Tc-99m. Mit ihm werden Peptide und besonders monoklonale Antikörper gelabelt (Berger, US 5,024,829, 1991; Dean et al., US 4,980,148, 1990; US 5,508,020, 1996; US 5,645,815, 1997; WO 00/61195; US 6,171,578, 2001; EP 1171166, 2002). Verbindungen, die sowohl für die Szintigraphie als auch für das MR-imaging geeignet sind, werden von Abelman (US 5,656,600, 1997) beschrieben. DuPont Pharmaceuticals beschreibt in WO 01/77102 Konjugate aus Metallkomkomplex und Pyridinonen, die als Kontrastmittel zur Diagnose von Thrombosen mit Hilfe der Szintigraphie, der Computertomographie oder des MR-imaging geeignet sind.

Einen weiten Umfang hat die Literatur zur MR-Angiographie zur Darstellung intravasaler Thromben. In der Anmeldung WO 95/09013 beschreibt Cytogen Polypeptide als Komplexbildner für paramagnetische Metallionen.

Nycomed nennt in der Anmeldung WO 95/24225 polymere Komplexbildner für das Thrombus-imaging. An ein Backbone – beispielsweise Polylysin – sind Komplexbildner wie DOTA oder DO3A gebunden.

Sandoz beschreibt in der WO 95/20603 paramagnetische DTPA-Konjugate, die für das Thrombus-imaging geeignet sind.

In dem Barne-Jewish Hospital Patent US 5,780,010 werden spezifisch bindende (Biotin-Avidin-Komplexe) Konjugate als Kontrastmittel für das Thrombus-imaging beschrieben. Auch das Burnham Institute beschreibt in WO 98/16256 spezifisch (an Integrin) bindende Reste, die ein Thrombus-imaging ermöglichen. In diesen

20

25

Konjugaten sind paramagnetische Komplexe von DTPA, EDTA oder DOTA als signalgebende Reste enthalten.

Konjugate aus einem Guanidinderivat und paramagnetischen Komplexen werden von 3-Dimensional Pharmaceuticals als Kontrastmittel für das Thrombus-imaging in WO 01/04117 beschrieben.

Konjugate aus Komplexen der DTPA, DOTA oder DO3A und Polypeptiden werden von EPIX in WO 01/09188 und EP 1203026 als imaging agents für das Thrombus-imaging beschrieben.

In EP 885545 nennt Pilgrimm superparamagnetische Eisenoxide als Kontrastmittel für die Thrombosediagnostik mit Hilfe des MRI.

Ebenfalls partikulär (USPIO) ist das MR-Kontrastmittel, das in WO 02/22011 zur Diagnose von Thromben beschrieben wird.

Nachteilig bei den Konjugaten ist, dass sie neben dem diagnostisch wirksamen Teil einen weiteren Bestandteil (Peptid oder Pharmakon) enthalten, so dass Nebenwirkungen, wie beispielsweise eine verringerte Verträglichkeit, öfters auftreten.

Von den partikulären Kontrastmitteln wird die Thrombusdarstellung von EP 885545 zwar beschrieben, aber nicht experimentell belegt.

In WO 02/22011 werden Bilder gezeigt, allerdings werden diese nach T2* gewichteten Flash-Sequenzen erhalten, so dass die Thromben nach Kontrastmittelgabe nur signalarm sind.

Die Untersuchung des Patientenblutes auf das Vorhandensein einer erhöhten Konzentration von D-Dimeren hat in jüngerer Zeit größere klinische Bedeutung erlangt. Nach eingehenderen Studien schließt eine Konzentration von weniger als 500 μg/l D-Dimeren im Blut das Vorhandensein einer Thromboembolie mit sehr hoher Wahrscheinlichkeit aus (Wells PS, Brill-Edwards P, Stevens P, et al. A novel and rapid whole blood assay for D-dimer in patients with clinical suspected deep vein thrombosis. Circulation 1995; 91: 2184 -2187). Die Spezifität des D-

15

25

30

Dimer-Nachweises ist aber so gering, dass aus einer Erhöhung der Konzentration im Blut nicht auf eine Thrombose geschlossen werden kann.

Die Bildgewinnung mit Hilfe der Kernmagnetischen Resonanz (MRI) ist ein modernes, nicht-invasives radiologisches Verfahren, das mit einer sehr guten räumlichen und zeitlichen Auflösung die Darstellung von physiologischen und pathophysiologischen Strukturen ermöglicht. In der Diagnostik der tiefen Beinund Beckenvenenthrombose ist die MR-Venographie (MRV) als Alternative zur Phlebographie und farbkodierten Dopplersonographie (FKDS) im Bereich der suprapoplitealen Venen seit längerem methodisch etabliert. In den letzten Jahren wurden auch Studien zur MRV der Unterschenkelvenen publiziert.

Grundsätzlich lässt sich aus dem Datensatz einer kontrastverstärkten 3D-MR-Angiographie das venöse System durch Perfusionsphasensubtraktion selektiv darstellen und nach Injektion eines verdünnten paramagnetischen Kontrastmittels über eine Fußrückenvene direkt visualisieren. Bei der MR Angiographie mit herkömmlichen, extrazellulären, paramagnetischen Substanzen wird nicht immer ein homogener Gefäßkontrast erzielt, was im Einzelfall eine Beurteilung erschwert. Mit dem erwarteten Einsatz höher konzentrierter Kontrastmittel oder sog. » Blood P ool A gents« k önnte jedoch die schnellere, kontrastmittelgestützte 3D-MRA von Vorteil sein. Mit T2-Turbo-Spinecho (TSE)- und Time-of-Flight (TOF)-Sequenzen (ohne Kontrastmittel) lässt sich auch Niederfeldtomographen ein ausreichendes Signalniveau erzielen (König C. et al., MR-Venographie am offenen Niederfeldtomographen unter Verwendung manueller Flussaugmentation; Rofo, Fortschr. Geb. Röntgenstr. Neuen Bildgeb. Verfahr. 2001; 173: 810-814). Fluss-sensitive MRA-Techniken sind dagegen für die Diagnostik von Thrombosen wenig geeignet, da in Venen, insbesondere in solchen mit einer Thrombose, die Flussgeschwindigkeit im nicht-thrombosierten Anteil oft zu gering ist.

Die Verwendung spezifischer Kontrastmittel mit selektiver Anreicherung in bestimmten Geweben und Organen könnte den diagnostischen Wert der MR-Bildgebung bedeutend erhöhen. Kontrastmittelzubereitungen mit selektiver Anreicherung in intravasalen Thromben könnten Lokalisation und Grad der

Erkrankung zu einem frühen Zeitpunkt erfassen und damit eine zielgerichtete Therapie und Prophylaxe ermöglichen.

Es besteht daher weiterhin das Bedürfnis nach einem verträglichen, leistungsstarken Kontrastmittel zur Darstellung von arteriellen und venösen Thrombosen.

Aufgabe der vorliegenden Erfindung war es daher, Kontrastmittel für die Darstellung von intravasalen Thromben im MR-Imaging zur Verfügung zu stellen, die die Anforderungen nach selektiver Anreicherung

10 hoher Verträglichkeit starkem Enhancement vollständiger Ausscheidung guter Wasserlöslichkeit erfüllen.

- 15 Es wurde nun gefunden, dass überraschenderweise perfluoralkylhaltige Metallkomplexe, die eine kritische Mizellbildungskonzentration < 10⁻³ mol/l, einen hydrodynamischen Mizelldurchmesser (2 Rh > 1 nm) und eine Protonen-Relaxivity im Plasma (R¹) > 10 l/mmol·s aufweisen, als Kontrastmittel im MR-Imaging zur Darstellung von intravasalen Thromben sehr gut geeignet sind.
- Verbindungen mit diesen Eigenschaften sind bereits in der WO 02/13874 als diagnostische Mittel für das Plaque-imaging mit Hilfe der MR-Technik beschrieben worden.

Die MR-Aufnahmen zeigen aber deutlich, dass Plaques und Thromben klar voneinander unterscheidbar sind. Dieses ist deshalb so wichtig, da Thromben in jungem Stadium mobil sein können und zu letal verlaufenden Embolien führen können.

Für die folgenden Versuche wurden die Gadoliniumkomplexe eingesetzt, da das Gadolinium von allen paramagnetischen Ionen den größten Einfluß auf die Signalverstärkung im MRI hat.

10

15

20

25

In einem in-vitro-Test (Bindung an ein Fibrin-Gel) konnte nachgewiesen werden, dass die erfindungsgemäßen Verbindungen bei einer Konzentration von 0.01 mmol Gd/l zu 79 % und bei einer Konzentration von 0.1 mmol Gd/l zu 39 % an das Fibrin-Gel binden und so eine sichere Unterscheidung zu Plaques ermöglichen.

Daneben wurde auch das Kontrastverhalten der erfindungsgemäßen Verbindungen in-vivo untersucht. In Kaninchen mit photochemisch induziertem Thrombus (PIT; i.v.-Injektion von Rose-Bengal und Bestrahlung mit Xenon-Licht) konnte zu verschiedenen Zeitpunkten nach intravenöser Applikation von 0.1 mmol Gd/kg Körpergewicht erfindungsgemäßer Verbindung (2 bis 48 h p.i.) mit T1-gewichteten Sequenzen ein deutliches Enhancement im induzierten Thrombus beobachtet werden. Zum Zeitpunkt 24 h p.i. war die Gadolinium-Konzentration im Thrombus ca. 4-mal höher verglichen zum Blut.

Für die MRI-Bildgebung werden im Thrombus, wo die Anreicherung der Verbindung erfolgt, Gadoliniumkonzentrationen von mindestens 50 µmol/I und höchstens 2500 µmol/I benötigt. Die Bildgebung kann nach 15 Minuten oder bis zu 48 Stunden nach Injektion der erfindungsgemäßen Verbindungen erfolgen. Da mit den erfindungsgemäßen Gadoliniumkomplexen vor allem die T1-Relaxationszeiten des Gewebes beeinflusst werden, sind T1-gewichtete Sequenzen am besten in der Lage, ein Enhancement im Thrombus nachzuweisen.

Als für die erfindungsgemäße Verwendung geeignete perfluoralkylhaltige Metallkomplexe werden amphiphile Verbindungen verstanden, die als unpolaren Teil eine Perfluoralkylseitenkette im Molekül aufweisen, die ggf. über einen lipophilen Linker mit dem Gesamtmolekül verbunden ist. Der polare Teil der erfindungsgemäßen Verbindungen wird durch ein oder mehrere Metallkomplexe und gegebenenfalls vorhandene weitere polare Gruppen gebildet.

In wässrigen Systemen zeigen diese amphiphilen Moleküle die für klassische Tenside (wie z.B. Natriumdodecylsulfat, SDS) charakteristischen Eigenschaften. So setzen sie die Oberflächenspannung des Wassers herab. Durch Tensiometrie

15

20

25

30

lässt sich die sogenannte CMC (Kritische Mizellbildungskonzentration in mol/l) bestimmen. Hierzu wird die Oberflächenspannung in Abhängigkeit zu der Konzentration des zu vermessenden Stoffes bestimmt. Die CMC lässt sich aus dem Verlauf der erhaltenen Funktion Oberflächenspannung (c) ausrechnen. Die kritische Mizellbildungskonzentration der erfindungsgemäßen Verbindungen muß < 10⁻³ mol/l sein, vorzugsweise < 10⁻⁴ mol/l.

Die erfindungsgemäßen amphiphilen Verbindungen sind in Lösung assoziiert und liegen als Aggregate vor. Die Größe (2 Rh) derartiger Aggregate (z.B. Mizellen, Stäbchen, Oblaten etc.) lässt sich mit Hilfe der Photon-Correction-Spectroscopy (PCS) bestimmen.

Als zweites Kriterium dient daher der hydrodynamische Mizelldurchmesser 2 Rh, der > 1 nm sein muß. Besonders sind erfindungsgemäß solche perfluoralkylhaltigen Metallkomplexe geeignet, deren 2 Rh ≥ 3 nm b eträgt, ganz besonders bevorzugt > 4 nm.

Sowohl die Bestimmung der CMC als auch die Photonenkorrelationsspektroskopie werden in H.-D. Dörfler, "Grenzflächen- und Kolloidchemie", Weinheim, New York, Basel, Cambridge, Tokyo, VSH 1994 beschrieben.

Als drittes Kriterium dient die Protonen-Relaxivity in Plasma (R¹) b ei 40°C und einer Feldstärke von 0,47 Tesla. Die Relaxivity, die in [I/mmol·s] angegeben wird, ist das quantitative Maß für die Verkürzung der Relaxationszeit T¹ der Protonen. Für den erfindungsgemäßen Zweck muß die Relaxivity möglichst hoch sein und > 10 I/mmol·s betragen, vorzugsweise > 13 I/mmol·s, besonders bevorzugt > 15 I/mmol·s.

Die Relaxivity R¹ [I/mmol·s] der erfindungsgemäßen MR-Kontrastmittel wurde mit dem Gerät Minispec P 20 der Fa. Bruker bestimmt. Die Messungen wurden bei 40 °C und einer Feldstärke von 0,47 Tesla durchgeführt. Von jeder T1-Sequenz: 180°-TI –90°, Inversion Recovery, wurden 8 Meßpunkte aufgenommen. Als

Medium diente Rinderplasma der Fa. Kraeber. Die Kontrastmittelkonzentrationen [mmol/l] lagen in den Ansätzen zwischen 0,30 und 1,16.

In einer Ausführungsform der vorliegenden Erfindung werden als bevorzugte Verbindungen die Verbindungen der allgemeinen Formel I gemäß der Ansprüche 8 bis 11 eingesetzt. Dabei handelt es sich um bekannte Verbindungen, die in WO 97/26017 beschrieben sind. Auch deren Herstellung kann dieser WO-Schrift entnommen werden. Überraschenderweise hat sich gezeigt, dass diese Verbindungen auch als MRI-Kontrastmittel zur Darstellung von Thromben sehr gut geeignet sind. Als ganz besonders bevorzugte Verbindungen werden die Metallkomplexe MK 2, 3 und 4 sowie MK 8, 9, 10 und 11 (vgl. auch Tabelle 1) eingesetzt.

In einer weiteren Ausführungsform der vorliegenden Erfindung werden als bevorzugte Verbindungen solche der allgemeinen Formel Ia gemäß der Ansprüche 12 bis 21 eingesetzt. Diese Verbindungen sind bekannt und in WO 99/01161 beschrieben. Ihre Verwendung als MRI-Kontrastmittel zur Darstellung von Thromben wurde bisher noch nicht beschrieben. Von diesen Verbindungen kommt ganz besonders bevorzugt der Metallkomplex MK 12 (vgl. Tabelle 1) zur Anwendung.

In einer weiteren bevorzugten Ausführungsform der Erfindung können die makrocyclischen Perfluoralkylverbindungen der allgemeinen Formel Ib

$$K-N-L^{1}-R^{F}$$
 (Ib)

worin

25 K einen Komplexbildner oder einen Metallkomplex der allgemeinen Formel

10

$$\begin{array}{c|c} COOR^1 \\ \hline \\ N \\ N \\ \hline \\ COOR^1 \\ \end{array}$$

$$\begin{array}{c|c} R^2 \\ R^3 \\ \hline \\ N \\ U^2 \\ \end{array}$$

$$\begin{array}{c|c} OOR^1 \\ \end{array}$$

bedeutet,

wobei

5

10

15

20

25

R¹ für ein Wasserstoffatom oder ein Metallionenäquivalent der Ordnungszahlen 23-29, 42-46 oder 58-70,

 R^2 und R^3 für ein Wasserstoffatom, eine C_1 - C_7 -Alkylgruppe, eine Benzylgruppe, eine Phenylgruppe, - CH_2OH oder - CH_2 - OCH_3 , und

U² für den Rest L¹, wobei L¹ und U² unabhängig voneinander gleich oder verschieden sein können, steht,

A¹ ein Wasserstoffatom, eine geradkettige oder verzweigte C₁-C₃₀-Alkylgruppe, die gegebenenfalls unterbrochen ist durch 1-15 Sauerstoffatome, und/oder gegebenenfalls substituiert ist mit 1-10 Hydroxygruppen, 1-2 COOH-Gruppen, einer Phenylgruppe, einer Benzylgruppe und/oder 1-5 - OR⁹-Gruppen, mit R⁹ in der Bedeutung eines Wasserstoffatoms oder eines C₁-C₇-Alkylrestes, oder -L¹-R^F bedeutet,

eine geradkettige oder verzweigte C₁-C₃₀-Alkylengruppe, die gegebenenfalls unterbrochen ist durch 1-10 Sauerstoffatome, 1-5 -NH-CO-Gruppen, 1-5 -CO-NH- Gruppen, durch eine gegebenenfalls durch eine COOH-Gruppe substituierte Phenylengruppe, 1-3 Schwefelatome, 1-2 -N(B¹)-SO₂- Gruppen, und/oder 1-2 -SO₂-N(B¹)- Gruppen mit B¹ in der Bedeutung von A¹, eine NHCO-Gruppe, eine CONH-Gruppe, eine N(B¹)-SO₂- Gruppe, oder eine -SO₂-N(B¹)- Gruppe und/oder gegebenenfalls substituiert ist mit dem Rest R^F,

bedeutet und

 R^F einen geradkettigen oder verzweigten perfluorierten Alkylrest der Formel $C_nF_{2n}E$,

wobei n für die Zahlen 4-30 steht und

E für ein endständiges Fluoratom, Chloratom, Bromatom, Iodatom oder ein Wasserstoffatom steht,

bedeutet,

und gegebenenfalls vorhandene Säuregruppen gegebenenfalls als Salze organischer und/oder anorganischer Basen oder Aminosäuren oder Aminosäureamide vorliegen können, wie sie und ihre Herstellung in der WO 02/13874 offenbart und definiert sind, eingesetzt werden.

10

Erfindungsgemäß werden ganz besonders bevorzugt die Metallkomplexe MK 17, MK 18, MK 19, MK 21 und MK 23 (vgl. Tabelle 1) eingesetzt.

Diese Verbindungen der allgemeinen Formel Ib sind als MRI-Kontrastmittel zur Darstellung von Thromben sehr gut geeignet.

In einer anderen bevorzugten Ausführungsform der Erfindung können die perfluoralkylhaltigen Komplexe mit Zuckerresten der allgemeinen Formel Ic (siehe WO 02/13874)

$$(K)_{l}^{1}-G-(Z-R^{F})_{m}^{1}$$

 $|$ (Ic)
 $(Y-R)_{p}^{1}$

25

20

in der

- R einen über die 1-OH- oder 1-SH-Position gebundenen Mono- oder Oligosaccharidrest darstellt,
- R^F eine perfluorierte, geradkettige oder verzweigte Kohlenstoffkette mit der Formel -C_nF_{2n}E ist, in der E ein endständiges Fluor-, Chlor-, Brom-, Jod- oder Wasserstoffatom darstellt und n für die Zahlen 4-30 steht,

K für einen Metallkomplex der allgemeinen Formel IIc steht,

(IIc)

5 in der

U

R¹ ein Wasserstoffatom oder ein Metallionenäquivalent der Ordnungszahlen 23-29, 42-46 oder 58-70 bedeutet, mit der Maßgabe, dass mindestens zwei R¹ für Metallionenäquivalente stehen

 10 R 2 und R 3 unabhängig voneinander Wasserstoff, C $_{1}$ -C $_{7}$ -Alkyl, Benzyl, Phenyl, - CH $_{2}$ OH oder -CH $_{2}$ OCH $_{3}$ darstellen und

-C₆H₄-O-CH₂-ω-, -(CH₂)₁₋₅-ω, eine Phenylengruppe, -CH₂-NHCO-CH₂-CH(CH₂COOH)-C₆H₄-ω-, -C₆H₄-(OCH₂CH₂)₀₋₁-N(CH₂COOH)-CH₂-ω oder eine gegebenenfalls durch ein oder mehrere Sauerstoffatome, 1 bis 3-NHCO-, 1 bis 3 –CONH-gruppen unterbrochene und/oder mit 1 bis 3-(CH₂)₀₋₅COOH-Gruppen substituierte C₁-C₁₂-Alkylen- oder C₇-C₁₂-C₆H₄-O-Gruppe darstellt, wobei ω für die Bindungsstelle an –COsteht,

oder

20

15

der allgemeinen Formel IIIc

in der R 1 die oben genannte Bedeutung hat, R 4 Wasserstoff oder ein unter R 1 genanntes Metallionenäquivalent darstellt und U 1 –C $_6$ H $_4$ -O-CH $_2$ - ω - darstellt, wobei ω die Bindungsstelle an –CO- bedeutet

oder der allgemeinen Formel IVc

5

10

15

in der R¹ und R² die oben genannte Bedeutung haben

oder der allgemeinen Formel VcA oder VcB

(VcA)

(VcB)

in der R1 die oben genannte Bedeutung hat,

5

oder der allgemeinen Formel VIc

10 (VIc)

in der R¹ die oben genannte Bedeutung hat,

oder der allgemeinen Formel VIIc

15

(VIIc)

in der R^1 die oben genannte Bedeutung hat und U^1 $-C_6H_4$ -O-CH $_2$ - ω - darstellt, wobei ω die Bindungsstelle an -CO- bedeutet

20 oder der allgemeinen Formel VIIIc

in der R1 die oben genannte Bedeutung hat,

- und im Rest K gegebenenfalls vorhandene freie Säuregruppen gegebenenfalls als Salze organischer und/oder anorganischer Basen oder Aminosäuren oder Aminosäureamide vorliegen können,
 - G für den Fall, dass K die Metallkomplexe IIc bis VIIc bedeutet, einen mindestens dreifach funktionalisierten Rest ausgewählt aus den nachfolgenden Resten a) bis j) darstellt

(a1)

(a2)

(c)

(d)

10

5

(f) $NH - CO - C - (CH_2)_4 - N \sim C$ $NH - CO - C - (CH_2)_4 - N \sim C$ $NH - CO - C - (CH_2)_4 - N \sim C$ $NH - CO - C - (CH_2)_4 - N \sim C$ $NH - CO - C - (CH_2)_4 - N \sim C$ $NH - CO - C - (CH_2)_4 - N \sim C$ $NH - CO - C - (CH_2)_4 - N \sim C$ $NH - CO - C - (CH_2)_4 - N \sim C$ $NH - CO - C - (CH_2)_4 - N \sim C$ $NH - CO - C - (CH_2)_4 - N \sim C$ $NH - CO - C - (CH_2)_4 - N \sim C$ $NH - CO - C - (CH_2)_4 - N \sim C$ $NH - CO - C - (CH_2)_4 - N \sim C$ $NH - CO - C - (CH_2)_4 - N \sim C$ $NH - CO - C - (CH_2)_4 - N \sim C$ $NH - CO - C - (CH_2)_4 - N \sim C$

$$\begin{array}{c} \beta \\ NH \\ NH \\ -CO - CH - (CH_2)_4 - NH - M\beta \\ N - CO - CH - (CH_2)_4 - NH - M\alpha \\ NH \\ NH \\ NH - CO - CH - (CH_2)_4 - NH - M\beta \\ NH \\ NH \\ M \\ \beta \end{array}$$

(h)

5

(i)

$$\beta \sim N - (CH_2)_{1-4} - C - CON N$$

(j)

und

5

10

G für den Fall, dass K den Metallkomplex VIIIc bedeutet, einen mindestens dreifach funktionalisierten Rest ausgewählt aus k) oder I) darstellt,

(k)

15

(1)

20

wobei α die Bindungsstelle von G an den Komplex K bedeutet, β die Bindungsstelle von G zum Rest Y ist und γ die Bindungsstelle von G zum Rest Z darstellt

25 Y -CH₂-, δ-(CH₂)₁₋₅CO-β, β-(CH₂)₁₋₅CO-δ, δ-CH₂-CHOH-CO-β oder δ-CH(CHOH-CH₂OH)-CHOH-CHOH-CO-β bedeutet, wobei δ die

Bindungsstelle zum Zuckerrest R darstellt und β die Bindungsstelle zum Rest G ist

Z für

 $\gamma - N \longrightarrow N - SO_2 - SO$

 γ -COCH₂-N(C₂H₅)-SO₂- ε ,

 γ -COCH₂-O-(CH₂)₂-SO₂- ϵ ,

10

$$\gamma$$
 N-SO₂- ϵ

oder

 γ - NHCH₂CH₂-O-CH₂CH₂ - ϵ

steht, wobei γ die Bindungsstelle von Z zum Rest G darstellt und ϵ die Bindungsstelle von Z an den perfluorierten Rest R^F bedeutet

und

I¹, m¹ unabhängig voneinander die ganzen Zahlen 1 oder 2 bedeuten und
 p¹ die ganzen Zahlen 1 bis 4 bedeutet,

20

15

eingesetzt werden.

Als ganz besonders bevorzugte Verbindungen der allgemeinen Formel Ic wird erfindungsgemäß der Metallkomplex MK 13 der Tab. 1 eingesetzt.

25

In einer weiteren bevorzugten Ausführungsform der Erfindung finden die perfluoralkylhaltigen Komplexe mit polaren Resten der allgemeinen Formel Id (siehe WO 02/13874) Anwendung

$$(K)I^{1}-G-(Z-R^{F})m^{1}$$
 (Id)

5 in der

R^F eine perfluorierte, geradkettige oder verzweigte Kohlenstoffkette mit der Formel -C_nF_{2n}E ist, in der E ein endständiges Fluor-, Chlor-, Brom-, Jododer Wasserstoffatom darstellt und n für die Zahlen 4-30 steht,

K für einen Metallkomplex der allgemeinen Formel IId steht,

10

(IId)

in der

 R^1

15

ein Wasserstoffatom oder ein Metallionenäquivalent der Ordnungszahlen 23-29, 42-46 oder 58-70 bedeutet,

mit der Maßgabe, dass mindestens zwei R¹ für Metallionenäquivalente stehen,

R² und R³

unabhängig voneinander Wasserstoff, C_1 - C_7 -Alkyl, Benzyl, Phenyl, - CH_2OH oder $-CH_2OCH_3$ darstellen und

U

20

-C₆H₄-O-CH₂-ω-, -(CH₂)₁₋₅-ω, eine Phenylengruppe, -CH₂-NHCO-CH₂-CH(CH₂COOH)-C₆H₄-ω-, -C₆H₄-(OCH₂CH₂)₀₋₁-N(CH₂COOH)-CH₂-ω oder eine gegebenenfalls durch ein oder mehrere Sauerstoffatome, 1 bis 3-NHCO-, 1 bis 3 –CONH-gruppen unterbrochene und/oder mit 1 bis 3

-(CH₂)₀₋₅COOH-Gruppen substituierte C₁-C₁₂-Alkylen- oder C₇-C₁₂-C₆H₄-0-Gruppe darstellt, wobei ω für die Bindungsstelle an –COsteht,

(IIId)

oder

5 der allgemeinen Formel IIId

in der R 1 die oben genannte Bedeutung hat, R 4 Wasserstoff oder ein unter R 1 genanntes Metallionenäquivalent darstellt und U 1 –C $_6$ H $_4$ -O-CH $_2$ - ω - darstellt, wobei ω die Bindungsstelle an –CO- bedeutet oder der allgemeinen Formel IVd

15 (IVd)

in der ${\mathsf R}^1$ und ${\mathsf R}^2$ die oben genannte Bedeutung haben

oder der allgemeinen Formel VdA oder VdB

(VdA)

(VdB)

in der R¹ die oben genannte Bedeutung hat,

oder der allgemeinen Formel VId

(VId)

in der R¹ die oben genannte Bedeutung hat,

oder der allgemeinen Formel VIId

20 (VIId)

in der R^1 die oben genannte Bedeutung hat und U^1 $-C_6H_4$ -O- CH_2 - ω - darstellt, wobei ω die Bindungsstelle an -CO- bedeutet

und im Rest K gegebenenfalls vorhandene freie Säuregruppen gegebenenfalls als Salze organischer und/oder anorganischer Basen oder Aminosäuren oder Aminosäureamide vorliegen können,

G einen mindestens dreifach funktionalisierten Rest ausgewählt aus den nachfolgenden Resten a) bis i) darstellt

10

5

(a1)
$$\alpha \sim N - (CH_2)_4 - C - CO - \gamma$$

$$NH$$

$$\xi$$

$$\beta$$

(a2)

15

(b)

(c)

(d)

5

10 (e)

5 (g)

(h) γ -CO-(CH₂)₂₋₃-CH-CO $\longrightarrow \beta$; (i) β \longrightarrow CO-(CH₂)₂₋₃-CH-CO $\longrightarrow \gamma$ NH NH α

wobei α die Bindungsstelle von G an den Komplex K bedeutet, β die Bindungsstelle von G zum Rest R ist und γ die Bindungsstelle von G zum Rest Z darstellt

15 Z für γ —N N-SO₂-8

 γ -C(O)CH₂O(CH₂)₂- ϵ ,

R

5

10

15

20

30

steht, wobei γ die Bindungsstelle von Z zum Rest G darstellt und ϵ die Bindungsstelle von Z an den perfluorierten Rest R^F bedeutet

einen polaren Rest ausgewählt aus den Komplexen K der allgemeinen Formeln IId bis VIId darstellt, wobei R¹ hier ein Wasserstoffatom oder ein Metallionenäquivalent der Ordnungszahlen 20, 23-29, 42-46 oder 58-70 bedeutet,

und die Reste R², R³, R⁴, U und U¹ die oben angegebene Bedeutung aufweisen

oder

den Folsäurerest

oder

eine über -CO-, SO_{2^-} oder eine direkte Bindung an den Rest G gebundene Kohlenstoffkette mit 2-30 C-Atomen bedeutet, geradlinig oder verzweigt, gesättigt oder ungesättigt,

gegebenenfalls unterbrochen durch 1-10 Sauerstoffatome, 1-5 – NHCO-Gruppen, 1-5 –CONH-Gruppen, 1-2 Schwefelatome, 1-5 –NH-Gruppen oder 1-2 Phenylengruppen, die gegebenenfalls mit 1-2 OH-Gruppen, 1-2 NH₂-Gruppen, 1-2 –COOH-Gruppen, oder 1-2 –SO₃H-Gruppen substituiert sein können

oder

gegebenenfalls substituiert mit 1-8 OH-Gruppen, 1-5 –COOH-Gruppen, 1-2 SO_3H -Gruppen, 1-5 NH_2 -Gruppen, 1-5 C_1 - C_4 -Alkoxygruppen,

und

25 I¹, m¹, p² unabhängig voneinander die ganzen Zahlen 1 oder 2 bedeuten.

Besonders bevorzugte Verbindungender allgemeinen Formel Id sind solche mit dem Makrocyclus K der allgemeinen Formel IId, IIId, VdB oder VIId.

Als ganz besonders bevorzugte Verbindung der allgemeinen Formel Id wird erfindungsgemäß der Metallkomplex MK12 der Tab. 1 eingesetzt.

In einer anderen bevorzugten Ausführungsform der Erfindung können galenische Formulierungen eingesetzt werden, die paramagnetische und diamagnetische perfluoralkylhaltige Substanzen enthalten. Vorzugsweise liegen die paramagnetischen und diamagnetischen Substanzen in einem wässrigen Lösungsmittel gelöst vor.

Als paramagnetische perfluoralkylhaltige Verbindungen können in den Formulierungen erfindungsgemäß alle vorstehend genannten Metallkomplexe der allgemeinen Formeln I, Ia, Ib, Ic und/oder Id eingesetzt werden.

10

15

20

5

Die diamagnetischen perfluoralkylhaltigen Substanzen sind solche der allgemeinen Formel XX (siehe WO 02/13874):

$$R^{F} - L^{2} - B^{2} \tag{XX}$$

worin R^F einen geradkettigen oder verzweigten Perfluoralkylrest mit 4 bis 30 Kohlenstoffatomen darstellt, L^2 für einen Linker und B^2 für eine hydrophile Gruppe steht. Der Linker L^2 ist eine direkte Bindung, eine $-SO_2$ -Gruppe oder eine geradkettige o der verzweigte Kohlenstoffkette mit bis zu 20 Kohlenstoffatomen, welche mit ein oder mehreren -OH, $-COO^-$, $-SO_3$ -Gruppen substituiert sein kann und/oder gegebenenfalls ein oder mehrere -O-, -S-, -CO-, -CONH-, -NHCO-, $-CONR^9$ -, $-NR^9CO$ -, $-SO_2$ -, $-PO_4^-$ -, -NH-, $-NR^9$ -Gruppen, einen Arylring oder ein Piperazin enthält, wobei R^9 für einen C_1 - bis C_{20} -Alkylrest steht, welcher wiederum ein oder mehrere O-Atome enthalten kann und/oder mit $-COO^-$ oder SO_3 -Gruppen substituiert sein kann.

25

Weitere geeignete diamagnetische perfluoralkylhaltige Verbindungen sind Konjugate aus Cyclodextrin und perfluoralkylhaltigen Verbindungen. Diese Konjugate bestehen aus α -,ß - oder γ - Cyclodextrin und Verbindungen der Allgemeinen Formel XXII (siehe WO 02/13874)

$$A^1-L^3-R^F$$
 (XXII)

worin A¹ für ein Adamantan-, Biphenyl- oder Anthracenmolekül, L³ für einen Linker und R^F für einen geradkettigen oder verzweigten Perfluoralkylrest mit 4 Bis 30 Kohlenstoffatomen steht. Der Linker L³ ist eine geradkettige Kohlenwasserstoffkette mit 1 bis 20 Kohlenstoffatomen, welche durch ein oder mehrere Sauerstoffatome, ein oder mehrere CO-, SO2-, CONH-, NHCO-, CONR-, NRCO-, NH-, NR-Gruppen oder ein Piperazin unterbrochen sein kann, wobei R ein C₁-C₅-Alkylrest ist.

10

15

20

Zusammenfassend ist festzustellen, dass als ganz besonders bevorzugte Verbindungen die in Tabelle 1 aufgeführten Gadoliniumkomplexe MK 1-30 die erfindungsgemäßen Kriterien erfüllen. Die physikalischen Parameter dieser Metallkomplexe sind in Tabelle 1 aufgeführt.

Sowohl die erfindungsgemäßen paramagnetischen Verbindungen der allgemeinen Formeln I, Ia, Ib, Ic und Id als auch die erfindungsgemäßen Formulierungen aus paramagnetischen und diamagnetischen perfluoralkylhaltigen Substanzen eignen sich in hervorragender Weise als Kontrastmittel im MR-Imaging zur Darstellung von Thromben.

<u>Tabelle 1:</u>
Erfindungsgemäß ganz bes nders bevorzugt verwendet Metallk mpl xe (MK), ihre Herkunft und ihre physikochemischen Parameter

Herkunft Beispiel Nr. CMC[mol/l] 2 Rh [nm] Komplex R^1 [1: mmol·s] MK 1 WO 99/01161 23,0 1,5 10-4 3,5 18 WO 97/26017 1,0 10-5 MK 2 1 29,7 31,5 MK 3 WO 97/26017 2 33,0 2,3 10-5 14,0 WO 97/26017 MK 4 3 27,5 1,44 10-5 3,2 MK 5 WO 99/01161 25 3,1 10-5 7,0 15,1 WO 97/26017 9,8 10-4 MK 6 31 26,0 4,3 12 MK 7 WO 99/01161 21,4 1,81 10-6 4,2 WO 97/26017 MK 8 33 35,7 1,86 ·10⁻⁶ 4,6 MK 9 WO 97/26017 35 34,0 3,25 ·10⁻⁶ 4,3 MK 10 WO 97/26017 34 24,9 3,2 $7,06 \cdot 10^{-6}$ MK 11 WO 97/26017 32 24,8 $2,88 \cdot 10^{-6}$ 35,5 MK 12 WO 99/01161 19,5 2,2 1 8,9 -10-4 MK 13 WO 02/13874 21 15,9 $2,5 \cdot 10^{-6}$ 4,4 MK 14 WO 02/13874 54 21,3 4,9 3,9 10-5 MK 15 WO 99/01161 14 19,3 $8,7 \cdot 10^{-6}$ 3,2 MK 16 WO 00/56723 7 21,0 $2.8 \cdot 10^{-6}$ 4,3 MK 17 WO 02/13874 6 13,3 $2.65 \cdot 10^{-6}$ 6,0 MK 18 WO 02/13874 2 19,6 $3.9 \cdot 10^{-6}$ 4,4 MK 19 WO 02/13874 5 30,3 3,0 $5,2 \cdot 10^{-5}$ MK 20 WO 00/56723 4 21,9 4,6 10-5 5,5 MK 21 WO 02/13874 3 21,2 2,92 10-5 2,5 7 MK 22 WO 00/56723 27,8 $4.4 \cdot 10^{-6}$ 5,7 MK 23 WO 02/13874 1 25,7 $7,9 \cdot 10^{-6}$ 5,4 MK 24 WO 99/01161 1 13,9 $6.3 \cdot 10^{-6}$ 10.0 MK 25 WO 99/01161 5 21,3 1.4 10-4 3.5 MK 26 WO 02/13874 57 5,2 22,8 $4.3 \cdot 10^{-6}$ MK 27 WO 97/25017 38 30,5 7,4 1,07 ·10⁻⁵ MK 28 diese Anm. 27,9 4,7 1 $8,1.10^{-6}$

Komplex	Herkunft	Beispiel Nr.	R ¹ [i : mmol·s]	CMC[mol/l]	2 Rh [nm]
MK 29	diese Anm.	2	17,7	7,6 10-5	4,8
MK 30	diese Anm.	3	27,9	7,0 ·10-6	7,9

5 CMC: kritische Mizellbildungskonzentration

2 Rh: hydrodynamischer Mizelldurchmesser

R1: Relaxivity

Die Messungen wurden in Plasma bei 40 °C und einer Feldstärke von 0,47 Tesla durchgeführt.

Beispiel 1

15

20

25

30

a) 6-Benzyloxycarbonyl-2-N- 2H,2H, 4H,4H, 5H,5H-3-oxa-perfluortridecanoyl-L-lysinmethylester

Zu der Lösung von 50g (95,8 mmol) 2H,2H,4H,5H,5H-3-Oxaperfluor - tridecan-säure (hergestellt aus 2H,2H,3H,3H-Perfluordecanol und Bromesssig - säure-t-butylester mit anschließender Esterspaltung) in 250 ml Thionylchlorid werden 2 Tropfen Dimethyl-formamid gegeben und man erwärmt 5 Stunden am Rückfluß. Dann engt man im Vakuum ein, nimmt den Rückstand in 250 ml Dichlormethan auf und tropft die Lösung bei 0° C unter Rühren zur Lösung von 34,74 g (105.0 mmol) 6-N-Benzyloxycarbonyl-L-Lysin -methylester, Hydrochlorid (Kaufware, Bachem) sowie 46,85 ml (350 mmol) Triethylamin in 400 ml Dichlormethan. Man läßt über Nacht rühren, versetzt mit 1 Liter 2N Salzsäure, schüttelt die organische Phase aus, extrahiert die Wasserphase zweimal mit je 100 ml Dichlormethan, trocknet die Lösung über Natriumsulfat, filtriert vom Trockenmittel ab und engt im Vakuum ein. Das Rohprodukt wird duch Chromatographie an Kieselgel gereinigt. Als Elutionsmittel dient ein Gemisch aus Dichlormethan mit 3 % Ethanolzusatz.

Das Produkt wird nach dem Einengen als farbloses Gel erhalten.

Ausbeute: 67,0 g (87,6 % d. Th)

5 Elementaranalyse

Ber.: 40,61 C 3,41 H 40,45 F 3,51 N Gef.: 40,48 C 3,54 H 40,61 F 3,37 N.

10

15

20

b) 2-N-2H,2H,4H,4H,5H,5,H-3-Oxaperfluortridecanoyl-L-lysinmethylester, Hydrochlorid

Zu einer Lösung von 63,5 g (79,5 mmol) der Titelsubstanz aus Beispiel 1a) in einem Gemisch aus 500 ml Methanol und 90 ml 1N Salzsäure gibt man 10 g Katalysator (Pd 10 % /C) und hydriert bis zur Aufnahmne eines Equivalentes Wasserstoff bei Normaldruck und Raumtemperatur. Man filtriert vom Katalysator ab, wäscht diesen 3 mal mit je 50 ml heißem Methanol und engt die vereinigten Lösungen ein. Der Rückstand wird in Methanol gelöst und durch Zusatz von Diisopropylether zu Kristallisation gebracht.

Die Titelverbindung wird in farblosen Kristallen erhalten.

Ausbeute:: 55,70 g (quantitativ.)

25 Elementaranalyse:

Ber.: 32,56 C 3,16 H 5.06 Cl 46.09 F 4,00 N Gef.: 32,44 C 3,28 H 4,95 Cl. 46,21 F 4.11 N c) 6-N-3,6,9.12.15-Pentaoxa-hexadecanoyl-2-N-2H,2H,4H,4H,5H,5H-3-0xa-perfluortridecanoyl-I-lysin-methylester

13,31 g (50 ,0 mmol) 3.6.9.12.15-Pentaoxahexadecansäure (Kaufware) werden in 100 ml Thionylchlorid gelöst, mit zwei Tropfen Dimethylformamid versetzt und über Nacht bei Raumtemperatur gerührt. Dann erwärmt man eine Stunde auf 65 °C, ent-fernt überschüssiges Thionylchlorid am Rotations - verdampfer und nimmt den Rückstand in 150 ml Dichlormethan auf. Man tropft diese Lösung bei 0° C zu der Lösung von 35,04 g (50,0 mmol) der Titel - verbindung aus Beispiel 1b) und 15,18 g (150 mmol) Triethylamin in 350 ml Dichlormethan . Dann läßt man 72 Stunden bei Raumtemperatur rühren. Man engt ein und gewinnt das Produkt durch Säulenchromatographie an Kieselgel. Als Elutionsmittel dient ein Gemisch aus Dichlormethan/Ethanol 9:1. Die Titelverbindung wird als zähes, leicht gelbes Öl erhalten..

15

30

10

Ausbeute: 37,0 g (81,1% d. Th)

Elementaranalyse:

20 Ber.: 39,48 C 4,53 H 35,39 F 3,07 N

Ber.: 39,61 C: 4,50 H 35,50 F 3,16 N

d) 6-N-3.6.9.12.15-Pentaoxahexadecanoyl-2-N-2H,2H,4H,4H.5H,5H-3-Oxa-perfluortridecanoyl-L-lysin

17,90 g der Titelverbindung aus Beispiel 1c) werden uber Nacht in einer Mischung aus 50 ml Methanol und 25 ml 2N Natronlauge gerührt. Man säuert mit 2 N Salzsäure an, engt im Vakuum ein und extrahiertr den Rückstand 5 mal mit je 50 ml Tetrahydrofuran/Essigester 2:1. Die vereinigten Extrakte werden über Natriumsulfat getrocknet. Man filtriert vom Trockenmittel ab und engt die Lösung ein. Der Rückstand wird durch Säulenchromatographie an Kieselgel

gereinigt.Als Laufmittel dient ein Gemisch aus Dichlormethan/Methanol und Wasser im Verhältnis 160:40:1, Die Titelverbindung wird als wachsartiger, leicht gelb gefärbter Rückstand erhalten.

5 Ausbeute: 14,7 g (83,4 % d. Th.)

Elementaranalyse.

10

Ber.: 38,76 C 4,37 H 35,94 F 3,12 N Gef.: 38,87 C 4,25 H 36 07 F 3,21 N

e) 6-N-3.6.9.12.15-Pentaoxahexadecanoyl-2-N-2H,2H,4H,4H,5H,5H-3-oxaperfluortridecanoyl-L-lysin-N- {1,4,7-tris[carboxylatomethyl]-1,4,7,10-tetraazacyclododecan-10-(2-hydroxy-3-yl), Gadoliniumkomplex}-amid

In 50 ml Dimethylformamid werden 8,0 g (8,9 mmol) der unter 1d) herge-stellten Säure sowie 2,05 g (17,8 mmol) Hydroxysuccinimid gelöst und bei 0° C mit 4,60 g 20 (22,25 mmol) Dicyclohexylcarbodiimid versetzt. Man rührt noch 10 Minuten bei 0° C nach und dann noch weitere 2 Stunden bei Raumtemperatur. Nach erneutem Abkühlen auf 0° C wird eine Lösung aus 3,93 g (6,65 mmol) Gadolinium-Komplex von 10-(3-Amino-2-hydroxy-propyl)-1,4,7-tris-(carboxymethyl)-1,4,7,10-tetraazacyclododecan (WO 95/17451) sowie 0,58 g 25 (13,7 mmol) Lithiumchlorid und 2,77 g (27,4 mmol) Triethylamin in 40 ml Dimethylsulfoxid zugegeben. Man läßt zwei Tage bei Raumtemperatur rühren, versetzt mit 650 ml Aceton und gießt die Suspension qauf 2 l Methyl-tbuthylether. Man rührt etwa 30 Minuten nach und saugt dann vom Feststoff ab. 30 Der Feststoff wird in destilliertem Wasser gelöst und mit Aktivkohle behandelt. Die Lösung wird filtriert, im Vakuum eingeengt, und der Rückstand wird an Kieselgel chromatographiert. Als Elutionsmittel dient ein Gemisch aus Methanol und Dichlormethan im Verhältnis2.1

Ausbeute 5,47 g (54,5 % d. Th)

Wassergehalt: 7,3 %

5 Elementaranalyse (bezogen auf wasserfreie Substanz):

Ber.: 37,97 C 4,71 H 10,81 Gd 22,19 F 6,74 N

Gef.: 38,16 4,83 10,72 22,32 6,83

10 Beipiel 2

a) 10-(3-Carboxy-3-yl-propionsäure)-1,4,7,10-tetraazacyclododecan

150 g (761 mmol) Brombernsteinsäure werden mit Natronlauge (10 %) neutralisiert und die Lösung wird zur Trockne eingeengt. In 300 ml destilliertem Wasser werden 65,55 g (380 mmol) Cyclen gelöst und mit dem Binatriumsalz (aus 150 g Brombernsteinsäure= 761 mmol) versetzt. Man erwärmt auf 50 °C und läßt über Nacht rühren. Die Lösung wird dann zur Trockne eingeengt und mit Ethanol kodestilliert. Der Rückstand wird in Butanol aufgenommen und mit

Wasser extrahiert. Die wäßrige Phase wird eingeengt und an Kieselgel chromatographiert. Als Elutionsmittel dienen Gemische aus Methanol mit Ammoniak (20:1 – 2:1). Die produkthaltigen Fraktionen werden vereinigt und zur Trockne eingeengt.

Ausbeute: 54,8 g (50,4 % d. Th.)

25

15

Elementaranalyse:

ber.: C 50,34 H 7,74 N 19,57 gef. C 50,46 H 7,83 N 19,69

30

b) 1,4,7-Tris(carboxymethyl)-10-(3-carboxy-3-yl-propionsäure)-1,4,7,10-tetraazacyclododecan

In 60 ml destilliertem Wasser werden 11 g (38,14 mmol) 10-(3-Carboxy-3-yl-propionsäure)-1,4,7,10-tetraazacyclododecan gelöst und mit 18,03 g (190,74 mmol) Chloressigsäure versetzt. Man erwärmt dann auf 70 °C und hält den pH Wert durch Zugabe von Na-tronlauge (32 %) zwischen 9 und 10. Man läßt über Nacht bei 70 °C rühren, stellt dann erneut auf einen pH Wert von 10 ein und gibt 7,2 g (76,19 mmol) Chloressigsäure dazu. Es wird noch 3 Stunden bei 70 °C gerührt. Man engt zur Trockne ein, dampft mit Methanol ab, nimmt in Methanol auf und filtriert von den Salzen ab. Das Filtrat wird eingeengt und an einer lonenaustauschersäule Amberlite 252 C mit Wasser/Ammoniak als Elutionsmittel chromatographiert. Die produkthaltigen Fraktionen werden zusammengefaßt, eingeengt, erneut in destilliertem Wasser aufgenommen und gefriergetrocknet. Die Titelverbindung wird als weißer Schaum erhalten.

Ausbeute: 13,12 g (82,3 % d. Th.)

Wassergehalt: 9,6 %

15 Elementaranalyse (bezogen auf wasserfreie Substanz):

ber.: C 46,75 H 6,54 N 12,12 gef. C 46,87 H 6,62 N 12,24

- c) Gadoliniumkomplex von 10-{1-carboxy-2-carbonyl-[piperazin-1-yl-4-(perfluoroctylsulfonyl)]}-ethyl-1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclo-dodecan, Natriumsalz
- In 100 ml Dimethylsulfoxid werden 10,0 g (16,21 mmol) Gadolinium-Komplex tetraazacyclododecan (hergestellt aus dem Liganden durch Komplexierung mit Gadoliniumoxid) und 3,0g Lithiumchlorid unter leichtem Erwärmen gelöst. Nach dem Abkühlen auf Raumtemperatur werden 9,21 g (16,21 mmol)
 Perfluoroctylsulfonylpiperazin zugegeben.. Dann wird auf 0° C gekühlt, und es werden 12,3 g (46,63 mmol) EEDQ (1,2-Dihydro-2-ethoxychinolin-1-carboncarbonsäure ethylester) zugegeben und es wird über Nacht bei Raumtemperatur gerührt.. Die Reaktion wird in eine Mischung aus 800 ml Methylt-butylether und 100 ml Aceton gegossen und gerührt. Der Niederschlag wird

durch Chromatographie an Kieselgel gereinigt. Als Elutionsmittel dient eine Mischung aus Dichlormethan/Methanol und Ammoniak im Verhältnis 2: 2. 1.Die produkthaltigen Fraktionen werden vereinigt und eingeengt. Der Rückstand wirdin 200 ml destilliertem Wasser gelöst, mit Natronlauge auf einen pH Wert von 7,2 eingestellt und lyophilisiert. Die Titelverbindung wird als weißer Schaum erhalten.

Ausbeute: 7,64 g (39 % d. Th.)

Wassergehalt. 7,8 %

5

10

15

20

30

35

Elementaranalyse (bezogen auf wasserfreie Substanz)

Ber.: 30,31 C 2,80 H 27,17 F 13,23 Gd 7,07 N 1,93 Na 2,70 S

Gef.: 30,42 C 2,91 H 27,04 F 13.29 Gd 7,15 N 2.04 Na 2,59 S

Beispiel 3

a)1,4,7-Tris(carboxylatomethyl)-1,4,7,10-tetraazacyclododecan-10-[2-hydroxy 3-(N-benzyloxycarbonyltriglycidyl)-)-amino]-propyl, Gadoliniumkomplex

In 100 ml Dimethylformamid werden 12,68 g (39,121 mmol) N-Benzyloxy-carbonyltri-glycin (Kaufware, Bachem) gelöst und mit 9,03 g (78,42 mmol) N-Hydroxysuccinimidversetzt. Man kühlt auf 0° C ab und und gibt dann 32,36 g (156,84 mmol) Dicyclohexyl-carbodiimid dazu.Man rührt 20 Minuten bei 0° C und dann weitere 3 Stunden bei Raumtemperatur. Diese Suspension wird dann zu der auf auf 0° C gekühlten Lösung aus 15 g (26,14 mmol) Gadoliniumkom -plex aus 10-(3-Amino-2-hydroxy-propyl)-1,4,7,-tris(carboxymethyl)-1,4,7,10-

tetraazacyclododecan (hergestellt nach WO 95/17451) in 40 ml destilliertem Wasser und 15 ml (14 mmol) Triethylamin in 60 ml Isopropanol unter Rühren gegeben. Nach beendeter Zugabe wird 3 Stunden bei Raumtemperatur gerührt. Dann filtriert man vom Harnstoff ab, wäscht mit n Butanol nach und engt im Vakuum ein. Der Rückstand wird mehrfach mit Wasser extrahiert. Die

organische Phase wird über Natriumsulfat getrocknet und im Vakuum einge-engt. Der Rückstand wird an Kieselgel chromatographiert. Als Elutionsmittel dient ein Gemisch aus Dichlormethan, Methanol und Ammoniak. Die produkt-haltigen Fraktionen werden vereinigft, im Vakuum eingeengt, erneut in destilliertem Wasser aufgenommen und der Gefriertrocknung unterworfen. Die Titelverbindung wird als weißer Schaum erhalten.

Ausbeute: 12,94 g (56,3 % d. Th

10

Elementaranalyse:

Ber.: 42,36 C 5,16 H 17,89 Gd 12,75 N Gef.: 42,44 C 5,22 H 17,78 Gd 12,80 N

15

20

b) 1,4,7-Tris(carboxylatomethyl)-1,4,7,10-tetraazacyclododecan-10-(2-hydroxy-3-amino-triglycidyl)-propyl, Gadoliniumkomplex

In einem Gemisch aus 100 ml Ethanol und 30 ml destiliertem Wasser werden
8,53 g (9,7 mmol) der Titelverbindung aus Beispiel 3a) gelöst und mit 2 g
Katalysator (Palladium 10% auf Aktivkohle) sowie 3 ml Essigsäure versetzt. Man
hydriert bis zur Aufnahme eines Equivalents Wasserstoff. Dann saugt man vom
Katalysator ab, wäscht mit Ethanol nach und engt die Lösung im Vakuum zur
Trockene ein.

30 Die Titelverbindung wird als Schaum erhalten.

Ausbeute: 7,22 g (quantitativ)

Elementaranalyse:

Ber.: 37,08 C 5,28 H 21,11 Gd 15,04 N Gef.: 37,21 C 5,33 H 21,25 Gd 15,15 N

5

10

25

30

vereinigt,

c) 1,4,7-Tris(carboxylatomethyl)-1,4,7,10-tetraazacyclododecan-10-{2-hydroxy-3-N-[triglycidyl-N-(2H,2H,4H,4H,5h,5H-3-oxa-perfluortridecanoyl)]amino}-propyl,
 Gadoliniumkomplex

In 90 ml Dimethylformamid werden 7,60 g (14,55 mmol) 2H,2H,4H,4H,5H,5H-3-oxa-perfluortridecansäure gelöst und mit 3,35 g (29,1 mmol) N-Hydroxsuccinimid versetzt. Man kühlt auf 0° C ab und versetzt dann mit 11,71 g (56,71 mmol)

Dicyclohexylcarbo-diimid. Nach 20 Minuten entfernt man die Kühlung und rührt weitere 3 Stunden bei Raumtemperatur. Dann gibt man die entstandene Suspension unter Rühren zu der auf 0° C gekühlten Lösung von 7,22 g (9,7 mmol) der Titelverbindung aus Beispiel 3b) in einem Gemisch aus 5 ml (36,7 mmol) Triethylamin 20 ml destiliertem Wasser und 30 ml 2-Propanol.Man läßt über Nacht bei Raumtemperatur rühren, filtriert dann vom Dicyclohexylharnstoff ab, wäscht mit 2-Propanol /dest. Wasser 3:2 nach und engt die vereinigten Lösungen im Vakuum ein.Der Rückstand wird in einem Gemisch aus Wasser und Butanol gelöst und mit Butanol extrahiert. Die vereinigten organischen Lösungen werden getrocknet, und im Vakuum eingeengt.Der Rückstand wird durch

Ethanol/2-Propanol/ konz.

Ammoniak im Verhältnis 15 : 10 : 1. Die produkthaltigen Fraktionen werden

Chromatographie an Kieselgel gereinigt. Als Elutionsmittel dient ein Gemisch aus

im Vakuum zur Trockene eingeengt, erneut in destiliertem Wasser gelöst und gefriergetrocknet. Die Titelverbindung wird als weißer Schaum erhalten.

Ausbeute: 7,52 g (62,1 % d. Th.)

Elementaranalyse.

Ber.: 33.66 C 3.55 H 25,86 F 12,59 Gd 8,97 N Gef.: 33,55 C 3,67 H 25,99 F 12,43 Gd 9,09 N

5

10

15

Beispiel 4: Bindung an ein Fibrin-Gel

Durch Mischung von Fibrinogen mit Thrombin bildet sich nach 30-minütiger Inkubationszeit (Raumtemperatur) ein Koagulat (Fibrin-Gel). Dieses wird mit 0.5 ml PBS und mit 0.5 ml einer Lösung der Titelverbindung aus Beispiel 21, WO 02/13874, Mk 13, (0.01 und 0.1 mmol Gd/l) versetzt und über 16 Stunden bei Raumtemperatur inkubiert. Nach Entfernen des Überstandes auf dem Fibrin-Gel wird der ungebundene Anteil der erfindungsgemäßen Verbindung durch Ultrafiltration (1.200 g für 30 Minuten) vom Fibrin getrennt. Der Gadolinium-Gehalt im Fibrin-Gel wird mittels induktiv gekoppelter Plasma - Atom Emissions Spektroskopie (ICP-AES) ermittelt.

Die Bindung der erfindungsgemäßen Verbindung an das Fibrin-Gel betrug 79.1 % für die 0.01 mmol Gd/l-Lösung und 38.5 % für die 0.1 mmol Gd/l-Lösung.

20

25

30

35

<u>Beispiel 5</u>: MRT-Darstellung (in-vivo) eines venösen Thrombus nach intravenöser Gabe des Kontrastmittels in Kaninchen

Die MR-Bildgebung erfolgte in Kaninchen mit photochemisch induziertem Thrombus (PIT). Durch Bestrahlung mit Xenon-Licht (540 nm, 1.100 klux, 25 min) nach i.v.-Injektion von Rose-Bengal (20 mg/kg) wurde in der linken Femoralvene die Thrombusbildung induziert. Der Blutfluss in der Femoralvene wurde mittels einer Ultraschallsonde kontrolliert. Das Imaging erfolgte mit einem Magnetom Harmony (Siemens, 1T) vor (baseline) sowie 25, 40 min, 1, 2, 3, 4, 24 und 48 Stunden nach intravenöser Applikation (ca. 1 h nach der Thrombus-Induktion) von 0.1 mmol Gd/kg der Titelverbindung aus Beispiel 21, WO 02/13874, unter Verwendung einer Phasenkontrast-Sequenz (TR/TE = 104/14ms) sowie von T1-

gewichteten Gradientenecho-Sequenzen (MPRage: TR/TE/TI/ α = 11/4/120ms/8°; und 3D-Flash: TR/TE/ α = 5/2ms/50°).

Nach der Bildgebung wurde die linke Femoralvene (mit dem Thrombus) herauspräpariert, in Formalin fixiert, und zur histologischen Beurteilung mit Hämatoxylin / Eosin (HE) bzw. Phosphotungstic acid / Hämatoxylin (PTAH) gefärbt.

Im MR Imaging (MRA) war der Thrombus bereits frühzeitig (25 min p.i.) erkennbar. Die in Figur 1 angegebenen Abbildungen 1 und 2 zeigen MR-Aufnahmen der Beckenregion 24 h nach intravenöser Applikation von 0.1 mmol Gd/kg Körpergewicht der erfindungsgemäßen Verbindung im PIT-Kaninchen (photochemisch induzierter Thrombus). Die T₁-gewichtete 3D-Flash-Sequenz verdeutlicht einen starken Signalanstieg im Thrombus im Bereich der linken Femoralvene. Der Blutfluss in der linken Femoralvene ist deutlich reduziert (siehe MRI mit Phasenkontrast-Sequenz).

Mit beiden Färbetechniken (HE und PTAH (Fig. 2, Abb. 3 und 4)) konnten rote Blutgerinnsel (Thromben) im Bereich der linken Femoralvene nachgewiesen werden. Die Thromben füllen nahezu das gesamte Lumen des Blutgefäßes aus. Die Exfoliation der vaskulären Endothelzellen und die Adhäsion der Thromben ist deutlich sichtbar. Die Intima- und Adventitia-Kerne sind weitestgehend verschwunden.

Mit diesem Versuch konnte die Eignung der erfindungsgemäßen Verbindungen als Marker für venöse Thromben gezeigt werden.

Beispiel 6 MRT-Darstellung (ex-vivo) eines venösen Thrombus nach intravenöser Gabe des Kontrastmittels in Kaninchen

30

35

10

15

20

Die MR-Bildgebung erfolgte in Kaninchen mit photochemisch induziertem Thrombus (PIT). Durch Bestrahlung mit Xenon-Licht (540 nm, 1.100 klux, 25 min) nach i.v.-Injektion von Rose-Bengal (20 mg/kg) wurde in der linken Femoralvene die Thrombusbildung induziert. 24 Stunden nach intravenöser Applikation (ca. 1 h nach der Thrombus-Induktion) von 0.1 mmol Gd/kg der Titelverbindung aus Beispiel 21 WO 02/13874, wurde das Tier getötet und die linke Femoralvene (mit

m Thrombus) herauspräpariert. Das Imaging des geschädigten inenabschnittes erfolgte mit einem Magnetom Harmony (Siemens, 1T) unter irwendung einer T1-gewichteten Spinecho-Sequenz (TR/TE/ α = 300/12ms/90°, it und ohne Fettunterdrückung).

er induzierte Thrombus ist im Präparat durch die Farbänderung deutlich Ehtbar. Zusätzlich befinden sich auch Blutgerinnsel außerhalb des Gefäßes. In er ex-vivo MR-Bildgebung ist mit der T1-gewichteten Spinecho-Sequenz ein autliches Enhancement der Thromben zu beobachten (siehe Fig. 3, pbildungen 5 bis 7).

<u>sispiel 7</u>: Bestimmung der Gadolinium-Anreicherung im Thrombus nach intravenöser Gabe des Kontrastmittels in Kaninchen

e Gehaltsbestimmung erfolgte in Kaninchen mit photochemisch induziertem nrombus (PIT). Durch Bestrahlung mit Xenon-Licht (540 nm, 1.100 klux, 25 min) :ch i.v.-Injektion von Rose-Bengal (20 mg/kg) wurde in der linken Femoralvene a Thrombusbildung induziert. 24 Stunden nach intravenöser Applikation (ca. 1 h ach der Thrombus-Induktion) von 0.1 mmol Gd/kg der Titelverbindung aus pispiel 21 WO 02/13874, wurde das Tier getötet und verschiedene Organe und webe zur Bestimmung des Gd-Gehaltes entnommen: Blut, Femoralvenen (mit ad ohne Thrombus), Muskel. Nach Aufschluss der Gewebeproben wurde die adolinium-Konzentration (ppm) mittels ICP-AES gemessen.

der linken Femoralvene (mit Thrombus) betrug die Gd-Konzentration 63 ppm, Kontrollgefäß dagegen nur 35 ppm. Das Blutgerinnsel außerhalb des Gefäßes es einen hohen Gd-Gehalt von 166 ppm auf. Im Blut war zum Zeitpunkt 24 h. nur eine Gd-Konzentration von 15 ppm und im nicht-signal-verstärkten uskel von 10 ppm nachweisbar.

Without further elaboration, it is believed that one skilled in the art can, using preceding description, utilize the present invention to its fullest extent. The ecceding preferred specific embodiments are, therefore, to be construed as merely astrative, and not limitative of the remainder of the disclosure in any way whatsoever.

In the foregoing and in the examples, all temperatures are set forth uncorrected degrees Celsius and, all parts and percentages are by weight, unless otherwise licated.

10

The entire disclosures of all applications, patents and publications, cited herein and of corresponding German application No. 102 31 799.2 filed July 10, 2002, and U.S. Provisional Application Serial No. 60/395,803, filed July 16, 2002, are incorporated by reference herein.

The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.

From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

Pat ntansprüche

- Verwendung von perfluoralkylhaltigen Metallkomplexen, die eine kritische Mizellbildungskonzentration <10⁻³ mol/l, einen hydrodynamischen Mizelldurchmesser (2 Rh) > 1 nm und eine Protonen-Relaxivity im Plasma (R¹) > 10 l/mmol·s aufweisen, als Kontrastmittel im MR-Imaging zur Darstellung von intravasalen Thromben.
- Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass die Metallkomplexe als MRI-Kontrastmittel zur Darstellung von venösen Thromben eingesetzt werden.
- 15 3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Metallkomplexe als MRI-Kontrastmittel zur Darstellung von arteriellen Thromben eingesetzt werden.
- 4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Metallkomplexe als MRI-Kontrastmittel zur Frühbestimmung einer thrombotischen Verschlußerkrankung eingesetzt werden.
- Verwendung nach Anspruch 1,
 dadurch gekennzeichnet, dass
 Metallkomplexe eingesetzt werden, deren Mizellbildungskonzentration
 < 10⁻⁴ mol/l ist.
- Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass

Metallkomplexe eingesetzt werden, deren hydrodynamischer Mizelldurchmesser ≥ 3 nm ist, vorzugsweise > 4 nm.

- Verwendung nach Anspruch 1,
 dadurch gekennzeichnet, dass
 Metallkomplexe eingesetzt werden, die eine Protonen-Relaxivity im Plasma
 von > 13 l/mmol·s, vorzugsweise > 15 l/mmol·s, aufweisen.
- Verwendung nach einem der Ansprüche 1 bis 7,
 dadurch gekennzeichnet, dass als perfluoralkylhaltige Metallkomplexe die Verbindungen der allgemeinen Formel I

15 worin

5

 R^F eine perfluorierte, geradkettige oder verzweigte Kohlenstoffkette mit der Formel $-\mathsf{C}_n\mathsf{F}_{2n}\mathsf{E}$ ist, in der

- E ein endständiges Fluor-, Chlor-, Brom-, Jod- oder Wasserstoffatom darstellt und n für die Zahlen 4 30 steht,
- L eine direkte Bindung, eine Methylengruppe, eine -NHCO-Gruppe, eine Gruppe

$$- \hspace{-1.5cm} \left\{ \begin{array}{c} R^a \\ \\ \\ \end{array} \right.$$

$$- \hspace{-1.5cm} \left\{ (CH_2)_u - NHCOCH_2 - (CH_2)_p - \right\}_q N - SO_2 - CH_2 - CH_2$$

25

20

wobei p die Zahlen 0 bis 10, q und u unabhängig voneinander die Zahlen 0 oder 1 und

10

15

20

25

R^a ein Wasserstoffatom, eine Methylgruppe, eine Benzylgruppe, eine Phenylgruppe, eine -CH₂-OH-, CH₂OCH₃-Gruppe, eine -CH₂-CO₂H-Gruppe oder eine C₂-C₁₅-Kette ist, die gegebenenfalls unterbrochen ist durch 1 bis 3 Sauerstoffatome, 1 bis 2 >CO-Gruppen oder eine gegebenenfalls substituierte Arylgruppe und/oder substituiert ist mit 1 bis 4 Hydroxylgruppen, 1 bis 2 C₁-C₄-Alkoxygruppen, 1 bis 2 Carboxygruppen, eine Gruppe -SO₃H- bedeuten,

oder eine geradkettige, verzweigte, gesättigte oder ungesättigte C_2 - C_{30} - Kohlenstoffkette ist, die gegebenenfalls 1 bis 10 Sauerstoffatome, 1 bis 3 -NR a -Gruppen, 1 bis 2 Schwefelatome, ein Piperazin, eine -CONR a -Gruppe, eine bis sechs -NR a CO-Gruppe, eine -SO $_2$ -Gruppe, eine -NR a -CO $_2$ -Gruppe, 1 bis 2 -CO-Gruppen, eine Gruppe

substituierte Aryle enthält und/oder durch diese Gruppen unterbrochen ist, und/oder gegebenenfalls substituiert ist mit 1 bis 3 -OR a -Gruppen, 1 bis 2 Oxogruppen, 1 bis 2 -NH-COR a -Gruppen, 1 bis 2 -CONHR a -Gruppen, 1 bis 2 -(CH $_2$) $_p$ -CO $_2$ H-Gruppen, 1 bis 2 Gruppen -(CH $_2$) $_p$ -(O) $_q$ -CH $_2$ CH $_2$ -R F , wobei

 $\mathsf{R}^\mathsf{a},\,\mathsf{R}^\mathsf{F}$ und p und q die oben angegebenen Bedeutungen haben und

- T eine C_2 - C_{10} -Kette bedeutet, die gegebenenfalls durch 1 bis 2 Sauerstoffatome oder 1 bis 2 -NHCO-Gruppen unterbrochen ist,
- K für einen Komplexbildner oder Metallkomplex oder deren Salze organischer und/oder anorganischer Basen oder Aminosäuren oder Aminosäureamide steht, und zwar für einen Komplexbildner oder Komplex der allgemeinen Formel II

$$CO - N$$

$$CO - N$$

$$CO_{2}R^{1}$$

$$CO_{2}R^{1}$$

$$CO_{3}R^{1}$$

$$CO_{2}R^{1}$$

$$COB$$
(II)

10

in der R^c, R¹ und B unabhängig voneinander sind und

R^C die Bedeutung von R^a hat oder -(CH₂)_m-L-R^F bedeutet, wobei m 0, 1 oder 2 ist und L und R^F die o.g. Bedeutung haben,

R¹ unabhängig voneinander ein Wasserstoffatom oder ein Metallionenäquivalent der Ordnungszahlen 22 - 29, 42-46 oder 58-70 bedeutet,

B -OR¹ oder

$$-N < \frac{CH_2CH_2^-L-R^F}{R^3}$$
 oder $-N$ $N-SO_2-L-R^F$

15

bedeutet, wobei R¹, L, R^F und R^C die o. g. Bedeutungen haben,

oder

für einen Komplexbildner oder Komplex der allgemeinen Formel III

$$\begin{array}{c|c}
 & CO_2R^1 \\
 & CO_2R^1
\end{array}$$
(III)

in der R^c und R^1 die oben genannten Bedeutungen aufweisen, R^b die Bedeutung von R^a hat

oder

5 für einen Komplexbildner oder Komplex der allgemeinen Formel IV

in der R¹ die oben genannte Bedeutung hat

10 oder

für einen Komplexbildner oder Komplex der allgemeinen Formel V

$$CO_2 R^1$$
 $CO_2 R^1$
 $CO_2 R^1$

in der R^1 die oben genannte Bedeutung hat und o und q für die Ziffern O oder 1 stehen und die Summe o + q = 1 ergibt,

5 oder

für einen Komplexbildner oder Komplex der allgemeinen Formel VI

in der R1 die oben genannte Bedeutung hat

oder

10

für einen Komplexbildner oder Komplex der allgemeinen Formel VII

$$R^{1}O_{2}C$$
 N
 N
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$

in der R¹ und B die oben genannten Bedeutungen haben oder

für einen Komplexbildner oder Komplex der allgemeinen Formel VIII

in der R^c und R^1 die oben genannten Bedeutungen haben und R^b die o.g. Bedeutung von R^a hat.

10 oder

5

für einen Komplexbildner oder Komplex der allgemeinen Formel IX

$$R^{1}O_{2}C$$
 N
 N
 OH
 $CO_{2}R^{1}$
 R^{c}
 V^{2}
 $V^{$

in der R^c und R¹ die oben genannten Bedeutungen haben,

oder

15

für einen Komplexbildner oder Komplex der allgemeinen Formel X

$$R^1O_2C$$
 N
 N
 OH
 CO_2R^1
 R^c
 (X)

in der R^c und R¹ die oben genannten Bedeutungen haben,

oder

5

für einen Komplexbildner oder Komplex der allgemeinen Formel XI

$$^{1}RO_{2}C$$
 $CO_{2}R^{1}$ (XI) N HN O $[NH-CH_{2}-(CH_{2})_{p}-CO]q-N$ NH_{2} SO_{2} SO_{2}

in der R¹ , p und q die oben genannte Bedeutung haben und R^b die Bedeutung von R^a hat.

oder

für einen Komplexbildner oder Komplex der allgemeinen Formel XII

$$\begin{array}{c|c}
O & & & & \\
N & & & \\
N & & & &$$

in der $\mathsf{L}^\mathsf{I}\,\mathsf{R}^\mathsf{F}$ und Z^1 die oben genannten Bedeutungen haben, oder

für einen Komplexbildner oder Komplex der allgemeinen Formel XIII

$$CO_{2} R^{1}$$

$$CO_{2} R^{1}$$

$$N - SO_{2} - \cdots$$

$$CO_{2} R^{1}$$

$$CO_{2} R^{1}$$

$$CO_{2} R^{1}$$

$$CO_{2} R^{1}$$

$$CO_{2} R^{1}$$

$$CO_{3} R^{1}$$

$$CO_{4} R^{1}$$

$$CO_{5} R^{1}$$

$$CO_{6} R^{1}$$

$$CO_{7} R^{1}$$

$$CO_{8} R^{1}$$

$$CO_{8} R^{1}$$

$$CO_{8} R^{1}$$

in der R¹ die oben genannte Bedeutung hat, eingesetzt werden.

Verwendung nach Anspruch 8,
 dadurch gekennzeichnet, dass
 die Verbindungen der allgemeinen Formel I eingesetzt werden, in der L für

$$\begin{array}{lll} & \alpha\text{-CH}_2\text{-}\beta & & \\ & \alpha\text{-CH}_2\text{CH}_2\text{-}\beta & \\ & \alpha\text{-(CH}_2)_\text{S}\text{-}\beta & \text{s} = 3\text{-}15 \\ & \alpha\text{-CH}_2\text{-O-CH}_2\text{CH}_2\text{-}\beta & \\ & \alpha\text{-CH}_2\text{-(O-CH}_2\text{-CH}_2\text{-)}_\text{t-}\beta & \text{t} = 2\text{-}6 \\ & \alpha\text{-CH}_2\text{-NH-CO-}\beta & \\ & \alpha\text{-CH}_2\text{-NH-CO-CH}_2\text{-N(CH}_2\text{COOH)-SO}_2\text{-}\beta & \\ \end{array}$$

```
\alpha-CH<sub>2</sub>-NH-CO-CH<sub>2</sub>-N(C<sub>2</sub>H<sub>5</sub>)-SO<sub>2</sub>-\beta
                          \alpha-CH<sub>2</sub>-NH-CO-CH<sub>2</sub>-N(C<sub>10</sub>H<sub>21</sub>)-SO<sub>2</sub>-\beta
                          \alpha-CH<sub>2</sub>-NH-CO-CH<sub>2</sub>-N(C<sub>6</sub>H<sub>13</sub>)-SO<sub>2</sub>-\beta
                          \alpha-CH<sub>2</sub>-NH-CO-(CH<sub>2</sub>)<sub>10</sub>-N(C<sub>2</sub>H<sub>5</sub>)-SO<sub>2</sub>-\beta
                          \alpha-CH<sub>2</sub>-NH-CO-CH<sub>2</sub>-N(-CH<sub>2</sub>-C<sub>6</sub>H<sub>5</sub>)-SO<sub>2</sub>-\beta
 5
                          \alpha-CH<sub>2</sub>-NH-CO-CH<sub>2</sub>-N(-CH<sub>2</sub>-CH<sub>2</sub>-OH)SO<sub>2</sub>-\beta
                          \alpha-CH<sub>2</sub>-NHCO-(CH<sub>2</sub>)<sub>10</sub>-S-CH<sub>2</sub>CH<sub>2</sub>-\beta
                          \alpha-CH<sub>2</sub>NHCOCH<sub>2</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-\beta
                          \alpha-CH<sub>2</sub>NHCO(CH<sub>2</sub>)<sub>10</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-\beta
                         \alpha-CH<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-\beta
10
                          \alpha-CH<sub>2</sub>-O-CH<sub>2</sub>-C(CH<sub>2</sub>-OCH<sub>2</sub>CH<sub>2</sub>-C<sub>6</sub>F<sub>13</sub>)<sub>2</sub>-CH<sub>2</sub>-OCH<sub>2</sub>-CH<sub>2</sub>-\beta
            {\color{gray}\alpha\text{-CH}_2\text{-NHCOCH}_2\text{CH}_2\text{CON-CH}_2\text{CH}_2\text{NHCOCH}_2\text{N}(\text{C}_2\text{H}_5)\text{SO}_2\text{C}_8\text{F}_{17}}
                                                                             CH<sub>2</sub>-CH<sub>2</sub>NHCOCH<sub>2</sub>N(C<sub>2</sub>H<sub>5</sub>)-SO<sub>2</sub>-β
                          \alpha-CH<sub>2</sub>-O-CH<sub>2</sub>-CH(OC<sub>10</sub>H<sub>21</sub>)-CH<sub>2</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-\beta
15
                          α-(CH<sub>2</sub>NHCO)<sub>4</sub>-CH<sub>2</sub>O-CH<sub>2</sub>CH<sub>2</sub>-β
                          \alpha-(CH<sub>2</sub>NHCO)<sub>3</sub>-CH<sub>2</sub>O-CH<sub>2</sub>CH<sub>2</sub>-\beta
```

$$\alpha$$
 — CH_2 — O — CH_2 — O — CH_2 — C

 α -CH₂-OCH₂C(CH₂OH)₂-CH₂-O-CH₂CH₂- β

α-CH₂NHCOCH₂N(C₆H₅)-SO₂-β
α-NHCO-CH₂-CH₂-β
α-NHCO-CH₂-O-CH₂CH₂-β
α-NH-CO-β
α-NH-CO-CH₂-N(CH₂COOH)-SO₂-β
α-NH-CO-CH₂-N(C₂H₅)-SO₂-β
α-NH-CO-CH₂-N(C₁₀H₂₁)-SO₂-β
α-NH-CO-CH₂-N(C₆H₁₃)-SO₂-β
α-NH-CO-(CH₂)₁₀-N(C₂H₅)-SO₂-β
α-NH-CO-CH₂-N(-CH₂-C₆H₅)-SO₂-β
α-NH-CO-CH₂-N(-CH₂-CH₂-OH)SO₂-β
α-NH-CO-CH₂-N(-CH₂-CH₂-OH)SO₂-β

 $\begin{array}{c} \alpha\text{-CH}_2\text{-O-C}_6\text{H}_4\text{-O-CH}_2\text{-CH}_2\text{-}\beta \\ \alpha\text{-CH}_2\text{-C}_6\text{H}_4\text{-O-CH}_2\text{-CH}_2\text{-}\beta \\ \alpha\text{-N(C}_2\text{H}_5)\text{-SO}_2\text{-}\beta \\ \alpha\text{-N(C}_6\text{H}_5)\text{-SO}_2\text{-}\beta \\ \alpha\text{-N(C}_1\text{0H}_2\text{1})\text{-SO}_2\text{-}\beta \\ \alpha\text{-N(C}_6\text{H}_13)\text{-SO}_2\text{-}\beta \\ \alpha\text{-N(C}_2\text{H}_4\text{OH})\text{-SO}_2\text{-}\beta \\ \alpha\text{-N(CH}_2\text{COOH})\text{-SO}_2\text{-}\beta \\ \alpha\text{-N(CH}_2\text{COOH})\text{-SO}_2\text{-}\beta \\ \alpha\text{-N(CH}_2\text{COH})\text{-SO}_2\text{-}\beta \\ \alpha\text{-N-[CH(CH}_2\text{OH})_2]\text{-SO}_2\text{-}\beta \\ \alpha\text{-N-[CH(CH}_2\text{OH})\text{CH(CH}_2\text{OH})]\text{-SO}_2\text{-}\beta \\ \text{steht und worin } \alpha \text{ die Bindungsstelle zum Komplexbildner oder Metallkomplex K und } \beta \text{ die Bindungsstelle zum Fluorrest darstellt.} \end{array}$

15

20

- 10. Verwendung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Verbindungen der Formel I eingesetzt werden, in der n in der Formel – C_nF_{2n}E für die Zahlen 4-15 steht und/oder E in dieser Formel ein Fluoratom bedeutet.
- 11. Verwendung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die folgenden Verbindungen eingesetzt werden:
- Gadolinium-Komplex von 10-[1-Methyl-2-oxo-3-aza-5-oxo-{4-perfluoro-octylsulfonyl-piperazin-1-yl}-pentyl]-1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan,
 - Gadolinium-Komplex von 10-[2-Hydroxy-4-aza-5-oxo-7-oxa-10,10,11,11, 12,12, 13,13,14,14,15,15,16,16,17,17-heptadecafluorheptacecyl]-1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan,
 - Gadolinium-Komplex von 10-[2-Hydroxy-4-aza-5,9-dioxo-9-{4-perfluoroctyl}-piperazin-1-yl}-nonyl]-1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacy-clododecan,

10

15

20

25

- Gadolinium-Komplex von 10-[2-Hydroxy-4-aza-5-oxo-7-aza-7-(perfluoroctyl-sulfonyl)-nonyl]-1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan,
- Gadolinium-Komplex von 10-[2-Hydroxy-4-oxa-1H,1H,2H,3H,3H,5H,5H,6H,6H-perfluor-tetradecyl]-1,4,7-tris(carboxymethyl)-1,4,7,10-tetraaza-cyclododecan,
- Gadolinium-Komplex von 10-[2-Hydroxy-4-aza-5-oxo-7-oxa-10,10,11,11, 12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19-henicosafluor-nonade-cyl]-1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan,
- Gadolinium-Komplex von 10-[2-Hydroxy-4-aza-5-oxo-11-aza-11-(perfluor-octylsulfonyl)-tridecyl]-1-4-7-tris(carboxymethyl) 1,4,7,10-tetraazacyclododecan,
- Gadolinium-Komplex von 10-[2-Hydroxy-4-aza-5-oxo-7-aza-7-(perfluor-octylsulfonyl)-8-phenyl-octyl]-1-4-7-tris(carboxymethyl)-1,4,7,10-tetraaza-cyclododecan.

12. Verwendung nach einem der Ansprüche 1-7,
dadurch gekennzeichnet, dass
als perfluoralkylhaltige Metallkomplexe die Verbindungen der allgemeinen
Formel la

 $A - R^{F}$ (Ia)

worin

 A ein Molekülteil ist, der 2 - 6 Metallkomplexe enthält, die direkt oder über einen Linker an ein Stickstoffatom einer ringförmigen Gerüstkette gebunden sind

und

RF eine perfluorierte, geradkettige oder verzweigte Kohlenstoffkette mit der
 Formel -C_nF_{2n}E ist, in der
 E ein endständiges Fluor-, Chlor-, Brom-, Jod- oder Wasserstoffatom darstellt

und n für die Zahlen 4 - 30 steht,

wobei das Molekülteil A die folgende Struktur aufweist:

5

wobei

• q¹ eine Zahl 0, 1, 2 oder 3 ist,

10

- K für einen Komplexbildner oder Metallkomplex oder deren Salze organischer und/oder anorganischer Basen oder Aminosäuren oder Aminosäureamide steht,
- X eine direkte Bindung zur Perfluoralkylgruppe, eine Phenylengruppe oder eine C₁-C₁₀-Alkylenkette ist, die gegebenenfalls 1 15 Sauerstoff-, 1 5 Schwefelatome, 1 10 Carbonyl-, 1 10 (NR^d)-, 1 2 NR^dSO₂-, 1 10 CONR^d-, 1 Piperidin-, 1 3 SO₂-, 1 2 Phenylengruppen enthält oder gegebenenfalls durch 1 3 Reste R^F substituiert ist, worin R^d für ein Wasserstoffatom, eine Phenyl-, Benzyl- oder eine C₁-C₁₅-Alkylgruppe steht, die gegebenenfalls 1 2 NHCO-, 1 2 CO-Gruppen,

1 - 5 Sauerstoffatome enthält und gegebenenfalls durch 1 - 5 Hydroxy-, 1-5 Methoxy-, 1 - 3 Carboxy-, 1 - 3 RF-Reste substituiert ist

V eine direkte Bindung oder eine Kette der allgemeinen Formel IIa oder IIIa ist:

$$\beta - NH_{2} (CH_{2})_{k} - (W)_{l} - (CH_{2})_{m} - C - \alpha$$

$$R^{e}$$
(IIa)

$$\beta$$
-N-CH₂-C-N
 β -N-C-N
 β

worin

- R^e ein Wasserstoffatom, eine Phenylgruppe, eine Benzylgruppe oder eine
 C₁-C₇ Alkylgruppe ist, die gegebenenfalls substituiert ist mit einer
 Carboxy-, einer Methoxy- oder einer Hydroxygruppe,
 - W eine direkte Bindung, eine Polyglycolethergruppe mit bis zu 5 Glycoleinheiten oder ein

Molekülteil der allgemeinen Formel IVa ist

20

25

15

worin R^h eine C₁-C₇-Carbonsäure, eine Phenylgruppe, eine Benzylgruppe oder eine -(CH₂)₁₋₅-NH-K-Gruppe ist,

- ullet α die Bindung an das Stickstoffatom der Gerüstkette, β die Bindung zum Komplexbildner oder Metallkomplex K darstellt,
- und in der die Variablen k und m für natürliche Zahlen zwischen 0 und 10 und I für 0 oder 1 stehen,

und wobei

D eine CO- oder SO₂-Gruppe ist,

eingesetzt werden.

Strukturen

5

- 13. Verwendung nach Anspruch 12,
 dadurch gekennzeichnet, dass
 die Verbindungen der allgemeinen Formel la eingesetzt werden, in der q die
 Zahl 1 ist.
- 14. Verwendung nach Anspruch 12,
 dadurch gekennzeichnet, dass
 15 die Verbindungen der allgemeinen Formel la eingesetzt werden, in der der
 Molekülteil X eine Alkylenkette ist, die 1 10 CH₂CH₂O- oder 1 5
 COCH₂NH-Gruppen enthält, eine direkte Bindung oder eine der folgenden

$$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ \\ \\ \end{array} \end{array} \end{array} & \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\$$

15

20

wobei γ an D und δ an R^F bindet.

5 15. Verwendung nach Anspruch 12, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel la eingesetzt werden, in der V ein Molekülteil mit einer der folgenden Strukturen ist

$$\begin{array}{c} \text{O} & \text{O} \\ \text{II} \\ \alpha-\text{C-CH}_2\text{-NH-}\beta \ , \ \alpha-\text{C-CH}_2\text{-N-}\beta \\ \text{CH}_2\text{COOH} \end{array} ,$$

$$\alpha$$
 —C-CH-NH- β (CH₂)₄-NH-K

 Verwendung nach Anspruch 12, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel la eingesetzt werden, in der K einen Komplex der allgemeinen Formel Va, VIa, VIIa oder VIIIa darstellt

$$R^{6}$$
 $COOR^{4}$
 R^{6} N N N
 R^{7} - U^{3} - T^{1}

 R^{6} $COOR^{4}$

5 (Va)

$$R^6$$
 $COOR^4$
 R^6 N N N
 R^5 U^3-T

 R^6 $COOR^4$

$$COOR^4$$
 $COOR^4$
 $COOR^4$

$$R^4OOC$$
 N
 N
 N
 $COOR^4$

(VIIIa)

wobei

20

25

- R⁴ unabhängig voneinander ein Wasserstoffatom oder ein Metallionenäquivalent der Elemente der Ordnungszahlen 23-29, 42-46 oder 58-70 ist,
- R⁵ ein Wasserstoffatom oder eine geradkettige, verzweigte, gesättigte oder ungesättigte C₁-C₃₀-Alkylkette ist, die gegebenenfalls substituiert ist durch 1 -5 Hydroxy-, 1 3 Carboxy- oder 1 Phenylgruppe(n) und/oder gegebenenfalls durch 1 10 Sauerstoffatome, 1 Phenylen- oder 1 Phenylenoxygruppe unterbrochen ist
- R⁶ ein Wasserstoffatom, ein geradkettiger oder verzweigter C₁-C₇-Alkylrest, ein Phenyl- oder Benzylrest ist,
 - R⁷ ein Wasserstoffatom, eine Methyl- oder Ethylgruppe ist, die gegebenenfalls substituiert ist durch eine Hydroxy- oder Carboxygruppe,

• U³ eine gegebenenfalls 1 - 5 Imino-, 1 - 3 Phenylen-, 1 - 3 Phenylenoxy-, 1 - 3 Phenylenimino-, 1 - 5 Amid-, 1 - 2 Hydrazid-, 1 - 5 Carbonyl-, 1 - 5 Ethylenoxy-,

1 Harnstoff-, 1 Thioharnstoff-, 1 - 2 Carboxyalkylimino-, 1 - 2 Estergruppen, 1 - 10 Sauerstoff-, 1 - 5 Schwefel- und/oder 1 - 5 Stickstoffatome enthaltende und/oder gegebenenfalls durch 1 - 5 Hydroxy-, 1 - 2 Mercapto-, 1 - 5 Oxo-, 1 - 5 Thioxo-,

1 - 3 Carboxy-, 1 - 5 Carboxyalkyl-, 1 - 5 Ester- und/oder 1 - 3 Aminogruppen substituierte, geradkettige, verzweigte, gesättigte oder ungesättigte

C₁-C₂₀-Alkylengruppe ist, wobei die gegebenenfalls enthaltenen Phenylengruppen durch 1 - 2 Carboxy-, 1 - 2 Sulfon- oder 1 - 2 Hydroxygruppen substituiert sein können

- 5 T^1 für eine -CO-β, -NHCO-β oder -NHCS-β-Gruppe steht, wobei β die Bindungsstelle an V darstellt.
- 17. Verwendung nach Anspruch 16,
 dadurch gekennzeichnet, dass

die für U³ stehende C₁-C₂₀-Alkylenkette die Gruppen
-CH₂NHCO-, -NHCOCH₂O-, -NHCOCH₂OC₆H₄-, -N(CH₂CO₂H)-,
-CH₂OCH₂-,
-NHCOCH₂C₆H₄-, -NHCSNHC₆H₄-, -CH₂OC₆H₄-, -CH₂CH₂O-

- enthält und/oder durch die Gruppen -COOH, -CH₂COOH substituiert ist.
- 18. Verwendung nach Anspruch 16,
 dadurch gekennzeichnet, dass
 U³ für eine
 - -CH₂-, -CH₂CH₂-, -CH₂CH₂-, -C₆H₄-, -C₆H₁₀-, -CH₂C₆H₄-,
 - -CH2NHCOCH2CH(CH2CO2H)-C6H4-,
 - -CH2NHCOCH2OCH2-,
 - -CH₂NHCOCH₂C₆H₄-gruppe steht.

19. Verwendung nach Anspruch 12,

dadurch gekennzeichnet, dass

die Verbindungen der allgemeinen Formel la eingesetzt werden, in der K eine der folgenden Strukturen aufweist:

30

25

- 20. Verwendung nach einem der Ansprüche 12 bis 19, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel la eingesetzt werden, in der die Perfluoralkylkette RF –C₆F₁₃, -C₈F₁₇, -C₁₀F₂₁ oder –C₁₂F₂₅ ist.
- 15 21. Verwendung nach einem der Ansprüche 12 bis 20, dadurch gekennzeichnet, dass

der Gadolinium-Komplex von 1,4,7-Tris{1,4,7-tris(N-(carboxylatomethyl)-10-[N-1-methyl-3,6-diaza-2,5,8-trioxooctan-1,8-diyl)]-1,4,7,10-tetraazacyclododecan, Gd-Komplex}-10-[N-2H, 2H, 4H, 5H, 5H-3-oxa-perfluor-tridecanoyl]- 1,4,7,10-tetraazacyclododecan eingesetzt wird.

5

10

22. Verwendung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als perfluoralkylhaltige Metallkomplexe die Verbindungen der allgemeinen Formel Ib

(lb)

worin

15 K einen Komplexbildner oder einen Metallkomplex der allgemeinen Formel
IIb

(IIb)

wobei R¹

20

25

für ein Wasserstoffatom oder ein Metallionenäquivalent der Ordnungszahlen 23-29, 42-46 oder 58-70,

R² und R³

für ein Wasserstoffatom, eine C₁-C₇-Alkylgruppe, eine Benzylgruppe, eine Phenylgruppe, -CH₂OH oder -CH₂-OCH₃, U² für den Rest L¹, wobei aber L¹ und U² unabhängig voneinander gleich oder verschieden sein können,

steht,

bedeutet,

5

10

15

20

25

- ein Wasserstoffatom, eine geradkettige oder verzweigte C₁-C₃₀-Alkylgruppe, die gegebenenfalls unterbrochen ist durch 1-15 Sauerstoffatome, und/oder gegebenenfalls substituiert ist mit 1-10 Hydroxygruppen, 1-2 COOH-Gruppen, einer Phenylgruppe, einer Benzylgruppe und/oder 1-5 OR⁹-Gruppen, mit R⁹ in der Bedeutung eines Wasserstoffatoms oder eines C₁-C₇-Alkylrestes, oder -L¹-R^F bedeutet,
- eine geradkettige oder verzweigte C₁-C₃₀-Alkylengruppe, die gegebenenfalls unterbrochen ist durch 1-10 Sauerstoffatome, 1-5 –NH-CO-Gruppen, 1-5 –CO-NH- Gruppen, durch eine gegebenenfalls durch eine COOH-Gruppe substituierte Phenylengruppe, 1-3 Schwefelatome, 1-2 –N(B¹)-SO₂- Gruppen, und/oder 1-2 –SO₂-N(B¹)- Gruppen mit B¹ in der Bedeutung von A¹ und/oder gegebenenfalls substituiert ist mit dem Rest R^F,

bedeutet und

 R^F einen geradkettigen oder verzweigten perfluorierten Alkylrest der Formel $C_nF_{2n}E$,

wobei n für die Zahlen 4-30 steht und

E für ein endständiges Fluoratom, Chloratom, Bromatom, Iodatom oder ein Wasserstoffatom steht,

bedeutet,

und gegebenenfalls vorhandene Säuregruppen gegebenenfalls als Salze organischer und/oder anorganischer Basen oder Aminosäuren oder Aminosäureamide vorliegen können,

eingesetzt werden.

- Verwendung nach Anspruch 22,
 dadurch gekennzeichnet, dass
 die Verbindungen der allgemeinen Formel Ib eingesetzt werden, in der R²,
 R³ und R^g unabhängig voneinander Wasserstoff oder eine C₁-C₄-Alkylgruppe bedeuten.
- 35 24. Verwendung nach Anspruch 22, dadurch gekennzeichnet, dass

die Verbindungen der allgemeinen Formel Ib eingesetzt werden, in der A^1 Wasserstoff, einen $\mathsf{C}_1\text{-}\mathsf{C}_{15}\text{-}\mathsf{Alkylrest},$

die Reste C₂H₄-O-CH₃, C₃H₆-O-CH₃,

 $C_2H_4-O-(C_2H_4-O)_t-C_2H_4-OH$,

 $C_2H_4-O-(C_2H_4-O)_1-C_2H_4-OCH_3$

C₂H₄OH, C₃H₆OH, C₄H₈OH, C₅H₁₀OH, C₆H₁₂OH, C₇H₁₄OH,

CH(OH)CH₂OH,

5 CH(OH)CH(OH)CH₂OH, CH₂[CH(OH)]_u¹CH₂OH,

CH[CH₂(OH)]CH(OH)CH₂OH,

C₂H₄CH(OH)CH₂OH,

(CH₂)_sCOOH,

C₂H₄-O-(C₂H₄-O)_t-CH₂COOH oder

 $C_2H_4-O-(C_2H_4-O)_t-C_2H_4-C_0F_{20}E$ bedeutet,

wobei

s für die ganzen Zahlen 1 bis 15,

t für die ganzen Zahlen 0 bis 13,

u¹ für die ganzen Zahlen 1 bis 10,

n für die ganzen Zahlen 4 bis 20 steht, und

E für ein Wasserstoff-, Fluor-, Chlor-, Brom- oder Iodatom

sowie, falls möglich, ihre verzweigten Isomeren.

20 25. Verwendung nach Anspruch 22,

dadurch gekennzeichnet, dass

die Verbindungen der allgemeinen Formel Ib eingesetzt werden, in der A^1 Wasserstoff, C_1 - C_{10} -Alkyl,

C₂H₄-O-CH₃, C₃H₆-O-CH₃,

25 $C_2H_4-O_1(C_2H_4-O)_2-C_2H_4-OH, C_2H_4-O_1(C_2H_4-O)_2-C_2H_4-OCH_3$

C₂H₄OH, C₃H₆OH,

CH₂[CH(OH)]_vCH₂OH,

CH[CH2(OH)]CH(OH)CH2OH,

(CH₂)_wCOOH,

 $C_2H_4-O-(C_2H_4-O)_x-CH_2COOH$

 $C_2H_4-O-(C_2H_4-O)_x-C_2H_4-C_nF_{2n}E$ bedeutet,

wobei

```
x für die ganzen Zahlen 0 bis 5,
y für die ganzen Zahlen 1 bis 6,
w für die ganzen Zahlen 1 bis 10,
n für die ganzen Zahlen 4 bis 15 und
E für ein Fluoratom steht, sowie, falls möglich, ihre verzweigten Isomeren.
```

26. Verwendung nach Anspruch 22, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel Ib eingesetzt werden, in der L¹ 10 α -(CH₂)_s- β α -CH₂-CH₂-(O-CH₂-CH₂-) $_V$ - β α -CH₂-(O-CH₂-CH₂-)_V- β , α-CH₂-NH-CO-β α -CH₂-CH₂-NH-SO₂- β α -CH₂-NH-CO-CH₂-N(CH₂COOH)-SO₂- β 15 α -CH₂-NH-CO-CH₂-N(C₂H₅)-SO₂- β α -CH₂-NH-CO-CH₂-N(C₁₀H₂₁)-SO₂- β α -CH₂-NH-CO-CH₂-N(C₆H₁₃)-SO₂- β α-CH2-NH-CO-(CH2)10-N(C2H5)-SO2-B α-CH2-NH-CO-CH2-N(-CH2-C6H5)-SO2-β 20 α -CH₂-NH-CO-CH₂-N(-CH₂-CH₂-OH)SO₂- β α -CH₂-NHCO-(CH₂)₁₀-S-CH₂CH₂- β α-CH2NHCOCH2-O-CH2CH2-β α-CH2-CH2NHCOCH2-O-CH2CH2-β α -CH₂-(CH₂-CH₂-O)_t-(CH₂)₃NHCO-CH₂-O-CH₂CH₂- β 25 α-CH2NHCO(CH2)10-O-CH2CH2-B α-CH₂CH₂NHCO(CH₂)₁₀-O-CH₂CH₂-β α -CH₂-C₆H₄-O-CH₂CH₂- β wobei die Phenylengruppe 1,4 oder 1,3 verknüpft ist α -CH₂-O-CH₂-C(CH₂-OCH₂CH₂-C₆F₁₃)₂-CH₂-OCH₂-CH₂- β

Verknupht ist

α-CH₂-O-CH₂-C(CH₂-OCH₂CH₂-C₆F₁₃)₂-CH₂-OCH₂-CH₂-β
α-CH₂-NHCOCH₂CH₂CON-CH₂CH₂NHCOCH₂N(C₂H₅)SO₂C₈F₁₇β
α-CH₂-CH₂NHCOCH₂N(C₂H₅)-SO₂-β
α-CH₂-O-CH₂-CH(OC₁₀H₂₁)-CH₂-O-CH₂CH₂-β
α-(CH₂NHCO)₄-CH₂O-CH₂CH₂-β
α-(CH₂NHCO)₃-CH₂O-CH₂CH₂-β
α-CH₂-OCH₂C(CH₂OH)₂-CH₂-O-CH₂CH₂-β

 α -CH₂NHCOCH₂N(C₆H₅)-SO₂- β α-NHCO-CH₂-CH₂-β 5 α-NHCO-CH₂-O-CH₂CH₂-β α-ΝΗ-CΟ-β α-NH-CO-CH₂-N(CH₂COOH)-SO₂-β α -NH-CO-CH₂-N(C₂H₅)-SO₂- β α -NH-CO-CH₂-N(C₁₀H₂₁)-SO₂- β 10 α -NH-CO-CH₂-N(C₆H₁₃)-SO₂- β α -NH-CO-(CH₂)₁₀-N(C₂H₅)-SO₂- β α -NH-CO-CH₂-N(-CH₂-C₆H₅)-SO₂- β α -NH-CO-CH₂-N(-CH₂-CH₂-OH)SO₂- β α-NH-CO-CH₂-β 15 α -CH₂-O-C₆H₄-O-CH₂-CH₂- β α -CH₂-C₆H₄-O-CH₂-CH₂- β α -N(C₂H₅)-SO₂- β α -N(C₆H₅)-SO₂- β α -N(C₁₀H₂₁)-SO₂- β 20 α -N(C₆H₁₃)-SO₂- β α -N(C₂H₄OH)-SO₂- β α-N(CH2COOH)-SO2-β α -N(CH₂C₆H₅)-SO₂- β α -N-[CH(CH₂OH)₂]-SO₂- β 25 α -N-[CH(CH₂OH)CH(OH)(CH₂OH)]-SO₂- β bedeutet, wobei s für die ganzen Zahlen 1 bis 15 und y für die ganzen Zahlen 1 bis 6 steht. 30

27. Verwendung nach Anspruch 22, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel Ib eingesetzt werden, in der L¹

 α -CH₂-O-CH₂CH₂- β , α -CH₂-CH₂-(O-CH₂-CH₂-)_v- β , α -CH₂-(O-CH₂-CH₂-)_v- β , α -CH₂-CH₂-NH-SO₂- β , Bsp. 10 α-CH2NHCOCH2-O-CH2CH2-β, 5 α-CH₂-CH₂NHCOCH₂-O-CH₂CH₂-β, α -CH₂-(CH₂-CH₂-O)_V-(CH₂)₃NHCO-CH₂-O-CH₂CH₂- β , α -CH₂NHCO(CH₂)₁₀-O-CH₂CH₂- β , α -CH₂CH₂NHCO(CH₂)₁₀-O-CH₂CH₂- β , α -CH₂-O-CH₂-CH(OC₁₀H₂₁)-CH₂-O-CH₂CH₂- β , 10 α -CH₂-O-C₆H₄-O-CH₂-CH₂- β oder α -CH₂-C₆H₄-O-CH₂-CH₂- β bedeutet, wobei y für die ganzen Zahlen 1 bis 6 steht.

15

20

25

- 28. Verwendung nach Anspruch 22, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel Ib eingesetzt werden, in der R^F einen geradkettigen oder verzweigten perfluorierten Alkylrest der Formel C_nF_{2n}E bedeutet, wobei n für die Zahlen 4 bis 15 steht und E für ein endständiges Fluoratom steht.
- 29. Verwendung nach einem der Ansprüche 22 bis 28, dadurch gekennzeichnet, dass die folgenden Verbindungen eingesetzt werden:
 - 1,4,7-Tris(carboxylatomethyl)-10-(3-aza-4-oxo-hexan-5-yl)-säure-N-(2,3-dihydroxypropyl)-N-(1H, 1H, 2H, 2H, 4H, 4H, 5H, 5H-3-oxa)-perfluortridecyl)-
- 1,4,7-Tris(carboxylatomethyl)-10-{(3-aza-4-oxo-hexan-5-yl)säure-N-(3,6,9, 12,15-pentaoxa)-hexadecyl)-(1H, 1H, 2H, 2H, 4H, 4H, 5H, 5H-3-oxa)-perfluortridecyl]-amid}-1,4,7,10-tetraazacyclododecan, Gadoliniumkomplex

amid]-1,4,7,10-tetraazacyclododecan, Gadoliniumkomplex

- 1,4,7-Tris(carboxylatomethyl)-10-{(3-aza-4-oxo-hexan-5-yl)-säure-N-5-hydroxy-3-oxa-pentyl)-N-(1H, 1H, 2H, 2H, 4H, 4H, 5H, 5H-3-oxa)-perfluortridecyl]-amid}-1,4,7,10-tetraazacyclododecan, Gadoliniumkomplex
- 1,4,7-Tris(carboxylatomethyl)-10-{(3-aza-4-oxo-hexan-5-yl)-säure-[N-3,6,9,15-tetraoxa-12-aza-15-oxo-C₁₇-C₂₆-hepta-decafluor)hexacosyl]-amid}-1,4,7,10-tetraazacyclododecan, Gadoliniumkomplex
- 1,4,7-Tris(carboxylatomethyl)-10-[(3-aza-4-oxo-hexan-5-yl]-säure-N-(2-methoxyethyl)-N-(1H, 1H, 2H, 2H, 4H, 4H, 5H, 5H-3-oxa)-perfluortridecyl]-amid}-1,4,7,10-tetraazacyclododecan, Gadoliniumkomplex.

30. Verwendung nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, dass
als perfluoralkylhaltige Metallkomplexe die Verbindungen mit Zuckerresten
der allgemeinen Formel Ic

15
$$(K)_{l}^{1}-G-(Z-R^{F})_{m}^{1}$$
 (Ic) $(Y-R)_{p}^{1}$

in der

5

- 20 R einen über die 1-OH- oder 1-SH-Position gebundenen Mono- oder Oligosaccharidrest darstellt,
 - R^F eine perfluorierte, geradkettige oder verzweigte Kohlenstoffkette mit der Formel -C_nF_{2n}E ist, in der E ein endständiges Fluor-, Chlor-, Brom-, Jod- oder Wasserstoffatom darstellt und n für die Zahlen 4-30 steht,
- 25 K für einen Metallkomplex der allgemeinen Formel IIc steht,

(IIC)

in der

10

15

U

ein Wasserstoffatom oder ein Metallionenäquivalent der Ordnungszahlen 23-29, 42-46 oder 58-70 bedeutet, mit der Maßgabe, dass mindestens zwei R¹ für Metallionenäquivalente stehen

R² und R³ unabhängig voneinander Wasserstoff, C₁-C₇-Alkyl, Benzyl, Phenyl, - CH₂OH oder –CH₂OCH₃ darstellen und

 $-C_6H_4$ -O-CH₂-ω-, -(CH₂)₁₋₅-ω, eine Phenylengruppe, -CH₂-NHCO-CH₂-CH(CH₂COOH)-C₆H₄-ω-, -C₆H₄-(OCH₂CH₂)₀₋₁-N(CH₂COOH)-CH₂-ω oder eine gegebenenfalls durch ein oder mehrere Sauerstoffatome, 1 bis 3-NHCO-, 1 bis 3 –CONH-gruppen unterbrochene und/oder mit 1 bis 3-(CH₂)₀₋₅COOH-Gruppen substituierte C₁-C₁₂-Alkylen- oder C₇-C₁₂-C₆H₄-O-Gruppe darstellt, wobei ω für die Bindungsstelle an –CO- steht,

oder

der allgemeinen Formel IIIc

in der R 1 die oben genannte Bedeutung hat, R 4 Wasserstoff oder ein unter R 1 genanntes Metallionenäquivalent darstellt und U 1 –C $_6$ H $_4$ -O-CH $_2$ - ω - darstellt, wobei ω die Bindungsstelle an –CO- bedeutet

oder der allgemeinen Formel IVc

in der R¹ und R² die oben genannte Bedeutung haben

oder der allgemeinen Formel VcA oder VcB

(VcB)

in der R¹ die oben genannte Bedeutung hat,

oder der allgemeinen Formel VIc

5 (VIC)

in der R¹ die oben genannte Bedeutung hat,

oder der allgemeinen Formel VIIc

10

15

in der R1 die oben genannte Bedeutung hat und

 U^1 $-C_6H_4$ -O-CH $_2$ - ω - darstellt, wobei ω die Bindungsstelle an -CO- bedeutet

oder der allgemeinen Formel VIIIc

20 (VIIIc)

in der R1 die oben genannte Bedeutung hat,

und im Rest K gegebenenfalls vorhandene freie Säuregruppen gegebenenfalls als Salze organischer und/oder anorganischer Basen oder Aminosäuren oder Aminosäureamide vorliegen können,

5 G für den Fall, dass K die Metallkomplexe IIc bis VIIc bedeutet, einen mindestens dreifach funktionalisierten Rest ausgewählt aus den nachfolgenden Resten a) bis j) darstellt

10

(a1)
$$\alpha \sim N - (CH_2)_4 - C - CO - \gamma$$

$$NH$$

$$\xi$$

$$\beta$$

(a2)

(c)

5

(d)

10

(e)

5 (g)

$$\beta$$
NH
NH—CO—CH—(CH₂)₄—NH— α
NH—CO—CH—(CH₂)₄—NH— α
NH
NH
NH—CO—CH—(CH₂)₄—NH— β
NH

10

5 (i)

$$\beta = N - (CH_2) + CON N$$

10 (j)

und

15

G für den Fall, dass K den Metallkomplex VIIIc bedeutet, einen mindestens dreifach funktionalisierten Rest ausgewählt aus k) oder I) darstellt,

20 (k)

- wobei α die Bindungsstelle von G an den Komplex K bedeutet, β die Bindungsstelle von G zum Rest Y ist und γ die Bindungsstelle von G zum Rest Z darstellt
- Y -CH₂-, δ-(CH₂)₍₁₋₅₎CO- β , β-(CH₂)₍₁₋₅₎CO- δ , δ-CH₂-CHOH-CO- β oder δ-CH(CHOH-CH₂OH)-CHOH-CHOH-CO- β bedeutet, wobei δ die Bindungsstelle zum Zuckerrest R darstellt und β die Bindungsstelle zum Rest G ist

Z für

$$\gamma$$
-N N-SO₂-8

15

 γ -COCH₂-N(C₂H₅)-SO₂- ϵ ,

 $\gamma\text{-COCH}_2\text{-O-(CH}_2)_2\text{-SO}_2\text{-}\epsilon,$

20

$$\gamma$$
 0 $N-SO_2-E$

oder

γ - NHCH2CH2-O-CH2CH2 - ε

steht, wobei γ die Bindungsstelle von Z zum Rest G darstellt und ϵ die Bindungsstelle von Z an den perfluorierten Rest R^F bedeutet

25 und

I¹, m¹ unabhängig voneinander die ganzen Zahlen 1 oder 2 bedeuten und
 p¹ die ganzen Zahlen 1 bis 4 bedeutet,

eingesetzt werden.

15

20

25

30

- 31. Verwendung nach Anspruch 30,
 dadurch gekennzeichnet, dass
 die Verbindungen der allgemeinen Formel Ic eingesetzt werden, in der R
 einen Monosaccharidrest mit 5 bis 6 C-Atomen oder dessen Desoxy Verbindung darstellt, vorzugsweise Glucose, Mannose oder Galactose.
- 32. Verwendung nach Anspruch 30, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel Ic eingesetzt werden, in der R² und R³ unabhängig voneinander Wasserstoff oder C₁-C₄-Alkyl bedeuten und/oder E in der Formel -C_nF_{2n}E ein Fluoratom bedeutet.
 - 33. Verwendung nach Anspruch 30, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel Ic eingesetzt werden, in der G den Lysinrest (a) oder (b) darstellt.
 - 34. Verwendung nach Anspruch 30,
 dadurch gekennzeichnet, dass
 die Verbindungen der allgemeinen Formel Ic eingesetzt werden, in der Z

 γ—N
 N
 N
 N

bedeutet, wobei γ die Bindungsstelle von Z zum Rest G darstellt und ϵ die Bindungsstelle von Z an den perfluorierten Rest R^F bedeutet und/oder Y δ – CH₂CO- β bedeutet, wobei δ die Bindungsstelle zum Zuckerrest R darstellt und β die Bindungsstelle zum Rest G darstellt.

- 35. Verwendung nach Anspruch 30, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel Ic eingesetzt werden, in der U im Metallkomplex K -CH₂- oder -C₆H₄-O-CH₂-ω darstellt, wobei ω für die Bindungsstelle an -CO- steht.
- Verwendung nach Anspruch 30, dadurch gekennzeichnet, dass
 der Gadolinium-Komplex von 6-N-[1,4,7-Tris(carboxylatomethyl)- 1,4,7,10-tetraazacyclododecan-10-N-(pentanoyl-3-aza-4-oxo-5-methyl-5-yl)]-2-N-[1-O-α-D-carbonylmethyl-mannopyranose]-L-lysin-[1-(4-perfluoroctylsulfonyl)-piperazin]-amid eingesetzt wird.
- 15 37. Verwendung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als perfluoralkylhaltige Metallkomplexe die Verbindungen mit polaren Resten der allgemeinen Formel Id

20
$$(K)_{l}^{1}-G-(Z-R^{F})_{m}^{1}$$
 (Id) $(R)_{p}^{2}$

in der

- $^{\rm E}$ eine perfluorierte, geradkettige oder verzweigte Kohlenstoffkette mit der Formel -C_nF_2_nE ist, in der E ein endständiges Fluor-, Chlor-, Brom-, Jododer Wasserstoffatom darstellt und n für die Zahlen 4-30 steht,
 - K für einen Metallkomplex der allgemeinen Formel IId steht,

(IId)

in der

 R^1

5

ein Wasserstoffatom oder ein Metallionenäquivalent der Ordnungszahlen 23-29, 42-46 oder 58-70 bedeutet,

mit der Maßgabe, dass mindestens zwei R¹ für Metallionenäquivalente stehen

 R^2 und R^3

unabhängig voneinander Wasserstoff, C_1 - C_7 -Alkyl, Benzyl, Phenyl, - CH_2OH oder $-CH_2OCH_3$ darstellen und

U

-C₆H₄-O-CH₂-ω-, -(CH₂)₁₋₅-ω, eine Phenylengruppe, -CH₂-NHCO-CH₂-CH(CH₂COOH)-C₆H₄-ω-, -C₆H₄-(OCH₂CH₂)₀₋₁-N(CH₂COOH)-CH₂-ω oder eine gegebenenfalls durch ein oder mehrere Sauerstoffatome, 1 bis 3-NHCO-, 1 bis 3 –CONH-gruppen unterbrochene und/oder mit 1 bis 3

15

10

-(CH₂)₀₋₅COOH-Gruppen substituierte C₁-C₁₂-Alkylen- oder C₇-C₁₂-C₆H₄-0-Gruppe darstellt, wobei ω für die Bindungsstelle an –COsteht,

oder

20 der allgemeinen Formel IIId

(IIId)

in der R 1 die oben genannte Bedeutung hat, R 4 Wasserstoff oder ein unter R 1 genanntes Metallionenäquivalent darstellt und U 1 –C $_6$ H $_4$ -O-CH $_2$ - ω - darstellt, wobei ω die Bindungsstelle an –CO- bedeutet oder der allgemeinen Formel IVd

5

(IVd)

in der R¹ und R² die oben genannte Bedeutung haben

oder der allgemeinen Formel VdA oder VdB

15

(VdA)

(VdB)

20 in der R¹ die oben genannte Bedeutung hat,

oder der allgemeinen Formel VId

(VId)

in der R¹ die oben genannte Bedeutung hat,

5 oder der allgemeinen Formel VIId

15

in der R 1 die oben genannte Bedeutung hat und U 1 -C $_6$ H $_4$ -O-CH $_2$ - ω - darstellt, wobei ω die Bindungsstelle an -CO- bedeutet

und im Rest K gegebenenfalls vorhandene freie Säuregruppen gegebenenfalls als Salze organischer und/oder anorganischer Basen oder Aminosäuren oder Aminosäureamide vorliegen können,

G einen mindestens dreifach funktionalisierten Rest ausgewählt aus den nachfolgenden Resten a) bis i) darstellt

(a1)
$$\alpha \sim N - (CH_2)_4 - C - CO - \gamma$$

(a2)
$$\begin{array}{c} \text{H} \\ \alpha\text{----N-}(\text{CH}_2)_4\text{-C-CO----}\beta \\ \text{H} \\ \text{NH} \\ \text{I} \end{array}$$

5 (c)

10 (d)

(e)

(g)

5

10

(h)

$$\gamma$$
 -CO-(CH₂)₂₋₃-CH-CO $\sim \beta$; (i) $\beta \sim \sim$ CO-(CH₂)₂₋₃-CH-CO $\sim \sim \gamma$

wobei α die Bindungsstelle von G an den Komplex K bedeutet, β die Bindungsstelle von G zum Rest R ist und γ die Bindungsstelle von G zum Rest Z darstellt

$$\gamma$$
-N \sim N-SO₂- ϵ

10

15

20

25

35

 γ -C(O)CH₂O(CH₂)₂- ϵ ,

steht, wobei γ die Bindungsstelle von Z zum Rest G darstellt und ϵ die Bindungsstelle von Z an den perfluorierten Rest R $_{\rm f}$ bedeutet

einen polaren Rest ausgewählt aus den Komplexen K der allgemeinen Formeln IId bis VIId darstellt, wobei R¹ hier ein Wasserstoffatom oder ein Metallionenäquivalent der Ordnungszahlen 20, 23-29, 42-46 oder 58-70 bedeutet,

und die Reste R², R³, R⁴, U und U¹ die oben angegebene Bedeutung aufweisen

oder

den Folsäurerest

oder

eine über -CO-, SO_2 - oder eine direkte Bindung an den Rest G gebundene Kohlenstoffkette mit 2-30 C-Atomen bedeutet, geradlinig oder verzweigt, gesättigt oder ungesättigt,

gegebenenfalls unterbrochen durch 1-10 Sauerstoffatome, 1-5 – NHCO-Gruppen, 1-5 –CONH-Gruppen, 1-2 Schwefelatome, 1-5 –NH-Gruppen oder 1-2 Phenylengruppen, die gegebenenfalls mit 1-2 OH-Gruppen, 1-2 NH₂-Gruppen, 1-2 –COOH-Gruppen, oder 1-2 –SO₃H-Gruppen substituiert sein können

oder

gegebenenfalls substituiert mit 1-8 OH-Gruppen, 1-5 –COOH-Gruppen, 1-2 SO_3H -Gruppen, 1-5 NH_2 -Gruppen, 1-5 C_1 - C_4 -Alkoxygruppen,

und

 l^1 , m^1 , p^2 unabhängig voneinander die ganzen Zahlen 1 oder 2 bedeuten.

- 30 eingesetzt werden.
 - 38. Verwendung nach Anspruch 37,
 dadurch gekennzeichnet, dass
 die Verbindungen der allgemeinen Formel Id eingesetzt werden, in der K für
 einen Metallkomplex der allgemeinen Formel Ild, IIId, VdB oder VIId steht.

- 39. Verwendung nach Anspruch 37,
 dadurch gekennzeichnet, dass
 die Verbindungen der allgemeinen Formel Id eingesetzt werden, in der der
 polare Rest R die Bedeutung des Komplexes K hat, vorzugsweise der
 Komplexe K der allgemeinen Formeln IId, IIId, VdA oder VIId.
- 40. Verwendung nach Anspruch 37, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel Id eingesetzt werden, in der der polare Rest R folgende Bedeutungen hat:
 - -C(O)CH₂CH₂SO₃H
- -C(O)CH₂OCH₂CH₂OCH₂CH₂OH
 - -C(O)CH₂OCH₂CH₂OH
 - -C(O)CH₂OCH₂CH(OH)CH₂OH
 - -C(O)CH₂NH-C(O)CH₂COOH
 - -C(O)CH2CH(OH)CH2OH
- 20 -C(O)CH₂OCH₂COOH
 - -SO₂CH₂CH₂COOH
 - $-C(O)-C_6H_3-(m-COOH)_2$
 - $-C(O)CH_2O(CH_2)_2-C_6H_3-(m-COOH)_2$
 - -C(O)CH₂O-C₆H₄-m-SO₃H
- 25 -C(O)CH₂NHC(O)CH₂NHC(O)CH₂OCH₂COOH
 - -C(O)CH₂OCH₂CH₂OCH₂COOH
 - -C(O)CH₂OCH₂CH(OH)CH₂O-CH₂CH₂OH
 - -C(O)CH₂OCH₂CH(OH)CH₂OCH₂-CH(OH)-CH₂OH
 - -C(O)CH₂SO₃H
- 30 -C(O)CH₂CH₂COOH
 - -C(O)CH(OH)CH(OH)CH₂OH
 - -C(O)CH₂O[(CH₂)₂O]₁₋₉-CH₃
 - -C(O)CH₂O[(CH₂)₂O]₁₋₉-H
 - -C(O)CH₂OCH(CH₂OH)₂
- 35 -C(O)CH₂OCH(CH₂OCH₂COOH)₂
 - $-C(O)-C_6H_3-(m-OCH_2COOH)_2$

-CO-CH₂O-(CH₂)₂O(CH₂)₂O-(CH₂)₂O(CH₂)₂OCH₃ vorzugsweise $-C(O)CH_2O[(CH_2)_2O]_4$ -CH₃.

5

41. Verwendung nach Anspruch 37, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel Id eingesetzt werden, in der der polare Rest R der Folsäurerest ist.

10

15

- 42. Verwendung nach Anspruch 37, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel Id eingesetzt werden, in der G den Lysinrest (a) oder (b) darstellt.
- 43. Verwendung nach Anspruch 37,
 dadurch gekennzeichnet, dass
 die Verbindungen der allgemeinen Formel Id eingesetzt werden, in der U im Metallkomplex K die Gruppe –CH₂- oder –C₆H₄-O-CH₂-ω darstellt, wobei ω für die Bindungsstelle an –CO- steht.
- 44. Verwendung nach einem der Ansprüche 37-43, dadurch gekennzeichnet, dass der Gadolinium-Komplex von 2,6-N,N'-Bis[1,4,7-tris(carboxylatomethyl)-1,4,7,10-tetraazacyclododecan-10-(pentanoyl-3-aza-4-oxo-5-methyl-5-yl)]-lysin-[1-(4-perfluoroctylsulfonyl-piperazin]-amid eingesetzt wird.

30

45. Verwendung nach einem der Ansprüche 1-7, dadurch gekennzeichnet, dass

10

15

30

als perfluoralkylhaltige Metallkomplexe galenische Formulierungen eingesetzt werden, die paramagnetische perfluoralkylhaltige Metallkomplexe der allgemeinen Formeln I, Ia, Ib, Ic und/oder Id und diamagnetische perfluoralkylhaltige Substanzen beinhalten, vorzugsweise gelöst in einem wässrigen Lösungsmittel.

46. Verwendung nach Anspruch 45, dadurch gekennzeichnet, dass als diamagnetische perfluoralkyhaltige Substanzen solche der allgemeinen Formel XX verwendet werden:

 $R^{F}-L^{2}-B^{2}$ (XX)

worin R^F einen geradkettigen oder verzweigten Perfluoralkylrest mit 4 bis 30 Kohlenstoffatomen darstellt, L² für einen Linker und B² für eine hydrophile Gruppe steht.

47. Verwendung nach Anspruch 46, dadurch gekennzeichnet, dass der Linker L2 eine direkte Bindung, eine -SO2-Gruppe oder eine 20 geradkettige oder verzweigte Kohlenstoffkette mit bis 20 Kohlenstoffatomen ist, welche mit einer oder mehreren -COO⁻, -SO₃-Gruppen substituiert sein kann und/oder gegebenenfalls eine oder mehrere -O-, -S-, -CO-, -CONH-, -NHCO-, -CONR⁹-, -NR⁹CO-, -SO₂-, -PO₄-, -NH-, -NR⁹-Gruppen, einen Arylring oder 25 ein Piperazin enthält, wobei R9 für einen C1- bis C20-Alkylrest steht,

-COO oder SO₃-Gruppen substituiert sein kann.

welcher wiederum ein oder mehrere O-Atome enthalten kann und/oder mit

48. Verwendung nach Anspruch 46, dadurch gekennzeichnet, dass

10

15

20

25

30

die hydrophile Gruppe B² ein Mono- oder Disaccharid, eine oder mehrere benachbarte -COO oder -SO₃-Gruppen, eine Dicarbonsäure, Benzolsulfonsäure. Isophthalsäure, eine Picolinsäure, eine eine Tetrahydropyrandicarbonsäure, eine 2,6-Pyridindicarbonsäure, ein quartäres eine Aminopolycarbonsäure, Ammoniumion, Aminodipolyethylenglycolsulfonsäure, eine Aminopolyethylenglycolgruppe, eine SO₂-(CH₂)₂-OH-Gruppe, eine Polyhydroxyalkylkette mit mindestens zwei Hydroxylgruppen o der eine o der mehrere Polyethylenglycolketten mit mindestens zwei Glycoleinheiten ist, wobei die Polyethylenglycolketten durch eine –OH oder –OCH₃-Gruppe terminiert sind.

49. Verwendung nach Anspruch 45, dadurch gekennzeichnet, dass

als diamagnetische perfluoralkylhaltige Substanzen Konjugate aus α -, β -, oder γ -Cyclodextrin und Verbindungen der allgemeinen Formel XXII eingesetzt werden:

$$A^2 - L^3 - R^F \tag{XXII}$$

worin A^2 für ein Adamantan-, Biphenyl- oder Anthracenmolekül, L^3 für einen Linker und R^F für einen geradkettigen oder verzweigten Perfluoralkylrest mit 4 bis 30 Kohlenstoffatomen steht; und wobei der Linker L^3 eine geradkettige Kohlenwasserstoffkette mit 1 bis 20 Kohlenstoffatomen ist, welche durch ein oder mehrere Sauerstoffatome, ein oder mehrere CO-, SO₂-, CONH-, NHCO-, CONR¹⁰-, NR¹⁰CO-, NH-, NR¹⁰-Gruppen oder ein Piperazin unterbrochen sein kann, wobei R^{10} ein C_1 - C_5 -Alkylrest ist.

50. Verwendung nach Anspruch 45, dadurch gekennzeichnet, dass als diamagnetische perfluoralkylhaltige Substanzen solche der allgemeinen Formel XXI eingesetzt werden:

$$R^F - X^1$$
 (XXI)

worin R^F einen geradkettigen oder verzweigten Perfluöralkylrest mit 4 bis 30 Kohlenstoffatomen darstellt und X^1 ein Rest ausgewählt aus der Gruppe der folgenden Reste ist (n ist dabei eine Zahl zwischen 1 und 10):

10

HO HO
$$(\alpha+\beta)$$

Zusammenfassung

Die Erfindung betrifft die Verwendung von perfluoralkylhaltigen Metallkomplexen, die eine kritische Mizellbildungskonzentration < 10^{-3} mol/l, einen hydrodynamischen Mizelldurchmesser (2 Rh) > 1 nm und eine Protonen-Relaxivity im Plasma (R¹) > 10 l/mmol·s aufweisen, als Kontrastmittel im MR-Imaging zur Darstellung von intravasalen Thromben.

15