Exoplanet Atmospheres Problem Set - Solutions

Section I: Life & Habitability

1a. Calculating the Habitable Zone (HZ) Boundaries

The equilibrium temperature of a planet:

$$T_{eq} = \left(rac{L_{\star}(1-A)}{16\pi\sigma a^2}
ight)^{1/4}$$

Given:

ullet Bond albedo A=0.3

• Stellar luminosity $L_{\star}=3.827 imes 10^{26}~{
m W}$

• Stefan-Boltzmann constant $\sigma = 5.670 imes 10^{-8}~\mathrm{W~m^{-2}K^{-4}}$

ullet Water freezing point: $T=273\,\mathrm{K}$

ullet Water boiling point: $T=373\,\mathrm{K}$

Rewriting equation for distance: $a = \left(rac{L_{\star}(1-A)}{16\pi\sigma T_{eq}^4}
ight)^{1/2}$

For inner edge (373 K): $a_{inner}=\left(rac{3.827 imes10^{26}(1-0.3)}{16\pi(5.670 imes10^{-8})(373)^4}
ight)^{1/2}pprox 0.75\,\mathrm{AU}$

For outer edge (273 K): $a_{outer} = \left(rac{3.827 imes 10^{26} (1-0.3)}{16\pi (5.670 imes 10^{-8}) (273)^4}
ight)^{1/2} pprox 1.30 \, \mathrm{AU}$

Final Answer: The habitable zone lies approximately between 0.75 AU and 1.30 AU.

1b. Is the Model an Overestimate or Underestimate?

The toy model is a **slight underestimate** of the habitable zone's actual extent.

Because it ignores atmospheric greenhouse effects and earth's actual surface temperature (\sim 288 K) is higher than its calculated equilibrium temperature (\sim 255 K).

Hence, atmospheric warming expands the habitable zone beyond the basic blackbody model.

Section II: Interpreting Atmospheric Absorption Spectra

2. Labeling Absorption Features in Earth's Atmosphere

Using known spectral features:

• **H2O (Water Vapor):** Broad absorption across IR (0.9–1.2 μm, 1.3–1.5 μm, 1.8–2.0 μm)

• CO2 (Carbon Dioxide): Strong feature near 4.3 µm and 15 µm

• O2 (Molecular Oxygen): Band near 0.76 µm

• O3 (Ozone): Chappuis band (0.55–0.65 μ m), strong UV band < 0.3 μ m

• CH4 (Methane): Bands near 1.6 µm and 2.3 µm

Note: Students would typically annotate these on a provided spectrum, but here are the wavelengths for labeling.

Section III: Characterizing Atmospheric Loss

3a. Escape Velocity of Terra II

Escape velocity:
$$v_e = \sqrt{rac{2GM}{R}}$$

Given:

$$\begin{split} \bullet \, M &= 4 M_\oplus = 4 \times 5.972 \times 10^{24} = 2.389 \times 10^{25} \; \mathrm{kg} \\ \bullet \, R &= 2 R_\oplus = 2 \times 6.378 \times 10^6 = 1.2756 \times 10^7 \; \mathrm{m} \\ \bullet \, G &= 6.6743 \times 10^{-11} \; \mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2} \end{split}$$

•
$$R = 2R_{\oplus} = 2 \times 6.378 \times 10^6 = 1.2756 \times 10^7 \text{ m}$$

$$\cdot G = 6.6743 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$$

$$v_e = \sqrt{rac{2 imes 6.6743 imes 10^{-11} imes 2.389 imes 10^{25}}{1.2756 imes 10^7}} pprox 15,830 \, \mathrm{m/s} = 15.83 \, \mathrm{km/s}$$

3b. Atmosphere Retention on Terra II

Given:

· Escape velocity: 15.83 km/s

• XUV Flux: 100× Earth's

From the Cosmic Shoreline, high XUV flux can strip atmospheres unless the escape velocity is very high. For 100× XUV, the required escape velocity is roughly 20 km/s.

So, Terra II likely does not retain a substantial atmosphere and would lie below the shoreline.