A jewelry store that serves just one customer at a time is concerned about the safety of its isolated customers.

1/1 point

The store does some research and learns that:

- 10% of the times that a jewelry store is robbed, a customer is in the store.
- A jewelry store has a customer on average 20% of each 24-hour day.
- The probability that a jewelry store is being robbed (anywhere in the world) is 1 in 2 million.

What is the probability that a robbery will occur while a customer is in the store?

- $\bigcirc \quad \frac{1}{500000}$
- $\bigcirc \frac{1}{2000000}$
- \bigcirc $\frac{1}{4000000}$
- $\bigcirc \frac{1}{5000000}$

(V) Correct

What is known is:

A: "a customer is in the store," P(A)=0.2

B: "a robbery is occurring," $P(B) = \frac{1}{2,000,000}$

 $P(a \text{ customer is in the store} \mid a \text{ robbery occurs}) = P(A \mid B)$

$$P(A \mid B) = 10\%$$

What is wanted:

 $P(a \text{ robbery occurs} \mid a \text{ customer is in the store}) = P(B \mid A)$

By the product rule:

$$P(B \mid A) = \frac{P(A, B)}{P(A)}$$

and
$$P(A,B) = P(A \mid B)P(B)$$

Therefore:

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)} = \frac{(0.1)\left(\frac{1}{2000000}\right)}{0.2} = \frac{1}{4000000}$$

2.	If I flip a fair coin, with heads and tails, ten times in a row, what is the probability that I will get exactly six heads?	1/1 point
	O.021	
	O 0.187	
	0.2051	
	0.305	
	○ Correct By Binomial Theorem, equals	
	$\binom{10}{6}(0.5^{10})$	
	$= \left(\frac{10!}{4! \times 6!}\right) \left(\frac{1}{1024}\right)$ = 0.2051	
	4007	
3.	If a coin is bent so that it has a 40% probability of coming up heads, what is the probability of getting <code>exactly</code> 6 heads in 10 throws?	1/1 point
	0.0974	
	0.1045	
	0.1115	
	0.1219	
	\bigcirc Correct $inom{10}{6} imes 0.4^6 imes 0.6^4=0.1115$	
4.	A bent coin has 40% probability of coming up heads on each independent toss. If I toss the coin ten times, what is the probability that I get at least 8 heads?	1/1 point
	O.0312	
	O.0132	
	O.0213	
	0.0123	
	○ Correct The answer is the sum of three binomial probabilities:	
	$(inom{10}{8} imes (0.4^8) imes (.6^2)) + (inom{10}{9} imes (0.4^9) imes (0.6^1)) +$	
	$(\binom{10}{10}) imes (0.4^{10}) imes (0.6^0))$	

5.	Suppose I have a bent coin with a 60% probability of coming up heads. I throw the coin ten times and it comes up heads 8 times.	1/1 point
	What is the value of the "likelihood" term in Bayes' Theorem the conditional probability of the data given the parameter.	
	0.122885	
	0.043945	
	0.120932	
	0.168835	
	⊘ Correct Bayesian "likelihood" the p(observed data parameter) is	
	p(8 of 10 heads coin has p = .6 of coming up heads)	
	${10 \choose 8} imes (0.6^8) imes (0.4^2) = 0.120932$	
6.	We have the following information about a new medical test for diagnosing cancer.	1/1 point
	Before any data are observed, we know that 5% of the population to be tested actually have Cancer.	
	Of those tested who do have cancer, 90% of them get an accurate test result of "Positive" for cancer. The other 10% get a false test result of "Negative" for Cancer.	
	Of the people who do not have cancer, 90% of them get an accurate test result of "Negative" for cancer. The other 10% get a false test result of "Positive" for cancer.	
	What is the conditional probability that I have Cancer, if I get a "Positive" test result for Cancer?	
	**Formulas in the feedback section are very long, and do not fit within the standard viewing window. Therefore, the font is a bit smaller and the word "positive test" has been abbreviated as PT.	
	$\ \ \ \ \ $	
	O 67.9%	
	O 9.5%	
	O 4.5%	
	\bigcirc Correct I still have a more than $\frac{2}{3}$ probability of not having cancer	
	Posterior probability:	
	p(I actually have cancer receive a "positive" Test)	
	By Bayes Theorem:	
	$=\frac{(chance\ of\ observing\ a\ PT\ if\ I\ have\ cancer)(prior\ probability\ of\ having\ cancer)}{(marginal\ likelihood\ of\ the\ observation\ of\ a\ PT)}$	
	$= \frac{p(\text{receiving positive has cancer})p(\text{has cancer before data is observed})}{p(\text{positive has cancer})p(\text{has cancer})+p(\text{positive no cancer })p(\text{no cancer})}$	
	= (90%)(5%) / ((90%)(5%) + (10%)(95%)	
	=32.1%	

Before any data are observed, we know that 8% of the population to be tested actually have Cancer.

Of those tested who do have cancer, 90% of them get an accurate test result of "Positive" for cancer.

The other 10% get a false test result of "Negative" for Cancer.

Of the people who do not have cancer, 95% of them get an accurate test result of "Negative" for cancer.

The other 5% get a false test result of "Positive" for cancer.

What is the conditional probability that I have cancer, if I get a "Negative" test result for Cancer?

- 0 .80%
- 0.9%
- O 99.1%
- O 88.2%

```
 \begin{array}{l} \hline \\ p(\mathrm{cancer} \mid \mathrm{negative} \; \mathrm{test}) = \\ \\ \hline \frac{p(\mathrm{negative} \; \mathrm{test} \mid \mathrm{Cancer}) \, p(\mathrm{Cancer})}{p(\mathrm{negative} \; \mathrm{test} \mid \mathrm{cancer}) \, p(\mathrm{negative} \; \mathrm{test} \mid \mathrm{no} \; \mathrm{cancer}) \, p(\mathrm{no} \; \mathrm{cancer})} \\ \hline \frac{(10\%)(8\%)}{(10\%)(8\%) + (95\%)(92\%)} \\ \hline \\ \hline \frac{0.8\%}{0.8\% + 87.4\%} \\ \hline \\ \hline \frac{0.8\%}{88.2\%} \\ \hline = 0.9\% \end{array}
```

3.	An urn contains 50 marbles – 40
	blue and 10 white. After 50 draws, exactly 40 blue
	and 10 white are observed.
	v
	You are not told whether the draw was done "with
	replacement" or "without replacement."
	What is the probability that the
	draw was done with replacement?
	uraw was done with replacement:
	87.73%
	O 13.98%
	U 13.98%
	O 1
	<u> </u>
	⟨→⟩ Correct
	p(40
	• • • • • • • • • • • • • • • • • • • •
	blue and 10 white draws without replacement) = 1 [this is the only possible outcome when 50 draws
	are made without replacement]
	n/40 blue and 10 white draws
	p(40 blue and 10 white draws
	with replacement)
	S = 40
	N = 50
	P = .8 [for draws with replacement] because 40 blue of 50 total means p(blue) = 40/50 = .8
	((50))(0.040)(0.010)
	$(\binom{50}{40})(0.8^{40})(0.2^{10})$
	=13.98%
	- 10.0070
	By Bayes' Theorem:
	p(draws with replacement observed data) =
	13.98% (.5)
	$\frac{13.98\%(.5)}{(13.98\%)(.5)+(1)(.5)}$
	$=\frac{0.1398}{1.1398}$
	11300

=12.27%

9.	According to Department of Customs Enforcement Research: 99% of people crossing into the United States are not smugglers.
	The majority of all Smugglers at the border (65%) appear nervous and sweaty.
	Only 8% of innocent people at the border appear nervous and sweaty.
	If someone at the border appears nervous and sweaty, what is the probability that they are a Smuggler?
	O 7.58%
	○ 8.57%
	O 7.92%
	92.42%
	Incorrect This is the probability they are innocent.
	By Bayes' Theorem, the answer is
	$\frac{(.65)(.01)}{((.65)(.01) + (.08)(.99))}$

=7.58%

0 / 1 point