PROBABILITY THEORY LECTURE 1

Per Sidén

Division of Statistics and Machine Learning Dept. of Computer and Information Science Linköping University

OVERVIEW LECTURE 1

- Course outline
- ▶ Introduction and a recap of some background
- Functions of random variables
- Multivariate random variables

COURSE OUTLINE

- ► Lectures: theory interleaved with illustrative solved examples. Responsible: Per.
- ► Exercises/Seminars: problem solving sessions + open discussions. Responsible: Per and You.
- **Exam**: written exam with formula sheet, but no book or notes. Responsible: You!

COURSE OUTLINE

- ► **Lectures**: theory interleaved with illustrative solved examples. Responsible: Per.
- ► Exercises/Seminars: problem solving sessions + open discussions. Responsible: Per and You.
- **Exam**: written exam with formula sheet, but no book or notes. Responsible: You!
- ► Course homepage: https://www.ida.liu.se/~732A40/ (select english)

► Gut, A. *An intermediate course in probability*. 2nd ed. Springer-Verlag, New York, 2009. ISBN 978-1-4419-0161-3

- ► Gut, A. *An intermediate course in probability*. 2nd ed. Springer-Verlag, New York, 2009. ISBN 978-1-4419-0161-3
- ► Chapter 1: Multivariate random variables

- ► Gut, A. *An intermediate course in probability*. 2nd ed. Springer-Verlag, New York, 2009. ISBN 978-1-4419-0161-3
- ► Chapter 1: Multivariate random variables
- ► Chapter 2: Conditioning

- ► Gut, A. *An intermediate course in probability*. 2nd ed. Springer-Verlag, New York, 2009. ISBN 978-1-4419-0161-3
- ► Chapter 1: Multivariate random variables
- ► Chapter 2: Conditioning
- ► Chapter 3: Transforms

- ► Gut, A. *An intermediate course in probability*. 2nd ed. Springer-Verlag, New York, 2009. ISBN 978-1-4419-0161-3
- ► Chapter 1: Multivariate random variables
- ► Chapter 2: Conditioning
- ► Chapter 3: Transforms
- ► Chapter 4: Order statistics

- ► Gut, A. *An intermediate course in probability*. 2nd ed. Springer-Verlag, New York, 2009. ISBN 978-1-4419-0161-3
- ► Chapter 1: Multivariate random variables
- ► Chapter 2: Conditioning
- Chapter 3: Transforms
- Chapter 4: Order statistics
- ► Chapter 5: The multivariate normal distribution

- ► Gut, A. *An intermediate course in probability*. 2nd ed. Springer-Verlag, New York, 2009. ISBN 978-1-4419-0161-3
- ► Chapter 1: Multivariate random variables
- ► Chapter 2: Conditioning
- Chapter 3: Transforms
- Chapter 4: Order statistics
- ► Chapter 5: The multivariate normal distribution
- ► Chapter 6: Convergence

RANDOM VARIABLES

- ▶ The sample space $\Omega = \{\omega_1, \omega_2, ...\}$ of an experiment is the most basic representation of a problem's randomness (uncertainty).
- ▶ More convenient to work with real-valued measurements.
- ▶ A random variable X is a real-valued function from a sample space: $X = f(\omega)$, where $f: \Omega \to \mathbb{R}$.
- ▶ A multivariate random vector: $\mathbf{X} = f(\omega)$ such that $f: \Omega \to \mathbb{R}^n$.
- ► Examples:
 - Roll a die: $\Omega = \{1, 2, 3, 4, 5, 6\}.$

$$X(\omega) = \begin{cases} 0 & \text{if } \omega = 1, 2 \text{ or } 3\\ 1 & \text{if } \omega = 4, 5 \text{ or } 6 \end{cases}$$

▶ Roll two fair dice. $X(\omega)$ =sum of the two dice.

SAMPLE SPACE OF TWO DICE EXAMPLE

THE DISTRIBUTION OF A RANDOM VARIABLE

- ▶ The probabilities of events on the sample space Ω imply a **probability** distribution for a random variable $X(\omega)$ on Ω .
- ▶ The probability distribution of *X* is given by

$$\Pr(X \in C) = \Pr(\{\omega : X(\omega) \in C\}),$$

where $\{\omega : X(\omega) \in C\}$ is the event (in Ω) consisting of all outcomes ω that gives a value of X in C.

THE DISTRIBUTION OF A RANDOM VARIABLE

- ▶ The probabilities of events on the sample space Ω imply a **probability** distribution for a random variable $X(\omega)$ on Ω .
- ▶ The probability distribution of *X* is given by

$$\Pr(X \in C) = \Pr(\{\omega : X(\omega) \in C\}),$$

where $\{\omega : X(\omega) \in C\}$ is the event (in Ω) consisting of all outcomes ω that gives a value of X in C.

- A random variable is **discrete** if it can take only a finite or a countable number of different values $x_1, x_2, ...$
- ► Continuous random variables can take every value in an interval.

DISCRETE RANDOM VARIABLE

► The probability function (p.f), is the function

$$p(x) = \Pr(X = x)$$

Uniform, Bernoulli and Poisson

▶ **Uniform discrete** distribution. $X \in \{a, a + 1, ..., b\}$.

$$p(x) = \begin{cases} \frac{1}{b-a+1} & \text{for } x = a, a+1..., b \\ 0 & \text{otherwise} \end{cases}$$

UNIFORM, BERNOULLI AND POISSON

▶ **Uniform discrete** distribution. $X \in \{a, a + 1, ..., b\}$.

$$p(x) = \begin{cases} \frac{1}{b-a+1} & \text{for } x = a, a+1..., b\\ 0 & \text{otherwise} \end{cases}$$

▶ Bernoulli distribution. $X \in \{0, 1\}$. Pr(X = 0) = 1 - p and Pr(X = 1) = p.

UNIFORM, BERNOULLI AND POISSON

▶ Uniform discrete distribution. $X \in \{a, a + 1, ..., b\}$.

$$p(x) = \begin{cases} \frac{1}{b-a+1} & \text{for } x = a, a+1..., b \\ 0 & \text{otherwise} \end{cases}$$

- ▶ Bernoulli distribution. $X \in \{0, 1\}$. Pr(X = 0) = 1 p and Pr(X = 1) = p.
- ▶ Poisson distribution: $X \in \{0, 1, 2, ...\}$

$$p(x) = \frac{\exp(-\lambda) \cdot \lambda^{x}}{x!} \quad \text{for } x = 0, 1, 2, ...$$

THE BINOMIAL DISTRIBUTION

▶ Binomial distribution. Sum of n independent Bernoulli variables $X_1, X_2, ..., X_n$ with the same success probability p.

$$X = X_1 + X_2 + \dots + X_n$$
$$X \sim Bin(n, p)$$

▶ Probability function for a Bin(n, p) variable:

$$P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}$$
, for $x = 0, 1, ..., n$.

► The binomial coefficient (ⁿ_x) is the number of binary sequences of length n that sum exactly to x.

PROBABILITY DENSITY FUNCTIONS

- ► Continuous random variables can assume **every** value in an interval.
- ▶ Probability density function (pdf) *f*(*x*)

$$\Pr(a \le X \le b) = \int_a^b f(x) dx$$

- ▶ $f(x) \ge 0$ for all x
- $\int_{-\infty}^{\infty} f(x) dx = 1$

PROBABILITY DENSITY FUNCTIONS

- ► Continuous random variables can assume **every** value in an interval.
- ▶ Probability density function (pdf) f(x)

$$\Pr(a \le X \le b) = \int_a^b f(x) dx$$

- $f(x) \ge 0$ for all x
- $\int_{-\infty}^{\infty} f(x) dx = 1$
- ▶ A pdf is like a histogram with tiny bin widths. Integral replaces sums.
- Continuous distributions assign probability zero to individual values, but

$$\Pr\left(a - \frac{\epsilon}{2} \le X \le a + \frac{\epsilon}{2}\right) \approx \epsilon \cdot f(a).$$

DENSITIES - SOME EXAMPLES

► The uniform distribution

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b\\ 0 & \text{otherwise.} \end{cases}$$

DENSITIES - SOME EXAMPLES

The uniform distribution

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{otherwise.} \end{cases}$$

► The **triangle** or linear pdf

$$f(x) = \begin{cases} \frac{2}{a^2}x & \text{for } 0 < x < a \\ 0 & \text{otherwise} \end{cases}$$

DENSITIES - SOME EXAMPLES

The uniform distribution

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{otherwise.} \end{cases}$$

► The **triangle** or linear pdf

$$f(x) = \begin{cases} \frac{2}{a^2}x & \text{for } 0 < x < a \\ 0 & \text{otherwise} \end{cases}$$

▶ The normal, or Gaussian, distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (x - \mu)^2\right)$$

EXPECTED VALUES, MOMENTS

► The expected value of X is

$$E\left(X\right) = \begin{cases} \sum_{k=i}^{\infty} x_k \cdot p(x_k) & \text{, } X \text{ discrete} \\ \int_{-\infty}^{\infty} x \cdot f(x) & \text{, } X \text{ continuous} \end{cases}$$

EXPECTED VALUES, MOMENTS

► The expected value of X is

$$E\left(X\right) = \begin{cases} \sum_{k=i}^{\infty} x_k \cdot p(x_k) & \text{, } X \text{ discrete} \\ \int_{-\infty}^{\infty} x \cdot f(x) & \text{, } X \text{ continuous} \end{cases}$$

▶ Example: E(X) when $X \sim Uniform(a, b)$

EXPECTED VALUES, MOMENTS

▶ The expected value of X is

$$E\left(X\right) = \begin{cases} \sum_{k=i}^{\infty} x_k \cdot p(x_k) & \text{, } X \text{ discrete} \\ \int_{-\infty}^{\infty} x \cdot f(x) & \text{, } X \text{ continuous} \end{cases}$$

- ▶ Example: E(X) when $X \sim Uniform(a, b)$
- ▶ The *n*th moment is defined as $E(X^n)$
- ► The variance of X is $Var(X) = E(X EX)^2 = E(X^2) (EX)^2$

THE CUMULATIVE DISTRIBUTION FUNCTION

▶ The (cumulative) distribution function (cdf) $F(\cdot)$ of a random variable X is the function

$$F(x) = \Pr(X \le x) \text{ for } -\infty \le x \le \infty$$

▶ Same definition for discrete and continuous variables.

THE CUMULATIVE DISTRIBUTION FUNCTION

▶ The (cumulative) **distribution function (cdf)** $F(\cdot)$ of a random variable X is the function

$$F(x) = \Pr(X \le x) \text{ for } -\infty \le x \le \infty$$

- ► Same definition for discrete and continuous variables.
- ► The cdf is non-decreasing

If
$$x_1 \leq x_2$$
 then $F(x_1) \leq F(x_2)$

▶ Limits at $\pm \infty$: $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$.

THE CUMULATIVE DISTRIBUTION FUNCTION

▶ The (cumulative) **distribution function (cdf)** $F(\cdot)$ of a random variable X is the function

$$F(x) = \Pr(X \le x) \text{ for } -\infty \le x \le \infty$$

- ▶ Same definition for discrete and continuous variables.
- ► The cdf is non-decreasing

If
$$x_1 \leq x_2$$
 then $F(x_1) \leq F(x_2)$

- ▶ Limits at $\pm \infty$: $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$.
- ► For continuous variables: relation between pdf and cdf

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

and conversely

$$\frac{dF(x)}{dx} = f(x)$$

FUNCTIONS OF RANDOM VARIABLES

▶ Quite common situation: You know the distribution of X, but need the distribution of Y = g(X), where $g(\cdot)$ is some function.

FUNCTIONS OF RANDOM VARIABLES

- ▶ Quite common situation: You know the distribution of X, but need the distribution of Y = g(X), where $g(\cdot)$ is some function.
- Example 1: $Y = a + b \cdot X$, where a and b are constants.
- ▶ Example 2: Y = 1/X
- ▶ Example 3: Y = ln(X).
- Example 4: $Y = \log \frac{X}{1-X}$

FUNCTIONS OF RANDOM VARIABLES

- ▶ Quite common situation: You know the distribution of X, but need the distribution of Y = g(X), where $g(\cdot)$ is some function.
- Example 1: $Y = a + b \cdot X$, where a and b are constants.
- ▶ Example 2: Y = 1/X
- ▶ Example 3: Y = ln(X).
- Example 4: $Y = \log \frac{X}{1-X}$
- ightharpoonup Y = g(X), where X is discrete.
- \triangleright $p_X(x)$ is p.f. for X. $p_Y(y)$ is p.f. for Y:

$$p_{Y}(y) = \Pr(Y = y) = \Pr[g(X) = y] = \sum_{x:g(x)=y} p_{X}(x)$$

FUNCTION OF A CONTINUOUS RANDOM VARIABLE

 \triangleright Suppose that X is continuous with support (a, b). Then

$$F_Y(y) = \Pr(Y \le y) = \Pr[g(X) \le y] = \int_{x:g(x) \le y} f_X(x) dx$$

FUNCTION OF A CONTINUOUS RANDOM VARIABLE

▶ Suppose that X is continuous with support (a, b). Then

$$F_Y(y) = \Pr(Y \le y) = \Pr[g(X) \le y] = \int_{x:g(x) \le y} f_X(x) dx$$

▶ Let g(X) be monotonically *increasing* with inverse X = h(Y). Then

$$F_Y(y) = Pr(Y \le y) = Pr(g(X) \le y) = Pr(X \le h(y)) = F_X(h(y))$$

and

$$f_Y(y) = f_X(h(y)) \cdot \frac{\partial h(y)}{\partial y}$$

FUNCTION OF A CONTINUOUS RANDOM VARIABLE

▶ Suppose that X is continuous with support (a, b). Then

$$F_Y(y) = \Pr(Y \le y) = \Pr[g(X) \le y] = \int_{x:g(x) \le y} f_X(x) dx$$

Let g(X) be monotonically increasing with inverse X = h(Y). Then $F_Y(y) = Pr(Y \le y) = Pr(g(X) \le y) = Pr(X \le h(y)) = F_X(h(y))$ and

$$f_Y(y) = f_X(h(y)) \cdot \frac{\partial h(y)}{\partial y}$$

▶ For general monotonic transformation Y = g(X) we have

$$f_Y(y) = f_X[h(y)] \left| \frac{\partial h(y)}{v} \right| \text{ for } \alpha < y < \beta$$

where (α, β) is the mapped interval from (a, b).

▶ Example 1. $Y = a \cdot X + b$.

ightharpoonup Example 1. $Y = a \cdot X + b$.

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

► Example 2: **log-normal**. $X \sim N(\mu, \sigma^2)$. $Y = g(X) = \exp(X)$. $X = h(Y) = \ln Y$.

ightharpoonup Example 1. $Y = a \cdot X + b$.

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

► Example 2: log-normal. $X \sim N(\mu, \sigma^2)$. $Y = g(X) = \exp(X)$. $X = h(Y) = \ln Y$.

$$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} \left(\ln y - \mu\right)^2\right) \cdot \frac{1}{y} \text{ for } y > 0.$$

Example 3. $X \sim LogN(\mu, \sigma^2)$. $Y = a \cdot X$, where a > 0. X = h(Y) = Y/a.

ightharpoonup Example 1. $Y = a \cdot X + b$.

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

► Example 2: log-normal. $X \sim N(\mu, \sigma^2)$. $Y = g(X) = \exp(X)$. $X = h(Y) = \ln Y$.

$$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} \left(\ln y - \mu\right)^2\right) \cdot \frac{1}{y} \text{ for } y > 0.$$

► Example 3. $X \sim LogN(\mu, \sigma^2)$. $Y = a \cdot X$, where a > 0. X = h(Y) = Y/a.

$$\begin{split} f_Y(y) &= \frac{1}{y/a} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} \left(\ln\frac{y}{a} - \mu\right)^2\right) \frac{1}{a} \cdot \\ &= \frac{1}{y} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} \left(\ln y - \mu - \ln a\right)^2\right) \end{split}$$

which means that $Y \sim LogN(\mu + \ln a, \sigma^2)$.

Example 4. $X \sim LogN(\mu, \sigma^2)$. $Y = X^a$, where $a \neq 0$. $X = h(Y) = Y^{1/a}$.

Example 4. $X \sim LogN(\mu, \sigma^2)$. $Y = X^a$, where $a \neq 0$. $X = h(Y) = Y^{1/a}$.

$$\begin{split} f_Y(y) &= \frac{1}{y^{1/a}} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} \left(\ln y^{1/a} - \mu\right)^2\right) \frac{1}{a} y^{1/a - 1} \cdot \\ &= \frac{1}{y} \frac{1}{\sqrt{2\pi}a\sigma} \exp\left(-\frac{1}{2a^2\sigma^2} \left(\ln y - a\mu\right)^2\right) \end{split}$$

which means that $Y \sim LogN(a\mu, a^2\sigma^2)$.

BIVARIATE DISTRIBUTIONS

► The **joint** (or **bivariate**) **distribution** of the two random variables *X* and *Y* is the collection of all probabilities of the form

$$\Pr[(X, Y) \in C]$$

- Example 1:
 - ► *X* =# of visits to doctor.
 - Y =#visits to emergency.
 - C may be $\{(x, y) : x = 0 \text{ and } y \ge 1\}.$

BIVARIATE DISTRIBUTIONS

► The **joint** (or **bivariate**) **distribution** of the two random variables *X* and *Y* is the collection of all probabilities of the form

$$\Pr[(X, Y) \in C]$$

- Example 1:
 - ► *X* =# of visits to doctor.
 - ightharpoonup Y = # visits to emergency.
 - C may be $\{(x, y) : x = 0 \text{ and } y \ge 1\}.$
- ► Example 2:
 - \rightarrow X =monthly percentual return to SP500 index
 - Y =monthly return to Stockholm index.
 - C may be $\{(x, y) : x < -10 \text{ and } y < -10\}.$

BIVARIATE DISTRIBUTIONS

► The joint (or bivariate) distribution of the two random variables X and Y is the collection of all probabilities of the form

$$\Pr[(X, Y) \in C]$$

- Example 1:
 - \rightarrow X = # of visits to doctor.
 - Y = #visits to emergency.
 - C may be $\{(x, y) : x = 0 \text{ and } y \ge 1\}$.
- ► Example 2:
 - \rightarrow X =monthly percentual return to SP500 index
 - ► *Y* =monthly return to Stockholm index.
 - C may be $\{(x, y) : x < -10 \text{ and } y < -10\}.$
- ▶ Discrete random variables: joint probability function (joint p.f.)

$$f_{X Y}(x, y) = \Pr(X = x, Y = y)$$

such that $\Pr[(X, Y) \in C] = \sum_{(x,y)\in C} f_{X,Y}(x,y)$ and $\sum_{A \mid I \mid (x,y)} f_{X,Y}(x,y) = 1$.

CONTINUOUS JOINT DISTRIBUTIONS

► Continuous joint distribution (joint p.d.f.)

$$\Pr[(X,Y) \in C] = \iint_C f_{X,Y}(x,y) dx dy,$$

where $f_{X,Y}(x,y) \ge 0$ is the **joint density**.

CONTINUOUS JOINT DISTRIBUTIONS

► Continuous joint distribution (joint p.d.f.)

$$\Pr[(X,Y) \in C] = \iint_C f_{X,Y}(x,y) dx dy,$$

where $f_{X,Y}(x,y) \ge 0$ is the **joint density**.

▶ Univariate distributions: probability is area under density.

Bivariate distributions: probability is volume under density.

▶ Be careful about the regions of integration. Example:

$$C = \{(x, y) : x^2 \le y \le 1\}$$

PER SIDÉN (STATISTICS, LIU)

20 / 27

EXAMPLE

► Example

$$f_{X,Y}(x,y) = \frac{3}{2}y^2 \text{ for } 0 \le x \le 2 \text{ and } 0 \le y \le 1.$$

BIVARIATE NORMAL DISTRIBUTION

► The most famous of them all: the **bivariate normal distribution**, with pdf

$$f_{X,Y}(x,y) = \frac{1}{2\pi(1-\rho^2)^{1/2}\sigma_x\sigma_y} \times \exp\left(-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_x}{\sigma_x}\right)^2 - 2\rho\left(\frac{x-\mu_x}{\sigma_x}\right)\left(\frac{y-\mu_y}{\sigma_y}\right) + \left(\frac{y-\mu_y}{\sigma_y}\right)^2\right]\right)$$

• Five parameters: μ_x , μ_y , σ_x , σ_y and ρ .

BIVARIATE C.D.F.

▶ Joint cumulative distribution function (joint c.d.f.):

$$F_{X,Y}(x,y) = \Pr(X \le x, Y \le y)$$

BIVARIATE C.D.F.

▶ Joint cumulative distribution function (joint c.d.f.):

$$F_{X,Y}(x,y) = \Pr(X \le x, Y \le y)$$

► Calculating probabilities of rectangles Pr(a < X < b and c < Y < d):

$$F_{X,Y}(b,d) - F_{X,Y}(a,d) - F_{X,Y}(b,c) + F_{X,Y}(a,c)$$

BIVARIATE C.D.F.

▶ Joint cumulative distribution function (joint c.d.f.):

$$F_{X,Y}(x,y) = \Pr(X \le x, Y \le y)$$

► Calculating probabilities of rectangles $Pr(a < X \le b \text{ and } c < Y \le d)$:

$$F_{X,Y}(b,d) - F_{X,Y}(a,d) - F_{X,Y}(b,c) + F_{X,Y}(a,c)$$

- ▶ Properties of the joint c.d.f.
 - ▶ Marginal of X: $F_X(x) = \lim_{y\to\infty} F_{X,Y}(x,y)$
 - $F_{X,Y}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(r,s) dr ds$
 - $F_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}$

MARGINAL DISTRIBUTIONS

▶ Marginal p.f. of a bivariate distribution is

$$f_X(x) = \sum_{AII\ y} f_{X,Y}(x,y)$$
 [Discrete case]
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$
 [Continuous case]

MARGINAL DISTRIBUTIONS

Marginal p.f. of a bivariate distribution is

$$f_X(x) = \sum_{A \mid I \mid y} f_{X,Y}(x,y)$$
 [Discrete case]
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$
 [Continuous case]

▶ A marginal distribution for X tells you about the probability of different values of X, averaged over all possible values of Y.

INDEPENDENT VARIABLES

► Two random variables are independent if

$$Pr(X \in A \text{ and } Y \in B) = Pr(X \in A) {\cdot} Pr(Y \in B)$$

for all sets of real numbers A and B (such that $\{X \in A\}$ and $\{Y \in B\}$ are events).

INDEPENDENT VARIABLES

Two random variables are independent if

$$Pr(X \in A \text{ and } Y \in B) = Pr(X \in A) \cdot Pr(Y \in B)$$

for all sets of real numbers A and B (such that $\{X \in A\}$ and $\{Y \in B\}$ are events).

Two variables are independent if and only if the joint density can be factorized as

$$f_{X,Y}(x,y) = h_1(x) \cdot h_2(y)$$

- ▶ Note: this factorization must hold for **all** values of *x* and *y*. Watch out for non-rectangular support!
- ▶ X and Y are independent if learning something about X (e.g. X > 2) has no effect on the probabilities for different values of Y.

MULTIVARIATE DISTRIBUTIONS

- ▶ Obvious extension to more than two random variables, $X_1, X_2, ..., X_n$.
- Joint p.d.f.

$$f(x_1, x_2, ..., x_n)$$

MULTIVARIATE DISTRIBUTIONS

- ▶ Obvious extension to more than two random variables, $X_1, X_2, ..., X_n$.
- ► Joint p.d.f.

$$f(x_1, x_2, ..., x_n)$$

 \blacktriangleright Marginal distribution of x_1

$$f_1(x_1) = \int_{x_2} \cdots \int_{x_n} f(x_1, x_2, ..., x_n) dx_2 \cdots dx_n$$

MULTIVARIATE DISTRIBUTIONS

- ▶ Obvious extension to more than two random variables, $X_1, X_2, ..., X_n$.
- Joint p.d.f.

$$f(x_1, x_2, ..., x_n)$$

 \blacktriangleright Marginal distribution of x_1

$$f_1(x_1) = \int_{x_2} \cdots \int_{x_n} f(x_1, x_2, ..., x_n) dx_2 \cdots dx_n$$

Marginal distribution of x₁ and x₂

$$f_{12}(x_1, x_2) = \int_{x_3} \cdots \int_{x_n} f(x_1, x_2, ..., x_n) dx_3 \cdots dx_n$$

and so on.

FUNCTIONS OF RANDOM VECTORS

- ▶ Let **X** be an *n*-dimensional continuous random variable
- ▶ Let **X** have density $f_{\mathbf{X}}(\mathbf{x})$ on support $S \subset \mathbb{R}^n$.
- ▶ Let Y = g(X), where $g : S \to T \subset \mathbb{R}^n$ is a bijection (1:1 and onto).
- \blacktriangleright Assume g and g^{-1} are continuously differentiable with Jacobian

$$\mathbf{J} = \left| \begin{array}{ccc} \frac{\partial x_1}{\partial y_1} & \cdots & \frac{\partial x_1}{\partial y_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial y_1} & \cdots & \frac{\partial x_n}{\partial y_n} \end{array} \right|$$

THEOREM

("The transformation theorem") The density of Y is

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}} \left[h_1(\mathbf{y}), h_2(\mathbf{y}), ..., h_n(\mathbf{y}) \right] \cdot |\mathbf{J}|$$

where $h = (h_1, h_2, ..., h_n)$ is the unique inverse of $g = (g_1, g_2, ..., g_n)$.