Practice exercises on smooth manifolds

Fourth meeting, 21 of January

Plan for today: some exercises on partition of unity and discussion of homework 1 from complex surfaces course.

Definition 2.15 A cover $\{U_{\alpha}\}$ of a topological space M is called *locally finite* if every point in M possesses a neighbourhood that intersects only a finite number of U_{α} .

Exercise 2.27 Let $\{U_{\alpha}\}$ be a locally finite atlas on M, and $U_{\alpha} \xrightarrow{\varphi_{\alpha}} \mathbb{R}^n$ homeomorphisms. Consider a cover $\{V_i\}$ of \mathbb{R}^n given by open balls of radius n centered in integer points, and let $\{W_{\beta}\}$ be a cover of M obtained as union of $\varphi_{\alpha}^{-1}(V_i)$. Show that $\{W_{\beta}\}$ is locally finite.

Solution. The result follows from the local finiteness of both $\{U_{\alpha}\}$ in M and $\{V_i\}$ in \mathbb{R}^n as follows. (Local finiteness of $\{V_i\}$ follows from definition of $\{V_i\}$.)

Since $\{U_{\alpha}\}$ is locally finite, for a given point x of M there is a neighbourhood U_0 which intersects only a finite number of the U_{α} . Moreover, since $\{V_i\}$ is locally finite, each $\varphi_{\alpha}(x)$ has a neighbourhood intersecting only finitely many V_i . Then there's only finitely many of the W_{β} intersecting U_0 (for any α and i).

Exercise 2.28 Let $\{U_{\alpha}\}$ be an atlas on a manifold M.

- (a) Construct a refinement $\{W_{\beta}\}$ of $\{U_{\alpha}\}$ such that a closure of each W_{β} is compact in M.
- (b) Prove that such a refinement can be chosen locally finite if $\{U_{\alpha}\}$ is locally finite.

Hint. Use the previos exercise.

Solution.

- (a) The refinement is the cover $\{W_\beta\}$ from Exercise 2.27. The closure of $W_\beta = \varphi_\alpha^{-1}(V_i)$ is mapped by φ_α to the closure of its image, $\varphi_\alpha(U_\alpha) \cap V_i$. (This is because φ_α is a homeomorphism; by Exercise 1.6 limit points of the domain map to limit points of the image.) The closure of $\varphi_\alpha(U_\alpha) \cap V_i$ is compact (since it is closed and bounded), and thus its image under φ^{-1} is also compact.
- (b) This is immediate from Exercise 2.27.

Exercise 2.29 Let K_1 , K_2 be non-intersecting compact subsets of a Hausdorff topological space M. Show that there exist a pair of open subsets $U_1 \supset K_1$, $U_2 \supset K_2$ satisfying $U_1 \cap U_2 = \emptyset$.

Solution. (With some help from ChatGPT). Fix a point $y \in K_2$. Since M is Hausdorff, for every $x \in K_1$ there are disjoint neighbourhoods $U_{xy} \ni x$ and $V_{xy} \ni y$. This means that $\{U_{xy}\}_{x \in X}$ is an open cover of K_1 , which must have a finite subcover $U_{x_1y}, \ldots, U_{x_{n_y}y}$. These open sets correspond to open sets $V_{x_1y}, \ldots, V_{x_{n_y}y}$, the intersection of which is a neighbourhood of y disjoint from $\bigcup_{i=1}^{n_y} U_{x_iy}$.

Denote this intersection by $V_y := \bigcap_{i=1}^{n_y} V_{x_iy}$. Then $\{V_y\}_{y \in Y}$ is an open cover of Y, which must have a finite subcover V_{y_1}, \ldots, V_{y_m} . Each V_{y_j} is associated to an open cover of K_1 , from which it is disjoint. The intersection of (the unions of) these m covers of K_1 is an open set containing K_1 , and it is disjoint from $\bigcup_{j=1}^m V_{y_j} \supset K_2$.

Upshot You have pairs of disjoint sets. The intersection of one family is disjoint from the union of the other.

Exercise 2.30 (!) Let $U \subset M$ be an open subset with compact closure, and $V \supset M \setminus U$ another open subset. Prove that there exists $U' \subset U$ such that the closure of U' is contained in U, and $V \cup U' = M$.

Hint. Use the previous exercise.

Solution. (Using ChatGPT.) Define the *boundary* ∂A of a set A in a topological space X to be the set of points $x \in X$ such that every neighbourhood of x contains a point of A and a point of $X \setminus A$.

The boundary ∂U of our open set with compact closure U is compact: it is contained in the closure of U (since all its points are limit points of U), and it is closed: every point in its complement has a neighbourhood that stays inside its complement; whether it is in U, or in $M \setminus \bar{U}$.

Now let's use Exercise 2.29. We can separate $K_1 := \partial U$ and $K_2 := U \setminus V$. Both are compact, and they are disjoint because the boundary of U is disjoint from U. Then there are disjoint neighbourhoods U_1 and U_2 of K_1 and K_2 .

Now let's show that $U_2 \cap U := U'$ is the open set we are looking for, that is, that its closure is contained in U and $V \cup U' = M$. If a point in the closure of U' was outside U, then such a limit point would be in the boundary of U: any open neighbourhood must contain a point of U since it is a limit point of U, and also a point outside it, the limit point itself! But the boundary of U is disjoint from U_2 . This shows that the closure of U' is inside U.

To show that $V \cup U' = M$ pick a point in $M \setminus V$. Then $U' := U_2 \cap U \supset K_2 := U \setminus V$ contains it.

Exercise 2.31 (!) Let $\{U_{\alpha}\}$ be a countable locally finite cover of a Hausdorff topological space, such that a closure of each U_{α} is compact. Prove that there exists another cover $\{V_{\alpha}\}$ indexed by the same set, such that $V_{\alpha} \subseteq U_{\alpha}$.

Hint. Use induction and the previous exercise.

Solution. In order to use Exercise 2.30 consider for every α the set $W_{\alpha} = \bigcup_{\beta \neq \alpha} U_{\beta}$. Then $W_{\alpha} \supset M \setminus U_{\alpha}$, so that there exists $U_{\alpha}' \subseteq U_{\alpha}$ and $W_{\alpha} \cup U_{\alpha}' = M$. It remains to show that $\{U_{\alpha}'\}$ is a cover. Let $x \in M$ be any point. but how?

That's why the hint says use induction. We go one by one: consider U_1 , an open set. The rest of the cover yields an open set like V from the last exercise, which contains the complement of U. Then that exercise yields a set $U_1' \subseteq U$ st $V \cup U_1' = M$.

Now take n=2. But don't use the original open cover: *substitute* U_1 *by* U_1' . Obviously. (It works basically because of the second condition, explaining why we went through so much hustle to construct the set U_1' , anyway moving on.) The point is that now we get a set $U_2' \subseteq U_2$ which covers M along with U_1' and the rest of the U_{α} .

This works for all α : there is $U_{\alpha}' \subseteq U_{\alpha}$ such that $U_{\alpha}' \cup U_{\alpha-1}' \cup \ldots \cup U_1' \cup \bigcup_{i>\alpha} U_i$ covers M.

Let's show that $\{U'_{\alpha}\}$ is a cover. Suppose there's a point x outside U'_{α} for all α . Then it is in $\bigcup_{i>\alpha}U_i$ for all α , meaning x is in a infinite ammount of open sets of the locally finite cover U_i .