APMA 1655 Honors Statistical Inference I

February 26, 2023

Homework 2

Name: Due: 11 pm, February 17

Collaborators:

• You are strongly encouraged to work in groups, but solutions must be written independently.

Please feel free to use all the results in the Appendix of HW 2 without proving them.

1 Problem Set

1. (2 points) Suppose (Ω, \mathbb{P}) is a probability space, and B is a event with $\mathbb{P}(B) > 0$. We define a function $\tilde{\mathbb{P}}$ of subsets of Ω by the following

$$\tilde{\mathbb{P}}(A) \stackrel{\text{def}}{=} \mathbb{P}(A \mid B), \quad \text{ for all } A \subset \Omega.$$

Please prove that $\tilde{\mathbb{P}}$ is a probability, i.e., $(\Omega, \tilde{\mathbb{P}})$ is a probability space as well.

- 2. (1 point) Let (Ω, \mathbb{P}) be a probability space and n be a positive integer. B_1, B_2, \ldots, B_n are events and provide a partition of Ω , i.e.,
 - $\bigcup_{i=1}^n B_i = \Omega$,
 - B_1, B_2, \ldots, B_n are mutually disjoint.

Let A be any event. Please prove that $A \cap B_1, A \cap B_2, A \cap B_3, \dots, A \cap B_n$ are mutually disjoint, i.e.,

$$(A \cap B_i) \cap (A \cap B_j) = \emptyset$$
, if $i \neq j$.

- 3. (2 points) A box contains w white balls and b black balls. A ball is chosen at random.
 - If the chosen ball is white, we add d white balls to the box, that is, now there are w + d white balls and b black balls.
 - If the chosen ball is black, we add d black balls to the box, that is, now there are w white balls and b+d black balls.

After adding the d balls, another ball is drawn at random from the box. Show that the probability that the second chosen ball is white does not depend on d. Hint: Use the law of total probability (LTP).

4. (1 point) Suppose the underlying probability space is (Ω, \mathbb{P}) . Let G and H be events such that $0 < \mathbb{P}(G) < 1$ and $0 < \mathbb{P}(H) < 1$. Give a formula for $\mathbb{P}(G|H^c)$ in terms of $\mathbb{P}(G)$, $\mathbb{P}(H)$ and $\mathbb{P}(G \cap H)$ only.

5. (1 point) Suppose we have the following

$$\mathbb{P}(\text{``snow today''}) = 30\%,$$

$$\mathbb{P}(\text{``snow tomorrow''}) = 60\%,$$

$$\mathbb{P}(\text{``snow today and tomorrow''}) = 25\%.$$

Given that it snows today, what is the probability that it will snow tomorrow?

- 6. (3 points) Let (Ω, \mathbb{P}) be a probability space. Suppose we have two events A and B such that $\mathbb{P}(A) > 0$ and $\mathbb{P}(B) > 0$. Please prove that the following three equations are equivalent.
 - (a) $\mathbb{P}(A \mid B) = \mathbb{P}(A)$,
 - (b) $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$,
 - (c) $\mathbb{P}(B \mid A) = \mathbb{P}(B)$.

2 Appendix

Please feel free to use all the results in the appendix without proving them.

2.1 Appendix 1

Let A, B, and C be events. Then, we have

- (Commutative Law) $A \cup B = B \cup A$,
- (Commutative Law) $A \cap B = B \cap A$,
- (Associative Law) $(A \cup B) \cup B = A \cup (B \cup C)$,
- (Associative Law) $(A \cap B) \cap C = A \cap (B \cap C)$,
- (Distributive law) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$,
- (Distributive law) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$,
- $(A \cup B)^c = A^c \cap B^c$,
- $\bullet \ (A \cap B)^c = A^c \cup B^c.$

2.2 Appendix 2

Let A_1, A_2, \ldots be any sequence of events and B be an event. We have the following

$$\left(\bigcup_{n=1}^{\infty} A_n\right)^c = \bigcap_{n=1}^{\infty} A_n^c,$$

$$\left(\bigcap_{n=1}^{\infty} A_n\right)^c = \bigcup_{n=1}^{\infty} A_n^c,$$

$$B \cap \left(\bigcup_{n=1}^{\infty} A_n\right) = \bigcup_{n=1}^{\infty} (B \cap A_n),$$

$$B \cup \left(\bigcap_{n=1}^{\infty} A_n\right) = \bigcap_{n=1}^{\infty} (B \cup A_n).$$