HARMONIC ANALYSIS I

T. S. Liu and A. van Rooij

1972

FACULTEIT WISKUNDE EN NATUURWETENSCHAPPEN BIBLIOTHEEK TOERNOOIVELD NIJMEGEN

University of Massachusetts, Amherst, Massachusetts, U.S.A. and Catholic University, Nijmegen, The Netherlands.

LITTERATURE.

- E. Hewitt-K. A. Ross, "Abstract Harmonic Analysis I"
- W. Mudin, "Fourier Analysis on Groups"
- H. Reiter, "Classical Harmonic Analysis and Locally Compact Groups"

mns 10

CONTENT

I.	STARTING POINTS.	
	Conventions.	0.1
	 Preliminaries. The Riesz Representation Theorem. Gelfand Theory. 	0.2 - 0.6 1.1 - 1.13 2.1 - 2.11
II.	L(G) AND E(G).	
	3. Locally Compact Groups. 4. Convolution.	3.1 - 3.13 4.1 - 4.6
III.	THE ABELIAN CASE.	
	 The Dual Group. Bochner's Theorem. Duality. The Structure Theorem. 	5.1 - 5.7 6.1 - 6.11 7.1 - 7.9 8.1 - 8.6
IV.	THE GENERAL THEORY.	
ø	 Representation Theory. Irreducible Representations. Compact Groups. 	9.1 - 9.15 10.1 - 10.12 11.1 - 11.19
· V	VARIA.	
	12. Locally Compact Fields.13. Measures on Quotients.14. Semidirect Products.	12.1 - 12.7 13.1 - 13.11 14.1 - 14.4
INDEX OF SYMBOLS.		i.1 - i.3
INDEX.		i.4 - i.7

I. STARTING POINTS.

CONVENTIONS.

"(locally) compact" implies "Hausdorff"...

If X is a set and A c X, then $\ \xi_{\hat{A}}$ denotes the characteristic function of A:

$$\xi_{A}(x) := 1 \quad \text{if } x \in A,$$

$$\vdots = 0 \quad \text{if } x \notin A.$$

The complement of A is $X \setminus A$ or A^c .

Usually our scalar field is C.

For
$$f: X \to \mathbf{c}$$
 set $\|f\|_{X} := \|f\|_{\omega} := \sup_{x \in X} |f(x)|$.

If X is a topological space, C(X) denotes the vector space of all bounded continuous functions $X \to \mathbb{C}$.

If E is a space of functions on a set X, by E^r we denote the set of all real-valued elements of E, and $E^+:=\{f\in E^r: f\succeq 0\}$.

For
$$f: X \to \mathbb{R}$$
 define f^+ , $f^-: X \to \mathbb{R}$ by $f^+:= \max(f,0)$, $f^-:= \max(-f,0)$.

Then $f^+ = \frac{1}{2}(|f| + f)$, $f^- = \frac{1}{2}(|f| - f)$; $f = f^+ - f^-$, $|f| = f^+ + f^-$. $T := \{z \in C : |z| = 1\}$.

For a normed vector space E, $\mathcal{L}(E)$ is the space of all continuous linear maps E \longrightarrow E provided with the norm

$$||T|| := \sup \frac{||Tx||}{||x||}$$

= inf $\{c \in [0, \infty) : \|Tx\| \le c\|x\| \text{ for all } x \in E\}.$

The dual of a normed vector space E is denoted E*.

- O. PRELIMINARIES.
- O.1. URYSOHN'S LEMMA. If X is compact and if C_0 , $C_1 \subset X$ are closed and mutually disjoint, there exists a continuous $f: X \longrightarrow [0,1]$ such that f = 0 on C_0 , f = 1 on C_1 .

 See Kelley, "General Topology".
- metric space. Let A_1, A_2, \dots be a sequence of closed subsets of X that covers X (i.e. $X = \bigcup A_n$). Then one of the A_n contains a non-empty ball.

See Kelley, "General Topology", page 200.
Rudin, "Real and Complex Analysis", Theorem 5.6.

0.3. STONE-WEIERSTRASS THEOREM. Let X be a locally compact space. Let D be a closed linear subspace of $C_{\infty}(X)$ so that

 $\underline{if} f,g \in D, \underline{then} fg \in D, \\
\underline{if} f \in D, \underline{then} \overline{f} \in D,$

 $\frac{\text{for all a,b } \in X, \text{ a } \neq \text{ b, } \underline{\text{there is an f } \in D } \underline{\text{with}}}{\text{f(a) = 0, f(b)} \neq 0 \text{ (i.e. D } \underline{\text{separates the points of } X).}}$ $\underline{\text{Then D = C}_{\infty}(X).}$

See Gillman-Jerison, "Rings of Continuous Functions", 16.4.

Each of the following two theorems is known as the Hahn-Banach Theorem.

- O.4. THEOREM. Let E be a vector space over R, D a linear subspace of E, and f a linear function D \rightarrow R. Suppose p is a function E \rightarrow R such that
 - (1) $p(\lambda x) = \lambda p(x)$ $(x \in E; \lambda > 0),$
 - (2) $p(x+y) \le p(x) + p(y)$ $(x,y \in E)$.
- If $f(x) \leq p(x)$ for all $x \in D$, then f can be extended to a linear function $g : E \to R$ for which $g \leq p$ everywhere.
- 0.5. THEOREM. (The scalar field is either $\mathbb R$ or $\mathbb C$) Let D be a linear subspace of a normed vector space $\mathbb E$, and let $\mathbf f \in \mathbb D^*$. Then $\mathbf f$ can be extended to a $\mathbf g \in \mathbb E^*$ for which $\|\mathbf g\| = \|\mathbf f\|$.

If the scalar field is $\mathbb R$, this theorem follows directly from the preceding one. (Take $p(x) := \|f\| \|x\|$, Then f has

a linear extension g for which $g(x) \le ||f|| ||x||$ for all x. But then also for all x, $-g(x) = g(-x) \le ||f|||-x|| = ||f|||x||$. Hence, $|g(x)| \le ||f|||x||$). For the complex case one applies the following lemma.

Let F be a normed vector space over C. Its conjugate space ${f F}^{f *}$ is a normed vector space over ${f C}$. But we can also view F as a normed space over R; as such, it has a conjugate space $F_{\mathbf{R}}^{\bullet}$ (consisting of all continuous R -linear functions $F \rightarrow R$).

For every $h \in F^*$ we have Re $h \in F_R^*$.

LEMMA. The map $h \mapsto Re h$ is an R-linear surjective isometry $F^* \longrightarrow F_R^*$. h is determined by Re h according to the formula

 $h(x) = Re h(x) - i Re h(ix) \qquad (x \in F).$

See Rudin, "Real and Complex Analysis", Theorem 5.17.

0.7. COROLLARY. If E is a normed vector space and a & E, then

 $\|\mathbf{a}\| = \sup \frac{\|\mathbf{f}(\mathbf{a})\|}{\|\mathbf{f}\|}.$ Clearly $\|\mathbf{a}\| \ge \frac{\|\mathbf{f}(\mathbf{a})\|}{\|\mathbf{f}\|} \text{ for every } \mathbf{f} \ne 0.$ the other hand, the function $\lambda a \longmapsto \lambda$ ($\lambda \epsilon \ C$) extends to an $f \epsilon E^*$ with f(a) = 1 and $\|f\| = \frac{1}{\|a\|}$.

Let E be a normed vector space (over R or C). Every $a \in E$ induces a linear function a^{**} on E by

 $a^{**}(f) := f(a)$ ($f \in E^{*}$).

The w^* - topology (w standing for weak) is the weakest topology on E* for which all these a** are continuous. is weaker than the norm-topology.

0.8. ALAOGLU THEOREM. For every normed vector space E (over R or C) the set $B := \{ f \in E : ||f|| \le 1 \}$

is w*-compact.

Proof. (for R; the proof for C is almost the same). Let X be the space

$$\prod_{\mathbf{a} \in \mathbf{E}} [-\|\mathbf{a}\|, \|\mathbf{a}\|]$$

Under the product topology, X is compact. B is a subset of X. The topology of X and the w*-topology of E induce the same topology on B. Hence, all we have to prove is that B is closed in X. But this is obvious, as

$$B = \bigcap_{\substack{\lambda,\mu \in \mathbb{R} \\ a,b \in \mathbb{E}}} \{ f \in X : f(\lambda a + \mu b) - \lambda f(a) - \mu f(b) = 0 \}$$

and for all $c \in E$ the function $f \longrightarrow f(c)$

is continuous on X.

0.9. RADON-NIKODYM THEOREM. Let A be a σ -algebra of subsets of a set X. Let μ , ν be finite positive measures on A. Suppose that $\mu(A) = 0$ for every $A \in A$ for which $\nu(A) = 0$. Then there exists an A-measurable function $h: X \to [0, \infty)$ such that $\int f d\mu = \int f h d\nu$ for every A-measurable $f: X \to [0, \infty)$.

Let $\langle X, A, \mu \rangle$ be a measure space $(\mu \geq 0)$. An element Y of A is of τ -finite measure if Y can be written as a union of countably many sets of finite measure. If X itself is of τ -finite measure, μ and the measure space $\langle X, A, \mu \rangle$ are said to be τ -finite.

0.10. THEOREM. Let $\langle X, A, \mu \rangle$ be a G-finite measure space. Every $h \in L^{\infty}(\mu)$ determines a $\mathcal{G}_h \in L^{1}(\mu)^{\frac{1}{4}}$ by $\mathcal{G}_h(f) := \int fh \, d\mu.$

The map $h \mapsto \varphi_h$ is a surjective linear isometry $L^{\infty}(\mu) \to L^{1}(\mu)^*$. See Rudin, "Real and Complex Analysis", Theorem 6.16.

0.11. PROJECTION THEOREM. Let D be a closed linear subspace of a Hilbert space H; let D = $\{5 \in H : 5 \perp D\}$. For $\xi \in H$ set dist $(5,D):=\inf\{\|5-7\|: \beta \in D\}$. For every $\xi \in H$ there exists a unique $P\xi \in D$ for which $\|\xi - P\xi\| = \text{dist}(\xi,D)$. The map P defined this way is a linear map of H onto D. We have $P^2 = P$, Ker $P = D^1$, $P\xi = \xi$ for $\xi \in D$. It follows that $H = D + D^1$. (Of course $D \cap D^1 = \{0\}$.)

P is called the projection of H onto D.

See Halmos, "Introduction to Hilbert Space", \$\$11-12.

A consequence of the Projection Theorem is

For every $\varphi \in H^*$ there exists a unique $\eta \in H$ such that $\varphi(\zeta) = (\zeta \mid \eta) \qquad (\zeta \in H).$

Then $\|\varphi\| = \|\eta\|$. See Halmos, "Introduction to Hilbert Spaces", §17.

From the F. Riesz Theorem one infers easily:

0.13. THEOREM. Let H be a Hilbert space. By $\mathcal{L}(H)$ we denote the set of all continuous linear maps $H \to H$.

Every $T \in \mathcal{L}(H)$ induces a (unique) $T^* \in \mathcal{L}(H)$ by $(T \subset I, \eta) = (C \cap I^* \eta)$ $(C, \eta \in H)$.

For S, $T \in \mathcal{L}(H)$ and $\lambda \in \mathbb{C}$ we have $T^{**} = T,$ $\|T^{*}\| = \|T\|,$ $(S+T)^{*} = S^{*}+T^{*},$ $(\lambda T)^{*} = \overline{\lambda}T^{*},$ $(ST)^{*} = T^{*}S^{*}.$

Direct computation yields

- 0.14. POLARIZATION FORMULA. If (|) is an inner product in a vector space H and if || || is the norm induced by (|), then $4(\zeta|\gamma) = \|\zeta+\gamma\|^2 \|\zeta-\gamma\|^2 + i\|\zeta+i\gamma\|^2 i\|\zeta-i\gamma\|^2 \quad (\zeta, \gamma \in H).$
- 0.15. COROLLARY. Let H be a Hilbert space, T an element of $\mathcal{L}(H)$ for which $\|T\zeta\| = \|\zeta\|$ ($\zeta \in H$). Then $(T\zeta | T\eta) = (\zeta | \eta)$ ($\zeta, \eta \in H$). If T is surjective, then $T^{-1} = T^*$.

The T $\in \mathcal{L}(H)$ for which $T^{-1} = T^*$ (i.e. $TT^* = T^*T = I$) are called <u>unitary</u>.

Hilbert spaces enter our theory via

0.16. THEOREM. Let (X, A, μ) be a measure space $(\mu \ge 0)$. Let $\mathcal{L}^2(\mu)$ denote the set of all measurable functions $f: X \to \mathbf{C} \quad \text{for which } [|f|^2 d\mu < \infty, \text{ and let } N := \{f \in \mathcal{L}^2(\mu) : f = 0\}$ $\mu\text{-a.e.}. \quad \text{Then } \mathcal{L}^2(\mu) \text{ is a vector space, } N \text{ is a linear}$ subspace of $\mathcal{L}^2(\mu)$. By $L^2(\mu)$ denote the vector space $\mathcal{L}^2(\mu)/N$.

We identify $f \in \mathcal{L}^2(\mu)$ with $f \mod N \in L^2(\mu)$. The formula

(fig) := $\int f\overline{g} d\mu$ (fig $\in L^2(\mu)$)

introduces an inner product in $L^2(\mu)$. Relative to this inner product, $L^2(\mu)$ is a Hilbert space (i.e. $L^2(\mu)$ is complete with respect to the metric determined by the inner product).

See Dieudonné, "Treatise on Analysis II", Theorem 13.11.4, Rudin, "Real and Complex Analysis", Theorem 3.11.