Технологическая практика. Краевая задача Дирихле для стационарного уравнения диффузии.

Роман Дьяченко

Декабрь 2023

1 Предмет изучения

Уравнение диффузии

$$\frac{\partial u}{\partial t} + div \left(-D\nabla u \right) = f \tag{1}$$

Что в него входит?

- и основная неизвестная (концентрация вещества)
- ullet $D=D^T>0$ тензор диффузии
- f источниковый член

2 Краевая задача Дирихле для стационарного уравнения

$$\left\{ \begin{array}{ll} \operatorname{div}(-D\nabla u) = f & \Omega \in R^2, \\ \left. u \right|_{\partial \Omega} = g_D \end{array} \right.$$

Наши первые шаги:

- Граничные условия исключительно Дирихле
- \bullet Область Ω единичный квадрат
- Тензор диагональный: $D = diag\{d_x, d_y\}$

После дискретизации получаем систему вида:

Рис. 1: (a): Относительные ошибка в эксперименте №1 в Фробениусовой и Чебышёвсой нормах при различном количестве узлов сетки (b): График точного решения задачи №1

3 Численные эксперименты

Мной была проведена серия экспериментов по измерению времени и качества решения при уменьшении шага сетки. Результаты экспериментов можно увидеть в Таблице №1 и на Рисунке №1. Тестирование производилось на одном потоке моего ноутбука с процессором CORE i7 (8th Gen).

3.1 Эксперимент №1

Числено решалась задача №21 из темы №7 Е.В. Захарова "Уравнения математической физики":

$$\begin{cases} \Delta u = 0, 0 < x < 1, 0 < y < 1; \\ u|_{y=0} = \sin(\pi x), 0 \le x \le 1; \\ u|_{x=1} = 0, 0 \le y \le 1; \\ u|_{y=1} = 0, 0 \le x \le 1; \\ u|_{x=0} = \sin(\pi y), 0 \le y \le 1. \end{cases}$$

и имеющее точное решение вида (см. Рис.1(b)):

$$u = \frac{\sin(\pi x) \cdot sh(\pi(1-y))}{sh(\pi)} + \frac{\sin(\pi y) \cdot sh(\pi(1-x))}{sh(\pi)}$$

Таблица 1: Время работы алгоритмов.

N (along axis)	Time[ms]	Chebyshev	Frobenius
10	2	0.0051	0.0054
16	8	0.0020	0.0022
27	18	0.00071	0.00078
46	86	0.00024	0.00027
77	414	8.7e-05	9.9e-05
129	1696	3.1e-05	3.5e-05
215	6081	1.11e-05	1.27e-05
359	23068	3.98e-06	4.56e-06
599	91537	1.43e-06	1.65e-06
1000	369301	5.01e-07	5.88e-07

Рис. 2: (a): Относительные ошибка в эксперименте №2 в Фробениусовой и Чебышёвсой нормах при различном количестве узлов сетки (b): График точного решения задачи №2

3.2 Эксперимент №2

Числено решалась задача №27 из темы №7 Е.В. Захарова "Уравнения математической физики":

$$\begin{cases} \Delta u = \sin(5\pi x) \cdot \sin(6\pi y), 0 < x < 1, 0 < y < 1 \\ u|_{y=0} = \sin(\pi x), 0 \le x \le 1 \\ u|_{x=1} = \sin(2\pi y), 0 \le y \le 1 \\ u|_{y=1} = \sin(3\pi x), 0 \le x \le 1 \\ u|_{x=0} = \sin(4\pi y), 0 \le y \le 1 \end{cases}$$