

Mathias Unberath, PhD

Assistant Professor

Dept of Computer Science

Johns Hopkins University

Problems with RNNs for Language and Otherwise

Challenges When Modeling Sequences with RNNs

Sequences can have arbitrary length

Consider

"Reasons were strongly urged both for and against the plan; but Mr. Lincoln finally decided and explained that while he himself was not afraid he would be assassinated, nevertheless, since the possibility of danger had been made known from two entirely independent sources, and officially communicated to him by his future prime minister and the general of the American armies, he was no longer at liberty to disregard it; that it was not the question of his private life, but the regular and orderly transmission of the authority of the government of the United States in the face of threatened revolution, which he had no right to put in the slightest jeopardy. "— A Short Life of Abraham Lincoln

versus

"I went to the garden to pick flowers."

→ In RNNs, same dimensionality of hidden state for all sequence lengths!

→ How to ensure context propagates?

Challenges When Modeling Sequences with RNNs

A related problem: Ambiguity

- → In RNNs, same dimensionality of hidden state for all sequence lengths!
- → How to ensure context propagates?

- → "Bank" can only be disambiguated through context
- → What happens to context several sentences later?

Challenges When Modeling Sequences with RNNs

Input representations

One-hot does not scale well

It also does not have nice properties

Let's start with a better representation!

Vocabulary: [h,e,l,o]

The Need for Embeddings

What is embedding?

- Simply put: a fancy lookup table
- Mapping from discrete, categorical variables (e.g. one hot encoded) to continuous vector space
- Sometimes called embedding matrix since it can also be represented as a sparse matrix multiplication

Image from:

https://towardsdatascience.com/what-the-heck-is-word-embedding-b30f67f01c81

Limitation of one-hot encoding

- High dimensional sparse vectors take up a lot of space
- Categories that are similar are not closer to each other
- Want meaningful dimensionality reduction
- Higher dot product = more similar

One-hot encoding

A 4-dimensional embedding

•••

Why is embedding better?

- A way to represent words so it's not just what it is, but also what it means
- More compact representation
 - 50 length embedding on 37 000 books
 - Clear clusters by genre, learned semantic meaning

How do we find good embeddings?

Word2Vec

- Words that are used in the same context are similar
- → Even if we've only seen dogs, we should know something about cats "[] are furry, four-legged, and people love to have them as pets!"
- What is a word's context?
 - Ex: Let's say we have a window size of 2 and the following sentence
 - "the professor is scribbling on the board and the student is writing down the scribbles"
 - Context of the professor: "the", "is", and "scribbling"
 - Context of student: "and", "the", "is", and "writing"

Word2Vec

Continuous bag of words (CBOW)

- Idea: Predict the word from its context!
- Rely on simple few-layer network with cross-entropy loss
 - Embed all context words
 - Then average all embeddings
 - Predict word from context
- Then, use weights to generate embeddings

CBOW

Word2Vec

Skip-gram

- Idea: Predict the context from the word!
- Rely on simple few-layer network with cross-entropy loss
 - Embed the target word
 - Evaluate loss over context words
 - Average gradients over context
- Then, use weights to generate embeddings

Skip-gram

Global Vectors for Word Representation (GloVe)

Idea: Word-word co-occurrence probabilities carry potential for embedding

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

• Embedding function $F(w_i, w_j, u_k) = P_i k / P_j k$ and restructure to $F(w_i - w_j, u_k) = P_i k / P_j k$

- Distance (dashed line) changes with words k
- Always normalize w.r.t. red line

From RNNs to Transformers

The Big Picture Idea

- RNNs can only consider "context" that's available in h
- Long sequences: Missed context!

How to address this issue?

The Big Picture Idea

- RNNs can only consider "context" that's available in h
- Long sequences: Missed context!
- How to address this issue?
- Rather than memorizing everything....
- Would be convenient to have a mechanism to "revisit" previous values
 - Context can remain large
 - Context and importance of specific words in context can change

The Big Picture Idea

An overview of the transformer architecture

- Representations are computed "per token"
- Similar to RNNs, the parameters are the same at every time point
- Different from RNNs, however,
 - Parameters act not only on hidden state
 - Architecture uses all/previous tokens to compute representation
- Key ingredient of this architecture?
- **→** Attention

The Attention Mechanism

Updating Representations

Until now

- Perceptrons
 - Don't scale well

- Convolutions
 - Build receptive field slowly

Updating Representations

Now: (Self-)Attention

- Representations x_i
- From those, we compute (using parameters)
 - Query q_i
 - Key k_i
 - Value v_i
- Then: attention $(q, k, v) = Softmax (q * k^T) * v$

Updating Representations

Now: Self- and Cross-attention

An Example

Embedding

Input

Keys

Queries

Values

Score

Divide by 8 ($\sqrt{d_k}$)

Softmax

Softmax

Χ Value

Sum

 q_1

V₁

Thinking

 $q_1 \cdot k_1 = 112$

14

0.88

 V_2

 q_2

Machines

 V_2

V₁

Multi-head Attention

Can there be too much of a good thing?

- Calculate multiple attention scores
- Merge them via concatenation and feedforward projection using W⁰

Multi-head Attention

Can there be too much of a good thing?

- Calculate multiple attention scores
- Merge them via concatenation and feedforward projection using W⁰

Generally speaking, though: Attention is costly O(n^2)!

The Transformer Architecture

The Transformer

Encoding

- Input encoding
 - Tokenization
 - Token embedding
 - Positional encoding (added to embedding)
- N x Encoder block (N=6 here)
 - Multi-head attention
 - Norm and residual addition
 - Feed forward (MLP); applied to each token separately
 - Norm and residual addition.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attent

The Transformer

Encoding

- Output encoding
 - Token embedding
 - Positional encoding (added to embedding)
- N x Decoder block (N=6 here)
 - Multi-head attention, norm and residual addition
 - Cross attention (multi-head), norm and residual
 - Feed forward (MLP), norm and residual
- Use linear embedding transformation to map outputs to next-token probabilities

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attent

The Transformer

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU		Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [15]	23.75				
Deep-Att + PosUnk [32]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [31]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [8]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$	
MoE [26]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [31]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$	
ConvS2S Ensemble [8]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$	
Transformer (base model)	27.3	38.1		$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.0	2.3 ·	$2.3 \cdot 10^{19}$	

Questions?

