Determinants of Spatio-Temporal Patterns of Cybercrimes in the USA: Implications for Cybersecurity Personnel Resource Allocation

Stefano Chiaradonna

10 March 2025

"The U.S. Is Less Prepared to Fight Cybercrime Than It Could Be" - U.S. Government Accountability Office 2023.

Problem – Cybercrime agents are continuously overwhelmed with limited resources.

- Increasing cybersecurity workforce shortage: 4 million needed positions [1].
- FBI personnel is outnumbered 50 to 1 [2].
- Static Assignment: only 12 personnel per field office [3].

Goal – Determine where to effectuate cybersecurity personnel by state and field office.

Benefit to DHS – *Improved cybersecurity law enforcement resource allocation and response.*

Help reduce burnout and increase workforce retention efforts.

Key Insights

- Cybercrime agents in all field offices will face an overwhelming surge
 - Particularly in California, Texas, and Colorado

- **Current policy** of uniformly static personnel allocation is critically **insufficient**
 - o 12 agents per field office not enough

Approach

01	Aggregate a Large, Representative Dataset	 Cybercrime data from Privacy Rights Clearninghouse (PRC) Socio-economic data from U.S. Census Bureau and U.S. Bureau of Economic Analysis Technological data from U.S. Census Bureau
02	Clean and Select Significant Covariates	 Fill in missing values. From the aggregated dataset of ~1M data points, determine significant covariates at state level.
03	Leverage Geospatial Temporal Regression Model	 Apply regression model. Forecast coefficients for 2025 to predict cybercrime hotspots and workload. Apply to field office jurisdictions.

Aggregate Dataset

Target Variable:

- Cybercrime data from Privacy Rights Clearninghouse (PRC)
 - Number of records compromised (severity)
 - 2009 2022

Covariates:

- Socio-economic data from U.S. Census Bureau and U.S. Bureau of Economic Analysis
- Technological data from U.S. Census Bureau

Considered 26 covariates in total

~1M data points

Covariate	Source	Years
% Households (\$75,000+)	ACS S1901	2010-2022
% Bachelors or Above	ACS DP02	2010-2022
% Single Parent Households ³	ACS DP02	2010-2022
% Uninsured Population	ACS S2701	2010-2022
% Below Poverty	ACS S1702	2010-2022
% Households No Vehicle	ACS DP04	2010-2022
% African American	ACS DP05	2010-2022
% Indigenous	ACS DP05	2010-2022
% Asian	ACS DP05	2010-2022
% Hispanic/Latino	ACS DP05	2010-2022
GSP (Millions of Dollars)	BEA	1998-2022
Unemployment Rate	ACS S2301	2010-2022
% Agriculture, Forestry, Fishing, Mining	ACS DP03	2010-2022
% Construction	ACS DP03	2010-2022
% Manufacturing	ACS DP03	2010-2022
% Wholesale Trade	ACS DP03	2010-2022
% Retail Trade	ACS DP03	2010-2022
% Transportation, Warehousing, Utilities	ACS DP03	2010-2022
% Information	ACS DP03	2010-2022
% Finance, Insurance, Real Estate, Leasing	ACS DP03	2010-2022
% Professional, Scientific, Management Services	ACS DP03	2010-2022
% Educational Services, Health Care	ACS DP03	2010-2022
% Arts, Entertainment, Recreation, Food Services	ACS DP03	2010-2022
% Other Services	ACS DP03	2010-2022
% Public Administration	ACS DP03	2010-2022
% Households With Internet	ACS DP02	2013-2022

Methodology

- Statistical Regression
 — Implement a geographically and temporally weighted regression (GTWR) approach
 - Useful technique to calibrate regional spatio-temporal models.
 - Comparison with
 - Geographically Weighted Regression (GWR)
 - Ordinary Least Squares (OLS)

Method	R^2	AIC	RSS
OLS	0.3745	1919.73	2058.08
GWR GTWR	$0.8507 \\ 0.7320$	1831.20 1831.20	$2866.18 \\ 2601.12$

Forecasting
 – Implement Vector Autoregressive (VAR) model to forecast coefficients.

2025 Forecast Workload

FBI Field offices with great variability:

- Denver, CO
- Boston, MA

Actionable Recommendations & Next Steps

Immediate Actions:

- Dynamic personnel resource allocation efforts.
- Great need for an increased number of cybercrime agents across all field offices (and states)
 - Particularly in Colorado, California, Texas, and Massachusetts.
 - Increasing the number of cybercrime agents may help alleviate burnout and increase workforce retention.

Strategic Alignment:

DHS Strategic Plan – Goal 3: Secure Cyberspace and Critical Infrastructure

Future Considerations:

- Integrate employee data with skill sets for more strategic alignment.
- Integrate field office data for more accurate reporting and workload capacity.

Dashboard

Thank you.

Questions?

Multicollinearity

	Selected Covariates			Response	
	GSP	% Professional	% Educational	% Other	Records Compromised
GSP	1.00	0.57	0.02	-0.05	0.39
% Professional	0.57	1.00	-0.10	0.23	0.49
% Educational	0.02	-0.10	1.00	-0.49	-0.39
% Other	-0.05	0.23	-0.49	1.00	0.28
Records	0.39	0.49	-0.39	0.28	1.00

Table 4: The Pearson correlations of each selected covariate and response variable.

	Selected Covariates				Response	
	GSP	% Professional	% Educational	% Other	Records Compromised	
GSP	(90)	1.23 (1.38)	1.51 (1.95)	1.52 (1.93)	1.54 (1.93)	
% Professional	2.01(2.11)	_	2.28(3.02)	2.58(2.96)	2.61 (3.05)	
% Educational	3.09 (3.48)	2.77(3.24)		3.17(3.37)	3.16 (3.33)	
% Other	1.86(2.05)	1.86(1.97)	1.88 (1.82)	-	1.81 (2.12)	
Records	1.05(1.62)	1.05(1.54)	1.05(1.49)	1.03(1.66)	-	

Table 5: The Variance Inflation Factor (corresponding spatial lags) for selected covariates and response variable.

Morans' I - Spatial dependencies

3	Selected (Response		
GSP	% Professional	% Educational	% Other	Records Compromised
0.0948***	0.3455***	0.6152***	0.3390***	0.0165**

Table 6: The global Moran's I estimate for each selected covariate and reponse variable. *, **, and ** indicate significance level of 10%, 5%, and 1%. We use the *spdep* (R.S. Bivand et al., 2008) R package with queen adjacency.

• Significant spatial dependency in the severity of cybercrime, with the log1p transformation, at the 5% significance level.

Geographically and Temporally Weighted Regression (GTWR)

Geographically and Temporally Weighted Regression (GTWR):

$$Y_j = \beta_0(u_j, v_j, t_j) + \sum_{k=1}^d \beta_k(u_j, v_j, t_j) X_{jk} + \epsilon_j, \qquad j = 1, ..., n$$

where

- Y_i the severity of the cybercrime (number of compromised records)
- $\hat{\beta}_0$ estimates the intercept
- (u_j, v_j, t_j) spatio-temporal coordinates for the *j*-th cybercrime observation at state-level coordinates
- β_k estimates the relationship between cybercrime severity and determinants
- X_{ik} covariate of state-level determinant (e.g. technological, socio-economic, etc.)
- ϵ_i error term

Backtesting

Error Difference

Minimum: 0.461%, Average: 9.5%, Maximum: 29.82%

Parameter Estimates Visualized

- Parametric estimates are given for the industry penetration of the education services by state and time.
- Shows the relationship between cyber attack severity and independent variables (sign and magnitude).