- Input
 - vector field v
 - seed point

- Output
 - polyline approximating the stream line

- Concepts
 - forward / backward Integration
 - integrate in **v** and **-v** to get the whole stream line
 - stop criteria
 - number of steps
 - arc length
 - domain
 - zero or low velocity
 - arc length parameterized output
 - integration in the direction field

$$\mathbf{v}_d = \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

- Seeding of integral lines:
- which stream/path/streak/time lines to visualize?
- too few: important details get lost
- too many: overload, visual clutter
- simple approaches:
 - start on regular grid points
 - start randomly

Placement Methods for Stream Lines

Turk and Banks, 1996

Mebarki et al., 2005

Jobard et al., 1997

Rosanwo et al., 2009

Visualization, Tino Weinkauf, KTH Stockholm

Stream line seeding:

- 2D: evenly spaced stream lines
- Turk/Banks 96:
 - start with streamlets (very short stream lines)
 - apply a series of energy-decreasing elementary operations: combine, delete, create, lenghten, shorten streamlets
 - energy: difference between low-pass filtered version of current placements and uniform grey image

Figure 2: (a) Short streamlines with centers placed on a regular grid (top); (b) filtered version of same (bottom).

Figure 3: (a) Short streamlines with centers placed on a jittered grid (top); (b) filtered version showing bright and dark regions (bottom).

Figure 4: (a) Short streamlines placed by optimization (top); (b) filtered version showing fairly even gray value (bottom).

Figure 5: (a) Long streamlines with centers regularly placed on a grid (top); (b) Streamlines placed by density-based optimization (bottom). This data is a randomly generated vector field.

Stream line seeding:

- 2D: evenly spaced stream lines
- Jobart/Lefer 97:
 - greedy placement of new stream lines in the neighborhood of already present stream lines
 - 2 steering parameters d_{sep}, d_{test} with d_{test} < d_{sep}
 - Start integration of an arbitrary stream line in forward and backward direction until it
 - Leaves the domain
 - Ends in a critical point
 - Comes closer than d_{test} to another drawn stream line
 - Next stream line: starts in a point with distance d_{sep} to first stream line
 - Ends when no further stream lines are possible

Flow Visualization: Geometry-Based Methods

