| First name: | Last name: |  |
|-------------|------------|--|
|             |            |  |

Student ID:

## Operations and Calculations Homework

## **Basic problems**

1. Evaluate to a single number.

1. 
$$5^0 + 8^3$$
 2.  $2^3 + 7^4$ 

2. Simplify.

1. 
$$(-4x) \div (-9x)^3$$

2.  $(32x)^2 \div (22x)^0$ 

3.  $(-9h^3q^6)(-5h^5)$ 

4.  $(-m^4)(12m^3n^5)$ 

5.  $7^{12} \times 7^{-3} \times 7^{-10}$ 

6.  $(6^{-12}) (6^{-8}) (6^{-7})$ 

7.  $(13x)^4 \div (-27x)^2$ 

8.  $(14x) \div (-31x)^0$ 

9.  $(-5x)^3 \div (-27x)^3$ 

10.  $(-18x)^2 \div (18x)^4$ 

## **Challenge problems:**

1

If the fraction strip shown here represents 2/3, which fraction strip represents 3/2?



2. The figure shown here represents  $\frac{3}{2}$ . Which of the choices would represent 2? (This means two 1's,

not two  $\frac{3}{2}$ 's.)

- a.
- b. \_\_\_\_\_
- c.
- d.
- e. \_\_\_\_
- 3. If the figure below represents  $3\frac{3}{4}$ , which of the choices would represent  $\frac{5}{6}$  of  $1(NOT\frac{5}{6}$  of  $3\frac{3}{4})$ ?



- b. c.
- d. \_\_\_\_\_
- e. \_\_\_\_\_

- 4. A calculator displays 5.1698788285E+58 when 25<sup>42</sup> is entered. Which statement is true?
- a. The answer displayed is not exact.
- b. The answer to  $25^{42}$  would have 58 zeros at the end, if the calculator had a big enough display.
- c. the answer to 25<sup>42</sup> would have 48 zeros at the end, if the calculator had a big enough display
- d. The answer to 25<sup>42</sup>would have 47 zeros at the end, if the calculator had a big enough display.
- e. The answer to 25<sup>42</sup>would have 49 zeros at the end, if the calculator had a big enough display.
- 5. Ann, Ben, Coy, Don, and Ella ride these buses: 4, 15, 18, 27, and 30 (not necessarily in that order). They all forgot their bus numbers. Each did remember something about his or her bus number:
  - Ann knows her bus number has a 1 in it.
  - Ben knows that his bus number is divisible by 3.
  - Coy knows that the sum of the digits in his bus number is 9 and that his bus number is greater than Ben's.
  - Don knows his bus is yellow.
  - Ella knows that her bus number is twice that of Ann's.

Which statement is true?

- a. Ann rides bus 15. b. Ben rides bus 30. c. Coy rides bus 18. d. Don rides 27.
- e. Ella rides bus 4.

- 6. The least common multiple of two numbers is 120. Neither number is 120. Neither number is 1. Which statement CANNOT be true about the two numbers?
- a. One number is a multiple of 9.
- b. One number is a multiple of five and the other is not.
- c. One number has a factor of 8.
- d. Both numbers are even.
- e. Both numbers are multiples of 5.

| 7. The first 6 rows of Pascal's Triangle are shown here. What would be the third number (from the left) in the 20th row?  1                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8. When Lynn mentally calculated 36 x 25, Lynn thought of it as (9 x 4) x 25. Then Lynn thought about 9 x (4 x 25) = 900. Which property of multiplication did Lynn use?  a. Associative Property  b. Commutative Property  c. Distributive Property  d. Identity Property  e. Property of Multiplication by Zero |
| 9. The prime factorization of 12 has three factors: $2 \cdot 2 \cdot 3$ . If the prime factorization of $a$ has 15 factors and the prime factorization of $b$ has 18 factors, how many factors are in the prime factorization of $ab$ ?                                                                           |
| 10. Melissa and Craig were doing their math homework. They had a disagreement on one of the problems. The problem read, "What is the value of $(4)(2^{1996})$ ? Melissa found it to be $(8^{1996})$ , but Craig disagreed and felt it was $(2^{1998})$ . Were either of them right? If so, who was right?         |
| 11. When $10^{93}$ -93 is expressed as a single whole number, what is the sum of its digits?                                                                                                                                                                                                                      |

12. The sum of 3 consecutive counting numbers is one-eighth of their product. What is their product?

13. What is the value of  $1 - 3 + 5 - 7 + 9 \dots - 99$ ? (Note that subtraction and addition are alternating in the sequence of odd numbers.)

14. Calculate  $\frac{1}{3 + \frac{1}{3 + \frac{1}{3\frac{1}{3}}}}$ .