

Naloga Preiskovanje koša

Vhod stdin
Izhod stdout

```
bool binary_search(int n, int p[], int target){
   int left = 1, right = n;
   while(left < right){
      int mid = (left + right) / 2;
      if(p[mid] == target)
           return true;
      else if(p[mid] < target)
           left = mid + 1;
      else
           right = mid - 1;
   }
   if(p[left] == target) return true;
   else return false;
}</pre>
```

Če je p urejen, zgornja koda vrne true, če in samo če je target del p. Po drugi strani pa to ne velja, če p ni urejen.

Podano je pozitivno celo število n in zaporedje $b_1, \ldots, b_n \in \{\text{true}, \text{false}\}$. Zagotovljeno je, da je $n = 2^k - 1$, za neko pozitivno celo število k.

Tvori permutacijo p, sestavljeno iz celih števil vrednosti $\{1, \ldots, n\}$. Naj bo S(p) število kazalcev $i \in \{1, \ldots, n\}$ za katere binary_search(n, p, i) ne vrne b_i . Poišči tako p, da je S(p) majhen (kot je opisano v razdelku "Omejitve").

(Permutacija $\{1, \ldots, n\}$ je zaporedje n celih števil, kjer se vsako število med 1 in n pojavi natanko enkrat.)

Vhod

Vhod se sestoji iz nekaj testnih primerov. V prvi vrstici vhoda je T: število testnih primerov.

Sledi T testnih primerov. Vsak primer je sestavljen iz dveh vrstic vhoda.

V prvi vrstici je celo število n.

V drugi vrstici je niz dolžine n, sestavljen iz znakov '0' in '1'. Ti znaki niso ločeni s presledkom. Če je i-ti znak '1', je $b_i = \text{true}$. Če je i-ti znak '0', je $b_i = \text{false}$.

Izhod

Na izhod izpiši odgovore na T testnih primerov. Vsak odgovor posameznega testnega primera je permutacija p, ki reši problem.

Omejitve

- Naj bo $\sum n$ vsota vseh vrednosti n v eni datoteki.
- $1 \le \sum n \le 100\,000$.
- $1 \le T \le 7000$.
- $n=2^k-1$, za nek $k \in \mathbb{N}$, k>0.
- Če je $S(p) \le 1$ za vse testne primere podnaloge, prejmeš 100% točk za podnalogo.
- V nasprotnem primeru, če je $0 \le S(p) \le \lceil \log_2 n \rceil$ (npr. $1 \le 2^{S(p)} \le n+1$) za vse testne primere podnaloge, prejmeš 50% točk za podnalogo.

#	Točke	Omejitve
1	3	$b_i = { t true}.$
2	4	$b_i = { t false}.$
3	16	$1 \le n \le 7.$
4	25	$1 \le n \le 15.$
5	22	$n=2^{16}-1$ in je vsak b_i izbran enakomerno in neodvisno $\{\mathtt{true},\mathtt{false}\}.$
6	30	Ni dodatnih omejitev.

Primeri

Vhod	Izhod
4	1 2 3
3	1 2 3 4 5 6 7
111	3 2 1
7	7 6 5 4 3 2 1
1111111	
3	
000	
7	
00000000	
2	3 2 1
3	7 3 1 5 2 4 6
010	
7	
0010110	

Pojasnila

1. primer V prvih dveh testnih primerih imamo S(p) = 0.

V tretjem testnem primeru imamo S(p) = 1, ker binary_search(n, p, 2) vrne true, čeprav $b_2 = false$. V četrtem testnem primeru imamo S(p) = 1, ker binary_search(n, p, 4) vrne true, čeprav $b_4 = false$.

2. primer V obeh primerih S(p) = 0.