1) The stator voltage expressions of a 3-phase wound-rotor synchronous machine with $L_q = L_d$ can be expressed in the rotor frame of reference as:

$$v_{qs}^{r} = r_{s}i_{qs}^{r} + \omega_{r}\lambda_{ds}^{r} + p\lambda_{qs}^{r}$$

$$v_{ds}^{r} = r_{s}i_{ds}^{r} - \omega_{r}\lambda_{qs}^{r} + p\lambda_{ds}^{r}$$

$$v_{fd}^{r} = r_{fd}i_{fd}^{r} + p\lambda_{fd}^{r}$$

$$v_{kq}^{r} = r_{kq}i_{kq}^{r} + p\lambda_{kq}^{r}$$

$$v_{kd}^{r} = r_{kd}i_{kd}^{r} + p\lambda_{kd}^{r}$$

a) Using these, along with the necessary relationships between flux linkages and currents, derive the steady-state expression

$$\tilde{V}_{as} = (r_s + j\omega_e L_q)\tilde{I}_{as} + \tilde{E}_{as}$$

Show all steps in the derivation. Make sure to show the relationship between E_{as} , the field winding current, the angle δ , and the frequency of stator excitation. (21 $\frac{1}{3}$ pts)

b) Answer the following True/False Explain your reasoning for full credit. (12 pts)

a) If
$$i'_{kq} = 0$$
, then $\lambda'_{kq} = 0$.

b) If
$$\delta = 0$$
, $I_{qs}^r = I_{ds}^r = 0$.

c) If
$$i'_{kq} = 0$$
, $i'_{kd} = 0$.

2) The flux-linkage-versus-current relationship of a 3-phase, 4-pole permanent-magnet sychronous machine in the rotor frame of reference has the form:

$$\lambda_{qs}^{r} = L_{q} i_{qs}^{r}$$

$$\lambda^{r} = L_{q} i_{qs}^{r} - \lambda$$

 $\lambda_{ds}^{r} = L_{d}i_{ds}^{r} - \lambda_{m}$

Draw a cross sectional view of a machine that could be modeled using these relationships. Show the phase-a winding, the rotor, the magnets, the q- and d-axis, and a rotor position angle that indicates the relative position between the stator and rotor. Express T_e in terms of I_{qs}^r and I_{ds}^r for this

machine. (33
$$\frac{1}{3}$$
 pts)

 $W_{rite\ in\ E_{Xam}\ Book\ Only}$

- 3) A 6-pole induction machine is operated as a motor with balanced excitation and $\lambda_{dr}^{'s} = 0.1\cos(377t)$, $\lambda_{dr}^{'r} = 0.1\cos(10t)$.
- a) Fill in the following table. (20 pts)

Table 1:

	actual (abc) variables	arbitrary reference frame	'2' reference frame - ω = 2 rad/s	synchronous reference frame $\omega = \omega_e$
frequency of stator currents				
frequency of rotor cur- rents				

b) Determine the speed and direction of the stator and rotor MMF relative to a person a) on the stator and b) on the rotor. (13 $\frac{1}{3}$ pts)

Write in Exam Book Only