Zadanie egzaminacyjne №3

Yelyzaveta Ilman 341387

May 13, 2024

1 Założenia

- 1. **Gestość** $f(x) = \lambda \exp(-\lambda x)$, gdzie x > 0.
- 2. Lambda $\lambda = 16$

2 Rozwiazanie

1. Dowód MGF rozkładu wykładniczego $M_X(t) = \frac{\lambda}{\lambda - t}$, gdzie $t < \lambda$ Załóżmy, że $X \sim \text{Exp}(\lambda)$. Wtedy funkcja gestości prawdopodobieństwa jest dana przez:

$$f_X(x) = \lambda e^{-\lambda x}$$

Wtedy:

$$M_X(t) = \int_0^\infty e^{tx} \cdot \lambda e^{-\lambda x} dx = \int_0^\infty \lambda e^{x(t-\lambda)} dx$$
$$= \frac{\lambda}{t-\lambda} e^{x(t-\lambda)} \Big|_{x=0}^{x=\infty} = \lim_{x \to \infty} \frac{\lambda}{t-\lambda} e^{x(t-\lambda)} - \frac{\lambda}{t-\lambda}$$

Zauważmy, że t nie może być równe λ , w przeciwnym razie $M_X(t)$ jest niezdefiniowane. Ponadto, jeśli $t>\lambda$, to $\lim_{x\to\infty}e^{x(t-\lambda)}=\infty$. Musimy wiec ograniczyć dziedzine $M_X(t)$ do $t<\lambda$. Nastepnie możemy uprościć:

$$M_X(t) = \frac{\lambda}{t - \lambda} \left(\lim_{x \to \infty} e^{x(t - \lambda)} - 1 \right) = \frac{\lambda}{t - \lambda} (0 - 1) = \frac{\lambda}{\lambda - t}$$

- 2. Oszacowania dla $P(X \ge \lambda a)$
 - (a) Markov

$$P(X \ge \lambda a) \le \frac{1}{\lambda^2 a}$$

Przekształcenia:

$$P(X \ge \lambda a) \le \frac{E(X)}{\lambda a} = \frac{1}{\lambda} \cdot \frac{1}{\lambda a} = \frac{1}{\lambda^2 a}$$

(b) Chebyszev

$$P(X \ge \lambda a) \le \frac{1}{(a\lambda^2 - 1)^2}$$

Przekształcenia:

$$P(X - \frac{1}{\lambda} \ge \lambda a - \frac{1}{\lambda}) = P\left(|X - \frac{1}{\lambda}| \ge \lambda a - \frac{1}{\lambda}\right)$$
$$\le \frac{V(X)}{(\lambda a - 1/\lambda)^2} = \frac{1}{(a\lambda^2 - 1)^2}$$

(c) Chernoff

$$P(X \ge \lambda a) \le \frac{a\lambda^2}{e^{a\lambda^2 - 1}}$$

Przekształcenia:

$$P(X \ge a\lambda) \le \frac{M_X(t)}{\exp(ta\lambda)} = \frac{\lambda}{\lambda - t} \cdot \frac{1}{\exp(ta\lambda)}$$

$$= \frac{\lambda}{\exp(ta\lambda) \cdot (\lambda - t)}$$

$$f'(t) = \left(\frac{(a\lambda^2 t - a\lambda^3 + \lambda) \cdot \exp(-a\lambda t)}{t^2 - 2\lambda t + \lambda^2}\right)$$

$$a\lambda^2 t - a\lambda^3 + \lambda = 0$$

$$a\lambda^2 t = a\lambda^3 - \lambda$$

$$t = \frac{a\lambda^3 - \lambda}{a\lambda^2}$$

$$t = \lambda - \frac{1}{a\lambda}$$

Podstawiamy:

$$\frac{\lambda}{\exp(ta\lambda) \cdot (\lambda - t)} = \frac{\lambda}{\exp(a\lambda(\lambda - \frac{1}{a\lambda})) \cdot (\lambda - \lambda + \frac{1}{a\lambda})}$$
$$= \frac{\lambda \cdot a\lambda}{\exp(a\lambda^2 - 1)} = \frac{a\lambda^2}{\exp(a\lambda^2 - 1)}$$

3. Tabela z wartościami dokładnymi i oszacowaniami

a	Wartość dokładna	Markov	(Chebyszev		Chernoff	
3	2.9×10^{-334}	$\frac{1}{768}$		$\frac{1}{588289}$	(3.05	$\times 10^{-331}$
4	1.9×10^{-445}	$\frac{1}{1024}$		$\frac{1}{1046529}$!	5.3	$\times 10^{-442}$
6	8.4×10^{-668}	$\frac{1}{1536}$		$\frac{1}{2356225}$;	3.5	$\times 10^{-664}$
10	1.6×10^{-1112}	$\frac{1}{2560}$		$\frac{1}{6548481}$	1	1.1	$\times 10^{-1108}$