Applied Statistical Methods II

Repeated Measures Model Part II

Single-factor repeated measures model: example

- We have measured the expression of a gene from four different regions of the brain.
- We want to study the regional factor: whether the expressions in different regions are different.
- Let y_{ij} be the expression from subject i, and region j, i = 1, ..., 20 and j = 1, ..., 4.
- We have 4 repeated measures within each subject.

The Model from the Text

- $Y_{ij} = \mu ... + \rho_i + \tau_j + \epsilon_{ij}$
- $\sum_{i} \tau_{i} = 0$
- $\rho_i \sim \text{iid } N(0, \sigma_\rho^2)$
- $\epsilon_{ii} \sim \text{iid } N(0, \sigma^2)$
- ρ_i and ϵ_{ij} are independent.
- $EY_{ij} = \mu ... + \tau_i$
- $Var(Y_{ij}) = \sigma_o^2 + \sigma^2$
- $Cov(Y_{ij}, Y_{ij'}) = \sigma_{\rho}^2$ for $j \neq j'$
- $Cov(Y_{ij}, Y_{i'j'}) = 0$ for $i \neq i'$
- The correlation coefficient for two observations from the same subject (ICC): $\frac{\sigma_{\rho}^2}{\sigma_{\gamma}^2 + \sigma^2}$

- $Y_{ij} = \mu ... + \rho_i + \tau_j + \epsilon_{ij}$
- $\epsilon_{ij} \sim \text{iid } N(0, \sigma^2)$
- $\rho_i \sim \text{iid } N(0, \sigma_{\rho}^2)$. Why are we assuming $\sigma_{\rho}^2 \geq 0$?
- If we stack Y_{ij} 's into a vector Y, $Var(Y) = \sigma_{\rho}^2 B + \sigma^2 I_n$. $B \in \mathbb{R}^{n \times n}$ is a **partition matrix**. It partitions samples by individuals:

$$B_{rs} = \begin{cases} 1 & r, s \text{ come from same individual} \\ 0 & \text{otherwise} \end{cases}$$

- Assuming Y_{ij} 's are jointly normal, can you think of a rotation matrix $U \in \mathbb{R}^{n \times n}$ such that the entries of $U^T Y$ are independent? What will the variance of the entries be?
- If λ_{\max} is the largest eigenvalue of B, we MUST have $\operatorname{Corr}\left(Y_{ij}, Y_{ij'}\right) = \frac{\sigma_{\rho}^2}{\sigma_{\gamma}^2 + \sigma^2} \geq \frac{-1}{\lambda_{\max} 1}$.

- $\bullet Y_{ij} = \mu_{\cdot \cdot} + \rho_i + \tau_j + \epsilon_{ij}$
- $\epsilon_{ij} \sim \text{iid } N(0, \sigma^2)$
- $\rho_i \sim \text{iid } N(0, \sigma_{\rho}^2)$. Why are we assuming $\sigma_{\rho}^2 \geq 0$?
- If we stack Y_{ij} 's into a vector Y, $Var(Y) = \sigma_{\rho}^2 B + \sigma^2 I_n$. $B \in \mathbb{R}^{n \times n}$ is a **partition matrix**. It partitions samples by individuals:

$$B_{rs} = \begin{cases} 1 & r, s \text{ come from same individual} \\ 0 & \text{otherwise} \end{cases}$$

- Assuming Y_{ij} 's are jointly normal, can you think of a rotation matrix $U \in \mathbb{R}^{n \times n}$ such that the entries of $U^T Y$ are independent? What will the variance of the entries be?
- If λ_{\max} is the largest eigenvalue of B, we MUST have $\operatorname{Corr}\left(Y_{ij}, Y_{ij'}\right) = \frac{\sigma_{\rho}^2}{\sigma_{+}^2 + \sigma^2} \geq \frac{-1}{\lambda_{\max} 1}$.

- $\bullet Y_{ij} = \mu ... + \rho_i + \tau_j + \epsilon_{ij}$
- $\epsilon_{ij} \sim \text{iid } N(0, \sigma^2)$
- $\rho_i \sim \text{iid } N(0, \sigma_\rho^2)$. Why are we assuming $\sigma_\rho^2 \geq 0$?
- If we stack Y_{ij} 's into a vector Y, $Var(Y) = \sigma_{\rho}^2 B + \sigma^2 I_n$. $B \in \mathbb{R}^{n \times n}$ is a **partition matrix**. It partitions samples by individuals:

$$B_{rs} = \begin{cases} 1 & r, s \text{ come from same individual} \\ 0 & \text{otherwise} \end{cases}$$

- Assuming Y_{ij} 's are jointly normal, can you think of a rotation matrix $U \in \mathbb{R}^{n \times n}$ such that the entries of $U^T Y$ are independent? What will the variance of the entries be?
- If λ_{\max} is the largest eigenvalue of B, we MUST have $\operatorname{Corr}\left(Y_{ij}, Y_{ij'}\right) = \frac{\sigma_{\rho}^2}{\sigma_{\gamma}^2 + \sigma^2} \geq \frac{-1}{\lambda_{\max} 1}$.

- $\bullet Y_{ij} = \mu ... + \rho_i + \tau_j + \epsilon_{ij}$
- $\epsilon_{ij} \sim \text{iid } N(0, \sigma^2)$
- $\rho_i \sim \text{iid } N(0, \sigma_\rho^2)$. Why are we assuming $\sigma_\rho^2 \geq 0$?
- If we stack Y_{ij}'s into a vector Y, Var (Y) = σ²_ρB + σ²I_n.
 B ∈ ℝ^{n×n} is a **partition matrix**. It partitions samples by individuals:

$$B_{rs} = \begin{cases} 1 & r, s \text{ come from same individual} \\ 0 & \text{otherwise} \end{cases}$$

- Assuming Y_{ij} 's are jointly normal, can you think of a rotation matrix $U \in \mathbb{R}^{n \times n}$ such that the entries of $U^T Y$ are independent? What will the variance of the entries be?
- If λ_{\max} is the largest eigenvalue of B, we MUST have $\operatorname{Corr}\left(Y_{ij}, Y_{ij'}\right) = \frac{\sigma_{\rho}^2}{\sigma_{\sigma}^2 + \sigma^2} \geq \frac{-1}{\lambda_{\max} 1}$.

Sum of squares in mixed effects model

- Assume factor $A(\rho)$ is random and factor $B(\tau)$ is fixed
- SS terms are the same as defined in the additive two-way ANOVA, but we drop the index k as n = 1, i.e. each pair (i, j) is observed once, for i = 1, ..., a and j = 1, ..., b.
- SSTO = SSA + SSB + SSE
 - $SSTO = \sum_{ij} (Y_{ij} \overline{Y_{..}})^2$ has $a \times b 1$ df.
 - $SSA = b \sum_{i} (Y_{i} \overline{Y}_{..})^2$ has a 1 df.
 - $SSB = a \sum_{j} (Y_{\cdot j} \overline{Y_{\cdot \cdot}})^2$ has b 1 df.
 - $SSE = \sum_{ij} \left(Y_{ij} \overline{Y_{i.}} \overline{Y_{.j}} + \overline{Y_{..}} \right)^2$ has $a \times b a b + 1$ df.

MS and expectation

In a fixed two-way ANOVA

•
$$E[MSA] = \sigma^2 + b \frac{\sum (\mu_i - \mu_i)^2}{a - 1}$$

•
$$E[MSB] = \sigma^2 + a \frac{\sum (\mu_{.j} - \mu_{..})^2}{b-1}$$

•
$$E[MSE] = \sigma^2$$

In a mixed effects model

•
$$E[MSA] = \sigma^2 + b\sigma_A^2$$

•
$$E[MSB] = \sigma^2 + a \frac{\sum_{j} \tau_{j}^2}{b-1}$$

•
$$E[MSE] = \sigma^2$$

• If the SS term does not involve fixed effect terms, we usually have $SS \sim \frac{E(SS)}{df} \chi_{df}^2$, otherwise it will involve a non-central parameter from the fixed effects.

- Test of the fixed effect B
 - $H_0: \tau_j = 0$ for all j
 - $MSB/MSE \sim F_{b-1,a(b-1)-b+1}$ under H_0
 - What do you think will happen if we ignore correlation between individuals?
 - If we ignore correlations between individuals:

$$F_* = \frac{E(MSB)}{E(MSE)} \underbrace{=}_{H_0 \text{ true; HW}} \frac{\sigma^2 + a\sigma_A^2}{\sigma^2 + \frac{a(b-1)}{ab-1}\sigma_A^2}$$

$$F_* = 1$$
 if $\sigma_A^2 = 0$ (no correlation) or $a = 1$ (1 individual).

- Otherwise, $F_* > 1 \Rightarrow$ anti-conservative inference!!
- Ignoring correlation is one of the worst, and most common, mistakes in data analysis!
- Test of the random effect A:
 - $H_0: \sigma_{\Delta}^2 = 0$
 - $MSA/MSE \sim F_{a-1,ab-a-b+1}$ under H_0

- Test of the fixed effect B
 - $H_0: \tau_j = 0$ for all j
 - $MSB/MSE \sim F_{b-1,a(b-1)-b+1}$ under H_0
 - What do you think will happen if we ignore correlation between individuals?
 - If we ignore correlations between individuals:

$$F_* = \frac{E(MSB)}{E(MSE)} = \frac{\sigma^2 + a\sigma_A^2}{\sigma^2 + \frac{a(b-1)}{ab-1}\sigma_A^2}$$

$$F_* = 1$$
 if $\sigma_A^2 = 0$ (no correlation) or $a = 1$ (1 individual).

- Otherwise, *F*_{*} > 1 ⇒ anti-conservative inference!!
- Ignoring correlation is one of the worst, and most common, mistakes in data analysis!
- Test of the random effect A:
 - $H_0: \sigma_{\Delta}^2 = 0$
 - $MSA/MSE \sim F_{a-1,ab-a-b+1}$ under H_0

- Test of the fixed effect B
 - $H_0: \tau_j = 0$ for all j
 - $MSB/MSE \sim F_{b-1,a(b-1)-b+1}$ under H_0
 - What do you think will happen if we ignore correlation between individuals?
 - If we ignore correlations between individuals:

$$F_* = rac{E(MSB)}{E(MSE)} \underbrace{=}_{H_0 ext{ true; HW}} rac{\sigma^2 + a\sigma_A^2}{\sigma^2 + rac{a(b-1)}{ab-1}\sigma_A^2}$$

$$F_* = 1$$
 if $\sigma_A^2 = 0$ (no correlation) or $a = 1$ (1 individual).

- Otherwise, F_{*} > 1 ⇒ anti-conservative inference!!
- Ignoring correlation is one of the worst, and most common, mistakes in data analysis!
- Test of the random effect A:
 - $H_0: \sigma_A^2 = 0$
 - $MSA/MSE \sim F_{a-1,ab-a-b+1}$ under H_0

- Test of the fixed effect B
 - $H_0: \tau_j = 0$ for all j
 - $MSB/MSE \sim F_{b-1,a(b-1)-b+1}$ under H_0
 - What do you think will happen if we ignore correlation between individuals?
 - If we ignore correlations between individuals:

$$F_* = rac{E(MSB)}{E(MSE)} \underbrace{=}_{H_0 ext{ true; HW}} rac{\sigma^2 + a\sigma_A^2}{\sigma^2 + rac{a(b-1)}{ab-1}\sigma_A^2}$$

$$F_* = 1$$
 if $\sigma_A^2 = 0$ (no correlation) or $a = 1$ (1 individual).

- Otherwise, $F_* > 1 \Rightarrow$ anti-conservative inference!!
- Ignoring correlation is one of the worst, and most common, mistakes in data analysis!
- Test of the random effect A:
 - $H_0: \sigma_{\Delta}^2 = 0$
 - $MSA/MSE \sim F_{a-1,ab-a-b+1}$ under H_0

Two-factor repeated measures model

- We have measured the expression of a gene from four different regions of the brain.
- We have two groups of subjects: patients (20) and control (20)
- We want to study
 - the regional factor: whether the expressions in different regions are different.
 - the group factor: whether the expressions in two groups are different.
 - the interaction: whether the regional effect is different in two groups.
- Let y_{ijk} be the expression from subject i, group j and region k.
- Note that subject i is nested in group j.
- Can we treat both subject and group as fixed effects and perform inference on group?

The Model from the Text

- $Y_{ijk} = \mu... + \rho_{i(j)} + \alpha_j + \beta_k + (\alpha\beta)_{jk} + \epsilon_{ijk}$, i = 1, ..., s, j = 1, ..., a, and k = 1, ..., b.
- $\sum_{j} \alpha_{j} = 0$, $\sum_{k} \beta_{k} = 0$, $\sum_{j} ((\alpha \beta)_{jk}) = \sum_{k} ((\alpha \beta)_{jk}) = 0$
- $\rho_{i(j)} \sim \text{iid } N(0, \sigma_{\rho}^2), \, \epsilon_{ij} \sim \text{iid } N(0, \sigma^2), \, \text{and } \rho_i \, \text{and } \epsilon_{ij} \, \text{are independent. (notation: } i(j) := \text{individual } i \, \text{from group } j)$
- $EY_{ijk} = \mu ... + \alpha_j + \beta_k + (\alpha \beta)_{jk}$
- $Var(Y_{ijk}) = \sigma_{\rho}^2 + \sigma^2$
- $Cov(Y_{ijk}, Y_{ijk'}) = \sigma_{\rho}^2$ for $k \neq k'$
- $Cov(Y_{ijk}, Y_{i'j'k'}) = 0$ for $i \neq i'$
- The correlation coefficient for two observations from the same subject (ICC): $\frac{\sigma_{\rho}^2}{\sigma_{\rho}^2 + \sigma^2}$
- Again stacking Y_{iik}'s into Y given us

$$E(Y) = X\gamma$$
, $Var(Y) = \sigma_{\rho}^2 B + \sigma^2 I_n$

 $X \in \mathbb{R}^{n \times 5}$ the design matrix for fixed effects, γ contains fixed effects, B partitions samples by individuals.

The Model from the Text

- $Y_{ijk} = \mu_{...} + \rho_{i(j)} + \alpha_j + \beta_k + (\alpha\beta)_{jk} + \epsilon_{ijk}, i = 1, ..., s,$ j = 1, ..., a, and k = 1, ..., b.
- $\sum_{j} \alpha_{j} = 0$, $\sum_{k} \beta_{k} = 0$, $\sum_{j} ((\alpha \beta)_{jk}) = \sum_{k} ((\alpha \beta)_{jk}) = 0$
- $\rho_{i(j)} \sim \text{iid } N(0, \sigma_{\rho}^2), \, \epsilon_{ij} \sim \text{iid } N(0, \sigma^2), \, \text{and } \rho_i \, \text{and } \epsilon_{ij} \, \text{are independent. (notation: } i(j) := \text{individual } i \, \text{from group } j)$
- $EY_{ijk} = \mu ... + \alpha_j + \beta_k + (\alpha \beta)_{jk}$
- $Var(Y_{ijk}) = \sigma_{\rho}^2 + \sigma^2$
- $Cov(Y_{ijk}, Y_{ijk'}) = \sigma_{\rho}^2$ for $k \neq k'$
- $Cov(Y_{ijk}, Y_{i'j'k'}) = 0$ for $i \neq i'$
- The correlation coefficient for two observations from the same subject (ICC): $\frac{\sigma_{\rho}^2}{\sigma_{\rho}^2 + \sigma^2}$
- Again stacking Y_{iik}'s into Y given us

$$E(Y) = X\gamma$$
, $Var(Y) = \sigma_{\rho}^{2}B + \sigma^{2}I_{n}$

 $X \in \mathbb{R}^{n \times 5}$ the design matrix for fixed effects, γ contains fixed effects, B partitions samples by individuals.

SS and MS terms

- Table 27.5 and Table 27.6
- Note that the subject effect is nested in the group effect.
- Test factor A (group): $\frac{MSA}{MSS(A)} \sim F_{a-1,a(s-1)}$.
- Test factor B (region): $\frac{MSB}{MSB.S(A)} \sim F_{b-1,a(s-1)(b-1)}$.
- Test factor AB (interaction): $\frac{MSAB}{MSB.S(A)} \sim F_{(a-1)(b-1),a(s-1)(b-1)}$.

Summary

- There are many different settings of mixed effects models, we talked about two popular mixed effect ANOVA models under the setting of repeated measures.
- For other different designs, SS and MS terms can be defined analogously.
- E(MS) can be computed and F-tests can be derived.
- For unbalanced designs (or missing values), we will use MLE (rMLE) to estimate.
- MLE framework also works for balanced design, and it offers a unified approach regardless of the complex design.
- In practice, we might include other continuous covariates, and we might have linear fixed effects and random effects, which is beyond ANOVA.

A simple longitudinal data example

- We have measured the expression of a gene over four time points.
- We want to study the time effect.
- Let y_{ij} be the expression from subject i, and time j, i = 1, ..., 20 and j = 1, ..., 4.
- We have 4 repeated measures within each subject.

Linear mixed effect model

i is indexes individual, j indexes time.

- $Y_{ij} = \mu_{\cdot \cdot \cdot} + \rho_i + \beta T_j + \epsilon_{ij}$
- $\rho_i \sim \text{iid } N(0, \sigma_\rho^2)$
- $\epsilon_{ij} \sim \text{iid } N(0, \sigma^2)$
- ρ_i and ϵ_{ij} are independent.
- Do you like this model?
- $EY_{ij} = \mu ... + \beta T_j$
- $Var(Y_{ij}) = \sigma_\rho^2 + \sigma^2$
- $Cov(Y_{ij}, Y_{ij'}) = \sigma_{\rho}^2$
- $Cov(Y_{ij}, Y_{i'j'}) = 0.$
- Stacking Y_{ij} 's: $E(Y) = X\gamma$, $Var(Y) = \sigma_{\rho}^2 B + \sigma^2 I_n$. $\gamma = (1, \beta)^T$.
- This can be fit by likelihood methods. The analysis of longitudinal data is a big topic. Other courses address this in detail.

Linear mixed effect model

i is indexes individual, *j* indexes time.

- $Y_{ij} = \mu_{\cdot \cdot \cdot} + \rho_i + \beta T_j + \epsilon_{ij}$
- $\rho_i \sim \text{iid } N(0, \sigma_\rho^2)$
- $\epsilon_{ij} \sim \text{iid } N(0, \sigma^2)$
- ρ_i and ϵ_{ij} are independent.
- Do you like this model?
- $EY_{ij} = \mu ... + \beta T_j$
- $Var(Y_{ij}) = \sigma_{\rho}^2 + \sigma^2$
- $Cov(Y_{ij}, Y_{ij'}) = \sigma_{\rho}^2$
- $Cov(Y_{ij}, Y_{i'j'}) = 0.$
- Stacking Y_{ij} 's: $E(Y) = X\gamma$, $Var(Y) = \sigma_{\rho}^2 B + \sigma^2 I_n$. $\gamma = (1, \beta)^T$.
- This can be fit by likelihood methods. The analysis of longitudinal data is a big topic. Other courses address this in detail.

Fitting general random effect models

Assume $Y \in \mathbb{R}^n$ and let $X \in \mathbb{R}^{n \times p}$ be a design matrix. Suppose

$$E(Y) = X\beta$$
, $Var(Y) = \sum_{s=1}^{b} v_s B_s$

- In previous examples:
 - b = 2, $B_1 = I_n$ and $B_2 = B$, where B partitioned samples by individuals.
 - $v_1, v_2 \ge 0, ICC = \frac{v_2}{v_1 + v_2}.$
- Above model is quite general and is applicable to many data types. (We will consider other models (e.g. Gaussian processes) later on).
- For general X, previous work with ANOVA is useless.
- Question: how do we fit this??

