

TECHNIQUES

Versatile method to measure locomotion in adult Drosophila¹

Taylor Barwell, Sehaj Raina, and Laurent Seroude

Abstract: Many studies require the ability to quantify locomotor behavior over time. The list of tracking softwares and their capabilities are constantly growing. At the 2019 CanFly Conference, we presented preliminary results from an investigation of the effects of expressing polyglutamine repeats in fly muscles on longevity, locomotion, and protein aggregation. Numerous requests have been received regarding our protocol to measure locomotion and how to use the FlyTracker MatLab software. This report describes a versatile locomotion measuring device and custom MatLab scripts for the extraction, analysis, and compilation of FlyTracker data in a format compatible with spreadsheet softwares. The measurement and analysis of multiple genotypes of both sexes across age demonstrates that this method yields reproducible results that confirm that normal aging is associated with a progressive decline in locomotion as indicated by increased immobility and reduced velocity.

Key words: behavior, FlyTracker, MatLab, aging, Drosophila melanogaster.

Résumé: Plusieurs études nécessitent la capacité de quantifier le comportement locomoteur dans le temps. La liste des logiciels de suivi des mouvements et leurs capacités sont en constante évolution. Lors de la conférence CanFly 2019, les auteurs ont présenté les résultats préliminaires d'une étude sur les effets de l'expression de répétitions polyglutaminiques dans les muscles des mouches sur leur longévité, leur locomotion et l'agrégation des protéines. De nombreuses demandes ont été reçues au sujet du protocole employé pour mesurer la locomotion et sur l'emploi du logiciel MatLab FlyTracker. Cet article décrit un appareil polyvalent de mesure de la locomotion ainsi que des scripts MatLab écrits sur mesure et conçus pour extraire, analyser et compiler les données de FlyTracker en une forme qui soit compatible avec des tableurs. La mesure et l'analyse de multiples génotypes des deux sexes au cours de leur vie démontre que cette méthode produit des résultats reproductibles et confirme que le vieillissement normal est associé à un déclin progressif de la locomotion, tel qu'indiqué par une immobilité accrue et une vitesse réduite. [Traduit par la Rédaction]

Mots-clés: comportement, FlyTracker, MatLab, vieillissement, Drosophila melanogaster.

Introduction

Locomotion is a fundamental behavioral trait involved directly or indirectly with almost all simple or complex behavior activities. It is also integral to studying a wide span of different biological phenomenon such as neurological or muscular pathologies, age associated changes, and physiological responses. Measuring locomotion is challenging because of the many parameters that need to be controlled (Martin 2003). Additionally, the obtainment of large data sets requires an automated system for tracking, data extraction, and analysis.

Drosophila have proven to be a useful model to study some of the most complex behavioral phenotypes including learning, memory (Pitman et al. 2009; Tully 1996), sleep, circadian rhythms (Dubowy and Sehgal 2017), courting, mating (Greenspan and Ferveur 2000),

and response to drugs, addiction (Kaun et al. 2012). With advances in technology numerous experimental setups, manual and automated tracking have been developed to describe and quantify fly locomotion (Martin 2003).

Automated tracking relies on softwares that use a digital subtraction method to remove background to distinguish the fly from optical or background artifacts (Ardekani et al. 2013; Dankert et al. 2009; Donelson et al. 2012; Noldus et al. 2002; Ramazani et al. 2007; Valente et al. 2007). Softwares can be used to track several flies at once in two or three dimensions, quantify specific fly behaviors (grooming, fighting, mating), as well as monitor leg coordination of single animals (Ardekani et al. 2013; Branson et al. 2009; Chan et al. 2012; Duistermars et al. 2018; Mendes et al. 2013; Schretter et al. 2018; Straw and Dickinson 2009; Valente et al. 2007; Wosnitza et al. 2013).

Received 24 March 2020. Accepted 5 June 2020.

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

T. Barwell, S. Raina, and L. Seroude. Department of Biology, Queen's University, BioSciences Complex, Kingston, ON K7L 3N6, Canada. Corresponding author: Laurent Seroude (email: seroudel@queensu.ca).

¹This article is part of the special issue entitled "CanFly XV 2019". A collection of invited papers from the Canadian Drosophila Research Conference, Toronto, Ontario, 9–13 June 2019.

140 Genome Vol. 64, 2021

Fig. 1. (A) Dimensions of a 5 chamber strip used in the arena. (B) The base with (right) and without strips (left). (C) Experimental set up. The base with the loaded chambers is positioned atop a white piece of paper taped to a light box to diffuse the light. Recordings were completed with the lights in the room off and the light box on to maximize contrast.

We chose the widely used, multi-platform FlyTracker MatLab software (Duistermars et al. 2018; Eyjolfsdottir et al. 2014; Schretter et al. 2018) that does not require any expensive equipment. Essentially anyone with a camera and a computer can run the software and perform these experiments. FlyTracker detects very accurately multiple flies at once in a video and is able to track the position, orientation, and angle of the wings and legs, as well as distance between the fly and the wall of the chamber housing the fly. At the 2019 CanFly Conference, we presented preliminary results from an investigation of the effects of expressing polyglutamine repeats in fly muscles on longevity, locomotion, and protein aggregation. We received a lot of inquiries about our protocol to measure locomotion and how to use FlyTracker. Here, we report a locomotion measuring device that can accommodate 5-50 flies and custom MatLab scripts for the extraction, analysis, and compilation of FlyTracker data in a format compatible with spreadsheet softwares. Multiple genotypes of both sexes and two experimental replicates across age demonstrate the reproducibility achieved.

Materials and methods

Construction of the arena

A drill press was used to drill 2.5 cm circles into thin (3 mm) clear acrylic sheets in rows of 5. The rows were cut into strips (Fig. 1A). A clear acrylic sheet the same dimensions as the strip was adhered to the back of the strip with liquid cyanoacrylate adhesive. By constructing chambers in strips the arena can be adapted to accommodate experiments requiring 5 chambers and up to 50. A base was made from another acrylic sheet, large enough to fit all 10 strips (Fig. 1B). A small hole was drilled near the edge of the base to load the flies. Three small pieces of acrylic sheet were cut and adhered to the base to use as a guide for positioning the strips consistently. Legs were made for the base out of cuvettes.

Fly husbandry

Crosses were set up in bottles to obtain desired genotypes. Four different wild-type genotypes were obtained by crossing male w¹¹¹⁸ with UAS-Httex1-Q72-eGFP and UAS-Httex1-Q25-eGFP (Zhang et al. 2010) and female w¹¹¹⁸

Barwell et al.

with DJ694 (Seroude et al. 2002) and MHC-Geneswitch (Osterwalder et al. 2001). After allowing the parents to mate for 2 days, they were then transferred to a second set of bottles to generate a replicate. The second set of bottles was emptied after 2 days. Staged flies (0–2 days) were collected under nitrogen anesthesia. A minimum of four sample vials for each sex of each genotype containing a minimum of 25 flies were collected. This was repeated for the replicate crosses. Flies were allowed to recover for at least 1 day before being recorded. Flies were maintained on standard fly food (0.01% molasses, 8.2% cornmeal, 3.4% yeast, 0.94% agar, 0.18% benzoic acid, 0.66% propionic acid) at 23–26 °C for the duration of the experiment.

Experimental setup

A chamber strip was positioned such that the first chamber was circle-side down over the top of the loading hole of the base. Flies were aspirated from the vial. Once one fly was loaded into the chamber through the loading hole the arena strip was slid such that the second chamber was over top of the loading hole, effectively preventing the fly from escaping. Once all five flies in a strip were loaded, the strip was slid into place using the guides on the base.

The process was repeated until all the chambers were loaded. The base was then placed atop of a light box; the legs provide an air insulation layer that prevents heating from the light bulbs. A piece of white paper was placed on the light box to diffuse the light. An iPod touch® was clamped in a fixed position 40 cm above the light box to capture a single video file encompassing all 50 chambers. Video capture was performed at 23–26 °C with the light table on and the lights in the room off (Fig. 1C).

Flies were acclimatized for 1 min before beginning recording (3 min at 30 frames per second). After recording, flies were aspirated from the arenas out through the hole and returned to their vials. In a given video each genotype was measured in triplicate. Flies were aspirated from one of the four sample vials that were collected, alternating the vial at each recorded time point. The positions of the genotypes in the arena were rearranged each day a recording was done to eliminate bias coming from any specific chamber. Since our genotypes were measured in triplicate, the genotypes shifted by three for each time point. Therefore, the number of possible arena configurations is equal to the number of genotypes tested. Table S3² shows an example of the various arena configurations for a 16-genotype experiment.

Software and file requirements

FlyTracker (Eyjolfsdottir et al. 2014) was downloaded from http://www.vision.caltech.edu/Tools/FlyTracker/download. html. The data extraction scripts (File S1²) were down-

loaded and each script (data extraction script and data compilation script) was copied and pasted into MatLab. The data extraction script was annotated (in green text, File S1²) and includes instructions (in orange text, File S1²) to replace parameters (in red text, File S1²) to accommodate any experimental setup. The data extraction script generated spreadsheet files (*.xls and *.csv) that, once grouped in a single folder, can be processed by the data compilation script to obtain an *.xls file combining all experimental data for further analysis, statistical processing, and graphing. A custom arena configuration table was created (Table S3²) with the configurations in columns and the chamber numbers in rows. This table was created using spreadsheet software and copied into MatLab.

FlyTracker tracking

FlyTracker requires that the video files are stored in a folder. We organized our video files in folders by date. The path was set in MatLab for FlyTracker. The 'tracker.m' script was run. Specifications for video length, frame rate, and processing options were selected in the FlyTracker interface. In the Calibrator interface, the resolution, number of arenas, number of flies per arena, size and position of arenas, and contrast thresholds for detecting the flies were all selected. Once tracked, all tracking results were verified in the Visualizer interface to ensure accurate tracking. For each video file analyzed, FlyTracker outputs 'feat.mat' and 'track.mat' structure files.

Data analysis

The 'feat.mat' and 'track.mat' files were dragged and dropped into the Workspace in Matlab, and the data extraction script was run to generate spreadsheet files (*.xls and *.csv). The script uses the arena configurations table to assign a genotype according to the chamber number and compiles the distance, the number of frames detecting the presence of the fly, instantaneous velocity, average velocity (calculated from times of fly movement), and percent of time spent immobile (calculated from the number of frames where the fly is immobile). The *.xls files were then moved to a single folder and the data compilation script was used to compile the files into a single *.xls file. Using Microsoft Excel, the values obtained for all three individuals for each of the parameters (distance, velocity, % time immobile) were averaged to give a single time point respectively for each parameter. This was executed for both replicates.

Statistical analysis

Statistical analyses were performed with GraphPad Prism 6 for Mac. Pearson correlation analyses were run between the two replicate cohorts for males and females and all three measured parameters to assess experimental

²Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/gen-2020-0044.

Fig. 2. Locomotion of male UAS-Httex1-Q25-eGFP/+, UAS-Httex1-Q72-eGFP/Y, DJ694/+, and MHC-Geneswitch/+ flies across age (x axis) as measured by percentage of time spent immobile (left), distance traveled (middle), and average velocity during the time of fly movement (right). The blue and orange lines denote each of the independent replicates (each replicate $n \ge 3$). Error bars represent \pm SD.

Fig. 3. Locomotion of female UAS-Httex1-Q25-eGFP/+, UAS-Httex1-Q72-eGFP/X, DJ694/+, and MHC-Geneswitch/+ flies across age (x axis) as measured by percentage of time spent immobile (left), distance traveled (middle), and average velocity during the time of fly movement (right). The blue and orange lines denote each of the independent replicates (each replicate $n \ge 3$). Error bars represent ±SD.

144 Genome Vol. 64, 2021

reproducibility. One-way ANOVA was run, followed by Dunnett's multiple comparison test to assess declines in locomotion with age.

Results and discussion

Our locomotion measuring device was designed to be adaptable to experiments measuring between 1 and 50 flies (Fig. 1). The device was tested with 15 flies (3 strips) and up to 48 flies (10 strips). The resolution of an HD 1080p camera is not sufficient to be able to use more than 10 strips without losing the ability to accurately track every individual fly.

Four wild-type phenotypes with different genetic backgrounds were recorded for 3 min at multiple time points across age (3–63 days) and at the same time of the day to avoid circadian effects. The resulting video files were tracked and analyzed in MatLab using FlyTracker, and a custom script was designed to calculate the percentage of time spent immobile, instantaneous velocity, and total distance moved. The distance allows to distinguish between flies that moved sporadically versus those that moved consistently the whole duration of the recording, which may influence their velocity.

Figure 2 (Table S1²) shows the results of two replicates of four male genotypes: UAS-Httex1-Q25-eGFP/+, UAS-Httex1-Q72-eGFP/Y, DJ694/+, and MHC-Geneswitch/+. The percentage of time spent immobile increased with all genotypes across age in both replicates (blue and orange, Fig. 2). On average, the percentage of time spent immobile remained below 20% for all the genotypes up until day 29 and by late life (50–60 days) the percent immobility reached about 80%. Additionally, the distance traveled and velocity declined with all male genotypes across age in both replicates. On average, the distances traveled begins to decline at day 16 and remains below 10 000 mm into late life. With the velocity, all genotypes started with an average between 10 and 15 mm/s then at day 24–29 declined to below 10 mm/s.

Figure 3 (Table S2²) shows the results of two replicates of four female genotypes: UAS-Httex1-Q25-eGFP/+, UAS-Httex1-Q72-eGFP/X, DJ694/+ and MHC-Geneswitch/+. The percentage of time spent immobile increased with all genotypes across age in both replicates (blue and orange, Fig. 3). The female genotypes showed very similar results to that of the males: on average the percentage of time spent immobile remained below 20% and by day 50–60 it reached about 80%. Also, the distance traveled and velocity showed similar results to that of the males: at day 16 the distance declined below 10 000 mm and the velocity decreased below 10 mm/s at day 24–29.

It has been known for a long time that advancing age is correlated with behavioral declines. Declines in negative geotaxis, flight, and locomotion have previously been reported with a variety of different experimental approaches (Arking and Wells 1990; Gargano et al. 2005; Grotewiel et al. 2005; Jones and Grotewiel 2011; Leffelaar

and Grigliatti 1983; Martinez et al. 2007; Miller et al. 2008). The method used in this study yields reproducible results (Figs. S1 and S2²) that indeed confirm in multiple genotypes and both sexes that normal aging is associated with a progressive decline in locomotion as a result of increased immobility and reduced velocity (Tables S4 and S5²).

References

- Ardekani, R., Biyani, A., Dalton, J.E., Saltz, J.B., Arbeitman, M.N., Tower, J., et al. 2013. Three-dimensional tracking and behaviour monitoring of multiple fruit flies. J. R. Soc. Interface, 10(78): 20120547. doi:10.1098/rsif.2012.0547. PMID:23034355.
- Arking, R., and Wells, R.A. 1990. Genetic alteration of normal aging processes is responsible for extended longevity in *Drosophila*. Dev. Genet. 11(2): 141–148. doi:10.1002/dvg.1020110204. PMID:2116251.
- Branson, K., Robie, A.A., Bender, J., Perona, P., and Dickinson, M.H. 2009. High-throughput ethomics in large groups of *Drosophila*. Nat. Methods, **6**(6): 451–457. doi:10.1038/nmeth.1328. PMID:19412169.
- Chan, K.L., Inan, O., Bhattacharya, S., and Marcu, O. 2012. Estimating the speed of *Drosophila* locomotion using an automated behavior detection and analysis system. Fly (Austin), **6**(3): 205–210. doi:10.4161/fly.20987. PMID:22878427.
- Dankert, H., Wang, L., Hoopfer, E.D., Anderson, D.J., and Perona, P. 2009. Automated monitoring and analysis of social behavior in *Drosophila*. Nat. Methods, **6**(4): 297–303. doi:10. 1038/nmeth.1310. PMID:19270697.
- Donelson, N.C., Kim, E.Z., Slawson, J.B., Vecsey, C.G., Huber, R., and Griffith, L.C. 2012. High-resolution positional tracking for long-term analysis of *Drosophila* sleep and locomotion using the "tracker" program. PLoS ONE, **7**(5): e37250. doi:10. 1371/journal.pone.0037250. PMID:22615954.
- Dubowy, C., and Sehgal, A. 2017. Circadian rhythms and sleep in *Drosophila melanogaster*. Genetics, **205**(4): 1373–1397. doi:10. 1534/genetics.115.185157. PMID:28360128.
- Duistermars, B.J., Pfeiffer, B.D., Hoopfer, E.D., and Anderson, D.J. 2018. A brain module for scalable control of complex, multi-motor threat displays. Neuron, **100**(6): 1474–1490.e1474. doi:10.1016/j.neuron.2018.10.027. PMID:30415997.
- Eyjolfsdottir, E., Branson, S., Burgos-Artizzu, X.P., Hoopfer, E.D., Schor, J., Anderson, D.J., and Perona, P. 2014. Detecting social actions of fruit flies. *In Lecture Notes in Computer Science*. Vol. 8690. *Edited by D. Fleet*, T. Pajdla, B. Schiele, and T. Tuytelaars. Springer, Cham. pp. 772–787. doi:10.1007/978-3-319-10605-2_50.
- Gargano, J.W., Martin, I., Bhandari, P., and Grotewiel, M.S. 2005. Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in *Drosophila*. Exp. Gerontol. 40(5): 386–395. doi:10.1016/j.exger.2005.02.005. PMID: 15919590.
- Greenspan, R.J., and Ferveur, J.F. 2000. Courtship in *Drosophila*. Annu. Rev. Genet. 34: 205–232. doi:10.1146/annurev.genet.34. 1.205. PMID:11092827.
- Grotewiel, M.S., Martin, I., Bhandari, P., and Cook-Wiens, E. 2005. Functional senescence in *Drosophila melanogaster*. Ageing Res. Rev. 4(3): 372–397. doi:10.1016/j.arr.2005.04.001. PMID: 16024299.
- Jones, M.A., and Grotewiel, M. 2011. Drosophila as a model for age-related impairment in locomotor and other behaviors. Exp. Gerontol. 46(5): 320–325. doi:10.1016/j.exger.2010.08.012. PMID:20800672.
- Kaun, K.R., Devineni, A.V., and Heberlein, U. 2012. *Drosophila melanogaster* as a model to study drug addiction. Hum. Genet. 131(6): 959–975. doi:10.1007/s00439-012-1146-6. PMID:22350798.
- Leffelaar, D., and Grigliatti, T. 1983. Age-dependent behavior

Barwell et al. 145

loss in adult *Drosophila melanogaster*. Dev. Genet. **4**(3): 211–227. doi:10.1002/dvg.1020040307.

- Martin, J.R. 2003. Locomotor activity: a complex behavioural trait to unravel. Behav. Processes, **64**(2): 145–160. doi:10.1016/S0376-6357(03)00132-3. PMID:14556949.
- Martinez, V.G., Javadi, C.S., Ngo, E., Ngo, L., Lagow, R.D., and Zhang, B. 2007. Age-related changes in climbing behavior and neural circuit physiology in *Drosophila*. Dev. Neurobiol. 67(6): 778–791. doi:10.1002/dneu.20388. PMID:17443824.
- Mendes, C.S., Bartos, I., Akay, T., Marka, S., and Mann, R.S. 2013. Quantification of gait parameters in freely walking wild type and sensory deprived *Drosophila melanogaster*. Elife, 2: e00231. doi:10.7554/eLife.00231. PMID:23326642.
- Miller, M.S., Lekkas, P., Braddock, J.M., Farman, G.P., Ballif, B.A., Irving, T.C., et al. 2008. Aging enhances indirect flight muscle fiber performance yet decreases flight ability in *Drosophila*. Biophys. J. **95**(5): 2391–2401. doi:10.1529/biophysj.108.130005. PMID:18515368.
- Noldus, L.P.J.J., Spink, A.J., and Tegelenbosch, R.A.J. 2002. Computerised video tracking, movement analysis and behaviour recognition in insects. Comput. Electron. Agric. **35**(2–3): 201–227. doi:10.1016/S0168-1699(02)00019-4.
- Osterwalder, T., Yoon, K.S., White, B.H., and Keshishian, H. 2001. A conditional tissue-specific transgene expression system using inducible GAL4. Proc. Natl. Acad. Sci. U.S.A. **98**(22): 12596–12601. doi:10.1073/pnas.221303298. PMID:11675495.
- Pitman, J.L., DasGupta, S., Krashes, M.J., Leung, B., Perrat, P.N., and Waddell, S. 2009. There are many ways to train a fly. Fly (Austin), **3**(1): 3–9. doi:10.4161/fly.3.1.7726. PMID:19164943.
- Ramazani, R.B., Krishnan, H.R., Bergeson, S.E., and Atkinson, N.S.

- 2007. Computer automated movement detection for the analysis of behavior. J. Neurosci. Methods, **162**(1–2): 171–179. doi: 10.1016/j.jneumeth.2007.01.005. PMID:17335906.
- Schretter, C.E., Vielmetter, J., Bartos, I., Marka, Z., Marka, S., Argade, S., and Mazmanian, S.K. 2018. A gut microbial factor modulates locomotor behaviour in *Drosophila*. Nature, 563(7731): 402–406. doi:10.1038/s41586-018-0634-9. PMID:30356215.
- Seroude, L., Brummel, T., Kapahi, P., and Benzer, S. 2002. Spatiotemporal analysis of gene expression during aging in *Drosophila melanogaster*. Aging Cell, 1(1): 47–56. doi:10.1046/j. 1474-9728.2002.00007.x. PMID:12882353.
- Straw, A.D., and Dickinson, M.H. 2009. Motmot, an open-source toolkit for realtime video acquisition and analysis. Source Code Biol. Med. 4: 5. doi:10.1186/1751-0473-4-5. PMID:19624853.
- Tully, T. 1996. Discovery of genes involved with learning and memory: an experimental synthesis of Hirschian and Benzerian perspectives. Proc. Natl. Acad. Sci. U.S.A. 93(24): 13460– 13467. doi:10.1073/pnas.93.24.13460. PMID:8942957.
- Valente, D., Golani, I., and Mitra, P.P. 2007. Analysis of the trajectory of *Drosophila melanogaster* in a circular open field arena. PLoS ONE, 2(10): e1083. doi:10.1371/journal.pone. 0001083. PMID:17957265.
- Wosnitza, A., Bockemuhl, T., Dubbert, M., Scholz, H., and Buschges, A. 2013. Inter-leg coordination in the control of walking speed in *Drosophila*. J. Exp. Biol. **216**(Pt. 3): 480–491. doi:10.1242/jeb.078139. PMID:23038731.
- Zhang, S., Binari, R., Zhou, R., and Perrimon, N. 2010. A genome-wide RNA interference screen for modifiers of aggregates formation by mutant Huntingtin in *Drosophila*. Genetics, 184(4): 1165–1179. doi:10.1534/genetics.109.112516. PMID:20100940.

Supplemental Figure 1: Pearson correlation analysis of male cohorts (replicate 1 and 2) for each measured parameter (percent immobility, distance, average velocity during fly movement). Graphs show replicate 1 plotted as a function of replicate 2. r, R², p values are provided in the upper left corner of each graph.

Supplemental Figure 2: Pearson correlation analysis of female cohorts (replicate 1 and 2) for each measured parameter (percent immobility, distance, average velocity during fly movement). Graphs show replicate 1 plotted as a function of replicate 2. r, R², p values are provided in the upper left corner of each graph.

Supplemental Table 1: Raw locomotor behaviour data from male genotypes. Each value represents one individual fly that was measured. All individuals of a genotype were averaged for each replicate in the final figures.

Genotyne	Age (days)	1	2	3	4	6	7	8	9	10	11	13	14	16	17	21	24	29	31	35	38	42	46	51	54	57	63
Genotype				<u> </u>	-				-	10	- ''	10	14	10	- ''	21	24	23	31	33	30	42	40	31	J4	31	03
	%immobile				40.7		0.0	4.0	0.4	0.4	4.0		4.0	7.5	4.0			00.0	FO 4	00.0	75.0	04.4	07.0	00.0	00.7	05.7	00.0
				7.7	40.7		3.8	4.3	2.1	2.4	4.0		4.3	7.5	4.6	4.4	5.4	29.0	58.4	82.2	75.0	94.1	67.2	22.8	90.7	95.7	86.0
				15.1	3.1		1.9	38.7	2.5	4.9	3.4		1.4	3.8	9.6	2.3	27.1	80.2	15.0	28.0	55.7	29.0	78.3	82.3	79.6	65.3	85.2
				14.6	2.4		1.0	6.7	6.7	5.9	3.3		2.7	4.9	6.6	2.9	14.7	8.2	15.9	10.6	44.1	20.7	53.8	51.4	97.7	52.5	97.4
	5			3.8			27.7			9.1			7.1	4.3	3.7	7.4	12.1	73.1	63.6	65.6	93.8	73.4	74.9	91.5	78.2	92.3	
	Replicate 1			6.4			6.7			5.1			3.4	3.6	1.1	3.2	2.9	65.4	15.7	81.6	47.9	46.5	59.3	94.3	86.0	94.6	
				24.1			3.2			12.8			3.5	3.5	3.0	2.1	1.8	69.0	2.9	54.5	47.3	43.6	56.0	73.4	89.3	78.9	
				13.7			0.1			4.8			3.0														
				5.3			1.7			14.9			6.1														
				11.2			0.2			20.5			2.6														
		5.3	2.0			15.9	11.2	6.5	4.7	3.3		4.6		1.6		5.2	5.0	6.2	11.0	15.5	65.9	83.6	77.7	94.6	98.2	94.6	88.7
		4.6	3.6			23.8	7.5	4.4	6.9	3.3		46.1		4.4		14.9	2.5	6.4	38.7	8.0	86.8	61.0	62.1	98.9	95.6	16.4	94.0
		12.1	26.4	6.9		7.9	15.1	2.9	3.1	7.7		1.9		10.0		8.0	6.7	9.9	6.0	5.4	9.2	74.0	40.9	88.0	96.8	9.6	86.5
		9.6		12.4			13.1			11.7				17.7		8.4	22.5	45.0	25.6	57.6	92.6	84.5	90.9	97.0	94.0	73.1	
	Replicate 2			8.8			2.4			5.7				1.7		7.0	1.1	15.6	28.6	3.3	75.9	18.2	92.4	60.6	9.5	80.6	
		45.9		7.1			4.3			80.1				1.9		10.2	73.1	73.1	15.7	64.5	84.5	29.0	97.1	81.3	84.7	87.5	
		6.1		5.6			6.9			10.6																	
		4.2		4.0			3.6			3.9																	
		9.7		23.1			9.9			7.1																	
	Distance																										
				22925.0				16241.0						10346.7				6224.3			2878.7	986.3	3122.1		1231.7		1680.0
				18036.0	21227.1		1398.7	9773.0	19794.5	20616.6	20249.7		23303.1	10349.6	7727.5	9946.4	6412.9	1474.7	15599.4	11691.1	6141.2	11753.4	1933.2	2537.1	2563.7	4173.2	1820.8
				18626.5	20696.3		1738.2	17795.7	16192.1	18640.4	19493.0		21625.0	9746.8	8440.5	11233.1	8224.0	9346.6	14937.3	10919.9	7200.0	12238.4	4855.7	7096.4	835.5	4869.5	997.1
				20890.8			14093.7			21497.7				10296.9			9075.3	1727.7		3361.0	1145.5	3313.0	2044.7	1189.9	2263.3	1200.8	
	Replicate 1			22685.2			18558.2			19595.5				11079.6					15024.9	2556.8	6064.9	7259.6	4880.9	1219.8	2184.0	1034.1	
				13502.5			22655.5			13651.3				11235.4	12087.2	12285.4	11158.2	1924.8	18389.6	6039.5	6555.5	4146.0	5207.4	2980.0	1688.5	2022.1	
				17424.0			452.1			20361.0			19591.3														
				26779.5			1423.7			17236.8			20134.8														
Q25/+				17908.1			1716.4			13251.9			20094.5														
		20860.8	22902.3	19084.0		13532.7	17910.8	18072.4	20039.1	18666.2		21029.6		11062.3		10621.3	11193.3	17447.9	15596.6	11838.6	4550.7	2441.8	4255.3	1026.0	870.7		1632.5
		22151.6	23629.0	23032.4		15520.0	21059.9	20490.1	19859.7	22676.5		10549.1		8732.1		10257.9	11638.4	16847.6	10184.7	15857.6	1735.2	9466.4	6541.8	521.7		32355.0	1304.1
		15541.8	14548.2	20294.0		20978.9	16960.6	20878.3	18159.6	12726.0		20694.3		8286.6		9517.9	11274.6	13827.6	20353.0	16362.4	15462.0	14988.5	9718.1	3882.7		33223.2	2088.1
		23136.6		18689.3			15242.0			16489.4				8322.6		9775.0	10605.6	7645.2	13128.2	5572.8	1103.8	2222.0	1007.2	889.6	725.5	3169.5	
	Replicate 2	20537.6		19107.8			20059.8			16031.5				10350.3		8744.6	12133.7	12743.6	12711.1	18122.0	2361.3	15931.1	1420.6	5021.6	13836.1	1610.0	
		12624.5		18066.4			21874.3			2231.4				11230.2		9349.5	1697.5	3173.2	16456.2	2053.5	2468.5	11363.5	1095.3	2531.1	1492.4	2610.5	
		22498.0		21821.5			16648.4			15557.9																	
		24721.8		19180.8			19922.6			18172.2																	
		21710.2		13802.7			17689.0			17630.7																	
	Velocity																										
				15.0	9.1		20.7	9.1	11.0	12.7	9.8		11.4	11.4	10.8	11.5	12.7	8.8	6.3	3.9	2.8	1.8	2.3	7.3	5.6	1.5	4.0
				12.7	12.2		21.0	7.8	11.9	12.2	11.8		12.6	10.9	8.3	9.7	8.6	5.9	10.4	9.3	6.4	9.5	2.3	5.3	5.0	2.9	5.0
				13.1	11.8		4.4	10.6	10.1	11.3	11.5		11.5	10.4	9.2	11.2	9.7	10.6	10.0	7.0	5.3	8.9	3.7	7.6	1.6	2.7	2.2
				13.1			10.7			13.3			10.2	11.2	12.2	11.6	10.5	4.7	5.8	2.7	1.4	5.8	1.9	3.3	3.5	3.1	
	Replicate 1			14.8			10.9			11.7			10.2	11.7	12.7	11.0	11.6	5.2	10.4	5.9	4.9	7.7	4.8	4.3	5.4	2.4	
				10.4			13.2			8.7			10.7	12.0	12.8	12.1	11.7	2.5	11.1	7.0	4.5	3.2	4.2	2.5	6.1	3.3	
				12.0			0.2			12.1			11.4														
				17.2			11.7			11.4			11.5														
				12.1			1.5			9.2			10.7														
		12.9	13.2			8.9	11.4	11.2	11.9	10.9		12.5		11.5		12.0	12.0	10.2	10.1	6.4	6.5	4.0	10.3	3.3	1.5	1.7	4.3
		13.8	14.1	13.7		11.4	12.9	12.7	12.1	13.3		10.4		9.2		12.1	12.2	10.0	9.3	9.7	3.1	10.9	8.8	1.5	4.0	8.9	3.9
		10.3	11.0			13.0	11.2	12.2	10.6	7.6		12.0		9.0		10.4	12.5	8.5	12.3	10.1	9.9	19.5	8.7	2.6	1.4	8.4	2.3
		14.6		12.3			9.8			10.5				12.0		11.3	13.8	5.6	10.1	5.1	1.5	4.8	2.4	1.7	2.0	5.2	
	Replicate 2			12.2			11.6			9.5				12.6		9.4	12.6	8.0	10.0	10.5	2.1	12.5	3.2	7.9	8.3	3.1	
		13.1		11.3			13.2			5.6				11.8		10.4	3.1	3.3	11.2	2.9	7.5	8.2	1.7	5.4	2.1	6.4	
		13.5		13.3			10.5			9.8																	
		14.7		11.6			11.7			10.8																	
		13.7		10.1			11.1			10.8																	

Supplemental Table 1: Raw locomotor behaviour data from male genotypes. Each value represents one individual fly that was measured. All individuals of a genotype were averaged for each replicate in the final figures.

Genotype	Age (days)	1	2	3	4	6	7	8	9	10	11	13	14	16	17	21	24	29	31	35	38	42	46	51	54	57	63
	%immobile		_	-		-	-																	-			
	Replicate 1			3.1 6.3 1.7 9.0 4.7 2.1 9.3 10.6	4.6 7.2 7.5		1.1 0.7 0.2 4.6 5.3 8.1 1.7	32.7 5.6 3.7	7.7 5.2 7.7	4.3 5.0 6.5 4.3 20.3 8.6 5.4 4.5	7.6 4.2 4.9		1.8 3.6 4.4 5.6 5.3 9.9 5.7 7.4	7.4 9.1 3.4 5.4 5.3 9.7	9.7 6.6 8.3 9.7 3.9 1.6	3.0 4.0 2.4 2.0 1.7 2.1	3.9 10.9 10.6 17.4 4.9 10.6	10.9 68.1 6.3 74.4 82.2 7.2	58.0 51.1 34.1 56.9 6.6 21.5	55.7 54.1 81.6 53.4 97.1 23.2	66.2 60.0 60.0 60.5 50.7 4.6	58.1 97.9 89.1 58.7 98.6 32.3	91.7 80.1 90.5 97.4 85.7 77.5	14.6 26.6 38.6 93.1 66.5 70.1	95.1 82.9 93.6 40.1 98.7 77.0	31.4 13.8 58.6 82.9 40.9	99.1 99.0 96.9
	Replicate 2	31.7 6.5 10.4 3.0 12.1 13.4 2.6 10.1 5.6	6.5 4.	5 3.4		6.0 7.4 4.7	0.4 10.6 7.5 4.1 19.9 11.7 13.0 10.5 3.9 5.0	2.4 9.2 7.7	12.1 8.9 5.1	5.7 16.7 7.5 9.5 4.7 9.1 8.3 9.0 11.8 3.0		7.1 2.7 5.8	2.3	7.7 6.0 4.2 4.7 5.1 2.9		5.4 11.5 4.3 31.6 9.1 6.9	2.5 1.8 5.8 7.9 5.8 6.7	17.1 89.7 5.8 17.2 76.3 14.4	19.9 11.5 15.2 17.2 31.8 9.6	76.0 72.1 25.6 68.0 5.9 92.3	75.9 45.5 49.8 31.7 43.8 60.6	86.3 67.9 36.6 80.8 63.3 43.6	88.2 76.6 95.2 68.3 77.3 84.0	92.2 68.7 85.0 94.6 95.6 91.8	88.4 96.1 96.7 97.3 96.6 91.9	70.2 93.0 55.9 87.9	91.1 94.9 96.1
	Distance	5.0		0.3			3.0			3.0																	
	Replicate 1			24984.0 21292.1 22680.1 18986.2 23328.2 22855.7 19260.4 17896.3	18310.9			8323.0 20419.1 23352.9	17155.1		16848.7		22621.6 21321.8 20521.5 19912.0 19251.3 15092.4 18335.0 21765.5	9601.9 8871.2 9577.3	9893.1 11073.3 10467.6 11021.0	11903.5 12202.4 11865.4 12174.6	10658.7	1977.7 912.9	3866.9 4977.4 9697.8 4869.3 18216.7 12517.4	6821.2 5658.6 2463.2 5967.1 718.7 10765.4	4518.3 4304.0 4024.2 5116.5	6365.9 762.4 1206.8 5306.2 694.0 7477.5	1376.0 2056.0 1609.0 807.3 1579.0 2856.3	9597.2 9269.2 1037.4 3292.9	785.2 2434.5 1236.2 5817.4 286.3 1726.5	8107.6 10766.0 4135.8 1770.3 5549.2	333.7 426.6 1129.4
Q72/Y	Replicate 2	18059.6 22669.5 19569.8	20322.0 23317.5	21601.8 2 24576.5 22729.5 5 19527.4 23874.0 21519.4 21795.2 24301.2 21665.2 19698.4			20662.7		18628.0	18324.2		17715.6 23037.5 18443.4		11014.9 11616.8 11498.6 11862.7 11576.0 11929.1		9557.6 10680.5	11125.5 11464.9 10547.8 8600.3	1656.1 15277.2 12518.2 2674.8	15291.5 18666.9 17387.9 16027.4 13595.6 15525.9	3119.6 10817.6 2933.1	9668.3 7170.6	4305.6 39275.4	1653.2 4047.2 964.3 3611.1 3035.8 1782.6	1089.5 3502.6 2390.9 895.3 773.7 1260.2	1243.2 935.6 1036.5 702.0 978.0 1065.9	5180.1 1007.0 2954.4 1785.8	1147.2 807.7 1056.4
	Velocity Replicate 1			15.5 13.7 14.1 12.5 14.8 14.2 12.7 12.5 14.1	12.3 11.2 11.2		12.8 6.2 2.5 12.6 11.6 11.9 15.1 4.0 3.0	4.9 10.8 12.2	10.5 10.6 11.1	11.4 11.2 12.1 11.1 10.5 11.0 12.9 11.5 9.4	10.7 9.9 11.4		11.3 10.8 10.4 11.6 10.1 7.6 10.0 11.9	14.2 10.4 10.0 9.5 10.2 10.7	9.7 10.8 12.0 11.3 11.5 14.6	12.4 11.9 11.9 11.4 12.1 12.2	11.9 12.1 12.1 15.2 11.5 11.6	9.5 6.0 11.8 6.7 1.8 12.3	2.9 3.0 5.6 5.8 10.4 11.1	8.4 6.7 5.3 7.0 2.8 8.2	2.7 3.8 3.6 3.0 3.2 8.4	8.1 1.6 2.5 6.9 1.9 6.0	2.1 2.9 2.7 1.7 4.1 4.9	6.5 7.0 8.0 2.1 3.8 5.2	2.2 5.5 1.8 5.0 1.4 2.9	4.6 5.8 3.5 3.6 4.9	1.3 2.5 1.4
	Replicate 2	9.8 11.6 14.9 11.1 11.3 11.8 13.3 9.7	12.8 13.9	3 13.9		13.1 13.7 11.5	13.2 12.4 12.2 10.5 12.8 9.9 9.8 10.9 12.3	15.0 13.0 13.0	11.0 11.5 12.4	9.9 11.2 13.5 13.3 11.1 11.9 13.4 13.0 11.6		10.7 13.5 11.1		12.0 12.6 11.8 13.0 12.9 12.4		10.5 11.5 11.3 11.8 11.0 11.4	12.4 12.3 12.5 11.7 9.1 6.7	8.9 4.1 9.2 8.4 4.1 10.2	10.9 12.2 11.8 11.1 11.2 10.0	3.9 4.9 8.4 3.6 11.4 3.0	2.0 3.6 3.0 7.4 4.2 2.4	2.8 6.7 23.8 1.6 6.4 17.6	3.9 7.9 2.6 5.4 5.8 4.2	3.6 3.7 6.6 1.8 2.2 3.4	1.7 1.7 1.4 1.4 3.4 2.2	2.7 3.1 2.9 4.1	1.6 2.4 2.6

Supplemental Table 1: Raw locomotor behaviour data from male genotypes. Each value represents one individual fly that was measured. All individuals of a genotype were averaged for each replicate in the final figures.

Genotype	Age (days)	1	2	3	4	6	7	8	9	10	11	13	14	16	17	21	24	29	31	35	38	42	46	51	54	57	63
	%immobile																										
			9.3	7.0	11.2	2.3	6.4	5.9	62.3	7.4	15.3	92.6	95.4	78.5	17.2	89.5	66.4	86.9	87.2								
	Replicate 1		62.7	2.1	12.7	2.0	17.7	7.9	3.2	41.8	87.4	26.4	98.1	88.0	86.0	92.4	86.0	25.6	88.2								
			4.7	0.4	8.1	12.0	9.2	67.5	17.8	11.0	7.0	91.2	97.0	87.3	92.0	43.2	91.7	94.3	83.6								
		7.5	38.8	13.5	47.4		5.1		20.2	78.6	82.8	88.1	70.3	71.1	88.2	92.5	88.9	97.0	97.9								
	Replicate 2		2.8	12.6	27.3		9.5		8.3	81.2	87.5	89.1	87.8	50.7	93.4	97.7	86.4	87.5	93.0								
		7.3	15.0	75.2	6.0		23.7		16.0	70.7	68.9	98.0	67.7	83.5	78.0	95.8		86.5									
	Distance																										
			21233.1										896.2	2180.2		1455.1	5699.7	1698.7	1301.8								
D 1004/	Replicate 1		4843.8		19401.3			11245.4		3782.5		20499.7	640.6	2400.4	1483.2	1238.3		15444.6	2150.3								
DJ694/+			22422.5			19808.4		2341.9		10914.7		1446.9	701.7	1942.1	1229.4	5826.7	1472.1	1290.0	2405.6								
			10332.1				10145.5			1133.4				3320.8	1635.8	1115.2	1503.7	826.6	1707.0								
	Replicate 2						9979.2		10054.2	1230.9	1809.8	1646.9	1530.4		1046.5	859.0	1707.6	1623.8	3037.4								
	Walaaih.	19251.4	21186.9	3564.8	22293.3		7267.7		8062.2	1712.6	3102.0	925.6	2974.9	2031.0	13082.4	1312.8		2382.6									
	Velocity		140	115	10.5	10.0	10.6	11.6	4.4	15.0	10.0	0.0	0.5	0.0	11.0	0.4	6.0	4.7	0.6								
	Replicate 1		14.0 4.5	14.5 4.6	12.5 12.4	12.2 14.7	12.6 10.1	11.6 12.5	4.1 12.5	15.8 3.1	13.2 1.5	2.0 16.3	2.5 4.0	2.0 7.0	11.9 2.0	3.4 1.7	6.9	4.7 11.5	2.6 3.4								
	neplicate i		4.5 14.1		15.5	14.7	10.1	5.1	8.7	12.1	13.6			1.9		4.7	1.9		5.4 5.0								
		12.9	9.3	1.3 11.9	10.7	12.4	10.3	5.1	11.5	12.1	1.7	1.7 6.7	2.4 2.0	3.8	2.7 1.9	1.6	2.8 2.6	1.5 1.4	1.4								
	Replicate 2		14.8	10.4	12.5		10.8		11.0	3.6	3.6	4.2	1.5	2.8	2.8	2.0	3.9	1.4	3.6								
	neplicate 2	12.1	14.6	4.9	13.4		9.0		9.4	2.6	1.9	1.4	2.7	4.2	21.9	2.6	0.9	3.8	3.0								
	%immobile	12.1	14.0	7.5	10.4		3.0		5.4	2.0	1.5	17	2.7	7.2	21.5	2.0		0.0									
	/oiiiiiiiobiic		9.7	2.7	10.1	35.0	9.0	7.5	14.7	10.7	83.0	18.2	65.1	66.0	83.4	84.5	36.8	82.0	97.3	94.5							
	Replicate 1		12.5	1.7	12.8	6.2	5.4	8.5	20.6	5.4	6.6	93.8	89.9	83.4	71.0	85.4	9.4	98.4	42.9	66.8							
			7.7	5.0	36.0	11.7	4.9	6.1	52.6	44.8	16.6	75.0	28.8	12.6	67.8	17.3	87.8	95.1	91.4	73.8							
		6.8	4.9	8.3	5.9		5.7		29.1	8.9	89.8	87.6	87.9	52.5	17.9	24.4	96.5	92.8	94.7	62.9							
	Replicate 2	9.4	8.1	27.0	15.0		6.2		18.5	7.9	91.2	8.3	95.5	67.4	77.0	85.1	26.8	96.3	80.2	96.2							
		5.0		7.5	10.6		18.6		20.9	6.7	84.3	13.7	27.4	55.7	74.8	59.1	89.9	96.0	81.5	79.3							
	Distance																										
			16860.9	1102.6	17473.3	10132.8	11623.0	9981.7	7319.2	9267.3	1814.6	13432.0	5204.9	4563.7	2521.2	1443.3	9969.7	2569.5	882.2	1127.5							
	Replicate 1		19228.2	1436.9	18831.5	18924.2	12995.1	10233.0	6230.6	10973.3	9945.6	950.1	1274.6	2349.4	2214.9	1196.9	18547.3	266.0	6228.7	3057.0							
MHC/+			20495.8	1685.2	12862.7	15712.9	11897.3	9233.3	3188.5	3138.4	10560.2	3370.0	13976.6	12348.4	18818.9	15389.9	1339.5	645.8	759.0	2844.7							
		20936.0	21568.3	16751.2	19091.6		10078.4		6156.8	9944.3	1180.7	1826.7	1206.3	7956.8	16696.1	11700.4	928.4	998.7	945.8	3819.0							
	Replicate 2						11156.1		9546.3	9610.0	1276.3	24811.3			3321.2	1469.8	18405.1	595.4	2311.8	898.0							
		23832.3	23038.5	21561.9	16246.2		7911.6		9037.4	12074.7	1943.8	24264.0	12011.5	5377.3	6922.3	9618.2	1831.0	1167.1	2097.1	3090.8							
	Velocity																										
	Danilla at 1		10.9	6.1	11.0	8.3	13.0	10.4	8.6	10.5	9.8	9.5	8.2	5.9	7.5	2.5	8.5	6.0	1.6	1.6							
	Replicate 1		13.5	3.9	12.1	11.6	14.2	11.2	7.8	11.6	11.0	2.1	5.0	5.2	4.9	2.1	11.0	3.5	5.5	3.7							
		40.5	13.4	11.9	11.0	10.0	12.8	9.7	5.1	3.2	13.0	3.6	11.4	7.6	20.8	10.9	1.6	1.5	2.4	3.5							
	B	12.8	13.1	9.8	11.3		10.6		8.2	10.7	2.1	2.9	2.2	7.8	11.5	8.5	4.6	2.0	6.1	3.5							
	Replicate 2		12.2	8.4	11.9		11.9		11.7	10.4	1.4	15.7	10.6	2.8	6.4	4.4	14.7	1.3	4.4	4.3							
		14.0	15.3	13.0	10.1		9.4		11.5	13.2	2.7	16.2	9.6	4.0	11.3	12.3	3.8	1.7	4.1	6.7							

Supplemental Table 2: Raw locomotor behaviour data from female genotypes. Each value represents one individual fly that was measured. All individuals of a genotype were averaged for each replicate in the final figures.

Genotype	Age (days)	1	2	3	4	6	7	8	9	10	11	13	14	16	17	21	24	29	31	35	38	42	46	51	54	57	63
	%immobile																										
	/011111110D110			20865.6	171823		18/151 0	12978.0	16313 6	17006 3	17/12 /		16519.0	9571.8	8352.0	6998.0	8323.9	5245 4	13579.8	2386.2	12784.2	3797.1	0330.2	3842.2	905.3	1188.4	1180 7
				18030.2				13016.5					18633.9		6450.0				18362.3		12842.2	8339.2	8987.7	1086.4	1622.5	2034.4	1452.8
				20502.8				11741.3					16402.5			10514.4	6887.9		19794.8			9021.6	7497.8	1682.7		10090.9	1316.7
				19315.6	13430.0		13162.3	11741.5	10301.0	17497.4	10007.2		15796.2	7676.1		7496.7	6454.9		11298.8		10389.9	1129.6		14522.6	1642.0	1795.0	1310.7
	Replicate 1			18453.2			16324.3			11812.0			19190.3		10129.2		10391.2		12072.9		16013.1	8017.7		3150.5	6499.9	1835.6	
	ricpiicate i			17995.5			17833.2			12099.5			17370.4						16048.2							1000.0	
				17995.5			14311.2			13348.9			11422.6	9150.7	9156.5	6995.5	0307.0	7599.2	10046.2	9919.4	11016.0	11042.6	11949.4	10333.5	12249.0		
				18216.8			13583.2						19535.2														
				12251.0						16211.7 11046.9																	
		47404.0				0070.0	14745.2		404400			10100.0	17059.4	7040.0		0405.5	0000.0	0.400.4	404000	40005.4	0000.4	4700.0	44005.0	740.7	050.5	75.0	0000.0
			16148.3					16844.3				18128.2		7646.2		9435.5			13130.2			1738.6		742.7	959.5		2020.6
			16295.9					15957.8				16712.5		9128.0		6360.3			15978.5				3235.1	594.3	8062.1	81.8	1476.2
			15328.5			19417.6		19238.4	10238.0			15790.5		9302.9		7875.2			16684.1					6960.3	6455.3	86.2	1184.5
		14454.7		16411.4			13483.5			13639.5				8203.7		7415.8			15062.0				2701.0	686.3	1367.4	74.1	
	Replicate 2			16461.9			14946.1			17113.9				7933.2		8587.8			10124.0		1043.7	3375.7		855.3	1387.6	3902.5	
		16002.3		19532.7			13198.3			15884.5				6609.6		8504.5	6770.8	10592.0	13080.4	3605.5	7296.0	7014.9	10632.7	95.1	571.9		
		15588.2		14187.0			15194.1			13705.5																	
		16527.6		17739.0			15984.6			12936.4																	
		16017.2		16179.7			11018.7			11988.2																	
	Distance			00005.0	474000		40454.0	40070.0	40040.0	47000 0	47440.4		40540.0	0574.0	0050.0	0000.0	0000 0	5045.4	40570.0	0000 0	407040	0707.4	0000 0	0040.0	005.0	4400.4	4400.7
				20865.6				12978.0					16519.0			6998.0			13579.8					3842.2		1188.4	
				18030.2				13016.5					18633.9		6450.0	9149.9	4398.4		18362.3		12842.2	8339.2	8987.7	1086.4	1622.5	2034.4	
				20502.8	19498.0			11741.3	13981.3		13867.2		16402.5		8074.3		6887.9		19794.8			9021.6	7497.8		1295.9		1316.7
	Daniiaata 4			19315.6			13162.3			17497.4			15796.2			7496.7	6454.9		11298.8		10389.9	1129.6		14522.6	1642.0	1795.0	
	Replicate 1			18453.2			16324.3			11812.0			19190.3				10391.2		12072.9		16013.1	8017.7		3150.5	6499.9	1835.6	
				17995.5			17833.2			12099.5			17370.4	9150.7	9158.5	8995.5	8387.0	7599.2	16048.2	9919.4	11018.0	11042.8	11949.4	10333.5	12249.0		
				17830.2			14311.2			13348.9			11422.6														
Q25/+				18216.8			13583.2			16211.7			19535.2														
Q25/+		474040		12251.0		0070.0	14745.2		101100	11046.9		101000	17059.4	70400		0.405.5	00000	0.400.4	101000	10005.1	0000 4	4700.0	44005.0	740.7	050.5	4544.0	0000 0
			16148.3					16844.3				18128.2		7646.2		9435.5			13130.2			1738.6		742.7	959.5	4541.0	
			16295.9					15957.8				16712.5		9128.0		6360.3			15978.5				3235.1	594.3	8062.1	3203.3	1476.2
			15328.5			19417.6		19238.4	10238.0			15790.5		9302.9		7875.2			16684.1				1113.8	6960.3	6455.3	2839.0	1184.5
	Poplicate 2	14454.7		16411.4			13483.5			13639.5				8203.7		7415.8			15062.0					686.3	1367.4	4989.9	
	Replicate 2			16461.9			14946.1			17113.9				7933.2		8587.8			10124.0		1043.7	3375.7		855.3	1387.6	3902.5	
		16002.3 15588.2		19532.7			13198.3			15884.5				6609.6		8504.5	6//0.8	10592.0	13080.4	3605.5	7296.0	7014.9	10632.7	983.3	571.9		
				14187.0			15194.1			13705.5																	
		16527.6		17739.0			15984.6			12936.4																	
	V-1	16017.2		16179.7			11018.7			11988.2																	
	Velocity			10.1	10.4		9.8	8.8	10.3	10.2	10.3		9.4	10.4	8.5	7.8	9.0	7.8	9.2	3.3	8.0	3.1	6.1	5.6	2.2	1.6	2.5
				13.1 11.9	10.4		3.1	9.4	7.1	8.4	11.4		10.3	10.4	7.2	9.1	6.7	8.0	11.3	6.6	8.1	6.4	6.1 6.2	2.6	3.4	1.6 2.1	1.8
				12.9	11.6		10.4	10.6	9.1	7.1	8.4		8.5	11.1	8.7	10.4	8.8	10.2	11.3	7.1	9.5	6.0	5.7	2.0 3.1	2.3	6.2	1.8
				12.9	11.0		8.8		9.1	10.0	0.4		10.0	10.0	10.5	8.6	8.5	5.5	8.5	5.0	6.9	2.3	5.2	8.9	4.2	3.6	1.0
	Replicate 1																						7.5				
	neplicate i			11.9			9.6			7.4			11.1	7.4 10.8	10.9	8.3	11.0	3.1 9.0	8.9	6.9	9.5	5.7	7.5 7.4	4.9	4.5 7.6	1.8	
				11.9 12.3			9.7			7.6 8.7			9.5 7.6	10.8	9.7	8.9	9.2	9.0	10.3	7.6	7.1	8.2	7.4	8.3	7.6		
				11.7			9.1 8.0			9.9			10.5														
				10.5						7.2																	
		10 F	0.0			6.6	8.6		7.5			10.4	8.7	0.6		0.0	0.4	6.0	0.1	0.0	6.4	0.1	7.0	1.0	4 7	0.7	1.0
		10.5	9.8	10.6		6.6	10.4	10.3	7.5	7.3		10.4		8.6		9.9	9.4	6.0	9.1	8.0	6.4	2.1	7.3	1.9	1.7	2.7	1.8
		11.9	9.8	10.2		2.9	12.1	9.5	9.2	8.3		9.6		9.5		7.6	9.8	9.3	9.9	8.5	1.7	11.5	5.8	2.5	5.9	2.6	1.6
		11.9 9.0	9.6	11.8		12.1	11.6	11.7	7.6	10.1		9.2		9.9		9.0 8.0	10.6	4.8	10.5	5.1	6.4	11.5	1.5	6.7	4.8	2.2	1.4
	Denlinets 0			10.9			8.3			8.6				8.7			8.3	6.7	9.7	5.9	6.8	2.4	3.8	1.6	3.2	3.3	l
	Replicate 2	11.1		10.6			10.5			10.3				8.2		9.3	10.0	6.9	9.0	5.9	2.2	3.4	7.7	3.2	2.6	3.4	
		10.4		12.3			8.1			9.7				7.2		9.1	9.1	6.8	9.3	2.5	7.9	4.8	6.8	1.6	1.5		
		10.0		9.5			8.8			8.1																	
		10.5		10.9			9.7			8.1																	l
		9.9		10.4			7.3			7.7																	

Supplemental Table 2: Raw locomotor behaviour data from female genotypes. Each value represents one individual fly that was measured. All individuals of a genotype were averaged for each replicate in the final figures.

Genotype	Age (days)	1	2	3	4	6	7	8	9	10	11	13	14	16	17	21	24	29	31	35	38	42	46	51	54	57	63
achotype	%immobile	•												10						- 00	- 00	72		<u> </u>	34	- 51	-00
	Replicate 1			4.1 10.9 3.2 28.0 4.7 4.8 13.9 16.7 8.5	1.7 16.5 32.4		1.9 0.4 0.0 5.9 5.1 3.6 7.5 6.6		10.9 4.8 3.3	19.1 5.6 3.2 10.8 7.1 12.5 12.0 48.0 5.9	7.4 9.5 8.0		5.3 2.2 3.0 3.3 11.0 5.5 3.5 4.9	7.4 1.9 2.2 7.0 13.4 43.8	9.8 5.9 5.1 8.9 4.2 2.6	4.2 8.7 11.3 8.0 5.2 2.9	7.6 12.8 17.1 6.6 15.3 18.7	22.7 29.9 13.3 15.3 38.6 40.8	49.3 51.4 13.4 84.2 16.8 25.6	10.7 43.9 13.8 30.1 86.5 34.7	24.8 76.8 53.8 11.3 61.2 55.4	95.1 46.4 94.3 97.6 89.6 96.3	31.7 48.1 83.6 93.0 14.7 41.7	62.3 81.6 88.4 79.8 31.8 88.4	61.8 74.6 54.9 54.7 97.7 94.6	62.8 74.9 85.6 57.8 73.3 73.9	95.3 94.9 67.6
	Replicate 2	13.7 10.8 5.1 14.7 13.1 12.4 46.9 8.8 14.8	14.3 3.8 8.1	33.7		10.4 14.6 22.0	11.1 8.5 51.2 6.2 19.2 10.4 16.1 11.9 38.8	28.0	4.7 12.4 49.0	7.7 4.3 13.4 3.4 4.3 5.3 13.3 3.8 18.6		2.5 7.4 10.1		9.8 6.0 9.6 37.1 14.4 6.7		3.4 8.7 1.2 12.7 8.9 9.4	5.9 11.0 9.5 11.3 5.6 6.1	84.2 95.6 13.1 16.8 25.2 44.4	93.4 78.0 55.9 47.9 31.3 15.9	79.1 62.1 9.6 57.4 18.9 10.9	56.7 3.3 37.8 75.5 33.5 27.6	83.0 14.8 78.3 74.9 78.2 70.5	94.8 41.6 84.0 51.3 20.4 90.7	89.9 95.5 96.5 98.0 85.8 91.1	92.5 94.4 97.1 93.2 97.6 93.6	94.3 97.3 72.5 90.2 93.8	51.0 94.3
	Distance																										
	Replicate 1			18910.2 15022.6 20262.8 14093.6 19564.3 19572.6 17678.0	15390.7		875.1 984.4 16759.4 19017.5 17964.5 14825.5	14253.0 17775.1	17062.6	13426.1 13408.7 17226.2 15055.4 14611.2 16189.7 16184.1	13778.6		15885.1 20543.5 20277.7 17547.8 15811.2 19201.1 19499.7	8243.6 9594.3 9486.5 7328.6 6259.2 4322.3	9.8 9.6 9.9 9304.8 9756.6 9793.4	9153.0 9034.7 8814.9 7462.1 8892.0 9119.9	8096.5 8381.5 7401.0 7840.0 6455.8 5326.6	7745.5	5651.9 13424.7 1944.4 11566.9	10706.0 3983.9 8137.3 7213.3 1293.6 7710.1	8761.7 2785.5 4175.6 10483.5 3465.8 4017.1	775.6 4433.9 1044.1 792.2 1046.3 601.0	6224.8 3894.3 1994.7 1101.0 7264.7 4458.5	5620.6 2046.6 1598.7 2046.4 9616.3 1604.9	2603.0 2169.0 3205.2 3415.8 767.1 946.1	2447.1	1087.4 1076.7 2735.0
0707/				14761.3			17488.3			7438.3			18320.4														
Q72/X	Replicate 2	15909.5 17830.6 19680.6 15669.8 17058.7 16168.8 11099.1 18369.0 12471.4	17252.0	9158.8		13422.5	17664.4	16419.7 17395.8 13947.6	13707.4	17118.7		16791.8 16800.4 14879.6	16245.7	8438.1 8439.8 9777.9 4656.9 6226.8 9157.6		10037.3 6883.1 11460.8 8303.1 6482.9 6572.4	8534.6 8633.8	1985.9 898.3 11074.1 11355.2 8871.3 5596.2	1099.0 2719.5 6529.7 5720.6 9774.5 14794.2	12691.0 3057.2 7496.8	6593.9 2413.2 7335.2		1111.8 4611.6 1911.6 3461.5 10065.8 972.8	1333.2 975.3 899.8 650.4 906.9 909.1	829.2 845.1 964.4 988.9 816.8 1138.0		6501.1 2017.2
	Velocity			11.9	10.4		15.2	9.3	9.6	9.0	10.3		8.5	9.0	9.8	8.8	8.8	8.2	3.2	6.8	5.1	3.1	4.7	7.2	3.0	1.9	1.8
	Replicate 1			10.0 12.7 11.4 13.0 12.5 12.5 10.4 11.5	10.5		5.9 0.1 9.1 10.9 10.2 8.8 10.5	11.3 12.1	10.4 9.6	7.8 9.8 9.4 8.6 10.4 10.1 6.9	8.4 8.5		10.8 10.4 9.1 8.3 10.3 10.9 10.1 9.5	9.7 9.8 8.9 8.5 7.5	9.6 9.9 10.4 10.4 9.9	9.1 9.0 6.2 8.2 8.8	9.8 9.0 8.4 7.5 6.3	7.2 9.4 9.1 5.9 7.1	5.2 8.7 1.7 7.7 6.5	3.5 5.5 5.6 4.3 6.4	4.0 3.5 5.5 3.1 3.6	4.3 2.4 1.4 1.9	3.6 3.2 1.5 4.7 3.7	2.5 3.3 4.3 7.5 2.0	3.7 3.3 3.2 1.4 2.3	2.6 1.6 2.3 1.9 2.1	1.6 3.3
	Replicate 2	10.5 11.3 11.7 10.8 12.0 10.8 11.4 11.3 8.1	10.8 10.8 11.9	10.2 7.5		11.2 8.8 11.1	10.4 10.7 6.7 9.7 10.4 11.2 6.6 10.2 4.7		7.7 8.8 9.5	11.0 10.0 10.2 11.5 9.3 9.7 10.0 9.7 8.9		8.7 9.9 8.6	5.5	9.3 9.0 11.1 6.7 7.1 9.9		10.5 7.6 11.8 9.6 7.4 7.1	11.4 9.6 9.5 9.6 9.6 9.0	4.1 1.8 7.0 7.6 6.6 5.0	2.4 5.3 5.7 5.9 7.9 10.1	2.8 4.0 8.1 3.3 5.0 6.3	3.9 9.6 4.2 3.3 5.0 4.8	1.7 7.2 34.6 2.4 4.0 3.3	2.0 3.8 4.1 3.1 6.8 2.8	3.4 2.7 1.4 2.0 2.3 1.9	1.5 1.4 1.7 1.7 1.7	2.3 1.5 1.7 1.9 1.6	2.7 1.6

Supplemental Table 2: Raw locomotor behaviour data from female genotypes. Each value represents one individual fly that was measured. All individuals of a genotype were averaged for each replicate in the final figures.

Genotype	Age (days)	1	2	3	4	6	7	8	9	10	11	13	14	16	17	21	24	29	31	35	38	42	46	51	54	57	63
	%immobile																										
			7.7	2.4	9.7	14.8	7.0	25.6	15.4	18.9	32.4	90.3	8.3	81.4	42.4	93.6	23.7	96.8	86.1								
	Replicate 1		12.3	4.2	3.3	8.2	10.4	7.6	16.2	28.0	88.9	28.9	90.7	35.3	49.5	80.2	56.4	75.6	96.0								
			18.1	2.7	8.1	12.7	14.4	62.8	13.7	36.4	30.3	43.6	21.8	16.2	89.4	69.2	73.4	89.9	97.5								
		9.7	40.7	13.2	10.9		10.9		21.5	6.9	97.6	8.9	57.3	27.5	49.6	91.8	82.2	97.3	89.1								
	Replicate 2	6.5	6.6	12.3	20.8		16.8		7.3	25.7	89.0	17.4	80.4	63.1	88.1	96.9	91.6	92.5	87.3								
		12.9	63.7	8.4	9.2		6.5		7.5	12.4	95.3	6.5	89.7	61.1	74.4	59.1	94.6	95.4									
	Distance		10000 7	4404.0	45004.7	474400	0050.4	0000 4	0050.0	0407.0	0000	4044.0	40050.0	0040.0	0005.7	1007.1	444400	775.0	4500.0								
	Replicate 1		19983.7 16448.9	1131.8	15924.7 21764.6			6290.1 10457.6	9252.6 5008.3	9407.8 6421.2		1344.6 10191.6	1039.7	2010.2 9056.4	9305.7 5451.2	2115.1	11116.9 3285.8	775.9 2467.2	1503.3 1067.0								
	neplicate i			1613.7				3151.3	9470.3			9478.6			1560.2	3623.0	3265.6 3579.7	1272.9	771.8								
DJ694/+			11481.9			10292.4	9164.0	3131.3	6910.1					9443.0		1088.6	1812.8	741.4	3243.4								
	Replicate 2						7897.8		8381.7	5553.1	1365.0		1905.2	3145.0		929.8	1098.6	1083.9	2243.1								
	riopilodio 2		3980.8				11750.6		8357.7			20437.9				2529.9		1237.8	2240.1								
	Velocity	.0000.0	0000.0						0007	0201.0	1200.0	20 107.0	2027.0	1000.0	12100.0	2020.0	127 1.0	1207.0									
			12.8	7.3	9.7	11.7	9.7	8.3	11.3	11.9	15.4	2.9	7.7	2.8	9.1	1.5	7.9	1.8	2.3								
	Replicate 1		11.9	9.1	12.8	11.2	7.8	11.5	5.6	8.7	1.6	8.1	2.5	7.6	5.5	3.9	3.1	4.0	1.4								
			12.6	6.1	12.7	10.6	8.7	7.5	11.4	3.9	8.5	9.6	8.6	7.0	1.4	5.3	5.8	2.2	1.5								
		12.5	11.2	13.1	14.8		10.4		8.8	12.3	1.8	17.9	6.2	4.9	7.7	2.5	1.9	1.4	2.0								
	Replicate 2	13.7	12.1	11.4	12.8		9.6		9.0	7.4	2.9	10.2	2.2	2.5	3.1	1.8	1.4	1.7	1.8								
		10.3	3.9	13.4	10.9		13.0		9.1	6.9	4.1	12.6	5.6	4.1	20.7	2.2	1.7	1.3									
	%immobile																										
			9.6	25.7	4.0	26.7	9.3	10.3	18.9	17.7	77.9	12.1	33.9	22.9	25.0	90.9	9.9	98.2	69.4	95.3							
	Replicate 1		4.5	8.2	13.0	12.6	14.0	8.6	13.9	8.4	25.2	14.6	50.9	21.9	28.9	62.9	45.0	64.2	85.5	94.9							
			2.2	12.8	24.6	8.7	6.0	12.1	9.5	14.5	66.4	36.0	97.5	32.7	89.7	23.9	17.1		68.2	67.6							
	D!:4- 0	8.8	13.9	13.3	9.3		2.9		5.8	10.9	10.5	7.5	96.0	51.8	68.8	58.9	85.7	84.3	96.7	78.0							
	Replicate 2	7.9	13.6	16.9	9.8		2.2		36.2	5.2	54.3	8.4	73.1	74.9	89.6	37.1	92.8	88.9	76.9	58.8							
	Distance	45.1	12.1	7.6	4.0		4.7		81.7	13.2	57.5	60.6	62.5	52.5	73.0	92.7		76.1		98.9							
	Distance		16524.1	11610 7	1750/ 1	10603.3	9110.6	10317 0	7717.7	6148.7	1707 7	11836 1	6174.7	9277.3	5756.0	1025.2	11150.2	603.4	3050.6	1087.4							
	Replicate 1		23895.7						4564.1	7888.9	5676.5		5358.6		4779.7		7270.1	2440.8		1076.7							
MHC/+			21097.0						7521.5	9820.9	1499.9		915.3		1517.6		10423.4	2110.0		2735.0							
			15082.0				11653.1	7020.2	8822.2	8327.9	9708.7		901.3		3706.0		1658.6	1507.1		19125.7							
	Replicate 2						12021.4		2919.5	9208.4		13664.5		2449.7			1551.6		33596.1								
	•		20233.0				10153.5		932.3	6370.6		7182.5	4248.9	6409.5		878.6		784.5		932.3							
	Velocity																										
	-		11.3	8.7	10.4	8.0	11.4	11.5	9.8	7.3	7.4	7.8	5.2	6.5	3.9	2.0	6.8	1.4	4.5	1.8							
	Replicate 1		15.1	10.8	10.7	8.7	11.9	10.3	5.0	8.7	7.5	8.6	5.9	6.7	3.5	3.1	6.7	2.2	4.5	1.6							
			13.0	9.3	10.2	9.7	9.9	9.1	8.6	11.4	3.0	8.1	1.8	4.6	1.8	4.6	7.0		4.6	3.3							
		12.6	10.3	9.9	10.3		12.4		9.4	9.3	6.0	11.0	1.5	2.6	5.8	4.0	2.0	2.9	1.9	17.1							
	Replicate 2	12.3	11.6	11.7	9.0		12.7		3.8	9.8	4.6	8.6	3.8	1.9	2.5	8.1	5.1	6.2	27.4	4.5							
		11.1	13.5	10.7	8.5		10.9		1.9	7.0	5.7	9.7	5.5	3.9	3.4	2.1		2.5		1.7							

Supplemental Table 3: Sample arena configuration table used by the extraction script to identify which genotype is in each chamber based on the configuration that is input. The number of configurations is equal to the number of genotypes tested. The number of chambers required is equal to the number of genotypes tested multiplied by the sample size of each genotype.

	Config. 1	Config. 2	Config. 3	Config. 4	Config. 5	Config. 6	Config. 7	Config. 8	Config. 9	Config. 10	Config. 11	Config. 12	Config. 13	Config. 14	Config. 15	Config. 16
Chamber 1	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2
Chamber 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2
Chamber 3	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2
Chamber 4	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3
Chamber 5	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3
Chamber 6	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3
Chamber 7	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4
Chamber 8	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4
Chamber 9	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4
Chamber 10	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5
Chamber 11	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5
Chamber 12	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5
Chamber 13	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6
Chamber 14	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6
Chamber 15	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6
Chamber 16	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	1 Genotype 10	Genotype 9	Genotype 8	Genotype 7
Chamber 17	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	1 Genotype 10	Genotype 9	Genotype 8	Genotype 7
Chamber 18	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	1 Genotype 10	Genotype 9	Genotype 8	Genotype 7
Chamber 19	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	2 Genotype 11	Genotype 10	Genotype 9	Genotype 8
Chamber 20	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	2 Genotype 11	Genotype 10	Genotype 9	Genotype 8
Chamber 21	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	2 Genotype 11	Genotype 10	Genotype 9	Genotype 8
Chamber 22	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	3 Genotype 12	Genotype 11	Genotype 10	Genotype 9
Chamber 23	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	3 Genotype 12	Genotype 11	Genotype 10	Genotype 9
Chamber 24	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	3 Genotype 12	Genotype 11	Genotype 10	Genotype 9
Chamber 25	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	4 Genotype 13	Genotype 12	Genotype 11	Genotype 10
Chamber 26	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	4 Genotype 13	Genotype 12	Genotype 11	Genotype 10
Chamber 27	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	4 Genotype 13	Genotype 12	Genotype 11	Genotype 10
Chamber 28	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11
Chamber 29	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11
Chamber 30	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11
Chamber 31	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12
Chamber 32	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12
Chamber 33	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12
Chamber 34	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13
Chamber 35	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13
Chamber 36	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1	Genotype 16	Genotype 15	Genotype 14	Genotype 13
				• • • • • • • • • • • • • • • • • • • •		• •		• •		• •			Genotype 1			
				• • • • • • • • • • • • • • • • • • • •		• •		• •		• •			Genotype 1			
													Genotype 1			
													Genotype 2			
													Genotype 2			
					= =	= -		= -					Genotype 2			
		• • •							• • •	• •			Genotype 3			
													Genotype 3			
		• • •		• • • • • • • • • • • • • • • • • • • •				• •		• •			Genotype 3			
													Genotype 4			= -
													Genotype 4			= -
Chamber 48	Genotype 16	Genotype 15	Genotype 14	Genotype 13	Genotype 12	Genotype 11	Genotype 10	Genotype 9	Genotype 8	Genotype 7	Genotype 6	Genotype 5	Genotype 4	Genotype 3	Genotype 2	Genotype 1

Supplemental Table 4: One-way ANOVA analysis of change in locomotion with age in males.

	Q25/+ re	plicate 1			
****			Percent Immobility	Distance	Velocity
ANOVA	F(I	OFn,DFd)	F(21,107)=21.50	F(21,107)=16.53	F(21,107)=9.487
			<0.0001		
	3 vs. 4	95% CI of diff.	-35.69 to 27.50	-5265 to 9976	-2.963 to 7.640
	J V3. 7	Significant?	No		No
	3 vs. 7		-16.16 to 28.53		
	0 101 1	Significant?		Yes	
	3 vs. 8		-36.86 to 26.34		
		Significant?		No	No
	3 vs. 9		-24.05 to 39.15		
		Significant?	No -19.95 to 24.74		No 1 779 to 5 720
	3 vs. 10	Significant?		-4000 to 6717 No	No No
		•	-23.86 to 39.33		
	3 vs. 11		No		No
		95% Cl of diff	-14.79 to 29.90		-1.492 to 6.005
	3 vs. 14	Significant?		No	No
	3 vs. 16	95% CI of diff.	-18.26 to 31.70	3330 to 15379	-2.075 to 6.308
	3 VS. 10	Significant?	No	Yes	No
	3 vs. 17	95% CI of diff.	-18.44 to 31.52	3475 to 15524	-1.792 to 6.590
	0 10. 11	Significant?		Yes	No
D	3 vs. 21		-17.36 to 32.60		
Dunnett's		Significant?			No
multiple	3 vs. 24		-24.35 to 25.62		
comparison		Significant?	No 67.91 to 17.95	Yes	No
test (a=0.05)	3 vs. 29		-67.81 to -17.85 Yes	Yes	2.923 to 11.31
		•	-42.25 to 7.709		
	3 vs. 31	Significant?	No	Yes	Yes
		UEO/ CI of diff	-67.41 to -17.45		
	3 vs. 35	Significant?	Yes	Yes	Yes
	3 vs. 38	•	-74.31 to -24.35	8842 to 20891	4.969 to 13.35
	3 VS. 38	Significant?	Yes	Yes	Yes
	3 vs. 42	95% CI of diff.	-64.86 to -14.90	7224 to 19273	3.037 to 11.42
	J V3. 72	Significant?	Yes	Yes	Yes
	3 vs. 46		-78.56 to -28.60		
	0 101 10	Significant?	Yes	Yes	Yes
	3 vs. 51		-82.93 to -32.97		
		Significant?	Yes	Yes	Yes
	3 vs. 54		-100.6 to -50.62		
		Significant?	Yes -93.53 to -43.57	Yes	Yes 6.546 to 14.93
	3 vs. 57	Significant?	Yes	Yes	Yes
	_	05% Cl of diff	-109.8 to -46.61		
	3 vs. 63	Significant?	Yes	Yes	Yes
		orginicant?	162	162	162

	Q25/+ re	plicate 2			
			Percent	Distance	Velocity
ANOVA	_	_	Immobility		_
	•	•	, ,	F(21,104)=7.679	, ,
		p value			<0.0001
	1 vs. 2			-10471 to 10592	
		Significant?	No		No
	1 vs. 3			-6257 to 8636	
		Significant?	No	No	No -
	1 vs. 6			-6788 to 14274	
		Significant?	No	No	No
	1 vs. 7			-5623 to 9271	
		Significant?	No	No	No
	1 vs. 8			-9924 to 11138	
		Significant?	No	No	No
	1 vs. 9			-9464 to 11599	
		Significant?	No	No	No
	1 vs. 10			-2602 to 12291	
		Significant?	No	No	No
	1 vs. 13			-7535 to 13527	
		Significant?	No	No	No
	1 vs. 16			2431 to 19082	
		Significant?	No	Yes	No
Dunnett's	1 vs. 21			2384 to 19035	
		Significant?	No	Yes	No
multiple	1 vs. 24			2338 to 18989	
comparison		Significant?	No	Yes	No
test (a=0.05)	1 vs. 29			147.2 to 16798	
		Significant?	No	Yes	Yes
	1 vs. 31			-2644 to 14008	
		Significant?	No	No	No
	1 vs. 35			460.3 to 17111	
		Significant?	No	Yes	Yes
	1 vs. 38			7481 to 24132	
		Significant?	Yes	Yes	Yes
	1 vs. 42			2693 to 19344	
		Significant?	Yes	Yes	No
	1 vs. 46			8088 to 24740	
		Significant?	Yes	Yes	Yes
	1 vs. 51			9783 to 26434	
		Significant?	Yes	Yes	Yes
	1 vs. 54			8977 to 25628	
		Significant?	Yes	Yes	Yes
	1 vs. 57			-380.0 to 16271	
		Significant?	Yes	No	Yes
	1 vs. 63			8214 to 29277	
		Significant?	Yes	Yes	Yes

	Q72/Y re	plicate 1			
41101/4			Percent Immobility	Distance	Velocity
ANOVA	F(I	OFn,DFd)	•	F(21,106)=16.27	'F(21,106)=13.82
	,	o value	<0.0001	<0.0001	< 0.0001
	3 vs. 4	95% CI of diff.	-33.59 to 32.65	-5485 to 10227	-2.352 to 6.840
	5 VS. T	Significant?	No	No	No
	3 vs. 7		-19.95 to 26.88	8644 to 19755	1.697 to 8.197
		Significant?	No	Yes	Yes
	3 vs. 8				-0.1224 to 9.070
		Significant?	No	No	No
	3 vs. 9				-1.522 to 7.670
		Significant?	No	No	No
	3 vs. 10				-0.6916 to 5.808
		Significant?	No	No 4220 to 11402	No -1.450 to 7.742
	3 vs. 11	Significant?	-32.71 to 33.53 No	No No	-1.450 to 7.742 No
		•	-22.57 to 24.27		-0.03104 to 6.469
	3 vs. 14	Significant?	No	No	No
		9		-	-0.6692 to 6.598
	3 vs. 16	Significant?	No	Yes	No
	0 - 47	•			-1.510 to 5.757
	3 vs. 17	Significant?	No	Yes	No
	3 vs. 21	95% CI of diff.	-22.76 to 29.60	3191 to 15612	-1.799 to 5.467
Dunnett's	3 VS. Z1	Significant?	No	Yes	No
multiple	3 vs. 24	95% CI of diff.	-29.95 to 22.42	4392 to 16814	-2.248 to 5.018
comparison	5 VS. ZT	Significant?	No	Yes	No
test (a=0.05)	3 vs. 29				2.144 to 9.410
	0 10. 20	Significant?	Yes	Yes	Yes
	3 vs. 31		-58.27 to -5.901		
		Significant?	Yes	Yes	Yes
	3 vs. 35		-81.07 to -28.71		
		Significant?	Yes - 10.00	Yes	Yes
	3 vs. 38	Significant?	-70.57 to -18.20 Yes	9093 to 21514 Yes	6.030 to 13.30 Yes
		•	-92.67 to -40.30		
	3 vs. 42	Significant?	Yes	Yes	Yes
		•	-107.4 to -55.00		
	3 vs. 46	Significant?	Yes	Yes	Yes
	0 - 54	•	-71.79 to -19.43		
	3 vs. 51	Significant?	Yes	Yes	Yes
	2 20 54	•	-101.5 to -49.09	13173 to 25595	
	3 vs. 54	Significant?	Yes	Yes	Yes
	3 vs. 57	95% CI of diff.	-67.27 to -11.85	8793 to 21939	5.458 to 13.15
	J VS. 3/	Significant?	Yes	Yes	Yes
	3 vs. 63		-125.5 to -59.23	12946 to 28658	7.477 to 16.67
	J 43. UJ	Significant?	Yes	Yes	Yes

	Q72/Y re	eplicate 2			
42074			Percent Immobility	Distance	Velocity
ANOVA	F(DFn,DFd)	F(21,102)=33.11	F(21,102)=16.09	F(21,102)=13.83
	_	p value	<0.0001	< 0.0001	< 0.0001
	1 vs. 2	95% CI of diff.	-22.65 to 31.69	-11070 to 6376	-5.966 to 3.984
	1 43. 2	Significant?	No		No
	1 vs. 3		-13.99 to 24.43	-10025 to 2312	-5.611 to 1.424
		Significant?	No	No	No
	1 vs. 6		-22.57 to 31.77		
		Significant?	No	No	No
	1 vs. 7		-18.19 to 20.24		
		Significant?			No
	1 vs. 8	Significant?	-23.01 to 31.33 No	-12143 to 5304 No	-6.964 to 2.965 No
		9	-25.28 to 29.07	_	_
	1 vs. 9	Significant?		-9249 to 6197 No	No No
		95% CL of diff	-17.45 to 20.97		
	1 vs. 10	Significant?		No	No
		05% CL of diff	-21.75 to 32.60		
	1 vs. 13	Significant?		No	No
		95% CL of diff	-15.98 to 26.98		
	1 vs. 16	Significant?	No	No	No
	1 10 21	95% CI of diff.	-22.36 to 20.61	1751 to 15543	-3.541 to 4.325
Dunnett's	1 vs. 21	Significant?	No	Yes	No
multiple	1 vs. 24	95% CI of diff.	-15.97 to 26.99	1445 to 15237	-3.063 to 4.803
comparison	1 VS. 24	Significant?	No	Yes	No
test (a=0.05)	1 vs. 29		-47.61 to -4.650		
		Significant?	Yes	Yes	Yes
	1 vs. 31		-28.40 to 14.56		
		Significant?	No	No	No
	1 vs. 35		-67.54 to -24.58		
		Significant?	Yes	Yes	Yes
	1 vs. 38		-62.09 to -19.13		
		Significant?	Yes	Yes	Yes
	1 vs. 42	Significant?	-73.96 to -31.00 Yes	-1392 to 12401 No	No No
		•	-92.47 to -49.51	_	_
	1 vs. 46	Significant?	Yes	Yes	Yes
		95% CL of diff	-98.85 to -55.89		
	1 vs. 51	Significant?	Yes	Yes	Yes
		95% CL of diff	-105.4 to -62.41		
	1 vs. 54	Significant?	Yes	Yes	Yes
	1,	95% CL of diff	-90.67 to -41.68		
	1 vs. 57	Significant?	Yes	Yes	Yes
	1 vs. 63	95% CL of diff	-110.6 to -56.28	8604 to 26050	4.474 to 14.42
	i vs. 03	Significant?	Yes	Yes	Yes

	DJ694/+	replicate 1			
ANOVA		•	Percent Immobility	Distance	Velocity
ANOVA	•		F(16,34)=4.874 <0.0001	F(16,34)=4.229 0.0002	. ,
	3 vs. 7	95% CI of diff.	-40.67 to 85.49	1229 to 28310	-7.203 to 15.30
	5 VS. 1	Significant?	No	Yes	No
	3 vs. 10	95% CI of diff.	-48.16 to 78.00	-18909 to 8173	-13.87 to 8.637
	5 VS. 10	Significant?	No	No	No
	3 vs. 14	95% CI of diff.	-42.95 to 83.21	-19403 to 7679	-13.51 to 8.993
	J VS. 14	Significant?	No	No	No
	3 vs. 16	95% CI of diff.	-48.61 to 77.55	-7866 to 19215	-12.08 to 10.42
	5 VS. 10	Significant?	No	No	No
	3 vs. 17	95% CI of diff.	-64.60 to 61.56	-5562 to 21520	-10.09 to 12.41
	0 V3. 17	Significant?	No	No	No
	3 vs. 21	95% CI of diff.	-65.29 to 60.88	-4424 to 22658	-8.817 to 13.69
	0 V3. Z1	Significant?	No	No	No
	3 vs. 24	95% CI of diff.	-57.58 to 68.59	-7033 to 20049	-10.70 to 11.80
	0 VO. 2-1	Significant?	No	No	No
Dunnett's	3 vs. 29	95% CI of diff.	-74.10 to 52.06	-5015 to 22067	-9.784 to 12.72
multiple	0 10. 20	Significant?		No	No
comparison	3 vs. 31			-5132 to 21950	-7.041 to 15.46
test (a=0.05)	0 10.01	Significant?			No
	3 vs. 35		-134.3 to -8.175	1880 to 28961	-3.310 to 19.19
	0 10.00	Significant?		Yes	No
	3 vs. 38			451.5 to 27533	
	0 10.00	Significant?			No
	3 vs. 42			-3986 to 23095	
	0 101 12	Significant?	No	No	No
	3 vs. 46			-214.3 to 26867	
	3 : 30	Significant?	No	No	No
	3 vs. 51			-193.5 to 26888	
		Significant?	No	No	No
	3 vs. 54			-3519 to 23563	
		Significant?	No	No	No
	3 vs. 57		-123.8 to 2.356		
	3 . 3. 01	Significant?	No	Yes	No

	DJ694/+	replicate 2			
ANOVA			Percent Immobility	Distance	Velocity
ANOVA	•	DFn,DFd) p value	,	, ,	F(15,30)=4.644 0.0002
		0E9/ Cl of diff			-9.463 to 7.140
	1 vs. 3	Significant?		No	No
	4 7	•	-59.23 to 8.628	-4082 to 14561	-5.618 to 10.98
	1 vs. 7	Significant?	No	No	No
	1 vs. 10	95% CI of diff.	-52.40 to 15.46	-7331 to 11312	-8.758 to 7.845
	1 VS. 10	Significant?	No	No	No
	1 vs. 16	95% CI of diff.	-38.27 to 29.59	41.53 to 18684	-6.578 to 10.02
	1 VS. 10	Significant?	No	Yes	No
	1 vs. 21	95% CI of diff.	-40.30 to 27.56	42.16 to 18684	-7.178 to 9.425
	1 43. 21	Significant?	No	Yes	No
	1 vs. 24		-102.3 to -34.46	7813 to 26456	0.8415 to 17.44
	1 70.21	Significant?	Yes		Yes
	1 vs. 29				1.042 to 17.65
Dunnett's	1 vs 31	Significant?		Yes	Yes
multiple					-0.6505 to 15.95
comparison		Significant?			No
test (a=0.05)	1 vs. 35				1.360 to 17.96
		Significant?	Yes	Yes	Yes
	1 vs. 38				-0.1623 to 16.44
		Significant?	Yes		No
	1 vs. 42				-5.456 to 11.15
		Significant?	Yes		
	1 vs. 46	95% Cr or diff. Significant?	-120.8 to -52.96 Yes		1.397 to 18.00
		•			Yes -0.7849 to 17.78
	1 vs. 51	Significant?	Yes	Yes	-0.7649 to 17.76 No
		95% CL of diff	-115.8 to -47.96		1.113 to 17.72
	1 vs. 54	Significant?	Yes	Yes	Yes
		0E0/ Cl of diff			-0.01104 to 18.55
	1 vs. 57	Significant?	Yes	Yes	No No

	MHC/+ re	eplicate 1			
ANOVA		•	Percent Immobility	Distance	Velocity
ANOVA	F(I	OFn,DFd)	F(17,36)=4.009	F(17,36)=3.138	F(17,36)=2.739
	Ī	o value	0.0002	0.0019	0.0054
	3 vs. 7	95% CI of diff.	-54.90 to 68.55	5308 to 29599	-3.094 to 13.77
	J V3. 1	Significant?	No	Yes	No
	3 vs. 10	95% CI of diff.	-71.37 to 52.07	-9673 to 14618	-7.153 to 9.707
	5 VS. 10	Significant?	No	No	No
	3 vs. 14	95% CI of diff.	-69.39 to 54.06	-8207 to 16084	-5.796 to 11.06
	J VS. 14	Significant?	No	No	No
	3 vs. 16	95% CI of diff.	-58.15 to 65.29	-5456 to 18835	-9.155 to 7.705
	5 VS. 10	Significant?	No	No	No
	3 vs. 17	95% CI of diff.	-59.11 to 64.33	-3100 to 21191	-6.286 to 10.57
	5 VS. 11	Significant?	No	No	No
	3 vs. 21	95% CI of diff.	-81.06 to 42.38	1137 to 25428	-2.964 to 13.89
	J V3. Z1	Significant?	No	Yes	No
	3 vs. 24	95% CI of diff.	-72.05 to 51.39	-1077 to 23214	-4.240 to 12.62
	0 V3. Z-T	Significant?	No	No	No
	3 vs. 29	95% CI of diff.	-87.16 to 36.28	-724.0 to 23567	-7.086 to 9.773
Dunnett's	0 V3. Z3	Significant?		No	No
multiple	3 vs. 31			798.8 to 25090	-0.8969 to 15.96
comparison		Significant?			No
test (a=0.05)	3 vs. 35	95% CI of diff.	-113.0 to 10.44	-102.6 to 24188	-4.017 to 12.84
	0 VS. 00	Significant?		No	No
	3 vs. 38		-105.7 to 17.70	295.6 to 24587	-2.033 to 14.83
	J 43. 00	Significant?			No
	3 vs. 42	95% CI of diff.	-125.8 to -2.370	-1136 to 23156	-6.883 to 9.976
	0 10. 12	Significant?		No	No
	3 vs. 46		-114.1 to 9.301		-0.9674 to 15.89
	0 101 10	Significant?	No	Yes	No
	3 vs. 51		-96.41 to 27.04		
	3 . 3. 0 !	Significant?	No	No	No
	3 vs. 54		-143.6 to -20.17		0.5132 to 17.37
	J . J. U .	Significant?	Yes	Yes	Yes
	3 vs. 57		-129.0 to -5.518		1.024 to 17.88
	J . J. U.	Significant?	Yes	Yes	Yes
	3 vs. 63		-130.1 to -6.665		1.235 to 18.09
	3 . 3. 00	Significant?	Yes	Yes	Yes

	MHC/+ r	eplicate 2			
ANOVA		<u> </u>	Percent Immobility	Distance	Velocity
ANOVA	-		F(16,34)=7.196 <0.0001		F(16,34)=4.114 0.0003
	1 vs. 3	95% CI of diff.	-53.00 to 50.77	-11546 to 13325	-8.025 to 7.409
	1 VS. 3	Significant?	No	No	No
	1 vs. 7	95% CI of diff.	-59.08 to 44.68	-7310 to 17561	-4.874 to 10.56
	1 VS. 1	Significant?	No	No	No
	1 vs. 10	95% CI of diff.	-55.32 to 48.45	-8230 to 16641	-5.594 to 9.840
	1 VS. 10	Significant?	No	No	No
	1 vs. 16	95% CI of diff.	-54.99 to 48.77	-196.0 to 24675	-5.133 to 10.30
	1 VS. 10	Significant?	No	No	No
	1 vs. 21	95% CI of diff.	-67.64 to 36.12	1272 to 26143	-4.939 to 10.50
	1 VS. Z1	Significant?	No	Yes	No
	1 vs. 24	95% CI of diff.	-52.65 to 51.12	-1024 to 23847	-5.944 to 9.490
	1 VS. 24	Significant?	No	No	No
	1 vs. 29	95% CI of diff.	-133.2 to -29.45	8052 to 32923	3.439 to 18.87
	1 VS. 29	Significant?	Yes	Yes	Yes
Dunnett's	1 vs. 31	95% CI of diff.	-81.32 to 22.44	-7448 to 17423	-6.094 to 9.341
multiple		Significant?	No	No	No
comparison	1 I VS. 33	95% CI of diff.	-115.1 to -11.31	4749 to 29620	-1.971 to 13.46
test (a=0.05)		Significant?	Yes	Yes	No
	1 vs. 38	95% CI of diff.	-103.3 to 0.4314	3994 to 28865	0.6628 to 16.10
	ı və. J0	Significant?	No	Yes	Yes
	1 vs. 42	95% CI of diff.	-101.4 to 2.399	539.5 to 25410	-4.215 to 11.22
	1 V3. 72	Significant?	No	Yes	No
	1 vs. 46	95% CI of diff.	-101.0 to 2.775	1923 to 26794	-2.858 to 12.58
	1 V3. 1 0	Significant?	No	Yes	No
	1 vs. 51	95% CI of diff.	-115.9 to -12.11	2465 to 27335	-2.191 to 13.24
	1 43. 31	Significant?	Yes	Yes	No
	1 vs. 54	95% CI of diff.	-139.8 to -36.06	8599 to 33470	3.818 to 19.25
		Significant?	Yes	Yes	Yes
	1 vs. 57	95% CI of diff.	-130.3 to -26.51	7734 to 32605	0.6677 to 16.10
	1 43.01	Significant?	Yes	Yes	Yes
	1 vs. 63		-124.3 to -20.50	6917 to 31788	0.6488 to 16.08
	. vs. oo	Significant?	Yes	Yes	Yes

Supplemental Table 5: One-way ANOVA analysis of change in locomotion with age in females.

	Q25/+ re	plicate 1	-		
			Percent	Distance	Velocity
ANOVA	_,		Immobility		-
			F(21,106)=11.20		
			<0.0001		
	3 vs. 4	Significant?	-30.49 to 35.08		-1.893 to 4.401 No
		•	-20.59 to 25.79	No 1161 to 10373	_
	3 vs. 7	Significant?			Yes
		•	-34.28 to 31.30		
	3 vs. 8	Significant?			No
		•	-31.54 to 34.04		
	3 vs. 9	Significant?			
	0 40	95% CL of diff	-23.63 to 22.74		
	3 vs. 10	Significant?			Yes
	3 vs. 11	95% CI of diff.	-31.64 to 33.93	-4774 to 8252	-1.168 to 5.126
	J VS. 11	Significant?	No	No	No
	3 vs. 14	95% CI of diff.	-18.76 to 27.61	-3325 to 5886	0.2878 to 4.738
	0 V3. 14	Significant?			Yes
	3 vs. 16		-23.35 to 28.50		
		Significant?			
	3 vs. 17		-22.37 to 29.47		
		Significant?			
Dunnett's	3 vs. 21		-24.39 to 27.46		
multiple		Significant?			
comparison	3 vs. 24	Significant?	-33.76 to 18.09 No		
test (a=0.05)		0E0/ Cl of diff	-53.52 to -1.676		
test (u=0.03)	3 vs. 29		Yes		
		_	-29.65 to 22.19		
	3 vs. 31	Significant?	No	No	No
	0 05	05% Cl of diff	-55.27 to -3.421	5808 to 16107	3.480 to 8.456
	3 vs. 35	Significant?	Yes	Yes	Yes
	3 vs. 38	95% CI of diff.	-29.75 to 22.09	-330.9 to 9967	1.357 to 6.333
	5 VS. 50	Significant?	No	No	Yes
	3 vs. 42		-55.03 to -3.187		
	0 101 12	Significant?	Yes	Yes	Yes
	3 vs. 46		-39.88 to 11.97		
		Significant?	No	Yes	Yes
	3 vs. 51		-76.42 to -24.57		
		Significant?	Yes	Yes	Yes
	3 vs. 54	95% Crof diff.	-80.12 to -28.28 Yes	8977 to 19275 Yes	5.522 to 10.50 Yes
		•	res -89.72 to -34.85		
	3 vs. 57	Significant?	Yes	9324 to 20222 Yes	Yes
	_	95% Cl of diff	-112.8 to -47.26		
	3 vs. 63	Significant?		Yes	Yes
		Jigiiiildalit i	103	100	1 03

	Q25/+ re	plicate 2			
41101/4			Percent Immobility	Distance	Velocity
ANOVA	F(DFn,DFd)	F(21,103)=11.58	F(21,103)=13.17	F(21,103)=13.16
	-	p value	, ,	•	, ,
	1 vs. 2	95% CI of diff.	-34.33 to 42.46	-6392 to 7055	-2.736 to 4.420
	1 VS. Z	Significant?	No	No	No
	1 vs. 3	95% CI of diff.	-22.79 to 31.51	-5645 to 3864	-2.754 to 2.307
	1 10.0	Significant?	No	No	No
	1 vs. 6		-70.33 to 6.459		
		Significant?	No	No	No
	1 vs. 7		-24.26 to 30.04		
		Significant?		No	No
	1 vs. 8		-30.00 to 46.79		
		Significant?	No	No - 24202	No
	1 vs. 9		-39.36 to 37.43		
		Significant?	No -24.62 to 29.68	Yes	No 0.6222 to 4.427
	1 vs. 10	Significant?		-2005 to 6904 No	No
		05% CL of diff	-33.18 to 43.61	_	-
	1 vs. 13	Significant?		No	No
		95% CL of diff	-24.87 to 35.84		-0.9260 to 4.732
	1 vs. 16	Significant?	No	Yes	No
		95% CL of diff	-27.41 to 33.30		_
Dunnett's	1 vs. 21	Significant?		Yes	No
multiple	1 04	05% CL of diff	-27.60 to 33.11	2304 to 12934	-1.789 to 3.869
comparison	1 vs. 24	Significant?	No	Yes	No
test (a=0.05)	1 vs. 29	95% CI of diff.	-38.46 to 22.24	387.0 to 11018	1.014 to 6.672
	1 VS. 23	Significant?	No	Yes	Yes
	1 vs. 31	95% CI of diff.	-36.25 to 24.46	-3070 to 7561	-1.834 to 3.823
	1 43.01	Significant?		No	No
	1 vs. 35		-39.46 to 21.25		
		Significant?	No	Yes	Yes
	1 vs. 38		-63.48 to -2.769		
		Significant?	Yes	Yes	Yes
	1 vs. 42		-68.60 to -7.895		
		Significant?	Yes	Yes	Yes
	1 vs. 46		-67.61 to -6.899		
		Significant?	Yes	Yes	Yes
	1 vs. 51	Significant?	-104.9 to -44.23 Yes	Yes	4.834 to 10.49 Yes
		95% CL of diff	-88.78 to -28.07		
	1 vs. 54	Significant?	Yes	Yes	4.492 to 10.13
		95% CL of diff	-99.63 to -35.38		
	1 vs. 57	Significant?	Yes	Yes	Yes
		95% CL of diff	-119.3 to -42.50		
	1 vs. 63	Significant?		Yes	Yes

	Q72/X re	plicate 1			
	F(DFn,DFd) F		Percent Immobility	Distance	Velocity
ANOVA			•	F(21,107)=15.83	F(21,107)=20.69
	_	p value	<0.0001		
	3 vs. 4	95% CI of diff.	-37.83 to 25.14	-5317 to 8228	-2.533 to 4.089
	J VS. 4	Significant?	No	No	No
	3 vs. 7	95% CI of diff.	-15.78 to 28.75	767.4 to 10345	0.2971 to 4.980
	0 10. 1	Significant?	No	Yes	Yes
	3 vs. 8		-33.28 to 29.69		
		Significant?	No	No	No
	3 vs. 9		-27.31 to 35.66		
		Significant?		No	No
	3 vs. 10		-25.56 to 18.97		
		Significant?	No	No	Yes
	3 vs. 11		-29.26 to 33.71		
		Significant?		No	No
	3 vs. 14		-16.53 to 28.00		
		Significant?	No -27.00 to 22.79	No 4611 to 15310	No 0.2225 to 5.458
	3 vs. 16	Significant?	No	Yes	Yes
		95% Cl of diff	-20.46 to 29.32		
	3 vs. 17	Significant?	No	Yes	No
		•	-21.10 to 28.69		_
Dunnett's	3 vs. 21	Significant?		Yes	Yes
multiple		05% CL of diff	-27.35 to 22.43		
comparison	3 vs. 24	Significant?	No	Yes	Yes
test (a=0.05)		05% Cl of diff	-41.14 to 8.646		
1001 (11 0100)	3 vs. 29	Significant?	No	Yes	Yes
	0 01	•	-54.49 to -4.703	4431 to 15139	3.660 to 8.896
	3 vs. 31	Significant?	Yes	Yes	Yes
	3 vs. 35	95% Cl of diff.	-51.00 to -1.215	5642 to 16350	3.796 to 9.031
	3 VS. 33	Significant?	Yes	Yes	Yes
	3 vs. 38	95% CI of diff.	-61.59 to -11.80	6535 to 17243	5.006 to 10.24
	5 VS. 50	Significant?	Yes	Yes	Yes
	3 vs. 42		-100.9 to -51.16	10701 to 21409	6.715 to 11.95
	0 10. 12	Significant?	Yes	Yes	Yes
	3 vs. 46		-66.51 to -16.73		
		Significant?	Yes	Yes	Yes
	3 vs. 51		-86.44 to -36.66		
		Significant?	Yes	Yes	Yes
	3 vs. 54		-87.39 to -37.61		
		Significant?	Yes	Yes	Yes
	3 vs. 57		-85.73 to -35.95		
		Significant?	Yes	Yes	Yes
	3 vs. 63	95% Crof diff. Significant?	-106.9 to -43.93 Yes	9098 to 22643 Yes	6.194 to 12.82 Yes
		Significant?	162	165	1 C S

	Q72/X re	eplicate 2			
			Percent Immobility	Distance	Velocity
ANOVA	F(DFn.DFd)	F(21,102)=15.74	F(21.102)=13.73	F(21.102)=5.692
	`	p value	<0.0001	` ' '	` ' '
	1 vs. 2	95% CI of diff.	-29.28 to 42.98	-8646 to 5424	-6.657 to 6.096
	I VS. Z	Significant?	No	No	No
	1 vs. 3	95% CI of diff.	-20.91 to 30.19	-5554 to 4395	-4.389 to 4.629
	1 VS. 5	Significant?	No	No	No
	1 vs. 6	95% CI of diff.	-36.21 to 36.05	-6584 to 7486	-5.865 to 6.888
	1 70.0	Significant?	No	No	No
	1 vs. 7		-29.23 to 21.86		
		Significant?		No	No
	1 vs. 8		-33.56 to 38.70		
		Significant?	No	No	No
	1 vs. 9		-42.59 to 29.67		
		Significant?		No	No
	1 vs. 10		-18.20 to 32.89		
		Significant?	No	No	No
	1 vs. 13		-27.18 to 45.08		
		Significant?		No	No
	1 vs. 16		-26.93 to 30.20 No	Yes	-3.025 to 7.057 No
		Significant?	-20.36 to 36.76		
Dunnett's	1 vs. 21	Significant?		Yes	-3.162 to 6.901 No
multiple		05% CL of diff	-21.21 to 35.92		
comparison	1 vs. 24	Significant?	No	Yes	No
test (a=0.05)		05% CL of diff	-59.52 to -2.396		
1001 (u=0.00)	1 vs. 29	Significant?		Yes	Yes
		95% CL of diff	-66.70 to -9.580		
	1 vs. 31	Significant?	Yes	Yes	No
	4 05	05% CL of diff	-52.64 to 4.480	4081 to 15205	0.9040 to 10.99
	1 vs. 35	Significant?	No	Yes	Yes
	1 vs. 38	95% CI of diff.	-52.04 to 5.083	2877 to 14001	0.6901 to 10.77
	1 VS. 30	Significant?	No	Yes	Yes
	1 vs. 42	95% CI of diff.	-79.57 to -22.45	3312 to 14436	-3.051 to 7.031
	1 V3. 72	Significant?	Yes	Yes	No
	1 vs. 46	95% CI of diff.	-76.81 to -19.68	6778 to 17901	2.058 to 12.14
	1 70. 10	Significant?	Yes	Yes	Yes
	1 vs. 51		-105.8 to -48.65		
		Significant?	Yes	Yes	Yes
	1 vs. 54	i	-107.7 to -50.60		
		Significant?	Yes	Yes	Yes
	1 vs. 57		-104.2 to -43.78		
		Significant?	Yes	Yes	Yes
	1 vs. 63		-99.45 to -14.72		
		Significant?	Yes	Yes	Yes

	DJ694/+	replicate 1			
ANOVA			Percent Immobility	Distance	Velocity
ANOVA	F(I	DFn,DFd)	F(16,34)=5.492	F(16,34)=8.481	F(16,34)=3.345
	- '		<0.0001	<0.0001	0.0015
	3 vs. 7	95% CI of diff.	-42.94 to 62.05	8344 to 24694	-2.187 to 12.07
	3 VS. 7	Significant?	No	Yes	No
	3 vs. 10	95% CI of diff.	-46.85 to 58.14	-9730 to 6620	-6.412 to 7.842
	5 VS. 10	Significant?	No	No	No
	3 vs. 14	95% CI of diff.	-51.70 to 53.29	-7493 to 8857	-5.830 to 8.424
	J V3. 14	Significant?	No	No	No
	3 vs. 16	95% CI of diff.	-50.39 to 54.60	2023 to 18373	-3.410 to 10.84
	3 VS. 10	Significant?	No	Yes	No
	3 vs. 17	95% CI of diff.	-71.82 to 33.18	3061 to 19411	-3.763 to 10.49
	3 VS. 17	Significant?	No	Yes	No
	3 vs. 21	95% CI of diff.	-54.95 to 50.05	1783 to 18133	-4.119 to 10.13
	3 VS. ZI	Significant?	No	Yes	No
	3 vs. 24	95% CI of diff.	-67.57 to 37.43	3183 to 19533	-2.858 to 11.40
	3 VS. 24	Significant?	No	Yes	No
Dunnett's	3 vs. 29	95% CI of diff.	-90.33 to 14.67	4214 to 20564	-3.185 to 11.07
multiple		Significant?	No	Yes	No
comparison	3 vs. 31	95% CI of diff.	-94.07 to 10.92	2689 to 19039	-1.538 to 12.72
test (a=0.05)	3 VS. 31	Significant?	No	Yes	No
, ,	2 1/2 25	95% CI of diff.	-80.06 to 24.94	1364 to 17715	-0.9234 to 13.33
	3 vs. 35	Significant?	No	Yes	No
	3 vs. 38	95% CI of diff.	-84.09 to 20.90	2388 to 18738	-0.4877 to 13.77
	3 VS. 30	Significant?	No	Yes	No
	3 vs. 42	95% CI of diff.	-100.2 to 4.788	4255 to 20605	-0.02897 to 14.22
	3 VS. 42	Significant?	No	Yes	No
	2 40 46	95% CI of diff.	-120.8 to -15.84	7418 to 23769	1.752 to 16.01
	3 vs. 46	Significant?	Yes	Yes	Yes
	3 vs. 51	95% CI of diff.	-90.99 to 14.00	3699 to 20050	-0.2787 to 13.98
		Significant?	No	Yes	No
		95% CI of diff.	-127.3 to -22.27	8188 to 24538	2.644 to 16.90
	3 vs. 54	Significant?	Yes	Yes	Yes
	2 vc 57	95% CI of diff.	-133.0 to -28.03	8580 to 24930	3.581 to 17.83
	3 vs. 57	Significant?	Yes	Yes	Yes

	DJ694/+	replicate 2			
		•	Percent	Distance	Velocity
ANOVA			Immobility	Distance	Velocity
ANOVA	F(I	DFn,DFd)	F(15,31)=22.03	F(15,31)=14.02	F(15,31)=6.386
		p value			<0.0001
	1 vs. 3	95% CI of diff.	-59.45 to 4.843	-219.5 to 16475	-4.478 to 10.67
	1 VS. 3	Significant?	No	No	No
	1 vs. 7	95% CI of diff.	-33.77 to 30.53	-8836 to 7859	-8.050 to 7.102
	1 73.7	Significant?		No	No
	1 vs. 10	95% CI of diff.	-36.12 to 28.18	-8484 to 8211	-8.264 to 6.887
	1 43. 10	Significant?	No	No	No
	1 vs. 16	95% CI of diff.	-33.84 to 30.46	1496 to 18190	-6.406 to 8.745
	1 43. 10	Significant?	No	Yes	No
	1 vs. 21	95% CI of diff.	-34.54 to 29.76	3217 to 19911	-4.364 to 10.79
	1 43. 21	Significant?	No	Yes	No
	1 vs. 24	95% CI of diff.	-37.48 to 26.82	3350 to 20045	-4.277 to 10.88
		Significant?	No	Yes	No
_	1 vs. 29	95% CI of diff.	-116.4 to -52.15	9927 to 26622	1.613 to 16.76
Dunnett's		Significant?	Yes	Yes	Yes
multiple	1 vs. 31	95% CI of diff.	-33.41 to 30.88	-9927 to 6767	-8.969 to 6.183
comparison	1 43.01	Significant?	No	No	No
test (a=0.05)	1 vs. 35	95% CI of diff.	-98.25 to -33.96	7849 to 24544	-0.06367 to 15.09
	1 43.00	Significant?	Yes	Yes	No
	1 vs. 38	95% CI of diff.	-73.03 to -8.732	5540 to 22235	0.7232 to 15.87
	1 43.00	Significant?	Yes	Yes	Yes
	1 vs. 42	95% CI of diff.	-93.20 to -28.90	4057 to 20751	-5.925 to 9.227
	1 10. 12	Significant?	Yes	Yes	No
	1 vs. 46		-105.1 to -40.78	9584 to 26278	2.428 to 17.58
		Significant?	Yes	Yes	Yes
	1 vs. 51	95% CI of diff.	-111.9 to -47.65	9705 to 26399	2.935 to 18.09
		Significant?	Yes	Yes	Yes
	1 vs. 54		-117.5 to -53.21	10079 to 26773	3.113 to 18.26
		Significant?	Yes	Yes	Yes
	1 vs. 57		-114.5 to -42.59		1.796 to 18.74
	1 43.01	Significant?	Yes	Yes	Yes

	MHC/+ r	eplicate 1			
ANOVA		•	Percent Immobility	Distance	Velocity
ANOVA	F(I	DFn,DFd)	•	F(17,35)=17.76	F(17,35)=15.44
	Ī	p value	< 0.0001	< 0.0001	< 0.0001
	3 vs. 7	95% CI of diff.	-55.34 to 35.03	560.2 to 11265).003162 to 7.082
	3 VS. 7	Significant?	No	Yes	Yes
	3 vs. 10	95% CI of diff.	-53.61 to 36.76	-984.2 to 9721	-0.8411 to 6.238
	5 VS. 10	Significant?	No	No	No
	3 vs. 14	95% CI of diff.	-55.76 to 34.61	1976 to 12681	0.7832 to 7.862
	J V3. 14	Significant?	No	Yes	Yes
	3 vs. 16	95% CI of diff.	-49.55 to 40.83	6362 to 17067	-1.515 to 5.564
	5 VS. 10	Significant?	No	Yes	No
	3 vs. 17	95% CI of diff.	-50.11 to 40.27	5988 to 16693	-0.6916 to 6.387
	3 VS. 17	Significant?	No	Yes	No
	3 vs. 21	95% CI of diff.	-53.84 to 36.53	8552 to 19257	1.817 to 8.896
	J VS. Z I	Significant?	No	Yes	Yes
	3 vs. 24	95% CI of diff.	-53.28 to 37.09	7200 to 17905	0.4462 to 7.525
	J V3. 24	Significant?	No	Yes	Yes
	3 vs. 29	95% CI of diff.	-96.27 to -5.899	12162 to 22867	3.642 to 10.72
Dunnett's	5 VS. 25	Significant?	Yes	Yes	Yes
multiple	3 vs. 31	95% CI of diff.	-60.64 to 29.73	4049 to 14754	1.412 to 8.491
comparison	J VS. J1	Significant?	No	Yes	Yes
test (a=0.05)	3 vs. 35	95% CI of diff.	-100.5 to -10.13	11004 to 21709	5.310 to 12.39
	J VS. JJ	Significant?	Yes	Yes	Yes
	3 vs. 38	95% CI of diff.	-65.59 to 24.79	6916 to 17621	3.657 to 10.74
	3 VS. 38	Significant?	No	Yes	Yes
	3 vs. 42	95% CI of diff.	-87.61 to 2.762	11135 to 21840	6.528 to 13.61
	J V3. 72	Significant?	No	Yes	Yes
	3 vs. 46	95% CI of diff.	-98.95 to -8.572	11593 to 22298	6.385 to 13.46
	J V3. 70	Significant?	Yes	Yes	Yes
	3 vs. 51	95% CI of diff.	-63.79 to 26.59	5539 to 16244	2.746 to 9.825
	5 43. 51	Significant?	No	Yes	Yes
	3 vs. 54	95% CI of diff.	-126.3 to -25.28	12999 to 24968	7.340 to 15.25
	J 13. JT	Significant?	Yes	Yes	Yes
	3 vs. 57	95% CI of diff.	-114.2 to -23.78	11645 to 22350	5.050 to 12.13
	5 15. 01	Significant?	Yes	Yes	Yes
	3 vs. 63		-125.7 to -35.32		
	5 13. 00	Significant?	Yes	Yes	Yes

	MHC/+ r	eplicate 2			
ANOVA			Percent Immobility	Distance	Velocity
ANOVA	F(I	DFn,DFd)	F(16,32)=8.236	F(16,32)=3.518	F(16,32)=2.209
		p value	< 0.0001	0.0012	0.0276
	1 vs. 3	95% CI of diff.	-38.41 to 53.21	-13809 to 13059	-10.09 to 10.55
	1 43. 5	Significant?	No	No	No
	1 vs. 7	95% CI of diff.	-37.81 to 53.80	-13147 to 13721	-9.073 to 11.56
	1 VS. 1	Significant?	No	No	No
	1 vs. 10	95% CI of diff.	-32.88 to 58.74	-11616 to 15252	-7.583 to 13.05
	1 VS. 10	Significant?	No	No	No
	1 vs. 16	95% CI of diff.	-28.50 to 63.12	-7606 to 19262	-10.33 to 10.30
	1 VS. 10	Significant?	No	No	No
	1 vs. 21	95% CI of diff.	-66.42 to 25.19	-554.7 to 26313	-3.356 to 17.28
	1 VS. Z1	Significant?	No	No	No
	1 vs. 24	95% CI of diff.	-34.94 to 56.67	-4299 to 22569	-7.027 to 13.61
	1 VS. 24	Significant?	No	No	No
	1 vs. 29	95% CI of diff.	-65.98 to 25.63	-2508 to 24360	-3.765 to 16.87
	1 VS. 29	Significant?	No	No	No
Dunnett's	1 vs. 31	95% CI of diff.	-50.71 to 40.91	-9121 to 17747	-8.060 to 12.57
multiple		Significant?	No	No	No
comparison	1 I VS. 33	95% CI of diff.	-102.4 to -10.78	1192 to 28060	-1.905 to 18.73
test (a=0.05)		Significant?	Yes	Yes	No
, ,	1 vs. 38	95% CI of diff.	-84.93 to 6.684	-884.2 to 25984	-1.113 to 19.52
		Significant?	No	No	No
	4 40	95% CI of diff.	-102.3 to -10.72	1081 to 27949	-2.199 to 18.43
	1 vs. 42	Significant?	Yes	Yes	No
	1 vs. 46	95% CI of diff.	-88.09 to 3.524	-919.9 to 25948	-3.059 to 17.57
	1 VS. 40	Significant?	No	No	No
	1 vo E1	95% CI of diff.	-119.9 to -17.43	479.2 to 30518	-3.066 to 20.00
	1 vs. 51	Significant?	Yes	Yes	No
	1 vo 54	95% CI of diff.	-108.3 to -16.69	2273 to 29141	-2.177 to 18.46
	1 vs. 54	Significant?	Yes	Yes	No
	1 vo 57	95% CI of diff.	-117.4 to -14.97	-15143 to 14896	-14.19 to 8.875
	1 vs. 57	Significant?	Yes	No	No
	1 vc 60	95% CI of diff.	-103.8 to -12.16	-7023 to 19845	-6.068 to 14.57
	1 vs. 63	Significant?	Yes	No	No

DATA EXTRACTION SCRIPT

```
%Loading in data and setting up initial parameters
% Replace ArenaConfigsMHCMale by the name of your configuration file
load("ArenaConfigsMHCMale")
% Change frametonalyze value to accommodate length of analyzed video file, 5400: 3 min at 30 frames/s
frametoanalyze=5400;
trkdatasize=size(trk.data);
Numberofarena=trkdatasize(1,1);
% Remove or add 'number' to the required number of configurations
Arenaconfig=menu('Choose Configuration','1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16');
% Replace ArenaConfigsMHCMale by the name of your configuration file
Configuration=ArenaConfigsMHCMale(1:48, Arenaconfig+1);
Conf=table2array(Configuration);
prompt={'Enter Age'};
title="Input";
dims=[1 40];
AgeAsText=inputdlg(prompt, title, dims);
Age=str2double(AgeAsText);
prompt={'Starting Arena'};
title="Input";
dims=[1 40];
ArenaAsText=inputdlg(prompt, title, dims);
Arena=str2double(ArenaAsText);
flydata=zeros(frametoanalyze+2,Numberofarena*4);
%Extracting data of interest and forming an array
for i=1:Numberofarena
    %Setting up starting points for calculations
    framenumber=frametoanalyze;
    distance=0;
    timeimmobile=0;
    velocity=0;
    VelocityFrames=5399;
    %Calculating data of interest
        for j=2:frametoanalyze
            if or(isnan(trk.data(i,j,2)),isnan(trk.data(i,j-1,2)))
            else
                distance=distance+sqrt((trk.data(i,j-1,2)-trk.data(i,j,2))^2+(trk.data(i,j-1,1)-trk.data(i,j,1))^2);
```

```
end
            if or(isnan(feat.data(i,j,1)),isnan(trk.data(i,j,2)))
                VelocityFrames=VelocityFrames-1;
            else
                if feat.data(i,j,1)<1</pre>
                    timeimmobile=timeimmobile+1;
                else
                velocity=velocity+feat.data(i,j,1);
            end
        end
        %Calculating numbers of frames to analyze
   for j=1:frametoanalyze
        if or(isnan(trk.data(i,j,1)),isnan(trk.data(i,j,2)))
            framenumber=framenumber-1;
        end
        %Extracting x, y, velocity, and distance and placing them in to
        %their respective columns. Adds data of interest at the bottom.
        flydata(:,(4*(i-1)+1))=[trk.data(i,1:frametoanalyze,1),framenumber,0]';
        flydata(:,(4*(i-1)+2))=[trk.data(i,1:frametoanalyze,2),distance,VelocityFrames]';
        flydata(:,(4*(i-1)+3))=[feat.data(i,1:frametoanalyze,1),timeimmobile,velocity/(VelocityFrames-timeimmobile)]';
        flydata(:,(4*(i-1)+4))=[feat.data(i,1:frametoanalyze,9),0,0]';
    end
end
%Processing Data and compiling in to a table
flyprocesseddata=cell(Numberofarena,8);
for i=1:Numberofarena
flyprocesseddata(i,1)={Conf(((i-1)+Arena),1)};
flyprocesseddata(i,2)={"Male"};
flyprocesseddata(i,3)={Age};
flyprocesseddata(i,4)={Arena+(i-1)};
flyprocesseddata(i,5)={flydata(5401,(4*(i-1)+1))};
flyprocesseddata(i,6)={((flydata(5401,(4*(i-1)+3)))/VelocityFrames)*100};
flyprocesseddata(i,7)={flydata(5401,(4*(i-1)+2))};
flyprocesseddata(i,8)={flydata(5402,(4*(i-1)+3))};
end
%Sets up table with variable names
FlyFinal=cell2table(flyprocesseddata,...
    'VariableNames', {'Genotype', 'Gender', 'Age', 'Arena', 'Frames', 'PercentImmobile', 'Distance', 'Velocity'});
```

```
%Writing to file
if i==1
   %If analyzing data from a single arena, arena number added to name of file
   % Replace MHC Male by the desired name for the saved file
   FileName=strcat("MHC Male",cell2mat(AgeAsText),cell2mat(ArenaAsText),".xls");
else
    % Replace MHC Male by the desired name for the saved file
   FileName=strcat("MHC Male",cell2mat(AgeAsText),".xls");
end
%Prompting save path
[file,path]=uiputfile(FileName);
CSVFileName=strcat(path, 'Flydata', FileName);
FileName=strcat(path,file);
writetable(FlyFinal,FileName);
xlswrite(CSVFileName,flydata)
END OF DATA EXTRACTION SCRIPT
```

DATA COMPILATION SCRIPT

```
dname = uigetdir();
Filelist=struct2table(dir(dname));
FileList=Filelist(Filelist.isdir==false, 'name');
FileList2=Filelist(endsWith(Filelist.name, '.xls'), 'name');
DirSize=size(FileList2);
FileName=strcat(dname, "/", cell2mat(FileList2{1,1}));
Compilation=readtable(FileName);
for i=2:DirSize(1,1)
    FileName=strcat(dname, "/", cell2mat(FileList2{i,1}));
    Compilation=[Compilation; readtable(FileName)];
end
FileName=strcat(dname, "/Compilation.xls");
writetable(Compilation, FileName)
END OF DATA COMPILATION SCRIPT
```