(19)日本国特許庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-128950

(43)公開日 平成5年(1993)5月25日

(51)Int.Cl.5

識別記号 庁内整理番号 FΙ

技術表示箇所

H01H 37/76

K 7250-5G

L 7250-5G

審査請求 未請求 請求項の数7(全 6 頁)

(21)出願番号

特願平3-333921

(22)出願日

平成3年(1991)11月22日

(31)優先権主張番号 実願平3-82270

(32)優先日

平3(1991)9月13日

(33)優先権主張国

日本(JP)

(71)出願人 000129529

株式会社クラベ

静岡県浜松市高塚町4830番地

(72)発明者 和田 一志

静岡県浜松市高塚町4830番地株式会社クラ

(72)発明者 森本 慶洋

静岡県浜松市高塚町4830番地株式会社クラ

ベ内

(72)発明者 吉嶺 修一

静岡県浜松市高塚町4830番地株式会社クラ

ベ内

最終質に続く

(54)【発明の名称】 コード状温度ヒユーズと面状温度ヒユーズ

(57)【要約】

【目的】 異常高温によって確実に断線し、しかも断線 後にも溶解した導電体などによって再接触を起こさず、 誤動作を招かないコード状温度ヒューズと面状温度ヒュ ーズを提供する。

【構成】 1000デニールのガラス糸にシリコーンワ ニス処理を施してなる抗張力体1aの周囲に、弾性材料 1bとして1mm×1mmの4角形断面のシリコーンゴ ムを押出被覆し、弾性芯1を製造する。この弾性芯1の 角に0.2mmφの共晶半田線からなる導電体細線2を 充分食い込ませて15回/10mm横巻する。繊維径約 9ミクロンの無アルカリガラス糸を撚り合せて約600 デニールとした繊維束を、16打の製紐機で編組密度約 17で編組し空間層4(編組層)を形成する。最後に、 シリコーンゴムを肉厚0.5mmで水冷しながら押出被 覆し、直ちに熱風加硫を施して絶縁被覆5を形成する。

【特許請求の範囲】

【請求項1】 長手方向に連続した弾性芯と該弾性芯上 に巻回された所定の温度で溶解する導電体細線とからな る中心材と、その直上に形成された空間層と、絶縁被覆 からなることを特徴とするコード状温度ヒューズ。

【請求項2】 請求項1記載のコード状温度ヒューズにおいて、上記空間層が、繊維束を編組することにより形成された層であることを特徴とするコード状温度ヒューズ。

【請求項3】 請求項1記載のコード状温度ヒューズに 10 おいて、上記空間層が、繊維束を疎に編組することにより形成された層であり、しかも同回転方向の繊維束の間隔が該繊維束の幅の0.5倍以上8倍以下になるように編組されたことを特徴とするコード状温度ヒューズ。

【請求項4】 請求項1記載のコード状温度ヒューズにおいて、上記空間層が、繊維束を一回または複数回疎に横巻することにより形成されたことを特徴とするコード状温度ヒューズ。

【請求項5】 請求項1記載のコード状温度ヒューズにおいて、上記空間層が、繊維束を該繊維束の幅の0.3 倍以上5倍以下の間隔を開けて一回または複数回横巻することにより形成されたことを特徴とするコード状温度ヒューズ。

【請求項6】 請求項1または請求項2または請求項4 記載の温度ヒューズにおいて、上記弾性芯が、放射方向 に複数の凸部を有していることを特徴とするコード状温 度ヒューズ。

【請求項7】 平面上に蛇行状態に配設された請求項1 または請求項2または請求項4または請求項6記載のコード状温度ヒューズと、上記コード状温度ヒューズの配 30 設状態を固定する手段とからなることを特徴とする面状 温度ヒューズ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、異常な高温に一部分でも晒されることにより断線し、検知することができるコード状の温度ヒューズと面状の温度ヒューズに関する。 【0002】

【従来の技術】従来から異常な高温を検知するために、安全装置として温度ヒューズが使用されてきた。しかし、異常な温度になる可能性のある場所が比較的大きな領域で存在する場合には、一点の検知しかしない温度ヒューズでは図7に示すようなアッセンブリを組んでいた。図中、符号12は温度ヒューズであり、リード線14と接続子13によって接続されている。これらは、保護チューブ15によって機械的に保護されている。しかし、これでも特に異常温度になると危険な用途には不十分であるためコード状のものが考えられてきた。

【0003】従来のコード状温度ヒューズとしては、例である。これには通常の多角形のほか、星型のような形えば図8に示すようなものがある。心材16に巻回され 50 状も含まれる。また、星型、多角形は、一般的にはっき

た内側電極17と、外側電極19との間には、所定の温度で溶解、軟化する樹脂18が押出成形などにより形成されており、異常な高温によりこの樹脂18が溶解、軟化することにより内側電極17と外側電極19が接触して検知する。樹脂としては融点付近で急激に軟化するナイロン12等が用いられていた。尚、図中の符号20は絶縁被覆である。

[0004]

【発明が解決しようとする課題】しかしながら上記のように構成された従来のコード状温度ヒューズは、ある程度の圧縮力がかかるところでないと確実に動作しないため用途が限られてしまうという問題があった。また、従来では2次元で異常温度を検知する面状の温度ヒューズも知られてはいなかった。

【0005】本発明はこのような点に基づいてなされたものでその目的とするところは、圧縮力がかからないところでも、異常高温によって確実に断線し、しかも断線後にも溶解した導電体などによって再接触を起こさず、誤動作を招かないコード状温度ヒューズと、同様な特徴を有する面状温度ヒューズを提供することにある。

[0006]

【課題を解決するための手段】上記目的を達成するべく 本発明によるコード状温度ヒューズは、長手方向に連続 した弾性芯と該弾性芯上に巻回された所定の温度で溶解 する導電体細線とからなる中心材と、その直上に形成さ れた空間層と、絶縁被覆からなることを特徴とするもの である。上記空間層としては、繊維束を疎に編組するこ とにより形成された層であり、しかも同回転方向の繊維 束の間隔が該繊維束の幅の0.5倍以上8倍以下になる ように編組されたものや、繊維束を疎に横巻することに よって形成された層であり、しかも繊維束の幅の0.3 倍以上5倍以下の間隔を開けて一回または複数回横巻す ることにより形成されたものが考えられる。また好まし くは弾性芯が、放射方向に複数の凸部を有する断面形状 であるものも考えられる。更に、これらのコード状温度 ヒューズを平面上に蛇行状態に配設し、この配設状態を 固定する手段を用いて面状温度ヒューズとすることも考

【0007】弾性芯は、中心の抗張力体の周りに弾性材料が被覆された構造である。抗張力体としてはガラス繊維、アルミナ繊維等の無機繊維、ポリエチレンテレフタレート繊維、芳香族ポリエステル繊維、脂肪族ポリアミド繊維、芳香族ポリアミド繊維等の有機繊維、ステンレス鋼繊維等の金属繊維が用いられる。これらの周りに被覆される弾性材料としては、一般的なエラストマー材料であれば何でも良い。

【0008】弾性芯の断面形状は特に制限はされないが、好ましくは放射方向に複数の凸部を有する断面形状である。これには通常の多角形のほか、星型のような形状も含まれる。また、星型 多角形は 一般的にはっき

りした角を持つ形状であるが、ここでは角が丸くつぶれた形状であっても良い。これらは円形断面の場合に比べて導電体細線が弾性芯に食い込み易く、導電体細線が溶解した時により速やかに切れるため好ましい。断面形状として多角形とした場合、導電体細線の食い込み易さから6角形以下が好ましく選ばれる。

【0009】導電体細線としては低融点合金及び半田からなる群より選ばれた金属細線が用いられる。低融点合金及び半田としては、例えば化学便覧基礎編(丸善刊、改訂3版、1984年刊)I-509ページに例が示されている中の、融点が300℃以下のものである。導電体細線の直径としては、一般的な横巻機械によって弾性芯に巻回し可能な0.04mm以上0.5mm以下が好ましい。弾性芯に導電体細線を、少なくとも弾性芯に導電細線がずれない程度のテンションで巻回して、中心材とする。導電体細線が巻回されるピッチとしては、線径の1.5倍以上が好ましく、更に好ましくは2倍以上15倍以下である。また何本か導電体細線を引き揃えて巻回す集合機巻を行っても良い。

【0010】空間層は、中心材が弾性芯の断面積、横巻 条件などを調節することによって多角形に近い形状とな っている場合は、単に絶縁層を、当業者間で公知のいわ ゆるチュービングの手法で同心円状に密着させずに押し 出せば形成される。その他の方法として空間層は、繊維 束を疎に編組することにより形成される。好ましくは、 同回転方向の繊維束の間隔が該繊維束の幅の0.5倍以 上8倍以下になるように調整される。また、繊維束を疎 に横巻することによって形成され、好ましくは繊維束を 該繊維束の幅の0.3倍以上5倍以下の間隔を開けて横 巻することにより形成される。ここで疎な編組または横 30 巻とは繊維間にある程度の空間を残した編組または横巻 をいう。編組、横巻いずれの場合も、繊維束の間隔が上 記の好ましい範囲の下限よりも狭いと空間の量が充分で なくなり、溶解した導電体細線が心材の周りにあるた め、チャタリングを起こし再接触の危険があり好ましく なく、また上記の上限よりも大きいと絶縁被覆材が間に 入り込みかえって空間の量を少なくしてしまうため好ま しくない。繊維の種類としては、上記弾性芯の抗張力体 で例示した無機繊維または有機繊維が用いられるが、好 ましくは難燃性の芳香族ポリエステル繊維、芳香族ポリ アミド繊維、ポリフェニレンサルファイド繊維、不燃性 のガラス繊維、アルミナ繊維などが用いられる。もちろ ん編組や横巻は、2重、3重以上施しても良い。

【0011】絶縁被覆は、温度ヒューズが使用される雰囲気温度や導電体細線の溶解温度に応じて任意に選択すれば良いが、絶縁被覆を被覆する際に導電体細線が溶解しないようにする必要がある。そのような絶縁被覆としては、例えば比較的低温で加工できるエチレン系共重合体などの熱可塑性ポリマーを電子線架橋、シラン架橋などの低温でできる架橋法で架橋して形成するか、常温付50

近で押出加工でき、比較的低温で架橋できるシリコーンゴムを使用して形成する。また、編組を絶縁ワニスで目どめしたものを絶縁材料としても良い。特にシリコーンゴムを用いた場合は、絶縁被覆の機械強度を高めるため、外装に編組を施しても良い。上記は連続的に絶縁被覆する方法の例であるが、長尺でなくても良い場合は絶縁チューブ、好ましくは収縮性絶縁チューブを単にかぶせることで代用することもできる。絶縁被覆の厚さは、電気絶縁性、機械的強度等の必要特性が満たされるものであれば、薄肉である方が感度が増し好ましい。

4

【0012】これらのコード状温度ヒューズを任意の蛇行状態に配設し、この配設状態を固定する手段を用いて面状温度ヒューズが製造できる。固定する手段としては、基板または基布に縫いつける方法や接着剤を用いて固定する方法などが挙げられるが、好ましくは特公昭62-44394号公報または特公昭62-62032号公報に挙げられた手段を用いる。これらには、それぞれ金属箔上に両面接着紙によって固定する方法、接着剤を塗布した金属板または金属箔に熱融着する方法について記述されている。

[0013]

【作用】本発明によれば、空間層があるので低融点の導電体細線が溶解した時に、溶解した導電体が空間層に保持されるので、再接触の危険を避けることができる。また、弾性芯の断面形状を、放射方向に複数の凸部を有する形状にすると弾性芯の反発力によって導電体細線が容易に早く断線し感度が良好となる。

[0014]

【実施例】以下に実施例を示し本発明の内容を更に詳細 60 に説明するが、本発明は実施例によって制限されるもの ではない。

【0015】《実施例1》実施例1としては、図1に示 すコード状温度ヒューズを製造した。1000デニール のガラス糸にシリコーンワニス処理を施してなる抗張力 体1aの周囲に、弾性材料1bとして1mm×1mmの 4角形断面のシリコーンゴムを押出被覆し、弾性芯1を 製造した。この弾性芯1の角に、0.2mmφの共晶半 田線(融点183℃)からなる導電体細線2を充分食い 込ませて15回/10mm横巻 (線径の3.3倍のピッ チ)した。横巻を終えた中心材3は食い込みにより変形 し円形断面に近い形になっていた。次に、繊維径約95 クロンの無アルカリガラス糸を撚り合わせて約600デ ニールとした繊維束を、16打の製紐機で編組密度約1 7で編組し空間層4(編組層)を形成した。この場合、 繊維束の幅は約0.5mmであり、図中の(a)で示さ れる繊維束の間隔は約1mm (繊維束の幅の約2倍)で ある。最後に、絶縁被覆5としてシリコーンゴムを肉厚 0.5mmで水冷しながら押し出し、直ちに熱風加硫を 施した。熱風加硫に際しては、熱風炉の出口付近の温度 を170℃以下とした。

【0016】このようにして製造されたコード状温度ヒー ユーズ約1mを、直径30cmの円筒に軽く巻き付け1 ○○V交流電源から外部負荷を調整し、○.1A程度の 電流を流しながら一部分に約200℃の熱風を当てて導 電体細線が断線するまでの時間を測定した。外部負荷に は白熱電球を加え、どの様に断線するかも観察した。こ れを5回繰り返した。また、断線したコード状温度ヒュ ーズにデジタルマルチメーターを接続し、断線部を屈曲 させ断線部が再接触を起こす可能性の有無を調べた。そ の結果、5回の測定で、いずれも40秒から80秒で断 10 線し、白熱電球の点滅を起こすことなく一度に断線して いた。再接触も起こさなかった。

【0017】《実施例2》実施例2としては、図2に示 すコード状温度ヒューズを製造した。実施例1の編組の 代わりに同様のガラス繊維束を1重目として10回/1 0mm右周りに横巻し、2重目として同じ線維束を10 回/10mm左周りに横巻したことにより空間層6(横 巻層)を形成した他は実施例1と同様に製造した。この 時の繊維束の間隔は、約0.5mmである。実施例1と 同様な試験をしたところ、5回の測定でいずれも35秒 から60秒で断線し、白熱電球の点滅を起こすことなく 一度に断線していた。再接触も起こさなかった。

【0018】《実施例3》実施例3としては、図4に示 すコード状温度ヒューズを製造した。中心材としては、 弾性芯として図3に示すものを用いた他は実施例1と同 様に製造した。本実施例の中心材3はやや四角形に近い **断面形状をしていた。この上から絶縁被覆5としてシリ** コーンゴムをほぼ同心円状に肉厚0.5mmで、当業者 間で公知のいわゆるチュービングの手法で水冷しながら 押し出し、直ちに熱風加硫を施した。熱風加硫に際して 30 は、熱風炉の出口付近の温度を170℃以下とした。 尚、図中の符号7は、中心材3と絶縁被覆5との間に形 成された空間層である。実施例1と同様な試験をしたと ころ、5回の測定でいずれも20秒から70秒で断線 し、実施例1及び実施例2に比べると僅かにバラツキが 大きかったが、白熱電球の点滅を起こすことなく一度に 断線していた。再接触も起こさなかった。

【0019】この温度ヒューズに更に実施例1で空間層 を形成するために使用したガラス繊維を密度30で編組 した。その後、市販のシリコーンワニスでガラス繊維の 解れどめをした。この温度ヒューズは、ガラス繊維が保 護層となっているため金属エッジなどにも抵抗力を示し た。実施例1と同様な試験をしたところ、5回の測定で いずれも30秒から80秒で断線し、白熱電球の点滅を 起こすことなく一度に断線していた。再接触も起こさな

【0020】《実施例4、5、6、7》実施例4及び実 施例5としては、実施例1の空間層の仕様を本発明で好 ましいとされている範囲内で繊維束の間隔を変えてコー

しては、実施例2の空間層の繊維束の間隔を本発明で好 ましいとされている範囲内で変えて製造した。これらの コード状温度ヒューズにおいても実施例1と同様な試験 を行った。試験結果を表1に示した。好ましい範囲内で は、再接触が見られなかったことがわかる。

[0021]

【表1】

空間層の種類 編 組		o fidelik	大规则!	米高型9		実施例11
	企	横巻	報物	and	蕭	横卷
繊維束間隔(繊維束幅の倍数) 1.0		0.5	4	0.4	10	5.6
斯線時間 (秒) 40~110	35~120	40~70	35~120	40~120	40~150	40~150
白熱電球点域の有無 1本有	策	#	1本有	1本有	1本有	2本有
再接触の有無無	蕉	無	Ħ	2本有	1本有	1本有

【0022】《実施例8》実施例8としては、絶縁被覆 をシリコーンゴムの代わりに空間層を形成するために使 用したガラス繊維を密度30で編組し、その後市販のシ リコーンワニスを塗布しガラス繊維の解れどめをしたも のとした他は実施例2と同様にコード状温度ヒューズを 製造した。実施例1と同様な試験をしたところ、空間層 までシリコーンワニスが含浸しているためかやや感度が 低くなったが、5回の測定でいずれも60秒から180 ド状温度ヒューズを製造した。実施例6及び実施例7と 50 秒で断線し、白熱電球の点滅を起こすことなく一度に断 線していた。再接触も起こさなかった。また、実施例 1,実施例3及び実施例8についてのみ以下の追加試験 を行った。まず、直径15cm,厚さ0.5mmの鉄板 から作製した円筒に、本実施例の温度ヒューズを巻き付 けた。円筒の内側には市販の壁紙を張り付けた。次に、 この状態でコード状温度ヒューズに0.1Aの電流を流 しながらブンゼンバーナーの外炎が触れる程度まで近づ けた。その結果、30秒以内にいずれも断線し、しかも 炎のあった所で若干の変色が見られた他は温度ヒューズ の外観にはさしたる変化もみらず、しかも内面の壁紙に 10 は何らの変化も見られなかった。

【0023】《実施例9、10、11》実施例9及び実 施例10としては、実施例1の空間層の仕様を本発明で 好ましいとされている範囲外で繊維束の間隔を変えてコ ード状温度ヒューズを製造した。実施例11としては、 実施例2の空間層の繊維束の間隔を本発明で好ましいと されている範囲外で変えてコード状温度ヒューズを製造 した。これらのコード状温度ヒューズにおいても、実施 例1と同様の試験を行い、結果を表1に示した。温度と ューズとしての機能は果たすが、再接触を起こすことも あることがわかる。

【0024】《比較例1》比較例1としては、図5に示 すコード状温度ヒューズを製造した。このものは、直径 1.2 mmの円形の弾性芯に、実施例で用いたものと同 様の共晶半田線を導電体細線として横巻し、次に絶縁被 覆として実施例と同様にシリコーンゴムを肉厚O.5m mで押し出し、架橋させることによって製造した。この 場合には空間層は形成されない。実施例1と同様な試験 をした結果、2本は100秒と120秒で断線したが、 3本は5分間経過しても断線しなかった。また断線した 30 2本は、断線前に数回白熱電球の点滅があった。再接触 試験では、全数再接触した。

【0025】《実施例12》実施例12としては、実施 例1で製造したコード状温度ヒューズを蛇行状態に配設 し、図6に示すような面状温度ヒューズを特公昭62ー 44394号公報に示された方法で製造した。図中の符 号10は、片面に離形紙11を有する両面粘着紙であ り、符号8は前記両面粘着紙10の上面に蛇行状態に配 設されたコード状温度ヒューズである。更に、符号9は 前記コード状温度ヒューズ8の全体を覆う金属箔であ り、この金属箔9は前記両面粘着紙10と接着固定され ている。本実施例においては、両面粘着紙としてアクリ ル系粘着紙を用い、金属箔としては、厚さ100ミクロ ンのアルミニウム箔を用いた。本実施例では、特公昭6 2-44394号公報に準じて行ったので金属箔及び両 面粘着紙を用いたが、この公報に準じない方法で製造し ても良く、またこの公報の製造方法において、他の材 料、例えば金属箔の代わりにプラスチックフィルムを使 用しても良い。

【0026】このようにして製造された面状温度ヒュー 50 12 温度ヒューズ

ズを厚さO.5mmの鉄製のパネルに張り付け、パネル を垂直に立てた。パネルの裏側には市販の壁紙を張り付 けた。この状態で、面状温度ヒューズに0.1Aの電流 を流しながらバーナーの外炎が触れる程度まで近づけ た。温度ヒューズの導電体細線が断線するまでこの状態 を続けた。断線後のパネルの裏側の壁紙には、何らの変 化も見られず、温度ヒューズが有効に機能したことがわ

[0027]

【発明の効果】以上詳述したように本発明によれば、圧 縮力がかからないところでも、異常高温によって確実に 断線し、しかも断線後にも溶解した導電体などによって 再接触を起こさず、誤動作を招かないコード状温度ヒュ ーズと、同様な特徴を有する面状温度ヒューズを得るこ とができる。これらの温度ヒューズは、比較的安価にで き、また感度も高いことから各種熱機器の安全装置とし て、信頼度の向上やゴストの削減効果など有用なもので ある。

【図面の簡単な説明】

【図1】本発明の実施例1として製造したコード状温度 ヒューズの一部切欠側面図である。

【図2】本発明の実施例2として製造したコード状温度 ヒューズの一部切欠側面図である。

【図3】本発明の実施例3として製造したコード温度と ューズにおける弾性芯の断面図である。

【図4】本発明の実施例3として製造したコード状温度 ヒューズの断面図である。

【図5】比較例1として製造したコード状温度ヒューズ の一部切欠側面図である。

【図6】本発明の実施例12として製造した面状温度と ューズの一部切欠斜視図である。

【図7】従来例の温度ヒューズのアッセンブリ状態を示 す一部切欠斜視図である。

【図8】従来例のコード状温度ヒューズの一部切欠側面 図である。

【符号の説明】

- 1 弾性芯
- 1a 抗張力体(彈性芯抗張力体)
- 1b 弾性材料
- 2 導電体細線
 - 3 中心材
 - 4 空間層(編組層)
 - 5 絶縁被覆
 - 6 空間層(横巻層)
 - 空間層
 - 8 コード状温度ヒューズ
 - 9 金属箔
 - 10 両面粘着紙
 - 11 離形紙

フロントページの続き

(72)発明者 兵藤 隆司 静岡県浜松市高塚町4830番地株式会社クラ ベ内 (72)発明者 荒川 辰雄 静岡県浜松市高塚町4830番地株式会社クラ ベ内