

Curso: Engenharia de Computação / Ciência da Computação

PROFA. POLYANA SANTOS FONSECA NASCIMENTO

Disciplina: Lógica Digital

Álgebra das Proposições

As propriedades da Álgebra das Proposições demonstram algumas relações tautológicas entre propriedades simples e compostas, a serem demonstradas pelo método da tabela verdade e, posteriormente, pelo método dedutivo.

Demonstre as seguintes propriedades pelo método da tabela verdade:

Propriedades da Conjunção (^)

- a) Idempotente: $A \wedge A \Leftrightarrow A$
- b) Comutativa: $A \wedge B \Leftrightarrow B \wedge A$
- c) Associativa: $(A \land B) \land D \Leftrightarrow A \land (B \land D)$
- d) Identidade:
 - (i) $A \wedge T \Leftrightarrow A$
 - (ii) $A \wedge C \Leftrightarrow C$
 - (iii) $A \land \sim A \Leftrightarrow C$

Obs. A propriedade da identidade exprime que T e C são respectivamente elemento neutro e elemento absorvente da conjunção.

Propriedades da Conjunção e da Disjunção

- a) Distributivas:
 - (i) $A \wedge (B \vee D) \Leftrightarrow (A \wedge B) \vee (A \wedge D)$
 - (ii) $A \lor (B \land D) \Leftrightarrow (A \lor B) \land (A \lor D)$
- b) Absorção:
 - (i) $A \wedge (A \vee B) \Leftrightarrow A$
 - (ii) $A \lor (A \land B) \Leftrightarrow A$
- c) Regra da Condicional: $A \rightarrow B \Leftrightarrow \sim A \lor B$
- d) Regra da Contraposição: A \rightarrow B \Leftrightarrow \sim B \rightarrow \sim A

Propriedades da Disjunção (v)

- a) Idempotente: $A \lor A \Leftrightarrow A$
- b) Comutativa: $A \lor B \Leftrightarrow B \lor A$
- c) Associativa: $(A \lor B) \lor D \Leftrightarrow A \lor (B \lor D)$
- d) Identidade:
 - (i) $A \lor T \Leftrightarrow T$
 - (ii) $A \lor C \Leftrightarrow A$
 - (iii) $A \lor \sim A \Leftrightarrow T$

Obs. A propriedade da identidade exprime que T e C são respectivamente elemento absorvente e elemento neutro da disjunção.

- e) Regras de De Morgan:
 - (i) \sim (A \wedge B) \Leftrightarrow \sim A \vee \sim B
 - (ii) $\sim (A \vee B) \Leftrightarrow \sim A \wedge \sim B$

Obs. também é possível definir essas duas regras como:

$$A \lor B \Leftrightarrow \sim (\sim A \land \sim B)$$

 $A \land B \Leftrightarrow \sim (\sim A \lor \sim B)$

 ϵ

- f) Regra e negação da Bicondicional:
 - (i) $A \leftrightarrow B \Leftrightarrow (A \rightarrow B) \land (B \rightarrow A) \Leftrightarrow (A \land B) \lor (\sim A \land \sim B)$
 - (ii) \sim (A \leftrightarrow B) \Leftrightarrow (A \wedge \sim B) \vee (\sim A \wedge B) \Leftrightarrow A \leftrightarrow \sim B \Leftrightarrow \sim A \leftrightarrow B \Leftrightarrow A $\underline{\vee}$ B