Условия задач.

Задача 9- 1.

1.1 Частица массы m влетает с начальной скоростью \vec{v}_0 , направленной вдоль оси Ox, в квадратную область со стороной l в точке с координатами $x_0=0,\ y_0=\frac{l}{2}$. Оси координат совпадают с границами выделенной области. В этой области на частицу действует постоянная сила \vec{F} , направленная вдоль оси Ox. Модуль начальной скорости частицы равен $v_0=\frac{l}{z}$, а модуль

действующей силы равен $F = \frac{2ml}{ au^2}$ (в этих формулах au - известный параметр).

Найдите координаты точки, в которой частица покинет выделенную область, и время, через которое это произойдет. Изобразите схематически траекторию движения частицы.

1.2 Частица массы m влетает с начальной скоростью \vec{v}_0 , направленной вдоль оси Ox, в квадратную область со стороной l в точке с координатами $x_0 = 0$, $y_0 = \frac{l}{2}$. Оси координат совпадают с границами выделенной области. В этой области на частицу действует постоянная сила \vec{F} , направленная вдоль оси Oy. Модуль начальной скорости частицы равен $v_0 = \frac{l}{z}$, а модуль

действующей силы равен $F = \frac{2ml}{\tau^2}$ (в этих формулах τ - известный параметр).

Найдите координаты точки, в которой частица покинет выделенную область, и время, через которое это произойдет. Изобразите схематически траекторию движения частицы.

1.3 Частица массы m влетает с начальной скоростью \vec{v}_0 , направленной вдоль оси Ox, в квадратную область со стороной l в точке с координатами $x_0 = 0$, $y_0 = \frac{l}{2}$. Оси координат совпадают с границами выделенной области. В этой области на частицу действует сила \vec{F} , направленная все время перпендикулярно вектору скорости. Модуль начальной скорости частицы равен

 $v_0 = \frac{l}{\tau}$, а модуль действующей силы постоянен и равен $F = \frac{4mv_0^2}{l}$ (в этих формулах τ - известный параметр).

Найдите координаты точки, в которой частица покинет выделенную область, и время, через которое это произойдет. Изобразите схематически траекторию движения частицы.

1.4 Частица массы m влетает с начальной скоростью \vec{v}_0 , y направленной вдоль оси Ox, в квадратную область со стороной l в точке с координатами $x_0 = 0$, $y_0 = \frac{l}{2}$. Оси координат совпадают $\frac{l}{2}$ с границами выделенной области. В этой области на частицу действует сила \vec{F} , направление которой изменяется по закону $\alpha = 2\frac{v_0}{l}$, где угол α отсчитывается от направления, 0

противоположному направлению оси Оу. Модуль начальной скорости частицы равен

$$v_0 = \frac{l}{\tau}$$
, а модуль действующей силы постоянен и равен $F = \frac{m v_0^2}{l}$ (в этих формулах τ - известный параметр).

Найдите координаты точки, в которой частица достигнет границы выделенной области, и время, через которое это произойдет. Изобразите схематически траекторию движения частицы.

Задача 9-2

Если оставить на столе кружку с горячим чаем, то через некоторое время напиток остынет. Это происходит вследствие потерь теплоты в окружающую среду, которыми в школьных задачах по физике нередко пренебрегают. В данной задаче мы рассмотрим процесс подогрева воды, учитывая данные потери в рамках двух моделей.

Воду для разогрева налили до уровня $H=20\,\mathrm{cm}$ в цилиндрический тонкостенный сосуд радиусом $r=5,0\,\mathrm{cm}$, теплоемкостью которого можно пренебречь. Сосуд расположен на плитке, полезную мощность которой в данных условиях считайте равной $P=2,0\,\mathrm{kBt}$. Изначально температура воды была равна температуре окружающего воздуха $T_1=20\,\mathrm{^{\circ}C}$. Считайте, что при нагреве температура воды достаточно быстро выравнивается по всему объему.

Табличные данные для воды: плотность $\rho = 1,0 \cdot 10^3 \frac{\kappa c}{m^3}$, удельная теплоемкость $c = 4,2 \cdot 10^3 \frac{\mathcal{A} \mathcal{B} c}{\kappa c \cdot {}^{\circ} C}$.

Потоком теплоты называют количество теплоты, переходящее за одну секунду через единицу площади: $q = \frac{Q}{St}$. Единица измерения потока теплоты в СИ – Вт/м².

1. Постоянные потери

В данной части задачи будем считать, что поток тепловых потерь постоянный и равен $q_0 = 8.5 \text{ кBt/m}^2$. Будем также считать, что он одинаков как для поверхности воды в сосуде, так и для стенок сосуда.

- 1.1. Найдите время, необходимое для нагрева воды в сосуде до температуры $T_2 = 50~^{\circ}\mathrm{C}.$
- 1.2. До какой высоты H_{max} можно налить воду в сосуд, чтобы ее еще возможно было нагреть до температуры $T_2 = 50$ °C? Предполагаем, что цилиндрический сосуд достаточно высокий.
- 1.3. Пусть сосуд на плитке используют, как подогреватель проточной воды: каждую секунду в сосуд приходит некоторый объем воды при температуре T_1 и уходит такой же объем при температуре T_3 , уровень H при этом остается постоянным. Определите, с какой скоростью (в литрах в минуту) необходимо подавать и забирать воду, чтобы она успевала подогреваться до температуры $T_3 = 30$ °C.