## Polynomial regression

```
# prepare data
adv <- read.csv("~/GitRepos/MachineLearning2014/hw1/Advertising.csv")</pre>
adv$X <- NULL
smpsNum <- dim(adv)[1]</pre>
trainSize <- smpsNum * 2 / 3</pre>
testSize <- smpsNum - trainSize</pre>
trainInds <- sample(1:smpsNum, size = trainSize)</pre>
adv.train <- adv[trainInds, ]</pre>
adv.test <- adv[-trainInds, ]</pre>
#funcs
meanRss <- function(reals, preds) {</pre>
  return(mean((reals - preds)^2))
# get data for plots
trainRss <- c()</pre>
testRss <- c()
aic <- c()
bic <- c()
x \leftarrow c()
for (i in 1:30) {
  x[i] <- i
  1 <- lm(Sales ~ poly(TV, i, raw=TRUE), data=adv.train)</pre>
  trainRss[i] <- meanRss(adv.train$Sales, predict(1, adv.train))</pre>
  testRss[i] <- meanRss(adv.test$Sales, predict(1, adv.test))</pre>
  aic[i] <- AIC(1)
  bic[i] <- BIC(1)
```

Let's plot graphs of training\_set\_rrs and test\_set\_rss vs polynomial\_degree:

```
plot(x, testRss, type="l", col="red", ylim=range(c(testRss, trainRss)), xlab="polynomial degree", ylab=
lines(x, trainRss, col="green")
```



Analysing the figure above one can notice the higher polynomial degree the lower RSS for training data set and the higher RSS for test data set. So, increasing polynomial degree we make out model better fit training data and worse fit any new data. This looks like model overfitting.

Next figure shows graphs for AIC and BIC vs polynomial\_degree:

```
plot(x, aic, type="l", col="blue", ylim=range(c(aic, bic)), xlab="polynomial degree", ylab="AIC(blue)/B
lines(x, bic, col="black")
```



As we can see, increasing the degree we increase both measures (especially BIC) and, as a result, decrease model's quality.