Dissertação apresentada à Pró-Reitoria de Pós-Graduação e Pesquisa do Instituto Tecnológico de Aeronáutica, como parte dos requisitos para obtenção do título de Mestra em Ciências no Programa de Pós-Graduação em Engenharia Aeronáutica e Mecânica, Área de Sistemas Aeroespaciais e Mecatrônica.

Maria das Graças Silva

UMA ABORDAGEM SOBRE O DILEMA DO CUPIM FRENTE AO CONCRETO ARMADO UTILIZANDO DIFERENTES COMPOSIÇÕES CIMENTÍSTICAS

Dissertação aprovada em sua versão final pelos abaixo assinados:

Prof. Dr. Adalberto Santos Dupont Orientador

> Prof^a. Dr^a. Doralice Serra Coorientadora

Prof. Dr. John von Neumann Pró-Reitor de Pós-Graduação e Pesquisa

Campo Montenegro São José dos Campos, SP – Brasil 2015

Dados Internacionais de Catalogação-na-Publicação (CIP) Divisão de Informação e Documentação

Silva, Maria das Graças

Uma Abordagem Sobre o Dilema do Cupim Frente ao Concreto Armado Utilizando Diferentes Composições Cimentísticas / Maria das Graças Silva. São José dos Campos, 2015. 23f.

Dissertação de Mestrado – Curso de Engenharia Aeronáutica e Mecânica. Área de Sistemas Aeroespaciais e Mecatrônica – Instituto Tecnológico de Aeronáutica, 2015. Orientador: Prof. Dr. Adalberto Santos Dupont. Coorientadora: Prof^a. Dr^a. Doralice Serra.

1. Cupim. 2. Dilema. 3. Construção. I. Instituto Tecnológico de Aeronáutica. II. Título.

REFERÊNCIA BIBLIOGRÁFICA

SILVA, Maria das Graças. **Uma Abordagem Sobre o Dilema do Cupim Frente ao Concreto Armado Utilizando Diferentes Composições Cimentísticas**. 2015. 23f. Dissertação de Mestrado – Instituto Tecnológico de Aeronáutica, São José dos Campos.

CESSÃO DE DIREITOS

NOME DA AUTORA: Maria das Graças Silva TÍTULO DO TRABALHO: Uma Abordagem Sobre o Dilema do Cupim Frente ao Concreto Armado Utilizando Diferentes Composições Cimentísticas. TIPO DO TRABALHO/ANO: Dissertação / 2015

E concedida ao Instituto Tecnológico de Aeronáutica permissão para reproduzir cópias desta dissertação e para emprestar ou vender cópias somente para propósitos acadêmicos e científicos. A autora reserva outros direitos de publicação e nenhuma parte desta dissertação pode ser reproduzida sem a autorização da autora.

Maria das Graças Silva Av. Cidade Jardim, 679 12.233-066 – São José dos Campos – SP

UMA ABORDAGEM SOBRE O DILEMA DO CUPIM FRENTE AO CONCRETO ARMADO UTILIZANDO DIFERENTES COMPOSIÇÕES CIMENTÍSTICAS

Maria das Graças Silva

Composição da Banca Examinadora:

Prof. Dr.	Alan Turing	Presidente	-	ITA
Prof. Dr.	Adalberto Santos Dupont	Orientador	-	ITA
Prof ^a . Dr ^a .	Doralice Serra	Coorientadora	-	OVNI
Prof. Dr.	Linus Torwald	Membro externo	-	UXXX
Prof. Dr.	Richard Stallman		-	UYYY
Prof. Dr.	Donald Duck		-	DISNEY
Prof ^a . Dr ^a .	Minie Mouse		-	DISNEY

Aos amigos da Graduação e Pós-Graduação do ITA por motivarem tanto a criação deste template pelo Fábio Fagundes Silveira quanto por motivarem a mim e outras pessoas a atualizarem e aprimorarem este excelente trabalho.

Agradecimentos

Primeiramente, gostaria de agradecer ao Dr. Donald E. Knuth, por ter desenvolvido o T_EX.

Ao Dr. Leslie Lamport, por ter criado o L^AT_EX, facilitando muito a utilização do T_EX, e assim, eu não ter que usar o Word.

Ao Prof. Dr. Meu Orientador, pela orientação e confiança depositada na realização deste trabalho.

Ao Dr. Nelson D'Ávilla, por emprestar seu nome a essa importante via de trânsito na cidade de São José dos Campos.

Ah, já estava esquecendo... agradeço também, mais uma vez a
o $T_{\!E}X,$ por ele não possuir vírus de macro :-)

Resumo

Aqui começa o resumo do referido trabalho. Não tenho a menor idéia do que colocar aqui. Sendo assim, vou inventar. Lá vai: Este trabalho apresenta uma metodologia de controle de posição das juntas passivas de um manipulador subatuado de uma maneira subótima. O termo subatuado se refere ao fato de que nem todas as juntas ou graus de liberdade do sistema são equipados com atuadores, o que ocorre na prática devido a falhas ou como resultado de projeto. As juntas passivas de manipuladores desse tipo são indiretamente controladas pelo movimento das juntas ativas usando as características de acoplamento da dinâmica de manipuladores. A utilização de redundância de atuação das juntas ativas permite a minimização de alguns critérios, como consumo de energia, por exemplo. Apesar da estrutura cinemática de manipuladores subatuados ser idêntica a do totalmente atuado, em geral suas caraterísticas dinâmicas diferem devido a presença de juntas passivas. Assim, apresentamos a modelagem dinâmica de um manipulador subatuado e o conceito de índice de acoplamento. Este índice é utilizado na sequência de controle ótimo do manipulador. A hipótese de que o número de juntas ativas seja maior que o número de passivas $(n_a > n_p)$ permite o controle ótimo das juntas passivas, uma vez que na etapa de controle destas há mais entradas (torques nos atuadores das juntas ativas), que elementos a controlar (posição das juntas passivas).

Abstract

Well, the book is on the table. This work presents a control methodologie for the position of the passive joints of an underactuated manipulator in a suboptimal way. The term underactuated refers to the fact that not all the joints or degrees of freedom of the system are equipped with actuators, which occurs in practice due to failures or as design result. The passive joints of manipulators like this are indirectly controlled by the motion of the active joints using the dynamic coupling characteristics. The utilization of actuation redundancy of the active joints allows the minimization of some criteria, like energy consumption, for example. Although the kinematic structure of an underactuated manipulator is identical to that of a similar fully actuated one, in general their dynamic characteristics are different due to the presence of passive joints. Thus, we present the dynamic modelling of an underactuated manipulator and the concept of coulpling index. This index is used in the sequence of the optimal control of the manipulator.

Lista de Figuras

FIGURA 2.1 – Cupim cibernético			 				 	17
FIGURA A.1 –Uma figura que está no apêndice.			 					22

Lista de Tabelas

TABELA 2.1 – Exem	plo de uma	Tabela											16

Lista de Abreviaturas e Siglas

CTq computed torque

DC direct current

EAR Equação Algébrica de Riccati

GDL graus de liberdade

ISR interrupção de serviço e rotina

LMI linear matrices inequalities

MIMO multiple input multiple output

PD proporcional derivativo

PID proporcional integrativo derivativo

PTP point to point

UARMII Underactuated Robot Manipulator II

VSC variable structure control

Lista de Símbolos

- a Distância
- a Vetor de distâncias
- \mathbf{e}_{j} Vetor unitário de dimensão n e com o j-ésimo componente igual a 1
- K Matriz de rigidez
- m_1 Massa do cumpim
- δ_{k-k_f} Delta de Kronecker no instante k_f

Conteúdo

1 Introdução	14
1.1 Objetivo	14
1.2 Motivação	14
1.3 Organização do trabalho	14
2 Modelagem Dinâmica de Cupins Cibernéticos	16
2.1 Modelagem no espaço das juntas	16
3 Controle Robusto de Concretos Caóticos	18
3.1 Controle combinado	18
4 Conclusão	19
Referências	21
Apêndice A – Tópicos de Dilema Linear	22
A.1 Uma Primeira Seção para o Apêndice	22
Anexo A – Exemplo de um Primeiro Anexo	23
A.1 Uma Seção do Primeiro Anexo	23

1

Introdução

1.1 Objetivo

O objetivo deste projeto de mestrado é desenvolver uma ferramenta computacional para otimização de projeto preliminar de turbinas axiais, com enfoque em eficiência. A tarefa de otimização será cumprida com o uso de algoritmos genéticos, enquanto que o projeto preliminar da turbina será simplificado e uni-dimensional.

1.2 Motivação

Turbinas desempenham papel importante quando se trata de sistemas propulsivos (aeronáuticos e espaciais) e também sistemas de geração de energia. Assim sendo, diversas nações incluindo seus milhares de cientistas e engenheiros já dedicaram recursos para o desenvolvimento de turbinas, buscando sobretudo melhoria de sua eficiência.

1.3 Organização do trabalho

O capítulo 1 contém a introdução do trabalho, onde são expostos o objetivo, a motivação do mesmo. Uma breve descrição do trabalho é feita ao longo da aprensentação da nomenclatura utilizada.

No capítulo 2 traz a revisão da literatura em duas frentes: a primeira é a física que descreve a turbina e seu projeto que inclui basicamente conceitos de fluido e termodi-

nâmica enquanto que a segunda apresenta uma descrição dos algoritmos genéticos e sua metaeurística que mimetiza os conceitos de seleção natural.

O capítulo 3 apresenta a metodolodia utilizada para o desevolvimento da ferramenta computacional.

É também apresentado no capítulo 4 os resultados obtidos para as simulações, considerando como caso de validação a turbina XX.

O capítulo 5 e último traz as considerações finais incluindo a conclusão do trabalho.

Modelagem Dinâmica de Cupins Cibernéticos

2.1 Modelagem no espaço das juntas

Manipuladores subatuados diferem dos totalmente atuados pois são equipados com um número de atuadores que é sempre menor que o número de graus de liberdade (GDL). Portanto, nem todos os GDL podem ser controlados ativamente ao mesmo tempo (SBORNIAN, 2004). Por exemplo, com um manipulador planar de 3 juntas equipado com dois atuadores, ou seja, duas juntas ativas e uma passiva, pode-se controlar ao mesmo tempo duas das juntas a qualquer instante, mas não todas. Para controlar todas as juntas de um manipulador subatuado, deve-se usar um controle sequencial. Este princípio foi provado pela primeira vez por arai usando argumentos dinâmicos linearizados (JOEA; JOHN, 2003), e é a base para a modelagem no espaço das juntas e no espaço Cartesiano. A Tabela 2.1 apresenta os resultados (ASSENMACHER et al., 1993; SILBERSCHATZ et al., 1991; CAROMEL et al., 1998).

Devido ao fato de que no máximo n_a coordenadas generalizadas (ângulos das juntas

TABELA 2.1 – Exemplo de uma Tabela

Parâmetro	Unidade	Valor da simulação	Valor experimental
Comprimento, α	m	8, 23	8,54
Altura, β	m	29, 1	28, 3
Velocidade, v	m/s	60, 2	67, 3

ou variáveis cartesianas) podem ser controladas num dado instante, o vetor de coordenadas generalizadas é dividido em duas partes, representando as coordenadas generalizadas ativas e as coordenadas generalizadas passivas (CALLAGHAN et al., 1995).

FIGURA 2.1 – Cupim cibernético.

Considerando um robô manipulador rígido, malha aberta, e de n-juntas em série. Seja q a representação de seu vetor de posição angular das juntas e τ a representação de seu vetor de torque. A equação dinâmica pelo método de Lagrange é dada por:

$$\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}}) - \frac{\partial L}{\partial q} = \tau^{T}.$$
(2.1)

O Lagrangiano L é definido como a diferença entre as energias cinética e potencial do sistema:

$$L = T - P \tag{2.2}$$

A energia cinética total dos ligamentos é representada:

$$T = \frac{1}{2}\dot{q}^T M(q)\dot{q} \tag{2.3}$$

Controle Robusto de Concretos Caóticos

3.1 Controle combinado

Conforme vimos na seção 3.1 podemos controlar um sistema nao linear como através da técnica do torque computado, usando um controlador PD dado por:

$$\tau' = \ddot{q}_d + K_v(\dot{q}_d - \dot{q}) + K_p(q_d - q) , \qquad (3.1)$$

sendo q_d , \dot{q}_d e \ddot{q}_d a posição desejada, a velocidade desejada e a aceleração desejada; K_p e K_v são matrizes diagonais $n \times n$, sendo que cada elemento da diagonal é um ganho positivo e escalar.

Aqui M_{est} e b_{est} são modelos estimados da matriz de inércia, M, e do vetor de torques não inerciais, b, do robô real, respectivamente. A equação de malha fechada do sistema é:

$$\ddot{e} + K_v \dot{e} + K_p e = M_{est}^{-1} [(M - M_{est}) \ddot{q} + (b - b_{est})].$$
(3.2)

Em um manipulador real, podem existir distúrbios externos tais como atrito, variação de torque dos atuadores, e perturbações em virtude das cargas no robô. Se a soma destes distúrbios for definida como d_{ext} e adicionada à (3.2), teremos

$$\ddot{e} + K_v \dot{e} + K_p e = M_{est}^{-1} [(M - M_{est}) \ddot{q} + (b - b_{est}) + d_{ext}].$$
(3.3)

Conclusão

Neste trabalho realizou-se o projeto de uma metodologia de controle subótimo redundante da junta passiva de um manipulador com três graus de liberdade instantaneamente. Para este propósito usou-se nas formulações o vetor gradiente de uma função escalar que estima o acoplamento entre a junta passiva e as ativas desse manipulador. Aqui a redundância foi usada da melhor maneira possível sem focalizar o efeito global. Portanto, este método deve ser denominado de controle ótimo local por redundância. A principal vantagem dessa formulação é a computação em tempo real, que é necessária para o controle do manipulador experimental. Além disso esse método pode ser usado com diferentes tipos de controladores, uma vez que as alterações são feitas nas equações dinâmicas do manipulador.

A consequência direta observada nessa formulação é a redução dos torques na fase de controle da junta passiva, e consequente redução da energia elétrica gasta. Isso ocorre devido ao fato de que ao longo da trajetória do manipulador o índice de acoplamento de torque tende a ser maximizado, e portanto, menor é o torque necessário nos atuadores para se conseguir o posicionamento da junta passiva do manipulador.

Outros resultados indiretos obtidos são: um movimento mais uniforme e suave do manipulador e um tempo de acomodação menor tanto no posicionamento da junta passiva quanto das ativas, conforme podemos obervar nos gráficos de desempenho dos resultados apresentados. Isso ocorre porque a maximização do acoplamento entre as juntas facilita o controle. Assim ocorrem menos picos de torque, e como as juntas ativas tem "menos trabalho" para posicionar a passiva estas se movem menos na direção contrária ao movimento daquelas, diminuindo assim as velocidades alcançadas e os tempos de posicionamento.

Uma extensão deste trabalho pode ser a implementação de um controle ótimo global por redundância da junta passiva do manipulador. Para isto pode-se fazer o planejamento off-line da trajetória das juntas de modo a minimizar a energia consumida. Alguns estudos foram feitos nesse sentido, usando o Princípio Mínimo de Pontryagin, mas sem resultados satisfatórios até o momento.

Referências

ASSENMACHER, H.; BREITBACH, T.; BUHLER, P.; HÜBSCH, V.; SCHWARZ, R. Panda: supporting distributed programming in L++. In: EUROPEAN CONFERENCE ON OBJECT-ORIENTED PROGRAMMING, 7., 1993, Kaiserslautern. **Proceedings...** Berlin: Springer, 1993. p. 361–383. (Lecture Notes in Computer Science, v. 707).

CALLAGHAN, B.; PAWLOWSKI, B.; STAUBACH, P. **NFS version 3 protocol specification**: RFC 1831. London, 1995. 68 p.

CAROMEL, D.; KLAUSER, W.; VAYSSIERE, J. Towards seamless computing and metacomputing in Java. **Concurrency in Practice and Experience**, v. 10, n. 11–13, p. 1043–1061, set./nov. 1998. Disponível em: http://www-sop.inria.fr/~sloop/javall/index.ht. Acesso em: 20 fev. 2000.

JOEA, J. G.; JOHN, J. G. Importance of coffee in computer sciences. In: CONFERENCE ON COFFEE IMPORTANCE, 1., 2000, Java Island. **Proceedings...** Java Island: Java Island Press, 2003. p. 99–100.

SBORNIAN, W. **Um exemplo de tese de doutorado**. 2004. 169 f. Tese (Doutorado em Aeronáutica) — Instituto de Alguma Coisa, Universidade Sei Lá de Onde, Santo Antônio da Patrulha, 2004. 1 CD–ROM.

SILBERSCHATZ, A.; PETERSON, J. L.; GALVIN, P. B. **Operating system concepts**. 3rd. ed. New York: Springer, 1991.

Apêndice A -

Tópicos de Dilema Linear

A.1 Uma Primeira Seção para o Apêndice

A matriz de Dilema Linear M e o vetor de torques inerciais b, utilizados na simulação são calculados segundo a formulação abaixo:

$$M = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}$$
 (A.1)

FIGURA A.1 – Uma figura que está no apêndice.

Anexo A -

Exemplo de um Primeiro Anexo

A.1 Uma Seção do Primeiro Anexo

Algum texto na primeira seção do primeiro anexo.

FOLHA DE REGISTRO DO DOCUMENTO ². DATA: ^{3.} DOCUMENTO $N^{\underline{o}}$: 1. CLASSIFICAÇÃO/TIPO: ^{4.} Nº DE PÁGINAS: DM25 de Março de 2015DCTA/ITA/DM-018/2015 23 $^{5.}$ TÍTULO E SUBTÍTULO: Uma Abordagem Sobre o Dilema do Cupim Frente ao Concreto Armado Utilizando Diferentes Composições Cimentísticas 6. AUTORA(ES): Maria das Graças Silva 7. INSTITUIÇÃO(ÕES)/ÓRGÃO(S) INTERNO(S)/DIVISÃO(ÕES): Instituto Tecnológico de Aeronáutica – ITA 8. PALAVRAS-CHAVE SUGERIDAS PELA AUTORA: Cupim; Cimento; Estruturas 9. PALAVRAS-CHAVE RESULTANTES DE INDEXAÇÃO: Cupim; Dilema; Construção ¹⁰. APRESENTAÇÃO: (X) Nacional () Internacional ITA, São José dos Campos. Curso de Mestrado. Programa de Pós-Graduação em Engenharia Aeronáutica e Mecânica. Área de Sistemas Aeroespaciais e Mecatrônica. Orientador: Prof. Dr. Adalberto Santos Dupont. Coorientadora: Prof^a. Dr^a. Doralice Serra. Defesa em 05/03/2015. Publicada em 25/03/2015. ^{11.} RESUMO: Aqui começa o resumo do referido trabalho. Não tenho a menor idéia do que colocar aqui. Sendo assim, vou inventar. Lá vai: Este trabalho apresenta uma metodologia de controle de posição das juntas passivas de um manipulador subatuado de uma maneira subótima. O termo subatuado se refere ao fato de que nem todas as juntas ou graus de liberdade do sistema são equipados com atuadores, o que ocorre na prática devido a falhas ou como resultado de projeto. As juntas passivas de manipuladores desse tipo são indiretamente controladas pelo movimento das juntas ativas usando as características de acoplamento da dinâmica de manipuladores. A utilização de redundância de atuação das juntas ativas permite a minimização de alguns critérios, como consumo de energia, por exemplo. Apesar da estrutura cinemática de manipuladores subatuados ser idêntica a

do totalmente atuado, em geral suas caraterísticas dinâmicas diferem devido a presença de juntas passivas. Assim, apresentamos a modelagem dinâmica de um manipulador subatuado e o conceito de índice de acoplamento. Este índice é utilizado na sequência de controle ótimo do manipulador. A hipótese de que o número de juntas ativas seja maior que o número de passivas $(n_a > n_p)$ permite o controle ótimo das juntas passivas, uma vez que na etapa de controle destas há mais entradas (torques nos atuadores das juntas ativas), que elementos a controlar (posição das juntas passivas).

^{12.} GRAU DE SIGILO:			
(X) OSTENSIVO	() RESERVADO	$(\)$ SECRETO	