

유기동물 입양 예측

3팀 선형대수학 황정현 고경현 김지민 반경림 전효림

목차

22

1주차 복습

데이터셋 완성

분류 모델링

결과 해석

추가 전처리

변수 검정

최종 데이터셋

품종 관련 파생 변수 추가

size_google

모름

소

중

소

소

중

대

분류 모델링

결과 해석

kind_spec	
믹스견	
치와와	
보더콜리	
킹찰스파니엘	
요크셔테리어	
닥스훈트	
도사	

	- '	
	- 1	
	- 1	
	- 1	
	- 1	
	- 1	
	- 1	
	i	
	i	
	i	
	i	
	i	
	1	
	1	
	1	
	1	
	1	
	1	
7 / /	1	
	- 1	
	i	
	i.	
	i	
	- i	
	i.	
	i	
	- 1	
	1	
	- 1	
	- 1	
	- 1	
	- 1	
	- 1	
	- 1	
	- 1	
	i	

size_akc	,	(
Unknown		
XS	11111	
М	111111	
S	11111	
XS		
S		
L		
		1 1 1 1

group_akc	activity_level	group_FCI
mixed	Unknown	mixed
Toy	Regular exercise	Companions
Herding	Needs lots of activity	Sheepdogs
Toy	Calm	Companions
Toy	Regular exercise	Terriers
Hound	Regular exercise	Dachshunds
Others	calm	Pinscher
		•••

ネネ 子が指したトロトロトへへ

비슷한 특성으로 분류된 변수들은 검정으로 적절한 변수 선택 예정

추가 전처리

변수 검정

최종 데이터셋

텍스트 데이터 다시

텍스트 데이터(특징) 처리 플로우

데이터셋 완성

분류 모델링

결과 해석

데이터 정리 맞춤 숫자 / 영어 / 특수문자 / 으 또 공백 제거 맞춤

맞춤법 정리) 띄어쓰기 맞춤법 검사 형태소 분석 (Khaiii 패키지) 명사, 형용사, 동사 선택 필터링 한 글자 단어 제거

추가 전처리

(단위: 천)

(단위: 백만)

변수 검정

(단위: 천)

최종 데이터셋

지역적 특성 데이터 정제

	• • • •	, ,	, , ,	, ,		
시군구	1인당 지역 내 총생산	1인당 지역 총소득	1인당 개인소득	1인당 민간지출	주민등록세대 수	동물병원 개수
부산광역시 중구	70.16536	29388.16	19680.32	18029.58	23847	3
부산광역시 서구	28.67351	29388.16	19680.32	18029.58	53853	6

(단위: 천)

데이터셋 완성

1주차 복습

분류 모델링

결과 해석

추가 전처리

변수 검정

최종 데이터셋

범주형 변수 선택

[,] 같은 기관에서 얻어낸 나머지 품종 관련 변수 세 가지에 대해서도 서로 독립성 검정 진행

분류	모델링

1주차 복습

데이터셋 완성

İ	P - value	Cramer's V	
품종_크기(AKC) 품종_분류(AKC)	< 0.001	0.716	
품종_크기(AKC) 품종_활동성	< 0.001	0.702	
품종_분류(AKC) 품종_활동성	< 0.001	0.687	

서로 독립도 아니고 심지어 상관도 크다

[크기] [분류] [활동성] 변수 중 <mark>하나를 선택</mark>해야 하는 상황

	입양 변수와의 Cramer's V 값			
품종_크기 (AKC)	C	0.283		
품종_분류 (AKC)	C	0.305		
품종_활동성	C	0.259		

분류 모델링

분석 플로우

모델링

최종 모델

전체적인 흐름

결과 해석

연속형 변수

범주형 변수

5 fold CV

파라미터 튜닝

스케일링

인코딩

모델링을 할 때, 숫자가 아닌 독립변수는 사용할 수 없어서지아~~

최적의 파라미터 조합

최종 모델 선정

모델링

F1, acc

현재 데이터에 불균형이 존재해서 H을 우선순위로 했어에!!!

로지스틱 회귀 모델 해석

		오즈비	0.025	0.975	p-value	
양적	1인당 경제 지표	1.1138306	1.0792872	1.1494406	1.93e-11	
질적	성별_암컷	0.9911635	0.9231118	1.0642177	0.806763	
27	성별_미상	0.6967774	0.6392530	0.7593137	< 2e-16	

Numerical 경제 지표 값이 1단위 증가할 때 입양될 오즈가 1.1138배 증가

Categorical 성별을 알 수 없다면 성별이 수컷일 때보다 입양될 오즈가 0.6968배 낮음

로지스틱 회귀

랜덤포레스트

로지스틱 회귀 모델 해석

유 수치형 변수

변수	오즈비	신뢰구간 하한	신뢰구간 상한	p-value
무게	0.795406	0.778225	0.812858	0
긍정	1.196178	1.174491	1.218280	0
부정	0.837873	0.821044	0.854945	0
1인당 지역 내 총생산	0.955197	0.936549	0.974148	0
1인당 경제 지표	0.991043	0.971736	1.010699	0.36962
동물병원 개수	1.091625	1.071598	1.111996	0

다금 범주형 변수 - 성별

0.9670	6 293110 9	
0.94 암컷 ÷	- 수컷 ⇒ 미상	

대급 범주형 변수 - 중성화 여부

0.790139	0. X 8289	? 0.826582	
중성화 0 >	· 중성화 X >	미상368374	

대급 범주형 변수 - 품종

(기준: herding)

변수	오즈비	신뢰구간 하한	신뢰구간 상한	p-value
5 hound	0.446776	0.325338	0.611568	0
9 mixed	0.077797	0.061241	0.097818	0
3 non-sporting	0.49374	0.382351	0.632012	0
$oldsymbol{arepsilon}$ others	0.18633	0.145035	0.237172	0
2 sporting	0.752723	0.565827	0.995455	0.04853
7 terrier	0.339818	0.228447	0.507237	0
6 toy	0.405191	0.315548	0.515472	0
4 working	0.447759	0.33069	0.603261	0

대금 범주형 변수 - 털색

(기준: X)

(기준: 검)

7	검/갈	0.978126	0.887554	1.077868	0.6554
3	검/갈/흰	1.241482	1.100151	1.400418	0.00044
1	검/흰	1.344278	1.219453	1.481931	0
8	갈	0.903008	0.835616	0.976077	0.01005
2	갈/흰	1.268927	1.166621	1.380495	0
4	기타	1.182859	1.063774	1.315179	0.00191
5	흰	1.074246	0.997884	1.156839	0.0575

1주차 복습

데이터셋 완성

분류 모델링

로지스틱 회귀

랜덤포레스트

랜덤포레스트 해석

결과 해석

GLOBAL

전체 모형에 대해

랜덤포레스트 해석

어떤 특징이 중요하고, 어떻게 결정했을까?

Feature Importance

Partial Dependence Plot

LOCAL

<mark>특정 경우(</mark>new observation, test)에 대해 왜 그런 결정을 했을까?

♦ LIME

로지스틱 회귀

랜덤포레스트

랜덤포레스트 변수 중요도

결과 해석

Mean Decrease Gini

품종, 체중, 병원개수, 1인당 지역내 총생산의 중요도가 높구나!

로지스틱 회귀

랜덤포레스트

랜덤포레스트 PDP

Partial Dependence on "grdp"

병원이 9071일 때 예측에 가장 큰 영향을 끼침! Partial Dependence on "hospital_num" 0.8 0.6 0.4 0.2 0.0 -0.2 20 40 60 80 100 120 0

y축 수치는 '상대적인' 값

즉, 수가 클수록 특정 변수가 종속변수 예측에 크게 영향을 끼침

결과 해석

랜덤포레스트 라임

전체 train셋에 대해 학습시킨 뒤 test셋으로 해석

결과 해석

입양유무와 양의 상관 관계가 있는 변수는 파란색, 음의 상관 관계는 빨간색

활용 방안 및 제안

분 억 을 지 행 하 며 … .

결과 해석

🛟 기재 형식 통일

강아지만 털색 Unique 값이 3000개

본합 빅스 mixed 및스견

강아지만 품종 Unique 값이 200개

체크박스를 활용해 통일성 있게 기술!!!

동물보호관리 시스템 공고 기째 가이드라인 마련

성격, 질병, 교육유무는 따로 칸을 마련해도 좋겠다