

CONTEXT

This project aims to help companies and HR departments to classify data profiles and resumes when applying to data related positions.

The idea is to make sense of confusing data science job postings.

Our use case is to predict the data related profiles from some information about the data specialist such as the **experience**, the **technologies**, the **diploma**, etc.

The data specialist can be a data scientist, a data engineer, a data architect or a lead data scientist.

WHY DO YOU NEED THIS APP

Of course you do ©

OVERVIEW OF THE TECHNICAL SOLUTION

Step1: Data Visualization with Vscode Jupyter

Step2: Preprocessing

Step3: Model development

Step4: Deployment

Step5: Monitoring

Input tabluar data looks like:

	Entreprise	Metier	Technologies	Diplome	Experience	Ville
0	Sanofi	Data scientist	Matlab/Python/Pyspark/Scikit-learn/Tensorflow	Master	1	Paris
1	Massachusetts General Hospital(MGH)	Data architecte	Python/Java/Scala/MongoDB	Master	3	Marseille
2	NaN	Lead data scientist	SPSS/SQL/Teradata/R/Python/Tensorflow/scikit-l	Master	3	Nantes
3	Ann & Robert H. Lurie Children's Hospital of C	Data scientist	C/C++/Java/Python	Master	1,5	Marseille
4	NaN	Data scientist	Matlab/Python/C++/numpy/Tensorflow/scikit-learn	Phd	NaN	Bordeaux

9562 lines; 6 columns

Missing Values: 1926 on "Entreprise": 1031 on "Experience"

The heatmap to visualize missing values

We have imbalanced data if we will use Metier as a target in the last question so we will use score F1, recall and precision as metrics

We notice that we have a right-skewed distribution: extreme values are far from the peak on the high end more frequently than on the low

ui viii	=].varu	e_counts
Paris	2011	
	1775	
Lyon		
Marseille	1544	
Toulouse	869	
Lille	771	
Bordeaux	690	
Nantes	365	
Rennes	359	
Rouen	315	
Strasbourg	309	
Toulon	186	
Nice	183	
Grenoble	98	
Montpellier	87	
Name: Ville,	dtype:	int64

<pre>df['Entreprise'].value_count</pre>	is()	
Ball Aerospace	598	
Amazon.com	105	
KPMG	95	
Brigham & Women's Hospital(BWH)	94	
McKinsey & Company	88	
Getty Images	1	
Transfix.io	1	
Lockstep, Inc.	1	
Projectline	1	
Ra Pharmaceutical	1	
Name: Entreprise, Length: 1320,	dtype:	int64

diploma: PhD, Master, Bachelor and No diploma

This graph enables to visualize the relationship between the feature "Experience" and the target "Metier". Clearly, Experience is an important feature but we can't define its obvious impact on our target.

<pre>pd.crosstab(df['Metier'], df['Diplome'])</pre>								
Diplome	Bachelor	Master	No diploma	PhD				
Metier								
Data architecte	426	1063	407	227				
Data engineer	327	1276	445	299				
Data scientist	438	1895	81	1451				
Lead data scientist	200	727	24	276				

This table enables to visualize the cross tabulation between our target "Metier" and the categorical feature "Diplome". It outputs the frequency table of these features


```
for job in df['Metier'].unique():
         print(job, df[df['Metier']==job]['Experience'].isnull().sum())
 Data scientist 422
 Data architecte 246
 Lead data scientist 140
 Data engineer 223
422 missing Experience values will be imputer for data scientists
246 missing Experience values will be imputer for data architects
140 missing Experience values will be imputer for Lead data scientists
223 missing Experience values will be imputer for data engineers
```


IMPUTE MISSING VALUES

Missing Experience values for each 'Metier' are replaced by the mean of other experience values of the same Metier

CREATE 'EXP_LEVEL' FOR EXPERIENCE

The idea is to improve the **SNR** (Signal to Noise Ratio): Fitting a model to bins **reduces the impact that small fluctuates** in the data has on the model, often small fluctuates are just noise. Each bin "**smooths**" **out** the fluctuates/noises in sections of the data.

In my implementation:

debutant: has less than 2 years of experience
Confirme: between 2 and 5 years of experience

Avance: between 5 and 8 years of experience

Expert: more than 8 years of experience

TECHNOLOGIES

Most detected technologies among 61 technologies

Python, R, SQL, Java and Hadoop are the most used technologies by data specialists

It is imporatant to highlight the fact that there are 61 different technologies used by the different profiles or exactly 60 since we have '' has a technology

HOLD-OUT

Split the entire dataset into a train and validation set.

CLASSIFICATION ALGORITHMS

Algorithms used that support categorical features	Algorithms used that do not support categorical features
CatBoost	KNeighborsClassifier Decision trees Random Forest AdaBoostClassifier SVM

CATBOOST IS CHOSEN TO BE DEPLOYED

	precisio	n	recall	f1-sco	re	support	
Data architecte	0.9	8	0.98	0.9	98	650)
Data engineer	1.6	90	1.00	1.0	3 0	682	
Data scientist	0.8	3	0.91	0.8	87	1171	
ad data scientist	0.6	51	0.42	0.4	49	366	5
accuracy				0.8	88	2869)
macro avg	0.8	86	0.83	0.8	84	2869)
weighted avg	0.8	88	0.88	0.8	88	2869	•
	1		IN.				
confusion_matrix(y_vaı, y	_prea	1)				
ray([[638, 0,							
[0, 682,							
[7, 0, 1	1967. q	71.					

CREATION OF AN ML WEB APP WITH STREAMLIT

Data profiles Predictor

Enter the characteristics of the profile:

MLFLOW

IT IS USED TO MANAGE THE ML LIFECYCLE, INCLUDING EXPERIMENTATION, REPRODUCIBILITY, DEPLOYMENT, AND A CENTRAL MODEL REGISTRY.

PERSPECTIVES

- Set up a cross validation strategy based on Stratified-Kfold since we are dealing with an imbalanced data
- Use MLFlow to track the hyperparameters tunning experimentations
- Design and deploy a complete data pipeline for the web app

PRESPECTIVES

