

Graduate Program in Software SEIS 763: Machine Learning Dr. Chih Lai

Large Amount of Unlabeled Data

• or, large amount of claim data, but... no label on fraud or normal

$$W_{\rm S} = ???$$

	Age	Gender	Height	Weight	Smoker	HealthStatus	Cancer
1 Smith	38	'Male'	71	176	1	'Excellent'	1
2 Johnson	43	'Male'	69	163	0	'Fair'	0
3 Williams	38	'Female'	64	131	0	'Good'	
4 Jones	40	'Female'	67	133	0	'Fair'	
5 Brown	49	'Female'	64	119	0	'Good'	
6 Davis	46	'Female'	68	142	0	'Good'	
7 Miller	33	'Female'	64	142	1	'Good'	
8 Wilson	40	'Male'	68	180	0	'Good'	
9 Moore	28	'Male'	68	183	0	'Excellent'	
10 Taylor	31	'Female'	66	132	0	'Excellent'	

How about Super-Deep NN??

Transductive Learning, **Unsupervised** Learning

- Supervised learning (general classification) methods won't work → too few labeled points.
- Unsupervised learning is one alternative.
 - Clustering data points into k (???) clusters.
 - **Hopefully** point X is clustered in the group w/known "B" so it will be predicted as B.
 - Depends on (1) which cluster method used, and (2) what k we choose.

Self-Organizing Map, **Unsupervised** Learning

10×10 SOM neurons

2 rec w/la	ords bels	9	Ø	ω	60	100	2	3	3
0	9	9	ω	ω	60	1	1	1	9
0	0	(2)	CO	w	40		1	CD	9
4	5	54	GE	43	63	8.3	6.0	60	
9	50	54	Cr.	4	0.5	(33)	600	60	Œ
(4)	64	C.	C.	4	Car	G (3)	Gill	Gig	Cq
r	The same	20	Q*	Q*	Ch-	Carr	GER	Gill	Gal
a.	Ch.	2	Ch-	-	Charles .		Q.	Q.J	G)
C	a.	a	2	Ch-	Ch-	سق	a.	Q)	a)
~	a.	0	4	2	E.	a.	a)	e	Ð

Transductive Learning, **Semi-Supervised** Learning

- How to use *big* unlabeled data w/ *small* labeled data to improve accuracy?
 - Hard to get fully <u>labeled</u> data. <u>Unlabeled</u> data is cheaper & easier to get.
 - Train labeled data first, and <u>then</u> classify unlabeled data!!
 - Train an initial model f w/ supervised learning on <u>labeled</u> data L.
 - Use f to predict <u>unlabeled</u> data Ux.
 - High confident results are moved from U to L w/ class predictions.
 - Retain f w/ newly augmented L.
 - Assumption: records moved to *L* are reliable enough.
 - This approach can work w/ any learning algorithm.

M1	L1			U1			
M2	L2	?	<i>U</i> 2				
M3	1	L3	U3				

- "transductive learning"
 - Infer correct(??) labels of the unlabeled data.

■ Any other way???

Transductive Learning

- Try transductive learning 20 times on ovarian cancer dataset: 216 records w/ 4000 features.
 - 64 test records, and 152 candidate records w/ initially only 8 records have known labels.
 - Keep "guessing" more training labels over 10 iterations, and rebuild next model.
 - Apply the new model to the test data.
 - Blue line = training accuracy (avg -4.5%).
 - Red line = test accuracy (avg +7.8%) \rightarrow models built from transductive learning is getting better.

Transductive Learning, Reset Training

- Train labeled data first, and <u>then</u> classify unlabeled data!!
 - Train an initial model f w/ supervised learning on <u>labeled</u> data L.
 - Use f to predict all the originally unlabeled data U1.
 - High confident results are moved from U to L w/ class predictions.
 - Retain f w/ newly augmented L.
 - Assumption: records moved to *L* are reliable enough.
 - This approach can work w/ any learning algorithm.
- "transductive learning"
 - Infer correct labels of the unlabeled data.

Transductive Learning with ... Reset Training

- Try transductive learning 20 times on ovarian cancer dataset: 216 records w/ 4000 features.
 - 64 test records, and 152 candidate records w/ initially only 8 records have known labels.
 - Keep "guessing" more training labels over 10 iterations, and rebuild next model.
 - Apply the new model to the test data.
 - Blue line = training accuracy (avg -1.2%).
 - Red line = test accuracy (avg +10.1%) \rightarrow models built from transductive learning is getting better.

SOM, Transductive Learning

M1	L1		U1			
M2	L_2		U2			
M3	1	L3		U 3		

10×10 SOM neurons

Ensemble

Graduate Program in Software SEIS 763: Machine Learning Dr. Chih Lai

Ensembles

- Combine some weak learners to create one better learner.
 - Wisdom of crowd?!
 - i.e. work yourself vs. ask friends...
 - If we don't know what kinds of models are best for your prediction problems.
 - More models can be better than a single one.
 - May include same type of model (*bagging* & *boosting*) or different types of models.
- Bagging / boosting includes many instances of the same type of model.
 - In regressions, take unweighted / weighted average of predictions.
 - In classifications, take majority vote of predictions or weighted combinations of predictions.
- Weighted method... (*a model of models*)

Ensemble Hard / Soft Voting

- But, the # of models is limited by known # of machine learning methods???
- Can we have more # of models in an ensemble??? i.e. 500+???
- Just repeatedly build N # of models under each method??? What's wrong???

Ensembles Methods

- Different approaches to combine several models into a better one.
- Bagging (Bootstrap Aggregation)
 - Take bootstrap samples w/ *replacement* from data to train <u>many</u> weak learners.
 - To decrease variance by selecting training data from original dataset w/ repetitions.
 - May not improve bias, but decrease variance.
 - Two types of baggings: "data bagging" & "feature bagging" (random forest TreeBagger()).
 - Combine **both** baggings???

Boosting

- Misclassified instances by earlier learners are given more weight.
- Subsequent learners give more focus to the previously misclassified data.
- Yield better accuracy than bagging, but also tends to be overfitted.
- Uses the same data to train each learner sequentially.
- Most common method <u>Adaboost</u>.

"Bagging" = \mathbf{B} ootstrap $\mathbf{A}\mathbf{g}$ gregation

- Steps...
 - Bootstrapping → Resample training data several times into *replica*
 - Build a model from each *replica*
 - Final predictions = majority classes predicted by Bagger Trees
 - **Prediction score** = % trees that classify a sample in each class

- Drawing *N* out of *N* samples with replacement for building each tree
- Every tree is grown on an independently drawn bootstrap *replica* of training data.
- Roughly omits on average 37% (1/e) of samples for each decision tree
- Samples not included in this replica are "out of bag" (OOB) for this tree.
- Out-of-bag prediction average is an unbiased estimator of the *ensemble*
- Similar (but not same) to split the data into training and test subsets \approx cross validation

"Bagging" Summary

- Bagging steps:
 - Create a random subset of data by sampling w/ replacement.
 - Create many training sets (each has size n) from original data size N, n < N or n = N.
 - Train each individual learner based on individual *replica*.
- Test each learner against its OOB data.
 - For classification, take unweighted or weighted majority vote from each learner.
 - For regression, take average prediction from each learner.
- Bagging impact to overfitting??
 - By training different models using different datasets. (i.e. replica)
 - Each model use only part of data and miss some data (to avoid overfitting).
 - This avoids "overfitting" = A model "memorize" too much of training data.
 - Reduce model complexity.
 - Too many models may increase model complexity.
 - Not work well on LR since multi-LRs just average all LRs.

Bagging-Visualizing Decision Boundaries

- Create 3 trees with depth 1.
 - Results vary because of **random** sampling in bagging.
 - Majority vote.

Bagging with 100 Trees

- Bagging for a simple dataset with 100 trees.
 - Create $\underline{100}$ trees with depth 1 \rightarrow More complex models for non-linear solutions.
 - Mdl_All = fitensemble(X, Y, 'Bag', 100, 'Tree', 'Type', 'Classification')
 - sklearn.ensemble.BaggingClassifier
 - http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html

Bagging, Iris Data, 3 Classes, 100 Trees (any depth)

load fisheriris

Mdl_All = fitensemble(meas, species, 'Bag', 100, 'Tree', 'Type', 'Classification')

flower = predict(Mdl,mean(meas))

Overfitting??

- Each model was built from different replica of size *N*.
 - Some data points were sampled multiple times in a model.
 - Every model sees different data points.
 - No model sees all data points.
 - Ensemble model becomes simpler??

Improve Bag Trees with *Random Forest*

- With large dataset, first few nodes may always be the same on all DTs.
 - When one or few features are very strong predictors, they will be selected on top of many trees.
 - Averaging may not help much.

- From bagging to random forests.
 - Only a random subset of the features is selected when building individual trees.
 - This is "feature bagging".
- Random forests randomly select only a subset of features in building trees.
 - To add diversity into forests.
 - Predicting by averaging over all trees (this is same as Bagging).
 - Add "feature bagging" (random forest TreeBagger()) to "data bagging".
- https://en.wikipedia.org/wiki/Random_forest

Boosting

- Gradient boosting contains a collection of models.
- Boosting combine many weak models into a complex model.
- In boosting, learners learn <u>sequentially</u>.
 - Early models fit simple models to data, and analyze errors.
 - Errors indicate potential problematic instances of difficult data.
 - Later models focus primarily on those hard data, & try to predict them correctly.
 - All the models are <u>weighted</u> and combined to become an overall model.
 - Boosting converts a <u>sequence</u> of weak models into a complex model.
 - Model's complexity may keep increasing.

AdaBoosting-Adaptive Boosting

- AdaBoosting for a simple dataset.
 - Iteratively create 3 trees with depth 1.
 - Later models give more weights on previously misclassified data to try to predict them correctly.

AdaBoosting-Visualizing Decision Boundaries

- AdaBoosting for a simple dataset.
 - Iteratively create 3 trees with depth 1.
 - Results are pretty stable (same result in each run).
 - Prediction based on weighted combination from each tree prediction.
 - Access to the weights output by Matlab using "yourModel .TrainedWeights".

Combined Weighted Error for Prediction—AdaBoosting

- Prediction of new data is based on weighted combination from each model.
 - Each model multiply its **±1** class prediction w/ model weight.
 - Let *S* be the sum of weighted predictions from all classifiers.
 - Predict 1 if S > 0.

Predict -1 if S < 0.

$$S = \Sigma_i M_i(x) \times \widehat{y}_i$$

Data Weights in Iteration t

- $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}, \quad Z_t \text{ to normalize } \Sigma D_{t+1} = 1.$
 - $D_1(i) = 1 / m$, where m is # of data points.
- Final output $H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$.

Decision Boundary with 100 Iterations- AdaBoosting

- Less overfitting.
- Results are pretty stable.

Iris Data, Boosting vs. Bagging (any depth)

load fisheriris

Mdl = fitensemble(meas, species, 'AdaBoostM2', 100, 'Tree')

flower = predict(Mdl,mean(meas))

AdaBoosting, Increasing Model Complexity (Iris Data)

Model's complexity may keep increasing!!!

Boosting Program

- Matlab ensemble tree bagging of height 1:
 - **TTP** = <u>templateTree</u>('MaxNumSplits', 1);
 - MAX # of branch node = create trees w/ height = 1
 - ens = **fitensemble**(X, Y, 'AdaBoostM1', 3, **TTP**, 'Type', '**Classification**');

Gradient Boosting...

- https://www.mathworks.com/help/stats/fitensemble.html
- http://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regularization.html

Summary

Ensembles:

- Combining predictions from a collection of weak models to improve accuracy.
- Majority vote or weighted combinations.

Bagging:

- Bootstrap aggregation.
- Resampling data many times for each model.

Boosting:

- Train models sequentially; later models focus on mistakes produced in earlier models.
- Weight "hard" records so later models focus on explaining them more.

Ensembles

- Combine some weak learners to create one better learner.
 - Wisdom of crowd?!
 - i.e. work yourself vs. ask friends...
 - If we don't know what kinds of models are best for your prediction problems.
 - More models can be better than a single one.
 - May include same type of model (*bagging* & *boosting*) or different types of models.
- Bagging / boosting includes many instances of the same type of model.
 - In regressions, take unweighted / weighted average of predictions.
 - In classifications, take majority vote of predictions or weighted combinations of predictions.

Weighted method...

Weighted Method

- Train *a model of models*.
 - Prediction from Predictions???
 - Treat the output of each model as a new feature to the final (another) model.
 - Let f_1, f_2, \ldots be trained classifiers, $\hat{y}_1 = f_1(x_1, x_2, \ldots)$ $\hat{y}_2 = f_2(x_1, x_2, \ldots)$ $\hat{y}_n = f_n(x_1, x_2, \ldots)$
 - $\hat{y}_e = E(\alpha_1 \hat{y}_1, \alpha_2 \hat{y}_2, ...)$, where E is another model to learn weights α_i (weighted vote).
 - Better train E on different datasets (i.e. validation data)
 - Otherwise, E will be bias to f_i with lowest error which may overfit data.
 - Similar to multi-layer perceptron
 - A multi-layer perceptron trains all layers simultaneously.
 - Outputs from first layer become inputs of next layer.
 - Ensemble trains one model at a time.

Appendix

Matlab Programming

Matlab Framework for Ensemble Learning

- Melding many weak learners' results into high-quality ensemble predictor.
 - Currently only 3 weak learner types in Matlab:
 - Discriminant (recommended for Subspace ensemble)
 - *k*NN (only for Subspace ensemble)
 - Tree (for any ensemble **except** Subspace)
- Create an ensemble with the **fitensemble()** function.
 - E = fitensemble(X, Y, M, N, L)
 - X is the matrix of data. Each row = one record, each column = one predictor variable.
 - *Y* is the vector of responses.
 - *M* is a string to name the type of ensemble.
 - N is the number of weak learners in E from each element of learners.
 - L is either a string naming a weak learner or a weak learner template.
 - http://www.mathworks.com/help/stats/ensemble-methods.html

Example Weak Learners in Matlab

- Currently only 3 weak learner types in Matlab:
 - Discriminant (recommended for Subspace ensemble)
 - *k*NN (only for Subspace ensemble)
 - Tree (for any ensemble **except** Subspace)
- Syntax:
 - ens = fitensemble(X, Y, 'AdaBoostM2', 50, 'Tree');
 - ens = fitensemble(X, Y, 'Subspace', 50, 'KNN'); % or 'Discriminant'
 - For nondefault weak learner options, check http://www.mathworks.com/help/stats/ensemble-methods.html
 - ens = fitensemble(X, Y, 'Bag', 50, <u>Your_Own_Special_Learner</u>);

Set the Number of Ensemble Members

- Choosing the size of an ensemble involves balancing speed and accuracy.
 - Larger ensembles take longer to train and to generate predictions.
 - Eensemble algorithms can overfit data when it's too large. (see next slide)
 - Consider starting with several dozen to several hundred members in an ensemble.
 - Build the ensemble, and check the ensemble quality, as in Test Ensemble Quality.
 - If it appears that you need more members, add more using the **resume()** method.
 - Repeat until adding more members does not improve ensemble quality.
 - LPBoost & TotalBoost are self-terminating & will find appropriate ensemble size.
 - Try setting N to 500, and they usually terminate with fewer members.
 - E = fitensemble(X, Y, M, N, L)

Applicable Ensemble Methods in Matlab

• fitensemble() uses one of these algorithms to create an ensemble.

http://www.mathworks.com/help/stats/ensemble-methods.html

Algorithm	Regress.	2 classes	2-class level predictors	3+ classes	Skew	Stop	Sparse	tree	Comments
Bag	X	X		X				X	deep trees, oobLoss(), ~big data
AdaBoostM1		X						X	shallow trees,
AdaBoostM2				X				X	shallow trees,
LogitBoost		X	X					X	
GentleBoost		X	X					X	
RobustBoost		X						X	
LPBoost		X		X		X	X	X	~big data
TotalBoost		X		X		X	X	X	~big data
RUSBoost		X		X	X			X	
LSBoost	X							X	
Subspace		X		X				LDA, knn	for many vars,

- Bagging usually uses deep treesss → time consuming & memory-intensive.
- Boosting usually uses shallow treesss → little time & memory. But, # of ensemble members > (or >>) # of bagged trees.
- Except Subspace, all boosting & bagging in Matlab are based on trees.

Test Ensemble Quality- Matlab Diagnosis

- Independent Test Set
 - cvpart = cvpartition(Y,'holdout',0.3);
 - Xtrain = X(training(cvpart),:);
 Ytrain = Y(training(cvpart),:);
 - Xtest = X(test(cvpart),:);Ytest = Y(test(cvpart),:);
 - **bag** = fitensemble(X, Y, 'Bag', 200, 'Tree', 'Type', 'Classification')
 - **cv** = fitensemble(X, Y, 'Bag', 200, 'Tree', 'type', 'classification', 'kfold', 5)

- plot(loss(bag,Xtest,Ytest,'mode','cumulative'));
- plot(kfoldLoss(cv,'mode','cumulative'),'r.');
- plot(kfoldLoss(cv,'mode','cumulative'),'r.');
- plot(oobLoss(bag,'mode','cumulative'),'k--');