IS2020 COMP 2540: Data Structures and Algorithms Lecture 00(II): A Brief History of Computer Science

Dr. Kalyani Selvarajah kalyanis@uwindsor.ca

School of Computer Science University of Windsor Windsor, Ontario, Canada

May 20, 2020

- Watch the BBC documentary:
 - https://www.youtube.com/watch?v=6dME3wgaQpM&list=PL1331 A4548513EA81&index=1
- Late 19th / Early 20th Century Mechanization of Labor
 - Industrial Revolution Began in the 1840s
 - Development of the assembly line
 - Each person on the line performed a tasks that was a single part of the entire process
 - By the early 20th century, machines had the capability to perform tasks at a faster rate than humans.
- The next logical step: If we can mechanize tasks of the body, can we mechanize tasks of the mind?

- Difference Engine and Analytical Engine
 - Invented by Charles Babbage in 1822 and 1834.
 - It is the first mechanical computer.
 - In 1840, Augusta Ada Byron suggests to Babbage that he use the binary system.

- 1890: Hollerith's Punched Card Solution
 - Contained ASCII values to be processed by a machine
 - Initially used to store and structure Census data
 - Reduced census data computation time by 80%
- 1934: Z1 Computer
 - World's first freely programmable computer
 - First device to use a control unit that was independent of the punch card
 - Predecessor of the CPU, such as the Pentium IV.

- Computation in World War I
 - HMS Dreadnought Class
 - Long range weapons used the target's range, bearing, and speed were input into a mechanical computer to generate an aiming command
 - <u>Lookup tables</u> calculated the guns' elevation and azimuth at the moment of firing to acquire the target
 - ASDIC Sonar (SOund NAvigation Ranging)
 - Sends a sound wave, and calculates the distance based on return time
 - Initial research began after the RMS Titanic sank to detect icebergs
 - Quickly developed to detect German U-boats

• 1936: Turing machine

- A mathematical model of computation that defines an abstract machine.
- Alan Turing provided a solution to Hilbert's Entscheidungsproblem by constructing a formal model of a computer.
- Alan Turing provided a new concept of both algorithms and the process of calculations with the invention of his Turing Machine.

• 1944: EDVAC

John von Neumann designed a stored-program electronic computer.

- Computation in World War II Lorenz Cipher and Colossus
 - Lorenz Cipher
 - Used cryptography to make secure communications from Hitler to his armies
 - Used a plaintext and a cipher (adding a character to the original) to hide the transmission
 - Allies broke Lorenz, but translating by hand took weeks
 - By the time it was broken, the information was useless
 - Colossus
 - The world's first large-scale electronic computer
 - Reduced breaking Lorenz from weeks to hours
 - Gained intelligence crucial to the Allies' success in the D-Day landings and the rest of European campaign

Data structures and Algorithms

- Main aspects of advanced code implementation within a computing device
 - Data structure a collection of data values, the relationships among them, and the functions or operations that can be applied to the data
 - Algorithm a process or set of rules to be followed in calculations or other problem-solving operations

Data structures and Algorithms

- Why Do They Go Together?
 - Computing systems are concerned with the storage and retrieval of information.
 - For systems to be economical the data must be organized (into data structures) in such a way as to support efficient manipulation (by algorithms).
 - Choosing the wrong algorithms and data structures makes a program slow at best and unmaintainable and insecure at worst.

Data structures and Algorithms

- The five key benefits of data structures
 - In general, the more sophisticated the data structure, the simpler the algorithm.
 - Simple algorithms are less expensive to develop.
 - There is less code to read and comprehend.
 - The logic is simpler, and modifications are less likely to introduce errors.
 - It's usually much easier to repair defects, make modifications, or add enhancements.

So, what exactly is Computer Science?

- Do not think of the computer as the solver of problems.
 - The coder solves the problem, and then tells the computer how to do it.
- Computer science is better defined as the study of the use of machines to efficiently implement human computation.
 - "The hardest concept to grasp when one first tries to use a computer... These machines have no common sense; they do exactly as they are told, no more and no less" Donald Knuth, The Art of Computer Programming
- "Efficiently implement human computation"
 - To do so efficiently, you must learn the best approaches to structuring data