Memoria de la Práctica de Procesadores de Lenguajes

Diego José Abengózar Vilar, Alejandro García Castellanos, Ignacio Javier Encinas Ramos

Grupo 82

April 4, 2020

Índice

1	Dis	eño del Analizador Léxico	2
	1.1	Tokens	2
	1.2	Gramática	2
	1.3	Autómata Finito Determinista	
	1.4	Acciones Semánticas	4
	1.5	Errores	5
	1.6	Matriz de Transiciones	5
2	Tab	ola de Símbolos: Estructura e implementación	5
3	Dis	eño del Analizador Sintáctico	6
	3.1	Gramática	6
	3.2	Autómata Reconocedor de Prefijos Viables	7
		3.2.1 Estados del autómata	8
	3.3	Conflictos	10
	3.4	Errores	11
	3.5	Tabla de Decisión	12
4	Dis	eno del Analizador Semántico	14
	4.1	Esquema de Traducción	14
	4.2	Implementación del EdT	17
	4.3	Gramática y Autómata Final del A. Sintáctico	20
	4.4	Errores	
5	Ane	exo de Pruebas	23

1 Diseño del Analizador Léxico

1.1 Tokens

```
<PuntoComa, - >
<CorcheteAbrir, - >
<CorcheteCerrar, - >
<ID, posTS> (Identificador)
<ENT, valor> (Dato de tipo entero)
<CAD, lex> (Dato de tipo cadena)
<ParentesisCerrar, ->
<ParentesisAbrir, - >
<SUMA, - > (Operador suma)
<MENOR, - > (Operador lógico menor)
<NOT, - > (Operador lógico de negación)
<ASIG, - > (Operador de asignación)
< ASIGOR, - > (Asignación con o lógico)
<DEC, - > ("var")
<TipoVarENT, - > ("int")
<TipoVarLOG, -> ("boolean")
<TipoVarCAD, -> ("string")
<Print, - >
<Input, - >
<Coma, - >
<Return, ->
<DECFunc, - > ("function")
<IF, - >
<ELSE, - >
```

1.2 Gramática

```
G(N, T, S, P)
S = A
N = \{ A, B, C, D, E, F, G, H \}
T = \{ del, ;, \{, \}, (, ), +, <, !, =, ,, l, d, ', /, -, *, c \}
P:
A \to delA \mid ; \mid \{ \mid \} \mid (\mid ) \mid + \mid < \mid ! \mid = \mid ,
A \to \mid B \mid lC \mid dD \mid 'E \mid /F
B \to =
C \to lC \mid dD \mid -C \mid \lambda
D \to dD \mid \lambda
E \to cE \mid *E \mid /E \mid '
F \to *G
G \to cG \mid /G \mid *H
H \to /A \mid cG \mid *H
Donde, c = T - \{*, /\}
```

1.3 Autómata Finito Determinista

1.4 Acciones Semánticas

```
Lee ∀ transicion menos o.c
C: CONCAT()
G_1: GEN_TOKEN(ASIGOR, -)
G_2: if (lex \in palRes) GEN_TOKEN(palRes, -)
else if (FlagDeclUso = Decl)
    if (estaEnTSActual(lex))
         Error ("Variable ya declarada")
    else
         p = INSERTAR_TS(lex)
        GEN_TOKEN(ID, p)
else
    p = BUSCA_TS(lex)
    if (p = null) p = INSERTAR_TS(lex)
    GEN_TOKEN(ID, p)
A: num = valor(d)
B: num = num * 10 + valor(d)
D: cont = 0
E: cont = cont + 1
   CONCAT()
G_3: if (num >= 2^{15}) Error ("Numero se sale del rango")
    else GEN_TOKEN(ENT, num)
G_4: if (cont > 64) Error ("Exceso de caracteres en la cadena")
     else GEN_TOKEN(CAD, lex)
G_5: GEN_TOKEN(PuntoComa, -)
G_6: GEN_TOKEN(CorcheteAbrir, -)
G_7: GEN_TOKEN(CorcheteCerrar, -)
G_8: GEN_TOKEN(ParentesisAbrir, -)
G_9: GEN_TOKEN(ParentesisCerrar, -)
G_{10}: GEN_TOKEN(SUMA, -)
G_{11}: \text{GEN\_TOKEN}(\text{MENOR}, -)
G_{12}: \text{GEN\_TOKEN}(\text{NOT}, -)
```

 G_{13} : GEN_TOKEN(ASIG, -)

 G_{14} : GEN_TOKEN(Coma, -)

Donde, palRes = {var, int, boolean, string, print, input, function, return, if, else}

1.5 Errores

Error 1: "Transición no prevista.";

Error 2: "Numero fuera de rango.";

Error 3: "Exceso de caracteres en la cadena.";

Error 4: "Variable ya declarada.";

1.6 Matriz de Transiciones

MT_AFD		letra	digito	,	/	_	carácter	*	delimitador
$\rightarrow 0$	1 lee	2 C	3A	4 D	5 lee	-1 error	-1 error	-1 error	0 lee
1	-1 error								
2	9 G2	2 C	2 C	9 G2	9 G2	2 C	9 G2	9 G2	9 G2
3	10 G3	10 G3	3 B	10 G3					
4	4 E	4 E	4 E	11 G4	4 E	4 E	4 E	4 E	4 E
5	-1 error	6 lee	-1 error						
6	6 lee	7 lee	6 lee						
7	6 lee	6 lee	6 lee	6 lee	0 lee	6 lee	6 lee	7 lee	6 lee

MT_AFD	;	{	}	()	+	<	!	=	,
$\rightarrow 0$	12 G5	13 G6	14 G7	15 G8	16 G9	17 G10	18 G11	19 G12	20 G13	21 G14
1	-1 error	8 G1	-1 error							
2	9 G2									
3	10 G3									
4	4 E	4 E	4 E	4 E	4 E	4 E	4 E	4 E	4 E	4 E
5	-1 error									
6	6 lee									
7	6 lee									

2 Tabla de Símbolos: Estructura e implementación

Contiene la información de los identificadores, de los cuales se guardan los campos: lexema, tipo y desplazamiento. Para las funciones, además, se guardará el número de parámetros, su tipo, la forma de paso de parámetros, el tipo del valor de retorno y etiqueta de función (formada por nombre y su posición en tabla de simbolos).

La tabla de símbolos estará formada por dos matrices de tamaño dinámico; la primera contendrán los identificadores de ámbito global y la segunda del local. Así pues, esta segunda se creará al encontrar la declaración de una función y se borrará al acabar de ser declarada. También se utiliza un flag de declaración o uso (FlagDeclUso), un flag para saber cual es la tabla actual y dos más para el valor del desplazamiento en cada una de las tablas.

3 Diseño del Analizador Sintáctico

3.1 Gramática

```
Terminales = \{ ; \{ \} id ent cadena ( ) + < ! = | = var int \}
boolean \ string \ print \ input \ , \ return \ function \ if \ else \ \}
NoTerminales = \{ PDTFT1AKCSLMQS1GXEURVS2 \}
Axioma = P
Producciones = \{
P \rightarrow D P
P \rightarrow F P
P \rightarrow S P
D \rightarrow var T id ;
T \rightarrow int
T \rightarrow string
T \rightarrow boolean
F \rightarrow function T1 id (A) \{C\}
T1 \rightarrow lambda
T1 \rightarrow T
A \rightarrow T id K
A \rightarrow lambda
K \rightarrow lambda
K \rightarrow T id K
C \rightarrow D C
C \rightarrow S C
C \rightarrow lambda
S \rightarrow id L E;
S \rightarrow id \ (M);
S \rightarrow print (E);
S \rightarrow input \ (id);
S \rightarrow if (E) S1
S \rightarrow return X;
L \rightarrow |=
L \rightarrow =
M \rightarrow E Q
M \rightarrow lambda
Q \rightarrow lambda
Q \rightarrow E Q
S1 \rightarrow \{S2\}G
S1 \rightarrow S
G \rightarrow else \{ S2 \}
G \ \to \ lambda
X \rightarrow E
X \rightarrow lambda
E \rightarrow E < U
E \rightarrow U
U \rightarrow U + R
U \rightarrow R
R \rightarrow ! V
R \rightarrow V
V \rightarrow (E)
```

```
\begin{array}{lll} V & \rightarrow & id \\ V & \rightarrow & id & (M) \\ V & \rightarrow & ent \\ V & \rightarrow & cadena \\ S2 & \rightarrow & S2 \\ S2 & \rightarrow & S \\ P & \rightarrow & lambda \\ \} \end{array}
```

3.2 Autómata Reconocedor de Prefijos Viables¹

 $^{^{1}}$ Los estados con forma de rectángulo redondeado son aquellos con bucles a si mismos. La etiqueta de dicha arista es la misma que la arista que conecta dicho estado y su antecedente

3.2.1 Estados del autómata

```
S_0=\{P1 \rightarrow \bullet P, P \rightarrow \bullet DP, P \rightarrow \bullet SP, P \rightarrow \bullet, D \rightarrow \bullet var T id;,
         F \rightarrow \bullet \text{ function } T1 \text{ id}(A)\{C\}, S \rightarrow \bullet \text{ id } L E;, S \rightarrow \bullet \text{ id}(M);
         S \rightarrow \bullet \text{ print}(E); , S \rightarrow \bullet \text{ input}(id); , S \rightarrow \bullet \text{ if}(E) S1,
         S \rightarrow \bullet return X;
S_1 = \{P1 \rightarrow P \bullet \}
S_2 = \{P \rightarrow D \bullet P, P \rightarrow \bullet DP, P \rightarrow \bullet SP, P \rightarrow \bullet , D \rightarrow \bullet var T id;,
         F \rightarrow \bullet \text{ function T1 id}(A)\{C\}, S \rightarrow \bullet \text{ id } L E;, S \rightarrow \bullet \text{ id}(M);
         S \rightarrow \bullet print(E); S \rightarrow \bullet input(id); S \rightarrow \bullet if(E) S1,
         S \rightarrow \bullet return X;
S_3=\{P \rightarrow F \bullet P, P \rightarrow \bullet DP, P \rightarrow \bullet FP, P \rightarrow \bullet SP, P \rightarrow \bullet,
         D \rightarrow \bullet \text{ var } T \text{ id}; F \rightarrow \bullet \text{ function } T1 \text{ id}(A) \{C\},
         S \rightarrow \bullet \text{ id } L E;, S \rightarrow \bullet \text{ id}(M);, S \rightarrow \bullet \text{ print}(E);
         S \rightarrow \bullet \text{ input (id)}; S \rightarrow \bullet \text{ if (E)} S1, S \rightarrow \bullet \text{ return } X;
S_4=\{P \rightarrow S \bullet P, P \rightarrow \bullet DP, P \rightarrow \bullet FP, P \rightarrow \bullet SP, P \rightarrow \bullet,
         D \rightarrow \bullet \text{ var } T \text{ id};, F \rightarrow \bullet \text{ function } T1 \text{ id}(A)\{C\},
         S \rightarrow \bullet id L E;, S \rightarrow \bullet id (M);, S \rightarrow \bullet print (E);,
         S \ \rightarrow \ \bullet \ input(id); \, , \ S \ \rightarrow \ \bullet \ if(E) \ S1 \, , \ S \ \rightarrow \ \bullet \ return \ X; \}
S_5 = \{D \rightarrow var \bullet T id;, T \rightarrow \bullet int, T \rightarrow \bullet string, T \rightarrow \bullet boolean\}
S_6=\{F \rightarrow function \bullet T1 \ id(A)\{C\}, \ T1 \rightarrow \bullet, \ T1 \rightarrow \bullet T,
         T \rightarrow \bullet \text{ int}, T \rightarrow \bullet \text{ string}, T \rightarrow \bullet \text{ boolean}
S_7 = \{S \rightarrow id \bullet L E; , S \rightarrow id \bullet (M); , L \rightarrow |=, L \rightarrow \bullet =\}
S_8 = \{S \rightarrow print \bullet (E); \}
S_9 = \{S \rightarrow input \bullet (id); \}
S_{10} = \{S \rightarrow if \bullet (E) S1\}
S_{11}\!\!=\!\!\{S \ \rightarrow\! \texttt{return} \ \bullet X; \,, \ X \ \rightarrow \ \bullet, \ X \ \rightarrow \ \bullet \ E, \ E \ \rightarrow \ \bullet \ E < U, \ E \ \rightarrow \ \bullet \ U,
         U \rightarrow \bullet U + R, U \rightarrow \bullet R, R \rightarrow \bullet ! V, R \rightarrow \bullet V, V \rightarrow \bullet (E),
         V \rightarrow \bullet \text{ id}, V \rightarrow \bullet \text{ id}(M), V \rightarrow \bullet \text{ ent}, V \rightarrow \bullet \text{ cadena}
S_{12} = \{P \rightarrow DP \bullet\}
S_{13} = \{P \rightarrow FP \bullet\}
S_{14} = \{P \rightarrow SP \bullet \}
S_{15}=\{D \rightarrow var \ T \bullet id;\}
S_{16} = \{T \rightarrow int \bullet \}
S_{17} = \{T \rightarrow string \bullet \}
S_{18} = \{T \rightarrow boolean \bullet \}
S_{19} = \{F \rightarrow function \ T1 \bullet id(A)\{C\}\}\
S_{20} {=} \{T1 \ \rightarrow T \ \bullet \}
S_{21} = \{L \rightarrow = \bullet\}
S_{22} = \{S \rightarrow id \ (\bullet M); , M \rightarrow \bullet E Q, M \rightarrow \bullet, E \rightarrow \bullet E < U, E \rightarrow \bullet U,
         U \rightarrow \bullet U + R, U \rightarrow \bullet R, R \rightarrow \bullet ! V, R \rightarrow \bullet V, V \rightarrow \bullet (E),
         V \rightarrow \bullet \text{ id}, V \rightarrow \bullet \text{ id}(M), V \rightarrow \bullet \text{ ent}, V \rightarrow \bullet \text{ cadena}
S_{23} = \{L \rightarrow |= \bullet\}
S_{24} = \{S \rightarrow print \ (\bullet E); , E \rightarrow \bullet E < U, E \rightarrow \bullet U, U \rightarrow \bullet U + R,
         U \rightarrow \bullet R, R \rightarrow \bullet ! V, R \rightarrow \bullet V, V \rightarrow \bullet (E), V \rightarrow \bullet id,
         V \rightarrow \bullet id(M), V \rightarrow \bullet ent, V \rightarrow \bullet cadena
S_{25} = \{S \rightarrow input \ ( \bullet id ) \}
S_{26} = \{S \rightarrow if \ (\bullet E) \ S1, \ E \rightarrow \bullet E < U, \ E \rightarrow \bullet U, \ U \rightarrow \bullet U + R,
         U \ \rightarrow \ \bullet \ R, \ R \ \rightarrow \ \bullet \ ! \ V, \ R \ \rightarrow \ \bullet \ V, \ V \ \rightarrow \ \bullet \ (E) \,, \ V \ \rightarrow \ \bullet \ id \,,
         V \rightarrow \bullet id(M), V \rightarrow \bullet ent, V \rightarrow \bullet cadena)
S_{27} = \{S \rightarrow return \ X \bullet ; \}
S_{28} = \{X \rightarrow E \bullet, E \rightarrow E \bullet < U\}
S_{29} = \{E \rightarrow U \bullet, U \rightarrow U \bullet + R\}
S_{30} = \{U \rightarrow R \bullet \}
S_{31} = \{R \rightarrow ! \bullet V, V \rightarrow \bullet (E), V \rightarrow \bullet id, V \rightarrow \bullet id(M),
         V \rightarrow \bullet \text{ ent}, V \rightarrow \bullet \text{ cadena}
S_{32} = \{R \rightarrow V \bullet \}
S_{33}=\{V \rightarrow (\bullet E), E \rightarrow \bullet E < U, E \rightarrow \bullet U, U \rightarrow \bullet U + R,
```

```
U \rightarrow \bullet R, R \rightarrow \bullet ! V, R \rightarrow \bullet V, V \rightarrow \bullet (E), V \rightarrow \bullet id,
         V \rightarrow \bullet id(M), V \rightarrow \bullet ent, V \rightarrow \bullet cadena
S_{34} = \{V \rightarrow id \bullet, V \rightarrow id \bullet (M)\}
S_{35} = \{V \rightarrow ent \bullet \}
S_{36} = \{V \rightarrow cadena \bullet \}
S_{37}=\{D \rightarrow var \ T \ id \bullet;\}
S_{38} = \{F \rightarrow function T1 id \bullet (A)\{C\}\}\
S_{39}=\{S \rightarrow id L \bullet E, E \rightarrow \bullet E < U, E \rightarrow \bullet U, U \rightarrow \bullet U + R,
         U \rightarrow \bullet R, R \rightarrow \bullet ! V, R \rightarrow \bullet V, V \rightarrow \bullet (E), V \rightarrow \bullet id,
         V \rightarrow \bullet id(M), V \rightarrow \bullet ent, V \rightarrow \bullet cadena
S_{40} = \{S \rightarrow id (M \bullet); \}
S_{41}=\{M \rightarrow E \bullet Q, E \rightarrow E \bullet < U, Q \rightarrow \bullet, Q \rightarrow \bullet, EQ\}
S_{42} = \{S \rightarrow print(E \bullet);, E \rightarrow E \bullet < U\}
S_{43} = \{S \rightarrow input(id \bullet);\}
S_{44} = \{S \rightarrow if(E \bullet) S1, E \rightarrow E \bullet < U\}
S_{45} = \{S \rightarrow return X; \bullet \}
S_{46}=\{E \rightarrow E < \bullet U, U \rightarrow \bullet R, U \rightarrow \bullet U + R, R \rightarrow \bullet ! V, R \rightarrow \bullet V\}
         V \rightarrow \bullet (E), V \rightarrow \bullet id, V \rightarrow \bullet id (M), V \rightarrow \bullet ent, V \rightarrow \bullet cadena}
S_{47}=\{U \rightarrow U + \bullet R, R \rightarrow \bullet ! V, V \rightarrow \bullet (E), V \rightarrow \bullet id(M),
         V \rightarrow \bullet \text{ ent}, V \rightarrow \bullet \text{ cadena}
S_{48} = \{R \rightarrow ! V \bullet \}
S_{49} = \{V \rightarrow (E \bullet), E \rightarrow E \bullet < U\}
S_{50} = \{ V \rightarrow id \ ( \bullet \ M ) \ , \ M \rightarrow \bullet \ E \ Q, \ M \rightarrow \bullet \ , \ E \rightarrow \bullet \ E < U, \ E \rightarrow \bullet \ U,
         U \rightarrow \bullet U + R, U \rightarrow \bullet R, R \rightarrow \bullet ! V, R \rightarrow \bullet V, V \rightarrow \bullet (E),
         V \rightarrow \bullet \text{ id}, V \rightarrow \bullet \text{ id}(M), V \rightarrow \bullet \text{ ent}, V \rightarrow \bullet \text{ cadena}
S_{51}=\{F \rightarrow function \ T1 \ id (\bullet \ A)\{C\}, \ A \rightarrow \bullet \ T \ id \ K, \ A \rightarrow \bullet, \ T \rightarrow \bullet \ int,
         T \rightarrow \bullet \text{ string}, T \rightarrow \bullet \text{ boolean}
S_{52} = \{S \rightarrow id \ L \ E \bullet ;, E \rightarrow E \bullet < U\}
S_{53} = \{S \rightarrow id(M) \bullet ; \}
S_{54}=\{M \rightarrow E Q \bullet \}
S_{55}=\{Q \rightarrow , \bullet E Q, E \rightarrow \bullet E < U, E \rightarrow \bullet U, \}
         U \rightarrow \bullet U + R, U \rightarrow \bullet R, R \rightarrow \bullet ! V, R \rightarrow \bullet V, V \rightarrow \bullet (E),
         V \rightarrow \bullet \text{ id}, V \rightarrow \bullet \text{ id}(M), V \rightarrow \bullet \text{ ent}, V \rightarrow \bullet \text{ cadena}
S_{56} = \{S \rightarrow print(E) \bullet ;\}
S_{57} = \{S \rightarrow input(id) \bullet ;\}
S_{58} \hspace{-0.05cm} = \hspace{-0.05cm} \{S \rightarrow i\, f\, (E) \mid \bullet \ S1 \,, \ S1 \rightarrow \bullet \ \{S2\}G, \ S1 \rightarrow \bullet \ S, \ S \rightarrow \bullet \ i\, d \ L \ E; \,,
         S \rightarrow \bullet id(M);, S \rightarrow \bullet print(E);, S \rightarrow \bullet input(id);,
         S \ \rightarrow \ \bullet \ if (E) S1 \, , \ S \ \rightarrow \ \bullet \ return \ X \ ; \}
S_{59} = \{E \rightarrow E < U \bullet, U \rightarrow U \bullet + R\}
S_{60} = \{U \rightarrow U + R \bullet \}
S_{61} {=} \{ V \rightarrow (E) \quad \bullet \, \}
S_{62} = \{V \rightarrow id (M \bullet)\}
S_{63}=\{M \rightarrow E \bullet Q, E \rightarrow E \bullet < U, Q \rightarrow \bullet, Q \rightarrow \bullet, EQ\}
S_{64} = \{F \rightarrow function T1 id(A \bullet)\{C\}\}
S_{65}=\{A \rightarrow T \bullet id K\}
S_{66} = \{S \rightarrow id \ L \ E \ ; \bullet \}
S_{67} = \{S \rightarrow id (M); \bullet \}
S_{68}=\{Q \rightarrow E \bullet Q, E \rightarrow E \bullet C, Q \rightarrow \bullet, Q \rightarrow \bullet, EQ\}
S_{69} = \{S \rightarrow print(E); \bullet \}
S_{70} = \{S \rightarrow input(id); \bullet\}
S_{71}=\{S \rightarrow if(E) S1 \bullet \}
S_{72} = \{S1 \rightarrow \{\bullet \ S2\}G, \ S2 \rightarrow \bullet \ S \ S2, \ S2 \rightarrow \bullet \ S, \ S \rightarrow \bullet \ id \ L \ E;, \}
         S \rightarrow \bullet id(M);, S \rightarrow \bullet print(E);, S \rightarrow \bullet input(id);,
         S \rightarrow \bullet \text{ if } (E)S1, S \rightarrow \bullet \text{ return } X ; 
S_{73} = \{S1 \rightarrow S \bullet \}
S_{74} = \{V \rightarrow id(M) \bullet \}
S_{75}=\{F \rightarrow function T1 id (K) \bullet \{C\}\}
S_{76}=\{A \rightarrow T \text{ id } \bullet K , K \rightarrow \bullet, K \rightarrow \bullet , T \text{ id } K\}
```

```
S_{77} = \{Q \rightarrow , E Q \bullet \}
S_{78} = \{S1 \rightarrow \{S2 \bullet \} G\}
S_{79}=\{S2 \rightarrow S \bullet S2, S2 \rightarrow S \bullet, S2 \rightarrow \bullet S S2, S \rightarrow \bullet id L E;
                    S_{80}\!\!=\!\!\left\{F \ \to function \ T1 \ id \ (K) \ \left\{ \ \bullet \ C\right\}, \ C \ \to \ \bullet \ D \ C \ , \ C \ \to \ \bullet \ , \right.
                    D \ \rightarrow \ \bullet \ \mathrm{var} \ T \ \mathrm{id} \ \ ; \, , \ S \ \rightarrow \ \bullet \ \mathrm{id} \ \ L \ E \ \ , \ S \ \rightarrow \ \bullet \ \mathrm{id} \ \ (M) \, ; \, ,
                    S \rightarrow \bullet \text{ print } (E);, S \rightarrow \bullet \text{ input (id)};, S \rightarrow \bullet \text{ if } (E) S1,
                     S \rightarrow \bullet return X ; 
S_{81} = \{A \rightarrow T \text{ id } K \bullet \}
S_{82} = \{K \rightarrow, \bullet T \text{ id } K, T \rightarrow \bullet \text{ int }, T \rightarrow \bullet \text{ string }, T \rightarrow \bullet \text{ boolean}\}
S_{83} = \{S1 \rightarrow \{S2\} \bullet G , G \rightarrow \bullet \text{ else } \{S2\} , G \rightarrow \bullet \}
S_{84} = \{F \rightarrow function T1 id (K) \{C \bullet \}\}
S_{85} \!\!=\!\! \{C \rightarrow\! D \bullet C,\ C \rightarrow \bullet \ D \ C,\ C \rightarrow \bullet \ S \ C,\ C \rightarrow \bullet,\ D \rightarrow \bullet \ var \ T \ id \ ;,
                     \dot{S} \rightarrow \bullet \text{ id } L E ;, S \rightarrow \bullet \text{ id } (M) ;, S \rightarrow \bullet \text{ print } (E) ;,
                     S \rightarrow \bullet \text{ input (id)};, S \rightarrow \bullet \text{ if (E)} S1, S \rightarrow \bullet \text{ return } X;
S_{86} = \{C \rightarrow S \bullet C, C \rightarrow \bullet D C, C \rightarrow \bullet S C, C \rightarrow \bullet, D \rightarrow \bullet \text{ var T id };
                     S \rightarrow • id L E ;, S \rightarrow • id ( M ) ;, S \rightarrow • print ( E ) ;,
                     S \rightarrow \bullet \text{ input (id)};, S \rightarrow \bullet \text{ if (E)} S1, S \rightarrow \bullet \text{ return } X;
S_{87} \hspace{-0.1cm}=\hspace{-0.1cm} \{K \ \rightarrow \ , \ T \ \bullet \ id \ K\}
S_{88} = \{S1 \rightarrow \{S2\} G \bullet \}
S_{89} = \{G \rightarrow else \bullet \{S2\}\}\
S_{90} = \{F \rightarrow function T1 id (K) \{C\} \bullet \}
S_{91}=\{K \rightarrow , T \text{ id } \bullet K, K \rightarrow \bullet, K \rightarrow \bullet, T \text{ id } K\}
S_{92} \hspace{-0.05cm}=\hspace{-0.05cm} \{G \hspace{0.1cm} \rightarrow \hspace{0.1cm} \texttt{else} \hspace{0.1cm} \{ \hspace{0.1cm} \bullet \hspace{0.1cm} S2 \} \hspace{0.1cm}, \hspace{0.1cm} S2 \hspace{0.1cm} \rightarrow \hspace{0.1cm} \bullet \hspace{0.1cm} S \hspace{0.1cm} S2 \hspace{0.1cm}, \hspace{0.1cm} S2 \hspace{0.1cm} \rightarrow \hspace{0.1cm} \bullet \hspace{0.1cm} \texttt{id} \hspace{0.1cm} L \hspace{0.1cm} E \hspace{0.1cm} ; \hspace{0.1cm}, \hspace{0.1cm} S3 \hspace{0.1cm} \rightarrow \hspace{0.1cm} \bullet \hspace{0.1cm} \texttt{id} \hspace{0.1cm} L \hspace{0.1cm} E \hspace{0.1cm} ; \hspace{0.1cm} , \hspace{0.1cm} S4 \hspace{0.1cm} \rightarrow \hspace{0.1cm} \bullet \hspace{0.1cm} \texttt{id} \hspace{0.1cm} L \hspace{0.1cm} E \hspace{0.1cm} ; \hspace{0.1cm} , \hspace{0.1cm} S4 \hspace{0.1cm} \rightarrow \hspace{0.1cm} \bullet \hspace{0.1cm} \texttt{id} \hspace{0.1cm} L \hspace{0.1cm} E \hspace{0.1cm} ; \hspace{0.1cm} , \hspace{0.1cm} S4 \hspace{0.1cm} \rightarrow \hspace{0.1cm} \bullet \hspace{0.1cm} \texttt{id} \hspace{0.1cm} L \hspace{0.1cm} E \hspace{0.1cm} ; \hspace{0.1cm} , \hspace{0.1cm} S4 \hspace{0.1cm} \rightarrow \hspace{0.1cm} \bullet \hspace{0.1cm} \texttt{id} \hspace{0.1cm} L \hspace{0.1cm} E \hspace{0.1cm} ; \hspace{0.1cm} , \hspace{0.1cm} S4 \hspace{0.1cm} \rightarrow \hspace{0.1cm} \bullet \hspace{0.1cm} \texttt{id} \hspace{0.1cm} L \hspace{0.1cm} E \hspace{0.1cm} ; \hspace{0.1cm} , \hspace{0.1cm} S4 \hspace{0.1cm} \rightarrow \hspace{0.1cm} \bullet \hspace{0.1cm} \texttt{id} \hspace{0.1cm} L \hspace{0.1cm} E \hspace{0.1cm} ; \hspace{0.1cm} , \hspace{0.1cm} S4 \hspace{0.1cm} \rightarrow \hspace{0.1cm} \bullet \hspace{0.1cm} \texttt{id} \hspace{0.1cm} L \hspace{0.1cm} E \hspace{0.1cm} ; \hspace{0.1cm} , \hspace{0.1cm} S4 \hspace{0.1cm} \rightarrow \hspace{0.1cm} \bullet \hspace{0.1cm} \hspace{0.1cm} \bullet \hspace{0.1cm} \hspace{0.1cm} \bullet \hspace{0.1cm} \hspace{0.1cm} \bullet \hspace{0.1cm} \bullet \hspace{0.1cm} \bullet \hspace{0.1cm} \bullet \hspace{0.1cm} \bullet \hspace{0.1c
                     S \ \rightarrow \ \bullet \ id \ (M \ ) \ ; \ , \ S \ \rightarrow \ \bullet \ print \ (E \ ) \ ; , \ S \ \rightarrow \ \bullet \ input(id); ,
                     S \rightarrow \bullet \text{ if } (E) S1, S \rightarrow \bullet \text{ return } X;
S_{93}=\{K \rightarrow , T \text{ id } K \bullet \}
S_{94} = \{G \rightarrow else \{ S2 \bullet \} \}
S_{95} = \{G \rightarrow else \{ S2 \} \bullet \}
S_{96} = \{C \rightarrow D C \bullet \}
S_{97} = \{C \rightarrow S C \bullet \}
S_{98}=\{D \rightarrow var \ T \ id \ ; \bullet\}
S_{99} = \{S2 \rightarrow S \ S2 \bullet \}
```

3.3 Conflictos

Como podemos observar en la tabla de decisión no hay ningún conflicto. Los posibles conflictos son:

Reducción-Reducción

Podríamos ver como en los posibles estados con este conflicto, en nuestro caso ninguno, se verifica que

 $\forall \{A \to \alpha \bullet, B \to \beta \bullet\} \subset S_x \Rightarrow \text{Follow}(A) \cap \text{Follow}(B) = \emptyset \text{ (Esto lo podemos observar al no tener dos entradas de reducción en la misma celda de cada fila de <math>S_x$)

Reducción-Desplazamiento

Podemos ver como en los posibles estados con este conflicto, S_0 , S_2 , S_3 , S_4 , S_6 , S_{11} , S_{22} , S_{28} , S_{29} , S_{34} , S_{41} , S_{50} , S_{51} , S_{59} , S_{63} , S_{68} , S_{76} , S_{79} , S_{80} , S_{83} , S_{85} , S_{86} , S_{91} , se verifica $\forall \{A \rightarrow \alpha \bullet b \gamma, C \rightarrow \beta \bullet\} \subset S_x \Rightarrow b \notin Follow(C)$ (Esto lo podemos observar al no tener una entrada de desplazamiento y otra de reducción en la misma celda de cada fila de S_x)

Por ejemplo, para los estados S_0 , S_2 , S_3 , S_4 : {var, function, id, print, input, if, return} $\notin \text{Follow}(P) = \{ \$ \}$

En el estado S_6 : {int, string, boolean} \notin Follow(T1) = { id }

Y así sucesivamente con el resto de estados.

3.4 Errores

En las celdas vacías de cada fila se lanzan los siguientes errores:

 $S_0, S_4, S_7, S_{14}, S_{85}, S_{86}, S_{96}, S_{97}$: Error 1: "Sentencia no válida"

S₁: Error -1 : "No se pudo derivar la raíz"

S₂, S₅, S₁₂, S₁₅, S₃₇, S₉₈: Error 2: "Declaración incorrecta de variable"

 S_3 , S_6 , S_{13} , S_{19} , S_{38} , S_{51} , S_{64} , S_{65} , S_{75} , S_{76} , S_{80} , S_{81} , S_{82} , S_{84} , S_{87} , S_{90} , S_{91} , S_{93} : Error 3: "Declaración incorrecta de función"

S₈, S₂₄, S₄₂, S₅₆, S₆₉: Error 4: "Sentencia print incorrecta"

S₉, S₂₅, S₄₃, S₅₇, S₇₀: Error 5: "Sentencia input incorrecta"

S₁₀, S₂₆, S₄₄, S₅₈, S₇₁, S₇₃: Error 6: "Sentencia condicional simple incorrecta"

 $S_{11},\,S_{27},\,S_{28},\,S_{45}\colon$ Error 7: "Sentencia return incorrecta"

 $S_{16}, S_{17}, S_{18}, S_{20}$: Error 8: "Tipo incorrecto"

 S_{21} , S_{23} , S_{39} , S_{52} , S_{66} : Error 9: "Asignación incorrecta"

 S_{22} , S_{40} , S_{41} , S_{53} , S_{54} , S_{55} , S_{63} , S_{67} , S_{68} , S_{77} : Error 10: "Llamada a función incorrecta"

 S_{29} , S_{30} , S_{31} , S_{32} , S_{33} , S_{34} , S_{35} , S_{36} , S_{46} , S_{47} , S_{48} , S_{49} , S_{50} , S_{59} , S_{60} , S_{61} , S_{62} , S_{74} : Error 11: "Expresión incorrecta"

 S_{72} , S_{78} , S_{79} , S_{83} , S_{88} , S_{89} , S_{92} , S_{94} , S_{95} , S_{99} : Error 12 "Sentencia condicional compuesta incorrecta"

3.5 Tabla de Decisión

	-	id entero cadena		 V	= = var	int boolean	= var int boolean string print input		return fm	nction if	else 8 I) D T F	T' A K	C S L M	Q S' G 3	, return function if else \$ P D T F T' A K C S L M Q S' G X E U R V S' C S C C C C C C C C	V S.
So os	-		_	-		_	8p		d11	d6 d10	r49 1 2	1 2 3		4		-	
81	_	_	_	_		_	_	_			a	_		_	_	_	
85	d7	_		_ _ _	d5	_	l d8		_				_	4	_ _ _	_ _ _	
S3	d7	_	_	- -	d5	-	- d8	-	_				_	4	_ _ _	_ _ _	_
S4	d7	_	_ _	- - 	d5	_	d8	6p	d11	d6 d10	r49 14	2	_ _ _	4	_ _ _	_ _ _	_
S2	_			- -			d17	_	_	_	_	15	_	_	_ _ _	_ _ _	
98	r9	_	_	- - 		d16 d18	d17			_	= -	20	19	_ _ _	_ _ _	_ _ _	
S2	_	_	d22	- -	d21 d23	_		_		_	= -	_	_	39	_ _ _	_	
	_	_	d24	_ _	_	_	_		_	_	_	_ _ _	_	_	_ _ _	_ _ _	_
88		_	d25	_		_	_	_	_	_	_	_		_		_	_
S10	_ _	_	d26	_ _		_	_	_ _	_ _	_	<u> </u>	_ _ _		<u>-</u>	_ _ _	_ _ _	_
S11 r35	d34 d35	929	933	d31			_	_	_		<u> </u>	_ _		_ 		27 28 29 30 32	32
S12	_		_		_		_	_	_		1.1	_	_	_	_ _	_ _ _	
S13			_	_	_			_	_		r2	_ _ _	_	_	_	_ _ _	
S14	_ _	_	_ _	_ _		_	_	_ _	- -	_	r3	_ _ _		_ _	_ _ _	_ _ _	_
S15	d37	_	_	_ _		_			_	_	_	_ _ _		_	_ _ _	_ _ _	_
S16	r5	_	_	_		_	_	_	_								_
S17	l r6	_		_		_	_	_									_
S18	L1	_	_	_ _		_	_	_ _	_	_	_	_ _		<u> </u>	_ _ _	_ _ _	_
S19	d38						_	_			_	_		_		_	
S20	110	_	_			_	_	_	_	_	_	_ _ _		<u>-</u>	_ _ _	_ _ _	_
S21	r25 r25	r25	r25	r25		_	_	_	_								_
S22	d34 d35	_	d36 d33 r27	d31		_	_	_ _	_	_	_	_ _		40	_ _ _	41 29 30 32	32
S23	r24 r24	r24	r24	r24		_	_		_	_	_	_		_		_ _ _	_
S24	d34 d35	5 d36 d33	d33	d31		_			_	_	_	_	_	_	_	42 29 30 32	32
S25	d43			- -	_ _ _	-			_	_	_ _	_ _ _	_	_	_ _ _	_ _ _	
826	d34 d35	5 d36 d33		d31	_ _ _	_				_	= -	_ _ _	_	_	_ _ _	44 29 30 32	32
S27 d45	_ -		_ _	- - - -		_	_ -	_ -	_ - _ .		= - - -	_ - _ - _ -		_ - _ -	_ _ _ :	_ - _ -	
S28 r34	_ -					_		_ -			_	_ _ _		_ - _ -		_ _ _	
S29 r37			r37 d47					r37									
S30 r39	- 1	_	r39 r39	r39 r39	_ _ _	_		r39		_	_ _	_	_	_	_ _ _	_ _ _	
S31	d34 d35	d36	d33		_ _ _ _	_	_	_	_ _	_	<u> </u>	_ _ _	_	_ _ _	 	_ _ _	48
S32 r41	_	_	r41 r41	r41 r41	_ _ _	_	_	r41	_	_	<u> </u>	_ _ _	_ _ _	<u>-</u>	_ _ _	_ _ _	_
S33	d34 d35	d36	d33		_ _ _ _	-				_	= -	_	_	_	_ _ _	49 29 30 32	32
S34 r43			d50 r43 r43			_		r43		_	<u> </u>	_	_	_		_	
S35 r45			r45 r45			_		r45			<u>-</u>	_ _		_ _ _		_ _ _	
S36 r46			146 146	r46 r46		_		r46			_ _	_		_ _		_ _ _	
S37 d98																	
838	- 1		d51	- - 		_					_						
839	d34 d35	d36	d33		_ _ _	_	_	_ _	_ _	_	_	_	_	<u> </u>	 	52 29 30 32	32
S40	_ _		d53	_ _	_ _ _	_		_		_	<u> </u>	_	_	_	_ _ _	_	
S41	_		r28	d46		_	_	d55	_		=			_	54	_	
S42	_	_	d56	d46	_ _ _	_		_		_	= -	_	_	_	_ _ _	_	
S43	_	_	d57	_ _	_ _ _	_	_	_	_		_	_ _ _		<u> </u>	 	_ _ _	
S44	_	_		d46	_ _ _	_				_	_	_	_	_		_	
-	r23 r23	—	_ _	- -	r23	_	r23	r23	r23	r23 r23	r23	_ _ _	_	_	_ _ _	_ _ _	_
S46	d34 d35	—1	d33		_ _ _ _	_				_	<u> </u>	_	_	_	_ _ _	59 30 32	32
S47	d34 d35	6 d36 d33				_		_		_	<u>-</u>	_ _		_ _		09	60 32
S48 r40			r40 r40			_		r40			= -			_ _			
849	_			d46	_ _ _	_				_	_						

: { } id entero cadena () +	$ \langle \cdot \cdot = \cdot = \cdot \cdot $		return function if else \$ P D T F T A K C S L M	M[O]S'[G]X[E]U[B]V[S]
	d31			63 29 30
S52 d66				
	1001	_ - _ - _ -		06 06 09 0
S55 G69 G54 G55 G55		- - - - - -		26 00 27 90 37
S57 d70				
S58 d72 d7		d8 d9 d11		
_ _ _ _				
S61 r42 r42 r42	2 r42	r42		
S62		 		
S63	d46			54
S64		_ _ _		
S65 d76		_ _ _		
_		_	_	
S67 r19 r19		r19 r19 r19	r19 r19 r19	
_	d46		_	
-		r20	r20	
_		r21	r21	
S71 r22 r22	r22	r22	r22	
S72 d7		d8 d9 d11	d10	87 18
S73 r31 r31		r31 r31 r31	r31 r31 r31	
S74 r44 r44 r44	4 r44	r44		
S75 d80		_ _ _		
_	_	d82		
S77	_	_ _ _ _		
_		_		
-		- - - - - - - - - -		66
r17 d7		d8 d9 d11	d10	
		_ - - - -		
-				
S83	153	r33 r33 r33 r33	153 153 168 153	88
-			98 96	
-				
	_ _ _ _ _	_ _ _		
S88 r30 r30		r30 r30 r30	r30 r30 r30	
S89 d92				
r8		r8 r8 r8	r8 r8 r8	
_	_	d82		
S92 d7	_	d8 d9 d11	d10	
_		_ _ _ _		
_	_ _ _ _	_ _ _	_ _ _	
_		r32 r32 r32	r32 r32 r32	
r16		_ - -	_ _ _ _	
-	174	r4 r4 r4	r4 r	
S99 r47		_		

4 Diseno del Analizador Semántico

4.1 Esquema de Traducción

```
0. P' \rightarrow \{TSG = creaTS(); DesplG = 0; TS\_actual = TSG;
        P.func = false } P { liberaTS (TSG) }
1. P \rightarrow D \{ P_1 . func = P. func \} P_1
2. P \rightarrow F \{ P_1 . func = P. func \} P_1
3. P \rightarrow \{S.func = false\} S \{P_1 = P.func\} P_1
4. D → var {zona_decl = true} T id ; {InsertarTipoTS(id.posi, T.tipo)
                                                                               if (TS_actual=TSG) then
                                                                                        InsertarDespl(id.posi, desplG)
                                                                                        desplG = desplG + T.tamano
                                                                                        InsertarDespl(id.posi, desplL)
                                                                                        desplL = desplL + T.tamano
                                                                            zona_decl=false}
5. T \rightarrow int \{T.tipo=entero; T.tamano = 1\}
6. T \rightarrow string \{T.tipo=cadena; T.tamano = 64\}
7. T \rightarrow boolean \{T.tipo=logico; T.tamano = 1\}
8. F \rightarrow function {zona_decl =true} T_1 id ( {TSL = creaTS(); desplL=0;
         TS_actual = TSL} A ){InsertaTipoTSG(id.posi, A. tipo → T. tipo));
         then error (2);
                                                                                                           TS_actual = TSG; LiberarTS(TSL)
9. T_1 \rightarrow \lambda \{T. tipo = tipo\_vacio\}
10. T_1 \rightarrow T \{T_1. \text{tipo} = T. \text{tipo}\}
11. A → T id {InsertarTipoTS(id.posi, T.tipo); InsertarDesplTS(id.posi, desplL);
           desplL = desplL + T.tamano K (A.tipo = if (K.tipo = tipo_vacio)
                                                                                                                  then T. tipo
                                                                                                         else
                                                                                                                  T. tipo x K. tipo}
12. A \rightarrow \lambda {A. tipo = tipo_vacio}
13. K \rightarrow \lambda {K. tipo = tipo_vacio}
14. K → , T id {InsertarTipoTS(id.posi, T.tipo);
         InsertarDesplTS(id.posi, desplL); desplL = desplL + T.tamano} K_1
         \{K. tipo = if(K_1. tipo = tipo\_vacio)\}
                                               then T. tipo
                                      else
                                              T. tipo x K. tipo}
15. C \rightarrow D \{C_1.func = C.func\} C_1 \{C.tipoRet = C_1.tipoRet\}
16. C \rightarrow \{S.func = C.func\}\ S\ \{C_1.func = C.func\}\ C_1\ \{C.tipoRet = C.fu
                                                                                               if(S.tipoRet = C_1.tipoRet) then
                                                                                                         S. tipoRet
                                                                                                else if (S. tipoRet = tipo_vacio) then
                                                                                                        C_1. tipoRet
                                                                                                else if (C_1.tipoRet = tipo\_vacio) then
                                                                                                         S. tipoRet
                                                                                                else
                                                                                                         error(2)
17. C \rightarrow \lambda \{C. tipoRet = tipo\_vacio\}
18. S \rightarrow id L E; {S.tipo = if(BuscaTipoTS(id.posi) = E.tipo)
                                                                           AND (E. tipo != tipo_error))
                                                                            then tipo\_ok
                                                                   else
                                                                            error (3)
                                                                  S. tipoRet = tipo_vacio}
```

```
19. S→ id (M); {S.tipo = if (BuscaTipoTS(id.posi) = M.tipo → t)
                                 then tipo_ok
                              else
                                  error (4)
                             S. tipoRet = tipo_vacio}
20. S \rightarrow print (E); {S.tipo = if (E.tipo = entero || E.tipo = cadena)
                                      then tipo\_ok
                                   else
                                       error (4)
                                 S. tipoRet = tipo_vacio}
21. S \rightarrow input(id); \{S.tipo =
     if(BuscaTipoTS(id.posi) = entero || BuscaTipoTS(id.posi).tipo = cadena))
         then tipo_ok
     else
         error (4)
     S. tipoRet = tipo_vacio}
22. S \rightarrow if(E) \{S_1.func = S.func\} S_1 \{S.tipo = S.func\} \}
                                           if(E. tipo = logico) then S_1. tipo
                                           else
                                                error (5)
                                           S.tipoRet = S_1.tipoRet
23. S \rightarrow return X; \{S.tipo = if(S.func) then
                                      if (X. tipo != tipo.error) then tipo_ok
                                       else
                                            error (6)
                                  else
                                       error(1)
                                  S. tipoRet = X. tipoRet }
24. L \rightarrow |= {}
25. L \rightarrow = \{\}
26. M\rightarrow EQ {M. tipo =
      if (E. tipo != tipo_error
     AND Q. tipo != tipo_error)
         then if (Q. tipo == tipo_vacio)
                   then E. tipo
                   E. tipo x Q. tipo
      else
         error(7)
27. M \rightarrow \lambda {M. tipo = tipo_vacio}
28. Q \rightarrow \lambda \{Q. tipo = tipo\_vacio\}
29. Q \rightarrow ,EQ<sub>1</sub> {Q. tipo=
                       if (E. tipo != tipo_error
                      AND Q. tipo != tipo_error)
                         then if (Q. tipo = tipo_vacio)
                                  then NuevaPila(E. tipo)
                               else Q. tipo.push(E. tipo)
                       else
                         error(7)
```

```
30. S_1 \rightarrow \{ \{S_2. func = S_1. func \} \} 
      \{G. func=S_1. func\}\ G\ \{S_1. tipo =
                                      if(S_2.tipo != tipo\_error)
                                           if (G. tipo != tipo_error)
                                                then S_2 tipo
                                           else error (9)
                                      else error (8);
      S<sub>1</sub>.tipoRet = if (S<sub>2</sub>.tipoRet = G.tipoRet OR G.tipoRet = tipo_vacio)
                                then S_2. tipoRet
                     else error (10)}
31. S1 \rightarrow {S.func=S<sub>1</sub>.func} S {S<sub>1</sub>.tipo=S.tipo; S<sub>1</sub>.tipoRet = S.tipoRet}
32. G \rightarrow else \{ \{S_2.func=G.func \} S_2 \} \{G.tipo=S_2.tipo \}
                                G. tipoRet = S_2. tipoRet 
33. G \rightarrow \lambda {G.tipo = tipo_vacio; G.tipoRet = tipo_vacio}
34. X \rightarrow E \{X. tipo = E. tipo\}
35. X \rightarrow \lambda \{X. tipo = tipo\_vacio\}
36. E \rightarrow E_1 < U \ \{E. \ tipo = if \ (E_1. \ tipo = U. \ tipo = entero)\}
                                           then logico
                                        else
                                           error (11)}
37. E \rightarrow U \{E. tipo = U. tipo \}
38. U \rightarrow U_1 + R \{U. \text{ tipo} = \text{if } (U_1. \text{ tipo} = R. \text{ tipo} = \text{entero})
                                           then entero
                                           else
                                              error (11)}
39. U \rightarrow R \{U. tipo = R. tipo\}
40. R \rightarrow !V {R. tipo = if (V. tipo = logico) then logico
                               else error (11)}
41. R \rightarrow V \{R. tipo = V. tipo\}
42. V \rightarrow (E) \{V. tipo = E. tipo\}
43. V \rightarrow id \{V. tipo = BuscaTS(id.posi)\}
44. V \rightarrow id (M) {S. tipo = if (BuscaTipoTS(id.posi) = M. tipo \rightarrow t)
                                      then t
                                   else
                                      error(4)
45. V \rightarrow \text{ent } \{V. \text{tipo} = \text{entero}\}
46. V \rightarrow cadena \{V. tipo = cadena\}
if (S. tipo != tipo_error) then S_2. tipo
                        else
                           error (12);
                  S_2.tipoRet = if (S.tipoRet = tipo\_vacio) then
                     S'2.tipoRet
                else if (S'2.tipoRet = tipo_vacio) then
                     S. tipoRet
                else error (13) }
48. S_2 \rightarrow \{S. \text{func} = S_2. \text{func}\}\ S \{S_2. \text{tipo} = S. \text{tipo}\}\
                          S_2.tipoRet = S.tipoRet
49. P \rightarrow \lambda {}
```

4.2 Implementación del EdT

```
0. P' \rightarrow MM P {liberaTS (TSG)}
1. P \rightarrow D P_1 \{Aux[ntope]. tipoRet = Aux[tope]. tipoRet\}
2. P \rightarrow F P_1 \{Aux[ntope]. tipoRet = Aux[tope]. tipoRet\}
3. P \rightarrow S P_1 \{Aux[ntope]. tipoRet = if(Aux[tope-1]. tipoRet = tipo_vacio) then
                                                Aux[tope].tipoRet
                                          else error(1)}
4. D \rightarrow var MM<sub>2</sub> T id MM<sub>8</sub>; {InsertarTipoTS(Aux[tope -2].posi, Aux[tope -3].tipo)
                                   if(TS_actual = TSG) then
                                        InsertarDespl(Aux[tope-1].posi, desplG)
                                        desplG = desplG + Aux[tope - 3].tamano
                                   else
                                        InsertarDespl(Aux[tope-2].posi, desplL)
                                        desplL = desplL + Aux[tope-3]
5. T \rightarrow int \{Aux[ntope]. tipo=entero; Aux[ntope]. tamano = 1\}
6. T \rightarrow string {Aux[ntope].tipo=cadena; Aux[ntope].tamano = 64}
7. T \rightarrow boolean \{Aux[ntope]. tipo=logico; Aux[ntope]. tamano = 1\}
8. F \rightarrow function MM<sub>8</sub> T<sub>1</sub> id MM<sub>4</sub> ( A ) MM<sub>5</sub> { C }
         {if (Aux[tope-1].tipoRet != Aux[tope-9].tipo)then error(2);
         TS_{actual} = TSG; LiberarTS(TSL)
9. T_1 \rightarrow \lambda \{Aux[ntope]. tipo = tipo\_vacio\}
10. T_1 \rightarrow T \{Aux[ntope]. tipo = Aux[tope]. tipo \}
11. A \rightarrow T id MM K {Aux[ntope]. tipo = if(Aux[tope]. tipo = tipo_vacio)
                                                   then Aux[tope-3]. tipo}
                                               else
                                                   Aux[tope]. tipo.push(Aux[tope-3].tipo)
12. A \rightarrow \lambda {Aux[ntope].tipo = tipo_vacio}
13. K \rightarrow \lambda \{\text{Aux}[\text{ntope}], \text{tipo} = \text{tipo\_vacio}\}
14. K \rightarrow , T id MM, K_1 {Aux[ntope]. tipo = if (Aux[tope]. tipo = tipo_vacio)
                                           then NuevaPila (Aux [tope -2]. tipo)
                                       else
                                           Aux[tope]. tipo.push(Aux[tope-4].tipo)
15. C \rightarrow D C_1 \{Aux[ntope]. tipoRet = Aux[tope]. tipoRet\}
16. C \rightarrow S C_1 \{Aux[ntope]. tipoRet=
                   if (Aux[tope-1].tipoRet = Aux[tope].tipoRet) then
                        Aux[tope-1].tipoRet
                   else if (Aux[tope-1].tipoRet = tipo_vacio) then
                        Aux[tope-1].tipoRet
                   else if (Aux[tope].tipoRet = tipo_vacio) then
                        Aux[tope-1].tipoRet
                   else
                        error(2)}
17. C \rightarrow \lambda \{Aux[ntope].tipoRet = tipo\_vacio\}
18. S\rightarrow id L E; {Aux[ntope]. tipo =
      if (BuscaTipoTS (Aux [tope -3], posi)=(Aux [tope -1], tipo)
               AND (Aux[tope-1].tipo != tipo_error))then
         tipo_ok
      else
         error(3)
     Aux[ntope].tipoRet = tipo_vacio}
19. S \rightarrow id (M); \{Aux[ntope]. tipo =
      if(BuscaTipoTS(Aux[tope-4].posi) = ParFunc(Aux[tope-2].tipo, t)
         then tipo_ok
      else error (4)
     Aux[ntope].tipoRet = tipo_vacio}
```

```
20. S \rightarrow print (E); {Aux[ntope]. tipo =
      if(Aux[tope-2].tipo = entero || Aux[tope-2].tipo = cadena)
         then tipo_ok
      else error (4)
     Aux[ntope].tipoRet = tipo_vacio}
21. S \rightarrow input(id); {Aux[ntope].tipo =
      if(BuscaTipoTS(Aux[tope-2].posi = entero
         | | Aux[tope-2].tipo = cadena)  then tipo_ok
      else error (4)
     Aux[ntope].tipoRet = tipo_vacio}
22. S \rightarrow if (E) S<sub>1</sub> {Aux[ntope]. tipo =
      if(Aux[tope-2].tipo = logico) then Aux[tope].tipo
      else error (5)
     Aux[ntope].tipoRet = tipo_vacio}
23. S \rightarrow return X ; {Aux[ntope].tipo =
     if (Aux[tope-1].tipo != tipo.error) then tipo_ok
      else error (6)}
24. L \rightarrow |= {}
25. L \rightarrow = \{\}
26. M\rightarrow EQ {Aux[ntope]. tipo =
      if (Aux[tope-1].tipo != tipo_error
     AND Aux[tope].tipo != tipo_error)
         then if (Aux[tope].tipo = tipo_vacio)
                  then Aux[tope-1]. tipo
               else
                  Aux[tope]. tipo.push(Aux[tope-1].tipo)
      else
         error(7)
27. M \rightarrow \lambda \{Aux[ntope].tipo = tipo\_vacio\}
28. Q \rightarrow \lambda {Aux[ntope]. tipo = tipo_vacio}
29. Q \rightarrow , E Q_1 {if (Aux[tope-1].tipo != tipo_error
                    AND Aux[tope].tipo != tipo_error)
                       then if (Aux[tope]. tipo = tipo_vacio)
                                then NuevaPila(Aux[tope-1].tipo)
                             else Aux[tope].tipo.push(Aux[tope-1].tipo)
                     else
                       error(7)
30. S_1 \rightarrow \{S_2\} G { Aux[ntope]. tipo =
                                if (Aux[tope -2].tipo != tipo_error)
                                     if (Aux[tope]. tipo != tipo_error)
                                         then Aux[tope-2]. tipo
                                     else error (9)
                                else error (8);
    Aux[ntope].tipoRet =
         if (Aux[tope-2].tipoRet = Aux[tope].tipoRet
                      OR Aux[tope].tipoRet = tipo_vacio)
             Aux[tope -2].tipoRet
         else
              error (10)}
31. S1 \rightarrow S {Aux[ntope]. tipo = Aux[tope]. tipo;
             Aux[ntope].tipoRet = Aux[tope].tipoRet}
32. G \rightarrow else\{S_2\} \{Aux[ntope]. tipo = Aux[tope-1]. tipo;
                       Aux[ntope].tipoRet = Aux[tope-1].tipoRet 
33. G \rightarrow \lambda \ \{Aux[ntope].tipo = tipo\_vacio;
             Aux[ntope].tipoRet = tipo_vacio}
34. X \rightarrow E \{Aux[ntope]. tipo = Aux[tope]. tipo \}
35. X \rightarrow \lambda \{Aux[ntope], tipo = tipo_vacio\}
```

```
36. E \rightarrow E_1 < U \{Aux[ntope]. tipo =
                       if(Aux[tope-2].tipo = Aux[tope].tipo = entero)
                             then logico
                       else error(11)}
37. E \rightarrow U \{Aux[ntope]. tipo = Aux[tope]. tipo \}
38. U \rightarrow U_1 + R \{Aux[ntope]. tipo =
                        if(Aux[tope-2].tipo = Aux[tope-2].tipo = entero)
                             then entero
                        else error (11)}
39. U\rightarrow R {Aux[ntope]. tipo = Aux[tope]. tipo}
40. R \rightarrow !V {Aux[ntope]. tipo = if(Aux[tope]. tipo = logico) then
                                           logico
                                       else error (11)}
41. R → V {Aux[ntope]. tipo = Aux[tope]. tipo}
42. V \rightarrow (E) \{Aux[ntope]. tipo = Aux[tope-1]. tipo\}
43. V → id {Aux[ntope].tipo = BuscaTipoTS(Aux[tope].posi)}
44. V \rightarrow id(M) \{Aux[ntope]. tipo =
         if (BuscaTipoTS (Aux[tope -3].posi) = ParFunc (Aux[tope -1].tipo, t)) then t
          else error (4)}
45. V \rightarrow \text{ent } \{\text{Aux}[\text{ntope}], \text{tipo} = \text{entero}\}\
46. V \rightarrow cadena \{Aux[ntope]. tipo = cadena\}
47. S_2 \rightarrow S S'_2 \{Aux[ntope] = if(Aux[tope-1].tipo != tipo_error) then
                                        Aux[tope].tipo
                                  else
                                       error (12);
              Aux[ntope] = if(Aux[tope-1].tipoRet = tipo_vacio) then
                                  Aux[tope].tipoRet
                             else if (Aux[tope].tipoRet = tipo_vacio) then
                                  Aux[tope-1].tipoRet
                             else error (13);}
48. S_2 \rightarrow S \{Aux[ntope]. tipo = Aux[tope]. tipo;
              Aux[ntope]. tipoRet = Aux[tope]. tipoRet}
49. P \rightarrow \lambda \{Aux[ntope]. tipoRet = tipo\_vacio\}
50. MM<sub>1</sub> \rightarrow \lambda {TSG = creaTS();
              desplG = 0;
              TSA = TSG
51. MM_2 \rightarrow \lambda \{ zona\_decl = true \}
52. MM_3 \rightarrow \lambda \{ zona\_decl = true \}
53. MM_4 \rightarrow \lambda  {TSL = creaTS();
              desplL = 0;
              TSA = TSL
54. MM_b \rightarrow \lambda \{InsertarTipoTS(Aux[tope-4], posi, Aux[tope-1], tipo)\}
    InsertarNArgsTS \left( Aux[tope-4].posi \; , \; Aux[tope-1].NArgs \right) \; ; \\
     for i in NArgs:
     InsertarTipoArgsTS(Aux[tope-4].posi, Aux[tope-1].tipoLista(i));
     InsertarEtiquetaTS (Aux[tope -4]. posi, Aux[tope -4]. lexema + Aux[tope -4]. posi);
    InsertarTipoDevueltoTS(Aux[tope-4].posi, Aux[tope-5].tipo)\}
55. MM_i \rightarrow \lambda \{InsertarTipoTS(Aux[tope], posi, Aux[tope-1], tipo) \}
      InsertarDesplTS(Aux[tope].posi, desplL);
      desplL = desplL + Aux[tope-1].tamano
56. MM \rightarrow \lambda {InsertarTipoTS(Aux[tope].posi, Aux[tope-1].tipo);
      InsertarDesplTS(Aux[tope].posi, desplL);
      desplL = desplL + Aux[tope-1].tamano
57. MM_8 \rightarrow \lambda \{ zona\_decl = false \}
```

De forma que hemos tenido que transformar el EdT para que en vez de usar atributos heredados, lo cual complica bastante la implementación, utilice sólo sintetizados. Hemos transformado el atributo heredado func al atributo sintetizado tipoRet.

También hemos tenido que modificar la gramática del sintáctico añadiendo los marcadores MM_i y sus correspondientes reglas lambda para poder implementar las acciones con efectos laterales.

```
Ej:
D \rightarrow var \{zdecl := true\} \ T \ id; \{otras \ acciones\}
Lo \ transformamos \ en:
D \rightarrow var \ MM \ T \ id; \{otras \ acciones\}
MM \rightarrow lambda \{zdecl := true\}
```

4.3 Gramática y Autómata Final del A. Sintáctico

```
Terminales = \{ ; \{ \} id ent cadena ( ) + < ! = | = var int \}
      boolean string print input, return function if else }
NoTerminales = \{ P1 \ P \ D \ T \ F \ T1 \ A \ K \ C \ S \ L \ M \ Q \ S1 \ G \ X \ E \ U \ R \ V \}
      S2 M1 M2 M3 M4 M5 M6 M7 M8 }
Axioma = P1
Producciones = \{
P1 \rightarrow M1 P
P \rightarrow D P
P \rightarrow F P
P \rightarrow S P
D \rightarrow var M2 T id M8;
T \rightarrow int
T \rightarrow string
T \rightarrow boolean
F \rightarrow function M3 T1 id M4 (A) M5 \{C\}
T1 \rightarrow lambda
T1 \rightarrow T
A \rightarrow T id M6 K
A \rightarrow lambda
K \rightarrow lambda
K \rightarrow , T id M7 K
C \rightarrow D C
C \rightarrow S C
C \rightarrow lambda
S \rightarrow id L E
S \rightarrow id \ (M);
S \rightarrow print (E);
S \rightarrow input \ (id);
S \rightarrow if (E) S1
S \rightarrow return X;
L \rightarrow |=
L \rightarrow =
M \rightarrow E Q
M \rightarrow lambda
Q \rightarrow lambda
Q \rightarrow E Q
```

```
S1 \rightarrow \{S2\}G
S1 \rightarrow S
G \rightarrow else \{ S2 \}
G \rightarrow lambda
X \rightarrow E
X \rightarrow lambda
E \rightarrow E < U
E \rightarrow U
U \rightarrow U + R
U \rightarrow R
R \rightarrow ! V
R \rightarrow V
V \rightarrow (E)
V \rightarrow id
V \rightarrow id (M)
V \rightarrow ent
V \rightarrow cadena
S2 \rightarrow SS2
S2 \rightarrow S
P \rightarrow lambda
M1 \rightarrow lambda
M2 \rightarrow lambda
M3 \rightarrow lambda
M4 \rightarrow lambda
M5 \rightarrow lambda
M6 \rightarrow lambda
M7 \rightarrow lambda
M8 \rightarrow lambda
}
Dando lugar a modificaciones en el Autómata (y en consecuencia en la Tabla de De-
cisión):
Donde:
S_{-1}=\{P2 \rightarrow \bullet P1, P1 \rightarrow \bullet MM1 P, P \rightarrow \bullet SP, MM1 \rightarrow \bullet\}
S_1=\{P1 \rightarrow MM1 \ P \bullet\} \ [Ahora no se ACEPTA, solo se REDÚCE]
S_{100}=\{P2 \rightarrow P1 \bullet\} [Ahora este es el estado que ACEPTA]
S_{101} {=} \{ D \ {\rightarrow} \, var \ \bullet \ MM2 \ T \ id \ MM8 \ ; \, , \ MM2 \ {\rightarrow} \ \bullet \}
S_{102}=\{F \rightarrow function \bullet MM3 T1 id MM4 (A) MM5 \{C\}, MM3 \rightarrow \bullet\}
S_{103}=\{F \rightarrow function MM3 T1 id \bullet MM4 (A) MM5 \{C\}, MM4 \rightarrow \bullet\}
S_{104}=\{D \rightarrow F \rightarrow function \bullet MM3 T1 id MM4 (A) \bullet MM5 \{C\}, MM5 \rightarrow \bullet\}
S_{105}=\{A \rightarrow T \text{ id } \bullet MM6 \text{ K}, MM6 \rightarrow \bullet \}
S_{106}=\{D \rightarrow , T \text{ id } \bullet MM7 \text{ K}, MM7 \rightarrow \bullet \}
```

 $S_{107}=\{D \rightarrow var MM2 T id \bullet MM8 ; MM8 \rightarrow \bullet \}$

4.4 Errores

- Error 1: "RETURN fuera de funcion."
- Error 2: "El tipo devuelto no coincide con el declarado en la funcion."
- Error 3: "Asignacion incorrecta.";
- Error 4: "Incoherencia entre parametros formales y actuales en la llamada a funcion.";
- Error 5: "La condicion del IF no es de tipo logico.";
- Error 6: "Error en la sentencia del RETURN.";
- Error 7: "Error al definir los parametros de llamada de una funcion.";
- Error 8: "Error en el cuerpo del IF.";
- Error 9: "Error en el cuerpo del ELSE.";
- Error 10: "No concuerdan los RETURN de las sentencias IF-ELSE.";
- Error 11: "Tipos incompatibles entre operandos y operadores.";
- Error 12: "Error en el cuerpo del IF-ELSE.";
- Error 13: "Error en el RETURN en el cuerpo del IF-ELSE.";

5 Anexo de Pruebas

Error 1:

```
1 var int a;
2 var int b;
3 a = 33333;
4 b = a;
5 if (a < b) b = 1;
6 if (b < a) b = 8;
7 a = a + b;
8 print (a);
9 print (b);</pre>
```

> Error Lexico: Numero fuera de rango. Linea: 3

Error 2:

```
var string texto;
function pideTexto ()
{
   print ('Introduce un texto');
   input (texto);
}
function imprime (string msg,)
{
   print (msg);
}
pideTexto();
var string textoAux;
textoAux = texto;
imprime (textoAux);
```

> Error Sintactico: Declaracion incorrecta de funcion. Linea: 7

Error 3:

```
1  var int a;
2  var int b;
3  a = 3;
4  b = a;
5  var boolean c;
6  c = a < b;
7  if (c) {
8   b = 1;
9  } else {
10  c = b < a;
11  if (c) b = 4;
12  a = a + b;
13  print (a);
14  print (b);</pre>
```

> Error Sintactico: Sentencia condicional compuesta incorrecta. Linea: 14

Error 4:

```
1 var int a;
2 var int b;
3 var int c;
4 print ('Introduce el primer operando');
5 input (a);
6 print ('Introduce el segundo operando');
7 input (b);
8 function int suma (int num1, int num2)
9 {
10
   var int res;
11
    res = num1 + num2;
12
   return res;
13 }
14 c = suma (a, b, c);
15 print (c);
```

> Error Semantico: Incoherencia entre parametros formales y actuales en la llamada a funcion. Linea: 14

Error 5:

```
var boolean booleano;
function boolean bisiesto (int a)
{ var int bis;
   print ('Es bisiesto?');
   input(bis);
   return (!(a + 4 < 0));
}
return booleano;</pre>
```

> Error Semantico: RETURN fuera de funcion. Linea: 8

Prueba 1 Correcta:

```
1 var boolean booleano;
2 function boolean bisiesto (int a)
3 { var int bis;
    print ('Es bisiesto?');
4
5
    input(bis);
6
    return (!(a + 4 < 0));
7 }
8 function int dias (int m, int a)
9 {
10
     var int dd;
     print ('di cuantos dias tiene el mes ');
11
12
     print (m);
     input(dd);
13
14
     if (bisiesto(a)) dd = dd + 1;
     return dd;
15
16 }
17 function boolean esFechaCorrecta (int d, int m, int a)
18 {
19    return !(d < dias (m, a));</pre>
20 }
21 function demo ()
22 {
23
     if (esFechaCorrecta(25, 10, 2018)) print (9999);
24
25
     return;
26 }
27 var string A_A_A_;
28 demo();
```

Tokens:

```
<DEC, >
<TipoVarLOG, >
\langle ID, G0 \rangle
<PuntoComa, >
<DECFunc, >
<TipoVarLOG, >
\langle ID, G1 \rangle
<ParentesisAbrir, >
<TipoVarENT, >
\langle ID, L0 \rangle
<ParentesisCerrar, >
<CorcheteAbrir, >
<DEC, >
<TipoVarENT, >
\langle ID, L1 \rangle
<PuntoComa, >
<Print , >
<ParentesisAbrir, >
<CAD, "Es bisiesto?">
<ParentesisCerrar, >
<PuntoComa, >
```

```
<Input, >
<ParentesisAbrir, >
\langle ID, L1 \rangle
<ParentesisCerrar, >
<PuntoComa, >
<Return, >
<ParentesisAbrir, >
<NOT, >
<ParentesisAbrir, >
\langle ID, L0 \rangle
\langle SUMA, >
\langle ENT, 4 \rangle
<MENOR, >
\langle ENT, 0 \rangle
<ParentesisCerrar, >
<ParentesisCerrar, >
<PuntoComa, >
<CorcheteCerrar, >
<DECFunc, >
<TipoVarENT, >
\langle ID, G2 \rangle
<ParentesisAbrir, >
<TipoVarENT, >
<ID , L0>
<Coma, >
<TipoVarENT, >
\langle ID, L1 \rangle
<ParentesisCerrar, >
<CorcheteAbrir, >
<DEC, >
<TipoVarENT, >
\langle ID, L2 \rangle
<PuntoComa, >
<Print, >
<ParentesisAbrir, >
<CAD, "di cuantos dias tiene el mes">
<ParentesisCerrar, >
<PuntoComa, >
<Print, >
<ParentesisAbrir, >
\langle ID, L0 \rangle
<ParentesisCerrar, >
<PuntoComa, >
<Input, >
<ParentesisAbrir, >
\langle ID, L2 \rangle
<ParentesisCerrar, >
<PuntoComa, >
```

```
\langle IF, \rangle
<ParentesisAbrir, >
\langle ID, G1 \rangle
<ParentesisAbrir, >
\langle ID, L1 \rangle
<ParentesisCerrar, >
<ParentesisCerrar, >
\langle ID, L2 \rangle
<ASIG, >
\langle ID, L2 \rangle
\langle SUMA, >
<ENT, 1>
<PuntoComa, >
<Return, >
\langle ID, L2 \rangle
<PuntoComa, >
<CorcheteCerrar, >
<DECFunc, >
<TipoVarLOG, >
<ID, G3>
<ParentesisAbrir, >
<TipoVarENT, >
\langle ID, L0 \rangle
<Coma, >
<TipoVarENT, >
\langle ID, L1 \rangle
<Coma, >
<TipoVarENT, >
\langle ID, L2 \rangle
<ParentesisCerrar, >
<CorcheteAbrir, >
<Return, >
<NOT, >
<ParentesisAbrir, >
\langle ID, L0 \rangle
<MENOR. >
\langle ID, G2 \rangle
<ParentesisAbrir, >
\langle ID, L1 \rangle
<Coma, >
\langle ID, L2 \rangle
<ParentesisCerrar, >
<ParentesisCerrar, >
<PuntoComa, >
<CorcheteCerrar, >
<DECFunc, >
\langle ID, G4 \rangle
<ParentesisAbrir, >
```

```
<ParentesisCerrar, >
<CorcheteAbrir, >
\langle IF, \rangle
 <ParentesisAbrir, >
\langle ID, G3 \rangle
<ParentesisAbrir, >
\langle ENT, 25 \rangle
<Coma, >
<ENT, 10>
<Coma, >
<ENT, 2018>
<ParentesisCerrar, >
<ParentesisCerrar, >
<Print, >
<ParentesisAbrir, >
<ENT, 9999>
<ParentesisCerrar, >
<PuntoComa, >
<Return, >
<PuntoComa, >
<CorcheteCerrar, >
<DEC, >
<TipoVarCAD, >
\langle ID, G5 \rangle
<PuntoComa, >
\langle ID, G4 \rangle
<ParentesisAbrir, >
 <ParentesisCerrar, >
<PuntoComa, >
Tabla de símbolos:
Tabla Simbolos #2:
 * LEXEMA: 'a'
  + Tipo: 'entero'
  + Despl: 0
 * LEXEMA: 'bis'
  + Tipo: 'entero'
  + Despl: 1
Tabla Simbolos #3:
 * LEXEMA: 'm'
  + Tipo: 'entero'
  + Despl: 0
 * LEXEMA: 'a'
```

```
+ Tipo: 'entero'
```

+ Despl: 1

* LEXEMA: 'dd'

+ Tipo: 'entero'

+ Despl: 2

Tabla Simbolos #4:

* LEXEMA: 'd'

+ Tipo: 'entero'

+ Despl: 0

* LEXEMA: 'm'

+ Tipo: 'entero'

+ Despl: 1

* LEXEMA: 'a'

+ Tipo: 'entero'

+ Despl: 2

Tabla Simbolos #5:

Tabla Simbolos #1:

* LEXEMA: 'booleano'

+ Tipo: 'logico'

+ Despl: 0

* LEXEMA: 'bisiesto'

+ Tipo: 'funcion'

+ numParam: 1

+ TipoParam1: 'entero'

+ ModoParam1: 'Valor'

+ TipoRetorno: 'logico'

+ EtiqFuncion: 'bisiesto1'

* LEXEMA: 'dias'

+ Tipo: 'funcion'

+ numParam: 2

+ TipoParam1: 'entero'

+ ModoParam1: 'Valor'

+ TipoParam2: 'entero'

+ ModoParam2: 'Valor'

+ TipoRetorno: 'entero'

+ EtiqFuncion: 'dias2'

* LEXEMA: 'esFechaCorrecta'

```
+ Tipo: 'funcion'
+ numParam: 3
+ TipoParam1: 'entero'
+ ModoParam1: 'Valor'
+ TipoParam2: 'entero'
+ ModoParam2: 'Valor'
+ TipoParam3: 'entero'
+ ModoParam3: 'Valor'
+ TipoRetorno: 'logico'
+ EtiqFuncion: 'esFechaCorrecta3'
* LEXEMA: 'demo'
+ Tipo: 'funcion'
+ numParam: 0
+ TipoRetorno: 'void'
+ EtiqFuncion: 'demo4'
* LEXEMA: 'A_A_A_'
+ Tipo: 'cadena'
+ Despl: 2
```

Parse a Derechas:

Árbol sintáctico:


```
Ė (38)
    .
⊟ U (40)
      .
∃ R (42)
        .
∃.·V (47)
            cadena
  ···)
Ē-C (17)
  <u>÷</u>-S (22)
     ---input
     ---(
---id
     ····)
  Ē C (17)
    Ë∵S (24)
      return
      X (35)
         Ė (38)
           .
∃.·U (40)
              .
∃..R (42)
                ÷ ∨ (43)
                   E (38)
                     ± U (40)
                       Ē R (41)
                          --!
--∨ (43)
                             E (37)
                               Ē (38)
                                 .
∃-U (39)
                                    Ū·U (40)
                                      .
∃ R (42)
                                       ÷...∨ (44)
                                          --id
                                    Ē-R (42)
                                     Ė V (46)
                                         ent
                               □ U (40)
                                 .
∃ ·R (42)
                                  Ů·V (46)
                                      ent
    E C (18)
       lambda
```

```
÷ (9)
   function
   ➡·M3 (53)
    lambda
   □ T1 (11)
    ⊟⊤ (6)
      i...int
    ···id
   lambda
    ---(
   A (12)
     ∃ T (6)
int
     □-M6 (56)
      Ē K (15)
      T (6)
        int
       Ё∙М7 (57)
       lambda
       ⊟ K (14)
        lambda
    ····)
   M5 (55)
     lambda
    --{
   C (16)
     □ D (5)
      var = M2 (52)
       lambda
       □ T (6)
       int
id
-M8 (58)
        --lambda
      Ē ·C (17)
       ÷ S (21)
        ---print
         Ē (38)
          Ė U (40)
            Ē-R (42)
               .
∃.·V (47)
                 cadena
```

```
.
⊟. C (17)
  Ġ (21)
    print
(
    Ē (38)
     Ū·U (40)
       .
∃ ··R (42)
         id
    ···)
  E C (17)
    ÷ S (22)
      input
       --(
--id
--)
    Ė∵C (17)
      □ S (23)
        if
(
□ E (38)
          Ů·U (40)
           .
∃ ··R (42)
               ...id
                  --(
                  <sup>⊥</sup> M (27)
                   Ē E (38)
                     Ū U (40)
                       Ė ·R (42)
                         id
                    Ė Q (29)
                       lambda
        S1 (32)
           Ē S (19)
             id
□ L (26)
              i i..._
             <del>-</del>E (38)
               Ė ·U (39)
                 .
□ U (40)
                   ⊟ R (42)
                    ---id
                  Ē-R (42)
                    Ů·V (46)
```

```
ent
               Ē C (17)
                 Ė S (24)
                   return
E-X (35)
                      ÷ (38)
                        Ė ·U (40)
                          Ė ··R (42)
                             Ö.V (44)
                 Ē-C (18)
                    lambda
  ····}
÷ · · P (3)
  ÷ (9)
    function
M3 (53)
     □ T1 (11)
     Ė⊤ (8)
       boolean
     ···id
     <sup>1</sup> M4 (54)
     lambda
     ...(
     □·A (12)
□·T (6)
        int
       ₩6 (56)
        lambda
       Ė K (15)
         T (6)
          ···id
         ⊟-M7 (57)
—lambda
         ⊞ K (15)
           T (6)
             int
            ...id
            <sup>™</sup> M7 (57)
            lambda
            Ē K (14)
               lambda
    ....)
□-M5 (55)
```

```
lambda
  --{
⊟ C (17)
   Ē-S (24)
       return
       ± X (35)
         Ė-E (38)
            .
∃.·U (40)
               .
∃ R (41)
                 ⊡·V (43)
                    (
E E (37)
                      Ë E (38)
                        Ė ··U (40)
                           .
∃∵R (42)
                             .
∃.·V (44)
                               --id
                       Ū · U (40)
                         .
∃ ··R (42)
                            ÷ V (45)
                              ···id
                               ...(
                              □ M (27)
                                 Ė (38)
                                   Ė U (40)
                                     .
∃ ·R (42)
                                        .
∃..V (44)
                                          id
                                 Ē · Q (30)
                                   □-E (38)
                                      .
∃.·U (40)
                                       .
∃ ·R (42)
                                         id
                                   Ė-Q (29)
                                      lambda
                     <u>...)</u>
     Ė C (18)
        lambda
.
∃ · P (3)
  <del>-</del>F (9)
     function
M3 (53)
     lambda
     T1 (10)
```

```
lambda
...id
.

M4 (54)
lambda
--(
---A (13)
lambda
—)
⊟ M5 (55)
  lambda
--{
□ C (17)
  ÷ S (23)
   --if
    (
E (38)
      ÷ U (40)
        .
∃ ··R (42)
           ÷...V (45)
              id (
              <sup>™</sup>M (27)
               Ė (38)
                 Ė ·U (40)
                   .
∃ ··R (42)
                     Ė∵V (46)
                        ent
                Ū∙Q (30)
                  E (38)
                    Ū ·U (40)
                     .
-R (42)
                       ÷...V (46)
                          ent
                  ---,
---E (38)
                      .
∃.·U (40)
                       .
∃ · R (42)
                         Ė ∨ (46)
                            ent
                     Ē Q (29)
                       lambda
     ...)
    ■ S1 (32)
      ÷ S (21)
         print
(
         Ē (38)
          ⊟ U (40)
           .
∃ R (42)
```

```
Ū·V (46)
                     ent
    □ S (24)
        return
-X (36)
-lambda
       Ē ·C (18)
         lambda
<u>-</u>P (2)
  ⊕ D (5)
    □ T (7)

string
    M8 (58)
  Ē P (4)
    □ S (20)
□ d
□ (
□ M (28)
       lambda
       ···)
    -P (50)
       lambda
```

Fuente 2 Correcta:

```
var int a;
var int b;
a = 3;
b = a;
var boolean c;
c = a < b;
if (c) b = 1;
c = b < a;
if (c) b = 4;
a = a + b;
print (a);
print (b);</pre>
```

Fuente 3 Correcta:

```
1 var int a;
2 var int b;
3 var int c;
4 print ('Introduce el primer operando');
5 input (a);
6 print ('Introduce el segundo operando');
7 input (b);
8 function int suma (int num1, int num2)
9 {
10
   var int res;
11
    res = num1+num2;
12 return res;
13 }
14 c = suma (a, b);
15 print (c);
```

Fuente 4 Correcta:

```
1 var string texto;
2 function imprime (string msg)
3 {
  print ('Mensage introducido:');
4
5 print (msg);
6 }
7 function pideTexto ()
8 {
  print ('Introduce un texto');
9
10
  input (texto);
11 }
12 pideTexto();
13 imprime (texto);
```

Fuente 5 Correcta:

```
1 var string s;
2 var int uno;
3 var int
             UNO;
4 function int Factorial (int n)
    if (n < 0) return 1;</pre>
6
    return n + Factorial (n + 1);
7
8 }
9 var int For;
10 var int functional;
11 var int While;
12
13 function imprime (string s, string msg, int f)
14 {
   print (s); print (msg); print (f);
15
    return;
16
17 }
18 function string cadena (boolean log)
19 {
20
   if (log)
21
    {
22
      imprime (s, 'hola', 33);
23
      if (uno < UNO) return s;</pre>
24
    else
25
26
27
     return 'Fin';
28
29 }
30 s = 'El factorial ';
31
32 print (s);
33 print ('Introduce un numero.');
34 input (num);
35 var
36 boolean
37 booleano;
38 if (num < 0)
                  print ('No existe el factorial de un negativo.');
39 For= Factorial (num);
```