Analytics & Machine Learning in Data Systems (Part 4)

Joseph E. Gonzalez jegonzal@cs.berkeley.edu

Unlabeled Data

Supervised Learning

Reinforcement & Bandit Learning

Unsupervised Learning

Regression

Classification

Labeled Data

Dimensionality Clustering Reduction

Spam Classification

- ☐ Goal: given the text in an email predict whether it is spam
- ☐ Training Data:

Content	Is Spam
Viagra & Cialas half-off today	SPAM
Class is Cancelled today	NOT SPAM
Deals on new Autos	SPAM
Receipt from Ritual Coffee	NOT SPAM

- □ First best solution?
 - What is wrong with this?
- □ Why is Spam Classification Hard?
 - Easy for humans to recognize
 - **Difficult** to formally describe (as an algorithm)
 - Personal: different people have different tastes in Spam
 - Good candidate for Machine Learning, the second best solution

```
def predSpam(doc):
if "Viagra" in doc:
    return True
elif "Cialas" in doc:
    return True
elif "Class" in doc:
    return False
elif "Deals" in doc:
    return True
else:
    return False
```

Spam Classification

□ Goal: given the text in an email predict whether it is spam

□ Training Data:

Content	Is Spam
Viagra & Cialas half-off today	SPAM
Class is Cancelled today	NOT SPAM
Deals on new Autos	SPAM
Receipt from Ritual Coffee	NOT SPAM

□ Machine Learning:

Learn a function that generalizes the relation:

F(Content;
$$\theta$$
) → isSpam

- F: is the model type
- θ : are the model parameters
- \square Machine learning alg. search for the "best" θ

Basic Classification Models

- ☐ Most models predict the probability
 - Why would probability be helpful?
- □ Logistic Regression: widely used
 - Similar to least squares regression but for classification
 - Model form:

- □ Naïve Bayes: occasionally used
 - Classic model based on Bayes Rule
 - assumes words are independent given
 - Model form:

$$\mathbf{P}$$
 (isSpam | Words) $\propto \mathbf{P}$ (isSpam) $\prod_{\text{Words}} \mathbf{P}$ (Word | isSpam)

- □ Which should I use?
 - try both ...

Common Classification Models

- □ Most models predict the probability
 - Why would probability be helpful?
- □ Nearest Neighbor: works embarrassingly well
 - return the label of the nearest training point to the query point
- □ **Logistic Regression**: widely used and simple
 - Similar to least squares regression but for classification
- □ Naïve Bayes: occasionally used
 - Classic model based on Bayes Rule
- □ **Support Vector Machines:** *kernel methods*
 - Capable of automatically growing model size with data
- □ Deep Learning: more on this soon ...

Logistic Regression

☐ Basic Model:

$$\mathbf{P}(y|x,\theta) = \sigma\left(y(\theta^T x)\right)$$

$$=\frac{1}{1+\exp\left(-y(\theta^Tx)\right)}$$

Note that y is either +1 or -1

□ Logistic Function:

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

Learning the Logistic Regression Model

- ☐ How do we fit the Logistic Regression model?
 - method of maximum likelihood
- \square Select the best θ by maximizing prob. of data
 - Solve the following convex optimization problem

$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^p} \quad \frac{1}{n} \sum_{i=1}^n \log \left(1 + \exp\left(-y_i(\theta^T x_i) \right) \right) + \lambda R(\theta)$$

- Regularized using same techniques as regression
- Optimized using numerical methods
 - SGD: Stochastic Gradient Descent

Deep Learning

Intuition

□ Model Composition

- □ Predictions from one model→features for another
- □ Why not train the entire pipeline of models?

Going a Little Deeper

☐ Basic idea: stacking logistic regression models

- \square Many parameters θ (36 in the above model)
 - millions of parameters fits complex functions
 - Requires substantial training data to prevent over-fitting
- ☐ Tricky & slow to train
 - Specialized training algorithms and GPU acceleration

Deep Learning the Big Shift in ML

- ☐ Recent **big** trend in machine learning
- ☐ State of the art results in
 - Computer Vision: exceeding human abilities
 - Speech Recognition: at the core of all commercial speech recognition systems
 - AI + Search: Google's AlphaGo
- □ Companies investing heavily in Deep Learning:
 - Facebook, Google, Baidu, Nvidia, & Intel have very large Deep Learning groups
 - New software and hardware
- □ Hype: Still requires substantial amounts of data and expertise to train and deploy ...
 - Many applications still use other techniques
 - Al winter is coming ...?

Summary of Classification:

Unlabeled Data

Supervised Learning

Reinforcement & Bandit Learning Unsupervised Learning

Regression

Classification

Labeled Data

Dimensionality Clustering Reduction

Dimensionality Reduction: Eigen Faces

Given images under different lighting construct images under any light lighting

Embedding(Image; θ) \rightarrow {x₁, x₂, x₃, x₄} **Recovery**($\{x_1, x_2, x_3, x_4\}; \theta$) \rightarrow Reconstructed Image

☐ Use common structure in data to identify embedding

Principal Component Analysis

Big Ideas

- □ Identify dimensions of maximum variance
- □ Project data onto those dimensions

Scaling Principal Component Analysis

□ PCA Algorithm

Computes eigenvectors of of covariance matrix

$$\mathbf{Cov}(X) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^T = \frac{1}{n} X^T X - \bar{x} \bar{x}^T$$

- The covariance matrix $d \times d$ is generally smaller than $X(n \times d)$
 - For high dimensional data consider dist. Lacnzos ...

☐ We therefore only need to compute:

$$X^TX = \operatorname{d} \underset{\operatorname{n}}{\overset{\operatorname{d}}{\times}} \underset{\operatorname{n}}{\overset{\operatorname{d}}{\times}} = \underset{i=1}{\overset{\operatorname{d}}{\times}} x_i x_i^T$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = |\mathbf{d}|$$

- In summation form
- Only one pass required!

PCA for Anomaly Detection

 $\scriptstyle\square$ Run PCA and get top k eigenvectors: $V_{(k)}$

$$\mathbf{Proj}(x) = V_{(k)}^T(x - \bar{x})$$

$$\mathbf{Recv}(q) = V_{(k)}q + \bar{x}$$

□ Compute the error in approximate recovery:

$$\mathbf{Error}(x) = \|x - \mathbf{Recv}\left(\mathbf{Proj}\left(x\right)\right)\|_{2}^{2}$$

 Outliers are those points far from their embedding

Knowledge Discovery in Databases (KDD)

□ Process of extracting *knowledge* from a *data*

- □ **Descriptive Statistics:** *describe* the sample data
 - Can be measured directly from the database
- □ **Inferential Statistics:** *estimate* the population
 - May be estimated using descriptive statistics

The Knowledge Discovery Process

- □ **Data Selection:** What data do I need for a given task?
 - If data was already collected, how was the data collected?
- □ **Data Cleaning:** *Preparing the data for a given task*
 - Typically most challenging (time consuming) part.
 - Why might ETL not be enough?
- □ **Data Mining & ML:** Running algorithms to infer patterns
 - The fun part! Many tools, many options, complex tradeoffs.
- □ **Evaluation:** *Verifying that patterns are significant*
 - Algorithms will typically find patterns especially when none exist.

