Recurrent Neural Network and Multi-Head Attention (MHA)

In this task, you will implement a conventional RNN cell, a GRU, and an MHA to understand these models. Then you will configurate GRU in special ways such that it either recovers a conventional RNN or keeps its memory in long term. NOTE: you should not change the provided function interfaces and test cases.

```
from google.colab import drive
drive.mount('/content/drive')
import sys
sys.path.append('/content/drive/MyDrive/cs137assignments/assignment4')
Mounted at /content/drive
# As usual, a bit of setup
import time
import numpy as np
import torch
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
# for auto-reloading external modules
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load ext autoreload
%autoreload 2
%autosave 180
def rel_error(x, y):
    """ returns relative error """
    return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))
    The autoreload extension is already loaded. To reload it, use:
      %reload ext autoreload
    Autosaving every 180 seconds
```

Recurrent Neural Networks

In this task, you will need to implement forward calculation of recurrent neural networks. Let's first initialize a problem for RNNs.

```
import torch.nn as nn
## Setup an example. Provide sizes and the input data.

# set sizes
time_steps = 12
batch_size = 4
input_size = 3
hidden_size = 2

# create input data with shape [batch_size, time_steps, num_features]
np.random.seed(137)
input_data = torch.randn(batch_size, time_steps, input_size, dtype = torch.float32)
## Create RNN layers

# initialize a state of zero for both RNN and GRU
# 'state' is a tensor of shape [batch_size, hidden_size]
initial_state = torch.randn(batch_size, hidden_size, dtype = torch.float32).unsqueeze()
```

▼ Implement an RNN and a GRU with PyTorch

```
# create an RNN with only one layer from torch
t_rnn = nn.RNN(input_size, hidden_size, num_layers = 1, batch_first = True)

# 'outputs' is a tensor of shape [batch_size, time_steps, hidden_size]

# RNN cell outputs the hidden state directly, so the output at each step is the hidder

# final_state is the last state of the sequence. final_state == outputs[:, -1, :]

# create a GRU RNN
t_gru = nn.GRU(input_size, hidden_size, num_layers = 1, batch_first = True)

with torch.no_grad():
    t_rnn_outputs, t_rnn_final_state = t_rnn(input_data, initial_state)
    # 'outputs' and `final_state` are the same for a GRU.
    t_gru_outputs, t_gru_final_state = t_gru(input_data, initial_state)
```

Read out parameters from RNN and GRU cells

Q1 (0 points) Understanding RNN and GRU parameters

Please read the code and documentation of <code>get_rnn_params</code> and <code>get_gru_params</code> to see how to read out parameters from these to models. You will need to use these parameters in your own implementations. NO implementation is needed here.

```
from rnn_param_helper import get_rnn_params, get_gru_params
```

```
wt_h, wt_x, bias = get_rnn_params(t_rnn)

# NOTE: please check the documentation of `torch.nn.GRU` and the implementation of `get
# understand the three returning arguments.

linear_trans_r, linear_trans_z, linear_trans_n = get_gru_params(t_gru)
```

Numpy Implementation

Q2 (3 points) Please implement your own simple RNN.

Your implementation needs to match the tensorflow calculation.

Q3 (5 points) Please implement your own GRU.

Your implementation needs to match the tensorflow calculation.

▼ GRU includes RNN as a special case

Q4 (2 points) Can you assign a special set of parameters to GRU such that its outputs is almost the same as RNN?

```
# Assign some value to a parameter of GRU
from implementation import init_gru_with_rnn
linear_trans_r, linear_trans_z, linear_trans_n = init_gru_with_rnn(wt_h, wt_x, bias)
# concatenate these parameters to initialize GRU kernels
```

```
kernel init = np.concatenate([linear trans r[0], linear trans z[0], linear trans n[0])
rec kernel_init = np.concatenate([linear_trans_r[2], linear_trans_z[2], linear_trans_r
bias init0 = np.concatenate([linear trans r[1], linear trans z[1], linear trans n[1]],
bias init1 = np.concatenate([linear trans r[3], linear trans z[3], linear trans n[3]])
grurnn = nn.GRU(input size, hidden size, num layers = 1, batch first = True)
wt_x1, wt_h1, bias_ih1, bias_hh1 = grurnn. flat_weights
wt x1.data = torch.tensor(kernel init, dtype =torch.float32)
wt_h1.data = torch.tensor(rec_kernel_init, dtype = torch.float32)
bias ihl.data = torch.tensor(bias init0, dtype = torch.float32)
bias_hh1.data = torch.tensor(bias_init1, dtype = torch.float32)
# 'outputs' is a tensor of shape [batch size, time steps, hidden size]
# Same as the basic RNN cell, final state == outputs[:, -1, :]
with torch.no grad():
    t rnn outputs, t rnn final state = t rnn(input data, initial state)
    grurnn_outputs, grurnn final_state = grurnn(input_data, initial_state)
# they are the same as the calculation from the basic RNN
print("Difference between RNN and a special GRU", rel_error(t_rnn_outputs.numpy(), gru
    Difference between RNN and a special GRU 4.316596e-07
```

▼ Long-term dependency in GRUs

Q5 (2 points) Can you set GRU parameters such that it maintains the initial state in the memory for a long term?

```
from implementation import init_gru_with_long_term_memory

linear_trans_r, linear_trans_z, linear_trans_n = init_gru_with_long_term_memory(input_

# concatenate these parameters to initialize GRU kernels

kernel_init = np.concatenate([linear_trans_r[0], linear_trans_z[0], linear_trans_n[0]);

rec_kernel_init = np.concatenate([linear_trans_r[2], linear_trans_z[2], linear_trans_r_trans_ninit = np.concatenate([linear_trans_r[1], linear_trans_z[1], linear_trans_n[1]], bias_init1 = np.concatenate([linear_trans_r[3], linear_trans_z[3], linear_trans_n[3]]);

gru2 = nn.GRU(input_size, hidden_size, num_layers=1, batch_first=True)

wt_xg, wt_hg, bias_ing, bias_hhg = gru2._flat_weights

wt_xg.data = torch.tensor(kernel_init, dtype = torch.float32)

wt_hg.data = torch.tensor(rec_kernel_init, dtype = torch.float32)

bias_ing.data = torch.tensor(bias_init0, dtype = torch.float32)

bias_hhg.data = torch.tensor(bias_init1, dtype = torch.float32)

bias_hhg.data = torch.tensor(bias_init1, dtype = torch.float32)
```

```
with torch.no_grad():
    outputs, _ = gru2(input_data, initial_state)
    outputs = outputs.numpy()
    print('Difference between a later hidden state and the initial state is', np.mean)

Difference between a later hidden state and the initial state is 0.0
```

Double-click (or enter) to edit

Implement a multi-head attention layer

Q6 (5 points) In the task, you need to implement the forward calculation of a multi-head attention layer. Your calculation needs to match the calculation of the torch MHA layer in the following test case.

```
from rnn param helper import get mha params
from implementation import mha
batch size = 4
time steps = 8
input size = 10
num\ heads = 5
input data = torch.randn(batch size, time steps, input size, dtype = torch.float32)
# run torch implementation of MHA
with torch.no grad():
    t mha = nn.MultiheadAttention(embed dim=input size, num heads=num heads, dropout=(
    t_output, _ = t_mha(input_data, input_data, input_data, need weights=False)
# extract model parameters from the torch MHA layer
Wq, Wk, Wv, Wo = get mha params(t mha)
# run the same calculation with your implementation
output = mha(Wq, Wk, Wv, Wo, input data )
print('Difference between my output and torch output is ', np.mean(np.abs(output - t c
```

Colab paid products - Cancel contracts here

✓ 0s completed at 11:10 PM

×

▼ RNN/Transformer for Modeling Sentences

In this task, we will use an RNN or a transformer model to model sentences. The task is to predict the next character in a sentence.

```
from google.colab import drive
drive.mount('/content/drive')
import sys
sys.path.append('/content/drive/MyDrive/cs137assignments/assignment4')
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.
# As usual, a bit of setup
import time
import numpy as np
import torch
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
# for auto-reloading external modules
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load ext autoreload
%autoreload 2
%autosave 180
    Autosaving every 180 seconds
# If you have cuda, do the following
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)
    cuda:0
```

→ Load the data

```
import csv
import string
import numpy as np
```

```
def load_data(data_file):
    """Load the data into a list of strings"""
    with open('/content/drive/MyDrive/cs137assignments/assignment4/'+data_file) as csv
        reader = csv.reader(csv file, delimiter=',')
        rows = list(reader)
    if data file == 'train.csv':
        sentences, labels = zip(*rows[1:])
        sentences = list(sentences)
    elif data file == 'test.csv':
        sentences = [row[0] for row in rows[1:]]
    else:
        print("Can only load 'train.csv' or 'test.csv'")
    # replace non ascii chars to spaces
    count = 0
    for i, sen in enumerate(sentences):
        count = count + sum([0 if ord(i) < 128 else 1 for i in sen])</pre>
        # '\n' indicates the end of the sentence
        sentences[i] = ''.join([i if ord(i) < 128 else ' ' for i in sen]) + '\n'</pre>
    print('The total of ', count, 'non-ascii chars are removed \n')
    return sentences
def char to index(sentence, str voc):
    """Convert a string to an array by using the index in the vocabulary"""
    sen int = np.array([str voc.index(c) for c in sentence])
    return sen int
def convert sen to data(sentences, str voc):
    """ Convert a list of strings to a list of numpy arrays"""
    data = [None] * len(sentences)
    for i, sen in enumerate(sentences):
        data[i] = char to index(sen, str voc)
        # sanity check
        #if i < 5:
             recover = "".join([str voc[k] for k in data[i]])
             print(recover)
    return data
train sentences = load data('train.csv')
# NOTE: you need to use the same vocabulary to handle your test sentences
vocabulary = list(set("".join(train sentences)))
vocabulary.sort()
```

```
str_voc = "".join(vocabulary)
train_data = convert_sen_to_data(train_sentences, str_voc)
num sen = len(train data)
sen_lengths = [sen.shape[0] for sen in train_data]
max_len = max(sen_lengths)
min len = min(sen lengths)
num_chars = sum(sen_lengths)
print('Data statistics:')
print('Number of sentences: ', num_sen)
print('Maximum and minimum sentence lengths:', max len, min len)
print('Total number of characters:', num_chars)
print('Vocabulary size: ', len(vocabulary))
uniq, uniq counts = np.unique(np.concatenate(train data), return counts=True)
freq = np.zeros_like(uniq_counts)
freq[uniq] = uniq counts
print('Chars in vocabulary and their frequencies:')
print(list(zip(vocabulary, freq.tolist())))
# a sample sentence
print("Data exploration -- showing an example sentence:")
sample = ""
for i in train_data[5]:
    sample +=str voc[i]
print(sample)
    The total of 4328 non-ascii chars are removed
    Data statistics:
    Number of sentences: 160000
    Maximum and minimum sentence lengths: 100 32
    Total number of characters: 10954565
    Vocabulary size: 95
    Chars in vocabulary and their frequencies:
    [('\n', 160000), (' ', 1762678), ('!', 12100), ('#', 496), ('$', 1212), ('%', 45)
    Data exploration -- showing an example sentence:
    Martha stewart tweets hideous food photo, twitter responds accordingly
```

▼ Implement an RNN or a Transformer with torch

Q7 (10 points) In this problem, you are supposed to train an RNN or a transformer to model sentences. Particuarly, your model will receive 10 starting characters and should predict the rest of sentence. The model will be evaluated by per-character cross-entropy loss. You will get

- 5 points if your per-character cross-entropy loss is less than 2.5 (the loss by predicting with character frequencies is 3.13. Your model needs to be better than that).
- 8 points if your per-character cross-entropy loss is less than 2
- 10 points if your per-character cross-entropy loss is less than 1.5

*The performance from a <u>paper</u> indicates that an LSTM can achieve performance of 1.43 * ln(2) = 0.991. *The zip program for compressing files roughly can achieve a performances of 3.522 bits

```
# Set up dataloader
# TODO: please read through the code in this cell so you know the data your model will
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad sequence
class StrData(Dataset):
   def __init__(self, data):
        self.sentence = data
   def len (self):
        return len(self.sentence)
    def __getitem__(self, idx):
       return self.sentence[idx]
BEGIN ID = freq.shape[0]
END ID = BEGIN ID + 1
PAD ID = BEGIN ID + 2
def add begin and end(tokens):
    return torch.cat([torch.tensor([BEGIN ID], dtype = torch.long),
                     torch.tensor(tokens, dtype = torch.long),
                     torch.tensor([END ID], dtype = torch.long)])
def collate_fn(batch):
   batch ret = []
    for sentence in batch:
        batch_ret.append(add_begin_and_end(sentence))
    batch ret = pad sequence(batch ret, padding value = PAD ID).T # pad sequence is no
    return batch ret
```

▼ Set up a model

Suggestion: you may want to put your model in a .py file. Your code might look cleaner if you do so.

```
from rnn_lm import SentenceModel

model = SentenceModel(freq)
model.to(device)

SentenceModel(
    (emb): Embedding(98, 256)
    (rnn): RNN(256, 1000, batch_first=True)
    (linear): Linear(in_features=1000, out_features=98, bias=True)
)
```

Train the model

NOTE: this example only uses 20 sentences for fast showcase the code, but you should use the entire training set. You can also split out a subset as the validation set. You can make any changes as long as you don't touch the test set.

```
epochs = 5
train loader = DataLoader(StrData(train data), shuffle=True, batch size=64, collate fr
opt = torch.optim.Adam(model.parameters(), lr=0.001)
loss fn = torch.nn.CrossEntropyLoss(ignore index = PAD ID)
for ep in range(epochs):
    running loss = 0
    for i, batch in enumerate(train loader):
        m_input = batch[:, :-1]
        m output = batch[:, 1:]
        if device.type == "cuda":
            m input = m input.to(device)
            m output = m output.to(device)
         # zero the parameter gradients
        opt.zero grad()
        logits = model(m_input) # batch x no_sequences x logits
        # Question: is this teacher forcing?
        loss = loss fn(logits.reshape(-1, logits.shape[-1]), m output.reshape(-1)) # '
        loss.backward()
        opt.step()
```

```
# TODO: Record loss values to some variable
if device.type == "cuda":
    loss = loss.cpu()

running_loss += loss.item()
print(f"Epoch {ep+1}/{epochs}: Training Loss {running_loss / (i+1)}")

Epoch 1/5: Training Loss 1.598863556098938
Epoch 2/5: Training Loss 1.410946901845932
Epoch 3/5: Training Loss 1.372951064491272
Epoch 4/5: Training Loss 1.3548198021888733
Epoch 5/5: Training Loss 1.3454062554836272
```

▼ Save the model

```
torch.save(model, "rnn_lm.sav")
```

Test the trained model

```
# load the test data. NOTE: need to use the same vocabulary as the training data
test sentences = load data('test.csv')
test_data = convert_sen_to_data(test_sentences, str_voc)
print('Number of test instances:', len(test data))
# TODO: replace this stub model with your powerful model
model = torch.load("rnn lm.sav")
test loader = DataLoader(StrData(test data), shuffle=True, batch size=50, collate fn=c
loss fn = torch.nn.CrossEntropyLoss(ignore index = PAD ID)
print('Evaluating the model ...')
loss sum = 0
char count = 0
with torch.no grad():
    for i, batch in enumerate(test loader):
        m input = batch[:, :-1]
        m output = batch[:, 1:]
        if device.type == "cuda":
            m input = m input.to(device)
            m output = m output.to(device)
        logits = model(m input)
        loss = loss fn(logits.reshape(-1, logits.shape[-1]), m output.reshape(-1))
```

```
if device.type == "cuda":
    loss = loss.to(device)
    batch = batch.to(device)

loss_sum += loss.item()
    char_count += torch.sum((batch != PAD_ID) & (batch != BEGIN_ID) & (batch != EN)

per_char_loss = loss_sum / (i+1)

print('The total number of chars in the test set is ', char_count)

print('The per-char-loss is %.3f' % per_char_loss)

The total of 1131 non-ascii chars are removed

Number of test instances: 40000

Evaluating the model ...
The total number of chars in the test set is tensor(2739550, device='cuda:0')
The per-char-loss is 1.363
```

▼ Use the model to generate sentences

Now we can use the trained model to generate text with a starting string. The naive model just predict frequent characters in the text, so there is no meaningful generation yet. See what you get from your models.

```
import torch.distributions as distributions
def generate_text(model, start_string, str_voc):
    """ Generate random text from a starting string. """
    # Number of characters to generate
    num generate = 100 - len(start string)
    # Converting our start string to numbers (vectorizing)
    input int = [BEGIN ID] + [str voc.index(s) for s in start string]
    input tensor = torch.tensor(input int, dtype = torch.long).view([1, -1])
    # Empty string to store our results
    text generated = []
   # Low temperature results in more predictable text.
    # Higher temperature results in more surprising text.
    # Experiment to find the best setting.
    temperature = 0.5
    # Here batch size == 1
    other voc = {BEGIN ID: "<BEG>", END ID: "<END>", PAD ID: "<PAD>"}
```

```
for i in range(num_generate):
        if device.type == "cuda":
            input_tensor = input_tensor.to(device)
        outputs = model(input tensor)
        # remove the batch dimension
        prediction = torch.softmax(outputs[0, -1, :], dim=0)
        # using a categorical distribution to predict the character returned by the mc
        prediction = prediction / temperature
        predicted id = int(distributions.Categorical(probs = prediction).sample())
        # The calculation has a lot of repeatition because computation for the first ;
        # of the sequence is the same at every iteration. But it's fine for our exampl
        input_int.append(predicted_id)
        input_tensor = torch.tensor(input_int, dtype = torch.long).view([1, -1])
        text_generated.append(str_voc[predicted_id] if (predicted_id < len(str_voc)) &
    return (start string + ''.join(text generated))
start string = 'I hav'
gen sen = generate text(model, start_string, str_voc)
gen sen = gen sen.split('\n')[0]
print('Starting from "' + start string + '", the generated sentence is:')
print('"' + gen sen + '"')
    Starting from "I hav", the generated sentence is:
    "I haven test (photos)"
```

Colab paid products - Cancel contracts here

✓ 6s completed at 3:27 PM

×