Artin: Fields

James Pagan

March 2024

Contents

1	Fields	2
2	Algebraic and Transcendental Elements	2
3	The Degree of a Field Extension	5
	3.1 Low-Degree Field Extensions	7

1 Fields

A **field** is a commutative division ring. If $F \subseteq K$ is a pair of fields, we say K is a **field extension** of F. This relation is denoted K / F; this is *not* a quotient! Examples of fields are as follows:

- 1. The motivation for examining field extensions originates from **number fields**: subfields of \mathbb{C} . All number fields are extensions of \mathbb{Q} . The classical questions regarding number fields concerned **algebraic number fields**, whose elements are algebraic.
- 2. A **finite field** is a field that contains finitely many elements. Finite fields are gorgeous and colorful objects that obey beautiful, tight-knit properties.
- 3. Extensions of the field F(t) of rational functions are called **function fields**.

2 Algebraic and Transcendental Elements

Let K / F be a field extension and let α be an element of K. The element α is **algebraic over F** if is the root of a monic polynomial with coefficients in F — say, $f(\alpha) = 0$ for

$$f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$$
, where $a_{n-1}, \ldots, a_0 \in F$,

An element is **transcendental over F** if it is not algebraic. Both of these properties depend on the field F. Every element $\alpha \in F$ is algebraic over F due to the monomial $x - \alpha$. We can elegantly describe this as a substitution homomorphism

$$\varphi: F[x] \to X \quad \text{defined by} \quad x \leadsto \alpha.$$

An element ϕ is transcendental if ϕ is injective and algebraic otherwise.

Proposition 1. Let $\alpha \in K / F$ be an element of a field extension. The following conditions on a monic polynomial $f \in F[x]$ are equivalent:

- 1. f is the unique monic polynomial of lowest degree in F[x] with α as a root.
- 2. f is an irreducible element of F[x] with α as a root.
- 3. $f(\alpha) = 0$ and (f) is a maximal ideal.
- 4. If $g(\alpha) = 0$, then $f \mid g$.

Proof. Since F[x] is a Euclidean domain, the kernel of $\phi : F[x] \to K$ is a principal ideal generated by some polynomial f of smallest degree. f must be irreducible, or else a polynomial of smaller degree has a root at ϕ ; the other properties are easy to deduce.

 \Box

This polynomial is called the **minimal polynomial** of α . The degree of the minimal polynomial of α is called the **degree** of α . Whatever the case, the goal of this section is to examine the fields and rings generated by algebraic elements:

1. The field $F(\alpha_1, ..., \alpha_n)$ denotes the subfield of K generated by $\alpha_1, ..., \alpha_n$.

$$F(\alpha_1,...,\alpha_n)$$
 is the smallest subfield of K that contains F and $\alpha_1,...,\alpha_n$.

2. The ring $F[\alpha_1, \ldots, \alpha_n]$ denotes the subring of K generated by $\alpha_1, \ldots, \alpha_n$. The ring $F[\alpha]$ is isomorphic to the image of the substitution homomorphism $\varphi : F[x] \to K$ as defined above.

The field $F(\alpha)$ is isomorphic to the field of fractions of $F[\alpha]$. If α is transcendental, then $F[\alpha] \cong F[x]$ and $F(\alpha) \cong F(x)$; nowhere does a polynomial or rational function in α reduce. If α is algebraic,

Proposition 2. Let $\alpha \in K / F$ be an algebraic element of a field extension. Let f be the minimal polynomial of α . Then the following holds:

- 1. The canonical map $\phi : F[x] / (f) \rightarrow F[\alpha]$ an isomorphism.
- 2. $F[\alpha]$ is a field, hence $F[\alpha] = F(\alpha)$.
- 3. More generally, $F[\alpha_1,\ldots,\alpha_n]=F(\alpha_1,\ldots,\alpha_n)$ if $\alpha_1,\ldots,\alpha_n\in K$ / F are algebraic.

Proof. Let $\phi: F[x] \to K$ be the aforementioned substitution homomorphism. Then $F[x] / \text{Ker } \phi \cong K$. By Proposition 1, the kernel of ϕ is a maximal ideal generated by the minimal polynomial f, which yields (1) and (2). As per (3), an induction argument proceeds along these lines:

$$F[\alpha_1,\ldots,\alpha_n]=F[\alpha_1,\ldots,\alpha_{n-1}][\alpha_n]=F(\alpha_1,\ldots,\alpha_n)[\alpha_k]=F(\alpha_1,\ldots,\alpha_n).$$

The omitted details are relatively easy to verify.

The following proposition is a special case of one I omitted from Chapter 11.

Proposition 3. Let $\alpha \in K / F$ be an algebraic element of a field extension. If $\deg \alpha = n$, then $1, \alpha \dots, \alpha^{n-1}$ is a basis for $F(\alpha)$ as a vector space over F.

Given two algebraic elements $\alpha \in K \ / \ F$ and $\beta \in L \ / \ F$ — or given their minimal polynomials — how can one determine whether α and β generate the same field? We answer this question in Proposition 5.

Proposition 4. Let $\alpha \in K / F$ and $\beta \in L / F$ be algebraic elements of field extensions. Then α and β have the same minimal polynomial if and only if $F(\alpha) \cong F(\beta)$ — in which case, the isomorphism is the identity on F and maps $\alpha \leadsto \beta$

Proof. Suppose that α and β share the same minimal polynomial $f \in F[x]$. By Proposition 2, $F(\beta) \cong F[x]/(f) \cong F(\alpha)$; the additional conditions imposed upon the isomorphism are easy to verify.

For the other direction, suppose $F(\alpha) \cong F(\beta)$ by the described isomorphism. Let the minimal polynomial of f be α ; by Proposition 5, $f(\alpha) = 0$ implies $f(\beta) = 0$ too — hence the minimal polynomial of α divides the minimal polynomial of β . Observing that they're monic and share the same degree implies they are equal.

Let K / F and K' / F be field extensions. An **F-isomorphism** is an isomorphism $\phi : K \to K'$ that restricts F to the identity; the fields K and K' are **isomorphic field extensions**.

Proposition 5. Let $\phi: K \to K'$ be an isomorphism of field extensions, and suppose $f \in F[x]$. Then $f(\alpha) = 0$ if and only if $f(\alpha') = 0$.

Proof. It suffices to prove the theorem for the minimal polynomial of α — thus redefine f as such. The canonical epimorphism $K' \to K' / (f)$ may be decomposed as

$$K' \longrightarrow K \longrightarrow K/(f) \longrightarrow K'/(f),$$

of which $\phi(\alpha)$ vanishes; thus $f(\phi(\alpha))=0$. Alternatively, we could let $f(x)=\alpha_n x^n+\cdots+\alpha_0$, and observe that

$$a_n \phi(\alpha)^n + \cdots + a_0 = \phi(a_n \alpha^n + \cdots + a_0) = \phi(0) = 0.$$

The symmetry of isomorphisms entails the desired bicondition.

My intuition is that Proposition 5 should constrain the structure of field extensions — but hell, what do I know. The following lemma regards the **characteristic** of a field.

Lemma 1. *The characteristic of a field is either* 0 *or prime.*

Proof. If F has characteristic n = ab for $a, b \in \{2, ..., n-1\}$, we attain the following equation:

$$\left(\sum_{i=1}^{a} 1\right) \left(\sum_{i=1}^{b} 1\right) = \sum_{i=1}^{n} 1 = 0$$

Since F is an integral domain, one of these is zero — violating the minimality of n. \Box

3 The Degree of a Field Extension

Any field extension K / F may be regarded as an F-vector space K. The **degree** [K : F] of this field extension is the dimension of this vector space.

Theorem 1 (Multiplicative Property of the Degree). Let L / K / F be field extensions. Then [L : F] = [L : K] [K : F]; hence each of [L : K] and [K : F] divides [L : F].

Proof. Let ℓ_1, \ldots, ℓ_n be a basis of L over K; let k_1, \ldots, k_n be basis of K over F. We claim the products $\ell_i k_j$ constitute a basis of L over F — which starts with demonstrating that they span L. For all $\ell \in L$, there exist j_1, \ldots, j_n such that

$$\ell = j_1\ell_1 + \cdots + j_n\ell_n$$
.

Similarly, each j_i factors in K for f_{i1}, \ldots, f_{im} as

$$j_i = f_{i1}k_1 + \cdots + f_{im}k_m$$
.

Substituting this equation into the prior one yields a linear combination of ℓ into the terms $\ell_i k_i$. What remains to be demonstrated is their independence; suppose that

$$0 = \sum_{i=1}^{n} \sum_{j=1}^{m} f_{ij} \ell_i k_j = \ell_1 \left(\sum_{j=1}^{m} f_{1j} k_j \right) + \cdots + \ell_n \left(\sum_{j=1}^{n} f_{mj} k_j \right).$$

Since ℓ_1, \ldots, ℓ_n are a basis, each of these sums must be zero; since k_1, \ldots, k_m are a basis, each f_{ij} must be zero. The lengths of these bases imply the desired result.

A field extension K / F is a **finite extension** if K its degree is finite. As we will see, finite extensions are an equivalent way to characterize extensions generated by algebraic elements:

Lemma 2. Let $\alpha \in K / F$ be an element of a field extension. Then the following holds:

- 1. If α is algebraic, then $[F(\alpha) : F] = \deg \alpha$.
- 2. α is algebraic if and only if $[F(\alpha) : F]$ is finite.

Proof. Since α is algebraic, no linear combinations of $1, \alpha, \ldots, \alpha^{n-1}$ yield zero; by the division algorithm, they span $F(\alpha)$. This yields (1). As per (2), α being algebraic implies $1, \alpha, \alpha^2 \ldots, \alpha^{n-1}$ spans $F[\alpha]$; otherwise, $1, \alpha, \alpha^2, \ldots$ is an infinite basis of $F[\alpha]$.

Unfortunately, the reverse direction is more complex: a finite extension is generated by finitely many algebraic elements, but these may be distinct.

Lemma 3. *Suppose that* K / F *is a field extension. Then the following holds:*

- 1. K is finite if and only if it is generated by finitely many algebraic elements.
- 2. If K is finite, then α is algebraic and deg α divides [K : F].

Proof. If K is finite, then let deg K = n. There exists $\alpha_1, \ldots \alpha_n$ that constitute a basis of the F-vector space K — hence $K = F(\alpha_1, \ldots, \alpha_n)$. On the contrary: if K is generated by finitely many algebraic elements $\alpha_1, \ldots, \alpha_n$, then

$$\begin{split} [F(\alpha_1,\ldots,\alpha_n):F] &= [F(\alpha_1,\ldots,\alpha_n):F(\alpha_1,\ldots,\alpha_{n-1})]\cdots [F(\alpha_1):F(\alpha)] \\ &\leqslant \deg \alpha_n \times \cdots \times \deg \alpha_0 \\ &< \infty, \end{split}$$

so K / F is a finite extension. For (2), the fact that α is algebraic follows from the fact that F(α) is an F-subspace of the finite-dimensional F-vector space K. As per the degree: if deg $\alpha = n$:

$$[K : F] = [K : F(\alpha)][F(\alpha) : F] = [K : F(\alpha)] \operatorname{deg} \alpha.$$

Hence deg α divides [K : F]. This completes the proof.

We now examine the relationship between the degrees of iterated field extensions.

Corollary 1. *Let* L / K / F *be field extensions. If* $\alpha \in L$ *is* F-algebraic, then α *is* K-algebraic and $\deg_K \alpha \leqslant \deg_F \alpha$.

Proof. If $\alpha \in L$ is algebraic over F, then there exist $f_1, \ldots, f_n \in L$ such that

$$\alpha^{n} + f_{n-1}\alpha^{n-1} + \cdots + f_{0} = 0.$$

Since $L \subseteq K$, this means α is a root of a polynomial in K[x] — hence α is algebraic over K. The degree is smaller than n if the above polynomial reduces in K, and equal otherwise.

Unfortunately, it is not true that K-algebraic elements are F-algebraic: consider $\mathbb{C}/\mathbb{R}/\mathbb{Q}$ with the \mathbb{R} -algebraic element π .

Corollary 2. Let $F \subseteq K$, $K' \subseteq K$ be field extensions, and let F' be the field generated by K and K'. Then

$$[K : F] [K' : F] \geqslant [F' : F],$$

yet both [K : F] and [K' : F] divide [F' : F].

Proof. Since $F \subseteq K$, $K' \subseteq F'$ are field extensions, the multiplicative property of the degree yields that [K:F] and [K':F] divide [F':F]. Now, let $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n be F-bases of K and K'. Then the products $\alpha_i \beta_j$ span F', yielding the desired inequality. \square

Two corollaries of the above result are as follows:

- 1. $lcm([K:F], [K':F]) \leq [F':F].$
- 2. If [K : F] and [K' : F] are relatively prime integers, then [K : F] [K' : F] = [F' : F].

This latter component is quite important.

3.1 Low-Degree Field Extensions

If [K : F] = 2, then K / F is a **quadratic extension**. Similarly [K : F] = 3 entails that K / F is a **cubic extension**. Quadratic and quintic extensions are defined similarly.

Lemma 4. Let $\alpha \in K / F$ is an element of a field extension. Then the following holds:

- 1. [K : F] = 1 if and only if K = F.
- 2. deg $\alpha = 1$ if and only if $\alpha \in F$.

Proof. If there was some element $\alpha \in K \setminus F$, then 1, α would be independent in K — hence $[K : F] \ge 2$. The contrapositive yields (1). For (2), we have

$$\deg \alpha = 1 \iff x - \alpha \text{ is the minimal polynomial of } \alpha \iff \alpha \in F.$$

This concludes the proof.

This classifies extensions with degree 1. Extensions of degree 2 have a simple story as well:

Proposition 6. Suppose that the characteristic of F is not 2. Then an extension K / F is quadratic if and only if adjoining $\delta^2 = \alpha \in F$ not in F obtains K.

Proof. Suppose that K / F is quadratic. Then there exists $\alpha \in K \setminus F$, in which case $(1, \alpha)$ is a basis of K. Thus there exist $b, c \in F$ such that $\alpha^2 = b\alpha + c$. Deriving the quadratic formula by completing the square, we find

$$\alpha = \frac{-b \pm \sqrt{b^2 - 4c}}{2}.$$

Because $\alpha \notin F$, the element $b^2 - 4c$ must not be a square in F. If δ is one of these square roots, it is clear that $(1, \delta)$ spans K — hence $F(\delta) = K$. The contrary is trivial.

We give the reader three sets of exercises:

- 1. Let the two complex roots of $x^3-2=0$ be α and α^2 . Calculate $[\mathbb{Q}(\alpha,\alpha^2):\mathbb{Q}]$.
- 2. Let β be a root of the irreducible polynomial $x^4 + x + 1$ over \mathbb{Q} . Prove that $\sqrt[3]{2} \notin \mathbb{Q}(\beta)$.
- 3. Calculate (with proof) the degree of i over $\mathbb{Q}(\sqrt{2})$.

These are easy corollaries from the above theorems.