CCP 2007. Filière MP. Mathématiques 2.

Corrigé pour serveur UPS par JL. Lamard (jean-louis.lamard@prepas.org)

I. Description des normes euclidiennes

1. Identité du parallélogramme.

a. Si N est une norme euclidienne attachée au produit scalaire φ alors :

$$N(x+y)^2 + N(x-y)^2 = \varphi(x+y,x+y) + \varphi(x-y,x-y) = 2\Big(\varphi(x,x) + \varphi(y,y)\Big) = 2\Big(N(x)^2 + N(y)^2\Big) \quad \Box$$

$$\|e_1 + e_2\|_{\infty}^2 + \|e_1 - e_2\|_{\infty}^2 = 2 \text{ et } 2\Big(\|e_1\|_{\infty}^2 + \|e_2\|_{\infty}^2\Big) = 4 \text{ donc } \|.\|_{\infty} \text{ n'est pas euclidienne.}$$

b. $\|.\|_2$ est naturellement euclidienne car attachée au produit scalaire canonique. \square

Pour p > 1 on a $||e_1 + e_2||_p^2 + ||e_1 - e_2||_p^2 = 2 \times 2^{2/p}$ et $2(||e_1||_p^2 + ||e_2||_p^2) = 2 \times 2$. Donc si $p \neq 2$ la norme $||.||_p$ n'est pas euclidienne. \square

2. $\langle . \rangle_S$ est clairement bilinéaire.

Elle est symétrique car, du fait que tXSY est un réel il est égal à sa transposée, donc (en utilisant que S est symétrique) : $\langle x,y \rangle_S = {}^tXSY = {}^t({}^tXSY) = {}^tY^tSX = {}^tYSX = \langle y,x \rangle_S$.

Elle est définie positive car $< x, x>_S = {}^t X S X>0$ pour $X \neq 0$ du fait que S est symétrique définie positive. \square

3. Par bilinéarité de φ , il vient $\varphi(x,y) = \sum_{i=1}^n \left(\sum_{j=1}^n \varphi(e_i,e_j) x_i y_j \right) = \sum_{i=1}^n \left(x_i \sum_{j=1}^n \varphi(e_i,e_j) y_j \right) = \sum_{i=1}^n x_i z_i = {}^t XZ$ avec $z_i = \sum_{j=1}^n \varphi(e_i,e_j) y_j$ i.e. Z = SY. Ainsi $\varphi(x,y) = {}^t XSY$.

La matrice \hat{S} est évidemment symétrique par définition et définie positive compte tenu de l'égalité ci-dessus. \square

II. Quelques généralités et exemples.

4. Isom(N) est non vide car contient Id_E et est bien inclus dans $\mathrm{GL}(E)$ car une isométrie est clairement injective donc bijective (dimension finie).

Par ailleurs $\operatorname{Isom}(N)$ est clairement stable par composition et enfin si $u \in \operatorname{Isom}(N)$ alors $N\left(u(u^{-1}(x))\right) = N\left(u^{-1}(x)\right)$ soit $N(x) = N\left(u^{-1}(x)\right)$ donc $u^{-1} \in \operatorname{Isom}(N)$. Ainsi $\operatorname{Isom}(N)$ est un sous-groupe de $\operatorname{GL}(E)$. \square

- 5. Une caractérisation géométrique des N-isométries.
- Soit u une isométrie. Il est immédiat que $u(\Sigma) \subset \Sigma$. Par ailleurs u^{-1} est également une isométrie donc $u^{-1}(\Sigma) \subset \Sigma$ d'où $u(u^{-1}(\Sigma)) \subset u(\Sigma)$ soit $\Sigma \subset u(\Sigma)$ (car $u(u^{-1}(\Sigma)) = (uou^{-1})(\Sigma) = Id(\Sigma) = \Sigma$). Ainsi $u(\Sigma) = \Sigma$.
- Réciproquement soit un endomorphisme u stabilisant la sphère unité. Soit x un élément quelconque non nul de E et soit $y = \frac{1}{N(x)}x$. Alors $y \in \Sigma$ donc $u(y) \in \Sigma$ i.e. $\frac{1}{N(x)}N(u(x)) = 1$ soit encore N(u(x)) = N(x). Égalité encore vraie si x = 0. Donc u est bien une isométrie.
- Ainsi Isom(N) est l'ensemble des endomorphismes de E stabilisant $\Sigma(N)$.

Remarque : on a en fait prouvé que si u est une isométrie $u(\Sigma) = \Sigma$ et que si u est un endomorphisme tel que $u(\Sigma) \subset \Sigma$ alors u est une isométrie (donc $u(\Sigma) = \Sigma$).

6. Notons $N = \|.\|_1$. Alors $\Sigma(N)$ est le carré de sommets (1,0), (0,1), (-1,0) et (0,-1) conservé par la symétrie s mais pas par la rotation r. Ainsi s est une $\|.\|_1$ -isométrie mais pas r. \square

7. a. $S = \begin{pmatrix} 3 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$

b. Soit u l'endomorphisme canoniquement associé à S. Sa matrice étant symétrique dans une base orthonormée, il est ortho-diagonalisable.

On remarque que $u(e_2) = 2e_2$ et $u(e_1 + e_2 + e_3) = 2(e_1 + e_2 + e_3)$ ce qui prouve que 2 est valeur propre et que le sous-espace propre associé E_2 est de dimension au moins 2. Le spectre de u est donc $(2, 2, \lambda)$. Par invariance de la trace il vient que $\lambda = 4$. D'ailleurs on remarque $u(e_1 - e_3) = 4(e_1 - e_3)$.

Ainsi E_4 est dirigé par $\varepsilon_1 = \frac{1}{\sqrt{2}}(e_1 - e_3)$ et, puisque u est orthodiagonalisable, E_2 est le plan d'équation x - z = 0

dont une base orthonormée est constituée de $\varepsilon_2 = e_2$ et $\varepsilon_3 = \varepsilon_1 \wedge \varepsilon_2 = \frac{1}{\sqrt{2}}(e_1 + e_3)$.

	Ainsi en notant $P = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$ la matrice de passage et $D = \text{diag}(4, 2, 2)$, on a $S = PDP^{-1}$.			
	Or P est orthogonale car matrice de passage entre deux bases orthonormées donc $S=PD^tP$. \square			
c.	. Ce qui précède prouve que q est définie positive (les valeurs propres de l'endomorphisme symétrique canoniquemen attaché sont strictement positives ou vérification immédiate à l'aide de la question précédente) donc la forme polaire définit un produit scalaire φ et alors $N_q = N_{\varphi}$. \square			
d	d et e. $\Sigma(N)$ a pour équation dans la base orthonormée $(\varepsilon_1, \varepsilon_2, \varepsilon_3): 4X^2 + 2Y^2 + 2Z^2 = 1$ donc il s'agit d'ur ellipsoïde de révolution dont l'axe est dirigé par ε_1 c'est à dire par $e_1 - e_3$. \square			
f	Il résulte alors de la question 5 que toute rotation d'axe e_1-e_3 appartient à $\mathrm{Isom}(N_q)$ qui de ce fait est bien infini \square			
ΙΙ	I. Étude de $Isom(N)$ lorsque N est une norme euclidienne.			
8.	Caractérisation matricielle des isométries euclidiennes.			
a.	Si un endomorphisme conserve le produit scalaire alors a fortiori il conserve le carré scalaire donc la norme. Réciproquement si u conserve la norme alors : $4 < u(x), u(y) >= N^2 (u(x) + u(y)) - N^2 (u(x) - u(y)) = N^2 (u(x+y)) - N^2 (u(x-y)) = N^2 (x+y) - N^2 (x-y) = 4 < x, y > $ donc u conserve le produit scalaire. Ainsi un endomorphisme est une isométrie pour une norme euclidienne si et seulement si cet endomorphisme conserve le produit scalaire. \square			
b.	b. En traduisant matriciellement le résultat précédent il vient que u est une isométrie si et seulement si, pour to couple (X,Y) de $M_{n,1}(\mathbb{R})$: ${}^t(AX)S(AY) = {}^tXSY \text{ i.e. si et seulement si } {}^tX({}^tASA)Y = {}^tXSY.$ En prenant en particulier $X = e_1$ et $Y = e_j$ l'égalité ci-dessus implique que les éléments d'indice (i,j) de tASA de S sont égaux donc que les deux matrices sont égales. Cette condition étant par ailleurs évidemment suffisar pour avoir l'égalité ci-dessus. Ainsi l'endomorphisme u est une N_S -isométrie si et seulement si sa matrice A dans la base canonique véri ${}^tASA = S$. \square			
	$\underline{\text{Remarque}}: \text{on retrouve en particulier avec } S = Id \text{ que } u \text{ est une isométrie pour le produit scalaire canonique si et seulement si sa matrice dans la base canonique est orthogonale.}$			
9.	En liaison avec la remarque précédente on a en particulier $ISOM(\ .\ _2) = O_n(\mathbb{R})$. \square			
	Ce groupe est infini car il contient en particulier les matrices $\begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & I_{n-2} \end{pmatrix}$ dont le cardinal est égal à			
	celui de $[0,2\pi[. \Box$			
	. Une application des polynômes interpolateurs.			
a.	Si $P \in \text{Ker } u$ alors P est un polynôme de degré au plus r s'annulant en au moins $r+1$ réels deux à deux distincts donc P est le polynôme nul. Il en découle que u est injective donc est un isomorphisme puisque les espaces de départ et d'arrivée sont de même dimension finie. D'où l'existence et l'unicité du polynôme L cherché à savoir $L = u^{-1}(y_0, y_1, \ldots, y_r)$. \square			
b.	Notons $\{x_0,\ldots,x_r\}$ l'ensemble des réels $u_1,u_2\ldots,u_n$ (donc $r+1\leqslant n$) et L le polynôme interpolateur de degré au plus r tel que $L(x_i)=\sqrt{x_i}$. Alors $L(U)=V$. \square			
11	. Racines carrées dans $S_n^{++}(\mathbb{R})$.			

10

11

a. Comme A est symétrique elle est orthodiagonalisable et, comme elle est en outre définie positive, ses valeurs propres sont strictement postives. Ainsi il existe P orthogonale et $D = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ avec $\lambda_i > 0$ telles que $S = PDP^{-1}$. Soit alors $A = P\Delta P^{-1}$ avec $\Delta = \operatorname{diag}(\sqrt{\lambda_1}, ..., \sqrt{\lambda_n})$.

Il vient $S = A^2$ et en outre A est bien symétrique (car P est orthogonale donc $A = P\Delta^t P$) et définie positive (puisque semblable à Δ donc à valeurs propres strictement postives : les λ_i). \square

b. D'après la question 10.b., il existe un polynôme L tel que $L(D)=\Delta$ donc classiquement $L(PDP^{-1})=P\Delta P^{-1}$ soit L(S) = A donc $L(B^2) = A$ qoit Q(B) = A avec Q le polynôme LoX^2 . \square

Ainsi AB=Q(B)X(B)=(QX)(B)=(XQ)(B)=X(B)Q(B)=BA par le classique morphisme de l'algèbre $\mathbb{R}[X]$ dans l'algèbre $\mathcal{M}_n(\mathbb{R}): P \longmapsto P(B)$. \square

c. Soient M et N deux matrices symétriques définies positives. Alors $M+N$ est symétrique et, pour X non nul, ${}^tX(M+N)X={}^tXMX+{}^tXNX>0$. Ainsi $M+N$ est symétrique définie positive donc inversible. \square On a en fait prouvé le résultat un peu plus général : la somme de deux matrices symétriques positives dont l'une est en outre définie est définie positive. \square
d. Il vient $(A+B)(A-B)=A^2-AB+BA-B^2=A^2-B^2$ puisque A et B commutent. Or $A^2=B^2(=S)$ donc $(A+B)(A-B)=0$. Comme $A+B$ est inversible, il en découle que $A=B$. \square
12. Étude du groupe d'isométrie pour une norme euclidienne.
a. Soit M orthogonale. Il vient (car \sqrt{S} et $(\sqrt{S})^{-1}$ sont symétriques): $P = {}^t \Big((\sqrt{S})^{-1} M \sqrt{S} \Big) S \Big((\sqrt{S})^{-1} M \sqrt{S} \Big) = \sqrt{S} {}^t M (\sqrt{S})^{-1} S (\sqrt{S})^{-1} M \sqrt{S}.$ Or $(\sqrt{S})^{-1} S (\sqrt{S})^{-1} = (\sqrt{S})^{-1} \sqrt{S} \sqrt{S} (\sqrt{S})^{-1} = \text{Id donc } P = \sqrt{S} {}^t M M \sqrt{S} = \sqrt{S} \sqrt{S} = S \text{ puique } M \in \mathcal{O}_n(\mathbb{R}).$ Donc $(\sqrt{S})^{-1} M \sqrt{S} \in \text{ISOM}(N_S)$ d'après la question 8.b \square
b. ψ est un morphisme de groupes car $\psi(MN) = \psi(M)\psi(N)$. ψ est injectif car si $M \in \text{Ker } \psi$ alors $(\sqrt{S})^{-1}M\sqrt{S} = \text{Id donc } M = \text{Id.}$ ψ est surjectif car si $N \in \text{ISOM}(N_S)$ alors $N = \psi(M)$ avec $M = \sqrt{S}N(\sqrt{S})^{-1}$ et M est bien orthogonale. En effet d'après la question 8.b. on a ${}^tNSN = S$ donc ${}^tN\sqrt{S}\sqrt{S}N = S$ donc $(\sqrt{S})^{-1} {}^tN\sqrt{S}\sqrt{S}N(\sqrt{S})^{-1} = \text{Id donc}$ ${}^tMM = \text{Id.}$ Ainsi ψ est un isomorphisme de groupes de $\mathcal{O}_n(\mathbb{R})$ sur $\text{ISOM}(N_S)$. En particulier $\text{ISOM}(N_S)$ est infini puisque $\mathcal{O}_n(\mathbb{R})$ l'est. \square
Remarque : ce dernier résultat est évident directement car par le choix d'une base orthonormale on établit un isomorphisme entre tout espace euclidien et \mathbb{R}^n muni du produit scalaire canonique ce qui prouve que les deux groupes orthogonaux sont isomorphes.
IV. Étude du cardinal de $Isom(p)$.
13. Endomorphismes de permutation signée.
a. Notons $\alpha = \sigma^{-1}$. Soit $x = \sum_{i=1}^{n} x_i e_i$ un vecteur quelconque de \mathbb{R}^n et $y = u_{\sigma,\varepsilon}(x)$. Il vient : $y = \sum_{i=1}^{n} \varepsilon_i x_i e_{\sigma(i)} = \sum_{j=1}^{n} \varepsilon_{\alpha(j)} x_{\alpha(j)} e_j \text{ donc } y _p^p = \sum_{j=1}^{n} \varepsilon_{\alpha(j)} x_{\alpha(j)} ^p = \sum_{j=1}^{n} x_{\alpha(j)} ^p = \sum_{i=1}^{n} x_i ^p = x _p^p. \Box$
b. $\mathcal{M}\left(u_{\sigma,\varepsilon};(e_1,e_2,e_3,e_4)\right) = \begin{pmatrix} 0 & 0 & -1 & 0\\ 0 & 0 & 0 & 1\\ 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 \end{pmatrix}$

14. Inégalité de Holdër.

a. Si a ou b est nul, l'inégalité est claire. Sinon, en posant $\alpha = a^p$ et $\beta = b^q$, l'inégalité proposée se ramène à établir (par croissance de la fonction exponentielle) que $\frac{1}{p} \ln \alpha + \frac{1}{q} \ln \beta \leqslant \ln \left(\frac{1}{p} \alpha + \frac{1}{q} \beta \right)$. Or cette inégalité découle de la concavité de la fonction logarithme sur $]0, +\infty[$. \square

b. Commençons par remarquer que l'inégalité est évidente si l'un des deux vecteurs est nul. Sinon : Lorsque $\|x\|_p = \|y\|_q = 1$, il vient (d'après la question précédente) : $|\langle x,y \rangle| \leqslant \sum_{i=1}^n \left(\frac{1}{p}|x_i|^p + \frac{1}{q}|y_i|^q\right) = \frac{1}{p}\sum_{i=1}^n |x_i|^p + \frac{1}{q}\sum_{i=1}^n |y_i|^q = \frac{1}{p} + \frac{1}{q} = 1 = \|x\|_p.\|y\|_q$ Dans le cas général, en notant $x' = \frac{1}{\|x\|_p}x$ et $y' = \frac{1}{\|y\|_q}y$, on a d'après le cas précédent $\frac{1}{\|x\|_p\|y\|_q}|\langle x,y \rangle| \leqslant 1$ ce qui établit le résultat. \square

c. Pour p=2, on retrouve l'inégalité de Cauchy-Schwarz. \square

15. On a $u(e_j) = \sum_{i=1}^n a_{i,j} e_i$ et comme u est une p-isométrie, il vient $\sum_{i=1}^n |a_{i,j}|^p = ||u(e_j)||_p^p = ||e_j||_p^p = 1$ \square Donc $\sum_{j=1}^n \left(\sum_{i=1}^n |a_{i,j}|^p\right) = n$. \square

16. Une formule clé de dualité.

a. Soit x fixé dans E. Alors $\varphi_x: y \longmapsto \langle x, y \rangle$ est une forme linéaire sur E de dimension finie donc est continue. Par ailleurs Σ_q est un fermé borné de E muni de la norme p (qui définit bien la topologie nusuelle de E puisque toutes les normes sont équivalentes sur E de dimension finie). Donc Σ_q est un compact de E.

Il en découle que φ_x est bornée sur Σ_q et atteint sa borne supérieure notée Q_x dans la suite.

b. Pour tout $y \in \Sigma_q$ on a, en vertu de l'inégalité de Holdër, $|\langle x, y \rangle| \leq ||x||_p$ donc $Q_x \leq ||x||_p$. Notons que si x=0 naturellement $Q_x=0=\|x\|_p$.

Si $x \neq 0$ alors en notant y défini dans l'énoncé il vient : $1/\|x\|_p^{p-1} \times x_i y_i = \varepsilon_i x_i |x_i|^{p-1} = |x_i|.|x_i|^{p-1} = |x_i|^p$ si $x_i \neq 0$ et cette égalité est encore vraie si $x_i = 0$.

Donc
$$||x||_p^{p-1} \times |\langle x, y \rangle| = \sum_{i=1}^n |x_i|^p = ||x||_p^p$$
 soit encore $|\langle x, y \rangle| = ||x||_p$.

$$2/ \|y\|_q^q = \sum_{i=1}^n |y_i|^q = \sum_{i \in I} |y_i|^q = \|x\|_p^{(1-p)q} \sum_{i \in I} |x_i|^{(p-1)q}$$
en désignant par I l'ensemble non vide des indices i tels que $x_i \neq 0$.

Or
$$(p-1)q = p$$
 donc $||y||_q^q = ||x||_p^{-p} \sum_{i \in I} |x_i|^p = ||x||_p^{-p} \sum_{i = 1}^n |x_i|^p = ||x||_p^{-p} ||x||_p^p = 1$ donc $y \in \Sigma_q$.

Il résulte alors de 1/ et 2/ que $Q_x \geqslant ||x||_p$.

En conclusion finale $Q_x = ||x||_p$ pour tout $x \in E$. \square

17. Soit u une p-isométrie et soit x un vecteur quelconque de E.

Il vient d'après la question précédente en échangeant les rôles de p et q:

$$||u^*(x)||_q = \max_{y \in \Sigma_r} |\langle u^*(x), y \rangle| = \max_{y \in \Sigma_r} |\langle x, u(y) \rangle|$$

 $\|u^*(x)\|_q = \max_{y \in \Sigma_p} |\langle u^*(x), y \rangle| = \max_{y \in \Sigma_p} |\langle x, u(y) \rangle|$ Or comme u est une p-isométrie, on a $u(\Sigma_p) = \Sigma_p$ donc, lorsque y parcourt Σ_p , u(y) parcourt également Σ_p . Ainsi $\|u^*(x)\|_q = \max_{z \in \Sigma_p} |\langle x, z \rangle| = \|x\|_q$. Donc u^* est bien une q-isométrie. \square

La matrice de u^* dans la base canonique (orthonormée pour le produit scalaire canonique $\langle . \rangle$) est tA . La question 15 prouve alors que $\sum_{i=1}^n \left(\sum_{i=1}^n |a_{j,i}|^q\right) = n$. \square

- 18. On suppose dans toute la suite du problème $p \neq 2$ donc $p \neq q$ et par exemple p > q (symétrie des rôles de p et q).
- **a.** Pour tout i on a $\alpha_i^p \leq \alpha_i^q$ (car $\alpha_i \in [0,1]$ et p > q).

Par ailleurs s'il existait i_0 tel que $\alpha_{i_0} \in]0,1[$ on aurait $\alpha_{i_0}^p < \alpha_{i_0}^q$ donc on aurait $\sum_{i=1}^r \alpha_i^p < \sum_{i=1}^r \alpha_i^q$ ce qui est exclu.

- Donc α_k ne peut prendre que 2 valeurs : 0 et 1. \square
- **b.** Nous avons d'après les questions 15 et 17 : $\sum_{j=1}^{n} \left(\sum_{i=1}^{n} |a_{i,j}|^p \right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} |a_{j,i}|^q \right)$ soit $\sum_{1 \leqslant i,j \leqslant n} |a_{i,j}|^p = \sum_{1 \leqslant i,j \leqslant n} |a_{i,j}|^q$ donc les seules valeurs possibles des $|a_{i,j}|$ sont 0 et 1. \square
- **19.** D'après la question 15 on a pour tout $j: \sum_{i=1}^n |a_{i,j}|^p = 1$ et de même en considérant $u^*: \sum_{i=1}^n |a_{i,j}|^q = 1$ pour tout i.

Comme les seules valeurs possibles des $|a_{i,j}|$ sont 0 et 1, il en résulte que dans chaque colonne tous les termes $a_{i,j}$ sont nuls sauf l'un égal à ± 1 . De même pour chaque ligne. Ce qui prouve que les colonnes forment une base $(\varepsilon_1 e_{\sigma(1)}, \varepsilon_2 e_{\sigma(2)}, \dots, \varepsilon_n e_{\sigma(n)})$ avec $\varepsilon_i = \pm 1$ et $\sigma \in \mathcal{P}_n$.

Ainsi toute p-isométrie u est du type $u_{\sigma,\varepsilon}$. Réciproquement toute application de ce type est une p-isométrie d'après la question 13.

Le groupe des p-isométrie pour $p \neq 2$ est donc le groupe des permutations signées de \mathbb{R}^n .

Comme l'application $(\sigma, \varepsilon) \longmapsto u_{\sigma, \varepsilon}$ est injective, son cardinal est $2^n n!$. \square

FIN	