YOLOv11 Architecture Blocks

1. Conv Block

Structure:

Conv → BatchNorm → SiLU

Details:

- Kernel: 3×3 , Stride: 1 or 2
- Stride 2 → Downsampling
- Preserves/increases channel size

Description Purpose in YOLOv11:

- Basic unit of feature extraction
- · Captures low-level textures and edges
- Downsamples early layers to reduce resolution and increase receptive field

□ 2. C3k2 Block (C3 with k=2)

Structure:

- CSP-style split into two paths
- · Main: 2 Bottleneck layers; Shortcut: direct
- Concat → Conv

Details:

- Optional shortcut in bottlenecks
- hidden_channels = expansion × out_channels

☐ Purpose in YOLOv11:

- Balances efficiency and performance
- Reduces redundancy by reusing partial features
- · Maintains rich features with fewer parameters than ResNet blocks

□ 3. SPPF Block (Spatial Pyramid Pooling - Fast)

Structure:

- 3 sequential MaxPool(5×5 , stride=1)
- Concat original + 3 pooled outputs → Conv

Details:

- Captures multi-scale receptive fields
- Efficient alternative to traditional SPP

□ Purpose in YOLOv11:

- Encodes global context into deeper layers
- · Improves object detection at different scales

Helps in dense and cluttered scenes

□ 4. C2PSA Block (Cross Stage + Self-Attention)

Structure:

- 2 branches: one with convolutions + attention, one identity
- Concat → Conv

Details:

- Uses SE or Transformer-style attention
- Enhances feature map selectively

□ Purpose in YOLOv11:

- · Focuses on salient regions in the scene
- Improves detection of small and occluded objects
- Boosts feature expressiveness before detection head

5. nn.Upsample

Structure:

- No parameters, uses interpolation
- Nearest-neighbor by default

Details:

Upscales features (e.g. 40×40 → 80×80)

Purpose in YOLOv11:

- Facilitates feature fusion in FPN/Neck
- · Combines coarse and fine resolution info
- Improves small object detection

■ 6. Concat

Structure:

Merges feature maps along channel dimension

Details:

Used in Neck: combines upsampled and skip features

☐ Purpose in YOLOv11:

- Preserves both low-level and high-level features
- Strengthens semantic flow through layers
- Enhances precision in object boundaries

7. Detect Layer

Structure:

- Receives 3 feature maps: P3/8, P4/16, P5/32
- Each → 1×1 Conv → Prediction tensor
- Prediction shape: anchors × (x, y, w, h, obj, classes)

Details:

- Multi-scale detection output
- · Anchor-based or anchor-free

Description Purpose in YOLOv11:

- · Outputs final bounding boxes and class scores
- · Handles objects of different scales efficiently
- · Crucial layer for prediction inference

Additional Notes

- Output size, kernel size, stride Syntax of arg type1
- Output channels, shortcut, expansion Syntax of type2