Wrap-up Report

팀 명 : 미니배치28 🔑 프로젝트 : Mask 착용 상태 분류하기

팀 소개 : 현재 최선의 선택을 하는 미니배치28 📅 기간 : 2021.08.23 ~ 2021.09.03 (12 일)

1. 프로젝트 개요

1-1 Background (체크)

- 바이러스 확산으로 인한 세계적으로 생산적 활동에 제약
- 비말을 통한 호흡기 감염으로 전염력 큼

1-2 Needs

• 인적자원 Loss를 최소화 하기 위한 Mask 착용여부를 가려내는 System 구축 필요

1-3 Task

- 사람 얼굴 이미지 18 classes multi-label classification (마스크 착용 여부, 성별, 나이)
- 평가 기준 : 18개 Class에 대한 F1 Score

1-4 교육 내용과의 관련성

• 이미지 분류 딥러닝 모델의 성능, 훈련 과정, 최적화 방법 확인, 머신러닝 엔지니어링 역량 강화

1-5 활용 장비 및 재료(개발 환경 등)

• Al Stage server (GPU V100), wandb(log 기록), Github(코드 공유), slack & zoom(소통)

2. 프로젝트 팀 구성 및 역할

공통 역할 : 각자 개발한 모델 시뮬레이션, 개선 방법 공유 및 토론, 모델 ensemble

3. 프로젝트 수행 절차 및 방법

3-1 프로젝트의 사전 기획

- Imagenet SOTA 모델 사전 조사 및 공유 (Parameter 수 고려)
- 이미지 분류 방법론 & 아이디어 탐색

3-2 프로젝트 수행 (21.08.23 ~ 21.09.01)

- EDA에 기반한 데이터 전처리
- 모델 개발 및 성능 비교
- 개발 현황 공유
- 적용할 만한 기법 공유 → 외부 데이터, Augmentation, Hyperparameter 탐색, Ensemble, Test Time Augmentation

3-3 완료 과정 (21.09.02 ~ 21.09.03)

- 개발한 모델들 중 성능이 높은 모델들로 Ensemble 진행
- Github에 팀 소스 코드 병합 및 모듈화
- 프로젝트 문서화 및 README 파일 작성

Wrap-up Report 1

4. 프로젝트 수행 결과

4-1 탐색적 분석 및 전처리 (학습데이터 소개)

전체 데이터셋

- 전체 사진 : 31,500장 (4,500 명 × 7장)
 - 한 사람당 사진 구성 : 7장 [마스크 착용 5장, 오착용(코스크, 턱스크) 1장, 미착용 1장], 384 x 512 사진
- 학습, 평가 데이터셋은 전체 데이터셋의 각 60%(2,700명), 40%(1,800명) (평가 데이터셋 public, private 1:1, private 기준으로 최종 순위 결정)

분석 및 전처리

• 데이터 불균형 확인 → 훈련 데이터셋 18900장 중 60대 이상은 3052장 (약 16%)으로 비중이 작음

- 데이터 노이즈 발견 및 변경(ref. <u>AI stage 토론게시판</u>) → 8명 gender labeling error, 3명 mask labeling error
- 이미지 배경의 특이성 발견 → 다수의 60대 이상 이미지 배경에 붉은 글자 확인

4-2 모델 개요

EfficientNet

Compound scaling : 모델의 Length(레이어 깊이), Width(Feature 채널), Resolution을 확장

Inverted bottle neck (mobilenet v2) : Bottle neck에 Residual connection 적용

Separable convolution : Depth wise, Point wise convolution

4-3 모델 선정 및 분석

Soft-voting Ensemble (Model Weight : 모델1 imes0.9, 모델2, 모델3, 모델4, 모델5)

Ensemble Model

Aa 구분	■ 모델1	≡ 모델2	■ 모델3	≡ 모델4	≡ 모델5
Model	EfficientNet-b8	EfficientNet-b7	EfficientNet-b5	EfficientNet-b4	EfficientNet-b4
<u>Train</u> dataset	Train : Val = 8 : 2 방식 : 사람 기준으로 선 구분 후 Mask 상 태별 추가 구분	Train : Val = 8 : 2 방식 : 사람 기준으로 선 구분 후 Mask 상 태별 추가 구분	Train : Val = 8 : 2 방식 : 사람 기준으로 선 구분 후 Mask 상 태별 추가 구분	Train : Val = 8 : 2 방식 : 랜덤 Sampling	Train : Val = 8 : 2 방식 : 사람 기준으로 선 구분 후 Mask 상 태별 추가 구분
loss	Focal Loss	Weighted Cross Entropy	F1-Loss	Cross Entropy	Cross Entropy
<u>Optimizer</u>	AdamW	AdamW	Adam	Adam	Adam
<u>Learning</u> <u>Rate</u>	StepLR 3e-5 * gamma(0.3) per 3 epochs	StepLR 3e-5 * gamma(0.3) per 2 epochs	StepLR 2e-5 * gamma(0.85) per 1epoch	1e-4	1e-4
Batch Size	20	7	16	32	32
<u>Epoch</u>	11	15	8	15	7
Ensemble weight	0.9	1	1	1	1
Transform	Face Crop 2. Albumentation (Resize(336,336), GaussNoise, MotionBlur, MedianBlur, Blur, ShiftScaleRotate, OpticalDistortion, GridDistortion, Sharpen, Emboss, RandomBrightnessContrast, HueSaturationValue, Cutout, Normalize)	1. Albumentation (Resize(600,600), HorizontalFlip, ShiftScaleRotate, RandomBrightnessContrast, HorizontalFlip, MotionBlur, OpticalDistortion, GaussNoise, Normalize)	1. Cutmix(세로) 2. Face Crop 3. Albumentation (Resize(456, 456), HorizontalFilip, ShiftScaleRotate, RandomBrightnessContrast, GaussNoise, MotionBlur, OpticalDistortion)	Albumentation (RandomBrightnessContrast, GaussNoise)	Albumentation (RandomBrightnessContrast, GaussNoise)
Untitled					

Wrap-up Report 2

4-4 모델 평가 및 개선

평가방법

Stratified Validation set으로 제출 모델 선정, 제출 후 test 성능 확인

개선사항

Class 구분에 방해되는 데이터 노이즈 제거(배경에 반복되는 문자 등) → Facecrop 활용하여 입력 이미지 배경 최소화 데이터 불균형에 대한 문제 해결 필요 → Model 훈련 시 Class 별 가중치 적용, (58세, 59세)를 60대에 포함시켜 60대 데이터가 무시되는 것을 방지 Epoch별로 confusion matrix를 출력해보며 현재 모델이 class별로 얼마나 학습이 잘 되어가는지 파악

4-5 시연 결과

- 제출 모델로 왼쪽 이미지들을 판별한 결과, 성별, 마스크 착용 여부를 정확히 구분하였다.
- HYH, MRC는 30대인데 30대 미만 그룹으로 분류하였음. (동안인 것으로 판단됨)

5. 자체 평가 의견

5-1 잘한 점들

- 개개인의 시뮬레이션으로 많은 모델을 시도하여 프로젝트 초기에 잘 동작하는 모델 발견
- Validation set 통일로 submission 없이 자체적인 성능 평가가 가능
- 전체 팀원들 WandB 사용을 통한 기록에 대한 비교 및 feedback
- 다양한 Ensemble 방법 시도

5-2 시도 했으나 잘 되지 않았던 것들

- TTA, Pseudo Labeling, 추가 외부 데이터 적용 → 다양한 크기의 추가 데이터 전처리 통일 및 기존 파이프 라인에 불완전한 적용
- 마스크, 나이, 성별을 따로 예측하는 모델의 성능을 많이 끌어올리지 못함 (라벨이 3, 3, 2개로 나눠지기 때문에 cutmix와 같은 라벨링이 고려되는 augmentation 적용이 까다로웠음)

5-3 아쉬웠던 점들

- ensemble에 적용할 추가적인 고득점 모델 재구현 실패
- 초기 시뮬레이션과 baseline 코드로 모듈화 했을 때의 구현 차이를 일치시키지 못함 → 실험 시작 전에 코드 테스트 수행의 필요
- Augmentation, Loss, Learning rate, Batch size, 전처리 이미지 해상도 등의 하이퍼 파라미터들의 개별적인 효과 검증의 부재 → **데이터셋 파이프 라인, 모델** 훈련, 성능 검증의 반복 가능한 구현, 체계적인 실험의 필요
- Ensemble 미세조정으로 인한 테스트 데이터(public) 오버피팅 \rightarrow 제출 모델 선정시 Generalization 고려할 것

Wrap-up Report 3