Лекция 7

Некоторые решения задач из лекции 6.

Задача 2. Найдите все неприводимые представления группы D_7 , составьте таблицу характеров. Для каждого неприводимого представления задайте его указав матрицы соответствующие образующим группы D_7

Решение. В группе D_7 всего 5 классов сопряженности, значит должно быть 5 неприводимых представлений. Сумма квадратов их размерностей должна быть равна 14, значит, это два одномерных и одно двумерное представления. В одномерных представлениях коммутант D_7 , т.е. C_7 должен переходить в 1. Таким образом, одномерное представление задается образом отражения s, так как $s^2 = e$, то образ s равен 1 или -1. Первое из этих представлений это тривиальное представление, второе это знаковое, в котором движения сохраняющие ориентацию переходят в 1, а меняющие ориентацию в -1.

Двумерные представлению задаются образами s, r:

$$r \mapsto \begin{pmatrix} \cos(2k\pi/7) & -\sin(2k\pi/7) \\ \sin(2k\pi/7) & \cos(2k\pi/7) \end{pmatrix}, \quad s \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

где $1 \le k \le 3$. То, что это действительно представления следует из того, что будут выполнятся соотношения у группе D_7 : $r^7 = s^2 = (rs)^2 = e$. Таблица характеров имеет:

	e	$r^{\pm 1}$	$r^{\pm 2}$	$r^{\pm 2}$	sr^b
$\chi^{(1)}$	1	1	1	1	1
$\chi^{(2)}$	1	1	1	1	-1
$\chi^{(3)}$	2	$2\cos(2\pi/7)$	$2\cos(4\pi/7)$	$2\cos(6\pi/7)$	0
$\chi^{(3)}$	2	$2\cos(4\pi/7)$	$2\cos(6\pi/7)$	$2\cos(2\pi/7)$	0
$\chi^{(3)}$	2	$2\cos(6\pi/7)$	$2\cos(2\pi/7)$	$2\cos(4\pi/7)$	0

Можно еще для полноты картины проверить соотношения ортогональности для характеров. Если выразить косинусы через експоненты, то проверка сводится к тождеству

$$1 + \epsilon + \ldots + \epsilon^6 = \frac{\epsilon^7 - 1}{\epsilon - 1} = 0, \tag{1}$$

где $\epsilon = \exp(2\pi/7)$.

Замечание. Аналогично описываются неприводимые представления D_n при любом нечетном n.

Задача 4 (Второе соотношение ортогональности для характеров). Докажите, что для любых двух классов сопряженности C_i, C_j , где $1 \le i, j \le k$ верно:

$$\sum_{\alpha=1}^{k} \chi^{(\alpha)}(h_i) \overline{\chi^{(\alpha)}(h_j)} = \delta_{i,j} \frac{|G|}{|C_i|}$$

Указание: используйте, то что матрица характеров является матрицей переход от одного ортонормированного базиса $\chi^{(i)}$, к другому ортогональному базису γ_i , поэтому после некоторого домножения столбцов должна стать унитарной, а значит ее столбцы будут попарно ортогональны.

Доказательство. Реализуем план из указания при помощи прямого вычисления. Напомним, что через γ_i мы обозначаем функции равные 1 на классе сопряженности C_i и нулю иначе. Тогда γ_i можно разложить по базису $\chi^{(\alpha)}$ и коэффициенты разложения будут равны

$$\langle \chi^{(\alpha)}, \gamma_i \rangle = \frac{|C_i|}{|G|} \chi^{(\alpha)}(h_i), \qquad \gamma_i = \sum_{\alpha} \frac{|C_i|}{|G|} \chi^{(\alpha)}(h_i) \chi^{(\alpha)}.$$

Найдем скалярные произведения γ_i . С одной стороны, прямо по определению имеем $\langle \gamma_i, \gamma_j \rangle = \delta_{i,j} |C_i| / |G|$. С другой стороны из разложения по характерам неприводимых следует, что

$$\langle \gamma_i, \gamma_j \rangle = \sum_{\alpha} \chi^{(\alpha)}(h_i) \overline{\chi^{(\alpha)}(h_j)}$$

Отсюда и следует утверждение задачи.

Замечание. Это доказательство использовало свойство полноты — то, что характеры образуют ортонормированный базис. Поэтому это соотношение ортогональности иногда называют *соотношением полноты*.

Разные конструкции. Группа SO(2)

Обсудим еще две конструкции из теории представлений.

Определение 1. Пусть $\rho: G \to GL(V)$ и $\rho': G' \to GL(V')$ два представления. Их тензорным произведением $\rho \boxtimes \rho'$ называется представление группы $G \times G'$ в пространстве $V \otimes V'$ определенное по формуле $(g, g') \mapsto (\rho(g) \otimes \rho'(g'))$.

Не надо путать с тензорным произведением представлений \otimes которое было на прошлой лекции — там мы по двум представлениям группы G строили опять представление группы G, а тут по представлениям двух разных групп G, G' строим представление их произведения $G \times G'$.

Пример. Пусть $G = G' = C_2$. Представления $\rho = \rho'$ заданы матрицами $e \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$,

 $\sigma \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Тогда представление $\rho \boxtimes \rho'$ задается матрицами:

$$(e,e) \mapsto \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ (e,\sigma) \mapsto \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \ (\sigma,e) \mapsto \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \ (\sigma,\sigma) \mapsto \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Легко видеть, что это получилось регулярное предствление группы $C_2 \times C_2$.

Так как $\operatorname{Tr}(A \otimes B) = \operatorname{Tr} A \cdot \operatorname{Tr} B$, то $\chi_{\rho \boxtimes \rho'}(g,g') = \chi_{\rho}(g)\chi_{\rho'}(g')$. Найдем скалярное произведение:

$$\langle \chi_{\rho_1 \boxtimes \rho'_1}, \chi_{\rho_2 \boxtimes \rho'_2} \rangle = \frac{1}{|G \times G'|} \sum_{g \in G, g' \in G'} \chi_{\rho_1}(g) \chi_{\rho'_1}(g') \overline{\chi_{\rho_2}(g)} \chi_{\rho'_2}(g') =$$

$$= \left(\frac{1}{|G|} \sum_{g \in G} \chi_{\rho_1}(g) \overline{\chi_{\rho_2}(g)} \right) \left(\frac{1}{|G'|} \sum_{g' \in G'} \chi_{\rho'_1}(g') \overline{\chi_{\rho'_2}(g')} \right) = \langle \chi_{\rho_1}, \chi_{\rho_2} \rangle \langle \chi_{\rho'_1}, \chi_{\rho'_2} \rangle \quad (2)$$

Теорема 1. а) Если ρ и ρ' неприводимые представления групп G и G', то $\rho \boxtimes \rho'$ — неприводимое представление группы $G \times G'$. б) Все неприводимые представления группы $G \times G'$ получаются таким способом.

Доказательство. а) Из формулы (2) следует, что $\langle \chi_{\rho \boxtimes \rho'}, \chi_{\rho \boxtimes \rho'} \rangle = 1$. Как мы показывали на прошлой лекции из этого следует неприводимость представления $\rho \boxtimes \rho'$.

б) Пусть k (соответственно k') — число классов сопряженности группы G (соответственно G'). Мы знаем, что число классов сопряженности (а, значит, и число неприводимых представлений) группы $G \times G'$ равно $k \cdot k'$. Если (ρ_1, ρ_1') и (ρ_2, ρ_2') разные пары неприводимых представлений, то из формулы (2) следует, что характеры $\chi_{\rho_1 \boxtimes \rho_1'}$ и $\chi_{\rho_2 \boxtimes \rho_2'}$ ортогональны. Таким образом беря тензорные произведения неприводимых представлений G, G' мы получим $k \cdot k'$ различных неприводимых представлений $G \times G'$, что и требовалось доказать.

Определение 2. Пусть заданы H — подгруппа в G и представление $\rho \colon G \to GL(V)$. Тогда ρ задает представление группы H в пространстве V, оно называется ограничением представления ρ на подгруппу H.

Пример. Рассмотрим подгруппы $A_3 \subset S_3$, ясно что $A_3 \simeq C_3$. Таблица характеров S_3 приведена на рисунке слева.

При ограничении на C_3 представления χ_1 и χ_2 совпадут, а представление χ_3 окажется приводимым: $\chi_3 = \tilde{\chi}_4 + \tilde{\chi}_5$. Соответствующая таблица характеров C_3 приведена на рисунке справа, $\epsilon = e^{\frac{2\pi i}{3}}$.

	e	$(1,2)^{-3}$	$(1,2,3)^{-2}$
χ_1	1	1	1
χ_2	1	-1	1
χ_3	2	0	-1

	e	(1, 2, 3)	(1, 3, 2)
χ_1	1	1	1
χ_3	2	-1	-1
$\tilde{\chi_4}$	1	ϵ	ϵ^2
$ ilde{\chi_5}$	1	ϵ^2	ϵ

Обсудим теперь представления абелевых групп. Пусть $G = C_N$. Все неприводимые представления одномерны, и мы их уже обсуждали ранее, таблица характеров имеет вид:

	e	r	r^2	 r^N
R_0	1	1	1	 1
R_1	1	ϵ	ϵ^2	 ϵ^{N-1}
R_2	1	ϵ^2	ϵ^4	 ϵ^{2N-2}
R_{N-1}	1	ϵ^{N-1}	ϵ^{2N-2}	 ϵ^1

где $\epsilon = \exp(2\pi i/N)$. Можно сказать, что представление R_j переводит r^p в ϵ^{pj} .

Можно проверить соотношения ортогональности, например между характерами представлений R_i и R_k . Проверка сводится к тождеству

$$\frac{1}{N} \sum_{n=0}^{N-1} \overline{\chi^{(j)}(r^n)} \chi^{(k)}(r^n) = \frac{1}{N} \sum_{n=0}^{N-1} \exp\left(\frac{2\pi i}{N}(k-j)\right)^n = \delta_{k,j}.$$

Последнее равенство очевидно при j=k так как мы складываем одни единицы, а при $j\neq k$ следует из формулы суммы геометрической прогрессии (подобно тождеству (1) выше).

Заметим кстати, что из этой проверки видно зачем нужно комплексное сопряжение в формуле для скалярного произведения, иначе не получится ортонормированности.

Аналогично можно проверить соотношение полноты (второе соотношение ортогональности), оно записывается таким образом

$$\frac{1}{N} \sum_{i=0}^{N-1} \chi^{(j)}(r^n) \overline{\chi^{(j)}(r^m)} = \frac{1}{N} \sum_{i=0}^{N-1} \exp\left(\frac{2\pi i}{N}(n-m)\right)^j = \delta_{n,m}$$

Пространство Θ — это пространство всех функций на группе, так как группа абелева. То есть для любого $n=0,\ldots N-1$ у нас есть число $f(r^n)$. Удобно не ограничиваться конечным набором значений n, а рассматривать все целые n, наложив условие периодичности, то есть $\Theta=\{f\colon \mathbb{Z}\to \mathbb{C}|f(x+N)=f(x)\}.$

Пользуясь полнотой можно написать

$$f(n) = \sum_{m=0}^{N-1} f(m)\delta_{n,m} = \sum_{m=0}^{N-1} f(m)\frac{1}{N} \sum_{j=0}^{N-1} \chi^{(j)}(r^n) \overline{\chi^{(j)}(r^m)} = \sum_{m=0}^{N-1} c_j e^{\frac{2\pi i}{N}nj},$$

где $c_j = \frac{1}{N} \sum_{m=0}^{N-1} f(m) \overline{\chi^{(j)}(r^m)}$. Такие формулы для разложения называются дискретным преобразованием Фурье. Мы к ним пришли рассматривая теорию представлений группы C_N .

Если G не циклическая, а произведение циклических $G \simeq C_{n_1} \times C_{n_2}$, то ее представления строятся по предложению выше $R_{j_1,j_2} = R_{j_1} \boxtimes R_{j_2}$; в таком представлении общий элемент $(r^{m_1},r^{m_2}) \in G$ переходит в $\exp(\frac{2\pi i}{n_1}m_1j_1 + \frac{2\pi i}{n_2}m_2j_2)$.

Рассмотрим теперь первый пример бесконечной (непрерывной группы). Через SO(2) мы обозначим группу ортогональных преобразований плоскости с определителем 1 (O от слова Orthogonal, S от слова Special). Геометрически элементы группы SO(2) — это повороты на углы $0 \le \alpha < 2\pi$, матрица имеет вид

$$R(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.$$

Сопоставление $\alpha\mapsto R(\alpha)$ задает изоморфизм между группами $\mathbb{R}/2\pi\mathbb{Z}$ и группой SO(2).

Есть еще одно описание этой же группы. А именно, обозначим через U(n) множество унитарных матриц размера $n \times n$ (U от слова Unitary). Тогда U(1) состоит из комплексных чисел по модулю равных 1, их можно записать в виде $\exp(2\pi i\alpha)$. Ясно, что это та же самая группа.

Будем искать представления группы U(1). То есть мы хотим найти набор матриц $T(\alpha)$ таких, что $T(\alpha+\beta)=T(\alpha)T(\beta)$ и $T(2\pi)=1$. При этом мы будем рассматривать только гладкие представления, то есть такие, что все матричные элементы $T(\alpha)$ будут гладкими функциями от α .

Взяв производную равенства $T(\alpha+\beta)=T(\alpha)T(\beta)$ по β при $\beta=0$ получаем дифференциальное уравнение

$$T'(\alpha) = T(\alpha)T'(0).$$

Это линейное дифференциально уравнение, его общее решение имеет вид $T(\alpha) = C \exp(\alpha A)$, где A = T'(0), C константа интегрирования. Из условий $T(0) = T(2\pi) = 1$ следует, что C = 1 и матрица A диагональная с собственными значениями вида ik, $k \in \mathbb{Z}$. Представление таким образом, разлагается в прямую сумму одномерных, соответствующих собственным векторам матрицы A.

Таким образом неприводимые представления параметризуются собственными значениями ik матрицы A, характер соответствующего представления равен:

$$\chi^{(k)}(\alpha) = \exp(ik\alpha).$$

Проверим соотношения ортогональности для характеров. Сумму по элементам группы естественно заменить интегралом $\int_0^{2\pi} d\alpha$, |G| заменяется на интеграл 1 (объем группы), то есть на 2π . Соотношения ортогональности принимают вид

$$\langle \chi^{(k)}, \chi^{(j)} \rangle = \frac{1}{2\pi} \int_0^{2\pi} \exp(i\alpha(k-j)) d\alpha = \delta_{j,k}.$$

Соотношение полноты тогда принимает вид

$$\sum_{k \in \mathbb{Z}} \chi^{(k)}(\alpha) \overline{\chi^{(k)}(\beta)} = \delta_{2\pi}(\alpha - \beta),$$

где $\delta_{2\pi}(\alpha)$ это дельта функция на окружности, т.е. такая обобщенная функция, что $\int_0^{2\pi} f(\beta) \delta_{2\pi}(\beta - \alpha) d\beta = f(\alpha)$, для любой 2π периодической функции f. Соотношение полноты можно переписать явно

$$\sum_{k \in \mathbb{Z}} e^{ik\alpha} = 2\pi \sum_{n \in \mathbb{Z}} \delta(\alpha - 2n\pi) = 2\pi \delta_{2\pi}(\alpha).$$

Это формула верна и называется формулой суммирования Пуассона. Здесь $\delta(x)$ это дельта функция Дирака.

Пространство Θ функций на группе можно отождествить с пространством периодических функций $\Theta = \{f \colon \mathbb{R} \to \mathbb{C} | f(x+2\pi) = f(x)$. Используя формулу полноты или теоремы из математического анализа, получаем, что f(z) принимает вид

$$f(\alpha) = \int_0^{2\pi} f(\beta) \delta_{2\pi}(\beta - \alpha) d\beta = \int_0^{2\pi} f(\beta) \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} e^{i\alpha k} e^{-i\beta k} d\beta = \sum_{k \in \mathbb{Z}} c_k e^{i\alpha k},$$

где $c_k = \frac{1}{2\pi} \int_0^{2\pi} f(\beta) \overline{\chi^{(k)}(\beta)} d\beta$. То есть функция f разлагается в ряд Фурье.

Домашнее задание

Решения задач 1-3 надо прислать или принести до начала лекции 4 апреля. Решения задач 4-6 надо прислать или принести до начала лекции 11 апреля. Помимо письменной сдачи надо быть готовым ответить на вопросы по решениям.

Упражнение 1. * Пусть A — матрица состоящая из одного жорданова блока размера $n \times n, \ n > 1$ с собственным значением $\lambda \in \mathbb{C}$. Докажите, что матрица $\exp(\alpha A)$ не будет диагональной при любом $\alpha \in \mathbb{C}, \ \alpha \neq 0$. Докажите, что при $\lambda \neq 0$ матрица A^k не будет диагональной при любом любых $k \in \mathbb{N}$.

Задача 2. а) Напишите таблицу характеров группы D_6 .

б) Скольку существует неприводимых двумерных представлений у группы движений призмы D_{6h} ? Найдите их характеры.

$$\sum_{n\in\mathbb{Z}} f(n) = \sum_{k\in\mathbb{Z}} \hat{f}(k),$$

для любой достаточно гладкой и убывающей на бесконечности функции $f,\ \hat{f}$ обозначает преобразование Фурье. Теперь заметим, что это равенство можно написать для обобщенных функци, обобщенная функция $\delta(x-n)$ примененная к f дает f(n), применение функции $\delta(x-k)$ к \hat{f} равносильно умножению на $e^{2\pi i k x}$. Итого имеем равенство обобщенных функций (мы тут делаем замену переменной)

$$\sum_{n \in \mathbb{Z}} \delta(x - 2\pi n) = \sum_{k \in \mathbb{Z}} e^{ikx}$$

У нас функции периодические, поэтому слева стоит просто одна δ функция.

¹Обычно формулу суммирования Пуассона пишут в виде

Задача 3. Найдите матрицу характеров неприводимых представлений группы A_4 . Опишите разложение ограничений неприводимых представлений S_4 на A_4 . Указание: помимо ограничения представлений S_4 , используйте умение описывать одномерные представления.

Задача 4. а) Докажите, что порядок группы вращений додекаэдра G_0 равен 60.

- б) Найдите порядки элементов этой группы, опишите эти вращения геометрически.
- в) Докажите, что G_0 изоморфна группе четных перестановок A_5 .

Указание: разбейте вершины додекаэдра на 5 тетраэдров, так чтобы группа G_0 действовала на этом множестве из 5 элементов.

- г) Докажите, что группа всех симметрий додекаэдра G изоморфна одной из групп S_5 или $C_2 \times A_5$.
- д) Докажите, что группы S_5 и $C_2 \times A_5$ не изоморфны.

Додекаэдр

Развертка

Задача 5. Разложите пятимерное перестановочное (мономиальное) представление группы S_5 в прямую сумму двух неприводимых.

Указание: разложение устроено аналогично разложению перестановочного представления для группы S_3 . Неприводимость можно доказывать или посчитав скалярный квадрат характера или по определению. Во втором способе можно взять произвольный вектор $x = \sum x_i e_i$, $\sum x_i = 0$ и действуя на него S_5 и беря линейные комбинации получить все вектора вида $e_1 - e_j$ т.е. получить базис подпредставления.

Задача 6. * а) Найдите классы сопряженности в группе A_5 . Указание: удобно использовать геометрическое описание как вращения додекаэдра.

- б) Найдите три различных неприводимых представления группы A_5 .
- в) Найдите таблицу характеров A_5 .