HW4

Li Haolun 2022011545

December 20, 2023

1. $\Pi(s)=8s-c(s)=2s^2-8s+18\leq \Pi(2)=10$, so he'll fix 2 cars per week.

2. (a)
$$\mathrm{MC}(y) = 2y$$
 , $\mathrm{AVC}(y) = y$, $\mathrm{ATC}(y) = y + \frac{10}{y}$.

(b)
$$p_{min} = ATC(y)_{min} = 2\sqrt{10}$$
.

3. The expected cost of each bird on the fine is $\$1,000 \times 0.1 = \100 .

So the expected cost per bird is $$40 \times 2 + $100 = 180 .

Since the market is competitive, the price of bird is \$180.

4. Average cost for each firm is $y + \frac{4}{y}$.

In long run, the price should be equal to the minimum AC, which is 4.

Assume there's N firms in the market, then the equilibrium quantity is 2N.

According to the demand curve, 2N = D(4) = 50 - 4 = 46, so N = 23.

- 5.1 a) $s = 4T + 0 = 80 \Rightarrow T = 20$.
 - b) Cost of teaching to raise one point: $\frac{\omega_T}{4}$, cost of encouragement to raise one point: ω_e . So if $\omega_T > 4\omega_e$, encouragement is cheaper, otherwise teaching is cheaper.

c)

$$c(\omega_T, \omega_e; s) = \begin{cases} \omega_e \cdot s & \text{if } \omega_T > 4\omega_e \\ \omega_T \cdot \frac{s}{4} & \text{if } \omega_T \le 4\omega_e \end{cases}$$

d)

$$e(\omega_T, \omega_e; s) = \begin{cases} s & \text{if } \omega_T > 4\omega_e \\ 0 & \text{if } \omega_T \le 4\omega_e \end{cases}$$

5.2 e) $s_i = 2\sqrt{T} + \sqrt{e_i} = 2\sqrt{T} + \sqrt{h-T}$ $\Rightarrow \frac{\partial s_i}{\partial T} = \frac{1}{\sqrt{T}} - \frac{1}{2\sqrt{h-T}} = 0$ $\Rightarrow T = \frac{4}{5}h , e_i = \frac{1}{5}h .$

$$S = \sum_{i=1}^{n} s_i$$

$$= 2n\sqrt{T} + \sum_{i=1}^{n} \sqrt{e_i}$$

$$= 2n\sqrt{T} + \sqrt{nh - nT}$$
 consider all students are equivalent

$$\Rightarrow \frac{\partial S}{\partial T} = \frac{n}{\sqrt{T}} - \frac{n}{2\sqrt{nh - nT}} = 0$$
$$\Rightarrow T = \frac{4n}{4n + 1}h , e_i = \frac{1}{4n + 1}h .$$

- g) The more students, the less time spent on encouragement.
- 5.3 h) The larger A_i , the more time spent on this student's encouragement. If his compensation is determined by the top-performing students in the class, he'll spend more time on the top-performing student's encouragement.

If it's determined by the lowest score, he'll spend more time on the bottom-performing student's encouragement.

6 (a) y is the quantity of good the monopolist produce, q_l is the quantity of labor the monopolist use, ω is the labor's wage, and suppose one unit of labor produce k units of production .

Assume the demand curve is $D(p) = D_0 - p$.

$$MC(y) = \frac{k}{\omega}$$

- $MC(y) = \frac{k}{\omega}$ (b) $MR(y) = D_0 2y$.
- (c) $y^* = \frac{D_0 \frac{k}{\omega}}{2}$, $p^* = \frac{D_0 + \frac{k}{\omega}}{2}$.
- (d) $\omega = n \times kp^* = \frac{kD_0 + \frac{k^2}{\omega}}{2}$.