swing up

()

•

ı

(object & human transporter vehicle)

.

١

swing up

DC

swing up (incremental)

MATLAB/SIMULINK/RTW

Advantech data acquisition

. D/A DC

•

·

 $.\left(\mathbf{q}_{2}=\mathbf{\phi}\right) \tag{} \mathbf{q}_{1}=\mathbf{\theta}\left)$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} + \frac{\partial U}{\partial q_i} = Q_i \tag{)}$$

,T , ,U ,

$$U = (m + \frac{1}{2}m_p)gl\cos\theta$$
 ()

$$T = \frac{1}{2} (MR'^2 + J_A + J_c + J_H + K_g^2 J_r) \dot{\phi}^2 + \frac{1}{2} ((R^2 + \frac{1}{3} l_p^2 \sin^2 \theta) \dot{\phi}^2 + R l_p \dot{\theta} \dot{\phi} \cos \theta + \frac{1}{3} l_p^2 \dot{\theta}^2)$$
 ()

 $\alpha \cos \theta \ddot{\phi} + \beta \ddot{\theta} - \beta \sin \theta \cos \theta \dot{\phi}^2 + \gamma \sin \theta = 0 \tag{}$

$$(\beta \sin^2 \theta + \lambda)\ddot{\phi} + \alpha \cos \theta \ddot{\theta} + 2\beta \sin \theta \cos \theta \dot{\phi} - \alpha \sin \theta \dot{\theta}^2 = K_g K_m i \tag{}$$

$$\dot{i} = \left(\frac{V - Ri - K_g K_m \dot{\phi}}{L}\right) \tag{)}$$

:

Notation	Description	Value
m		0 kg
M		0.24 kg
m _p		0.045 kg
m _A		0.095 kg
l_p		0.55 m
$l_{\rm A}$		0.4 m
R	m	0.155 m
R'	M	0.325 m
r _{pi}		0.004 m
r _{po}		0.005 m
r _{Ai}		0.006 m
r _{Ao}		0.008 m
J_p		0.0045 kg.m^2
J _A		0.0022 kg.m^2
$J_{_{ m H}}$		0.00007 kg.m^2
J_r		0.00018 kg.m^2
i		-
R_{Ω}		1.5 ohm
L		306 mH
K _m		0.055 N.m/A
K _g		55

$$\alpha = mRl_p + \frac{1}{2}m_pRl_p \tag{)}$$

$$\beta = ml_p^2 + J_p \tag{)}$$

$$\gamma = (m + \frac{1}{2}m_p)gl_p \tag{)}$$

$$\lambda = (m + m_p)R^2 + MR'^2 + J_A$$
 ()

Swing up

. swing up

.

. () θ . () θ .

. () $\dot{\theta}$ () θ

() 0

 $() \qquad () \qquad \dot{\theta} \qquad () \qquad \theta$

() ė () e

swing up

.

(model-based)

(knowledge-based)

.

•

Takagi Sugeno(TS)

TS

$$\dot{x}(t) = A_i x(t) + B_i u(t) \hspace{1cm} M_{ip} \hspace{1cm} z_p(t) \hspace{1cm} ... \hspace{1cm} M_{i1} \hspace{1cm} z_1(t) \label{eq:continuous}$$

 $z_1(t), ..., z_p(t)$

$$\boldsymbol{B}_{i} - \boldsymbol{A}_{i}$$
 .. , \boldsymbol{M}_{ij}

 $\dot{x}(t) = \sum_{i=1}^{r} h_i(z(t))(A_i x(t) + B_i u(t))$ ()

$$z(t)=[z_1(t) z_2(t) ... z_p(t)]$$

$$h_{i}(z(t)) = \frac{\prod_{j=1}^{p} M_{ij}(z_{j}(t))}{\sum_{k=1}^{r} \prod_{j=1}^{p} M_{ij}(z_{j}(t))}$$
()

$$\sum_{i=1}^{r} h_i(z(t)) = 1, \ h_i(z(t)) \in [0,1] \ \text{for } i = 1, 2, ..., r.$$

θ

sector nonlinearity

Dymola Modelica

 $\theta = 30^{\circ} \qquad . \qquad .$

Dymola

Dymola

٨

TS

$$u(t) = -F_i x(t) \hspace{1cm} M_{ip} \hspace{1cm} z_p(t) \hspace{1cm} ... \hspace{1cm} M_{i1} \hspace{1cm} z_l(t) \label{eq:equation_eq}$$

$$u(t) = -\sum_{i=1}^{r} h_i(z(t)) F_i x(t), \qquad (15)$$

. $\theta \hspace{3.1cm} F_i; i=1,\dots,r$

. LQR

. •

-

•

.

$$\dot{\hat{x}}(t) = A_i \hat{x}(t) + B_i u(t) + K_i (y(t) - \hat{y}(t)) \qquad \quad M_{ip} \qquad z_p(t) \quad ... \quad M_{i1} \qquad z_1(t) \label{eq:continuous}$$

$$\dot{\hat{x}}(t) = \sum_{i=1}^{r} h_i(z(t)) (A_i \hat{x}(t) + B_i u(t) + K_i(y(t) - \hat{y}(t)))$$
 ()

separation

LMI P

$$G_{ii}^{\mathsf{T}} P + PG_{ii} < 0 \tag{}$$

$$\left(\frac{G_{ij} + G_{ji}}{2}\right)^{T} P + P\left(\frac{G_{ij} + G_{ji}}{2}\right) < 0 \quad i < j \text{ s.t. } h_{i}(z(t)) \times h_{j}(z(t)) \neq 0 \text{ for all } z(t)$$

$$G_{ij} = \begin{bmatrix} A_i - B_i F_j & B_i F_j \\ 0 & A_i - K_i C_j \end{bmatrix}$$
 ()

P

MATLAB LMI toolbox

.

.

swing up

:

[1] K. Tanaka, H.O. Wang, "Fuzzy Control Systems Design and analysis: A linear Matrix Inequality Approach.", Wiley (2001)