A Sample Document for the Usages of lstEventB Package

Thai Son Hoang
ECS, University of Southampton
<T dot S dot Hoang at ecs dot soton dot ac dot uk>

May 13, 2018

For convenient, we define macro \EventB for Event-B.

We start first with some inline Event-B code by embedding them using a pair of \$, for example \$@grd1 "SNSR = FALSE"\$ gives @grd1"SNSR = FALSE". Any Event-B formulae including Unicode symbols will be typeset using the bsymb package accordingly.

ASCII	Symbols	Explanation
!false		False
!true	一	True
&	\wedge	Conjunction
!or	V	Disjunction
=>	\Rightarrow	Implication
<=>	\Leftrightarrow	Equivalence
!not	_	Negation
!	\forall	Universal quantification
#	3	Existential quantification
		Quantification dot
=	=	Equality
/=	\neq	Inequality

Table 1: Predicates

More complete piece of code (including the Unicode symbols) can be typeset using the EventBcode environment. Below is the typesetting of an Event-B machine.

7

¹ machine Sensor_m0_SNSR

² variables

³ SNSR

⁴ invariants

^{5 @}thm0_1∈"SNSR ∈ BOOL" theorem

⁶ events

ASCII	Symbols	Explanation
{}	Ø	Empty set
1		Vertical bar, e.g., in set comprehension
\/	U	Union
/\	\cap	Intersection
\	\	Set difference
->	\mapsto	Ordered pair
**	×	Cartesian product
!POW	\mathbb{P}	Powerset
!POW1	\mathbb{P}_1	Non-empty subsets
!card	card	Cardinality
!union	union	Generalised union
!inter	inter	Generalised intersection
!UNION	U	Quantified union
!INTER	Ñ	Quantified intersection

Table 2: Sets

ASCII	Symbols	Explanation
:	€	Set membership
/ :	∉	Set non-membership
<:	\subseteq	Subset
/<:	⊈	Not a subset
<<:		Proper subset
/<<:	⊄	Not a proper subset
!finite	finite	Finite
!partition	partition	Partition

Table 3: Set predicates

ASCII	Symbols	Explanation
!BOOL	BOOL	BOOL set
! TRUE	TRUE	TRUE
!FALSE	FALSE	FALSE
!bool	bool	bool predicate

Table 4: BOOL and bool

ASCII	Symbols	Explanation
!INT	\mathbb{Z}	Set of integer numbers
!NAT	N	Set of natural numbers
!NAT1	\mathbb{N}_1	Set of positive natural numbers
!min	min	Mininum
!max	max	Maximum
_	_	Difference
*	×	Product
/	÷	Quotient
!mod	mod	Remainder
		Interval

Table 5: Numbers

ASCII	Symbols	Explanation
>	>	Greater
<	<	Less
>=	\geq	Greater or equal
<=	\leq	Less or equal

Table 6: Number predicates

ASCII	Symbols	Explanation
<->	\leftrightarrow	Relations
!dom	dom	Domain
!ran	ran	Range
<<->	≪→	Total relations
<->>	≪→	Surjective relations
<<->>	«»	Total surjective relations
!circ	0	Backward composition
!id	id	Identity
<	⊲	Domain restriction
<<	\triangleleft	Domain subtraction
>	\triangleright	Range restriction
>>	⊳	Range subtraction
~	-1	Inverse
<+	\triangleleft	Overriding
><	\otimes	Direct product
11		Parallel product
!prj1	prj_1	First projection
!prj2	prj_2	Second projection

Table 7: Relations

ASCII	Symbols	Explanation
+->	+>	Partial functions
>	\rightarrow	Total functions
>+>	>+→	Partial injections
>->	\longrightarrow	Total injections
+>>		Partial surjections
->>	<i>→</i>	Total surjections
>->>	→→	Bijections
%	λ	Lambda abstraction

Table 8: Functions

ASCII	Symbols	Explanation
:=	:=	Becomes equal to
::	:∈	Choice from a set
:	:	Choice by predicate

Table 9: Functions

```
INITIALISATION
      begin
       @\mathsf{act1} \in "\mathsf{SNSR} := \mathsf{FALSE}"
10
11
12
      SNSR_on
13
      when
       @\mathsf{grd1}{\in}\, ``\mathsf{SNSR} = \mathsf{FALSE}"
15
16
       then
       @\mathsf{act1} \in "\mathsf{SNSR} := \mathsf{TRUE}"
17
18
19
      SNSR_off
20
^{21}
      when
       @\mathsf{grd1}{\in}"\mathsf{SNSR} = \mathsf{TRUE}"
22
       @\mathsf{act}1{\in} "\mathsf{SNSR} := \mathsf{FALSE}"
^{24}
25
26
27 end
```

One can change the different colour options. For example, \EventBSetKeywordColour{blue!50!black} will change the keyword colour to dark blue. (This has effects only when

```
machine Sensor_m0_SNSR
variables
SNSR
invariants
@thm0_1∈ "SNSR ∈ BOOL" theorem
```

One can includes external file containing Event-B code using the **\EventBinputlisting** command. For example the following is the result of including the code in the file

Sensor_m1_DEP.bumx using \EventBinputlisting{Sensor_m1_DEP.bumx}.

```
1 machine Sensor_m1_DEP
2 refines Sensor_m0_SNSR
з variables
4 SNSR
5 DEP
6 invariants
7 @inv0_1 \in "DEP \in \mathbb{N}"
    INITIALISATION extended
10
    begin
11
     @\mathsf{act2}{\in}\, "\,\mathsf{DEP}\,{:=}\, 0"
12
13
14
15
    SNSR_on extended
    refines SNSR_on
16
17
   SNSR_off extended
19
    refines SNSR_off
20
    begin
^{21}
     \texttt{@act2} {\in} \texttt{"DEP} := \mathsf{DEP} + 1\texttt{"}
22
23 end
24
_{25} end
```

More specifically, one can specify more details on the inclusion, e.g., the ranges, as the following example

```
1 @inv1_1∈ "Snsr_01 = TRUE ⇒ SNSR = TRUE"
2 @inv1_2∈ "Snsr_10 = TRUE ⇒ SNSR = FALSE"
4 @inv1_3∈ "Snsr_01 = FALSE ∨ Snsr_10 = FALSE"
```

```
machine Sensor_m3_Ctrl
refines
Sensor_m2_Snsr
variables
SNSR
DEP
```

```
13 Snsr_01
14
15 Snsr_10
16
17 ctrl_snsr
18
     ctrl_dep
19
20
     ctrl_snsr_01
22
     ctrl_snsr_10
23
24
25 invariants
26
     @inv2_1∈
27
      "Snsr\_01 = \mathsf{FALSE} \land \mathsf{Snsr}\_10 = \mathsf{FALSE} \land \mathsf{ctrl\_snsr}\_01 = \mathsf{FALSE} \land \mathsf{ctrl\_snsr}\_10 = \mathsf{FALSE}
           \Rightarrow ctrl_snsr = SNSR"
29
     @inv2\_2{\in}\,"ctrl\_dep \in \mathbb{N}"
31
      @inv2\_3 \in "Snsr\_10 = FALSE \land ctrl\_snsr\_10 = FALSE \Rightarrow ctrl\_dep = DEP"
33
      @inv2\_4 \in "Snsr\_10 = TRUE \lor ctrl\_snsr\_10 = TRUE \Rightarrow ctrl\_dep = DEP - 1"
34
35
      @inv2_5 \in "ctrl\_snsr\_01 = TRUE \Rightarrow SNSR = TRUE"
36
37
      @inv2\_6 \in "ctrl\_snsr\_10 = TRUE \Rightarrow SNSR = FALSE"
38
39
     @inv2\_7{\in}\,"ctrl\_snsr\_01 = \mathsf{TRUE} \Rightarrow \mathsf{Snsr}\_01 = \mathsf{FALSE}"
40
41
42
      @inv2\_8 \in "ctrl\_snsr\_10 = TRUE \Rightarrow Snsr\_10 = FALSE"
43
44
45
     INITIALISATION extended
46
     refines INITIALISATION
47
    begin
48
      @\mathsf{act5} \in "\mathsf{ctrl\_snsr} := \mathsf{FALSE}"
      @act6∈ "ctrl_dep := 0"
@act7∈ "ctrl_snsr_01 := FALSE"
50
51
      @\mathsf{act8} \in "\mathsf{ctrl\_snsr\_10} := \mathsf{FALSE}"
52
53
54
     SNSR_on extended
55
56
      refines SNSR_on
     when
57
      \texttt{@grd3} {\in} \texttt{"ctrl\_snsr\_10} = \mathsf{FALSE"}
58
59
     end
60
     SNSR_off extended
     refines SNSR_off
62
63
      @grd3 \in "ctrl\_snsr\_01 = FALSE"
64
     end
65
67 ctrl_Senses_Snsr_01 extended
```

```
refines ctrl_Senses_Snsr_01
    begin
     @act2∈ "ctrl_snsr_01 := TRUE"
70
71
72
73
    ctrl_Senses_Snsr_10 extended
     \textcolor{refines}{refines} \hspace{0.1cm} \textit{ctrl\_Senses\_Snsr\_10}
74
75
     @act2 \in "ctrl\_snsr\_10 := TRUE"
    end
77
78
    \mathsf{ctrl}\_\mathsf{on}
79
80
     \texttt{@grd1} {\in} \texttt{"ctrl\_snsr\_01} = \mathsf{TRUE"}
82 then
     83
84
85
    ctrl\_off
87
88
     \texttt{@grd1} {\in} \texttt{"ctrl\_snsr\_10} = \mathsf{TRUE"}
89
90 then
     91
92
    end
94
95
96 end
```