

ОНЛАЙН-ОБРАЗОВАНИЕ

Меня хорошо слышно && видно?

Напишите в чат, если есть проблемы! Ставьте + если все хорошо

Евгений Хапуженков

зам. гл. инженера

Об опыте:

В ИТ более 15 лет

Технологии и системы: Linux, Windows, Cisco, Mikrotik, Eltex, различное серверное оборудование и софт, СКУД, ОПС, ЦОДы, видео наблюдение)

Сертификаты различных вендоров: MTCNA, MTCRE, MTCTCE, ICND1, ICND2, инженер ПО Интеллект, Eaton коммуникационные опции ИБП

Опыт преподавателя: 3 года

Контакты:

+79276880490 / musicgored@gmail.com / (https://t.me/khapuzhenkov)

Цели вебинара

К концу занятия вы сможете

- 1. Сформулировать базовую концепцию архитектуры сети
- 2. Уметь применять инструменты настройки сети
- 3. Уметь проектировать простые сети

Смысл

Зачем вам это уметь

- Большая часть работающих приложений на Linux, так и или 1. иначе связана с сетевыми сервисами, поэтому важно уметь проводить базовую настройку сети
- 2. Не маленький процент проблем при траблшутинге приходиться именно на сеть

Маршрут вебинара

Ваши вопросы?

Архитектура сетей

OSI

TCP/IP

Что знаете о модели OSI?

Ответ напишите в чат

Сроки выполнения: 2 минут

01 osi

OSI

- 7 Прикладной уровень Application layer
- 6 Уровень представления Presentation layer
- 5 Сеансовый уровень Session layer
- 4 Транспортный уровень Transport layer
- 3 Сетевой уровень Network layer
- 2 Канальный уровень Data link layer MAC
- 1 Физический уровень Physical layer

TCP/IP (DOD)

4 Уровень приложений Application layer

- 3 Транспортный уровень Transport layer
- 2 Уровень сети Интернет Internet

Уровень доступа к сети Network Access layer

02

уровни OSI и протоколы

Уровень 1 - физический

Физический уровень описывает способы передачи бит через физические среды линий связи, соединяющие сетевые устройства

Уровень 2 - канальный

Канальный уровень (1-ый уровень модели TCP/IP) - описывает способ кодирования данных для передачи пакета данных на физическом уровне

MAC(Media Acess Control, или Medium Access Control) - подуровень управления доступом к среде

LCC(Logical Link Control) - подуровень управления логической связью

Уровень 2 - канальный

Задачи уровня 2:

- Формирование / обработка сигнала
- Множественный доступ
- Выделение границ кадра
- Аппаратная адресация
- Контроль ошибок передачи

Имена интерфейсов

- Старая нотация eth0, eth1... iftypeN. Группировка интерфейсов по типу и сквозная нумерация. Из глобальных минусов - в качестве eth0 может оказаться не тот интерфейс, что до перезагрузки, например, если вставить новую карточку в "младший" слот.
- Новая нотация (от systemd) Predictable Network Interface Names. В своем виде по умолчанию использует форматы (упрощенно)
 (en|wl)[P<domain>]p<busy>s<slot>[f<function>][n<phys_port_name>|d<dev_port>] PCI location

(en|wl)[P<domain>]o<bus>[f<function>][n<phys_port_name>|d<dev_port>] - Onboard device

Таким образом enp0s3 говорит нам о том, что мы имеем дело с Ethernetадаптером подключенным к шине pci №0 в слот №3, а eno1 говорит об onboard ethernet-адаптере с индексом 1. Предназначается для определения пути передачи данных. Отвечает за определение кратчайших маршрутов и маршрутизацию, отслеживание неполадок и заторов в сети

4 бита Номер версии	4 бита Длина заголовка	8 бит Тип сервиса	16 бит Общая длина	
		PR D T R	l	
16 бит Идентификатор пакета			3 бита Флаги D М	13 бит Смещение фрагмента
8 бит Время жизни		8 бит Протокол верхнего уровня	16 бит Контрольная сумма	
		32 (IP-адрес	бита источни	ka
		32 (IP-адрес н	бита іазначен	Р
		Параметры и	выравни	вание

Уровень 3 - сетевой

Тип обслуживания (Type of Service, ToS)

- **0-2** приоритет (precedence) данного IP-сегмента
- 3 требование ко времени задержки (delay) передачи IP-сегмента (0 нормальная, 1 низкая задержка)
- **4** требование к пропускной способности (throughput) маршрута, по которому должен отправляться IP-сегмент (0 низкая, 1 высокая пропускная способность)
- 5 требование к надежности (reliability) передачи IP-сегмента (0 нормальная, 1 высокая надежность)
- 6-7 ECN явное сообщение о задержке (управление IP-потоком).

Биты флагов

Bit 0: reserved, must be zero

Bit 1: (DF) 0 = May Fragment, 1 = Don't Fragment.

Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments.

Адресация IPv4


```
# ipcalc 195.239.108.7/26
Address: 195.239.108.7 11000011.11101111.01101100.00 000111
Netmask: 255.255.255.192 = 26 1111111111111111111111111111 000000
Wildcard: 0.0.0.63
                              0000000.00000000.00000000.00 111111
=>
Network: 195.239.108.0/26
                              11000011.11101111.01101100.00 000000
HostMin: 195.239.108.1
                              11000011.11101111.01101100.00 000001
HostMax: 195.239.108.62
                              11000011.11101111.01101100.00 111110
Broadcast: 195.239.108.63
                              11000011.11101111.01101100.00 111111
                               Class C
Hosts/Net: 62
```


Unicast

Broadcast

Предположим у нас есть сеть:

HostA посылает HostC ір-пакет

Протокол ARP (Address Resolution Protocol)

служит для разрешения адресов (поиска соответствия macадресов и IP-адресов) в пределах одного L2-сегмента (L2домена).

Path MTU Discovery

TCP

UDP

Заголовок UDP

03 TCP

Transmission Control Protocol (TCP) Header 20-60 bytes

source port number 2 bytes			destination port number 2 bytes			
		11.0	e number ytes			
	acknowledgement number 4 bytes					
data offset 4 bits	reserved 3 bits	control flags 9 bits	window size 2 bytes			
	check 2 by		urgent pointer 2 bytes			
			al data bytes			

Протокол TCP (Transmission Control Protocol) - протокол с контролем передачи. Предназначен для надежной передачи данных. Это реализуется с помощью механизмов:

- Установки соединения
- Подтверждения передачи
- Закрытия соединения

Как результат протокол ТСР обеспечивает:

- "контроль доставки"
- Сохранение очередности пакетов

TCP

Номер в последовательности (sequence number)

- 32-битовое поле
- содержимое определяет (косвенно) положение данных ТСР-пакета внутри исходящего потока данных, существующего в рамках текущего соединения.
- В момент установления соединения каждая сторона генерирует свой начальный "номер в последовательности"
- основное требование- не повторяться в промежутке времени, в течение которого ТСР-пакет может находиться в сети
- Партнеры обмениваются этими начальными номерами и подтверждают их получение. Во время отправления ТСР-пакетов с данными поле "номер в последовательности" содержит сумму начального номера и количества байт ранее переданных данных.

Номер подтверждения (acknowledgement number)

• 32-битовое поле, содержимое которого определяет (косвенно) количество принятых данных из входящего потока к ТСР-модулю, формирующему ТСР-пакет.

- CWR (Congestion Window Reduced) Поле «Окно перегрузки уменьшено» флаг установлен отправителем, чтобы указать, что получен пакет с установленным флагом ECE (RFC 3168)
- ECE (ECN-Echo) Поле «Эхо ECN» указывает, что данный узел способен на ECN (явное уведомление перегрузки) и для указания отправителю о перегрузках в сети (RFC 3168)
- URG поле «Указатель важности» задействовано (англ. Urgent pointer field is significant)
- ACK поле «Номер подтверждения» задействовано (англ. Acknowledgement field is significant)

- PSH (англ. Push function) инструктирует получателя протолкнуть данные, накопившиеся в приёмном буфере, в приложение пользователя
- RST оборвать соединения, сбросить буфер (очистка буфера) (англ. Reset the connection)
- SYN синхронизация номеров последовательности (англ. Synchronize sequence numbers)
- FIN (англ. final, бит) флаг, будучи установлен, указывает на завершение соединения (англ. FIN bit used for connection termination).

Flag		Binary								Decimal
CWR	Congestion Window Reduced	1	0	0	0	0	0	0	0	128
ECE	ECN-Echo	0	1	0	0	0	0	0	0	64
URG	Urgent	0	0	1	0	0	0	0	0	32
ACK	Acknowledgement	0	0	0	1	0	0	0	0	16
PSH	Push	0	0	0	0	1	0	0	0	8
RST	Reset	0	0	0	0	0	1	0	0	4
SYN	Syn	0	0	0	0	0	0	1	0	2
FIN	Fin	0	0	0	0	0	0	0	1	1

Window Size определяет количество байт данных (payload), после передачи которых ожидается подтверждение от получателя.

- CLOSED Начальное состояние узла. Фактически фиктивное
- LISTEN Сервер ожидает запросов установления соединения от клиента
- SYN-SENT Клиент отправил запрос серверу на установление соединения и ожидает ответа
- SYN-RECEIVED Сервер получил запрос на соединение, отправил ответный запрос и ожидает подтверждения
- ESTABLISHED Соединение установлено, идёт передача данных
- FIN-WAIT-1 Одна из сторон (назовём её узел-1) завершает соединение, отправив сегмент с флагом FIN

- CLOSE-WAIT Другая сторона (узел-2) переходит в это состояние, отправив, в свою очередь сегмент АСК и продолжает одностороннюю передачу
- FIN-WAIT-2 Узел-1 получает АСК, продолжает чтение и ждёт получения сегмента с флагом FIN
- LAST-ACK Узел-2 заканчивает передачу и отправляет сегмент с флагом FIN
- TIME-WAIT Узел-1 получил сегмент с флагом FIN, отправил сегмент с флагом ACK и ждёт 2*MSL секунд, перед окончательным закрытием соединения
- CLOSING Обе стороны инициировали закрытие соединения одновременно: после отправки сегмента с флагом FIN узел-1 также получает сегмент FIN, отправляет АСК и находится в ожидании сегмента АСК (подтверждения на свой запрос о разъединении)

документация по параметрам

- net.ipv4.conf.all.accept_redirects = 0
- net.ipv4.conf.all.secure_redirects = 0
- net.ipv4.conf.all.send redirects = 0
- net.ipv4.tcp max orphans = 65536
- net.ipv4.tcp orphan retries = 0
- net.ipv4.conf.all.rp filter = 1
- net.ipv4.conf.all.accept source route = 0
- net.ipv4.tcp rfc1337 = 1
- net.ipv4.tcp_max_tw_buckets = 720000
- net.ipv4.ip forward = 0
- net.ipv4.icmp_echo_ignore_broadcasts = 1
- net.ipv4.icmp_echo_ignore_all = 1

- net.ipv4.tcp_fin_timeout = 10
- - net.ipv4.tcp_keepalive_time = 1800
- - net.ipv4.tcp keepalive intvl = 15
- - net.ipv4.tcp_keepalive_probes = 5
- - net.ipv4.tcp max syn backlog = 4096
- - net.ipv4.tcp synack retries = 1
- - net.ipv4.netfilter.ip conntrack max = 16777216
- - net.ipv4.tcp timestamps = 1
- - net.ipv4.tcp sack = 1
- - net.ipv4.tcp fastopen = 1
- - net.ipv4.tcp_slow_start_after_idle = 1
- - net.ipv4.tcp congestion control = htcp

- net.ipv4.tcp_no_metrics_save = 1
- net.ipv4.ip_local_port_range = 1024 65535
- net.ipv4.tcp_window_scaling = 1
- net.core.somaxconn = 65535
- net.core.netdev max backlog = 1000
- fs.file-max = 64000
- $\text{ net.ipv4.tcp_mem} = 50576$ 64768 98152
- net.ipv4.tcp rmem = 4096 87380 16777216
- net.ipv4.tcp wmem = 4096 65536 16777216

04

Управляющие пакеты

Управляющие пакеты

- Net-tools (arp, ifconfig, netstat, route) <u>deprecated</u>
- Iproute2 (ip, ss, tc, nstat)
- NetworkManager (nmcli)

iproute2

- ip управление маршрутизацией, интерфейсами, arp-таблицами
- tc traffic control управлением приоритезацией трафика
- ss sockstat информация о socket'ax (одна из сторон netstat)
- nstat информация о сетевых каунтерах

- ip link list
- ip addr show
- ip route show
- ip route Is
- ip neigh show
- ip rule list
- cat /etc/iproute2/rt_tables
- ip route list table <main|local|default>
- echo 200 Otus >> /etc/iproute2/rt_tables
- ip rule add from 10.0.0.10 table Otus
- ip route add default via 195.96.98.253 dev ppp2 table Otus

включение форвардинга

echo 1 > /proc/sys/net/ipv4/ip_forward

выключение фильтрации асинхронной маршрутизации

```
#!/bin/bash
for DEV in /proc/sys/net/ipv4/conf/*/rp_filter
do
    echo 0 > $DEV
done
```

Сетевые снифферы.

- tcpdump информация о сетевой активности. Работает максимально близко к "проводу"
- ngrep утилита для поиска пакетов по содержимому, Network grep. По смыслу схожа с tcpdump.
- Wireshark (tshark)

05

Questions?

Подведем итоги

- 1. Получили необходимые знания для понимания архитектуры сети
- Научились использованию средств настройки и проектирования 2.
- 3. Научились оценивать результат выполненных действий

Рефлексия

Рефлексия

Что в прошедшем занятии вам показалось полезным?

Будете применять на практике то, что узнали на вебинаре?

Заполните, пожалуйста, опрос о занятии по ссылке в чате

Спасибо за внимание!

