1	3ª Aula
	Modelos de Computação Patalela
	Como projeter elgoritmos pere méquines pereleles?
	Auguitetura/Plataforma - Modelo (Abstracão)
	- Modelo PRAM
	_s Modelo BSP
	<u></u>

Modelo PRAM (Parallel Bandom Access Machine)

Modelo de computação parallela mais

popular

Abstração

* sinctono (relogio global)

* infinitos processadores

* memoria compartilhada ilimitada

- Algorit mos do tipo SIMD: Processo does executam o mesmo programa, mas com dados diferentes.

Subclasses do modelo PRAM

- -o EBEW (Ez clusive-Bead, Exclusive-Write): lei Luis e escrita silmutênez à uma posição de memotis por dois processe dotes não é permitido.
 - CREW (Concurrent-Read, Exclusive-Write): leitulas silmutaners são permitidas, mas escritas silmutaness não.
 - ERCW (Exclusive-Beed, Concurrent-Write): leituras simultêness não são permitidos, mas escritos simultêness são permitidos. - CBCW(Concurrent-Read, Concurrent-Write): leituro
 - e escrita simultaners é permitido.

O Testamento de conflito de escritz

- ne mesma localização de memoria o
- mesmo Valor.

 Métado 2: um dos processadores participantes de eschite simultêmes tem sucesso em ser . escolhida vencedor e seu vebr é escrito. (Prioritérie)
- -6 Métado3: todos os processodores são organi-20 placesso don com moior prioridade efetua 2 escritz

5) Vantagens de PBAM

- Compteensão da estrutura de um problema * Extenção do modelo BAM (Von Neumana)

- Anélise de complexidade fécil"

* Anélise assintatica

* Adequado para introdução da computação paralela

6 Problemas do PRAM

* Dificuldade de compettamento sinctomo por pape dos processadores

- Acesso à memólia

* Custo de 20esso pode set alto

* Mivel baixo em previsão de desempenho

Probleme de soma denelementos

(8) Somo no modelo PRAM

- (1) global read (A(i), a) /* le de comportilhado para local */
- (2) globel White (a, B(i))/+ escreve de local para compartalhabet
- (3) poto h = 1 sté log n foço se ($i \le n/2^h$) então 9/062 Fead (B(2i-1), 2) global Lead (B(2i), y) Z:= 2+ V
 - global WHILE (z, B(i)) (4) se (i=1) então global Wite (z, S)

Algoritmo persolelo do somo em PRAM 11 Passo 1: Vetor A é ropiado para a 2ª metade de B pala O <= i <= n-1 faça em paralelo B[n+i] := A[i] 11 Passo 2: loop sequencial, para cada nivel de atrone pala = logn -1 ate O faga // loop paralelo, um processador para cada subproblema para 2 = i <= 2 -1 faça em paralelo B[i] := Soma (B[2i], B[2i+1])

Exemplo: 10 6 6 9 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1=1 ny phocessocoles

Analise do algoritmo de soma

-o Subclasse/Submodelo: EREW

-o tempo: O (logn)

-o Processadores: O (n)

-o Custo (Tempo * Processadores): O (n logn)

*Tem como o custo ser O (n)? Explique!

(Exercicio)

- 13 Atividade
 - Pesquise sobre o modelo BSP de computação par lela Explique 25 semelhanças e diferenças em relação zo modelo PBAM. Des creva/apresente pelo menos 1 exemplo de algoritmo que adota o modelo BSP.