5.13.28

EE25BTECH11002 - Achat Parth Kalpesh

October 2,2025

Question

Let **A** be a 2×2 matrix with real entries. Let **I** be the 2×2 identity matrix. Denote by $tr(\mathbf{A})$, the sum of diagonal entries of **A**. Assume that $\mathbf{A}^2 = \mathbf{I}$.

Statement-1: If $\mathbf{A} \neq \mathbf{I}$ and $\mathbf{A} \neq -\mathbf{I}$, then $\det(\mathbf{A}) = -1$ Statement-2: If $\mathbf{A} \neq \mathbf{I}$ and $\mathbf{A} \neq -\mathbf{I}$, then $tr(\mathbf{A}) \neq 0$.

- Statement-1 is false, Statement-2 is true
- Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
- Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1
- Statement-1 is true, Statement-2 is false

Solution

Let the eigenvalue of **A** be λ .

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \tag{1}$$

$$\mathbf{A}^2 \mathbf{v} = \lambda^2 \mathbf{v} \tag{2}$$

$$\mathbf{A}^2 = \mathbf{I} \tag{3}$$

$$\lambda^2 = 1 \tag{4}$$

$$\lambda = \pm 1 \tag{5}$$

Thus, eigenvalues λ_1 , λ_2 of **A** are chosen from $\{1,-1\}$ As it is given as **A** \neq **I** and **A** \neq -**I**, so the possible case is

$$\lambda_1 = 1, \lambda_2 = -1 \tag{6}$$

Solution

Thereby,

$$det (\mathbf{A}) = \lambda_1 \lambda_2 \tag{7}$$

$$=-1 (8)$$

$$tr(\mathbf{A}) = \lambda_1 + \lambda_2 \tag{9}$$

$$=0 (10)$$

Thus Statement-1 is true, Statement-2 is false