振り返りと導入

前回は双対平坦構造に対して canonical ダイバージェンスとシンプレクティック構造を定義した。本稿では次のことを行う:

- 双対平坦構造に付随するシンプレクティック構造の性質を調べる。
- 接束/余接束上の関数の Legendre 変換を定義する。
- 双対平坦構造に付随するシンプレクティック構造と Legendre 変換の関係を調べる。

なおシンプレクティック構造の話題は[野20]をベースにしている。

1 双対平坦構造に付随するシンプレクティック構造

以下、M を多様体、 (g, ∇, ∇^*) を M 上の双対平坦構造とする。また、命題-定義 A.15 で canonical ダイバージェンスが定義されることは一旦認めることにし、 $D: \mathcal{U} \to \mathbb{R}$, $\Delta_M \subset \mathcal{U} \overset{\text{open}}{\subset} M \times M$ を (g, ∇, ∇^*) の canonical ダイバージェンスとする。

命題-定義 1.1 (双対平坦構造に付随するシンプレクティック構造). $\omega_0 \in \Omega^2(T^\vee M)$ を $T^\vee M$ 上の自然シンプレクティック形式とする。写像 $d_1D: \mathcal{U} \to T^\vee M$ を第 1 成分に関する微分、すなわち $d_1D:=D(\frac{\partial}{\partial x^i}\|) dx^i$ で定め、 \mathcal{U} 上の 2-形式 $\omega \in \Omega^2(\mathcal{U})$ を $\omega:=(d_1D)^*\omega_0$ で定める。このとき次が成り立つ:

(1) x を M の局所座標とし、記号の濫用で $\mathcal U$ の局所座標 (x,x^*) を $x(p,q) \coloneqq x(p), x^*(p,q) \coloneqq x(q)$ で定めると、座標 (x,x^*) に関する ω の成分表示は

$$\omega = D(\frac{\partial}{\partial x^i} \| \frac{\partial}{\partial x^j}) dx^i \wedge dx^{*j}$$
(1.1)

となる。

(2) ω は U 上のシンプレクティック形式である。

 ω を双対平坦構造 (g, ∇, ∇^*) に付随する**シンプレクティック構造 (symplectic structure)** と呼ぶ。

証明 (1) x を M の局所座標とし、 \mathcal{U} の局所座標 (x, x^*) を $x(p,q) \coloneqq x(p), x^*(p,q) \coloneqq x(q)$ で定める。x により定まる $T^{\vee}M$ の自然な局所座標を $(x^1, \ldots, x^n, \xi_1, \ldots, \xi_n)$ とおけば

$$\omega = (d_1 D)^* \omega_0 \tag{1.2}$$

$$= (d_1 D)^* (dx^i \wedge d\xi_i) \tag{1.3}$$

$$= d(x^i \circ d_1 D) \wedge d(\xi_i \circ d_1 D) \tag{1.4}$$

$$= dx^{i} \wedge \left(D\left(\frac{\partial}{\partial x^{j}} \frac{\partial}{\partial x^{i}} \| \right) dx^{j} + D\left(\frac{\partial}{\partial x^{i}} \| \frac{\partial}{\partial x^{j}} \right) dx^{*j} \right)$$

$$\tag{1.5}$$

$$= D(\frac{\partial}{\partial x^{i}} \| \frac{\partial}{\partial x^{j}}) dx^{i} \wedge dx^{*j}$$
(1.6)

を得る。

(2) $d\omega = 0$ であることと ω が非退化であることを示せばよい。 $d\omega = 0$ は $d\omega = (d_1D)^*d\omega_0 = 0$ より従う。 ω が非退化であることを示す。 (U, θ, η) を g-凸な双対アファインチャートとすると (1) より

$$\omega = D(\partial_i || \partial_i) d\theta^i \wedge d\theta^{*j} \tag{1.7}$$

$$= -g_{ij}(p) d\theta^i \wedge d\theta^{*j} \tag{1.8}$$

を得る。したがって $\mathcal U$ の局所座標 (θ,θ^*) に関する ω の行列表示は $\begin{bmatrix} O & (-g_{ij}(p))_{ij} \\ (g_{ij}(p))_{ij} & O \end{bmatrix}$ となる。g の非退化性より ω は非退化である。

命題 1.2 (ω の成分表示). ω を (g, ∇ , ∇ *) に付随するシンプレクティック構造とする。このとき、g-凸な任意の 双対アファインチャート (U, θ , η) に対し、 ω は次の成分表示をもつ:

$$\omega = -g_{ij} d\theta^i \wedge d\theta^{*j} = -d\eta_i \wedge d\theta^{*i} = -g_{ij} g^{*jk} d\theta^i \wedge d\eta_k^* = -g^{*ij} d\eta_i \wedge d\eta_i^*$$
(1.9)

ただし記号の濫用で $g_{ii}, g^{*ij}: U \times U \to \mathbb{R}$ は $g_{ii}(p,q) \coloneqq g_{ii}(p), g^{*ij}(p,q) \coloneqq g^{ij}(q)$ を表す。

注意 1.3. 任意の双対アファインチャート (U, θ, η) に対しては成り立つとは限らない。

証明 一番左の等号は命題-定義 1.1 の証明 (2) の中で示した。残りの等号は (θ, η) が双対アファイン座標であることから従う。

2 接束/余接束上の関数の Legendre 変換

以下、M を多様体、E:=TM、W $\overset{\text{open}}{\subset} E$ とし、 $L:W\to\mathbb{R}$ を C^∞ 関数とする。以下では E=TM の場合を考えるが、 $E=T^\vee M$ の場合も同様である。

定義 2.1 (fiber derivative). 写像 $\mathbb{F}L: W \to E^{\vee}$ を L のファイバー方向の微分、すなわち

$$\langle \mathbb{F}L(x,v),w\rangle \coloneqq \frac{d}{dt}L(x,v+tw)\Big|_{t=0} \qquad (x,v)\in W,\ w\in E_x \tag{2.1}$$

で定める。 \mathbb{F} L を L の fiber derivative という。

注意 2.2. FL はファイバーごとに線型とは限らない。

定義 2.3 (接束/余接束上の関数の Legendre 変換). $\mathbb{F}L: W \to E^{\vee}$ が像への微分同相であるとき、 $\mathbb{F}L$ を L による Legendre 変換 と呼ぶことがある。また、 $W' := \mathbb{F}L(W) \subset E^{\vee}$ とおき、

$$H: W' \to \mathbb{R}, \qquad (x,\xi) \mapsto \langle \xi, v \rangle - L(x,v), \qquad (x,v) := (\mathbb{F}L)^{-1}(x,\xi) \in W$$
 (2.2)

を *L* の Legendre **変換** と呼ぶ。

命題 2.4 (凸関数としての Legendre 変換との関係). 各 $x \in M$ に対し $W_x \subset E_x$ が凸集合で、 $L|_{W_x}: W_x \to \mathbb{R}$ が Hess $(L|_{W_x}) > 0$ をみたすとする (とくに $L|_{W_x}$ は凸関数となる)。このとき、 $\mathbb{F}L$ は像への微分同相であり、H は ファイバーごとに $L|_{W_x}$ の凸関数としての Legendre 変換である。

証明 H がファイバーごとに $L|_{W_x}$ の凸関数としての Legendre 変換であることは H の定義から明らか。あとは $\mathbb{F}L$ が像への微分同相であることを示せばよい。そのためには $\mathbb{F}L$ が単射かつ局所微分同相であることを示せばよい。 $\mathbb{F}L$ が単射であることは、 $\mathbb{F}L$ がファイバーを保つことと、各 $L|_{W_x}$ が凸ゆえに $\mathbb{F}L|_{W_x}$ が単射となることより従う。また M の局所座標 x をひとつ選んで固定し、x により定まる E, E^\vee の自然な局所座標を考えると、これらの座標に関する $\mathbb{F}L$ の座標表示は $(x^i, v^i) \mapsto (x^i, \frac{\partial L}{\partial v^i})$ となる。 $Hess(L|_{W_x}) > 0$ よりこの座標表示の Jacobi 行列は正則であるから、 $\mathbb{F}L$ は局所微分同相となる。以上より $\mathbb{F}L$ は単射かつ局所微分同相、したがって像への微分同相である。

3 双対平坦構造に付随するシンプレクティック構造と Legendre 変換

本節では、2 通りの方法で \mathcal{U} \subset $T^{\vee}M$ とみなし、それぞれの場合で L,H と ψ,φ との関係性を調べる。以下、簡単のため M が単一の g-凸な双対アファインチャートで覆われる場合を考える。

命題 3.1 (L,H が ψ,φ と"整合"する ver.). M 上の双対アファインチャート (M,θ,η) をひとつ選び固定する。このとき次が成り立つ:

(1) 写像

$$\Phi \colon \mathcal{U} \to T^{\vee}M, \qquad (p,q) \mapsto (p,\theta^{i}(q)d\eta_{i_{p}})$$
 (3.1)

は像への微分同相写像となる。また $T^{\vee}M$ 上の自然なシンプレクティック構造 ω_0 に対し $\Phi^*\omega_0 = -\omega$ が成り立つ。

以下 $W' := \Phi(\mathcal{U})$ とおく。 (M, θ, η) の双対ポテンシャル (ψ, φ) を 1 組選び固定する。このとき次が成り立つ:

(2) 関数

$$H: W' \to \mathbb{R}, \qquad (p, \theta^i(q)d\eta_i) \mapsto \psi(q)$$
 (3.2)

$$\mathbb{F}H(p,\theta^{i}(q)d\eta_{i}) = (p,\eta_{i}(q)\frac{\partial}{\partial\eta_{i}}), \qquad (p,q) \in \mathcal{U}$$
(3.3)

をみたす。

(3) H の Legendre 変換 $L: W \to \mathbb{R}$, $W := \mathbb{F}H(W')$ は

$$L(p, \eta_i(q)\frac{\partial}{\partial \eta_i}) + H(p, \theta^i(q)d\eta_i) = \langle \theta(q), \eta(q) \rangle, \qquad (p, q) \in \mathcal{U}$$
(3.4)

をみたす。したがって $L(p,\eta_i(q)\frac{\partial}{\partial \eta_i})=\varphi(q)$ が成り立ち、この意味で L,H は ψ,φ と"整合"する。

証明 (1) 像への微分同相であることは明らか。また、 η により定まる $T^{\mathsf{v}}M$ 上の自然な座標を (η_i, ξ^i) とおけば

$$\Phi^* \omega_0 = \Phi^* (d\eta_i \wedge d\xi^i) \tag{3.5}$$

$$= d(\eta_i \circ \Phi) \wedge d(\xi^i \circ \Phi) \tag{3.6}$$

$$= d\eta_i \wedge d\theta^{*i} \tag{3.7}$$

$$= -\omega \tag{3.8}$$

が成り立つ。

(2)

$$\left\langle \mathbb{F}H(p,\theta^{i}(q)d\eta_{i}),d\eta_{j}\right\rangle = \frac{d}{dt}H(p,\theta^{i}(q)d\eta_{i}+td\eta_{j})\Big|_{t=0} \tag{3.9}$$

$$= \frac{d}{dt}\psi \circ \theta^{-1}\left(\theta^{1}(q), \dots, \theta^{j}(q) + t, \dots, \theta^{n}(q)\right)\Big|_{t=0}$$
(3.10)

$$=\frac{\partial \psi}{\partial \theta^j}(q)\tag{3.11}$$

$$=\eta_i(q) \tag{3.12}$$

より従う。

(3) Hの Legendre 変換の定義と (2) より

$$L(p, \eta_i(q)\frac{\partial}{\partial n_i}) = \langle \theta(p), \eta(q) \rangle - H(p, \theta^i(q)d\eta_i)$$
(3.13)

が成り立つ。

命題 3.2 (L,H が ψ , φ と"整合"しない ver.). 次が成り立つ:

(1) 写像 $d_1D: \mathcal{U} \to T^{\vee}M$ は像へのシンプレクティック同相写像となる。

以下 $W' := d_1 D(\mathcal{U})$ とおく。M 上の双対アファインチャート (M, θ, η) をひとつ選び固定し、さらに (M, θ, η) の双対ポテンシャル (ψ, φ) を 1 組選び固定する。このとき次が成り立つ:

(2) 関数

$$H: W' \to \mathbb{R}, \qquad (p, \xi) \mapsto \psi(q), \qquad q := \theta^{-1} \left(\theta^i(p) - \left\langle \xi, \frac{\partial}{\partial \eta_i} \right\rangle \right)_{i=1}^n$$
 (3.14)

の fiber derivative $\mathbb{F}H: W' \to T^{\vee\vee}M = TM$ は

$$\mathbb{F}H(p,(\theta^{i}(p)-\theta^{i}(q))d\eta_{i})=(p,\eta_{i}(q)\tfrac{\partial}{\partial\eta_{i}}), \qquad (p,q)\in\mathcal{U} \tag{3.15}$$

をみたす。

(3) H の Legendre 変換 $L: W \to \mathbb{R}$, $W := \mathbb{F}H(W')$ は

$$L(p,\eta_i(q)\frac{\partial}{\partial \eta_i}) + H(p,(\theta^i(p) - \theta^i(q))d\eta_i) = \langle \theta(p) - \theta(q), \eta(q) \rangle, \qquad (p,q) \in \mathcal{U}$$
(3.16)

をみたす。

証明 任意の (M,θ,η) に関し $d_1D(p,q)=(p,(\theta^i(p)-\theta^i(q))d\eta_i)$ が成り立つことに注意すれば命題 3.1 の証明 と同様。

今後の予定

- 概複素構造と概 Kähler 構造
- Hamilton フロー
- モーメント写像

参考文献

- [Ama16] Shun-ichi Amari, **Information Geometry and Its Applications**, Applied Mathematical Sciences, vol. 194, Springer Japan, Tokyo, 2016 (en).
 - [MR99] Jerrold E. Marsden and Tudor S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, vol. 17, Springer, New York, NY, 1999 (en).
 - [Sil08] Ana Cannas da Silva, **Lectures on symplectic geometry**, corr. 2. print ed., Lecture notes in mathematics, no. 1764, Springer-Verlag, 2008.
 - [植 15] 一石 植田, **数物系のためのシンプレクティック幾何学入門**, 臨時別冊・数理科学, サイエンス社, 2015.
 - [野 20] 知宣 野田, シンプレクティック幾何的視点での BAYES の定理について (部分多様体の幾何学の深化と展開), 数理解析研究所講究録 2152 (2020), 29–43 (jpn).

A 付録

1.1 多様体上の構造

定義 A.1 (シンプレクティックベクトル空間). 2*n* 次元 \mathbb{R} -ベクトル空間 V と V 上の非退化交代形式 ω : $V \times V \to \mathbb{R}$ の組 (V, ω) をシンプレクティックベクトル空間 (symplectic vector space) という。

定義 A.2 (シンプレクティック形式). M を 2n 次元多様体とする。 $\omega \in \Omega^2(M)$ が M 上の**シンプレクティック形式 (symplectic form)** であるとは、 ω が閉形式かつ各点 $x \in M$ で (T_xM,ω_x) がシンプレクティックベクトル空間であることをいう。

例 A.3 (標準シンプレクティック形式). \mathbb{R}^{2n} の標準的な座標 $(x^1,\ldots,x^n,y_1,\ldots,y_n)$ に対し $\omega_0 := dx^i \wedge dy_i \in \Omega^2(\mathbb{R}^{2n})$ は \mathbb{R}^{2n} 上のシンプレクティック構造である。 ω_0 を \mathbb{R}^{2n} 上の標準シンプレクティック形式 (standard symplectic form) という。

例 A.4 (余接束の自然シンプレクティック形式). M を n 次元多様体とする。余接束 π : $T^{\vee}M\to M$ 上の 1-形式 $\theta\in\Omega^1(T^{\vee}M)$ を

$$\theta_{(q,p)}(v) := p(d\pi_{(q,p)}(v)) \tag{A.1}$$

で定め、これを**トートロジカル 1-形式 (tautological 1-form)** と呼ぶ。このとき $\omega_0 := -d\theta \in \Omega^2(T^{\vee}M)$ は $T^{\vee}M$ 上のシンプレクティック構造となり、これを $T^{\vee}M$ 上の**自然シンプレクティック形式 (canonical symplectic form)** と呼ぶ。

命題 A.5 (自然シンプレクティック形式の成分表示)**.** M を n 次元多様体、 $x=(x^i)_i$ を M の局所座標とする。x により定まる $T^{\vee}M$ の局所座標を $(x^1,\ldots,x^n,\xi_1,\ldots,\xi_n)$ とおくと、これに関する自然シンプレクティック形式 ω_0 の成分表示は

$$\omega_0 = dx^i \wedge d\xi_i \tag{A.2}$$

となる。

証明 $\pi(q,p)=q$ ゆえ $d\pi^*(dx^i)=dx^i$ であることに注意すると、トートロジカル 1-形式の成分表示

$$\theta_{(q,p)} = d\pi_{(q,v)}^*(\xi_i dx^i) = \xi_i dx^i \tag{A.3}$$

より命題の等式が従う。

定義 A.6 (概複素構造). [TODO]

定義 A.7 (概 Kähler 構造). [TODO]

П

1.2 canonical ダイバージェンスの定義域

定義 A.8 (∇ -凸集合). 部分集合 $S \subset M$ が ∇ -凸 (∇ -convex) であるとは、任意の $p,q \in S$ に対し、p から q への S 内の ∇ -測地線がただひとつ存在することをいう。

定義 A.9 (g-凸集合). 部分集合 $S \subset M$ が g-凸 (g-convex) であるとは、任意の p, $q \in S$ に対し、p から q への M 内の ∇^g -測地線で最短なものがただひとつ存在し、かつそれが S 内に含まれることをいう。

定義 A.10 (canonical ダイバージェンスの定義域).

$$\mathcal{U} \coloneqq \left\{ (p,q) \in M \times M \, \middle| \, \begin{array}{c} p,q \text{ を含む } g\text{-} \text{凸開集合を含む}, \\ \nabla\text{-} \text{凸または} \, \nabla^*\text{-} \text{凸な双対アファインチャート} \, (U,\theta,\eta) \, \text{が存在する} \end{array} \right\} \tag{A.4}$$

命題 A.11. 次は同値である:

- (1) U は ∇ -凸であり、U 上の双対アファイン座標が存在する。
- (2) U は ∇ -凸であり、U 上の ∇ -アファイン座標が存在する。

証明 (1) ⇒ (2) 明らか。

 $(2) \Rightarrow (1)$ ∇ -凸性より $\eta \coloneqq (\eta_i)_i$, $\eta_i \coloneqq \frac{\partial \psi}{\partial \theta^i}$ は U 上単射である。したがって η は U から像への微分同相であり、U 上の座標となる。このとき (θ,η) は U 上の双対アファイン座標となる。さらに $\varphi \coloneqq \theta^i \eta_i - \psi$ とおけば (ψ,φ) は (U,θ,η) の双対ポテンシャルとなる。

注意 A.12. p,q を含む g-凸開集合が存在したとしても、それを含む ∇ -凸または ∇^* -凸な双対アファインチャートが存在するとは限らない。たとえば、正規分布族を考え、自然パラメータ空間 (これは上半空間となる) から線分 $\{0\}\times(0,2)$ を除いた空間を考えると、2 点 p=(2,1),q=(-2,1) を含む g-凸開集合が存在する (上半楕円形にとればよい)が、2 点 p,q を結ぶ ∇ -測地線も ∇^* -測地線も存在しない (∇ -測地線は"水平線"、 ∇^* -測地線は"下に凸"な曲線) ため、2 点 p,q を含む ∇ -凸または ∇^* -凸な双対アファインチャートは存在しない。

補題 A.13 (g-凸開近傍の存在). 各 $p\in M$ に対し、ある R>0 が存在して、任意の $r\in (0,R)$ に対し $B_r(p)\subset M$ は g-凸である。

証明 Riemann 多様体の教科書にある。

補題 A.14 ($\mathcal U$ の多様体構造). $\mathcal U$ は Δ_M を含む $M\times M$ の開集合である。したがって $\mathcal U$ には $M\times M$ の開部分多様体の構造が入る。

証明 開集合となることは定義から明らか。また、各 $p_0 \in M$ に対し、 p_0 のまわりの双対アファインチャート (U,θ,η) が存在するから、 p_0 の ∇ -凸開近傍 U' を U' $\subset U$ となるようにとれば、補題より U' は p_0 の g-凸開

近傍を含む。したがって $U' \times U'$ は $M \times M$ における p_0 の近傍であり、U に含まれる。よって U は Δ_M を含む。

1.3 canonical ダイバージェンス

命題-定義 A.15 (canonical ダイバージェンス). 関数 $D: \mathcal{U} \to \mathbb{R}$ を次のように定める: $(p,q) \in \mathcal{U}$ を固定し、p,q を含む g-凸開集合な双対アファインチャート (U,θ,η) をひとつ選び、その双対ポテンシャル (ψ,φ) を 1 組選ぶ。このとき、点 (p,q) における

$$\psi(q) + \varphi(p) - \langle \theta(q), \eta(p) \rangle \tag{A.5}$$

の値は (U, θ, η) や (ψ, φ) の選び方によらない。この値を D(p||q) と記す。以上により定まる関数 $D: \mathcal{U} \to \mathbb{R}$ を双対平坦構造 (g, ∇, ∇^*) の canonical ダイバージェンス と呼ぶ。

証明 $(p,q) \in \mathcal{U}$ とし、 $(U,\theta,\eta),(U',\theta',\eta')$ をそれぞれ条件をみたす双対アファインチャート、 $(\psi,\varphi),(\psi',\varphi')$ をそれぞれの双対ポテンシャルとする。 $(p,q) \in \mathcal{U}$ ゆえ p,q を含む g-凸集合が存在するから、p から q への M 内の ∇^g -測地線 γ がただひとつ存在する。ここで U,U' は p,q を含む g-凸開集合を含んでいたから、 $U \cap U'$ は γ の像を含む。このとき $U \cap U'$ の連結成分 C であって γ の像を含むものがただ 1 つ存在する。

C の連結性より $\psi'(q) - \psi(q) = (C 上の定数) = \psi'(p) - \psi(p)$ が成り立つ。よって

$$\psi'(q) + \varphi'(p) - \langle \theta'(q), \eta'(p) \rangle = \psi'(q) - \psi'(p) - \langle \theta'(q) - \theta'(p), \eta'(p) \rangle \tag{A.6}$$

$$= \psi(q) - \psi(p) - \langle \theta'(q) - \theta'(p), \eta'(p) \rangle \tag{A.7}$$

が成り立つ。あとは $\langle \theta'(q) - \theta'(p), \eta'(p) \rangle = \langle \theta(q) - \theta(p), \eta(p) \rangle$ を示せばよい。

[TODO] locally const. の言葉で書き直す C の連 結 性 よ り、組 $(A = (A_i^l)_{i,j}, b) \in \operatorname{GL}_n(\mathbb{R}) \times \mathbb{R}^n$ で あ っ て $\theta'(r) = A\theta(r) + b \ (\forall r \in C)$ をみたすものがただ 1 組存在する。よって任意の $r \in C$ に対し

$$\eta_i(r) = \frac{\partial \psi}{\partial \theta^i}(r) \qquad (\because d\psi = \eta_i d\theta^i)$$
(A.8)

$$= \frac{\partial \psi'}{\partial \theta^i}(r) \qquad (\because \psi' - \psi \text{ は } C \text{ 上定数}) \tag{A.9}$$

$$=\frac{\partial \theta'^{j}}{\partial \theta^{i}}(r)\frac{\partial \psi'}{\partial \theta'^{j}}(r) \tag{A.10}$$

$$=A_i^j \eta_i'(r) \qquad (\because d\psi' = \eta_i' d\theta'^j) \tag{A.11}$$

$$\therefore \eta(r) = A\eta'(r) \tag{A.12}$$

が成り立つ。さらに任意の $r \in C$ に対し

$$\theta'^{i}(r) = \frac{\partial \varphi'}{\partial \eta'_{i}}(r) \qquad (\because d\varphi' = \theta'^{i}d\eta'_{i}) \tag{A.13}$$

$$= \frac{\partial \varphi}{\partial \eta'_{i}}(r) \qquad (:: \varphi' - \varphi \text{ は } C \text{ 上定数})$$
 (A.14)

$$=\frac{\partial \eta_{j}}{\partial \eta_{i}'}(r)\frac{\partial \varphi}{\partial \eta_{j}}(r) \tag{A.15}$$

$$=A_{j}^{i}\theta^{j}(r) \qquad (\because d\varphi=\theta^{j}d\eta_{j},\ \eta=A\eta') \tag{A.16}$$

$$\therefore \theta'(r) = A\theta(r) \tag{A.17}$$

が成り立つ。したがって

$$\langle \theta'(q) - \theta'(p), \eta'(p) \rangle = \langle A(\theta(q) - \theta(p)), A^{-1}\eta(p) \rangle = \langle \theta(q) - \theta(p), \eta(p) \rangle \tag{A.18}$$

が示された。

命題 A.16 (canonical ダイバージェンスの性質). (g, ∇^*, ∇) の canonical ダイバージェンスを D^* として

- (1) *Dは C*[∞] 関数である。
- (2) $D(p||q) \ge 0$
- (3) $D(p||q) = 0 \iff p = q$
- (4) $D(p||q) = D^*(q||p)$

証明 (1) 局所的な C^{∞} 性を示せばよい。 $(p,q) \in \mathcal{U}$ とし、 (U,θ,η) を条件をみたす双対アファインチャートとすれば、(p,q) の近傍 $U \times U$ 上で D は C^{∞} である。

- (2), (3) ψ の ∇ -凸性あるいは φ の ∇ *-凸性より従う。
- (4) 定義より明らか。