# **Linear Algebra Cheatsheet**

# **Distance Formulae**

$$D = \sqrt{x^2 + y^2}$$
 • Distance between  $P_{(x_1,y_1)}$  and  $Q_{(x_2,y_2)}$  in 2D axes -

• Distance between 
$$P_{(x_1,y_1)}$$
 and  $Q_{(x_2,y_2)}$  in `2D` axes -  $D=\sqrt{\left(x_1-x_2
ight)^2+\left(y_1-y_2
ight)^2}$ 

$$D = \sqrt{\,(x_1 - x_2)^2 + (y_1 -$$

ullet Distance between  $P_{(x,y)}$  and origin O in  ${ t 2D}$  axes -

$$D=\sqrt{x^2+y^2+z^2}$$
 • Distance between  $P_{(x_1,y_1,z_1)}$  and  $Q_{(x_2,y_2,z_2)}$  in 3D axes - 
$$D=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}$$

Note - Geometrically we can visualize these points and distances till 3D not beyond that. But with the Linear Algebra, we can mathematically solve ND related problems easily.

· Distance between  $\begin{array}{ll} \bullet & P \to (x_1,x_2,x_3,\ldots,x_n) \\ \bullet & Q \to (y_1,y_2,y_3,\ldots,y_n) \text{ in } \text{ ND } \text{ axes -} \end{array}$ 

 $D = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$ 

 $A.\,B = A*B^T = \sum A_i*B_i^T$ 

 $A = [1 \ 2 \ 3]$  $B = [4 \ 5 \ 6]$ 

From the above figure, we can have A.B as - 
$$A.B = (a_1*b_1+a_2*b_2) = ||A||*||B||*\cos\theta$$
 where - 
$$\theta = \cos^{-1}\left(\frac{||A||*||B||}{(a_1*b_1+a_2*b_2)}\right)$$
 
$$||A|| = \sqrt{a_1^2+a_2^2}$$
 
$$||B|| = \sqrt{b_1^2+b_2^2}$$
 Note - If a dot product between two vectors is 0, then they are perpendicular to each other.

## and we can say $||d||=||A||\cos heta$ (proof is below) w.k.t

Here -

which is

||d|| is the projection of A on B



 $w_1x_1+w_2x_2+w_0=0 o (3)$ 

 $ax + by + cz + d = 0 \rightarrow (4)$ 

 $w_1x_1 + w_2x_2 + w_3x_3 + w_0 = 0 \rightarrow (5)$ 

(a1, a2)

 $A.B = \sum_{i=1}^{n} A_i * B_i = ||A|| * ||B|| * \cos \theta$ 

 $d=\frac{A.\,B}{||B||}=\frac{||A||*||B||*\cos\theta}{||B||}=||A||\cos\theta$ 

We get the line equation as

The line in 3D becomes a plane.

• The general form of a plane is

We can represent (4) in the form of (3) as

The line in `ND` is called `Hyper Plane` . The equation can be taken as - 
$$w_1x_1+w_2x_2+w_3x_3+rac{\cdot\cdot\cdot}{n}+w_nx_n+w_0=0 o(6)$$

$$w0 + [w1 \ w2 \ w3 \dots \ w5] * [[x1] = 0$$
[x2]
[x3]

• When W.X=0, it means that W is  $\perp$  to X.

Distance b/w point to line

Credits - Image from Internet

In [ ]:

In [ ]:

Considering W as row vector and X as column vector  $w_0 + W.X = 0 \rightarrow (8)$ 

[x4][x5]

[xn]]

Here 
$$(x_{1,y_{1}})$$
 is the point and   
ax+by+c = 0 is the equation of the line

 $d = \pm \left( \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right)$ 

 $(x-h)^2 + (y-k)^2 = r^2 \implies x^2 + y^2 = r^2 o (1)$ 

 $x_1^2 + x_2^2 + x_3^2 = r^2 o (2)$ 

 $x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2 = r^2 \rightarrow (3)$ 

 $d=\sum_{i=1}^n x_i^2=r^2 o (4)$ 

(0, 0)

P (x1, x2)

## - Compute the distance between (h,k) and $P_{(x,y)}$ and store in d $\qquad \qquad \text{if } d < r \implies \text{P is inside}$ lacksquare if $d>r \implies$ P is outside lacksquare if $d=r \implies \mathsf{P}$ is on the circle

Similarly

**Ellipse** 

• From eq(4)lacksquare if  $d < r \implies \mathsf{P}$  is inside ullet if  $d>r\implies$  P is outside

ullet From the above figure, we can see the ellipse placed at (0,0) - origin • The equation of the ellipse is given as  $rac{x^2}{a^2} + rac{y^2}{b^2} = 1 o (1)$ How can we determine if a point  $P_{(x1,x2)}$  lies inside the ellipse or not ( 2D )?  $\begin{array}{ccc} \bullet & \text{If } \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} \\ & \bullet & <1 \implies \text{inside} \\ & \bullet & >1 \implies \text{outside} \end{array}$ 

 $rac{x_1^2}{a_1^2} + rac{x_2^2}{a_2^2} + rac{x_3^2}{a_2^2} + \cdots + rac{x_n^2}{a_n^2} = 1 o (3)$ 

P (x1, x2)

(0, 0)

Let's assume circle's center is at Origin and coordinate axes as  $(x_1, x_2, x_3 \dots, x_n)$ • Equation of ellipse in 3D is -

$$d\implies \sum_{i=1}^n\frac{x_i^2}{a_i^2}=1\to (4)$$
 Take  $P_{(x_1,x_2,x_3,\ldots,x_n)}$  and check if  $P$  lies inside or outside or on the hyper-ellipsoid

**Projection** 

Projection of A on B can be visualized like -

In [ ]:

# In other words, we can compute projection of A on B without knowing $\theta$ by

A unit vector is a vector in the same direction the original vector. Suppose 
$$A$$
 is a vector, the unit vector  $\hat{A}=\frac{A}{||A||}$ 

**Unit vector** 

•  $||\hat{A}||=1$ 

In [ ]:

Line 
$$ax+by+c=0\to (1)$$
 • Other equation which we are familiar is 
$$y=mx+c\to (2)$$
 Consider  $eq(1)$  • Replace  $(x,y)$  with  $(x_1,x_2)$ . • Replace coefficients with  $a$  and  $b$  to  $w_1$  and  $w_2$  respectively. • Replace  $c$  with  $w_0$ 

 $(6) \implies w_0 + \sum_{i=1}^n w_i x_i = 0 
ightarrow (7)$ (7) can be represented in vector notation

$$w_0+W.\,X=0 o(8)$$
 • If  $y$  intercept  $(w_0)$  is equal to 0, then  $W.\,X=0\implies$  equation of a line or plane or hyper plane passing through origin.

• From the above figure, we can see a cirlce placed exactly at origin. • The equation of circle is given (considering (h,k)=(0,0)) as

Let's assume circle's center is at Origin and coordinate axes as  $(x_1, x_2, x_3 \dots, x_n)$ 

Take  $P_{(x_1,x_2,x_3,\ldots,x_n)}$  and check if P lies inside or outside or on the hyper-sphere

How can we determine if a point lies inside the circle or not?

• Store the radius (r) value

• Equation of circle in 3D is -

• Equation of circle in ND is -

eq(3) can be represented as -

lacksquare if  $d=r \implies \mathsf{P}$  is on the circle

$$\begin{array}{l} \blacksquare < 1 \implies \text{inside} \\ \blacksquare > 1 \implies \text{outside} \\ \blacksquare = 1 \implies \text{on the ellipse} \\ \text{et's assume circle's center is at Origin and coordinate axes as } (x_1, x_2, x_3 \ldots, x_n) \\ \blacksquare \text{Equation of ellipse in } \text{3D is -} \\ \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1 \rightarrow (2) \end{array}$$

**End** 

• From eq(4)

 $\qquad \text{if } d < 1 \implies \mathsf{P} \mathsf{ is inside}$ 

In [ ]:

Similarly ullet Equation of ellipse in  ${ t ND}$  is considering  $(a_1,a_2,a_3,\ldots,a_n)$  as constants (denominator)eq(3) can be represented as -

• if  $d>1 \Longrightarrow \mathsf{P}$  is outside • if  $d=1 \Longrightarrow \mathsf{P}$  is on the hyper-ellipsoid

In [ ]: