(1) Publication number:

0 380 447 A2

(12)

EUROPEAN PATENT APPLICATION

- (21) Application number: 90810046.4
- ② Date of filing: 23.01.90

(5) Int. Cl.⁵: A01N 43/82, //(A01N43/82, 43:10,37:22)

- (3) Priority: 24.01.89 GB 8901516
- Date of publication of application:01.08.90 Bulletin 90/31
- Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IT LI LU NL SE
- Applicant: SANDOZ AG Lichtstrasse 35 CH-4002 BaseI(CH)
- BE CH DK ES FR GB GR IT LI LU NL SE

Applicant: SANDOZ-PATENT-GMBH Humboldtstrasse 3 D-7850 Lörrach(DE)

Ø DE

Applicant: SANDOZ-ERFINDUNGEN Verwaltungsgesellschaft m.b.H. Brunner Strasse 59 A-1235 Wien(AT)

- ⊗ AT
- Inventor: Känel, Rudolf Hollenweg 75 CH-4144 Arlesheim(CH)
- [54] Improvements in or relating to herbicides.
- The present invention relates to herbicidal compositions comprising
 - (a) 2-(3',4'-dichlorophenyl)-4-methyl-1,2,4-oxadiazolidine-3,5-dione and one or more of
 - (b) (1) 2-chloro-N-(1-methyl-2-methoxyethy)-N-(2,4-dimethyl-thien-3-yl) acetamide,
 - (2) 2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide, and
 - (3) 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide. and to a method of combatting weeds comprising applying to the weed locus a herbicidally effective aggregate amount of compound (a) and one or more of compounds (b)(1), (b)(2) and (b)(3).

EP 0 380 447 A2

Europäisches Patentamt European Patent Office Office européen des brevets

(1) Publication number:

0 380 447 A3

(12)

EUROPEAN PATENT APPLICATION

21) Application number: 90810046.4

Application number: 90810040.

2 Date of filing: 23.01.90

(1) Int. Cl.⁵: **A01N** 43/82, //(A01N43/82, 43:10,37:22)

39 Priority: 24.01.89 GB 8901516

Date of publication of application:01.08.90 Bulletin 90/31

Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

Date of deferred publication of the search report:
09.01.91 Bulletin 91/02

Applicant: SANDOZ AG
 Lichtstrasse 35
 CH-4002 Basel(CH)

BE BE

Applicant: SANDOZ-PATENT-GMBH Humboldtstrasse 3 D-7850 Lörrach(DE)

Applicant: SANDOZ-ERFINDUNGEN Verwaltungsgesellschaft m.b.H. Brunner Strasse 59
A-1235 Wien(AT)

Inventor: Känel, Rudolf Hollenweg 75 CH-4144 Arlesheim(CH)

- (54) Improvements in or relating to herbicides.
- The present invention relates to herbicidal compositions comprising
 - (a) 2-(3',4'-dichlorophenyl)-4-methyl-1,2,4-oxadiazolidine-3,5-dione and one or more of
 - (b) (1) 2-chloro-N-(1-methyl-2-methoxyethy)-N-(2,4-dimethyl-thien-3-yl) acetamide,
 - (2) 2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide, and
 - (3) 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide. and to a method of combatting weeds comprising applying to the weed locus a herbicidally effective aggregate amount of compound (a) and one or more of compounds (b)(1), (b)(2) and (b)(3).

EUROPEAN SEARCH REPORT

EP 90 81 0046

D	OCUMENTS CONSI		lt .		AL ASSISTANTION OF THE		
Category		h indication, where appropriate, vant passages		cialm	CLASSIFICATION OF THE APPLICATION (Int. CI.5)		
Α	DE-A-1 921 464 (BADISCH Page 1 - page 2, paragrap	HE ANILIN & SODA-FABRIK h 2; example 8; claims *	AG) 1-1	1	A 01 N 43/82 // (A 01 N 43/82 A 01 N 43:10		
Α	EP-A-0 234 674 (IMPERIA *Page 1 - page 3, line 7; pa 5-11 *	L CHEMICAL INDUSTRIES) ge 6, lines 27-33; page 9, lin	nes 1-1	1	A 01 N 37:22)		
A	GB-A-1 291 577 (VELSICO * Page 1, lines 12-42; exam		1-1	1			
A	DE-A-3 536 035 (HOECHS * Page 3, line 1 - page 4, lin 5, line 64 - page 6, line 23 *	ST AG) e 33; page 4, lines 49-52; pa		7,9-11			
A,D	US-A-4 666 502 (K. SECK * Column 1, lines 5-10; colui lines 62-66; column 31, lines	INGER) mn 7, lines 21-61; column 8, s 15-53; claims 1,9,14,15,21,	24 -	1			
					TECHNICAL FIELDS SEARCHED (Int. CI.5)		
					A 01 N		
					·		
		,					
			ŀ				
	The present search report has	been drawn up for all claims					
	Place of search	Date of completion of sear	rch		Examiner		
	The Hague	30 October 90			MUELLNERS W.		
Y: A:	CATEGORY OF CITED DOCI particularly relevant if taken alone particularly relevant if combined will document of the same catagory technological background	th another C	the filing of the comment of the com	fate cited in t cited for			
O: P:	non-written disclosure intermediate document theory or principle underlying the i		document		ame patent family, corresponding		

IMPROVEMENTS IN OR RELATING TO HERBICIDES

The present invention relates to herbicides.

15

40

More particularly, the present invention relates to a herbicidal composition comprising

- (a) 2-(3',4'-dichlorophenyl)-4-methyl-1,2,4-oxadiazolidine-3,5-dione and one or more of
- (b) (1) 2-chloro-N-(2-methoxy-1-methylethyl)-N-(2,4-dimethyl-thien-3-yl) acetamide,
- (2) 2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide, and
- (3) chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide.

Compound (a), having as a common name Methazole, is disclosed in US Patent No. 4,190,431, and has been shown to have herbicidal activity against certain grasses and many broad-leaved weeds.

Compound (b)(1), is disclosed in US Patent No. 4,666,502, and has been shown to have herbicidal activity against a broad spectrum of grasses and broad-leaved weeds.

Compound (b)(2), having as a common name Alachlor, is disclosed in US Patent No. 3,547,620, and has been shown to have herbicidal activity against annual grasses and many broad-leaved weeds.

Compound (b)(3), having as a common name Metolachlor, is disclosed in UK Patent No. 1,438,311, and has been shown to have herbicidal activity mainly against grasses.

It has now been found that the use of Methazole in combination with one or more of compounds (b)(1), (b)(2), and (b)(3) (hereinafter referred to as the combination of this invention) is a surprisingly effective herbicide, and demonstrates selectivity towards corn (maize) and sunflowers. The combination of Methazole and compound (b)(1) demonstrates exceptionally good herbicidal activity and selectivity to corn and sunflowers.

In particular, the combination of this invention demonstrates a synergistic herbicidal effect against many broadleaf weeds, including Abutilon theophrasti, Amaranthus retroflexus, Cassia obtusifolia, Chenopodium album, Datura stramonium, Solanum nigrum, Galium aparine, Impomoea purpurea, Sida spinosa, and Stellaria media, and many grasses, including Brachiaria plantaginea, Bromus tectorum, Sorghum halepense.

Accordingly, this invention provides an improved method of combatting weeds in a locus which comprises applying to the locus a herbicidally effective aggregate amount of Compound (a) and one or more of Compound (b)(1), (b)(2) and (b)(3). In one preferred embodiment, the combination of this invention is applied to a crop locus, pre-emergence of the crop, e.g. pre-emergence of both the crop and weeds in an amount sufficient to combat weeds therein without substantially damaging the crop. The combination of this invention is especially well suited to be used in a crop locus comprising sunflowers and/or corn.

Suitable application rates of the combination of this invention depend upon the particular field crop, but will generally range from 40 to 2000 g/hectare for Methazole and from 40 to 1000 g/ha for component (b).

For loci comprising sunflowers and/or corn, Methazole is applied at a rate of from 40 to 2000 g/hectare, preferably from 100 to 1200 g/ha, more preferably 400 to 1000 g/ha. Especially good results are obtained at about 800 g/ha. Component (b) is applied at a rate of from 40 to 1000 g/ha, preferably from 50 to 400 g/ha, more preferably from 100 to 300 g/ha. Especially good results are obtained at about 200 g/ha.

Suitable weight ratios of Methazole to component (b) depend on various factors such as the mode and time of application, the soil, and the crops involved.

tn general, the weight ratio of Methazole to component (b) will range from 1:8 to 40:1, preferably from 1:4 to 12:1, more preferably from 1:1 to 4:1.

For application to loci comprising sunflowers and/or corn, the weight ratio of Methazole to component (b) will range from 1:8 to 24:1, preferably from 1:1 to 12:1, more preferably from 3:2 to 4:1. It is generally preferred that Methazole be present in excess.

The combination of this invention may be employed in any conventional form, for example, in the form of a twin pack, a tank mix, an instant granule, a flowable or a wettable powder in combination with agriculturally acceptable adjuvants. Such compositions may be produced in conventional manner, e.g., by mixing the active ingredients with an adjuvant (carrier, diluent) and other formulating ingredients such as surfactants.

The term adjuvant as used herein means any liquid or solid agriculturally acceptable material which may be added to the active constituents to bring them into an easier or improved applicable form, or to a desired strength of activity. Suitable adjuvants include talc, kaolin, diatomaceous earth, xylene, and water.

In particular, formulations to be applied in spraying forms such as water dispersible concentrates or wet table powders may contain surfactants such as wetting and dispersing agents, e.g. the condensation product of formaldehyde with naphthalene sulphonate, an alkylarylsulphonate, a lignin sulphonate, a fatty alkyl sulphate, an ethoxylated alkylphenol, and an ethoxylated fatty alcohol.

In general, the formulations include from 0.01 to 90 % by weight of active agents, from 0 to 20 % of

EP 0 380 447 A2

agriculturally acceptable surfactant, and 10 to 99.99 % of solid or liquid adjuvants. Concentrate forms of compositions generally contain between about 2 and 80 %, preferably between about 5 and 70 % by weight of active agent. Application forms of formulations may, for example, contain from 0.01 to 20 % by weight, preferably from 0.01 to 5 % by weight of active agent.

HERBICIDAL TESTS

5

10

15

20

The herbicidal activity of the compounds of this application is demonstrated by experiments carried out for the pre-emergence control of a variety of weeds.

In pre-emergence testing, small plastic greenhouse pots filled with dry soil are seeded with the various weed seeds. Twenty-four hours or less after the seeding, the pots are sprayed with water until the soil is wet and the test compounds sprayed at the indicated application rates on the surface of the soil, employing a spray volume corresponding with 1000 I aqueous test liquid per ha.

Compound (a) is sprayed as aqueous solution of a water dispersible granule (75 WDG; commercially available as PROBE^R). Compound (b₁) is sprayed as an aqueous solution of a 720 g/l emulsion concentrate in acetone containing emulsifiers. Mixtures of Compound (a) and Compound (b) are sprayed as tank mixes of the above defined aqueous solutions, at the selected weight ratios.

After spraying, the soil containers are placed in the greenhouse and provided with supplementary heat as required and daily or more frequent watering. The plants are maintained under these conditions for a period of from 14 to 28 days, at which time the conditions of the plants and the degree of inhibition of growth to the plants is rated.

The herbicidal activity was determined in two separate tests, effected at different times. One test involved determination of the herbicidal activity against maize, the grasses Avena fatua, Brachiaria plantaginea, Bromus tactorum and Sorghum halepense and the broadleaf weeds Abutilon theophrasti, Cassia obtusifolia, Chenopodium album, Datura stramonium, Impomoea purpurea and Sida spinosa (Table 1).

Another test involved determination of the herbicidal activity against sunflower (var. Mikaflor and Mirasol), Lolium perenne and the broad leaf weeds Amaranthus retroflexus, Chenopodium album, Solanum nigrum, Galium aparine, Sinapis alba and Stellaria media (Table 2).

Whilst the level of herbicidal activity observed may vary depending on the test conditions (atmospheric conditions, soil) etc., the test results clearly indicate synergy against the grasses Avena fatua, Brachiaria plantaginea, Bromus tectorum and Sorghum halepense, and in particular, against broadleaf weeds, including Abutilon theophrasti, Cassia obtusifolia, Chenopodium album, Datura stramonium, Ipomoea purpurea, Solanum nigrum, Galium aparine, Stellaria media and Amaranthus retroflexus, with good crop safety visà-vis corn (maize) and sunflower (Tables 3 and 4).

In Tables 1 and 2 inhibition of growth to the plant is indicated in percent. All application rates are given in grams of active ingredient per hectare.

40

45

50

TABLE 1: % Inhibition of Growth to Plants

														_				
			Mai	ze	(Cor	n)								•	anta	gine		
			poun lica				/ha)						id (l) te(g	/ha)		
		0	50	100	200	400	800				0	50	100	200	400	800		
	0	0	0	O	0	10	20				0	40	70	80	90	100		
_	250	0	0	0	0	0	10		_ [_	2	250	0	60	100	100	100	100
ole ation ha)	500	0	0	0	0	10	20	ole	atio /ha)	500	20	50	100	100	100	100		
Methazole Applicati rate (g/ha	1000	0	0	0	0	10	30	Methazole Application rate(g/ha)	1000	100	100	100	100	100	100			
Methazole Application rate (g/ha)		0	0	0	0	10	30	App rat		2000	100	100	100	100	100	100		
Bromus tectorum								<u> </u>			<u>. </u>		└──					
	 	Br.	omus	tec	tor	um		<u> </u>				L			ense			
	<u> </u>	Com	poun	d (b)(1)	/ha)				Sor	ghur	n ha	lept	ense	:		
	-	Com	pound	d (b)(1 ra)	/ha)				Sor	ghur pour lica	n ha	lept	ense	/ha)		
	0	Com	pound	d (b)(1 ra	te(g	/ha)			0	Sor Com App	ghur pour lica	n ha	lept	te(g	/ha)		
	0 250	Com App	pound lica	d (b)(1 ra) te(g 400	/ha)				Sor Com App	ghur pour lica	n ha id (t ition 100 60	lept 0)(1 1 ra 200	te(g	/ha) 800		
		Com App O	pound lica 50	d (b tion 100	200 30) te(g 400 70	/ha) 800 90			0	Sor Com App O	ghur pour lica 50	n ha id (tition 100 60	lept () (1 n ra 200 80	ense) te(g 400	/ha) 800 100		
Methazole Application rate (g/ha)	250	Com App 0 0	50 0 20	100 20 30	200 30 50	te(g 400 70 90	/ha) 800 90		Application rate (g/ha)	0 250	Sor Com App O O	pour lica 50 20	n ha id (tition 100 60	lept () (1 n ra 200 80	ense) te(g 400 90 100	/ha) 800 100 100		

Abutilon	theophrasti
ADUCTION	cheopin asci

	Compound (b)(l) Application rate(g/ha)									
		0 50 100 200 400 800								
	0	0	10	20	30	30	30			
	250	0	20	20	20	30	40			
zole cation (g/ha)	500	10	20	30	80	100	100			
~~	1000	100	100	100	100	100	100			
Meth Appl rate	2000	100	100	100	100	100	100			

Cassia obtusifolia

		Compound (b)(1) Application rate(g/						
		0	50	100	200	400	800	
	0	0	0	0	0	0	0	
	250	0	0	0	0	0	0	
ole ation g/ha)	500	0	0	0	0	0	0	
Methazole Applicati rate (g/h	1000	0	0	0	50	50	100	
Meth Appl rate	2000	100	100	100	100	100	100	

TABLE 1 : Continued

Chenopodium album

Datura stramonium

			poun lica				/ha
		0	_	_	200		_
	0	0	0	10	20	30	40
_	250	20	30	40	90	100	100
azole icatio (g/ha)	500	40	60	60	100	100	100
Methazole Applicati rate(g/ha	1000	100	100	100	100	100	100
Metha Appli rate	2000	100	100	100	100	100	100

			Compound (b)(l) Application rate(g/ha)						
		0	50	100	200	400	800		
	0	0	10	40	50	60	70		
_	250	10	20	50	60	70	90		
azole icatio (g/ha)	500	30	70	80	100	100	100		
Methazole Applicati rate(g/ha	1000	100	100	100	100	100	100		
Meth Appl rate	2000	100	100	100	100	100	100		

Ipomoea purpurea

Sida spinosa

		Compound (b)(l) Application rate(g/ha)							
		0	50	100	200	400	800		
	0	0	0	0	0	20	30		
5 7	250	0	20	20	40	40	50		
zole cation (g/ha)	500	10	20	30	40	40	50		
la i	1000	30	30	30	40	40	50		
Met App rat	2000	30	30	40	40	40	50		

		Compound (b)(1) Application rate(g/ha)							
		0	50	100	200	400	800		
	0	0	20	30	50	60	80		
5 7	250	0	20	30	40	40	80		
zole cation (g/ha)	500	0	30	30	90	90	100		
Methazole Applicati rate (g/h	1000	80	100	100	100	100	100		
Ap ra	2000	100	100	100	100	100	100		

TABLE 2: %Inhibition of Growth to Plants

	Sunflower Mikaflor								
	•	Compound (b)(1) Application rate(g/ha)							
		0 50 100 200 400 800							
	0	0	0	0	0	0	10		
	100	0	0	0	0	0	0		
	200	0	0	0	0	0	0		
tion //ha	400	0	0	0	0	0	10		
Methazole Application rate (q/ha)	800	0	0	0	0	10	10		
Met App rat	1200	0	0	0	0	10	10		

Sunflower	Mirasol
Compound	h)(1)

		Compound (b)(1) Application rate(g/ha)						
		0	50	100	200	400	800	
	0	0	0	0	0	0	·10	
	100	0	0	0	0	0	0	
	200	0	0	0	0	0	10	
le tior //ha)	400	0	0	0	0	0	20	
Methazole Application rate (g/ha)	800	0	0	0	0	10	10	
Met App rat	1200	0	0	0	0	10	20	

Lolium perenne

		Comp App	oun lica	d (b)(1 ra) te(g	/ha)
		0	50	100	200	400	800
	0	0	10	20	30	60	90
	100	0	0	30	40	60	90
c ~	200	0	20	30	40	60	70
ole atio g/ha	400	0	20	30	40	50	80
Methazole Application rate (g/ha)	800	20	20	20	30	60	90
App rat	1200	30	30	50	60	70	100

Amaranthus retroflexus

		Com App	poun lica	d (t tion)(1 1 ra) te(g	/ha)
		0	50	100	200	400	800
	0	0	0	10	40	100	100
	100	0	0	20	30	100	100
5 (2)	200	0	0	0	60	100	100
ethazole pplication ate (g/ha)	400	0	0	0	60	100	100
·	800	0	0		100	100	100
Metha Appli rate	1200	30	0	20	100	100	100

Chenopodium album

		Con	pour lica	id (i	b)(1 n ra) ite(g/ha)
		0	50	100	200	400	800
	0	0	0	0	0	0	20
	100	0	0	0	0	10	30
· ~	200	0	0	0	10	30	50
ethazole pplication ate (g/ha)	400	0	0	0	60	90	90
G	800	20	70	100	100	100	100
Meth Appl rate	1200	40	60	70	90	100	100

Solanum nigrum

		Com	poun lica	d (b)(1 ra) te(g	/ha)						
		0	50	100	200	400	800						
	0	0	0	20	50	80	90						
	100	0	0	10	30	100	100						
	200	0	20	50	60	100	100						
le itio	400	10	40	70	90	100	100						
Methazole Application rate (g/ha)	800	10	90	90	100	100	100						
Meth Appl rate	1200												

TABLE 2: Continued

5

10

15

20

					ара			
					nd (atio			g/ha)
			0	50	100	200	400	800
		0	0	0	0	20	30	70
		100	0	0	0	0	60	70
	c ~	200	0	0	0	0	80	100
	Methazole Application rate (g/ha)	400	0	0	0	10	80	90
	chazi olic te (800	0	0	20	30	60	100
1	a to	1200	0	0	20	40	90	100

		3	sina	pis	aib	a	
				d (b			/ha)
		0	50	100	200	400	800
	0	0	0	0	0	10	50
	100	0	0	0	0	0	0
5.0	200	0	0	0	0	0	30
Methazole Application rate (g/ha)	400	0	0	0	0	0	40
haze lici	800	0	0	0	20	30	50
Metha Appli	1200	0	0	0	30	40	90

25			Ste	llar	тап	medī	a	
			Comp App 1	oun	d (b tion)(1 ra) te(g	/ha)
30			0	50	100	200	400	800
30		0	0	0	0	30	50	70
		100	0	0	0	10	30	80
35		200	0	0	0	20	50	100
00	cation (g/ha)	400	0	10	30	70	90	100
	1 2 .2		90	90	100	100	100	100
	letha lppl	1200	100	100	100	100	100	100

5 SYNERGY

40

55

The synergistic effect of various weight ratios of Methazole to compound (b)(1) are determined using the Colby equation

E = X + Y - (XY-100)

wherein X is the percent inhibition of growth by herbicide A at p g/ha,

Y is the percent inhibition of growth by herbicide B at q g/ha, and

E is the expected percent inhibition of growth by herbicides A and B at the application rates of p and q, respectively.

If E is lower than the experimentally established percent inhibition of growth, there is synergism.

The values indicated in Tables 3 and 4 represent the difference between the experimentally established percent inhibition of growth and the expected percent inhibition of growth (E) as measured by the Colby equation, for various application rates and weight ratios of Methazole to compound (b)(1). A positive value indicates synergism. All application rates are given in grams of active ingredient per hectare.

TABLE 3 : Synergism

5			ı	Mai:	ze (Carn	1)					Br	achi	aria	ı pl	anta	ginea
5			Con	pou	nd (atio	b)(n r	l) ate(g/ha)			Co Ap	mpou plic	nd (atio	b)(n ra	l) ate(g/ha)
							400	800			_		50	100	200	400	800
10			L				\perp					<u> </u>	1_	<u> </u>		<u> </u>	
	۔	250					-10	-10			250	L	+20	+30	+20	+10	
	ole atio /ha)		Γ	T						ole atio	. 500	L	-2	+24	+16	+8	
15	Methazole Application rate(g/ha)	1000						+10		Methazole Application rate(g/ha)	L						
	Apg	2000						+10		Me Ap							
20			Br	omu	s te	cto	rum		•			S	orgh	um h	ale	pens	e
					id (l			·/ha\	I				nuoq]
			Арр	1		1		/ha)				Арр				te(g	
25				50	100	200	400	800					50	100	200	400	800
										İ							
	5.7	250		+20	+10	+20	+20			E 73	250		+20	+30	+20	+10	
	ole atic g/ha	500		+10	+12	+33	+17	+9		zole cation (g/ha)	500		+20	+20	+20	+10	
30	Methazole Application rate (g/ha)	1000			+6	+39	+11	+7		Methazole Application ratė (g/ha)	1000		+6	+8	+14	+7	
į	A Ap	2000		+40	+36	+39	+21	+7		Api ra	2000		+24	+12	+6	+3	

Abutilon theophrasti .

		Compound (b)(1) Application rate(g/ha)											
_ 		50	100	200	400	800							
50	250	 +10		-10		+10							
Methazole Application rate (g/ha)	500	+1	+2	+43	+63	+63							
thaz plic te (1000												
Me Ap	2000												

Cassia obtusifolia

		Compound (b)(l) Application rate(g/ha)										
			200	400	800							
5 7												
Methazole Application rate (g/ha)												
thaz plic te (1000		+50	+50	+100							
Me Ap												

TABLE 3 : Continued

	TA	BLE 3:	Co	ntir	nued												
			Ch	enop	odiu	ım a	16 un	n				Dat	ura	str	amon	ium	
				ipoui olica				g/ha	7				pour				j/ha)
,				50	100	200	400	800	Ī,	· · · · · · · · · · · · · · · · · · ·			50	100	200	400	800
						<u> </u>	_						-	_			<u> </u>
	_	250		+10	+12	+54	+56	+48		5	250		+1	+4	+15	+6	+17
	Methazole Application rate(g/ha)	500		+20	+14	+48	3 +42	+36		Methazole Application rate(g/ha)	500		+33	+22	+35	+28	+21
	Methazole Applicati rate(g/ha									thaz olic te(g							
	Met App rat		1						L	App							
			Ipo	omoe	a pu	rpu	rea		•			Si	da s	pino	osa		
				pour				j/ha)					poun lica				/ha)
				50	100	200	400	800					50	100	200	400	800
	5 -	250		+20	+20	+40	+20	+20		5.7							
	ole atio g/ha	500		+10	+20	+30	+12	+13		zole cation (g/ha)	500		+10		+40	+30	+20
	Methazole Application rate (g/ha)	1000				+10	-4	-1		Methazole Application ratè (g/ha)	1000		+16	+14	+10	+8	+4
	Mei Api	2000			+10	+10	-4	-1		A P							

TABLE 4: Synergism of Mixtures

				aflo) ate(g	r /ha)]	٠,			_	nd (atio		ol g/ha)
				400					 			400	800
		-								\vdash			
e ion ha)							e jon	ha)	400				+10
hazol olicat e (g/	800			+10			thazol olicat	te (g/	800			+10	
Met App rat	1200			+10			Met! App	rat	1200			 +10	+10

Lolium perenne

25			Compound (b)(l) Application rate(g/ha)								
				50	100	200					
⁻ 30		100		-10	+10	+10					
35	E (e	200		+10	+10	+10					
	Methazole Application rate (g/ha)	400		+10	+10	+10					
	thaz olic te (
	Ap										

TABLE 4 : Continued

	IA	BLE 4 .	COM	, i iiu	EU													
5			Amaranthus retroflexus													albu	m	
			Compound (b)(1) Application rate(g/ha)					,			Co	mpou	und rati	<u>(Б) (</u>	l)	g/ha}		
				۱۱ ۱ ور 	1	- 1 -		7				-	1		_,_		T	
10				1_	\bot	20	0		_			 _	5	0 10	0 20	0 400	800	
										1			\perp	\perp				
										Methazole Application rate (g/ha)	100			\perp		+10	+10	
15	Methazole Application	200				+2	0		7		200				+1	0+30	+30	
75		400	\top			+2	0		7		400				+6	0+90	+70	
•		800				+6	0		7		800		+5	0+8	0 +8	0+80	+64	
	Met.	1200	+-	†		+4	2		1	App rat	1200		+2	0 +3	0 +5	0 +60	+48	
20				прои	nd (b) (]			Con	npou	nd (bari	1)		
25			App	Application rate(g/ha)]		App	Application rate(g/ha)						
				50	100	200	400	800				_		100		400	800	
	- [Ì								Methazole Application rate (g/ha)								
30	Ì		7		ŀ		<u> </u>				100					+30		
	-	200		+20	+30	+10	+20	+10			200					+50	+30	
Methazole Application	azole ication (q/ha)	400		+30	+42	+35	+18	+9			400				T	+50	+20	
	haze lice	800		+80	+62	+45	+18	+9			800			+20		+30	+30	
	Met App	1200		+40	+32	+20	+8	+4			1200			+20		+60	+30	
40	Sinapis alba Compound (b)(1) Application rate(g/ha)									Stellaria media Compound (b)(l) Application rate(g/ha)								
45				- T		200	400	800					50	100	200	400	800	
45		0		+														
		100		\dashv	-													
50 ਵਾ		200		十		\dashv	†				200		_	_			\square	
	Methazole Application rate (q/ha)	400		\dashv		\dashv				Methazole Application rate (g/ha)	400		+10	+30	+40	+40	+30	
	Methazole Applicati rate (q/h	800	_		-	+20	+20	\neg		Methazole Applicati rate (g/h	800			+10	+7	+5	+3	
	App rat	1200				+30	+30	+40		App rat	1200							
55								——'	•									

EP 0 380 447 A2

Claims

5

10

15

20

25

30

35

40

45

50

55

- 1. A herbicidal composition comprising a herbicidally effective aggregate amount of
 - (a) 2-(3',4'-dichlorophenyl)-4-methyl-1,2,4-oxadiazolidine-3,5-dione and one or more of
 - (b) (1) 2-chloro-N-(1-methyl-2-methoxyethyl)-N-(2,4-dimethyl-thien-3-yl) acetamide,
 - (2) 2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide, and
- (3) 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide.
- 2. The composition of Claim 1 in a weight ratio of component (a): compound (b) of from 1:8 to 40:1.
- 3. The composition of Claim 2 in a weight ratio of component (a): compound (b) of from 1:8 to 24:1.
- 4. The composition of Claim 3 in a weight ratio of component (a): compound (b) of from 1:4 to 12:1.
- 5. The composition of Claim 4 in a weight ratio of component (a): compound (b) of from 1:1 to 12:1.
- 6. The composition of Claim 5 in a weight ratio of component (a): compound (b) of from 1:1 to 4:1.
- 7. The composition of Claim 6 in a weight ratio of component (a): compound (b) of from 3:2 to 4:1.
- 8. A composition according to any one of Claims 1 to 7 comprising
 - (a) 2-(3',4'-dichlorophenyl)-4-methyl-1,2,4-oxadiazolidine-3,5-dione and
 - (b) (1) 2-chloro-N-(1-methyl-2-methoxyethyl)-N-(2,4-dimethyl-thien-3-yl) acetamide.
- 9. A method of combatting weeds in a locus which comprises applying to the locus a herbicidally effective aggregate amount of
 - (a) 2-(3',4'-dichlorophenyl)-4-methyl-1,2,4-oxadiazolidine-3,5-dione and one or more of
 - (b) (1) 2-chloro-N-(1-methyl-2-methoxyethyl)-N-(2,4-dimethyl-thien-3-yl) acetamide,
 - (2) 2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide, and
 - (3) 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide.
- 10. The method of Claim 9 wherein the locus is a crop locus and the composition is applied preemergence the crop in an amount sufficient to combat weeds therein without substantially damaging the crop.
 - 11. The method of Claim 10 wherein the crop locus comprises at least one of sunflower and corn.