Pilas

Dr. Jaime Osorio Ubaldo

Estructura de dato Pila

La pila o stack, es una colección ordenada de elementos en la cual en un extremo(llamado parte superior) se pueden insertar nuevos elementos y de la cual se pueden retirar otros.

Jaime Osorio

Estructura de dato Pila

La pila o stack, es una colección ordenada de elementos en la cual en un extremo(llamado parte superior) se pueden insertar nuevos elementos y de la cual se pueden retirar otros.

A la pila se le conoce como estructuras de datos de tipo <u>UFO</u> (el uÍtimo en entrar primero en salir).

• Apilar un elemento a la pila.

- Apilar un elemento a la pila.
- Desapilar un elemento de la pila.

- Apilar un elemento a la pila.
- Desapilar un elemento de la pila.
- Determinar si una pila está vacía.

- Apilar un elemento a la pila.
- Desapilar un elemento de la pila.
- Determinar si una pila está vacía.
- Determinar el tope o cima de la pila.

- Apilar un elemento a la pila.
- Desapilar un elemento de la pila.
- Determinar si una pila está vacía.
- Determinar el tope o cima de la pila.
- Vaciar pila.

1 Reconocedores de análisis sintácticos de lenguajes de libre contexto.

- Reconocedores de análisis sintácticos de lenguajes de libre contexto.
- LLamadas a subprogramas(por ejemplo en los navegadores).

- Reconocedores de análisis sintácticos de lenguajes de libre contexto.
- LLamadas a subprogramas(por ejemplo en los navegadores).
- En programas que requiere aplicar recursividad (factorial de un número, torres de Hannoi, algoritmos de ordenamiento).

- Reconocedores de análisis sintácticos de lenguajes de libre contexto.
- LLamadas a subprogramas(por ejemplo en los navegadores).
- En programas que requiere aplicar recursividad (factorial de un número, torres de Hannoi, algoritmos de ordenamiento).
- Tratamiento de expresiones aritméticas (Convertir de infija a prefija o postfija).

- Reconocedores de análisis sintácticos de lenguajes de libre contexto.
- 2 LLamadas a subprogramas(por ejemplo en los navegadores).
- En programas que requiere aplicar recursividad (factorial de un número, torres de Hannoi, algoritmos de ordenamiento).
- Tratamiento de expresiones aritméticas (Convertir de infija a prefija o postfija).
- **5** Las calculadoras usan pilas para el cálculo de expresiones aritméticas como (2+3)*5+1.

Jaime Osorio

Definimos la estructura de datos

```
struct nodopila {
int dato;
nodopila *sig;
};
typedef nodopila *pnodopila;
pnodopila pcima;

varable tipo puntero a nodopila.
```

Clase pila

```
class pila{
pila(): ¿ constructor de la clase

~pila(); ¿ destructor de la clase

void apilar(:-
private:
public:
    void apilar(int x);
    int desapilar();
    void imprimir();
```

Constructor

```
clase función
pila::pila(){
pcima = NULL;
}
```

Pela vacia Pelma

Destructor

Apilar

Desapilar

La variable tipo puntero

Imprimir Pila

```
void pila::imprimir(){
                      PilaVácia
pnodopila p;
if(pcima == NULL)
    cout << "Pila vacia" << endl:
else{
    p=pcima;
    while(p!=NULL){
        cout<<(*p).dato<< "->":
        p=(*p).sig;
                                       2->4-> NULD
    cout << "NULO" << endl:
```

```
#include <iostream>
 #include "pila.h"
 using namespace std;
pila stack; « crearun objeto de la clase pila
 int x, i;
 cout << "Apilando datos:" << endl;
for(i=1;i<=5;i++){}
                      stack.apilar(8)
stack.apilar(4)
 cin >> x:
 stack.apilar(x);
cout << endl << "Desapilando datos" << endl;
                            stack.desapilar()
_while(!stack.estavacia()){
x=stack.desapilar();
stack.imprimir();
```

Problema

Escriba un programa que permita calcular una expresión dada en postfijo.

Input:
$$\underline{23} + \underline{8} *$$
Output: 40

Código Asscii

TAB	LA	D€	CAF	RACT	ERE	5 D	EL C	ÓDIO	io 4	SCII
1 0	25 ↓	49 1	73 I	97 a	121 y	145 æ	169 -	193 ⊥	217 4	241 +
2 .	26	50 2	74 J	98 b	122 z	146 Æ	170 -	194 -	218 -	242 >
3 💗	27	51 3	75 K	99 c	123 (147 ô	171 1	195	219	243 <
4 •	28 _	52 4	76 L	100 d	124	148 8	172	196 -	220	244 [
5 .	29 +	53 5	77 M	101 e	125	149 0	173	197 +	221	245
6 🌲	30 🛦	54 6	78 N	102 f	126 ~	150 û	174 «	198	222	246 ÷
7	31 🕶	55 7	79 0	103 a	127 #	151 ù	175 »	199	223	247 ≈
8	32	56 8	80 P	104 h	128 C	152 ÿ	176	200	224 a	248 °
9	33 !	57 9	81 0	105 i	129 ü	153 0	177	201 [225 B	249 .
10	34 "	58 :	82 R	106 1	130 é	154 Ü	178	202	226 Г	250 .
11	35 #	59 ;	83 S	107 k	131 â	155 ¢	179	203 =	227 #	251 /
12	36 \$	60 <	84 T	108 1	132 ä	156 €	180 -	204	228 5	252 n
13	37 %	61 =	85 U	109 m	133 à	157 ¥	181	205 =	229 σ	253 2
14	38 &	62 >	86 V	110 n	134 á	158 P	182	206 #	230 4	254 .
15	39 /	63 ?	87 W	111 0	135 c	159 f	183 - 1	207	231 7	255
16 🕨	40 (64 @	88 X	112 p	136 ê	160 á	184 - 1	208 4	232 4	PRESIONA
17	41)	65 A	89 Y	113 q	137 ĕ	161 1	185	209 =	233 €	LA TECLA
18 ‡	42 *	66 B	90 Z	114 r	138 è	162 6	186	210	234 Ω	Alt
19 !!	43 +	67 C	91 [115 s	139 ï	163 ú	187	211	235 8	MÁS EL NÚMERO
20 ¶	44	68 D	92 \	116 t	140 1	164 ñ	188	212 -	236 ∞	110000000000000000000000000000000000000
21 §	45 -	69 E	93 1	117 u	141 i	165 N	189 4	213 =	237 d	CORTESIA DE:
22	46 .	70 F	94 ^	118 v	142 Ä	166	190 1	214	238 €	idec .
23 ‡	47 /	71 G	95	119 W	143 Å	167 2	191 7	215	239 n	1200
24 +	48 0	72 H	96 1	120 x	144 É	168 ¿	192	216	240 =	desde

Jaime Osorio

Calculadora

```
int main() {
int x,y;
pila p;
char cadena[20];
cout << "Ingrese la cadena en postfijo" << endl;
fgets(cadena, 20, stdin);
for(int i=0;cadena[i]! =' |0';i++) {
  if(cadena[i]>=48&&cadena[i]<=57)</p>
          p.apilar(cadena[i]-48);
     else if(cadena[i]=='+') {
          x=p.desapilar(); ∨
          y=p.desapilar(); •
          p.apilar(x+y); ___
p.imprimir();
```

Tarea

Agregar el código necesario para que la calculadora realice las cuatro operaciones básicas (adición, sustraccón, multiplicación y división).