Transdisciplinary Assessment of High-Andean Water Resources

Giova Mosquera

Departamento de Ingeniería Pontificia Universidad Católica del Perú gmosquerar@pucp.edu.pe

DIGIWATER: Resilience through Digitization Workshop
October 20, 2025

High-Elevation Ecosystems in the Tropical Andes

Ecosystem	Areal Extent (km²)	Percentage (%)
Páramo	66.366	12
Jalca	19.754	3
Puna	498.025	85
TOTAL	584.145	100

High-Andean ecosystems

~3,000-5,000 m asl

Above the continuous tree line Below the perennial snow line

Headwaters of main rivers draining to the Amazon Basin and the Pacific Ocean

Mosquera et al. 2022 (STOTEN)

Socio-ecohydrological relevance of high-Andean ecosystems

- High-Andean ecosystems are considered social-ecological systems of vital importance in the tropical Andes.
- These ecosystems provide key hydrological ecosystem services and are the water towers of high-Andean communities and downstream urban centers.
- There is an urgent need to understand the hydrological function of high-Andean headwater ecosystems and their relationship with ecological and social processes.

What do we know?

Contents lists available at ScienceDirect

Science of the Total Environment

Review Article

Progress in understanding the hydrology of high-elevation Andean grasslands under changing land use

Giovanny M. Mosquera ^{a,*}, Franklin Marín ^{b,c}, Margaret Stern ^{d,e}, Vivien Bonnesoeur ^{f,e}, Boris F. Ochoa-Tocachi ^{g,h,e}, Francisco Román-Dañobeytia ^f, Patricio Crespo ^{b,e}

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Frontiers in páramo water resources research:

A multidisciplinary assessment

Giovanny M. Mosquera ^{a,*}, Robert Hofstede ^{a,b}, Leah L. Bremer ^{c,d}, Heidi Asbjornsen ^e, Aldemar Carabajo-Hidalgo ^{f,g}, Rolando Célleri ^{g,h}, Patricio Crespo ^{g,h}, Germain Esquivel-Hernández ⁱ, Jan Feyen ^{g,j}, Rossana Manosalvas ^{k,l}, Franklin Marín ^{m,n}, Patricio Mena-Vásconez ^{k,l}, Paola Montenegro-Díaz ^{g,o,p}, Ana Ochoa-Sánchez ^p, Juan Pesántez ^g, Diego A. Riveros-Iregui ^q, Esteban Suárez ^a

Status of research in high-Andean water resources

Interdisciplinary and **transdisciplinary** methods and approaches are required to improve the understanding of tropical alpine ecosystems as a **socio-ecological systems** that provides important hydrological services.

Mosquera et al. 2023 (STOTEN)

How did this start?

Giova Mosquera
(Engineering Department)
Civil Engineer; Catchment hydrology, ecohydrology

Isabel Gurrero-Ochoa
(Economics Department)
Economist; Environmental economics and development

Fabian Drenkhan
(Humanities Department)
Geographer; Glaciology, water (in)security

Sofía Castro
(Institute of Nature and Energy)
Economist; territories, water governance

Where can we carry out transdisciplinary research?

Carhuayumac Socioecohydrological Observatory

San Pedro de Casta Peasant Community (3,200 – 4,700 m a.s.l.)

So, how we will start?

New project: November 2025-October 2027

Interdisciplinary system understanding: The Coupled Infrastructure Systems Framework (CISF; Anderies, 2025) enables an integrated analysis of the socio-ecological water system by bridging local knowledge with expert insights from physical, ecological, and the social sciences.

Step 1. The biophysical dimension

Biophysical and ecohydrological interactions: It highlights the complex interactions among natural resources—such as water, soils, and vegetation—within ecohydrological cycles that

shape the puna landscape's resilience and function.

Resources: Water, vegetation, soil

Methods: Physicochemical measurements

Mosquera et al. 2016 (HyP) Correa et al. 2017 (WRR)

Step 2. The political dimension

Actors, institutions, and infrastructure: The framework helps identify and analyze the roles of water users, infrastructure providers (e.g., community committees, municipalities), and the formal and informal rules that govern access and management.

Methods: Semi-structured interviews

Peasant community members

Management committees, boards of directors

Ancient infrastructure, reservoirs, pipelines

Step 3. The human dimension

interviews & workshops

Problem identification through knowledge contrast: Through participatory methods, the CISF facilitates <u>contrasting local and expert perspectives</u> to <u>reveal key challenges</u> such as <u>overuse</u>, governance gaps, or degraded infrastructure.

Correa et al. 2017 (WRR)

Integration of local and academic knowledge

Transdisciplinary solutions and co-production: It supports the co-creation of context-specific, sustainable solutions that strengthen collective action, enhance institutional robustness, and adapt water governance to social and environmental change.

Thanks for your attention!

Questions?

Giova Mosquera
Pontificia Universidad Católica del Perú
gmosquerar@pucp.edu.pe

SCAN ME

Research Gate