Applied Machine Learning

Classification - Random Forests - Splits

Random Forests - Splits

- Decision Trees and Random Forests
- Entropy
- Information Gain
- Dealing with missing values

Decision Trees

Decision Tree

- Each node is a test on some input feature
- The result of the test indicates what branch to take
- Each leave represents the resulting class

Decision Trees - Construction

DecisionTreeExpand (branch, dataset)

stop when

depth(branch_node) >= max_depth

size(dataset) <= min_leave_size

all elements in dataset in same class

(subset_l, subset_r, test) = best_split(dataset)

(child_r,child_r) = new_branch(branch, test, split_l, split_r)

DecisionTreeExpand(child_I,subset_r)

DecisionTreeExpand(child_r,subset_r)

Entropy - 2 classes

A	B	Entropy(S)
88	12	0.53
0	100	0.00
1	99	0.08
12	88	0.53
25	75	0.81
49	51	0.99
50	50	1.00

- Diversity of dataset $S = A \cup B$
 - one subset per class

•
$$N = |A| + |B|$$

•
$$P(A) = \frac{|A|}{N}$$
, $P(B) = \frac{|B|}{N}$

• Entropy(S) = $-P(A)\log_2 P(A) - P(B)\log_2 P(B)$

Entropy - C classes

More general case:

- ullet The elements of S may belong to C different classes
- Each class i with probability P_i

• Entropy(S) =
$$-\sum_{i=1}^{C} P_i \log_2 P_i$$

Information Gain

• Applying test on values of feature $\boldsymbol{x}^{(i)}$ in set S results in subsets S_l and the S_r

•
$$P_{S_l} = \frac{|S_l|}{|S|}$$
, $P_{S_r} = \frac{|S_r|}{|S|}$

• Gain
$$(S; S_1, ..., S_n) = \text{Entropy}(S) - \sum_{i=1}^n \frac{|S_i|}{|S|} \text{Entropy}(S_i)$$

Information Gain

$$Gain(S; S_1, ..., S_n) = Entropy(S) - \sum_{i=1}^n \frac{|S_i|}{|S|} Entropy(S_i)$$

- Examples
 - Entropy(S) = 0.996
 - Gain(S; S_{left} , S_{right}) = 0.99 $-(\frac{11}{15}*0.84 + \frac{4}{15}*0.00) \approx 0.37$
 - $Gain(S; S_{up}, S_{down}) = 0.99 (\frac{7}{15} * 0.00 + \frac{8}{15} * 0.00) \approx 0.99$

Dealing with missing values

- In splits, if an item misses the feature value that decide where it goes
 - Estimate it based on other examples
 - mode or mean
 - Consider only the examples in the corresponding branch

Random Forests - Splits

- Decision Trees and Random Forests
- Entropy
- Information Gain
- Dealing with missing values

Applied Machine Learning

Classification - Random Forests - Splits