Mixed strategies

	q_1	q_2	q_3	q_4	q 5
p_1	1	0	1	0	1
p_2	-1	0	0	1	1
p_3	1	0	-1	1	0

- pure strategies: each player chooses a single action.
- mixed strategies: each player chooses a distribution over actions.
- ► Expeted gain/loss: $\vec{p}M\vec{q}^T$

The Minimax theorem

John Von-Neumann, 1928

$$\max_{\vec{p}} \min_{\vec{q}} \vec{p} M \vec{q}^T = \min_{\vec{q}} \max_{\vec{p}} \vec{p} M \vec{q}^T$$

- Unlike pure strategies, the order of choice of mixed strategies does not matter.
- Optimal mixed strateigies: the strategies that achieve the minimax.
- Value of the game: the value of the minimax.
- Finding the minimax strategies when the matrix is known = Linear Programming.

A matrix corresponding to online learning.

t =	1	2	3	4	
expert 1	1	0	1	0	
expert 2	-1	0	0	1	
expert 3	1	0	-1	1	

- The columns are revealed one at a time. strategies does not matter.
- Using Hedge or NormalHedge the row player chooses a mixed strategy over the rows that is almost as good as the best single row in hind-sight.
- The best single row in hind-site is at least as good as any mixed strategy in hind-sight.

A matrix corresponding to online learning.

t =	1	2	3	4	
expert 1	1	0	1	0	
expert 2	-1	0	0	1	
expert 3	1	0	-1	1	

- If the adversary playes optimally, then the row distribution coverges to a minimax optimal mixed strategy.
- But adversary might not play optimally minimizing regret is a stronger criterion than converging to minimax optimal mixed strategy.

A matrix corresponding to boosting

	ex. 1	ex. 2	ex. 3	ex. 4	
base rule 1	1	0	1	0	
base rule 2	0	0	0	1	
base rule 3	1	0	0	1	

- 0 mistake, 1 correct.
- ▶ A weak learning algorithm: can find a base rule whose weighted error is smaller than $1/2 \gamma$ or any distribution over the examples.
- ► There is a distribution over the base rules such that for any example the expected error is smaller $1/2 \gamma$.
- Implies that the majority vote wrt this distribution over base rules is correct on all examples.
- Moreover the weight of the majority is at least $1/2 + \gamma$, the minority is at most $1/2 \gamma$.

$h_1(x_1)=y_1$ means 1 is correct, 0 if incorrect

	h ₁	h ₂	h ₃
X 1	$h_1(x_1)=y_1$	$h_2(x_1)=y_1$	hs(x1)=y1
X 2	h ₁ (x ₂)=y ₂	h ₂ (x ₂)=y ₂	h3(X2)=Y2
X 3	h ₁ (x ₃)=y ₃	h ₂ (x ₃)=y ₃	hs(xs)=ys
X 4	h ₁ (x ₄)=y ₄	h ₂ (x ₄)=y ₄	h3(X4)=Y4

Boosting and the Minmax Theorem

- γ -weak learning assumption:
 - for every distribution on examples
 - can find weak classifier with weighted error $\leq \frac{1}{2} \gamma$
- equivalent to:

(value of game
$$M$$
) $\geq \frac{1}{2} + \gamma$

- by minmax theorem, implies that:
 - \exists some weighted majority classifier that correctly classifies all training examples with margin $\geq 2\gamma$
 - further, weights are given by maxmin strategy of game M

Idea for Boosting

- maxmin strategy of M has perfect (training) accuracy and large margins
- find approximately using earlier algorithm for solving a game
 - i.e., apply MW to M
- yields (variant of) AdaBoost

AdaBoost and Game Theory

summarizing:

- weak learning assumption implies maxmin strategy for M defines large-margin classifier
- AdaBoost finds maxmin strategy by applying general algorithm for solving games through repeated play

consequences:

- weights on weak classifiers converge to (approximately) maxmin strategy for game M
- (average) of distributions D_t converges to (approximately) minmax strategy
- margins and edges connected via minmax theorem
- explains why AdaBoost maximizes margins
- different instantiation of game-playing algorithm gives online learning algorithms (such as weighted majority algorithm)

Boosting as a Game

- Mindy (row player) → booster
- matrix M:
 - row ← training example
 - column ← weak classifier
 - $\mathbf{M}(i,j) = \begin{cases} 1 & \text{if } j\text{-th weak classifier correct on } i\text{-th training example} \\ 0 & \text{else} \end{cases}$
 - encodes which weak classifiers correct on which examples
 - huge # of columns one for every possible weak classifier

A weighted training set

Feature vectors

A weak learner

 $(x_1,y_1,w_1),(x_2,y_2,w_2),...,(x_m,y_m,w_m)$

A weak rule

Weak Learner

h

instances

$$X_1, X_2, \ldots, X_m$$

predictions

$$\hat{y}_1, \hat{y}_2, \dots, \hat{y}_m; \quad \hat{y}_i \in \{0,1\}$$

The weak requirement:

$$\left| \frac{\sum_{i=1}^{m} y_i \hat{y}_i w_i}{\sum_{i=1}^{m} w_i} \right| > \gamma > 0$$

The boosting process

$$(x_{1},y_{1},1),(x_{2},y_{2},1),...,(x_{n},y_{n},1)$$

$$(x_{1},y_{1},w_{1}^{1}),(x_{2},y_{2},w_{2}^{1}),...,(x_{n},y_{n},w_{n}^{1})$$

$$(x_{1},y_{1},w_{1}^{2}),(x_{2},y_{2},w_{2}^{2}),...,(x_{n},y_{n},w_{n}^{2})$$

$$(x_{1},y_{1},w_{1}^{T-1}),(x_{2},y_{2},w_{2}^{T-1}),...,(x_{n},y_{n},w_{n}^{T-1})$$

$$F_{T}(x) = \alpha_{1}h_{1}(x) + \alpha_{2}h_{2}(x) + ... + \alpha_{T}h_{T}(x)$$

Adaboost

Freund, Schapire 1997

$$F_{0}(x) = 0$$

$$\text{for } t = 1..T$$

$$w_{i}^{t} = \exp(-y_{i}F_{t-1}(x_{i}))$$

$$\text{Get } h_{t} \text{ from } weak - learner$$

$$\alpha_{t} = \frac{1}{2}\ln\left(\sum_{i:h_{t}(x_{i})=1,y_{i}=1} w_{i}^{t} / \sum_{i:h_{t}(x_{i})=1,y_{i}=-1} w_{i}^{t}\right)$$

$$F_{t+1} = F_{t} + \alpha_{t}h_{t}$$

Main property of Adaboost

If advantages of weak rules over random guessing are: γ1,γ2,...,γτ then training error of final rule is at most

$$\hat{\varepsilon}(f_T) \le \exp\left(-\sum_{t=1}^T \gamma_t^2\right)$$

Boosting block diagram

Strong Learner

Accurate Rule

Margins view

$$x, w \in R^n; y \in \{-1,+1\}$$

Prediction =
$$sign(w \cdot x)$$

$$\mathbf{Margin} = \frac{y(w \cdot x)}{\|w\|_p \times \|x\|_q}$$

SVM vs Adaboost

$$\mathbf{Margin} = \frac{y(w \cdot x)}{\|w\|_p \times \|x\|_q}$$

Norms Algorithm

$$p = q = \frac{1}{2}$$

SVM: $p = q = \frac{1}{2}$ Quadratic optimization

$$p=1, \quad q=\infty$$

Adaboost: p = 1, $q = \infty$ Coordinate-wise descent

Minimizing error using loss functions on margin Adaboost = $e^{-y(w \cdot x)}$

What is a typical weak learner?

- Define a large set of features $(x_1, x_2, ..., x_n)$
- Decision stumps:

$$h(x) = \begin{cases} +1 & \text{if } x_i \ge \theta \\ -1 & \text{otherwise} \end{cases}$$

• Speciaists (particularly for multi-class):

$$h(x) = \begin{cases} \text{class } j & \text{if } x_i \ge \theta \ (x_i < \theta) \\ 0 & \text{otherwise} \end{cases}$$

Alternating Trees

Joint work with Llew Mason

Decision Trees

Decision tree as a sum

An alternating decision tree

Example: Medical Diagnostics

- Cleve dataset from UC Irvine database.
- •Heart disease diagnostics (+1=healthy,-1=sick)
- •13 features from tests (real valued and discrete).
- •303 instances.

Adtree for Cleveland heart-disease diagnostics problem

Cross-validated accuracy

Learning algorithm	Number of splits	Average test error	Test error variance
ADtree	6	17.0%	0.6%
C5.0	27	27.2%	0.5%
C5.0 + boosting	446	20.2%	0.5%
Boost Stumps	16	16.5%	0.8%

Boosting and over-fitting

Curious phenomenon

Boosting decision trees

Using <10,000 training examples we fit >2,000,000 parameters

Explanation using margins

Explanation using margins

Experimental Evidence

Theorem

Schapire, Freund, Bartlett & Lee Annals of stat. 98

For any convex combination and any threshold $\forall f \in \mathcal{C}, \forall \theta > 0$.

Probability of mistake

Fraction of training example with small margin

$$P_{(x,y)\sim D}\left[\operatorname{sign}(f(x))\neq y\right]\leq P_{(x,y)\sim S}\left[margin_f(x,y)\leq \theta\right]$$

Size of training sample

$$+ \tilde{O}\left(\frac{\sqrt{d/m}}{\theta}\right)$$

No dependence on number of weak rules that are combined!!!

VC dimension of weak rules

Suggested optimization problem

Idea of Proof

Applications

[Viola & Jones]

- problem: find faces in photograph or movie
- weak classifiers: detect light/dark rectangles in image

many clever tricks to make extremely fast and accurate

Viola and Jones (~1996)

Fundamental Perspectives

- game theory
- loss minimization
- an information-geometric view

Just a Game

- can view boosting as a game, a formal interaction between booster and weak learner
- on each round *t*:
 - booster chooses distribution D_t
 - weak learner responds with weak classifier h_t
- game theory: studies interactions between all sorts of "players"

Games

game defined by matrix M:

	Rock	Paper	Scissors
Rock	1/2	1	0
Paper	0	1/2	1
Scissors	1	0	1/2

- row player ("Mindy") chooses row i
- column player ("Max") chooses column j (simultaneously)
- Mindy's goal: minimize her loss M(i,j)
- assume (wlog) all entries in [0, 1]

Randomized Play

- usually allow randomized play:
 - Mindy chooses distribution P over rows
 - Max chooses distribution Q over columns (simultaneously)
- Mindy's (expected) loss

$$= \sum_{i,j} \mathbf{P}(i)\mathbf{M}(i,j)\mathbf{Q}(j)$$
$$= \mathbf{P}^{\top}\mathbf{M}\mathbf{Q} \equiv \mathbf{M}(\mathbf{P},\mathbf{Q})$$

- i, j = "pure" strategies
- P, Q = "mixed" strategies
- m = # rows of M
- also write M(i, Q) and M(P, j) when one side plays pure and other plays mixed

Sequential Play

- say Mindy plays before Max
- if Mindy chooses P then Max will pick Q to maximize
 M(P, Q) ⇒ loss will be

$$L(\mathbf{P}) \equiv \max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}, \mathbf{Q})$$

- so Mindy should pick P to minimize L(P)
 - ⇒ loss will be

$$\min_{\mathbf{P}} L(\mathbf{P}) = \min_{\mathbf{P}} \max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}, \mathbf{Q})$$

similarly, if Max plays first, loss will be

$$\max_{\mathbf{Q}} \min_{\mathbf{P}} \mathbf{M}(\mathbf{P}, \mathbf{Q})$$

Minmax Theorem

playing second (with knowledge of other player's move)
 cannot be worse than playing first, so:

$$\min_{\mathbf{P}} \max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}, \mathbf{Q}) \ge \max_{\mathbf{Q}} \min_{\mathbf{P}} \mathbf{M}(\mathbf{P}, \mathbf{Q})$$

$$\text{Mindy plays first} \qquad \text{Mindy plays second}$$

von Neumann's minmax theorem:

$$\min_{\mathbf{P}} \max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}, \mathbf{Q}) = \max_{\mathbf{Q}} \min_{\mathbf{P}} \mathbf{M}(\mathbf{P}, \mathbf{Q})$$

in words: no advantage to playing second

Optimal Play

• minmax theorem:

$$\min_{\mathbf{P}} \max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}, \mathbf{Q}) = \max_{\mathbf{Q}} \min_{\mathbf{P}} \mathbf{M}(\mathbf{P}, \mathbf{Q}) = \text{value } v \text{ of game}$$

- optimal strategies:
 - $P^* = arg min_P max_Q M(P, Q) = minmax strategy$
 - $\mathbf{Q}^* = \operatorname{arg\,max}_{\mathbf{Q}} \operatorname{min}_{\mathbf{P}} \mathbf{M}(\mathbf{P}, \mathbf{Q}) = \operatorname{maxmin} \operatorname{strategy}$
- in words:
 - Mindy's minmax strategy P^* guarantees loss $\leq v$ (regardless of Max's play)
 - optimal because Max has maxmin strategy \mathbf{Q}^* that can force loss $\geq v$ (regardless of Mindy's play)
- e.g.: in RPS, $P^* = Q^* = uniform$
- solving game = finding minmax/maxmin strategies

Weaknesses of Classical Theory

- seems to fully answer how to play games just compute minmax strategy (e.g., using linear programming)
- weaknesses:
 - game M may be unknown
 - game M may be extremely large
 - opponent may not be fully adversarial
 - may be possible to do better than value v
 - e.g.:

```
Lisa (thinks):
```

Poor predictable Bart, always takes Rock.

Bart (thinks):

Good old Rock, nothing beats that.

Repeated Play

- if only playing once, hopeless to overcome ignorance of game
 M or opponent
- but if game played repeatedly, may be possible to learn to play well
- goal: play (almost) as well as if knew game and how opponent would play ahead of time

Repeated Play (cont.)

- M unknown
- for t = 1, ..., T:
 - Mindy chooses P_t
 - Max chooses Q_t (possibly depending on P_t)
 - Mindy's loss = $M(P_t, Q_t)$
 - Mindy observes loss $M(i, Q_t)$ of each pure strategy i
- want:

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t}) \leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}, \mathbf{Q}_{t}) + [\text{"small amount"}]$$
actual average loss best loss (in hindsight)

Multiplicative-weights Algorithm (MW)

- choose $\eta > 0$
- initialize: P_1 = uniform
- on round *t*:

$$\mathbf{P}_{t+1}(i) = \frac{\mathbf{P}_t(i) \exp(-\eta \mathbf{M}(i, \mathbf{Q}_t))}{\text{normalization}}$$

- idea: decrease weight of strategies suffering the most loss
- directly generalizes [Littlestone & Warmuth]
- other algorithms:
 - [Hannan'57]
 - [Blackwell'56]
 - [Foster & Vohra]
 - [Fudenberg & Levine]

Analysis

• Theorem: can choose η so that, for any game M with m rows, and any opponent,

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t}) \leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}, \mathbf{Q}_{t}) + \Delta_{T}$$
actual average loss best average loss $(\leq v)$

where
$$\Delta_T = O\left(\sqrt{\frac{\ln m}{T}}\right) \to 0$$

- regret Δ_T is:
 - logarithmic in # rows m
 - independent of # columns
- therefore, can use when working with very large games

Solving a Game

- suppose game M played repeatedly
 - Mindy plays using MW
 - on round t, Max chooses best response:

$$\mathbf{Q}_t = \arg\max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}_t, \mathbf{Q})$$

let

$$\overline{\mathbf{P}} = rac{1}{T} \sum_{t=1}^T \mathbf{P}_t, \quad \overline{\mathbf{Q}} = rac{1}{T} \sum_{t=1}^T \mathbf{Q}_t$$

• can prove that \overline{P} and \overline{Q} are $\Delta_{\mathcal{T}}$ -approximate minmax and maxmin strategies:

$$\max_{\mathbf{Q}} \mathbf{M}(\overline{\mathbf{P}}, \mathbf{Q}) \le v + \Delta_{\mathcal{T}}$$

and

$$\min_{\mathbf{P}} \mathbf{M}(\mathbf{P}, \overline{\mathbf{Q}}) \geq v - \Delta_{\mathcal{T}}$$

Fundamental Perspectives

- game theory
- loss minimization
- an information-geometric view

A Dual Information-Geometric Perspective

- loss minimization focuses on function computed by AdaBoost (i.e., weights on weak classifiers)
- dual view: instead focus on distributions D_t (i.e., weights on examples)
- dual perspective combines geometry and information theory
- exposes underlying mathematical structure
- basis for proving convergence

An Iterative-Projection Algorithm

- say want to find point closest to \mathbf{x}_0 in set $\mathcal{P} = \{ \text{ intersection of } N \text{ hyperplanes } \}$
- algorithm:

[Bregman; Censor & Zenios]

- start at x₀
- repeat: pick a hyperplane and project onto it

• if $\mathcal{P} \neq \emptyset$, under general conditions, will converge correctly

AdaBoost is an Iterative-Projection Algorithm

[Kivinen & Warmuth]

- points = distributions D_t over training examples
- distance = relative entropy:

$$\operatorname{RE}(P \parallel Q) = \sum_{i} P(i) \ln \left(\frac{P(i)}{Q(i)}\right)$$

- reference point x_0 = uniform distribution
- hyperplanes defined by all possible weak classifiers g_j :

$$\sum_{i} D(i)y_{i}g_{j}(x_{i}) = 0 \Leftrightarrow \Pr_{i \sim D} \left[g_{j}(x_{i}) \neq y_{i}\right] = \frac{1}{2}$$

intuition: looking for "hardest" distribution

AdaBoost as Iterative Projection (cont.)

- algorithm:
 - start at D_1 = uniform
 - for t = 1, 2, ...:
 - pick hyperplane/weak classifier $h_t \leftrightarrow g_j$
 - $D_{t+1} = \text{(entropy)}$ projection of D_t onto hyperplane $= \arg \min_{D: \sum_i D(i) y_i g_j(x_i) = 0} \operatorname{RE}(D \parallel D_t)$
- claim: equivalent to AdaBoost
- further: choosing h_t with minimum error \equiv choosing farthest hyperplane

Boosting as Maximum Entropy

corresponding optimization problem:

$$\min_{D \in \mathcal{P}} \operatorname{RE}(D \parallel \operatorname{uniform}) \leftrightarrow \max_{D \in \mathcal{P}} \operatorname{entropy}(D)$$

where

$$\mathcal{P} = \text{feasible set}$$

$$= \left\{ D : \sum_{i} D(i) y_{i} g_{j}(x_{i}) = 0 \ \forall j \right\}$$

- $\mathcal{P} \neq \emptyset \Leftrightarrow$ weak learning assumption does not hold
 - in this case, $D_t \rightarrow$ (unique) solution
- if weak learning assumption does hold then
 - $\mathcal{P} = \emptyset$
 - D_t can never converge
 - dynamics are fascinating but unclear in this case

[Schapire Collins & Singer]

- two distinct cases:
 - weak learning assumption holds
 - $\mathcal{P} = \emptyset$
 - dynamics unclear
 - weak learning assumption does not hold
 - $\mathcal{P} \neq \emptyset$
 - can prove convergence of D_t 's
- to unify: work instead with unnormalized versions of D_t 's
 - standard AdaBoost: $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{\text{normalization}}$
 - instead:

$$d_{t+1}(i) = d_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

$$D_{t+1}(i) = \frac{d_{t+1}(i)}{\text{normalization}}$$

algorithm is unchanged

Reformulating AdaBoost as Iterative Projection

- points = nonnegative vectors \mathbf{d}_t
- distance = unnormalized relative entropy:

RE
$$(\mathbf{p} \parallel \mathbf{q}) = \sum_{i} \left[p(i) \ln \left(\frac{p(i)}{q(i)} \right) + q(i) - p(i) \right]$$

- reference point $x_0 = 1$ (all 1's vector)
- hyperplanes defined by weak classifiers g_j :

$$\sum_{i} d(i)y_{i}g_{j}(x_{i}) = 0$$

 resulting iterative-projection algorithm is again equivalent to AdaBoost

Reformulated Optimization Problem

optimization problem:

$$\min_{\mathbf{d}\in\mathcal{P}}\mathrm{RE}\left(\mathbf{d}\parallel\mathbf{1}\right)$$

where

$$\mathcal{P} = \left\{ \mathbf{d} : \sum_{i} d(i) y_{i} g_{j}(x_{i}) = 0 \ \forall j \right\}$$

• note: feasible set \mathcal{P} never empty (since $\mathbf{0} \in \mathcal{P}$)

Exponential Loss as Entropy Optimization

• all vectors \mathbf{d}_t created by AdaBoost have form:

$$d(i) = \exp\left(-y_i \sum_j \lambda_j g_j(x_i)\right)$$

- let $Q = \{$ all vectors **d** of this form $\}$
- can rewrite exponential loss:

$$\inf_{\lambda} \sum_{i} \exp \left(-y_{i} \sum_{j} \lambda_{j} g_{j}(x_{i})\right) = \inf_{\mathbf{d} \in \mathcal{Q}} \sum_{i} d(i)$$

$$= \min_{\mathbf{d} \in \overline{\mathcal{Q}}} \sum_{i} d(i)$$

$$= \min_{\mathbf{d} \in \overline{\mathcal{Q}}} \operatorname{RE} (\mathbf{0} \parallel \mathbf{d})$$

• \overline{Q} = closure of Q

- presented two optimization problems:
 - $\min_{\mathbf{d} \in \mathcal{P}} \mathrm{RE} \left(\mathbf{d} \parallel \mathbf{1} \right)$
 - $\min_{\mathbf{d} \in \overline{\mathcal{Q}}} \operatorname{RE} (\mathbf{0} \parallel \mathbf{d})$
- which is AdaBoost solving? Both!
- problems have same solution
- moreover: solution given by unique point in $\mathcal{P} \cap \overline{\mathcal{Q}}$
- problems are convex duals of each other

Convergence of AdaBoost

- can use to prove AdaBoost converges to common solution of both problems:
 - can argue that $\mathbf{d}^* = \lim \mathbf{d}_t$ is in \mathcal{P}
 - vectors \mathbf{d}_t are in \mathcal{Q} always $\Rightarrow \mathbf{d}^* \in \overline{\mathcal{Q}}$
 - $\mathbf{d}^* \in \mathcal{P} \cap \overline{\mathcal{Q}}$
 - ... d* solves both optimization problems
- SO:
 - AdaBoost minimizes exponential loss
 - exactly characterizes limit of unnormalized "distributions"
 - likewise for normalized distributions when weak learning assumption does not hold
- also, provides additional link to logistic regression
 - only need slight change in optimization problem
 [Schapire, Collins, Singer; Lebannon & Lafferty]

Conclusions

- from different perspectives, AdaBoost can be interpreted as:
 - a method for boosting the accuracy of a weak learner
 - a procedure for maximizing margins
 - an algorithm for playing repeated games
 - a numerical method for minimizing exponential loss
 - an iterative-projection algorithm based on an information-theoretic geometry
- none is entirely satisfactory by itself, but each useful in its own way
- taken together, create rich theoretical understanding
 - connect boosting to other learning problems and techniques
 - provide foundation for versatile set of methods with many extensions, variations and applications

References

Coming soon:

Robert E. Schapire and Yoav Freund.
 Boosting: Foundations and Algorithms.
 MIT Press, 2012.

Survey articles:

- Ron Meir and Gunnar Rätsch.
 An Introduction to Boosting and Leveraging.
 In Advanced Lectures on Machine Learning (LNAI2600), 2003.
 http://www.boosting.org/papers/MeiRae03.pdf
- Robert E. Schapire.
 The boosting approach to machine learning: An overview.
 In MSRI Workshop on Nonlinear Estimation and Classification, 2002.
 http://www.cs.princeton.edu/~schapire/boost.html