Mostafa Sabri

Lecture 11

4.2 Null Spaces, Column Spaces, Row Spaces and Linear Transformations

Reminders

If A is an $m \times n$ matrix, the null space

$$Nul(A) = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$$

is a subspace of \mathbb{R}^n . The column space

$$Col(A) = Span\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$$

is a subspace of \mathbb{R}^m , equal to the range of A when considered as a matrix transformation $\mathbb{R}^n \to \mathbb{R}^m$.

The student should revise the relations between these spaces and invertibility (Lec7). Also recall $\mathbf{b} \in \text{Col}(A)$ iff $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ is consistent.

Row Space

Let A be an $m \times n$ matrix. The row space Row(A) is the subspace of \mathbb{R}^n spanned by the rows of A.

If B is obtained from A by row operations, then the rows of B are a linear combination of those of A, and vice versa. Hence,

If an $m \times n$ matrix A is row-equivalent to B, then Row(A) = Row(B).

Linear Transformations

Let *V, W* be vector spaces. A function (map)

 $T: V \to W$ is linear if for any $\mathbf{u}, \mathbf{v} \in V$ and any $c \in \mathbb{R}$,

- $1. T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}),$
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$.

As before, it follows that for linear T,

- 1. $T(\mathbf{0}) = \mathbf{0}$,
- 2. $T(\sum_{i=1}^{p} c_i \mathbf{v}_i) = \sum_{i=1}^{p} c_i T(\mathbf{v}_i)$.

The *kernel* of a linear $T: V \rightarrow W$ is the set

$$ker(T) = \{ \mathbf{v} \in V : T(\mathbf{v}) = \mathbf{0} \}.$$

Linear Transformations

The *range* of *T* is the set

Range
$$(T) = \{T(\mathbf{v}) \in W : \mathbf{v} \in V\}$$

Thm: For linear $T: V \to W$, $\ker(T)$ is a subspace of V and $\operatorname{Range}(T)$ is a subspace of W.

<u>Proof.</u> The proof that the kernel is a subspace is the same as the proof that Nul(A) is a subspace. To see that Range(T) is a subspace, let $\mathbf{y}, \mathbf{w} \in Range(T)$ and $c \in \mathbb{R}$. Then $\mathbf{y} = T(\mathbf{x})$ and $\mathbf{w} = T(\mathbf{v})$ for some $\mathbf{x}, \mathbf{v} \in V$. So $\mathbf{y} + \mathbf{v} = T(\mathbf{x}) + T(\mathbf{v}) = T(\mathbf{x} + \mathbf{v}) \in Range(T)$ since $\mathbf{x} + \mathbf{v} \in V$, as V is a vector space. Next, $c\mathbf{v} = cT(\mathbf{x}) = T(c\mathbf{x}) \in Range(T)$ since $c\mathbf{x} \in V$.

Example

- 1. Let $T: M_{m,n} \to M_{n,m}$ be the map $T(A) = A^T$. Is T linear?
- 2. Let $T: C^1[a, b] \to C[a, b]$ be the map T(f) = f', the derivative. Is T linear?
- 3. Let $T: C[a,b] \to \mathbb{R}$ be the map $T(f) = \int_a^b f(x) dx$. Is T linear?
- 4. Find ker(T) if $T: V \to W$ is the zero transformation, and if $T: V \to V$ is the identity transformation.
- 5. Find $\ker(T)$ if $T : \mathbb{R}^3 \to \mathbb{R}^3$ is the projection T(x, y, z) = (x, y, 0).
- 6. Find $\ker(T)$ if $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x, y, z) = (x y, y + z).
- 7. Express the set of solutions of $y'' + \omega^2 y = 0$ as the kernel of some linear T.