Machine Learning

1. Motivation + Theorie

Siegfried Gessulat

SAP Health Potsdam

Technical University of Munich Chair of Proteomics and and Bioanalytics

s.gessulat@tum.de

FH Ludwigshafen 2018-10-08

Course Outline

Block I Foundations

Oct 08: Introduction

- Overview machine learning
- Theory: Linear Algebra
- Algorithms: Knn, K-means

Oct 09: Basics

- Theory: linear regression, logistic regression
- Algorithms: gradient descent

Block II Best practices

Oct 29: Neural Networks

- Data cleaning
- Algorithm: Neural Networks

Oct 30: Best practices

- Theory: Cross validation
- Theory: Regularization

Course Outline

Block III Dark Arts

Nov 19: Tricks of the Trade

- Ensembles
- Hyperparameter Search
- Deep Learning Black Magic

Nov 20: Outlook

- Theory: Dimensionality Reduction

Outline Today

- 1. Preliminaries
- 2. Dataset: MNIST
- 3. What is Machine Learning?
- 4. Notation
- 5. Classification: K nearest neighbors (Knn)
- 6. Clustering: K-means
- 7. Theory: Linear Algebra refresher
- 8. Application: Python Intro, Implementation
- 9. Dataset: CIFAR-10

Preliminaries

1. Programming Assignments

Teams of two (1 SAP 1 non-SAP), randomly assigned.

2. Schedule, Dates & Deadlines

3 blocks. 1 assignment per block.

Help desk: Monday after each block - doodle your slot.

<u>Deadlines</u>: Friday after the help desk.

Results: Friday after the deadline.

Lecture							
Oct 8	Мо	Oct 9 Tu	e Wed	Thu	Oct 12	Fr	
Не	elp				Dead	line	
Oct 15	Мо	Tu	e Wed	Thu	Oct 19	Fr	
					Resu	ılts	
Oct 22	Мо	Tu	e Wed	Thu	Oct 26	Fr	

Preliminaries

1. Programming Assignments

Teams of two (1 SAP 1 non-SAP), randomly assigned.

2. Schedule, Dates & Deadlines

3 blocks. 1 assignment per block.

Help desk: Monday after each block

<u>Deadlines</u>: Friday after the help desk.

Results: Friday after the deadline.

What's your schedule Monday?

3. Grades

Assignment I: 30 points

Assignment II: 30 points

Assignment III: 40 points

Late assignments will cost you points.

4. Resources

After the end of one block, you will get an email with slides, code demonstrations, assignments and a doodle link to the Help desk.

Dataset: MNIST

http://yann.lecun.com/exdb/mnist/

70,000 samples images of handwritten digits 28x28 grayscale images labels are digits from 0-9

image: wikipedia.com

image: research.fb.com

Yann LeCun

NYU Professor facebook Chief AI Scientist Deep Learning (ConvNets)

image: di.ku.dk

Corinna Cortes

Head Google Research NY Support Vector Machines

image: microsoft.com

Christopher J.C. Burges

formerly Microsoft Research

Support Vector Machines

What is Machine Learning?

Do you have labeled data?

Boston Housing

predict real estate price by attributes of the property

MNIST

classify handwritten digit as 0-9

MNIST

cluster handwritten digits in 10 clusters

MNIST

generate images of handwritten digits

Do you have labeled data?

continuous regression

- K-nearest-neighbours
- Linear Regression
- Regression Trees
- Support Vector Regression
- Neural Networks

- Logistic Regression
- Support Vector Machines
- Decision Trees / Forests
- Neural Networks
- (Gaussian) Mixture Model

- K-means
- (Gaussian) Mixture Models
- Self-organising maps*

- Markov Chains
- Autoencoder*
- Generative Adversarial Networks*

Do you have labeled data?

continuous regression

- K-nearest-neighbours
- Linear Regression
- Regression Trees
- Support Vector Regression
- Neural Networks

- Logistic Regression
- Support Vector Machines
- Decision Trees / Forests
- Neural Networks
- (Gaussian) Mixture Model

sample → <u>label</u>
clustering

- K-means
- (Gaussian) Mixture Models
- Self-organising maps*

sample → <u>sample</u>
generative

- Markov Chains
- Autoencoder*
- Generative AdversarialNetworks*

Do you have labeled data?

Notation

Labels, Targets **Features** or Output or Input A single 000000000000 Features label: Y of a sample X 333 44444444 55555555555 666666666666 Number of 8888888888888 samples: $n \neq 9$ Number of 99999999999 features All features of labels: Y All samples: X

A machine learning model is a function mapping X to Y. Θ is what the model "learned".

Classification: k-nearest neighbors (knn)

Intuition

- 1. Of all neighbors, which are the k nearest to my sample?
- 2. What label does the majority of the k neighbors

Classification: k-nearest neighbors (knn)

Algorithm

Input

- dataset M matrix of samples (vector, class)
- sample v to classify
- number of neighbors **n**

Output

- class k
- 0. Calculate distance of v to all samples in M
- 1. Select the **n** samples closest to **v**
- 2. choose k to be the majority of classes in selection

Classification: k-nearest neighbors (knn)

Clustering: k-means

Intuition

Initially, select k random samples, those are your class centroids.

- 1. assign each sample the class of the closest centroid.
- 2. determine centroid for each class with smallest distance to each all samples in class
- 3. if one of the centroids changed, repeat.

Clustering: k-means

Algorithm

Input

- dataset M matrix of samples (vector)
- number of clusters k

Output

- dataset **R** matrix of samples (vector, class)
- 1. calculate all pair-wise distances in M
- 2. select k samples from M at random (K cluster centroids)
- 3. assign all samples in **M** to the nearest sample in **K**
- 4. determine sample with smallest distance to all other samples in a cluster for each cluster **K**'
- 5. if **K != K'** then set **K** := **K'**; Repeat from 3.

Clustering: k-means

Theory: Linear Algebra

Euclidean distance

$$dist(x,y) = ||x - y||_2 = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Example

$$\sqrt{\sum_{i=1}^{2} \left(\begin{bmatrix} 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 4 \\ 1 \end{bmatrix} \right)^2} = \sqrt{\sum_{i=1}^{2} \left(\begin{bmatrix} -2 \\ 2 \end{bmatrix} \right)^2}$$

$$= \sqrt{\sum_{i=1}^{2} \begin{bmatrix} 4 \\ 4 \end{bmatrix}}$$

$$= \sqrt{8}$$

Code

dist = np.linalg.norm(x - y)

Dataset: CIFAR-10

cs.toronto.edu/~kriz/cifar.html

60,000 samples images of objects 32x32 color images with labels labels are 10 categories

image: kaggle.com

image: qz.com

Alex Krizhevsky

Dessa, formerly Google

Deep Learning (AlexNet)

image: <u>cs.toronto.edu</u>

Vinod Nair

Yahoo Labs

Deep Learning

image: <u>thestar.com</u>

Geoffrey Hinton

U Toronto Professor Google Brain Deep Learning

