Régime sinusoidal forcé d'un circuit RLC

Table des matières

T	Diagramme de Fresnei				
	1.1	Défini	tions	2	
	1.2	Applic	eation: Etude d'un circuit RLC	3	
		1.2.1	Dipôles fondamentaux	3	
		1.2.2	Groupement R,L,C	4	
2	Mét	thode	des grandeurs complexes-Impédance complexe	5	
	2.1	Notati	on complexe	5	
		2.1.1	Préliminaire	5	
		2.1.2	propriétés	6	
		2.1.3	Application à une grandeur alternative sinusoidale	6	
		2.1.4	Dérivée et primitive en notation complexe	7	
	2.2	Lois d	e Kirchhoff en notation complexe	7	
	2.3		ance complexe-Admittance complexe	7	
		2.3.1	Définitions	7	
		2.3.2	Dipôles fondamentales R,L,C	8	
	2.4	Group	ement série de dipôles passifs	8	
		2.4.1	Impédance équivalente	8	
		2.4.2	Cas du RLC série	8	
	2.5	Group	ement parallèle de dipôles passifs	9	
3	Thé	éorèmes généraux			
4	Résonance d'un circuit RLC				
	4.1	résona	nce en intensité	10	
		4.1.1		10	
		4.1.2	Résonance	10	
		4.1.3		11	
		4.1.4		11	
	4.2	Réson		12	
		4.2.1		12	
		4.2.2		13	
		4.2.3	Aspect graphique	13	

On s'interesse à un circuit RLC, soumis à une tension sinusoidale. Le régime sinusoidal forcé s'établit rapidement après extinction du régime transitoire.

1 Diagramme de Fresnel

1.1 Définitions

- Diagramme de Fresnel : Il s'agit d'une représentation vectorielle des grandeurs sinusoidales .
- Vecteur de Fresnel : Il s'agit d'un vecteur représentant une grandeur sinusoidale . Considérons un vecteur \overrightarrow{OP} de module V_m tournant autour du poit O dans le sens trigonométrique avec une vitesse angulaire ω constante . On choisit l'axe OX de référence tq : $(\overrightarrow{OX}, \overrightarrow{OP}) = \varphi$ à t = 0

 $\begin{array}{c}
Y \\
P \\
\omega t + \varphi
\end{array}$

H la projection de P sur OX

$$\overline{OH} = OP\cos(\omega t + \varphi) = V_m\cos(\omega t + \varphi)$$

Η

 \bullet Résultat : à toute grandeur sinusoidale on peut faire correspondre un vecteur de Fresnel .

$$v(t) = V_m \cos(\omega t + \varphi) \Leftrightarrow \overrightarrow{OP} \text{ tq} :$$

 $||\overrightarrow{OP}|| = V_m \text{ l'amplitude de } v(t)$
 $(\overrightarrow{OX}, \overrightarrow{OP}) = \omega t + \varphi \text{ la phase instantannée}$

O

 $\blacktriangleright\,$ Somme de deux grandeurs sinusoidales

Soient : $v_1(t) = V_{1m} \cos(\omega t + \varphi_1)$ et $v_2(t) = V_{2m} \cos(\omega t + \varphi_2)$ des grandeurs sinusoidales associées aux vecteurs $\overrightarrow{OP_1}$ et $\overrightarrow{OP_2}$ $\overrightarrow{OP_2}$ donc $v = v_1 + v_2 = V_m \cos(\omega t + \varphi)$

▶ Dérivée et primitive d'une grandeur sinusoidale

$$v(t) = V_m \cos(\omega t + \varphi) \Leftrightarrow \overrightarrow{OP}$$

$$\frac{dv(t)}{dt} = -\omega V_m \sin(\omega t + \varphi) = \omega V_m \cos(\omega t + \varphi + \frac{\pi}{2}) \Leftrightarrow \overrightarrow{OP_1}$$

• Résultat : la grandeur $\frac{dv}{dt}$ est en quadrature avance par rapport à v(t) $\int vdt = \frac{V_m}{\omega}\sin(\omega t + \varphi) = \frac{V_m}{\omega}\cos(\omega t + \varphi - \frac{\pi}{2}) \Leftrightarrow \overrightarrow{OP_2}$

$$\int vdt = \frac{V_m}{\omega}\sin(\omega t + \varphi) = \frac{V_m}{\omega}\cos(\omega t + \varphi - \frac{\pi}{2}) \Leftrightarrow \overline{OP}_{2}$$

• Résultat : la grandeur $\int v dt$ est en quadrature retard par rapport à v(t)

1.2 Application: Etude d'un circuit RLC

1.2.1Dipôles fondamentaux

Par analogie avec la loi d'Ohm:

$$U_m = ZI_m \text{ et } I_m = YU_m$$

 U_m : Amplitude de la tension I_m : Amplitude du courant Z: Impédance modulaire (Ω)

Y: Admittance modulaire $(\Omega^{-1}$ ou siemens s)

► Résistance pure : $u(t) = U_m \cos(\omega t) = Ri(t) \Rightarrow i(t) = \frac{U_m}{R} \cos(\omega t)$ En prenant comme axe de référence la tension, nous obtenons un diagramme trés simple .

$$\begin{array}{c}
\varphi = 0 \\
I_m \\
Z = R \\
U_m
\end{array}$$

- Bobine pure : $u(t) = L\frac{di(t)}{dt} = U_m \cos(\omega t) \Rightarrow i(t) = \frac{U_m}{L} \int \cos(\omega t) dt = \frac{U_m}{L\omega} \sin(\omega t)$ $i(t) = \frac{U_m}{L\omega} \cos(\omega t \frac{\pi}{2}) \Rightarrow I_m = \frac{U_m}{L\omega}; \varphi = -\frac{\pi}{2}; Z = L\omega$ $U_m \longrightarrow U_m \longrightarrow U_m$ $Z = L\omega$ $\varphi = -\frac{\pi}{2}$
 - Resultat : Le courant est en quadrature retard par rapport à la tension .
- ► Condensateur : $u(t) = \frac{q(t)}{C} = U_m \cos(\omega t)$ $i(t) = \frac{dq}{dt} = -C\omega U_m \sin(\omega t) = C\omega U_m \cos(\omega t + \frac{\pi}{2})$ On déduit : $I_m = C\omega U_m$ et $\varphi = +\frac{\pi}{2}$

• Resultat : Le courant est en quadrature avance par rapport à la tension .

1.2.2 Groupement R,L,C

En serie la grandeur commune est l'intensité on la choisit comme axe de référence . $i(t) = I_m \cos(\omega t)$

$$u_1(t) = RI_m \cos(\omega t) = U_{1m} \cos(\omega t)$$

$$u_2(t) = L\omega \cos(\omega t + \frac{\pi}{2}) = U_{2m} \cos(\omega t + \frac{\pi}{2})$$

$$u_3(t) = \frac{I_m}{C\omega} \cos(\omega t - \frac{\pi}{2}) = U_{3m} \cos(\omega t - \frac{\pi}{2})$$

$$U_m^2 = U_{1m}^2 + (U_{3m} - U_{2m})^2 = \left[R^2 + \left(\frac{1}{C\omega} - L\omega\right)^2\right]i_m^2$$

$$Z = \sqrt{R^2 + \left(\frac{1}{C\omega} - L\omega\right)^2}$$

$$\tan \varphi = \frac{\frac{1}{C\omega} - L\omega}{R}$$

$$\cos \varphi = \frac{R}{Z}$$

2 Méthode des grandeurs complexes-Impédance complexe

2.1 Notation complexe

2.1.1 Préliminaire

En physique pour ne pas confondre le nombre d'Hamilton i tq $i^2=-1$ avec l'intensité du courant on note $j^2=-1$.

Un nombre complexe peut se mettre sous la forme

$$z = a + jb = r(\cos\theta + j\sin\theta) = r\exp j\theta$$

a : partie réelle

b: partie imaginaire

r : module $\theta : argument$

On peut lui associer un vecteur \overrightarrow{OM} dans le plan complexe $(\overrightarrow{u_X}, \overrightarrow{u_Y})$

$$r = \sqrt{a^2 + b^2}$$

$$\tan \theta = \frac{b}{a}$$

2.1.2 propriétés

- $ightharpoonup z_1 = z_2 \Rightarrow a_1 = a_2; b_1 = b_2 \Leftrightarrow r_1 = r_2; \theta_1 = \theta_2$
- $ightharpoonup z = z_1 z_2 \Leftrightarrow r = r_1 r_2; \theta = \theta_1 + \theta_2$
- $ightharpoonup z = a + jb \Leftrightarrow z^* = a jb; z^* = (r, -\theta)$
- \blacktriangleright L'expression du module de z est $r=\sqrt{z.z^*}$
- \blacktriangleright La condition z réel se traduit par $z=z^*$
- ▶ La condition z imaginaire se traduit par $z = -z^*$

2.1.3 Application à une grandeur alternative sinusoidale

Considérons les grandeurs sinusoidales : $u(t) = U_m \cos(\omega t)$ et $i(t) = I_m \cos(\omega t + \varphi)$ On peut leur faire correspondre les grandeurs complexes :

 $\underline{u}(t) = U_m \exp j\omega t \text{ et } \underline{i}(t) = I_m \exp(j\omega t + \varphi)$

seules les parties réelles ont un sens physique .

Usuellement on pose $\underline{I}_m = I_m \exp j\varphi$ l'intensité maximale complexe de i(t)

$$\begin{split} \underline{i}(t) &= \underline{I}_m \exp j \omega t \text{ avec} \\ |\underline{I}_m| &= I_m : \text{intensit\'e maximale de i} \\ arg\underline{I}_m &= \varphi : \text{phase \`a l'origine de i(t)/u(t)} \end{split}$$

2.1.4 Dérivée et primitive en notation complexe

$$\underline{i}(t) = \underline{I}_m \exp j\omega t \Rightarrow \frac{d\underline{i}}{dt} = j\omega \underline{I}_m \exp j\omega t$$

$$\frac{d\underline{i}}{dt} = j\omega\underline{i}(t)$$

$$\int \underline{i}(t)dt = \frac{1}{j\omega}\underline{I}_m \exp j\omega t$$

$$\int \underline{i}(t)dt = \frac{1}{j\omega}\underline{i}(t)$$

2.2 Lois de Kirchhoff en notation complexe

Dans le cadre de l'ARQP, en régime sinusoidal les lois de Kirchhoff se généralisent en notation complexe :

► Loi des Noeuds

$$\sum_{k} \varepsilon_{k} \underline{i}_{k} = 0$$

► Loi des mailles

$$\sum_{k} \varepsilon_{k} \underline{u}_{k} = 0$$

2.3 Impédance complexe-Admittance complexe

2.3.1 Définitions

Par analogie avec la loi d'Ohm :

$$\underline{u} = \underline{Z}.\underline{i} \Leftrightarrow \underline{i} = \underline{Y}.\underline{u}$$

 \underline{Z} : Impédance complexe

 $\underline{\underline{Y}} = \frac{1}{Z}$ admittance complexe

 $\underline{\underline{u}}(t) = U_m \exp j\omega t$ et $\underline{\underline{i}}(t) = I_m \exp(j\omega t + \varphi) = \underline{\underline{I}}_m \exp j\omega t$ la relation précedente se simplifie en

$$U_m = \underline{Z}.\underline{I}_m$$

 φ est le déphasage de i/u

- ▶ En modules $U_m = Z.I_m$
- ► Le déphasage

$$0 = \arg \underline{Z} + \varphi$$

2.3.2 Dipôles fondamentales R,L,C

▶ Résistance pure : $u(t) = R.i(t) \Leftrightarrow \underline{u}(t) = R.\underline{i}(t)$ donc

$$\underline{Z}_R = R; \underline{Y}_R = \frac{1}{R}$$

► Bobine pure $u(t) = L \frac{di(t)}{dt} \Leftrightarrow \underline{u} = L \frac{d\underline{i}}{dt} = jL\omega\underline{i}$

$$\boxed{\underline{Z}_L = jL\omega; \underline{Y}_L = \frac{1}{jL\omega}}$$

 $|\underline{Z}_L| = L\omega \text{ et } \varphi_{i/u} = -\arg \underline{Z} = \arg \underline{Y} = -\frac{\pi}{2} \text{ (quadrature retard)}$

► Condensateur $u(t) = \frac{1}{c} \int i(t)dt \Leftrightarrow \underline{u} = \frac{1}{c} \int \underline{i}dt = \frac{1}{jc\omega}\underline{i}$

$$\boxed{\underline{Z}_c = \frac{1}{jc\omega}; \underline{Y}_c = jc\omega}$$

 $\varphi_{i/u} = \frac{\pi}{2}$ (quadrature avance)

2.4 Groupement série de dipôles passifs

2.4.1 Impédance équivalente

$$\underline{u} = \sum_{k} \underline{Z}_{k} \underline{i} = \underline{Z}_{eq} \underline{i}$$

$$\boxed{\underline{Z}_{eq} = \sum_{k} \underline{Z}_{k}}$$

2.4.2 Cas du RLC série

 $i(t) = I_m \cos(\omega t + \varphi)$ et $u(t) = U_m \cos(\omega t + \varphi)$ en utilisant les impédances complexes :

$$\underline{Z} = \underline{Z}_L + \underline{Z}_R + \underline{Z}_c$$

$$\underline{Z} = R + j(L\omega - \frac{1}{c\omega})$$

$$I_m = \frac{U_m}{|\underline{Z}|} = \frac{U_m}{\sqrt{R^2 + (L\omega - \frac{1}{c\omega})^2}}$$

$$\tan \varphi = -\frac{L\omega - \frac{1}{c\omega}}{R}$$

avec $\cos \varphi > 0$

2.5 Groupement parallèle de dipôles passifs

$$\underline{i} = \sum_{k} \underline{i}_{k} = \sum_{k} \underline{Y}_{k} \underline{u}$$

$$\underline{Y_{eq} = \sum_{k} \underline{Y}_{k}; \underline{Z}_{eq} = \frac{1}{\underline{Y}_{eq}}}$$

3 Théorèmes généraux

Les lois de kirchhoff et les théorèmes généraux qui découlent de la linéarité du système se généralisent au régime sinusoidal dans le cadre de la représentation complexe . Tout les théorèmes vu précedement restent valables à condition de remplacer chaque dipôle par son impédance complexe ou son admittance complexe .

4 Résonance d'un circuit RLC

4.1 résonance en intensité

4.1.1 Intensité éfficace du circuit

$$\begin{split} u(t) &= U\sqrt{2}\cos\omega t\\ i(t) &= I\sqrt{2}\cos(\omega t + \varphi)\\ \text{En notation complexe}\\ \underline{u} &= U\sqrt{2}\exp j\omega t\\ \underline{i} &= I\sqrt{2}\exp(j\omega t + \varphi) = \underline{I}\sqrt{2}\exp j\omega t\\ \underline{u} &= \underline{Z}.\underline{i} \text{ avec } \underline{Z} = R + j(L\omega - \frac{1}{c\omega}) \end{split}$$

$$I \exp j\varphi = \frac{U}{R + j(L\omega - \frac{1}{c\omega})} \text{ et } \varphi(\omega) = -\arctan\frac{L\omega - \frac{1}{c\omega}}{R}$$

On définit :

▶ Pulsation propre du circuit :
$$\omega_0 = \frac{1}{\sqrt{Lc}}$$

▶ Facteur de qualité du circuit :
$$Q = \frac{L\omega_0}{R} = \frac{1}{RC\omega_0}$$

▶ Pulsation réduite du circuit :
$$X = \frac{\omega}{\omega_0}$$

$$I(X) = \frac{\frac{U}{R}}{\sqrt{1 + Q^2(X - \frac{1}{X})}}$$

$$\varphi(X) = -\arctan\left(Q(X - \frac{1}{X})\right)$$

4.1.2 Résonance

Il se produit le phénomène de résonance en courant lorsque l'intensité éfficace I est maximale $\Rightarrow X_r - \frac{1}{X_r} = 0 \Rightarrow X_r = 1 \Rightarrow \omega_r = \omega_0$ et $\varphi(X_r) = 0$

ullet Résultat : La pulsation de résonance en intensité est égale à la pulsation propre du circuit, et le courant est en phase avec la tension à la résonance quelque soit le facteur de qualité Q du circuit RLC série .

$$\omega_r = \omega_0$$
 et $\varphi(\omega_r) = 0$

4.1.3 Bande passante

À la résonance l'intensité éfficace est maximale $I_{max}=\frac{U}{R}$. On appelle bande passante en pulsation réduite l'intervalle $\Delta X=X_2-X_1$ pour lequel

$$\frac{I_{max}}{\sqrt{2}} \leqslant I(X) \leqslant I_{max}$$

 $I(X) = \frac{I_{max}}{\sqrt{2}} \Rightarrow 1 + Q^2(X - \frac{1}{X})^2 = 2 \Rightarrow X - \frac{1}{X} = \pm \frac{1}{Q} \Rightarrow X^2 \pm \frac{X}{Q} - 1 = 0 \text{ on prend les solutions positives}$

$$X_1 = -\frac{1}{2Q} + \frac{1}{2}\sqrt{\frac{1}{Q^2} + 4}$$

$$X_2 = \frac{1}{2Q} + \frac{1}{2}\sqrt{\frac{1}{Q^2} + 4}$$

La bande passante en pulsation réduite

$$\Delta X = X_2 - X_1 = \frac{1}{Q}$$

La bande passante en pulsation

$$\Delta\omega = \frac{\omega_0}{Q} = \frac{R}{L}$$

La bande passante est d'autant plus étroite que le facteur de qualité est plus élevé.

4.1.4 Aspect graphique

 $I(x) \to 0$ lorsque $X \to 0$ ou $X \to \infty$ c'est le comportement limite du condensateur et du bobine .

- \bullet $\underline{Y}_c=jc\omega\to 0$ lorsque $\omega\to 0$ un condensateur se comporte comme une coupe circuit aux trés basses fréquences .
- $\underline{Y}_L = \frac{1}{jc\omega} \to 0$ lorsque $\omega \to \infty$ la bobine se comporte comme une coupe circuit aux fréquences élevés .

4.2 Résonance en tension aux bornes du condensateur

4.2.1 Tension éfficace aux bornes du condensateur

$$u_c(t) = U_c \sqrt{2} \cos(\omega t + \phi)$$

$$i(t) = I\sqrt{2} \cos(\omega t + \varphi)$$

$$u(t) = U\sqrt{2} \cos \omega t$$

$$\underline{u}_c = \frac{\underline{Z}_c}{\underline{Z}}\underline{u} = \frac{\underline{u}}{jc\omega[R + j(L\omega - \frac{1}{c\omega})]}$$

$$U_c \exp j\phi = \frac{U}{1 - Lc\omega^2 + jRc\omega} \Rightarrow U_c = \frac{U}{\sqrt{(1 - Lc\omega^2)^2 + R^2c^2\omega^2}}$$

$$U_c = \frac{U}{\sqrt{(1 - X^2)^2 + \frac{X^2}{Q^2}}}$$

4.2.2 Résonance en tension

Il existe une résonance en tension aux bornes du condensateur , lorsque la tension éfficace U_c aux bornes du condensateur passe par un maximum pour une certaine valeur $X_r = \frac{\omega_r}{\langle v \rangle}$ (ω_r pulsation de résonance) .

À la résonance la fonction $f(X) = (1 - X^2)^2 + \frac{X^2}{Q^2}$ doit être minimale

$$(\frac{df}{dx})_{X=X_r} = 0 \Rightarrow 2X_r[-2(1-X_r^2) + \frac{1}{Q^2}] = 0 \Rightarrow X_r^2 = 1 - \frac{1}{2Q^2} > 0$$
 ce qui exige $Q > \frac{1}{\sqrt{2}}$ donc $\omega_r = \omega_0 \sqrt{1 - \frac{1}{2Q^2}} \neq \omega_0$

Pour $Q < \frac{1}{\sqrt{2}}$ pas de résonance.

• Résultat : La résonance en tension exige $Q > \frac{1}{\sqrt{2}}$

La pulsation de résonance en tension $\omega_r = \omega_0 \sqrt{1 - \frac{1}{2Q^2}}$

• Déphasage : $\underline{U}_{cm} = \frac{1}{jc\omega}\underline{I}_{cm} \Rightarrow \phi = \varphi - \frac{\pi}{2}$

La courbe représentant ϕ en fonction de ω se déduit directement à partir de la courbe $\varphi = f(\omega)$ par un simple décalage vers le bas de $-\frac{\pi}{2}$.

4.2.3 Aspect graphique

