CC1004 - Modelos de Computação Teóricas 7 e 8

Ana Paula Tomás

Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto

Março 2021

Conversões: $ER \rightarrow AF e AF \rightarrow ER$

Vamos apresentar métodos para:

- Dada uma expressão regular r, construir um AFND- ε que reconhece $\mathcal{L}(r)$.
 - Construção de Thompson (i.e., de McNaughton-Yamada-Thompson)
- Dado um autómato finito A, determinar uma expressão regular r tal que $\mathcal{L}(r) = \mathcal{L}(A)$, ou seja, tal que r descreve a linguagem que A reconhece.
 - Método de Kleene (muito trabalhoso; não iremos aplicar)
 - Método de eliminação de estados de Brzozowski e McCluskey

Construção de Thompson

Vamos ver como podemos construir um AFND- ε que reconhece a linguagem definida por uma expressão regular.

Por exemplo, para $(ba + b)^*$.

AFND- ε que reconhece a linguagem descrita por b

AFND- ε que reconhece a linguagem descrita por a

AFND- ε que reconhece a linguagem descrita por (ba)

Para a **concatenação** (*rs*), identificamos o estado final do primeiro com o estado inicial do segundo.

AFND- ε que reconhece a linguagem descrita por (ba)

AFND- ε que reconhece a linguagem descrita por b

AFND- ε que reconhece a linguagem descrita por (ba + b)

Para a união (r+s), introduzimos um estado inicial s_6 e um estado final s_7 , que será o único estado final da união, e acrescentamos transições por ε .

AFND- ε que reconhece a linguagem descrita por (ba)

AFND- ε que reconhece a linguagem descrita por **b**

AFND- ε que reconhece a linguagem descrita por (ba + b)

Para a **união** (r+s), introduzimos um estado inicial s_6 e um estado final s_7 , que será o único estado final da união, e acrescentamos transições por ε .

AFND- ε que reconhece a linguagem descrita por (ba + b)

AFND- ε que reconhece a linguagem descrita por $(ba + b)^*$

Para o **fecho de Kleene** (r^*) , introduzimos um estado inicial s_8 e um estado final s_9 , que será o único estado final do fecho, e acrescentamos transições por

AFND- ε que reconhece a linguagem descrita por (ba + b)

AFND- ε que reconhece a linguagem descrita por $(ba + b)^*$

Para o **fecho de Kleene** (r^*) , introduzimos um estado inicial s_8 e um estado final s_9 , que será o único estado final do fecho, e acrescentamos transições por $\varepsilon_{3,3,3,3,4}$

ER → AF: Construção de Thompson

Construção de Thompson (McNaughton-Yamada-Thompson)
Dada uma expressão regular r, obtém um AFND- ε , com um único estado final.
Do estado final não saem transições. No estado inicial não entram transições.

Para as expressões elementares \emptyset , ε e a, com a $\in \Sigma$, o AFND- ε é:

Para as expressões com operadores (r^*) , (rs) e (r+s), construimos os AFND- ε para as subexpressões r e s, por aplicação do método. Sejam esses autómatos A(r) e A(s) denotados esquematicamente por

Conversão: Expressão Regular para AFND- ε

Construção de Thompson (McNaughton-Yamada-Thompson) para (r^\star) , (rs), e (r+s)

Para a concatenação, identifica o estado final de A(r) com o inicial de A(s)

Um estado final. Não saem transições do estado final, nem entram no estado inicial.

(∅*)

• ((a + b)*)

• $((aa) + (\emptyset^*))$

Conversões: $ER \rightarrow AF e AF \rightarrow ER$

Conclusão (ER → **AF)**

As linguagens regulares (i.e., as linguagens que podem ser descritas por expressões regulares) podem ser reconhecidas por autómatos finitos.

$AF \rightarrow ER$? Vamos ver que:

As linguagens que podem ser reconhecidas por autómatos finitos são regulares.

- Dado um autómato finito A, os dois métodos seguintes determinam uma expressão regular r tal que $\mathcal{L}(r) = \mathcal{L}(A)$:
 - Método de Kleene (1956) (muito trabalhoso; não iremos usar)
 - Método de eliminação de estados de Brzozowski e McCluskey (1963)

Dado um autómato finito $A=(S,\Sigma,\delta,s_1,F)$, com estados numerados de 1 a n, seja $r_{ij}^{(k)}$ a expressão que descreve a linguagem determinada pelos percursos de i para j que passam quando muito por estados intermédios etiquetados com números não superiores a k.

$$r_{ii}^{(0)} = \begin{cases} \varepsilon & sse & \text{não existe qualquer lacete em } i \\ \varepsilon + a_1 \dots + a_p & sse & \text{os lacetes em } i \text{ estão etiquetados com } a_1, \dots, a_p \end{cases}$$
 $r_{ij}^{(0)} = \begin{cases} \emptyset & sse & \text{não existe qualquer arco } (i,j) \\ a_1 + \dots + a_p & sse & a_1, \dots, a_p \text{ etiquetam os arcos } (i,j) \end{cases}$

Define-se agora $r_{ij}^{(k)}$, para $k \ge 1$, recursivamente assim:

$$r_{ij}^{(k)} = r_{ij}^{(k-1)} + r_{ik}^{(k-1)} (r_{kk}^{(k-1)})^* r_{kj}^{(k-1)}.$$

A linguagem $\mathcal{L}(A)$ é definida pela expressão $\sum_{s \in F} r_{1s}^{(n)}$

Dado um autómato finito $A=(S,\Sigma,\delta,s_1,F)$, com estados numerados de 1 a n, seja $r_{ij}^{(k)}$ a expressão que descreve a linguagem determinada pelos percursos de i para j que passam quando muito por estados intermédios etiquetados com números não superiores a k.

$$r_{ii}^{(0)} = \begin{cases} \varepsilon & sse & \text{não existe qualquer lacete em } i \\ \varepsilon + a_1 \dots + a_p & sse & \text{os lacetes em } i \text{ estão etiquetados com } a_1, \dots, a_p \end{cases}$$
 $r_{ij}^{(0)} = \begin{cases} \emptyset & sse & \text{não existe qualquer arco } (i,j) \\ a_1 + \dots + a_p & sse & a_1, \dots, a_p \text{ etiquetam os arcos } (i,j) \end{cases}$

Define-se agora $r_{ij}^{(k)}$, para $k \ge 1$, recursivamente assim:

$$r_{ij}^{(k)} = r_{ij}^{(k-1)} + r_{ik}^{(k-1)} (r_{kk}^{(k-1)})^* r_{kj}^{(k-1)}.$$

A linguagem $\mathcal{L}(A)$ é definida pela expressão $\sum_{s \in F} r_{1s}^{(n)}$

Dado um autómato finito $A=(S,\Sigma,\delta,s_1,F)$, com estados numerados de 1 a n, seja $r_{ij}^{(k)}$ a expressão que descreve a linguagem determinada pelos percursos de i para j que passam quando muito por estados intermédios etiquetados com números não superiores a k.

$$r_{ii}^{(0)} = \begin{cases} \varepsilon & sse & \text{não existe qualquer lacete em } i \\ \varepsilon + a_1 \dots + a_p & sse & \text{os lacetes em } i \text{ estão etiquetados com } a_1, \dots, a_p \end{cases}$$
 $r_{ij}^{(0)} = \begin{cases} \emptyset & sse & \text{não existe qualquer arco } (i,j) \\ a_1 + \dots + a_p & sse & a_1, \dots, a_p \text{ etiquetam os arcos } (i,j) \end{cases}$

Define-se agora $r_{ij}^{(k)}$, para $k \ge 1$, recursivamente assim:

$$r_{ij}^{(k)} = r_{ij}^{(k-1)} + r_{ik}^{(k-1)} (r_{kk}^{(k-1)})^* r_{kj}^{(k-1)}.$$

A linguagem $\mathcal{L}(A)$ é definida pela expressão $\sum_{s \in F} r_{1s}^{(n)}$

Dado um autómato finito $A=(S,\Sigma,\delta,s_1,F)$, com estados numerados de 1 a n, seja $r_{ij}^{(k)}$ a expressão que descreve a linguagem determinada pelos percursos de i para j que passam quando muito por estados intermédios etiquetados com números não superiores a k.

$$r_{ii}^{(0)} = \begin{cases} \varepsilon & sse & \text{não existe qualquer lacete em } i \\ \varepsilon + a_1 \dots + a_p & sse & \text{os lacetes em } i \text{ estão etiquetados com } a_1, \dots, a_p \end{cases}$$
 $r_{ij}^{(0)} = \begin{cases} \emptyset & sse & \text{não existe qualquer arco } (i,j) \\ a_1 + \dots + a_p & sse & a_1, \dots, a_p \text{ etiquetam os arcos } (i,j) \end{cases}$

Define-se agora $r_{ij}^{(k)}$, para $k \ge 1$, recursivamente assim:

$$r_{ij}^{(k)} = r_{ij}^{(k-1)} + r_{ik}^{(k-1)} (r_{kk}^{(k-1)})^* r_{kj}^{(k-1)}.$$

A linguagem $\mathcal{L}(A)$ é definida pela expressão $\sum_{s \in F} r_{1s}^{(n)}$.

Porquê
$$r_{ij}^{(k)} = r_{ij}^{(k-1)} + r_{ik}^{(k-1)} (r_{kk}^{(k-1)})^* r_{kj}^{(k-1)}$$
?

 $r_{ij}^{(k)}$ define a linguagem determinada pelos percursos de i para j que só podem ter como **estados intermédios** os que têm números não superiores a k.

- Se não passar por k, a expressão é $r_{ij}^{(k-1)}$.
- Se passar por k, é uma concatenação de $r_{ik}^{(k-1)}$ com $(r_{kk}^{(k-1)})^*$ e $r_{kj}^{(k-1)}$.

Porquê
$$r_{ij}^{(k)} = r_{ij}^{(k-1)} + r_{ik}^{(k-1)} (r_{kk}^{(k-1)})^* r_{kj}^{(k-1)}$$
?

 $r_{ij}^{(k)}$ define a linguagem determinada pelos percursos de i para j que só podem ter como **estados intermédios** os que têm números não superiores a k.

- Se não passar por k, a expressão é $r_{ii}^{(k-1)}$.
- Se passar por k, é uma concatenação de $r_{ik}^{(k-1)}$ com $(r_{kk}^{(k-1)})^*$ e $r_{kj}^{(k-1)}$.

Método de Floyd-Warshall para Caminhos Mínimos

Um parentesis...

- O método de Kleene baseia-se numa técnica de concepção de algoritmos designada por programação dinâmica. A solução do problema é obtida à custa de soluções para subproblemas e pode ser calculada por fases, como no método de Kleene (em que cada fase corresponde a um valor de k). Cada subproblema é resolvido apenas uma vez e a sua solução é reutilizada sempre que for necessário.
- O algoritmo de Floyd-Warshall, que calcula a distância mínima D_{ij}⁽ⁿ⁾ para todos os pares (i, j) em grafos com valores (distâncias) nos ramos, baseia-se numa ideia análoga. A distância é dada pela soma dos valores nos ramos do percurso. Como os percursos mínimos não têm ciclos, a recorrência fica:

$$D_{ij}^{(k)} = \min(D_{ij}^{(k-1)}, D_{ik}^{(k-1)} + D_{kj}^{(k-1)})$$

$$D_{ii}^{(0)}=0$$
. Para $i
eq j$, $D_{ij}^{(0)}=\left\{egin{array}{ll} d_{ij} & ext{valor no ramo }(i,j) \ \infty & ext{não tem ramo} \end{array}
ight.$

O algoritmo de Floyd-Warshall é estudado noutras UCs, por exemplo, CC2001 "Desenho e Análise de Algoritmos".

Recordar:
$$r_{ij}^{(k)} = r_{ij}^{(k-1)} + r_{ik}^{(k-1)} (r_{kk}^{(k-1)})^* r_{kj}^{(k-1)}$$
, para $k \ge 1$

$$\begin{array}{ll} r_{11}^{(1)} &= r_{11}^{(0)} + r_{11}^{(0)} (r_{11}^{(0)})^* r_{11}^{(0)} = \varepsilon + \mathbf{b} + (\varepsilon + \mathbf{b})(\varepsilon + \mathbf{b})^* (\varepsilon + \mathbf{b}) = \mathbf{b}^* \\ r_{12}^{(1)} &= r_{22}^{(0)} + r_{21}^{(0)} (r_{11}^{(0)})^* r_{12}^{(0)} = \varepsilon + \mathbf{c} + (\varepsilon + \mathbf{b})^* \mathbf{a} = \varepsilon + \mathbf{c} \\ r_{12}^{(1)} &= r_{12}^{(0)} + r_{11}^{(0)} (r_{11}^{(0)})^* r_{12}^{(0)} = \mathbf{a} + (\varepsilon + \mathbf{b})(\varepsilon + \mathbf{b})^* \mathbf{a} = \mathbf{b}^* \mathbf{a} \\ r_{21}^{(1)} &= r_{21}^{(0)} + r_{21}^{(0)} (r_{11}^{(0)})^* r_{11}^{(0)} = \emptyset \\ \end{array}$$

$$r_{21}^{(1)} &= r_{21}^{(1)} + r_{21}^{(1)} (r_{22}^{(1)})^* r_{21}^{(1)} = r_{11}^{(1)} = \mathbf{b}^* \\ r_{12}^{(2)} &= r_{12}^{(1)} + r_{12}^{(1)} (r_{22}^{(1)})^* r_{22}^{(1)} = \mathbf{b}^* \mathbf{a} + \mathbf{b}^* \mathbf{a}(\varepsilon + \mathbf{c})^* (\varepsilon + \mathbf{c}) = \mathbf{b}^* \mathbf{a} \mathbf{c}^* \\ r_{22}^{(2)} &= r_{22}^{(1)} + r_{22}^{(1)} (r_{22}^{(1)})^* r_{22}^{(1)} = \mathbf{c}^* \\ r_{22}^{(2)} &= r_{22}^{(1)} + r_{22}^{(1)} (r_{22}^{(1)})^* r_{22}^{(1)} = \mathbf{c}^* \end{array}$$

Conclusão: a expressão que descreve a linguagem aceite pelo AF é $r_{12}^{(2)}$ ou seja, b^*ac^* .

Se 1 e 2 fossem estados finais seria $r_{11}^{(2)} + r_{12}^{(2)} = b^* + b^*ac^*$

Recordar:
$$r_{ij}^{(k)} = r_{ij}^{(k-1)} + r_{ik}^{(k-1)} (r_{kk}^{(k-1)})^* r_{kj}^{(k-1)}$$
, para $k \ge 1$

$$\begin{array}{ll} r_{11}^{(1)} &= r_{11}^{(0)} + r_{11}^{(0)} (r_{11}^{(0)})^* r_{11}^{(0)} = \varepsilon + \mathbf{b} + (\varepsilon + \mathbf{b})(\varepsilon + \mathbf{b})^* (\varepsilon + \mathbf{b}) = \mathbf{b}^* \\ r_{12}^{(1)} &= r_{22}^{(0)} + r_{21}^{(0)} (r_{11}^{(0)})^* r_{12}^{(0)} = \varepsilon + \mathbf{c} + (\varepsilon + \mathbf{b})^* \mathbf{a} = \varepsilon + \mathbf{c} \\ r_{12}^{(1)} &= r_{12}^{(0)} + r_{11}^{(0)} (r_{11}^{(0)})^* r_{12}^{(0)} = \mathbf{a} + (\varepsilon + \mathbf{b})(\varepsilon + \mathbf{b})^* \mathbf{a} = \mathbf{b}^* \mathbf{a} \\ r_{21}^{(1)} &= r_{21}^{(0)} + r_{21}^{(0)} (r_{11}^{(0)})^* r_{11}^{(0)} = \emptyset \\ \end{array}$$

$$r_{21}^{(1)} &= r_{21}^{(1)} + r_{21}^{(1)} (r_{22}^{(1)})^* r_{21}^{(1)} = r_{11}^{(1)} = \mathbf{b}^* \\ r_{12}^{(2)} &= r_{12}^{(1)} + r_{12}^{(1)} (r_{22}^{(1)})^* r_{22}^{(1)} = \mathbf{b}^* \mathbf{a} + \mathbf{b}^* \mathbf{a}(\varepsilon + \mathbf{c})^* (\varepsilon + \mathbf{c}) = \mathbf{b}^* \mathbf{a} \mathbf{c}^* \\ r_{22}^{(2)} &= r_{22}^{(1)} + r_{22}^{(1)} (r_{22}^{(1)})^* r_{22}^{(1)} = \mathbf{c}^* \\ r_{22}^{(2)} &= r_{22}^{(1)} + r_{22}^{(1)} (r_{22}^{(1)})^* r_{22}^{(1)} = \mathbf{c}^* \end{array}$$

Conclusão: a expressão que descreve a linguagem aceite pelo AF é $r_{12}^{(2)}$ ou seja, b^*ac^* .

Se 1 e 2 fossem estados finais seria $r_{11}^{(2)} + r_{12}^{(2)} = b^* + b^*ac^*$

Recordar:
$$r_{ij}^{(k)} = r_{ij}^{(k-1)} + r_{ik}^{(k-1)} (r_{kk}^{(k-1)})^* r_{kj}^{(k-1)}$$
, para $k \ge 1$

$$r_{22}^{(1)} = r_{22}^{(0)} + r_{21}^{(0)}(r_{11}^{(0)})^* r_{12}^{(0)} = \varepsilon + c + \emptyset(\varepsilon + b)^* a = \varepsilon + c$$

$$r_{12}^{(1)} = r_{12}^{(0)} + r_{11}^{(0)}(r_{11}^{(0)})^* r_{12}^{(0)} = a + (\varepsilon + b)(\varepsilon + b)^* a = b^* a$$

$$r_{21}^{(1)} = r_{21}^{(0)} + r_{21}^{(0)}(r_{11}^{(0)})^* r_{11}^{(0)} = \emptyset$$

$$r_{21}^{(2)} = r_{21}^{(1)} + r_{21}^{(1)}(r_{22}^{(1)})^* r_{21}^{(1)} = r_{11}^{(1)} = b^*$$

$$r_{12}^{(2)} = r_{12}^{(1)} + r_{12}^{(1)}(r_{22}^{(1)})^* r_{22}^{(1)} = b^* a + b^* a(\varepsilon + c)^* (\varepsilon + c) = b^* ac^*$$

$$r_{22}^{(2)} = r_{22}^{(1)} + r_{22}^{(1)}(r_{22}^{(1)})^* r_{22}^{(1)} = c^*$$

$$r_{22}^{(2)} = 0$$

Conclusão: a expressão que descreve a linguagem aceite pelo AF é $r_{12}^{(2)}$ ou seja, b^*ac^* .

Se 1 e 2 fossem estados finais seria $r_{11}^{(2)} + r_{12}^{(2)} = b^* + b^*ac^*$.

$$\begin{array}{ll} r_{12}^{(2)} &= r_{12}^{(1)} + r_{12}^{(1)}(r_{22}^{(1)})^* r_{22}^{(1)} = b^* a + b^* a (\varepsilon + c)^* (\varepsilon + c) = b^* a c^* \\ r_{22}^{(2)} &= r_{22}^{(1)} + r_{22}^{(1)}(r_{22}^{(1)})^* r_{22}^{(1)} = c^* \\ r_{21}^{(2)} &= \emptyset \end{array}$$

Conclusão: a expressão que descreve a linguagem aceite pelo AF é $r_{12}^{(2)}$ ou seja, b^*ac^* .

Se 1 e 2 fossem estados finais seria $r_{11}^{(2)} + r_{12}^{(2)} = b^* + b^*ac^*$

$$\begin{array}{ll} r_{11}^{(2)} &= r_{11}^{(1)} + r_{12}^{(1)} (r_{22}^{(1)})^{\star} r_{21}^{(1)} = r_{11}^{(1)} = b^{\star} \\ r_{12}^{(2)} &= r_{12}^{(1)} + r_{12}^{(1)} (r_{22}^{(1)})^{\star} r_{22}^{(1)} = b^{\star} \mathbf{a} + b^{\star} \mathbf{a} (\varepsilon + \mathbf{c})^{\star} (\varepsilon + \mathbf{c}) = b^{\star} \mathbf{a} \mathbf{c}^{\star} \\ r_{22}^{(2)} &= r_{22}^{(1)} + r_{22}^{(1)} (r_{22}^{(1)})^{\star} r_{22}^{(1)} = \mathbf{c}^{\star} \\ r_{21}^{(2)} &= \emptyset \end{array}$$

Conclusão: a expressão que descreve a linguagem aceite pelo AF é $r_{12}^{(2)}$ ou seja, b^*ac^* .

$$\begin{array}{ll} r_{11}^{(2)} &= r_{11}^{(1)} + r_{12}^{(1)} (r_{22}^{(1)})^{\star} r_{21}^{(1)} = r_{11}^{(1)} = b^{\star} \\ r_{12}^{(2)} &= r_{12}^{(1)} + r_{12}^{(1)} (r_{22}^{(1)})^{\star} r_{22}^{(1)} = b^{\star} \mathbf{a} + b^{\star} \mathbf{a} (\varepsilon + \mathbf{c})^{\star} (\varepsilon + \mathbf{c}) = b^{\star} \mathbf{a} \mathbf{c}^{\star} \\ r_{22}^{(2)} &= r_{22}^{(1)} + r_{22}^{(1)} (r_{22}^{(1)})^{\star} r_{22}^{(1)} = \mathbf{c}^{\star} \\ r_{21}^{(2)} &= \emptyset \end{array}$$

Conclusão: a expressão que descreve a linguagem aceite pelo AF é $r_{12}^{(2)}$ ou seja, b^*ac^* .

Se 1 e 2 fossem estados finais seria $r_{11}^{(2)} + r_{12}^{(2)} = b^* + b^*ac^*$.

Muito trabalhoso...
$$r_{11}^{(0)} = \varepsilon + b \qquad r_{22}^{(0)} = \varepsilon + c \qquad r_{12}^{(0)} = a \qquad r_{21}^{(0)} = \emptyset$$
 Recordar:
$$r_{ij}^{(k)} = r_{ij}^{(k-1)} + r_{ik}^{(k-1)} (r_{kk}^{(k-1)})^* r_{kj}^{(k-1)}, \text{ para } k \ge 1$$

$$r_{11}^{(1)} = r_{11}^{(0)} + r_{11}^{(0)} (r_{11}^{(0)})^* r_{11}^{(0)} = \varepsilon + b + (\varepsilon + b)(\varepsilon + b)^* (\varepsilon + b) = 0$$

$$\begin{array}{ll} r_{11}^{(1)} &= r_{11}^{(0)} + r_{11}^{(0)} (r_{11}^{(0)})^{\star} r_{11}^{(0)} = \varepsilon + b + (\varepsilon + b)(\varepsilon + b)^{\star} (\varepsilon + b) = b^{\star} \\ r_{22}^{(1)} &= r_{22}^{(0)} + r_{21}^{0} (r_{11}^{(0)})^{\star} r_{12}^{(0)} = \varepsilon + c + \emptyset(\varepsilon + b)^{\star} a = \varepsilon + c \\ r_{12}^{(1)} &= r_{12}^{(0)} + r_{11}^{(0)} (r_{11}^{(0)})^{\star} r_{12}^{(0)} = a + (\varepsilon + b)(\varepsilon + b)^{\star} a = b^{\star} a \\ r_{21}^{(1)} &= r_{21}^{(0)} + r_{21}^{(0)} (r_{11}^{(0)})^{\star} r_{11}^{(0)} = \emptyset \end{array}$$

$$\begin{array}{ll} r_{11}^{(2)} &= r_{11}^{(1)} + r_{12}^{(1)} (r_{22}^{(1)})^{\star} r_{21}^{(1)} = r_{11}^{(1)} = b^{\star} \\ r_{12}^{(2)} &= r_{12}^{(1)} + r_{12}^{(1)} (r_{22}^{(1)})^{\star} r_{22}^{(1)} = b^{\star} \mathbf{a} + b^{\star} \mathbf{a} (\varepsilon + \mathbf{c})^{\star} (\varepsilon + \mathbf{c}) = b^{\star} \mathbf{a} \mathbf{c}^{\star} \\ r_{22}^{(2)} &= r_{22}^{(1)} + r_{22}^{(1)} (r_{22}^{(1)})^{\star} r_{22}^{(1)} = \mathbf{c}^{\star} \\ r_{21}^{(2)} &= \emptyset \end{array}$$

Conclusão: a expressão que descreve a linguagem aceite pelo AF é $r_{12}^{(2)}$ ou seja, b^*ac^* .

Se 1 e 2 fossem estados finais seria $r_{11}^{(2)} + r_{12}^{(2)} = b^* + b^*ac^*$.

Obtém ER por eliminação de estados. Menos trabalhoso . . .

 Início: Introduzir um estado inicial i e um estado final f para garantir que não saem transições de f nem chegam transições a i. Transformar os labels em ERs

- Eliminar os estados um a um, com excepção de *i* e *f* :
 - Estado 1: substituir percursos que passam no nó 1 por ramos. Neste caso, percursos i11*2 pelo ramo (i, 2) com expressão ε b*a, ou seja

Obtém ER por eliminação de estados. Menos trabalhoso ...

 Início: Introduzir um estado inicial i e um estado final f para garantir que não saem transições de f nem chegam transições a i. Transformar os labels em ERs.

- Eliminar os estados um a um, com excepção de *i* e *f* :
 - Estado 1: substituir percursos que passam no nó 1 por ramos. Neste caso, percursos i11*2 pelo ramo (i, 2) com expressão ε b*a, ou seja

$$b^*a$$
, b^*a

Obtém ER por eliminação de estados. Menos trabalhoso ...

 Início: Introduzir um estado inicial i e um estado final f para garantir que não saem transições de f nem chegam transições a i. Transformar os labels em ERs.

- Eliminar os estados um a um, com excepção de *i* e *f* :
 - Estado 1: substituir percursos que passam no nó 1 por ramos. Neste caso, percursos i11*2 pelo ramo (i,2) com expressão ε b*a, ou seja

Obtém ER por eliminação de estados. Menos trabalhoso . . .

 Início: Introduzir um estado inicial i e um estado final f para garantir que não saem transições de f nem chegam transições a i. Transformar os labels em ERs.

- Eliminar os estados um a um, com excepção de *i* e *f* :
 - Estado 1: substituir percursos que passam no nó 1 por ramos. Neste caso, percursos i11*2 pelo ramo (i,2) com expressão ε b*a, ou seja

Obtém ER por eliminação de estados. Menos trabalhoso . . .

 Início: Introduzir um estado inicial i e um estado final f para garantir que não saem transições de f nem chegam transições a i. Transformar os labels em ERs.

- Eliminar os estados um a um, com excepção de i e f:
 - Estado 1: substituir percursos que passam no nó 1 por ramos. Neste caso, percursos i11*2 pelo ramo (i,2) com expressão ε b*a, ou seja

Obtém ER por eliminação de estados. Menos trabalhoso ...

 Início: Introduzir um estado inicial i e um estado final f para garantir que não saem transições de f nem chegam transições a i. Transformar os labels em ERs.

- Eliminar os estados um a um, com excepção de *i* e *f* :
 - Estado 1: substituir percursos que passam no nó 1 por ramos. Neste caso, percursos i11*2 pelo ramo (i,2) com expressão ε b*a, ou seja

Obtém ER por eliminação de estados. Menos trabalhoso ...

 Início: Introduzir um estado inicial i e um estado final f para garantir que não saem transições de f nem chegam transições a i. Transformar os labels em ERs.

- Eliminar os estados um a um, com excepção de i e f:
 - Estado 1: substituir percursos que passam no nó 1 por ramos. Neste caso, percursos i11*2 pelo ramo (i,2) com expressão ε b*a, ou seja

Eliminação de Estados de Brzozowski e McCluskey

Para $A = (S, \Sigma, \delta, s_0, F)$, o método de eliminação de estados obtém uma expressão regular para $\mathcal{L}(A)$. Partindo do diagrama de transição de A efetuamos:

- Primeiro passo: Inserimos um estado inicial i e um novo estado final f, para garantir que não saem transições do estado final nem entram transições no estado inicial.
 - Definimos transições por ε: do novo estado inicial i para s₀; dos estados finais s ∈ F para o estado f, que passa a ser o único final.
 - Substituimos os símbolos nos ramos por expressões regulares.
- Procedemos à eliminação dos estados, um a um, pela ordem que quisermos (se não for indicada uma ordem), mas mantemos i e f.
 - Para eliminar um estado s, devemos analisar os ramos que entram em s, os ramos que saem de s e, o lacete em s, se existir.

Vamos determinar uma expressão regular para a linguagem reconhecida pelo autómato seguinte:

Primeiro passo: introduzir um estado inicial i e um estado final f. Não sairão transições de f nem chegam transições a i. Transformar os labels para expressões regulares.

Para **eliminar** q_0 , analisamos os ramos que entram em q_0 e os que saem de q_0

Para **eliminar** q_0 , substituimos o percurso $q_2 \to^{\mathbf{a}} q_0 \to^{\mathbf{a}} q_1$ por um ramo (q_2, q_1) com expressão aa e substituimos $i \to^{\varepsilon} q_0 \to^{\mathbf{a}} q_1$ por um ramo (i, q_1) com expressão $\varepsilon \mathbf{a} \equiv \mathbf{a}$.

Para eliminar q_3 , analisamos os ramos que entram em q_3 e os que saem de q_3

Substituimos percurso $q_2q_3q_3^{\star}q_1$ por um ramo (q_2,q_1) com expressão $(\varepsilon+a)b^{\star}b$. Como **já existia um ramo de** q_2 **para** q_1 , substituimos a sua expressão **aa** por **aa** $+(\varepsilon+a)b^{\star}b$.

Deslocámos o estado i apenas para facilitar a compreensão do diagrama.

Para eliminar q_1 , analisamos os ramos que entram e os que saem em q_1

Para eliminar q_1 , temos de substituir quatro "percursos":

- ullet iq_1f pelo ramo (i,f) com expressão a $arepsilon\equiv$ a
- iq_1q_2 pelo ramo (i,q_2) om expressão a $(\varepsilon+b)$
- q_2q_1f pelo ramo (q_2,f) com expressão $(aa+(\varepsilon+a)b^*b)\varepsilon\equiv aa+(\varepsilon+a)b^*b$
- $q_2q_1q_2$ pelo lacete (q_2, q_2) com expressão $(aa + (\varepsilon + a)b^*b)(\varepsilon + b)$

Após eliminar q_1 fica:

Para obter a expressão para $\mathcal{L}(A)$, resta eliminar q_2 , substituindo percursos $iq_2q_2^*f$ por um ramo (i, f). Como já existia um ramo (i, f), acrescenta-se a nova expressão.

$$\frac{\mathbf{a} + (\mathbf{a} + \mathbf{ab})((\mathbf{aa} + (\varepsilon + \mathbf{a})\mathbf{b}^*\mathbf{b})(\varepsilon + \mathbf{b}))^*(\varepsilon + \mathbf{aa} + (\varepsilon + \mathbf{a})\mathbf{b}^*\mathbf{b})}{i}$$

Conclusão:

A expressão $a + (a + ab)((aa + (\varepsilon + a)b^*b)(\varepsilon + b))^*(\varepsilon + aa + (\varepsilon + a)b^*b)$ descreve a linguagem reconhecida pelo autómato

A expressão é equivalente a $a + (a + ab)(aa + b + ab)^*$ porque

$$((aa + (\varepsilon + a)b^*b)(\varepsilon + b))^* \equiv (aa + bb^* + ab^*b + aab + bb^*b + ab^*bb)^*$$

$$\equiv (aa + b + ab^*b + aab + ab^*bb)^*$$

$$\equiv (aa + b + ab)^*$$

$$(aa + b + ab)^*$$

$$(aa + b + ab)^* (\varepsilon + aa + (\varepsilon + a)b^*b) \equiv (aa + b + ab)^* (\varepsilon + aa + b^*b + ab^*b)$$

$$\equiv (aa + b + ab)^*$$

$$\equiv (aa + b + ab)^* (\varepsilon + aa + b^*b + ab^*b)$$

$$\equiv (aa + b + ab)^* (\varepsilon + aa + b^*b + ab^*b)$$