University of Mannheim School of Social Sciences Math Refresher for Political Science, Fall 2025 Carlos Gueiros

Problem Set: Set Theory I

- 1. Identify whether each of the following indicators is measured at a nominal, ordinal, interval, or ratio level. Note also whether each is a discrete or a continuous measure:
 - (a) Highest level of education as (1) some high school, (2) high school graduate, (3) some college, (4) college graduate, (5) postgraduate.
 - (b) Annual income.
 - (c) State welfare expenditures, measured in millions of dollar.
 - (d) Vote choice among Bush, Clinton, and Perot.
 - (e) Absence or presence of a militarized interstate dispute.
 - (f) Military personnel, measured in 1,000s of persons.
 - (g) The number of wars in which countries have participated.
- 2. Let $A = \{1, 2, 3, 4, 5\}$, $B = \{2, 4, 6, 8\}$ and $C = \{6, 8\}$. Find following:
 - (a) $A \cup B$
 - (b) $A \cap B$
 - (c) $A \cap B^C$
 - (d) B A
 - (e) C-B
 - (f) $A \cap C$
- 3. Let $A = \{1, 5, 10\}, B = \{1, 2, ..., 10\}.$
 - (a) Is $A \subset B$, $B \subset A$, both or neither?
 - (b) What is $A \cup B$?
 - (c) What is $A \cap B$?
 - (d) Partition B into two sets, A and everything else. Call everything else C. What is C?
 - (e) What is $A \cup C$?
 - (f) What is $A \cap C$?

- 4. Let $A = \{a, b, c, d\}$, $B = \{1, 2, 3, 4\}$ and $C = \{a, b, 1, 2\}$. Show that:
 - (a) Distributivity: $(A \cap C) \cup (B \cap C) = (A \cup B) \cap C$
 - (b) Associativity: $(A \cap B) \cap C = A \cap (B \cap C)$
 - (c) De Morgan Laws: $C (A \cup B) = (C A) \cap (C B)$
- 5. Determine which of the following formulas are true. If any formula is false, find a counterexample to demonstrate this using a Venn diagram.
 - (a) $A \setminus B = B \setminus A$
 - (b) $A \subseteq B \iff A \cap B = A$
 - (c) $A \cup B = A \cup C \Longrightarrow B = C$
 - (d) $A \subseteq B \iff A \cup B = B$
 - (e) $A \cap B = A \cap C \Longrightarrow B = C$
 - (f) $A \setminus (B \setminus C) = (A \setminus B) \setminus C$
- 6. Explain in words why it is true that for any sets A, B, C:
 - (a) $(A \cup B) \cup C = A \cup (B \cup C)$
 - (b) $(A \cap B) \cap C = A \cap (B \cap C)$
 - (c) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - (d) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 7. Find the interior point(s) and the boundary points(s) of the set $\{x: 1 \le x \le 5\}$.
- 8. Why does every set in $\mathbb R$ that is nonempty, closed, and bounded have a greatest member?
- 9. Which of the following sets are open, closed, or neither?
 - (a) $D = \{x \in \mathbb{R}^1 : x = 2 \text{ or } 3 < x < 4\}$
 - (b) $A = \{(x, y) \in \mathbb{R}^2 : x^2 \le y \le 1\}$
 - (c) $B = \{(x, y) \in \mathbb{R}^2 : x^2 < y < 1\}$
 - (d) $C = \{(x, y) \in \mathbb{R}^2 : x^2 \le y < 1\}$
 - (e) universal set
- 10. Sketch the following functions:
 - (a) f(x) = 2
 - (b) f(x) = 3x 1
 - (c) $f(x) = x^2 + 2x + 1$
 - (d) $f(x) = (x-3)^{-1}$
 - (e) f(x) = |2x 2|

- (f) $f(x) = e^{2x}$
- (g) $f(x) = -\sqrt{x}$
- 11. Which of the following functions is injective, bijective, or surjective?
 - (a) a(x) = 2x + 1
 - (b) $b(x) = x^2$
 - (c) $c(x) = \ln x$
 - (d) $d(x) = e^x$
- 12. Simplify the following expressions as much as possible:
 - (a) $(-x^4y^2)^2$
 - (b) $9(3^0)$
 - (c) $(2a^2)(4a^2)$
 - (d) x^4/x^3
 - (e) $(-2)^{(7}-4)$
 - (f) $(1/(27b^3)^(1/3)$
 - (g) $y^7y^6y^5y^4$
 - (h) ((2a/7b)/(11b/5a))
 - (i) $(z^2)^4$
- 13. Solve:
 - (a) $\sqrt[3]{2^3}$
 - (b) $\sqrt[3]{27}$
 - (c) $\sqrt[4]{625}$
- 14. Solve the following inequalities so that the variable is the only term on the left-hand side:
 - (a) x 3 < 2x + 15
 - (b) 11 (4/3)t > 3
 - (c) $(5/6)y + 3(y-1) \le (11/6)(1-y) + 2y$
- $15.\ \,$ Find the roots (solutions) to the following quadratic equations:
 - (a) $4x^2 1 = 17$
 - (b) $9x^2 3x 12 = 0$
 - (c) $x^2 2x 16 = 0$
 - (d) $6x^2 6x 6 = 0$
 - (e) $5 + 11x = -3x^2$