

Eötvös Loránd Tudományegyetem Informatikai Kar Numerikus Analízis Tanszék

A Ljapunov-Schmidt-módszer

Dr. Kovács Sándor Adjunktus **Lipták Bence Gábor** Programtervező Informatikus MSc

Tartalomjegyzék

1.	Bevezetés	2
2.	Funkcionálanalízis kiegészítés 2.1. Faktorterek	3
	2.1. Faktortelek	5 6
	2.3. Fredholm-operátorok	
	2.4. Implicit függvény tétel	8
3.	A Ljapunov-Schmidt-módszer és alkalmazásai	10
4.	A Ljapunov-Schmidt-módszer mint numerikus módszer	13

Bevezetés

Funkcionálanalízis kiegészítés

Ahhoz, hogy a Ljapunov-Schmidt-módszert ismertethessük szükségünk van a Fredholm-operátorok fogalmára, amihez elengedhetetlenek a faktorterek és a kompakt operátorok. A módszerhez emellett még az implicit függvény tétel (Banach-terekben) is szükséges.

TODO jelölések szekció: Lin op, korl Lin op halmazai, esetleg skaláris szorzás jelölése, ha kell

TODO ebből mi maradjon meg? - kinek a szintjére kell belőni a részletességet, szükséges-e az, hogy pl egy évfolyamtárs megérthesse belőle az egészet? faktortér def talán szükséges, Fredholm-op valószínűleg, Frechét-differenciálás és implicit fv tétel szintén

2.1. Faktorterek

Először is ismertessük a faktorterek definícióját, és az alkalmazásunk szempontjából fontos tulajdonságait, a [1] könyv 4.2 fejezete alapján, ahol a bizonyítások is megtalálhatóak.

2.1.1. Definíció (Faktortér). Legyen V egy \mathbb{K} feletti lineáris tér, $U \subset V$ pedig egy altere. A V tér U szerinti faktortere vagy hányadostere

$$V/U := \{ v + U \mid v \in V \}, \tag{2.1}$$

ahol

$$v + U := \{v + u \mid u \in U\}. \tag{2.2}$$

Így egy lineáris térben egy altér segítségével definiáltunk egy halmazrendszert. A

következő állítással megfogalmazzuk, hogy a kapott halmazok és az U altér között mi az összefüggés.

2.1.1. Állítás. Ha V egy \mathbb{K} feletti lineáris tér, $U \subset V$ egy altere, akkor $\forall v, v' \in V$ -re

$$v + U = v' + U \qquad \Leftrightarrow \qquad v - v' \in U.$$
 (2.3)

Ennek segítségével belátható, hogy ha " $v-v'\in U$ " feltétellel definiálunk egy relációt V elemein, akkor az egy ekvivalenciareláció és az ekvivalenciaosztályok pedig a V/U faktortér elemei. Ezután definiáljunk műveleteket a faktortéren.

- **2.1.1. Tétel.** Legyen V egy \mathbb{K} feletti lineáris tér, $U \subset V$ egy altere, ekkor
 - Megadunk

$$V/U \times V/U \longrightarrow V/U$$

 $\mathbb{K} \times V/U \longrightarrow V/U$

leképezéseket a következő módon

$$(v_1 + U) + (v_2 + U) := (v_1 + v_2) + U$$
(2.4)

$$\alpha(v+U) := \alpha v + U \tag{2.5}$$

melyek jól definiáltak.

- A V/U faktortér ezekkel a műveletekkel egy K feletti lineáris tér.
- π_U az úgynevezett **kanonikus leképezés**, melyet

$$\pi_U(v) := v + U \qquad (v \in V)$$

módon definiálunk lineáris operátor V és V/U között.

A faktortér konstrukciója nagyon hasonlít az egész számok körében létesített maradékosztályokra, és rögzített $U \subset V$ esetén ugyanaz a jelölés is alkalmazható:

$$\overline{v} := v + U \qquad (v \in V),$$

ezzel a jelöléssel a műveletek:

$$\overline{v} + \overline{w} = \overline{v + w} \qquad (v, w \in V)$$

$$\alpha \overline{v} = \overline{\alpha v} \qquad (\alpha \in \mathbb{K}, v \in V).$$

Még fontos észrevétel, hogy a π_U leképezés magtere pontosan az U halmaz, valamint az operátor szürjektív is, amiből kapunk a faktortér dimenziójára egy összefüggést:

2.1.2. Tétel. Legyen V egy \mathbb{K} feletti lineáris tér, $U \subset V$ egy altere, ekkor

$$\dim V/U + \dim U = \dim V. \tag{2.6}$$

Ha egy $v \in V$ elemet egy $u \in U$ elemmel eltolunk ($U \subset V$ altér), akkor a V/U faktortérbeli π_U általi képe változatlan, ez a konstrukció alkalmas arra, hogy olyan függvényeket vizsgáljunk, amiknek az értéke az U altéren konstans, speciális esetben 0. Az ilyen leképezésekről szól a következő tétel:

- **2.1.3. Tétel (Homomorfiatétel vektorterekre).** Legyen V egy \mathbb{K} feletti lineáris tér, $F:V\to W$ egy lineáris leképezés, $U\subset V$ egy altér amire $U\subset \operatorname{Ker} F$. Ekkor egyértelműen létezik $F':V/U\to W$ amivel $F=F'\circ\pi_U$. Emellett
 - $\operatorname{Im} F = \operatorname{Im} F'$, illetve F' pontosan akkor szürjektív, amikor F is,
 - $\operatorname{Ker} F' = (\operatorname{Ker} F)/U$, illetve F' pontosan akkor injektív, amikor $U = \operatorname{Ker} F$.

F'-t az **F által indukált homomorfizmusnak** nevezzük.

A faktortérnek van egy hasznos tulajdonsága, amivel nem halmazrendszerként, hanem altérként lehet kezelni.

2.1.4. Tétel. Legyen V egy \mathbb{K} feletti lineáris tér, $U \subset V$ egy altere, $W \subset V$ pedig az U komplemens altere (tehát $V = W \oplus U$). Ekkor a π_U kanonikus leképezés leszűkítése W-re

$$\pi_{|_{U}}: W \longrightarrow V/U, \ \pi_{|_{U}}(w) = w + U$$

 $izomorfia, azaz W \cong V/U.$

2.2. Kompakt operátorok

A Fredholm-operátorok konstrukciójához érdemes feleleveníteni a kompakt operátorok fogalmát és néhány, a gyakorlat szempontjából hasznos tulajdonságukat. A következők során $(X, \|.\|_X)$ és $(Y, \|.\|_Y)$ normált terek.

2.2.1. Definíció (Kompakt operátor). $A: X \to Y$ operátor kompakt, ha bármely $U \subset X$ korlátos halmaznak a képe prekompakt, azaz $\overline{A[U]} \subset Y$ kompakt, valamint ha A korlátos, akkor teljesen folytonosnak is nevezzük. [2]

A továbbiakban az $X \to Y$ közötti kompakt és lineáris operátorok halmazát K(X,Y)-al, X=Y esetén K(X)-szel jelöljük, ez zárt alteret alkot L(X,Y)-ban.

2.2.2. Definíció. $A \in L(X,Y)$ operátor **véges rangú**, ha a képtere véges dimenziós (dim Im $A < \infty$). A véges rangú operátorok halmazát $K_{fin}(X,Y)$ -al rövidítjük. [2, 3]

Belátható ([2]), hogy minden véges rangú operátor kompakt (és így a jelölés indokolt).

A kompakt operátorok bizonyos esetekben közelíthetőek véges rangú operátorokkal:

2.2.1. Tétel. Ha Y-ban van Schauder-bázis, akkor $A \in L(X,Y)$ pontosan akkor kompakt, ha határértéke véges rangú operátorok valamely sorozatának, azaz $K(X,Y) = \overline{K_{fin}(X,Y)}$. [3]

Ezek a feltételek teljesülnek például szeparábilis Hilbert-terekben vagy L^p -terekben $(p \ge 1)$.

Még tegyünk egy megállapítást a kompakt operátorok adjungáltjával kapcsolatban:

2.2.2. Tétel. Legyenek $(X, \|.\|_X)$ és $(Y, \|.\|_Y)$ Banach-terek, $A \in L(X, Y)$, ekkor

$$A \in K(X,Y) \Leftrightarrow A^* \in K(Y^*,X^*),$$

azaz A pontosan akkor kompakt, ha A* adjungált operátora kompakt. [2, 4]

2.3. Fredholm-operátorok

Végül beszéljünk a Fredholm-operárokról és lehetőségekről az előállításukra. A továbbiakban $(X, ||.||_X)$ és $(Y, ||.||_Y)$ Banach-terek.

2.3.1. Definíció (Fredholm-operátor). $T \in L(X,Y)$ Fredholm-operátor, ha az alábbiak teljesülnek:

- $\dim \operatorname{Ker} T < \infty$,
- T/X/ zárt Y-ban,
- $\dim(Y/T[X]) < \infty$.

Ekkor a T operátor indexe ind $T := \dim \operatorname{Ker} T - \dim(Y/T[X]) \in \mathbb{Z}$, T cokernele $\operatorname{coker} T := Y/T[X]$ (azaz Y-ban a T képtere szerinti faktortér), valamint a cokernel $\operatorname{dimenzi\acute{o}ja}$ az operátor $\operatorname{kodimenzi\acute{o}ja}$ $\operatorname{codim} T := \dim \operatorname{coker} T$. [1, 3, 4, 5]

Az X és Y közötti Fredholm-operátorok halmazát a továbbiakban $\mathcal{F}(X,Y)$ -al jelöljük. Belátható, hogy a második feltétel (T képterének a zártsága) a másik kettőből következik [4, 5].

Most nézzük meg, hogy bizonyos függvény műveletek hatására változik-e a Fredholmtulajdonság.

- **2.3.1. Tétel.** Legyenek $(X, \|.\|_X)$, $(Y, \|.\|_Y)$ és $(Z, \|.\|_Z)$ Banach-terek, ekkor:
 - $A \in \mathcal{F}(X,Y)$ és $B \in \mathcal{F}(Y,Z)$, ekkor $B \circ A \in \mathcal{F}(X,Z)$ és $\operatorname{ind}(B \circ A) = \operatorname{ind} B + \operatorname{ind} A$,
 - $A \in \mathcal{F}(X,Y)$, $ekkor\ A^* \in \mathcal{F}(X^*,Y^*)$ és ind $A^* = -\operatorname{ind} A$,
 - $\mathcal{F}(X,Y)$ nyílt részhalmaza L(X,Y)-nak, és az ind : $\mathcal{F}(X,Y) \to \mathbb{Z}$ függvény lokálisan konstans.

Tehát Fredholm-operátorok kompozíciója Fredholm-operátor, valamint Fredholm-operátor adjungáltja is Fredholm-operátor. [3, 5]

Korábban említettük a kompakt operátorok és a Fredholm-operátorok kapcsolatát, erről szól a következő állítás.

2.3.2. Tétel. $T \in L(X,Y)$ bijektív, $K \in L(X,Y)$ kompakt, ekkor T + K Fredholmoperátor és $\operatorname{ind}(T+K) = 0$. Ennek speciális esete amikor $(X, \|.\|_X) = (Y, \|.\|_Y)$ és T az identitás X-en. [3, 5]

Amennyiben ilyen módon kaptunk egy Fredholm-operátort, akkor ahhoz (a kompakt operátorok altér-tulajdonságából kifolyólag) egy kompakt operátort hozzáadva is Fredholm-operátort kapunk, ez igaz tetszőleges konstrukció esetén is:

2.3.3. Tétel. $K \in K(X,Y)$ és $F \in \mathcal{F}(X,Y)$ esetén $K + F \in \mathcal{F}(X,Y)$, valamint $\operatorname{ind}(K+F) = \operatorname{ind} F$. [3]

Mivel a Fredholm-operátoroknál nem feltétel, hogy a magterük csak a tér nullelemét tartalmazza, ezért általában nem invertálhatóak, de egy hasonló tulajdonságot megadhatunk:

2.3.4. Tétel. $T \in L(X,Y)$ pontosan akkor Fredholm-operátor, ha létezik $B \in L(Y,X)$, $K_X \in K(X)$, $K_Y \in K(Y)$ úgy, hogy

$$BT = I_{|_{X}} + K_{X}, TB = I_{|_{Y}} + K_{Y}.$$

Azaz a Fredholm-tulajdonság lényegében az invertálhatóság modulo kompakt operátort jelenti. [3, 5]

2.4. Implicit függvény tétel

A módszer használata során az eredmény eléréséhez szükségünk lesz az implicit függvény tételre Banach-terekben, illetve ahhoz kötődően a Fréchet-derivált fogalmára. $(X, \|.\|_X)$, $(Y, \|.\|_Y)$ és $(Z, \|.\|_Z)$ a következők során Banach-terek.

2.4.1. Definíció. $F: X \times Y \to Z$ Fréchet-differenciálható X-ben az (u_0, v_0) pontban, ha létezik $(D_x F)(u_0, v_0) \in L(X, Z)$ úgy, hogy

$$\lim_{h \to 0} \frac{\|F(u_0 + h, v_0) - F(u_0, v_0) - (D_x F)(u_0, v_0)h\|_Z}{\|h\|_X} = 0.$$

Látható, hogy egy ponthoz tartozó derivált (a valós, többdimenziós esethez hasonlóan) egy függvény.

2.4.1. Tétel (Implicit függvény tétel Banach-terekben). $F: X \times Y \to Z$ folytonos, $(u_0, v_0) \in X \times Y$, $F(u_0, v_0) = 0$, $(D_x F)(u_0, v_0)$ bijektív és folytonos. Ekkor létezik (u_0, v_0) -nak olyan $U \times V \subset X \times Y$ környezete és $G: V \to U$ függvény, amivel $G(v_0) = u_0$ és

$$F(G(v), v) = 0$$
 $(\forall v \in V).$

Ezen felül minden $U \times V$ -beli megoldás ebben a formában áll elő. [6]

Az ilyen tulajdonságokkal rendelkező $D_x F$ függvényeket lineáris homeomorfizmusnak nevezzük:

2.4.2. Definíció. Az A leképezés lineáris homeomorfizmus, ha folytonos, bijektív és az inverze is folytonos.

Az inverz folytonossága pedig a Banach-féle inverz tételből (vagy Banach-féle homeomorfiatételből) következik:

2.4.2. Tétel. $A \in L(X,Y)$ Banach-terek közötti bijektív operátor, ekkor $A^{-1} \in L(Y,X)$. ([2] 6.1.4)

A Ljapunov-Schmidt-módszer és alkalmazásai

Először is vizsgáljunk meg egy bifurkációs problémát [7] alapján, ezen keresztül szemléltetve a módszer lényegét. Tekintsük a következő egyenletet:

$$F(\lambda, x) = 0$$

ahol $\lambda \in \mathbb{R}$ valós paraméter, $x \in X$ állapotváltozó (TODO ?) X Banach-térben, $0 \in Y$ pedig egy Banach-tér nulleleme, F pedig kétszer folytonosan differenciálható operátor. A feladat meghatározni azon $(\lambda, x) \in \mathbb{R} \times X$ párokat, amelyek kielégítik az egyenletet, lehetőség szerint az x-eket λ függvényében.

Feltesszük, hogy létezik megoldás, valamint azt, hogy minden x=0 esetén minden $\lambda \in \mathbb{R}$ megoldása az egyenletnek (az úgynevezett triviális megoldások). Ezen kívül tegyük fel azt, hogy $(\lambda_0,0) \in \mathbb{R} \times X$ bármely környezetében van nemtriviális megoldás, azaz $(\lambda_0,0)$ bifurkációs pont. Ez maga után vonja, hogy $F_x(\lambda_0,0)$ Fréchet-derivált nem invertálható.

Legyen

$$L := F_x(\lambda_0, x_0) : X \to Y,$$

$$K := \text{Ker } L,$$

$$R := \text{Im } L.$$

Tegyük fel, hogy K-nak és R-nek (amelyek zárt alterek X-ben és Y-ban) vannak komplemens alterei, azaz létezik $W \subset X$ zárt altér, amellyel $K \oplus W = X$, illetve $Z \subset Y$ szintén zárt altér, amellyel $R \oplus Z = Y$, és bármely $x \in X$ egyértelműen

felírható $x=u+v, u\in K, v\in W$ alakban, valamint bármely $y\in Y$ egyértelműen felírható $y=r+z, r\in R, z\in Z$ alakban - ezek teljesülnek például akkor, hogyha K és R véges dimenziós alterek, azaz ha L Fredholm-operátor. Vegyük ezenfelül a $Q:Y\to R$ és $P:Y\to Z$ projekciókat.

Írjuk fel az eredeti egyenlet Taylor-polinomját:

$$0 = F(\lambda, x) = Lx + \phi(\lambda, x)$$

(ahol $\phi(\lambda, x) = F(\lambda, x) - Lx$ a megfelelő maradéktag), és ezekbe írjuk be az x = u + v felírást, valamint vetítsük őket az R és a Z alterekre, így kapjuk az alábbi két egyenletet:

$$0 = QL(u+v) + Q\phi(\lambda, u+v) = Lv + Q\phi(\lambda, u+v),$$

$$0 = PL(u+v) + P\phi(\lambda, u+v).$$

Az első egyenlet így egy 3-változós függvényt ír le:

$$\Phi(\lambda, u, v) := Lv + Q\phi(\lambda, u + v),$$

ami folytonosan differenciálható, és deriváltja a 3. változó szerint az u=v=0 helyen

$$\Phi_v(\lambda_0, 0, 0) : v \to Lv + Q\phi_r(\lambda_0, 0)v.$$

Mivel $\phi(\lambda, x) = F(\lambda, x) - Lx$, így

$$\phi_x(\lambda_0, 0) = F_x(\lambda_0, 0) - L = L - L = 0,$$

ezért

$$\Phi_v(\lambda_0, 0, 0) = L_{|_W},$$

viszont Ker $L_{|W}=\{0\}$ és Im L=R, így $\Phi_v(\lambda,0,0)$ folytonos bijekció W és R között. Alkalmazható az implicit függvény tétel, tehát van $(\lambda_0,0,0)$ -nak egy olyan $\Lambda \times \mathcal{K} \times \mathcal{W}$ környezete, amiben egy $\gamma: \Lambda \times \mathcal{K} \to \mathcal{W}$ függvény meghatározza a $\Phi_v(\lambda,u,v)=0$ összes megoldását $\Phi_v(\lambda,u,\gamma(\lambda,u))$ alakban. Ezt behelyettesítve az eredeti egyenletbe kapjuk az

$$0 = PF(\lambda, u + \gamma(\lambda, u))$$

egyenletet. Mivel $u \in K$ és dim $K < \infty$, valamint $\operatorname{Im} P = Z$, dim $Z < \infty$, így az eredeti egyenletet sikerült redukálnunk egy véges dimenzión értelmezett, véges

dimenziós értékkészletű (TODO?) egyenletre, amit könnyebb megoldani.

A Ljapunov-Schmidt-módszer mint numerikus módszer

A következő fejezetben ismertetjük a Ljapunov-Schmidt módszernek egy numerikus módszerkénti felhasználását bizonyos peremérték-feladatok esetén [8] alapján. Tekintsük az alábbi egyenletet:

$$Lu(x) = Nu(x), \ x \in [a, b] \tag{4.1}$$

ahol L úgynevezett Sturm-Liouville operátor:

$$Lu(x) = \frac{1}{w(x)}(-(p(x)u'(x))' + q(x)u(x)),$$

ahol p(x)>0, w(x)>0 $(x\in[a,b]),\ p\in C^1[a,b];\ q,w\in C[a,b]$ adott függvények, valamint u-ra a következő peremfeltételek teljesülnek:

$$\alpha_{11}u(a) + \alpha_{12}u'(a) = 0,$$

 $\alpha_{21}u(b) + \alpha_{22}u'(b) = 0.$

Ezek a kikötések azért szükségesek, mert a későbbiekben az ilyen L-ekhez adunk meg egy módszert (a Csebisev-Tau-módszert [9]), amivel a sajátfüggvényeit elő tudjuk állítani.

Emellett feltesszük a következőket:

- S valós, szeparábilis Hilbert-tér, $L: \mathrm{Dom}\, L \subset S \to S$ lineáris operátor, $N: \mathrm{Dom}\, N \subset S \to S$ nemlineáris operátor,
- $\bullet \; L$ zárt leképezés (amivel ekvivalens [2]: $x_n \to x$ és $Lx_n \to y$ -ból következik hogy

 $x \in \text{Dom } L$ és Lx = y), önadjungált, Dom L sűrű S-ben, Ker L = p > 0 véges,

- L-nek a sajátértékei $\lambda_1 = \cdots = \lambda_p = 0 < \lambda_{p+1}, \ \lambda_i \leq \lambda_{i+1}, \ \lim_{i \to \infty} \lambda_i = \infty$, és a hozzájuk tartozó Φ_1, Φ_2, \ldots sajátfüggvények S-ben egy teljes ortonormált rendszert alkotnak ezeket a Sturm-Liouville-operátor biztosítja,
- létezik egy $S' \subset S$ altér, ami egy μ normával teljes, $\operatorname{Dom} L \subset S'$, minden $x \in \operatorname{Dom} L$ esetén a Φ_i -szerinti Fourier-sora $(\sum_{k=1}^{\infty} (x, \Phi_k) \Phi_k) \mu$ -ben konvergál x-hez és $\{\mu(\Phi_k)/\lambda_k\}_{k>p} \in l_2$, valamint létezik $\alpha > 0$, amivel $x \in S'$ esetén $\|x\|_S \leq \alpha \mu(x)$ (tehát μ α -szorosa felső becslése az eredeti normának, és μ -beli konvergenciából következik, hogy az adott sorozat az eredeti normában is konvergens),
- Dom $L \cap \text{Dom } N \neq \emptyset$, Dom $N \subset S'$ és altér S'-ben, Dom N zárt μ szerint,
- bármely R>0-hoz létezik $\beta_R>0$, $b_R>0$, amelyekkel bármely $x,y\in {\rm Dom}\,N$ amire $\mu(x)\leq R$, $\mu(y)\leq R$ teljesül $\mu(Nx-Ny)\leq \beta_R\mu(x-y)$ és $\mu(Nx)\leq b_R$, tehát tetszőleges μ -szerinti gömb N-szerinti képe korlátos (μ normával), valamint minden elem környezetének képének átmérője arányos a környezet átmérőjével; ezek a feltételek biztosítják majd az kisegítő egyenletünk kontrakció tulajdonságát.

Az (4.1) egyenlet megoldásait Dom $L \cap$ Dom N-ben keressük. Legyen $m \geq p$ és

$$S_m = \text{span}\{\Phi_1, \dots, \Phi_m\}, \ S_0 = \{0\}$$

az első m sajátfüggvény által kifeszített altér, $S_m \subset \text{Dom } L$. Definiáljuk a következő operátorokat, amennyiben $u = \sum_{k=1}^{\infty} (u, \Phi_k), \Phi_k \ (u \in S)$:

$$P_m u := \sum_{k=1}^m (u, \Phi_k), \Phi_k,$$

tehát P_m az S_m -re történő ortogonális projekció, valamint

$$H_m u := \sum_{k=m+1}^{\infty} \frac{1}{\lambda_k} (u, \Phi_k), \Phi_k.$$

 H_m -ről látható, hogy lineáris, Dom L-be képez, $H_m = (L_{|S_m^{\perp}})^{-1}$, illetve $H_m L u = (I - P_m)u$ (I az identitás operátor). Az S-téren vett normája $||H_m|| = \frac{1}{\lambda_{m+1}}$, a μ -szerinti

normája $\mu(H_m) \leq \alpha \sigma(m)$, ahol $\sigma(m) = \left(\sum_{k=m+1}^{\infty} \left(\frac{\mu(\Phi_k)}{\lambda_k}\right)^2\right)^{1/2}$ (ez utóbbi Cauchy-Schwarz-egyenlőtlenséggel belátható). Ebből következik, hogy $\lim_{m\to\infty} \mu(H_m) = 0$. A korábbi feltételeinket egészítsük ki még azzal, hogy $\operatorname{Im} H_m \subset \operatorname{Dom} N$ és $S_m \subset \operatorname{Dom} N$, hogy a P_m és a H_m alkalmazása után tudjuk az N-et is még alkalmazni. Tegyük fel, hogy $\overline{u} \in \operatorname{Dom} N \cap \operatorname{Dom} L$ megoldása az (4.1) egyenletnek, tehát

$$L\overline{u} = N\overline{u}. (4.2)$$

Erre először alkalmazzuk H_m -et:

$$H_m L \overline{u} = H_m N \overline{u},$$

$$(I - P_m) \overline{u} = H_m N \overline{u},$$

$$\overline{u} = P_m \overline{u} + H_m N \overline{u},$$

$$(4.3)$$

ez a kisegítő egyenlet. Ezután alkalmazzuk (4.2)-re P_m -et:

$$P_m(L\overline{u} - N\overline{u}) = 0, (4.4)$$

ami a bifurkációs egyenlet. Az összes olyan $\overline{u} \in \text{Dom } L \cap \text{Dom } N$, ami megoldása a kisegítő és a bifurkációs egyenletnek, az megoldása az eredeti (4.1) feladatnak. Legyenek a>0, b>0 valós számok, és legyen u_0 egy közelítő megoldása az Lu=Nu egyenletnek úgy, hogy létezik $u^* \in S_m$ ($u^* = \sum_{k=1}^m c_k \Phi_k$), amivel $\mu(u^* - u_0) \leq a$. Vegyük a következő halmazt:

$$S_{u^*}^b := \{ u \in \text{Dom } N \mid P_m u = u^*, \mu((I - P_m)u) \le b \},$$

tehát $S_{u^*}^b$ azon u-kat tartalmazza, melyek S_m -re levetítve u^* -ba esnek, és u^* -tól μ szerinti távolságuk legfeljebb b. Ezen elemek μ -normája korlátos:

$$\mu(u) = \mu(P_m u + (I - P_m)u) \le \mu(u^*) + \mu((I - P_m)u) \le \mu(u^*) + b.$$

Ezután definiáljuk a következő operátort:

$$T_{u^*}^b: S_{u^*}^b \to S,$$

 $T_{u^*}^b(u) := u^* + H_m N u.$

Lássuk be $T^b_{u^*}$ -ről, hogy bizonyos feltételek mellett kontrakció, legyen $x,y\in S^b_{u^*}$

$$\mu(T_{u^*}^b(x) - T_{u^*}^b(y)) = \mu((u^* + H_m N x) - (u^* + H_m N y)) =$$

$$= \mu(H_m(Nx - Ny)) \le$$

$$\le \mu(H_m)\mu(Nx - Ny) \le$$

$$\le \mu(H_m)\beta_R\mu(x - y),$$

ahol $R = \mu(u^*) + b$, tehát u^* -tól és b-től függő konstans, és a kezdeti kikötéseink alapján β_R egy R-től függő konstans. Mivel $\lim_{m\to\infty}\mu(H_m)=0$, ezért elég nagy m esetén $\mu(H_m)\beta_R<1$. Annak, hogy $\operatorname{Im} T_{u^*}^b\subset S_{u^*}^b$ (tehát lehet $T_{u^*}^b$ -t iteratívan alkalmazni) elégséges feltétele, hogy $\mu(H_m)^2\mu(L)b_R\leq b$, ami kellően nagy m-re szintén teljesül. Tehát ha m elég nagy, akkor $T_{u^*}^b$ kontrakció, így a Banach-Tyihonov-Cacciopoli-tétel miatt van fixpontja. Ezt az u^* -tól függő fixpontot jelöljük $y(u^*)$ -al, és asszociált elemnek nevezzük. $y(u^*)$ -ról könnyen belátható, hogy megoldása az (4.3) egyenletnek. Vezessük be a $c_k:=(u^*,\Phi_k)$ ($k=1,\ldots,m$) jelölést, amivel $u^*=\sum_{k=1}^m c_k\Phi_k$. Nézzük meg, hogy milyen feltételek mellett lesz $y(u^*)$ megoldása a bifurkációs egyenletnek (4.4)?

$$0 = P_m(Ly(u^*) - Ny(u^*)) = P_mLy(u^*) - P_mNy(u^*),$$

$$P_mLy(u^*) = P_mL(u^* + H_mNy(u^*)) = P_mLu^* + P_mLH_mNy(u^*) =$$

$$= P_mL(\sum_{k=1}^m c_k\Phi_k) + P_mL\sum_{k=m+1}^\infty (Ny(u^*), \Phi_k)\Phi_k =$$

$$= P_m(\sum_{k=1}^m c_k\lambda_k\Phi_k) + P_m\sum_{k=m+1}^\infty (Ny(u^*, \Phi_k)\lambda_k\Phi_k =$$

$$= P_m(\sum_{k=1}^m c_k\lambda_k\Phi_k) + \sum_{k=m+1}^\infty (Ny(u^*), \Phi_k)\lambda_kP_m\Phi_k =$$

$$= P_m(\sum_{k=1}^m c_k\lambda_k\Phi_k),$$

tehát

$$0 = P_m(\sum_{k=1}^m c_k \lambda_k \Phi_k - Ny(u^*)),$$

ami pontosan akkor teljesül, ha

$$0 = (\sum_{j=1}^{m} c_j \lambda_j \Phi_j - Ny(u^*), \Phi_k) \ (k = 1, \dots, m),$$

$$0 = (c_k \lambda_k \Phi_k - Ny(u^*), \Phi_k) \ (k = 1, \dots, m), \text{ vagy}$$

$$0 = (\lambda_k u^* - Ny(u^*), \Phi_k) \ (k = 1, \dots, m).$$

$$(4.5)$$

Ez utóbbi egy m-változós $(c_k \ (k=1,\ldots,m)$ számok meghatározzák u^* -ot), m egyenletből álló egyenletrendszer. Ezek eredményeként megállapíthatjuk, hogy ha a,b,m elég nagyok, akkor az eredeti (4.1) egyenletnek \overline{u} pontosan akkor megoldása, ha az (4.5) egyenletnek u^* megoldása és $\overline{u} = y(u^*)$.

Irodalomjegyzék

- [1] R. Scharlau, *TODO*. TODO, 2006 (?)TODO.
- [2] K. Sándor, Funkcionálanalízis feladatokban. TODO, 2013.
- [3] TODO, Notex on Fredholm (and compact) operators. TODO, 2009.
- [4] TODO, TODO lectures 16 and 17. TODO, TODO.
- [5] C. Frantzen, Diffun2, Fredholm Operators (?) TODO, TODO, 2012.
- [6] TODO, TODO Implicit Functions and Lyapnov-Schmidt. TODO, TODO.
- [7] TODO, Cambridge Studies in Advanced Mathemathics. TODO, 1995.
- [8] D. Trif, "The lyapunov-schmidt method for two-point boundary value problems," vol. 6, pp. 119–132, 2005.
- [9] M. Liefvendahl, "A chebyshev tau spectral method for the calculation of eigenvalues and pseudospectra,"