3.1 Diffusion

diffusion: mass transport by atomic motion

3.1 Diffusion

3.1 Diffusion

Interdiffusion: diffusion of atoms of one metal into another metal (impurity diffusion)

Self-diffusion: Atomic migration in pure metals

3.1.1 Diffusion Mechanisms

interstitial diffusion: A diffusion mechanism where by atomic motion is from interstitial site to Interstitial site.

exchange diffusion

3.1.1 Diffusion Mechanisms

Vacancy: a normally occupied lattice site from

Vacancy Diffusion: the diffusion mechanism wherein net atomic migration is from a lattice site to an adjacent vacancy

3.1.2 Diffusion conditions

- ➤ Temperature
- **≻**Time
- **>**Solution
- **≻**Motivation

3.1.3 Factors that influence diffusion

- ➤ temperature
- >crystal structure
- ➤ Solid solution style
- ➤ Crystal defect
- >chemical constituents

3.1.3 Factors that influence diffusion

$$D = D_0 \exp\left(-\frac{Q_d}{RT}\right)$$

 D_0 = a temperature-independent preexponential (m²/s)

 Q_d = the activation energy for diffusion (J/mol or eV/atom)

 $R = \text{the gas constant}, 8.31 \text{ J/mol·K or } 8.62 \times 10^{-5} \text{ eV/atom·K}$

T = absolute temperature (K)

3.1.3 Diffusion coefficient

Using the data in following Table, compute the diffusion coefficient for magnesium In aluminum at $550\,^\circ\!\mathrm{C}$

A Tabulation of Diffusion Data

Diffusing	Species	Host	Metal	Activa	tion Energy	Calculate	ed Value
$D(m^2/s)$				Kj/mol	ev/atom	T(°C)	D(m²/s)
Fe	α	-Fe 2.8×	(10-4	251	2.60	500	3. 0×10^{-21}
	(BCC)				900	1.8 \times 10 ⁻¹⁵
Fe	٧ -Fe((FCC) $5.0 \times$	(10 ⁻⁵	284	2.94	900	1. 1×10^{-17}
						1100	7.8 \times 10 ⁻¹⁶
С	α -Fe	6.2×	(10 ⁻⁷	80	0.83	500	2. 4×10^{-12}
						900	1. 7×10^{-16}
С	٧ -Fe	$2.3 \times$	(10 ⁻⁵	148	1.53	900	2. 4×10^{-12}
						1100	1. 7×10^{-11}
Cu	Cu	7.8×	(10 ⁻⁵	211	2.19	500	5. 9×10^{-19}
Zn	Cu	$2.4 \times$	(10 ⁻⁵	189	1.96	500	5. 3×10^{-18}
Al	Al	$2.3 \times$	(10-4	144	1.49	500	4. 2×10^{-14}
Cu	Al	6.5×	(10 ⁻⁵	136	1.41	500	4. 1×10^{-14}
Mg	Al	1.2×	(10-4	131	1.35	500	1. 9×10^{-13}
Cu	IVI	2.7×	(10 ⁻⁵	256	2.65	500	1.3×10^{-22}

2014-9-19

3.1.3 Factors that influence diffusion

Solution

This diffusion coefficient may be determined by applying Equation 5.8; the values of D and Q_d from Table 5.2 are $1.2 \times 10^4 \text{m}^2/\text{s}$ and 131 KJ/mol, respectively. Thus,

$$D = (1.2 \times 10^{-4} \text{ m}^2/\text{s}) \exp \left[-\frac{(131,000 \text{J/mol})}{(8.31 \text{J/mol}.\text{K})(550+273 \text{k})} \right]$$
$$= 5.8 \times 10^{-13} \,\text{m}^2/\text{s}$$

SUMMARY

Introduction

- Solid-state diffusion is a means of mass transport within solid materials by stepwise atomic motion
- The term interdiffusion refers to the migration of impurity atoms; for host atoms, the term self-diffusion is used

diffusion mechanisms

- Two mechanisms for diffusion are possible; vacancy and interstitial.
- √ vacancy diffusion occurs via the exchange of an atom residing
 on a normal lattice site with an adjacent vacancy.
- ✓ for interstitial diffusion, an atom migrates from one interstitial position to an empty adjacent one.
- For a given host metal, interstitial atomic species generally diffuse more rapidly.

SUMMARY

Factors that influence diffusion

- The magnitude of the diffusion coefficient is indicative of the rate of atomic motion and depends on both host and diffusing species as well as on temperature
- >The diffusion coefficient is a function of temperature

QUESTION

Using the data in following Table,

- 1. compute the diffusion coefficient for C In y -Fe at 927°C and 1027°C.
- 2. compute the diffusion coefficient for Fe In α -Fe and γ -Fe at 912 $^{\circ}$ C.
- 3、compute the diffusion coefficient for Ni In y -Fe at 927 ℃.

基体	扩散元素	$D_0/(10^{-6} \text{m}^{\frac{1}{2}} \cdot \text{s}^{-1})$	Q/(10 ² J·mol ⁻¹)
Y-Fe	Fe (自扩散)	1.8	270
	C Paragraphic	2.0	140
3	Ni	4.4	283
	Ma	5.7	277
a-Fe	Fe (自扩散)	19	239
100	C A LABOR TO	0.20	84
A1	Cu	0.84	136
Cu	Zn	2.1	171
Ag	Ag (品内)	7.2	180
1273	Ag (品界)	1.4	90