國立中興大學

110學年度 碩士班考試入學招生

試題

學系:資訊科學與工程學系 乙組

科目名稱:基礎數學 B

國立中與大學110學年度碩士班招生考試試題

科目: 基礎數學 B 系所: 資訊科學與工程學系 乙組

本科目不得使用計算機

本科目試題共3頁

1. Which of the following is a subspace of R^2 ? (3%)

- (A) $\left\{ \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \in R^2 : u_1 u_2 = 0 \right\}$
- (B) $\left\{ \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \in R^2 : 2u_1 5u_2 = 0 \right\}$.
- (C) $\left\{ \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \in \mathbb{R}^2 : u_1 > 0 \right\}$.
- (D) $\left\{ \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \in \mathbb{R}^2 : u_1^2 + u_2^2 \le 1 \right\}$.

2. Which of the following statements is False? (3%)

- (A) If x is orthogonal to y and y is orthogonal to z, then x is orthogonal to z.
- (B) For any matrix A, (NullA)¹ = Row A.
- (C) For any subspace W of R^n , the only vector in both W and W^{\perp} is 0.
- (D) If P is a matrix such that P^T = P⁻¹, then P is an orthogonal matrix.

3. Which of the following statements is True about linear transformation? (3%)

- (A) If $T: \mathbb{R}^2 \to \mathbb{R}^3$ is linear, then its standard matrix has size 2×3 .
- (B) If T is a linear transformation, then T(0) = 0.
- (C) If f is a function and f(u) = f(v), then u = v.
- (D) A function is onto if its range equals it domain.

4. Which of the following statements about symmetric matrix is False? (3%)

- (A) Every real symmetric matrix is diagonalizable.
- (B) If A is a symmetric matrix, then $A = A^{T}$.
- (C) If A is symmetric, then distinct eigenvectors are orthogonal to each other.
- (D) If A is an $n \times n$ matrix and A is diagonalizable, then A must have n distinct eigenvalues.

5. Which of the following statements about linear equation systems is False? (3%)

- (A) The rank of a matrix equals to the number of pivot columns in the matrix.
- (B) If the reduced echelon form of [A|b] contains a zero row, then Ax = b must have infinitely many solutions.
- (C) If the equation Ax = b is inconsistent, then the rank of [A|b] is greater than the rank of A.
- (D) If R is an $n \times n$ matrix in reduced row echelon form that has rank n, then $R = I_n$.

國立中興大學110學年度碩士班招生考試試題

科目: 基礎數學 B

系所:

資訊科學與工程學系乙組

本科目不得使用計算機

本科目試題共3頁

Consider the following linear equation systems, express these equations as the matrix form Ax=b.
 Then find the solution of the vector x. (5%)

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 1 \\ x_1 + 3x_2 + 6x_3 = 3 \\ 2x_1 + 6x_2 + 13x_3 = 5 \end{cases}$$
 find $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$.

- 7. Find the basis of the vector space $V = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in R^3 : v_1 2v_2 + 3v_3 = 0$ (5%)
- 8. Given the following linear transformation $T \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x_1 + 3x_3 \\ x_2 + x_3 \\ x_1 + 3x_2 + 2x_3 \end{bmatrix}$.
 - (a) Find the standard matrix A of this linear transformation T. (5%)
 - (b) Please find the null space of the column space of A. (5%)
 - 9. Let a matrix $A = \begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix}$ find A^{20} . (5%). (Hint: Diagonalize A first.)
 - 10. Given the following three data points (x_i, y_i) , i=1 to 3, find the least square error approximation line $\hat{y}_i = ax_i + b$ by projection matrix approach that fits them: (1,2), (3,4), (1,5).
 - Hint 1: For data points $(x_i, y_i)'s$, $\hat{y} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \end{bmatrix} = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \triangleq Cv$.
 - Hint2: The projection matrix P is defined as $\hat{y} = Py = P \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$
 - (a) Find the parameter a, b for the least square error approximation line, where $\hat{y}_i = ax_i + b$ (5%)
 - (b) Find the projection matrix P (5%)

國立中興大學110學年度碩士班招生考試試題

本科目不得使用計算機

本科目試題共3頁

11. Define a sequence s_0, s_1, s_2, \ldots as follows: $s_0 = 0$, $s_1 = 4$, $s_n = 6s_{k-1} - 5s_{k-2}$ for all integers $k \ge 2$.

(a) What are the third and fourth terms of this sequence? (4%)

- (b) Prove if $s_n = 5^n 1?$ (6%)
- Explain how to achieve the Kruskal's algorithm. Given a planar graph G, what is the output of G
 after performing the Kruskal's algorithm? (10%)
- 13. Prove that $(2n-1) + (2n-3) + ... + 3 = n^2 1.$ (5%)
- 14. Let G be an undirected graph containing two subgraphs G_1 and G_2 . λ is the number of colors for graph coloring. If $G = G_1 \cup G_2$ and $G_1 \cap G_2 = K_n$, where $n \in \mathbb{Z}^+$. Prove the polynomial function $P(G, \lambda)$ as follows: (5%)

 $P(G,\lambda) = \frac{P(G_1,\lambda) \cdot P(G_2,\lambda)}{\lambda^n} \ .$

- 15. Simplify the expression wx + xz + (y+z), where w, x, y, and z are Boolean variables. (5%)
- 16. Prove every subgroup of a cyclic group is cyclic. (5%)
- 17. Place the following sets {3,6,7,8}, {1, 3, 4, 7}, {2,3,4,7}, {1,3,5,6}, {4,6,7,8}, and {2,3,5,6} in the lexicographic order. (5%)
- 18. Prove both $b_n = 2^n$, and $b_n = n \cdot 2^n$ are the solutions for the second order recurrence relation $b_n = 4b_{n-1} 4b_{n-2}$ for $n \ge 2$. (5%)