# Unitary RG Approach to Quantum Impurity Problems

**Phys. Rev. B** 105, 085119 Anirban Mukherjee<sup>[1]</sup>, Abhirup Mukherjee<sup>[1]</sup>, N.S. Vidhyadhiraja<sup>[2]</sup>, A. Taraphder<sup>[3]</sup>, Siddhartha Lal<sup>[1]</sup>

[1] Department of Physical Sciences, IISER Kolkata

[2] Theoretical Sciences Unit, JNCASR

[3] Department of Physics, IIT Kharagpur





# The Anderson impurity model (SIAM)



- $\bullet$  Local impurity interacting with bath:  $H_{\rm bath} = \sum_{k\sigma} \epsilon_k \hat{n} k \sigma$
- ullet Hubbard repulsion U on impurity and 1-particle hybridisation V with bath

$$H = H_{\mathsf{bath}} + \epsilon_d \hat{n}_d + U \hat{n}_{d\uparrow} \hat{n}_{d\downarrow} + V \sum_{k\sigma} \left( c_{k\sigma}^\dagger c_{d\sigma} + \mathsf{h.c.} \right)$$

• Microscopic origin of local moments in metals

# The (spin) Kondo model



- Impurity projected to spin-half Hilbert space
- Spin-exchange coupling with conduction bath spin

$$H = H_{\mathsf{bath}} + J ec{S}_d \cdot ec{s}$$

- Ground state is a **macroscopic singlet** formed by the impurity and the conduction bath
- Charge variant involves isospin exchange

#### **Generalised Kondo-SIAM model**



- ullet Add spin and isospin exchange J and K to SIAM
- Exchange couplings are dynamically generated under RG, simpler to keep them at the start
- ullet V renormalises at lowest order
- Describes **both spin and charge screening** in one model

## **Outstanding Questions**

- What's the **effective Hamiltonian** for the conduction electrons that screen the impurity?
- What is the **nature of the metal** responsible for this screening?
- Quantitative insight into many-particle entanglement at and near the fixed point
- ullet Does the interplay of V, J and K change the phase diagram in the generalised SIAM?
- Is there any **topological quantity** that changes in the process of screening?
- ullet Can the inclusion of J lead to a local **metal-insulator transition** on the impurity?

## The Unitary Renormalisation Group (URG) Method



 $[H_{(j-1)}, n_j] = 0$   $\widetilde{H}_1$ 

 $n_i$  becomes an

integral of motion

(IOM)

ullet Proceeds by **applying unitary transformations**  $U_j$  on the Hamiltonian to generate RG flow  $H_j$ 

$$H_{j-1} = U_j H_j U_j^{\dagger}$$

- $U_j$  are defined so as to **remove quantum fluctuations** of high energy k-states
- Continues until denominator of RG equation vanishes: fixed point
- Fixed point Hamiltonian describes emergent theory at low energy

#### **URG Flows of the Kondo Model: Phase Diagram**

 $\widetilde{H}_0$ 



- J=0 is stable for  $J\leq 0$ : local moment fixed point
- ullet J=2D is globally stable: **strong-coupling** fixed point

### **Effective Hamiltonian for Kondo Cloud**



- Treat kinetic energy as perturbation above singlet ground state
- Integrate out impurity dynamics via Schrieffer-Wolff transformation
- Resultant effective Hamiltonian has diagonal Fermi liquid piece:  $\sum \epsilon_k \hat{n}_{k\sigma} + \sum f_{kk'} \hat{n}_{k\sigma} \hat{n}_{k'\sigma'}$
- More importantly, it has **off-diagonal non-Fermi** liquid terms:  $\sum_{k_1,k_2,k_3,k_4} \mathcal{F} c^{\dagger}_{k_1\uparrow} c^{\dagger}_{k_2\downarrow} c_{k_3\downarrow} c_{k_4\uparrow}$