第七章 假设检验

内容提要

(一) 基本思想

假设检验的统计思想是概率很小的事件在一次试验中可以认为基本上不会发生,即小概率原理。具体来说,首先提出原假设 H_0 ,在 H_0 成立的前提下,检验是否有小概率事件发生。若有,则与小概率原理发生矛盾,因而拒绝接受 H_0 ;若无,则没有理由拒绝 H_0 ,因此接受 H_0 。

(二) 两类错误

小概率原理是人们根据经验而普遍接受的一条原理:小概率事件在一次试验中很难发生,但是"很难发生"并不等于"决不发生"。因此,假设检验作出的结论有可能是错误的。

第一类错误是"弃真":即 H_0 为真,但根据样本的检验结果却是拒绝了 H_0 。犯第一类错误的概率记为 α ,即P{拒绝 $H_0 \mid H_0$ 为真} = α , α 称为显著性水平。 第二类错误是"取伪":即 H_0 不真,但根据样本的检验结果却是接受了 H_0 。犯第二类错误的概率记为 β ,即P{接受 $H_0 \mid H_0$ 不真} = β 。

人们当然希望犯两类错误的概率都很小, 但是当样本容量固定时, α 变小, 则 β 变大; 而 β 变小, 则 α 变大; 当 α 固定时, 要想 β 变小, 就要增加样本容量。实际上, 人们通常控制犯第一类错误的概率, 即指定 α , 一般 α 取 0. 1, 0. 05, 或 0. 01。

(三) 正杰总体参数的假设检验

正态总体参数的假设检验的步骤为:

1. 提出原假设 H_0 和备择假设 H_1 。

说明:

- (1) 原假设 H_0 的事件和备择假设 H_1 的事件应该是对立的关系;
- (2) 根据实际问题,有时可以先定备择假设,再定原假设;
- (3) 原假设 H_0 中必含等号, 即"=, \leq , \geq "必有其一。
- 2. 选择统计量

根据假设,选择合适的统计量,见表二和表三。

说明:

- (1) 如果是关于均值或均值差的检验,选择U(方差已知)统计量或T(方差未知)统计量;
- (2) 如果是关于方差的检验,选择 χ^2 (一个总体)或 F (两个总体)统计量,但要根据均值是否已知选择自由度。
- 3. 计算统计量的值

由样本观察值计算统计量的值。

说明:要求熟练使用计算器的统计功能。

4. 选择临界值(分位点)获得拒绝域 W_1 。

注意:

(1) 双侧检验与单侧检验由其拒绝域是分布在两侧还是单侧而得名, 拒绝域示意图参见表四,选择相应的临界点;

- (2) 单侧检验拒绝域的不等式表达式中不等号与备择假设中不等号方向一致;
- (3) T, χ^2 , F 统计量要选择合适的自由度。
- 5. 考察统计量的值是否落在拒绝域里,作出检验结论说明:
- 1)如果统计量的值是落在拒绝域 W_1 里,则拒绝域原假设 H_0 ,转而接受 H_1 ;如果统计量的值没有落在拒绝域里,则没有充分的理由拒绝域原假设 H_0 ,即接受 H_0 。
- 2) 实际问题要根据问题作出符合问题的具体回答。

表二: 单个正态总体参数的假设检验

总体个数	原假设 H ₀	备择假设 <i>H</i> ₁	其他参数	统计量及其 H_0 成立时的分布	拒绝域 W_1 (图形见表四) (下分位点)
单个	$\mu = \mu_0$	$\mu \neq \mu_0$			$ U < u_{1-\frac{\alpha}{2}}$
总 体	$\mu \le \mu_0$	$\mu > \mu_0$	σ 已知	$U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$	$U > u_{1-\alpha}$
	$\mu \ge \mu_0$	$\mu < \mu_0$			$U < -u_{1-\alpha}$
	$\mu = \mu_0$	$\mu \neq \mu_0$			$\mid T\mid < t_{1-\frac{\alpha}{2}}(n-1)$
	$\mu \le \mu_0$	$\mu > \mu_0$	σ 未知	$T = \frac{\overline{X} - \mu}{s / \sqrt{n}} \sim t(n-1)$	$T > t_{1-\alpha}(n-1)$
	$\mu \ge \mu_0$	$\mu < \mu_0$,	$T < -t_{1-\alpha}(n-1)$
	$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$			$\chi^2 < \chi_{\frac{\alpha}{2}}^2(n)] $
	$\sigma^2 \le \sigma_0^2$	$\sigma^2 > \sigma_0^2$	μ 已知	$\chi^{2} = \frac{(n-1)s^{2} + n(\overline{X} - \mu)^{2}}{\sigma^{2}} \sim \chi^{2}(n)$	$\chi^2 > \chi^2_{1-\alpha}(n)$
	$\sigma^2 \ge \sigma_0^2$	$\sigma^2 < \sigma_0^2$			$\chi^2 < \chi^2_{\alpha}(n)$
	$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	μ未知	$\sum_{i=1}^{n} (\mathbf{v}_{i} \cdot \mathbf{\overline{v}}_{i})^{2}$	$\chi^2 < \chi^2_{\frac{\alpha}{2}}(n-1)]$
				$\sum_{i=1}^{\infty} (X_i - \overline{X})^2 $ $(n-1)S^2$ 2,	

$\sigma^2 \le \sigma_0^2$	$\sigma^2 > \sigma_0^2$		$\chi^2 > \chi^2_{1-\alpha}(n-1)$
$\sigma^2 \ge \sigma_0^2$	$\sigma^2 < \sigma_0^2$		$\chi^2 < \chi_\alpha^2(n-1)$

说明: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

表三: 单个正态总体参数的假设检验

总体 个数	原假设 H ₀	备择假设 <i>H</i> ₁	其他参数	统计量及其 H_0 成立时的分布	拒绝域 (下分位点)	
两个	$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$		\overline{V} \overline{V}	$ U < u_{1-\frac{\alpha}{2}}$	
总 体	$\mu_1 \leq \mu_2$	$\mu_1 > \mu_2$	$egin{array}{ccc} oldsymbol{\sigma_{_1}}, & oldsymbol{\sigma_{_2}} \ & ext{已知} \end{array}$	$U = \frac{X - Y}{\sqrt{\frac{{\sigma_1}^2}{m} + \frac{{\sigma_2}^2}{n}}} \sim N(0,1)$	$U > u_{1-\alpha}$	
	$\mu_1 \ge \mu_2$	$\mu_1 < \mu_2$		\	$U < -u_{1-\alpha}$	
	$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$		$\overline{}$ $\overline{}$ $\overline{}$	$\mid T \mid < t_{1-\frac{\alpha}{2}}(m+n-2)$	
	$\mu_1 \leq \mu_2$	$\mu_1 > \mu_2$	$\sigma_{\scriptscriptstyle 1}$, $\sigma_{\scriptscriptstyle 2}$ 未知,但	$T = \frac{\overline{X} - \overline{Y}}{s_w \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim t(m + n - 2)$	$T > t_{1-\alpha} (m+n-2)$	
	$\mu_1 \ge \mu_2$	$\mu_1 < \mu_2$	$\sigma_{_1}$ = $\sigma_{_2}$	" \	$T < -t_{1-\alpha}(m+n-2)$	
	$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 \neq \sigma_2^2$		$[(m-1)s^2/m+(\overline{V}-\mu)^2]$	$F < F_{\frac{\alpha}{2}}(m,n)$ 或 $F > F_{1-\frac{\alpha}{2}}(m,n)$	
	$\sigma_1^2 \leq \sigma_2^2$	$\sigma_1^2 > \sigma_2^2$	μ _{1 ,} μ ₂ 已知	$F = \frac{\left[(m-1)s_x^2 / m + (\overline{X} - \mu_1)^2 \right]}{\left[(n-1)s_y^2 / n + (\overline{Y} - \mu_2)^2 \right]} \sim F(m,n)$	$F > F_{1-\alpha}(m,n)$	
	$\sigma_1^2 \ge \sigma_2^2$	$\sigma_1^2 < \sigma_2^2$			$F > F_{\alpha}(m,n)$	
	$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 \neq \sigma_2^2$	μ_1, μ_2	S_x^2	$F < F_{\frac{\alpha}{2}}(m-1,n-1)$ 或 $F > F_{1-\frac{\alpha}{2}}(m-1,n-1)$	
	$T = \frac{1}{S_{\cdot \cdot}} \sim T(m-1, n-1)$					

$\sigma_1^2 \leq \sigma_2^2$	$\sigma_1^2 > \sigma_2^2$	未知	$F > F_{1-\alpha}(m-1,n-1)$
$\sigma_1^2 \ge \sigma_2^2$	$\sigma_1^2 < \sigma_2^2$		$F < F_{\alpha}(m-1, n-1)$

说明:
$$s_x^2 = \frac{1}{m-1} \sum_{i=1}^m (X_i - \overline{X})^2$$
, $s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y})^2$, $s_w^2 = \frac{\sum_{i=1}^m (X_i - \overline{X})^2 + \sum_{i=1}^n (Y_i - \overline{Y})^2}{m+n-2}$

表四: 假设检验拒绝域的示意图

统计量的 分布	检验类型	备择假设中的不等号	拒绝域 w ₁ 示意图(阴影部分)
	双侧	≠	$\begin{array}{c c} \underline{\alpha} & \underline{\alpha} \\ \hline -u_{1-\frac{\alpha}{2}} & u_{1-\frac{\alpha}{2}} \\ & U > u_{1-\frac{\alpha}{2}} \end{array}$
标准正态	单侧	>	$U>u_{1-\alpha}$
	单侧	<	$u_{1-\alpha}$ $U < -u_{1-\alpha}$

	双侧	≠	$\begin{array}{c c} \underline{x} & \underline{x} \\ \underline{x} \\ -t_{1-\frac{\alpha}{2}} & t_{1-\frac{\alpha}{2}} \\ T > t_{1-\frac{\alpha}{2}} \end{array}$
t 分布	单侧	>	$T > t_{1-\alpha}$
	单侧	<	$T < -t_{1-\alpha}$
χ ² 分布	双侧	≠	$\frac{\alpha^{2}}{2}$ $\chi^{2}_{\frac{\alpha}{2}}$ $\chi^{2}_{1-\frac{\alpha}{2}}$ $\chi^{2} > \chi^{2}_{1-\frac{\alpha}{2}}$ $\chi^{2} < \chi^{2}_{\frac{\alpha}{2}}$
	单侧	>	$\chi^{2}_{1-\alpha}$ $\chi^{2} > \chi^{2}_{1-\alpha}$

	单侧	<	χ^{2}_{a} $\chi^{2} < \chi^{2}_{a}$
F 分布	双侧	≠	$\frac{\alpha}{2}$ $F_{\frac{\alpha}{2}}$ $F_{\frac{-\alpha}{2}}$ $F < F_{\frac{\alpha}{2}}$ $F > F_{\frac{1-\alpha}{2}}$
	单侧	>	$F_{1-\alpha}$ $F > F_{1-\alpha}$
	单侧	<	F_{α} $F < F_{\alpha}$