CADMAS-SURF/3D calculation results

OWhat is CADMAS-SURF/3D

Liquid single-phase model for incompressible viscous fluids

- OGoverning equation
- Continuous equation
- Navier-Stokes equation

○<u>Feature</u>

- Complex flows with free surface multivalued functions
- The VOF method is used for the free surface analysis model
- Use a porous model to improve the accuracy of shape approximation
- · Allows structures and boundary conditions to be set at arbitrary locations on a cell-by-cell basis
- · Adopt two wave making models: wave making boundary and wave making source
- · Six types of wave making functions, such as Stokes wave, are adopted
- · Adopt Sommerfeld's radiation boundary and energy decay band as non-reflective models
- TimerDoor method is adopted to treat bubbles and water droplets

Reproduction of tsunami attenuation effect by mangroves using CADMAS-SURF/3D

OCalculation conditions

Water level (m)	Wave height (m)	Mangrove length (m)
0.4, 0.428	0.07, 0.09	0.4, 0.7, 1.0

	Range (m)	Grid size (m)	Number of grids
	0~24.5	0.5	49
	24.5~27	0.25	10
	27~29	0.1	20
X	29~29.8	0.05	16
	29.8~30	0.02	10
	30~56.6	0.01	2660
у	0~1.0	0.01	100
z	0~1.0	0.01	100

Mei YOSHIDA, Ayaka TADOKORO, Taro ARIKAWA, NUMERICAL MODELING METHOD FOR MANGROVES USING THE DUPUIT-FORCHHEIMER LAW, Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering), 2022, Volume 78, Issue 2, Pages I_883-I_888

STUDY ON BREAK WATER INDEX USING CADMAS-SURF/3D

OCalculation conditions

•	Water level (m)	Wave height (m)	Period (s)
•	6.0, 5.0	0.60	1.0, 2.0, 3.0, · · · 10.0

	Range (m)	Grid size (m)	Number of grids
х	0~85	isosceles lattice 0.99	1060
	85~95	0.06	165
	95~115	isosceles lattice 1.01	250
у	0~0.1	0.1	1
	0~3.0	0.1	30
_	3.0~5.0	isosceles lattice 0.99	25
Z	5.0~7.0	0.06	33
	7.0~8.0	isosceles lattice 1.01	13

OPaper information

Masahiro OKUBO, Taro ARIKAWA, STUDY ON BREAKER INDEX USING CADMAS-SURF/3D,

Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering), 2022, Volume 78, Issue 2, Pages I_25-I_30