Analysis I, Exercise 10

David Schmitz

Task 1

An nth root of unity is a number $z \in \mathbb{C}$ such that $z^n = 1$. Let z be an nth root of unity. Prove that

$$\sum_{k=1}^{n} z^k = \begin{cases} n & \text{if } z = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Solution. For z=1, all summands are simply 1, so the sum equals $\sum_{k=1}^{n} 1=n$. Now assume $z\neq 1$. Note that this sum is just a finite geometric series. Analogously to (1.19), define $S=\sum_{k=1}^{n}z^k$. Then $zS=\sum_{k=1}^{n}z^{k+1}=\sum_{k=2}^{n+1}z^k$, so $zS-S=z^{n+1}-z=z^n\cdot z-z=z-z=0$, since $z^n=1$. Hence, (z-1)S=0, which implies S=0 (recall $z\neq 1$).

Remark. This can also be solved using Vieta's formula on a polynomial of the form $x^m - 1$, where m divides n.

Task 2

- 1. Let $(a_n)_{n\in\mathbb{N}}\subset\mathbb{C}$ be a sequence converging to $a\in\mathbb{C}$. Show that the sequence of the conjugates $(\overline{a_n})_{n\in\mathbb{N}}$ converges to \bar{a} .
- 2. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$, for |z| > 0. Then

$$f(\bar{z}) = \overline{f(z)} \iff a_k \in \mathbb{R} \quad \forall k \in \mathbb{N}.$$

Solution.

1. Let $\varepsilon > 0$. Since $(a_n)_{n \in \mathbb{N}}$ converges to a, there is some $N \in \mathbb{N}$ such that $|a_n - a| < \varepsilon$ for all $n \geq N$.

Let $z = x + iy \in \mathbb{C}$ be arbitrary. Note that $|z| = \sqrt{x^2 + y^2} = \sqrt{x^2 + (-y)^2} = |\bar{z}|$.

Setting $z = a_n - a$ for some $n \ge N$, we obtain that $|\overline{a_n - a}| = |a_n - a| < \varepsilon$. By the calculation rules for conjugation (see group task 2), we have $\overline{a_n - a} = \overline{a_n} - \overline{a}$.

Hence, $|\overline{a_n} - \overline{a}| = |\overline{a_n} - \overline{a}| < \varepsilon$ for all $n \ge N$, so $(\overline{a_n})_{n \in \mathbb{N}}$ converges to \overline{a} , as desired.

2. Assume $a_k \in \mathbb{R}$ for all $k \in \mathbb{N}$, so that $\overline{a_k} = a_k$. Let $z \in \mathbb{C}$. Applying the calculation rules for conjugation, we know that $\overline{z^2} = \overline{z}^2$. Repeating this, we find that by induction, $\overline{z^n} = \overline{z}^n$. Again, by the calculation rules for conjugation, we have

$$\overline{f(z)} = \sum_{k=0}^{\infty} a_k z^k = \sum_{k=0}^{\infty} \overline{a_k z^k}$$

$$=\sum_{k=0}^{\infty}\overline{a_k}\overline{z^k}=\sum_{k=0}^{\infty}a_k\bar{z}^k=f(\bar{z}),$$

as desired.

Assume now $f(\bar{z}) = \overline{f(z)}$ for all $z \in \mathbb{C}$. Observe that $f(\bar{z}) = \sum_{k=0}^{\infty} a_k \bar{z}^k$ is a power series in \bar{z} . Similarly, by the calculation rules for conjugation,

$$\overline{f(z)} = \sum_{k=0}^{\infty} a_k z^k = \sum_{k=0}^{\infty} \overline{a_k} \overline{z}^k$$

is a power series in \bar{z} . Since the two functions are equal for all $z \in \mathbb{C}$, the coefficients of the power series have to be equal as well, i.e. $a_k = \overline{a_k}$ for all $k \in \mathbb{N}$. This implies $a_k \in \mathbb{R}$, as desired.

Task 3

• Find, for z = 1 + i, the following numbers:

$$z^n$$
, $\frac{1}{z}$, $\frac{1}{z^n}$, $z^2 + 2z + 5 + i$.

• Give the set of solutions of the equation

$$x^2 + x + 1 = 0$$
.

once when you assume that $x \in \mathbb{R}$, and then when you assume that $x \in \mathbb{C}$.

Solution.

• Note that $1 + i = \sqrt{2} \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i \right) = \sqrt{2} (\cos(\pi/4) + i \sin(\pi/4)) = \sqrt{2} e^{i\frac{\pi}{4}}$.

Hence, $z^n = (\sqrt{2})^n e^{in\frac{\pi}{4}}$. The value of the second factor depends only on the residue $n \pmod{8}$. Hence,

$$z^{n} = \begin{cases} \sqrt{2}^{n} & \text{for } n \equiv 0 \pmod{8}, \\ \sqrt{2}^{n-1}(1+\mathrm{i}) & \text{for } n \equiv 1 \pmod{8}, \\ \sqrt{2}^{n}\mathrm{i} & \text{for } n \equiv 2 \pmod{8}, \\ \sqrt{2}^{n-1}(-1+\mathrm{i}) & \text{for } n \equiv 3 \pmod{8}, \\ -\sqrt{2}^{n} & \text{for } n \equiv 4 \pmod{8}, \\ \sqrt{2}^{n-1}(-1-\mathrm{i}) & \text{for } n \equiv 5 \pmod{8}, \\ -\sqrt{2}^{n}\mathrm{i} & \text{for } n \equiv 6 \pmod{8}, \\ \sqrt{2}^{n-1}(1-\mathrm{i}) & \text{for } n \equiv 7 \pmod{8}. \end{cases}$$

The values for $\frac{1}{z}$ and more generally, $\frac{1}{z^n}$ can simply be determined by looking up -n into the above table, since $\frac{1}{z^n}=z^{-n}$ and our calculation also holds for negative n.

Specifically, $\frac{1}{z}=z^{-1}=\left(\sqrt{2}\right)^{-1}\mathrm{e}^{-\mathrm{i}\frac{\pi}{4}}=\frac{1-\mathrm{i}}{2}$. Alternatively, we can simply observe that $\frac{1}{1+\mathrm{i}}=\frac{1-\mathrm{i}}{(1+\mathrm{i})(1-\mathrm{i})}=\frac{1-\mathrm{i}}{1-\mathrm{i}^2}=\frac{1-\mathrm{i}}{2}$ (or use the above table with $-1\equiv 7\pmod 8$).

Lastly, we compute $z^2 + 2z + 5i$ as

$$z^2 + 2z + 5 + i = (1+i)^2 + 2(1+i) + 5 + i$$

= 1 + 2i + i² + 2 + 2i + 5 + i = 8 + 5i - 1 = 7 + 5i.

• Multiplying the equation by x-1, we see that $0=(x-1)(x^2+x+1)=x^3-1$, so $x^3=1$. If $x \in \mathbb{R}$, this implies x=1. However, plugging in x=1 would mean 1+1+1=0, a contradiction. Hence, the equation has no solution over \mathbb{R} .

Over \mathbb{C} , we can either do the same thing (the solutions are the two primitive 3rd roots of unity) or use the quadratic formula to obtain

$$x^2 + x + 1 = 0 \implies x = \frac{-1 \pm \sqrt{1 - 4}}{2} = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm \mathrm{i}\sqrt{3}}{2}.$$

Thus, over \mathbb{C} , the equation has the two solutions $x = \frac{-1+i\sqrt{3}}{2}$ and $x = \frac{-1-i\sqrt{3}}{2}$.