

Università degli Studi di Roma "La Sapienza"

FISICA

Ingegneria Informatica e Automatica1

03.09.2021-A.A. 2020-2021 (12 CFU) C.Sibilia/G.D'Alessandro

- N.1. Ad un blocco appoggiato su di un piano inclinato liscio, posizionato in un punto P, viene impressa una velocità iniziale v_0 =3m/s, parallela al piano inclinato e diretta verso la sommità del piano inclinato stesso. Indicando con α = 25° l'angolo formato dal piano inclinato con l'orizzontale, calcolare : 1) la massima distanza d, dal punto di partenza P, raggiunta dal blocco che sale lungo il piano inclinato; 2) il tempo T complessivo impiegato per tornare in P.
- N.2. Una carrucola cilindrica di massa m_1 = 12Kg e raggio R = 5 cm (momento di inerzia :lc= ½ m_1 R²) può ruotare senza attrito attorno al proprio asse, supposto fisso ed orizzontale. Attorno alla carrucola è avvolto un filo che non slitta su di essa e sostiene un corpo di massa m_2 = 2 Kg. Inizialmente il sistema è in quiete. Calcolare: 1) l'accelerazione 'a', con la quale scende il corpo di massa m_2 , 2) il valore della tensione del filo T, 3) quale elemento del sistema acquista maggiore energia.
- N.3. Un gas ideale biatomico costituito da n=5 moli, alla pressione iniziale $p_{in}=1$ atm e temperatura iniziale $T_{in}=300$ K, esegue una espansione adiabatica irreversibile che raddoppia il volume dal gas e dimezza la temperatura. Calcolare: 1) la pressione finale a cui arriva il gas alla fine della trasformazione, 2) la variazione di entropia.
- N.4. Un solenoide è formato da N spire circolari di raggio r[m]. La resistività per unità di lunghezza del cavo utilizzato per il solenoide e $g[\Omega/m]$. Ai capi del solenoide viene collegata una batteria capace di erogare fem_b , e un interruttore inizialmente aperto. Calcolare il tempo caratteristico del circuito e disegnare l'andamento dell'intensità di corrente una volta che l'interruttore viene chiuso. Utilizzare come condizione iniziale i(0) = 0.
- N.5 Una regione di spazio è caratterizzata da un campo magnetico B = (0, B, 0). Una particella di massa 'm' e carica 'q' si trova sul piano y = y_0 velocità v = (v, 0, $\sqrt{(3)}$ v) della particella. Descrivere il moto della particella.

N.1. Ad un blocco appoggiato su di un piano inclinato liscio, posizionato in un punto P, viene impressa una velocità iniziale v_0 =3m/s, parallela al piano inclinato e diretta verso la sommità del piano inclinato stesso. Indicando con α = 25° l'angolo formato dal piano inclinato con l'orizzontale, calcolare : 1) la massima distanza d, dal punto di partenza P, raggiunta dal blocco che sale lungo il piano inclinato; 2) il tempo T complessivo impiegato per tornare in P.

N.2. Una carrucola cilindrica di massa m_1 = 12Kg e raggio R = 5 cm (momento di inerzia :lc= ½ m_1 R²) può ruotare senza attrito attorno al proprio asse, supposto fisso ed orizzontale. Attorno alla carrucola è avvolto un filo che non slitta su di essa e sostiene un corpo di massa m_2 = 2 Kg. Inizialmente il sistema è in quiete. Calcolare: 1) l'accelerazione 'a', con la quale scende il corpo di massa m_2 , 2) il valore della tensione del filo T, 3) quale elemento del sistema acquista maggiore energia.

	T	RA	SL	AT	OR	10					रेठा	AT	OR	10																		
			F									I													<u>R</u>)							
			V									W											1									
		_	?: 1								L	=J		,									4]								
		F	- m	a	•							=]		1									ď									
	•	(=	2	n V							K	2	I	w	Z																	
			_																													
a)	m		ΓR	= [I,	x =		- 4 2	r. 1	१2			_	>	T	-	2	m	, Q	•											
																									m.	a _						
		72	Lr	n,	ჵ -	7 :	: m	2 0	٠ ،	→	m	2 9	} -	2	m	, a	, =	m	za	٠ ر	→	a	. :	m,	+ /	m	-=	Z,	45	m	'د/	
						T:				→	m	2 8	} -	2	M	, a	, =	m	za	•	→	a	, : -	m ₂	+ %	m		2,	45	m	'د/	
b)										→	m	2 9	, -	2	m	, Q	, =	m	za		→	a	, 2 -	mz	+ %	m	,	2,	45	m	الا ا	
Ь)						T :				>	m	2 9		2	m	, 0	, :	m	20		->	a	, 2 -	mz	+ %	m	1	2,	45	m	/ 3 7	
		Ţ		2 '	n, c	L :	14,	, 7 .	N		m	2 9		2		, 0	, :	m	20		->	0	, 2 -	mz	+ 2	m	•	2,	45	m	/ 3 ⁷	
c)		T:	mg	1 2	n, 0	n ₂ 1	14,	, 7 . = v	N														,	m ₂	+ >	m	•	2,	45		/s ⁻¹	
c)		T:	mg	1 2	n, 0	n ₂ 1	14,	, 7 . = v	N														,	mz	+ 2	, m	•	2,	4.5			
c)		T:	mg	1 2	n, 0	L :	14,	, 7 . = v	N														,8	mz	+ 2	, m	•	2,	45	m		
c)	E	T:	m g	1 1 2	n,c	n ₂ 1	14,	, 7 . = V	2	12	m,	R ⁷	•	v² R	- =	14	No.	, V					, 2 •	m ₂	+2	m		2,	45		/31	

N.3. Un gas ideale biatomico costituito da n=5 moli, alla pressione iniziale $p_{in}=1$ atm e temperatura iniziale $T_{in}=300$ K, esegue una espansione adiabatica irreversibile che raddoppia il volume dal gas e dimezza la temperatura. Calcolare: 1) la pressione finale a cui arriva il gas alla fine della trasformazione, 2) la variazione di entropia.

n= 5 mol
$$C_V = \frac{5}{2}R$$
 $C_P = \frac{7}{2}R$ $V_B = \frac{5}{3}$ $V_B = \frac{2}{4}V_A$ $V_B = \frac{7}{4}$ $V_B = \frac{7}{4}$

N.4. Un solenoide è formato da N spire circolari di raggio r[m]. La resistività per unità di lunghezza del cavo utilizzato per il solenoide e $g[\Omega/m]$. Ai capi del solenoide viene collegata una batteria capace di erogare fem_b , e un interruttore inizialmente aperto. Calcolare il tempo caratteristico del circuito e disegnare l'andamento dell'intensità di corrente una volta che l'interruttore viene chiuso. Utilizzare come condizione iniziale i(0) = 0.

$$\mathcal{L} : \stackrel{L}{R} \quad R = g L : g 2 \pi N r$$

$$\overline{D} B : L \cdot \overline{L}(z) \rightarrow L = \frac{\overline{D}B}{\overline{L}(z)} : \frac{M_0 \sqrt{2}}{\overline{L}(z)} : \frac{M_0 N^2 \pi r^2}{2\pi N r} : \frac{1}{2} M_0 N r$$

$$\mathcal{L} : \stackrel{L}{R} : \frac{1}{2} M_0 N r$$

$$\mathcal{L} : \frac{1}{2} M_0 N$$

N.5 Una regione di spazio è caratterizzata da un campo magnetico B = (0, B, 0). Una particella di massa 'm' e carica 'q' si trova sul piano y = y_0 velocità v = (v, 0, $\sqrt{(3)}$ v) della particella. Descrivere il moto della particella.

$$\begin{vmatrix} \lambda & 3 & K \\ v & 0 & 3 & V \\ 0 & B & 0 \end{vmatrix} = \lambda \left(-\sqrt{3} v B \right) - \lambda (0) + K (v B) \qquad F_{L} = q \left(-\sqrt{3} v B \right) 0, v B \right)$$

$$|F_{L}| = \sqrt{F_{L}^{2} + F_{L}^{2}} = \sqrt{\left(\sqrt{3} q v B \right)^{2} + \left(q v B \right)^{2}} = 2q v B$$

$$\alpha_{L} = \frac{2q v B}{m} \qquad r = \frac{mv}{q v B}$$

Socito del 3/9/2021

 $d = -\frac{9}{2} \sin \alpha \left(\frac{\sqrt{o}}{9 \sin \alpha} \right)^2 + \frac{\sqrt{o}}{9 \sin \alpha} = \frac{\sqrt{o}^2}{29 \sin \alpha} = 1,00$

$$\widehat{\omega} = \omega \widehat{k}$$

$$\widehat{\nabla}_{2} = -\nabla \widehat{\overline{J}}$$

$$I c = \frac{1}{2} M_{1} R^{2}, \qquad \widehat{\mathcal{E}}_{2} = R \widehat{C}$$

Money vo Augolon:
$$I_c \vec{w} + r_c x r r \vec{v} = (I_c \omega + m_c r r) \vec{k}$$

for une restraisone & demo consucola il curp a scendo
di $\Delta y = R \theta \Rightarrow$

However boungster
$$L = (\frac{1}{2}m_1, R^2\omega + m_2 R^2\omega) \vec{k}$$

Mowert fre there $\vec{M} = \vec{k}_2 \times \vec{p} = m_2 g R \vec{k}$
 $\frac{d\vec{l} = \vec{H}}{dl} \Rightarrow iu worldb$
 $(\frac{m_1}{2} + m_2) R^2 \vec{\omega} = m_2 g R \Rightarrow \vec{\omega} = \frac{m_2}{2} \cdot g R$

$$\left(\frac{m_1}{2} + cm_2\right) R^2 O = m_2 g R$$

$$\frac{m_1}{2} + cm_2 R^2 O = m_2 g R$$

$$\frac{m_1}{2} + cm_2 R^2 O = m_2 g R$$

$$\Omega = \dot{\omega}R = \frac{m_2}{2 + m_2} g = 2.45 \text{ m/s}^2$$

Tension oble plo:
$$T+P=m_2R$$

$$|T|=\frac{h_1/2}{m_1+m_2}$$

$$F_{c_1} = \frac{1}{2} I_c \omega^2 = \frac{1}{2} m_1 R^2 \omega^2$$

$$F_{c_2} = \frac{1}{2} I_c \omega^2 = \frac{1}{2} m_1 R^2 \omega^2$$

$$F_{c_2} = \frac{1}{2} m_2 v = \frac{1}{2} m_2 R^2 \omega^2$$

Varience di enlighe :

$$\Delta S_{-} = Mc_{r} \ln \left(\frac{f_{eiu}}{p_{iu}}\right) + Mc_{p} \ln \left(\frac{V_{eiu}}{V_{iu}}\right)$$

$$C_{v} = \frac{5}{2}R \qquad C_{p} = \frac{2}{2}R$$

SOLUZIONE N.4

Il tempo caratteristico di un circuito RL e':

$$\tau = \frac{L}{R}$$

la resistenza totale del circuito e':

$$R = gl = 2g\pi Nr$$

dove l e' la lunghezza totale del solenoide. Il coefficiente di autoinduzione e':

$$L = \frac{\Phi(B)}{i(t)} = \frac{B\Sigma}{i(t)} = \frac{\mu_0 \frac{N}{l} i(t) \cdot N\pi r^2}{i(t)} = \mu_0 N^2 \frac{\pi r^2}{2\pi r N} = \frac{1}{2} \mu_0 N r$$

Si noti che non viene fornita la sezione del cavo che compone il solenoide quindi è stata assunta l come lunghezza una volta compresso. quindi:

$$\tau = \frac{L}{R} = \frac{\frac{1}{2}\mu_0 Nr}{2g\pi Nr} = \frac{\mu_0}{4\pi g}$$

L'andamento della corrente in fuzione del tempo si ottiene risolvendo l'equazione:

$$Ri(t) + L\frac{di}{dt} = fem_b \longrightarrow I + \tau \frac{di}{dt} = \frac{fem_b}{R}$$

separando le variabili si ottiene:

$$ln(i(t) - \frac{fem_b}{R}) = -\frac{t}{\tau} + cost$$

imponendo la condizione iniziale i(0) = 0:

$$i(t) = \frac{fem_b}{R} (1 - e^{t/\tau})$$

$$0.8$$

$$0.6$$

$$0.4$$

$$0.2$$

$$t/\tau$$

SOLUZIONE N.5

Le componenti x,y,z della Forza di Lorentz, F_L , possono essere calcolate come il determinante della matrice:

$$\begin{vmatrix} i & j & k \\ v & 0 & \sqrt{3}v \\ 0 & B & 0 \end{vmatrix} = i(-\sqrt{3}vB) - j(0) + k(vB)$$

quindi $F_L = q(-\sqrt{3}vB, 0, vB)$. Non essendoci forze agenti sull'asse y e $v_y = 0$ allora il moto avverra' tutto sul piano $y = y_0$. La forza di Lorentz e' sempre perpendicolare alla velocita' quindi la particella compira' delle traiettorie circolari nel piano iniziale. La Forza di Lorentz non compie lavoro quindi il moto sara' circolare e uniforme. Il modulo di F_L e':

$$|F_L| = \sqrt{F_x^2 + F_z^2} = \sqrt{(qBv)^2 + (\sqrt{3}qvB)^2} = 2qBv$$

quindi l'accelerazione centripeta associata al moto circolare e':

$$a_c = \frac{2qvB}{m}$$

e il raggio della traiettoria e':

$$r = \frac{mv}{2qB}$$