

Traitement de texte de base

Jean Barré

4 février 2025

Doctorant École Normale Supérieure - Université PSL - LaTTiCe

Expressions Régulières

Introduction aux Expressions Régulières

Pourquoi les Expressions Régulières?

- Utilisées dans presque toutes les tâches de traitement du texte.
- Outil puissant pour la recherche et la transformation de texte.
- Indispensables en prétraitement des données textuelles.
- Utilisées dans l'analyse des données textuelles.
- Employées dans les pipelines de NLP et d'intelligence artificielle.

Syntaxe de Base des Expressions Régulières

Principaux Éléments de Syntaxe

- . : Correspond à n'importe quel caractère.
- * : Répète zéro ou plusieurs fois.
- +: Répète une ou plusieurs fois.
- ?: Rendu optionnel (zéro ou une occurrence).
- | : Alternance entre deux motifs.

Classes de Caractères et Ancres

Classes Utiles

- \d: Un chiffre (0-9).
- \w : Un caractère alphanumérique.
- \s : Un espace.
- ^ : Début de ligne.
- \$: Fin de ligne.

Exemples d'Utilisation des Regex

Cas d'Usage

- Extraction des dates : $\d{2}/\d{2}/\d{4}$
- Filtrage des adresses email : \w+@\w+\-w+
- Suppression de la ponctuation : [\w\s]

Les Expressions Régulières : un processus itératif

Deux Types d'Erreurs Courantes

- Faux Négatifs : Absence de détection de motifs valides.
 - Exemple: Recherche du mot "le" ne capturant pas "Le".
- Faux Positifs: Correspondances incorrectes.
 - Exemple : Détection de "le" dans "atelier" ou "baleine".

Fonctions de Base en Python

rappel

- re.search()
- re.match()
- re.sub()
- re.findall()
- re.split()

Normalisation du Texte

Problèmes liés à la tokenisation

Exemples

• Ne pas retirer la ponctuation à l'aveugle : Ph.D., AT&T

Gestion des prix : 45.55€

• Dates: 01/02/06

• URLs: https://psl.eu/

• Hashtags: #tall

• Emails: someone@ens.psl.eu

• Clitiques : je t'aime, l'honneur

• Expressions multi-mots: New York, rock 'n' roll

Tokenisation

```
>>> text = 'That U.S.A. poster-print costs $12.40...'
>>> pattern = r'''(?x)  # set flag to allow verbose regexps
... ([A-Z]\.)+  # abbreviations, e.g. U.S.A.
... | \w+(-\w+)*  # words with optional internal hyphens
... | \$?\d+(\.\d+)?%?  # currency and percentages, e.g. $12.40, 82%
... | \.\.\  # ellipsis
... | [][.,;"'?():-_']  # these are separate tokens; includes ], [
... '''
>>> nltk.regexp_tokenize(text, pattern)
['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...']
```

Figure 1 - Tokenisation par NLTK en 2006

Tokenisation en sous-mots et Byte Pair Encoding

Pourquoi la Tokenisation en Sous-Mots?

- Les modèles de langue modernes ne traitent pas les mots comme des unités fixes.
- La segmentation en sous-mots permet de mieux gérer :
 - · Les mots rares et inconnus.
 - La morphologie des langues agglutinantes.
 - La compression de vocabulaire pour améliorer l'efficacité du modèle.

Byte Pair Encoding (BPE)

Principe du BPE

- Algorithme itératif qui fusionne les paires de caractères les plus fréquentes.
- Réduit la fragmentation excessive du texte tout en conservant une granularité fine.
- Utilisé dans de nombreux modèles de NLP, tels que GPT, BERT et T5.

Exemple de Byte Pair Encoding (BPE) sur "programmation"

- Initialisation: programmation
- Fusion 1: $m \rightarrow mm \rightarrow p r o g r a mm a t i o n$
- Fusion 2: a mm \rightarrow amm \rightarrow p r o g r amm a t i o n
- Fusion 3: r amm \rightarrow ramm \rightarrow p r o g ramm a t i o n
- Fusion finale: a t i o $n \rightarrow ation \rightarrow programm$ ation

Résultat : Segmentation en programm + ation

Lemmatisation

Lemmatisation en Français

Représenter tous les mots sous leur lemme

- Transformation en forme canonique = entrée de dictionnaire.
- Exemples:
 - mange, mangeons, mangé o manger
 - cheval, chevaux \rightarrow cheval
 - je suis, tu es, il est \rightarrow être
 - courais, couru, courra o courir
 - nouveau, nouvelle, nouveaux ightarrow nouveau

Pourquoi la Lemmatisation?

Applications

- Analyse sémantique et stylométrique.
- Recherche et indexation dans les corpus.
- Études lexicographiques et lexicologiques.

Le Cas de l'Ancien Français

Variabilité Graphique

- 36 graphies différentes pour "cheval".
- Influence des substitutions phonétiques et orthographiques.
- Exemples: cheval, cheual, chevaux, chival.

forme	occurr.	forme	occurr.
cheval	785	ceuax	10
cheual	375	cevax	10
chevaus	248	ceuaus	9
ceval	98	chiuau	9
chevax	92	cheuaux	8
chevals	84	kevaus	6
ceual	66	chevau	5
cheuaus	65	cevaux	3
chival	34	chivals	3
chevaux	30	cheuas	2
chivaus	27	keval	2
cheuax	23	chaval	1
chiual	23	chavaux	1
cevaus	19	cheua	1
chevas	19	cheualx	1
cheuals	14	cheuau	1
cevals	12	chevalx	1

Méthodes Modernes: Pie, Spacy, Stanza

Apprentissage Profond

- Utilisation des word embeddings.
- Réseaux neuronaux convolutifs et récurrents (CNN et RNN).

Approches adaptées aux langues non standard.

Types et Tokens

Différences entre Types et Tokens

Définition

- Token: Occurrence d'un mot dans un texte.
- Type : Une forme unique de mot.
- Le ratio Types/Tokens donne une estimation de la variété linguistique d'un texte.