RAPPRESENTAZIONE GRAFICA DEI RISULTATI SPERIMENTALI

INTERPOLAZIONE E CURVE DI REGRESSIONE

Rappresentazione Grafica

- "Visione d'insieme" di una grandezza, in funzione del tempo o di un altro parametro
- Tipicamente si utilizzano assi coordinati che devono riportare la descrizione della grandezza rappresentata e all'occorrenza anche la sua unità di misura

Tipi di Grafici

 Quando sugli assi compaiono dei valori numerici, bisogna SEMPRE indicare l'unità di misura corrispondente. Il grafico si dice QUANTITATIVO

 Altrimenti il diagramma è QUALITATIVO e può servire per indicare degli andamenti o delle tendenze

Grafico in un Piano Cartesiano

Esempio: caratteristica I – V per un diodo Zener

Grafico in un Piano Cartesiano

- ASCISSE (asse X): variabile indipendente o di comando o di ingresso
- •ORDINATE (asse Y): variabile dipendente o grandezza di uscita

Generalmente si ha $u(x_i) \ll u(y_i)$

Molte volte le incertezze di ingressi e uscite non sono specificate ma insieme al rumore sui dati si traducono in una "dispersione dei punti sperimentali"

Dispersione/Incertezza

Caratteristica ingresso-uscita di un amplificatore elettronico. Le **BARRE DI ERRORE** indicano un intervallo di confidenza, che va specificato: ad esempio $\pm 1\sigma$ (68%), oppure ad esempio il 90%.

Diagrammi Polari

Coordinata radiale $\rho = (x^2+y^2)^{1/2}$ Coordinata angolare $\theta = \arctan(y/x)$ per $x \ge 0$

$$x = \rho \cos(\theta)$$
$$y = \rho \sin(\theta)$$

 $\rho(\theta)$ può anche indicare la potenza irradiata da un'antenna o sorgente di OE

Scale Logaritmiche

Utili per visualizzare grandezze che variano di diversi ordini di grandezza, con dettaglio relativo costante: punti equispaziati in scala logaritmica stanno in uno stesso rapporto in scala lineare.

$$z \mid_{\log} = \log_B(z/z_0)$$
 B è la base e z_0 è il riferimento

Molto comuni dB e dBm (con B=10)

$$P \mid_{dB} = 10 \log_{10}(P/P_0)$$

 $A \mid_{dB} = 20 \log_{10}(A/A_0)$

$$P \mid_{dBm} = 10 \log_{10} [P/(P_m)] \text{ con } P_m = 1 \text{ mW}$$

dB di Potenza

$$\log_{10} 2 = 0.301 \dots \sim 0.3$$

Mondo Lineare	Mondo dei dB
2	$10\log_{10} 2 = +3$
$\frac{1}{2} = 2^{-1}$	$10\log_{10} 2^{-1} = -10\log_{10} 2 = -3$
10	$10\log_{10} 10 = +10$
$\frac{1}{10} = 10^{-1}$	-10
$5 = 10 \times \frac{1}{2}$	+10 + (-3) = +7
$\frac{1}{5} = 5^{-1}$	— 7

dB di Potenza

Mondo dei dB	Mondo Lineare
$+5 = +10 \times \frac{1}{2}$	$10^{\frac{1}{2}} = 3.162$
$-5 = -10 \times \frac{1}{2}$	$10^{-\frac{1}{2}} = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10} = 0.3162$

dB di Ampiezza

Mondo Lineare	Mondo dei dB
2	$20\log_{10} 2 = +6$
$\frac{1}{2} = 2^{-1}$	$20\log_{10} 2^{-1} = -20\log_{10} 2 = -6$
10	$20\log_{10} 10 = +20$
$\frac{1}{10} = 10^{-1}$	-20
$5 = 10 \times \frac{1}{2}$	+20 + (-6) = +14
$\frac{1}{5} = 5^{-1}$	-14

dB di Ampiezza

Mondo dei dB	Mondo Lineare
$+3 = +6 \times \frac{1}{2}$	$2^{\frac{1}{2}} = 1.414$
$-3 = -6 \times \frac{1}{2}$	$2^{-\frac{1}{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} = 0.707$
$+5 = +20 \times \frac{1}{4}$	$10^{\frac{1}{4}} = 1.778$
$-5 = -20 \times \frac{1}{4}$	$10^{-\frac{1}{4}} = 1.778^{-1} = 0.562$

Diagrammi Semilogaritmici (log-lin)

Diagramma semilog-y per la curva I-V di un diodo a semiconduttore in polarizzazione diretta: I= I_0 exp(V/ V_T)

$$y = \log(I) = (1/V_T) \times V + \log(I_0) = mx + q$$

 $m = (1/V_T) \qquad q = \log(I_0)$

Diagrammi Semilogaritmici (lin-log)

Esempio: diagramma di bode della fase di una funzione di <u>risposta in frequenza</u> di tipo Passa Basso

Sfasamento in gradi o radianti in funzione della frequenza riportata in scala logaritmica (ampia dinamica).

Asse logaritmico

Diagrammi Bilogaritmici (log-log)

Esempio: diagramma di bode del modulo di una funzione di <u>risposta in frequenza</u> di tipo Passa Basso

Ampiezza o guadagno in dB in funzione della frequenza riportata in scala logaritmica: si possono individuare delle pendenze tipiche (*e.g.* -20 dB/decade)

Diagrammi Bilogaritmici (log-log)

Esempio: Spettro di Potenza di un segnale elettrico

Ampia dinamica di frequenze e potenze visualizzabili sullo stesso diagramma.

Interpolazione

- Misura: insieme finito e discreto di valori sperimentali.
- I punti sperimentali sono i valori assunti dal misurando al variare di uno o più parametri di comando (grandezza/e di ingresso), oppure sono i campioni discreti prelevati nel tempo.
- La rappresentazione è più facilmente leggibile se operiamo un <u>"riempimento"</u> o **interpolazione tra due punti sperimentali adiacenti**.
- Interpolante: è una funzione continua che <u>passa per i</u> due <u>punti in questione</u> e fornisce l'andamento presunto (interpolato) della relazione ingresso-uscita.

È la più semplice interpolazione possibile: consiste nel congiungere i punti con una spezzata (insieme dei segmenti di rette che passano per due punti adiacenti).

Non consente una buona ricostruzione del segnale perché non sfrutta l'informazione dei punti precedenti e successivi.

Interpolazione polinomiale cubica

È la curva che passa per i punti sperimentali, mantenendo continue la derivata prima e seconda.

Ha l'effetto visivo di una "linea smussata". Può essere ottenuta con differenti condizioni al contorno (nei due punti estremi dell'intervallo di dati disponibili).

Interpolazione a seno cardinale

- Utilizzata per la ricostruzione di segnali campionati nel tempo.
- Si ricava matematicamente dall'operazione di filtraggio passa-basso ideale del segna campionato.
- Nel dominio del tempo consiste in una convoluzione del segnale campionato (treno di delte di Dirac) con la funzione $sinc(\pi x) = sin(\pi x)/\pi x$

Interpolazione a seno cardinale

Esempio di ricostruzione di un segnale mediante interpolatore

Sinusoide campionata a 2.51 punti per periodo

Interpolatore **sinc(***x***)**

Interpolatore lineare

Regressione di più punti sperimentali

- Un **diagramma sperimentale**, ottenuto da risultati di misura, spesso mostra una dipendenza y = f(x) che appare ragionevolmente approssimabile con una **funzione nota**
- Alternativamente, da un'analisi teorica, possiamo conoscere quale tipo di relazione matematica (modello) dovrebbe essere rappresentata dai punti, ma la dispersione dei dati è talmente grande (e.g. per la presenza di rumore) che non riusciamo a definire con sufficiente affidabilità i valori dei parametri
- Come è possibile ricavare questi valori (parametri caratteristici del fenomeno misurato) da una misura/osservazione di più punti?

Regressione ai minimi quadrati (LS)

- Consideriamo una generica dipendenza di una variabile fisica y da un'altra variabile x, attraverso una funzione f con più parametri A,B,...: y = f(A,B,...x)
- Effettuiamo quindi n misure y_i della variabile y in funzione della variabile x osservata nei punti x_i
- Per stimare i parametri che meglio rappresentano la realtà misurata, definiamo una funzione "distanza" tra la misura e la funzione *f*. Si vuole minimizzare tale distanza
- La funzione "distanza" più comunemente usata è la somma degli scarti quadratici tra f e il valore misurato
- Scarto: $\delta_i = y_i f(x_i)$
- Funzione "distanza" da minimizzare: $\Phi = \sum_{i} \delta_{i}^{2}$

Regressione lineare LS (1/2)

- Un importante caso di regressione, semplice da risolvere analiticamente, è quello della regressione lineare;
- Consideriamo una dipendenza lineare y = m x + b di cui si vogliono ricavare i due parametri m e b.
- Per il punto *i*-esimo di misura, lo scarto δ_i tra il valore empirico, y_i , e quello della curva di regressione, $f(x_i)$, vale $\delta_i = y_i [m \ x_i + b]$

Dobbiamo trovare i **valori dei parametri (***m* **e** *b***) per i quali è minima la "distanza**"

$$\Phi(m,b) = \sum_{i=1}^{n} \delta_i^2 = \sum_{i=1}^{n} [y_i - (mx_i + b)]^2$$

Regressione lineare LS (2/2)

Per trovare il minimo di Φ , annulliamo le due derivate prime parziali rispetto a m e b:

$$\frac{\partial \Phi}{\partial m} = 0 \Rightarrow \left(m \sum_{i=1}^{n} x_i^2 \right) + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i$$

$$\frac{\partial \Phi}{\partial b} = 0 \Rightarrow m \sum_{i=1}^{n} x_i + nb = \sum_{i=1}^{n} y_i$$

dove tutte le sommatorie sono ovviamente estese per i che va da 1 fino a n.

Si è ottenuto un sistema lineare di due equazioni in due incognite, m e b appunto.

Regressione lineare: calcolo di m e b

La soluzione del sistema (che si ottiene facilmente per sostituzione) è:

$$m = \frac{n\sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$b = \frac{\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} y_{i}}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} = \frac{\sum_{i=1}^{n} y_{i} - m\sum_{i=1}^{n} x_{i}}{n} = y - mx$$

Questa soluzione corrisponde a un minimo (lo si può dimostrare matematicamente facendo le derivate seconde, entrambe >0)

Esercizio su retta di regressione (1/2)

n(=5) misure di y=f(x) con punti sperimentali

$$i$$
 1 2 3 4 5 $x_i = [0 \ 1 \ 2 \ 2 \ 2 \ 3]$ $x_i = [1 \ 2 \ 2 \ 2 \ 3]$ $x_i = [1 \ 2 \ 2 \ 2 \ 3]$

Modello lineare
$$\delta_i = y_i - [m x_i + b]$$

Regressione ai minimi quadrati $\rightarrow \sum (\delta_i)^2 = \text{min.}''$

Esercizio su retta di regressione (2/2)

