Modelos Conceituais de Dados

Banco de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri

Motivação

- → Objetivo da abordagem de BD:
 - oferecer abstração dos dados
 - separar aplicações dos usuários dos detalhes de hardware
 - ferramenta utilizada: modelo de dados
- → Modelo de dados:
 - conjunto de ferramentas conceituais para a descrição dos dados e dos relacionamentos existentes entre os dados, da semântica e das restrições que atuam sobre estes

Categorias de Modelos de Dados

- → Divisão baseada nos tipos de conceitos oferecidos para descrever a estrutura do BD
- → Modelo de dados conceitual
 - modelo de alto nível
 - oferece conceitos próximos aos usuários
 - exemplo: modelo entidade-relacionamento

Categorias de Modelos de Dados

- → Modelo de dados de implementação
 - oferece conceitos que
 - podem ser facilmente utilizados por usuários finais
 - não estão distantes da maneira na qual os dados estão organizados dentro do computador
 - é implementado de maneira direta
 - exemplo: modelo relacional

Categorias de Modelos de Dados

- → Modelo de dados físico
 - modelo de baixo nível
 - descreve como os dados estão armazenados fisicamente no computador

Projeto de BD

Modelo Entidade Relacionamento Básico

- → Característica
 - proposto por Chen (1970)
 - representa um problema como um conjunto de entidades e de relacionamentos entre estas entidades
 - utilizado na modelagem de aplicações de BD tradicionais

Modelo Entidade Relacionamento Básico

- → Conceitos Básicos
 - entidade; atributo; tipo-entidade
 - chave primária
 - relacionamento; atributo; tipo-relacionamento unário, binário, ternário
 - restrições de cardinalidade e de participação
 - tipo-entidade fraca

Resumo da Notação

Modelo Entidade Relacionamento Estendido

→ Características

- introduz semântica adicional ao modelo ER
- utilizado na modelagem de aplicações mais complexas

→ Conceitos

- generalização, especialização, e restrições
- agregação
- categoria

Subclasse/Superclasse

→ Subclasse

subagrupamento das entidades de um tipo-entidade

◆ Exemplo

- superclasse: tipo-entidade empregado __
- subclasses: secretário, engenheiro, técnico

cada entidade que é membro de qualquer uma das subclasses também é um empregado

Herança

- → de atributos
 - atributos da superclasse são herdados pelas subclasses
- de relacionamentos
 - instâncias de relacionamento da superclasse são herdados pelas entidades das subclasses
- → Observação
 - qualquer entidade membro de uma subclasse deve ser também membro da superclasse
 - qualquer entidade membro da superclasse pode ser opcionalmente incluída como membro de qualquer número de subclasses

Generalização/Especialização

→ Especialização

 resultado da separação de um tipoentidade de nível mais alto (superclasse), formando vários tipos-entidades de nível mais baixo (subclasse)

- passos:

- define-se um conjunto de subclasses de um tipo-entidade
- associa-se atributos adicionais específicos às subclasses
- estabelece-se tipos-relacionamentos adicionais específicos às subclasses, caso necessário

Generalização/Especialização

- → Generalização
 - resultado da união de dois ou mais tiposentidades de nível mais baixo (subclasse), produzindo um tipo-entidade de nível mais alto (superclasse)
 - é uma abstração de um conjunto de entidades
 - passos:
 - suprime-se as diferenças entre os tiposentidade
 - identifica-se os atributos em comum
 - generaliza-os em uma superclasse

Restrições

- → Especialização definida pelo atributo
 - as subclasses que participam da hierarquia são determinadas por uma condição baseada em algum atributo da superclasse
 - exemplo: tipo_empregado
- → Denominações
 - subclasses definidas pelo predicado
 - subclasses definidas pela condição

Restrição de Disjunção

- → Subclasses mutuamente exclusivas
 - uma entidade de uma superclasse deve ser membro, quando muito, de apenas uma única subclasse
 - representação: d ← "d" (disjoint)
- → Subclasses que se sobrepõem
 - uma entidade de uma superclasse pode ser membro de mais do que uma subclasse
 - representação: o ← "o" (overlap)

Restrição de Completude

→ Total

 cada entidade de uma superclasse deve ser membro de alguma subclasse na especialização

– representação:

→ Parcial

uma entidade de uma superclasse pode
não pertencer a qualquer uma das
subclasses

– representação:

Profa. Dra. Cristina Dutra de Aguiar Ciferri

superclasse

Observações

- → Restrições de disjunção e de completude são independentes
 - possibilidades de hierarquias
 - total disjunta
 - parcial disjunta
 - total com sobreposição
 - parcial com sobreposição

Observações

- → Regras de inserção e remoção
 - se uma entidade de uma superclasse for removida, então ela deve ser automaticamente removida de todas as subclasses a que pertence
 - <u>se</u> uma entidade for inserida em uma superclasse, <u>então</u> ela deve ser necessariamente inserida em todas as subclasses definidas pelo atributo, quando este for satisfeito

Observações

- → Regras de inserção e remoção
 - <u>se</u> uma entidade for inserida em uma superclasse com especialização total, <u>então</u> ela deve ser necessariamente inserida em pelo menos uma das subclasses da especialização

— ...

Generalização/Especialização

- → Uma subclasse pode possuir outras subclasses especificadas a partir dela
- → Herança simples
 - cada subclasse participa como subclasse em apenas um relacionamento superclasse/subclasse
- → Herança múltipla
 - cada subclasse pode participar como uma subclasse em mais do que um relacionamento superclasse/subclasse

Herança Múltipla

→ Regra

 <u>se</u> um mesmo atributo ou relacionamento for herdado mais do que uma vez por diferentes relacionamentos superclasse/subclasse <u>então</u> o atributo ou o relacionamento deve ser incluído apenas uma vez na subclasse

→ Restrições

- alguns mecanismos de herança
 - não permitem herança múltipla
 - não permitem a especificação conjunta de herança múltipla e de diferentes predicados

Agregação

- → Tipos-entidades agregados são representados como tipos-entidades comuns
- → Pode englobar
 - dois tipos-entidades e um tiporelacionamento
- → Dados vistos em um nível mais baixo
 - atributos dos tipos-relacionamentos
 - chaves primárias dos tipos-entidades

ALUNO

Representação Simplificada

Agregação

Enfocando a possibilidade do mesmo médico atender o mesmo paciente em diferentes datas

Agregação

Adicionando atributos também ao tipo-relacionamento

Agregação

Adicionando uma chave primária à agregação

Categoria

- → Representa uma coleção de objetos que é a união de objetos de diferentes tipos entidades
- ◆ Exemplo
 - superclasses: pessoa, banco, companhia
 - categoria: proprietário •

subclasse da união de pessoa, banco e companhia

Representação

Restrição de Completude

→ Total

- cada entidade de cada superclasse deve ser membro da categoria
- representação:

→ Parcial

- uma entidade de uma superclasse pode não pertencer à categoria
- representação:

Predicado

- → Categoria definida pelo predicado
 - indica que as entidades das superclasses que são membro da categoria são determinadas por condições específicas
 - especificada apenas com a restrição de completude parcial
 - exemplos:
 - ◆ C₁: idade > 18 anos
 - c_2 : fundos > R\$ 1.000.000,00
 - ◆ c₃: ano_fundação > 1997

- → Classificar tipos-entidades e atributos
 - tipos-entidade possuem informações descritivas, atributos não
 - atributos devem ser mantidos de forma atômica
 - atributos devem ser relacionados às entidades que eles descrevem
- → Identificar chaves primárias

- → Identificar tipos-relacionamentos e seus atributos
 - determinar o grau dos tiposrelacionamentos
 - identificar as restrições que se aplicam sobre cada tipo-relacionamento
 - cardinalidade
 - participação
- → Identificar tipo-entidade forte e tipoentidade fraca

- → Identificar agregações
 - cardinalidade
 - unicidade das tuplas
- → Modelar hierarquias de generalização
 - identificar atributos e relacionamentos comuns
 - determinar as restrições de disjunção e de completude

- → Modelar categorias
 - determinar restrições de completude
 - determinar os predicados, quando necessário

"Podemos notar que um projetista de BD necessita de um bom conhecimento do minimundo que está sendo modelado para que possa tomar essas decisões!"