

Energy Changes of Salts

Subject & topics: Chemistry | Inorganic | Bonding & IMFs Stage & difficulty: A Level P1

Part A CaCl_2 or CaCl ?
Which statement helps to explain why calcium and chlorine form ${ m CaCl_2}$ rather than ${ m CaCl}$?
Less energy is required to remove one electron from the calcium atom than to remove two electrons.
The lattice energy of $\mathrm{CaCl}\left(\mathrm{s}\right)$ is less exothermic than that of $\mathrm{CaCl}_{2}\left(\mathrm{s}\right)$.
$ \qquad \qquad \text{When $\operatorname{CaCl}(s)$ is formed from its elements, more energy is released than when $\operatorname{CaCl}_2(s)$ is formed from its elements. } $
More energy is released in forming chloride ions from chlorine molecules in the formation of $CaCl_2(s)$ than in the formation of $CaCl(s)$.

Part B

Enthalpy of solution of magnesium chloride

The lattice enthalpy of magnesium chloride is $+2493 \, \mathrm{kJ \ mo1^{-1}}$. The hydration enthalpy of the magnesium ion is $-1920 \, \mathrm{kJ \ mo1^{-1}}$ and that of the chloride ion is $-364 \, \mathrm{kJ \ mo1^{-1}}$.

The enthalpy of solution (in $kJ\ mo1^{-1}$) of magnesium chloride in water is given by:

- -2493 1920 364
- $+2493-1920-(2\times 364)$
- $-2493 + 1920 + (2 \times 364)$
- +2493-1920-364
- $+2493 + 1920 (2 \times 364)$

Part A adapted with permission from UCLES, A-Level Chemistry, June 1996, Paper 3, Question 7; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1995, Paper 1, Question 9

Intermolecular Forces

Subject & topics: Chemistry | Inorganic | Bonding & IMFs Stage & difficulty: A Level P2

Part A Liquid hydrogen halides
Which quantity would best indicate the relative strengths of the hydrogen bond between the molecules in liquid hydrogen halides?
bond dissociation energies
enthalpy changes of solution
enthalpy changes of formation
enthalpy changes of vaporisation
Part B Propanone and hexane
Propanone is much more soluble than hexane in water.
Which statement helps to account for this?
A hydrogen bond forms between the oxygen of the $C{=}O$ group in propanone and the hydrogen of a water molecule
A hydrogen bond forms between the oxygen of the $C{=}O$ group in propanone and the oxygen of a water molecule
A hydrogen bond forms between the hydrogen of the CH_3 group in propanone and the hydrogen of a water molecule
A hydrogen bond forms between the hydrogen of the CH_3 group in propanone and the oxygen of a water molecule

Part A adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 4, Question 6; Part B created for Isaac Physics by R. Less

Question deck:

Ionisation Energy and Radii

Subject & topics: Chemistry | Inorganic | Periodic Table Stage & difficulty: A Level P1

	nents radon ($ m Rn$), francium ($ m Fr$) and radium	(Ra) have consecutive p	proton numbers in the Periodic Table
What is	the order of their first ionisation energies? least endothermic	→	most endothermic
Α	Fr	Ra	Rn
В	Fr	Rn	Ra
С	Ra	Fr	Rn
D	Rn	Ra	Fr
	A B		
	С		
	D		

Part B Radii			
The following species contain the same number of electrons. In which order do their radii increase?			
	smallest radius	<i>→</i>	largest radius
Α	Ar	\mathbf{K}^{+}	Ca^{2+}
В	Ca^{2+}	Ar	${f K}^+$
С	Ca^{2+}	\mathbf{K}^{+}	Ar
D	\mathbf{K}^{+}	Ca^{2+}	Ar
D K¹ Ca⁻¹ Ar ○ A □ B □ c □ D ○ D			

Part A adapted with permission from UCLES, A-Level Chemistry, November 1999, Paper 3, Question 4; Part B adapted with permission from UCLES, A-Level Chemistry, November 1999, Paper 3, Question 13

Question deck:

More Periodic Trends

Subject & topics: Chemistry | Inorganic | Periodic Table Stage & difficulty: A Level P1

The graphs below show how a property of the elements Na to Cl varies with proton number.

What is the property of each trend?

Part A adapted with permission from UCLES, A-Level Chemistry, June 1996, Paper 3, Question 12; Parts B, C created for Isaac Physics by R. Less

Question deck:

Groups 1 and 2

Part A Lithium compounds
Lithium resembles magnesium in its chemical properties.
Which property of lithium compounds is unlikely to be correct?
Lithium carbonate decomposes to give carbon dioxide on being heated.
Lithium oxide in water produces a solution with pH greater than 7.
Lithium sulfate is soluble in water.
Lithium nitrate gives oxygen as the only gas on being heated.
Part B Group 2 trends
On descending Group 2 from magnesium to barium, which statement correctly describes the trend in properties?
The ionic radius decreases.
The enthalpy change of hydration of the ± 2 ion becomes less negative.
The first ionisation energy increases.
The solubility of the sulfate increases.

Question deck:

Group 2 Salts

Part A Silver nitrate and barium chloride
An excess of aqueous silver nitrate is added to aqueous barium chloride, and the precipitate is removed by filtration.
What are the main ions in the filtrate?
${igwedge}$ ${f Ag}^+,{f Ba}^{2+}$ and ${f NO}_3{}^-$
${ m Ag}^+$ and ${ m NO_3}^-$ only
$igcup Ba^{2+}$, $\mathrm{NO_3}^-$ and Cl^-
${ m Ba}^{2+}$ and ${ m NO_3}^-$ only

Part B Salts w	vith dilute hydrochloric acid
	nixture of white solids, X , is treated with an excess of dilute hydrochloric acid, a colourless gas is evolved e, but not all, of the mixture dissolves.
Which mi	xture could be X ?
	${ m BaSO_4}$ and ${ m CaCO_3}$
	${ m Ba(NO_3)_2}$ and ${ m Ca(OH)_2}$
	$ m CaCO_3$ and $ m MgSO_4$
	$ m Ca(OH)_2$ and $ m MgCO_3$

Part A adapted with permission from OCR, A-Level Chemistry, June 1999, Paper 3, Question 17; Part B adapted with permission from UCLES, A-Level Chemistry, June 1995, Paper 4, Question 12

Question deck:

Halogen Trends

Subject & topics: Chemistry | Inorganic | Periodic Table Stage & difficulty: A Level P1

Part A Periodic trends	
Which statements about the trends in the properties of the halogens are correct?	
1. The electronegativity decreases on descending the group.	
2. The volatility decreases on descending the group.	
3. Their reactivity as oxidising agents decreases on descending the group.	
1, 2 and 3 are correct	
1 and 2 only are correct	
2 and 3 only are correct	
1 only is correct	
3 only is correct	

Part B

Oxidation and reduction

Aqueous chlorine is added to aqueous sodium bromide and the mixture is shaken with an equal volume of trichloroethane.

Which observation would be made?

Figure 1: Possible observations of aqueous chlorine with aqueous sodium bromide and an equal volume of trichloroethane

	Α

______B

Question deck:

Halides Oxidation and Reduction

Subject & topics: Chemistry | Inorganic | Periodic Table Stage & difficulty: A Level P1

Part A Reactions of chlorine
Which compound reacts with chlorine to give two products in which chlorine has different oxidation numbers?
potassium iodide
potassium iodate(V)
ethene
sodium hydroxide

Part B

Weedkiller from bleach

A weedkiller can be prepared by heating a bleach solution.

$$3 \mathop{\rm NaClO}_{\rm bleach} \xrightarrow{\rm heat} 2 \mathop{\rm NaCl}_{\rm + NaClO_3}_{\rm weedkiller}$$

What are the oxidation numbers of chlorine in these three compounds?

	NaClO	NaCl	NaClO_3
A	-1	-1	+5
В	+1	-1	+5
С	+1	-1	+7
D	+2	+1	+7

	Δ
	-

() c

Part A adapted with permission from UCLES, A-Level Chemistry, June 1996, Paper 3, Question 15; Part B adapted with permission from UCLES, A-Level Chemistry, November 1999, Paper 3, Question 17

Question deck:

Oxidation Numbers

Subject & topics: Chemistry | Inorganic | Redox Stage & difficulty: A Level P1

Part A Sodium with ammonia
Sodium reacts with ammonia to give hydrogen and sodamide which is ionic.
$2\mathrm{Na} + 2\mathrm{NH_3} \longrightarrow 2\mathrm{NaNH_2} + \mathrm{H_2}$
Which changes in oxidation number of the three elements involved occur?
1. -3 to -2
2 . 0 to $+1$
$oldsymbol{3}.+1$ to 0
1, 2 and 3 are correct
1 and 2 only are correct
2 and 3 only are correct
1 only is correct
3 only is correct

Part B Fitanium		
tanium is manufact ${ m e}_2({ m TiO}_3)_3.$	ured from ilmenite which is a mixture of	iron(II) titanate, ${ m FeTiO_3}$, and iron(III) titanate,
	number of titanium in each of these cor	mpounds?
	${ m FeTiO_3}$	${ m Fe_2(TiO_3)_3}$
A	+2	+3
В	+4	+2
С	+4	+3
D	+4	+4
_ A		
В		
_ c		

Part A adapted with permission from UCLES, A-Level Chemistry, June 1999, Paper 3, Question 33; Part B adapted with permission from UCLES, A-Level Chemistry, November 1997, Paper 3, Question 13

Question deck:

Hydroxylamine and Iron(III)

Subject & topics: Chemistry | Inorganic | Redox Stage & difficulty: A Level C1

The following experiment was used to determine the equation for the reaction between hydroxylamine, NH_2OH , and iron(III) ions. $0.0370\,\mathrm{g}$ of hydroxylamine was dissolved in water and made up to $25.0\,\mathrm{cm}^3$. This solution was reacted with an excess of an acidified solution of an iron(III) salt. When the reaction was complete the iron(II) produced required $22.4\,\mathrm{cm}^3$ of $0.0200\,\mathrm{mol}\,\mathrm{dm}^{-3}$ potassium manganate(VII) solution to oxidise the iron(III) back to iron(III).

Part A Hydroxylamine oxidation number
What is the oxidation number of nitrogen in hydroxylamine, $\mathrm{NH_2OH?}$
Part B Oxidation of iron(II)
Write down the half-equation for the oxidation of iron(II) to iron(III) ions.
$_{\mbox{\scriptsize Part C}}$ Reduction of manganate(VII)
Write down the half-equation for the reduction of manganate(VII) to manganese(II) ions under acidic conditions.

Part D lonic equation
Deduce the ionic equation for the reaction between iron(II) ions and manganate(VII) ions under acidic conditions.
Part E Moles of hydroxylamine
Calculate the amount, in moles, of hydroxylamine used in the reaction.
Part F Moles of iron(II)
Calculate the amount, in moles, of iron(Π) formed in the reaction.
Part G Molar ratio of iron(III) to hydroxylamine
Determine the molar ratio of iron(III) to hydroxylamine reacting together.

Part H Oxidation number of nitrogen in the product
Using the oxidation number of nitrogen in hydroxylamine, and the molar ratio of iron(III) to hydroxylamine, deduce the oxidation number of nitrogen in the product.
Part I Nitrogen-containing product
Which of the following possible nitrogen-containing compounds is the most likely product of the reaction?
\bigcirc N ₂ O
O NO
\bigcirc N ₂
$ ightharpoonup N_2O_4$
\bigcirc NH $_3$
Part J Hydroxylamine and iron(III) equation
Write the equation for the reaction between hydroxylamine and iron(III) ions. State symbols are not required.

Adapted with permission from OCSEB, A-Level Chemistry, June 1995, Paper 3/4, Question 5.