GY953 模块使用手册 V2.0

一、 概述

GY953 是一款低成本 AHRS 模块。 工作电压 3-5v 功耗小,体积小。 其工作原理,是通过陀螺仪与 加速度传,磁场感器经过数据融合 算法最后得到直接的角度数据。 此模块,有两种方式读取数据,即 串口(TTL 电平)或者 SPI(4 线) 通信方式。该产品精度高,稳定性高。 能够在任意位置得到准确的角度, 串口的波特率有 9600bps 与 115200bps 有连续输出与询问输出两种方式, 可适应不同的工作环境。 与所有的单片机及电脑连接

二、产品特点

- (1)、体积小
- (2)、高性价比
- (3)、串口通信格式
- (4)、SPI 通信格式

三、产品应用

- (1)、手持式仪器仪表
- (2)、机器人导航、定位
- (3)、航行航模系统
- (4)、平衡车
- (5)、天线俯仰定位

技术参数

名称	参数
测量范围	-180° ~ 180°
分辨率	0.1°
测量精度	2 °
重复精度	2 °
响应频率	100 HZ (115200bps)
工作电压	3~5 V
工作电流	15mA
工作温度	-20° ~ 85°
储存温度	-40° ~ 125°
尺寸	15.5mm×15.5mm
·	

四、引脚说明

Pin1	VCC	电源+ (3v-5v)
Pin 2	GND	电源地
Pin3	TX	串口数据发送
Pin 4	RX	串口数据接收
Pin 5	SWD	内部使用,不需要连接,悬空
Pin 6	SWC	内部使用,不需要连接,悬空
Pin 7	B0	内部使用,不需要连接,悬空
Pin 8	INT	数据中断引脚,输出
Pin 9	MOSI	SPI 数据
Pin 10	MISO	SPI 数据
Pin 11	SCK	SPI 时钟
Pin 12	CS	SPI 片选

五、通信协议

串口:

(1)、串口通信参数(默认波特率值115200 bps,可通过软件设定)

波特率: 9600 bps 校验位: N 数据位: 8 停止位: 1 波特率: 115200 bps 校验位: N 数据位: 8 停止位: 1

(2)、模块输出格式,每帧包含 11-13 个字节 (十六进制):

①.Byte0: 0x5A 帧头标志 ②.Byte1: 0x5A 帧头标志

③.Byte2: 0X45 本帧数据类型(参考含义说明)④.Byte3: 0x06 数据量(以下 6 个数据 3 组为例)

⑤.Byte4: 0x00~0xFF 数据 1 高 8 位 ⑤.Byte5: 0x00~0xFF 数据 1 低 8 位 ⑥.Byte6: 0x00~0xFF 数据 2 高 8 位 ⑦.Byte7: 0x00~0xFF 数据 2 低 8 位

⑧.Byte8: 0x00~0xFF 数据 3 高 8 位

⑨.Byte9: 0x00~0xFF 数据 3 低 8 位

⑩.Byte10: 0x00~0xFF 校验和(前面数据累加和,仅留低 8 位)

Byte2 代表的含义说明:

Byte2	0x15	0x25	0x35	0x45	0X55	0x65	0x75	0x85
含义:	加速度	陀螺仪	磁力计	欧拉角	保留	四元素	传感器精	传感器
	原始数	原始数	原始数	数据	不用	数据	度,频率	量程

(3)、数据计算方法

欧拉角计算方法: 角度= 高 8 位<<8|低 8 位 (结果为实际角度乘以 100) 例: 一帧数据

<0x5A -0x5A -0x45-0x06 -0x00-0x64-0x03-0XE8-0x27-0x10-0x85>表示欧拉角: Roll=1.00 度, Pitch=10.00 度, Yaw=100.00 度

陀螺仪磁场加速度原始数据计算方法: 原始数据= 高 8 位<<8|低 8 位 例: 一帧数据

<0x5A -0x5A -0x15-0x06 -0x00-0x64-0x03-0xE8-0x27-0x10-0x55> 表示加速度原始数据:

X = 0x0064, Y = 0x03E8, Z = 0x2710

四元素计算方法 : 数据= 高 8 位<<8|低 8 位 (结果为实际乘以 10000) 例: 一帧数据

<0x5A -0x5A -0x65-0x08 -0x00-0x64-0x03-0xE8-0x03-0xE8-0x03-0xE8-0x46>表示四元素数据:

q0=0.01 , q1=0.1 , q2=0.1 , q3=0.1

(4)、命令字节,由外部控制器发送至 GY953 模块(十六进制)

1、帧头: 0xa5

指令格式: 帧头+指令+校验和(如自动读取欧拉角指令=0xa5+0x45+校验和8bit)

2、命令指令:

串口波特率设置指令: (每次修改后需要重新上电生效,具有掉电保存)

0xa5+0xaf+0x54------115200(默认数值)

0xa5+0xae+0x53-----9600

传感器配置指令:

0xa5+0x51+0x F6-----ON/OFF 加计传感器

0xa5+0x52+0x F7------ON/OFF 陀螺仪传感器

0xa5+0x53+ 0x F8-----ON/OFF 磁场传感器

0xa5+0x57+0xFC-----加计陀螺校准,校准后数据自动保存

0xa5+0X58+0x FD------磁场校准,校准后数据自动保存

0xa5+0X59+0x FE-----恢复出厂设置(每次修改后需要重新上电生效)

0xa5+0xa4+ 0x 49-----数据输出速率 50hz

0xa5+0xa5+0x 4A-----数据输出速率 100hz

0xa5+0xa6+ 0x 4B-----数据输出速率 200hz

自动输出指令:(具有开关功能,第一次发送打开,第二次发送关闭):

0xa5+0x15+0xBA------加速度原始数据

0xa5+0x25+0xCA------陀螺仪原始数据

0xa5+0x35+0xDA------磁场原始数据

0xa5+0x65+0x0A ------四元数

查询输出指令:

0xa5+0x75+0x1A -----三传感器精度, 输出频率

0xa5+0x85+0x2A -------获取陀螺量程,加计量程,磁场量程

0xa5+0xb5+0x5A ------四元数

0xa5+0xc5+0x6A ------加速度原始数据

0xa5+0xd5+0x7A ------陀螺仪原始数据

0xa5+0xe5+0x8A ------磁场原始数据

SPI 接口:

采用 4 线标准的 spi 方式,时钟空闲时为高电平,时钟相位为第二个跳变沿开始采集数据(即:CPOL=1,CPHA=1); spi 波特率最高 400Khz; bit7(最高位)在前。

Spi 写一个字节: 地址 bit7 (最高位): 0, bit6: 1; 即 01+6 位地址

Spi 读一个字节: 地址 bit7 位 (最高位): 1, bit6: 0; 即 10+6 位地址

Spi 连续读多个字节: 地址 bit7 位 (最高位): 1 , bit6 位为 1, 地址自增, (即 11+6 位地址)

内部地址寄存器映射:

注:连续读模式需一次性读取全部寄存器(共41个),单次模式则可以任意读取其中1个

配置寄存器 A	CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
0x01(写/读)	0	磁场	陀螺	加计	1	f3(0)	f2(0)	f1(0)

CR7	该位必须为 0
CR6	默认 CR6=1,当 CR6=0 为关闭磁场计传感器,1 为开启
CR5	默认 CR5=1,当 CR5=0 为关闭陀螺仪传感器,1 为开启
CR4	默认 CR4=1,当 CR4=0 为关闭加计传感器,1 为开启
CR3	该位必须为1
CR2 to CR0	设置数据输出速率: 3: 50hz,4: 100hz, 5: 200hz

CR2	CR1	CR0	数据输出速率
0	1	1	50hz (默认)
1	0	0	100hz
1	0	1	200hz

控制寄存器 B	CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
0x02(写/读)	出	0	0	1	сс	self	0	1

CR7	1:恢复出厂设置
CR5	该位必须为 0
CR4	该位必须为1
CR3	1: 磁场开始校准; 自动保存数据
CR2	1: 自检并校准加速度计和陀螺计; 自动保存数据
CR0	该位必须为1

ACC_X_H	D15-D8
0x03	X 轴加速度高 8 位数据

ACC_X_L	D7-D0
0x04	X 轴加速度低 8 位数据

ACC_Y_H	D15-D8
0x05	Y 轴加速度高 8 位数据

ACC_Y_L	D7-D0
0x06	Y 轴加速度低 8 位数据
ACC_Z_H	D15-D8
0x07	Z 轴加速度高 8 位数据
ACC_Z_L	D7-D0
0x08	Z 轴加速度低 8 位数据
GYRO_X_H	D15-D8
0x09	X 轴陀螺高 8 位数据
0x09	A相陀蛛同O但数据
GYRO_X_L	D7-D0
0x0A	X 轴陀螺低 8 位数据
GYRO _Y_H	D15-D8
0x0B	Y 轴陀螺高 8 位数据
GYRO _Y_L	D7-D0
0x0C	Y 轴陀螺低 8 位数据
GYRO_Z_H	D15-D8
0x0D	Z 轴陀螺高 8 位数据
OXOD	Z 相陷場同 6 世
GYRO_Z_L	D7-D0
0x0E	Z 轴陀螺低 8 位数据
COMPASS_X_H	D15-D8
0x0F	X 轴磁场高 8 位数据
COMPAGE V. I	D7 D0
COMPASS_X_L	D7-D0
0x10	X 轴磁场低 8 位数据
COMPASS_Y_H	D15-D8
0x11	Y 轴磁场高 8 位数据
COMPASS_Y_L	D7-D0
0x12	Y 轴磁场低 8 位数据
COMPASS_Z_H	D15-D8

0x13	Z 轴磁场高 8 位数据					
UXIS	∠ 4川塚緑/沙 □ O □ 上 亥又 沙					
COMPASS_Z_L	D7-D0					
0x14	Z 轴磁场低 8 位数据					
ROLL_H	D15-D8					
0x15	横滚角高8位数据					
Г						
ROLL_L	D7-D0					
0x16	横滚角低 8 位数据					
PITCH_H	D15-D8					
0x17	俯仰角高 8 位数据					
UA17	וםן דיין מון פון דיין אין מע אַגעין פון דיין אין מע אַגעין פון דיין אין מע					
PITCH_L	D7-D0					
0x18	俯仰角低8位数据					
YAW_H	D15-D8					
0x19	航向角高8位数据					
YAW_L	D7-D0					
0x1A	航向角低8位数据					
00.11	D15 D0					
Q0_H	D15-D8					
0x1B	四元数 q0 高 8 位数据					
Q0_L	D7-D0					
0x1C	四元数 q0 低 8 位数据					
OATC	HIZUSA YO IM O PESAJII					
Q1_H	D15-D8					
0x1D	四元数 q1 高 8 位数据					
1						
Q1_L	D7-D0					
0x1E	四元数 q1 低 8 位数据					
	· Wasse James Bessell					
Q2_H	D15-D8					
0x1F	四元数 q2 高 8 位数据					
						

Q2_L	D7-D0									
0x20	四元数 q2 低 8 位数据									
Q3_H	D15-D8									
0x21	四元数 q3 高 8 位数据									
Q3_L	D7-D0									
0x22	四元数 q3 低 8 位数据									
状态寄存器 D	S7	S6	S5	S4	S3	S2	S1	S0		
0x23	0	0	0	0	1	1	0	1		
[
S7 to S6	保留									
S5 to S4	加速度量程; 0: $\pm 2g$; 1: $\pm 4g$; 2: $\pm 8g$; 3: $\pm 16g$									
S3 to S2	陀螺仪量程; 0: +250dps; 1: +500dps; 2: +1000dps; 3: +2000dps									
S1 to S0	磁场量程; 0:14bit(0.6 \mu) 4915;1:16bit(0.15 \mu)4915									
状态寄存器 C	S7	S6	S5	S4	S3	S2	S1	S0		
0x24	new 0 加速度 陀螺 磁场							场		
S7	1:数据更新,读取后自动清零									
S6	保留									
S5 to S4	获取加速度计校准精度,11:最高,00最低									
S3 to S2	获取陀螺计校准精度,11:最高,00最低									
S1 to S0	获取磁场校准精度,11: 最高,00 最低									
ACC_SUM	8bit: 加速度计 6 个数据寄存器数据累加和(0x03~0x08)									
0x25	ACC_X_H+ ACC_X_L+···ACC_Z_L									
GYRO_SUM	8bit: 陀螺仪 6 个数据寄存器数据累加和 (0x09~0x0E)									
0x26 GYRO _X_H+ GYRO _X_L+····GYRO _Z_L										
COMPAGE SIN	0h:4.	瑞士江	6 人粉坦豆	2方鬼粉书	型男加和 /	OvOE Ov1	4)			
Ox27	M 8bit: 磁力计 6 个数据寄存器数据累加和(0x0F~0x14) COMPASS_X_H+COMPASS_X_L+···COMPASS_Z_L									
UX21		COMP	ოაა _∧_H+	COMPASS		JIVIFASS _Z	,_L			
RPY_SUM	RPY_SUM 8bit: 欧拉角 6 个数据寄存器数据累加和(0x15~0x1A)									
0x28	ROLL_H+ ROLL_L+···YAW_L									
0120 NO22_11 NO22_21 MIN_2										
Q_SUM	Q_SUM									
0x29	Q0_H + Q0 _L+···Q3_L									
L										

注: 磁场精度, 可以作为磁场校准完成标志位

六、模块使用方法

1、模块数据更新频率:

输出频率默认为 50hz,如需要更高的输出频率,请对应串口或者 spi 相应的指令进行配置,配置请在模块初始化成功后进行,模块初始化成功后,指示灯将点亮,中断引脚出现上升沿代表模块已有数据更新,此时也代表模块已初始化完成,具体可参见附带的参考程序。2、模块数据输出:

请使用者尽量在数据更新中断引脚产生上升沿后读取数据。在串口读取大量数据时,请计算好串口数据传输的时间,请尽量保证数据传输时间小于数据更新周期,避免数据传输给模块带来的影响。如串口波特率为 115200,则 115200/1000=115.2,表示 1ms 可传输 115.2个 bit,串口传输一个字节加上起始位和停止位共 10bit,则 115.2/10 表示 1ms 串口在波特率为 115200 时可传输 11.52 个字节,该模块 ACC,GYRO,MAG,RPY一帧数据均为 11 个字节,即传输一帧数据需要 1ms,如果模块更新频率为 50hz(即 20ms 更新一次),则使用者在一个更新周期内可输出全部数据帧;如果为 100hz(即 10ms 更新一次),使用者可输出全部数据帧;如果为 200hz(即 5ms 更新一次),使用者可输出四个数据帧,因为四元数串口数据帧共 13 个字节,需要 1.12ms 且模块自身处理数据也需要时间,所以建议在波特率为 115200、数据更新频率为 200hz 时,使用者一个数据更新周期内输出数据帧为 3 个最佳。波特率为 9600 时,请使用者做相应的计算。

spi 的传输速度可简单按照 spi 时钟计算,如果 spi 时钟频率为 125Khz,一个时钟传输 1bit,则 1ms 可传输 15.62 个字节数据,该模块共 41 个寄存器 (即 41 个字节),41/15.62 ≈ 2.62 ms,所以 spi 读取数据时间小于模块最高更新数据周期(5ms),则可读取全部寄存器。

模块串口与 spi 数据输出均有校验和输出,串口的为帧校验和输出,spi 的为寄存器数据累加和输出,使用者可在收到数据后,做相应的校验和检验,这样可避免数据传输受到干扰产生的传输误差(可参考附带程序)。

4、恢复出厂设置:

发送恢复出厂设置指令后,模块将清除保存的校准数据,MCU 需复位生效。

5、模块三传感器的状态

模块包含有陀螺仪传感器,加速度传感器和磁力计,若使用者不需要使用航向角,可发送相应指令将磁传感器关闭。模块不支持所有传感器关闭,默认三个传感器都处于开启状态。 6、加计陀螺校准:

由于加速度计和陀螺仪自身会存在误差,对俯仰、横滚角的准确度和精度有一定的影响, 所以在使用前请进行加计陀螺校准,避免传感器带来的误差。

校准方法:

尽量保证模块水平静止放置,然后发送校准指令(可通过上位机发送校准指令),等待角度稳定后即可,校准完成后可查看校准精度,当加速度计和陀螺仪校准精度为3则表示加计陀螺校准成功。

7、磁场校准:

由于使用模块时周围环境磁场复杂,对航向角的准确性有一定的影响,所以在使用前, 需要对模块进行磁场校准,避免周围环境对模块的影响。

校准方法:

校准时请不要放置磁性大的物体在模块周围,模块水平放置后,发送校准指令(可通过上位机发送校准指令),此时模块指示灯熄灭,磁场校准精度将置 0,拿起模块分别缓慢绕 X,Y,Z(即前后、左右、原地)三轴绕圈,待指示灯亮起,校准完成,磁场校准精度将为 3,使用者可发送相应指令查看校准精度。如果校准时,指示灯一直未亮,或者使用模块时,磁

场校准精度为0,请使用者察看模块周围是否存在硬铁或带磁性的物体。

注:该模块具有自动检测周围磁场的能力,如果周围有带磁性大的物体存在,模块磁场校准精度将置 0,此时模块航向角将出现误差。当模块远离磁性物体后,模块磁场校准精度将恢复校准后的精度 3,此时航向角将恢复。

8、传感器量程

模块加速度计量程为 $\pm 2g$; 陀螺仪量程+2000dps:; 磁场量程: $\pm 4915 \mu t$

七、结束

- (1)、模块上电自校正,需保持3秒以上静止状态,建议不要用手拿着模块
- (2)、模块带磁力计,尽量远离铁,磁铁,电磁场,等干扰。
- (3)、角度欧拉角由于万向锁问题,横滚,俯仰在90度时候会有相互影响。
- (4)、模块 I/O 是 TTL 电平,可以直接与单片机串口连接,可以直接与PL2303,CH340,FT232 等芯片连接,但不能与电脑九针串口直接连接。

附录:

ARDUINO SPI 接线图:

ARDUINO 串口接线接线图:

