

1

2

A VÁKUUM SZEREPE I. **ÁTLAGOS SZABAD ÚTHOSSZ** A gáz részecskéinek áltagos szabad úthossza(L): az egyes részecskék ütközése között megtett átlagos távolság. • L = C / P, ahol P a nyomás, C pedig egy, az anyagtól és a hőmérséklettől függő érték Átlagos szabad úthossz (~) 50.000 km 500 m 5 mm 50 nm Részecskék 1 mm3-ben (~) 24 db 2,4 ·106 2,4 ·1011 2,4 ·1016 Teniszlabda analógia Teniszlabdák távolsága (~) Ütközések közötti útvonal 10¹³ km 1.000 108 km 10 m 1 fényév **३** BME**ETT** Vákuumtechnika vékonyrétegek

A VÁKUUM SZEREPE II. TISZTASÁG ÉS FELÜLETI MONORÉTEG

- A párologó részecskék reagálhatnak a gázmolekulákkal és kémiailag szennyezhetik a leválasztott réteget -> a nagyobb vákuum előny
- A gázmolekulák adszorbeálódnak a hordozó és a vákuumtér felületein. Glimmeléssel (gázkisüléssel) eltávolíthatók a felületekről, de a felületi monoréteg a nyomás és a hőmérséklet alapján adódó idő alatt úlraénül

ијгисрит.					
Nyomás	10 ⁻¹⁰ Pa	10 ⁻⁵ Pa	1 Pa	10 ⁵ Pa	
A monoréteg kialakulásához szükséges idő (~)	1 hónap	30 s	300 μs	3 ns	
BME ETT	Vákuumtechr	nika vékonyréteg	ek		

4

VÁKUUMRENDSZEREK FŐ ALKATRÉSZEK Vákuumszivattyúk (vsz) az elérendő vákuumtól függően akár több fokozatban Vákuummérők (m) az elérendő vákuumtól függően akár több fokozatban Szelepek (sz)

% BME**ETT**

vákuumkamra (vk)

Vákuumtechnika vékonyrétegek

5

7

10

GÁZMEGKÖTŐ SZIVATTYÚK A VÁKUUM ÉS A TISZTASÁG NÖVELÉSE Kifagyasztók: A gáz vagy gőzrészecskék kicsapódnak egy (pl. vízzel, folyékony nitrogénnel) hűtött felületen. A parciális nyomást zárt térben a leghidegebb felület hőmérséklete korlátozza. Getter szivattyúk (adott gőzökre, gázokra szelektívek): Kémiailag megkötik vagy fizikailag elnyelik a részecskéket.

11

३ BME**ETT**

13

MI A VÉKONYRÉTEG? több, egymásnak néha ellentmondó definíció létezik, de mi az olyan, többnyire félvezető, üveg vagy hajlékony fólia hordozóra leválasztott réteget értünk alatta, amely: jellemzően vákuumtechnológiával készült, vastagsága pár nm-től pár um-ig terjed, gyakran a tömbi anyagtól eltérő optikai és/vagy vezetési tulajdonságokat mutatnak és az a tulajdonságuk akár kihasználható.

14

३ BME**ETT**

VÉKONYRÉTEG FELVITELI MÓDSZEREK PÉLDÁK • vákuumtechnológiák • vákuum-párologtatás • (vákuum-)porlasztás • (MBE (Molecular Beam Epitaxy, I. később), • CVD (Chemical Vapour Deposition, I. később), • PECVD (Plasma Enhanced CVD, I. később) • Galvanizálás (I. később)

३ BME**ETT**

VÉKONYRÉTEGEK ELŐÁLLÍTÁSÁNAK BERENDEZÉSEI A tömeggyártásban Lencsebeyonat készítése Molekulasugaras epitaxia epitaxia epitaxia **SMEETT** Vákuumtechnika vékonyrétegek** 16/51

16

A VÁKUUMPÁROLOGTATÁS ÉS PORLASZTÁS TECHNOLÓGIÁJA

- mindkét technológiával különböző anyagú, funkciójú, vastagságú vékonyrétegeket választhatunk le;
- feltételük a vákuum, bár porlasztásnál a leszívott térbe adott funkciójú és mennyiségű gázt (pl. O₂, Ar) töltenek;
- a leválasztandó anyag atomjaira vagy molekuláira (atomcsoportjaira) bontásának módszerei:
 - párologtatás: hevítéssel
 - · porlasztás: ionokkal való bombázással

३ BME**ETT**

ákuumtechnika vékonyrétegek

17

Vákuumpárologtató felépítése (ETT Virtual Laboratory) Vákuumtechnika vékonyrétegek Vákuumtechnika vékonyrétegek 18/51

19

22

23

IONOKKAL SEGÍTETT RÉTEGLEVÁLASZTÁS

- a hordozó felületét meghatározott energiájú ionok bombázzák a rétegleválasztás közben,
- így a felületen adszorbeálódott, de még a helyüket kereső atomokat eltávolítjuk,
- csak azok az atomok maradnak a felületen, amelyek már meglevő atom-szigethez kapcsolódnak.
- Végeredményben egy tömörebb, mechanikailag stabilabb réteget kapunk.

¾ BME ETT	Vákuumtechnika vékonyrétegek

VÉKONYRÉTEGEK ELŐÁLLÍTÁSA VÁKUUM PORLASZTÁSSAL A forrásanyag atomjaira bontása: Hevítés helyett ionokkal való bombázással katód: Ionokat céltárgy, forrás gázkisüléssel (a földelt anód: hordozók gáz atomjainak, molekuláinak elektronokkal való ütköztetésével) hozunk létre **३** BME**ETT**

25

A VÁKUUMPORLASZTÁS ALAPELVE

- A gáz ionok (pozitív töltésük révén) a vezető forrásanyag tömb irányában gyorsulnak és onnan semleges részecskéket löknek ki, amelyek lecsapódnak a hordozón (is).
- A negatív elektronok és a pozitív ionok gyorsulását a katódként bekötött forrásanyag (un. target) és hordozót tartó anódlemez közötti elektromágneses tér okozza.

३ BME**ETT**

technika vékonyrétegek

26/51

26

A VÁKUUMPORLASZTÁS AUTOMATIZÁLÁSA • Pl.: porlasztó gyártósor • kihívás egy általános gyártósorhoz képest: • tisztaszobai körülmények, • vákuumrendszer. • az egymás után érkező mintákat a vákuum alatt levő porlasztótérbe zsiliprendszeren keresztül vezetik be

18 méter

28

३ BME**ETT**

29

VÉKONYRÉTEGEK FUNKCIÓJA

- optikai (pl. anti-reflexiós bevonat lencséken, tükör)
- elektromos (pl. összeköttetés félvezető áramkörökön, vékonyréteg integrált áramkör, napelem)
- optikai és elektromos (pl. átlátszó vékonyréteg folyadékkristályos /LCD/ kijelzőkben)
- mechanikai (pl. kopásálló bevonat)
- felület passziválás (pl. korrózió ellen)
- öntisztító felületek (pl. víz lepergetése)
- dekoráció, művészet

æ		۸ ۸	Γ	Е.	т 1	г
•10	\Box	VI	ᆮ	_		ı

Vákuumtechnika vékonvrétegek

VÉKONYRÉTEG ANYAGOK

- · tiszta fémrétegek, pl.:
 - arany (pl. vezetőréteg kialakítása)
 - alumínium (pl. képcsőben, IC gyártásban vezetőréteg, tükörként)
 - réz (pl. vezetékezés vékonyréteg áramkörökben)
- · ötvözetek, vegyületek, pl.:
 - NiCr (nikkel-króm réteg, vékonyréteg ellenállás anyaga)
 - TiN (titán-nitrid, extra keménységű bevonatként kopó alkatrészeken)
 - ITO (indium ón oxid, átlátszó és vezető vékonyréteg pl. LCD-ben)
 - · TaN (tantál-nitrid, ellenállás anyag)
- félvezető rétegek, pl.:
 - amorf Si (vékonyréteg tranzisztorként LCD-ben, napelemben)
 - polikristályos Si
- dielektrikumok, pl.:
 - · MgF2 (optikai anti-reflexiós rétegként)

३ BME**ETT**

ntechnika vékonyrétegek

31

OPTIKAI VÉKONYRÉTEGEK

- egy vagy több, a fény hullámhosszával egy nagyságrendbeli vastagságú (~párszáz nm) rétegek alkotják
- a rétegszerkezetek anti-reflexiós, tükröző vagy éppen szűrő hatását az interferencia és a törésmutató különbségek okozzák

- ablaküveg bevonat reflexió az infra (hő) tartományban
- hidegtükrös izzók a látható fényt reflektálja, a hőt nem
- anti-reflexiós bevonatú szeművegek, fényképező és mikroszkóp optikák

३ BME**ETT**

Vákuumtechnika vékonyrétegek

32

OPTIKAI VÉKONYRÉTEGEK FUNKCIÓJÁNAK FIZIKAI ALAPJAI

- R reflexiós együttható
 - levegő -> normál üveg esetén: kb. 4%
 - vékonyréteg bevonattal (n_f): kb. 2%
 - levegő: n_a ~ 1
 - üveg: n_g ~ 1,5
 - réteg: $n_f \sim 1,22$ (lenne optimális)
 - 1,38 (MgF₂ réteg)
- Interferencia
 - λ/4 vastagságú vékonyrétegekkel
 λ hullámhossz környezetében

ákuumtechnika vékonyrétegek

32/51

Vákuumtechnika

३ BME**ETT**

34

37

38

VÉKONYRÉTEG INTEGRÁLT ÁRAMKÖRÖK

- szigetelő (többnyire üveg) hordozón létrehozott, vékonyréteg ellenállásokat, kondenzátorokat, tranzisztorokat és az elemeket összekötő vezetékeket tartalmazó áramkörök
- huzalozási pályák, kontaktusfelületek:
 - fő elvárások: jó tapadás, jó vezetés, alkalmasság az elektronikai technológiában alkalmazott kötési módszerekre
 - anyagok: Cu, Al, ill. többnyire rétegrendszerek, pl.: Cr-Au
- ellenállások:
 - fő elvárások: hosszú távú stabilitás, minimális hőmérsékleti tényező (TK vagy α , $\Delta R = \alpha \cdot \Delta T \cdot R$)
 - anyagok: többnyire ötvözetek, pl.: Ni-Cr (R_{\square} = 100..200 Ω , α = ± 50 ppm/°C), Cr-Si, Ta₂N

04				
Α.	B١	ИΕ	Е٦	ГΤ

Vákuumtechnika vékonyrétegek

40

VÉKONYRÉTEG INTEGRÁLT ÁRAMKÖRÖK TERVEZÉS ÉS MÉRETEZÉS

- · vékonyréteg ellenállások méretezése, előállítása
 - $R=R_{-}\cdot l/d$, ahol R_{-} a réteganyag négyzetes ellenállása, l az ellenállás hossza, d a szélessége
 - így a tervezéskor nem kell ismernünk a réteg vastagságát!
 - egy 50-50%-os Ni-Cr ellenállás esetén R_α ~ 150 Ω, de előállítása nem egyszerű, mivel a Ni és a Cr párolgási sebessége adott hőmérsékleten és nyomáson eltérő
 - "csík" formájában max. pár 100 Ω-os ellenállás készíthető, nagyobb értékhez hajtogatott (meander) forma szükséges
 - nagy pontossági igényű ellenállások értékét utólag lézerrel állítják be, ±0,1%-nál jobb pontosság érhető el
 - fontos előny: az azonos technológiával készült ellenállások jó hőmérsékleti együttfutása

३ BME**ETT**

Vákuumtechnika vékonyrétegek

41

MINTÁZATKIALAKÍTÁSI MÓDSZEREK

- mintázatkialakítás a rétegfelvitel közben
 - fémmaszkon (a kívánt mintának megfelelő nyílásokon) keresztüli párologtatás
 - fő előny: a maszkot nem kell közvetlenül a hordozóhoz érinteni, pár mm-es távolságra is lehet tőle
 - fő hátrány: az elérhető vonalszélesség nagyobb mint 500 μm
- mintázatkialakítás a rétegfelvitel utáni lépésben
 - fotolitográfia (mint a Si és NYHL technológiában L. 2.5/5.1 tétel)
 - fő előny: finomabb alakzatok
 - fő hátrány: tisztaságra és technológiai paraméterekre érzékeny, összetett folyamat
 - közvetlen lézeres rétegeltávolítás
 - fő előny: rugalmas technológia, a mintázat bármikor módosítható
 - fő hátrány: alacsonyabb termelékenység

-						
٠.		١ ٨	$\overline{}$	_	-	•
Α,	ы	VΙ		ᆮ		

Vákuumtechnika vékonyrétegek

TANTÁL (Ta) ALAPÚ VÉKONYRÉTEG INTEGRÁLT ÁRAMKÖRÖK

- egy vákuumciklusban előállítható vezetőpálya, ellenállás, és kondenzátor:
 - huzalozás: Ta porlasztása Ar atmoszférában
 - ellenállás: Ta porlasztása N₂ atmoszférában -> Ta₂N
 - szigetelő: Ta porlasztása O₂ atmoszférában -> Ta₂O₅ -> (kondenzátor dielektrikum)
 - tehát pusztán az vákuumkamrába engedett gáz változtatásával az áramkör különböző elemeit elő tudjuk állítani az ún. reaktív porlasztással

43

३ BME**ETT**

46

DISZKRÉT ALKATRÉSZEK NICr VÉKONYRÉTEG ELLENÁLLÁSOK • precíziós ellenállások 0.01% • kis hőmérséklet függés: 25..50 ppm/°C felirat Sn Ni Al₂O₃ védőbevonat NiCr Vákuumtechnika vékonyrétegek 49/51

49

KITEKINTÉS

- · hajlékony kijelzők
- napelemek hatásfokának növelése különböző anyagok alkalmazásával (amorf Si, CdTe stb.)
- · nanotechnológia, pl.:
 - · nm-es csíkszélesség
 - nagy magasság/szélesség arány

३ BME**ETT**

50

TARTALOMJEGYZÉK

- · Vákuumtechnika
 - a vákuum fogalma és szerepe
 - vákuumszivattyúk
 - · a vákuum mérése
- Vékonyréteg technológia
 - vékonyréteg leválasztási technológiák
 - vákuumpárologtatás, párologtató források
 - porlasztás
- Vékonyréteg alkalmazások
 - funkciók, anyagok
 - optikai vékonyrétegek
 - kopásálló rétegek, védőrétegek
 - a vékonyréteg kialakulása a hordozón
 - vékonyréteg integrált áramkörök, összeköttetések

💸 BME**ETT**

Vákuumtechnika vékonyrétegek