

MobileNet v2 簡介

重要知識點

- MobileNet v2 核心思想
 - linear bottleneck
 - inverted residual block

What goes wrong?

MobileNet v1 利用 alpha 超參數來控制 channels 數量進而 調整模型複雜度,但發現當 alpha 太小 (0.25) 時準確率會降低很多。

Table 6. MobileNet Width Multiplier							
Width Multiplier	ImageNet	Million	Million				
	Accuracy	Mult-Adds	Parameters				
1.0 MobileNet-224	70.6%	569	4.2				
0.75 MobileNet-224	68.4%	325	2.6				
0.5 MobileNet-224	63.7%	149	1.3				
0.25 MobileNet-224	50.6%	41	0.5				

ReLU - Information loss

- ●ReLU 一定會帶來 information loss,且這種 information loss 是沒有辦法恢復的,而 ReLU 的 information loss 是當 channels 非常少的時候更為明顯。
- ●下圖在描述 no. of channels 與 information loss 在 ReLU 函數上的關係,其输入是一个表示流行數據的矩陣,會經過 n 个 ReLU 的操作得到 n 个 channel 的 feature map。通過這 n 个 feature map 還原輸入數據,還原越像表示 information loss 越少。
- ●從下圖中我們可以看出,當 n 的值比較小時,ReLU 的 information loss 非常嚴重,但是當 n 的值比較大時,輸入就能還原得很好了。

Linear bottleneck

- 既然 ReLU 在 channel 數較少時會導致 information loss,那就改成 linear activation 就可解決。
 - 把 bottleneck activation 改成用 linear

Rethinking About Bottleneck Layer...

- 如果比較多的 channels 能減少 information loss, 那就用更多的 channels 即可。
- 一般 residual block 是降維 -> conv -> 升維; mobilenet v2 才用 inverted residual block, 即升維 -> conv -> 降維
- 目的在於希望在 conv (depthwise conv) 可以有更多的 channels

Regular

Inverted

会 MobileNet v2 架構

Input	Operator	$\mid t \mid$	c	$\mid n \mid$	s
$224^2 \times 3$	conv2d	-	32	1	2
$112^2 \times 32$	bottleneck	1	16	1	1
$112^{2} \times 16$	bottleneck	6	24	2	2
$56^2 \times 24$	bottleneck	6	32	3	2
$28^2 \times 32$	bottleneck	6	64	4	2
$14^2 \times 64$	bottleneck	6	96	3	1
$14^2 \times 96$	bottleneck	6	160	3	2
$7^{2} \times 160$	bottleneck	6	320	1	1
$7^{2} \times 320$	conv2d 1x1	-	1280	1	1
$7^2 \times 1280$	avgpool 7x7	_	-	1	-
$1\times1\times1280$	conv2d 1x1	-	k	-	

Ablation Study

- 在 bottleneck 才用 linear 優於 ReLU6
- Inverted residual block 會比一般 residual block 好

大陆縣

- MobileNet v2 核心思想
 - linear bottleneck
 - 為了防止 information loss,在 pointwise convolution 後只接 linear activation
 - inverted residual block
 - 借鑑 residual network 架構加入 separable convolution, 緩解特徵退化問題

- https://arxiv.org/pdf/1801.04381.pdf
- https://zhuanlan.zhihu.com/p/35405071
- https://zhuanlan.zhihu.com/p/50045821
- https://blog.csdn.net/u011995719/article/details/79135818

轻量化网络ShuffleNet MobileNet v1/v2 解析

白裳

293 人赞同了该文章

随着2012年AlexNet大放异彩,相比以前浅学习方法在ImageNet中top5 error前所未有的下降约 10%,CNN已经越来越被人们关注。后续VGG,GoogleNet,ResNet进一步提高CNN的性能。但是到ResNet,网络已经达到152层,模型大小动辄几百300MB+。这种巨大的存储和计算开销,已经严重限制了CNN在某些低功耗领域的应用。

解題時間 Let's Crack It

請跳出 PDF 至官網 Sample Code &作業開始解題