Understanding Integer Programming

Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Integer programming problems stipulate that decision variables be integers

Integer problems are even more widely used in business than LPPs

Solving some integer problems can be very mathematically complex

The LP-relaxation of an integer problem is the LPP that drops the integer constraint

LP-relaxations, if used right, greatly simplify solving integer problems

Integer Programming: Intuition

Summary

Winder glass - pg 518

Introduction - pg 507 - 509

Three Factories

Different plants for wood, aluminium and glass

Two Products

Glass doors and glass windows

Cost and Profit

Profit and effort per unit product are known

Production	Production Time per Batch (Hours)			
Facility	Product x ₁	Product x ₂	a	
Plant y ₁	1	0		
Plant y ₂	0	2		
Plant y ₃	3	2		
Profit per Batch	\$3,000	\$5,000		

Production Time available per Week (hours)

4

12

Tweak production to maximise profits

Manufacturing as an Optimization Problem

Objective Function

Maximize profits

Constraints

Plant capacity constraints

Decision Variables

How many batches of each product to produce

Decision Variables

 x_1 = Number of batches of product 1 to produce

x₂ = Number of batches of product 2 to produce

	Production Time Product x ₁	per Batch (Hours) Product x2	Production Time available per Week (hours)
Plant y ₁	1	0	4
Plant y ₂	0	2	12
Plant y ₃	3	2	18
Profit per Batch	\$3,000	\$5,000	

Batches of Product $1 = x_1$

	Production Time per Batch (Hour	
	Product x ₁	Product x ₂
Plant y ₁	1	0
Plant y ₂	0	2
Plant y ₃	3	2
Profit per Batch	\$3,000	\$5,000

Production Time available per Week (hours)
4
12
18

Batches of Product $2 = x_2$

Maximize profit Z

Z is total profit per week, in thousands of dollars

$$Z = 3x_1 + 5x_2$$

	Product x ₁ Product x ₂		
Plant y ₁	1	0	
Plant y ₂	0	2	
Plant y ₃	3	2	

Production Time available per Week (hours)
4
12
18

Profit per Batch	\$3,000		\$5,000
	3x ₁	+	5x ₂

	Production Time per Batch (Hours) Product x ₁ Product x ₂		
Plant y ₁	1	0	
Plant y ₂	0	2	
Plant y ₃	3	2	

Production Time available per Week (hours)
4
12
18

Profit per Batch \$3,000 \$5,000

Profit $Z = 3x_1 + 5x_2$

Infinite production is not possible

The production time available in the factories limits x_1 and x_2

	Production Time per Batch (Hours)			Production Time available per Week
	Product x ₁	Product x ₂		(hours)
Plant y ₁	1 X ₁ +	O X2	<=	4
Plant y ₂	0	2		12
Plant y ₃	3	2		18
Profit per Batch	\$3,000	\$5,000		

	Production Time per Batch (Hours)		Production Time available per Week
	Product x ₁	Product x ₂	(hours)
Plant y ₁	1	O	4
Plant y ₂	0	2	12
Plant y ₃	3	2	18
Profit per Batch	\$3,000	\$5,000	

Constraint 1: $x_1 \le 4$

	Production Time per Batch (Hours)			Production Time available per Week	
	Product x ₁	Product x ₂		(hours)	
Plant y ₁	1	0	-	4	
Plant y ₂	O X ₁	+ 2 X ₂	<=	12	
Plant y ₃	3	2		18	
Profit per Batch	\$3,000	\$5,000			

	Production Time	Production Time available per Week	
	Product x ₁	Product x ₂	(hours)
Plant y ₁	1	0	4
Plant y ₂	0	2	12
Plant y₃	3	2	18
Profit per Batch	\$3,000	\$5,000	

Constraint 2: $2x_2 \le 12$

	Production Time per Batch (Hours)			Production Time available per Week
	Product x ₁	Product x ₂		(hours)
Plant y ₁	1	0		4
Plant y ₂	0	2		12
Plant y ₃	3 X ₁ +	2 X ₂	<=	18
	1			
Profit per Batch	\$3,000	\$5,000		

	Production Time	per Batch (Hours)	Production Time available per Week (hours)
	Product x ₁	Product x ₂	
Plant y ₁	1	0	4
Plant y ₂	0	2	12
Plant y ₃	3	2	18
Profit per Batch	\$3,000	\$5,000	

Constraint 3: $3x_1 + 2x_2 \le 18$

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 <= 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 >= 0$$

Management decides to set aside slots for new product trials

The trials will neither increase profit nor costs for now

Each trial requires 6 hours of time in factory y₃

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 <= 12$$

$$3x_1 + 2x_2 <= 18$$

$$x_1, x_2 >= 0$$

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$3x_1 + 2x_2 <= 18$$

$$x_1, x_2 >= 0$$

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 \le 12$$

A new type of constraint

$$3x_1 + 2x_2 = 6$$
 OR $3x_1 + 2x_2 = 12$ OR $3x_1 + 2x_2 = 18$

$$x_1, x_2 >= 0$$

An Integer Constraint

$$3x_1 + 2x_2 = 6$$
 OR $3x_1 + 2x_2 = 12$ OR $3x_1 + 2x_2 = 18$

Define auxiliary variables Z₁, Z₂, Z₃

Redefine original constraint as $3x_1 + 2x_2 = 6z_{1+}12z_2 + 18z_3$

Add constraints on the auxiliary variables

$$z_1 + z_2 + z_3 = 1$$

 z_1, z_2, z_3 are binary

i.e. $z_1, z_2, z_3 \in \{0,1\}$

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 <= 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 >= 0$$

Maximize

$$Z = 3x_1 + 5x_2$$

 $z_1, z_2, z_3 \in \{0,1\}$

Subject to constraints:

$$x_1 \le 4$$
 $2x_2 \le 12$
 $3x_1 + 2x_2 = 6z_1 + 12z_2 + 18z_3$
 $z_1 + z_2 + z_3 = 1$

(Binary integer constraint)

 $x_1, x_2 >= 0$ (Non-negativity constraints)

Micro-economic Assumptions: Linear Programming

Proportionality Assumption

No start-up costs, constant returns to scale

Additivity Assumption

Products are neither complements nor substitutes

Divisibility Assumption

Fractional production is possible

Micro-economic Assumptions: Linear Programming

Proportionality Assumption

No start-up costs, constant returns to scale

Additivity Assumption

Products are neither complements nor substitutes

Divisibility Assumption

Fractional production is possible

Micro-economic Assumptions: Integer Programming

Proportionality Assumption

No start-up costs, constant returns to scale

Additivity Assumption

Products are neither complements nor substitutes

No Divisibility Assumption

Fractional production is not possible

Integer Linear Programming

Pure integer programming

All decision variables must be integers

Mixed integer programming

Some decision variables must be integers

Binary integer programming

All integer variables must be 0 or 1

Integer programming still requires objective and constraints to be linear

Integer programming still requires objective and constraints to be linear

Integer Programming: Solutions

Summary

Difficulties in solving - pg 529 to 531

LP-relaxation - pg 531

Rounding off - problem 1 - pg 532

Rounding off - problem 2 - pg 533

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 <= 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 >= 0$$

Integer Programming Problem Formulation

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 = 6z_1 + 12z_2 + 18z_3$$

$$z_1 + z_2 + z_3 = 1$$

$$z_1, z_2, z_3 \in \{0,1\}$$
 (Binary integer constraint)

$$x_1, x_2 >= 0$$
 (Non-negativity constraints)

Integer programming can be far more difficult to solve efficiently than LPPs

Linear Programming Problem Formulation

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 <= 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 >= 0$$

(Non-negativity constraints)

LPP Constraints in Space

Each constraint bounds the feasible region

LPP Constraints in Space

The optimal solution will always* be a corner point of this feasible region

The optimal solution will always* be a corner point of the feasible region

* Not guaranteed to hold for integer programming problems

LPP solution algorithms heavily rely on the corner-point property

Integer problems may need to search the entire feasible region

This can make it very very difficult to solve integer problems

LPP solution algorithms heavily rely on the corner-point property

This only holds when the feasible region is convex

Convex Feasible Region

The optimal solution will always* be a corner point of this feasible region

Concave Feasible Region

The optimal solution need not be be a corner point of this feasible region

Concave Feasible Region

Integer constraints lead to feasible regions with jagged edges, just like this one

Take an integer programming problem...

...Relax the integer restriction

The resulting LPP is called the LP-relaxation of the integer problem

LP-relaxation of Integer Problem

Integer Programming Problem

Drop Integer Constraints

LP-relaxation Problem

The LP-relaxation is used as a starting point in solving the original integer problem

Integer Programming Problem Formulation

Maximize

$$Z = 3x_1 + 5x_2$$

 $z_1, z_2, z_3 \in \{0,1\}$

Subject to constraints:

$$x_1 \le 4$$
 $2x_2 \le 12$
 $3x_1 + 2x_2 = 6z_1 + 12z_2 + 18z_3$
 $z_1 + z_2 + z_3 = 1$

(Binary integer constraint)

 $x_1, x_2 >= 0$ (Non-negativity constraints)

LP-relaxation of Integer Problem

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 \le 4$$
 $2x_2 \le 12$
 $3x_1 + 2x_2 = 6z_{1} + 12z_{2} + 18z_{3}$
 $z_1 + z_2 + z_3 = 1$
 $z_1, z_2, z_3 \in \{0,1\}$ (Binary integer constraint)

 $x_1, x_2 >= 0$ (Non-negativity constraints)

Original LPP \neq LP-relaxation

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 = 6$$
 OR $3x_1 + 2x_2 = 12$ OR $3x_1 + 2x_2 = 18$

$$x_1, x_2 >= 0$$

(Non-negativity constraints)

LP-relaxation of Integer Problem

Integer Programming Problem

Drop Integer Constraints

LP-relaxation Problem

The LP-relaxation is used as a starting point in solving the original integer problem

It is tempting but wrong to solve the LPP and round off the answers

Perils of Rounding Off

May not be feasible

Rounding optimal solution of LPrelaxation may not even be feasible for integer problem

May not be optimal

Rounding optimal solution of LPrelaxation may not be even close to optimal for integer problem

It is tempting but wrong to solve the LPP and round off the answers

Integer Problem

Maximize

$$Z = x_2$$

Subject to constraints:

$$2x_2 - 2x_1 \le 1$$

$$2x_2 + 2x_1 <= 7$$

$$x_1, x_2 >= 0$$

x₁, x₂ are integers (Integer constraint)

(Non-negativity constraints)

LP-relaxation of Integer Problem

Maximize

$$Z = x_2$$

Subject to constraints:

$$2x_2 - 2x_1 \le 1$$

$$2x_2 + 2x_1 <= 7$$

x₁, x₂ are integers (Integer constraint)

 $x_1, x_2 >= 0$

(Non-negativity constraints)

Represent the constraints as boundaries of the feasible region

Optimal solution of the LP-relaxation is the point (1.5,2), where Z=2

Rounding the solution (1.5,2) gives us 2 candidate solutions

- Candidate 1: (1,2)
- Candidate 2: (2,2)

Rounding the solution (1.5,2) gives us 2 candidate solutions

SPEED LIMIT 15

Constraints

Try plugging these into the original problem

- Candidate 1: $x_1 = 1$, $x_2 = 2$
- Candidate 2: $x_1 = 2$, $x_2 = 2$

Candidate 1 violates the constraint $2x_2 - 2x_1 \le 1$

- Because 2x2 - 2x1 = 4 - 2 = 2 > 1

Candidate 2 violates the constraint $2x_2 + 2x_1 \le 7$

- Because 2x2 + 2x2 = 4 + 4 = 8 > 7

Optimal solution of the LP-relaxation is the point (1.5,2), where Z=2

Rounded solution of the LP-relaxation are not even feasible for original integer problem

Perils of Rounding Off

May not be feasible

Optimal solution of LP-relaxation may not even be feasible for integer problem

May not be optimal

Optimal solution of LP-relaxation may not be even close to optimal for integer problem

It is tempting but wrong to solve the LPP and round off the answers

Integer Problem

Maximize

$$Z = x_1 + 5x_2$$

Subject to constraints:

$$x_1 + 10x_2 \le 20$$

$$x_1 <= 2$$

 $x_1, x_2 >= 0$

x₁, x₂ are integers (Integer constraint)

(Non-negativity constraints)

Represent the constraints as boundaries of the feasible region

Optimal solution of the LP-relaxation is the point (2,9/5), where $Z_{LP} = 11$

SPEED LIMIT 15

Rounding the solution (2, 9/5) gives us 2 candidate solutions

- Candidate 1: (2,2)
- Candidate 2: (2,1)

Candidate 1 violates a constraint, so abandon it

- Because 2 + 2x10 = 2 + 20 = 22 > 20

Rounded solution = (2,1)

SPEED LIMIT 15

Constraints

But, the actual optimal solution of the integer problem is (0,2)

Ironically, this is a corner-point solution!

At (0,2), $Z = x_{1} + 5x_{2} = 10$

Solution of LP-relaxation

Actual optimal solution:

$$Z_{integer} = 10$$

Optimal solution of the LP-relaxation:

$$Z_{LP} = 11$$

Rounded optimal solution of the LP-relaxation:

$$Z_{rounded} = 7$$

Perils of Rounding Off

May not be feasible

Optimal solution of LP-relaxation may not even be feasible for integer problem

May not be optimal

Optimal solution of LP-relaxation may not be even close to optimal for integer problem

It is tempting but wrong to solve the LPP and round off the answers

LP-relaxation of Integer Problem

The LP-relaxation is used as a starting point in solving the original integer problem

Constraints

Problem

Problem

However, if the solution of LP-relaxation satisfies integer constraint...

...then it is an optimal solution for integer problem as well!

Many optimization problems are constructed to be solvable this way

- transportation problem
- assignment problem
- shortest path problem
- maximum flow problem

Integer Programming: Applications

Summary

Assignment problem - pg 361

Investment analysis - pg 511

Site selection - pg 512

Production-and-distribution - pg 512

Shipments - pg 513

Inter-related activities - pg 513

Matching People and Problems

People

Each team-member has unique skills, likes and talents

Problems

Tasks that need to be completed, each with different costs

People-problem matching

n people, n tasks

Each person assigned 1 task

Each task performed by 1 person

Minimize total cost, given that...

...Cost of person i performing task j is given by $c_{i,j}$

Assignment Problem

Objective Function

Minimize total cost

Constraints

1:1 mapping between tasks and persons

Decision Variables

Binary variables matching people and tasks

Objective Function

Cost of person i performing task j is given by $c_{i,j}$

$$\mathbf{X}_{i,j} = \left\{ egin{array}{ll} 1 & \text{if person i performs task j} \\ 0 & \text{otherwise} \end{array} \right.$$

Total cost is sum-product of the decision variables and the costs

$$\sum_{i=1}^{n} \sum_{j=1}^{n} C_{i,j} X_{i,j}$$

SPEED LIMIT 15

Constraints

Each person will be assigned 1 task

$$\sum_{j=1}^{n} x_{i,j} = 1$$
j = 1
(for j = 1, 2...n)

Each task will be performed by 1 person

$$\sum_{i=1}^{n} x_{i,j} = 1$$
i = 1
(for i = 1, 2...n)

Assignment Problem Formulation

Minimize
$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i,j} x_{i,j}$$

Subject to constraints:

$$\sum_{j=1}^{n} x_{i,j} = 1$$

$$\sum_{i=1}^{n} x_{i,j} = 1$$

$$i = 1$$

$$x_{i,j} \text{ are binary}$$

Integer programming can be used even in commonplace business situations

Factory Decisions

Suitable locations - City A and/or City B

Warehouse Decisions

Build 1 warehouse in city where factory is located

OK to build up to 2 factories, but exactly 1 warehouse

Decision Variable	Yes-or-no Decision	Total Lifetime Benefit	Upfront Investment
X 1	Build factory in City A?	\$9 million	\$6 million
X ₂	Build factory in City B?	\$5 million	\$3 million
X 3	Build warehouse in City A?	\$6 million	\$5 million
X4	Build warehouse in City B?	\$4 million	\$2 million

Capital available for upfront investment = \$ 10 million

Decision Variable	Yes-or-no Decision	Total Lifetime Benefit	Upfront Investment
X 1	Build factory in City A?	\$9 million	\$6 million
X ₂	Build factory in City B?	\$5 million	\$3 million
X 3	Build warehouse in City A?	\$6 million	\$5 million
X 4	Build warehouse in City B?	\$4 million	\$2 million

Capital available for upfront investment = \$ 10 million

xi are binary - each is a yes/no decision

Decision Variable	Yes-or-no Decision	Total Lifetime Benefit	Upfront Investment
X1	Build factory in City A?	\$9 million	\$6 million
X2	Build factory in City B?	\$5 million	\$3 million
Х3	Build warehouse in City A?	\$6 million	\$5 million
X 4	Build warehouse in City B?	\$4 million	\$2 million

Capital available for upfront investment = \$ 10 million

Maximize $Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$

Decision Variable	Yes-or-no Decision	Total Lifetime Benefit	Upfront Investment
X 1	Build factory in City A?	\$9 million	\$6 million
X2	Build factory in City B?	\$5 million	\$3 million
Х3	Build warehouse in City A?	\$6 million	\$5 million
X4	Build warehouse in City B?	\$4 million	\$2 million

Capital available for upfront investment = \$ 10 million

$$6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$$

Decision Variable	Yes-or-no Decision	Total Lifetime Benefit	Upfront Investment
X 1	Build factory in City A?	\$9 million	\$6 million
X ₂	Build factory in City B?	\$5 million	\$3 million
X 3	Build warehouse in City A?	\$6 million	\$5 million
X4	Build warehouse in City B?	\$4 million	\$2 million

Capital available for upfront investment = \$ 10 million

If $x_1 = 1$, then x_3 can be 0 or 1

If $x_1 = 0$, then x_3 can only be 0

Decision Variable	Yes-or-no Decision	Total Lifetime Benefit	Upfront Investment
X 1	Build factory in City A?	\$9 million	\$6 million
X ₂	Build factory in City B?	\$5 million	\$3 million
X 3	Build warehouse in City A?	\$6 million	\$5 million
X4	Build warehouse in City B?	\$4 million	\$2 million

Capital available for upfront investment = \$ 10 million

$$x_3 <= x_1$$

$$x_3 - x_1 \le 0$$

Decision Variable	Yes-or-no Decision	Total Lifetime Upfront Benefit Investment
X ₁	Build factory in City A?	\$9 million \$6 million
X ₂	Build factory in City B?	\$5 million \$3 million
X 3	Build warehouse in City A?	\$6 million \$5 million
X 4	Build warehouse in City B?	\$4 million \$2 million

Capital available for upfront investment = \$ 10 million

If $x_2 = 1$, then x_4 can be 0 or 1

If $x_2 = 0$, then x_4 can only be 0

Decision Variable	Yes-or-no Decision	Total Lifetime Benefit	Upfront Investment
X 1	Build factory in City A?	\$9 million	\$6 million
X ₂	Build factory in City B?	\$5 million	\$3 million
X 3	Build warehouse in City A?	\$6 million	\$5 million
X 4	Build warehouse in City B?	\$4 million	\$2 million

Capital available for upfront investment = \$ 10 million

$$x_4 <= x_2$$

$$x_4 - x_2 <= 0$$

Maximize

$$Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$$

Subject to constraints:

$$6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$$

$$x_3 - x_1 \le 0$$

$$x_4 - x_2 <= 0$$

X₁, X₂, X₃, X₄ are binary

Integer programming can be used even in commonplace business situations

Integer Programming: Unusual Formulations

Summary

Either-or constraints - pg 516

K-of-N constraints - pg 517

N possible values - pg 518

Startup costs - pg 519

Unusual Integer Programming Formulations

Either-or Constraints

Specific Allowable Values

Start-up Costs

Linear Programming Problem Formulation

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 <= 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 >= 0$$

(Non-negativity constraints)

Introducing Either-or Constraints

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 \le 12$$

A new type of constraint

$$3x_1 + 2x_2 \le 18$$
 OR $x_1 + 4x_2 \le 16$

$$x_1, x_2 >= 0$$

 $x_1, x_2 \ge 0$ (Non-negativity constraints)

Either-or Constraints

$$3x_1 + 2x_2 \le 18$$
 OR $x_1 + 4x_2 \le 16$

Define auxiliary binary variable z₁

Introduce a very large positive number M

Replace original constraint with two additional constraints

$$3x_1 + 2x_2 \le 18 + Mz_1$$

AND
$$x_1 + 4x_2 \le 16 + M(1-z_1)$$

Exactly one of the two constraints will be satisfied

Adding M is equivalent to creating slack in a particular constraint

Doing so makes that constraint nonbinding

M should also be large enough that no feasible solution is eliminated by it

The feasible solution set must be bounded

Either-or Constraints

```
z_1 = 1, 1-z_1 = 0
3x_1 + 2x_2 \le 18 + Mz_1
x_1 + 4x_2 \le 16 + M(1-z_1)
x_1 + 4x_2 \le 16 + 0
x_1 + 4x_2 \le 16
```

$$z_1 = 0$$
, 1- $z_1 = 1$
 $3x_1 + 2x_2 <= 18 + Mz_1$
 $x_1 + 4x_2 <= 16 + M(1-z_1)$

(non-binding)

 $x_1 + 4x_2 <= 16 + M$
 $3x_1 + 2x_2 <= 18 + 0$

(binding)

 $3x_1 + 2x_2 <= 18$

SPEED LIMIT 15

Either-or constraints are 1-of-2 constraints

Can extend to K-of-N constraints by introducing K binary auxiliaries

Unusual Integer Programming Formulations

Either-or Constraints

Specific Allowable Values

Start-up Costs

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 <= 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 >= 0$$

Management decides to set aside slots for new product trials

The trials will neither increase profit nor costs for now

Each trial requires 6 hours of time in factory y₃

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 <= 12$$

$$3x_1 + 2x_2 <= 18$$

$$x_1, x_2 >= 0$$

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$3x_1 + 2x_2 <= 18$$

$$x_1, x_2 >= 0$$

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 \le 12$$

A new type of constraint

$$3x_1 + 2x_2 = 6$$
 OR $3x_1 + 2x_2 = 12$ OR $3x_1 + 2x_2 = 18$

$$x_1, x_2 >= 0$$

An Integer Constraint

$$3x_1 + 2x_2 = 6$$
 OR $3x_1 + 2x_2 = 12$ OR $3x_1 + 2x_2 = 18$

Define auxiliary variables z₁, z₂, z₃

Redefine original constraint as $3x_1 + 2x_2 = 6z_{1+}12z_2 + 18z_3$

Add constraints on the auxiliary variables

$$z_1 + z_2 + z_3 = 1$$

 z_1, z_2, z_3 are binary
i.e. $z_1, z_2, z_3 \in \{0,1\}$

An Integer Constraint

An Integer Constraint

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 \le 12$$

A new type of constraint

$$3x_1 + 2x_2 = 6$$
 OR $3x_1 + 2x_2 = 12$ OR $3x_1 + 2x_2 = 18$

$$x_1, x_2 >= 0$$

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 = 6z_1 + 12z_2 + 18z_3$$

$$z_1 + z_2 + z_3 = 1$$

$$z_1, z_2, z_3 \in \{0,1\}$$
 (Binary integer constraint)

$$x_1, x_2 >= 0$$
 (Non-negativity constraints)

Unusual Integer Programming Formulations

Either-or Constraints

Specific Allowable Values

Start-up Costs

Micro-economic Assumptions

Proportionality Assumption

No start-up costs, constant returns to scale

Additivity **Assumption**

Products are neither complements nor substitutes

Divisibility Assumption

Fractional production is possible

Cost Minimization

Minimize

$$W = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

$$x_1, x_2...x_n >= 0$$
 (Non-negativity constraints)

Introducing Start-up Costs

Minimize

$$W = f(x_1) + f(x_2) + ... + f(x_n)$$

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

$$x_1, x_2...x_n >= 0$$
 (Non-negativity constraints)

Start-up Costs

 $f(x_1)$, $f(x_2)$... $f(x_m)$ include the start-up costs of each activity

$$f(x_i) = \begin{cases} k_i + c_i x_i & \text{if } x_i > 0 \\ 0 & \text{otherwise} \end{cases}$$

Actual start-up costs are k₁, k₂, k₃ ... k_m

Start-up Costs

Define m auxiliary variables y1, y2, y3 ... ym

$$y_i = \begin{cases} 1 & \text{if } x_i > 0 \\ 0 & \text{otherwise} \end{cases}$$

Redefine the objective function multiplying \mathbf{K}_i by \mathbf{y}_i Minimize

$$W = \sum (k_i y_i + c_i x_i)$$

Start-up Costs

Add constraints

$$x_i \le My_i$$

Where M is a very large positive number (e.g. M = 100 Billion)

yi: Answer to the question "Should activity i be started up?"

x_i: Total units of activity i to be undertaken

The constraint will ensure that

If $x_i > 0$, then $y_i = 1$

If undertaking activity x_i, then start-up costs will be incurred

Cost Minimization with Start-up Costs

Minimize

$$W = \sum (k_i y_i + c_i x_i)$$

Subject to additional constraints:

$$x_i \le My_i$$

y_i are binary

Note:

The objective function must be minimization, else y_i could be 1 when x_i is 0

Unusual Integer Programming Formulations

Either-or Constraints

Specific Allowable Values

Start-up Costs

Summary

- Variants of simplex (m2)
- Upper bound variables pg 311
- Dual Simplex pg 303
- Interior Point Algorithms pg 313

Problems

- Transportation problem pg 336 338
- Assignment problem pg 361 363

Network Optimisation Problems

- Intro 395
- Shortest Path pg 398
- MST pg 403
- Maximal Flow pg 407

Non-linear Programming

- Wyndor pg 596
- Unconstrained pg 601

Summary

Integer programming problems stipulate that decision variables be integers

Integer problems are even more widely used in business than LPPs

Solving some integer problems can be very mathematically complex

The LP-relaxation of an integer problem is the LPP that drops the integer constraint

LP-relaxations, if used right, greatly simplify solving integer problems