RSA Public-Key Encryption

- By Rivest, Shamir & Adleman of MIT in 1977
- Best known and widely used public-key algorithm
- Uses exponentiation of integers modulo a prime
- Encrypt: $C = M^e \mod n$
- Decrypt: $M = C^d \mod n = (M^e)^d \mod n = M$
- Both sender and receiver know values of n and e
- Only receiver knows value of d
- Public-key encryption algorithm with public key $PU = \{e, n\}$ and private key $PR = \{d, n\}$

Key Generation

Select p, q p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e $gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate $d \mod \phi(n) = 1$

Public key $KU = \{e, n\}$

Private key $KR = \{d, n\}$

Encryption

Plaintext: M < n

Ciphertext: $C = M^e \pmod{n}$

Decryption

Ciphertext: C

Plaintext: $M = C^d \pmod{n}$

Figure 21.7 The RSA Algorithm

Figure 21.8 Example of RSA Algorithm