Let

$MODEXP = \{ \langle a, b, c, p \rangle | \ a, b, c, \ \text{and} \ p \ \text{are positive binary integers}$ such that $a^b \equiv c \pmod{p} \}.$

Show that MODEXP? P. (Note that the most obvious algorithm doesn't run in polynomial time. Hint: Try it first where b is a power of 2.)

Step-by-step solution

Step 1 of 2

Consider

$$MODEXP = \begin{cases} \langle a, b, c, p \rangle | \ a, b, c \text{ and } p \text{ are binary integers} \\ \text{such that } a^b \equiv c \pmod{p} \end{cases}$$

Comment

Step 2 of 2

A polynomial time algorithm M for MODEXP is as follows:

M = "On input $\langle a, b, c, p \rangle$, where a, b, c and p are binary integers.

- Calculate $x = a \mod p$, initialize y to 1 and i to 0.
- For $b = b_n b_{n-1} ... b_1 b_0$, do the following n+1 times:
- if $b_i = 1$, then $y = y \cdot x \mod p$; $x = x^2 \mod p$; i = i + 1
- if $y \equiv c \pmod{p}$, accept. Otherwise, reject."

The algorithm runs in polynomial time. In the above algorithm, steps 1 and 4 will be executed once. The step 3 needs O(n) time. Thus, M is a polynomial time algorithm for MODEXP.

Therefore, $MODEXP \in P$.

Comment