

Machine learning for signal processing [5LSL0]

Ruud van Sloun, Rik Vullings

Optimum linear filters and adaptive filters

Focus on single channel adaptive algorithms using FIR structures

Focus on single channel adaptive algorithms using <u>FIR</u> structures

- Minimum Mean Squared Error
- Gradient Descent Algorithm
- Adaptive (N)LMS
- Newton algorithm
- Recursive Least Squares (RLS)

Notes:

 $\,\blacktriangleright\,$ Input signal x and desired response y correlated

Notes:

- lacksquare Input signal x and desired response y correlated
- Pragmatic choices:
 - All signals have zero average
 - Filter w: FIR

General Adaptive Filter model

Notes:

- lacksquare Input signal x and desired response y correlated
- Pragmatic choices:
 - All signals have zero average
 - Filter w: FIR
- Calculation of weight of filter w:
 - Use quadratic cost function: $J = f(e^2)$
 - First fixed weights (MMSE), then adaptive

General Minimum Mean Squared Error (MMSE) model:

General Minimum Mean Squared Error (MMSE) model:

Goal:

Given N samples $\underline{\mathbf{x}}[k]=(x[k],x[k-1],\cdots,x[k-N+1])^t$ calculate coefficients $\underline{\mathbf{fixed}}$ filter $\underline{\mathbf{w}}=(w_0,w_1,\cdots,w_{N-1})^t$ such that Mean Squared Error (MSE) $J=E\left\{e^2[k]\right\}=E\{(y[k]-\hat{y}[k])^2\}$ is minimized.

General Minimum Mean Squared Error (MMSE) model:

Goal:

Given N samples $\underline{\mathbf{x}}[k]=(x[k],x[k-1],\cdots,x[k-N+1])^t$ calculate coefficients $\underline{\mathbf{fixed}}$ filter $\underline{\mathbf{w}}=(w_0,w_1,\cdots,w_{N-1})^t$ such that Mean Squared Error (MSE) $J=E\left\{e^2[k]\right\}=E\{(y[k]-\hat{y}[k])^2\}$ is minimized.

MMSE Optimization problem:

Given FIR samples
$$x[k-i]$$
 for $i=0,1,\cdots N-1$
$$\underline{\mathbf{w}}_o = \arg\min_{\underline{\mathbf{w}}} \left(E\left\{e^2[k]\right\} \right)$$

$$J = E\{(y[k] - \underline{\mathbf{w}}^t \cdot \underline{\mathbf{x}}[k]) \cdot (y[k] - \underline{\mathbf{x}}^t[k] \cdot \underline{\mathbf{w}})\}$$

= $E\{y^2[k]\} - \underline{\mathbf{w}}^t E\{\underline{\mathbf{x}}[k]y[k]\} - E\{y[k]\underline{\mathbf{x}}^t[k]\}\underline{\mathbf{w}} + \underline{\mathbf{w}}^t E\{\underline{\mathbf{x}}[k]\underline{\mathbf{x}}^t[k]\}\underline{\mathbf{w}}$

$$J = E\{(y[k] - \underline{\mathbf{w}}^t \cdot \underline{\mathbf{x}}[k]) \cdot (y[k] - \underline{\mathbf{x}}^t[k] \cdot \underline{\mathbf{w}})\}$$

=
$$E\{y^2[k]\} - \underline{\mathbf{w}}^t E\{\underline{\mathbf{x}}[k]y[k]\} - E\{y[k]\underline{\mathbf{x}}^t[k]\}\underline{\mathbf{w}} + \underline{\mathbf{w}}^t E\{\underline{\mathbf{x}}[k]\underline{\mathbf{x}}^t[k]\}\underline{\mathbf{w}}$$

$$\Rightarrow J = E\{y^2[k]\} - \underline{\mathbf{w}}^t \underline{\mathbf{r}}_{yx} - \underline{\mathbf{r}}_{yx}^t \underline{\mathbf{w}} + \underline{\mathbf{w}}^t \mathbf{R}_x \underline{\mathbf{w}}$$

$$J = E\{(y[k] - \underline{\mathbf{w}}^t \cdot \underline{\mathbf{x}}[k]) \cdot (y[k] - \underline{\mathbf{x}}^t[k] \cdot \underline{\mathbf{w}})\}$$
$$= E\{y^2[k]\} - \underline{\mathbf{w}}^t E\{\underline{\mathbf{x}}[k]y[k]\} - E\{y[k]\underline{\mathbf{x}}^t[k]\}\underline{\mathbf{w}} + \underline{\mathbf{w}}^t E\{\underline{\mathbf{x}}[k]\underline{\mathbf{x}}^t[k]\}\underline{\mathbf{w}}$$

$$\Rightarrow J = E\{y^2[k]\} - \underline{\mathbf{w}}^t \underline{\mathbf{r}}_{yx} - \underline{\mathbf{r}}_{yx}^t \underline{\mathbf{w}} + \underline{\mathbf{w}}^t \mathbf{R}_x \underline{\mathbf{w}}$$

with cross correlation $\rho_{yx}[\tau] = E\{y[k]x[k-\tau]\}$:

$$\underline{\mathbf{r}}_{yx} = E\{y[k]\underline{\mathbf{x}}[k]\} = (\rho_{yx}[0], \rho_{yx}[1], \cdots, \rho_{yx}[N-1])^t$$

$$J = E\{(y[k] - \underline{\mathbf{w}}^t \cdot \underline{\mathbf{x}}[k]) \cdot (y[k] - \underline{\mathbf{x}}^t[k] \cdot \underline{\mathbf{w}})\}$$
$$= E\{y^2[k]\} - \underline{\mathbf{w}}^t E\{\underline{\mathbf{x}}[k]y[k]\} - E\{y[k]\underline{\mathbf{x}}^t[k]\}\underline{\mathbf{w}} + \underline{\mathbf{w}}^t E\{\underline{\mathbf{x}}[k]\underline{\mathbf{x}}^t[k]\}\underline{\mathbf{w}}$$

$$\Rightarrow J = E\{y^2[k]\} - \underline{\mathbf{w}}^t \underline{\mathbf{r}}_{yx} - \underline{\mathbf{r}}_{yx}^t \underline{\mathbf{w}} + \underline{\mathbf{w}}^t \mathbf{R}_x \underline{\mathbf{w}}$$

with cross correlation $\rho_{ux}[\tau] = E\{y[k]x[k-\tau]\}$:

$$\underline{\mathbf{r}}_{yx} = E\{y[k]\underline{\mathbf{x}}[k]\} = (\rho_{yx}[0], \rho_{yx}[1], \cdots, \rho_{yx}[N-1])^t$$

and autocorrelation: $\rho_x[\tau] = E\{x[k]x[k-\tau]\} = \rho_x[-\tau]$

$$\mathbf{R}_x = E\{\underline{\mathbf{x}}[k]\underline{\mathbf{x}}^t[k]\} = \begin{pmatrix} \rho_x[0] & \rho_x[1] & \cdots & \rho_x[N-1] \\ \rho_x[1] & \rho_x[0] & \cdots & \rho_x[N-2] \\ \vdots & \vdots & \vdots & \vdots \\ \rho_x[N-1] & \rho_x[N-2] & \cdots & \rho_x[0] \end{pmatrix}$$
 /department of electrical engineering

$$J = E\{y^{2}[k]\} - \underline{\mathbf{w}}^{t}\underline{\mathbf{r}}_{yx} - \underline{\mathbf{r}}_{yx}^{t}\underline{\mathbf{w}} + \underline{\mathbf{w}}^{t}\mathbf{R}_{x}\underline{\mathbf{w}}$$

$$J = E\{y^{2}[k]\} - \underline{\mathbf{w}}^{t}\underline{\mathbf{r}}_{yx} - \underline{\mathbf{r}}_{yx}^{t}\underline{\mathbf{w}} + \underline{\mathbf{w}}^{t}\mathbf{R}_{x}\underline{\mathbf{w}}$$

$$\Rightarrow \ \, \text{Optimum:} \ \, \underline{\bigtriangledown} = \frac{\mathrm{d}J}{\mathrm{d}\mathbf{w}} = -2(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}) = \underline{\mathbf{0}}$$

$$J = E\{y^{2}[k]\} - \underline{\mathbf{w}}^{t}\underline{\mathbf{r}}_{yx} - \underline{\mathbf{r}}_{yx}^{t}\underline{\mathbf{w}} + \underline{\mathbf{w}}^{t}\mathbf{R}_{x}\underline{\mathbf{w}}$$

$$\Rightarrow$$
 Optimum: $\underline{\nabla} = \frac{\mathrm{d}J}{\mathrm{d}\underline{\mathbf{w}}} = -2(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}) = \underline{\mathbf{0}}$

$$\Rightarrow$$
 Normal Equations

$$\mathbf{R}_x \cdot \underline{\mathbf{w}} = \underline{\mathbf{r}}_{yx}$$

$$J = E\{y^{2}[k]\} - \underline{\mathbf{w}}^{t}\underline{\mathbf{r}}_{yx} - \underline{\mathbf{r}}_{yx}^{t}\underline{\mathbf{w}} + \underline{\mathbf{w}}^{t}\mathbf{R}_{x}\underline{\mathbf{w}}$$

$$\Rightarrow$$
 Optimum: $\underline{\nabla} = \frac{\mathrm{d}J}{\mathrm{d}\underline{\mathbf{w}}} = -2(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}) = \underline{\mathbf{0}}$

 \Rightarrow Normal Equations

$$\mathbf{R}_x \cdot \underline{\mathbf{w}} = \underline{\mathbf{r}}_{yx}$$

$$\underline{\mathbf{w}}_o = \mathbf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{yx}$$

$$J = E\{y^{2}[k]\} - \underline{\mathbf{w}}^{t}\underline{\mathbf{r}}_{yx} - \underline{\mathbf{r}}_{yx}^{t}\underline{\mathbf{w}} + \underline{\mathbf{w}}^{t}\mathbf{R}_{x}\underline{\mathbf{w}}$$

$$\Rightarrow$$
 Optimum: $\underline{\nabla} = \frac{\mathrm{d}J}{\mathrm{d}\mathbf{w}} = -2(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}) = \underline{\mathbf{0}}$

 \Rightarrow Normal Equations

$$\mathbf{R}_x \cdot \underline{\mathbf{w}} = \underline{\mathbf{r}}_{yx}$$

⇒ Wiener filter

$$\mathbf{\underline{w}}_o = \mathbf{R}_x^{-1} \cdot \mathbf{\underline{r}}_{yx}$$

General expression: $J = J_{min} + (\underline{\mathbf{w}} - \underline{\mathbf{w}}_o)^t \cdot \mathbf{R}_x \cdot (\underline{\mathbf{w}} - \underline{\mathbf{w}}_o)$

$$J = E\{y^{2}[k]\} - \underline{\mathbf{w}}^{t}\underline{\mathbf{r}}_{yx} - \underline{\mathbf{r}}_{yx}^{t}\underline{\mathbf{w}} + \underline{\mathbf{w}}^{t}\mathbf{R}_{x}\underline{\mathbf{w}}$$

$$\Rightarrow$$
 Optimum: $\underline{\nabla} = \frac{\mathrm{d}J}{\mathrm{d}\mathbf{w}} = -2(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}) = \underline{\mathbf{0}}$

⇒ Normal Equations

$$\mathbf{R}_x \cdot \underline{\mathbf{w}} = \underline{\mathbf{r}}_{yx}$$

$$\Rightarrow$$
 Wiener filter $\left| \underline{\mathbf{w}}_o = \mathbf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{yx} \right|$

General expression:
$$J = J_{min} + (\underline{\mathbf{w}} - \underline{\mathbf{w}}_o)^t \cdot \mathbf{R}_x \cdot (\underline{\mathbf{w}} - \underline{\mathbf{w}}_o)$$

$$J_{min} = J_{\underline{\mathbf{w}} = \underline{\mathbf{w}}_o} = E\{e^2[k]\} = E\{y^2[k]\} - \underline{\mathbf{r}}_{yx}^t \mathbf{R}_x^{-1} \underline{\mathbf{r}}_{yx}$$

$$J = E\{y^{2}[k]\} - \underline{\mathbf{w}}^{t}\underline{\mathbf{r}}_{yx} - \underline{\mathbf{r}}_{yx}^{t}\underline{\mathbf{w}} + \underline{\mathbf{w}}^{t}\mathbf{R}_{x}\underline{\mathbf{w}}$$

$$\Rightarrow$$
 Optimum: $\underline{\nabla} = \frac{\mathrm{d}J}{\mathrm{d}\mathbf{w}} = -2(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}) = \underline{\mathbf{0}}$

⇒ Normal Equations

$$\mathbf{R}_x \cdot \underline{\mathbf{w}} = \underline{\mathbf{r}}_{yx}$$

$$\Rightarrow$$
 Wiener filter $\left| \underline{\mathbf{w}}_o = \mathbf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{yx} \right|$

General expression: $J = J_{min} + (\underline{\mathbf{w}} - \underline{\mathbf{w}}_o)^t \cdot \mathbf{R}_x \cdot (\underline{\mathbf{w}} - \underline{\mathbf{w}}_o)$

$$J_{min} = J_{\underline{\mathbf{w}} = \underline{\mathbf{w}}_o} = E\{e^2[k]\} = E\{y^2[k]\} - \underline{\mathbf{r}}_{yx}^t \mathbf{R}_x^{-1} \underline{\mathbf{r}}_{yx}$$

From general expression $\Rightarrow J$ quadratic in w thus w_o really minimum

Contour plots $J = J_{min} + (\underline{\mathbf{w}} - \underline{\mathbf{w}}_o)^t \cdot \mathbf{R}_x \cdot (\underline{\mathbf{w}} - \underline{\mathbf{w}}_o)$

Contour plots $J = J_{min} + (\underline{\mathbf{w}} - \underline{\mathbf{w}}_o)^t \cdot \mathbf{R}_x \cdot (\underline{\mathbf{w}} - \underline{\mathbf{w}}_o)$

Eigenvalues: see Appendix

Different quadratic cost functions:

Mean Square Error (MSE):

$$J_{mse} = E\{e^2[k]\} = E\{(y[k] - \underline{\mathbf{w}}^t \underline{\mathbf{x}}[k])^2\}$$

 \Rightarrow Minimum MSE (MMSE) = Wiener

Different quadratic cost functions:

Mean Square Error (MSE):

$$J_{mse} = E\{e^2[k]\} = E\{(y[k] - \underline{\mathbf{w}}^t \underline{\mathbf{x}}[k])^2\}$$

- ⇒ Minimum MSE (MMSE) = Wiener
- **Least Square (LS):** If statistical information is not available \Rightarrow

Use criterion based on data (thus without $E\{\cdot\}$)

Collect $L \ge 1$ data vectors $\underline{\mathbf{x}}[k-i]$ (each of length N)

Collect $L \ge 1$ data vectors $\underline{\mathbf{x}}[k-i]$ (each of length N)

Available data (for $i = 0, 1, \dots, L-1$):

Collect $L \ge 1$ data vectors $\underline{\mathbf{x}}[k-i]$ (each of length N)

Available data (for $i = 0, 1, \dots, L - 1$):

ullet Input signal samples/vectors $\underline{\mathbf{x}}[k-i]$

$$\underline{\mathbf{x}}[k-i] = (x[k-i], x[k-i-1], \cdots, x[k-i-N+1])^t$$

- ullet Reference signal samples: y[k-i]
- ullet Residual signal samples: $e[k-i] = y[k-i] \underline{\mathbf{x}}^t[k-i] \cdot \underline{\mathbf{w}}$

Notation:

$$\mathbf{X}[k] = \begin{pmatrix} \mathbf{\underline{x}}^{t}[k] \\ \mathbf{\underline{x}}^{t}[k-1] \\ \vdots \\ \mathbf{\underline{x}}^{t}[k-L+1] \end{pmatrix} \qquad \mathbf{\underline{w}} = \begin{pmatrix} w_{0} \\ w_{1} \\ \vdots \\ w_{N-1} \end{pmatrix}$$

$$\mathbf{\underline{y}}[k] = \begin{pmatrix} y[k] \\ y[k-1] \\ \vdots \\ y[k-L+1] \end{pmatrix} \qquad \mathbf{\underline{e}}[k] = \begin{pmatrix} e[k] \\ e[k-1] \\ \vdots \\ e[k-L+1] \end{pmatrix}$$

Notation:

$$\mathbf{X}[k] = \begin{pmatrix} \mathbf{\underline{x}}^{t}[k] \\ \mathbf{\underline{x}}^{t}[k-1] \\ \vdots \\ \mathbf{\underline{x}}^{t}[k-L+1] \end{pmatrix} \qquad \mathbf{\underline{w}} = \begin{pmatrix} w_{0} \\ w_{1} \\ \vdots \\ w_{N-1} \end{pmatrix}$$

$$\mathbf{\underline{y}}[k] = \begin{pmatrix} y[k] \\ y[k-1] \\ \vdots \\ y[k-L+1] \end{pmatrix} \qquad \mathbf{\underline{e}}[k] = \begin{pmatrix} e[k] \\ e[k-1] \\ \vdots \\ e[k-L+1] \end{pmatrix}$$

Simplified notation (skip time indices):

$$\underline{\mathbf{e}} = \underline{\mathbf{y}} - \mathbf{X} \cdot \underline{\mathbf{w}}$$

LS

LS problem formulation:

$$\underline{\mathbf{w}}_{ls,o} = \arg\min_{\underline{\mathbf{w}}} |\underline{\mathbf{y}} - \mathbf{X} \cdot \underline{\mathbf{w}}|^2$$

$$J_{ls} = \sum_{k=0}^{L-1} e^{2}[k-i] = \underline{\mathbf{e}}^{t} \cdot \underline{\mathbf{e}} = (\underline{\mathbf{y}}^{t} - \underline{\mathbf{w}}^{t} \mathbf{X}^{t}) \cdot (\underline{\mathbf{y}} - \mathbf{X}\underline{\mathbf{w}})$$

$$J_{ls} = \sum_{i=0}^{L-1} e^{2}[k-i] = \underline{\mathbf{e}}^{t} \cdot \underline{\mathbf{e}} = (\underline{\mathbf{y}}^{t} - \underline{\mathbf{w}}^{t} \mathbf{X}^{t}) \cdot (\underline{\mathbf{y}} - \mathbf{X}\underline{\mathbf{w}})$$
$$= \underline{\mathbf{y}}^{t} \underline{\mathbf{y}} + \underline{\mathbf{w}}^{t} \mathbf{X}^{t} \mathbf{X}\underline{\mathbf{w}} - \underline{\mathbf{w}}^{t} \mathbf{X}^{t} \underline{\mathbf{y}} - \underline{\mathbf{y}}^{t} \mathbf{X}\underline{\mathbf{w}}$$

$$J_{ls} = \sum_{i=0}^{L-1} e^{2}[k-i] = \underline{\mathbf{e}}^{t} \cdot \underline{\mathbf{e}} = (\underline{\mathbf{y}}^{t} - \underline{\mathbf{w}}^{t} \mathbf{X}^{t}) \cdot (\underline{\mathbf{y}} - \mathbf{X}\underline{\mathbf{w}})$$
$$= \underline{\mathbf{y}}^{t} \underline{\mathbf{y}} + \underline{\mathbf{w}}^{t} \mathbf{X}^{t} \mathbf{X}\underline{\mathbf{w}} - \underline{\mathbf{w}}^{t} \mathbf{X}^{t} \underline{\mathbf{y}} - \underline{\mathbf{y}}^{t} \mathbf{X}\underline{\mathbf{w}}$$

Minimum by setting gradient equal to zero:

$$\frac{\mathrm{d}J_{ls}}{\mathrm{d}\mathbf{w}} = \underline{\nabla}_{ls} = -2(\mathbf{X}^t\underline{\mathbf{y}} - \mathbf{X}^t\mathbf{X} \cdot \underline{\mathbf{w}}) = \underline{\mathbf{0}}$$

$$J_{ls} = \sum_{i=0}^{L-1} e^{2}[k-i] = \underline{\mathbf{e}}^{t} \cdot \underline{\mathbf{e}} = (\underline{\mathbf{y}}^{t} - \underline{\mathbf{w}}^{t} \mathbf{X}^{t}) \cdot (\underline{\mathbf{y}} - \mathbf{X}\underline{\mathbf{w}})$$
$$= \underline{\mathbf{y}}^{t} \underline{\mathbf{y}} + \underline{\mathbf{w}}^{t} \mathbf{X}^{t} \mathbf{X}\underline{\mathbf{w}} - \underline{\mathbf{w}}^{t} \mathbf{X}^{t} \underline{\mathbf{y}} - \underline{\mathbf{y}}^{t} \mathbf{X}\underline{\mathbf{w}}$$

Minimum by setting gradient equal to zero:

$$\frac{\mathrm{d}J_{ls}}{\mathrm{d}\mathbf{w}} = \underline{\nabla}_{ls} = -2(\mathbf{X}^t\underline{\mathbf{y}} - \mathbf{X}^t\mathbf{X} \cdot \underline{\mathbf{w}}) = \underline{\mathbf{0}}$$

With
$$\overline{\mathbf{R}}=\mathbf{X}^t\mathbf{X}$$
 and $\overline{\mathbf{r}}=\mathbf{X}^t\mathbf{\underline{y}}$

$$J_{ls} = \sum_{i=0}^{L-1} e^{2}[k-i] = \underline{\mathbf{e}}^{t} \cdot \underline{\mathbf{e}} = (\underline{\mathbf{y}}^{t} - \underline{\mathbf{w}}^{t} \mathbf{X}^{t}) \cdot (\underline{\mathbf{y}} - \mathbf{X}\underline{\mathbf{w}})$$
$$= \underline{\mathbf{y}}^{t} \underline{\mathbf{y}} + \underline{\mathbf{w}}^{t} \mathbf{X}^{t} \mathbf{X}\underline{\mathbf{w}} - \underline{\mathbf{w}}^{t} \mathbf{X}^{t} \underline{\mathbf{y}} - \underline{\mathbf{y}}^{t} \mathbf{X}\underline{\mathbf{w}}$$

Minimum by setting gradient equal to zero:

$$\frac{\mathrm{d}J_{ls}}{\mathrm{d}\mathbf{w}} = \underline{\nabla}_{ls} = -2(\mathbf{X}^t\underline{\mathbf{y}} - \mathbf{X}^t\mathbf{X} \cdot \underline{\mathbf{w}}) = \underline{\mathbf{0}}$$

With
$$\overline{\mathbf{R}}=\mathbf{X}^t\mathbf{X}$$
 and $\overline{\mathbf{r}}=\mathbf{X}^t\mathbf{\underline{y}}$

$$\Rightarrow \textbf{Normal Equations}$$

$$\overline{\mathbf{R}}_x \cdot \underline{\mathbf{w}} = \overline{\underline{\mathbf{r}}}_{yx}$$

⇒ Wiener filter

$$\boxed{\underline{\mathbf{w}}_{ls,o} = \overline{\mathbf{R}}_x^{-1} \cdot \overline{\underline{\mathbf{r}}}_{yx}}$$

Use time-averaging (ergodicity):

$$\hat{\mathbf{R}}_{x} = \frac{1}{L} \sum_{i=0}^{L-1} \underline{\mathbf{x}}[k-i] \cdot \underline{\mathbf{x}}^{t}[k-i] = \frac{1}{L} \mathbf{X}^{t} \cdot \mathbf{X} = \frac{1}{L} \overline{\mathbf{R}}_{x}$$

$$\hat{\underline{\mathbf{r}}}_{yx} = \frac{1}{L} \sum_{i=0}^{L-1} \underline{\mathbf{x}}[k-i] \cdot y[k-i] = \frac{1}{L} \mathbf{X}^{t} \cdot \underline{\mathbf{y}} = \frac{1}{L} \overline{\underline{\mathbf{r}}}_{yx}$$

Use time-averaging (ergodicity):

$$\hat{\mathbf{R}}_{x} = \frac{1}{L} \sum_{i=0}^{L-1} \underline{\mathbf{x}}[k-i] \cdot \underline{\mathbf{x}}^{t}[k-i] = \frac{1}{L} \mathbf{X}^{t} \cdot \mathbf{X} = \frac{1}{L} \overline{\mathbf{R}}_{x}$$

$$\hat{\underline{\mathbf{r}}}_{yx} = \frac{1}{L} \sum_{i=0}^{L-1} \underline{\mathbf{x}}[k-i] \cdot y[k-i] = \frac{1}{L} \mathbf{X}^{t} \cdot \underline{\mathbf{y}} = \frac{1}{L} \overline{\underline{\mathbf{r}}}_{yx}$$

with $\hat{\mathbf{R}}_x$ estimate of \mathbf{R}_x and $\hat{\mathbf{r}}_{yx}$ estimate of \mathbf{r}_{yx}

$$\Rightarrow \quad \underline{\hat{\mathbf{w}}}_{mmse} = \left(\frac{1}{L}\overline{\mathbf{R}}_x\right)^{-1} \cdot \left(\frac{1}{L}\overline{\underline{\mathbf{r}}}_{yx}\right) = \overline{\mathbf{R}}_x^{-1} \cdot \underline{\overline{\mathbf{r}}}_{yx} = \underline{\mathbf{w}}_{ls}$$

LS: Correspondence with MMSE

Use time-averaging (ergodicity):

$$\hat{\mathbf{R}}_{x} = \frac{1}{L} \sum_{i=0}^{L-1} \underline{\mathbf{x}}[k-i] \cdot \underline{\mathbf{x}}^{t}[k-i] = \frac{1}{L} \mathbf{X}^{t} \cdot \mathbf{X} = \frac{1}{L} \overline{\mathbf{R}}_{x}$$

$$\hat{\underline{\mathbf{r}}}_{yx} = \frac{1}{L} \sum_{i=0}^{L-1} \underline{\mathbf{x}}[k-i] \cdot y[k-i] = \frac{1}{L} \mathbf{X}^{t} \cdot \underline{\mathbf{y}} = \frac{1}{L} \overline{\underline{\mathbf{r}}}_{yx}$$

with $\hat{\mathbf{R}}_x$ estimate of \mathbf{R}_x and $\hat{\mathbf{r}}_{yx}$ estimate of \mathbf{r}_{yx}

$$\Rightarrow \quad \underline{\hat{\mathbf{w}}}_{mmse} = \left(\frac{1}{L}\overline{\mathbf{R}}_x\right)^{-1} \cdot \left(\frac{1}{L}\overline{\underline{\mathbf{r}}}_{yx}\right) = \overline{\mathbf{R}}_x^{-1} \cdot \overline{\underline{\mathbf{r}}}_{yx} = \underline{\mathbf{w}}_{ls}$$

Finally note that for ergodic processes:

$$\lim_{L o\infty}rac{1}{L}\overline{f R}_x={f R}_x$$
 ; $\lim_{L o\infty}rac{1}{L}ar{f r}_{yx}=ar{f r}_{yx}$; $\lim_{L o\infty}{f w}_{ls}=ar{f w}_{mmse}$

Problem: Optimal Wiener involves \mathbf{R}_x^{-1}

Problem: Optimal Wiener involves \mathbf{R}_x^{-1}

To avoid this inversion, estimate optimum iteratively

Problem: Optimal Wiener involves \mathbf{R}_x^{-1}

To avoid this inversion, estimate optimum iteratively

Goal: Decrease J each new iteration

GD principle: Update in negative gradient direction

$$\Leftrightarrow$$
 $\underline{\mathbf{w}} \doteq \underline{\mathbf{w}} - \alpha \underline{\bigtriangledown}$ with adaptation constant $\alpha \geq 0$

GD principle: Update in negative gradient direction

$$\Leftrightarrow \underline{\mathbf{w}} \doteq \underline{\mathbf{w}} - \alpha \underline{\bigtriangledown} \text{ with adaptation constant } \alpha \geq 0$$

With
$$\underline{\nabla} = -2(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x \underline{\mathbf{w}}[k])$$

GD principle: Update in negative gradient direction

$$\Leftrightarrow \underline{\mathbf{w}} \doteq \underline{\mathbf{w}} - \alpha \underline{\bigtriangledown} \text{ with adaptation constant } \alpha \geq 0$$

With
$$\underline{\bigtriangledown} = -2(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}[k]) \Rightarrow \text{GD algorithm:}$$

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}[k])$$

GD 1.

GD principle: Update in negative gradient direction

$$\Leftrightarrow \underline{\mathbf{w}} \doteq \underline{\mathbf{w}} - \alpha \underline{\bigtriangledown} \text{ with adaptation constant } \alpha \geq 0$$

With
$$\underline{\bigtriangledown} = -2(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}[k]) \Rightarrow \text{GD algorithm:}$$

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}[k])$$

Notes: 1) No matrix inversion needed! 2) Usually $\underline{\mathbf{w}}[0] = \underline{\mathbf{0}}_{\text{TU/e}}$ Technische Universiteit indevendent of electrical engineering

GD ₁₋₁

GD converges to Wiener solution:

$$\lim_{k \to \infty} \underline{\mathbf{w}}[k] \simeq \mathbf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{yx}$$

$$\lim_{k \to \infty} \underline{\mathbf{w}}[k] \simeq \mathbf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{yx}$$

'Proof':

For $k \to \infty$ we have:

$$\underline{\mathbf{w}}[k+1] \simeq \underline{\mathbf{w}}[k] \simeq \underline{\mathbf{w}}[\infty]$$

$$\lim_{k \to \infty} \underline{\mathbf{w}}[k] \simeq \mathbf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{yx}$$

'Proof':

For $k \to \infty$ we have:

$$\begin{split} & \underline{\mathbf{w}}[k+1] \simeq \underline{\mathbf{w}}[k] \simeq \underline{\mathbf{w}}[\infty] \\ \mathsf{GD} & \Rightarrow & \underline{\mathbf{w}}[\infty] \simeq \underline{\mathbf{w}}[\infty] + 2\alpha(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}[\infty]) \end{split}$$

$$\lim_{k \to \infty} \underline{\mathbf{w}}[k] \simeq \mathbf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{yx}$$

'Proof':

For $k \to \infty$ we have:

$$\begin{aligned} & \underline{\mathbf{w}}[k+1] \simeq \underline{\mathbf{w}}[k] \simeq \underline{\mathbf{w}}[\infty] \\ \mathsf{GD} & \Rightarrow & \underline{\mathbf{w}}[\infty] \simeq \underline{\mathbf{w}}[\infty] + 2\alpha(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}[\infty]) \\ & \Rightarrow & \underline{\mathbf{w}}[\infty] \simeq \mathbf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{yx} \end{aligned}$$

$$\lim_{k \to \infty} \underline{\mathbf{w}}[k] \simeq \mathbf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{yx}$$

'Proof':

For $k \to \infty$ we have:

$$\begin{aligned} & \underline{\mathbf{w}}[k+1] \simeq \underline{\mathbf{w}}[k] \simeq \underline{\mathbf{w}}[\infty] \\ \mathsf{GD} & \Rightarrow & \underline{\mathbf{w}}[\infty] \simeq \underline{\mathbf{w}}[\infty] + 2\alpha(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}[\infty]) \\ & \Rightarrow & \underline{\mathbf{w}}[\infty] \simeq \mathbf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{yx} \end{aligned}$$

For exact proof we need stability analysis

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}[k])$$

$$\begin{array}{rcl} & \underline{\mathbf{w}}[k+1] & = & \underline{\mathbf{w}}[k] + 2\alpha(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}[k]) \\ \underline{\mathbf{w}}[k+1] - \underline{\mathbf{w}}_o & = & (\mathbf{I} - 2\alpha\mathbf{R}_x) \cdot \underline{\mathbf{w}}[k] - \underline{\mathbf{w}}_o + 2\alpha\underline{\mathbf{r}}_{yx} \\ \Rightarrow & \underline{\mathbf{d}}[k+1] & = & (\mathbf{I} - 2\alpha\mathbf{R}_x) \cdot \underline{\mathbf{d}}[k] \end{array}$$

Recursion:

$$\underline{\mathbf{d}}[k] = (\mathbf{I} - 2\alpha \mathbf{R}_x) \cdot \underline{\mathbf{d}}[k-1] = \dots = (\mathbf{I} - 2\alpha \mathbf{R}_x)^k \cdot \underline{\mathbf{d}}[0]$$

Recursion:

$$\underline{\mathbf{d}}[k] = (\mathbf{I} - 2\alpha \mathbf{R}_x) \cdot \underline{\mathbf{d}}[k-1] = \dots = (\mathbf{I} - 2\alpha \mathbf{R}_x)^k \cdot \underline{\mathbf{d}}[0]$$

Converges if:
$$\lim_{k\to\infty} (\mathbf{I} - 2\alpha \mathbf{R}_x)^k = \mathbf{0}$$

$$\begin{array}{rcl} & \underline{\mathbf{w}}[k+1] & = & \underline{\mathbf{w}}[k] + 2\alpha(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}[k]) \\ \underline{\mathbf{w}}[k+1] - \underline{\mathbf{w}}_o & = & (\mathbf{I} - 2\alpha\mathbf{R}_x) \cdot \underline{\mathbf{w}}[k] - \underline{\mathbf{w}}_o + 2\alpha\underline{\mathbf{r}}_{yx} \\ \Rightarrow & \underline{\mathbf{d}}[k+1] & = & (\mathbf{I} - 2\alpha\mathbf{R}_x) \cdot \underline{\mathbf{d}}[k] \end{array}$$

Recursion:

$$\underline{\mathbf{d}}[k] = (\mathbf{I} - 2\alpha \mathbf{R}_x) \cdot \underline{\mathbf{d}}[k-1] = \dots = (\mathbf{I} - 2\alpha \mathbf{R}_x)^k \cdot \underline{\mathbf{d}}[0]$$

Converges if:
$$\lim_{k\to\infty} (\mathbf{I} - 2\alpha \mathbf{R}_x)^k = \mathbf{0}$$

Note:

When stable $\Rightarrow \underline{\mathbf{d}}[\infty] = \underline{\mathbf{0}} \Rightarrow \underline{\mathbf{w}}[\infty] \simeq \text{Wiener}$

Use eigenvalue decomposition (see Appendix):

Use eigenvalue decomposition (see Appendix):

With
$$\mathbf{Q}^h \cdot \mathbf{Q} = \mathbf{Q} \cdot \mathbf{Q}^h = \mathbf{I}$$
 and $\mathbf{R}_x = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^h$

Use eigenvalue decomposition (see Appendix):

With
$$\mathbf{Q}^h \cdot \mathbf{Q} = \mathbf{Q} \cdot \mathbf{Q}^h = \mathbf{I}$$
 and $\mathbf{R}_x = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^h$

$$\Rightarrow (\mathbf{I} - 2\alpha \mathbf{R}_x)^k = (\mathbf{Q}\mathbf{Q}^h - 2\alpha \mathbf{Q}\Lambda \mathbf{Q}^h)^k$$
$$= \mathbf{Q}(\mathbf{I} - 2\alpha \Lambda)^k \mathbf{Q}^h$$

Use eigenvalue decomposition (see Appendix):

With
$$\mathbf{Q}^h \cdot \mathbf{Q} = \mathbf{Q} \cdot \mathbf{Q}^h = \mathbf{I}$$
 and $\mathbf{R}_x = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^h$

$$\Rightarrow (\mathbf{I} - 2\alpha \mathbf{R}_x)^k = (\mathbf{Q}\mathbf{Q}^h - 2\alpha \mathbf{Q}\Lambda \mathbf{Q}^h)^k$$
$$= \mathbf{Q}(\mathbf{I} - 2\alpha \Lambda)^k \mathbf{Q}^h$$

Change of variables: $\underline{\mathbf{D}}[k] = \mathbf{Q}^h \cdot \underline{\mathbf{d}}[k]$

Use eigenvalue decomposition (see Appendix):

With
$$\mathbf{Q}^h \cdot \mathbf{Q} = \mathbf{Q} \cdot \mathbf{Q}^h = \mathbf{I}$$
 and $\mathbf{R}_x = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^h$

$$\Rightarrow (\mathbf{I} - 2\alpha \mathbf{R}_x)^k = (\mathbf{Q}\mathbf{Q}^h - 2\alpha \mathbf{Q}\Lambda \mathbf{Q}^h)^k$$
$$= \mathbf{Q}(\mathbf{I} - 2\alpha \Lambda)^k \mathbf{Q}^h$$

Change of variables: $\underline{\mathbf{D}}[k] = \mathbf{Q}^h \cdot \underline{\mathbf{d}}[k]$

$$\underline{\mathbf{d}}[k] = (\mathbf{I} - 2\alpha \mathbf{R}_x)^k \underline{\mathbf{d}}[0] \Rightarrow \underline{\mathbf{D}}[k] = (\mathbf{I} - 2\alpha \mathbf{\Lambda})^k \underline{\mathbf{D}}[0]$$

Use eigenvalue decomposition (see Appendix):

With
$$\mathbf{Q}^h \cdot \mathbf{Q} = \mathbf{Q} \cdot \mathbf{Q}^h = \mathbf{I}$$
 and $\mathbf{R}_x = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^h$

$$\Rightarrow (\mathbf{I} - 2\alpha \mathbf{R}_x)^k = (\mathbf{Q}\mathbf{Q}^h - 2\alpha \mathbf{Q}\Lambda \mathbf{Q}^h)^k$$
$$= \mathbf{Q}(\mathbf{I} - 2\alpha \Lambda)^k \mathbf{Q}^h$$

Change of variables: $\underline{\mathbf{D}}[k] = \mathbf{Q}^h \cdot \underline{\mathbf{d}}[k]$

$$\underline{\mathbf{d}}[k] = (\mathbf{I} - 2\alpha \mathbf{R}_x)^k \underline{\mathbf{d}}[0] \quad \Rightarrow \quad \underline{\mathbf{D}}[k] = (\mathbf{I} - 2\alpha \mathbf{\Lambda})^k \underline{\mathbf{D}}[0]$$

Recursion stable if: $\lim_{k\to\infty}(\mathbf{I}-2\alpha\mathbf{\Lambda})^k=\mathbf{0}$

Recursion stable if:
$$\lim_{k \to \infty} (\mathbf{I} - 2\alpha \mathbf{\Lambda})^k = \mathbf{0}$$

Recursion stable if:
$$\lim_{k \to \infty} (\mathbf{I} - 2\alpha \mathbf{\Lambda})^k = \mathbf{0}$$

Both matrices ${\bf I}$ and Λ diagonal

Recursion stable if:
$$\lim_{k \to \infty} (\mathbf{I} - 2\alpha \mathbf{\Lambda})^k = \mathbf{0}$$

Both matrices I and Λ diagonal \Rightarrow Stable if:

$$|1 - 2\alpha\lambda_i| < 1 \quad \Leftrightarrow \quad 0 < \alpha < \frac{1}{\lambda_i} \quad \text{for } i = 0, 1, \dots, N - 1$$

Recursion stable if:
$$\lim_{k\to\infty}(\mathbf{I}-2\alpha\mathbf{\Lambda})^k=\mathbf{0}$$

Both matrices I and Λ diagonal \Rightarrow Stable if:

$$|1 - 2\alpha \lambda_i| < 1 \quad \Leftrightarrow \quad 0 < \alpha < \frac{1}{\lambda_i} \quad \text{for } i = 0, 1, \cdots, N - 1$$

Thus GD algorithm stable if: $0 < \alpha < \frac{1}{\lambda_{max}}$

$$0 < \alpha < \frac{1}{\lambda_{max}}$$

Recursion stable if:
$$\lim_{k\to\infty} (\mathbf{I} - 2\alpha\mathbf{\Lambda})^k = \mathbf{0}$$

Both matrices I and Λ diagonal \Rightarrow Stable if:

$$|1 - 2\alpha\lambda_i| < 1 \quad \Leftrightarrow \quad 0 < \alpha < \frac{1}{\lambda_i} \quad \text{for } i = 0, 1, \dots, N - 1$$

Thus GD algorithm stable if: $0 < \alpha < \frac{1}{\lambda_{max}}$

$$0 < \alpha < \frac{1}{\lambda_{max}}$$

For adaptation constant α in this region:

$$\lim_{k \to \infty} \underline{\mathbf{w}}[k] = \underline{\mathbf{w}}_o = \mathbf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{yx}$$

Recursion stable if:
$$\lim_{k\to\infty} (\mathbf{I} - 2\alpha\mathbf{\Lambda})^k = \mathbf{0}$$

Both matrices I and Λ diagonal \Rightarrow Stable if:

$$|1 - 2\alpha\lambda_i| < 1 \quad \Leftrightarrow \quad 0 < \alpha < \frac{1}{\lambda_i} \quad \text{for } i = 0, 1, \dots, N - 1$$

Thus GD algorithm stable if: $0 < \alpha < \frac{1}{\lambda_{max}}$

$$0 < \alpha < \frac{1}{\lambda_{max}}$$

For adaptation constant α in this region:

$$\lim_{k \to \infty} \underline{\mathbf{w}}[k] = \underline{\mathbf{w}}_o = \mathbf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{yx}$$

$$J_{\underline{\mathbf{w}}=\underline{\mathbf{w}}_o} = E\{e^2[k]\} = J_{min} = E\{y^2\} - \underline{\mathbf{r}}_{yx}^t \mathbf{R}_x^{-1} \underline{\mathbf{r}}_{yx}$$

$$\mathbf{e}^{-k/\tau_i} \cdot (\mathbf{\underline{D}}[0])_i \approx (1 - 2\alpha\lambda_i)^k \cdot (\mathbf{\underline{D}}[0])_i \Rightarrow$$

$$\mathbf{e}^{-k/\tau_i} \cdot (\mathbf{\underline{D}}[0])_i \approx (1 - 2\alpha\lambda_i)^k \cdot (\mathbf{\underline{D}}[0])_i \Rightarrow$$

Average behavior:
$$au_{av,i} = \frac{-1}{\ln(1-2\alpha\lambda_i)}$$

$$e^{-k/\tau_i} \cdot (\underline{\mathbf{D}}[0])_i \approx (1 - 2\alpha\lambda_i)^k \cdot (\underline{\mathbf{D}}[0])_i \Rightarrow$$

Average behavior:
$$\tau_{av,i} = \frac{-1}{\ln(1 - 2\alpha\lambda_i)}$$
 \Rightarrow For small α $\left| \frac{\tau_{av,i}}{2\alpha\lambda_i} \approx \frac{1}{2\alpha\lambda_i} \right|$

$$\tau_{av,i} \approx \frac{1}{2\alpha\lambda_i}$$

$$e^{-k/\tau_i} \cdot (\underline{\mathbf{D}}[0])_i \approx (1 - 2\alpha\lambda_i)^k \cdot (\underline{\mathbf{D}}[0])_i \Rightarrow$$

Average behavior:
$$\tau_{av,i} = \frac{-1}{\ln(1-2\alpha\lambda_i)}$$
 \Rightarrow For small α $\tau_{av,i} \approx \frac{1}{2\alpha\lambda_i}$

$$\tau_{av,i} \approx \frac{1}{2\alpha\lambda_i}$$

Note:

Overall time constant depends on eigenvalue spread $\Gamma_x = \lambda_{max}/\lambda_{min}$. Thus, the larger Γ_r the longer it takes for adaptation.

$$e^{-k/\tau_i} \cdot (\underline{\mathbf{D}}[0])_i \approx (1 - 2\alpha\lambda_i)^k \cdot (\underline{\mathbf{D}}[0])_i \Rightarrow$$

Average behavior:
$$\tau_{av,i} = \frac{-1}{\ln(1-2\alpha\lambda_i)}$$
 \Rightarrow For small α $\tau_{av,i} \approx \frac{1}{2\alpha\lambda_i}$

$$\tau_{av,i} \approx \frac{1}{2\alpha\lambda_i}$$

Note:

Overall time constant depends on eigenvalue spread $\Gamma_x = \lambda_{max}/\lambda_{min}$. Thus, the larger Γ_r the longer it takes for adaptation.

Q: What happens for white noise?

Example with $\Gamma_x = \lambda_{max}/\lambda_{min} = 3$

Example with $\Gamma_x = \lambda_{max}/\lambda_{min} = 3$

Learning curve in contour plot J

Example with $\Gamma_x = \lambda_{max}/\lambda_{min} = 3$

Learning curve in contour plot J

Learning curves for different α

Motivation: GD not practical. Gradient assumes known \mathbf{R}_x and $\underline{\mathbf{r}}_{yx}$

Least Mean Square (LMS)

Motivation: GD not practical. Gradient assumes known \mathbf{R}_x and $\mathbf{\underline{r}}_{yx}$

LMS principle: Use instantaneous estimate of gradient:

$$\hat{\underline{\nabla}}[k] = -2 \left(y[k]\underline{\mathbf{x}}[k] - \underline{\mathbf{x}}[k]\underline{\mathbf{x}}^t[k]\underline{\mathbf{w}}[k] \right)
= -2\underline{\mathbf{x}}[k] \left(y[k] - \underline{\mathbf{x}}^t[k]\underline{\mathbf{w}}[k] \right) = -2\underline{\mathbf{x}}[k]e[k]$$

Least Mean Square (LMS)

Motivation: GD not practical. Gradient assumes known \mathbf{R}_x and $\underline{\mathbf{r}}_{yx}$

LMS principle: Use instantaneous estimate of gradient:

$$\hat{\underline{\nabla}}[k] = -2 \left(y[k]\underline{\mathbf{x}}[k] - \underline{\mathbf{x}}[k]\underline{\mathbf{x}}^t[k]\underline{\mathbf{w}}[k] \right)
= -2\underline{\mathbf{x}}[k] \left(y[k] - \underline{\mathbf{x}}^t[k]\underline{\mathbf{w}}[k] \right) = -2\underline{\mathbf{x}}[k]e[k]$$

With $\underline{\mathbf{w}} \doteq \underline{\mathbf{w}} - \alpha \hat{\underline{\nabla}} \Rightarrow$ LMS algorithm (Widrow, 1975):

$$\begin{array}{lll} k=0 & : & \underline{\mathbf{w}}[0] = \underline{\mathbf{0}} & \text{(usually)} \\ k>0 & : & \hat{y}[k] = \underline{\mathbf{w}}^t[k] \cdot \underline{\mathbf{x}}[k] \\ & & e[k] = y[k] - \hat{y}[k] \\ & & \underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha\underline{\mathbf{x}}[k]e[k] \end{array}$$

Least Mean Square (LMS)

Motivation: GD not practical. Gradient assumes known ${f R}_x$ and ${f r}_{yx}$

LMS principle: Use instantaneous estimate of gradient:

$$\hat{\underline{\nabla}}[k] = -2 \left(y[k]\underline{\mathbf{x}}[k] - \underline{\mathbf{x}}[k]\underline{\mathbf{x}}^t[k]\underline{\mathbf{w}}[k] \right)
= -2\underline{\mathbf{x}}[k] \left(y[k] - \underline{\mathbf{x}}^t[k]\underline{\mathbf{w}}[k] \right) = -2\underline{\mathbf{x}}[k]e[k]$$

With $\underline{\mathbf{w}} \doteq \underline{\mathbf{w}} - \alpha \hat{\underline{\nabla}} \Rightarrow$ LMS algorithm (Widrow, 1975):

$$\begin{array}{ll} k=0 & : & \underline{\mathbf{w}}[0] = \underline{\mathbf{0}} \quad \text{(usually)} \\ k>0 & : & \hat{y}[k] = \underline{\mathbf{w}}^t[k] \cdot \underline{\mathbf{x}}[k] \\ & e[k] = y[k] - \hat{y}[k] \\ & \underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha\underline{\mathbf{x}}[k]e[k] \end{array}$$

Note: $\underline{\mathbf{w}}^t[k] \cdot \underline{\mathbf{x}}[k]$ is "convolution" and $\underline{\mathbf{x}}[k]e[k]$ "correlation"

► Convergence of LMS strongly depends on α ; "optimal" choice depends on amplitude of signals.

- Convergence of LMS strongly depends on α ; "optimal" choice depends on amplitude of signals.
- ▶ NLMS: LMS with normalization by $\sigma_x^2 = E\{x^2[k]\}$:

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + \frac{2\alpha}{\sigma_x^2} \underline{\mathbf{x}}[k]e[k]$$

- ► Convergence of LMS strongly depends on α ; "optimal" choice depends on amplitude of signals.
- ▶ NLMS: LMS with normalization by $\sigma_x^2 = E\{x^2[k]\}$:

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + \frac{2\alpha}{\sigma_x^2} \underline{\mathbf{x}}[k]e[k]$$

In practice $\hat{\sigma}_x^2[k] \Rightarrow$ time-varying step size. E.g.:

- $\hat{\sigma}_x^2[k] = \beta \hat{\sigma}_x^2[k-1] + (1-\beta) \frac{\mathbf{x}^t[k]\mathbf{x}[k]}{N}$ with $0 < \beta < 1$
- $\hat{\sigma}_x^2[k] = \frac{\mathbf{x}^t[k]\mathbf{x}[k]}{N} + \epsilon$ with ϵ some small constant

$$\underline{\nabla} = -2\left(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x \underline{\mathbf{w}}[k]\right)$$

$$\underline{\nabla} = -2\left(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}[k]\right)$$

Solution Newton: $\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] - \alpha \mathbf{R}_x^{-1} \underline{\nabla} \Rightarrow$

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \mathbf{R}_x^{-1} \cdot \left(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x \underline{\mathbf{w}}[k]\right)$$

$$\underline{\nabla} = -2\left(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}[k]\right)$$

Solution Newton: $\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] - \alpha \mathbf{R}_x^{-1} \underline{\nabla} \Rightarrow$

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \underline{\mathbf{R}}_x^{-1} \cdot \left(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x \underline{\mathbf{w}}[k]\right)$$

Convergence Newton:

$$\underline{\mathbf{d}}[k+1] = \left(\mathbf{I} - 2\alpha \mathbf{R}_x^{-1} \mathbf{R}_x\right) \underline{\mathbf{d}}[k] = (1-2\alpha)\underline{\mathbf{d}}[k] \quad \Rightarrow \quad \mathsf{Convergence} \ 0 < \alpha < 1$$

$$\underline{\nabla} = -2\left(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}[k]\right)$$

Solution Newton: $\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] - \alpha \mathbf{R}_x^{-1} \underline{\nabla} \Rightarrow$

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \mathbf{R}_x^{-1} \cdot \left(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x \underline{\mathbf{w}}[k]\right)$$

Convergence Newton:

$$\underline{\mathbf{d}}[k+1] = \left(\mathbf{I} - 2\alpha \mathbf{R}_x^{-1} \mathbf{R}_x\right) \underline{\mathbf{d}}[k] = (1-2\alpha)\underline{\mathbf{d}}[k] \quad \Rightarrow \quad \mathsf{Convergence} \ 0 < \alpha < 1$$

Notes:

 $ightharpoonup {f R}_x^{-1}$ causes whitening of input process

$$\underline{\nabla} = -2\left(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}[k]\right)$$

Solution Newton:
$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] - \alpha \mathbf{R}_x^{-1} \underline{\nabla} \Rightarrow$$

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \mathbf{R}_x^{-1} \cdot \left(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x \underline{\mathbf{w}}[k]\right)$$

Convergence Newton:

$$\underline{\mathbf{d}}[k+1] = \left(\mathbf{I} - 2\alpha \mathbf{R}_x^{-1} \mathbf{R}_x\right) \underline{\mathbf{d}}[k] = (1-2\alpha)\underline{\mathbf{d}}[k] \quad \Rightarrow \quad \mathsf{Convergence} \ 0 < \alpha < 1$$

Notes:

- $ightharpoonup \mathbf{R}_x^{-1}$ causes whitening of input process
- All weights have same convergence (in contrast to LMS, GD)

$$\underline{\nabla} = -2\left(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}[k]\right)$$

Solution Newton:
$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] - \alpha \mathbf{R}_x^{-1} \underline{\nabla} \Rightarrow$$

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \underline{\mathbf{R}}_x^{-1} \cdot \left(\underline{\mathbf{r}}_{yx} - \underline{\mathbf{R}}_x \underline{\mathbf{w}}[k]\right)$$

Convergence Newton:

$$\underline{\mathbf{d}}[k+1] = \left(\mathbf{I} - 2\alpha \mathbf{R}_x^{-1} \mathbf{R}_x\right) \underline{\mathbf{d}}[k] = (1-2\alpha)\underline{\mathbf{d}}[k] \quad \Rightarrow \quad \mathsf{Convergence} \ 0 < \alpha < 1$$

Notes:

- $ightharpoonup {f R}_x^{-1}$ causes whitening of input process
- All weights have same convergence (in contrast to LMS, GD)
- Newton ≡ GD with white noise input!

TU/e Technische Universiteit Eindhoven University of Technology

Learning curves in contour plot: Newton vs. GD

Autocorrelation matrix \mathbf{R}_x :

Autocorrelation matrix \mathbf{R}_x :

- (In general) not known in advance
- May change during time (non-stationary process)
- Inversion is expensive (many MIPS)

Newton: Practical problem

Autocorrelation matrix \mathbf{R}_x :

- (In general) not known in advance
- May change during time (non-stationary process)
- Inversion is expensive (many MIPS)
- ⇒ Complexity Newton algorithm huge
- \Rightarrow Need for efficient solution with estimate of \mathbf{R}_x
- ⇒ Different algorithms, e.g. RLS.

Recursive Least Squares (RLS)

For data block length ${\cal L}$ fixed, Least Squares problem becomes:

$$\min_{\underline{\mathbf{w}}[k]} |\underline{\mathbf{y}}[k] - \mathbf{X}[k] \cdot \underline{\mathbf{w}}[k]|^2 \quad \Rightarrow \quad \underline{\mathbf{w}}_{LS}[k] = \left(\mathbf{X}^t[k]\mathbf{X}[k]\right)^{-1} \left(\mathbf{X}^t[k]\underline{\mathbf{y}}[k]\right)$$

Recursive Least Squares (RLS)

For data block length ${\cal L}$ fixed, Least Squares problem becomes:

$$\min_{\underline{\mathbf{w}}[k]} |\underline{\mathbf{y}}[k] - \mathbf{X}[k] \cdot \underline{\mathbf{w}}[k]|^2 \quad \Rightarrow \quad \underline{\mathbf{w}}_{LS}[k] = \left(\mathbf{X}^t[k]\mathbf{X}[k]\right)^{-1} \left(\mathbf{X}^t[k]\underline{\mathbf{y}}[k]\right)$$

RLS: Find efficient recursive solution for LS problem from $k \to k+1$

For data block length L fixed, Least Squares problem becomes:

$$\min_{\underline{\mathbf{w}}[k]} |\underline{\mathbf{y}}[k] - \mathbf{X}[k] \cdot \underline{\mathbf{w}}[k]|^2 \quad \Rightarrow \quad \underline{\mathbf{w}}_{LS}[k] = \left(\mathbf{X}^t[k]\mathbf{X}[k]\right)^{-1} \left(\mathbf{X}^t[k]\underline{\mathbf{y}}[k]\right)$$

RLS: Find efficient recursive solution for LS problem from $k \to k+1$

Use exponential sliding window: Scale down data by factor γ

Forgetting factor : $0 < \gamma < 1$

'Memory' : $\frac{1}{1-\gamma}$

Recursive Least Squares (RLS)

For data block length L fixed, Least Squares problem becomes:

$$\min_{\underline{\mathbf{w}}[k]} |\underline{\mathbf{y}}[k] - \mathbf{X}[k] \cdot \underline{\mathbf{w}}[k]|^2 \quad \Rightarrow \quad \underline{\mathbf{w}}_{LS}[k] = \left(\mathbf{X}^t[k]\mathbf{X}[k]\right)^{-1} \left(\mathbf{X}^t[k]\underline{\mathbf{y}}[k]\right)$$

RLS: Find efficient recursive solution for LS problem from $k \to k+1$

Use exponential sliding window: Scale down data by factor γ

Forgetting factor $\ : \ 0 < \gamma < 1$ 'Memory' : $\frac{1}{1-\gamma}$

and
$$\underline{\mathbf{y}}[k] = \left(egin{array}{c} \gamma^0 y[k] & \dots & \\ \gamma^i y[k-i] & \dots & \\ \gamma^k y[0] & & \end{array}\right)$$

Initialization: $\underline{\overline{\mathbf{r}}}_{yx}[0] = \underline{\mathbf{0}}$; $\overline{\mathbf{R}}_x^{-1}[0] = \delta^{-1}\mathbf{I}$ with δ large

Initialization: $\underline{\overline{\mathbf{r}}}_{yx}[0] = \underline{\mathbf{0}}$; $\overline{\mathbf{R}}_x^{-1}[0] = \delta^{-1}\mathbf{I}$ with δ large

For $k \geq 0$:

Initialization: $\bar{\mathbf{r}}_{ux}[0] = \underline{\mathbf{0}}$; $\overline{\mathbf{R}}_{x}^{-1}[0] = \delta^{-1}\mathbf{I}$ with δ large

For k > 0:

$$\overline{\mathbf{R}}_x^{-1}[k+1] = \gamma^{-2} \left(\overline{\mathbf{R}}_x^{-1}[k] - \underline{\mathbf{g}}[k+1] \cdot \underline{\mathbf{x}}^t[k+1] \overline{\mathbf{R}}_x^{-1}[k] \right)$$

$$\begin{array}{ll} \text{Initialization:} & \ \overline{\underline{\mathbf{r}}}_{yx}[0] = \underline{\mathbf{0}} \ \ ; \ \overline{\mathbf{R}}_x^{-1}[0] = \delta^{-1}\mathbf{I} \ \text{with} \ \delta \ \text{large} \\ & \ \overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1] \\ & \ \overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1] \\ & \ \overline{\mathbf{R}}_x^{-1}[k+1] \ = \ \gamma^{-2} \left(\overline{\mathbf{R}}_x^{-1}[k] - \underline{\mathbf{g}}[k+1] \cdot \underline{\mathbf{x}}^t[k+1] \overline{\mathbf{R}}_x^{-1}[k] \right) \end{array}$$

$$\begin{array}{ll} \text{Initialization:} & \ \ \underline{\bar{\mathbf{r}}}_{yx}[0] = \underline{\mathbf{0}} \ \ ; \ \ \overline{\mathbf{R}}_x^{-1}[0] = \delta^{-1}\mathbf{I} \ \text{with} \ \delta \ \text{large} \\ \\ \text{For} \ k \geq 0 \text{:} \ \underline{\mathbf{g}}[k+1] & = \ \frac{\overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1]}{\gamma^2 + \underline{\mathbf{x}}^t[k+1]\overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1]} \\ \\ \overline{\mathbf{R}}_x^{-1}[k+1] & = \ \gamma^{-2}\left(\overline{\mathbf{R}}_x^{-1}[k] - \underline{\mathbf{g}}[k+1] \cdot \underline{\mathbf{x}}^t[k+1]\overline{\mathbf{R}}_x^{-1}[k]\right) \\ \\ \overline{\underline{\mathbf{r}}}_{yx}[k+1] & = \ \gamma^2\underline{\overline{\mathbf{r}}}_{yx}[k] + \underline{\mathbf{x}}[k+1] \cdot y[k+1] \end{array}$$

$$\begin{array}{ll} \text{Initialization:} & \underline{\bar{\mathbf{r}}}_{yx}[0] = \underline{\mathbf{0}} \; ; \; \overline{\mathbf{R}}_x^{-1}[0] = \delta^{-1}\mathbf{I} \; \text{with} \; \delta \; \text{large} \\ \\ \text{For} \; k \geq 0 \text{:} \; \underline{\mathbf{g}}[k+1] & = \; \frac{\overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1]}{\gamma^2 + \underline{\mathbf{x}}^t[k+1]\overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1]} \\ \\ \overline{\mathbf{R}}_x^{-1}[k+1] & = \; \gamma^{-2}\left(\overline{\mathbf{R}}_x^{-1}[k] - \underline{\mathbf{g}}[k+1] \cdot \underline{\mathbf{x}}^t[k+1]\overline{\mathbf{R}}_x^{-1}[k]\right) \\ \\ \underline{\bar{\mathbf{r}}}_{yx}[k+1] & = \; \gamma^2 \overline{\underline{\mathbf{r}}}_{yx}[k] + \underline{\mathbf{x}}[k+1] \cdot y[k+1] \\ \\ \underline{\mathbf{w}}[k+1] & = \; \overline{\mathbf{R}}_x^{-1}[k+1] \cdot \underline{\mathbf{r}}_{yx}[k+1] \end{array}$$

$$\begin{array}{lll} \text{Initialization:} & & & & & & & & \\ \overline{\mathbf{E}}_{yx}[0] = \underline{\mathbf{0}} \; \; ; \; & & & & & \\ \overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1] & = & & & & & \\ \overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1] & = & & & & \\ \overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1] & = & & & \\ \overline{\mathbf{R}}_x^{-1}[k+1] & = & & & \\ \overline{\mathbf{R}}_x^{-1}[k] - \underline{\mathbf{g}}[k+1] \cdot \underline{\mathbf{x}}^t[k+1] \overline{\mathbf{R}}_x^{-1}[k] \end{pmatrix} \\ & & & & & & \\ \overline{\mathbf{E}}_{yx}[k+1] & = & & & \\ \overline{\mathbf{E}}_{yx}^{-1}[k] + \underline{\mathbf{x}}[k+1] \cdot y[k+1] \\ & & & & \\ \underline{\mathbf{w}}[k+1] & = & & & \\ \overline{\mathbf{R}}_x^{-1}[k+1] \cdot \underline{\mathbf{r}}_{yx}[k+1] \end{array}$$

$$\mathbf{w}[\infty] \to \mathbf{w}_o$$

$$\begin{array}{lll} \text{Initialization:} & & & & & & & & \\ \overline{\mathbf{E}}_{yx}[0] = \underline{\mathbf{0}} \; \; ; \; & & & & & \\ \overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1] & = & & & & & \\ \overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1] & = & & & & \\ \overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1] & = & & & \\ \overline{\mathbf{R}}_x^{-1}[k+1] & = & & & \\ \overline{\mathbf{E}}_{yx}^{-1}[k] - \underline{\mathbf{g}}[k+1] \cdot \underline{\mathbf{x}}^t[k+1] \overline{\mathbf{R}}_x^{-1}[k] \\ & & & & \\ \overline{\mathbf{E}}_{yx}[k+1] & = & & & \\ \overline{\mathbf{E}}_{yx}^{-1}[k] + \underline{\mathbf{x}}[k+1] \cdot y[k+1] \\ & & & \\ \underline{\mathbf{w}}[k+1] & = & & & \\ \overline{\mathbf{R}}_x^{-1}[k+1] \cdot \underline{\mathbf{r}}_{yx}[k+1] \end{array}$$

- $\mathbf{w}[\infty] \to \mathbf{w}_o$
- Complexity $O(N^2)$ per time update

$$\begin{array}{ll} \text{Initialization:} & \ \ \overline{\underline{\mathbf{r}}}_{yx}[0] = \underline{\mathbf{0}} \ \ ; \ \ \overline{\mathbf{R}}_x^{-1}[0] = \delta^{-1}\mathbf{I} \ \text{with} \ \delta \ \text{large} \\ \\ \text{For} \ k \geq 0 \text{:} \ \underline{\mathbf{g}}[k+1] & = \ \frac{\overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1]}{\gamma^2 + \underline{\mathbf{x}}^t[k+1]\overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1]} \\ \\ \overline{\mathbf{R}}_x^{-1}[k+1] & = \ \gamma^{-2}\left(\overline{\mathbf{R}}_x^{-1}[k] - \underline{\mathbf{g}}[k+1] \cdot \underline{\mathbf{x}}^t[k+1]\overline{\mathbf{R}}_x^{-1}[k]\right) \\ \\ \underline{\overline{\mathbf{r}}}_{yx}[k+1] & = \ \gamma^2\overline{\underline{\mathbf{r}}}_{yx}[k] + \underline{\mathbf{x}}[k+1] \cdot y[k+1] \\ \\ \underline{\mathbf{w}}[k+1] & = \ \overline{\mathbf{R}}_x^{-1}[k+1] \cdot \underline{\mathbf{r}}_{yx}[k+1] \end{array}$$

- $ightharpoonup \underline{\mathbf{w}}[\infty] o \underline{\mathbf{w}}_o$
- Complexity $O(N^2)$ per time update
- Window length increases when time increases!

$$\begin{array}{ll} \text{Initialization:} & \ \overline{\underline{\mathbf{r}}}_{yx}[0] = \underline{\mathbf{0}} \ \ ; \ \overline{\mathbf{R}}_x^{-1}[0] = \delta^{-1}\mathbf{I} \ \text{with} \ \delta \ \text{large} \\ \\ \text{For} \ k \geq 0 \text{:} \ \underline{\mathbf{g}}[k+1] & = \ \frac{\overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1]}{\gamma^2 + \underline{\mathbf{x}}^t[k+1]\overline{\overline{\mathbf{R}}_x^{-1}}[k]\underline{\mathbf{x}}[k+1]} \\ \\ \overline{\mathbf{R}}_x^{-1}[k+1] & = \ \gamma^{-2}\left(\overline{\mathbf{R}}_x^{-1}[k] - \underline{\mathbf{g}}[k+1] \cdot \underline{\mathbf{x}}^t[k+1]\overline{\overline{\mathbf{R}}_x^{-1}}[k]\right) \\ \\ \underline{\overline{\mathbf{r}}}_{yx}[k+1] & = \ \gamma^2\underline{\overline{\mathbf{r}}}_{yx}[k] + \underline{\mathbf{x}}[k+1] \cdot y[k+1] \\ \\ \underline{\mathbf{w}}[k+1] & = \ \overline{\mathbf{R}}_x^{-1}[k+1] \cdot \underline{\mathbf{r}}_{yx}[k+1] \end{array}$$

- $ightharpoonup \underline{\mathbf{w}}[\infty] o \underline{\mathbf{w}}_o$
- Complexity $O(N^2)$ per time update
- Window length increases when time increases!
- Exhibits unstable roundoff error accumulation

RLS algorithm

$$\begin{array}{lll} \text{Initialization:} & & & & & & & & \\ \overline{\mathbf{E}}_{yx}[0] = \underline{\mathbf{0}} \; \; ; \; & & & & & \\ \overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1] & = & & & & & \\ \overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1] & = & & & & \\ \overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1] & = & & & \\ \overline{\mathbf{R}}_x^{-1}[k+1] & = & & & \\ \overline{\mathbf{R}}_x^{-1}[k] - \underline{\mathbf{g}}[k+1] \cdot \underline{\mathbf{x}}^t[k+1] \overline{\mathbf{R}}_x^{-1}[k] \\ & & & & \\ \overline{\mathbf{E}}_{yx}[k+1] & = & & & \\ \overline{\mathbf{E}}_{yx}^{-1}[k] + \underline{\mathbf{x}}[k+1] \cdot y[k+1] \\ & & & & \\ \underline{\mathbf{w}}[k+1] & = & & & \\ \overline{\mathbf{R}}_x^{-1}[k+1] \cdot \underline{\mathbf{r}}_{yx}[k+1] \end{array}$$

- $\mathbf{w}[\infty] \to \mathbf{w}_o$
- Complexity $O(N^2)$ per time update
- Window length increases when time increases!
- Exhibits unstable roundoff error accumulation
- RLS is basis for many practical algorithms

RLS algorithm

$$\begin{array}{lll} \text{Initialization:} & & & & & & & \\ \overline{\mathbf{E}}_{yx}[0] = \underline{\mathbf{0}} \; \; ; \; & & & & \\ \overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1] & = & & & & \\ \overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1] & = & & & \\ \overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1] & = & & \\ \overline{\mathbf{R}}_x^{-1}[k+1] & = & & & \\ \overline{\mathbf{R}}_x^{-1}[k] - \underline{\mathbf{g}}[k+1] \cdot \underline{\mathbf{x}}^t[k+1] \overline{\mathbf{R}}_x^{-1}[k] \end{pmatrix} \\ & & & & \\ \overline{\mathbf{E}}_{yx}[k+1] & = & & & \\ \overline{\mathbf{E}}_{yx}[k] + \underline{\mathbf{x}}[k+1] \cdot y[k+1] \\ & & & \\ \underline{\mathbf{w}}[k+1] & = & & \\ \overline{\mathbf{R}}_x^{-1}[k+1] \cdot \underline{\mathbf{r}}_{yx}[k+1] \end{array}$$

- $\mathbf{w}[\infty] \to \mathbf{w}_o$
- Complexity $O(N^2)$ per time update
- Window length increases when time increases!
- Exhibits unstable roundoff error accumulation
- RLS is basis for many practical algorithms
- Decorrelation takes place in algorithm

	MMSE	LS
Auto correlation	$\mathbf{R}_x = E\{\underline{\mathbf{x}}[k] \cdot \underline{\mathbf{x}}^t[k]\}$	$\overline{\mathbf{R}}_x = \mathbf{X}^t \cdot \mathbf{X}$
Cross correlation	$\underline{\mathbf{r}}_{yx} = E\{y[k] \cdot \underline{\mathbf{x}}[k]\}$	$\overline{\mathbf{r}}_{yx} = \mathbf{X}^t \cdot \mathbf{y}$
Error J	$E\{e^2[k]\}$	$\sum_{i=0}^{L-1} e^2 [k-i]$
Criterion	$\min_{\underline{\mathbf{w}}} \{ E\{e^2[k]\} \}$	$\min_{\underline{\mathbf{w}}} \underline{\mathbf{y}} - \mathbf{X} \cdot \underline{\mathbf{w}} ^2$
Opt. solution $\underline{\mathbf{w}}_o$	$\mathbf{R}_{x}^{-1}\cdot \mathbf{\underline{r}}_{yx}$	$\overline{\mathbf{R}}_{x}^{-1}\cdot \overline{\mathbf{r}}_{yx}$
Min. error J_{min}	$E\{y^2\} - \underline{\mathbf{r}}_{yx}^t \mathbf{R}_x^{-1} \underline{\mathbf{r}}_{yx}$	$\underline{\mathbf{y}}^t\underline{\mathbf{y}} - \overline{\underline{\mathbf{r}}}_{yx}^t\overline{\mathbf{R}}_x^{-1}\overline{\underline{\mathbf{r}}}_{yx}$

Simple adaptive algorithms (no decorrelation):

$$\mathsf{GD} \ : \ \underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}[k])$$

(N)LMS :
$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + \frac{2\alpha}{\hat{\sigma}_x^2}\underline{\mathbf{x}}[k]e^*[k]$$

Algorithms with improved convergence:

$$\begin{split} \mathsf{LMS/Newton} & : \quad \underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \mathbf{R}_x^{-1}\underline{\mathbf{x}}[k]r[k] \\ \mathsf{Newton} & : \quad \underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \mathbf{R}_x^{-1} \cdot \left(\underline{\mathbf{r}}_{yx} - \mathbf{R}_x\underline{\mathbf{w}}[k]\right) \\ \mathsf{RLS} & : \quad \underline{\mathbf{g}}[k+1] = \frac{\overline{\mathbf{R}}_x^{-1}[k]\underline{\mathbf{x}}[k+1]}{\gamma^2 + \underline{\mathbf{x}}^t[k+1]\overline{\overline{\mathbf{R}}_x^{-1}}[k]\underline{\mathbf{x}}[k+1]} \\ & \quad \overline{\overline{\mathbf{R}}_x^{-1}}[k+1] = \gamma^{-2} \left(\overline{\overline{\mathbf{R}}_x^{-1}}[k] - \underline{\mathbf{g}}[k+1] \cdot \underline{\mathbf{x}}^t[k+1]\overline{\overline{\mathbf{R}}_x^{-1}}[k]\right) \\ & \quad \underline{\overline{\mathbf{r}}}_{yx}[k+1] = \gamma^2\underline{\overline{\mathbf{r}}}_{yx}[k] + \underline{\mathbf{x}}[k+1] \cdot y[k+1] \\ & \quad \mathbf{w}[k+1] = \overline{\overline{\mathbf{R}}_x^{-1}}[k+1] \cdot \mathbf{r}_{yx}[k+1] \end{split}$$

Appendix Optimum Linear Filters & Adaptive Signal Processing

<u>Procedure:</u> With eigenvalues λ_i and eigenvectors $\underline{\mathbf{q}}_i$:

$$\mathbf{R} \cdot \underline{\mathbf{q}}_i = \lambda_i \cdot \underline{\mathbf{q}}_i \ \, \Rightarrow \ \, (\mathbf{R} - \lambda_i \mathbf{I}) \cdot \underline{\mathbf{q}}_i = \underline{\mathbf{0}} \ \, \text{for} \, i = 0, 1, \cdots, N-1$$

<u>Procedure:</u> With eigenvalues λ_i and eigenvectors $\underline{\mathbf{q}}_i$:

$$\begin{split} \mathbf{R} \cdot \underline{\mathbf{q}}_i &= \lambda_i \cdot \underline{\mathbf{q}}_i \quad \Rightarrow \quad (\mathbf{R} - \lambda_i \mathbf{I}) \cdot \underline{\mathbf{q}}_i = \underline{\mathbf{0}} \; \; \text{for} \; i = 0, 1, \cdots, N-1 \end{split}$$
 With $\mathbf{Q} = (\underline{\mathbf{q}}_0, \cdots, \underline{\mathbf{q}}_{N-1}) \; \text{and} \; \boldsymbol{\Lambda} = diag\{\lambda_0, \cdots, \lambda_{N-1}\}$

$$\mathbf{R} \cdot \mathbf{Q} = \mathbf{Q} \cdot \mathbf{\Lambda} \quad \Rightarrow \quad \mathbf{R} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1}$$

<u>Procedure:</u> With eigenvalues λ_i and eigenvectors $\underline{\mathbf{q}}_i$:

$$\mathbf{R} \cdot \underline{\mathbf{q}}_i = \lambda_i \cdot \underline{\mathbf{q}}_i \ \, \Rightarrow \ \, (\mathbf{R} - \lambda_i \mathbf{I}) \cdot \underline{\mathbf{q}}_i = \underline{\mathbf{0}} \ \, \text{for} \, i = 0, 1, \cdots, N-1$$

With
$$\mathbf{Q}=(\underline{\mathbf{q}}_0,\cdots,\underline{\mathbf{q}}_{N-1})$$
 and $\mathbf{\Lambda}=diag\{\lambda_0,\cdots,\lambda_{N-1}\}$

$$\mathbf{R} \cdot \mathbf{Q} = \mathbf{Q} \cdot \mathbf{\Lambda} \quad \Rightarrow \quad \mathbf{R} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1}$$

<u>Property:</u> Eigenvectors $\underline{\mathbf{q}}_i$ orthogonal \Rightarrow

$$\mathbf{Q}^h \cdot \mathbf{Q} = \mathbf{Q} \cdot \mathbf{Q}^h = c \cdot \mathbf{I}$$
 with c some constant

<u>Procedure:</u> With eigenvalues λ_i and eigenvectors $\underline{\mathbf{q}}_i$:

$$\mathbf{R} \cdot \underline{\mathbf{q}}_i = \lambda_i \cdot \underline{\mathbf{q}}_i \ \, \Rightarrow \ \, (\mathbf{R} - \lambda_i \mathbf{I}) \cdot \underline{\mathbf{q}}_i = \underline{\mathbf{0}} \ \, \text{for} \, i = 0, 1, \cdots, N-1$$

With
$$\mathbf{Q}=(\underline{\mathbf{q}}_0,\cdots,\underline{\mathbf{q}}_{N-1})$$
 and $\mathbf{\Lambda}=diag\{\lambda_0,\cdots,\lambda_{N-1}\}$

$$\mathbf{R} \cdot \mathbf{Q} = \mathbf{Q} \cdot \mathbf{\Lambda} \quad \Rightarrow \quad \mathbf{R} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1}$$

$$\mathbf{Q}^h \cdot \mathbf{Q} = \mathbf{Q} \cdot \mathbf{Q}^h = c \cdot \mathbf{I}$$
 with c some constant

Main result:

Diagonalization:

$$\mathbf{Q}^h \mathbf{R} \mathbf{Q} = \mathbf{\Lambda} \quad \Leftrightarrow \quad \mathbf{R} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^h$$

Example MA(1):

$$x[k] = i[k] + ai[k-1]$$
 with $E\{i[k]\} = 0$ and $E\{i^2[k]\} = \sigma_i^2 \Rightarrow$

Example MA(1):

$$x[k] = i[k] + ai[k-1]$$
 with $E\{i[k]\} = 0$ and $E\{i^2[k]\} = \sigma_i^2 \Rightarrow$ $\rho[0] = (1+a^2)\sigma_i^2; \, \rho[1] = \rho[-1] = a\sigma_i^2; \, \rho[\tau] = 0$ for $|\tau| \ge 2$

Example MA(1):

$$x[k] = i[k] + ai[k-1] \text{ with } E\{i[k]\} = 0 \text{ and } E\{i^2[k]\} = \sigma_i^2 \Rightarrow 0 \text{ and } E\{i^2[k]\} = 0 \text{ and } E\{i^2[k]$$

$$\rho[0] = (1+a^2)\sigma_i^2; \, \rho[1] = \rho[-1] = a\sigma_i^2; \, \rho[\tau] = 0 \text{ for } |\tau| \ge 2$$

Eigenvalues problem $\det{(\mathbf{R}-\lambda\mathbf{I})}=0$ for N=2 (with $\gamma=\rho[1]/\rho[0]$):

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_0 & 0 \\ 0 & \lambda_1 \end{pmatrix} = \begin{pmatrix} 1+\gamma & 0 \\ 0 & 1-\gamma \end{pmatrix} \; \; \mathbf{Q} = \begin{pmatrix} \mathbf{\underline{q}}_0, \mathbf{\underline{q}}_1 \end{pmatrix} = c \cdot \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Example MA(1):

$$x[k]=i[k]+ai[k-1]$$
 with $E\{i[k]\}=0$ and $E\{i^2[k]\}=\sigma_i^2\Rightarrow$

$$\rho[0]=(1+a^2)\sigma_i^2$$
 ; $\rho[1]=\rho[-1]=a\sigma_i^2$; $\rho[\tau]=0$ for $|\tau|\geq 2$

Eigenvalues problem $\det{({\bf R}-\lambda{\bf I})}=0$ for N=2 (with $\gamma=\rho[1]/\rho[0]$):

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_0 & 0 \\ 0 & \lambda_1 \end{pmatrix} = \begin{pmatrix} 1+\gamma & 0 \\ 0 & 1-\gamma \end{pmatrix} \; \; \mathbf{Q} = \begin{pmatrix} \mathbf{\underline{q}}_0, \mathbf{\underline{q}}_1 \end{pmatrix} = c \cdot \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

- ▶ Vector $\underline{\mathbf{q}}_0$ orthogonal to $\underline{\mathbf{q}}_1$ since $\underline{\mathbf{q}}_0^t \cdot \underline{\mathbf{q}}_1 = 0$
- For white noise (a=0): $\Lambda=\mathbf{I}$
- For MA(1) with N > 2: \mathbf{R} is tri-diagonal

Example: Eigenvalues and psd for white noise, MA(1) and AR(1)

Example: Eigenvalues and psd for white noise, MA(1) and AR(1)

Back2Slides

Example: Eigenvalues and psd for white noise, MA(1) and AR(1)

