

Ronda 2 Olimpiada Departamental de Física Nivel I

Nombre Completo:	
Fecha de Nacimiento:	
Dirección:	
Departamento:	
Teléfono:	
Institución Educativa:	

Problema 1: Una pequeña pelota de $0.1\,kg$ de masa cae verticalmente sobre arena llegando a esta con una velocidad de $5\,m/s$. El cuerpo es frenado por la arena con una fuerza constante. Si el cuerpo penetra $15\,cm$ antes de detenerse, determine la aceleración y la fuerza constante que ejerció la arena sobre la pelota.

Problema 2: Sobre una mesa áspera y fija se encuentra una partícula de masa $m = 0.1 \, kg$, a la cual se le ejercen dos fuerzas constantes de módulo $F = 1 \, N$, perpendiculares entre sí y paralelas a la superficie de la mesa. Si el coeficiente de fricción entre la partícula y la mesa es $\mu = 0.3$ y la partícula se desplaza una distancia $d = 0.1 \, m$. Determine el trabajo total que se efectuó sobre la partícula.

Problema 3: Se tiene un sistema de dos bloques unidos por una cuerda ideal suspendida por una polea ideal. Uno de los bloques de masa $m=3\ kg$ se encuentra descansando sobre un plano sin fricción inclinado $\theta=30^\circ$, en el extremo derecho está unida a la cuerda y en el extremo izquierdo se encuentra anclada a un resorte de longitud natural 0, el otro bloque de masa $M=6\ kg$ se encuentra colgando de la polea por medio la cuerda. Si el resorte se estira $x=0.5\ m$, determine la constante elástica k del resorte para que el sistema se mantenga estático en esas condiciones.

Tiempo: 4.5 horas Cada problema vale: 10 puntos **Problema 4:** Disponemos de una barra homogénea de masa m y longitud l que está inicialmente recostada en el suelo; la elevamos de un extremo tal que queda formando un ángulo θ respecto a la horizontal, y se sujeta como se muestra en la figura a un resorte de longitud natural 0 y constante elástica k. Se desea encontrar la fuerza F perpendicular a la barra necesaria para que el sistema se mantenga en reposo en el momento descrito.

Problema 5: Desde la parte superior de una cuña (plano inclinado) un bloque de masa m se suelta desde el reposo en cuál se detiene en la posición C cómo se muestra en la figura. El coeficiente de rozamiento del punto B al C es el doble que del punto A al B. Si la distancia AB = BC = L, determine el valor del coeficiente de fricción en la superficie horizontal.

