Total positivity of the Eulerian triangle: A big generalisation of Brenti's conjecture

Bishal Deb (he/him)

University College London

April 24, 2021 Graduate Student Combinatorics Conference (GSCC) 2021

Based on Ongoing Joint Work With

Xi Chen, Alexander Dyachenko, Tomack Gilmore and Alan D. Sokal

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative i.e., determinants of all finite square submatrices are non-negative.

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative i.e., determinants of all finite square submatrices are non-negative.

Array of numbers and not linear operator.

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative i.e., determinants of all finite square submatrices are non-negative.

Array of numbers and not linear operator.

Need not be a square matrix,

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative i.e., determinants of all finite square submatrices are non-negative.

Array of numbers and not linear operator.

Need not be a square matrix, or finite!

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative i.e., determinants of all finite square submatrices are non-negative.

Array of numbers and not linear operator.

Need not be a square matrix, or finite!

Will consider matrix of polynomials soon!

Historical Note

First defined independently by two different groups in the 30s

(a) M.G. Krein (1907-1989)

(b) I.G. Schoenberg (1903-1990)

Source: MacTutor History of Mathematics Archive

We use Schoenberg's terminology.

ullet Example: Bidiagonal matrices with entries ≥ 0

- ullet Example: Bidiagonal matrices with entries ≥ 0
- Matrix sum doesn't preserve TP

- Example: Bidiagonal matrices with entries ≥ 0
- Matrix sum doesn't preserve TP (Has 2×2 example)

- ullet Example: Bidiagonal matrices with entries ≥ 0
- Matrix sum doesn't preserve TP (Has 2×2 example)
- Matrix product preserves TP

- ullet Example: Bidiagonal matrices with entries ≥ 0
- Matrix sum doesn't preserve TP (Has 2×2 example)
- Matrix product preserves TP (Cauchy-Binet formula)

• Brenti in 80s started studying TP in combinatorics.

- Brenti in 80s started studying TP in combinatorics.
- Many important combinatorial triangles are TP.

- Brenti in 80s started studying TP in combinatorics.
- Many important combinatorial triangles are TP.
 Examples

- Brenti in 80s started studying TP in combinatorics.
- Many important combinatorial triangles are TP.

Examples

• Binomial triangle. Entries $\binom{n}{k}$

- Brenti in 80s started studying TP in combinatorics.
- Many important combinatorial triangles are TP.

- Binomial triangle. Entries $\binom{n}{k}$
- \bullet Stirling cycle triangle. Entries ${n+1\brack k}$

- Brenti in 80s started studying TP in combinatorics.
- Many important combinatorial triangles are TP.

- Binomial triangle. Entries $\binom{n}{k}$
- ullet Stirling cycle triangle. Entries ${n+1 \brack k}$
- \bullet Stirling subset triangle. Entries ${n+1 \choose k}$

- Brenti in 80s started studying TP in combinatorics.
- Many important combinatorial triangles are TP.

- Binomial triangle. Entries $\binom{n}{k}$
- \bullet Stirling cycle triangle. Entries ${n+1\brack k}$
- \bullet Stirling subset triangle. Entries ${n+1 \choose k}$
- \bullet Reversed Stirling cycle triangle. Entries ${n+1 \brack n-k+1}$

- Brenti in 80s started studying TP in combinatorics.
- Many important combinatorial triangles are TP.

- Binomial triangle. Entries $\binom{n}{k}$
- \bullet Stirling cycle triangle. Entries ${n+1\brack k}$
- ullet Stirling subset triangle. Entries ${n+1 \choose k}$
- Reversed Stirling cycle triangle. Entries $\binom{n+1}{n-k+1}$ (reversal does not preserve TP)

Reversed Stirling Subset Triangle

Reversed Stirling subset triangle:

Reversed Stirling Subset Triangle

Reversed Stirling subset triangle:

$$\left({n+1 \brace k}^{\text{rev}} \right)_{n,k \ge 0} = \left({n+1 \brace n-k+1} \right)_{n,k \ge 0} = \begin{bmatrix} 1 \\ 1 & 1 \\ 1 & 3 & 1 \\ 1 & 6 & 7 & 1 \\ 1 & 10 & 25 & 15 & 1 \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Conjecture (Us 2019)

The infinite lower triangular matrix $\binom{n+1}{k}^{\text{rev}}_{n,k\geq 0} = \binom{n+1}{n-k+1}_{n,k\geq 0}$ is TP.

Descent of a permutation σ :

Descent of a permutation σ : Position i such that $\sigma(i) > \sigma(i+1)$.

Descent of a permutation σ : Position i such that $\sigma(i) > \sigma(i+1)$. des (σ) : number of descents of σ .

Descent of a permutation σ : Position i such that $\sigma(i) > \sigma(i+1)$.

 $des(\sigma)$: number of descents of σ .

Example: For $\sigma = 943127685$, $des(\sigma) = 5$

Descent of a permutation σ : Position i such that $\sigma(i) > \sigma(i+1)$.

 $des(\sigma)$: number of descents of σ .

Example: For $\sigma = 943127685$, $des(\sigma) = 5$

Definition

The Eulerian number $\binom{n}{k}$ is defined to be the cardinality of the set $\{\sigma \in \mathfrak{S}_n | \operatorname{des}(\sigma) = k\}$.

Definition

The Eulerian number $\binom{n}{k}$ is defined to be the cardinality of the set $\{\sigma \in \mathfrak{S}_n | \operatorname{des}(\sigma) = k\}$.

Definition

The Eulerian number $\binom{n}{k}$ is defined to be the cardinality of the set $\{\sigma \in \mathfrak{S}_n | \operatorname{des}(\sigma) = k\}$.

Eulerian Triangle Conjecture

Conjecture (Brenti 1996)

The infinite lower triangular matrix $\binom{n+1}{k}_{n,k\geq 0}$ is TP.

Eulerian Triangle Conjecture

Conjecture (Brenti 1996)

The infinite lower triangular matrix $\binom{n+1}{k}_{n,k\geq 0}$ is TP.

Verified for 512×512 using an efficient bidiagonal factorisation algorithm.

Eulerian Triangle Conjecture

Conjecture (Brenti 1996)

The infinite lower triangular matrix $\binom{n+1}{k}_{n,k\geq 0}$ is TP.

Verified for 512×512 using an efficient bidiagonal factorisation algorithm.

Rational numbers with large denominators appear.

Eulerian Triangle Conjecture

Conjecture (Brenti 1996)

The infinite lower triangular matrix $\binom{n+1}{k}_{n,k\geq 0}$ is TP.

Verified for 512×512 using an efficient bidiagonal factorisation algorithm.

Rational numbers with large denominators appear.

General pattern not clear.

A comparision of the two triangles

Reversed Stirling subset triangle:

$$\left(\begin{Bmatrix} n+1 \\ k \end{Bmatrix}^{\text{rev}} \right)_{n,k \ge 0} = \begin{bmatrix} 1 \\ 1 & 1 \\ 1 & 3 & 1 \\ 1 & 6 & 7 & 1 \\ 1 & 10 & 25 & 15 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Eulerian triangle:

A comparision of the two triangles

Reversed Stirling subset triangle:

$$\left(\begin{Bmatrix} n+1 \\ k \end{Bmatrix}^{\text{rev}} \right)_{n,k \ge 0} = \begin{bmatrix} 1 \\ 1 & 1 \\ 1 & 3 & 1 \\ 1 & 6 & 7 & 1 \\ 1 & 10 & 25 & 15 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

$$A_{n,k} = (n-k+1)A_{n-1,k-1} + 1 \cdot A_{n-1,k}$$

Eulerian triangle:

$$A_{n,k} = (n-k+1)A_{n-1,k-1} + (k+1)A_{n-1,k}$$

A comparision of the two triangles

Reversed Stirling subset triangle:

$$\left(\begin{Bmatrix} n+1 \\ k \end{Bmatrix}^{\text{rev}} \right)_{n,k \ge 0} = \begin{bmatrix} 1 \\ 1 & 1 \\ 1 & 3 & 1 \\ 1 & 6 & 7 & 1 \\ 1 & 10 & 25 & 15 & 1 \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

$$A_{n,k} = (n-k+1)A_{n-1,k-1} + 1 \cdot A_{n-1,k}$$

Eulerian triangle:

$$A_{n,k} = (n-k+1)A_{n-1,k-1} + (k+1)A_{n-1,k}$$

Introduce variables

Definition (Coefficientwise TP)

A matrix of polynomials with real coefficients is said to be coefficientwise totally positive (coefficientwise TP) if all its minors have non-negative coefficients.

Definition (Coefficientwise TP)

A matrix of polynomials with real coefficients is said to be coefficientwise totally positive (coefficientwise TP) if all its minors have non-negative coefficients.

One or several variables.

Definition (Coefficientwise TP)

A matrix of polynomials with real coefficients is said to be coefficientwise totally positive (coefficientwise TP) if all its minors have non-negative coefficients.

One or several variables.

Coefficientwise TP \Longrightarrow Pointwise TP.

Definition (Coefficientwise TP)

A matrix of polynomials with real coefficients is said to be coefficientwise totally positive (coefficientwise TP) if all its minors have non-negative coefficients.

One or several variables.

Coefficientwise TP \Longrightarrow Pointwise TP.

But much stronger.

Replace

$$A_{n,k} = (n-k+1)A_{n-1,k-1} + (k+1)A_{n-1,k}$$
$$A_{n,k} = (n-k+1)A_{n-1,k-1} + 1 \cdot A_{n-1,k}$$

Introduce variables a, b, c, d, e.

$$A_{n,k} = \left[a(n-k) + b(k-1) + \frac{c}{c} \right] A_{n-1,k-1} + \left(\frac{dk}{c} + e \right) A_{n-1,k}$$

Replace

$$A_{n,k} = (n-k+1)A_{n-1,k-1} + (k+1)A_{n-1,k}$$

$$A_{n,k} = (n-k+1)A_{n-1,k-1} + 1 \cdot A_{n-1,k}$$

Introduce variables a, b, c, d, e.

$$A_{n,k} = [a(n-k) + b(k-1) + c]A_{n-1,k-1} + (dk + e)A_{n-1,k}$$

Is it coefficientwise TP? (Minors are polynomials with non-negative coefficients?)

Replace

$$A_{n,k} = (n-k+1)A_{n-1,k-1} + (k+1)A_{n-1,k}$$

$$A_{n,k} = (n-k+1)A_{n-1,k-1} + 1 \cdot A_{n-1,k}$$

Introduce variables a, b, c, d, e.

$$A_{n,k} = [a(n-k) + b(k-1) + c]A_{n-1,k-1} + (dk + e)A_{n-1,k}$$

Is it coefficientwise TP? (Minors are polynomials with non-negative coefficients?) More general conjecture!

Replace

$$A_{n,k} = (n-k+1)A_{n-1,k-1} + (k+1)A_{n-1,k}$$

$$A_{n,k} = (n-k+1)A_{n-1,k-1} + 1 \cdot A_{n-1,k}$$

Introduce variables a, b, c, d, e.

$$A_{n,k} = [a(n-k) + b(k-1) + c]A_{n-1,k-1} + (dk+e)A_{n-1,k}$$

Is it coefficientwise TP? (Minors are polynomials with non-negative coefficients?) More general conjecture!

True till 11×11 - a week.

Replace

$$A_{n,k} = (n-k+1)A_{n-1,k-1} + (k+1)A_{n-1,k}$$

$$A_{n,k} = (n-k+1)A_{n-1,k-1} + 1 \cdot A_{n-1,k}$$

Introduce variables a, b, c, d, e.

$$A_{n,k} = [a(n-k) + b(k-1) + c]A_{n-1,k-1} + (dk+e)A_{n-1,k}$$

Is it coefficientwise TP? (Minors are polynomials with non-negative coefficients?) More general conjecture!

True till 11×11 - a week.

False for 12×12 - 99 days CPU time.

Replace

$$A_{n,k} = (n-k+1)A_{n-1,k-1} + (k+1)A_{n-1,k}$$

$$A_{n,k} = (n-k+1)A_{n-1,k-1} + 1 \cdot A_{n-1,k}$$

Introduce variables a, b, c, d, e.

$$A_{n,k} = [a(n-k) + b(k-1) + c]A_{n-1,k-1} + (dk+e)A_{n-1,k}$$

Is it coefficientwise TP? (Minors are polynomials with non-negative coefficients?) More general conjecture!

True till 11×11 - a week.

False for 12×12 - 99 days CPU time. ©

Put b = 0 to obtain

$$A_{n,k} = [a(n-k) + c]A_{n-1,k-1} + (dk + e)A_{n-1,k}$$

Put b = 0 to obtain

$$A_{n,k} = [a(n-k) + \frac{c}{c}]A_{n-1,k-1} + (\frac{dk}{c} + \frac{e}{c})A_{n-1,k}$$

Empirically true upto 13×13 .

Put b = 0 to obtain

$$A_{n,k} = [a(n-k) + c]A_{n-1,k-1} + (dk + e)A_{n-1,k}$$

Empirically true upto 13×13 .

(a, c, d, e)	Matrix obtained

Put b = 0 to obtain

$$A_{n,k} = [a(n-k) + c]A_{n-1,k-1} + (dk + e)A_{n-1,k}$$

Empirically true upto 13×13 .

$\overline{(a,c,d,e)}$	Matrix obtained
(1,1,1,1)	clean Eulerian triangle, conjecture
(1,0,1,1)	shifted Eulerian triangle, conjecture
(1,1,1,0)	shifted Eulerian triangle, conjecture

Put b = 0 to obtain

$$A_{n,k} = [a(n-k) + c]A_{n-1,k-1} + (dk + e)A_{n-1,k}$$

Empirically true upto 13×13 .

(a, c, d, e)	Matrix obtained
(1,1,1,1)	clean Eulerian triangle, conjecture
(1,0,1,1)	shifted Eulerian triangle, conjecture
(1,1,1,0)	shifted Eulerian triangle, conjecture
(0,1,0,1)	Binomial triangle, TP

Put b = 0 to obtain

$$A_{n,k} = [a(n-k) + c]A_{n-1,k-1} + (dk + e)A_{n-1,k}$$

Empirically true upto 13×13 .

(a, c, d, e)	Matrix obtained
(1,1,1,1)	clean Eulerian triangle, conjecture
(1,0,1,1)	shifted Eulerian triangle, conjecture
(1,1,1,0)	shifted Eulerian triangle, conjecture
(0,1,0,1)	Binomial triangle, TP
(0,1,1,1)	Stirling subset numbers, TP proved by Brenti 1995

Put b = 0 to obtain

$$A_{n,k} = [a(n-k) + c]A_{n-1,k-1} + (dk + e)A_{n-1,k}$$

Empirically true upto 13×13 .

(a, c, d, e)	Matrix obtained
(1,1,1,1)	clean Eulerian triangle, conjecture
(1,0,1,1)	shifted Eulerian triangle, conjecture
(1,1,1,0)	shifted Eulerian triangle, conjecture
(0,1,0,1)	Binomial triangle, TP
(0,1,1,1)	Stirling subset numbers, TP proved by Brenti 1995
(1,1,0,1)	Row reversed matrix of Stirling subset numbers, conjecture

$$A_{n,k} = (n - k + 1)A_{n-1,k-1}$$

$$+(k+1)A_{n-1,k}$$

$$A_{n,k} = (n - k + 1)A_{n-1,k-1} + 1 \cdot A_{n-1,k}$$

$$A_{n,k} = [a(n-k) + c]A_{n-1,k-1}$$

$$+(\mathbf{d}k+\mathbf{e})A_{n-1,k}$$

Put b = 0 to obtain

$$A_{n,k} = [a(n-k) + c]A_{n-1,k-1} + (dk + e)A_{n-1,k}$$

This seems to be coefficientwise TP so far.

Infact, we have the following special cases for different substitutions:

(a, c, d, e)	Matrix obtained
(1,1,1,1)	clean Eulerian triangle, conjecture
(1,0,1,1)	Down-shifted Eulerian triangle, conjecture
(1,1,1,0)	Diagonally down-shifted Eulerian triangle, conjecture
(0,1,0,1)	Binomial triangle, TP
(0,1,1,1)	Stirling subset numbers, TP proved by Brenti 1995
(1,1,0,1)	Row reversed matrix of Stirling subset numbers, conjecture

Put b = 0 to obtain

$$A_{n,k} = [a(n-k) + c]A_{n-1,k-1} + (dk + e)A_{n-1,k}$$

This seems to be coefficientwise TP so far.

Infact, we have the following special cases for different substitutions:

(1 -)	Matrice aletain ad
(a, c, d, e)	Matrix obtained
(1,1,1,1)	clean Eulerian triangle, conjecture
(1,0,1,1)	Down-shifted Eulerian triangle, conjecture
(1,1,1,0)	Diagonally down-shifted Eulerian triangle, conjecture
(0,1,0,1)	Binomial triangle, TP
(0,1,1,1)	Stirling subset numbers, TP proved by Brenti 1995
(1,1,0,1)	Row reversed matrix of Stirling subset numbers, conjecture

ace triangle

Reversed Stirling subset triangle

$$\left(\begin{Bmatrix} n+1 \\ k \end{Bmatrix}^{\text{rev}} \right)_{n,k \geq 0} = \begin{bmatrix} 1 \\ 1 & 1 \\ 1 & 3 & 1 \\ 1 & 6 & 7 & 1 \\ 1 & 10 & 25 & 15 & 1 \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}.$$

ace triangle

ace triangle

recurrence

$$A_{n,k} = [a(n-k) + \frac{c}{c}]A_{n-1,k-1} + \frac{e}{c}A_{n-1,k}$$

ace triangle

ace triangle

recurrence

$$A_{n,k} = [a(n-k) + c]A_{n-1,k-1} + eA_{n-1,k}$$

We have three proofs:

- Two Digraph proofs using the Lindström-Gessel-Viennot lemma
 - Bijection between paths in the digraph to set partitions.
 - Exploiting the structure of the digraph.
- Algebraic proof

An ace digraph

An ace digraph

We have a weight preserving bijection between paths from $u_n \to v_k$ and set partitions of $\{1,\dots,n+1\}$ into n-k+1 parts.

$$A_{n,k} = (n - k + 1)A_{n-1,k-1} + (k+1)A_{n-1,k}$$

Eulerian triangle conjecture

$$\begin{split} A_{n,k} &= [a(n-k)+c]A_{n-1,k-1} \\ &+ (dk+e)A_{n-1,k} \end{split} \label{eq:analytic_point}$$

acde conjecture

$$\begin{split} A_{n,k} &= [a(n-k)+c]A_{n-1,k-1} \\ &+ (dk+e)A_{n-1,k} \\ &+ [f(n-2)+g]A_{n-2,k-1} \end{split}$$

acdefg conjecture

$$\begin{split} A_{n,k} &= [a(n-k)+c]A_{n-1,k-1} \\ &+ \left(\sum_{i=0}^k d_i\right)A_{n-1,k} \\ &+ [f(n-2)+g]A_{n-2,k-1} \\ ∾\mathbf{d}fg \text{ conjecture} \end{split}$$

Thank you

Meme images from internet and digraph drawn by Tomack Gilmore.