Trapping and imaging of single atoms in the presence of light shift

Yichao Yu May 26, 2016 Ni Group/Harvard

Group members
Nicholas Hutzler
Lee Liu
Jessie Zhang
PI
Kang-Kuen Ni

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

- MOT Loading
- Trapping
- Imaging
- Works for Cs
- Doesn't work for Na

- Inefficient cooling; Heating
- Shift imaging light out of resonance

- Inefficient cooling; Heating
- Shift imaging light out of resonance

- Inefficient cooling; Heating
- Shift imaging light out of resonance

- Inefficient cooling; Heating
- Shift imaging light out of resonance

- Inefficient cooling; Heating
- Shift imaging light out of resonance

- Inefficient cooling; Heating
- Shift imaging light out of resonance

Cs single atom loading

U			
$\lambda_{trap}(nm)$	922	935	970
Loading (%)	0	≈ 50	≈ 50

- Alternate between resonant and trap light
- Switching at $1 \sim 3$ MHz $f_{trap} = 10 \sim 400$ kHz $\Gamma = 2\pi \times (5 \sim 10)$ MHz
- Being able to load single Na atom

- Alternate between resonant and trap light
- Switching at $1 \sim 3$ MHz $f_{trap} = 10 \sim 400 \text{ kHz}$ $\Gamma = 2\pi \times (5 \sim 10) \text{ MHz}$
- Being able to load single
 Na atom

- Alternate between resonant and trap light
- Switching at $1 \sim 3$ MHz $f_{trap} = 10 \sim 400$ kHz $\Gamma = 2\pi \times (5 \sim 10)$ MHz
- Being able to load single Na atom

- Alternate between resonant and trap light
- Switching at $1 \sim 3 \text{MHz}$ $f_{trap} = 10 \sim 400 \text{ kHz}$ $\Gamma = 2\pi \times (5 \sim 10) \text{ MHz}$
- Being able to load single
 Na atom

Cs single atom loading

•		_	
$\lambda_{trap}(nm)$	922	935	970
Loading (%)	≈ 50	≈ 50	≈ 50

- Alternate between resonant and trap light
- Switching at $1 \sim 3$ MHz $f_{trap} = 10 \sim 400 \text{ kHz}$ $\Gamma = 2\pi \times (5 \sim 10) \text{ MHz}$
- Being able to load single Na atom

Cs single atom loading

C		C	
$\lambda_{trap}(nm)$	922	935	970
Loading (%)	≈ 50	≈ 50	≈ 50

Cs single atom imaging

- Alternate between resonant and trap light
- Switching at $1 \sim 3 \text{MHz}$ $f_{trap} = 10 \sim 400 \text{ kHz}$ $\Gamma = 2\pi \times (5 \sim 10) \text{ MHz}$
- Being able to load single Na atom

Cs single atom loading

•		_	
$\lambda_{trap}(nm)$	922	935	970
Loading (%)	≈ 50	≈ 50	≈ 50

Cs single atom imaging

- Alternate between resonant and trap light
- Switching at $1 \sim 3 \text{MHz}$ $f_{trap} = 10 \sim 400 \text{ kHz}$ $\Gamma = 2\pi \times (5 \sim 10) \text{ MHz}$
- Being able to load single Na atom

- Alternate between resonant and trap light
- Switching at $1 \sim 3 \text{MHz}$ $f_{trap} = 10 \sim 400 \text{ kHz}$ $\Gamma = 2\pi \times (5 \sim 10) \text{ MHz}$
- Being able to load single Na atom

Conclusion

- Measured the effect of light shift on loading and imaging of single atom
- Overcome the light shift by alternating trapping and resonant light to achieve loading of single Na atom.
- Generalizable to other species

