Towards Implementing Carry-Free Primitives for Prime Field

by Vikram Voleti

Promoter: Prof. Dr. Ingrid Verbauwhede Supervisor: Sujoy Sinha Roy

Contents

- l. Introduction
- 2. Our Solution: Carry-Free Arithmetic
- 3. Recoded Binary Signed Digit (RBSD) numbers
- 4. Carry-Free Addition
- 5. Carry-Free Subtraction
- 6. Multiplication using Karatsuba algorithm
- 7. Modular Reduction
- 8. Problems
- 9. Future Work

1. Introduction

<u>Problem:</u>

Carry Propagation in Integer Arithmetic

2. Our Solution: Carry-Free Arithmetic

"Carry-Free Addition of Recoded Binary Signed-Digit Numbers" by Behrooz Parhami

- Use of Recoded Binary Signed Digit numbers
- Carry-Free Addition of Recoded Binary Signed Digit numbers
- Use of Carry-Free Addition in other arithmetic operations: subtraction, multiplication, modular reduction

3. Recoded Binary Signed Digit number

RBSD: Numbers represented by {-1, 0, 1}, with no two consecutive I's or -1's

• n-bit Binary number => $2^*(n+1)$ -bit RBSD number: n+1 bits for sign, n+1 bits for value

$$3 = [1 1]$$
 in binary

$$= [1 O -1] in RBSD$$

3. Recoded Binary Signed Digit number

Binary to RBSD Conversion:

Ai	A_{i-1}	Xi
0	0	0
0	1	1
1	0	-1
1	1	0

2. BSD to RBSD Conversion:

Ai	A _{i-1}	A _{i-2}	A _{i-3}	Xi	0	0	X	X	0
-1	-1	-1	X	0	0	1	-1	X	0
		0	-1	0			0	-1	0
		0	0	1			0	0	1
		0	1	1			0	1	1
		1	X	1			1	X	1
-1	0	-1	X	1	1	-1	-1	X	0
		0	X	-1			0	-1	0
		1	X	-1			0	0	1
-1	1	-1	X	-1			0	1	1
		0	-1	-1			1	X	1
		0	0	0	1	0	-1	X	1
		0	1	0			0	Х	-1
		1	X	0			1	X	-1
0	-1	-1	X	-1	1	1	-1	X	-1
		0	-1	-1			0	-1	-1
		0	0	0			0	0	0
		0	1	0			0	1	0
		1	X	0			1	X	0

These are combinational circuits, there is no delay due to carry propagation.

4. Carry-Free Addition: RBSD numbers

\mathbf{X}_{i}	Yi	X _{i-1}	Y _{i-1}	S_{i}
1	1	0	0	0
		0	1	0
		1	0	0
		1	1	1
<u>1</u>	0	0	X	$\bar{1}$
		1	1	<u>1</u> 1
		1	0	<u>1</u>
		1	1	0
1	1	0	1	0
		0	0	0
		1	1	0
		1	0	0

0	1	X	0	1
		1	1	1
		0	1	1
		1	1	0
0	0	1	1	1
		X 1	0	0
			1	0
		0	X	0
		1	1	0
		1	1	1
0	1	1	<u>1</u>	0
		X	0	1
		0	1	1
		1	1	1

1	1	<u>1</u>	0	0
		1	1	0
		0	0	0
		0	1	0
1	0	1	1	0
		1 1	0	1
			1	1
		0	X	1
1	1	1	1	1
		1	0	0
		0	<u>1</u>	0
		0	0	0

This is a combinational circuit, there is no delay due to carry propagation.

4. Carry-Free Addition: RBSD numbers

```
\begin{split} &S0 = \overline{X}_{i}^{s} + Y_{i}^{s} + \overline{Y}_{i}^{v} \\ &S1 = \overline{X}_{i}^{v} + Y_{i}^{v} + \overline{X}_{i:1}^{s} + \overline{Y}_{i:1}^{s} \\ &S2 = X_{i}^{v} + \overline{Y}_{i}^{v} + \overline{X}_{i:1}^{s} + \overline{Y}_{i:1}^{s} \\ &S3 = \overline{X}_{i}^{s} + Y_{i}^{s} + \overline{X}_{i:1}^{v} + Y_{i:1}^{s} + \overline{Y}_{i:1}^{v} \\ &S4 = X_{i}^{v} + \overline{Y}_{i}^{s} + X_{i:1}^{s} + \overline{X}_{i:1}^{v} + \overline{Y}_{i:1}^{v} \\ &S_{i}^{s} = S0.S1.S2.S3.S4.(\overline{X}_{i}^{v} + \overline{Y}_{i}^{s}).(X_{i}^{s} + Y_{i}^{s} + X_{i:1}^{s}).(X_{i}^{s} + Y_{i}^{s} + Y_{i:1}^{s}) \\ &S_{i}^{v} = S0.S1.S2.S3.S4.(X_{i}^{s} + \overline{X}_{i}^{v} + \overline{Y}_{i}^{s}).(\overline{X}_{i}^{v} + \overline{Y}_{i}^{v} + X_{i:1}^{v}).(\overline{X}_{i}^{v} + \overline{Y}_{i}^{v} + Y_{i:1}^{v}).(X_{i}^{v} + \overline{Y}_{i}^{v} + Y_{i:1}^{v}).(X_{i}^{v} + \overline{Y}_{i}^{v} + Y_{i:1}^{v}).(X_{i}^{v} + \overline{Y}_{i}^{v} + Y_{i:1}^{s}).(X_{i}^{v} + \overline{Y}_{i}^{v} + Y_{i:1}^{s}).(X_{i}^{v} + \overline{Y}_{i}^{v} + Y_{i:1}^{s}).(X_{i}^{v} + \overline{Y}_{i}^{v} + X_{i:1}^{s}).(X_{i}^{v} + \overline{Y}_{i}^{v} + X_{i:1}^{s}).(X_{i}^{v} + \overline{Y}_{i}^{v} + \overline{Y}_{i:1}^{s}).(X_{i}^{v} + \overline{Y}_{i:1}^{s}
```

Maximum combinational delay:

69-bit Carry-Free RBSD Addition: 4.784ns 133-bit Carry-Free RBSD Addition: 4.784ns

For Carry-Free addition of two 132-bit (each of sign and value) RBSD numbers is:

Selected Device: 5vlx30ff324-3 (Virtex-5)
Slice Logic Utilization: Number of Slice LUTs: 928 out of 19200 4%
Slice Logic Distribution: Number of LUT Flip Flop pairs used: 928

4. Carry-Free Addition: RBSD numbers

4. Carry-Free Addition: binary numbers

\mathbf{A}_{i}	A _{i-1}	A _{i-2}	Bi	B _{i-1}	B _{i-2}	S_{i}
0	0	0	0	0	0	0
			0	0	1	0
			0	1	0	1
			0	1	1	1 1
			1	0	0	1
			1	0	1	Ī
			1	1	0	0
			1	1	1	0
0	0	1	0	0	0	0
			0	0	1	1
			0	1	0	1
			0		1	1 1
			1	0	0	
			1	0	1	0
			1	1	0	0
			1	1	1	0
0	1	0	0	0	0	1
			0	0	1	1
			0	1	0	1
			0	1	1	0
			1	0	0	0
			1	0	1	0
			1	1	0	0
			1	1	1	1
0	1	1	0	0	0	1
			0	0	1	1
			0	1	0	0
			0	1	1	0
			1	0	0	0
			1	0	1	0
			1	1	0	1
			1	1	1	1
7/15/	2013					

1	0	0	0	0	0	<u>1</u> 1
			0	0	1	
			0	1	0	0
			0	1	1	0
			1	0	0	0
			1	0	1	0
			1	1	0	$\frac{0}{\overline{1}}$
			1	1	1	1
1	0	1	0	0	0	1
			0	0	1	0
			0	1	0	0
			0	1	1	0
			1	0	0	0
			1	0	1	1
			1	1	0	$\frac{\overline{1}}{\overline{1}}$
			1	1	1	1
				•		
1	1	0	0	0	0	0
			0	0	1	0
			0	1	0	0
			0	1	1	1
			1	0	0	1
			1	0	1	<u>1</u>
			1	1	0	1
			1	1	1	0
1	1	1	0	0	0	0
			0	0	1	0
			0	1	0	1
			0	1	1	1
			1	0	0	1
			1	0	1	1
			1	1	0	0
			1	1	1	0
						_

This is a combinational circuit, there is no delay due to carry propagation.

4. Carry-Free Addition: binary numbers

```
\begin{split} &S0 = A_i + A_{i-1} + \overline{B}_i + \overline{B}_{i-1} \\ &S1 = A_i + A_{i-1} + \overline{A}_{i-2} + B_i + B_{i-1} + \overline{B}_{i-2} \\ &S2 = A_i + \overline{A}_{i-1} + A_{i-2} + B_i + \overline{B}_{i-1} + \overline{B}_{i-2} \\ &S3 = \overline{A}_i + A_{i-1} + B_i + \overline{B}_{i-1} \\ &S4 = \overline{A}_i + A_{i-1} + \overline{A}_{i-2} + B_i + B_{i-1} + \overline{B}_{i-2} \\ &S5 = \overline{A}_i + \overline{A}_{i-1} + A_{i-2} + \overline{B}_i + \overline{B}_{i-1} + \overline{B}_{i-2} \\ &S6 = \overline{A}_i + \overline{A}_{i-1} + \overline{A}_{i-2} + \overline{B}_i + \overline{B}_{i-1} \\ &S_i^s = S0 S1 .S2 S3 .S4 .S5 .S6 .(A_i + A_{i-1} + B_i) .(A_i + \overline{A}_{i-1} + A_{i-2} + B_i + B_{i-1}) \\ &.(A_i + \overline{A}_{i-1} + A_{i-2} + \overline{B}_i) .(A_i + \overline{A}_{i-1} + \overline{A}_{i-2} + B_i + B_{i-1}) .(\overline{A}_i + \overline{A}_{i-1} + \overline{A}_{i-2} + B_i + B_{i-1}) \\ &.(A_i + \overline{A}_{i-1} + \overline{B}_i + B_{i-1}) .(A_i + A_{i-1} + A_{i-2} + \overline{B}_i + \overline{B}_{i-1}) .(A_i + \overline{A}_{i-1} + \overline{A}_{i-2} + B_i + \overline{B}_{i-1}) \\ &.(A_i + \overline{A}_{i-1} + \overline{B}_i + B_{i-1}) .(A_i + A_{i-1} + \overline{A}_{i-2} + \overline{B}_i + \overline{B}_{i-1} + B_{i-2}) .(\overline{A}_i + \overline{A}_{i-1} + \overline{A}_{i-2} + B_i + \overline{B}_{i-1}) \\ &.(\overline{A}_i + \overline{A}_{i-1} + A_{i-2} + \overline{B}_i + B_{i-1}) .(\overline{A}_i + A_{i-1} + \overline{A}_{i-2} + \overline{B}_i + \overline{B}_{i-1} + B_{i-2}) .(\overline{A}_i + \overline{A}_{i-1} + \overline{A}_{i-2} + B_i + \overline{B}_{i-1}) \\ &.(\overline{A}_i + \overline{A}_{i-1} + A_{i-2} + \overline{B}_i + \overline{B}_{i-1}) .(\overline{A}_i + \overline{A}_{i-1} + \overline{A}_{i-2} + \overline{B}_i + \overline{B}_{i-1}) \\ &.(\overline{A}_i + \overline{A}_{i-1} + A_{i-2} + \overline{B}_i + \overline{B}_{i-1}) .(\overline{A}_i + \overline{A}_{i-1} + \overline{A}_{i-2} + \overline{B}_i + \overline{B}_{i-1}) \\ &.(\overline{A}_i + \overline{A}_{i-1} + A_{i-2} + \overline{B}_i + \overline{B}_{i-1}) .(\overline{A}_i + \overline{A}_{i-1} + \overline{A}_{i-2} + \overline{B}_i + \overline{B}_{i-1}) \\ &.(\overline{A}_i + \overline{A}_{i-1} + \overline{A}_{i-2} + \overline{B}_i + \overline{B}_{i-1}) .(\overline{A}_i + \overline{A}_{i-1} + \overline{A}_{i-2} + \overline{B}_i + \overline{B}_{i-1}) \\ &.(\overline{A}_i + \overline{A}_{i-1} + \overline{A}_{i-2} + \overline{B}_i + \overline{B}_{i-1}) .(\overline{A}_i + \overline{A}_{i-1} + \overline{A}_{i-2} + \overline{B}_i + \overline{B}_{i-1}) \\ &.(\overline{A}_i + \overline{A}_{i-1} + \overline{A}_{i-2} + \overline{B}_i + \overline{B}_{i-1}) .(\overline{A}_i + \overline{A}_{i-1} + \overline{A}_{i-2} + \overline{B}_i + \overline{B}_{i-1}) \\ &.(\overline{A}_i + \overline{A}_{i-1} + \overline{A}_{i-2} + \overline{B}_i + \overline{B}_{i-1}) .(\overline{A}_i + \overline{A}_{i-1} + \overline{A}_{i-2} + \overline{B}_i + \overline{B}_{i-1}) \\ &.(\overline{A}_i + \overline{A}_{i-1} + \overline{A}_{i-2} + \overline{B}_i + \overline{B}_{i-1}) .(\overline{A}_i + \overline
```

Maximum combinational delay:

Carry_Free_Add_Bin32: 4.028ns Carry_Free_Add_Bin132: 4.028ns

For Carry-Free addition of two 132 bit binary numbers:

Selected Device: 5vlx30ff324-3 (Virtex-5)

Slice Logic Utilization: Number of Slice LUTs: 265 out of 19200 1% Slice Logic Distribution: Number of LUT Flip Flop pairs used: 265

5. Carry-Free Subtraction of RBSD numbers

$$A - B = A + (-B)$$

To negate an RBSD number: invert the l's and -l's:

 $Xs_new = \sim Xs \& Xv;$

 $Xv_new = Xv;$

Adder/Subtractor circuit for 256 bits:

Maximum combinational path delay: 5.402ns

Selected Device: 5vlx30ff324-3

Slice Logic Utilization: Number of Slice LUTs: 1802 out of 19200 9%

Slice Logic Distribution: Number of LUT Flip Flop pairs used: 1802

6. Multiplication of 66-bit binary numbers

Karatsuba Multiplication Algorithm for 66-bit numbers:

$$P = ((Ah*Bh)*2^66 + Al*Bl) + ((Ah+Al)*(Bh+Bl) - (Ah*Bh+Al*Bl))*2^33$$

Karatsuba Multiplication of 256-bit binary numbers is performed using 66-bit Karatsuba Multiplication incorporating Carry-Free Addition.

6. Multiplication of 66-bit binary numbers

Using Karatsuba Multiplication Algorithm

6. Multiplication of 66-bit binary numbers

Maximum combinational path delays of individual modules:

Carry_Free_Add_Bin32: 4.028ns Carry_Free_Add_Bin64: 4.028ns Carry_Free_Add_Bin132: 4.028ns Add_RBSD69: 4.784ns Add_RBSD133: 4.784ns

BSD_to_RBSD68: 4.028ns BSD_to_RBSD139: 4.028ns

RBSD_to_Bin33: 12.824ns

Bin_to_RBSD68: 3.607ns

Maximum combinational path delay of Multiplier: 24.978ns

Slice Logic Utilization: Number of Slice LUTs: 2223 out of 19200 11% Slice Logic Distribution: Number of LUT Flip Flop pairs used: 2223

7. Modular Reduction

Fast reduction modulo $p256 = 2^256 - 2^224 + 2^192 + 2^96 - 1$

INPUT: An integer c = (c15, ..., c2, c1, c0) in base 2^32 with $0 \le c < p256^2$.

OUTPUT: *c* mod *p*256.

1. Define 256-bit integers:

```
s1 = (c7, c6, c5, c4, c3, c2, c1, c0),

s2 = (c15, c14, c13, c12, c11,0,0,0),

s3 = (0, c15, c14, c13, c12,0,0,0),

s4 = (c15, c14,0,0,0, c10, c9, c8),

s5 = (c8, c13, c15, c14, c13, c11, c10, c9),

s6 = (c10, c8,0,0,0, c13, c12, c11),

s7 = (c11, c9,0,0, c15, c14, c13, c12),

s8 = (c12,0, c10, c9, c8, c15, c14, c13),

s9 = (c13,0, c11, c10, c9,0, c15, c14).
```

2. Return($s1 + 2s2 + 2s3 + s4 + s5 - s6 - s7 - s8 - s9 \mod p256$).

7. Modular Reduction

7. Modular Reduction

This is a sequential circuit, it 10 clock cycles to complete.

Minimum period: 5.215ns (Maximum Frequency: 191.755MHz)

Minimum input arrival time before clock: 5.880ns

Maximum output required time after clock: 7.229ns

Maximum combinational path delay: 7.895ns

Selected Device: 5vlx3Off324-3 (Virtex-5)

Slice Logic Utilization: Number of Slice Registers: 1051 out of 19200 5%

Number of Slice LUTs: 10612 out of 19200 55%

8. Problems

Binary -> RBSD conversion:

- It is assumed that binary number is positive
- This conversion increases bit size by l, and then doubles the bit size for inclusion of sign

Carry-Free Addition:

• Results in a BSD number that is not necessarily RBSD; fortunately, BSD to RBSD conversion is combinational

RBSD -> Binary conversion:

Involves carry propagation

Karatsuba Multiplication with Carry-Free Addition incorporated:

- Splitting a BSD or an RBSD number can result in carry propagation
- Have to use 64-bit RBSD to Binary converter in which Carry Propagation occurs, instead of faster sequential 32-bit RBSD to Binary conversion
- Ultimately, integer multiplication is performed, which involves Carry Propagation

9. Future Work

- Implement 2's complement binary number to RBSD conversion
- Implement carry-free integer multiplication
- Incorporate splitting and concatenation of BSD and RBSD numbers in carryfree arithmetic
- Design of ECC Processor that works with Carry-Free arithmetic:
 - design of arithmetic modules that work completely in the BSD number domain, without conversions to and from binary

References

- 1. Behrooz Parhami, "Carry-Free Addition of Recoded Binary Signed-Digit Numbers", IEEE Transactions on Computers, Vol. 37, No. 11, November 1988
- 2. Behrooz Parhami, "Generalized Signed-Digit Number Systems: A Unifying Framework for Redundant Number Representations", IEEE Transactions on Computers, , Vol. 39, No. 1, January 1990
- 3. Darrel Hankerson, Alfred Menezes, Scott Vanstone, "Guide to Elliptic Curve Cryptography"

^{*}All the modules described have also been coded in Octave to verify the results.

^{*}For long integer calculation, GP/PARI calculator has also been used.

Thank you!