

74VHC244 ● 74VHCT244 Octal Buffer/Line Driver with TRI-STATE® Outputs

General Description

The 'VHC/'VHCT244 is an advanced high speed CMOS octal bus buffer fabricated with silicon gate C2MOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. The 'VHC/'VHCT244 is a non-inverting TRI-STATE buffer having two active-low output enables. These devices are designed to be used as TRI-STATE memory address drivers, clock drivers, and bus oriented transmitter/receivers.

An input protection circuit ensures that 0V-7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

Features

- $\begin{tabular}{lll} \hline & High noise immunity: \\ VHC & V_{NIH} = V_{NIL} = 28\% \ V_{CC} \ (min) \\ VHCT & V_{IH} = 2.0V, \ V_{IL} = 0.8V \\ \hline \end{tabular}$
- Power down protection:
 VHC inputs only
 VHCT inputs and outputs
- Low noise:

 $\begin{array}{ll} \text{VHC} & \text{V}_{\text{OLP}} = \text{0.6V (typ)} \\ \text{VHCT V}_{\text{OLP}} = \text{0.7V (typ)} \end{array}$

- Low power dissipation:
 - $I_{CC} = 4 \mu A \text{ (max) } @ T_A = 25^{\circ}C$
- \blacksquare Balanced propagation delays: $t_{PLH}\,\cong\,t_{PHL}$
- Pin and function compatible with 74HC/HCT244

Commercial	Package Number	Package Description
74VHC244M	M20B	20-Lead Molded JEDEC SOIC
74VHC244SJ	M20D	20-Lead Molded EIAJ SOIC
74VHC244MSC	MSC20	20-Lead Molded EIAJ Type 1 SSOP
74VHC244MTC	MTC20	20-Lead Molded JEDEC Type 1 TSSOP
74VHC244N	N20A	20-Lead Molded DIP
74VHCT244M	M20B	20-Lead Molded JEDEC SOIC
74VHCT244SJ	M20D	20-Lead Molded EIAJ SOIC
74VHCT244MTC	MTC20	20-Lead Molded JEDEC Type 1 TSSOP
74VHCT244N	N20A	20-Lead Molded DIP

Note: Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. EIAJ Type 1 SSOP available on Tape and Reel only, order MSCX.

Logic Symbol

Connection Diagram

Truth Tables

Inpu	ıts	Outputs
ŌĒ ₁	In	(Pins 12, 14, 16, 18)
L	L	L
L	Н	Н
Н	Х	Z

Inpu	ıts	Outputs
OE ₂	In	(Pins 3, 5, 7, 9)
L	L	L
L	Н	Н
Н	Х	Z

 $\begin{array}{lll} H = HIGH \ Voltage \ Level & I = Immaterial \\ L = LOW \ Voltage \ Level & Z = High \\ & Impedance \end{array}$

Pin Names	Description
\overline{OE}_1 , \overline{OE}_2	TRI-STATE Output Enable Inputs
I ₀ -I ₇	Inputs
O ₀ -O ₇	TRI-STATE Outputs

RI-STATE® is a registered trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Note 1)

 $\begin{array}{ll} \mbox{Supply Voltage (V_{CC})} & -0.5\mbox{V to } +7.0\mbox{V} \\ \mbox{DC Input Voltage (V_{IN})} & -0.5\mbox{V to } +7.0\mbox{V} \end{array}$

DC Output Voltage (V_{OUT})

 $\begin{array}{ccc} \text{VHC} & -0.5 \text{V to V}_{CC} + 0.5 \text{V} \\ \text{VHCT*} & -0.5 \text{V to 7.0V} \\ \text{Input Diode Current (I_{IK})} & -20 \text{ mA} \end{array}$

Output Diode Current (IOK)

 VHC
 ± 20 mA

 VHCT
 − 20 mA

 DC Output Current (I_{OUT})
 ± 25 mA

 DC V_{CC}/GND Current (I_{CC})
 ± 75 mA

Storage Temperature (T_{STG}) Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation outside databook specifications.

Recommended Operating Conditions

Supply Voltage (V_{CC})

VHC 2.0V to 5.5V VHCT 4.5V to 5.5V Input Voltage (V_{IN}) 0V to +5.5V Output Voltage (V_{OUT}) 0V to V_{CC}

Operating Temperature (T_{OPR})

74VHC/VHCT —40°C to +85°C

Input Rise and Fall Time $(t_r, \, t_f)$

 $\begin{array}{ll} \text{V}_{\text{CC}} = 3.3 \text{V} \pm 0.3 \text{V} \text{ (VHC Only)} & \text{0 ns/V} \sim 100 \text{ ns/V} \\ \text{V}_{\text{CC}} = 5.0 \text{V} \pm 0.5 \text{V} & \text{0 ns/V} \sim 20 \text{ ns/V} \end{array}$

DC Characteristics for 'VHC Family Devices

-65°C to +150°C

			7	74VHC	;	74\	/HC			
Symbol	Symbol Parameter		T _A = 25°C			−40°C 85°C	Units	Conditions		
			Min	Тур	Max	Max Min Max				
V _{IH}	High Level Input Voltage	2.0 3.0-5.5	1.5 0.7 V _{CC}			1.5 0.7 V _{CC}		>		
V _{IL}	Low Level Input Voltage	2.0 3.0-5.5			0.5 0.3 V _{CC}		0.5 0.3 V _{CC}	>		
V _{OH}	High Level Output Voltage	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		V	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OH} = -50 \mu A$
		3.0 4.5	2.58 3.94			2.48 3.80		>		$I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$
V _{OL}	Low Level Output Voltage	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1	>	$V_{IN} = V_{IH}$ or V_{IL}	I _{OL} = 50 μA
		3.0 4.5			0.36 0.36		0.44 0.44	>		$I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$

 $^{{}^*}V_{OUT} \ge V_{CC}$ only if output is in H or Z state.

DC Characteristics for 'VHC Family Devices (Continued)

				74VH	С	74\	/HC			
Symbol	Parameter	V _{CC} (V)			$T_{A}=-40^{\circ}\mathrm{C}$ to $+85^{\circ}\mathrm{C}$		Units	Conditions		
			Min	Тур	Max	Min	Max			
loz	TRI-STATE Output Off-State Current	5.5			±0.25		±2.5	μΑ	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or GND}$	
I _{IN}	Input Leakage Current	0-5.5			±0.1		±1.0	μΑ	V _{IN} = 5.5V or GND	
Icc	Quiescent Supply Current	5.5			4.0		40.0	μΑ	$V_{IN} = V_{CC}$ or GND	

DC Characteristics for 'VHC Family Devices

			74	VHC		
Symbol	Parameter	V _{CC} (V)	T _A =	25°C	Units	Conditions
		(-,	Тур	Limits		
V _{OLP} **	Quiet Output Maximum Dynamic V _{OL}	5.0	0.6	0.9	V	$C_L = 50 \text{ pF}$
V _{OLV} **	Quiet Output Minimum Dynamic V _{OL}	5.0	-0.6	-0.9	V	$C_L = 50 \text{ pF}$
V _{IHD} **	Minimum High Level Dynamic Input Voltage	5.0		3.5	٧	$C_L = 50 pF$
V _{ILD} **	Maximum High Level Dynamic Input Voltage	5.0		1.5	V	$C_L = 50 \text{ pF}$

^{**}Parameter guaranteed by design.

DC Characteristics for 'VHCT Family Devices

				74VHC		74\	/HC			
Symbol	Parameter	V _{CC} (V)		T _A = 25°	С		−40°C 85°C	Units	Conditions	
			Min	Тур	Max	Min	Max			
V _{IH}	High Level Input Voltage	4.5 5.5	2.0 2.0			2.0 2.0		V		
V _{IL}	Low Level Input Voltage	4.5 5.5			0.8 0.8		0.8 0.8	V		
V _{OH}	High Level	4.5	3.15	3.65		3.15		V	$V_{IN} = V_{IH}$ $I_{OH} = -50 \mu A$	
	Output Voltage	4.5	2.5			2.4		\ \ \	or V_{IL} $I_{OH} = -8 \text{ mA}$	
V _{OL}	Low Level	4.5		0.0	0.1		0.1	V	$V_{IN} = V_{IH}$ $I_{OL} = 50 \mu A$	
	Output Voltage	4.5			0.36		0.44	\ \ \	or V _{IL} I _{OL} = 8 mA	
I _{OZ}	TRI-STATE Output Off-State Current	5.5			± 0.25		± 2.5	μΑ	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = V_{CC}$ or GND	
I _{IN}	Input Leakage Current	0-5.5			± 0.1		±1.0	μΑ	V _{IN} = 5.5V or GND	
Icc	Quiescent Supply Current	5.5			4.0		40.0	μΑ	$V_{IN} = V_{CC}$ or GND	
Гсст	Maximum I _{CC} /Input	5.5			1.35		1.50	mA	V _{IN} = 3.4V, Other Inputs = V _{CC} or GND	
I _{OPD}	Output Leakage (Power Down State)	0.0			+0.5		+5.0	μΑ	$V_{OUT} = 5.5V$	

DC Characteristics for 'VHCT Family Devices:

		.,	74	/HCT				
Symbol	Parameter	V _{CC} (V)	T _A =	$T_{A}=25^{\circ}C$		T _A = 25°C Units		Conditions
			Тур	Limits				
V _{OLP} **	Quiet Output Maximum Dynamic V _{OL}		0.7	1.0	V	C _L = 50 pF		
V _{OLV} **	Quiet Output Minimum Dynamic V _{OL}		-0.7	-1.0	V	C _L = 50 pF		
V _{IHD} **	Minimum High Level Dynamic Input Voltage			2.0	V	C _L = 50 pF		
V _{ILD} **	Maximum High Level Dynamic Input Voltage			0.8	V	C _L = 50 pF		

^{**}Parameter guaranteed by design.

AC Electrical Characteristics for 'VHC Family Devices:

				74VHC	;	74\	/HC			
Symbol	Parameter	V _{CC} (V)	T,	T _A = 25°C			T _A = -40°C to +85°C		Conditions	
			Min	Тур	Max	Min	Max			
t _{PLH} ,	Propagation Delay Time	3.3 ±0.3		5.8	8.4	1.0	10.0	ns		$C_L = 15 pF$
t _{PHL}		0.0 = 0.0		8.3	11.9	1.0	13.5	115		$C_L = 50 pF$
		5.0 ±0.5		3.9	5.5	1.0	6.5	ns		C _L = 15 pF
		3.0 ± 0.3		5.4	7.5	1.0	8.5	115		$C_L = 50 pF$
t_{PZL} ,	TRI-STATE Output Enable	3.3 ±0.3		6.6	10.6	1.0	12.5	ns	$R_L = 1 k\Omega$	C _L = 15 pF
t _{PZH}	Time	0.0 - 0.0		9.1	14.1	1.0	16.0	115		$C_L = 50 pF$
		5.0 ±0.5		4.7	7.3	1.0	8.5	ns		C _L = 15 pF
		0.0 ± 0.0		6.2	9.3	1.0	10.5	115		$C_L = 50 pF$
t _{PLZ} ,	TRI-STATE	3.3 ±0.3		10.3	14.0	1.0	16.0		$R_L = 1 k\Omega$	$C_L = 50 pF$
t _{PHZ}	Output Disable Time	5.0 ±0.5		6.7	9.2	1.0	10.5	ns		C _L = 50 pF
toslH,	Output to Output Skew	3.3 ±0.3			1.5		1.5	ns	(Note 1)	$C_L = 50 pF$
toshl		5.0 ±0.5			1.0		1.0	115		$C_L = 50 pF$
C _{IN}	Input Capacitance			4	10		10	pF	V _{CC} = Oper	n
C _{OUT}	Output Capacitance			6				pF	$V_{CC} = 5.0V$	
C _{PD}	Power Dissipation Capacitance			19				pF	(Note 2)	

 $\textbf{Note 1:} \ \text{Parameter guaranteed by design.} \ t_{OSLH} = |t_{PLHmax} - t_{PLHmin}|; \ t_{OSHL} = |t_{PHLmax} - t_{PHLmin}|.$

Note 2: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (OPR.) = C_{PD} * V_{CC} * f_{IN} + I_{CC}/8 (per bit).

AC Electrical Characteristics for 'VHCT Family Devices

				74VHC	Т	74V	нст			
Symbol	Parameter	V _{CC} (V)	T _A = 25°C			$egin{aligned} \mathbf{T_A} = -40^{\circ}\mathbf{C} \\ \mathbf{to} + \mathbf{85^{\circ}C} \end{aligned}$		Units	Conditions	
			Min	Тур	Max	Min	Max			
t _{PLH} ,	Propagation Delay Time	5.0 ±0.5		5.4	7.4	1.0	8.5			$C_L = 15 pF$
t _{PHL}				5.9	8.4	1.0	9.5	ns		$C_L = 50 pF$
t _{PZL} ,	TRI-STATE Output Enable Time	5.0 ±0.5		7.7	10.4	1.0	12.0		$R_L = 1 k\Omega$	$C_L = 15 pF$
t_{PZH}				8.2	11.4	1.0	13.0	ns		$C_L = 50 pF$
t _{PLZ} , t _{PHZ}	TRI-STATE Output Disable Time	5.0 ±0.5		8.8	11.4	1.0	13.0	ns	$R_L = 1 k\Omega$	C _L = 50 pF
t _{OSLH} , t _{OSHL}	Output to Output Skew	5.0 ±0.5			1.0		1.0	ns	(Note 1)	C _L = 50 pF
C _{IN}	Input Capacitance			4	10		10	pF	V _{CC} = Oper	n
C _{OUT}	Output Capacitance			9				pF	$V_{CC} = 5.0V$	
C _{PD}	Power Dissipation Capacitance			18				pF	(Note 2)	

 $\textbf{Note 1:} \ \text{Parameter guaranteed by design.} \ t_{OSLH} = |t_{PLHmax} - t_{PLHmin}|; \ t_{OSHL} = |t_{PHLmax} - t_{PHLmin}|.$

Note 2: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (OPR.) = C_{PD} * V_{CC} * f_{IN} + $I_{CC}/8$ (per bit).

Ordering InformationThe device number is used to form part of a simplified purchasing code, where the package type and temperature range are defined as follows:

N = Molded Plastic DIP TL/F/11522-4

Physical Dimensions (millimeters) (Continued) (25.73-26.42) $\textbf{0.092} \times \textbf{0.030}$ (2.337 × 0.762) 0.032 ± 0.005 20 19 18 17 16 15 14 13 12 11 20 19 MAX DP (0.813±0.127) 0.260 ±0.005 PIN NO. 1 IDENT PIN NO. 1 IDENT (6.604 ±0.127) 0.280 OPTION 1 (7.112) MIN 1 2 3 4 5 6 7 8 9 10 1 0.090 OPTION 2 0.300-0.320 0.060 NOM (7.620-8.128) 0.040 OPTION 2 0.130 0.005 4° (4X) (1.524) (1.016)0.065 (3.302 0.127) (1.651) 0.145-0.200 (3.683 - 5.080)0.009-0.015 90°± 0.004° (0.229-0.381) 0.020 0.100±0.010 0.125-0.140 (0.508) 0.060 ±0.005 0.018 ± 0.003 (2.540 + 0.254) (3.175-3.556) MIN 0.325 +0.040 -0.015 (1.524 ± 0.127) (0.457 ± 0.076) (8.255 +1.016) -0.381) N20A (REV G)

20-Lead Molded DIP Order Number 74VHC244N or 74VHCT244N **NS Package Number N20A**

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor**

Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.