113-206 23

ESERTED CORPORATIONS INVINE: CACIFORNIA

EVALUATION OF A HIGH RESPONSE ELECTROHYDRAULIC DIGITAL CONTROL WALVE BERTEA DOCUMENT NUMBER 224200-7

CASEFILE CORY

EVALUATION OF A HIGH RESPONSE ELECTROHYDRAULIC DIGITAL CONTROL VALVE

R. L. Anderson

BERTEA DOCUMENT NUMBER 224200-7
FINAL PROGRESS REPORT CONTRACT NAS 8-28379

Prepared for George C. Marshall Space Flight Center, NASA Huntsville, Alabama

February 28, 1973

IRVINE . CALIFORNIA

PAGE	i	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

DIGITAL CONTROL VALVE EVALUATION

TABLE OF CONTENTS

SECTION	TITLE	PAGE
·	FOREWORD	1
1.0	SUMMARY	2
2.0	INTRODUCTION	3
3.0	DIGITAL CONTROL TECHNIQUE	7
3.1	DESCRIPTION OF PULSE RATE ACTUATOR	9
3.2	APPLICATION OF THE HYDRAULIC STEPPER	12
3.3	APPLICATIONS REQUIRING LARGE ACTUATORS	14
3.4	OPEN LOOP CONTROL	1 5
4.0	BREADBOARD ACTUATOR	20
5.0	BREADBOARD TESTING	26
5.1	EFFECT OF LEAKAGE	28
5.2	EFFECT OF NONLINEARITY	30
APPENDIX		
Α	TEST RESULTS	32
В	TEST PROCEDURES	79

Page Intentionally Left Blank

PAGE	1	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

DIGITAL CONTROL VALVE EVALUATION

FOREWORD

This report was prepared by the Bertea Corporation,

Irvine, California under NASA Contract NAS 8-28379.

The report describes the evaluation of a unique electrohydraulic digitally controlled servo actuator.

The evaluation contract was sponsored by the George

C. Marshall Space Flight Center, National Aeronautics

and Space Administration, Marshall Space Flight Center,

Alabama 35812. The contracting officer's technical

representative was P. T. Golley, Astrionics Laboratory.

The work was performed by members of the Engineering Department of Bertea Corporation, Irvine, California 92664. The principle investigator was R. L. Anderson with assistance from J. W. Blanton, W. E. Cover, and P. Chin. Work on the contract was performed between February 29, 1972 and February 28, 1973.

PAGE	2	224200-7	KEV.
ORIG. DATE	2-28-73	REV. DATE	

DIGITAL CONTROL VALVE EVALUATION

1.0 <u>SUMMARY</u>

This final report describes the application of a digital control valve on an electrohydraulic servo actuator. The report discusses the digital control problem in general as well as the design and evaluation of a breadboard actuator.

The evaluation of the digital control valve revealed a number of problems associated with matching the DART Valve to a hydraulic load. The problems were related to lost motion resulting from bulk modulus and leakage. These problems were effectively minimized in the breadboard actuator by maintaining a 1000 psi back pressure on the DART Valve circuit and thereby improving the effective bulk modules.

In general the test results obtained from the breadboard were impressive and tend to indicate that satisfactory performance may be obtained using the DART Valve electrohydraulic interface. It is recommended that further testing be performed using a hydraulic load which would be designed from the test data collected on the breadboard actuator. It is also recommended that the DART Valve be evaluated on a secondary actuator driving a hydromechanical actuator.

PAGE	3	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

DIGITAL CONTROL VALVE EVALUATION

2.0 INTRODUCTION

Contemporary flight control systems rely on a variety of design techniques to establish an interface between electronic signals and hydraulic actuators. The simplest techniques employ solenoid actuated valves to control the flow of fluid to a hydraulic actuator.

For more demanding applications the electrohydraulic interface must be capable of proportional control.

Where frequency response requirements are not severe the interface is typically accomplished using an electromagnetic torque motor which drives a slide valve through a combination of gears and linkage. For higher response requirements the torque motor may drive the slide valve indirectly using a hydraulic preamplifier.

In each case, as the performance requirements become more demanding the intrinsic reliability of the hard-ware is reduced as the number of failure modes increase in proportion to the number of components. At the crux of the problem are the "sensitive" components which form the electromechanical interface. The reliability of these components is typically compromised to achieve specified performance requirements. This compromise

PAGE	4	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

2.0 <u>INTRODUCTION</u> (Continued)

often takes the form of marginal meachanical design in terms of susceptibility to contamination, limited design life, or reliance upon critical assembly and maintenance techniques.

Two approaches are available to the designer who is faced with both high performance requirements and high reliability requirements. The first approach is to design the interface to accommodate redundant elements for the least reliable components. This approach increases the reliability of the control system in terms of the probability of safely completing a mission. However, the probability of failure from a maintenance standpoint is greatly increased due to the addition of the redundant components and redundancy management subsystems.

A second approach to achieving the required reliability requirement is to design a single channel interface using ultrareliable components. This is actually a feasible approach within existing technology. However,

PAGE	5	224200-7	KEV.
ORIG. DATE	2-28-73	REV. DATE	

DIGITAL CONTROL VALVE EVALUATION

2.0 <u>INTRODUCTION</u> (Continued)

the cost of these components greatly exceeds the cost of using redundant components. Therefore, this approach has been limited in its application.

The basic attractiveness of the single channel reliability approach is so great that in recent years Bertea has initiated an in-house program to investigate approaches to improving single channel reliability without incurring the costs associated with the use of conventional ultrareliable hardware. The result of this effort has been the development of a digital electrohydraulic interface using a Bertea developed electrohydraulic valve called the DART Valve. Valve has been developed to eliminate basic problems such as contamination sensitivity and critical assembly techniques and thereby improve electrohydraulic interface reliability. The DART Valve promises not only a reduction in failure modes but also an improvement in failure effects. A key factor in the development of the DART Valve has been to greatly reduce the number of failure modes which result in hardover failures.

PAGE	6	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

2.0 <u>INTRODUCTION</u> (Continued)

This report describes the application of a second generation DART Valve, referred to as the Microdrift DART Valve, as used to position the slide valve in a electrohydraulic servo actuator.

PAGE	7	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

DIGITAL CONTROL VALVE EVALUATION

3.0 DIGITAL CONTROL TECHNIQUE

There are two basic approaches for mechanizing a digital actuator: binary commanded and pulse commanded.

Typically binary digital actuators have less attractive failure modes than pulse commanded actuators. For example, a failure of the most significant bit in a binary actuator will produce a 50% transient at the actuator output. Pulse commanded actuators may be designed such that each pulse will command a limited actuator stroke and thereby prevent hardover failures.

Pulse commanded actuators may be of either the pulse rate or pulse width type. Pulse width actuators receive information at a fixed frequency with variable pulse width. Pulse rate actuators receive information with a fixed pulse form but at variable pulse frequency. For hydromechanical applications a pulse rate command is more desirable than a pulse width command. Over a given period of time the pulse rate command will result in fewer mechanical cycles and therefore less mechanical wear.

BERTER / CORPORATION IRVINE · CALIFORNIA

PAGE 8 DOCUMENT NO. REV.

ORIG. DATE 2-28-73 REV.
DATE

SOLENOID DE-ENERGIZED
FIGURE 1a

PAGE	9	224200-7	KEV.
ORIG. DATE	2-28-73	REV. DATE	

3.0 <u>DIGITAL CONTROL TECHNIQUE</u> (Continued)

3.1 DESCRIPTION OF PULSE RATE ACTUATOR

The pulse rate actuator utilizes a stepper motor which positions the output one increment for each pulse command. The output position is the algebraic sum of plus and minus pulse commands. The hydraulic mechanization of a stepper motor may be represented schematically as shown in Figure 1. The hydraulic stepper motor contains three basic components: a direction control valve, a digitizer to restrict the fluid flow to a predefined volume, and an actuator to sum the individual hydraulic steps. In actual practice, the direction control valve may be duplicated to provide control in both directions (plus and minus commands).

The hydraulic stepper will cause the actuator to advance one "step" each time the solenoid is sequenced through an on-off-on cycle. Figure la illustrates the steady state (or rest) condition of the stepper.

PAGE	10	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

3.1

DIGITAL CONTROL VALVE EVALUATION

- 3.0 <u>DIGITAL CONTROL TECHNIQUE</u> (Continued)
 - DESCRIPTION OF PULSE RATE ACTUATOR (Continued) In this position both actuator ports are blocked so that the actuator can not move. The digitizer is ported to return pressure and therefore is in the (spring) extend position. Figure 1b shows the direction control valve in the solenoid energized position. Supply pressure is ported to one side of the actuator. The opposite side of the actuator is ported to the digitizer. Fluid will flow into the actuator from the pressure supply and out of the actuator to the digitizer until the digitizer piston bottoms (spring compressed). The digitizer volumetric displacement defines the actuator displacement for each step. The cycle is complete when the solenoid has been deenergized and the digitizer piston allowed to return to the full extend position.

The hydraulic stepper may be meachanized to have either a locked or bypass failure mode. If the hydraulic stepper, shown in Figure 1, were to loose electrical power it would

3.1

PAGE	11	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

TITLE DIGITAL CONTROL VALVE EVALUATION

- 3.0 <u>DIGITAL CONTROL TECHNIQUE</u> (Continued)
 - DESCRIPTION OF PULSE RATE ACTUATOR (Continued)

 lock the actuator in its last commanded position.

 However, if the function of the solenoid were to be reversed such that the solenoid were normally energized the hydraulic stepper would fail to a bypass position.

 If this revised design were to experience a loss of electric power the direction control valve would assume the position shown in Figure 1b. If there were two direction control valves (one for each direction) then both sides of the actuator would be connected to pressure and the actuator thereby bypassed.

There is also a second option to consider in the mechanization of the hydraulic stepper. The digitizer may operate at either return or supply pressure level. The digitizer shown in Figure 1 operates at return pressure. In the rest position it is depressurized. The reverse mechanization may also be considered in which the digitizer is referenced to supply pressure. For this case the direction control valve would port one side of the actuator to return and allow the digitizer to supply the fluid required

PAGE	12	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	·

- 3.0 DIGITAL CONTROL TECHNIQUE (Continued)
- DESCRIPTION OF PULSE RATE ACTUATOR (Continued)

 to move the actuator. This approach has the disadvantage that the actuator is left at "return"

 pressure at the end of the stroke and therefore is not as stiff as the actuator configuration shown in Figure 1.

3.2 APPLICATION OF THE HYDRAULIC STEPPER

The practical application of the hydraulic stepper depends upon the ability to achieve both fine control (small steps) and high speed response (large steps). The limitation on achieving both of the requirements simultaneously is the stepping speed. Currently a stepping rate of 50 steps/second is achievable and a 100 steps/second may be achieved in the near future.

An example of the effects of this stepping rate limitation is given below. Assume that the fine control or resolution requirement defines the smallest step size as 0.2% of full stroke. Using this step size at 50 steps/second it will take 10 seconds for the actuator to go from full extend to full retract. For many applications this is too slow.

	1
BERTER	7 / CORPORATION IRVINE · CALIFORNIA

PAGE	13	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

DIGITAL CONTROL VALVE EVALUATION

- 3.0 <u>DIGITAL CONTROL TECHNIQUE</u> (Continued)
- 3.2 APPLICATION OF THE HYDRAULIC STEPPER (Continued)

stepper would be to have a large and a small step size These two step sizes could then be used individually, summed, or subtracted to provide as many as four step sizes. This technique would extend the capability of the hydraulic stepper such that it would fulfill a great many applications. Referring to the above example, a nine to one improvement in actuator speed would result from the use of hydraulic steppers which have a .8% and 1.0% step size. The actuator will now have a .2%, .8%, 1.0%, and 1.8% step size capability. At fifty steps per second the actuator will go from full extend to full retract in 1.11 The minimum step size of .2% is preserved by seconds. cycling the 1.0% step valve in one direction and the .8% step valve in the opposite direction. differential step must be sequenced so that both sides of the actuator are not connected to the pressure port at the same time. If the stepper valves were not sequenced in this manner the actuator would be bypassed each time a .2% step is commanded.

A technique for improving the response of the hydraulic

PAGE	14	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

3.0 DIGITAL CONTROL TECHNIQUE (Continued)

3.3 APPLICATIONS REQUIRING LARGE ACTUATORS

The majority of the digital valve developmental work has been directed toward small (1 gpm) actuators. The application of digital valve techniques to large actuators requires special consideration of the pulsing effect of the hydraulic stepper. As a minimum, an accumulator must be inserted into the supply and return passages to isolate the pulsation from the main hydraulic system. In addition, it may be required that larger valves be cycled at a lower stepping rate than the 50 or more steps per second used for the smaller valves. This reduction in stepping rate may require the addition of a damping device to attenuate actuator response at the valve stepping frequency.

A more conventional approach to the large actuator problem is to allow a digital actuator to drive a large servo valve, either directly or indirectly. The direct approach is to port the "steps" of hydraulic fluid into end chambers of the servo valve. The end chambers will integrate the individual steps and thereby position the servo valve. The digital valve command must therefore be a function of the difference between actuator command and actuator output.

PAGE	15	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

TITLE DIGIT

DIGITAL CONTROL VALVE EVALUATION

- 3.0 <u>DIGITAL CONTROL TECHNIQUE</u> (Continued)
- 3.3 APPLICATIONS REQUIRING LARGE ACTUATORS (Continued)

 The indirect approach to driving a large servo valve

 is to use a small digital actuator to supply position

 inputs to a large hydromechanical servo actuator. This

 approach greatly simplifies the electronic logic in

 that the digital signal is a function of the position

 command only.

3.4 OPEN LOOP CONTROL

The hydraulic stepper may be used in either an open loop or closed loop control system. Figure 2 illustrates the closed loop approach. The command and output are compared at a summing junction. A digital amplifier-chopper drives the hydraulic stepper in response to error signals at the summing junction.

For a simple hydraulic stepper the digital amplifier-chopper is simply a direction sensitive relay which drives the hydraulic stepper whenever the summing junction error exceeds a preset threshold. For a multiple step hydraulic stepper the digital amplifier-chopper must contain the logic to drive various combinations of hydraulic steppers in response to two or more threshold levels.

		DOCUMENT NO.	REV.
PAGE	16	224200-7	İ
ORIG. DATE	2-28-73	REV. DATE	

CLOSED LOOP STEPPER FIGURE 2

OPEN LOOP STEPPER FIGURE 3

PAGE	17	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

3.0 DIGITAL CONTROL TECHNIQUE (Continued)

3.4 <u>OPEN LOOP CONTROL</u> (Continued)

The hydraulic stepper may also be operated open loop as shown in Figure 3. In this configuration an electronic up-down counter or integrator is used to sum hydraulic stepper commands. The output of this integrator is combined with the input at a summing junction. In operation the digital amplifier-chopper will respond to an input by continuously stepping until the integrator cancels the input command. The open loop technique is attractive when it is desirable to eliminate feedback from the hydraulic equipment to the electronic. Elimination of this feedback may be desired to improve reliability or to decrease weight or cost. The disadvantages of open loop control are inaccuracies due to drift (leakage) and/or abnormal step sizes.

When the open loop technique is used it is necessary to isolate the digital amplifier-chopper from the summing junction by using data sampling techniques. This procedure is necessary to prevent the step size selector from changing command outputs in the middle of a step with a resulting loss in step calibration.

PAGE	18	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

DIGITAL CONTROL VALVE EVALUATION

- 3.0 <u>DIGITAL CONTROL TECHNIQUE</u> (Continued)
- 3.4 OPEN LOOP CONTROL (Continued)

A hybird approach is also possible in which the hydraulic stepper transmits a step verification command to the electronic logic after every step. These signals may then be integrated and applied to the summing junction.

A second use of a step verification signal would be for monitoring. A fault would be indicated if there was a disagreement between a step verification signal integrator and a digital amplifer-chopper integrator.

BERTEA CORPORATION IRVINE · CALIFORNIA

PAGE	19	DOCUMENT NO. 224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

TITLE

DIGITAL CONTROL VALVE EVALUATION

DIGITAL CONTROL ACTUATORS

PAGE	20 ·	224200-7	KEV.
ORIG. DATE	2-28-73	REV. DATE	

DIGITAL CONTROL VALVE EVALUATION

4.0 BREADBOARD ACTUATOR

The breadboard actuator assembly is shown in Figure 4.

Two Dart Valves are used to position a mechanical servo valve. The mechanical servo valve controls the flow of fluid to the hydraulic cylinder. Linear position transducers are attached to both the servo valve slide and cylinder piston. These transducer signals are electrically compared to the position command in the DART Valve Controller shown in Figure 5. The error signal resulting from this comparison is processed by a digital step selector which in turn control the DART Valves. A block diagram for the controller and actuator is shown in Figure 6.

The output of the first summing junction is nonlinearized as illustrated by the curve shown over the nonlinear amplifier in Figure 6. The effect of this nonlinearity is to increase error sensitivity for small summation errors. This increased sensitivity improves actuator resolution in that it reduces the summation error required to activate the digital step selector.

The inner control loop shown in Figure 6 accepts the nonlinearized input and positions a slide valve in

BERTEA ,	CORPORATION IRVINE · CALIFORNIA
	TRAINE - CALIFORNIA

		DOCUMENT NO.	REV.
PAGE	21	224200-7	
ORIG. DATE	2-28-73	REV. DATE	

DIGITAL CONTROL VALVE EVALUATION

PAGE	22	•	224200-7	REV.
ORIG. DATE	2-28-73		REV. DATE	

4.0 <u>BREADBOARD ACTUATOR</u> (Continued)

response to this input. The digital step selector causes the small step DART Valve to cycle when it's input exceeds 3% of full error signal at the second summing junction. The large step DART Valve is cycled when the second summing junction error signal exceeds 15% of full error signal. The DART Valves meter a digital step of fluid to the servo valve end chambers such that the servo valve slide is displaced either 3% or 15% of it's stroke for each digital command. A linear position transducer is attached to the servo valve slide to feedback slide position. Thus, the inner loop repeats the nonlinearized error signal from the first summing junction.

The servo valve metering port has a triangular opening such that flow gain is a function of valve stroke. This metering slot produces a stroke/flow curve as shown over the servo valve block on Figure 6. This stroke/flow curve is the inverse of the curve shown over the non-linear amplifier. The net result of these complementary nonlinearities is a linear flow output in response to error signals at the first summing junction. The purpose

BERTEA CORPORATION INVINE - CALIFORNIA

PAGE 23 224200-7 .

ORIG. DATE 2-28-73 REV. DATE

TITLE DIGITAL CONTROL VALVE EVALUATION

DIGITAL CONTROL BLOCK DIAGRAM

FIGURE 6

PAGE	24	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

DIGITAL CONTROL VALVE EVALUATION

4.0 <u>BREADBOARD ACTUATOR</u> (Continued)

of the nonlinear design is two fold. First, the actuator resolution capability is improved by a factor of approximately 10 times. Second, the digital step size appears as a function of the error signal's absolute valve. Both of these effects improve smoothness of operation in the low velocity region.

The following list of constants apply to the breadboard actuator.

Hydraulic Cylinder

8.73 in² area 3.98 in stroke

Servo Valve

+20 GPM flow +.175 stroke

DART Valve

Small Step .0055 in Large Step .027 in

32 small steps = .175 in

27 steps/sec with 1000 psi back pressure

Inner Loop Gain

 ± 10 VDC at first summing junction will produce $\pm .175$ inch at servo valve

Outer Loop Gain

±10 VDC at command will produce
+1.99 inch cylinder stroke

PAGE	25	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

DIGITAL CONTROL VALVE EVALUATION

4.0 <u>BREADBOARD ACTUATOR</u> (Continued)

If the inner loop were assumed to have a zero time constant the outer loop open loop gain may be found as follows:

$$G = \left(\frac{.175 \text{ IN}}{10 \text{ VDC}}\right) \left(\frac{20 \text{ GPM}}{.175 \text{ IN}} \times 3.85 \frac{\text{IN}^3/\text{SEC}}{\text{GPM}}\right) \left(\frac{1}{8.73 \text{ IN}^2}\right) \left(\frac{10 \text{ VDC}}{1.99 \text{ IN}}\right)$$

$$G = 4.43 \text{ SEC}^{-1}$$

This gain was selected to accommodate the large phase lag associated with the nonlinear digital control scheme. The stepping rate of the DART Valve produces a lag in the response inner loop. The low hydraulic gain of the servo valve around center produces proportionally longer time lags for smaller amplitudes. It was empirically found that the outer loop time constant of .23 seconds was required to eliminate all low amplitude oscillations.

BERTEA CORPORATION INVINE · CALIFORNIA

PAGE	26	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

TITLE

DIGITAL CONTROL VALVE EVALUATION

5.0 BREADBOARD TESTING

The breadboard testing was divided into three phases. The first phase of testing was accomplished using an existing DART Valve on Bertea P/N 221400, Active Standby Actuator Assembly. The purpose of this test was to demonstrate the feasibility of closed loop control as shown on Figure 6. One of the significant problems uncovered during this first phase of testing was related to the data sampling technique used in the digital step selector. For subsequent test phases a sample and hold technique was used for data sampling.

Following the first phase of testing a manifold was designed and fabricated to interconnect two Microdrift Dart Valves to a nonlinear servo valve and hydraulic cylinder as shown in Figure 4. An electronic controller was also designed and packaged as shown in Figure 5. For phase two testing the block diagram (Figure 6) was modified to eliminate the feedback transducer on the servo valve. The inner loop was closed using an up - down counter to simulate the action of the DART Valve, servo valve, and position transducer. The output of the up - down counter was then used as a pseudofeedback to close the inner loop. This modified

1	1
BERTER	CORPORATION IRVINE - CALIFORNIA

PAGE	27	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

DIGITAL CONTROL VALVE EVALUATION

5.0 <u>BREADBOARD TESTING</u> (Continued)

scheme was subjected to an intensive development program which attempted to align step sizes and limits between the electronic counter and hydromechanical integrator. This approach was finally abandoned as not being feasible with the existing mechanization.

Following termination of the phase two effort the hardware was modified to facilitate studying the major performance problem, the ability to produce precise hdyromechanical steps. These modifications and the third phase of testing were not originally scheduled for the program and accounted for a substantial slip in the scheduled completion of the program.

The third phase of testing proved successful and acceptable closed loop performance was obtained. The test procedure and results appearing in Appendix A and B define the third phase of testing in detail. The results of phase three testing indicated two problem areas which require further developmental effort. The first is step size inaccuracies and the second is limited frequency response.

	PAGE	28	224200-7	REV.
I	ORIG. DATE	2-28-73	REV. DATE	

5.0 BREADBOARD TESTING (Continued)

5.1 EFFECT OF LEAKAGE

The step size problems may be divided into two categories: leakage and fluid compressibility. Leakage may effect the step size by either causing steady state drift or dynamic drift. Steady state drift will result when fluid is allowed to leak from a source of pressure into one or both DART Valve control lines. The Microdrift DART Valve used for phase three testing eliminated internal steady state leakage through the use of a Microseal poppet to isolate the control lines from the source of pressure. Testing of the DART Valve indicated that this technique effectively reduced internal steady state leakage to zero.

Steady state drift may also be caused by leakage from the pressure source into the DART Valve control lines within the servo valve. The servo valve used for phase three testing eliminated all lap leakage into the control lines by venting control line lap leakage to return.

Fluid compressibility may affect step size if the control line experiences a change in pressure during the execution of a step. An increase in pressure will cause the

	1
BERTEA	CORPORATION IRVINE · CALIFORNIA

PAGE	29	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

TITLE DIG

DIGITAL CONTROL VALVE EVALUATION

- 5.0 BREADBOARD TESTING (Continued)
- 5.1 <u>EFFECT OF LEAKAGE</u> (Continued)

fluid to compress and thereby increase the step size. The effect of fluid compressibility becomes a significant problem if leakage is allowed to reduce the fluid pressure step commands. In the hardware used for phase three testing, this effect resulted in a servo valve slide displacement equal to the desired "small" step. Therefore, the "small" step digitizer had to be reduced to zero stroke in order to achieve the desired "small" step size. This situation is most undesirable in that the "small" step size is now a function of control line pressure and leakage. In the extreme case the control line will bleed down to the extent that a "small" step command will not result in any slide valve displacement. In this case the summation error will accumulate until a "large" step threshold is exceeded. This effect may be observed in the test data presented in Appendix A.

The fluid compressibility problem is further complicated by the servo valve centering springs. These springs detent the valve to neutral and thereby cause the actuator to lock in it's last commanded position in

1				REV.
	PAGE	30	224200-7	
	ORIG. DATE	2-28-73	REV. DATE	

5.0 BREADBOARD TESTING (Continued)

5.1 <u>EFFECT OF LEAKAGE</u> (Continued)

the event of a loss of fluid pressure. However, when the servo valve is at neutral the detenting action of the springs degrades the performance of the "small" step function. It is suggested that further development work investigate the trade offs associated with lap leakage, step sizes, and detent springs.

5.2 EFFECT OF NONLINEARITY

section 4.0 of this report described the nonlinear inner loop technique used to achieve fine resolution at the actuator output. This technique did improve resolution as predicted but had a detrimental effect on inner loop frequency response for small amplitude signals. This frequency response limitation is related to the finite stepping rate of the DART Valve. Since the servo valve flow gain is very low around neutral, several digital steps may be required to achieve a commanded flow rate. As each step requires 38 milliseconds to execute, the inner loop phase lag may be quite large. This inner loop phase lag limits the allowable outer loop gain and hence the over-all frequency response of the servo actuator.

í	(ł	REV.
Į	PAGE	31	224200-7	
	ORIG. DATE	2-28-73	REV. DATE	

- 5.0 <u>BREADBOARD TESTING</u> (Continued)
- 5.2 <u>EFFECT OF NONLINEARITY</u> (Continued)

The nonlinear inner loop is in some ways self-defeating as a technique for improving actuator resolution. As noted above, the nonlinear inner loop requires a lower outer loop gain that may be used with a linear inner loop. This reduced outer loop gain effectively increases the actuator displacements required to cycle the "small" step DART Valve. Further analyses are required to determine the optimum nonlinearity for a given application.

An alternate approach to improving the actuator frequency response would be to drive a hydromechanical actuator with a digital secondary actuator. This application of the digital valve does not require the high response inner loop characteristics of the application defined in this report. Also, the hydromechanical actuator will act as a filter on the output of the secondary digital actuator. It is suggested that the secondary actuator approach be considered for any further development work.

PAGE	32	224200-7	REV.
ORIG. DATE	2-28-73	REV. DATE	

DIGITAL CONTROL VALVE EVALUATION

APPENDIX A

TEST RESULTS

1.

.

CHECK BY

- 2. TEST VALVE SLIDES TO 228212-T.
- 3. USE MIL-H-5606 FLUID AT 80 \pm 20°F, 3000 PSI.

TEST ALL 228200 DART VALVES TO THIS PROCEDURE.

- 4. PERFORM TESTS IN ORDER NOTED.
- 5. RECORD RESULTS ON A COPY OF THIS PROCEDURE.
- 6. FLOW IS OUT OF B PORT WHEN ONLY THE UPPER SOLENOID IS ENERGIZED;

OUT A WHEN ONLY LOWER IS ENERGIZED.

ELECTRICAL CONNECTOR

PORT LOCATIONS (REF)

PRESSURE

BOTTOM VIEW

28200T

<u>_</u>

PG. 1 OF

100 141

B	ERTEA ,	CORPORATION TEST PROCEDURE	DRAWN BY C12 DATE DATE	
	TEST	PROCEDURE	REQUIREMENT	
1.	SOLENOID TRIM	.003±.0003		228200T
			upper solenoid .003	PG. 2 OF
2.	RESISTANCE	MUST BE 50-60 OHMS BETWEEN A-B OR B-C MUST BE 550-650 BETWEEN D-E OR E-F	A-B	100
3.	SOLENOID TIME CONSTANT	RECORD PULL-IN AND DROP-OUT VOLTAGE AND CURRENT. 3 MS MAX PULL-IN, 4 MS MAX DROP- OUT. SET SUPPLY PRESSURE	OPULL-IN OPULL-	0 N/S

4. INTERNAL APPLY 28VDC TO BOTH SOLE-LEAKAGE NOIDS. MEASURE LEAKAGE AT

EACH PORT

AT 3000 PSI

A, B, AND R, 10 CC/MIN MAX

A O CC/MIN

B O CC/MIN

R 25 CC/MIN

MS

MS

UPPER

LOWER

B	ERTEA	PROCEDURE	DRAWN BY PLA	35 DATE DATE	
5.	ORIFICE SIZE	APPLY 28VDC TO UPPER SOLE- NOID. FLOW AT A MUST BE 1650 TO 2000 CC/MIN. REPEAT FOR B.	A 1950 B 1950	_cc/min	T
6.	SWITCH POINT	APPLY 28VDC TO UPPER SOLE-	A 1500 B 1155	_PSI _PSI	228200T
		MEASURE BACK PRESSURE FOR) OF
7.	INTER-	MEASURE FLOW FROM R DURING ABOVE TEST. REFERENCE ONLY.	(A) 1350 (B) 1350	_cc/min	PG. 3
228	3240-101 HAR NTROLLER PER	NESS TO CONNECT DART VALVE TO 2 228250T BEFORE USE.	224250 CONTROLLER	SE TEST	100 N/S
8.	DIGITIZER LEAKAGE	APPLY 300 PSI TO P WITH ONLY LOWER SOLENOID ENERGIZED. MEASURE CHANGE IN LEAKAGE AT R WHEN 2000 PSI IS APPLIED AT A. REPEAT FOR LOWER VALVE.	A 1.5 B 5.0	_CC/MIN _CC/MIN	228200T

B	ERTEA /	CORPORATION IRVINE • CALIFORNIA	PRODUCTION TEST PROCEDURE	DRAWN BY		_ DATE	
	}				·		
₽.	DRIFT	ENERGIZE BOTH	SOLENOIDS.			•	
,		MEASURE ACTUA	TOR DRIFT.			N/SEC	
		RATE.	•-			·	
10.	APPLY 3000	PSI TO PRESSURI	E PORT. MONI	TOR VELOC	ITY TRANSDUC	CER ON	28200T
		PH. WITH UPPER					228
		OR LOWER SOLENO:				, ,	
		OLTAGE AND CURRI					
	ACTUATOR.	(180 MV/IN/SEC	$/.196IN^2 = 92$	20 MV/IN ³ /	SEC = 1 MV/C	CC/MIN)	OF.
	ATTACH REC	ORDING TO TEST 1	RESULTS. IDE	ENTIFY AS	NOTED BELOW.	•	PG. 4
	•			· · · · · · · · · · · · · · · · · · ·	SOLENOID VOLTAGE		
			· .				
	•				SOLENOID CURRENT		100
	·	Α					- N/S
					VELOCITY TRANSDUCER	·	
				. · - ,	POSITION TRANSDUCER		228200T
•	•						TOO
							·

BERTEA / C	ORPORATION PRODUCTION TEST PROCEDURE	DRAWN BY	39 DATE DATE
PART NO: 228200 IBM NO:	SERIAL NO: VALVE OOI PART NAME DART VALVE		DATE: 1-9-73 INSP:
TEST	REQUIREMENTS	RESUI	
			CYCLED ~2CPJ
		· .	MANVALLY
		_	
	AMPS	>	
g o			.056
VOLTAGE + 28VDC	CURRENT . 42 AMPS	Position	

DATE

DATE

- 1. TEST ALL 228200 DART VALVES TO THIS PROCEDURE.
- 2. TEST VALVE SLIDES TO 228212-T.
- 3. USE MIL-H-5606 FLUID AT 80 \pm 20°F, 3000 PSI.
- 4. PERFORM TESTS IN ORDER NOTED.
- 5. RECORD RESULTS ON A COPY OF THIS PROCEDURE.
- 6. FLOW IS OUT OF B PORT WHEN ONLY THE UPPER SOLENOID IS ENERGIZED;

OUT A WHEN ONLY LOWER IS ENERGIZED.

ELECTRICAL CONNECTOR

PORT LOCATIONS (REF)

RETURN

BOITOM VIEW

228200T

1 OF **5**

ည္ထ

200 W/S

228200T

		BERTEA /	CORPORATION TEST PROCEDURE	DRAWN BY RIA DATE CHECK BY DATE	
		TEST	PROCEDURE	REQUIREMENT	
	1.	SOLENOID			
		TRIM	.003±.0003		
					228200T
				upper solenoid .003	PG. 2 OF
	2.	RESISTANÇE	MUST BE 50-60 OHMS BETWEEN	А-Вл	
			A-B OR B-C	В-Сл	
			MUST BE 550-6501 BETWEEN	D-E^	
		•	D-E OR E-F	E-F^	22
	3.	SOLENOID	RECORD PULL-IN AND DROP-OUT VOLTAGE AND CURRENT. 3 MS	PULL-IN V UPPER 6 MS UN DECEMBER 5 MS	s/v 00
		CONSTANT	MAX PULL-IN, 4 MS MAX DROP-	LOWER 5 MS	
	•		OUT. SET SUPPLY PRESSURE AT 3000 PSI	UPPER MS LOWER MS	
	4.	INTERNAL	APPLY 28VDC TO BOTH SOLE-	A O CC/MIN	228200T
7		LEAKAGE	NOIDS. MEASURE LEAKAGE AT	B CC/MIN	H
			A, B, AND R, 10 CC/MIN MAX	RCC/MIN	
			EACH PORT		

B	ERTEA ,	CORPORATION TEST PROCEDURE	DRAWN BY PAG DATE	
		PAOCEDORE	CHECK BY DATE	
5.	ORIFICE	APPLY 28VDC TO UPPER SOLE-	A	
	SIZE	NOID. FLOW AT A MUST BE	BCC/MIN	
		1650 TO 2000 CC/MIN. REPEAT		
		FOR B.		LO
6.	SWITCH	APPLY 28VDC TO UPPER SOLE-	A /950 PSI	228200T
	POINT	NOID. RESTRICT FLOW AT A.	B	
		MEASURE BACK PRESSURE FOR		
		1200 CC/MIN.	· .	Q
7.	INTER-	MEASURE FLOW FROM R DURING	(A) 1300 CC/MIN	PG. 3
	FLOW	ABOVE TEST. REFERENCE	(B) / 30 O · · CC/MIN	
		ONLY.		·
CON	NECT DART V	ALVE ASSEMBLY TO SK 51772 RESPO	ONSE ACTUATOR. USE	
228	3240-101 HAR	NESS TO CONNECT DART VALVE TO	224250 CONTROLLER TEST	2
CON	TROLLER PER	228250T BEFORE USE.	•	8
	CAT	INDER BORE.500 , ROD, AI	REA . 1961N2	s/N
8.	DIGITIZER	APPLY 300 PSI TO P WITH	A . 8 _CC/MIN	
	LEAKAGE	ONLY LOWER SOLENOID	B 1.0 CC/MIN	228:
		ENERGIZED. MEASURE		228200T
		CHANGE IN LEAKAGE AT R		
		WHEN 2000 PSI IS APPLIED		
		AT A. REPEAT FOR LOWER		
		VALVE.		<u> </u>
1				[

B	ERTEA	CORPORATION TEST PROCEDURE	DRAWN BY PACE DATE DATE	
9.	DRIFT	ENERGIZE BOTH SOLENOIDS. MEASURE ACTUATOR DRIFT RATE.	OIn/sec	
10.	OSCILLOGRAI	PSI TO PRESSURE PORT. MONITOR. WITH UPPER SOLENOID ENER OR LOWER SOLENOID. REPEAT WI	RGIZED RECORD TURN-ON AND	228200T
	ACTUATOR.	OLTAGE AND CURRENT, VELOCITY (180 MV/IN/SEC/.196IN ² = 920	$0 \text{ MV/IN}^3/\text{SEC} = 1 \text{ MV/CC/MIN}$	OF
	ATTACH RECO	ORDING TO TEST RESULTS. IDEN	TIFY AS <u>NOTED</u> BELOW.	PG. 4
			SOLENOID VOLTAGE	
	•		SOLENOID CURRENT	s/N 002
			VELOCITY TRANSDUCER	
•			POSITION TRANSDUCER	228200T

1

. 4

•

B	ERTEA	CORPORATION INVINE • CALIFORI		PRODUCTION TEST PROCEDURE	DRAWN BY RYCK	44 DAT		
								
11.	DIGITIZER	TRIM DIGI	TIZER	STOPS TO	UPPER	127	IN ³	
	TRIM	OBTAIN NO	TED _. ST	TEP SIZES.	LOWER	2116	_IN ³	
		AT 40 STE	PS/SEC	: .		٠		
				·.				_
			UNT	SIZE	.065 x,196 =			228200T
			1	.00137	2 961,× 62 0.	.0116		228
		002	5	.00684				
		MUST AGRE	E WITH	H +10%				
						<u>.</u>		OF
			,					5
								PG.
		•	.*	•		•		
	•						·	
	·							
								2
								0
								s/N
			٠, ٠		•			
								228
						· ·		228200T
			•					
					•		î	
	· .							
}						٠.		

2287.00 O02 UPPER 1-5-73 M NO: PART NAME DART VALVE INSP: TEST REQUIREMENTS RESULTS ACC. REJ.	ART	NO:	SERIAL NO:	PROCEDURE VALVE NO:	CHECK BY	DATE:	DAT	T
TEST REQUIREMENTS RESULTS ACC. REJ.			PART NAME			<u> </u>	- 5 - /	3
Sames AMMUNICAL CALLS TOTAL C		mr.cm			DECIM		7	DET
NO.		TEST	REQUIRE	MENTS	RESUL	AS	ACC.	REJ.
Nb. c.						>		·
						_		
			·					
				<u> </u>				
				4	→ ;			
		400	0 9 9 9 9	<u> </u>	<u>~</u>			
		VOLTROE	CURREY	VELOCITY	v ,	Розпіом		

DART VALVE SLIDE TEST

- 1. TEST BOTH UPPER AND LOWER LAP ASSEMBLIES TO THIS PROCEDURE.
- 2. TEST DIGITIZER ASSEMBLIES PER 228220-T BEFORE INSTALLING IN VALVE HOUSING.
- 3. USE MIL-H-5606 FLUID AT $80^{\circ} \pm 20^{\circ}$ F. DO NOT APPLY MORE THAN 1500 PSI TO TEST FIXTURE.
- 4. RECORD TEST RESULTS ON A COPY OF THIS PROCEDURE.

TOP VIEW

PORT LOCATION

UPPER VALVE DORTING (REVERSE A & B FOR LOWER VALVE)

228212-T

PG. 1 OF

2/N 901

228212-T

PRODUCTION
TEST
PROCEDURE

DRAWN	ВУ	DATE
CHECK	RV	DATE

	CHECK DI DATE	
LOW	ER VALVE (MAINTAIN UPPER SOLENOID ENERGIZED)	
1.	MEASURE VALVE STROKE TO "+" AND "-" STOPS. MUST BE .090 ± .003 IN PLUS DIRECTION. RECORD READING + .090 INCHES INCHES	
2.	APPLY 700 PSI TO B. VENT P, R, A, AND C.	12-T
,	EXTEND VALVE SLIDE AND MONITOR 2WDT OUTPUT. RECORD VALVE POSITION WHICH CAUSES DIGITIZER PISTON TO BOTTOM. RETRACT VALVE SLIDE AND RECORD POSITION WHICH ALLOWS DIGITIZER PISTON TO RESET. (TO AVOID LEAKAGE INTERFERENCE, THE RECORDED SLIDE POSITIONS	22821
	SHOULD CAUSE THE DIGITIZER TO EXTEND OR RETRACT IN LESS THAN 1 SECOND.) MUST AGREE WITH FIGURE 1.	
	•036 IN TO BOTTOM DIGITIZER .040 IN TO RESET	J 6
3.	APPLY 200 PSI TO C. VENT P, R, B, AND A.	1
	EXTEND VALVE SLIDE AND RECORD POSITION FOR APPROXIMATELY .1, .2, .3, .4, .5, 1, AND 2 GPM AT A OR R. MUST AGREE WITH FIGURE 1.)d
	FLOW AT R FLOW AT A	
	.0/8 IN 0 GPM .040 IN 0 GPM .02/ IN .1 GPM .037 IN ./ GPM .024 IN .2 GPM .035 IN .2 GPM .028 IN .3 GPM .032 IN .3 GPM .033 IN .4 GPM .030 IN .4 GPM .041 IN .5 GPM .022IN .6 GPM .050 IN .52 GPM .017 IN .7 GPM 001 .75 .75	100 N/S
4.	APPLY 200 PSI AT P. RECORD LEAKAGE AT R FOR VALVE SLIDE FULLY RETRACTED AND FULLY EXTENDED. RECORD FLOW AT C.	
	CC/MIN AT "+" STOP — CC/MIN AT "-" STOP — CC/MIN AT C	2282
5.	APPLY 1500 PSI AT B. RECORD LEAKAGE AT R AND A FOR VALVE SLIDE AT "+" STOP.	212-T
	CC/MIN AT R CC/MIN AT A	
6.	APPLY 1500 PSI AT A. RECORD LEAKAGE AT R AND B FOR VALVE SLIDE AT "+" STOP.	
	— CC/MIN AT R — CC/MIN AT B	

DRAWN	ВҮ	DATE
CHECK	ВУ	DATE

LOWE	R VALVE (Continued)	
7.	WITH VALVE AT "-" STOP. RECORD PRESSURE AT B TO MOVE DIGITIZER PISTON.	
	INCREASING — PSI TO START — PSI TO BOTTOM DECREASING — PSI TO START — PSI TO RESET	EH
UPPE	R VALVE (MAINTAIN LOWER SOLENOID ENERGIZED)	212-
8.	MEASURE VALVE STROKE TO "+" AND "-" STOPS. MUST BE .090 + .003 IN PLUS DIRECTION.	228
	RECORD READING + .091 INCHES040 INCHES	
9.	APPLY 700 PSI TO A. VENT P, R, B, AND C.	OF
	EXTEND VALVE SLIDE AND MONITOR 2WDT OUTPUT. RECORD VALVE POSITION WHICH CAUSES DIGITIZER PISTON TO BOTTOM. RETRACT VALVE SLIDE AND RECORD POSITION WHICH ALLOWS DIGITIZER PISTON TO RESET.	PG. 3
	(TO AVOID LEAKAGE INTERFERENCE, THE RECORDED SLIDE POSITIONS SHOULD CAUSE THE DIGITIZER TO EXTEND OR RETRACT IN LESS THAN 1 SECOND.) MUST AGREE WITH FIGURE 1. .035 IN TO BOTTOM DIGITIZER .037 IN TO RESET	
10.	APPLY 200 PSI TO C. VENT P, R, A, AND B. EXTEND VALVE SLIDE AND RECORD POSITION FOR APPROXIMATELY .1, .2, .3, .4, .5, 1, AND 2 GPM AT B OR R. MUST AGREE WITH FIGURE 1.	100
	FLOW AT R FLOW AT B	S
	.018 in O GPM .037 in .1 GPM .022 in .2 GPM .035 in .2 GPM	
·	.024 IN .2 GPM .033 IN .3 GPM .027 IN .3 GPM .030 IN .4 GPM .032 IN .4 GPM .027 IN .5 GPM .040 IN .5 GPM .022 IN .6 GPM .056 IN .52 GPM .017 IN .7 GPM .056 IN .52 GPM .017 IN .7 GPM	228212-T
11.	APPLY 200 PSI AT P. RECORD LEAKAGE AT R FOR VALVE SLIDE FULLY RETRACTED AND FULLY EXTENDED. RECORD AT C.	
·	CC/MIN AT "+" STOP CC/MIN AT " " STOP O CC/MIN AT C	

BERTER / CORPORATION TEST DRAWN BY DATE OF CHECK BY							
UPPER VALVE (Continued)							
12. APPLY 1500 PSI AT A. RECORD LEAKAGE AT R AND B FOR VALVE SLIDE AT "+" STOP.		1					
3 CC/MIN AT R 4 CC/MIN AT B							
13. APPLY 1500 PSI AT B. RECORD LEAKAGE AT R AND A FOR VALVE SLI AT "+" STOP.	DE	28212-T					
3 cc/min at r 5 cc/min at a		2282					
14. WITH VALVE AT "-" STOP RECORD PRESSURE AT A TO MOVE DIGITIZER PISTON.	-						
INCREASING 550 PSI TO START 800 PSI TO BOTTOM DECREASING — PSI TO START — PSI TO RESET		OF .					
		PG. 4					
SOLENOID A COMMON B TF 230112 (CHECK PER 230112-T) SOLENOID C							
26V_400HZ	1	2/N 001					
TO MATE WITH PTO 2H-1	10-62	228212-T					
l ·	1						

DART VALVE SLIDE TEST

- 1. TEST BOTH UPPER AND LOWER LAP ASSEMBLIES TO THIS PROCEDURE.
- 2. TEST DIGITIZER ASSEMBLIES PER 228220-T BEFORE INSTALLING IN VALVE HOUSING.
- 3. USE MIL-H-5606 FLUID AT $80^{\rm O}$ \pm $20^{\rm O}$ F. DO NOT APPLY MORE THAN 1500 PSI TO TEST FIXTURE.
- 4. RECORD TEST RESULTS ON A COPY OF THIS PROCEDURE.

TOP VIEW

PORT LOCATION

UPPER VALVE DORTING (REVERSE A & B FOR LOWER VALVE)

228212-T

PG. 1 OF

200 N/S

228212-5

DRAWN	ВҮ	DATE
CHECK	RV	DATE

LOV	WER VALVE (MAINTAIN UPPER SOLENOID ENERGIZED)	
1.	MEASURE VALVE STROKE TO "+" AND "-" STOPS. MUST BE .090 ± .003 IN PLUS DIRECTION. RECORD READING + .089 INCHES - INCHES	
2.	APPLY 700 PSI TO B. VENT P, R, A, AND C.	2-T
-	EXTEND VALVE SLIDE AND MONITOR 2WDT OUTPUT. RECORD VALVE POSI- TION WHICH CAUSES DIGITIZER PISTON TO BOTTOM. RETRACT VALVE SLIDE AND RECORD POSITION WHICH ALLOWS DIGITIZER PISTON TO RESET. (TO AVOID LEAKAGE INTERFERENCE, THE RECORDED SLIDE POSITIONS	22821
	SHOULD CAUSE THE DIGITIZER TO EXTEND OR RETRACT IN LESS THAN 1	
	OSG IN TO BOTTOM DIGITIZER OK PLA .044 IN TO RESET	OF
3.	APPLY 200 PSI TO C. VENT P, R, B, AND A.	2
	EXTEND VALVE SLIDE AND RECORD POSITION FOR APPROXIMATELY .1, .2,	PG.
	.3, .4, .5, 1, AND 2 GPM AT A OR R. MUST AGREE WITH FIGURE 1.	
	FLOW AT R FLOW AT A	
	+.020 IN O GPM +.024 IN .1 GPM .023 IN .2 GPM .033 IN .3 GPM .039 IN .4 GPM .043 IN .4 GPM .035 IN .4 GPM .035 IN .5 GPM .035 IN .5 GPM .050 IN .6 GPM	5/N 002
4.	APPLY _6Q PSI AT P. RECORD LEAKAGE AT R FOR VALVE SLIDE FULLY RETRACTED AND FULLY EXTENDED. RECORD FLOW AT C.	
		2287
5.	APPLY 1500 PSI AT B. RECORD LEAKAGE AT R AND A FOR VALVE SLIDE AT "+" STOP.	228212-T
	CC/MIN AT RCC/MIN AT A	
6.	APPLY 1500 PSI AT A. RECORD LEAKAGE AT R AND B FOR VALVE SLIDE AT "+" STOP.	
	CC/MIN AT RCC/MIN AT B	

BE	RTEA CORPORATION TEST DE PROCEDURE CH	AWN BY	54 DATE DATE
LOWE	ER VALVE (Continued)	ECK BI	DATE
	WITH VALVE AT "-" STOP. RECORD PRESSURE AT PISTON.		GITIZER
	INCREASING PSI TO START PSI TO	PSI TO BOTTOM PSI TO RESET	
UPPE	ER VALVE (MAINTAIN LOWER SOLENOID ENERGIZE	D)	3 .
8.	MEASURE VALVE STROKE TO "+" AND "-" STOPS IN PLUS DIRECTION.	. MUST BE .090	<u>+</u> .003
_	RECORD READING + .09 INCHES		
9.	APPLY 700 PSI TO A. VENT P, R, B, AND C.	•	
	EXTEND VALVE SLIDE AND MONITOR 2WDT OUTPUTION WHICH CAUSES DIGITIZER PISTON TO BOT SLIDE AND RECORD POSITION WHICH ALLOWS DIG	rom. Retract v	E POSI- ALVE
	(TO AVOID LEAKAGE INTERFERENCE, THE RECORDING SHOULD CAUSE THE DIGITIZER TO EXTEND OR RITUSE 1.		
	.037 IN TO BOTTOM DIGITIZER .040)_IN TO RESET	
10.	APPLY 200 PSI TO C. VENT P, R, A, AND B. AND RECORD POSITION FOR APPROXIMATELY .1, AND 2 GPM AT B OR R. MUST AGREE WITH FIGURE	.2, .3, .4, .5	
	FLOW AT R	FLOW AT B	
	+.019 IN 0 GPM +.040 +.023 IN ./ GPM · +.036 +.026 IN .2 GPM +.034	IN ./ GP	м
	+.029 IN .3 GPM +.032 +.033 IN .4 GPM +.030 +.041 IN .5 GPM +.025 +.061 IN .52 GPM +.016	IN .3 GP	M M M
11.	APPLY 200 PSI AT P. RECORD LEAKAGE AT RETRACTED AND FULLY EXTENDED. RECORD AT		FULLY
,		CC/MIN AT "-" CC/MIN AT C	STOP

	BER7	TEA / CO	RPORATION NE • CALIFORNIA	PRODUCTION TEST PROCEDURE	DRAWN BY	D 3 / M P	
	UPPER V	ALVE (Cont	inued)		CHECK BI	DATE	
	ľ	PLY 1500 P: IDE AT "+"		ECORD LEAKAGE A	AT R AND B FOR V	/ALVE	
CC/MIN AT RCC/MIN AT B							
	ľ	PLY 1500 PS	SI AT B. RE	ECORD LEAKAGE A	AT R AND A FOR V	ALVE SLIDE	12-T
		CC/MIN	AT R		CC/MIN A	A TA	22821
	i	TH VALVE AS	r "-" stop f	RECORD PRESSURE	E AT A TO MOVE I	DIGITIZER	
		_	750 PSI TO PSI TO		PSI TO BOTT		4 OF
					·		PG. 4
		000			SOLENOID	- A - B	
		TF 230 (CHECK	PER 230112	-T)	SOLENOID	- c	
		0 0	<u></u>	Ó			200
	26V <u>40</u> 0H2	POWER	VOM	0		↓ D	s/N
		0.0	0 0	0	·	- F	
		-				TO MATE WITH	. 228212
			DC IMETER	· ·		РТ02Н-10-6	[2-T
						•	
				1	·,		

.

0

2

S

0

0

2

3

Q_

N 3 ω N 2 0

228220 DIGITIZER

- FLUID: MIL-H-5606 AT 80° ± 20° F 1)
- 2) ASSEMBLE 228220 VALVE ASSEMBLY INTO TEZZEZZO USING ZZEZZG CAP 93360 SPRING, 228228 SEAT AND 228230 STOP.
- 3) RECORD RESULTS ON DATA SHEET, SEND ONE COPY WITH UNIT AND FILE ONE COPY

DRAWN BY TACKETTL DATE 7-12-72

DATE/0-11-72

1 HOULD				CHECK BY P. CATA DATE O-		
	TEST	Po A	RT B	REQUIREMENT		
l	PROOF	4500 PSI OPEN	0PEN 3000 PSI	NO EXTERNAL LEAKAGE IN 2 MINUTES	-	
2	LEAKAGE	3000 PSI	OPEN	S CC/MIN WAXIMUM	220	
3	COIL RESISTANCE			650±50 OHMS PER COIL	28	
	NNECT COIL			13550 CONNECTOR ASSY.	2	
4	EXCITATION	·		MEASURE AC (RMS) CURRENT AT THE EXCITATION TERMINALS OF TF213500, 50 MA MAX.	PG. 2 OF	
15)	PRESSURE	AS REQD	OPEN	RECORD PRESSURE VS VOLTAGE O TO 1000 PSI (SEE SHEET 4 OF 213500-T)		
9	DIELECTRIC			APPLY 500 VAC (GO HZ) NO ARCING OR INSULATION BREAKDOWN IN ONE MINUTE.		
7 INSULATION RESISTANCE				100 MEGOHMS MINIMUM WITH 500 VDC BETWEEN COILS AND HOUSING.		
					228	

h enertaliques.		INSP	ECTION	TEST	RES	ULTS								·		
									803			660		3,0 VDC	4 · *	
									7							
	TES	ST	Fr E Con	J. TS.		ACC. PI	J		w N	Ш	/					
		PHOOF	Д			V			SER VAL	DAT	//		360	1.5 VDC		
			8			V			1,Ç V							
e de l'action de l	2	LEARAGE		0	1 . (4.) (4.)	V										
	3	COL RES STANCE	65	50 — 5H	tv: Ç	V			/, (V				7 3 X X X X		THOS	
	1 (EXCITATIONS CURRENT	Z	Z	1	V			1.5 Y25	3,80						
	<i>5</i>	PRESSURE SETTING				V			3.0VDC		43					
	45 J	S CORNE						C			NO 50		or re	00		र स
	7	INSULATION RESISTANCE		i	94148 94148							THIS DOC	UMENT MAY NOT SE ESPE	IODUCED WITHOUT W	BITTEN CONSIST OF	
												i 1	ERTE	;	PORATION • CALIFORNIA	
Form 10											PG 3 OF	3 2	2822	OT		

Form 1072

:				1 0 2	64	3011
TF	ST	REGULTS.	4CC REJ			
	PRCOF	B	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	SER	DAT	ARRIVATION OF THE PROPERTY OF
2	TEWKY 2a	0 12/1.411		7., V	**************************************	
3	LOIL RES STANIE	650 OHM:		1/1	A REAL OF THE STATE OF THE STAT	
4	UXCITATIONS CURRENT	205 NA	V .	1.572	- 3 - A - A - A - A - A - A - A - A - A	•
	PRESS F		V	5.0V0C	4=	
				2		
7.	INSULATION RESISTANCE	- KOHNAS				THIS DOCUMENT MAY NOT BE REPRODUCED WITHOUT WRITTEN CONS
						BERTER CORPORATION CALIFOR

Form 1072

0 3 ン

3

N

7 N

0 0

224200-T

- 1) TEST ALL 224200-T SERVO ACTUATOR TO THIS PROCEDURE.
- 2) BEFORE ASSEMBLING ACTUATOR ASSEMBLY PRETEST THE FOLLOWING COM-PONENTS AS NOTED:

DART VALVES 228200T

SERVO VALVE 224210T

224250T CONTROLLER

- USE MIL-H-5606 FLUID AT 80°+20°F. 3)
- 4) RECORD RESULTS ON A COPY OF THIS PROCEDURE.
- CONNECT TO HYDRAULIC SUPPLY USING 1/2 INCH LINES AS NOTED BELOW: 5)

- CONNECT TO 224250 CONTROLLER AS NOTED BELOW:
 - a) 115 VAC, 400 HZ TO THREE PRONG RECEPTACLES ON BACK OF CONTROLLER.
 - b) 28 VDC, (2 AMP MINIMUM) TO DUAL RECEPTACLE ON BACK OF CONTROLLER

N

N

- 6) (Continued)
 - CONNECT .0015 ACROSS "EXT C" ON BACK OF CONTROLLER. c)
 - .d) CONNECT BOTH ACTUATOR AND SERVO VALVE LVDT PRIMARIES (EXCITATION) TO 26 VAC DUAL RECEPTACLE ON BACK OF CONTROLLER.
 - e) CONNECT SERVO VALVE LVDT SECONDARY (SIGNAL) TO "SECONDARY" DUAL RECEPTACLE ON BACK OF CONTROLLER.
 - CONNECT ACTUATOR LVDT SECONDARY (SIGNAL) TO "LVDT" DUAL f) RECEPTACLE ON FRONT OF CONTROLLER. OBSERVE COLOR CODING ON WIRING HARNESS.
 - q) CONNECT DART VALVE WIRING HARNESSES USING LABELS AS CONNECTORS:
 - . PLUG LABLED 001 TO -001 DART VALVE
 - 2. PLUG LABLED 002 TO -002 DART VALVE
 - 3. L4, L5, R4, R5 TO LIKE LABLED RECEPTACLES ON FRONT OF CONTROLLER. NOTE ALL GROUND CONNECTION ON PLUGS MUST BE CONNECTED TO BLACK SIDE OF DUAL RECEPTACLE.
 - h) ENERGIZE CONTROLLER BY TURNING POWER SWITCH TO "ON". BOTH AC AND DC POWER LIGHTS SHOULD BE ON. MONITOR LIGHTS L4, L5, R4, R5 SHOULD BE ON.

DRAWN	ВҮ	DATE

C		PROCEDURE	СНЕСК ВУ	DATE
Ī	PART NO:	SERIAL NO: VALVE NO	DATE:	
Ī	BM NO:	PART NAME	INSP:	
r	TEST	REQUIREMENTS	RESULTS AC	CC. REJ.
	1 OPEN LOOP	a) DISCONNECT PLUGS L4, L5, R4, R5 FROM FRONT OF		T-00
		CONTROLLER AND APPLY 28 VDC TO ALL PLUGS. INTER- RUPT POWER TO L5 (OR R5) SUCH AS TO PRODUCE A SERIES OF PULSE COMMANDS TO DART VALVE. ACTUATOR MUST FULLY EXTEND OR		22426
		RETRACT. VOLTAGE AT LVDT SIGNAL ON REAR OF CON- TROLLER MUST BE 3.5+.35 VAC AT EACH END OF THE VALVE STROKE.	ACTUATOR 3.5 VAC ACTUATOR RETRACT 3.5 VAC	3. 3 OF
	•	b) CONTINUE TO CYCLE POWER TO L5 (OR R5) AND RECORD VOLTAGE AT LVDT SIGNAL ON FRONT OF CONTROLLER. MUST BE 23.5+2.3 VAC AT EACH END OF ACTUATOR STROKE.	EXTEND 23 VAC	PG.
	2 INNER LOOP	a) RECONNECT PLUGS L4, L5, R4, R5 TO RECEPTACLES ON FRONT OF CONTROLLER. DIS- CONNECT LVDT SIGNAL FROM FRONT OF CONTROLLER. DEMOD ON BACK OF CONTROLLER MUST READ ZERO VDC FOR NO INPUT COMMAND.)Ovdc	(00 N/S
		b) RECORD VOLTAGE REQUIRED AT COMMAND TO FULLY EXTEND AND RETRACT SERVO VALVE. MUST BE 10+.5 VDC.	ACTUATOR EXTEND /O VDC ACTUATOR RETRACT /O VDC	2242
	OUTER LOOP	a) RECONNECT ACTUATOR LVDT TO SIGNAL INPUT ON FRONT OF CONTROLLER. MONITOR DEMOD ON FRONT OF CON- TROLLER. MUST BE ZERO VDC FOR NO INPUT COMMAND.	Ovdc	00-7
[1	· · · · · · · · · · · · · · · · · · ·		

 7
CORPORATION IRVINE • CALIFORNIA

	6	4	
DRAWN	BY	DATE	<u> </u>
~		D 3 mm	

<u>_</u>				PROCE	DURE	CHECK BY		DA'	ΓE	
PI	ART NO:		SERIAL NO:		VALVE N		DATE:			
IE	BM NO:	NO: PART NAME		INSP:			1			
	TEST		REQ	UIREMENTS		RESUI	CTS	ACC.	REJ.	
3	(Cont.)		·							7-00
			RECORD VOI AT COMMANI EXTEND ANI UATOR. MI VDC.	O TO FULLY O RETRACT	ACT-	ACTUATOR EXTEND ACTUATOR RETRACT	/0vdc			22420
4	FREQUENCY RESPONSE	RAT INP	ORD ACTUATIO AND PHAILUT COMMANI .45 V PEA	ASE LAG US OS OF 7.5	ING V				-	4 of
5	HYSTERESIS	COM FOR	NG AN X-Y MAND VS AC +7.5 V TO	TUATOR PO	SITION	PLOJE				PG.
6	RESOLUTION	COM	NG AN X-Y MAND VS AC +.8 V TO	CTUATOR PO	SITION	E				
7	STEP	ACT WAV PEA	NG AN OSCI UATOR RESE E INPUT OF K AT .5 CE V at .1 CE	PONSE TO S F 2 V PEAK PS. REPEA	QUARE TO	ATTACM	·			100 N S
8	TRACKING	ACT TO PEA	NG AN OSCI UATOR OUTE SINE WAVE K TO PEAK V AT .1 CE	PUT IN RESIDENT OF AT .5 CPS	PONSE 2 V	SEE				224
			•		•					1200-T
		·							,	

68 PRODUCTION TEST PROCEDURE CORPORATION IRVINE • CALIFORNIA BERTER DRAWN BY. DATE CHECK BY DATE PART NO: 224200 VALVE NO: DATE: SERIAL NO: 001 IBM NO: PART NAME INSP: TEST REQUIREMENTS RESULTS ACC. REJ B INCH BACK PRESS 000/ OF PG. STEP INPUT SECOND 12420cT TEST 7

BERTEA / CORPORATION INVINE • CALIFORNIA

DRAWN BY

			CHECK BY	DATE	
PART NO: 224200		SERIAL NO: VALVE			
		001		24-73	
	IBM NO:	PART NAME	INSP:		
			 -		
	TEST	REQUIREMENTS	RESULTS	ACC. REJ.	
		M TO THE MILE	T KESORIS	ACC. NEO.	
	PREK				
	₹				
	a.				
	1000 PSI BACK 27 STEPS/SEC				
	Ŭ ŭ				
	8 2	. 1	·		
	- 8	F /			
	₹ <u>@</u>	Q	.		
	1.72				
	l 6 "	t 2242007 TEST 7			
	ρĆ	7 ()	}		
	7 7	4 2 12	/		
		0 F	/,		OF
		A	/		ا
			/		
					י י
		1			PG.
İ	·				
	٠.				
4		war.		^	
	 4	X L	į		
		2 4			
		3.0 INCH			
		¥ 5			
		, wy			
İ				·	
İ		•			
		. '	Ì		
	-	· •	Ì		
İ	N N N N N N N N N N N N N N N N N N N				
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	1 % - 1				1
	STEP .				
	175 \		·· \		
	" \				
ı		•			l
			*		
					1
	_				l
			. 1		
			. 1		
•					
	•				
			1		
1					

CORPORATION IRVINE • CALIFORNIA BERTEA DRAWN BY. CHECK BY DATE PART NO: 224200 VALVE NO: DATE: SERIAL NO: 1-24-73 001 IBM NO: PART NAME INSP: TEST ACC. REJ. REQUIREMENTS RESULTS 3.0 INCH PEAK TO PEAK COMMAN とする 1000 PSI BACK PRESSURE JEPS SINVSOIDAL steps/sec OF PG.

PORT PRESS. CHECK BY

Ö

13

Q.

224210 SERVO VALVE

- 1) FLUID: MIL-H-5606 AT 80°+20°F
- 2) RECORD RESULTS ON DATA SHEET, SEND ONE COPY WITH UNIT AND FILE ONE COPY.

	PIN (OR FRUN.)		PG.
TEST	PROCEDURE	REQUIREMENTS	
NELIT. I PRESS	SPOOL AT NEUTRAL,	C,=C2= 2250 PSI	
2 NEUT. FLOW	GAGES IN CYL PORTS	20 TO 60 C.C./MIN.	3215
3 PRESS GAIN.	RECORD CYL PORT PRESS. AT .OOI INCREMENTS	REF. ONLY	2 8,5
4 FLOW	RECORD FLOW WITH CYL. PORTS INTERCONNECTED. 3000 PSI AT PRESS. PORT. USE 925 PSI FOR ±.020 AND OVER	LIMITS PER SHEET 2 RECORD AT ±.0025 ±.040 ±.005 ±.060 ±.0075 ±.030 ±.010 ±.100 ±.0125 ±.120 ±.140 ±.160 ±.175	N
c CY4.	RECORD CYL. PRESSURE	1000 TO .2250 PSI WITH	-

WITH PORTS INTERCONNECTED 3000 PSI INLET. RECORD AT

±.010; ±.020; ±.050

	INSP	ECTION	N TEST	RESU	LTS							
TEST S		;	Sec. (5.4)				ZZ4210					/
	505 1625	. 1650	V 25;					TEST 4	(92)	5 ps/)		<i>X</i>
							(3000 PS)		خ			TEST FIXTUR LOSSE
					, ,							j
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +		1242	·		111111111111111111111111111111111111111		2000 PS1			++++++++++++++++++++++++++++++++++++++	14++++++++++++++++++++++++++++++++++++	+ + + +
.334 .00		C a		i		The state of the s						
	= 7.7	33		·								
				<u> </u>		!	/	DATE: 9/15/7.	<u> </u>	BERTER	CORPOR	
								VALVE NO:		22421		RE\
	1			1		1	1		1	i		t

DRAWN BY RJA

74 DATE

CHECK BY DATE

224250-T DART VALVE CONTROLLER

- 1) THE 224250-101 DART VALVE CONTROLLER SHALL MEET THE REQUIRE-MENTS OF THIS SPECIFICATION.
- 2) RECORD RESULTS ON A COPY OF THIS PROCEDURE.
- 3) CONNECT 115 VAC, 400 HZ, AND 28 VDC TO LIKE LABELED CONNECTORS
 ON THE BACK PANEL OF THE CONTROLLER. REFER TO BERTEA DRAWING
 NUMBER 224250 FOR PHYSICAL LAYOUT OF CONTROLLER.

DRAWN BY ELA CHECK BY

75
DATE _____
DATE

		,		CHECK DI DAIL	_
	TEST	SELECTOR SWITCH		PROCEDURE AND REQUIREMENT	
1	INPUT GAIN	B _{IN}	A)	SHORT CIRCUIT BOTH "LVDT" SECONDARY	
			·	INPUTS.	·
			В)	·	24250T
				MUST READ 10 MA + .5 MA.	22
		·	C)	REPEAT WITH -10 VDC	
				+ /O MA - /O MA	OF
		·	D)	WITH "COMMD" SHORTED METER MUST	. 2
				READ LESS THAN .2 MA.	PG
	•	•			·
,			E)	RECORD "COMMD" VS "SWITCH MON" ON	
				X-Y RECORDER.	
2	ACTUATOR	B _{IN}	A)	SHORT CIRCUIT "COMMD" AND LVDT	
	FEEDBACK			INPUT ON BACK OF BOX.	
	GAIN	·	в)	APPLY 23.5 VAC (RMS) TO "LVDT"	
	·			INPUT ON FRONT OF BOX.	2242
•			C)	REPEAT WITH 23.5 VAC (RMS) REVERSED.	24250T
	·			+ <u>/O_ma</u> - <u>/O_ma</u>	
. !			D)	WITH "LVDT" INPUT SHORTED THE METER	
	,			MUST READ LESS THAN .2 MA.	
	,			AM_ <u>EO</u>	A

BERTEA /	CORPORATION IRVINE • CALIFORNIA
----------	---------------------------------

DRAWN BY Pro DATE

CHECK BY DATE

-					7
	TEST	SELECTOR SWITCH		PROCEDURE AND REQUIREMENT	
3	VALVE	Bout	A)	SHORT CIRCUIT "COMMD" AND "LVDT"	
	FEEDBACK			INPUT ON FRONT OF BOX.	
	GAIN		В)	BACK OF BOX. METER MUST READ 10 MA	224250T
				<u>+</u> .5 MA.	
			C)	REPEAT WITH 3.5 VAC REVERSED. + 0. MA - 0. MA	3 OF
			D)	WITH "LVDT" INPUT SHORTED METER	PG.
	•			MUST READ LESS THAN .2 MA. +.025 MA	
4	EXCITATION		A)	RECORD VOLTAGE AT "26 VAC" ON BACK	
	VOLTAGE			OF BOX. MUST BE 26 + 1 VAC	
	•			27.5 VAC	
5	STEP SIZE	B _{IN}	A)	SHORT CIRCUIT BOTH "LVDT" INPUTS.	
			в)	RECORD METER READINGS FOR THE	<u> </u>
·				FOLLOWING STEPS.	224250T
				LIGHTS REQUIREMENT METER	OT
				L5 >1.35 MA + 1.55 MA R4 <.15 MA + 0.15 MA O MA	
				L4 <.15 MA - 0.14 MA R5 >1.35 MA - 1.35 MA	
	•				Æ
		`			

	
BERTER	CORPORATION IRVINE • CALIFORNIA

DRAWN BY Pro DATE DATE

	TEST	SELECTOR SWITCH	PROCEDURE AND REQUIREMENT	
6	STEPPING RATE		A) APPLY 10 VDC TO "COMMD".	·
			B) RECORD L5 VOLTAGE ON OSCILLOSCOPE. C) SOLENOID MUST BE OFF FOR 12.5 ± 1	224250T
			MILLISECOND AND ON FOR 12.5 + 1 MILLISECOND.	2
		·	_/2_ms on	OF
			12 MS OFF NOTE: WITH .ODIY AT EXT C" 18 MC TON" CR"EFF"	PG. 4

PAGE	79	224200-7	REV.
ORIG DATE	2-28-73	REV. DATE	

TITLE

DIGITAL CONTROL VALVE EVALUATION

APPENDIX B

TEST PROCEDURES

224200-T

- 1) TEST ALL 224200-T SERVO ACTUATOR TO THIS PROCEDURE.
- 2) BEFORE ASSEMBLING ACTUATOR ASSEMBLY PRETEST THE FOLLOWING COM-PONENTS AS NOTED:

DART VALVES

228200T

SERVO VALVE

224210т

CONTROLLER

224250т

- 3) USE MIL-H-5606 FLUID AT $80^{\circ} \pm 20^{\circ}$ F.
- 4) RECORD RESULTS ON A COPY OF THIS PROCEDURE.
- 5) CONNECT TO HYDRAULIC SUPPLY USING 1/2 INCH LINES AS NOTED BELOW:

- 6) CONNECT TO 224250 CONTROLLER AS NOTED BELOW:
 - a) 115 VAC, 400 HZ TO THREE PRONG RECEPTACLES ON BACK OF CONTROLLER.
 - b) 28 VDC, (2 AMP MINIMUM) TO DUAL RECEPTACLE ON BACK OF CONTROLLER

224200 -T

PG. 1 OF 4

S/N

224200 -

丁

 \sim

OF.

2

PG

ろろ

0

O

6) (Con	ti	nu	eď	١
\sim	, ,				\sim \sim	,

- c) CONNECT .0015 # ACROSS "EXT C" ON BACK OF CONTROLLER.
- d) CONNECT BOTH ACTUATOR AND SERVO VALVE LVDT PRIMARIES

 (EXCITATION) TO 26 VAC DUAL RECEPTACLE ON BACK OF CONTROLLER.
- e) CONNECT SERVO VALVE LVDT SECONDARY (SIGNAL) TO "SECONDARY"

 DUAL RECEPTACLE ON BACK OF CONTROLLER.
- f) CONNECT ACTUATOR LVDT SECONDARY (SIGNAL) TO "LVDT" DUAL RECEPTACLE ON FRONT OF CONTROLLER. OBSERVE COLOR CODING ON WIRING HARNESS.
- g) CONNECT DART VALVE WIRING HARNESSES USING LABELS AS CONNECTORS:
 - . PLUG LABLED 001 TO -001 DART VALVE
 - 2. PLUG LABLED 002 TO -002 DART VALVE
 - 3. L4, L5, R4, R5 TO LIKE LABLED RECEPTACLES ON FRONT OF
 - CONTROLLER. NOTE ALL GROUND CONNECTION ON PLUGS MUST BE CONNECTED TO BLACK SIDE OF DUAL RECEPTACLE.
- h) ENERGIZE CONTROLLER BY TURNING POWER SWITCH TO "ON".

 BOTH AC AND DC POWER LIGHTS SHOULD BE ON. MONITOR LIGHTS

 L4, L5, R4, R5 SHOULD BE ON.

DRAWN	BY	DATE

_			OCEDURE	CHECK BY		DAT	re	
PA	RT NO:	SERIAL NO:	VALVE NO	0:	DATE:			
В	M NO:	PART NAME	·		INSP:			
	TEST	REQUIREMENT	rs	RESUI	LTS	ACC.	REJ.	
1	OPEN LOOP	a) DISCONNECT PLUGS R4, R5 FROM FROM CONTROLLER AND A VDC TO ALL PLUGS RUPT POWER TO L5 SUCH AS TO PRODU SERIES OF PULSE	NT OF APPLY 28 5. INTER- 5 (OR R5) JCE A COMMANDS					T-002422
	·	TO DART VALVE. MUST FULLY EXTEN RETRACT. VOLTAGE SIGNAL ON REAR OF TROLLER MUST BE VAC AT EACH END VALVE STROKE.	ND OR SE AT LVDT OF CON- 3.5 <u>+</u> .35	ACTUATOR EXTEND ACTUATOR RETRACT				PG. 3 OF
		b) CONTINUE TO CYCI TO L5 (OR R5) AN VOLTAGE AT LVDT FRONT OF CONTROI BE 23.5+2.3 VAC END OF ACTUATOR	ID RECORD SIGNAL ON LLER. MUST AT EACH	EXTEND T ACTUATOR				1
2	INNER LOOP	a) RECONNECT PLUGS R4, R5 TO RECEPT FRONT OF CONTROL CONNECT LVDT SIG FRONT OF CONTROLL ON BACK OF CONT MUST READ ZERO V INPUT COMMAND.	TACLES ON LER. DIS CONTROL FROM LER. DEMOI PROLLER		VDC			N/S
		b) RECORD VOLTAGE R AT COMMAND TO FU EXTEND AND RETRA VALVE. MUST BE	LLY CT SERVO	ACTUATOR EXTEND ACTUATOR RETRACT	vdc			2242
3	OUTER LOOP	a) RECONNECT ACTUAT TO SIGNAL INPUT OF CONTROLLER. DEMOD ON FRONT O TROLLER. MUST E VDC FOR NO INPUT	ON FRONT MONITOR OF CON- BE ZERO		vic			00-7

BERTEA / CORPORATION IRVINE · CALIFORNIA

	•	
DRAWN	ВУ	DATE

		PROCE	EDURE	CHECK BY		DAT	Έ	
PAI	RT NO:	SERIAL NO:	VALVE NO	0:	DATE:			
BN	1 NO:	PART NAME		······································	INSP:			
	TEST	REQUIREMENTS		RESU	LTS	ACC.	REJ.	1
3	(Cont.)							200-7
	,	b) RECORD VOLTAGE REQUESTED AT COMMAND TO FULLY EXTEND AND RETRACT UATOR. MUST BE 104 VDC.	ACT-	ACTUATOR EXTEND ACTUATOR RETRACT	VDC			2242
4	FREQUENCY RESPONSE	RECORD ACTUATOR AMPLIT RATIO AND PHASE LAG US INPUT COMMANDS OF 7.5 AND .45 V PEAK TO PEAK	SING V					Y OF
5	HYSTERESIS	USING AN X-Y RECORDER COMMAND VS ACTUATOR POFOR +7.5 V TO -7.5 V TO +7.5 V.	SITION					PG.
6	RESOLUTION	USING AN X-Y RECORDER COMMAND VS ACTUATOR POFOR +.8 V TO8 V TO	SITION					
7	STEP	USING AN OSCILLOGRAPH ACTUATOR RESPONSE TO SWAVE INPUT OF 2 V PEAR PEAK AT .5 CPS. REPEAR 15 V at .1 CPS.	QUARE C TO				·	N S
8	TRACKING	USING AN OSCILLOGRAPH ACTUATOR OUTPUT IN RESTORMING TO SINE WAVE INPUT OF PEAK TO PEAK AT .5 CPS 15 V AT .1 CPS.	SPONSE 2 V					
								224200-T
			JA Chi			Ì		

DRAWN BY P. CHIN CHECK BY

DATE 10-10-72

22

N

DATE

224210 SERVO VALVE

- 1) FLUID: MIL-H-5606 AT 80°+20°F
- 2) RECORD RESULTS ON DATA SHEET, SEND ONE COPY WITH UNIT AND FILE ONE COPY.

. 7	EST	PROCEDURE	REQUIREMENTS	
1.	NEUT. PRESS	SPOOL AT NEUTRAL,	C,=C2= 2250 PSI	
2	NEUT. FLOW	3000 PSI AT PRESS, GAGES IN CYL PORTS	20 TO 60 C.C./MIN.	736_
1	PRESS GAIN.	RECORD CYL PORT PRESS. AT .OOI INCREMENTS	REF. ONLY	2 18'5
4	FLOW	RECORD FLOW WITH CYL.	LIMITS PER SHEET 2	10/2
		PORTS INTERCONNECTED. 3000 PSI AT PRESS. PORT. USE 925 PSI FOR ±.020 AND OVER	RECORD AT ±.0025 ±.040 ±.005 ±.060 ±.0075 ±.080 ±.010 ±.100 ±.0125 ±.120 ±.140 ±.160 ±.175	l .
5	CYL. PORT PRESS.	RECORD CYL. PRESSURE WITH PORTS INTERCONNECTED	1000 TO 2250 PSI WITH 3000 PSI INLET. RECORD AT ±.010; ±.020; ±.050	

DRAWN BY RGA CHECK BY 86 DATE __

DATE

224250-T DART VALVE CONTROLLER

- 1) THE 224250-101 DART VALVE CONTROLLER SHALL MEET THE REQUIRE-MENTS OF THIS SPECIFICATION.
- 2) RECORD RESULTS ON A COPY OF THIS PROCEDURE.
- 3) CONNECT 115 VAC, 400 HZ, AND 28 VDC TO LIKE LABELED CONNECTORS
 ON THE BACK PANEL OF THE CONTROLLER. REFER TO BERTEA DRAWING
 NUMBER 224250 FOR PHYSICAL LAYOUT OF CONTROLLER.

	7
BERTER	/ CORPORATION
DENIER	IRVINE • CALIFORNIA

DRAWN BY LIU DATE DATE

}					
·	TEST	SELECTOR SWITCH		PROCEDURE AND REQUIREMENT	
1	INPUT GAIN	^B IN	A)	SHORT CIRCUIT BOTH "LVDT" SECONDARY	
				INPUTS.	
					F
	·		в)	APPLY +10 VDC AT "COMMD". METER	24250T
	·			MUST READ 10 MA + .5 MA.	224
			C)	REPEAT WITH -10 VDC	
	*			•	
				+MA ~MA	OF
			D)	WITH "COMMD" SHORTED METER MUST	7
	·			READ LESS THAN .2 MA.	PG.
		·		MA	
			E)	RECORD "COMMD" VS "SWITCH MON" ON	
				X-Y RECORDER.	
	A COULTA MOD			GUODE CYDOUTE HOOMBII AND TURE	
2	ACTUATOR	B _{IN}	A)		
	FEEDBACK		p)	INPUT ON BACK OF BOX. APPLY 3.5 VAC TO "LVDT" INPUT ON	
	GAIN	٠.	Б	BACK OF BOX. METER MUST READ 10 MA	
	· -	·		+ .5 MA.	2
					224250T
			c)	REPEAT WITH 23.5 VAC (RMS) REVERSED.	TO
		·		+MA	
				·	
		·	D)	WITH "LVDT" INPUT SHORTED THE METER	
				MUST READ LESS THAN .2 MA.	
				MA	A

	,
BERTEA	CORPORATION IRVINE • CALIFORNIA

DRAWN BY RIA DATE DATE

		TEST	SELECTOR SWITCH		PROCEDURE AND REQUIREMENT	
	3	VALVE	B _{OUT}	A)	SHORT CIRCUIT "COMMD" AND "LVDT"	İ
		FEEDBACK			INPUT ON FRONT OF BOX.	
		GAIN				
				в)	APPLY 3.5 VAC TO "LVDT" INPUT ON	50T
					BACK OF BOX. METER MUST READ 10 MA	22425
					<u>+</u> .5 MA. (
				C)	REPEAT WITH 3.5 VAC REVERSED.	
			·			OF
				·	+MA	3
			·	D)	WITH "LVDT" INPUT SHORTED METER	PG.
					MUST READ LESS THAN .2 MA.	:
	4	EXCITATION		A)	RECORD VOLTAGE AT "26 VAC" ON BACK	
		VOLTAGE			OF BOX. MUST BE 26 + 1 VAC	
					VAC	
	5	STEP SIZE	B _{IN}	A)	SHORT CIRCUIT BOTH "LVDT" INPUTS.	
				в)	RECORD METER READINGS FOR THE	-
					FOLLOWING STEPS.	22
						24250T
					LIGHTS REQUIREMENT METER	Ū.
		•			L5 >1.35 MAMA R4 <.15 MA MA	
					O MA	
1					L4 <.15 MAMA R5 >1.35 MAMA	
						Ø

	
BERTEA	CORPORATION IRVINE • CALIFORNIA

	•	89
DRAWN	BY REA	DATE
OTTO	DV	DAMD

			PROCEDURI	CHECK BY	DATE	
	TEST	SELECTOR SWITCH	PROCED	URE AND REQUIREMENT		
6	STEPPING		A) APPLY	10 VDC TO "COMMD".		
	RATE		B) RECOR	D L5 VOLTAGE ON OSCI	LLOSCOPE.	50T
				OID MUST BE OFF FOR	_	224250T
				SECOND AND ON FOR 12	.5 <u>+</u> 1	
				MS ON	į	ğ
				MS OFF		PG. 4
	,					

DRAWN BY RAG

DATE ____

228200T

S

闩

PG.

s/N

228200T

90

DATE

- 1. TEST ALL 228200 DART VALVES TO THIS PROCEDURE.
- 2. TEST VALVE SLIDES TO 228212-T.
- 3. USE MIL-H-5606 FLUID AT 80 + 20° F, 3000 PSI.
- 4. PERFORM TESTS IN ORDER NOTED.
- 5. RECORD RESULTS ON A COPY OF THIS PROCEDURE.
- 6. FLOW IS OUT OF B PORT WHEN ONLY THE UPPER SOLENOID IS ENERGIZED;

~	
BERTEA	CORPORATION IRVINE • CALIFORNIA

DRAWN BY RIA CHECK BY

91 DATE_____ DATE

			CHECK BY DATE	
	TEST	PROCEDURE	REQUIREMENT	
1.	SOLENOID	.003±,0003		228200T
			UPPER SOLENOIDLOWER SOLENOID	PG. 2 OF
2.	RESISTANCE	MUST BE 50-60 OHMS BETWEEN A-B OR B-C MUST BE 550-650 BETWEEN D-E OR E-F	A-B	
3.	SOLENOID TIME CONSTANT	RECORD PULL-IN AND DROP-OUT VOLTAGE AND CURRENT. 3 MS MAX PULL-IN, 4 MS MAX DROP- OUT. SET SUPPLY PRESSURE	PULL-IN UPPERMS LOWERMS DROP-OUT	- N/S
		AT 3000 PSI	UPPERMS LOWERMS	
4.	INTERNAL LEAKAGE	APPLY 28VDC TO BOTH SOLE- NOIDS. MEASURE LEAKAGE AT A, B, AND R, 10 CC/MIN MAX EACH PORT	ACC/MI BCC/MI RCC/MI	TOO
		Division to the second		

BERTER /	CORPORATION	
JLN/LN/	IRVINE • CALIFORNIA	

PRODUCTION

	EHIEH		DRAWN BY FACE	DATE	
	·		CHECK BY	DATE	·
5.	ORIFICE	APPLY 28VDC TO UPPER SOLE-	A	cc/min	
:	SIZE	NOID. FLOW AT A MUST BE	В	CC/MIN	
		1650 TO 2000 CC/MIN. REPEAT			
		FOR B.)Ţ
6.	SWITCH	APPLY 28VDC TO UPPER SOLE-	A	PSI	228200T
	POINT	NOID. RESTRICT FLOW AT A.	В	PSI	
	·	MEASURE BACK PRESSURE FOR			
		1200 CC/MIN.			OF
7.	INTER-	MEASURE FLOW FROM R DURING	(A)	CC/MIN	PG. 3
	FLOW	ABOVE TEST. REFERENCE	(B)	CC/MIN	Щ
		ONLY.			
		ALVE ASSEMBLY TO SK 51772 RESPO			
CON	TROLLER PER	228250T BEFORE USE.			
	CYL	INDER BORE,ROD,AF	REA		N/S
8.	DIGITIZER	APPLY 300 PSI TO P WITH	Α	CC/MIN	
	LEAKAGE	ONLY LOWER SOLENOID	B	CC/MIN	228
		ENERGIZED. MEASURE			8200T
		CHANGE IN LEAKAGE AT R	·		
		WHEN 2000 PSI IS APPLIED		i	
		AT A. REPEAT FOR LOWER		,	
		VALVE.			

B	ERTEA	CORPORATION IRVINE • CALIFORNIA	PRODUCTION TEST PROCEDURE	drawn by <u>PAC</u> check by	93 DATE DATE	
	·					
9.	DRIFT	ENERGIZE BOTH	SOLENOIDS.			
		MEASURE ACTUA	TOR DRIFT,		in/sec	
		RATE.		·		
10.	APPLY 3000	PSI TO PRESSUR	E PORT. MON	ITOR VELOCITY TRANS	SDUCER ON	228200T
	OSCILLOGRAI	PH. WITH UPPER	SOLENOID EN	ERGIZED RECORD TURY	N-ON AND	2282
	TURN-OFF FO	OR LOWER SOLENO	ID. REPEAT V	VITH LOWER ENERGIZE	E. RECORD	
	SOLENOID VO	OLTAGE AND CURR	ENT, VELOCITY	Y AND POSITION OF I	RESPONSE	
	ACTUATOR.	(180 MV/IN/SEC	$/.196IN^2 = 93$	$20 \text{ MV/IN}^3/\text{SEC} = 1 \text{ N}$	NV/CC/MIN)	OF
	ATTACH RECO	ORDING TO TEST	RESULTS. ID	ENTIFY AS NOTED BEI	LOW.	4
				··		PG
				SOLENOII VOLTAGE)	
	·			SOLENOII CURRENT)	
						5/1
	,÷ •	\wedge		V		
	·			VELOCITY TRANSDUC		-
				POSITION TRANSDUC		22
					,	228200T
						Ä
			•			
1 1						l

B	ERTEA /	CORPORATION IRVINE • CALIFORNIA	PRODUCTION TEST PROCEDURE	DRAWN BY RECK	94 DATE DATE	
ſ						
11.	DIGITIZER	TRIM DIGITIZE	R STOPS TO	UPPER	IN ³	
	TRIM	OBTAIN NOTED S	STEP SIZES.	LOWER	IN ³	
		AT 40 STEPS/SE	c.			
				·		
		S/N COUNT	SIZE	*		10C
		001 1	.00137			228200T
	•	002 5	.00684			2
		MUST AGREE WIT	'H <u>+</u> 10%			OF
				<u> </u>		5
						PG.
				·	· .	
		•				
					,	
			· ·			
						5/1
	•		·			
						2282
						228200T
		•			:	
	• .					
				′ -		-
1					1	1

DRAWN	ВҮ
CHECK	BY

DATE ____

DATE

DART VALVE SLIDE TEST

- 1. TEST BOTH UPPER AND LOWER LAP ASSEMBLIES TO THIS PROCEDURE.
- 2. TEST DIGITIZER ASSEMBLIES PER 228220-T BEFORE INSTALLING IN VALVE HOUSING.
- 3. USE MIL-H-5606 FLUID AT $80^{\rm O}$ \pm $20^{\rm O}$ F. DO NOT APPLY MORE THAN 1500 PSI TO TEST FIXTURE.
- 4. RECORD TEST RESULTS ON A COPY OF THIS PROCEDURE.

TOP VIEW

PORT LOCATION

UPPER VALVE P
PORTING (REVERSE
A & B FOR LOWER
VALVE)

228212-T

. 1 OF

Z

228212-T

DRAWN	BY	_	DATE
CHECK	ВУ		DATE

	The second lives and the second
LOWER VALVE (Continued)	
7. WITH VALVE AT "-" STOP. RECORD PRESSURE AT B TO MOVE DIGITIZE PISTON.	ER
INCREASING PSI TO START PSI TO BOTTOM DECREASING PSI TO START PSI TO RESET	E
UPPER VALVE (MAINTAIN LOWER SOLENOID ENERGIZED)	212-
8. MEASURE VALVE STROKE TO "+" AND "-" STOPS. MUST BE .090 \pm .0 IN PLUS DIRECTION.	ω
RECORD READING +INCHESINCHES	
9. APPLY 700 PSI TO A. VENT P, R, B, AND C.	OF
EXTEND VALVE SLIDE AND MONITOR 2WDT OUTPUT. RECORD VALVE POSTION WHICH CAUSES DIGITIZER PISTON TO BOTTOM. RETRACT VALVE SLIDE AND RECORD POSITION WHICH ALLOWS DIGITIZER PISTON TO RE	PG.
(TO AVOID LEAKAGE INTERFERENCE, THE RECORDED SLIDE POSITIONS SHOULD CAUSE THE DIGITIZER TO EXTEND OR RETRACT IN LESS THAN 1 SECOND.) MUST AGREE WITH FIGURE 1.	
IN TO BOTTOM DIGITIZERIN TO RESET	
10. APPLY 200 PSI TO C. VENT P, R, A, AND B. EXTEND VALVE SLIDE AND RECORD POSITION FOR APPROXIMATELY .1, .2, .3, .4, .5, 1, AND 2 GPM AT B OR R. MUST AGREE WITH FIGURE 1.	
FLOW AT R FLOW AT B	S/N
INGPMINGPM	
INGPMINGPM	
IN	228
IN	228212-
11. APPLY 200 PSI AT P. RECORD LEAKAGE AT R FOR VALVE SLIDE FULI	—— H
RETRACTED AND FULLY EXTENDED. RECORD AT C.	
CC/MIN AT "+" STOP CC/MIN AT "-" STOP CC/MIN AT C	,

DRAWN	ВУ	DATE
CHECK	ВУ	DATE

LOW	ER VALVE (MAINTAIN UPPER SOLENOID ENERGIZED)	
1.	MEASURE VALVE STROKE TO "+" AND "-" STOPS. MUST BE .090 ± .003 IN PLUS DIRECTION. RECORD READING +INCHESINCHES	
2.	APPLY 700 PSI TO B. VENT P, R, A, AND C.	2-T
	EXTEND VALVE SLIDE AND MONITOR 2WDT OUTPUT. RECORD VALVE POSITION WHICH CAUSES DIGITIZER PISTON TO BOTTOM. RETRACT VALVE SLIDE AND RECORD POSITION WHICH ALLOWS DIGITIZER PISTON TO RESET. (TO AVOID LEAKAGE INTERFERENCE, THE RECORDED SLIDE POSITIONS	22821
	SHOULD CAUSE THE DIGITIZER TO EXTEND OR RETRACT IN LESS THAN 1 SECOND.) MUST AGREE WITH FIGURE 1.	
	IN TO BOTTOM DIGITIZERIN TO RESET	OF
3.	APPLY 200 PSI TO C. VENT P, R, B, AND A.	PG. 2
	EXTEND VALVE SLIDE AND RECORD POSITION FOR APPROXIMATELY .1, .2, .3, .4, .5, 1, AND 2 GPM AT A OR R. MUST AGREE WITH FIGURE 1.	ď
	FLOW AT R FLOW AT A	
	IN GPM IN GPM IN GPM IN GPM IN GPM IN GPM IN GPM IN GPM IN GPM IN GPM IN GPM IN GPM	S/N
4.	APPLY 200 PSI AT P. RECORD LEAKAGE AT R FOR VALVE SLIDE FULLY RETRACTED AND FULLY EXTENDED. RECORD FLOW AT C.	o,
	CC/MIN AT "+" STOPCC/MIN AT "-" STOPCC/MIN AT C	2282
5.	APPLY 1500 PSI AT B. RECORD LEAKAGE AT R AND A FOR VALVE SLIDE AT "+" STOP.	12-T
	CC/MIN AT RCC/MIN AT A	
6.	APPLY 1500 PSI AT A. RECORD LEAKAGE AT R AND B FOR VALVE SLIDE AT "+" STOP.	
	CC/MIN AT RCC/MIN AT B	

_ 	
BERTER	CORPORATION IRVINE • CALIFORNIA

		98
DRAWN	ВУ	DATE
OLLD OLL	211	DAME

_		CHECK BI	DAIL	
	UPPEI	<u> VALVE</u> (Continued)		
	12.	APPLY 1500 PSI AT A. RECORD LEAKAGE AT R AND B FOR SLIDE AT "+" STOP.	VALVE	
		CC/MIN AT RCC/MIN	АТ В	
	13.	APPLY 1500 PSI AT B. RECORD LEAKAGE AT R AND A FOR AT "+" STOP.	VALVE SLIDE	12-T
		CC/MIN AT RCC/MIN	AT A	22821
	14.	WITH VALVE AT "-" STOP RECORD PRESSURE AT A TO MOVE PISTON.	DIGITIZER	
		INCREASING PSI TO START PSI TO BOT DECREASING PSI TO START PSI TO RES	*	4 OF
				PG. 4
		SOLENOID COMMON TF 230112 (CHECK PER 230112-T) O O O	A B C	H
26	5 <u>v 40</u>	DHZ OM CHAM ZHO	D E F	— N/S
		DC VOLTMETER	TO MATE WITH PT02H-10-61	228212-Т
			·	

228220 DIGITIZER

- /) FLUID: MIL-H-5,606 AT 80° ± 20° F
- 2) ASSEMBLE 228220 VALVE ASSEMBLY INTO TF 228220 USING 228226 CAP, 93360 SPRING, 228228 SEAT AND 228230 STOP.
- 3) RECORD RESULTS ON DATA SHEET, SEND ONE COPY WITH UNIT AND FILE ONE COPY

2282207

PG. | OF 3

PG, 3043 B STZE

2282207

DRAWN BY FACKRELL DATE 7-12-72
CHECK BY DISCOURTED DATE 7-12-72

PROCEDURE CHECK BY P. CHIN DATE/O-11-7						
	TEST	PO A	RT B	REQUIREMENT		
. 1	PROOF	4500 PSI OPEN	OPEN 3000 PS1	NO EXTERNAL LEAKAGE IN 2 MINUTES	<u>-</u>	
2	LEAKAGE	3000 PSI	OPEN	2 CC/MIN MAXIMUM	220.	
Ŋ	COIL RESISTANCE	·		650±50 OHMS PER COIL	228	
	UNECT CON			13550 CONNECTOR ASSY.	М	
4	EXCITATION CURRENT			MEASURE AC (RMS) CURRENT AT THE EXCITATION TERMINALS OF TF213500. SO MA MAX.	PG. 2 OF	
55	PRESSURE SETTING	AS REQD	OPEN	RECORD PRESSURE VS VOLTAGE O TO 1000 PS1 (SEE SHEET 4 OF 213500-T)		
9	DIELECTRIC		·	APPLY 500 VAC (GO.HZ) NO ARCING OR INSULATION BREAKDOWN IN ONE MINUTE.		
7	INSULATION RESISTANCE	j l		100 MEGOHMS MINIMUM WITH 500VDC BETWEEN COILS AND HOUSING.		
					223	

STATE OF THE PARTY			INSP	ECTION	TEST	RESU	LTS							
								10				660	3,0 1/2	×
								22						
	TEST			RESI	ULTS		ACC. RE.	7 8 7	~ × a	<u>n</u>	/			
	1	PF	ROOF	Α				.60	SER	DAT	/		860 1.5 VDC	
				B					1.0V					
	2	LE	AKAGE		cc	MIN						/		
	3	CO	ISTANCE		OH	MS			1.0V	/			PRESSURE S	
	4	F SCHOOL SECTION	ITATION RRENT		M	Д			1.5 VDC 20V	230				
	5	PRE	SSURE TING						3.OVDC		1430		*	
	6	DIE	ECTRIC						AND DESCRIPTION OF THE PARTY OF		A (PS		1000	
	7	INSU	JLATION ISTANCE			HMS						THIS DOC	UMENT MAY NOT BE REPRODUCED WITH	HOUT WRITTEN CONSENT OF
												B	ERTEA	CORPORATION IRVINE - CALIFORNIA
											PG 3 OF	3 2	28220T	