Tame Topology And O-minimal Structures

Lou van den Dries

October 6, 2022

Contents

1	Son	ne Elementary Results	1
	1.1	O-minimal ordered groups and rings	5
	1.2	Model-theoretic structures	7
	1.3	The simplest o-minimal structures	7
	1.4	Semilinear sets	8
2	Semialgebriac sets		8
	2.1		8
3	Cell Decomposition		9
	3.1	The monotonicity theorem and the finiteness lemma	9
	3.2	The cell decomposition theorem	14
	3.3	Definable families	18
4	Definable invariants: dimension and euler characteristic		19
	4.1	Dimension	19
5	Problems		21
1	Soma Flamantary Regults		

1 Some Elementary Results

Definition 1.1. A **structure** on a nonempty set R is a sequence $\mathcal{S}=(\mathcal{S}_m)_{m\in\mathbb{N}}$ s.t. for each $m\geq 0$

- 1. \mathcal{S}_m is a boolean algebra of subsets of \mathbb{R}^m
- 2. if $A \in \mathcal{S}_m$, then $R \times A$ and $A \times R$ belong to \mathcal{S}_{m+1} (\forall)

- 3. $\{(x_1,\ldots,x_m)\in R^m: x_1=x_m\}\in\mathcal{S}_m$
- 4. if $A\in S_{m+1}$, then $\pi(A)\in \mathcal{S}_m$ where $\pi:R^{m+1}\to R^m$ is the projection map on the first m coordinates (\exists)
- 5. $\{a\} \in \mathcal{S}_1 \text{ for } a \in R$

Fact 1.2. If (R, ...) is a model-theoretic structure and $\mathcal{S}_n = \{D \subseteq R^n : D \text{ is definable}\}$, then $\{\mathcal{S}_n\}_{n \in \mathbb{N}}$ is a structure on R

Definition 1.3. $X\subseteq \mathbb{C}^n$ is **constructible** if $X=\bigcup_{i=1}^m Y_i$ where each Y_i has the form

$$\{\bar{x} \in \mathbb{C}^n : P_1(\bar{x}) = 0, \dots, P_n(\bar{x}) = 0, Q_1(\bar{x}) \neq 0, \dots, Q_n(\bar{x}) \neq 0\}$$

Fact 1.4. If $S_m=\{D\subseteq\mathbb{C}^m:D \text{ constructible}\}$, then $\{\mathcal{S}_n\}_{n\in\mathbb{N}}$ is a structure on \mathbb{C}

Theorem 1.5 (Chevalley's Theorem, Quantifier elimination in \mathbb{C}). *Projections works*

Definition 1.6. $X \subseteq \mathbb{R}^n$ is **semialgebraic** if X is a finite union of sets of the form

$$\{\bar{x} \in \mathbb{R}^n : P_1(\bar{x}) = 0, \dots, P_n(\bar{x}) = 0, Q_1(\bar{x}) > 0, \dots, Q_m(\bar{x}) > 0\}$$

Semialgebraic sets are closed under intersection, union, complement, cartesian product, projection

Fact 1.7 (Tarski-Seidenberg). *Semialgebraic sets are a structure on* \mathbb{R} (*projection*)

Fact 1.8. *If* $f: X \rightarrow Y$ *is definable*

- 1. if f^{-1} exists then f^{-1} is definable
- 2. if $g: Y \rightarrow Z$ is definable, then $g \circ f$ is definable
- 3. if $A \subseteq X$ is definable, then f(A) is definable
- 4. if $A \subseteq Y$ is definable, then $f^{-1}(A)$ is definable
- 5. If $A \subseteq X$ is definable, then so is $f \upharpoonright A$

Given functions $f,g:X\to R_\infty$ on a set $X\subseteq R^m$ we put

$$(f,g) := \{(x,r) \in X \times R : f(x) < r < g(x)\}$$

$$[f,g] := \{(x,r) \in X \times R_{\infty} : f(x) \le r \le g(x)\}$$

We consider (f,g) as a subset of \mathbb{R}^{m+1} ; also $[f,g]\subseteq\mathbb{R}^{m+1}$ if f and g are R-valued

Definition 1.9. Let (R,<) be a dense linearly ordered nonempty set without endpoints. An **o-minimal structure** on (R,<) is by definition a structure $\mathcal S$ on R s.t.

- 1. $\{(x,y) \in R^2 : x < y\} \in \mathcal{S}_2$
- 2. the sets in S_1 are exactly the finite unions of intervals and points

In \mathbb{R} , "definable" = "semialgebraic", in \mathbb{Q} , "definable" = "semilinear"

Fact 1.10. *Semialgebraic sets are an o-minimal structure on* \mathbb{R}

context

- (R, \leq) dense linear order with no endpoints
- for each n, there's S_n

Fix an o-minimal structure \mathcal{S} on (R,<) Why o-minimality?

- 1. results results for definable sets
- 2. a bunch of o-minimal structures exist

Fact 1.11 (Wilkie). There is an o-minimal structure on \mathbb{R} where $\exp(-)$, $\log(-)$ are definable

sin(x) cannot be definable in o-minimal structure on \mathbb{R}

Lemma 1.12. *Let* $A \subseteq R$ *be definable. Then*

- 1. $\inf(A)$ and $\sup(A)$ exist in R_{∞} (dedekind completeness for definable sets)
- 2. the boundary $bd(A) := \{x \in R : \text{ each interval containing } x \text{ intersects both } A \text{ and } R A\}$ is finite, and if $a_1 < \dots < a_k$ are the points of bd(A) in order, then each interval (a_i, a_{i+1}) , where $a_0 = -\infty$ and $a_{k+1} = +\infty$ is either part of A or disjoint from A

- 3. If $|X| = \infty$ then $X \supseteq I$ for some I
- 4. If X is dense in I, then $|X| = \infty$, $X \supseteq J$ (not true in \mathbb{Q}/\mathbb{R}) $(X \subseteq I$ is dense in I if $\forall J \subseteq I(J \cap X \neq \emptyset)$)
- 5. If $p \in R$, then $\exists b > a \text{ s.t. } (a,b) \subseteq X \text{ or } (a,b) \cap X = \emptyset$. Locally,

Proof. 2. $bd(X \cup Y) \subseteq bd(X) \cup bd(Y)$

3. *X* is a union of interval and points

Lemma 1.13. 1. If $A \subseteq R^m$ is definable, so are cl(A) and int(A)

2. If $A \subseteq B \subseteq R^m$ are definable sets, and A is open in B, then there is a definable open $U \subseteq R^m$ with $U \cap B = A$

Proof.

$$(x_1,\dots,x_m)\in \mathrm{cl}(A)\\\Leftrightarrow\\ (\forall y_1,\dots,y_m\forall z_1,\dots,z_m[y_1< x< z_1\wedge\dots\wedge y_m< x_m< z_m)\rightarrow\\ \exists a_1,\dots,a_m(y_1< a< z_1)\wedge\dots\wedge y_m< a_m< z_m\wedge(a_1,\dots,a_m)\in A]$$

take U is as the union of all boxes in \mathbb{R}^m whose intersection with B is contained in A

Definition 1.14. A set $X \subseteq R^m$ is **definably connected** if X is definable and X is not the union of two disjoint nonempty definable open subsets of X

- **Lemma 1.15.** 1. the definably connected subsets of R are the following: the empty set, the intervals, the sets [a,b) with $-\infty < a < b \le +\infty$, the sets (a,b] with $-\infty \le a < b < +\infty$ and the sets [a,b) with $-\infty < a \le b < +\infty$, and the sets [a,b] with $-\infty < a \le b < +\infty$
 - 2. the image of a definably connected set $X \subseteq \mathbb{R}^m$ under a definable continuous map $f: X \to \mathbb{R}^n$ is definably connected
 - 3. if X and Y are definable subsets of R^m , $X \subseteq Y \subseteq cl(X)$, and X is definably connected, then Y is definably connected
 - 4. if X and Y are definably connected subsets of R^m and $X\cap Y\neq\emptyset$, then $X\cup Y$ is definably connected

Proof. 3. suppose $Y=U_1\cup U_2$ where U_1,U_2 are definably open, then $X\subseteq U_1$ or $X\subseteq U_2$

note the following special case of (2):

If the function $f:[a,b]\to R$ is definable and continuous, then f assumes all values between f(a) and f(b)

Lemma 1.16. If $I, J \subseteq R$ intervals, $X \subseteq R$ definable, I < J, $|I \setminus X| = \infty = |J \cap X|$, then there is a s.t. I < a < J, and there is c < a < b s.t. $(c, a) \cap X = \emptyset$, $(a, b) \subseteq X$

Proof. take
$$a = \inf X \setminus bd(X)$$

1.1 O-minimal ordered groups and rings

Order group is a group equipped with a linear order that is invariant under left and right multiplication:

$$x < y \Rightarrow zx < zy \land xz < yz$$

Lemma 1.17. The only definable subsets of R that are also subgroups are $\{1\}$ and R

Proof. Given a definable subgroup G we first show that G is convex: if not, then there are $g \in G$, $r \in R - G$ with 1 < r < g. This gives a sequence

$$1 < r < g < rg < g^2 < rg^2 < g^3 < \dots$$

whose terms alternate in being in and out of the definable set G.

So G is convex, hence assuming $G \neq \{1\}$ we have $s := \sup(G) > 1$ with $(1,s) \subseteq G$. If $G = +\infty$, then clearly R = G. If $s < +\infty$, then we take any $g \in (1,s)$ and obtain $s = gg^{-1}s \in G$, since $g^{-1}s \in (1,s)$ hence $s < gs \in G$

Proposition 1.18. Suppose (R, <, S) is an o-minimal structure and S contains a binary operation \cdot on R, s.t. $(R, <, \cdot)$ is an ordered group. Then the group (R, \cdot) is abelian, divisible and torsion-free

Proof. for each $r \in R$ the centralizer $C_r := \{x \in R : rx = xr\}$ is a definable subgroup containing r, so $C_r = R$ by the lemma. Hence R is abelian. For each n > 0 the subgroup $\{x^n : x \in R\}$ is definable, hence equal to R. Every ordered group is torsion free

Remark. Let (R,<,+) be an ordered abelian group, $R \neq \{0\}$, so (R,<) has no endpoints. Assume also that the linearly ordered set (R,<) is dense. Then the addition operation $+:R^2 \to R$ and the additive inverse operation $-:R \to R$ are continuous w.r.t. the interval topology, that is, (R,+) is a topological group w.r.t. the interval topology

An **ordered ring** is a ring (associative with 1) equipped with a linear order < s.t.

- 1. 0 < 1
- 2. < is translation invariant
- 3. < is invariant under multiplication by positive elements

Note that then the additive group of the ring is an ordered group, that the ring has no zero divisors, that $x^2 \geq 0$ for all x, and that $k \mapsto k \cdot 1 : \mathbb{Z} \to x$ ring is a strictly increasing ring embedding

suppose our ordered ring is moreover a **division ring**: for each $x \neq 0$ there is y with $x \cdot y = 1$. It is easy to check that such a y is unique, and satisfies $y \cdot x = 1$ and that x > 0 implies y > 0. It is easy to see that the additive group is divisible, the underlying ordered set is dense without endpoints, and the maps $(x,y) \to xy$ and $x \mapsto x^{-1}$ are continuous w.r.t. the interval topology

An **ordered field** is an ordered division ring with commutative multiplication. Examples: field of reals, field of rational numbers. Define **real closed field** to be an ordered field s.t. if f(X) is a one-variable polynomial with coefficients in the field and a < b are elements in the field with f(a) < 0 < f(b), then there is $c \in (a,b)$ in the field with f(c) = 0

Proposition 1.19. Suppose $(R,<,\mathcal{S})$ is an o-minimal structure and \mathcal{S} contains binary operations $+:R^2\to R$ and $\cdot:R^2\to R$ s.t. $(R,<,+,\cdot)$. Then $(R,<,+,\cdot)$ is a real closed field

Proof. For each $r \in R$ we have a definable additive subgroup rR of (R,+), hence rR = R if $r \neq 0$. This shows that $(R,<,+,\cdot)$ is an ordered division ring. Let $Pos(R) = \{r \in R : r > 0\}$. Clearly Pos(R) is an ordered multiplicative group. By restricting $\mathcal S$ to Pos(R) it follows from the previous proposition that multiplication is commutative on Pos(R), hence on all of R. So $(R,<,+,\cdot)$ is an ordered field. Each one-variable polynomial $f(X) \in R[X]$ gives rise to a definable continuous function $x \mapsto f(x) : R \to R$. Now apply 1.15

1.2 Model-theoretic structures

Definition 1.20. A model-theoretic structure $\mathcal{R}=(R,<,\dots)$ where < is a dense linear order without endpoints on R, is called **o-minimal** if $\operatorname{Def}(\mathcal{R}_R)$ is an o-minimal structure on (R,<), in other words, every set $S\subseteq R$ that is definable in \mathcal{R} using constants is a union of finitely many intervals and points

1.3 The simplest o-minimal structures

Let (R, <) be a dense linearly ordered nonempty set without endpoints

We prove below that the model theoretic structure (R, <) is o-minimal Let $1 \le i \le m$. The function $(x_1, ..., x_m) \mapsto x_i : R^m \to R$ will be denoted by x_i . The simple functions on R^m are by definition these coordinates

noted by x_i . The simple function $(x_1, ..., x_m) \mapsto x_i : R^m \to R$ will be denoted by x_i . The simple functions on R^m are by definition these coordinate functions $x_1, ..., x_m$ and the constant functions $R^m \to R$

Let f_1,\ldots,f_N be simple functions on R^m , and let $\epsilon:\{1,\ldots,N\}^2\to\{-1,0,1\}$ be given. Then we put

$$\begin{split} \epsilon(f_1,\dots,f_N) := \{x \in R^m : &\forall (i,j) \in \{1,\dots,N\}^2 \\ f_i(x) &< f_j(x) \text{ if } \epsilon(i,j) = -1 \\ f_i(x) &= f_j(x) \text{ if } \epsilon(i,j) = 0 \\ f_i(x) &> f_j(x) \text{ if } \epsilon(i,j) = 1 \} \end{split}$$

If ξ and η are the restrictions of f_i and f_j to $\epsilon(f_1,\ldots,f_N)$, then either $\xi<\eta$ or $\xi=\eta$ or $\xi>\eta$. Let $\xi_1<\cdots<\xi_k$ be the restrictions of f_1,\ldots,f_N to $\epsilon(f_1,\ldots,f_N)$ arranged in increasing order. One checks easily that the sets $\Gamma(\xi_j)$ $(1\leq j\leq k)$ and the sets (ξ_j,ξ_{j+1}) $(0\leq j\leq k)$, where $\xi_0=-\infty$ and $\xi_{k+1}=+\infty$ by convention) are exactly the nonempty subsets of R^{m+1} of the form $\epsilon'(f_1,\ldots,f_N,x_{m+1})$ where

$$\epsilon':\{1,\ldots,N,N+1\}^2\rightarrow\{-1,0,1\}$$

is an extension of ϵ . suppose $x_{m+1}(x)=y$, we only need to know the relation among $f_1(x),\ldots,f_N(x),y$. And $\bigcup \Gamma(\xi_j) \cup \bigcup (\xi_j,\xi_{j+1})=\epsilon(f_1,\ldots,f_N) \times R$

Define a **simple set** in R^m to be the subset of R^m of the form $\epsilon(f_1,\ldots,f_N)$ with f_1,\ldots,f_N simple functions on R^m and $\epsilon:\{1,\ldots,N\}^2\to\{-1,0,1\}$. We have just proved that if $S\subseteq R^{m+1}$ is simple, then its image under the projection map

$$(x_1,\ldots,x_m,x_{m+1})\mapsto (x_1,\ldots,x_m):R^{m+1}\to R^m$$

is simple in \mathbb{R}^m

Proposition 1.21. The subsets of R^m that are definable in (R, <) using constants are exactly the finite unions of simple sets in R^m

Proof. Let \mathcal{S}_m be the collection of finite unions of simple sets in R^m . Clearly \mathcal{S}_m is a boolean algebra of subsets of R^m , and each set in \mathcal{S}_m is definable in (R,<) using constants. Texts above show that $\mathcal{S}:=(\mathcal{S}_m)_{m\in\mathbb{N}}$ is a structure on the set R, hence the sets in \mathcal{S}_m are exactly the subsets of R^m definable in (R,<) using constants

Corollary 1.22. The model-theoretic structure (R, <) is o-minimal

1.4 Semilinear sets

In this section we show that the sets definable using constants in an ordered vector space over an ordered field are exactly the semilinear sets.

definition

2 Semialgebriac sets

2.1 Thom's lemma and continuity of roots

Lemma 2.1. Let $\alpha \in \mathbb{C}$ be a zero of the monic polynomial

$$a_0 + a_1 T + \dots + a_{d-1} T^{d-1} + T^d \in \mathbb{C}[T], d \geq 1$$

Then $|\alpha| \leq 1 + \max\{|a_i|: i=0,\ldots,d-1\}$

Proof. Put $M:=\max\{|a_i|:i=0,\dots,d-1\}$ and suppose $\alpha>1+M.$ Then $\left|a_0+a_1\alpha+\dots+a^{d-1}\alpha^{d-1}\right|\leq M(1+abs\alpha+\dots+\left|\alpha\right|^{d-1})=M(\left|\alpha\right|^d-1)/(\left|\alpha\right|-1)<\left|\alpha\right|^d$, contradicting $0=|f(\alpha)|$

Lemma 2.2 (Thom). Let $f_1, ..., f_k \in \mathbb{R}[T]$ be nonzero polynomials s.t. if $f_i' \neq 0$, then $f_i' \in \{f_1, ..., f_k\}$. Let $\epsilon : \{1, ..., k\} \rightarrow \{-1, 0, 1\}$, and put

$$A_\epsilon := \{t \in \mathbb{R} : \operatorname{sgn}(f_i(t)) = \epsilon(i), i = 1, \dots, k\} \subseteq \mathbb{R}$$

Then A_{ϵ} is empty, a point, or an interval. If $A_{\epsilon} \neq \emptyset$, then its closure is given by

$$cl(A_{\epsilon}) = \{t \in \mathbb{R} : \operatorname{sgn}(f_i(t)) \in \{\epsilon(i), 0\}, i = 1, \dots, k\}$$

If $A_\epsilon=\emptyset$, then $\{t\in\mathbb{R}: \mathrm{sgn}(f_i(t))\in\{\epsilon(i),0\}, i=1,\dots,k\}$ is empty or a point

We call ϵ a **sign condition** for f_1,\ldots,f_k . The 3^k possible sign conditions ϵ determine 3^K disjoint sets A_{ϵ} , which together cover the real line \mathbb{R} . The second statement of the lemma says that for nonempty A_{ϵ} its closure can be obtained by relaxing all strict inequalities to weak inequalities

Proof. By induction on k. The lemma holds trivially for k=0. Let $f_1,\ldots,f_k,f_{k+1}\in\mathbb{R}[T]-\{0\}$ be polynomials s.t. if $f_i'\neq 0$, then $f_i'\in\{f_1,\ldots,f_{k+1}\}$. We may assume that $\deg(f_{k+1})=\max\{\deg(f_i):1\leq i\leq k+1\}$. Let $\epsilon':\{1,\ldots,k+1\}\to\{-1,0,1\}$, and let ϵ be the restriction of ϵ' to $\{1,\ldots,k\}$. By the inductive hypothesis, A_ϵ is empty, a point or an interval. It A_ϵ is empty or a point, so is $A_{\epsilon'}=A_\epsilon\cap\{t\in\mathbb{R}: \mathrm{sgn}(f_{k+1}(t))=\epsilon'(k+1)\}$, and the other properties to be checked in this case follow easily from the inductive hypothesis on A_ϵ

Suppose A_ϵ is an interval. Since f'_{k+1} has a constant sign on A_ϵ , the function f_{k+1} is either strictly monotone on A_ϵ , or constant. In both cases, it is routine to check that $A_{\epsilon'} = A_\epsilon \cap \{t \in \mathbb{R} : \operatorname{sgn}(f_{k+1}(t)) = \epsilon'(k+1)\}$ has the required properties

Lemma 2.3 (Continuity of roots). Let $f(T)=a_0+a_1+\cdots+a_dT^d\in\mathbb{C}[T]$ be a polynomial that has no zero on the boundary circle |z-c|=r of a given open disc |z-c|< r in the complex plane $(c\in\mathbb{C},r>0)$. Then there is $\epsilon>0$ s.t. if $|a_i-b_i|\leq \epsilon$ for $i=0,\ldots,d$ then $g(T):=b_0+b_1T+\cdots+b_dT_d\in\mathbb{C}[T]$ also has no zero on the circle, and f and g have the same number of zeros in the disc

3 Cell Decomposition

Fix an arbitrary o-minimal structure (R, <, S). Instead of saying that a set $A \subseteq R^m$ belongs to S, we say that A is definable

3.1 The monotonicity theorem and the finiteness lemma

Theorem 3.1 (Monotonicity theorem). Let $f:(a,b)\to R$ be a definable function on the interval (a,b). Then there are points $a_1<\dots< a_k$ in (a,b) s.t. on each subinterval (a_j,a_{j+1}) with $a_0=a$, $a_{k+1}=b$, the function is either constant, or strictly monotone and continuous

We derive this from the threes below. In these lemmas we consider a definable function $f:I\to R$ on an interval I

Lemma 3.2. There is a subinterval of I on which f is constant or injective

Lemma 3.3. If f is injective, then f is strictly monotone on a subinterval of I

Lemma 3.4. *If f is strictly monotone, then f is continuous on a subinterval of I*

These lemmas imply the monotonicity theorem as follows: Let

 $X := \{x \in (a,b) : \text{on some subinterval of } (a,b) \text{ containing } x \text{ the function } f \text{ is either constant, or strictly monotonicity and continuous} \}$

Now (a,b)-X must be finite, since otherwise it would contain an interval I; applying successively lemmas 3.2, 3.3, 3.4 we can make I so small that f is either constant, or strictly monotone and continuous on I. But then $I\subseteq X$, a contradiction

Since (a,b)-X is finite, we can reduce the proof of the theorem to the case that (a,b)=X, by replacing (a,b) by each of the finitely many intervals of which the open set X consists. In particular, we may assume that f is continuous. By splitting up (a,b) further we can reduce to one of the following three cases

Case 1. For all $x \in (a, b)$, f is constant on some neighborhood of x

Case 2. For all $x \in (a,b)$, f is strictly increasing on some neighborhood of x

Case 3. For all $x \in (a, b)$, f is strictly decreasing on some neighborhood of x

Case 1. Take $x_0 \in (a, b)$ and put

$$s := \sup\{x : x_0 < x < b, f \text{ is constant on } [x_0, x)\}$$

Then s = b, since s < b implies that f is constant on some neighborhood of s, contradiction. From s = b it follows that f is constant on $[x_0, b)$. Similarly we prove that f is constant on $(a, x_0]$, therefore f is constant on (a, b)

Case 2. Take $x_0 \in (a, b)$ and put

$$s := \sup\{x : x_0 < x < b, f \text{ is strictly increasing on } [x_0, x)\}$$

Then s = b, since s < b leads to a contradiction

We now prove the lemmas

Proof of Lemma 3.2. If some $y \in R$ had infinite preimage $f^{-1}(y)$, then this preimage would contain a subinterval of I and f would take the constant value g on that subinterval. So we may assume that each $g \in R$ has finite preimage. Then g(I) is infinite, and so contains an interval $g: I \to I$ by

$$g(y):=\min\{x\in I: f(x)=y\}$$

Since g is injective by definition, g(J) is infinite, and hence g(J) contains a subinterval of I, and f is necessarily injective on this subinterval

If
$$x_1,x_2\in J'\subseteq g(J)$$
, $x_i=g(y_i)$, $f(x_1)=f(x_2)\Rightarrow y_1=y_2\Rightarrow x_1=x_2$ and f is injective \qed

Fix $f: I \to R$, $a \in I$, $\Phi_{-+}(a)$ means $\exists \epsilon$ s.t. if $x \in (a - \epsilon, a)$ then f(x) < f(a), and if $x \in (a, a + \epsilon)$ then f(x) > f(a). "locally increasing"

$$\Phi_{+-}(a)$$
, $\Phi_{++}(a)$, Φ_{--} is similar

$$\Phi_{00}(a)$$
, $\exists \epsilon, x \in (a - \epsilon, a + \epsilon) \Rightarrow f$ is increasing

Definition 3.5. $a \in slbd(D)$ if $(a - \epsilon, a) \cap D = \emptyset$, $(a, a + \epsilon) \subseteq D$, strong left boundary

Fact 3.6. If $X, Y \subseteq R$, $|X| = |Y| = \infty$, X < Y, if $D \subseteq R$, $X \cap D = \emptyset$, $Y \subseteq D$ then $\exists a \in slbd(D)$, $X \le a \le Y$

Lemma 3.7. If $\Phi_{-+}(a)$, $\forall a \in I$, then f is increasing

Proof. suppose $a, b \in I$, a < b, $f(a) \ge f(b)$. there is ϵ s.t. if $x \in (a, a + \epsilon)$ then f(x) > f(a), and if $x \in (b - \epsilon, b)$, $f(x) < f(b) \le f(a)$.

$$D = \{x : f(x) \le f(a)\}, (a, a+\epsilon) \cap D = \emptyset, (b-\epsilon, b) \subseteq D, \text{ then } \exists c \in slbd(D), c - \delta, c \cap D = \emptyset \text{ and } (c, c + \delta) \subseteq D, \text{ so } \Phi_{-+}(c) \text{ is false}$$

Lemma 3.8. 1. If $\forall a \in I$, $\Phi_{+-}(a)$, then f is decreasing

2. If $\forall a \in I$, $\Phi_{00}(a)$, then f is constant

Lemma 3.9. If $f: I \to R$ injective, $a \in I$, then $\Phi_{++}(a)$ or $\Phi_{+-}(a)$ or $\Phi_{-+}(a)$ or $\Phi_{--}(a)$

if f is not injective, then there may be 9 cases

Fact 3.10. If $D \subseteq R$ definable, $a \in R$, then there is ϵ s.t. $(a, a + \epsilon) \subseteq D$ or $(a, a + \epsilon) \cap D = \emptyset$ and $(a - \epsilon, a) \subseteq D$ or $(a - \epsilon, a) \cap D = \emptyset$

Proof. Let
$$D = \{x \in I : f(x) > f(a)\}$$
, then the fact gives 4 cases

Lemma 3.11. *If* $f: I \rightarrow R$ *is definable*

- 1. It can't be that: $\forall a \in I, \Phi_{++}(a)$
- 2. It can't be that: $\forall a \in I, \Phi_{-}(a)$

Proof. 1. Assume $\forall x \Phi_{++}(x)$

$$\begin{split} &\Psi_{+-}(a) \Leftrightarrow \exists y, \epsilon, \text{if } x \in (a-\epsilon,a), \text{then } f(x) > y, x \in (a,a+\epsilon), f(x) < y \\ &\text{Let } I = (a,b), S = \{x \in I \mid \exists x' \in I, x' > x, f(x') < f(x)\} \end{split}$$

Case 1: $(\exists \epsilon)(b-\epsilon,b) \cap S = \emptyset$. Then on the interval $(b-\epsilon,b)$, f is increasing, $\Phi_{++}(x)$ doesn't hold

Case 2: $(\exists \epsilon)(b-\epsilon,b) \subseteq S$

Take $x_0 \in (b-\epsilon,b)$, $x_0 \in S$, and we could get a decreasing sequence Let $D=\{x \in I: f(x)>f(x_0)\}$. So there are infinitely many points $< x_0$ in D, and infinitely many points $> x_0$ not in D

 $\exists c \text{ s.t. } (c-\epsilon,c) \subseteq D$, $(c,c+\epsilon) \cap D = \emptyset$. So $\Psi_{+-}(c)$ is true

Lemma 3.12. $\exists J \subseteq I, \forall x \in J, \Psi_{+-}(x),$

Proof. $S = \{x \in I : \Psi_{+-}(x)\}$. If S is finite, replace I with $I' \subseteq I \setminus S$, replace f with $f|_{I'}$, apply previous lemma, get $c \in I'$, $\Psi_{+-}(c)$, a contradiction \Box

Similarly, $\exists J \subseteq I, \forall x \in J, \Psi_{-+}(x)$

Combine these, get $I\supseteq I'\supseteq I''$, $\forall x\in I'$, $\Psi_{+-}(x)$, and $\forall x\in I''$, $\Psi_{+-}(x)$, a contradiction

Lemma 3.13. *If* $f: I \to R$, $\exists a \in I$, $\Phi_{-+}(a)$ *or* $\Phi_{+-}(a)$ *or* $\Phi_{00}(a)$

Proof. By Lemma 3.2, there is $J \subseteq I$, if $f|_J$ is constant, then we are done.

If $f|_J$ is injective, let $S_{+-}=\{a\in J, \Phi_{+-}(a)\}$ and other sets similarly. $J=S_{+-}\cup S_{++}\cup S_{-+}\cup S_{--}$. If $|S_{++}|=\infty$, there is $I'\subseteq S_{++}$, a contradiction. Therefore S_{--} and S_{++} are finite. But |J| is infinite, so S_{+-} or S_{-+} is nonempty

Lemma 3.14. $f:I \to R$, $\exists c_0 < c_1 < \dots < c_n$, $I=(c_0,c_n)$, $f|_{(c_i,c_{i+1})}$ is constant or decreasing or increasing

Proof. Let $E=I\smallsetminus (S_{+-}\cup S_{-+}\cup S_{00}).$ If $|E|=\infty$, then $J\subseteq E$ and $f|_E$ contradicts 3.13. Take $\{c_0,\dots,c_n\}\supseteq E\cup bd(I)\cup bd(S_{+-})\cup bd(S_{-+})\cup bd(S_{00}).$ So all the sets respect the partition

$$(c_0,c_1),\{c_1\},(c_1,c_2),\dots,(c_{n-1},c_n)$$

Lemma 3.15. If $f: I \to R$ definable and $S = \{x \in I : f \text{ is not continuous at } x\}$, then S is finite

Proof. S is definable. If $|S|=\infty$, take $J\subseteq S$, replace f with $f|_J$, we may assume f is nowhere continuous. By Lemma 3.14, there is $J\subseteq I$, $f|_J$ is constant or monotone. Replace f with $f|_J$, now f is monotone (constant is continuous). Assume f is increasing, then f is injective, $|f(I)|=\infty$, take $J\subseteq f(I)$, $[c,d]\subseteq f(I)$, c=f(a), d=f(b), $x\in (a,b)\Rightarrow f(x)\in (c,d)$. f is strictly increasing. if $g\in (c,d)\subseteq f(I)$, so $\exists x\in I$, g=f(x), therefore f is surjective. Also f is order-preserving, thus f is continuous on (a,b) (since we are using order to define the topology). But f is continuous at nowhere, so a contradiction

Then the monotonicity theorem follows from the proof of Lemma 3.14 (modify the boundary to include the discontinuous points)

Corollary 3.16. If $f:(a,b)\to R$ definable, $\lim_{x\to a^+} f(x)$ exists in R_∞

Proof. 1. Take
$$\epsilon$$
, $f|_{a,a+\epsilon}$ is continuous and monotone. Then $\lim_{x\to a^+} f(x)$ is $\sup\{f(x):x\in(a,a+\epsilon)\}$ or $\inf\{f(x):x\in(a,a+\epsilon)\}$

Corollary 3.17. If $f:[a,b]\to R$ is definable and continuous, then $\max_{x\in[a,b]f(x)}$ and $\min_{x\in[a,b]}f(x)$ exist

Proof. Take maximum for each piece and combine

Uniform Finiteness

Suppose $D\subseteq R^n \times R$, for $\bar{a}\in R^n$, $D_{\bar{a}}=\{y\in R: (a,y\}\in D\}$

Theorem 3.18 (Uniform Finitness). *Suppose* $\forall \bar{a}$, $|D_{\bar{a}} < \infty|$. Then $\exists N < \infty \forall \bar{a} |D_{\bar{a}}| < N$

For now, consider n=1. Fix $D\subseteq R^2$ definable, $|D_a|<\infty$ for all $a\in R$

Definition 3.19. $(a,b) \subseteq R \times R_{\infty}$ is **normal** if either

- $(a,b) \notin \operatorname{cl}(D)$, $(\exists \epsilon)(a-\epsilon,a+\epsilon) \times (b-\epsilon,b+\epsilon) \cap D = \emptyset$
- $(a,b) \in D$ and $(\exists \epsilon, \delta) D \cap (a-\epsilon, a+\epsilon) \times (b-\delta, b+\delta)$ is $\Gamma(f)$ for some continuous function f

Otherwise (a, b) is abnormal

Remark. $\{(x, y) \text{ normal}\}$ is open, $\{(x, y) \text{ abnormal}\}$ is closed.

Definition 3.20. $a \in R$ is **good** if $\forall b \in R_{\infty}$, (a,b) is normal, is **bad** if $\exists b \in R_{\infty}$, (a,b) is abnormal

This is a definable definition

Lemma 3.21. $\{x \in R : x \text{ is bad}\}$ is finite

Proof. Otherwise, take $I \subseteq B$, $\forall x \in I$, $\{y \in R_{\infty} : (x, y) \text{ abnormal}\}$ is closed, nonempty.

Let $f(x)=\min\{y\in R_\infty:(x,y) \text{ abnormal}\}, f:I\to R_\infty \text{ definable}.$ $\forall x, \text{ break into cases based on these questions}$

- $f(x) = -\infty \text{ vs } f(x) \in R \text{ vs } f(x) = +\infty$
- $(x, f(x)) \in D$ vs not
- whether $\exists y > f(x), (x, y) \in D$
- whether $\exists y < f(x), (x, y) \in D$

So 24 pieces

Shrink *I* to make all the answers constant

Assume $\forall x \in I$, $f(x) \in R$, $(x, f(x)) \in D$, $(\exists y < f(x))(x, y) \in D$, $(\exists z > f(x))(x, z) \in D$

Let $g(x) = \max\{y: y < f(x), (x,y) \in D\}, h(x) = \min\{y: y > f(x), (x,y) \in D\}$

Idea: apply monotonicity theorem, get f,g,h continuous, then (x,f(x)) is normal $\hfill\Box$

3.2 The cell decomposition theorem

for each definable set X in \mathbb{R}^m we put

$$C(X):=\{f:X\to R:f \text{ definable and continuous}\}$$

$$C_{\infty}(X):=C(X)\cup\{-\infty,+\infty\}$$

where we regard $-\infty$ and $+\infty$ as constant functions on X

For $f,g \in C_{\infty}(X)$ we write f < g if f(x) < g(x) for all $x \in X$, and in this case we put

$$(f,g)_X := \{(x,r) \in X \times R : f(x) < r < g(x)\}$$

So $(f,g)_X$ is a definable subset of \mathbb{R}^{m+1}

Definition 3.22. Let (i_1, \dots, i_m) be a sequence of zeros and ones of length m. An (i_1, \dots, i_m) -cell is a definable subset of R^m obtained by induction on m as follows:

- 1. a (0)-cell is a one-element set $\{r\}\subseteq R$, a (1)-cell is an interval $(a,b)\subseteq R$
- 2. suppose (i_1,\ldots,i_m) -cells are already defined, then an $(i_1,\ldots,i_m,0)$ -cell is the graph $\Gamma(f)$ of a function $f\in C(X)$, where X is an (i_1,\ldots,i_m) -cell; further, an $(i_1,\ldots,i_m,1)$ -cell is a set $(f,g)_X$ where X is an (i_1,\ldots,i_m) -cell and $f,g\in C_\infty(X)$, f< g

So a (0,0)-cell is a "point" $\{(r,s)\}\subseteq R^2$, a (0,1)-cell is an "interval" on a vertical line $\{a\}\times R$, and a (1,0)-cell is the graph of a continuous definable function defined on an interval.

Definition 3.23. A **cell in** R^m is an (i_1,\ldots,i_m) -cell for some (necessarily unique) sequence (i_1,\ldots,i_m) . Since the $(1,\ldots,1)$ -cells are exactly the cells which are open in their ambient space R^m , we call these **open cells**

The non-open cells are "thin":

The union of finitely many non-open cells in \mathbb{R}^m has empty interior

Proposition 3.24. Each cell is locally closed, i.e., open in its closure

Proof. Let $C \subseteq R^{m+1}$ be a cell. Put $B := \pi(C) \subseteq R^m$ and assume inductively that the cell B is open in its closure $\operatorname{cl}(B)$, so that $\operatorname{cl}(B) - B$ is a closed set. If $C = \Gamma(f)$ with $f: B \to R$ a definable continuous function, then $\operatorname{cl}(C) - C$ is contained in $(\operatorname{cl}(B) - B) \times R$, hence C is open in the closed set $C \cup ((\operatorname{cl}(B) - B) \times R)$

If C=(f,g) with $f,g:B\to R$ definable continuous functions on B, f< g, then one verifies that $\mathrm{cl}(C)-C\subseteq \Gamma(f)\cup \Gamma(g)\cup ((\mathrm{cl}(B)-B)\times R)$ and that C is open in the closed set $C\cup \Gamma(f)\cup \Gamma(g)\cup ((\mathrm{cl}(B)-B)\times R)$

we consider the point-space \mathbb{R}^0 as a cell, or ()-cell, where () is the sequence of length 0

Each cell is homeomorphic under a coordinate projection to an open cell. We now make this explicit. Let $i=(i_1,\ldots,i_m)$ be a sequence of zeros and ones

Define $p_i:R^m\to R^k$ as follows: let $\lambda(1)<\cdots<\lambda(k)$ be the indices $\lambda\in\{1,\ldots,m\}$ for which $i_\lambda=1$, so that $k=i_1+\cdots+i_m$; then

$$p_i(x_1,\dots,x_m):=(x_{\lambda(1),\dots,x_{\lambda(k)}})$$

It is easy to show by induction on m that p_i maps each i-cell A homeomorphically onto an open cell $p_i(A)$ in R^k . We denote $p_i(A)$ also by p(A) and the homeomorphism $p_i|A:A\to p(A)$ by p_A . Clearly $p_A=\operatorname{id}_A$ if A is an open cell

If A is a cell in R^{m+1} then $\pi(A)$ is a cell in R^m , where $\pi:R^{m+1}\to R^m$ is the projection on the first m coordinates. Here is a simple application of this fact

Proposition 3.25. *Each cell is definably connected*

Proof. For intervals and points this is stated in 1.15

If A is a cell in R^{m+1} , then we assume inductively that the cell $\pi(A)$ in R^m is definably connected and use the fact that each fiber $\pi^{-1}(x) \cap A$ is definably connected

Definition 3.26. A **decomposition** of \mathbb{R}^m is a special kind of partition of \mathbb{R}^m into finitely many cells. The definition is by induction on m

1. a decomposition of $R^1 = R$ is a collection

$$\{(-\infty, a_1), (a_1, a_2), \dots, (a_k, +\infty), \{a_1\}, \dots, \{a_k\}\}$$

where $a_1 < \cdots < a_k$ are points

2. a decomposition of R^{m+1} is a finite partition of R^{m+1} into cells A s.t. the set of projections $\pi(A)$ is a decomposition of R^m

Let $\mathcal{D} = \{A(1), \dots, A(k)\}$ be a decomposition of R^m , $A(i) \neq A(j)$ if $i \neq j$, and let for each $i \in \{1, \dots, k\}$ functions $f_{i1} < \dots < f_{in(i)}$ in $C(A_i)$ be given Then

$$\mathcal{D}_i := \{(-\infty, f_{i1}), (f_{i1}, f_{i2}), \dots, (f_{in(i)}, +\infty), \Gamma(f_{i1}), \dots, \Gamma(f_{in(i)})\}$$

is a partition of $A(i) \times R$ and one easily checks that $\mathcal{D}^* := \mathcal{D}_1 \cup \dots \cup \mathcal{D}_k$ is a decomposition of R^{m+1} , and that every decomposition of R^{m+1} arises in this way from a decomposition \mathcal{D} of R^m . We write $\mathcal{D} = \pi(\mathcal{D}^*)$

A decomposition \mathcal{D} of R^m is said to be **partition** a set $S\subseteq R^m$ if each cell in \mathcal{D} is either part of S or disjoint from S, in other words, if S is a union of cells in \mathcal{D} .

Theorem 3.27 (Cell Decomposition Theorem). 1. (I_m) Given any definable sets $A_1, \ldots, A_k \subseteq R^m$ there is a decomposition of R^m partitioning each of A_1, \ldots, A_k

- 2. (II_m) For each definable function $f:A\to R$, $A\subseteq R^m$, there is a decomposition $\mathcal D$ of R^m partitioning A s.t. the restriction $f|B:B\to R$ to each cell $B\in \mathcal D$ with $B\subseteq A$ is continuous
- $({\rm I}_1)$ holds by o-minimality, and that $({\rm II}_1)$ follows from the monotonicity theorem

We now assume that I_1, \dots, I_m and II_1, \dots, II_m hold

The proof is lengthy. The first step is to generalize the finiteness lemma of the previous section. Call a set $Y\subseteq R^{m+1}$ finite over R^m if for each $x\in R^m$ the fiber $Y_x:=\{r\in R: (x,r\}\in Y \text{ is finite; call } Y \text{ uniformly finite over } R^m \text{ if there is } N\in \mathbb{N} \text{ s.t. } |Y_x|\leq N \text{ for all } x\in R^m$

Lemma 3.28 (Uniform Finitness Property). Suppose the definable subset Y of \mathbb{R}^{m+1} is finite over \mathbb{R}^m , then Y is uniformly finite over \mathbb{R}^m

Lemma 3.29. Let X be a topological space, $(R_1, <)$, $(R_2, <)$ dense linear orderings without endpoints and $f: X \times R_1 \to R_2$ a function s.t. for each $(x, r) \in X \times R_1$

- 1. $f(x,\cdot):R_1\to R_2$ is continuous
- 2. $f(\cdot,r):X\to R_2$ is continuous

Then f is continuous

Proof. Let $(x,r) \in X \times R_1$ and $f(x,r) \in J$, where J is an interval in R_2 . We shall find a neighborhood U of x and an interval I around r s.t. $f(U \times I) \subseteq J$. By (1) there are r_-, r_+ in R_1 s.t. $r_- < r < r_+$ and $f(x, r_-), f(x, r_+) \in J$. Now use (2) to get a neighborhood U of x s.t. $f(U \times \{r_-\}) \subseteq J$ and $f(U \times \{r_+\}) \subseteq J$. We claim that then $f(U \times I) \subseteq J$ for $I = (r_-, r_+)$

Let $x' \in U$ and $r_- < r' < r_+$. Assume $f(x', \cdot)$ is increasing, then $f(x', r_-) \le f(x', r') \le f(x', r_+)$ and $f(x', r_-)$, $f(x', r_+)$ are both in J, hence f(x', r') is in J

A **definably connected component** of a nonempty definable set $X \subseteq \mathbb{R}^m$ is by definition a maximal definably connected subset of X

Proposition 3.30. Let $X \subseteq R^m$ be a nonempty definable set. Then X has only finitely many definably connected components. They are open and closed in X and form a finite partition of X

Proof. Let $\{C_1,\ldots,C_k\}$ be a partition of X into k disjoint cells. For each nonempty set of indices $I\subseteq\{1,\ldots,k\}$, put $C_I:=\bigcup_{i\in I}C_i$. Among the 2^k-1 sets C_I , let C' be maximal w.r.t. being definably connected.

Claim: If a set $Y\subseteq X$ is definably connected and $C'\cap Y\neq\emptyset$, then $Y\subset C'$

Put $C_Y:=\bigcup\{C_i:C_i\cap Y\neq\emptyset\}$. Since the C_i 's cover X we have $Y\subseteq C_Y$, so C_Y is the union of Y with certain cells that intersect Y. Hence C_Y is definably connected . By maximality of C' it follows that $C'\cup C_Y=C'$. Hence $Y\subseteq C_Y\subseteq C'$, which proves the claim.

It follows in particular that C' is a definably connected component of X. Further the claim shows that the sets C' are the only definable connected components of X. Note that because the closure in X of a definably connected subset of X is also definably connected, the definably connected components of X are closed in X. Hence they are open in X

3.3 Definable families

Let $S \subseteq R^{m+n} = R^m \times R^n$ be definable. For each $a \in R^m$ we put

$$S_a := \{x \in R^n : (a, x) \in S\} \subset R^n$$

We view S as describing the family of sets $(S_a)_{a \in \mathbb{R}^m}$. Such a family is called a **definable family** (of subsets of \mathbb{R}^n , with parameter space \mathbb{R}^m). The sets S_a are also called the **fibers** of the family

Example 3.1. Let $\mathcal{R} := (\mathbb{R}, <, +, \cdot)$ and consider the formula

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0$$

This defines a relation $S \subseteq \mathbb{R}^6 \times \mathbb{R}^2$. For each point $(a,b,c,d,e,f) \in \mathbb{R}^6$ the subset $S_{(a,b,c,d,e,f)} \in \mathbb{R}^2$ consists of the points (x,y) satisfying the equation

In the following $\pi:R^{m+n}\to R^m$ denotes the projection on the first m coordinates

Proposition 3.31. 1. Let C be a cell in R^{m+n} and $a \in \pi(C)$. Then C_a is a cell in R^n

2. Let \mathcal{D} be a decomposition of R^{m+n} and $a \in R^m$. Then the collection

$$\mathcal{D}_a := \{C_a : C \in \mathcal{D}, a \in \pi(C)\}$$

is a decomposition of \mathbb{R}^n

Proof. For n = 1 this is immediate from the definitions

Suppose the proposition holds for a certain n, and let C be a cell in $R^{m+(n+1)}$. Let $\pi_1:R^{m+(n+1)}\to R^{m+n}$ be the obvious projection map, so that $\pi\circ\pi_1:R^{m+(n+1)}\to R^m$ is the projection on the first m coordinates

If $C=\Gamma(f)$, then $C_a=\Gamma(f_a)$, where $f_a:(\pi_1C)\to R$ is defined by $f_a(x)=f(a,x)$

If
$$C=(f,g)_D$$
 with $D=\pi_1C$, then $C_a=(f_a,g_a)_E$ where $E=D_a$ In both cases C_a is a cell in R^{n+1}

Corollary 3.32. Let $S \subseteq R^m \times R^n$ be definable. Then there is a number $M_S \in \mathbb{N}$ s.t. for each $a \in R^m$ the set $S_a \subseteq R^n$ has a partition into at most M_S cells. In particular, each fiber S_a has at most M_S definably connected components

Proof. Take a decomposition \mathcal{D} of R^{m+n} partitioning S. Then for each $a \in R^m$ the decomposition $\mathcal{D}_a = \{C_a : C \in \mathcal{D}, a \in \pi C\}$ of R^m consists of at most $|\mathcal{D}|$ cells and partitions S_a . So we can take $M_S = |\mathcal{D}|$

Corollary 3.33. Let $S \subseteq R^m \times R^n$ be definable. Then there is a natural number M_S s.t. for each $a \in R^m$ the set $S_a \subseteq R^n$ has at most M_S isolated points. In particular, each finite fiber S_a has cardinality at most M_S

4 Definable invariants: dimension and euler characteristic

4.1 Dimension

We define the **dimension** of a nonempty definable set $X \subseteq \mathbb{R}^m$ by

$$\dim := \max\{i_1 + \dots + i_m : X \text{ contains an } (i_1, \dots, i_m)\text{-cell}\}$$

To the empty set we assign the dimension $-\infty$

Lemma 4.1. If $A \subseteq R^m$ is an open cell and $f: A \to R^m$ an injective definable map, then f(A) contains an open cell

Proof. Clearly for m=1. Let m>1 and assume inductively the lemma holds for lower values of m. Taking a decomposition of \mathbb{R}^m that partitions f(A) we have

$$f(A) = C_1 \cup \dots \cup C_k$$
 for cells C_i in R^m

Then

$$A=f^{-1}(C_1)\cup\cdots\cup f^{-1}(C_k)$$

so at least one of the $f^{-1}(C_i)$, say $f^{-1}(C_1)$, contains a box B, and by taking B suitably small we may assume that f|B is continuous. We now claim that C_1 is open.

If not, then by composing $f|B:B\to C_1$ with a definable homeomorphism of C_1 with a cell in R^{m-1} we obtain a definable continuous injective map $g:B\to R^{m-1}$. Write $B=B'\times (a,b)$

Take c with a < c < b and consider the map $h: B' \to R^{m-1}$ given by h(x) = f(x,c). By the inductive assumption applied to h we get $h(B') \supseteq D$ for some box D in R^{m-1} . Let y be a point in D and take x in B' with h(x) = y If $c' \neq c$ is sufficiently close to c, then g(x,c') will be in D, so g(x,c') = h(x') = g(x',c) for some $x' \in B'$. This contradicts the injectivity of g

Box is a cell

Proposition 4.2. 1. If $X \subseteq Y \subseteq R^m$ and X, Y are definable, then $\dim X \le \dim Y \le m$

- 2. If $X \subseteq R^m$ and $Y \subseteq R^n$ are definable and there is a definable bijection between X and Y, then $\dim X = \dim Y$
- 3. If $X, Y \subseteq \mathbb{R}^m$ are definable, then $\dim(X \cup Y) = \max\{\dim X, \dim Y\}$

Proof. 2. Let $f: X \to Y$ be a definable bijection and $d = \dim X$, $e = \dim Y$. It is enough to show $d \le e$.

Let A be an (i_1,\dots,i_m) -cell contained in X, with $d=i_1+\dots+i_m$. Then $f\circ (p_A^{-1}):p(A)\to Y$ is an injective map and p(A) an open cell. Replacing X by p(A), Y by f(A) and f by $f\circ (p_A^{-1})$ we may as well assume that d=m and that X is an open cell in R^d . Let $Y=C_1\cup\dots\cup C_k$ be a partition of Y=f(X) into cells. Then $X=f^{-1}(C_1)\cup\dots\cup f^{-1}(C_k)$, so by the cell decomposition theorem $f^{-1}(C_i)$ contains an open cell B since X is open, for some i. Fix such i and B

Let $C_i = C \subseteq \mathbb{R}^n$ be a (j_1, \dots, j_n) -cell. We shall prove that $d \leq j_1 + \dots + j_n$.

Suppose $d > j_1 + \cdots + j_n$, the composition

$$B \xrightarrow{f|B} C \xrightarrow{p_C} p(C) \subseteq R^{j_1 + \dots + j_n}$$

is an injective map. Identify $R^{j_1+\cdots+j_n}$ with a non-open cell $(R^{j_1+\cdots+j_n})\times\{p\}$ in R^d , where $p\in R^{d-(j_1+\cdots+j_n)}$, we obtain a contradiction with lemma 3.3

3. Let $d=\dim(X\cup Y)$, and let A be an (i_1,\ldots,i_m) -cell contained in $X\cup Y$ with $d=i_1+\cdots+i_m$. The open cell $pA\subseteq R^d$ is the union of $p_A(A\cap X)$ and $p_A(A\cap Y)$, so by the cell decomposition theorem, one of these sets, say $p_A(A\cap X)$, contains a box B in R^d . Then $p_A^{-1}(B)$ is an (i_1,\ldots,i_m) -cell contained in X, so that

$$\dim X \geq d \geq \dim X$$

The next result says among other things that the dimension of a set from a definable family depends "definably" on its parameters

Proposition 4.3. Let $S \subseteq \mathbb{R}^m \times \mathbb{R}^n$ be definable. For $d \in \{-\infty, 0, 1, ..., n\}$ put

$$S(d):=\{a\in R^m:\dim S_a=d\}$$

Then S(d) is definable and the part of S above S(d) has dimension given by

$$\dim\left(\bigcup_{a\in S(d)}\{a\}\times S_a\right)=\dim(S(d))+d$$

Proof. Let \mathcal{D} be a decomposition of R^{m+n} partitioning S

5 Problems

3.2 3.2