(4)

15	The nuclear model of the atom was developed after a series of experiments in which
	alpha particles were directed at thin gold foil.

An alpha particle $\binom{4}{2}\alpha$ with kinetic energy 5.52 MeV approaches a gold nucleus $\binom{179}{79}$ Au) head-on, as shown.

The alpha particle is brought to rest and then returns along its original path.

(a) Calculate the minimum distance between the alpha particle and the gold nucleus.

Minimum distance =

(b) An alpha particle with a different energy approaches the gold nucleus. The minimum distance between this alpha particle and the gold nucleus is $5.68 \times 10^{-14} \, \text{m}$.

Calculate the maximum electrostatic force F that acts between this alpha particle and the gold nucleus.

 $F = \dots$

(2)