

TCLink

KCU105 example design quick start guide

Eduardo Mendes

- clone GIT repository
- 2. run tclink_kcu105.tcl script in Vivado 2019.1 in batch mode (an example in tclink_kcu105.bat for Windows)
- 3. once the project is created and the physical implementation is finished, you can open the Vivado project

- 4. Hardware (clocks, modules)*
 - CLKGEN: Free-running reference clock providing 320MHz and 40MHz for master
 - SAMTEC FIREFLY FMC: SAMTEC FMC containing 1xTX12 and 1xRX12 firefly modules
 - OBS: lpGBT characterization board or VLDB+ with optical modules is also necessary

Hardware (fiber)

- SFP TX to Firefly channel 0 Rx
- SFP RX to Firefly channel 0 Tx

- 6. Program FPGA ©
- 7. The design can be controlled using the VIO graphical interface in Vivado
- 8. Reset Master Tx (Reset Tx PLL and datapath)
 - Check tx_ready

9. Reset and configure lpGBT

- Check READY state
- Check that downlink is error free
- In case of need, contact VLDB+ support*
- 10. Reset Master Rx (Reset Rx datapath)
 - Check rx frame is locked
 - OBS: since master has Tx and Rx PLL shared, do not use Reset Rx PLL and datapath

- -> An example of FSM implementation for the reset scheme is integrated in the core
 - Read the design choice documents for the MGT recommended reset procedure to know more

11. The design can be also controlled in **Python3** (for repetitive tests)

a. Execute **software/jtag_server/jtag_server_lpgbtfpga_kcu105.tcl** in Vivado batch mode (an example for Windows in software/jtag_server/execute_jtag_server_kcu105.bat)

Jtag server example

- b. Open socket in python to the local JTAG server
- c. Check VIO probes available
- d. Set/get a probe value
- e. Additional features:
 - a. Preset design (function preset())
 - b. Reprogram FPGA (function fpga_program())
 - c. Sysmon monitoring (function save sysmon state(name file))

Python example

```
C:\TCLink\tclink\software> python
 ython 3.7.5 (tags/v3.7.5:5c02a39a0b, Oct 15 2019, 00:11:34) [MSC v.1916 64 bit (AMD64)] on win32
 ype "help", "copyright", "credits" or "license" for more information.
>>> from tclink_core.tclink_fpga import TCLink
>>> tclink = TCLink('127.0.0.1', 8555, 'default', 'kcu105')
 >>> tclink.print_probes()
                                   master_clk_offset_locked_1
                                 prbschk_master_locked_sync_1
                               master_firefly_modprs_b_sync_1 |
                                  master_firefly_int_b_sync_1 |
                          master_core_stat[0][phase_cdc40_rx]
                          master_core_stat[0][phase_cdc40_tx]
                                                                 in
                                                                        10
                master_core_stat[0][rx_fec_corrected_latched]
                                                                 in
                         master_core_stat[0][rx_frame_locked]
                                                                 in
                          master core stat[0][mgt txpll lock]
```

• • •

```
>>> tclink.get_property('master_core_ctrl[0][mgt_rxpolarity]')
0
>>> tclink.set_property('master_core_ctrl[0][mgt_rxpolarity]',1)
1
>>> tclink.get_property('master_core_ctrl[0][mgt_rxpolarity]')
1
```

Fixed latency CDC 40-320

- If required, the CDC for Tx (40MHz to 320MHz) and Rx (320MHz to 40MHz) allow a fixed-latency operation after resets
 - In order to achieve fixed-latency, the phase has to be forced after the first reset
 - Example for master0 Tx

```
tx40_phase = dut.get_property('master_core_stat[0][phase_cdc40_tx]')
dut.set_property('master_core_ctrl[0][phase_cdc40_tx_calib]', tx40_phase)
dut.set_property('master_core_ctrl[0][phase_cdc40_tx_force]', 1)
```


• Example for master 0 Rx

```
rx40_phase = dut.get_property('master_core_stat[0][phase_cdc40_rx]')
dut.set_property('master_core_ctrl[0][phase_cdc40_rx_calib]', rx40_phase)
dut.set_property('master_core_ctrl[0][phase_cdc40_rx_force]', 1)
```


MGT Tx fixed-phase

- HPTD IP core (more information on HPTD IP documentation)
 - In order to freeze a given Tx PI phase value (after first reset) example for master0

```
tx_phase = dut.get_property('master_core_stat[0][mgt_hptd_tx_pi_phase]')
dut.set_property('master_core_ctrl[0][mgt_hptd_tx_pi_phase_calib]', tx_phase)
dut.set_property('master_core_ctrl[0][ mgt_hptd_tx_ui_align_calib]', 1)
```


 The user can also shift the phase with o(ps) resolution using the mgt_hptd_ps_inc_ndec (increment or decrement), mgt_hptd_ps_phase_step and mgt_hptd_ps_strobe signals

TCLink basic configuration

Before closing the loop, the offset phase has to be measured (procedure to be done once after first reset):

```
dut.set_property('tclink_offset_error', 0)
Wait for at least one second...
offset = dut.get_property('tclink_error_controller')
dut.set_property('tclink_offset_error', offset)
```

Close-loop:

```
dut.set_property('tclink_close_loop', 1)
```

- An example of how to configure TCLink in the example design and run a transfer function in the FPGA (using the TCLink tester) is given in the script **software/fpga_transfer_function_kcu105.py**
- Read official tclink reference note on how to convert phase measurement values to ps

Additional MGT features

• Dynamic reconfiguration port

Internal MGT PRBS

- lpGBT-FPGA Rx is kept reset when internal PRBS is selected
- OBS: txprbs shall not work with lpGBT because design was created for 10.24Gb/s transceiver

0000 = Normal operation

0001 = PRBS-7

0010 = PRBS-9

0011 = PRBS-15

0100 = PRBS-23

0101 = PRBS-31

1001 = Square wave with 2 UI (alternating 0s/1s)

1010 = Square wave with 32 UI

• Transceiver Loopback

000 = Normal operation

001 = Near-End PCS Loopback

010 = Near-End PMA Loopback

100 = Far-End PMA Loopback (do not use - problem when using Tx PI)

110 = Far-End PCS Loopback

Search: Q- drp	(6 matches)			
Name	Value	Activity	Direction	VIO
master_core_stat(0)[mgt_drprdy_latched]	[B] 0		Input	hw_vio_2
<pre>la master_core_ctrl[0][mgt_drpen]</pre>	[B] 0	*	Output	hw_vio_2
> % master_core_stat(0)[mgt_drpdo][15:0]	[H] 0000		Input	hw_vio_2
> 1 master_core_ctrl[0][mgt_drpaddr][9:0]	[H] 000	-	Output	hw_vio_2
> 1 master_core_ctrl[0][mgt_drpdi][15:0]	[H] 0000	-	Output	hw_vio_2
T _e master_core_ctrl[0][mgt_drpwe]	[B] 0	-	Output	hw_vio_2

Search: Q- prbs	(6 matches)				
Name	Value		Activity	Direction	VIO
> 1 master_core_ctrl[0][mgt_txprbssel][3:0]	[H] 0	•		Output	hw_vio_2
le master_core_ctrl[0][mgt_rxprbscntreset]	[B] 0	•		Output	hw_vio_2
le master_core_stat(0)[mgt_rxprbslocked]	[B] 0			Input	hw_vio_2
> 1 master_core_ctrl[0][mgt_rxprbssel][3:0]	[H] 0	*		Output	hw_vio_2
_ master_core_stat(0)[mgt_rxprbserr]	[B] 0			Input	hw_vio_2
a master_core_ctrl[0][mgt_txprbsforceerr]	[B] 0			Output	hw_vio_2

Search: Q- loopback	(1 match)				
Name	Value		Activity	Direction	VIO
> 1 master_core_ctrl[0][mgt_loopback][2:0]	[H] O	•		Output	hw_vio_2