

General information

Designation

Fraxinus americana (L)

Typical uses

Shear strength

Bulk modulus

Poisson's ratio

Hardness - Vickers

Hardness - Brinell

Hardness - Janka

Fatigue strength at 10^7 cycles

Shape factor

handles; oars; vehicle parts; baseball bats & other sporting & athletic

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O							
Material family	Natural	Natural					
Base material	Wood (ha	Wood (hardwood)					
Renewable content	100			%			
Composition detail (polymers and natur	al materials)						
Wood	100			%			
Price							
Price	* 0.912	-	1.22	USD/lb			
Price per unit volume	* 34.3	-	56.1	USD/ft^3			
Physical properties							
Density	0.0217	-	0.0267	lb/in^3			
Mechanical properties							
Young's modulus	* 1.73	-	2.1	10^6 psi			
Yield strength (elastic limit)	* 6.89	-	8.41	ksi			
Tensile strength	* 12.6	-	15.3	ksi			
Elongation	* 1.97	-	2.41	% strain			
Compressive strength	6.67	-	8.15	ksi			
Flexural modulus	1.57	-	1.91	10^6 psi			
Flexural strength (modulus of rupture)	13.5	-	16.5	ksi			
Shear modulus	* 0.128	_	0.155	10^6 psi			

2.1

0.4

7.42

60

1.67e3

4.95

0.151

ksi

HV

HB

lbf

ksi

10^6 psi

1.73

* 0.135

* 0.35

5.2

* 6.07

* 1.36e3

* 4.05

* 49

Ash (fraxinus americana) (I)

SIEDUPIACK					
Mechanical loss coefficient (tan delta)	* 0.0069 - 0.0084				
Differential shrinkage (radial)	* 0.17 - 0.2 %				
Differential shrinkage (tangential)	* 0.28 - 0.34 %				
Radial shrinkage (green to oven-dry)	4.4 - 5.4 %				
Tangential shrinkage (green to oven-dry)	7 - 8.6 %				
Volumetric shrinkage (green to oven-dry)	12 - 14.6 %				
Work to maximum strength	1.24 - 1.52 ft.lbf/in^3				
Impact & fracture properties					
Fracture toughness	* 4.91 - 6.01 ksi.in^0.5				
Thermal properties					
Glass temperature	171 - 216 F				
Maximum service temperature	248 - 284 F				
Minimum service temperature	* -99.49.4 F				
Thermal conductivity	0.156 - 0.191 BTU.ft/hr.ft^2.F				
Specific heat capacity	0.396 - 0.408 BTU/lb.℉				
Thermal expansion coefficient	* 1.11 - 6.11 µstrain/F				
Electrical properties					
Electrical resistivity	1.17e13 - 1.43e13 µohm.in				
Dielectric constant (relative permittivity)	* 6.64 - 8.12				
Dissipation factor (dielectric loss tangent)	* 0.078 - 0.095				
Dielectric strength (dielectric breakdown)	* 10.2 - 15.2 V/mil				
Magnetic properties					
Magnetic type	Non-magnetic				
Optical properties					
Transparency	Opaque				
Critical materials risk					
Contains >5wt% critical elements?	No				
Durability					
Water (fresh)	Limited use				
Water (salt)	Limited use				
Weak acids	Limited use				
Strong acids	Unacceptable				
Weak alkalis	Acceptable				
Strong alkalis	Unacceptable				
Organic solvents	Acceptable				

Ash (fraxinus americana) (I)

Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb		
-------------------------------------	--------	---	-------	--------	--	--

Sources

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production 0.574 - 0.633 lb/lb

Sources

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, 2010)

* 1.84e4 - 2.03e4 in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 516	_	570	BTU/lb
Coarse machining energy (per drift wit ternoved)	310		370	B10/10
Coarse machining CO2 (per unit wt removed)	* 0.09	-	0.0995	lb/lb
Fine machining energy (per unit wt removed)	* 3.32e3	-	3.67e3	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.579	-	0.64	lb/lb
Grinding energy (per unit wt removed)	* 6.44e3	-	7.11e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 1.12	-	1.24	lb/lb

Recycling and end of life

Recycle	×
Recycle fraction in current supply	8.55 - 9.45 %
Downcycle	✓
Combust for energy recovery	✓
Heat of combustion (net)	* 8.49e3 - 9.16e3 BTU/lb
Combustion CO2	* 1.69 - 1.78 lb/lb
Landfill	✓
Biodegrade	✓

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

rocessUniverse	
eference	
hape	