Introducción a R

Andrés Vallone

Escuela de Ciencias Empresariales

2019

Contenidos

Repaso de la sesión anterior

Importando y exportando datos

Filtrado de datos

Repaso de la sesión anterior

Reapso de la sesión anterior

- "todo en R es un objeto"
 - Objetos atómicos:
 - ▶ numeric
 - interger
 - character
 - LOGICAL

Estrcuturas bàsicas e indexación

Scalar	-
Vector	x[i]
Matrix	x[i,j]
Dataframe	x[i,j]
List	x[[k]][i] or x[[k]][i,j]

- Operadores Básicos
- Usando funciones nombre (argumentos)

- ► Los paquetes son la unidad fundamental del código compartido en R (Wickham, 2015)
- ► Los paquetes contienen funciones que permiten ampliar la capacidad de realizar operaciones con R
- Hay 14307 paquetes disponibles en el Comprehensive R Archive Network o CRAN.

- Los paquetes son la unidad fundamental del código compartido en R (Wickham, 2015)
- ► Los paquetes contienen funciones que permiten ampliar la capacidad de realizar operaciones con R
- Hay 14307 paquetes disponibles en el Comprehensive R Archive Network o CRAN.
- Un paquete contiene las funciones, su documentación (archivos de ayuda) y las vignettes (guía de uso)
- Es necesario instalar los paquetes para usarlos.

Para instalar un paquete se usa el siguiente código

install.packages("ggplot2") #install the ggplot package

▶ Una vez instalado se debe cargar el paquete para utilizarlo.

library("sp")

 Existen paquetes que están en estado de desarrollo y se encuentran disponibles en repositorios públicos como GitHub

Es posible descargar e instalar estos paquetes para su uso utilizando el paquete devtools

```
library("devtools")
install_github("amvallone/estdaR")
```


Importando y exportando datos

Importando y exportando información

- ► El proceso de importar y exportar información depende del formato en que la información
- ▶ Para importa y exportar es necesario entregar la información del path o configurar el directorio de trabajo

```
setwd("path")
getwd()
```

-Los archivos separados por comas *.csv

```
read.csv(file, header = TRUE, sep = ",", dec = ".", ...)
write.csv(x, file, , sep = ",", dec = ".", ...)
```

- Para otro tipos de archivos de texto plano pueden usarse las funciones read.table() o read.delim()
- ▶ Para *.xlsx es recomendable usar

```
library("openxlsx")
read.xlsx(file, sheet = 1, startRow = 1,...)
write.xlsx(x,file,...)
```

Ejemplos de uso

Importando el archivo mtcars.csv

```
data_cars <- read.csv("mtcars.csv", header=TRUE, sep=",")</pre>
```

Importando el archivo crime.txt

```
crime <- read.table("crime.txt",sep="\t",dec=".")</pre>
```

Importando el archivo muni17.xlsx

```
muni <- read.xlsx("muni17.xlsx")</pre>
```

Otra forma de incorporar datos

- Otra forma es descargando los datos desde la red, incluso si los datos no están estructurados es posibles importarlos a R
- Nos interesa trabajar con la segunda tabla de datos de la esta pagina de Wikipedia.

Ejemplo de web scraping

Filtrado de datos

La forma más sencilla de filtrar información es utilizando indexación.

```
data(mtcars)
carb4 <- mtcars[mtcars$carb==4, ] # cars with 4 carb.</pre>
```

Es posible realizar subconjuntos de datos que cumplan un conjunto de condiciones mediante la función subset

```
carb4 <- subset(mtcars, mtcars$cyl==4)
str(mtcars)
names(mtcars)
cyl <- mtcars$cyl #Extract the variable number of cylinders</pre>
```


¿Cuántos autos tiene 4 cilindros?

```
cyl4 <- mtcars[mtcars$cyl==4, ]
cyl4_1 <- subset(mtcars, cyl==4)</pre>
```

¿Cuántos autos tienen 4 cilindros y mas de 90 caballos de fuerza?

¿Cuántos autos tiene 4 cilindros?

```
cyl4 <- mtcars[mtcars$cyl==4, ]
cyl4_1 <- subset(mtcars, cyl==4)</pre>
```

¿Cuántos autos tienen 4 cilindros y mas de 90 caballos de fuerza?

```
cyl4_hp90 <- mtcars[mtcars$cyl==4 & mtcars$hp>90, ]
cyl4_hp90_1 <- subset(mtcars,cyl==4 & hp>90)
```

¿Cuantos autos tienen más de 200 y menos de 60 caballos de fuerza?

¿Cuántos autos tiene 4 cilindros?

```
cyl4 <- mtcars[mtcars$cyl==4, ]
cyl4_1 <- subset(mtcars, cyl==4)</pre>
```

¿Cuántos autos tienen 4 cilindros y mas de 90 caballos de fuerza?

```
cyl4_hp90 <- mtcars[mtcars$cyl==4 & mtcars$hp>90, ]
cyl4_hp90_1 <- subset(mtcars,cyl==4 & hp>90)
```

¿Cuantos autos tienen más de 200 y menos de 60 caballos de fuerza?

```
hp60_200 <- mtcars[mtcars$hp>200 | mtcars$hp <60, ]
hp60_200_1 <- subset(mtcars,hp>200 | hp <60)
```


¿Cuáles celdas contienen datos con autos con 6 cilindros?

```
which(mtcars$cyl==6)
## [1] 1 2 4 6 10 11 30
```

Realice una tabla cruzada de los autos tiendo en cuenta la cantidad de cilindros y el número de carburadores.

```
table(mtcars$cyl,mtcars$carb)
```


¿Cúal es la cilindrada media de los autos datdo el munero de caruradores?

```
aggregate(cyl ~carb, mtcars, mean)
```

```
## carb cyl
## 1 1 4.571429
## 2 2 5.600000
## 3 3 8.000000
## 4 4 7.200000
## 5 6 6.000000
## 6 8 8.000000
```

Tarea

Desafio 1

- 1. instale el pagquete 'gapminder"
- 2. Use la ayuda para ver como usar y que contiene la base gapminder
- 3. con¡mpruebe el tipo de dato de cada una de las variables de la base de datos
- 4. escoja una de las variables y tranformela de su estado original a caracteres (consejo: utilice alguna variable no numerica)
- 5. calcule la media del GDP per capita anual para cada continente

Desafio 1

- 1. instale el pagquete 'gapminder"
- 2. Use la ayuda para ver como usar y que contiene la base gapminder
- 3. conjmpruebe el tipo de dato de cada una de las variables de la base de datos
- 4. escoja una de las variables y tranformela de su estado original a caracteres (consejo: utilice alguna variable no numerica)
- 5. calcule la media del GDP per capita anual para cada continente

Una posible solución

```
install.packages("gapminder")
help(packages="gapmainder")
str(gapminder) #también pude mirar la ventana del Global.
cont <- as.character(gapminder$continent)
aggregate(gdpPercap ~ year + continent, gapminder, mean)</pre>
```