Practice Set 9 (Heap and Dijkstra's Algorithm)

Data Structure (CS 223)

1 Heap

Q1: Show the heap at each stage when the following numbers are inserted to an initially empty min-heap in the given order: {11, 17, 13, 4, 4, 1}. Now, show the heap at each stage when we successively perform the deleteMin operation on the heap until it is empty.

Answer:

Q2: In a max-heap, the heap property changes to – the value at a node is greater than or equal to the value of its children. Deletion and insertion have to maintain this changed heap property. Answer Q1 when the min-heap is replaced by a max-heap, and **deleteMin** by **deleteMax**.

Answer: See next page.

2 Dijkstra's Algorithm

Q3: Starting from node v_1 , illustrate Dijkstra's algorithm for finding the shortest paths in Graph A and in Graph B. Show at each stage:

- the distance and parent arrays,
- the open and closed sets, and
- the vertex chosen for relaxation.

Use the parent array above to draw the shortest path tree in each case.

Undirected Graph

				dist				open	closed	parent						
	v_0	v_1	v_2	v_3	v_4	v_5	v_6			v_0	v_1	v_2	v_3	v_4	v_5	v_6
At Start:	∞	0	∞	∞	∞	∞	∞	$\{v_1\}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Relax v_1 :	10	0	0	5	∞	∞	∞	$\{v_2, v_3, v_0\}$	$\{v_1\}$	v_1	Ø	v_1	v_1	Ø	Ø	Ø
Relax v_2 :	10	0	0	5	∞	∞	∞	$\{v_3, v_0\}$	$\{v_1,v_2\}$	v_1	Ø	v_1	v_1	Ø	Ø	Ø
Relax v_3 :	8	0	0	5	∞	22	12	$\{v_0, v_6, v_5\}$	$\{v_1, v_2, v_3\}$	v_3	Ø	v_1	v_1	Ø	v_3	v_3
Relax v_0	8	0	0	5	15	22	12	$\{v_6, v_4, v_5\}$	$\{v_1, v_2, v_3, v_0\}$	v_3	Ø	v_1	v_1	v_0	v_3	v_3
Relax v_6	8	0	0	5	15	14	12	$\{v_5, v_4\}$	$\{v_1, v_2, v_3, v_0, v_6\}$	v_3	Ø	v_1	v_1	v_0	v_6	v_3
Relax v_5	8	0	0	5	15	14	12	$\{v_4\}$	$\{v_1, v_2, v_3, v_0, v_6, v_5\}$	v_3	Ø	v_1	v_1	v_0	v_6	v_3
Relax v_4	8	0	0	5	15	14	12	Ø	$\{v_1, v_2, v_3, v_0, v_6, v_5, v_4\}$	v_3	Ø	v_1	v_1	v_0	v_6	v_3

Directed Graph

	dist							open	closed	parent						
	v_0	v_1	v_2	v_3	v_4	v_5	v_6			v_0	v_1	v_2	v_3	v_4	v_5	v_6
At Start:	∞	0	∞	∞	∞	∞	∞	$\{v_1\}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Relax v_1 :	∞	0	0	5	∞	∞	∞	$\{v_2, v_3\}$	$\{v_1\}$	Ø	Ø	v_1	v_1	Ø	Ø	Ø
Relax v_2 :	∞	0	0	2	∞	∞	∞	$\{v_3\}$	$\{v_1,v_2\}$	Ø	Ø	v_1	v_2	Ø	Ø	Ø
Relax v_3 :	5	0	0	2	19	∞	9	$\{v_0, v_6, v_4\}$	$\{v_1, v_2, v_3\}$	v_3	Ø	v_1	v_2	v_3	Ø	v_3
Relax v_0	5	0	0	2	6	∞	9	$\{v_4, v_6\}$	$\{v_1, v_2, v_3, v_0\}$	v_3	Ø	v_1	v_2	v_0	Ø	v_3
Relax v_4	5	0	0	2	6	9	9	$\{v_6, v_5\}$	$\{v_1, v_2, v_3, v_0, v_4\}$	v_3	Ø	v_1	v_2	v_0	v_4	v_3
Relax v_6	5	0	0	2	6	9	9	$\{v_{5}\}$	$\{v_1, v_2, v_3, v_0, v_4, v_6\}$	v_3	Ø	v_1	v_2	v_0	v_4	v_3
Relax v_5	5	0	0	2	6	9	9	Ø	$\{v_1, v_2, v_3, v_0, v_4, v_6, v_5\}$	v_3	Ø	v_1	v_2	v_0	v_4	v_3

Q4: Answer the following questions for Dijkstra's algorithm executed on an undirected graph with N vertices and M edges:

- What is the maximum number of times an edge is looked at?
 Answer: Twice; once each when the vertex at either end is removed from open.
- What is the maximum number of times the distance value of a vertex is updated?

 Answer: As many times as the number of incoming edges.
- At any point, what is the maximum number of open vertices? Draw a graph on 4 vertices for which this maximum number is realized, irrespective of the starting node.

Answer: N-1. A graph with 4 vertices, where any two vertices have an edge between them.

Q5: Provide a good intuition/reasoning as to why when a vertex v is closed, we will never find a shorter path to v thereafter.

Answer: All edge weights are non-negative, and Dijkstra's algorithm relaxes (closes) vertices in increasing order of shortest path distance from s. Hence, once a vertex v is closed, if we extend the shortest path from s to v, its weight can never decrease.