- Organització de les dades:
 - Taules de contingencia: mostren les freqüencies absolutes conjuntes de les dues variables
 - A partir de la taula de contingència es poden calcular les freqüencies absolutes marginals (individuals) de cada variable

Dades brutes

X	Y
x_{1}	y_1
x_2	y_2
x_3	y_3
X_4	V_4
x_{5}	y_5
<i>x</i> ₆	<i>y</i> ₆
•	•
X_n	\mathcal{Y}_n

Taula de contingencia

$X \setminus Y$	y_1	y_2		y_l	Suma
x_1	n_{11}	n_{12}	:	n_{1l}	$n_{1\bullet}$
x_2	n_{21}	n_{22}		n_{2l}	$n_{2\bullet}$
:					:
x_k	n_{k1}	n_{k2}		n_{kl}	$n_{k\bullet}$
Suma	$n_{\bullet 1}$	$n_{\bullet 2}$		$n_{\bullet l}$	N

– Taules de contingencia:

Exemple:

	Nota Mitjana	Nota
	Batxillerat	Estadistica
Alumne 1	7,7	9
Alumne 2	7,1	7,5
Alumne 3	5,5	5
Alumne 4	6,2	7,5 5 5 7
Alumne 5	6,8	7
Alumne 6	5,8	5,5
Alumne 7	7,9	8,5
Alumne 8	6,7	6
Alumne 9	7,2	6,5
Alumne 10	5,4	4
Alumne 11	6,6	6
Alumne 12	8	7
Alumne 13	6,8	8
Alumne 14	7,1	7,5
Alumne 15	7	7,5 9
Alumne 16	5,8	4,5
Alumne 17	6,8	7

Distribució marginal nota batxillerat

	Notes											
	Batx. Est.	4	4,5	5	5,5	6	6,5	7	7,5	8	8,5	9
	5,4	1	0	0	0	0	0	0	0	0	0	0
	5,5	0	0	1	0	0	0	0	0	0	0	0
	5,8	0	1	0	1	0	0	0	0	0	0	0
	6,2	0	0	1	0	0	0	0	0	0	0	0
	6,6	0	0	0	0	1	0	0	0	0	0	0
	6,7	0	0	0	0	1	0	0	0	0	0	0
>	6,8	0	0	0	0	0	0	2	0	1	0	0
	7	0	0	0	0	0	0	0	0	0	0	1
	7,1	0	0	0	0	0	0	0	2	0	0	0
	7,2	0	0	0	0	0	1	0	0	0	0	0
	7,7	0	0	0	0	0	0	0	0	0	0	1
	7,9	0	0	0	0	0	0	0	0	0	1	0
	8	0	0	0	0	0	0	1	0	0	0	0
		<1	1	2	1	2	1	3	2	1	1	2

Distribució marginal nota estadística

Total

Representació gràfica conjunta de dades bidimensionals:

Diagrama de dispersió: un **punt** per a cada parell de valors (coordenada x: primera variable, coordenada y: segona variable)

- Mesura de la relació entre les variables d'una distribució bidimensional:
 - Coeficient de correlació: mesura el grau de relació lineal entre les variables
 - Coeficient de contingència: mesura el grau de dependència entre les variables

Coeficient de correlació:

$$r = \frac{Cov_{XY}}{s_X \cdot s_Y}$$

 s_{x} , s_{y} : desviacions típiques de X i Y

 \bar{x} , \bar{y} : mitjanes de X i Y

(Covariància poblacional)

$$Cov_{XY} = \frac{(x_1 - \overline{x}) \cdot (y_1 - \overline{y}) + (x_2 - \overline{x}) \cdot (y_2 - \overline{y}) + \cdots}{N} = \frac{x_1 \cdot y_1 + x_2 \cdot y_2 + \cdots}{N} - \overline{x} \cdot \overline{y}$$

(dades brutes)

$$Cov_{XY} = \frac{(x_1 - \bar{x}) \cdot (y_1 - \bar{y}) \cdot n_{11} + (x_1 - \bar{x}) \cdot (y_2 - \bar{y}) \cdot n_{12} + \dots + (x_2 - \bar{x}) \cdot (y_1 - \bar{y}) \cdot n_{21} + \dots}{N}$$

$$x_1 \cdot y_1 \cdot n_{11} + x_1 \cdot y_2 \cdot n_{12} + \dots + x_2 \cdot y_1 \cdot n_{21} + \dots$$

$$Cov_{XY} = \frac{x_1 \cdot y_1 \cdot n_{11} + x_1 \cdot y_2 \cdot n_{12} + \dots + x_2 \cdot y_1 \cdot n_{21} + \dots}{N} - \overline{x} \cdot \overline{y}$$

(dades en taula de contingència)

- Coeficient de correlació: relació amb el diagrama de dispersió

Propietat:

 $-1 \le r \le 1$

- Coeficient de correlació: Exemple

Dades brutes		Nota Estadistica Y
Alumne 1	7,7	9
Alumne 2	7,1	7,5
Alumne 3	5,5	5
Alumne 4	6,2	5
Alumne 5	6,8	7
Alumne 6	5,8	5,5
Alumne 7	7,9	
Alumne 8	6,7	6
Alumne 9	7,2	6,5
Alumne 10	5,4	4
Alumne 11	6,6	6
Alumne 12	8	7
Alumne 13	6,8	8
Alumne 14	7,1	7,5
Alumne 15	7	9
Alumne 16	5,8	4,5
Alumne 17	6,8	7

$$\bar{x} = \frac{7,7+7,1+\dots+6,8}{17} = 6,73$$

$$\bar{y} = \frac{9+7,5+\dots+7}{17} = 6,65$$

$$Var_{X} = \frac{7,7^{2}+7,1^{2}+\dots+6,8^{2}}{17} - 6,73^{2} = 0,58 \longrightarrow s_{X} = \sqrt{0,58} = 0,76$$

$$Var_{Y} = \frac{9^{2}+7,5^{2}+\dots+7^{2}}{17} - 6,65^{2} = 2,2 \longrightarrow s_{Y} = \sqrt{2,2} = 1,48$$

$$Cov_{XY} = \frac{7,7\cdot9+7,1\cdot7,5+\dots+6,8\cdot7}{17} - 6,73\cdot6,65 = 0,93$$

$$r = \frac{0,93}{0,76\cdot1,48} = 0,83 \longrightarrow \text{Forta correlació lineal entre les variables}$$

Coeficient de correlació: Exemple

Taula de contingència

Notes											
Batx. X Est. Y	4	4,5	5	5,5	6	6,5	7	7,5	8	8,5	9
5,4	1	0	0	0	0	0	0	0	0	0	0
5,5	0	0	1	0	0	0	0	0	0	0	0
5,8	0	1	0	1	0	0	0	0	0	0	0
6,2	0	0	1	0	0	0	0	0	0	0	0
6,6	0	0	0	0	1	0	0	0	0	0	0
6,7	0	0	0	0	1	0	0	0	0	0	0
6,8	0	0	0	0	0	0	2	0	1	0	0
7	0	0	0	0	0	0	0	0	0	0	1
7,1	0	0	0	0	0	0	0	2	0	0	0
7,2	0	0	0	0	0	1	0	0	0	0	0
7,7	0	0	0	0	0	0	0	0	0	0	1
7,9	0	0	0	0	0	0	0	0	0	1	0
8	0	0	0	0	0	0	1	0	0	0	0
	1	1	2	1	2	1	3	2	2	1	2

$$\bar{x} = \frac{5,4 \cdot 1 + 5,5 \cdot 1 + \dots + 8 \cdot 1}{17} = 6,73$$

$$\bar{y} = \frac{4 \cdot 1 + 4,5 \cdot 1 + \dots + 9 \cdot 2}{17} = 6,65$$

$$\frac{1}{2} Var_{X} = \frac{5,4^{2} \cdot 1 + \dots + 8^{2} \cdot 1}{17} - 6,73^{2} = 0,58$$

$$\frac{1}{2} S_{X} = \sqrt{0,58} = 0,76$$

$$\frac{3}{2} Var_{Y} = \frac{4^{2} \cdot 1 + \dots + 9^{2} \cdot 2}{17} - 6,65^{2} = 2,2$$

$$\frac{1}{2} S_{Y} = \sqrt{2,2} = 1,48$$

$$\frac{1}{2} Cov_{XY} = \frac{5,4 \cdot 4 \cdot 1 + \dots + 8 \cdot 9 \cdot 0}{17} - 6,73 \cdot 6,65 = 0,93$$

$$r = \frac{0,93}{0,76 \cdot 1,48} = 0,83$$

- Coeficient de correlació:
 - Recta de regressió : recta que millor aproxima el conjunt de punts del diagrama de dispersió

$$\hat{Y} = aX + b \qquad a = \frac{Cov_{XY}}{Var_X}$$
$$b = \overline{y} - a\overline{x}$$

En el nostre exemple:

$$a = \frac{0.93}{0.58} = 1.61$$

$$b = 6.65 - 1.61 \cdot 6.73 = -4.2$$

$$\hat{Y} = 1.61 \times X - 4.2$$
Si, p. ex., x=6.5 \rightarrow \hat{y}=6.28

(predicció)

- Coeficient de contingència:
 - Mesura el grau d'independència entre les variables
 - Concepte d'independència estadística:

dues variables es consideren independents si la proporció dels seus valors, mesurada respecte al conjunt total de valors, és la mateixa que la proporció de valors mesurada respecte al subconjunt de valors que es té quan un dels valors de l'altra variable es manté fixat

• Si dues variables són independents, llavors Cov_{XY} =0 (r=0) però, el fet que Cov_{XY} =0 no implica que X i Y siguin independents

Coeficient de contingència: càlcul

$$C = \sqrt{\frac{\chi^2}{N + \chi^2}}$$

(independència)
$$0 \le C \le \sqrt{1 - \frac{1}{\min(k, l)}}$$
 (dependència)

$$\chi^2 = \sum_{i} \sum_{j} \frac{(n_{ij} - e_{ij})^2}{e_{ij}}$$

k=n° de files (valors de X) de la taula de contingència

$$e_{ij} = \frac{n_{i*} \cdot n_{*j}}{N}$$

l=n° de columnes (valors de Y) de la taula de contingència

Coeficient de contingència: exemple

Sexe\Consum tabac	Fumador	No fumador	
Home	17	30	47
Dona	21	44	65
	38	74	112

$$\chi^{2} = \frac{1,05^{2}}{15,95} + \frac{(-1,05)^{2}}{31,05} + \frac{(-1,05)^{2}}{22,05} + \frac{1,05^{2}}{42,95} = 0,1803$$

$$C = \sqrt{\frac{0,1803}{112 + 0,1803}} = \sqrt{0,0016} = 0,04$$

$$C_{max} = \sqrt{1 - \frac{1}{2}} = \sqrt{0.5} = 0.7071$$

$$\frac{0.04}{0.7071}$$
 = 0.056 = 5.6 % — Alt nivell d'indepe

Alt nivell d'independència entre les variables