Chapter 29 Maxwell's Equations

§ 1 Displacement Current and the Extended Ampére's Law

$$\oint_{L} \vec{B} \cdot d\vec{s} = \mu_0 I_{\text{encl}}$$

Electric current

Magnetic field

$$\oint_{L} \vec{E} \cdot d\vec{s} = -\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$$

Changing magnetic field

Electric field

Changing electric field

?

Magnetic field

The Contradiction of Ampére's Law

- The contradiction in applying Ampére's law to a charging capacitor
 - Apply Ampére's law to a circular loop L. Ampère's law states that $\oint \vec{B} \cdot d\vec{s} = \mu_0 I$, where I is the total current through any surface bounded by the path L.

Surface S_1 : the circular area in which the conduction current I penetrates.

$$\oint_{L} \vec{B} \cdot d\vec{s} = \mu_{0} \iint_{S_{1}} \vec{j} \cdot d\vec{A} = \mu_{0} I$$

Surface S₂: the paraboloid passing between the capacitor's plates.

$$\oint_{L} \overrightarrow{B} \cdot d\overrightarrow{s} = \mu_{0} \iint_{S_{2}} \overrightarrow{j} \cdot d\overrightarrow{A} = \mathbf{0}$$

The Contradiction of Ampére's Law

$$\oint_{L} \overrightarrow{B} \cdot d\overrightarrow{s} = \mu_{0} \iint_{S_{1}} \overrightarrow{j} \cdot d\overrightarrow{A} = \mu_{0} I$$

Surface S₂:

$$\oint_{L} \overrightarrow{B} \cdot d\overrightarrow{s} = \mu_{0} \iint_{S_{2}} \overrightarrow{j} \cdot d\overrightarrow{A} = \mathbf{0}$$

- Question: Does Ampére's law need to be modified?
 - What is wrong with the Ampére's law?
 - How to treat the discontinuity of the current? Ampére's law is valid only if the conduction current is continuous in space.

The Displacement Current

- How to save Ampére's law from the contradiction?
 - → The contradiction comes from the discontinuity of the conduction current.

The conduction current I is interrupted in the region between capacitor's two plates, there is also a changing electric field \vec{E} or a changing electric flux Φ_E in this region.

$$I = \frac{dQ}{dt} = \frac{d(\sigma A)}{dt} = \frac{d\sigma}{dt} A$$

$$= \frac{d}{dt} (\varepsilon_0 E) A = \varepsilon_0 \frac{d}{dt} (EA)$$

$$= \varepsilon_0 \frac{d\Phi_E}{dt}$$

The Displacement Current

How to save Ampére's law from the contradiction?

$$I = \frac{dQ}{dt} = \varepsilon_0 \, \frac{d\Phi_E}{dt}$$

→ To keep the continuity of the current, Maxwell made a postulation that there exists a fictitious current in the region between the plates, called the displacement current I_d.

$$I_{\frac{d}{d}} = \varepsilon_0 \frac{d\Phi_E}{dt} = \varepsilon_0 \frac{d}{dt} \iint_S \vec{E} \cdot d\vec{A} = \iint_S \left(\varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right) \cdot d\vec{A}$$

Displacement current density:

$$\vec{j}_{d} = \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}, \quad I_{d} = \iint_{S} \vec{j}_{d} \cdot d\vec{A}$$

Extended Ampére's law

- Extended Ampére's law or Ampére-Maxwell law:
 - **→** The postulation of displacement current solved the discontinuity of the conduction current.

$$\oint_{L} \vec{B} \cdot d\vec{s} = \mu_{0} (I_{c} + I_{d})_{\text{encl}}$$

$$= \mu_{0} I_{\text{encl}} + \mu_{0} \varepsilon_{0} \frac{d\Phi_{E}}{dt}$$

Extended Ampére's law

$$\oint_{L} \vec{B} \cdot d\vec{s} = \mu_0 (I_c + I_d)_{\text{encl}} = \mu_0 I_c + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$$

The displacement current is also a source of magnetic field

Conduction current I_c

Displacement current I_d

or changing electric field

Magnetic field are produced both by conduction current and by changing electric field.

Extended Ampére's law

$$\oint_{L} \vec{B} \cdot d\vec{s} = \mu_0 I_{\text{encl}}$$

Electric current

Magnetic field

$$\oint_{L} \vec{E} \cdot d\vec{s} = -\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$$

Changing magnetic field

Electric field

$$\oint_{L} \vec{B} \cdot d\vec{s} = \mu_{0} (I_{d})_{\text{encl}} = \mu_{0} \iint_{S} \left(\varepsilon_{0} \frac{\partial \vec{E}}{\partial t} \right) \cdot d\vec{A}$$

Changing electric field

Magnetic field

Calculate the displacement current I_d between the square plates, 3.8 cm on a side, of a capacitor if the electric field is changing at a rate of 2.0×10^6 V/m·s. (The permittivity of free space is 8.85×10^{-12} C²/N·m².)

Solution:

The displacement current is

$$I_{d} = \varepsilon_{0} \frac{d\Phi_{E}}{dt} = \varepsilon_{0} \frac{d(EA)}{dt} = \varepsilon_{0} A \frac{dE}{dt}$$
$$= (8.85 \times 10^{-12}) \times (0.038)^{2} \times (2.0 \times 10^{6})$$
$$= 2.6 \times 10^{-8} \text{ A}$$

Calculate the magnetic field in the region between the two capacitor's plates while the capacitor is charging with a increasing current I. The radius of plate is R.

Solution: For a point a distance *r* from the center, we apply Ampére's law to a circular path of radius *r* passing through the point.

$$\oint_{L} \vec{B} \cdot d\vec{s} = B(2\pi r) = \mu_{0} \varepsilon_{0} \frac{d\Phi_{E}}{dt}$$

The electric field between the plates:

$$E = \frac{\sigma}{\varepsilon_0} = \frac{1}{\varepsilon_0} \frac{Q}{\pi R^2}$$

$$\Phi_{E} = \begin{cases} E(\pi r^{2}) = \frac{1}{\varepsilon_{0}} \frac{r^{2}}{R^{2}} Q, & \text{for } r < R \\ E(\pi R^{2}) = \frac{Q}{\varepsilon_{0}}, & \text{for } r > R \end{cases}$$

$$\oint_{L} \vec{B} \cdot d\vec{s} = B(2\pi r) = \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$$

$$B \cdot ds = B(2\pi r) = \mu_0 \mathcal{E}_0 \frac{dr}{dt}$$

$$\Phi_E = \begin{cases} \frac{1}{\varepsilon_0} \frac{r^2}{R^2} Q & \text{for } r < R \\ \frac{Q}{\varepsilon_0} & \text{for } r > R \end{cases}$$

For r < R:

$$\oint_{I} \vec{B} \cdot d\vec{s} = B(2\pi r) = \mu_{0} \frac{r^{2}}{R^{2}} \frac{dQ}{dt} = \mu_{0} \frac{r^{2}}{R^{2}} I, \qquad B = \frac{\mu_{0} I}{2\pi} \frac{r}{R^{2}}$$

$$B = \frac{\mu_0 I}{2\pi} \frac{r}{R^2}$$

For r > R:

$$\oint_{I} \vec{B} \cdot d\vec{s} = B(2\pi r) = \mu_0 \frac{dQ}{dt} = \mu_0 I,$$

$$B = \frac{\mu_0 I}{2\pi r}$$

§ 2 Maxwell's Equations

$$\iint_{S} \overrightarrow{E} \cdot d\overrightarrow{A} = \frac{q_{\text{encl}}}{\mathcal{E}_{0}}$$

$$\iint_{S} \vec{B} \cdot d\vec{A} = 0$$

$$\dot{\lambda} = 0$$

$$\oint_{L} \vec{E} \cdot d\vec{s} = -\frac{d\Phi_{B}}{dt} = -\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$$
 Faraday's law of induction

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{\text{encl}} + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt} = \mu_0 I_{\text{encl}} + \mu_0 \varepsilon_0 \iint \frac{\partial \vec{E}}{\partial t} \cdot d\vec{A}$$

Ampére-Maxwell law

Gauss's law for electricity

Gauss's law for magnetism

Maxwell's equations and Lorentz force give the fundamental relations of electromagnetism! They are fundamental in the sense that Newton's three laws are for mechanics.

$$\overrightarrow{F} = q\overrightarrow{E} + q\overrightarrow{v} \times \overrightarrow{B}$$

Lorentz force

The Physical Meanings Embodied in Maxwell's Equations

$$\bigoplus_{S} \overrightarrow{E} \cdot d\overrightarrow{A} = \frac{q_{\text{encl}}}{\mathcal{E}_0}$$

Charged particles create an electric field (electrostatic).

$$\oint_{I} \vec{E} \cdot d\vec{s} = -\frac{d\Phi_{B}}{dt} = -\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$$

An electric field (non-electrostatic) can also be created by a changing magnetic field.

$$\bigoplus_{S} \vec{B} \cdot d\vec{A} = 0$$

There are no magnetic monopoles.

$$\oint_{L} \vec{B} \cdot d\vec{s} = \mu_{0} I_{\text{encl}} + \mu_{0} \varepsilon_{0} \frac{d\Phi_{E}}{dt} = \mu_{0} I_{\text{encl}} + \mu_{0} \varepsilon_{0} \iint_{S} \frac{\partial E}{\partial t} \cdot d\vec{A}$$

A magnetic field can be created either by currents or by a changing electric field.

§ 3 Electromagnetic Waves

The relationship between electric and magnetic field in empty space.

$$\oint_{L} \vec{E} \cdot d\vec{s} = -\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}, \qquad \oint_{L} \vec{B} \cdot d\vec{s} = \varepsilon_{0} \mu_{0} \iint_{S} \frac{\partial \vec{E}}{\partial t} \cdot d\vec{A}$$

- → A time varying magnetic field induces a electric field in neighboring regions;
- → A time varying electric field induces a magnetic field in neighboring regions.

These relationships predicts the existence of electromagnetic waves consisting of time-varying electric and magnetic fields that travel from one region of space to another, even if no charge or current are present in space.

The Propagation of the Electromagnetic Wave

- The mechanism for maintaining the propagation of the electromagnetic wave.
 - ▶ Unlike mechanical waves, which need a medium such as water or air to transit a wave, electromagnetic waves require no medium. The changing electric and magnetic fields create each other to maintain the propagation of the waves.
 - A exhibition map (not real) for propagation of electromagnetic waves

The important features of electromagnetic waves

→ The wave equation:

From Maxwell's equations, we can obtain the wave equation for a wave which propagates in x-direction

$$\frac{\partial^2 E}{\partial x^2} = \varepsilon_0 \mu_0 \frac{\partial^2 E}{\partial t^2}, \qquad \frac{\partial^2 B}{\partial x^2} = \varepsilon_0 \mu_0 \frac{\partial^2 B}{\partial t^2}$$

$$\frac{\partial^2 B}{\partial x^2} = \varepsilon_0 \mu_0 \frac{\partial^2 B}{\partial t^2}$$

▶The wave speed:

Generally, the wave equation

$$\frac{\partial^2 \Psi(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \Psi(x,t)}{\partial t^2}$$

$$v = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 2.997 \times 10^8 \text{ m/s} = c$$

This speed is precisely the same as the speed of light in empty space.

The important features of electromagnetic waves

→ The sinusoidal plane wave is the simplest solution of the wave equations

$$E = E_{\text{max}} \cos(\omega t - kx), \quad B = B_{\text{max}} \cos(\omega t - kx)$$

▶The wave is transverse.

Both E and B are perpendicular to each other, and to the direction of propagation. The direction of propagation is $E \times B$

 $ightharpoonup \overrightarrow{E}$ and \overrightarrow{B} are in phase, and has a definite ratio

$$\frac{E}{B} = \frac{E_{\text{max}}}{B_{\text{max}}} = c,$$

$$\sqrt{\varepsilon_0}E = \frac{B}{\sqrt{\mu_0}}$$

The important features of electromagnetic waves

Poynting vector: energy flow vector.

The total energy density:

$$u = u_E + u_B = \frac{1}{2} \varepsilon_0 E^2 + \frac{B^2}{2\mu_0} = \frac{EB}{\mu_0 c}$$

The energy current density:

$$S = uc = \frac{EB}{\mu_0},$$

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

S represents power per unit area perpendicular to the direction of wave propagation. z

