Set Theory

Def.: A set is an unordered Collection of different well defined objects.

Consider the following enamples: -

- (1) Collection of all the tall persons of a class .
- (2) Collection of all the educated persons of a Solly.
- (3) Collection of all the old items of your house.
- (4) Collection of all the students whose height is more stan 185 cms
- (5) Collection of all those people of your society who have atleast a Bachelor's degree =
- (6) Collection of all the items of the house which were bought more than 10 yrs ago =
- 8) Check whether the following are sets: -
 - (a) S= \{1, 2, 3, 4\} = \\ 1= \{ a, b, c\} =

Can sels be a collection of beforegenous elements?

) A set should be well defined in their should !	ا
) A set should be well defined in their should a a membership clause.	nb
Eg:- N= {2,4,6,8,10}	
Clause: Even numbers between 10010	
:. 2EN and 5 EN belong belong to	

(a) Roaster Notation (b) Set Builder Notation

(a) Roaster Notation:

$$A = \frac{9}{3} a_1 b_1, c_1, \ldots, \frac{2}{3}$$
 $B = \frac{5}{1121314}, \ldots, \frac{5}{3}$

Infinite Set.

(b) Set Builder Notation $S_1 = \{ 21 \}$ is an even number between 1 to 10 \} $S_2 = \{ 21 \}$ is a Chicolate \}.

(c) Cardinality: The no-of elements in the set is called

the cardinality of the set.

Denoted as [SI or n(S)]

Ex: A= \{1,2,5,9,20\}, 1AI=S

B=\{a,b,c,...,2\}, |BI=26

S=\{a,b,\{m,n\},2\}, |S|=4

Engle element

Does a & S ~ Tone

(d) Subset; If we have two sets A and B and every element of A is an element of B, then A is called the subset BB.

Danoted as

Prediate: Yn (neA >neB)

Ex: A = {1,2,3,4,5}

$$B \subseteq A$$

$$, C \subseteq A$$

Note: g M= {a, b, c}, N= {a} then NGM is true but [a SN] is false. a &N inskad a EN is true.

-> Subset Peropenties

(e) Equal Sets

Two sets A and B are said to be equal if A G B and B G A is both A and B should have the Same elements.

Denoted as
$$A = B$$

$$Ex: = \{1,2,3\} = \{1,2,2,3,3\}$$

$$\{1,2,4\} = \{4,2,1\}$$

Nute: · Order does not nætter.

· Repeatition does not matter

&) Check whether the following are equal sets.
(i) $\{1, \{2,3\}\} = \{1,2,3\}$
(ii) { 313} = [1]
Equal Set Properties
(i) A = A - Reflexive
(ii) A=B -> B=A - Symmetoric
(11) A=B, B=C - Transitive.
f) Peroper Subset
A set 'A' is called a proper subset of B' if
ASB and A &B
ie B has atleast 1 clement more than A
$\gamma(\beta) > \gamma(A)$
Denoted as [ACB]
Proper Subset Properties
ACA × - Not reflerive

ACB, BCC - ACC - Toursitive

ACB -> BCA × - Not Symmetric

(g) Universal Set (U)

A set is called a universal set ib it includes every set under discussion.

$$A = \{1,2,3\}$$

$$B = \{4,5\}$$

$$C = \{6,4\}$$

$$U = \{1,2,3,4,5,6,7\}$$

(h) Null set or Empty Set (\$ 00 3 3)

A set which does not confain any element.

Note: - Ø Cardinalidy - O

{ Ø }

Cardinalidy - 1

Also, remember Ø \subseteq A

(1) Singleton Set

A set with one element is called a singleton set.

Eg: A= {21/262 and 3<2<5}

(j) Finise and Infinise Set

A set is said to be finise if it has a finise no. of elements else it is infinise.

(ii) The set of real numbers is an infinit set.

(k) Countable and Uncountable Set

A set X is said to be countable if there exists a one-one correspondence from X to a serbset of the set of natural numbers clse it is uncountable. Eg:-(i) The set of positive even numbers is a countable and infinite set.

(ii) the set of real nos between 0 and 1 is uncountable.

(1) Power Set P(A)

For a set A, a Collection of all subsets of A is called the power set of A.

$$P(A) = \{\alpha \mid \alpha \leq A\}$$

$$P(A) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2\}, \{1,3\}, \{$$

So, $\emptyset \subseteq P(A)$ and $A \subseteq P(A)$

Cardinality of $P(A) = 2^n$ where n is the no. of elements in A.

So, if
$$A = \{1,2,3\}$$
, here $n = 3$

$$|P(A)| = 2^n = 2^3 = 8$$