$$0 = \frac{\sum dij}{\sqrt{2} \times (N-1)} = \frac{1+2+3+2+1+2+1+1+1+1}{\sqrt{2} \times (N-1)} = \frac{1-5}{\sqrt{2}}$$

(3)
$$C = \frac{\sum C(i)}{N} = \frac{1}{N} \sum \frac{E(i)}{\sqrt{\frac{1}{2} k(i) \left(\frac{1}{2} k(i) - 1 \right)}}$$

$$E(1) = 0$$
, $C(2) = 0$
 $E(2) = 1$, $C(2) = \frac{1}{3}$
 $E(3) = 2$, $C(3) = \frac{2}{3}$
 $E(4) = 1$, $C(4) = \frac{2}{3}$
 $E(5) = \frac{1}{4} \times \frac{8}{3} = \frac{8}{15}$

(4) degree <1,2,3,4,5> = <1,3,3, 2,3>.

$$\langle k \rangle = \frac{1}{5}(1+3+3+2+3) = \frac{12}{5}$$

- (E)	-3
6	

ude	degi	ree	
2 3	432		V
4 ± 6	47		V

We can find that the degree of Node 2, 6. is odd, which means that G is not an Enler Graph.

So we can't walk through every door ones and once only and return to the starting post.