### A Brief Overview:

To solve this test problem, I have used single-shot multi-object detection model (SSD -300) for reading the encoded text and identifying its location in the test image. SSD model is based on VGG-16 and the approach defined in this <u>paper</u> by Wei Liu.

Dataset used to train the model is Street View House Number dataset. (SVHN)

Model is trained to detect digits from 0 to 8 but not 9. (Reason: Rotation augmentation is used and 9 is detected as 6). Training set used = SVHN Training set +SVHN Extra Training Set

| Model SSD -300 Training set = 77% mAP | Test set = 68% mAP approx |
|---------------------------------------|---------------------------|
|---------------------------------------|---------------------------|

### Some results on Test set:



# **Initiate Training:**

I have used Python 3.6.5 and Tensorflow 1.12.

### Step 1

--Run train.py file

The Program will take approx 45 min. to download SVHN dataset and start training.

The hyper-parameter values used in the program are.

- Batch size = 32
- Learning rate

| Global Step    | Learning rate |
|----------------|---------------|
| 0-2100         | 0.001         |
| 2101- 15000    | 0.0005        |
| 15001- 20000   | 0.0001        |
| 20001- further | 0.00001       |

- Momentum parameter for Momentum optimizer = 0.9
- L2 regularization factor = 0.0005
- Probability Threshold = 0.5
- Category to be classified by neural network = 9 (digits) + 1 (background) + 4 (location coordinate)=14

## Step 2

--Run train\_restore.py

In case train.py break, run train\_restore.py. Changes to be done in every restore are.

- Update latest metadata file name to restore program to start training.
- And update step value to continue training.

### Step 3

--Run detect\_robot1.py

Update latest metadata file name to read text from the image robot1.png.

#### **Check Results:**

- My latest trained model.chkt-final files attached with mail.
- detect\_robot1.py can be run directly to get same results.