University Physics with Modern Physics

Fifteenth Edition

Chapter 2 Motion Along a Straight Line

Learning Goals for Chapter 2

Looking forward at ...

- how the ideas of **displacement** and **average velocity** help us describe straight-line motion.
- the meaning of **instantaneous velocity**; the difference between velocity and speed.
- how to use average acceleration and instantaneous acceleration to describe changes in velocity.
- how to solve problems in which an object is falling freely under the influence of gravity alone

Introduction

- **Kinematics** is the study of motion.
- *Velocity* and *acceleration* are important physical quantities.
- A typical runner gains speed gradually during the course of a sprinting foot race and then slows down after crossing the finish line.

Displacement, time, and average velocity

- A particle moving along the *x*-axis has a coordinate *x*.
- The change in the particle's coordinate is

$$\Delta x = x_2 - x_1.$$

$$v_{\text{av-}x} = \Delta x / \Delta t.$$

• The average x-velocity of the particle is

Rules for the sign of x-velocity

TO					4	•	
I f	V-	CO	Or	dir	ate	16.	
11	n-	CU	VI.	uII	iaic	19.	

 \dots x-velocity is:

Positive & increasing (getting more positive)

Positive: Particle is moving in +x-direction

Positive & decreasing (getting less positive)

Negative: Particle is moving in -x-direction

Negative & increasing (getting less negative)

Positive: Particle is moving in +x-direction

Negative & decreasing (getting more negative)

Negative: Particle is moving in -x-direction

Average velocity

- The winner of a 50-m swimming race is the swimmer whose average velocity has the greatest magnitude.
- That is, the swimmer who traverses a displacement Δx of 50 m in the shortest elapsed time Δt .

A position-time graph

Instantaneous velocity

- The **instantaneous velocity** is the velocity at a specific instant of time or specific point along the path and is given by $v_x = dx/dt$.
- The average speed is *not necessarily* the magnitude of the average velocity! (Recall the difference between distance and displacement.)

Finding velocity on an x-t graph

As the average x-velocity v_{av-x} is calculated over shorter and shorter time intervals ...

Finding velocity on an x-t graph

... its value $v_{\text{av-}x} = \Delta x/\Delta t$ approaches the instantaneous x-velocity.

Finding velocity on an x-t graph

The instantaneous x-velocity v_x at any given point equals the slope of the tangent to the x-t curve at that point.

x-t graphs: determining instantaneous velocity

Motion diagrams

• Here is a *motion diagram* of the particle in the previous *x-t* graph.

Average acceleration

- Acceleration describes the rate of change of velocity with time.
- The average x-acceleration is

Average x-acceleration of	Change in x-co	omponent of the p	particle's velocity
1 2	$u_{\text{av-}x} = \frac{\Delta \dot{v}_x}{\Delta t} =$	$= \frac{v_{2x} - v_{1x}}{t_2 - t_1}$	Final x-velocity minus initial x-velocity
Time int	terval Fin	nal time minus in	itial time

Instantaneous acceleration

• The *instantaneous* acceleration is $a_x = dv_x/dt$.

Rules for the sign of x-acceleration

If x-velocity is:	x-acceleration is:			
Positive & increasing (getting more positive)	Positive: Particle is moving in +x-direction & speeding up			
Positive & decreasing (getting less positive)	Negative: Particle is moving in +x-direction & slowing down			
Negative & increasing (getting less negative)	Positive: Particle is moving in $-x$ -direction & slowing down			
Negative & decreasing (getting more negative)	Negative: Particle is moving in $-x$ -direction & speeding up			

Finding acceleration on a v_x -t graph

v_x -t graph: determining instantaneous acceleration

Motion diagrams

• Here is the motion diagram for the particle in the previous v_x -t graph.

A x-t graph

Motion diagrams

• Here is the motion diagram for the particle in the previous v_x -t graph.

Motion with constant acceleration

However, the position changes by *different* amounts in equal time intervals because the velocity is changing.

Motion with constant acceleration

A position-time graph

(a) A race car moves in the x-direction with constant acceleration.

(b) The v_x -t graph for the same particle

(b) The *x-t* graph

(a) An *x-t* graph for a particle moving with positive constant *x*-acceleration

Graph for constant *x*-acceleration:

Notes on acceleration and x-t graphs

- For constant acceleration depicted on a x-t graph, a parabola always results.
- For positive acceleration, the parabola is concave upwards.
- For negative acceleration, the parabola is concave downwards.

The equations of motion with constant acceleration

• The four equations below apply to any straightline motion with constant acceleration a_x .

Equation	Includes Quantities				
$v_x = v_{0x} + a_x t$	(2.8)	t		v_x	a_x
$x = x_0 + v_{0x}t + \frac{1}{2}a_xt^2$	(2.12)	t	x		a_x
$v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$	(2.13)		x	v_x	a_x
$x - x_0 = \frac{1}{2}(v_{0x} + v_x)t$	(2.14)	t	x	v_x	

Freely falling bodies

- Free fall is the motion of an object under the influence of only gravity.
- In the figure, a strobe light flashes with equal time intervals between flashes.
- The velocity change is the same in each time interval, so the acceleration is constant.

A freely falling coin

If there is no air resistance, the downward acceleration of any freely falling object is $g = 9.8 \text{ m/s}^2 \text{ (or }$ $= 32 \text{ ft/s}^2$).

$$v_{3y} = ?$$

Up-and-down motion in free fall

• Position as a function of time for a ball thrown upward with an initial speed of 15.0 m/s.

Up-and-down motion in free fall

• Velocity as a function of time for a ball thrown upward with an initial speed of 15.0 m/s.

• The vertical velocity, but *not the acceleration*, is zero at the highest point.

