۳ اصلبندی، فرافیلتر

اصلبندي

به تمرین ۱۲ (ادامه ی تمرین ۸): فرض کنید تئوری T چنان باشد که برای هر زنجیر $(M_i)_{i\in I}$ از صورت مدلهای آن، M_i نیز مدلی از T باشد. نشان دهید که در این صورت T دارای یک اصلبندی به صورت T است. T

اگر راه حل خودتان به نتیجه نمی رسد، پاسخ زیر را تکمیل کنید: با $T^{\forall \exists}$ مجموعه ی همه ی جمله هایی را نشان دهید که به شکل $\exists \forall T$ هستند و از T نتیجه می شوند. هدف این است که نشان دهیم که

$$M \models T^{\forall \exists} \Leftrightarrow M \models T.$$

فرض کنید $\exists T^{\forall \exists}$. هدف ساختن زنجیری است به صورت زیر

$$M = M_{\bullet} \subseteq N_{\bullet} \subseteq M_{1} \subseteq N_{1} \subseteq \ldots,$$

که در آن

$$M_1 \prec M_2 \prec M_3 \prec \dots$$

و $N_i \models T$ در این صورت خواهیم داشت

$$M \prec \bigcup M_i = \bigcup N_i \models T$$

و نتیجه، حاصل می شود.

روش ساخت زنجير:

- ۱. نشان دهید که مدلی چون $N\models T$ یافت می شود، به طوری که $\mathbb{A}^{\exists \forall}$. منظور از $\mathbb{A}^{\exists \forall}$ نشان دهید که مدلی چون $\mathbb{A}^{\exists \forall}$ ست که در \mathbb{A} درستند. نیز مشاهده کنید که $\mathbb{A}^{\exists \forall}$ معادل $\mathbb{A}^{\exists \forall}$ است.
- ۲. نشان دهید که $N'\equiv N$ چنان موجود است که $M'\equiv N'$ و هر جمله ی با سور عمومی با پارامتر در M در M' درست است. (برای این منظور، کافی است نشان دهید که $\mathrm{Diag}_{\forall}(M)\cup\mathrm{Th}(N)$

^۳این تمرین در تمرینهای جلسهی بعد ادامه دارد.

 $M \prec M'$ و $M \subset N' \subset M'$ و که $M' \subset M'$ و $M' \subset M'$ و $M' \subset M'$

تمرین ۱۳: نشان دهید تئوریِ T را می توان تنها با استفاده از فرمولهای با سور جهانی اصلبندی کرد $N \models T$ انگاه $N \models N$ و $N \models N$ آنگاه $N \models N$ آنگاه N آنگاه $N \models N$ آنگاه N آنگاه $N \models N$ آنگاه $N \models N$ آنگاه $N \models N$ آنگاه N آنگاه

فيلترها

تمرین ۱۴: گیریم I یک مجموعه باشد و P(I) مجموعه همه ی زیرمجموعههای آن. زیرمجموعه $D\subseteq P(I)$ را یک فیلتر روی $D\subseteq P(I)$ شرایط زیر درباره ی آن صادق باشند:

- $.\emptyset \not\in D$ و $I \in D$. ۱
- $A\cap B\in D$ آنگاه $A,B\in D$ تحت اشتراک متناهی بسته باشد، یعنی هرگاه $A,B\in D$ آنگاه .۲
- $A \in D$. اگر $A \in B \subseteq I$ و $A \in D$ و کا آنگاه $A \in D$ آنگاه $A \in D$. $A \in D$

(شهود تعریف این است که فیلتر قرار است گردایه ای از زیرمجموعه ی «بزرگ» از I باشد).

است: $I=\mathbb{R}$ نشان دهید مجموعه ی زیر، فیلتری روی I

$$D = \{X \subseteq \mathbb{R} | \mu(\mathbb{R} - X) = {}^{\bullet} \}$$

که در بالا مراد از μ ، اندازه ی لُبِگ است.

۲. فرض کنید κ کاردینالی باشد نامتناهی به طوری که |I| که $\kappa \leq |I|$ نشان دهید که مجموعهی زیر فیلتری است روی I:

$$D = \{X \subseteq I : |I - X| \le \kappa\}.$$

فیلتر D در بالا را در حالتی که $\kappa=\aleph$ ، فیلتر فِرشه میخوانیم.

۳. برای هر $I \in \mathcal{I}$ نشان دهید که مجموعه یزیر فیلتری روی I است:

$$D=\{X\subseteq I|x\in X\}.$$

فیلترهای اینچنین را فیلتر اصلی میخوانیم.

I فرض کنید D فیلتری روی I باشد و D باشد و $X \not\in D$ نشان دهید مجموعه یزیر فیلتری روی I است دربرگیرنده ی I و شامل I و شامل I

$$E = \{Y \subseteq I | \exists Z \in D \quad Z - X \subseteq Y\}.^{\mathfrak{r}}$$

^۴این تمرین ادامه دارد.