Agenda

- Prelim
- Examples
- · Mum vs Denom Layout

Why?

- Derivative is response to infinitesimal changes in input.
- Backpropagation workhorse of DL

Prelim

tix >> >

x -9 Y

- f: X -> Y
 - Function f maps X to Y
 - Input X can be Scalar, Vector, Matrix, Tensor
 - Output Y can be Scalar, Vector, Matrix, Tensor
 - Vectors are column vectors.

Scalar Valued Function of Single Variable

$$f: \mathbb{R} \to \mathbb{R} \quad \text{are}$$

$$y = f(x) = x^{2} \ln x^{2}$$

$$\frac{\partial y}{\partial x} = x^{2} \frac{2x}{x^{2}} + 2x \ln x^{2} = 2x(1 + \ln x^{2})$$

Scalar Valued Function of Multiple variables
$$f: \mathbb{R}^3 \to \mathbb{R} \qquad \vec{x} = \begin{bmatrix} x_1 \\ y_2 \end{bmatrix} \qquad y = f(\vec{x}) = z_1^2 + z_1 \ln z_2 + e^{z_1 x_3} + 2z_2 + z_3$$

$$\frac{\partial 9}{\partial \alpha_1} = 2\alpha_1 + \ln \alpha_2 = \begin{bmatrix} numerous \\ numerous \\ 3 \end{bmatrix} = \frac{\alpha_1}{\alpha_2} + \alpha_3 e^{-\alpha_3} = \begin{bmatrix} numerous \\ 2 \\ 3 \end{bmatrix} = \frac{3}{\alpha_2} =$$

Vector Valued Function of Single Variable

$$f: \mathbb{R} \to \mathbb{R}^{3} \quad y - f(x) = \begin{bmatrix} 3x^{2} + x \\ e^{2} \\ \ln x \end{bmatrix}$$

$$\frac{\partial y}{\partial x} = \begin{bmatrix} \partial (3x^{2} + x) \\ \partial (e^{2}) \\ \partial x \end{bmatrix}$$

$$\frac{\partial (e^{2})}{\partial x}$$

$$\frac{\partial (\ln x)}{\partial x}$$

Vector Valued Function of Multiple Variables

(numerator layout)
$$f: \mathbb{R}^3 \to \mathbb{R}^2 \qquad \stackrel{\sim}{\chi} = \begin{bmatrix} \frac{\pi_1}{2} \\ \frac{\pi_2}{2} \end{bmatrix}$$
$$y = f(\stackrel{\leftarrow}{\chi}) = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} \frac{\pi_1 + \pi_1 \pi_2 + \pi_1 \pi_3}{\pi^2 + 2\pi \pi_3} \end{bmatrix}$$

$$\frac{\partial f(\bar{z})}{\partial \bar{x}} = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3}
\end{bmatrix}$$

$$\begin{bmatrix} 1+2+2&3\\2&1 \end{bmatrix} \times \begin{bmatrix} 2+3\\2&1 \end{bmatrix} \times \begin{bmatrix} 2+3\\2&1 \end{bmatrix}$$

Vector Valued Function of Multiple Variables

(denominator layout)
$$f: \mathcal{P}^3 \to \mathcal{R}^2$$
 $\Rightarrow = \begin{bmatrix} \frac{\pi_1}{2} \\ \frac{\pi_2}{2} \end{bmatrix}$ $y = f(\frac{\pi}{2}) = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} \frac{\pi_1 + \pi_1 \pi_2 + \pi_1 \pi_3}{\pi_2 + 2\pi_3} \end{bmatrix}$

$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = \begin{cases}
\frac{\partial f_1}{\partial \vec{x}_1} & \frac{\partial f_2}{\partial \vec{x}_2} \\
\frac{\partial f_1}{\partial \vec{x}_2} & \frac{\partial f_2}{\partial \vec{x}_2}
\end{cases}$$

Scalar valued function of many (matrix)

variables
$$f: \mathbb{R}^{3\times4}$$

$$y = f(x) = \sum_{i} \sum_{j} x_{ij} e\mathbb{R}$$

$$y = f(x) = \sum_{i} \sum_{j} x_{ij} e\mathbb{R}$$

$$\frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{i+3}}$$

$$\frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{i+3}}$$

$$\frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{i+3}}$$

$$\frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{i+3}}$$

$$\frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{i+3}}$$

$$\frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{i+3}}$$

Matrix valued function of single variable

$$f: \mathbb{R} \to \mathbb{R}^{2n2}$$

$$y = f(x) = \begin{bmatrix} f_1 & f_2 \\ f_3 & f_4 \end{bmatrix} = \begin{bmatrix} \cos(x) & \sin(x) \\ e^{x} & \tanh(x) \end{bmatrix}$$

$$\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_2}{\partial x} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_4}{\partial x} \end{bmatrix} = \begin{bmatrix} -\sin(x) & \cos(x) \\ e^{x} & 1 - \tan(x) \end{bmatrix}$$

$$\frac{\partial f_3}{\partial x} = \begin{bmatrix} \frac{\partial f_4}{\partial x} & \frac{\partial f_4}{\partial x} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_4}{\partial x} \end{bmatrix} = \begin{bmatrix} e^{x} & 1 - \tan(x) \\ e^{x} & 1 - \tan(x) \end{bmatrix}$$

P 2x'L

ER 27374

Vector valued function of multiple (matrix)

Vector valued function of multiple (matrix)

$$Vec(X) = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \end{bmatrix} \in \mathbb{R}^6$$

$$\frac{\partial y}{\partial vec(X)} \in \mathbb{R}^{4 \times 6}$$

$$X = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \end{bmatrix}$$

$$y = f(x) = \begin{cases} f_1 \\ f_2 \\ f_3 \\ f_4 \end{cases} = \begin{cases} \sum_{i \in \mathcal{I}} \chi_i \\ \chi_1 \chi_5 \chi_1 \\ \chi_2 \chi_4 \\ \chi_3 \chi_4 \chi_5 \end{cases}$$

Elementwise functions (e.g. Identity) f: R'* - R'*

$$y = f(\vec{x}) = \begin{bmatrix} I_1(x_1) \\ I_2(x_2) \\ I_3(x_3) \end{bmatrix}$$

$$I(\alpha) = \alpha \ ER$$

$$\frac{\partial I}{\partial x_1} \frac{\partial I}{\partial x_2} \frac{\partial I}{\partial x_3} \frac{\partial I}{\partial x_3} \frac{\partial I}{\partial x_2} \frac{\partial I}{\partial x_3} \frac{\partial I}{\partial x_3} \frac{\partial I}{\partial x_3} \frac{\partial I}{\partial x_4} \frac{\partial I}{\partial x_4} \frac{\partial I}{\partial x_2} \frac{\partial I}{\partial x_3} \frac{\partial I}{\partial x_4} \frac{\partial I}{\partial x_4} \frac{\partial I}{\partial x_4} \frac{\partial I}{\partial x_5} \frac{\partial I}{\partial x_5}$$

Layout notation.

- Often sources will use whichever layout is convenient to make shapes match.
 - Why? Update rule

Result of differentiating various kinds of aggregates with other kinds of aggregates

		Scalar y.—		Column vector y (size <i>m</i> ×1)		Matrix Y (size m×n)	
		Notation	Туре	Notation	Туре	Notation	Туре
- Scalar x	Numerator	∂y	Scalar	$\partial \mathbf{y}$	Size-m column vector	$\partial \mathbf{Y}$	<i>m×n</i> matrix
	Denominator	$\frac{\partial y}{\partial x}$		$\overline{\partial x}$	Size-m row vector	$\overline{\partial x}$	
Column vector x (size n×1)	Numerator	∂y	Size-n row vector	$\partial \mathbf{y}$	<i>m</i> × <i>n</i> matrix	$\partial \mathbf{Y}$	
	Denominator	$\overline{\partial \mathbf{x}}$	Size-n column vector	$\overline{\partial \mathbf{x}}$	<i>n</i> × <i>m</i> matrix	$\overline{\partial \mathbf{x}}$	
Matrix X (size <i>p</i> × <i>q</i>)	Numerator	∂y	<i>q</i> × <i>p</i> matrix	$\partial \mathbf{y}$		$\partial \mathbf{Y}$	
	Denominator	$\overline{\partial \mathbf{X}}$	<i>p</i> × <i>q</i> matrix	$\overline{\partial \mathbf{X}}$		$\overline{\partial \mathbf{X}}$	

The results of operations will be transposed when switching between numerator-layout and denominator-layout notation.

Source: wiki

Conventions:

- Size of derivatives for scalars, vectors, and matrices: Assume we have scalar $s \in \mathbb{R}^1$, vector $v \in \mathbb{R}^m$, i.e. $v = [v_1, v_2, ..., v_m]^T$ and matrix $M \in \mathbb{R}^{k \times \ell}$
- What is the size of $\frac{\partial v}{\partial s}$? $\mathbb{R}^{m \times 1}$ (column vector of size m)

 What is the size of $\frac{\partial s}{\partial v}$? $\mathbb{R}^{1 \times m}$ (row vector of size m) $\frac{\partial v_1}{\partial s}$ $\frac{\partial v_2}{\partial s}$ \vdots $\frac{\partial v_m}{\partial v_m}$

$$\left[\frac{\partial s}{\partial v_1} \frac{\partial s}{\partial v_1} \cdots \frac{\partial s}{\partial v_m}\right]$$

$$\begin{bmatrix} \frac{\partial v_1}{\partial s} \\ \frac{\partial v_2}{\partial s} \\ \vdots \\ \frac{\partial v_m}{\partial s} \end{bmatrix}$$

Conventions:

What is the size of $\frac{\partial v^1}{\partial v^2}$? A matrix:

$$rac{\partial v_1^1}{\partial v_1^2} \quad ... \quad ... \quad ...$$

Row
$$i$$

$$\begin{bmatrix} \frac{\partial v_1^1}{\partial v_1^2} & \dots & \dots & \dots \\ & \frac{\partial v_1^1}{\partial v_1^2} & \dots & \dots & \dots \\ & \frac{\partial v_i^1}{\partial v_j^2} & \dots & \dots \\ & \dots & \dots & \dots & \dots \end{bmatrix}$$

This matrix of partial derivatives is called a Jacobian

Conventions:

de som som

What is the size of $\frac{\partial s}{\partial M}$? A matrix:

denominate

$$\begin{bmatrix}
\frac{\partial s}{\partial m_{[1,1]}} & \cdots & \cdots & \cdots \\
\vdots & \frac{\partial s}{\partial m_{[i,j]}} & \cdots & \cdots
\end{bmatrix}$$

Extra slides

Back to NN's

