Eine Woche, ein Beispiel 12.26 Average Resistance z(17)

Goal: compute parameters in https://arxiv.org/pdf/0901.3945.pdf [Cin] and think of their physical meaning (I need your help!)

If possible, find a way to explain the Cinkir's bound [Cin, Thm 5.21].

We begin with an undirected weighted connected graph 17. (weight is always positive, and can be thought as the length; I have at lease 1 edge)

	1 v, e, v,	v ∕ e	N, (e, 1)
Vertices V= V(□)	{υ., υ≥}	FW]	ξυ, ,υ ₂ }
Edges E=E(17)	se.z	fe3	fe., e., e,]
total length (=((1))	1	L	3
genus g=g(P)	0	1	2

You can think a graph Γ as some electrical wives with given length and constant resistivity $1\Omega/m$. Then we can compute the resistance between two points $p,q\in\Gamma$, and denote it by r(p,q). Γ can be points on edges

E.g. In Fig 1, $r(v_1, v_2) = \frac{1}{3}\Omega$, $r(x_1, x_2) = \frac{1}{2}\Omega$

Thm. There exists a unique real signal Borel measure mean on P, satisfying.

(i)
$$\mu(\Gamma) = 1$$
, $\mu_{can}(\Gamma) < \infty$
(ii) The expression $(x,y \in \Gamma)$
 $\frac{1}{2} \int_{\Gamma} r(x,y) d\mu_{can}(y)$

is independent of the variant \times . We denote $\tau = \tau(\Gamma) = \frac{1}{2} \int_{\Gamma} v(x,y) d\mu_{con}(y)$, and call it the average resistance.

E.g.		1 N, E, N,	v € e	N, e, , , N,
	Mcan	= Ev. + = Ev2	¹ ℓ d×	-28v,-28v2 + 3 dx
	て=て([^)	-13	- L C	7 36 S

Ex. Verify the value of $z(\Gamma)$ in the tables. (assuming that μ can is already known). Q: Do we have any physical explanation for $z(\Gamma)$?

Actually we can write down Mcan explicitly. For doing so we have to introduce some new concepts.