数值分析 code7 实验报告

张景浩 PB20010399

2023.4.19

1 问题介绍

编写一个执行在任意区间 [a,b] 上的函数 f 的 Romberg 算法, 并输出下列积分的 7 阶 Romberg 阵列。

a.
$$\int_0^1 \frac{\sin x}{x} dx$$
b.
$$\int_{-1}^1 \frac{\cos x - e^x}{\sin x} dx$$
c.
$$\int_1^\infty (xe^x)^{-1} dx$$

2 解决方法

2.1 Romberg 方法

设 R(n,0) 表示具有 2^n 个子区间的梯形估计,有:

$$\begin{cases} R(0,0) = \frac{1}{2}(b-a)[f(a)+f(b)] \\ R(n,0) = \frac{1}{2}R(n-1,0) + h_n \sum_{i=1}^{2^{n-1}} f(a+(2i-1)h_n) \end{cases}$$

对于一个适度的 M 值, 计算 $R(0,0), R(1,0), \cdots, R(M,0)$, 并且其中没有重复的函数值计算。利用公式:

$$R(n,m) = R(n,m-1) + \frac{1}{4^m - 1} [R(n,m-1) - R(n-1,m-1)]$$

计算得 Romberg 阵列。

3 编译环境及使用方法

本程用 matlab 编译,使用时调用 outcome.m 文件即可。

4 实验结果

n	R(n,0)	R(n,1)	R(n,2)	R(n,3)	R(n,4)	R(n,5)	R(n,6)
0	0.9207355						
1	0.9397933	0.9461459					
2	0.9445135	0.9460869	0.9460830				
3	0.9456909	0.9460833	0.9460831	0.9460831			
4	0.9459850	0.9460831	0.9460831	0.9460831	0.9460831		
5	0.9460586	0.9460831	0.9460831	0.9460831	0.9460831	0.9460831	
6	0.9460769	0.9460831	0.9460831	0.9460831	0.9460831	0.9460831	0.9460831

表 1:
$$\int_0^1 \frac{\sin x}{x} dx$$

n	R(n,0)	R(n,1)	R(n,2)	R(n,3)	R(n,4)	R(n,5)	R(n,6)
0	-2.7932067						
1	-2.3966033	-2.2644022					
2	-2.2852177	-2.2480892	-2.2470016				
3	-2.2563259	-2.2466953	-2.2466023	-2.2465960			
4	-2.2490303	-2.2465984	-2.2465919	-2.2465918	-2.2465917		
5	-2.2472017	-2.2465921	-2.2465917	-2.2465917	-2.2465917	-2.2465917	
6	-2.2467442	-2.2465917	-2.2465917	-2.2465917	-2.2465917	-2.2465917	-2.2465917

表 2:
$$\int_{-1}^{1} \frac{\cos x - e^x}{\sin x} dx$$

n	R(n,0)	R(n,1)	R(n,2)	R(n,3)	R(n,4)	R(n,5)	R(n,6)
0	0.1839397						
1	0.2273051	0.2417603					
2	0.2198339	0.2173435	0.2157157				
3	0.2193510	0.2191900	0.2193131	0.2193702			
4	0.2193836	0.2193945	0.2194081	0.2194096	0.2194097		
5	0.2193839	0.2193840	0.2193834	0.2193830	0.2193829	0.2193828	
6	0.2193839	0.2193839	0.2193839	0.2193839	0.2193839	0.2193839	0.2193839

表 3:
$$\int_1^\infty (xe^x)^{-1} dx$$

5 总结

从实验结果来看,在Romberg 阵列中的每一列都在向积分值收敛,符合其收敛性定理。Romberg 积分通过逐步二分的思想,将事后误差估计法所得的误差作为积分的近似值的补偿,进一步提高积分的精度,算法整体的加速是很明显的。并且还观察到,随着列数的增加,对应的序列收敛速度也

在增加,实际上,在理论上后一列的代数精度要比前一行高 2 次。实验所得的 Romberg 阵列均已 经过 mathematica 检验。

A Computer Code

Here we include the computer code.

```
function R=romberg(f,a,b,M)
       h=b-a;
2
       R=zeros(M+1);
3
       R(1,1)=h*(f(a)+f(b))/2;
4
       for n=2:M+1
5
           h=h/2;
6
              for i=1:2^{(n-2)}
   %
                  R(n,1)=R(n,1)+f(a+(2*i-1)*h);
              end
9
            t=a+h:2*h:b-h;
10
           R(n,1)=h*sum(f(t))+R(n-1,1)/2;
11
            for m=2:n
12
                  R(n,m)=4^m*R(n,m-1)/(4^m-1)-R(n-1,m-1)/(4^m-1);
13
                R(n,m)=R(n,m-1)+(R(n,m-1)-R(n-1,m-1))/(4^{(m-1)-1});
14
            end
15
16
       end
   end
17
```