

Adversarial Attacks

Kanupriya Jain Anna Krysta Mohamed Ali Srir

Introduction

 Manipulations to input data that trick machine learning models into making incorrect predictions or classifications.

AutoAttack accuracy for adversarial training

- The best configuration: eps_PGD = 0.01, eps_FGSM = 0.05, alpha = 0.003.
- AutoAttack accuracy after 30 epochs: 41.02%.

MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers

Motivation:

- Training-free approach
- Heterogeneous mixing

Core Idea:

Benign confidence property

Notations:

 $g_{\rm std}$ = Standard base classifier trained on clean model

 $h_{\rm rob}$ = Robust classifier

$$f_{\text{mix,i}}(x) = \log((1 - \alpha)\sigma \circ g_{\text{std,i}}(x) + \alpha \sigma \circ h_{\text{rob}}(x))$$

 $\alpha \in [1/2, 1]$

Workflow

$$\max_{M \in \mathcal{M}, \alpha \in [1/2,1]} \mathbb{P}_{(X,Y) \sim \mathcal{D}} \left[\arg \max_i f_{\mathrm{mix},i}^M(X) = Y \right]$$

subject to

$$\mathbb{P}_{(X,Y)\sim\mathcal{D}}\left[\arg\max_{i}f_{\mathrm{mix},i}^{M}(X+\delta_{f_{\mathrm{mix}}^{*}}^{*}(X))=Y\right]\geq r_{f_{\mathrm{mix}}^{M}},$$

Table of cases

Image	Std Model	Robust Model	What we expect from mixing
Clean	Yes	Yes	Mix correctly classify
Clean	Yes	No	Mix correctly classify
Clean	No	Yes	Assume this impossible
Clean	No	No	We don't do magic
Adversarial	Yes	Yes	Mix correctly classify
Adversarial	Yes	No	Assume this impossible
Adversarial	No	Yes	Mix correctly classify
Adversarial	No	No	We don't do magic

We don't lose acc on clean

While staying robust

Explicit the mix

wrong)

$$f_{\mathrm{mix}}^{M(s,p,c)}(x) \coloneqq \log\left((1-\alpha) \cdot g_{\mathrm{std}}^{\mathrm{TS}(0)}(x) + \alpha \cdot h_{\mathrm{rob}}^{M(s,p,c)}(x)\right)$$
 Std model with confidence brought to 1 Non linear transformation (Always 100% sure even if of the logits

Assumption 4.1. On unattacked clean data, if $h_{\text{rob}}^{M}(\cdot)$ makes a correct prediction, then $g_{\text{std}}(\cdot)$ is also correct.

Assumption 4.2. The transformation $M(\cdot)$ does not change the predicted class due to, e.g., monotonicity. Namely, it holds that $\arg\max_i M(h_{\text{rob}}(x))_i = \arg\max_i h_{\text{rob},i}(x)$ for all x.

Case 2: They std Model make correct pred on clean example and robust get it wrong

$$f_{\mathrm{mix}}^{M(s,p,c)}(x) \coloneqq \log\left((1-\alpha)\cdot g_{\mathrm{std}}^{\mathrm{TS}(0)}(x)\right) + \alpha\cdot h_{\mathrm{rob}}^{M(s,p,c)}(x)\right)$$
 We want this to win

Eq to say

$$h_{\text{rob}}^{M(s,p,c)}(x) < \frac{1-\alpha}{\alpha}$$
 with High probability

Case 3: They std Model make mistake on Adversarial example and robust get it correct

$$f_{\mathrm{mix}}^{M(s,p,c)}(x) \coloneqq \log \left((1-\alpha) \cdot g_{\mathrm{std}}^{\mathrm{TS}(0)}(x) + \alpha \cdot h_{\mathrm{rob}}^{M(s,p,c)}(x) \right)$$

We want this to win

Eq to say

$$h_{\mathrm{rob}}^{M(s,p,c)}(x) > \frac{1-\alpha}{\alpha}$$
 with High probability

Conclusion we want a M that guarantees

$$\min_{M \in \mathcal{M}, \ \alpha \in [1/2,1]} \mathbb{P}_{X \sim \mathcal{X}_{\text{clean}}^{\mathsf{X}}} \left[m_{h_{\text{rob}}^{M}}(X) \geq \frac{1-\alpha}{\alpha} \right]$$

subject to
$$\mathbb{P}_{Z \sim \mathcal{X}'_{adv}} \left[\underline{m}_{h_{rob}^{M}}^{\star}(Z) \geq \frac{1-\alpha}{\alpha} \right] \geq \beta$$
,

If we guarantee a robustness for a certain margin, we try to minimize the error on clean data

Grid Search to find those parameters

Algorithm 1 Algorithm for optimizing s, p, c, and α .

```
1: Given an image set, save the predicted logits associated with mispredicted clean images \{h_{\text{rob}}^{\text{LN}}(x): x \in \widetilde{\mathcal{X}}_{\text{clean}}^{\mathbf{x}}\}.
  2: Run MMAA on h_{\text{rob}}^{\text{LN}}(\cdot) and save the logits of correctly classified perturbed inputs \{h_{\text{rob}}^{\text{LN}}(x) : x \in \widetilde{\mathcal{A}}_{\text{adv}}^{\prime}\}.
  3: Initialize candidate values s_1, \ldots, s_l, p_1, \ldots, p_m, c_1, \ldots, c_n.
  4: for s_i for i = 1, ..., l do
          for p_j for j = 1, \ldots, m do
               for c_k for k = 1, \ldots, n do
  6:
                  Obtain mapped logits \{h_{\text{rob}}^{M(s_i, p_j, c_k)}(x) : x \in \widetilde{\mathcal{A}}_{\text{adv}}'\}.
                   Calculate the margins from the mapped logits \left\{m_{h_{-1}^{M(s_i,p_j,c_k)}}(x):x\in\widetilde{\mathcal{A}}_{\mathrm{adv}}'\right\}.
  8:
                   Store the bottom 1 - \beta-quantile of the margins as q_{1-\beta}^{ijk} (corresponds to \frac{1-\alpha}{\alpha} in (7)
 9:
                   Record the current objective o^{ijk} \leftarrow \mathbb{P}_{X \in \widetilde{\mathcal{X}}_{slaan}^{\mathsf{X}}} \left[ m_{h_{-1}^{M(s_i, p_j, c_k)}}(X) \geq q_{1-\beta}^{ijk} \right].
10:
               end for
11:
           end for
13: end for
14: Find optimal indices (i^*, j^*, k^*) = \arg\min_{i,j,k} o^{ijk}.
15: Recover optimal mixing weight \alpha^* := \frac{1}{(1+q^{i^*j^*k^*})}.
16: return s^* := s_{i^*}, p^* := p_{j^*}, c^* := c_{k^*}, \alpha^*.
```

Effect Of Non Linear Transformation

Case: Large_margin

Margin Distribution

Results

	Clean Acc	Robust L2 Acc
Std	0.81	0.38
Robust	0.5	0.5
Mixed Beta = 0.8	0.81	0.41
Mixed Beta = 0.7	0.81	0.38
Mixed Beta = 0	0.2	0.5

References

[1] Yatong Bai et al. MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers. 2024. arXiv: 2402.02263 [cs.LG]. url: https://arxiv.org/abs/2402.02263.

[2] Pytorch CIFAR models.url: https://github.com/chenyaofo/pytorch-cifar-models/tree/master (Date de consultation :10/12/2024)

[3]Pytorch-Adversarial-Training-CIFAR.url:https://github.com/ndb796/Pytorch-Adversarial-Training-CIFAR/tree/master.(Date de consultation : 10/12/2024)