# Machine learning for turbulence modeling: A (turbulence traditionalist's) perspective

#### Sharath S. Girimaji

Collaborators: Salar Taghizadeh and Freddie Witherden

**Texas A&M University** 

NSF WORKSHOP ON EXUBERANCE OF MACHINE LEARNING IN TRANSPORT PHENOMENA FEBRUARY 10 — 11, 2020, DALLAS, TX

#### Context of Talk

- Data-Driven Modeling (DDM) / Machine Learning (ML) has been very successful in many areas of science and engineering
- Can DDM/ML help to `solve' the age-old problem of turbulence

#### The purpose of this talk:

- 1. Ask questions of ML as an agnostic
- 2. Seek answers as an optimistic pragmatist

### Some preliminary comments

Three-part talk

 Opinions about the amenability of turbulence phenomenon to Data-Driven Modeling (DDM) or Machine Learning (ML)

2. ML for different level of turbulence closures

3. Rudimentary ML computations intended for illustrations of concepts

### 'Rise and Fall of turbulence theories'

Many 'promising' approaches have been applied to turbulence

- 1. Renormalization Group (Ken Wilson, 1980s Nobel Prize)
  - Extremely successful for Quantum Electro Dynamics
- 2. Lattice Gas Automata (Steve Wolfram, 2000s)
  - Successful in many areas of biological process modeling
- 3. Many mathematical tools: POD, wavelets, fractals etc.

- Each approach has added important value to turbulence research, but not solved the problem
- These investigations have only added to the mystique of turbulence



### Soul Searching in Field of Turbulence

- 1. Stanford, 1968: Turbulence Olympics
  - Review of various turbulence models
  - DuPont Donaldson laid the foundation for formal closure modeling
- 2. Cornell, 1990: Whither Turbulence? Turbulence at Cross-Roads
  - `Traditional modeling' vs. DNS vs. Coherent Structures vs. Lattice Gas
  - Lumley's `Tortoise vs. Hare' analogy for `Traditional vs. Trendy' methods
  - Role of funding agencies in promoting one approach vs other

#### Where do we stand now? (Lumley and Yaglom, 2001)

- We believe that even after 100 years, turbulence studies are still in their infancy
- We do have a crude, practical, working understanding of many turbulence phenomena but certainly nothing approaching a comprehensive theory, and nothing that will provide predictions of an accuracy demanded by designers.





### Turbulence Phenomena - Challenges

- Non-linearity and large number of degrees of freedom
- More importantly, non-locality with long-range interactions
  - Elliptic nature of pressure
- Spatio-temporal chaos
- 'Complex' phenomenon
  - Emergent behavior
  - Some self-organization
- Intermittency





### Can ML help

#### **Physics-based modeling**

- Longstanding approach leading to important theories
- Approximate representation of a `larger truth'
- Imprecise but holistic

#### **Machine Learning (ML)**

- Recent success in many areas of science and engineering
- Precise quantification of observed data
- Accurate but inherently incomplete 

  not easily generalizable

#### Can the weaknesses of physics-based models be overcome with ML

- Will we get an all-encompassing theory?
- Will designers get the accurate predictions for practical flows?





### Simple Application



### Flows with spatially developing structures

#### Breakdown from one state of turbulence to another



- Resolve what we cannot model
- Model what physics allows
- - Have the wisdom to know the difference

### Top turbulence modeling challenges

- Non-linear/anisotropic viscous constitutive relation
- Spatio-temporal non-locality of stress dependence on strain field
  - Rapid-distortion → Viscous vs. visco-elastic behavior
  - Non-equilibrium turbulence
- Multiple production mechanisms 3.
  - Shear; stratification; magnetic field, etc
- Multi-physics effects including flow-chemistry interactions 4.
- Change in equation of state
  - Comp. effects; flow-therm interactions, thermodynamic non-egbm
  - Physics different with increasing Ma as thermodynamic interactions change
- Spatially-evolving flows with multiple equilibrium states 6.
- Large-scale unsteadiness and coherent structures

The onus on the turbulence model can be reduced by resolving more scales



#### **Turbulence Tool-Box**





#### Modeling methods: Attributes and Limitations

#### 1. 2-equation RANS model

- Needs non-linear constitutive relation for many flows
- Cannot capture non-eqbm effects and instabilities/coherent structures

#### 2. 7-equation RSCM

- Need models for pressure-strain correlation
- Can capture simple non-eqbm effects but not instabilities/structures

#### Scale Resolving simulations & Large-eddy simulations

- Need subgrid models; lower degree of modeling difficulty than RANS models
- Computationally very expensive but can potentially capture relevant physics

#### **Stochastic differential equations**

- Based on probability distribution function of flow variables
- Least developed (and least understood) of all turbulence modeling methods
- Has potential to overcome many shortcomings of moment-based methods



### How can ML help RANS and LES?

- Improve constitutive relation & transport equation coefficients
- Still may not capture effects of non-eqbm, instabilities, structures
- Generalization to different class of flows still a major challenge

#### Do current methods make effective use of data?

- Velocity field is Gaussian & does not reflect turbulence complexity
- Averaging the data further eliminates key physics
- Physics incumbent in pressure and velocity gradient pdf ignored
- Overall, the richness of information available in data is under-utilized

#### ML for SRS and LES

- Lower degree of closure difficulty: complexity is eliminated due to flow resolution
- Much more data needed as all models must be conditioned on the state of resolved flow field



### How can ML help 7-equation RSCM?

$$\frac{D\langle u_i u_j \rangle}{Dt} = \frac{\partial \langle u_i u_j \rangle}{\partial t} + \langle U_k \rangle \frac{\partial \langle u_i u_j \rangle}{\partial x_k} = P_{ij} - \epsilon_{ij} + \Pi_{ij} + T_{ij}$$

Production: 
$$P_{ij} = -\langle u_i u_k \rangle \frac{\partial \langle U_j \rangle}{\partial x_k} - -\langle u_j u_k \rangle \frac{\partial \langle U_i \rangle}{\partial x_k}$$

Disipation: 
$$\epsilon_{ij} = 2\nu \left\langle \frac{\partial u_i}{\partial x_k} \frac{\partial u_j}{\partial x_k} \right\rangle$$

$$PSC: \Pi_{ij} = 2\nu \langle pS_{ij} \rangle$$

$$PSC: \Pi_{ij} = 2\nu \langle pS_{ij} \rangle \qquad Transport: T_{ij} = \frac{\partial}{\partial x_l} \left[ -\langle pu_i \rangle \delta_{jl} - \langle pu_j \rangle \delta_{il} + \nu \frac{\partial \langle u_i u_j \rangle}{\partial x_l} - \langle u_i u_j u_l \rangle \right]$$

- ML-enhanced Pressure-strain correlation models can be developed
  - PSC is the game-changing effect in RSCM
  - Realizability, RDT consistency can be applied with greater fidelity
  - Greater potential of generalizability than RANS
- Turbulent transport model can also be developed
  - Strong anisotropy effects and secondary flows can be better captures
- Overall, much better utilization of information incumbent in data
  - Higher order and mixed moments of data used

### How can ML help Stochastic Closures?

#### Velocity-gradient evolution eqn

$$\frac{d}{dT} \left( \frac{\partial u_i^+}{\partial x_i} \right) + \mathcal{N}_{ij} = \left[ \mathcal{P}_{ij} + \mathcal{V}_{ij} \right] (x^+, T)$$

 $N \rightarrow Non-linear; P \rightarrow pressure; V \rightarrow Viscous effects$ 

**Langevin Equation** 

$$dh_{ij} = \left[ -N_{ij} + M_{ij} \right] dt + D_{ijkl} dW_{kl}$$

**PDF Equation** 
$$\frac{df_m}{dt} = -\frac{\partial}{\partial h_{ij}} [f_m (M_{ij} - N_{ij})] + \frac{1}{2} \frac{\partial^2}{\partial h_{kl} \partial h_{pq}} [D_{ijkl} D_{ijpq} f_m]$$

- Mij and Dijkl require closure modeling
- The full pdf of data can be used in ML-enhanced modeling
- Best utilization of all information incumbent in hi-fidelity data
- Promising ML-based approach, but in preliminary stage

### Part 2: Current ML-enhanced RANS

- Physical consistency & generalizability of certain current approaches
- Different flow scenarios
  - When underlying RANS model is reasonable
  - When underlying RANS model is incorrect
    - Can ML help to yield reasonable results
- Open vs. Closed-loop training
- Computations from closed-loop training

### ML for 2-equation Model – Questions?

#### Can we standardize the training procedure?

- Which Neural Network Architectures? How many features?
- What is the right objective function?



### DDM/ML for RANS

#### **Constitutive coefficients: Algebraic Equations**

- Use of ML best developed for this piece of turbulence modeling
- Representation theory used for Feature Selection
- But in many instances, constitutive equation is not weakest link

#### Transport equations: Weakest links

- Can ML help modeling production and destruction of dissipation?
- How can ML help in turbulent transport modeling?
- Representation theory is not useful as these are scalar equations
- Objective functions may be integro-differential equations!



#### Internal consistency of traditional RANS

Constitutive Closure Coefficients (CCC):

$$\langle u_i u_j \rangle = -\tau_{ij} = 2k b_{ij} (s_{ij}, w_{ij}) + \frac{2}{3} k \delta_{ij}, \qquad \boldsymbol{b} (\boldsymbol{s}, \boldsymbol{w}) = \sum_{\lambda=1}^{10} G_{\lambda} (I_{1:5}) \boldsymbol{T}^{\lambda}$$

Transport eqn. Closure Coefficients (TCC):

$$\rho \frac{\partial k}{\partial t} + \rho \langle U_j \rangle \frac{\partial k}{\partial x_j} = \tau_{ij} \frac{\partial \langle U_i \rangle}{\partial x_j} - \beta^* \rho k \omega + \frac{\partial}{\partial x_j} \left[ (\mu + \sigma^* \mu_t) \frac{\partial k}{\partial x_j} \right]$$

$$\rho \frac{\partial \omega}{\partial t} + \rho \langle U_j \rangle \frac{\partial \omega}{\partial x_j} = \alpha \frac{\omega}{k} \tau_{ij} \frac{\partial \langle U_i \rangle}{\partial x_j} - \beta \rho \omega^2 + \frac{\partial}{\partial x_j} \left[ (\mu + \sigma \mu_t) \frac{\partial \omega}{\partial x_j} \right]$$

These coefficients need calibration,

CCC:  $G_1...G_{10}$ 

TCC:  $\alpha$ ,  $\beta$ ,  $\beta^*$ ,  $\sigma$ ,  $\sigma^*$ 

- Turbulence physics requires CC to be **self-consistent** and satisfy: [1,2]
  - Fixed point behavior, realizability, rapid distortion limit
- In traditional TM, self-consistency is guaranteed using dynamical system analysis



#### How do we use ML for TM?



- A priori CCC and A posteriori CCC\* are not self-consistent
- Further TCC and CCC\* are not compatible
- Inconsistency and incompatibility will affect generalization to unseen flow
- Dynamical system analysis for ML-based features is not developed.
- How can we improve internal consistency?



### Closed loop training



Model

### Part 3: Closed-loop training

#### **Objectives:**

- demonstrate internal inconsistency in current approaches
- Demonstrate closed-loop training better when `original' model is wrong

#### Proof of concept in simplest flow possible

- Channel flow in which current models already perform well
- To simulate unseen flow conditions, change model coefficients
- Examine if ML leads to recovery of original coefficients

#### Test cases

Study 1 - Standard k-ω

| $G_1$ | $G_2$ | $G_3$ | $G_4$ | α    | β     | β*   | σ   | $\sigma^*$ |  |
|-------|-------|-------|-------|------|-------|------|-----|------------|--|
| -0.09 | 0     | 0     | 0     | 0.52 | 0.072 | 0.09 | 0.5 | 0.5        |  |

Study 2 - Modified CCC model

| <br>$G_1$ | $G_2$ | $G_3$ | $G_4$ | α    | β     | $\beta*$  | σ           | $\sigma^*$               | _          |
|-----------|-------|-------|-------|------|-------|-----------|-------------|--------------------------|------------|
| -0.99     | 0     | 0     | 0     | 0.52 | 0.072 | 0.09      | 9.5         | 9.5                      |            |
| -0.045    |       |       |       |      |       | /Equilibr | 0.23        | <b>0.23</b> dary layer a | nalvcic)   |
|           |       |       |       |      |       | (Equilibr | iuiii bouii | uary layer a             | ilialysis) |

Study 3 - Modified TCC model

| $G_1$ | $G_2$ | $G_3$ | $G_4$ | $\alpha$ | β     | $\beta^*$ | σ     | $\sigma_*$ |  |
|-------|-------|-------|-------|----------|-------|-----------|-------|------------|--|
| -0.09 | 0     | 0     | 0     | 0.52     | 0.072 | 0.09      | 0.5   | 9.5        |  |
|       |       |       |       |          | 0.054 |           | 0.143 | 0.143      |  |

- Preliminary computation for channel flow  $Re_{\tau}=1000$
- Reference DNS data obtained form, Lee & Moser.



### Desired behavior & Label Selection

#### Desired behavior in channel flow

- 1. Accurate log-law velocity profile.
- 2. Maintain equality  $\langle u_1 u_1 \rangle + \langle u_2 u_2 \rangle + \langle u_3 u_3 \rangle = 2k$ ,  $\langle u_\alpha u_\alpha \rangle \ge 0$ .
- 3. Accurate anisotropy  $(b_{ij})$

#### Label selection

- If select  $\langle u_i u_i \rangle^{[1]}$  1 is satisfied, 2-3 are violated
- If select  $b_{ii}$  [2] 2&3 are satisfied, 1 is violated
- If select  $\langle u_1 u_2 \rangle$ ,  $b_{11}$ ,  $b_{22}$ ,  $b_{33}$ 1-3 are satisfied

<sup>&</sup>lt;sup>1</sup>Geneva, N. and Zabaras, N., 2019. Journal of Computational Physics.

<sup>&</sup>lt;sup>2</sup>Ling, J., Kurzawski, A. and Templeton, J., 2016. *Journal of Fluid Mechanics*.

### Implementation

- TensorFlow is linked to OpenFOAM CFD code via C API
- Labels are true accurate quantities that we get form DNS,  $b_{ij}$ ,  $\langle u_i u_j \rangle$
- Features are the input parameters extracted from RANS simulations.
- Input features used for the 2D channel test case:  $I_i = \left\{tr(s^2), \frac{k}{\nu\omega}\right\}$
- Loss function definition:

$$MSE = \frac{1}{4N_{data}} \sum_{m=1}^{N_{data}} \left[ \sum_{\alpha=1}^{3} \left( b_{\alpha\alpha}^{Predicted} - b_{\alpha\alpha}^{DNS} \right)^2 + \frac{1}{u_{\tau}^4} \left( \langle u_1 u_2 \rangle^{Predicted} - \langle u_1 u_2 \rangle^{DNS} \right)^2 \right]$$

Optimized hyperparameters for neural network:

| # | layers | # nodes per layer | Activation function | Optimization Algorithm |
|---|--------|-------------------|---------------------|------------------------|
|   | 3      | 3                 | Elu                 | Adam                   |







AEROS ENGINEI

**1&M** 



AEROSI ENGINEE

A&M





AEROS ENGINE

\&M







AEROSP/ ENGINEER

&M

# Study-2-CV



# Study-2-CV



# Study-2-CV



### Barycentric maps



Red: DNS, Black: RANS, Brown: Open loop, Blue: Closed loop Distance from the wall is shown by size increase of symbols in plots.



### **Conclusions**

- DDM/ML cannot make up all deficiencies in modeling
  - NN recovers from errors in G1, G2 and G3
  - NN cannot recover from errors in other coefficients
- Training practices and type of Neural Network have to standardized
- Physics-based modeling + DDM/ML can lead to improved predictive modeling
- Much more physics-based concepts are needed to correctly implement DDM/ML



### Outcome of test study

- DDM/ML is reasonable for statistics included in objective function (OF)
- Statistics not included in objective function (OF) are worse than good `physics-based' model
- Challenge is to construct objective function (OF) and select Features that simultaneously optimizes:
  - Mean flow, Reynolds stress, mean scalar, scalar variance, heat release, etc?
- Need physics-based analysis for construction objective functions and feature
  - Need for physics merely takes a different form



### **Summarizing Opinions**

#### ML for RANS

- Can lead to improvements if be done right
- Generalizability to flows with coherent structure????
- Does not fully utilize the insight in data

#### ML for RSCM

- More generalizable as it uses more physics incumbent in data
- Not popular yet

#### Stochastic Models

- Best suited for ML and highly generalizable in principle
- Need to develop new turbulence physics vocabulary
- Perfectly suite for rarefied constitutive equations based on Chapman-Enskog analysis



### **Parting Thoughts**

- DDM/ML → a big hammer looking for a nail
- Turbulence modeling → Part Nail; Part Screw



 Both DDM/ML (Hammer) and Physics-Based Methods (Screw-Driver) needed

# Thank you

ĀM

TEXAS A&M

## Traditional turbulence modeling



#### **Turbulence: A complex dynamical system**



#### **Mathematical Approaches**

- Simple → Most present
- → Probabilistic and dynamical systems
- Complicated system DDM/ML appears to be
- Complex or `emergent phenomena' -> Is DDM/ML adequate