CSCI 335 Software Design and Analysis III Lecture 8a: Trees

Professor Anita Raja 09-22-22

1

Trees

- Why?
- What: Binary Search: Insert
- This chapter
 - How trees are used to implement file systems of several popular OS?
 - How they are used to evaluate arithmetic expressions
 - How to use trees to support O(logN) search?
 - Basis for Set and map classes.

Agenda

- Implementation of a List
 - Const_iterator and iterator
- Trees:
 - Traversal
 - Binary Search: Insert, Remove, Big 5
 - Ave Case Analysis

Trees

- Recursive definitions
 - collection of nodes
 - collection either empty or consists of a root node r and zero or more non-empty subtrees, the roots of which are connected by a directed edge from r.
- Terms:
 - Root, child, parent, leaves, siblings, path from n_1 to n_k , length of path, parent, grandparent, grandchild, ancestor, and descendents.

Trees

5

- For any node n_i
 - depth is length of unique path from root of n_{i.}
 - depth of root is zero.
 - height is length of longest path from n_i to leaf.
 - all leaves are at height zero.
- Height of a tree == Height of root.
- Depth of a tree == depth of deepest leaf.

Trees (general)

Terms

Term	Definition
Root	Distinguished node which is the topmost or start of tree
Child	The root of each subtree is said to be child of r
Parent	r is the parent of each subtree root.
Leaves	Nodes with no children
Siblings	Nodes with the same parents
Path from node n_1 to n_k	Sequence of nodes n_1, n_2, \dots, n_k such that n_i is parent of n_{i+1} for $1 \leq i < k$
Length of a path	The number of edges on the path
Grandparent	A grandparent of a node is the parent of its parent.
Grandchild	A grandchild of a node is the child of its child.
Ancestor	parent, grandparent, grand-grandparent, etc.
Descendants	child, grandchild, grand-grandchild, etc.

Trees: Depth and Height

• For any node n-:

9

11

- depth is length of the unique path from the root to n-.
- depth of root is zero.
- height is length of longest path from n- to a leaf. All leaves are at height zero.
- The height of a tree is height of root.
- The depth of the tree is depth of deepest leaf.

Implementation

• What if the number of children per parent is not known?

Preorder Tree Traversal Code ch2.r cop3530 fa1105 spr06 syl.r sum06 void FileSystem::listAll(int depth = 0) const syl.r printName(depth); // Print the name of the object alex junk if(isDirectory()) for each file c in this directory (for each child) c.listAll(depth + 1); course cop3212 fa1105 prog1.r prog2.r fa1106 grades

14

```
Calculate size of directory

ch1.r 3
ch2.r 2
ch3.r 4
book 10

fal105 2
syl.r 5
spr06 6
syl.r 2
swm66 3
cop3830 12

course 13
Junk 6
int totalSize = sizeOffhisFile(); mark 30
Junk 8
alex 9
if(isDirectory())
for each file c in this directory (for each child)
prog2.r 1
fal105 2
syl.r 2
swm66 3
comp830 12
course 13
Junk 8
alex 9
if(isDirectory())
for each file c in this directory (for each child)
prog2.r 1
fal105 9
prog2.r 2
prog1.r 7
grades 9

course 30
bill 2
course 30
bill 32
/usr 72
```

Binary Trees

• Tree in which no node can have more than 2 children

17

19

The Search Tree ADT: Binary Search Trees Which one is a BST?

Expression Trees

- Leaves are operands and other nodes are operators
- General strategy Inorder: (a+b*c)+((d*e + f)*g)
- Algorithm: from postfix expression to expression tree

• Postorder: Use stack to create the tree

Example a b c * + d e * f + g * +

18

20

Binary search trees

- Implementation header (fig 4.16)
- Public methods for insert, remove, contains (fig 4.17)
- Contains method (fig 4.18)
- Insertion routine (fig 4.23)
- BST using a function object for less (fig 4.19)
- Deletion routine (fig 4.26)

```
Binary Node
(4.16)
              // Binary Search Tree implementation
              // Usage: BinarySearchTree<int> a_tree;
                         a_tree.Insert(10);
               template <typename Comparable>
               class BinarySearchTree {
               public: // ... Big five.
               private:
                 struct BinaryNode {
                      Comparable element_;
                      BinaryNode *left;
                      BinaryNode *right_;
              BinaryNode(const Comparable &the_element, BinaryNode *lt,
BinaryNode *rt):
                        element_{the_element}, left_{lt}, right_{rt} { }
              BinaryNode(Comparable &&the_element, BinaryNode *lt,
BinaryNode *rt):
                        element_{std::move(the_element)}, left_{lt}, right_{rt} { }
                  };
                  BinaryNode *root_;
                  // ...
              };
```

```
Move Insert (4.23)
// Internal method to insert into a subtree.
// @x is the item to insert by moving
// @t is the pointer to the node that roots the subtree.
// Set the new root of the subtree
// x is inserted in the subtree, and t is updated.
// No insertion if x is already in the tree.
void Insert(const Comparable &&x, BinaryNode * &t) {
  if (t == nullptr)
     t = new BinaryNode{std::move(x), nullptr, nullptr};
  else if (x < t->element_)
     Insert(std::move(x), t->left_);
   else if (t->element_ < x)</pre>
     Insert(std::move(x), t->right_);
  else
             ; // Duplicate; do nothing
}
```

Regular Insert

22

23

```
Remove (4.26)
// Internal method to remove from a subtree.
// @x is the item to remove.
// @t is the pointer to the node that roots the subtree.
void Remove(const Comparable &x, BinaryNode * &t) {
      if (t == nullptr)
          return; // Item not found; do nothing
      if (x < t->element) {
         Remove(x, t->left);
      } else if (t->element < x) {
         Remove(x, t->right);
      } else if (t->left != nullptr && t->right != nullptr) { // 2 children.
        t->element = FindMin(t->right_)->element_;
         Remove(t->element, t->right);
     } else {// One or no children.
         BinaryNode *old_node = t;
         t = (t->left != nullptr) ? t->left : t->right;
         delete old_node;
} // End remove
```

FindMin // @t: a given node of the tree. // Find the node of minimum value under t. // @return the node of minimum value. // if t is nullptr returns nullptr. // Recursive implementation. BinaryNode *FindMin(BinaryNode *t) const { return t == nullptr ? nullptr: (t->left == nullptr ? t: FindMin(t->left)); } // End remove

26

25

Examples of Deletion 6 ← t(1): START Remove 4 Remove 2

Big Five
BinarySearchTree() : root{nullptr} { } // 0-parameter
constructor.

// Copy Constructor.
BinarySearchTree(const BinarySearchTree & rhs) :
root{nullptr} {
 root = clone(rhs.root);
}

// Move Constructor.
BinarySearchTree(BinarySearchTree &&rhs) : root{rhs.root_} {
 rhs.root = nullptr;
}

~BinarySearchTree() { // Destructor.
 makeEmpty();
}

Big Five

```
// Deallocates memory of subtree with root t.
void makeEmpty(BinaryNode *&t) { // -> TRAVERSAL ??
    if (t == nullptr) return;
    MakeEmpty(t->left);
    MakeEmpty(t->right);
    delete t;
    t = nullptr;
}

// Clones the subtree with root t, and returns the root of the
// cloned tree.
BinaryNode *clone(BinaryNode *t) const {
    return t == nullptr ? nullptr:
        BinaryNode{t->element, Clone(t->left), Clone(t->right) };
}
```

41

Lazy Deletion

• when an element is deleted, it is left in the tree and merely marked as being deleted.

43

Big Five (cont..)

```
// Copy Assignment.
BinarySearchTree & operator=(const BinarySearchTree & rhs) {
    BinarySearchTree copy = rhs;
    std::swap(*this, copy);
    return *this;
}

// Move Assignment.
BinarySearchTree & operator=(BinarySearchTree &&rhs) {
    std::swap(root, rhs.root);
    return *this;
}
```

42

Lazy Deletion

- Small Pros
 - Easy to handle if a deleted item is reinserted, do not need to allocate a new node.
 - Do not need to handle finding a replacement node.
- Cor
 - The depth of the tree will increase. However this increase is usually a small amount relative to the size of the tree.

44

Average-Case Analysis

- All operations except makeEmpty should take $O(\log N)$
- Prove that average depth over all nodes in a tree is O(logN) on the assumption that all insertion sequences are equally likely.
- Internal path length
 - Sum of the depths of all nodes in the tree
- Calculate average internal path length of BST where average is taken over all possible insertion sequences into BSTs.

45

45

Average-Case Analysis

- $\bullet D(N)$: Internal Path Length of tree of N nodes
 - $\cdot D(1) = 0$
 - D(N) = D(i) + D(N-i-1) + (N-1)
 - Why ?
- In a BST, sizes of the left and right subtree depend on the first element inserted.

46

47

Internal path length (recursive) D(N) = D(left) + D(right) + N - 1N =# of nodes (Ex. 7) 6

Internal path length (recursive) D(N) = D(left) + D(right) + N - 1N =# of nodes (Ex. 7) D = 0 + 1 + 3 = 4D = 14 D = 0

49

50

Internal path length (recursive)

Average-Case Analysis • In BST all subtree sizes are equally likely so,

- Solving that recurrence we can show that $D(N) = O(N \log N)$
- Thus expected depth of any node is $O(\log N)$
- Example: 500 random nodes, expected depth 9.98

• However not all inputs are equally likely!

51

Average case analysis Deletions can destroy balance even in random sequences After $\Theta(N^2)$ insert/remove pairs, expected depth is $\Theta(\sqrt{N})$

Average case analysis

- Deletion algorithm favors making left subtrees deeper than right subtrees, because we always replace a deleted node from the right subtree.
 - Can use a different replacement strategy with less bias but there is no proof this would be better.
- What is the worst-case input for a BST?

Balanced Trees

55

- Try to balance after tree operations and make operations logarithmic
 - AVL tree (balance is always preserved)
 - Splay trees (self-adjusts towards balance)

Announcements

- Next class: Continue with AVL Splay Trees
- No class Monday 9/26 Hunter closed
- HW2 released by Friday night
 - go over it in entirety and understand requirements end-to-end ; take notes to plan solutions
- Gradescope will be opened by next Tuesday.

58