,	Samuel Alaba Danamana dan Danatanan			
	ompetitive Programming-Beginner			
Topics	Subtopics			
Time/Memory Complexity	Importance of calculating time/memory complexity and how to do it			
Basic STL (C++)	1. Vector (insert , erase , iteration) 2. Queue			
	3. Stack			
	4. Deque			
	1. Map (C++)			
	2. Priority Queue (C++)			
	3. Set (C++)			
Data Structure	4. Linked list using array			
Data Ottaolaro	Bitwise operation (AND , OR , XOR and more)			
	Manipulation of bits			
Bitwise Operation	Some special use			
	Calculating GCD efficiently (Euclidean algorithm)			
	2. Factorization (O(√n) , O(n*ln(n)))			
	Sieve (finding prime numbers)			
	4. Bitwise sieve			
	5. Prime factorization			
	Modular Arithmetic (addition , multiplication , calculating bigmod)			
	7. Fermat's little theorem and its use			
	8. Totient function			
	9. Inverse mod			
	10. Combinatorics (factorials , counting problem)			
Math	To: Combinatorics (lastorials , counting problem)			
Searching Technique	1.Linear Search			
ocarcining recininque	2.Binary Search			
	Bubble sort			
	2. Insertion sort			
	3. Counting sort			
	4. Selection sort			
	5. Quick sort			
Sorting Algorithm	6. Merge sort			
Corting Algorithm	Introduction to recursion			
Recursion	2. Backtracking			
Greedy and Ad-hoc	Introduction to greedy algorithm and ad-hoc problems			
Greedy and Ad-noc	What is graph theory?			
	How to store edges? (using vector and array)			
	How to traverse a graph? (DFS , BFS)			
	How to solve problem using graph theory			
	Connected Component (undirected graph)			
	6. Bicoloring problem			
	Shortest path problem (weighted and unweighted graph)			
Basic Graph Theory	S. Longest path problem (tree)			
Basic Graph Theory	What is dynamic programming?			
	State of dp and calculating time and memory complexity			
	3. nCr			
	4. Coin change 5. Knapsack			
	Knapsack Subset sum problem			
	7. Longest Increasing subsequence (n^2)			
Dynamic Programming	8. Bitmask dp			
uch of Advance Data Structu	r 1. sliding range minimum query (using deque)			
ucii di Auvance Data Structu	Silicing range minimum query (using deque) Sparse table (where to apply: min , max, gcd and more)			
	2. sparse table (where to apply, milit, max, get and more)			
Cor	npetitive Programming - Intermediate			
Topic	Sub-Topic			
	1. Blnary search			
Searching	2. Ternary search			
-	1. Set			
	2. Map			
	3. Priority Queue			
	4. List			
	5. Ordered Set			
	6. Deque			
STL	7. Bitset			
UIL	Binary indexed tree			
O12	Binary indexed tree Segment tree			

_					
		Competitive Programming - Advanced			
1		Topics	Subtopics		
T		·	1. 1D,2D,3D Cumulative Sum		
			2. 1D,2D,3D Difference Array		
4			3. Array Compression		
4			4. Bitwise Operations, Iterating over all subset efficiently		
4			5. Properties of exclusive or		
\dashv			6. Contribution Technique 7. Exchange Argument		
\dashv			8. Union of two segment, rect		
┪		AdHoc	B. Bracket Sequence		
┪			1. Binary Search		
T		Search Techniques	2. Ternary Search (when it doesn't work)		
1			Vector (sort, lower_bound, upper_bound, erasing duplicates, number of occurrence of a value)		
			2. Pair		
			3. Set (find, erase, lower_bound, upper_bound)		
			4. Map (iterating over map)		
4			5. Priority queue		
4			6. Deque , Stack, Queue -> finding the immediate small/large element, is a bracket sequence balanced		
-			7. Ordered Set		
4		STL	8. Iterating over all possible permutation / combination 9. Magic of Bitset (How does bitset really work)		
\dashv		JIL	Nagic or Bitset (How does bitset really work) Depth first search (Start time, End time, back edge, forward edge, checking whether a node is in another's subtree or not, Euler Tour of a tree)		
+			Breadth first search (shortest path length, retrieving shortest path, shortest path tree, cross edge, 0-1 bfs)		
+			3. Articulation Point, bridge using dfs		
+			4. Dijkstra (shortest path dag)		
1			5. Floyd-Warshall (finding connectivity using bitset)		
٦			6. Kruskal's Algorithm (Properties of minimum spanning tree)		
Ī			7. Traversing a dense graph (with bitset/set)		
		Graph	8. Euler Tour of a graph		
			1. Hashing (Polynomial Hash, Hash of a set of integers)		
_			2. Trie (Can you implement a set using trie ?)		
4			3. String matching with bitset		
4			4. KMP		
4		String	5. Aho corasick		
+			Basic Segment tree Merge Sort Tree		
\dashv			3. Segment tree with Lazy Propagation		
\forall			4. Square Root Decomposition		
┪			5. Sparse Table (min, max, and, or, gcd, lca)		
1			6. Disjoint Set union (Small to Large Technique)		
T			7. Flattening of a tree and maintaining info		
T		Data Structure	8. Divide and Conquer Approach for trees (centroid decomposition)		
			1. Divisibility		
			2. Factorization (naive, O(√n))		
			3. Sieve, factorization		
		Number Theory	4. Bezout's Identity		
4			1. Modular Arithmetic		
4			2. Factorials and Modular Inverse		
4			3. Stars and Bars Theorem and variation		
4		Combinatorics	Sum in the same row/column of pascal triangle Basic Inclusion/Exclusion		
+		Combilatorics	Basic Inclusion/Exclusion Knapsack, Different Variations (Deque, Subset Division, Bitset)		
+			2. Interval Dp		
+			3. Bitmask Dp		
7			4. Dp with Some Greedy Observations		
7		Dynamic Programming	5. Optimizing memory for Dp		
J			Basic Game Theory (winning, losing state and their strategy)		
7			2. Nim (variations of Nim)		
\Box		Game Theory	3. Grundy		
1					
7					
7					
4					
4					
4					

	3. Sparse table		
	RMQ on static array		
	5. Disjoint set union		
Data Structure	Sqrt decomposition		
	1. Sieve		
	2. Factorization		
	Counting divisors		
	4. Bigmod		
	5. Modular Inverse		
	6. Totient function		
Math	7. Combinatorics		
	1. BFS, DFS		
	2. Articulation nodes		
	3. Bridges		
	4. Dijkstra		
	5. Topological sort		
	6. Floyd Warshall		
	7. MST		
	8. SCC		
Graph	9. 2 Thu		
	1. nCr		
	2. Coin change		
	3. Knapsack		
Dynamic Programming	4. Bitmask dp		
	1. KMP		
	2. Z algo		
	3. Hashing		
String:	4. Trie		
	1. Impartial games		
	2. Nim		
Games	3. Grundy		
	1. Dinic		
Flow	2. Bipartite Matching		