Universidad de Granada

Álgebra I

Doble Grado de Informática y Matemáticas ${\rm Curso}~2016/17$

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Anillo conmutativo	2
2.	Homomorfismos	5
3.	Dominio de Integridad	10
4.	Dominios euclídeos	14
5 .	Máximo Común divisor. Dominios de Ideales principales. Ecuacione	
	Diofánticas en D.I.P	18
	5.1. Ecuaciones diofánticas en D.I.P	21
6.	Mínimo común múltiplo. Ecuaciones en congruencias.	22
	6.1. Ecuaciones en Congruencias	24
	6.2. Ecuaciones en Congruencias	25
	6.3. Sistemas de Ecuaciones en Congruencias	
7.	Anillos de Congruencias. Conjuntos Cocientes	27

1. Anillo conmutativo

Definición (Anillo conmutativo). Un conjunto A es un anillo conmutativo si en él hay definidas dos operaciones; una aplicación de adición y una aplicación de multiplicación, tales que cumplen las siguientes propiedades:

- (i) Asociativa: a + (b+c) = (a+b) + c a(bc) = (ab)c
- (ii) Conmutativa: a + b = b + a ab = ba
- (iii) Existencia elemento neutro: a + 0 = a a * 1 = a
- (iv) Existencia del elemento opuesto para la suma: a + (-a) = 0
- (v) Distributiva del producto en la suma: a(b+c)=ab+ac

Definición (Grupo conmutativo). Denominamos un grupo conmutativo o abeliano a aquellos conjuntos que cumplen las propiedades asociativa, conmutativa y existencia de elemento neutro para la suma, y existencia de elemento opuesto.

Definición (monoide). Denominamos monoide a un conjunto con una operación binaria interna que cumple la propiedad asociativa y tiene un elemento neutro a izquierda y derecha. En el caso del producto, se denomina monoide multiplicativo.

Nota. Llamaremos anillo aquellos conjuntos que cumplan todas las propiedades excepto la propiedad conmutativa para la multiplicación.

Caracterización de \mathbb{Z}_n .

Llamaremos $R_n : \mathbb{N} \to \mathbb{Z}_n$ a la aplicación definida como:

$$R_n(a) = a - nq = a - nE(\frac{a}{n})$$

Para esta aplicación, definimos las siguientes propiedades:

- Si $0 \le a < n \Rightarrow R_n(a) = a$
- $\forall a, b \in \mathbb{N}$
 - $R_n(a+b) = R_n(R_n(a) + R_n(b))$
 - $R_n(ab) = R_n(R_n(a) * R_n(b))$

Una vez que tenemos definida una suma y producto con la aplicación R_n , definimos las suma y el producto de \mathbb{Z}_n .

Definición (Suma y producto en \mathbb{Z}_n). Se define la suma y el producto en \mathbb{Z}_n de la forma:

- $a \oplus b = R_n(a+b)$
- $\bullet \ a \otimes b = R_n(ab)$

Es fácil verificar que \mathbb{Z}_n es un anillo conmutativo con estas operaciones.

Definición (Unidad). Si A es un anillo conmutativo (a.c) $a \in A$ es una "unidad.º "invertible" si $\exists a^{-1}$ t.q. $aa^{-1} = 1$.

 $U(A) = \{a \in A : a \text{ es una unidad}\} = \text{conjunto de las unidades de A}.$

Definición (Cuerpo). Se dice que A es un **cuerpo** si siendo un anillo conmutativo, $U(A) = A - \{0\}$, es decir, $\exists a^{-1} \ \forall a \in A \ \text{con} \ a \neq 0$.

Proposición (Asociatividad generalizada). Sea A un anillo conmutativo, y $a_1, ..., a_n$ una lista de elementos de A. La propiedad de la **asociatividad generalizada** nos dice que: $\forall m$ tal que $1 \le m < n$ se verifican:

$$\sum_{i=1}^{n} a_i = (\sum_{i=1}^{m} a_i) + (\sum_{i=m+1}^{n} a_i)$$

$$\prod_{i=1}^{n} a_i = (\prod_{i=1}^{m} a_i)(\prod_{i=m+1}^{n} a_i)$$

Definición (Distributividad generalizada). Definimos también la distributividad generalizada en un anillo como:

$$(\sum_{i=1}^{n} a_i)(\sum_{j=1}^{m} b_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j$$
 $\forall a, b \in A$

Definición (Subanillo). Si A es un anillo conmutativo y B es un subconjunto de A. Se dice que B es un **subanillo** de A $(B \le A)$ si se verifican:

- $1, -1 \in B$
- B es cerrado para la suma y el producto.

Anillos de números cuadráticos

■ $\mathbb{Z}[\sqrt{n}]$. Definimos este conjunto de la siguiente forma:

$$\mathbb{Z}[\sqrt{n}] = \{a + b\sqrt{n} \in \mathbb{C} : a, b \in \mathbb{Z}\} \le \mathbb{C}$$

Podemos definir también $\mathbb{Q}[\sqrt{n}]$ de la misma forma:

$$\mathbb{Q}[\sqrt{n}] = \{a + b\sqrt{n} \in \mathbb{C} : a, b \in \mathbb{Q}\} \le \mathbb{C}$$

Se puede comprobar que $\mathbb{Z}[\sqrt{n}] \leq \mathbb{Q}[\sqrt{n}]$ y que $\mathbb{Q}[\sqrt{n}]$ es un cuerpo.

Definición (Conjugado). Si $\alpha = a + b\sqrt{n} \in \mathbb{Q}[\sqrt{n}]$ se define su conjugado como $\bar{\alpha} = a - b\sqrt{n}$. Este verifica que:

1.
$$\overline{(\alpha + \beta)} = \bar{\alpha} + \bar{\beta}$$

2.
$$\overline{\alpha\beta} = \bar{\alpha}\bar{\beta}$$

3.
$$\alpha = \bar{\alpha} \Leftrightarrow b = 0$$

Definición (Norma). Se define entonces la Norma $N(\alpha) = \alpha \bar{\alpha} = a^2 - nb^2 \in \mathbb{Q}$. Así:

1.
$$N(\alpha\beta) = N(\alpha) * N(\beta)$$

$$2. \ N(\alpha) = 0 \iff \alpha = 0$$

Proposición. $\alpha \in a + b\sqrt{n} \in \mathbb{Z}[\sqrt{n}]$ es invertible $\iff N(\alpha) \in \{-1, 1\}$

Anillos de series.

Definición. Si A es un anillo conmutativo y x es un símbolo que no denota ningún elemento de A. El anillo de series con coeficientes en A, denotado con A[[x]] esta definido como:

$$A[[x]] = \{a = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x^1 + \dots + a_n x^n\} \ a_i \in A$$

Y definimos la suma y el producto de la siguiente forma:

$$(a+b) = \sum_{i=0}^{n} (a_i + b_i)x^i$$

$$(ab) = \sum_{k=0}^{n} \sum_{i=0}^{k} a_i b_{k-i}$$

Se puede probar que con estas operaciones de suma y producto, A[[x]] es un anillo y A[x] es un subanillo de A[[x]]

2. Homomorfismos

Definición. Si A, B son anillos conmutativos, una aplicación $\varphi : A \to B$ es un homomorfismo si:

- 1. $\varphi(1) = 1$
- 2. $\varphi(a+b) = \varphi(a) + \varphi(b)$
- 3. $\varphi(ab) = \varphi(a)\varphi(b)$

Además, decimos que:

- 1. Es monomorfismo si es inyectivo.
- 2. Es epimorfismo si es sobreyectivo.
- 3. Es isomorfismo si es biyectivo.

Propiedades de los homomorfismos

- $\varphi(0) = 0$
- $\varphi(-a) = -\varphi(a)$
- $\varphi(\sum_{i=1}^{n} a_i) = \sum_{i=1}^{n} \varphi(a_i).$

$$\varphi(\prod_{i=1}^n a_i) = \prod_{i=1}^n \varphi(a_i)$$

- $\varphi(na) = n\varphi(a)$
- $\varphi(a^n) = \varphi(a)^n$

Ya sabemos que $Im(\varphi) = \{\varphi(x) : x \in A\} \leq B$ es un subanillo.

Proposición. Si φ es monomorfismo, entonces la aplicación restringida:

$$A \to Im(\varphi)$$

$$a \mapsto \varphi(a)$$

es un epimorfismo y por ello es un isomorfismo, podemos decir que $A \cong Im(\varphi)$.

Nota. Se puede probar que $R_n: \mathbb{Z} \to \mathbb{Z}_n$ es un homomorfismo, llamado Homomorfismo de reducción módulo n

Proposición (Homomorfismo de cambio de coeficientes)(1). Dado A cualquier anillo conmutativo, conocido A[x].

 $Si \varphi : A \rightarrow B$ es un homomorfismo de anillos conmutativos, entonces:

$$\exists \varphi : A[x] \to B[x] : \varphi\left(\sum_{i} a_{i} x^{i}\right) = \sum_{i} \varphi(a_{i}) x^{i}$$

Proposición (Sustición en un polinomio)(2). Si A es un anillo y $a \in A$ entonces: existe un homomorfismo $E_a : A[x] \to A$ tal que $E_a(\sum_i a_i x^i) = \sum_i a_i a^i$.

Proposición (3). Si $A \leq B$ es un subanillo $y b \in B$, la aplicación $E_b : A[x] \to B$ definida como $E_b(\sum_i a_i x^i) = \sum_i a_i b^i$ es un homomorfismo

Proposición (Engloba a las anteriores). $Si \varphi : A \to B$ es un homomorfismo y $b \in B$, la aplicación $\Phi : A[x] \to B$ definida como $\Phi(\sum_i a_i x^i) = \sum_i \varphi(a_i) b^i \in B$ es un homomorfismo

Demostración. Veamos primero cómo (4) engloba a las demás:

- (i) $4 \Rightarrow 3$. Se ve tomando como φ la inclusión en B
- (ii) $4 \Rightarrow 2$. Tomamos esta vez como φ la identidad
- (iii) $4 \Rightarrow 1$. Suponemos 4 válido. Probaremos que $\exists \varphi : A \to B[x]$ que lleva $a \to \varphi(a)$. Ahora, podemos ver que esa aplicación es como usar primero φ para ir de A a B y luego usar la inclusión de B en B[x]:

$$A \to B \to B[x]$$

$$a \to a \to \varphi(a)$$

De esta forma, tomamos $x \in B[x]$. Entonces:

$$A[x] \to B[x]$$
$$\sum_{i} a_{i} x^{i} \to \sum_{i} \varphi(a_{i}) x^{i}$$

Que es justamente el enunciado de la primera proposición.

Pasamos ahora a la demostración de la Proposición 4.

Sean
$$f = \sum a_i x^i$$
 y $g = \sum b_i x^i \in A[x]$. Entonces: $f + g = \sum c_i x^i$ con $c_i = a_i + b_i$

Si ahora aplicamos $\Phi(f+g) = \sum \varphi(c_i)b^i = \sum \varphi(a_i+b_i)b^i$.

Como φ es homomorfismo, eso es igual a: $\sum (\varphi(a_i) + \varphi(b_i))b^i$.

Usando que B es un anillo y por ello hay distributividad, eso es igual a: $\sum (\varphi(a_i)b^i + \varphi(b_i)b^i)$.

Por la asociatividad generalizada eso es igual a: $\sum \varphi(a_i)b^i + \sum \varphi(b_i)b^i = \Phi(f) + \Phi(g)$ Por lo que queda probado para la suma.

Ahora probaremos el producto:

$$fg = \sum c_i x^i \text{ con } c_n = \sum_{i+j=n} a_i b_j$$

Así:

$$\Phi(f*g) = \sum_{n} \varphi(c_n)b^n = \sum_{i+j=n} \varphi(\sum_{i+j=n} a_i b_j)b^n = \sum_{i+j=n} (\sum_{i+j=n} \varphi(a_i)\varphi(b_j))b^n$$

Desarrollamos por otro lado

$$\Phi(f) * \Phi(g) = (\sum_{i} \varphi(a_i)b^i)(\sum_{j} \varphi(b_j)b^j) = (1) \sum_{i,j} \varphi(a_i)b^i \varphi(b_j)b^j = (2) \sum_{i,j} \varphi(a_ib_j)b^{i+j} = (2) \sum_{i,j} \varphi(a_ib_j)b^i = (2) \sum_{i} \varphi(a_ib_i)b^i = ($$

$$= \sum_{n} \left(\sum_{i,j:i+j=n} \varphi(a_i b_j) b^n \right)$$

Donde en (1) hemos usado la distributividad general y en (2) hemos usado que estamos en un anillo conmutativo y que φ es un homomorfismo.

Hemos llegado a dos expresiones que son iguales, probando así el resultado.

Sabemos que cada polinomio f(x) constituye una función de evaluación $f(x) \in A[x]$

$$f(x): B \to B$$

$$b \to f(b)$$

Sin embargo, un polinomio es mucho más que la función de evaluación que él mismo define. Estudiaremos el caso $A[x_1,...,x_r]$

Definición (Polinomios de r variables con coeficientes en A). Sea A un anillo conmutativo. Consideramos $A[x_1,...x_r]$ inductivamente en r:

Si
$$r > 1$$
 entonces $A[x_1, ..., x_r] = A[x_1, ..., x_{r-1}][x_r]$

Demostración.

r = 1:

$$f(x_1) \in A[x_1]$$

$$\sum_{i>0} a_i x^i \quad a_i \in A \quad \exists K : a_{i1} = 0 \quad \forall i > K$$

r > 1

$$f(x_1, ..., x_r) = \sum_{i_1, ..., i_r} a_{i_1}, ..., a_{i_r} x_1^{i_1}, ..., x_r^{i_r} : \exists K : a_i, ..., a_r = 0 \iff i_s > K$$

Ahora, si vemos que:

$$f_{ir}(x_1,...,x_{r-1}) = \sum_{i1,...ir>0} a_{i1},...,a_{ir}x_1^{i1},...,x_r^{ir-1} \in A[x_1,...,x_{r-1}]$$

Entonces:

$$\sum_{ir\geq 0} f_{ir}(x_1, ..., x_{r-1}) x_r^{ir} = \sum_{ir\geq 0} (\sum_{i1, ..., ir>0} a_1, ..., a_r x_1^{i1}, ..., x_{r-1}^{ir-1}) x_r^{ir} =$$

$$= \sum_{i1, ..., ir} a_{i1}, ..., a_{ir} x_1^{i1}, ..., x_r^{ir}$$

Ahora, definimos $g(x_1,...,x_r)=\sum_{i1,...ir}b_{i1},...,b_{ir}x_1^{i1},...,x_r^{ir}$. Ahora, sumamos:

$$f(x_1, ..., x_r) + g(x_1, ..., x_r) = \sum_{i1, ..., ir} a_{i1}, ..., a_{ir} x_1^{i1}, ..., x_r^{ir} + \sum_{i1, ..., ir} b_{i1}, ..., b_{ir} x_1^{i1}, ..., x_r^{ir} = \sum_{i1, ..., ir} (a_i + bi) x^{i1+ij}$$

Ahora, podemos desarrollar de la misma forma el producto y ver que:

$$(ax_1^{i1},...,x_r^{ir})(bx_1^{j1},...,x_r^{jr}) = abx_i^{i+j}x_2^{i_2+j_2}...x_r^{i_r+j_r}$$

Por lo que queda probado nuestro resultado.

Definición. (A[x][y])

Definimos
$$f = \sum_i f_i y^i | f_i \in A[x] : f_i = \sum_j a_{ij} x^j$$

Luego, $f = \sum_i (\sum_j a_{ij} x^j) y^i = \sum_{i,j} a_{ij} x^i y^j$

Ahora, tomamos $g = \sum_{i,j} b_{ij} x^i y^j$ y sumamos:

$$f + g = \sum_{i,j} (a_{ij} + b_{ij})x^i y^j$$

Y , si A[x][y] es un anillo, vemos que la multiplicación se realiza:

$$(a_{ij}x^iy^j)(b_{mn}x^my^n) = a_{ij}b_{mn}x^{i+m}y^{j+n}$$

Además, como es un anillo conmutativo $\Rightarrow A[x][y] = A[y][x] = A[x, y]$

Definición.
$$A[x_1,...,x_n] = A[x_1,...,x_{n-1}][x_n]$$

Se puede probar que $A[x_1,...,x_n]=A[x_{\sigma(1)},...,x_{\sigma(n)}]$ siendo σ una permutación de $\{1,2,...,n\}$

Proposición. Si $\varphi: A \to B$ es un homomorfismo, $\forall (b_1, ..., b_n) \in B^n$ la aplicación:

$$\Phi: A[x_1, ... x_n] \to B \iff \Phi(\sum_{i1, ..., in} a_{i1} ... a_{in} x^{i1} ... x^{in}) = \sum_{i1, ..., in} a_{i1} ... a_{in} b^{i1} ... b^{in} \in B$$

es un homomorfismo de anillos conmutativos. Es conocido como evaluación de un polinomio en n variables.

Proposición. Si $\varphi: A \to B$ es un homomorfismo, $\forall b \in B \exists !$ homomorfismo definido como:

$$\Phi: A[x] \to B: \begin{cases} \Phi(a) = \varphi(a) \ \forall a \in A \\ \Phi(x) = b \end{cases}$$
$$\Phi(\sum a_i x^i) = \sum \Phi(a_i x^i) = \sum \Phi(a_i) \Phi(x)^i = \sum \varphi(a_i) b^i$$

Además, ya se probó que esto es un homomorfismo de anillos conmutativos.

Corolario 1. $A \leq B$ subanillo, $\forall b \in B \exists !$ homomorfismo

$$E_b: A[x] \to B: \begin{cases} E_a(a) = a & \forall a \in A \\ E_b(x) = b \end{cases}$$

Nota. Si $f(x) \in A[x]$ denota un polinomio de A[x], notaremos: $E_b(f(x)) = f(b)$. De la misma forma, si $f(x) = \sum a_i x^i \Rightarrow E_b(f(x)) = \sum a_i b^i$

Proposición (Evaluación en r-variables). $Si \varphi : A \longrightarrow B$ es un homomorfismo de anillos conmutativos, $y b_1, \dots, b_r \in B$ una lista ordenada. Entonces

$$\exists ! \ \phi : A[x_1, \cdots, x_r] \longrightarrow B : \begin{cases} \phi(a) = \varphi(a) & \forall a \in A \\ \phi(x_1) = b_1 \\ \vdots \\ \phi(x_r) = b_r \end{cases}$$

Demostración. Si r=1, ya está probado. Para r>1:

$$\exists \ \psi : A[x_1, \cdots, x_{r-1}] \longrightarrow B : \begin{cases} \psi(a) = \psi(a) \\ \psi(x_i) = b_i \end{cases} \forall i = 1, \cdots, r-1$$

$$\exists \phi : A[x_1, \dots, x_r] \longrightarrow B \begin{cases} \phi(a) = \psi(a) = \varphi(a) \\ \phi(x_i) = \psi(x_i) = b_i \quad \forall i = 1, \dots, r-1 \\ \phi(x_r) = b_r \end{cases}$$

¿Es único?

$$\phi(\sum_{i_1,\dots,i_r} a_{1i} \cdots a_{i_r} x_1^{i_1} \cdots x_r^{i_r}) = \sum_{i_1,\dots,i_r} \varphi(a_{i_1} \cdots a_{i_r}) b_1^{i_1} \cdots b_r^{i_r}$$

Proposición (Evaluación en subanillos r-variables). $Si \ A \leq B, \forall b_1, \cdots, b_r \in B \ lista$ ordenada:

$$\exists ! \ E_{b_1,\dots,b_r} : A[x_1,\dots,x_r] \to B : \begin{cases} a \to a \\ x_i \to b_i \end{cases}$$

Se suele notar $f(x_1, \dots, x_r) \to f(b_1, \dots, b_r)$

3. Dominio de Integridad

Definición (Dominio de integridad). A (anillo conmutativo) es un dominio de integridad si verifica la propiedad:

$$a \neq 0 \ \land \ b \neq 0 \Rightarrow ab \neq 0 \iff si \ ab = 0 \begin{cases} a = 0 \\ b = 0 \end{cases}$$

Proposición (Propiedad de simplificación). A es un dominio de integridad \iff se verifica: $ax = ay \ con \ a \neq 0 \Rightarrow x = y$

Demostración.
$$\implies$$
 $a(x-y)=0$, por ser A dominio de integridad, $x-y=0 \Rightarrow x=y$ \iff $ab=0$ con $a\neq 0 \Rightarrow b=0$ pues $a0=0$; $ab=a0$; $b=a0$; $ab=a0$

Definición (Divisor de 0). $a \in A$ es divisor de 0 si $\exists b \neq 0 : ab = 0$

Proposición. Si A es un dominio de integridad \Rightarrow el 0 es el único divisor de 0.

Equivalentemente: A es dominio de integridad \iff no tiene divisores de cero no nulos.

- (i) $A < B y B \text{ es } D.I. \Rightarrow A \text{ es } D.I.$
- (ii) Todo cuerpo es D.I.
- (iii) Si $u \in U(A) \Rightarrow u$ no es divisor de 0 (Supongamos $u * b = 0 \Rightarrow u * u^{-1} * b = u^{-1} * 0 \Rightarrow b = 0$)

Proposición. Si $|A| < \infty$, A es dominio de integridad \iff A es un cuerpo

 $Demostraci\'on. \$ Trivial

 \implies $0 \neq a \in A$. Tomo $\{1, a, a^2, \dots, a^n\} = \{a^n : n \in N\} \subseteq A$ Como tiene cardinalidad finita: $\exists k \in N : a^n = a^{n+k}$.

Pero, por ello: $a^n = a^n a^k$; $a^n * 1 = a^n * a^k$, luego a^n no es 0 porque A es Dominio de integridad y por ser D.I entonces:

$$1 = a^k \begin{cases} k = 1 \Rightarrow a = 1 \\ k > 1 \Rightarrow a^{k-1} * a = 1 \end{cases}$$

Con lo que \exists inverso de $a = a^{k-1}$ y como a es un elemento cualquiera, todo elemento tiene inverso, luego es un cuerpo.

Proposición. Todo D.I. es un subanillo de un cuerpo.

Primero, presentaremos otros conceptos:

Definición (Cuerpo de fracciones de un D.I.). Sea A un dominio de integridad con $|A| \ge 2$. Consideramos $AxA - \{0\} = \{(a,b), a,b \in A \mid b \ne 0\}$

Definición. Decimos que (a,b) es equivalente a (c,d): $(a,b) \sim (c,d) \iff ad = bc$ Esta relación es reflexiva, simétrica y transitiva.

Ahora, considero $a,b\in A$. Llamo $\frac{a}{b}=\{(c,d)\ c,d\in A:(c,d)\sim(a,b)\}\subseteq AxA-\{0\}$ Y llamo a $\frac{a}{b}$ la fracción a entre b.

Corolario 2.

$$\frac{a}{b} = \frac{u}{v} \iff av = bu \iff (a, b) \sim (u, v)$$

Demostración. $\Rightarrow (a,b) \in \frac{a}{b} = \frac{u}{v} \Rightarrow (a,b) \sim (u,v) \Rightarrow (av = ub)$

$$(a,b) \sim (u,v)$$
 Por la transitividad: $\frac{a}{b} \subseteq \frac{u}{v}$ y $\frac{u}{v} \subseteq \frac{a}{b} \Rightarrow \frac{a}{b} = \frac{u}{v}$

Ahora, llamamos $Q(A) = \{\frac{a}{b}|a, b \in A: b \neq 0\}$ que es un conjunto de conjuntos, pues ya habíamos definido la fracción $\frac{a}{b}$ como un conjunto.

Sobre él, definimos unas operaciones que nos permitirán ver que es un cuerpo:

(i) Suma:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}$$

Ahora, como la fracción $\frac{a}{b}$ es un conjunto, hay que probar que el resultado es único, es decir:

$$\frac{a}{b} = \frac{a'}{b'} \quad y \quad \frac{c}{d} = \frac{c'}{d'} \Rightarrow ab' = a'b \quad y \quad cd' = c'd$$

Hay que probar que se cumple:

$$\frac{ad + cb}{bd} = \frac{a'd' + c'b'}{b'd'}$$

Equivalementente, tenemos que probar que se cumple:

$$b'd'(ad + cb) = bd(a'd' + c'b')$$

Desarrollamos en la izquierda:

$$b'd'(ad + cb) = b'd'ad + b'd'cb = {1 \choose 2} a'bd'd + b'bc'd$$

Donde en (1) hemos usado la equivalencia que habíamos dado de ab' = a'b y cd' = c'd. Ahora, desarollamos el producto de la derecha y veremos que es igual al resultado obtenido

$$bd(a'd' + c'b') = bda'd' + bdc'b' = a'bdd' + bb'c'd$$

Probando la unicidad.

(ii) Producto:

$$\frac{a}{b}\frac{c}{d} = \frac{ac}{bd}$$

La unicidad del producto se hace desarrollando de la misma manera.

Para finalizar, se puede probar que es un cuerpo probando las propiedades de anillo conmutativo y que existe inverso para todo $\frac{a}{h}$.

Proposición (Fracciones de denominador 1). Existe un homomorfismo

$$i: A \longrightarrow \mathbb{Q}(A)$$

 $a \longmapsto \frac{a}{1} = i(a)$

Que cumple que i(a+b)=i(a)+i(b) y que i(ab)=i(a)i(b), y además es un monomorfismo. Así, $A \cong Img(i)=\{\frac{a}{1}: a\in A\}$ es un isomorfismo y $A \leq \mathbb{Q}(A)$ con $a=\frac{a}{1}$. Con esta identificaión $\frac{a}{b}=\frac{a}{1}\frac{1}{b}=ab^{-1}$

Proposición. Sea K un cuerpo $y A \leq K$, $a, b \in A (b \neq 0)$.

$$\implies a \in K \ y \ b^{-1} \in K \implies ab^{-1} \in K$$
$$\implies \mathbb{Q}(A) \le K$$

Nota. Sea K un cuerpo. Entonces $\mathbb{Q}(K)$ es el cuerpo más pequeño que contiene a K.

Nota.
$$A \subseteq \mathbb{Q}(A), A = D.I. \implies \mathbb{Q}(\mathbb{Q}(A)) = \mathbb{Q}(A)$$

Proposición. Sea K un cuerpo, $A \leq K$. Si $\forall \alpha \in K \exists a \in A, a \neq 0 : a\alpha \in A \Longrightarrow \mathbb{Q}(A) = K$

Demostración.
$$\alpha \in K, \ \exists a \neq 0, a \in A : a\alpha = b \in A \implies \alpha = ba^{-1} = \frac{b}{a} \in \mathbb{Q}(A)$$

$$\text{Ejemplo: } \mathbb{Z}[i] = \{a+bi: a,b \in \mathbb{Z}\} \leq \mathbb{Q}[i] = \{a+bi: a,b \in \mathbb{Q}\} \implies \mathbb{Q}(\mathbb{Z}[i]) = \mathbb{Q}[i]$$

$$\alpha \in \mathbb{Q}[i] \implies \alpha = \frac{m}{n} + \frac{m'}{n'}i \implies \mathbb{Z}[i] \ni nn'\alpha = n'm + nm'i \in \mathbb{Z}[i]$$

Proposición. Si A es un $D.I. \implies A[x]$ es un D.I.

Definición (Grado de un polinomio). Si $f = \sum a_i x^i \neq 0 \implies gr(f) = n \in \mathbb{N}$ si $a_n \neq 0$ y $a_m = 0 \quad \forall m > n$

El coeficiente a_n se denomina coeficiente líder.

• Si A es D.I, $f, g \in A[x] \implies gr(fg) = gr(f) + gr(g)$ (Si no es D.I, tenemos que $gr(fg) \le gr(f) + gr(g)$) **Definición (Divisibilidad en D.I.).** Sea A un D.I. Sean $a, b \in A$. Decimos entonces que a divide a b (a es un divisor de b, b es un múltiplo de a):

$$\Rightarrow \exists c \in A : b = ac \tag{1}$$

$$\iff$$
 La ecuacion $ax = b$ tiene solucion (2)

$$\iff \frac{b}{a} \in A$$
 (3)

Notación: Si a divide a b, escribiremos a/b

- (i) Los divisores de 1 son las unidades del anillo, los elementos del grupo U(A)
- (ii) Las unidades son divisores de todos los elementos del anillo.
- (iii) Dado $a \in A$, los elementos ua con $u \in U(A)$ se llaman asociados de a.
- (iv) Si $u \in U(A)$, $\forall a \in A$, ua/a

Definición. Los divisores triviales de un número son las unidades y sus asociados.

Proposición. Sean $a, b \neq 0$. Son equivalentes:

- (i) a es asociado de b
- (ii) b es asociado de a
- (iii) $a/b \wedge b/a$, los asociados son los elementos que se dividen mutuamente

Definición (Irreducible). Sea $a \in A(D.I)$, $a \neq 0$, $a \notin U(A)$ es irreducible si sus únicos divisores son los triviales

$$\iff$$
 $si \ b/a \implies b \in U(A) \lor b \sim a$ (4)

$$\iff$$
 $si \ a = bc \implies b \in U(A) \lor c \in U(A)$ (5)

$$\iff$$
 $si \ a = bc \implies a \sim b \lor c \sim a$ (6)

$$\iff$$
 $si \ a = bc \land b \notin U(A) \implies c \in U(A)$ (7)

Propiedades elementales:

- (i) Reflexión: a/a
- (ii) Transitividad: $a/b \wedge b/c \implies a/c$
- (iii) Si $a/b \lor a/c \implies a/bx + cy \ \forall x, y \in A$
- (iv) Si $a/b \implies \forall c \ a/bc$
- (v) Si $c \neq 0$ entonces $a/b \iff ac/bc$

4. Dominios euclídeos

Definición (Dominios euclídeos). Un dominio euclídeo es un dominio de integridad, A, tal que haya definida una función $\varphi: A - \{0\} \to \mathbb{N}$ verificando:

- (i) $\varphi(ab) \ge \varphi(a)$
- (ii) $\forall a, b \in A, b \neq 0 \quad \exists q, r \in A : a = bq + r \text{ con } r = 0 \lor \varphi(r) < \varphi(b)$
- (iii) $\forall a, b \in A, b \neq 0 \quad \exists q \in A : a bq = 0 \lor \varphi(a bq) < \varphi(b)$

Nota. Si A es dominio euclídeo, entonces: $b/a \iff$ un resto de dividir a entre b es cero \iff cualquier resto de dividir a entre b es 0

Demostración. \implies Por definicion de b/a, $\implies \exists c \in A$ tal que a = bc y por ser A un dominio euclídeo, $\implies \exists q, r \in A : a = bq + r \text{ con } r = 0 \lor \varphi(r) < \varphi(b)$. La solución es evidentemente correcta para r = 0, veamos que sucede para $r \neq 0$. Supongamos $r \neq 0$, entonces $\varphi(r) < \varphi(b)$.

$$r=a-bq=bc-bq=b(c-q) \qquad c-q\neq 0$$

$$\varphi(r)=\varphi(b(c-q))\geq \varphi(b) \implies \text{CONTRADICCI\'ON}$$

Teorema (Teorema de Euclídes). $\forall a,b\in\mathbb{Z},b\neq0,\exists!q,r\in\mathbb{Z}\ tales\ que\ a=bq+r\ con\ 0\leq r<|b|$

Corolario 3. \mathbb{Z} es un dominio de euclídes con $\varphi = |.| : \mathbb{Z} \to \mathbb{N}$

$$\varphi(a) \begin{cases} a & \text{si } a \ge 0 \\ -a & \text{si } a < 0 \end{cases}$$

Pasamos a demostrar el teorema de Euclídes.

Demostración. Probaremos primero la unicidad. Supongamos

$$a = bq + r$$
 $0 \le r < |b|$
 $a = bq' + r'$ $0 \le r' < |b|$

distintos. Vamos a ver que r = r' y q = q'

• Si $r \neq r'$, supongamos $r > r' \implies 0 < r - r' < |b|$ Ahora:

$$r - r' = a - bq - a + bq' = b(q' - q)$$

 $r - r' > 0 \implies r - r' = |b(q' - q)| = |b||q' - q|$

Pero, como $q \neq q' \implies q' - q \neq 0$ y $q, q' \in \mathbb{Z} \implies |q' - q| \geq 1$, luego:

$$r - r' = |b||q' - q| \ge |b|$$

Por lo que tenemos una contradicción con el comienzo de la suposición.

• Ahora, si $r = r' \implies b(q' - q) = 0$ y $b \neq 0 \implies q' - q = 0 \implies q' - q$

Probamos ahora la existencia. Sean $a, b \ge 0$

- Si $a < b \implies a = 0 * b + a$, luego q = 0 y r = a, ya los tenemos
- Si $a \ge b$, llamamos $R = \{a bx : x \in \mathbb{N} \mid a \ge bx\} \subseteq \mathbb{N}$ que es no vacío, pues está al menos x = 1.

Ahora, por el Principio de buena ordenación, R tiene mínimo. Tomo r = min(R).

$$r = a + bq$$
 para cierto $q \in \mathbb{N}$ y $r \ge 0$

Veremos ahora que r < b, llegando a una contradicción.

Supongamos
$$r \ge b \implies r' = r - b \ge 0 \implies r' = a - bq - b = a - b(q+1) \implies r' \in R$$
.

Podemos ver que r' < r (pues r' = r - b) \implies está en R y es menor que el mínimo, luego es una contradicción y tenemos que r < b

Por último, vamos a probar que $0 \le r < |b|$

Supongamos:

$$r = 0 \implies a = bq \begin{cases} -a = b(-q) \\ -a = (-b)q \\ a = (-b)(-q) \end{cases}$$

Ahora, supongamos r > 0:

- -a = b(-q) r = b(-q) b + b r = b(-q 1) + (b r) y como $0 < r < b \implies b > b r > 0$
- -a = (-b)q r = (-b)q + b b r = -b(q+1) + (b-r) y por el mismo motivo, b > b r > 0
- $a = (-b)(-q) + r \implies 0 < r < b = |-b|$

De esta forma, hemos cubierto todos los casos y hemos acabado la demostración \Box

Teorema. $\forall f, g \in A[x]$ donde $g \neq 0$ y su coeficiente líder es una unidad de A, existen polinomios:

$$q, r \in A[x] : f = gq + r \quad con \quad \begin{cases} r = 0 \\ gr(r) < gr(g) \end{cases}$$

y que son únicos.

Demostración. Sean : $f = \sum_{i=0}^{n} a_i x^i$ y $g = \sum_{i=0}^{m} b_i x^i$ con $b_m \in U(A)$

- \bullet Si $n < m \implies f = f * 0 + f \implies \exists q, r \in A[x] : f = gq + r \text{ con } g = 0 \text{ y } r = f$
- Si $n \ge m$, razonamos por inducción en n = gr(f)
 - Si $n = 0 \implies m = 0$ por tanto $f = a_0$ y $g = b_0$ pero con $b_0 \in U(A)$ De esta forma:

$$f = a_0 = \frac{a_0}{b_0}b_0 = \frac{a_0}{b_0}b_0 + 0 = g\frac{a_0}{b_0}$$

Podemos tomar como hemos visto $q=\frac{a_0}{b_0}$ y r=0 y ya tenemos el q y r que buscábamos.

• Si n > 0, haremos la inducción

Vamos a considerar que $\frac{a_n}{b_m} = a_n b_m^{-1} \in A$ Tomamos entonces x^{n-m} .

Consideramos $x^{n-m}g(x)$ y establecemos $f_1 = f - \frac{a_n}{b_m}x^{n-m}g$. Recordaremos esto como (1).

Entonces, podemos ver que $gr(f_1) < n$. Por hipótesis te inducción $\Longrightarrow \exists q, r \in A[x] : f_1 = gq_1 + r$, que consideraremos como (2).

Ahora, utilizando (1) y (2):

$$\implies f = f_1 + \frac{a_n}{b_m} x^{n-m} g = gq_1 + \frac{a_n}{b_m} x^{n-m} g \frac{a_n}{b_m} x^{n-m} + r =$$

$$g(q_1 + \frac{a_n}{b_m}x^{n-m}) + r$$

Encontramos así el q y el r que queríamos, probando la existencia.

Vamos a probar ahora la unicidad.

Sea
$$f = gq + r$$
 y $f = gq' + r'$ con

$$\begin{cases} r, r' \neq 0 \\ o \\ gr(r) < m \\ gr(r') < m \end{cases}$$

Ahora, si $r \neq r' \implies r - r' \neq 0 \implies r - r' = g(q - q') \neq 0$ Vemos que gr(r - r') = gr(g) + gr(q - q').

Como $q - q' \neq 0 \implies gr(q - q') \geq 0$ y de esta forma: $gr(g) + gr(q - q') \geq gr(g) = m$.

Sin embargo, habíamos dicho que r, r' eran ambas de grado menor que m luego gr(r-r') < m, llegando a una contradicción y probando así el resultado.

Corolario 4. Si K es un cuerpo, entonces K[x] es un D.E con función euclídea:

$$gr:K[x]\to N$$

(función que asigna a cada polinomio su grado)

Nota. Hacemos un el ejercicio de ver si $3x^2 + 1$ es divisor de $2x^3 + 4x^2 + 4x + 3$ en $\mathbb{Z}_5[x]$. (Solución: El resto de la división es 0, con resultado de la división = 2/3x + 4/3)

Teorema. Los anillos $Z[\sqrt{n}]$ para n=2,3,-1,2 son D.E. con función euclídea:

$$\varphi : \mathbb{Z}[\sqrt{n}] \to \mathbb{N} : \varphi(a + b\sqrt{n}) = |N(a + b\sqrt{n})| = |a^2 - nb^2|$$

Demostración. Probaremos que $\forall \alpha, \beta \in \mathbb{Z}[\sqrt{n}]$ con $\beta \neq 0$ $\exists q, r \in \mathbb{Z}[\sqrt{n}] : \alpha = \beta q + r$ con r = 0 ó $|N(r)| < |N(\beta)|$:

- Si $|N(\alpha)| < |N(\beta)|$ Basta tomar $\alpha = 0 * \beta + \alpha$
- Si $|N(\alpha)| \ge |N(\beta)|$ consideramos entonces $\frac{\alpha}{\beta} \in \mathbb{Q}[\sqrt{n}]$.

Ahora, $\frac{\alpha}{\beta} = a_1 + a_2 \sqrt{n}$ con $a_1, a_2 \in \mathbb{Q}$. Esos a_1, a_2 se obtienen usando el conjugado de β .

Sean $q_1, q_2 \in \mathbb{Z}$: $|a_1 - q_1| \le 1/2$ y $|a_2 - q_2| \le 1/2$. Esto quiere decir que q_1 y q_2 son los enteros más cercanos a a_1, a_2 respectivamente.

Sea
$$q = q_1 + q_2\sqrt{n}$$
 y $r = \alpha - \beta q$.

Tomo
$$|N(r)| = |N(\alpha - \beta q)| = |N(\beta(\frac{\alpha}{\beta} + q))| = |N(\beta)||N(\frac{\alpha}{\beta} + q)|$$

Queremos probar que: $|N(\beta)||N(\frac{\alpha}{\beta}+q)| < |N(\beta)|$.

Equivalentemente, queremos probar que:

$$|N(\frac{\alpha}{\beta} + q)| < 1 \implies |N(a_1 + a_2\sqrt{n} - q_1 - q_2\sqrt{n})| = |N((a_1 - q_1) + (a_2 - q_2)\sqrt{n})| =$$

$$= |(a_1 - q_1)^2 - n(a_2 - q_2)^2| = m \in \mathbb{Q}$$

Vamos a probarlo para los casos que habíamos anunciado en el teorema, n = -1, -2, 2, 3

- $n = -1 \implies m = (a_1 q_1)^2 + (a_2 q_2)^2 \le 1/4 + 1/4 = 1/2 \implies |m| < 1$
- $n = -2 \implies m = (a_1 q_1)^2 + 2(a_2 q_2)^2 \le 1/4 + 1/2 = 3/4 \implies |m| < 1$
- $n = -2 \implies m = |(a_1 q_1)^2 2(a_2 q_2)^2| \implies -1/2 \le m \le 1/4 \implies |m| < 1$
- $n = 3 \implies m = |(a_1 q_1)^2 3(a_2 q_2)^2| \implies -3/4 \le m \le 1/4 \implies |m| < 1$

Por lo que queda probado el resultado para esos casos.

EJEMPLO: Vamos a tratar de dividir $\alpha=6+10i$ entre $\beta=1+2i$ en el anillo . Para ello, tenemos que saber si se puede hacer dicha división o no y para ello averiguaremos la norma de ambos números.

$$|N(6+10i)| = 36+100 = 136$$

 $|N(1+2i)| = 1+4=5$

Como 1 + 2i tiene una norma menor que la norma 6 + 10i podemos hacer la división, para ello primero dividiremos como si fuesen numeros complejos normales para hallar nuestro número cociente que será de la forma $q = q_1 + q_2i$:

$$\frac{6+10i}{1+2i} = \frac{(6+10i)(1-2i)}{(1+2i)(1-2i)} = \frac{6-12i+10i+20}{5} = \frac{26-2i}{5} = \frac{26}{5} - \frac{2}{5}i$$

Tenemos que $5 < \frac{26}{5} < 6$ y 5 es más cercano a $\frac{26}{5}$ que 6 escogemos $q_1 = 5$ y por el mismo razonamiento $q_2 = 0$, de forma que q = 5 + 0i = 5. A continuación, para hallar el resto r hacemos la siguiente operación:

$$r = \alpha - \beta \cdot q = 6 + 10i - (1 + 2i)(5) = 6 + 10i - 5 - 10i = 1$$

Finalmente, comprobamos que no nos hemos equivocado:

$$(6+10i) = 5(1+2i) + 1|N(1)| < |1+2i| \implies 1 < 5$$

Viéndose así que el ejemplo está correcto.

5. Máximo Común divisor. Dominios de Ideales principales. Ecuaciones Diofánticas en D.I.P

Definición (Máximo común divisor). Dados $a, b \in A$ decimos que un elemento $d \in A$ es un mcd de a y b (d = (a, b)) si el conjunto de los divisores comunes a a y a b coinciden con el conjunto de los divisores de d. Esto es:

- (i) d/a y d/b
- (ii) Si c/a y $c/b \implies c/d$

Propiedades:

- (i) (a,b) = (b,a)
- (ii) Si $a \sim a'$ asociados y $b \sim b'$ también, $\implies (a,b) = (a',b')$

- (iii) $(a,b) = a \iff a/b$. En particular, (a,0) = a , (a,1) = 1 , $(a,u) = 1 \iff u \in U(A)$
- (iv) Si (a, b) = 1, a y b se dicen primos relativos

$$(v)$$
 $((a,b),c) = (a,(b,c)) = (a,b,c)$

(vi) (ac, bc) = c(a, b)

Demostración. Primero, llamamos (ac, bc) = e y (a, b) = d. Si a,b o c son 0, se verifica trivialmente. Si no lo son:

$$\frac{d/a \implies dc/ac}{d/b \implies dc/bc} \implies dc/e \implies \exists u \in A : e = dcu$$

$$\begin{array}{c} e/ac \implies \exists x \in A : ac = ex \implies ac = dcux \implies = a = dux \\ e/bc \implies \exists y \in A : bc = ey \implies bc = dcuy \implies b = duy \end{array} \} \implies \begin{array}{c} du/a \\ du/b \end{array} \} du/d$$

$$\implies \exists v \in A : d = duv \stackrel{d \neq 0}{\implies} 1 = uv \implies u \in U(A) \implies e \sim dc$$

(vii) Si c/a y $c/b \implies (\frac{a}{c}, \frac{b}{c}) = \frac{(a,b)}{c}$

$$(viii)$$
 $(\frac{a}{(a,b)}, \frac{b}{(a,b)}) = 1$

(ix) Si $a/bc \implies a/(a,b)c$

Demostración. Supongamos que $\exists x \in A : bc = ax \implies (a,b)c = (ac,bc) = (ac,ax) = a(c,x) \implies a/(a,b)c$

(x) Si a/bc y $(a,b) = 1 \implies a/c$

(xi) Si a/c y b/c y $(a,b) = 1 \implies ab/c$

(xii) Si
$$(a,b) = 1$$
 y $a/bc \implies a/c$

(xiii) Si a/c, b/c y $(a,b) = 1 \implies ab/c$

(xiv) Si $a/c \implies \exists x: c=ax. \ Y \ b/c \implies b/ax \ con \ (a,b)=1 \implies b/x \implies \exists y: x=by$ Entonces:

$$\begin{cases} c = ax \\ x = by \end{cases} \implies c = aby \implies ab/c$$

(xv) Si (a,b) = 1 y $(a,c) = 1 \iff (a,bc) = 1$

Demostración. \Longrightarrow Sabiendo que: (ac, bc) = c(a, b) = c

Tenemos que: 1 = (a, c) = (a, (ac, bc)) = ((a, ac), bc) = (a(1, c), bc) = (a, bc), por tanto: 1 = (a, bc)

$$\boxed{ =} 1 = (a,bc) = (a(1,c),bc) = ((a,ac),bc) = (a,(ac,bc)) = (a,c(a,b)) = (\frac{a}{(a,b)}(a,b),c(a,b) = (a,b)(\frac{a}{(a,b)},c) = 1 \implies (a,b) \in U(A) \implies (a,b) = 1 \implies (a,c) \in U(A) \implies (a,c) = 1$$

$$(xvi)$$
 $(a,b) = (a-kb,b) \ \forall k \in A$

$$(xvii)$$
 Si d/b , $d/a \iff d/(a-kb)$

Demostración. Por la propiedad de combinación lineal se confirma.

$$\sqsubseteq$$
 Igual que la otra implicación pero tomando $a = (a - kb) + kb$

Nota. En $\mathbb{Z}[\sqrt{n}]$ si α es un divisor propio de $\beta \implies N(\alpha)$ es un divisor propio de $N(\beta)$ en \mathbb{Z} .

EJEMPLO: Realizamos un ejemplo en el que se puede probar que , usando la Nota anterior, 3 y)1 + $\sqrt{5}$) son irreducibles

Definición (Ideal/Ideal Principal). En un anillo se llama ideal a un subconjunto suyo no vacío que es cerrado para la suma y para múltiplos. Dicho de otra manera: Si A es un anillo conmutativo, un subconjunto $\emptyset \neq I \subseteq A$, es un ideal si:

$$(i) \ a,b \in I \implies a+b \in I$$

(ii)
$$a \in I \implies ax \in I$$

Si $a \in A$, $aA = (a) = \{ax : x \in A\}$ es el ideal principal generado por a.

Definición ([**DIP**: **Dominio de ideales principales**). Un DIP es un anillo en el cual todo ideal es principal.

Teorema. Todo dominio euclideo es un dominio de ideales principales: $DE \implies DIP$

Demostración. Sea A un DE con función euclidea $\varphi:A-\{0\}\longrightarrow \mathbb{N}$ y $I\subseteq A$ un ideal:

• Caso
$$I = \{0\} = (0) = 0A \implies \text{trivial}$$

■ Consideremos $I \neq \{0\}$, $\emptyset \neq \{\varphi(x) : x \in I, x \neq 0\} \subseteq \mathbb{N}$, sea $\varphi(b)$ el mínimo de este conjunto, donde $b \in I, b \neq 0 \implies I = (b)$. Probamos esto con la doble inclusión: $\subseteq b \in I \implies (b) \subseteq I$

 $\supseteq a \in I; \exists q, r \in A : a = bq + r.$ Supongamos que $r \neq 0 \implies r = a - bq \in I$ con $\varphi(r) < \varphi(b)$, esto es imposible puesto que b es el mínimo, luego $r = 0 \implies a \in (b) \implies I \subseteq (b)$

Teorema. Si A es un DIP, $\forall a, b \in A$ $\exists d = (a, b)$. Además, $\exists u, v \in A : d = au + bv$. A esta igualdad se le llama Identidad de Bezout, y u y v son los coeficientes de Bezout, que no son únicos.

Demostración. Sea $\emptyset \neq I(a,b) = \{ax + by : x,y \in A\} \subseteq A$

Vemos que:

$$(ax + by) + (ax' + by') = a(x + x') + b(y + y') \implies$$
 cerrado para la suma.
 $(ax + by)z = a(xz) + b(xz) \implies$ cerrado para el producto

Ahora, como es un ideal $\implies \exists d \in A : I(a,b) = (d) \text{ con } (d) = \{dx : x \in A\}. \ d \in I(a,b) \implies \exists u,v \in A : d = au + bv.$

Ahora, veamos que d es mcd de a y b.

$$a \in I(a,b) \implies a \in (d) \implies d/a$$

$$b \in I(a,b) \implies b \in (d) \implies b/d$$

Por lo que d es divisor común. Ahora, sea $c: c/a \ y \ c/b \implies c/(au+bv=d) \implies c/d$. Hemos encontrado así un divisor común que es dividido por cualquier divisor común, por tanto es el mcd.

5.1. Ecuaciones diofánticas en D.I.P.

En cualquier anillo, llamamos ecuaciones diofánticas a aquellas que son de la forma:

$$ax + by = c$$

- (i) Sea $d = (a, b) \implies$ entonces la ecuación tiene solución $\iff d/c$
- (ii) Supongamos que tiene solución. Supongamos también que d = au + bv)

$$\frac{a}{d} = a'$$
 , $\frac{b}{d} = b'$, $\frac{c}{d} = c' \implies da'x + db'y = dc' \implies d(a'x + b'y) = dc'$ $\implies a'x + b'y = c'$

Esta ecuación tiene las mismas soluciones que la ecuación diofántica inicial. Llamaremos a esta la ecuación 'reducida'.

 \circledast d/a, $d/b \implies d = a'u + b'v$. Podemos hallar así los coeficientes de Bezout.

Como c' = a'(c'u) + b'(c'v) y ahí tenemos una solución particular. Conociendo esta, podemos hallar TODAS las soluciones. Si llamamos $x_0 = c'u$ e $y_0 = c'v$

(iii) Solución general

$$\begin{cases} x = x_0 + kb' \\ y = y_0 - ka' \end{cases} \quad k \in A$$

Si (x_0, y_0) es la solución, entonces la solución general es el conjunto de los (x, y) que hemos dado arriba

Demostración de iii).

$$a'x + b'y = a'(x_0 + kb') + b'(y_0 - kb') = a'x_0 + a'kb' + b'y_0 - a'kb' =$$
$$a'x_0 + b'y_0 = c'$$

Suponer ahora que (x,y) es cualquier solución: $\implies a'x + b'y0c'$. Por hipótesis: $a'x_0 + b'y_0 = c'$. Si restamos esas dos ecuaciones queda: $a'(x - x_0) + b(y - y_0) = 0 \implies a'(x - x_0) = b(y_0 - y)$. Denotamos a esta ecuación como 3.

Ahora, $b'/(a'(x-x_0))$ pero b' y a' son primos entre sí, luego $b'/(x-x_0) \implies \exists k \in A : (x-x_0) = kb'$. Llamamos a esta ecuación 1, y además despejando en ella vemos $x = x_0 + kb'$, una solución de x.

Análogamente, podemos ver que $a/(b(y_0-y) \implies a/(y_0-y) \implies \exists h \in A: y_0-y=a'h \implies y=y_0-ha'$, solución de y. Llamamos a esa ecuación la 2.

Falta probar que k=h, pero sustituyendo las ecuaciones 1 y 2 en 3, vemos que $a'kb'=b'ha'\implies k=h$

Proposición (Algoritmo de Euclides para el cálculo del MCD). Supongamos que tenemos dos elementos a, b y queremos hallar su mcd.

- $Si \ b = 0 \implies (a, b) = (a, 0) = a$. Igual $Si \ a = 0$
- $Si \ a \neq 0 \neq b$

Construimos una sucesión: $r_1, r_2, \dots, r_n, \dots, r_m, r_{m+1} = 0$. Recordamos que A es un D.E con función euclídea $\varphi : A - \{0\} \to \mathbb{N}$ $Si \varphi(a) \ge \varphi(b) \implies r_1 = a \ y \ r_2 = b$. En el otro caso, lo hacemos al revés, es decir $r_1 = b \ y \ r_2 = a$.

 $Si \ r_{n-1} \neq 0 \implies r_n = resto \ de \ dividir \ r_{n-2} \ entre \ r_{n-1} \implies$

$$r_{n-2} = r_{n-1}q_{n-2} + r_n \begin{cases} r_n = 0 \\ \varphi(r_n) \le \varphi(r_{n-1}) \end{cases}$$

La idea es ir reduciendo de la forma:

$$(a,b) = (r_1, r_2) = \dots = (r_n, r_{n+1}) = \dots = (r_m, r_{m+1}) = (r_m, 0) = r_m$$

Obteniendo los cocientes de la forma:

$$\begin{cases} r_{n-2} = au_{n-2} + bv_{n-2} \\ r_{n-1} = au_{n-1} + bv_{n-1} \\ r_{n-2} - r_{n-1}q_{n-2} = r_n = a(u_{n-2} - q_{n-2}u_{n-1}) + b(r_{n-2} - q_{n-2}v_{n-1}) \\ \dots \\ d = r_m = au + bv \end{cases}$$

EJEMPLO: Un agricultor lleva al mercado 80 sandías y 30 melones. La venta le ha sido rentable, pues ha vendido cada pieza por más de 3 euros, que es lo que le costó producirlos. Vuelve a casa con 600 euros. Calcular precio de sandías y melones.

(El ejercicio se resuelve resolviendo la ecuación diofántica 80x + 30y = 600, hallando primero la solución general que viene dada por x = -60 + 3k; y = 180 - 8k y luego tomando que x e y tienen que ser mayores que 3, viendo que la solución es que k = 22).

6. Mínimo común múltiplo. Ecuaciones en congruencias.

Definición (Mínimo común múltiplo). Sea $a, b \in A = DI$

 $m \in A$ es un mínimo común múltiplo de a y b, notando por m = mcm(a, b) = [a, b]Si s vereifica que el conjunto de los múltiplos comunes a ambos es igual al conjunto de múltiplos de . Esto implica:

- 1. $a/b \ y \ b/m$
- 2. Si a/c y $b/c \Rightarrow m/c$

Del mismo modo se define para $[a_1, a_2, ..., a_r], r \in \mathbb{N}$.

Propiedades.

- (i) Si $a \ a' \ y \ b \ b' \Rightarrow [a, b] = [a', b']$
- (ii) [a,b] = [b,a]
- (iii) [a, 0] = 0
- (iv) [a,1] = a
- (v) [a, [c, b]] = [[a, c], b] = [a, b, c]
- (vi) [ac,bc] = [a,b]c

Demostración del último. Supongamos que $c \neq 0$, pues si no es trivial.

Como $c/ab \implies c/[ca, cb] \implies \exists q \in A : [ac, bc] = cq \quad (1)$

Por otro lado, sea $m=[a,b]; \implies a/m \quad y \quad b/m \implies ac/mc \quad y \quad bc/mc \implies cq/mc.$

Como $c \neq 0 \implies q/m$.

Por otro lado, ca/cq y $cb/cq \implies \text{como } c \neq 0 \implies a/q$ y $b/q \implies m/q$.

Hemos llegado a que q/m y $m/q \implies$ son asociados $\implies q = [a, b]$.

Ahora, basta llevarnos esto a (1) en esta demostración para ver que:

$$[ac, bc] = c[a, b]$$

Proposición. Si A es un DIP $\implies \forall a, b \in A \quad \exists [a, b]$

Demostración. Consideramos aA = (a), el ideal principal generado por a. De la misma forma, consideramos bA = (b), el ideal principal generado por b.

Ahora, tomamos $aA \cap bA \implies$ los números que están simultáneamente en los múltiplos de ambos. Ahora, esto es cerrado para sumas y para productos, pr tanto tambien es un ideal. Por último, por estar en un DIP \implies el ideal es principal y por tanto:

$$\implies aA \cap bA = mA \implies m = [a, b]$$

Teorema. Sea A un DI en el cual $\exists (a,b) \forall a,b \in A$. Entonces, $\exists [a,b] \forall a,b \in A$ y se verifica que: a,b = ab

Demostración. Sean
$$0 \neq a, b \in A$$
. Llamamos $d = (a, b) \implies \begin{cases} a = a_1 d \\ b = b_1 d \end{cases}$

Podemos observar que:

$$m = \frac{ab}{d} = a_1b = ab_1$$

De esta forma, nuestra prueba termina si comprobamos que m=[a,b]. Tenemos ya que claramente a/m-y-b/m

Sea $m_1 = a/m_1$ y b/m_1 , tenemos que probar que m/m_1 . Para esto, lo que hay que probar es que $(m, m_1) = m$.

Para ello, vamos a llamarlo $k=(m,m_1) \implies k/m$. Llamo $d_1=\frac{m}{k} \implies m=_{(1)} d_1k$ para un cierto d_1 . Guardamos la igualdad de (1) para usarla después.

Ahora, lo que bastaría probar es que $d_1 \in U(A)$:

Tenemos que a/m y $a/m_1 \implies a/k \implies k = au$. Podemos hacer lo mismo con b para ver que k = bv.

Ahora, usando la igualdad del principio $(m = a_1b = ab_1)$ y el (1) podemos ver que $m = a_1b = kd_1 = bvd_1 \implies a_1 = vd_1$ $\implies a = a_1d = vd_1d$ $\implies a = a_1d = vd_1d$ $\implies b = b_1d = ud_1d$ $\implies b = b_1d = ud_1d$

$$\implies d1_d/d \implies \exists x \in A : d = dd_1x \implies 1 = d_1x \implies d_1 \in U(A).$$

$$\implies m, k$$
 son asociados y como k era $mcd(m, m1) \implies$ m también lo es.

6.1. Ecuaciones en Congruencias

Sea A un anillo, $I \subset A$ un ideal. $a, b \in A$ son 'congruentes módulo I' si $a - b \in A$ (Equivalentemente, si $\exists x \in I : a = b + x$). La notaremos:

$$a \equiv bmod(I)$$
 o $a \equiv_I b$

Otra notación. En un DIP I(m) = mA

$$a \equiv bmod(A) \rightarrow^{notacion} a \equiv bmod(m) (\iff m/a - b \iff a - b = qm)$$

Para algún q en el último paso, y en ese caso $\iff a = b + qm$ para algún q.

Propiedades

- $(i) \equiv \text{es una relación de equivalencia.}$
 - $a \equiv a$
 - $a \equiv b \iff b \equiv a \text{ (dem:} a b = (-1)(b a) \in I)$
 - $a \equiv b \ y \ b \equiv c \implies a \equiv c \ (\text{dem: } a b \in I, b c \in I \implies a c \in I)$
- (ii) $a \equiv b \iff \forall c : a + c \equiv b + c$
- (iii) $a \equiv b \ y \ c \equiv d \implies a + c \equiv b + d \text{ (dem: usando 2 y 1)}$
- (iv) $a \equiv 0 \iff a \in I$
- (v) $a \equiv b \implies \forall c : ac \equiv bc$
- (vi) $a \equiv b, c \equiv d \implies ac \equiv bd$ (dem: 5 y luego uso 1)
- (vii) $ac \equiv bcmod(mc) \ y \ c \neq 0 \implies a \equiv bmod(m)$

Demostración. $ac \equiv bcmod(mc) \iff mc/(a-b)c \iff c\neq 0 m/a-b \iff a \equiv bmod(m)$

(viii) Si
$$(c, m) = 1$$
, entonces: $ac \equiv bcmod(m) \iff a \equiv bmod(m)$
 $Demostraci\'on. \ ac \equiv bc \implies m/(a-b)c \implies$, como $(c, m) = 1 \implies m/a - b$

6.2. Ecuaciones en Congruencias

Proposición (Ecuaciones en congruencias). Estudiaremos la ecuación $ax \equiv bmod(m)$ (1)

- $Si \ m = 0 \implies la \ ecuaci\'on \ es \ ax = b$
- $Si \ a = 0 \implies la \ ecuación \ es \ 0x \equiv 0 mod(m) \implies tiene \ solución: \ todo \ el \ anillo$
- $a, b \neq 0$
 - 1. Si d = (a, m) la ecuación tiene solución $\iff d/b$

Demostración. (1), tiene solución $\iff \exists x \in A : ax \equiv bmod(m) \iff \exists x \in A : m/ax - b \iff \exists x, y \in A : (ax - b) = my \iff \exists x, y \in A : ax - my = b$, que es una ecuación diofántica, que sabemos ya que tiene solución $\iff d(a,m)yd/b$

2. Supongamos que tiene solución. Consideramos $a' = \frac{a}{d}$, $b' = \frac{b}{d}$ y $m' = \frac{m}{d}$.

Ahora, usando $(1) = da'x \equiv db'mod(dm')$, esta es equivalente a $a'x \equiv b'mod(m')$ a la que llamaremos (2). Esta es su reducida. Tiene las mismas soluciones pero (a', m') = 1.

Podemos hallar los coeficientes de Bezout: $u, v \in A : 1 = a'u + b'v$. Esto nos lleva a ver que:

$$a'u \equiv 1 mod(m') \implies a'ub' \equiv b' mod(m')$$

Y así tenemos que $x_0 = ub'$ es una solución particular.

3. La solución general es de la forma: $x = x_0 + km'$ $k \in A$. Equivalentemente, es de la forma $x \equiv x_0 mod(m')$

Demostración. Si x_0 es una solución particular $\implies a'x_0 \equiv b'mod(m')$ Si sustituimos x_0 por x pues son congruentes obtenemos: $a'x \equiv b'mod(m')$. Vamos a suponer que:

$$a'x \equiv b'mod(m')$$

$$a'x_0 \equiv b'mod(m')$$

$$\implies a'x \equiv a'x_0mod(m')$$

Por la transitividad. Pero a' y m' son primos entre sí, luego $x \equiv x_0 mod(m')$

4. Diremos que una solución particular x_1 es óptima si $x_1 = 0$ ó $\varphi(x_1) < \varphi(m')$ siendo φ la función euclídea de A.

Página 25 de 28

 $Si \ x_0$ es cualquier solución particular, entonces:

$$x_0 = m'q + x_1 \begin{cases} x_1 = 0 \\ o \\ \varphi(x_1) < \varphi(m') \end{cases}$$

 $Y x_1$ es una solución parcial óptima. En este caso, la solución general óptima es: $x \equiv x_1 mod(m')$

6.3. Sistemas de Ecuaciones en Congruencias

En este caso, vamos a abordar un problema en el que tenemos un sistema de ecuaciones en contruencias, que sabemos que se puede expresar de la forma:

$$a_1 x \equiv b_1 mod(m1)$$

$$a_2 x \equiv b_2 mod(m2)$$

$$(1) \quad x \equiv a mod(m)$$

$$x \equiv b mod(m)$$

$$(2)$$

Teorema (Teorema Chino). El sistema tiene solución $\iff a \equiv bmod((m,n))$

Demostración. Sea d = (m, n).

Si tomamos
$$x = a + km$$
; $\exists k : a + km \equiv b mod(n) \iff km \equiv b - a mod(n) \iff d/b - a \iff b \equiv a mod(d)$

Ahora, supuesto que tiene solución, vamos a halar las soluciones particular y general del problema.

Si y_0 es una solución particular de $my \equiv b - amod(n)$, entonces su solución general es:

$$y = y_0 + k \frac{n}{(m, n)} \quad k \in A$$

Entonces $x_0 = a + my_0$ es una solución particular del sistema dado en (2) y por tanto la solución general de 2 viene dada por:

$$x = am(y_0 + k\frac{n}{(m,n)}) \quad k \in A$$

$$= a + my_0 + k\frac{mn}{(m,n)} = x_0 + k[m,n] \quad k \in A$$

$$\implies x \equiv x_0 mod[m,n]$$

Pero si $x_0 = [m, n]q + x_1$ con $x_1 = 0$ ó $\varphi(x_1) < \varphi([m, n])$ entonces tenemos que

$$x_0 \equiv x_1 mod([m, n])$$

Y obtenemos que la solución general óptima de nuestro sistema es:

$$x \equiv x_1 mod([m, n])$$

7. Anillos de Congruencias. Conjuntos Cocientes

Sea A un anillo cualquiera. Sea también $I \subseteq A$ un Ideal de A. Sabemos que $a \equiv bmod(I) \iff a-b \in I$. Vamos a denotar:

$$[a] = \{b : b \equiv amod(I)\} = \bar{a} = a + I$$

Que sabemos que es un subconjunto de A y al que llamaremos la clase de congruencia de a. Denotaremos también:

$$A/I = \{[a] : a \in A\}$$

Propiedades:

- $[a] = [b] \iff a \equiv bmod(I)$
- [a] + [b] = [a + b]
- [a][b] = [ab]

$$\text{Si } [a] = [a'] \text{ y } [b] = [b'] \implies \begin{cases} [a+b] = [a'+b'] \\ [ab] = [a'b'] \end{cases}$$

$$Demostraci\'on. \ a \equiv_I a' \text{ y } b \equiv_I b' \implies \begin{cases} a+b \equiv_I a'+b' \\ ab \equiv_I a'b' \end{cases} \implies \begin{cases} [a+b] = [a'+b'] \\ [ab] = [a'b'] \end{cases}$$

[0] = I

Proposición. Si $f_i: A \to B$ es un homomorfismo de anillo, $Img(g) = \{f(a): a \in A\} \leq B$ es un subanillo. Entonces, $Ker(f) = \{a \in A: f(a) = 0\}$ es un ideal. Demostración. Vamos a probar que este ideal es cerrado para sumas y para múltiplos. Para ello, en ambos casos usarmos que f es un homomorfismo.

$$f(a+b) = f(a) + f(b) = 0 + 0 = 0$$
$$f(ab) = f(a)f(b) = 0 * 0 = 0$$

Además, f es un monomorfismo \iff Ker(f) = 0Demostración. \implies Trivial

 \sqsubseteq Si $f(a) = f(b) \implies f(a-b) = 0 \implies a-b \in Ker(f)$ pero hemos dicho que $Ker(f) = 0 \implies a-b = 0 \implies a = b$

Teorema (Teorema de Isomorfía). $Si \ f : A \to B \ es \ un \ homomorfismo, \ se \ induce \ un \ isomorfismo \ de \ anillos:$

$$A/Ker(f) \cong Im(f)$$

 $F: [a] \longmapsto f(a)$

Además, F está bien definida: es biyectiva y es un isomorfismo.

2

Demostración. Vamos a probar que está bien definida, que es un homomorfismo, inyectividad y sobrevectividad.

Veamos primero que si
$$[a] = [b] \implies f(a) = f(b)$$

Si $[a] = [b] \implies a \equiv bmod(Ker(f)) \implies a = xb$ Para algún $x \in Ker(f)$
 $\implies f(a) = f(b+x) = f(b) + f(x) = f(b) + 0 = f(b)$

Vamos a ver ahora que es un homomorfismo $F: [a] \mapsto f(a)$

- F([a] + [b]) = F([a + b]) = f(a + b) Pero como f es un homomorfismo por hipótesis $\implies f(a) + f(b) = F[a] + F[b]$
- F([a][b]) = F([ab]) = f(ab) pero f vuelve a ser un homomorfismo, luego f(a)f(b) = F[a]F[b]
- F(1) = f(1) = 1

Probamos la inyectividad:

$$\text{Tomo } [a] \in Ker(F) \implies F[a] = 0 \implies f(a) = a \implies a \in Ker(f) \implies [a] = [0] = 0 \quad \Box$$

Proposición. Sea A un Dominio Euclídeo con función euclídea $\varphi: A - \{0\} \to \mathbb{N}$ tal que en A hay unicidad de cocientes y restos (Esto es: $\forall a, b \in A: b \neq 0 \Longrightarrow \exists !q, r \in A: a = bq + r \begin{cases} r = 0 \\ \varphi(r) < \varphi(b) \end{cases}$). Si seleccionamos un $b \in A, b \neq 0$ tal que $\varphi(1) < \varphi(b)$ entonces:

$$\forall a \in A, R_b(a) = resto \ de \ dividir \ a \ entre \ b; \ R_b(a) = r \iff \begin{cases} a \equiv rmod(b) \\ r = 0 \quad o \quad \varphi(r) < \varphi(b) \end{cases}$$

Ahora, llamaremos:

$$A_b = \{R_b(a) : a \in A\} \subseteq A$$

que cumple:

1. Si
$$r \in A_b \implies R_b(r) = r$$

2.
$$R_b(a + a') = R_b(R_b(a) + R_b(a'))$$

Demostración. $R_b(a + a') \equiv a + a' \equiv_b R_b(a) + R_b(a') \equiv_b R_b(R_b(a) + R_b(a'))$

3.
$$R_b(aa') = R_b(R_b(a)R_b(a'))$$

Además, se define la suma y el producto de $r, r' \in A_b$ de la forma:

$$r + r' = R_b(r + r')$$

$$rr' = R_b(rr')$$

Con estas operaciones, A_b es un anillo.