

logica delle proposizioni

proposizioni

- proposizione = frase dichiarativa (enunciato) di senso compiuto che può essere riconosciuta come Vera o Falsa
- o principi delle proposizioni:
 - o non contraddizione:
 - o un enunciato non può essere contemporaneamente Vero e Falso
 - o *terzo escluso* (tertium non datur):
 - o un enunciato è Vero o Falso, non esiste una terza possibilità
- o **sono** proposizioni:
 - o «Il gatto è un felino»
 - 0 < 2 > 3
 - o «I quadrati hanno tre angoli»
- o *non sono* proposizioni:
 - o «Il gatto della vicina»
 - \circ «Se 2 < 3»
 - o «La porta è aperta?»

paradosso

o *paradosso* = affermazione o situazione che sembra logicamente contraddittoria o

contraria al senso comune

o «Io sto mentendo»

o «Questa frase è falsa»

 Un gatto cade sempre sulle zampe, ossia cade sempre in piedi e mai sulla schiena. Una fetta di pane imburrata cade sempre dalla parte del burro

proposizioni e connettivi logici

- o operatori booleani per legare proposizioni in forma più complessa
 - o "e" (congiunzione, Λ)
 - o "o" (disgiunzione, V)
 - o "non" (negazione, ¬)
- o date le seguenti proposizioni:
 - \circ P1 := «Gold is in Chest1»
 - \circ P2 := «Gold is in Chest2»
 - \circ P3 := «Gold is in Chest3»

$$\neg P_2 \land (P_1 \lor P_3) \land \neg P_3 \equiv P_1 \land \neg P_2 \land \neg P_3$$

implicazione logica

- o implicazione logica (connettivo condizionale)
- o esprime il legame "se ... allora"
- o esempio: «se penso allora esisto»
- o P := "enso", Q := "esisto"
- $P \Rightarrow Q = \text{``Se penso allora esisto''}$
- o "P è condizione sufficiente per Q" (se P è Vera, allora Q è Vera)
- o "Q è condizione necessaria per P" (se Q è Falsa, allora P è Falsa)
- o l'implicazione *non* soddisfa la proprietà commutativa: $(P \Rightarrow Q) \neq (Q \Rightarrow P)$.

P	Q	$P \Longrightarrow Q$	$\neg P \lor Q$
F	F	T	T
F	T	T	T
T	F	F	F
T	T	T	T

doppia implicazione

- o doppia implicazione $P \Leftrightarrow Q$
 - o esprime l'equivalenza logica.
- o "P se e solo se Q"
- o "P condizione necessaria e sufficiente per Q"

\boldsymbol{P}	Q	$P \Longrightarrow Q$	$Q \Longrightarrow P$	$P \iff Q$	$(P \land Q) \lor (\neg P \land \neg Q)$
F	F	T	T	T	T
F	T	T	F	F	F
T	F	F	T	F	F
T	T	T	T	T	T

deduzione logica

- o un teorema si riconduce all'implicazione $P \Longrightarrow Q$
 - o P (ipotesi): proposizione che si assume vera
 - o Q (tesi): proposizione di cui si vuole dedurre la verità
- o *dimostrazione* (processo di deduzione logica)
 - o dimostrazione diretta (modus ponens)
 - o dimostrazione per assurdo (modus tollens)

dimostrazione diretta

o modus ponens

Premesse	Conclusione	
$(P \Longrightarrow Q)$ Vera	$oldsymbol{Q}$ Vera	
P Vera		

«se piove la strada è bagnata» , «piove» \dots

$$[(p \to q) \land p] \to q$$

il solo fatto di sapere che $P \Longrightarrow Q$ sia Vera non consente di concludere niente, né su P, né su Q

dimostrazione per assurdo

o modus tollens

$$P \implies Q \qquad \neg Q \implies \neg P$$

$$\begin{array}{c|c} Premesse & Conclusione \\ \hline (\neg Q \implies \neg P) \text{ Vera} & Q \text{ Vera} \\ P \text{ Vera} & \end{array}$$

dimostrazione per assurdo - esempio

- o teorema: «Se il prodotto di due numeri è diverso da 0, allora entrambi sono diversi da 0»
- \circ $P := m \cdot n \neq 0$
- $\circ \quad Q := (m \neq 0) \land (n \neq 0)$
- $\circ P \Longrightarrow Q$
- o per assurdo: $\neg Q \Longrightarrow \neg P$
- $\circ \quad \neg Q := (m = 0) \lor (n = 0)$
- \circ $\neg P := m \cdot n = 0$