The User Manual of PSM Validator

Long WU HKUST

2021 March

Contents

1 Introduction					
2	Installation				
	2.1	Install with binary package	1		
	2.2	Compile from source code	2		
		2.2.1 Prerequisites	2		
		2.2.2 Compilation and installation from source code (Ubuntu) $$	3		
3	Ba	sic usage	4		
	3.1	Tree structure after installed	4		
	3.2	Train a demo validator	5		
	3.3	Prediction	5		

1 Introduction

Validate PSM with a universal score.

2 Installation

2.1 Install with binary package

It is highly recommended to use the compiled exectuables due to the difficulty to compile C++ source code and reconcile all the dependencies. Download from here

2 INSTALLATION 2

Table 1. dependencies of 1 SW validator						
package	version	provided	function			
spdlog	X	YES	logger			
comet	X	YES	generate ground truth PSMs			
ranger	X	YES	random forest			
liblinear	2.21	YES	Logistic Regression			
rapidxml	1.13	YES	xml parser			
SpectraST	5.0	YES	spectra annotation			
sqlite3	3.0	YES				
Boost	1.65	YES	File system; program option parser			
gnuplot-iostream	X	YES	generate plots			
gnuplot	X	NO	needed by gnuplot-iostream			
gsl	1.16	NO	SpectraST			

Table 1: dependencies of PSMValidator

Those are the binary files in the bin folder:

2.2 Compile from source code

2.2.1 Prerequisites

The following packages are required to compile from source code. The following script installs the prerequisites packages.

Listing 1: install GSL v1.16 and other dependencies

```
# part one, install GSL 1.16

GSL_VERSION=$(gsl-config --version)
if [ "$GSL_VERSION" == "1.16" ]; then
```

2 INSTALLATION 3

```
echo "GSL version 1.16 already installed!"
else
  echo GSL version is $GSL_VERSION
  wget https://mirror-hk.koddos.net/gnu/gsl/gsl-1.16.tar.gz
  tar xvf gsl-1.16.tar.gz
  # shellcheck disable=SC2164
  (
    cd gsl-1.16 || exit
    ./configure
    make all -j 10
    sudo make install
  )
fi

# part two install other packages.
sudo apt-get install sqlite3 libsqlite3-dev gnuplot gnuplot-qt
```

2.2.2 Compilation and installation from source code (Ubuntu)

 $\label{lem:commands} First, install\ cmake,\ build-essential\ and\ gnuplot\ with\ following\ commands\\$ $\ sudo\ apt-get\ install\ cmake\ build-essential\ gnuplot$

Next, compile and install the psmvalidator with following commands.

Listing 2: compile and install from soruce code of PSMValidator unzip PSMValidator_v1.0.0.zip cd </path/to/the/source/code> # change accordingly cmake .
cmake --build build

cmake --install . --prefix .

3 BASIC USAGE 4

3 Basic usage

3.1 Tree structure after installed

```
|-- bin
| |-- comet
 |-- predict
| |-- psmvalidator
  |-- ranger
 `-- train
|-- model
   |-- nist_human_hcd_selected_features.txt_2.000000_frag.
   model
   `-- nist_human_hcd_selected_features.
  txtmtry_8_ntree_900_trN_20000.forest
|-- param
 `-- psmvalidator.conf
|-- predict
   |-- 01625b_GD2-TUM_first_pool_12_01_01-3xHCD-1h-R1.mzML
   |-- interact-01625b_GD2-TUM_first_pool_12_01_01-3xHCD-1h-
   R1.ipro.pep.xml
   `-- TUM_first_pool_12.pep.list
|-- scripts
   |-- train_small_demo_mgf.bash
  `-- validate_psm.bash
`-- train
   |-- comet16low.param
   |-- featurelist.txt
   |-- features.txt
   |-- human_hcd_selected_new_small.mgf
   |-- uniprot-human-2020-12.fasta
   |-- uniprot-human-2020-12TD_only_decoy.fasta
   |-- uniprot_yeast_reviewed_6721_Nov152016.fasta
```

3 BASIC USAGE 5

```
`-- uniprot_yeast_reviewed_6721_Nov152016TD_only_decoy. fasta
```

3.2 Train a demo validator

```
    input

            spectra (mgf)
            * train/human_hcd_selected_new_small.mgf
            database (fasta)
            * target: uniprot-human-2020-12.fasta
            * decoy: uniprot-human-2020-12TD_only_decoy.fasta

    output

            model
             * human_hcd_selected_new_small_mtry_8_ntree_900_features.forest
            to train the validator, run the following command.

    cd scripts

            /train_small_demo_mgf.bash
```

3.3 Prediction

- input
 - Search result: Comet search result (PepXML)
 - Model: human_hcd_selected_new_small_mtry_8_ntree_900_features. forest
- output
 - result table with RF(random forest) score

To use the validator, users could directly use the trained model. Here is an example:

```
cd scripts
./validate_psm.bash
```