Практическое занятие № 31

Эконометрические модели. Множественная регрессия

- Уравнение регрессии $Y = XB + \varepsilon$, где $B = (X^TX)^{-1}X^TY$,
- Оценка влияние факторов x_j на зависимую переменную y: $\beta_j = b_j \frac{s_{x_j}}{s_y}, \quad E_j = b_j \frac{\bar{x}_j}{\bar{y}}$

- Остаточная дисперсия $s^2 = \frac{(Y-XB)^T(Y-XB)}{n-p-1}$ Коэффициенты детерминации $R^2 = 1 \frac{(Y-XB)^T(Y-XB)}{(Y-Y)^T(Y-Y)}$, $\hat{R}^2 = 1 \frac{s^2}{\hat{s}_y^2}$ Значимость коэффициента регрессии: $\frac{|b_j|}{s_{b_j}} > t_{1-\alpha;n-p-1}$, где $s_{b_j}^2 = s^2[(X^TX)^{-1}]_{jj}$ Доверительный интервал для коэффициента регрессии: $|b_j^* b_j| \leqslant t_{1-\alpha;n-p-1}s_{b_j}$, где $s_{b_j}^2 = s^2[(X^TX)^{-1}]_{jj}$ Доверительный интервал для значения y: $|y_0^* y_0| \leqslant t_{1-\alpha;n-p-1}s_{y_0}$, где $s_{y_0}^2 = s^2[1 + X_0^T(X^TX)^{-1}X)_{jj}$
- 1. Предположим, что коммерческий агент рассматривает возможность закупки небольших зданий под офисы в традиционном деловом районе. Агент может использовать множественный регрессионный анализ для оценки цены здания под офис на основе следующих переменных: y — оценочная стоимость здания в условных единицах; x_1 — общая площадь в квадратных метрах; x_2 — количество офисов; x_3 — количество входов (0,5 входа — вход только для доставки корреспонденции); x_4 — возраст здания — время эксплуатации в годах. Агент наугад выбирает 11 зданий из имеющихся 1500 и получает следующие данные:

пп			Входы	Возраст	Стоимость
П. П.	x_1	x_2	x_3	x_4	y
1	2310	2	2	20	42000
2	2333	2	2	12	144000
3	2356	3	1,5	33	151000
4	2379	3	2	43	151000
5	2402	2	3	53	139000
6	2425	4	3	23	169000
7	2448	2	1,5	99	126000
8	2471	2	2	34	142000
9	2494	3	3	23	163000
10	2517	4	4	55	169000
11	2540	2	3	22	149000

Требуется:

- а) вычислить матрицу коэффициентов парной корреляции и проанализировать тесноту связи между показателями;
- б) построить линейную модель регрессии, описывающие зависимость y_t от факторов x_1 и x_2 ;
- в) оценить качество модели вычислив коэффициент детерминации;
- г) проанализировать влияние факторов на зависимую переменную (β -коэффициент, коэффициентр эластичности) и оценить их значимость, найти доверительный интервал;
- д) определить точечные прогнозные оценки ВНП для 5 наблюдений (объясняющие переменные задать самостоятельно):
- 2. Заданы три временных ряда:

Год	1	2	3	4	5	6	7	8	9	10
Валовой национальный продукт (в млрд $\$$), y_t		11	10	11	15	17	21	25	23	19
Потребление (в млрд $\$$), x_{1t}		14	33	37	40	42	41	49	56	48
Инвестиции (в млрд \$), x_{2t}		22	14	26	25	32	35	34	39	45

Требуется:

- а) вычислить матрицу коэффициентов парной корреляции и проанализировать тесноту связи между показателями;
- б) построить линейную модель регрессии, описывающие зависимость y_t от факторов x_{1t} и x_{2t} ;
- в) оценить качество модели, вычислив среднюю ошибку аппроксимации и коэффициент детерми-
- г) проанализировать влияние факторов на зависимую переменную и оценить их значимость,
- д) определить точечные прогнозные оценки ВНП для 5 наблюдений (объясняющие переменные задать самостоятельно);

Все полученные результаты необходимо интерпретировать.