

Universidade Tecnológica Federal do Paraná Campus Campo Mourão

Curso: Bacharelado em Ciência da Computação

Disciplina: Arquitetura e Organização de Computadores

Prof. Dr. João Fabrício Filho

Monitor: Matheus H. Coitinho Loss

Decodificador e Controle

1. Definições

1.1. Decodificador de instruções

Um decodificador de instruções é um componente eletrônico que possui uma entrada (do tamanho de uma instrução) e algumas saídas, com os significados da instrução de entrada.

1.2. Unidade de extensão de sinal

Uma unidade de extensão de sinal completa os bits mais significativos de um dado de entrada com o bit de sinal (positivo ou negativo) desse dado. A saída possui número de bits maior do que a entrada para que o sinal seja copiado.

1.3. Unidade de Controle Principal

A unidade de controle ativa ou desativa *flags* de seleção de dados dentro do datapath. Essa unidade dita o caminho percorrido pelos dados dentro do processador, selecionando as saídas dos *muxes* do *datapath*.

1.4. Unidade de Controle da ULA

A unidade de controle da ULA seleciona a operação a ser realizada na ULA. A operação na ULA é selecionada por essa unidade de controle em separado, que tem como entrada os campos FUNCT das instruções R e um dado de controle de 2 bits chamado ALUOp.

2. Exercício

O exercício consiste em implementar um decodificador de instruções do MIPS, uma unidade de extensão de sinal, uma unidade de controle principal e uma unidade de controle da ULA como componentes separados a serem utilizados em um caminho de dados monociclo. Componentes prontos do simulador (como distribuidores, muxes e memórias) podem ser utilizados, desde que justificados.

3. Especificação

3.1. Decodificador de instruções

A Figura 1 mostra um diagrama das entradas e saídas do decodificador de instruções. Basicamente, o decodificador separa os campos de cada instrução de 32 bits nos formatos R, I e J do MIPS.

Figura 1 - Entradas e saídas do decodificador de instruções.

A entrada do decodificador de instruções deve ser uma instrução de 32 bits.

As saídas do decodificador devem ser como a descrição abaixo:

- opcode: Código da operação, especificado em instrução[26:31].
- <u>rs</u>: registrador de origem 1 (instruções R) ou de endereço relativo (instruções I), especificado em instrução[21:25].
- <u>rt</u>: registrador de origem 2 (instruções R) ou de destino de dado (instruções I), especificado em instrução[16:20].
- <u>rd</u>: registrador de destino para escrita (instruções R), especificado em instrução[11:15].
- shamt: quantidade de shift (instruções R), especificado em instrução[6:10].
- <u>funct</u>: código de função (instruções R), especificado em instrução[0:5].
- imm: valor do imediato (instruções I), especificado em instrução[0:15].
- addr: endereço absoluto (instruções J), especificado em instrução[0:25].

3.2. Unidade de Extensão de Sinal

A entrada e a saída da unidade de extensão de sinal devem ser como o diagrama da Figura 2, na qual a saída contém 16 bits a mais do que a entrada.

Figura 2 - Unidade de extensão de sinal [1].

No qual:

- A entrada é um dado de 16 bits.
- A saída é um dado de 32 bits, que copia o bit de sinal da entrada para os bits mais significativos da saída.

3.3. Unidade de controle principal

A Figura 3 mostra um esquema de entradas e saídas da unidade de controle principal do datapath. O campo OPCODE fornecido pelo decodificador de instruções é a única entrada da unidade de controle principal.

Figura 3 - Entradas e saídas da unidade de controle principal.

Todas as instruções com opcode 0x0 são do tipo R. Os sinais ALUSrc, RegDst, WriteReg e ALUOp servem para essas instruções, cujas saídas abaixo devem ser configuradas:

- <u>RegDst</u>: deve ter o valor 1, indicando que o registrador de destino é RD. Essa saída deve ser ligada ao bit de seleção de um mux na entrada WR do banco de registradores. Esse mux escolhe entre RT e RD para o registrador de escrita dos resultados.
- <u>WriteReg</u>: deve ter o valor 1, indicando que a operação escreve em um registrador. Esse bit deve ser ligado à entrada RegWrite do banco de registradores, que ativa a escrita no banco.
- ALUOp: deve ter o valor 00, indicando que a operação da ULA será selecionada pelo campo FUNCT.

O comportamento das instruções com opcode diferente de 0x0 deve ser como abaixo:

- **ADDI**: deve ativar os sinais <u>WriteReg</u> e <u>ALUSrc</u>. ALUOp deve selecionar a operação de soma na ULA. Outros sinais devem ser desativados.
- <u>LW</u>: deve setar os sinais <u>MemToReg</u> (escreve valor da memória em registrador), <u>MemRead</u>, <u>WriteReg</u> e <u>ALUSrc</u> (segunda entrada da ULA é o imediato). <u>ALUOp</u> deve selecionar a operação de soma para calcular o endereço da memória pelo imediato. Outros sinais devem ser desativados.
- <u>SW</u>: deve setar os sinais <u>MemWrite</u> (escreve valor do registrador na memória) e <u>ALUSrc</u> (segunda entrada da ULA é o imediato). <u>ALUOp</u> deve selecionar a operação

de soma para calcular o endereço da memória pelo imediato. Outros sinais devem estar desativados.

- **BEQ**: deve colocar como 1 o sinal <u>Branch</u> e informar em <u>ALUOp</u> que se trata de um branch para realizar subtração. Outros sinais devem estar como zero.
- **BNE**: os sinais <u>Branch</u> e <u>Bne</u> devem estar em 1, além disso, deve informar em <u>ALUOp</u> que se trata de um branch para realizar subtração. Outros sinais devem estar desativados.
- J: deve setar o sinal Jump. Outros sinais devem ser desativados.
- **JAL**: os sinais <u>Link</u>, <u>Jump</u> e <u>WriteReg</u> devem estar em 1, outros sinais devem estar desativados.
- **JR**: o sinal <u>JumpRegister</u> (saída da unidade de controle da ULA) deve estar como 1 e outros sinais devem estar desativados.

3.4. Unidade de Controle da ULA

A Figura 4 mostra um esquema de entradas e saídas para a unidade de controle da ULA. O campo FUNCT fornecido pelo decodificador de instruções deve selecionar qual operação será realizada na ULA, a qual terá seu seu seletor de instrução ligado à saída Op.

Figura 4 - Unidade de controle da ULA.

A saída Op depende da implementação da ULA feita pelo grupo. Dessa forma, o campo FUNCT da instrução deve servir para selecionar qual operação será ativada quando o valor de ALUOp for "00".

4. Entrega

Deverão ser entregues:

- 1. Um relatório, continuando o documento da entrega anterior, que descreva o comportamento e a implementação das unidades especificadas.
- 2. Os arquivos com o projeto do simulador Logisim.

O relatório da atividade deve estar no formato do modelo disponibilizado no moodle. Os dois itens devem estar compactados em um mesmo arquivo .zip.

Referências

[1] Patterson, David A. Hennessy, John L. Organização e Projeto de Computadores. Disponível em: Minha Biblioteca, (5a. edição). Grupo GEN, 2017.