Tarea 1 Beto y Enrique B B E E B B - EBB: (0.75)(0.25)(0.25) = 4.68 %. - EBEBB: (0.75)(0.25)(0.75)(0.25) = 0.88 V. - BB: (0.25)(0.25) = 6.25 %. - B E B B : (0.25)(0.75)(0.25)(0.25) = 1:17% - B E B E B: (0.25)(0.75)(0.75)(0.75)(0.75) = 0.88%. P(B): 4.68 + 0.88 + 6.75 + 1.17 + 0.88 P(B) = 13.87%

C	LDO	31	es	9	Y	Num	ero		de_	jug	gos	e	spei	rad	09	que	de	ne	el	tor	reo	?
2	j	pequ	20											9 -			a					
6	B	B	:	1/	16	<	6.	25	-/.	:	64	1020			1							
0	E	E	2	9/	16	ij	210	102	1	3				3						7		
2																						
)	ju	90	S		j 1	4)(3/	1/3	5/)		9/		-	144 /	i st	8		No.		0		
45.5%	E			4	13	4)(1/4	1'/0	14]		3/	9	,	481	1024							
	L	0	D		()	7)(/-()	9				9 -		1	1024	1						
4	jue	do	7													1						
đ	В	E	B	B	=	(1/4)(3	/y)	1/4	1/4		=	3/2	56	7	12/11	124					
0	E	BI	EE		=	(3-/4	1(-)	4)(3/4)	(3/4)	2	27/2	56	Ξ	108/	1024					
2	jue	90:	5				(en	1/3/	89	0	= (28	0)(75.	010			Ĵ	8	8	E	
0	B					=	(31)	1/3/	4)	/y) (5/4)	(1/4	1 20	271	024	1 4	8			a		
0	E		E			E	(14)	131	1)((4)	31	131) · j	27/	024			0)			9	
	B	E	6	E O	t	11	13/4	11	1)(/	31)	14	11/9	1 -	91	1024	-0)			d	3	9	
	L	O		D	O	-	(1.	ig(v	411	791	1.4	1(//	1) 5	//(024				Ç1	J	G	_
FI	x)	= 1	1	64	+ 5	76	+	2	/ 10	4 4	48	1	+1)	1 10	1 -1 -1	D.R.	10	7/	10	L	Cus	
				10	24	-		J	18	107	4			-	10.7	4		3	18	1024	1/8	19
																	,			100	. 4	
EI	X)	5	2/	4	+	9/1	Ь	+	15/3	32	+	45/	178									
			22-	7.1																		
El.	X)	=	00	1/12	8																	
-1	v \	_	0	13	25	7																
kl.	\)	-	1.	65	28																	

Tarea 1

Andrés Villarreal González

2024-08-06

Problema 2

```
# Probabilidad de ser detenido en un cruce
p < -0.1
# Primera Ruta: 4 cruces
n1 <- 4
prob tarde ruta1 <- sum(dbinom(2:n1, size = n1, prob = p))</pre>
# Segunda Ruta: 2 cruces
n2 <- 2
prob_tarde_ruta2 <- sum(dbinom(1:n2, size = n2, prob = p))</pre>
# Imprimir las probabilidades
cat("Probabilidad de llegar tarde en la primera ruta:",
prob_tarde_ruta1*100,"%", "\n")
## Probabilidad de llegar tarde en la primera ruta: 5.23 %
cat("Probabilidad de llegar tarde en la segunda ruta:",
prob tarde ruta2*100,"%", "\n")
## Probabilidad de llegar tarde en la segunda ruta: 19 %
# Decidir la mejor ruta
if (prob_tarde_ruta1 < prob_tarde_ruta2) {</pre>
  cat("El profesor debe tomar la primera ruta para minimizar la
probabilidad de llegar tarde.\n")
} else {
  cat("El profesor debe tomar la segunda ruta para minimizar la
probabilidad de llegar tarde.\n")
## El profesor debe tomar la primera ruta para minimizar la probabilidad
de llegar tarde.
```

Problema 3

```
# Probabilidades de la demanda de revistas
probabilidades <- c(1/15, 2/15, 3/15, 4/15, 3/15, 2/15)
demandas <- 1:6</pre>
```

```
# Precio de compra y venta de las revistas
costo compra <- 2.00
precio venta <- 4.00
# Calcular el valor esperado de X
valor_esperado_X <- sum(demandas * probabilidades)</pre>
cat("Valor esperado de X: ", valor_esperado_X, "\n")
## Valor esperado de X: 3.8
# Función para calcular el ingreso neto esperado
ingreso_neto_esperado <- function(n) {</pre>
  ingresos <- sapply(demandas, function(x) {</pre>
    if (x <= n) {
      return(x * precio_venta - n * costo_compra)
      return(n * precio venta - n * costo compra)
    }
  })
  ingreso_esperado <- sum(probabilidades * ingresos)</pre>
  return(ingreso esperado)
# Calcular el ingreso neto esperado para 3, 4, 5 y 6 ejemplares ordenados
ingreso_esperado_3 <- ingreso_neto_esperado(3)</pre>
ingreso_esperado_4 <- ingreso_neto_esperado(4)</pre>
ingreso esperado 5 <- ingreso neto esperado(5)</pre>
ingreso_esperado_6 <- ingreso_neto_esperado(6)</pre>
cat("Ingreso neto esperado al ordenar 3 ejemplares: ",
ingreso_esperado_3, "\n")
## Ingreso neto esperado al ordenar 3 ejemplares: 4.933333
cat("Ingreso neto esperado al ordenar 4 ejemplares: ",
ingreso_esperado_4, "\n")
## Ingreso neto esperado al ordenar 4 ejemplares: 5.333333
cat("Ingreso neto esperado al ordenar 5 ejemplares: ",
ingreso_esperado_5, "\n")
## Ingreso neto esperado al ordenar 5 ejemplares: 4.666667
cat("Ingreso neto esperado al ordenar 6 ejemplares: ",
ingreso_esperado_6, "\n")
## Ingreso neto esperado al ordenar 6 ejemplares: 3.2
```