Instituto Politécnico Nacional Escuela Superior de Cómputo

Arquitectura de computadoras

"Sumadores"

Grupo: 3CM8

Integrantes: Arcos Ayala Jonathan Cruz Téllez Nancy Susana Zepeda Ibarra Allan Ulises

Introducción.

Los sumadores son circuitos importantes para cualquier sistema digital en el que se procesen datos numéricos. Las reglas básicas de la suma binaria indican que:

0+0=0

0+1=1

1+0=1

1+1=10

Al estar sumando números con un tamaño fijo de un bit, no es posible tener un resultado con dos bits. Por tanto, la salida de un sumador no es sólo el valor de la suma, ya que también es posible que exista acarreo.

Existen diferentes tipos de sumador, que a pesar de tener el mismo funcionamiento tienen fines diferentes, ya que su eficiencia en funcionamiento es diferente.

Sumador Completo

La principal diferencia entre un sumador completo y un semisumador es que el sumador completo admite un valor que represente un acarreo de entrada. Dado que podemos expresar la suma de dos bits con la operación XOR, podemos expresar la suma de dos bits y un acarreo de la siguiente forma: $S = A \Theta B \Theta Ci$

El acarreo de salida será 1 en dos circunstancias: Cuando las dos entradas A y B sean 1 Cuando la suma de las dos entradas sea 1 y el acarreo de entrada también sea 1, quedando la siguiente ecuación.

 $Co = AB + Ci(A \Theta B)$

Sumador Restador

La resta binaria se realiza sumando al minuendo el complemento a 2 del sustraendo. Debido a esto, no es necesario tener un circuito restador separado, ya que se puede modificar el sumador para que también realice la operación de resta.

Un circuito sumador/restador puede hacerse a partir de un circuito sumador (por ejemplo, con acarreo en cascada) si se añade la señal de entrada SEL y unas puertas XOR para complementar el sustraendo

Sumador con Acarreo Anticipado

La cadena de acarreos es el camino crítico en el retardo de un sumador en cascada pero, afortunadamente, la mayoría de las expresiones necesarias pueden ser precalculadas, reduciendo el retardo. Para poder anticipar el valor del acarreo hay que dividir la función que lo expresa en otra función.

 $Ci+1 = AB + Ci(A \Theta B)$

Desarrollo.

En el desarrollo de la practica en cuanto al sumador completo y al sumador restador no tenemos muchos problemas ya que funciono casi a la primera solo con meter las ecuaciones, al momento de implementar el sumador con acarreo anticipado encontramos el problema ya que no teníamos las ecuaciones correctas para el sumador con acarreo anticipado, pero investigando un poco pudimos implementarlo.

Entidad.

Contador Completo

Contador restador

Circuito de difusión

Sumador con acarreo anticipado

Cálculos.

Sumador completo

Ci	Α	В	Co	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0

1 1 1 1	_
1 1 1 1	1

Ci/AB	00	01	11	10
0			1	
1		1	1	1

Co=AB+ACi+BCi $S=A \Theta B \Theta Ci$

Sumador con acarreo anticipado Co=Ci(P+G) S=P+G

Sumador Restador

Ci	В	Α	В	A'
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	0	0
1	1	1	0	1

Ci/BA	00	01	11	10
0	0	0	1	1
1	1	1	0	0

Ci/BA	00	01	11	10
0	0	1	1	0
1	0	1	1	0

F=A $B'A=C'B+B'C=B \odot C$

Simulación.

Sumador completo

Name	Value	1 ps	i i li i i i	2 ps	3 ps	4 ps	5 ps	6 ps	17 ps	B ps	9 ps
▶ 📑 veca[3:0]	0110		0001	0011	0100	0101	0110	K	01	10	
vecb[3:0]	1001				0100			1000	0111	1001	1010
in cin sal[4:0]	0										
▼ 📷 sal[4:0]	01111		00101	00111	01000	01001	01010	01110	01101	01111	10000
T _m [4]	0										
l <mark>‱</mark> [3]	1										
1 [2]	1										
l [1]	1										
la [o]	1										
Um acar1	0										
Ua acar2	0										
la acar3	0										

Sumador Restador

Sumador con acarreo anticipado

Conclusión.

Podemos ver todas las formas de implementar una misma función solo para ver que nos conviene más en que situación, aun que tendremos que aceptar que el acarreo anticipado si reduce el tiempo en que se hace la operación, pero acompleja bastante el circuito ya pasando de 4 bits el circuito ya está bastante difícil.

Bibliografía.

• Sistemas digitales principios y aplicaciones; Ronald J. Tocci & Neal S. Widmer; Octava edición; Pearson Educación; 2003; 881pag.