Nome: $N^{\underline{o}}$ USP:

2ª Prova - Termodinâmica e Física Estatística

- (1) Um sistema particular sujeito ao vínculo que mantém constante o volume e o número de moles, de modo que nenhum trabalho pode ser feito sobre ou pelo sistema, possui capacidade calorífica da forma $C(T) = DT^n$, com n > 0 e D uma constante.
 - a) (0,5) Calcule a energia interna e a entropia para tal sistema. Obtenha a equação fundamental, S(U, V, N).
 - b) (1,0) Suponha agora dois sistemas do tipo acima com temperaturas iniciais T_1 e T_2 , respectivamente, isolados numa caixa e separados por uma parede rígida, impermeável e diatérmica. Qual será o trabalho máximo liberado (deixando os dois sistemas em uma temperatura comum)?
 - c) (0,5) Nas mesmas hipóteses, se agora C(T) = a/T, com a constante, qual a temperatura final de equilíbrio e o máximo trabalho liberado após o equilíbrio térmico? (Neste caso $T_2 > T_1$).
- 2 Um sistema particular obedece as duas equações de estado:

$$T = \frac{3As^2}{v}; \quad P = \frac{As^3}{v^2},$$

com A constante.

- a) (1,0) Encontre $\mu(s,v)$ (utilize as relações de Gibbs-Duhen) e então ache a equação fundamental (agora, utilize a relação de Euler).
- b) (1,0) Agora, encontre a equação fundamental do sistema por integração direta da forma molar da equação.
- (3) Uma série de N+1 reservatórios grandes com água possuem temperaturas $T_0, T_1, T_2, \ldots, T_N$, com $T_n > T_{n-1}$. Um corpo pequeno com capacidade calorífica C_v (com volume constante e independente da temperatura) está inicialmente em equilíbrio térmico com o reservatório de temperatura T_0 . O corpo é então removido deste reservatórios e imerso no reservatórios de temperatura T_1 . O processo é repetido até que, após N passos, o corpo esteja em equilíbrio com o reservatório de temperatura T_N . A sequência é então invertida, até que o corpo esteja mais uma vez em equilíbrio com o reservatório inicial, na temperatura T_0 . Supondo que a razão das temperaturas de sucessivos reservatórios seja constante, ou seja,

$$T_n/T_{n-1} = (T_N/T_0)^{1/N}$$

e desprezando a variação (pequena) na temperatura de qualquer reservatório, calcule:

7600023 1 Novembro de 2021

Nome: $N^{\underline{o}}$ USP:

a) (0,5) A variação na entropia total quando o corpo é tomado sucessivamente "sequência acima" $(T_0 \to T_N)$;

- b) (0,5) A variação na entropia total quando o corpo é levado de volta na "sequência abaixo" $(T_N \to T_0)$;
- c) (0,5) A variação total na entropia na soma das duas sequências acima;
- d) (0,5) O limite dominante não-trivial destes (a, b e c) resultados quando $N \to \infty$, mantendo T_0 e T_N constantes. Para isso, utilize que para N suficientemente grande,

$$N(x^{1/N} - 1) \approx \ln x + (\ln x)^2 / 2N + \dots$$

Interprete fisicamente os resultados.

4 A Lei de Stefan-Boltzmann diz que a densidade de energia radiante em equilíbrio térmico com as paredes de uma cavidade de volume constante V é $u=AT^4, A\in\mathbb{R}$. Maxwell encontrou através da sua teoria eletromagnética que a pressão de um campo de radiação isotrópico nestas condições é P=u/3 onde $U\equiv u(T)V$.

a) (1,0) Primeiramente, utilizando a relação fundamental da termodinâmica:

$$dU = TdS - PdV$$
,

mostre que:

$$\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial S}{\partial V}\right)_T - P = T\left(\frac{\partial P}{\partial T}\right)_V - P;$$

- b) (0,5) Agora, fazendo uso do item anterior e da relação pressão-densidade, corrobore a Lei de Stefan-Boltzmann;
- c) (0,5) Por fim, obtenha P=P(T) e s=s(T), com $s\equiv S/V$, para a densidade de energia radiante.
- (5) (2,0) A entalpia de um sistema particular é:

$$H = AS^2N^{-1}\ln(P/P_0),$$

com A uma constante positiva. Calcule a capacidade de calor molar c_v , como função de P e T.

7600023 2 Novembro de 2021