# MA50260 Statistical Modelling

Lecture 8: Introduction to GLM

Ilaria Bussoli

March 1, 2024

#### Motivation

While the (normal) linear regression model

$$Y_i \sim \text{Normal}(\beta_1 x_{i,1} + \dots + \beta_p x_{i,p}, \sigma^2), \qquad i = 1, \dots, n,$$

is very useful, it cannot handle

- Non-normality of the residuals;
- Y bounded by nature;
- Residual variance changes across observations;
- ▶ A non-linear relationship between  $Y_i$  and  $x_{i,1}, \dots, x_{i,p}$ .

The rest of this course will introduce generalisations / extensions of the linear model.

## Philosophy of Statistical Modelling



## Types of Response Variables

Let's focus on a more refined classification:

- **► Continuous** → Normal
- **► Count (bounded)** → Binomial
- **▶ Count (unbounded)** → Poisson
- ▶ Binary → Bernoulli
- ightharpoonup Time-to-Event ightarrow Exponential, Gamma
- **Categorical** → Categorical

#### Exercise

Which distribution should we choose in the following cases?

- 1. Amounts of Rainfall
- 2. Number of hospital beds occupied
- 3. Wingspan of an albatross
- 4. Age of cancer incidence
- 5. Number of insurance claims

### Motivating Example: Beetles

We study the effect of dose of an insecticide on beetle mortality.



### Logit Transformation

We wish to map values from (0,1) to  $(-\infty,\infty)$ , and we use the **logit** transformation

$$\begin{array}{rcl} \operatorname{logistic}(x) & = & \frac{\exp(x)}{1+\exp(x)}, & x \in (-\infty, \infty), \\ \operatorname{logit}(x) & = & \log\left(\frac{x}{1-x}\right), & x \in (0,1). \end{array}$$



We could have also considered the **probit** transformation

$$probit(x) = \Phi^{-1}(x), \quad x \in (0,1).$$

#### Logistic Regression

The number of beetles killed is likely to be binomially distributed

$$Y_i \sim \text{Binomial}(m_i, p_i).$$

We include the logit transformation in our model and define

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_1 + \beta_2 x_i.$$

### Logistic Regression

The number of beetles killed is likely to be binomially distributed

$$Y_i \sim \text{Binomial}(m_i, p_i).$$

We include the logit transformation in our model and define

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_1 + \beta_2 x_i.$$

We thus obtain a logistic regression model with

- ► The linear predictor  $\eta_i = \beta_1 + \beta_2 x_i$ .
- ▶ The link function  $\log\left(\frac{p_i}{1-p_i}\right) = \eta_i$  between the mean and the predictor.
- ▶ The **distribution** of the observations,  $Y_i \sim \text{Binomial}(m_i, p_i)$ .

## Generalized Linear Models (GLMs)

A GLM is generally defined by three components:

► The linear predictor  $\eta_i = \beta_1 x_{i,1} + \ldots + \beta_p x_{i,p} = \mathbf{x}_i^{\mathrm{T}} \underline{\beta}$ . This is known as the systematic component.

## Generalized Linear Models (GLMs)

A GLM is generally defined by three components:

- ► The linear predictor  $\eta_i = \beta_1 x_{i,1} + \ldots + \beta_p x_{i,p} = \mathbf{x}_i^{\mathrm{T}} \underline{\beta}$ . This is known as the systematic component.
- $g(\mu_i) = \eta_i$  a **link function** mapping the linear predictor to the mean of the distribution.

## Generalized Linear Models (GLMs)

A GLM is generally defined by three components:

- ► The linear predictor  $\eta_i = \beta_1 x_{i,1} + \ldots + \beta_p x_{i,p} = \mathbf{x}_i^{\mathrm{T}} \underline{\beta}$ . This is known as the systematic component.
- ▶  $g(\mu_i) = \eta_i$  a **link function** mapping the linear predictor to the mean of the distribution.
- **Probability distribution**  $Y_i \sim F(\mu_i)$  from the exponential family. The distribution may also have a parameter  $\phi$ . This is termed the random component.

### Illustration



#### Link functions

| Name                  | Form                                              |
|-----------------------|---------------------------------------------------|
| identity              | $\mu_i = \eta_i$                                  |
| logarithmic           | $\log(\mu_i) = \eta_i$                            |
| reciprocal            | $1/\mu_i = \eta_i$                                |
| square                | $\mu_i^2 = \eta_i$                                |
| logit                 | $\log\left(\frac{\mu_i}{1-\mu_i}\right) = \eta_i$ |
| probit                | $\Phi^{-1}(\mu_i) = \eta_i$                       |
| complementary log-log | $\log[-\log(1-\mu_i)] = \eta_i$                   |

**Example:** For  $Y_i \sim \text{Normal}(\mathbf{x}_i^T \underline{\beta}, \sigma^2)$ , we have  $\mu_i = \eta_i$ .

#### Example

For the beetle data set, we used

$$\eta_i = \log\left(\frac{p_i}{1 - p_i}\right).$$

This is sometimes called the proportional odds model.

Consider the odds

$$\frac{p(x)}{1-p(x)}=\exp(\eta)=\exp(\beta_1+\beta_2x).$$

Suppose we compare two groups with

$$\eta = \eta(s, x) = \gamma_s + \beta_1 + \beta_2 x$$

and we thus have

$$\frac{p(s,x)}{1-p(s,x)} \div \frac{p(s',x)}{1-p(s',x)} = \exp(\gamma_s - \gamma_{s'}).$$