Definitions

- 1.) Let A and B be sets. We say that A is a "subset" of B, and write $A \subset B$ if $a \in A \implies a \in B$ holds for all $a \in A$.
- 2.) Let A be a set. We call $\mathcal{P}(A)$ the "power set" of A, and define it as $\mathcal{P}(A) = \{B : B \subset A\}$.
- 3.) We call \emptyset the "empty set" and define it where $|\emptyset| = 0$.
- 4.) We call S^2 the 2-sphere and define it as follows:

$$S^{2} = \left\{ (x_{1}, x_{2}, x_{3}) \in \mathbb{R}^{3} : \sum_{i=1}^{3} x_{i}^{2} = 1 \right\}$$

It represents the boundary points of a closed ball in \mathbb{R}^3 .

- 5.) Given a set A, $\mathcal{P}(A)$ represents the "power set" of A.
- 6.) We call Δ^2 the 2-simplex and define it as follows:

$$\Delta^2 = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : \sum_{i=1}^3 x_i = 1 \right\}$$

It represents an equilateral triangle with side length $\sqrt{2}$ in \mathbb{R}^3 .

Proofs

a.) Let A be an arbitrary set, and G be the set of all functions $g:A\to\{0,1\}$. Also, let $f:\mathcal{P}(A)\to G$ be a mapping defined as follows:

Given
$$S \in \mathcal{P}(A)$$
, define $f(S)$ as $(f(S))(a) = \begin{cases} 1 & \text{if } a \in S \\ 0 & \text{otherwise} \end{cases}$

First we will show that f is injective. Let $S_1, S_2 \in \mathcal{P}(A)$ where $f(S_1) = f(S_2)$. We can see that $s \in S_1 \implies (f(S_1))(s) = 1 \implies (f(S_2))(s) = 1 \implies s \in S_2$. Without loss of generality, we also see that $s \in S_2 \implies s \in S_1$, thus $s \in S_1 \iff s \in S_2 \implies S_1 = S_2$, thus $f(S_1) = f(S_2) \implies S_1 = S_2$, thus f is injective.

Next we will show that f is surjective. Let $g \in G$ and $S \in \mathcal{P}(A)$ where $S = \{a \in A : g(a) = 1\}$. Since $a \in S \implies g(a) = 1$ and $a \notin S \implies g(a) = 0$, we know that f(S) = g, thus for any g we can find S where f(S) = g, thus f is surjective.

Since f is both injective and surjective, it is bijective, thus we have found a bijection from $\mathcal{P}(A)$ to G. Q.E.D.

b.) Let A be an arbitrary set, and consider an arbitrary mapping $f:A\to \mathcal{P}(A)$. Also, let $S\in \mathcal{P}(A)$ where $S=\{a\in A: a\notin f(a)\}$. For the sake of establishing a contradiction, suppose f is surjective, then there exists $b\in A$ where f(b)=S. Assume that $b\in S$, then $b\notin f(b)$. However, since $f(b)=S,\ b\in S\implies b\in f(b)\implies b\notin S$. $\Rightarrow \Leftarrow$ Instead, assume that $b\notin S$, then $b\in f(b)$, and thus $b\in S$. $\Rightarrow \Leftarrow$ Since $b\in S\land b\notin S$ is a contradictionly we can conclude that f is not surjective, and thus not bijective, thus any mapping $f:A\to \mathcal{P}(A)$ is not bijective. Q.E.D.