CSC 565 – Computer System Architecture Deliverable 2 Cason Konzer

BLOCK DIAGRAM WITH INPUT OUTPUT PINS

CLOCK SIGNAL

External Clock used for flexibility, and so the programmer knows when to read values on the output bus. (Realistic implementation supports both internal and external clock).

NUMBER OF REGISTERS

Register	Description
IR	Instruction Register (Also Holds Flags)
R0	Register 0
R1	Register 1

³ Registers (Data Out is coded as a register)

FLAGS

Supporting Signed and Overflow, Overflow only relevant for SUB instructions, Signed supported for both SUB and OR

OTHER CONTROL REGISTERS THAT WILL BE NEEDED TO PERFORM OPERATIONS

Use extra bits in IR to hold flags from ALU output, as well as pass 'instruction' flags specifying operands, operation, and output destinations.

A DRAFT OF THE INSTRUCTION SET

Instruction/Flag Bit Encoding

OVF	SGN	OR	SUB	OPO 1	OPO 0	DST 1	DST 0
Overflown	Signed	ALU flag to	ALU flag to	Operand	Operand	Destination	Destination
Output	Output	use OR	use SUB	1	0	1	0
BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0

Destination Encoding

DST 1	DST 0	ALU Write Back Register(s)
0	0	No Write Back (only bus)
0	1	Write Back to R0
1	0	Write Back to R1
1	1	Write Back to R0 & R1

ALU Encoding

OR	SUB	ALU Operation
0	0	unused
0	1	Integer Subtraction
1	0	Logical Or
1	1	unused

Operation Encoding

OPO 1	OPO 0	Output (* is the operation)
0	0	R0 * R0
0	1	R1 * R0
1	0	R0 * R1
1	1	R1 * R1

Output Flag Encoding

OVF	SGN	Characteristics
0	0	Operation has not overflow and output has positive sign
0	1	Operation has not overflow and output has negative sign
1	0	Operation has overflow and output has positive sign
1	1	Operation has overflow and output has negative sign

Enable Encoding

ENA 1 (BIT 1)	ENA 0 (BIT 0)	Enabled Registers
0	0	None (required for ALU output loads)
0	1	R0
1	0	R1
1	1	IR

• TIMING DIAGRAM FOR THE FOLLOWING INSTRUCTIONS

```
// RESET ALL REGISTERS
```

// LOAD FF INTO RO

// LOAD 00 INTO R1

// DATA_OUT, R0, R1 = R0 | R1 = FF

// NO OP

// DATA_OUT, R0, R1 = R0 - R1 = 00

// NO OP

// NO OP

