

Panther: Fast Top-K Similarity Search on Large Networks

Jing Zhang¹, Jie Tang¹, Cong Ma¹, Hanghang Tong², Yu Jing¹, and Juanzi Li¹

¹Department of Computer Science and Technology Tsinghua University

²School of Computing, Informatics, and Decision Systems Engineering Arizona State University

Who are Similar with Barabási?

Similar Authors in Aminer

Related Work and Challenges

1 Share many	Method	Time Complexity	Space Complexity
direct/indirect	SimRank [kdd'02]	$O(IN^2d^2)$	$O(N^2)$
common neighbors.	TopSim [ICDE'12]	$O(NTd^T)$	O(N+M)
2	RWR [KDD'04]	$O(IN^2d)$	$O(N^2)$
Disconnected, but share similar	RoleSim [KDD'11]	$O(IN^2d^2)$	$O(N^2)$
structure.	ReFex [KDD'11]	$O(N+I(fM+Nf^2))$	O(N+Mf)

- Find top-K similar vertices for any vertex in a network
- ❖ d: average degree, f: feature number, T: path length

Challenges

C1: How to design a similarity method that applies to both similarities?

C2: Computational efficiency challenge.

Our Approach: Panther

1

Path Similarity

Intuition: two vertices are similar if they frequently appear on the same paths.

$$S_{ps}(v_i, v_j) = \frac{\sum_{p \in P(v_i, v_j)} w(p)}{\sum_{p \in \Pi} w(p)}$$

- A path is a *T*-length sequence of vertices $p = (v_1, \dots, v_{T+1})$.
- Π is all the T-paths in G.
- Path weight:

$$w(p) = \prod_{i=1, j=i+1}^{T} t_{ij}$$
, $t_{ij} = \frac{w_{ij}}{\sum_{v_k \in \mathcal{N}(v_i)} w_{ik}}$

$$S_{ps}(v_{1,}v_{2})=0.37,$$

 $S_{ps}(v_{1,}v_{3})=0.42,$
 $S_{ps}(v_{1,}v_{4})=0.39,$
 $S_{ps}(v_{1,}v_{5})=0.09.$

Panther_{ps}

Basic idea: random path sampling

Theoretical Analysis

How many random paths shall we sample?

Domain and range set

Upper bound of range set's VC dimension

Distribution

Theorem 1

Let $\mathcal R$ be a range set on a domain $\mathcal D$, with $VC(\mathcal R) \leq d$ and let ϕ be a distribution on $\mathcal D$. Given $\varepsilon, \delta \in (0,1)$, let S be a set of |S| points sampled from $\mathcal D$ according to ϕ , with

$$|S| = \frac{c}{\varepsilon^2} (d + \ln \frac{1}{\delta}),$$

where c is a universal positive constant. Then S is a ε -approximation to (\mathcal{R}, ϕ) with probability of at least $1 - \delta$.

Required sample size

Theoretical Analysis

- Domain: Π
- Range set: $\mathcal{R}_G = \{P_{v_i,v_j} : v_i, v_j \in V\}$
- VC bound: $VC(\mathcal{R}_G) \leq \log_2 {T \choose 2} + 1$
- Distribution: $\phi(p) = \operatorname{prob}(p) = \frac{w(p)}{\sum_{p \in \Pi} w(p)}$
- Path similarity $\frac{\sum_{p \in Pv_i, v_j} w(p)}{\sum_{p \in P} w(p)}$ is $\phi(Pv_i, v_j)$
- Conclusion

$$R = \frac{c}{\varepsilon^2} (\log_2 \left(\frac{T}{2}\right) + 1 + \ln \frac{1}{\delta})$$

– R random paths can guarantee ε and 1– δ .

Details

Proof of
$$VC(\mathcal{R}_G) \leq \log_2 {T \choose 2} + 1$$

 $VC(\mathcal{R}_G) = l$ and $l > \log_2 {T \choose 2} + 1$ Assume

A set Q of size I can be shattered by R_G

A 1-1 corresponding between each subset in Q and each range P_i in R_G

 $|\{P_i|p\in P_i \text{ and } P_i\in\mathcal{R}_G\}|=2^{l-1}|$

A path belongs only to the ranges w.r.t a pair of vertices in the path

$$\left||\{P_i|p\in P_i ext{ and } P_i\in \mathcal{R}_G\}|=inom{T}{2}<2^{l-1}$$

Contradiction

Vector Similarity and Panther_{vs}

- Limitation of path similarity: bias to close neighbors.
- **Vector Similarity**: the probability distributions of a vertex linking to all other vertices are similar if their topology structures are similar.
- **Panther**_{vs}: Use top-*D* path similarities calculated by Panther_{ps} to represent a vector:

$$\theta(v_i) = (S_{ps}(v_i, v_{(1)}), S_{ps}(v_i, v_{(2)}), \dots, S_{ps}(v_i, v_{(D)})) \quad S_{vs}(v_i, v_j) = \frac{1}{\|\theta(v_i) - \theta(v_j)\|}$$

Time Complexity

Method	Time Complexity	Space Complexity	
SimRank	$O(IN^2d^2)$	$O(N^2)$	
TopSim	$O(NTd^T)$	O(N+M)	
RWR	$O(IN^2d)$	$O(N^2)$	
RoleSim	$O(IN^2d^2)$	$O(N^2)$	adama nath
ReFex	$O(N+I(fM+Nf^2))$	O(N+Mf)	ndom path
Panther _{ps}	O(RTc+NdT	O(RT+Nd) Ver	tex-to-path index
Panther _{vs}	O(RTc+NdT+Nc)	$O(RT+Nd+ND) \rightarrow k$	(d-tree
Random samplii			

Experiments

Evaluation Aspects

- Efficiency Performance
- Accuracy Performance
- Parameter Sensitivity Analysis

Efficiency Performance

Tencent network

Preprocessing time + top-*k* similarity search time

				<u> </u>	<u> </u>		
V	E	RWR [(KDD'04]	TopSim [ICDE'12]	RoleSim [KDD'11]	ReFex [KDD'11]	Panther _{ps}	Panther _{vs}
6,523	10,000	+7.79hr	+38.58m	+37.26s	3.85s+0.07s	0.07s+0.26s	0.99s+0.21s
25,844	50,000	+>150hr	+11.20hr	+12.98m	26.09s+0.40s	0.28s+1.53s	2.45s+4.21s
48,837	100,000		+30.94hr	+1.06hr	2.02m+0.57s	0.58s+3.48s	5.30s+5.96s
169,209	500,000		+>120hr	+>72hr	17.18m+2.51s	8.19s+16.08s	27.94s+24.17s
230,103	1,000,000				31.50m+3.29s	15.31s+30.63s	49.83s+22.86s
443,070	5,000,000				24.15hr+8.55s	50.91s+2.82m	4.01m+1.29m
702,049	10,000,000				>48hr	2.21m+6.24m	8.60m+6.58m
2,767,344	50,000,000					15.787 <mark>m+1.36hr</mark>	1.60hr-2.17hr
5,355,507	100,000,000					44.09m+4.50hr	5.61hr+6.47hr
26,033,969	500,000,000					4.82hr+25.01hr	32.90hr+47.34hr
51,640,620	1,000,000,000					13.32hr+80.38hr	98.15hr+120.01hr

Can scale up to handle 1 billion edges

270X speed up

390X speed up

❖ *T*=5, *c*=0.5, ε = $\sqrt{1/|E|}$ and δ =0.1, *R*=16,609,640

Accuracy Performance of Pantherps

- Evaluate how Pantherps can approximate common neighbors.
- The score represents the improvement over a random method.

- ❖ Co-author networks: |V|=3K, |E| = 7K.
- ❖ Twitter network: |V| = 100K, |E| = 500K.
- Mobile network: |V| = 200K, |E| = 200K.

Accuracy Performance of Panther_{vs}

Identity Resolution

 Assume the same authors in different networks of the same domain are similar to each other.

Settings

 Given any two co-author networks, e.g., KDD and ICDM, if the topk similar vertices from ICDM consists of the query author from KDD, we say that the method hits a correct instance.

Parameter Analysis: Path Length T

- The performance gets better when *T* increases.
- The performance almost becomes stable When $T \ge 5$.

Effect of path length T on the accuracy performance of Panther_{ps}.

Parameter Analysis: Error Bound ε

- When |E|/(1/ε)² ranges from 5 to 20, scores of Panther_{ps} are almost convergent.
- The value (1/ε)² is almost linearly positively correlated with the number of edges in a network.

Conclusion

Methods:

Solve two similarity metrics efficiently.

Theoretic analysis:

 Sampling size is only related to path length given error-bound and confidence level.

Empirical evaluations:

- When |V| = 0.5 million and |E| = 5 million, Panther_{ps} achieves a $390 \times$ speed-up and Panther_{vs} achieves a 270x speed-up.
- Panther can scale up to a network with 1 billion edges.

Thank You

Code & Data:

http://aminer.org/Panther