Trabalho Prático 1

Luis Antonio Duarte Sousa 2023001964

1. Introdução da implementação

A implementação se resume a um módulo "mod7_reminder" que possui inputs A,B,C e D que representam os bits do número que será dividido por 7 e outputs X1,X2 e X3 que são os do resto. O primeiro passo foi a construção da tabela-verdade, seguido da minimização das 3 saídas utilizando mapas de Karnaugh. Por fim, usando as minimizações adquiridas foi construído o design do circuito com verilog onde assinalamos cada saída com sua respectiva equação.

Obs: A tabela-verdade, mapas, simplificações, entre outros, foram feitas a mão mas decidi utilizar softwares para melhorar a visualização :).

2. Tabela-verdade

A	В	С	D	X1	X2	Х3
0	0	o	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	1	0	0
0	1	0	1	1	0	1
0	1	1	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1
1	0	О	1	0	1	0
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	1
1	1	0	1	1	1	0
1	1	1	0	0	0	0
1	1	1	1	0	0	1

3. Forma Canônicas

$$X1(A, B, C, D) = \sum m(4, 5, 6, 11, 12, 13)$$

$$X2(A, B, C, D) = \sum m(2, 3, 6, 9, 10, 13)$$

$$X3(A, B, C, D) = \sum m(1, 3, 5, 8, 10, 12, 15)$$

4. Mapas de Karnaugh

X1:

Mapa de Karnaugh

		AB			
		00	01	11	10
	00	0	1	1	0
CD	01	0	1	1	0
CD	11	0	0	0	1
	10	0	1	0	0

X2:

Mapa de Karnaugh

		AB			
		00	01	11	10
CD	00	0	0	0	0
	01	0	0	1	1
	11	1	0	0	0
	10			0	1

X3:

Mapa de Karnaugh

		AB			
		00	01	11	10
CD	00	0	0	1	1
	01	1	1	0	0
	11	1	0	1	0
	10	0	0	0	1

5. Minimizações

$$X1(A,B,C,D) = B \sim C + \sim AB \sim D + A \sim BCD$$

 $X2(A,B,C,D) = A \sim CD + \sim A \sim BC + \sim BC \sim D + \sim AC \sim D$
 $X3(A,B,C,D) = A \sim C \sim D + A \sim B \sim D + \sim A \sim CD + \sim A \sim BD + ABCD$

6. Diagrama do Circuito

Foi decidido tentar implementar apenas utilizando NANDs pelo fato delas serem mais baratas em termos de transistores

7. Casos de teste

Foram criados diversos casos de teste que vão de 0000 a 1111 possuindo todas as permutações de 0 e 1 para verificar se de fato funciona corretamente. O diagrama de onda resultante foi:

Os 16 testes foram feitos sequencialmente sendo perceptível as mudanças dos 4 bits de inputs (4 primeiros) em conjunto com os 3 bits de outputs (3 finais) a cada 10 unidades de tempo. Por exemplo: Em t = 120, A = 1, B = 1, C = 0, D = 0 logo X1 = 1, X2 = 0 e X3 = 1 que corresponde a 5, o resto de 12/7.

Em seguida, comprovado o devido funcionamento, foi feito os casos do enunciado isolados gerando as seguintes ondas:

Considerando cada 10 unidades de tempo como um dia teremos:

Que seria a solução para o problema enunciado.