Лекция. Тригонометрические функции, их свойства и графики. Обратные тригонометрические функции.

Тригонометрические функции

3. Функция чётная	$\cos(-x) = \cos x$
4. Периодическая функция	$T=2\pi$
5. Точки пересечения с осями координат	(0; 1) $\mbox{ if } \left(\frac{\pi}{2} + \pi k; 0\right), \ k \in Z$
6. Промежутки знакопостоян- ства	$\cos x > 0 \text{ при } x \in \left(-\frac{\pi}{2} + 2\pi k; \frac{\pi}{2} + 2\pi k\right),$ $k \in Z;$ $\cos x < 0 \text{ при } x \in \left(\frac{\pi}{2} + 2\pi k; \frac{3\pi}{2} + 2\pi k\right),$ $k \in Z$
7. Промежутки возрастания и убывания	$\cos x$ возрастает на $[\pi + 2\pi k; \ 2\pi + 2\pi k]$, $k \in Z;$ $\cos x$ убывает на $[2\pi k; \ \pi + 2\pi k]$, $k \in Z$
8. Наибольшее значение функции	1 при $x=2\pi k,\ k\in Z$
9. Наименьшее значение функции	-1 при $x=\pi+2\pi k,\;k\in Z$

Видеоурок https://infourok.ru/videouroki/1184

5. Точки пересечения с осями координат	$(\pi k; 0), k \in \mathbb{Z}$
6. Промежутки знакопостоян- ства	$\sin x > 0$ при $x \in (2\pi k, \pi + 2\pi k), k \in Z;$ $\sin x < 0$ при $x \in (\pi + 2\pi k; 2\pi + 2\pi k), k \in Z$
7. Промежутки возрастания и убывания $y = \sin x$	Возрастает на $\left[-\frac{\pi}{2}+2\pi k;\frac{\pi}{2}+2\pi k\right]$, $k\in Z$; убывает на $\left[\frac{\pi}{2}+2\pi k;\frac{3\pi}{2}+2\pi k\right]$, $k\in Z$
8. Наибольшее значение функции	1 при $x=\frac{\pi}{2}+2\pi k,\ k\in Z$
9. Наименьшее значение функции	-1 при $x=-rac{\pi}{2}+2\pi k,\ k\in Z$

При рассмотрении тригонометрических функций нельзя не отметить свойство периодичности данных функций. Более подробно это свойство рассмотрено в видеоуроке:

https://infourok.ru/videouroki/1186

Свойства функции $y = \operatorname{tg} x$ (тангенсоида)	
1. Область определения	$x \neq \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z}$
2. Область значений	$y \in R$
3. Функция нечётная	tg(-x) = -tgx
4. Периодическая	$T = \pi$
5. Точки пересечения с осями координат	$(\pi k; 0), k \in \mathbb{Z}$
6. Промежутки знакопостоян- ства	$\operatorname{tg} x > 0$ при $x \in \left(\pi k; \frac{\pi}{2} + \pi k\right), \ k \in Z;$ $\operatorname{tg} x < 0$ при $x \in \left(-\frac{\pi}{2} + \pi k; \pi k\right), \ k \in Z$
7. Промежутки возрастания и убывания	$\operatorname{tg} x$ возрастает на каждом промежутке области определения $\left(-\frac{\pi}{2}+\pi k; \frac{\pi}{2}+\pi k\right)$ $k\in Z$
8. Наибольшего и наименьшего значения	нет

Более подробно о функциях тангенса и котангенса, их свойствах и особенностях построения графика, решении уравнений с помощью графиков данных функций рассказано в видеоуроке:

https://infourok.ru/videouroki/1190

Обратные тригонометрические функции

Домашнее задание

срок сдачи – 07 мая 2020г. 14.00 в чат по математике.

Решить графически уравнения:

$$\sin x = \frac{1}{2}.$$

$$\operatorname{tg} x = -\sqrt{3}$$
.

$$\sin x = 0$$
.

$$\cos x = -\frac{1}{2}$$
.

Для построения графика тригонометрической функции выберем единичный отрезок, равный двум клеткам. Тогда по горизонтальной оси Ох значение π (\approx 3,14) составит **шесть** клеток. Рассчитываем остальные значения аргументов (в клетках).

Например, решение уравнения $\sin x = \frac{\sqrt{3}}{2}$ графически

Чертеж, ответ записываем, используя периодичность функции.

Глава 7 «Графики и функции», учебник Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: учеб. для студ. учреждений сред.проф. образования/ М.И. Башмаков. – 4-е изд., стер. – М.: ИЦ «Академия», 2017, - 256 с.

В случае отсутствия печатного издания, Вы можете обратиться к Электроннобиблиотечной системе «Академия»

Список использованных интернет-ресурсов:

- 1. https://23.edu-reg.ru/
- 2. https://infourok.ru/