Geometría Diferencial 2025

Lista 02

18.febrero.2025

- 1. Let α una curva de Frenet en \mathbb{R}^n . Muestre que $\det[\alpha', \alpha'', \alpha''', \ldots, \alpha^{(n)}] = \prod_{i=1}^{n-1} \kappa_i^{(n-i)}$.
- 2. Construir una curva, no planar, de clase C^{∞} en \mathbb{R}^3 , que sea una curva de Frenet, excepto en un único punto, y que fuera de ese punto, satisface $\tau \equiv 0$.
- 3. (a) Sea $\alpha:[0,L]\to\mathbb{R}^2$ una curva plana, cerrada y simple, parametrizada por longitud de arco. Suponga que $0\le\kappa(s)\le c$, $\forall s\in[0,L]$, para alguna constante c>0. Probar que $L\ge\frac{2\pi}{c}$.
 - (b) Si reemplazamos la hipótesis de α ser simple por α tiene índice de rotación I, probar que $L \geq \frac{2\pi I}{c}$.
- 4. Sea $\alpha:[0,L]\to\mathbb{R}^2$ una curva plana, cerrada y convexa, orientada de forma positiva. La curva

$$\beta(s) = \alpha(s) - r\mathbf{n}(s),$$

donde r>0 es una constante positiva y $\mathbf{n}(s)$ es el vector normal de α en s, se llama una curva paralela a α . Muestre que

- a) $\ell(\beta) = \ell(\alpha) + 2\pi r$.
- b) $A(\beta) = A(\alpha) + rL + \pi r^2$.
- c) $\kappa_{\beta}(s) = \frac{\kappa_{\alpha}(s)}{1 + r\kappa_{\alpha}(s)}$.
- 5. Sea $C:[0,L]\to\mathbb{R}^2$ una curva plana, cerrada, orientada positivamente, con $\kappa>0$. Asuma que C posee al menos un punto de auto-intersección \mathbf{p} . Demostrar que
 - a) C posee al menos una tangente doble.
 - b) Existe un punto \mathbf{p}' cuya tangente a α en \mathbf{p}' es paralela a la tangente a α en \mathbf{p} .
 - c) El ángulo de rotación de la tangente en el arco positivo de C dado por pp'p es mayor a π .
 - d) El índice de rotación de C es $I \geq 2$.

6. Hallar todos los vértices del limaçon con ecuaciones paramétricas

$$\gamma(t) = ((b + a\cos t)\cos t, (b + a\cos t)\sin t), \qquad a, b > 0.$$

Considerar los casos (i) a > b, (ii) a < b, (iii) a = b.