1. Background and Motivation

For our problem, we chose Maxwell's equations for optical waves in one dimension assuming the medium only varries in the x-direction:

$$\mu \partial_t H_z + \partial_x E_y = 0$$

$$\partial_t D + \partial_x H_z = 0$$

where H is the magnetic field with H_y the y-component of the magnetic field, E is the electric field with E_z the z-component of the electric field, and D is the electrix flux density. We will consider a linear flux. In the linear case:

$$D = \varepsilon E_y + P$$

where ε is the electrical permitivity constant and P is the polarization current density.

We will consider periodic boundary conditions in the domain $x \in [0,2\pi]$, $t \in [0,T]$, so that $H_z(0,t) = H_z(2\pi,t)$ and $E_y(0,t) = E_y(2\pi,t)$ for all t>0. We will also consider Neumann boundary conditions and absorbing boundary conditions in the domain $x \in [0,200]$, $t \in [0,T]$.

In []:

2. Description of the Numerical Method

We need to start Yee method(FDTD) from one-dimensional Maxwell's equations In 1-D case, all planes parallel to y-z are zeros, so we can have the following PDE:

$$\partial_t H_x = 0$$

$$\partial_t H_y = rac{1}{\mu} \partial_x E_z$$

$$\partial_t H_z = -rac{1}{\mu}\partial_x E_y$$

and

$$\partial_t E_x = 0$$

$$\partial_t E_y = -rac{1}{arepsilon}\partial_x H_z$$

$$\partial_t E_z = rac{1}{\mu} \partial_x H_y$$

Combine them together we have

$$\frac{\partial E_y}{\partial t} = -\frac{1}{\varepsilon} \frac{\partial H_z}{\partial x}$$

$$rac{\partial H_z}{\partial t} = -rac{1}{\mu} rac{\partial E_y}{\partial x}$$

or

$$\frac{\partial E_z}{\partial t} = \frac{1}{\varepsilon} \frac{\partial H_y}{\partial x}$$

$$rac{\partial H_y}{\partial t} = rac{1}{\mu} rac{\partial E_z}{\partial x}$$

We choose the first two and by central finite difference method

$$rac{E_i^{k+1} - E_i^k}{\Delta t} = -rac{1}{arepsilon} rac{H_{i+1/2}^{k+1/2} - H_{i-1/2}^{k+1/2}}{\Delta x}$$

$$rac{H_{i+1/2}^{k+1/2}-H_{i+1/2}^{k-1/2}}{\Delta t} = -rac{1}{\mu}rac{E_{i+1}^k-E_i^k}{\Delta x}$$

Let E:= (is defined to be eugal to) $\sqrt{rac{arepsilon}{\mu}}E.$ Noting that $c=rac{1}{\sqrt{\muarepsilon}}$, our equation becomes

$$rac{E_i^{k+1}-E_i^k}{\Delta t} = -crac{H_{i+1/2}^{k+1/2}-H_{i-1/2}^{k+1/2}}{\Delta x}$$

$$rac{H_{i+1/2}^{k+1/2}-H_{i+1/2}^{k-1/2}}{\Delta t}=-crac{E_{i+1}^{k}-E_{i}^{k}}{\Delta x}$$

So

$$E_i^{k+1} = E_i^k - rac{c\Delta t}{\Delta x} (H_{i+1/2}^{k+1/2} - H_{i-1/2}^{k+1/2})$$

$$H_{i+1/2}^{k+1/2} = H_{i+1/2}^{k-1/2} - rac{c\Delta t}{\Delta x}(E_{i+1}^k - E_i^k)$$

There is the yee method for one-dimensional Maxwell's equations

3. Theory

Facts:

The FDTD method belongs in the general class of grid-based differential numerical modeling methods (finite difference methods). The time-dependent Maxwell's equations (in partial differential form) are discretized using central-difference approximations to the space and time partial derivatives.

Analysis:

The Yee algorithm is numerically stable for all $\Delta t < \frac{\Delta x}{c}$. [4]

Consistency Analysis:

Consider the Yee Algorithm update equations at timestep n:

$$\left\{egin{array}{ll} H_{j+1/2}^{n+3/2} &= H_{j+1/2}^{n+1/2} - rac{\Delta t}{\Delta x}ig(E_{j+1}^{n+1} - E_{j}^{n+1}ig) \ E_{j}^{n+1} &= E_{j}^{n} - rac{\Delta t}{\Delta x}ig(H_{j+1/2}^{n+1/2} - H_{j-1/2}^{n+1/2}ig) \end{array}
ight.$$

Let

$$L_{\Delta t}^H(x+rac{\Delta x}{2},t+rac{\Delta t}{2})=rac{1}{\Delta t}\Big(H(x+rac{\Delta x}{2},t+rac{3\Delta t}{2})-G_{\Delta t}\left(H(\cdot+rac{\Delta x}{2},t+rac{\Delta t}{2});x
ight)\Big)$$

Now, from the update equation we have:

$$L_{\Delta t}^H(x+rac{\Delta x}{2},t+rac{\Delta t}{2})=rac{H(x+rac{\Delta x}{2},t+rac{3\Delta t}{2})-H(x+rac{\Delta x}{2},t+rac{\Delta t}{2})}{\Delta t}+rac{E(x+\Delta x,t+\Delta t)-E(x,t+\Delta t)}{\Delta x}$$

Now, from Taylor's Theorem,

$$H(x+rac{\Delta x}{2},t+rac{3\Delta t}{2})=H(x+rac{\Delta x}{2},t+\Delta t)+\partial_t H(x+rac{\Delta x}{2},t+\Delta t)rac{\Delta t}{2}+rac{\partial_{tt} H(x+rac{\Delta x}{2},t+\Delta t)}{2}rac{\Delta t^2}{4}+rac{\partial_{ttt} H(x+rac{\Delta x}{2},\eta_1)}{6}rac{\Delta t^3}{8}$$

for some $\eta_1 \in (t+\Delta t, t+rac{3\Delta t}{2})$. Also,

$$H(x+rac{\Delta x}{2},t+rac{\Delta t}{2})=H(x+rac{\Delta x}{2},t+\Delta t)-\partial_t H(x+rac{\Delta x}{2},t+\Delta t)rac{\Delta t}{2}+rac{\partial_{tt} H(x+rac{\Delta x}{2},t+\Delta t)}{2}rac{\Delta t^2}{4}-rac{\partial_{ttt} H(x+rac{\Delta x}{2},\eta_2)}{6}rac{\Delta t^3}{8}$$

for some $\eta_2 \in (t + rac{\Delta t}{2}, t + \Delta t)$. Therefore,

$$\frac{H(x+\frac{\Delta x}{2},t+\frac{3\Delta t}{2})-H(x+\frac{\Delta x}{2},t+\frac{\Delta t}{2})}{\Delta t}=\partial_t H(x+\frac{\Delta x}{2},t+\Delta t)+(\partial_{ttt} H(x+\frac{\Delta x}{2},\eta_1)+\partial_{ttt} H(x+\frac{\Delta x}{2},\eta_2))\frac{\Delta t^2}{48}$$

. Now, also from Taylor's Theorem:

$$E(x+\Delta x,t+\Delta t) = E(x+\frac{\Delta x}{2},t+\Delta t) + \partial_x E(x+\frac{\Delta x}{2},t+\Delta t) + \frac{\Delta x}{2} + \frac{\partial_{xx} E(x+\frac{\Delta x}{2},t+\Delta t)}{2} + \frac{\Delta x^2}{4} + \frac{\partial_{xxx} E(\xi_1,t+\Delta t)}{6} + \frac{\Delta x^3}{8}$$

for some $\xi_1 \in (x+rac{\Delta x}{2},x+\Delta x)$. Also,

$$E(x,t+\Delta t) = E(x+rac{\Delta x}{2},t+\Delta t) - \partial_x E(x+rac{\Delta x}{2},t+\Delta t) rac{\Delta x}{2} + rac{\partial_{xx} E(x+rac{\Delta x}{2},t+\Delta t)}{2} rac{\Delta x^2}{4} - rac{\partial_{xxx} E(\xi_2,t+\Delta t)}{6} rac{\Delta x^3}{8}$$

for some $\xi_2 \in (x,x+rac{\Delta x}{2}).$ Thus,

$$\frac{E(x+\Delta x,t+\Delta t)-E(x,t+\Delta t)}{\Delta x}=\partial_x E(x+\frac{\Delta x}{2},t+\Delta t)+(\partial_{xxx} E(\xi_1,t+\Delta t)+\partial_{xxx} E(\xi_2,t+\Delta t))\frac{\Delta x^2}{48}$$

. Altogether, we have:

$$L_{\Delta t}^H(x+rac{\Delta x}{2},t+rac{\Delta t}{2})=\partial_t H(x+rac{\Delta x}{2},t+\Delta t)+(\partial_{ttt}H(x+rac{\Delta x}{2},\eta_1)+\partial_{ttt}H(x+rac{\Delta x}{2},\eta_2))rac{\Delta t^2}{48}+\partial_x E(x+rac{\Delta x}{2},t+\Delta t)+(\partial_{xxx}E(\xi_1,t+\Delta t)$$

Now, from the PDE, we know $\partial_t H + \partial_x E = 0$ at any point in the domain. Thus,

$$L_{\Delta t}^H(x+rac{\Delta x}{2},t+rac{\Delta t}{2})=(\partial_{ttt}H(x+rac{\Delta x}{2},\eta_1)+\partial_{ttt}H(x+rac{\Delta x}{2},\eta_2))rac{\Delta t^2}{48}+(\partial_{xxx}E(\xi_1,t+\Delta t)+\partial_{xxx}E(\xi_2,t+\Delta t))rac{\Delta x^2}{48}$$

Now, assuming a constant mesh ratio so that $rac{\Delta t}{\Delta x}=\lambda\in\mathbb{R}$, we have:

$$L_{\Delta t}^H(x+\tfrac{\Delta x}{2},t+\tfrac{\Delta t}{2}) = (\partial_{ttt}H(x+\tfrac{\Delta x}{2},\eta_1) + \partial_{ttt}H(x+\tfrac{\Delta x}{2},\eta_2))\frac{\Delta t^2}{48} + (\partial_{xxx}E(\xi_1,t+\Delta t) + \partial_{xxx}E(\xi_2,t+\Delta t))\frac{\lambda^2\Delta t^2}{48}$$

Finally, assuming $\partial_{ttt}H$ and $\partial_{xxx}E$ are bounded in our domain by C_1 and C_2 respectively, we have:

$$L_{\Delta t}^H(x+rac{\Delta x}{2},t+rac{\Delta t}{2}) \leq \left(rac{C_1+C_2\lambda^2}{24}
ight)\Delta t^2$$

Therefore, the local trunction error in the update of H is order Δt^2 . Now, we consider E. Let

$$L_{\Delta t}^{E}(x,t) = rac{1}{\Delta t}(E(x,t+\Delta t) - G_{\Delta t}\left(E(\cdot,t);x
ight))$$

From the update equation, we have:

$$L^E_{\Delta t}(x,t) = rac{E(x,t+\Delta t) - E(x,t)}{\Delta t} + rac{H(x+rac{\Delta x}{2},t+rac{\Delta t}{2}) - H(x-rac{\Delta x}{2},t+rac{\Delta t}{2})}{\Delta x}$$

From Taylor's Theorem, we have:

$$E(x,t+\Delta t) = E(x,t+rac{\Delta t}{2}) + \partial_t E(x,t+rac{\Delta t}{2})rac{\Delta t}{2} + rac{\partial_{tt} E(x,t+rac{\Delta t}{2})}{2}rac{\Delta t^2}{4} + rac{\partial_{ttt} E(x,\eta_3)}{6}rac{\Delta t}{8}$$

for some $\eta_3 \in (t+rac{\Delta t}{2},t+\Delta t)$. Also,

$$E(x,t) = E(x,t+rac{\Delta t}{2}) - \partial_t E(x,t+rac{\Delta t}{2})rac{\Delta t}{2} + rac{\partial_{tt} E(x,t+rac{\Delta t}{2})}{2}rac{\Delta t^2}{4} - rac{\partial_{ttt} E(x,\eta_4)}{6}rac{\Delta t}{8}$$

for some $\eta_4 \in (t, t + \frac{\Delta t}{2})$. Thus,

$$rac{E(x,t+\Delta t)-E(x,t)}{\Delta t} = \partial_t E(x,t+rac{\Delta t}{2}) + (\partial_{ttt} E(x,\eta_3) + \partial_{ttt} E(x,\eta_4)) rac{\Delta t^2}{48}$$

. Also, by Taylor's Theorem:

$$H(x+rac{\Delta x}{2},t+rac{\Delta t}{2})=H(x,t+rac{\Delta t}{2})+\partial_x H(x,t+rac{\Delta t}{2})rac{\Delta x}{2}+rac{\partial_{xx} H(x,t+rac{\Delta t}{2})}{2}rac{\Delta x^2}{4}+rac{\partial_{xxx} H(\xi_3,t+rac{\Delta t}{2})}{6}rac{\Delta x^3}{8}$$

for some $\xi_3 \in (x,x+rac{\Delta x}{2})$. And

$$H(x-rac{\Delta x}{2},t+rac{\Delta t}{2})=H(x,t+rac{\Delta t}{2})-\partial_x H(x,t+rac{\Delta t}{2})rac{\Delta x}{2}+rac{\partial_{xx} H(x,t+rac{\Delta t}{2})}{2}rac{\Delta x^2}{4}-rac{\partial_{xxx} H(\xi_4,t+rac{\Delta t}{2})}{6}rac{\Delta x^3}{8}$$

for some $\xi_4 \in (x-rac{\Delta x}{2},x)$. Therefore,

$$\frac{H(x+\frac{\Delta x}{2},t+\frac{\Delta t}{2})-H(x-\frac{\Delta x}{2},t+\frac{\Delta t}{2})}{\Delta x}=\partial_x H(x,t+\frac{\Delta t}{2})+(\partial_{xxx}H(\xi_3,t+\frac{\Delta t}{2})+\partial_{xxx}H(\xi_4,t+\frac{\Delta t}{2}))\frac{\Delta x^2}{48}$$

. Ergo, we have:

$$L_{\Delta t}^E(x,t) = \partial_t E(x,t+rac{\Delta t}{2}) + (\partial_{ttt} E(x,\eta_3) + \partial_{ttt} E(x,\eta_4)) rac{\Delta t^2}{48} + \partial_x H(x,t+rac{\Delta t}{2}) + (\partial_{xxx} H(\xi_3,t+rac{\Delta t}{2}) + \partial_{xxx} H(\xi_4,t+rac{\Delta t}{2})) rac{\Delta x^2}{48}$$

. Since from the PDE $\partial_t E + \partial_x H = 0$ at any point in the domain,

$$L^E_{\Delta t}(x,t) = (\partial_{ttt}E(x,\eta_3) + \partial_{ttt}E(x,\eta_4))rac{\Delta t^2}{48} + (\partial_{xxx}H(\xi_3,t+rac{\Delta t}{2}) + \partial_{xxx}H(\xi_4,t+rac{\Delta t}{2}))rac{\Delta x^2}{48}$$

. Assuming $\partial_{ttt}E$ and $\partial_{xxx}H$ are bounded on the domain by C_3 and C_4 respectively, and using the same constant mesh ratio, we find:

$$L^E_{\Delta t}(x,t) \leq \left(rac{C_3 + C_4 \lambda^2}{24}
ight) \Delta t^2$$

. Thus, the local trunction error for the update of E is also order Δt^2 . Thus, if we consider the vector

$$L_{\Delta t} = egin{bmatrix} L_{\Delta t}^H \ L_{\Delta t}^E \end{bmatrix},$$

we find that $||L_{\Delta t}||_{\infty} \to 0$ as $\Delta t \to 0$, since each component is order Δt^2 and approaches 0. Thus, the scheme is consistent, and we say the method is order Δt^2 .

Stability Analysis:

Consider the Yee Algorithm update equations at timestep n:

$$H_{j+1/2}^{n+3/2} = H_{j+1/2}^{n+1/2} - rac{\Delta t}{\Delta x}ig(E_{j+1}^{n+1} - E_j^{n+1}ig)$$

$$E_{j}^{n+1}=E_{j}^{n}-rac{\Delta t}{\Delta x}ig(H_{j+1/2}^{n+1/2}-H_{j-1/2}^{n+1/2}ig)$$

We can replace ${\cal E}_j^{n+1}$ and ${\cal E}_{j+1}^{n+1}$ in the first equation:

$$H_{j+1/2}^{n+3/2} = H_{j+1/2}^{n+1/2} - rac{\Delta t}{\Delta x} ig(ig[E_{j+1}^n - rac{\Delta t}{\Delta x} ig(H_{j+3/2}^{n+1/2} - H_{j+1/2}^{n+1/2}ig)ig] - ig[E_j^n - rac{\Delta t}{\Delta x} ig(H_{j+1/2}^{n+1/2} - H_{j-1/2}^{n+1/2}ig)ig]ig)$$

$$H_{j+1/2}^{n+3/2} = H_{j+1/2}^{n+1/2} - rac{\Delta t}{\Delta x}ig(E_{j+1}^n - E_j^nig) + rac{\Delta t^2}{\Delta x^2}ig(H_{j+3/2}^{n+1/2} - 2H_{j+1/2}^{n+1/2} + H_{j-1/2}^{n+1/2}ig)$$

We use the discrete Fourier transform:

$$\sum_{k=0}^{N-1} \hat{H}_k^{n+3/2} e^{i(j+1/2)\Delta x k} = \sum_{k=0}^{N-1} \hat{H}_k^{n+1/2} e^{i(j+1/2)\Delta x k} - \frac{\Delta t}{\Delta x} \left(\sum_{k=0}^{N-1} \hat{E}_k^n e^{i(j+1)\Delta x k} - \sum_{k=0}^{N-1} \hat{E}_k^n e^{ij\Delta x k} \right) + \frac{\Delta t^2}{\Delta x^2} \left(\sum_{k=0}^{N-1} \hat{H}_k^{n+1/2} e^{i(j+3/2)\Delta x k} - 2 \sum_{k=0}^{N-1} \hat{H}_k^{n+1/2} e^{i(j+3/2)\Delta x k} - 2 \sum_{k=0}^{N-1} \hat{H}_k^{n+1/2} e^{i(j+3/2)\Delta x k} \right) \\ = \sum_{k=0}^{N-1} \hat{H}_k^{n+3/2} e^{i(j+1/2)\Delta x k} = \sum_{k=0}^{N-1} \left[\hat{H}_k^{n+1/2} - \frac{\Delta t}{\Delta x} \hat{E}_k^n \left(e^{\frac{1}{2}i\Delta x k} - e^{-\frac{1}{2}i\Delta x k} \right) + \frac{\Delta t^2}{\Delta x^2} \hat{H}_k^{n+1/2} \left(e^{i\Delta x k} - 2 + e^{-i\Delta x k} \right) \right] e^{i(j+1/2)\Delta x k}$$

Then for each k we have:

$$egin{aligned} \hat{H}_k^{n+3/2} &= ig(1 + rac{\Delta t^2}{\Delta x^2}ig(e^{i\Delta x k} - 2 + e^{-i\Delta x k}ig)ig)\hat{H}_k^{n+1/2} - rac{\Delta t}{\Delta x}ig(e^{rac{1}{2}i\Delta x k} - e^{-rac{1}{2}i\Delta x k}ig)\hat{E}_k^n \ \hat{H}_k^{n+3/2} &= ig(1 + rac{\Delta t^2}{\Delta x^2}ig(2\cos(\Delta x k) - 2ig)ig)\hat{H}_k^{n+1/2} - rac{\Delta t}{\Delta x}ig(2i\sin(rac{\Delta x k}{2}ig)ig)\hat{E}_k^n \end{aligned}$$

Now, since $\sin^2 x = \frac{1-\cos 2x}{2}$, we know $\cos 2x = 1 - 2\sin^2 x$. We use this identity and find:

$$\hat{H}_k^{n+3/2} = ig(1-rac{4\Delta t^2}{\Delta x^2} ext{sin}^2ig(rac{\Delta x k}{2}ig)ig)\hat{H}_k^{n+1/2} - rac{\Delta t}{\Delta x}ig(2i \sinig(rac{\Delta x k}{2}ig)ig)\hat{E}_k^n$$

Now, for our update equation for the electric field E we consider the discrete Fourier transform:

$$egin{aligned} \sum_{k=0}^{N-1} \hat{E}_k^{n+1} e^{ij\Delta x k} &= \sum_{k=0}^{N-1} \hat{E}_k^n e^{ij\Delta x k} - rac{\Delta t}{\Delta x} ig(\sum_{k=0}^{N-1} \hat{H}_k^{n+1/2} e^{i(j+1/2)\Delta x k} - \sum_{k=0}^{N-1} \hat{H}_k^{n+1/2} e^{i(j-1/2)\Delta x k} ig) \ &= \sum_{k=0}^{N-1} \hat{E}_k^{n+1} e^{ij\Delta x k} = \sum_{k=0}^{N-1} ig[\hat{E}_k^n - rac{\Delta t}{\Delta x} \hat{H}_k^{n+1/2} ig(e^{rac{1}{2}i\Delta x k} - e^{-rac{1}{2}i\Delta x k} ig) ig] e^{ij\Delta x k} \end{aligned}$$

Then for each k we have:

$$egin{aligned} \hat{E}_k^{n+1} &= \hat{E}_k^n - rac{\Delta t}{\Delta x} \hat{H}_k^{n+1/2} ig(e^{rac{1}{2}i\Delta x k} - e^{-rac{1}{2}i\Delta x k}ig) \ \hat{E}_k^{n+1} &= \hat{E}_k^n - rac{\Delta t}{\Delta x} ig(2i\sinig(rac{\Delta x k}{2}ig)ig) \hat{H}_k^{n+1/2} \end{aligned}$$

Now we can put the amplification factors for H and E into a matrix form:

$$egin{bmatrix} \hat{H}_k^{n+3/2} \ \hat{E}_k^{n+1} \end{bmatrix} = egin{bmatrix} 1 - 4\lambda^2 \sin^2(\xi) & -2i\lambda \sin(\xi) \ -2i\lambda \sin(\xi) & 1 \end{bmatrix} egin{bmatrix} \hat{H}_k^{n+1/2} \ \hat{E}_k^n \end{bmatrix}$$

Where $\lambda=\frac{\Delta t}{\Delta x}$ and $\xi=\frac{\Delta xk}{2}$. We can further simplify this amplification matrix, called \hat{Q} as

$$\hat{Q} = egin{bmatrix} 1 - 4lpha^2 & -2ilpha \ -2ilpha & 1 \end{bmatrix}$$

Where $\alpha = \lambda \sin(\xi)$. Now we consider the eigenvalues μ of this matrix:

$$egin{aligned} \left| egin{aligned} 1 - 4lpha^2 - \mu & -2ilpha \ -2ilpha & 1 - \mu \end{aligned}
ight| = 0 \ \ (1 - 4lpha^2 - \mu)(1 - \mu) - (-2ilpha)(-2ilpha) = 0 \ \ 1 - 4lpha^2 - \mu - \mu + 4lpha^2\mu + \mu^2 - (-4lpha^2) = 0 \ \ 1 + (4lpha^2 - 2)\mu + \mu^2 = 0 \end{aligned}$$

Now we can find the eigenvalues by solving this quadratic:

$$\mu = rac{2 - 4lpha^2 \pm \sqrt{16lpha^4 - 16lpha^2 + 4 - 4}}{2}$$
 $\mu = rac{2 - 4lpha^2 \pm 4\sqrt{lpha^4 - lpha^2}}{2}$ $\mu = 1 - 2lpha^2 \pm 2\sqrt{lpha^4 - lpha^2},$

$$\mu_1 = 1 - 2lpha^2 + 2\sqrt{lpha^4 - lpha^2}, \mu_2 = 1 - 2lpha^2 - 2\sqrt{lpha^4 - lpha^2}$$

For von Neumann stability, we require that each eigenvalue is less than or equal to 1 in magnitude. First let's consider if $\frac{\Delta t}{\Delta x} > 1$. Recalling that $\alpha = \frac{\Delta t}{\Delta x} \sin(\xi)$, we have:

$$\mu=1-2rac{\Delta t^2}{\Delta x^2}{
m sin}^2(\xi)\pm2\sqrt{\left(rac{\Delta t^2}{\Delta x^2}{
m sin}^2(\xi)
ight)^2-rac{\Delta t^2}{\Delta x^2}{
m sin}^2(\xi)}$$

Recall that $\Delta x = \frac{2\pi}{N}$. Therefore, $\xi = \frac{\Delta x k}{2} = \frac{2\pi k}{2N} = \frac{\pi k}{N}$ Now, if we consider the Fourier mode when $k = \frac{N}{2}$ we have $\xi = \frac{\pi}{2}$. Thus for this mode, $\sin(\xi) = 1$. Therefore, considering the magnitude of μ_2 we have:

$$|\mu_2| = \left|1 - 2rac{\Delta t^2}{\Delta x^2} - 2\sqrt{ig(rac{\Delta t^2}{\Delta x^2}ig)^2 - rac{\Delta t^2}{\Delta x^2}}
ight|$$

Now, since $\frac{\Delta t}{\Delta x} > 1$, $\frac{\Delta t^2}{\Delta x^2} > \frac{\Delta t}{\Delta x}$, and so $\frac{\Delta t^2}{\Delta x^2} - \frac{\Delta t}{\Delta x} > 0$. Therefore,

$$|\mu_2| = \left|1 - 2rac{\Delta t^2}{\Delta x^2} - 2\sqrt{ig(rac{\Delta t^2}{\Delta x^2}ig)^2 - rac{\Delta t^2}{\Delta x^2}}
ight| > \left|1 - 2 - 2\sqrt{arepsilon}
ight| = \left|-1 - 2\sqrt{arepsilon}
ight| > 1,$$

where $\varepsilon=rac{\Delta t^2}{\Delta x^2}-rac{\Delta t}{\Delta x}$. Therefore, the Yee Scheme is not von Neumann stable for $rac{\Delta t}{\Delta x}>1$.

Now, consider the other case that $0<\frac{\Delta t}{\Delta x}\leq 1$. We know $0\leq\sin^2(\xi)\leq 1$ for all ξ , and since $0\leq\frac{\Delta t}{\Delta x}\leq 1, 0\leq\frac{\Delta t^2}{\Delta x^2}\leq 1$. Therefore, we know $0\leq\frac{\Delta t^2}{\Delta x^2}\sin^2(\xi)\leq 1$. With this we consider the term under the square root for μ . If $\frac{\Delta t^2}{\Delta x^2}\sin^2(\xi)=0$ or $\frac{\Delta t^2}{\Delta x^2}\sin^2(\xi)=1$, then

$$ig(rac{\Delta t^2}{\Delta x^2} {
m sin}^2(\xi)ig)^2 - rac{\Delta t^2}{\Delta x^2} {
m sin}^2(\xi) = 0$$

Otherwise, if $0<\frac{\Delta t^2}{\Delta x^2} \sin^2(\xi)<1$ then $\left(\frac{\Delta t^2}{\Delta x^2} \sin^2(\xi)\right)^2<\frac{\Delta t^2}{\Delta x^2} \sin^2(\xi)$, and so:

$$ig(rac{\Delta t^2}{\Delta x^2} {
m sin}^2(\xi)ig)^2 - rac{\Delta t^2}{\Delta x^2} {
m sin}^2(\xi) < 0$$

Therefore we will have μ_1 and μ_2 complex in this case. Then to find the magnitude of both μ we use the complex modulus:

$$|\mu| = \left(\left[1-2lpha^2
ight]^2 + \left[2\sqrt{lpha^4-lpha^2}
ight]^2
ight)^{1/2}$$

$$|\mu| = 1 - 4\alpha^2 + 4\alpha^4 + 4(\alpha^4 - \alpha^2) = 1$$

Thus, in the case that $0<\frac{\Delta t}{\Delta x}\leq 1$ we have the von Neumann condition satisfied.

However, the Neumann condition is only a sufficient condition for stability in the case that the amplification matrix is uniformly diagonalizable. First, let us consider the case that $0 < \frac{\Delta t}{\Delta x} < 1$. First, we find the eigenvectors $\mathbf{v}_{1,2}$ of the amplification matrix associated with each eigenvalue:

$$(\hat{Q} - I\mu_1)\mathbf{v}_1 = egin{bmatrix} 1 - 4lpha^2 - (1 - 2lpha^2 + 2\sqrt{lpha^4 - lpha^2}) & -2ilpha \ -2ilpha & 1 - (1 - 2lpha^2 + 2\sqrt{lpha^4 - lpha^2}) \end{bmatrix} egin{bmatrix} v_1^{(1)} \ v_1^{(2)} \end{bmatrix} = 0$$

$$egin{bmatrix} -2lpha^2-2\sqrt{lpha^4-lpha^2} & -2ilpha \ -2ilpha & 2lpha^2-2\sqrt{lpha^4-lpha^2} \end{bmatrix} egin{bmatrix} v_1^{(1)} \ v_1^{(2)} \end{bmatrix} = 0$$

This yields the system of equations:

$$\left\{ egin{array}{ll} (-2lpha^2-2\sqrt{lpha^4-lpha^2})v_1^{(1)}-2ilpha v_1^{(2)}&=0\ -2ilpha v_1^{(1)}+(2lpha^2-2\sqrt{lpha^4-lpha^2})v_1^{(2)}&=0 \end{array}
ight.$$

Solving the second equation we find:

$$v_1^{(1)} = rac{-2lpha^2 + 2\sqrt{lpha^4 - lpha^2}}{-2ilpha} v_1^{(2)}$$

$$v_1^{(1)}=ig(-ilpha+irac{\sqrt{lpha^4-lpha^2}}{lpha}ig)v_1^{(2)}$$

Since we assume $0 < \frac{\Delta t}{\Delta x} < 1$, we know $\alpha^4 < \alpha^2$ as before. Therefore, we can rewrite $\sqrt{\alpha^4 - \alpha^2} = i\sqrt{\alpha^2 - \alpha^4}$ where $\sqrt{\alpha^2 - \alpha^4} \in \mathbb{R}$. So, we have the first eigenvector:

$$\mathbf{v}_1 = \left[egin{array}{c} -rac{\sqrt{lpha^2-lpha^4}}{lpha} - ilpha \ 1 \end{array}
ight]$$

Similarly, for \mathbf{v}_2 :

$$egin{aligned} \left[egin{aligned} 1-4lpha^2-(1-2lpha^2-2\sqrt{lpha^4-lpha^2}) & -2ilpha \ -2ilpha & 1-(1-2lpha^2-2\sqrt{lpha^4-lpha^2}) \end{aligned}
ight] egin{aligned} v_2^{(1)} \ v_2^{(2)} \end{aligned}
ight] =0 \ \ & \left[egin{aligned} -2lpha^2+2\sqrt{lpha^4-lpha^2} & -2ilpha \ -2ilpha & 2lpha^2+2\sqrt{lpha^4-lpha^2} \end{aligned}
ight] egin{aligned} v_2^{(1)} \ v_2^{(2)} \end{aligned}
ight] =0 \end{aligned}$$

Which yields this system:

$$\left\{ egin{array}{ll} (-2lpha^2+2\sqrt{lpha^4-lpha^2})v_2^{(1)}-2ilpha v_2^{(2)}&=0\ -2ilpha v_2^{(1)}+(2lpha^2+2\sqrt{lpha^4-lpha^2})v_2^{(2)}&=0 \end{array}
ight.$$

Again solving the second equation, we find:

$$v_2^{(1)} = rac{2lpha^2 + 2\sqrt{lpha^4 - lpha^2}}{-2ilpha} v_2^{(2)}$$

$$v_2^{(1)}=ig(-ilpha+rac{\sqrt{lpha^2-lpha^4}}{lpha}ig)v_2^{(2)}$$

Thus, the second eigenvector is:

$$\mathbf{v}_2 = \left[egin{array}{c} rac{\sqrt{lpha^2 - lpha^4}}{lpha} - ilpha \ 1 \end{array}
ight]$$

Let $eta=rac{\sqrt{lpha^2-lpha^4}}{lpha}$, and we form the matrix $S=(\mathbf{v}_1,\mathbf{v}_2)$, so

$$S = \left[egin{array}{ccc} -eta - ilpha & eta - ilpha \ 1 & 1 \end{array}
ight]$$

Then,

$$S^{-1} = rac{1}{-2eta} egin{bmatrix} 1 & -eta + ilpha \ -1 & -eta - ilpha \end{bmatrix}$$

We now wish to bound the norms of S and S^{-1} . We know $||S||_2^2 = \rho(S^*S)$, where S^* is the conjugate transpose of S. Let us calculate the eigenvalues of S^*S :

$$S^* = egin{bmatrix} -eta + ilpha & 1 \ eta + ilpha & 1 \end{bmatrix}$$

Then,

$$S^*S = egin{bmatrix} -eta + ilpha & 1 \ eta + ilpha & 1 \end{bmatrix} egin{bmatrix} -eta - ilpha & eta - ilpha \ 1 & 1 \end{bmatrix} \ S^*S = egin{bmatrix} eta^2 + lpha^2 + 1 & -eta^2 + 2ilphaeta + lpha^2 + 1 \ -eta^2 - 2ilphaeta + lpha^2 + 1 & eta^2 + lpha^2 + 1 \end{bmatrix}$$

Now, since $\beta = \frac{\sqrt{\alpha^2 - \alpha^4}}{\alpha}$,

$$\beta^2 = \frac{\alpha^2 - \alpha^4}{\alpha^2} = 1 - \alpha^2$$

So, we have:

$$S^*S = egin{bmatrix} 2 & 2lpha^2 + 2ilphaeta \ 2lpha^2 - 2ilphaeta & 2 \end{bmatrix}$$

Now, to find the eigenvalues of S^*S :

$$\det(S^*S - I\lambda) = \begin{vmatrix} 2 - \lambda & 2\alpha^2 + 2i\alpha\beta \\ 2\alpha^2 - 2i\alpha\beta & 2 - \lambda \end{vmatrix} = 0$$

$$(2 - \lambda)(2 - \lambda) - (2\alpha^2 + 2i\alpha\beta)(2\alpha^2 - 2i\alpha\beta) = 0$$

$$\lambda^2 - 4\lambda + 4 - 4\alpha^4 - 4\alpha^2\beta^2 = 0$$

$$\lambda^2 - 4\lambda + 4 - 4\alpha^4 - 4\alpha^2(1 - \alpha^2) = 0$$

$$\lambda^2 - 4\lambda + 4 - 4\alpha^2 = 0$$

$$\lambda = \frac{4 \pm \sqrt{16 - 16 + 16\alpha^2}}{2}$$

$$\lambda = 2 \pm 2\sqrt{\alpha^2}$$

$$\lambda = 2 \pm 2|\alpha|$$

Now, since $0 \le \alpha < 1$, $|\lambda| < 4$, and so therefore we have $||S||_2^2 = \rho(S^*S) < 4$. Thus, the norm of S is bounded. Now, we consider $||S^{-1}||$. Since $||S^{-1}||_2^2 = \rho(S^{-1^*}S^{-1})$, we now seek the eigenvalues of $S^{-1^*}S^{-1}$:

$$S^{-1} = rac{1}{-2eta} egin{bmatrix} 1 & -eta + ilpha \ -1 & -eta - ilpha \end{bmatrix}$$

Then,

$$S^{-1^*} = rac{1}{-2eta}egin{bmatrix} 1 & -1 \ -eta - ilpha & -eta + ilpha \end{bmatrix}$$

And so,

$$S^{-1^*}S^{-1} = rac{1}{4eta^2}egin{bmatrix} 1 & -1 \ -eta-ilpha & -eta+ilpha \end{bmatrix}egin{bmatrix} 1 & -eta+ilpha \ -1 & -eta-ilpha \end{bmatrix}$$
 $S^{-1^*}S^{-1} = rac{1}{4eta^2}egin{bmatrix} 2 & 2ilpha \ -2ilpha & 2eta^2+2lpha^2 \end{bmatrix}$

$$S^{-1^*}S^{-1} = rac{1}{4eta^2}egin{bmatrix} 2 & 2ilpha \ -2ilpha & 2 \end{bmatrix} \ S^{-1^*}S^{-1} = egin{bmatrix} rac{1}{2eta^2} & rac{ilpha}{2eta^2} \ -rac{ilpha}{2lpha^2} & rac{1}{2lpha^2} \end{bmatrix}$$

Now, we find the eigenvalues:

$$\det(S^{-1^*}S^{-1}-\lambda I) = egin{array}{c|c} rac{1}{2eta^2}-\lambda & rac{ilpha}{2eta^2} \ -rac{ilpha}{2eta^2} & rac{1}{2eta^2}-\lambda \end{array} egin{array}{c|c} = 0 \ \hline \left(rac{1}{2eta^2}-\lambda
ight)\left(rac{1}{2eta^2}-\lambda
ight)\left(rac{1}{2eta^2}-\lambda
ight)\left(-rac{ilpha}{2eta^2}
ight) = 0 \ \hline \lambda^2-rac{\lambda}{eta^2}+rac{1}{4eta^2}-rac{lpha^2}{4eta^2} = 0 \ \hline \lambda^2-rac{\lambda}{lpha^2}+rac{1-lpha^2}{4eta^4} = 0 \ \hline \lambda^2-rac{\lambda}{lpha^2}+rac{eta^2}{4eta^4} = 0 \ \hline rac{1}{eta^2}\left(eta^2\lambda^2-\lambda+rac{1}{4}
ight) = 0 \ \hline \end{array}$$

Recalling that $\beta^2=1-\alpha^2$ and since we assume $0\leq \alpha^2<1$, we know $0<\beta^2\leq 1$. Thus, we have:

$$\lambda = rac{1 \pm \sqrt{1-eta^2}}{2eta^2}$$
 $\lambda = rac{1 \pm \sqrt{lpha^2}}{2(1-lpha^2)}$ $\lambda = rac{1 \pm |lpha|}{2(1-lpha^2)}$

Then, since $\alpha^2 < 1$, the denominator is non-zero, and so the eigenvalues are bounded.

Now, we can verify the matrix $S^{-1}\hat{Q}S$:

$$S^{-1}\hat{Q}S = rac{1}{-2eta}egin{bmatrix} 1 & -eta+ilpha \ -1 & -eta-ilpha \end{bmatrix}egin{bmatrix} 1-4lpha^2 & -2ilpha \ -2ilpha & 1 \end{bmatrix}egin{bmatrix} -eta-ilpha & eta-ilpha \ 1 & 1 \end{bmatrix}$$

$$S^{-1}\hat{Q}S = rac{1}{-2eta}egin{bmatrix} 1 & -eta + ilpha \ -1 & -eta - ilpha \end{bmatrix}egin{bmatrix} -eta + 4lpha^2eta - 3ilpha + 4ilpha^2 & eta - 4lpha^2eta - 3ilpha + 4ilpha^2 \ 1 + 2ilphaeta - 2lpha^2 & 1 - 2ilphaeta - 2lpha^2 \end{bmatrix}$$

$$S^{-1}\hat{Q}S = \frac{1}{-2\beta} \begin{bmatrix} -2\beta + 4\alpha^{2}\beta + 2i\alpha^{3} - 2i\alpha - 2i\alpha\beta^{2} & 2i\alpha^{3} - 2i\alpha + 2i\alpha\beta^{2} \\ -2i\alpha^{3} + 2i\alpha - 2i\alpha\beta^{2} & -2\beta + 4\alpha^{2}\beta - 2i\alpha^{3} + 2i\alpha + 2i\alpha\beta^{2} \end{bmatrix}$$

$$S^{-1}\hat{Q}S = \frac{1}{-2\beta} \begin{bmatrix} -2\beta + 4\alpha^{2}\beta + 2i\alpha^{3} - 2i\alpha - 2i\alpha(1 - \alpha^{2}) & 2i\alpha^{3} - 2i\alpha + 2i\alpha(1 - \alpha^{2}) \\ -2i\alpha^{3} + 2i\alpha - 2i\alpha(1 - \alpha^{2}) & -2\beta + 4\alpha^{2}\beta - 2i\alpha^{3} + 2i\alpha + 2i\alpha(1 - \alpha^{2}) \end{bmatrix}$$

$$S^{-1}\hat{Q}S=rac{1}{-2eta}igg[egin{array}{ccc} -2eta+4lpha^2eta+4ilpha^3-4ilpha & 0 \ 0 & -2eta+4lpha^2eta-4ilpha^3+4ilpha \end{array}igg]$$

$$S^{-1}\hat{Q}S=egin{bmatrix} 1-2lpha^2-2rac{lpha-lpha^3}{eta}i & 0 \ 0 & 1-2lpha^2+2rac{lpha-lpha^3}{eta}i \end{bmatrix}$$

$$S^{-1}\hat{Q}S=egin{bmatrix} 1-2lpha^2-2rac{lpha^2-lpha^4}{\sqrt{lpha^2-lpha^4}}i & 0 \ 0 & 1-2lpha^2+2rac{lpha^2-lpha^4}{\sqrt{lpha^2-lpha^4}}i \end{bmatrix}$$

$$S^{-1}\hat{Q}S=egin{bmatrix} 1-2lpha^2-2\sqrt{lpha^2-lpha^4}i & 0 \ 0 & 1-2lpha^2+2\sqrt{lpha^2-lpha^4}i \end{bmatrix}$$

So, we can see that S and S^{-1} are the diagonalizers of \hat{Q} , where $S^{-1}\hat{Q}S=\Lambda=\mathrm{diag}(\mu_1,\mu_2)$. Therefore,

$$||\hat{Q}||_2 = ||S\Lambda S^{-1}||_2 \leq ||S||_2 |||\Lambda||_2 ||S^{-1}||_2 \leq C$$

for some constant C, as we have previously bounded these norms, in the case that $0<\frac{\Delta t}{\Delta x}<1$.

Now, consider the case that $\frac{\Delta t}{\Delta x}=1$. In this case, consider the Fourier mode when $k=\frac{N}{2}$, so that $\xi=\frac{\pi}{2}$, and thus $\alpha=\frac{\Delta t}{\Delta x}\sin(\xi)=1$. Now, in this case we have:

$$\hat{Q} = egin{bmatrix} -3 & -2i \ -2i & 1 \end{bmatrix} = -I + egin{bmatrix} -2 & -2i \ -2i & 2 \end{bmatrix} = -I + B$$

Now, consider B^2 :

$$B^2=egin{bmatrix} -2 & -2i \ -2i & 2 \end{bmatrix} egin{bmatrix} -2 & -2i \ -2i & 2 \end{bmatrix} = egin{bmatrix} 4-4 & 4i-4i \ 4i-4i & -4+4 \end{bmatrix} = egin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}$$

Therefore, $B^n=0$ for all $n\in\mathbb{N}, n\geq 2$. However, we can now use the binomal theorem:

$${\hat Q}^n=(-I+B)^n=\sum_{k=0}^n inom{n}{k} B^k (-I)^{n-k}$$

$$\hat{Q}^n = \binom{n}{0} B^0 (-I)^n + \binom{n}{1} B (-I)^{n-1}$$

$$\hat{Q}^n = (-1)^n I + nB(-1)^{n-1} I$$

Now, since $(-1)^2 = 1$,

$${\hat Q}^n=(-1)^n\left(I-nB
ight)=(-1)^n\left[egin{array}{cc} 1+2n & 2ni \ 2ni & 1-2n \end{array}
ight]$$

We see that the entries in \hat{Q}^n grow linearly in n, and so this matrix cannot be power bounded. Therefore, the method is unstable for $\frac{\Delta t}{\Delta x}=1$.

```
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, clear_output
import time
```

4. Implementation of standing mode

```
In [2]: def yee mesh(x1, xr, N): #creates the meshnodes for periodic boundary conditions
           # xl: the left endpoint of the interval
           # xr: the right endpoint of the interval
           # N: the number of mesh nodes for the electric field grid
            #outputs:
            # h: the spacing between meshnodes
           # x E: the meshnodes for the electric field
           # x H: the meshnodes for the magnetic field
           h = (xr-x1)/(N-1)
            x = np.linspace(xl, xr, N)
           x H = np.linspace(xl+h/2, xr+h/2, N)
           return h, x E, x H
In [3]: def yee1D(x E, x H, h, E0, H0, t0, T, cfl): #calculate the electric and magnetic fields for a
                                                 #non-disapative, lossless, isotropic material
            #inputs:
            # x E: the meshnodes for the electric field
            # x H: the meshnodes for the magnetic field
           # h: the spacing between meshnodes
           # E0: the initial condition for the electric field
           # HO: the initial condition for the magnetic field
            # t0: the initial time
           # T: the final time to compute the electric field
            # cfl: the mesh ratio
```

```
E = np.copy(E0)
H = np.copy(H0)
t = t0
while t < T:
    H_bdy = H[0] - cfl*(E[1] - E[0])
    H[1:-1] = H[1:-1] - cfl*(E[2:] - E[1:-1])
H[0] = H_bdy
H[-1] = H_bdy
E_bdy = E[0] - cfl*(H[0] - H[-2])
E[1:-1] = E[1:-1] - cfl*(H[1:-1] - H[:-2])
E[0] = E_bdy
E[-1] = E_bdy
t += cfl*h
return H, E, t</pre>
```

5. Verification

Out[5]: Text(0.5, 1.0, 'Electric and Magnetic Field at \$t=10\$')

```
In [4]:
    cfl = 0.9
    E0 = lambda x: np.cos(x) ##it is the same thing as def E0(x): return np.cos(x)
    H0 = lambda x, cfl, h: np.sin(x)*np.sin(-cfl*h/2)
    E_ex = lambda x, t: np.cos(x)*np.cos(t)
    H_ex = lambda x, t: np.sin(x)*np.sin(t)
    h, x_E, x_H = yee_mesh(0, 2*np.pi, 100)
    H, E, t = yee1D(x_E, x_H, h, E0(x_E), H0(x_H,cfl,h), 0, 10, cfl)

In [5]:
    plt.plot(x_E, E, color='red', marker='o', label='Computed Electric Field')
    plt.plot(x_H, H, color='orange', marker='o', label='Exact Electric Field')
    plt.plot(x_H, H, ex(x_H, t-cfl*h/2), color='green', label='Exact Magnetic Field')
    plt.xlabel('$x$')
    plt.ylabel('Field Strength')
    plt.legend()
    plt.title('Electric and Magnetic Field at $t=10$')
```

Electric and Magnetic Field at t = 10


```
In [6]: N = [2**k+1 for k in range(5, 15)]
N = np.array(N)
h_vals = 2*np.pi/(N-1)
cfl = 0.9
e = np.zeros((len(N),2))
E_ex = lambda x, t: np.cos(x)*np.cos(t)
H_ex = lambda x, t: np.sin(x)*np.sin(t)
for i in range(10):
    h, x_E, x_H = yee_mesh(0, 2*np.pi, N[i])
    E0 = lambda x: np.cos(x)
    H0 = lambda x, cfl, h: np.sin(x)*np.sin(-cfl*h/2)
    H, E, t = yee1D(x_E, x_H, h, E0(x_E), H0(x_H,cfl,h), 0, 10, cfl)
E_exact = E_ex(x_E, t)
```

```
H_exact = H_ex(x_H, t-cfl*h/2)
e[i,0] = np.linalg.norm(E-E_exact, np.inf)
e[i,1] = np.linalg.norm(H-H_exact, np.inf)
plt.loglog(h_vals, e[:,0], color='red', marker='o', label=r'$||E-E^*||_{\infty}$')
plt.loglog(h_vals, e[:,1], color='orange', marker='o', label=r'$||H-H^*||_{\infty}$')
plt.loglog(h_vals, h_vals**2, color='blue', label='$h^2$')
plt.legend()
plt.title("Error versus $h$")
plt.xlabel('$h$')
plt.ylabel('Error')
```

Out[6]: Text(0, 0.5, 'Error')

6. Application

Neumann Boundary Condition

```
In [8]: L = 200
    N_steps = 800
    h, x_E, x_H = yee_mesh_np(0, L, 200)
    ey = np.zeros((len(x_E), N_steps + 1), dtype=np.float64)
    hz = np.zeros((len(x_H), N_steps + 1), dtype=np.float64)
    d = L / 2
    tau = 12
    cf1 = 0.9
    a = 1

    fig = plt.figure(figsize=(10, 6))

ey[:, 0] = a * np.exp(-0.5 * ((x_E - d) / tau) ** 2)
    # a is the height
# d is the position of the center of the peak (the mean of the Gaussian distribution)
#tau is the standard deviation of the Gaussian distribution, controlling the width of the curve.
```

```
for n in range(N_steps):
    hz[:, n] = hz[:, n - 1] - cfl * (ey[1:, n] - ey[:-1, n])
    ey[1:-1, n + 1] = ey[1:-1, n] - cfl * (hz[1:, n] - hz[:-1, n])
    plt.clf()
    plt.plot(x_E, ey[:, n], label='Electric Field')
    plt.plot(x_H, hz[:, n], label='Magnetic Field')
    plt.ylim([-1, 1])
    plt.title('Electric and Magnetic Fields with R')
    plt.legend()
    display(fig)
    clear_output(wait=True)
    time.sleep(0.01)
plt.close()
```

Electric and Magnetic Fields with R 1.00 Electric Field Magnetic Field 0.75 0.50 0.25 0.00 -0.25-0.50-0.75-1.0025 50 75 100 125 150 175 0 200

Absorbing Boundary Condition (ABC)

ABC condition means at the edge of the grid, the fields should only be traveling to the edge. We use left boundary as example and it will satisfied the equation $\partial x E_z - \sqrt{\mu \varepsilon} \partial t E_z = 0$.

In left boundary, stable ABC will result if the equation is expanded about the space-time point $(\frac{\Delta x}{2},(k+\frac{1}{2})\Delta t)$.

To obtain an approximation of $E_z^{k+1}(\frac{1}{2})$, we use the average, $\frac{E_z^{k+1}(0)+E_z^{k+1}(1)}{2}$.

Similar, an approximation of $E_z^k(\frac{1}{2})$, we use the average, $\frac{E_z^k(0)+E_z^k(1)}{2}$.

Therefore,

$$\partial x E_z = rac{rac{E_z^{k+1}(1) + E_z^k(1)}{2} - rac{E_z^{k+1}(0) + E_z^k(0)}{2}}{\Delta x} \ \sqrt{\mu arepsilon} \partial t E_z = \sqrt{\mu arepsilon} rac{rac{E_z^{k+1}(0) + E_z^{k+1}(1)}{2} - rac{E_z^k(0) + E_z^k(1)}{2}}{\Delta t}$$

Combine them and we will have

$$rac{rac{E_z^{k+1}(1) + E_z^k(1)}{2} - rac{E_z^{k+1}(0) + E_z^k(0)}{2}}{\Delta x} = \sqrt{\mu arepsilon} rac{rac{E_z^{k+1}(0) + E_z^{k+1}(1)}{2} - rac{E_z^k(0) + E_z^k(1)}{2}}{\Delta t}$$

let $\mathrm{cfl} = rac{\Delta t}{\sqrt{\mu arepsilon} \Delta x}$ we have

$$ext{cfl}(E_z^{k+1}(1)+E_z^k(1)-E_z^{k+1}(0)-E_z^k(0))=E_z^{k+1}(0)+E_z^{k+1}(1)-E_z^k(0)-E_z^k(1) \ E_z^{k+1}(0)-E_z^k(1)+ ext{cfl}(E_z^{k+1}(0)-E_z^k(1))= ext{cfl}(E_z^{k+1}(1)-E_z^k(0))-(E_z^{k+1}(1)-E_z^k(0))$$

Then we have

$$E_z^{k+1}(0) = E_z^k(1) + rac{ ext{cfl}-1}{ ext{cfl}+1}(E_z^{k+1}(1)-E_z^k(0))$$

Similar, on right boundary we have

$$E_z^{k+1}(-1) = E_z^k(-2) + rac{ ext{cfl}-1}{ ext{cfl}+1}(E_z^{k+1}(-2)-E_z^k(-1))$$

```
In [9]: L = 200
        N \text{ steps} = 800
        h, x E, x H = yee mesh np(0, L, 201)
        ey = np.zeros((len(x E), N steps + 1), dtype=np.float64)
        hz = np.zeros((len(x H), N steps + 1), dtype=np.float64)
        d = L / 2
        tau = 12
        cf1 = 0.9
        fig = plt.figure(figsize=(10, 6))
        ey[:, 0] = np.exp(-0.5 * ((x E - d) / tau) ** 2)
        for n in range(N steps):
            hz[:, n] = hz[:, n - 1] - cfl * (ey[1:, n] - ey[:-1, n])
            ey[1:-1, n + 1] = ey[1:-1, n] - cfl * (hz[1:, n] - hz[:-1, n])
            ey[-1, n + 1] = ey[-2, n] + ((cfl - 1)/(cfl + 1)) * (ey[-2, n + 1] - ey[-1, n])
            plt.clf()
            plt.plot(x E, ey[:, n], label='Electric Field')
            plt.plot(x H, hz[:, n], label='Magnetic Field')
            plt.ylim([-1, 1])
            plt.title('Electric and Magnetic Fields with ABC')
            plt.legend()
            display(fig)
            clear output(wait=True)
            time.sleep(0.01)
        plt.close()
```

Electric and Magnetic Fields with ABC

Lossy Media in One Dimension

In this case σ may be non-zero for some points in the simulation, our maxwell equation leads to:

$$D=arepsilon E_z+P$$

$$H_z=rac{B}{\mu}$$

$$egin{align} rac{\partial E_y}{\partial t} &= -rac{1}{arepsilon}(rac{\partial H_z}{\partial x} - rac{\sigma}{arepsilon}E_y) \ &rac{\partial H_z}{\partial t} &= -rac{1}{\mu}rac{\partial E_y}{\partial x} \end{aligned}$$

which P = $\frac{\sigma}{\varepsilon}E_y$ represents the linear polarization field.

$$egin{aligned} rac{E_i^{k+1}-E_i^k}{\Delta t} &= -rac{1}{arepsilon}rac{H_{i+1/2}^{k+1/2}-H_{i-1/2}^{k+1/2}}{\Delta x} -rac{\sigma}{arepsilon}E_i^{k+rac{1}{2}} \ & rac{H_{i+1/2}^{k+1/2}-H_{i+1/2}^{k-1/2}}{\Delta t} &= -rac{1}{\mu}rac{E_{i+1}^k-E_i^k}{\Delta x} \end{aligned}$$

an approximation of $E_i^{k+\frac{1}{2}}$ is $\frac{E_i^{k+1}+E_i^k}{2}$.

So we have

$$\begin{split} \frac{E_i^{k+1} - E_i^k}{\Delta t} &= -\frac{1}{\varepsilon} \frac{H_{i+1/2}^{k+1/2} - H_{i-1/2}^{k+1/2}}{\Delta x} - \frac{\sigma}{\varepsilon} \frac{E_i^{k+1} + E_i^k}{2} \\ \frac{E_i^{k+1} - E_i^k}{\Delta t} &+ \frac{\sigma}{\varepsilon} \frac{E_i^{k+1} + E_i^k}{2} = \frac{1}{\varepsilon} \frac{H_{i+1/2}^{k+1/2} - H_{i-1/2}^{k+1/2}}{\Delta x} - \frac{\sigma}{\varepsilon} \frac{E_i^{k+1} + E_i^k}{2} \\ \frac{2\varepsilon(E_i^{k+1} - E_i^k)}{2\varepsilon\Delta t} &+ \frac{\Delta t\sigma}{\varepsilon} \frac{E_i^{k+1} + E_i^k}{2\Delta t} = \frac{1}{\varepsilon} \frac{H_{i+1/2}^{k+1/2} - H_{i-1/2}^{k+1/2}}{\Delta x} \end{split}$$

We will have

$$E_i^{k+1} = rac{2arepsilon - \sigma \Delta t}{2arepsilon + \sigma \Delta t} E_i^k - rac{2\Delta t}{(2arepsilon + \sigma \Delta t) \Delta x} (H_{i+1/2}^{k+1/2} - H_{i-1/2}^{k+1/2})$$

$$H_{i+1/2}^{k+1/2} = H_{i+1/2}^{k-1/2} - rac{c\Delta t}{\Delta x}(E_{i+1}^k - E_i^k)$$

There is the yee method for one-dimensional Maxwell's equations with polarization field.

```
In [10]: L = 200
         N \text{ steps} = 800
         h, x_E, x_H = yee_mesh_np(0, L, 201)
         ey = np.zeros((len(x E), N steps + 1), dtype=np.float64)
         hz = np.zeros((len(x H), N steps + 1), dtype=np.float64)
         d = L / 2
         tau = 12
         c = 1
         varepsilon = 1
         mu = 1 / (varepsilon * c ** 2)
         sigma = 0.005
         dt = 1
         dx = 1
         fig = plt.figure(figsize=(10, 6))
         ey[:, 0] = np.exp(-0.5 * ((x E - d) / tau) ** 2)
         for n in range(N steps):
             hz[:, n] = hz[:, n - 1] - dt / (mu * dx) * (ey[1:, n] - ey[:-1, n])
             ey[1:-1, n+1] = (2 * varepsilon - sigma * dt) / (2 * varepsilon + sigma * dt) * ey[1:-1, n] \
                             -(2 * dt / ((2 * mu + sigma * dt) * dx)) * (hz[1:, n] - hz[:-1, n])
             plt.clf()
             plt.plot(x_E, ey[:, n], label='Electric Field')
             plt.plot(x H, hz[:, n], label='Magnetic Field')
             plt.ylim([-1, 1])
             plt.title('Electric and Magnetic Fields with lossy media')
             plt.legend()
             display(fig)
             clear output(wait=True)
             time.sleep(0.01)
         plt.close()
```


Variable Permittivity

If we consider a metal cavity filled with materials with different permittivity $\varepsilon(x)$, but each with permiability μ , we can model the situation with a variable coefficient problem, as discussed in [5]:

$$\varepsilon(x) \frac{\partial E_y}{\partial t} + \frac{\partial H_z}{\partial x} = 0$$

$$\mu rac{\partial H_z}{\partial t} + rac{\partial E_y}{\partial x} = 0$$

Using the Yee Scheme, we come to the update equations:

$$H_{i+1/2}^{k+1/2} = H_{i+1/2}^{k-1/2} - rac{1}{\mu} rac{\Delta t}{\Delta x} ig(E_{i+1}^k - E_i^k ig)$$

$$E_{i}^{k+1} = E_{i}^{k} - rac{1}{arepsilon(x)} rac{\Delta t}{\Delta x} \Big(H_{i+1/2}^{k+1/2} - H_{i-1/2}^{k+1/2} \Big)$$

For a one-dimensional interface, where the permittivity is given by ε_k for k=1,2 on either side of the interface, we define $n_k=\sqrt{\varepsilon_k}$ as the index of refection for each region. Then, the wave number ω is given by the solution to the equation:

$$-n_2 an(n_1\omega)=n_1 an(n_2\omega)$$

The exact solution to Maxwell's Equations in this interface problem are:

$$E_y(x,t) = -\left[A_k e^{in_k\omega x} - B_k e^{-in_k\omega x}
ight]e^{i\omega t},$$

$$H_z(x,t) = n_k \left[A_k e^{in_k\omega x} + B_k e^{-in_k\omega x}
ight] e^{i\omega t},$$

where

$$A_1=rac{n_2\cos(n_2\omega)}{n_1\cos(n_1\omega)}, \qquad A_2=e^{-i\omega(n_1+n_2)},$$

and

$$B_1 = A_1 e^{-i2n_1\omega}, \qquad B_2 = A_2 e^{i2n_2\omega}.$$

As an application, we consider a domain $x \in [-1,1]$ where a metal cavity is filled with air on one side, and glass on another, so that

$$arepsilon(x) = \left\{ egin{array}{ll} 1, & ext{if } x \leq 0 \ 2.25, & ext{if } x > 0 \end{array}
ight.$$

with boundary conditions $E_y(-1,t)=E_y(1,t)=0$ for all t>0. Therefore, from the previous definition, we have $n_1=1$, $n_2=1.5$.

For this scheme, from [5] we know the CFL condition is:

$$\Delta t \leq rac{10}{13c_{max}}h,$$

Where $c_{max}=\maxrac{1}{\sqrt{arepsilon_k}}.$ In this case, $c_{max}=1$, so we have the CFL condition $\Delta t \leq rac{10}{13}h.$

To numerically compute ω , we use Newton's method. Since the function $f(\omega)=\tan(1.5\omega)+1.5\tan(\omega)$ has discontinuities at $x=\frac{(2k+1)\pi}{2},\frac{(2k+1)\pi}{3}$ for all $k\in\mathbb{Z}$, we set our initial guess for the root of this function between the discontinuities at $x=\frac{3\pi}{2}$ and $x=\frac{5\pi}{3}$.

```
mu = 1
n1 = 1
n2 = 1.5
W = 5.0721811618
A1 = (n2*np.cos(n2*w))/(n1*np.cos(n1*w))
B1 = A1*np.exp(-2*n1*w*1j)
A2 = np.exp(-w*(n1+n2)*1j)
B2 = A2*np.exp(2*n2*w*1j)
def e exact(x, t, n1, n2, A1, B1, A2, B2):
    e1 = -(A1*np.exp(n1*w*x*1j)-B1*np.exp(-n1*w*x*1j))*np.exp(w*t*1j)
    e2 = -(A2*np.exp(n2*w*x*1j)-B2*np.exp(-n2*w*x*1j))*np.exp(w*t*1j)
    e ex = np.where(x \le 0, e1, e2)
    return e ex
def h exact(x, t, n1, n2, A1, B1, A2, B2):
    h1 = n1*(A1*np.exp(n1*w*x*1j)+B1*np.exp(-n1*w*x*1j))*np.exp(w*t*1j)
    h2 = n2*(A2*np.exp(n2*w*x*1j)+B2*np.exp(-n2*w*x*1j))*np.exp(w*t*1j)
    h ex = np.where(x<=0, h1, h2)
    return h ex
ey[:,0] = e \ exact(x E, 0, n1, n2, A1, B1, A2, B2)
hz[:,0] = h \ exact(x \ H, -cfl*h/2, n1, n2, A1, B1, A2, B2)
fig = plt.figure(figsize=(10, 6))
for n in range(1,N steps):
    hz[:,n] = hz[:,n-1] - 1/mu * cfl * (ey[1:,n-1]-ey[:-1,n-1])
    ey[1:-1,n] = ey[1:-1,n-1] - 1/ep[1:-1] * cfl * (hz[1:,n]-hz[:-1,n])
    plt.clf()
    plt.plot(x E, ey[:, n], label='Electric Field')
    plt.plot(x_H, hz[:, n], label='Magnetic Field')
    plt.ylim([-3, 3])
    plt.title('Electric and Magnetic Fields')
    plt.legend()
    display(fig)
    clear_output(wait=True)
    time.sleep(0.01)
plt.close()
```


0.00

-0.25

-3

-1.00

-0.75

-0.50

```
In [13]: def yee1D_varicoeff(x_E, x_H, h, eps, mu, E0, H0, t0, T, cf1):
    #inputs:
    # x_E: the meshnodes for the electric field
    # x_H: the meshnodes for the magnetic field
    # h: the spacing between meshnodes
    # eps: a vector containing the value of permittivity at each electric field node
    # mu: a scalar, the value of the magnetic permiability
    # E0: the initial condition for the electric field
    # H0: the initial condition for the magnetic field
```

0.25

0.50

0.75

1.00

```
# t0: the initial time
             # T: the final time to compute the electric field
             # cfl: the mesh ratio
             #outputs:
             # Hz: the computed magnetic field at time t - 1/2 dt
             # Ey: the computed electric field at time t
             # t: the computed final time
             Ey = np.copy(E0)
             Hz = np.copy(H0)
             t = t0
             while t < T:
                Hz = Hz - 1/mu*cfl*(Ey[1:] - Ey[:-1])
                 Ey[1:-1] = Ey[1:-1] - 1/eps[1:-1]*cfl*(Hz[1:] - Hz[:-1])
                 t += cfl*h
             return Hz, Ey, t
In [14]: N = np.array([2**k+1 for k in range(5, 15)])
         h vals = 2*np.pi/(N-1)
         cfl = 10/13
         mu = 1
         n1 = 1
         n2 = 1.5
         w = 5.0721811618
         A1 = (n2*np.cos(n2*w))/(n1*np.cos(n1*w))
         B1 = A1*np.exp(-2*n1*w*1j)
         A2 = np.exp(-w*(n1+n2)*1j)
         B2 = A2*np.exp(2*n2*w*1j)
         e = np.zeros((len(N), 2))
         for i in range(10):
             h, x_E, x_H = yee_mesh_np(-1, 1, N[i])
             ep = eps(x E, 1, 2.25)
             Ey0 = e \ exact(x \ E, 0, n1, n2, A1, B1, A2, B2)
             Hz0 = h \ exact(x \ H, \ -cfl*h/2, \ n1, \ n2, \ A1, \ B1, \ A2, \ B2)
             H, E, t = yee1D \ varicoeff(x E, x H, h, ep, 1, Ey0, Hz0, 0, 2*np.pi, cfl)
             E = exact = e = exact(x E, t, n1, n2, A1, B1, A2, B2)
             H_{exact} = h_{exact}(x_H, t-cfl*h/2, n1, n2, A1, B1, A2, B2)
```

e[i,0] = np.linalg.norm(E-E_exact, 2)*np.sqrt(h_vals[i])
e[i,1] = np.linalg.norm(H-H exact, 2)*np.sqrt(h vals[i])

```
plt.loglog(h_vals, e[:,0], color='red', marker='o', label=r'$||E-E^*||_{1^2}$')
plt.loglog(h_vals, e[:,1], color='orange', marker='o', label=r'$||H-H^*||_{1^2}$')
plt.loglog(h_vals, h_vals, color='blue', label='$h$')
plt.legend()
plt.title("Error versus $h$")
plt.xlabel('$h$')
plt.ylabel('Error')
```

Out[14]: Text(0, 0.5, 'Error')

7. Conclusion

Yee method has advantage on accuracy, it has the second order convergence. It is a mimetic scheme reflects physical situation and is is a explicit method which is easy to compute. However, it use staggered grid which means we cannot simultaneously enforce boundary conditions on both E and H. It also has the stiff stability condition, Δt cannot greater than Δx . In higher dimensions it may result in increased computational costs, as smaller time steps may be required to maintain stability.

8. References

- [1] Allen Taflove. Computational Electrodynamics: The Finite-Difference Time-Domain Method. 3rd ed. Boston: Artech House, 2005.
- [2] Understanding the Finite-Difference Time-Domain Method, John B. Schneider, www.eecs.wsu.edu/~schneidj/ufdtd, 2010
- [3] Umran S. Inan and Robert A. Marshall. Numerical Electromagnetics: The FDTD Method. 1st ed. Cambridge: Cambridge University Press, 2011. doi: https://doi.org/10.1017/cbo9780511921353.
- [4] M.S. Min, C.H. Teng, The Instability of the Yee Scheme for the "Magic Time Step", Journal of Computational Physics, Volume 166, Issue 2, 2001, Pages 418-424, ISSN 0021-9991, https://doi.org/10.1006/jcph.2000.6650.
- [5] Adi Ditkowski, Kim Dridi, and Jan S. Hesthaven. Convergent Cartesian grid methods for Maxwell's equations in complex geometries. Journal of Computational Physics, 170(1):39–80, 2001.

In []: