Random Forest

Random Forest

Random Forest – is bagging of *de-correlated* decision trees.

Algorithm: Random Forest

Input: training set $Z=\{(x_1, y_1),...,(x_n, y_n)\},\$ B – number of iterations

- 1. For b=1...B:
- 2. Draw a bootstrap sample **Z*** of size n from training data
- 3. Grow a random forest (de-correlated) tree T_b to the Z^*
- 4. Return: ensemble $\{T_1...T_B\}$

Prediction with decision trees:

- Regression: $f(x) = \sum_{b=1}^{B} T_b(x)$
- Classification: majority vote of all decision trees predictions $T_b(\mathbf{x})$, b=1...B

How to grow a random forest decision tree

- 1. The tree is built greedily from top to bottom.
- 2. Select m ≤ p of the input variables at random as candidates for splitting.
- 3. Each split is selected to maximize information gain (IG).

$$IG = Impurity(Z) - \left(\frac{|Z_L|}{|Z|} Impurity(Z_L) + \frac{|Z_R|}{|Z|} Impurity(Z_R)\right)$$

Error before split

Error after split

Select m ≤ p of the input variables at random as candidates for splitting.

Recommendations from inventors of Random Forests:

m=√p for classification, minInstancesPerNode = 1 m=p/3 for regression, minInstancesPerNode = 5

Random Forest

Summary

- Random Forest is a good method for a general purpose classification/regression problems (typically slightly worse than gradient boosted decision trees)
- Automatically handling interactions of features
- Computational scalability (!)
- Predictive power
- Interpretability