

Systematic extraction of analogue series from large compound collections

Martin Vogt
B-it Life Science Informatics
Rheinische Friedrich-Wilhelms-Universität Bonn

RDKit UGM - 25 September 2019

Problem

- Systematic identification of sets of closely related molecules in large compound databases that
 - share a common core structure (scaffold)
 - can be generated from the core structure by (chemically feasible) substitutions at specific substitution sites

Rationale

- Analogue series (AS) are series of compounds that
 - share the same core structures
 - carry different R-groups at single or multiple substitution sites
- ASs are conventionally represented in R-group tables
 - major source of structureactivity relationship (SAR) information
 - SAR analysis typically based on individual AS

ChEMBL ID	\mathbf{R}_{1}	\mathbf{R}_2	\mathbf{R}_3
3263732	*`0	*_H	*\CI
2363733	*/H	*`0	* CI
2363731	*_H	*^H	* CI
2363730	*`0	*_H	*CI
2363737	*`0	*_H	*
2363735	*`0	* _ H	*

Rationale: AS and databases

- Analogues from databases (DBs) might be found by
 - substructure searches from known core structures
 - matched molecular pairs/series (MMP/MMS) analysis
- Matched Molecular Pairs/Series (MMPs/MMSs) are compounds that possess the same core structure but differ only at one specific site
- MMPs/MMSs can be efficiently and comprehensively extracted from large databases of millions of compounds
 - quasilinear in the number of molecules
- Goal:
 - Systematically extract ASs that have core structures with substitutions at multiple sites

MMPs and Analogue series

MMPs

- characterized by a transformation at a single site
- change not necessarily at terminal fragment

Analogue series

- differences at multiple sites
- substituents are terminal fragments/side chains
- represented as R-group table
- based on chemical feasible reactions

Requirements

- Comprehensive:
 - All potential cores for a molecule are identified
 - Molecules with analogues are assigned to one (or more) AS
- Non-redundant: Analogue series should be as large as possible
- Unique: Compounds should be assigned to only one set of analogues
- Efficient: Algorithm should scale with the number of molecules, i.e. quasilinear O(n log^k n)

Considerations

- Although the concept of AS is intuitive the problem is ill-defined
 - e.g., should some rings be part of core or fragment
 - e.g., should substitution sites start at rings
 - there is no single unique core structure for a molecule
- Specifying the AS concept:
 - Cores must not be too small compared to the substituents
 - e.g., core contains at least 2/3 of all heavy atoms for each molecule in the AS
 - Substituents must not be too large
 - e.g., each substituent must not contain more than 13 heavy atoms
 - Total number of substituents is limited
 - e.g., no more than 5 (non-hydrogen) substitutions are allowed

Approach

Extraction of Compound Core Relationships (CCR)

- Systematic fragmentation:
 - Fragment each molecule along "cuttable" acyclic bonds
 - A fragmentation consists of cutting 1 n bonds
 - Cuttable bonds might be all single bonds, RECAP-bonds, ...
 - A valid fragmentations possesses
 - a large core structure with 1 *n* substitution sites
 - \blacksquare 1 n substituents
 - For each molecule, all valid fragmentations are determined yielding
 - a set of potential core structures with one or more substitution sites
- Collect all valid fragmentations for all molecules
- **...**
- Group valid fragmentations by core
 - Yields a set of raw ASs
- "Housekeeping"

Fragmentation for MMS

- MMP-generation according to Hussain/Rea*
 - Systematically fragment each molecule
 - Explore all ways to remove 1 3 cuttable bonds yielding one large "core" and one small fragment yielding a "valid fragmentation"
 - The "core" might be disconnected
 - cuttable bonds are acyclic single bonds
 - Organize all valid fragmentations from all molecules by "core"
 - Molecules possessing identical frame form MMPs/MMS

* J. Chem. Inf. Model.2010, 50, 339-348

Matched Molecular Series

molecules

single cuts

. . .

Matched Molecular Series

single cuts

double cuts

triple cuts

Fragmentation AS

- For analogue series
 - Same basic approach
 - Explore all ways to remove 1 n cuttable bonds yielding one connected core and 1 n fragments
 - Cuttable bonds are acyclic bonds according to some chemical rules (RECAP*)
 - Organize valid fragmentations by core structure
 - Molecules with fragmentations having the same core are grouped forming an AS

* J. Chem. Inf. Comput. Sci. 1998,38,511-522

Analogue Series

molecules

single cuts

double cuts

triple cuts

Analogue Series

single cuts

double cuts

HO OH OH

triple cuts

What about hydrogen substitutions?

- Cuts always involve two heavy atoms
- So far, hydrogen substitutions are not detected
- MMP solution (for single cut fragmentations):
 - Substitute the substitution site with a hydrogen
 - If the hydrogen substituted core is itself is a molecule it should be part of the MMP/MMS

Hydrogen substitutions for MMPs

Single cuts Cores H-substitution Molecules

What about hydrogen substitutions?

AS solution

- For each core generate a hydrogen-substituted core where all substitution sites are replaced by hydrogens
- Group all cores (and original molecules) by their hydrogen-substituted core
- All compounds belonging to cores with identical hydrogen-substituted cores form an AS
- The cores are merged by introducing new substitution sites for substitution sites not shared by all cores

Hydrogen substitutions for AS

	No cuts	Single cuts	Double cuts	Triple cuts
Molecules	N O O N NH ₂	S NH ₂	O O S NH	H ₂ N N S NH
Fragmentation	S NH ₂	N O O N NH ₂	N N N N N N N N N N N N N N N N N N N	H ₂ N N N N N N N N N N N N N N N N N N N
Cores	S NH ₂	R ₂ NO S NH ₂	R ₁ S R ₃	$\begin{array}{c} $
H-substitution	N S NH ₂	H S NH ₂	H S NH ₂	H N S NH ₂

Common Core

Basic algorithm: CCR method

Extraction of Compound Core Relationships

- Systematic fragmentation:
 - Fragment each molecule along cuttable acyclic bonds up to *n* times
 - For each molecule, all valid fragmentations are determined
- Collect all valid fragmentations for all molecules
- For all cores generate H-substituted cores
- Group valid fragmentations and molecules by H-substituted core
 - Yields a set of raw ASs
- "Housekeeping"

"Raw" results

Process produces

- Many single-compound AS
- AS who are subsets of other AS
- Overlapping AS

- Remove singletons
- Remove AS-subseries contained in other series

- Remove singletons
- Remove AS-subseries contained in other series

- Remove singletons
- Remove AS-subseries contained in other series

- Remove singletons
- Remove AS-subseries contained in other series
- Uniquely assign compounds to series
 - prefer larger over smaller series
 - prefer larger cores
 - prefer fewer substitution sites

- Remove singletons
- Remove AS-subseries contained in other series
- Uniquely assign compounds to series
 - prefer larger over smaller series
 - prefer larger cores
 - prefer fewer substitution sites

- Remove singletons
- Remove AS-subseries contained in other series
- Uniquely assign compounds to series
 - prefer larger over smaller series
 - prefer larger cores
 - prefer fewer substitution sites

- Remove singletons
- Remove AS-subseries contained in other series
- Uniquely assign compounds to series
 - prefer larger over smaller series
 - prefer larger cores
 - prefer fewer substitution sites

Final cleanup

- After "housekeeping"
 - Series may contain substitution sites with no variation
 - Series may contain symmetric substitution sites
- Final cleanup
 - optimize symmetric substitution sites to minimize variation of substituents
 - remove redundant substitution sites

Implementation notes

- Initial implementation has been done in OpenEye
- Currently all parts except for "final cleanup" has been recoded in RDKit (Python)
 - disregards stereochemical information
 - fragmentation is done using a recursive method
 - performance is competitive with "built-in" fragmentation routines
 - Chem.Recap.RecapDecompose (mol)
 - merging cores requires finding corresponding atoms of isomorphic molecule representations
 - can be done by canonical ordering
 - Chem.CanonicalRankAtoms()
 - mol.GetProp("_smilesAtomOutputOrder")

Exemplary results (ChEMBL25)

- 1,173,503 molecules (curated set, non-stereo-smiles)
- Skipped 263 mol. that exceeded time limit (10s/mol.)
- Timing (OpenEye Impl., i7-8700K, 3.7GHz)
 - Fragmentation: ~45 min. (6 cores)
 - AS generation: ~40 min. (single core)
- Settings:
 - Cuttable bonds: bonds according to RECAP rules
 - up to 5 cuts per mol.
- # Fragmentations: 5,429,041 valid fragmentations (ca. 350 frags/s)
- # raw series: 4,505,385
 - # non-singleton series: 425,770
- # sanitized series: 150,141 (723,245 molecules)

Exemplary results (ChEMBL25)

Size distribution of ASs

60000 -50000 -40000 -20000 -10000 -2 5 10 15 20 AS size

10953 AS with 10-19 mol. 4133 AS with 20-99 mol. 42 AS with ≥100 mol. largest AS: 233 mol.

Number of substitution sites per AS

Summary

- The CCR method allows the systematic extraction of AS from large compound databases of millions of compounds
- The inherent difficulty in providing a consistent AS definition requires a data driven approach
 - Core structures are defined based on plausible assumptions that are computationally feasible
 - Core structures of cleaned-up AS are data dependent
 - Molecules are assigned preferentially to large AS depending on the data set

Acknowledgment

Jesús Naveja Dagmar Stumpfe Jürgen Bajorath

ACS Omega, 2019, 4, 1, 1027-1032

