Лабораторная работа №5

Модель хищник-жертва

Ли Тимофей Александрович

Содержание

Цель работы	4
Задание	5
Выполнение лабораторной работы Решение задачи:	6 6 8
Выводы	11

Список иллюстраций

0.1	Модель хищник-жертва	6
0.2	График1	7
0.3	График2	7
0.4	График3	8
0.5	Стационарное состояние	8
0.6	код1	9
0.7	код2	9
0.8	код3	9
0.9	код4	0
0.10	код5	0
0.11	колб	0

Цель работы

Изучить модель "хищник-жертва", построить график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при начальных условиях 32 варианта. Найти стационарное состояние системы.

Задание

Вариант 32

Для модели "хищник-жертва": 1. Постройте график зависимости численности хищников от численности жертв 2. Постройте графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=8, y_0=11$ 3. Найдите стационарное состояние системы

Выполнение лабораторной работы

Решение задачи:

Модель Лотки-Вольтерры имеет следующий вид (рис. @fig:001):

$$\frac{dx}{dt} = ax(t) - cx(t)y(t)$$
$$\frac{dy}{dt} = -by(t) + dx(t)y(t)$$

Рис. 0.1: Модель хищник-жертва

В этой модели х – число жертв, у - число хищников. Коэффициент а описывает скорость естественного прироста числа жертв в отсутствие хищников, b - естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (ху). Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -сху и dxy в правой части уравнения).

Стационарное состояние системы (положение равновесия, не зависящее от времени решение) будет в точке: $x_0 = b/d$, $y_0 = a/c$ Если начальные значения задать в стационарном состоянии $x(0) = x_0$, $y(0) = y_0$, то в любой момент времени численность популяций изменяться не будет.

График зависимости численности хищников от численности жертв (рис. @fig:002):

Рис. 0.2: График1

График изменения численности хищников при заданных начальных условиях (рис. @fig:003):

Рис. 0.3: График2

График изменения численности жертв при заданных начальных условиях (рис.

@fig:004):

Рис. 0.4: График3

Стационарное состояние системы (рис. @fig:005):

Рис. 0.5: Стационарное состояние

Построение модели "хищник-жертва"

Начальные условия и задание системы уравнений (рис. @fig:006):

Рис. 0.6: код1

Вывод графика зависимости численности хищников от численности жертв (рис. @fig:007)

Рис. 0.7: код2

Вывод графика изменения численности хищников (рис. @fig:008)

Рис. 0.8: код3

Вывод графика изменения численности жертв (рис. @fig:009)

Рис. 0.9: код4

Расчет и вывод стационарного состояния системы для хищников (рис. @fig:010)

Рис. 0.10: код5

... и для жертв (рис. @fig:011)

Рис. 0.11: код5

Выводы

 ${\bf B}$ ходе лабораторной работы я изучил модель "хищник-жертва", а также построил необходимые графики и нашел стационарное состояние системы.