Question number	Scheme	Marks
6 (a)	$\frac{\text{Change in } y}{\text{Change in } x} = \frac{2-0}{2-3} = -2$	M1 A1
	2 = 1 + c	M1
	c = 1	A1 ft
	x - 2y + 2 = 0	A1
		(5)
(b)	2y - 2 = 7y + 3	M1
	-5y = 5	
	y = -1	A1
	When $y = -1$ $x = 2 \times -1 - 2 = -4$ So $C = (-4, -1)$	A1
	$x - 2 \times -1 - 24 \text{ So C} - (-4, -1)$	AI
	$\left(\frac{3-4}{2}, \frac{0-1}{2}\right) = \left(-\frac{1}{2}, -\frac{1}{2}\right)$	M1A1
	$(\frac{1}{2}, \frac{1}{2}) - (-\frac{1}{2}, -\frac{1}{2})$	(5)
(c)	$AB = \sqrt{5}$	M1
. ,	$BC = \sqrt{45}$	A1
	Area = $\frac{1}{2} \times \sqrt{5} \times \sqrt{45} \times \frac{1}{2}$	M1
	3.75	A1
	Alternative c	(4)
		(14)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1
	2 -4 -1 1	A1
	$\pm \frac{1}{2} \begin{bmatrix} 3 \begin{vmatrix} 2 & 1 \\ -1 & 1 \end{vmatrix} + 1 \begin{vmatrix} 2 & 2 \\ -4 & -1 \end{vmatrix} \end{bmatrix}$	111
		M1
	$\pm \frac{1}{2}[3(2+1)+(-2+8)] \times \frac{1}{2}$	A1
	3.75	

Part	Mark	Additional Guidance	
(a)	M1	For an attempt to find the gradient using the given coordinates and a correct attempt	
		to find the perpendicular gradient.	
		Accept either $\frac{2-0}{2-3} = (-2)$ or $\frac{0-2}{3-2} = (-2) \Rightarrow m_p = -\frac{1}{-2}$	
	A1	For $m = \frac{1}{2}$	
	dM1	For a correct method to find the equation of a line	
		$y-2=\frac{1}{2}(x-2)$ or $y-0=\frac{1}{2}(x-3)$	
		The gradient must come from a correct attempt to find the gradient and the	
		gradient of the perpendicular	
		If $y = mx + c$ is used, then they must use the correct values of x and y and a value	
		for <i>c</i> must be reached before this mark is awarded.	
	A1	For the correct equation in any form	
		$y-2=\frac{1}{2}(x-2)$ or $y-0=\frac{1}{2}(x-3)$ or $y=\frac{1}{2}x+1$ oe	

	A1	For the correct equation in the required form $x-2y+2=0$ oe arranged in any		
		order but all one side (e.g. accept even $\frac{x}{2} - y + 1 = 0$)		
(b)	M1	Sets $L_1 = L_2$ and attempts to solve for y or x		
		2y-2=7y+3 $x+2$ $x-3$ $7x+14$ $2x=6$		
		$\begin{vmatrix} 2y - 2 = 7y + 3 \\ -5y = 5 \Rightarrow y = \dots \end{vmatrix}$ $\begin{vmatrix} \frac{x+2}{2} = \frac{x-3}{7} \Rightarrow 7x + 14 = 2x - 6$		
		$5x = -20 \Rightarrow x = \dots$ $y = -1$ $x = -4$		
	A1	· ·		
	A1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	M1	For any correct method to find the coords of M using their values for C of x and y and the given coordinates of A (3, 0)		
		and the given coordinates of $A(3, 0)$ $\left(\frac{3+\left['-4'\right]}{2}, \frac{0+\left['-1'\right]}{2}\right)$		
		This is a B mark in Epen		
	A1			
		$\left(-\frac{1}{2},-\frac{1}{2}\right)$		
		This is a B mark in Epen		
(c)	M1	For attempting to find the length AB and BC		
		$AB = \sqrt{(3-2)^2 + (0-2)^2}$ and $BC = \sqrt{(2-4)^2 + (2-1)^2}$		
		This is a B mark in Epen		
	A1	For both $AB = \sqrt{5}$ and $BC = \sqrt{45}$		
	3.61	This is a B mark in Epen		
	M1	$ \frac{1}{2} \left(\sqrt{5} \times \sqrt{45} \right) \times \frac{1}{2} $ For using a correct method to find the area of the triangle using correct lengths. i.e. they must be using <i>BC</i> and <i>AB</i>		
	A1	For $A = 3.75$		
		using determinants		
	M1	For using a correct method with their coordinates for <i>C</i> in any order (it is a triangle), but they must start and finish with the same coordinates		
		$(3 \ 2 \ -\frac{1}{2}, \ 3)$		
		$A = \frac{1}{2} \begin{bmatrix} 3 & 2 & -\frac{1}{2} & 3 \\ 0 & 2 & -\frac{1}{2} & 0 \end{bmatrix}$		
		$\begin{vmatrix} 1 & 2 & 2 & -\frac{1}{2} & 0 \end{vmatrix}$		
	A1	This is a B mark in Epen For using the correct coordinates		
	Al			
		$A = \frac{1}{2} \begin{bmatrix} 3 & 2 & -\frac{1}{2} & 3 \\ 0 & 2 & -\frac{1}{2} & 0 \end{bmatrix}$		
		$\begin{vmatrix} A = \overline{2} \\ 0 & 2 \end{vmatrix}$		
		$\left(\begin{array}{cccc} 0 & 2 & -\frac{1}{2} & 0 \end{array}\right)$		
	.	This is a B mark in Epen		
	M1	For a correct evaluation using their coordinates		
		$A = \frac{1}{2} \left[\left[3 \times 2 + 2 \times ' - \frac{1}{2} ' + ' - \frac{1}{2} ' \times 0 \right] - \left[2 \times 0 + ' - \frac{1}{2} ' \times 2 + 3 \times ' - \frac{1}{2} ' \right] \right] = \dots$		

	A1	For $A = 3.75$	
	ALT		
		For finding the length $AB = \sqrt{(3-2)^2 + (0-2)^2}$ and	
	M1	$MX = \frac{1}{2}\sqrt{3^2 + \left(\frac{3}{2}\right)^2}$	
		(Let X be midpoint of AB so MX is height of triangle ABM)	
	A1	$AB = \sqrt{5} \qquad MX = \frac{3\sqrt{5}}{2}$	
	M1	Area of $\triangle ABM = \frac{1}{2} \times AB \times MX = \frac{1}{2} \times \sqrt{5} \times \sqrt{\frac{3\sqrt{5}}{2}} = \left(\frac{15}{4}\right)$	
	A1	Area of $\triangle ABM = \frac{15}{4} = 3.75$	
If the	If they use trigonometry, please send to review		

