Home assignment 4: quadratic lattices

Definition 4.1 A *lattice* is a finitely generated torsion-free \mathbb{Z} -module. *Quadratic form* on a lattice is a function $q: L \to \mathbb{Z}$, $q(\ell) = B(\ell, \ell)$ where B is a bilinear symmetric pairing $B: L \otimes_{\mathbb{Z}} L \longrightarrow \mathbb{Z}$. *Quadratic lattice* is a lattice equipped with a quadratic form. A quadratic form is *indefinite* if it takes positive and negative values, and *unimodular* if B is non-degenerate and defines an isomorphism $L \overset{\sim}{\to} L^*$.

Exercise 4.1 Let (L, q) be a quadratic lattice, $L_{\mathbb{Q}} := L \otimes_{\mathbb{Z}} \mathbb{Q}$, and L^* the set of all $x \in L_{\mathbb{Q}}$ such that $q(x, L) \subset \mathbb{Z}$.

- a. Prove that L* is a lattice of the same rank as L and L \subset L*.
- b. The *dscriminant group* of L is $Disc_L := L^*/L$. Prove that L is unimodular if and only if $Disc(L) = \{0\}$.
- c. Let G be an abelian group. Construct a lattice (L, q) such that Disc(L) = G.

Solution.

a. Consider the canonical identification of

$$L \longrightarrow L^{\star}$$
$$x \longmapsto q(x, \cdot)$$

where L* is the set of linear forms on L. I expect to find an identification L* \cong L*. What exactly is $q(x, \ell)$?. Since $x = \sum_i q_i e_i$ with $q_i \in \mathbb{Q}$,