

AGENDA

Livros

Agile Tools for Real-World Data Python for Data Analysis O'REILLY® Wes McKinney

História do Python

Surgimento no final dos anos 80;

Idealizado por Guido Van Rossum em 1982;

Percebi que o desenvolvimento de utilitários para administração de sistema em C (do Amoeba) estava tomando muito tempo. Além disso, fazê-los em shell Bourne não funcionaria por diversas razões. [...] Portanto, havia necessidade de uma linguagem que "preencheria o vazio entre C e o shell [...]".

—Guido Van Rossum

Nome inspirado no seriado britânico "Monty Pythons's Flying Circus".

Python é uma linguagem muito interessante quando trabalhamos com conjuntos de dados;

Não foi projetada para se trabalhar com data analysis, e sim tarefas relacionadas a computação científica;

Por ser uma linguagem versátil, a própria comunidade acelerou sua popularização;

Grande crescimento quando surgiram:

Django / Pyramid (framework p/ aplicações Web)

Bibliotecas NumPy, Matplotlib e Scikit-learn (voltado para Ciência de Dados)

Language Rank	Types	Spectrum Ranking
1. Python	⊕ 🖵 🛊	100.0
2. C++	□ 🖵 🛊	99.7
3. Java	\oplus \Box \Box	97.5
4. C	□ 🖵 🛊	96.7
5. C#	\oplus \square \neg	89.4
6. PHP	(84.9
7 . R	Ţ	82.9
8. JavaScript	$\oplus \square$	82.6
9. Go	\oplus \Box	76.4
10. Assembly		74.1
11. Matlab	7	72.8
12. Scala	$\oplus \square$	72.1
13. Ruby	⊕ 🖵	71.4
14. HTML	(71.2
15. Arduino		69.0
16. Shell	\Box	66.1
17. Perl	\oplus \Box	57.4
18. Swift		53.9

Ranking da IEEE Spectrum (2018)

Ranking da Redmonk (Jun/2018)

Ranking de popularidade – Stackoverflow (2018)

Características da linguagem que se destacam:

- Modularização de código;
- Sistemas Embarcados;
- Bibliotecas p/ praticamente todos os tipos de problemas;
- Comunidade "super" ativa e colaborativa;
- Fácil de aprender;
- Fácil de instalar e configurar;
- Sua utilização facilita o entendimento de conceitos como Lógica de Programação e OOP.

Passo a passo de um sistema p/ Análise de Dados

Interação

• Ler e escrever em uma variedade de arquivos e bancos de dados

Preparação

• Limpezas, refatoração, munging, combinações de dados, reshaping, slicing etc.

Transformação

 Aplicação de operações matemáticas e estatísticas, buscando obter, analisar e validar informações

Passo a passo de um sistema p/ Análise de Dados

 Dados conectados a uma função ou modelo estatístico, aprendizado de máquina ou outras ferramentas computacionais

Apresentação

Gráficos interativos,
 visualização de grafos
 e/ou sumários (tabelas)

Bibliotecas Principais

Lista das bibliotecas principais para Data Science e Machine Learning: (BOBRIAKOV, 2018)

Estatística:

Numpy

SciPy

Pandas

StatsModels

Bibliotecas Principais

Lista das bibliotecas principais para Data Science e Machine Learning: (BOBRIAKOV, 2018)

Machine Learning:

Scikit-learn

XGBoost/LightGBM/CatBoost

Eli5

Deep Learning:

Keras

TensorFlow

PyTorch

Bibliotecas Principais

Lista das bibliotecas principais para Data Science e Machine Learning: (BOBRIAKOV, 2018)

Visualização:

Matplotlib

Seaborn

Plotly

Pydot

Outras:

NLTK (proc. Linguagem natural)

OpenCV* (proc. Imagens e visão comp.)

mlPy* (machine learning)

Theano* (algumas alternativas p/ o Numpy)

^{*} não citado no artigo

Numpy

Utilizamos o Numpy para trabalhar com grandes volumes de dados.

Ele fornece:

- ndarray: uma estrutura de array multidimensional que facilita operações aritméticas e binárias (broadcasting);
- Funções prontas que economizam a escrita de Ifs e Loops;
- Leitura e escritas de arquivos;
- Álgebra linear, processos combinatórios, Transformada de Fourier;
- Integração com C, C++ e Fortran e vários banco de dados;

Pandas

Construída sobre o Numpy (biblioteca on top, como diversas outras);

Tem seu foco em fornecer funções comumente utilizadas para finanças, ciências sociais e engenharias.

Porém, sua principal vantagem é o fornecimento de estruturas próprias com suporte automático ou explícito ao refinamento de dados;

Suporte dados temporais e não temporais numa mesma estrutura;

Tratamento aos dados como se fosse operações comuns em um banco de dados.

Matplotlib

Ferramenta padrão para criação de gráficos;

Possui diversos tipos de gráficos, diversas configurações;

Possíveis plotar diversos gráficos de forma separada (lado-a-lado) ou realizando um merge das informações.

**Sugestão de leitura: Link

IPython

É um conjunto de subprojetos com objetivo de facilitar o desenvolvimento de aplicações, principalmente na linguagem Python;

Com o tempo, esses subprojetos foram movidos e hoje fazem parte do Project Jupyter.

As duas distribuições ainda existem, porém após o lançamento do Python 4.x permanecerá apenas o Project Jupyter.

SciPy

Coleção de pacotes que são utilizados em diferentes problemas da computação científica.

Alguns pacotes:

scipy.integrate: diversas equações matemáticas

scipy.linalg: álgebra linear e decomposição

scipy.optimize: otimizadores, algoritmos de busca, minimilizadores

scipy.signal: processamento de sinais (filtragens, thresholding, etc)

scipy.stats: distribuições contínuas e discretas

Diferenças entre o Python 2.7 e 3.x

Principal ponto: o Python 2.7 será descontinuado em 2020;

Existem algumas mudanças na chamada de funções, ver mais detalhes nesse ink;

Código Python 3 não é retrocompatível;

Podem surgir problemas na utilização de bibliotecas. Ficar atento as versões!

Problemas com a licença de algoritmos do OpenCV (abrangem apenas a versão 2.7)

Editor de Texto OU IDE???

Pycharm

Primeira Aplicação

- 1. Abrir o Anaconda Prompt;
- 2. Comando: python
- 3. Comando: print("Oi Mundo")

Primeira Aplicação com o Jupyter Notebook/Lab

- 1. Abrir o Anaconda Prompt;
- Mudar o diretório do CMD para uma pasta de trabalho (comando: cd nomeDoDiretorio)
- 3. Digitar Jupyter Notebook

```
(base) C:\Users\Victor>d:
(base) D:\>cd MBADataScience
(base) D:\MBADataScience>jupyter notebook
```

Aspectos Básicos da linguagem

- IF, FOR, WHILE...
- Array / Vetores / Tuplas;
- Funções;
- Classes;
- Slicing;
- Indexing com Slice;
- Operações entre Arrays;

Fonte: http://github.com/dsacademybr

Relembrando os conceitos principais:

- Slicing: Técnica de fatiamento (subdivisão) de dados;
- Listas: São elementos mutáveis, utilizamos [] na declaração;
- Dicionário: São elementos mutáveis, utilizamos {} na declaração e acessamos seus valores por um rótulo;
- Tupla: São elementos imutáveis, utilizamos ()

Início com Pandas

Como nós vimos, o Numpy providencia uma estrutura chamada ndarray:

- Facilita a organização de dados;
- Útil para um bom número de tarefas;
- Ineficiente quando queremos classificar grupo de dados (colocar labels, minimizar perca de dados, mapeamentos, etc).

O Pandas fornece diversos recursos para essas necessidades.

Séries

<u>Séries</u>

É um vetor (array unidimensional) indexado de dados. Podemos cria-los e utilizá-los como uma lista:

```
In[2]: data = pd.Series([0.25, 0.5, 0.75, 1.0])
```

```
data
Out[2]: 0 0.25
1 0.50
2 0.75
3 1.00
dtype: float64
```

Séries

Séries com Dicionários

Recurso para relacionar um valor da série com uma descrição (label).

```
populacao['Lins']
Out[15]: 77021

populacao['Lençois Paulista':'Lins']
Out[16]: Lençois Paulista 66664
Marilia 197342
Lins 77021
dtype: int64
```

Séries

Séries com Dicionários

Criação - Valores separados dos labels

```
import numpy as np
import pandas as pd

v = [0, 1, 2, 3]
l = ['a', 'b', 'c', 'f']

m = pd.Series(v, 1)
print(m)
```

```
a 0
b 1
c 2
f 3
dtype: int64
```

Podem ser classificados como arrays multidimensionais com indexação, e que permitem o rótulo de dados.

```
populacao = {'Bauru': 337094,
In [20]:
                       'Lençois Paulista': 66664,
                       'Marilia': 197342,
                       'Lins': 77021,
                       'Bocaina': 11810}
         populacao = pd.Series(populacao)
         postosGasolina = [100, 30, 80, 25, 20]
         mapa = pd.DataFrame(
                  'populacao': populacao,
                  'postos': postosGasolina
         mapa
```

Out[20]:			
		populacao	postos
	Bauru	337094	100
	Lençois Paulista	66664	30
	Marilia	197342	80
	Lins	77021	25
	Bocaina	11810	20

Quando queremos pegar os "nomes" das linhas utilizamos o atributo index.

```
mapa.index
Index(['Bauru', 'Lençois Paulista', 'Marilia', 'Lins', 'Bocaina'], dtype='object')
```

Quando queremos pegar os "nomes" das colunas, utilizamos o atributo columns.

```
mapa.columns
Index(['populacao', 'postos'], dtype='object')
```

Temos a função describe() que mostra estatísticas básicas do Dataframe

mapa.describe()

	populacao	postos
count	5.00000	5.000000
mean	137986.20000	51.000000
std	130279.57657	36.469165
min	11810.00000	20.000000
25%	66664.00000	25.000000
50%	77021.00000	30.000000
75%	197342.00000	80.000000
max	337094.00000	100.000000

Para adicionar uma nova coluna, basta passar o nome da coluna como índice do

Dataframe e atribuir a lista de valores desejadas.

```
In [45]: lojas = [450, 45, 120, 32, 10 ]
mapa['lojas'] = lojas
mapa
```

	populacao	postos	lojas
Bauru	337094	100	450
Lençois Paulista	66664	30	45
Marilia	197342	80	120
Lins	77021	25	32
Bocaina	11810	20	10

Para excluir usamos a função drop()

	populacao	lojas
Bauru	337094	450
Lençois Paulista	66664	45
Marilia	197342	120
Lins	77021	32
Bocaina	11810	10

Seleção e agregação de dados

Para aprendermos melhor sobre os comandos de seleção e agregação, iremos realizar a leitura do arquivo "Season_Stats.csv", disponível no Kaggle (nesse link).

Para realizar a leitura, vamos executar o comando abaixo:

```
import pandas as pd
dados = pd.read_csv('Seasons_Stats.csv')
```

Seleção e agregação de dados

Algumas operações:

```
dados.count() # Qtde de dados de cada coluna
```

```
dados['Age'].mean() # Média de idade
```

```
dados['G'].median() # Mediana do número de jogos dos jogadores
```

```
dados['G'].describe()
```

Loc Utilizamos para pegar os registros de um Dataframe pelo seu índice:

dad	dados.loc[[1, 2, 5]]													
	Unnamed: Year Player Pos Age Tm G GS MP PER													
1	1	1950.0	Cliff Barker	SG	29.0	INO	49.0	NaN	NaN	NaN		0.708		
2	2	1950.0	Leo Barnhorst	SF	25.0	CHS	67.0	NaN	NaN	NaN		0.698		
5	5	1950.0	Ed Bartels	F	24.0	NYK	2.0	NaN	NaN	NaN		0.667		
3 rc	3 rows × 53 columns													

Loc[index]

Se quisermos procurar por um jogador específico, precisamos setar a coluna Player como index antes de executarmos o loc.

```
# setando a coluna jogador como indice
dados = dados.set_index('Player')
```

#Localizar 'Lou Williams'
dados.loc['Lou Williams']

	Unnamed: 0	Year	Pos	Age	Tm	G	GS	MP	PER	TS%	 FT%
Player											
Lou Williams	18211	2006.0	PG	19.0	PHI	30.0	0.0	145.0	9.0	0.485	 0.615
Lou Williams	18728	2007.0	PG	20.0	PHI	61.0	0.0	688.0	14.6	0.521	 0.696
Lou Williams	19313	2008.0	PG	21.0	PHI	80.0	0.0	1862.0	16.7	0.523	 0.783
Lou Williams	19902	2009.0	SG	22.0	PHI	81.0	0.0	1919.0	16.3	0.513	 0.790

Loc[index, columns]

Podemos também passar por parâmetro quais colunas utilizar.

```
In [54]: dados.loc[['Lou Williams'], ['Year', 'Age', 'Pos']]

Out[54]:

Year Age Pos

Player

Lou Williams 2006.0 19.0 PG

Lou Williams 2007.0 20.0 PG

Lou Williams 2008.0 21.0 PG

Lou Williams 2009.0 22.0 SG
```

iloc

O iloc é um pouco mais simples, ele sempre irá utilizar o índice como inteiro.

dados.ilo	dados.iloc[1:100:2]														
	Unnamed: 0	Year	Pos	Age	Tm	G	GS	MP	PER	TS%					
Playe	er														
Cliff Barke	er 1	1950.0	SG	29.0	INO	49.0	NaN	NaN	NaN	0.435					
Ed Barte	s 3	1950.0	F	24.0	TOT	15.0	NaN	NaN	NaN	0.312					
Ed Barte	s 5	1950.0	F	24.0	NYK	2.0	NaN	NaN	NaN	0.376					
Gene Bero	e 7	1950.0	G-F	23.0	TRI	3.0	NaN	NaN	NaN	0.275					
Charli Blac	ч.	1950.0	F-C	28.0	FTW	36.0	NaN	NaN	NaN	0.362					

Filtros

Podemos filtrar valores informando uma condição booleana dentro dos []

dados[dados.\	dados[dados.Year == 2017]																
	Unnamed: 0	Year	Pos	Age	Tm	G	GS	MP	PER	TS%		FT%	ORB	DRB	TRB	AST	s
Player																	
Alex Abrines	24096	2017.0	SG	23.0	OKC	68.0	6.0	1055.0	10.1	0.560	W W W	0.898	18.0	68.0	86.0	40.0	37
Quincy Acy	24097	2017.0	PF	26.0	TOT	38.0	1.0	558.0	11.8	0.565		0.750	20.0	95.0	115.0	18.0	14
Quincy Acy	24098	2017.0	PF	26.0	DAL	6.0	0.0	48.0	-1.4	0.355		0.667	2.0	6.0	8.0	0.0	(
Quincy Acy	24099	2017.0	PF	26.0	BRK	32.0	1.0	510.0	13.1	0.587		0.754	18.0	89.0	107.0	18.0	14
Steven Adams	24100	2017.0	С	23.0	OKC	80.0	80.0	2389.0	16.5	0.589		0.611	282.0	333.0	615.0	86.0	88
Arron Afflalo	24101	2017.0	SG	31.0	SAC	61.0	45.0	1580.0	9.0	0.559		0.892	9.0	116.0	125.0	78.0	2.
Alexis Ajinca	24102	2017.0	С	28.0	NOP	39.0	15.0	584.0	12.9	0.529		0.725	46.0	131.0	177.0	12.0	20
Cole Aldrich	24103	2017.0	С	28.0	MIN	62.0	0.0	531.0	12.7	0.549		0.682	51.0	107.0	158.0	25.0	2!

Inversão linhas x colunas

Podemos inverter as linhas e colunas de um Dataframe solicitando a matriz Transposta

dados.T											
Player	yer Curly Cliff Leo Armstrong Barker Barnhorst				Ed Bartels	Ed Bartels	Ralph Beard	Gene Berce	Charlie Black	Charlie Black	
Unnamed: 0	0	1	2	3	4	5	6	7	8	9	•••
Year	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	
Pos	G-F	SG	SF	F	F	F	G	G-F	F-C	F-C	
Age	31	29	25	24	24	24	22	23	28	28	
Tm	FTW	INO	CHS	TOT	DNN	NYK	INO	TRI	TOT	FTW	
G	63	49	67	15	13	2	60	3	65	36	
GS	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
MP	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
PER	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
TS%	0.368	0.435	0.394	0.312	0.308	0.376	0.422	0.275	0.346	0.362	

Tratamento de Valores NaN

Substituir todos os NaN por Zero:

```
b = dados.GS
dados.GS.fillna(0)
Player
Curly Armstrong
                      0.0
Cliff Barker
                      0.0
Leo Barnhorst
                      0.0
Ed Bartels
                      0.0
Ed Bartels
                      0.0
Ed Bartels
                      0.0
Ralph Beard
                      0.0
Gene Berce
                      0.0
Charlie Black
                      0.0
Charlie Black
                      0.0
Charlie Black
                      0.0
Nelson Bobb
                      0.0
Jake Bornheimer
                      0.0
Vince Boryla
                      0.0
```

Tratamento de Valores NaN

Mostrar todos os valores NaN

dados.isnull()														
	Unnamed: 0	Year	Pos	Age	Tm	G	GS	MP	PER	TS%		FT%		
 Player														
Curly Armstrong	False	False	False	False	False	False	True	True	True	False		False		
Cliff Barker	False	False	False	False	False	False	True	True	True	False		False		
Leo Barnhorst	False	False	False	False	False	False	True	True	True	False		False		
Ed Bartels	False	False	False	False	False	False	True	True	True	False		False		
Ed Bartels	False	False	False	False	False	False	True	True	True	False		False		

Tratamento de Valores NaN

Apagar valores NaN

```
Unnamed: Year Pos Age
Player

O rows × 52 columns
```

Referências

Livro: Python for Data Analysis

Livro: Python Data Science Handbook

https://www.datasciencecentral.com/profiles/blogs/top-20-python-libraries-for-data-science-in-2018

https://becode.com.br/porque-aprender-python/

http://mindbending.org/pt/a-historia-do-python

https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages

https://blog.liveedu.tv/top-3-most-popular-programming-languages-2018/