Лабораторная работа 17

Задания для самостоятельной работы

Оразгелдиев Язгелди

Российский университет дружбы народов, Москва, Россия

Докладчик

- Оразгелдиев Язгелди
- студент
- Российский университет дружбы народов
- orazgeldiyev.yazgeldi@gmail.com
- https://github.com/YazgeldiOrazgeldiyev

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта.

Задание

Реализовать с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

```
tl.gps
 : class B
 GENERATE 20,10
 QUEUE q 1
 ENTER ram, 1
 DEPART q_1
 ADVANCE 21,3
 LEAVE ram, 1
 TERMINATE O
 : class C
 GENERATE 28.5
 QUEUE q 1
 ENTER ram, 2
 DEPART q_1
 ADVANCE 28,5
 LEAVE ram, 2
 TERMINATE O
 : time
 GENERATE 4800
 TERMINATE 1
 START 1
```

Рис. 1: Модель работы вычислительного центра

Задается хранилище ram нa две заявки. Затем записаны три блока: первые два обрабатывают задания класса A и B, используя один элемент ram, а третий обрабатывает задания класса C, используя два элемента ram. Также есть блок времени генерирующий 4800 минут (80 часов).

	START	TIME .000		EN 48	D TIME	BLOCE 23	S F	ACILITIES 0	STORAGES 1	
	NAM	ΙE				VALUE				
	Q 1				100	01.000				
	RAM				100	00.000				
LABEL		LOC	BLOC	K TYP	FF	NTRY C	OUNT	CURRENT	COUNT RETRY	
		1	GENE	RATE		240				
		2	OUEL	IE		240			4 0	
						236			0 0	
		4	DEP	R		236			0	
		5	ADVI	NCF		236			1 0	
		6	TEAL	/F		236			0 0	
		7	TERN	TNATE		235				
		8	GENE	INATE		236			0	
		9	OUE	F		236			5 0 0 0 0 0 1 0 0 0 0 0 0 0	
		10	ENTE	E R		231			0	
				RT		231			0	
		12	ADVI	NCE		231			1 0	
		13	TEAT	/E		230			0	
				INATE		230			0 0	
				RATE		172			0	
		16	OUEL	E		172		17	2 0	
		17	ENTE	D		- / -		- 1	0 0	
			DEP	RT		0			o ol	
				NCE					0 0	
		20	LEAV	/E					0	
		21	TERM	INATE		0			0	
				RATE					0 0	
		23	TERM	INATE		1			0 0	
DUEUE		W3 V C		=11=01	PUTDY (0) 3111			ME AVE. (-0	
Q 1		192 C	DNI.	ENIKI	ENTRY	U) AVE	25A	694 1	ME AVE. (-0 05 688.35	A C
V_1		100	101	040		9.		004.1	000.33	4 0
STORAGE		CAP. I	REM.	MIN.	MAX. E	NTRIES	AVL	. AVE.C.	UTIL. RETRY	DELAY
RAM		2	0	0	2	467	1	1.988	0.994 0	181
	PRI	BDT		ASSE	M CURR	ENT N	EXT	PARAMETE	R VALUE	
650	0	4803.	512	650	0		1			
636	0				5		6			
651 637	0	4807.	869	651	0	1	.5			
637	0	4810.	369	637	1.2	1	.3			
652 653	0	4813.5 9600.0	506	652	0		8			
653	0	9600.0	000	653	0	2	2			

```
# t2.gps
 GENERATE 10,5,,,1
 ASSIGN 1,0
 QUEUE q 1
 landing GATE NU runway, wait
 SEIZE runway
 DEPART q 1
 ADVANCE 2
 RELEASE runway
 TERMINATE O
 wait TEST L pl, 5, goaway
 ADVANCE 5
 ASSIGN 1+.1
 TRANSFER O, landing
 goaway SEIZE reserve
 DEPART of 1
 RELEASE reserve
 TERMINATE
 GENERATE 10.2...2
 QUEUE q_2
 SEIZE runway
 DEPART q 2
 ADVANCE 2
 RELEASE runway
 TERMINATE 0
 GENERATE 1440
 TERMINATE 1
 START 1
```

Рис. 3: Модель работы аэропорта

Рис. 4: Отчёт по модели работы аэропорта

Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. В запасной аэропорт не отправились самолеты, поскольку процессы обработки длятся всего 2 минуты, что намного быстрее, чем генерации новых самолетов. Коэффициент загрузки полосы равняется 0.4, полоса большую часть времени не используется.

```
prich STORAGE 10
GENERATE 20,5
QUEUE q_1
ENTER prich,3
DEPART q_1
ADVANCE 10,3
LEAVE prich,3
TERMINATE 0
GENERATE 24
TERMINATE 1
START 180
```

Рис. 5: Модель работы морского порта

```
# t3.1.1 - REPORT
            GPSS World Simulation Report - t3.1.1
                 суббота, мая 31, 2025 05:56:35
          START TIME
                            END TIME BLOCKS FACILITIES STORAGES
              0.000
                            4320.000 9
                                    VALUE
         PRICH
         0 1
                                 10001.000
 LABEL
                  LOC BLOCK TYPE
                                   ENTRY COUNT CURRENT COUNT RETRY
                      GENERATE
                      QUEUE
                      ENTER
                                       215
                      DEPART
                      ADVANCE
                      LEAVE
                      TERMINATE
                      GENERATE
                                       180
                      TERMINATE
QUEUE
                 MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY
 0 1
                 1 0 215
                                 215
                                       0.000
                                                  0.000
                                                           0.000 0
STORAGE
                 CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY
 PRICH
                 10 7 0 3 645 1 1.485 0.148 0 0
FEC XN PRI
                  BDT
                          ASSEM CURRENT NEXT PARAMETER
  395 0
                 4324,260
                         395
  396 0
                 4335,233 396
                 4344.000 397
```

Рис. 6: Отчет по модели работы морского порта

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 3, получаем оптимальный результат, что видно на отчете.

Рис. 7: Модель работы морского порта с оптимальным количеством причалов

	GDSS	Worl	d Sim	ularior	Danne	t - t4.1	1 1					
	0.55	HOLL	u 5111	414010.	. Kepor							
		субб	ora,	мая 31,	2025	05:57:39	9					
									STORAGES			
				433	20.000	9	0		1			
	NAME					VALUE						
PRICH						00.000						
	Q_1				100	01.000						
ABEL			BLO	CK TYPE	E	NTRY COL	UNT C	URRENT C				
		1	GEN	ERATE		215 215		0	0			
		2	QUE					0				
		4		ER		215 215			0			
		5	DEP	ART ANCE		215						
			ADV	VE		214			0			
		7				214						
		7 TERMINATE 8 GENERATE				180			0 0			
							0 0					
		-				200						
EUE		MAX	CONT	ENTRY	ENTRY	O) AVE.	CONT	AVE. TIM	F AVF.	(=0) RETE	ev.	
1										.000 0		
ORAGE		CAP.	REM.	MIN. N	AX. E	NTRIES 2	AVI.	AVE.C.	UTIL. RE	TRY DELAY		
RICH								1.485				
C XN	PRI	BD	T	ASSEN	CURR	ENT NE	KT P	ARAMETER	VALU	Ε		
395	0	4324	.260	395	5	6						
	0											
397	0	4344	.000	397	0	8						

Рис. 8: Отчет по модели работы морского порта с оптимальным количеством причалов

```
🎇 t5.gps
 prich STORAGE 6
 GENERATE 30,10
 QUEUE q 1
 ENTER prich, 2
 DEPART q_1
 ADVANCE 8,4
 LEAVE prich, 2
 TERMINATE O
 GENERATE 24
 TERMINATE 1
 START 180
```

Рис. 9: Модель работы морского порта

```
t5.1.1 - REPORT
             GPSS World Simulation Report - t5.1.1
                  суббота, мая 31, 2025 05:58:52
          START TIME
                              END TIME BLOCKS FACILITIES STORAGES
               0.000
                              4320.000 9
                                      VALUE
         PRICH
                                   10000.000
         0 1
                                   10001-000
 LABEL
                   LOC BLOCK TYPE
                                     ENTRY COUNT CURRENT COUNT RETRY
                       GENERATE
                                         143
                       QUEUE
                                         143
                       ENTER
                                         143
                       DEPART
                                         143
                       ADVANCE
                                         143
                       LEAVE
                                         142
                       TERMINATE
                                         142
                       GENERATE
                                         180
                       TERMINATE
                                         180
QUEUE
                  MAX CONT. ENTRY ENTRY (O) AVE.CONT. AVE.TIME
                                                            AVE. (-0) RETRY
 0 1
                            143
                                  143
                                                               0.000 0
STORAGE
                  CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY
 PRICH
                                        286 1 0.524 0.087 0 0
FEC XN
                            ASSEM CURRENT NEXT PARAMETER
   322
                  4325.892 322
   324
       0
                  4336.699
                            324
   325
                  4344.000
                            325
```

Рис. 10: Отчет по модели работы морского порта

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 2, получаем оптимальный результат, что видно из отчета.

```
t6.gps
prich STORAGE 2
 GENERATE 30,10
 QUEUE q 1
 ENTER prich, 2
 DEPART q 1
ADVANCE 8,4
LEAVE prich, 2
 TERMINATE 0
 GENERATE 24
 TERMINATE 1
 START 180
```

Рис. 11: Модель работы морского порта с оптимальным количеством причалов

Рис. 12: Отчет по модели работы морского порта с оптимальным количеством причалов

Результаты

В результате выполнения данной лабораторной работы я реализовал с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.