Q-M for multi-output frs:

1) contract to Identify the PI for individual outputs and for their products.

9: 2 fne: fi, f2 2) PI for f1, f2, f1:f2

3 fns: f1, f2, f3 => PI for f1, f2, f3, f1: f2, f1: f3, f2: f3
and f1: f2: f3.

(2) Obtain Augmented PI chart & identify Essential PI for individual fre. Then use dominated/dominating news/cols or branching method to reduce the table if needed (It) objective is to minimize the no of gates in multi-outpute it implementation).

3 It secondary objective is to minimize the interconnections, then semoving dominated rows is not allowed as it may eliminate soln which has fewer interconnections.

consider 2 fns fi & f2. Use QM method to implement the. $f_1 = \sum m(2,6,7)$

Augmented PI Chart:

fn	PI		fi			f2	
110		2	6 1	7	1	2/2	_
_	#=xy		X	X			
fi	8=43	X	X			1	7
fa	C= RY D= R3				X	X	X
-	D=23 E=X43	X			5	X	1
fifz l	6=2001		1		1	1 /	1

A&D are Essential PI.

Redu	red PI	cha	ret:	D7	f
Fn	PI	\$	(A)	- TH	7
fı	B= 43	X		7/	f2
f2	C= Ty			1	7
fifz,	ERYZ	X	× /		-
	(Kt W	sill	have	3 terms	

.. Out will have 3 terms

Multiple switching for minimization criterion:

O Each minimized for should have as many terms in common with those in other minimized fire as possible.

@ Each for should have min. no. of product terms (SOP)

or sum terme (for POS).

- use single PI table (Augmented PI charit) by considering all fire together, using a termo Tag.

$f_1(x_1, x_2, x_3, x_4) = \sum m(1, 2, 3, 5, 7, 8, 9, 12, 14)$ $f_2(x_1, x_2, x_3, x_4) = \sum m(0, 1, 2, 3, 4, 6, 8, 9, 10, 11)$ $f_3(x_4, x_2, x_3, x_4) = \sum m(1, 3, 5, 7, 8, 9, 12, 13, 14, 15)$

Index	Decimal	Binary fi f2 f3
	0	0000 010
0	1	0001 111
	2	0010 110
	4	0100
	8	1000
2	3	0101 101
	5	0110 010
	01	B979' 111'
	9	1001 010
	10	1100 101
	7	0111 101
3	T	1011 010
	13	1101 001
	14	1110 101
4	15	1111 001
Burnet .		

Decimal not finet leduction $f_1 f_2 f_3$ 0,1(1) 0,2(2) 0,0000000000000000000000000000000000	
0,2(2) 00-0 0 10 3000 111	
	10
	10
0,8(8) -000 0 10 0,1,8,9 (1,8)	10
1 1 2 4 6 (24)	10
1,3(2) 00-1 10 0,2,4,6 (2,4) 00 0,2,8,10 (2,8)	
12(1) 001 11163	01
1,3,5,+ (2,4)	10
0 10 010 1,3,9,11 (2,8)	
115 (4,8) IE	10
(4,5(1) 010 - 000 2,3,10,11 (1,8)	010
	010
0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1	001
8,9,12,13 (14)	
6, T. (3, 15 (2,8)	100
8,10(4) 1-00 101E 12,13,14,15 0,2)	100
0-11 10 V	
3,7(4) 0-11 010	ag.
5,7(2) 01-1 101	
512 (c) = 101 001	
	11
	1
911(2) 10-1 0100	0
9.13 (4) Tag	
1011(1)	
10.14(4)	
7 10 19 -[1]	
11 15 (4)	
groups 13,15 (2) groups 14,15 (1) Joseph 14,15 (1) A,B,C,D,E, Tag F,G,H,I, Tag	T
goeth 14,15(1) F,G,H,I,	1
ex and It are dere to the first in Tag	4-20
for the con regular	
ex any left one period Tag F, G, H, T, for so yet for reduction F, G, H, M.	

$$f_1 = C + D + F + H$$

$$f_2 = G + M$$

$$f_3 = D + H + L$$

	X	2	8	X	7	8	9	×	14	X	X	X	X	X	6	8	19	16	11	X	3	×	7	8	9	X	13	14	15				
A	- Alexander		X								×		X							X	X												HOA
B	X						X				X						X			X					×								DOB
C		X	×									X	X																				
D						×	×					8				X) ×							X	X								DDE
1						X		X																X		X							
F								X	X						~											X		×					
9										X)	X		(X)	X															1		1	
H	X		X	X	X															×	X	X	×										
I																				X		X			X		X			1		12	DZ
J																								×	X	X	X					6	25
K																						×	X				X		X	1	1		
L																. /										X	X	X	X				
M										X	X	X	×	(0		×	X	×	X	00		4				14	7				1		0 1
	124		302	5=7				1224		900	1101	200	30	4 = 1		000	60	×11001		153		527				120	13215				1 A	101	5,1,1
					100	-											F									-		1	1	1	1	1	