Семинар 32

Общая информация

- Для линейного оператора $\varphi \colon V \to V$ с собственным значением λ подпространство из собственных векторов будем обозначать через V_{λ} .
- Для линейного оператора $\varphi \colon V \to V$ с собственным значением λ корневое подпространство будем обозначать через V^{λ} .
- \bullet Напомню, что Жорданова клетка размера k с собственным значением λ это матрица

$$J_k(\lambda) = \begin{pmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix} \in \mathcal{M}_k(\mathbb{R})$$

• Основной результат теоремы о ЖНФ заключается в том, что для любого оператора $\varphi \colon V \to V$ существует базис, в котором его матрица имеет следующий блочно-диагональный вид

$$\begin{pmatrix} J_{k_1}(\lambda_1) & & & \\ & \ddots & & \\ & & J_{k_r}(\lambda_r) \end{pmatrix}$$

Здесь λ_i не обязательно различны.

Задачи:

1. Пусть матрица A имеет следующий блочно-диагональный вид

$$A = \begin{pmatrix} J_{k_1}(0) & & \\ & \ddots & \\ & & J_{k_r}(0) \end{pmatrix}$$

Для оператора $A: \mathbb{R}^n \to \mathbb{R}^n$, где $n = k_1 + \ldots + k_r$, найти размерность собственного подпространства $(\mathbb{R}^n)_0$.

- 2. Пусть $\varphi: V \to V$ линейный оператор. Докажите, что в некотором базисе φ задается матрицей $J_n(0)$ тогда и только тогда, когда найдется базис e_1, \ldots, e_n пространства V такой, что $\varphi(e_i) = e_{i-1}$ и $\varphi(e_1) = 0$.
- 3. Пусть оператор $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ задан матрицей $A \in \mathrm{M}_n(\mathbb{R})$. Проверьте, задается ли линейный оператор Жордановой клеткой $J_n(0)$ в некотором базисе и если задается, то найдите этот базис.

(a)
$$A = \begin{pmatrix} 0 & & & \\ 1 & 0 & & \\ & 1 & 0 & \\ & & 1 & 0 \end{pmatrix}$$
, (b) $A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ & 0 & 1 & 1 \\ & & & 0 \end{pmatrix}$, (c) $A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ & 0 & 1 & 1 \\ & & 0 & 0 \\ & & & & 0 \end{pmatrix}$.

- 4. Пусть $\varphi: V \to V$ линейный оператор с собственным значением λ алгебраической кратности k. Покажите, что $V^{\lambda} = \ker(\varphi \lambda E)^k$.
- 5. Задачник. §40, задача 40.35 (а, б, г).
- 6. Для следующих матриц найдите единственное собственное значение и определите количество и размер

1

жордановых клеток: (a)
$$\begin{pmatrix} 1 & -3 & 0 & 3 \\ -2 & -6 & 0 & 13 \\ 0 & -3 & 1 & 3 \\ -1 & -4 & 0 & 8 \end{pmatrix}, \text{ (b) } \begin{pmatrix} 3 & -1 & 1 & -7 \\ 9 & -3 & -7 & -1 \\ 0 & 0 & 4 & -8 \\ 0 & 0 & 2 & -4 \end{pmatrix}.$$

7. Пусть $\varphi \colon V \to V$ – оператор в комплексном векторном пространстве. Покажите, что существует базис, в котором матрица оператора имеет следующий блочно-диагональный вид 1

$$\begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_r \end{pmatrix}, \quad A_i = \begin{pmatrix} \lambda_i & * & * \\ & \ddots & * \\ & & \lambda_i \end{pmatrix}$$

- 8. Пусть $A\in \mathrm{M}_n(\mathbb{R})$ и пусть $f\in \mathbb{R}[x]$ многочлен такой, что f(A)=0. Покажите следующее:
 - (a) Если $\lambda \in \operatorname{spec} A$, то $f(\lambda) = 0$.
 - (b) Если $\mu \notin \operatorname{spec} A$ и $f(x) = (x \mu)^k g(x)$, то g(A) = 0.
 - (c) Если $f(x) = (x \lambda)^k g(x)$ и $g(\lambda) \neq 0$, то $\ker(A \lambda)^k = \operatorname{Im} g(A)$.
 - (d) Если $\chi_A(x)$ характеристический многочлен A, то $\chi_A(A)=0.2$

 $^{^1}$ На эту задачу можно смотреть как на первое приближение к теореме о ЖНФ. Оставшаяся часть заключается в том, чтобы установить самый лучший вид матриц A_i в некотором базисе.

 $^{^2}$ Этот результат называется теоремой Гамильтона-Кэли.