

Assessing
Bankruptcy Risk for
Business Loan
Applicants

Uyen Pham, Ryan Dunn, Aaron Carr

Problem Statement

- Budget constraints dictate:
 - Limited # of applications given elevated review by management
 - Need for accurate ID of high-risk applicants
- Business Credit Lending Department + Data Science Team tasked to develop automatic ID of high-risk applicants
- System will aid junior analysts in their initial credit evaluation of business lending applications → Limit the number of reviews required by senior analysts/management

Solutions Explored

- Historical 10K and 10Q. Contains key ratios.
- Ratios were assessed to find the optimal data points that can be modeled to identify future a bankruptcy
- Identify maximum number of bankruptcies, and limit false positive
- Change the current workflow
- Provide a risk score recommendation that will identify the type of review required to approve an application

Data Analysis Conclusion

- A model was developed that has targeted applications to:
 - Reduce missing majority of companies at-risk
 - Assign risk levels based on probability of bankruptcy
 - Pool needing additional review and approval decreases as risk levels increase

Recommendation

- Divide customers into risk groups based on probability of bankruptcy
- A few customers in riskiest tiers require additional reviews
- Increased automation →
 Decreased review for senior
 analysts + Decreased loss
 from bad loans

References

- Analyst Prep (2021, April 15). *cfa-level-2-oversampling-and-undersampling*. https://analystprep.com/study-notes/cfa-level-2/quantitative-method/model-training/attachment/cfa-level-2-oversampling-and-undersampling/
- Bayirli, A. (2020, June 29). *Gunden geri kalanlar 17*. https://blog.arifbayirli.com/post/2020-06-29-gunden-geri-kalanlar-17/
- Zięba, M., Tomczak, S. K., & Tomczak, J. M. (2016). Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction [Data set]. *UCI Machine Learning Repository*.

