1 Questão 1

 f_1 alternativa B : N

O tempo é linear pois são feitas n iterações cada uma com contribuição de O(1).

 f_2 alternativa E : N^3

 f_2 chama f_1 dentro de um loop interno que para cada i ele itera i e loop externo vai de 0 até N.

 f_3 alternativa H : N!

 f_3 para cada valor indo de 0 até N a íesima iteração no loop retorna o valor da função f_1 para N-1, como fazemos isso N vezes, portanto o tempo de execução de f_3 é N!.

Homework 2

Due: April 12, 2020

 f_4 alternativa C : nlogn

 $t(n) = 2t(\frac{n}{2}) + 3n, n = 2^k$

 $t(2^k) = 2t(2^{k-1}) + 3.2^k$, utilizando o método da substituição, temos:

 $s(k) = 2s(k-1) + 3.2^k$.

A equação característica é:

 $(x-2)^2 = 0$

Sendo assim, $t(n) = nc_1 + c_2 n log n$. O tempo de execução de f_4 é de n log n.

 f_6 alternativa G : 3^n

 $f_6(n) = 3f_6(n-1)$. Pela equação característica, obtemos que o tempo computacional de f_6 é de 3^n .

 f_7 alternativa A : log n

Supondo que n é uma potência de 2. Temos que $t(n) = t(\frac{n}{2}) + \Theta(1)$.

Utilizando uma árvore de recorrência, obtemos:

 $t(n) = \Theta(1).logn + t(1)$

2 Questão 2

a) $T(n) = 2t(\frac{n}{2}) + n^k$, onde k > 0 é uma constante.

Usando o teorema mestre, temos que a = b = 2.

Assim, temos que t(n) = O(nlogn) se k = 1, $t(n) = O(n^k)$ se k > 1 e t(n) = O(n) se $k \in (0, k)$.

 $t(n) = 2t(\frac{n}{2}) + \frac{n}{\log n}$. Suponhamos que n é uma potência de 2.

Desenhando a árvore, pra cada nível i temos um total de 2^i nós. Começamos no nível i=0. Cada nível com exceção das chamadas de recursão tem uma contribuição de $2^i*\frac{n^2}{\log\frac{n}{2^i}}=\frac{n}{\log n-i}$.

Chegamos em t(1) no último nível quando $1 = \frac{n}{2^i}, i = logn$. Assim, a altura da árvore é de logn + 1. No último nível temos uma quantidade $2^{logn} = n^{log2} = n$ de subproblemas, em que cada um contribui com um tempo constante c.

$$t(n) = \frac{n}{\log n} + \frac{n}{\log \frac{n}{2}} + \ldots + \frac{n}{\log \frac{n}{2^{\log(n-1)}}} + cn = n\sum_{i=0}^{\log n-1} \frac{1}{\log n - i} + cn$$

Como havíamos suposto que $n=2^k$, onde $k=\log n$, temos que: $t(n)=n\sum_{i=0}^{k-1}\frac{1}{k-i}+cn$

O somatório tem o comportamento de uma série harmônica, que para uma soma finita se aproxima de log(k). Logo, t(n) = O(loglogn).

3 Questão 3

Queremos provar a afirmação: só há uma maneira de atribuir as chaves aos nós e formar uma BTS válida, recebidas n chaves e uma árvore binária com n nós.

Raciocínio usando indução:

Caso base: Recebo uma árvore binária com um nó e uma chave, de fato só existe uma maneira de atribuir a chave ao nó.

Hipótese de indução: Suponha que para uma dada árvore binária qualquer com k nós só haja uma maneira de atribuir as k chaves recebidas de modo que ela seja uma BTS válida.

Acrescentando um filho a uma folha nessa árvore de k nós e dada mais uma chave, removo os chaves uma vez atribuídas aos nós e conto quantos nós na árvore binária k+1 estão à direita do root, suponha que seja r, e quantos estão à esquerda, l. Ordeno as chaves e adiciono a chave no root de acordo com o número correspondente que possui r maiores do que ele na lista e l menores. Observe que dada uma lista de números distintos não há como haver quantidades diferentes de valores maiores ou menores do que um número fixo. Temos então duas sub árvores, uma à esquerda e uma à direita. Repetimos o processo pra os nós do próximo nível. Considere que como as subárvores possuem no máximo k nós e pela hipótese de indução só podemos atribuir as k chaves aos k nós de uma única forma, então temos que só existe uma maneira de distribuir as k+1 chaves para os k+1 nós como queríamos provar.

4 Questão 4

a) post order : M,W,Y,I,P,S,E,B,O reverse post order: O,B,E,S,P,I,Y,W,M b) A ordem BST começando por O é dada por:

[[O], [B, E, Y], [S, W], [I, M, P]]

c) Tal ordem não existe, pois ela só é possível se o grafo é um DAG, um grafo direcionado acíclico, o que não ocorre nesse caso pois há um ciclo entre os vértices E e S.

5 Questão 5

a) 3, 0, 10, 5, 2

b)(obs: na primeira linha é $4 \rightarrow 6$)

6 Questão 6

 H_1 é o conjunto exaustivo de todas as funções hash que mapeiam do universo U para os n buckets. Aqui considerando todas as possibilidades de mapeamento, temos um total de n^m funções possíveis. Assim, $|H_1| = n^m$. O conjunto exaustivo de todas as funções hash, apesar de ser uma família hash universal ocupa muitos bits para armazenar tantas funções. Para armazenar apenas uma função o custo é o mlogn, o que também é muito alto. Sendo assim, eu escolheria H_2 , pois armazenar todo o H_1 ocupa muito espaço e armazenar cada função também ocupa muito espaço. Observe que o tamanho de H_2 é dado por (p-1)p, pois essas são as possíveis possibilidades para a e b. De fato, H_2 possui um tamanho muito menor. Alternativas b e c.

7 Questão 7

```
def encontrar_indice(A, left):
// left controla o tamanho da lista existente na esquerda
n = len(A)
mid = math.floor(n/2)
if len(A) == 0:
    return print("Nenhum indice encontrado")
if A[mid] == (mid + left):
    return print(A[mid])
elif A[mid] > (mid + left):
// Nao preciso procurar na lista da direita
    encontrar_indice(A[0: mid], left)
elif A[mid] < (mid + left):
// Preciso encontrar um modo de buscar na lista da direita preservando os indices
left = left + mid
encontrar_indice(A[mid:], left)</pre>
```

O algoritmo é O(logn).

8 Questão 8

- a). Cria um ponteiro que aponta pra o nó 3.
- . Cria um novo nó com item = 4 e cujo ponteiro aponta pra o nó 7.
- . Faz com que o ponteiro do nó 3 aponte para o novo nó 4.

- b) prev \rightarrow item = 3
- c) . Faz com que o ponteiro prev passe a apontar para o nó que o nó 3 aponta.
- . Prev agora aponta para o nó 7.
- . Cria um ponteiro que aponta para o nó 12.
- . Faz 7 apontar para o nó que 12 aponta.
- . deleta o nó para o qual curr aponta.
- . Atribui null para o ponteiro curr.

