Domain-Specific Languages of Mathematics

Course-memo for the 2017 instance of a 7.5hec BSc course at Chalmers and GU.

Homepage: https://github.com/DSLsofMath/DSLsofMath/

Course codes: DAT326 / DIT982

Course team

- Examiner & main lecturer: Patrik Jansson (patrikj AT)
- Lecturer: Cezar Ionescu (cezar AT)
- Teaching assistants: Daniel Schoepe (schoepe AT), Frederik Hanghøj Iversen (hanghj AT student)

Objectives

The course presents classical mathematical topics from a computing science perspective: giving specifications of the concepts introduced, paying attention to syntax and types, and ultimately constructing DSLs of some mathematical areas mentioned below.

Learning outcomes as in the course syllabus:

- Knowledge and understanding
 - design and implement a DSL (Domain Specific Language) for a new domain
 - organize areas of mathematics in DSL terms
 - explain main concepts of elementary real and complex analysis, algebra, and linear algebra
- Skills and abilities
 - develop adequate notation for mathematical concepts
 - perform calculational proofs
 - use power series for solving differential equations
 - use Laplace transforms for solving differential equations
- Judgement and approach
 - discuss and compare different software implementations of mathematical concepts

The course is elective for both computer science and mathematics students at both Chalmers and GU.

Course material

There is no course textbook. References will be provided in the lecture summaries.

Course setup

- Lectures (Mondays 10-12 in EB, and Mondays 15-17 in EF)
 - Introduction: Haskell, complex numbers, syntax, semantics, evaluation, approximation
 - Basic concepts of analysis: sequences, limits, convergence, . . .
 - Types and mathematics: logic, quantifiers, proofs and programs, Curry-Howard, . . .
 - Type classes, derivatives, derivation,
 - Domain Specific Languages and algebraic structures, algebras, homomorphisms
 - Polynomials, series, power series
 - Power series and differential equations, exp, sin, log, Taylor series, ...
 - Laplace transform
 - Linear algebra
- Weekly exercises (Wednesdays 13-15 and Fridays 13-15 in EDIT2505)
- $\bullet\,$ Assignments: two compulsory hand-in assignments in groups of three
 - Grading: Pass or fail
- Written exam
 - Grading: Chalmers: U, 3, 4, 5; GU: U, G, VG

Changes from last year

In 2016 the course was taught for the very first time, and by a different teaching team (Cezar Ionescu, Irene Lobo Valbuena). The main changes for 2017 are

- Re-worked the first four lectures (less logic, more Haskell)
- Re-ordering of lectures
- Replacing two guest lectures by new lectures on Linear Algebra

Examination

There are two compulsory course elements:

- Assignments (written + oral examination in groups of three students)
 - Deadlines: 2017-01-31 and 2017-02-28
- Exam (individual written exam at the end of the course)
 - Date: 2017-03-14 at 14.00
 - Aids: One textbook of your choice

To pass the course you need to pass both course elements.