Théorie des graphes : vocabulaire

MP/MP* Option info

Graphe = dessin?

Un graphe est constitué:

- de sommets (vertices en anglais), représentés par des points (ou ronds)
- d'arêtes (edges en anglais), représentés par des traits entre les sommets

Définition formelle

Un graphe (non orienté) est un couple G = (V, E) où:

- V est un ensemble fini (de **sommets**)
- E est un ensemble dont chaque élément, appelé arête, est un ensemble de 2 sommets

Définition formelle

Un graphe (non orienté) est un couple G = (V, E) où:

- V est un ensemble fini (de **sommets**)
- E est un ensemble dont chaque élément, appelé arête, est un ensemble de 2 sommets

lci
$$V = \{0, 1, 2, 3, 4, 5, 6\}$$
 et $E = \{\{0, 6\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{4, 5\}\}.$

Définition formelle

Un graphe orienté est un couple $\vec{G} = (V, \vec{E})$ où:

- V est un ensemble fini (de **sommets**)
- ② $\overrightarrow{E} \subseteq V \times V$ est un ensemble de **couples** de sommets (appelés arcs)

Soit G = (V, E) un graphe non orienté.

• Si $e = \{u, v\} \in E$ on dit que u et v sont les **extrémités** de e et que u et v sont **voisins** (ou **adjacents**).

Soit G = (V, E) un graphe non orienté.

- Si $e = \{u, v\} \in E$ on dit que u et v sont les **extrémités** de e et que u et v sont **voisins** (ou **adjacents**).
- Le degré d'un sommet v ∈ V, noté deg(v), est son nombre de voisins. Si deg(v) = 1, on dit que v est une feuille.
 Pour un graphe orienté, on note deg⁻(v) et deg⁺(v) les degrés entrants et sortants de v.

Soit G = (V, E) un graphe non orienté.

- Si $e = \{u, v\} \in E$ on dit que u et v sont les **extrémités** de e et que u et v sont **voisins** (ou **adjacents**).
- Le degré d'un sommet v ∈ V, noté deg(v), est son nombre de voisins. Si deg(v) = 1, on dit que v est une feuille.
 Pour un graphe orienté, on note deg⁻(v) et deg⁺(v) les degrés entrants et sortants de v.
- Si $e \in E$, on note G e le graphe obtenu en supprimant e: $G e = (V, E \{e\})$.

Soit G = (V, E) un graphe non orienté.

- Si $e = \{u, v\} \in E$ on dit que u et v sont les **extrémités** de e et que u et v sont **voisins** (ou **adjacents**).
- Le degré d'un sommet v ∈ V, noté deg(v), est son nombre de voisins. Si deg(v) = 1, on dit que v est une feuille.
 Pour un graphe orienté, on note deg⁻(v) et deg⁺(v) les degrés entrants et sortants de v.
- Si $e \in E$, on note G e le graphe obtenu en supprimant e: $G e = (V, E \{e\})$.
- Si v ∈ V, on note G − v le graphe obtenu en supprimant v: G − v = (V − {v}, E'), où E' est l'ensemble des arêtes de E n'ayant pas v comme extrémité.

Formule des degrés

Formule des degrés (HP)

Soit G = (V, E) un graphe. Alors:

$$\sum_{v \in V} \deg(v) = 2|E|$$

Formule des degrés

Formule des degrés (HP)

Soit G = (V, E) un graphe. Alors:

$$\sum_{v \in V} \deg(v) = 2|E|$$

Preuve (par double comptage des extrémités d'arêtes):

Le nombre d'extrémités d'arêtes est égal à:

- 1 2 | E | car chaque arête a 2 extrémités.
- ② $\sum_{v \in V} \deg(v)$ car chaque sommet v est extrémité de $\deg(v)$ demi-arêtes.

Formule des degrés

Formule des degrés (HP)

Soit G = (V, E) un graphe. Alors:

$$\sum_{v \in V} \deg(v) = 2|E|$$

Preuve (par double comptage des extrémités d'arêtes):

Le nombre d'extrémités d'arêtes est égal à:

- 1 2 |E| car chaque arête a 2 extrémités.
- 2 $\sum_{v \in V} \deg(v)$ car chaque sommet v est extrémité de $\deg(v)$ demi-arêtes.

Pour un graphe orienté: $\sum \deg^+(v) = \sum \deg^-(v) = |\vec{E}|$

Corollaire (HP)

Lemme des poignées de main (Handshake lemma)

Tout graphe possède un nombre pair de sommets de degrés impairs.

Corollaire (HP)

Lemme des poignées de main (Handshake lemma)

Tout graphe possède un nombre pair de sommets de degrés impairs.

Preuve:

$$\underbrace{\sum_{\deg(v) \text{ pair}} \deg(v) + \sum_{\deg(v) \text{ impair}} \deg(v) = \underbrace{2|E|}_{\text{pair}}$$

Corollaire (HP)

Lemme des poignées de main (Handshake lemma)

Tout graphe possède un nombre pair de sommets de degrés impairs.

Preuve:

$$\underbrace{\sum_{\mathsf{deg}(v) \; \mathsf{pair}} \mathsf{deg}(v)}_{\mathsf{pair}} + \sum_{\mathsf{deg}(v) \; \mathsf{impair}} \mathsf{deg}(v) = \underbrace{2|E|}_{\mathsf{pair}}$$

Application: existe t-il un graphe dont les sommets ont pour degrés 1, 2, 2, 3, 5?

Graphe complet

Un **graphe complet** est un graphe non orienté possèdant toutes les arêtes possibles.

Un graphe complet avec n sommets a arêtes

Graphe complet

Un **graphe complet** est un graphe non orienté possèdant toutes les arêtes possibles.

Un graphe complet avec n sommets a $\binom{n}{2}$ arêtes: c'est le nombre maximum d'arêtes d'un graphe à n sommets.

En particulier tout graphe à n sommets et m arêtes vérifie $m = O(n^2)$. Chaque sommet d'un graphe complet a degré n - 1.

Chemin

Un chemin est une suite d'arêtes consécutives différentes.

La longueur d'un chemin est son nombre d'arêtes.

La **distance** de u à v est la plus petite longueur d'un chemin de u à v (∞ si il n'y a pas de chemin): c'est une distance au sens mathématique.

Un graphe non orienté est **connexe** s'il possède un chemin de n'importe quel sommet à n'importe quel autre.

5 0 4 3 Graphe connexe

Un graphe non orienté est **connexe** s'il possède un chemin de n'importe quel sommet à n'importe quel autre.

Remarque: cela ressemble à la connexité par arc en mathématique.

Un graphe non orienté est **connexe** s'il possède un chemin de n'importe quel sommet à n'importe quel autre.

Remarque: cela ressemble à la connexité par arc en mathématique.

Quel est le nombre minimum d'arêtes d'un graphe connexe à *n* sommets?

Montrons par récurrence $\mathcal{H}(n)$: « un graphe connexe à n sommets possède au moins n-1 arêtes ».

• Un graphe à 1 sommet possède 0 arête.

- Un graphe à 1 sommet possède 0 arête.
- ② Supposons $\mathcal{H}(n)$. Soit G = (V, E) un graphe connexe à n+1 sommets.

- Un graphe à 1 sommet possède 0 arête.
- ② Supposons $\mathcal{H}(n)$. Soit G = (V, E) un graphe connexe à n+1 sommets.
 - Si G a un sommet v de degré 1 alors

- Un graphe à 1 sommet possède 0 arête.
- ② Supposons $\mathcal{H}(n)$. Soit G = (V, E) un graphe connexe à n+1 sommets.
 - Si G a un sommet v de degré 1 alors G v est un graphe **connexe** à n sommets donc, par $\mathcal{H}(n)$, G v a au moins n 1 arêtes.

- Un graphe à 1 sommet possède 0 arête.
- ② Supposons $\mathcal{H}(n)$. Soit G = (V, E) un graphe connexe à n+1 sommets.
 - Si G a un sommet v de degré 1 alors G v est un graphe **connexe** à n sommets donc, par $\mathcal{H}(n)$, G v a au moins n 1 arêtes. Donc G a au moins n arêtes.
 - Sinon,

- Un graphe à 1 sommet possède 0 arête.
- ② Supposons $\mathcal{H}(n)$. Soit G = (V, E) un graphe connexe à n+1 sommets.
 - Si G a un sommet v de degré 1 alors G v est un graphe **connexe** à n sommets donc, par $\mathcal{H}(n)$, G v a au moins n 1 arêtes. Donc G a au moins n arêtes.
 - Sinon, tous les sommets de G sont de degré ≥ 2 . Alors $2|E| = \sum_{v \in V} \deg(v) \geq 2(n+1) \geq 2n$. Donc $|E| \geq n$, ce qui montre $\mathcal{H}(n+1)$.

Composantes connexes

Considérons la relation d'équivalence sur les sommets d'un graphe non orienté G=(V,E):

 $u \sim v \iff$ il existe un chemin entre u et v

Composantes connexes

Considérons la relation d'équivalence sur les sommets d'un graphe non orienté G = (V, E):

$$u \sim v \iff$$
 il existe un chemin entre u et v

Les classes d'équivalences V/\sim sont les sous-graphes connexes maximaux (au sens de \subseteq) de G, elles sont appelées **composantes** connexes.

Un graphe avec 3 composantes connexes.

Composantes fortement connexes

Si $\vec{G} = (V, \vec{E})$ est orienté, « $u \rightsquigarrow v \iff$ il existe un chemin de u à v » **n'est pas** une relation d'équivalence.

Composantes fortement connexes

Si $\vec{G} = (V, \vec{E})$ est orienté, « $u \rightsquigarrow v \iff$ il existe un chemin de u à v » **n'est pas** une relation d'équivalence.

Par contre la relation \iff suivante est une relation d'équivalence:

$$u \leftrightarrow v \iff u \rightsquigarrow v \text{ et } v \rightsquigarrow u$$

Les classes d'équivalences de V/\iff sont appelées **composantes** fortement connexes.

Un graphe orienté avec 3 composantes fortement connexes.

Composantes fortement connexes

Si $\vec{G} = (V, \vec{E})$ est orienté, « $u \rightsquigarrow v \iff$ il existe un chemin de u à v » **n'est pas** une relation d'équivalence.

Par contre la relation suivante est d'équivalence:

Les classes d'équivalences V/\iff sont appelées **composantes** fortement connexes.

Le graphe des composantes fortement connexes est acyclique.

Cycle

Un cycle est un chemin revenant au sommet de départ.

Un cycle avec *n* sommets possède

Cycle

Un cycle est un chemin revenant au sommet de départ.

Un cycle avec n sommets possède n arêtes.

Exemples

Soit σ une permutation de $\{0,...,n-1\}$. On peut lui associer un graphe orienté (V,\overrightarrow{E}) où:

- $V = \{0, ..., n-1\}$
- $\overrightarrow{E} = \{(v, \sigma(v)) \mid v \in V\}$

Soit σ une permutation de $\{0,...,n-1\}$. On peut lui associer un graphe orienté (V, \overrightarrow{E}) où:

$$V = \{0, ..., n-1\}$$

$$\mathbf{O} \overrightarrow{E} = \{(v, \sigma(v)) \mid v \in V\}$$

Si
$$\sigma = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 4 & 3 & 1 & 0 \end{pmatrix}$$
:

Les cycles d'une permutation sont celles de son graphe.

Le permutoèdre d'ordre n a pour sommets les permutations de $\{0,...,n-1\}$ et des arêtes entre deux permutations si elles différent d'une transposition.

Nombre de sommets:

Degré de chaque sommet:

Nombre d'arêtes:

Le permutoèdre d'ordre n a pour sommets les permutations de $\{0,...,n-1\}$ et des arêtes entre deux permutations si elles différent d'une transposition.

Nombre de sommets: n!

Degré de chaque sommet:

Nombre d'arêtes:

Le permutoèdre d'ordre n a pour sommets les permutations de $\{0,...,n-1\}$ et des arêtes entre deux permutations si elles différent d'une transposition.

Nombre de sommets: n!

Degré de chaque sommet: $\binom{n}{2}$

Nombre d'arêtes:

Le permutoèdre d'ordre n a pour sommets les permutations de $\{0,...,n-1\}$ et des arêtes entre deux permutations si elles différent d'une transposition.

Nombre de sommets: n!

Degré de chaque sommet: $\binom{n}{2}$

Nombre d'arêtes: $\frac{n!}{2} \binom{n}{2}$

 $\binom{n}{2}$

Un graphe est acyclique (ou: sans cycle) s'il ne contient pas de cycle.

Quel est le nombre maximum d'arêtes d'un graphe acyclique à n sommets?

Montrons d'abord:

Lemme

Tout graphe acyclique contient un sommet de degré ≤ 1 .

Montrons d'abord:

Lemme

Tout graphe acyclique contient un sommet de degré ≤ 1 .

<u>Preuve</u>: Soit $\mathcal C$ un chemin élémentaire (qui ne passe pas 2x par le même sommet) de longueur maximum et soit v une de ses extrémités. Alors $\deg(v) \leq 1$, sinon on pourrait augmenter la longueur de $\mathcal C$.

Montrons d'abord:

Lemme

Tout graphe acyclique contient un sommet de degré ≤ 1 .

<u>Preuve</u>: Soit $\mathcal C$ un chemin élémentaire (qui ne passe pas 2x par le même sommet) de longueur maximum et soit v une de ses extrémités. Alors $\deg(v) \leq 1$, sinon on pourrait augmenter la longueur de $\mathcal C$.

Remarque: tout graphe acyclique avec au moins 2 sommets contient 2 sommets de degré ≤ 1 .

Montrons par récurrence $\mathcal{H}(n)$: « un graphe acyclique avec n sommets possède au plus n-1 arêtes ».

Montrons par récurrence $\mathcal{H}(n)$: « un graphe acyclique avec n sommets possède au plus n-1 arêtes ».

- Un graphe à 1 sommet a 0 arête.
- ② Supposons $\mathcal{H}(n)$. D'après le lemme, un graphe G acyclique à n+1 sommets possède un sommet v de degré ≤ 1 .

Montrons par récurrence $\mathcal{H}(n)$: « un graphe acyclique avec n sommets possède au plus n-1 arêtes ».

- Un graphe à 1 sommet a 0 arête.
- Supposons H(n). D'après le lemme, un graphe G acyclique à n+1 sommets possède un sommet v de degré ≤ 1.
 G v est acyclique (un cycle dans G v sorait aussi un cycle dans G v sor
 - G v est acyclique (un cycle dans G v serait aussi un cycle dans G v serait aussi un cycle dans G v serait aussi un cycle dans
 - G) donc a au plus n-1 arêtes, par $\mathcal{H}(n)$.

Montrons par récurrence $\mathcal{H}(n)$: « un graphe acyclique avec n sommets possède au plus n-1 arêtes ».

- Un graphe à 1 sommet a 0 arête.
- ② Supposons $\mathcal{H}(n)$. D'après le lemme, un graphe G acyclique à n+1 sommets possède un sommet v de degré ≤ 1 .
 - G v est acyclique (un cycle dans G v serait aussi un cycle dans G) donc a au plus n 1 arêtes, par $\mathcal{H}(n)$.
 - Donc G a au plus $n-1+\deg(v)\leq n$ arêtes, ce qui montre $\mathcal{H}(n+1)$.

Arbre

Un graphe non orienté T avec n sommets est un **arbre** s'il vérifie l'une des conditions équivalentes:

Théorème / définition

- T est connexe acyclique.
- 2 T est connexe et possède n-1 arêtes.
- **3** T est acyclique et possède n-1 arêtes.
- Il existe un unique chemin entre 2 sommets quelconques de T.

Arbre

Un graphe non orienté T avec n sommets est un **arbre** s'il vérifie l'une des conditions équivalentes:

Théorème / définition

- T est connexe acyclique.
- 2 T est connexe et possède n-1 arêtes.
- **3** T est acyclique et possède n-1 arêtes.
- 1 Il existe un unique chemin entre 2 sommets quelconques de T.

Un arbre est **couvrant** s'il contient tous les sommets.

Les « arbres » que l'on a vu avant étaient enracinés. Ici il n'y a pas de racine.