CS C341 / IS C361 Data Structures & Algorithms

GRAPH ALGORITHMS

Relations and Graphs
Flows and Graphs
Graph Properties

Graph Properties

Symmetry: Directed vs. Undirected

Transitivity: Paths and Cycles

Weighted Graphs

Degrees and Connectedness

Graph Representation

Adjacency Matrices

Adjacency Lists

Edge Lists

RELATIONS AND DATA STRUCTURES

- Sorted Lists
 - Used for capturing total order relations
- Trees
 - Used for capturing partial order relations
 - E.g. order of evaluating an expression
 - E.g. Priority order of processes
- Graphs
 - Used for capturing arbitrary binary relations

RELATIONS AND GRAPHS

- A binary relation R on a set S of elements is defined as a subset of S x S.
 - In general the pair (S,R), where R is a subset of S x S defines the relation R on elements S
- A relation is then modeled by a graph G defined as the pair (V,E) where
 - V is the set of vertices (or nodes)
 - V models S
 - E, a subset of V x V, is the set of edges (or links)
 - E models R
- Terminology
 - Often we'd say
 - G models R
 - to mean
 - \circ G = (V,E) models (S,R)

RELATIONS AND GRAPHS - EXAMPLES

- A program is written as a set of files. (For compilation)
 a file may depend on another file. Capture the order of
 compilation (i.e. the dependencies) as a graph:
 - G = (V,E)
 - where V is the set of files and
 - o E = { (f1, f2) | f1 and f2 are in V, f1 depends on f2 i.e. f2 must be compiled before f1 }
- A political map (of regions) captures adjacency (border) relations. This can be represented as a graph:
 - G=(V,E)
 - where V is the set of regions and
 - o E = { (r1,r2) | r1 and r2 are in V, r1 is adjacent to
 (i.e. bordering) r2 }

RELATIONS AND GRAPHS - EXAMPLES

• Quick Exercises:

- Capture the relation "is a classmate of" using a graph.
- Capture the relation "is a friend of" using a graph.
- Capture the relation "is connected by road" using a graph.
- Capture the relation "can be seen from" on locations using a graph.
- Capture the relation "has a pointer to" on data structures (often referred to as data objects or just objects)
- Capture the relation "belong to the same Facebook community" on netizens
- Capture the relation " has a hyperlink to" on web pages

NETWORKS/FLOWS AND GRAPHS

- Networks/Flows also can be captured by graphs.
 - Usually flows happen on networks
 - i.e. typically a network is what gets captured in a graph along with (flow) capacities or costs
- Weighted Graph: G = (V,E,w) where
 - V and E are defined as earlier
 - w is a function on E
 - oi.e. w: E--> Num and Num is typically N, Z, Q or R.
- Terminology:
 - We may (depending on the context) ignore w and talk about the projection (V,E) of the graph (V,E,w).

FLOWS AND GRAPHS

- Examples / Exercises:
 - Rivers with tributaries and distributaries
 - What are the vertices? What are the edges? What is the weight function?
 - Computer network
 - Rail (or other traffic) network
 - Electrical circuits
 - Program execution
 - Flow of control
 - Flow of data

- A relation captured by a graph may be symmetric or asymmetric
 - Then the graph is referred to as undirected or directed respectively.

• Exercises:

- For each of the following relations/networks decide whether you need a directed or an undirected graph:
 - Dependencies on files
 - Adjacencies of regions
 - Friends
 - Classmates
 - Connectivity by road
 - Visibility
 - Computer network
 - River network
 - Pointer-based data structures

- A relation captured by a graph may be transitive or not
- A path in a graph G = (V,E) is defined as a sequence of edges (or vertices):
 - A path p from vertex v1 to vertex v2 is defined by a sequence of vertices $(v_{j0}, v_{j1}, v_{j2}, ... v_{jn-1}, v_{jn})$ where
 - \circ for each k from 0 to n-1 $(v_{jk}$, v_{jk+1}) is in E and $\,v1=\,v_{j0,}$ and $v2=\,v_{in,}$
- A path captures "the transitivity" of the relation being modeled.
- A simple path from v1 and v2 is a path (v1= v_{j0} , v_{j1} , v_{j2} , ... v_{jn-1} , v_{jn} =v2) such that
 - for each k=1 to n-1 each v_{jk} is unique.

• Exercises:

- What is the meaning of a path in the following examples?
 - Dependencies on files
 - Adjacencies of regions
 - Friends
 - Classmates
 - Connectivity by road
 - Visibility
 - Computer network
 - River network
 - Pointer-based data structures
 - Web pages and hyperlinks

- A (simple) path from vertex v1 to itself is referred to as a cycle.
 - (Non-)Existence of cycles is an important property.
 - Graphs without cycles are referred to as Acyclic Graphs
 - In particular, directed graphs without cycles are referred to as Directed Acyclic Graphs (DAGs)
- In which of the following examples is "a cyclic path" interesting / meaningful / should be restricted?
 - Dependencies on files
 - Adjacencies of regions
 - Friends
 - Classmates
 - Connectivity by road
 - Visibility
 - Computer network
 - River network
 - Pointer-based data structures
 - Web Hyperlinks

SUBCLASSES OF GRAPHS

- What kind of a graph captures a total relation?
 - Degree of every node is at least 1
- What kind of a graph captures a function?
 - Assume f(a)=b is modeled as directed edge from a to b
 Out-degree of every node is exactly 1
 - Alternatively, f(a)=b is modeled as directed edge from b to a
 - In-degree of every node is exactly 1
 - What about a 1-to-1 function?
 - In-degree and out-degree of every node are exactly 1 each
- What does a tree capture?
 - A (directed) tree captures a function:
 - \circ If (u,v) is an edge then f(v)=u
 - Also, there are no cycles in a tree:
 - i.e. if f is defined on S, there is no subset T of S, such that f is a permutation on T.

GRAPHS - REPRESENTATION

- How do you represent a graph?
 - What operations are usually needed?
- Typical "high level" operations:
 - Traversing a graph / Uncovering a path
 - i.e. traversing a network
 - o i.e. uncovering transitivity
- Typical "low level" operations:
 - Are two elements (directly) related?
 - Is there an edge between two vertices?
 - Find all elements related to a given element.
 - i.e. vertices adjacent to a given vertex.
 - How many elements are related to a given element?

GRAPHS - REPRESENTATION - ADJACENCY MATRIX

Adjacency Matrix:

 Given a directed graph G = (V,E) a boolean matrix M can be used to represent G:

```
\circ |M| = |V| \times |V|
```

- \circ M[j,k] = 1 if (j,k) is in E; 0 otherwise
- Modify appropriately for undirected graph.
- Given a directed graph G=(V,E,w) a matrix M can be used to represent G:
 - $\circ |M| = |V| \times |V|$
 - M[j,k] = w((j,k)) if (j,k) is in E; ?? Otherwise
 - Alternatively one may assume w is a total function, and define
 - $\circ M[j,k] = w((j,k))$

GRAPHS - REPRESENTATION - ADJACENCY MATRIX

- Cost of typical "low level" operations:
 - Is there an edge between two vertices?
 - O(|V|)
 - Find all vertices adjacent to a given vertex.
 - O(|V|)
 - How many elements are related to a given element?
 - ∘ O(|V|)

GRAPHS - REPRESENTATION - ADJACENCY LISTS

• Adjacency Lists:

- Given a directed graph G = (V,E) a table AL can be used to represent G:
 - $\circ |AL| = |V|$
 - k is in AL[j] iff (j,k) is in E
- Modify appropriately for undirected graph.
- Given a directed graph G=(V,E,w) a matrix M(G) can be used to represent G:
 - $\circ |AL| = |V|$
 - (k,w((j,k))) is in AL[j] iff (j,k) is in E;
 - Alternatively one may assume w is a total function.
 - Why is this bad??

GRAPHS - REPRESENTATION - ADJACENCY LISTS

- Cost of typical "low level" operations:
 - Is there an edge between two vertices?
 - O(|V|) in the worst case
 - Find all vertices adjacent to a given vertex.
 - O(|V|) in the worst case
 - O(d(v)) for a given vertex v, where d is the "degree" of the vertex.
 - This is useful if vertices in the graph are "low degree"
 - How many elements are related to a given element?
 - O(|V|) unless a count is kept, in which case it is O(1)

GRAPHS - REPRESENTATION -EDGE LIST

• Edge List:

- Given a graph G = (V,E) a list EL can be used to represent G:
 - ∘ |EL| = |E|
 - (j,k) is in EL iff (j,k) is in E
- Given a graph G=(V,E,w) a matrix M(G) can be used to represent G:
 - ∘ |EL| = |E|
 - \circ (j, k,w((j,k))) is in EL iff (j,k) is in E;
 - Alternatively one may assume w is a total function.
 - Why is this bad??

GRAPHS - REPRESENTATION - EDGE LIST

- Cost of typical "low level" operations:
 - Is there an edge between two vertices?
 - O(|E|) in the worst case
 - Find all vertices adjacent to a given vertex.
 - O(|E|) in the worst case
 - How many elements are related to a given element?
 - O(|E|) in the worst case
- This representation is useful if E is sparse i.e. |E| << |V|*|V|
 - Why?
- Exercise:
 - Compare the space complexity of Edge List with the other two representations for various values of |E| from say, log|V|, |V|/k for some constant k, k*|V| for some constant k, |V|*log|V|, to |V|*|V|