

Course Schedule

This course schedule provides at-a-glance important information about what you need to prepare for each topic's lessons, assignments and live sessions. Keep a copy handy for easy reference!

Lessons	Assignments	Resources	Live Session Preparation
Course Introduction	Due on 09/14/2020 • Homework #0	Syllabus At-A-Glance Course Schedule Course Information Module Student Resources Module Course introduction Video	NA
Top Lessons	oic 1A: Asymptotic Notation Assignments	n & Recurrences 09/08/2020 – 09/29 Resources	5/2020 Live Session Preparation
In this topic we will learn the main tool for comparing algorithms: asymptotic notation. This will allow us to do the following: • Given a recursive algorithm, find a closed formula to denote its	9/15/2020 • Live Meeting from 6:00 PM to 7:30 PM ET 9/22/2020 • Live Meeting from 6:00 PM to 7:30 PM ET	Required Lecture 1.1: Asymptotic Notation CLRS 3.1 CLRS 3.2 (skim for later reference) Lecture 1.2: Recurrences CLRS 2.1-2.3, 4.3, 4.4	Review Lessons: Recitation 1 1.1: Asymptotic Notation Recitation 2 1.2: Recurrences 1.3: Master Method

Given the runtime of two	Homework #1	• CLRS 4.5	
algorithms, determine		• CLRS 6.3-6.5	
which one is faster	Due on 09/25/2020	Optional	
In order to achieve these results we	Homework #2	Lecture 1.3: Master Method	
need to refresh our math		 CLRS 4.6 (pp.97-99 help build 	
knowledge in topics such as		intuition)	
logarithm rules and proof by			
induction.			
Lessons:			
1.1: Asymptotic Notation			
1.2: Recurrences			
1.3: Master Method			

Topic 1B: Selection – 09/18/2020 – 09/25/2020

Lessons	Assignments	Resources	Live Session Preparation
In this topic, we will discuss the selection problem. In this problem, we are given an unsorted array of n numbers and must find the k-th smallest value inside. Although it is fairly easy to obtain an algorithm that can solve this problem, our goal is to design a very fast algorithm that can do so. More interesting than the algorithm	9/29/2020 • Live Meeting from 6:00 PM to 7:30 PM ET Due on 09/25/2020 • Homework #2	Required Lecture 1.4: Selection CLRS 9.3 Optional NA	Review Lessons: Recitation 3 1.4: Selection 1.5: Sorting Lower Bound

where we prove that the algorithm is correct, and that it runs in linear time. The last two steps heavily rely on the techniques introduced in the previous topic. Lessons 1.4: Selection			
Lossons		trategies – 09/25/2020 – 10/02/2020	
Now that we are more confident in asymptotic notation, we will introduce two more sorting techniques. These methods (called CountingSort and RadixSort) use outside-the-box ideas to sort an array of numbers. These algorithms depend on other parameters (not just the number of elements). Then, we will discuss in which cases would these algorithms become faster than more "traditional" techniques. Then, we will introduce the concept of lower bounds: that is, give a formal proof that no algorithm can be faster than the fastest	9/29/2020 • Live Meeting from 6:00 PM to 7:30 PM ET Due on 10/02/2020 • Homework #3	Required Lecture 1.5: CountingSort and RadixSort CLRS 8.2, 8.3 Lecture 1.6: Sorting Lower Bound CLRS 8.1 Optional NA	Review Lessons: Recitation 3 • 1.4: Selection • 1.5: Sorting Lower Bound

algorithms. This argument is not based in any particular algorithm, and can be used to any algorithm (possibly even those that have not been discovered yet). Lessons: 1.5: CountingSort and RadixSort 1.6: Sorting Lower Bound	Tonic 1D: Pandomized Ale	Parithms 00/25/2020 010/23/202	
		gorithms – 09/25/2020 – 010/23/202	
Lessons	Assignments	Resources	Live Session Preparation
We will focus our attention to randomized algorithms. Unfortunately, the techniques discussed in 1-A do not apply, and thus we must introduce new tools. • First, we introduce the concept of random variables (RV) and indicator random variables (IRV). • Then, we show how to use RVs and IRVs to solve simple probabilistic problems (such as the	10/06/2020 • Live Meeting from 6:00 PM to 7:30 PM ET Due 10/09/2020 • Homework #4 10/14/2020 • Exam 1 (Lessons 1.1-1.9) 10/13/2020 • Live Meeting from 6:00 PM to 7:30 PM ET Due 10/23/2020	Required Lecture 1.7: IRV CLRS 5.1, 5.2 Lecture 1.8: Quicksort CLRS 7.1-7.2, 7.4 Lecture 1.9: RandSelect CLRS 5.3, 7.3, 9.2 Optional NA	Recitation #4 • 1.6: Counting/RadixSort • 1.7: IRV • 1.8: Quicksort Recitation #5 • 1.9: RandSelect • Block 1 Review

	<u> </u>		•
 Finally, we use the same tools to analyze algorithms that have random behavior. Lessons: 1.7: IRV 1.8: Quicksort 1.9: RandSelect 			
		oata Structures - 10/09/2020 – 10/23	
In this unit, we will review hashing,	Assignments 10/13/2020	Resources Required	Live Session Preparation Recitation #5
binary search trees, and AVL trees. You should have seen these data structures in previous courses, so we will only do a quick overview of their invariants and how to execute basic operations (such as initialization, insertion, deletion, etc) on them. Afterwards, we use the tools	 Live Meeting from 6:00 PM to 7:30 PM ET Due on 10/23/2020 Homework #5 	Lecture 2.1: Hashing CLRS 11.1-11.5 Lecture 2.2: Binary Search Trees CLRS 12.1-12.4 Optional NA	1.9: RandSelectBlock 1 Review
introduced in block 1 to analyze the runtimes of several operations for these data structures. It is important to know that, although you probably have seen these structures in the past, you need to fully master them (as they will be			

used as building blocks for future content).			
Lessons:			
2.1: Hashing			
2.2: Binary Search Trees			
	Topic 2B: Augmented	Trees - 10/16/2020 - 10/30/2020	
Lessons	Assignments	Resources	Live Session Preparation
In this topic we will discuss the idea of tree augmenting a tree: storing at each node of the tree, we store some additional information that depends on the descendants that are stored in the tree. We will start by observing that AVL trees need augmentation to be implemented efficiently. Then, we will see other possible applications of augmentation, such as rank finding, segment intersection and others. Although the examples are interesting, the main goal is to identify cases in which augmenting can help, and that a student can list	10/20/2020 • Live Meeting from 6:00 PM to 7:30 PM ET Due on 10/30/2020 • Homework #6	Required Lecture 2.3: AVL Trees, Augmented Trees CLRS problem 13-3 CLRS 14.1, 14.2 Lecture 2.4: Augmented Trees, Part 2 CLRS 14.3 Optional NA	Recitation #6 • 2.1: Hashing • 2.2: Binary Search Trees and AVL Trees

		3	
out all of the steps needed to			
properly augment a data structure.			
Lessons:			
2.3: AVL Trees, Augmented Trees			
2.4: Augmented Trees, Part 2			
	Topic 2C: Dynamic Prog	ramming – 10/23/2020 – 11/23/2020	
Lessons	Assignments	Resources	Live Session Preparation
Dynamic programming is one of the	10/27/2020	Required	Recitation #7
most powerful algorithmic tools at	 Live Meeting from 		 2.3: AVL Trees &
our disposal. In this unit, we will	6:00 PM to 7:30 PM ET	Lecture 2.5: Dynamic Programming I	Augmented Trees
introduce this tool, of what exactly		• CLRS 15.3, 15.4	 2.4: Augmented Trees
it consists, and how to use it in new	11/09/2020	Lecture 2.6: Dynamic Programming II	(part 2)
settings.	 Exam 1 (Lessons 1.1-1.9) 	• CLRS 15.1	
		Optional	
Lessons:	Due on 11/13/2020	• NA	
2.5: Dynamic Programming I	 Homework #7 	NA NA	
2.6: Dynamic Programming II			
	Topic 2D: Amortiza	tion – 10/30/2020 – 11/20/2020	
Lessons	Assignments	Resources	Live Session Preparation
In this topic we introduce amortized	11/03/2020	Required	Recitation #8
runtime. This is a new tool for	 Live Meeting from 		• 2.2: BST/AVL
analyzing the runtime of algorithms	6:00 PM to 7:30 PM ET	Lecture 2.7: Amortization	• 2.3: AVL Trees &
when an operation is repeatedly		• CLRS 17.1-17.3	Augmented Trees
executed, but the exact runtime	Due 11/20/2020	Optional	
varies at each execution. We	Homework #8	• NA	

formally define the concept of amortized runtime, what this means in practice, and introduce new tools to analyze these kind of algorithms.			
Lessons: 2.7: Amortization		o Graphs – 11/06/2020 – 11/20/2020	
Lessons	Assignments	Resources	Live Session Preparation
The remainder of the course will focus graph algorithms. We start by reviewing the concept of a graph, different variations (with weights and/or direction of edges) and discussing possible ways of which it can be implemented in a computer. We also introduce the two simplest algorithms for exploring a given graph: breadth first search (BFS) and depth first search (DFS). We will discuss their similarities and differences, and settings where each of them would be preferable. As usual, these methods will be used as stepping stones for more advanced algorithms.	• Live Meeting from 6:00 PM to 7:30 PM ET Due November 20, 2020 • Homework #8	Required Lecture 3.1: Introduction to Graphs. Breadth/Depth First Search CLRS 22.1-3 Optional NA	3.1: Introduction to Graphs BFS/DFS

	1		1
Lessons: 3.1: Introduction to Graphs. Breadth/Depth First Search	Topic 3B: Shortest Paths	on Graphs - 11/13/2020- 12/04/202	0
Lessons	Assignments	Resources	Live Session Preparation
In this unit we will discuss one of the most fundamental problems in graph theory: shortest paths. We'll mainly focus in single source shortest paths (SSSP), but will introduce other variations and see what are the differences, also. Then, we'll explore two new techniques (Dijkstra and Bellman-Ford) for solving the SSSP problem. Together with BFS, we obtain a nice trade-off between speed of the algorithm and how limited it is. We will discuss this trade-off so that you can identify which technique to use in which setting.	■ Live Meeting from ■ 6:00 PM to 7:30 PM ET Due on 11/20/2020 ■ Homework #8 Due on 12/04/2020 ■ Homework #9	Required Lecture 3.2: SSSP and Bellman-Ford CLRS 24.1 Lecture 3.3: Dijkstra's Algorithm CLRS 24.3 Optional NA	Recitation #10: • 3.2: SSSP and Bellman-Ford • 3.3: Dijkstra's Algorithm
Lessons: 3.2: SSSP and Bellman-Ford 3.3: Dijkstra's Algorithm			

In this section we will discuss other problems that can be considered on graphs: finding cut vertices and computing the minimum spanning tree of a graph. For the cut vertices problem, we introduce the Hopcroft-Tarjan algorithm. Although the algorithm is fairly simple (just a combination of DFS and other simple graph traversals), the analysis that shows correctness is very interesting. Similarly, the algorithms for solving the minimum spanning tree problem are fairly simple (a 2-line modification of Dijkstra and a sprt of the edges by weight). Again, we find the proof of correctness (and runtime analysis) to be of interest. Live Meeting from 6:00 PM to 7:30 PM ET CLRS Problem 22.2 Due 12/04/2020 • Homework #9 Due 12/11/2020 • Homework #10 Lecture 3.4: Finding Cut Vertices • CLRS Problem 22.2 Lecture 3.5: Minimum Spanning Trees – Prim's Algorithm • CLRS 23.1 Lecture 3.6: Minimum Spanning Trees-Kruskal's Algorithm • CLRS 23.2 Optional • NA	Lessons	Assignments	Resources	Live Session Preparation
	problems that can be considered on graphs: finding cut vertices and computing the minimum spanning tree of a graph. For the cut vertices problem, we introduce the Hopcroft-Tarjan algorithm. Although the algorithm is fairly simple (just a combination of DFS and other simple graph traversals), the analysis that shows correctness is very interesting. Similarly, the algorithms for solving the minimum spanning tree problem are fairly simple (a 2-line modification of Dijkstra and a sprt of the edges by weight). Again, we find the proof of correctness (and runtime analysis)	 Live Meeting from 6:00 PM to 7:30 PM ET Due 12/04/2020 Homework #9 Due 12/11/2020 	Lecture 3.4: Finding Cut Vertices CLRS Problem 22.2 Lecture 3.5: Minimum Spanning Trees — Prim's Algorithm CLRS 23.1 Lecture 3.6: Minimum Spanning Trees- Kruskal's Algorithm CLRS 23.2 Optional	3.4: Finding Cut Vertices3.5: Minimum Spanning

3.6: Minimum Spanning Trees- Kruskal's Algorithm			
	Topic 3D: Approximation A	Algorithms – 12/04/2020 – 12/17/20	20
Lessons	Assignments	Resources	Live Session Preparation
In this topic we will discuss what to do when we do not know how to compute an efficient solution (or if it is not even possible to do so). We will discuss alternative directions, and particularly focus on approximation algorithms. In the process we will briefly introduce topics such as NP-hardness, and formally define what it means to get an approximation of a solution.	12/20/2020 • Live Meeting from 6:00 PM to 7:30 PM ET	Required Lecture 3.7: Approximation CLRS 35.2 Optional NA	3.6: Minimum Spanning Trees - Kruskal's Algorithm 3.7: Approximation
Lessons:			
3.7: Approximation	Summary - 1	2/04/2020 – 12/17/2020	
Lessons	Assignments	Resources	Live Session Preparation
[text description]	12/18/2020 • Final Exam	Required Summary Lecture No readings Optional	

	• NA	