#### **MSP430 Flash Memories**

Aleksandar Milenkovic

**Electrical and Computer Engineering** 

The University of Alabama in Huntsville

Web: http://www.ece.uah.edu/~milenka

Email: milenka@uah.edu

#### **Outline**

- Motivation
- Background
  - MSP430 Flash Memory
  - Cornell Work



## MSP430FG4618: Functional Block Diagram







### **MSP430 Flash Memory Introduction**

- Default view of Flash memory is Read Only
  - Contains code and data constants
- In-system programmable Flash memory
  - Read/write into the Flash memory from the running program
- But writing into the Flash requires a special interface
- MSP430 flash memory features
  - Bit-, byte-, and word-addressable and programmable
  - Internal programming voltage generation
  - Segment erase and mass erase



## **MSP430 Flash Memory Block Diagram**

- Flash memory arrays: Information, Main
- **Control registers**
- Timing and Voltage generators





# **Flash Memory Segmentation**

- Two partitions:Main memory + Information Memory
- Segment: smallest unit that can be erased
- Information Mem:2 128-byte segments
- Main Mem:n 512-byte segments



Segments are divided into blocks (64-byte)



### **Flash Memory Operation**

- Default is read mode: cannot be written to or erased, voltage generator is off, memory operates like ROM
- CPU can program its own flash memory (ISP – In System Programmable)
  - Byte/word write
  - Block write
  - Segment erase
  - Mass erase (all main memory segments)
  - All erase (all segments)
- Reading or writing to flash memory while it is programmed is prohibited
- If CPU execution is required, the executed code must be in RAM



#### **Flash Timing Generator**

- Write and erase are controlled by the flash timing generator
- The  $f_{(FTG)}$  must be in range from ~257 KHz to ~ 476 KHz
- Can be sourced by ACLK, SMCLK, or MCLK; FN bits specify divisor
- If f<sub>(FTG)</sub> deviates from the specification, the result of the write or erase my be unpredictable (? Can we use this)





## **Erasing Flash Memory**

- Erased level of a flash memory bit is 1
- Each bit can be programmed from 1 to 0, but to reprogram from 0 to 1 require an erase cycle
- Erase is trigged by a dummy write into the address range
- Erase modes on MSP430FG461x

| GMERAS | MERAS | ERASE | Erase Mode                                                                      |  |  |
|--------|-------|-------|---------------------------------------------------------------------------------|--|--|
| X      | 0     | 1     | Segment erase                                                                   |  |  |
| 0      | 1     | 0     | Mass erase (all main memory segments of selected memory array)                  |  |  |
| 0      | 1     | 1     | Erase all flash memory (main and information segments of selected memory array) |  |  |
| 1      | 1     | 0     | Global mass erase (all main memory segments of both memory arrays)              |  |  |
| 1      | 1     | 1     | Erase main memory and information segments of both memory arrays                |  |  |

### **Erase Cycle Timing**

- BUSY bit is set immediately after the dummy write and remains set during the erase cycle
- BUSY, GMERAS, MERAS, and ERASE are automatically cleared when the cycle completes





#### **Initiating Erase From Flash**

Flash segment erase is initiated from within flash memory, all timing is controlled by the flash controller, CPU is held while the erase cycle completes

```
Disable watchdog
 Setup flash controller and erase
           mode
        Dummy write
Set LOCK=1, re-enable watchdog
Segment Erase from flash. 514 kHz < SMCLK < 952 kHz
Assumes ACCVIE = NMIIE = OFIE = 0.
 MOV
        #WDTPW+WDTHOLD, &WDTCTL
                                   ; Disable WDT
 MOV
        #FWKEY+FSSEL1+FN0,&FCTL2; SMCLK/2
        #FWKEY, &FCTL3
                                   ; Clear LOCK
 MOV
        #FWKEY+ERASE, &FCTL1
                                   ; Enable segment erase
 MOV
                                   ; Dummy write, erase S1
 CLR
        &0FC10h
 VOM
        #FWKEY+LOCK, &FCTL3
                                   ; Done, set LOCK
                                   ; Re-enable WDT?
```

#### **Initiating Erase From RAM**

- CPU can continue to execute from RAM
- Must poll BUSY bit to determine the end of the erase cycle before any flash memory access
- If access occurs while BUSY=1, an access violation bit is set (ACCVIFG), and the erase cycle is unpredictable



```
Segment Erase from RAM. 514 kHz < SMCLK < 952 kHz
 Assumes ACCVIE = NMIIE = OFIE = 0.
          #WDTPW+WDTHOLD, &WDTCTL
                                    ; Disable WDT
L1 BIT
          #BUSY, &FCTL3
                                    : Test BUSY
   JNZ
                                    ; Loop while busy
          #FWKEY+FSSEL1+FN0,&FCTL2; SMCLK/2
   MOV
   MOV
          #FWKEY, &FCTL3
                                    : Clear LOCK
          #FWKEY+ERASE,&FCTL1
                                    ; Enable erase
   MOV
   CLR
          &0FC10h
                                    ; Dummy write, erase S1
L2 BIT
          #BUSY, &FCTL3
                                    ; Test BUSY
                                    ; Loop while busy
   JNZ
         L2
   MOV
          #FWKEY+LOCK, &FCTL3
                                    ; Done, set LOCK
                                    ; Re-enable WDT?
```



### **Writing Flash Memory**

- Write modes: WRT (byte/word) write, BLKWRT (block write)
- Both use individual write instructions, but using block write is approximately twice as fast as byte/word write, because voltage generator remains on for the complete block write
- A flash word must not be written more than twice between erasures (otherwise damage may occur)



# **Byte/Word Write**

- Can be initiated from within flash memory or from RAM
  - flash: CPU is held while the write completes
  - RAM: CPU continues execution, but must wait for BUSY to go down before accessing flash memory
- Timing cycle







#### **Cumulative Programming Time**

- In byte/word mode, the internally generated programming voltage is applied to the complete 64-byte block each time a byte or word is written for  $(t_{WORD} - 3)$ f<sub>FTG</sub> cycles
- With each byte or word write, the amount of time the block is subjected to the programming voltage accumulates. The cumulative programming time, t<sub>CPT</sub>, must not be exceeded for any block.
- If the cumulative programming time is met, the block must be erased before performing any further writes to any address within the block



### **Initiating Byte/Word Write From Flash**



```
; Byte/word write from flash. 514 kHz < SMCLK < 952 kHz
; Assumes OFF1Eh is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.
         #WDTPW+WDTHOLD, &WDTCTL
                                   ; Disable WDT
   VOM
         #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2
   VOM
         #FWKEY, &FCTL3
   MOV
                                   ; Clear LOCK
         #FWKEY+WRT,&FCTL1
                                   ; Enable write
   MOV
                                   ; 0123h
   MOV
         #0123h,&0FF1Eh
                                              -> 0FF1Eh
                                   ; Done. Clear WRT
         #FWKEY,&FCTL1
   MOV
         #FWKEY+LOCK, &FCTL3
                                   ; Set LOCK
   MOV
                                   ; Re-enable WDT?
```



### Initiating a Byte/Word Write From RAM

- CPU can continue to execute from RAM
- Must poll BUSY bit to determine the end of the write cycle before any flash memory access



```
; Byte/word write from RAM. 514 kHz < SMCLK < 952 kHz
; Assumes OFF1Eh is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.
         #WDTPW+WDTHOLD, &WDTCTL
                                    : Disable WDT
L1 BIT
         #BUSY, &FCTL3
                                    ; Test BUSY
   JNZ
                                    ; Loop while busy
   MOV
         #FWKEY+FSSEL1+FN0,&FCTL2; SMCLK/2
   MOV
         #FWKEY, &FCTL3
                                    ; Clear LOCK
   MOV
          #FWKEY+WRT, &FCTL1
                                    ; Enable write
          #0123h, &0FF1Eh
                                    ; 0123h -> 0FF1Eh
L2 BIT
          #BUSY, &FCTL3
                                    ; Test BUSY
                                    ; Loop while busy
   JNZ
         #FWKEY, &FCTL1
                                    ; Clear WRT
   MOV
          #FWKEY+LOCK, &FCTL3
                                    ; Set LOCK
                                    ; Re-enable WDT?
```





#### **Block Write**

- Accelerates the flash write process when many sequential bytes or words need to be programmed
- The flash programming voltage remains on for the duration n writing the 64-byte block
- The cumulative programming time must not be exceeded
- Must be initiated from RAM
- BUSY bit remains set throughout duration of block write
- WAIT must be checked between writing each byte/word in the block
- BLKWRT must be cleared after the current block is complete



# **Block Write Cycle Timing**





#### **Block Write Flow**

```
; Write one block starting at 0F000h.
; Must be executed from RAM, Assumes Flash is already erased.
; 514 kHz < SMCLK < 952 kHz
; Assumes ACCVIE = NMIIE = OFIE = 0.
          #32,R5
                                     : Use as write counter
   MOV
   MOV
          #0F000h,R6
                                     ; Write pointer
          #WDTPW+WDTHOLD, &WDTCTL
                                     ; Disable WDT
L1 BIT
          #BUSY, &FCTL3
                                     ; Test BUSY
   JNZ
                                     ; Loop while busy
          L1
   MOV
          #FWKEY+FSSEL1+FN0,&FCTL2; SMCLK/2
   MOV
          #FWKEY, &FCTL3
                                     ; Clear LOCK
   MOV
          #FWKEY+BLKWRT+WRT, &FCTL1 ; Enable block write
                                     ; Write location
L2 MOV
          Write_Value, 0 (R6)
L3 BIT
          #WAIT, &FCTL3
                                     ; Test WAIT
   JZ
          L3
                                      ; Loop while WAIT=0
                                      ; Point to next word
   INCD
          R6
          R5
                                      ; Decrement write counter
   DEC
   JNZ
          L2
                                      ; End of block?
   MOV
          #FWKEY, &FCTL1
                                      ; Clear WRT, BLKWRT
L4 BIT
          #BUSY, &FCTL3
                                      ; Test BUSY
   JNZ
                                      ; Loop while busy
   MOV
          #FWKEY+LOCK, &FCTL3
                                      ; Set LOCK
                                      ; Re-enable WDT if needed
```



#### **Stopping a Write or Erase Cycle**

- Any write or erase cycle can be stopped before its normal completion by setting the emergency exit bit EMEX
- Setting EMEX bit stops the active operation immediately and stops the flash controller
- All flash operations cease, the flash returns to read mode, all bits in the FCTL1 register are reset, and the result of operation is unpredictable



#### **Flash Memory Specs**

electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

flash memory (MSP430FG461x devices only)

|                                 | PARAMETER                                                     | TEST<br>CONDITIONS    | V <sub>CC</sub> | MIN             | TYP             | MAX | UNIT             |
|---------------------------------|---------------------------------------------------------------|-----------------------|-----------------|-----------------|-----------------|-----|------------------|
| V <sub>CC</sub> (PGM/<br>ERASE) | Program and Erase supply voltage                              |                       |                 | 2.7             |                 | 3.6 | V                |
| f <sub>FTG</sub>                | Flash Timing Generator frequency                              |                       |                 | 257             |                 | 476 | kHz              |
| I <sub>PGM</sub>                | Supply current from DV <sub>CC</sub> during program           |                       | 2.7 V/ 3.6 V    |                 | 3               | 5   | mA               |
| I <sub>ERASE</sub>              | Supply current from DV <sub>CC</sub> during erase             | See Note 3            | 2.7 V/ 3.6 V    |                 | 3               | 7   | mA               |
| IGMERASE                        | Supply current from DV <sub>CC</sub> during global mass erase | See Note 4            | 2.7 V/ 3.6 V    |                 | 6               | 14  | mA               |
| t <sub>CPT</sub>                | Cumulative program time                                       | See Note 1            | 2.7 V/ 3.6 V    |                 |                 | 10  | ms               |
| t <sub>CMErase</sub>            | Cumulative mass erase time                                    |                       | 2.7 V/ 3.6 V    | 20              |                 |     | ms               |
|                                 | Program/Erase endurance                                       |                       |                 | 10 <sup>4</sup> | 10 <sup>5</sup> |     | cycles           |
| t <sub>Retention</sub>          | Data retention duration                                       | T <sub>J</sub> = 25°C |                 | 100             |                 |     | years            |
| t <sub>Word</sub>               | Word or byte program time                                     |                       |                 |                 | 30              |     |                  |
| t <sub>Block, 0</sub>           | Block program time for 1 <sup>st</sup> byte or word           |                       |                 |                 | 25              |     |                  |
| <sup>t</sup> Block, 1-63        | Block program time for each additional byte or word           |                       |                 |                 | 18              |     |                  |
| t <sub>Block,</sub> End         | Block program end-sequence wait time                          | See Note 2            |                 |                 | 6               |     | t <sub>FTG</sub> |
| t <sub>Mass</sub> Erase         | Mass erase time                                               |                       |                 |                 | 10593           |     |                  |
| t <sub>Global</sub> Mass Erase  | Global mass erase time                                        | 1                     |                 |                 | 10593           |     |                  |
| t <sub>Seg</sub> Erase          | Segment erase time                                            |                       |                 |                 | 4819            |     |                  |

NOTES: 1. The cumulative program time must not be exceeded during a block-write operation. This parameter is only relevant if the block write feature is used.

- 2. These values are hardwired into the Flash Controller's state machine ( $t_{FTG} = 1/f_{FTG}$ ).
- 3. Lower 64-KB or upper 64-KB Flash memory erased.
- 4. All Flash memory erased.