CPSC 313 Spring 2016

DFA design

- **1.** For each of the following languages in $\{0,1\}^*$, describe a deterministic finite automaton that accepts that language. There are infinitely many correct answers for each language.
 - a) Only the string 0110.
 - b) Every string except 0110.
 - c) Strings that contain the substring 010.
 - d) Strings that do not contain the substring 010.
 - e) Strings that contain the subsequence 010.
 - f) Strings that do not contain the subsequence 010.
 - g) Strings that contain at least three 1s.
 - h) Strings with length at least 3 such that the third symbol is a 0.
 - i) Strings that start with 0 and have odd length or strings that start with 1 and have even length.
 - j) Strings that have 1 on every odd position.
 - k) Strings containing an even number of 0's.
- **2.** Consider the alphabet $\Sigma = \{0,1\}$. For any integer $k \geq 1$ we define the language $L_k = (0+1)^*0^{k-1}0^*$.
 - a) Give an English language description for L_k .
 - b) Describe a DFA with k states that recognizes L_k .
 - c) Prove that any DFA which recognizes L_k must have at least k states.