Intrusion Detection System

(1) Intrusion Detection Basics

❖ What is intrusion detection

Process of monitoring the events occurring in a computer system or network and analyzing them for signs of *intrusion*.

Types of Intrusion Detection Systems

- ➤ Information Sources: the different sources of event information used to determine whether an intrusion has taken place.
 - Network-based IDS
 - Host-based IDS
 - Application-Based IDS
- Analysis: the most common analysis approaches are
 - Misuse Detection
 - Anomaly Detection
- Response: the set of actions that the system takes once it detects intrusions.
 - Passive measure: reporting IDS findings to humans, who are then expected to take action based on those reports.
 - Active measure: involving some automated intervention on the part of the system.

❖ Misuse Detection (signature-based ID)

- Looking for events or sets of events that match a predefined pattern of events that describe a known attack. The patterns are called *signatures*.
- Rule-based systems: encoding intrusion scenarios as a set of rules.
- > State-based intrusion scenario representations.
- ➤ Advantages:
 - Very effective at detecting attacks without generating an overwhelming number of false alarms.
- Disadvantages
 - Can only detect those attacks they know about—therefore they must be constanly updated with signatures of new attacks.
 - Many misuse detectors are designed to use tighly defined signatures that prevent them from detecting variants of common attacks.

❖ Anomaly Detection

- ➤ Identify abnormal unusual behavior (anomalies) on a host or network. They function on the assumption that attacks are different from "normal" (legitimate) activity and can therefore be detected by systems that identify these differences.
- > Static and dynamic:
 - Static: Static means a portion of the system remain constant, e.g. data integrity, tripwire, virus checkers.
 - Dynamic: profile. A profile consists of a set of observed measures of behavior for each of a set of dimensions. Frequently used dimensions include:
 - Preferred choices, e.g., log-in time, log-in location, and favorite editor.
 - Resources consumed cumulatively or per unit time.

Wenliang Du Template: Page 1 of 4 8/26/2006

- Representative sequences of actions.
- Program profiles: system call sequence.

Methods

- Threshold detection: certain attributes of user and system behavior are expressed in terms of counts, with some level established as permissible. Such behavior attributes can include the number of files accessed by a user in a given period of time, the number of failed attempts to login to the system, the amount of CPU utilized by a process, etc.
- Statistical measures
 - Parametric: The distribution of the profiled attributes is assumed to fit a particular pattern
 - Non-parametric: The distribution of the profiled attributes is "learned' from a set of historical values, observed over time.
- Rule-based measures: similar to non-parametric statistical measures in that ooberved data defines acceptable usage patterns, but differs in that those patterns are specified as rules, not numeric quantities.
- Other methods:
 - Machine learning
 - Data mining
 - Neural networks, genetic algorithms, etc.

Advantages

- Can detect unusual behavior and thus have the ability to detect symptoms of attacks without specific knowledge of details.
- Can produce information that can in turn be used to define signatures for misuse detectors.

Disadvantages

- Usually produce a large number of false alarms due to the unpredictable behaviors of users and networks.
- Often require extensive "training sets" of system event records in order to characterize normal behavior patterns.

Host-based IDS

- Using OS auditing mechanisms: e.g. BSM in Solaris logs all direct and indirect events generated by a user; strace monitors system calls made by a program.
- Monitoring user activities: analyzing shell commands.
- Monitoring executions of system programs, e.g. sendmail's system calls.
- Advantages
 - Can detect attacks that cannot be seen by NIDS
 - Can operate in an environment in which network traffic is encrypted
 - Unaffected by switched networks
 - Can help detect Trojan horse or other attacks that involve software integrity breaches

Disadvantages

- Since at least the information sources reside on the host targeted by attacks, the IDS may be attacked and disabled as port of the attack
- Are not well suited by detecting network scans or other such surveillance that targets an entire network
- Since they use the computing resources of the hosts they are monitoring, therefore inflicting a performance cost on the monitored systems.

Wenliang Du Template: Page 2 of 4 8/26/2006

- Network Intrusion Detection Systems (NIDS)
 - Using packet sniffing.
 - ➤ Looking at IP header as well as data parts.
 - Disadvantages of Network-Based IDSs:
 - NIDS may have difficult processing all packets in a large or busy network and therefore, may fail to recognize an attack launched during periods of high traffic.
 - Modern switch-based networks make NIDS more difficult: Switches subdivide networks into many small segments and provide dedicated links between hosts serviced by the same switch. Most switches do not provide universal monitoring ports
 - NIDS cannot analyze encrypted information.
 - Most NIDS cannot tell whether or not an attack was successful.
- Evaluating an IDS
 - > False positive
 - > False negative
 - > ROC curve: Receive Operating Characteristic
- ❖ IDS strengths and limitations
 - ➤ Up side:
 - Detect an ever-growing number of serious problems
 - New signatures are added.
 - New methods are being developed.
 - > Down side:
 - IDs look for known weaknesses (patterns or normal behavior)
 - False positive

(2) Eluding Network Intrusion Detection

- ❖ Insertion: Defeating signature analysis
 - > Conceptual Example

End System sees: A T T A C K
Network Monitor: A T X T A C K
Attacker's data stream: T X T C A A K

- ➤ Real example: "Get /cgi-bin/phf?"
- > Solution: make the IDS as strict as possible in processing packets read off the wire.
- Evasion
 - Conceptual Example

End System sees: A T T A C K
Network Monitor: A T T C K
Attacker's data stream: T T C A A K

Wenliang Du Template: Page 3 of 4 8/26/2006

- ❖ How to achieve Insertion/Evasion Attacks based on IP
 - Checksum (easy to solve)
 - > TTL: large enough for IDS monitor, but not enough for the end system.
 - ➤ Don't fragment
 - > IP Options:
 - Many OS automatically reject source routed packets.
 - Timestamp: discard packets with illegal formats
 - ➤ MAC address: address the faked packet to IDS's Mac address, so the end system will not receive it.
 - ➤ IP Reassembly Problem
 - > IDS also needs to reassembly packets.
 - > Subject to DOS attacks.
 - ➤ IDS must drop incomplete fragments (or late fragments) the same manner as the end system does. Otherwise inconsistence exists.
 - > Overlapping fragments: must process them in the same manner as the end system.
 - Windows NT 4.0: always favors old data
 - Solaris 2.6: always favors old data
 - 4.4BSD: Favors New data for forward overlap
 - Linux: Favors New data for forward overlap
- ❖ How to achieve Insertion/Evasion Attacks based on TCP?
 - TCP Code: packets with illegal code will be discarded.
 - > SYN packet may carry data, and some implementation may not process these data.
 - TCP Window size: inconsistence between end system and IDS can cause problems.
 - > TCP Overlapping: NT 4.0 favors old data; others favor new data.
 - Establishing TCP Connections: consistency between IDS and end systems.
 - > Tearing Down TCP Connections: consistency ...
- Denial of Service Attacks on IDS
 - > CPU, memory, bandwidth

Wenliang Du Template: Page 4 of 4 8/26/2006