Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play

Климкин Андрей

Высшая Школа Экономики

15 января, 2018

План

- Вспомним про RL
- 2 Предложенный метод
- 3 Несколько примеров экспериментов
- 4 Выводы и дальнейшее развитие

- 1 Вспомним про RL
- 2 Предложенный метод

- ③ Несколько примеров экспериментов
- 4 Выводы и дальнейшее развитие

Напоминание стандартной задачи обучения с подкреплением (ОсП)

Агент

- совершает действия
- воздействует на среду
- получает награду
- наблюдает изменения среды
- корректирует свое поведение

с целью

• максимизировать ожидаемую награду

Markov Decision Processes (MDP)

- MDP = $\langle S, A, T, R, \gamma, D \rangle$ формально описывают среду для ОсП, где:
 - $S \in \mathbb{R}^n$ множество состояний.
 - ullet $A \in \mathbb{R}^m$ множество действий.
 - $T(s' \mid s, a)$ вероятность перехода из состояния s в состояние s' при действии a.
 - ullet R функция награды, где $R: \mathcal{S} imes \mathcal{A} imes \mathcal{S}
 ightarrow \mathbb{R}.$
 - γ параметр дисконтирования.
 - D распределение на начальное состояние s_0 .
- С каждой политикой (стратегией) π связан функционал награды J^{π} , оценивающий ее:

$$J^{\pi} = E\{\sum_{t=0}^{H} \gamma_{i}^{t} r(t) \mid x_{0} \sim D, \pi\}$$

где H – протяжение взаимодействия агента со средой.

Policy-Based подход к решению задачи RL

- В Policy-Based подходах параметризуем саму политику π , а не функцию ценности, то есть $\pi_{\theta}(s,a) = \mathbb{P}[a \mid s, \theta]$.
- Функционал для оптимизации в случае скалярной награды выглядит следующим образом:

$$J(\theta) = \mathbf{E}_{\tau \sim p(\cdot \mid \theta)}[R(\tau) \mid x_0 \sim D, \theta]$$

• $J(\theta)$ оптимизируется путем градиентного подъема и применения Policy Gradient Theorem:

$$egin{aligned}
abla_{ heta} J(\pi_{ heta}) &= \int_{S}
ho^{\pi}(s) \int_{A}
abla_{ heta} \pi_{ heta}(a \mid s) Q^{\pi}(s, a) dads = \ &= \mathrm{E}_{s \sim
ho^{\pi}} \lim_{a \sim \pi_{ heta}} [
abla_{ heta} \log \pi_{ heta}(a \mid s) Q^{\pi}(s, a)] \end{aligned}$$

- Вспомним про RL
- 2 Предложенный метод

- 3 Несколько примеров экспериментов
- 4 Выводы и дальнейшее развитие

Мотивация предложенного метода

- Для того, чтобы обучить агента с помощью PG требуется очень много эпизодов.
- Предположим, что агенту ничего не стоит взаимодействовать с самой динамикой среды (или какой-то ее частью), но при этом трудозатратно получать сигнал (настоящую награду) за совершаемые им действия.
- Можем ли мы тогда предобучить агента unsupervised, чтобы потом в среде с настоящей наградой агент обучился быстрее?

Основная идея

- Введем двух агентов, которые будут играть сами с собой (противостоять друг другу).
 - Алиса будет предлагать задачи, выполняя их же сама.
 - Боб будет стараться их решить после Алисы.
- Рассматриваем только среды одного из двух типов:
 - Repeatable в любой момент агента можно вернуть в начальное состояние и продолжить взаимодействие (repeat self-play).
 - (Nearly) **Reverseable** из любого состояния можно вернуться в начальное (reverse self-play).

Reverse self-play

Выбор награды для Алисы и Боба

Алиса:
$$R_A = \gamma \max(0, t_B - t_A)$$
 Боб: $R_B = -\gamma t_B$

- Награда Алисы направлена на то, чтобы давать простые задачи Бобу, которые он не может выполнить
- Бобу необходимо как можно быстрее справиться с поставленной задачей
- Структура наград позволяет агентам автоматически строить план обучения (Automatic Curricula)

Как же все это обучать?

Policy Gradient:

$$\pi_A = f_{ heta_A}(s, s^0)$$
 $\pi_B = f_{ heta_B}(s, s^*)$

 s_0 — стартовое состояние среды

 s^* – несет в себе информацию о поставленной задаче Алисой Бобу

• Градиентный шаг:

$$\Delta \theta = \sum_{t=1}^{T} \left[\frac{\partial \log f(a_t|s_t, \theta)}{\partial \theta} \left(\sum_{i=t}^{T} r_i - b(s_t, \theta) \right) - \lambda \frac{\partial}{\partial \theta} \left(\sum_{i=t}^{T} r_i - b(s_t, \theta) \right)^2 \right]$$

 $b(s_t, \theta)$ - это baseline, например, value function.

Вспомним про RL

- 2 Предложенный метод
- 3 Несколько примеров экспериментов
- 4 Выводы и дальнейшее развитие

The Mazebase

- Gridworld с двумя комнатами
- В случайных клетках располагаются ключевые объекты - ключ, лампочка, флаг
- Необходимо поднять ключ, чтобы открыть дверь и перейти в другую комнату
- Если свет выключен, то агент видит только лампочку
- Исходная задача попасть в клетку с флагом
- В исходной задаче агент и флаг в начале эпизода находятся в разных комнатах

Рис.: Пример кривых обучения для Mazebaze без предобучения, предобучения с рандомной и «Self-Play» обучаемой Алисой.

Рис.: Формирования Automatic Curricula: (a) показывает вероятность взаимодействия обучаемой Алисы с 1, 2, 3 ключевыми предметами, (b) тоже самое, но для необучаемой (рандомной) Алисы, (c) - кривые наград Алисы и Боба, (d) - время взаимодействия Алисы со средой.

Климкин Андрей

SwimmerGather

- Управляем червячком с двумя подвижными конечностями
- В исходной постановке задачи червь получает награду +1 за каждое собранное зеленое яблоко и -1 за красную бомбу
- В предобучении убираем яблоки и бомбы, учим только перемещению
- Затем обучаем на сбор зеленых яблок и игнорированию бомб

Сравнение с другими методами.

- Предобученный агент начинает получать значительную награду гораздо раньше
- В итоге сходятся приблизительно в тоже значение, что и SimHash агент

Рис.: Кривые обучения для state-of-the-art exploration методов - VIME, SIMHASH и описанного self-play метода с двумя различными Policy Gradient алгоритмами - TRPO, REINFORCE.

Проблема локальной сходимости.

ullet Распределение конечных состояний s^* Алисы

Вспомним про RL

- 2 Предложенный метод
- 3 Несколько примеров экспериментов
- 4 Выводы и дальнейшее развитие

Выводы и дальнейшее развитие

О чем работа:

- Простой unsupervised метод предобучения, позволяет агенту на некоторых средах обучаться быстрее
- Идея построения automatic curriculum от простых задач к сложным
- Способ замены exploration (условно), так как exploration в идеале должен быть связан с настоящим ревордом

Проблема и идея для дальнейшего развития:

- Проблема: с какого-то момента Алиса начинает строить одинаковые таски для Боба
- Предложенная идея: можно сделать несколько Алис и чередовать их для Боба

Источники

David Silver presentation about Policy Gradient methods

Дополнительные графики для MazeBase

Рис.: Более детальный пример взаимодействия Алисы и Боба во время обучения, и пример взаимодействия Боба со средой в исходной среде (после пред обучения).

Рис.: Зависимость обучения от априорного распределения на вероятность включенной лампы.

Дополнительные графики для SwimmerGather

Рис.: Детали обучения агента для среды SwimmerGather: a) кривая награды на исходном таске, b) кривые наград Алисы и Боба во время самообучения, c) количество действий, совершенных Алисой, в зависимости от номера итерации, d) расстояние, пройденное Алисой, в зависимости от номера итерации