IWOCA 2024

Computing Minimal Absent Words and Extended Bispecial Factors with CDAWG Space

<u>Shunsuke Inenaga</u>¹, Takuya Mieno², Hiroki Arimura³, Mitsuru Funakoshi¹, Yuta Fujishige⁴

- ¹ Kyushu University
- ² University of Electro-Communications
- ³ Hokkaido University
- ⁴ Fujitsu

Minimal Absent Words (MAWs) [1/2]

- \blacksquare A string w over an alphabet Σ is called a **Minimal Absent Word (MAW)** for a string S, if:
 - 1. w is a character from Σ not occurring in S, or
 - 2. w = aub $(a, b \in \Sigma, u \in \Sigma^*)$ does not occur in S, but both au and ub occur in S.

Example

$$w = b a b$$

$$S=$$
 a b a a b

Minimal Absent Words (MAWs) [1/2]

- \blacksquare A string w over an alphabet Σ is called a **Minimal Absent Word (MAW)** for a string S, if:
 - 1. w is a character from Σ not occurring in S, or
 - 2. w = aub $(a, b \in \Sigma, u \in \Sigma^*)$ does not occur in S, but both au and ub occur in S.

Minimal Absent Words (MAWs) [2/2]

 \square MAW(S) denotes the set of MAWs for a string S.

Example

$$S = abaab$$
 $\Sigma = \{a, b, c\}$

 $MAW(S) = \{aaa, aaba, bab, bb, c\}$

The <u>number |MAW(S)| of MAWs</u> for a string S of length n over an alphabet of size σ is $O(\sigma n)$, and there is a matching lower bound [Crochemore et al. 1998].

Motivations for Computing MAWs

- Computing (minimal) absent words for a given string has various applications including:
 - Data compression (anti-dictionary)
 [Crochemore et al. 2000] [Crochemore & Navarro 2002]
 [Ayad et al. 2021]
 - Sequence comparison
 [Chairungsee & Crochemore 2012]
 [Charalampopoulos et al. 2018]
 - Bioinformatics
 [Almirantis et al. 2017] [Koulouras & Frith 2019]
 [Pratas & Silva 2020]

Computing MAWs with DAWG [1/3]

Previous algorithms [Crochemore et al. 1998, Fujishige et al. 2023] for computing MAWs for a string S of length n use **DAWG** (**Directed Acyclic Word Graph**) for S, which is an O(n)-size automaton representing all substrings of S.

[Blumer et al. 1985]

E.g.
$$S = ababcb$$

Substrings of S are represented by the same node of $\mathsf{DAWG}(S)$ iff they have the same ending position(s) in S.

----→ suffix link

Computing MAWs with DAWG [1/3]

Previous algorithms [Crochemore et al. 1998, Fujishige et al. 2023] for computing MAWs for a string S of length n use **DAWG** (**Directed Acyclic Word Graph**) for S, which is an O(n)-size automaton representing all substrings of S.

[Blumer et al. 1985]

Substrings of S are represented by the same node of $\mathsf{DAWG}(S)$ iff they have the same ending position(s) in S.

---→ suffix link

Computing MAWs with DAWG [2/3]

If the edges of DAWG are sorted, then one can compute MAW(S) in O(n + |MAW(S)|) time [Fujishige et al. 2023].

DAWG for string S

- Consider each pair of nodes au and u which are connected by a suffix link, where a is a character and u is a string.
- lacktriangle Compare the labels of the out-edges of nodes au and u in sorted order.
 - For b: au has no out-edge with b, but u has an out-edge with b.
 → aub is a MAW for the input string S.
 - ◆ For c: both au and u have out-edges with c→ \underline{auc} is not a MAW for the input string S,
 but this cost of character comparisons can
 be charged to this out-edge of au labeled c.

Computing MAWs with DAWG [3/3]

Redundancy in MAW computation with DAWG

E.g. S = ababcba Both these nodes have only one child → No MAWs to output

Redundancy in MAW computation with DAWG

From DAWG to CDAWG (Compact DAWG)

E.g. S = ababcb

DAWG [Blumer et al. 1985]

CDAWG [Blumer et al. 1987]

(1) Keep onlybranching nodes +source & sink(2) Path contraction

Encoding CDAWG in O(e) space [1/2]

CDAWG for S = 123456

Each string edge label $x \in \Sigma^+$ can be encoded by a pair (i, j) of positions such that x = S[i..j].

 \rightarrow CDAWG with e edges can be stored in O(e) space, plus the input string of length n.

Encoding CDAWG in O(e) space [2/2]

$$S = a b a b c b$$

Theorem 1

[Belazzougui & Cunial 2015, Inenaga 2024]

It is possible to store the edge labels of the CDAWG in O(e) total space, so that each edge string label x can be retrieved in O(|x|) time, where e is the number of edges in the CDAWG.

Note: e can be as small as $O(\log n)$ for some highly repetitive strings.

Computing MAWs with CDAWG [1/3]

E.g. S = ababcb

Computing MAWs with CDAWG [2/3]

Theorem 2 [Belazzougui & Cunial 2015]

The number of "missing" nodes in the CDAWG of string S for computing MAW(S) is at most the number \bar{e} of edges of the CDAWG for the reversed string \bar{S} .

Theorem 3 [Belazzougui & Cunial 2015]

There exists a data structure of $O(e + \bar{e})$ space that can output a representation of MAW(S) for the input string S in $O(e + \bar{e} + |MAW(S)|)$ time.

How much is the gap between e and \bar{e} ?

Computing MAWs with CDAWG [3/3]

How much is the gap between e and \bar{e} ?

Theorem 4 [Karkkainen 2017, Inenaga 2024]

There exists a family of strings of length n such that $\bar{e}/e = \Omega(\sqrt{n})$.

Theorem 5 [Inenaga, Kosolobov, Zuba 2024 (unpublished)]

For any string of length n, $\bar{e}/e = O(\sqrt{n})$.

Our Contribution

Theorem 6

There exists a data structure of $O(e_{\min})$ space that can output a representation of MAW(S) for string S in O(|MAW(S)|) time, where $e_{\min} = \min\{e, \bar{e}\}$.

algorithm	time	space
Crochemore et al. 1998	$O(\sigma n)$	O(n)
Fujishige et al. 2023	O(n + MAW(S))	O(n)
Belazzougui & Cunial 2015	$O(e + \bar{e} + MAW(S))$	$O(e + \bar{e})$
Ours	O(MAW(S))	$O(e_{\min})$

Note: e and \bar{e} are at most 2n-1, and can be as small as $O(\log n)$ for some highly repetitive strings (e.g. Fibonacci strings).

Computing MAWs in $O(e_{min})$ space [1/4]

Computing MAWs in $O(e_{min})$ space [1/4]

Computing MAWs in $O(e_{\min})$ space [2/4]

Computing MAWs in $O(e_{min})$ space [3/4]

S = ababcb

The **primary edges** are those that are in the **longest paths** from the source to the nodes.

Computing MAWs in $O(e_{min})$ space [3/4]

S = ababcb

The **primary edges** are those that are in the **longest paths** from the source to the nodes.

Computing MAWs in $O(e_{\min})$ space [4/4]

Computing MAWs in $O(e_{\min})$ space [4/4]

LPT+ ≠ **Suffix Tree**

S = ababcbababcbc\$

Conclusions

- We have shown a **CDAWG**-based data structure of O(e) space that can report all **MAWs** in optimal time.
- Our data structure can be extended to report minimal rare words (MRW) in optimal time: A string aub is a k-MRW of a string S if aub occurs k times in S, while au and ub occur more than k times in S.
 - 0-MRWs are MAWs.
 - 1-MRWs are MUSs (minimal unique substrings)
 [Ilie & Smyth 2011]

Future Work

- Is there a data structure of O(r) space that reports all MAWs/MRWs in optimal time, where r is the number of equal-letter runs in the **BWT** (Burrows-Wheeler transform)?
- It is know that $r \le e$ [Belazzougui & Cunial 2017].
- There is a data structure of O(r polylog(n)) space that can do this in $O((e + \bar{e})\text{polylog}(n) + output)$ time with $O(\sigma \log n)$ working space (under review).
- We want to do this in optimal O(output) time with $O(r + \bar{r})$ space.