ENCODER

- An Encoder is a combinational logic circuit.
- · It performs the inverse operation of Decoder.
- The opposite process of decoding is known as Encoding.
- An Encoder converts an active input signal into a coded output signal.
- Block diagram of Encoder is shown in Fig. 10. It has 'M' inputs and 'N' outputs.
- An Encoder has 'M' input lines, only one of which is activated at a given time, and produces an N-bit output code, depending on which input is activated.

Fig. 10

Syed Hasan Saeed, Integral University, Lucknow

- Encoders are used to translate the rotary or linear motion into a digital signal.
- The difference between Decoder and Encoder is that Decoder has Binary Code as an input while Encoder has Binary Code as an output.
- Encoder is an Electronics device that converts the analog signal to digital signal such as BCD Code.
- Types of Encoders
- i. Priority Encoder
- ii. Decimal to BCD Encoder
- iii. Octal to Binary Encoder
- iv. Hexadecimal to Binary Encoder

Syed Hasan Saeed, Integral University, Lucknow

OCTAL TO BINARY ENCODER:

- · Block Diagram of Octal to Binary Encoder is shown in Fig. 21
- · It has eight inputs and three outputs.
- · Only one input has one value at any given time.
- Each input corresponds to each octal digit and output generates corresponding Binary Code.

TRUTH TABLE:

INPUT OUTPUT D_7 Y Do D_1 D_2 X Z D_3 D_4 D_5 D_6

Fig. 22

Syed Hasan Saeed, Integral University, Lucknow

From Truth table:

$$X = D_4 + D_5 + D_6 + D_7$$

$$Y = D_2 + D_3 + D_6 + D_7$$

$$Z = D_1 + D_3 + D_5 + D_7$$

- It is assume that only one input is HIGH at any given time. If two outputs are HIGH then undefined output will produced. For example D₃ and D₆ are HIGH, then output of Encoder will be 111. This output neither equivalent code corresponding to D₃ nor to D₆.
- · To overcome this problem, priorities should be assigned to each input.
- Form the truth table it is clear that the output X becomes 1 if any of the digit D₄ or D₅ or D₆ or D₇ is 1.
- D₀ is considered as don't care because it is not shown in expression.
- If inputs are zero then output will be zero. Similarly if D₀ is one, the output will be zero.

_

Syed Hasan Saeed, Integral University, Lucknow

LOGIC DIAGRAM:

Syed Hasan Saeed, Integral University, Lucknow

Encoder Example

- Example: 4-to-2 binary encoder
- In encoder circuit only one input may be set high (1) at a certain time.
- The output is a 2-bit number.

I ₃	I2	$\mathbf{I_1}$	Io	Y ₁	Yo
0	0	0	1 0 0	0 0 1	0
0	0	1	0	0	1
0	•	•	0	1	0
1	0	0	0	1	1

Binary Decoders

- Binary decoders convert an n-bit input to a single output. It uses its n-bit input to determine which of the 2ⁿ outputs will be uniquely activated.
- Binary decoders can be developed using AND or OR Gates.
- Later on, binary decoders can be implemented in logic circuits.
- The outputs of a decoder are minterms. That is why decoders are sometimes called as minterm generators.
- We can easily use a decoder to implement any sum of minterms expression.
- Note: A minterm is a Boolean expression resulting in 1 only for the output of a single row (in a truth table) or a single cell (in a Karnaugh map), and 0s for all other row or cells, respectively.

2-to-4 Binary Decoder

■ A circuit of 2-to-4 binary decoder is shown below.

X	Y	F ₀ 1 0 0 0	F ₁	F ₂	F ₃
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

- The truth table shows that for any given input combination, exactly one output will turn to 1.
- The enable must be set to 1 to get an output.

Combinational Circuit Design with Decoders

Example Realize F $(X,Y,Z) = \Sigma (1, 4, 7)$ with a decoder:

