Role of Ag⁺ in the Band Structures and Photocatalytic Properties of AgMO₃ (M: Ta and Nb) with the Perovskite Structure

Hideki Kato,† Hisayoshi Kobayashi,‡ and Akihiko Kudo*,†

Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, and Department of Chemistry and Bioscience, Faculty of Chemical Technology, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajima, Kurashiki 712-8505, Japan

Received: April 19, 2002; In Final Form: August 19, 2002

Photophysical and photocatalytic properties of perovskite-type materials $AgMO_3$ (M: Ta and Nb) consisting of Ag^+ and d^0 ions were investigated. The band gaps of $AgTaO_3$ and $AgNbO_3$ were 3.4 and 2.8 eV, respectively, being 0.6 eV smaller than the band gaps of $NaTaO_3$ (4.0 eV) and $NaNbO_3$, even if the crystal structures of $AgMO_3$ were similar to those of $NaMO_3$. It was found from the electronic band structure study, using the plane-wave-based density functional method, that a hybrid orbital of Ag 4d and O 2p formed a valence band at a more negative level than O 2p orbitals. $AgTaO_3$ showed photocatalytic activity for pure water splitting into H_2 and O_2 under UV-light irradiation. $AgNbO_3$ has arisen as a new visible-light-driven photocatalyst possessing the ability to evolve H_2 or O_2 from water in the presence of sacrificial reagents.

1. Introduction

The development of photocatalysts with visible-light response has been studied extensively from the viewpoint of the utilization of solar light energy. Doping of a foreign element into active photocatalysts with wide band gaps is the well-studied way to design the visible-light-driven photocatalyst. We have recently reported that SrTiO₃ and TiO₂ codoped with Cr³⁺ and Sb⁵⁺ showed photocatalytic activity for H2 and O2 evolution from aqueous solutions containing sacrificial reagents.1 However, it may be considered that the doping of a foreign element is sometimes disadvantageous to designing visible-light-driven photocatalysts judging from the following reasons: (i) the dopant element works as an electron-hole recombination center, (ii) the mobility of electrons or holes in the dopant level is small because the dopant forms not a band but a discrete level, and (iii) the discrete dopant level hardly forms the active site for O₂ formation accompanied by four-electron oxidation.

WO₃ is a well-known visible-light-driven photocatalyst in which the valence band consists of O 2p orbitals for O₂ evolution from water containing sacrificial reagents.^{2,3} WO₃ is not active for H₂ formation because of the low potential of the conduction band. Pt/CdS³ and BiVO₄⁴⁻⁶ have been reported to be visiblelight-driven photocatalysts for H₂ and O₂ evolution from water containing sacrificial reagents. Their valence bands are formed by S 3p orbitals and the hybrid orbital of Bi 6s and O 2p, respectively. Although some sulfide photocatalysts have valence bands consisting of S 3p orbitals in a favorable position for O₂ formation, the holes photogenerated in the valence bands cause photocorrosion instead of the oxidation of water. In contrast, in the case of BiVO₄, the valence band consisting of the hybrid orbital of Bi 6s and O 2p is stable enough to oxidize water to form O2. However, BiVO4 cannot produce H2 because of the low potential of the conduction band consisting of V 3d

orbitals.^{4,5} Therefore, making a stable valence band in a more negative position than O 2p orbitals and maintaining a conduction band level high enough to reduce water are indispensable to the development of visible-light-driven photocatalysts that possess the ability to form H_2 and O_2 .

We have paid attention to Ag^+ as a candidate that forms a valence band. The standard redox potential of Ag^{2+}/Ag^+ is 1.98 V versus NHE. It indicates the possibility that Ag^+ in a crystal structure make a valence band at a more negative level than O 2p orbitals but at a more positive level than water oxidation to form O_2 . Therefore, an investigation of the band structures of materials consisting of Ag^+ is worthwhile in order to develop new visible-light-driven photocatalysts for H_2 and O_2 evolution.

However, many of the active photocatalysts for water splitting such as $SrTiO_3,^7~K_2La_2Ti_3O_{10},^7~KTaO_3,^{8.9}~NaTaO_3,^{10}~Sr_2M_2O_7~(M:\ Ta and\ Nb),^{9,11}~and\ RbNdTa_2O_7^{12}~have perovskite-type structures that consist of corner-shared <math display="inline">MO_6$ octahedra. This suggests that compounds with perovskite structures are candidates for active photocatalyst materials. Silver tantalate $AgTaO_3$ has the same perovskite-type structure as $NaNbO_3.^{13}~The\ Ta-O-Ta$ bond angle of the $AgTaO_3$ framework is $164^\circ,^{14}$ and it is close to that of $NaTaO_3~(163^\circ),^{15}$ which is the most active photocatalyst among the tantalates. This interests us in the investigation into the band structure and the photocatalytic properties of $AgTaO_3$.

In the present study, the band structures and the photocatalytic properties of the perovskite-type materials (AgMO₃ (M: Ta and Nb)) consisting of Ag⁺ were investigated, and the role of Ag⁺ in the band structure was also discussed.

2. Experimental Section

AgMO₃ (M: Ta and Nb) powders were prepared by conventional solid-state reactions. Starting materials—Ag₂O (Kanto Chemical; 99.8%, 1–5 μ m), Ta₂O₅ (Rare Metallic; 99.99%, 0.2–0.5 μ m), and Nb₂O₅ (Kanto Chemical; 99.95%, 1–3 μ m)—were mixed in a stoichiometric ratio or in the presence of excess amounts (2–5 mol %) of silver. The mixtures were calcined at

^{*} To whom correspondence should be addressed. E-mail: a-kudo@rs.kagu.tus.ac.jp. Fax: +81-33235-2214.

Science University of Tokyo.

[‡] Kurashiki University of Science and the Arts.

1350 K for 5 h for AgTaO₃ and at 1150 K for 5 h for AgNbO₃ in air using alumina crucibles (purity: 99.7%). In some cases, the obtained powders were treated with concentrated nitric acid to remove the excess silver. The obtained powders were confirmed by X-ray diffraction (Rigaku; RINT-1400). The commercial WO₃ powder (Nacali Tesque; 99.5%) was used to compare the photocatalytic activities. A NiO co-catalyst was loaded by an impregnation method from an aqueous solution of Ni(NO₃)₂•6H₂O (Wako Pure Chemical; 98.0%). The AgTaO₃ powder (0.5 g) and a small amount of water (ca. 1 mL) containing the appropriate amount of Ni(NO₃)₂•6H₂O were put into a porcelain crucible. Water was evaporated on a water bath. The suspension was stirred using a glass rod during the evaporation. The dried powder was calcined at 540 K for 1 h in air using a muffle furnace. A Pt co-catalyst was loaded by the photoreduction method. An aqueous solution containing an appropriate amount of H₂PtCl₆·6H₂O (Tanaka Kikinzoku; 37.55% as Pt) was added in 10 vol % methanol solution of the reactant solution. All of the PtCl₆²⁻ in the reactant solution should be deposited on photocatalysts as metallic Pt islands by photoreduction under the band-gap irradiation.

Photocatalytic reactions were carried out in a suspended system and in the gas phase using a gas-closed circulation system. Photocatalytic H₂ evolution from the mixture of water (20 Torr) and methanol (70 Torr) vapor was also carried out in the gas phase. A top window cell made of Pyrex and a 300-W Xe lamp (ILC technology; CERMAX LX-300) were employed. In the case of the suspended system, the photocatalyst powder (0.15–0.3 g) was dispersed in a reactant solution (150 mL) by a magnetic stirrer in the cell. In the case of the gas—solid-phase reaction, the photocatalyst powder (1 g) was scattered on the bottom of the cell, and the gaseous mixture of water (20 Torr) and methanol (70 Torr) vapor was introduced into the system. The amounts of H₂ and O₂ that evolved were determined using gas chromatography (Shimadzu; GC-8A, MS-5A column, TCD, Ar carrier).

Diffuse reflection spectra were obtained using a UV-vis-NIR spectrometer (Jasco; UbestV-570) and were converted from reflection to absorbance by the Kubelka-Munk method. Photoluminescence was measured in vacuo using a spectrofluorometer (Spex; FluoroMax). Surface areas were determined by BET measurements (Coulter; SA3100). Photocatalyst powders were observed by a scanning electron microscope (Hitachi; S-5000). X-ray photoelectron spectra were measured using an X-ray photoelectron spectrometer (Shimadzu; ESCA-3200). Elemental analyses were carried out using an X-ray spectrofluorometer (JEOL; JSX-3200).

3. Calculation Method

The plane-wave-based density functional method calculation was carried out for $AgTaO_3$ and $NaTaO_3$ by employing the CASTEP program. 16 The core electrons were replaced with ultrasoft core potentials, and the valence electronic configurations for Ag, Ta, Na, and O atoms are $4d^{10}5s^1$, $6s^25d^3$, $2s^22p^6-3s^1$, and $2s^22p$, 4 respectively. The kinetic energy cutoffs were taken to be 260 and 280 eV for $AgTaO_3$ and $NaTaO_3$, respectively. The calculations were carried out using the conventional unit cells of $[AgTaO_3]_6$ and $[NaTaO_3]_4$, , which had 102 and 64 occupied orbitals, respectively. Table 1 shows the crystal parameters for both $[AgTaO_3]_6$ and $[NaTaO_3]_4$.

4. Results and Discussion

4.1. Photophysical Properties of AgMO₃ (M: Ta and Nb). Figure 1 shows X-ray diffraction patterns of AgTaO₃, NaTaO₃,

TABLE 1: Parameters of the Crystal Structures of ${\rm AgTaO_3}^{14}$ and ${\rm NaTaO_3}^{15}$

	AgTaO ₃			
system: trigonal		a: 5.528	a: 90.0	
space group: R-3c		b: 5.528		
		c: 13.716	γ: 120.0	
atom positions	х	у	z	
Ag	0	0	0.25	
Ta	0	0	0	
0	0.5546	0	0.25	
system: orthorhombic space group: Pcmn	NaTaO₃	<i>a</i> : 5.513 <i>b</i> : 7.751 <i>c</i> : 5.494	α: 90.0 β: 90.0 γ: 90.0	
atom positions	X	У	z	
Na	0	0.25	-0.02	
Ta	0	0	0.5	
O	0.054	0.25	0.5	
O	0.275	-0.027	0.275	

Figure 1. X-ray diffraction patterns of perovskite-type tantalates (a) AgTaO₃, (b) NaTaO₃, and (c) KTaO₃.

Figure 2. Diffuse reflection spectra of (a) AgTaO₃ and (b) AgNbO₃.

and KTaO₃. All materials showed perovskite-type diffraction patterns though each material had a different peak position. The peaks of KTaO₃ were observed at the lowest angle. The peaks of AgTaO₃ were observed at a slightly lower angle than those of NaTaO₃. The differences in the peak position were due to the differences in the ionic radii of the cations (K⁺ \gg Ag⁺ > Na⁺) occupying the A site of the perovskite structure. The bond angles (Ta–O–Ta) of the framework consisting of TaO₆ units in AgTaO₃, NaTaO₃, and KTaO₃ are 164,¹⁴ 163,¹⁵ and 180°,¹⁷ respectively. Therefore, the structural properties of AgTaO₃ are between those of NaTaO₃ and KTaO₃ and rather close to those of NaTaO₃. It has been reported that the structure of AgNbO₃ is also similar to that of NaNbO₃.¹³

Figure 2 shows diffuse reflection spectra of AgTaO₃ and AgNbO₃. The band gaps of AgTaO₃ and AgNbO₃ were estimated to be 3.4 and 2.8 eV, respectively, from the onsets of

Figure 3. Photoluminescence spectra of AgTaO3 at 77 K; (a) an excitation spectrum monitored at 550 nm, (b) an emission spectrum excited at 340 nm, and (c) a diffuse reflection spectrum at 300 K.

TABLE 2: Photophysical Properties of AgTaO₃ and Alkali **Tantalates**

	Та-О-Та			
	bond angle/	band gapa/	emission max.b/	stokes shift/
catalyst	(deg)	eV	nm	10^{3} cm^{-1}
AgTaO ₃	164	3.4	550	11.2
LiTaO ₃	143	4.7	360	13.6
NaTaO ₃	163	4.0	463	12.7
$KTaO_3$	180	3.6	510	10.3

^a Estimated from the onset of absorption. ^b Observed at 77 K.

absorption. The AgTaO₃ powder was white whereas the AgNbO₃ powder was pale yellow.

AgTaO₃ showed photoluminescence at 77 K, as shown in Figure 3. The excitation spectrum agreed well with the diffuse reflection spectrum. The photophysical properties of AgTaO₃ and the alkali tantalates are summarized in Table 2. The Stokes shift of AgTaO₃ was 11.2×10^3 cm⁻¹. However, no photoluminescence was observed for AgNbO₃. It has been reported by Wiegel et al. that in alkali tantalates, as the Ta-O-Ta bond

angle in a perovskite framework gets close to 180°, the band gap becomes smaller, and the delocalization of the excited energy is larger. 18 The band gap of AgTaO₃ was 0.6 eV smaller than that of NaTaO3, even if the bond angle of AgTaO3 was close to that of NaTaO3.14,15 The result did not abide by the relationship between the TaO₆ framework and the band gap. Similarly, the band gap of AgNbO₃ was 0.6 eV smaller than that of NaNbO₃. However, the Stokes shift of AgTaO₃ was between that of KTaO3 and NaTaO3, which indicated that the relationship between the TaO₆ framework and the energy delocalization was also adopted for AgTaO₃. Thus, it was found that Ag⁺ in AgTaO₃ and AgNbO₃ made the band gaps decrease but did not affect the delocalization of the excited energy.

4.2. Band Structure of the AgTaO₃ Photocatalyst. The electronic structure of AgTaO3 was studied by the plane-wavebased density functional method in order to clarify which Ag⁺ contributed to valence- or conduction-band formation in the decrease of the band gap. Figure 4 shows the band structure and the density of states (DOS) of AgTaO3 and NaTaO3. Figure 5 shows the density contour maps for the LUMO and HOMO of AgTaO₃. Three occupied bands and two unoccupied bands are shown in the DOS diagram in Figure 4. An occupied band on the low-energy side consists of O 2s orbitals. The occupied band in the middle consists of only O 2p orbitals. The occupied band on the high-energy side (i.e., a valence band) consists of the hybrid orbital of Ag 4d and O 2p. The top of the valence band (HOMO) is shown in Figure 5b. In contrast, the contribution of Ag⁺ was not observed for the bottom of the conduction band including the LUMO, and it consisted of only Ta 5d orbitals, as shown in Figure 5a. In particular, the t_{2g} orbitals seemed to form mainly on the bottom of the conduction band. Above the Ta 5d band, the Ag 5s and Ag 5p orbitals appeared in the unoccupied bands. In general, the valence bands of oxides with d⁰ and d¹⁰ metal cations such as NaTaO₃ and NaNbO₃

Figure 4. Band structures and densities of states for AgTaO3 and NaTaO3 calculated by the density functional method.

Figure 5. Density contour maps for the LUMO and $\overline{\text{HOMO}}$ of $\overline{\text{AgTaO}}_3$.

Figure 6. Band structures of NaTaO₃, AgTaO₃, NaNbO₃, and AgNbO₃.

consist of O 2p orbitals, and the potential is usually ca. 3 eV.¹⁹ In contrast to them, it was revealed that the band gaps of AgTaO3 and AgNbO3 were 0.6 eV smaller than those of NaTaO3 and NaNbO3, respectively, because the Ag 4d orbitals made the valence bands at more negative levels than the O 2p orbitals. The crystal structures of AgTaO₃ and AgNbO₃ were similar to those of NaTaO3 and NaNbO3, respectively, as mentioned above. The conduction-band levels of AgTaO3 and AgNbO3 were estimated to be slightly lower than those of NaTaO₃ (-1.06 eV) and NaNbO₃ (-0.4 eV), judging from the bond angles of the TaO₆ framework. Therefore, the band structures of AgTaO₃ and AgNbO₃ could be illustrated as shown in Figure 6. Thus, it has been found that silver is one of the elements that is able to make a valence-band position higher than O 2p orbitals. This is noteworthy information needed in order to design new visiblelight-driven photocatalysts.

4.3. Photocatalytic Activities of AgTaO₃ and AgNbO₃. The photocatalytic activity of AgTaO₃ is summarized in Table 3. AgTaO₃ showed activity for H_2 and O_2 evolution from aqueous solutions of methanol and silver nitrate under UV-light irradia-

TABLE 3: Photocatalytic Activity of AgTaO₃

	ratio of Ag		activ µmol	
catalyst	to Ta ^a	reaction solution	H_2	O_2
AgTaO ₃	1.00	0.05 M AgNO ₃ (aq)		22.2
Pt(0.5wt %)/AgTaO ₃	1.00	10 vol % CH ₃ OH(aq)	13.1	
AgTaO ₃	1.00	pure water	0.11	0.04
NiO(0.1wt %)/AgTaO ₃	1.00	pure water	13	1.0
AgTaO ₃	1.05	0.05 M AgNO ₃ (aq)		53.2
AgTaO ₃	1.05	10 vol % CH ₃ OH(aq)	29.5	
NiO(0.3wt %)/AgTaO ₃	1.05	10 vol % CH ₃ OH (aq)	96.5	
Pt(0.1wt %)/AgTaO ₃	1.05	10 vol % CH ₃ OH(aq)	506	
$AgTaO_3$	1.05	pure water	1.4	0.3
NiO(0.3wt %)/AgTaO ₃	1.05	pure water	16.1	5.6

 a In the starting materials. Catalyst: 0.15–0.3 g; reactant solution: 150 mL, 300-W Xe lamp ($\lambda \geq$ 300 nm), top window cell made of Pyrex.

Figure 7. Scanning electron microscope images of AgTaO₃ prepared (a) without an excess amount of silver and (b) in the presence of 2 mol % of an excess amount of silver.

tion, respectively. Moreover, AgTaO₃ showed activity for water splitting into H₂ and O₂. The activity of AgTaO₃, prepared in the presence of an excess amount of silver, was higher than that of AgTaO₃, prepared in a stoichiometric ratio. Figure 7 shows scanning electron microscope images of AgTaO₃ prepared with and without an excess amount of silver. The particle size and surface area of AgTaO₃ powder were $0.5-1~\mu m$ and $1~m^2~g^{-1}$, respectively. It seemed that the excess amount of silver did not affect the crystal shape and sizes. The volatilization of silver would occur during high-temperature calcination. There-

Figure 8. Scheme of photocatalytic water splitting on the NiO/AgTaO₃ photocatalyst.

Figure 9. Scanning electron microscope image of metallic silver particles on AgTaO₃ prepared in the presence of 2 mol % of an excess amount of silver.

fore, silver defects would be formed in AgTaO3 prepared in a stoichiometric ratio, resulting in low activity due to the increase in recombination between photogenerated electrons and holes as well as in the case of alkali tantalates. 10 Therefore, the enhancement of activity by the addition of an excess amount of silver might be due to the suppression of the formation of silver ion defects.

AgTaO₃ showed activity for H₂ formation even without any co-catalysts such as Pt. The activity increased 17 times when a Pt co-catalyst was loaded. However, the activities for H₂ formation and water splitting of NiO-loaded AgTaO3 were 3 times and 10 times higher, respectively, than those of native AgTaO₃, even without pretreatment. The results indicated that the electrons photogenerated in the conduction band of AgTaO₃ were able to transfer to the conduction band of NiO because the conduction-band level of AgTaO3 was estimated to be higher than that of NiO $(-0.96 \text{ eV})^{20}$ as well as that of NaTaO₃, as shown in Figure 8. It is noteworthy that water splitting into H₂ and O₂ proceeded over the photocatalyst with the valence band consisting of orbitals other than O 2p orbitals.

A large number of metallic silver particles were observed on the surface of AgTaO₃ prepared in the presence of an excess amount of silver, as shown in Figure 9. The existence of metallic silver was also detected by XRD measurements. The electron migration to the metallic silver particles might decrease the photocatalytic activity. Therefore, the effect of treatment with concentrated nitric acid (to remove the metallic silver particles on the surface) upon the photocatalytic activity of NiO/AgTaO₃ was investigated (Table 4). All NiO/AgTaO₃ catalysts treated with acid showed higher activities than nontreated NiO/AgTaO₃ catalysts. NiO/AgTaO3 treated with acid for 1 min after the

TABLE 4: Effect of Acid Treatment for NiO(0.30 wt %)/ AgTaO₃ on Photocatalytic Activity for Water Splitting

treatment with	treatment amount of		relative peak intensity in XPS	activity/ µmol h ⁻¹	
HNO ₃		NiO ^a /wt %	Ag3d/Ta4d	H_2	O_2
after the loading of NiO	0	0.30	2.7	8.5	3.7
	1	0.24	1.7	20.7	9.5
	3	0.21		14.4	5.9
	10	0.19	1.7	14.1	5.5
before the loading of NiO	1	0.30		18.2	5.2
01110	30	0.30		16.1	5.6

^a Determined by XRF. Catalyst: 0.15 g; pure water: 150 mL; 300-W Xe lamp ($\lambda > 300$ nm), top window cell made of Pyrex.

loading of NiO showed the highest activity among all of the catalysts. The relative intensity of Ag3d/Ta4d in XPS for 1-mintreated NiO/AgTaO₃ was smaller than that of nontreated NiO/ AgTaO₃, which indicates that the excess silver was removed even by short-time treatment with acid. As the acid-treatment time increased, the activity decreased, and the ratio of evolved H₂ to O₂ deviated from the stoichiometry. No difference was observed in the relative intensities of Ag3d/Ta4d in XPS between NiO/AgTaO₃ photocatalysts treated with acid for 1 min and 10 min. The O₂ formation sites (surface Ag⁺) of NiO/ AgTaO₃ might collapse during the long period of acid treatment, resulting in a deviation from the stoichiometry. The amounts of NiO loaded were also decreased by the acid treatment, but the loss was comparatively small. However, although the activities of NiO/AgTaO₃ treated with acid before the loading of NiO were also higher than those of nontreated NiO/AgTaO₃, the ratio of H₂/O₂ deviated from the stoichiometry more than that of NiO/AgTaO₃ treated with acid after the loading of NiO. In the acid treatment process, part of the surface silver ions were also eluted by the ion exchange with protons. In the case of acid treatment before the loading of NiO, dehydration would occur for AgTaO₃ with the partly protonated surface during the high-temperature calcination in the process of loading NiO. This dehydration causes the surface structure of AgTaO₃ to collapse. The NiO co-catalyst should work as an active site for H₂ evolution whereas the surface of AgTaO3 would be for O2 formation sites. Therefore, the destruction of the surface structure of acid-treated AgTaO₃ by heat treatment would cause the further destruction of the O2 formation sites. The photocatalytic water splitting over NiO/AgTaO3 treated with acid for 1 min after the loading of NiO is shown in Figure 10. Although the activity gradually decreased with irradiation time, it was recovered by the evacuation of the gas-phase products. Such deactivation and recovery of the activity were observed in all cases for water splitting using AgTaO₃ photocatalysts. Therefore, although the ratio of H₂/O₂ deviated from the stoichiometry, the reactions proceeded photocatalytically. The deviation of the ratio of H₂/O₂ from the stoichiometry seemed to be due to the adsorption of formed O2 on the AgTaO3 surface owing to a strong affinity between AgTaO3 and O2. The recovery of activity after the evacuation of gas-phase products would be due to the desorption of adsorbed O2 from the AgTaO3 surface. In the case of the most active photocatalyst, which was treated with acid for a short period of time(1 min) after the loading of NiO, although H₂ and O₂ finally evolved with a stoichiometry within the experimental error (Table 4 and Figure 10), the amount of evolved O₂ was also small in the initial stage. This result also supported the adsorption of formed O2. The amounts of H2 and

TABLE 5: Photocatalytic Activity of AgNbO₃

	ratio of	incident		activity/	µmol h ^{−1}
catalyst	Ag to Nb ^a	light/nm	reaction condition	H_2	O ₂
AgNbO ₃	1.00	>420	0.05 M AgNO ₃ (aq)		14
$AgNbO_3$	1.00	>300	$0.05 \text{ M AgNO}_3(\text{aq})$		119
Pt(0.05wt %)/AgNbO ₃	1.00	>420	10 vol % CH ₃ OH(aq)	0.5	
Pt(0.05wt %)/AgNbO ₃	1.00	>300	10 vol % CH ₃ OH(aq)	3.1	
$AgNbO_3$	1.05	>420	$0.05 \text{ M AgNO}_3(\text{aq})$		37.0
$AgNbO_3$	1.05	>300	$0.05 \text{ M AgNO}_3(\text{aq})$		240
Pt(0.1wt %)/AgNbO ₃	1.05	>420	10 vol % CH ₃ OH(aq)	0.4	
Pt(0.1wt %)/AgNbO ₃	1.05	>300	10 vol % CH ₃ OH(aq)	6.1	
$AgNbO_3$	1.05	>420	H ₂ O, CH ₃ OH vapor ^b	1.7	
Pt(0.1wt %)/AgNbO ₃	1.05	>420	H ₂ O, CH ₃ OH vapor ^b	8.2	
Pt(0.1wt %)/AgNbO ₃	1.05	>300	H ₂ O, CH ₃ OH vapor ^b	38.0	
WO_3		>420	0.05 M AgNO ₃ (aq)		47.6
WO_3		>300	$0.05 \text{ M AgNO}_3(\text{aq})$		269
Pt(0.1wt %)/WO ₃		>420	H ₂ O, CH ₃ OH vapor ^b	0	
Pt(0.1wt %)/WO ₃		>300	H ₂ O, CH ₃ OH vapor ^b	0.04	

^a In the starting materials. ^b Pressure of H₂O and CH₃OH was 20 and 70 Torr, respectively. Catalyst: 0.3 g for liquid-phase reactions and 1.0 g for gas-phase reactions; reactant solution: 150 mL, 300-W Xe lamp, top window cell made of Pyrex.

Figure 10. Photocatalytic water splitting into H_2 and O_2 over NiO-(0.3 wt %)/AgTaO₃ treated with concentrated HNO₃ for 1 min. Catalyst: 0.15 g; pure water: 150 mL; 300-W Xe lamp ($\lambda \ge 300$ nm), cell with a top window made of Pyrex.

Figure 11. Photocatalytic O_2 evolution from an aqueous AgNO₃ solution over (a) AgNbO₃ and (b) WO₃ under visible-light irradiation. Catalyst: 0.3 g; an aqueous AgNO₃ solution: 0.05 mol L⁻¹, 150 mL; 300-W Xe lamp ($\lambda > 420$ nm), cell with a top window made of Pyrex.

 O_2 evolved for 66 h of irradiation were 600 and 268 μ mol, respectively. The turnover number of reacted electrons to the total amount of Ta in the catalyst used was 3. This indicates that the reaction proceeded photocatalytically on NiO/AgTaO₃.

Table 5 shows the photocatalytic activity of $AgNbO_3$. The particle size and surface area of $AgNbO_3$ powder were 2-4 μm and 0.5 m² g⁻¹, respectively. $AgNbO_3$ was hardly active for H_2 evolution from an aqueous methanol solution whereas it showed a high activity for O_2 evolution from an aqueous silver nitrate solution, even under visible-light irradiation. The photocatalytic activity of $AgNbO_3$ was also increased by the addition of an excess amount of silver in the preparation as well as for the case of $AgTaO_3$. Figure 11 shows photocatalytic O_2 evolution from an aqueous silver nitrate solution over

Figure 12. Photocatalytic H₂ evolution from a gaseous mixture of H₂O (20 Torr) and CH₃OH (70 Torr) over Pt(0.1 wt %)/AgNbO₃. Catalyst: 1.0 g; 300-W Xe lamp, cell with a top window made of Pyrex.

AgNbO₃ under visible-light irradiation ($\lambda > 420$ nm). The activity of AgNbO₃ was similar to that of WO₃, of which the band gap was the same as that for AgNbO₃. Although the activity of AgNbO₃ for H₂ evolution from an aqueous methanol solution was very low, AgNbO3 showed a high activity for H2 formation from the mixture of water and methanol vapor, as shown in Figure 12. The activity of the H₂ evolution of Pt/ AgNbO₃ was gradually decreased. A long experiment was carried out to check the stability of the photocatalyst. Although the activity gradually decreased, the reaction became steady after 10 h of irradiation. Moreover, no difference before and after the photocatalytic H₂ evolution was observed in XRD patterns. Therefore, it was considered that the initial deactivation of the Pt/AgNbO₃ photocatalyst was not due to the reduction of Ag⁺ in the catalyst. In contrast, WO₃, of which the conduction-band level is lower than the redox potential of H⁺/H₂, showed no activity for H₂ evolution even in the gas-solid system. The band structure of AgNbO3 can be drawn as Figure 13 in consideration of the results. The conduction-band level of AgNbO₃ was higher than that of WO₃ with the same band gap as AgNbO₃ and also higher than the redox potential of H⁺/H₂. Thus, AgNbO₃ has been developed as a new visible-light-driven photocatalyst with the ability to form H₂ or O₂. The reason that the activity for H₂ evolution in the suspension system was low has not been clarified at the present stage.

5. Conclusions

The structural properties of $AgTaO_3$ are between those of $NaTaO_3$ and $KTaO_3$ and are close to those of $NaTaO_3$. In the

Figure 13. Energy diagrams of AgNbO3 and WO3 photocatalysts.

case of alkali tantalates, as the Ta-O-Ta bond angle gets close to 180°, the band gap becomes smaller. However, the band gap of AgTaO₃ was 3.4 eV, which was 0.6 eV smaller than that of NaTaO₃, even if the Ta-O-Ta bond angle of AgTaO₃ was close to that of NaTaO₃. In contrast, the value of the Stokes shift of AgTaO₃ was between that of KTaO₃ and NaTaO₃. The band gap of AgNbO₃ was also 0.6 eV smaller than that of NaNbO₃. It was indicated from the electronic structure study of AgTaO₃ by the density functional method that the hybrid of Ag 4d and O 2p orbitals formed the valence band at a more negative level than the O 2p orbitals, resulting in a decrease in the band gap.

AgTaO $_3$ showed photocatalytic activity for H $_2$ and O $_2$ evolution from water containing sacrificial reagents under UV irradiation. Moreover, AgTaO $_3$ showed activity for water splitting into H $_2$ and O $_2$. The activity increased by 1 order of magnitude when a NiO co-catalyst was loaded. However, AgNbO $_3$ showed photocatalytic activity for O $_2$ evolution from an aqueous silver nitrate solution and H $_2$ formation from a mixture of water and methanol vapor under visible-light irradiation. Thus, AgNbO $_3$ was developed to be a new visible-light-driven photocatalyst with the ability to form H $_2$ or O $_2$.

Acknowledgment. We thank Professor K. Domen (Chemical Resources Laboratory, Tokyo Institute of Technology) for XPS measurements. This work was supported by Core Research for Evolutional Science and Technology (CREST) and the Tokyo Ohka Foundation for the Promotion of Science and Technology. H.K. has been awarded a research fellowship by the Japan Society for the Promotion of Science for Young Scientists.

References and Notes

- (1) Kato, H.; Kudo, A. J. Phys. Chem. B 2002, 106, 5029.
- (2) Darwent, J. R.; Mills, A. J. Chem. Soc., Faraday. Trans. 2 1982, 78, 359.
- (3) Sakata, T. Heterogeneous Photocatalysis at Liquid—Solid Interfaces. In *Photocatalysis*; Serpone, N., Pelizzetti, E., Eds.; Wiley: New York, 1989; Chapter 10, pp 311–338.
- (4) Kudo, A.; Ueda, K.; Kato, H.; Mikami, I. Catal. Lett. 1998, 53, 229.
 - (5) Kudo, A.; Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121, 11459.
 - (6) Tokunaga, S.; Kato, H.; Kudo, A. Chem. Mater. 2001, 13, 4624.
- (7) Domen, K.; Kondo, J. N.; Hara, M.; Takata, T. Bull. Chem. Soc. Jpn. 2000, 73, 1307, and references therein.
- (8) Ishihara, T.; Nishiguchi, H.; Fukamachi, K.; Takita, Y. J. Phys. Chem. B 1999, 103, 1.
 - (9) Kudo, A. J. Ceram. Soc. Jpn. 2001, 109, S81, and references therein.
 - (10) Kato, H.; Kudo, A. J. Phys. Chem. B 2001, 105, 4285.
- (11) Hwang, D. W.; Kim, H. G.; Kim, J.; Cha, K. Y.; Kim, Y. G.; Lee, J. S. J. Catal. **2000**, 193, 40.
- (12) Machida, M.; Yabunaka, J.; Kijima, T. Chem. Mater. 2000, 12, 812.
 - (13) Francombe, M. H.; Lewis, B. Acta Crystallogr. 1958, 11, 175.
 - (14) Wolcyrz, M.; Lukaszewski, M. Z. Kristallogr. 1986, 177, 53.
 - (15) Ahtee, M.; Unonius, L. Acta Crystallogr., Sect. A 1977, 33, 150.
- (16) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys. 1992, 64, 1045.
- (17) Zhurova, E. A.; Zavodnik, V. E.; Trirel'son, V. G. Kristallografiya 1995, 40, 816.
- (18) Wiegel, M.; Emond, M. H. J.; Stobbe, E. R.; Blasse, G. J. Phys. Chem. Solids 1994, 55, 773.
 - (19) Scaife, D. E. Sol. Energy 1980, 25, 41.
- (20) Dare-Edwards, M. P.; Goodenough, J. B.; Hamnett, A.; Nicholson, N. D. J. Chem. Soc., Faraday Trans. 2 1981, 77, 643.