Практическая работа по теме "Введение в теорию нечетких бинарных отношений"

Снопов П.М.

2020

1. Приведите пример функции принадлежности нечеткого отношения R= значительно меньше, чем в $\mathbb{N} \times \mathbb{N}$. Ограничиваясь первыми десятью натуральными числами, постройте матрицу этого отношения.

Peшение. Нечеткое отношение R определено своей функцией принадлежности. Тогда зададим функцию следующим образом:

$$\mu_R: \mathbb{N} \times \mathbb{N} \to [0,1]: (x,y) \mapsto egin{cases} rac{1}{1 + exp(x-y)} & x < y \\ 0 & \text{иначе} \end{cases}$$

Тогда матрица этого отношения будет иметь вид:

R	1	2	3	4	5	6	7	8	9	10
1	0	0.73	0.88	0.95	0.98	0.99	1	1	1	1
2	0	0	0.73	0.88	0.95	0.98	0.99	1	1	1
3	0	0	0	0.73	0.88	0.95	0.98	0.99	1	1
4	0	0	0	0	0.73	0.88	0.95	0.98	0.99	1
5	0	0	0	0	0	0.73	0.88	0.95	0.98	0.99
6	0	0	0	0	0	0	0.73	0.88	0.95	0.98
7	0	0	0	0	0	0	0	0.73	0.88	0.95
8	0	0	0	0	0	0	0	0	0.73	0.88
9	0	0	0	0	0	0	0	0	0	0.73
10	0	0	0	0	0	0	0	0	0	0

2. Постройте первую, вторую и глобальную проекции для нечеткого отношения, заданного матрицей:

R_1	a	b	С	d	е
a	0.3	1	0.2	0.1	0.5
b	0.9	0.2	0	0.5	0.1
С	0.8	0.1	0.8	0.9	0.9
d	0.9	0.5	1	0.9	0.1
е	0.5	0	0.7	0.7	0.8

Решение. Так как первая проекция π_1 имеет вид $\pi_1(x) = \sup_{y \in Y} \mu_R(x,y),$ тогда:

π_1	a	b	c	d	е
	1	0.9	0.9	1	0.8

В свою очередь вторая проекция π_1 имеет вид $\pi_2(y) = \sup_{x \in X} \mu_R(x,y)$, то:

π_2	a	b	С	d	е
	0.9	1	1	0.9	0.9

Глобальная проекция h(R) имеет вид: $h(R)=\sup_x \pi_1(x)=\sup_y \pi_2(y)$, значит h(R)=1. Таким образом, R — нормальное отношение.

3. Заданы отношения R_1 , R_2 , R_3 :

R_1	y_1	y_2	y_3	y_4
x_1	0	0.1	0	0.4
x_2	0.5	1	0	0.7
x_3	0.8	0.9	0.9	1

R_2	y_1	y_2	y_3	y_4
x_1	0.1	0	0.2	0.5
x_2	0	1	0.1	1
x_3	0.9	0.4	0.7	0

R_3	y_1	y_2	y_3	y_4
x_1	0.5	0	0.2	0
x_2	0	1	0.1	0.2
x_3	0.9	0.4	0	1

Определите: а) $R_1 \cap R_2$; б) $R_1 \cup R_3$; в) $R_1 \oplus R_2$; г) $(\overline{R_1} \cap \overline{R_2}) \oplus R_3$ Решение. а) $R_1 \cap R_2 : \mu_{R_1 \cap R_2}(x,y) = \min\{\mu_{R_1}(x,y), \mu_{R_2}(x,y)\}$, тогда:

$R_1 \cap R_2$	y_1	y_2	y_3	y_4
x_1	0	0	0	0.4
x_2	0	1	0	0.7
x_3	0.8	0.4	0.7	0

б) $R_1 \cup R_3 : \mu_{R_1 \cup R_3}(x,y) = \max\{\mu_{R_1}(x,y), \mu_{R_3}(x,y)\}$, тогда:

$R_1 \cup R_2$	y_1	y_2	y_3	y_4
x_1	0.5	0.1	0.2	0.4
x_2	0.5	1	0.1	0.7
x_3	0.9	0.9	0.9	1

в) $R_1\oplus R_2:\mu_{R_1\oplus R_2}(x,y)=\mu_{R_1}(x,y)+\mu_{R_2}(x,y)-\mu_{R_1}(x,y)\mu_{R_2}(x,y),$ тогда:

$R_1 \oplus R_2$	y_1	y_2	y_3	y_4
x_1	0.1	0.1	0.2	0.7
x_2	0.5	1	0.1	1
x_3	0.98	0.94	0.97	1

г) $(\overline{R_1} \cap \overline{R_2}) \oplus R_3 = \overline{R_1 \cup R_2} \oplus R_3$, тогда:

$\overline{(R_1 \cap R_2)} \oplus R_3$	y_1	y_2	y_3	y_4
x_1	0.95	0.9	0.84	0.5
x_2	0.5	1	0.91	0.2
x_3	0.91	0.46	0.1	1

4. Определите для отношений R_1 и R_2 , заданных матрицами, следующие композиции: $(\max - \min)$, $(\min - \max)$, $(\max - \cdot)$, $(\min - \oplus)$:

R_1	y_1	y_2	y_3	y_4
x_1	0.3	0	0.7	0.3
x_2	0	1	0.2	0

R_2	z_1	z_2	z_3
y_1	1	0	1
y_2	0	0.5	0.4
y_3	0.7	0.9	0.6
y_4	0	0	0

Можно ли говорить о включении полученных отношений?

Решение. 1) (max — min) — композиция $R_1 \circ R_2 : \mu_{R_1 \circ R_2}(x,z) = \max_{y \in Y} \min\{\mu_{R_1}(x,y), \mu_{R_2}(y,z)\},$ тогда имеем следующую матрицу:

$R_1 \circ R_2$	z_1	z_2	z_3
x_1	0.7	0.7	0.6
x_2	0.2	0.5	0.4

2) (min – max) – композиция $R_1*R_2: \mu_{R_1*R_2}(x,z) = \min_{y \in Y} \max\{\mu_{R_1}(x,y), \mu_{R_2}(y,z)\}$

$R_1 * R_2$	z_1	z_2	z_3
x_1	0	0.3	0.3
x_2	0	0	0

3) (max $-\cdot$) — композиция $R_1\cdot R_2: \mu_{R_1\cdot R_2}(x,z)=\max_{y\in Y}\{\mu_{R_1}(x,y)\cdot \mu_{R_2}(y,z)\}$

$R_1 \cdot R_2$	z_1	z_2	z_3
x_1	0.49	0.63	0.42
x_2	0.14	0.5	0.4

4) (min — \oplus) — композиция $R_1 \oplus R_2 : \mu_{R_1 \oplus R_2}(x,z) = \min_{y \in Y} \{\mu_{R_1}(x,y) \oplus \mu_{R_2}(y,z)\}$

$R_1 \oplus R_2$	z_1	z_2	z_3
x_1	0	0.3	0.3
x_2	0	0	0

Легко увидеть, что $R_1 \oplus R_2 = R_1 * R_2 \subset R_1 \cdot R_2 \subset R_1 \circ R_2$