Bit Manipulation 2

Agenda

- Check bit / Count set bits
- Set ith bit
- Unset ith bit
- Negative Numbers
- Ranges
- Importance of constraints

Quick Revision

$$18 < c < 2 = 15 \times 2$$

$$= 15 \times 4$$

$$= 60$$

Quiz 2: Which of the following options output is 2 power n

$$|CCN| \qquad \qquad a = ci = a \times 2^{i}$$

$$|CCi| = 1 \times 2^{i}$$

$$|CCN| = (\times 2^{N}) = 2^{N}$$

Quiz 3:
int
$$a = 29$$

print(a>>2)
= $\frac{29}{2^2} = \frac{29}{4} = 7$

Set i th bit

Set - Put 1

=) 14

Given N & i, set the i^{th} bit in N.

$$N = 10$$
 $1 = 2$
 $1 = 1$
 0

$$N = 23$$
 $1 \quad 0 \quad 1 \quad 1$
 $1 \quad 23$
 $1 \quad 0 \quad 1 \quad 1 \quad 3 \quad 23$

Ans = N Magic

Magic Number- A no which has only $2^{\dot{i}} = (1 \le i)$ unset.

int setIthBit(int N, int i) {

i=2 → 00100 i=3 → 01000 i=1 → 00010

1 = 00001 i=1 = 1<<1 = 00010 i=1 = 1<<2 = 00100

$$N = 23$$
 $i = 2$
 $0 \quad 0 \quad 1 \quad 0 \quad 0$
 $1 \quad$

Java

```
int setIthBit(int n, int i) {
   return n | (1 << i);
}</pre>
```

Python

```
def setIthBit(n, i):
   return n | (1 << i)</pre>
```

Unset ithbit

Given N & i, unset the i^{th} bit in N.

$$N = 10$$
 $i = 2$
 $1 = 0$
 $1 = 0$
 $1 = 0$

$$N=23$$
 $i=2$
 10011
 $= 19$

```
int unsetIthBit(int N, int i) {

return N & (~ (1 < < i))
}
```

$$N = 10$$
 $i = 2$
 $1 0 1 0$
 $1 0 1 0$
 $1 0 1 0$
 $1 0 1 0$
 $1 0 1 0$

$$N=23$$
 $i=2$

| 0 | 1 | | Caper | Number | 1 | 0 | 0 | 1 | = 19

Super Number - Eth bit unset
All omer bits are set

Ans = N& Super

Super Number = u (Magic Number)
= u (1 < ci)

Follow up question — HW

Cilver N L i = Toych i'm bit

R bit is 1 => 0

bit is 0 => 1

Coole line solution only

Check bit

Given N and i, check if i th bit position is set or not.

Example

Example

$$i = 3$$

Idea

$$N = 82$$

$$i = 0$$

$$(N81) = 1$$

$$i = 1$$

$$i = 1$$

$$i = 2$$

$$(N81) = 1$$

$$(N81) = 1$$

$$(N81) = 1$$

$$(N81) = 1$$

```
Boolean checkBit(int N, int i) {

H (((N=>i) l1) ==1)

Yetun true

else

return false

TC:0(1)

SC:0(1)
```

Java

```
boolean checkBit(int n, int i) {
    return ((n >> i) & 1) = 1;
}
```

Python

```
def checkBit(n, i):
    return ((n >> i) & 1) = 1
```

Can we also do it with left shift?

$$N = 82 \quad | \quad 0 \quad | \quad$$

if res
$$= 0$$
 \Rightarrow it bit is current yes $\neq 0$ \Rightarrow it bit is set

```
Boolean checkBit(int N, int i) {

youturn (N k ( | < < i) )!=0
}
```

Java

boolean checkBit(int n, int i) { return (n & (1 ≪ i)) ≠ 0; }

Python

```
def checkBit(n, i):

return (n \delta (1 \ll i)) \neq 0
```

Count bits

Qualconm box

Given an integer N, count how many set bits are there in N (Assume N to be a 32 bit integer)

Example

Example

Example

}

int countSetBits(int N) {

for
$$(i=0)$$
 $\{232,i4\}$ $\{3\}$ if $(check bit(N,i))$

2

volume $(c+1)$

Idea 2

$$\bigcirc$$

4 3 2

1 0

$$\bigcirc$$

$$\bigcirc$$

$$\mathcal{C}$$

while
$$(N \ge 0) \in \mathcal{E}$$

if $(N \ge 1) = 1$

}

TC: O(log, N)

Which approach is better?

Quiz 4

Approach 1 - 32 iterations - O(1)

Approach 2 - O(log_N)

According to Big O - 1 is better

In worst case, both approaches will take 32 iterations

Let $N = 2^{32} - 1$

In every other care,

2 hd approach is better

Rave case - uner 860 gives
The wrong an

To store -ve numbers in our completes, we consider MSB base value to -ve.

To compute the -ve of a number, we store let in its 2's complement form

8 with
$$2 \le 4 \le 2 \le 10$$
 $1 \le 4 \le 4 \le 10$
 $1 \le 4 \le 4 \le 4 \le 10$
 $1 \le 4 \le 4 \le 4 \le 4$
 $1 \le 4 \le 4 \le 4 \le 4$
 $1 \le 4 \le 4 \le 4 \le 4$
 $1 \le 4 \le 4 \le 4$
 1

1) Take invesse I negation of N

2) Add 1 to it

$$\frac{1}{128 + 64} + \frac{1}{16} + \frac{1}{2+1} = \frac{211}{128 + 64} + \frac{1}{16} + \frac{1}{2+1} = \frac{1}{2}$$

$$-2^{2} = -8$$

Quiz 7

Quiz 8

$$-2^{\frac{1}{7}}$$
 + 2" + 2" + 2"

$$=$$
 $-128 + 21$

Ranges

Range of

Long

C GY WH int)

Importance of Constraints

Given an array of N elements, calculate sum of all elements.

Constraints

$$1 \le N \le 10^5$$

 $1 \le A[i] \le 10^6$

long
int sum = 0

for
$$i = [0, N-1]$$

sum $+ = A[3]$

return sum

Worst care

$$10^{\circ}$$
 terms

AEil largest - 10°

Max sum = 10° × 10° = 10° !

Can we store 10° in 22 bit int?

Given two numbers, multiply them

Constraints

long
$$C = \frac{(long)}{L} a + b$$

Typecart

C++: int, long, long long

Java: byte, short, int, long, BigInteger

Python:

Doubts

Thank You

$$10 \left(1 \ 2 \ 2 \ 3 \right)$$

$$10 \left(1 \ 2 \ 2 \ 3 \right)$$

$$10 \left(1 \ 3 \ 3 \right)$$

$$10$$

int abc(int []arr)

 $x \neq 5$

Pour lisature

Crood Night thank you

Monday