UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2017/1 Prova da área I

1-8	9	10	Total

Nome:	Cartão:	

${\bf Regras\ Gerais:}$

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

COORDENADAS CILÍNDRICAS E ESFÉRICAS

a) Coordenadas cilíndricas : ρ,φ,z

b) Coordenadas esféricas : r, θ, ϕ

Elipsóide:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Parabolóide Elíptico:
$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Parabolóide Hiperbólico:
$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

Hiperbolóide
$$\frac{x^2}{\text{de uma folha:}} \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

$$\begin{array}{ll} \text{Hiperbol\'oide} & -\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \end{array}$$
 de duas folhas:

Tabela do operador $\vec{\nabla}$:

f=f(x,y,z) e g=g(x,y,z) são funções escalares; $\vec{F}=\vec{F}(x,y,z)$ e $\vec{G}=\vec{G}(x,y,z)$ são funções vetoriais.

$\Gamma - \Gamma$	(x,y,z) e $G=G(x,y,z)$ sao funções vetoriais.
1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$ec{ abla} \cdot \left(ec{F} + ec{G} ight) = ec{ abla} \cdot ec{F} + ec{ abla} \cdot ec{G}$
3.	$ec{ abla} imes\left(ec{F}+ec{G} ight)=ec{ abla} imesec{F}+ec{ abla} imesec{G}$
4.	$\vec{\nabla} \left(fg \right) = f \vec{\nabla} g + g \vec{\nabla} f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$\vec{\nabla} \times \left(f \vec{F} \right) = \vec{\nabla} f \times \vec{F} + f \vec{\nabla} \times \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$ec{ abla} imes\left(ec{ abla}f ight)=0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$\vec{\nabla} \times \left(\vec{\nabla} \times \vec{F} \right) = \vec{\nabla} \left(\vec{\nabla} \cdot \vec{F} \right) - \vec{\nabla}^2 \vec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	

Algumas fórmulas:

Algumas formula	5.			
Nome	Definição			
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}''(t)\ ^3}$			
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$			
Módulo da Torção	$ au = \left\ \frac{d\vec{B}}{ds} \right\ = \left\ \frac{\frac{d\vec{B}}{dt}}{\frac{ds}{dt}} \right\ $			
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$			
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$			

• Questão 1 (0.75 ponto) O amendoim-acácia ou tipuana é uma árvore cujos frutos alados são popularmente conhecidos como "sementes de helicóptero". Exausto, depois de duas provas na faculdade, o estudante de engenharia deitou-se sobre o gramado em um dia sem vento para assistir ao suave cair do fruto da tipuana que via rodopiar em sentido horário. A fim de modelar o movimento, considerou que o centro de massa do sistema movia-se verticalmente (na direção e sentido negativo do eixo z) a uma velocidade constante de módulo 20 cm/s, e observou que o fruto fazia uma revolução completa enquanto seu centro de massa caia 5 cm. Considere que a extremidade do fruto oposta ao centro de massa dista 5 cm dele e realiza movimento helicoidal, isto é:

$$x(t) = a\cos(wt), \quad y(t) = b\sin(wt), \quad z(t) = ct.$$

Assinale a alternativa o	nie melhor re	nresenta os	valorez de a	h we	c no sistema de	unidades	[tempo]—s e	comprimental	-cm·
assinaie a aiteinativa t	ine memor re	presenta os	vaiorez de a,	v, w e	c no sistema de	umuades	rempor—s e	Compimiento	-cm.

- () $a = 5, b = -5, w = 8\pi e c = 20.$
- () $a = 5, b = -5, w = 8\pi e c = -20.$
- () $a = 5, b = 5, w = 8\pi e c = 20.$
- () $a = 5, b = 5, w = 8\pi e c = -20.$
- () Como o movimento é levogiro, nenhuma das alternativas (a)-(d) o descreve corretamente.
- () Como o movimento é dextrogiro, nenhuma das alternativas (a)-(d) o descreve corretamente.
- \bullet Questão 2 (0.75 ponto) Considere a espiral dada por

$$x(t) = ae^{bt}\cos(t), \quad y(t) = ae^{bt}\sin(t), \quad z(t) = 0, \quad t \ge 0,$$

onde a>0 e b são constantes. Assinale a alternativa que representa a curvatura em função do parâmetro t. Dica: Ao invés de tentar obter uma expressão para $\kappa(t)$, interprete a curva e analise aspectos qualitativos como casos particulares conhecidos e comportamento esperado com os parâmetros.

- $(\)\ \frac{e^{-bt}}{a\sqrt{1+h^2}}$

- $() \frac{ae^{bt}}{\sqrt{1+b^2}}.$ $() \frac{ae^{bt}}{\sqrt{a^2+b^2}}$
- Questão 3 (0.75 ponto) Considere os campos $\vec{F} = ay\vec{i} + bx\vec{j} + z\vec{k}$ e $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$. O campo $\vec{\nabla} \cdot (\vec{F} \times \vec{r})$ é dado por:
- $(\)\ (b-a)z.$
- (1+b)x + (b-a)z.
- () (a+b)x.
- () (1+b)y + (b-a)z.
- (1+b)z.
- () Nenhuma das anteriores.
- Questão 4 (0.75 ponto) Considere os mesmos campos da questão anterior, isto é, $\vec{F} = ay\vec{i} + bx\vec{j} + z\vec{k}$ e $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$. O campo $\vec{\nabla} \left(\vec{F} \cdot \vec{r} \right)$ é dado por:
 - () $ay\vec{i} + bx\vec{j} + 2z\vec{k}$.
 - () $ax\vec{i} + by\vec{j} + az^2\vec{k}$.
 - () $(a+b)y\vec{i}+bz\vec{j}+2x\vec{k}$.
 - () $2z\vec{i} + (a+b)x\vec{j} + az^2\vec{k}$.
 - () $(a+b)y\vec{i} + (a+b)x\vec{j} + 2z\vec{k}$.
 - () Nenhuma das anteriores.

() $\vec{\nabla} \cdot \vec{v} < 0$ e $\vec{k} \cdot \vec{\nabla} \times \vec{v} > 0$ em todos os pontos. () $\vec{\nabla} \cdot \vec{v} > 0$ e $\vec{k} \cdot \vec{\nabla} \times \vec{v} < 0$ em todos os pontos. () $\vec{\nabla} \cdot \vec{v} = 0$ e $\vec{k} \cdot \vec{\nabla} \times \vec{v} > 0$ em todos os pontos. () $\vec{\nabla} \cdot \vec{v} = 0$ e $\vec{k} \cdot \vec{\nabla} \times \vec{v} < 0$ em todos os pontos.

- Questão 6 (0.75 ponto) Considere o campo de velocidades $\vec{v} = v_1(x,y)\vec{i} + v_2(x,y)\vec{j}$ representado no gráfico ao lado. Assinale a alternativa correta:
 - () $\vec{\nabla} \cdot \vec{v} > 0$ e $\vec{k} \cdot \vec{\nabla} \times \vec{v} < 0$ em todos os pontos.
 - () $\vec{\nabla} \cdot \vec{v} < 0$ e $\vec{k} \cdot \vec{\nabla} \times \vec{v} < 0$ em todos os pontos.
 - () $\vec{\nabla} \cdot \vec{v} > 0$ e $\vec{k} \cdot \vec{\nabla} \times \vec{v} > 0$ em todos os pontos.
 - () $\vec{\nabla} \cdot \vec{v} < 0$ e $\vec{k} \cdot \vec{\nabla} \times \vec{v} > 0$ em todos os pontos.
 - () $\vec{\nabla} \cdot \vec{v} = 0$ e $\vec{k} \cdot \vec{\nabla} \times \vec{v} < 0$ em todos os pontos.
 - () $\vec{\nabla} \cdot \vec{v} = 0$ e $\vec{k} \cdot \vec{\nabla} \times \vec{v} > 0$ em todos os pontos.

- Questão 7 (0.75 ponto) Considere o campo dado por $\vec{F} = ye^z\vec{i} x\cos(z)\vec{j} + \cos(xyz)\vec{k}$ e caminho C que contorna no sentido $\pmb{horário}$ a porção do plano xy limitada pelos eixos ordenados, a reta x=2, a reta y=2 e a hipérbole xy=1. Assinale a alternativa que indica valor de $W=\oint_C \vec{F} \cdot d\vec{r}$. Dica: Use o Teorema de Stokes.
 - $() 2 \ln(4)$
 - $() 2 + 4 \ln(2)$
 - $() 1 \ln(4)$
 - $() -2 4 \ln(2)$
 - $() -2 \ln(4)$
 - () Nenhuma das anteriores.
- Questão 8 (0.75 ponto) Considere o campo dado por $\vec{F} = xz\vec{i} + xy\vec{j} + xz\vec{k}$ e caminho C dado pelo arco de parábola $y = x^2$ no plano xy que liga o ponto $P_1 = (0,0,0)$ até o ponto $P_2 = (2,4,0)$ no sentido $P_1 \to P_2$. Assinale a alternativa que indica valor de $W = \int_C \vec{F} \cdot d\vec{r}$.
 - $() \frac{106}{15}$
 - $() \frac{17}{3}$
 - $() \frac{64}{5}$
 - $() \frac{74}{5}$
 - () 0
 - () Nenhuma das anteriores.

- Questão 9 (2.0 pontos) Considere os campos $\vec{F} = y \cos(xy)\vec{i} + (x\cos(xy) + ze^{yz})\vec{j} + (ye^{yz} + 1)\vec{k}$ e $\vec{G} = y\vec{k}$.
 - a. (1.0 ponto) Encontre um potencial para o campo conservativo
 $\vec{F}.$
 - b. (1.0 ponto) Encontre um caminho fechado C tal que $\oint_C \vec{G} \cdot d\vec{r} \neq 0$. Dica: Inspecione o rotacional de \vec{G} .

- Questão 10 (2.0 pontos) Considere S a superfície orientada para fora que contorna o sólido V limitado superiormente pelo plano z=1 e inferiormente pela superfície $z=\sqrt{x^2+y^2},\,0\leq z\leq 1$ e o campo $\vec{F}=x\vec{i}+z\vec{k}$. Calcule o valor do fluxo $\Phi=\oint_S \vec{F}\cdot\vec{n}ds$ conforme solicitado.
 - c. $(1.0~{\rm ponto})$ Via parametrização direta da superfície.
 - d. $(1.0~{\rm ponto})$ Via Teorema da Divergência.