Rice University Department of Economics

Econ 515: Labor Economics, Spring 2018
Problem Set 4:

Consider the following model. Let $S_i=0$ if an individual has a high-school degree and $S_i=1$ if an individual has a college degree. Let $y_{i,0,t}$ and $y_{i,1,t}$, for t=26,27,28,29 denote the log of labor income at age t of individuals without and with a college degree, respectively. Let $X_{s,t}$ and θ_i (scalar) denote potential experience and unobserved heterogeneity, respectively. Potential experience is defined as:

$$X_{s,t} = \begin{cases} t - 18, & \text{if } S_i = 0 \\ t - 22, & \text{if } S_i = 1 \end{cases}$$

The unobserved components $\epsilon_{i,0,t}$ and $\epsilon_{i,1,t}$ capture, respectively, unforecastable shocks for individuals without and with a college degree. Assume that shocks are independent from $X_{s,t}$ and θ_i . Write:

$$y_{i,0,t} = \alpha_0 + \beta_0 X_{s,t} + \gamma_0 X_{s,t}^2 + \rho_0 \theta_i + \epsilon_{i,0,t}$$

$$y_{i,1,t} = \alpha_1 + \beta_1 X_{s,t} + \gamma_1 X_{s,t}^2 + 1.0\theta_i + \epsilon_{i,1,t}$$

Where $\epsilon_{i,s,t}$ is independently and normally distributed with mean zero and variance $\sigma_{s,t}^2$ for s=0,1 and t=1,2.

Assume that individuals maximize expected log income so an individual chooses to get a college degree if, and only if, Y_1 is greater than or equal to Y_0 :

$$S = 1 \leftrightarrow E\left(\sum_{t=26}^{29} \left(y_{i,1,t} - y_{i,0,t}\right) - Z_i \delta_z - \theta_i \delta_\theta - \omega_i | \mathcal{I}\right) \ge Y_0$$

Where Z_i and ω_i are, respectively, observed and unobserved non-pecuniary cost of attending college. The information set of the parents, denoted by \mathcal{I} , is $\mathcal{I} = \{X, Z_i, \theta_i, \omega_i\}$.

- Estimate the model using fakedata_ps4.dta to make sure your code recovers the true parameters.
- 2. Estimate the model using nlsy79_homework_data.dta
- 3. Simulate the model and test fit.
- 4. Use the model to evaluate the impact of a policy that reduces tuition to zero for any student whose family income is below \$15,000.
- 5. Estimate:
 - a. Average Treatment Effect (ATE)
 - b. Treatment on the Treated (TT)
 - c. Local Average Treatment Effect (LATE).
- Estimate ATE and LATE assuming that there is selection only on observables (i.e., apply matching).