NP-Completeness of the Steiner Tree Problem

Simone Bianco - 1986936 Computational Complexity Sapienza University of Rome

The **Steiner Tree problem** refers to a family of optimization problems, all seeking an optimal interconnection for a specified set of objects under a predefined objective function.

Frequent Objective Function: Minimize the lengths of the interconnections

Commonly used for VLSI circuit designs, Network design and Biochemistry.

Given a subset of nodes $S \subseteq V(G)$, a sub-tree T of G is a **Steiner Tree** for S if $S \subseteq V(T)$

Given a subset of nodes $S \subseteq V(G)$, a sub-tree T of G is a **Steiner Tree** for S if $S \subseteq V(T)$

Optimization problem: Given a graph G and subset of nodes $S \subseteq V(G)$, find a Steiner Tree for S (if any) with the minimum number of edges.

Decision problem: Given a graph G, a subset of nodes $S \subseteq V(G)$ and a value k, is there a Steiner Tree for S with at most k edges?

ST as generalization of other problems

When |S| = 2 the ST problem becomes the Shortest Path Problem

When |S| = n the ST problem becomes the Minimum Spanning Tree problem

ST is in NP

Given $(G,S,k) \in ST$, the witness is the Steiner Tree T itself:

- 1) Check that T is a sub-graph of G
- 2) Check that T is acyclic
- 3) Check that $S \subseteq V(T)$
- 4) Check that $|E(T)| \le k$

Idea behind the NP-Hardness of ST

Idea: We can use Steiner Trees to "force" some kind of cover

The **Set Cover (SC)** problem is usually a suitable candidate for this idea

⇒ The decision version is NP-Complete — hardness by reduction from Vertex Cover (VC)

Set Cover

$$U = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$$

$$C_1 = \{x_1, x_2, x_4, x_7\}$$

$$C_2 = \{x_1, x_3, x_5, x_6\}$$

$$C_3 = \{x_3, x_5, x_7\}$$

Conditions:

- The sub-collection must cover U
- 2) The sub-collection must have minimal cardinality

Set Cover

Optimization problem: Given a set $U = \{x_1, ..., x_{3q}\}$ and a collection of subsets $C = \{C_1, ..., C_m\}$, find the minimal cardinality sub-collection $C^* \subseteq C$ that covers U.

Decision problem: Given a set $U = \{x_1, ..., x_{3q}\}$, a collection of subsets $\mathcal{C} = \{C_1, ..., C_m\}$ and an integer k > 0, is there a sub-collection $\mathcal{C}^* \subseteq \mathcal{C}$ that covers U and such that $|\mathcal{C}^*| \le k$?

Constructing the graph G:

- 1) For every sub-set C_j we add a node u_j
- 2) For every element $x_j \in U$ we add a node v_j if $x_j \in C_i$ then we add the edge (u_i, v_j)
- 3) We add a special node z and the edge (z, u_i) for all $i \in [m]$

Set of terminal nodes: $S = \{z, x_1, ..., x_{3q}\}$

$$U = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

$$C_1 = \{x_1, x_2, x_3, x_4, x_5\}$$

$$C_2 = \{x_1, x_3, x_5, x_6\}$$

$$C_3 = \{x_3, x_5\}$$

$$C_4 = \{x_1, x_4, x_6\}$$

$$U = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

$$C_1 = \{x_1, x_2, x_3, x_4, x_5\}$$

$$C_2 = \{x_1, x_3, x_5, x_6\}$$

$$C_3 = \{x_3, x_5\}$$

$$C_4 = \{x_1, x_4, x_6\}$$

$$U = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

$$C_1 = \{x_1, x_2, x_3, x_4, x_5\}$$

$$C_2 = \{x_1, x_3, x_5, x_6\}$$

$$C_3 = \{x_3, x_5\}$$

$$C_4 = \{x_1, x_4, x_6\}$$

Exact Cover

Idea: Use a variant of the Set Cover problem ⇒ **Exact Cover (XC)**

XC is NP-Complete — hardness by reduction from 3-Coloring (3COL)

Exact Cover

Idea: Use a variant of the Set Cover problem \Longrightarrow **Exact Cover (XC)**

XC is NP-Complete — hardness by reduction from 3-Coloring (3COL)

Conditions of XC:

- 1) The sub-collection must -cover U be a **partition** of $U \Longrightarrow No more cycles!$
- 2) The sub-collection must have minimal cardinality

Does the reduction still fail? Yes: the number of edges of the output tree is too variable

Does the reduction still fail? Yes: the number of edges of the output tree is too variable

Examples:

- 1) If |U| = n, $C = \{\{x_1, ..., x_{n-1}\}, \{x_n\}\}$ and k = n then T will have n+2 edges
- 2) If |U| = n, $C = \{\{x_1\}, ..., \{x_n\}\}$ and k = n then T will have 2n edges
- \implies We cannot find a "good" common value k' for the output triple (G,S,k')

19

Exact Cover by 3-Sets

Idea: Use a variant of the Exact Cover problem ⇒ **Exact Cover by 3-Sets (X3C)**

X3C is NP-Complete — hardness by reduction from 3-Dimensional Matching (3DM)

Exact Cover by 3-Sets

Idea: Use a variant of the Exact Cover problem ⇒ Exact Cover by 3-Sets (X3C)

X3C is NP-Complete — hardness by reduction from 3-Dimensional Matching (3DM)

Conditions of X3C:

- 1) The sub-collection must be a partition of $U \Longrightarrow No more cycles!$
- 2) The sub-collection must have minimal cardinality
- 3) U has **3q elements** and each C_i has **3 elements**

Exact Cover by 3-Sets

Obs. If |U| = 3q and C^* is an X3C then $|C^*| = q$

⇒ All X3Cs have the same cardinality, hence we can drop the minimality constraint

Decision problem: Given a set $U = \{x_1, ..., x_{3q}\}$ and a collection of subsets $\mathcal{C} = \{C_1, ..., C_m\}$ such that $|C_i| = 3$, is there a sub-collection $\mathcal{C}^* \subseteq \mathcal{C}$ that is a partition of U?

$$U = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

$$C_1 = \{x_1, x_2, x_4\}$$

$$C_2 = \{x_1, x_3, x_5\}$$

$$C_3 = \{x_3, x_5, x_6\}$$

$$C_4 = \{x_1, x_4, x_6\}$$

Example:

$$U = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

$$C_1 = \{x_1, x_2, x_4\}$$

$$C_2 = \{x_1, x_3, x_5\}$$

$$C_3 = \{x_3, x_5, x_6\}$$

$$C_4 = \{x_1, x_4, x_6\}$$

24

Claim: U has an Exact Cover by 3-Sets over C iff G has a Steiner Tree for S with 4q edges

Claim: U has an Exact Cover by 3-Sets over \mathcal{C} iff G has a Steiner Tree for S with 4q edges \Longrightarrow)

- 1) If $\mathcal{C}^* \subseteq \mathcal{C}$ is an X3C of U then $|\mathcal{C}^*| = q \longrightarrow W.l.o.g.$ assume $\mathcal{C}^* = \{C_1, ..., C_q\}$
- 2) T is made of the edges that have $u_1, ..., u_q$ as endpoints \longrightarrow T has 4q edges
- 3) \mathcal{C}^* is an exact cover \longrightarrow T covers S and it is acyclic

Claim: U has an Exact Cover by 3-Sets over C iff G has a Steiner Tree for S with 4q edges

 \longleftarrow

- 1) If T is an ST for S with at 4q edges \rightarrow T must contain $u_1, ..., u_t$
- 2) If t > q then S has more than 4q edges \rightarrow Contradiction
- 3) If t < q then S cannot cover all terminals \rightarrow Contradiction
- 4) $C^* = \{C_1, ..., C_q\}$ is an Exact 3-Cover of U

References

- M. R. Garey and D. S. Johnson. "The Rectilinear Steiner Tree Problem Is NP-Complete." SIAM Journal on Applied Mathematics 32, no. 4 (1977). http://www.jstor.org/stable/2100192
- M. W. Bern and R. L. Graham "The Shortest-Network Problem" in Scientific American Magazine Vol. 260 No. 1 (1989). doi:10.1038/scientificamerican0189-84

Thank you for the attention!

