디지털 시스템 개론 Final Project 보고서

11조 2015-18525 김세훈 2015-14392 김찬우

1. 프로그램 설명 및 장점

본 압축 프로그램의 가장 큰 장점은 완벽한 pipeline 구조로 구현되어 run-time에 압축 파일을 stall 없이 출력할 수 있다는 점이다. 즉, 메모리의 입력과 압축 알고리즘, 그리고 출력이 동시다발적으로 진행되어 출력 단자의 throughput을 최대로 운용할 수 있었으며 총 수행 시간 역시최소화할 수 있다. 이를 위해서 모듈 사이에는 최소한의 buffer를 배치함으로써, 직전 모듈의 결과물을 다음 모듈로 bubble 없이 보내주었으며, 모듈 사이에 발생하는 sync 문제를 해결하기위해서 인접한 모듈 사이에만 done과 done ACK signal로써 통신하였다. 즉, 어느 한 모듈에의해 전체 system이 통째로 stall되는 일이 없어서 latency 면에서 매우 효율적이다.

1.1. Memory Controller Module

Memory에서 4*4 block을 읽어 와서 buffer에 저장하며, 다음 모듈인 DPCM 모듈에서 ACK이 전송되면 다음 4*4 block을 읽는다.

1.2. DPCM Module

Run-time 압축과 최소한의 latency를 보장하면서 2가지 압축 mode를 지원하기 위해서 DPCM 모듈에서는 두 가지 mode를 동시에 진행한다. 또한 전체 수행 시간이 Golomb Rice 모듈에 bound되어있다는 사실에 착안하여, 자원을 절약하고 max frequncy를 올리기 위해 하나의 subtracter를 multi-cycle 기반으로 사용하였다. 또한, 두 mode 사이에 더 효율이 좋은 mode를 Golomb Rice coding 전에 알아내기 위해서 DPCM 결과의 절대 값의 합을 계산하여 그 합이 더 작은 DPCM 결과를 다음 모듈인 Golomb Rice 모듈로 전송해 주었다. 이를 통해서 Golomb Rice 코딩을 2번 하는 대신 1번만 하도록 구현할 수 있었으며, latency와 resource 면에서 이득을 보았다.

1.3. Golomb Rice Coding

Golomb Rice 모듈은 DPCM에서 data를 받아와서 최종 encoding을 하는 모듈이다. **자원을 최 적화하기 위해서 8bit shift register를 사용**하였으며, runtime에 출력 bit를 serial로 입력시켜 주었다. Shift register가 가득 차면 UART 출력 모듈이 idle한 경우 8 bit를 dump시켜 주었으며 그렇지 않은 경우에만 stall시켜 UART 모듈을 기다리게 하였다.

2. 프로그램 성능 평가

성능은 다음과 같다. Appeal point는 총 동작 시간, 합성 최대 주파수, 그리고 자원 효율성이다.

	Cafet	Ombre	Stat	Carafe	Reno
압축률	10626	10520	11708	10422	11732
[byte]	64.86%	64.21%	71.46%	63.61%	71.61%
총 동작 시간	N/A	N/A	N/A	약 70000	약 90000
[cycle]					
합성 최대					
주파수	114.403				
[MHz]					
합성크기	Total Numbers of 4 input LUT				
	Used: 1489				
	Available : 9312				
	Utilization: 15%				

^{*}압축률(%) 는 (encoded bit 수) / (decoded bit 수)로 정의