Inference with Markov Chains

Outline

- I. Gibbs sampling
- II. Markov chains
- III. Metropolis-Hastings sampling

 $^{^{\}star}$ Figures are either from the $\underline{\text{textbook site}}.$

I. Gibbs Sampling

- A Markov Chain Monte Carlo (MCMC) algorithm
 - specifies a value for every variable at the current state.
 - generates a next state by making random changes to the current state.
- Markov chain is a random process that generates a sequence of states.

Gibbs sampling (well suited for Bayes nets) is an MCMC algorithm that

- starts with an arbitrary state,
- fix evidence variables at their observed values, and
- generates a next state by randomly sampling a value for a nonevidence variable X_i chosen according to probability distribution $\rho(i)$.

 X_i is independent of all the variables outside of its *Markov blanket* (consisting its parents, children, and children's other parents).

Example of Gibbs Sampling

Gibbs sampling for X_i is conditioned on the current values of the variables in its Markov blanket.

Query $P(Rain \mid Sprinkler = true, WetGrass = true)$

randomly generated values for nonevidence variables *Cloudy* and *Rain*

Initial state [true,true,false,true]

evidence variables *Sprinkler* and *WetGrass* fixed to their observed values

Order: Cloudy, Sprinkler, Rain, WetGrass

Example (cont'd)

Query $P(Rain \mid Sprinkler = true, WetGrass = true)$

Order: Cloudy, Sprinkler, Rain, WetGrass

[true,true,false,true]
(initial state)

→ [false,true,true,true]

(new current state)

- Non-evidence variables are then sampled in random order following some probability distribution $\rho(i)$.
 - ♠ Cloudy is chosen and sampled given the current values of its Markov blanket {Sprinkler, Rain}.
 - Sampling distribution:

- Sampling result: Cloudy = false.
- Rain is chosen next and sampled given the current values of its Markov blanket {Cloudy,Sprinkler, WetGrass}.
 How to calculate?
 - Sampling distribution:

Sampling result: Rain = true.

Markov Blanket Distribution

 $MB(X_i)$: variables in the Markov blanket of X_i .

 $mb(X_i)$: values of the variables in $MB(X_i)$.

 $P(X_i \mid mb(X_i))$ is determined as follows:

$$P(x_i \mid mb(X_i)) = \alpha P(x_i \mid parents(X_i)) \prod_{Y_j \in Children(X_i)} P(y_j \mid parents(Y_j))$$

II. Markov Chain

Query $P(Rain \mid Sprinkler = true, WetGrass = true)$

A *state* need only include all nonevidence variables.

Markov chain from uniform choice of the two nonevidence variables ($\rho(Cloudy) = \rho(Rain) = 0.5$)

Probabilities with all the outgoing links of each node sum to 1, e.g., 0.6296 + 0.0926 + 0.2778 = 1.

- Gibbs sampling simply wanders around in the graph, following links with probabilities.
- Every state visited is a sample that contributes to the estimate for the query variable *Rain*.

If the process visits 20 states with Rain = true and 60 states with Rain = false, then the answer to the query is $\alpha \langle 20,60 \rangle = \langle 0.25,0.75 \rangle$.

Analysis of Markov Chains

Why does Gibbs sampling work? Or, why does its estimates converge to correct values in the limit?

Transition kernel k assigns a probability $k(x \rightarrow x')$ to a transition from state x to state x'.

 $k(\mathbf{x}_1 \rightarrow \mathbf{x}_2)$ 0.6296 0.1164 = 0.0926c Tr \boldsymbol{x}_1 0.4074 0.4762 0.2222 0.2778 0.0238 0.3922 \boldsymbol{x}_3 \boldsymbol{x}_4 $\neg c \neg r$ 0.1078 0.3856 0.8683

 $\pi_t(x)$: probability that the system is in state x after t transitions

$$\pi_{t+1}(\mathbf{x}') = \sum_{x} \pi_t(\mathbf{x}) k(\mathbf{x} \to \mathbf{x}')$$

$$\pi_{t+1}(\mathbf{x}_2) = 0.0926 \,\pi_t(\mathbf{x}_1) + 0.1164 \pi_t(\mathbf{x}_2) + 0.0238 \,\pi_t(\mathbf{x}_4)$$

The chain has reached its stationary distribution if $\pi_{t+1}(x) = \pi_t(x)$ for all x.

Stationary Distribution

A distribution π of the Markov chain is **stationary** if

$$\pi(x') = \sum_{x} \pi(x) k(x \to x')$$
 for all x, x' .

Such a probability distribution remains unchanged in the Markov chain as time progresses.

A kernel k is *ergodic* if every state is reachable from every other state and there exists no strictly periodic cycles.

There exists exactly one stationary distribution for every ergodic kernel of the Markov chain.

Achieving a Stationary Distribution

In a stationary distribution π , the expected "outflow" from each state is equal to the expected "inflow" from all the other states.

"population"
$$\pi(x') = \sum_{x} \pi(x) k(x \to x')$$
 expected "outflow" expected "inflow"

A detailed balance k with π is a distribution that satisfies

$$\pi(x)k(x \to x') = \pi(x')k(x' \to x)$$
 for all x, x' .

The detailed balance k makes $\pi(x)$ stationary because

$$\sum_{x} \pi(x)k(x \to x') = \sum_{x} \pi(x')k(x' \to x)$$
$$= \pi(x') \left[\sum_{x} k(x' \to x)\right] = 1$$

Correctness of Gibbs Sampling

The stationary distribution of the Gibbs sampling process is exactly the posterior distribution for the nonevidence variable conditioned on the evidence.

- In Gibbs sampling, a variable X_i is chosen and sampled conditionally on
 - the current values of all the other variables,
 - equivalently, when sampling a Bayes net, the variable's Markov blanket.

Transition Kernel for Gibbs Sampling

 $\overline{X_i}$: variables except X_i and evidence variables.

 $\overline{x_i}$: their values.

Case 1. The states x and x' differ in ≥ 2 variables. Since Gibbs sampling changes only one variable, we set

$$k(\mathbf{x} \to \mathbf{x}') = 0$$

Case 2. The states x and x' differ in the value of exactly one variable X_i , which changes from x_i to x_i' . That is, $x = (x_i, \overline{x_i})$ and $x' = (x_i', \overline{x_i})$.

$$k(\mathbf{x} \to \mathbf{x}') = k((x_i, \overline{\mathbf{x}}_i) \to (x_i', \overline{\mathbf{x}}_i)) = \rho(i) P(x_i' \mid \overline{\mathbf{x}}_i)$$
probability of choosing X_i

The transition probability is the product of the probability of selecting the variable X_i (out of all the nonevidence variables) with the probability of selecting x_i ' (out of all the values of X_i).

Completing the Definition

Case 3. The states are the same x = x'. Any variable could be chosen but then the sampling process reproduce the current value of the variable.

$$k(\mathbf{x} \to \mathbf{x}') = \sum_{i} \rho(i) k((\mathbf{x}_i, \overline{\mathbf{x}}_i) \to (\mathbf{x}'_i, \overline{\mathbf{x}}_i)) = \sum_{i} \rho(i) P(\mathbf{x}_i \mid \overline{\mathbf{x}}_i)$$

Correctness of Gibbs Sampling

Theorem The previously defined kernel $k(x' \to x)$ for Gibbs sampling has a stationary distribution equal to $P(x \mid e)$, the true posterior distribution on the nonevidence variables.

Proof It suffices to show that, with $\pi(x) = P(x \mid e)$, the following condition for k in detailed balance is satisfied:

$$\pi(x)k(x \to x') = \pi(x')k(x' \to x)$$
 for all states x, x' .

Then it follows that k implies the stationarity distribution $P(x \mid e)$.

- In the first and third cases, where x and x' differ in ≥ 2 variables and x = x', respectively, detailed balance can be easily shown to be satisfied.
- In the second case, where x and x' differ in one variable x_i , we have

$$\pi(\mathbf{x})k(\mathbf{x} \to \mathbf{x}') = P(\mathbf{x} \mid \mathbf{e}) \ \rho(i)P(x_i' \mid \overline{x}_i, \mathbf{e}) = \rho(i) \ P(x_i, \overline{x}_i \mid \mathbf{e})P(x_i' \mid \overline{x}_i, \mathbf{e})$$

$$= \rho(i)P(x_i \mid \overline{x}_i, \mathbf{e})P(\overline{x}_i \mid \mathbf{e})P(x_i' \mid \overline{x}_i, \mathbf{e})$$

$$= \rho(i)P(x_i \mid \overline{x}_i, \mathbf{e}) \ P(x_i', \overline{x}_i \mid \mathbf{e}) = \rho(i)P(x_i', \overline{x}_i \mid \mathbf{e})P(x_i \mid \overline{x}_i, \mathbf{e})$$

$$= \pi(\mathbf{x}')k(\mathbf{x}' \to \mathbf{x})$$

Performance of Gibbs Sampling

Gibbs sampling is expected to outperform likelihood weighting when evidence is downstream.

On the car insurance network:

Query on PropertyCost

Query on *Age* (with output observed)

III. Metropolis-Hastings (MH) Sampling

- The most broadly applicable Markov chain Monte Carlo algorithm.
- MH generates samples x according to a target probability distribution $\pi(x)$ (in a BN, $\pi(x) = P(x \mid e)$).

The transition kernel $k(x \rightarrow x')$ is defined as follows:

- At the current state x, sample a new state x' from a proposal distribution $q(x' \mid x)$.
- \clubsuit Accept or reject x' according to the acceptance probability:

$$a(x' \mid x) = \min\left(1, \frac{\pi(x')q(x \mid x')}{\pi(x)q(x' \mid x)}\right)$$

 \star The state transitions from x to x' in the case of acceptance, and stays at x in the case of rejection.

Proposal Distribution for MH

The *proposal distribution* $q(x' \mid x)$ is responsible for proposing a new state x'.

Example q(x' | x) could be defined as follows:

- With probability 0.95, perform a Gibbs sampling step to generate x'.
- With probability 0.05, use likelihood weighting to generate x'.
- ◆ This proposal distribution causes MH to do about 19 steps of Gibbs sampling and then generates a new state from scratch.
- ♦ It gets around the problem of Gibbs sampling getting stuck in one part of the state space.

Convergence of MH

MH converges to the correct stationary distribution for any proposal distribution $q(x' \mid x)$, provided it results in an ergodic transition kernel.

• The self-loop with x = x' automatically satisfies the detailed balance condition:

$$\pi(\mathbf{x})k(\mathbf{x}\to\mathbf{x}')=\pi(\mathbf{x}')k(\mathbf{x}'\to\mathbf{x})$$

Convergence of MH (cont'd)

• In the case $x \neq x'$, the transition can occur only if the proposal of x' is accepted.

$$k(\mathbf{x} \to \mathbf{x}') = q(\mathbf{x}' \mid \mathbf{x})a(\mathbf{x}' \mid \mathbf{x})$$

We can show that the flow from x to x' equals that from x' to x (i.e., $k(x \to x')$ is in detailed balance with $\pi(x)$) as follows:

$$\pi(x)k(x \to x') = \pi(x)q(x'|x)a(x'|x)$$

$$= \pi(x)q(x'|x)\min\left(1, \frac{\pi(x')q(x|x')}{\pi(x)q(x'|x)}\right)$$

$$= \min(\pi(x)q(x'|x), \pi(x')q(x|x'))$$

$$= \pi(x')q(x|x')\min\left(\frac{\pi(x)q(x'|x)}{\pi(x')q(x|x')}, 1\right)$$

$$= \pi(x')k(x' \to x)$$