___ 9 ___

Logarithme népérien

I. Définition

Propriété 1 : Admise

Pour tout réel a > 0, il existe un unique $x \in \mathbb{R}$ tel que $e^x = a$.

Définition 1

Pour tout réel a > 0, l'unique réel $x \in \mathbb{R}$ de la propriété précédente est appelé **logarithme népérien** de a > 0 et on le note $\ln(a)$.

- **Exemple:** Puisque $e^0 = 1$, alors $\ln(1) = 0$.
 - Puisque $e^1 = e$, alors $\ln(e) = 1$.

Propriété 2

- Pour tout $x \in \mathbb{R}$, on a $\ln(e^x) = x$.
- Pour tout a > 0, on a $\exp(\ln(a)) = a$.

⚠ Remarque :

Puisque pour tout $x \in \mathbb{R}$, on a $e^x > 0$, alors on ne peut pas écrire $\ln(a)$ avec $a \leq 0$.

Propriété 3

Pour tous x, y > 0, on a :

$$ln(x) = ln(y) \iff x = y$$
 et $ln(x) \le ln(y) \iff x \le y$

Année 2025/2026 Page 1/5

Méthode :

• Résolvons l'équation $e^{2x} - 3 = 1$:

$$e^{2x} - 3 = 1 \iff e^{2x} = 4 \iff \ln(e^{2x}) = \ln(4) \iff 2x = \ln(4) \iff x = \frac{\ln(4)}{2}$$

• Résolvons l'équation $3\ln(x-1) = -6$:

$$3\ln(x-1) = -6 \iff \ln(x-1) = -2 \iff \exp(\ln(x-1)) = e^{-2} \iff x-1 = e^{-2} \iff x = e^{-2} + 1$$

Il reste à bien vérifier que la solution obtenue vérifie que x-1>0, ce qui est le cas ici.

La méthode est similaire pour la résolution d'inéquations.

II. Propriétés algébriques

Propriété 4

Pour tous a, b > 0, on a $\ln(ab) = \ln(a) + \ln(b)$

Preuve. Soient a, b > 0, on a : $e^{\ln(a) + \ln(b)} = e^{\ln(a)} e^{\ln(b)} = ab$.

Donc par définition du logarithme ln(ab) = ln(a) + ln(b).

Propriété 5

Pour tous a, b > 0, on a:

$$\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$$
 et $\ln\left(\frac{1}{a}\right) = -\ln(a)$

Preuve. Soient a, b > 0, on a:

$$\ln(a) = \ln\left(b \times \frac{a}{b}\right) = \ln(b) + \ln\left(\frac{a}{b}\right)$$

On a donc : $\ln(b) + \ln\left(\frac{a}{b}\right) = \ln(a) \iff \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$. En particulier, on a $\ln\left(\frac{1}{a}\right) = \ln(1) - \ln(a) = -\ln(a)$ car $\ln(1) = 0$.

${ /\!\!/}$ Exemple :

- $\ln(2) + \ln(3) + \ln(7) = \ln(2 \times 3 \times 7) = \ln(42)$
- $\ln(12) \ln(3) = \ln\left(\frac{12}{3}\right) = \ln(4)$.
- Soit x un réel. Alors,

$$\ln(1 + e^{-x}) + x = \ln(1 + e^{-x}) + \ln(e^{x}) = \ln((1 + e^{-x})e^{x}) = \ln(e^{x} + 1)$$

Année 2025/2026 Page 2/5

Propriété 6

Soit a un réel strictement positif. Alors, on a : $\ln(\sqrt{a}) = \frac{1}{2}\ln(a)$.

Preuve. Puisque pour tout réel a > 0, $a = \sqrt{a} \times \sqrt{a}$, on a :

$$\ln(a) = \ln(\sqrt{a} \times \sqrt{a}) = \ln(\sqrt{a}) + \ln(\sqrt{a}) = 2\ln(\sqrt{a})$$
 et donc $\ln(\sqrt{a}) = \frac{1}{2}\ln(a)$. \Box

Propriété 7

Soit a un réel strictement positif. Pour tout entier **relatif** $n : \ln(a^n) = n \ln(a)$.

- **Preuve.** Pour tout entier naturel n, on pose P_n : « $\ln(a^n) = n \ln(a)$ ».
 - Initialisation: $\ln(a^0) = \ln(1) = 0$ et $0 \times \ln(a) = 0$. P_0 est donc vraie.
 - Hérédité: Soit n ∈ N. Supposons que P_n est vraie.
 Alors ln(aⁿ⁺¹) = ln(aⁿ × a) = ln(aⁿ) + ln(a) = n ln(a) + ln(a) = (n + 1) ln(a).
 P_{n+1} est vraie: (P_n) est héréditaire.
 - Conclusion : D'après le principe de récurrence, P_n est vraie pour tout $n \in \mathbb{N}$.

Par ailleurs, pour tout entier naturel n, $a^n \times a^{-n} = a^0 = 1$. Ainsi, $\ln(a^n \times a^{-n}) = \ln(a^n) + \ln(a^{-n}) = 0$. On a donc $\ln(a^{-n}) = -\ln(a^n)$. Or, $\ln(a^n) = n \ln(a)$. On a alors $\ln(a^{-n}) = -n \ln(a)$ et donc la propriété est vraie pour tout entier **relatif**.

Exemple : On a
$$\frac{\ln(10000)}{\ln(0.001)} = \frac{\ln(10^4)}{\ln(10^{-3})} = \frac{4ln(10)}{-3\ln(10)} = -\frac{4}{3}$$
.

III. Fonction logarithme népérien

Définition 2

On appelle fonction logarithme népérien la fonction $x \mapsto \ln(x)$ définie sur \mathbb{R}_+^* . On dit que la fonction réciproque de la fonction exponentielle.

1. Limites

Propriété 8 : Limites et croissances comparées

On a les limites suivantes :

$$\lim_{x \to 0^+} \ln(x) = -\infty \quad \text{et} \lim_{x \to +\infty} \ln(x) = +\infty$$

Année 2025/2026 Page 3/5

De plus, pour tout entier naturel n,

$$\lim_{x \to 0^+} x^n \ln(x) = 0 \quad \text{et } \lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0$$

Preuve (Au programme : $\lim_{x\to 0^+} x \ln(x)$). Pour x>0, on pose $X=\ln(x)$.

Ainsi, $x \ln(x) = e^{\ln(x)} \times \ln(x) = e^X \times X$. Or, $\lim_{x \to 0^+} \ln(x) = -\infty$ et, par croissances comparées, $\lim_{X \to -\infty} X e^X = 0$. Par composition de limite, $\lim_{x \to 0^+} x \ln(x) = 0$.

2. Dérivabilité

Propriété 9

La fonction ln est dérivable sur $]0; +\infty[$ et pour tout réel x>0, $\ln'(x)=\frac{1}{x}$.

Preuve (Au programme). On admet que ln est dérivable sur $]0; +\infty[$. Pour tout réel x > 0, on pose $f(x) = e^{\ln(x)} = x$. f est dérivable sur $]0; +\infty[$.

- D'une part, on sait que pour tout réel x > 0, f'(x) = 1.
- D'autre part, en utilisant la formule de la dérivée d'une fonction composée, on a :

$$f'(x) = \ln'(x) \times e^{\ln(x)} = \ln'(x) \times x.$$

Ainsi, pour tout x > 0, $\ln'(x) \times x = 1$ et donc $\ln'(x) = \frac{1}{x}$.

On en déduit naturellement les propriétés suivantes :

Propriété 10

La fonction ln est strictement croissante sur $]0; +\infty[$.

Preuve. La fonction ln est dérivable sur $]0; +\infty[$ et pour tout réel x > 0, on a $\ln'(x) = \frac{1}{x} > 0$. Donc ln est donc strictement croissante.

! Remarque :

Cette propriété permet d'enfin justifier la Propriété 3 du cours.

// Exemple :

On cherche le plus petit entier naturel n tel que : $5 - 14 \times 0, 8^n \ge 4, 9$.

Premièrement, on a :

$$5 - 14 \times 0, 8^n \ge 4, 9 \iff -14 \times 0, 8^n \ge -0, 1 \iff 14 \times 0, 8^n \le \frac{1}{10} \iff 0, 8^n \le \frac{1}{140}$$

Ainsi, et puisque $ln(0, 8) \le 0$, on a :

$$0, 8^n \le \frac{1}{140} \iff \ln(0, 8^n) \le \ln\left(\frac{1}{140}\right) \iff n\ln(0, 8) \le -\ln(140) \iff n \ge -\frac{\ln(140)}{\ln(0, 8)}$$

Année 2025/2026

Puisque $-\frac{\ln(140)}{\ln(0,8)} \approx 22,15$, on a donc que l'entier que l'on cherchait vaut n=23.

Propriété 11

Soit u une fonction définie sur un intervalle I telle que pour tout réel $x \in I$, u(x) > 0. Alors $\ln \circ u$ est dérivable et on a $(\ln(u))' = \frac{u'}{u}$

\nearrow Exemple :

Pour tout réel x, on pose $u(x) = x^2 - 2x + 5$ et $f(x) = \ln(u(x)) = \ln(x^2 - 2x + 5)$. Il faut avant tout vérifier que pour tout réel x, u(x) > 0 pour que f soit définie sur \mathbb{R} . Or, u une fonction polynôme du second degré dont le discriminant Δ vaut $(-2)^2 - 4 \times 1 \times 5 = -16 < 0$. Ainsi, pour tout réel x, u(x) est de signe constant : celui du coefficient dominant. Comme il s'agit de 1, alors u(x) > 0.

Par ailleurs, la fonction u est dérivable sur \mathbb{R} et pour tout réel x, u'(x) = 2x - 2. Ainsi, f est dérivable sur \mathbb{R} et pour tout réel x,

$$f'(x) = \frac{u'(x)}{u(x)} = \frac{2x - 2}{x^2 - 2x + 5}.$$

Propriété 12 : Admise

La courbe de la fonction ln est symétrique à la courbe de la fonction exp par rapport à la droite d'équation y = x.

En général, les courbes de deux fonctions réciproques sont toujours symétriques par rapport à la droite d'équation y=x. On peut, par exemple, observer le même phénomène en regardant les courbes des fonctions $x\mapsto x^2$ et $x\mapsto \sqrt{x}$ sur $[0;+\infty[$. Mais aussi la fonction inverse $x\mapsto \frac{1}{x}$, qui est sa propre réciproque.

Année 2025/2026 Page 5/5