» +49 (151) 21159581 mtoneva@mpi-sws.org http://mtoneva.com

Mariya Toneva

Positions Held	
Max Planck Institute for Software Systems Tenure-track Faculty (W2) Visiting Researcher	since 2022 2021–2022
Princeton University Postdoctoral Researcher Advisors: Ken Norman, Uri Hasson	2021–2022
Education	
Carnegie Mellon University Ph.D. in Machine Learning and Neural Computation Thesis title: Bridging Language in Machines with Language in the Brain Advisors: Tom Mitchell, Leila Wehbe	2014–2021
Carnegie Mellon University Masters of Science in Machine Learning	2018
Yale University Bachelor of Science in Computer Science, Cognitive Science	2014
Publications in Journals and Conference Proceedings	
 Joint processing of linguistic properties in brains and language models S.R. Oota, M. Gupta, and M. Toneva (NeurIPS 2023) Neural Information Processing Systems [pdf] 	2023
 What happens during finetuning of vision Transformers: an invariance based investigation G. Merlin, V. Nanda, R. Rawal, and M. Toneva (CoLLAs 2023) Conference on Lifelong Learning Agents [pdf] 	n 2023
 Training language models for deeper understanding improves brain alignment K.L. Aw and M. Toneva (ICLR 2023) International Conference on Learning Representations [pdf] [top 25% notable paper (Spotlight)] 	2023
 A Roadmap to Reverse Engineering Real-world Generalization by Combining Naturalistic Paradigms, Deep Sampling, and Predictive Computational Models P. Herholz, E. Fortier, M. Toneva, N. Farrugia, L. Wehbe, V. Borghesani Neurons, Behavior, Data Science, and Theory [pdf] 	2023

5.	Combining Computational Controls with Natural Text Reveals New Aspects of Meaning Composition M. Toneva, T. Mitchell, and L. Wehbe Nature Computational Science [pdf]	2022
6.	Same Cause; Different Effects in the Brain M. Toneva*, and J. Williams*, A. Bollu, C. Dann, and L. Wehbe (CLeaR 2022) Causal Learning and Reasoning [pdf]	2022
7.	Single-trial MEG Data Can Be Denoised Through Cross-Subject Predictive Modeling S. Ravishankar, M. Toneva , and L. Wehbe Frontiers in Computational Neuroscience 2021 [pdf]	2021
8.	Modeling Task Effects on Meaning Representation in the Brain via Zero-Shot MEG Prediction M. Toneva*, O. Stretcu*, B. Poczos, L. Wehbe, and T. Mitchell (NeurIPS 2020) Neural Information Processing Systems [pdf]	2020
9.	Interpreting and Improving Natural-Language Processing (in Machines) with Natural Language-Processing (in the Brain) M. Toneva and L. Wehbe (NeurIPS 2019) Neural Information Processing Systems [pdf]	2019
10.	Inducing Brain-relevant Bias in Natural Language Processing Models D. Schwartz, M. Toneva , and L. Wehbe (NeurIPS 2019) Neural Information Processing Systems [pdf]	2019
11.	An Empirical Study of Example Forgetting during Deep Neural Network Learning M. Toneva*, A. Sordoni*, R. Tachet des Combes*, A. Trischler, Y. Bengio, and G. Gordon (ICLR 2019) International Conference on Learning Representations [pdf]	2019
12.	Applying Artificial Vision Models to Human Scene Understanding E. M. Aminoff, M. Toneva , A. Shrivastava, X. Chen, I. Misra, A. Gupta, and M. J. Tarr Frontiers in Computational Neuroscience 2015 [pdf]	2015
13.	Exploration of Social Grouping: Effects of Behavioral Mimicry, Appearance, and Eye Gaze A. Nawroj, M. Toneva , H. Admoni, B. Scassellati (CogSci 2014) <i>Conference of the Cognitive Science Society</i> [with Oral presentation] [pdf]	2014
14.	The Physical Presence of a Robot Tutor Increases Cognitive Learning Gains D. Leyzberg, S. Spaulding, M. Toneva , and B. Scassellati (CogSci 2012) <i>Conference of the Cognitive Science Society</i> [pdf]	2012
15.	Robot Gaze Does Not Reflexively Cue Human Attention H. Admoni, C. Bank, J. Tan, M. Toneva , and B. Scassellati (CogSci 2011) Conference of the Cognitive Science Society [pdf]	2011

Preprints and Non-Proceeding Publications

•	Large language models can segment narrative events similarly to humans S. Michelmann, M. Kumar, K.A. Norman, and M. Toneva (arXiv 2023) [pdf]	2023
•	Vision-language integration in multimodal video transformers (partially) aligns with the brain D. Dong and M. Toneva (arXiv 2023) [pdf]	2023
•	Speech language models lack important brain-relevant semantics S.R. Oota, E. Çelik, F. Deniz, and M. Toneva (arXiv 2023) [pdf]	2023
•	Perturbed examples reveal invariances shared by language models R. Rawal and M. Toneva (arXiv 2023) [pdf]	2023
•	Getting aligned on representational alignment I. Sucholutsky, L. Muttenthaler,, M. Toneva, T. Griffiths (arXiv 2023) [pdf]	2023
•	Pointwise representational similarity C. Kolling, T. Speicher, V. Nanda, M. Toneva , and K.P. Gummadi (arXiv 2023) [pdf]	2023
•	Interpreting multimodal video Transformers using brain recordings D. Dong and M. Toneva (ICLR 2023 Workshop on Multimodal Representation Learning: Perks and Pitfalls) [pdf]	2023
•	Language models and brain alignment: beyond word-level semantics and prediction G. Merlin and M. Toneva (arXiv 2022) [pdf]	2022
•	Memory for long narratives M. Toneva, V. Vo, J. Turek, S. Jain, S. Michelmann, M. Capotă, A. Huth, U. Hasson, and K. Norman (CEMS 2022) Context and Episodic Memory Symposium	2022
	The Courtois Neuromod project: a deep, multi-domain fMRI dataset to build individual brain models J. Boyle*, B. Pinsard*, V. Borghesani, M. Saint-Laurent, F. Lespinasse, F. Paugam, P. Sainath, S. Rastegarnia, A. Boré, J. Chen, A. Cyr, E. Dessureault, E. DuPre, Y. Harel, M. Toneva, S. Belleville, S. Brambati, J. Cohen-Adad, A. Fuente, M. Hebart, K. Jerbi, P. Rainville, L. Wehbe, and P. Bellec (HBM 2022) Human Brain Mapping [with Oral presentation]	2022
•	Does Injecting Linguistic Structure into Language Models Lead to Better Alignment with Brain Recordings? M. Abdou, A.V. González, M. Toneva , D. Hershcovich, and A. Søgaard (arXiv 2021) [pdf]	2021

 Investigating Different Alignment Methods Between Natural and Artificial Neural Network for Language Processing A. Bollu, M. Toneva, and L. Wehbe (SNL 2020) Society for the Neurobiology of Language 	as 2020
 Investigating Task Effects on Brain Activity During Stimulus Presentation in MEG M. Toneva*, O.Stretcu*, B. Poczos, and T. Mitchell (HBM 2019) Human Brain Mapping 	2019
 Word Length Processing in Left Lateraloccipital through Region-to-Region Connectivity: an MEG Study M. Toneva, and T. Mitchell (HBM 2018) Human Brain Mapping 	2018
 MEG Representational Similarity Analysis Implicates Hierarchical Integration in Sentence Processing N. Rafidi*, D. Schwartz*, M. Toneva*, S. Jat, and T. Mitchell (HBM 2018) Human Brain Mapping 	2018
 Scene-Space Encoding within the Functional Scene-Selective Network E. M. Aminoff, M. Toneva, A. Gupta, and M. J. Tarr (VSS 2015) Vision Sciences Society 	2015
 Towards a Model for Mid-level Feature Representation of Scenes M. Toneva, E. M. Aminoff, A. Gupta, and M. Tarr (VSS 2014) Vision Sciences Society 	2014
Grants and Fellowships	
DFG Graduate School RTG 2853	
Neuroexplicit Models of Language, Vision & Action	2023-2028
	2023-2028
Neuroexplicit Models of Language, Vision & Action DFG Research Unit 5368 KI-FOR Abstract Representations in Neural Architectures	
Neuroexplicit Models of Language, Vision & Action DFG Research Unit 5368 KI-FOR Abstract Representations in Neural Architectures Project: Bridging Levels of Abstraction in Brains and Natural Language Processing Machines National Institutes of Health T32 Training Grant	2023-2027
Neuroexplicit Models of Language, Vision & Action DFG Research Unit 5368 KI-FOR Abstract Representations in Neural Architectures Project: Bridging Levels of Abstraction in Brains and Natural Language Processing Machines National Institutes of Health T32 Training Grant Funded one year of postdoctoral research in Quantitative and Computational Neuroscience C.V. Starr Fellowship	2023-2027 2021-2022
DFG Research Unit 5368 KI-FOR Abstract Representations in Neural Architectures Project: Bridging Levels of Abstraction in Brains and Natural Language Processing Machines National Institutes of Health T32 Training Grant Funded one year of postdoctoral research in Quantitative and Computational Neuroscience C.V. Starr Fellowship Funded one year of postdoctoral research in computational neuroscience at Princeton University National Science Foundation Graduate Research Fellowship	2023-2027 2021-2022 2021-2022
DFG Research Unit 5368 KI-FOR Abstract Representations in Neural Architectures Project: Bridging Levels of Abstraction in Brains and Natural Language Processing Machines National Institutes of Health T32 Training Grant Funded one year of postdoctoral research in Quantitative and Computational Neuroscience C.V. Starr Fellowship Funded one year of postdoctoral research in computational neuroscience at Princeton University National Science Foundation Graduate Research Fellowship Funded three years of interdisciplinary graduate research in machine learning and neuroscience Grace Hopper Celebration Scholarship	2023-2027 2021-2022 2021-2022 2016-2019

Awards and Distinctions

023
021
020
022
017
017
016
024
024
024
024
024 023 023
024 023 023 023
024 023 023 023
0:

•	Nonlinear Models for Scientific Discovery about Language in the Brain Cognitive Computational Neuroscience (CCN) workshop Is it that simple? The use of linear models in cognitive neuroscience	2020
•	Towards a Model for Mid-level Feature Representation of Scenes Oral presentation, Women in Machine Learning (WiML) workshop at NeurIPS	2014
•	Exploration of Social Grouping: Effects of Behavioral Mimicry, Appearance, and Eye Gaze Oral presentation, Conference of the Cognitive Science Society (CogSci)	2014
U	niversity Seminars	
	Convergence and Divergence between Language Models and Human Brains Ernst Strüngmann Institut (ESI)	2024
•	Convergence and Divergence between Language Models and Human Brains Cog. Comp. Neuro. Colloquium, MPI for Human Cognitive and Brain Sciences	2023
•	Why Do Large Language Models Align with Human Brains? Campus Lecture, Saarbrücken Informatics Campus	2023
•	NLP systems as model organisms for language processing in the human brain Psychology Department Colloquium, University of Saarland	2023
•	Why Do Large Language Models Align with Human Brains? Institute for Basic Science, South Korea	2023
•	Why Do Large Language Models Align with Human Brains? CIMeC, University of Trento; Host: Raffaella Bernardi	2022
•	Bridging Language in Machines with Language in the Brain Distinguished Speakers in Language Science Colloquium, Saarland University	2022
•	Data-Driven Direct Transfer of Insight between Brains and AI Systems Department of Statistics and Data Science, Yale University	2021
•	Data-Driven Transfer of Insight between Brains and Al Systems Faculty of Computing and Data Science, Boston University	2021
•	Data-Driven Transfer of Insight between Brains and Al Systems Department of Computer Science, University of Southern California	2021
•	Data-Driven Transfer of Insight between Brains and AI Systems Department of Computer Science, University of Utah	2021
•	Data-Driven Transfer of Insight between Brains and Al Systems Max Planck Institute for Software Systems	2021
•	Data-Driven Transfer of Insight between Brains and AI Systems Department of Computer Science, Aarhus University	2021
•	Data-Driven Transfer of Insight between Brains and Al Systems Toyota Technological Institute at Chicago	2021

•	IST Austria	2021
•	Data-Driven Transfer of Insight between Brains and Al Systems Department of Statistics, University of Chicago	2021
•	Data-Driven Transfer of Insight between Brains and Al Systems Department of Computer Science, University of Notre Dame	2021
•	Data-Driven Transfer of Insight between Brains and AI Systems Department of Computer Science, University of Liverpool	2020
•	Data-Driven Direct Transfer of Insight between Brains and Al Systems SFB-TRR 161 Lecture Series (University of Stuttgart, University of Konstanz, Ulm University, and the LMU Munich), Host: Lewis Chuang	2020
Sı	ummer Schools and Group Meetings	
•	Why Do Large Language Models Align with Human Brains? Max Planck School of Cognition Academy	2023
•	Bridging Language in Machines with Language in the Brain Summer School in Philosophy and Computer Science, University of Bayreuth	2023
•	Tracking Information Processing in the Human Brain Department of Computer Vision and Machine Learning, MPI Informatics	2023
•	Why Do Large Language Models Align with Human Brains? TALEP group, Aix-Marseille University; Hosts: Abdellah Fourtassi, Carlos Ramisch	2022
•	Bridging Language in Machines with Language in the Brain CMMRS Summer School, MPI for Software Systems	2022
•	NLP Systems as Model Organisms for Human Language Comprehension IMPRS NeuroCom Summer School at the MPI for Human Cognitive and Brain Sciences	2022
•	Same Cause; Different Effects in the Brain MIT, Host: Evelina Fedorenko	2022
•	Data-Driven Transfer of Insight between Brains and AI Systems MIT, Host: Roger Levy	2021
•	NLP Systems as Model Organisms for Human Language Comprehension Computational Neuroscience Symposium, CMU	2021
•	NLP Systems as Model Organisms for Human Language Comprehension Courtois NeuroMod Group, Host: Pierre Bellec	2021
•	Modeling Context-Dependent Meaning Composition During Language Comprehension Princeton Neuroscience Institute, Hosts: Ken Norman and Uri Hasson	2021
•	Modeling Task Effects on Meaning Representation in the Brain Carnegie Mellon University, brAIn seminar	2020

Composition of Context- and Task-dependent Meaning

UT Austin, Host: Alexander Huth

2020

Industry Internships

Microsoft Research, Montreal

Research Intern 2018

Investigated the learning dynamics of neural networks as they train on single classification tasks, finding that certain examples are forgotten with high frequency, and some not at all, and that, based on these forgetting dynamics, a significant fraction of examples can be omitted from the training data set while still maintaining state-of-the-art generalization performance

Cognitive Computing Center, Thomson Reuters

Research Intern 2017

Investigated the use of a recurrent neural network encoder for unsupervised word-order sensitive hashing as a step towards improving ranking results

Research Visits

Khai Loong Aw Research Intern

Carnegie Mellon University

Research Assistant; Advisor: Michael Tarr 2013–2014

Investigated mid-level scene representation in humans using computer vision techniques

École Polytechnique Fédérale de Lausanne (EPFL)

Summer Intern; Advisor: Wulfram Gerstner 2013

Worked towards improving the state-of-the-art calcium-based model of spike-timing dependent plasticity

Massachusetts Institute of Technology

Technical Trainee; Advisor: John Gabrieli 2012

Examined links between working memory capacity and various brain metrics through the analysis of resting state functional connectivity fMRI data

Mentorship and Supervision

Mentorship and Supervision	
Emin Çelik Postdoctoral Researcher	2023-
Blerta Veseli PhD at University of Saarland co-advised	2023-
Cameron Braunstein PhD at University of Saarland co-advised	2023-
Gabriele Merlin PhD at CS@MaxPlanck Graduate Program	2022-
Ruchit Rawal Research Intern	2022-
Subba Reddy Oota Research Intern	2022

2022

Tianai (Dota) Dong Masters in Language Science and Technology at University of Saarland	2021-2022
Anand Bollu Masters at Department of Computer Science, CMU	2019-2021
Sydney Zheng Undergraduate at Department of Computer Science, CMU	2019
Aditri Bhagirath Undergraduate at Department of Computer Science, CMU	2019
Tara Pirnia MD/PhD candidate, CMU and University of Pittsburgh	2015
Teaching	
Bridging Language in Machines and Language in the Brain, University of Saarland Instructor Seminar course	2023
3370 Mathematical Neuroscience, University of Pittsburgh Teaching Assistant	2018
10-725 Convex Optimization, CMU Teaching Assistant Awarded Machine Learning TA award	2016
Machine Learning for Neuroscience, Multimodal Neuroimaging Training Program Instructor Created curriculum and instructed 4-week course; video recordings can be found on personal webpage	2016
Service	
Organizer Deep Learning for Brain Encoding and Decoding Tutorial, IJCAI	2023
Memory in Artificial and Real Intelligence Workshop, NeurIPS	2022
Deep Learning for Brain Encoding and Decoding Tutorial, Cognitive Sciences Society	2022
What can NLP systems teach us about language in the brain? Symposium, Society for the Neurobiology of Language	2021
How can findings about the brain improve AI systems? Workshop, ICLR	2021

Program Committee

Program Co-Chair: *CogSci* 2024 **Area Chair:** *EMNLP* 2023

Reviewer: ML: NeurIPS 2016-2023(Top 30% Reviewer in 2018); ICML 2019-2023 (Top 10% Reviewer in 2022);

AAAI 2020-2021, CoLLAs 2022, ICLR 2022-2024 (Highlighted Reviewer in 2023), TMLR

NLP: ACL 2019-2021; NAACL 2019-2021; EMNLP 2020-2021; CoNLL 2020-2021; AACL-IJCNLP 2020;

EACL 2021 Neuro: Nature Human Behavior, Nature Communications; Communications Biology;

Frontiers in Computational Neuroscience; Society for the Neurobiology of Language 2022; OHBM 2018

Other venues: TICS, CogSci 2021, Communications of the ACM

Thesis Committee Member

Damián Pascual (ETH Zurich, 2022); RJ Antonello (UT Austin, 2023); Carina Kauf (MIT, 2023); Bernhard Schäfl (Johannes Kepler University, 2024); Till Speicher (MPI Software Systems, 2024)

ML@CMU Blog

Chief Editor and Co-founder 2018–2020

Oversaw more than 30 research posts featuring recent ML research across 6 departments in the School of Computer Science as well as other CMU schools and departments, and more than 10 educational posts

University Leadership Student Advisory Council

Member 2015–2017

Advising senior leadership at Carnegie Mellon University on the strategic priorities of the university

Graduate Student Assembly

Representative for the Program of Neural Computation 2015–2018

Advocating for the needs of graduate students

Yale Review of Undergraduate Research in Psychology

Chief Editor 2013–2014

Reviewed 50 submissions from 31 universities, and edited 9 submissions for publication

Personal

Languages Bulgarian (Native), English (Fluent), German (Intermediate)

Citizenship United States, Bulgaria
Github profile http://github.com/mtoneva

Google Scholar profile https://scholar.google.com/citations?user=a61sk-4AAAAJ