

Optimierung industrieller Prozesse

Gedeon, Fabian, Alex, Philip, Daniel
12.04.2017

DHBW Mannheim

Agenda

1	Betrachtete Algorithmen	3
	Genetischer Algorithmus	
	Particle Swarm Algorithmus	
2	2 Erkenntnisse	8
	Genetischer Algorithmus	
	Particle Swarm Algorithmus	9
3	3 Kommunikation	10
	Anbindung an RabbitMQ	

Betrachtete Algorithmen

Genetischer Algorithmus

- Funktionsweise ist der Natur entlehnt.
- Initialisierung einer Population.
- Bewertung der Individuen mithilfe einer Fitnessfunktion.

• Operationen:

- Selektion (der Eltern)
- Crossover
- Mutation
- Ersetzung

Parameter:

MUSTERTHEMA

- Popualtionsgröße & Generationsanzahl
- Mutationsrate
- Crossoverrate

3

Funktionsweise des Algorithmus

Realisierung

- Crossover-Strategien:
 - Gewichteter Durchschnitt: Berechnung des gewichteten Durchschnitts (basierend auf der Fitness der Eltern) für jedes Gen des Kindes.
 - Singlepoint Crossover: Kind erhält zwei unterschiedliche Teile des Vektors der Eltern.
 Trennung an einem Punkt.
 - Multipoint Crossover: Kind erhält beliebig viele unterschiedliche Teile des Vektors der Eltern. Trennung an beliebig vielen Punkten.
- Mutations-Strategien:
 - Vertauschen zweier Parameter: Mutationswahrscheinlichkeit für gesamtes Individuum.
 Vertauschen einer festen Anzahl von Genen.
 - Mutation mit fester Anzahl: Mutationswahrscheinlichkeit für gesamtes Individuum.
 Zufällige Werte für eine feste Anzahl von Genen.
 - Mutation mit variabler Anzahl: Mutationswahrscheinlichkeit für jedes Gene einzeln.
 Zufällige Werte für eine feste Anzahl von Genen.
 - Gauss Mutation: Mutationswahrscheinlichkeit für gesamtes Individuum. Addieren eines Gauss- verteilten Zufallswertes

Anpassungen

• Anpassung der Mutationsrate über *e*-Funktion (Optimierung für 5000 Iterationen):

$$e^{-x*0.0009-1}$$

- Werte mit "not feasible" werden mit einer Strafe von 1.000.000 für den Fitnesswert versehen.
- Versuch mit fixer Anzahl an Mutationen konsistente Änderungen und Data Space Exploration zu erreichen.
- Truncation Selection mit 25% der Population

Parameter

ullet Populationsgröße: 2^{13}

• Generationsanzahl: 5000

• Mutationsrate (variabel): 0.08

• Mutationsrate (fix): 0.3 für 4 Individuen

Particle Swarm Algorithmus

• Mehrere Partikel

Erkenntnisse

Genetischer Algorithmus

- Gute Näherung der Testfunktionen von Stiblinski-Tang und Rastrigin.
- Schlechte Näherung der Testfunktion von Rosenbrock.
- Gute Näherung der unbekannten Funktion
- Ergebnisse: https://github.com/DaWe1992/OIP/blob/master/Results.md
- Keine Eignung für alle Optimierungsprobleme

Particle Swarm Algorithmus

- Gute Näherung der Testfunktionen von Rosenbrock
- Gute Näherung der unbekannten Funktion

Kommunikation

Anbindung an RabbitMQ

- RabbitMQ Client kapselt Funktionalität von Sender und Receiver.
- RabbitMQ Client bietet "Send and Wait" ⇒ Blockierender Aufruf.
- Wiederverwendbarkeit für sämtlich Algorithmen.

Technische Limitation

Maximales Senden von 20k Nachrichten pro Sekunde.

