

VT82C596B South Bridge

PIPC PCI Integrated Peripheral Controller

PC98 Compliant PCI-to-ISA Bridge with ACPI, Enhanced Power Management, SMBus, APIC, Distributed DMA, Serial IRQ, Plug and Play, UltraDMA-33/66 Master Mode PCI-EIDE Controller USB Controller, Keyboard Controller, and RTC

Revision 0.3 June 17, 1999

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 1997, 1998, 1999 VIA Technologies Incorporated. Printed in the United States. All RIGHTS RESERVED.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated.

VT82C596B may only be used to identify a product of VIA Technologies, Inc.

is a registered trademark of VIA Technologies, Incorporated.

PS/2TM is a registered trademark of International Business Machines Corp.

CeleronTM, Pentium-IITM, Pentium-IIITM, GTL+TM, APICTM, and IntelTM are registered trademarks of Intel Corp. Windows 95TM and Plug and PlayTM are registered trademarks of Microsoft Corp.

PCITM is a registered trademark of the PCI Special Interest Group.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

USA Office: 1045 Mission Court Fremont, CA 94539 USA

Tel: (510) 683-3300 Fax: (510) 683-3301 Taipei Office:

8th Floor, No. 533 Chung-Cheng Road, Hsin-Tien

Taipei, Taiwan ROC Tel: (886-2) 218-5452 Fax: (886-2) 218-5453

Online Services:

Home Page: http://www.via.com.tw -or- http://www.viatech.com

FTP Server: <u>ftp.via.com.tw</u>
BBS: 886-2-2185208

REVISION HISTORY

Document Release	Date	Revision	Initials
Revision 0.1	2/23/99	Initial release based on 82C596A Data Sheet revision 1.1 - Added UltraDMA-66 to feature bullets and overview - Added integrated APIC (changed H18, K18, J17 pin descriptions) - Added note to RTC CMOS Register Summary - Added / changed function 0 Rx42[6], Rx48[7-4], Rx5B[3], Rx5C[7-4, 2], Rx74[29-24, 8, 1], Rx87-89 - Added / changed function 3 Rx8, Rx4D[2-0], Rx54-55, Rx58-5B, Rx90-91, RxD2-D6 (80-88 renumbered), PMU I/O Offset 0[11], 20[14, 7-1], 22[14, 7-1], 24[14, 7-1], 28[15-11], 2A[15-11], 2C[11-10], 38[2-1], 44[10-1], 4C[30-0]	DH
Revision 0.2	3/9/99	Updated feature bullets, overview, and pin descriptions Replaced IDE function 1 with registers from 686B to reflect UltraDMA-66 Added / changed PMU function 3 registers Rx42[7-6, 4], Rx58-5B, PMU I/O Offset 0[8], 2C[2], 30[10-0], 34[10-0], 38[6, 4-3], 40 (removed)	DH
Revision 0.3	6/17/99	Changed Function 0 Rx42[2-0], 43[5-4], 50 default, 55[3-0], 57[3-0], 58[3-0], 88[5], Function 1 RxD, 42-43, 45[3-2], 54[4-3], 70, 74-75, 78, 7C-7D, Function 2 Rx41[7-3], Function 3 Rx4C-4F default value	DH

TABLE OF CONTENTS

REVISION HISTORY]
TABLE OF CONTENTS	
LIST OF FIGURES	
LIST OF TABLES	IV
OVERVIEW	3
PINOUTS	4
REGISTERS	21
REGISTER OVERVIEW	
CONFIGURATION SPACE I/O	28
REGISTER DESCRIPTIONS	29
Legacy I/O Ports	29
Keyboard Controller Registers	
DMA Controller I/O Registers	
Interrupt Controller Registers	
Timer / Counter Registers	33
CMOS / RTC Registers	
Function 0 Registers - PCI to ISA Bridge	35
PCI Configuration Space Header	
ISA Bus Control	
Plug and Play Control	
Distributed DMA / Serial IRQ Control	
Miscellaneous / General Purpose I/O	
Function 1 Registers - Enhanced IDE Controller	
PCI Configuration Space Header	
IDE-Controller-Specific Confiiguration Registers	
IDE I/O Registers	
Function 2 Registers - Universal Serial Bus Controller	
PCI Configuration Space Header	
USB-Specific Configuration Registers	56
USB I/O Registers	
Function 3 Registers - Power Management and SMBus	58
PCI Configuration Space Header	58
Power Management-Specific PCI Configuration Registers	
System Management Bus-Specific Configuration Registers	
System Management Bus I/O-Space Registers	
Power Management I/O-Space Registers	70
FUNCTIONAL DESCRIPTIONS	78
POWER MANAGEMENT	78
Power Management Subsystem Overview	
Processor Bus States	
System Suspend States and Power Plane Control	
General Purpose I/O Ports	
Power Management Events	80
System and Processor Resume Events	80
Legacy Power Management Timers	
System Primary and Secondary Events	
Peripheral Events	81
ELECTRICAL SPECIFICATIONS	82

A	ABSOLUTE MAXIMUM RATINGS	82
Ι	OC CHARACTERISTICS	82
A	C TIMING SPECIFICATIONS	83
PAC	KAGE MECHANICAL SPECIFICATIONS	.90

LIST OF FIGURES

FIGURE 1. PC SYSTEM CONFIGURATION USING THE VT82C596B	2
FIGURE 2. VT82C596B BALL DIAGRAM (TOP VIEW)	4
FIGURE 3. VT82C596B PIN LIST (NUMERICAL ORDER)	5
FIGURE 4. VT82C596B PIN LIST (ALPHABETICAL ORDER)	6
FIGURE 5. STRAP OPTION CIRCUIT	
FIGURE 6. POWER MANAGEMENT SUBSYSTEM BLOCK DIAGRAM	78
FIGURE 8. ULTRADMA-33 IDE TIMING - DRIVE INITIATING DMA BURST FOR READ COMMAND	85
FIGURE 9. ULTRADMA-33 IDE TIMING - DRIVE INITIATING BURST FOR WRITE COMMAND	85
FIGURE 10. ULTRADMA-33 IDE TIMING - PAUSING A DMA BURST	86
FIGURE 11. ULTRADMA-33 IDE TIMING - DRIVE TERMINATING DMA BURST DURING READ COMMAND	87
FIGURE 12. ULTRADMA-33 IDE TIMING - DRIVE TERMINATING DMA BURST DURING WRITE COMMAND	.87
FIGURE 13. ULTRADMA-33 IDE TIMING - HOST TERMINATING DMA BURST DURING READ COMMAND	88
FIGURE 14. ULTRADMA-33 IDE TIMING - HOST TERMINATING DMA BURST DURING WRITE COMMAND.	88
FIGURE 15. ULTRADMA-33 IDE TIMING - PIO CYCLE	89
FIGURE 16. MECHANICAL SPECIFICATIONS - 324-PIN BALL GRID ARRAY PACKAGE	90

LIST OF TABLES

TABLE 1.	PIN DESCRIPTIONS	7
	SYSTEM I/O MAP	
TABLE 3.	REGISTERS	21
TABLE 4.	KEYBOARD CONTROLLER COMMAND CODES	31
TABLE 5.	CMOS REGISTER SUMMARY	34
TABLE 6.	AC CHARACTERISTICS - PCI CYCLE TIMING	83
TABLE 7.	AC CHARACTERISTICS - ULTRADMA-33 IDE BUS INTERFACE TIMING	84

VT82C596B PIPC PCI INTEGRATED PERIPHERAL CONTROLLER

PC98 COMPLIANT PCI-TO-ISA BRIDGE WITH ACPI, ENHANCED POWER MANAGEMENT, SMBUS, APIC, DISTRIBUTED DMA, SERIAL IRQ, PLUG AND PLAY, ULTRADMA-33/66 MASTER MODE PCI-EIDE CONTROLLER, USB CONTROLLER, KEYBOARD CONTROLLER, AND RTC

• Inter-operable with VIA and other Host-to-PCI Bridges

- Combine with VT82C598 (Apollo MVP3) for a complete 66 / 75 / 83 / 100MHz Socket-7 PCI / AGP / ISA system
- Combine with VT82C693 (Apollo ProPlus) for a complete 66 / 100 MHz Socket-370 or Slot-1 PCI / ISA system
- Combine with VT82C693A (Apollo Pro133) for a complete 66 / 100 / 133 MHz Skt-370 or Slot-1 PCI / ISA system

PC98 Compliant PCI to ISA Bridge

- Integrated ISA Bus Controller with integrated DMA, timer, and interrupt controller
- Integrated Keyboard Controller with PS2 mouse support
- Integrated DS12885-style Real Time Clock with extended 256 byte CMOS RAM and Day/Month Alarm for ACPI
- Integrated USB Controller with root hub and two function ports
- Integrated UltraDMA-33/66 master mode EIDE controller with enhanced PCI bus commands
- PCI-2.1 compliant with delay transaction
- Eight double-word line buffer between PCI and ISA bus
- One-level PCI to ISA post-write buffer
- Supports type F DMA transfers
- Distributed DMA support for ISA legacy DMA across the PCI bus
- Sideband signal support for PC/PCI and serial interrupt for docking and non-docking applications
- Serial Interrupt input
- Fast reset and Gate A20 operation
- Edge trigger or level-sensitive interrupts
- Flash EPROM, 2Mb EPROM and combined BIOS support
- Supports positive and subtractive decoding

Universal Serial Bus Controller

- USB v.1.1 and Intel Universal HCI v.1.1 compatible
- Eighteen level (doublewords) data FIFO with full scatter / gather capabilities
- Root hub and two function ports
- Integrated physical layer transceivers with over-current detection status on USB inputs
- Legacy keyboard and PS/2 mouse support

Advanced Programmable Interrupt Controller (APIC)

- Integrated on-chip
- Control pins provided for support of optional external APIC
- Used to extend system interrupt capability
- PC98 compliant

UltraDMA-33/66 Master Mode PCI EIDE Controller

- Dual channel master mode PCI supporting four Enhanced IDE devices
- Transfer rate up to 22MB/sec to cover PIO mode 4, multi-word DMA mode 2 drives, and beyond
- Extension to UltraDMA-33 interface for transfer rates to 33MB/sec
- Extension to UltraDMA-66 interface for transfer rates to 66MB/sec
- Thirty-two levels (doublewords) of prefetch and write buffers
- Dual DMA engine for concurrent dual channel operation
- Bus master programming interface for SFF-8038i rev.1.0 and Windows-95 compliant
- Full scatter gather capability
- Support ATAPI compliant devices including DVD devices
- Support PCI native and ATA compatibility modes
- Complete software driver support
- Supports glue-less "Swap-Bay" option with full electrical isolation

System Management Bus Interface

- Host interface for processor communications
- Slave interface for external SMBus masters

Sophisticated PC98-Compatible Mobile Power Management

- Supports both ACPI (Advanced Configuration and Power Interface) and legacy (APM) power management
- ACPI v1.0 Compliant
- APM v1.2 Compliant
- CPU clock throttling and clock stop control for complete ACPI C0 to C3 state support
- PCI bus clock run and PCI/CPU clock generator stop control
- Supports multiple system suspend types: power-on suspends with flexible CPU/PCI bus reset options, suspend to DRAM, and suspend to disk (soft-off), all with hardware automatic wake-up
- Multiple suspend power plane controls and suspend status indicators
- One idle timer, one peripheral timer and one general purpose timer, plus 24/32-bit ACPI compliant timer
- Normal, doze, sleep, suspend and conserve modes
- Global and local device power control
- System event monitoring with two event classes
- Primary and secondary interrupt differentiation for individual channels
- Dedicated input pins for power and sleep buttons, external modem ring indicator, and notebook lid open/close for system wake-up
- Up to 22 general purpose input ports and 31 output ports
- Multiple internal and external SMI sources for flexible power management models
- Two programmable chip selects and one microcontroller chip select
- Enhanced integrated real time clock (RTC) with date alarm, month alarm, and century field
- Thermal alarm support
- Cache SRAM power-down control
- Hot docking support
- I/O pad leakage control

Plug and Play Controller

- PCI interrupts steerable to any interrupt channel
- Dual interrupt and DMA signal steering for on-board plug and play devices
- Microsoft Windows 95[™] and plug and play BIOS compliant

Built-in NAND-tree pin scan test capability

- 0.5u, 3.3V, low power CMOS process
- Single chip 324 pin BGA

OVERVIEW

The VT82C596B south bridge is a high integration, high performance, power-efficient, and high compatibility device that supports PCI / ISA bus bridge functionality to make a complete Microsoft PC98-compliant system. In addition to complete ISA extension bus functionality, the VT82C596B includes standard intelligent peripheral controllers:

- a) Master mode enhanced IDE controller with dual channel DMA engine and interlaced dual channel commands. Dedicated FIFO coupled with scatter and gather master mode operation allows high performance transfers between PCI and IDE devices. In addition to standard PIO and DMA mode operation, the VT82C596B also supports the UltraDMA-33 standard to allow reliable data transfer rates up to 33MB/sec throughput and the UltraDMA-66 standard for 66MB/sec data transfer. The IDE controller is SFF-8038i v1.0 and Microsoft Windows-95 / 98 / NT compliant.
- b) Universal Serial Bus controller that is USB v1.1 and Universal HCI v1.1 compliant. The VT82C596B includes the root hub with two function ports with integrated physical layer transceivers. The USB controller allows hot plug and play and isochronous peripherals to be inserted into the system with universal driver support. The controller also implements legacy keyboard and mouse support so that legacy software can run transparently in a non-USB-aware operating system environment.
- c) Keyboard controller with PS2 mouse support.
- d) Real Time Clock with 256 byte extended CMOS. In addition to the standard ISA RTC functionality, the integrated RTC also includes the date alarm, century field, and other enhancements for compatibility with the ACPI standard.
- e) Notebook-class power management functionality compliant with ACPI and legacy APM requirements. Multiple sleep states (power-on suspend, suspend-to-DRAM, and suspend-to-Disk) are supported with hardware automatic wake-up. Additional functionality includes event monitoring, CPU clock throttling and stop (Intel processor protocol), PCI bus clock stop control, modular power, clock and leakage control, hardware-based and software-based event handling, general purpose I/O, chip select and external SMI.
- f) Full System Management Bus (SMBus) interface.
- g) Distributed DMA capability for support of ISA legacy DMA over the PCI bus. PC/PCI and Serial IRQ mechanisms are also supported for docking and non-docking applications.
- h) Plug and Play controller that allows complete steerability of all PCI interrupts to any interrupt channel. Three additional steerable interrupt channels are provided to allow plug and play and reconfigurability of on-board peripherals for Windows 95 compliance.
- i) Integrated APIC (see the Win98 Hardware Design Guide)

The VT82C596B also enhances the functionality of the standard ISA peripherals. The integrated interrupt controller supports both edge and level triggered interrupts channel by channel. The integrated DMA controller supports type F DMA in addition to standard ISA DMA modes. Compliant with the PCI-2.1 specification, the VT82C596B supports delayed transactions so that slower ISA peripherals do not block the traffic of the PCI bus. Special circuitry is built in to allow concurrent operation without causing dead lock even in a PCI-to-PCI bridge environment. The chip also includes eight levels (doublewords) of line buffers from the PCI bus to the ISA bus to further enhance overall system performance.

Figure 1. PC System Configuration Using the VT82C596B

PINOUTS

Figure 2. VT82C596B Ball Diagram (Top View)

Key	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	PCI RST#	AD 27	ID SEL	AD 19	FRA ME#	SERR#	AD 13	AD 9	AD 5	AD 1	PCI RQB#	P GNT#	SD D6	SD D4	SD D13	SD DRQ	SD DACK#	SD A2	PD D8	PD D7
В	AD 31	AD 26	AD 23	AD 18	I RDY#	PAR	AD 12	AD 8	AD 4	AD 0	PCI RQC#	P REQ#	SD D9	SD D11	SD D1	SD IOW#	SD A1	SD CS1#	PD D9	PD D6
C	AD 30	AD 25	AD 22	AD 17	T RDY#	CBE 1#	AD 11	CBE 0#	AD 3	PCK RUN#	PCI RQD#	SD D7	SD D5	SD D3	SD D14	SD IOR#	SD A0	SD CS3#	PD D10	PD D5
D	AD 28	CBE 3#	AD 20	CBE 2#	STOP#	AD 14	AD 10	AD 6	AD 2	GND	P CLK	SD D8	SD D10	SD D2	SD D15	SD RDY	PD D12	PD D3	PD D11	PD D4
E	AD 29	AD 24	AD 21	AD 16	DEV SEL#	AD 15	GND	AD 7	VCC	PCI RQA#	vcc	VCC	GND	SD D12	SD D0	vcc	PD D14	PD D1	PD D13	PD D2
F	USB- P1+	GPO 28	GPO29 SCI#	GPO 30	VCC	vcc								vcc	VCC	PD IOW#	PD IOR#	PD DRQ	PD D15	PD D0
G	PIRQ D#	USB- P0+	GPI 21	GPO 0	GPO 27	vcc										PD A0	PD A2	PD A1	PD DACK#	PD RDY
Н	GPI 18	USB P1-	USB P0-	GPI 19	GPI 20		•	_					-			PD CS3#	PD CS1#	ACS#/ APD0	TH RM#	IRQ0 OUT
J	USB OC0#	USB OC1#	GPI 14	NC / KEYL	GND USB				GND	GND	GND	GND				VREF	AAK#/ APD1	STP CLK#	SER IRQ	IRQ 1
K	KBCS# /MSDT	ROM CS#	GPI 16	GPI 17	VCC USB				GND	GND	GND	GND				ZZ	SPKR	ARQ#/ WSC#	FERR#	SLP#
L	RTC- ALE	GPI 13	USB CLK	PCS 0#	GPI 15				GND	GND	GND	GND				V BAT	IGN NE#	INIT	INTR	NMI
M	REQ A#	RTC CS#	X DIR#	X OE#	NC / KBDT				GND	GND	GND	GND				NC	RSM RST#	PWR GD	CPU RST	A20 M#
N	GNT A#	REQ B#	NC / KBCK	MC CS#	PCS 1#			-					•	-		VCC SUS	SMB ALRT#	NC	RTC X1	RC IN#
P	A20G/ MSCK	GNT B#	REQ C#	GNT C#	PIRQ C#										vcc	LID	SUS CLK	RI#	GPI 1	SMI#
R	CPU STP#	PCI STP#	PIRQ A#	PIRQ B#	NC	vcc	vcc								VCC	VCC SUS	CFG 1	CFG 2	SMB CLK	RTC X2
Т	SD 6	SD 3	IOCH RDY	IOW#	SA 16	vcc	B CLK	SA 9	IRQ 3	SA 4	SA 1	LA 23	IRQ 12	LA 18	DACK 5#	SD9	SUS ST1#	SUS ST2#	GPO 8	SMB DATA
U	IRQ 9	SD 2	SMEM W#	SA 18	DRQ 3	DRQ 1	SA 11	IRQ 5	SA 6	BALE	SA 0	IRQ 10	LA 20	DACK 0#	MEM W#	DRQ 6	DRQ 7	SUS C#	BAT LOW#	PWR BTN#
v	SD 7	DRQ 2	SD 0	SA 19	DACK 3#	SA 14	SA 12	IRQ 6	SA 7	TC	OSC	IOCS 16#	LA 21	IRQ 14	MEM R#	DACK 6#	SD 11	TEST#	SUS B#	EXT SMI#
\mathbf{w}	RST DRV	SD 4	SD 1	SMEM R#	SA 17	DACK 1#	RFSH#	SA 10	IRQ 4	SA 5	SA 2	S BHE#	IRQ 11	LA 19	DRQ 0	SD 8	DACK 7#	SD 13	SD 15	SUS A#
Y	IO CHK#	SD 5	ZWS#	AEN	IOR#	SA 15	SA 13	IRQ 7	SA 8	DACK 2#	SA 3	MCS 16#	LA 22	IRQ 15	LA 17	DRQ 5	SD 10	SD 12	SD 14	IRQ 8#

Note: Some of the pins above have alternate functions and alternate names. The table above contains only one name, but the pin lists and pin descriptions contain all names.

Figure 3. VT82C596B Pin List (Numerical Order)

Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name
A01	О	PCIRST#	D06	Ю	AD14	H17	О	PDCS1#	N16	P	VCCSUS	U17	I	DRO7
A02	Ю	AD27	D07	Ю	AD10	H18	О	APICCS#/D0/GPO13	N17	I	SMBALRT# / GPI11		О	SUSC# / GPO16
A03	I	IDSEL	D08	IO	AD6	H19	I	THRM# / GPI8	N18	-	NC	U19	I	BATLOW# / GPI9
A04	IO	AD19	D09	IO	AD2	H20	O	IRQ0OUT / GPO14	N19	I	RTCX1	U20	I	PWRBTN#
A05	IO	FRAME#	D10	P	GND	J01	I	USBOC0#	N20	I	RCIN#	V01	IO	SD7
A06	I	SERR#	D11	I	PCLK	J02	I	USBOC1#	P01	IO	A20GATE / MSCK	V02	I	DRQ2
A07	IO	AD13	D12	IO	SDD8	J03	I	GPI14	P02	O	GNTB# / GPO10	V03	IO	SD0
A08	IO IO	AD9 AD5	D13 D14	IO	SDD10 SDD2	J04	I P	NC / KEYLOCK	P03 P04	O	REQC# / GPI4 GNTC# / GPO11	V04 V05	IO	SA19 DACK3#
A09 A10	IO	AD3 AD1	D14	IO	SDD2 SDD15	J05 J09	P P	GNDUSB GND	P04 P05	_	PIRQC#	V03	Ю	SA14
A11	I	PCIREQB#	D13	I	SDRDY	J10	r P	GND	P15	P	VCC	V00	IO	SA14 SA12
A12	I	PGNT#	D10	IO	PDD12	J11	P	GND	P16	I	LID / GPI10	V07	I	IRQ6
A13	IO	SDD6	D17	Ю	PDD3	J12	P	GND	P17	O	SUSCLK	V09	IO	SA7
A14	IO	SDD4	D19	IO	PDD11	J16	P	VREF	P18	I	RI# / GPI12	V10	o	TC
A15	IO	SDD13	D20	IO	PDD4	J17	O	APICACK#/D1/GPO12	P19	Ī	GPI1 / PME#	V11	I	OSC
A16	I	SDDRQ	E01	Ю	AD29	J18	OD	STPCLK#	P20	OD	SMI#	V12	Ю	IOCS16#
A17	O	SDDACK#	E02	IO	AD24	J19	I	SERIRQ / GPI7	R01	0	CPUSTP# / GPO17	V13	IO	LA21
A18	О	SDA2	E03	Ю	AD21	J20	I	IRQ1	R02	O	PCISTP# / GPO18	V14	I	IRQ14
A19	Ю	PDD8	E04	Ю	AD16	K01	Ю	KBCS#/GPO26/MSDT	R03	IOD	PIRQA#	V15	Ю	MEMR#
A20	IO	PDD7	E05	Ю	DEVSEL#	K02	O	ROMCS#	R04	IOD	PIRQB#	V16	О	DACK6#
B01	IO	AD31	E06	Ю	AD15	K03	I	GPI16	R05	-	NC	V17	Ю	SD11
B02	IO	AD26	E07	P	GND	K04	I	GPI17	R06	P	VCC	V18	I	TEST#
B03	IO	AD23	E08	IO	AD7	K05	P	VCCUSB	R07	P	VCC	V19	О	SUSB# / GPO15
B04	IO	AD18	E09	P	VCC	K09	P	GND	R15	P	VCC	V20		EXTSMI#
B05	IO	IRDY#	E10	I	PCIREQA#	K10	P	GND	R16	P	VCCSUS	W01	О	RSTDRV
B06	О	PAR	E11	P	VCC	K11	P	GND	R17	I	CFG1	W02	IO	SD4
B07	IO	AD12	E12	P	VCC	K12	P	GND	R18	I	CFG2	W03	IO	SD1
B08	IO	AD8	E13	P	GND	K16	O	ZZ / GPO19	R19	IO	SMBCLK	W04	0	SMEMR#
B09	IO	AD4	E14	IO	SDD12	K17	O	SPKR	R20	0	RTCX2	W05	IO	SA17
B10 B11	IO	AD0 PCIREQC#	E15	IO	SDD0	K18 K19	I I	APICRQ#/WSC#/GPI5	T01 T02	IO IO	SD6 SD3	W06 W07	O IO	DACK1# RFSH#
B12	O	PREQ#	E16 E17	P IO	VCC PDD14	K19 K20	OD	FERR# SLP#	T03	IOD	IOCHRDY	W07	IO	SA10
B13	Ю	SDD9	E17	IO	PDD14	L01	0	RTCAS / GPO25	T04	IOD	IOW#	W09	I	IRQ4
B13	IO	SDD9 SDD11	E19	IO	PDD13	L02	I	GPI13 / SLPBTN#	T05	IO	SA16	W10	IO	SA5
B15	IO	SDD11	E20	IO	PDD2	L03	I	USBCLK	T06	P	VCC	W11	IO	SA2
B16	0	SDIOW#	F01	Ю	USBP1+	L04	Ó	PCS0#	T07	o	BCLK	W12	IO	SBHE#
B17	ŏ	SDA1	F02	O	GPO28	L05	I	GPI15	T08	IO	SA9	W13	I	IRQ11
B18	o	SDCS1#	F03	Ō	GPO29/SCI#	L09	P	GND	T09	I	IRQ3	W14	Ю	LA19 / GPO3
B19	Ю	PDD9	F04	О	GPO30	L10	P	GND	T10	Ю	SA4	W15	I	DRQ0
B20	IO	PDD6	F05	P	VCC	L11	P	GND	T11	Ю	SA1	W16	Ю	SD8
C01	IO	AD30	F06	P	VCC	L12	P	GND	T12	Ю	LA23 / GPO7	W17	О	DACK7#
C02	IO	AD25	F14	P	VCC	L16	P	VBAT	T13	I	IRQ12	W18	Ю	SD13
C03	IO	AD22	F15	P	VCC	L17	OD	IGNNE#	T14	IO	LA18 / GPO2	W19	Ю	SD15
C04	IO	AD17	F16	О	PDIOW#	L18	OD	INIT	T15	О	DACK5#	W20	О	SUSA#
C05	IO	TRDY#	F17	О	PDIOR#	L19	OD	INTR	T16	IO	SD9	Y01	I	IOCHCK# / GPI0
C06	IO	CBE1#	F18	I	PDDRQ	L20	,	NMI	T17	0	SUSST1# / GPO20	Y02	IO	SD5
C07	IO	AD11	F19		PDD15	M01	I	REQA# / GPI2	T18	0	SUSST2# / GPO21	Y03	I	ZWS#
C08	IO	CBE0#	F20	IO	PDD0	M02	0	RTCCS# / GPO24	T19	0	GPO8	Y04	0	AEN
C09	IO	AD3	G01	IOD	PIRQD#	M03	O	XDIR# / GPO22	T20	IO	SMBDATA	Y05	IO	IOR#
C10		PCKRUN#	G02	IO	USBP0+	M04	0	XOE# / GPO23	U01	I	IRQ9	Y06	IO	SA15
C11	I	PCIREQD#	G03	I	GPI21	M05	IO D	NC / KBDT	U02	IO	SD2	Y07	IO	SA13
C12		SDD7	G04	0	GPO0 GPO27	M09	P	GND	U03	0	SMEMW#	Y08	I	IRQ7
C13 C14		SDD5 SDD3	G05 G06	O P	VCC	M10 M11	P P	GND GND	U04 U05	IO	SA18 DRQ3	Y09 Y10	IO	SA8 DACK2#
C14		SDD3 SDD14	G16	0	PDA0	M11 M12	P P	GND GND	U05	I	DRQ1	Y10 Y11	IO	SA3
C15		SDIOR#	G16	0	PDA0 PDA2	M12 M16	-	NC	U07	IO	SA11	Y11	IO	MCS16#
C10		SDA0	G17	0	PDA1	M17	I	RSMRST#	U08	I	IRQ5	Y13		LA22 / GPO6
C18		SDCS3#	G19	o	PDDACK#	M18	I	PWRGD	U09	IO	SA6	Y14	I	IRQ15
C19		PDD10	G20	I	PDRDY	M19		CPURST	U10	O	BALE	Y15		LA17 / GPO1
C20		PDD5	H01	I	GPI18	M20		A20M#	U11	Ю	SA0	Y16	I	DRQ5
D01	IO	AD28	H02	Ю	USBP1-	N01	0	GNTA# / GPO9	U12	I	IRO10	Y17	IO	SD10
D02		CBE3#	H03	IO	USBP0-	N02	I	REQB# / GPI3	U13	IO	LA20 / GPO4	Y18	IO	SD10 SD12
D03	IO	AD20	H04	I	GPI19	N03	Ю	NC / KBCK	U14	0	DACK0#	Y19	IO	SD14
H		CBE2#	H05	I	GPI20	N04	O	MCCS#	U15	IO	MEMW#	Y20	I	IRQ8# / GPI6
D04	10					N05	О	PCS1#	U16	I	DRQ6	II .	ı —	1

Figure 4. VT82C596B Pin List (Alphabetical Order)

Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name
P01	Ю	A20GATE / MSCK	K19	I	FERR#	K01	Ю	KBCS#/GPO26/MSDT	M18	I	PWRGD	B13	Ю	SDD09
M20	OD	A20M#	A05	IO	FRAME#	Y15	IO	LA17 / GPO1	N20	I	RCIN#	D13	IO	SDD10
B10	IO	AD00	D10	P	GND	T14	IO	LA18 / GPO2	M01	I	REQA# / GPI2	B14	IO	SDD11
A10	IO	AD01	E07	P	GND	W14	IO	LA19 / GPO3	N02	I	REQB# / GPI3	E14	IO	SDD12
D09	IO	AD02	E13	P	GND	U13	IO	LA20 / GPO4	P03	I	REQC# / GPI4	A15	IO	SDD13
C09	IO	AD03	J09	P	GND	V13	IO	LA21 / GPO5	W07	Ю	RFSH#	C15	IO	SDD14
B09	IO	AD04	J10	P	GND	Y13	IO	LA22 / GPO6	P18	I	RI# / GPI12	D15	Ю	SDD15
A09	Ю	AD05	J11	P	GND	T12	Ю	LA23 / GPO7	K02	О	ROMCS#	A17	О	SDDACK#
D08	Ю	AD06	J12	P	GND	P16	I	LID / GPI10	M17	I	RSMRST#	A16	I	SDDRQ
E08	IO	AD07	K09	P	GND	N04	О	MCCS#	W01	О	RSTDRV	C16	О	SDIOR#
B08	Ю	AD08	K10	P	GND	Y12	Ю	MCS16#	L01	О	RTCAS/GPO25	B16	О	SDIOW#
A08	Ю	AD09	K11	P	GND	V15	Ю	MEMR#	M02	О	RTCCS#/GPO24	J19	I	SERIRQ / GPI7
D07	Ю	AD10	K12	P	GND	U15	IO	MEMW#	N19	I	RTCX1	A06	I	SERR#
C07	Ю	AD11	L09	P	GND	J04	I	NC / KEYLOCK	R20	О	RTCX2	D16	I	SDRDY
B07	Ю	AD12	L10	P	GND	M05	Ю	NC / KBDT	U11	Ю	SA00	K20	OD	SLP#
A07	Ю	AD13	L11	P	GND	N03	Ю	NC / KBCK	T11	Ю	SA01	N17	I	SMBALRT#/GPI11
D06	Ю	AD14	L12	P	GND	M16	-	NC	W11	Ю	SA02	R19	Ю	SMBCLK
E06	Ю	AD15	M09	P	GND	N18	-	NC	Y11	Ю	SA03	T20	Ю	SMBDATA
E04	Ю	AD16	M10	P	GND	R05	-	NC	T10	Ю	SA04	W04	О	SMEMR#
C04	Ю	AD17	M11	P	GND	L20	OD	NMI	W10	Ю	SA05	U03	О	SMEMW#
B04	Ю	AD18	M12	P	GND	V11	I	OSC	U09	Ю	SA06	P20	OD	SMI#
A04	Ю	AD19	J05	P	GNDUSB	B06	О	PAR	V09	Ю	SA07	K17	О	SPKR
D03	Ю	AD20	N01	О	GNTA# / GPO9	C10	Ю	PCKRUN#	Y09	Ю	SA08	D05	Ю	STOP#
E03	Ю	AD21	P02	О	GNTB# / GPO10	D11	I	PCLK	T08	Ю	SA09	J18	OD	STPCLK#
C03	Ю	AD22	P04	O	GNTC# / GPO11	E10	I	PCIREQA#	W08	Ю	SA10	W20	О	SUSA#
B03	Ю	AD23	P19	I	GPI1 / PME#	A11		PCIREQB#	U07	Ю	SA11	V19	O	SUSB# / GPO15
E02	IO	AD24	L02	Ī	GPI13 / SLPBTN#	B11		PCIREOC#	V07	Ю	SA12	U18	Ō	SUSC# / GPO16
C02	Ю	AD25	J03	Ī	GPI14	C11	Ī	PCIREQD#	Y07	Ю	SA13	P17	0	SUSCLK
B02	Ю	AD26	L05	Ī	GPI15	A01	0	PCIRST#	V06	Ю	SA14	T17	O	SUSST1# / GPO20
A02	IO	AD27	K03	Ī	GPI16	R02	Ō	PCISTP#/GPO18	Y06	IO	SA15	T18	Ö	SUSST2# / GPO21
D01	IO	AD28	K04	Ī	GPI17	L04	Ö	PCS0#	T05	IO	SA16	V10	O	TC
E01	Ю	AD29	H01	I	GPI18	N05	ŏ	PCS1#	W05	Ю	SA17	V18	I	TEST#
C01	IO	AD30	H04	Ī	GPI19	G16	0	PDA0	U04	Ю	SA18	H19	I	THRM# / GPI8
B01	IO	AD31	H05	Ī	GPI20	G18	Ö	PDA1	V04	Ю	SA19	C05	IO	TRDY#
Y04	0	AEN	G03	ī	GPI21	G17	ŏ	PDA2	W12	IO	SBHE#	L03	I	USBCLK
J17	O	APICAK#//D1/O12	G04	0	GPO00	H17	0	PDCS1#	V03	IO	SD00	J01	Ī	USBOC0#
H18	ŏ	APICCS#/D0/O13	T19	ő	GPO08	H16	ŏ	PDCS3#	W03	IO	SD00 SD01	J02	Ī	USBOC1#
K18	I	APICRQ#/WSC#/I5	G05	o	GPO27	F20	IO	PDD00	U02	Ю	SD02	H03	Ю	USBP0-
U10	0	BALE	F02	o	GPO28	E18		PDD01	T02	Ю	SD02 SD03	G02	IO	USBP0+
U19	I	BATLOW# / GPI9	F03	ő	GPO29 / SCIOUT#	E20	_	PDD02	W02	IO	SD03 SD04	H02	IO	USBP1-
T07	Ó	BCLK	F04	o	GPO30	D18		PDD03	Y02	Ю	SD05	F01	Ю	USBP1+
C08	Ю	CBE0#	A03	I	IDSEL	D20		PDD04	T01	Ю	SD05 SD06	L16	P	VBAT
C06	IO	CBE0#	L17	OD	IGNNE#	C20		PDD05	V01	Ю	SD07	E09	P	VCC
D04	IO	CBE1# CBE2#	L18	OD	INIT	B20	IO	PDD06	W16	Ю	SD07 SD08	E11	P	VCC
D04	IO	CBE3#	L19	OD	INTR	A20	IO	PDD07	T16	Ю	SD09	E12	P	VCC
R17	I	CFG1	Y01	I	IOCHCK# / GPI0	A19		PDD08	Y17	Ю	SD10	E16	P	VCC
R18	Ī	CFG2			IOCHRDY	B19		PDD09	V17		SD10 SD11	F05	P	VCC
M19	UD	CPURST	V12	IOD	IOCS16#	C19		PDD10	Y18		SD11 SD12	F06	P	VCC
R01	0	CPUSTP# / GPO17	Y05	IO	IOCS10#	D19		PDD10 PDD11	W18	IO	SD12 SD13	F14	r P	VCC
U14	0	DACK0#	T04	IO	IOW#	D19		PDD11 PDD12	W16 Y19		SD13 SD14	F14	r P	VCC
W06	o	DACK0# DACK1#	B05	IO	IRDY#	E19		PDD12 PDD13	W19	IO	SD14 SD15	G06	r P	VCC
Y10	0	DACK1# DACK2#	H20	0	IRQ0OUT / GPO14	E19		PDD13 PDD14	C17	0	SDA0	P15		VCC
V05	0	DACK2# DACK3#	J20	I	IRQ1	F19		PDD14 PDD15	B17		SDA0 SDA1		P	VCC
II		DACK5# DACK5#	T09			G19		PDD15 PDDACK#		0	SDA1 SDA2	R06	P	
T15	0			I	IRQ3		O		A18	0		R07	P	VCC
V16	0	DACK6#	W09	I	IRQ4	F18	_	PDDRQ	B18	0	SDCS1#	R15	P	VCC
W17	0	DACK7#	U08	I	IRQ5	F17		PDIOR#	C18	0	SDCS3#	T06	P	VCCCUC
E05	IO	DEVSEL#	V08	I	IRQ6	F16		PDIOW#	E15	IO	SDD00	N16	P	VCCSUS
W15	I	DRQ0	Y08	I	IRQ7	A12		PGNT#	B15	IO	SDD01	R16	P	VCCSUS
U06	I	DRQ1	Y20	I	IRQ8# / GPI6	B12		PREQ#	D14	IO	SDD02	K05	P	VCCUSB
V02	I	DRQ2	U01	I	IRQ9	G20		PDRDY	C14	IO	SDD03	J16	P	VREF
U05	I	DRQ3	U12	I	IRQ10	R03		PIRQA#	A14	IO	SDD04	M03	0	XDIR# / GPO22
Y16	I	DRQ5	W13	I	IRQ11	R04		PIRQB#	C13	IO	SDD05	M04	O	XOE# / GPO23
U16	I	DRQ6	T13	I	IRQ12	P05		PIRQC#	A13	IO	SDD06	Y03	I	ZWS#
U17	l	DRQ7	V14	I	IRQ14	G01		PIRQD#	C12	IO	SDD07	K16	О	ZZ / GPO19
V20	IOD	EXTSMI#	Y14	I	IRQ15	U20	I	PWRBTN#	D12	IO	SDD08			

Referenced to VCCSUS: BATLOW#, CFG1-2, EXTSMI#, GPI1, GPO8, IRQ8#, LID, PWRBTN#, PWRGD, RI#, RSMRST#, SUSA-C#, SUSST1-2#, TEST#

Table 1. Pin Descriptions

			PCI Bus Interface							
Signal Name	Pin #	I/O	Signal Description							
PCLK	D11	I	PCI Clock. PCLK provides timing for all transactions on the PCI Bus.							
FRAME#	A5	Ю	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.							
AD[31:0]	B1, C1, E1, D1, A2, B2, C2, E2, B3, C3, E3, D3, A4, B4, C4, E4, E6, D6, A7, B7, C7, D7, A8, B8, E8, D8, A9, B9, C9, D9, A10, B10	Ю	Address/Data Bus. The standard PCI address and data lines. The address is driven with FRAME# assertion and data is driven or received in following cycles.							
C/BE[3:0]#	D2, D4, C6, C8	Ю	Command/Byte Enable. The command is driven with FRAME# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.							
IRDY#	B5	IO	Initiator Ready. Asserted when the initiator is ready for data transfer.							
TRDY#	C5	IO	Target Ready. Asserted when the target is ready for data transfer.							
STOP#	D5	IO	Stop. Asserted by the target to request the master to stop the current transaction.							
DEVSEL#	E5	Ю	Device Select. The VT82C596B asserts this signal to claim PCI transactions through positive or subtractive decoding.							
PAR	B6	Ю	Parity. A single parity bit is provided over AD[31:0] and C/BE[3:0]#.							
SERR#	A6	I	System Error. SERR# can be pulsed active by any PCI device that detects a system error condition. Upon sampling SERR# active, the VT82C596B can be programmed to generate an NMI to the CPU.							
IDSEL	A3	I	Initialization Device Select. IDSEL is used as a chip select during PCI configuration read and write cycles.							
PIRQA-D#	R3, R4, P5, G1	I	PCI Interrupt Request. These pins are typically connected to the PCI bus INTA#-INTD# pins as follows: PIRQA# PIRQB# PIRQC# PIRQD# PCI Slot 1 INTA# INTB# INTC# INTD# INTA# INTA# INTD# INTA# INTA# INTD# INTA# INTA# PCI Slot 3 INTC# INTD# INTA# INTB# INTA# INTB# PCI Slot 4 INTD# INTA# INTB# INTC#							
PREQ#	B12	О	PCI Request. This signal goes to the North Bridge to request the PCI bus.							
PGNT#	A12	I	PCI Grant. This signal is driven by the North Bridge to grant PCI access to the VT82C596B.							
PCKRUN#	C10	Ю	VT82C596B. PCI Bus Clock Run. This signal indicates whether the PCI clock is or will be stopped (high) or running (low). The VT82C596B drives this signal low when the PCI clock is running (default on reset) and releases it when it stops the PCI clock. External devices may assert this signal low to request that the PCI clock be restarted or prevent it from stopping. Refer to the PCI Mobile Design Guide for more details.							

	CPU Interface										
Signal Name	Pin#	I/O	Signal Description								
CPURST	M19	OD	CPU Reset. The VT82C596B asserts CPURST to reset the CPU during power-up.								
INTR	L19	OD	CPU Interrupt. INTR is driven by the VT82C596B to signal the CPU that an interrupt request is pending and needs service.								
NMI	L20	OD	Non-Maskable Interrupt. NMI is used to force a non-maskable interrupt to the CPU. The VT82C596B generates an NMI when either SERR# or IOCHK# is asserted.								
INIT	L18	OD	Initialization. The VT82C596B asserts INIT if it detects a shut-down special cycle on the PCI bus or if a soft reset is initiated by the register								
STPCLK#	J18	OD	Stop Clock. STPCLK# is asserted by the VT82C596B to the CPU in response to different Power-Management events.								
SMI#	P20	OD	System Management Interrupt. SMI# is asserted by the VT82C596B to the CPU in response to different Power-Management events.								
FERR#	K19	I	Numerical Coprocessor Error. This signal is tied to the coprocessor error signal on the CPU. Internally generates interrupt 13 if active.								
IGNNE#	L17	OD	Ignore Numeric Error. This pin is connected to the "ignore error" pin on the CPU.								
SLP#	K20	OD	Sleep. Used to put the CPU to sleep. Used with slot-1 CPUs only. Not currently used with socket-7 CPUs.								

Universal Serial Bus Interface									
Signal Name	Pin#	I/O	Signal Description						
USBP0+	G2	IO	USB Port 0 Data +						
USBP0-	Н3	IO	USB Port 0 Data -						
USBOC0#	J1	I	USB Port 0 Over Current Detect. Port 0 is disabled if this input is low.						
USBP1+	F1	IO	USB Port 1 Data +						
USBP1-	H2	IO	USB Port 1 Data -						
USBOC1#	J2	I	USB Port 1 Over Current Detect. Port 1 is disabled if this input is low.						
USBCLK	L3	I	USB Clock. 48MHz clock input for Universal Serial Bus interface						

	System Management Bus (SMB) Interface (I ² C Bus)									
Signal Name	Pin #	I/O	Signal Description							
SMBCLK	R19	IO	SMB / I ² C Clock.							
SMBDATA	T20	IO	SMB / I ² C Data.							
SMBALRT# / GPI11	N17	I	MultiFunction Pin							
			SMB Alert. $(Rx74[5] = 0)$ When the chip is enabled to allow it, assertion generates							
			an IRQ or SMI interrupt or a power management resume event.							
			General Purpose Input 11. $(Rx74[5] = 1)$ General purpose input.							

	UltraDMA-33 / 66 Enhanced IDE Interface						
Signal Name	Pin#	I/O	Signal Description				
PDRDY / PDDMARDY# / PDSTROBE	G20	I	EIDE Mode: Primary I/O Channel Ready. Device ready indicator UltraDMA Mode: Primary Device DMA Ready. Output flow control. The device may assert PDDMARDY# to pause output transfers Primary Device Strobe. Input data strobe (both edges). The device may stop PDSTROBE to pause input data transfers				
SDRDY / SDDMARDY# / SDSTROBE	D16	I	EIDE Mode: Secondary I/O Channel Ready. Device ready indicator UltraDMA Mode: Secondary Device DMA Ready. Output flow control. The device may assert SDDMARDY# to pause output transfers Secondary Device Strobe. Input data strobe (both edges). The device may stop SDSTROBE to pause input data transfers				
PDIOR# / PHDMARDY# / PHSTROBE	F17	0	EIDE Mode: Primary Device I/O Read. Device read strobe UltraDMA Mode: Primary Host DMA Ready. Primary channel input flow control. The host may assert PHDMARDY# to pause input transfers Primary Host Strobe. Output data strobe (both edges). The host may stop PHSTROBE to pause output data transfers				
SDIOR# / SHDMARDY# / SHSTROBE	C16	О	EIDE Mode: Secondary Device I/O Read. Device read strobe UltraDMA Mode: Secondary Host DMA Ready. Input flow control. The host may assert SHDMARDY# to pause input transfers Host Strobe B. Output strobe (both edges). The host may stop SHSTROBE to pause output data transfers				
PDIOW# / PSTOP	F16	O	EIDE Mode: Primary Device I/O Write. Device write strobe UltraDMA Mode: Primary Stop. Stop transfer: Asserted by the host prior to initiation of an UltraDMA burst; negated by the host before data is transferred in an UltraDMA burst. Assertion of STOP by the host during or after data transfer in UltraDMA mode signals the termination of the burst.				
SDIOW# / SSTOP	B16	0	EIDE Mode: Secondary Device I/O Write. Device write strobe UltraDMA Mode: Secondary Stop. Stop transfer: Asserted by the host prior to initiation of an UltraDMA burst; negated by the host before data is transferred in an UltraDMA burst. Assertion of STOP by the host during or after data transfer in UltraDMA mode signals the termination of the burst.				
PDDRQ	F18	I	Primary Device DMA Request. Primary channel DMA request				
SDDRQ	A16	I	Secondary Device DMA Request. Secondary channel DMA request				
PDDACK#	G19	О	Primary Device DMA Acknowledge. Primary channel DMA acknowledge				
SDDACK#	A17	О	Secondary Device DMA Acknowledge. Secondary channel DMA acknowledge				

	UltraDMA-33 / 66 Enhanced IDE Interface (continued)					
Signal Name	Pin#	I/O	Signal Description			
PDCS1#	H17	О	Primary Master Chip Select. This signal corresponds to CS1FX# on the primary IDE connector.			
PDCS3#	H16	О	Primary Slave Chip Select. This signal corresponds to CS3FX# on the primary IDE connector.			
SDCS1#	B18	О	Secondary Master Chip Select. This signal corresponds to CS17X# on the secondary IDE connector.			
SDCS3#	C18	О	Secondary Slave Chip Select. This signal corresponds to CS37X# on the secondary IDE connector.			
PDA[2-0]	G17, G18, G16	О	Primary Disk Address. PDA[2:0] are used to indicate which byte in either the ATA command block or control block is being accessed.			
SDA[2-0]	A18, B17, C17	О	Secondary Disk Address. SDA[2:0] are used to indicate which byte in either the ATA command block or control block is being accessed.			
PDD[15-0]	F19, E17, E19, D17, D19, C19, B19, A19, A20, B20, C20, D20, D18, E20, E18, F20	IO	Primary Disk Data			
SDD[15-0]	D15, C15, A15, E14, B14, D13, B13, D12, C12, A13, C13, A14, C14, D14, B15, E15	IO	Secondary Disk Data			

	ISA Bus Interface						
Signal Name	Pin #	I/O	Signal Description				
SA[19:0]	V4, U4, W5, T5, Y6, V6, Y7, V7, U7, W8, T8, Y9, V9, U9, W10, T10, Y11, W11, T11, U11	Ю	ISA Address Bus				
LA[23:17]	T12, Y13, V13, U13, W14, T14, Y15	Ю	ISA "Latched" Address Bus : The LA[23:17] address lines are bi-directional. These address lines allow accesses to physical memory on the ISA bus up to 16Mbytes.				
SD[15:0]	W19, Y19, W18, Y18, V17, Y17, T16, W16, V1, T1, Y2, W2, T2, U2, W3, V3	Ю	ISA Bus Data. SD[15:0] provide the data path for devices residing on the ISA bus. SD7:4 are strap options for keyboard inputs 6:3 (see Function 0 Rx5A)				
SBHE#	W12	Ю	ISA Byte High Enable. SBHE# indicates, when asserted, that a byte is being transferred on the upper byte (SD[15:8]) of the data bus. SBHE# is negated during refresh cycles.				
IOR#	Y5	Ю	ISA I/O Read. IOR# is the command to an ISA I/O slave device which indicates that the slave may drive data on to the ISA data bus.				
IOW#	T4	IO	ISA I/O Write. IOW# is the command to an ISA I/O slave device which indicates that the slave may latch data from the ISA data bus.				
MEMR#	V15	IO	ISA Memory Read. MEMR# is the command to a memory slave which indicates that it may drive data onto the ISA data bus.				
MEMW#	U15	IO	ISA Memory Write. MEMW# is the command to a memory slave which indicates that it may latch data from the ISA data bus.				
SMEMR#	W4	О	ISA Standard Memory Read. SMEMR# is the command to a memory slave, under 1MB, which indicates that it may drive data onto the ISA data bus				
SMEMW#	U3	О	ISA Standard Memory Write. SMEMW# is the command to a memory slave, under 1MB, which indicates that it may latch data from the ISA data bus.				
BALE	U10	O	ISA Bus Address Latch Enable. BALE is an active high signal asserted by the VT82C596B to indicate that the address (SA[19:0], LA[23:17] and the SBHE# signal) is valid				
IOCS16#	V12	IO	ISA 16-Bit I/O Chip Select. This signal is driven by I/O devices on the ISA Bus to indicate that they support 16-bit I/O bus cycles.				
MCS16#	Y12	Ю	ISA Memory Chip Select 16. ISA slaves that are 16-bit memory devices drive this line low to indicate they support 16-bit memory bus cycles.				
IOCHCK#	Y1	I	ISA I/O Channel Check. When this signal is asserted, it indicates that a parity or an uncorrectable error has occurred for a device or memory on the ISA Bus.				
IOCHRDY	Т3	IOD	ISA I/O Channel Ready. This signal is normally high. Devices on the ISA Bus assert IOCHRDY low to indicate that additional time (wait states) is required to complete the cycle.				
ZWS#	Y3	Ι	ISA Zero Wait State. Devices on the ISA Bus assert ZWS# to indicate that no wait states are required.				

ISA Bus Interface (continued)					
Signal Name	Pin #	I/O	Signal Description		
RFSH#	W7	Ю	Refresh. As an output RFSH# indicates when a refresh cycle is in progress. As an input RFSH# is driven by 16-bit ISA Bus masters to indicate refresh cycle.		
AEN	Y4	О	Address Enable. AEN is asserted during DMA cycles to prevent I/O slaves from misinterpreting DMA cycles as valid I/O cycles.		
IRQ0OUT / GPO14	H20	0	Multifunction Pin Rx74[7] = 1 Interrupt Request 0 Output. Reflects the state of the internal system timer IRQ0 signal. Rx74[7] = 0 General Purpose Output 14.		
IRQ1	J20	I	Interrupt Request 1.		
IRQ3	Т9	I	Interrupt Request 3.		
IRQ4	W9	I	Interrupt Request 4.		
IRQ5	U8	I	Interrupt Request 5.		
IRQ6	V8	I	Interrupt Request 6.		
IRQ7	Y8	I	Interrupt Request 7.		
IRQ8# / GPI6	Y20	Ι	Multifunction Pin Rx5A[2] = 0 Internal RTC disabled. Interrupt Request 8 from external RTC Rx5A[2] = 1 Internal RTC enabled. General Purpose Input 6.		
IRQ9	U1	I	Interrupt Request 9.		
IRQ10	U12	I	Interrupt Request 10.		
IRQ11	W13	I	Interrupt Request 11.		
IRQ12	T13	I	Interrupt Request 12.		
IRQ14	V14	I	Interrupt Request 14.		
IRQ15	Y14	I	Interrupt Request 15.		
DRQ7-5, 3-0	U17, U16, Y16, U5, V2, U6, W15	Ι	DMA Request. Used to request DMA services from the internal DMA controller.		
DACK7-5, 3-0#	W17, V16, T15, V5, Y10, W6, U14	0	Acknowledge. Used by the internal DMA controller to indicate that a request for DMA service has been granted.		
TC	V10	O	Terminal Count. Asserted to DMA slaves as a terminal count indicator.		
SPKR	K17	O	Speaker Drive. The output of internal timer/counter 2.		

			XD Interface
Signal Name	Pin#	I/O	Signal Description
XDIR# / GPO22	M3	0	MultiFunction Pin X-Bus Data Direction. (Rx75[6]=0) Asserted low for all I/O read cycles and for memory read cycles to the programmed BIOS or APIC address space. XDIR# is tied directly to the direction control of a 74F245 transceiver that buffers the X-Bus data and ISA-Bus data. SD0-7 connect to the "A" side of the transceiver and XD0-7 connect to the "B" side. XDIR# high indicates that SD0-7 drives XD0-7. General Purpose Output 22. (Rx75[6]=1) General purpose output.
XOE# / GPO23	M4	O	MultiFunction Pin X-Bus Output Enable. (Rx75[6]=0) Asserted low for all decoded X-Bus cycles. XOE# is tied directly to the output enable of a 74F245 transceiver that buffers the X-Bus data and ISA-Bus data (see XDIR# above). General Purpose Output 23. (Rx75[6]=1) General purpose output.
KBCS# / GPO26	K1	О	MultiFunction Pin External Keyboard Controller Chip Select. (Rx76[2] = 0) Asserted during read or write accesses to I/O ports 60h and 64h. General Purpose Output 26. (Rx76[2]=1) General purpose output.
ROMCS#	K2	0	ROM Chip Select. Chip Select to the BIOS ROM.
MCCS#	N4	О	Microcontroller Chip Select. Asserted during read or write accesses to I/O ports 62h or 66h.
PCS[1-0]#	N5, L4	О	Programmable Chip Selects. Asserted during I/O cycles to programmable read or write ISA address ranges. Devices selected by these pins are assumed to be on the X-Bus (XDIR# and XOE# are enabled).

Internal Real Time Clock				
Signal Name	Pin #	I/O	Signal Description	
RTCX1	N19	I	RTC Crystal Input: 32.768 KHz crystal or oscillator input.	
RTCX2	R20	0	RTC Crystal Output: 32.768 KHz crystal output	
RTCCS# / GPO24	M2	O	 MultiFunction Pin External RTC Chip Select. (Rx76[0] = 0) Asserted for read or write accesses to RTC port 71h. Externally connected to a pair of OR gates (to logically AND the chip select with IOR# and IOW#) to generate the active-low RTC read and write commands. General Purpose Output 24. (Rx76[0] = 1) General purpose output. 	
RTCAS / GPO25	L1	O	MultiFunction Pin External RTC Address Strobe. (Rx76[1] = 0) Asserted for writes to RTC I/O Port 70h. General Purpose Output 25. (Rx76[1] = 1) General purpose output.	

	Internal Keyboard Controller				
Signal Name	Pin#	I/O	Signal Description		
KEYLOCK / PIRQ1	J4	I	Extended Function (PIIX4 PIRQ1)		
			Rx59[1]=1 Key Lock. Input to internal keyboard controller		
KBCK / NC	N3	IO	Extended Function (PIIX4 No Connect)		
			Rx5A[0]=1 (Internal keyboard controller enabled –strapped from XD0)		
			Keyboard Clock		
KBDT / NC	M5	IO	Extended Function (PIIX4 No Connect)		
			Rx5A[0]=1 (<u>Internal</u> keyboard controller <u>enabled</u> –strapped from XD0)		
			Keyboard Data		
MSCK / A20GATE	P1	IO	MultiFunction Pin		
			Rx5A[1]=0 (<u>internal</u> keyboard controller <u>disabled</u> – strapped from XD1)		
			Gate A20. From optional external keyboard controller		
			Rx5A[1]=1 (<u>internal</u> keyboard controller <u>enabled</u> –strapped from XD1)		
			Mouse Clock. Mouse clock (extended function not available on PIIX4)		
MSDT / KBCS# / GPO26	K1	IO	MultiFunction Pin		
			Rx5A[1]=0 (<u>Internal</u> keyboard controller <u>disabled</u> –strapped from XD1)		
			Keyboard Controller Chip Select. (Rx76[2]=0 external keyboard controller		
			enabled) Chip select for external keyboard controller.		
			General Purpose Output 26 (Rx76[2]=1 external keyboard controller		
			disabled) General purpose output		
			Rx5A[1]=1 (<u>Internal</u> keyboard controller <u>enabled</u> –strapped from XD1)		
			Mouse Data. Mouse data (extended function not available on PIIX4)		

Revision 0.3 *June 17, 1999* -14- Pinouts

PC/PCI and Serial IRQ Control				
Signal Name	Pin#	I/O	Signal Description	
REQ[A-C] # / GPI[2-4]	M1, N2, P3	I	PC/PCI DMA Requests. Used by PCI agent to request DMA services per the PC/PCI protocol. For GPI functions refer to Rx7D[2-0].	
GNT[A-C]# / GPO[9-11]	N1, P2, P4	О	PC/PCI DMA Grants. Used to acknowledge DMA services per the PC/PCI protocol. For GPO functions refer to Rx7D[2-0].	
SERIRQ / GPI7	J19	I	Serial Interrupt Request. Used with Distributed DMA. For GPI see Rx68[3].	

A20 Control				
Signal Name	Pin#	I/O	Signal Description	
A20GATE / MSCK	P1	I	Gate A20: Gate A20 output from optional external keyboard controller if used. Logically combined with Port 92 bit-1 (Fast_A20) and output on the A20M# signal. If the internal keyboard / PS2 mouse controller is used, this pin becomes the mouse clock input (the A20GATE signal comes directly from the internal keyboard controller).	
A20M#	M20	OD	A20 Mask. Connect to A20 mask input of the CPU.	

	APIC Interface					
Signal Name	Pin#	I/O	Signal Description			
APICREQ# / WSC# / GPI5	K18	I/I/I	MultiFunction Pin Internal APIC Write Snoop Complete. (Rx74[7]=1 & Rx74[1]=1) Asserted by the north bridge to indicate that all snoop activity on the CPU bus initiated by the last PCI-to-DRAM write is complete and that it is safe to perform an APIC interrupt. External APIC Request. (Rx74[7]=1 & Rx74[1]=0) Asserted by external APIC synchronous to PCICLK prior to sending an interrupt over the APIC serial bus. This signals the VT82C596B to flush its internal buffers. General Purpose Input 5. (Rx74[7] = 0)			
APICCS# / APICD0 / GPO13	H18	0/0/0	MultiFunction Pin Internal APIC Data 0. (Rx74[7]=1 & Rx74[1]=1) External APIC Chip Select. (Rx74[7]=1 & Rx74[1]=0) The VT82C596B drives this signal active to select an external APIC (if used). This occurs if the external APIC is enabled and a PCI cycle is detected within the programmed APIC address range. General Purpose Output 13. (Rx74[7] = 0)			
APICACK# / APICD1 / GPO12	J17	0/0/0	MultiFunction Pin Internal APIC Data 1. (Rx74[7]=1 & Rx74[1]=1) External APIC Acknowledge. (Rx74[7]=1 & Rx74[1]=0) Asserted by the VT82C596B to indicate that it internal buffers have been flushed (in response to APICREQ#). This indicates to the external APIC that the VT82C596B's internal buffers have been flushed and that it is OK for the APIC to send its interrupt. General Purpose Output 12. (Rx74[7] = 0)			

General Purpose Inputs					
Signal Name	Pin#	I/O	Signal Description		
GPI0 / IOCHCK#	Y1	I	General Purpose Input 0. $(Rx74[0] = 0)$		
GPI1 / PME#	P19	I	General Purpose Input 1.		
GPI2 / REQA#	M1	I	General Purpose Input 2. $(Rx7D[0] = 0)$		
GPI3 / REQB#	N2	I	General Purpose Input 3. $(Rx7D[1] = 0)$		
GPI4 / REQC#	P3	I	General Purpose Input 4. $(Rx7D[2] = 0)$		
GPI5 / APICREQ#	K18	I	General Purpose Input 5. $(Rx74[7] = 0)$		
<u>GPI6</u> / IRQ8#	Y20	I	General Purpose Input 6. $(Rx5A[2] = 1)$		
GPI7 / SERIRQ	J19	I	General Purpose Input 7. $(Rx68[3] = 0)$		
GPI8 / THRM#	H19	I	General Purpose Input 8. $(Rx74[2] = 1)$		
GPI9 / BATLOW#	U19	I	General Purpose Input 9. $(Rx74[3] = 1)$		
GPI10 / <u>LID</u>	P16	I	General Purpose Input 10. $(Rx74[4] = 1)$		
GPI11 / SMBALRT#	N17	I	General Purpose Input 11. $(Rx74[5] = 1)$		
GPI12 / <u>RI#</u>	P18	I	General Purpose Input 12. $(Rx74[6] = 1)$		
GPI13 / SLPBTN#	L2	I	General Purpose Input 13. Also functions as the ACPI sleep button if bit-9 of		
			register 0 of ACPI I/O Space (Function 3) is enabled		
<u>GPI14</u>	J3	I	General Purpose Input 14.		
<u>GPI15</u>	L5	I	General Purpose Input 15.		
<u>GPI16</u>	K3	I	General Purpose Input 16.		
<u>GPI17</u>	K4	I	General Purpose Input 17.		
<u>GPI18</u>	H1	I	General Purpose Input 18.		
<u>GPI19</u>	H4	I	General Purpose Input 19.		
GPI20 / PIRQ0	H5	I	General Purpose Input 20. $(Rx59[0] = 1)$ See also $Rx55[3:0]$		
GPI21 / PIRQ2	G3	I	General Purpose Input 21. $(Rx59[2] = 1)$ See also $Rx58[3:0]$		

The underlined name above indicates the default function on power up.

General Purpose Outputs				
Signal Name	Pin #	I/O	Signal Description	
GPO0	G4	О	General Purpose Output 0.	
GPO1 / LA17	Y15	Ю	General Purpose Output 1. $Rx74[0] = 0$.	
GPO2 / LA18	T14	Ю	General Purpose Output 2. $Rx74[0] = 0$.	
GPO3 / LA19	W14	Ю	General Purpose Output 3. $Rx74[0] = 0$.	
GPO4 / LA20	U13	Ю	General Purpose Output 4. $Rx74[0] = 0$.	
GPO5 / LA21	V13	Ю	General Purpose Output 5. $Rx74[0] = 0$.	
<u>GPO6</u> / LA22	Y13	Ю	General Purpose Output 6. $Rx74[0] = 0$.	
<u>GPO7</u> / LA23	T12	Ю	General Purpose Output 7. $Rx74[0] = 0$.	
GPO8	T19	0	General Purpose Output 8. F3Rx54[1-0]. Optional 1Hz / 2Hz / 4Hz clock output	
<u>GPO9</u> / GNTA#	N1	0	General Purpose Output 9. $Rx7D[0] = 0$.	
<u>GPO10</u> / GNTB#	P2	0	General Purpose Output 10. $Rx7D[1] = 0$.	
<u>GPO11</u> / GNTC#	P4	0	General Purpose Output 11. $Rx7D[2] = 0$.	
GPO12 / APICACK#	J17	0	General Purpose Output 12. $Rx74[7] = 0$.	
GPO13 / APICCS#	H18	О	General Purpose Output 13. $Rx74[7] = 0$.	
GPO14 / IRQ0OUT	H20	0	General Purpose Output 14. $Rx74[7] = 0$.	
GPO15 / <u>SUSB#</u>	V19	0	General Purpose Output 15. $Rx75[0] = 1$. See also $F3Rx54[3]$.	
GPO16 / <u>SUSC#</u>	U18	0	General Purpose Output 16. $Rx75[0] = 1$. See also $F3Rx54[2]$.	
GPO17 / <u>CPUSTP#</u>	R1	0	General Purpose Output 17. $Rx75[1] = 1$.	
GPO18 / <u>PCISTP#</u>	R2	0	General Purpose Output 18. $Rx75[2] = 1$.	
GPO19 / <u>ZZ</u>	K16	О	General Purpose Output 19. $Rx75[3] = 1$.	
GPO20 / <u>SUSST1#</u>	T17	0	General Purpose Output 20. $Rx75[4] = 1$. See also $F3Rx54[4]$.	
GPO21 / <u>SUSST2#</u>	T18	О	General Purpose Output 21. $Rx75[5] = 1$. See also $F3Rx54[7]$.	
GPO22 / <u>XDIR#</u>	M3	0	General Purpose Output 22. $Rx75[6] = 1$.	
GPO23 / <u>XOE#</u>	M4	O	General Purpose Output 23. $Rx75[6] = 1$.	
GPO24 / RTCCS#	M2	О	General Purpose Output 24. $Rx76[0] = 1$.	
GPO25 / RTCAS	L1	О	General Purpose Output 25. $Rx76[1] = 1$.	
GPO26 / <u>KBCS#</u>	K1	O	General Purpose Output 26. $Rx76[2] = 1$.	
<u>GPO27</u>	G5	O	General Purpose Output 27.	
<u>GPO28</u>	F2	О	General Purpose Output 28.	
GPO29 / SCIOUT#	F3	O	General Purpose Output 29. $Rx74[7] = 0$.	
<u>GPO30</u>	F4	О	General Purpose Output 30.	

The underlined name above indicates the default function on power up.

Power Management				
Signal Name	gnal Name Pin # I/O Signal Description			
PWRBTN#	U20	I	Power Button. Used by the Power Management subsystem to monitor an external system on/off button or switch. The VT82C596B performs a 200us debounce of this input if Rx40[5] is set to 1. This input is referenced to VCCSUS.	
SLPBTN# / GPI13	L2	I	ACPI Sleep Button. General purpose input 13, but also functions as the ACPI sleep button if bit-9 of register 0 of ACPI I/O Space (Function 3) is enabled.	
RCIN#	N20	I	Reset CPU. This signal from an optional external keyboard controller (if ised) causes an INIT signal to be generated to the CPU.	
RSMRST#	M17	I	Resume Reset. Resets the internal logic connected to the VCCSUS power blane and also resets portions of the internal RTC logic.	
EXTSMI#	V20	IOD	External System Management Interrupt. When enabled to allow it, a falling edge on this input causes an SMI# to be generated to the CPU to enter SMI mode. Once asserted, this pin should be held low for at least four PCICLKs. The VT82C596B also asserts EXTSMI# in response to SMI# being activated within the Serial IRQ function. This pin should be connected to an external pullup.	
PCIREQ[A-D]#	E10, A11, B11, C11	I	Power Management PCI Requests. Used by internal power management to monitor PCI requests for use of the PCI bus.	

		Pov	ver Management (continued)
Signal Name	Pin#	I/O	Signal Description
LID / GPI10	P16	I	Notebook Computer Display Lid Open / Closed Monitor. Used by the Power Management subsystem to monitor the opening and closing of the display lid of notebook computers. Can be used to detect either low-to-high and/or high-to-low transitions to generate an SMI#. The VT82C596B performs a 200 usec debounce of this input if Rx40[5] is set to 1. May optionally be programmed as a general purpose input (Rx74[4]=1).
RI# / GPI12	P18	I	Ring Indicator. May be connected to external modem circuitry to allow the system to be re-activated by a received phone call. This input is referenced to VCCSUS. May optionally be programmed as a general purpose input (Rx74[6]=1).
THRM# / GPI8	H19	I	Thermal Detect. If the VT82C596B is enabled to allow it, asserting this signal initiates hardware Clock Throttling mode. This causes STPCLK# to be cycled at a preset programmable rate (see Function 3 configuration space Rx4C). May optionally be programmed as a general purpose input (Rx74[2]=1).
SCIOUT# / GPO29	F3	0	ACPI System Control Interrupt. Connected to the external APIC if used. May optionally be programmed as a general purpose output (Rx74[7]=0).
CPUSTP# / GPO17	R1	0	CPU Clock Stop. Signals the system clock generator to disable the CPU clock outputs. May optionally be programmed as a general purpose output (Rx75[1]=1).
PCISTP# / GPO18	R2	0	PCI Clock Stop. Signals the system clock generator to disable the PCI clock outputs. May optionally be programmed as a general purpose output (Rx75[2]=1).
ZZ / GPO19	K16	0	L2 Cache SRAM Low Power Mode. Used to power down the L2 Cache SRAMs during CPU Stop Clock state. May optionally be programmed as a general purpose output (Rx75[3]=1).
SUSA#	W20	О	Suspend Plane A Control. Asserted during power management POS, STR, and STD suspend states. Used to control the primary power plane.
SUSB# / GPO15	V19	О	Suspend Plane B Control. Asserted during power management STR and STD suspend states. Used to control the secondary power plane. May optionally be programmed as a general purpose output (Rx75[0]=1).
SUSC#/GPO16	U18	0	Suspend Plane C Control. Asserted during power management STD suspend state. Used to control the tertiary power plane. May optionally be programmed as a general purpose output (Rx75[0]=1).
SUSST1#/GPO20	T17	O	Suspend Status 1. Typically connected to the North Bridge (e.g., VT82C598 Apollo MVP3) to provide information on host clock status. Asserted when the system may stop the host clock, such as Stop Clock or during POS, STR, or STD suspend states. May optionally be programmed as a general purpose output (Rx75[4]=1).
SUSST2# / GPO21	T18	0	Suspend Status 2. Typically connected to other system devices to provide information on system suspend state. Asserted during POS, STR, or STD suspend states. May optionally be programmed as a general purpose output (Rx75[5]=1).

	Resets and Clocks			
Signal Name	Pin #	I/O	Signal Description	
PWRGD	M18	I	Power Good. Connected to the PWRGOOD signal on the Power Supply.	
PCIRST#	A1	О	PCI Reset. Active low reset signal for the PCI bus. The VT82C596B will assert this pin during power-up or from the control register.	
RSTDRV	W1	О	eset Drive. Reset signal to the ISA bus.	
BCLK	T7	0	us Clock. ISA bus clock.	
OSC	V11	I	Oscillator. 14.31818 MHz clock signal used by the internal Timer.	
SUSCLK	P17	О	Suspend Clock. 32.768 KHz output clock for use by the North Bridge (e.g., VT82C598 Apollo MVP3) for DRAM refresh purposes. Stopped during Suspend-to-Disk and Soft-Off modes.	

	Configuration and Test				
Signal Name	Signal Name Pin # I/O Signal Description				
CFG1	R17	I	Configuration 1. Used to select the CPU type (0=Socket-7, 1=Slot-1). Determines the polarity of the INIT and CPURST signals.		
CFG2	R18	I	Infiguration 2. Used to select the type of decoding for the top 64 Kbytes of amory (FFFF0000h-FFFFFFFFh): 0 = Positive decode, 1 = Subtractive decode.		
TEST#	V18	I	Test. Used to select chip test modes. Pulled up externally to VCCSUS for normal operation.		

	Power and Ground				
Signal Name	Pin #	I/O	Signal Description		
VCC	E9, E11, E12, E16, F5, F6, F14, F15, G6, P15, R6, R7, R15, T6	P	ore Power. 3.3V nominal (3.15V to 3.45V). This supply is turned on only when the mechanical switch on the power supply is turned on and the PWRON signal is anditioned high. This pin should be connected to the same voltage as the CPU I/O cuitry.		
VREF	J16	P	Voltage Reference. 5V nominal (4.75 to 5.25) to provide 5V input tolerance. This voltage should be on only when the mechanical switch on the power supply is turned on and the PWRON signal is conditioned high.		
VCCSUS	N16, R16	P	uspend Power. Always available unless the mechanical switch of the power supply turned off. If the "soft-off" state is not implemented, then this pin can be onnected to VCC. Signals powered by or referenced to this plane are: BATLOW#, FG1-2, EXTSMI#, GPI1, GPO8, IRQ8#, LID, RI#, SMBALRT#, SMBCLK, MBDATA, PWRBTN#, SUS[A-C]#, SUSCLK, SUSST[1-2]#, TEST#, PWROK, SMRST#.		
VBAT	L16	P	RTC Battery. Battery input for internal RTC (RTCX1, RTCX2)		
VCCUSB	K5	P	USB Differential Output Power Source (USBP0+, P0-, P1+, P1-)		
GNDUSB	J5	P	USB Differential Output Ground		
GND	D10, E7, E13, J9-12, K9-12, L9-12, M9-12	P	Ground		
NC	J4, M5, M16, N3, N18, R5	-	No Connect		

Revision 0.3 *June 17, 1999* -20- Pinouts

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the VT82C596B. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions for details).

Detailed register descriptions are provided in the following section of this document. All offset and default values are shown in hexadecimal unless otherwise indicated

Table 2. System I/O Map

<u>Port</u>	<u>Function</u>	Actual Port Decoding
00-1F	Master DMA Controller	0000 0000 000x nnnn
20-3F	Master Interrupt Controller	0000 0000 001x xxxn
40-5F	Timer / Counter	0000 0000 010x xxnn
60-6F (60h) (61h) (64h)	Keyboard Controller KBC Data Misc Functions & Spkr Ctrl KBC Command / Status	0000 0000 0110 xnxn 0000 0000 0110 x0x0 0000 0000 0110 xxx1 0000 0000
70-77 78-7F	RTC/CMOS/NMI-Disable -available for system use-	0000 0000 0111 0nnn 0000 0000 0111 1xxx
80 81-8F	-reserved- (debug port) DMA Page Registers	0000 0000 1000 0000 0000 0000 1000 nnnn
90-91 92 93-9F	-available for system use- System Control -available for system use-	0000 0000 1001 000x 0000 0000 1001 0010 0000 0000
A0-BF	Slave Interrupt Controller	0000 0000 101x xxxn
C0-DF	Slave DMA Controller	0000 0000 110n nnnx
E0-FF	-available for system use-	0000 0000 111x xxxx
100-CF7	-available for system use-	
CF8-CFB CFC-CFF	PCI Configuration Address PCI Configuration Data	0000 1100 1111 10xx 0000 1100 1111 11xx
D00-FFFF	-available for system use-	

Table 3. Registers

Legacy I/O Registers

Port	Master DMA Controller Registers	<u>Default</u>	<u>Acc</u>
00	Channel 0 Base & Current Address		RW
01	Channel 0 Base & Current Count		RW
02	Channel 1 Base & Current Address		RW
03	Channel 1 Base & Current Count		RW
04	Channel 2 Base & Current Address		RW
05	Channel 2 Base & Current Count		RW
06	Channel 3 Base & Current Address		RW
07	Channel 3 Base & Current Count		RW
08	Status / Command		RW
09	Write Request		wo
0A	Write Single Mask		wo
0B	Write Mode		wo
0C	Clear Byte Pointer FF		wo
0D	Master Clear		wo
0E	Clear Mask		wo
0F	Read / Write Mask		RW

Port	Master Interrupt Controller Regs	Default	Acc
20	Master Interrupt Control	_	*
21	Master Interrupt Mask	_	*
20	Master Interrupt Control Shadow	_	RW
21	Master Interrupt Mask Shadow	_	RW

^{*} RW if shadow registers are disabled

Port	Timer/Counter Registers	<u>Default</u>	Acc
40	Timer / Counter 0 Count		RW
41	Timer / Counter 1 Count		RW
42	Timer / Counter 2 Count		RW
43	Timer / Counter Control		wo

Port	Keyboard Controller Registers	Default	<u>Acc</u>
60	Keyboard Controller Data		RW
61	Misc Functions & Speaker Control		RW
64	Keyboard Ctrlr Command / Status		RW

Port	CMOS / RTC / NMI Registers	Default	Acc
70	CMOS Memory Address & NMI Disa		WO
71	CMOS Memory Data (128 bytes)		RW
72	CMOS Memory Address		RW
73	CMOS Memory Data (256 bytes)		RW
74	CMOS Memory Address		RW
75	CMOS Memory Data (256 bytes)		RW

NMI Disable is port 70h (CMOS Memory Address) bit-7. RTC control occurs via specific CMOS data locations (0-0Dh). Ports 72-73 may be used to access all 256 locations of CMOS. Ports 74-75 may be used to access CMOS if the internal RTC is disabled.

<u>Port</u>	DMA Page Registers	Default	Acc
87	DMA Page - DMA Channel 0		RW
83	DMA Page - DMA Channel 1		RW
81	DMA Page - DMA Channel 2		RW
82	DMA Page - DMA Channel 3		RW
8F	DMA Page - DMA Channel 4		RW
8B	DMA Page - DMA Channel 5		RW
89	DMA Page - DMA Channel 6		RW
8A	DMA Page - DMA Channel 7		RW

Port	System Control Registers	Default	Acc
92	System Control		RW

Port	Slave Interrupt Controller Regs	<u>Default</u>	Acc
A0	Slave Interrupt Control	_	*
A1	Slave Interrupt Mask	_	*
A0	Slave Interrupt Control Shadow	_	RW
A1	Slave Interrupt Mask Shadow	_	RW

^{*} RW accessible if shadow registers are disabled

<u>Port</u>	Slave DMA Controller Registers	<u>Default</u>	<u>Acc</u>
C0	Channel 0 Base & Current Address		RW
C2	Channel 0 Base & Current Count		RW
C4	Channel 1 Base & Current Address		RW
C6	Channel 1 Base & Current Count		RW
C8	Channel 2 Base & Current Address		RW
CA	Channel 2 Base & Current Count		RW
CC	Channel 3 Base & Current Address		RW
CE	Channel 3 Base & Current Count		RW
D0	Status / Command		RW
D2	Write Request		WO
D4	Write Single Mask		wo
D6	Write Mode		wo
D8	Clear Byte Pointer FF		WO
DA	Master Clear		WO
DC	Clear Mask		wo
DE	Read / Write Mask		RW

PCI Function 0 Registers - PCI-to-ISA Bridge

Configuration Space PCI-to-ISA Bridge Header Registers

Offset	PCI Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	0596	RO
5-4	Command	0087	\mathbf{RW}
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	01	RO
В	Base Class Code	06	RO
С	-reserved- (cache line size)	00	
D	-reserved- (latency timer)	00	
Е	Header Type	80	RO
F	Built In Self Test (BIST)	00	RO
10-27	-reserved- (base address registers)	00	_
28-2B	-reserved- (unassigned)	00	
2F-2C	Subsystem ID Read	00	RO
30-33	-reserved- (expan. ROM base addr)	00	
34-3B	-reserved- (unassigned)	00	
3C	-reserved- (interrupt line)	00	
3D	-reserved- (interrupt pin)	00	_
3E	-reserved- (min gnt)	00	_
3F	-reserved- (max lat)	00	_

Configuration Space PCI-to-ISA Bridge-Specific Registers

Offset	ISA Bus Control	Default	Acc
40	ISA Bus Control	00	RW
41	ISA Test Mode	00	RW
42	ISA Clock Control	00	RW
43	ROM Decode Control	00	RW
44	Keyboard Controller Control	00	RW
45	Type F DMA Control	00	RW
46	Miscellaneous Control 1	00	RW
47	Miscellaneous Control 2	00	RW
48	Miscellaneous Control 3	01	RW
49	-reserved-	00	
4A	IDE Interrupt Routing	04	RW
4B	-reserved-	00	
4C	DMA / Master Mem Access Control 1	00	RW
4D	DMA / Master Mem Access Control 2	00	RW
4F-4E	DMA / Master Mem Access Control 3	0300	RW

Configuration Space PCI-to-ISA Bridge-Specific Registers

Offset	Plug and Play Control	Default	Acc
50	-reserved- (do not program)	24	RW
51-53	-reserved-	00	
54	PCI IRQ Edge / Level Selection	00	RW
55	PnP Routing for External MIRQ0-1	00	RW
56	PnP Routing for PCI INTB-A	00	RW
57	PnP Routing for PCI INTD-C	00	RW
58	PnP Routing for External MIRQ2	00	RW
59	PIRQ Pin Configuration	04	RW
5A	KBC / RTC Control	x4†	RW
5B	Internal RTC Test Mode	00	RW
5C	DMA Control	00	RW
5F-5D	-reserved-	00	_

† Bit 7-4 power-up default value depends on external strapping

Offset	Distributed DMA	Default	Acc
61-60	Channel 0 Base Address / Enable	0000	RW
63-62	Channel 1 Base Address / Enable	0000	RW
65-64	Channel 2 Base Address / Enable	0000	RW
67-66	Channel 3 Base Address / Enable	0000	RW
69-68	Serial IRQ Control	0000	RW
6B-6A	Channel 5 Base Address / Enable	0000	RW
6D-6C	Channel 6 Base Address / Enable	0000	RW
6F-6E	Channel 7 Base Address / Enable	0000	RW

Offset	Miscellaneous	Default	Acc
70	Subsystem ID Write	00	WO
71-73	-reserved-	00	_
77-74	GPIO / Chip Select Control	0000 0000	RW
7B-78	Programmable Chip Select Control	0000 0000	RW
7F-7C	PC/PCI Control	0000 0000	RW
80	Programmable Chip Select Mask	00	RW
81	ISA Positive Decoding Control 1	00	RW
82	ISA Positive Decoding Control 2	00	RW
83	ISA Positive Decoding Control 3	00	RW
84	ISA Positive Decoding Control 4	00	RW
85-86	-reserved-	00	_
87	Test 1	00	RW
88	Test 2	00	RW
89	PLL Control	00	RW
8A-FF	-reserved-	00	

PCI Function 1 Registers – IDE Controller

Configuration Space IDE Header Registers

Offset	PCI Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	0571	RO
5-4	Command	0080	RO
7-6	Status	0280	RW
8	Revision ID	nn	RO
9	Programming Interface	85	\mathbf{RW}
A	Sub Class Code	01	RO
В	Base Class Code	01	RO
C	-reserved- (cache line size)	00	
D	Latency Timer	00	RW
Е	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Base Address – Pri Data / Command	000001F0	RO
17-14	Base Address – Pri Control / Status	000003F4	RO
1B-18	Base Address – Sec Data / Command	00000170	RO
1F-1C	Base Address – Sec Control / Status	00000374	RO
23-20	Base Address – Bus Master Control	0000CC01	$\mathbf{R}\mathbf{W}$
24-2F	-reserved- (unassigned)	00	_
30-33	-reserved- (expan ROM base addr)	00	_
34-3B	-reserved- (unassigned)	00	_
3C	Interrupt Line	0E	RW
3D	Interrupt Pin	00	RO
3E	Minimum Grant	00	RO
3F	Maximum Latency	00	RO

Configuration Space IDE-Specific Registers

Offset	Configuration Space IDE Registers	Default	Acc
40	Chip Enable	08	RW
41	IDE Configuration	02	RW
42	-reserved- (do not program)	09	RW
43	FIFO Configuration	3A	RW
44	Miscellaneous Control 1	68	RW
45	Miscellaneous Control 2	00	RW
46	Miscellaneous Control 3	C0	RW
4B-48	Drive Timing Control	A8A8A8A8	RW
4C	Address Setup Time	FF	RW
4D	-reserved- (do not program)	00	RW
4E	Sec Non-1F0 Port Access Timing	FF	RW
4F	Pri Non-1F0 Port Access Timing	FF	RW
53-50	UltraDMA33 Extd Timing Control	03030303	RW
54	UltraDMA FIFO Control	06	RW
55-5F	-reserved-	00	
61-60	IDE Primary Sector Size	0200	RW
62-67	-reserved-	00	_
69-68	IDE Secondary Sector Size	0200	RW
69-6F	-reserved-	00	_
70	IDE Primary Status	00	RW
71	IDE Primary Interrupt Control	00	RW
72-73	-reserved-	00	
74	IDE Primary Command 1	00	RW
75	IDE Primary Command 2	00	RW
76-77	-reserved-	00	l
78	IDE Secondary Status	00	RW
79	IDE Secondary Interrupt Control	00	RW
	-reserved-	00	
7C	IDE Secondary Command 1	00	RW
7D	IDE Secondary Command 2	00	RW
	-reserved-	00	_
83-80	IDE Primary S/G Descriptor Address	0000 0000	RW
84-87	-reserved-	00	
8B-88	IDE Secondary S/G Descriptor Addr	0000 0000	RW
8C-FF	-reserved-	00	_

<u>I/O Registers – IDE Controller (SFF 8038 v1.0 Compliant</u>

Offset	IDE I/O Registers	<u>Default</u>	Acc
0	Primary Channel Command	00	RW
1	-reserved-	00	_
2	Primary Channel Status	00	WC
3	-reserved-	00	
4-7	Primary Channel PRD Table Addr	00	RW
8	Secondary Channel Command	00	RW
9	-reserved-	00	_
A	Secondary Channel Status	00	WC
В	-reserved-	00	
C-F	Secondary Channel PRD Table Addr	00	RW

PCI Function 2 Registers – USB Controller

Configuration Space USB Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3038	RO
5-4	Command	0000	\mathbf{RW}
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	03	RO
В	Base Class Code	0C	RO
C	Cache Line Size	00	RO
D	Latency Timer	16	\mathbf{RW}
Е	Header Type	00	RO
F	BIST	00	RO
10-1F	-reserved-	00	
23-20	Base Address	00000301	RW
24-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	04	RO
3E-3F	-reserved-	00	_

Configuration Space USB-Specific Registers

Offset	USB Control	<u>Default</u>	Acc
40	Miscellaneous Control 1	00	$\mathbf{R}\mathbf{W}$
41	Miscellaneous Control 2	00	$\mathbf{R}\mathbf{W}$
42-43	-reserved-	00	RO
44-45	-reserved- (test only, do not program)		RW
46-47	-reserved- (test)		RO
48-5F	-reserved-	00	_
60	Serial Bus Release Number	10	RO
61-BF	-reserved-	00	_
C1-C0	Legacy Support	2000	RW
C2-FF	-reserved-	00	_

<u>I/O Registers – USB Controller</u>

Offset	USB I/O Registers	Default	Acc
1-0	USB Command	0000	RW
3-2	USB Status	0000	WC
5-4	USB Interrupt Enable	0000	RW
7-6	Frame Number	0000	RW
B-8	Frame List Base Address	00000000	RW
C	Start Of Frame Modify	40	RW
11-10	Port 1 Status / Control	0080	WC
13-12	Port 2 Status / Control	0080	WC

PCI Function 3 Registers - Power Management

Configuration Space Power Management Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3050	RO
5-4	Command	0000	RO
7-6	Status	0280	WC
8	Revision ID	nn	RO
9	Programming Interface	00‡	RO
Α	Sub Class Code	00‡	RO
В	Base Class Code	00‡	RO
C	Cache Line Size	00	RO
D	Latency Timer	00	RO
Е	Header Type	00	RO
F	BIST	00	RO
10-3F	-reserved-	00	_

[†] Default values may be changed by writing to offsets 61-63h.

Configuration Space Power Management-Specific Registers

Offset	Power Management	<u>Default</u>	Acc
40	Debounce Control	00	RW
41	General Configuration	00	RW
42	SCI Interrupt Configuration	00	RW
43	-reserved-	00	_
45-44	Primary Interrupt Channel	0000	RW
47-46	Secondary Interrupt Channel	0000	RW
4B-48	Power Mgmt I/O Base (256 Bytes)	0000 0001	RW
4C	Host Bus Power Management Control	00	RW
4D	Clock Stop Control	00	RW
4E-4F	-reserved-	00	_
53-50	GP0/1 Timer Control	0000 0000	RW
54	GPIO Select	00	RW
55	Wakeup Control	00	RW
56-57	-reserved-	00	_
5B-58	GP2/3 Timer Control	0000 0000	RW
5C-60	-reserved-	00	-
61	Write value for Offset 9 (Prog Intfc)	00	WO
62	Write value for Offset A (Sub Class)	00	wo
63	Write value for Offset B (Base Class)	00	WO
64-8F	-reserved-	00	_
Offset	System Management Bus	<u>Default</u>	<u>Acc</u>
93-90	SMBus I/O Base	0000 0001	RW
94-D1	-reserved-	00	_
D2	SMBus Control	00	RW
D3	SMBus Host Slave Command	00	RW
D4	SMBus Slave Address for Port 1	00	RW
D5	SMBus Slave Address for Port 2	00	RW
D6	SMBus Revision ID	nn	RO
D7-FF	-reserved-	00	_

I/O Space System Management Bus Registers

Offset	System Management Bus	<u>Default</u>	Acc
0	SMBus Host Status	00	WC
1	SMBus Slave Status	00	RW
2	SMBus Host Control	00	RW
3	SMBus Host Command	00	RW
4	SMBus Host Address	00	RW
5	SMBus Host Data 0	00	RW
6	SMBus Host Data 1	00	RW
7	SMBus Block Data	00	RW
8	SMBus Slave Control	00	RW
9	SMBus Shadow Command	00	RO
A-B	SMBus Slave Event	0000	RW
C-D	SMBus Slave Data	0000	RO
E-F	-reserved-	00	

I/O Space Power Management- Registers

Offset	Basic Control / Status Registers	<u>Default</u>	Acc
1-0	Power Management Status	0000	WC
3-2	Power Management Enable	0000	RW
5-4	Power Management Control	0000	RW
6-7	-reserved-	00	_
B-8	Power Management Timer	0000 0000	RW
C-F	-reserved-	00	_
Offset	Processor Registers	<u>Default</u>	Acc
13-10	Processor and PCI Bus Control	0000 0000	RW
14	Processor LVL2	00	RO
15	Processor LVL3	00	RO
16-1F	-reserved-	00	_
Offset	General Purpose Registers	<u>Default</u>	Acc
21-20	General Purpose Status	0000	WC
23-22	General Purpose SCI Enable	0000	RW
25-24	General Purpose SMI Enable	0000	RW
26-27	-reserved-	00	_
Offset	Generic Registers	<u>Default</u>	Acc
29-28	Global Status	0000	WC
	Global Enable	0000	RW
2D-2C	Global Control	0010	RW
2E	-reserved-	00	-
2F	SMI Command	00	RW
	Primary Activity Detect Status	0000 0000	WC
37-34	Primary Activity Detect Enable	0000 0000	RW
3B-38		0000 0000	RW
3C-3F	-reserved-	00	_
Offset	General Purpose I/O Registers	<u>Default</u>	Acc
40	General Purpose Control	00	RW
	-reserved-	00	_
45-44	External SMI Input Value	input	RO
	-reserved-	00	_
4B-48	GPI Port Input Value	input	RO
4F-4C	L	7FFFFFF	RW
50-FF	-reserved-	00	_

Configuration Space I/O

Mechanism #1

These ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

Port CF	B-CF8 - Configuration AddressRW
31	Configuration Space Enable
	0 Disableddefault
	1 Convert configuration data port writes to
	configuration cycles on the PCI bus
30-24	Reserved always reads 0
23-16	PCI Bus Number
	Used to choose a specific PCI bus in the system
15-11	Device Number
	Used to choose a specific device in the system
10-8	Function Number
	Used to choose a specific function if the selected
	device supports multiple functions
7-2	Register Number
	Used to select a specific DWORD in the device's
	configuration space
1-0	Fixed always reads 0
Port CF	F-CFC - Configuration DataRW

Refer to PCI Bus Specification Version 2.1 for further details on operation of the above configuration registers.

Register Descriptions

Legacy I/O Ports

This group of registers includes the DMA Controllers, Interrupt Controllers, and Timer/Counters as well as a number of miscellaneous ports originally implemented using discrete logic on original PC/AT motherboards. All of the registers listed are integrated on-chip. These registers are implemented in a precise manner for backwards compatibility with previous generations of PC hardware. These registers are listed for information purposes only. Detailed descriptions of the actions and programming of these registers are included in numerous industry publications (duplication of that information here is beyond the scope of this document). All of these registers reside in I/O space.

Port 61	- Misc Functions & Speaker ControlRW
7	Reserved always reads 0
6	IOCHCK# ActiveRO
	This bit is set when the ISA bus IOCHCK# signal is
	asserted. Once set, this bit may be cleared by setting
	bit-3 of this register. Bit-3 should be cleared to
	enable recording of the next IOCHCK#. IOCHCK#
	generates NMI to the CPU if NMI is enabled.
5	Timer/Counter 2 OutputRO
	This bit reflects the output of Timer/Counter 2
	without any synchronization.
4	Refresh DetectedRO
	This bit toggles on every rising edge of the ISA bus
	REFRESH# signal.
3	IOCHCK# DisableRW
	0 Enable IOCHCK# assertionsdefault
	1 Force IOCHCK# inactive and clear any
	"IOCHCK# Active" condition in bit-6
2	Reserved RW, default=0
1	Speaker EnableRW
	0 Disabledefault
	1 Enable Timer/Ctr 2 output to drive SPKR pin
0	Timer/Counter 2 EnableRW
	0 Disabledefault
	1 Enable Timer/Counter 2

Port 92	2h - System ControlRV	V
7-6	Hard Disk Activity LED Status	
	0 Offdefau	lt
	1-3 On	
5-4	Reservedalways reads	0
3	Power-On Password Bytes Inaccessable default=	0
2	Reservedalways reads	0
1	A20 Address Line Enable	
	0 A20 disabled / forced 0 (real mode) defau	lt
	1 A20 address line enabled	
0	High Speed Reset	
	0 Normal	
	1 Briefly pulse system reset to switch from	n
	protected mode to real mode	

Keyboard Controller Registers

The keyboard controller handles the keyboard and mouse interfaces. Two ports are used: port 60 and port 64. Reads from port 64 return a status byte. Writes to port 64h are command codes (see command code list following the register descriptions). Input and output data is transferred via port 60.

A "Control" register is also available. It is accessable by writing commands 20h / 60h to the command port (port 64h); The control byte is written by first sending 60h to the command port, then sending the control byte value. The control register may be read by sending a command of 20h to port 64h, waiting for "Output Buffer Full" status = 1, then reading the control byte value from port 60h.

Traditional (non-integrated) keyboard controllers have an "Input Port" and an "Output Port" with specific pins dedicated to certain functions and other pins available for general purpose I/O. Specific commands are provided to set these pins high and low. All outputs are "open-collector" so to allow input on one of these pins, the output value for that pin would be set high (non-driving) and the desired input value read on the input port. These ports are defined as follows:

. 1	r r		
<u>Bit</u>	Input Port	Lo Code	Hi Code
0	P10 - Keyboard Data In	B0	B8
1	P11 - Mouse Data In	B1	B9
2	P12 - Turbo Pin (PS/2 mode only)	B2	BA
3	P13 - user-defined	В3	BB
4	P14 - user-defined	B6	BE
5	P15 - user-defined	B7	BF
6	P16 - user-defined	_	_
7	P17 - undefined	_	_
<u>Bit</u>	Output Port	Lo Code	Hi Code
0	P20 - SYSRST (1=execute reset)	_	_
1	P21 - GATEA20 (1=A20 enabled)	_	-
2	P22 - Mouse Data Out	B4	BC
3	P23 - Mouse Clock Out	B5	BD
4	P24 - Keyboard OBF Interrupt (IRC	Q1) –	-
5	P25 - Mouse OBF Interrupt (IRQ 1	2) –	_
6	P26 - Keyboard Clock Out	_	_
7	P27 - Keyboard Data Out	_	_
Bit	Test Port	Lo Code	Hi Code
0	T0 - Keyboard Clock In	_	_
1	T1 - Mouse Clock In	_	_
Note:	Command code C0h transfers inp	ut port da	ta to the

Note: Command code C0h transfers input port data to the output buffer. Command code D0h copies output port values to the output buffer. Command code E0h transfers test input port data to the output buffer.

Port 60 - Keyboard Controller Output BufferROOnly read from port 60h if port 64h bit-0 = 1 (0=empty).

Port 64	I - Keyboard / Mouse StatusRO
0	Keyboard Output Buffer Full
Ü	0 Keyboard Output Buffer Emptydefault
	1 Keyboard Output Buffer Full
1	Input Buffer Full
-	0 Input Buffer Emptydefault
	1 Input Buffer Full
2	System Flag
_	0 Power-On Defaultdefault
	1 Self Test Successful
3	Command / Data
	0 Last write was data writedefault
	1 Last write was command write
4	Keylock Status
-	0 Locked
	1 Free
5	Mouse Output Buffer Full
·	0 Mouse output buffer emptydefault
	1 Mouse output buffer holds mouse data
6	General Receive / Transmit Timeout
Ü	0 No error
	1 Error
7	Parity Error
	0 No parity error (odd parity received) default
	1 Even parity occurred on last byte received
	from keyboard / mouse
	Control Register(R/W via Commands 20h/60h)
7	Reserved always reads 0
	Reserved always reads 0 PC Compatibility
7	Reserved
7	Reserved
7	Reserved
7 6	Reserved
7	Reserved
7 6	Reserved
7 6 5	Reserved always reads 0 PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Disable 0 Enable Mouse Interface default 1 Disable Mouse Interface
7 6	Reserved always reads 0 PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Disable 0 Enable Mouse Interface default 1 Disable Mouse Interface Keyboard Disable
7 6 5	Reserved always reads 0 PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Disable 0 Enable Mouse Interface default 1 Disable Mouse Interface Keyboard Disable 0 Enable Keyboard Interface default
7 6 5	Reserved always reads 0 PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Disable 0 Enable Mouse Interface default 1 Disable Mouse Interface Keyboard Disable 0 Enable Keyboard Interface default 1 Disable Keyboard Interface default 1 Disable Keyboard Interface
7 6 5	Reserved always reads 0 PC Compatibility 0 Disable scan conversion 1 Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default Mouse Disable 0 Enable Mouse Interface default 1 Disable Mouse Interface Keyboard Disable 0 Enable Keyboard Interface default 1 Disable Keyboard Interface default 1 Disable Keyboard Interface Keyboard Lock Disable
7 6 5	Reserved
7 6 5 4	Reserved
7 6 5	Reserved
7 6 5 4 3	Reserved
7 6 5 4	Reserved
7 6 5 4 3	Reserved
7 6 5 4 3	Reserved
7 6 5 4 3 2	Reserved
7 6 5 4 3	Reserved
7 6 5 4 3 2	Reserved
7 6 5 4 3 2	Reserved
7 6 5 4 3 2	Reserved

Port 64 - Keyboard / Mouse Command......WO

This port is used to send commands to the keyboard / mouse controller. The command codes recognized by the VT82C596B are listed n the table below.

Note: The VT82C596B Keyboard Controller is compatible with the VIA VT82C42 Industry-Standard Keyboard Controller except that due to its integrated nature, many of the input and output port pins are not available externally for use as general purpose I/O pins (even though P13-P16 are set on power-up as strapping options). In other words, many of the commands below are provided and "work", but otherwise perform no useful function (e.g., commands that set P12-P17 high or low). Also note that setting P10-11, P22-23, P26-27, and T0-1 high or low directly serves no useful purpose, since these bits are used to implement the keyboard and mouse ports and are directly controlled by keyboard controller logic.

Table 4. Keyboard Controller Command Codes

Code	Keyboard Command Code Description	Code	Keyboard Command Code Description
20h	Read Control Byte (next byte is Control Byte)	C0h	Read input port (read P10-17 input data to
21-3Fh	Read SRAM Data (next byte is Data Byte)		the output buffer)
60h	Write Control Byte (next byte is Control Byte)	C1h	Poll input port low (read input data on P11-13
61-7Fh	Write SRAM Data (next byte is Data Byte)		repeatably & put in bits 5-7 of status
9xh	Write low nibble (bits 0-3) to P10-P13	C2h	Poll input port high (same except P15-17)
A1h	Output Keyboard Controller Version #	C8h	Unblock P22-23 (use before D1 to change
A4h	Test if Password is installed	Con	active mode)
	(always returns F1h to indicate not installed)	C9h	Reblock P22-23 (protection mechanism for D1)
A7h	Disable Mouse Interface	CIII	Rediock 1 22-23 (protection mechanism for D1)
A8h	Enable Mouse Interface	CAh	Read mode (output KBC mode info to port 60
A9h	Mouse Interface Test (puts test results in port 60h)		output buffer (bit-0=0 if ISA, 1 if PS/2)
	(value: 0=OK, 1=clk stuck low, 2=clk stuck high,	DOI:	Dood Outside Door (come D10 17 content and column
	3=data stuck lo, 4=data stuck hi, FF=general error)	D0h	Read Output Port (copy P10-17 output port values
AAh	KBC self test (returns 55h if OK, FCh if not)	Dil	to port 60)
ABh	Keyboard Interface Test (see A9h Mouse Test)	D1h	Write Output Port (data byte following is written to
ADh	Disable Keyboard Interface	D2h	keyboard output port as if it came from keyboard)
AEh	Enable Keyboard Interface	DZII	Write Keyboard Output Buffer & clear status bit-5
AFh	Return Version #	D3h	(write following byte to keyboard)
		D3n	Write Mouse Output Buffer & set status bit-5 (write
B0h	Set P10 low		following byte to mouse; put value in mouse input
B1h	Set P11 low	D4l-	buffer so it appears to have come from the mouse)
B2h	Set P12 low	D4h	Write Mouse (write following byte to mouse)
B3h	Set P13 low	E0h	Read test inputs (T0-1 read to bits 0-1 of resp byte)
B4h	Set P22 low	Exh	Set P23-P21 per command bits 3-1
B5h	Set P23 low	Fxh	Pulse P23-P20 low for 6usec per command bits 3-0
B6h	Set P14 low		•
B7h	Set P15 low	All othe	r codes not listed are undefined.
B8h	Set P10 high		
B9h	Set P11 high		
BAh	Set P12 high		
BBh	Set P13 high		

Set P22 high

Set P23 high Set P14 high

Set P15 high

BCh

BDh

BEh BFh

DMA Controller I/O Registers

Ports 00-0F - Master DMA Controller

Channels 0-3 of the Master DMA Controller control System DMA Channels 0-3. There are 16 Master DMA Controller registers:

I/O Address Bits 15-0	Register Name	
0000 0000 000x 0000	Ch 0 Base / Current Address	\mathbf{RW}
0000 0000 000x 0001	Ch 0 Base / Current Count	\mathbf{RW}
0000 0000 000x 0010	Ch 1 Base / Current Address	\mathbf{RW}
0000 0000 000x 0011	Ch 1 Base / Current Count	\mathbf{RW}
0000 0000 000x 0100	Ch 2 Base / Current Address	\mathbf{RW}
0000 0000 000x 0101	Ch 2 Base / Current Count	\mathbf{RW}
0000 0000 000x 0110	Ch 3 Base / Current Address	\mathbf{RW}
0000 0000 000x 0111	Ch 3 Base / Current Count	\mathbf{RW}
0000 0000 000x 1000	Status / Command	\mathbf{RW}
0000 0000 000x 1001	Write Request	WO
0000 0000 000x 1010	Write Single Mask	WO
0000 0000 000x 1011	Write Mode	WO
0000 0000 000x 1100	Clear Byte Pointer F/F	WO
0000 0000 000x 1101	Master Clear	WO
0000 0000 000x 1110	Clear Mask	WO
0000 0000 000x 1111	R/W All Mask Bits	\mathbf{RW}

Note that not all bits of the address are decoded.

The Master DMA Controller is compatible with the Intel 8237 DMA Controller chip. Detailed descriptions of 8237 DMA Controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Ports C0-DF - Slave DMA Controller

Channels 0-3 of the Slave DMA Controller control System DMA Channels 4-7. There are 16 Slave DMA Controller registers:

I/O Address Bits 15-0	Register Name	
0000 0000 1100 000x	Ch 0 Base / Current Address	RW
0000 0000 1100 001x	Ch 0 Base / Current Count	RW
0000 0000 1100 010x	Ch 1 Base / Current Address	RW
0000 0000 1100 011x	Ch 1 Base / Current Count	RW
0000 0000 1100 100x	Ch 2 Base / Current Address	RW
0000 0000 1100 101x	Ch 2 Base / Current Count	RW
0000 0000 1100 110x	Ch 3 Base / Current Address	\mathbf{RW}
0000 0000 1100 111x	Ch 3 Base / Current Count	RW
0000 0000 1101 000x	Status / Command	RW
0000 0000 1101 001x	Write Request	WO
0000 0000 1101 010x	Write Single Mask	WO
0000 0000 1101 011x	Write Mode	WO
0000 0000 1101 100x	Clear Byte Pointer F/F	WO
0000 0000 1101 101x	Master Clear	WO
0000 0000 1101 110x	Clear Mask	WO
0000 0000 1101 111x	Read/Write All Mask Bits	WO

Note that not all bits of the address are decoded.

The Slave DMA Controller is compatible with the Intel 8237 DMA Controller chip. Detailed description of 8237 DMA controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Ports 80-8F - DMA Page Registers

There are eight DMA Page Registers, one for each DMA channel. These registers provide bits 16-23 of the 24-bit address for each DMA channel (bits 0-15 are stored in registers in the Master and Slave DMA Controllers). They are located at the following I/O Port addresses:

I/O Address Bits 15-0	Register Name
0000 0000 1000 0111	Channel 0 DMA Page (M-0)RW
0000 0000 1000 0011	Channel 1 DMA Page (M-1)RW
0000 0000 1000 0001	Channel 2 DMA Page (M-2)RW
0000 0000 1000 0010	Channel 3 DMA Page (M-3)RW
0000 0000 1000 1111	Channel 4 DMA Page (S-0)RW
0000 0000 1000 1011	Channel 5 DMA Page (S-1)RW
0000 0000 1000 1001	Channel 6 DMA Page (S-2)RW
0000 0000 1000 1010	Channel 7 DMA Page (S-3)RW

Interrupt Controller Registers

Ports 20-21 - Master Interrupt Controller

The Master Interrupt Controller controls system interrupt channels 0-7. Two registers control the Master Interrupt Controller. They are:

I/O Address Bits 15-0 Register Name

0000 0000 001x xxx0	Master Interrupt Control	\mathbf{RW}
0000 0000 001x xxx1	Master Interrupt Mask	RW

Note that not all bits of the address are decoded.

The Master Interrupt Controller is compatible with the Intel 8259 Interrupt Controller chip. Detailed descriptions of 8259 Interrupt Controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Ports A0-A1 - Slave Interrupt Controller

The Slave Interrupt Controller controls system interrupt channels 8-15. The slave system interrupt controller also occupies two register locations:

I/O Address Bits 15-0 Register Name

0000 0000 101x xxx0	Slave Interrupt Control	RW
0000 0000 101x xxx1	Slave Interrupt Mask	RW

Note that not all address bits are decoded.

The Slave Interrupt Controller is compatible with the Intel 8259 Interrupt Controller chip. Detailed descriptions of 8259 Interrupt Controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Interrupt Controller Shadow Registers

The following shadow registers are enabled by setting bit 4 of Rx47 to 1 (offset 47h in the PCI-ISA Bridge function 0 register group). If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard interrupt controller registers (writes to the interrupt controller register ports are directed to the standard interrupt controller registers).

Port 20	- Master Interrupt Control ShadowRO
7-5	Reservedalways reads 0
4	OCW3 bit 5
3	OCW2 bit 7
2	ICW4 bit 4
1	ICW4 bit 1
0	ICW1 bit 3
<u>Port 21</u>	- Master Interrupt Mask ShadowRO
7-5	Reserved always reads 0
4-0	T7-T3 of Interrupt Vector Address
Port A	0 - Slave Interrupt Control ShadowRO
7-5	Reserved always reads 0
	iteber vea
4	OCW3 bit 5
4 3	OCW3 bit 5
•	OCW3 bit 5 OCW2 bit 7
3	OCW3 bit 5 OCW2 bit 7
3 2	OCW3 bit 5 OCW2 bit 7 ICW4 bit 4
3 2 1 0	OCW3 bit 5 OCW2 bit 7 ICW4 bit 4 ICW4 bit 1
3 2 1 0	OCW3 bit 5 OCW2 bit 7 ICW4 bit 4 ICW4 bit 1 ICW1 bit 3

Timer / Counter Registers

Ports 40-43 - Timer / Counter Registers

There are 4 Timer / Counter registers:

I/O Address Bits 15-0	Register Name	
0000 0000 010x xx00	Timer / Counter 0 Count	\mathbf{RW}
0000 0000 010x xx01	Timer / Counter 1 Count	\mathbf{RW}
0000 0000 010x xx10	Timer / Counter 2 Count	\mathbf{RW}
0000 0000 010x xx11	Timer / Counter Cmd Mode	WO

Note that not all bits of the address are decoded.

The Timer / Counters are compatible with the Intel 8254 Timer / Counter chip. Detailed descriptions of 8254 Timer / Counter operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

CMOS / RTC Registers

CMOS	/ KTC Registers	Offset	Descri	ntion		Binary Range	RCD Panga
Port 70) - CMOS AddressWO	00	Secon	_		00-3Bh	00-59h
7	NMI DisableWO	01		ds Alarm	1	00-3Bh	00-59h
,	0 Enable NMI Generation. NMI is asserted on	02	Minut		-	00-3Bh	00-59h
	encountering IOCHCK# on the ISA bus or	03		tes Alarm	ı	00-3Bh	00-59h
	SERR# on the PCI bus.	04	Hours			hr: 01-1Ch	01-12h
	1 Disable NMI Generationdefault					hr: 81-8Ch	81-92h
6-0	CMOS Address (lower 128 bytes)WO					hr: 00-17h	00-23h
	•	05	Hours	Alarm	am 12	hr: 01-1Ch	01-12h
<u>Port 71</u>	- CMOS DataRW					hr: 81-8Ch	81-92h
7-0	CMOS Data (128 bytes)					hr: 00-17h	00-23h
Note:	Ports 70-71 may be accessed if Rx5A bit-2 is set to	06		f the Wee			01-07h
	one to select the internal RTC. If Rx5A bit-2 is set to	07	-	f the Moi	nth	01-1Fh	01-31h
	zero, accesses to ports 70-71 will be directed to an	08	Montl	n		01-0Ch	01-12h
	external RTC.	09	Year			00-63h	00-99h
Port 72	2 - CMOS AddressRW	0A	Regist	or A			
_	CMOS Address (256 bytes)RW	071	7	UIP	Update	e In Progress	
7-0	CMOS Address (250 bytes)		6-4	DV2-0		(010=ena osc &	& keep time)
<u>Port 73</u>	3 - CMOS DataRW		3-0	RS3-0	Rate S	elect for Period	ic Interrupt
7-0	CMOS Data (256 bytes)			_			
Note:	Ports 72-73 may be accessed if Rx5A bit-2 is set to	0B	Regist		T., 1, 21, 27	II. 1.4. T	
	one to select the internal RTC. If Rx5A bit-2 is set to		7 6	SET PIE		Update Transfeic Interrupt Ena	
	zero, accesses to ports 72-73 will be directed to an		5	AIE		Interrupt Enabl	
	external RTC.		4	UIE		Ended Interrup	
D4 7/	L CMOC Alleren		3	SQWE		nction (read/writ	
	1 - CMOS Address RW		2	$\overline{\mathbf{D}}\mathbf{M}$		Mode (0=BCD,	
7-0	CMOS Address (256 bytes)RW		1	24/12		Byte Format (0	
Port 75	5 - CMOS DataRW		0	DSE	Daylig	tht Savings Enal	ole
7-0	CMOS Data (256 bytes)	0C	Regist	er C			
Note:	Ports 74-75 may be accessed only if Function 0 Rx5B	UC.	7	IRQF	Interru	pt Request Flag	r
rvoic.	bit-1 is set to one to enable the internal RTC SRAM		6	PF		ic Interrupt Flag	
	and if Rx48 bit-3 (Port 74/75 Access Enable) is set to		5	\mathbf{AF}		Interrupt Flag	
	one to enable port 74/75 access.		4	UF		e Ended Flag	
Note:	Ports 70-71 are compatible with PC industry-		3-0	0	Unuse	d (always read ())
riote.	standards and may be used to access the lower 128	ΔD	Dogiat	low D			
	bytes of the 256-byte on-chip CMOS RAM. Ports	0D	Regist	VRT	Reads	1 if VBAT volt	age is OK
	72-73 may be used to access the full extended 256-		6-0	0		d (always read (_
	byte space. Ports 74-75 may be used to access the					. (,
	full on-chip extended 256-byte space in cases where	0E-7C	Softwa	are-Defin	ed Sto	rage Registers	(111 Bytes)
	the on-chip RTC is disabled.	O.CC 4	г.	1.15		D' D	DCD D
Note:	The system Real Time Clock (RTC) is part of the		Date A	ded Funct	<u>ions</u>	Binary Range 01-1Fh	01-31h
	"CMOS" block. The RTC control registers are	7D 7E		Mariii h Alarm		01-1FII 01-0Ch	01-31h 01-12h
	located at specific offsets in the CMOS data area (0-	7E 7F		ry Field		13-14h	19-20h
	ODh and 7D-7Fh). Detailed descriptions of CMOS / RTC operation and programming can be obtained	/ T	Centu	i y i iciu		1,5-1411	17-2011
	from the VIA VT82887 Data Book or numerous	80-FF	Softwa	are-Defir	ed Stor	rage Registers	(128 Bytes)
	other industry publications. For reference, the					nd Rx77[2-1])	(==0 = 1 (00)
	definition of the RTC register locations and bits are			-		L 1/	
	summarized in the following table:	m 11 1	- C3-5	- A DO:			
		Table 5	o. CM	US Kegi	ıster Sı	ummary	

Table 5. CMOS Register Summary

Function 0 Registers - PCI to ISA Bridge

All registers are located in the function 0 PCI configuration space of the VT82C596B. These registers are accessed through PCI configuration mechanism #1 via I/O address CF8/CFC.

PCI Configuration Space Header

Offset 1-0 - Vendor ID = 1106hRO				
Offset 3	3-2 - Device ID = 0596hRO			
Offset 5	5-4 - CommandRW			
15-8	Reserved always reads 0			
7	Address / Data Stepping			
	0 Disable			
	1 Enabledefault			
6-4	Reserved always reads 0			
3	Special Cycle Enable Normally RW \dagger , default = 0			
2	Bus Master always reads 1			
1	Memory SpaceNormally RO†, reads as 1			
0	I/O SpaceNormally RO†, reads as 1			
† If the	test bit at offset 46 bit-4 is set, access to the above			
indicate	d bits is reversed: bit-3 above becomes read only			
(reading	g back 1) and bits 0-1 above become read / write (with			
a defaul	t of 1).			

Offset 7	7-6 - Status	RWC
15	Detected Parity Error	write one to clear
14	Signalled System Error	always reads 0
13	Signalled Master Abort	write one to clear
12	Received Target Abort	write one to clear
11	Signalled Target Abort	write one to clear
10-9	DEVSEL# Timing	fixed at 01 (medium)
8	Data Parity Detected	always reads 0
7	Fast Back-to-Back Capable.	always reads 0
6-0	Reserved	always reads 0

Offset 8 - Revision ID = nn	RO
7-0 Revision ID (00h is first silicon)	
Offset 9 - Program Interface = 00h	RO
Offset A - Sub Class Code = 01h	RO
Offset B - Class Code = 06h	RO
Offset E - Header Type = 80h	RO
7-0 Header Type Code 80h (Multif	function Device)
Offset F - BIST = 00h	RO
Offset 2F-2C - Subsystem ID	RO

Use offset 70-73 to change the value returned.

ISA Bus Control

Offset	40 - ISA Bus ControlRW	Offset	42 - ISA Clock Con
7	ISA Command Delay	7	Latch IO16#
	0 Normaldefault		0 Enable (reco
	1 Extra		1 Disable
6	Extended ISA Bus Ready	6	MS16# Output
	0 Disabledefault		0 Enable (reco
	1 Enable		1 Disable
5	ISA Slave Wait States	5	Master Request T
	0 4 Wait Statesdefault	4	Reserved (no defin
	1 5 Wait States	3	ISA CLOCK Sele
4	Chipset I/O Wait States		0 ISA Clock =
	0 2 Wait Statesdefault		1 ISA Clock s
	1 4 Wait States	2-0	ISA Bus Clock Se
3	I/O Recovery Time		000 PCICLK/3
	0 Disabledefault		001 PCICLK/2
	1 Enable		010 PCICLK/4
2	Extend-ALE		011 PCICLK/6
	0 Disabledefault		100 PCICLK/5
	1 Enable		101 PCICLK/10
1	ROM Wait States		110 PCICLK/12
	0 1 Wait Statedefault		111 OSC
	1 0 Wait States	NT . 1	D 1 6 TG 1 G
0	ROM Write		Procedure for ISA CI
	0 Disabledefault	1) Set t	oit 3 to 0; 2) Change
	1 Enable		
Offset	41 - ISA Test ModeRW		
7	Bus Refresh Arbitration (do not program) default=0		
6	XRDY Test Mode (do not program) default=0		
5	Port 92 Fast Reset		
	0 Disabledefault		
	1 Enable		
4	A20G Emulation (do not program) default=0		
3	Double DMA Clock		
	0 Disable (DMA Clock = ½ ISA Clock)default		
	1 Enable (DMA Clock = ISA Clock)		
2	SHOLD Lock During INTA (do not program) def=0		
1	Refresh Request Test Mode (do not program) def=0		
0	ISA Refresh		
	0 Disabledefault		
	1 Enable		

Offset	42 - ISA Clock ControlRW
7	Latch IO16#
	0 Enable (recommended setting) default
	1 Disable
6	MS16# Output
	0 Enable (recommended setting)default
	1 Disable
5	Master Request Test Mode (do not program)def=0
4	Reserved (no defined function)default = 0
3	ISA CLOCK Select Enable
	0 ISA Clock = PCICLK/4default
	1 ISA Clock selected per bits 2-0
2-0	ISA Bus Clock Select (if bit-3 = 1)
	000 PCICLK/3default
	001 PCICLK/2
	010 PCICLK/4
	011 PCICLK/6
	100 PCICLK/5
	101 PCICLK/10
	110 PCICLK/12
	111 OSC
Note: 1	Procedure for ISA CLOCK switching:
1) Set b	oit 3 to 0; 2) Change value of bit 2-0; 3) Set bit 3 to 1

Offset 4	43 - ROM Decode ControlRW
Setting	these bits enables the indicated address range to be
include	d in the ROMCS# decode:
7	FFFE0000h-FFFEFFFFhdefault=0
6	FFF80000h-FFFDFFFFhdefault=0
5	FFF00000h-FFF7FFFFh (new) default=0
4	000E0000h-000EFFFFh (new) default=0
5	000E8000h-000EFFFFh (old) default=0
4	000E0000h-000E7FFFh (old) default=0
3	000D8000h-000DFFFFh default=0
2	000D0000h-000D7FFFh default=0
1	000C8000h-000CFFFFh default=0
0	000C0000h-000C7FFFh default=0
Offset 4	44 - Keyboard Controller ControlRW
7	KBC Timeout Test (do not program) default = 0
6-4	Reserved (do not program) default = 0
3	Mouse Lock Enable
	0 Disableddefault
	1 Enabled
2-1	Reserved (do not program) default = 0
0	Reserved (no function) default = 0
Offset 4	45 - Type F DMA ControlRW
7	ISA Master / DMA to PCI Line Buffer default=0
6	DMA type F Timing on Channel 7 default=0
5	DMA type F Timing on Channel 6 default=0
4	DMA type F Timing on Channel 5 default=0
3	DMA type F Timing on Channel 3 default=0
2	DMA type F Timing on Channel 2 default=0
1	DMA type F Timing on Channel 1 default=0
0	DMA type F Timing on Channel 0 default=0

Offset 4	46 - Miscellaneous Control 1RW
7	PCI Master Write Wait States
	0 0 Wait Statesdefault
	1 1 Wait State
6	Gate INTRQ
	0 Disabledefault
	1 Enable
5	Flush Line Buffer for Int or DMA IOR Cycle
	0 Disabledefault
	1 Enable
4	Config Command Reg Rx04 Access (Test Only)
	0 Normal: Bits 0-1=RO, Bit 3=RW default
	1 Test Mode: Bits 0-1=RW, Bit-3=RO
3	Reserved (do not program)default = 0
2	Reserved (no function)default = 0
1	PCI Burst Read Interruptability
	0 Allow burst reads to be interrupted default
	1 Don't allow PCI burst reads to be interrupted
0	Post Memory Write Enable
	0 Disabledefault
	1 Enable
	The Post Memory Write function is automatically
	enabled when Delay Transaction (see Rx47 bit-6
	below) is enabled, independent of the state of this bit.
0.004	47 Minor Hanner Control 2 DW
	47 - Miscellaneous Control 2RW
7	CPU Reset Source
	0 Use CPURST as CPU Reset default
	1 Use INIT as CPU Reset
6	PCI Delay Transaction Enable
	0 Disable default
	1 Enable
	The "Post Memory Write" function is automatically
	enabled when this bit is enabled, independent of the
_	state of Rx46 bit-0 above.
5	EISA 4D0/4D1 Port Enable
	0 Disable (ignore ports 4D0-1)default1 Enable (ports 4D0-1 per EISA specification)
4	Interrupt Controller Shadow Register Enable
4	0 Disable
	1 Enable
3	Reserved (always program to 0)default = 0
3	Note: Always mask this bit. This bit may read back
	as either 0 or 1 but must always be
	programmed with 0.
2	Write Delay Transaction Time-Out Timer Enable
4	0 Disabledefault
	1 Enable
1	Read Delay Transaction Time-Out Timer Enable
1	0 Disable
	1 Enable

Software PCI Reset write 1 to generate PCI reset

Offset 4	48 - Miscellaneous Control 3RW	<u> 4C - IS</u>	SA DMA/Master Memory Access Control 1 RW
7	Low Voltage CPU Interface 0 Disabledefault 1 Enable	7-0	PCI Memory Hole Bottom Address These bits correspond to HA[23:16]default=0
6-4	Reserved (Do Not Program) always reads 0	<u>4D - IS</u>	SA DMA/Master Memory Access Control 2 RW
3	Extra RTC Port 74/75 Enable	7-0	PCI Memory Hole Top Address (HA[23:16])
	0 Disabledefault		These bits correspond to HA[23:16]default=0
	1 Enable	Note:	Access to the memory defined in the PCI memory
2	Integrated USB Controller Disable		hole will not be forwarded to PCI. This function is
	0 Enabledefault		disabled if the top address less than or equal to the
1	1 Disable Integrated IDE Controller Disable		bottom address.
1	Integrated IDE Controller Disable 0 Enabledefault	4F-4F	- ISA DMA/Master Memory Access Control 3 RW
	1 Disable		Top of PCI Memory for ISA DMA/Master accesses
0	512K PCI Memory Decode	13-12	0000 1Mdefault
ŭ	0 Use Rx4E[15-12] to select top of PCI memory		0001 2M
	1 Use contents of Rx4E[15-12] plus 512K as top		
	of PCI memorydefault		1111 16M
Off. 4	44 IDEL4 4D 4	Note:	All ISA DMA / Masters that access addresses higher
	4A - IDE Interrupt RoutingRW		than the top of PCI memory will not be directed to the
7	Wait for PGNT Before Grant to ISA Master /		PCI bus.
	DMA 0 Disabledefault	11	Forward E0000-EFFFF Accesses to PCIdef=0
	1 Enable (must be set to 1)	10	Forward A0000-BFFFF Accesses to PCIdef=0
6	Bus Select for Access to I/O Devices Below 100h	9	Forward 80000-9FFFF Accesses to PCIdef=1
Ū	0 Access ports 00-FFh via XD busdefault	8	Forward 00000-7FFFF Accesses to PCIdef=1
	1 Access ports 00-FFh via SD bus (applies to	7	Forward DC000-DFFFF Accesses to PCIdef=0
	external devices only; internal devices such as	6 5	Forward D8000-DBFFF Accesses to PCIdef=0 Forward D4000-D7FFF Accesses to PCIdef=0
	the mouse controller are not effected)	4	Forward D0000-D3FFF Accesses to PCIdef=0
5-4	Reserved (do not program) default = 0	3	Forward CC000-CFFFF Accesses to PCIdef=0
3-2	IDE Second Channel IRQ Routing	2	Forward C8000-CBFFF Accesses to PCIdef=0
	00 IRQ14	1	Forward C4000-C7FFF Accesses to PCI def=0
	01 IRQ15default	0	Forward C0000-C3FFF Accesses to PCIdef=0
	10 IRQ10		
1.0	11 IRQ11		
1-0	IDE Primary Channel IRQ Routing 00 IRQ14default		
	01 IRQ15		
	10 IRQ10		
	11 IRQ11		

Plug and Play Control

Offset :	50 - Reserved (Do Not Program)RW	Offset :	58 - PNP IRQ Routing 4RW
7-0	Reserved default = 24h	7-4	Reserved always reads 0
Offset	54 - PCI IRQ PolarityRW	3-0	PIRQ2 Routing (see PnP IRQ routing table)
7-4	Reservedalways reads 0		PnP IRQ Routing Table
3	PIRQA#		0000 Disableddefault
3	0 Non-invert (Level)default		0001 IRQ1
	1 Invert (Edge)		0010 Reserved
2	PIRQB#		0011 IRQ3
4	0 Non-invert (Level)default		0100 IRQ4
	1 Invert (Edge)		0101 IRQ5
1	PIRQC#		0110 IRQ6
1	0 Non-invert (Level)default		0111 IRQ7
	1 Invert (Edge)		1000 Reserved
0	PIRQD#		1001 IRQ9
U	0 Non-invert (Level)default		1010 IRQ10
	1 Invert (Edge)		1011 IRQ11
	, ,		1100 IRQ12
Note:	PIRQA-D# normally connect to PCI interrupt pins		1101 Reserved
	INTA-D# (see pin definitions for more information).		1110 IRQ14
Offset	55 - PNP IRQ Routing 1RW		1111 IRQ15
7-4	PIRQA# Routing (see PnP IRQ routing table)	Offset	59 - PIRQ Pin Configuration (04h)RW
3-0	PIRQ0 Routing (see PnP IRQ routing table)	7-3	
			3
Offset :	56 - PNP IRQ Routing 2RW	2	PIRQ2 / GPI21 Selection (Pin G3) 0 PIRQ2
7-4	PIRQC# Routing (see PnP IRQ routing table)		1 GPI21default
3-0	PIRQB# Routing (see PnP IRQ routing table)	1	PIRQ1 / KEYLOCK Selection (Pin J4)
0.00		1	0 PIRQ1
	57 - PNP IRQ Routing 3RW		1 KEYLOCK
7-4	PIRQD# Routing (see PnP IRQ routing table)	0	
3-0	PIRQ1 Routing (see PnP IRQ routing table)	0	PIRQ0 / GPI20 Selection (Pin H5) 0 PIRO0default
			1 GPI20
			1 01120

1

Enable

Offset 5A – KBC / RTC Control	.RV	V
		_

Bits 7-4 of this register are latched from pins SD7-4 at powerup but are read/write accessible so may be changed after power-up to change the default strap setting:

7	Keyboard RP16 latched from SD7
6	Keyboard RP15 latched from SD6
5	Keyboard RP14 latched from SD5
4	Keyboard RP13 latched from SD4
3	Reserved always reads 0
2	Internal RTC Enable
	0 Disable
	1 Enabledefault
1	Internal PS2 Mouse Enable
	0 Disabledefault
	1 Enable
0	Internal KBC Enable
	0 Disabledefault

Note: External strap option values may be set by connecting the indicated external pin to a 4.7K ohm pullup (for 1) or driving it low during reset with a 7407 TTL open collector buffer (for 0) as shown in the suggested circuit below:

Figure 5. Strap Option Circuit

Offset :	5B - Internal RTC Test ModeRW
7-4	Reserved always reads 0
3	RTC Map Rx32 to Rx7F Century Byte
	0 Disable default
	1 Enable
2	RTC Reset Enable (do not program)default=0
1	RTC SRAM Access Enable
_	0 Disabledefault
	1 Enable
	This bit is set if the internal RTC is disabled but it is
	desired to still be able to access the internal RTC
	SRAM via ports 74-75. If the internal RTC is
	enabled, setting this bit does nothing (the internal
	RTC SRAM should be accessed at either ports 70/71
	or 72/73.
0	
U	RTC Test Mode Enable (do not program) .default=0
Offset:	5C - DMA ControlRW
7	Gate Port 61 Command Output
	0 Disabledefault
	1 Enable
6	Passive Release
	0 Disabledefault
	1 Enable
5	Internal Passive Release
	0 Disable default
	1 Enable
4	Dummy Request
	0 Disable default
	1 Enable
3	Extended DMA Command and TC
	0 Disable default
	1 Enable
2	External APIC Configuration
_	0 External APIC on XD Busdefault
	1 External APIC on SD Bus (disable XOE# for
	APIC cycles)
1	Reservedalways reads 0
0	DMA Line Buffer Disable
U	0 DMA cycles can be to/from line buffer def
	1 Disable DMA Line Buffer
	I DISAUL DIVIA LIIIC DUITCI

-40-

Distributed DMA / Serial IRQ Control

Offset 61-60 - Distributed DMA Ch 0 Base / EnableRW				
15-4	Channel 0 Base Address Bits 15-4 default = 0			
3	Channel 0 Enable			
	0 Disabledefault			
	1 Enable			
2-0	Reserved always reads 0			
Offset (63-62 - Distributed DMA Ch 1 Base / EnableRW			
15-4	Channel 1 Base Address Bits 15-4 default = 0			
3	Channel 1 Enable			
	0 Disabledefault			
	1 Enable			
2-0	Reserved always reads 0			
Offset (65-64 - Distributed DMA Ch 2 Base / EnableRW			
15-4	Channel 2 Base Address Bits 15-4 default = 0			
3	Channel 2 Enable			
	0 Disabledefault			
	1 Enable			
2-0	Reserved always reads 0			
Offset (67-66 - Distributed DMA Ch 3 Base / EnableRW			
Offset (
15-4	Channel 3 Base Address Bits 15-4 default = 0			
15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable			
15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable			
15-4 3 2-0	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable			
15-4 3 2-0	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRO Control RW			
15-4 3 2-0 Offset (Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW			
15-4 3 2-0 Offset 6 15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRO Control RW Reserved always reads 0			
15-4 3 2-0 Offset 6 15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW Reserved always reads 0 Serial IRQ Enable			
15-4 3 2-0 Offset 6 15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW Reserved always reads 0 Serial IRQ Enable 0 0 Disable default			
15-4 3 2-0 Offset 6 15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW Reserved always reads 0 Serial IRQ Enable default 0 Disable default 1 Enable			
15-4 3 2-0 Offset 6 15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 Serial IRQ Enable default 0 Disable default 1 Enable Serial IRQ Mode			
15-4 3 2-0 Offset 6 15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable RW Reserved always reads 0 Serial IRQ Control RW Reserved always reads 0 Serial IRQ Enable 0 Disable default 1 Enable Serial IRQ Mode 0 Continuous Mode default			
15-4 3 2-0 Offset 0 15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable RW Reserved always reads 0 Serial IRQ Enable 0 Disable default 1 Enable Serial IRQ Mode 0 Continuous Mode default 1 Quiet Mode			
15-4 3 2-0 Offset 0 15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable			
15-4 3 2-0 Offset 0 15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable RW Reserved always reads 0 Serial IRQ Enable 0 Disable default 1 Enable Serial IRQ Mode 0 Continuous Mode default 1 Quiet Mode Start-Frame Width 00 4 PCI Clocks default			
15-4 3 2-0 Offset 0 15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable RW Reserved always reads 0 Serial IRQ Control RW Reserved always reads 0 Serial IRQ Enable 0 Disable default 1 Enable Serial IRQ Mode 0 Continuous Mode default 1 Quiet Mode Start-Frame Width 00 4 PCI Clocks default 01 6 PCI Clocks default			

The frame size is fixed at 21 PCI clocks.

Offset 6	6B-6A - Distributed DMA Ch 5 Base / Enable RW
15-4	Channel 5 Base Address Bits 15-4 default = 0
3	Channel 5 Enable
	0 Disabledefault
	1 Enable
2-0	Reserved always reads 0
Offset 6	6D-6C - Distributed DMA Ch 6 Base / Enable RW
15-4	Channel 6 Base Address Bits 15-4 default = 0
3	Channel 6 Enable
	0 Disabledefault
	1 Enable
2-0	Reserved always reads 0
Offset 6	6F-6E - Distributed DMA Ch 7 Base / Enable RW
15-4	Channel 7 Base Address Bits 15-4 default = 0
3	Channel 7 Enable
	0 Disabledefault
	1 Enable
2-0	Reserved always reads 0

Miscellaneous / General Purpose I/O

Offset '	73-70 - Subsystem ID	WO
31-0	Subsystem ID and Subsystem Vendor ID	
	Write Only. Always reads back 0.	
	Contents may be read at offset 2C.	
Offset '	77-74 – GPIO / Chip Select Control	RW

Offset 7	7-74 -	- GPIO / Chip Select Control	RW
31-30	Rese	ervedalways	reads 0
29	PCS1	1# For Internal I/O (Pin N5)	
	0	Disable	.default
	1	Enable	
28	PCS(0# For Internal I/O (Pin L4)	
	0	Disable	.default
	1	Enable	
27	RTC	C Rx32 Remap to Rx7F Century Byte	
	0	Disable	.default
	1	Enable	
26	RTC	C Rx32 Write Protect	
	0	Disable	.default
	1	Enable	
25		C Rx0D Write Protect	
	0	Disable	.default
	1	Enable	
24	DMA	A Controller Shadow Registers	
	0	Disable	.default
	1	Enable	
23-22		rvedalways	reads 0
21	PCS1	1# Enable (Pin N5)	
	0	Disable	.default
	1	Enable	
20	PCS(0# Enable (Pin L4)	
	0	Disable	.default
	1	Enable	
19		CS# Enable (Pin N4)	
		Disable	.default
	1	Enable	
18		026 Enable (Pin K1)	
		Disable	.default
		Enable	
17		025 Enable (Pin L1)	1 6 1
		Disable	.default
1.0	1	Enable	
16		024 Enable (Pin M2)	J - C 14
		Disable	.derauit
15	1 CDO	Enable (Pin M4)	
15	_	Disable (Pin M4)	dofou!
	0 1	Enable	.uerauit
14	_	D22 Enable (Pin M3)	
14	GPU ()	Disable	dafault
	1	Enable	.uciauit
	1	Eliable	

13	GPO21 Enable
	0 Disabledefault
	1 Enable
12	GPO20 Enable
	0 Disabledefault
	1 Enable
11	GPO19 Enable (Pin K16)
	0 Disabledefault
	1 Enable
10	GPO18 Enable (Pin R2)
	0 Disabledefault
	1 Enable
9	GPO17 Enable (Pin R1)
	0 Disabledefault
	1 Enable
8	Decode
	0 Subtractivedefault
_	1 Positive
7	APIC Enable
	0 Disabledefault
,	1 Enable
6	GPI12 Enable (Pin P18)
	0 Disable default 1 Enable
=	1 2
5	GPI11 Enable (Pin N17) 0 Disabledefault
	1 Enable
4	GPI10 Enable (Pin P16)
7	0 Disable
	1 Enable
3	GPI9 Enable (Pin U19)
	0 Disable default
	1 Enable
2	GPI8 Enable (Pin H19)
	0 Disabledefault
	1 Enable
1	Internal APIC
	0 Disabledefault
	1 Enable
0	GPI0/IOCHCK, GPO[7-1]/LA[23-17] Select
	0 GPI0, GPO[7-1]default
	1 IOCHCK, LA[23-17]

Bits 18-0 also control multi-function pin definitions. Refer to the General Purpose Inputs and Outputs sections of the pin descriptions for more information.

Offset 7B-78 – Programmable Chip Select ControlRW 31-16 PCS1 I/O Port Address [15-0] 15-0 PCS0 I/O Port Address [15-0] Offset 7F-7C – PC/PCI ControlRW always reads 0 31-11 Reserved **PCI DMA Pair C Enable** 10 0 Disabledefault Enable **PCI DMA Pair B Enable** Disabledefault 1 Enable **PCI DMA Pair A Enable** 0 Disabledefault Enable 1 **PCI DMA Channel 7 Enable** 7 0 Disabledefault Enable **PCI DMA Channel 6 Enable** 0 Disabledefault 1 Enable **PCI DMA Channel 5 Enable** 0 Disabledefault 1 Enable always reads 0 Reserved 3 **PCI DMA Channel 3 Enable** Disabledefault 1 Enable **PCI DMA Channel 2 Enable** 0 Disabledefault Enable **PCI DMA Channel 1 Enable** 1 0 Disabledefault 1 Enable **PCI DMA Channel 0 Enable** 0 Disabledefault

Offset 80 – Programmable Chip Select MaskRW

- 7-4 PCS1 I/O Port Address Mask bits 3-0
- 3-0 PCS0 I/O Port Address Mask bits 3-0

Enable

Jiiset	<u>81 – 18</u>	A Positive De	coding Co	<u>ontrol</u>	<u> 1</u>	<u>KW</u>
7	On-B	oard I/O Por	t Positive	Decod	ling	
	0	Disable				defaul
	1	Enable				
6	Micr	osoft-Sound	System	I/O	Port	Positive
	Deco	ding				
	0	Disable				defaul
	1	Enable				
5-4	Micr	osoft-Sound S	System I/C) Deco	de Ran	ge
	00	0530h-0537h	1			defaul
	01	0604h-060B	h			
	10	0E80-0E87h				
	11	0F40h-0F471	n			
3	APIC	C Positive Dec	oding			
	0	Disable				default
	1	Enable				
2	BIOS	S ROM Positi	ve Decodi	ng		
	0	Disable	•••••			defaul
	1	Enable				
1	PCS1	l Positive Dec	oding			
	0	Disable	•••••			defaul
	1	Enable				
0	PCS0) Positive Dec	_			
	0	Disable	•••••			defaul
	1	Enable				

Offset	82 – IS	A Positive Decoding Control 2RW
7	FDC	Positive Decoding
	0	Disabledefault
	1	Enable
6	LPT	Positive Decoding
	0	Disabledefault
	1	Enable
5-4	LPT	Decode Range
	00	3BCh-3BFh, 7BCh-7BEhdefault
	01	378h-37Fh, 778h-77Ah
	10	278h-27Fh, 678h-67Ah
	11	-reserved-
3	Game	e Port Positive Decoding
	0	Disable default
	1	Enable
2	MID	I Positive Decoding
	0	Disabledefault
	1	Enable
1-0	MID	I Decode Range
	00	300h-303hdefault
	01	310h-313h
	10	320h-323h
	11	330h-333h

Offset 8	83 – IS	A Positive Do	ecoding Control 3RW
7	COM	Port B Posi	tive Decoding
	0		default
	1	Enable	
6-4	COM	-Port B Dec	ode Range
	000	3F8h-3FFh	(COM1)default
	001	2F8h-2FFh	(COM2)
	010	220h-227h	
	011	228h-22Fh	
	100	238h-23Fh	
	101	2E8h-2EFh	(COM4)
	110	338h-33Fh	
	111	3E8h-3EFh	(COM3)
3	COM	Port A Posi	tive Decoding
	0	Disable	default
	1	Enable	
2-0	COM	-Port A Dec	ode Range
			(COM1)default
	001	2F8h-2FFh	(COM2)
	010	220h-227h	
	011	228h-22Fh	
		238h-23Fh	
		2E8h-2EFh	(COM4)
	110	338h-33Fh	
	111	3E8h-3EFh	(COM3)

Offset 8	84 – ISA Positive Decoding Control 4RW
7-4	Reserved always reads 0
3	FDC Decoding Range
	0 Primarydefault
	1 Secondary
2	Sound Blaster Positive Decoding
	0 Disabledefault
	1 Enable
1-0	Sound Blaster Decode Range
	00 220h-22Fh, 230h-233hdefault
	01 240h-24Fh, 250h-253h
	10 260h-26Fh, 270h-273h
	11 280h-28Fh, 290h-293h

Offset	87 – Test 1RW		
7	UltraDMA-66 Test		
	0 Disabledefault		
	1 Enable		
6	USB Port Test		
	0 Disabledefault		
	1 Enable		
5-4	USB Port Test Select		
3-0	Reserved always reads 0		
Offset	88 – Test 2RW		
7-5	Reserved always reads 0		
4	PLL PU		
	0 Enabledefault		
	1 Disable		
3	PLL Test Mode		
	0 Disabledefault		
	1 Enable		
2-0			

Offset 89 – PLL ControlRW				
7-4	Reserved always reads 0			
3-2	PLL PCLK Input Delay Select			
1-0	PLL CLK66 Feedback Delay Select			
	·			

Function 1 Registers - Enhanced IDE Controller

This Enhanced IDE controller interface is fully compatible with the SFF 8038i v.1.0 specification. There are two sets of software accessible registers -- PCI configuration registers and Bus Master IDE I/O registers. The PCI configuration registers are located in the function 1 PCI configuration space of the VT82C596B. The Bus Master IDE I/O registers are defined in the SFF8038i v1.0 specification.

PCI Configuration Space Header

Offset 1-0 - Vendor ID (1106h=VIA)RO		
Offset 3	3-2 - Device ID (0571h=IDE Controller)RO	
Offset 5	-4 - CommandRW	
15-10	Reserved always reads 0	
9	Fast Back to Back Cyclesfixed at 0 (disabled)	
8	SERR# Enablefixed at 0 (disabled)	
7	Address Stepping default=1 (enabled)	
	VIA recommends that this bit always be set to 1 to	
	provide additional address decode time to IDE	
	devices.	
6	Parity Error Responsefixed at 0 (disabled)	
5	VGA Palette Snoopfixed at 0 (disabled)	
4	Memory Write & Invalidatefixed at 0 (disabled)	
3	Special Cycles fixed at 0 (disabled)	
2	Bus Master default = 0 (disabled)	
	S/G operation can be issued only when the "Bus	
	Master" bit is enabled.	
1	Memory Spacefixed at 0 (disabled)	
0	I/O Space default = 0 (disabled)	
	When the "I/O Space" bit is disabled, the device will	
	not respond to any I/O addresses for both compatible	
	and native mode.	
Office 4	-6 - Status RWC	
COTTSet /	-6 - Status RWC	

Offset '	Offset 7-6 - StatusRWC				
15	Detected Parity Error	default=0			
14	Signalled System Error	default=0			
13	Received Master Abort	default=0			
12	Received Target Abort	default=0			
11	Signalled Target Abort	Fixed at 0			
10-9	DEVSEL# Timing	$default = 01 $ (medium)			
8	Data Parity Detected	default=0			
7	Fast Back to Back	Fixed at 1			
6-0	Reserved	always reads 0			

Offset 8 - Revision ID.....RO 0-7 Revision Code for IDE Controller Logic Block

			V 1 0 2	1C370D
Offer of 0) D			DW
			nce	
7			y fixed at 1 (S	
6-4	Rese		alwa	
3			tor - Secondary	
			may be set to eithe	r mode by
		ng bit-2)		
2		nnel Operating M		
	0		ode (fixed addressin	
	1		e (flexible addressin	
1			tor - Primary	
			may be set to eithe	r mode by
0		ng bit-0)	. J. D.:	
0	Cnar	nnel Operating Me	ode - Primary ode (fixed addressin	·~)
	1		e (flexible addressin	
	1	Native PCI Mode	e (Hexible addressiii	g) dei
Compat	ibility	Mode (fixed IRQs	and I/O addresses):	<u>.</u>
		Command Block	Control Block	
Chann	<u>el</u>	Registers	<u>Registers</u>	<u>IRQ</u>
Pri		1F0-1F7	3F6	14
Sec		170-177	376	15
Native F	PCI M	ode (registers are p	orogrammable in I/C) space)
		Command Block		_
Chann				
Pri	_	Registers BA @offset 10h	BA @offset 14h	
Sec		BA @offset 18h		
Commo	nd roa	ister blocks are 8 b	utos of I/O spece	
			O space (only byte	2 is used)
Colluloi	regisu	ers are 4 bytes or 1/	O space (only byte	z is useu)
Offset A	A - Sul	b Class Code (01h	=IDE Controller)	RO
Offset I	3 - Ba	se Class Code (011	h=Mass Storage C	<u>trlr)RO</u>
Offset I) - La	tency Timer (00h)		RW
7-4				
3-0	Rese		alwa	
Offset I	E - He	ader Type (00h)		RO
Offset I	7 - BIS	ST (00h)	•••••	RO

Offset 1	3-10 - Pri Data / Command Base AddressRW		
Specifie	s an 8 byte I/O address space.		
	Reservedalways read 0Port Addressdefault=01F0hFixed at 001bfixed		
Specifie	s a 4 byte I/O address space of which only the third active (i.e., 3F6h for the default base address of 3F4h).		
	Reservedalways read 0Port Addressdefault=03F4hFixed at 01bfixed		
	B-18 - Sec Data / Command Base AddressRW s an 8 byte I/O address space.		
	Reservedalways read 0Port Addressdefault=0170hFixed at 001bfixed		
Specifie	F-1C - Sec Control / Status Base AddressRW s a 4 byte I/O address space of which only the third active (i.e., 376h for the default base address of 374h).		
31-16 15-2 1-0	Reservedalways read 0Port Addressdefault=0374hFixed at 01bfixed		
Specifie	s a 16 byte I/O address space compliant with the SFF-ev 1.0 specification.		
31-16 15-4 3-0	Reservedalways read 0Port Addressdefault=CC0hFixed at 0001bfixed		

7-0		terrupt Pin (00h)rupt Routing Mode	
	00h	Legacy mode interrupt routing de	fault
	01h	Native mode interrupt routing	
Offset	3E - Mi	in Gnt (00h)	.RO

IDE-Controller-Specific Configuration Registers

Offset 4	0 - Chip EnableRW
7-4	Reserved always reads 0
3-2	Reserved (Do Not Program) R/W, default = 0
1	Primary Channel Enable default = 0 (disabled)
0	Secondary Channel Enable default = 0 (disabled)
Offset 4	1 - IDE ConfigurationRW
7	Primary IDE Read Prefetch Buffer
	0 Disabledefault
	1 Enable
6	Primary IDE Post Write Buffer
	0 Disabledefault
	1 Enable
5	Secondary IDE Read Prefetch Buffer
	0 Disabledefault
	1 Enable
4	Secondary IDE Post Write Buffer
	0 Disabledefault
	1 Enable
3	Reserved (Do Not Change)default=0
2	Reserved (Do Not Change)default=1
1	Reserved (Do Not Change)default=1
0	Reserved (Do Not Change)default=0
Offset 4	2 - Reserved (Do Not Program)RW
7-2	Reserved always reads 0
1-0	Reserved (Do Not Program) default = 0

Offset 4	43 - FI	FO Co	onfigurationRW
7-4	Rese	rved	always reads 0
3-2	Thre	shold	for Primary Channel
	00	1	
	01	1/4	
	10	1/2	default
	11	3/4	
1-0	Thre	shold	for Secondary Channel
	00	1	•
	01	1/4	
	10	1/2	default
	11	3/4	

Offset	44 - Miscellaneous Control 1RW		
7	Reserved always reads 0		
6	Master Read Cycle IRDY# Wait States		
	0 0 wait states		
	1 1 wait statedefault		
5	Master Write Cycle IRDY# Wait States		
	0 0 wait states		
	1 1 wait statedefault		
4	Reserved (Do Not Program) R/W, default = 0		
3	Bus Master IDE Status Register Read Retry		
	Retry bus master IDE status register read when		
	master write operation for DMA read is not complete		
	0 Disabled		
	1 Enableddefault		
2-1	Reserved (Do Not Program)R/W, default = 0		
0	UltraDMA Host Must Wait for First Strobe		
	Before Termination 0 Enableddefault		
	0 Enabled default 1 Disabled		
	1 Disabled		
Offset -	45 - Miscellaneous Control 2RW		
7	Reserved always reads 0		
6	Interrupt Steering Swap		
	0 Don't swap channel interruptsdefault		
	1 Swap interrupts between the two channels		
5-4	Reserved always reads 0		
3	Memory Read Multiple Command		
	0 Disabledefault		
_	1 Enable		
2	Memory Read and Invalidate Command		
	0 Disabledefault		
4	1 Enable		
1	Secondary Channel Threshold Enable		
	O Disable (data transfer starts immediately if FIFO is not empty)		
	1 Enable (data transfer will not start until the		
	FIFO is filled to the threshold set in bits 1-0 of		
	Rx43)default		
0	Primary Channel Threshold Enable		
U	0 Disable (data transfer starts immediately if		
	FIFO is not empty)		
	1 Enable (data transfer will not start until the		
	FIFO is filled to the threshold set in bits 3-2 of		
	Rx43)default		

7	Primary Channel Read DMA FIFO Flush			
	1 = Enable FIFO flush for read DMA when interrup			
	asserts primary channeldefault=1 (enabled)			
6	Secondary Channel Read DMA FIFO Flush			
	1 = Enable FIFO flush for Read DMA when interrupt			
	asserts secondary channelDefault=1 (enabled)			
5	Primary Channel End-of-Sector FIFO Flush			
	1 = Enable FIFO flush at the end of each sector for			
	the primary channelDefault=0 (disabled)			
4	Secondary Channel End-of-Sector FIFO Flush			
	1 = Enable FIFO flush at the end of each sector for			
	the secondary channelDefault=0 (disabled)			
3-2	Reservedalways reads 0			
1-0	Max DRDY Pulse Width			
	Maximum DRDY# pulse width after the cycle count.			
	Command will deassert in spite of DRDY# status to			
	avoid system ready hang.			
	00 No limitationdefault			
	01 64 PCI clocks			
	10 128 PCI clocks			
	11 192 PCI clocks			

Offset 4B-48 - Drive Timing ControlRW	Offset 53-50 - UltraDMA Extended Timing Control RW
The following fields define the Active Pulse Width and	31 Pri Drive 0 UltraDMA-Mode Enable Method
Recovery Time for the IDE DIOR# and DIOW# signals:	0 Enable by using "Set Feature" command def
31-28 Primary Drive 0 Active Pulse Width def=1010b	1 Enable by setting bit-30 of this register
27-24 Primary Drive 0 Recovery Time def=1000b	30 Pri Drive 0 UltraDMA-Mode Enable
23-20 Primary Drive 1 Active Pulse Width def=1010b	0 Disabledefault
19-16 Primary Drive 1 Recovery Time def=1000b	1 Enable UltraDMA-Mode Operation
15-12 Secondary Drive 0 Active Pulse Width def=1010b	29 Pri Drive 0 Transfer Mode
11-8 Secondary Drive 0 Recovery Time def=1000b	0 Based on DMA or PIO Modedefault
7-4 Secondary Drive 1 Active Pulse Width def=1010b	1 Based on UltraDMA Mode
3-0 Secondary Drive 1 Recovery Time def=1000b	28-26 Reserved always reads 0
The actual value for each field is the encoded value in the field	25-24 Pri Drive 0 Cycle Time (T = 30nsec @33MHz)
plus one and indicates the number of PCI clocks.	00 2T
plus one and indicates the named of 1 of clocks.	01 3T
Offset 4C - Address Setup TimeRW	10 4T
<u> </u>	11 5Tdefault
7-6 Primary Drive 0 Address Setup Time 5-4 Primary Drive 1 Address Setup Time	23 Pri Drive 1 UltraDMA-Mode Enable Method
3-2 Secondary Drive 0 Address Setup Time	22 Pri Drive 1 UltraDMA-Mode Enable 23 Pri Drive 1 UltraDMA-Mode Enable
1-0 Secondary Drive 1 Address Setup Time	21 Pri Drive 1 Transfer Mode
For each field above:	20 Reservedalways reads 0
00 1T	19 Pri Clock Source
01 2T	0 33 MHzdefault
10 3T	1 66 MHz
11 4Tdefault	18 Reservedalways reads 0
11 71ucraunt	17-16 Pri Drive 1 Cycle Time
Offset 4E - Secondary Non-1F0 Port Access TimingRW	17-10 THE Drive I Cycle Time
7-4 DIOR#/DIOW# Active Pulse Width def=1111b	15 Sec Drive 0 UltraDMA-Mode Enable Method
3-0 DIOR#/DIOW# Recovery Timedef=1111b	14 Sec Drive 0 UltraDMA-Mode Enable
The actual value for each field is the encoded value in	13 Sec Drive 0 Transfer Mode
the field plus one and indicates the number of PCI	12-10 Reserved always reads 0
clocks.	9-8 Sec Drive 0 Cycle Time
	7 Sec Drive 1 UltraDMA-Mode Enable Method
Offset 4F - Primary Non-1F0 Port Access Timing`RW	6 Sec Drive 1 UltraDMA-Mode Enable
7-4 DIOR #/ DIOW # Active Pulse Width def=1111b	5 Sec Drive 1 Transfer Mode
3-0 DIOR#/DIOW# Recovery Timedef=1111b	4 Reservedalways reads 0
The actual value for each field is the encoded value in	3 Sec Clock Source
the field plus one and indicates the number of PCI	0 33 MHzdefault
clocks.	1 66 MHz
	2 Reservedalways reads 0
	1.0 C D : 1.C 1 T:

Each byte defines UltraDMA operation for the indicated drive. The bit definitions are the same within each byte.

1-0 Sec Drive 1 Cycle Time

Offset 5	54 – UltraDMA FIFO ControlRW
7-5	Reserved (Do Not Program)RW, default=0
4	Split REQ Change Channel
	0 Enabledefault
	1 Disable
3	Reserved always reads 0
2	Change Drive to Clear All FIFO & Internal States
	0 Disabled
	1 Enableddefault
1	Add Dummy FIFO Push After End of Transfer
	0 Enabled
	1 Disableddefault
	This bit is normally set to 0 for effective handling of
	transfer lengths that are not doubleword multiples
0	Complete DMA Cycle with Transfer Size Less
	Than FIFO Size
	0 Enableddefault
	1 Disabled

Offset 6	<u> </u>
15-12	Reservedalways reads
11-0	Number of Bytes Per Sectordefault=200
Offset 6	69-68 - Secondary Sector SizeRV
15-12	Reservedalways reads
11-0	Number of Bytes Per Sector def=200h (512 bytes

Offset '	<u> 70 – Primary IDE StatusRW</u>	<u>Offset</u>	<u> 78 – Secondary IDE StatusRW</u>
7	Interrupt Status	7	Interrupt Status
6	Prefetch Buffer Status	6	Prefetch Buffer Status
5	Post Write Buffer Status	5	Post Write Buffer Status
4	DMA Read Prefetch Status	4	DMA Read Prefetch Status
3	DMA Write Prefetch Status	3	DMA Write Prefetch Status
2	S/G Operation Complete	2	S/G Operation Complete
1-0	Reserved always reads 0	1-0	Reservedalways reads 0
Offset '	71 – Primary Interrupt ControlRW	Offset	79 - Secondary Interrupt ControlRW
7-1	Reserved always reads 0	7-1	Reservedalways reads 0
0	Flush FIFO Before Generating IDE Interrupt	0	Flush FIFO Before Generating IDE Interrupt
	0 Desabledefault		0 Desabledefault
	1 Enable		1 Enable
Offset '	74 – Primary IDE Command 1RW	Offset	7C – Secondary IDE Command 1RW
7	Reload Sector Size After Last Command Register	7	Reload Sector Size After Last Command Register
	Write		Write
6-0	Reserved always reads 0	6-0	Reserved always reads 0
Offset '	75 – Primary IDE Command 2RW	Offset	7D – Secondary IDE Command 2RW
7	Set Controller to Perform PIO Mode Data Port	7	Set Controller to Perform PIO Mode Data Port
	Prefetch		Prefetch
6	Set Controller to Perform PIO Mode Data Port	6	Set Controller to Perform PIO Mode Data Port
	Buffer Write		Buffer Write
5	Set Controller to Perform DMA Mode Read	5	Set Controller to Perform DMA Mode Read
	Pipeline Operation		Pipeline Operation
4	Set Controller to Perform DMA Mode Write	4	Set Controller to Perform DMA Mode Write
	Pipeline Operation		Pipeline Operation
3	Stop S/G Bus Master	3	Stop S/G Bus Master
2-0	Reserved always reads 0	2-0	Reserved always reads 0

Offset 83-80 - Primary S/G Descriptor AddressRW

Offset 8B-88 - Secondary S/G Descriptor AddressRW

IDE I/O Registers

These registers are compliant with the SFF $8038I\ v1.0$ standard. Refer to the SFF $8038I\ v1.0$ specification for further details.

I/O Offset 0 - Primary Channel Command

I/O Offset 2 - Primary Channel Status

I/O Offset 4-7 - Primary Channel PRD Table Address

I/O Offset 8 - Secondary Channel Command

I/O Offset A - Secondary Channel Status

I/O Offset C-F - Secondary Channel PRD Table Address

Function 2 Registers - Universal Serial Bus Controller

This USB host controller interface is fully compatible with UHCI specification v1.1. There are two sets of software accessible registers: PCI configuration registers and USB I/O registers. The PCI configuration registers are located in the function 2 PCI configuration space of the VT82C596B. The USB I/O registers are defined in the UHCI v1.1 specification.

PCI Configuration Space Header

Offset 1-0 - Vendor IDRO		
0-7	Vendor ID	(1106h = VIA Technologies)
Offset 3-2 - Device IDRO		
Offset .		
0-7	Device ID	(3038h = VT82C596B USB Controller)
Offset 5-4 - CommandRW		
15-8		always reads 0
7		pping default=0 (disabled)
6		arity error response)fixed at 0
5	Reserved (V	GA palette snoop)fixed at 0
4	Memory Wi	rite and Invalidate. default=0 (disabled)
3	Reserved (sp	pecial cycle monitoring)fixed at 0
2	Bus Master	default=0 (disabled)
1	Memory Spa	acedefault=0 (disabled)
0	I/O Space	default=0 (disabled)
Offset '	7-6 - Status	RWC
15		etected parity error) always reads 0
14		estem Error
13		aster Abortdefault=0
12		arget Abort default=0
11		arget Abort default=0
10-9	DEVSEL# 1	
	00 Fast	
	01 Mediu	ımdefault (fixed)
	10 Slow	
	11 Reserv	ved
8-0	Reserved	always reads 0

Offset 8 - Revision ID (nnh)RO			
7-0 Silicon Revision Code (0 indicates first silicon)			
Offset 9 - Programming Interface (00h)RO			
Offset A - Sub Class Code (03h)RO			
Offset B - Base Class Code (0Ch)RO			
Offset (D - Latency TimerRW		
7-0	Timer Valuedefault = 16h		
Offset (E - Header Type (00h)RO		
Offset 2	23-20 - USB I/O Register Base AddressRW		
31-16	Reserved always reads 0		
15-5	USB I/O Register Base Address. Port Address for		
	the base of the 32-byte USB I/O Register block,		
	corresponding to AD[15:5]		
4-0	00001b		
Offset 3	C - Interrupt Line (00h)RW		
7-4	Reserved always reads 0		
3-0	USB Interrupt Routing default = 16h		
	0000 Disableddefault		
	0001 IRQ1		
	0010 Reserved		
	0011 IRQ3		
	0011 IRQ3 0100 IRQ4		
	0011 IRQ3 0100 IRQ4 0101 IRQ5		
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6		
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7		
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8		
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9		
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10		
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11		
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10		
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11		
	0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12		

Offset 3D - Interrupt Pin (04h).....RO

USB-Specific Configuration Registers

Offset	40 - Miscellaneous Control 1RW	Offset 4	1 - Miscellaneous Control 2RW
7	PCI Memory Command Option 0 Support Memory-Read-Line, Memory-Read-Multiple, and Memory-Write-and-Invalidate default 1 Only support Memory Read, Memory Write Commands	7	USB 1.1 Improvement for EOP 0 USB Specification 1.1 Compliant default If a bit stuffing error occurs before EOP, the receiver will accept the packet 1 USB Specification 1.0 Compliant If a bit stuffing error occurs before EOP, the
6	Babble Option O Automatically disable babbled port when EOF babble occursdefault Don't disable babbled port	6	receiver will <u>ignore</u> the packet Patch Read / Resume Issue 0 Enable (Fix the Bug) (Normal Setting) default 1 Disable (when one USB port is in reset or
5	PCI Parity Check Option O Disable PERR# generationdefault Enable parity check and PERR# generation	5	resume status, the controller may not see the device attached at the other USB port) Patch 1 Bit-Time EOP
4	Reserved always reads 0		The USB spec says that the device must assert an
3	USB Data Length Option O Support TD length up to 1280default Support TD length up to 1023		 EOP in at least two bit times. 0 Enable (accept 1 bit-time EOP)default 1 Disable (require 2 bit-time EOP)
2	USB Power Management O Disable USB power managementdefault Enable USB power management	4	Hold PCI Request for Successive Accesses 0 Disable 1 Enable
1	DMA Option 0 16 DW burst accessdefault		Setting this bit to "enable" causes the system to treat the USB request as higher priority
0	1 8 DW burst access PCI Wait States 0 Zero waitdefault	3	Frame Counter Test Mode 0 Disabledefault 1 Enable
	1 One wait	2	Trap Option O Set trap 60/64 status bits only when trap 60/64 enable bits are set

.....always reads 0

Offset 60 - Serial Bus Release NumberRO 7-0 Release Numberalways reads 10h	<u>USB I/O Registers</u> These registers are compliant with the UHCI v1.1 standard. Refer to the UHCI v1.1 specification for further details.
Offset C1-C0 - Legacy SupportRO 15-0 UHCI v1.1 Compliant always reads 2000h	I/O Offset 3-2 - USB Status I/O Offset 3-2 - USB Status

I/O Offset 5-4 - USB Interrupt Enable

I/O Offset 7-6 - Frame Number

I/O Offset B-8 - Frame List Base Address

I/O Offset 0C - Start Of Frame Modify

I/O Offset 11-10 - Port 1 Status / Control

I/O Offset 13-12 - Port 2 Status / Control

I/O Offset 1F-14 - Reserved

Function 3 Registers - Power Management and SMBus

This section describes the ACPI (Advanced Configuration and Power Interface) Power Management system of the VT82C596B which includes a System Management Bus (SMBus) interface controller. The power management system of the VT82C596B supports both ACPI and legacy power management functions and is compatible with the APM v1.2 and ACPI v1.0 specifications.

PCI Configuration Space Header

Offset 1	<u>1-0 - Vendor IDRO</u>
0-7	Vendor ID (1106h = VIA Technologies)
Offset 3	8-2 - Device IDRO
0-7	Device ID (3050h = ACPI Power Mgmt)
Offset 5	5-4 - CommandRW
15-8	Reserved always reads 0
7	Address Steppingfixed at 0
6	Reserved (parity error response)fixed at 0
5	Reserved (VGA palette snoop)fixed at 0
4	Memory Write and Invalidatefixed at 0
3	Reserved (special cycle monitoring)fixed at 0
2	Bus Master fixed at 0
1	Memory Spacefixed at 0
0	I/O Spacefixed at 0
Offset 7	7-6 - StatusRWC
15	Detected Parity Error always reads 0
14	Signalled System Error always reads 0
13	Received Master Abort always reads 0
12	Received Target Abort always reads 0
11	Signalled Target Abort always reads 0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumdefault (fixed)
	10 Slow
	11 Reserved
8	Data Parity Detected always reads 0
7	Fast Back to Back Capable always reads 1
6-0	Reserved always reads 0

7-0	Silicon Revision Code	$default = 20h$
Offset 9	- Programming Interface (00h)	RO
	ue returned by this register may be chared value to PCI Configuration Function	
Offset A	A - Sub Class Code (00h)	RO
	ue returned by this register may be chared value to PCI Configuration Function	
Offset I	B - Base Class Code (00h)	RO
The val	B - Base Class Code (00h)ue returned by this register may be chared value to PCI Configuration Function	anged by writing
The value the desired	ue returned by this register may be cha	anged by writing n 3 offset 63h.
The value the desired	ue returned by this register may be chared value to PCI Configuration Function	nged by writing n 3 offset 63h.

Offset 8 - Revision ID (nnh).....RO

Power Management-Specific PCI Configuration Registers

Offset 4	40 - Debounc	e ControlRW
7-6	Reserved	always reads 0
5 Debounce LID and PWRBTN# Inputs for 200		AID and PWRBTN# Inputs for 200us
	0 Disab	oledefaul
	1 Enabl	le
4-0	Reserved	always reads (

Offset 4	41 - Ge	eneral Configuration (00h)RW	
7	I/O Enable for ACPI I/O Base		
	0	Disable access to ACPI I/O block default	
	1	Allow access to Power Management I/O	
		Register Block (see offset 4B-48 to set the	
		base address for this register block). The	
		definitions of the registers in the Power	
		Management I/O Register Block are included	
		later in this document, following the Power	
		Management Subsystem overview.	
6	ACP	I Timer Reset	
	0	Disabledefault	
	1	Enable	
5-4	Rese	rved (Do Not Program)default = 0	
3	ACP	I Timer Count Select	
	0	24-bit Timerdefault	
	1	32-bit Timer	
2	RTC	Enable Signal Gated with PSON (SUSC#) in	
	Soft-	Off Mode	
	0	Disable default	
	1	Enable	
1	Clock	k Throttling Clock Selection	
	0	32 usec (512 usec cycle time) default	
	1	1 msec (16 msec cycle time)	
0	Rese	rved (Do Not Program)default = 0	

Offset -	42 - SCI Interrupt Configuration (00h)RW
7	ATX/AT Power IndicatorRO
	0 ATXdefault
	1 AT
6	SUSC StateRO
5	Reserved always reads 0
4	SUSC Default Off Enable StatusRO
3-0	SCI Interrupt Assignment
	0000 Disableddefault
	0001 IRQ1
	0010 Reserved
	0011 IRQ3
	0100 IRQ4
	0101 IRQ5
	0110 IRQ6
	0111 IRQ7
	1000 IRQ8
	1001 IRQ9
	1010 IRQ10
	1011 IRQ11
	1100 IRQ12
	1101 IRQ13
	1110 IRQ14
	1111 IRQ15

Offcot	45 44 Drimany Interment Channel (0000h) DW
<u>Onset</u> 15	45-44 - Primary Interrupt Channel (0000h) RW 1/0 = Ena/Disa IRQ15 as Primary Intrpt Channel
15	1/0 = Ena/Disa IRQ15 as Frimary Intrpt Channel 1/0 = Ena/Disa IRQ14 as Primary Intrpt Channel
	· · ·
13 12	1/0 = Ena/Disa IRQ13 as Primary Intrpt Channel
	1/0 = Ena/Disa IRQ12 as Primary Intrpt Channel
11	1/0 = Ena/Disa IRQ11 as Primary Intrpt Channel
10	1/0 = Ena/Disa IRQ10 as Primary Intrpt Channel
9	1/0 = Ena/Disa IRQ9 as Primary Intrpt Channel
8	1/0 = Ena/Disa IRQ8 as Primary Intrpt Channel
7	1/0 = Ena/Disa IRQ7 as Primary Intrpt Channel
6	1/0 = Ena/Disa IRQ6 as Primary Intrpt Channel
5	1/0 = Ena/Disa IRQ5 as Primary Intrpt Channel
4	1/0 = Ena/Disa IRQ4 as Primary Intrpt Channel
3	1/0 = Ena/Disa IRQ3 as Primary Intrpt Channel
2	Reserved always reads 0
1	1/0 = Ena/Disa IRQ1 as Primary Intrpt Channel
0	1/0 = Ena/Disa IRQ0 as Primary Intrpt Channel
Offset	47-46 - Secondary Interrupt Channel (0000h) RW
15	1/0 = Ena/Disa IRQ15 as Secondary Intr Channel
14	1/0 = Ena/Disa IRQ14 as Secondary Intr Channel
13	1/0 = Ena/Disa IRQ13 as Secondary Intr Channel
12	1/0 = Ena/Disa IRQ12 as Secondary Intr Channel
11	1/0 = Ena/Disa IRQ11 as Secondary Intr Channel
10	1/0 = Ena/Disa IRQ10 as Secondary Intr Channel
9	1/0 = Ena/Disa IRQ9 as Secondary Intr Channel
8	1/0 = Ena/Disa IRQ8 as Secondary Intr Channel
7	1/0 = Ena/Disa IRQ7 as Secondary Intr Channel
6	1/0 = Ena/Disa IRQ6 as Secondary Intr Channel
5	1/0 = Ena/Disa IRQ5 as Secondary Intr Channel
4	1/0 = Ena/Disa IRQ4 as Secondary Intr Channel
3	1/0 = Ena/Disa IRQ3 as Secondary Intr Channel
2	Reservedalways reads 0
1	1/0 = Ena/Disa IRQ1 as Secondary Intr Channel
0	1/0 = Ena/Disa IRQ1 as Secondary Intr Channel
U	1/0 - Lina/Disa INQU as Secondary Intl Chainlet

Offset 4B-48 – Power Management I/O BaseRW

31-16 Reservedalways reads 0

Power Management I/O Register Base Address. Port Address for the base of the 128-byte Power Management I/O Register block, corresponding to AD[15:7]. The "I/O Space" bit at offset 41 bit-7 enables access to this register block. The definitions of the registers in the Power Management I/O Register Block are included later in this document, following the Power-Management-Specific PCI Configuration register descriptions and the Power Management Subsystem overview.

6-0 0000001b

Offset 4C – Host Bus Power Management Control......RW

7-4 Thermal Duty Cycle (THM_DTY)

This 4-bit field determines the duty cycle of the STPCLK# signal when the THRM# pin is asserted low. The field is decoded as follows:

0000 Reserved

0001 0-6.25%

0010 6.25-12.50%

0011 18.75-25.00%

0100 31.25-37.50%

0101 37.50-43.75%

0110 43.75-50.00%

0111 50.00-56.25%

1000 56.25-62.50%

1001 62.50-68.75%

1010 68.75-75.00% 1011 75.00-87.50%

1100 75.00-81.25%

1101 81.25-87.50%

1110 87.50-93.75%

1111 93.75-100%

3-2 Reserved always reads 0

1 SRAM ZZ

- 0 Disabledefault
- 1 Enable (power down the cache SRAM)

0 CPU Stop Grant Cycle Select

- 0 From Halt and Stop Grant Cycledefault
- 1 From Stop Grant Cycle

This bit is combined with I/O space Rx2C[3] for controlling the start of STPCLK# assertion during system suspend mode:

Rx2C[3]	Rx4C[0]	
Function 3	Function 3	
I/O Space	Cfg Space	STPCLK# Assertion
0	X	Immediate
1	0	Wait for CPU Halt
		/ Stop Grant cycle
1	1	Wait for CPU
		Stop Grant cycle

Offset 4	4D - Clock Stop Control	RW
7-3	Reserved	always reads 0
2	Internal Clock Stop for PCI Idle	
	0 Disable	default
	1 Enable	
1	Internal Clock Stop During C3	
	0 Disable	default
	1 Enable	
0	Internal Clock Stop During Suspend	
	0 Disable	default
	1 Enable	

Offset 53-50 – GP0/1 Timer Control (0000 0000h)......RW

31-30 Conserve Mode Timer Count Value

- 00 1/16 seconddefault
- 01 1/8 second
- 10 1 second
- 11 1 minute

29 Conserve Mode Status

This bit reads 1 when in Conserve Mode

28 Conserve Mode Enable

- 0 Disabledefault
- 1 Enable

27-26 Secondary Event Timer Count Value

- 00 2 milliseconds......default
- 01 64 milliseconds
- 10 ½ second
- 11 by EOI + 0.25 milliseconds

25 Secondary Event Occurred Status

This bit reads 1 to indicate that a secondary event has occurred (to resume the system from suspend) and the secondary event timer is counting down.

24 Secondary Event Timer Enable

- 0 Disabledefault
- 1 Enable

23-16 GP1 Timer Count Value (base defined by bits 5-4)

Write to load count value; Read to get current count

15-8 GP0 Timer Count Value (base defined by bits 1-0)

Write to load count value; Read to get current count

7 GP1 Timer Start

On setting this bit to 1, the GP1 timer loads the value defined by bits 23-16 of this register and starts counting down. The GP1 timer is reloaded at the occurrence of certain peripheral events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP1 timer counts down to zero, then the GP1 Timer Timeout Status bit is set to one (bit-3 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP1 Timer Timeout Enable bit is set (bit-3 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

6 GP1 Timer Automatic Reload

This bit is set to one to enable the GP1 timer to reload automatically after counting down to 0.

5-4 GP1 Timer Base

- 00 Disabledefault
- 01 1/4 msec
- 10 1 second
- 11 1 minute

3 GP0 Timer Start

On setting this bit to 1, the GP0 timer loads the value defined by bits 15-8 of this register and starts counting down. The GP0 timer is reloaded at the occurrence of certain peripheral events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP0 timer counts down to zero, then the GP0 Timer Timeout Status bit is set to one (bit-2 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP0 Timer Timeout Enable bit is set (bit-2 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

2 GP0 Timer Automatic Reload

This bit is set to one to enable the GP0 timer to reload automatically after counting down to 0.

1-0 GP0 Timer Base

- 00 Disable......default
- 01 1/16 second
- 10 1 second
- 11 1 minute

Offset	54 - G	PIO SelectRW	
7	GPO21 Pin Function (Pin T18)		
	0	SUSST2#default	
	1	GPO21	
6	Powe	er Well Output Gating for STR	
	0	Disabledefault	
	1	Enable	
5	SUSC	C# Level for STR	
	0	SUSC# = 1 for STRdefault	
	1	SUSC# = 0 for STR	
4	GPO	20 Pin Function (Pin T17)	
	0	SUSST1#default	
	1	GPO20	
3	GPO	15 Pin Function (Pin V19)	
	0	SUSB#default	
	1	GPO15	
2	GPO	16 Pin Function (Pin U18)	
	0	SUSC#default	
	1	GPO16	
1-0	GPO	8 Pin Function (Pin T19)	
	00	GPO8 (ACPI Rx4C[8]default	
	01	1 Hz Output	
	10	2 Hz Output	
	11	4 Hz Output	

Offset 55 – Wakeup ControlRW		
7-1	Reservedalways reads 0	0
0	USB Wakeup for STR / STD / Soft Off	
	0 Disabledefaul	t
	1 Enable	

Offset 5B-58 – GP2/3 Timer Control (0000 0000h)RW

31-24 Reservedalways reads 0

23-16 GP3 Timer Count Value (base defined by bits 5-4) Write to load count value; Read to get current count

15-8 GP2 Timer Count Value (base defined by bits 1-0) Write to load count value; Read to get current count

7 GP3 Timer Start

On setting this bit to 1, the GP3 timer loads the value defined by bits 23-16 of this register and starts counting down. The GP3 timer is reloaded at the occurrence of certain peripheral events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP3 timer counts down to zero, then the GP3 Timer Timeout Status bit is set to one (bit-13 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP3 Timer Timeout Enable bit is set (bit-13 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

6 GP3 Timer Automatic Reload

This bit is set to one to enable the GP3 timer to reload automatically after counting down to 0.

5-4 GP3 Timer Base

- 00 Disabledefault
- 01 1/4 msec
- 10 1 second
- 11 1 minute

3 GP2 Timer Start

On setting this bit to 1, the GP2 timer loads the value defined by bits 15-8 of this register and starts counting down. The GP2 timer is reloaded at the occurrence of certain peripheral events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP2 timer counts down to zero, then the GP2 Timer Timeout Status bit is set to one (bit-12 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP2 Timer Timeout Enable bit is set (bit-12 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

2 GP2 Timer Automatic Reload

This bit is set to one to enable the GP2 timer to reload automatically after counting down to 0.

1-0 GP2 Timer Base

- 00 Disabledefault
- 01 1/16 second
- 10 1 second
- 11 1 minute

Offset 61 - Programming Interface Read ValueWO

7-0 Rx09 Read Value

The value returned by the register at offset 9h (Programming Interface) may be changed by writing the desired value to this location.

Offset 62 - Sub Class Read Value.....WO

7-0 Rx0A Read Value

The value returned by the register at offset 0Ah (Sub Class Code) may be changed by writing the desired value to this location.

Offset 63 - Base Class Read Value.....WO

7-0 Rx0B Read Value

The value returned by the register at offset 0Bh (Base Class Code) may be changed by writing the desired value to this location.

System Management Bus-Specific Configuration Registers

Offset 9	3-90 - SMB	us I/O BaseRW
31-16	Fixed	always reads 00h
15-4		default = 00h
3-0	Fixed	always reads 0001b
Offset I	D2 – SMBus	ControlRW
7-4	Reserved	always reads 0
3	SMBus Int	errupt Select
		default
	1 SCI	
2-1	Reserved	always reads 0
0	SMBus Co	ntroller Enable
	0 Disal	oledefault
	1 Enab	le

Offset 1	D3 - S1	ABus Host Slave C	ommand	RW		
7-0	SMBus Host Slave Command Codedefault=0					
Offset 1	D4 – S 1	MBus Slave Addres	ss for Port 1	RW		
7-1	SMB	is Slave Address fo	or Port 1	lefault=0		
0	R/W	for Shadow Port 1				
	0	Disable		default		
	1	Enable				
Offset 1	D5 – SI	MBus Slave Addres	ss for Port 2	RW		
7-1	SMB	is Slave Address fo	or Port 2	lefault=0		
0	R/W	for Shadow Port 2				
	0	Disable		default		
	1	Enable				
Offset 1	D6 – S I	MBus Revision ID .	•••••	RO		
7-0	SMB	s Revision Code				

System Management Bus I/O-Space Registers

I/O Off	set 00 – SMBus Host StatusRWC	I/O Off	fset 01h – SMBus Sla
7-5	Reserved always reads 0	7-6	Reserved
4	Failed Bus TransactionRWC	5	Alert Status
	0 SMBus interrupt not caused by failed bus		0 SMBus inter
	transactiondefault		signal
	1 SMBus interrupt caused by failed bus		1 SMBus inte
	transaction. This bit may be set when the		signal. This
	KILL bit (I/O Rx02[1]) is set and can be		Enable bit is
	cleared by writing a 1 to this bit position.		Register at I/
3	Bus CollisionRWC		set by hardw
	0 SMBus interrupt not caused by transaction		a 1 to this bit
	collisiondefault	4	Shadow 2 Status
	1 SMBus interrupt caused by transaction		0 SMBus inter
	collision. This bit is only set by hardware and		to SMBus Sh
	can be cleared by writing a 1 to this bit		1 SMBus inter
	position.		slave cycle a
2	Device ErrorRWC		Address Por
	0 SMBus interrupt not caused by generation of		hardware and
	an SMBus transaction errordefault		this bit positi
	1 SMBus interrupt caused by generation of an	3	Shadow 1 Status
	SMBus transaction error (illegal command		0 SMBus inter
	field, unclaimed host-initiated cycle, or host		to SMBus Sh
	device timeout). This bit is only set by		1 SMBus inter
	hardware and can be cleared by writing a 1 to		slave cycle a
	this bit position.		Address Por
1	SMBus InterruptRWC		hardware and
	0 SMBus interrupt not caused by host command		this bit positi
	completiondefault	2	Slave Status
	1 SMBus interrupt caused by host command		0 SMBus inter
	completion. This bit is only set by hardware		match
	and can be cleared by writing a 1 to this bit		1 SMBus inter
	position.		slave cycle e
0	Host BusyRO		Command
	0 SMBus controller host interface is not		Configuration
	processing a coimmanddefault		and the SN
	1 SMBus host controller is busy processing a		SMBus Base
	coimmand. None of the other SMBus registers		This bit is o
	should be accessed if this bit is set.		cleared by w
		1	Reserved

7-6	Resei	evedalways reads 0
7-0 5		Status
3	Alert ()	SMBus interrupt not caused by SMBALERT#
	U	signaldefault
	1	SMBus interrupt caused by SMBALERT#
	1	signal. This bit will be set only if the Alert
		Enable bit is set in the SMBus Slave Control
		Register at I/O Offset R08[3]. This bit is only
		set by hardware and can be cleared by writing
		a 1 to this bit position.
4	Chod	ow 2 StatusRWC
4	Silau ()	SMBus interrupt not caused by address match
	U	to SMBus Shadow Address Port 2 default
	1	SMBus interrupt or resume event caused by
	1	slave cycle address match to SMBus Shadow
		Address Port 2. This bit is only set by
		hardware and can be cleared by writing a 1 to
		this bit position.
3	Shod	ow 1 StatusRWC
3	()	SMBus interrupt not caused by address match
	U	to SMBus Shadow Address Port 1 default
	1	SMBus interrupt or resume event caused by
	1	slave cycle address match to SMBus Shadow
		Address Port 1. This bit is only set by
		hardware and can be cleared by writing a 1 to
		this bit position.
2	Slave	StatusRWC
-	0	SMBus interrupt not caused by slave event
	Ü	match default
	1	SMBus interrupt or resume event caused by
	_	slave cycle event match of the SMBus Slave
		Command Register at PCI Function 3
		Configuration Offset 85h (command match)
		and the SMBus Slave Event Register at
		SMBus Base + Offset 0Ah (data event match).
		This bit is only set by hardware and can be
		cleared by writing a 1 to this bit position.
1	Resei	
0	Slave	Busy RO
	0	SMBus controller slave interface is not
		processing data default
	1	SMBus controller slave interface is busy

receiving data. None of the other SMBus registers should be accessed if this bit is set.

I/O Of	fset 02h – SMBus Host ControlRW	I/O Offset 03h – SMBus Host CommandRW
7 6	Reserved	7-0 SMBUS Host Command
5	controller host interface to initiate execution of the command programmed in the SMBus Host Command Register (I/O offset 3). All necessary registers should be programmed prior to writing a 1 to this bit. The Host Busy bit (SMBus Host Status Register bit-0) can be used to identify when the SMBus controller has completed command execution.	I/O Offset 04h – SMBus Host Address
5 4-2	Reserved always reads 0 SMBus Command Protocol	1 Execute a READ command
1	000 Quick Read or Write	 I/O Offset 05h – SMBus Host Data 0
	1 Stop the host transaction currently in progress Setting this bit to 1 also sets the FAILED status bit (Host Status bit-4) and asserts the interrupt selected by the SMB Interrupt Select bit (Function 3 SMBus Host Configuration Register Rx84[1]).	For Block Read commands, the count received from the SMBus device is stored here. I/O Offset 06h – SMBus Host Data 1
0	Interrupt Enable 0 Disable interrupt generationdefault 1 Enable generation of interrupts on the completion of the current host transaction.	stored here. 7-0 SMBUS Data 1default = 0
		I/O Offset 07h – SMBus Block Data

Control register (I/O Offset 2) and incremented automatically by each access to this register. The transfer of block data into (read) or out of (write) this storage array during an SMBus

7-0 SMBUS Block Datadefault = 0

transaction always starts at index address 0.

I/O Offset 08h – SMBus Slave Control.....RW Reserved always reads 0 3 **SMBus Alert Enable** 0 Disabledefault Enable generation of an interrupt or resume event on the assertion of the SMBALERT# signal 2 **SMBus Shadow Port 2 Enable** 0 Disabledefault Enable generation of an interrupt or resume event on external SMBus master generation of a transaction with an address that matches the SMBus Slave Shadow Port 2 register (PCI function 3 configuration register Rx87). 1 **SMBus Shadow Port 1 Enable** 0 Disabledefault Enable generation of an interrupt or resume event on external SMBus master generation of a transaction with an address that matches the SMBus Slave Shadow Port 1 register (PCI function 3 configuration register Rx86). SlaveEnable

a transaction with an address that matches the SMBus host controller slave port of 10h, a command field which matches the SMBus Slave Command register (PCI function 3 configuration register Rx85), and a match of one of the corresponding enabled events in the SMBus Slave Event Register (I/O Offset 0Ah).

0 Disabledefault Enable generation of an interrupt or resume event on external SMBus master generation of

I/O Offset 09h - SMBus Shadow CommandRO This register is used to store command values for external SMBus master accesses to the host slave and slave shadow ports.

7-0 **Shadow Command**......default = 0 This field contains the command value which was received during an external SMBus master access whose address field matched the host slave address (10h) or one of the slave shadow port addresses.

<u>I/O Offset 0Ah – SMBus Slave EventRW</u>

This register is used to enable generation of interrupt or resume events for accesses to the host controller's slave port.

This field contains data bits used to compare against incoming data to the SMBus Slave Data Register (I/O Offset 0Ch). When a bit in this register is set and the corresponding bit the Slave Data register is also set, an interrupt or resume event will be generated if the command value matches the value in the SMBus Slave Command register and the access was to SMBus host address 10h.

I/O Offset 0Ch - SMBus Slave DataRO

This register is used to store data values for external SMBus master accesses to the shadow ports or the SMBus host controller's slave port.

This field contains the data value which was transmitted during an external SMBus master access whose address field matched one of the slave shadow port addresses or the SMBus host controller slave port address of 10h.

Power Management I/O-Space Registers

Basic Power Management Control and Status

The bits in this register are set only by hardware and can be The bits in this register corre			s in this register correspond to the bits in the Power ement Status Register at offset 1-0.
15	Wakeup Status (WAK_STS)	15	Reservedalways reads 0
14-12	Reserved always reads 0	14-11	Reserved always reads 0
11	Power Status (PWR_STS)default = 0 This bit is set by abnormal power off.		
10	RTC Status (RTC_STS)	10	RTC Enable (RTC_EN)default = 0 This bit may be set to trigger either an SCI or an SMI (depending on the setting of the SCI_EN bit) to be generated when the RTC_STS bit is set.
9	Sleep Button Status (SB_STS)default = 0 This bit is set when the sleep button (SLPBTN# / GPI13) is pressed.	9	Sleep Button Enable (SB_EN)default = 0 This bit may be set to trigger either an SCI or SMI when the SB_STS bit is set.
8	Power Button Status (PB_STS) default = 0 This bit is set when the PWRBTN# signal is asserted LOW. If the PWRBTN# signal is held LOW for more than four seconds, this bit is cleared and the system will transition into the soft off state.	8	Power Button Enable (PB_EN)default = 1 This bit may be set to trigger either an SCI or an SMI (depending on the setting of the SCI_EN bit) to be generated when the PB_STS bit is set.
7-6 5	Reserved	7-6 5	Reserved always reads 0 Global Enable (GBL_EN)
4	Bus Master Status (BM_STS) default = 0 This bit is set when a system bus master requests the system bus. All PCI master, ISA master and ISA DMA devices are included.	4	Reservedalways reads 0
3-1	Reserved	3-1 0	Reserved

I/O Offset 5-4 - Power Management ControlRW

15-14 Reservedalways reads 0

13 Sleep Enable (SLP_EN)......always reads 0
This is a write-only bit; reads from this bit always return zero. Writing a one to this bit causes the system to sequence into the sleep (suspend) state defined by the SLP_TYP field.

12-10 Sleep Type (SLP_TYP)

- 000 Normal On
- 001 Suspend to DRAM
- 010 Suspend to Disk (also called Soft Off). The VCC power plane is turned off while the VCCSUS and VCCRTC planes remain on.
- 011 Reserved
- 100 Power On Suspend without Reset
- 101 Power On Suspend with CPU Reset
- 110 Power On Suspend with CPU/PCI Reset
- 111 Reserved

In any sleep state, there is minimal interface between powered and non-powered planes so that the effort for hardware design may be well managed.

9-3 Reservedalways reads 0

- 1 **Bus Master Reload** (BMS_RLD)................ default = 0 This bit is used to enable the occurrence of a bus master request to transition the processor from the C3 state to the C0 state.
- **O** SCI Enable (SCI_EN)......default = 0 Selects the power management event to generate either an SCI or SMI:
 - 0 Generate SMI
 - 1 Generate SCI

Note that certain power management events can be programmed individually to generate an SCI or SMI independent of the setting of this bit (refer to the General Purpose SCI Enable and General Purpose SMI Enable registers at offsets 22 and 24). Also, TMR_STS & GBL_STS always generate SCI and BIOS_STS always generates SMI.

I/O Offset 0B-08 - Power Management Timer RW

31-24 Extended Timer Value (ETM_VAL)

This field reads back 0 if the 24-bit timer option is selected (Rx41 bit-3).

23-0 Timer Value (TMR_VAL)

This read-only field returns the running count of the power management timer. This is a 24/32-bit counter that runs off a 3.579545 MHz clock, and counts while in the S0 (working) system state. The timer is reset to an initial value of zero during a reset, and then continues counting until the 14.31818 MHz input to the chip is stopped. If the clock is restarted without a reset, then the counter will continue counting from where it stopped.

Processor Power Management Registers

I/O Offset 13-10 - Processor & PCI Bus ControlRW				
31-12	Reserved always reads 0			
11	PCI Stop (PCISTP# asserted) when PCKRUN# is			
	Deasserted (PCI_STP)			
	0 Enable default			
	1 Disable			
10	PCI Bus Clock Run Without Stop (PCI_RUN)			
	0 PCKRUN# will be de-activated after the PCI			
	bus is idle for 26 clocksdefault			
	1 PCKRUN# is always asserted			
9	Host Clock Stop Enable (HOST_STP)			
	0 STPCLK# will be asserted in the C3 state, but			
	the CPU clock is not stoppeddefault			
	1 CPU clock is stopped in the C3 state			
8	Assertion of SLP# for LVL3 Read			
	0 Disabledefault			
	1 Enable			
	Used in Slot-1 systems only.			
7-5	Reserved always reads 0			
4	Throttling Enable (THT_EN).			
	Setting this bit starts clock throttling (modulating the			
	STPCLK# signal) regardless of the CPU state. The			
	throttling duty cycle is determined by bits 3-0 of this			
	register.			
3-0	Throttling Duty Cycle (THT_DTY)			
	This 4-bit field determines the duty cycle of the			
	STPCLK# signal when the system is in throttling			
	mode (the "Throttling Enable" bit is set to one). The			
	duty cycle indicates the percentage of time the			
	STPCLK# signal is asserted while the Throttling			
	Enable bit is set. The field is decoded as follows:			
	0000 Reserved			
	0001 0-6.25%			
	0010 6.25-12.50%			
	0011 18.75-25.00%			
	0100 31.25-37.50%			
	0101 37.50-43.75%			
	0110 43.75-50.00%			
	0111 50.00-56.25%			
	1000 56.25-62.50%			
	1001 62.50-68.75%			
	1010 68.75-75.00%			
	1011 75.00-87.50%			
	1100 75.00-81.25%			
	1101 81.25-87.50%			
	1110 87.50-93.75%			
	1111 93.75-100%			

I/O Offset 14 - Processor Level 2 (P LVL2).....RO

Level 2always reads 0 Reads from this register put the processor into the Stop Grant state (the VT82C596B asserts STPCLK# to suspend the processor). Wake up from Stop Grant state is by interrupt (INTR, SMI, and SCI).

Reads from this register return all zeros; writes to this register have no effect.

I/O Offset 15 - Processor Level 3 (P LVL3).....RO

7-0 Level 3always reads 0 Reads from this register put the processor in the C3 clock state with the STPCLK# signal asserted. If Rx10[9] = 1 then the CPU clock is also stopped by asserting CPUSTP#. Wake up from the C3 state is by interrupt (INTR, SMI, and SCI).

Reads from this register return all zeros; writes to this register have no effect.

General Purpose Power Management Registers

<u>I/O Off</u>	fset 21-20 -	<u>General Purpose Status</u>	(GP	STS)	<u>.RWC</u>
15	Reserved		a	lways	reads (

- 14 USB Wakeup Status for STR/STD/Soff (UW_STS)
- **13 Reserved** always reads 0
- 12 Battery Low Status (BL_STS)

This bit is set when the BATLOW# input is asserted low.

11 Notebook Lid Status (LID_STS)

This bit is set when the LID input detects the edge selected by Rx2C bit-7 (0=rising, 1=falling).

- **Thermal Detect Status (THRM_STS)**This bit is set when the THRM# input detects the edge selected by Rx2C bit-6 (0=rising, 1=falling).
- 9 USB Resume Status (USB_STS)
 This bit is set when a USB peripheral generates a resume event.
- 8 Ring Status (RI_STS)
 This bit is set when the RI# input is asserted low.
- 7 EXTSMI7 Toggle Status (XSMI7_STS)
 This bit is set when the GPI17 pin is toggled.
- 6 EXTSMI6 Toggle Status (XSMI6_STS)
 This bit is set when the GPI16 pin is toggled.
- 5 EXTSMI5 Toggle Status (XSMI5_STS)
 This bit is set when the GPI15 pin is toggled.
- 4 EXTSMI4 Toggle Status (XSMI4_STS)
 This bit is set when the GPI4 pin is toggled.
- 3 EXTSMI3 Toggle Status (XSMI3_STS)
 This bit is set when the GPI3 pin is toggled.
- 2 EXTSMI2 Toggle Status (XSMI2_STS)
 This bit is set when the GPI2 pin is toggled.
- 1 PME# Status (PME_STS)
 This bit is set when the GPI1 pin is asserted high.
- **O** EXTSMI# Status (EXT_STS)

 This bit is set when the EXTSMI# pin is asserted low.

Note that the above bits correspond one for one with the bits of the General Purpose SCI Enable and General Purpose SMI Enable registers at offsets 22 and 24: an SCI or SMI is generated if the corresponding bit of the General Purpose SCI or SMI Enable registers, respectively, is set to one.

The above bits are set by hardware only and can only be cleared by writing a one to the desired bit.

14	Enable SCI on setting of the UW_STS bit def=0			
13	Reservedalways reads 0			
12	Enable SCI on setting of the BL_STS bitdef=0			
11	Enable SCI on setting of the LID_STS bitdef=0			
10	Enable SCI on setting of the THRM_STS bit def=0			
9	Enable SCI on setting of the USB_STS bitdef=0			
8	Enable SCI on setting of the RI_STS bit def=0			
7	Enable SCI on setting of the XSMI7_STS bit def=0			
6	Enable SCI on setting of the XSMI6_STS bit def=0			
5	Enable SCI on setting of the XSMI5_STS bit def=0			
4	Enable SCI on setting of the XSMI4_STS bit def=0			
3	Enable SCI on setting of the XSMI3_STS bit def=0			
2	Enable SCI on setting of the XSMI2_STS bit def=0			
1	Enable SCI on setting of the PME_STS bit def=0			
0	Enable SCI on setting of the EXT_STS bit def=0			
These b	oits allow generation of an SCI using a separate set of			
conditions from those used for generating an SMI.				

I/O Offset 23-22 - General Purpose SCI EnableRW

.....always reads 0

15

Reserved

I/O Offset 25-24 - General Purpose SMI Enable RW

15	Reserved	always reads 0
14	Enable SMI on se	tting of the UW_STS bitdef=0
13	Reserved	always reads 0

- **12** Enable SMI on setting of the BL_STS bitdef=0
- 11 Enable SMI on setting of the LID_STS bitdef=0
- Enable SMI on setting of the THRM_STS bit def=0
 Enable SMI on setting of the USB STS bit ...def=0
- 8 Enable SMI on setting of the RI_STS bitdef=0
- 7 Enable SMI on setting of the XSMI7_STS bitdef=0
- 6 Enable SMI on setting of the XSMI6_STS bitdef=0
- 5 Enable SMI on setting of the XSMI5_STS bitdef=0
- 4 Enable SMI on setting of the XSMI4 STS bitdef=0
- 3 Enable SMI on setting of the XSMI3_STS bitdef=0
- 2 Enable SMI on setting of the XSMI2_STS bitdef=0
- 1 Enable SMI on setting of the PME_STS bit...def=0
- **O** Enable SMI on setting of the EXT_STS bit....def=0

These bits allow generation of an SMI using a separate set of conditions from those used for generating an SCI.

Generic Power Management Registers

<u>/O Off</u>	set 29-28 - Global StatusRWC
15	GPIO Range 1 Access Status (GP_R1_STS) def=0
14	GPIO Range 0 Access Status (GP_R0_STS) def=0
13	GP3 Timer Timeout Status (GP3_TO_STS) def=0
12	GP2 Timer Timeout Status (GP3_TO_STS) def=0
11	SerIRQ SMI Status (SIRQ_SM_STS)def=0
10-9	Reserved always reads 0
8	PCKRUN# Resume Status (PR_RSM_STS) def=0
	This bit is set when PCI bus peripherals wake up the

7 Primary IRQ Resume Status (PI_RSM_STS) def=0 This bit is set at the occurrence of primary IRQs as defined in Rx45-44 of PCI configuration space

system by asserting PCKRUN#

- 6 Software SMI Status (SW_SMI_STS)......def=0
 This bit is set when the SMI_CMD port (offset 2F) is written.
- 4 Legacy USB Status (LEG_USB_STS) def=0 This bit is set when a legacy USB event occurs.
- 3 **GP1 Timer Time Out Status (GP1_TO_STS)** def=0 This bit is set when the GP1 timer times out.
- **2 GP0 Timer Time Out Status (GP0_TO_STS)** def=0 This bit is set when the GP0 timer times out.

Note that SMI can be generated based on the setting of any of the above bits (see the offset 2Ah Global Enable register bit descriptions in the right hand column of this page).

The bits in this register are set by hardware only and can only be cleared by writing a one to the desired bit position.

I/O Off	I/O Offset 2B-2A - Global EnableRW						
15	GPIO Range 1 Access Enable (GP_R1_EN) def=0						
14	GPIO Range 0 Access Enable (GP_R0_EN) def=0						
13	GP3 Timer Timeout Enable (GP3_TO_EN)def=0						
12	GP2 Timer Timeout Enable (GP3_TO_EN)def=0						
11	SerIRQ SMI Enable (SIRQ_SM_EN)def=0						
10-9	Reserved always reads 0						
8	PCKRUN# Resume Enable (PR_RSM_EN)def=0						
	This bit may be set to trigger an SMI to be generated						
	when the PR_RSM_STS bit is set.						
7	Primary IRQ Resume Enable (PI_RSM_EN) def=0						
	This bit may be set to trigger an SMI to be generated						
	when the PI_RSM_STS bit is set.						
6	Software SMI Enable (SW_SMI_EN)def=0						
	This bit may be set to trigger an SMI to be generated						
	when the SW_SMI_STS bit is set.						
5	BIOS Enable (BIOS_EN)def=0						
	This bit may be set to trigger an SMI to be generated						
	when the BIOS_STS bit is set.						

- 4 Legacy USB Enable (LEG_USB_EN).....def=0
 This bit may be set to trigger an SMI to be generated when the LEG_USB_STS bit is set.
- 3 GP1 Timer Time Out Enable (GP1_TO_EN) def=0 This bit may be set to trigger an SMI to be generated when the GP1_TO_STS bit is set.
- **2 GP0 Timer Time Out Enable** (**GP0_TO_EN**) def=0 This bit may be set to trigger an SMI to be generated when the GP0_TO_STS bit is set.
- **O** Primary Activity Enable (PACT_EN)def=0 This bit may be set to trigger an SMI to be generated when the PACT STS bit is set.

I/O Offset 2D-2C - Global Control (GBL_CTL)RW 15-12 Reserved always reads 0 **IDE Secondary Bus Power Off** 0 Disabledefault Enable 10 **IDE Primary Bus Power Off** 0 Disabledefault 1 Enable always reads 0 Reserved 8 SMI Active (INSMI) 0 SMI Inactive.....default SMI Active. If the SMIIG bit is set, this bit needs to be written with a 1 to clear it before the next SMI can be generated. **LID Triggering Polarity** 0 Rising Edgedefault 1 Falling Edge **THRM# Triggering Polarity** 0 Rising Edgedefault 1 Falling Edge 5 **Disable Battery Low Resume** 0 Enable resumedefault 1 Disable resume from suspend when BATLOW# is asserted SMI Lock (SMIIG) 0 Disable SMI Lock Enable SMI Lock (SMI low to gate for the next SMI)default Wait for Halt / Stop Grant Cycle for STPCLK# Assertion 0 Don't wait.....default 1

2 Power Button Triggering

- 0 SCI/SMI generated by PWRBTN# rising edge
- 1 SCI/SMI generated by PWRBTN# low level

This bit works with Rx4C[7] of PCI configuration space to control the start of STPCLK# assertion.

Must be set to 1 for ACPI v0.9 compliance.

1 BIOS Release (BIOS RLS)

This bit is set by legacy software to indicate release of the SCI/SMI lock. Upon setting of this bit, hardware automatically sets the GBL_STS bit. This bit is cleared by hardware when the GBL_STS bit cleared by software.

Note that if the GBL_EN bit is set (bit-5 of the Power Management Enable register at offset 2), then setting this bit causes an SCI to be generated (because setting this bit causes the GBL_STS bit to be set).

0 SMI Enable (SMI EN)

- 0 Disable all SMI generation
- 1 Enable SMI generation

I/O Offset 2F - SMI Command (SMI CMD)RW

7-0 SMI Command

Writing to this port sets the SW_SMI_STS bit. Note that if the SW_SMI_EN bit is set (see bit-6 of the Global Enable register at offset 2Ah), then an SMI is generated.

I/O Offset 33-30 - Primary Activity Detect Status......RWC

These bits correspond to the Primary Activity Detect Enable bits in offset 37-34.

- **31-11 Reserved**always read 0
- 10 Audio Controller Access Status (AUD_STS)
 Set if the audio controller is accessed.
- 9 Keyboard Controller Access Status..... (KBC_STS) Set if the keyboard controller is accessed via I/O port 60b
- 8 VGA Access Status......(VGA_STS) Set if the VGA port is accessed via I/O ports 3B0-3DFh or memory space A0000-BFFFFh.
- 7 Parallel Port Access Status......(PAR_STS) Set if the parallel port is accessed via I/.O ports 278-27Fh or 378-37Fh (LPT2 or LPT1).
- 6 Serial Port B Access Status (COMB_STS)
 Set if serial port B is accessed via I/O ports 2F8-2FFh
 or 2F8-2FFh
- 5 Serial Port A Access Status (COMA_STS) Set if serial port A is accessed via I/O ports 3F8-3FFh or 3E8-3EFh.
- 4 Floppy Access Status.......(FLP_STS) Set if the floppy devices are accessed via I/O ports 3F0-3F5h or 3F7h.
- 3 Secondary IDE Access Status.....(SIDE_STS) Set if the secondary IDE port is accessed via I/O ports 170-177h or 376h.
- 2 Primary IDE Access Status (PIDE_STS)
 Set if the primary IDE port is accessed via I/O ports
 1F0-1F7h or 3F6h.
- 1 Primary Interrupt Activity Status..... (PIRQ_STS)
 Set on the occurrence of a primary interrupt (enabled via the "Primary Interrupt Channel" register at Function 3 PCI configuration register offset 44h).
- **O** PCI Master Activity Status(PCI_STS) Set on the occurrence of PCI master activity.

Note: The bits above correspond to the bits of the Primary Activity Detect Enable register at offset 34 (see right hand column of this page): if the corresponding bit is set in that register, setting of the above bits will cause the PACT_STS bit to be set (bit-0 of the Global Status register at offset 28). Setting of PACT_STS may be set up to enable a "Primary Activity Event": an SMI will be generated if PACT_EN is set (bit-0 of the Global Enable register at offset 2Ah) and/or the GP0 timer will be reloaded if the "GP0 Timer Reload on Primary Activity" bit is set (bit-0 of the GP Timer Reload Enable register at offset 38 on this page).

Note: Bits above also correspond to bits of the GP Timer Reload Enable register at offset 38: if the corresponding bit is set in that register, setting the bit in this register will cause the indicated timer to be reloaded.

Bits in this register are set by hardware only and may only be cleared by writing a 1 to the desired bit. All bits default to 0.

I/O Offset 37-34 - Primary Activity Detect Enable...... RW

These bits correspond to the Primary Activity Detect Status bits in offset 33-30.

- 31-11 Reservedalways read 0
 10 Audio Controller Status Enable...............(AUD_EN)
 - 0 Don't set PACT_STS if AUD_STS is set def1 Set PACT_STS if AUD_STS is set
 - 9 Keyboard Controller Status Enable (KBC_EN)
 - 0 Don't set PACT_STS if KBC_STS is set..... def
 - 1 Set PACT_STS if KBC_STS is set VGA Status Enable(VGA_EN)
 - 0 Don't set PACT_STS if VGA_STS is set def
 - 1 Set PACT_STS if VGA_STS is set
 - 7 Parallel Port Status Enable(PAR_EN)
 - 0 Don't set PACT_STS if PAR_STS is set def
 - 1 Set PACT_STS if PAR_STS is set
 - 6 Serial Port B Status Enable(COMB_EN)
 - 0 Don't set PACT_STS if COMB_STS is set.def
 - 1 Set PACT_STS if COMB_STS is set
 - 5 Serial Port A Status Enable.....(COMA_EN)
 - $0\quad Don't\ set\ PACT_STS\ if\ COMA_STS\ is\ set.\ def$
 - 1 Set PACT_STS if COMA_STS is set
 - 4 Floppy Status Enable (FLP_EN)
 - 0 Don't set PACT_STS if FLP_STS is set...... def
 - 1 Set PACT_STS if FLP_STS is set
 - 3 Secondary IDE Status Enable(SIDE_EN)
 - 0 Don't set PACT_STS if SIDE_STS is set def
 - 1 Set PACT_STS if SIDE_STS is set
 - 2 Primary IDE Status Enable.....(PIDE_EN)
 - 0 Don't set PACT_STS if PIDE_STS is set.... def
 - 1 Set PACT_STS if PIDE_STS is set
 - 1 Primary INTR Status Enable(PIRQ_EN)
 - 0 Don't set PACT_STS if PIRQ_STS is set.... def
 - 1 Set PACT_STS if PIRQ_STS is set
 - 0 PCI Master Status Enable(DRQ EN)
 - 0 Don't set PACT_STS if PCI_STS is set...... def
 - 1 Set PACT STS if PCI STS is set

Note: Setting of any of the above bits also sets the PACT_STS bit (bit-0 of offset 28) which causes the GP0 timer to be reloaded (if PACT_GP0_EN is set) or generates an SMI (if PACT_EN is set).

I/O Off	set 3B-38 - GP Timer Reload EnableRW	General Purpose I/O Registers
All bits	In this register default to 0 on power up. Reserved	I/O Offset 45-44 – External SMI Input Value (EXTSMI VAL)
	Primary activities are enabled via the Primary Activity Detect Enable register (offset 37-34) with status recorded in the Primary Activity Detect Status register (offset 33-30).	I/O Offset 4B-48 - GPI Port Input Value (GPI VAL)RO 31-22 Reserved always read 0 21-0 GPI[21-0] Input Value Read Only
		I/O Offset 4F-4C - GPO Port Output Value (GPO VAL)RW Reads from this register return the last value written (held on chip) 31 Reservedalways reads 0

30-0 GPO[30-0] Output Value......default = 7FFFFFFh

FUNCTIONAL DESCRIPTIONS

Power Management

Power Management Subsystem Overview

The power management function of the VT82C596B is indicated in the following block diagram:

Figure 6. Power Management Subsystem Block Diagram

Refer to ACPI Specification v1.0 and APM specification v1.2 for additional information.

Processor Bus States

The VT82C596B supports the complete set of C0 to C3 processor states as specified in the Advanced Configuration and Power Interface (ACPI) specification (and defined in ACPI I/O space Registers 10-15):

- C0: Normal Operation
- C1: CPU Halt (controlled by software).
- C2: Stop Clock. Entered when the P_LVL2 register is read. The STPCLK# signal is asserted to put the processor in the Stop Grant State. If the SRAM_ZZ bit is set to 1, then the ZZ pin is also asserted (after the acknowledgement of the stop grant bus cycle) for powering down the cache SRAM. The CPUSTP# signal is not asserted so that host clocks remain running. To exit this state, the chip negates the ZZ signal and then negates STPCLK#.
- C3: Suspend. Entered when the P_LVL3 register is read. In addition to STPCLK# and ZZ assertion as in the C2 state, the SUSST1# (suspend status 1) signal is asserted to tell the north bridge to switch to "Suspend DRAM Refresh" mode based on the 32KHz suspend clock (SUSCLK) provided by the VT82C596B. If the HOST_STP bit is enabled, then CPUSTP# is also asserted to stop clock generation and put the CPU into Stop Clock State. To exit this state, the chip negates CPUSTP# and allows time for the processor PLL to lock. Then the SUSST1#, ZZ, and STPCLK# signals are negated to resume to normal operation.

During normal operation, two mechanisms are provided to modulate CPU execution and control power consumption by throttling the duty cycle of STPCLK#:

- a. Setting the THT_EN bit to 1, the duty cycle defined in THT_DTY (IO space Rx10) is used.
- b. THRM# pin assertion enables automatic clock throttling with duty cycle pre-configured in THM_DTY (PCI configuration Rx4C).

System Suspend States and Power Plane Control

There are three power planes inside the VT82C596B. The first power plane (VCCSUS) is always on unless turned off by the mechanical switch. The second power plane (VCC) is controlled by chip output SUSC# (also called "PSON"). The third plane (VCCRTC) is powered by the combination of the VCCSUS and the external battery (VBAT) for the integrated real time clock. Most of the circuitry inside the VT82C596B is powered by VCC. The amount of logic powered by VCCSUS is very small; its main function is to control the supply of VCC and other power planes. VCCRTC is always on unless both the mechanical switch and VBAT are removed.

The VT82C596B supports multiple system suspend states by configuring the SLP_TYP field of ACPI I/O space register Rx4-5:

- a) POS (Power On Suspend): Most devices in the system remain powered. The host bus is put into an equivalent of the C3 state. In particular, the CPU is put into the Stop Grant State or Stop Clock State depending on the setting of the HOST_STP bit. SUSST1# is asserted to tell the north bridge to switch to "Suspend DRAM Refresh" mode based on the 32KHz SUSCLK provided by the VT82C596B. As to the PCI bus, setting the PCLK_RUN bit to 0 enables the CLKRUN protocol defined in the PCI Mobile Design Guide. That is, the PCKRUN# pin will be de-activated after the PCI bus is idle for 26 clocks. Any PCI bus masters including the north bridge may resume PCI clock operation by pulling the PCKRUN# pin low. During the PCKRUN# deactivation period, the PCISTP# pin may be activated to disable the output of the PCI clock generator if the PCI_STP bit is enabled. When the system resumes from POS, the VT82C496 can optionally resume without resetting the system, can reset the processor only, or can reset the entire system. When no reset is performed, the chip only needs to wait for the clock synthesizer and processor PLL to lock before the system is resumed, which typically takes 20ms.
- b) STR (Suspend to DRAM): Power is removed from most of the system except the system DRAM. Power is supplied to the suspend refresh logic in the north bridge (VTT of VT82C598AT) and the suspend logic of the VT82C596B (VCCSUS). The VT82C596B provides a 32KHz suspend clock to the north bridge for it to use to continue DRAM refresh.
- c) STD (Suspend to Disk, also called Soft-off): Power is removed from most of the system except the suspend logic of VT82C596B (VCCSUS).
- d) Mechanical Off: This is not a suspend state. All power in the system is removed except the RTC battery.

The suspend state is entered by setting the SLP_EN bit to 1. Three power plane control signals (SUSA#, SUSB# and

SUSC#) are provided to turn off more system power planes as the system moves to deeper power-down states, i.e., from normal operation to POS (only SUSA# asserted), to STR (both SUSA# and SUSB# asserted), and to STD (all three SUS# signals asserted). In particular, the assertion of SUSC# can be used to turn off the VCC supply to the VT82C596B.

Two suspend status indicators (SUSST1-2#) are provided to inform the north bridge and the rest of the system of the processor and system suspend states. SUSST2# is asserted when the system enters any suspend state. SUSST1# is asserted when the system enters the suspend state or the processor enters the C3 state. SUSST1# is connected to the north bridge to switch between normal and suspend-DRAM-refresh modes.

General Purpose I/O Ports

As ACPI compliant hardware, the VT82C596B includes PWRBTN#, SLPBTN#, and RI# pins to implement power button, sleep button, and ring indicator functionality, respectively. Furthermore, the VT82C596B offers many general-purpose I/O ports with the following capabilities:

- I²C/SMB Support
- Thermal Detect
- Notebook Lid Open/Close Detect
- Battery Low Detect
- Twenty-two General Purpose Input Ports (10 dedicated and 12 multiplexed with other functions).
- Thirty-one General Purpose Output Ports (6 dedicated and 25 multiplexed with other functions)

In addition, the VT82C596B provides eight external SMI pins (one dedicated EXTSMI# pin and seven pins shared with general purpose input pins). Once enabled, each of the external SMI inputs triggers an SCI or SMI at both the rising and falling edges of the corresponding input signal. Software can check the status of the input pins and take appropriate actions.

Power Management Events

Three types of power management events are supported:

- 1) **ACPI-required Fixed Events** defined in the PM1a_STS and PM1a_EN registers. These events can trigger either SCI or SMI depending on the SCI_EN bit:
 - PWRBTN# Triggering
 - · RTC Alarm
 - · Sleep Button
 - ACPI Power Management Timer Carry (always SCI)
 - BIOS Release (always SCI)
- 2) ACPI-aware General Purpose Function Events defined in the GP_STS and GP_SCI_EN, and GP_SMI_EN registers. These events can trigger either SCI or SMI depending on the setting of individual SMI and SCI enable bits:
 - External SMI triggering
 - · USB Resume
 - Ring Indicator (RI#)
 - Battery Low Detect (BATLOW#)
 - Notebook Lid Open/Close Detect (LID)
 - Thermal Detect (THRM#)

- Generic Global Events defined in the GBL_STS and GBL_EN registers. These registers are mainly used for SMI:
 - PCI Bus Clock Run Resume
 - Primary Interrupt Occurance
 - GP0 and GP1 Timer Time Out
 - · Secondary Event Timer Time Out
 - Occurrence of Primary Events (defined in register PACT_STS and PACT_EN)
 - Legacy USB accesses (keyboard and mouse)
 - Software SMI

System and Processor Resume Events

Depending on the system suspend state, different features can be enabled to resume the system. There are two classes of resume events:

- a) VCCSUS-based events. Event logic resides in the VCCSUS plane and thus can resume the system from any suspend state. Such events include PWRBTN#, RI#, BATLOW#, LID, SMBus resume event, RTC alarm, EXTSMI#, and GP1 (EXTSMI1#).
- b) VCC-Based Events. Event logic resides in the VCC plane and thus can only resume the system from the POS state. Such events include the ACPI PM timer, USB resume, and EXTSMI2-7#.

Figure 7. Apollo MVP3 System Block Diagram Using the VT82C596B South Bridge

Legacy Power Management Timers

In addition to the ACPI power management timer, the VT82C596B includes the following four legacy power management timers:

GP0 Timer: general purpose timer with primary event **GP1 Timer**: general purpose timer with peripheral event reload

Secondary Event Timer: to monitor secondary events **Conserve Mode Timer**: Hardware-controlled return to standby

The normal sequence of operations for a general purpose timer (GP0 or GP1) is to

- 1) First program the time base and timer value of the initial count (register GP_TIM_CNT).
- 2) Then activate counting by setting the GP0_START or GP1_START bit to one: the timer will start with the initial count and count down towards 0.
- 3) When the timer counts down to zero, an SMI will be generated if enabled (GP0TO_EN and GP1TO_EN in the GBL_EN register) with status recorded (GP0TO_STS and GP1TO_STS in the GBL_STS register).
- 4) Each timer can also be programmed to reload the initial count and restart counting automatically after counting down to 0. This feature is not used in standard VIA BIOS.

The GP0 and GP1 timers can be used just as the general purpose timers described above. However, they can also be programmed to reload the initial count by system primary events or peripheral events thus used as primary event (global standby) timer and peripheral timer, respectively. The secondary event timer is solely used to monitor secondary events.

System Primary and Secondary Events

Primary system events are distinguished in the PRI_ACT_STS and PRI_ACT_EN registers:

Bit	Event	<u>Trigger</u>
7	Keyboard Access	I/O port 60h
6	Serial Port Access	I/O ports 3F8h-3FFh, 2F8h-2FFh,
		3E8h-3EFh, or 2E8h-2EFh
5	Parallel Port Access	I/O ports 378h-37Fh or 278h-27Fh
4	Video Access	I/O ports 3B0h-3DFh or memory
		A/B segments
3	IDE/Floppy Access	I/O ports 1F0h-1F7h, 170h-177h,
	-	or 3F5h
2	Decembed	

2 Reserved

1 **Primary Interrupts** Each channel of the interrupt controller can be programmed to be a primary or secondary

interrupt

0 ISA Master/DMA Activity

Each category can be enabled as a primary event by setting the corresponding bit of the PRI_ACT_EN register to 1. If

enabled, the occurrence of the primary event reloads the GP0 timer if the PACT_GP0_EN bit is also set to 1. The cause of the timer reload is recorded in the corresponding bit of PRI_ACT_STS register while the timer is reloaded. If no enabled primary event occurs during the count down, the GP0 timer will time out (count down to 0) and the system can be programmed (setting the GP0TO_EN bit in the GBL_EN register to one) to trigger an SMI to switch the system to a power down mode.

The VT82C596B distinguishes two kinds of interrupt requests as far as power management is concerned: the primary and secondary interrupts. Like other primary events, the occurrence of a primary interrupt demands that the system be restored to full processing capability. Secondary interrupts, however, are typically used for housekeeping tasks in the background unnoticeable to the user. The VT82C596B allows each channel of interrupt request to be declared as either primary, secondary, or ignorable in the PIRQ_CH and SIRQ_CH registers. Secondary interrupts are the only system secondary events defined in the VT82C596B.

Like primary events, primary interrupts can be made to reload the GP0 timer by setting the PIRQ_EN bit to 1. Secondary interrupts do not reload the GP0 timer. Therefore the GP0 timer will time out and the SMI routine can put the system into power down mode if no events other than secondary interrupts are happening periodically in the background.

Primary events can be programmed to trigger an SMI (setting of the PACT_EN bit). Typically, this SMI triggering is turned off during normal system operation to avoid degrading system performance. Triggering is turned on by the SMI routine before entering the power down mode so that the system may be returned to normal operation at the occurrence of primary events. At the same time, the GP0 timer is reloaded and the count down process is restarted.

Peripheral Events

Primary and secondary events define system events in general and the response is typically expressed in terms of system events. Individual peripheral events can also be monitored by the VT82C596B through the GP1 timer. The following four categories of peripheral events are distinguished (via register GP RLD EN):

Bit-7 **Keyboard Access**Bit-6 **Serial Port Access**Bit-4 **Video Access**Bit-3 **IDE/Floppy Access**

The four categories are subsets of the primary events as defined in PRI_ACT_EN and the occurrence of these events can be checked through a common register PRI_ACT_STS. As a peripheral timer, GP1 can be used to monitor one (or more than one) of the above four device types by programming the corresponding bit to one and the other bits to zero. Time out of the GP1 timer indicates no activity of the corresponding device type and appropriate action can be taken as a result.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Min	Max	Unit
Ambient operating temperature	0	70	oC.
Storage temperature	-55	125	oC.
Input voltage	-0.5	5.5	Volts
Output voltage ($V_{CC} = 5V$)	-0.5	5.5	Volts
Output voltage ($V_{CC} = 3.1 - 3.6V$)	-0.5	$V_{CC} + 0.5$	Volts

Note: Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

DC Characteristics

 $TA-0-70^{\circ}C$, $V_{CC}=5V+/-5\%$, GND=0V

Symbol	Parameter	Min	Max	Unit	Condition
V_{IL}	Input low voltage	-0.50	0.8	V	
V_{IH}	Input high voltage	2.0	V _{CC} +0.5	V	
V _{OL}	Output low voltage	-	0.45	V	I _{OL} =4.0mA
V _{OH}	Output high voltage	2.4	-	V	I _{OH} =-1.0mA
I_{IL}	Input leakage current	-	+/-10	uA	$0 < V_{IN} < V_{CC}$
I _{OZ}	Tristate leakage current	-	+/-20	uA	$0.45 < V_{OUT} < V_{CC}$
I_{CC}	Power supply current	-	80	mA	

AC Timing Specifications

Table 6. AC Characteristics - PCI Cycle Timing

	Parameter	Min	Max	Unit	Notes
T_{S}	AD[31:0] Setup Time to PCLK Rising	7		ns	
T_{S}	FRAME#,TRDY#,IRDY# Setup Time to PCLK Rising	7		ns	
T_{S}	CBE[3:0]#, STOP#,DEVSEL# Setup Time to PCLK Rising	7		ns	
T_{S}	PGNT# Setup Time to PCLK Rising	12		ns	
$T_{\rm H}$	AD[31:0] Hold Time from PCLK Rising	0		ns	
T_{H}	FRAME#,TRDY#,IRDY# Hold Time from PCLK Rising	0		ns	
T_{H}	CBE[3:0]#, STOP#,DEVSEL# Hold Time from PCLK Rising	0		ns	
T_{H}	PGNT# Hold Time from PCLK Rising	0		ns	
T_{VD}	AD[31:0] Valid Delay from PCLK Rising (address phase)	2	11	ns	0pf on min, 50pf on max
T_{VD}	AD[31:0] Valid Delay from PCLK Rising (data phase)	2	11	ns	0pf on min, 50pf on max
T_{VD}	FRAME#,TRDY#,IRDY# Valid Delay from PCLK Rising	2	11	ns	0pf on min, 50pf on max
T_{VD}	CBE[3:0]#, STOP#,DEVSEL# Valid Delay from PCLK Rising	2	11	ns	Opf on min, 50pf on max
T_{VD}	PREQ# Valid Delay from PCLK Rising	2	12	ns	0pf on min, 50pf on max
T_{FD}	FRAME#,TRDY#,IRDY# Float Delay from PCLK Rising		28	ns	Opf on min, 50pf on max
T_{FD}	CBE[3:0]#, STOP#,DEVSEL# Float Delay from PCLK Rising		28	ns	0pf on min, 50pf on max

 $\begin{tabular}{ll} Table 7. AC Characteristics - UltraDMA-33 IDE Bus Interface Timing \\ \end{tabular}$

Symbol	Description	Timing	Unit
Tenv1	Envelope time for read initial	29.3	ns
T _D S1	Data setup time for read initial	1.1	ns
Тоні	Data hold time for read initial (rise)	2.3	ns
Tenv2	Envelope time for write initial (rise)	29.3	ns
TDVS2	Data setup time for write initial (fall)	42.2	ns
Tdvh2	Data hold time for write initial (fall)	17.8	ns
T _D VS2	Data setup time for write initial	42.0	ns
Tdvh2	Data hold time for write initial	17.2	ns
Trfs	READY to final STROBE time	21.3	ns
Trp	READY to Pause time	180.0	ns
TLI4	Limited interlock time (to STOP)	95.1	ns
TLI4	Limited interlock time (to Host DMARDY)	125.3	ns
Tza4	Delay time required for output drives turning on	102.0	ns
Tdvs4	Data setup time for read terminating	55.3	ns
Тоун4	Data hold time for read terminating	31.6	ns
TL15	Limited interlock time (to STOP)	125.3	ns
Tli5	Limited interlock time (to Host STROBE)	95.2	ns
TMIL5	Limited interlock time with minimum	120.6	ns
Tdvs5	Data setup time for write terminating	57.7	ns
T _D VH5	Data hold time for write terminating	31.8	ns
TMIL6	Limited interlock time with minimum	155.8	ns
Tza6	Delay time required for output drives turning on	68.5	ns
T _{LI5}	Limited interlock time	65.2	ns
TMIL5	Limited interlock time with minimum	90.6	ns
T ₂	Delay time of PCLK to DCS3,1#	4.8	ns
T ₃	Delay time of PCLK to DA[2:0]	5.3	ns
T4	Delay time of PCLK to DIOW#	9.3	ns
T5	Delay time of PCLK to DIOR#	9.2	ns
Twds	Data setup time during PIO write	85.5	ns
Twdh	Data hold time during PIO write	31.7	ns
Trds	Data setup time during PIO read	0.4	ns
Trdh	Data hold time during PIO read	2.1	ns

Figure 8. UltraDMA-33 IDE Timing - Drive Initiating DMA Burst for Read Command

Figure 9. UltraDMA-33 IDE Timing - Drive Initiating Burst for Write Command

Figure 10. UltraDMA-33 IDE Timing - Pausing a DMA Burst

Figure 11. UltraDMA-33 IDE Timing - Drive Terminating DMA Burst During Read Command

Figure 12. UltraDMA-33 IDE Timing - Drive Terminating DMA Burst During Write Command

Figure 13. UltraDMA-33 IDE Timing - Host Terminating DMA Burst During Read Command

Figure 14. UltraDMA-33 IDE Timing - Host Terminating DMA Burst During Write Command

Figure 15. UltraDMA-33 IDE Timing - PIO Cycle

PACKAGE MECHANICAL SPECIFICATIONS

Figure 16. Mechanical Specifications - 324-Pin Ball Grid Array Package