PATENT ABSTRACTS OF JAPAN

39

(11)Publication number:

05-173065

(43)Date of publication of application: 13.07.1993

(51)Int.CI.

G02B 13/14

G02B 13/24

(21)Application number: 04-022837

OLYMPUS OPTICAL CO LTD

(22)Date of filing:

07.02.1992

(71)Applicant: (72)Inventor:

KENNO KOKICHI

(30)Priority

Priority number: 03277613

Priority date: 24.10.1991

Priority country: JP

(54) REDUCTION PROJECTION LENS

(57)Abstract:

PURPOSE: To obtain a reduction projection lens using short wavelength light as a light source and having high resolution and wide focal depth by setting up its incident iris position on a position comparatively far from an object face in order to reduce image distortion.

CONSTITUTION: The reduction projection lens is constituted of the 1st lens group I including a pair of meniscus lenses whose concaves are mutually opposed, the 2nd lens group II having positive refractive power and constituted of at least two lenses and the 3rd lens group III having positive refractive power and satisfies the conditions of the shown inequalities, provided that E is an incident iris position measured from the 1st face of the lens system, L is a distance between object images and F1 is the focal distance of the 1st lens group.

①0.5
0.5</pr>
0.2</pr>
1.1

LEGAL STATUS

[Date of request for examination]

29.01.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出頗公開番号

特開平5-173065

(43)公開日 平成5年(1993)7月13日

(51)Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

G 0 2 B 13/14 13/24 8106-2K

8106-2K

審査請求 未請求 請求項の数3(全22頁)

(21)出願番号

特願平4-22837

(22)出願日

平成 4年(1992) 2月7日

(31)優先権主張番号 特願平3-277613

特願平3-277613 平 3 (1991)10月24日

(32)優先日 (33)優先権主張国

日本(JP)

(71)出願人 000000376

オリンパス光学工業株式会社

東京都渋谷区幡ヶ谷2丁目43番2号

(72)発明者 研野孝吉

東京都渋谷区幡ケ谷2丁目43番2号オリン

パス光学工業株式会社内

(74)代理人 弁理士 韮澤 弘 (外7名)

(54)【発明の名称】 縮小投影レンズ

(57)【要約】

【目的】 像歪みを小さくするために、縮小投影レンズ の入射瞳位置が物体面から比較的遠くにあり、短波長光 を光源とする高解像力で焦点深度の広い縮小投影レン ズ。

【構成】 互いに凹面を向かい合わせた一対のメニスカスレンズを含んでなる第1レンズ群I、正の屈折力を持ち少なくとも2枚のレンズにより構成された第2レンズ群II、正の屈折力を持った第3レンズ群III より構成され、レンズ系の第1面より測った入射瞳位置をE、物像間距離をE、第1レンズ群の焦点距離をE1 とするとき、

①0.5<|E/L|

 $\bigcirc 0$. 2 < $| F_1 / L |$

なる条件を満足する。

【特許請求の範囲】

【請求項1】 物体側より順に、互いに凹面を向かい合わせた一対のメニスカスレンズを含んでなる第1レンズ群、正の屈折力を持ち少なくとも2枚のレンズにより構成された第2レンズ群、正の屈折力を持った第3レンズ群より構成され、レンズ系の第1面より測った入射瞳位置をE、物像間距離をE、第1レンズ群の焦点距離をF1とするとき、

 $\bigcirc 0.5 < |E/L|$

②0. $2 < |F_1/L|$

なる条件を満足することを特徴とする縮小投影レンズ。 【請求項2】 第2レンズ群の焦点距離を F_2 とするとき、

 $30.1 < |F_2/L| < 0.3$

なる条件を満足することを特徴とする請求項1記載の縮 小投影レンズ。

【請求項3】 第3レンズ群の焦点距離を F_3 とするとき、

40. 04<|F₃/L|<0. 1

なる条件を満足することを特徴とする請求項1又は2記載の記載の縮小投影レンズ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、投影露光法によって I C等の集積回路パターン等を描いたマスク等から半導体ウエーハ上に回路パターン等を転写する際に用いられる縮小投影レンズに関するものである。

[0002]

【0003】一方、回路パターンが微細になればなるほど、回路パターンの歪みもより少ないレンズ系が要求されてきている。しかし、いくらレンズ系の歪みが少なくても、露光する半導体ウェーハ基板の平面度を厳しく抑えないと、ウェーハ基板等の反りによる像の歪みが発生してしまう。そのために、像側の射出瞳位置を無限遠にした像側テレセントリック光学系にすることが行われていた。

【0004】なお、公知の縮小投影露光レンズとしは、特開昭63-155014号、特開昭60-140310号、特開昭63-121810号、特開昭63-118115号等のものがある。また、本出願人が出願した特願平2-283827号等のものがある。

[0005]

【発明が解決しようとする課題】しかしながら、上記のような従来の縮小投影法に使用される縮小投影レンズには、248nm等の短波長光を光源として、投影レンズの射出側のみならず、入射側の入射瞳位置も像面から比較的遠くにあり、物体面の平面度が悪くても像の歪みが小さくてすむ高解像力で焦点深度の広い縮小投影レンズは存在しなかった。

【0006】本発明はこのような状況に鑑みてなされたものであり、その目的は、この像歪みを小さくするために、縮小投影レンズの入射瞳位置が物体面から比較的遠くにあり、短波長光を光源とする高解像力で焦点深度の広い縮小投影レンズを提供することである。

[0007]

【課題を解決するための手段】上記目的を達成する本発明の縮小投影レンズは、物体側より順に、互いに凹面を向かい合わせた一対のメニスカスレンズを含んでなる第1レンズ群、正の屈折力を持ち少なくとも2枚のレンズにより構成された第2レンズ群、正の屈折力を持った第3レンズ群より構成され、レンズ系の第1面より測った入射瞳位置をE、物像間距離をL、第1レンズ群の焦点距離を F_1 とするとき、

 $\bigcirc 0.5 < |E/L|$

 $20.2 < |F_1/L|$

なる条件を満足することを特徴とするものである。

【0008】この場合、第2レンズ群の焦点距離を F_2 とするとき、

 $30.1 < |F_2/L| < 0.3$

なる条件を満足することが望ましく、また、第3レンズ 群の焦点距離を F_3 とするとき、

 $\bigcirc 0.04 < |F_3/L| < 0.1$ なる条件を満足することが望ましい。

[0009]

【作用】以下、本発明の構成を採用した理由と作用について説明する。レンズ系への入射瞳が物体に近いと、軸外光束が光軸となす角度が大きくなって、物体面の面精度が悪いと、物点位置の光軸方向へのズレが縮小投影された像の歪みとして大きくなるという問題がある。物体高I、レンズ系の第1面より測った入射瞳位置E、縮小倍率B、物体面の光軸方向の撓み量dと像の歪みDとの関係は、次式で表される。

$[0\ 0\ 1\ 0], D = I / E \times B \times d$

本出願人が先に出願した特願平2-283827号のエキシマレーザを光源とする実施例の場合には、物体而の反り量が1μmの場合に、像面上の歪みとして0.03

 $6 \mu m$ が発生する (I = 90、E = 490、B = 0.2)。

【0011】この物体面の反りによる像歪みを十分小さくするためには、入射瞳位置を物体から遠くにする必要がある。上記条件式①は、この入射瞳位置を規定したものである。この条件①を満足しないと、物体面を射出する軸外主光線傾角が大きくなり、物体面の反りによる像面上での歪みが無視できなくなる。

【0012】しかし、単に特願平2-283827号のレンズ構成で入射瞳位置を遠くにすると、レンズ系の主な正の屈折力を持つレンズ群の中央近傍から瞳がズレてしまう。このため、このレンズ群を通る軸外物点の上側光束と下側光束の対称性が崩れ、この主な正の屈折力を持つレンズ群でのコマ収差の発生が大きくなり、広い露光領域を確保することが不可能となる。

【0013】そこで、物体近くに正のレンズ群を付加して、主な正の屈折力を持つレンズ群の中央近傍に瞳位置を投影することが考えられる。しかし、軸外主光線の高い物体近傍に正レンズ群を配することになり、ペッツバール和が悪化すると共に、この正レンズ群により発生するコマ収差が他の群で補正不可能となってしまう。このコマ収差とペッツバール和を良好に補正するためには、物体近傍の正のレンズ群のさらに物体側に、凹面が向き合う一対のメニスカスレンズを含み負の屈折力を持つレンズ群を配置することが収差補正上重要になる。

【0014】したがって、本発明では、上記物体側の負のレンズ群を第1群、次の正レンズ群を第2群、主な屈折力を持つレンズ群を第3群とした3群構成としている。

【0015】次に、この第1群、第2群、第3群の役割に付いて説明する。第1群の互いに向き合った凹面を持つメニスカスレンズは、コマ収差を負側に補正している。前記条件式2の範囲を越えて焦点距離が短くなると、第1群で発生するコマ収差が大きくなりすぎ、第2群とのコマ収差補正のバランスが崩れ、第1群と第2群を合わせたトータルのコマ収差補正が不可能となる。なお、条件式2に上限を設けて、 $|F_1/L|<1$ なる条件を満足するようにすると、他のレンズ群で発生する正のペッツバール和を補正するために必要な負のペッツバール和を発生させることができる。

【0016】さらに好ましくは、第2群は、第1群の負のパワーによって発散してしまう入射瞳を第3群の中央付近に投影する役目を持っている。前記条件式③は、この入射瞳の投影条件を規定している関係式である。この条件式の上限を越えても、下限を越えても、瞳の投影を第3群の中央近傍にすることができなくなる。つまり、条件③は、前記した条件②と同様に、レンズ全系で発生するコマ収差を補正するために必要な条件であり、この条件を外れると、第3群で発生するコマ収差が大きくな

りすき、他の群でこれを補正することが不可能となって しまう。

【0017】また、第1群と第2群の屈折力の配分は、 $51<|F_1/F_2|<5$

の条件を満足すると、第1群と第2群で発生するコマフレアーの発生を全系で補正するのによい結果が得られる。

【0018】第3群は、レンズ系全体の投影倍率等の近軸量を決定しているレンズ群であり、条件式②の上限を越えると、投影倍率が大きくなり、下限を越えると小さくなり、何れも所望の倍率が得られなくなってしまう。 【0019】さて、縮小投影光学系において、高い解像力と広い露光領域とを確保するためには、第3群で発生する像面湾曲をほぼ完全に補正しなくてはならない。このような目的のため、互いに向き合った凹面を持つガウスタイプが写真レンズ等ではよく用いられるが、本発明では、第3群の中に向き合った凹面を持つレンズ群を少なくとも1組設けることにより、ペッツバール和を補正する。

【0020】また、縮小投影法では、基板の平面度によって部分的な像歪が生じないように、射出瞳を無限遠に近くなるようにしている。本発明でも、少なくとも像面側の射出瞳を無限遠に近くするために、第3群の向き合った凹面により構成されたレンズ群のさらに像面側に凹面を向けたメニスカスレンズ群は、レンズ系の中にある瞳を無限遠に結像する作用を持つ。像面側に凹面を向けたメニスカスレンズは、ペッツバール和を補正するためのもので、コマ収差を劣化させないようにするため、面に対する光線の傾角が小さくなる向き、すなわち、凹面が像面側になるように配置している。

【0021】なお、この像面側に凹面を向けたメニスカスレンズの凹面の屈折力を ϕ_3 、物像間距離をLとすると、

$61/L < |\phi_3| < 20/L$

なる条件を満足することによって、広い露光領域が確保される。この条件の下限を越えた場合には、凹面での屈折力が弱くなりすぎてしまい、広い露光領域を得ることが難しくなる。また、その上限を越えると、負の屈折力が強くなりすぎてしまい、ペッツバール和は補正できるが、コマ収差の発生が大きくなり、他の面で補正することが難しくなる。

[0022]

【実施例】以下に、本発明の縮小投影レンズの実施例について説明する。実施例 $1 \sim 8$ のレンズ配置を示すレンズ断面図を図 $1 \sim 20$ 8 に示す。本発明の縮小投影レンズでは、縮小倍率が小さくなると、ペッツバール和が補正し難くなるため、第 3 群に設けた向き合った凹面の負の屈折力が強くなりがちである。しかし、この向き合った凹面の負の屈折力を強くしすぎると、ペッツバール和は

小さくなるが、あまりに凹面が強くなりすぎると、この 面で発生するコマ収差が大きくなり、他の面ではこれを 補正できなくなってしまう。

【0023】この問題に対処するため、実施例 $1\sim5$ に示した縮小投影倍率が1/5のレンズ系においては、上記の向き合った凹面で構成するレンズ群を2組用いている。この場合、2組のレンズ群を単に並べただけでは、凹面による光線の発散作用を持ったレンズ群がレンズ系の一部に集まってしまうため、全系の屈折力を所定の屈折力にするために、上記の向き合った凹面の屈折力が弱くなってしまう。つまり、ペッツバール和を小さくする作用を持った向き合った凹面は増えるが、凹面の負の屈折力が弱くなり、結局ペッツバール和は小さくならない。

【0024】そこで、これらの実施例 $1\sim5$ においては、この向き合った凹面で構成された2組のレンズ群を有効にペッツバール和の補正に使うため、上記2組のレンズ群の間に少なくとも1つの正の屈折力を持つレンズ面を配置する。この正の屈折力のレンズ面によってはじめて、物体側と像側の向き合った凹面で構成された2組のレンズ群のそれぞれの凹面が、ペッツバール和とコマ収差に対して適切な屈折力を持ち得ることになる。上記の適切な屈折力とは、上記の向き合った2つの凹面の屈折力を各々 ϕ_1 、 ϕ_2 とし、物像間距離をLとしたとき、上記2組のレンズ群が共に、

 $\bigcirc 1/L \mid \phi_1 \mid < 20/L, 1/L \mid \phi_2 \mid < 20/L$

なる条件を満足することである。これらの条件式の上限、下限の意味は、条件式®について述べたことと同じである。

【0025】ところで、上記の実施例では、第3群の主点を像面側に置くために、第3群全体をレトロフォーカス的なパワー配置にしてあり、凹面を向き合わせたレンズ群の中の像側にある群が、このレトロフォーカス配置の負のパワーの役割を担っている。

【0026】しかし、投影倍率が1/4と大きくなると、レンズ系の主たる屈折力を負担する第3群の主点位置が像側から物体側に移動する。このため、上記のレトロフォーカス的配置が不要となり、このレンズ群の負の屈折力を弱くすることができる。その結果、凹面を向き合わせた2組のレンズ群の一方を省略することができる。実施例 $6\sim8$ では、このような理由により、凹面を向き合わせたレンズ群の数は1つになっている。

【0027】なお、倍率1/4の実施例 $6\sim8$ では、後記のレンズデータから明らかなように、倍率1/5の実

NA=0.50 露光領域16.7×16.7mm

 $d_0 = 41.667$ $r_1 = 158.8180$ $d_1 = 41.667$ $r_2 = 155.6344$ $d_2 = 62.989$

 $r_3 = 521.3761$ $d_3 = 18.467$

施例 $1\sim5$ のものに比較して、開口数、露光領域が共に大きくなっている。

【0028】以下、より具体的に、実施例1~5においては、第1群Iは第1レンズから第3レンズの3枚からなり、第2群IIは第4レンズと第5レンズの2枚からなる。第3群III は、実施例1から実施例4は、第6レンズから第23レンズの18枚からなり、実施例5は第6レンズから第24レンズの19枚からなる。また、実施例6~8においては、第1群Iは第1レンズから第3レンズの3枚からなり、第2群IIは第4レンズから第6レンズの3枚からなる。第3群III は、実施例6、実施例8は、第7レンズから第24レンズの18枚からなり、実施例7は、第7レンズから第23レンズの17枚からなる。何れのレンズも溶融石英(SiO2)からなる。

【0029】また、第3群中の向き合った凹面については、上記したように、実施例 $1\sim5$ においては2組用いており、何れの実施例においても、第14面(ϕ_1)と第19面(ϕ_2)、第28面(ϕ_1)と第29面

 (ϕ_2) がそれらの組を構成しており、また、上記メニスカスレンズの像面側の面は、第40面 (ϕ_3) が構成している。また、実施例 $6 \sim 8$ においては、第3群中に向き合った凹面を1組用いており、実施例 $6 \sim 8$ においては、第16面 (ϕ_1) と第23面 (ϕ_2) がその組を構成しており、実施例7においては、第14面 (ϕ_1) と第21面 (ϕ_2) がその組を構成している。メニスカスレンズの像面側の面は、実施例6、8においては、第40面 (ϕ_3) が、実施例7においては、第36面 (ϕ_3) が、それぞれ構成している。

【0031】なお、実施例 $1\sim5$ においては、倍率 $\beta=1/5$ 、物像問距離L=1000mmであり、実施例 $6\sim8$ においては、倍率 $\beta=1/4$ 、物像間距離L=100mmである。

【0032】 実施例1

E = ∞

 $n_{248,1} = 1.5083$ (SiO₂)

 $n_{248,2} = 1.5083$ (SiO₂)

```
r_4 = 154.8448
                                                           d_4 = 50.923
                          r_5 = -109.4408
                                                          d_5 = 12.500
                                                                                n_{248.3} = 1.5083 (SiO<sub>2</sub>)
                          r_6 = -119.5306
                                                          d_6 = 16.162
                         r_7 = 366.1980
                                                          d_7 = 37.475
                                                                                n_{248,4} = 1.5083 (SiO<sub>2</sub>)
                          r_8 = -256.3179
                                                          d_8 = 0.083
                         r_9 = 353.4320
                                                          d_9 = 40.072
                                                                                n_{248,5} = 1.5083
                                                                                                    (SiO<sub>2</sub>)
                          r_{10} = -667.9980
                                                          d_{10}=35.047
                          r_{11} = 131.6928
                                                           d<sub>11</sub>=23.349
                                                                                n_{248,6} = 1.5083
                                                                                                    (SiO_2)
                         r_{12} = 248.4079
                                                          d_{12}= 1.511
                                                          d<sub>13</sub>=41.065
                         r_{13} = 142.7179
                                                                                n_{248,7} = 1.5083 (SiO<sub>2</sub>)
                                   60.8060
                                                          d_{14}=27.503
                         r 14=
                         r_{15} = -167.3935
                                                          d_{15}=12.500
                                                                                n_{248,8} = 1.5083 (SiO<sub>2</sub>)
                         r_{16} = -107.3010
                                                         d_{16} = 0.083
                         r_{17} = -721.4791
                                                          d_{17}=12.500
                                                                                n_{248,9} = 1.5083
                                                                                                    (SiO_2)
                         r_{18} = 101.6271
                                                          d_{18}=20.585
                         r_{19} = -62.1308
                                                          d_{19}=12.500
                                                                                n_{248,10}=1.5083
                                                                                                    (SiO<sub>2</sub>)
                         r_{20} = 213.2965
                                                          d_{20}=22.453
                                                                                n_{248,11}=1.5083 (SiO<sub>2</sub>)
                         r_{21} = -290.4600
                                                          d<sub>21</sub>=41.667
                         r_{22} = -142.1379
                                                          d_{22} = 0.083
                         r_{23} = 710.6183
                                                          d_{23}=25.767
                                                                                n_{248,12}=1.5083 (SiO<sub>2</sub>)
                         r_{24} = -157.4733
                                                          d_{24} = 0.083
                         r_{25} = 176.7278
                                                          d<sub>25</sub>=20.056
                                                                                n_{248,13}=1.5083 (SiO<sub>2</sub>)
                         r<sub>26</sub>= 2143.3574
                                                          d_{26} = 0.083
                         r_{27}= 212.7948
                                                          d<sub>27</sub>=38.145
                                                                                n_{248,14}=1.5083 (SiO<sub>2</sub>)
                                                          d<sub>28</sub>=25.747
                         r_{28} = 108.7235
                         r<sub>29</sub>= -135.8758
                                                          d<sub>29</sub>=12.500
                                                                                n_{248,15}=1.5083 (SiO<sub>2</sub>)
                         r_{30} = 487.8604
                                                          d 30=32.627
                         r_{31} = -559.6964
                                                          d_{31}=35.123
                                                                                n_{248,16}=1.5083 (SiO<sub>2</sub>)
                         r_{32} = -219.9666
                                                          d_{32} = 0.083
                         \mathbf{r}_{33} = 905.5655
                                                          d_{33}=24.259
                                                                                n_{248,17}=1.5083 (SiO<sub>2</sub>)
                         r_{34} = -198.0141
                                                          d_{34} = 0.083
                         r_{35}= 229.0919
                                                          d_{35}=40.041
                                                                                n_{248,18}=1.5083 (SiO<sub>2</sub>)
                         r_{36} = -753.1448
                                                          d_{36}=12.508
                         r_{37} = 129.3415
                                                          d 37=22.495
                                                                                n_{248,19}=1.5083 (SiO<sub>2</sub>)
                                293.9816
                                                          d_{38} = 0.124
                         r_{38} =
                                                          d 39=41.667
                                   87.6213
                                                                                n_{248,20}=1.5083 (SiO<sub>2</sub>)
                                                          d<sub>40</sub>=18.051
                         r 40=
                                   59.4786
                         r_{41} = -1548.7213
                                                          d_{41}=25.915
                                                                                n_{248,21}=1.5083 (SiO<sub>2</sub>)
                         r_{42} = 161.4997
                                                          d_{42} = 0.083
                                   72.3482
                                                          d_{43}=20.560
                         r 43=
                                                                                n_{248,22}=1.5083 (SiO<sub>2</sub>)
                                   90.3115
                                                          d_{44} = 0.580
                         r 44=
                                 58.8494
                                                        d_{45}=20.566
                         r<sub>45</sub>=
                                                                              n_{248,23}=1.5083 (SiO<sub>2</sub>)
                         r 46=
                                                          d_{46}=10.000
                                     \infty
                            F_1 = -509.343
                                                             F_2 = 187.569
                                                                                            F_3 = 51.157
                            \phi_1 = -0.00836
                                                             \phi_2 = -0.00818
                            \phi_1 = -0.00468
                                                             \phi_2 = -0.00374
                            \phi_3 = -0.00855
【0033】 実施例2
                            NA = 0.48
                                            露光領域
                                                         20 \times 20 mm E = 20842.22
```

 $d_0 = 50.000$

$r_1 = 141.2698$	$d_1 = 33.671$ $d_2 = 29.286$	$n_{248,1} = 1.5083$	(SiO_2)
$r_2 = 152.0192$ $r_3 = 666.2277$	$d_3 = 15.000$	n -1 5083	(SiO ₂)
$r_4 = 151.1574$	$d_4 = 26.859$	$n_{248,2} = 1.5083$	(3102)
$r_5 = -108.1434$	$d_5 = 15.000$	n1 5083	(SiO)
$r_6 = -118.8647$	$d_6 = 14.745$	$n_{248,3} = 1.5083$	(SiO_2)
$r_7 = 460.9167$	$d_{6} = 14.743$ $d_{7} = 43.187$	n -1 5002	(0:0)
$r_8 = -276.6500$	$d_8 = 0.100$	$n_{248,4} = 1.5083$	(SiO_2)
$r_9 = 275.5863$	$d_9 = 35.557$	n _{248,5} =1.5083	(SiO ₂)
r_{10} =-1203.1428	$d_{10} = 0.131$	11248,5 -1.0003	(3102)
$r_{11} = 160.4572$	$d_{10} = 0.131$ $d_{11} = 34.632$	n _{248,6} =1.5083	(SiO ₂)
$r_{12} = 661.6698$	$d_{12} = 0.222$	11248,6 -1.0003	(5102)
r_{13} = 214.4262	d ₁₂ = 0.222 d ₁₃ =41.178	n _{248,7} =1.5083	(SiO ₂)
$r_{14} = 71.8816$	d ₁₄ =64.177	11 248,7 -1.0003	(5102)
$r_{15} = -166.9853$	d ₁₅ =15.006	n _{248,8} =1.5083	(SiO)
$r_{16} = -121.2880$	$d_{16} = 4.026$	11 248,8 -1:0000	(0102)
$r_{17} = -947.7400$	d ₁₇ =24.617	n _{248,9} =1.5083	(SiO ₂)
$r_{18} = 96.3131$	$d_{18}=21.706$	11 248, y - 1:0000	(0102)
$r_{19} = -63.8413$	d ₁₉ =15.000	n _{248,10} =1.5083	(SiO ₂)
$r_{20} = 236.8715$	d ₂₀ =21.763	11 248, 10-1:0000	(0102)
$r_{21} = -295.4267$	$d_{21}=49.126$	n _{248,11} =1.5083	(SiO ₂)
$r_{22} = -152.0088$	$d_{22} = 0.100$	11 248, 11 1.0000	(0102)
$r_{23} = 777.0670$	$d_{23}=29.069$	n _{248,12} =1.5083	(SiO ₂)
$r_{24} = -157.5230$	$d_{24} = 0.100$	12 240, 12 1 0 0 0 0	(2 2 0 2)
$r_{25} = 168.4778$	$d_{25}=22.530$	n _{248,13} =1.5083	(SiO ₂)
r ₂₆ = 1074.2257	$d_{26} = 0.100$	240,13	(2)
r ₂₇ = 251.5811	d ₂₇ =20.491	n _{248,14} =1.5083	(SiO ₂)
r ₂₈ = 131.9121	d ₂₈ =28.754	270,11	
r ₂₉ = -137.1541	d ₂₉ =15.000	n _{248,15} =1.5083	(SiO ₂)
$r_{30} = 425.5107$	$d_{30}=22.730$	2.12,7.1	<u>.</u>
$r_{31} = -682.4012$	d ₃₁ =26.847	n _{248,16} =1.5083	(SiO_2)
r ₃₂ = -241.5028	$d_{32} = 0.100$	•	
r ₃₃ = 1049.8203	d ₃₃ =28.249	n _{248,17} =1.5083	(SiO_2)
$r_{34} = -182.7013$	$d_{34} = 0.100$		
r_{35} = 226.6109	d_{35} =25.505	n _{248,18} =1.5083	(SiO_2)
r_{36} =-1068.8899	$d_{36} = 0.100$		
r ₃₇ = 141.2526	d ₃₇ =21.972	n _{248,19} =1.5083	(SiO_2)
$r_{38} = 329.5029$	$d_{38} = 0.146$		
r_{39} = 98.8268	d ₃₉ =41.393	n _{248,20} =1.5083	(SiO_2)
r ₄₀ = 66.7276	d ₄₀ =26.108		
$r_{41} = -517.3678$	d ₄₁ =38.814	n _{248,21} =1.5083	(SiO_2)
r ₄₂ = 186.4744	$d_{42} = 0.100$		
r ₄₃ = 74.2966	d ₄₃ =36.835	n _{248,22} =1.5083	(SiO_2)
r ₄₄ = 94.9398	$d_{44} = 0.101$		
r ₄₅ = 58.8202	d ₄₅ =21.753	n _{248,23} =1.5083	(SiO_2)
r_{46} = ∞	d_{46} = 8.013		
$F_1 = -516.940$	$F_2 = 198.765$	F ₃ =	52.931
$\phi_1 = -0.00707$	$\phi_2 = -0.00796$		
$\phi_1 = -0.00385$	$\phi_2 = -0.00371$		
$\phi_3 = -0.00762$			

【0034】実施例3

3				4	
N A	1=0.50	露光領域		E=725.58	
			$d_0 = 50.000$		
	106.208		$d_1 = 19.183$	$n_{248,1} = 1.5083$	(SiO_2)
	112.709		$d_2 = 14.582$		
	243.175		$d_3 = 15.000$	$n_{248,2} = 1.5083$	(SiO_2)
	102.715		$d_4 = 59.376$		
	-121.612		$d_5 = 15.000$	$n_{248,3} = 1.5083$	(SiO_2)
	-136.493		$d_6 = 17.234$		
	295.005		$d_7 = 33.106$	$n_{248,4} = 1.5083$	(SiO_2)
	-389.395		$d_8 = 0.100$		
	228.229		$d_9 = 30.132$	$n_{248,5} = 1.5083$	(SiO_2)
	1157.416		$d_{10} = 0.100$		
	239.166		d ₁₁ =24.828	$n_{248,6} = 1.5083$	(SiO_2)
-	2736.271		$d_{12} = 0.239$		
	200.637		d ₁₃ =15.000	$n_{248,7} = 1.5083$	(SiO_2)
	74.353		d ₁₄ =40.122		
	-124.078		d ₁₅ =15.631	$n_{248,8} = 1.5083$	(SiO_2)
	-112.508		$d_{16} = 0.100$		
	1081.612		d ₁₇ =75.311	$n_{248,9} = 1.5083$	(SiO_2)
	99.095		d ₁₈ =25.286		(
	-61.267		d ₁₉ =15.000	$n_{248,10}=1.5083$	(SiO_2)
	290.752		d ₂₀ =13.838		(
	-264.392		d ₂₁ =42.982	$n_{248,11}=1.5083$	(SiO_2)
	-142.378		$d_{22} = 0.100$	4 5000	()
	2574.347		d ₂₃ =33.911	$n_{248,12}=1.5083$	(SiO_2)
	128.0224		d ₂₄ = 0.100	. 1 5000	(0:0)
	178.829		d ₂₅ =27.785	n _{248,13} =1.5083	(SiO_2)
	4133.991		$d_{26} = 0.100$	1 5000	(0:0)
	366.248		d ₂₇ =15.000	n _{248,14} =1.5083	(SiO_2)
	145.150		$d_{28}=39.190$	~ -1 F002	(0:0)
	-134.161		$d_{29}=15.000$	$n_{248,15}=1.5083$	(SiO_2)
	546.440		d_{30} =18.673 d_{31} =24.615	n -1 5002	(0:0)
	-510.405		51	n _{248, 16} =1.5083	$(S I O_2)$
_	-230.269 1032.293		$d_{32} = 0.100$	n _{248,17} =1.5083	(0:0)
			d_{33} =39.467 d_{34} = 0.100	11 248, 17-1. 3003	(310_2)
	-175.742 253.844		$d_{34} = 0.100$ $d_{35} = 30.345$	n _{248,18} =1.5083	(S:O)
	-784.422		$d_{36} = 0.100$	11 248, 18-1.3003	(3102)
	165.896		$d_{36} = 0.100$ $d_{37} = 22.259$	n _{248,19} =1.5083	(S;O)
	348.575		$d_{37}=22.239$ $d_{38}=0.100$	11 248, 19-1.3003	(310_2)
	111.542		$d_{39}=43.105$	n _{248,20} =1.5083	(SiO ₂)
	79.176		d ₃₉ =43.103 d ₄₀ =31.484	11 248, 20-1 . 3003	(310_2)
	-513.011	J	· -	Thous == 1 5002	(SiO)
		7	$d_{41}=51.270$	$n_{248,21}=1.5083$	(SiO_2)
	236.321		$d_{42} = 0.100$	n1 5009	(SiO)
	89.821° 110.261°		$d_{43}=54.275$	$n_{248,22}=1.5083$	(3102)
	61.396		$d_{44} = 0.100$	m1 5000	(SiO)
		U	d_{45} =22.570	$n_{248,23}=1.5083$	(3 ± 02)
10	∞ -449.873		d ₄₆ = 8.000 F - 181 832	E	47.071
T. !-	010.013		$F_2 = 181.832$	Г 3-	11.011

Ø ₁ =-0.00684	$\phi_2 = -0.00830$		
$\phi_1 = -0.00350$	$\phi_2 = -0.00379$		
$\phi_3 = -0.00642$. 2		
【0035】実施例4			
NA=0.48 露光領域	$20 \times 20 m m$	E = 1478.10	
	d ₀ =100.000		
$r_1 = 137.2562$	$d_1 = 25.000$	$n_{248,1} = 1.5083$	(SiO_2)
$r_2 = 147.6178$	$d_2 = 15.558$		
$r_3 = 444.0530$	$d_3 = 25.000$	$n_{248,2} = 1.5083$	(SiO_2)
r ₄ = 137.1186	$d_4 = 47.265$		
$r_5 = -120.4597$	$d_5 = 25.000$	$n_{248,3} = 1.5083$	(SiO_2)
$r_6 = -140.3130$	$d_6 = 7.696$		
$r_7 = 467.8743$	$d_7 = 32.991$	$n_{248,4} = 1.5083$	(SiO_2)
$r_8 = -359.6274$	$d_8 = 1.000$		
$r_9 = 557.3871$	$d_9 = 30.000$	$n_{248,5} = 1.5083$	(SiO_2)
$r_{10} = -515.5693$	$d_{10} = 1.000$	·	
$r_{11} = 123.7905$		$n_{248,6} = 1.5083$	(SiO_2)
r ₁₂ = 643.8987	$d_{12} = 1.000$		
r ₁₃ = 171.4587	d ₁₃ =25.016	$n_{248,7} = 1.5083$	(SiO_2)
$r_{14} = 66.5180$	d ₁₄ =41.583	1 5000	(9:0)
$r_{15} = -152.4686$	$d_{15}=20.000$	$n_{248,8} = 1.5083$	$(S 1 O_2)$
$r_{16} = -126.9177$	d ₁₆ =23.751	m =1 E002	(c ; 0)
$r_{17}^{=}$ ∞ $r_{18}^{=}$ 92.5666	d ₁₇ =15.000 d ₁₈ =24.103	$n_{248,9} = 1.5083$	$(S 1 O_2)$
$r_{19} = -65.0156$	$d_{19}=24.103$ $d_{19}=15.000$	n _{248,10} =1.5083	(8:0)
$r_{20} = 260.3267$	$d_{19}=13.000$ $d_{20}=18.623$	11 248, 10-1. 3003	(310_2)
$r_{21} = -272.8242$	d_{20} =47.402	n _{248,11} =1.5083	(SiO ₀)
$r_{22} = -150.2897$	$d_{22} = 1.000$	11 248, 11 1:0000	(0102)
$r_{23} = 700.4601$	$d_{23}=32.885$	n _{248,12} =1.5083	(SiO ₂)
r ₂₄ = -147.3217	$d_{24} = 1.000$	240,12	, <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u>
r ₂₅ = 198.8265	d ₂₅ =23.375	n _{248,13} =1.5083	(SiO ₂).
r ₂₆ = ∞	$d_{26} = 1.000$,	-
r ₂₇ = 276.9653	d ₂₇ =22.000	n _{248,14} =1.5083	(SiO_2)
r ₂₈ = 139.4304	d ₂₈ =30.352		
r ₂₉ = -135.7057	d ₂₉ =22.000	n _{248,15} =1.5083	(SiO_2)
r ₃₀ = 425.1163	d_{30} =16.299		
r ₃₁ = -488.1142	d ₃₁ =23.000	$n_{248, 16} = 1.5083$	(SiO_2)
r ₃₂ = -221.2312	d_{32} = 1.000		
r ₃₃ = 793.9923	d_{33} =29.322	$n_{248,17}$ =1.5083	(SiO_2)
r ₃₄ = -178.4943	d_{34} = 1.000		
r_{35} = 230.7597	d_{35} =24.399	n _{248,18} =1.5083	(SiO_2)
r ₃₆ =-1400.000	$d_{36} = 1.000$		
r ₃₇ = 143.8285	d ₃₇ =22.630	n _{248,19} =1.5083	(SiO_2)
$r_{38} = 346.4978$	d ₃₈ = 1.000		/ m / = :
$r_{39} = 92.4396$	d ₃₉ =46.822	n _{248,20} =1.5083	$(S i O_2)$
$r_{40} = 59.0889$	d ₄₀ =17.769		(0:0)
$r_{4l} = \infty$	d ₄₁ =48.415	$n_{248,21}=1.5083$	$(S 1 O_2)$
$r_{42} = 100.6209$	d ₄₂ = 1.000	- 1 5000	(0:0)
$r_{43} = 59.7465$	$d_{43}=25.260$	n _{248,22} =1.5083	$(S 1 O_2)$
r ₄₄ = 92.1960	$d_{44} = 1.000$		

r ₄₅ = 57.9881	d ₄₅ =15.000	n _{248,23} =1.5083	(SiO ₂)
r_{46} = ∞	d ₄₆ = 8.001		
$F_1 = -487.258$	$F_2 = 235.341$	$F_3 =$	67.839
$\phi_1 = -0.00764$	$\phi_2 = -0.00782$		
$\phi_1 = -0.00365$	$\phi_z = -0.00375$		
$\phi_3 = -0.00860$			
【0036】実施例5			
N A=0.47	8光領域 25×25 mm	E = ∞	
	$d_0 = 100.000$		
$r_1 = 158.8170$	$d_1 = 19.241$	$n_{248,1} = 1.5083$	(SiO_2)
$r_2 = 239.7566$	$d_2 = 25.114$		
$r_3 = -520.0778$	$d_3 = 15.000$	n _{248,2} =1.5083	(SiO_2)
$r_4 = 173.3822$	$d_4 = 55.581$		
$r_5 = -134.3573$	$d_5 = 12.500$	$n_{248,3} = 1.5083$	(SiO_2)
$r_6 = -158.9506$	$d_6 = 0.833$		
r ₇ =11353.9937	$d_7 = 30.783$	$n_{248,4} = 1.5083$	(SiO_2)
$r_8 = -260.7941$	$d_8 = 0.833$		
$r_9 = 236.4466$	$d_9 = 41.454$	$n_{248,5} = 1.5083$	(SiO_2)
$r_{10} = -965.9305$	$d_{10} = 0.833$		
$r_{11} = 197.3572$	d ₁₁ =33.902	$n_{248,6} = 1.5083$	(SiO_2)
r_{12} = 2305.5231	$d_{12} = 0.833$		
$r_{13} = 155.2685$	d ₁₃ =39.333	$n_{248,7} = 1.5083$	(SiO_2)
r ₁₄ = 74.2733	$d_{14} = 33.505$		
r ₁₅ = -833.0055	$d_{15}=16.231$	$n_{248,8} = 1.5083$	(SiO_2)
r ₁₆ = -173.1079	d ₁₆ =15.107		
r ₁₇ = -132.3474	$d_{17}=12.500$	$n_{248,9} = 1.5083$	(SiO_2)
r ₁₈ = 107.5686	d_{18} =39.258		
$r_{19} = -71.6995$	$d_{19}=12.500$	n _{248,10} =1.5083	(SiO_2)
$r_{20} = 231.6966$	$d_{20}=17.492$		
$r_{21} = -526.9275$	$d_{21}=36.447$	$n_{248,11}=1.5083$	$(S i O_2)$
$r_{22} = -188.3114$	$d_{22} = 0.833$		(~ . ~ .
r ₂₃ = 866.0416	d ₂₃ =36.994	$n_{248,12}=1.5083$	$(S 1 O_2)$
$r_{24} = -156.0137$	$d_{24} = 0.833$		(0:0)
$r_{25} = 274.4281$	d ₂₅ =33.991	$n_{248,13}=1.5083$	$(S 1 O_2)$
$r_{26} = -342.0398$	$d_{26} = 0.833$	1 5000	(0:0)
r ₂₇ = 228.3407	d ₂₇ =25.104	n _{248,14} =1.5083	$(S 1 O_2)$
$r_{28} = 113.0798$	d ₂₈ =44.582	1 5000	(
$r_{29} = -145.4000$	$d_{29}=12.500$	n _{248,15} =1.5083	$(S 1 O_2)$
$r_{30} = 785.8063$	d ₃₀ =14.521	1 5000	(0:0)
$r_{31} = -572.7342$	$d_{31}=18.677$	$n_{248, 16} = 1.5083$	$(S 1 O_2)$
$r_{32} = -210.7349$	$d_{32} = 0.833$	1 5000	(6:0)
$r_{33} = 615.9888$	$d_{33}=33.977$	$n_{248,17}=1.5083$	$(S 1 U_2)$
$r_{34} = -184.3613$	$d_{34} = 0.833$	-1 FA00	(0:0)
$r_{35} = 243.9015$	$d_{35}=21.294$	n _{248,18} =1.5083	$(S 1 U_2)$
$r_{36} = \infty$	$d_{36} = 0.833$	- 1 FAGG	(0:0)
r ₃₇ = 145.8836	$d_{37}=20.377$	n _{248,19} =1.5083	$(S 1 U_2)$
$r_{38} = 349.6684$	$d_{38} = 0.833$	- 4 5000	(0:0)
r ₃₉ = 99.0981	d ₃₉ =56.543	n _{248,20} =1.5083	$(S 1 O_2)$
r ₄₀ = 55.1839	d ₄₀ =21.646	. 5053	(0:0)
$r_{41} = -279.6333$	$d_{41}=12.500$	n _{248,21} =1.5083	$(S 1 O_2)$

```
r_{42} = -140.8099
                                                         d_{42}= 8.770
                         r_{43} = -187.9892
                                                         d_{43}=18.628
                                                                              n_{248,22}=1.5083 (SiO<sub>2</sub>)
                         r 44=
                                  89.6294
                                                         d_{44} = 0.833
                                  57.9895
                                                         d_{45}=30.250
                         r 45=
                                                                              n_{248,23}=1.5083 (SiO<sub>2</sub>)
                                                         d_{46} = 0.833
                         r_{46} = 155.8950
                                                         d<sub>47</sub>=14.113
                                  57.2342
                                                                              n_{248,24}=1.5083 (SiO<sub>2</sub>)
                         r 47=
                                                         d_{48} = 8.750
                        r 48=
                                     \infty
                                                           F_2 = 217.296
                           F_1 = -343.449
                                                                                          F_3 = 70.923
                           \phi_1 = -0.00685
                                                            \phi_2 = -0.00709
                           \phi_1 = -0.00450
                                                            \phi_2 = -0.00350
                           \phi_3 = -0.00921
【0037】実施例6
                           NA=0.48
                                           露光領域
                                                        25 \times 25 mm
                                                                            E = 1000
                                                         d_0 = 100.000
                                                        d_1 = 42.000
                        r_1 = 122.2218
                                                                             n_{248,1} = 1.5083 (SiO<sub>2</sub>)
                        r_2 = 131.8406
                                                        d_2 = 26.527
                        r_3 = -456.7383
                                                        d_3 = 15.000
                                                                             n_{248,2} = 1.5083 (SiO<sub>2</sub>)
                        r_4 = 146.7156
                                                        d_4 = 58.920
                                                       d_5 = 15.000
                        r_5 = -109.3340
                                                                            n_{248,3} = 1.5083 (SiO<sub>2</sub>)
                        r_6 = -124.4118
                                                        d_6 = 16.650
                        r_7 = -1603.5903
                                                        d_7 = 30.631
                                                                             n_{248,4} = 1.5083 (SiO<sub>2</sub>)
                        r_8 = -230.6638
                                                        d_8 = 1.000
                        r_9 = 306.7289
                                                        d_9 = 40.340
                                                                             n_{248,5} = 1.5083 (SiO<sub>2</sub>)
                        r_{10} = -589.4298
                                                        d_{10} = 1.000
                        r_{11} = 344.7579
                                                        d_{11}=27.251
                                                                             n_{248.6} = 1.5083 (SiO<sub>2</sub>)
                        r_{12} = -7346.6854
                                                        d_{12}= 1.000
                                                        d<sub>13</sub>=26.911
                        r_{13} = 208.1925
                                                                             n_{248.7} = 1.5083 (SiO<sub>2</sub>)
                        r 14=
                                663.0676
                                                        d_{14} = 1.000
                                  99.4529
                                                        d_{15}=15.000
                                                                             n_{248,8} = 1.5083 (SiO<sub>2</sub>)
                        r 15=
                                                        d<sub>16</sub>=43.911
                        r 16=
                                 71.1583
                        r_{17} = -572.6484
                                                        d_{17}=15.000
                                                                             n_{248,9} = 1.5083 (SiO<sub>2</sub>)
                        r_{18} = -241.4067
                                                        d_{18} = 9.511
                        r_{19} = -515.5571
                                                        d_{19}=15.000
                                                                             n_{248,10}=1.5083 (SiO<sub>2</sub>)
                        r_{20}= 125.7783
                                                        d_{20} = 9.188
                        r_{21} = 594.4223
                                                        d_{21}=15.000
                                                                             n_{248,11}=1.5083 (SiO<sub>2</sub>)
                                                        d 22=24.889
                        r_{22} = 136.9477
                        r 23=
                               -73.8735
                                                        d_{23}=15.000
                                                                             n_{248,12}=1.5083 (SiO<sub>2</sub>)
                        r_{24} = 453.6327
                                                        d_{24}=13.350
                        r_{25}= -173.8233
                                                        d_{25}=20.397
                                                                             n_{248,13}=1.5083 (SiO<sub>2</sub>)
                        r_{26}= -131.9886
                                                        d_{26} = 1.000
                        r_{27}= 245.6658
                                                        d_{27}=27.993
                                                                             n_{248,14}=1.5083 (SiO<sub>2</sub>)
                        r_{28} = -324.3616
                                                        d_{28} = 3.841
                        r<sub>29</sub>=-1493.8830
                                                        d_{29}=15.000
                                                                             n_{248,15}=1.5083 (SiO<sub>2</sub>)
                        r_{30} = 511.5606
                                                        d_{30} = 9.729
                        r_{31} = -931.9050
                                                        d_{31}=15.000
                                                                             n_{248,16}=1.5083 (SiO<sub>2</sub>)
                        r_{32}= 259.1839
                                                        d<sub>32</sub>=14.889
                        r_{33} = -2876.7613
                                                        d_{33}=24.510
                                                                             n_{248,17}=1.5083 (SiO<sub>2</sub>) r_{34}=
                         -225.4203
                                                  d_{34} = 1.000
                        r_{35} = 396.8058
                                                        d_{35}=40.820
                                                                             n_{248,18}=1.5083 (SiO<sub>2</sub>)
                        r_{36} = -211.6756
                                                        d_{36} = 1.000
```

```
r_{37} = 160.4017
                                                         d_{37}=37.780
                                                                              n_{248,19}=1.5083 (SiO<sub>2</sub>)
                         r_{38} = 1933.4335
                                                         d_{38} = 1.000
                         r_{39} = 157.5349
                                                         d 39=48.675
                                                                              n_{248,20}=1.5083
                                                                                                  (SiO_2)
                        r_{40}= 289.4471
                                                         d<sub>40</sub>=49.305
                        r_{41} = 603.3704
                                                         d_{41}=50.000
                                                                              n_{248,21}=1.5083 (SiO<sub>2</sub>)
                                                         d_{42}= 6.206
                        r_{42} = -4086.5298
                         r_{43} = -128.0736
                                                         d_{43}=15.000
                                                                              n_{248,22}=1.5080 (SiO<sub>2</sub>)
                                 80.1338
                                                         d<sub>44</sub>= 1.000
                        r 44=
                                                                              n_{248,23}=1.5083 (SiO<sub>2</sub>)
                                  54.7881
                                                         d_{45}=16.776
                        r 45=
                               181.4529
                                                         d_{46} = 1.000
                        r 46=
                                 85.3329
                                                         d_{47}=10.000
                        r 47=
                                                                              n_{248,24}=1.5083 (SiO<sub>2</sub>)
                        r 48=
                                     \infty
                                                         d_{48} = 9.000
                           F_1 = -287.448
                                                            F_2 = 174.217
                                                                                          F_3 = 69.301
                           \phi_1 = -0.00714
                                                            \phi_2 = -0.00688
                           \phi_3 = -0.00176
【0038】 実施例7
                                           露光領域 25×25 mm
                                                                            E = 1000
                           NA = 0.48
                                                         d_0 = 100.000
                                                         d_1 = 18.768
                        r_1 = 123.3658
                                                                              n_{248.1} = 1.5083 (SiO<sub>2</sub>)
                        r_2 = 123.8122
                                                         d_2 = 31.218
                                                         d_3 = 15.000
                        r_3 = -498.8768
                                                                              n_{248,2} = 1.5083 (SiO<sub>2</sub>)
                        r_4 = 172.6737
                                                         d_4 = 49.975
                        r_5 = -110.7247
                                                         d_5 = 15.000
                                                                              n_{248,3} = 1.5083 (SiO<sub>2</sub>)
                        r_6 = -129.4457
                                                         d_6 = 1.000
                        r_7 = -3947.7165
                                                        d_7 = 32.190
                                                                              n_{248,4} = 1.5083 (SiO<sub>2</sub>)
                        r_8 = -232.1087
                                                       d_8 = 1.000
                        r_9 = 389.1147
                                                         d_9 = 39.911
                                                                              n_{248,5} = 1.5083 (SiO<sub>2</sub>)
                        r_{10} = -430.7653
                                                        d_{10} = 1.000
                        r_{11}= 192.5059
                                                        d 11=44.254
                                                                              n_{248.6} = 1.5083 (SiO<sub>2</sub>)
                                                        d_{12} = 1.000
                        r_{12} = -1743.8050
                                                        d_{13}=34.793
                        r_{13} = 132.0319
                                                                              n_{248,7} = 1.5083 (SiO<sub>2</sub>)
                        r <sub>14</sub>=
                               74.3519
                                                         d<sub>14</sub>=42.281
                        r_{15} = -332.3886
                                                        d_{15}=15.827
                                                                              n_{248,8} = 1.5083 (SiO<sub>2</sub>)
                        r_{16} = -167.3614
                                                        d_{16} = 1.000
                        r_{17} = -241.8117
                                                        d<sub>17</sub>=43.457
                                                                              n_{248,9} = 1.5083 (SiO<sub>2</sub>)
                        r_{18} = 171.1876
                                                        d_{18} = 7.936
                        r_{19} = 1020.6841
                                                        d_{19}=15.000
                                                                              n_{248,10}=1.5083 (S i O<sub>2</sub>)
                        r_{20} = 174.9693
                                                        d_{20}=28.528
                        r_{21} = -71.1009
                                                        d_{21}=35.689
                                                                              n_{248,11}=1.5083 (SiO<sub>2</sub>)
                                                        d<sub>22</sub>=12.714
                        r_{22}= 887.0010
                        r_{23} = -285.9543
                                                        d_{23}=25.520
                                                                              n_{248,12}=1.5083 (SiO<sub>2</sub>)
                        r_{24} = -167.7632
                                                        d_{24} = 1.113
                        r_{25} = -4840.1342
                                                        d_{25}=32.591
                                                                              n_{248,13}=1.5083 (SiO<sub>2</sub>)
                        r_{26} = -178.2112
                                                        d_{26} = 52.896
                        r<sub>27</sub>=80941.2159
                                                        d_{27}=33.607
                                                                              n_{248,14}=1.5083 (SiO<sub>2</sub>)
                        r_{28} = -229.9629
                                                        d_{28} = 1.000
                        r<sub>29</sub>= 546.6617
                                                        d 29=25.562
                                                                              n_{248,15}=1.5083 (SiO<sub>2</sub>)
                        r_{30} = -718.3377
                                                        d_{30} = 1.000
                        r_{31} = 190.6956
                                                        d_{31}=28.558
                                                                             n_{248,16}=1.5083 (SiO<sub>2</sub>)
                        r_{32} = 945.1528
                                                        d_{32} = 1.000
```

```
d_{33}=19.762
                                                                              n_{248,17}=1.5083 (SiO<sub>2</sub>)
                                165.1537
                         r_{33} =
                                 272.3522
                                                         d_{34} = 1.000
                         r 34=
                                108.8985
                                                         d_{35}=36.791
                                                                              n_{248,18}=1.5083 (SiO<sub>2</sub>)
                         r 35=
                                  82.9680
                                                         d_{36}=18.432
                         r_{36}=
                                                       d_{37}=25.135
                        r_{37} = 650.5592
                                                                             n_{248,19}=1.5083 (SiO<sub>2</sub>)
                         r_{38} = -325.9244
                                                         d_{38} = 1.986
                         r_{39} = -275.1850
                                                         d_{39}=15.000
                                                                              n_{248,20}=1.5083 (SiO<sub>2</sub>)
                                  68.8076
                                                         d_{40} = 33.857
                                  61.0827
                                                         d_{41}=26.023
                         r 41=
                                                                              n_{248,21}=1.5083
                                                                                                  (SiO_2)
                                                         d<sub>42</sub>= 1.000
                         r_{42} = 140.8818
                                  76.1085
                                                         d_{43}=10.000
                                                                              n_{248,22}=1.5083 (SiO<sub>2</sub>)
                        r 43=
                         r_{44} = -210.8257
                                                         d<sub>44</sub>= 1.624
                        r_{45} = -183.0680
                                                         d<sub>45</sub>=10.000
                                                                              n_{248,23}=1.5083 (SiO<sub>2</sub>)
                        r 46=
                                                         d_{46} = 9.001
                                     \infty
                           F_1 = -254.075
                                                            F_2 = 141.816
                                                                                          F_3 = 49.773
                            \phi_1 = -0.00684
                                                            \phi_2 = -0.00715
                            \phi_3 = -0.00613
【0039】実施例8
                                                                             E = 874.0
                           NA = 0.52
                                           露光領域 25×25 mm
                                                         d_0 = 100.000
                                                                              n_{248,1} = 1.5083 (SiO<sub>2</sub>)
                        r_1 = 111.7880
                                                         d_1 = 16.214
                        r_2 = 123.4881
                                                         d_2 = 35.706
                        r_3 = -348.6845
                                                         d_3 = 15.000
                                                                              n_{248,2} = 1.5083 (SiO<sub>2</sub>)
                        r_4 = 164.8758
                                                         d_4 = 56.185
                        r_5 = -104.1790
                                                         d_5 = 19.988
                                                                              n_{248,3} = 1.5083 (SiO<sub>2</sub>)
                        r_6 = -127.9442
                                                        d_6 = 1.000
                        r_7 = -988.3088
                                                        d_7 = 35.450
                                                                              n_{248,4} = 1.5083 (SiO<sub>2</sub>)
                                                        d_8 = 1.000
                        r_8 = -202.1689
                        r_9 = 396.2774
                                                        d_9 = 42.997
                                                                              n_{248,5} = 1.5083 (SiO<sub>2</sub>)
                                                        d_{10} = 1.000
                        r_{10} = -455.9975
                        r_{11} = 317.7947
                                                        d_{11}=33.108
                                                                              n_{248,6} = 1.5083 (SiO<sub>2</sub>)
                                                        d_{12} = 1.000
                        r_{12} = -2661.3524
                        \mathbf{r}_{13} = 190.6737
                                                       d_{13}=30.320
                                                                             n_{248,7} = 1.5083 (SiO<sub>2</sub>)
                        r_{14} = 565.1670
                                                        d_{14} = 1.000
                                                        d<sub>15</sub>=15.000
                        r 15=
                                  96.2734
                                                                              n_{248.8} = 1.5083 (SiO<sub>2</sub>)
                                  68.6751
                                                        d_{16} = 43.994
                        r 16=
                        r_{17} = -9282.0807
                                                        d_{17} = 16.617
                                                                              n_{248,9} = 1.5083 (SiO<sub>2</sub>)
                        r_{18} = -271.6829
                                                        d_{18} = 1.000
                        r_{19} = -406.2942
                                                        d<sub>19</sub>=15.000
                                                                              n_{248,10}=1.5083 (SiO<sub>2</sub>)
                        r_{20} = 118.7133
                                                        d<sub>20</sub>=11.932
                        r_{21} = 1567.6905
                                                        d_{21}=15.000
                                                                              n_{248,11}=1.5083 (SiO<sub>2</sub>)
                        r_{22} = 134.3926
                                                        d_{22}=27.019
                                                        d_{23}=15.000
                                                                              n_{248,12}=1.5083 (SiO<sub>2</sub>)
                        r_{23} = -74.6080
                                                        d<sub>24</sub>=13.695
                        r_{24} = 503.2389
                        r_{25} = -189.2346
                                                        d_{25}=16.706
                                                                              n_{248,13}=1.5083 (SiO<sub>2</sub>)
                                                        d_{26} = 1.000
                        r_{26} = -130.1851
                        r_{27} = 247.8524
                                                        d_{27}=30.749
                                                                             n_{248,14}=1.5083 (SiO<sub>2</sub>)
                        r_{28} = -271.8151
                                                        d_{28} = 1.000
                        r_{29} = -788.0965
                                                        d_{29}=15.000
                                                                             n_{248,15}=1.5083 (SiO<sub>2</sub>)
                        r_{30} = 454.5327
                                                        d_{30}=10.242
```

r ₃₁ =-1211.5252	d_{31} =15.000	n _{248,16} =1.5083	(SiO_2)
r ₃₂ = 257.7440	$d_{32}=15.420$		
r_{33} =-4049.8333	d_{33} =25.467	n _{248,17} =1.5083	(SiO_2)
r_{34} = -229.8300	$d_{34} = 1.000$		
$r_{35} = 391.4166$	d ₃₅ =44.040	n _{248,18} =1.5083	(SiO_2)
r_{36} = -208.8223	$d_{36} = 1.000$		
r ₃₇ = 159.7557	d ₃₇ =40.383	n _{248,19} =1.5083	(SiO_2)
r ₃₈ = 1991.5753	$d_{38} = 1.000$		
r ₃₉ = 147.8854	d_{39} =49.645	n _{248,20} =1.5083	(SiO_2)
r ₄₀ = 182.5940	$d_{40} = 50.209$		
r ₄₁ = 169.5532	d ₄₁ =38.119	n _{248,21} =1.5083	(SiO_2)
$r_{42} = 616.6126$	$d_{42} = 7.377$		
r ₄₃ = -144.3126	$d_{43} = 15.000$	n _{248,22} =1.5083	(SiO_2)
r ₄₄ = 73.4065	$d_{44} = 1.000$		
$r_{45} = 53.1077$	d ₄₅ =16.417	n _{248,23} =1.5083	(SiO_2)
r ₄₆ = 138.8285	$d_{46} = 1.000$		
r ₄₇ = 81.6751	$d_{47}=10.000$	n _{248,24} =1.5083	(SiO_2)
r_{48} = ∞	$d_{48} = 9.001$		
$F_1 = -240.598$	F ₂ = 167.965	\mathbf{F}_{3} =	66.235
$\phi_1 = -0.00740$	$\phi_2 = -0.00681$		

 ϕ_3 =-0.00278 【 0 0 0 】以上の実施例 1 \sim 8 の球面収差、非点収差、歪曲収差、コマ収差を表す収差図をそれぞれ図 9 から図 1 6 に示す。

[0041]

【発明の効果】以上説明したように、本発明の縮小投影レンズによると、入射瞳位置を物体面から比較的遠くに位置させ、像歪みが小さく、短波長光を光源とする高解像力で焦点深度の広い縮小投影レンズを得ることができる。

【図面の簡単な説明】

- 【図1】本発明の実施例1の縮小投影レンズの断面図である。
- 【図2】本発明の実施例2の縮小投影レンズの断面図である。
- 【図3】本発明の実施例3の縮小投影レンズの断面図である。
- 【図4】本発明の実施例4の縮小投影レンズの断面図である。
- 【図5】本発明の実施例5の縮小投影レンズの断面図である。

【図6】本発明の実施例6の縮小投影レンズの断面図である。

【図7】本発明の実施例7の縮小投影レンズの断面図である。

【図8】本発明の実施例8の縮小投影レンズの断面図である。

【図9】実施例1の球面収差、非点収差、歪曲収差、コマ収差を表す収差図である。

【図10】実施例2の図9の同様な収差図である。

【図11】実施例3の図9の同様な収差図である。

【図12】実施例4の図9の同様な収差図である。

【図13】実施例5の図9の同様な収差図である。

【図14】実施例6の図9の同様な収差図である。

【図15】実施例7の図9の同様な収差図である。

【図16】実施例8の図9の同様な収差図である。

【符号の説明】

I …第1レンズ群

II …第2レンズ群

III …第3レンズ群

【図1】

【図2】

【図5】

【図6】

【図7】

【図8】

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第6部門第2区分

【発行日】平成12年11月24日(2000.11.24)

【公開番号】特開平5-173065

【公開日】平成5年7月13日(1993.7.13)

【年通号数】公開特許公報5-1731

【出願番号】特願平4-22837

【国際特許分類第7版】

G02B 13/14

13/24

[FI]

G02B 13/14

13/24

【手続補正書】

【提出日】平成11年9月6日(1999.9.6)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 マスクに描かれたバターンの像を基板に 転写する縮小投影レンズにおいて、

物体側より順に、互いに凹面を向かい合わせた一対のメニスカスレンズを含む負の屈折力を持つ第1レンズ群と、少なくとも2枚のレンズにより構成された正の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群とを有し、

前記縮小投影レンズの第1面より測った入射瞳位置を E,物像間距離をL,前記第1レンズ群の焦点距離をF₁とそれぞれするとき、

0.5 < |E/L|

 $0.2 < |F_1/L|$

なる条件を満足することを特徴とする縮小投影レンズ。 【請求項2】 前記第2レンズ群の焦点距離を F_2 とするとき、

0. $1 < |F_2/L| < 0.3$

なる条件を満足することを特徴とする請求項1記載の縮 小投影レンズ。

【請求項3】 前記第3レンズ群の焦点距離を F_3 とするとき、

0. $0.4 < |F_3/L| < 0.1$

なる条件を満足することを特徴とする請求項1又は2記 載の縮小投影レンズ。

【請求項4】 前記縮小投影レンズは、

 $|F_1/L| < 1$

なる条件を満足することを特徴とする請求項1乃至3の 何れか一項に記載の縮小投影レンズ。 【請求項5】 前記縮小投影レンズは、

 $1 < |F_1/F_2| < 5$

なる条件を満足することを特徴とする請求項1乃至4の 何れか一項に記載の縮小投影レンズ。

【請求項6】 前記第3レンズ群は、互いに向き合った 凹面を持つレンズ群を少なくとも1組有することを特徴 とする請求項1乃至5の何れか一項に記載の縮小投影レ ンズ。

【請求項 7 】 前記第 3 レンズ群は、互いに向き合った 凹面を持つレンズ群と、該レンズ群よりも像側に配置された正のレンズ群と、該正のレンズ群よりも像側に配置 された像側に凹面を向けたメニスカスレンズとを有し、 前記像側に凹面を向けたメニスカスレンズの凹面の屈折 力を ϕ_3 とするとき、

 $1/L < |\phi_3| < 20/L$

なる条件を満足することを特徴とする請求項1乃至5の 何れか一項に記載の縮小投影レンズ。

【請求項8】 前記第3レンズ群の前記互いに向き合った凹面を持つレンズ群における前記向き合った2つの凹面の屈折力を各 ϕ_1 , ϕ_2 とするとき、

 $1/L < |\phi_1| < 20/L$

 $1/L < |\phi_2| < 20/L$

なる条件を満足することを特徴とする請求項 6 又は 7 記載の縮小投影レンズ。

【請求項9】 前記第3レンズ群は、互いに向き合った 凹面を持つ2組のレンズ群と、該2組のレンズ群の間に 配置された少なくとも1つの正の屈折力を持つレンズ面 とを有し、

前記2組のレンズ群それぞれにおいて前記向き合った2 つの凹面の屈折力を各々ø₁, ø₂とするとき、

 $1/L < |\phi_1| < 20/L$

 $1/L < |\phi_2| < 20/L$

なる条件を満足することを特徴とする請求項1乃至5の 何れか一項に記載の縮小投影レンズ。 【請求項10】 前記第3レンズ群は、前記2組のレンズ群よりも像側に配置された正のレンズ群と、該正のレンズ群よりも像側に配置された像側に凹面を向けたメニスカスレンズとを有し、

前記像側に凹面を向けたメニスカスレンズの凹面の屈折 力を ϕ_3 とするとき、

 $1/L < |\phi_3| < 20/L$

なる条件を満足することを特徴とする請求項9記載の縮 小投影レンズ。

【請求項11】 請求項1乃至10の何れか一項に記載の縮小投影レンズを用いて前記マスクに描かれたパターンの像を前記基板に転写することを特徴とする投影露光法。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0006

【補正方法】変更

【補正内容】

【0006】本発明はこのような状況に鑑みてなされたものであり、その目的は、この像歪みを小さくするために、縮小投影レンズの入射瞳位置が物体面から比較的遠くにあり、短波長光を光源とする高解像力で焦点深度の広い縮小投影レンズと、この縮小投影レンズを用いた投影露光法とを提供することである。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0008

【補正方法】変更

【補正内容】

【0008】この場合、第2レンズ群の焦点距離を F_2 とするとき、

 $30.1 < |F_2/L| < 0.3$

なる条件を満足することが望ましく、また、第3レンズ群の焦点距離を F_3 とするとき、

40.04<|F₃/L|<0.1

なる条件を満足することが望ましい。また、本発明で は、前記縮小投影レンズは、

 $|F_i/L| < 1$

なる条件を満足することが望ましい。また、本発明では、前記縮小投影レンズは、

 $1 < |F_1/F_2| < 5$

なる条件を満足することが望ましい。また、本発明では、前記第3レンズ群は、互いに向き合った凹面を持つレンズ群を少なくとも1組有することが望ましい。また、本発明では、前記第3レンズ群は、互いに向き合っ

た凹面を持つレンズ群と、該レンズ群よりも像側に配置された正のレンズ群と、該正のレンズ群よりも像側に配置された像側に凹面を向けたメニスカスレンズとを有し、前記像側に凹面を向けたメニスカスレンズの凹面の屈折力を ϕ_3 とするとき、

 $1/L < |\phi_3| < 20/L$

なる条件を満足することが望ましい。また、本発明では、前記第3レンズ群の前記互いに向き合った凹面を持つレンズ群における前記向き合った2つの凹面の屈折力を各 ϕ_1 , ϕ_2 とするとき、

 $1/L < |\phi_1| < 20/L$

 $1/L < |\phi_2| < 20/L$

なる条件を満足することが望ましい。また、本発明では、前記第3レンズ群は、前記互いに向き合った凹面を持つ2組のレンズ群と、該2組のレンズ群の間に配置された少なくとも1つの正の屈折力を持つレンズ面とを有し、前記2組のレンズ群それぞれにおいて前記向き合った2つの凹面の屈折力を各々 ϕ_1 , ϕ_2 とするとき、

 $1/L < |\phi_1| < 20/L$

 $1/L < |\phi_2| < 20/L$

なる条件を満足することが望ましい。また、本発明では、前記第3レンズ群は、前記2組のレンズ群よりも像側に配置された正のレンズ群と、該正のレンズ群よりも像側に配置された像側に凹面を向けたメニスカスレンズとを有し、前記像側に凹面を向けたメニスカスレンズの凹面の屈折力を ϕ_3 とするとき、

 $1/L < |\phi_3| < 20/L$

なる条件を満足することが望ましい。また、本発明による投影露光法では、以上に記載の何れかの縮小投影レンズを用いて前記マスクに描かれたパターンの像を前記基板に転写することが望ましい。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0041

【補正方法】変更

【補正内容】

[0041]

【発明の効果】以上説明したように、本発明の縮小投影レンズによると、入射瞳位置を物体面から比較的遠くに位置させ、像歪みが小さく、短波長光を光源とする高解像力で焦点深度の広い縮小投影レンズを得ることができる。また、本発明の投影露光法によれば、マスクに描かれたパターンの像を歪みが小さく、高解像力で基板に転写することができる。