MSIS 637L Decision Support Systems

Project Report

Evaluating DRASTIC Parameters For Assessing

Groundwater Vulnerability

Contents

1.	Abstract	t	3
2.		y, thereby Objective	
3.		ology	
		oundwater and Groundwater Vulnerability	
		ASTIC Methodology and DRASTIC Index	
		ASTIC Parameters	
	3.3.1.	Depth to Groundwater (D)	7
	3.3.2.	Recharge Rate (R)	10
	3.3.3.	Aquifer Media (A)	
	3.3.4.	Soil Media (S)	15
	3.3.5.	Topography (T)	18
	3.3.6.	Impact of Vadose Zone (I)	20
	3.3.7.	Hydraulic Conductivity (C)	23
4.	Conclus	sions	25
5.	Referen	ces	26

1. Abstract

The groundwater vulnerability of a region is defined as the rate up to which the region is affected by ground pollution. The extent to which land has been contaminated is determined by several methods, among which DRASTIC method is the popular method which is accurate and precise compared to other methods. In this method the significant parameters which sensitively affect the groundwater are considered- these are depth of water, net recharge, aquifer media, soil media, topography, impact of vadose zone and hydraulic coefficient. These parameters are individually mapped and classified to different ranks and each layer is assigned with a weighted score. ArcGIS is one mapping software platform where reclassification, ranking and weighing can be easily done. These rankings and scores are assigned based on the parameter and layer influence in affecting the whole groundwater vulnerability. The ranked parameters and weighted layers are overlaid one over the other, on ArcGIS software, and the outcome map thus gives a DRASTIC map which gives DRASTIC index at each and every point on the map.

This project focuses on formulating the data and evaluating ranks and weights by analytical hierarchy process. In this DRASTIC methodology lot of data is required and based on the precision and accuracy of the data, the results are anchored. A slight variation in the gives a completely different DRASTIC map where the indices are changed. Hence a lot of importance is associated with the DRASTIC data. But in reality, due to equipment installations, weather conditions and ground conditions, data collection becomes difficult. So, the data cooking is done by simulations by using Analytical Solver tool – from the available data points, more data points are generated by simulations, under certain assumptions. Also, instead of traditionally assigning ranks and weights on trial and error basis to the DRASTIC parameters, a technical approach of Analytical Hierarchy Process (AHP) is followed in calculating this.

The present project work is mainly a preparation of data for calculating and mapping the seven parameters in ArcGIS tool. The process and details of the project work progresses in below sections

2. Necessity, thereby Objective

The DRASTIC methodology is more a subjective method than technical. The process of assigning ranks and weights in the process is mostly random than following a technical process. Many of times the DRASTIC index may be miscalculated with random ranks and weights which can give Saaty's consistency ration >0.1 and there is no check on this assigning. Hence this project gives and insight to how to assign ranks and weights by Saaty's AHP.

Moreover, data inaccuracy and unavailability are mostly seen in many studies. This is the main problem which effects the output, mainly when geographical factors like climatic conditions, ground undulations are concerned. In developing countries like India, the equipment installation is a big problem to fetch the data. Hence this work is attempted to develop more data points based on existing ones. In this work, the existing 8 to 39 data points are extended to 50 data points for all seven parameters, under certain assumptions. Few parameters are simulated under normal distribution and few under uniform distribution, there is no pre-confined notion for making these assumptions; the assumptions are just random based on few research studies. Since the DRASTIC methodology is completely worked under mapping tool, ArcGIS, when more data points are developed by simulations, there is a chance of getting more accurate maps than generating maps with existing data points.

Before getting into methodology, the data used in this project is collected with respect to a region Dindigul in Tamil Nadu state of India, which is mostly a granite terrain with red sandy and black soil. Approximately an area of 200km² study data points are considered, where there are very few existing data points. Since the DRASTIC maps gets refined by plotting more data, this work holds its significance.

3. Methodology

The simulation in this work purely based on assumptions which backs up research knowledge as there is no literature reference. The reclassification for analytical hierarchy process is carried on reference to the journal paper "Determining shallow aquifer vulnerability by DRASTIC model and hydrochemistry in granite terrain, southern India" by NC Mondal, S Adike et al in 2017 from Journal of Earth System and Sciences. The ranking and weights for AHP are considered with reference to journal paper "Assessment of groundwater vulnerability using analytical hierarchy process and evidential belief function with DRASTIC parameters, Cuddalore, India; by T Saranya and S Saravanan in 2022 from International Journal of Environmental Science and Technology.

Before getting into the process, the below are definitions to some technical terms which are being used in this work.

3.1. Groundwater and Groundwater Vulnerability

Groundwater is underground accumulation of water coming from various sources above and below land surface. vulnerability is a measure of contamination and pollution that the subject has undergone. Combining both the terms, no single standardized definition for groundwater vulnerability exists; however, the concept describes the relative ease with which the groundwater resource could be contaminated. It is the measure of contamination on the land surface to reach deep down into the ground, meaning, a measure of degree of insulation that natural or man-made factors provide to keep the pollution away from the groundwater. Higher groundwater

vulnerability indicates that ground has prone to contamination and the land is more sensitive to take anymore contaminants, and vice versa.

3.2. DRASTIC Methodology and DRASTIC Index

The word "DRASTIC" is an acronym, illustrating seven hydro geological parameters – Depth to groundwater (D), Recharge rate (R), Aquifer media (A), Soil media (S), Topography (T), Impact of vadose zone area (I), and hydraulic Conductivity of the aquifer (C). In methodology, all these parameters are reclassified and ranks are assigned to it. Reclassification is done into five intervals based on the available data and rankings on the scale of 1 to 10 are assigned to it. 1 being good zone with negligible vulnerability and 10 being highly vulnerable region. Succeeding this, weights are assigned to each D,R,A,S,T,I,C layer, on scale from 1 to 5, relative to the importance of the layer contributing to vulnerability; 1 being least important and 5 being highly important in influencing groundwater vulnerability. The reclassified ranked layers are overlaid one over the other and weights are attached to it in ArcGIS mapping tool software and relative DRASTIC index is calculated by the equation given below. A high DRASTIC index indicates high vulnerability.

$$DRASTIC\ Index = D_rD_w + R_rR_w + A_rA_w + S_rS_w + T_rT_w + I_rI_w + C_rC_w;$$

where uppercase letters indicate parameters and suffixes indicate assigned ranks and weights, respectively.

The following table figure shows DRASTIC pairwise comparison matrix, developed in this project. (attached as 'DRASTIC' sheet in 'FinalProject_AHP.xlsx'). The reason behind taking particular priority weights taken in this table will be explained in the below sections

	D	R	Α	s	т	1	С			
D	1	3	5	7	7	2	4			
R	1/3	1	2	5	8	1/2	1/3			
A	1/5	1/2	1	5	8	1/3	1/4			
S	1/7	1/5	1/5	1	3	1/7	1/4			
				_						
T	1/7	1/8	1/8	1/3	1	1/8	1/7			
I	1/2	2	3	7	8	1	3			
С	1/4	3	4	5	7	1/3	1			
Sum	2.57	9.83	15.33	30.33	42.00	4.43	8.93			
Iormalize	d matrix									
	D	R	Α	s	т	ı	С	Average	Consistency Measure	
D	0.39	0.31	0.33	0.23	0.17	0.45	0.45	33.11%	8.151	
R	0.13	0.10	0.13	0.16	0.19	0.11	0.04	12.39%	7.622	
Α	0.08	0.05	0.07	0.16	0.19	0.08	0.03	9.32%	7.441	
S	0.06	0.02	0.01	0.03	0.07	0.03	0.02	3.54%	7.302	
Т	0.06	0.01	0.01	0.01	0.02	0.03	0.02	2.22%	7.237	
1	0.19	0.20	0.20	0.23	0.19	0.23	0.34	22.53%	8.216	
С	0.10	0.31	0.26	0.16	0.17	0.08	0.11	16.89%	8.312	
						Average Co	onsistency N		7.754	
							,			
							Consistenc	y index	0.126	
								-		

3.3.DRASTIC Parameters

Below are the basic definitions of the DRASTIC parameters and its significance. As the work is more concentrated on simulation and AHP, the data collection and detailed analysis of these seven parameters goes beyond the scope of project and so are not discussed here.

3.3.1. Depth to Groundwater (D)

It is the distance between the ground surface to the available groundwater table. It gives the vertical time travel of contaminant land surface. 25 data points are available for this parameter, as shown in below figure (also attached as 'D,I' sheet in 'FinalProject_Simulations.xlsx')

Sl.No	Latitude	Longitude	D, Depth of	
			water level (m,	
			bgl)	
1	10.287	78.006	17.30	
2	10.312	78.005	15.60	
3	10.319	78.017	12.40	
4	10.389	78.018	14.30	
5	10.436	78.013	14.85	
6	10.356	78.025	10.60	
7	10.34	77.944	10.50	Outstand date
8	10.382	77.943	6.70	Original data points
9	10.416	77.933	7.65	
10	10.417	77.921	10.04	
11	10.437	77.957	17.20	
12	10.412	77.961	14.99	
13	10.381	77.926	13.20	
14	10.354	77.943	5.20	
15	10.302	77.956	22.00	
16	10.248	77.945	30.00	
17	10.295	77.884	16.30	
18	10.314	77.897	11.65	
19	10.316	77.931	23.20	
20	10.341	77.913	7.40	
21	10.342	77.946	2.30	
22	10.376	77.947	8.10	
23	10.383	77.927	4.95	
24	10.365	77.906	17.10	
25	10.406	77.911	9.60	

These data points are simulated, assuming that there holds a normal distribution with calculated average and standard deviation, which comes to be as shown in below figure

Minimum 2.30 Calculations base	a on	
Attinium 2.30 assumptions		
Maximum 30.00		
Standard deviation 6.30		

The results are as below

Sl.No	Latitude	Longitude	D, Depth of	
			water level (m,	
			bgl)	
26			9.59	
27			23.78	
28			6.84	
29			14.46	
30			8.05	
31			24.13	
32			12.16	
33			9.53	
34			20.48	
35			17.44	
36			16.13	
37			7.74	
38			9.56	
39			15.07	
40			17.26	
41			8.80	Generated data points
42	,		13.34	
43			4.30	
44			3.22	
45			21.01	
46			17.67	
47			12.73	
48			10.41	
49			11.61	
50			7.40	

Based on the data after simulation, this parameter is reclassified into five zones as shown in the below table. Higher the depth to groundwater, the less is its affinity to get polluted, hence high priority is given to low depths and priority descends as the depth ascends; in deciding AHP ranks. Since this is the most significant parameter and explicitly plays a key role in taking the contaminants to the groundwater, it is assigned with highest weights. (attached as 'D' sheet in 'FinalProject AHP.xlsx')

	2.30-9.52	9.53-12.20	13.4-18.7	18.8-25.6	25.7-35.8				
2.30-9.52	1	3	6	8	9				
9.53-12.20	1/3	1	3	4	8				
12.21-15.07	1/6	1/3	1	3	5				
15.08-18.40	1/8	1/4	1/3	1	3				
18.41-25.90	1/9	1/8	1/5	1/3	1				
Sum	1.74	4.71	10.53	16.33	26.00				
	2.30-9.52	9.53-12.20	13.4-18.7	18.8-25.6	25.7-35.8	Average	Consistency Measure	D Average	Overall Priority
2.30-9.52	0.58	0.64	0.57	0.49	0.35	0.52	5.48	0.33	0.17
9.53-12.20	0.19	0.21	0.28	0.24	0.31	0.25	5.40	0.33	0.08
12.21-15.07	0.10	0.07	0.09	0.18	0.19	0.13	5.22	0.33	0.04
15.08-18.40	0.07	0.05	0.03	0.06	0.12	0.07	5.07	0.33	0.02
18.41-25.90	0.06	0.03	0.02	0.02	0.04	0.03	5.07	0.33	0.01
				Average C	onsistency	Measure	5.25		
					Consistenc	cy index	0.06		
					Consistenc	y ratio	0.06	(<0.1 good)

3.3.2. Recharge Rate (R)

It is the amount of water that infiltrates into the ground and saturates the groundwater table. It measures the ground's ability to carry contaminants. 10 data points are available for this parameter, as shown in below figure (also attached as 'R' sheet in 'FinalProject_Simulations.xlsx')

CL N.	XX7-11 4.3	T -4:4 J -	T	Recharge	R,		
Sl.No	wen_ia	Latitude	Longitude	percent	Recharge		
1	83520	10.409	78.006	11.1	73.8621		
2	83029A	10.323	77.9507	7.63	50.747	•	
3	83503	10.274	77.921	7.33	48.751		
4	83514	10.366	77.906	4.86	32.324		
5	83029	10.314	77.947	4.36	28.998		Original data points
6	83515A	10.37	77.985	3.37	22.414		
7	1	10.244	77.927	6.44	42.832		
8	2	10.269	77.886	6.045	40.205		
9	3	10.324	78.024	6.15	40.903		
10	4	10.447	77.952	6.44	42.832		

These data points are simulated, with an assumption that there holds a uniform distribution within minimum and maximum ranges. The output resulting in remaining 40 data points along with assumptions are as shown in below figure

	Minimum	22.414	
	Maximum	73.862	
Sl.No		R, Recharge	Calculations based on assumptions
11		35.371	
12		52.827	
13		25.389	
14		37.547	
15		71.192	
16		48.225	
17		42.794	
18		60.632	
19		60.626	
20		42.559	
21 22		46.785 25.186	-
23		26.952	
24		33.600	
25		54.941	Generated data points
26		49.099	
27		71.130	
28		30.648	
29		54.985	
30		67.574	
31		58.337	
32		28.965	
33		44.002	
34		52.448	
35		22.507	
36		40.890	
37		30.048	
38		29.142	
39		60.061	
40 41		27.615 65.577	
42		68.337	
43		69.297	
44		39.509	
45		33.815	
46		55.237	
47		22.643	
48		49.896	
49		41.383	
50		44.122	

Similar to Parameter D, depth to groundwater, after simulation, the data is reclassified into five zones as shown in the below table. High recharge represents high groundwater infiltration and contamination also increases with high recharge. So, a proportional ranking has been assigned.

Hence a relative weight is accordingly, is given to this parameter. The ranks and weights are assigned with reference to the journal paper "Assessment of groundwater vulnerability using analytical hierarchy process and evidential belief function with DRASTIC parametrs, Cuddalore, India; by T Saranya and S Saravanan in 2022 from International Journal of Environmental Science and Technology. The below figure shows reclassification and corresponding ranks (attached as 'R' sheet in 'FinalProject AHP.xlsx')

	22.42-31.91	31.92-38.12	38.13-42.50	42.51-51.27	51.28-64.96				
22.42-31.91	1	5	6	8	9				
31.92-38.12	1/5	1	3	5	8				
38.13-42.50	1/6	1/3	1	3	5				
42.51-51.27	1/8	1/5	1/3	1	3				
51.28-64.96	1/9	1/8	1/5	1/3	1				
Sum	1.60	6.66	10.53	17.33	26.00				
	22.42-31.91	31.92-38.12	38.13-42.50	42.51–51.27	51.28-64.96	Average	Consistency Measure	R Average	Overall Priority
22.42-31.91	0.62	0.75	0.57	0.46	0.35	0.55	5.89	0.12	0.07
31.92-38.12	0.12	0.15	0.28	0.29	0.31	0.23	5.56	0.12	0.03
38.13-42.50	0.10	0.05	0.09	0.17	0.19	0.12	5.24	0.12	0.02
42.51-51.27	0.08	0.03	0.03	0.06	0.12	0.06	5.07	0.12	0.01
51.28-64.96	0.07	0.02	0.02	0.02	0.04	0.03	5.11	0.12	0.00
				Average Cons	sistency Meası	ure	5.38		
				Average Cons	sistency Measu Consistency in		0.09		

3.3.3. Aquifer Media (A)

An aquifer is nothing but an underground water body, in simple terms. The aquifer media represent the properties of aquifer such as change in water level fluctuation along with other properties like discharge of surface water into ground and storage capacity of the aquifer. It is a measure of saturated zone which controls the ground to get polluted. Only 8 data points (with a missing data) on a study area of 200 km² are available as shown in below figure

			A, Aquifer			
pump_no	Latitude	Longitude	media			
1	10.28	77.943	4239.908	•		_
2	10.343	77.998	58535.800			
3	10.39883137	77.99210678	22961.136		Original data points	
4	10.4652	77.973	Data missing		O h	
5	10.395	77.8695	28642.396			
6	10.245	77.926	32170.396			
7	10.322	78.025	42750.466			
8	10.447	77.951	11196.660			

These data points are simulated, with an assumption that there holds a uniform distribution within 10% increase and decrease in the average of the available data points. Since the aquifer media, by definition tells that it's a measure of fluctuation in water, the assumption is considered.

Average	28642.395	+		<u> </u>
10% increase on mean	31506.634		Calculations based on	
10% decrease on mean	25778.155		assumptions	

The output resulting in remaining data points are as shown in below figure

			A, Aquifer	
SI No	Latitude	Longitude	media	
9	Latitude	Longitude	29179.299	
10			27176.454	
11			25867.440	
12			25841.724	
13			28172.033	
14			30388.750	
15			27431.148	-
16			29712.894	
17			30565.666	Generated data points
18			28988.413	
19			31459.541	
20			28007.225	
21			28867.846	
22			30581.023	
23			27783.036	
24			30287.942	
25			31062.866	
26			26348.808	
27			28041.463	
28			28294.295	
29			29407.783	
30			30805.010	
31			28492.386	
32			29793.122	
33			29251.774	
34			26412.507	
35			28314.210	
36			26378.382	
37			30376.159	
38			27260.127	
39			28591.580	
40			29593.997	
41			27533.410	
42			26658.695	
43			26410.891	
44			27486.102	
45			27338.299	
46			27666.064	
47			31034.635	
48			28115.081	
49			28250.284	
50			30922.903	
			00022.000	

High water fluctuation results in high contamination in groundwater, yielding a high vulnerability rating. Hence the aquifer media ranks and layer weights are appropriately chosen. While the pairwise comparison matrix shows the score bit less than recharge rate parameter, the reclassification and ranks are shown as in the below figure (attached as 'A' sheet in 'FinalProject_AHP.xlsx')

	0.00-1.50	1.51-3.00	3.01-4.50	4.5-6.00	6.00-7.20				
0.00-1.50	1	3	7	8	9				
1.51-3.00	1/3	1	3	5	8				
3.01-4.50	1/7	1/3	1	3	5				
4.5-6.00	1/8	1/5	1/3	1	4				
6.00-7.20	1/9	1/8	1/5	1/4	1				
	1.71	4.66	11.53	17.25	27.00				
	0.00-1.50	1.51-3.00	3.01-4.50	4.5-6.00	6.00-7.20	Average	Consistency Measure	A Average	Overall Priority
	0.50	0.64	0.61	0.46	0.22	0.52	F.C.4		0.05
0.00–1.50	0.58	0.64	0.61	0.46	0.33	0.53	5.64	0.09	0.05
	0.58	0.64	0.81	0.46	0.33	0.53	5.55	0.09	0.05
1.51-3.00									
1.51-3.00	0.19	0.21	0.26	0.29	0.30	0.25	5.55	0.09	0.02
1.51-3.00 3.01-4.50 4.5-6.00	0.19 0.08	0.21 0.07	0.26	0.29 0.17	0.30 0.19	0.25 0.12	5.55 5.41	0.09	0.02 0.01
0.00-1.50 1.51-3.00 3.01-4.50 4.5-6.00 6.00-7.20	0.19 0.08 0.07	0.21 0.07 0.04	0.26 0.09 0.03	0.29 0.17 0.06 0.01	0.30 0.19 0.15	0.25 0.12 0.07 0.03	5.55 5.41 5.05	0.09 0.09 0.09	0.02 0.01 0.01
1.51-3.00 3.01-4.50 4.5-6.00	0.19 0.08 0.07	0.21 0.07 0.04	0.26 0.09 0.03	0.29 0.17 0.06 0.01	0.30 0.19 0.15 0.04	0.25 0.12 0.07 0.03 Measure	5.55 5.41 5.05 5.09	0.09 0.09 0.09	0.02 0.01 0.01

3.3.4. Soil Media (S)

Soil media represents the upper most ground soil texture. The soil/sand particles in the ground play a key role in sending the surface running water into the ground, which is a simple definition to infiltration. The nature of soil particles, its size, the porosity (gap between one soil particle to another), its density all collectively represent soil media. This media influence vulnerability in retaining infiltered water (contaminated water) in clogs of soil, thereby contaminating underground. Now, when fresh water infiltrates from this place, the contaminants are either flushed deep into groundwater or transported along the water flow.

A high of 39 data points are available for this parameter, as shown in below figure (also attached as 'S' sheet in 'FinalProject_Simulations.xlsx')

	-	_	-	<u>-</u>
			S, Soil media	
Sl.No	Latitude	Longitude	m_bgl	
1	77.94	10.44	1.27	
2	77.93	10.39	1.15	
3	77.93	10.39	1.42	
4	77.93	10.37	2.1	
5	77.951	10.437	3.2	
6	77.959	10.421	1.34	
7	77.974	10.413	1.35	Original data priets
8	77.946	10.412	1	Original data points
9	77.9515	10.394	1.64	
10	77.953	10.377	1.52	
11	77.931	10.378	0.72	
12	77.934	10.3639	1.04	
13	77.939	10.354	1.05	
14	77.961	10.361	1.07	
15	77.934	10.348	0.88	
16	77.953	10.286	1.88	
17	77.9285	10.286	2.77	
18	77.902	10.273	2.36	
19	77.894	10.288	1.13	
20	77.8903	10.3081	3.31	
21	77.918	10.336	2.34	
22	77.914	10.321	0.52	
23	77.923	10.303	0.63	
24	77.905	10.324	1.45	
25	77.939	10.317	5.35	
26	77.956	10.335	2.98	
27	77.959	10.303	0.6	
28	77.968	10.315	0.92	
29	77.982	10.332	0.73	
30	77.998	10.323	1.98	
31	77.971	10.347	1.33	
32	78.002591	10.2984388	0.89	
33	77.976	10.3914	1.18	
34	77.984	10.404	0.89	
35	77.9958	10.3633	0.71	
36	77.926	10.245	2.34	
37	77.886	10.267	2.27	
38	78.024	10.323	1.08	
39	77.951	10.446	1.7	_

These data points are simulated, with an assumption that there holds a uniform distribution within 10% increase and decrease in the average of the all available 39 data points. Since there are more data points and the soil media, by definition is a soil property which can fluctuate, the assumption

is considered. The output resulting in remaining 11 data points along with assumptions are as shown in below figure

	Average 10% increase	1.59 1.75	4			ns based on nptions
	10% decrease				assun	прионз
		S, Soil media				
Sl.No		m_bgl				
40		1.47				
41		1.64				
42		1.45				
43		1.75	4			
44		1.63				
45		1.63				
46		1.69		Generated data points		
47		1.71		Generated data points		
48		1.48				
49		1.51				
50		1.44				

Based on reference journal papers, reclassification and ranking is given as follows (attached as 'S' sheet in 'FinalProject_AHP.xlsx'). As this is very small measure and do not show much impact on vulnerability, second lower weights are given to this layer.

	0-2.5	2.6-5.35				
	Red sandy soil	Black cotton soil				
Red sandy soil	1	1/5				
Black cotton soil	5	1				
Sum	6.00	1.20				
	0-2.5	2.6-5.35				
	Dad sandu sail	Diagraman asil	A	Consistency	C A	Overall
	ked sandy soil	Black cotton soil	Average	Measure	S Average	Priority
Red sandy soil	0.17	0.17	0.17	2	0.04	0.070866
Black cotton soil	0.83	0.83	0.83	2	0.04	0.070866
	Average Consis	stency Measure		2.00		
		Consistency index	(0.00		
		Consistency ratio		0.00	(<0.1 good)

3.3.5. Topography (T)

Topography represents the measure of slope of the ground surface and undulations on ground. It considers trees and pits which retain water on ground surface, slowly forcing water to percolate into the ground. This parameter, too, has only 8 available data points, as shown in below figure.

			T,			_
pump_no	Latitude	Longitude	Topography			
1	10.28	77.943	15	•		_
2	10.343	77.998	200			
3	10.39883137	77.99210678	96		Original data points	
4	10.4652	77.973	53			
5	10.395	77.8695	4			
6	10.245	77.926	107.5			
7	10.322	78.025	148			
8	10.447	77.951	51			
				1		

Similar to Aquifer media parameter, uniform distribution within 10% increase and decrease in the average of the available data points is considered to simulate remaining data points

Average	84.3	+		_
10% increase on mean	92.7		Calculations based on	
10% decrease on mean	75.9		assumptions	

And the simulated results are as follows

			T,	
SI No	Latitude	Longitude	Topogra	
9		_	84.9	
10			87.5	
11			84.9	
12			77.0	
13			79.6	
14			82.6	_
15			81.7	1
16			76.6	
17			90.9	Generated data points
18			83.0	
19			76.4	
20			86.3	
21			77.0	
22			84.9	
23			88.7	
24			79.8	
25			78.4	
26			80.1	
27			87.8	
28			81.5	
29			81.2	
30			86.5	
31			87.2	
32			89.7	
33			87.3	
34			83.6	
35			85.8	
36			89.1	
37			91.4	
38			84.0	
39			88.3	
40			76.2	
41			92.3	
42			91.4	
43			92.1	
44			77.6	
45			78.2	
46			92.3	
47			77.7	
48			86.7	
49			81.6	
50			87.8	

A least weight (0.02 in pairwise comparison matrix) is assigned to this layer, as it has very least prominence in influencing groundwater vulnerability. The reclassification and ranks are as follows

	230.01-258.43	258.44-283.58	283.59-308.17	308.18-334.96	334.97-369.39				
230.01-258.43	1	3	5	8	9				
258.44-283.58	1/3	1	2	4	8				
283.59-308.17	1/5	1/2	1	4	6				
308.18-334.96	1/8	1/4	1/4	1	4				
334.97-369.39	1/9	1/8	1/6	1/4	1				
Sum	1.77	4.88	8.42	17.25	28.00				
						_	Consistency		Overall
	230.01-258.43	258.44-283.58	283.59-308.17	308.18-334.96	334.97-369.39	Average	Measure	T Average	Priority
230.01-258.43	0.57	0.62	0.59	0.46	0.32	0.51	5.53	0.02	0.011
258.44-283.58	0.19	0.21	0.24	0.23	0.29	0.23	5.43	0.02	0.005
283.59-308.17	0.11	0.10	0.12	0.23	0.21	0.16	5.42	0.02	0.003
308.18-334.96	0.07	0.05	0.03	0.06	0.14	0.07	5.07	0.02	0.002
334.97–369.39	0.06	0.03	0.02	0.01	0.04	0.03	5.08	0.02	0.001
				Average Consist	ency Measure		5.31		
					Consistency inde	ex	0.08		

3.3.6. Impact of Vadose Zone (I)

It is dry and unsaturated portion of the earth between land surface and top layer of underground water body. This is most significant layer next to Depth to groundwater (D). Because, as discussed in soil media and aquifer media, when contaminants get trapped into this dry zone and when surface water flushes these deep into the ground, the contaminants becomes much more dangerous because of chemical decomposition. 25 data points are available as shown in the below figure

Sl.No	Latitude	Longitude	I, Impact of	
			vadose zone (m,	
			amsl)	
1	10.287	78.006	360.00	
2	10.312	78.005	340.00	
3	10.319	78.017	308.00	
4	10.389	78.018	260.00	
5	10.436	78.013	228.35	
6	10.356	78.025	290.00	
7	10.34	77.944	210.00	Outstand data and the
8	10.382	77.943	250.00	Original data points
9	10.416	77.933	240.00	
10	10.417	77.921	240.00	
11	10.437	77.957	230.00	
12	10.412	77.961	250.00	
13	10.381	77.926	245.00	
14	10.354	77.943	260.00	
15	10.302	77.956	300.00	
16	10.248	77.945	320.00	
17	10.295	77.884	280.00	
18	10.314	77.897	270.00	
19	10.316	77.931	280.00	
20	10.341	77.913	270.00	
21	10.342	77.946	260.00	
22	10.376	77.947	250.00	
23	10.383	77.927	245.00	
24	10.365	77.906	260.00	
25	10.406	77.911	240.00	

Similar to Depth of groundwater, these data points are simulated, assuming that there holds a normal distribution with calculated average and standard deviation, which comes to be as shown in below figure

Average	267.45			
Minimum	210.00	_	Calculations based on assumptions	
Maximum	360.00		assumptions	
Standard deviation	35.80			

The results generated are as below

Sl.No	Latitude	Longitude	I, Impact of		
			vadose zone (m,		
			amsl)		
26			290.05		
27			224.52		
28			217.25		
29			256.42		
30			329.94		
31			211.23		
32			289.64		
33			242.15		
34			219.96		
35			267.10		
36			291.42		
37			287.01		
38			267.20		
39			297.23		
40			311.75		
41			299.94	Generated data points	
42			300.13		
43			267.34		
44			200.07		
45			250.90		
46			255.58		
47			199.11		
48			199.15		
49			267.83		
50			287.83		

After simulation, reclassified into five zones is done as shown in the below table. Higher the thickness of vadose zone, the less is its affinity to get polluted, hence high priority is given to low depths and priority descends as the depth ascends; in deciding AHP ranks. (attached as 'I' sheet in 'FinalProject_AHP.xlsx')

	0.52-1.41	1.42-1.90	1.91-2.51	2.52-3.59	3.60-5.35				
0.52-1.41	1	3	5	9	9				
1.42-1.90	1/3	1	3	6	8				
1.91–2.51	1/5	1/3	1	3	5				
2.52-3.59	1/9	1/6	1/3	1	4				
3.60-5.35	1/9	1/8	1/5	1/4	1				
Sum	1.76	4.63	9.53	19.25	27.00				
	2.6-8.98	8.99-13.3	13.4-18.7	18.8-25.6	25.7-35.8	Average	Consistency Measure	I Average	Overall Priority
2.6-8.98	0.57	0.65	0.52	0.47	0.33	0.51	5.56	0.23	0.11
8.99-13.3	0.19	0.22	0.31	0.31	0.30	0.27	5.55	0.23	0.06
13.4-18.7	0.11	0.07	0.10	0.16	0.19	0.13	5.37	0.23	0.03
18.8-25.6	0.06	0.04	0.03	0.05	0.15	0.07	5.07	0.23	0.02
25.7-35.8	0.06	0.03	0.02	0.01	0.04	0.03	5.08	0.23	0.01
				Average Co	onsistency N	Measure	5.33		
					Consistenc	y index	0.08		

3.3.7. Hydraulic Conductivity (C)

It is the ability of the groundwater body to transmit water. It is nothing but measure of transmitting the water from one water body to another. This layer also holds an importance and scored as third largest layer in weightage. Even here, only 8 data points are available.

pump_no	Latitude	Longitude	C, Hydraulic coefficient			
1	10.28	77.943	0.000035	+		
2	10.343	77.998	0.000010			
3	10.39883137	77.99210678	0.000310			
4	10.4652	77.973	0.000950		0	
5	10.395	77.8695	0.000500		Original data points	
6	10.245	77.926	0.000023			
7	10.322	78.025	0.000160			
8	10.447	77.951	0.000588			
			.	1		

Similar to all other parameters, except Depth to groundwater and Impact of vadose zone layer, here also uniform distribution with 10% increase and decrease on average value is considered to generate remaining data points.

Average	0.000322	+	
10% increase on mean	0.000354		Calculations based on
10% decrease			assumptions
on mean	0.000290		

The then generated data points are

	Hydraulic			
SI. No				
9	0.000294			
10	0.000349			
11	0.000325			
12	0.000339			
13	0.000309			
14	0.000342			
15	0.000338			
16	0.000293			
17	0.000345	Comments of determinate		
18	0.000317	Generated data points		
19	0.000291			
20	0.000346			
21	0.000320			
22	0.000335			
23	0.000322			
24	0.000336			
25	0.000290			
26	0.000310			
27	0.000292			
28	0.000311			
29	0.000325			
30	0.000291			
31	0.000291			
32	0.000322			
33	0.000331			
34	0.000333			
35	0.000314			
36	0.000338			
37	0.000348			
38	0.000325			
39	0.000321			
40	0.000299			
41	0.000325			
42	0.000301			
43	0.000343			
44	0.000325			
45	0.000292			
46	0.000339			
47	0.000352			
48	0.000301			
49	0.000327			
50	0.000294			

The reclassifications and ranks for AHP are as in below figure

	15.00-51.27	51.28-81.02	81.03-115.83	115.84-156.73	156.74-199.96				
15.00-51.27	1	1/3	1/5	1/8	1/9				
51.28-81.02	3	1	1/2	1/4	1/7				
81.03-115.83	5	2	1	1/2	1/4				
115.84-156.73	8	4	2	1	1/3				
156.74-199.96	9	7	4	3	1				
Sum	26.00	14.33	7.70	4.88	1.84				
	15.00-51.27	51.28-81.02	81.03-115.83	115.84-156.73	156.74–199.96	Average	Consistency Measure	C Average	Overall Priority
15.00-51.27	0.04	0.02	0.03	0.03	0.06	0.03	5.03	0.17	0.01
51.28-81.02	0.12	0.07	0.06	0.05	0.08	0.08	5.06	0.17	0.01
81.03-115.83	0.19	0.14	0.13	0.10	0.14	0.14	5.10	0.17	0.02
115.84-156.73	0.31	0.28	0.26	0.21	0.18	0.25	5.17	0.17	0.04
156.74–199.96	0.35	0.49	0.52	0.62	0.54	0.50	5.26	0.17	0.08
				Average Consist	tency Measure		5.12		
					Consistency inde	ex	0.03		
					Consistency ratio		0.03	(<0.1 good)	

4. Conclusions

The resulting data points obtained after simulating the existing data points are used in reclassification, ranking and weighing for Saaty's analytical hierarchical process and checked for the Saaty's condition, which is consistency ration should be less than 0.1. For this, from the average consistency measure obtained in the above pairwise comparison matrix and normalized D,R,A,S,T,I,C AHP matrices, consistency index is calculated by the below formula

$$CI = \frac{\lambda - n}{n - 1}$$

 λ : average consistency measure for all alternatives

n: number of alternatives

RI: the appropriate random index (taken from a table)

and consistency ratio = Consistency index/Random index

Where Random index is taken from Saaty's table

n	RI
2	0.00
3	0.58
4	0.90
5	1.12
6	1.24
7	1.32
8	1.41

Since the consistency ratio for all the pairwise and criterion matrices is less than 0.1, the model ranks and weights can be directly used on the maps for calculating DRASTIC index.

5. References

N C Mondal, S Adike et al., 2017 Determining Shallow Aquifer Vulnerability by the DRASTIC model and Hydrochemistry in Granite Terrain, Southern India, Journal of Earth Science

N C Mondal, S Adike et al., 2018 Development of Entropy-Based Model for Pollution Risk Assessment of Hydrogeological System

T Saranya and S Saravanan., 2022 Assessment of groundwater vulnerability using analytical hierarchy process and evidential belief function with DRASTIC parameters, Cuddalore, India, International Journal of Environmental Science and Technology