Importing Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings(action= 'ignore')
```

Importing Dataset & Some Visualization Using Correlation HeatMap, Box Plot, DistPlot etc., to know the details in the Data

```
In [2]: dataset=pd.read_csv("C:\\Users\\mishr\\OneDrive\\Desktop\\PROJECT\\Dataset_1.csv")
    dataset
```

Out[2]:	URL	length_url	length_hostname	ip	nb_dots n
	0 http://www.crestonwood.com/router.php	37	19	0	3
	1 http://shadetreetechnology.com/V4/validation/a	77	23	1	1
	2 https://support-appleld.com.secureupdate.duila	126	50	1	4
	http://rgipt.ac.in	18	11	0	2
	4 http://www.iracing.com/tracks/gateway-motorspo	55	15	0	2
	••				
1142	http://www.fontspace.com/category/blackletter	45	17	0	2
1142	6 http://www.budgetbots.com/server.php/Server%20	84	18	0	5
1142	7 https://www.facebook.com/Interactive-Televisio	105	16	1	2
1142	8 http://www.mypublicdomainpictures.com/	38	30	0	2
1142	9 http://174.139.46.123/ap/signin?openid.pape.ma	477	14	1	24

11430 rows × 89 columns

```
'length_words_raw', 'char_repeat', 'shortest_words_raw',
'shortest_word_host', 'shortest_word_path', 'longest_words_raw',
'longest_word_host', 'longest_word_path', 'avg_words_raw',
'avg_word_host', 'avg_word_path', 'phish_hints', 'domain_in_brand',
'brand_in_subdomain', 'brand_in_path', 'suspecious_tld',
'statistical_report', 'nb_hyperlinks', 'ratio_intHyperlinks',
'ratio_extHyperlinks', 'ratio_nullHyperlinks', 'nb_extCSS',
'ratio_intRedirection', 'ratio_extRedirection', 'ratio_intErrors',
'ratio_extErrors', 'login_form', 'external_favicon', 'links_in_tags',
'submit_email', 'ratio_intMedia', 'ratio_extMedia', 'sfh', 'iframe',
'popup_window', 'safe_anchor', 'onmouseover', 'right_clic',
'empty_title', 'domain_in_title', 'domain_with_copyright',
'whois_registered_domain', 'domain_registration_length', 'domain_age',
'web_traffic', 'dns_record', 'google_index', 'page_rank', 'status'],
dtype='object')
```


URL

```
length_url
length_hostname
nb dots
nb_hyphens
nb_at
nb_qm
nb_and
nb_or
nb_eq
nb_underscore
nb_tilde
nb_percent
nb_slash
nb_star
nb_colon
nb_comma
nb_semicolumn
nb_dollar
nb_space
nb_www
nb_com
nb_dslash
http_in_path
https_token
ratio_digits_url
ratio digits host
punycode
port
tld in path
tld in subdomain
abnormal subdomain
nb subdomains
prefix suffix
random domain
shortening_service
path extension
nb redirection
nb external redirection
length_words_raw
char_repeat
shortest_words_raw
shortest word host
shortest_word_path
longest_words_raw
longest_word_host
longest_word_path
avg_words_raw
avg_word_host
```

avg_word_path phish_hints domain_in_brand brand_in_subdomain brand_in_path suspecious_tld statistical_report nb_hyperlinks ratio_intHyperlinks ratio_extHyperlinks ratio_nullHyperlinks nb_extCSS ratio_intRedirection ratio_extRedirection ratio_intErrors ratio_extErrors login_form external_favicon links_in_tags submit_email ratio_intMedia ratio_extMedia sfh iframe popup_window safe_anchor onmouseover right_clic empty_title domain_in_title domain_with_copyright whois_registered_domain domain_registration_length domain_age web_traffic dns_record google_index page_rank status

In [6]: dataset.corr()

Out[6]:

	length_url	length_hostname	ip	nb_dots	nb_hyphens	nb_at	nb_q
length_url	1.000000	0.223025	0.453961	0.443589	0.399564	0.150739	0.5209
length_hostname	0.223025	1.000000	0.252013	0.408956	0.057702	0.071793	0.1624
ip	0.453961	0.252013	1.000000	0.288398	0.109860	0.059401	0.4054
nb_dots	0.443589	0.408956	0.288398	1.000000	0.045099	0.263283	0.3474
nb_hyphens	0.399564	0.057702	0.109860	0.045099	1.000000	0.018770	0.0368
•••							
domain_age	-0.006798	0.013854	-0.077020	-0.007818	0.080104	-0.067334	-0.0456
web_traffic	0.072205	0.163238	0.167930	0.087969	-0.041464	-0.009459	0.1437
dns_record	0.023357	-0.023344	0.127823	0.126659	-0.031477	0.031611	0.0094
google_index	0.236395	0.213990	0.270743	0.209616	-0.018828	0.113217	0.2012
page_rank	-0.102582	-0.159342	-0.218968	-0.097312	0.104341	-0.066356	-0.1238

87 rows × 87 columns

```
In [7]: sns.set(rc={"figure.figsize":(8,5)})
sns.heatmap(dataset.corr(),cmap="YlGnBu")
```

Out[7]: <AxesSubplot:>

In [8]: sns.heatmap(dataset.corr(),linewidths=0.7)

Out[8]: <AxesSubplot:>

Out[9]: <AxesSubplot:>

sns.heatmap(dataset.corr(), vmin=0, vmax=1) In [10]:

Out[10]: <AxesSubplot:>

Out[11]: <AxesSubplot:>


```
In [12]: sns.set(rc={"figure.figsize":(8,5)})
sns.heatmap(dataset.corr(),cmap="YlGnBu",cbar=False)
```

Out[12]: <AxesSubplot:>

Out[13]: <AxesSubplot:>


```
In [14]: dataset["status"].value_counts()
```

Out[14]: phishing 5715 legitimate 5715

Name: status, dtype: int64

In [15]: sns.countplot(x="status",data=dataset)

Out[15]: <AxesSubplot:xlabel='status', ylabel='count'>

In [16]: sns.boxplot(data=dataset)

Out[16]: <AxesSubplot:>

Out[17]:		URL	length_url	length_hostname	ip	nb_dots	n
	0	http://www.crestonwood.com/router.php	37	19	0	3	
	1	http://shadetreetechnology.com/V4/validation/a	77	23	1	1	
	2	https://support-appleld.com.secureupdate.duila	126	50	1	4	
	3	http://rgipt.ac.in	18	11	0	2	
	4	http://www.iracing.com/tracks/gateway-motorspo	55	15	0	2	
	•••						
1142	25	http://www.fontspace.com/category/blackletter	45	17	0	2	
1142	26	http://www.budgetbots.com/server.php/Server%20	84	18	0	5	
1142	27	https://www.facebook.com/Interactive-Televisio	105	16	1	2	

	11429	http	o://174.139.46.1	23/ap/sigr	in?openid.pa	ape.ma	477		14 1	24
	11430	rows ×	89 columns							
	4									+
In [18]:	datas	set["1	ength_url"].	value_c	ounts()					
Out[18]:	26 29 32 33 27	251 250 250 230 230								
	403 395 339 315 907 Name:	1 1 1 1 1 lengt	h_url, Leng	th: 324,	dtype: in	nt64				
In [19]:	datas	set["1	ength_hostna	ame"].va	lue_counts	5()				
Out[19]:	16 15 18 17 14 75 179 211 87 95 Name:	956 754 731 725 702 1 1 1 1 1engt	h_hostname,	Length:	83, dtype	e: int64				
In [20]:			={"figure.fi ot(dataset.]			l se, bins:	=100)			
Out[20]:	<axes< th=""><th>Subplo</th><th>t:xlabel='le</th><th>ength_ur</th><th>l'></th><th></th><th></th><th></th><th></th><th></th></axes<>	Subplo	t:xlabel='le	ength_ur	l'>					
	3000									
	2500 2000									
	1500									
	500		11.							
	0	0	200	400	600	800	1000	1200	1400	1600

length_url

http://www.mypublicdomainpictures.com/

11428

URL length_url length_hostname ip nb_dots n

38

2

In [21]: sns.distplot(dataset.length_hostname)

Out[21]: <AxesSubplot:xlabel='length_hostname', ylabel='Density'>

In [22]: sns.distplot(dataset["length_hostname"],kde=False)

Out[22]: <AxesSubplot:xlabel='length_hostname'>

In [23]:	: dataset	
----------	-----------	--

Out[23]:		URL	length_url	length_hostname	ip	nb_dots	n
	0	http://www.crestonwood.com/router.php	37	19	0	3	
	1	http://shadetreetechnology.com/V4/validation/a	77	23	1	1	
	2	https://support-appleId.com.secureupdate.duila	126	50	1	4	
	3	http://rgipt.ac.in	18	11	0	2	
	4	http://www.iracing.com/tracks/gateway-motorspo	55	15	0	2	
	•••					***	
11	1425	http://www.fontspace.com/category/blackletter	45	17	0	2	

	URL	length_url	length_hostname	ıp	nb_dots	n
11426	http://www.budgetbots.com/server.php/Server%20	84	18	0	5	
11427	https://www.facebook.com/Interactive-Televisio	105	16	1	2	
11428	http://www.mypublicdomainpictures.com/	38	30	0	2	
11429	http://174.139.46.123/ap/signin?openid.pape.ma	477	14	1	24	

11430 rows × 89 columns

```
In [24]: sns.set(rc={"figure.figsize":(10,5)})
sns.barplot(x="length_url",y="length_hostname",data=dataset)
```

Out[24]: <AxesSubplot:xlabel='length_url', ylabel='length_hostname'>


```
In [25]: data
```

Out[25]: Index(['L',

```
'length_url', 'length_hostname', 'ip', 'nb_dots', 'nb_hyphens', 'nb_at',
'nb_qm', 'nb_and', 'nb_or', 'nb_eq', 'nb_underscore', 'nb_tilde',
'nb_percent', 'nb_slash', 'nb_star', 'nb_colon', 'nb_comma',
'nb_semicolumn', 'nb_dollar', 'nb_space', 'nb_www', 'nb_com',
'nb_dslash', 'http_in_path', 'https_token', 'ratio_digits_url',
'ratio_digits_host', 'punycode', 'port', 'tld_in_path',
'tld_in_subdomain', 'abnormal_subdomain', 'nb_subdomains',
'prefix_suffix', 'random_domain', 'shortening_service',
'path_extension', 'nb_redirection', 'nb_external_redirection',
'length_words_raw', 'char_repeat', 'shortest_words_raw',
'shortest_word_host', 'shortest_word_path', 'longest_words_raw',
'longest_word_host', 'somest_word_path', 'avg_words_raw',
'avg_word_host', 'avg_word_path', 'phish_hints', 'domain_in_brand',
'brand_in_subdomain', 'brand_in_path', 'suspecious_tld',
'statistical_report', 'nb_hyperlinks', 'ratio_intHyperlinks',
'ratio_extHyperlinks', 'ratio_nullHyperlinks', 'nb_extCSS',
'ratio_intRedirection', 'ratio_extRedirection', 'ratio_intErrors',
'ratio_extErrors', 'login_form', 'external_favicon', 'links_in_tags',
'submit_email', 'ratio_intMedia', 'ratio_extMedia', 'sfh', 'iframe',
'popup_window', 'safe_anchor', 'onmouseover', 'right_clic',
'empty_title', 'domain_in_title', 'domain_with_copyright',
'whois_registered_domain', 'domain_registration_length', 'domain_age',
```

'web_traffic', 'dns_record', 'google_index', 'page_rank', 'status'],
dtype='object')

In [26]: dataset.describe()

			_			_	
\cap	1.1	+	Ľ	7)	6	-1	0
\cup	u	L.		\angle	U	- 1	۰

	length_url	length_hostname	ip	nb_dots	nb_hyphens	nb_at	
count	11430.000000	11430.000000	11430.000000	11430.000000	11430.000000	11430.000000	114
mean	61.126684	21.090289	0.150569	2.480752	0.997550	0.022222	
std	55.297318	10.777171	0.357644	1.369686	2.087087	0.155500	
min	12.000000	4.000000	0.000000	1.000000	0.000000	0.000000	
25%	33.000000	15.000000	0.000000	2.000000	0.000000	0.000000	
50%	47.000000	19.000000	0.000000	2.000000	0.000000	0.000000	
75%	71.000000	24.000000	0.000000	3.000000	1.000000	0.000000	
max	1641.000000	214.000000	1.000000	24.000000	43.000000	4.000000	

8 rows × 87 columns

In [27]: sns.jointplot(x="length_url",y="length_hostname",data=dataset,kind="reg")

Out[27]: <seaborn.axisgrid.JointGrid at 0x2744c362e80>

In [28]: sns.set(rc={"figure.figsize":(10,5)})
sns.boxplot(x="length_url",y="length_hostname",data=dataset)

Out[28]: <AxesSubplot:xlabel='length_url', ylabel='length_hostname'>

length_url

```
new_dataset=dataset.drop(["nb_or","sfh","submit_email","ratio_intErrors","ratio_intR
In [29]:
             new_dataset.columns
In [30]:
                                                                                                                      UR
            Index(['
Out[30]:
            L',
                      'length_url', 'length_hostname', 'ip', 'nb_dots', 'nb_hyphens', 'nb_at',
                      'nb_qm', 'nb_and', 'nb_eq', 'nb_underscore', 'nb_tilde', 'nb_percent',
                      'nb_slash', 'nb_star', 'nb_colon', 'nb_comma', 'nb_semicolumn', 'nb_dollar', 'nb_space', 'nb_www', 'nb_com', 'nb_dslash',
                      'http_in_path', 'https_token', 'ratio_digits_url', 'ratio_digits_host',
                     'punycode', 'port', 'tld_in_path', 'tld_in_subdomain', 'abnormal_subdomain', 'nb_subdomains', 'prefix_suffix', 'random_domain', 'shortening_service', 'path_extension', 'nb_redirection',
                      'nb_external_redirection', 'length_words_raw', 'char_repeat',
                      'shortest_words_raw', 'shortest_word_host', 'shortest_word_path',
                      'longest_words_raw', 'longest_word_host', 'longest_word_path',
                      'avg_words_raw', 'avg_word_host', 'avg_word_path', 'phish_hints',
                      'domain_in_brand', 'brand_in_subdomain', 'brand_in_path', 'suspecious_tld', 'statistical_report', 'nb_hyperlinks',
                      'ratio_intHyperlinks', 'ratio_extHyperlinks', 'nb_extCSS',
                      'ratio_extRedirection', 'ratio_extErrors', 'login_form',
                      'external_favicon', 'links_in_tags', 'ratio_intMedia', 'ratio_extMedia', 'iframe', 'popup_window', 'safe_anchor', 'onmouseover', 'right_clic',
                      'empty_title', 'domain_in_title', 'domain_with_copyright',
                      'whois_registered_domain', 'domain_registration_length', 'domain_age', 'web_traffic', 'dns_record', 'google_index', 'page_rank', 'status'],
                    dtype='object')
             new dataset=new dataset.rename(columns={"
In [31]:
             new_dataset
In [32]:
Out[32]
```

32]:		Url	length_url	length_hostname	ip	nb_dots	n
	0	http://www.crestonwood.com/router.php	37	19	0	3	
	1	http://shadetreetechnology.com/V4/validation/a	77	23	1	1	
	2	https://support-appleld.com.secureupdate.duila	126	50	1	4	
	3	http://rgipt.ac.in	18	11	0	2	
	4	http://www.iracing.com/tracks/gateway-motorspo	55	15	0	2	
	•••						

	Url	length_url	length_hostname	ip	nb_dots
11425	http://www.fontspace.com/category/blackletter	45	17	0	2
11426	http://www.budgetbots.com/server.php/Server%20	84	18	0	5
11427	https://www.facebook.com/Interactive-Televisio	105	16	1	2
11428	http://www.mypublicdomainpictures.com/	38	30	0	2
11429	http://174.139.46.123/ap/signin?openid.pape.ma	477	14	1	24
11430 r	ows × 83 columns				
4					
x=new	_dataset.iloc[:,1:-1].values				
print	(v)				
[[37.	· ·				
[77.	23. 1 0. 1. 2.]				
[126.	-				
1105	_				
[105. [38.	30. 0 0. 0. 4.]				
_					
[38. [477.					
[38. [477.	14. 1 1. 1. 0.]] _dataset.iloc[:,-1].values				
[38. [477. y=new print ['legi	14. 1 1. 1. 0.]] _dataset.iloc[:,-1].values	imate' 'le	gitimate'		
[38. [477. y=new print ['legi	<pre>14. 1 1. 1. 0.]] _dataset.iloc[:,-1].values (y) timate' 'phishing' 'phishing' 'legit: hing']</pre>	imate' 'le	gitimate'		
[38. [477. y=new print ['legi' 'phis	<pre>14. 1 1. 1. 0.]] _dataset.iloc[:,-1].values (y) timate' 'phishing' 'phishing' 'legit' hing'] et</pre>		gitimate' length_hostname	ip	nb_dots
[38. [477. y=new print ['legi' 'phis	<pre>14. 1 1. 1. 0.]] _dataset.iloc[:,-1].values (y) timate' 'phishing' 'phishing' 'legit' hing'] et</pre>			ip 0	nb_dots
[38. [477. y=new print ['legi 'phis	14. 1 1. 1. 0.]] _dataset.iloc[:,-1].values (y) timate' 'phishing' 'phishing' 'legit: hing'] et URL	length_url	length_hostname		3
[38. [477. y=new print ['legi' 'phis datas	14. 1 1. 1. 0.]] _dataset.iloc[:,-1].values (y) timate' 'phishing' 'phishing' 'legit: hing'] et URL http://www.crestonwood.com/router.php	length_url	length_hostname	0	
[38. [477.] y=new print ['legi 'phis datas	14. 1 1. 1. 0.]] _dataset.iloc[:,-1].values (y) timate' 'phishing' 'phishing' 'legit: hing'] et URL http://www.crestonwood.com/router.php http://shadetreetechnology.com/V4/validation/a	length_url	length_hostname 19 23	0	3 1 4
[38. [477. y=new print ['legi' 'phis datas	14. 1 1. 1. 0.]] _dataset.iloc[:,-1].values (y) timate' 'phishing' 'phishing' 'legit: hing'] et URL http://www.crestonwood.com/router.php http://shadetreetechnology.com/V4/validation/a https://support-appleld.com.secureupdate.duila	length_url	length_hostname 19 23 50	0 1 1	3
[38. [477.] y=new print ['legi 'phis datas	14. 1 1. 1. 0.]] _dataset.iloc[:,-1].values (y) timate' 'phishing' 'phishing' 'legit: hing'] et URL http://www.crestonwood.com/router.php http://shadetreetechnology.com/V4/validation/a https://support-appleId.com.secureupdate.duila http://rgipt.ac.in	length_url	length_hostname 19 23 50 11	0 1 1 0	3 1 4 2
[38. [477.] y=new print ['legi 'phis datas	14. 1 1. 1. 0.]] _dataset.iloc[:,-1].values (y) timate' 'phishing' 'phishing' 'legit: hing'] et URL http://www.crestonwood.com/router.php http://shadetreetechnology.com/V4/validation/a https://support-appleld.com.secureupdate.duila http://rgipt.ac.in http://www.iracing.com/tracks/gateway-motorspo	126 18 55	length_hostname 19 23 50 11 15	0 1 1 0	3 1 4 2 2
[38. [477.] y=new print ['legi 'phis datas	14. 1 1. 1. 0.]] _dataset.iloc[:,-1].values (y) timate' 'phishing' 'phishing' 'legit: hing'] et URL http://www.crestonwood.com/router.php http://shadetreetechnology.com/V4/validation/a https://support-appleld.com.secureupdate.duila http://rgipt.ac.in http://www.iracing.com/tracks/gateway-motorspo	126 18 55 	length_hostname 19 23 50 11 15	0 1 1 0 0	3 1 4 2 2
[38. [477.] y=new print ['legi 'phis datas]	14. 1 1. 1. 0.]] _dataset.iloc[:,-1].values (y) timate' 'phishing' 'phishing' 'legit: hing'] et URL http://www.crestonwood.com/router.php http://shadetreetechnology.com/V4/validation/a https://support-appleld.com.secureupdate.duila http://rgipt.ac.in http://www.iracing.com/tracks/gateway-motorspo http://www.fontspace.com/category/blackletter	length_url 37 77 126 18 55 45	length_hostname 19 23 50 11 15 17	0 1 1 0 0 	3 1 4 2 2 2
[38. [477.] y=new print ['legi 'phis datas]	14. 1 1. 1. 0.]] _dataset.iloc[:,-1].values (y) timate' 'phishing' 'phishing' 'legit: hing'] et URL http://www.crestonwood.com/router.php http://shadetreetechnology.com/V4/validation/a https://support-appleld.com.secureupdate.duila http://rgipt.ac.in http://www.iracing.com/tracks/gateway-motorspo http://www.fontspace.com/category/blackletter http://www.budgetbots.com/server.php/Server%20	length_url 37 77 126 18 55 45 84	length_hostname 19 23 50 11 15 17	0 1 1 0 0 0	3 1 4 2

Encoding Categorical Data

```
In [38]: from sklearn.compose import ColumnTransformer
          from sklearn.preprocessing import OneHotEncoder
          ct=ColumnTransformer(transformers=[('encoder',OneHotEncoder(sparse=False),[0])],rema
          x= np.array(ct.fit_transform(x))
          print(x)
         [[0. 0. 0. ... 1. 1. 4.]
          [ 0. 0.
                   0. ... 0. 1. 2.]
          [ 0.
               0. 0. ... 0. 1. 0.]
          [ 0.
               0. 0. ... 0.
                               1. 10.]
          [0. 0. 0. ... 0. 0. 4.]
          [ 0.
                0. 0. ... 1. 1. 0.]]
In [39]:
          from sklearn.preprocessing import LabelEncoder
          le=LabelEncoder()
          y=le.fit_transform(y)
          print(y)
          #Legitimate=0
          #phising=1
         [0 1 1 ... 0 0 1]
         from sklearn.model_selection import train_test_split
In [40]:
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=0)
In [41]:
          print(x_train)
         [[0. 0. 0. ... 0. 0. 4.]
          [0. 0. 0. ... 0. 1. 6.]
          [0. 0. 0. ... 0. 0. 4.]
          [0. 0. 0. ... 0. 1. 1.]
          [0. 0. 0. ... 0. 1. 3.]
          [0. 0. 0. ... 0. 1. 2.]]
In [42]:
         print(x_test)
         [[0. 0. 0. ... 0. 0. 4.]
          [0. 0. 0. ... 0. 1. 0.]
          [0. 0. 0. ... 0. 0. 0.]
          . . .
          [0. 0. 0. ... 0. 0. 5.]
          [0. 0. 0. ... 0. 1. 2.]
          [0. 0. 0. ... 0. 0. 5.]]
In [43]:
         print(y_train)
         [0 0 0 ... 1 1 1]
In [44]:
         print(y_test)
         [0 1 1 ... 0 1 0]
        Feature Scaling
In [45]:
         from sklearn.preprocessing import StandardScaler
          sc=StandardScaler()
          x_train[:,:]=sc.fit_transform(x_train[:,:])
          x_test[:,:]=sc.transform(x_test[:,:])
In [46]: | print(x_train)
         [[ 0.
                       -0.01936734 0.
                                              ... -0.14009045 -1.06711431
            0.31522879]
```

```
-0.01936734
          [ 0.
                                               ... -0.14009045 0.93710673
            1.10069922]
          [ 0.
                       -0.01936734
                                               ... -0.14009045 -1.06711431
            0.31522879]
                       -0.01936734 0.
                                               ... -0.14009045 0.93710673
          [ 0.
           -0.86297686]
                       -0.01936734 0.
                                               ... -0.14009045 0.93710673
          [ 0.
           -0.07750642]
                       -0.01936734 0.
                                               ... -0.14009045 0.93710673
          [ 0.
           -0.47024164]]
         print(x_test)
In [47]:
         [[ 0.
                                               ... -0.14009045 -1.06711431
                       -0.01936734
            0.31522879]
          [ 0.
                       -0.01936734
                                               ... -0.14009045 0.93710673
           -1.25571207]
                                               ... -0.14009045 -1.06711431
          [ 0.
                       -0.01936734 0.
           -1.25571207]
                       -0.01936734 0.
                                               ... -0.14009045 -1.06711431
          [ 0.
            0.70796401]
          [ 0.
                       -0.01936734
                                               ... -0.14009045 0.93710673
           -0.47024164]
          [ 0.
                       -0.01936734 0.
                                               ... -0.14009045 -1.06711431
            0.70796401]]
```

Using Logistic Regression

```
In [48]:
          from sklearn.linear_model import LogisticRegression
          classifier=LogisticRegression(random_state=0)
          classifier.fit(x_train,y_train)
Out[48]: LogisticRegression(random_state=0)
In [49]:
          y_pred=classifier.predict(x_test)
          print(np.concatenate((y_pred.reshape(len(y_pred),1),y_test.reshape(len(y_test),1)),1
         [[0 0]]
          [1 1]
          [1\ 1]
           [0 0]
          [1\ 1]
          [0 0]]
In [50]:
          from sklearn.metrics import confusion_matrix,accuracy_score
          cm=confusion_matrix(y_test,y_pred)
          print(cm)
          accuracy_score(y_test,y_pred)
         [[1614 76]
          [ 110 1629]]
Out[50]: 0.9457567804024497
In [51]:
          from sklearn.model_selection import cross_val_score
          accuracies= cross_val_score(estimator=classifier,X=x_train,y=y_train,cv=10)
          print("Accuracy: {:.2f} %".format(accuracies.mean()*100))
          print("Standard Deviation: {:.2f} %".format(accuracies.std()*100))
```

Accuracy: 94.45 %

Standard Deviation: 0.54 %

Using Decision Tree Classifier

```
from sklearn.tree import DecisionTreeClassifier
In [52]:
          classifier=DecisionTreeClassifier(criterion="entropy",random_state=0)
          classifier.fit(x_train,y_train)
Out[52]: DecisionTreeClassifier(criterion='entropy', random_state=0)
In [53]:
         print(x_train)
                       -0.01936734 0.
                                               ... -0.14009045 -1.06711431
         [[ 0.
            0.31522879]
          [ 0.
                       -0.01936734 0.
                                               ... -0.14009045 0.93710673
            1.10069922]
                       -0.01936734 0.
                                                ... -0.14009045 -1.06711431
          [ 0.
            0.31522879]
                       -0.01936734 0.
                                               ... -0.14009045 0.93710673
          [ 0.
           -0.86297686]
                       -0.01936734 0.
          [ 0.
                                               ... -0.14009045 0.93710673
           -0.07750642]
                       -0.01936734 0.
                                               ... -0.14009045 0.93710673
           -0.47024164]]
         print(y_train)
In [54]:
         [0 0 0 ... 1 1 1]
         y_pred=classifier.predict(x_test)
In [55]:
          print(np.concatenate((y_pred.reshape(len(y_pred),1),y_test.reshape(len(y_test),1)),1
         [[0 0]]
          [1 1]
          [1\ 1]
          [0 0]
          [0 1]
          [0 0]]
In [56]:
          from sklearn.metrics import confusion_matrix,accuracy_score
          cm=confusion_matrix(y_test,y_pred)
          print(cm)
          accuracy_score(y_test,y_pred)
         [[1574 116]
          [ 116 1623]]
Out[56]: 0.9323417906095072
         from sklearn.model_selection import cross_val_score
In [57]:
          accuracies= cross_val_score(estimator=classifier,X=x_train,y=y_train,cv=10)
          print("Accuracy: {:.2f} %".format(accuracies.mean()*100))
          print("Standard Deviation: {:.2f} %".format(accuracies.std()*100))
         Accuracy: 93.49 %
         Standard Deviation: 0.71 %
```

Using Random Forest Classifier

```
from sklearn.ensemble import RandomForestClassifier
In [58]:
          classifier=RandomForestClassifier(criterion="entropy",random_state=0)
          classifier.fit(x_train,y_train)
Out[58]: RandomForestClassifier(criterion='entropy', random_state=0)
In [59]:
          print(x_train)
         [[ 0.
                       -0.01936734
                                                ... -0.14009045 -1.06711431
            0.31522879]
          [ 0.
                       -0.01936734
                                               ... -0.14009045 0.93710673
            1.10069922]
          [ 0.
                       -0.01936734 0.
                                                ... -0.14009045 -1.06711431
            0.31522879]
          [ 0.
                       -0.01936734 0.
                                                ... -0.14009045 0.93710673
           -0.86297686]
          [ 0.
                       -0.01936734 0.
                                                ... -0.14009045 0.93710673
           -0.07750642]
          [ 0.
                       -0.01936734 0.
                                                ... -0.14009045 0.93710673
           -0.47024164]]
          print(y_train)
In [60]:
         [0 0 0 ... 1 1 1]
          y_pred=classifier.predict(x_test)
In [61]:
          print(np.concatenate((y_pred.reshape(len(y_pred),1),y_test.reshape(len(y_test),1)),1
         [[0 0]]
          [1 1]
          [1 1]
          [0 0]
          [1\ 1]
          [0 0]]
          from sklearn.metrics import confusion_matrix,accuracy_score
In [62]:
          cm=confusion_matrix(y_test,y_pred)
          print(cm)
          accuracy_score(y_test,y_pred)
         [[1638 52]
          [ 64 1675]]
Out[62]: 0.9661708953047535
In [63]:
          from sklearn.model selection import cross val score
          accuracies= cross_val_score(estimator=classifier,X=x_train,y=y_train,cv=10)
          print("Accuracy: {:.2f} %".format(accuracies.mean()*100))
          print("Standard Deviation: {:.2f} %".format(accuracies.std()*100))
         Accuracy: 96.56 %
         Standard Deviation: 0.80 %
```

Using KNN Classifier

```
In [64]: from sklearn.neighbors import KNeighborsClassifier
    classifier=KNeighborsClassifier()  # Study the parameters in a better way
    classifier.fit(x_train,y_train)
```

Out[64]: KNeighborsClassifier()

```
In [65]: | print(x_train)
          [[ 0.
                        -0.01936734
                                                 ... -0.14009045 -1.06711431
            0.31522879]
           [ 0.
                        -0.01936734
                                                 ... -0.14009045 0.93710673
            1.10069922]
           [ 0.
                        -0.01936734
                                                 ... -0.14009045 -1.06711431
            0.31522879]
           . . .
                        -0.01936734
           [ 0.
                                                ... -0.14009045 0.93710673
            -0.86297686]
           [ 0.
                        -0.01936734
                                                ... -0.14009045 0.93710673
            -0.07750642]
           [ 0.
                        -0.01936734 0.
                                                ... -0.14009045 0.93710673
            -0.47024164]]
          print(y_train)
In [66]:
          [0 0 0 ... 1 1 1]
          y_pred=classifier.predict(x_test)
In [67]:
          print(np.concatenate((y_pred.reshape(len(y_pred),1),y_test.reshape(len(y_test),1)),1
          [[0 0]]
          [1\ 1]
          [1\ 1]
           [0 0]
           [0 1]
          [0 0]]
          from sklearn.metrics import confusion_matrix,accuracy_score
In [68]:
          cm=confusion_matrix(y_pred,y_test)
          print(cm)
          accuracy_score(y_pred,y_test)
          [[1555 381]
          [ 135 1358]]
Out[68]: 0.8495188101487314
In [69]:
          from sklearn.model_selection import cross_val_score
          accuracies= cross_val_score(estimator=classifier,X=x_train,y=y_train,cv=10)
          print("Accuracy: {:.2f} %".format(accuracies.mean()*100))
          print("Standard Deviation: {:.2f} %".format(accuracies.std()*100))
         Accuracy: 84.66 %
         Standard Deviation: 1.09 %
```

Using SVM Classifier

```
In [70]:
          from sklearn.svm import SVC
          classifier=SVC(kernel="linear", random_state=0)
                                                                # for linear model ----> kernel
          classifier.fit(x_train,y_train)
Out[70]: SVC(kernel='linear', random_state=0)
In [71]:
         print(x_train)
                                                ... -0.14009045 -1.06711431
         [[ 0.
                       -0.01936734
            0.31522879]
          [ 0.
                       -0.01936734
                                                ... -0.14009045 0.93710673
            1.10069922]
          [ 0.
                       -0.01936734 0.
                                                ... -0.14009045 -1.06711431
```

```
0.31522879]
                       -0.01936734 0.
                                               ... -0.14009045 0.93710673
          [ 0.
           -0.86297686]
                                               ... -0.14009045
                       -0.01936734
          [ 0.
                                                                0.93710673
           -0.07750642]
                       -0.01936734 0.
                                               ... -0.14009045 0.93710673
          [ 0.
           -0.47024164]]
In [72]:
          print(y_train)
         [0 0 0 ... 1 1 1]
         y_pred=classifier.predict(x_test)
In [73]:
          print(np.concatenate((y_pred.reshape(len(y_pred),1),y_test.reshape(len(y_test),1)),1
         [[0 0]]
          [1 1]
          [1\ 1]
          [0 0]
          [1\ 1]
          [0 0]]
          from sklearn.metrics import confusion_matrix,accuracy_score
In [74]:
          cm=confusion_matrix(y_pred,y_test)
          print(cm)
          accuracy_score(y_pred,y_test)
         [[1616 111]
          [ 74 1628]]
Out[74]: 0.9460484106153397
In [75]:
         from sklearn.model_selection import cross_val_score
          accuracies= cross_val_score(estimator=classifier,X=x_train,y=y_train,cv=10)
          print("Accuracy: {:.2f} %".format(accuracies.mean()*100))
          print("Standard Deviation: {:.2f} %".format(accuracies.std()*100))
         Accuracy: 94.58 %
         Standard Deviation: 0.56 %
        Using Naive Bayes Classifier
          from sklearn.naive_bayes import GaussianNB
          classifier=GaussianNB()
```

```
In [76]:
          classifier.fit(x_train,y_train)
Out[76]: GaussianNB()
In [77]:
         print(x_train)
         [[ 0.
                        -0.01936734
                                                ... -0.14009045 -1.06711431
            0.31522879]
          [ 0.
                        -0.01936734
                                                ... -0.14009045 0.93710673
            1.10069922]
          [ 0.
                        -0.01936734 0.
                                                ... -0.14009045 -1.06711431
            0.31522879]
          [ 0.
                       -0.01936734
                                                ... -0.14009045 0.93710673
           -0.86297686]
          [ 0.
                        -0.01936734 0.
                                                ... -0.14009045 0.93710673
           -0.07750642]
```

```
[ 0.
                      -0.01936734 0.
                                               ... -0.14009045 0.93710673
           -0.47024164]]
In [78]:
          print(y_train)
         [0 0 0 ... 1 1 1]
         y_pred=classifier.predict(x_test)
In [79]:
          print(np.concatenate((y_pred.reshape(len(y_pred),1),y_test.reshape(len(y_test),1)),1
         [[0 0]]
          [0 1]
          [0 1]
           . . .
          [0 0]
          [0 1]
          [0 0]]
In [80]:
          from sklearn.metrics import confusion_matrix,accuracy_score
          cm=confusion_matrix(y_pred,y_test)
          print(cm)
          accuracy_score(y_pred,y_test)
         [[1672 1445]
          [ 18 294]]
Out[80]: 0.573344998541849
In [81]:
         from sklearn.model_selection import cross_val_score
          accuracies= cross_val_score(estimator=classifier,X=x_train,y=y_train,cv=10)
          print("Accuracy: {:.2f} %".format(accuracies.mean()*100))
          print("Standard Deviation: {:.2f} %".format(accuracies.std()*100))
         Accuracy: 58.39 %
         Standard Deviation: 0.75 %
```

Accuracy_Score_DataFrame

```
Score={"Classfier":["Logistic", "Decision Tree", "Random Forest", "SVM", "KNN", "Naive Ba
In [82]:
                  "Accuracy_Score(%)":[94.45,93.49,96.56,94.58,84.66,58.39],
                 "Standard_Deviation(%)":[0.54,0.71,0.80,0.56,1.09,0.75],"Cm_y_pred(Legitimate
                 "Cm_y_test(Legitimate)":[1629,1623,1675,1628,1358,294],"Cm_y_pred(Phising)":[
                  ,"Cm_y_test(Phising)":[76,116,64,111,381,1445]}
In [83]:
          Score
Out[83]: {'Classfier': ['Logistic',
            'Decision Tree',
            'Random Forest'
            'SVM',
            'KNN',
            'Naive Bayes'],
           'Accuracy Score(%)': [94.45, 93.49, 96.56, 94.58, 84.66, 58.39],
           'Standard_Deviation(%)': [0.54, 0.71, 0.8, 0.56, 1.09, 0.75],
           'Cm y pred(Legitimate)': [1614, 1574, 1638, 1616, 1555, 1672],
           'Cm_y_test(Legitimate)': [1629, 1623, 1675, 1628, 1358, 294],
           'Cm_y_pred(Phising)': [110, 116, 52, 74, 185, 18],
           'Cm_y_test(Phising)': [76, 116, 64, 111, 381, 1445]}
```

Accuracy_Score

In [85]:	Accuracy_Score			
----------	----------------	--	--	--

Out[85]:		Classfier	Accuracy_Score(%)	Standard_Deviation(%)	Cm_y_pred(Legitimate)	Cm_y_test(Legitimate)
	0	Logistic	94.45	0.54	1614	1629
	1	Decision Tree	93.49	0.71	1574	1623
	2	Random Forest	96.56	0.80	1638	1675
	3	SVM	94.58	0.56	1616	1628
	4	KNN	84.66	1.09	1555	1358
	5	Naive Bayes	58.39	0.75	1672	294
	4					>

In [86]: sns.jointplot(x="Accuracy_Score(%)",y="Standard_Deviation(%)",data=Accuracy_Score,ki

Out[86]: <seaborn.axisgrid.JointGrid at 0x2744fc19d60>

In [87]: sns.jointplot(x="Cm_y_pred(Legitimate)",y="Cm_y_pred(Phising)",data=Accuracy_Score,k

Out[87]: <seaborn.axisgrid.JointGrid at 0x274554dd7f0>

In [88]: sns.jointplot(x="Cm_y_test(Legitimate)",y="Cm_y_test(Phising)",data=Accuracy_Score,k

Out[88]: <seaborn.axisgrid.JointGrid at 0x27455630b50>

Finding The Accuracy Score by Reducing the number of features: Using PCA

n [89]:	datas	et					
ıt[89]:		URL	length_url	length_hostname	ip	nb_dots	n
	0	http://www.crestonwood.com/router.php	37	19	0	3	
	1	http://shadetreetechnology.com/V4/validation/a	77	23	1	1	
	2	https://support-appleld.com.secureupdate.duila	126	50	1	4	
	3	http://rgipt.ac.in	18	11	0	2	
	4	http://www.iracing.com/tracks/gateway-motorspo	55	15	0	2	
	•••						
	11425	http://www.fontspace.com/category/blackletter	45	17	0	2	
	11426	http://www.budgetbots.com/server.php/Server%20	84	18	0	5	
	11427	https://www.facebook.com/Interactive-Televisio	105	16	1	2	
	11428	http://www.mypublicdomainpictures.com/	38	30	0	2	
	11429	http://174.139.46.123/ap/signin?openid.pape.ma	477	14	1	24	
	Imp	orting PCA					
[90]:	from pca=P x_tra	sklearn.decomposition import PCA CA(n_components=2) in=pca.fit_transform(x_train) t=pca.fit_transform(x_test)					
	from pca=P x_tra x_tes	sklearn.decomposition import PCA CA(n_components=2) in=pca.fit_transform(x_train)		n Using PC	Ā		
	from pca=P x_tra x_tes ACCU from class	sklearn.decomposition import PCA CA(n_components=2) in=pca.fit_transform(x_train) t=pca.fit_transform(x_test) uracy Score of Logistic Reg		n Using PC	Ά		
n [91]: ut[91]:	from pca=P x_tra x_tes ACCU from class class Logist	sklearn.decomposition import PCA CA(n_components=2) in=pca.fit_transform(x_train) t=pca.fit_transform(x_test) Iracy Score of Logistic Reg sklearn.linear_model import LogisticRegre ifier=LogisticRegression(random_state=0) ifier.fit(x_train,y_train) icRegression(random_state=0)		n Using PC	A		
n [91]: ut[91]:	from pca=P x_tra x_tes ACCL from class class Logist y_pre print	sklearn.decomposition import PCA CA(n_components=2) in=pca.fit_transform(x_train) t=pca.fit_transform(x_test) Iracy Score of Logistic Reg sklearn.linear_model import LogisticRegre ifier=LogisticRegression(random_state=0) ifier.fit(x_train,y_train)	ession			rest),1))),
n [91]:	from pca=P x_tra x_tes ACCL from class class Logist y_pre	sklearn.decomposition import PCA CA(n_components=2) in=pca.fit_transform(x_train) t=pca.fit_transform(x_test) Iracy Score of Logistic Reg sklearn.linear_model import LogisticRegre ifier=LogisticRegression(random_state=0) ifier.fit(x_train,y_train) icRegression(random_state=0) d=classifier.predict(x_test)	ession			rest),1))),

 $\textbf{from} \ \, \textbf{sklearn.metrics} \ \, \textbf{import} \ \, \textbf{confusion_matrix}, \textbf{accuracy_score}$

cm=confusion_matrix(y_pred,y_test)

accuracy_score(y_pred,y_test)

[[1355 660] [335 1079]] Out[93]: 0.7098279381743948

print(cm)

In [93]:

```
from sklearn.model_selection import cross_val_score
accuracies= cross_val_score(estimator=classifier,X=x_train,y=y_train,cv=10)
print("Accuracy: {:.2f} %".format(accuracies.mean()*100))
print("Standard Deviation: {:.2f} %".format(accuracies.std()*100))
```

Accuracy: 81.35 %

Standard Deviation: 1.26 %

Accuracy Score is quite reduced when computed using PCA i.e by reducing the dimensions

Accuracy Score of Random Forest Using PCA

```
In [95]:
          from sklearn.ensemble import RandomForestClassifier
          classifier=RandomForestClassifier(criterion="entropy",random state=0)
          classifier.fit(x_train,y_train)
Out[95]: RandomForestClassifier(criterion='entropy', random_state=0)
         y_pred=classifier.predict(x test)
In [96]:
          print(np.concatenate((y_pred.reshape(len(y_pred),1),y_test.reshape(len(y_test),1)),1
         [[0 0]]
          [0 1]
          [0 1]
          [0 0]
          [0 1]
          [0 0]]
In [97]:
          from sklearn.metrics import confusion_matrix,accuracy_score
          cm=confusion_matrix(y_pred,y_test)
          print(cm)
          accuracy_score(y_pred,y_test)
         [[1185 563]
          [ 505 1176]]
Out[97]: 0.6885389326334208
         from sklearn.model_selection import cross_val_score
In [98]:
          accuracies= cross val score(estimator=classifier, X=x train, y=y train, cv=10)
          print("Accuracy: {:.2f} %".format(accuracies.mean()*100))
          print("Standard Deviation: {:.2f} %".format(accuracies.std()*100))
         Accuracy: 80.78 %
         Standard Deviation: 1.10 %
```

Accuracy Score is quite decreased when computed using PCA i.e by reducing the dimensions

Accuracy Score of Naive Bayes Using PCA

```
In [99]: from sklearn.naive_bayes import GaussianNB
    classifier=GaussianNB()
    classifier.fit(x_train,y_train)
```

```
Out[99]: GaussianNB()
In [100...
          y_pred=classifier.predict(x_test)
          print(np.concatenate((y_pred.reshape(len(y_pred),1),y_test.reshape(len(y_test),1)),1
          [[0 0]]
          [0 1]
          [0 1]
          [0 0]
          [0 1]
          [0 0]]
         from sklearn.metrics import confusion_matrix,accuracy_score
In [101...
          cm=confusion_matrix(y_pred,y_test)
          print(cm)
          accuracy_score(y_pred,y_test)
          [[1638 1171]
          [ 52 568]]
Out[101... 0.6433362496354622
In [102...
         from sklearn.model_selection import cross_val_score
          accuracies= cross_val_score(estimator=classifier,X=x_train,y=y_train,cv=10)
          print("Accuracy: {:.2f} %".format(accuracies.mean()*100))
          print("Standard Deviation: {:.2f} %".format(accuracies.std()*100))
```

Accuracy: 73.47 %

Standard Deviation: 1.14 %

Accuracy Score is well increased when computed using PĆA i.e by reducing the dimensions

new_c	ataset					
	Url	length_url	length_hostname	ip	nb_dots	n
0	http://www.crestonwood.com/router.php	37	19	0	3	
1	http://shadetreetechnology.com/V4/validation/a	77	23	1	1	
2	https://support-appleld.com.secureupdate.duila	126	50	1	4	
3	http://rgipt.ac.in	18	11	0	2	
4	http://www.iracing.com/tracks/gateway-motorspo	55	15	0	2	
•••						
11425	http://www.fontspace.com/category/blackletter	45	17	0	2	
11426	http://www.budgetbots.com/server.php/Server%20	84	18	0	5	
11427	https://www.facebook.com/Interactive-Televisio	105	16	1	2	
11428	http://www.mypublicdomainpictures.com/	38	30	0	2	
11429	http://174.139.46.123/ap/signin?openid.pape.ma	477	14	1	24	

11430 rows × 83 columns

```
In [ ]:
In [104...
          import pandas as pd
          from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=0)
          from sklearn.feature_selection import mutual_info_classif
          mutual_info=mutual_info_classif(x_train,y_train)
          mutual_info
Out[104... array([1.53109169e-03, 0.00000000e+00, 0.00000000e+00, 8.08940242e-03,
                3.20699399e-03, 5.31501337e-03, 0.00000000e+00, 0.00000000e+00,
                0.00000000e+00, 0.00000000e+00, 5.46369295e-03, 3.83429950e-03,
                2.98391631e-03, 6.98627155e-03, 8.98617878e-04, 9.93634603e-04,
                0.00000000e+00, 0.00000000e+00, 4.13529255e-05, 0.00000000e+00,
                2.79492057e-03, 8.02714549e-03, 6.68615546e-03, 2.79836781e-04,
                4.19168114e-04, 0.00000000e+00, 9.33997975e-03, 3.21223303e-03,
                1.22462660e-02, 0.00000000e+00, 0.00000000e+00, 1.83594719e-03,
                2.46870657e-03, 6.54882285e-03, 0.00000000e+00, 0.00000000e+00,
                6.09098287e-03, 0.00000000e+00, 9.88071636e-04, 6.02282598e-03,
                0.00000000e+00, 1.40528396e-02, 1.02134431e-04, 0.00000000e+00,
                7.54153924e-03, 5.53992667e-03, 0.00000000e+00, 1.27781310e-03,
                0.00000000e+00, 1.69076382e-03, 2.72775127e-03, 0.00000000e+00,
                0.00000000e+00, 6.26237681e-03, 3.44139008e-03, 0.00000000e+00,
                1.47878727e-03, 0.00000000e+00, 4.93360752e-03, 1.90713080e-03,
                3.46505093e-03, 6.91247231e-03, 2.34562332e-03, 0.00000000e+00,
                5.49238596e-03, 3.77252870e-03, 3.97791426e-03, 0.00000000e+00,
                3.48898998e-04, 0.00000000e+00, 4.78289049e-03, 0.00000000e+00,
                9.40601991e-03, 0.00000000e+00, 0.00000000e+00, 8.33305353e-03,
                4.17626651e-03, 1.37808810e-02, 0.00000000e+00, 6.08252985e-04,
                0.00000000e+00, 0.00000000e+00, 1.68164600e-03, 3.45411550e-03,
                0.00000000e+00, 4.00184067e-03, 3.52187192e-03, 3.28559638e-03,
                0.00000000e+00, 4.28170847e-03, 8.79679096e-03, 7.17316603e-03,
                0.00000000e+00, 9.35131086e-03, 1.27396764e-03, 0.00000000e+00,
                0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
                0.00000000e+00, 2.66783474e-03, 0.00000000e+00, 5.59447300e-03,
                0.00000000e+00, 5.02535842e-03, 6.50786491e-04, 1.36013811e-03,
                0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 2.75162450e-03,
                3.01567211e-03, 0.00000000e+00, 5.41163752e-03, 2.29668817e-03,
                1.85196728e-03, 1.19257973e-02, 7.08840031e-03, 2.07628857e-03,
                4.32206869e-03, 1.03952919e-03, 0.00000000e+00, 2.86294472e-03,
                0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
                0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 9.81453054e-03,
                0.00000000e+00, 0.00000000e+00, 9.71035998e-03, 4.43338606e-03,
                3.15207322e-03, 3.27739669e-03, 8.65712331e-03, 2.86885317e-03,
                0.00000000e+00, 0.00000000e+00, 8.38461066e-03, 3.13211871e-03,
                0.00000000e+00, 3.45842353e-03, 1.33470664e-02, 0.00000000e+00,
                8.26287395e-03, 6.38741837e-03, 2.94674069e-03, 2.84491171e-03,
                0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.40840254e-03,
                1.70121295e-03, 9.86277239e-03, 1.01775587e-03, 0.00000000e+00,
                0.00000000e+00, 7.46686927e-04, 0.00000000e+00, 0.00000000e+00,
                0.00000000e+00, 2.38321793e-03, 0.00000000e+00, 0.00000000e+00,
                0.00000000e+00, 1.08424940e-02, 0.00000000e+00, 0.00000000e+00,
                0.00000000e+00, 0.00000000e+00, 1.47481641e-03, 2.10123952e-03,
                9.82802319e-04, 7.65124669e-03, 0.00000000e+00, 6.19462460e-04,
                2.37986758e-04, 0.00000000e+00, 0.0000000e+00, 0.00000000e+00,
                1.00664045e-02, 1.36472311e-02, 0.00000000e+00, 0.00000000e+00,
                0.00000000e+00, 2.45138219e-03, 0.00000000e+00, 0.00000000e+00,
                0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
                4.79279895e-03, 3.13123622e-03, 0.00000000e+00, 0.00000000e+00,
                0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
                0.00000000e+00, 5.90211872e-03, 0.00000000e+00, 2.80762392e-03,
                0.00000000e+00, 2.53112283e-03, 0.00000000e+00, 0.00000000e+00,
                0.00000000e+00, 0.00000000e+00, 5.18288856e-03, 1.42624815e-03,
                6.73265423e-03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
                1.51967984e-04, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
```

9.06805270e-03, 8.14960124e-03, 1.84766226e-03, 1.47693011e-02,

```
2.24557470e-03, 0.00000000e+00, 2.94429119e-03, 1.20517631e-04,
                1.15568160e-03, 0.00000000e+00, 0.00000000e+00, 9.97185766e-04,
                2.97906086e-03, 1.17408055e-04, 1.08356479e-02, 0.00000000e+00,
                4.48980262e-03, 1.27953970e-03, 1.04022962e-02, 8.10677086e-03,
                0.00000000e+00, 0.00000000e+00, 4.38838549e-03, 0.00000000e+00,
                2.04234058e-04, 3.11280373e-03, 0.00000000e+00, 6.60880716e-03,
                0.00000000e+00, 0.00000000e+00, 9.54015202e-03, 0.00000000e+00,
                0.00000000e+00, 9.03714171e-03, 4.87356827e-04, 0.00000000e+00,
                0.00000000e+00, 4.12995103e-03, 5.67670635e-03, 1.77747021e-03,
                6.49559466e-03, 0.00000000e+00, 0.00000000e+00, 5.08611800e-03,
                1.16769607e-02, 1.13694301e-03, 0.00000000e+00, 0.00000000e+00,
                1.21474874e-03, 0.00000000e+00, 0.00000000e+00, 1.45934502e-04,
                0.00000000e+00, 8.02668963e-03, 6.18980103e-03, 0.00000000e+00,
                6.77381713e-03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
                0.00000000e+00, 8.76804734e-03, 0.00000000e+00, 0.00000000e+00,
                0.00000000e+00, 4.18000228e-03, 7.98015984e-04, 8.14256706e-04,
                1.80113708e-03, 2.06366710e-03, 0.00000000e+00, 4.33449117e-03,
                1.30935660e-03, 9.59636969e-04, 1.09163817e-02, 1.27604686e-04,
                1.05372105e-02, 5.33525205e-03, 0.00000000e+00, 0.00000000e+00,
                5.10115986e-03, 5.83960775e-03, 5.63409801e-04, 0.00000000e+00,
                0.00000000e+00, 0.00000000e+00, 0.0000000e+00, 0.00000000e+00,
                0.00000000e+00, 1.70279963e-03, 0.00000000e+00, 4.16154123e-03,
                2.75483564e-03, 0.00000000e+00, 4.50818412e-03, 6.05263894e-03,
                6.54358856e-02, 5.40014567e-02, 6.21839878e-02, 3.81255839e-02,
                1.30815051e-02, 4.39974168e-02, 3.23049896e-02, 6.17479587e-02,
                7.91417433e-03, 0.00000000e+00, 6.37550708e-03, 3.15730507e-02,
                4.26863533e-03, 0.00000000e+00, 0.00000000e+00, 2.33481490e-02,
                0.00000000e+00, 0.00000000e+00, 1.03455437e-01, 2.00539264e-02,
                0.00000000e+00, 3.98614252e-03, 0.00000000e+00, 9.32610830e-02,
                4.11918465e-02, 0.00000000e+00, 7.91251032e-03, 8.36091889e-03,
                2.73681868e-02, 7.87953614e-03, 2.34962843e-02, 3.11903861e-02,
                0.00000000e+00, 9.11895529e-03, 0.00000000e+00, 0.00000000e+00,
                3.34702166e-03, 4.72488947e-02, 8.23973059e-02, 5.77405740e-02,
                7.55073284e-02, 4.80486730e-02, 6.68063050e-02, 1.67742327e-02,
                1.12502521e-01, 6.76388560e-02, 7.84961342e-02, 7.94527993e-02,
                8.43456926e-02, 1.28443828e-02, 9.34779136e-03, 0.00000000e+00,
                1.08909246e-02, 1.17713232e-02, 2.32459767e-01, 2.34291061e-01,
                2.32305669e-01, 1.22047440e-02, 1.16134580e-01, 7.57822601e-02,
                0.00000000e+00, 5.22248219e-03, 1.19532969e-01, 6.86505505e-02,
                6.45713362e-02, 0.00000000e+00, 1.27498234e-03, 1.79479573e-01,
                8.55811347e-03, 1.57083470e-03, 2.37805275e-02, 6.02418476e-02,
                5.90060561e-03, 1.63716024e-02, 1.51856284e-01, 2.72006275e-01,
                2.89398906e-01, 4.45014326e-03, 2.99082357e-01, 2.15360317e-01])
In [105...
          x_train
Out[105... array([[0., 0., 0., ..., 0., 0., 4.],
                 [0., 0., 0., \ldots, 0., 1., 6.],
                [0., 0., 0., \ldots, 0., 0., 4.],
                [0., 0., 0., \ldots, 0., 1., 1.],
                 [0., 0., 0., \ldots, 0., 1., 3.],
                [0., 0., 0., \ldots, 0., 1., 2.]])
          mutual_info_classif(x_train,y_train)
                                                   # mutual information always gives either pos
In [106...
Out[106... array([1.76090497e-03, 0.00000000e+00, 0.00000000e+00, 5.69984964e-03,
                1.28339530e-02, 0.00000000e+00, 6.74799799e-03, 0.00000000e+00,
                1.10942248e-02, 1.29071552e-03, 0.00000000e+00, 0.00000000e+00,
                6.20279080e-03, 0.00000000e+00, 3.30152747e-03, 5.16219282e-03,
                4.75943946e-03, 1.60572361e-02, 1.54782225e-03, 3.83900819e-03,
                0.00000000e+00, 0.00000000e+00, 2.58315696e-04, 5.99173948e-04,
                4.39855243e-03, 0.00000000e+00, 8.00894775e-03, 1.16597384e-03,
                0.00000000e+00, 6.32635894e-03, 0.00000000e+00, 6.97708293e-03,
                1.50868542e-03, 1.77257016e-03, 0.00000000e+00, 8.40146623e-03,
                0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
                1.20791458e-03, 3.77773475e-03, 1.54926129e-02, 0.00000000e+00,
                9.88921829e-03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
```

4.56182546e-03, 1.45965566e-03, 0.00000000e+00, 0.00000000e+00,

```
0.00000000e+00, 0.00000000e+00, 4.13521247e-03, 3.00845717e-04,
3.08201146e-03, 0.00000000e+00, 4.87421373e-03, 5.57472457e-03,
2.02299604e-03, 0.00000000e+00, 8.87866233e-03, 2.86586372e-05,
2.39124424e-03, 0.00000000e+00, 6.19998838e-03, 0.00000000e+00,
2.00525221e-03, 0.00000000e+00, 2.79009184e-04, 0.00000000e+00,
6.06096392e-04, 4.81162367e-03, 8.50449799e-04, 3.71950824e-04,
4.49259800e-03, 0.00000000e+00, 1.78071361e-03, 0.00000000e+00,
9.82532956e-04, 3.25147737e-03, 0.00000000e+00, 0.00000000e+00,
1.46059773e-03, 0.00000000e+00, 3.51187191e-03, 1.61797920e-03,
1.00484713e-02, 1.27065133e-02, 1.12858184e-02, 8.17406197e-03,
1.20595980e-03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
2.11702480e-03, 7.44168030e-04, 0.00000000e+00, 0.00000000e+00,
4.81542980e-03, 5.59273155e-03, 4.19929357e-03, 0.00000000e+00,
0.00000000e+00, 2.16506370e-03, 1.17315348e-02, 1.03066626e-02,
0.00000000e+00, 0.00000000e+00, 2.45436505e-03, 1.43203083e-03,
7.34072169e-04, 0.00000000e+00, 3.43671380e-03, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.0000000e+00, 2.68288001e-03,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 2.23296838e-03,
0.00000000e+00, 3.25818561e-03, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.0000000e+00, 0.00000000e+00,
6.72179696e-03, 0.00000000e+00, 0.00000000e+00, 7.02001594e-03,
5.14169113e-03, 0.00000000e+00, 6.95496824e-03, 0.00000000e+00,
8.82017290e-03, 9.15120851e-03, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 9.21484714e-03, 0.00000000e+00, 0.00000000e+00,
7.58726932e-03, 0.00000000e+00, 0.0000000e+00, 0.00000000e+00,
0.00000000e+00, 3.47960076e-03, 0.00000000e+00, 1.57338000e-02,
0.00000000e+00, 8.12766109e-03, 7.87875378e-03, 2.43220948e-04,
0.00000000e+00, 0.00000000e+00, 2.65884606e-03, 0.00000000e+00,
4.85806546e-03, 7.70781618e-03, 5.06289837e-03, 3.64618452e-04,
0.00000000e+00, 7.04500604e-03, 0.00000000e+00, 0.00000000e+00,
7.09976202e-03, 0.00000000e+00, 9.09864234e-05, 1.73431813e-03,
4.60651112e-03, 0.00000000e+00, 0.00000000e+00, 9.52544026e-03,
1.01893623e-02, 0.00000000e+00, 0.00000000e+00, 1.31394057e-03,
0.00000000e+00, 0.00000000e+00, 8.64706655e-04, 5.72191994e-03,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 5.27167638e-03,
2.33570582e-03, 0.00000000e+00, 9.74223751e-03, 0.00000000e+00,
4.69338096e-03, 0.00000000e+00, 1.60176944e-03, 3.71310703e-04,
0.00000000e+00, 0.00000000e+00, 5.94956302e-03, 3.58167767e-04,
0.00000000e+00, 0.00000000e+00, 6.40575441e-03, 4.49140350e-03,
1.19877444e-03, 5.60935044e-03, 0.00000000e+00, 1.62666988e-03,
0.00000000e+00, 0.00000000e+00, 0.0000000e+00, 0.00000000e+00,
0.00000000e+00, 5.30161260e-03, 2.14717438e-03, 9.65062577e-03,
0.00000000e+00, 0.00000000e+00, 6.35535441e-03, 3.43650678e-03,
4.53739930e-03, 8.25646041e-04, 3.38154138e-03, 0.00000000e+00,
0.00000000e+00, 1.58267956e-03, 1.12488085e-02, 7.39772718e-03,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 7.81062274e-03, 0.00000000e+00, 9.24858248e-03,
5.29838590e-03, 0.00000000e+00, 5.51788992e-03, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 2.33271251e-03, 9.45682967e-04,
0.00000000e+00, 2.59201240e-03, 5.00669781e-04, 6.00082837e-03,
2.42586586e-03, 3.01626927e-03, 0.00000000e+00, 0.00000000e+00,
7.63079957e-04, 7.69856206e-03, 0.00000000e+00, 4.65472164e-04,
3.05444584e-03, 0.00000000e+00, 1.18600806e-03, 2.87715896e-03,
1.86783212e-03, 0.00000000e+00, 0.00000000e+00, 4.70360257e-03,
2.04454413e-03, 2.62915046e-03, 3.04414170e-03, 0.00000000e+00,
0.00000000e+00, 5.49700289e-03, 0.00000000e+00, 0.00000000e+00,
6.82448823e-03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
2.02453793e-03, 0.00000000e+00, 0.00000000e+00, 3.49481831e-03,
1.07792630e-02, 1.19765997e-03, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 5.41195566e-03, 0.00000000e+00, 3.66276789e-03,
3.85392319e-04, 0.00000000e+00, 0.00000000e+00, 8.90625928e-03,
9.00424096e-03, 8.00579700e-03, 0.00000000e+00, 4.00525994e-03,
0.00000000e+00, 3.48799138e-03, 8.03750381e-03, 0.00000000e+00,
1.02153164e-02, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
1.89243472e-03, 3.13917831e-03, 1.38496961e-03, 0.00000000e+00,
0.00000000e+00, 1.04598658e-02, 1.03929878e-03, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 3.81474160e-03, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 5.34655668e-03, 5.62639571e-03,
3.80407796e-03, 9.72170560e-03, 2.31017974e-03, 0.00000000e+00,
```

```
2.11709904e-02, 5.66073784e-02, 3.30246380e-02, 4.94110017e-02,
                 1.07246962e-02, 8.64734335e-03, 2.96723638e-03, 2.84802562e-02,
                 1.64069982e-02, 1.63259803e-03, 7.29765356e-03, 1.34322100e-02,
                 2.81209359e-03, 1.94272668e-02, 1.06754823e-01, 1.63801572e-02,
                 1.81791952e-02, 0.00000000e+00, 8.31526142e-03, 1.02959066e-01,
                 5.07511337e-02, 0.00000000e+00, 6.30581522e-03, 1.00079794e-02,
                 2.41936664e-02, 1.09148604e-02, 2.63485295e-02, 2.79403004e-02,
                 3.11793604e-03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
                 9.75346666e-04, 3.09582158e-02, 8.35521816e-02, 4.90197385e-02,
                 6.69417679e-02, 3.64981884e-02, 7.98666909e-02, 2.25810945e-02,
                 1.16242870e-01, 6.47078104e-02, 8.39454254e-02, 8.49774065e-02,
                 7.43451591e-02, 0.00000000e+00, 0.00000000e+00, 8.14298129e-03,
                 9.59842322e-03, 1.58062629e-03, 2.31233040e-01, 2.31136905e-01,
                 2.32102466e-01, 1.92631045e-02, 1.19682220e-01, 7.64027458e-02,
                 7.86817534e-03, 7.13504863e-03, 1.12565706e-01, 7.31681324e-02,
                 6.73904993e-02, 0.00000000e+00, 0.00000000e+00, 1.78960045e-01,
                 1.22273845e-03, 0.00000000e+00, 2.78760646e-02, 5.89007626e-02,
                 1.36938852e-02, 1.07537262e-02, 1.44602393e-01, 2.74590659e-01,
                 2.87366075e-01, 8.76898946e-03, 2.98813476e-01, 2.18223981e-01])
In [107...
          y_train
Out[107... array([0, 0, 0, ..., 1, 1, 1])
          import pandas as pd
In [108...
          mutual_data=pd.Series(mutual_info)
          mutual_data
                 0.001531
Out[108...
          1
                 0.000000
          2
                 0.000000
          3
                 0.008089
          4
                 0.003207
                   . . .
          399
                 0.272006
          400
                 0.289399
         401
                 0.004450
         402
                 0.299082
         403
                 0.215360
          Length: 404, dtype: float64
          pd.Series(mutual_info).sort_values(ascending=False)
In [109...
         402
                 0.299082
Out[109...
          400
                 0.289399
          399
                 0.272006
          379
                 0.234291
          378
                 0.232460
         127
                 0.000000
         126
                 0.000000
         125
                 0.000000
         124
                 0.000000
          201
                 0.000000
          Length: 404, dtype: float64
In [110...
          mutual_data.nlargest(10)
                                       # Features with top 10 Largest Score
         402
                 0.299082
Out[110...
         400
                 0.289399
          399
                 0.272006
          379
                 0.234291
          378
                 0.232460
          380
                 0.232306
         403
                 0.215360
          391
                 0.179480
```

6.48025156e-02, 4.96747878e-02, 8.15705212e-02, 3.50136425e-02,

398 0.151856 386 0.119533 dtype: float64

In [111... import matplotlib.pyplot as plt
 mutual_data.plot()

Out[111... <AxesSubplot:>

Conclusion: There are total 404 Scores Observed while doing Mutual Information and the Highest Dependency of a feature is 0.298131 among all the features.

In []:

Feature Importance:

This Technique gives the Scores of all features individually, The Higher the Score More Relevant it is.

```
In [ ]:
In [112... from sklearn.ensemble import ExtraTreesClassifier
    import matplotlib.pyplot as plt
    model=ExtraTreesClassifier()
    model.fit(x_train,y_train)
```

Out[112... ExtraTreesClassifier()

In [113... print(model.feature_importances_)

```
[0.00000000e+00 5.65576451e-05 0.00000000e+00 1.54932579e-04 2.23342519e-04 3.31281514e-04 4.27115783e-04 5.17656184e-04 6.36721069e-04 8.15509061e-04 5.59268107e-04 1.08016687e-03 1.10654248e-03 8.60703307e-04 1.05226241e-03 1.21595904e-03 1.21596065e-03 9.66381304e-04 7.59753033e-04 7.74570646e-04 1.01199210e-03 1.27920364e-03 9.90383360e-04 9.65017709e-04 9.69964859e-04 1.12576078e-03 8.26537450e-04 1.10151436e-03 7.54547918e-04 1.02397290e-03 9.50514516e-04 1.23601570e-03 9.03674453e-04 1.04160361e-03 7.10982830e-04 1.08502987e-03 9.76677995e-04 1.10831407e-03 6.20382613e-04 8.11825169e-04 6.08291507e-04 6.38841923e-04 5.63750517e-04 6.00441708e-04 7.26481119e-04 5.84875006e-04 6.13326627e-04 5.54768602e-04
```

```
7.18278353e-04 4.88970479e-04 3.68852846e-04 6.24486271e-04
5.70939702e-04 2.74377738e-04 3.77427648e-04 5.14881504e-04
5.68803207e-04 1.70233556e-04 5.42268938e-04 3.20949954e-04
3.77311947e-04 2.35437657e-04 5.24373331e-04 5.31886513e-04
3.37586934e-04 3.68331259e-04 3.40746374e-04 3.49459887e-04
5.18843506e-04 7.60695647e-04 2.41373695e-04 3.30682177e-04
6.70692798e-04 3.11891575e-04 1.81477206e-04 2.18366754e-04
2.29778615e-04 3.26938356e-04 1.34113503e-04 2.37502628e-04
1.32548026e-04 1.28193158e-04 1.16361547e-04 9.01831437e-05
2.25765011e-04 1.18831588e-04 1.64984672e-04 3.81794497e-04
8.90715344e-05 2.18539840e-04 9.64518174e-05 1.62465693e-04
9.99446462e-05 1.38929287e-04 1.06730658e-04 9.10212376e-05
9.30351188e-05 3.23636184e-05 1.21439907e-04 7.99116941e-05
1.07920614e-04 1.83932640e-04 2.16833153e-05 2.17199626e-04
6.37618595e-05 1.04997782e-04 1.19345706e-04 7.81943717e-05
7.96026776e-05 8.05362553e-05 3.53489806e-05 1.31580735e-04
1.64609121e-04 3.84451361e-05 3.31124784e-04 2.51324801e-04
5.19398308e-04 3.05745554e-05 5.89316117e-05 3.45847420e-05
4.70227109e-04 1.85553287e-05 2.62832502e-07 8.77022982e-05
8.54738724e-06 9.70124742e-06 8.40719433e-05 1.04744589e-05
1.61993619e-05 2.54044020e-05 6.76019225e-05 8.06023313e-05
8.28066526e-06 1.55060136e-05 3.51189399e-05 9.82530278e-06
2.06694206e-05 1.21662008e-05 2.88370309e-06 4.00878791e-06
4.20216978e-06 2.13244712e-05 1.65616980e-08 2.84045395e-05
0.00000000e+00 3.25916006e-06 3.69525494e-06 5.02710824e-05
1.09504664e-06 0.00000000e+00 6.15183845e-06 5.66039344e-06
3.27373908e-06 1.73556948e-05 2.34585784e-06 1.74629793e-05
2.16566248e-06 3.88117185e-05 0.00000000e+00 1.96061278e-09
2.82026608e-07 1.77492347e-05 0.00000000e+00 8.33260432e-07
0.00000000e+00 2.63907329e-06 1.07133484e-06 8.42976834e-06
0.00000000e+00 5.64081252e-05 0.00000000e+00 2.74701241e-08
0.00000000e+00 1.09269719e-06 1.23066156e-07 1.59121346e-05
3.26058430e-07 0.00000000e+00 4.85259267e-05 8.80973446e-06
6.94383693e-08 0.00000000e+00 0.00000000e+00 0.00000000e+00
7.28711679e-06 3.16891252e-05 2.80271928e-05 4.13822103e-06
0.00000000e+00 3.51621778e-06 3.69015334e-07 1.80274341e-05
0.0000000e+00 1.58716273e-08 6.25598862e-06 0.00000000e+00
0.00000000e+00 1.12211033e-09 1.92656777e-06 3.65013625e-06
0.00000000e+00 0.00000000e+00 1.84429433e-05 0.00000000e+00
0.00000000e+00 0.00000000e+00 3.15683980e-05 9.76005139e-06
1.75294319e-06 9.78175290e-07 0.00000000e+00 0.00000000e+00
2.93274995e-06 0.00000000e+00 2.68804387e-06 6.54734068e-06
8.33260432e-07 0.00000000e+00 0.0000000e+00 1.58042455e-05
1.03291004e-05 0.00000000e+00 6.37866355e-06 2.62385838e-06
0.00000000e+00 8.32951931e-09 3.17839048e-06 0.00000000e+00
3.80496462e-06 9.52297637e-08 0.00000000e+00 0.00000000e+00
1.03341478e-06 0.00000000e+00 3.70846317e-06 6.16134054e-06
8.23457368e-07 2.59001561e-06 2.67518238e-05 0.00000000e+00
0.00000000e+00 0.00000000e+00 8.47672811e-06 4.69533435e-06
3.85680543e-06 3.34965157e-07 9.32928871e-08 3.33304173e-06
1.00999169e-05 0.00000000e+00 0.00000000e+00 2.77032040e-06
8.27069204e-06 0.00000000e+00 0.00000000e+00 1.23005111e-07
0.00000000e+00 0.00000000e+00 0.00000000e+00 8.88811128e-07
5.64173357e-06 5.52790465e-06 4.54505690e-08 0.00000000e+00
2.15667406e-06 1.81762987e-05 3.65776399e-06 0.00000000e+00
1.66652086e-07 1.17058002e-05 0.00000000e+00 0.00000000e+00
0.00000000e+00 6.60751046e-06 0.00000000e+00 2.49978130e-06
0.00000000e+00 0.00000000e+00 4.84453740e-07 2.66643338e-06
0.00000000e+00 0.00000000e+00 5.69023300e-06 0.00000000e+00
3.52626068e-06 8.33260432e-08 0.00000000e+00 7.22231438e-06
1.07913109e-05 2.58310734e-06 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 9.61454345e-08
0.00000000e+00 0.00000000e+00 2.40219224e-07 0.00000000e+00
0.0000000e+00 0.0000000e+00 3.74967194e-06 0.00000000e+00
0.00000000e+00 0.00000000e+00 1.79830459e-06 5.35185785e-06
2.65635330e-05 3.70813556e-06 1.76804995e-05 1.81989702e-05
5.38006543e-06 9.49963927e-06 3.55765332e-05 0.00000000e+00
2.66643338e-06 0.00000000e+00 3.76890103e-07 0.00000000e+00
0.0000000e+00 0.0000000e+00 4.27906511e-06 0.00000000e+00
```

```
1.21884168e-02 2.08003871e-02 9.77614264e-03 9.02540291e-03
          3.15822504e-03 1.08162173e-02 2.90703941e-03 5.34509380e-03
          3.54202235e-03 4.66226581e-04 1.68100136e-03 1.15179815e-02
          1.19964573e-05 1.70902487e-03 1.74443599e-04 9.84044339e-04
          1.50702867e-05 1.42801518e-03 5.38748441e-02 2.61489911e-03
          7.95065276e-04 1.73330552e-03 6.15139497e-03 1.70211251e-02
          9.03624502e-03 7.75588325e-06 4.58127997e-04 2.24047919e-03
          5.58142304e-03 3.31506390e-03 1.12222926e-02 1.07542224e-02
          2.38691857e-03 7.28134021e-03 1.16446098e-04 7.97173646e-03
          7.69078806e-05 9.53723233e-03 8.98565767e-03 8.36371390e-03
          1.15477088e-02 9.47801851e-03 1.00130278e-02 7.39412526e-03
          1.08880497e-02 7.40789622e-03 9.50125065e-03 8.31453605e-03
          2.09125755e-02 7.97186251e-03 2.95512636e-04 2.13573054e-04
          3.21321985e-03 3.32842150e-03 1.62771293e-02 2.42261988e-02
          1.68935014e-02 5.59407116e-03 9.50740483e-03 7.74470574e-03
          2.89440832e-03 9.62561440e-03 1.78429333e-02 1.16884106e-02
          1.05997973e-02 1.80774537e-04 6.99393513e-04 2.41259840e-02
          4.63893835e-05 2.27986070e-04 1.07964365e-02 3.20680161e-02
          1.94702914e-02 2.56871357e-03 1.12377596e-02 2.86855750e-02
          8.24321118e-03 2.96699619e-03 2.13683604e-01 7.94163167e-02]
          model.feature importances .shape
In [114...
Out[114... (404,)
          Feature_imp=pd.Series(model.feature_importances_)
In [115...
          Feature_imp
                0.000000
         0
Out[115...
         1
                0.000057
          2
                0.000000
          3
                0.000155
         4
                0.000223
          399
                0.028686
         400
                0.008243
         401
                0.002967
         402
                0.213684
         403
                 0.079416
         Length: 404, dtype: float64
In [116...
          pd.Series(model.feature_importances_).nlargest(10)
Out[116... 402
                0.213684
         403
                0.079416
          342
                0.053875
          395
                0.032068
          399
                0.028686
          379
                0.024226
          391
                0.024126
          372
                0.020913
          325
                 0.020800
          396
                 0.019470
          dtype: float64
          Feature_imp.plot()
In [117...
Out[117... <AxesSubplot:>
```


In []:	
In []:	
In []:	