Exercise 17: Let U be a bounded domain in \mathbb{R}^n and $\alpha \in (0,1)$. Suppose that $u \in C^2(U) \cap C(\overline{U})$ solves

$$\begin{cases} -\Delta u = |u|^{\alpha} & \text{in } U \\ u(x) = 0 & \text{on } \partial U. \end{cases}$$

Show that

$$\sup_{U}|u| \le C$$

where C depends only on n, α , and diam(U).

Solution. By Evans 2.6,

$$\max_{\overline{U}}|u| \leq \frac{\max_{\overline{U}}|x|^2}{2n} \max_{\overline{U}}|u|^\alpha$$

Exercise 19:

Solution. Let u be a solution, then it has

$$u(x) = \int_{\partial B(0,r)} \frac{r^2 - |x|^2}{n\alpha(n)r} \frac{u(y)}{|x - y|^n} dS(y)$$

Exercise 20:

Solution. Let u be a strict subsolution so $-\Delta u + |Du|^2 < 0$ with u < v on ∂U . Then, we see that

$$u - v$$

Exercise 21:

Solution. For $n \ge 3$, let $v(x) = \frac{1}{n(n-2)\alpha(n)}|x|^{2-n}$.