LaPIS Diagnostic Test Workbook - Mathematics

Name : Pradeep D

Class: 7

Section : A

School : AKV Public School

Login ID : AKV111

Pradeep D's Performance Report

Score: 16/40 Percentage: 40.0%

Pradeep D's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	<u> </u>	——————————————————————————————————————	ipal Signature	

Basic arithmetic

Topics to be Improved		
Types of angles	Identification of types of angles	

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from ____° to ____°.

The angle perpendicular to 0° is $___{\circ}$.

The straight line measures $__$ °.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.
(iii) East and South is angle.
Answer:
The angle formed between West and East is° and it is called angle.
The angle formed between North and East is° and it is called angle.
The angle formed between East and South is° and it is called angle.
Question: 3
The addition of straight angle and right angle is angle.
Answer:
The measurement of straight angle is°
The measurement of right angle is°.
Straight angle + Right angle = + = =
It is called as angle.

Mensuration

Topics to be Improved		
Area	Area of rectangle	

Hi, here in this video you will learn **Area**

Question: 4

Find which of the shaded portion in the given shape represent it's area.

......

......

Answer:

Given figure is ______ in shape.

Area is the _____ (inside/ outside/ boundary) of a shape.

Question: 5

Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:

The garden is in _____ shape.

Length of garden is _____ and breadth of garden is _____.

Formula for area of the shape = _____

The area of garden = $\underline{\qquad}$ x $\underline{\qquad}$ = $\underline{\qquad}$ cm^2

Question: 6

Shade the possible dimension of the door whose area is 500 m^2

$$25 m \times 20 m$$

.....

$$30~m~\times~20~m$$

Answer:	\boldsymbol{A}	ns	w	er	•
---------	------------------	----	---	----	---

Door is _____ in shape. Area of the ____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25\text{m} \times 25\text{m}$			
$25m \times 20m$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved				
Chance of probability	Sample space in probability, Basis of probability			

.....

Hi, here in this video you will learn Basics of probability

Question: 7

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

......

Impossible events

Answer:

Probability is the measure of ______ (chance /number) of an events happenings. Sample space consists of ______ (possible/ impossible) outcomes. Sure events always _____ (occurs/don't occurs). Impossible events _____ (occurs/ don't occurs). Therefore, _____ contains list of possible outcomes.

Question: 8

Write the possible outcomes while spinning the given wheel.

Answer:
Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are $\P0$, $\P10$,
Question: 9
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.
Answer:
A bag contains, and balls. If one of the ball is blue in colour, then other ball can be or If one of the ball is green in colour, then other ball can be or If one of the ball is red in colour, then other ball can be or Therefore, if two balls are taken out then possible outcomes are blue +,,
Hi, here in this video you will learn Basics of probability
Question: 10
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
Answer:
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 11
Probability of sure events is (greater / smaller) than probability of impossible events.
Answer:
Probability of sure event =(0/ 1/ any number). Probability of impossible event = (0/ 1/ any number). Therefore, Probability of sure event Probability of impossible event.

Question: 12	
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. V probability of getting a pen from his box.	What is the
Answer:	
Things Raju have	
Does Raju have pen in his box, (Yes/No).	
Then probability of getting pen from his box is $\underline{\hspace{1cm}}$ (0/1)	

Geometry

Topics to be Improved		
Angle sum property of triangle	Angle sum property of triangle	
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	
Transversal angle made by transversal	Basics of Transversal angle	
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	
Faces vertex and edges	Idenfication of faces, edges and vertices	
Related angles	Basic of angles	

Hi, here in this video you will learn Angle sum property

Question: 13

Sum of the angles of triangle is _____.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

 $\underline{\textit{Question: 14}}$

Which of the following triangle satisfy the angle sum property.

.....

Angle sum property of triangle: sum of the angles of a triangle is _	
In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C =$	=
In $\triangle PQR$, Sum of the angles = =	=
In $\triangle KLM$, Sum of the angles = =	. =
In $\triangle XYZ$, Sum of the angles = =	=
Therefore, the triangles that satisfy the angle sum property are $=$ $_{-}$	

Question: 15

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Hi, here in this video you will learn **Criteria of congruence**

Question: 16

Circle the groups that contain congruent images.

Answer:

Two geometrical shapes are said to be congruent if they are
(identical/non-identical) in shapes and size.
Example: Square and Rectangle are (congruent/not congruent).

Question: 17

If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under $____$ (SSS/ASA/SAS) criteria .

Two triangle are _____ (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, _____ and ____.

- 1. In SSS Congruence criteria (2/3/5) sides of the triangle are (equal/1) not equal) to the three corresponding sides of the other triangle.
- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria (2/3/5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 18

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Basics of Transversal angle

Question: 19	

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 20

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

Question: 21

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 22

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____

The possible way to reach point C from point A are _____ and AB then to

 $Side\ AC = \underline{\hspace{1cm}}$

Side AB + BC = _____ + ____ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 23

 $\underline{\hspace{1cm}}$ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

.....

There are ______ sides in a triangle.

The sum of the two sides of a triangle is _____ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

Question: 24

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be _____ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = _____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than ______

Therefore, length of the third side is greater than ______ but less than _____

Hi, here in this video you will learn Basics of 3D model

Question: 25

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

Answer:

has two end point (line/line segment/ray).

A ______is a point where two or more line segments meet(Vertex/ edges/ faces).

Mark the vertices in the diagram,

Question: 26	
-	

Mark and find the number of vertices, edges and faces in a cube.

$\underline{Answer:}$

Mark the vertex, edges and faces in a cube.

Count the numb	per of vertex,	edges and faces	in a cube.
Cube have	vertices, _	edges ar	id faces.

Question: 27

How many vertices, edges and faces does dices have?

4		
A	nswer	

The s	shape of dic	ce is			
Dices	s have	vertices,	edges and	faces.	
Hi,	here in the	his video you	will learn Relat e	ed Angles	
\overline{Que}	stion: 28				
(i)		rays of an angle angle .	are perpendicular,	then the angle forme	d between them is a
(ii)		rays of an angle angle .	are in opposite side	s, then the angle for	med between them is a
\underline{Ans}	wer:				
Α		(line segment	/ray) begins from	one point and travel	s endlessly in a direction.
(i)	The angle angle.	formed between	two perpendicular r	ays is° and it is	called
(ii)	(straight /	~			form aand it is called
Find	the angle of	of $\angle DBE$			

30°

В

▼ E

→ A

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC$ = ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
 Therefore,
$$\angle DBE = \underline{\hspace{1cm}}$$

Question: 30

Find the complementary angles in the given diagram.

Answer:

Two angles are said be complementary if sum of their angles is equal to _____.

 $\angle AOB =$ ______, and its complement angle is _____.

 $\angle BOC = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle COD = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle DOE =$ _____, and its complement angle is _____.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Number system

Topics to be Improved				
Fractions Division of fraction				
Operations on rational numbers	Division of rational numbers			
Exponents	Solving exponents			
Decimals	Multiplication and division of decimals			
Law of Exponents	Law of Exponents			
Integers	Basics of integers			

Hi, here in this video you will learn Division on fractions

Question: 31

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

10	
35	
33	
00	

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ____ , 2 is ____ and 7 is ____

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ---- }{7} = \frac{\square}{\square}$$

Question: 32

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by _____ (same / reciprocal) of the divisor. Here, dividend = _____ and divisor = ____.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

.....

.....

.....

Question: 33

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{\underline{}}$$

Then the answer is _____

Hi, here in this video you will learn **Operation on rational numbers**

Question: 34

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the _____ (same/reciprocal) of the divisor.

Here, dividend = and divisor = =

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 35

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$

when any fraction is divided by a fraction, we multiply the dividend by the $___$ (same/reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

18		=	18	×	=	
7	•		7			

Question:	26
W UESTINIA	,,,,

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn Exponents and power

Question: 37

Find the exponential form of 1000.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

Exponents is also called as _____ (Base / Power).

1000 can be written as = $10 \times$ ____ \times

10 is raised to the power of $\underline{} = (10)^{\underline{}}$

Question: 38

Find the value of $(-2)^3$.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itsel to get the desired result.
In this exponential form $(-2)^3$, base =, power = $(-2)^3 = \underline{\qquad} \times \underline{\qquad} = \underline{\qquad}.$
Question: 39
(i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$.
(ii) k is raised to the power of 5 is $\underline{\hspace{1cm}}((k)^5 \text{ or } (5)^k).$
Answer: Exponential form = $(Base)$ —
(i) Tenth power of 100: Base =, Power/Exponents =, exponential form =
(ii) k is raised to the power of 5 : Base =, Power/Exponent =, exponential form =
Hi, here in this video you will learn Basics of decimals
Question: 40
Shade 0.4 part of the given shape.
Answer:
There are boxes. 0.4 can be expressed as in fraction This fraction represents parts out ofequal parts. So, we need to shade boxes out ofboxes.
Question: 41
Solve the following.
(i) 0.4×1.2

(ii) 0.48×1.2

$\underline{Answer:}$

(·) 0	
()	0.4×1.2 : Multiplication of 0.4×1.2 assuming there is no decimal point is
	The number of digits after decimal point in 0.4 is and 1.2 is
	Cotal digits after decimal point in the product of two numbers is
(Count that digits from the right towards left and place the decimal point, the result is
_	 .
()	1.48×1.2 :
	Multiplication of 0.48×1.2 assuming there is no decimal point is The number of digits after decimal point in 0.48 is and 1.2 is
	Cotal digits after decimal point in the product of two numbers is
	Count that digits from the right towards left and place the decimal point, the result is
_	
Quest	ion: 42
One bo	ox of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 ates?
Answ	ho r:
	
	ext contains chocolates. The cost of one box is cost of one chocolate = ÷ =
(i) T	Cotal digits after decimal point in decimal number =
(ii) I	Divide the two numbers assuming there is no decimal point.
	2010
	$\frac{1}{15} = \underline{}$
` /	Place the decimal point after digits counting from the right in the quotient after livision.
Then t	he cost of one chocolate is
	st of 15 chocolates = cost of one chocolate × = x =
Hi, h	nere in this video you will learn Law of exponents
Quest	ion: 43
	equal to
Answ	•
21100 W	<u>~··</u>

_ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. In $(x)^0$ base = _____ $Power = \underline{\hspace{1cm}}$ Any number or variable with power zero is equal to _____ Therefore, $(x)^0$ equal to ______. Question: 44 i. $a^m \times a^n =$ ii. $a^m \div a^n = \underline{\hspace{1cm}}$ Answer: Multiplication of two numbers with same base with different power, their exponents are _____ (added/ subtracted) Division of two numbers with same base with different power, their exponents are _____ (added/ subtracted). Question: 45 Circle the result of the expression $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1)$ a+n+x bmy 1 ab+mn+xy 0 anx b+m+yAnswer: Any number with power zero is equal to_____(One/Zero). Any number with power one is equal to ______ (same/ different) number. $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1) = (\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} \ddot{0} \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}})$ = _____+ _____+ _____ Hi, here in this video you will learn Basics of integers

 $\underline{\textit{Question: 46}}$

Highlight the ring that contains whole numbers.

......

\boldsymbol{A}	\boldsymbol{n}	si	ve	r	

The numbers inside the inner ring $(1, 2, 3, \ldots)$ are numbers.
The numbers inside the middle ring are numbers.
The numbers inside the outer ring are negative numbers, positive numbers and zero and they are
called as
Question: 47
Colour the frame of the box which contains the number 1, 4 and -10

Whole numbers

Negative numbers

Integers

Naturals numbers

Answer:

Whole number consists of $0,1,2,3,4,$	Negative number consists of
Natural numbers consists of	Integers consists of
Now, 1, 4, -10 are in	

Question: 48

State whether the statement is true or false.

Every positive number is an integer.

Answer:

Positive numbers are ______. Integers consists of ______.

Therefore, positive numbers are ______ (in/not in) integers.

Comparing Quantities

Topics to be Improved					
Conversion of fraction into percentage Conversion of fraction into percentage					
Simple interest	Calculation of simple interest				
Equivalent ratios	Basic of proportion				

Hi,	here	in	this	video	you	will	learn	${\bf Converting}$	${\bf fraction}$	into
per	cent	age	е							

Question:	10
Question:	49

Complete the box in the given equation.

$$5\% = \frac{5}{}$$

Answer:

Percentage are the fraction with the denominator _____.

Therefore, 5% can be expressed as _____

......

Question: 50

Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.

(i)
$$\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$$

(ii)
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$$

(iii)
$$\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$$

Answer:

To convert fraction into percentage, the value of ______ (denominator / numerator)should be 100 or _____ (multiply / divide) the fraction with 100 %. Therefore, correct conversion form is _____

Question: 51

Find the percentage of shaded part of square.

1	~				_
\boldsymbol{A}	T_{L}	SI	D)	er	

The square shape is divided into parts.	
Number of shaded part of square is	
Shaded part of square in fraction is	
To Convert into percentage , x 100	
	mierom
Hi, here in this video you will learn Simple Interest	

Q	uestion	n:	<i>52</i>

Match the following.

	Column A					
i	i Principle(P)					
ii	ii Amount (A)					
iii	Rate (R)					
iv	Time period (T)					

Column B					
a	Interest calculated based on this				
b	Total sum you borrow				
c	Number of years				
d	Total sum with interest				

|--|

Formula for calculating simple interest $=$
Interest calculated based on
Total sum you borrow is known as
Number of years is Total sum with interest is
$Question: \ 53$
Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she

 $\underline{Answer:}$

earned.

Given:					
	, Principle = _				
-	ciple is given, then form		0	is	·
Interest —					
Question: 54					
The simple interest	on Rs.5000 for 3 years	is Rs.1350. Fi	nd the rate of	interest.	
Answer:					
Interest =	, Time period =	=	, Principal	=	·
	x 100				
Rate of interest =	x 100 Principal x				
Substituting values	•				
J	v 100				
Rate of interest =	x 100 Principal x				
Rate of interest = _	_				
	of interest is	%			
Hi here in this	video you will lear	n Basics of	nroportio	n	
	video you will lear	- Basies of	proportio		
Question: 55					
If a:b and c:d are ec	quivalent ratio, then it	can be express	sed as		
Answer:	,	•			
	ion / ratio) is used to e	express	(one/two) e	auivalent rat	tios.
\-	xpress proportion is	_	= (0110/ 0110) 0	qui veroire rec	
Question: 56					
	aded part to unshaded			o ratios agu	ivolont ?
ring the ratio of sha	aded part to unshaded	part of A and	D. Ale the tw	o ranos equ	ivaieni :
	A				
	Α		D		
			В		
Answer:					
	, Unshaded pa	rt of A =			
	unshaded parts of A is			 -	

Shaded part of $B = \underline{\hspace{1cm}}$,
Unshaded part of $B = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of B is
Fractional form $=$
Fraction form of A (equal/ not equal) to Fraction form of B.
Question: 57
If a: b:: c: d is proportion, shade the correct expression
$\boxed{ a = \frac{bc}{d} } \boxed{ c = \frac{ad}{b} } \boxed{ ad=cd}$
Answer:
Two equivalent ratio which are proportion, it can be written as a : b :: c : d
or $\underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ (in fraction).
First and fourth term are called and second and third term are called
In proportion, product of extreme terms is (equal to/ not equal to) product of middle
terms.

Therefore, $a \times d = \underline{\hspace{1cm}}$, then $a = \underline{\hspace{1cm}}$ and $c = \underline{\hspace{1cm}}$

Algebra

Topics to be Improved				
Basics of simple equation	Formating of simple equation, Solving of simple equation			
Monomials, binomials, trinomials and polynomials	Types of algebraic expression			
Terms of an expression	Identification of terms in an expression			
subtraction of algebraic expressions	subtraction of algebraic expressions			

Hi,	here	in	this	${\rm video}$	you	will	learn	Solving	an	${\bf equation}$	using
ap	plicat	tio	n								

		_
Question: 58	 	

Box B contains _____ times the number of chocolates in Box A

Answer:

Box A contains _____ chocolates.

Box B contains _____ chocolates.

No. of chocolates in Box $B = \underline{\hspace{1cm}} \times (No. of chocolates in Box A)$

Question: 59

Write the equation for the following statement. Subtracting four times of m from 4 is n

Answer:

Four times of $m = \underline{\hspace{1cm}}$

Subtracting four times of m from $4 = \underline{\hspace{1cm}}$

The equation is _____

Question: 60

Compare the given two statements $(<,>,=)$ Sum of $2a$ and 9 \square Add 9 to the product of a and 2
Answer:
Sum of $2a$ and $9 = \underline{\hspace{1cm}}$ Product of a and $2 = \underline{\hspace{1cm}}$ Add 9 to the product of a and $2 = \underline{\hspace{1cm}}$
Therefore, sum of $2a$ and 9 Add 9 to the product of a and 2
Hi, here in this video you will learn Solving an equation
Question: 61
If $\odot = 5$, then $5 \odot +5 = \underline{\hspace{1cm}}$
Answer:
The value of the given smiley \odot is Substituting the value in the expression = $5(__) + 5 = __ + __ = __$.
Question: 62
Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2) $7 \square + 3 = -4$
Answer:
The given equation is 7 +3 =-4 Substitute the values (-2, -1, 0, 1, 2) in the circle, $7 \times $ +3 = $7 \times $ is the number that can be placed in a box to make the equation correct.
Question: 63
Arrange the terms in the descending order when the value of x is 2. $2x 5x \times 1 x + 3 2x - 4 \frac{1}{2}x$
Answer:
The given expression are The value of x is substituting value of x

$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$	$2x - 4 = 2 \times $ 4 =	=
$x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$	$\frac{1}{2}x = \frac{1}{2} \times \underline{\qquad} =$	=
$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$	2 2	
Arranging in descending order:,,,,,,,,,,,		noven
Hi, here in this video you will learn \mathbf{Typ}	es of expression	
Question: 64		
There are terms in the expression $7x + 3y$	j+m+5.	
Answer:		
In algebraic expression, (variables of addition.		r with operations
The terms in the expression are $___$, $___$ Therefore, there are $___$ terms in the expression		
Question:~65		
Classify the following expression into monomial, b		
	momar and polynomian	
1. $7m + n + 2$		
2. $8x^2 + 0$		
3. 7xy + 4m		
$\underline{Answer:}$		
1. The terms in expression $8x^2 + 0$ are Here, expression has term and it is a		
2. The terms in expression $7xy + 4m$ are Here, expression has term and it is a		
3. The terms in expression $7m + n + 2$ are Here, expression has term and it is a		
Question: 66		
$5m^2 + m + 0$ is a expression. (Mo	nomial/ Binomial/ Trinomial)	
$\underline{Answer:}$		

The terms in expression $5m^2 + m + 0$ are _____. Here, the expression has _____ terms and it is called a _____ expression.

Hi, here in this video you will learn Terms of an expression

Question: 67

Separate the variables and constants for all the terms given in the box

......

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

Terms	Constants	Variables

<u>Question: 68</u>

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

Answer:

The terms in the expression 3x + 5 is/are _____.

The terms in the expression 12a is/are _____.

The terms in the expression 4xy is/are ______.

The terms in the expression 12a + b + 1 is/are _____.

The terms in the expression 7m + 0 is/are _____.

Question: 69

Shade the outline of circle that contains the term of the given expression.

$$6m^2 - 7mn + nl$$

......

$\underline{Answer:}$				
_	ssion, (var	riables/ terms	a) are connected together	er with operations
of addition.		9	re the terms of the give	on ownroasion
nere,	· · · · · · · · · · · · · · · · · · ·	a	re the terms of the give	en expression.
Hi, here in thi	s video you will learn	Subtracti	on on expression	
Question: 70				
Find the sum of tw	wo expressions $a + b + c$	and $b + c + c$	d	
$\underline{Answer:}$				
The two terms wil	oressions are and _ ll get added only if they are expressions = +	re(Li	ike/ Unlike) terms.	
$\underline{Question:~71}$				
		School A	School B	
	Number of boys	100b	250b	
	Number of girls	150g	200g	
	Number of teachers	25t	45t	
(i) Total number	er of boys in school A and	B is		
(ii) Total numbe	er of students in school B i	s		
(iii) How many n	nore teachers are there in	school B than	school A?	
$\underline{Answer:}$				
Number of b	poys in school A =er of boys in school A and	_•	+ =	
Number of g	ooys in school B = cirls in school B = er of students in school B i	-•	=	
(iii) Number of to	eachers more in school B t	than school A	= Teachers in school I	3 – Teachers in

Question: 72

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
 3a - 5b \\
 \hline
 (-) & 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$