IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of: Hirotoshi KUBO et al.

Serial Number: 09/161,828

Art Unit: 2814

Filed: September 29, 1998

Examiner: N. Ha

For: SEMICONDUCTOR DEVICE AND A METHOD OF FABRICATING THE SAME

PRELIMINARY AMENDMENT

Commissioner for Patents Washington, D.C. 20231

November 19, 2001

Sir:

Prior to continued examination on the merits, please amend the above-identified application as follows:

IN THE SPECIFICATION:

Please amend specification as follows:

Please replace the paragraph beginning at page 6, line 11, with the following rewritten paragraph:

As shown in Fig. 1, a first aspect of the present invention is a device of a semiconductor device, which comprises: a semiconductor substrate of a first conduction type; a drain layer of the first conduction type and formed on a surface layer of the semiconductor substrate; a gate insulating film formed in a partial region on the drain layer; a gate electrode formed on the gate insulating film;

S.N.: 09/161,828

-1-

an insulating film formed on the gate electrode; a side wall insulator formed on side walls of the gate insulating film, the gate electrode, and the insulating film; a recess formed on the drain layer and in a region other than a region where the gate electrode and the side wall insulator are formed; a channel layer of an opposite conduction type and formed in a range from the region where the recess is formed to a vicinity of the region where the gate electrode is formed; a source region layer of the one conduction type and formed on the channel layer in a region outside the recess; and a wiring layer formed to cover the channel layer which is exposed through the recess, the side wall insulator, and the insulating film.

IN THE CLAIMS:

Please cancel claims 1-11 without prejudice or disclaimer.

Please amend claims 12-14 and 16 as follows:

12. (Amended) A method of fabricating a semiconductor device, comprising the steps of:

forming a drain layer of a first conduction type on a surface of a semiconductor substrate of the first conduction type;

forming a first insulating film on said drain layer;

forming a first conductive layer on said first insulating film;

-2- S.N.: 09/161,828

forming a second insulating film on said first conductive layer;

patterning said second insulating film, said first conductive layer, and said first insulating film, to form a gate insulating film from said first insulating film, and a gate electrode from said first conductive layer;

implanting an impurity of a second conduction type opposite to the first conduction type into a surface of said drain layer with using said gate electrode as a mask, thereby forming a channel region of the second conduction type;

implanting an impurity of the first conduction type into said channel region with using said gate electrode as a mask, thereby forming an impurity region of the first conduction type;

forming a third insulating film so as to cover a surface of the impurity region, side walls of said gate insulating film, said gate electrode, and said second insulating film, and an upper face of said second insulating film;

etching back said third insulating film to form a side wall insulator of said third insulating film, by remaining said third insulating film selectively on side walls of said gate insulating film, said gate electrode, and said second insulating film;

etching the impurity region to form a recess so as to penetrate the impurity region, thereby forming a source region of the impurity region; and

forming a second conductive layer on an entire surface, and patterning said second conductive layer, thereby forming a wiring layer.

13. (Amended) The method of fabricating a semiconductor device, according to the claim 12, further comprising a step of:

introducing an impurity of the second conduction type into the bottom of the recess to form a body contact region of the second conduction after etching the impurity region prior to forming a second conductive layer.

14. (Amended) The method of fabricating a semiconductor device, according to the claim 12, wherein the etching step comprises the steps of:

forming a mask pattern having an opening located in a center of the impurity region and cover an entire surface except for the opening before etching the impurity region;

etching the impurity region by using the mask pattern to form a recess deeper than the impurity region, thereby forming a source region of the impurity region remained; and

introducing an impurity of the second conduction type into the bottom of the recess to form a body contact region of the second conduction type.

16. (Amended) A method of fabricating a semiconductor device, comprising the steps of:

forming a drain layer of a first conduction type on a surface of a semiconductor substrate of the first conduction type;

-4-

S.N.: 09/161,828

introducing an impurity of a second conduction type opposite to the first conduction type into an entire surface of said drain layer, thereby forming a channel layer; forming a trench so as to penetrate said channel layer and reach said

drain layer using a first mask;

forming a first insulating film on an inner wall of said trench and a surface of said channel layer;

forming a conductive layer on said first insulating film;

forming a second insulating film on said conductive layer;

patterning said second insulating film, said conductive layer, and said

first insulating film with using a same second mask, to form a gate insulating film of said first

insulating film, and a gate electrode of said conductive layer;

implanting an impurity of the first conduction type into a surface of said channel layer with using said gate electrode as a mask, thereby forming a impurity region of the first conduction type;

forming a third insulating film on an entire surface;

etching back said third insulating film to form a side wall insulator

which covers side walls of said gate insulating film, said gate electrode, and said first insulating film;

forming a third mask having an opening located in a center of the

impurity region and cover an entire surface except for the opening, before etching the impurity

region;

etching the impurity region by using the third mask to form a recess

to penetrate the impurity region and reach to the channel region, thereby forming a source region of

the impurity region; and

-5- S.N.: 09/161,828

implanting an impurity of the second conduction type into a bottom of said recess, with remaining said third mask, thereby forming a body contact region; and removing said third mask; and

forming a second conductive layer which covers said source region, said body contact region, said side wall insulator, and said second insulating film, and patterning said second conductive layer by using a fourth mask, thereby forming a wiring layer.

Please add new claims 18-23 as follows:

- 18. (New) The method of fabricating a semiconductor device according to claim 16, wherein the gate electrode is formed on the first insulating film to fill the trench and to cover the periphery of the trench formed on the channel region.
- 19. (New) The method of fabricating a semiconductor device according to claim 16, wherein the opening of the third mask is formed smaller than a region of the impurity region between the adjacent sidewall insulators.
- 20. (New) The method of fabricating a semiconductor device according to claim 16, wherein the source is separated from the trench.

-6- S.N.: 09/161,828

- 21. (New) The method of fabricating a semiconductor device according to claim 16, wherein an upper surface and a side surface of the source region are directly contacted with the wiring layer.
- 22. (New) The method of fabricating a semiconductor device according to claim 12, wherein an upper surface and a side surface of the source region are directly contacted with the wiring layer.
- 23. (New) The method of fabricating a semiconductor device according to claim 14, wherein the opening of the mask pattern is formed smaller than a region of the impurity region between the adjacent sidewall insulators.

REMARKS

Claims 12-23 are pending. The specification and claims 12-14 and 16 are amended and claims 1 and 3-11 are canceled without prejudice or disclaimer. New claims 18-23 are added. A marked-up version showing the changes to the specification and claims made by the present amendment is attached hereto as "Version with markings to show changes made."

Prompt and favorable action is earnestly solicited.

In the event that this paper is not timely filed, Applicants respectfully petition for an appropriate extension of time. The fees for such an extension or any other fees which may be due with respect to this paper, may be charged to Deposit Account No. 01-2340.

Respectfully submitted,

ARMSTRONG, WESTERMAN, HATTORI, McLELAND & NAUGHTON, LLP

Stephen G. Adrian Attorney for Applicants Reg. No. 32,878

Atty. Docket No. 981206A 1725 K Street, N.W., Suite 1000 Washington, DC 20006

Tel: (202) 659-2930 Fax: (202) 887-0357

SGA/arf

Attachment: Version with markings to show changes made

IN THE SPECIFICATION:

The specification has been amended as follows:

Paragraph beginning at page 6, line 11 has been amended as follows:

As shown in Fig. 1, a first aspect of the present invention is a device of a semiconductor device, which comprises: a semiconductor substrate of a first-conduction first conduction type; a drain layer of the first conduction type and formed on a surface layer of the semiconductor substrate; a gate insulating film formed in a partial region on the drain layer; a gate electrode formed on the gate insulating film; an insulating film formed on the gate electrode; a side wall insulator formed on side walls of the gate insulating film, the gate electrode, and the insulating film; a recess formed on the drain layer and in a region other than a region where the gate electrode and the side wall insulator are formed; a channel layer of an opposite conduction type and formed in a range from the region where the recess is formed to a vicinity of the region where the gate electrode is formed; a source region layer of the one conduction type and formed on the channel layer in a region outside the recess; and a wiring layer formed to cover the channel layer which is exposed through the recess, the side wall insulator, and the insulating film.

IN THE CLAIMS:

Claims 12-14 and 16 have been amended as follows:

12. (Amended) A method of fabricating a semiconductor device, comprising the steps of:

forming a drain layer of a first conduction type on a surface of a semiconductor substrate of the first conduction type;

forming a first insulating film on said drain layer;

forming a first conductive layer on said first insulating film;

forming a second insulating film on said first conductive layer;

patterning said second insulating film, said first conductive layer,

and said first insulating film, to form a gate insulating film from said first insulating film, and a gate electrode from said first conductive layer;

implanting an impurity of a second conduction type opposite to the first conduction type into a surface of said drain layer with using said gate electrode as a mask, thereby forming a channel region of the second conduction type;

implanting an impurity of the first conduction type into said channel region with using said gate electrode as a mask, thereby forming a <u>an</u> impurity region of the first conduction type;

forming a third insulating film so as to cover a surface of the

impurity region, side walls of said gate insulating film, said gate electrode, and said second insulating film, and an upper face of said second insulating film;

etching back said third insulating film to form a side wall insulator consisting of said third insulating film, by remaining said third insulating film selectively on side walls of said gate insulating film, said gate electrode, and said second insulating film;

etching the impurity region to form a recess so as to penetrate the impurity region, thereby forming a source region consisting of the impurity region; and forming a second conductive layer on an entire surface, and patterning said second conductive layer, thereby forming a wiring layer.

13. (Amended) The method of fabricating a semiconductor device, according to the claim 12, wherein further comprising a step of:

introducing an impurity of the second conduction type into the bottom of the recess to form a body contact region of the second conduction after etching the impurity region prior to forming a second conductive layer.

14. (Amended) The method of fabricating a semiconductor device, according to the claim 12, wherein the etching step comprises the steps of:

forming a mask pattern having an opening located in a center of the source impurity region and cover an entire surface except for the opening before etching the impurity region;

etching the impurity region by using the mask pattern to form a recess shallower than the exposed surface of the impurity region so as to penetrate deeper than the impurity region, thereby forming a source region of the impurity region remained; and

introducing an impurity of the second conduction type into the bottom of the recess to form a body contact region of the second conduction type.

16. (Amended) A method of fabricating a semiconductor device, comprising the steps of:

forming a drain layer of a first conduction type on a surface of a semiconductor substrate of the first conduction type;

introducing an impurity of a second conduction type opposite to the first conduction type into an entire surface of said drain layer, thereby forming a channel layer;

forming a trench so as to penetrate said channel layer and reach said drain layer using a first mask;

forming a first insulating film on an inner wall of said trench and a

surface of said channel layer;

forming a conductive layer on said first insulating film;

forming a second insulating film on said conductive layer;

patterning said second insulating film, said conductive layer, and

said first insulating film with using a same second mask, to form a gate insulating film of said

first insulating film, and a gate electrode of said conductive layer;

implanting an impurity of the first conduction type into a surface of

said channel layer with using said gate electrode as a mask, thereby forming a impurity region of

the first conduction type;

forming a third insulating film on an entire surface;

etching back said third insulating film to form a side wall insulator

which covers side walls of said gate insulating film, said gate electrode, and said first insulating

film;

forming a third mask having an opening located in a center of the

source impurity region and cover an entire surface except for the opening, before etching the

impurity region;

etching the impurity region by using the third mask to form a

recess shallower than the exposed surface of the impurity region so as to penetrate the impurity

region and reach to the channel region, thereby forming a source region consisting of the

impurity region; and

implanting an impurity of the second conduction type into a bottom of said recess, with remaining said third mask, thereby forming a body contact region; and

removing said third mask; and

forming a second conductive layer which covers said source region, said body contact region, said side wall insulator, and said second insulating film, and patterning said second conductive layer by using a fourth mask, thereby forming a wiring layer.