RM0360 Interrupts and events

11 Interrupts and events

11.1 Nested vectored interrupt controller (NVIC)

11.1.1 NVIC main features

- 32 maskable interrupt channels (not including the sixteen Arm[®] Cortex[®]-M0 interrupt lines)
- 4 programmable priority levels (2 bits of interrupt priority are used)
- Low-latency exception and interrupt handling
- Power management control
- Implementation of System control registers

The NVIC and the processor core interface are closely coupled, which enables low latency interrupt processing and efficient processing of late arriving interrupts.

All interrupts including the core exceptions are managed by the NVIC. For more information on exceptions and NVIC programming, refer to the PM0215 programming manual.

For code example refer to the Appendix section A.6.1: NVIC initialization.

11.1.2 SysTick calibration value register

The SysTick calibration value is set to 6000, which gives a reference time base of 1 ms with the SysTick clock set to 6 MHz (max f_{HCLK} / 8).

11.1.3 Interrupt and exception vectors

Table 31 is the vector table for STM32F0x0 devices. Consider peripheral availability on your device.

Table 31. Vector table

Position	Priority	Type of priority	Acronym	Description	Address
-	-	-	-	Reserved	0x0000 0000
-	-3	Fixed	Reset	Reset	0x0000 0004
-	-2	Fixed	NMI	Non maskable interrupt. The RCC clock security system (CSS) is linked to the NMI vector.	0x0000 0008
-	-1	Fixed	HardFault	All classes of fault	0x0000 000C
-	3	Settable	SVCall	System service call via SWI instruction	0x0000 002C
-	5	Settable	PendSV	Pendable request for system service	0x0000 0038
-	6	Settable	SysTick	System tick timer	0x0000 003C
0	7	Settable	WWDG	Window watchdog interrupt	0x0000 0040
1	-	-	Reserved	-	0x0000 0044
2	9	Settable	RTC	RTC interrupts (combined EXTI lines 17, 19 and 20)	0x0000 0048

RM0360 Rev 5 171/775

Table 31. Vector table (continued)

			10.010	51. Vector table (continued)	I
Position	Priority	Type of priority	Acronym	Description	Address
3	10	Settable	FLASH	Flash global interrupt	0x0000 004C
4	11	Settable	RCC	RCC global interrupts	0x0000 0050
5	12	Settable	EXTIO_1	EXTI Line[1:0] interrupts	0x0000 0054
6	13	Settable	EXTI2_3	EXTI Line[3:2] interrupts	0x0000 0058
7	14	Settable	EXTI4_15	EXTI Line[15:4] interrupts	0x0000 005C
8	-	-	Reserved	-	0x0000 0060
9	16	Settable	DMA_CH1	DMA channel 1 interrupt	0x0000 0064
10	17	Settable	DMA_CH2_3	DMA channel 2 and 3 interrupts	0x0000 0068
11	18	Settable	DMA_CH4_5	DMA channel 4 and 5 interrupts	0x0000 006C
12	19	Settable	ADC	ADC interrupts	0x0000 0070
13	20	Settable	TIM1_BRK_UP_ TRG_COM	TIM1 break, update, trigger and commutation interrupt	0x0000 0074
14	21	Settable	TIM1_CC	TIM1 capture compare interrupt	0x0000 0078
15	-	-	Reserved	-	0x0000 007C
16	23	Settable	TIM3	TIM3 global interrupt	0x0000 0080
17	24	Settable	TIM6	TIM6 global interrupt	0x0000 0084
18	-	-	Reserved	-	0x0000 0088
19	26	Settable	TIM14	TIM14 global interrupt	0x0000 008C
20	27	Settable	TIM15	TIM15 global interrupt	0x0000 0090
21	28	Settable	TIM16	TIM16 global interrupt	0x0000 0094
22	29	Settable	TIM17	TIM17 global interrupt	0x0000 0098
23	30	Settable	I2C1	I ² C1 global interrupt	0x0000 009C
24	31	Settable	I2C2	I ² C2 global interrupt	0x0000 00A0
25	32	Settable	SPI1	SPI1 global interrupt	0x0000 00A4
26	33	Settable	SPI2	SPI2 global interrupt	0x0000 00A8
27	34	Settable	USART1	USART1 global interrupt	0x0000 00AC
28	35	Settable	USART2	USART2 global interrupt	0x0000 00B0
29	36	Settable	USART3_4_5_6	USART3, USART4, USART5, USART6 global interrupts	0x0000 00B4
30	-	-	Reserved	-	0x0000 00B8
31	38	Settable	USB	USB global interrupt (combined with EXTI line 18)	0x0000 00BC

RM0360 Interrupts and events

11.2 Extended interrupts and events controller (EXTI)

The extended interrupts and events controller (EXTI) manages the external and internal asynchronous events/interrupts and generates the event request to the CPU/Interrupt controller and a wake-up request to the Power manager.

The EXTI allows the management of up to 28 external/internal event line (21 external event lines and 7 internal event lines).

The active edge of each external interrupt line can be chosen independently, whilst for internal interrupt the active edge is always the rising one. An interrupt could be left pending: in case of an external one, a status register is instantiated and indicates the source of the interrupt; an event is always a simple pulse and it's used for triggering the core Wake-up (e.g. Cortex-M0 RXEV pin). For internal interrupts, the pending status is assured by the generating IP, so no need for a specific flag. Each input line can be masked independently for interrupt or event generation, in addition the internal lines are sampled only in STOP mode. This controller allows also to emulate the (only) external events by software, multiplexed with the corresponding hardware event line, by writing to a dedicated register.

11.2.1 Main features

The EXTI main features are the following:

- Supports generation of up to 32 event/interrupt requests
- Independent mask on each event/interrupt line
- Automatic disable of internal lines when system is not in STOP mode
- Independent trigger for external event/interrupt line
- Dedicated status bit for external interrupt line
- Emulation for all the external event requests

4

RM0360 Rev 5 173/775

11.2.2 Block diagram

The extended interrupt/event block diagram is shown in Figure 21.

Figure 21. Extended interrupts and events controller (EXTI) block diagram

11.2.3 Event management

The STM32F0x0 is able to handle external or internal events in order to wake up the core (WFE). The wake-up event can be generated either by:

- enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
 the SEVONPEND bit in the Cortex-M0 System control register. When the MCU
 resumes from WFE, the EXTI peripheral interrupt pending bit and the peripheral NVIC
 IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be
 cleared.
- or by configuring an external or internal EXTI line in event mode. When the CPU
 resumes from WFE, it is not necessary to clear the peripheral interrupt pending bit or
 the NVIC IRQ channel pending bit as the pending bit corresponding to the event line is
 not set.

11.2.4 Functional description

For the external interrupt lines, to generate the interrupt, the interrupt line should be configured and enabled. This is done by programming the two trigger registers with the desired edge detection and by enabling the interrupt request by writing a '1' to the corresponding bit in the interrupt mask register. When the selected edge occurs on the external interrupt line, an interrupt request is generated. The pending bit corresponding to the interrupt line is also set. This request is reset by writing a '1' in the pending register.

174/775 RM0360 Rev 5

For the internal interrupt lines, the active edge is always the rising edge, the interrupt is enabled by default in the interrupt mask register and there is no corresponding pending bit in the pending register.

To generate the event, the event line should be configured and enabled. This is done by programming the two trigger registers with the desired edge detection and by enabling the event request by writing a '1' to the corresponding bit in the event mask register. When the selected edge occurs on the event line, an event pulse is generated. The pending bit corresponding to the event line is not set.

For the external lines, an interrupt/event request can also be generated by software by writing a '1' in the software interrupt/event register.

Note:

The interrupts or events associated to the internal lines can be triggered only when the system is in STOP mode. If the system is still running, no interrupt/event is generated.

For code example refer to the Appendix section *A.6.2: External interrupt selection*.

Hardware interrupt selection

To configure a line as interrupt source, use the following procedure:

- Configure the corresponding mask bit in the EXTLIMR register.
- Configure the trigger selection bits of the interrupt line (EXTI_RTSR and EXTI_FTSR)
- Configure the enable and mask bits that control the NVIC IRQ channel mapped to the EXTI so that an interrupt coming from one of the EXTI line can be correctly acknowledged.

Hardware event selection

To configure a line as event source, use the following procedure:

- Configure the corresponding mask bit in the EXTLEMR register.
- Configure the Trigger Selection bits of the Event line (EXTI_RTSR and EXTI_FTSR)

Software interrupt/event selection

Any of the external lines can be configured as software interrupt/event lines. The following is the procedure to generate a software interrupt.

- Configure the corresponding mask bit (EXTI_IMR, EXTI_EMR)
- Set the required bit of the software interrupt register (EXTL SWIER)

RM0360 Rev 5 175/775

11.2.5 External and internal interrupt/event line mapping

The GPIOs are connected to the 16 external interrupt/event lines in the following manner:

Figure 22. External interrupt/event GPIO mapping

The remaining lines are connected as follow:

- EXTI line 16 is reserved (internally held low)
- EXTI line 17 is connected to the RTC Alarm event
- EXTI line 18 is connected to the internal USB wake-up event
- EXTI line 19 is connected to the RTC Tamper and TimeStamp events
- EXTI line 20 is connected to the RTC Wake-up event (available only on STM32F070xB and STM32F030xC devices)
- EXTI line 21 is reserved (internally held low)
- EXTI line 22 is reserved (internally held low)
- EXTI line 23 is reserved (internally held low)
- EXTI line 24 is reserved (internally held low)
- EXTI line 25 is reserved (internally held low)
- EXTI line 26 is reserved (internally held low)
- EXTI line 27 is reserved (internally held low)
- EXTI line 28 is reserved (internally held low)
- EXTI line 29 is reserved (internally held low)
- EXTI line 30 is reserved (internally held low)
- EXTI line 31 is reserved (internally held low)

Note: EXTI lines which are reserved or not used on some devices are considered as internal.

176/775 RM0360 Rev 5

11.3 EXTI registers

Refer to Section 1.2 on page 33 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

11.3.1 Interrupt mask register (EXTI_IMR)

Address offset: 0x00

Reset value: 0x0FF4 0000 (STM32F030x4, STM32F030x6 devices)

0x7FF4 0000 (STM32F070x6 devices) 0x0F94 0000 (STM32F030x8 devices)

0x7F84 0000 (STM32F070xB and STM32F030xC devices)

Note: The reset value for the internal lines is set to '1' in order to enable the interrupt by default.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IM31	IM30	IM29	IM28	IM27	IM26	IM25	IM24	IM23	IM22	IM21	IM20	IM19	IM18	IM17	IM16
rw															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IM15	IM14	IM13	IM12	IM11	IM10	IM9	IM8	IM7	IM6	IM5	IM4	IM3	IM2	IM1	IMO
rw															

Bits 31:0 **IMx**: Interrupt Mask on line x (x = 31 to 0)

0: Interrupt request from Line x is masked1: Interrupt request from Line x is not masked

11.3.2 Event mask register (EXTI_EMR)

Address offset: 0x04 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EM31	EM30	EM29	EM28	EM27	EM26	EM25	EM24	EM23	EM22	EM21	EM20	EM19	EM18	EM17	EM16
rw															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EM15	EM14	EM13	EM12	EM11	EM10	EM9	EM8	EM7	EM6	EM5	EM4	EM3	EM2	EM1	EM0
rw															

Bits 31:0 **EMx**: Event mask on line x (x = 31 to 0)

0: Event request from Line x is masked1: Event request from Line x is not masked

11.3.3 Rising trigger selection register (EXTI_RTSR)

Address offset: 0x08 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RT31	Res.	RT22	RT21	RT20	RT19	Res.	RT17	RT16							
rw									rw	rw	rw	rw		rw	rw

RM0360 Rev 5 177/775

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ī	RT15	RT14	RT13	RT12	RT11	RT10	RT9	RT8	RT7	RT6	RT5	RT4	RT3	RT2	RT1	RT0
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

- Bit 31 RT31: Rising trigger event configuration bit of line 31
 - 0: Rising trigger disabled (for Event and Interrupt) for input line
 - 1: Rising trigger enabled (for Event and Interrupt) for input line.
- Bits 30:23 Reserved, must be kept at reset value.
- Bits 22:19 RTx: Rising trigger event configuration bit of line x (x = 22 to 19)
 - 0: Rising trigger disabled (for Event and Interrupt) for input line
 - 1: Rising trigger enabled (for Event and Interrupt) for input line.
 - Bit 18 Reserved, must be kept at reset value.
- Bits 17:0 RTx: Rising trigger event configuration bit of line x (x = 17 to 0)
 - 0: Rising trigger disabled (for Event and Interrupt) for input line
 - 1: Rising trigger enabled (for Event and Interrupt) for input line.

Note:

The external wake-up lines are edge triggered. No glitches must be generated on these lines. If a rising edge on an external interrupt line occurs during a write operation to the EXTI RTSR register, the pending bit is not set.

Rising and falling edge triggers can be set for the same interrupt line. In this case, both generate a trigger condition.

11.3.4 Falling trigger selection register (EXTI_FTSR)

Address offset: 0x0C Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
FT31	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	FT22	FT21	FT20	FT19	Res.	FT17	FT16
rw									rw	rw	rw	rw		rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 FT15	14 FT14	13 FT13	12 FT12	11 FT11	10 FT10	9 FT9	8 FT8	7 FT7	6 FT6	5 FT5	4 FT4	3 FT3	2 FT2	1 FT1	0 FT1

- Bit 31 FT31: Falling trigger event configuration bit of line 31
 - 0: Falling trigger disabled (for Event and Interrupt) for input line
 - 1: Falling trigger enabled (for Event and Interrupt) for input line.
- Bits 30:23 Reserved, must be kept at reset value.
- Bits 22:19 **FTx:** Falling trigger event configuration bit of line x (x = 22 to 19)
 - 0: Falling trigger disabled (for Event and Interrupt) for input line.
 - 1: Falling trigger enabled (for Event and Interrupt) for input line.
 - Bit 18 Reserved, must be kept at reset value.
- Bits 17:0 **FTx:** Falling trigger event configuration bit of line x (x = 17 to 0)
 - 0: Falling trigger disabled (for Event and Interrupt) for input line.
 - 1: Falling trigger enabled (for Event and Interrupt) for input line.

Note:

The external wake-up lines are edge triggered. No glitches must be generated on these lines. If a falling edge on an external interrupt line occurs during a write operation to the EXTI_FTSR register, the pending bit is not set.

Rising and falling edge triggers can be set for the same interrupt line. In this case, both generate a trigger condition.

11.3.5 Software interrupt event register (EXTI_SWIER)

Address offset: 0x10 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
SWI31	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	SWI22	SWI21	SWI20	SWI19	Res.	SWI17	SWI16
rw									rw	rw	rw	rw		rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SWI15	SWI14	SWI13	SWI12	SWI11	SWI10	SWI9	SWI8	SWI7	SWI6	SWI5	SWI4	SWI3	SWI2	SWI1	SWI0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bit 31 SWI31: Software interrupt on line 31

If the interrupt is enabled on this line in the EXTI_IMR, writing a '1' to this bit when it is at '0' sets the corresponding pending bit in EXTI_PR resulting in an interrupt request generation. This bit is cleared by clearing the corresponding bit of EXTI_PR (by writing a '1' to the bit)

Bits 30:23 Reserved, must be kept at reset value.

Bits 22:19 **SWIx:** Software interrupt on line x (x = 22 to 19)

If the interrupt is enabled on this line in the EXTI_IMR, writing a '1' to this bit when it is at '0' sets the corresponding pending bit in EXTI_PR resulting in an interrupt request generation. This bit is cleared by clearing the corresponding bit of EXTI_PR (by writing a '1' to the bit)

Bit 18 Reserved, must be kept at reset value.

Bits 17:0 **SWIx:** Software interrupt on line x (x = 17 to 0)

If the interrupt is enabled on this line in the EXTI_IMR, writing a '1' to this bit when it is at '0' sets the corresponding pending bit in EXTI_PR resulting in an interrupt request generation. This bit is cleared by clearing the corresponding bit of EXTI_PR (by writing a '1' to the bit).

11.3.6 Pending register (EXTI_PR)

Address offset: 0x14 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PIF31	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	PIF22	PIF21	PIF20	PIF19	Res.	PIF17	PIF16
rc_w1									rc_w1	rc_w1	rc_w1	rc_w1		rc_w1	rc_w1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 PIF15	14 PIF14	13 PIF13	12 PIF12	11 PIF11	10 PIF10	9 PIF9	8 PIF8	7 PIF7	6 PIF6	5 PIF5	4 PIF4	3 PIF3	2 PIF2	1 PIF1	0 PIF0

RM0360 Rev 5 179/775

- Bit 31 PIF31: Pending bit on line 31
 - 0: no trigger request occurred
 - 1: selected trigger request occurred

This bit is set when the selected edge event arrives on the external interrupt line. This bit is cleared by writing a 1 to the bit.

- Bits 30:23 Reserved, must be kept at reset value.
- Bits 22:19 **PIFx:** Pending bit on line x (x = 22 to 19)
 - 0: no trigger request occurred
 - 1: selected trigger request occurred

This bit is set when the selected edge event arrives on the external interrupt line. This bit is cleared by writing a 1 to the bit.

- Bit 18 Reserved, must be kept at reset value.
- Bits 17:0 **PIFx:** Pending bit on line x (x = 17 to 0)
 - 0: no trigger request occurred
 - 1: selected trigger request occurred

This bit is set when the selected edge event arrives on the external interrupt line. This bit is cleared by writing a 1 to the bit.

180/775 RM0360 Rev 5

11.3.7 EXTI register map

The following table gives the EXTI register map and the reset values.

Table 32. External interrupt/event controller register map and reset values

																		<i>-</i>															
Offset	Register	31	30	53	28	27	56	22	24	23	22	71	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	9	2	4	3	2	1	0
0x00	EXTI_IMR																IM[3	31:0															
0,000	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x04	EXTI_EMR															E	EM[31:0]														
0.04	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x08	EXTI_RTSR	RT31	Res.	RT23	RT22	RT21	RT20	RT19	Res.	0 0 0 0 0 0						ı	RT[′	17:0]														
	Reset value	0								0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0C	EXTI_FTSR	FT31	Res.	FT23	FT22	FT21	FT20	FT19	Res.									FT[1	17:0]													
	Reset value	0								0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x10	EXTI_SWIER	SWI31	Res.	SWI23	SWI22	SWI21	SWI20	SWI19	Res.	SWI[17:0]																							
	Reset value	0								0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x14	EXTI_PR	PIF31	Res.	PIF23	PIF22	PIF21	PIF20	PIF19	PIF[17:0]																								
	Reset value	0								0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Refer to Section 2.2 on page 37 for the register boundary addresses.