

Алексеева М.Г., Трусковская Д.Р., Фокина И.Ю.

- Возникшее санкционное давление в обрабатывающем секторе, в частности в металлургической отрасли
- Необходимость перенаправления торговых потоков российскими металлургическими компаниями в страны Азии, Ближнего Востока и Латинской Америки
- Российский металлургический сектор претерпевает существенные шоки под влиянием цены на ресурсы
- Капитализация десяти крупнейших металлургических компаний России составила почти 16% от капитализации рынка акций Московской биржи
- Возникает необходимость анализа динамики риска наиболее крупных компаний, нестабильность которых может оказать существенное воздействие на экономику

Цель исследования

Оценка волатильности цен акций 10 крупнейших по капитализации металлоперерабатывающих компаний РФ на основе метрики VaR

Muzindutsi et al. (2020) GARCH и ее модификации (EGARCH, ТGARCH) Позволяют учесть эффект левериджа и асимметрию в волатильности Naeem (2019) GARCH со сменой режимов - модели на основе марковских процессов (MSGARCH) Такие модели могут быстро адаптироваться к изменениям уровня безусловной волатильности, что улучшает прогнозирование рисков Zhang et al. (2019) GARCH, TGARCH, EGARCH и МSGARCH На обучающей выборке модели с марковскими переключениями дают меньшую ошибку при оценке волатильности, однако на тестовой при оценке волатильности, однако на тестовой при оценке волатильности, однако на тестовой	Автор(ы), год	Используемые модели	Описание
Naeem (2019) на основе марковских процессов (MSGARCH) изменениям уровня безусловной волатильности, что улучшает прогнозирование рисков ■ На обучающей выборке модели с марковскими переключениями дают меньшую ошибку при оценке волатильности, однако на тестовой			• • • • • • • • • • • • • • • • • • • •
Zhang et al. (2019) GARCH, TGARCH, EGARCH и переключениями дают меньшую ошибку при мSGARCH оценке волатильности, однако на тестовой	Naeem (2019)	на основе марковских процессов	изменениям уровня безусловной волатильности,
выоорке разница статистически незначима	Zhang et al. (2019)	,	переключениями дают меньшую ошибку при

В нашем исследовании будем использовать **ARMA-GARCH** и его модификациями с учетом левериджа - **EGARCH**

Данные: лог-доходности цен 10 акций металлоперерабатывающих компаний (отбор по капитализации)

Период: 01.01.2019 – 30.04.2024 (только торговые дни для каждой акции)

Таблица 1. Описательная статистика выборки

	ALRS	CHMF	MAGN	NLMK	PLZL	RASP	RUAL	TRMK	VSMO	GMKN
	Алроса	Северсталь	Магнитогорский металлургический м комбинат (ММК)		Полюс	Распадская	Русал	Трубная металлургическая компания (ТМК)	ВСМПО- АВИСМА	ГМК Норникель
count	1316	1316	1316	1316	1316	1316	1316	1316	1316	1316
mean	-0,0002	0,0007	0,0003	0,0004	0,0006	0,0008	0,0002	0,0012	0,0007	0,0001
std	0,0212	0,0203	0,0204	0,0204	0,0225	0,0307	0,0229	0,0302	0,0219	0,0188
min	-0,2542	-0,2499	-0,1683	-0,1971	-0,2826	-0,5919	-0,1706	-0,3514	-0,2634	-0,1502
25%	-0,0102	-0,0092	-0,0101	-0,0099	-0,0100	-0,0110	-0,0100	-0,0100	-0,0059	-0,0086
50%	0,0000	0,0011	0,0000	0,0006	0,0002	-0,0005	-0,0002	-0,0003	0,0000	0,0000
75%	0,0102	0,0104	0,0109	0,0114	0,0114	0,0109	0,0107	0,0085	0,0054	0,0091
max	0,1003	0,0808	0,0875	0,0906	0,1225	0,2427	0,1320	0,3161	0,3126	0,1584

ADF-тест помогает определить, сколько раз нужно дифференцировать ряд, чтобы он стал стационарным. Для всех лог-доходностей нулевая гипотеза о нестационарности (наличии единичного корня) отклоняется

Таблица 2. Результаты ADF-теста для лог-доходностей

		GMKN	PLZL	CHMF	NLMK	RUAL	MAGN	ALRS	VSMO	RASP	TRMK
F	ADF statistic	-36.57	-7.94	-15.45	-9.42	-16.24	-15.13	-24.20	-39.19	-22.56	-23.02
	ADF p-value	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Основные результаты:

- 1) Наилучшая модель ARIMA выбиралась на основе min AIC. Большинство уравнений лог-доходностей описывается моделью (0, 0, 0);
- 2) Нулевая гипотеза о белошумности остатков (тест Бройша-Годфри) не отвергается на любом разумном уровне значимости

Таблица 3. Лучшие модели ARIMA для лог-доходностей

	GMKN	PLZL	CHMF	NLMK	RUAL	MAGN	ALRS	VSMO	RASP	TRMK
ARIMA	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	(2, 0, 0)	(0, 0, 0)	(1, 0, 1)	(0, 0, 1)	(1, 0, 1)	(2, 0, 0)
p-value	0.74	0.38	0.76	0.82	0.94	0.33	0.58	0.97	0.99	0.96

	LM-test p-value
GMKN	0.00
PLZL	0.00
CHMF	0.00
NLMK	0.00
RUAL	0.00
MAGN	0.00
ALRS	0.00
VSMO	0.00
RASP	0.00
TRMK	0.00

Таблица 4. Тест на ARCH-эффект для лог-доходностей

Модель GARCH подбиралась на основе min BIC. Использовались 3 конфигурации GARCH-моделей (GARCH, EGARCH, TARCH), а также вариант распределения остатков на основе распределения Стьюдента (из-за наличия "толстых" хвостов у распределения лог-доходностей)

Подбор GARCH-модели

6

e Ż		Тикер	Порядок	BIC	Тип GARCH	Модель для среднего	Распределение
доходност	1		(1, 1)	5243.943152	GARCH	AR	
9		ALRS	(1, 1)	5246.166348	EGARCH	AR	studentst
古		ALRS	(1, 1)	5251.010464	TARCH	AR	studentst
0	2	CHMF	(1, 1)	5105.290038	GARCH	Constant	studentst
ô		CHMF	(1, 1)	5102.667728	EGARCH	Constant	studentst
		CHMF	(1, 1)	5112.141381	TARCH	Constant	
Ļ	3	MAGN	(1, 1)	5279.624867	GARCH	Constant	studentst
9		MAGN	(1, 1)	5281.101153	EGARCH	Constant	studentst
		MAGN	(1, 1)	5285.542817	TARCH	Constant	studentst
для	4	NLMK	(1, 1)	5277.491905	GARCH	Constant	studentst
		NLMK	(1, 1)	5282.590338	EGARCH	Constant	studentst
e,		NLMK	(1, 1)	5279.043034	TARCH	Constant	
GARCH-моделей	5	PLZL	(1, 1)	5387.928575	GARCH	Constant	t studentst
Д		PLZL	(1, 1)	5389.656046	EGARCH	Constant	studentst
0		PLZL	(1, 1)	5393.532493	TARCH	Constant	studentst
<u>2</u>	6	RASP	(1, 1)	5632.486671	GARCH	AR	
工		RASP	(1, 1)	5622.546791	EGARCH	AR	studentst
2		RASP	(1, 1)	5632.735423	TARCH	AR	
₹	7	RUAL	(1, 1)	5475.688931	GARCH	AR	
G		RUAL	(1, 1)	5473.672653	EGARCH	AR	studentst
d		RUAL	(1, 1)	5479.952819	TARCH	AR	studentst
90	8	TRMK	(1, 1)	5554.496326	GARCH	AR	studentst
Выбор		TRMK		5517.936970	EGARCH	AR	studentst
		TRMK	(1, 1)	5560.298187	TARCH	AR	studentst
5.	9	VSMO	(1,1)	4375.143754	GARCH	Constant	studentst
ď		VSMO	(1, 1)	4391.129042	EGARCH	Constant	studentst
Z		VSMO	(1,1)	4379.27556	TARCH	Constant	studentst
блица	10	GMKN	(1,1)	4942.316302	GARCH	Constant	
Ta6		GMKN	(1,1)	4937.568816	EGARCH	Constant	
\vdash		GMKN	(1, 1)	4949.199217	TARCH	Constant	
			(-, 1)				

^{*}Лучший вариант для TRMK по BIC - EGARCH, однако мы использовали модель GARCH ввиду последующих проблем с моделированием VaR

	Волатильность	
RASP	2.874	RASP и TRMK наиболее волатильны, присутствуют
TRMK	2.190	пики волатильности
RUAL	2.142	RUAL и PLZL показывают несколько кластеров
PLZL	2.038	волатильности, что привод к отклонению от среднего
ALRS	1.918	к отклонения от среднего
MAGN	1.913	ALRS, MAGN, NLMK – средня волатильность
NLMK	1.870	
CHMF	1.795	
VSMO	1.769	CHMF, VSMO, GMKN наимене волатильны
GMKN	1.771	

Таблица 6. Средняя волатильность лог-доходностей

Рис. 1. Аннуализированная волатильность акций

- 1) VaR потенциальный убыток в течение временного горизонта с уровнем вероятности, не превышающим доверительный интервал: $\mu \sigma * t_a$
- 2) ES средний убыток в случае, если убыток превышает значение VaR: $-\alpha^{-1}*(1-\nu)^{-1} \left[\nu-2+x_{\alpha,\nu}^2\right] f_{\nu}(x_{\alpha,\nu})\sigma-\mu$

Pис. 2. Сравнение VaR, ES

0,35 0,30 0,25 0,20 0,15 0,10 0,05 0.00 TRMK ALRS RASP NLMK MAGN VSMO RUAL PLZL GMKN CHMF ■Историч. VaR ■ VaR (посл. точка) ■ Историч. ES

Puc. 3. VaR и ES

Основные выводы

- 1) влияние как волатильности акции, так и среднего на расчет VaR, ES
- 2) не всегда самые волатильные акции имеют наивысший VaR или ES
- 3) пики риска:
 - 4 в период обострения геополитической нестабильности (2022 г.);
 - 6 в период разгара пандемииCOVID-19 (2020 г.)

Рис. 4. Динамика VaR для топ-3 по волатильности акций

Спецификация DCC-GARCH:

$$r_{t} = \mu_{t} + \varepsilon_{t}, \varepsilon_{t} \sim N(0, H_{t})$$

$$\varepsilon_{t} = \sqrt{H_{t}} * z_{t}$$

$$E[z_{t}] = 0, E[z_{t}z_{t}^{T}] = I$$

$$H_{t} = D_{t}R_{t}D_{t}$$

Матрица условных ст. отклонений
$$D_t = \begin{bmatrix} \sqrt{h_{1t}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sqrt{h_{nt}} \end{bmatrix}$$
 , $h_{it} = \alpha_{i0} + \sum_{p=1}^P \alpha_{ip} h_{i,t-p} + \sum_{q=1}^Q \beta_{iq} \varepsilon_{i,t-q}^2$

Условная корреляционная матрица для ст. остатков

$$\epsilon_t = D_t^{-1} \varepsilon_t \sim N(0, R_t), R_t = \begin{bmatrix} 1 & \cdots & \rho_{1n, t} \\ \vdots & \ddots & \vdots \\ \rho_{1n, t} & \cdots & 1 \end{bmatrix}$$

$$R_t = Q_t^{*-1} Q_t Q_t^{*-1}, Q_t = (1 - a - b) \bar{Q} + a \epsilon_{t-1} \epsilon_{t-1}^T + b Q_{t-1}$$

$$\bar{Q} = \frac{1}{T} \sum_{t=1}^{T} \epsilon_{t-1} \epsilon_{t-1}^{T}, Q_{t}^{*} = \begin{bmatrix} \sqrt{q_{11t}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sqrt{q_{nnt}} \end{bmatrix}$$

Рис. 5. Сравнение VaR отдельных акций и портфеля

Основные выводы

- 1) учитываем динамическую корреляцию между лог-доходностями (DCC-часть)
- 2) учитываем меняющуюся во времени условную волатильность (GARCH-часть)
- 3) метрики риска для портфеля существенно ниже по сравнению с отдельными акциями

Рис. 6. VaR для равновзвешенного портфеля

Основные выводы

- разная динамика волатильности
 (кратковременные пики vs постоянная
 волатильность на более низком уровне)
- 7 подтверждение преимуществдиверсификации

Дальнейшие направления исследований:

- 1) иные модели для волатильности (HAR-RV модели)
- 2) расширение выборки
- 3) подбор весов для оптимального портфеля

СПАСИБО ЗА ВНИМАНИЕ!

NATIONAL RESEARCH UNIVERSITY