

V.GOKULKUMAR

velicharlagokulkumar@gmail.com IITH Future Wireless Communication (FWC)

ASSIGN-5

Contents

FWC22034

1	Problem	1
2	Solution	1
3	Construction	1

1 Problem

ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show that

(i) ar(ACB) = ar(ACF)

(ii) ar(AEDF) = ar(ABCDE)

2 Solution

Theory:

In pentagon ABCDE, $AC \parallel BF$ **To Prove:** Ar(ACB)=Ar(ACF)

 Δ ACB and Δ ACF lies on same base AC and are between

same parallel AC and BF

Theorem: Two triangles on the same base (or equal bases) and between the same parallels are equal in area.

$$\therefore$$
 Ar(\triangle ACB)=Ar(\triangle ACF).....(1)
Hence, Proved

 $\begin{tabular}{ll} \textbf{To Prove:} & Ar(AEDF) = Ar(ABCDE) \\ Add & Ar(AEDC) & to (1) & both & sides \\ \end{tabular}$

 $Ar(\Delta ACB) + Ar(AEDC) = Ar(\Delta ACF) + Ar(AEDC)$

$$\therefore$$
 Ar(ABCDE)=Ar(AEDF)
Hence, Proved

termux commands:

|--|

The input parameters for this construction are

Symbol	Value	Description
r1	4	DC
r2	8	DB
r3	6.5	DA
r4	4	DE
θ_1	$17\pi/36$	∠BDC
θ_2	$53\pi/180$	∠ADC
θ_3	$2\pi/3$	∠EDC
D	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Point D

To Prove: Ar(ACB)=Ar(ACF)

$$F=C-A+B$$

$$v1=C-A$$

$$v2=C-F$$
Area of the ΔACF is given by
$$Ar(\Delta ACF) = \frac{1}{2} \|\mathbf{v1} \times \mathbf{v2}\|......(2)$$

$$v3=A-C$$

$$v4=A-B$$
Area of the ΔACB is given by
$$Ar(\Delta ACB) = \frac{1}{2} \|\mathbf{v3} \times \mathbf{v4}\|.....(3)$$

To Prove: Ar(AEDF)=Ar(ABCDE)

$$Ar(\Delta AED) = \frac{1}{2} || \mathbf{A} \times \mathbf{E} || \dots (5)$$

$$Ar(\Delta ADC) = \frac{1}{2} || \mathbf{A} \times \mathbf{C} || \dots (6)$$

$$Ar(AEDC) = Ar(\Delta AED) + Ar(\Delta ADC)$$

$$\therefore$$
 Ar(AEDF)=Ar(AEDC)+Ar(\triangle ACF)......(7)
 \therefore Ar(ABCDE)=Ar(AEDC)+Ar(\triangle ACB)......(8)

The below python code realizes the above construction:

https://github.com/velicharlagokulkumar/FWC_module1/tree/main/matrices/lines/codes/matrix.py

3 Construction

Figure of construction