Introduction to Naïve Bayes

Course Overview

You are here...

Term	CDF	GCD	GCDAI	PGPDSAI
Term 1	Data Analytics with Python	Data Analytics with Python	Data Analytics with Python	Data Analytics with Python
Term 2	Data Visualization Techniques	Data Visualization Techniques	Data Visualization Techniques	Data Visualization Techniques
Term 3	EDA & Data Storytelling	EDA & Data Storytelling	EDA & Data Storytelling	EDA & Data Storytelling
		Minor Project	Minor Project	Minor Project
Term 4		Machine Learning Foundation	Machine Learning Foundation	Machine Learning Foundation
Term 5		Machine Learning Intermediate	Machine Learning Intermediate	Machine Learning Intermediate
Term 6		Machine Learning Advanced (Mandatory)	Machine Learning Advanced (Mandatory)	Machine Learning Advanced (Mandatory)
		Data Visualization with Tableau (Elective - I)	Data Visualization with Tableau (Elective - I)	Data Visualization with Tableau (Elective - I)
		Data Analytics with R (Elective - II)	Data Analytics with R (Elective - II)	Data Analytics with R (Elective - II)
		Capstone Project	Capstone Project	Capstone Project
Term 7		Bonus: Industrial ML (ML – 4 & 5)	Basics of AI, TensorFlow, and Keras	Basics of AI, TensorFlow, and Keras
Term 8			Deep Learning Foundation	Deep Learning Foundation
Term 9			NPL – I/CV – I	CV – I
Term 10			NLP – II/CV – II	NLP – I
			Capstone Project	Capstone Project
Term 11				CV – II
Term 12				NLP – II
				NLP – III + CV – III
				AutoVision & AutoNLP
				Building AI product

Term Context

- Decision Tree
- Random Forest
- Principal Component Analysis
- Naïve Bayes Classifier

You are here...

- 2. Why it is called Naïve?
- 3. Bayes Theorem & Example
- 4. Naïve Bayes In Working
- 5. Application of Naïve Bayes
- 6. Pros/Cons of Naïve Bayes

What is Naïve Bayes?

- A family of simple "probabilistic classifiers".
- Based on applying <u>Bayes' theorem</u> with strong (naïve) <u>independence</u> assumptions between the features.

- 1. What is Naïve Bayes?
- 2. Why it is called Naïve?
- 3. Bayes Theorem & Example
- 4. Naïve Bayes In Working
- 5. Application of Naïve Bayes
- 6. Pros/Cons of Naïve Bayes

Why it is called Naïve?

- It assume all attributes to be conditionally independent.
- Example: Features describing whether it is a good day to play golf or not.

- 1. What is Naïve Bayes?
- 2. Why it is called Naïve?
- 3. Bayes Theorem & Example
- 4. Naïve Bayes In Working
- 5. Application of Naïve Bayes
- 6. Pros/Cons of Naïve Bayes

Bayes Theorem & Example

- It was named after Reverend Thomas Bayes.
- It describes the probability of an event happening.
- It is based on prior knowledge of conditions that might be related to the event.

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

- A, B = Events
- P(A|B) = Probability of A given B is true
- P(A|B) = Probability of B given A is true
- P(A), P(B) = Independent probabilities of A and B

Bayes Theorem & Example

P(Fin)

P (Smoke)

- Let us say dangerous fires are rare (1%), but smoke is fairly common (10%) due to barbecues,
- We add a condition that **90%** of **dangerous fires make smoke**.

- P(Smoke) = how often we see smoke
- P(Fire|Smoke) = how often there is fire when we see smoke
- P(Smoke|Fire) = how often we see smoke when there is fire

Bayes Theorem & Example

• We can then discover the probability of **dangerous Fire** when there is **Smoke**:

$$P(Fire|Smoke) = \frac{P(Smoke|Fire) \cdot P(Fire)}{P(Smoke)}$$

P(Fire|Smoke) =
$$\frac{90\%.1\%}{10\%}$$

$$P(Fire|Smoke) = 9\%$$

So it is still worth checking out for any smoke as a precaution.

- 1. What is Naïve Bayes?
- 2. Why it is called Naïve?
- 3. Bayes Theorem & Example
- 4. Naïve Bayes In Working
- 5. Application of Naïve Bayes
- 6. Pros/Cons of Naïve Bayes

Let's say we have the following data using which we want to **predict** whether to **play golf** or **not**.

	×ı	X ₂	Xg	X4	
#	Outlook	Temperature	Humidity	Windy	Play
01	Sunny	Hot	High	False	No
02	Sunny	Hot	High	True	No
03	Overcast	Hot	High	False	Yes
04	Rainy	Mild	High	False	Yes
05	Rainy	Cool	Normal	False	Yes
06	Rainy	Cool	Normal	True	No
07	Overcast	Cool	Normal	True	Yes
08	Sunny	Mild	High	False	No
09	Sunny	Cool	Normal	False	Yes
10	Rainy	Mild	Normal	False	Yes
11	Sunny	Mild	Normal	True	Yes
12	Overcast	Mild	High	True	Yes
13	Overcast	Hot	Normal	False	Yes
14	Rainy	Mild	High	True	No

n=14

• First we need to identify the probability of Play = Yes and Play = No.

#	Play	P(Yes/No)
01	Yes 📍	9 ÷ 14
02	No 5	5 ÷ 14
03	Total 🖊	100%

Now we need to calculate **probability** of **each features** with respect to **Play Feature**.

#		Out	look Calcul	ation	
F	Outlook	Yes	No	P(Yes)	P(No)
01	Sunny	2	3	2 ÷ 9	3 ÷ 5
02	Overcast	4	0	4 ÷ 9	0 ÷ 5
03	Rainy	3	2	3 ÷ 9	2 ÷ 5
04	Total	9	5	100%	100%

#		Tempe	rature Calc	ulation	
11	Temperature	Yes	No	P(Yes)	P(No)
01	Hot	2	2	2 ÷ 9	2 ÷ 5
02	Mild	4	2	4 ÷ 9	2 ÷ 5
03	Cool	3	1	3 ÷ 9	1 ÷ 5
04	Total	9	5	100%	100%

#		Hum	nidity Calcu	lation	
П	Humidity	Yes	No	P(Yes)	P(No)
01	High	3	4	3 ÷ 9	4 ÷ 5
02	Normal	6	1	6 ÷ 9	1 ÷ 5
03	Total	9	5	100%	100%

#		Wir	ndy Calcula	tion	
П	Windy	Yes	No	P(Yes)	P(No)
01	False	6	2	6 ÷ 9	2 ÷ 5
02	True	3	3	3 ÷ 9	3 ÷ 5
03	Total	9	5	100%	100%

- We have finally obtained all the values that are required to a predict a new value.
- Let's say we have a new instance as following:

#	Outlook	Temperature	Humidity	Windy	Play
01	Sunny	Cool	High	True	?

Now we need to estimate the **probability** that we can **play game** or **not** using those **lookup tables**.

		Lookup	o Table				
	Categories	Yes	No	P(Yes)	P(No)		
	► Sunny	2	3	2 ÷ 9	3 ÷ 5		
Outlook	Overcast	4	0	4 ÷ 9	0 ÷ 5		
Out	Rainy	3	2	3 ÷ 9	2 ÷ 5		Probability that we can play a game:
	Total	9	5	100%	100%	••	$P(Outlook = Sunny Play = Yes) = 2 \div 9$
<u>e</u>	Hot	2	2	2 ÷ 9	3 ÷ 5		
ratu	Mild	4	2	4 ÷ 9	2 ÷ 5	•	P(Temperature = Cool Play = Yes) = $3 \div 9$
Temperature	⊬ Cool	3	1	3 ÷ 9	1 ÷ 5		P(Humidity = High Play = Yes) = $3 \div 9$
Te	Total	9	5	100%	100%		r(Hullillulty - High Flay - 163) - 3 + 3
ity	High	3	4	3 ÷ 9	4 ÷ 5	—	$P(Windy = True \mid Play = Yes) = 3 \div 9$
Humidity	Normal	6	1	6 ÷ 9	1 ÷ 5		
로	Total	9	5	100%	100%	•	$P(Play = Yes) = 9 \div 14$
>	False	6	2	6 ÷ 9	2 ÷ 5		
Windy	✓ True	3	3	3÷9—	3 ÷ 5		
	Total	9	5	100%	100%		

Now we need to estimate the probability that we can play game or not using those lookup tables.

		Lookup	Table		
	Categories	Yes	No	P(Yes)	P(No)
	Sunny	2	3	2 ÷ 9	3 ÷ 5
Outlook	Overcast	4	0	4 ÷ 9	0 ÷ 5
Outl	Rainy	3	2	3 ÷ 9	2 ÷ 5
	Total	9	5	100%	100%
ē	Hot	2	2	2 ÷ 9	3 ÷ 5
ratui	Mild	4	2	4 ÷ 9	2 ÷ 5
Temperature	✓ Cool	3	1	3 ÷ 9	1÷5
Te	Total	9	5	100%	100%
ity	✓ High	3	4	3 ÷ 9	4 ÷ 5
Humidity	Normal	6	1	6 ÷ 9	1 ÷ 5
£	Total	9	5	100%	100%
>_	False	6	2	6 ÷ 9	2 ÷ 5
Windy	✓ True	3	3	3 ÷ 9	3÷5—
>	Total	9	5	100%	100%

Probability that we cannot play a game:

$$P(Outlook = Sunny | Play = No) = 3 \div 5$$

P(Temperature = Cool | Play = No) =
$$1 \div 5$$

$$P(Humidity = High \mid Play = No) = 4 \div 5$$

$$P(Windy = True \mid Play = No) = 3 \div 5$$

$$P(Play = No) = 5 \div 14$$

Next we will multiply all the probability for both the cases (being Yes or No) individually.

$$P(X \mid Play = Yes) . P(Play = Yes)$$
 $P(X \mid Play = No) . P(Play = No)$ $(2 \div 9) * (3 \div 9) * (3 \div 9) * (9 \div 14)$ $(3 \div 5) * (1 \div 5) * (4 \div 5) * (3 \div 5) * (5 \div 14)$ 0.0206

- Finally we need to divide both of the result by evidence P(X) to normalize.
- The evidence for both the equation is same.
- We can find the value from the Total column of the lookup table.

Unseen

- P(X) = P(Outlook = Sunny) * P(Temperature = Cool) * P(Humidity = High) * P(Windy = True)
- $P(X) = (5 \div 14) * (4 \div 14) * (7 \div 14) * (6 \div 14)$
- P(X) = 0.02186
- Finally we will use this value to divide the probability of playing Yes and No.

$$P(Play = Yes \mid X) = 0.0053 \div 0.02186 = 0.2424$$

$$P(Play = No \mid X) = 0.0206 \div 0.02186 = 0.9421$$

Given the final outcome we cannot play Golf.

- 1. What is Naïve Bayes?
- 2. Why it is called Naïve?
- 3. Bayes Theorem & Example
- 4. Naïve Bayes In Working
- 5. Application of Naïve Bayes
- 6. Pros/Cons of Naïve Bayes

Spam Filtration

Naïve bayes can also be used to identify whether the mail is spam free or not.

Weather Prediction

- We can **forecast** the **weather condition** of specific **region** based on the pre historic data.
- It can save resources and prepare for the changes coming forth.

Face Recognition

- It is considered as **automated** approach to verify the **identification** of the **human** being.
- It is done based on characteristics such as fingerprint, iris pattern, or face.

Text Classification (NLP)

• Naïve Bayes have a higher success rate in terms of classifying text as compared to other algorithms.

- 1. What is Naïve Bayes?
- 2. Why it is called Naïve?
- 3. Bayes Theorem & Example
- 4. Naïve Bayes In Working
- 5. Application of Naïve Bayes
- 6. Pros/Cons of Naïve Bayes

Pros/Cons of Naïve Bayes

Pros

- It requires less training data and handles both categorical and discrete data.
- It is very **simple**, **fast** and **easy** to implement even in real time.
- Highly scalable with number of data points.
- Not sensitive to irrelevant features.

Cons

- Assumption of independent predictors, which is impossible in real life.
- Categories present in the test dataset, which was not observed in training (Also know as Zero Frequency)
- To handle zero frequency problem smoothing techniques are used which we will cover later on.

