Ακτινοβολία ως Τυχαίος Περίπατος

Κωνσταντίνος Γανωτής

12 Φεβρουαρίου 2024

Εκτελούμε πείραμα Μότε Κάρλο με 100 φωτόνια που εκτελούν τυχαίο περίπατο ξεκινώντας από το κέντρο ενός ομογενούς αστεριού ακτίνας 10 (οι μονάδες θα είναι αδιάστατες για ευκολία συγκρίσεων). Η μέση ελεύθερη διαδρομή και το οπτικό βάθος θα δίνονται συναρτήσει των συντελεστών απορρόφησης και σκέδασης βάσει των παρακάτω σχέσεων. Οι συντελεστές σκέδασης και απορρόφησης κυμαίνονται στο εύρος [0.1,0.9] και [0.2,2.0] αντίστοιχα με 100 στοιχεία για δειγματοληψία.

Κατασκευάζουμε 3 διαγράμματα και αναλύουμε παρακάτω:

- 1. μέσος όρος σχεδασμών
- 2. ποσοστό διαφυγής
- 3. μήκος θερμοποίησης

Average Bump Count over Absorption Coefficient

Σχήμα 1: Μέσο Πλήθος Σκεδασμών

Βλέπουμε ότι το πλήθος N σχεδασμών αυξάνεται με τον συντελεστή σχέδασης $N\sim\sigma$ και μειώνεται αντιστρόφως ανάλογα με τον συντελεστή απορρόφησης $N\sim\frac{1}{\alpha}$

Λόγω συμμετρίας μπορούμε να ισχυριστούμε μια σχέση της μορφής

$$N \sim \frac{\sigma}{\alpha + \sigma}$$

Οπότε καταλήγουμε προσεγγιστικά στην

$$\frac{N_{esc}}{N_{total}} \sim \frac{1}{\alpha + \sigma}$$

Ερμηνεύοντας τα αποτελέσματα ως ακτινοβολία, μπορούμε να πούμε ότι αν ο αριθμός σκεδασμών είναι μεγάλος το σώμα θα ακτινοβολεί θερμικά: οποιαδήποτα πληροφορία στο κέντρο θα έχει αφομοιωθεί από τους σκεδασμούς.

Escape Percentage over Absorption Coefficient

Σχήμα 2: Ποσοστό διαφυγής

Αν και η σχέση δεν είναι καθαρή, βλέπουμε ποιοτικά ότι το ποσοτό διαφυγής μειώνεται αντιστρόφως ανάλογα με τον συντελεστή απορρόφησης:

$$\frac{N_{esc}}{N_{total}} \sim \frac{1}{\alpha + \sigma}$$

Επίσης, από ένα όριο και πάνω, όταν $\tau_* >> 1$, έχουμε πλήρη απορρόφηση δηλαδή η ακτινοβολία που παρήχθη στο κέντρο έχει απορροφηθεί από τα ανώτερα στρώματα του άστρου.

Average Absorption Distance over Absorption Coefficient

Εδώ αξίζει να σημειώσουμε ότι η ακτίνα του άστρου έχει ληφθεί ώς R=10 για το πείραμά μας οπότε η κλίμακα είναι σχετική. Βλέπουμε ότι για μικρές τιμές των παραμέτρων η μέση απόσταση θερμοποίησης φτάνει $l_*=4$ και μειώνεται ως το ελάχιστο μήκος $l_*=2$ για μεγαλύτερες τιμές των παραμέτρων. Παρατηρούμε μεγαλύτερο ρυθμό μείωσης λόγω απορρόφησης παρά λόγω σκέδασης.

Αν θέλαμε να ισχυριστούμε κάποιον νόμο για το μήκος θερμοποίησης θα ήταν της μορφής:

$$l_*$$
(πειραμματικό) $\sim \sqrt{rac{1}{lpha^2+\sigma}}$

κοντά στο θεωρητικό

$$l_*(θεωρητιχό) = \sqrt{\frac{1}{\alpha(\alpha+\sigma)}}$$

Τα δεδομένα του πειράματος (μεγέθους 16MB) διατίθενται σε μορφή .csv στην ηλεκτρονική διεύθυνση:

 $http://users.uoa.gr/{\sim}ganotisk/simulation_data/photon_data_with_position.csv$