Eksploracja danych

Agnieszka Kulesz, Hania Gibus, Igor Józefowicz

Szczegółowe informacje o incydentach z użyciem broni palnej na terenie Stanów Zjednoczonych w latach 2013–2018

Cel eksploracji

- Predykcja czy incydent z użyciem broni zakończy się ofiarami śmiertelnymi (n_killed > o)
- Czułość ≥ 80%
- Swoistość ≥ 60%
- Klasyfikacja binarna

Dobór algorytmu eksploracji

Wybrany algorytm - drzewo decyzyjne

- Wysoka interpretowalność
- Jasne reguly decyzyjne
- Identyfikacja progów wartości

Dobór metody testowania wyników

Kroswalidacja 10-krotna

Korzyści:

- Eliminacja wpływu przypadkowego podziału
- Uśrednienie wyników
- Wyższa wiarygodność oceny

Przygotowanie danych

Braki, transformacja i uzupełnienie, podzbiór danych

Braki danych: Brakujące wartości w kolumnach tekstowych (np. gun_stolen, participant_age_group, participant_gender) zostały ujednolicone jako "Unknown"

Transformacja danych: Kolumny ze złożonymi łańcuchami tekstowymi (np. *gun_type*) zostały rozbite na unikalne kategorie i zakodowane jako zmienne nominalne.

Podzbiór danych

Wybrane cechy

- n_injured liczba rannych
- n_guns_involved liczba użytej broni
- state stan USA
- avg_age średni wiek uczestników
- male_count, female_count liczba uczestników według płci

Uzupełnienie danych

Cel analizy: Przewidzenie, czy incydent zakończy się ofiarą śmiertelną (*mortality* = 1 jeśli *n_killed* > 0).

Problematyka klas niezbalansowanych

Incydenty bez ofiar śmiertelnych są liczniejsze, ale odzwierciedlają rzeczywistość

Metody radzenia sobie z nierównowagą klas

- Wagi klas proporcjonalne do ich częstości
- Metoda **SMOTE** syntetyczne zwiększenie próbek klasy mniejszościowej

Utworzenie modelu: Drzewo decyzyjne

Wykorzystane biblioteki

Najważniejsze importy

```
from sklearn.model_selection import train_test_split,
GridSearchCV, StratifiedKFold
```

from sklearn.preprocessing import OneHotEncoder

from sklearn.tree import DecisionTreeClassifier, plot_tree

from sklearn.ensemble import RandomForestClassifier

Wyniki i eksperymenty z modelem i zbiorem danych

DT ROC - male

Top 10 Feature Importances

RandomForest Top 10 Importances - top5

Las losowy - podsumowanie

Zestaw cech	AUC	Recall	Specificity
Wszystkie	o.86 ₇	0.830	0.747
Top 1	0.629	0.440	0.721
Top 2	0.767	0.814	0.638
Top 3	0.795	0.863	0.620
Top 5	0.855	0.834	0.718

Obie metody - podsumowanie

Zestaw cech	Decision Tree (AUC / Recall / Spec)	Random Forest (AUC / Recall / Spec)
Wszystkie	0.851 / 0.772 / 0.768	0.867 / 0.823 / 0.753
Top 1	0.629 / 0.440 / 0.721	0.629 / 0.440 / 0.721
Top 2	0.767 / 0.825 / 0.629	0.767 / 0.814 / 0.639
Top 3	0.794/0.865/0.617	0.795 / 0.871 / 0.613
Top 5	0.841 / 0.801 / 0.732	0.855 / 0.835 / 0.718

Podsumowanie projektu 💝 🞉

- Udało nam się osiągnąć cele eksploracji danych:
 - Czułość (recall) ≥ 80%
 - Swoistość (specificity) ≥ 60%
- Wykonaliśmy 10 eksperymentów z różnymi cechami
 - 5 z drzewami decyzyjnymi
 - 5 z lasami losowymi

Dziękujemy za uwagę

Agnieszka Kulesz, Hania Gibus, Igor Józefowicz