

Department of Computer Science

Ramakrishna Mission Vivekananda Educational Research Institute, Belur Math

Optimization for Machine Learning, BDA 2022 batch Problem set on Constrained Optimization

A. Problems on KKT Optimality conditions

Chapter 4, Nonlinear Programming by Sherali and Shetty,

Problems: 4.1,4.4 (a,b,d), 4.5, 4.7, 4.10, 4.37 (a,b), 4.38, 4.39

Additional problem: Consider the optimization problem

$$Min f(x_1, x_2)$$
, s.t., $2x_1 + x_2 \ge 1$, $x_1 + 3x_2 \ge 1$, $x_1 \ge 0$, $x_2 \ge 0$

Make a sketch of the feasible set. For each of the following objective functions, find (graphically) the optimal solution and optimal objective value

a)
$$f(x_1, x_2) = x_1 + x_2$$

b)
$$f(x_1, x_2) = -x_1 - x_2$$

c)
$$f(x_1, x_2) = x_1$$

c)
$$f(x_1, x_2) = x_1$$

d) $f(x_1, x_2) = \{x_1, x_2\}$

e)
$$f(x_1, x_2) = x_1^2 + 9x_2^2$$

B. Problems on Lagrangian Duality

Chapter 6, Nonlinear Programming by Bazaraa, Sherali and Shetty

Problem 6.10 (a,b), 6.11 (a,b), 6.16, 6.17, 6.26

Additional problems:

1. Consider the problem

$$minimize f(x) = x_1^2 + x_2^2$$
 subject to: $(x_1 - 1)^2 + (x_2 - 1)^2 \le 1$, $(x_1 - 1)^2 + (x_2 + 1)^2 \le 1$, $x \in \mathbb{R}^2$

- (a) Sketch the feasible set and level sets of the objective function. Find optimal point x^* and optimal value $f(x^{\hat{}})$.
- (b) Give the KKT conditions. Do there exist Lagrange multipliers λ_1 and λ_2 that prove that x^* is optimal?
- (c) Derive and solve the Lagrange dual problem. Does strong duality hold?
- 2. Consider the optimization problem

$$minimize f(x) = x^2 + 1$$

subject to:
$$(x - 2)(x - 4) \le 0$$
, $x \in \mathbb{R}$

- (a) Plot the objective f(x) versus x. On the same plot, show the feasible set, optimal point and value, and plot the Lagrangian $L(x, \lambda)$ versus x for a few positive values of λ . Verify the Weak Duality theorem. Derive and sketch the Lagrange dual function
- (b) State the Lagrangian dual problem, and verify that it is a concave maximization problem. Find the dual optimal value and dual optimal solution λ^* Does strong duality hold?