

Utilisation of viewing statistics in video recording credits detection

Saskia Kivistö

Puhepaja 2

April 5, 2022

- 1. Introduction
- 2. User viewing behaviour data
- 3. Problem formulation and methods
- 4. Results

Goal of this thesis:

- Detect where recorded TV programs actually start and end
- by analysing patterns of user viewing behaviour

The issue with recording TV programs:

- TV programs are not usually broadcasted exactly according to EPG
- Timing recording by EPG can lead to program being recorded only partially
- Buffer can be added to ensure that whole program is recorded

► Goal: identify extra content

- Goal: identify extra content
- ► Why?
 - Its annoying to fast forward over extra content
 - Extra content consumes storage space

- 1. Introduction
- 2. User viewing behaviour data
- 3. Problem formulation and methods
- 4. Results

Where does the user behaviour data come from?

- The NPVR service provider company I am working for
- NPVR ≈ a normal video recorder
 - but the TV programs you record are stored in a cloud server instead of a device in your home

Why is the data collected?

- monitoring the popularity of programs
- monitoring the user experience quality
 - smoothness of streaming etc.
 - with data related to the above, it can be calculated which parts of a recording were watched during a view, and which parts were fast forwarded

What the examined data actually is?

- For each view of any recording:
 - it can be calculated which parts of a recording were watched during a view, and which parts were fast forwarded
- The data examined in the thesis is an aggregation of the above

An example of the aggregated data

An example of the aggregated data

Could creidts be detected solely with this data?

3. Problem formulation and methods

- 1. Introduction
- 2. User viewing behaviour data
- 3. Problem formulation and methods
- 4. Results

3. Problem formulation and methods

Problem formulation

- Signal processing, offline change point detection
- Minimisation problem for the sum of costs of each segment (segments are divided by change points)
 - cost function
 - search method

3. Problem formulation and methods

Methods

- cost function: variance, detects distribution mean shifts well
- search method; dynamic programming, produces optimal segmentation
- Python scientific library ruptures implements the above

- 1. Introduction
- 2. User viewing behaviour data
- 3. Problem formulation and methods
- 4. Results

Typical output

Typical output

Predicted change point distance from closing credits start

Predicted change point distance from closing credits start

start of closing credits

Change point position relative to closing credits

Change point position relative to closing credits

Can credits be detected based solely on user viewing behaviour?

- Yes, for approximate location of credits
- No, for exact start or end of credits

Thank you!

