Homework 7 Solutions

Spencer Cooper

ECON 501B

Prof. Friedenberg

November 2018

- 1. (a) Strict and assortative preferences. Thus μ^{NTU} is PAM.
 - (b) $\omega(i,j)$ has decreasing difference. For ω twice differentiale, then ω has DD iff $\omega_{xy} \leq 0$; and ω has ID iff $\omega_{xy} \geq 0$ $\omega_{ij} = 2\alpha(\alpha - 1)(i+j)^{\alpha - 2} < 0$ μ^{TU} is NAM.
 - (c) $W(\mu^{NTU}) = 2 \sum_{i=1}^{n} (2i)^{\alpha}$ $W(\mu^{TU}) = 2n(n+1)^{\alpha}$
 - (d) Unsolvable. :($\frac{W(\mu^{NTU})}{W(\mu^{TU})} \in [2^{\alpha}, 1]$
- 2. Lemma 1: If (x^*, q^*) solves problem (*), then there is a Pareto optimal allocation (x^*, m^*, q^*, z^*)

Proof:

Choose z^*, m^* such that $\forall j, z_j^* = c_j(q_j^*)$ and m^* satisfies $\sum_{i=1}^I m_i^* = \bar{\omega}_m - \sum_{j=1}^J c_j(q_j^*)$ So defined, the allocation is feasible.

Check, $\sum x_i^* = \sum q_j^*$ since (x^*, q^*) solves problem (*), and $\sum m_i^* = \bar{\omega_m} - \sum z_j^*$ by construction.

For any feasible (x, m, q, z), if it Pareto dominates (x^*, m^*, q^*, z^*) then:

 $\sum (m_i + \phi_i(x_i)) > \sum (m_i^* + \phi_i(x_i^*))$

So $\bar{\omega} + S(x,q) = \bar{\omega}_m + \sum_j \phi_i(x_i) - \sum_j c_j(q_j)$ for all j such that $z_j \geq c_j(q_j)$ $\geq \bar{\omega}_m + \sum_j \phi_i(x_i) - \sum_j z_j$

$$\geq \bar{\omega}_m + \sum \phi_i(x_i) - \sum z_j$$

$$= \sum_{i=1}^{n} m_i + \sum_{i=1}^{n} \phi_i(x_i)$$

>
$$\sum_{i=1}^{n} (m_i^* + \phi_i(x_i^*))$$

$$= \overline{\bar{\omega}}_m + S(x^*, q^*)$$

Contradicts that (x^*, q^*) solves problem (*).

Lemma 2: If (x^*, m^*, q^*, z^*) is Pareto Optimal, then it induces a $v^* \in \mathcal{R}^I$ with $v^* \in Bd(\mathcal{U}(x^*, q^*))$

Proof:

Suppose (x^*, m^*, q^*, z^*) is Pareto Optimal and induces $v^* \in \mathcal{R}^I$

First, claim $\forall j : c_j(q_i^*) = z_i^*$

If $\exists j : c_j(q_i^*) < z_i^*$, keep everything fixed, giving $(z_i^* - c_j(q_i^*))$ to some consumer is a Pareto improvement.

Second,
$$\sum v_i^* = \sum m_i^* + \sum \phi_i(x_i)$$

 $= \bar{\omega}_m + \sum \phi_i(x_i^*) - \sum z_j^*$
 $= \bar{\omega}_m + \sum \phi_i(x_i^*) - \sum c_j(q_j^*)$
 $= \bar{\omega}_m + S(x^*, q^*)$
For any other feasible allocation (x, m, q, z) , $\sum v_i^* = \bar{\omega}_m + S(x^*, q^*) \ge \bar{\omega}_m + S(x, q)$
for all other x, q
 $\Rightarrow \sum v_i^* \ge \sum u_i(m_i, x_i)$

Lemma 3: If (x^*, m^*, q^*, z^*) is Pareto optimal, then (x^*, q^*) solves problem (*) Proof:

By contradiction:

Suppose (x^*, m^*, q^*, z^*) is Pareto Optimal but it does not solve problem (*):

Step 1:
$$\exists (x,q)$$
 so that $\bar{\omega}_m + S(x,q) > \bar{\omega}_m + S(x^*,q^*)$ and $\sum x_i = \sum q_j$
Construct $m_i = \frac{1}{I}(\bar{\omega}_m + \sum z_j)$ and $z_j = c_j(q_j)$
So defined, $\sum m_i + \sum \phi_i(x_i) = \bar{\omega}_m + \sum \phi_i(x_i) - \sum c_j(q_j)$
 $= \bar{\omega}_m + \sum \phi_i(x_i) - \sum z_j$
 $= \bar{\omega}_m + S(x,q)$
 $> \bar{\omega}_m + S(x^*,q^*)$ from assumption $\sum m_i^* + \sum \phi_i(x_i)$ from Lemma 2
In conclusion, $\sum u_i(m_i,x_i) > \sum u_i(m_i^*,x_i^*)$
This means someone gets better off under (x,m,q,z)

Step 2:
$$(x^*, m^*, q^*, z^*) \to (x, m, q, z)$$

Order consumers: $u(x_1, m_1) - u_1(x_1^*, m_1^*) \ge u(x_2, m_2) - u_1(x_2^*, m_2^*) \ge \dots \ge u(x_I, m_I) - u_I(x_I^*, m_I^*)$
It must be that $u(x_1, m_1) - u_1(x_1^*, m_1^*) > 0$
There is k such that:
for $i \le k : u(x_i, m_i) - u_1(x_i^*, m_i^*) \ge 0$
for $i \le k : u(x_i, m_i) - u_1(x_i^*, m_i^*) < 0$
The total surplus is higher than the total deficit:

$$\sum_{i=1}^k u_i(m_i, x_i) + \sum_{i=k+1}^I u_i(m_i, x_i) > \sum_{i=1}^k u_i(m_i^*, x_i^*) + \sum_{i=k+1}^I u_i(m_i^*, x_i^*)$$

$$\sum_{i=1}^k [u_i(m_i, x_i) - u_i(m_i^*, x_i^*)] > \sum_{i=k+1}^k [u_i(m_i^*, x_i^*) - u_i(m_i, x_i)]$$

$$\exists \alpha \in (0, 1) \text{ such that}$$

$$\alpha \sum_{i=1}^k [u_i(m_i, x_i) - u_i(m_i^*, x_i^*)] > \sum_{i=1}^k [u_i(m_i^*, x_i^*) - u_i(m_i, x_i)]$$
Construct m'
For $i \le k, m'_i = m_i - \alpha[u_i(m_i, x_i) - u_i(m_i^*, x_i^*)]$

Show that (x, m', q, z) Pareto dominates (x^*, m^*, q^*, z^*) :

- 1. (x, m', q, z) feasible
- 2. Everybody is as good as under (x^*, m', q^*, z^*)
- 3. Consumer 1 is strictly better off.

3. Suppose (x^*, m^*, q^*, z^*) and p^* forms a competitive equilibrium. Case A: $\sigma < p^*, q^* \to \infty$ no solution to firms maximization.

Case B:
$$\sigma=p^*, q^*=x^*, m^*=\bar{\omega}_m-p^*x$$

Consumer Problem:
$$max_x(\bar{\omega}_m-p^*x+\alpha+\beta lnx$$

FOC:
$$\beta/x^* \le p^*$$
 with equality if $x^* > 0$ $x^* = \beta/\sigma$

Case C:
$$\sigma > p^*, q^* = 0, x^* = 0$$

Utility is undefined at $x^* = 0$