

PRÁCTICA Nº 6

CÓDIGO SAGA

Calificación

A25984-5

CARRERA:
Ingeniería de sistemas

ASIGNATURA:

Métodos numéricos

Apellidos y Nombres: Gutiérrez Castro Huáscar Aarón

C.I: 9951591LP

CURSO: 4-A DOCENTE: M. Sc. Ing. Ariel Villca Paye

Para cada uno de los problemas, halla la solución del sistema de ecuaciones mediante:

1. Método de la inversa, de forma manual y con MatLab.

Problema 1

$$10x_1 + x_2 + 2x_3 = 3$$

$$4x_1 + 6x_2 - x_3 = 9$$

$$-2x_1 + 3x_2 + 8x_3 = 51$$

```
Shortcuts Abow to Add What's New
📝 Editor - C:\Users\huasc\Desktop\repaso.m
fprintf('\t\tMETODO DE LA INVERSA\n')
2 -
3 -
       fprintf('Los datos son:\n')
       A = [10 1 2;4 6 -1;-2 3 8]
B = [3;9;51]
 5 —
       %C = [5 4;1 2]
%D = [3 2;-2 -5]
 6
 7
 8
                                                                        51
9
10
11
                                                                   det A =
12
13
14
15
                                                                     a solucion es:
       det_A det(A)
16 -
17 -
          det_A==0
18 -
            fprinft('El sistema no tiene solucion')
19 -
↑ metodojordanautomatico.... × derivadas TT.m × M jacobi.m × repaso.m × sis de ecuaciones.m
```


2. Método de Gauss Jordan, de forma manual y con MatLab.

Problema 2

$$\begin{array}{l} -3x_1 + 5x_2 + 2x_3 = 7 \\ -x_1 - 2x_2 + 3x_3 = -4 \\ 9x_1 - 15x_2 - 6x_3 = 0 \end{array}$$

```
Shortcuts 🖪 How to Add 🔳 What's New
                                                                                                    +ı □ * ×
METODO DE GAUSS JORDAN
Los datos son:
     A = [-3 5 2;-1 -2 3;9 -15 -6]
B = [7;4;0]
10 -
11 -
12
13
14
15 -

16 -

17 -

18 -

19 -

20 -

21 -

22 -

23 -

24 -

25 -

26 -

27 -

28 -

29 -
     AU [A B]
     n = size(AU, 1);
     fprintf('_
       det(A) ~= 0
          or i=1:n
        AU(i,:) = (1/AU(i,i))*AU(i,:);
               AU(j,:) = -AU(j,i)*AU(i,:)+AU(j,:);
                                                       AU =
         disp(AU(:,end))
         fprintf('El sistema presente varias soluciones o no
30 -
```

```
METODO DE GAUSS JORDAN
Los datos son:
A =
    -3
            5
                   2
    ^{-1}
           -2
                   3
          -15
     9
                  -6
B =
     7
     4
     0
AU =
    -3
           5
                   2
                         7
                  3
    ^{-1}
           -2
                         4
                 -6
     9
          -15
                         0
El sistema presente varias soluciones o no tiene solucion>>
```

3. Método de Jacobi, con un error menor a 0.01, con Excel y MatLab.

$$10x_1 + x_2 + 2x_3 - x_4 = -3$$

$$-5x_1 + 4x_2 + 6x_3 - x_4 = 9$$

$$-2x_2 + 3x_3 + 8x_4 = 2$$

$$-5x_3 + 5x_4 = -1$$

NOTA. No es ni es posible hacerse una matriz diagonalmente dominante para A[2,2], por lo que el proceso puede ser divergente. Por ende, no es recomendable usar métodos iterativos como Jacobi.


```
Método de Jacobi para sistemas de ecuaciones
Datos
A =
   10
      1 2
                ^{-1}
   -5
        4
            6
                 -1
   0
        0
            -5
                8
    0 -2 3
B =
   -3
   9
   -1
e_std = 0.01
```

ite	r x_1	x_2	x_3	x_4	e_a
0	0.0000	0.0000	0.0000	0.0000	Inf%
1	-0.3000	2.2500	0.2000	0.2500	100.00%
2	-0.5400	1.6375	0.4500	0.7375	66.10%
3	-0.4800	1.0844	0.9375	0.4906	52.00%
4	-0.5469	0.3664	0.6906	0.1695	195.95%
5	-0.4578	0.5729	0.3695	0.0826	105.20%
6	-0.4229	1.1441	0.2826	0.2546	67.56%
7	-0.4455	1.3611	0.4546	0.4300	40.79%
8	-0.4840	1.1187	0.6300	0.4198	27.84%
9	-0.4959	0.8048	0.6198	0.2934	43.07%
10	-0.4751	0.7738	0.4934	0.2188	34.10%
11	-0.4542	0.9707	0.4188	0.2584	20.28%
12	-0.4550	1.1187	0.4584	0.3356	23.00%
13	-0.4700	1.0775	0.5356	0.3578	14.41%
14	-0.4791	0.9485	0.5578	0.3185	13.60%
15	-0.4746	0.8941	0.5185	0.2780	14.59%
16	-0.4653	0.9485	0.4780	0.2791	8.49%
17	-0.4625	1.0212	0.4791	0.3079	9.36%
18	-0.4671	1.0302	0.5079	0.3256	5.67%
19	-0.4720	0.9856	0.5256	0.3171	4.52%
20	-0.4720	0.9508	0.5171	0.2993	5.94%
21	-0.4686	0.9592	0.4993	0.2938	3.56%
22	-0.4664	0.9888	0.4938	0.3026	2.99%
23	-0.4674	1.0020	0.5026	0.3120	3.03%

24	-0.4695	0.9899	0.5120	0.3120	1.85%
25	-0.4702	0.9731	0.5120	0.3055	2.15%
26	-0.4692	0.9706	0.5055	0.3013	1.40%
27	-0.4680	0.9806	0.5013	0.3031	1.03%
28	-0.4680	0.9889	0.5031	0.3072	1.33%
29	-0.4688	0.9871	0.5072	0.3086	0.81%
30	-0.4693	0.9804	0.5086	0.3066	0.69%
31	-0.4691	0.9772	0.5066	0.3044	0.72%
32	-0.4686	0.9798	0.5044	0.3043	0.44%
33	-0.4684	0.9838	0.5043	0.3058	0.49%
34	-0.4687	0.9844	0.5058	0.3068	0.33%
35	-0.4689	0.9822	0.5068	0.3064	0.23%
36	-0.4689	0.9802	0.5064	0.3055	0.31%
37	-0.4688	0.9806	0.5055	0.3051	0.19%
38	-0.4686	0.9821	0.5051	0.3056	0.16%
39	-0.4687	0.9829	0.5056	0.3061	0.17%
40	-0.4688	0.9823	0.5061	0.3061	0.10%
41	-0.4688	0.9814	0.5061	0.3058	0.11%
42	-0.4688	0.9812	0.5058	0.3056	0.08%
43	-0.4687	0.9817	0.5056	0.3056	0.05%
44	-0.4687	0.9822	0.5056	0.3058	0.07%
45	-0.4688	0.9821	0.5058	0.3059	0.04%
46	-0.4688	0.9818	0.5059	0.3058	0.04%
47	-0.4688	0.9816	0.5058	0.3057	0.04%
48	-0.4688	0.9817	0.5057	0.3057	0.02%
49	-0.4687	0.9819	0.5057	0.3058	0.03%
50	-0.4688	0.9820	0.5058	0.3058	0.02%
51	-0.4688	0.9818	0.5058	0.3058	0.01%
52	-0.4688	0.9817	0.5058	0.3058	0.02%
53	-0.4688	0.9817	0.5058	0.3058	0.01%

Los rasultados son:

X_1: -0.4688
X_2: 0.9817
X_3: 0.5058
X 4: 0.3058>>

Método de Jacobi				
Datos				
10	x_1=	(-3-1*x_2-2*x_3+x_4)/10	C.S.=	4
$10x_1 + x_2 + 2x_3 - x_4 = -5x_4 + 4x_2 + 6x_2 - x_4 = -6x_2 - x_4 = -$	X /=	(9-4*x_1-6*x_3+1*x_4)/-5	e_std=	0.01%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	x 3=	(-1-0*x_1-0*x_2-5*x_4)/-5		
$0x_1 + 0x_2 - 3x_3 + 3x_4 - 0x_1 - 2x_2 + 3x_3 + 8x_4 = $	V 1-	(2+0*x_1+2*x_2-3*x_3)/8		
$0\lambda_1 = 2\lambda_2 + 3\lambda_3 + 0\lambda_4 =$				
[A] no es estrictamente diagonal do	minante por la fila 2, veri	ficada por nosotros		

iter	x_1	x_2	x_3	x_4	E_a	E_a <e_std< th=""><th>e_a</th><th>e a<e std<="" th=""></e></th></e_std<>	e_a	e a <e std<="" th=""></e>
0	0.0000	0.0000	0.0000		a	E_d \	C_a	c_a\c_sta
1	-0.3000	2.2500	0.2000		2 2500	siga iterando	100 000%	siga iterando
2	-0.5400	1.6375	0.4500	0.7375		siga iterando		siga iterando
3	-0.4800	1.0373	0.4300	0.4906		siga iterando		siga iterando
4								siga iterando
5	-0.5469	0.3664	0.6906	0.1695		siga iterando		
	-0.4578	0.5729	0.3695	0.0826		siga iterando		siga iterando
6	-0.4229	1.1441	0.2826			siga iterando		siga iterando
7	-0.4455	1.3611	0.4546	0.4300		siga iterando		siga iterando
8	-0.4840	1.1187	0.6300	0.4198		siga iterando		siga iterando
9	-0.4959	0.8048	0.6198	0.2934		siga iterando		siga iterando
10	-0.4751	0.7738	0.4934	0.2188		siga iterando		siga iterando
11	-0.4542	0.9707	0.4188	0.2584		siga iterando		siga iterando
12	-0.4550	1.1187	0.4584	0.3356		siga iterando		siga iterando
13	-0.4700	1.0775	0.5356			siga iterando		siga iterando
14	-0.4791	0.9485	0.5578	0.3185		siga iterando		siga iterando
15	-0.4746	0.8941	0.5185	0.2780		siga iterando		siga iterando
16	-0.4653	0.9485	0.4780	0.2791	0.0849	siga iterando	8.485%	siga iterando
17	-0.4625	1.0212	0.4791	0.3079	0.0936	siga iterando	9.358%	siga iterando
18	-0.4671	1.0302	0.5079	0.3256	0.0567	siga iterando	5.673%	siga iterando
19	-0.4720	0.9856	0.5256	0.3171	0.0452	siga iterando	4.519%	siga iterando
20	-0.4720	0.9508	0.5171	0.2993	0.0594	siga iterando	5.944%	siga iterando
21	-0.4686	0.9592	0.4993	0.2938	0.0356	siga iterando	3.563%	siga iterando
22	-0.4664	0.9888	0.4938	0.3026	0.0299	siga iterando	2.991%	siga iterando
23	-0.4674	1.0020	0.5026	0.3120		siga iterando		siga iterando
24	-0.4695	0.9899	0.5120	0.3120		siga iterando		siga iterando
25	-0.4702	0.9731	0.5120	0.3055		siga iterando		siga iterando
26	-0.4692	0.9706	0.5055			siga iterando		siga iterando
27	-0.4680	0.9806	0.5013	0.3031		siga iterando		siga iterando
28	-0.4680	0.9889	0.5031	0.3072		siga iterando		siga iterando
29	-0.4688	0.9871	0.5072	0.3086		siga iterando		siga iterando
30	-0.4693	0.9804	0.5086	0.3066		siga iterando		siga iterando
31	-0.4691	0.9772	0.5066	0.3044		siga iterando		siga iterando
32	-0.4686	0.9798	0.5044	0.3043		siga iterando		siga iterando
33	-0.4684	0.9838	0.5044	0.3058		siga iterando		siga iterando
34	-0.4687		0.5043			siga iterando		siga iterando
						_		_
35	-0.4689	0.9822	0.5068	0.3064		siga iterando		siga iterando
36	-0.4689	0.9802	0.5064			siga iterando		siga iterando
37	-0.4688	0.9806	0.5055			siga iterando		siga iterando
38	-0.4686	0.9821	0.5051	0.3056		siga iterando		siga iterando
39	-0.4687	0.9829	0.5056			siga iterando		siga iterando
40	-0.4688	0.9823	0.5061	0.3061		siga iterando		siga iterando
41	-0.4688	0.9814	0.5061	0.3058		siga iterando		siga iterando
42	-0.4688	0.9812	0.5058			siga iterando		siga iterando
43	-0.4687	0.9817	0.5056	0.3056		siga iterando		siga iterando
44	-0.4687	0.9822	0.5056			siga iterando		siga iterando
45	-0.4688	0.9821	0.5058			siga iterando		siga iterando
46	-0.4688	0.9818	0.5059			siga iterando		siga iterando
47	-0.4688	0.9816	0.5058			siga iterando		siga iterando
48	-0.4688	0.9817	0.5057	0.3057	0.0002	siga iterando	0.024%	siga iterando
49	-0.4687	0.9819	0.5057	0.3058	0.0003	siga iterando	0.025%	siga iterando
50	-0.4688	0.9820	0.5058	0.3058	0.0002	siga iterando	0.018%	siga iterando
51	-0.4688	0.9818	0.5058	0.3058	0.0001	siga iterando	0.012%	siga iterando
52	-0.4688	0.9817	0.5058	0.3058	0.0002	siga iterando	0.016%	siga iterando
53	-0.4688	0.9817	0.5058			valor verdadero		valor verdadero
54	-0.4688	0.9818	0.5058			valor verdadero		valor verdadero
55	-0.4688	0.9819	0.5058			valor verdadero		valor verdadero
30	21.1230						3.000/0	

4. Método de Gauss Seidel, con un error menor a 0.01, con Excel y MatLab. Problema 4

$$x_1 + x_2 = 3$$

 $-2x_1 + 3x_2 - 4x_3 = 3$
 $3x_1 - x_2 + 2x_3 = 3$

Método Gauss Seidel

Datos:

A =

3 -1 2 1 1 0 -2 3 -4

в =

3

3

3

Error estandar: $E_a = 0.00$

La Solución es:

El Método converge en 15 iteraciones.

1.0000	1.0000	2.0000	0.2500	2.0000	100.0000
2.0000	1.5000	1.5000	-0.3750	0.6250	166.6667
3.0000	1.7500	1.2500	-0.6875	0.3125	45.4545
4.0000	1.8750	1.1250	-0.8438	0.1563	18.5185
5.0000	1.9375	1.0625	-0.9219	0.0781	8.4746
6.0000	1.9688	1.0313	-0.9609	0.0391	4.0650
7.0000	1.9844	1.0156	-0.9805	0.0195	1.9920
8.0000	1.9922	1.0078	-0.9902	0.0098	0.9862
9.0000	1.9961	1.0039	-0.9951	0.0049	0.4907
10.0000	1.9980	1.0020	-0.9976	0.0024	0.2447
11.0000	1.9990	1.0010	-0.9988	0.0012	0.1222
12.0000	1.9995	1.0005	-0.9994	0.0006	0.0611
13.0000	1.9998	1.0002	-0.9997	0.0003	0.0305
14.0000	1.9999	1.0001	-0.9998	0.0002	0.0153
15.0000	1.9999	1.0001	-0.9999	0.0001	0.0076

Los rasultados son:

X_1: 1.9999 X_2: 1.0001 x_3: -0.9999

Método de Gauss Eidel				
Datos				
2 12 2	x_1=	(3+1*x_2-2*x_3)/3	C.S.=	4
$3x_1 - x_2 + 2x_3 = 3$ $x_1 + x_2 + 0x_2 = 3$	x_2=	(3-1*x_1-0*x_3)/1	e_std=	0.01%
$x_1 + x_2 + 0x_3 = 3$ $-2x_1 + 3x_2 - 4x_2 = 3$	x_3=	(3+2*x_1-3*x_2)/-4		
221 1325 122 - 3				

[A] es diagonal dominanate verificada por nosotros

iter	x_1	x_2	x_3	E_a	E_a <e_std< th=""><th>e_a</th><th>e_a<e_std< th=""></e_std<></th></e_std<>	e_a	e_a <e_std< th=""></e_std<>
0	0.0000	0.0000	0.0000				
1	1.0000	2.0000	0.2500	2.0000	siga iterando	100.000%	siga iterando
2	1.5000	1.5000	-0.3750	0.6250	siga iterando	166.667%	siga iterando
3	1.7500	1.2500	-0.6875	0.3125	siga iterando	45.455%	siga iterando
4	1.8750	1.1250	-0.8438	0.1563	siga iterando	18.519%	siga iterando
5	1.9375	1.0625	-0.9219	0.0781	siga iterando	8.475%	siga iterando
6	1.9688	1.0313	-0.9609	0.0391	siga iterando	4.065%	siga iterando
7	1.9844	1.0156	-0.9805	0.0195	siga iterando	1.992%	siga iterando
8	1.9922	1.0078	-0.9902	0.0098	siga iterando	0.986%	siga iterando
9	1.9961	1.0039	-0.9951	0.0049	siga iterando	0.491%	siga iterando
10	1.9980	1.0020	-0.9976	0.0024	siga iterando	0.245%	siga iterando
11	1.9990	1.0010	-0.9988	0.0012	siga iterando	0.122%	siga iterando
12	1.9995	1.0005	-0.9994	0.0006	siga iterando	0.061%	siga iterando
13	1.9998	1.0002	-0.9997	0.0003	siga iterando	0.031%	siga iterando
14	1.9999	1.0001	-0.9998	0.0002	siga iterando	0.015%	siga iterando
15	1.9999	1.0001	-0.9999	0.0001	valor verdad	0.008%	valor verdad