Triangle Radii Cheatsheet Exercise 12.8

1 Triangle Radii Fundamentals

1.1 Definition and Notation

In $\triangle ABC$, angles α, β, γ are opposite sides a, b, c. Key radii:

- Inradius (r): Radius of incircle.
- Circumradius (R): Radius of circumcircle.
- Exradii (r_1, r_2, r_3) : Radii of excircles opposite vertices A, B, C.
- Semi-perimeter: $S = \frac{a+b+c}{2}$.
- Area: $\Delta = \sqrt{S(S-a)(S-b)(S-c)}$.

1.2 Key Formulas

• Radii:

$$r = \frac{\Delta}{S}$$
, $R = \frac{abc}{4\Delta}$, $r_1 = \frac{\Delta}{S-a}$, $r_2 = \frac{\Delta}{S-b}$, $r_3 = \frac{\Delta}{S-c}$

• Half-Angle Identities:

$$\sin\frac{\alpha}{2} = \sqrt{\frac{(S-b)(S-c)}{bc}}, \quad \cos\frac{\alpha}{2} = \sqrt{\frac{S(S-a)}{bc}}, \quad \tan\frac{\alpha}{2} = \sqrt{\frac{(S-b)(S-c)}{S(S-a)}}$$

(similar for β, γ).

• Key Identities:

$$r = 4R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}, \quad S = 4R \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$$

$$r = a \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \sec \frac{\alpha}{2} = b \sin \frac{\alpha}{2} \sin \frac{\gamma}{2} \sec \frac{\beta}{2} = c \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sec \frac{\gamma}{2}$$

$$r_1 = 4R \sin \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}, \quad r_2 = 4R \cos \frac{\alpha}{2} \sin \frac{\beta}{2} \cos \frac{\gamma}{2}, \quad r_3 = 4R \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \sin \frac{\gamma}{2}$$

$$r_1 = S \tan \frac{\alpha}{2}, \quad r_2 = S \tan \frac{\beta}{2}, \quad r_3 = S \tan \frac{\gamma}{2}$$

$$r_1 r_2 + r_2 r_3 + r_3 r_1 = S^2, \quad r_1 r_2 r_3 = \Delta^2, \quad r_1 + r_2 + r_3 - r = 4R$$

$$\Delta = r^2 \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}, \quad r = S \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}, \quad \Delta = 4Rr \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$$

$$\frac{1}{2rR} = \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}, \quad \frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$$

$$r = \frac{a\sin\frac{\beta}{2}\sin\frac{\gamma}{2}}{\cos\frac{\alpha}{2}} = \frac{b\sin\frac{\alpha}{2}\sin\frac{\gamma}{2}}{\cos\frac{\beta}{2}} = \frac{c\sin\frac{\alpha}{2}\sin\frac{\beta}{2}}{\cos\frac{\gamma}{2}}$$

$$abc(\sin\alpha + \sin\beta + \sin\gamma) = 4\Delta S, \quad (r_1 + r_2)\tan\frac{\gamma}{2} = c, \quad (r_3 - r)\cot\frac{\gamma}{2} = c$$

2 Proving Identities

2.1 Steps for Identities

- 1. Substitute definitions: $r = \frac{\Delta}{S}$, $R = \frac{abc}{4\Delta}$, $r_1 = \frac{\Delta}{S-a}$, etc.
- 2. Use half-angle identities: $\sin \frac{\alpha}{2} = \sqrt{\frac{(S-b)(S-c)}{bc}}$, etc.
- 3. Simplify square roots and fractions to show L.H.S. = R.H.S.
- 4. For equilateral triangles, set a=b=c, compute $\Delta=\frac{\sqrt{3}a^2}{4}$, and simplify ratios.

2.2 Steps for Numerical Calculations

- 1. Compute semi-perimeter: $S = \frac{a+b+c}{2}$.
- 2. Calculate area: $\Delta = \sqrt{S(S-a)(S-b)(S-c)}$.
- 3. Compute radii: $r = \frac{\Delta}{S}$, $R = \frac{abc}{4\Delta}$, $r_1 = \frac{\Delta}{S-a}$, etc.
- 4. Report results exact or to three decimal places.

2.3 Example: Numerical Calculation

Given: a = 13, b = 14, c = 15.

$$S = \frac{13 + 14 + 15}{2} = 21, \quad \Delta = \sqrt{21 \cdot (21 - 13) \cdot (21 - 14) \cdot (21 - 15)} = \sqrt{21 \cdot 8 \cdot 7 \cdot 6} = 84$$

$$R = \frac{13 \cdot 14 \cdot 15}{4 \cdot 84} = 8.125, \quad r = \frac{84}{21} = 4, \quad r_1 = \frac{84}{8} = 10.5, \quad r_2 = \frac{84}{7} = 12, \quad r_3 = \frac{84}{6} = 14$$

3 Problem Types

• Prove Radii Identities: Use half-angle formulas and simplify (e.g., $r = 4R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}$).

E.g., Q.1(i):
$$4R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2} = \frac{abc}{4\Delta} \cdot \sqrt{\frac{(S-b)(S-c)}{bc}} \cdot \dots = \frac{\Delta}{S} = r.$$

• Prove Exradii Identities: Similar approach (e.g., $r_1 = S \tan \frac{\alpha}{2}$).

E.g., Q.4(i):
$$S \tan \frac{\alpha}{2} = S \sqrt{\frac{(S-b)(S-c)}{S(S-a)}} = \frac{\Delta}{S-a} = r_1.$$

• Prove Combined Relations: Manipulate products/sums (e.g., $r_1r_2r_3 = \Delta^2$).

E.g., Q.5(ii):
$$r_1r_2r_3 = \frac{\Delta}{S-a} \cdot \frac{\Delta}{S-b} \cdot \frac{\Delta}{S-c} = \frac{\Delta^3}{\Delta} = \Delta^2$$
.

- Numerical Calculations: Compute radii for given sides (e.g., $a = 13, b = 14, c = 15 \implies R = 8.125, r = 4$).
- Equilateral Triangle Ratios: Show $r: R: r_1 = 1: 2: 3$ or $r: R: r_1: r_2: r_3 = 1: 2: 3: 3: 3: 3.$

E.g., Q.7:
$$r = \frac{\sqrt{3}a}{6}$$
, $R = \frac{a}{\sqrt{3}}$, $r_1 = \frac{\sqrt{3}a}{2} \implies 1:2:3$.

4 Tips and Tricks

- Verify triangle inequality (a + b > c) before calculations.
- Use $\Delta = \sqrt{S(S-a)(S-b)(S-c)}$ for area in proofs.
- Simplify fractions by canceling abc or Δ terms.
- For equilateral triangles, use $\Delta = \frac{\sqrt{3}a^2}{4}$, $\alpha = \beta = \gamma = 60^{\circ}$.
- Check units: r, R, r_1, r_2, r_3 in same units as sides.
- Use exact values for standard angles (e.g., $\sin 30^{\circ} = 0.5$).

5 Applications

- Surveying: Calculate incircle/excircle properties for land plots.
- Engineering: Analyze triangular structures using circumradius.
- **Trigonometry**: Derive advanced geometric relationships.