# Lecture Speech and Audio Signal Processing



Lecture 11: Hidden Markov Models (HMM) and Speech Recognition, Part I



#### Content



- □ Principle of Speech recognition
- HMM: General definition
- The three basic problems of HMMs
  - Evaluation problem
  - Decoding problem
  - Model parameter estimation problem
- Evaluation problem:
  - Trellis structures
  - Forward algorithm
- Decoding problem:
  - Viterbi algorithm

#### Principle of speech recognition



#### Generals:

- Speech is a sequence of phones ("Laute").
- Phones with the same meaning can be group to phonemes ("Lautgruppen").
- For speech recognition it is important to differentiate between phonemes.

#### Procedure:

 Use the speech signal and calculate an equidistant sequence of feature vectors, typically MFCC vectors.

## Principle of speech recognition





Different probability models for the generation of the feature vectors according to the corresponding phoneme

# Principle of speech recognition







Different states with different probability models, i.e., for each state a corresponding pdf is modeled.

Observed feature vector sequence  $X = [x(0) \ x(1) \dots x(4) \ x(5) \dots x(10) \dots x(T-1)]$ 



States and feature sequence:  $S_0 \longrightarrow S_1 \longrightarrow S_2 \longrightarrow S_3 \longrightarrow S_4 \longrightarrow S_5 \longrightarrow$ 

#### ■ HMMs: The hidden model components:

☐ The hidden part of the HMM is modeled by *N* states:

$$S_0, S_1, \cdots, S_{N-1}$$

The states are not accessible. The transition between the states is specified by **transition probabilities**.



States and feature sequence:



- The hidden states generate a random processes leading to the observation sequence :  $\mathbf{X} = [\mathbf{x}(0), \mathbf{x}(1), \dots, \mathbf{x}(T-1)]$
- $lue{}$  The sequence of the hidden states is defined as  $m{q}$ , where the elements q(n) are the hidden states.

$$\mathbf{q} = [q(0), q(1), \dots, q(T-1)]^{\mathrm{T}}$$
 with:  $q(n) \in \{S_0, S_1, \dots, S_{N-1}\}$ 



- HMMs: The hidden model components:
  - □ **The observation probabilities** (the probability pdf of each state)
    The probabilities of the observation vectors only depend on the current state:

$$p\left(\boldsymbol{x}(n)\big|q(n)=S_j,\ q(n-1)=S_i,\ \ldots,\ q(0)=S_k,\ \boldsymbol{x}(n-1),\ \ldots,\ \boldsymbol{x}(0)\right)$$
$$=p\left(\boldsymbol{x}(n)\big|q(n)=S_j\right)$$

$$b_j(\boldsymbol{x}(n)) = p\left(\boldsymbol{x}(n) \middle| q(n) = S_j\right)$$
 Observation probabilities

#### □ The transition probabilities

The transition between the states is described by probabilities. They only depend on the current state of origin, not on other previous states:

$$p(q(n) = S_j | q(n-1) = S_i, ..., q(0) = S_k)$$
  
=  $p(q(n) = S_j | q(n-1) = S_i)$ 

$$a_{i,j} = p\left(q(n) = S_j \middle| q(n-1) = S_i\right)$$
 Transition probabilities

# Models for stationary and instationary systems:



Stationary system: One fixed probability modeling the feature values:

$$p(\boldsymbol{X}|H_i) = \prod_{n=0}^{N-1} p(\boldsymbol{x}(n)|H_i) \stackrel{\text{def}}{=} 0.15$$

$$0.15$$

$$0.15$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$
Feature value x

 Instationary system: Several probabilities modeling the features values (observation probabilities), plus transition probabilities in between => HMM:



$$p(\boldsymbol{X}|\lambda) = \sum_{\boldsymbol{q}_i \in \boldsymbol{Q}} a_{S_0,q_i(0)} b_{q_i(0)}(\boldsymbol{x}(0)) \ a_{q_i(0),q_i(1)} b_{q_i(1)}(\boldsymbol{x}(1)) \ \dots$$

 $\lambda \in [a, b]$ 

 $oldsymbol{Q}$ : all paths  $oldsymbol{q}_i$ 

# Summation of the different path probabilities



#### □ Instationary system: HMM model:



#### Many paths leading from start to end state:

=> Model probability is summation of all path probabilities

Path 1: 
$$S_1$$
  $S_1$   $S_1$   $S_2$   $p_1 = a_{0,1}b_1(x(0))$   $a_{1,1}b_1(x(1))$   $a_{1,1}b_1(x(2))$   $a_{1,2}b_2(x(3))$ 

Path 2: 
$$S_1$$
  $S_2$   $S_2$   $p_2$  =  $a_{0,1}b_1(x(0))$   $a_{1,1}b_1(x(1))$   $a_{1,2}b_2(x(2))$   $a_{2,2}b_2(x(3))$ 

Path 3: ···

## Corresponding formula:

$$p(\boldsymbol{X}|\lambda) = \sum_{\boldsymbol{q}_i \in \boldsymbol{Q}} a_{S_0,q_i(0)} b_{q_i(0)}(\boldsymbol{x}(0)) \ a_{q_i(0),q_i(1)} b_{q_i(1)}(\boldsymbol{x}(1)) \ \dots$$

$$\lambda \in [a, b]$$

 $oldsymbol{Q}$ : all paths  $oldsymbol{q}_i$ 



- HMMs: The transition between states:
  - The start and end state are denoted as follows:

 $S_0$  start state

 $S_{N-1}$  end state

- Both states are not related to observation vectors.
- $lue{}$  No transitions back to the start state are possible:  $a_{i,0}=0$
- lacksquare No direct transition from the start to the end state is possible:  $a_{0,N-1}=0$
- No transitions leaving the end state are possible:  $a_{N-1,i} = 0$



#### HMMs: States and transition probabilities (general setup):



#### The transition matrix:

#### with constraints:

$$a_{i,0} = 0$$
 for  $i \in \{0, N-1\}$   
 $a_{N-1,i} = 0$  for  $i \in \{0, N-1\}$   
 $a_{0,N-1} = 0$  for  $i \in \{0, N-1\}$   
 $a_{i,j} \ge 0$  for  $i, j \in \{0, N-1\}$   
 $\sum_{j=0}^{N-1} a_{i,j} = 1$  for  $i \in \{0, N-2\}$ 



□ HMMs: only transitions from left to right are possible:



□ The corresponding transition matrix:

$$m{A} = \left\{ egin{array}{ccccc} 0 & a_{0,1} & a_{0,2} & a_{0,3} & 0 \ 0 & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \ 0 & 0 & a_{2,2} & a_{2,3} & a_{2,4} \ 0 & 0 & 0 & a_{3,3} & a_{3,4} \ 0 & 0 & 0 & 0 & 0 \end{array} 
ight\}$$



□ HMMs: structure of a linear model, i.e. only transitions to the right neighbor are possible:



☐ The corresponding transition matrix:

$$m{A} = \left\{ egin{array}{ccccc} 0 & a_{0,1} & 0 & 0 & 0 \ 0 & a_{1,1} & a_{1,2} & 0 & 0 \ 0 & 0 & a_{2,2} & a_{2,3} & 0 \ 0 & 0 & 0 & a_{3,3} & a_{3,4} \ 0 & 0 & 0 & 0 & 0 \end{array} 
ight\}$$



□ The observation probabilities:  $b_j(\boldsymbol{x}(n)) = p\left(\boldsymbol{x}(n)|q(n) = S_j\right)$ 



- Dependent on the states, different probability models are related to the observation vectors.
- □ The probabilities  $b_j(x)$  can be defined by **discrete** or **continuous** random processes.



- □ The observation probabilities can be discrete or continuous random processes:  $b_i(x(n)) = p(x(n)|q(n) = S_j)$
- □ 1) Modeling by continuous random processes:
  - Continuous random processes are typically described by Gaussian mixture models:

$$b_j(oldsymbol{x}) = \sum_{k=0}^{K-1} g_{j,k} \mathcal{N}(oldsymbol{x} | oldsymbol{\mu}_{j,k}, oldsymbol{\Sigma}_{j,k})$$

□ For each state, *K* Gaussian mixtures are used for vectors of length *D*:

$$\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D \, |\boldsymbol{\Sigma}|}} \, e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}} \, \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}$$
 with:  $\boldsymbol{x} = [x_0,x_1,\dots,x_{D-1}]^{\mathrm{T}}$ 



- The observation probabilities can be discrete or continuous random processes:  $b_i(\boldsymbol{x}(n)) = p(\boldsymbol{x}(n)|q(n) = S_i)$
- 2) Modeling by discrete random processes:
  - $lue{}$  Assume x(n) can be one of K possible vectors.

$$x(n) \in \{x_0, x_1, \dots, x_{K-1}\}$$

The probability of the *k*-th vector in state *j* is:

$$p\left(\boldsymbol{x}(n) = \boldsymbol{x}_k \middle| q(n) = S_j\right) = b_{j,k}$$

Resulting in the following probability matrix:

$$\boldsymbol{B} = \left\{ \begin{array}{ccccc} b_{1,0} & b_{1,1} & \cdots & b_{1,K-2} & b_{1,K-1} \\ b_{2,0} & b_{2,1} & \cdots & b_{2,K-2} & b_{2,K-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ b_{N-2,0} & b_{N-2,1} & \cdots & b_{N-2,K-2} & b_{N-2,K-1} \end{array} \right\} \qquad \begin{array}{c} b_{j,k} \ge 0 & \text{for} & i \in \{1, N-2\}, \\ k \in \{0, K-1\} \\ \sum_{k=0}^{K-1} b_{i,k} = 1 & \text{for} & i \in \{1, N-2\} \end{array}$$

with constraints:

$$b_{j,k} \ge 0$$
 for  $i \in \{1, N-2\},\ k \in \{0, K-1\}$ 

$$\sum_{k=0}^{K-1} b_{i,k} = 1$$
 for  $i \in \{1, N-2\}$ 

## HMM: The general definition for cont. observation pdf's



□ Random process based on a Markov model which generates observations:









Sequence observed so far:  $oldsymbol{X} = [\dots]$ 



#### Determine first state transition:



Sequence observed so far:  $oldsymbol{X} = [\dots]$ 





Sequence observed so far:  $oldsymbol{X} = [oldsymbol{x}(0), \dots$ 



#### Determine second state transition:



Sequence observed so far:  $oldsymbol{X} = [oldsymbol{x}(0), \dots]$ 



#### ☐ Generation of a second observation:





#### Determine third state transition:



Sequence observed so far:

$$\boldsymbol{X} = [\boldsymbol{x}(0), \boldsymbol{x}(1), \dots]$$



#### Generation of a third observation:



Sequence observed so far:

$$X = [x(0), x(1), x(2), ...]$$



#### □ Determine fourth state transition:



Sequence observed so far:

$$X = [x(0), x(1), x(2), ...]$$



#### ■ Final state:



Final observed sequence:

$$X = [x(0), x(1), x(2)]$$

## The three basic problems of HMMs



#### Evaluation problem:

- $\blacksquare$  Estimate the probability  $p(\boldsymbol{X}|\lambda)$  that a hidden Markov model has generated an observed sequence  $\boldsymbol{X}$  .
- **Example:** The observation sequence is the MFCC sequence of a spoken word.  $\Rightarrow$  Estimate the probability that the word model  $\lambda$  fits to the spoken word.
- □ The Markov model parameters  $a_{i,j}$  and  $b_j(\boldsymbol{x}(n))$  are combined by  $\lambda$ .

#### Decoding problem:

■ Estimate the "correct" (most probable) hidden state sequence:

$$\hat{q} = [S_0, \hat{q}(0), \hat{q}(1), \dots, \hat{q}(T-1), S_{N-1}]^T$$

given the observed sequence X.

#### Model parameter estimation:

Adjustment or training of the hidden Markov models based on training data.

#### **Evaluation problem**



#### ■ Evaluation problem:

- $\blacksquare$  Estimate the probability  $p(\boldsymbol{X}|\lambda)$  that a hidden Markov model has generated an observed sequence  $\boldsymbol{X}$  .
- This probability can be determined by summing the observation probabilities of all possible observation sequences:

$$p(\boldsymbol{X}|\boldsymbol{\lambda}) = \sum_{\boldsymbol{q}_i \in \boldsymbol{Q}} p(\boldsymbol{X}, \boldsymbol{q}_i | \boldsymbol{\lambda})$$

Probability for an observed sequence X

given the path  $oldsymbol{q}_i$ .

The probability can be written as:

 $\cdot$  Probability for the path  $oldsymbol{q}_i$  .

$$p(\boldsymbol{X}|\boldsymbol{\lambda}) = \sum_{\boldsymbol{q}_i \in \boldsymbol{Q}} p(\boldsymbol{X}|\boldsymbol{q}_i,\boldsymbol{\lambda}) \, p(\boldsymbol{q}_i|\boldsymbol{\lambda})$$

□ The evaluation procedure described in the following slides will determine the two conditional probabilities within the sum separately.

#### Evaluation problem



#### Evaluation problem:

 $lue{}$  First the observation probability is determined, assuming the state sequence  $q_i$  to be known. One profits from the HMM property that the observation  $m{x}(n)$  only depends on the current state:

$$p(\boldsymbol{X}|\boldsymbol{q}_i,\lambda) = \prod_{n=0}^{T-1} p(\boldsymbol{x}(n)|q_i(n),\lambda)$$
$$= \prod_{n=0}^{T-1} b_{q_i(n)}(\boldsymbol{x}(n))$$

 $\square$  The probability of the sequence  $q_i$  can be noted as following:

$$p(\mathbf{q}_i|\lambda) = p([S_0, q_i(0), q_i(1), \dots, q_i(T-1), S_{N-1}]|\lambda)$$
  
=  $a_{S_0, q_i(0)} a_{q_i(0), q_i(1)} \dots a_{q_i(T-2), q_i(T-1)} a_{q_i(T-1), S_{N-1}}$ 

#### **Evaluation problem**



#### ■ Evaluation problem:

□ This results in the following observation probability:

$$p(\mathbf{X}|\lambda) = \sum_{\mathbf{q}_i \in \mathbf{Q}} a_{S_0,q_i(0)} b_{q_i(0)}(\mathbf{x}(0)) \ a_{q_i(0),q_i(1)} b_{q_i(1)}(\mathbf{x}(1)) \ \dots$$

- The problem of this procedure is that there are for the general HMM N-2 possible states at each time index resulting in  $(N-2)^2$  possible paths => impossible to handle.
- An alternative is the **Forward algorithm**. Here the so-called forward probability is calculated:

$$f_i(n) = p(\boldsymbol{X}^{(n)}, q(n) = S_i | \lambda)$$
 with:  $\boldsymbol{X}^{(n)} = [\boldsymbol{x}(0), \boldsymbol{x}(1), \dots, \boldsymbol{x}(n)]$ 

which defines the probability to be at the time n in the state  $S_i$  and having so far observed the sequence  $\boldsymbol{X}^{(n)}$ .

In order to understand its calculation, we will analyse "trellis diagrams".





















### Trellis diagram for a specific HMM



### Signification of nodes and edges:

- □ The transition probabilities are typically noted at the edges.
- The observation probabilities are noted at the nodes.



### The "Forward algorithm"



### □ Calculation of the forward probability:

■ The forward probability can be calculated by summing the probabilities for each path arriving at one state:

$$f_i(n) = p(\mathbf{X}^{(n)}, q(n) = S_i | \lambda)$$

$$= \sum_{\mathbf{q}_j^{(n)} \text{ with } q_j(n) = S_i} p(\mathbf{X}^{(n)}, \mathbf{q}_j^{(n)} | \lambda)$$

with: 
$$m{X}^{(n)} = [m{x}(0), \, m{x}(1), \, \dots, \, m{x}(n)]$$
  $m{q}_i^{(n)} = [q_i(0), \, q_i(1), \, \dots, \, q_i(n)]^{\mathrm{T}}$ 

The forward probability can be calculated recursively:

$$f_i(n) = \left[\sum_{j=1}^{N-2} f_j(n-1) a_{j,i}\right] b_i(\boldsymbol{x}(n))$$

#### Example:



$$f_2(4) = [f_1(3)a_{12} + f_2(3)a_{22} + f_3(3)a_{32}] b_2(\mathbf{x}(4))$$

### The "Forward algorithm"



### Graph explaining the forward algorithm:



## The "Forward algorithm" - overview



### Evaluation problem:

- $lue{}$  Estimate the probability  $p(\boldsymbol{X}|\lambda)$  that a hidden Markov model has generated an observed sequence  $\boldsymbol{X}$ .
- □ The observation probability is calculated with the **forward algorithm**:
  - Initialization:

$$f_i(0) = a_{0,i} b_i(\boldsymbol{x}(0))$$

Recursion:

$$f_i(n) = \left[\sum_{j=1}^{N-2} f_j(n-1) \, a_{j,i}
ight] \left.b_i(oldsymbol{x}(n))
ight| \Rightarrow \mathsf{Se}^{i}$$

Termination:

$$p(X|\lambda) = \sum_{j=1}^{N-2} f_j(T-1) a_{j,N-1}$$

#### **Result of the evaluation problem:**

Probability that the corresponding HMM has generated the observed sequence:  $p(\boldsymbol{X}|\lambda)$ 

⇒ Several HMMs (corresponding to different phonemes / words) are evaluated to detect the most probable one.

### The three basic problems of HMMs



### □ Evaluation problem:

- $\hfill \square$  Estimate the probability  $p(X|\lambda)$  that a hidden Markov model has generated an observed sequence X .
- lacktriangle The Markov model parameters  $a_{i,j}$  and  $b_j(oldsymbol{x}(n))$  are combined by  $\lambda$ .

### Decoding problem:

■ Estimate the "correct", i.e., most probable, hidden state sequence:

$$\hat{\boldsymbol{q}} = [S_0, \hat{q}(1), \hat{q}(2), \dots, \hat{q}(T-2), S_{N-1}]^{\mathrm{T}}$$

given the observed sequence X.

#### ■ Model parameter estimation:

 Adjustment or training of the hidden Markov models based on training data

### Decoding problem



### Decoding problem:

■ Estimate the "correct", i.e. most probable, hidden state sequence:

$$\hat{\boldsymbol{q}} = [S_0, \, \hat{q}(1), \, \hat{q}(2), \, \dots, \, \hat{q}(T-2), \, S_{N-1}]^{\mathrm{T}}$$

given the observed sequence X.

Formally this can be written by:

$$\hat{\boldsymbol{q}} = \underset{\boldsymbol{q}_j}{\operatorname{arg\,max}} \left\{ p(\boldsymbol{q}_j | \boldsymbol{X}, \boldsymbol{\lambda}) \right\} \qquad \text{using:} \quad p(\boldsymbol{q}_j | \boldsymbol{X}, \boldsymbol{\lambda}) = \frac{p(\boldsymbol{q}_j, \boldsymbol{X} | \boldsymbol{\lambda})}{p(\boldsymbol{X} | \boldsymbol{\lambda})}$$

lacktriangledown Since  $p(\boldsymbol{X}|\lambda)$  does not depend on the state sequence  $\boldsymbol{q}$ , one obtains:

$$\hat{\boldsymbol{q}} = \arg\max_{\boldsymbol{q}_j} \left\{ p(\boldsymbol{q}_j, \boldsymbol{X} | \lambda) \right\} \qquad \text{with:} \quad p(\boldsymbol{q}_j, \boldsymbol{X} | \lambda) = p(\boldsymbol{X} | \boldsymbol{q}_i, \lambda) \, p(\boldsymbol{q}_i | \lambda)$$

This task can be solved by comparable methods as used for the evaluation problem.

### Decoding problem



□ An efficient calculation of the most probable sequence can be performed with the Viterbi algorithm searching for the path with the maximum probability:

$$v_i(n) = \max_{\boldsymbol{q}_j^{(n)} \text{ with } q_j(n) = S_i} \left\{ p(\boldsymbol{X}^{(n)}, \, \boldsymbol{q}_j^{(n)} | \lambda) \right\}$$

Iterative procedure:

$$v_i(n) = \max_{j=1...N-2} \{v_j(n-1) a_{j,i}\} b_i(\boldsymbol{x}(n))$$

□ Instead of summing the probabilities for each path as is done for the **forward algorithm** 

$$f_i(n) = \sum_{\boldsymbol{q}_j^{(n)} \text{ with } q_j(n) = S_i} p(\boldsymbol{X}^{(n)}, \, \boldsymbol{q}_j^{(n)} | \lambda)$$

$$f_i(n) = \left[\sum_{j=1}^{N-2} f_j(n-1) a_{j,i}\right] b_i(\boldsymbol{x}(n))$$

#### Example:

Third path with max. probability





#### Initialization:





□ Recursion for the first state:





□ Recursion for the first state:





□ Recursion for the second state:





□ Recursion for the second state:





■ Recursion for the third state:





■ Recursion for the third state:





□ Recursion for the fourth state:





□ Recursion for the fourth state:





### □ Complete recursion:





□ Complete recursion + termination:





□ Back-tracking of the optimal sequence:





- Summary of the Viterbi algorithm:
  - Initialization:

$$v_i(0) = a_{0,i} b_i(\boldsymbol{x}(0))$$

Recursion:

$$v_{i}(n) = \max_{j=1...N-2} \{v_{j}(n-1) a_{j,i}\} b_{i}(\boldsymbol{x}(n))$$
  
$$t_{i}(n) = \arg\max_{j=1...N-2} \{v_{j}(n-1) a_{j,i}\}$$

Termination:

$$v_{N-1}(T) = \max_{j=1...N-2} \{v_j(T-1) a_{j,N-1}\}$$
  
$$t_{N-1}(T) = \arg\max_{j=1...N-2} \{v_j(T-1) a_{j,N-1}\}$$

■ Back-tracking of the optimal sequence:

$$\hat{q}(n) = \begin{cases} t_{N-1}(T) & \text{if } n = T \\ t_{\hat{q}(n+1)}(n+1) & \text{else} \end{cases}$$



- Properties of the Viterbi algorithm:
  - Only multiplications are calculated. This allows a processing in the log-domain.
    - => Advantages in the scaling of the calculated values. For longer observation sequences these values become very small and have to be re-scaled regularly in the linear domain. => Can be avoided in the log-domain.

$$v_{i,\log}(n) = \max_{j=1...N-2} \{v_{j,\log}(n-1) + a_{j,i,\log}\} + b_{i,\log}(\boldsymbol{x}(n))$$

Sometimes the Viterbi procedure is also used as a simplified version of the forward algorithm.

## The three basic problems of HMMs



### ■ Evaluation problem:

- $\ \square$  Estimate the probability  $p(X|\lambda)$  that a hidden Markov model has generated an observed sequence X .
- lacktriangle The Markov model parameters  $a_{i,j}$  and  $b_j(oldsymbol{x}(n))$  are combined by  $\lambda$ .

### □ Decoding problem:

□ Estimate the "correct" hidden state sequence:

$$\hat{q} = [S_0, \hat{q}(2), \hat{q}(2), \dots, \hat{q}(T-2), S_{N-1}]^{\mathrm{T}}$$

given the observed sequence X.

### ■ Model parameter estimation:

Next week

Adjustment or training of the hidden Markov models based on training data.

### Summary



- □ Principle of Speech recognition
- HMM: General definition
- ☐ The three basic problems of HMMs
  - Evaluation problem
  - Decoding problem
  - Model parameter estimation problem
- Evaluation problem:
  - Efficient calculation procedures based on Trellis diagrams and the forward algorithm
- Decoding problem:
  - Efficient calculation based on the Viterbi algorithm

#### References



#### **Hidden Markov models:**

- [1] L.R. Rabiner: A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, Proc. IEEE, vol. 77, no. 2, 1989
- [2] B. Pfister, T. Kaufman: *Sprachverarbeitung*, Springer, 2008
- [3] C. M. Bishop: Pattern Recognition and Machine Learning, Springer, 2006
- [4] L. Rabiner, B.H. Juang: Fundamentals of Speech Recognition, Prentice Hall, 1993
- [5] B. Gold, N. Morgan: Speech and Audio Signal Processing, Wiley, 2000

### HMM Task: "two coin experiment"



Zahl (,Z'): Wappen (,W'): 
$$S_1: \qquad p(x(n)=Z|S_1) = \frac{1}{4} \qquad p(x(n)=W|S_1) = \frac{3}{4} \\ S_2: \qquad p(x(n)=Z|S_2) = \frac{1}{2} \qquad p(x(n)=W|S_2) = \frac{1}{2} \\ a_{1,1} = \frac{7}{8} \qquad a_{2,1} = \frac{1}{8} \qquad a_{2,2} = \frac{7}{8}$$

- $lue{}$  Observed sequence:  $X = [W \ W \ Z \ W]$
- $lue{}$  Start in state:  $S_1$  and end in state:  $S_2$
- ☐ Task: Calculate the probability that this HMM has generated the observed sequence.
- □ Compare it to a single "normal coin"  $p(x(n) = Z) = p(x(n) = W) = \frac{1}{2}$