Biologically Inspired Learning Spiking Neural Networks

David Sharp

University of Bristol

6/12/2019

Spikes

Neuron

Action Potential

Activation Functions

Membrane Potential - LIF

$$\tau \frac{dV(t)}{dt} = -V(t) + R_m I_{stim}(t) + R_m I_{syn}(t)$$

if
$$V(t) > V_{thresh}$$
 then spike

- A model of membrane potential
- Leaky Integrate and Fire (LIF)
- Spike Response Model (SRM)

Spike Time Dependent Plasticity

Markram et al. 1997

Deep Spiking Networks

M. Beyeler et al. 2013

Back to Backprop

Lee et al. 2016

Final Points

- Spiking Networks are approaching traditional networks in performance
- We are still working out how to train them
- Spiking Networks have many advantages