Ferienkurs Experimentalphysik II Thermodynamik Grundlagen - Übungen

Lennart Schmidt

08.09.2011

Aufgabe 1:

Berechnen Sie den Volumenausdehnungskoeffizienten

$$\alpha = \frac{1}{V} \frac{\partial V}{\partial T} \Big|_{p} \tag{0.1}$$

für das ideale Gas.

Aufgabe 2:

Wie viele Freiheitsgrade besitzt das abgebildete Molekül?

Aufgabe 3:

Berechnen Sie die kritische Temperatur T_c und das kritische Volumen V_c der Van-der-Waals Gleichung

$$\left(p + \frac{a\nu^2}{V^2}\right)(V - b\nu) = \nu RT .$$
(0.2)

Aufgabe 4:

Berechnen Sie C_V und C_p des idealen Gases in Abhängigkeit von der Anzahl der Freiheitsgrade f.

Aufgabe 5:

Leiten Sie unter Verwendung des Fourier'schen Gesetzes,

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = -\lambda A \frac{\mathrm{d}T}{\mathrm{d}x} \,, \tag{0.3}$$

die Wärmeleitungsgleichung

$$\frac{\partial T}{\partial t} = \frac{\lambda}{c\rho} \frac{\partial^2 T}{\partial x^2} \tag{0.4}$$

her. Betrachten Sie dazu die untenstehende Abbildung und drücken Sie d $Q_i/\mathrm{d}t$ zum einen durch d $Q(x)/\mathrm{d}t$ und d $Q(x+\Delta x)/\mathrm{d}t$ aus und zum anderen durch die Wärmekapazität und die zeitliche Änderung der Temperatur. Entwickeln Sie $dQ(x+\Delta x)/\mathrm{d}t$ bis zur linearen Ordnung in Δx .

Aufgabe 6:

Die Solarkonstante $I_{SE}=1.37 \text{kW/m}^2$ gibt die Intensität der Sonnenstrahlung am Ort der Erde an. Die Entfernung Erde-Sonne beträgt $R_{SE}\approx 150\times 10^6 \text{km}$ und der Radius der Sonne ist $R_S\approx 7\times 10^5 \text{km}$. Welche Temperatur T_S hat die Oberfläche der Sonne, wenn Sie annehmen, dass es sich um einen schwarzen Strahler handelt?

Aufgabe 7:

Ein auf die Temperatur T erhitzter Hohlraum mit dem Volumen V enthält elektromagnetische Strahlung, die sich in thermodynamischer Hinsicht wie ein Gas mit der Zustandsgleichung

$$p = \frac{1}{3}bT^4\tag{0.5}$$

und der inneren Energie

$$U = bT^4V (0.6)$$

verhält (Photonengas). b ist eine Konstante. Bestimmen Sie die isochore Wärmekapazität C_V und die TV-Form der Adiabatengleichung des Photonengases (gesucht ist eine Gleichung der Form $T^aV^b=const.$), wobei ein adiabatischer Prozess durch $\delta Q=0$ definiert ist.

Hinweis: Verwenden Sie an geeigneter Stelle $dU = (\partial U/\partial T)_V dT + (\partial U/\partial V)_T dV$. Außerdem: $ndx/x + mdy/y = 0 \Rightarrow x^n y^m = const$.

Aufgabe 8:

Die Lufttemperatur über einem großen See sei -2° C, während das Wasser im See eine Temperatur von 0° C hat. Wie lange dauert es, bis sich im See eine 10cm dicke Eisschicht gebildet hat? Nehmen Sie an, dass hierbei nur die Wärmeleitung ($\lambda_{Eis} = 2, 3\text{W/mK}$) als Wärmetransportmechanismus eine Rolle spielt. Die spezifische Schmelzwärme von Eis beträgt $3, 3 \cdot 10^5 \text{J/kg}$ und die Dichte von Eis ist $\rho_{Eis} = 920 \text{kg/m}^3$.

Hinweis: Die Differentialgleichung lässt sich durch Trennung der Variablen lösen.

Aufgabe 9:

Ein Block aus Kupfer rutscht eine schiefe Ebene mit einer Länge von 10m und einem Gefälle von 30° hinunter. Der Reibungskoeffizient zwischen Kupfer und dem Material der Ebene betrage $\mu_R=0,2$. Wie stark erwärmt sich der Kupferblock, wenn man davon ausgeht, dass die gesamte Reibungsarbeit in eine gleichmäßige Erwärmung des Kupferblocks übergeht? Die spezifische Wärmekapazität von Kupfer ist c=386J/kgK.

Aufgabe 10:

Gegeben sei ein beheizbares Zimmer mit dem Volumen 75m³ und der Anfangstemperatur 14°C. Die Heizung werde nun aufgedreht, bis die Endtemperatur 20°C erreicht ist.

Hinweis: Betrachten Sie die Luft näherungsweise als reinen Stickstoff N_2 und diesen als ideales Gas. Der Luftdruck soll 1013hPa betragen und sich durch das Heizen nicht verändern.

- (a) Wie groß ist die in der Zimmerluft anfänglich enthaltene Energie?
- (b) Wie groß ist die Energie der Zimmerluft nach Beendigung des Heizvorgangs?
- (c) Welche Wärmeenergie hat die Heizung abgegeben?

Aufgabe 11:

Während einer Wanderung befällt Sie nachts eine plötzliche Lust auf Eis, doch die Umgebungstemperatur beträgt lediglich 6°C. Sie wissen jedoch, dass ein mondloser, sternenklarer Nachthimmel als Schwarzkörperstrahler der Temperatur $T_h = -23$ °C dienen kann. Also kippen Sie Wasser in ein vom Boden thermisch isoliertes Gefäß und erhalten eine dünne Wasserschicht der Masse $m_W = 4,5$ g mit der Oberfläche $A_W = 9$ cm² und dem Emissionsgrad $\epsilon = 0,9$. Berechnen Sie die Zeit, die das Wasser zum Einfrieren benötigt. Die Wärmekapazität von Wasser beträgt $c_W = 4190 \text{J/kgK}$ und die latente Schmelzwärme von Wasser ist durch $L_W = 333 \text{kJ/kg}$ gegeben.

Hinweis: Nehmen Sie an entsprechender Stelle an, dass die Wassertemperatur konstant bleibt, da die Änderung nur gering ist.

Aufgabe 12:

Eine Luftblase von 20cm³ Volumen befinde sich in 40m Tiefe am Grund eines Sees, wo eine Temperatur von 4°C herrsche. Die Blase steige zur Oberfläche auf, wo die Temperatur 20°C sein soll. Nehmen Sie für die Temperatur der Blase jeweils den Wert der Wassertemperatur an. Wie groß ist das Volumen an der Wasseroberfläche? (Vor dem Zerplatzen ...).

Hinweis: Der Schweredruck ist gegeben durch $p(h) = p_0 + \rho g h$.