# Clustering

# Real-world example

# Example: Chapter 2 DM Concepts and Techniques

**Table 2.2** A Sample Data Table Containing Attributes of Mixed Type

| Object     | test-I    | test-2    | test-3    |
|------------|-----------|-----------|-----------|
| Identifier | (nominal) | (ordinal) | (numeric) |
| 1          | code A    | excellent | 45        |
| 2          | code B    | fair      | 22        |
| 3          | code C    | good      | 64        |
| 4          | code A    | excellent | 28        |

### **Similarity/Dissimilarity for Simple Attributes**

p and q are the attribute values for two data objects.

| Attribute         | Dissimilarity                                                                                      | Similarity                                                                                   |
|-------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Type              |                                                                                                    |                                                                                              |
| Nominal           | $d = \left\{ egin{array}{ll} 0 & 	ext{if } p = q \ 1 & 	ext{if } p  eq q \end{array}  ight.$       | $s = \left\{ egin{array}{ll} 1 & 	ext{if } p = q \ 0 & 	ext{if } p  eq q \end{array}  ight.$ |
| Ordinal           | $d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$ , where $n$ is the number of values) | $s = 1 - \frac{ p-q }{n-1}$                                                                  |
| Interval or Ratio | d =  p - q                                                                                         | s = -d,                                                                                      |
|                   |                                                                                                    | $\left  egin{array}{l} s=-d, \ s=1-rac{d-min\_d}{max\_d-min\_d} \end{array}  ight $         |

**Table 5.1.** Similarity and dissimilarity for simple attributes

# Similarity and Dissimilarity

### Similarity

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]

### Dissimilarity

- Numerical measure of how different are two data objects
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies

### Proximity refers to a similarity or dissimilarity

## Example: Chapter 2 DM Concepts and Techniques

**Table 2.2** A Sample Data Table Containing Attributes of Mixed Type

| Object<br>Identifier | test-l<br>(nominal) | test-2<br>(ordinal) | test-3<br>(numeric) |
|----------------------|---------------------|---------------------|---------------------|
| 1                    | code A              | excellent           | 45                  |
| 2                    | code B              | fair                | 22                  |
| 3                    | code C              | good                | 64                  |
| 4                    | code A              | excellent           | 28                  |

- □ test-1
  - d(i, j) evaluates to 0 if objects i = j, and 1 otherwise
- □ test-2
  - d(i, j) = |i-j| / (n-1), we have 0 to n-1 values
- □ test-3
  - Normalize (min-max normalization)
  - Distance measure (Manhattan or Euclidean distance )

# Example

**Table 2.2** A Sample Data Table Containing Attributes of Mixed Type

| Object     | test-I    | test-2    | test-3    |
|------------|-----------|-----------|-----------|
| ldentifier | (nominal) | (ordinal) | (numeric) |
| 1          | code A    | excellent | 45        |
| 2          | code B    | fair      | 22        |
| 3          | code C    | good      | 64        |
| 4          | code A    | excellent | 28        |

$$d(3, 1) = \frac{1(1)+1(0.50)+1(0.45)}{3} = 0.65.$$

$$similarity(p,q) = \frac{\sum_{k=1}^{n} w_k \delta_k s_k}{\sum_{k=1}^{n} \delta_k}$$

# Limitations of K-means

# K-means has problems when clusters are of different

- Sizes
- Densities
- Non-globular shapes

K-means has problems when the data contains outliers.

### **Limitations of K-means: Clusters with Different Sizes**





**Original Points** 

K-means (3 Clusters)

### **Limitations of K-means: Different Density**





**Original Points** 

K-means (3 Clusters)

### **Limitations of K-means: Non-globular Shapes**



**Original Points** 

K-means (2 Clusters)

## **Overcoming K-means Limitations**





**Original Points** 

**K-means Clusters** 

One solution is to use many clusters. Find parts of clusters but need to put together.

# **Overcoming K-means Limitations**





**Original Points** 

**K-means Clusters** 

# **Overcoming K-means Limitations**



**Original Points** 

**K-means Clusters** 

### Variations of the K-Means Method

- A few variants of the k-means which differ in
  - Selection of the initial k means
  - Dissimilarity calculations
  - Strategies to calculate cluster means
- Handling categorical data: k-modes (Huang'98)
  - Replacing means of clusters with modes
  - Using new dissimilarity measures to deal with categorical objects
  - Using a <u>frequency</u>-based method to update modes of clusters
- Handling a mixture of categorical and numerical data k-prototype method

# Hierarchical Clustering

# **Hierarchical Clustering**

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
  - A tree like diagram that records the sequences of merges or splits





# Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
  - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level
- Correspond to meaningful taxonomies
  - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

# Examples

- Hierarchical clustering of gene expression data lead to new theories
- Later, theories tested in the lab.



<sup>&</sup>quot;Repeated Observation of Breast Tumor Subtypes in Independent Gene Expression Data Sets" (Sorlie et al., 2003)

Roger de Piles rated 57 paintings along different dimensions.



## Hierarchical vs Kmeans

Point assignment good when clusters are nice, convex shapes:





- Hierarchical can win when shapes are weird:
  - Note both clusters have essentially the same centroid.

Aside: if you realized you had concentric clusters, you could map points based on distance from center, and turn the problem into a simple, one-dimensional case.



# **Hierarchical Clustering**

### Two main types of hierarchical clustering

#### **Agglomerative**

- Start with the points as individual clusters
- At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

#### **Divisive**

- Start with one, allinclusive cluster
- At each step, split a cluster until each cluster contains a point (or there are k clusters)

Traditional hierarchical algorithms use a similarity or distance matrix to Merge or split one cluster at a time

# **Agglomerative Clustering Algorithm**

#### More popular hierarchical clustering technique

- 1. Compute the proximity matrix
- 2. Let each data point be a cluster
- 3. Repeat
- 4. Merge the two closest clusters
- 5. Update the proximity matrix
- 6. Until only a single cluster remains

# Key operation is the computation of the proximity of two clusters

Different approaches exist to define the distance between clusters

# **Starting Situation**

Start with clusters of individual points and a proximity matrix







## **Intermediate Situation**

After some merging steps, we have some clusters



|            | C1 | C2 | С3 | C4 | <b>C</b> 5 |
|------------|----|----|----|----|------------|
| <b>C</b> 1 |    |    |    |    |            |
| C2         |    |    |    |    |            |
| <b>C</b> 3 |    |    |    |    |            |
| <u>C4</u>  |    |    |    |    |            |
| <b>C</b> 5 |    |    |    |    |            |

**Proximity Matrix** 



## **Intermediate Situation**

We want to merge the two closest clusters (C2 and C5) and under the provinct matrix

update the proximity matrix.





**Proximity Matrix** 



# **After Merging**

The question is "How do we update the proximity matrix?"



|             | ı          |            | <b>C2</b><br>U |    |    |
|-------------|------------|------------|----------------|----|----|
|             |            | <b>C</b> 1 | U<br><b>C5</b> | C3 | C4 |
|             | <b>C1</b>  |            | ?              |    |    |
| <b>C2</b> U | <b>C</b> 5 | ?          | ?              | ?  | ?  |
|             | <b>C</b> 3 |            | ?              |    |    |
|             | <u>C4</u>  |            | ?              |    |    |





|            | р1 | p2 | рЗ | p4 | р5 | <u>.</u> |
|------------|----|----|----|----|----|----------|
| <b>p1</b>  |    |    |    |    |    |          |
| <b>p2</b>  |    |    |    |    |    |          |
| р3         |    |    |    |    |    |          |
| <b>p</b> 4 |    |    |    |    |    |          |
| p5         |    |    |    |    |    |          |
| _          |    |    |    |    |    |          |

- MIN
- □ MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error



|           | р1 | <b>p2</b> | рЗ | p4 | <b>p</b> 5 | <u>.</u> . |
|-----------|----|-----------|----|----|------------|------------|
| <b>p1</b> |    |           |    |    |            |            |
| p2        |    |           |    |    |            |            |
| p2<br>p3  |    |           |    |    |            |            |
| <b>p4</b> |    |           |    |    |            |            |
| р5        |    |           |    |    |            |            |
|           |    |           |    |    |            |            |

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error



|            | р1 | <b>p2</b> | рЗ | p4 | <b>p</b> 5 | <u> </u> |
|------------|----|-----------|----|----|------------|----------|
| <b>p1</b>  |    |           |    |    |            |          |
| p2         |    |           |    |    |            |          |
| рЗ         |    |           |    |    |            |          |
| <b>p</b> 4 |    |           |    |    |            |          |
| р5         |    |           |    |    |            |          |
|            |    |           |    |    |            |          |

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error



|            | p1 | p2 | рЗ | p4 | <b>p5</b> | <u> </u> |
|------------|----|----|----|----|-----------|----------|
| <b>p</b> 1 |    |    |    |    |           |          |
| <b>p2</b>  |    |    |    |    |           |          |
| р3         |    |    |    |    |           |          |
| <b>p</b> 4 |    |    |    |    |           |          |
| p5         |    |    |    |    |           |          |
|            |    |    |    |    |           |          |

- MIN
- □ MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error



|            | <b>p</b> 1 | <b>p2</b> | рЗ | p4 | p5 | <u> </u> |
|------------|------------|-----------|----|----|----|----------|
| р1         |            |           |    |    |    |          |
| <b>p2</b>  |            |           |    |    |    |          |
| рЗ         |            |           |    |    |    |          |
| <b>p</b> 4 |            |           |    |    |    |          |
| р5         |            |           |    |    |    |          |
|            |            |           |    |    |    |          |

- MIN
- □ MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error

### Three popular choices for Inter-Cluster Similarity

Let G and H are two clusters,  $d_{i,j}$  is the distance between two objects and  $N_G$  is the number of points in a cluster

**Single-linkage:** the similarity of two clusters is the similarity of their most similar members (closest points)

$$d_{SL}(G,H) = \min_{i \in G, j \in H} (d_{i,j})$$

**Complete-linkage:** the similarity of two clusters is the similarity of their *most dissimilar* members (farthest points)

$$d_{\mathsf{CL}}(\mathsf{G},\mathsf{H}) = \max_{i \in G, j \in H} (d_{i,j})$$

Group Average: the average similarity between clusters

$$d_{GA}(G,H) = \frac{1}{N_G N_H} \sum_{i \in G} \sum_{j \in H} d_{i,j}$$

### **Example from Book Principle of Data Mining**

### Single Link

|   | a | b  | c  | d  | e  | f  |
|---|---|----|----|----|----|----|
| a | 9 | 12 | 6  | 3  | 25 | 4  |
| b |   | 9  | 19 | 8  | 14 | 15 |
| c |   |    | 9  | 12 | 5  | 18 |
| d |   |    |    | 9  | 11 | 9  |
| e |   |    |    |    | 1  | 7  |
| f |   |    |    |    |    |    |

|    | ad | b | c  | e  | f  |
|----|----|---|----|----|----|
| ad | 9  | 8 | 6  | 11 | 4  |
| b  |    | 9 | 19 | 14 | 15 |
| c  |    |   | 9  | 5  | 18 |
| e  |    |   |    | 9  | 7  |
| f  |    |   |    |    | 9  |

# **Example: Single Link**

### Distance Matrix after two Mergers

|    | ad | b | c  | e  | f  |
|----|----|---|----|----|----|
| ad |    | 8 | 6  | 11 | 4  |
| b  |    | 1 | 19 | 14 | 15 |
| c  |    |   | 1  | 5  | 18 |
| e  |    |   |    | 9  | 7  |
| f  |    |   |    |    | 9  |

|     | adf | b | c  | e  |
|-----|-----|---|----|----|
| adf |     |   | 1  |    |
| b   |     | 9 | 19 | 14 |
| c   |     |   | 9  | 5  |
| e   |     |   |    | 9  |

|     | adf | b | ce |
|-----|-----|---|----|
| adf | 9   | 8 | 6  |
| b   |     | 0 | 14 |
| ce  |     |   | 9  |

|       | adfce | b |
|-------|-------|---|
| adfce | 0     | 8 |
| b     | 8     | 0 |

# **Example: Single Link**



### **Example from Book Principle of Data Mining**

### Complete Link min(max distances)

|   | a | b  | c  | d  | e  | f  |
|---|---|----|----|----|----|----|
| a | 9 | 12 | 6  | 3  | 25 | 4  |
| b |   | Q  | 19 | 8  | 14 | 15 |
| c |   |    | 9  | 12 | 5  | 18 |
| d |   |    |    | 9  | 11 | 9  |
| e |   |    |    |    | 1  | 7  |
| f |   |    |    |    |    |    |

$$d_{\mathsf{CL}}(\mathsf{G},\mathsf{H}) = \max_{i \in G, j \in H} (d_{i,j})$$

|    | ad | b  | c  | e  | f  |
|----|----|----|----|----|----|
| ad | 0  | 12 | 12 | 25 | 9  |
| b  |    | 9  | 19 | 14 | 15 |
| c  |    |    | 9  | 5  | 18 |
| e  |    |    |    |    | 7  |
| f  |    |    |    |    |    |

#### **Example Complete Link min(max distances)**

|    | ad | b  | c  | e  | f  |
|----|----|----|----|----|----|
| ad | 0  | 12 | 12 | 25 | 9  |
| b  |    | 0  | 19 | 14 | 15 |
| c  |    |    |    | 5  | 18 |
| e  |    |    |    |    | 7  |
| f  |    |    |    |    |    |

|    | ad | b  | ce   | f           |
|----|----|----|------|-------------|
| ad | 0  | 12 | 25   | 9           |
| b  |    |    | [ 19 | 15          |
| ce |    |    |      | <b>[</b> 18 |
| f  |    |    |      |             |

|     | adf | b         | ce |
|-----|-----|-----------|----|
| adf |     | <b>15</b> | 25 |
| b   |     |           | 19 |
| ce  |     |           |    |

## Strength of MIN

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
  - Determined by one pair of points, i.e., by one link in the proximity graph.



**Original Points** 

**Two Clusters** 

Can handle non-elliptical shapes

## **Limitations of MIN**



Sensitive to noise and outliers

**Original Points** 



#### **Two Clusters**

## Strength of MAX

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
  - Determined by all pairs of points in the two clusters





**Original Points** 

**Two Clusters** 

Less susceptible to noise and outliers

### **Limitations of MAX**



**Original Points** 

**Two Clusters** 

- Tends to break large clusters
- Biased towards globular clusters

## Cluster Similarity: Group Average

Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} proximity(p_{i}, p_{j})}{|Cluster_{i}| * |Cluster_{i}|}$$

Need to use average connectivity for scalability since total proximity favors large clusters



#### Hierarchical Clustering: Group Average

 Compromise between Single and Complete Link

- Strengths
  - Less susceptible to noise and outliers

- Limitations
  - Biased towards globular clusters

## Cluster Similarity: Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
  - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
  - Can be used to initialize K-means

#### **Hierarchical Clustering: Comparison**



# Properties of intergroup similarity

#### Single linkage

- can produce "chaining," where a sequence of close observations in different groups cause early merges of those groups
- Complete linkage has the opposite problem.
  - It might not merge close groups because of outlier members that are far apart.
- Group average represents a natural compromise,
  - but depends on the scale of the similarities. Applying a monotone transformation to the similarities can change the results.

### Hierarchical Clustering: Time and Space

#### SPACE

- O(N²) space since it uses the proximity matrix.
  - N is the number of points.

#### □ TIME

- O(N³) time in many cases
  - ◆There are N steps, and at each step, the size, N<sup>2</sup>, proximity matrix must be updated and searched
  - ◆Complexity can be reduced to O(N² log(N)) time if we use a special structure like a heap or sorted lists

## **Hierarchical Clustering: Limitations**

- Once a decision is made to combine two clusters, it cannot be undone
- Do not scale well: time complexity of at least O(N<sup>2</sup> logN), where n is the number of total objects
- Different schemes have problems with one or more of the following:
  - Sensitivity to noise and outliers
  - Difficulty handling different sized clusters and convex shapes
  - Breaking large clusters