Задание 1. Булева функция ф(a, b, c) задана как суперпозиция некоторых функций ф_і(x, y) (список функций ф_і см. в Таблице 1 методических указаний по выполнению КР№2).

- 1) По заданной суперпозиции получить соответствующее логическое выражение;
- 2) Получить таблицу значений заданной функции;
- 3) Получить СДНФ, СКНФ, СПНФ заданной функции;
- 4) Получить представление заданной функции в виде минимальных ДНФ и КНФ;
- 5) Получить представление заданной функции в виде сокращенной БДР. По сокращенной БДР записать представление функции:
 - с помощью оператора IF-THEN-ELSE (ITE-представление);
 - в виде ДНФ (максимально упростить найденную ДНФ, если это возможно);
 - в виде КНФ (максимально упростить найденную КНФ, если это возможно).

Nº	Выражение, задающее функцию	Nº	Выражение, задающее функцию
1	$\phi_8(\phi_3(a, b), \phi_9(\phi_1(c, a), \phi_{11}(b, c)))$	16	$\phi_7(\phi_8(\phi_5(c, a), \phi_9(b, a)), \phi_4(c, b))$
2	$\phi_{14}(\phi_6(\phi_7(b, a), c), \phi_4(b, \phi_5(c, a)))$	17	$\phi_{13}(\phi_7(a, \phi_8(c, b)), \phi_1(c, \phi_3(a, b)))$
3	$\phi_9(\phi_2(c, \phi_8(a, b)), \phi_{13}(\phi_3(b, a), c))$	18	$\phi_{11}(\phi_4(\phi_{14}(a, c), b), \phi_5(\phi_9(b, a), c))$
4	$\phi_6(\phi_{14}(\phi_5(b, c), \phi_{11}(a, c)), \phi_2(b, a))$	19	$\phi_4(\phi_3(a, b), \phi_8(\phi_7(c, a), \phi_6(b, c)))$
5	$\phi_1(\phi_1(a, \phi_3(c, b)), \phi_{14}(c, \phi_9(a, b)))$	20	$\phi_2(\phi_9(\phi_5(b, a), c), \phi_{13}(b, \phi_8(c, a)))$
6	$\phi_7(\phi_{13}(\phi_6(a, b), c), \phi_8(\phi_5(c, b), a))$	21	$\phi_{14}(\phi_2(c, \phi_1(a, b)), \phi_{11}(\phi_3(b, a), c))$
7	$\phi_{13}(\phi_4(c, b), \phi_8(\phi_3(a, c), \phi_1(a, b)))$	22	$\phi_{14}(\phi_{9}(\phi_{13}(b, c), \phi_{3}(a, c)), \phi_{2}(b, a))$
8	$\phi_{11}(\phi_2(\phi_5(b, a), c), \phi_9(a, \phi_{14}(c, b)))$	23	$\phi_9(\phi_7(a, \phi_5(c, b)), \phi_8(c, \phi_{11}(a, b)))$
9	$\phi_4(\phi_8(a, \phi_6(b, c)), \phi_{13}(\phi_3(b, c), a))$	24	$\phi_6(\phi_1(\phi_4(a, b), c), \phi_{14}(\phi_5(c, b), a))$
10	$\phi_2(\phi_7(\phi_8(b, a), \phi_{11}(c, b)), \phi_5(c, a))$	25	$\phi_1(\phi_3(c, b), \phi_{14}(\phi_4(a, c), \phi_{11}(a, b)))$
11	$\phi_8(\phi_4(a, \phi_9(c, b)), \phi_1(c, \phi_3(b, a)))$	26	$\phi_7(\phi_{13}(\phi_5(b, a), c), \phi_2(a, \phi_9(c, b)))$
12	$\phi_{14}(\phi_{13}(\phi_5(c, a), b), \phi_6(\phi_2(c, b), a))$	27	$\phi_{13}(\phi_8(a, \phi_4(b, c)), \phi_7(\phi_3(b, c), a))$
13	$\phi_9(\phi_1(b, a), \phi_{14}(\phi_3(c, a), \phi_{11}(b, c)))$	28	$\phi_{11}(\phi_{14}(\phi_6(b, a), \phi_5(c, b)), \phi_2(c, a))$
14	$\phi_6(\phi_7(\phi_{14}(c, b), a), \phi_2(a, \phi_5(c, b)))$	29	$\phi_4(\phi_{11}(a, \phi_3(c, b)), \phi_{14}(c, \phi_8(b, a)))$
15	$\phi_1(\phi_{14}(b, \phi_3(c, a)), \phi_{13}(\phi_4(b, a), c))$	30	$\phi_2(\phi_{13}(\phi_6(b, a), c), \phi_{14}(\phi_5(a, b), c))$

Задание 2. Булева функция f(a, b, c, d) задана своими значениями. Используя метод Куайна-Мак-Класки, найти минимальную ДНФ этой функции.

Nº	f(a,b,c,d)	Nº	f(a,b,c,d)	Nº	f(a,b,c,d)
1	(0111 0000 1101 1011)	11	(0001 0001 1110 1111)	21	(1110 0100 1101 1001)
2	(0101 1111 0110 0010)	12	(0111 0111 1110 0000)	22	(0111 1111 0100 0001)
3	(0001 1000 0111 1110)	13	(1011 0011 1000 0111)	23	(1111 0001 0010 0111)
4	(1110 1011 0001 0110)	14	(1101 1011 0101 1000)	24	(0111 0111 1110 0000)
5	(0100 0101 0011 1111)	15	(0110 0111 0000 1111)	25	(0110 0110 1111 0100)
6	(1011 0010 1111 1000)	16	(1001 1001 1110 0011)	26	(1000 1110 1101 1010)
7	(1100 0111 1111 0000)	17	(1011 1111 0000 0101)	27	(1100 1000 1011 1110)
8	(0111 1111 0010 0100)	18	(0101 0101 1110 0110)	28	(0001 1001 0011 1111)
9	(1000 0110 1111 1010)	19	(1110 1011 0111 0000)	29	(0111 0111 1110 0000)
10	(1100 0000 1011 1111)	20	(0110 1110 0011 0110)	30	(1011 0011 1000 0111)

<u>Задание 3.</u> Дан трехместный предикат P(x,y,z). Предметные переменные x, y, z принимают значения соответственно из предметных областей Mx, My, Mz.

- а) Подобрать предметные области Mx, My, Mz, каждую мощности не меньше двух, таким образом, чтобы приблизительно в половине случаев предикат P(x,y,z) был выполним. Во всех дальнейших пунктах использовать эти предметные области.
- б) Путем фиксации значения одной из предметных переменных получить из P(x,y,z) сначала выполнимый, а затем тождественно ложный двухместный предикат (если это невозможно сделать в заданных предметных областях, то объяснить, почему).
- в) Путем фиксации значений двух предметных переменных получить из P(x,y,z) сначала тождественно истинный, а затем тождественно ложный одноместный предикат (если это невозможно сделать в заданных предметных областях, то объяснить, почему).
- г) Путем фиксации значений всех предметных переменных получить из P(x,y,z) сначала ложное, а затем истинное высказывание (нульместный предикат).
- д) Проверить истинность заданных высказываний, полученных из P(x,y,z) путем связывания всех предметных переменных кванторами. Пояснить полученные результаты.

Nº	P(x,y,z)	Высказывания			
1	$x + y \le z$	$\forall y \exists z \forall x P(x,y,z)$	$\forall x \forall z \exists y P(x,y,z)$		
2	$z - x \le y$	$\forall z \exists y \forall x P(x,y,z)$	$\forall y \exists x \exists z \ P(x,y,z)$		
3	$x - y \le z$	$\exists x \exists z \forall y \ P(x,y,z)$	$\exists y \forall x \forall z P(x,y,z)$		
4	$x \le y + z$	$\exists x \exists y \forall z \ P(x,y,z)$	$\forall z \forall x \exists y P(x,y,z)$		

Nº	P(x,y,z)	Высказывания			
16	$x-y \ge z$	$\forall y \exists x \forall z P(x,y,z)$	$\forall x \forall y \exists z P(x,y,z)$		
17	$z \ge x \cdot y$	$\exists y \exists x \forall z P(x,y,z)$	$\forall y \exists x \forall z P(x,y,z)$		
18	z – y ≥x	$\forall y \forall x \exists z P(x,y,z)$	$\exists y \forall z \exists x P(x,y,z)$		
19	$z \le x - y$	$\forall z \exists x \exists y P(x,y,z)$	$\exists x \forall y \exists z \ P(x,y,z)$		

5	$z - y \le x$	$\exists y \forall x \exists z \ P(x,y,z)$	$\forall y \forall z \exists x P(x,y,z)$
6	$x \cdot z \le y$	$\exists x \forall z \forall y P(x,y,z)$	$\exists x \forall y \exists z \ P(x,y,z)$
7	$z \ge y - x$	$\exists z \forall x \forall y P(x,y,z)$	$\forall y \exists z \forall x P(x,y,z)$
8	$x-z \ge y$	$\forall y \exists z \exists x P(x,y,z)$	$\exists z \forall y \exists x P(x,y,z)$
9	$x \le z - y$	$\exists x \forall z \exists y P(x,y,z)$	$\exists y \forall x \forall z P(x,y,z)$
10	$x + z \ge y$	$\forall z \exists y \exists x P(x,y,z)$	$\forall x \exists z \forall y P(x,y,z)$
11	$x \cdot y \ge z$	$\forall x \exists y \forall z P(x,y,z)$	$\exists z \forall x \forall y P(x,y,z)$
12	$z - x \ge y$	$\forall x \exists z \exists y P(x,y,z)$	$\forall z \exists y \forall x P(x,y,z)$
13	$x \le y - z$	$\forall x \forall y \exists z P(x,y,z)$	$\exists z \forall x \exists y \ P(x,y,z)$
14	$x \cdot z \ge y$	$\forall z \exists x \forall y P(x,y,z)$	$\exists x \forall y \forall z P(x,y,z)$
15	$x \ge z - y$	$\exists x \forall y \forall z P(x,y,z)$	$\forall z \exists x \forall y P(x,y,z)$

20	$z \cdot y \le x$	$\exists x \forall z \exists y P(x,y,z)$	$\forall z \forall x \exists y P(x,y,z)$
21	$y \le z - x$	$\forall y \exists z \forall x P(x,y,z)$	$\exists y \forall z \forall x P(x,y,z)$
22	$y-x \ge z$	$\forall x \exists y \forall z P(x,y,z)$	$\exists y \exists x \forall z P(x,y,z)$
23	$x + y \ge z$	$\forall y \forall x \exists z P(x,y,z)$	$\exists x \forall z \exists y \ P(x,y,z)$
24	$z \ge x - y$	$\forall x \exists z \forall y P(x,y,z)$	$\forall x \forall y \exists z P(x,y,z)$
25	$x \le y \cdot z$	$\exists x \forall y \exists z P(x,y,z)$	$\forall y \exists z \exists x P(x,y,z)$
26	$y \ge z - x$	$\forall z \exists x \exists y \ P(x,y,z)$	$\forall z \forall y \exists x P(x,y,z)$
27	$x-z \ge y$	$\forall y \exists x \forall z P(x,y,z)$	$\exists x \forall z \forall y P(x,y,z)$
28	$x \ge y - z$	$\exists z \exists x \forall y \ P(x,y,z)$	$\forall z \exists x \forall y P(x,y,z)$
29	$z \le y - x$	$\exists z \forall x \exists y P(x,y,z)$	$\exists y \forall z \exists x P(x,y,z)$
30	$x \cdot z \ge y$	$\forall x \exists y \forall z P(x,y,z)$	$\forall x \forall z \exists y P(x,y,z)$