Aeromarket

Data driven pandemic response measures

Problemstellung

Supermärkte und andere essentielle Einrichtungen müssen auch in extremen Situationen offen bleiben können

Idee

- Künstliche Intelligenz nutzen um einen möglichst sicheren Betrieb zu ermöglichen
- Laufwege optimieren und analysieren
- Mögliche Problemzonen schnell identifizieren und beseitigen

Baukastenprinzip

Leicht anpassbares Framework mit dem Betreiber ihre eigenen Märkte leicht nachbauen und analysieren können (Drag & Drop Komponenten)

Retrospektive

- Tag 1-2: Idee konzipiert, Szene und Unity Collaborate aufgesetzt, erste Funktionen implementiert
- Tag 3: Kollision und Rewards
- Tag 4-6: Training mit verschiedenen Ansätze (Imitation Learning, manuelles Curriculum Learning) & Debugging
- Tag 7-10: Training & Auswertung mit verschiedenen Parametern und unterschiedlich komplexen Szenen

- 3D Nachbau eines Einkaufszentrums
- Schwierigkeit: Sehr komplex zu navigieren

Rewards

Ereignis	Erläuterung
Annäherung/Entfernung zum Zielobjekt	Nachteil: Wände/Hindernisse werden nicht berücksichtigt
Erreichen eines Zielsobjekts	Wenn zu niedrig, dann geht Agent schnell zum Exit
Erreichen des Ausgangs	Hoher Wert wichtig, da Agent sonst nicht zum Exit geht.
Kontakt mit Aerosolen	Abstand zu anderen Kunden
Pro Schritt/Aktion	Je schneller, desto besser

Ziel: Grundsätzliche Funktionalität testen

Imitation Learning

Manuelles Curriculum Learning

Manuelles Curriculum Learning

Mit Wänden

Wände & Regale

Wände, Regale & Artikel

Kleiner Markt

Iterationen:

- 1 Agent
- Alle Agenten mit Aerosolen in Blickrichtung
- Alle Agenten mit Aerosol-Radius

Kleiner Markt

Curriculum-RND-Ansatz

Erhöhte Netzwerkkomplexität

```
behaviors:
 Shopping:
 trainer type: ppo
  hyperparameters:
   batch size: 128
   buffer size: 2048
   learning_rate: 0.0003
   beta: 0.01
   epsilon: 0.2
   lambd: 0.95
   num epoch: 3
   learning rate schedule: linear
  network settings:
   normalize: true
  hidden units: 200
   num layers: 2
  vis encode_type: simple
   memory: null
  reward signals:
   extrinsic:
    gamma: 0.99
    strength: 1.0
  keep checkpoints: 5
  checkpoint interval: 500000
  max steps: 2000000
 time horizon: 64
  summary_freq: 500
 threaded: true
```

(rnd = "Random
Network Distillation")

Cumulative Reward tag: Environment/Cumulative Reward

RND mit komplexer Umgebung

- Deutlich bessere Ergebnisse als bisherige Ansätze
- Aber maximal 1/5 des Optimums

RND mit vereinfachter Umgebung

- Komplexitätsreduktion der Umgebung
- Optimum kann erreicht werden

cople_StreetMan_Black-1-2 cople_Sheriff_Black-1-2 cople_RoadWorker_White-1-2 cople_FireFighter_White-0-2 cople_Hobo_Black-0-2 cople_Hobo_Brown-2-2 cople_HouseWife_White-1-2 cople_Pimp_Brown-0-2 cople_Pimp_White-1-2 cople_Doctor_Brown-2-2

Curriculum-RND-Ansatz

Nur Wände Optimum wird erreicht (~60) 40 Mio. Vollständige Umgebung

Modell einsetzen in komplexe Umgebung

Curriculum-RND-Ansatz

Modell einsetzen in komplexe Umgebung

Live Demo

https://koerners.github.io/Aeromarket/

Erkenntnisse & Ausblick

Probleme

Problem	Lösung
Das nächste Ziel wird nicht korrekt angegeben	Kürzeste Distanz zum Zielobjekt wurde nicht aktualisiert (Skript)
Agent läuft nicht ins Exit	Position/Distanz zum Exit wurde nicht mitgegeben (Skript)
Aeorsole werden vom eigenen Agent als Hit erkannt → Punishement	Partikelsystem trifft den Collider für die Aerosole
Agenten stehen nicht auf dem Boden	Skin-Width = 0.0001
Wenn Skin-Width = 0 → Keine Kollisions-Erkennung mit anderen Agenten	Zusätzlicher Box-Collider
Zwischen-Ziele werden nicht optimal gefunden	Änderung der Observation-Angabe: Distanz → Position
Agenten können auf zu hohe Gegenstände springen	Step-Offset = 0
Agenten brauchen zu lange zum Lernen	Anpassung der Parameter (hidden units, num layer)

Ausblick

- Variabilität der Agententypen (jung/alt, mehr/wenige Einkäufe, Gruppe/Einzeln)
- Maßnahmen: mit/ohne Maske, mit/ohne Einkaufswagen
- Auf verschiedene Einkaufsumgebungen testen