Respiration and Energy Transfer

Subtopics

- 13.0 Introduction
- 13.1 Formation of ATP
- 13.2 Anaerobic respiration
- 13.3 Aerobic respiration
- 13.4 Utility of stepwise oxidation

Mitochondria

Mitochondria are known as "Power houses of the cell". They take in nutrients, break them down and create energy for the cell. Most of the chemical reactions involved in cellular respiration take place in the mitochondria.

(9)

Quick Review

Various steps involved in glycolysis:

No	Sean(e)	Substrate	Enzyme	End product(s)
No.	Step(s)	Glucose + ATP	Hexokinase	Glucose - 6 - Phosphate + ADP
i.	Phosphorylation		Phosphohexose isomerase	Fructose - 6 - Phosphate
ii.	Isomerisation	Glucose -6-Phosphate		Fructose 1,6-Diphosphate +
iñ.	Phosphorylation	Fructose -6-Phosphate +ATP (Phosphate donor)	Phospholructokinase	ADP
iv.	Cleavage	Fructose -1, 6- Diphosphate	Aldolase	 3 - Phosphoglyceraldehyde + Dihydroxy acetone phosphate
	erase.J			presence of triose-phosphate
isom v.	Phosphorylation and	3-PGAL + H ₃ PO ₄ + NAD	Triose phosphate dehydrogenase	1, 3 Diphosphoglyceric acid + NADH + H ⁺
	Dehydrogenation			
vi.	Dephosphorylation	1, 3-DPGA + ADP	Diphosphoglycerate kinase (Mg ²⁺)	ATP + 3-Phosphoglyceric acid
VII.	Rearrangement	3-PGA	Phosphoglycerate mutase	2-Phosphoglyceric acid
VIII.	Dehydration	2-PGA	Enolase	Phosphoenol Pyruvic acid + H ₂ O
IX.	Dephosphorylation	Phosphoenol Pyruvic	Pyruvate kinase	Pyruvic acid + ATP

Various steps involved in Krebs cycle:

No.	Step(s)	Substrate	Enzyme	End product(s)
, i	Condensation	Acetyl-CoA+Oxalo- acetic acid + H ₂ O	Citrate synthase	Citric acid (6C) + Coenzyme-
ii.	Dehydration Hydration	It is again completed in two steps: a. Citric acid b. Cis-Aconitic acid + H ₂ O	Aconitase Aconitase	Cis-Aconitic acid + H ₂ O Iso-citric acid(6C)
iii.	Oxidative decarboxylation	a. Isocitric acid + NAD*	Isocitrate dehydrogenase	Oxalo succinic acid(6C)
		b. Oxalosuccinic acid	Isocitrate dehydrogenase	+ NADH + H' α - ketoglutarie acid(5C) + CC

