This theorem can be proved in the same way as Theorem 3.8.

Remark. If X is separable, then there exist strictly positive measures on $C_{O}(X)$. In that case the analogue of Corollary 3.9 holds as well.

Now we want to discuss the results obtained so far.

As a first example we consider the first derivative with boundary conditions on $E=L^p[0,1]$ $(1 \le p < \infty)$. By AC[0,1] we denote the space of all absolutely continuous functions on [0,1]. Let A_{max} be given by

$$D(A_{max}) = \{f \in AC[0,1] : f' \in L^{p}[0,1]\}$$

$$A_{max}f = f' \quad (f \in D(A_{max})) .$$

The following lemma is easy to prove.

<u>Lemma</u> 3.14. Let $f \in AC[0,1]$. Then $|f| \in AC[0,1]$ and $|f|' = (sign f) \cdot f'$ (a.e.).

As a consequence of the lemma, $D(A_{max})$ is a sublattice of E and

(3.7)
$$(\text{sign f}) A_{\text{max}} f = A_{\text{max}} |f| \quad (f \in D(A_{\text{max}}))$$
.

For $\lambda > 0$ one has

(3.8)
$$\ker (\lambda - A_{\max}) = \mathbb{R} \cdot e_{\lambda} \quad \text{where } e_{\lambda}(x) = e^{\lambda x}$$
.

Hence A_{\max} is not a generator. We impose the following boundary conditions.

Let $d \in \mathbb{R}$. Consider the restriction A_d of A_{max} to the domain $D(A_d) = \{f \in D(A_{max}) : f(1) = df(0)\} .$

Then A_d is the generator of the semigroup $(T_d(t))_{t\geq 0}$ given by (3.9) $T_d(t)f(x) = d^n \cdot f(x+t-n)$ if $x+t \in [n, n+1)$ $(n \in \mathbb{N})$.

This is not difficult to prove. Actually (3.9) defines a group if $d \neq 0$ and if we let $t \in \mathbb{R}$, $n \in \mathbb{Z}$. For d = 0 one obtains the nilpotent shift semigroup on E . It follows from (3.9) that the semigroup $(T_d(t))_{t\geq 0}$ is positive if and only if $d \geq 0$.

Let us fix d < 0. Let $A = A_d$ and $T(t) = T_d(t)$ for $t \ge 0$. Then