DETERMINAREA ACTIVITĂȚII ABSOLUTE A UNEI SURSE DE RADIAȚII PRIN METODA UNGHIULUI SOLID CUNOSCUT CU AJUTORUL UNUI DETECTOR CU SCINTILAȚIE

Facultatea de Automatică și Calculatoare Anul II, semestrul I, grupa 322CD

Pascu Ioana-Călina Sîrboiu Patricia Octavia Văideanu Renata-Georgia Scopul lucrării este determinarea eficacității (ε) detectorului de scintilație, pe baza unui set de măsurători efectuate pe o probă de Cesiu.

Știind data la care au fost recoltate probele (t = 10 ianuarie 2007), activitatea sursei radioactive de Cesiu(137) cu $\Lambda_0 = 292kBq$ și timpul de înjumătățire $t_{\frac{1}{2}} = 30,17$ ani se deduce conform legii de dezintegrare radioactivă $\Lambda(t) = \Lambda_0 \cdot e^{-\lambda t}$.

$$\begin{cases} \Lambda(t_{\frac{1}{2}}) = \Lambda_0 \cdot e^{-\lambda t_{\frac{1}{2}}} \\ \Lambda(t_{\frac{1}{2}}) = \frac{1}{2}\Lambda_0 \end{cases}$$

$$e^{-\lambda t_{\frac{1}{2}}} = \frac{1}{2}$$
 \implies $\lambda = \frac{\ln 2}{t_{\frac{1}{2}}} = 0.728 \cdot 10^{-9} s^{-1}$

Prin urmare, după aproximativ 15 ani, radioactivitatea Cesiului este $\Lambda = 206.87kBq$

Calculul unghiului solid $(\frac{\Omega}{4\pi})$ a fost făcut prin intermediul formulei $\frac{\Omega}{4\pi} = \frac{D^2}{16x^2}$ unde D este diametrul cristalului scintilator, și anume D = 2 cm, iar x este distanța dintre sursă și cristal.

S-a înregistrat numărul de impulsuri efectuate la diferite distanțe $(x_1, x_2, ...)$ față de detector și s-au notat datele obținute în tabel:

x (cm)	$\Omega/4\pi$	t (s)	N (imp)	$\sigma_N = rad(N)$	n' = N/t	$\sigma_{N'} = rad(N) / t$	n"	σ _N "	n = n'' - f	$\sigma_{\rm N}$
3	0,02778	60	19395	139,2659327	323,25	2,32109888	323,3545	2,3226	322,355	2,36062
4	0,01563	60	11287	106,2402937	188,117	1,77067156	188,1521	1,771338	187,152	1,8209
5	0,01	60	10056	100,2796091	167,6	1,67132682	167,6281	1,671887	166,628	1,72432
6	0,00694	60	8814	93,88290579	146,9	1,5647151	146,9216	1,565175	145,922	1,62106
7	0,0051	60	7833	88,50423719	130,55	1,47507062	130,567	1,475456	129,567	1,53461
8	0,00391	60	7184	84,7584804	119,733	1,41264134	119,7477	1,41298	118,748	1,47464
9	0,00309	60	6487	80,54191455	108,117	1,34236524	108,1284	1,342656	107,128	1,4074
10	0,0025	60	5897	76,79192666	98,2833	1,27986544	98,29299	1,280117	97,293	1,34787
11	0,00207	60	3164	56,24944444	52,7333	0,93749074	52,73611	0,93759	51,7361	1,02817
12	0,00174	60	2905	53,89805191	48,4167	0,89830087	48,41901	0,898388	47,419	0,99255

Se reprezintă grafic $n = f(\frac{\Omega}{4\pi})$:

Panta dreptei duse prin punctele experimentale (y = 23.609x + 7.5499):

$$m = 23.609 \frac{imp}{s}$$

Se calculează valoarea eficacității sursei măsurate, $\varepsilon=\frac{m}{\Lambda\cdot S}$, unde S = 0.85 în cazul Cesiului:

$$\varepsilon = 0.0134\%$$