$\frac{G_I}{G_0}$ as function of debond's size $\Delta\theta$, in-house VCCT routine 0.28 0.27 $--\delta = 1.0^{\circ}$, FEM 0.26 $--\delta = 0.9^{\circ}, \text{ FEM}$ 0.25 0.24 $--\delta = 0.8^{\circ}$, FEM 0.23 $--\delta = 0.7^{\circ}$, FEM 0.22 0.21 $--\delta = 0.6^{\circ}$, FEM 0.2 $--\delta = 0.5^{\circ}$, FEM 0.19 0.18 $--\delta = 0.4^{\circ}$, FEM 0.17 0.16 $--\delta = 0.3^{\circ}, \text{ FEM}$ 0.15 $-\delta = 0.2^{\circ}$, FEM 0.14 0.13 **--**-BEM 0.12 0.11 0.1 $9 \cdot 10^{-2}$ $8\cdot 10^{-2}$ $7\cdot 10^{-2}$ $6\cdot 10^{-2}$ $5\cdot 10^{-2}$ $4\cdot 10^{-2}$ $3\cdot 10^{-2}$ $2 \cdot 10^{-2}$ $1\cdot 10^{-2}$ 20 30 70 80 90 0 50 60 100 120 10 40 110 130 140 150 160 170 180 $\Delta \theta$ [°]