Competencia Perfecta

Organización Industrial

Instituto Tecnológico Autónomo de México

Verano 2021

Contenido

Supuestos

Maxmización de Beneficios

Empresas que enfrentan distintos costos

Supuestos de la competencia perfecta

- Atomicidad
- Producto Homogéneo
- Libre entrada y salida
- Información perfecta
- Acceso a tecnología

Caracterizando al mercado

Caracterizando al mercado

Un productor pequeño enfrenta una demanda perfectamente elástica.

Caracterizando al mercado

Definamos la demanda que este pequeño productor enfrenta

$$P(Q) = \bar{P}$$

así como su función de ingresos

$$P(Q)Q = \bar{P}Q$$

y el ingreso marginal

$$I_{Mgl} = \bar{P}$$

Maximización de Beneficios

Ahora bien, cuando el productor busca maximizar beneficios sabemos que

$$I_{MgI} = C_{MgI}$$

Pero sabiendo que $I_{Mgl} = \bar{P}$, tenemos que

$$C_{MgI} = \bar{P}$$

Veamos qué sucede cuando el productor maximiza.

Volvamos al caso 2

Empresas que enfrentan distintos costos

Para hacerlo simple, supongamos que existen dos empresas i=1,2. Denotemos con q_i la cantidad producida por la empresa i. De modo que $CT(q_i)$ será el costo total que enfrenta la empresa i.

Supongamos una función de costos constantes a escala

$$CT_i(q_i) = c_i q_i$$

Note que el costo marginal es constante.

Empresas que enfrentan distintos costos

Veamos la función de oferta de cada empresa

$$q_i = \left\{ egin{array}{ll} \infty & ext{if} & ar{P} > c_i \ & \ [0,\infty) & ext{if} & ar{P} = c_i \ & \ 0 & ext{if} & ar{P} < c_i \end{array}
ight.$$

En competencia perfecta, la empresa con menores costos será la única que produzca y las empresas con costos mayores no producirán. Si ambas empresas tuvieran la misma función de costos, se repartirán el marcado.

Extensión a *n* empresas

Supongamos n empresas con la misma función de producción

$$q_i = I^{\alpha}$$

y la misma función de costos

$$CT = F + wI$$

el costo fijo y el salario están dados.

Las empresas enfrentan la función de demanda

$$Q = a - bP$$

Maximicemos para una empresa. Primero notemos que si $q_i = I^{\alpha} \Rightarrow I = q_i^{\frac{1}{\alpha}}$. La empresa maximizará sus beneficios:

$$\Pi = Pq_i - F - wq_i^{\frac{1}{\alpha}}$$

En el óptimo la empresa ofrecerá

$$\frac{\partial \Pi}{\partial q_i} = 0$$

$$P - \frac{w}{\alpha} q_i^{\frac{1}{\alpha} - 1} = 0$$

$$q_i = \left(\frac{\alpha P}{w}\right)^{\frac{\alpha}{1 - \alpha}}$$

Ahora maximicemos para las n empresas. Dado que todas son iguales, la curva de oferta de cada empresa será la misma:

$$q_i = \left(\frac{\alpha P}{w}\right)^{\frac{\alpha}{1-\alpha}}$$

Entonces en el equilibrio:

$$a - bP = \sum_{i=1}^{n} (q_i)$$

$$a - bP = \sum_{i=1}^{n} \left(\frac{\alpha P}{w}\right)^{\frac{\alpha}{1-\alpha}}$$

$$a - bP = n\left(\frac{\alpha P}{w}\right)^{\frac{\alpha}{1-\alpha}}$$

De donde podemos despejar \bar{P} y sustituir en la oferta de las empresas para hallar el equilibrio.

Equilibrio en Competencia Perfecta

Dadas n empresas, el vector

$$\{P^*, q_1, q_2, \ldots, q_n\}$$

representa un equilibrio de mercado si

1.
$$P^*, q_i \geq 0 \quad \forall i$$

2.
$$\max \Pi_i(q_i) = P^*q_i - CT_i(q_i) \quad \forall i$$

3.
$$P^* = a - b \left(\sum_{i=1}^{n} (q_i) \right)$$