Calc notes Day 19

 ${\it Joseph~Brooksbank}$

April 30, 2019

11.1 Sequences

Written as (X_N)

Convergence

 $\frac{1}{\sqrt[2]{n+2}} \begin{cases} x_1 & \sqrt[2]{3} \\ x_2 & \sqrt[2]{4} \ etc... \end{cases}$ Another way to describe sequence: recursive def: $x_3 & \sqrt[2]{5}$

$$x_{n=1} = \frac{1}{1+x_n}, x_1 = 1.$$

EX:

$$x_2 = \frac{1}{1+x_1} = \frac{1}{1+1} = \frac{1}{2}.$$

what does it mean to say seq x_n approaches / converges to a limit?

IDEA $(X_n) \to L$ means:

No matter how close you want to get to x_n to get to L, it will happen if n is large enough

EX: $(\frac{1}{n})$ 1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$ This converges to 0.

Reason: for any tiny number you give me, if I go far enough in (x_n) , then x_n is that close to 0.

Illustration

Can we make $(\frac{1}{n})$ be within 0.1 of 0? if $n > 10 \to 0 < \frac{1}{n} < \frac{1}{10}$ this means that dist from $\frac{1}{n}$ to 0 is $< \frac{1}{10}$ after n = 10.

This tells us that we can get beneath 0.1, but so what?

EX part 2:

What about under 0.0005?

Convergence in "math speak"

For every $\epsilon > 0$, then there is N such that if n > N, then the distance between x_n and L is $< \epsilon$ if n > 2000, then $0 < \frac{1}{n} < 0.0005$

• If you go FAR ENOUGH, (past N), then n will be less than any given bounds

This is a lot to write, how can we show that $(x_n) \to L$ without doing that? 2 Techniques to show $(x_n) \to L$:

• Algebra + simplification + $\frac{1}{n} \to 0$

$$\frac{2^2+n}{2n^2-1} = \frac{(n^2+n)*\frac{1}{n^2}}{(2n^2-1)*\frac{1}{n^2}} = \frac{1+\frac{1}{n}}{2-\frac{1}{n}*\frac{1}{2}} = \frac{1+0}{2-0*0} = \frac{1}{2}.$$

• Calc / L'H

EX: What's the limit of $\frac{ln(n)}{n} = x_n$?

ONLY POSITIVE INTEGERS ARE ALLOWED FOR n in SEQUENCES

Moving back to the problem above:

If we graph $\frac{\ln(n)}{n}$: We can only plug in positive **INTEGERS**. See notebook CALC III day 18 and 19 for fig 1.

The graph of $\frac{\ln(n)}{n}$ is dots, which are a small part of graph $\frac{\ln(x)}{x}$. Can treat this like a **FUNCTION** anyway, and can use calculus on it:

$$\lim_{x \to \infty} \frac{\ln(x)}{x} \to \frac{\infty}{\infty} \to \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 0.$$

Therefore:

$$\lim_{n\to\infty}\frac{ln(n)}{n}\to 0.$$

RULE: If you can write the terms of x_n as values of a function $f(n), \lim_{x\to\infty} f(x) = L \text{ then } (x_n) \to L$

What can't be turned into a function?

n! is an example of a sequence with CANNOT be turned into a function f(x)(in a simple way)

Increasing / Decreasing

What does it mean to say (x_n) is increasing?

For every n, $x_{n+1} > x_n$

Decreasing?

For every n, $x_{n+1} < x_n$ How to decide if seq is increasing or decreasing?

$$x_n = \frac{n}{n+1}$$

 $x_n = \frac{n}{n+1}$ rewrite as a function:

 $\frac{x}{x+1}$ is a function, take derivative, derivative is inc