

Plano de Ensino

- Apresentação. Revisão de Funções.
- Expressões Regulares, Gramática Regular.
- Autômatos Finitos Determinísticos.
- Conversão de ER para AFD.
- Minimização de Autômatos.
- Autômatos Finitos Não-Determinísticos.
- Conversão de Autômatos AFD para AFND.
- Autômatos com Movimento Vazio (ε).
- Conversão de Autômatos AFε para AFND.
- Autômatos com Pilha.
- Máquinas de Turing.

Livro-Texto

- Bibliografia Básica:
 - » MENEZES, Paulo Fernando Blauth. Linguagens Formais e Autômatos. 5ª ed. Porto Alegre: Bookman, 2008.
- Bibliografia Complementar:
 - » LEWIS, Ricki. Elementos da Teoria da Computação. 2ª ed. Porto Alegre: Bookman, 2004.
 - » HOPCROFT, John E; ULLMAN, Jeffrey D; MOTWANI, Rajeev, SOUZA. Introdução a Teoria dos Autômatos, Linguagens e Computação. 1ª ed. São Paulo: CAMPUS, 2003.

5. Autômatos Finitos - AFND

<u>Å</u> Anhanguera

 Definição: um Autômato Finito Não-Determinístico (AFND) é uma 5-upla:

 $M = (\sum, Q, \delta, q_0, F)$ onde:

- » $\Sigma \rightarrow$ alfabeto de símbolos de entrada.
- » Q → conjunto de estados possíveis do autômato o qual é finito.
- » δ → função programa ou função transição:
 δ: Qx∑→2^Q
- » q_0 → estado inicial, tal que $q_0 \in Q$.
- » F \rightarrow conjunto de estados finais tal que F \subseteq Q.

5. Autômatos Finitos - AFND

• Sabendo-se que δ é um grafo finito direto, supondo que: $\delta(q,a) = \{p_1, p_2, ..., p_n\}$

	\downarrow	
а	-(q) $-$	
$\stackrel{\downarrow}{\smile}$	a	a
(p_1)	(p ₂)	(p _n

5. Autômatos Finitos - AFND

Exemplo: considere a linguagem L = {w | w possui aa ou bb como subpalavra} e o AFND
 M = ({a, b}, {q₀, q₁, q₂, qᵢ}, δ, q₀, {qᵢ}) onde δ é como abaixo representado, reconhece L.

- Para cada Autômato Finito Não-Determinístico existe um Autômato Finito Determinístico equivalente.
- Para tal, devemos proceder com um algoritmo para a partir de um AFND, chegarmos a um
 - » Seja M = $(\Sigma, Q, \delta, q_0, F)$ um AFND então \exists um AFD M'=(Σ , Q', δ ', $\langle q_0 \rangle$, F') equivalente.

5. Autômatos Finitos - Conversão AFND → AFD

- Seja M = $(\Sigma, Q, \delta, q_0, F)$ e $M' = (\sum, Q', \delta', <q_0>, F')$
 - » Q' contém δ_0 = {q₀} (o estado inicial).
 - » Faça:
 - $\delta_0'(<q_0>,w) = <q_1...q_n>$
 - δ_1 '(<q₁...q_n>,w) = δ (q₁,w) \cup ... \cup δ (q_n,w)
 - E assim sucessivamente $\delta_2{}',\,...,\,\delta_n{}'$
 - » $< q > \in F'$ para cada estado $q \in F$.
 - » $<q_n> \in Q'$ para cada estado $<q_n>$ gerado por δ' .

5. Autômatos Finitos - Conversão AFND → AFD

- Exemplo 1: dado um AFND $M=(\{0,1\}, \{q_0,q_1\}, \delta, \{q_0\}, \{q_1\})$ » Onde δ é dado pelo grafo abaixo:

» Existe um M'=($\{0,1\}$, Q', δ ', $<q_0>$, F') equivalente.

- Dada a função programa δ', temos:
 - » $\delta'(<q_0>, 0) = \delta(\{q_0\}, 0) = <q_0q_1>$
 - » $\delta'(<q_0>, 1) = \delta(\{q_0\}, 1) = <q_1>$
 - » $\delta'(<q_1>, 0) = \delta(\{q_1\}, 0) = \emptyset$
 - » $\delta'(<q_1>, 1) = \delta(\{q_1\}, 1) = <q_0q_1>$
 - » $\delta'(<q_0q_1>, 0) = \delta(\{q_0\}, 0) \cup \delta(\{q_1\}, 0) = <q_0q_1>$
 - » $\delta'(<q_0q_1>, 1) = \delta(\{q_0\}, 1) \cup \delta(\{q_1\}, 1) = <q_0q_1>$

5. Autômatos Finitos - Conversão AFND → AFD

- Chegamos então ao AFD M':
- » Q' = $(<q_0>, <q_1>, <q_0q_1>)$ ou Q' = (p_0, p_1, p_2)
 - » $F' = \{ \langle q_1 \rangle, \{ \langle q_0 q_1 \rangle \} \text{ ou } \{ p_1, p_2 \}, \text{ pois } q_1 \in F.$
 - » δ^{\prime} é dado pelo grafo a seguir:

5. Autômatos Finitos - Conversão AFND → AFD

- Exemplo 2: dado um AFND $M=(\{a,b\}, \{q_0,q_1,q_2,q_f\}, \delta, \{q_0\}, \{q_f\})$
 - » Onde δ é dado pelo grafo abaixo:

» Existe um M'=({a,b}, Q', $\delta',$ <q_0>, F') equivalente.

- Dada a função programa δ', temos:
 - » $\delta'(<q_0>, a) = \delta(\{q_0\}, a) = <q_0q_1>$
 - » $\delta'(<q_0>, b) = \delta(\{q_0\}, b) = <q_0>$
 - » $\delta'(<q_0q_1>, a) = \delta(\{q_0\}, a) \cup \delta(\{q_1\}, a) = < q_0q_1q_2>$
 - » $\delta'(<q_0q_1>, b) = \delta(\{q_0\}, b) \cup \delta(\{q_1\}, b) = < q_0>$
 - » $\delta'(<q_0q_1q_2>, a) = \delta(\{q_0\}, a) \cup \delta(\{q_1\}, a) \cup \delta(\{q_2\}, a) = < q_0q_1q_2q_1>$
 - » $\delta'(<q_0q_1q_2>, b) = \delta(\{q_0\}, b) \cup \delta(\{q_1\}, b) \cup \delta(\{q_2\}, b) = < q_0>$
 - » $\delta'(< q_0 q_1 q_2 q_1 >, a) = \delta(\{q_0\}, a) \cup \delta(\{q_1\}, a) \cup \delta(\{q_2\}, a) \cup \delta(\{q_1\}, a) = < q_0 q_1 q_2 q_1 >$
 - » $\delta'(<q_0q_1q_2q_1>,b)=\delta(\{q_0\},b)\cup\delta(\{q_1\},b)\cup\delta(\{q_2\},b)\cup\delta(\{q_1\},a)=< q_0>$

5. Autômatos Finitos - Conversão AFND → AFD

- Chegamos então ao AFD M':
- » Q' = $(<q_0>, <q_0q_1>, <q_0q_1q_2>, <q_0q_1q_2q_1>)$ ou Q' = (p_0, p_1, p_2, p_1)
 - » F' = $\{ <q_0q_1q_2q_f > \}$ ou $\{p_f\}$, pois $q_f \in F$.
 - » δ ' é dado pelo grafo a seguir:

5. Autômatos Finitos - Conversão AFND → AFD

- Exemplo 3: dado um AFND
 M=({0,1}, {A, B, C}, δ, {A}, {C})
 - » Onde δ é dado pelo grafo abaixo:

» Existe um M'=({0,1}, Q', $\delta',$ <A>, F') equivalente.

- Dada a função programa δ', temos:
 - » $\delta'(<A>, 0) = \delta(\{A\}, 0) = <BC>$
 - » $\delta'(<A>, 1) = \delta(\{A\}, 1) = <A>$
 - » $\delta'(\mathsf{BC}>, 0) = \delta(\{\mathsf{B}\}, 0) \cup \delta(\{\mathsf{C}\}, 0) = \mathsf{C}>$
 - » $\delta'(<BC>, 1) = \delta(\{B\}, 1) \cup \delta(\{C\}, 1) = <BC>$
 - » $\delta'(< C>, 0) = \delta(\{C\}, 0) = < C>$
 - » δ'(<C>, 1) = δ({C}, 1) = <C>

5. Autômatos Finitos - Conversão AFND → AFD

- Chegamos então ao AFD M':
- » Q' = (<A>, <BC>, <C>) ou Q' = (X, Y, Z)
 - » $F' = \{ \langle BC \rangle, \langle C \rangle \}$ ou $\{ Y, Z \}$, pois $C \in F$.
 - » δ^{\prime} é dado pelo grafo a seguir:

