Formalization project: proof assistants and some algebra

George McNinch

2025-06-04 22:45:34 EDT (george@valhalla)

Outline

Formalization via Lean

"Finite Algebra"

Proof assistants

- ▶ What is a proof assistant?

 A proof assistant is a piece of software that provides a language for defining objects, specifying properties of these objects, and proving that these specifications hold. The system checks that these proofs are correct down to their logical foundation.
- goal: produce verified proofs This is in contrast to automated theorem proving, where the focus is on the computer constructing the argument(s)
- What are some examples of proof assistants?
 - Lean, Agda, Coq, Mizar, HOL Light, HOL4, ...
 - differences? choice of logical foundations

why choose Lean?

- the foundations of Lean involve dependent type theory More precisely, Lean uses: a version of dependent type theory that is powerful enough to prove almost any conventional mathematical theorem, and expressive enough to do it in a natural way. More specifically, Lean is based on a version of a system known as the Calculus of Constructions with inductive types.
- main reason for the choice of Lean there has been a lot of "pure-math" activity in mathlib, a community maintained library (github repository) of pure mathematics results.

Topics of study in this area

- there is interest in studying type theoretic foundations, for example Homotopy Type Theory
- but the goal of this project is aligned with the philosophy of the mathlib community, namely to use Lean to formalize "ordinary" mathematics familiar to the community of pure mathematicians.

What does Lean look like?

example: defn of convergence of a sequence

```
-- definition of "u tends to \ell" def seq_limit (u : \mathbb{N} \to \mathbb{R}) (\ell : \mathbb{R}) := \forall \ \epsilon > 0, \exists \ \mathbb{N}, \forall \ n \ge \mathbb{N}, |u \ n - \ell| \le \epsilon
```

> statement of the "squeeze theorem"

more examples of Lean

example: the first isomorphism theorem for rings

```
variable {R} [CommRing R]
variable {S} [CommRing S]

def firstIsomorphismTheorem (f : R →+* S)
    (hf : Function.Surjective f) :
    R / ker f ≃+* S := by
    sorry
```

(caveat: for TeXnical reasons, I've written the wrong unicode symbol '/' for the quotient operation)

Proving statements about constructions

- Lean is really just a programming language
- we can define the type constructor List

in fact, under the hood Lean defines notation [] for nil and x :: xs for cons x xs.

and e.g.

```
1 :: 2 :: 3 :: []
```

can be represented by the notation [1, 2, 3]

appending lists

▶ Here is some Lean code that appends two lists.

```
def append {a:Type} (xs ys : List a)
   : List a :=
   match xs with
   | [] => ys
   | z :: zs => z :: append zs ys
```

e.g.

```
append ["a", "b", "c"] ["d", "e"]
```

evaluates to

```
["a", "b", "c", "d", "e"] : List String
```

the proof

- Now, we can use Lean to prove a property of this function: namely, the length of the result is the sum of the lengths.
- here is the proof in Lean

```
theorem append_length {a:Type}
    (xs ys : List a)
    : (append xs ys).length =
        xs.length + ys.length := by
induction xs with
    | nil => simp [append]
    | cons z zs ih =>
        simp [append, ih]
    linarith
```

you can view this theorem append_length as a function of xs and ys, whose return value is the indicate *Proposition* confirming equality.

Finite vector spaces

- ▶ For the project, I have in mind producing formal proofs of statements about "finite algebraic objects". I'm going to formulate here an example of such a statement.
- Let k be a finite field. Recall (or accept my assertion for now!) that |k| is a power p^n of a prime number p for some $n: \mathbb{N}$, and that up to isomorphism there is exactly one field of order p^n .
- lacksquare thus $k\simeq {f F}_q$ where $q=p^n$, and ${f F}_p\simeq {f Z}/p{f Z}$.
- ▶ e.g. if $p \equiv 3 \pmod 4$ then $\mathbf{F}_{p^2} \simeq \mathbf{F}_p(i)$ where $i^2 = -1$. ("like forming \mathbf{C} from \mathbf{R} ")
- now let V be a finite dimensional vector space over k. If $\dim_k V = m$ then $|V| = q^m$.

Forms on finite vector spaces

- Let $\beta: V \times V \to k$ be a bilinear form
- \blacktriangleright and suppose that β is nondegenerate and symmetric
- lacktriangle (also suppose for convenience that p > 2)

Examples of forms

when $\dim V=2m$ is even, we can choose a basis $e_1,\cdots,e_m,f_1,\cdots,f_m$ of V. and we can define a form β_h by the rules

$$\beta_h(e_i,f_j) = \delta_{i,j}, \quad \beta_h(e_i,e_j) = \beta_h(f_i,f_j) = 0$$

- ▶ note e.g. that $\beta_h(e_i, e_i) = 0$ for any i.
- \blacktriangleright view $V=\mathbf{F}_{q^2}$ as a two-dimensional \mathbf{F}_q -vector space and consider the form

$$\beta_a:V\times V\to \mathbf{F}_q$$
 given by
$$\beta(x,y)=\frac{(x+y)^{q+1}-x^{q+1}-y^{q+1}}{2}$$
 note that
$$\beta_a(x,x)=x^{q+1}=0 \implies x=0.$$

Classification of forms

- ightharpoonup suppose dim V=d=2m is even
- \blacktriangleright up to isomorphism, there are only two possibilities for eta
 - \blacktriangleright either β is the hyperbolic form for some choice of basis $\{e_i,f_i\}$
 - or β is the orthogonal sum of a hyperbolic form of dimension d-2 and the two dimensional form β_a .
- this is analogous to Sylvester's theorem which describes the isomorphism classes of non-degenerate symmetric bilinear forms on a finite dimensional real vector space

What will be involved in formalizing this statement?

- must describe "orthogonal sums" of bilinear forms
- lacktriangleright must describe what it means for two bilinear forms on V to be isomorphic
- \blacktriangleright probably need some way of describing β via a matrix, in order to keep track of what happens under *change-of-basis*
- must have a good understanding of the pen-and-paper proof!!