Creating estimators

- Estimators can be broadly organized into method of moments (MoM) estimators and Bayesian estimators
 - The MLE is Bayesian
- · Evaluating estimators
 - Bias
 - SE
 - MSE, where $MSE = Var + Bias^2$
 - Probability, e.g., $P(|\hat{\theta} \theta| \geq c)$, where c is some error tolerance
- · Methods to evaluate
 - Stat 110 or math style BASHING
 - Not recommended for the faint of heart or people without the constitution for math
 - Simulation
 - Asymptotics

Empirical CDF

- · Estimand is the CDF
- · Calculated as follows:

$$\hat{F}(y) = rac{1}{n} \sum_{j=1}^n \mathbb{1}(Y_j \leq y)$$

- · Fairly intuitive interpretation
 - Percentage of data points less than or equal to a specified point
- Note that this is a *method of moments* estimator, where $F(y) = \mathbb{E}[\mathbb{1}(Y_j \leq y)]$
- Convergence proof follows from LLN
 - $\hat{F}_n(y) o F(y)$ as $n o \infty$ (with probability 1)

Asymptotics

- 5 tools for asymptotics
 - Law of law numbers, LLN (Stat 110)
 - Central limit theorem, CLT (Stat 110)
 - Continuous mapping theorem, CMT
 - Delta method
 - · Slutsky's theorem
 - You can laugh a little

Ex: Let Y_1,Y_2,\ldots be i.i.d. with mean μ and variance σ^2 . MoM for μ is $\bar{Y}=\hat{\theta}$ (this is unbiased). The variance of \bar{Y} is σ^2/n .

- Bias and variance going to zero as $n \to \infty$ is GOOD
- . If it doesn't, that's VERY BAD
- The SE of \bar{Y} is σ/\sqrt{n}
- Note that we can also use the *same data* to estimate the error as $\hat{SE} = \hat{\sigma}/\sqrt{n}$
- · We often need more than the first two moments
- Note $\hat{\theta}$ is asymptotically Normal by CLT
- And $\hat{\theta}$ is consistent by LLN

CLT

Reminder: Expression for CLT. d or D indicates convergence in distribution.

$$\sqrt{n}(ar{Y}-\mu)\stackrel{d}{\sim}\mathcal{N}(0,\sigma^2)$$

Equivalently,

$$rac{ar{Y} - \mu}{\sigma / \sqrt{n}} \stackrel{d}{\sim} \mathcal{N}(0,1),$$

which may be preferable to use the PDF ϕ or CDF Φ of the standard Normal.

- How large does n have to be?
- $n \ge 30$
 - · This may trigger mathematicians
 - Statisticians stay winning, though
 - · For typical examples in the real world
 - . BAD THINGS may happen for distributions with heavy tails (e.g., Cauchy)
 - Though most cases eventually fall to the might of the CLT

We can also use the statement

$$ar{Y} \stackrel{.}{\sim} \mathcal{N}\left(\mu, rac{\sigma^2}{n}
ight),$$

which is NOT the same as the above. This approximate distribution is NOT a limit statement; the n appears on the RHS, which would not work at all with a limit.

- · This is more useful for approximations than the limit statements
- Interpretation: the distribution of \bar{Y} is asymptotically Normal

Thm: Let Y_1, Y_2, \ldots be i.i.d. continuous r.v.s with PDF f, CDF F, and quantile function $Q = F^{-1}$. We have

$$\hat{Q}_n(p) = Y_{(\lceil np
ceil)}, \quad \sqrt{n}(\hat{Q}_n(p) - Q(p)) \stackrel{d}{\sim} \mathcal{N}\left(0, rac{p(1-p)}{f(p)^2}
ight)$$

Ex: Y_1, Y_2, \ldots is i.i.d. $\mathcal{N}(\theta, \sigma^2)$ and our estimand is θ . Let M_n be the sample median (an order statistic). Which is better?

From the above theorem and CLT, we have

$$M_n \sim \mathcal{N}\left(heta, rac{\pi\sigma^2}{2n}
ight), \quad ar{Y} \sim \mathcal{N}(heta, \sigma^2/n).$$

We can see in the approximate distributions that M_n has higher variance (but the same bias). So by MSE M_n would be worse.

- · Efficiency vs. robustness
- What if we do not have the underlying Normal distribution?
 - · Median may be more robust
- . E.g., Cauchy distribution
 - · Heavy-tailed
 - No mean
 - · Sample median is more robust against this case
 - · Sample mean has indeterminate
 - Exercise: prove that the mean of n Cauchys is distributed Cauchy, not Normal

Forms of convergence

- · Convergence... (in descending order of strength)
 - · Almost surely (not covered in this lecture)
 - In probability
 - In distribution

Def: X_n converges to X in **probability** if for any $\epsilon>0$, we have $P(\mid X_n-X\mid \geq \epsilon) \to 0$ as $n\to\infty$.

CMT

Thm (Continuous mapping theorem): If g is continuous and $X_n \to X$, then $g(X_n) \to g(X)$ in the same form of convergence.

- Convergence in probability is stronger than convergence in distribution
- $\bullet \quad X_n \stackrel{p}{\to} X \Rightarrow X_n \stackrel{d}{\to} X$
 - The converse is **NOT TRUE** unless X is a constant (proven in Stat 210)

Slutsky's theorem

Thm (Slutsky's theorem): Suppose $X_n \overset{d}{ o} X, Y_n \overset{d}{ o} Y.$

Does $X_n + Y_n \stackrel{d}{\to} X + Y$? No, not generally. For example, let X_n, Y_n be i.i.d. $\mathcal{N}(0,1)$ where $X = Y \sim \mathcal{N}(0,1)$. The LHS converges to $\mathcal{N}(0,2)$ and the RHS is $\mathcal{N}(0,4)$.

Now, suppose that $Y_n \overset{d}{ o} c$ where c is a constant. We have

$$egin{aligned} X_n + Y_n & \stackrel{d}{
ightarrow} X + c \ X_n - Y_n & \stackrel{d}{
ightarrow} X - c \ X_n Y_n & \stackrel{d}{
ightarrow} c X \ X_n / Y_n & \stackrel{d}{
ightarrow} X / c : c
eq 0, Y_n
eq 0 \end{aligned}$$