Collatz High Cycles Do Not Exist

Kevin Knight

^a Threeven Labs, 134 Roma Ct., Marina del Rey, 90292, CA, USA

Abstract

The Collatz function takes odd n to (3n+1)/2 and even n to n/2. Under the iterated Collatz function, every positive integer is conjectured to end up in the trivial cycle 1-2-1. Two types of cycles are of special interest. Consider the set S consisting of the smallest members of all cycles containing the same number of odd terms. The *circuit* contains the smallest member of S, while the *high cycle* contains the largest. It is known that no circuits of positive integers exist (except 1-2-1); this paper shows that there are likewise no high cycles of positive integers.

Keywords: number theory

2000 MSC: 11A99

1. Introduction

The Collatz function is

$$T(n) = \begin{cases} \frac{3n+1}{2}, & \text{if } n \text{ is odd;} \\ \frac{n}{2}, & \text{otherwise.} \end{cases}$$

Iterating this function famously yields interesting sequences. For example: $61 \rightarrow 92 \rightarrow 46 \rightarrow 23 \rightarrow 35 \rightarrow 53 \rightarrow 80 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow 1 \rightarrow \dots$

The Collatz conjecture posits that every positive integer eventually reaches 1. The conjecture was verified in 2021 for all $1 \le n \le 10^{21}$ [2], but it has not yet been proven or refuted.

Email address: kevin.crawford.knight@gmail.com (Kevin Knight)

Figure 1: All of the rational Collatz cycles of length k = 8 with x = 5 odd terms. Of special note are the outermost cycle (the *circuit*), in light gray, and the innermost cycle (the *high cycle*), in dark gray.

If $T^i(n) = n$ for some positive integer n, there is a Collatz *cycle* of length i whose first term is n. The only known T-cycle is the trivial one: $1 \to 2 \to 1$.

The unresolved Weak Collatz conjecture claims that there are no positive integer cycles. (It is called "weak" because it allows for the possibility of a start number that diverges to infinity, never reaching 1.)

We can also consider cycles with rational values. Figure 1 shows all cycles of length k=8 with x=5 odd terms. Considering the term $\frac{211}{13}$ to be odd (by its numerator), the next term produced by the Collatz process is $(3(\frac{211}{13})+1)/2=\frac{323}{13}$ (also odd).

For any k and x, the outermost and innermost cycles are of special interest. Let S contain the smallest members of each cycle (here, $\frac{211}{13}$, $\frac{227}{13}$, ... $\frac{319}{13}$).

The outermost cycle (called the *circuit*) contains the lowest member in S, while the innermost cycle (called the *high cycle*) contains the highest member in S.

Steiner [11] showed that no positive integer circuits exist for any k, x (except k = 2, x = 1). The current paper shows likewise that no high cycles of positive integers exist.

2. Parity vectors

Associated with every cycle member m is a unique parity vector that records the even (0) and odd (1) terms obtained from k iterations of the Collatz function.

Example 2.1 (Cycle member to parity vector). Starting with $m = \frac{211}{13}$, we encounter 5 odd terms followed by 3 even terms, so the corresponding parity vector is 11111000.

Likewise, given a parity vector \mathbf{v} , we can compute a cycle member m.

Example 2.2 (Parity vector to cycle member). Applying $\mathbf{v} = 110$ to arbitrary start number n yields $\left[3\frac{3n+1}{2}+1\right]/2/2 = \frac{9}{8}n + \frac{5}{8}$. To make a cycle, we set $n = \frac{9}{8}n + \frac{5}{8}$. Solving this equation yields n = -5, which is part of the $-5 \rightarrow -7 \rightarrow -10 \rightarrow -5$ cycle.

Generalizing this idea, Böhm and Sontacchi [4] give the cycle member associated with arbitrary parity vector \mathbf{v} as

$$f(\mathbf{v}) = \frac{\sum_{i=0}^{x-1} 2^{d_i(\mathbf{v})} 3^{x-i-1}}{2^k - 3^x},$$
 (2.1)

where $d_0(\mathbf{v}) < \ldots < d_{x-1}(\mathbf{v})$ are the (zero-based) indices of 1s in \mathbf{v} . Since we are only interested in Collatz cycles with positive terms, the denominator must be positive, so $k > x \log_2 3$.

The Weak Collatz Conjecture can be restated: "Is there a parity vector \mathbf{v} such that $f(\mathbf{v})$ is an integer greater than 2?"

It will sometimes be useful to refer to the numerator only:

$$g(\mathbf{v}) = \sum_{i=0}^{x-1} 2^{d_i(\mathbf{v})} 3^{x-i-1}.$$
 (2.2)

Note that rotating a parity vector produces another term in the same rational cycle.

Example 2.3 (Rotation). $f(100) = \frac{1}{5}$, $f(001) = \frac{4}{5}$, and $f(010) = \frac{2}{5}$. These are all entry points into the $\frac{1}{5} \to \frac{4}{5} \to \frac{2}{5} \to \frac{1}{5}$ cycle.

Finally, we can restrict ourselves to aperiodic parity vectors. Consider $f(1101011010) = \frac{23}{5}$, which is part of the double cycle $\frac{23}{5} \to \frac{37}{5} \to \frac{58}{5} \to \frac{29}{5} \to \frac{46}{5} \to \frac{23}{5} \to \frac{37}{5} \to \frac{58}{5} \to \frac{29}{5} \to \frac{46}{5} \to \frac{23}{5}$. Had these been integers, the aperiodic f(11010) would also be an integer.

3. No integer circuits

The parity vector $\mathbf{v_c} = 1^x 0^{k-x}$ is associated with the smallest member of the (k, x)-circuit. Following Equation 2.1,

$$f(\mathbf{v_c}) = \frac{\sum_{i=0}^{x-1} 2^i 3^{x-i-1}}{2^k - 3^x}.$$

We provide a novel proof that (non-trivial) Collatz circuits do not exist, which is simpler than those of Steiner [11] and Rozier [10].

Lemma 3.1. $f(\mathbf{v_c})$ simplifies to $\frac{3^x - 2^x}{2^k - 3^x}$.

Proof. By induction, omitted.

Lemma 3.2. If there is a non-trivial positive integer circuit of length k with x odd terms, then $2 \cdot (\frac{3}{2})^x \ge 2^{k-x} - 1$.

Proof. This follows from the fact that the putative circuit's smallest member is at least 1.

$$\frac{3^{x} - 2^{x}}{2^{k} - 3^{x}} \ge 1$$

$$3^{x} - 2^{x} \ge 2^{k} - 3^{x}$$

$$2 \cdot 3^{x} \ge 2^{k} + 2^{x}$$

$$2 \cdot (\frac{3}{2})^{x} \ge 2^{k-x} - 1.$$

Lemma 3.3 (Ellison [7]). For integers k and x, with x > 17, we have $2^k - 3^x > 2.56^x$.

Proof. We start with Ellison's original bound (for k > 27) and use the fact that $k > x \log_2 3$ in positive cycles.

$$2^k - 3^x > \frac{2^k}{e^{k/10}} > 1.8^k > 1.8^{x \log_2 3} > 2.56^x$$
, for $x > 17$.

Theorem 3.4 (Steiner, 1977). Non-trivial Collatz circuits do not exist.

Proof. Assume $f(\mathbf{v_c}) = \frac{3^x - 2^x}{2^k - 3^x}$ is a positive integer. Then the following are also positive integers:

$$\begin{aligned} &\frac{3^{x}-2^{x}}{2^{k}-3^{x}}+1,\\ &\frac{3^{x}-2^{x}}{2^{k}-3^{x}}+\frac{2^{k}-3^{x}}{2^{k}-3^{x}},\\ &\frac{2^{k}-2^{x}}{2^{k}-3^{x}},\\ &\frac{2^{x}(2^{k-x}-1)}{2^{k}-3^{x}}, \text{ and } &\frac{2^{k-x}-1}{2^{k}-3^{x}}. \end{aligned}$$

We can remove the 2^x in the last step without affecting the expression's purported integrality, since the denominator is odd.

However, the last term is actually less than one; we invoke Lemmas 3.3 and 3.2 to show that the denominator outstrips the numerator. For x > 17,

$$2^k - 3^x > 2.56^x > 2 \cdot (1.5)^x \ge 2^{k-x} - 1.$$

 $2^{k-x} - 1 = 0$ only when k = 2, x = 1; setting aside this case, we obtain the contradiction $0 < \frac{2^{k-x}-1}{2^k-3^x} < 1$. Cases of $x \le 17$ are handled because any non-trivial Collatz cycle must contain many millions of odd terms [6].

To date, all no-circuit proofs depend on deep lower bounds for $2^k - 3^x$, such as Ellison's, which are all derived from Alan Baker's pioneering transcendental number theory work [1]. As Jeffrey Lagarias [9] remarks, "The most remarkable thing about Theorem [...] is the weakness of its conclusion compared to the strength of the methods used in its proof."

4. The high cycle

In this section, we characterize the Collatz high cycle.

Definition 4.1. Let $\mathbf{v_h}$ be a (k, x)-parity vector with 1s indexed by $d_i(\mathbf{v}) = \lfloor \frac{k}{x}i \rfloor$, for $0 \le i \le x - 1$.

Example 4.2. For $k = 8, x = 5, \mathbf{v_h} = 11011010$.

Example 4.3. For $k = 21, x = 13, \mathbf{v_h} = 1101101011011011010101$.

The vector $\mathbf{v_h}$ is the well-known (upper) Christoffel word [3], constructed so that its 1s are roughly evenly spread among its 0s. The cycle member corresponding to $\mathbf{v_h}$ is

$$f(\mathbf{v_h}) = \frac{\sum_{i=0}^{x-1} 3^{x-i-1} 2^{\lfloor \frac{k}{x}i \rfloor}}{2^k - 3^x}.$$

Now we list a number of properties of $\mathbf{v_h}$.

First, $f(\mathbf{v_h})$ is the smallest member of its cycle.

Theorem 4.4 (Halbeisen and Hungerbühler [8]). For every (k, x) parity vector \mathbf{v} that is a rotation of $\mathbf{v_h}$, we have $f(\mathbf{v_h}) \leq f(\mathbf{v})$.

 $^{^{1}\}text{Note that certain circuits can be ruled out without these deep bounds. For example, if k and x are not co-prime, then we can factor <math>2^{k}-3^{x}$. E.g., $(2^{k/2}+3^{x/2})(2^{k/2}-3^{x/2}) > 2^{k/2} > 2^{x\log 3/2} > 1.72^{x} > 2^{k-x}-1$. Or for the case of $\mathbf{v_c} = 1111111100000$, it follows that if $f(\mathbf{v_c}) = \frac{3^8-2^8}{2^{13}-3^8}$ is an integer, then so is $31f(\mathbf{v_c}) + 206$, but it happens that $31\frac{3^8-2^8}{2^{13}-3^8} + 206\frac{2^{13}-3^8}{2^{13}-3^8} = \frac{3^{12}}{2^{13}-3^8}$, which is not integral.

Remark 4.5. It is known that a Christoffel word $\mathbf{v_h}$ is at a lexicographic extreme among all its rotations [3]. However, lexicographic ordering does not always coincide with f-ordering. For example, $f(11110010) = \frac{259}{13}$, $f(11100101) = \frac{395}{13}$, and $f(10111100) = \frac{341}{13}$. Of course, lexicographic ordering correlates roughly with f-ordering, as left-heavy vectors tend to be associated with smaller cycle members.

Theorem 4.6. Among all the (k, x) upper Christoffel words, $f(\mathbf{v_h})$ is maximized when $k = \lceil x \log_2 3 \rceil$.

Proof. Let $\mathbf{v_h}$ be an upper Christoffel word with $k = \lceil x \log_2 3 \rceil$. Let \mathbf{u} be a longer (k+1,x)-high-cycle parity vector. Replacing k by k+1 increases the numerator of $f(\mathbf{v})$ by no more than a factor of 2, while increasing the denominator by more than a factor of 2.

$$f(\mathbf{u}) = \frac{\sum_{i=0}^{x-1} 3^{x-i-1} 2^{\lfloor \frac{k+1}{x}i \rfloor}}{2^{k+1} - 3^x} = \frac{\sum_{i=0}^{x-1} 3^{x-i-1} 2^{\lfloor \frac{k}{x}i + \frac{i}{x} \rfloor}}{2^{k+1} - 3^x}$$

$$< \frac{\sum_{i=0}^{x-1} 3^{x-i-1} 2^{\lfloor \frac{k}{x}i \rfloor + 1}}{2^{k+1} - 2 \cdot 3^x} = \frac{2 \cdot \sum_{i=0}^{x-1} 3^{x-i-1} 2^{\lfloor \frac{k}{x}i \rfloor}}{2(2^k - 3^x)} = f(\mathbf{v}).$$

Similar reasoning holds if **u** is a (k+n,x) upper Christoffel word, for any n > 1.

Next, we confirm the reader's suspicion that $f(\mathbf{v_h})$ is indeed a member of the high cycle. Let S contain the smallest members of each (k, x)-cycle.

Theorem 4.7 (Halbeisen and Hungerbühler [8]). Let \mathbf{v} be a parity vector associated with the smallest member of any (k, x)-cycle, and let $\mathbf{v_h}$ be an upper Christoffel word with $k = \lceil x \log_2 3 \rceil$. Then, $f(\mathbf{v_h}) \geq f(\mathbf{v})$.

Remark 4.8 (Tangential). This theorem is useful for proving that any Collatz cycle must be long. Just for example, it is easy to verify empirically that $f(\mathbf{v_h}) < 10^{13}$ for all x < 10,000,000, implying that every cycle (not just the high cycle) with fewer than ten million odd terms has some member less than 10^{13} . Since no Collatz counter-examples exist among the first 10^{20} positive integers [2], a purported Collatz cycle must have more than ten million odd terms. Stronger results have been obtained through analytical means [8]. Of course, $f(\mathbf{v_h})$ will outstrip any finite confirmation, after some x, because $O(3^x x)$ exceeds $O(2^k - 3^x)$.

Recall the cycle member corresponding to $\mathbf{v_h}$.

$$f(\mathbf{v_h}) = \frac{\sum_{i=0}^{x-1} 3^{x-i-1} 2^{\lfloor \frac{k}{x}i \rfloor}}{2^k - 3^x},$$

Due to the floor function, we cannot simplify this expression as we did for $f(\mathbf{v_c})$. Its value can only be partially wrangled through upper and lower bounds.

Theorem 4.9 (Halbeisen and Hungerbühler [8]).

$$\frac{3^x(x/20)}{2^{\lceil x \log_2 3 \rceil} - 3^x} < f(\mathbf{v_h}) < \frac{3^x(7x/10)}{2^{\lceil x \log_2 3 \rceil} - 3^x}.$$

These bounds can be improved from (x/20, 7x/10) to (x/6, x/2); we omit the proof.

5. No integer high cycles

In this section, we prove our main result that members of the (non-trivial) high cycle are not integers. To do this, we need two more facts about Christoffel words. First, $f(\mathbf{v_h^R})$ is a member of the same cycle as $f(\mathbf{v_h})$.

Theorem 5.1 (Cohn [5]). The reverse $\mathbf{v_h^R}$ of an upper Christoffel word $\mathbf{v_h}$ is also a rotation of it.

Therefore, $f(\mathbf{v_h})$ and $f(\mathbf{v_h^R})$ are in the same cycle. Indeed, $f(\mathbf{v_h^R})$ is the largest member of the cycle, though we do not need this fact; also for interest, the left-rotation distance is the multiplicative inverse of x modulo k.

Theorem 5.2 (Berstel et al [3]). For aperiodic $\mathbf{v_h}$, we have $\mathbf{v_h} = 1\mathbf{u}0$, and $\mathbf{v_h^R} = 0\mathbf{u}1$.

Example 5.3. $\mathbf{v_h} = 11011010$, $\mathbf{v_h^R} = 01011011$, and $\mathbf{u} = 101101$. Incidentally, \mathbf{u} is always a palindrome, though we do not need this fact.

Theorem 5.4 (Main result). No high cycle consists of integers, other than the trivial cycle.

Proof. Rotating $\mathbf{v_h}$ and $\mathbf{v_h^R}$ to the left (by one position each) yields two more parity vectors, $\mathbf{u}01$ and $\mathbf{u}10$, so that $f(\mathbf{u}01)$ and $f(\mathbf{u}10)$ are additional members of the high cycle.

Because $\mathbf{u}01$ and $\mathbf{u}10$ differ only in their last two components, we expect $f(\mathbf{u}01)$ and $f(\mathbf{u}10)$ to have similar summands. We express both in terms of \mathbf{u} , via Equations 2.1 and 2.2.

$$f(\mathbf{u}01) = \frac{3g(\mathbf{u}) + 2^{k-1}}{2^k - 3^x}$$
$$f(\mathbf{u}10) = \frac{3g(\mathbf{u}) + 2^{k-2}}{2^k - 3^x}$$

Assume, by way of contradiction, that these two high-cycle members are both integers. Then so are

$$f(\mathbf{u}01) - f(\mathbf{u}01),$$

$$\frac{3g(\mathbf{u}) + 2^{k-1}}{2^k - 3^x} - \frac{3g(\mathbf{u}) + 2^{k-2}}{2^k - 3^x},$$

$$\frac{2^{k-1} - 2^{k-2}}{2^k - 3^x}, \text{ and }$$

$$\frac{2^{k-2}}{2^k - 3^x}.$$

However, 2^{k-2} is not divisible by any odd number (when k > 2), so we have a contradiction, implying the high cycle contains at least one non-integral member.

Example 5.5. For the (8,5)-high-cycle, Figure 1 gives
$$f(\mathbf{u}01) - f(\mathbf{u}01) = \frac{485}{13} - \frac{421}{13} = \frac{2^6}{13}$$
.

6. Summary

There are three notable features of this proof versus the no-circuit proof.

• Instead of assuming, by way of contradiction, that $f(\mathbf{v_c})$ is an integer, we instead assume that both $f(\mathbf{v_h})$ and $f(\mathbf{v_h^R})$ are both integers.

- Unlike the no-circuit proof, we do not require deep lower bounds [1, 7] on the size of $2^k 3^x$.
- We require no closed-form expression for any high cycle member; by contrast, the no-circuit proof relies on the expression $f(\mathbf{v_c}) = \frac{3^{\mathbf{x}} 2^{\mathbf{x}}}{2^{\mathbf{k}} 3^{\mathbf{x}}}$.

References

- [1] Alan Baker, *Transcendental number theory*, Cambridge University Press, 1975.
- [2] David Barina, Convergence verification of the Collatz problem, The Journal of Supercomputing 77 (2021), 2681–2688.
- [3] Jean Berstel, Aaron Lauve, Christophe Reutenauer, and Franco V. Saliola, Combinatorics on words: Christoffel words and repetitions in words, American Mathematical Society, Providence, RI, 2009.
- [4] Corrado Böhm and Giovanna Sontacchi, On the existence of cycles of given length in integer sequences like $x_{n+1} = x_n/2$ when x is even and $x_{n+1} = 3x_n + 1$ otherwise, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali **64** (1978), 260–264.
- [5] Harvey Cohn, Markoff forms and primitive words, Mathematische Annalen **196** (1972), 8–22.
- [6] Shalom Eliahou, The 3x + 1 problem: new lower bounds on nontrivial cycle lengths, Discrete Mathematics 118 (1993), 45–56.
- [7] W. J. Ellison, On a theorem of S. Sivasankaranarayana Pillai, Séminaire de théorie des nombres de Bordeaux (1971), 1–10.
- [8] Lorenz Halbeisen and Norbert Hungerbühler, Optimal bounds for the length of rational Collatz cycles, Acta Arithmetica LXXVIII (1997), 227–239.
- [9] Jeffrey C. Lagarias, The 3x+1 problem and its generalizations, The 3x+1 Problem: The Ultimate Challenge (Jeffrey C. Lagarias, ed.), American Mathematical Society, 2010, pp. 31–54.
- [10] O. Rozier, Démonstration de l'absence de cycles d'une certaine forme pour le problème de syracuse, Singularitié 3 (1990), 9–10.

[11] R. P. Steiner, A theorem on the Syracuse problem, Proc. 7th Manitoba Conference on Numerical Mathematics, 1977, pp. 553–559.