and

$$d(x_0, y_0) \le d(x_0, x) + d(x, y) + d(y, y_0) = d(x, y) + d(x_0, x) + d(y_0, y).$$

Consequently,

$$|d(x,y) - d(x_0,y_0)| \le d(x_0,x) + d(y_0,y),$$

which proves that d is continuous at (x_0, y_0) . In fact this shows that d is uniformly continuous; see Definition 37.36.

Given any nonempty subset A of E, by Proposition 37.2, the map $x \mapsto d(x, A)$ is continuous (in fact, uniformy continuous).

Similarly, for a normed vector space (E, || ||), the norm $|| || : E \to \mathbb{R}$ is (uniformly) continuous.

Given a function $f: E_1 \times \cdots \times E_n \to F$, we can fix n-1 of the arguments, say $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$, and view f as a function of the remaining argument,

$$x_i \mapsto f(a_1, \dots, a_{i-1}, x_i, a_{i+1}, \dots, a_n),$$

where $x_i \in E_i$. If f is continuous, it is clear that each f_i is continuous.

One should be careful that the converse is false! For example, consider the function $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, defined such that,

$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 if $(x,y) \neq (0,0)$, and $f(0,0) = 0$.

The function f is continuous on $\mathbb{R} \times \mathbb{R} - \{(0,0)\}$, but on the line y = mx, with $m \neq 0$, we have $f(x,y) = \frac{m}{1+m^2} \neq 0$, and thus, on this line, f(x,y) does not approach 0 when (x,y) approaches (0,0). See Figure 37.18.

Figure 37.18: The graph of $f(x,y) = \frac{xy}{x^2+y^2}$ for $(x,y) \neq (0,0)$. The bottom of this graph, which shows the approach along the line y = -x, does not have a z value of 0.

The following proposition is useful for showing that real-valued functions are continuous.