Man bestimme die Galoisgruppe des Polynoms $f = (X^4 - 1)(X^2 - 5) \in \mathbb{Q}[X]$, bestimme alle Zwischenkörper. Es gilt, dass $\mathbb{Q}(\sqrt{5}, i)$ Zerfällungskörper von f ist, denn es gilt über \mathbb{C} , dass

$$f = (X^4 - 1)(X^2 - 5) = (X - 1)(X + 1)(X - i)(X + i)(X - \sqrt{5})(X + \sqrt{5})$$

und es gilt $\mathbb{Q}(\pm\sqrt{5},\pm i) = \mathbb{Q}(\sqrt{5},i)$. Als Zerfällungskörper eines separablen Polynoms ist $L := \mathbb{Q}(\sqrt{2},i)/\mathbb{Q}$ insbesondere galoissch.

Nun hat $X^2+1\in\mathbb{Q}(\sqrt{5})[X]$ nur rein-imaginäre Nullstellen und $\mathbb{Q}(\sqrt{5})\subset\mathbb{R}$, also hat X^2+1 keine Nullstelle in $\mathbb{Q}(\sqrt{5})$, ist also irreduzibel über $\mathbb{Q}(\sqrt{5})$. Wir wenden nun Lemma 3.40 zweimal an: Zu jeder Nullstelle $\pm\sqrt{5}$ von X^2-5 gibt es genau eine Fortsetzung σ von id \mathbb{Q} nach $\mathbb{Q}(\sqrt{5})$ mit $\sigma(\sqrt{5})=\pm\sqrt{5}$ und $\sigma|_{\mathbb{Q}}=\mathrm{id}_{\mathbb{Q}}$. Nun ist X^2+1 über $\mathbb{Q}(\sqrt{5})$ irreduzibel und somit gibt es zu jeder Nullstelle $\pm i$ von X^2+1 genau eine Fortsetzung τ von σ nach $\mathbb{Q}(\sqrt{5})(i)$ mit $\tau(i)=\pm i$ und $\tau|_{\mathbb{Q}(\sqrt{5})}=\sigma$.

Somit haben wir die Galoisgruppe bestimmt:

$$\sigma_1: \sqrt{5} \mapsto \sqrt{5}, i \mapsto i \qquad \qquad \sigma_2: \sqrt{5} \mapsto -\sqrt{5}, i \mapsto i$$

$$\sigma_3: \sqrt{5} \mapsto \sqrt{5}, i \mapsto -i \qquad \qquad \sigma_4: \sqrt{5} \mapsto -\sqrt{5}, i \mapsto -i$$

da alle Elemente \neq id_L = σ_1 Ordnung zwei haben und es nur zwei Gruppen der Ordnung vier gibt, wissen wir zudem $G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

 $G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ hat drei Untergruppen der Ordnung zwei, die wegen #G = 4 Index zwei haben, demnach gibt es nach dem Hauptsatz der Galoistheorie drei Zwischenkörper, die quadratisch über \mathbb{Q} sind.

(i)
$$L^{\langle \sigma_2 \rangle} = \mathbb{Q}(i)$$
, denn $\sigma_2(i) = i$, also $\mathbb{Q}(i) \subset L^{\langle \sigma_2 \rangle}$, aber auch

$$[L^{\langle \sigma_2 \rangle} : \mathbb{Q}] = \frac{[L : \mathbb{Q}]}{[L : L^{\langle \sigma_2 \rangle}]} = \frac{4}{\# \langle \sigma_2 \rangle} = 2$$

Gradsatz liefert dann wegen $[\mathbb{Q}(i):\mathbb{Q}]=2$, dass $\mathbb{Q}(i)=L^{\langle\sigma_2\rangle}$.

- (ii) $L^{\langle \sigma_3 \rangle} = \mathbb{Q}(\sqrt{5})$, denn: $\sigma_3(\sqrt{5}) = \sqrt{5}$, also $\mathbb{Q}(\sqrt{5}) \subset L^{\langle \sigma_3 \rangle}$ mit demselben Gradargument wie in (i) folgt dann, dass $\mathbb{Q}(\sqrt{5}) = L^{\langle \sigma_3 \rangle}$.
- (iii) $L^{\langle \sigma_4 \rangle} = \mathbb{Q}(i\sqrt{5})$, denn: $\sigma_4(i\sqrt{5}) = \sigma_4(i)\sigma_4(\sqrt{5}) = -i \cdot (-\sqrt{5}) = i\sqrt{5}$. Demnach gilt: $\mathbb{Q}(i\sqrt{5}) \subset L^{\langle \sigma_4 \rangle}$, das das Polynom $X^2 + 5 \in \mathbb{Q}[X]$ irreduzibel ist (Eisenstein mit p = 5) und $i\sqrt{5}$ als Nullstelle hat, folgt, dass $[\mathbb{Q}(i\sqrt{5}):\mathbb{Q}] = 2$, also mit demselben Gradargument gilt $L^{\langle \sigma_4 \rangle} = \mathbb{Q}(i\sqrt{5})$.
- (iv) $L^{\{\mathrm{id}_L\}} = L$ und $L^G = \mathbb{Q}$

Wir bestimmen noch ein primitives Element der Körpererweiterung. Behauptung: $\mathbb{Q}(\sqrt{5}, i) = \mathbb{Q}(\sqrt{5} + i)$, dafür genügt es, nachzuweisen, dass $\sigma_i(\sqrt{5} + i) \neq \sqrt{5} + i$ für $\sigma_i \neq \mathrm{id}_L$, denn dann ist $\mathrm{Gal}(L/\mathbb{Q}(i+\sqrt{5})) = \{\mathrm{id}_L\}$, weil die σ_i für i=2,3,4, dann auf jeden Fall auch nicht $\sqrt{5} + i$ fest lassen, also insbesondere nicht $\mathbb{Q}(i+\sqrt{5})$, nun gilt

$$\sigma_2(\sqrt{5}+i) = -\sqrt{5}+i, \quad \sigma_3(\sqrt{5}+i) = -i+\sqrt{5}, \quad \sigma_4(\sqrt{5}+i) = -(\sqrt{5}+i)$$

. Daher gilt $Q(i, \sqrt{5}) = \mathbb{Q}(i + \sqrt{5})$. Wir erhalten also das folgende Körperdiagramm

