

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Maestría en Robótica

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA Análisis y Síntesis De Mecanismos Planos y Reconfigurables

	DE LA ASIGNATURA	TOTAL DE HORAS
Optativa	252207CD	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Realizar el análisis y la síntesis de mecanismos planos y reconfigurables para obtener configuraciones que permitan una disminución en la masa y forma de los eslabones, consumo de energía y para evitar singularidades en los mecanismos robóticos diseñados, aumentando el espacio de trabajo y el número de movimientos.

TEMAS Y SUBTEMAS

1. Modelado, análisis y síntesis de mecanismos planos«

- 1.1 Modelado de mecanismos
- 1.2 Análisis de posición, velocidad y aceleración
- 1.3 Centros instantáneos de rotación
- 1.4 Síntesis Cinemática
- 1.5 Síntesis de tipo
- 1.6 Síntesis dimensional
- 1.7 Síntesis analítica

2. Tipos de morfología y sistematización de mecanismos reconfigurables

- 2.1 Mecanismos metamórficos
- 2.2 Mecanismos cinematrotopicos
- 2.3 Mecanismos reconfigurables

3. Características de configuración de un mecanismo metamórfico

- 3.1 Sintesis Cinemática
- 3.2 Matriz de operaciones
- 3.3 Metodología por enumeración
- 3.4 Método de la síntesis estructural
- 3.5 Restricciones metamórficas de diseño estructural
- 3.6Proceso de trabajo de un mecanismo metamórfico
- 3.7 Diseño de parámetros de resistencia de un mecanismo metamórfico

4. Características de configuración de un mecanismo reconfigurable

- 4.1 Cinemática
- 4.2 Síntesis de mecanismos reconfigurables
- 4.3 Proceso de trabajo de un mecanismo reconfigurable
- 4.4 Diseño de parámetros de un mecanismo reconfigurable

ACTIVIDADES DE APRENDIZAJE

Exposición por parte del maestro de las técnicas utilizadas para el modelado, análisis y síntesis de mecanismos planos y reconfigurables, además de herramientas utilizadas para la simulación de mecanismos. Se utilizarán diapositivas, artículos científicos y/o material audiovisual. Por parte de los alumnos se realizarán proyectos en donde se modelen y simulen diversos elementos y tareas de mecanismos planos y reconfigurables.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Instrumentos formales y prácticos de evaluación: tres exámenes parciales teórico-prácticos y un proyecto final, estudio y análisis de artículos de investigación de frontera en el area, prácticas de síntesis de mecanismos y simulación. Se evaluarán los conocimientos teóricos que el alumno haya adquirido y su capacidad para la aplicación de los mismos en la solución de problemas.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- Shigley and Uicker J.J. (2001). Teoría de máquinas y mecanismos; Joseph Eduard; Mc Graw Hill
- Dai J. S., Ding X and Kong X. (2016). Advances in reconfigurable mechanisms and robots II; Springer. 2.
- Dai J.S., Jones J.R., J. Mech. (2005). Matrix representation of topological configuration transformation of 3 metamorphic mechanisms; Des. ASME 127 (4), pp. 837-840.
- Ceccarelli M. (2015). Recent advances in mechanisms design for robots. Springer.

Consulta:

- MSC. Software. (2017). Supplemental Adams Tutorial Kit for Design of Machinery Course Curriculum. 1. MSC. ADAMS™
- Dai J., Zoppi M. and Kong X. (2012). Advances in reconfigurable mechanisms and robots I; Springer.
- Can Dede M.I., İtik M., Lovasz E. C., Kiper G. (2017). Mechanisms, transmissions and applications. Springer.

PERFIL PROFESIONAL DEL DOCENTE

El docente deberá contar con el grado de Doctor en Robótica, Doctor en Mecánica o grado de Doctor en un área afín. Deberá estar inmerso en la especialidad de Mecánica, Simulación de mecanismos y Sistemas Robóticos, de preferencia con publicaciones y trabajo comprobado en el área.

Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

DR. AGUSTÍN SANTIAGO VICE-RECTOR ACADÉMICO

> VICE-RECTORIA **ACADÉMICA**