

# PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2003-100701  
(43)Date of publication of application : 04.04.2003

(51)Int.CI. H01L 21/306

(21)Application number : 2001-296805 (71)Applicant : SUMITOMO MITSUBISHI SILICON CORP  
(22)Date of filing : 27.09.2001 (72)Inventor : NORIMOTO MASAFUMI  
TAKAISHI KAZUNARI

## (54) METHOD FOR ETCHING SILICON WAFER AND METHOD FOR DIFFERENTIATING FRONT AND REAR SURFACE OF SILICON WAFER USING THE SAME

### (57)Abstract:

**PROBLEM TO BE SOLVED:** To provide an etching method of a silicon wafer, by which excellent mirror finish flatness can be obtained on the front surface and the rear surface is a little rough.  
**SOLUTION:** This is to provide an improved version of a silicon wafer etching method in which an acid etchant and an alkaline etchant are individually stored in a plurality of tanks, and a silicon wafer having a process modified layer formed through a lapping process and a subsequent cleaning process is sequentially immersed in the acid etchant and the alkaline etchant. In this method, the alkaline etching is treated after the acid etching, the concentration of the alkaline etchant is set to be 8 mol/l or more, and the etching rate of the acid etching is set to be 0.2 µm/sec or more in total in the front and rear surfaces of the silicon wafer.

## LEGAL STATUS

[Date of request for examination] 22.02.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

**THIS PAGE BLANK**

(19)日本国特許庁 (JP)

## (12) 公開特許公報 (A)

(11)特許出願公開番号

特開2003-100701

(P2003-100701A)

(43)公開日 平成15年4月4日(2003.4.4)

(51)Int.Cl.  
H 01 L 21/306

識別記号

F I  
H 01 L 21/306テマコート(参考)  
B 5 F 0 4 3

審査請求 未請求 請求項の数7 OL (全5頁)

(21)出願番号 特願2001-296805(P2001-296805)

(22)出願日 平成13年9月27日(2001.9.27)

(71)出願人 302006854

三菱住友シリコン株式会社  
東京都港区芝浦一丁目2番1号(72)発明者 則本 雅史  
東京都千代田区大手町1丁目5番1号 三菱マテリアルシリコン株式会社内(72)発明者 高石 和成  
東京都千代田区大手町1丁目5番1号 三菱マテリアルシリコン株式会社内(74)代理人 100085372  
弁理士 須田 正義  
Fターム(参考) 5F043 AA02 BB02 FF07 GG10

(54)【発明の名称】シリコンウェーハのエッチング方法及びこの方法を用いたシリコンウェーハの表面差別化方法

## (57)【要約】

【課題】表面を鏡面研磨したウェーハにおいて、良好な平坦度を得、かつ裏面粗さが小さくなるシリコンウェーハのエッチング方法を提供する。

【解決手段】複数のエッチング槽に酸エッチング液とアルカリエッティング液をそれぞれ貯え、ラッピング工程に続いて洗浄工程を経た加工変質層を有するシリコンウェーハを酸エッティング液とアルカリエッティング液とに順次浸漬するシリコンウェーハのエッティング方法の改良である。この特徴ある構成は、酸エッティングの後にアルカリエッティングが行われ、アルカリエッティング液の濃度を8mol/l以上とし、かつ酸エッティングのエッティングレートをシリコンウェーハの表面と裏面を合わせた合計で0.2μm/秒以上とするところにある。

## 【特許請求の範囲】

【請求項1】 複数のエッチング槽に酸エッチング液とアルカリエッティング液をそれぞれ貯え、ラッピング工程に続いて洗浄工程を経た加工変質層を有するシリコンウェーハを酸エッチング液とアルカリエッティング液とに順次浸漬するシリコンウェーハのエッチング方法において、

酸エッチングの後にアルカリエッティングが行われ、前記アルカリエッティング液の濃度を8mo1/1以上とし、かつ酸エッチングのエッチングレートを前記シリコンウェーハの表面と裏面を合わせた合計で0.2μm/秒以上とすることを特徴とするシリコンウェーハのエッチング方法。

【請求項2】 酸エッチング槽の合計取り代をシリコンウェーハの表面と裏面を合わせた合計で13～25μmとし、アルカリエッティング槽の合計取り代をシリコンウェーハの表面と裏面を合わせた合計で5～13μmとする請求項1記載のエッチング方法。

【請求項3】 エッチング槽の数を酸エッチング槽の数を1～3槽とし、アルカリエッティング槽の数を1～3槽とする請求項1又は2記載のエッチング方法。

【請求項4】 酸エッティング液がフッ酸及び硝酸をそれぞれ含む請求項1ないし3いずれか記載のエッティング方法。

【請求項5】 酸エッティング液が酢酸、硫酸又はリン酸を少なくとも1種更に含む請求項4記載のエッティング方法。

【請求項6】 アルカリエッティング液が水酸化ナトリウム又は水酸化カリウムを含む請求項1ないし3いずれか記載のエッティング方法。

【請求項7】 請求項1ないし6いずれかに記載の方法によりエッティングされたシリコンウェーハの表面のみを鏡面研磨して前記ウェーハの表裏面を差別化する方法。

## 【発明の詳細な説明】

## 【0001】

【発明の属する技術分野】 本発明は、シリコンウェーハの製造工程において、発生するウェーハ表面の加工変質層をエッティング除去する方法の改善に関する。更に詳しくは、エッティングされたウェーハの表面のみを鏡面研磨してウェーハ表裏面の差別化を行う方法に関するものである。

## 【0002】

【従来の技術】 一般に半導体シリコンウェーハの製造工程は、引上げたシリコン単結晶インゴットから切出し、スライスして得られたウェーハを、面取り、機械研磨（ラッピング）、エッティング、鏡面研磨（ポリッシング）及び洗浄する工程から構成され、高精度の平坦度を有するウェーハとして生産される。これらの工程は目的により、その一部の工程が入替えられたり、複数回繰返されたり、或いは熱処理、研削等他の工程が付加、置換

されたりして種々の工程が行われる。ブロック切断、外径研削、スライシング、ラッピング等の機械加工プロセスを経たシリコンウェーハは表面にダメージ層即ち加工変質層を有している。加工変質層はデバイス製造プロセスにおいてスリップ転位等の結晶欠陥を誘発したり、ウェーハの機械的強度を低下させ、また電気的特性に悪影響を及ぼすので完全に除去しなければならない。

【0003】 この加工変質層を除去するため、エッティング処理が行われる。エッティング処理には、混酸等の酸エッティング液を用いる酸エッティングと、NaOH等のアルカリエッティング液を用いるアルカリエッティングがある。しかし、酸エッティングを行うことにより、ラッピングで得られた平坦度が損なわれ、エッティング表面にmmオーダーのうねりやピールと呼ばれる凹凸が発生する。また、アルカリエッティングを行うことにより、局所的な深さが数μmで、大きさが数～数十μm程度のピット（以下、これをファセットという。）が発生する等の問題点があった。

【0004】 上記問題点を解決する方法としてアルカリエッティングの後に、酸エッティングを行い、このときのアルカリエッティングの取り代を酸エッティングの取り代より大きくするウェーハの加工方法及びこの方法により加工されたウェーハが提案されている（特開平11-233485）。上記方法により、ラッピング後の平坦度を維持しつつ加工変質層を除去し、平面粗さを改善し、特に局所的なファセットをより浅く、滑らかな凹凸形状を持ち、パーティクルや汚染の発生しにくいエッティング表面を有するウェーハを作製することが可能となる。一方、デバイスプロセスの搬送系でのウェーハ有無の検知はウェーハ裏面により行われているため、表面を鏡面研磨したウェーハ裏面が鏡面状であると、検知困難や誤検知するなどの問題が生じていた。

## 【0005】

【発明が解決しようとする課題】 上記特開平11-233485号公報に示されたウェーハの表面を鏡面研磨したウェーハ（以下、PW；Polished Waferという。）では、デバイスマーカーの所望するような良好な平坦度を有し、かつPWの裏面粗さが小さいウェーハを得られることができない問題があった。

【0006】 本発明の目的は、表面を鏡面研磨したウェーハにおいて、良好な平坦度を得、かつ裏面粗さが小さくなるシリコンウェーハのエッティング方法を提供することにある。本発明の別の目的は、ウェーハ両面が高精度の平坦度及び小さい表面粗さを有しかつウェーハの表裏面を目視により識別可能にするシリコンウェーハの表裏面差別化方法を提供することにある。

## 【0007】

【課題を解決するための手段】 請求項1に係る発明は、複数のエッティング槽に酸エッティング液とアルカリエッティング液をそれぞれ貯え、ラッピング工程に続いて洗浄工

程を経た加工変質層を有するシリコンウェーハを酸エッティング液とアルカリエッティング液とに順次浸漬するシリコンウェーハのエッティング方法の改良である。この特徴ある構成は、酸エッティングの後にアルカリエッティングが行われ、アルカリエッティング液の濃度を8mo1/1以上とし、かつ酸エッティングのエッティングレートをシリコンウェーハの表面と裏面を合わせた合計で0.2μm/秒以上とするところにある。請求項1に係る発明では、酸エッティングの後にアルカリエッティングが行われ、上記条件にアルカリエッティング液の濃度及び酸エッティングのエッティングレートを規定してウェーハをアルカリ及び酸エッティング液に順次浸漬してエッティング処理されたウェーハは、ラッピング工程で得られた平坦度を維持とともに裏面粗さを小さくすることができる。

【0008】請求項7に係る発明は、請求項1ないし6いずれかに記載の方法によりエッティングされたシリコンウェーハの表面のみを鏡面研磨してウェーハの表裏面を差別化する方法である。請求項7に係る発明では、エッティングにより良好な平坦度を得、かつ裏面粗さを小さくしたウェーハ表面のみを鏡面研磨することにより、ウェーハ両面が高精度の平坦度及び小さい表面粗さを有しつつウェーハ表面がデバイスマーカーの所望する光沢度を有してウェーハの表裏面が目視により識別可能となる。

#### 【0009】

【発明の実施の形態】次に本発明の実施の形態を図面に基づいて説明する。本発明に係るシリコンウェーハのエッティング方法は、複数のエッティング槽に酸エッティング液とアルカリエッティング液をそれぞれ貯え、ラッピング工

$$\text{光沢度 } G_r(\theta) = \frac{\Psi_s}{\Psi_{s_0}} \times 100 \quad \dots \quad (1)$$

【0013】酸エッティングのエッティング機構は、硝酸等に含まれる、或いは別の化合物に含まれる酸化種によるシリコンの酸化と、フッ酸等、或いは別の還元性化合物による酸化物の除去から成り立っている。この酸エッティングのエッティングレートを制御するために、希釈剤として酢酸、硫酸、リン酸、水等が添加される。これら希釈剤に使用される添加溶液は、酸エッティング液の表面張力や粘性を変えるという別の効果もあり、その目的によって使い分けられる。一般に希釈剤を添加することにより、酸エッティング液のエッティングレートが低下する。エッティングレートの低下とともに、表面の粗さが大きくなる傾向にある。従って、表面粗さの指標であるRaが大きくなる、光沢度が小さくなるという効果が現れる。また、エッティング反応に伴って発生する熱に関し、ウェーハ面内均一性が向上する等の理由から、エッティングレートが小さくなるにつれ、平坦度は良くなる傾向を示す。

【0014】酸エッティング槽の合計取り代はシリコンウェーハの表面と裏面を合わせた合計が13～25μm、

程に続いて洗浄工程を経た加工変質層を有するシリコンウェーハを酸エッティング液とアルカリエッティング液とに順次浸漬する方法の改良であり、この特徴ある構成は、酸エッティングの後にアルカリエッティングが行われ、アルカリエッティング液の濃度を8mo1/1以上とし、かつ酸エッティングのエッティングレートをシリコンウェーハの表面と裏面を合わせた合計で0.2μm/秒以上とするところにある。

【0010】アルカリエッティング液の濃度が下限値未満であると、ウェーハに形成されるファセットの形状が大きくなる、更に大きさが数ミクロン以下で深さが十から数十ミクロン程度の深いピットが発生する、表面粗さが大きくなる不具合を生じ、後工程で行う化学的機械的研磨の研磨代を大きくする必要がある。アルカリエッティング液の濃度は10mo1/1以上が好ましい。酸エッティングのエッティングレートは0.2～0.8μm/秒が好ましい。

【0011】ここで光沢度はJIS規格(JIS Z 8741)により定義されている。この規格によれば、光沢度は、ある試料面に対し、入射角θで入射した光の鏡面反射光束Ψsの、屈折率が1.567のガラス表面の同一測定系における鏡面反射光束Ψs0に対する割合をパーセントで表示した数値として表される。光沢度Gr(θ)は下記式(1)に示す式により表すことができ、シリコンウェーハ表面の光沢度を測定する場合の入射角θは60°である。

#### 【0012】

#### 【数1】

アルカリエッティング槽の合計取り代はシリコンウェーハの表面と裏面を合わせた合計が5～13μmとなるようにウェーハをエッティングする。酸エッティングの合計取り代が下限値未満であると、表面粗さが大きくなってしまう、取り代を正確に制御できない等の不具合を生じ、上限値を越えると、ナノトポグラフィーと呼ばれる数mmオーダーのうねりが大きくなる不具合を生じる。アルカリエッティングの合計取り代が下限値未満であると、光沢度が所望の数値とならず、上限値を越えると、ナノトポグラフィーが発生する不具合を生じる。酸エッティング槽の合計取り代が13～20μm、アルカリエッティング槽の合計取り代が5～10μmが好ましい。

【0015】本発明のエッティング槽の数は2～6槽である。酸エッティング槽とアルカリエッティング槽との組合せを表1に示す。

#### 【0016】

#### 【表1】

| エッティング槽の数 | 酸エッティング槽とアルカリエッティング槽との組合せ                                                                                                                                                                             |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2槽        | 酸-アルカリ                                                                                                                                                                                                |
| 3槽        | 酸-酸-アルカリ<br>酸-アルカリ-酸<br>酸-アルカリ-アルカリ                                                                                                                                                                   |
| 4槽        | 酸-酸-酸-アルカリ<br>酸-酸-アルカリ-酸<br>酸-アルカリ-酸-アルカリ<br>酸-アルカリ-酸-アルカリ<br>酸-アルカリ-アルカリ-酸<br>酸-アルカリ-アルカリ-アルカリ                                                                                                       |
| 5槽        | 酸-酸-酸-アルカリ-アルカリ<br>酸-酸-アルカリ-酸-アルカリ<br>酸-酸-アルカリ-アルカリ-酸<br>酸-アルカリ-酸-アルカリ-酸<br>酸-アルカリ-酸-アルカリ-アルカリ<br>酸-アルカリ-酸-アルカリ-アルカリ<br>酸-アルカリ-アルカリ-酸-アルカリ<br>酸-アルカリ-アルカリ-アルカリ-酸<br>酸-アルカリ-アルカリ-アルカリ-アルカリ             |
| 6槽        | 酸-酸-酸-アルカリ-アルカリ-アルカリ<br>酸-酸-アルカリ-酸-アルカリ-アルカリ<br>酸-酸-アルカリ-アルカリ-酸-アルカリ<br>酸-アルカリ-酸-アルカリ-酸-アルカリ<br>酸-アルカリ-酸-アルカリ-アルカリ-酸<br>酸-アルカリ-酸-アルカリ-アルカリ-アルカリ<br>酸-アルカリ-アルカリ-酸-アルカリ-アルカリ<br>酸-アルカリ-アルカリ-アルカリ-アルカリ-酸 |

20

【0017】エッティング槽の数が上限値を越えるとウェーハの表面粗さが悪化する。好みいエッティング槽の数は2~3槽であり、この場合の最適態様は、酸エッティング槽が1槽、アルカリエッティング槽が2槽以下である。例えば、エッティング槽の数が2槽の場合、酸エッティング槽、アルカリエッティング槽の順にウェーハを浸漬する。また、エッティング槽の数が3槽の場合、酸エッティング槽、アルカリエッティング槽、アルカリエッティング槽の順にウェーハを浸漬することになる。

【0018】また、酸エッティング工程と酸エッティング工程との間、アルカリエッティング工程とアルカリエッティング工程との間にはリノス槽に浸漬するリノス工程を行ってもよいし、行わなくてもよいが、酸エッティング工程とアルカリエッティング工程との間には、必ずリノス工程を行う。このリノス工程を間に入れることにより、ウェーハに付着した酸が洗い落とされるため、次工程でのアルカリと反応を起こすおそれがなくなる。酸エッティング液はフッ酸及び硝酸をそれぞれ含み、酢酸、硫酸又はリノ酸を少なくとも1種更に含むことが好みい。また、アルカリエッティング液は水酸化ナトリウム又は水酸化カリウムを含む液が用いられる。

【0019】本発明のエッティング方法によりエッティングされたシリコンウェーハの表面のみを鏡面研磨することにより得られたウェーハはウェーハ表面がウェーハ裏面より高い光沢度を有するため、表裏面を識別可能な程度に差別化することができる。

【0020】

【実施例】次に本発明の実施例を比較例とともに詳しく説明する。

<実施例1>先ずラッピング工程に続いて洗浄工程を経

た加工変質層を有するシリコンウェーハを用意した。次いでフッ酸50wt%、硝酸70wt%、酢酸90wt%及び水を混合してエッティングレートが0.5μm/秒となる酸エッティング液を調製した。また、濃度が8.5mol/lの水酸化カリウムを主成分とするアルカリエッティング液を調製した。調製した酸エッティング液を1槽のエッティング槽に貯え、液温を30℃に維持し、同様に、アルカリエッティング液を1槽のエッティング槽に貯え、液温を80℃に維持した。次いで、酸エッティング槽内のエッティング液を攪拌しながら上記ウェーハを浸漬してウェーハの取り代をシリコンウェーハの表面と裏面を合わせた合計で15μmを目安にして30秒間浸漬してエッティングを行った。酸エッティングを終えたウェーハを超純水に浸漬してリノスを行った。次に、アルカリエッティング槽内のエッティング液を攪拌しながら上記リノスを終えたウェーハを浸漬してウェーハの取り代をシリコンウェーハの表面と裏面を合わせた合計で10μmを目安にして240秒間浸漬してエッティングを行った。アルカリエッティングを終えたウェーハを超純水に浸漬してリノスした後、乾燥した。

【0021】<実施例2>フッ酸50wt%、硝酸70wt%、酢酸90wt%にして酸のエッティングレートを0.3μm/秒とした以外は、実施例1と同様にしてウェーハをエッティング処理した。

【0022】<比較例1>フッ酸50wt%、硝酸70wt%、酢酸90wt%にして酸のエッティングレートを0.1μm/秒とした以外は、実施例1と同様にしてウェーハをエッティング処理した。

【0023】<比較試験>実施例1、2及び比較例1のエッティング処理を終えたウェーハ裏面の表面粗さ、光沢

50

度をそれぞれ測定した。表面粗さは光学式の表面粗さ測定器(chapman製)にて測定し、光沢度は光沢度計(日本電色社製)を用いてJIS規格(JISZ 874  
1)に基づいて測定し、更に得られた数値を鏡面研磨後の表面光沢度の数値である36.0%で除した値の百分率

としたものを表面光沢度を100%としたときの裏面光沢度とした。表2に測定結果をそれぞれ示す。

【0024】

【表2】

|      | 酸エッティングレート<br>(μm/秒) | アルカリエッティング濃度<br>(mol/l) | 表面粗さRa<br>(Å) | 光沢度(%) |
|------|----------------------|-------------------------|---------------|--------|
| 実施例1 | 0.5                  | 8.5                     | 2076          | 53.3   |
| 実施例2 | 0.3                  | 8.5                     | 2785          | 44.6   |
| 比較例1 | 0.1                  | 8.5                     | 3399          | 37.8   |

【0025】表2より明らかなように、酸のエッティングレートが小さい比較例1に対して酸のエッティングレートが大きい実施例1及び2ではエッティング処理を経たウェーハ裏面の粗さRaの数値が小さくなり、更に光沢度が表裏識別可能な範囲となっていることが判る。

【0026】

【発明の効果】以上述べたように、本発明によれば、複数のエッティング槽に酸エッティング液とアルカリエッティング液をそれぞれ貯え、ラッピング工程に続いて洗浄工程を経た加工変質層を有するシリコンウェーハを酸エッティング液とアルカリエッティング液とに順次浸漬するシリコンウェーハのエッティング方法の改良である。酸エッティングの後にアルカリエッティングが行われ、アルカリエッティング液の濃度を8mol/l以上とし、かつ酸エッキン

グのエッティングレートをシリコンウェーハの表面と裏面を合わせた合計で0.2μm/秒以上とするところにある。酸及びアルカリエッティングを上記条件に規定することにより、デバイスマーカーの所望する裏面平坦度、光沢度及び表面粗さが得られる。

【0027】このため、このエッティングにより得られたウェーハの表面のみに後工程である鏡面研磨を施すことにより、ウェーハ表面がウェーハ裏面より光沢度が高くなり、ウェーハ両面が高精度の平坦度及び小さい表面粗さを有し、デバイスプロセスの搬送系でのウェーハ有無の検知における検知困難や誤検知などの問題を生じず、ウェーハの表裏面を目視により識別可能な程度に差別化することができる。

**THIS PAGE BLANK (SERIAL)**