Course Outline

Data Structures CS-2001 Semester Fall-2025

Instructor: Rana Wagas Ali **Office Hours:** Tuesday and Thursday

Email: rana.waqasali@nu.edu.pk 1:00-2:30 p.m.

Credit 3+1 Prerequisite Object Oriented Hours: Programming

Program Learning Outcomes (PLOs)

This course covers the following PLOs:

PLO#	PLO Name	PLO Description	
PLO 2	Knowledge for Solving Computing Problems	Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements	
PLO 3	Problem Analysis	Identify, formulate, research literature, and solve complex computing problems reaching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines	
PLO 4	Design/ Development of Solutions	opment design and evaluate systems, components, or processes that meet	

Course Learning Outcomes (CLOs)

CS2001 is a core Computer Science course with Object Oriented Programming as its prerequisite. The course learning outcomes of this course are:

CLO#	CLO Description	BT Level	PLO#
CLO1	Demonstrate basic concepts of data structure and algorithms.	3	PLO2
CLO2	Evaluate different data structures in terms of memory complexity and time.	5	PLO3
CLO3	Design appropriate data structures to solve real world problems related to the program.	6	PLO4
CLO4	Determine bugs in programs and recognize required operations with data structures.	1	PLO3

Text Book:

Any one of these books is recommended as a text book:

- Mark Allen Weiss, Data structures and algorithm analysis, Pearson Education, 2007.
- Adam Drozdek, *Data structures and algorithms in C++*, Course technology, 2004.
- Nell Dale, C++ Plus Data Structures, 3rd Edition, Jones and Bartlett, 2003.
- Michael T. Goodrich, Roberto Tamassia and David M. Mount, Data structures and algorithms, 2nd Edition, John Wiley & Sons, 2011.

Course Outline

Data Structures CS-2001 Semester Fall-2025

LECTURES	TOPICS			
1	Introduction			
2	Time Complexity Analysis and Asymptotic Bounds			
5	Linked Lists			
	Review of pointers			
	Singly linked lists, doubly linked lists, circular lists and			
	corresponding iterators			
2	Stacks and Queues			
MIDTERM 1				
2	Recursion			
3	Trees			
	Binary trees and their traversals			
	Binary search trees (Insertion, Deletion and Search)			
3	Height Balanced Binary Search Trees (AVL Trees)			
2	Heaps and heap sort			
MIDTERM 2				
1	Data compression and Huffman coding			
	Data compression and trainman coding			
2	Hashing			
	Hash tables and hash functions			
	Collision resolution			
3	Graph data structure, Breadth first search and Depth first search			
2	Advanced Topics			

Tentative Grading Scheme:

Assignments(10%)

Quizzes(10 %)

Midterms(30 %)

Final Exam (50 %)

Homework(0%)

Important Instructions:

- o Quizzes may be announced or surprise
- o There will be no make up quiz
- o Minimum requirement to pass this course is to obtain at least 50% marks.
- All assignments and course work must be done individually. Plagiarism in any work (Quiz, Assignment, Midterms, and Final Exam) from any source (chatGPT/Internet or a Student) will result in F grade.
- No Late assignment Submissions
- o All the CS department's grading policies apply.