Linear models

Francisco Rodríguez-Sánchez

https://frodriguezsanchez.net

Example dataset: forest trees

Download this dataset (or the entire zip file)

```
trees <- read.csv("data/trees.csv")
head(trees)</pre>
```

```
      site
      dbh
      height
      sex
      dead

      1
      4
      29.68
      36.1
      male
      0

      2
      5
      33.29
      42.3
      male
      0

      3
      2
      28.03
      41.9
      female
      0

      4
      5
      39.86
      46.5
      female
      0

      5
      1
      47.94
      43.9
      female
      0

      6
      1
      10.82
      26.2
      male
      0
```

Example dataset: forest trees

- Download this dataset (or the entire zip file)
- · Import:

```
trees <- read.csv("data/trees.csv")
head(trees)</pre>
```

```
      site
      dbh
      height
      sex
      dead

      1
      4
      29.68
      36.1
      male
      0

      2
      5
      33.29
      42.3
      male
      0

      3
      2
      28.03
      41.9
      female
      0

      4
      5
      39.86
      46.5
      female
      0

      5
      1
      47.94
      43.9
      female
      0

      6
      1
      10.82
      26.2
      male
      0
```

Questions

· What is the relationship between DBH and height?

Questions

· What is the relationship between DBH and height?

• Do taller trees have bigger trunks?

Questions

• What is the relationship between DBH and height?

Do taller trees have bigger trunks?

· Can we predict height from DBH? How well?

Always plot your data first!

Always plot your data first!

Exploratory Data Analysis (EDA)

Outliers

plot(trees\$height)

Outliers impact on regression

See http://rpsychologist.com/d3/correlation/

Histogram of response variable

hist(trees\$height)

Histogram of predictor variable

hist(trees\$dbh)

Scatterplot

```
plot(height ~ dbh, data = trees, las = 1)
```


Scatterplot

```
ggplot(trees) +
  geom_point(aes(x = dbh, y = height))
```


Model fitting

Now fit model

Hint: lm

Now fit model

Hint: lm

which corresponds to

$$\begin{aligned} \textit{Height}_i = a + b \cdot \textit{DBH}_i + \varepsilon_i \\ \varepsilon_i \sim \textit{N}\left(0, \sigma^2\right) \end{aligned}$$

Package equatiomatic returns model structure

```
library("equatiomatic")
m1 <- lm(height ~ dbh, data = trees)
equatiomatic::extract_eq(m1)</pre>
```

$$height = \alpha + \beta_1(dbh) + \epsilon \tag{1}$$

$$\widehat{\text{height}} = 19.34 + 0.62(\text{dbh}) \tag{2}$$

To preview LaTeX:

```
library(texPreview)
tex_preview(equatiomatic::extract_eq(m1))
```

Model interpretation

What does this mean?

```
summary(m1)
Call:
lm(formula = height ~ dbh. data = trees)
Residuals:
    Min 10 Median 30 Max
-13.3270 -2.8978 0.1057 2.7924 12.9511
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.33920 0.31064 62.26 <2e-16 ***
dbh 0.61570 0.01013 60.79 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.093 on 998 degrees of freedom
Multiple R-squared: 0.7874, Adjusted R-squared: 0.7871
F-statistic: 3695 on 1 and 998 DF, p-value: < 2.2e-16
```

Remember that in a Normal distribution

Estimated distribution of the intercept parameter

Estimated distribution of the slope parameter

Distribution of residuals

Degrees of freedom

DF = n - p

n = sample size

p = number of estimated parameters

R-squared

Proportion of 'explained' variance

$$R^2 = 1 - \frac{Residual Variation}{Total Variation}$$

Adjusted R-squared

Accounts for model complexity (number of parameters)

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1}$$

Quiz

https://pollev.com/franciscorod726

Retrieving model coefficients

coef(m1)

(Intercept) dbh 19.3391968 0.6157036

Confidence intervals for parameters

confint(m1)

```
2.5 % 97.5 % (Intercept) 18.7296053 19.948788 dbh 0.5958282 0.635579
```

Tidy up model coefficients with broom

```
glance(m1)
```

https://broom.tidymodels.org/

Retrieving model parameters with parameters package

```
library("parameters")
parameters(m1)
```

https://easystats.github.io/parameters/

Communicating results

Avoid dichotomania of statistical significance

"Never conclude there is 'no difference' or 'no association' just because p > 0.05 or CI includes zero"

Avoid dichotomania of statistical significance

- "Never conclude there is 'no difference' or 'no association' just because p > 0.05 or CI includes zero"
- · Estimate and communicate effect sizes and their uncertainty

Avoid dichotomania of statistical significance

- "Never conclude there is 'no difference' or 'no association' just because p > 0.05 or CI includes zero"
- · Estimate and communicate effect sizes and their uncertainty
- https://doi.org/10.1038/d41586-019-00857-9

Communicating results

We found a **significant relationship** between DBH and Height (p<0.05).

We found a {significant} positive relationship between DBH and Height {(p<0.05)} (b = 0.61, SE = 0.01).

(add p-value if you wish)

Models that describe themselves

```
library("report")
report(m1)
```

We fitted a linear model (estimated using OLS) to predict height with dbh (formula: height ~ dbh). The model explains a statistically significant and substantial proportion of variance (R2 = 0.79, F(1, 998) = 3695.40, p < .001, adj. R2 = 0.79). The model's intercept, corresponding to dbh = 0, is at 19.34 (95% CI [18.73, 19.95], t(998) = 62.26, p < .001). Within this model:

• The effect of dbh is statistically significant and positive (beta = 0.62, 95% CI [0.60, 0.64], t(998) = 60.79, p < .001; Std. beta = 0.89, 95% CI [0.86, 0.92])

Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using a Wald t-distribution approximation.

https://easystats.github.io/report/

Generating table with model results: modelsummary

```
library("modelsummary")
modelsummary(m1, output = "markdown") # docx, LaTeX, png...
```

	(1)		
(Intercept)	19.339		
	(0.311)		
dbh	0.616		
	(0.010)		
Num.Obs.	1000		
R2	0.787		
R2 Adj.	0.787		
AIC	5660.3		
BIC	5675.0		
Log.Lik.	-2827.125		
F	3695.395		
RMSE	4.09		

Generating table with model results: gtsummary

```
library("gtsummary")
tbl_regression(m1, intercept = TRUE)
```

Characteristic	**Beta**	**95% CI**	**p-value**
(Intercept)	19	19, 20	<0.001
dbh	0.62	0.60, 0.64	<0.001

https://www.danieldsjoberg.com/gtsummary

Visualising fitted model

Plot model: effects package

```
library("effects")
plot(allEffects(m1))
```


Plot model: visreg

```
library("visreg")
visreg(m1)
```


visreg can use ggplot2 too

```
visreg(m1, gg = TRUE) + theme_bw()
```


https://pbreheny.github.io/visreg

Plot model: sjPlot

```
library("sjPlot")
plot_model(m1, type = "eff")
```

https://strengejacke.github.io/sjPlot

ggeffects

```
library("ggeffects")
```

```
mydf <- ggpredict(m1, terms = "dbh")
mydf</pre>
```

Predicted values of height

dbh		Predicted	I		95% CI			
0	1	19.34	Ī	[18.73,	19.95]			
10		25.50		[25.06,	25.93]			
20		31.65		[31.35,	31.95]			
30		37.81		[37.55,	38.07]			
40		43.97		[43.62,	44.32]			
50	1	50.12	1	[49.62,	50.63]			

modelsummary

Plot model: see package (easystats)

```
library("easystats")
plot(parameters(m1), show_intercept = TRUE)
```


Plot parameters' estimated distribution

```
plot(simulate_parameters(m1)) +
  labs(title = "Density of the slope parameter")
```


Model checking

Linear model assumptions

- · Linearity (transformations, GAM...)
- · Residuals:
 - · Independent
 - · Equal variance
 - · Normal
- · Negligible measurement error in predictors

Are residuals normal?

hist(residuals(m1))

$$SD = 4.09$$

Model checking: plot(model)

Model checking with performance (easystats)

library("easystats") check model(m1)

A dashboard to explore the full model

```
library("easystats")
model_dashboard(m1)
```

Using model for prediction

How good is the model in predicting tree height?

fitted gives expected value for each observation

```
trees$height.pred <- fitted(m1)
trees$resid <- residuals(m1)
head(trees)</pre>
```

```
site
        dbh height sex dead height.pred resid
1
    4 29.68 36.1 male
                                37,61328 -1,5132797
                           0
2
    5 33.29 42.3 male
                                39.83597 2.4640303
    2 28.03 41.9 female
                                36.59737 5.3026313
    5 39.86 46.5 female
4
                                43.88114 2.6188577
5
                                48.85603 -4.9560274
    1 47.94 43.9 female
                           0
6
    1 10.82 26.2 male
                           0
                                26.00111 0.1988903
```

Calibration plot: Observed vs Predicted values

Making predictions for new data

Q: Expected tree height if DBH = 39 cm?

```
new.dbh \leftarrow data.frame(dbh = c(39))
predict(m1, new.dbh, se.fit = TRUE)
$fit
       1
43,35164
$se.fit
[1] 0.1715514
$df
[1] 998
$residual.scale
[1] 4.092629
```

Confidence vs Prediction Intervals

```
Q: Expected tree height if DBH = 39 cm?
predict(m1, new.dbh, interval = "confidence")
      fit lwr
                        upr
1 43.35164 43.01499 43.68828
predict(m1, new.dbh, interval = "prediction")
      fit lwr
                        upr
1 43.35164 35.31344 51.38983
```

Confidence vs Prediction Intervals

· Visualise data

· Visualise data

Understand fitted model (summary)

· Visualise data

Understand fitted model (summary)

 $\cdot \ \ \text{Visualise model (visreg...)}$

· Visualise data

Understand fitted model (summary)

Visualise model (visreg...)

Check model (plot, check_model, calibration plot...)

· Visualise data

Understand fitted model (summary)

Visualise model (visreg...)

Check model (plot, check_model, calibration plot...)

· Predict (fitted, predict)

Categorical predictors (factors)

Q: Does tree height vary with sex?

plot(height ~ as.factor(sex), data = trees)

Model height ~ sex

```
m2 <- lm(height ~ sex, data = trees)</pre>
Call:
lm(formula = height ~ sex, data = trees)
Residuals:
    Min
             1Q Median 3Q
                                      Max
-22.6881 -6.7881 -0.0097 6.7261 22.3687
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.9312 0.3981 92.778 <2e-16 ***
sexmale -0.8432 0.5607 -1.504 0.133
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.865 on 998 degrees of freedom
Multiple R-squared: 0.002261, Adjusted R-squared: 0.001261
F-statistic: 2.261 on 1 and 998 DF. p-value: 0.133
```

Linear model with categorical predictors

corresponds to

Height_i =
$$a + b_{male} + \varepsilon_i$$

 $\varepsilon_i \sim N\left(0, \sigma^2\right)$

Model height ~ sex

```
m2 <- lm(height ~ sex, data = trees)
Call:
lm(formula = height ~ sex, data = trees)
Residuals:
    Min 10 Median 30 Max
-22.6881 -6.7881 -0.0097 6.7261 22.3687
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.9312 0.3981 92.778 <2e-16 ***
sexmale -0.8432 0.5607 -1.504 0.133
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Quiz

https://pollev.com/franciscorod726

Let's read the model report...

report(m2)

We fitted a linear model (estimated using OLS) to predict height with sex (formula: height ~ sex). The model explains a statistically not significant and very weak proportion of variance (R2 = 2.26e-03, F(1, 998) = 2.26, p = 0.133, adj. R2 = 1.26e-03). The model's intercept, corresponding to sex = female, is at 36.93 (95% CI [36.15, 37.71], t(998) = 92.78, p < .001). Within this model:

• The effect of sex [male] is statistically non-significant and negative (beta = -0.84, 95% CI [-1.94, 0.26], t(998) = -1.50, p = 0.133; Std. beta = -0.10, 95% CI [-0.22, 0.03])

Standardized parameters were obtained by fitting the model on a standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed using a Wald t-distribution approximation.

Estimated distribution of the intercept parameter

Intercept = Height of females

Estimated distribution of the beta parameter

beta = height difference of males vs females

Analysing differences among factor levels

```
library("easystats") # modelbased
estimate_means(m2)
```

Estimated Marginal Means

sex	Mean	SE		95%	CI
male	36.09	0.39	[35.31,	36.8	36]
female	36.93	0.40	[36.15,	37.7	71]

Marginal means estimated at sex

Analysing differences among factor levels

estimate_contrasts(m2)

Marginal Contrasts Analysis

Marginal contrasts estimated at sex p-value adjustment method: Holm (1979)

Plot

plot(allEffects(m2))

Plot (visreg)

visreg(m2)

Plot model (sjPlot)

```
library("sjPlot")
plot_model(m2, type = "eff")
```

Model checking: residuals

hist(resid(m2))

Model checking: residuals

Model checking

library("easystats") check_model(m2)

Standard Normal Distribution Quantiles

0.0020

Model dashboard

model_dashboard(m2)

Q: Does height differ among field sites?

Plot data first

plot(height ~ site, data = trees)

Linear model with categorical predictors

$$\begin{aligned} y_i &= a + b_{\text{site2}} + c_{\text{site3}} + d_{\text{site4}} + e_{\text{site5}} + \ldots + \varepsilon_i \\ \varepsilon_i &\sim N\left(0, \sigma^2\right) \end{aligned}$$

Model Height ~ site

All right here?

```
m3 <- lm(height ~ site, data = trees)
Call:
lm(formula = height ~ site, data = trees)
Residuals:
    Min
              1Q Median
                               3Q
-22.4498 -6.7049 0.0709 6.7537 23.0640
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 35.4636 0.4730 74.975 < 2e-16 ***
site
             0.3862 0.1413 2.733 0.00639 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.842 on 998 degrees of freedom
Multiple R-squared: 0.007429, Adjusted R-squared: 0.006435
F-statistic: 7.47 on 1 and 998 DF, p-value: 0.006385
```

Let's check model structure with equatiomatic

extract_eq(m3)

$$height = \alpha + \beta_1(site) + \epsilon \tag{3}$$

site is a factor!

```
trees$site <- as.factor(trees$site)</pre>
```

Let's check model structure with equatiomatic

$$height = \alpha + \beta_1(site_2) + \beta_2(site_3) + \beta_3(site_4) + \beta_4(site_5) + \beta_5(site_6) + \beta_6(site_7) + \beta_7(site_6) + \beta_6(site_7) + \beta_7(site_8) + \beta$$

Model Height ~ site

```
Call:
lm(formula = height ~ site. data = trees)
Residuals:
    Min
           1Q Median
                           3Q
                                  Max
-20.4416 -6.9004 0.0379 6.3051 19.7584
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.8416
                    0.4266 79.329 < 2e-16 ***
site2
           6.3411
                    0.7126 8.899 < 2e-16 ***
site3 4.9991 0.9828 5.086 4.36e-07 ***
site4
           0.5329 0.9872 0.540 0.58949
site5
           4.3723
                    0.9425 4.639 3.97e-06 ***
site6
         4.7601 1.1709 4.065 5.18e-05 ***
site7
          -0.7416 1.8506 -0.401 0.68871
site8
         -0.6832 2.4753 -0.276 0.78258
site9
         9.1709
                    3.0165 3.040 0.00243 **
site10
          -0.5816 3.8013 -0.153 0.87843
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 8.446 on 990 degrees of freedom Multiple R-squared: 0.1016, Adjusted R-squared: 0.09344 F-statistic: 12.44 on 9 and 990 DF, p-value: < 2.2e-16

Estimated parameter distributions

plot(simulate_parameters(m3), stack = FALSE)

Estimated tree heights for each site

estimate_means(m3)

Estimated Marginal Means

site	Mean	SE		95% CI
1	33.84	0.43	[33.00,	34.68]
2	40.18	0.57	[39.06,	41.30]
3	38.84	0.89	[37.10,	40.58]
4	34.37	0.89	[32.63,	36.12]
5	38.21	0.84	[36.56,	39.86]
6	38.60	1.09	[36.46,	40.74]
7	33.10	1.80	[29.57,	36.63]
8	33.16	2.44	[28.37,	37.94]
9	43.01	2.99	[37.15,	48.87]
10	33.26	3.78	[25.85,	40.67]

Analysing differences among factor levels

For finer control see emmeans package

estimate_contrasts(m3)

Marginal Contrasts Analysis

Level1	I	Level2	I	Difference	I		95% CI	I	SE	I	t(990)	I		р
site1	ı	site10	ı	0.58	I	[-11.85,	13.01]	ı	3.80	1	0.15	1	>	.999
site1	1	site2	1	-6.34	I	[-8.67,	-4.01]	1	0.71	I	-8.90	1	<	.001
site1	1	site3	1	-5.00	I	[-8.21,	-1.78]	1	0.98	I	-5.09	1	<	.001
site1	1	site4	1	-0.53	I	[-3.76,	2.70]	1	0.99	I	-0.54	1	>	.999
site1	1	site5	1	-4.37	I	[-7.45,	-1.29]	1	0.94	I	-4.64	Ī	<	.001
site1	1	site6	1	-4.76	I	[-8.59,	-0.93]	1	1.17	I	-4.07	Ī	Θ.	002
site1	1	site7	ı	0.74	ı	[-5.31,	6.79]	ı	1.85	ı	0.40	Ī	>	.999
site1	1	site8	I	0.68	ı	[-7.41,	8.78]	1	2.48	I	0.28	Ī	>	.999
site1	1	site9	1	-9.17	I	[-19.04,	0.69]	1	3.02	I	-3.04	Ī	Θ.	090
site2	1	site10	ı	6.92	ı	[-5.57,	19.42]	ı	3.82	ı	1.81	Ī	>	.999
site2	1	site3	ı	1.34	ı	[-2.10,	4.79]	ı	1.05	ı	1.27	Ī	>	.99
site2	1	site4	ı	5.81	ı	[2.35,	9.27]	ı	1.06	ı	5.49	Ī	<	.00
site2	ī	site5	ī	1.97	ı	[-1.35,	5.29]	ı	1.02	ī	1.94	ī	>	.99
site2	1	site6	ı	1.58	ı	[-2.44,	5.61]	ı	1.23	ı	1.28	Ī	>	.99
site2	1	site7	ı	7.08	ı	[0.90,	13.26]	ı	1.89	ı	3.75	Ī	Θ.	008
site2	ī	site8	ī	7.02	ı	[-1.17,	15.21]	ı	2.50	ī	2.81	ī	Θ.	169
site2	i	site9	i	-2.83	i	[-12.77,	7.11]	i	3.04	i	-0.93	i	>	.99
site3	1	site10	ı	5.58	ı	[-7.11,	18.27]	ı	3.88	ı	1.44	Ī	>	.99
site3	ī	site4	ī	4.47	ı	[0.36,	8.57]	ı	1.26	ī	3.56	ī	Θ.	015
site3	i	site5	i	0.63	i	[-3.37,	4.62]	i	1.22	i	0.51	i	>	.99
site3	i	site6	Ī	0.24	ı	[-4.35,	4.83]	i	1.40	ı	0.17	i	>	.99
site3	i	site7	i	5.74	i	[-0.82,	12.30]	i	2.01	i	2.86	i	Θ.	151
site3	i	site8	Ī	5.68	ı	[-2.80,	14.17]	i	2.59	ı	2.19	i	Θ.	804
site3	i	site9	Ī	-4.17	ı	[-14.36,	6.01]	i	3.11	ı	-1.34	i	>	.99
		site10		1.11										
site4	i	site5		-3.84		-								
		-:	i	4 22										

Presenting model results

parameters(m3)

Parameter	I	Coefficient	I	SE	1		95% CI	I	t(990)	1		р
(Intercept)		33.84		0.43		[33.00,	34.68]		79.33		<	.001
site [2]	-	6.34	-	0.71		[4.94,	7.74]		8.90		<	.001
site [3]		5.00		0.98	-	[3.07,	6.93]	-	5.09		<	.001
site [4]		0.53		0.99	-	[-1.40,	2.47]	-	0.54		0.	.589
site [5]		4.37		0.94	-	[2.52,	6.22]	-	4.64		<	.001
site [6]		4.76		1.17	-	[2.46,	7.06]	-	4.07		<	.001
site [7]		-0.74		1.85	-	[-4.37,	2.89]	-	-0.40		0.	.689
site [8]		-0.68		2.48	-	[-5.54,	4.17]	-	-0.28		0.	.783
site [9]		9.17		3.02	-	[3.25,	15.09]	-	3.04		0.	.002
site [10]		-0.58		3.80		[-8.04,	6.88]		-0.15		0 .	.878

Presenting model results

library("gtsummary") tbl_regression(m3)

Characteristic	**Beta**	**95% CI**	**p-value**		
site					
1	_	_			
2	6.3	4.9, 7.7	<0.001		
3	5.0	3.1, 6.9	<0.001		
4	0.53	-1.4, 2.5	0.6		
5	4.4	2.5, 6.2	<0.001		
6	4.8	2.5, 7.1	<0.001		
7	-0.74	-4.4, 2.9	0.7		
8	-0.68	-5.5, 4.2	0.8		
9	9.2	3.3, 15	0.002		
10	-0.58	-8.0, 6.9	0.9		

Presenting model results

```
modelsummary(m3, estimate = "{estimate} ({std.error})", statistic = NULL, output =
                                                          (1)
                                   (Intercept)
                                                33.842 (0.427)
                                   site2
                                                6.341 (0.713)
                                   site3
                                                 4.999 (0.983)
                                   site4
                                                 0.533 (0.987)
                                   site5
                                                 4.372 (0.943)
                                   site6
                                                4.760 (1.171)
                                   site7
                                                 -0.742 (1.851)
                                   site8
                                                -0.683 (2.475)
                                   site9
                                                  9.171 (3.017)
                                   site10
                                                -0.582 (3.801)
                                   Num.Obs.
                                                        1000
                                   R2
                                                        0.102
                                   R2 Adi.
                                                       0.093
```

7117.3

7171.2

8.40

-3547.632 12.440

AIC

BIC

Log.Lik.

RMSE

90

Plot

plot(allEffects(m3))

Plot (visreg)

visreg(m3)

Plot model (sjPlot)

```
plot_model(m3, type = "eff")
```

Plot model (modelsummary)

modelplot(m3)

Plot model (easystats)

plot(parameters(m3))

Fit model without intercept

```
m3bis <- lm(height ~ site - 1, data = trees)
Call:
lm(formula = height ~ site - 1, data = trees)
Residuals:
    Min
                 Median
             10
                             30
                                     Max
-20.4416 -6.9004 0.0379 6.3051 19.7584
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
site1 33.8416
                 0.4266 79.329 <2e-16 ***
site2
                 0.5707 70.404 <2e-16 ***
      40.1826
site3
      38.8407
                 0.8854 43.868 <2e-16 ***
site4
      34.3744
                 0.8903 38.610
                                <2e-16 ***
site5
      38.2139
                 0.8404 45.469
                                <2e-16 ***
site6
       38.6017
                  1.0904 35.401
                                <2e-16 ***
site7
      33.1000
                  1.8007 18.381
                                <2e-16 ***
site8
      33.1583
                  2.4382 13.599
                                <2e-16 ***
site9
      43.0125
                  2.9862 14.404
                                 <2e-16 ***
site10
      33.2600
                  3.7773
                         8.805
                                 <2e-16 ***
```

Model without intercept

modelplot(m3bis)

Model checking: residuals

Model checking: residuals

check_model(m3)

Standard Normal Distribution Quantiles

Combining continuous and categorical predictors

Predicting tree height based on dbh and site

corresponds to

$$\begin{aligned} y_i = a + b_{site2} + c_{site3} + d_{site4} + e_{site5} + ... + k \cdot \textit{DBH}_i + \varepsilon_i \\ \varepsilon_i \sim \textit{N}\left(0, \sigma^2\right) \end{aligned}$$

Predicting tree height based on dbh and site

```
Call:
lm(formula = height ~ site + dbh. data = trees)
Residuals:
    Min
            1Q Median
                             30
                                    Max
-10.1130 -1.9885 0.0582 2.0314 11.3320
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.699037   0.260565   64.088   < 2e-16 ***
site2
          6.504303 0.256730 25.335 < 2e-16 ***
site3 4.357457 0.354181 12.303 < 2e-16 ***
site4
          1.934650 0.356102 5.433 6.98e-08 ***
site5
          3.637432 0.339688 10.708 < 2e-16 ***
site6 4.204511 0.421906 9.966 < 2e-16 ***
site7
          -0.176193 0.666772 -0.264
                                    0.7916
site8
         -5.312648 0.893603 -5.945 3.82e-09 ***
site9 5.437049 1.087766 4.998 6.84e-07 ***
site10
          2.263338 1.369986 1.652 0.0988 .
dbh
          0.617075 0.007574 81.473 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 3.043 on 989 degrees of freedom
Multiple R-squared: 0.8835. Adjusted R-squared: 0.8823

Presenting model results

parameters(m4)

Parameter	1	Coefficient		SE			95% CI	I	t(989)	I		р
(Intercept)		16.70				[16.19,			64.09	-		
site [2] site [3]	1	6.50 4.36				[6.00,	_		25.34 12.30			
	İ				-	[1.24,	_		5.43			
site [5] site [6]	1	3.64 4.20				[2.97, [3.38,	_		10.71	-		
site [7]		-0.18				[-1.48,	_		-0.26			
site [8]	-	-5.31	Θ.	89		[-7.07,	-3.56]		-5.95		< .	.001
site [9]		5.44			-	[3.30,	_		5.00		< .	.001
site [10]	-	2.26				[-0.43,			1.65			
dbh		0.62	7.57e-	03		[0.60,	0.63]	I	81.47	ı	< .	.001

Estimated tree heights for each site

estimate_means(m4)

Estimated Marginal Means

site	1	Mean		SE			95% CI
1		33.90		0.15		[33.60,	34.21]
2		40.41		0.21		[40.01,	40.81]
3		38.26		0.32		[37.64,	38.89]
4		35.84		0.32		[35.21,	36.47]
5		37.54		0.30		[36.95,	38.14]
6		38.11		0.39		[37.34,	38.88]
7		33.73		0.65		[32.45,	35.00]
8		28.59		0.88		[26.86,	30.32]
9		39.34		1.08		[37.23,	41.45]
10		36.17		1.36		[33.50,	38.84]

plot(allEffects(m4))

Plot (visreg)

visreg(m4)

null device

Plot model (sjPlot)

```
plot_model(m4, type = "eff")
```

Plot model (sjPlot)

```
plot_model(m4, type = "est")
```

Plot model (easystats)

plot(parameters(m4))

Plot model (modelsummary)

modelplot(m4)

We have fitted model w/ many intercepts and single slope

Slope is the same for all sites

Model checking: residuals

Model checking: residuals

check_model(m4)

How good is this model? Calibration plot

```
trees$height.pred <- fitted(m4)
plot(trees$height.pred, trees$height, xlab = "Tree height (predicte
abline(a = 0, b = 1)</pre>
```


Posterior predictive checking

Simulating response data from fitted model (yrep) and comparing with observed response (y)

performance::check_predictions(m4)

Expected height of 10-cm diameter tree in each site?

```
site dbh
1
      1 10
2
      2 10
3
      3 10
4
      4 10
5
      5 10
6
      6 10
         10
8
      8 10
9
      9 10
10
     10
         10
```

Confidence interval

```
predict(m4, newdata = trees.10cm, interval = "confidence")
```

```
fit
           lwr
                      upr
  22,86979 22,46878 23,27079
2
  29.37409 28.89388 29.85430
  27.22724 26.54160 27.91289
  24.80444 24.13410 25.47477
  26.50722 25.84952 27.16492
  27,07430 26,25490 27,89370
  22,69359 21,39601 23,99117
  17,55714 15,79282 19,32146
  28.30683 26.16606 30.44761
10 25,13312 22,45540 27,81085
```

Prediction interval (accounting for residual variance)

```
predict(m4, newdata = trees.10cm, interval = "prediction")
```

```
fit lwr
                    upr
  22,86979 16,88478 28,85480
2
  29.37409 23.38325 35.36493
  27,22724 21,21645 33,23804
  24.80444 18.79537 30.81350
  26,50722 20,49955 32,51489
  27.07430 21.04678 33.10181
  22,69359 16,58268 28,80451
8
  17,55714 11,33039 23,78388
  28.30683 21.96314 34.65053
10 25,13312 18,58868 31,67757
```

Prediction interval (99%)

```
fit
                 lwr
                          upr
  22.86979 14.998587 30.74098
  29.37409 21.495225 37.25295
  27.22724 19.322133 35.13235
  24.80444 16.901598 32.70727
  26.50722 18.606216 34.40822
  27.07430 19.147195 35.00140
  22,69359 14,656813 30,73037
  17.55714 9.368019 25.74626
8
  28.30683 19.963913 36.64976
10 25,13312 16,526183 33,74007
```

Q: Does allometric relationship between Height and Diameter vary among sites?

Model with interactions

```
Call:
lm(formula = height ~ site * dbh. data = trees)
Residuals:
    Min
              1Q Median
                                3Q
-10.1017 -1.9839 0.0645 2.0486 11.1789
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.359437   0.360054   45.436   < 2e-16 ***
site2
            7.684781
                       0.609657 12.605 < 2e-16 ***
site3
            4.518568
                      0.867008 5.212 2.28e-07 ***
site4
            2.769336
                      0.813259 3.405 0.000688 ***
site5
            3.917607
                      0.870983 4.498 7.68e-06 ***
site6
            4.155161
                      1.009379
                                4.117 4.17e-05 ***
site7
                      1.551303 -1.487 0.137334
           -2.306799
site8
           -2.616095
                      4.090671 -0.640 0.522630
                      5.073794 0.517 0.605492
site9
            2.621560
site10
            4.662340
                      2.991072
                                 1.559 0.119378
dbh
            0.629299
                      0.011722 53.685 < 2e-16 ***
           -0.042784
                      0.020033 -2.136 0.032950 *
site2:dbh
                      0.027640 -0.218 0.827312
site3:dbh
           -0.006031
site4:dbh
           -0.031633
                      0.028225 -1.121 0.262677
site5:dbh
           -0.010173
                      0.027887 -0.365 0.715334
site6:dbh
            0.001337
                      0.032109 0.042 0.966797
site7:dbh
            0.079728
                      0.052056
                                 1.532 0.125951
site8:dbh
           -0.079027
                       0.113386 -0.697 0.485984
site9:dbh
            0.081035
                       0.146649
                                 0.553 0.580679
site10:dbh -0.101107
                      0.114520 -0.883 0.377522
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 3.041 on 980 degrees of freedom

Does slope vary among sites?

visreg(m5, xvar = "dbh", by = "site")

Examining fitted model with {modelStudio}

```
library("modelStudio")
m5.explain <- DALEX::explain(
   m5,
   data = trees,
   y = trees$height)
modelStudio(m5.explain)</pre>
```

 paperplanes: How does flight distance differ with age, gender or paper type?

- paperplanes: How does flight distance differ with age, gender or paper type?
- · mammal sleep: Are sleep patterns related to diet?

- paperplanes: How does flight distance differ with age, gender or paper type?
- mammal sleep: Are sleep patterns related to diet?
- iris: Predict petal length ~ petal width and species

- paperplanes: How does flight distance differ with age, gender or paper type?
- mammal sleep: Are sleep patterns related to diet?
- iris: Predict petal length ~ petal width and species
- Penguins data: Body mass ~ Flipper length, Bill length ~ Bill depth, differences across sites...

- paperplanes: How does flight distance differ with age, gender or paper type?
- · mammal sleep: Are sleep patterns related to diet?
- iris: Predict petal length ~ petal width and species
- Penguins data: Body mass ~ Flipper length, Bill length ~ Bill depth, differences across sites...
- racing pigeons: is speed related to sex?