2024年模拟与数字电路期末考试卷 (回忆版)

填空题 (15分)

- 1. 01011001作为二进制数和8421BCD码分别为多少(),()
 2. 当输入同时为1时,输出为0,否则输出为1,可以通过()逻辑门实现
 3. CMOS逻辑门高电平噪声容限是指()
 4. D触发器和D锁存器的区别是()
 5. 增强型PMOS管形成形成沟道的条件是()
 6. 并行比较型ADC的优点有(),缺点有()
 7. T触发器的特性方程为()
 8. 运算放大器有虚短和虚断的特性,()特性在任意条件下可以使用,()特性在满足(条件下才能使用
- 11. 在时钟有效边沿到到来前,触发器的输入信号需要在一段时间稳定,这段时间被称为(

综合题 (85分)

10. 三态门的状态有0、1、()

1 (5分)

仅使用与非门实现2选1-1位数据选择器,写出逻辑函数并画出电路图

2 (8分)

使用尽可能少的74x160和其它逻辑门实现模37计数器,要求使用异步清零功能,并给出进位信号

74x160

- 带使能、异步清零、同步置数四位同步十进制计数器
 - 逻辑符号和功能表与74x161相同,但输出只有0000~1001十个稳定状态

3 (15分)

电路状态图如图所示,选用D触发器,要求使用尽可能少的逻辑门。回答下列问题

- 判断该电路是穆尔型还是米利型
- 列出状态表, 求状态方程
- 画出电路图
- 画出全部状态图,检查电路是否能自启动

4 (7分)

试分析如图所示的电路, 回答下列问题

- 当输入ABCD为0011时,判断哪些三极管导通
- 写出L的逻辑表达式

5 (8分)

仅使用SRAM芯片2114和74x138构成一个 $2K \times 4$ 的存储系统,要求起始地址为0x9800

74x138真值表

E_3	$\overline{\mathrm{E}}_{2}$	$\overline{\mathrm{E}}_{1}$	A_2	A_1	A_0	$\overline{\mathrm{Y}}_{0}$	$\overline{\overline{Y}}_1$	$\overline{\mathrm{Y}}_{2}$	$\overline{\mathbf{Y}}_{3}$	$\overline{\overline{Y}}_4$	\overline{Y}_5	\overline{Y}_6	$\overline{\overline{Y}}_{7}$
0	X	X	X	X	X	1	1	1	1	1	1	1	1
X	1	X	X	X	X	1	1	1	1	1	1	1	1
X	X	1	X	X	X	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	0	0	1	1	1	1	0	1	1	1
1	0	0	1	0	1	1	1	1	1	1	0	1	1
1	0	0	1	1	0	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0

6 (6分)

电路如图所示, 二极管采用理想模型, 电源内阻忽略不计, 回答下列问题

• 当 $v_s>0$ 时,哪些二极管导通,哪些二极管截止

• 输入电压 v_s 如图所示,分别画出 R_L 和 D_1 两端的电压波形

7 (6分)

三极管 (硅管) 的电极电压如图所示,判断各三极管是NPN型还是PNP型,并指出分别工作在什么状态

8 (15分)

放大电路如图所示,三极管eta、 V_{BEQ} 、 r_{be} 已知,回答以下问题

- 画出静态工作电路,并求 I_{BQ} 、 I_{CQ} 、 V_{CEQ}
- 画出电路的小信号等效电路,标出电压、电流的参考方向,并求出电压增益 A_v 、输入电阻 R_i 、输出电阻 R_o
- 假设该电路截止失真,应该怎么调整电路参数

9 (15分)

电路如图所示, A_1 、 A_2 为理想运放,输出端最大电压为 $\pm 9V$, $R_1=10k\Omega$, $R_2=20k\Omega$, $R_3=10k\Omega$, $R_4=20k\Omega$, $R_5=1k\Omega$, $C=1\mu F$, $v_i= \begin{cases} 6V & t\in [0+n,0.5+n](ms), n=0,1,2,\dots\\ -6V & t\in [0.5+n,1+n](ms), n=0,1,2,\dots \end{cases}$ 回答下列问题

- 判断 A_1 的反馈类型 (正/负反馈,并联/串联反馈,电压/电流反馈)
- 求 v_{o_1} 和 v_o 的表达式,并画出相应波形
- ullet 假设运放 A_1 的正负端接反了,画出 v_{o_1} 波形