Altera FPGA 全速漂移 开发指南

基于串口命令帧的 LVDS 液晶屏测试界面设计

欢迎加入 FPGA/CPLD 助学小组一同学习交流:

EDN:

http://group.ednchina.com/GROUP_GRO_14596_1375.HTM

ChinaAET: http://group.chinaaet.com/273

淘宝店链接: http://myfpga.taobao.com/ 技术咨询: orand_support@sina.com 特权 HSC 最新资料例程下载地址:

http://pan.baidu.com/s/1pLmZaFx

版本信息								
时间	版本	状态						
2016-09-06	V1.00	创建。						

目录

Α	ltera FPGA 全速漂移 开发指南	1
	基于串口命令帧的 LVDS 液晶屏测试界面设计	
1	概述	
	串口控制协议	
	板级调试	

1 概述

本实例的 FPGA 功能大体如图所示,由 PLL 产生基准时钟,串口收发模块接收来自 PC 端的串口帧,串口帧经过解析译码后可以控制不同的显示界面,最终产生液晶驱动时序将并行数据通过 IP 核 ALTLVDS_TX 模块转换为 LVDS 信号送到液晶屏,使得液晶屏上显示不同的界面。

本实例的代码层次结构如图所示。

- hsc.v 模式是顶层模块,用于各个子模块间的例化、互联,以及接口引脚的引出。
- Icdlvds.v 模块是 IP 核 ALTLVDS_TX 的例化,它实现 LVDS 发送器的并串

转换。

- sys ctrl.v 模块实现系统基本的复位与时钟(PLL 例化)生成。
- led controller.v 模块实现 LED 闪烁计数逻辑。
- Ivdsvga ctrl.v 模块产生基本的 LCD 驱动时序。
- uart_controller.v 模块以及其下例化的 5 个子模块,主要实现串口数据的收发,译码串口协议帧,从而产生液晶屏显示界面的控制指令。

2 串口控制协议

UART 帧由 5 个字节组成,格式为: 0xaa + byte1 + byte2 + byte3 + 0x55。 其中头尾两个字节为固定数据,中间 3 个字节为有效数据,而我们实际使用的数据只有 byte2。

Byte2 所对应的显示类型、显示色彩以及串口帧数据如下表所示。

UART 命令	显示类型	显示色彩	串口帧数据
0x00	单色显示	全屏显示黑色 0x000000	aa00000055
0x01	单色显示	全屏显示红色 0xff0000	aa00010055
0x02	单色显示	全屏显示绿色 0x00ff00	aa00020055
0x03	单色显示	全屏显示蓝色 0x0000ff	aa00030055
0x04	单色显示	全屏显示白色 0xffffff	aa00040055
0x05	彩色条	8色彩色条显示	aa00050055
0x06	灰度色条	每 160 个 pix 递增 0x404040	aa00060055
0x07	灰度色条	每 80 个 pix 递增 0x202020	aa00070055
0x08	灰度色条	每 40 个 pix 递增 0x101010	aa00080055
		每 2401ine 计数 rflag 递增 1;每 180column 计数 cflag 递	
		增1;若rflag[0]^cflag[0]=1,则color=0xffffff;	
0x09	line&column	否则 color=0x000000	aa00090055

3 板级调试

连接好 HSC 开发板与液晶屏的 LVDS 线和背光线。注意 LVDS 线缆上红点表示第 1 脚,对应需要插入 P2 插座的 1 脚位置(如图示的右下角为 1 脚),由于插座没有防呆,所以也请大家小心不要错排连接。

打开"...\prj\hsc_ex13"路径下的 Quartus II 工程(双击 hsc.qpf)。下载 hsc.sof 文件到工程中。默认液晶屏显示全屏黑色。

连接好串口用的 USB Type-B 线,打开"串口调试器"。如图所示选择 好实际使用的 COM 口、波特率并打开串口,发送字符串"aa00020055", 同时也会收到返回的一样的字符串。

该命令发送后,全屏显示绿色,如图所示。

发送字符串 aa00050055,显示 8 色条纹,如图所示。

发送字符串 aa00080055,显示 16 级的灰度条纹,如图所示。

发送字符串 aa00090055,显示黑白交错的方形,如图所示。

