(12) DEMANDE AMERNATIONALE PUBLIÉE EN VERTU DU TRAIL. DE COOPÉRATION EN MATIÈRE DE BRÈVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 28 août 2003 (28.08.2003)

PCT

(10) Numéro de publication internationale WO 03/070921 A1

- (51) Classification internationale des brevets⁷: C12N 5/08, A61K 35/14, A61P 37/04, 35/00, 31/00
- (21) Numéro de la demande internationale :

PCT/FR03/00585

(22) Date de dépôt international :

21 février 2003 (21.02.2003)

(25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité : 02/02305 22 février 2002 (22.02.2002) FR

- (71) Déposant (pour tous les États désignés sauf US): IN-NATE PHARMA [FR/FR]; Immeuble Grand Pré, 121, ancien Chemin de Cassis, F-13009 Marseille (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): RO-MAGNE, Francois [FR/FR]; Bat A3, Les Hauts de Fontsainte, F-13600 La Ciotat (FR). LAPLACE, Catherine [FR/FR]; 16 rue de la Fosse, F-44000 Nantes (FR).
- (74) Mandataires: BECKER, Philippe etc.; Cabinet Becker et Associés, 35, rue des Mathurins, F-75008 Paris (FR).

- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Déclaration en vertu de la règle 4.17 :

relative à la qualité d'inventeur (règle 4.17.iv)) pour US seulement

Publiée:

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

- (54) Title: METHODS FOR PRODUCING γδ T CELLS
- (54) Titre: PROCÉDÉS DE PRODUCTION DE LYMPHOCYTES γδΤ
- (57) Abstract: The invention concerns a methods for producing lymphocytic cells, as well as tools, reagents and kits useful for implementing same. More particularly, it concerns methods for preparing $\gamma\delta$ T cells, adapted to industrial production of functional cells of pharmaceutical quality in large amounts. The invention also concerns methods for activating $\gamma\delta$ T cells, devices adapted to said methods, as well as the resulting cell compositions and their human or animal $\gamma\delta$ T cells, and can be used in pharmaceutics, therapeutics, experiments, cosmetics, industrial research among others.
- (57) Abrégé: La présente demande concerne des méthodes pour la production de cellules lymphocytaires, ainsi que les outils, réactifs et kits utilisables pour leur mise en ouvre. Elle concerne plus particulièrement des méthodes de préparation de lymphocytes γδΤ, adaptées à une production industrielle de cellules fonctionnelles de qualité pharmaceutique et en quantités importantes. Elle concerne également des méthodes d'activation des cellules γδΤ, des dispositifs adaptés à ces méthodes, ainsi que les compositions cellulaires obtenues et leurs γδΤ humaines ou animaux, et peut être utilisée dans les domaines pharmaceutiques, thérapeutiques, expérimentaux, cosmétiques, de recherche industrielle, etc.

10

15

20

25

Procédés de production de lymphocytes $\gamma \delta T$

La présente demande concerne des méthodes pour la production de cellules lymphocytaires, ainsi que les outils, réactifs et kits utilisables pour leur mise en œuvre. Elle concerne plus particulièrement des méthodes de préparation de lymphocytes $\gamma\delta T$, adaptées à une production industrielle de cellules fonctionnelles de qualité pharmaceutique et en quantités importantes. Elle concerne également des méthodes d'activation des cellules $\gamma\delta T$, des dispositifs adaptés à ces méthodes, ainsi que les compositions cellulaires obtenues et leurs utilisations. La présente demande est applicable à la production de lymphocytes $\gamma\delta T$ humains ou animaux, et peut être utilisée dans les domaines pharmaceutiques, thérapeutiques, expérimentaux, cosmétiques, de recherche industrielle, etc.

Les lymphocytes γδT représentent habituellement de 1 à 5 % des lymphocytes du sang périphérique, chez un individu sain (humains, singes). Ils sont impliqués dans le développement d'une réponse immune protectrice, et il a été démontré qu'ils reconnaissent leurs ligands antigéniques par une interaction directe avec l'antigène, sans présentation par les molécules du CMH d'une cellule présentatrice. Les lymphocytes Tγ9δ2 (parfois aussi désignés lymphocytes Tγ2δ2) sont des lymphocytes γδT porteurs de récepteurs TCR à régions variables Vγ9 et Vδ2. Ils représentent la majorité des lymphocytes Τγδ dans le sang humain. Lorsqu'ils sont activés, les lymphocytes γδT exercent une puissante activité cytotoxique non restreinte par le CMH, particulièrement efficace pour tuer divers types de cellules, notamment des cellules pathogènes. Il peut s'agir de cellules infectées par des virus (Poccia et al, J. Leukocyte Biology, 62, 1997, p. 1-5) ou par d'autres parasites intracellulaires, tels que les mycobactéries (Constant et al, Infection and Immunity, vol. 63, n° 12, Dec. 1995, p. 4628-4633) ou les protozoaires (Behr et al, Infection and Immunity, Vol. 64, n° 8, 1996, p.

10

15

20

2892-2896). Il peut aussi s'agir de cellules cancéreuses (Poccia et al, J. Immunol., 159, p. 6009-6015; Fournie et Bonneville, Res. Immunol., 66th FORUM IN IMMUNOLOGY, 147, p. 338-347). La possibilité de moduler in vitro, ex vivo ou in vivo l'activité de ces cellules fournirait donc de nouvelles approches thérapeutiques efficaces dans le traitement de pathologies variées telles que les maladies infectieuses (notamment virales ou parasitaires), les cancers, les allergies, voire les maladies auto-immunes et/ou inflammatoires.

Différentes méthodes ont été envisagées dans l'art antérieur pour la production ex vivo ou in vitro de ces cellules. Ainsi, la demande WO99/46365 propose un procédé comprenant une première culture de cellules hémato-lymphoïdes en présence d'interleukine-12 et d'un ligand du CD2, suivie d'une deuxième culture en présence d'un composé mitogène des cellules T et d'interleukine-2. Ce procédé est complexe, requiert plusieurs étapes de traitement des cellules et plusieurs voies métaboliques d'activation. En outre, il ne fournit pas des compositions cellulaires suffisamment enrichies en cellules $\gamma \delta T$.

Les demandes WO00/12516 et WO00/12519 décrivent des composés chimiques capables d'activer les cellules $\gamma\delta T$. Ces demandes proposent l'utilisation de ces composés pour activer une réponse immunitaire in vivo, et prévoient en outre d'utiliser ces composés dans des méthodes d'activation ex vivo ou in vitro des cellules $\gamma\delta T$. Toutefois, ces demandes ne décrivent pas de procédé industriel permettant de générer des populations cellulaires composées essentiellement de cellules $\gamma\delta T$.

25

30

Pour envisager l'utilisation de cellules $\gamma\delta T$ à usage de thérapie cellulaire, il est nécessaire de disposer d'un procédé de culture et de conditionnement des cellules permettant d'obtenir un grand nombre de cellules de pureté élevée en cellules $\gamma\delta T$. Les exemples d'injections de cellules LAK ou clones T montrent que l'efficacité de ces traitements n'apparaît que quand des quantités importantes de

10

15

20

25

cellules sont injectées (bordignon 1999, haematologica. 84:1110-1149 pour revue). Typiquement et d'après ces exemples, on doit disposer d'une méthode permettant d'obtenir de panière reproductible et dans des conditions acceptées par la pharmacopée au moins 100 millions de cellules de pureté supérieure à 80%.

La présente demande décrit à présent un nouveau procédé de production de cellules $\gamma\delta T$. Le procédé est adapté à une production industrielle de quantités importantes de cellules, permet la production de lymphocytes $\gamma\delta T$ fonctionnels et de qualité pharmaceutique. Le procédé peut être mis en œuvre directement sur des cytaphérèses, à partir de quantités importantes et hétérogènes de cellules, et permet une stimulation et une expansion très importantes en cellules $\gamma\delta T$, conduisant à des compositions pouvant comprendre plus de 90% de cellules $\gamma\delta T$. En outre, le procédé de l'invention est simplifié puisqu'il ne nécessite qu'une étape ou qu'une voie d'activation métabolique. Le procédé permet de produire des compositions cellulaires adaptées à différentes utilisations, notamment thérapeutiques.

Un premier objet de l'invention réside plus particulièrement dans un procédé de préparation d'une composition de lymphocytes $\gamma \delta T$, comprenant au moins une étape de culture d'une préparation biologique comprenant au moins 50 millions de cellules mononucléées en présence d'un composé activateur synthétique des lymphocytes $\gamma \delta T$ à l'initiation de la culture, suivie d'une culture, typiquement de 10 à 25 jours, en présence d'une cytokine. Les compositions obtenues présentent avantageusement les spécifications suivantes :

- elles comprennent plus de 80% de cellules $\gamma\delta T$, et
- elles comprennent plus de 100 millions de cellules $\gamma\delta T$ viables et fonctionnelles.

15

20

Une caractéristique avantageuse du procédé de l'invention réside dans la possibilité de partir de quantités importantes de cellules non fractionnées, pour aboutir à des préparations très enrichies en cellules $\gamma\delta T$ fonctionnelles. Avantageusement, les cellules sont maintenues en culture à une densité cellulaire inférieure à environ 5.10^E 6 cellules/ml, de préférence à environ 3.10^E 6, plus préférentiellement à environ 2.10^E 6 cellules/ml. Les exemples fournis montrent en effet qu'une telle densité assure une expansion efficace des cellules.

Un autre objet de l'invention concerne un procédé de préparation d'une composition cellulaire comprenant des lymphocytes γδT fonctionnels, caractérisé en ce qu'il comprend :

. la culture d'une préparation de cellules sanguines (typiquement de cellules provenant dune cytaphérèse) en présence d'un composé activateur synthétique des lymphocytes $\gamma\delta T$ et d'une cytokine choisie parmi l'interleukine-2 et l'interleukine-15, ladite culture étant réalisée dans des conditions assurant le maintien d'une densité cellulaire essentiellement inférieure à $5.10^{E}6$ cellules/ml, de préférence à environ $3.10^{E}6$ cellules/ml, et

. la récupération des cellules obtenues ou d'une partie d'entre elles, ces cellules comprenant des lymphocytes $\gamma\delta T$ fonctionnels.

Le maintien de la densité cellulaire peut être réalisé de différentes façons, comme par exemple par dilution(s) successive(s), ajout(s) de milieu, transfert de dispositif, etc.

Un autre objet de l'invention réside dans un procédé d'enrichissement de cellules sanguines en lymphocytes γδT, comprenant au moins une étape de culture d'une préparation biologique comprenant au moins 50 millions de cellules mononucléées sanguines en présence d'un composé activateur synthétique des lymphocytes γδT à l'initiation de la culture, suivie d'une culture, typiquement de

10

15

20

25

30

10 à 25 jours, en présence d'une cytokine. Les préparations obtenues par un tel procédé peuvent comprendre plus de 80% de cellules $\gamma\delta T$, voire plus de 90%.

Comme il sera indiqué dans la suite du texte, les cellules utilisées sont préférentiellement humaines, peuvent provenir d'échantillons biologiques congelés, et sont cultivées préférentiellement pendant une période de temps supérieure à 10 jours, de préférence entre 10 et 30 jours.

Un autre objet de l'invention réside dans une composition pharmaceutique, caractérisée en ce qu'elle comprend une population de cellules composée à plus de 80% de lymphocytes γδT fonctionnels et en ce qu'elle comprend plus de 100 millions de cellules γδT. Préférentiellement, la composition comprend en outre un agent ou véhicule acceptable sur le plan pharmaceutique et, plus préférentiellement, un agent de stabilisation, tel que la sérum-albumine humaine. Les cellules sont préférentiellement autologues, c'est-à-dire issues d'une même préparation biologique (ou d'un même donneur). Elles sont plus préférentiellement obtenues par un procédé tel que décrit ci-avant.

Un autre objet de l'invention concerne une culture de cellules sanguines in vitro ou ex vivo, caractérisée en ce qu'elle comprend au moins 80% de lymphocytes $\gamma\delta T$ fonctionnels et plus de 100 millions de cellules $\gamma\delta T$.

L'invention est également relative à l'utilisation d'une culture de cellules telle que définie ci-avant pour la préparation d'une composition pharmaceutique destinée à la stimulation des défenses immunitaires d'un sujet, plus particulièrement au traitement de maladies infectieuses, parasiraires ou de cancers.

L'invention concerne également une méthode de traitement d'une pathologie susceptible d'être améliorée par augmentation de l'activité des cellules $\gamma\delta T$,

WO 03/070921

5

10

15

20

notamment par augmentation des défenses immunitaires d'un sujet, comprenant l'administration à un sujet d'une quantité efficace d'une composition pharmaceutique ou d'une composition cellulaire telles que définies ci-avant. L'administration est réalisée préférentiellement par injection, notamment par injection systémique (intra-veineuse, intra-péritonéale, intra-musculaire, intra-artérielle, sous-cutanée, etc.) ou locale (e.g., intra-tumorale ou dans une zone environnant ou irriguant une tumeur). Des injections répétées peuvent être réalisées. Les cellules injectées sont préférentiellement autologues (ou syngéniques), c'est-à-dire sont préparées à partir d'une préparation biologique provenant du patient lui-même (ou d'un jumeau). La méthode est applicable au traitement de diverses pathologies, telles que les cancers les maladies infectieuses ou parasitaires.

Comme indiqué, la présente invention peut être utilisée dans les domaines pharmaceutiques, thérapeutiques, expérimentaux, cosmétiques, de recherche industrielle, etc. Elle est particulièrement adaptée à la production de compositions cellulaires à usage pharmaceutique, notamment pour l'augmentation d'une réponse immune chez un sujet, par exemple pour le traitement de pathologies telles que les cancers et maladies infectieuses ou parasitaires.

Préparation biologique

Le procédé de l'invention est avantageux dans la mesure où il permet une production efficace de cellules γδΤ à partir d'une préparation biologique comprenant des quantités importantes de cellules sanguines non triées. Il peut donc être mis en œuvre directement à partir d'un échantillon de sang, de plasma, ou de sérum, par exemple d'une cytaphérèse. Typiquement, on utilise une préparation de cellules mononucléées du sang, notamment du sang périphérique.

30 Une préparation de cellules du sang périphérique comporte généralement de 30 à

10

15

20

70% de lymphocytes T ou B, de 5 à 15% de cellules NK et de 1 à 5% de cellules γδT. Il est bien entendu possible de traiter la préparation biologique préalablement à la mise en œuvre du procédé de l'invention, par exemple pour sélectionner certaines sous populations, ou pour dépléter certaines souspopulations. Toutefois, un tel pré-traitement n'est pas nécessaire pour produire des compositions de cellules yoT fonctionnelles selon l'invention. Ainsi, le procédé est typiquement mis en œuvre directement à partir d'un échantillon de cellules sanguines prélevé chez un sujet, notamment d'un échantillon de cellules mono-nucléées totales (c'est-à-dire non fractionnées). Un tel échantillon peut être obtenu par des méthodes classiques connues de l'homme de l'art et couramment pratiquées en clinique humaine dans le monde entier, telles que par cytaphérèse ou gradient ficoll sur sang total (PBMC). Une source préférée de cellules pour la mise en œuvre de l'invention est composée de cellules mononucléées périphériques totales telles qu'obtenues par cytaphérèse. Ainsi, dans un mode particulier de mise en œuvre, le procédé de l'invention comprend une première étape de culture d'une cytaphérèse, ou d'une aliquote d'une cytaphérèse, dans les conditions décrites ci-avant. Une cytaphérèse permet typiquement d'obtenir plus de 10^E9 cellules mononucléées. A partir d'une cytaphérèse, il est ainsi possible de préparer plusieurs aliquotes, qui peuvent être traitées séparément par le procédé de l'invention. Ainsi, pour un même patient, il peut être produit plusieurs lots de cellules yoT selon l'invention, de manière séparée et espacée dans le temps. Cet échantillonnage permet d'effectuer des tests de qualité et de fonctionnalité sur les cellules, et d'assurer une plus grande sécurité aux compositions.

25

30

A cet égard, la présente demande montre que des cellules $\gamma\delta T$ fonctionnelles peuvent être produites à partir de préparations de cellules mono-nucléées préalablement congelées. Les résultats présentés dans les exemples montrent en effet qu'une cytaphérèse peut être congelée en vue de sa conservation pendant de longues périodes, et que les cellules, une fois décongelées, peuvent être activées

et multipliées efficacement pour produire des compositions de cellules $\gamma\delta T$ fonctionnelles. Cette possibilité de production à partir d'échantillons préalablement congelés confère un avantage très important à l'invention, notamment dans le cadre de la préparation de banques de cellules autologues.

5

10

15

20

25

Un mode de réalisation particulier du procédé de l'invention comprend donc la préparation de cellules $\gamma\delta T$ à partir d'une préparation biologique (notamment de cellules mono-nucléées) préalablement congelée.

Un objet particulier de l'invention concerne également un procédé de production de cellules $\gamma\delta T$ fonctionnelles, comprenant (i) la culture de cellules mononucléées sanguines préalablement congelées en présence d'un composé activateur synthétique des lymphocytes $\gamma\delta T$ et d'une cytokine dans des conditions assurant la prolifération de cellules $\gamma\delta T$ et (ii) la récupération ou le conditionnement des cellules $\gamma\delta T$ obtenues. Préférentiellement, les cellules mono-nucléées sanguines proviennent d'une cytaphérèse.

Un autre objet particulier de l'invention concerne un procédé de production de cellules $\gamma\delta T$ fonctionnelles, comprenant (i) (l'obtention et) la congélation de cellules mono-nucléées sanguines à partir d'un sujet, typiquement sous forme de doses comprenant environ $10^E 7$ à $5.10^E 9$ cellules par ml, (ii) la décongélation des cellules ou de doses individuelles et leur culture en présence d'un composé activateur synthétique des lymphocytes $\gamma\delta T$ et d'une cytokine dans des conditions assurant la prolifération de cellules $\gamma\delta T$ et, (iii) la récupération ou le conditionnement des cellules $\gamma\delta T$ obtenues. Préférentiellement, les cellules mononucléées sanguines proviennent d'une cytaphérèse.

La congélation des cellules peut être effectuée selon différentes techniques. Une méthode préférée utilise un agent stabilisant tel que le DMSO (diméthylsulfoxyde) et/ou le glycérol. Un tel agent stabilise les membranes

10

15

20

25

30

cellulaires et permet une congélation efficace des cellules, en terme de viabilité des cellules à la décongélation. D'autres techniques ou milieux peuvent être utilisés, mettant en œuvre des gélatines, des polymères, des protéines, etc. Un milieu particulièrement adapté est une solution 90/10 volume sur volume de sérum et de DMS0, où le sérum utilisé sert également à la prolifération des cellules. Le pourcentage de DMSO peut varier entre 5 et 15 % du volume de la solution. Le sérum peut être remplacé par une solution d'albumine humaine à 4%, par exemple Albumine-LFB 4 % (médicament AMM n°558632-9). Le pourcentage d'albumine humaine peut cependant être plus élevé, par exemple jusqu'à 20%. Typiquement, les cellules sont mises en suspension dans un milieu adapté à la congélation, tel que défini ci-dessus, puis sont placées dans une atmosphère de congélation, telle que des vapeurs d'azote liquide, par exemple. La congélation est avantageusement réalisée en tubes ou en poches adaptées, en conditions stériles, sous forme d'aliquotes d'une même préparation de cellules sanguines. Les cellules ainsi congelées peuvent être conservées pendant des périodes de temps très longues, permettant ainsi la production de cellules γδT à intervalles de temps importants, sans nécessité de prélèvements répétés chez un sujet.

Une caractéristique importante du procédé de l'invention réside dans la quantité de matériel biologique traité. Ainsi, le procédé utilise préférentiellement une préparation biologique comprenant plus de 50.10^E 6 cellules mononucléées, typiquement entre 50 et 1000 million de cellules, par exemple 50, 100, 200 ou 300 millions de cellules environ. Dans un procédé typique, la préparation biologique comprend plus de 100 millions de cellules. Il est entendu que des quantités supérieures peuvent être mises en œuvre. Dans la mesure où une préparation biologique typique comprend au départ moins de 10% de cellules $\gamma\delta T$, le plus souvent moins de 5% de cellules $\gamma\delta T$, une préparation biologique de 100 millions de cellules contient typiquement de 1 à 5 millions de cellules $\gamma\delta T$. A partir d'une telle préparation, le procédé de l'invention permet d'obtenir des

compositions comprenant $10^{E}8$ cellules $\gamma\delta T$ fonctionnelles ou plus. En outre, alors que les préparations de départ ne contiennent que 1 à 5% environ de cellules $\gamma\delta T$, les compositions obtenues par le procédé de l'invention comprennent plus de 80% de cellules $\gamma\delta T$, voire plus de 90%. Le procédé de l'invention est donc particulièrement efficace et adapté à la production de cellules en quantités et qualité pharmaceutiques.

Composé activateur synthétique des lymphocytes γδΤ

Un aspect avantageux du procédé de l'invention réside dans l'utilisation d'un composé activateur synthétique des lymphocytes $\gamma \delta T$. Ainsi, l'invention montre qu'une activation et une expansion efficaces et orientées des cellules $\gamma \delta T$ peuvent être obtenues par une seule activation métabolique au moyen d'un composé synthétique.

15

20

25

5

Le terme composé activateur synthétique indique que l'invention utilise une molécule produite artificiellement, capable d'activer les lymphocytes $\gamma\delta T$. Il s'agit typiquement d'un ligand (e.g., d'une molécule chimique) capable de lier le récepteur T des lymphocytes $\gamma\delta T$. Le composé activateur peut être de nature variée, telle que peptidique, lipidique, chimique, etc. Il peut s'agir d'un ligand endogène purifié ou produit par voie chimique, ou d'un fragment ou dérivé d'un tel ligand, ou d'un anticorps ayant la même spécificité antigénique. Il s'agit préférentiellement d'un composé chimique de synthèse, capable de lier de manière sélective le récepteur TCR et d'activer les cellules $\gamma\delta T$. La liaison sélective indique que le composé interagit avec une affinité supérieure sur le TCR des cellules $\gamma\delta T$ que sur d'autres récepteurs membranaires, et conduit donc à une activation sélective ou orientée de la prolifération et de l'activité des lymphocytes $\gamma\delta T$.

Différents composés activateurs synthétiques peuvent être utilisés, tels que les composés phosphohalohydrines (PHD) décrits dans la demande WO00/12516, les composés phosphoépoxydes (PED) décrits dans la demande WO00/12519, ou les composés biphosphonates tels que décrits par Kunzmann et al. (Blood 96 (2000) 384).

Des composés activateurs synthétiques particuliers utilisables de façon avantageuse dans la mise en œuvre de l'invention sont les phosphohalohydrines et les phosphoépoxydes de formule (I) et (II) suivantes, respectivement :

25

5 .

$$X - C - (CH_2)n - O - P - O - P - O - P - O - Cat + O$$

dans lesquelles X est un atome d'halogène (choisi de préférence parmi un atome d'iode, de brome ou de chlore), R1 est un groupe méthyle ou éthyle, Cat+représente un (ou des) cation(s) organique(s) ou minéral(aux) (y compris le proton) identiques ou différents, et n est un nombre entier compris entre 2 et 20. Ces composés peuvent être produits par différentes techniques de chimie connues de l'homme du métier, et notamment les méthodes décrites dans les demandes WO00/12516 et WO00/12519. Des composés particuliers sont des composés diou tri-phosphate de formule (I) ou (II) ci-dessus.

Dans un mode préféré de mise en œuvre, on utilise un composé PED ou PHD. Des composés particuliers sont les produits suivants :

- 3-(bromométhyl)-3-butanol-1-yl-diphosphate (BrHPP)
- 3-(iodométhyl)-3-butanol-1-yl-diphosphate (IHPP)
- 3-(chlorométhyl)-3-butanol-1-yl-diphosphate (ClHPP)
- 3-(bromométhyl)-3-butanol-1-yl-triphosphate (BrHPPP)
- 5 3-(iodométhyl)-3-butanol-1-yl-triphosphate (IHPPP)
 - α,γ-di-[3-(bromométhyl)-3-butanol-1-yl]-triphosphate (diBrHTP)
 - α, γ-di-[3-(iodométhyl)-3-butanol-1-yl]-triphosphate (diIHTP)
 - 3,4,-époxy-3-méthyl-1-butyl-diphosphate (Epox-PP)
 - 3,4,-époxy-3-méthyl-1-butyl-triphosphate (Epox-PPP)
- 10 α,γ-di-3,4,-époxy-3-méthyl-1-butyl-triphosphate (di-Epox-TP)

Dans un autre mode particulier, on utilise des composés aminobiphosphonates, tels que par exemple l'acide 1-hydroxy-3-(méthylpentylamino)propylidène-biphosphonique.

15

Dans une autre variante, l'activateur synthétique est le (E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate, tel que décrit par Hintz et al (FEBS Lett. Dec 7 2001 ; 509(2):317-22)

- Bien que moins efficaces, d'autres composés utilisables dans la mise en œuvre de l'invention sont des phosphoantigènes décrits dans la demande WO95/20673 ou l'isopentényl pyrophosphate (IPP) (US5,639,653).
- La dose de composé activateur peut être adaptée par l'homme du métier en fonction de la quantité de cellules et de la nature du composé utilisé. Généralement, le composé est mis en œuvre à l'initiation de la culture à une dose inférieure ou égale à environ 10 µM. Un avantage important du procédé de l'invention réside dans le fait qu'une seule activation métabolique sélective est nécessaire, en début de culture. Ainsi, une fois la culture initiée, il n'est plus nécessaire d'ajouter à nouveau dans le milieu le composé activateur synthétique.

Cytokine

Le procédé de l'invention utilise une cytokine (seule ou éventuellement combinée ou associée à d'autres agents biologiquement actifs), en particulier une interleukine. Il s'agit avantageusement d'interleukine-2 ou d'interleukine-15. La présente demande montre en effet que ces interleukines, qui utilisent le même récepteur, permettent une production efficace de cellules $\gamma\delta T$, dans les conditions décrites ci-avant.

10

15

30

5

L'interleukine utilisée peut être d'origine humaine ou animale, de préférence d'origine humaine. Il peut s'agir d'une protéine sauvage ou de tout variant ou fragment biologiquement actif, c'est-à-dire capable de se fixer à son récepteur et d'induire l'activation de cellules γδT dans les conditions du procédé de l'invention.

20 25

Le terme « variant » désigne en particulier tous les variants naturels, résultant par exemple de polymorphisme(s), épissage(s), mutations(s), etc. De tels variants naturels peuvent donc comprendre une ou plusieurs mutations ou substitutions, une délétion d'un ou plusieurs résidus, etc. par rapport à la séquence sauvage. Le terme variant désigne également les polypeptides ayant pour origine une autre espèce, par exemple de rongeurs, bovins, etc. Avantageusement, on utilise néanmoins une cytokine d'origine humaine. Le terme « variant » inclut également tout variant synthétique d'une cytokine, et notamment tout polypeptide comprenant une ou plusieurs mutations, délétions, substitutions et/ou additions d'un ou plusieurs acides aminés par rapport à la séquence sauvage. Des variants préférés comportent avantageusement au moins 75% d'identité avec la séquence primaire de la cytokine sauvage, préférentiellement au moins 80%, plus préférentiellement au moins 85%. Encore plus préférentiellement, les variants préférés comportent au moins 90% d'identité avec la séquence primaire de la

cytokine sauvage. Le degré d'identité peut être déterminé par différentes méthodes et au moyen de logiciels connus de l'homme du métier, comme par exemple selon la méthode CLUSTAL.

5 Comme indiqué, il est également possible d'utiliser dans le cadre de la présente invention tout fragment d'une cytokine conservant l'activité biologique définie ci-avant. De tels fragments contiennent de préférence au moins une région ou un domaine fonctionnel de la cytokine, comme par exemple un domaine catalytique, un site de liaison à un récepteur, une structure secondaire (boucle, feuillet, etc.), un site consensus, etc. Pour la mise en œuvre de la présente invention, les fragments utilisés conservent avantageusement la propriété de l'interleukine-2 ou de l'interleukine-15 de lier le récepteur membranaire et de stimuler le développement de lymphocytes γδT.

Les cytokines utilisées peuvent en outre comprendre des résidus hétérologues ajoutés à la séquence d'acides amines sauvage, tels que des acides aminés, lipides, sucres, etc. Il peut également s'agir de groupe(s) chimique(s), enzymatique(s), radioactif(s), etc. La partie hétérologue peut en particulier constituer un agent stabilisateur, un agent facilitant la pénétration du polypeptide dans les cellules ou améliorant son affinité, etc..

Les cytokines peuvent se présenter sous forme soluble, purifiée, fusionnée ou complexée avec une autre molécule, telle que par exemple un peptide, polypeptide ou une protéine biologiquement active. Les cytokines peuvent être préparées par toute technique biologique, génétique, chimique ou enzymatique connue de l'homme de l'art, et notamment par expression dans un hôte cellulaire approprié d'un acide nucléique correspondant. Les cytokines telles que l'IL-2 et l'IL-15 peuvent également être obtenues à partir de sources commerciales. De manière préférée, on utilise une cytokine recombinante humaine, typiquement

10

15

une interleukine-2 recombinante humaine ou une interleukine-15 recombinante humaine.

Les doses de cytokines utilisées dans le procédé de l'invention peuvent varier en fonction de la nature des cellules de départ. En outre, la concentration en cytokine peut être modifiée en cours de culture. Typiquement, les cytokines sont utilisées à des doses comprises entre 100 et 500 U/ml, typiquement entre 150 et 500 U/ml environ. Au cours du procédé, la concentration en cytokine peut être ajustée, par exemple par ajout de milieu de culture. De manière préférée, on utilise des doses de cytokine comprises entre 150 et 400 U/ml. Dans un mode particulier, il est possible d'initier la culture en présence d'une première dose de cytokine, puis de la poursuivre en présence d'une deuxième dose, supérieure à la première, afin d'augmenter la prolifération des cellules. Ainsi, un objet particulier de l'invention réside dans un procédé de préparation d'une composition de lymphocytes $\gamma\delta T$ à partir d'un échantillon de cellules mononucléées, comprenant au moins :

- . une première étape de culture des cellules mononucléées en présence d'un composé activateur synthétique des lymphocytes $\gamma\delta T$ et d'une cytokine, ladite cytokine étant présente à une première dose efficace, et
- 20 . une deuxième étape de culture desdites cellules en présence d'une deuxième dose efficace de ladite cytokine, ladite deuxième dose efficace étant supérieure à ladite première dose efficace.

La présente demande montre en effet que l'utilisation d'un composé activateur synthétique favorise l'expression de récepteurs de haute affinité pour la cytokine IL2 à la surface des cellules γδT, et que des doses faibles d'IL2 sont suffisantes pour permettre la prolifération spécifique des cellules γδT, cette dose faible ne favorisant pas la pousse des cellules portant des récepteurs de plus faible affinité. Le récepteur de haute affinité disparaît cependant après 7 à 10 jours de culture et est remplacé par un récepteur d'affinité moindre. Les cellules doivent alors être

cultivées en présence d'une deuxième dose plus élevée de cytokine, afin d'améliorer les performances du procédé et la prolifération des cellules $\gamma\delta T$ fonctionnelles. Dans ce mode de réalisation, la première dose de cytokine est préférentiellement une dose inférieure ou égale à environ 300 U/ml, de préférence de l'ordre de 150 U/ml environ, et la deuxième dose de cytokine est préférentiellement une dose supérieure à environ 300 U/ml, de préférence à environ 350 U/ml, typiquement de l'ordre de 400 U/ml.

Dans un autre mode de réalisation, la concentration en cytokine est maintenue essentiellement constante durant le procédé, par exemple par ajout de milieu frais contenant la cytokine à différents intervalles. Préférentiellement, dans ce mode de réalisation, la concentration en cytokine est maintenue entre 250 et 500 U/ml, par exemple entre 300 et 450 U/ml.

15 Culture

5

10

20

25

30

Le procédé de l'invention comprend la culture des cellules en présence d'un composé activateur (à l'initiation de la culture) et d'une cytokine, pendant une période de temps et dans des conditions permettant l'activation et l'amplification sélectives des cellules $\gamma\delta T$.

Les cellules peuvent être cultivées dans différents milieux et dispositifs adaptés à la culture de cellules humaines, notamment de cellules sanguines. Il peut s'agir de milieux définis, supplémentés, etc. Des exemples de milieux utilisables sont notamment les milieux commerciaux RPMI, Prolifix S3, S6, Ampicell X3 (Bio Media), X-VIVO-10 et 15 (Biowhittaker), AIM V (Invitrogen), Medium I et II (Sigma), StemSpan H200 (Stem cell), CellGro SCGM (CellGenix), etc. Ces milieux peuvent être supplémentés par des antibiotiques, du sérum humain ou d'origine animale, de préférence agréés pour une utilisation pour la culture cellulaire à visée thérapeutique, des acides aminés et/ou des vitamines, etc. Un

milieu préféré est le milieu RPMI, de préférence supplémenté par du sérum de veau fœtal. Un milieu particulièrement préféré est un sérum de veau irradié, agréé par les agences réglementaires pour la culture de cellules à visée thérapeutique. Ce type de sérum est commercialement disponible chez plusieurs fournisseurs. Les cultures peuvent être réalisées dans différents dispositifs, tels que des boites, poches, flasques, bouteilles, tubes, ampoules, réacteurs biologiques, etc. Les cultures sont avantageusement réalisées dans des dispositifs stériles et qui peuvent être obturés. Il n'est pas nécessaire que les cultures soient agitées. Des poches perméables aux gaz sont particulièrement adaptées. Selon le déroulement du procédé, des changements de dispositif peuvent être effectués au cours de la culture, notamment pour diluer les cellules et favoriser leur expansion. Un tel changement n'est cependant pas obligatoire, et des dispositifs de volume important peuvent être mis en œuvre dès l'initiation du procédé et conservés jusqu'à son terme.

15

20

10

5

Typiquement, si des poches sont utilisées, la préparation biologique ou les cellules sont contenues dans un volume de milieu tel que la densité cellulaire initiale soit comprise entre 0.2 et $3.10^{\rm E}6$ cellules/ml. Les demandeurs ont en effet montré que le maintien d'une densité cellulaire comprise entre 0.2 et $3.10^{\rm E}6$ cellules/ml, plus préférentiellement proche de $2.10^{\rm E}6$ cellules/ml, favorise grandement l'expansion des cellules $\gamma\delta T$. Des concentrations cellulaires supérieures pourraient vraisemblablement être obtenues à l'aide de réacteurs biologiques.

Le maintien de la densité cellulaire peut être réalisé de différentes façons, comme par exemple par dilution(s) successive(s), ajout(s) de milieu, transfert de dispositif, etc. Bien entendu, la densité cellulaire ne peut être maintenue constante au cours du procédé, dans la mesure où les cellules se divisent en permanence. Avantageusement, la densité est donc contrôlée ou ajustée à

15

20

25

différents intervalles de temps, de manière maintenir le mieux possible une densité comprise entre 0.5 et 3.10^E6 cellules/ml.

Le procédé peut être réalisé sur des périodes de temps variables et/ou suivant plusieurs cycles. D'une manière générale, la durée du procédé est supérieure à 10 jours environ, typiquement comprise entre environ 10 et 30 jours ou entre environ 10 et 25 jours. Différentes variantes peuvent être envisagées. Ainsi, il est possible, dans une première phase, d'effectuer la culture en présence du composé activateur seul et en absence de cytokine. Cette première phase peut durer par exemple entre 1h et 72h, typiquement moins de 48h. Cette phase est destinée à stimuler les cellules $\gamma\delta T$ et à induire une certaine expression de récepteurs de haute affinité pour les cytokines par ces cellules. A l'issue de cette première phase, la culture est poursuivie dans un milieu comprenant la cytokine, mais sans qu'il soit nécessaire d'ajouter à nouveau le composé activateur. Typiquement, à l'issue de cette phase, du milieu frais contenant la cytokine, mais dépourvu du composé activateur est ajouté aux cellules. La culture est alors poursuivie pendant une période de temps supérieure à environ 10 jours, typiquement entre 10 et 25 jours. Comme indiqué, la densité cellulaire est préférentiellement contrôlée et/ou ajustée pendant la culture, et la dose de cytokine utilisée peut être maintenue ou modifiée.

Selon une autre variante, il est possible d'initier la culture en présence du composé activateur et de la cytokine, et de la poursuivre pendant une période comprise typiquement entre 10 et 30 jours, en contrôlant la densité et la concentration en cytokine. Ainsi, en fonction de la densité cellulaire, du milieu frais contenant la cytokine (mais typiquement dépourvu du composé activateur) est ajouté aux cellules. En outre, comme indiqué ci-avant, les cellules peuvent être séparées ou transférées en cours de procédure dans des dispositifs de volume plus grand, si nécessaire.

10

15

Comme indiqué, le procédé de l'invention permet d'obtenir des compositions de cellules présentant avantageusement les spécifications suivantes :

- elles comprennent plus de 80% de cellules $\gamma\delta T$, avantageusement plus de 85%, voire plus de 90%, et
- elles comprennent plus de 100 millions de cellules $\gamma\delta T$ viables et fonctionnelles.

Pour obtenir de manière reproductible de telles caractéristiques chez la plupart des donneurs, il est nécessaire de mettre en culture au départ un nombre élevé de cellules, de l'ordre de 50 millions de PBMC obtenues par exemple de cytaphérèse.

Le procédé est simple, ne nécessite qu'une activation métabolique, rapide, et comporte un nombre très limité de manipulations des cellules. Il peut en outre être mis en œuvre à partir de cellules préalablement congelées. Ce procédé est donc particulièrement avantageux pour une exploitation pharmaceutique des cellules $\gamma\delta T$.

Utilisations / Conditionnement

Les cellules produites peuvent être utilisées extemporanément ou traitées en vue de leur conservation. Généralement, les cellules sont conditionnées dans un milieu comprenant un agent stabilisant, tel que notamment un polymère ou une protéine neutre. On peut utiliser avantageusement de l'albumine humaine (HSA), disponible commercialement en qualité injectable. Les résultats présentés montrent que les cellules peuvent être conditionnées dans une solution d'albumine humaine à 4°C, en vue de leur injection. A cet égard, un objet particulier de l'invention réside dans une composition comprenant des cellules γδT et de la sérum albumine humaine, typiquement de 2 à 10%, avantageusement à 4% environ.

Un autre objet de l'invention réside dans une composition pharmaceutique, caractérisée en ce qu'elle comprend une population de cellules composée à plus de 80% de lymphocytes $\gamma\delta T$ fonctionnels et comprenant plus de 100 millions de cellules $\gamma\delta T$. Préférentiellement, la composition comprend plus de 85% de lymphocytes $\gamma\delta T$ fonctionnels, voire plus de 90%. Généralement, la composition comprend en outre un agent ou véhicule acceptable sur le plan pharmaceutique et, plus préférentiellement, un agent de stabilisation, tel que la sérum-albumine humaine. Plus préférentiellement, les cellules sont obtenues ou susceptibles d'être obtenues par un procédé tel que décrit ci-avant.

10

5

Un autre objet de l'invention concerne un procédé de préparation d'une composition pharmaceutique à base de lymphocytes $\gamma\delta T$, le procédé comprenant :

- . la culture de cellules selon le procédé décrit dans la présente demande,
- 15 . la récupération des cellules obtenues ou d'une partie d'entre elles, ces cellules comprenant des lymphocytes $\gamma\delta T$ fonctionnels, et
 - . le conditionnement des cellules dans un véhicule ou excipient acceptable sur le plan pharmaceutique.
- Un autre objet de l'invention concerne une culture de cellules sanguines in vitro ou ex vivo, caractérisée en ce qu'elle comprend au moins 80% de lymphocytes γδT fonctionnels.
- L'invention est également relative à l'utilisation d'une culture de cellules telle que définie ci-avant pour la préparation d'une composition pharmaceutique destinée à la stimulation des défenses immunitaires d'un sujet, plus particulièrement au traitement de maladies infectieuses, parasitaires, de cancers, de maladies auto-immunes ou inflammatoires.

L'invention concerne également une méthode de traitement d'un cancer ou d'une pathologie infectieuse ou parasitaire, comprenant l'administration à un sujet d'une quantité efficace d'une composition pharmaceutique ou d'une composition cellulaire telles que définies ci-avant.

5

10

15

Le terme traitement désigne une réduction ou une suppression des symptômes, des causes ou de foyers de la maladie, une régression ou un ralentissement de la progression d'une maladie, par exemple de la croissance tumorale, une amélioration de l'état des patients, une réduction de la charge virale ou parasitaire, une baisse de la douleur ou de la souffrance, une augmentation de la durée de vie, etc.

Le terme quantité efficace désigne plus particulièrement une quantité efficace pour stimuler une réponse immune du patient contre les cellules cancéreuses ou infectées. Les doses de cellules administrées sont typiquement comprises entre 10^E6 et 10^E10 cellules par doses, même si des quantités différentes peuvent être envisagées. Il est entendu que la quantité de cellules utilisées peut être ajustée par le praticien en fonction de la pathologie et du protocole clinique (notamment du nombre et du site d'injections).

20

25

L'administration est réalisée préférentiellement par injection, notamment par injection systémique (intra-veineuse, intra-péritonéale, intra-musculaire, intra-artérielle, sous-cutanée, etc.) ou locale (e.g., intra-tumorale ou dans une zone environnant ou irriguant une tumeur). Des injections répétées peuvent être réalisées. Les cellules injectées sont préférentiellement autologues (ou syngéniques), c'est-à-dire sont préparées à partir d'une préparation biologique provenant du patient lui-même (ou d'un jumeau). Des compositions allogéniques peuvent être envisagées.

10

15

Dans un mode de réalisation typique, des injections répétées sont réalisées, avec une escalade de doses, chaque palier de doses pouvant lui-même comprendre plusieurs injections (typiquement de une à quatre) à des intervalles de temps pouvant varier entre une et six semaines par exemple. La dose initiale est typiquement supérieure à 100 millions de cellules, par exemple comprise entre 100 millions et 5 milliards, et une escalade de doses jusqu'à 10 milliards de cellules peut être réalisée. Un protocole clinique particulier prévoit une escalade de dose (chaque palier de dose comportant trois injections successives à trois semaines d'intervalle) partant de 1 milliard, puis 4 milliard puis 8 puis 12 milliards de cellules.

En outre, les cellules gamma 9 delta 2 étant dépendantes, pour leur prolifération et leur survie, de l'activité de cytokines et de manière préférentielle, d'interleukine 2, une co-thérapie est avantageusement réalisée. Ainsi, dans un mode préféré, les cellules obtenues par le procédé de l'invention sont injectées avec une co-thérapie de cytokine, notamment d'IL2. Un schéma d'administration préféré consiste en des injections sous cutanées journalières pendant environ 7 jours d'environ 1 million d'unités de cytokine par mètre carré de surface corporelle.

Un objet particulier de l'invention réside donc également dans une composition comprenant des cellules telles que définies ci-avant et une cytokine, de préférence l'IL-2 ou l'IL-15, plus préférentiellement l'IL-2, en vue de leur utilisation simultanée, séparée ou espacée dans le temps. Un autre objet de l'invention réside dans une méthode de traitement comprenant l'administration à un sujet d'une composition cellulaire telle que définie ci-avant et d'une cytokine, de préférence d'IL-2, les cellules et la cytokine étant administrées de façon simultanée, séparée ou espacée dans le temps.

10

15

20

D'autre part, les cellules $\gamma \delta T$ peuvent être modifiées génétiquement, préalablement à leur administration, par exemple pour qu'elles expriment un facteur de stimulation, un facteur de croissance, une cytokine, une toxine, etc.

La présente invention est utilisable (seule ou en association avec d'autres thérapies) pour le traitement de différentes pathologies susceptibles d'être améliorées par une augmentation de l'activité des cellules γδT (et notamment dans lesquelles des cellules sensibles à l'activité cytolytique des cellules $\gamma\delta T$ sont impliquées). Ainsi, la plupart des lignées tumorales de carcinome rénal sont tuées efficacement in vitro par les cellules gamma 9 delta 2 obtenues par le procédé de l'invention. Des cancers de différentes histologies peuvent également être traités, dans lesquels les cellules gamma delta exercent une activité cytolytiques : myélome, cancer de la vessie, mélanome, astrocytome, neuroblastome. Cette liste n'est pas limitative, et d'autres types de cancers susceptibles à la lyse gamma delta peuvent également être traités (cancers du poumon, du foie, tête et cou, colon etc.). S'agissant des maladies infectieuses, les cellules gamma delta ont été montrées comme lytiques vis à vis de nombreuses bactéries ou mycobactéries intracellulaires. Ainsi, l'activité des cellules gamma 9 delta 2 contre les cellules infectées par l'agent de la tuberculose ou l'agent de la peste est bien connue. Ces cellules répondent également à d'autres pathologies infectieuses comme la thularémie. Une activité antivirale a également été démontrée contre les cellules infectées par le virus HIV, influenza, Sendai, coxsackie, vaccinia, vesicular stomatitis virus(VSV), and herpes simplex virus-1 (HSV-1) (Sciammas et al, 1999, TcR gamma delta and viruses, Microbes Infect 1:203).

25

D'autres aspects et avantages de la présente demande apparaîtront à la lecture des exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.

EXEMPLES

EXEMPLE I: Expansion des cellules gamma 9 delta 2 à partir de plus de 50 millions de cellules PBMC non fractionnées de manière à obtenir après 10 à 20 jours de culture une pureté en gamma 9 delta 2 de plus de 80% et plus de 100 millions de cellules gamma 9 delta 2.

IA - Matériels

5

10

20

Echantillons de sang

Des tubes de sang total de 6 ml (sur ACD : Acid Citrate Dextrose) sont prélevés sur chacun des 3 donneurs sains et sont stockés à température ambiante.

Le sang sera traité environ 18 heures après le prélèvement.

Poches de cytaphérèse

Une poche de cytaphérèse (1/2 masse corporelle) est prélevée sur des donneurs sains et stockée à température ambiante.

15 Les CMN (cellules mono-nucléées) sont traités environ 18 heures après le prélèvement.

Milieux de culture

Différents milieux de culture ont été utilisées, synthétiques ou non. Les cellules ont ainsi été cultivées en milieu RPMI (SIGMA, réf R0883), éventuellement supplémenté par ajout de L-glutamine (0.3 g/l final) extemporanément.

Différents milieux synthétiques ont également été testés, qui sont rassemblés dans le tableau 1.

Dans certains cas, les milieux ont été supplémentés par du serum, d'origine humaine ou animale. A cet égard, du sérum de veau fœtal irradié a été utilisé

(lots de «Fetal Clone-I » irradié (25 kGy) provenant de chez Hyclone (réf SH 30080.03 IR)), ainsi que du sérum humain.

Le sérum humain utilisé au cours de ces études provient de pool de serum de donneurs sains préparé par le centre de transfusion de Nantes. Ce serum de grade thérapeutique (agréé par l'agence réglementaire Française) est utilisé dans des protocoles de thérapie cellulaire visant à l'injection de cellules T alpha béta classiques.

10 Composés et réactifs

5

L'interleukine-2 recombinante humaine utilisée est la Proleukin (Aldesleukine) à 18 millions UI provenant de chez CHIRON BV (réf FRC01A) et stockée en aliquotes à la concentration de 360 000 UI/ml dans du milieu RPMI/SH 10 % à -20°C. Le Ficoll (« Lymphocyte separation medium ») a été utilisé à une densité 1.077 ± 0.001 (SIGMA. réf 913353). L'albumine humaine est l'albumine-LFB 4 %, médicament AMM n°558632-9. Le DMSO et la solution saline proviennent de Braun medical.

Dispositifs de culture

20 Les dispositifs de culture utilisés sont indiqués dans le Tableau 2.

<u>Anticorps</u>

Les anticorps utilisés sont répertoriés dans le Tableau 3.

IB - Méthodes

Isolement des lymphocytes à partir de Sang total + Ficoll

25 Cette procédure est couramment utilisée dans les laboratoire de biologie cellulaire. Brièvement, le sang total est «Ficollé», puis les PBMC sont récupérées sur le gradient de Ficoll. Le Ficoll est rincé, et une numération

cellulaire est réalisée au « Coulter Multisizer II » (sur 3 prélèvements différents pour une même condition et pour un même donneur). Les PBMC sont congelées dans une solution de congélation à 10 % de DMSO (dans de l'albumine humaine 4 % ou dans du SVF).

5

10

15

20

25

Isolement des lymphocytes à partir de CMN (cytaphérèse)

Cette procédure comporte une première phase de « dé-plaquettisation » de l'échantillon, qui est réalisée, sur chaque poche de cytaphérèse, selon la procédure suivante.

Le contenu de la poche de cytaphérèse est transféré dans des tubes de 50 ml, dans lesquels 2 volumes de milieu RPMI sont ajoutés. Les tubes sont centrifugés à 200 g, puis le surnageant est éliminé. Les culots sont poolés (regroupés) et remis en suspension dans du milieu RPMI (qsp 50 ml). Les cellules sont comptées, puis une nouvelle centrifugation est réalisée à 400 g environ (à 20°C). Le surnageant est à nouveau éliminé, et le culot mis en suspension dans du sérum de veau fœtal de manière à avoir une concentration cellulaire finale de 500 millions cellules/ml environ. Les cellules sont comptées et la concentration cellulaire est ajustée à 300 millions cellules/ml environ avec du sérum de veau fœtal. Les suspensions cellulaires sont généralement placées sur la glace (à 4°C). Les CMN peuvent être congelées dans une solution de congélation à 5 à 15 % de DMSO (dans de l'albumine humaine 4 %, ou du SVF), ou directement mises en culture.

Congélation des cellules

Pour optimiser les paramètres de la congélation, les cellules suspendues dans de l'albumine humaine à 4 % ou du SVF sont diluées volume à volume dans la solution de congélation réfrigérée (20 % de DMSO et 4% d'albumine humaine ou SVF). Le tube contenant la suspension cellulaire est agité pendant toute la durée de l'opération et repose avantageusement sur un bac réfrigéré ou sur de la glace pilée. Le mélange, homogénéisé, est réparti dans des cryotubes de 1.8 ml (1 ml/tube), qui sont rangés dans une boite de congélation, et placées à - 80°C. Les

cryotubes sont ensuite transférés et stockés dans une cuve d'azote (au minimum 4 heures plus tard).

Les CMN et les PBMC sont rapidement décongelées (par immersion au bain-Marie à 37°C), puis transférées dans des tubes de 15 ml contenant 12 ml de milieu RPMI. Les cellules sont lavées en milieu RPMI-10 % SVF pour éliminer le DMSO. La numération cellulaire est effectuée au « Coulter » (sur 3 prélèvements différents pour une même condition et pour un même donneur).

Mise en culture dans des flasques et des poches (le jour de l'isolement)

Le nombre de CMN ensemencées dans les différents contenants (ou dispositifs de culture) a été choisi de manière proportionnelle au rapport « nombre de lymphocytes/ surface d'un puits » utilisé lors des cultures en plaque 24 puits, soit 1.10^6 cellules/ 1.9 cm² environ (voir Tableau 4).

15

20

25

5

Les cellules mononuclées de chaque donneur sont mises en culture dans les contenants sous un même volume et un même nombre de cellules au départ, soit 100 millions de cellules par contenant, dans 50 ml de milieu de culture RPMI / 10 % SVF / 3 μ M BrHPP, 120 UI/ml IL-2 (soit une concentration cellulaire initiale de 2 million/ml). Le même milieu contenant 360 UI/ml d'IL2 est ajouté au cours de la culture comme cela est indiqué pour chaque manipulation.

Mise en culture dans des plaques 24 puits (après décongélation)

Les PBMC et les CMN sont mise en culture dans des plaques 24 puits à raison de 1 million de cellules par puits dans 1.5 ml de milieu de culture RPMI / 10 % SVF / 3µM BrHPP / 120 UI /ml IL-2 (soit une concentration cellulaire de 0.6 million/ml)

10

15

20

Maintien de la culture

Les cellules sont maintenues en culture à 37°C en atmosphère humide et en présence de 5 % de CO2 dans du milieu RPMI / 10 % SVF / 360 UI/ml IL-2. Le premier changement de milieu intervient par ajout de milieu à jour 4, puis régulièrement tous les 3 jours. Ainsi, la concentration en IL2 augmente au cours de la culture.

Les cellules cultivées dans les plaques 24 puits sont transférées dans des flasques de 25 cm² en position verticale lorsque la densité cellulaire devient supérieure à 3. 10⁶ cellules/ml.

Pour les cellules cultivées en flasque ou en poche, la densité cellulaire est maintenue à 2. 10^6 cellules/ml en ajoutant du milieu de culture : Vmax = 150 ml. Sachant que le contenant ayant servi à la mise en culture des cellules est conservé tout au long de la culture, lorsque le volume maximal est atteint, il faut procéder par élimination d'une partie des cellules pour maintenir la densité cellulaire à 2. 10^6 cellules/ml (et ajout de milieu frais).

Comptage, phénotypage (analyse par cytométrie en flux)

Plusieurs comptages cellulaires et phénotypages sont effectués au cours des 3 semaines de culture, en particulier aux jours J10, J15, J20. Les comptages et phénotypages sont réalisés comme suit :

- Comptage au Coulter de la totalité des cellules vivantes
- Double marquage CD56/CD3
- Triple marquage Vδ2/CD3/CD69
- Contrôles isotypiques : IgG1k-FITC/R-PE/cyC
- 25 Acquisition des données par cytométrie en flux (FACScan-Becton Dickinson)

Des comptages pourront être faits à d'autres temps, en cas d'expansion cellulaire forte afin de compléter avec du milieu frais.

Analyse fonctionnelle des cellules

Différents tests sont réalisés sur les cellules obtenues, afin de vérifier leur caractère fonctionnel. Ces tests portent notamment sur l'activité cytotoxique des cellules et sur leur production de TNF.

5

10

15

20

. Test de cytotoxicité. Pour ce test, les cellules cibles sont marquées avec un isotope ^{51}Cr (10 μl de ^{51}Cr / 1 million de cellules cibles en plaque 24 puits), puis incubées 1 heure à 37°C. Les cellules sont distribuées (en double) à raison de 3000 cellules / puits dans du RPMI/10 % SVF (50 μl), et la libération spontanée et maximale de ^{51}Cr sont déterminées. Les cellules effectrices ($\gamma\delta T$ de l'invention) sont alors ajoutées (50 μl dans du RPMI/SVF 10 %) sur chaque cible, selon les ratios Effecteur/Cible (E/T) suivants : 30/1, 3/1, 0.3/1, et incubées 3 à 4 heures à 37°C. L'activité cytotoxique (la lyse des cellules cibles) est déterminée par mesure, sur 25 μl de surnageant dans un compteur de plaque β , de la radioactivité libérée.

. Test de relargage de TNF. Les cellules sont lavées deux fois en RPMI puis mises en culture dans des plaques 96 puits en milieu RPMI, 10% FCS en présence de 3µM de BrHPP pendant 24 heures. Le TNF est dosé dans le surnageant par le kit BeckmanCoulter Kit Immunotech, référence IM 11121.

IC - Résultats

Choix d'un milieu

Les milieux supplémentés en sérum humains sont considérés comme les plus favorables pour cultiver les lymphocytes humains et notamment les cellules gamma 9 delta 2, notamment du fait que les facteurs de croissance sérique ont souvent une spécificité d'espèce. Cependant de tels milieux sont très difficiles à préparer et à utiliser en clinique, du fait du risque biologique et de la disponibilité de quantité importante de sera humains.

Nous avons donc tenté de cultiver ces cellules en milieu d'obtention plus facile. Ces expériences ont été menées à petite échelle, en plaques 24 puits, à partir de sang total de trois différents donneurs avec une stimulation initiale avec l'EpoxPP (voir matériels et méthodes pour les conditions d'activation). Le taux et le nombre de lymphocytes T gamma delta sont suivis sur une culture de 30 jours environ, par comptage et cytométrie de flux. Les résultats d'un test de comparaison de prolifération en milieu RPMI supplémenté soit en sérum humain soit en SVF, ainsi que sur deux milieux synthétiques (XVIVO10 et 15) sur trois donneurs sains sont rassemblés dans le Tableau 5.

10

15

5

De manière surprenante, le meilleur milieu pour la pousse des gamma 9 delta 2 est le milieu RPMI supplémenté avec du SVF. Le milieu supplémenté en sérum humain fournit également une amplification très significative des cellules gamma 9 delta 2, cependant celle-ci est plus limitée et variable de donneur à donneur. De plus, au cours du temps, la pureté et le nombre des cellules deviennent moins bonnes par rapport au milieu complémenté en SVF. Les milieux synthétiques testés (sans sérum) fournissent une amplification inférieure. Il s'agit pourtant des meilleurs milieux synthétiques pour la pousse des gamma 9 delta 2 (résultats d'un autre expérience non montrée).

20

En conclusion, les cellules gamma delta ont un potentiel de prolifération à long terme très important, dans un milieu favorable. Nous avons choisi le SVF pour la suite car il donne des résultats très intéressants et reproductibles d'un lot à l'autre (résultats non montrés). Il est également disponible sous forme de lots irradiés agréés pour la manipulation de cellules à visée thérapeutique. D'autres milieux pourraient vraisemblablement révéler le fort potentiel de pousse des cellules gamma delta, comme des milieux avec moins de sérum, des combinaisons des meilleurs milieux synthétiques avec des quantités faibles de sérum, ou des combinaison de milieux synthétiques.

25

PBL versus cytaphérèse

L'objectif étant de produire à la fin de la culture des quantités importantes de cellules gamma 9 delta 2, il est intéressant de pouvoir disposer au départ d'une source de cellules en nombre important, éventuellement congelable, pour pouvoir disposer de banques de cellules. Une source possible est représentée par les cellules mononuclées obtenues par cytaphérèse. Toutefois, cette procédure peut cependant altérer les cellules et empêcher leur prolifération satisfaisante. Les cytaphérèses contenant souvent de nombreux globules rouges, les CMN ont été testées en prolifération, soit juste après déplaquettisation soit après déplaquettisation et traitement sur Ficoll (voir matériels et méthodes). Nous avons donc testé si des cellules de cytaphérèse pouvaient proliférer de manière satisfaisante. Ce test a été effectué tout d'abord à petite échelle (plaque 24 puits, voir matériel et méthodes), et les résultats provenant de trois donneurs différents sont compilés dans le Tableau 6.

15

20

25

30

5

10

On constate de manière surprenante que les cytaphérèses ont également un potentiel de prolifération très important, même s'il est inférieur à celui des PBMC provenant de sang total. Les CMN après ficoll fournissent par ailleurs une prolifération moins importante que les CMN non traitées. Malgré la prolifération moins importante, et au vu des quantités de cellules nécessaires au départ pour obtenir un grand nombre de cellules, nous avons tenté d'effectuer une culture à plus grande échelle à partir de CMN fraîches non ficollées.

Nous avons donc effectué un essai de prolifération à partir de CMN fraîches provenant de donneur sains (D100, D119, D127). Nous avons testé différents contenants de cultures (voir matériel et méthode). La culture est initiée avec 100 millions de cellules provenant de CMN à raison de 2 millions de cellules par ml (volume total initial 50 ml). La stimulation est effectuée avec BrHPP à 3 μM. Un ajout de 50 ml de milieu frais (contenant 350 U/ml d'IL2) est effectué aux jours 4 et 7. A partir de jour 10, les cellules sont analysées et comptées, et ramenées à 2

millions de cellules par ml. Elles sont ensuite diluées tous les trois jours de façon à ramener la concentration cellulaire à 2 millions de cellules par ml.

Les résultats obtenus sont compilés dans le Tableau 7.

5 Ces résultats montrent que, dans les conditions de l'invention, des valeurs de 100 millions de cellules gamma 9 delta 2 avec plus de 80% de pureté sont atteintes dès J10 pour certains donneurs dans certains contenants (D100 et D119 dans les poches NEXELL par exemple). Ces résultats démontrent l'efficacité des méthodes de l'invention dans la production de cellules γδT fonctionnelles en qualité pharmaceutique.

EXEMPLE II : Etude de la concentration de maintien des cellules après jour 10

IIA - Expansion des cellules gamma 9 delta 2

Les résultats sont compilés dans le Tableau 8.

15

20

25

Une nouvelle expérience, basée sur le protocole précédent, a été effectuée avec des CMN de trois nouveaux donneurs (D623, D762, D711). Les matériels et méthodes sont identiques à l'exemple I sauf quand les conditions sont précisées. Les conditions de départ de la culture sont identiques. On effectue un ajout de 50 ml de milieu à jour 4 et à jour 7. A jour 10, les cellules sont analysées et comptées. La culture est réalisée en triplicate jusqu'à jour 10 (3 cultures identiques par donneur). On ramène alors la concentration cellulaire à 3 concentrations (0.2, 0.5 et 1 million de cellules par ml, chaque concentration provenant d'un des trois triplicats), en vue d'étudier l'effet du paramètre concentration cellulaire. Les cultures sont ensuite analysées tous les trois jours, et la concentration est ramenée à la concentration de jour 10 quand les cellules dépassent la concentration de 2 millions de cellules par ml.

On constate que les rendements et les puretés des cellules sont très supérieurs après jour 10 à ceux obtenus dans l'exemple I. La concentration cellulaire est donc un facteur important dans la conduite de la culture à partir de cette date.

Nous découvrons ainsi que le potentiel de prolifération des cellules gamma delta est excellent. Partant de 1 à 4 millions de cellules gamma delta au départ on obtient de 11 à 13 milliards de cellules à jour 21 de pureté supérieure à 90%. On peut noter de manière importante que le nombre de cellules obtenues ne semble pas dépendre du nombre de cellules gamma delta initial.

10

15

20

25

IIB - Fonctionnalité des cellules obtenues

Les cellules gamma 9 delta 2 naturelles produisent, après stimulation, des cytokines comme le TNF (« tumor necrosis factor ») et sont cytotoxiques vis-àvis de nombreuses cellules cancéreuses. Notamment, les cellules gamma 9 delta 2 sont connues pour lyser spécifiquement la lignée Daudi (myélome), et non la lignée RAJI.

La fonctionnalité des cellules obtenues par le procédé de culture cellulaire de l'invention a été testée suivant deux paramètres : la capacité de cytotoxicité vis-à-vis d'une lignée tumorale de carcinome rénal (Lignée 786-0, ATCC, référence CRL-1932) et d'une lignée de myélome (les cellules RAJI servant de contrôle négatif).

Les résultats d'un test de cytotoxicité avec les cellules obtenues par le procédé (test du maintien de la concentration cellulaire à 0.2, 0.5, 1 millions de cellules par ml, voir plus haut) à jour 23, vis-à-vis de ces trois lignées sont compilés dans le Tableau 9.

On constate que les cellules obtenues par le procédé sont effectivement cytotoxiques vis-à-vis des lignées de carcinome rénal et Daudi et, comme attendu, ne présentent pas de cytotoxicité significative vis-à-vis de la lignée

25

RAJI. Nous montrons par ailleurs que les cellules sont cytotoxiques vis-à-vis de la lignée de carcinome rénal 786-0.

EXEMPLE III : Etude de la prolifération de cellules de CMN congelées.

Une manière particulièrement pratique de mettre en œuvre le procédé serait de pouvoir partir de cellules congelées. En effet une cytaphérèse peut fournir de 2 à 4 milliards de cellules qu'il serait intéressant de pouvoir aliquoter et congeler pour pouvoir effectuer plusieurs cultures à partir de la même cytaphérèse.

La congélation des cellules peut cependant altérer fortement leur viabilité et leur capacité de pousse après décongélation.

Les trois CMN obtenues pour les expériences de l'exemple II ont été congelées en 10% DMSO, HSA 4%. Une nouvelle expansion a été effectuée à partir de ce matériel congelé (même protocole que pour l'exemple II.

15 Les résultats de l'expansion sont compilés dans le Tableau 10.

On constate que les cellules congelées peuvent également générer des nombres importants de cellules de très bonne pureté.

La fonctionnalité des cellules fraîches par rapport aux cellules congelées a par ailleurs été évaluée en parallèle sur cellules obtenues à partir de cellules fraiches et à partir de cellules congelées. Deux tests ont été effectués : le test de cytotoxicité et le test de relargage de TNF.

Les résultats du test de cytotoxicité réalisé en parallèle sur les cellules fraiches et les cellules congelées à jour 21 sont compilés dans le Tableau 11.

Les résultats du test de relargage de TNF réalisé en parallèle sur les cellules fraîches et sur cellules congelées à jour 21 sont compilés dans le Tableau 12.

On constate que les cellules provenant de cellules congelées ne sont pas significativement différentes d'un point de vue fonctionnel par rapport aux cellules provenant de cellules fraîches. Différents milieux de congélation pourraient améliorer le rendement en cellules.

5

10

EXEMPLE IV: Formulation des cellules pour une préparation injectable.

En vue de l'injection chez l'homme, le SVF doit être éliminé et les cellules reprises dans un tampon pharmaceutiquement acceptable. Le milieu HSA à 4% a été testé.

Une nouvelle expansion a été effectuée à partir d'une nouvelle cytaphérèse congelée. 6 conditions de congélation ont été testées :

Deux milieux de congélation : 10% DMSO dans une solution de HSA à 4%, 7.5% DMSO dans du SVF.

15 Ces deux milieux ont été testés avec trois concentrations cellulaires 25, 50, 150 millions de cellules par ml.

Le protocole d'expansion est le même que dans l'exemple II, sauf que les cellules sont maintenues à 0.5 million de cellules par ml à partir de Jour 7.

Les résultats de l'expansion sont compilés dans le Tableau 13.

- On constate peu de différence entre ces différentes conditions de congélation, avec une légère amélioration pour le milieu de congélation SVF à 7.5% DMSO.

 La préparation cellulaire issue de la condition 150 million de cellules par ml en SVF, 7.5% DMSO a été formulée en HSA 4%.
- Le volume des compositions peut être réduit à l'aide du « CytoMate®», puis les cellules sont conditionnées en Albumine Humaine 4 %. Pour cela, le culot est remis en suspension dans 100 à 200 ml d'albumine humaine 4 %, de manière à obtenir une suspension cellulaire dont la concentration est comprise entre 10 et 100 millions cellules/ml. Une numération et une mesure de la viabilité des

10

15

cellules sont réalisées, puis les cellules sont conservées dans une poche à 5° C \pm 3, afin de tester la stabilité de la préparation.

Le produit cellulaire formulé a été testé pour sa viabilité (comptage sur cellule de malassez au bleu trypan) aux temps 2 h, 4h, 8h, 22h après formulation. Le produit cellulaire est à plus de 80% de cellules viables jusqu'à au moins 22h après formulation.

Le produit cellulaire formulé a été testé en fonctionnalité par le test de relargage TNF à différents temps pour évaluer la stabilité de la préparation cellulaire formulée.

Les résultats sont compilés dans le Tableau 14.

On constate que les cellules formulées sont toujours capables de produire du TNF sous stimulation BrHPP, même 22h après formulation. D'autre part, on ne constate pas de différence significative de la production de TNF jusqu'à 8 h après formulation.

Société	Certification	cGMP	FDA	Milieu	Références
	ISO 9001	BPF	E-DMF	Prolifix S3	PROLIS3
	ISO 9002	Į.			20123431
Bio Media	EN 46002			Prolifix S6	PROLIS6
				_	20123456
				Ampicells	AMPICLX3
				X3	20123698
Bio Whittaker		+	+	X-VIVO 10	US04-380Q
(GIBCO)				X-VIVO 15	US04-418Q
(Life	ISO 9001		+	AIM V	087.0112D
Technologies)				Qualité	K
Invitrogen	,			pharma	
Sigma	-		-	Medium I	G-0916
_				Medium II	G-0791
Stem Cell		+		Stem Span	09700
				H 2000	

Tableau 2

	Fournisseur	Réf.	Surface (cm²)	volume min.	volume max.
Poches de culture Lifecell PL732 300 ml	Nexell-Baxter	R4R2111	180	50 ml	150 ml
Nutripoches EVAM 500 ml	STEDIM	FR0501S TD	200	/	/
Poches de 250 ml (Vue Life 255 Culture Bags)	CellGenix	2P-0255	262	/	/
Flacons de culture NUNC 600 ml, col droit		056968	185	/	/

	Fournisseur	Référence	Dilution finale
hu-CD3-FITC / hu-CD56-PE	Immunotech	IM2075	1/5
hu-Vδ2-FITC	Immunotech	IM1464	1/5
hu-CD3-PE	Immunotech	IM1282	1/5
hu-CD69-PC5	Immunotech	IM2656	1/10
Mouse IgG1,k-FITC	BD	33814X	1/10
Mouse IgG1,k-R-PE	BD	33815X	1/10
Mouse IgG1,k-CyC	Pharmingen	71148L	1/10

Contenant	Surface	Densité d'ensemencement	Nombre effectif de
		théorique (proportionnelle	CMN ·
		aux plaques 24 puits)	ensemencées
Puits (plaque 24 puits)	1.9 cm ²	1. 10 ⁶	/
Poches de culture	180 cm ²	90. 10 ⁶	
Lifecell 300 ml			
(NEXELL)			
Nutripoches	200 cm^2	100. 10 ⁶	100. 10 ⁶
EVAM 500 ml			
(STEDIM)			
Poches de 250 ml	262 cm^2	140. 10 ⁶	
Vue Life (Cell			
Genix)			
Flacons de culture	185 cm ²	100. 10 ⁶	
NUNC 600 ml			

5)
Ξ	ţ
9	,
2	١
2	\$

		EJ	ETUDE de la PRO		FERAT	PNO.	ans differ	ents mil	eux en p	IFERATION dans différents milleux en plaque 24 puits	uits				•
				1											1
											+		- 1111111111111111111111111111111111111		1
Jour 10		₹P.0%	%Vd2 DANS LA CULTURE	TURE	1		LYMPHO	LYMPHOS TOTAUX (millions)	(Suoji)		+	1 20 /	VdZ 10 IAUX (millions)	ons)	
	•1:0	FC.L* SH SFCIPRISE X-VIVO 10	X-VIVO 10	X-VIVO 15	+	*4:54	SHSECURISE	X-VIVO 10	X-VIVO 15	FC	HS +1-24	SECURISE	SH SECURISE X-VIVO 10	X-VIVO 15	
						П									1
Donneur 1	76.22	78.06	16.38	14.34		5.8	4.76	0.56	0.64	4.42	2	3.72	60.0	60:0	
Donneur 2	83.82	80.87	30.56	34.83		80	5.2	0.64	1.2	6.71		4.21	0.20	0.42	
											1				
Donneur 3	48.74	25.61	3.34	5,4		2	5.44	4.0	9.0	5	2,44	1.39	0.01	0.03	+
					1						+				-
Jour15					1	T					-				-
Donneur 1	80.63	60,05	23.17	17.89		8.4	4.6	9.4	0.7	6.77	77	2.76	60.0	0.13	
					1	1		1000	72.	9	10.63	100	0.34	0,60	
Donneur 2	87.17	80.75	52.2	45.08	1	22.4	6.21	0.00	4C.1	13.	50	10.0	*C'0	60.0	
Donnelle 3	62.37	13.93	3.95	6.32		7.14	13.2	0.1	0.3	4,4	4.45	1.84	0.00	0.02	
											-				
Jour22											+				+
			1, 30	0.66		000	7.9	300	0.782	7	7 34	257	0.08	0.18	-
Donneur 1	82.62	40.11	29.14	23.19		000	to	87	70/07	!	 				
Donneur 2	84.35	77.67	76.53	69.51		27.36	8.6	1.3	4.76	23.	23.08	7.61	66.0	3.31	
ı e		69.9	Tig	N.	1	22.4	13	V	7	16.	16.98	0.79	∀	⊽	
Donneur 3	79.67	0.02	IN CONTRACTOR			1	1								
Jour31											+	1			1
				H		170	7	7	-	14	14.67	₽	⊽	 ⊽	
Donneur 1 82.39	82.39	Z													
Donneur 2	92.62	NT	LN TN	Z		86.4	₽	₽	⊽	80.	80.02	₽.	₽	1>	
						70.07		1	1	73	87.75	\[\nu\]	V		
Donneur 3	73.25	Į.	Z	Z		40.04	7	7	,						
		NT: non testé									-				-

Tablean 6

Expansion de cellules γδΤ à partir de différentes sources (expériences en triple à partir de 3 donneurs sains

				% Vd2	% Vd2 enCULTURE	TURE							w	PECIFIC	. Vd2 (r	SPECIFIC Vd2 (millions)			
J 10		D62			070			D89		J 10		D62			D70			D89	
	-	=	Ξ	-	=	Ξ	-	=	=		_	=	Ξ	-	=	=	-	=	=
PBMC CMN-FICOLL CMN	64,84 25,91 71,09	71,45 59,06 47,11	56,33 23,72 58,49	92,68 91,39 95,18	93,7 90,33 92,74	93,75 90,7 92,74	91,59 73,01 82,24	90,36 72,42 81,98	90,49 70,21 81,19	PBMC 2,5: CMN-FICOLI 0,3 CMN 1,6:	2,59 0,3 1,68	2,29 2,13 0,9	1,8026 0,3795 1,8717	7,044 6,946 8,757	5,25 6,14 8,16	6,375 6,1676 9,274	6,59 0,93 1,81	9,04 1,16 4,92	5,4294 0,9829 2,2733
114	-	=	Ξ	-	=	=	-	=	· Ξ	J.4									40
PBMC 65,0 CMN-FICOLL 3,8 CMN 76,0	83 4 8	76,2 60,17 45,56	54,73 9,27 62,48	93,25 95,83 97,25	98,02 95,58 96,83	97,8 95,6 96,72	91,5 71,81 81,31	94,04 58,93 78,1	92,52 54,63 76,55	PBMC 6,51 CMN-FICOLL 0,05 CMN 5,84	6,51 0,05 5,84	12,2 4,04 2,19	6,7865 0,191 4,7485	22,38 25,3 37,34	27,4 30,6 33,3	31,296 25,2384 34,04544	16,1 1,9 2,54	16,9 1,27 8,04	18,504 3,2778 7,3488
119	-	= -	=	-	=	≡	-		=	119									
PBMC CMN-FICOLL CMN		77,79 59,27 39,61	68,91 3,27 69,06	98,31 96,22 97,08	98,31 96,51 97,59	98,31 96,55 96,38	92,72 73,78 80,66	93,02 14,71 75,75	92,47 18,47 73,19	PBMC 23,8 CMN-FICOLI 0,02 CMN 11,1	23,8 0,02 11,1	32,8 7,11 2,14	17,779 0,0523 13,052	61,54 91,41 90,19	66,2 85,5 85,4	61,54 66,2 74,32236 91,41 85,5 72,9918 90,19 85,4 69,77912	51,2 1,66 4,92	40,3 0,06 10	48,824 1,4776 17,858

	% V d2	en CUL	TURE.		LL LYMPI millions)			SPECIF	
J 10	D100	D119	D127	D100	D119	D127	D100	D119	D127
FLASK	64,89	79,05	27,91	160,5	263,52	266,22	104	208	74
STEDIM	72,81	79,81	61,49	174	307,47	340,2	127	245	209
CELLGENIX	79,97	85,25	58,89	257,87	451,52	363	206	385	214
NEXELL	80,14	84,52	73,06	262,26	398,75	382,11	210	337	279
J14	D100	D119	D127	D100	D119	D127	D100	D119	D127
FLASK	84,94	90,84	90,27	274,99	431,68	313,5	234	421	308
STEDIM	83,78	51,62	81,3	281,88	385,9	340,3	236	199	277
CELLGENIX	87,86	84,63	1,57	405	513,04	408	356	434	6
NEXELL	35,64	57,62	31,85	420	502,35	439,9	150	289	140
J20	D100	D119	D127	D100	D119	D127	D100	D119	D127
FLASK	71	5,8	0,57	430	533,4	456	305	31	3
STEDIM	81,38	31,11	3,85	351	511,7	420	286	159	16
CELLGENIX	75,13	78,43	7,01	580,8	699,2	591,6	436	548	41
NEXELL	84,14	78,83	20,62	607,20	741,00	396,50	511	584	82

	% Vd2	en CUL	.TURE		L LYMP millions			SPECIF million:	
J O	D 623	D 762	D 711	D 623	D 762	D 711	D 623	D 762	D 711
initial	2,17	3,61	1,01	100	100	100	2,17	3,61	1,01
J 10 (triplicates)	D 623	D 762	D 711	D 623	D 762	D 711	D 623	D 762	D 711
(11.151.150.150)	91,28	92,05	89,45	541	586	615	494	539	550
ii	91,48	91,76	89,43	552	562	604	505	516	540
111	91,85	91,79	90,11	579	576	625	532	557	609
J15	D 623	D 762	D 711	D 623	D 762 Milliard	D 711	D 623	D 762 Milliard	D 711
0,2 million/ ml	97.75	95,55	95,1	2,869	1,525	2,127	2,80	1,46	2,02
0.5 million/ ml	97,54	97,09	96,21	3,047	2,341	2,759	2,97	2,27	2,65
1,5 million/ ml	96,87	95,96	95,57	1,552	1,376	1,576	1,50	1,32	1,51
J21	D 623	D 762	D 711	D 623	D 762	D 711	D 623	D 762	D 711
0,2 million/ ml	97,8	94	94,2	7,699	5,761	5,553	7,53	5,42	5,23
0.5 million/ ml	98,23	94,69	95,88	13,43	11,16	11,76	13,19	10,56	11,28
1,5 million/ ml		96,52	96,67	4,926	3,879	4,92	4,82	3,74	4,76

						, 			
	Résulta	its de d	ytotoxi	<u>cité er</u>	1 % de	lyse spē	cifique	sur 3 li	gnées
Donneur	D 711					D 762			D623
concentration de maintien	at 0,2	at 0,5	at 1,5	at 0,2	at 0,5	at 1,5	at 0,2	at 0,5	at 1,5
Cible									
786-0									
RATIO 0,3/1	15.93	15.8	4.12	16.2	17.3	10.09	4.28	5.618	4.692
RATIO 3.1	42.98	32.7	32.7	48.6	61	54.02	33.5	18.17	18.63
RATIO 30/1	65.38	54	34.4	83.1	68	65.25	46.7	61.04	41.7
							•	-	
RAJI	D 711	D 71	D 711	D 76	D 762	D 762	D623	D623	D623
	at 0,2	at 0,5	at 1,5	at 0,2	at 0,5	at 1,5	at 0,2	at 0,5	at 1,5
RATIO 0,3/1	6.826	13.3	10.6	7.81	3.92	8.814	5.73	3.863	13.71
RATIO 3/1	55.64	8.28	5.73	14.4	19.1	11.69	6.32	6.943	10.59
RATIO 30/1	15.32	14.1	11.3	15.6	13.2	16.83	14.2	16.88	16.88
DAUDI	D 711	D 71	D 711	D 76	D 762	D 762	D623	D623	D623
	at 0,2	at 0,5	at 1,5	at 0,2	at 0,5	at 1,5	at 0,2	at 0,5	at 1,5
RATIO 0,3/1	43.87	49.9	47.3	54.8	59.5	49.97	29.1	46.52	53.09
RATIO 3/1	59.51	54.7	55.5	64.6	67.1	58.97	56.1	61.27	58.63
RATIO 30/1	60.39	56.1	53.7	68.9	60.1	60.02	60.3	58.29	62.42

Tableau 14

pg/ml de	TNF alpha	produits	par 25 00	00 cellules
	mó	yenne de triplica	ats	
temps	T = 2h	T = 4h	T = 8h	T = 22h
	HSA 4%	HSA 4%	HSA 4%	HSA 4%
stimulation				
WITH BrHPP	381.358	359.624	327.31	127.56
NO BrHPP	<20	<20	<20	<20

	% Vd	2 en CUI	LTURE		L LYMP			ECIFIC V	
	D 623	D 762	D 711	D 623	D 762	D 711	D 623	D 762	D 711
JO	2,17	3,61	1,01		0,100			•	0,0010
J 11	94,82	92,4	92,13	0,623	0,609	0,579		0,563	
J17	97,27	88,02	94,18	1,196	0,657	1,125	1,1633	0,5783	1,0595

<u>Tableau 11</u>
Cytotoxicité de cellules obtenues à partir de CMN congelées ou fraîches sur la lignée mRCC

786-0	D 711				D623		contol +	control -
	fraiche	congel	fraiche	congel	fraiche	congel	G12	A4,5
RATIO 0.3/1	5.06495	4,6827	5,256	11,671	7,2152	9,85516	0,7645214	1,1945647
RATIO 3/1	21,765	26,257	25,25	24,011	29,183	33,2089	6,163954	3,0103031
RATIO 30/1	49,9806	59,513	73,59	86,033	52,812	57,5541	38,512767	7,7407795

Tableau 12

Production de TNF alpha en pg/ml sur 25 000 cellules

	D711		D762		D623	
	fraiche	congel	fraiche	congel	fraiche	congel
stimul. BrHPP	903,3	1336,16	782,08	973,7	1332,7	1442,36
Sans BrHPP	<20	<20	<20	<20	<20	<20

	;
,	1
=	į
3	`
9	4
우	į
~	,
	•

	7				0	7	유	7
		श			0,007	0,474	7 8	25,5
ঞ্জ	വ	ස	흕		0,007	0,453	2,4	11,9
	4	150 50	흕		0,007	0,505	2,5	20,5
FIQUE	ന	श्च	桑		0,007	0,460	2,4	12,4
NA SPECT	7	52 25	¥Ş		9000	0,489	2,3	15,1
	-	120	桑		0,007	0,471	2,6	139
જ	9	25 150 50 25	ដុ				7 <u>8</u> 2	
rilliard	വ	ß	存		0,1	0,48	2,4	12,1
S S	4	ध	핝		0,1	O,33	2,58	20,6
	က	श	桑		0,1	0,49 64,0	2,43	12,6
TOTAL	7	ß	桑		0,1	0,52	2,37	15,36
		120			0,1	O 2	2,66	14,2
	9	श	ដូ		7,05	93,02	98,4	987
		ය			6,92	94,41	98,11	98.45
뿔	4	50 25 150	存		7,07	91,87	98,17	9821
뙲	ന	श्च	桑		7,07	88	8 8 8	984 4
%Vd2(7	ß	五		7,57	8,12 12,	8 11	98 44
	Н	5 1	嶅		6,7	92,88	97,75	88.
	condition de congélation			Jour	0	7	8	17

20

REVENDICATIONS

- 1. Procédé de préparation d'une composition de lymphocytes $\gamma\delta T$, comprenant au moins une étape de culture d'une préparation biologique comprenant au moins 50 millions de cellules mono-nucléées en présence d'un composé activateur synthétique des lymphocytes $\gamma\delta T$ à l'initiation de la culture, suivie d'une culture en présence d'une cytokine.
- 2. Procédé selon la revendication 1, caractérisé en ce que la préparation
 10 biologique est un échantillon de sang, de plasma ou de sérum.
 - 3. Procédé selon la revendication 2, caractérisé en ce que la préparation biologique est issue d'une cytaphérèse.
- 4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la préparation biologique comprend plus de 10.10^E7 cellules.
 - 5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la préparation biologique a été préalablement congelée.
 - 6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que les cellules sont maintenues pendant la culture à une densité inférieure à environ 5.10^E6 cellules/ml.
- 7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que les cellules sont cultivées pendant une période de temps supérieure ou égale à environ 10 jours, de préférence entre 10 et 25 jours.

- 8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le composé activateur synthétique des lymphocytes $\gamma\delta T$ est un ligand du récepteur T des lymphocytes $\gamma\delta T$.
- 9. Procédé selon la revendication 8, caractérisé en ce que le composé activateur 5 choisi parmi les composés lymphocytes γδΤ est synthétique des les composés phosphohalohydrines, les composés phosphoépoxydes biphosphonates.
- 10 10. Procédé selon la revendication 9, caractérisé en ce que le composé activateur synthétique des lymphocytes γδT est choisi parmi les composés suivants :
 - 3-(bromométhyl)-3-butanol-1-yl-diphosphate (BrHPP)
 - 3-(iodométhyl)-3-butanol-1-yl-diphosphate (IHPP)
 - 3-(chlorométhyl)-3-butanol-1-yl-diphosphate (ClHPP)
- 15 3-(bromométhyl)-3-butanol-1-yl-triphosphate (BrHPPP)
 - 3-(iodométhyl)-3-butanol-1-yl-triphosphate (IHPPP)
 - α,γ-di-[3-(bromométhyl)-3-butanol-1-yl]-triphosphate (diBrHTP)
 - α,γ-di-[3-(iodométhyl)-3-butanol-1-yl]-triphosphate (diIHTP)
 - 3.4.-époxy-3-méthyl-1-butyl-diphosphate (Epox-PP)
- 20 3,4,-époxy-3-méthyl-1-butyl-triphosphate (Epox-PPP)
 - α,γ-di-3,4,-époxy-3-méthyl-1-butyl-triphosphate (di-Epox-TP)
 - 11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la cytokine est choisie parmi l'interleukine-2 et l'interleukine-15.
 - 12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la cytokine est utilisée à une dose comprise environ 150 U/ml et environ 500 U/ml.

- 13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition obtenue présente les spécifications suivantes :
 - elle comprend plus de 80% de cellules $\gamma\delta T$, et

WO 03/070921

20

- elle comprend plus de 100 millions de cellules $\gamma\delta T$ viables et fonctionnelles. 5
 - 14. Procédé de préparation d'une composition cellulaire comprenant des lymphocytes γδT fonctionnels, caractérisé en ce qu'il comprend au moins :
- . la culture de cellules provenant d'une cytaphérèse en présence d'un composé activateur synthétique des lymphocytes γδT et d'une cytokine choisie parmi 10 l'interleukine-2 et l'interleukine-15, ladite culture étant réalisée dans des conditions assurant le maintien d'une densité cellulaire essentiellement inférieure à 5.10^E6 cellules/ml, et
- . la récupération des cellules obtenues ou d'une partie d'entre elles, ces cellules comprenant des lymphocytes γδT fonctionnels. 15
 - 15. Procédé de préparation d'une composition pharmaceutique à base de lymphocytes γδT, le procédé comprenant :
 - . la culture de cellules selon le procédé décrit dans l'une des revendications 1 à 14,
 - . la récupération des cellules obtenues ou d'une partie d'entre elles, ces cellules comprenant des lymphocytes γδT fonctionnels, et
 - . le conditionnement des cellules dans un véhicule ou excipient acceptable sur le plan pharmaceutique.
 - 16. Composition pharmaceutique, caractérisée en ce qu'elle comprend une population de cellules composée à plus de 80% de lymphocytes γδT fonctionnels et comprenant plus de 100 millions de lymphocytes $\gamma \delta T$.

- 17. Composition selon la revendication 16, caractérisée en ce qu'elle comprend en outre de la sérum-albumine humaine.
- 18. Composition selon la revendication 16 ou 17, caractérisée en ce qu'elle comprend en outre une cytokine choisie de préférence parmi IL-2 et IL-15, en vue d'une utilisation simultanée, séparée ou espacée dans le temps.
 - 19. Culture de cellules sanguines in vitro ou ex vivo, caractérisée en ce qu'elle comprend au moins 80% de lymphocytes $\gamma\delta T$ fonctionnels et plus de 100 millions de lymphocytes $\gamma\delta T$.
 - 20. Utilisation d'une culture de cellules selon la revendication 19 pour la préparation d'une composition pharmaceutique destinée à la stimulation des défenses immunitaires d'un sujet, notamment au traitement de maladies infectieuses ou parasitaires ou de cancers.

Internati Application No PCT/I in 03/00585

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N5/08 A61K35/14

A61P37/04

A61P35/00

A61P31/00

According to international Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMI	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	e relevant passages	Relevant to claim No.
x	KUNZMANN VOLKER ET AL: "Stimul gammadelta T cells by aminobisp and induction of antiplasma celin multiple myeloma." BLOOD, vol. 96, no. 2, 15 July 2000 (2 pages 384-392, XP002223785 ISSN: 0006-4971 the whole document	phosphonates activity	1
A	US 5 902 793 A (BLOOM B.R. ET / 11 May 1999 (1999-05-11) the whole document	A.) -/	1-20
X Fur	ther documents are listed in the continuation of box C.	Patent family members are I	isted In annex.
"A" docum cons "E" earlier filling "L" docum which citati "O" docum other	categories of cited documents: nent defining the general state of the art which is not idered to be of particular relevance or document but published on or after the international date nent which may throw doubts on priority claim(s) or his cited to establish the publication date of another on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or means ment published prior to the international filing date but than the priority date claimed	"T" later document published after the or priority date and not in conflict cited to understand the principle invention "X" document of particular relevance; cannot be considered novel or clinvolve an inventive step when the step when the conflict of particular relevance; cannot be considered to involve document is combined with one ments, such combination being in the art. "&" document member of the same p	twith the application but or theory underlying the the claimed invention annot be considered to he document is taken alone the claimed invention an inventive step when the or more other such docupobylous to a person skilled
	e actual completion of the international search 18 July 2003	Date of mailing of the Internation 25/07/2003	al search report
	d mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	

Internat Application No PCT/rn 03/00585

		PCI/FR US/	
C.(Continue	INTERPOLATION DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages	F	Relevant to claim No.
X	WO 00 12516 A (INSTITUT NATIONAL DE LA SANTÉ ET DE LA RECHERCHE MÉDICAL) 9 March 2000 (2000-03-09) cited in the application page 16 -page 17		1-20
X	DATABASE MEDLINE 'Online! February 1997 (1997-02) LI X ET AL: "'Establishment of a novel culture system for specific expansion of human gamma delta T cell and study of its biological properties!" Database accession no. NLM9596941 XP002223786 abstract & ZHONGHUA YI XUE ZA ZHI. CHINA FEB 1997, vol. 77, no. 2, February 1997 (1997-02), pages 111-114, ISSN: 0376-2491		1
			·
,			

ernatik b

Internativ pplication No PCT/Fr 03/00585

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 5902793	Α	11-05-1999	US	5639653 A	17-06-1997
WO 0012516	A	09-03-2000	FR	2782721 A1	03-03-2000
			ΑT	218576 T	15-06-2002
			AU	5426699 A	21-03-2000
		•	CA	2341574 A1	09-03-2000
			DE	69901717 D1	11-07-2002
			DĒ	69901717 T2	13-02-2003
			DK	1109817 T3	16-09-2002
			ΕP	1109817 A1	27-06-2001
			ES	2178459 T3	16-12-2002
			WO	0012516 A1	09-03-2000
			·JP	2002523513 T	30-07-2002
			PT	1109817 T	31-10-2002

Deman ' PCT/FK 03/00585

A. CLA	SSEMI	ENT DE L'OBJET DE	LA DEMANDE	A
CIB	7	C12N5/08	A61K35/14	
Selon I	a classi	fication internationale	des brevets (CIB) ou à la	ı fois s

61P37/04

A61P35/00

A61P31/00

selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) C1B 7 C12N A61K

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) BIOSIS, MEDLINE, EPO-Internal, WPI Data

C. DOCUME	NTS CONSIDERES COMME PERTINENTS	
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	KUNZMANN VOLKER ET AL: "Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma." BLOOD, vol. 96, no. 2, 15 juillet 2000 (2000-07-15), pages 384-392, XP002223785 ISSN: 0006-4971 le document en entier US 5 902 793 A (BLOOM B.R. ET A.) 11 mai 1999 (1999-05-11) le document en entier -/	1-20
X Vois	la suite du cadre C pour la fin de la liste des documents X Les documents de famille	es de brevets sont indiqués en annexe
A docum	date de priorité et n'apparien	pour comprendre le principe

X Voir la suite du cadre C pour la fin de la liste des documents	Les documents de familles de brevets sont indiques en annexe
A document définissant l'état général de la technique, non considéré comme particulièrement perlinent *E* document antérieur, mais publié à la date de dépôt international ou après cette date **I* dequerent peupont leter un doute sur une revendication de	T' document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention X' document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens une exposition ou tous autres moyens	Y* document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier &* document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport de recherche internationale
18 juillet 2003	25/07/2003
Nom et adresse postale de l'administration chargée de la recherche internationale	Fonctionnaire autorisé
Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Moreau, J

Demano ernationale No
PCT/rk 03/00585

РСТ/гк 03/00585					
.(suite) D(OCUMENTS CONSIDERES COMME PERTINENTS Identification des documents cités, avec, le cas échéant, l'indicationdes passages per	tinents	no. des revendications visées		
atégorle °	Identification des documents cités, avec, le cas écricant, i indication des passesses per				
X	WO 00 12516 A (INSTITUT NATIONAL DE LA SANTÉ ET DE LA RECHERCHE MÉDICAL) 9 mars 2000 (2000-03-09) cité dans la demande page 16 -page 17		1–20		
X	DATABASE MEDLINE 'en ligne! février 1997 (1997-02) LI X ET AL: "'Establishment of a novel culture system for specific expansion of human gamma delta T cell and study of its biological properties!" Database accession no. NLM9596941 XP002223786 abrégé & ZHONGHUA YI XUE ZA ZHI. CHINA FEB 1997, vol. 77, no. 2, février 1997 (1997-02), pages 111-114, ISSN: 0376-2491		1		

RAPPORT DE RECHERCHE INTERNATIONALE

Deman(* ernationale No PCT/FR 03/00585

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
US 5902793	Α	11-05-1999	US	5639653 A	17-06-1997
WO 0012516	A	09-03-2000	FR AT AU CA DE DE DK EP ES WO JP PT	2782721 A1 218576 T 5426699 A 2341574 A1 69901717 D1 69901717 T2 1109817 T3 1109817 A1 2178459 T3 0012516 A1 2002523513 T 1109817 T	03-03-2000 15-06-2002 21-03-2000 09-03-2000 11-07-2002 13-02-2003 16-09-2002 27-06-2001 16-12-2002 09-03-2000 30-07-2002 31-10-2002

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.