Project.

2023 서울 지능형 사물인터넷 Team. Mechanics

Department. 한양대학교 ERICA 과학기술대학 응용물리학과

> Member. 박민혁 이규현 이민성

HRRS (Han River Rescue System)

한강 교량 투신 자살 사건

최근 5년간 한강 교량 투신 자살 시도 횟수

해결 방법

Hydrophone의 개념
Hydrophone을 이용한 측정 방법
사용할 Hydrophone의 종류
[AB] Enclosure Hydrophone M14를 선택한 이유
[AB] Enclosure Hydrophone M14의 설치 위치 및 개수
[AB] Enclosure Hydrophone M14를 이용한 측정 시나리오
측정 방법에 대한 문제점과 해결 방법
AIOT를 이용한 [AB] Enclosure Hydrophone M14로
측정한 결과와 개발 프로그램과 통신 방법
예상 비용

부록

지도 그 외에 사용할 수 있는 Hydrophone의 종류 애플리케이션 시현 사진 한국 해양 과학기술원 방향성 수중 청음기 관련 논문

최근 5년간 한강 교량 투신 자살 시도 횟수

한강 교량 투신 자살율 132.56% 증가

HRRS (Han River Rescue System)

Hydrophone?

기본원리

Hydrophone: 수중의 넓은 범위에 주파수의 초음파를 고분해능으로 측정할 수 있는 기기

대부분의 Hydrophone은 세라믹, 피에조 전기 소재 또는 기타 민감한 소재를 사용하여 압력 변화를 감지 이러한 변화를 전기 신호로 변환

Hydrophone?

주요 특성

주파수 응답

Hydrophone은 특정 주파수 범위 내에서 가장 잘 작동하며, 이 주파수 범위는 디자인 및 소재에 따라 다름 -> 특정 어플리케이션에 따라 선택 됨

민감도

감지된 압력 변화의 크기에 따라 출력되는 전기 신호의 크기를 나타냄

Hydrophone?

사용 용도

수중 음향 연구

바다나 호수에서 동물들의 소리나 지진, 해저 활동 등의 소리를 연구

해양 생물학

고래와 같은 수중 동물들의 소리를 연구하고 기록

산업 및 군사

선박의 소음감지, 잠수함 탐지, 해저 파이프라인의 유출 감지 등에 사용

환경 모니터링

수질 변화나 특정 환경 요인에 따라 수중 소음 변화를 모니터링 하는 데에 사용

Hydrophone을 이용한 측정 방법

Hydrophone 설치

Hydrophone을 적절한 위치에 설치 -> 감지 범위와 대상 지역을 고려하여 최적의 위치에 설치

감지 민감도 설정

초기 설정은 평상시 물의 배경 소음을 기록하여, 이보다 큰 소음이 감지되면 경보가 작동

배경 소음 기록

정상적인 상황에서의 배경 소음 기록 -> 사람이 떨어지는 소리와 구분할 수 있는 기준을 설정

경보 시스템 연결

Hydrophone의 출력을 애플리케이션에 연결 -> 소음이 일정 기준을 초과하면 경보가 울리고 실시간 CCTV가 켜지게 함

테스트 및 보정

Hydrophone의 설정을 테스트하기 위해 실제 테스트가 필요 -> 그에 따른 반응 확인 후 필요에 따라 감지 민감도나 경보 기준을 보정

지속적 모니터링 및 유지보수

작동 상태를 지속적으로 모니터링하며, 필요시 유지보수 실시

사용할 Hydrophone의 종류

[AB] Enclosure Hydrophone M14 by imago

- 410,000원

- 70Hz~20kHz의 주파수 범위에서 소리 감지

- 시중에 나와있는 Hydrophone에 비해 약 60dB 더 나은 신호 대 잡음비로 새로운 표준을 설정

- 수심 100m의 수압을 견딜 수 있음

[AB] Enclosure Hydrophone M14를 선택한 이유

01 높은 민감도

이 Hydrophone은 주파수 범위 70Hz-20kHz에서 약 60dB의 높은 민감도를 보이므로, 물 속에서 발생하는 다양한 소음을 선명하게 감지할 수 있음

02 와이드 주파수 응답

70Hz-20kHz의 주파수 범위는 수중에서 발생하는 다양한 소리를 포착하기에 충분

-> 이를 통해 사람이 떨어지는 사건을 감지하는 데 유용

깊은 수심에서도 사용 가능

최대 수심 100m까지 사용할 수 있기 때문에, 깊은 물에서도 안정적으로 작동 04 플러그앤플레이

3.5mm TRS 잭을 통한 연결이 가능하므로, 다양한 기기와의 호환성이 좋음

-> 이를 통해 쉽게 설치 및 모니터링 시스템과 연결

05 에너지 효율

9V 배터리로 운영되므로, 전원 공급이 간편하며, 에너지 효율이 좋음

06 안정적인 모니터링

ASF-1 기능을 통해 안정적인 모니터링 환경을 제공 -> 물 속에서의 다양한 활동이나 변화를 실시간 모니터링 가능

[AB] Enclosure Hydrophone M14 설치 위치 및 설치 개수

대교의 평균 길이

대교의 평균 길이를 고려하여, Hydrophone의 감지 범위가 겹치지 않게 설치 -> Hydrophone의 감지 거리가 최대 100m이므로, 대교의 평균 길이를 약 1200m로 가정하면 대략 12개의 Hydrophone이 필요할 것으로 추정

Hydrophone의 설치 위치 다리의 전체 길이에 균일하게 분포

[AB] Enclosure Hydrophone M14를 이용한 측정 시나리오

한강 대교의 평균 길이 1200m, 높이 10m, 한강의 평균 깊이 10m에서 70kg인 20대 이모씨가 날씨가 화창한 날 22시 30분에 투신 자살을 한다. [AB] Enclosure Hydrophone M14를 다리 밑 강 속에 12개를 골고루 분포했다고 가정을 하자.

측정 방법에 대한 문제점과 해결 방법

AIOT를 이용한 [AB] Enclosure Hydrophone M14로 측정한 결과와 개발 프로그램과의 통신 방법

01 센서 데이터 수집

02

03

센서 작동: 센서는 특정 환경 변수를 모니터링하고, 이러한 변수의 변화를 전기적 신호로 변환함

데이터 변환: 전기적 신호는 ADC를 통해 디지털 데이터로 변환

게이트웨이로의 데이터 전송

데이터 포멧팅: 디지털 데이터는 전송을 위해 JSON으로 변환

게이트웨이 연결: 센서는 무선 통신 또는 유선 통신을 사용하여 게이트웨이에 연결

데이터 전송: 연결된 게이트웨이로 센서 데이터가 실시간으로 전송

게이트웨이에서의 데이터 처리

데이터 버퍼링: 게이트웨이는 수신된 데이터를 임시로 저장하며, 필요에 따라 일부 데이터 처리를 수행

클라우드 or 중앙 서버 연결: 게이트웨이는 클라우드 또는 중앙 서버와의 통신 경로를 설정

04

클라우드 또는 중앙 서버로의 데이터 전송

데이터 암호화: 보안을 위해, 데이터는 SSL/TLS와 같은 프로토콜을 사용하여 암호화 됨

데이터 전송: 암호화된 데이터는 클라우드 or 중앙 서버로 전송 -> 이 과정에서 MQTT, HTTP, CoAP 등의 통신 프로토콜이 사용됨

05

IOT 디바이스로의 데이터 전달

서버에서의 데이터 처리: 클라우드 or 중앙 서버는 수신된 데이터를 데이터베이스에 저장하거나 필요한 처리를 수행

IOT 디바이스 연결: 서버는 IOT 디바이스와의 연결을 설정하고, 해당 디바이스로 데이터를 전송

데이터 수신 및 활용: IOT 디바이스는 서버로부터 수신된 데이터를 활용하여 특정 기능을 수행하거나 사용자에게 정보를 제공

예상 비용

단위: ₩		대교 1개당 (12개 설치) 비용	서울시 한강 다리 20개(Hydrophone 240개)의 설치 비용
센서 가격	410,000	4,920,000	98,400,000
설치 비용	100,000	1,200,000	24,000,000
유지보수 비용	50,000	600,000	12,000,000
총비용	560,000	6,720,000	134,400,000

지도

사용할 수 있는 Hydrophone의 종류

TC4038 by Rectuson

50kHz~800kHz의 주파수 범위에서 소리 감지
- 수심 20m의 수압을 견딜 수 있음
- 가격을 알 수 없음

메뉴 선택	
현재 한강의 데시벨	
이상 감지 기록	

현재 한강의 데시벨						
동작대교	성산대교	마포대교	영동대교			
동호대교	양화대교	한강대교	잠실철교			
잠실대교	서강대교	반포대교(잠수교)	올림픽대교			
청담대교	월드컵대교	한남대교	천호대교			
가양대교	원효대교	성수대교	광진교			

이상 감지 기록 반포대교 12번 : 2023년 11월 3일 3시 25분 30초 한강대교 7번 : 2023년 11월 3일 5시 22분 17초 한남대교 2번 : 2023년 11월 3일 8시 23분 22초 마포대교 4번 : 2023년 11월 3일 11시 25분 09초 동작대교 1번 : 2023년 11월 3일 13시 20분 00초 동호대교 11번 : 2023년 11월 3일 17시 21분 19초 성산대교 9번 : 2023년 11월 3일 18시 01분 23초 영동대교 3번 : 2023년 11월 3일 19시 03분 32초 성수대교 1번 : 2023년 11월 3일 21시 48분 01초 원효대교 12번 : 2023년 11월 3일 23시 12분 08초

한국 해양 과학기술원 방향성 수중 청음기 관련 논문

그림 1-6. 방향성 탐지용 수중청음기 개발 핵심기술 구성도.