Lecture One

Section 1.1 – The Binomial Theorem

A binomial is a sum a + b, where a and b represent numbers. If n is a positive integer, then a general formula for expanding $(a + b)^n$ is given by the **binomial theorem**.

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a+b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

$$(a+b)^{5} = a^{5} + 5a^{4}b + 10a^{3}b^{2} + 10a^{2}b^{3} + 5ab^{4} + b^{5}$$

The expansions of $(a+b)^n$ for n=2, 3, 4, and 5 have the following properties:

- ✓ There are n+1 terms, the first being a^n and the last b^n
- \checkmark The power of a decreases by 1 and the power of b increases by 1. For each term, the sum of the exponents of a and b is n.
- \checkmark Each term has the form $(c)a^{n-k}b^k$, where the coefficient c is an integer and k = 0, 1, 2, ..., n.
- \checkmark The following formula is true for each of the first n terms of the expansion:

$$\frac{(coefficient \ of \ term).(exponent \ of \ a)}{number \ of \ term} = coefficient \ of \ next \ term$$

Coefficient of the (k+1)st Term in the Expansion of $(a+b)^n$

$$\frac{n.(n-1).(n-2).(n-3)....(n-k+1)}{k.(k-1)....3.2.1}, \quad k = 1, 2, ..., n$$

Factorial Notation

Definition of n! (n factorial)

$$\begin{cases} n! = n(n-1)(n-2) \cdots 1 & if \quad n > 0 \\ 0! = 1 \end{cases}$$

Calculators: Math \rightarrow Prob \rightarrow 4

Illustration

$$1! = 1$$

$$2! = 2.1 = 2$$

$$3! = 3.2.1 = 6$$

$$4! = 4.3.2.1 = 24$$

Example

Simplify the quotient of factorial: $\frac{7!}{5!}$

Solution

$$\frac{7!}{5!} = \frac{7.6.5.4.3.2.1}{5.4.3.2.1} = 7.6 = 42$$

Coefficient of the (k+1)st Term in the Expansion of $(a+b)^n$ (Alternative Form)

$$\binom{n}{k} = C(n, k) = \frac{n!}{k!(n-k)!}, k = 0,1,2,...,n$$

Example

Find
$$\binom{5}{2}$$

Solution

$${5 \choose 2} = \frac{5!}{2!(5-2)!}$$

$$= \frac{5!}{2!3!}$$

$$= \frac{1.2.3.4.5}{(1.2)(1.2.3)}$$

$$= \frac{20}{2}$$

$$= 10$$

Binomial Theorem

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n-1}ab^{n-1} + b^n$$

$$(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^2 + \dots + \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!}a^{n-k}b^k + \dots + nab^{n-1} + b^n$$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Example

Find the binomial expansion of $(2x + 3y^2)^4$

Solution

$$(2x+3y^2)^4 = (2x)^4 + {4 \choose 1}(2x)^3(3y^2)^1 + {4 \choose 2}(2x)^2(3y^2)^2 + {4 \choose 3}(2x)^1(3y^2)^3 + (3y^2)^4$$

$$= 16x^4 + 4(8x^3)(3y^2) + 6(4x^2)(9y^4) + 4(2x)(27y^6) + 81y^8$$

$$= 16x^4 + 96x^3y^2 + 216x^2y^4 + 216xy^6 + 81y^8$$

Pascal's Triangle

										1										
									1		1									
								1		2		1								
							1		3		3		1							
						1		4		6		4		1						
					1		5		10		10		5		1					
				1		6		15		20		15		6		1				
			1		7		21		35		35		21		7		1			
		1		8		28		56		70		56		28		8		1		
	1		9		36		84		126		126		84		36		9		1	
1		10		45		140		210		252		210		140		45		10		1

Example

Find the eighth row of the Pascal's triangle, and use it to expand $(a+b)^7$

Solution

Example

Find the binomial expansion of $\left(\frac{1}{x} - 2\sqrt{x}\right)^5$

Solution

$$\left(\frac{1}{x} - 2\sqrt{x}\right)^5 = \frac{1}{x^5} - 10\frac{1}{x^4}\left(\sqrt{x}\right) + 10\frac{1}{x^3}\left(4x\right) - 10\frac{1}{x^2}\left(8x\sqrt{x}\right) + 5\left(\frac{1}{x}\right)\left(16x^2\right) - 32x^{5/2}$$

$$= \frac{1}{x^5} - 10\frac{1}{x^{7/2}} + 40\frac{1}{x^2} - 80\frac{1}{x^{1/2}} + 80x - 32x^{5/2}$$

Exercises Section 1.1 – The Binomial Theorem

- Find the *fifth* term in the expansion $\left(x^3 + \sqrt{y}\right)^{13}$
- Find the term involving q^{10} in the binomial expansion $\left(\frac{1}{3}p+q^2\right)^{12}$ 2.

Expand and simplify:

3.
$$(4x-y)^3$$

16.
$$(ax + by)^5$$

28.
$$(x^2 - 2y)^5$$

4.
$$(x+y)^6$$

17.
$$(\sqrt{x} - \sqrt{3})^4$$

$$29. \quad \left(\frac{2}{x} + 3\sqrt{x}\right)^4$$

5.
$$(a-b)^6$$

18.
$$(\sqrt{x} - \sqrt{2})^6$$

30.
$$(2x+5y)^7$$

6.
$$(x-y)^7$$

19.
$$(2x-1)^{12}$$

31.
$$(2x-3)^{11}$$

7.
$$(a+b)^8$$

20.
$$\left(x - \frac{1}{x^2}\right)^9$$

32.
$$(2x-3y)^6$$

8.
$$(3t-5x)^4$$

21.
$$\left(\frac{2}{x} - 3y\right)^5$$

33.
$$(2x+3y)^5$$

$$9. \qquad \left(\frac{1}{3}x + y^2\right)^5$$

22.
$$(3\sqrt{x} + \sqrt[4]{x})^4$$

34.
$$(3x-2y)^4$$

$$10. \quad \left(\frac{1}{x^2} + 3x\right)^6$$

23.
$$(x+1)^5$$

35.
$$\left(x^2 + y^3\right)^3$$

$$11. \quad \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^5$$

24.
$$(x-1)^5$$

36.
$$\left(x^2 - y^2\right)^3$$

12.
$$(2y-3)^4$$

25.
$$(x-2)^6$$

37.
$$(2+i)^6$$

13.
$$(x+2)^5$$

26.
$$\left(\frac{1}{x^3} - 2x\right)^5$$

38.
$$(2-i)^6$$
39. $(\sqrt{2}+i)^5$

14.
$$(x^2 - y^2)^6$$

27.
$$\left(\frac{1}{x} - 2x\right)^6$$

40.
$$(3-i)^4$$

15.
$$(ax - by)^4$$

$$27. \quad \left(\frac{1}{x} - 2x\right)$$