Trường ĐH Sư Phạm Kỹ Thuật TP.HCM

Khoa Khoa Học Ứng Dụng

Bộ môn Toán

Đáp án môn Toán 1 (Math132401) Ngày thi:15/07/2020

Câu	Ý		Thang điểm
		$f\left[g\left(x\right)\right] = 3 \Leftrightarrow 2g^{2} - 3g + 4 = 3$	0.5
1		$\Leftrightarrow \begin{bmatrix} g = \frac{1}{2} \Leftrightarrow \begin{cases} \sin^{-1} x = \frac{1}{2} \Leftrightarrow \begin{cases} x = \sin \frac{1}{2} \\ \sin^{-1} x = 1 \end{cases} & x = \sin 1 \end{bmatrix}$	0.5
		$y'(x) = -\frac{y^3 - 2y}{2y + 3xy^2 - 2x} \Rightarrow y'(1) = \frac{2}{3}$	0.75
2		Phương trình tiếp tuyến của đồ thị hàm số tại (1;-2) là	0.25
		$y = \frac{2}{3}(x-1)-2$	
			0.5
3		$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\ln(1+x^2)}{x^2} = \lim_{x \to 0} \frac{1}{1+x^2} = 1$	0.5
		Hàm số liên tục tại $x = 0 \Leftrightarrow \lim_{x \to 0} f(x) = f(0) \Leftrightarrow m = 1$.	0.5
		$f'(2^+) = \lim_{x \to 2^+} \frac{x^2 + x - 6}{x - 2} = \lim_{x \to 2^+} (2x + 1) = 5$	0.5
4		$f'(2^{-}) = \lim_{x \to 2^{-}} \frac{5x - 10}{x - 2} = 5$	0.5
		$f'(2^+) = f'(2^-) = f(2) = 5 \Rightarrow \text{Hàm số khả vi tại } x = 2$	0.5
		Gọi x là độ cao khinh khí cầu tại thời điểm t , y là khoảng cách người xem với khinh khí cầu tại thời điểm t .	
5		Ta có $y^2 = x^2 + 500 \Rightarrow 2y \frac{dy}{dt} = 2x \frac{dx}{dt} \Rightarrow \frac{dy}{dt} = \frac{x}{y} \frac{dx}{dt}$	0.5
		$Tai \ x = 400 \Rightarrow \ y = 100\sqrt{41}$	0.25
			0.25

	dy 400 24			
	$\Rightarrow \frac{dy}{dt} = \frac{400}{100\sqrt{41}}6 = \frac{24}{\sqrt{41}}m / s$ $TXD: D = \mathbb{R}$			
	$f'(x) = 0 \Leftrightarrow 2x^{2} - 10x + 8 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = 4 \end{bmatrix}$	0.5		
	f''(x) = 4x - 10			
6	f''(1) = -6 < 0			
	f"(4)=6>0			
	Hàm số đạt cực đại tương đối tại $x = 1$, $f_{\text{max}}(1) = \frac{23}{3}$			
	Hàm số đạt cực tiểu tương đối tại $x = 4$, $f_{\min}(4) = -\frac{4}{3}$			
	TH: $x > 0$	0.5		
	$\frac{\ln x}{\sqrt{1+y^2}}dx - xydy = 0 \Leftrightarrow y\sqrt{1+y^2}dy = \frac{\ln x}{x}dx$ $\int y\sqrt{1+y^2}dy = \int \frac{\ln x}{x}dx$			
7				
	Nghiệm tổng quát của phương trình			
	$\frac{1}{3} \left(\sqrt{1 + y^2} \right)^3 - \frac{\left(\ln x \right)^2}{x} + C = 0$	0.75		
	Theo định luật Torricelli ta có $\frac{dV}{dt} = -4.8 A_0 \sqrt{h}$			
	$A_0 = 0.1 \times 0.1 = 0.01 \Rightarrow \frac{dV}{dt} = -0.048 \sqrt{h}$			
	Thể tích khối trụ $V = \pi r^2 h = 4\pi h \Rightarrow \frac{dV}{dt} = 4\pi \frac{dh}{dt}$	0.25		
	$\Rightarrow 4\pi \frac{dh}{dt} = -0.048 \sqrt{h} \Leftrightarrow \frac{dh}{dt} = -\frac{3}{250\pi} \sqrt{h}$	0.25		
	Giải phương trình vi phân tách biến ta được nghiệm tổng quát			
8	$2\sqrt{h} = -\frac{3}{250\pi}t + C \text{, khi } t = 0, h = 4 \Rightarrow C = 4$	0.25		
	Nghiệm chính xác của phương trình vi phân là 1000π			
	$2\sqrt{h} = -\frac{3}{250\pi}t + 4$, Khi $h = 0 \Rightarrow t = \frac{1000\pi}{3}$ giây	0.25		