Earthquake prediction model USING PYTHON Data SOURCES:

Creating an earthquake prediction model using Python is a complex problem that requires a multidisciplinary approach. Before diving into coding, it's crucial to define the problem clearly and adopt a design thinking approach to address it effectively. Here are the steps you can follow:

- **1. Problem Definition:**
- **Understand the Scope:** Define the specific scope of your earthquake prediction model. Are you aiming for short-term predictions (hours to days in advance), long-term seismic hazard assessments, or something else?

FEATURE SELECTION:

- 1. Data collection
- 2. Data cleaning and preprocessing
- 3. Descriptive Statistics
- 4. correlation analysis
- 5. Spatial Analysis
- 6. Temporal Analysis
- 7. Magnitude Analysis
- 8. Location analysis
- 9. Population Density analysis
- **10.** Machine Learning models
- 11. Feature Importance
- 12. Visualization
- 13. Hypothesis Testing
- 14. Uncertainty analysis
- 15. Documentation and Reporting

VISUALIZATION:

creating a world map visualization to display earthquake frequency distribution is a valuable way to gain insights into where earthquakes are most common. To create such a visualization, you can use Python with libraries like 'matplotlib', 'Basemap' (for older versions of Matplotlib), or more modern alternatives like 'geopandas' and 'folium'.

STEPS:

- 1. We load a world map shapefile using 'geopandas'.
- 2. We assume you have earthquake data with a 'country' column indicating the country or region of each earthquake and a 'Frequency' column representing the earthquake frequency in that location
- 3. We merge the earthquake frequency data with the world map data using the 'name' and 'country' columns.
- 4. We create the world map visualization by plotting the country boundaries and filling each country with a color gradient based on earthquake frequency.
- 5. We set titles and labels for the plot.
- 6. Finally, we display the map using 'plt.show()'.

DATA SPLITTING:

Splitting a dataset into a training set and a test set is a crucial step in model validation, ensuring that you can evaluate your model's performance on unseen data. To split your earthquake dataset, you can use Python and popular libraries like `scikit-learn`. Here's a step-by-step guide:

STEPS:

- 1. Replace 'features' and 'labels' with the actual names of your dataset's features and target variable (e.g., earthquake magnitude, depth, location as features and earthquake occurrence as the target variable).
- 2. 'X' represents the features, and 'y' represents the target variable.
- 3. We use `train_test_split` from `scikit-learn` to split the dataset into training and test sets. In this example, we're using an 80% training set and a 20% test set, but you can adjust the `test_size` parameter to change the split ratio.
- 4. The `random_state` parameter is set to 42 to ensure reproducibility. You can change this value to any integer for different random splits.

MODEL DEVELOPMENT:

Building a neural network model for earthquake magnitude prediction is a complex task and requires careful consideration of your dataset and model architecture.

Here's a step-by-step guide to building a neural network model for earthquake magnitude prediction using python and the `tensorflow` and `keras` libraries:

- 1. Data preprocessing
- 2. Import Libraries
- 3. Define the Neural Network architecture
- 4. compile the мodel
- 5. Train the мodel
- 6. Evaluate the model
- 7. Visualize Training progress
- 8. Make Predictions
- 9. Hyperparameter Tuning and model Optimization
- 10. model Deployment

TRAINING AND EVALUATION:

Training and evaluating a machine learning model for earthquake magnitude prediction involves several steps.

Assuming you have defined your model as 'model' as described in the previous response.

compile the model with appropriate loss and metrics.

Train the model on the training set.

Evaluate the model on the test set.

STEPS:

- 1. You've already defined your neural network model ('model') as described in the previous response.
- 2. The `compile` method is used to configure the model with an optimizer, loss function, and evaluation metrics.
- 3. The `fit` method is used to train the model on the training data (`X_train` and `y_train`).
- 4. After training, you can evaluate the model .
- 5. Finally, you print out the test mae as a measure of the model's prediction accuracy on the test set.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
print(os.listdir("D:\input"))
['database.csv', 'database.csv.zip']
data = pd.read csv("D:\input\database.csv")
data.head()
        Date Time Latitude Longitude
                                                   Type Depth Depth
Error \
0 01/02/1965 13:44:18 19.246
                                    145.616 Earthquake 131.6
NaN
1 01/04/1965 11:29:49 1.863
                                    127.352 Earthquake
                                                          80.0
NaN3tations Azimuthal 1
2 01/05/1965 18:05:58
                         -20.579
                                   -173.972 Earthquake
                                                         20.0
NaN
3 01/08/1965 18:49:43 -59.076
                                    -23.557 Earthquake
                                                        15.0
NaN
                                    126.427 Earthquake
4 01/09/1965 13:32:50 11.938
                                                        15.0
NaN
   Depth Seismic Stations Magnitude Magnitude Type
                                                    . . .
0
                                6.0
                     NaN
                                                    . . .
1
                     NaN
                                5.8
                                                MW
2
                     NaN
                                6.2
                                                MW
3
                                5.8
                     NaN
                                                MW
4
                     NaN
                                5.8
                                                MW
```

Horizontal	Error	Root Mean	Square	ID	Source	Location
Source \						
0	NaN		Na			
ISCGEM						
1	NaN		Na			
ISCGEM						
2	NaN		Na			
TCCCEM						

```
ISCGEM
Magnitude Source Status
           ISCGEM Automatic
1
           ISCGEM Automatic
2
            ISCGEM Automatic
3
           ISCGEM Automatic
           ISCGEM Automatic
[5 rows x 21 columns]
data.columns
Index(['Date', 'Time', 'Latitude', 'Longitude', 'Type', 'Depth',
'Depth Error',
       'Depth Seismic Stations', 'Magnitude', 'Magnitude Type',
       'Magnitude Error', 'Magnitude Seismic Stations', 'Azimuthal
Gap',
      'Horizontal Distance', 'Horizontal Error', 'Root Mean Square',
'ID',
       'Source', 'Location Source', 'Magnitude Source', 'Status'],
     dtype='object')
data = data[['Date', 'Time', 'Latitude', 'Longitude', 'Depth',
'Magnitude']]
data.head()
        Date Time Latitude
Longitude Depth Magnitude0
01/02/1965 13:44:18 19.246
import time
valid time tuple = (2023, 10, 1, 12, 0, 0, 0, 0, 0)
try:
   timestamp = time.mktime(valid time tuple)
    print("Timestamp:", timestamp)
except OverflowError as e:
   print("Error:", e)
data['Timestamp'] = timestamp
final data = data.drop(['Date', 'Time'], axis=1)
final data = final data.dropna()
final data.head()
Timestamp: 1696190400.0
  Latitude Longitude Depth
```

1	1.863	127.352	80.0	5.8	1.696190e+09
2	-20.579	-173.972	20.0	6.2	1.696190e+09
3	-59.076	-23.557	15.0	5.8	1.696190e+09
4	11.938	126.427	15.0	5.8	1.696190e+09

from mpl_toolkits.basemap import Basemap

m =

Basemap(projection='mill',llcrnrlat =-80, urcrnrlat=80, llcrnrlon=-


```
X = final data[['Timestamp', 'Latitude', 'Longitude']]
y = final data[['Magnitude', 'Depth']]
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y,
test size=0.2, random state=42)
print(X train.shape, X test.shape, y train.shape, X test.shape)
(18729, 3) (4683, 3) (18729, 2) (4683, 3)
from sklearn.ensemble import RandomForestRegressor
reg = RandomForestRegressor(random state=42)
reg.fit(X train, y train)
reg.predict(X test)
array([[ 5.915 , 150.831 ],
   [ 5.515 , 11.945 ],
     [ 5.712 , 76.538 ],
    [ 6.079 , 208.647 ],
     [ 6.068 , 17.922 ],
 [ 5.706 , 25.5798]])
reg.score(X test, y test)
0.35963993829882235
from sklearn.model selection import GridSearchCV
parameters = {'n estimators':[10, 20, 50, 100, 200, 500]}
grid obj = GridSearchCV(reg, parameters)
grid fit = grid obj.fit(X train, y train)
best fit = grid fit.best estimator
best fit.predict(X test)
array([[ 5.9208 , 154.1158 ],
     [ 5.5196 , 12.6824 ],
     [ 5.7274 , 72.8448 ],
       [ 6.0538 , 208.2302 ],
     [ 6.0232 , 19.1568 ],
 [ 5.728 , 26.72108]])
best fit.score(X test, y test)
0.36342917509091255
```

```
from keras.models import Sequential
from keras.layers import Dense
def create model (neurons, activation, optimizer, loss):
  model = Sequential()
  model.add(Dense(neurons, activation=activation, input shape=(3,)))
  model.add(Dense(neurons, activation=activation))
  model.add(Dense(2, activation='softmax'))
  model.compile(optimizer=optimizer, loss=loss,
metrics=['accuracy'])
  return model
model = Sequential()
model.add(Dense(16, activation='relu', input shape=(3,)))
model.add(Dense(16, activation='relu'))
model.add(Dense(2, activation='softmax'))
model.compile(optimizer='SGD', loss='squared hinge',
metrics=['accuracy'])
model.fit(X train, y train, batch size=10, epochs=20, verbose=1,
validation_data=(X_test, y_test))
Epoch 1/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 2/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 3/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 4/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 6/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 7/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 8/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 9/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 10/20
```

```
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 11/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 12/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 13/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 14/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 15/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 16/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 17/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 18/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 19/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
Epoch 20/20
0.5000 - accuracy: 0.0191 - val loss: 0.5000 - val accuracy: 0.0177
<keras.src.callbacks.History at 0x214d9d7e050>
[test loss, test acc] = model.evaluate(X test, y test)
print("Evaluation result on Test Data : Loss = {}, accuracy =
{}".format(test loss, test acc))
- accuracy: 0.0177
Evaluation result on Test Data : Loss = 0.5, accuracy =
0.017723681405186653
```