Immunologie

Organisation of the immune system

- 3 Lines of defense
- 2 of those lines of defense are not specific

Organisation of the immune system

- 3 Lines of defense
- 2 of those lines of defense are not specific
 - Non-specific defense: all "foreigners" are removed in a similar fashion
 - Specific defense: immune system adapts the immune response to the "foreigner" and creates memory

The Immune System						
Innate (ne defense n	Adaptive (specific) defense mechanisms					
First line of defense	Second line of defense	Third line of defense				
 Skin Mucous membranes Secretions of skin and mucous membranes 	 Phagocytic cells Antimicrobial proteins The inflammatory response 	LymphocytesAntibodiesMacrophages				

The adaptive immune system

- Slower immune response than the innate immune response
 - Takes a couple of days to develop
- Immune response is generated in secondary lymphoid organs (systemic)
 - lymph nodes, spleen, MALT
- Very effective immune responses, because it is tailored for the infection (antigen specific)
- Immunological memory, which allows a fast response if an infection is re-encountered (memory)

The hallmarks of an adaptive immune response are: it is antigen specific, it is systemic, it has memory

Immunologic organs

Primary lymfoïd organs:

Secundary lymfoïd organs:

Immunologic organs

Primary lymfoïd organs:

- fetale liver & spleen, bone marrow, thymus.
- Development and education of T- and B-cells

Secundary lymfoïd organs:

- Lymph nodes, spleen, MALT (<u>Mucosa</u> Associated Lymphoid Tissue) etc.
- Generation of the immune response

Divisions of the adaptive immune system

Humoral immunity:

- B-cells
- Antibody production
- Extracellular infection (bacteria, parasites)

Cellular immunity:

- T-cells (& macrophages)
- Killing of intracellular infection (viruses, intracellular bacteria)

What is an antigen?

- A substance (macromolecule) capable of activating our immune system
- Which macromolecules may function as antigens?
 - Proteins (strongest!)
 - Nucleic acids
 - Carbohydrates
 - Lipids
- Bacteria, virusses and parasites are antigenic, because they carry these foreign molecules (antigens)
- Also our own cells carry macromolecules, but the immune system is able to distinguish our own macromolecules (harmless SELF) from foreign macromolecules (harmfull NON-SELF)

- Welke cellen worden opgeleid om SELF van NON-SELF te onderscheiden?
- Waar worden deze cellen opgeleid?
- Hoeveel verschillende antigenen zijn er?

Cells of the adaptive immune system

- Lymphocytes and antigen presenting cells are the cells of the adaptive immune system
- We know 2 types of **specific** lymphocytes:
 - T-cells
 - B-cells

Adaptive (specific) defense mechanisms

Third line of defense

- Lymphocytes
- Antibodies
- Macrophages

In a regular staining all lymphocytes look the same

Welke aspecifieke lymfocyt ken je?!

T- & B-cells in the body

- Red bone marrow: site of lymphocyte origin
- Primary lymphoid organs: site of development of immunocompetence as B or T cells
- Secondary lymphoid organs: site of antigen encounter, and activation to become effector and memory B or T cells
 - All lymphocytes are produced in the bone marrow
 - Immature T cells mature in the thymus
 - hence the name T-cells
 - Immature B cells mature in the bone marrrow
 - but they are named after the bursa of fabricius in chickens in which they were discovered. But it was convenient that bone marrow also starts with a B!
 - Lymphocytes that recognize SELF antigens are destroyed before they leave the primary lymphoid organs
 - Lymphocytes are activated in the secondary lymphoid organs

Activation of adaptive immunity by APCs

APCs:

- Macrophages (stay in the tissue)
- **B-cells**
- Dendritic Cells (called Langerhans cells in skin)

Antigen presenting cells (APCs) "pick up" antigen, transport it to the closest secondary lymphoid organs and show it to circulating lymphocytes. Antigen-specific lymphocytes become activated

Multiple choice vraag

Hoe denk je, dat de B-cel functioneert?

- A. De B-cel heeft een nog niet uitgerijpt antilichaam, dat zich "voegt" naar het antigeen.
- B. De B-cel met het juiste antilichaam wordt door het antigeen geactiveerd.
- C. De B-cel maakt op zijn membraan verschillende types antilichaam en het antigeen selecteert het juiste antilichaam.
- D. Alle B-cellen maken voortdurend grote hoeveelheden antilichaam, zodat altijd het juiste antilichaam aanwezig is.
- E. De B-cel maakt aspecifieke antilichamen.

B-cells

B-cells produce antibodies against bacteria and free viruses (extracellular pathogens)

Humoral immune response

- The antibodies are also B-cell receptors
- Every B-cell has only one kind of B-cell receptor and is able to produce only one kind of antibody
- B-cells can secrete large amounts of antibody into the blood or extracellular space (humoral!)

Clonal selection of B-cells

Proliferation Differentiation

Plasmacells produce antibodies, memory cells provide protection against re-infection with the same pathogen

The advantage of memory cells

- The second time a person encounters an infection the production of antibodies is faster and more efficient!
 - Vaccination is based on this process!

The principle of vaccination

Beschrijf in je eigen woorden het principe van vaccinatie.

The principle of vaccination

Je spuit een **onschuldig antigeen** in, dat kan bv. een verzwakt of dood virus of bacterie zijn, of een onschadelijk gemaakt toxine (toxoid). Het immuunsysteem reageert en maakt antilichamen én **geheugencellen**.

Komt het individu later in aanraking met het **niet verzwakte virus of bacterie of met het echte toxine**, dan zullen die **geheugencellen** sneller en beter reageren, zodanig dat het individu niet of veel minder ernstig ziek wordt.

Het rijksvaccinatieprogramma

Rijksinstituut voor Volksgezondheid en Milieu Ministerie van Volksgezondheid, Welzijn en Sport

Vaccinatieschema

	Fase 1					Fase 2	Fase 3	Fase 4
	6-9 weken	3 maanden	4 maanden	11 maanden	14 maanden	4 jaar	9 jaar	12 jaar
Prik 1	DKTP Hib HepB	DKTP Hib HepB	DKTP Hib HepB	DKTP Hib HepB	BMR	DKTP	DTP	HPV (2 keer 1 prik)
Prik 2	Pneu		Pneu	Pneu	MenC		BMR	
KKinkhoestBTTetanusMPPolioRHibHaemophilus influenzae type bM				Bof Mazelo Rodeh enC Menin		avirus		

In het NtvG 1993: 137, nr. 35 op blz. 1789 wordt door een huisarts de volgende vraag gesteld:

Leidt herhaalde vaccinatie met meerdere vaccins bij jonge kinderen niet tot een uitputting van het afweersysteem?

Zuigelingen worden op het consultatiebureau de eerste 14 maanden gevaccineerd volgens een bepaald schema: 4 maal een vaccinatie tegen difterie, (kinkhoest) tetanus en poliomyelitis (D(K)TP) en op de leeftijd van 14 maanden tegen bof, mazelen en rode hond (BMR). Op 1 juli zijn daar nog 4 *Haemophilus influenzae* type B (Hib)-vaccinaties bijgekomen. De vraag rijst of het immuunsysteem van zuigelingen eindeloos te prikkelen is tot het maken van afweerstoffen en of het niet uitgeput raakt.

- A. Ja, teveel vaccinaties putten het immuunsysteem uit
- B. Nee, als je er maar voor zorgt, dat ieder antigeen meerdere keren gegeven wordt
- C. Nee, want er worden door ieder antigeen andere B- en T-cellen geactiveerd

Dezelfde multiple choice vraag

Hoe denk je nu, dat de B-cel functioneert?

- A. De B-cel heeft een nog niet uitgerijpt antilichaam, dat zich "voegt" naar het antigeen.
- B. De B-cel met het juiste antilichaam wordt door het antigeen geactiveerd.
- C. De B-cel maakt op zijn membraan verschillende types antilichaam en het antigeen selecteert het juiste antilichaam.
- D. Alle B-cellen maken voortdurend grote hoeveelheden antilichaam, zodat altijd het juiste antilichaam aanwezig is.
- E. De B-cel maakt aspecifieke antilichamen.

Waar/niet waar vraag

In je lichaam zijn er B-cellen, die antilichamen op hun celmembraan hebben, die gericht zijn tegen antigenen, die (nog) niet bestaan!

- A. Deze uitspraak is waar.
- B. Deze uitspraak is niet waar.

Multiple choice vraag

De klonale selectie theorie verklaart:

- A. Hoe een stamcel kan differentiëren tot zowel een rode als een witte bloedcel
- B. Hoe een antigeen een klein aantal specifieke lymfocyten kan aanzetten tot de productie van grote hoeveelheden antilichamen
- C. Hoe een antilichaam zich naar het antigeen gaat vormen nadat het antigeen in het lichaam is gekomen
- D. Hoe HIV het immuunsysteem selecteert
- E. Hoe stamcellen gekloneerd kunnen worden

Organisation of the immune system

- 3 Lines of defense
- 2 of those lines of defense are not specific
 - Non-specific defense: all "foreigners" are removed in a similar fashion
 - Specific defense: immune system adapts the immune response to the "foreigner" and creates memory

The Immune System						
Innate (ne defense n	Adaptive (specific) defense mechanisms					
First line of defense	Second line of defense	Third line of defense				
 Skin Mucous membranes Secretions of skin and mucous membranes 	 Phagocytic cells Antimicrobial proteins The inflammatory response 	LymphocytesAntibodiesMacrophages				

Clonal selection of B-cells

Plasmacells produce antibodies, memory cells provide protection against re-infection with the same pathogen

Clonal selection of B-cells

Activation

Proliferation

Differentiation

Plasmacells produce antibodies, memory cells provide protection against re-infection with the same pathogen

Passive versus active immunity

26

Difference between an antigen and an antibody

An **antigen** is a foreign element (bacteria, virus, or foreign cell).

Literally antigen means: **anti**body **gen**erating substance.

For example a bacteria. A bacteria contains many foreign molecules on its surface. The human body can make antibodies directed to all these molecules (antigens) (antibody A, B & C)

Monoclonal antibodies

- Monoclonal antibodies are antibodies derived from one plasma cell clone
- All of these antibodies are exactly the same!
- Used for diagnostic, research or therapeutic purposes

Polyclonal antibodies

Polyclonal antibodies are a mixture of antibodies against different parts (epitopes) of the <u>same</u> antigen

Antibodies and their function

Antibodies cannot cross the cellmembrane and are therefore only effective against extracellular pathogens, such as bacteria, free viruses, and parasites!

Antibodies are present in blood

 Gamma fraction contains the antibodies

What is wrong?

Electroforesis of blood proteins

Antibody structure

- Four polypeptide chains
 - Two heavy chains, each \pm 400 amino acids
 - Two light chains, each \pm 200 amino acids
 - Chains are attached by disulfide bonds
- Two antigen binding regions (<u>V</u>ariable)
 - V= variable regions; since there are many different antigens there are many different antibodies
- Both the heavy and light chains have a **C**onstant region
 - Does not bind the antigen and is thus not so variable
 - K or λ constant region for light chain
 - MADGE constant region for heavy chains

Antibodies come in 5 flavours

- We have 5 different subclasses: IgM, IgA, IgD, IgG, IgE (MADGE)
- These subclasses differ in the constant region of the heavy chain (blue in these figures)
- E.g. There may be an endless amount of different variable regions within one subclass!

Biological function of the antibody subclasses

IgM

Primary response

IgG

Secondary response

- Pentamer
- Binds complement very well
- Due to its size only present in blood

- 70% of total Ig in the blood
- Longest half-life (halfwaardetijd)
- Present outside the bloodstream and able to cross the placenta
- Binds complement very well

IgG can cross the placenta

Is dit passieve of actieve immunisatie?

Biological function of the antibody subclasses

IgA

- Dimer
- Most produces Ig in the body
- Excreted in mucosal areas
- Does not bind to complement

IgE

- Very low concentrations
- In allergic patients in high concentrations (trouble!)
- During worm infections in high concentrations (not a "troublemaker"! See book)
- Does not bind to complement

The function of **IgD** is unclear, it is present on immature B cells, blood levels are very low.

Multiple choice vraag

Wat zijn antigenen?

- A. Eiwitten, die in B-cel membranen zitten
- B. Eiwitten, die uit twee licht en twee zware ketens bestaan
- C. Antilichaam genererende moleculen
- D. zowel (A) als (B) zijn juist

Go to www.menti.com and use the code

Multiple choice vraag

De klonale selectie theorie verklaart:

- A. Hoe een stamcel kan differentiëren tot zowel een rode als een witte bloedcel
- B. Hoe een antigeen een klein aantal specifieke lymfocyten kan aanzetten tot de productie van grote hoeveelheden antilichamen
- C. Hoe een antilichaam zich naar het antigeen gaat vormen nadat het antigeen in het lichaam is gekomen
- D. Hoe HIV het immuunsysteem selecteert
- E. Hoe stamcellen gekloneerd kunnen worden

Waar/niet waar vragen

- 1. B-cellen bij de mens rijpen in het beenmerg
- In de thymus vindt klonale selectie plaats.
- De memory-functie van B-cellen wordt verzorgd door plasmacellen
- 4. Kinderziektes zijn een voorbeeld van actieve, op natuurlijke wijze verkregen immuniteit.