

Chapter 1: Introduction

- Wireless communications and mobility
- ☐ History of wireless/mobile communications
- Market penetration and growth
- Areas of research

Electronic Computing Devices & Technology Trends

- Advances in Technology
 - more computing power in smaller devices
 - ☐ flat, lightweight displays with low power consumption
 - □ user interfaces suitable for small dimensions
 - higher bandwidths
 - multiple wireless interfaces: wireless LANs, wireless WANs, home RF, Bluetooth

- **New Electronic Computing Devices**
 - small, cheap, portable, replaceable and most important of all USABLE!
- Technology Trends
 - devices are aware of their environment and adapt "location awareness"
 - devices recognize the location of the user and react appropriately (e.g., call forwarding, fax forwarding)

Wireless and Mobile Communications

Definition of mobility:
user mobility: users communicate anytime, anywhere, with anyone
 device portability: devices can be connected anytime, anywhere to the network
Definition of wireless:
 Un-tethered, no physical wire attachment
Wireless vs. Mobile Examples
stationary computer
notebook in a hotel
wireless LANs in legacy buildings
Personal Digital Assistant (PDA)
The need for mobility creates the need for integration of wireless networks into existing fixed network environments:
local area networks: standardization of IEEE 802.11b/g/a
Internet: Mobile IP extension of the internet protocol IP
■ wide area networks: e.g., internetworking of 3G and IP

Applications I

Vehicles

- transmission of news, road conditions, weather
- personal communication using cellular
- position identification via GPS
- inter vehicle communications for accident prevention
- vehicle and road inter communications for traffic control, signaling, data gathering
- ambulances, police, etc.: early transmission of patient data to the hospital, situation reporting
- entertainment: music, video

Highway Scenario ((i)) 3 ad hoc GSM, 3G, WLAN, Bluetooth, ... PDA, laptop, cellular phones, GPS, sensors

Applications II

- Mobile workers
 - access to customer files and company documents stored in a central location
 - collaborative work environments
 - access to email and voice messages
- Replacement of fixed networks
 - remote sensors, e.g., weather, environment, road conditions
 - flexible work spaces
 - □ LANs in legacy buildings
- Entertainment, education, ...
 - outdoor Internet access
 - intelligent travel guide with up-to-date location dependent information
 - ad-hoc networks for multi user games

Mobile Devices

Pager

- receive only
- tiny displays
- simple text messages

Sensors, embedded controllers

PDA

- simple graphical displays
- character recognition
- simplified WWW

Laptop

- fully functional
- standard applications

Mobile phones

- voice, data
- simple text displays

Palmtop

- tiny keyboard
- simple versions
 of standard applications

performance

Power consumption

- battery capacity limited computing power, low quality/smaller displays, smaller disks, fewer options (I/O, CD/DVD)
- □ CPU: power consumption ~ CV²f
 - C: internal capacity, reduced by integration
 - V: supply voltage, can be reduced to a certain limit
 - f: clock frequency, can be reduced dynamically based on usage

Device vulnerability

- more rugged design required to withstand bumps, weather conditions, etc.
- □ theft

□ Limited/Simpler User Interfaces

- display size
- compromise between comfort/usability and portability (keyboard size)
- integration of character/voice recognition, abstract symbols

Limited memory

- memory limited by size and power
- flash-memory or ? as alternative

Wireless Networks Compared to Fixed Networks

- Higher loss-rates due to interference
 - other EM signals, objects in path (multi-path, scattering)
- Limited availability of useful spectrum
 - frequencies have to be coordinated, useful frequencies are almost all occupied
- Low transmission rates
 - □ local area: 2 11 Mbit/s, wide area: 9.6 19.2 kbit/s
- Higher delays, higher jitter
 - connection setup time for cellular in the second range, several hundred milliseconds for wireless LAN systems
- Lower security, simpler active attacking
 - radio interface accessible for everyone
 - base station can be simulated, thus attracting calls from mobile phones
- Always shared medium
 - secure access mechanisms important

Location Dependent Services

- Location aware services
 - what services, e.g., printer, fax, phone, server etc. exist in the local environment that can be used by the user (security and authentication)
- □ Follow-on services
 - automatic call-forwarding, transmission of the actual workspace to the current location
- Information services
 - push: e.g., current special offers in the supermarket
 - □ pull: e.g., where is the Sarah Lee New York Cheese Cake?
- Support services
 - caches, intermediate results, state information, etc., follow the mobile device through the fixed network
- Privacy
 - who should gain knowledge about the location of the user/device

History & Development – Theoretical Foundations

□ Electro Magnetic (EM) waves

- 1678 Huygens work on the phenomena of light reflection and refraction
- 1819 Fresnel demonstrates the wavelike nature of light
- □ 1831 Faraday demonstrates electromagnetic induction
- □ 1864 J. Maxwell introduces the theory of electromagnetic fields, wave equations
- □ 1886 H. Hertz demonstrates experimentally the transmission and detection of an EM wave between two points a few meters apart
- □ 1896 Marconi recognized that longer waves propagate over larger distances and demonstrates a communication set-up over 3km

History & Development: Development & Applications

- □ 1898 1901 Guglielmo Marconi
 - first demonstration of wireless telegraphy (Morse code - digital!)
 - long wave transmission over longer distances (transatlantic) at an operating frequency of 1MHz
- □ 1906 1st World Admin. Radio Conf. (WARC -> WRC)
 - increasing popularity of radio systems and their extended use
 - □ ability to define BW using filters led to spectrum control
 - recommendations for the assignment of RF bands
- □ 1907 Commercial transatlantic connections
 - huge base stations(30 100m high antennas)
- □ 1915 Wireless voice transmission N.Y. San Francisco
- 1920 Discovery of short waves by Marconi
 - reflection at the ionosphere
 - smaller sender and receiver -> due to the invention of the vacuum tube (1906 - Lee DeForest and Robert von Lieben)

History & Development: Development & Applications

- 1933 Frequency modulation (E. H. Armstrong)
- 1946 Mobile Telephone Service (MTS) in US
 - □ introduced in 1946, it allowed telephone calls between fixed stations and mobile sers
 - one single powerful transmitter/receiver (base station) provided coverage of up to 50km
 - based on FM technology, each voice channel of 3kHz used
 120KHz of spectrum, and only half duplex service was available
 - □ blocking probabilities were as high as 65% (only 12 simultaneous calls could be handled!)
- ☐ 1958 A-Netz in Germany at 160MHz
 - analog cellular, connection setup only from the mobile station, no handover, 80% coverage, 1971 only 11000 customers
- □ 1972 B-Netz in Germany at 160MHz
 - connection setup from the fixed network (location of the mobile station had to be known)

History & Development: Analog Cellular Services

- Two major technological improvements made the cellular concept a reality:
 - the microprocessor -> allowed for complex algorithms to be implemented, and
 - digital control links between base station and mobile unit -> allowed for increased control of the system so more sophisticated services could be made available:
 - hand-overs
 - digital signaling
 - automatic location of mobile device
- □ 1979 Analog Mobile Phone System (AMPS) in US
- □ 1979 NMT at 450MHz in Scandinavian countries
- 1985 France's Radiocom 2000
- □ 1985 UK's TACS
- □ 1986 C-Netz in Germany at 450MHz

- Digital European Cordless Telephone (today: Digital Enhanced Cordless Telecommunications)
- □ 1880-1900MHz, ~100-500m range, 120 duplex channels, 1.2Mbit/s data transmission, voice encryption, authentication, up to several 10000 user/km², used in more than 40 countries
- □ 1992 Start of GSM
 - □ fully digital, 900MHz, 124 channels
 - automatic location, hand-over, cellular
 - □ roaming initially in Europe now worldwide in more than 100 countries
 - services: data with 9.6kbit/s, FAX, voice, ...

☐ Early 90's - IS 54, IS 136, IS 95 in US in same spectrum as AMPS

- □ IS 54 is a TDMA digital standard that uses the old AMPS system for transmission.
- □ IS 136 is the new TDMA standard and
- □ IS 95 is the CDMA based standard. All 4 systems are in operation in the US!
- □ 1994 GSM at 1800MHz (called Digital Cellular Service (DCS1800))
 - smaller cells, supported by 11 countries

History & Development: Digital Wireless Services

1996 - HiperLAN (High Performance Radio Local Area Network) ETSI, standardization of type 1: 5.15 - 5.30GHz, 23.5Mbit/s recommendations for type 2 and 3 (both 5GHz) and 4 (17GHz) as wireless ATM-networks (up to 155Mbit/s) 1997 - Wireless LANs П many products with proprietary extensions out there already IEEE-Standard, 2.4 - 2.5GHz, 2Mbit/s 1998 - Specification of GSM successors UMTS (Universal Mobile Telecommunication System) as the European proposal for **IMT-2000** 1998 - Specification for next generation CDMA starts **Qualcomm starts work on wideband CDMA spec.** 1999 - Specification of IEEE802.11b □ increased BW to 11Mbit/s 2000 - Bluetooth Specification 1Mbit/s specification, single cell Work on 10Mbit/s spec. with multi cell capability initiated

Worldwide Wireless Subscribers (projected for 2001)

Mobile phones per 100 people 1997

Areas of research in mobile communication

Wireless Communication transmission quality (bandwidth, error rate, delay) modulation, coding, interference media access, regulations **Mobility** location dependent services **location transparency** quality of service support (delay, jitter, security) **Portability** power consumption limited computing power, sizes of display, ... usability

