CODE: 18BST102 **SET-1**

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, July-2019

DIFFERENTIAL EQUATIONS AND TRANSFORM THEORY

(Common to EEE, ECE Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

1. a) Solve
$$(1+y^2)dx + (x-e^{-\tan^{-1}y})dy = 0$$
 6 M

b) Solve
$$(D^2 + 1)x = t \cos 2t$$
 6 M

(OR)

2. a) Solve
$$y'' - 6y' + 9y = e^{3x}$$
 by the method of variation of parameters

b) Solve
$$(D^2 - 3D + 2)y = xe^{3x} + \sin 2x$$
 6 M

UNIT-II

3. Expand
$$f(x) = x \sin x$$
 as a Fourier series in $0 < x < 2\pi$ 12 M (OR)

4. Find the Fourier series expansion of $f(x) = 2x - x^2$ in (0,3) 12 M and hence deduce that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$

5. Find the Fourier transform of
$$f(x) = \begin{cases} 1 - x^2, |x| \le 1 \\ 0, |x| > 1 \end{cases}$$
 Hence 12M evaluate $\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2} dx$

(OR)

6. a) Find the Fourier transform of $f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & |x| > 1 \end{cases}$ and hence find the value of $\int_{0}^{\infty} \frac{Sint}{t} dt$

UNIT-IV

7. a) Find $L\left\{\frac{\cos 2t - \cos 3t}{t}\right\}$ 6M

b) Evaluate $L^{-1}\left\{\frac{s}{s^4+s^2+1}\right\}$

(OR)

8. Solve the differential equation 6 M $y''(t) + 2y'(t) + 5y(t) = e^{-t} \sin t \text{ where } y(0) = 0, y'(0) = 1$

UNIT-V

9. a) If $z[u_n] = \frac{z}{(z-2)(z+3)^2}$, find u_0, u_1, u_2, u_3

b) Find $Z[nCosn\theta]$ 6M

(OR)

10. a) Find $z^{-1} \left[\frac{z}{z^2 + 11z + 24} \right]$ 6M

b) Evaluate $z^{-1} \left[\frac{z^2}{(z-2)(z-4)} \right]$, using convolution theorem 6M

2 of 2

CODE: 18BST103 SET 1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, July-2019

DIFFERENTIAL EQUATIONS (Common to CE, ME, CSE, IT Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

			
1.	a)	Solve $xy^r - y = x^2$	6M
	b)	A body is originally at 80° C and cools down to 60° C in 20 minutes. Find the temperature of the body at 40 minutes, if the temperature of the surrounding medium is 30° C. (OR)	6M
2.	a)	Solve $\frac{dy}{dx} + \frac{1}{x}y = xy^2$	6M
	b)	Find the orthogonal trajectories of the family $x^2 + 2y^2 = k^2$, where k^2 is a parameter.	6M
		<u>UNIT-II</u>	
3.	a)	Solve: $y''' + 4y' = t$, $y(0) = 0$, $y'(0) = 0$, $y''(0) = 1$.	6M
	b)	Solve: $y'' - 3y' + 2y = e^x \sin x$.	6M
4.	a)	Solve: $y'' - 9y' + 18y = e^{-3x}$	6M
	b)	Solve: $y'' + 4y = \sec 2x$	6M
		<u>UNIT-III</u>	
5. 6.	a)	Express $3x^3 + 2x^2 + x + 1$ in terms of Legendre polynomials. Find $P_n(1), P_n(-1), n \in \square$.	12M 6M
	b)	Express $J_{-\frac{3}{2}}(x), J_{-\frac{5}{2}}(x)$ in terms of $\sin x, \cos x$.	6M
		1 of 2	

UNIT-IV

- 7. a) Form the partial differential equation by eliminating the arbitrary functions f, g from z = y f(x) + x g(y).
 - b) Solve $p+q = \sin x + \sin y$, where $p = \frac{\partial z}{\partial x}, q = \frac{\partial z}{\partial y}$

(OR)

8. a) Form the partial differential equation by eliminating the arbitrary functions f, g from

$$z = f(x+at) + g(x-at)$$

b) Solve $x^2 p^2 + y^2 q^2 = z^2$, where $p = \frac{\partial z}{\partial x}, q = \frac{\partial z}{\partial y}$

(OR)

UNIT-V

9. Solve
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = \cos(2x + y)$$
.

(OR)

10. Solve
$$\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = 2e^{2x} + 3x^2 y$$
.

2 of 2

CODE: 16BS1002 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI

(AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, July-2019

ENGINEERING MATHEMATICS – II

(Common to all branches)

Time: 3 Hours Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks

All parts of the question must be answered in one place only

UNIT-I

1. Using the Bisection method find an approximate root of the equation x^3 -4x-9=0 in four stages. (14M)

(OR)
2. a) Prove that the usual notations
$$\Delta = \left(\frac{1}{2}\right)\delta^2 + \delta\sqrt{1 + (\delta^2)/4}$$
. (7M)

b) Given the values

X	5	7	11	13	17
f(x)	150	392	1452	2366	5202

Evaluate f(9) by using Lagranges formula.

(7M)

UNIT-II

3 a) Using Symson's $1/3^{\text{rd}}$ rule to find $\int_0^{0.6} e^{-x^2} dx dy$ taking seven ordinates. (7M)

b) Given that

X	1.5	2.0	2.5	3.0	3.5	4.0
f(x)	3.375	7.000	13.625	24.000	38.815	59.000

Find the first and second derivatives of f(x) at x = 1.5.

(7M)

(OR)

4. Find the value of y for x = 0.2 by Runga-Kutta method given that $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0)= 1 and h=0.2. (14M)

UNIT-III

5 a) Evaluate
$$L(e^{-3t}(\cos 4t + 3\sin 4t))$$
 (7M)

b) Evaluate
$$(t e^{-t} \sin(3t))$$
. (7M)

(OR)
6 Using Laplace transform to solve $\frac{d^2x}{dt^2} - 4\frac{dx}{dt} + 8x = e^{2t}$, y(0) = 0, $y(0)^1 = 0$ (14M)

UNIT-IV

7. Obtain the Fourier series for the function $f(x) = x^2$ in $-\pi \le x \le \pi$ and Prove that $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$, Hence, deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2}$ (14M)

(OR)

8. Obtain the half range Fourier cosine series for the function f(x) given by (14M)

$$f(x) = \begin{cases} k \ x \ , 0 \le x \le l/2 \\ k \ (l-x) \ , \ l/2 \le x \le l \end{cases}$$

UNIT-V

- 9.a) Form the p.d.e by eliminating the arbitrary function z from z = f(x+y). g(x-y). (7M)
 - b) Solve the equation $(x^2 y^2 yz) p + (x^2 y^2 zx) q = z(x-y)$. (7M)
- 10. Find the temperature u(x,t) in a homogeneous bar of heat conducting material of length L cm with ends kept at zero temperature and initial temperature given by $dx(L-x)/L^2$. (14M)

CODE: 16CE1001 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, July-2019

BUILDING MATERIALS AND CONSTRUCTION

(Civil Engineering)

Time: 3	Hou	Answer ONE Question from each Unit All Questions Carry Equal Marks	lax Marks: 70
		All parts of the Question must be answered at one place	
		<u>UNIT-I</u>	
1.	a) b)	What are the qualities of Good Building stone? Discuss them. Write short notes on:	6 8
		(i) Refractory Bricks (ii) Ceiling Tiles (iii) Over-Burnt Bricks (iv) Fire clay Bricks (OR)	
2.	a) b)	Explain the physical properties of Building materials. Describe the thermal and electrical properties of Ceramics.	7 7
		<u>UNIT-II</u>	
3.	a) b)	List out the constituents of plastics. Explain briefly. What are the different types of mortars used for Engineering works? (OR)	8 6
4.	a) b)	Describe the procedure of preparing good quality concrete. Explain the specific uses of metals and Glass materials.	7 7
		<u>UNIT-III</u>	
5.	a) b)	What are the types of water proofing methods in construction? Describe the stepped footing with a neat sketch. (OR)	7 7
6.	a) b)	Differentiate between stone masonry and brick masonry. List out different types of foundations with sketches.	10 4
		<u>UNIT-IV</u>	
7.	a)	Explain the following types of stairs: (i) Dog-legged stairs (ii) Open newel stairs (iii)Quarter turn stairs	8
	b)	(i) Dog-legged stairs (ii) Open newel stairs (iii) Quarter turn stairs Expain briefly about single joist timber flooring with sketch. (OR)	6
8.	a) b)	List out the different types of Doors. Explain any four. Define ventilation? Explain plenum system of ventilation.	8 6
		<u>UNIT-V</u>	
9.	a) b)	Classify different types of varnish and briefly describe them. Explain types of pointing with neat sketches. (OR)	7 7
10.	a)	List down different types of paints. Explain with sketches various defects paints.	s in 8
	b)	What is formwork? Explain the purpose of formwork.	6

SET-I

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech., II Semester Supplementary Examinations, July, 2019

ENGINEERING MECHANICS (STATICS) (MECHANICAL ENGINEERING BRANCH)

Time: 3 hours

Max Marks: 70

Answer ONE question from each unit
All questions carry equal marks
All parts of the Questions must be answered at one place

UNIT-I

- 1. a) Define parallelogram law of forces
 - **b**) The following forces are act at a point as shown below

(4M + 10 M)

Find the magnitude and direction of the resultant force.

2. Two cylinders of weights Q and R are interconnected by a bar of negligible weight hinged to each other at its geometric center by ideal pins. Determine magnitude of P applied at the centre of the cylinder R to keep the cylinders in equilibrium in the position shown in Fig1. The numerical data are given: Q=200 N and R= 1000 N.

14M

Fig.1

- 4+10 M
- 3. a) State and prove theorem of Varignon. b) Two smooth spheres P, Q each of radius 25 cm and weighting 500 N, rest in a horizontal channel having vertical walls as shown Fig.2. If the distance between the walls is 90 cm. Calculate the reactions at points of contact A, B and C

a) Explain the following terms:

4 M

- i) Friction ii) Angle of friction iii) Limiting friction iv) Cone of friction
- b) A rigid bar is subjected to a system of parallel forces as shown in fig. Reduce this to i) a single force ii) a single force- moment system at A iii) a single force- moment system at 10 M

Fig.3

UNIT-III

a) State and explain theorems of Pappus.

4 M

b) Determine the coordinates of the centroid of the T-Section shown in Fig 4. 10M

Fig.4

- 6 a) Find the second moment of area of a square sides of length *a* with respect to a diagonal.

 7M
- b) Find the polar moment of inertia of an isosceles triangle having base b and height h
 with respect to its apex.

UNIT-IV

7. Using method of joints, determine the forces in all the members of a truss shown in Fig 5.

2M

Fig 5 (OR)

- 8 a) State the assumptions made in the analysis of trusses
 - b) Determine the axial forces in the bars 1, 2,3 of a truss shown in Fig 6. $12\,\mathrm{M}$

Fig 6.

<u>UNIT-V</u>

9 a) What is meant by Virtual work?

3 M

b) Using principle of virtual work, find the reactions at C and F of the assembly loaded as shown in Fig 7.

- 10 a) Explain the terms fully constrained body and partially constrained body. 4 M
 - b) Using principle of virtual work, calculate the relation between the active forces P and Q for equilibrium of the system of bars shown in Fig 8. The bars are so arranged that they form three identical rhombuses.

Fig 8

Code: 13BS1003

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, July-2019 **ENGINEERING MATHEMATICS-III**

(Common to all Branches)

Time: 3 hours Max. Marks: 70

PART-A

Answer all questions

[10x1M=10M]

1. a) If two Eigen values of $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ are 3 and 15 then find the third Eigen

value.

- b) What do you mean by trivial solution for the system AX = 0.
- c) Write the complex form of Fourier series.
- d) Write shifting property of Fourier transforms.
- e) State Fourier integral theorem.
- f) Find the Z-transform of unit impulse function.
- g) Write damping rule for Z-transforms.
- h) Find $Z[(n+1)^2]$.
- i) Find the value of $\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{3}{4}\right)$.
- i) State the relation between Beta and Gamma functions.

PART-B

Answer one question from each unit

[5x12=60M]

Unit-I

- 2. a) Find the rank of the matrix $A = \begin{bmatrix} 1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 3 \\ 1 & 3 & 4 & 1 \end{bmatrix}$ by reducing it to normal form.
 - b) Test for consistency and solve x+2y+z=3, 2x+3y+2z=5, 3x-5y+5z=2, 3x+9y-z=4. [6M+6M]

(OR)

Investigate for what values of λ and μ the following equations 3. 2x+3y+5z=9, 7x-3y-2z=8, $2x+3y+\lambda z=\mu$, have (i) no solution (ii) a unique solution (iii) an infinite number of solutions. [12M]

Unit-II

4. a) Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$.

b) Reduce the quadratic form $2x_1x_2 + 2x_1x_3 - 2x_2x_3$ to a canonical form and write its nature. [6M+6M]

(OR)

5. Verify Cayley-Hamilton theorem for the matrix
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 and find A^{-1} . [12M]

Unit-III

6. Find the Fourier series for
$$f(x) = e^{-x}$$
 in the interval $0 < x < 2\pi$. [12M]

(OR)

7. Find the Fourier cosine transform of
$$e^{-x^2}$$
. $0 < x < 2$. [12M]

Unit-IV

- 8. a) Find the Z-transform of n^2e^{an}
 - b) Using Z-transforms, solve: $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ with $u_0 = 0$, $u_1 = 1$. [6M+6M]

9. a) Find
$$Z^{-1} \left[\frac{2z^2 + 3z}{(z+2)(z+4)} \right]$$
.

b) If
$$U(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$$
 then evaluate u_2 and u_3 . [6M+6M]

Unit-V

10. a) Prove that $\beta(m, \frac{1}{2}) = 2^{2m-1}\beta(m, m)$.

b) Prove that
$$\int_{0}^{1} \frac{x}{\sqrt{1-x^5}} dx = \frac{1}{5}\beta(\frac{2}{5}, \frac{1}{2}).$$
 [6M+6M]

(OR)

11. Prove that
$$\int_{0}^{1} \frac{x^2}{\sqrt{1-x^4}} dx \times \int_{0}^{1} \frac{dx}{\sqrt{1+x^4}} = \frac{\pi}{4\sqrt{2}}.$$
 [12M]