$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

OMITTED FROM SUMMARY TABLE

Seen mostly in antinucleon-nucleon annihilation. Needs confirmation in other channels.

f₂(1565) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1562 ± 13 OUR AVERAG	E Error includes	scale	factor o	of 2.1. See the ideogram below.
1590 ± 10	¹ AMELIN	06	VES	36 $\pi^- p \rightarrow \omega \omega n$
1552 ± 13	² AMSLER	02	CBAR	$0.9~\overline{p}p ightarrow ~\pi^0\eta\eta$, $\pi^0\pi^0\pi^0$
$1550 \pm 10 \pm 20$	AMELIN	00	VES	$37 \pi^- p \rightarrow \eta \pi^+ \pi^- n$
1575 ± 18	BERTIN	98		$0.05-0.405 \ \overline{n}p \rightarrow \pi^{+}\pi^{+}\pi^{-}$
1507 ± 15	² BERTIN	97 C	OBLX	$0.0 \; \overline{p}p \rightarrow \; \pi^+\pi^-\pi^0$
1565 ± 20	MAY	90	ASTE	$0.0 \; \overline{p}p \rightarrow \; \pi^+\pi^-\pi^0$
• • • We do not use the fe	ollowing data for a	averag	ges, fits,	limits, etc. • • •
1560 ± 15	³ ANISOVICH	09	RVUE	0.0 p p, πN
$1598 \pm 11 \pm 9$	BAKER	99 B	SPEC	$0 \overline{p} p \rightarrow \omega \omega \pi^0$
1534 ± 20	⁴ ABELE			Compilation
\sim 1552	⁵ AMSLER			$0.0 \overline{p}p \rightarrow \pi^0 \pi^0 \pi^0, \pi^0 \eta \eta,$ $\pi^0 \pi^0 \eta$
$1598\!\pm\!72$	BALOSHIN	95	SPEC	$40 \pi^{-} C \rightarrow \kappa_S^0 \kappa_S^0 X$
1566^{+80}_{-50}	⁶ ANISOVICH	94	CBAR	$0.0 \; \overline{p}p \rightarrow \; 3\pi^0, \eta\eta\pi^0$
1502 ± 9	ADAMO	93	OBLX	$\overline{n}p \rightarrow \pi^+\pi^+\pi^-$
1488 ± 10				$\overline{p}p \rightarrow \pi^0 \eta \eta \rightarrow 6\gamma$
1508 ± 10				$\overline{p}p \rightarrow 3\pi^0 \rightarrow 6\gamma$
1525 ± 10			E760	$\overline{p}p \rightarrow \eta \pi^0 \pi^0 \rightarrow 6\gamma$
\sim 1504	⁸ WEIDENAUER	93		$0.0 \; \overline{p} N \rightarrow \; 3\pi^- 2\pi^+$
1540 ± 15	⁷ ADAMO	92	OBLX	$\overline{n}p \rightarrow \pi^{+}\pi^{+}\pi^{-}$
1515 ± 10	⁹ AKER	91	CBAR	$0.0 \; \overline{p} p \rightarrow \; 3\pi^0$
1477 ± 5	BRIDGES	86 C	DBC	$0.0 \; \overline{p} N \rightarrow \; 3\pi^- 2\pi^+$
1 -				

¹ Supersedes the $\omega\omega$ state of BELADIDZE 92B earlier assigned to the $f_2(1640)$.

² T-matrix pole.

 $^{^{3}}$ On sheet II in a two-pole solution.

⁴T-matrix pole, large coupling to $\rho\rho$ and $\omega\omega$, could be $f_2(1640)$.

 $^{^5}$ Coupled-channel analysis of AMSLER 95B, AMSLER 95C, and AMSLER 94D. 6 From a simultaneous analysis of the annihilations $\overline{p}p \to 3\pi^0$, $\pi^0\,\eta\eta$ including AKER 91 data. $^7J^P$ not determined, could be partly $f_0(1500)$.

 $^{^{8}}J^{P}$ not determined.

⁹ Superseded by AMSLER 95B.

f₂(1565) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
134± 8 OUR AVERA				
140 ± 11	¹⁰ AMELIN			$36 \pi^- p \rightarrow \omega \omega n$
113 ± 23	¹¹ AMSLER	02	CBAR	$0.9~\overline{p}p ightarrow ~\pi^0\eta\eta$, $~\pi^0\pi^0\pi^0$
$130 \pm 20 \pm 40$	AMELIN	00	VES	$37 \pi^- p \rightarrow \eta \pi^+ \pi^- n$
119 ± 24	BERTIN	98	OBLX	$0.05-0.405 \ \overline{n}p \rightarrow \pi^{+}\pi^{+}\pi^{-}$
$130\pm~20$	¹¹ BERTIN	97 C	OBLX	$0.0 \; \overline{p}p \rightarrow \; \pi^{+}\pi^{-}\pi^{0}$
$170\pm~40$	MAY	90	ASTE	$0.0 \; \overline{p}p \rightarrow \; \pi^{+}\pi^{-}\pi^{0}$
ullet $ullet$ $ullet$ We do not use the	following data for a	averag	ges, fits,	limits, etc. • • •
280± 40	¹² ANISOVICH	09	RVUE	0.0 p p, πN
$180\pm~60$	¹³ ABELE	96 C	RVUE	Compilation
\sim 142	¹⁴ AMSLER	95 D	CBAR	$0.0 \overline{p} p \rightarrow \pi^0 \pi^0 \pi^0, \pi^0 \eta \eta, \ \pi^0 \pi^0, \pi^0 \eta \eta,$
263 ± 101	BALOSHIN	95	SPEC	40 $\pi^- C \xrightarrow{r} K_S^0 K_S^0 X$
166^{+}_{-} $\begin{array}{c} 80 \\ 20 \end{array}$	¹⁵ ANISOVICH	94	CBAR	$0.0 \; \overline{p} p \rightarrow \; 3\pi^0 , \eta \eta \pi^0$
$130\pm~10$	¹⁶ ADAMO	93	OBLX	$\overline{n}p \rightarrow \pi^{+}\pi^{+}\pi^{-}$
148± 27	¹⁷ ARMSTRONG	93 C	E760	$\overline{p}p \rightarrow \pi^0 \eta \eta \rightarrow 6\gamma$
103 ± 15	¹⁷ ARMSTRONG	93 D	E760	$\overline{p}p \rightarrow 3\pi^0 \rightarrow 6\gamma$
111 ± 10			E760	$\overline{p}p \rightarrow \eta \pi^0 \pi^0 \rightarrow 6\gamma$
~ 206	¹⁸ WEIDENAUER	93	ASTE	$0.0 \overline{p} N \rightarrow 3\pi^- 2\pi^+$
132 ± 37	¹⁷ ADAMO			$\overline{n}p \rightarrow \pi^+\pi^+\pi^-$
120 ± 10	¹⁹ AKER	91	CBAR	$0.0 \ \overline{p}p \rightarrow 3\pi^0$
116± 9	BRIDGES	86 C	DBC	$0.0 \; \overline{p} N \rightarrow \; 3\pi^- 2\pi^+$

f₂(1565) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$\pi\pi$	seen
Γ_2	$\pi^+\pi^ \pi^0\pi^0$	seen
Γ ₃		seen
Γ ₃ Γ ₄	$ ho^0 ho^0$	seen
Γ ₅	$2\pi^+2\pi^-$	seen
Γ_6	$\eta\eta$	seen
Γ_7	$a_2(1320)\pi$	
Γ ₈	$\omega \omega$	seen
Γ ₉	$K\overline{K}$	
Γ ₁₀	$\gamma\gamma$	

f₂(1565) PARTIAL WIDTHS

$\Gamma(\eta\eta)$					Γ ₆
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	
• • • We do not use t	he followi	ng data for averages, fits,	limits,	etc. • • •	
1.2 ± 0.3	870	²⁰ SCHEGELSKY 06A	RVUE	$\gamma\gamma \to \kappa_S^0 \kappa_S^0$	
$\Gamma(K\overline{K})$					Го
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	
• • • We do not use t	he followi	ng data for averages, fits,	limits,	etc. • • •	
2.0 ± 1.0	870	²⁰ SCHEGELSKY 06A	RVUE	$\gamma\gamma\to~K^0_SK^0_S$	
$\Gamma(\gamma\gamma)$					Γ ₁₀
VALUE (keV)	EVTS	DOCUMENT ID	TECN	COMMENT	
• • • We do not use t	he followi	ng data for averages, fits,	limits,	etc. • • •	
0.70 ± 0.14	870	²⁰ SCHEGELSKY 06A	RVUE	$\gamma \gamma \rightarrow \kappa_S^0 \kappa_S^0$	
		91 and 183–209 GeV, us 25 MeV, and SU(3) rela		1565) mass of 157	0 MeV,

 $^{^{10}}$ Supersedes the $\omega\omega$ state of BELADIDZE 92B earlier assigned to the $f_2(1640)$.

¹¹ T-matrix pole.

¹²On sheet II in a two-pole solution.

 $^{^{13}\,\}text{T-matrix}$ pole, large coupling to $\rho\rho$ and $\omega\,\omega$, could be $f_2(1640).$

 $^{^{14}}$ Coupled-channel analysis of AMSLER 95B, AMSLER 95C, and AMSLER 94D. 15 From a simultaneous analysis of the annihilations $\overline{p}p\to 3\pi^0$, $\pi^0\eta\eta$ including AKER 91 data. 16 Supersedes ADAMO 92.

 $^{^{17}}J^P$ not determined, could be partly $f_0(1500)$.

 $^{^{18}\,}J^{P}$ not determined. $^{19}\,\mathrm{Superseded}$ by AMSLER 95B.

f_2 (1565) BRANCHING RATIOS

$\Gamma(\pi\pi)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	Γ ₁ /Γ
• • • We do not use the following				
seen	BAKER			$0 \; \overline{p} p ightarrow \; \omega \omega \pi^0$
$\Gamma(\pi^+\pi^-)/\Gamma_{ ext{total}}$	DOCUMENT ID		TECN	Γ ₂ /Γ
• • • We do not use the following				
seen	BERTIN			$0.05-0.405 \overline{n}p \rightarrow \pi^+\pi^+\pi^-$
not seen seen	²¹ ANISOVICH MAY			$ \frac{\pi^{+}\pi^{+}\pi^{-}}{\overline{p}p \to \pi^{+}\pi^{-}\pi^{0}} $ $ \overline{p}p \to \pi^{+}\pi^{-}\pi^{0} $
21 ANISOVICH 94B is from a rea	nalysis of MAY 90	٥.		
$\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	Γ ₃ /Γ
<u>VALUE</u> seen				$\frac{COMMENT}{0.0 \ \overline{p}p \rightarrow 3\pi^0}$
	AWISLER	936	CDAR	$0.0~pp \rightarrow ~3\pi^{\circ}$
$\Gamma(\pi^+\pi^-)/\Gamma(ho^0 ho^0)$				Γ_2/Γ_2
VALUE	DOCUMENT ID			·
• • • We do not use the following				
0.042 ± 0.013	BRIDGES	86 B	DBC	$\overline{p} N \rightarrow 3\pi^- 2\pi^+$
$\Gamma(\eta\eta)/\Gamma(\pi^0\pi^0)$	DOCUMENT ID		TECN	Γ ₆ /Γ ₃
• • • We do not use the following	·			
$0.024\pm0.005\pm0.012$ $22~J^P$ not determined, could be p		93 C	E760	$\overline{p}p \rightarrow \pi^0 \eta \eta \rightarrow 6\gamma$
$\Gamma(\omega\omega)/\Gamma_{ ext{total}}$			<u>TECN</u>	Γ ₈ /Γ
• • • We do not use the following	<u> </u>			·
seen	BAKER	99 B	SPEC	$0 \overline{p} p \rightarrow \omega \omega \pi^0$
f ₂ ((1565) REFERI	ENCE	S	
ANISOVICH 09 IJMP A24 2481 AMELIN 06 PAN 69 690 Translated from YA SCHEGELSKY 06A EPJ A27 207 AMSLER 02 EPJ C23 29 AMELIN 00 NP A668 83 BAKER 99B PL B467 147 BERTIN 98 PR D57 55 BERTIN 97C PL B408 476 ABELE 96C NP A609 562 AMSLER 95B PL B342 433 AMSLER 95C PL B353 571 AMSLER 95D PL B355 425	V.A. Schegelsk C. Amsler et D. Amelin et C.A. Baker et A. Bertin et a A. Bertin et a C. Amsler et c C. Amsler et C. Amsler et	et al. ky et al. al. al. l. l. al. al. al. a		(VES Collab.) (VES Collab.) (OBELIX Collab.) (OBELIX Collab.) (Crystal Barrel Collab.) (Crystal Barrel Collab.) (Crystal Barrel Collab.) (Crystal Barrel Collab.)
BALOSHIN 95 PAN 58 46 Translated from YA		CL dI.	-	(ITEP)
HTTP://PDG.LBL.GOV	Page 4		Creat	ted: 5/30/2017 17:21