Library Initialization

```
#Required Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
#Dataset path initialization
df=pd.read_csv('/content/Churn_Modelling.csv')
```

Dataset Summary

ат.h	ead()															
Ro	wNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	Num	OfProducts	HasCrCard	IsActiveMembe	er Est	imatedSalary E	xited
0	1	15634602	Hargrave	619	France	Female	42	2	0.00)	1	1		1	101348.88	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	5	1	0		1	112542.58	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80)	3	1		0	113931.57	1
3	4	15701354	Boni	699	France	Female	39	1	0.00)	2	0		0	93826.63	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	2	1	1		1	79084.10	0
df.t	ail()															
	RowNumb	er Custome	erId Surna	ıme CreditSc	ore Geogra	phy Gen	der	Age Ter	nure Ba	ance	NumOfProdu	cts HasCrC	Card IsActiveMe	ember	EstimatedSalar	y Exit
9995		oer Custome				-	i der Male	Age Ter	nure Ba	lance	NumOfProdu	cts HasCrC	Card IsActiveMe	ember 0		_
	99	96 15606		aku	771 Fra	nce N		_	5		NumOfProdu				96270.6	4
9995 9996 9997	99	96 15606	229 Obiji 892 Johnst	aku one	771 Fra 516 Fra	nce N	//ale //ale	39	5	0.00	NumOfProdu	2	1	0	96270.6 101699.7	4 7
9996	99 99 99	96 15606 97 15569 98 15584	229 Obiji 892 Johnst	aku one Liu	771 Fra 516 Fra	nce N nce N nce Fen	//ale //ale	39 35	5 10 573	0.00 69.61 0.00	NumOfProdu	2	1	0	96270.6 101699.7 42085.5	4 7 8

```
df.shape
(10000, 14)
 df.isnull().sum()
RowNumber
                   0
CustomerId
Surname
                   0
0
Surname
CreditScore 0
Gender
Age
Tenure 0
Balance 0
NumOfProducts 0
HasCrCard 0
IsActiveMember 0
EstimatedSalary 0
Exited
dtype: int64
 df.drop(['RowNumber','CustomerId','Surname'],axis=1, inplace=True)
 #Data visualization
 df.Geography.value_counts().plot(kind='hist',color="Purple")
 df.Geography.value_counts()
France
          5014
Germany
          2509
Spain
          2477
Name: Geography, dtype: int64
  2.00
  1.75
  1.50
 <sub>글</sub> 1.25
 Lednen
1.00
  0.75
  0.50
  0.25
  0.00
                      3500
                                      4500
               3000
                              4000
 df.Age.describe()
count 10000.000000
           38.921800
mean
           10.487806
std
           18.000000
           32.000000
37.000000
25%
50%
75%
           44.000000
           92.000000
max
Name: Age, dtype: float64
 df.Age.plot(kind='bar',color="blue")
```



```
df.IsActiveMember.value_counts().plot(kind='bar',color="pink")
df.IsActiveMember.value_counts()
```

```
df.IsActiveMember.value_counts().plot(kind='bar',color="pink")
df.IsActiveMember.value_counts()
```

1 5151 0 4849

Name: IsActiveMember, dtype: int64

df.HasCrCard.value_counts().plot(kind='bar',color="Orange")
df.HasCrCard.value_counts()

1 7055

Name: HasCrCard, dtype: int64


```
df.Tenure.value_counts().plot(kind='bar',color="SkyBlue");
df.Tenure.value_counts()
2
        1048
        1035
        1028
8
        1025
5
        1012
3
        1009
4
9
         989
         984
6
10
         967
         490
         413
0
Name: Tenure, dtype: int64
1000
  800
  600
  400
  200
  \begin{tabular}{ll} $\sf df.NumOfProducts.value\_counts().plot(kind='bar',color="black"); \\ $\sf df.NumOfProducts.value\_counts() \end{tabular} 
      5084
4590
       266
        60
Name: NumOfProducts, dtype: int64
5000
 4000
 3000
 2000
 1000
 df.Exited.value_counts().plot(kind='bar',color="darkgreen");
df.Exited.value_counts()
0
Name: Exited, dtype: int64
 8000
 7000
 6000
 5000
 4000
 3000
 2000
 1000
                      0
```

$\verb|sns.countplot(x=df.Exited, hue=df.Gender, color="Olive")|\\$

 $\verb|sns.countplot(x=df.Exited, hue=df.Geography, color="cyan")| \\$

sns.countplot(x=df.Exited,hue=df.NumOfProducts,color="fuchsia")

sns.countplot(x=df.Exited,hue=df.HasCrCard,color="limegreen")

 $\verb|sns.countplot(x=df.Exited, hue=df.IsActiveMember, color="aqua")|\\$

sns.boxplot(x=df.Exited,y=df.Balance,color="turquoise")

 $\verb|sns.countplot(x="Gender", hue="Exited", data=df, color="coral")|\\$


```
df['Geography']=df['Geography'].map({'France':0,'Spain':1,'Germany':2})

X=df.iloc[:,:-1].values

X.shape

(10000, 10)

#Feature Scaling of Data Set
le-LabelEncoder()

X[:,2]=le.fit_transform(X[:,2])

print(X)

[[619 0 0 ... 1 1 101348.88]
[608 1 0 ... 0 1 112542.58]
[502 0 0 ... 1 0 113943.58]
[702 0 0 ... 1 0 113943.58]
[709 0 0 ... 1 0 13943.52]

The state of the state of
```