

MENG 410

Speed Reducer Project

Prof. Nidal Abu-Hamdeh

SPRING 2021

Sections: FA

Team 4

No.	Name	ID
1	Faris Abdullah Al-Ghmadi	1845529
2	Sultan Mohammed Mizjaji	1846364
3	Sameer Abdulaziz Almarghalani	1846002
4	Ibrahim Khaled Al-Zahrani	1847424
5	Jayez Fayez Al-Rashidi	1847488
6	Ahmed Jamal Al-Harbi	1847432
7	Abdulrahman Fahad Al-Ghamdi	1848002
8	Fouad Muneer Bakhdlaq	1741548

Table of Contents

1. BUSINESS CASE	8
1.1 Executive summary	9
1.2 Literature review	10
1.3 SITUATIONAL ANALYSIS	10
1.4 Problem (Opportunity)	11
1.5 Problem Analysis	11
1.5.1 Identify Needs	11
1.5.2 Design Parameters & Specifications	12
1.5.3 Musts & Want	13
1.5.4 Realistic Constraints	13
1.5.5 Standards	14
1.6 AVAILABLE OPTIONS	14
1.6.1 Alternative 1 – Three stage speed reducer (Helical and bevel gears). •••••	14
1.6.2 Alternative 2 – Three stage speed reducer (Helical gears)	18
1.6.3~Alternative~3-Three~stage~speed~reducer~(spur~and~bevel~mechanism). .	22
1.7 RECOMMENDED ALTERNATIVE	26
1.8 Implementation Approach	27
Project Initiation	27
Project Planning	27
Project Execution	27
Project Closure	28
Project Management	28
2. PROJECT CHARTER	31
2.1 Executive Summary	32
2.2 Project Definition	33
2.2.1 Vision	33
2.2.2 Objectives	33
2.2.3 Scope	33
2.2.4 Deliverables	34
2.3 PROJECT ORGANIZATION	35

	35
2.3.2 Stakeholders	35
2.3.3 Roles	
2.3.4 Responsibilities	
2.3.5 Structure	39
2.4 Project Plan	40
2.4.1 Project Approach	40
2.4.2 Overall Plan	41
2.4.3 Milestones	43
2.4.4 Resource	44
2.4.5 Financial Plan	44
2.4.6 Quality Plan	45
2.5 Project Consideration	
2.5.1 Risks	46
2.5.2 Issues	47
2.5.3 Assumptions	47
2.5.4 Constrains	47
3. QFD	18
3. QTD	······································
	50
4. DESIGN ANALYSIS	50
4. DESIGN ANALYSIS	51
MOTOR SELECTION	51
MOTOR SELECTION GEAR DESIGN Stage 1 Bevel Gear	51 51
Motor selection Gear Design Stage 1 Bevel Gear Stage 2 Spur Pinion	
Motor selection Gear Design Stage 1 Bevel Gear Stage 2 Spur Pinion Stage 3 Spur Pinion	
Motor selection Gear Design Stage 1 Bevel Gear Stage 2 Spur Pinion Stage 3 Spur Pinion MITCalc Gears	
Motor selection Gear Design Stage 1 Bevel Gear Stage 2 Spur Pinion Stage 3 Spur Pinion MITCalc Gears SHAFT DESIGN	
Motor selection Gear Design Stage 1 Bevel Gear Stage 2 Spur Pinion Stage 3 Spur Pinion MITCalc Gears Shaft 1	
MOTOR SELECTION GEAR DESIGN Stage 1 Bevel Gear Stage 2 Spur Pinion Stage 3 Spur Pinion MITCalc Gears SHAFT DESIGN Shaft 1 MITCalc Shafts	
MOTOR SELECTION GEAR DESIGN Stage 1 Bevel Gear Stage 2 Spur Pinion Stage 3 Spur Pinion MITCalc Gears SHAFT DESIGN Shaft 1 MITCalc Shafts BEARINGS SELECTION	
MOTOR SELECTION GEAR DESIGN Stage 1 Bevel Gear Stage 2 Spur Pinion Stage 3 Spur Pinion MITCalc Gears SHAFT DESIGN Shaft 1 MITCalc Shafts BEARINGS SELECTION Bearing for Shaft 1	
MOTOR SELECTION GEAR DESIGN Stage 1 Bevel Gear Stage 2 Spur Pinion Stage 3 Spur Pinion MITCalc Gears SHAFT DESIGN Shaft 1 MITCalc Shafts BEARINGS SELECTION	

APPENDIX	96
REFERENCES	95
RECOMMENDATIONS	94
CONCLUSION	94
SOCIAL IMPACT	93
ENVIRONMENTAL IMPACT	93
PROJECT IMPACTS	93
SIMULATION	92

LIST OF TABLES

TABLE 1 MUSTS AND WANTS	13
TABLE 2 REALISTIC CONSTRAINS	13
TABLE 3 ALTERNATIVE 1 OF ALTERNATIVE 1	15
Table 4 Benefits of Alternative 1	15
Table 5 Cost of Alternative 1	16
Table 6 Risks of Alternative 1	17
Table 7 Issues of Alternative 1	17
TABLE 8 FEASIBILITY OF ALTERNATIVE 2	19
TABLE 9 BENEFITS OF ALTERNATIVE 2	19
TABLE 10 COST OF ALTERNATIVE 2	20
Table 11 Risks of Alternative 2	20
TABLE 12 ISSUES OF ALTERNATIVE 2	21
TABLE 13 FEASIBILITY OF ALTERNATIVE 3	23
TABLE 14 BENEFITS OF ALTERNATIVE 3	23
TABLE 15 COST OF ALTERNATIVE 3	24
Table 16 Risks of Alternative 3	24
TABLE 17 ISSUES OF ALTERNATIVE 3	25
Table 18 KTDA table	26
Table 19 Project deliverables	34
Table 20 The client	35
TABLE 21 PROJECT STAKEHOLDERS	35
TABLE 22 ROLES OF PEOPLE INVOLVED IN THE PROJECT	36
TABLE 23 PROJECT APPROACH	40
TABLE 24 OVERALL PLAN	42
TABLE 25 PROJECT MILESTONES	43
Table 26 Project resources	44
TABLE 27 PROJECT'S FINANCIAL PLAN	44
TABLE 28 PROJECT QUALITY PLAN	45
Table 29 Project's risks	46
Table 30 Project's issues	47

LIST OF FIGURES

FIGURE 1 CLIENT'S NEEDS	12
Figure 2 Design Specifications	12
FIGURE 3 DESIGN PARAMETERS	12
Figure 4 Alternative 1	14
FIGURE 5 ALTERNATIVE 2	18
Figure 6 Alternative 3	22
FIGURE 7 STRUCTURE OF GROUP MEMBERS	39
Figure8 Gantt Chart	41
Figure 9 MITCalc Stage 1	70
FIGURE 10 MITCALC STAGE 2	71
FIGURE 11 MITCALC STAGE 3	71
FIGURE 12 MOMENT DIAGRAM XY-PLANE	76
FIGURE 13 MOMENT DIAGRAM XZ-PLANE	77
Figure 14 MITCalc Shaft 1	79
FIGURE 15 MITCALC SHAFT 2	80
FIGURE 16 MITCALC SHAFT 3	81
Figure 17 MITCalc Shaft 4	82
FIGURE 18 MITCALC BEARING FOR SHAFT 1	85
FIGURE 19 MITCALC BEARING FOR SHAFT 2	85

FIGURE 20 MIT CALC BEARING FOR SHAFT 3	86
FIGURE 21 MITCALC BEARING 1 FOR SHAFT 4	86
FIGURE 22 MITCALC BEARING 2 FOR SHAFT 4	87
FIGURE 23 BILL OF MATERIAL FOR GEARBOX	91
FIGURE 24 DRAWING SHEET FOR GEAR	92
FIGURE 25 YIELD STRENGTH IN SIMULATION	93

1. Business Case

1.1 Executive summary

Online retailing is one of the largest types of commerce in the market today, but there are still many people who prefer the traditional way of shopping, especially for sensitive products and this is due to They fear that these products will be damaged during production lines or shipping operations. Amazon is planning to design a gearbox that helps reduce speed while moving between delivery lines. The main objective of this delivery line is to make the goods delivered to the buyer in the best way without delay. The team will have the skill to achieve the proper solution to the client's requirement.

Alternatives for this project were generated as the following, first alternative we have 4 shafts and 5 gears (helical, and bevel) and 3 bearings which make them in overall 3 stages. Second alternative is mechanism consists of three stages, 4 shafts and 6 helical gears and 8 bearing, the reduction ratio in the first stage is 10. Third alternative the system will include 8 bearing, 4 shafts, 4 spur gears,1 bevel gear and housing for the gearbox, the input shaft has double bearing to increase the stability of the gearbox. After compare the three alternatives with each other using Kepner Trego Decision Analysis (KTDA) technique, we chose Spur and bevel mechanism it is considered the third alternative.

The project has four basic phases. The initiation phase, planning phase Implementation phase and the closure phase. The initiation phase has the team formation and the kickoff meetings with the project advisor and client. The planning phase is where the project is divided from phases into major tasks and then sub tasks. In addition, the use of MS Project aids the team in allocating tasks with time Project management tools such as the One Page Project Manager sheet and teamwork com were used to help keep track of the progress of tasks The Implementation phase is where the team starts the design calculation and use engineering software to help analyze the design in case of critical errors. After that modifications are made, and the manufacturing of the project is implemented the closure phase is where all deliverable is submitted for approval from client, advisor and coordinator and recommendations for further development are mentioned.

1.2 Literature review

Gearboxes are composed of many elements such as shaft, gears, and bearings. An electric motor has a specific force specified in horsepower (HP) and has an operational speed for the output shaft, in this section, we will introduce some of the literature reviews that has been done throughout the years regarding gears. One of the reasons why theoretical and numerical methods are preferred is because experimental testing can be particularly expensive. Wilcox and Coleman [1] conducted a study using finite element modeling for the stress analysis of gear tooth and according to their obtained results they suggested a new formula to determine root stresses. Elkholy [2] introduced a method to determine tooth load sharing especially for high contact ratio spur gearing. Mohanty [3] suggested an analytical method to calculate the individual tooth load during meshing cycle. He also referred to determination of the locations and sizes of contact zones along the path of contact for high contact ratio gearing (2<C.R<3).

1.3 Situational analysis

Our project client is Amazon, Amazon is one of the largest e-commerce sites and is also the largest online retailer in the world, Amazon is considered a good and useful option for those who like to buy their various needs from one place and in complete comfort. Amazon has recently joined the Saudi market, and the demand of delivering products is increasing massively. The company wants to start a new delivery line to keep up with the high demand, they have a motor already, but since they deal with various of products they asked us to design a gearbox to reduce the motor's speed from 1800 rpm to 45 so the products will be delivered safely. the positive impact on society is that this delivery line will speed up the period of product delivery, and the person will be satisfied upon receiving the product and it is in good condition and does not suffer from scratches. This is what makes people trust in this store, and when you gain people's trust, the demand will increase and the profit for the company will increase.

1.4 Problem (Opportunity)

Online retailing is one of the largest types of commerce in the market today, and this is due to saving a lot of time and effort, as well as the great diversity of products within the electronic store sites, but there are still many people who prefer the traditional way of shopping, especially for sensitive products and this is due to They fear that these products will be damaged during delivery lines or shipping operations. Amazon is planning to design a gearbox that helps reduce speed while moving between delivery lines for you to suit all products, whether sensitive or otherwise.

The company's realistic evidence for the problem was based on a recent survey passed on to a large number of people who concluded that shopping online saves a lot of time and effort, but many people mentioned that they had bad experiences in shopping online because there are some damages to the products, especially Sensitive product.

This problem may affect the company in many ways. On the electronic level, the number of visitors to the site is decreasing, due to the lack of interest of customers in the services provided on it, and we do not forget that the site is a source of income for the company. Financially, the company loses its customers because of these concerns and this bad reputation that drives them to go to competitors.

1.5 Problem Analysis

1.5.1 Identify Needs

We are required to make a complete design of the speed reducer system attached to the system to drive the packing machine., Input rotation speed 1800 rpm, system output power 5 kW, required rotation speed for the designed system is 45 rpm, the system will have high reliability and quality, the design will also have limited space.

Figure 1 Client's needs

1.5.2 Design Parameters & Specifications

In this part we will show what are the client's needs and their design parameters and specifications.

Figure 2 Design Specifications

Figure 3 Design parameters

1.5.3 Musts & Want

In this part, we will discuss what are the musts and wants that the client mentioned to us, so that we will place for each want weight and we will not put a weight for it until the must is achieved, and we took into consideration that, where the musts represent the specifications, and the wants represent the design parameters.

Table 1 Musts and Wants

Client's needs	Design parameters	Specifications	Musts & Want (weight)
Reliability	Satisfies reliability	-	Want (23)
Quality	Satisfies quality	-	Want (25)
Limited space	Minimum size	-	Want (25)
Motor speed	-	1800 rpm	Must
Output power	-	5 kw	Must
Output speed	-	45 rpm	Must

1.5.4 Realistic Constraints

As in engineering ethics there are some constraints we should have in our design, and these constrains will help us to achieve our client's needs.

Table 2 Realistic constrains

Realistic Constraints	Design Parameters	Must & Want (Weight)
Safety	Select the factor of safety based on standards or best practice	Must
Environment	Maximize green design parts or recyclable	Want (7)
Easy to maintain Minimize the needed time and effort		Want (10)
Easy to use	Reduce the time required to operate the system	Want (10)

1.5.5 Standards

We are going to implement the STANDARDS in our design analysis (ANSI, DIN, SKF, ISO, ...etc).

1.6 Available Options

In this section we will provide a full listing of all solution options. We will provide specific information about each option.

1.6.1 Alternative 1 – Three stage speed reducer (Helical and bevel gears).

Figure 4 Alternative 1

Description

In This alternative we have 4 shafts and 5 gears which make them in overall 3 stages, to elaborate more on our first alternative, this alternative will help to reduce the speed from 1800 rpm to 45 rpm, in first stage the speed will reduce from 1800 rpm to 360 rpm by using gear ratio 5, in second stage we will reduce the speed from 360 rpm to 90 rpm by applying gear ratio 4, in last stage the speed is going to reduce from 90 rpm to 45 rpm as we have been ask from the client, the 5 gears that we are using in this alternative are helical and bevel.

Feasibility

Since Amazon might deliver sensitive products that are damaged by high speed while moving in delivery lines, which increases the company's loss, and this solution presented above reduces the speed and thus preserves the product more.

Table 3 Alternative 1 of Alternative 1

Component	Rating (1-10)	Method Used to Determine Feasibility	
New customers	6	Survey was completed to assess customer satisfaction currently.	
Operational	7	 Helical gears are used to operate silently, damp and reduce the noise and vibration. Helical gears can handle more load and obtain high torque with lower stress than other gears. Maintenance of spur gears is easy. Using bevel gear will reduce the limit space. 	

Benefits

In this part, we will explain the benefit taken from this alternative, and the benefit will be of value in order to clarify the benefit further as you can see in the table below.

Table 4 Benefits of Alternative 1

Category	Benefit	Value
Fanatical	Reduce the speed which will reduce the cost	200\$-300\$
Operational	Reducing noise generated.Less operational down-time.	starting time will be less than 2 minutes

		Boosting the company's
Market	Additional competitive advantage	name by satisfying the
		customers

Cost

In this part, we will describe the cost for the alternative 1, the cost is important to be defined. Which will help the clint to make his own decision.

Table 5 Cost of Alternative 1

Category	Item	Value	Budgeted
D 1	Salaries of project staff	2500 \$	No
People	Salaries of installation and operation	500\$	Yes
	Electric motor	600\$	Yes
	Helical gears	20\$	Yes
	Shafts	72\$	Yes
Physical	Bearings	200\$	Yes
	Housing	100\$	Yes
	Design equipment (software)	130\$	Yes
	Bevel gears	100\$	Yes
	Total	1722\$	

Risks

Risks are any problem that will happen in future, it is important to know the risks of you design before you make your own decision.

Table 6 Risks of Alternative 1

Description	Priority	Resolution Actions
Difficulties in MIT program	High	Learn the MIT Program and try to validate with the hand calculation
Required to manufacture an internal tooth gear	High	Schedule the manufacture time

Issues

Issues are any problem that will happen currently in this alternative, and the different between the issues and risks that the issue will occur currently. On the other hand, they are similar in the importantly.

Table 7 Issues of Alternative 1

Description	Likelihood	Impact	Mitigating Actions
Corrosion problem	Low	High	Coating the system with anti-corrosion spray
Premature teeth wear	Low	High	Keeping the gears lubricated

Assumptions

The major assumptions associated with the adoption of the conceptual design include:

- 1- All parts that need to be selected are standardized available in the local or international market.
- 2- Prices of raw materials and needed parts will not increase during this project.
- 3- There will be no legislative, businesses strategy or policy changes during this project.

1.6.2 Alternative 2 – Three stage speed reducer (Helical gears).

Figure 5 Alternative 2

Description

The mechanism consists of three stages, 4 shafts, 6 helical gears and 8 bearing. The input shaft which is connected to the electrical motor, First stage contains of one helical gears which is also in input shaft, The reduction ratio in the first stage is 10 and the speed with reduction ratio 10. And the second stage will reduce the speed from 180 rpm to 90 rpm with reduction 2. In last stage the speed will be 45 rpm with ratio 2. And we have different dimeter in this alternative.

Feasibility

Since Amazon might deliver sensitive products that are damaged by high speed while moving in delivery lines, which increases the company's loss, and this solution presented above reduces the speed and thus preserves the product more.

Table 8 Feasibility of Alternative 2

Component	Rating (1-10)	Method Used to Determine Feasibility
New Technology	8	A small prototype was created and test it to see if the resultant match those expected from the exercise
Operational	7	 All gears are helical gears, which helps in ease of operation The difference in the dimeter also helps in the flexibility of productivity

Benefits

In this part, we will explain the benefit taken from this alternative, and the benefit will be of value in order to clarify the benefit further as you can see in the table below

Table 9 Benefits of Alternative 2

Category	Benefit	Value
Financial	Reduce cost	100\$-200\$
Design	Limited space	*reducing the require space by 20%.

Cost

In this part, we will describe the cost for the alternative 2, the cost is important to be defined, which will help the clint to make his decision.

Table 10 Cost of Alternative 2

Category	Cost	Value	Budgeted
		2500 Ф	N
People	Salaries of project staff	2500 \$	No
respie	Salaries of installation and operation	500\$	Yes
	Electric motor	600\$	Yes
	Helical gears	20\$	Yes
Physical	Shafts	72\$	Yes
	Bearings	200\$	Yes
	Design equipment (software)	100\$	Yes
	Total	1495\$	

Risks

Risks are any problem that will happen in future, and it is important to know the risks of you design before you make your own decision.

Table 11 Risks of Alternative 2

Description	Likelihood	Impact	Mitigating Actions
Helical gear Corrosion problem	Low	High	Coating the system with anti- corrosion spray
Premature teeth wear	Low	High	Keeping the gears lubricated
All of the gears is Helical	Medium	High	Maintenance is expensive

Issues

Issues are any problem that will happen currently in this alternative, and the different between the issues and risks that the issue will occur currently. On the other hand, they are similar in the importantly.

Table 12 Issues of Alternative 2

Description	Priority	Resolution Actions
Difficulties in MIT program	High	Learn the MIT Program and try to validate with the hand calculation
Difficulties in hand calculations	High	Understand the slides of MENG410 and MENG 310
Some components might not be available in the local market	Medium	Order the components from international market as soon as possible

Assumptions

The major assumptions associated with the adoption of the conceptual design include:

- 1- All parts that need to be selected are standardized available in the local or international market.
- 2- Prices of raw materials and needed parts will not increase during this project.
- 3- There will be no legislative, businesses strategy or policy changes during this project.

1.6.3 Alternative 3 – Three stage speed reducer (spur and bevel mechanism).

Figure 6 Alternative 3

Description

The system will include 8 bearing, 4 shafts, 4 spur gears, 2 bevel gears. To elaborate more on our third option, the input shaft will be connected to the electric motor and the input shaft has double bearing to increase the stability of the gearbox and the input shaft has the bevel gear which will rotate the input shaft 90°. Additionally, this alternative will help to reduce the speed from 1800 rpm to 45 rpm, in first stage the speed will reduce from 1800 rpm to 360 rpm by using gear ratio 5, in second stage we will reduce the speed from 360 rpm to 90 rpm by applying gear ratio 4, in last stage the speed is going to reduce from 90 rpm to 45 rpm as we have been asked from the client.

Feasibility

Since Amazon has sensitive products that are damaged by high speed, while moving between production lines, which increases the company's loss, and this solution presented above reduces the speed and thus preserves the product more.

Table 13 Feasibility of Alternative 3

Component	Rating (1-10)	Method Used to Determine Feasibility
New processes	9	Use bevel gear to rotate the input shaft
Operational	8	Small porotype was created and tested to achieve clint need
Fanatical	7	Compere between best practice and our design

Benefits

In this part, we will explain the benefit taken from this alternative, and the benefit will be of value in order to clarify the benefit further as you can see in the table below

Table 14 Benefits of Alternative 3

Category	Benefit	Value
Fanatical	Reduce cost	160\$-250\$
Design	Changing input shaft direction	*90 degree

Cost

In this part, we will describe the cost for the alternative 3, the cost is important to be defined. Which will help the client to make his decision.

Table 15 Cost of Alternative 3

Category	Cost	Value	Budgeted
Doonlo	Salaries of project staff	2500 \$	No
People	Salaries of installation and operation	500\$	Yes
	Electric motor	600\$	Yes
	Shafts	72\$	Yes
	Bearings	200\$	Yes
Physical	Housing	100\$	Yes
	Design equipment (software)	130\$	Yes
	Bevel gears	100\$	Yes
	Spur gears	15\$	yes
	Total	\$1717	

Risks

Risks are any problem that will happen in future, and it is important to know the risks of your design before you make your own decision.

Table 16 Risks of Alternative 3

Description	Likelihood	Impact	Mitigating Actions
Gears Corrosion problem	Low	High	Coating the system with anti-corrosion spray

Premature teeth wear	Low	High	Keeping the gears lubricated
Shaft problems (misalignment)	Medium	High	Eliminate the error by the advisor guide

Issues

Issues are any problem that will happen currently in this alternative, and the different between the issues and risks that the issue will happen currently. On the other hand, they are similar in the importantly.

Table 17 Issues of Alternative 3

Description	Priority	Resolution Actions
Difficulties in MIT program	High	Learn the MIT Program and try to validate with the hand calculation
Required to manufacture an internal tooth gear	High	Schedule the manufacture time
Some components might not be available in the local market	High	Order the components from international market as soon as possible

Assumptions

The major assumptions associated with the adoption of the conceptual design include:

- 1- All parts that need to be selected are standardized available in the local or international market.
- 2- Prices of raw materials and needed parts will not increase during this project.
- 3- There will be no legislative, businesses strategy or policy changes during this project.

1.7 Recommended Alternative

In this part, we will compare the three alternatives with each other using Kepner Trego Decision Analysis (KTDA) technique. This table shows us the musts and wants we want it in our project. We made a list of 4 musts and 6 wants, then we see what will GO and NOT GO. After evaluating we did a calculation between the weight and score to make the Total. We did all this to the three alternatives and see which one it has the best Total and the worst.

Table 18 KTDA table

Must		Helical and Bevel gears		Helical gears		Spur and bevel mechanism	
Motor speed		GO		GO		GO	
Output power		GO		GO		GO	
Output speed		GO		GO		GO	
Safety		GO		GO		GO	
Wants	Wight	Score	W*S	Score	W*S	Score	W*S
quality	25	10	250	10	250	10	250
limited space	25	7	175	7	175	8	200
reliability	23	9	207	8	184	9	207
Easy to use	10	8	80	8	80	10	100
Easy to maintain	10	5	50	6	60	8	80
Environment	7	10	70	10	70	10	70
Total	100	832 819		9	907		

After completing the Kepner Trego Decision Analysis (KTDA) technique and according to the above table, we can see that the last alternative (Spur and bevel mechanism) got a total of 907 and is the highest, so it is considered the best alternative for our project.

1.8 Implementation Approach

Project Initiation

The project was first presented to the team upon submitting course MENG 410 (Mechanical Design). The team is made of seven members from the mechanical engineering faculty. The project advisor is Prof. Nidal Abu Hamdeh. An initial meeting with the client was conducted afterwards to introduce the requirements of the projects, needs and the deliverables. The business case along with the project charter will be submitted to the client for approval.

Project Planning

Planning techniques and programs must be used in order to complete the project before the deadline. Techniques used are dividing the project into stages with specific tasks and then simplifying them into smaller subtasks and also using the Gantt chart from MS Project to aid in tracking the progress of the tasks through the specified time period. Project Management tools such as the One Page Project Manager sheet are used to keep track of the project progress.

Project Execution

After designing the components of the project (hand calculations and MITcal), the use of the Finite Element Analysis will be performed to identify if any critical design errors occur. If results show no critical errors, a detailed draft drawing will be provided to the customer to manufacture a prototype. Then the evaluation for errors will be performed and if any error or mistake occurs, adjustments and modifications will be made.

Project Closure

Upon completion of the project, recommendations for needed further improvement of the project will be provided. Afterwards, the team will submit the work seeking approval from the academic advisor, project coordinator and the client.

Project Management

This part explains how we ensure the success of this project.

• Time Management

The project has a due date set by the client to finish and to deliver the results, so it is an important issue to manage the time in this project. The team has Team Meeting Minutes (TMM) to aid in managing their meetings on time, also the Advisor Meeting Minutes (AMM) to help us with prioritizing tasks and inform us about what is left to be done. Also, Project Status Reports (PSR) will be a guide to us by presenting our progress after each week and highlighting key tasks to be done.

• Cost Management

The client did not provide a limit to the cost of the project but as engineers we know the project should be with the least cost and highest quality.

• Quality Management

Quality is essential in any engineering system. Producing a system with high quality ensures its operation for longer life and makes it more desirable in the market and meets the client's requirement. This could be accomplished by designing all element based on standards and best practice.

• Change Management

The team will try to resolve any unexpected difficulties that may arise during executing the work. The team will seek the advisor's input to solve these issues, and the team would adopt any necessary changes in the project if needed.

• Risk Management

Risks are potential problems that may occur in the future. So to make sure we prevent as much of them, design calculations will be reviewed and caution measurements will be installed.

• Issue Management

Issues are problems that happen now, as previously stated. When they occur, they are immediately dealt with in order for them to not grow to bigger issues. If the team fails in solving any issue, outside help will be sought from the project advisor or the course coordinator.

Communications Management

Communication between team members and advisor and client must be agreed on from the beginning. Emails and WhatsApp will be the most suitable way for communication between members and also between the team and the academic advisor. Communication between the team and the client is not allowed unless authorized by the project advisor or project coordinator.

• Acceptance Management

The final deliverables of the project will be presented to the client for reviewing and approval. There are three main steps to ensure the acceptance. Firstly, the team will make sure that all tasks have been completed. Secondly, the team will make sure that all tasks have been documented. Lastly, the team is planning to deliver a good presentation for the client to secure his approval for the final report.

2. Project Charter

2.1 Executive Summary

Amazon is one of the biggest companies in the world, and every year they grow bigger and expand in many countries other than US and Europe. Recently, Amazon has joined the Saudi market and they intend to dominate here as they usually do in other regions. The company aims to expand their distribution line so they can keep up with the high demand and growth in the Saudi Arabia and avoid late shipments to their clients since costumer service is a major concern in this business and they want to gain their trusts to rely on the company for any product they need. Our objective is to design a speed reducer for the company so they can establish a new distribution line to help achieve their goal of delivering without damaging the products and delay to their customers.

For our project, the client is Amazon, and their representative is Eng. Ahmad Al-Haffar and he is the person who will state the companies' needs and receive the project within the deadline. Our advisor is Prof. Nidal Abu-Hamdah and he will guide us throughout this project and make sure we are on the right path.

During this project we have two main parts of the project's scope, the in scope and out scope. These two will demonstrates what are the team's responsibility and what is not. The team is responsible for designing and selecting all the components of this project, along with submitting the necessary manufacturing process sheets for any part. After submitting the design, the team is not in charge of manufacturing and assembling the project, also for any future maintenance and modification of the project.

This project consists of four main stages, initiation, planning, execution and closure. The first stage is initiation which will be in organizing the team and review the requirements of the client. Then, the planning which consists of creating the business case to come up with a final alternative for the client, then creating the project charter to manage the flow of the project. Third, the execution phase which in it we will design the project including technical calculations, parts drawing and simulation analysis. Finally, in the closure along with submitting the project we will prepare a poster and a PowerPoint show to display the whole project to the client.

2.2 Project Definition

2.2.1 Vision

Design the required speed reducer to use it in the client's new delivery line.

2.2.2 Objectives

There are three main objectives to accomplish in this project which are the following:

1. Business objectives

- Capability of establishing the new delivery line of the client.
- Keep up with the high demand of deliveries.

2. Technological objectives

- Design the whole gearbox according to the speed asked by the client.
- Achieve high quality and reliability of the design.
- Design a compact gearbox of the possible minimum weight.

3. Academic objectives

- Achieve the ability to design a whole system by using various of methods and analytical programs.
- Being able to write technical reports for any project in the future.

2.2.3 Scope

This part will clearly demonstrates what are the team's responsibilities, and what are not.

• In scope

- o Designing the gears.
- o Designing the shafts.
- o Selecting suitable bearings.

- Submit the design calculations.
- o Provide all the technical drawings of the parts.
- O Submit the process sheets for manufacturing the parts.

• Out scope

- o Manufacturing the necessary parts will be the client's responsibility.
- o Assembly of the design will be done by the client.
- o Testing the design is conducted by the client.
- o The team is not responsible for the maintenance of the project.
- The team's task is done with submitting the design, and not responsible for modifying the project.

2.2.4 Deliverables

These are the important items that will be delivered to the client after finishing the project.

Table 19 Project deliverables

Items	Components	Description		
	Project Technical Report	A report showing all the steps of the design process for the speed reducer.		
Decuments	Design Calculations	All the analysis we conducted for the design to guarantee the safety of the design.		
Documents	Technical Drawings	The detailed drawings for each designed part.		
	Electronic Poster	A poster showing all the important information regarding our design.		
Project Logbook	Weekly reports	 Advisors meeting minutes (AMM). Team meeting minutes (TMM). Project status report (PSR) 		

2.3 Project Organization

2.3.1 The Client

Table 20 The client

Client	Representative
Amazon	Eng. Ahmed Al-Haffar Innovation and Project Management Department

2.3.2 Stakeholders

Will show who has relation has any interested in the project but does not communicate with the time directly.

Table 21 Project stakeholders

Stakeholders	Interested in
CEO	Achieving compony vision and planes
Financial Controller	Keeping the expenses in the range of the budget
Health and Safety Office	Make sure everyone follows safety standers
Government body	Compliance with legislation
Industry body	Following engineer's ethics

2.3.3 Roles

The table below identifies everyone working on the project and what is his job

Table 22 Roles of people involved in the project

Role	Organization	Resource Name	Assignment status	Assignment Date
Client	Amazon	Eng.Ahmed	Assigned	20/2/2021
Chent	7 Milazon	Al-Haffar	rissigned	
Advisor		Prof. Nidal Abu-	Assigned	20/2/2021
114 (1501		Hamdeh	1188181164	
Project manger	King Abdulaziz University	Faris Abdullah Al-	Assigned	20/2/2021
1 Toject manger		Ghmadi	1100181100	
Team members		Sultan Mohammed	Assigned	20/2/2021
		Mizjaji		
		Sameer Abdulaziz	Assigned	20/2/2021
		Almarghalani		
		Ibrahim Khaled	Assigned	20/2/2021
		Al-Zahrani		
		Jayez Fayez Al-Rashidi	Assigned	20/2/2021
		Ahmed Jamal Al-Harbi	Assigned	20/2/2021
		Abdulrahman Fahad	Assigned	20/2/2021
		Al-Ghamdi	- 200181104	

2.3.4 Responsibilities

The generic responsibilities for each role identified.

Project Sponsor

- Defining the vision and high-level objectives for the project
- Approving the requirements, timetable, resources and budget

- Authorizing the provision of funds / resources (internal or external)
- Approving the project plan and quality plan
- Ensuring that major business risks are identified and managed
- Approving any major changes in scope
- Receiving Project Review Group minutes and acting accordingly
- Resolving issues escalated by the Project Manager / Project Review Group
- Ensuring business / operational support arrangements are put in place
- Ensuring the participation of a business resource (if required)
- Providing final acceptance of the solution upon project completion. ©

Project Advisor

- Assisting the Project Sponsor with the definition of the project vision and objectives
- Undertaking Quality Reviews prior to the completion of each project milestone
- Ensuring that all business risks are identified and managed accordingly
- Ensuring conformance to the standards and processes identified in the Quality Plan
- Ensuring that all appropriate client/vendor contractual documentation is in place prior to
- The initiation of the project.

Project Manager

- Documenting the detailed Project Plan and Quality Plan
- Ensuring that all required resources are assigned to the project and clearly tasked
- Managing assigned resources according to the defined scope of the project
- Implementing the following project processes: time / cost / quality / change / risk / issue.
- procurement / communication / acceptance management
- Monitoring and reporting on project performance (re: schedule, cost, quality and risk)
- Ensuring compliance with the processes and standards outlined in the Quality Plan

- Reporting and escalating project risks and issues
- Managing project interdependencies
- Making adjustments to the detailed plan as necessary to provide a complete picture of
- the progress of the project at any time.

Project Team Member

- Undertaking all tasks allocated by the Project Manager (as per the Project Plan)
- Reporting progress of the execution of tasks to the Project Manager on a frequent basis
- Maintaining all documentation relating to the execution of allocated tasks
- Escalating risks and issues to be resolved by the Project Manager.

2.3.5 Structure

Showing everyone involved in the project and his title job.

Figure 7 Structure of group members

2.4 Project Plan

2.4.1 Project Approach

Describe the approach to be taken to implement each of the phases within the project.

Table 23 Project approach

Phase	Approach
Initiation	When the team receive the project statement from the clint they set meeting with the advisor as first meeting for the project.
Planning	Know every week we will be meeting to discuss the progress and making sure of that we are moving with the schedule and making Gantt chart to make easier to monitor the progress. Checking that the materials and toles are available in the market and having the business case.
Execution	The project is divided into stages. Once finishing the first stage then we start the second and we might start more than one stage if they do not depend on each other. This phase also includes the BOM, technical drawings and details of the project along with calculation sheets.
Closure	Subedited the final report and the artifact and present the product to the client.

2.4.2 Overall Plan

This part provides our plan's outlining with the main and sub tasks and the duration of them.

Figure 8 Gantt chart

Table 24 Overall plan

Task Name	Start	Finish	
Planning	(Sun) 20/2/2021	(Thu) 25/2/2021	
Business Case	(Sun) 20/2/2021	(Tue) 22/2/2021	
Project Charter	(Tue) 23/2/2021	(Wen) 25/2/2021	
Quality Function Deployment	(Wen) 23/2/2019	(Wen) 24/2/2021	
Technical Design	(Sun) 28/2/2021	(Thu) 11/3/2021	
Design Calculations	(Sun) 28/2/2021	(Wen) 3/3/2021	
Drawing the Parts	(Thu) 4/3/2021	(Sun) 7/3/2021	
Simulation analysis	(Mon) 8/2/2021	(Thu) 11/3/2021	
Project Closure	(Sat) 13/3/2021	(Thu) 18/3/2021	
Prepare the final report	(Sat) 13/3/2021	(Tue) 16/3/2021	
Prepare the final presentation	(Tue) 16/3/2021	(Thu) 18/3/2021	
Prepare the poster	(Tue) 16/3/2021	(Wen) 17/3/2021	
Submit the project	(Thu) 1	8/3/2021	

2.4.3 Milestones

The table below shows the major stages and when to be accomplished

Table 25 Project milestones

Milestone	Date	Description	
Requirements Review	20/2/2021	Review the problem and identify the requirements	
Business Case, Project Charter and QFD	25/2/2021	 The business case defines the problem and gives alternatives for the solutions and choose the best one. The project charter describes the project plan and the approach of the team. QFD helps to improve the design to suit the client's needs. 	
Design calculations and analysis	4/3/2021	This stage assure that our design is safe and will no fail.	
Parts drawing 11/3/2021 will be drawn and		All the parts included in the design will be drawn and presented with details drawing sheets	
Final report submission and presentation	18/3/2021	Submitting the report and presenting all what we accomplished.	

2.4.4 Resource

Listing the date started and percentage of work been done by each team member.

Table 26 Project resources

Member	Start Date	End Date	% Effort
Faris Abdullah al-Ghmadi	21/2/2021	14/3/2021	100%
Sultan Mohammed Mizjaji	21/2/2021	14/3/2021	100%
Sameer Abdulaziz Almarghalani	21/2/2021	14/3/2021	100%
Ibrahim Khaled Al-Zahrani	21/2/2021	14/3/2021	100%
Jayez Fayez Al-Rashidi	21/2/2021	14/3/2021	100%
Ahmed Jamal Al-Harbi	21/2/2021	14/3/2021	100%
Abdulrahman Fahad Al-Ghamdi	21/2/2021	14/3/2021	100%

2.4.5 Financial Plan

In the table below shows what is our financial plan for the project.

Table 27 Project's financial plan

Category	Cost	Value	Budgeted
People	Salaries of project staff	8000 SAR	No
People	Salaries of installation and operation	1700 SAR	Yes

	Electric motor	2200 SAR	Yes
	Shafts	300 SAR	Yes
	Physical Bearings Housing		Yes
Physical			Yes
	Design equipment (software)	350 SAR	Yes
	Bevel gears	300 SAR	Yes
	Spur gears	100 SAR	Yes
	Total	14050 SAR	

2.4.6 Quality Plan

This part demonstrates how we ensure the success of this project.

Table 28 Project quality plan

Process	Description		
Quality management	All standards parts must be bought from the local market.		
Risk management	Plans must be prepared in case of emergencies.		
Issues management	Problems occur during the project must be solved immediately not later.		
Document management	Regular progress documentation is a must during the project.		
Acceptance management	Identify all tasks of the project and look out for the time to finish on time.		
Financial management	Register every expense to calculate the cost perfectly.		
Timesheet management	Using MS Project to monitor the progress of the project perfectly.		

Project Reporting	All the progress must be submitted to the advisor.
Project Communication	Communication will be through our WhatsApp and by online meeting via Zoom or MS Teams.

2.5 Project Consideration

2.5.1 Risks

Risks are any problem that will happen in future, and it is important to know the risks of your design before you make your own decision.

Table 29 Project's risks

Description	Likelihood	Impact	Mitigating Actions
Gears Corrosion problem	Low	High	Coating the system with anti-corrosion spray
Premature teeth wear	Low	High	Keeping the gears lubricated
Shaft problems (misalignment)	Medium	High	Eliminate the error by the advisor guide

2.5.2 Issues

Issues are any problem that will happen currently in this alternative, and the different between the issues and risks that the issue will happen currently. On the other hand, they are similar in the importantly.

Table 30 Project's issues

Description	Priority	Resolution Actions	
Difficulties in MIT program	High	Learn the MIT Program and try to validate with the hand calculation	
Required to manufacture an internal tooth gear	High	Schedule the manufacture time	
Some components might not be available in the local market	High	Order the components from international market as soon as possible	

2.5.3 Assumptions

The major assumptions associated with the adoption of the conceptual design include:

- 1. All parts that need to be selected are standardized available in the local or international market.
- 2. Prices of raw materials and needed parts will not increase during this project.
- 3. There will be no legislative, businesses strategy or policy changes during this project.

2.5.4 Constrains

List of the major constraints identified with the project to date.

- The gear box should not consume power more than 5 kw.
- The output angular velocity should be 45 rpm.
- Deliver the product safely without any damage.

3. QFD

4. Design Analysis

Now we will start designing the parts for our gearbox and it will cover five main sections which are motor selection, gear design, shaft design, bearings selection and finally keys design.

Motor selection

At first, we need to specify the needed power P_{needed} to run this gearbox and give an output of 5 kW. And we will use the following formulas to calculate the needed power.

$$P_{req} = \frac{P_{out}}{(n_{bearing})^{n1} \times (n_{gear})^{n2}}$$
(1)

where.

n_{bearing}: is the bearing efficiency

n_{gear}: is the gear efficiency

 n_1 : is the number of bearings

n₂: is the number of gear stages

$$P_{req} = \frac{5}{0.99^8 \times 0.95^3}$$
$$P_{req} = 6.32 \, kW$$

$$P_{needed} = \frac{P_{req}}{0.85} (2)$$
$$P_{needed} = \frac{6.32}{0.85}$$

$$P_{needed} = 7.44 \ kW$$

Gear Design

Stage 1 Bevel Gear

First, we need to find the dimensions of both pinion and gear, which will help us in force and stress analysis for the bevel gears. All formulas were from

Assume

Module m = 3 mm

Pinion number of teeth $N_p = 20$ teeth

Gear ratio i = 5

Pitch diameter of pinion:

$$d_p = m \times N_p (3)$$
$$d_p = 3 \times 20$$
$$d_p = 60 mm$$

Number of teeth for gear:

$$\frac{N_g}{N_p} = \frac{d_g}{d_p} = i (4)$$

$$N_g = N_p \times i$$

$$N_g = 20 \times 5$$

$$N_g = 100 \text{ teeth}$$

Pitch diameter of gear:

$$d_g = m \times N_g (5)$$

$$d_g = 3 \times 100$$

$$d_g = 300 mm$$

Pitch angle of pinion:

$$\delta = \tan^{-1} \frac{d_p}{d_g} (6)$$

$$\delta = \tan^{-1} \frac{60}{300}$$

$$\delta = 11.31^{\circ}$$

Pitch angle of gear:

$$\Gamma = \tan^{-1} \frac{d_g}{d_p} (7)$$

$$\Gamma = \tan^{-1} \frac{300}{60}$$

$$\Gamma = 78.69^{\circ}$$

This condition validates our solution:

$$\Gamma + \delta = 90^{\circ}$$

Diametric pitch:

$$P_d = \frac{N_g}{d_g} (9)$$

$$P_d = \frac{100}{300}$$

$$P_d = \frac{1}{3} mm$$

Whole depth of tooth:

$$h_t = \frac{2.188}{P_d} + 0.002 (10)$$
$$h_t = \frac{2.188}{0.333} + 0.002$$

$$h_t = 6.566 \, mm$$

Working depth of tooth:

$$h_k = \frac{2}{P_d} (11)$$

$$h_k = \frac{2}{0.333}$$

$$h_k = 6 mm$$

Clearance:

$$C = \frac{0.188}{P_d} + 0.002 (12)$$

$$C = \frac{0.188}{0.333} + 0.002$$

$$C = 0.566 \, mm$$

Addendum gear:

$$ag = \frac{0.54}{P_d} + \frac{0.46}{P_d \times \left(\frac{N_g}{N_p}\right)^2}$$
 (13)

$$a_g = \frac{0.54}{0.333} + \frac{0.46}{0.333 \times (5)^2}$$

$$a_g = 1.6752 \ mm$$

Addendum pinion:

$$a_p = h_k - a_g(14)$$

$$a_p = 6 - 1.6752$$

$$a_p = 4.325 \ mm$$

Outside diameter gear:

$$O_{d \ gear} = d_g + 2 \times a_g \cos \Gamma$$
 (15)
$$O_{d \ gear} = 300 + 2 \times 1.6752 \times \cos 78.69^{\circ}$$

$$O_{d \ gear} = 300.627 \ mm$$

Outside diameter pinion:

$$O_{d \text{ pinion}} = d_p + 2 \times a_p \cos \delta \text{ (16)}$$

$$O_{d \text{ gear}} = 60 + 2 \times 4.325 \times \cos 11.31^{\circ}$$

$$O_{d \text{ gear}} = 68.482 \text{ mm}$$

Outside cone diameter:

$$OCD = \frac{d_g}{2\sin\Gamma} \ (17)$$

$$OCD = \frac{300}{2\sin 78.69^{\circ}}$$

$$OCD = 152.97 \ mm$$

Face width:

$$F \le \frac{10}{P_d} \ (18)$$

$$F \le \frac{10}{\frac{1}{3}}$$

$$F \le 30 mm$$

Mean radius for pinion:

$$r_m = \frac{d_p}{2} + \frac{F}{2} \sin \delta \tag{19}$$

$$r_m = \frac{60 - 30}{2} \sin 11.31^\circ$$

$$r_m = 27.058 \ mm$$

Mean radius for gear:

$$R_m = \frac{d_g}{2} \frac{\overline{F}}{7} \sin \Gamma (20)$$

$$R_m = \frac{300 - 30}{2} \sin 78.69^\circ$$

$$R_m = 135.29 \ mm$$

Torque on pinion [4]:

$$T_p = \frac{P}{\left(\frac{2\pi}{60} \times n_p\right)} \tag{21}$$

$$T_p = \frac{\frac{7.44 \times 1000}{\left(\frac{2\pi}{60} \times 1800\right)}$$

$$T_p = 39.47 \ N. m$$

Tangential force on pinion [4]:

$$W_{tp} = \frac{T_p}{r_m} (22)$$

$$W_{tp} = \frac{39.47}{27.058}$$

$$W_{tp} = 1.315$$
 (N)

Assume the pressure angle as $\theta = 20^{\circ}$

Radial force on pinion [4]:

$$W_{rp} = W_{tp} \times \tan \vartheta \times \cos \delta$$
 (23)

$$W_{rp} = 1.315 \times \tan 20^{\circ} \times \cos 11.31^{\circ}$$

$$W_{rp} = \underline{W_{rq}} = 0.5206 \text{/N}$$

Axial force on pinion [4]:

$$W_{xp} = W_{tp} \times \tan \vartheta \times \sin \delta \ (24)$$

$$W_{xp} = 1.315 \times \tan 20^{\circ} \times \sin 11.31^{\circ}$$

$$W_{xp} = W_{xp} = 0.10412 N$$

The resultant force on the pinion:

$$W = \sqrt{W_{tp}^2 + W_{rp}^2 + W_{xp}^2}$$
 (25)

$$W = \sqrt{1.315^2 + 0.5206^2 + 0.10412^2}$$

$$W=1.55$$

Now we will begin with stress analysis section. First, we will calculate the contact stress σ_H to get the contact factor of safety and check if our design is safe or not. We will use the following formula to get σ_H , this law was from Shigley's Mechanical Engineering Design [4].

$$\sigma_H = Z_E \left(\frac{1000 \times W^t}{b \times d \times Z_I} K_A K_v K_{HB} Z_x Z_{xc} \right)^{1/2} (26)$$

First assume the material as steel carburized Grade 1 with allowable contact stress of

 $\sigma_{H \ all} = 1380 \ MPa$

Overload Factor K_A

Assume this value as $K_A = 1$ since the load is uniform.

Dynamic Factor K_v

$$K_{v} = \left(\frac{A + \sqrt{200 \cdot v_{et}}}{A}\right)^{B} (27)$$

$$v_{et} = 5.236 \cdot (10^{-5}) \cdot d_p \cdot \mathbf{n}$$

$$v_{et} = 5.236 \times 10^{-5} \times 60 \times 1800$$

$$V_{et} = 5.655 \, m/s$$

$$B = 0.25(12 - Q_v)^{2/3}$$

$$Q_v = 5$$

$$B = 0.25(12 - 5)^{2/3}$$

$$B = 0.9148$$

$$A = 50 + 56 \cdot (1 - B)$$

$$A = 50 + 56 \cdot (1 - 0.915)$$

$$A = 54.77$$

$$K_{\nu} = \left(\frac{54.77 + \sqrt{200 \times 5.655}}{54.77}\right)^{0.9148}$$

$$K_{\nu} = 1.55$$

Size Factor Z_x

Assume:

Since the face width of our gears are assumed as 30mm the following formula will be 15-9 used:

$$Z_x = 0.00492 \cdot F \pm 0.4375$$

 $Z_x = 0.00492 \times 30 \pm 0.4375$
 $Z_x = 0.59$

Load-distribution Factor K_{HB}

Assume
$$K_{mb} = 1$$

$$K_{HB} = K_{mb} + 5.6 \times 10^{-6} \times b^{2}$$
 (28)
 $K_{HB} = 1 + 5.6 \times 10^{-6} \times 30^{2}$
 $K_{HB} = 1.005$
ed teeth $Z_{xc} = 1.5$

$$K_{HB}=1.005$$

Assume for properly crowned teeth $Z_{xc} = 1.5$

The material is steel, so the value of $Z_E = 190$

From figure 15-6 in Shigley's Mechanical Engineering Design [4].

$$Z_I = 0.0958$$

$$\sigma_H = 190 \left(\frac{1000 \times 1.31479}{30 \times 60 \times 0.0958} \times 1 \times 1.55 \times 1.005 \times 0.59 \times 1.5 \right)^{1/2}$$

$$\sigma_{H} = 616.21 \, \text{Mpa}$$

Assume the number of load cycles $n_L = 10^9$

Stress-cycle for pitting resistance Z_{NT}

$$Z_{NT} = 3.4822 \times n_L^{-0.0602} = 1.001$$

$$Z_{NT} = 1.001$$

Hardness Ration Factor Z_W

$$Z_W = 1$$

Reliability Factor Z_z

Assume reliability R = 99.9

$$Y_z = 0.5 - 0.25 \log(1 - R) = 1$$

 $Y_z = 0.5 - 0.25 \log(1 - 99.9) = 1$
 $Z_z = \sqrt{Y_z}$
 $Z_z = \sqrt{1} = 1$

Substitute in the following equation to get the contact factor of safety S_H

$$\sigma_{H} = \frac{\sigma_{H \ all} \times Z_{NT} \times Z_{w}}{S_{H} \times K_{\theta} \times Z_{z}}$$
(30)
$$641.4 = \frac{1380 \times 1.001 \times 1}{S_{H} \times 1 \times 1}$$

$$S_{H} = 2.24$$

As seen from the factor of safety our design was safe, but it is too safe for our standards.

The following equation is for the bending stress σ_F on the gears [4].

$$\sigma_F = \frac{1000 \times W^t}{6} \times \frac{K_A \times K_V \times Y_X \times K_{HB}}{m \times Y_B \times Y_J}$$
(31)

Size Factor for bending Y_X

$$Y_X = 0.4867 + 00.08339 \cdot \underline{m_{et}}$$

$$Y_X = 0.4867 + 00.08339 \times \underline{3}$$

$$Y_X = 0.5117$$

Lengthwise Curvature Factor for Bending Y_B

$$Y_B = 1$$
 for straith bevel gears

$$Y_J = 0.23$$

$$\sigma_F = \frac{1000 \times \frac{1.31479 \times 1 \times 1.55 \times 0.5117 \times 1.005}{30 \times 3 \times 1 \times 0.23}$$

$$\sigma_F = 50.61 \, Mpa$$

$$\sigma_{FP} = \frac{\sigma_{F\ all} \times Y_{NT}}{S_F \times K_\theta \times Y_z}$$
 (32)

According to our material this is the value for the allowable stress for bending

$$\sigma_{Fall} = 205 Mpa$$

Stress cycle factor for bending stress Y_{NT}

$$Y_{NT} = 1.3558 \times n_L^{-0.0178}$$

$$Y_{NT} = 0.9375$$

$$50.61 = \frac{205 \times 0.9375}{S_F}$$

$$S_F = 3.797$$

The same here bending factor of safety it is very safe and that is expensive to accomplish.

Stage 2 Spur Pinion

Assume module m = 2 mm

Gear ratio i = 4

Assume Number of teeth for pinion $N_p = 18$ teeth

Number of teeth for gear $N_g = 72 \ teeth$

Pitch diameter of the pinion $d_p = 36 \ mm$

Pitch diameter of the gear $d_g = 144 \ mm$

Diametric pitch

$$P_d = \frac{N_g}{d_g}$$

$$P_d = \frac{1}{2}$$

The tangential force on the gears

$$W^t = \frac{60000 \times 7435}{\pi \times 36 \times 360}$$

$$\frac{W^t}{} = 10.96 \, kN$$

The radial force on the gears

Assume pressure angle $\theta = 20^{\circ}$

$$W_r = W_t \times \tan \vartheta$$

$$W_r = 10.96 \times \tan 20^\circ$$

$$\frac{W_r}{W_r} = 3.99 \, kN$$

Assume face width b = 25 mm

Assume overload factor $k_o = 1$

Dynamic Factor k_v

$$k_{v} = \left(\frac{A + \sqrt{200 \cdot v_{et}}}{A}\right)^{B}$$

$$V = \frac{d}{2} \times \frac{2\pi}{60} \times n$$

$$V = 0.6785 \, \frac{m}{s}$$

$$B = 0.25(12 - Q_{v})^{2/3}$$

$$Q_{v} = 7$$

$$B = 0.25(12 - 7)^{2/3}$$

$$B = 0.73$$

$$A = 50 + 56 \cdot (1 - B)$$

$$A = 50 + 56 \cdot (1 - 0.73)$$

$$A = 65.064$$

$$K_{v} = \left(\frac{65.064 + \sqrt{200 \times 5.655}}{65.064}\right)^{0.73}$$

$$K_{v} = 1.12775$$

Assume the size factor as $K_s = 1$

Load-distribution factor K_H

$$K_{H} = 1 + C_{mc}(C_{pf}C_{pm} + C_{ma}C_{e})$$

$$C_{mc} = 1$$

$$C_{pf} = \frac{F}{10d_{p}} - 0.025$$

$$C_{pf} = 0.044$$

$$C_{pm} = 1$$

$$C_{ma} = A + BF + CF^{2}$$

$$C_{ma} = 0.1423$$

$$C_e = 1$$

$$K_H = 1 + 1 \times (0.0444 \times 1 + 0.1423 \times 1)$$

$$K_H = 1.1867$$

Surface Condition Factor Z_R assume as:

 $\frac{\varphi \sin \varphi}{2m_N} \times \frac{m_G}{m_G + 1}$ $\frac{20 \sin 20}{m_G} = \frac{\sqrt{3}}{\sqrt{3}}$

Surface strength geometry factor Z_I

$$Z_{I} = \frac{\cos \varphi \sin \varphi}{2m_{N}} \times \frac{m_{G}}{m_{G} + 1}$$

$$Z_{I} = \frac{\cos 20 \sin 20}{2} \times \frac{4}{4 + 1}$$

$$Z_{I} = 0.12856$$

The Elastic Coefficient Z_E since we use steel gears, we pick it as follows:

$$Z_E = 191\sqrt{Mpa}$$
 $|Y - Z|$

Now we substitute in the stress contact formula to get the stress [14]:

$$\sigma_{c} = Z_{E} \left(\frac{K_{H}K_{s}K_{v}K_{o}Z_{R}W^{t}}{bd_{w}} Z_{I} \right)^{1/2}$$
(33)
$$\sigma_{c} = 191 \times \left(\frac{1.1867 \times 1.1278 \times 1 \times 1 \times 1 \times 10960}{25 \times 36 \times 0.12856} \right)^{1/2}$$

$$\sigma_{c} = 2150.56 \, Mpa$$
ASTM 48 gray cast iron Class 40 with $H_{B} = 201$

Allowable Contact stress S_c

$$S_c = 2.22 \times 201 + 200$$

$$S_c = 646 Mpa$$

$H_{ardness-ratio}$ Factor Z_w

Assume it as
$$Z_w = 1$$

Stress cycle factor Z_N

Assume
$$N = 10^8$$

$$Z_N = 1.4488N^{-0.023}$$

$$Z_N = 0.9484$$

Reliability Factor Yz

Assume reliability =0.99

$$Y_z = 1$$

Temperature factor Y_{θ} for temperatures under 120°C assume as [4]:

$$Y_{\theta} = 1$$

Now substitute in this equation to find the factor of safety for contact stress:

$$\sigma_{c \ all} = \frac{S_c \times Z_N \times Z_w}{S_H \times Y_\theta \times Y_z}$$
(34)
$$\frac{1195.42}{S_H \times 1 \times 1} = \frac{646 \times 0.9484 \times 1}{S_H \times 1 \times 1}$$

$$S_H = 0.5$$

As seen from the factor of safety our design is not safe at all and need modification.

Now we will calculate the bending stress, and the formula for it is as shown below [4].

$$\sigma_{bending} = W^t K_s K_V K_o \times \frac{1}{bm_t} \times \frac{K_H K_B}{Y_J}$$
 (35)

Bending stress geometry factor Y_J , we bring this factor from figure 14-6 in Shigley's Mechanical Engineering Design [4].

$$Y_I = 0.32$$

Rim thickness factor K_B , it will be 1 since we use the same material in pinion and gear.

$$K_B=1$$

$$\sigma_{bending} = 10960 \times 1.1279 \times 1 \times \frac{1}{25 \times 2} \times \frac{1.1867 \times 1}{0.32}$$

$$\sigma_{bending} = 917 Mpa$$

In this equation we can find the factor of safety for bending stress [4].

$$\sigma_{all} = \frac{S_t \times Y_N}{S_F \times Y_\theta \times Y_Z}$$
 (36)

Allowable bending stress S_t

$$S_t = 0.533 \times 201 + 88.3$$

$$S_t = 195 MPa$$

Stress cycle factor Y_N

$$Y_N = 1.3558 N^{-0.0178}$$
 $Y_N = 0.976$

Now substitute in equation (36) to find the factor of safety:

$$283.28 = \frac{195 \times 0.976}{S_F \times 1 \times 1}$$

$$S_F=0.208$$

Stage 3 Spur Pinion

This stage has the same process as stage 2 so we will be quick in here will not elaborate much.

Assume module m = 2 mm

Speed n = 90 RPM

Gear ratio i = 2

Assume Number of teeth for pinion $N_p = 17$ teeth

Number of teeth for gear $N_g = 34 teeth$

Pitch diameter of the pinion $d_p = 34 \ mm$

Pitch diameter of the gear $d_g = 68 \ mm$

Diametric pitch

$$P_d = \frac{N_g}{d_g}$$

$$P_d = \frac{1}{2}$$

The tangential force on the gears

$$P = \frac{\pi d}{N}$$

$$P=2\pi$$

Assume face width b = 25 mm

$$W^t = \frac{60000 \times 7435}{\pi \times 34 \times 90}$$

$$W^t = 46404.59 N$$

Assume overload factor $k_o = 1$

Dynamic Factor k_v

$$k_{v} = \left(\frac{A + \sqrt{200 \cdot v_{et}}}{A}\right)^{B}$$

$$B = 0.25(12 - Q_{v})^{2/3}$$

$$Q_{v} = 7$$

$$B = 0.731$$

$$A = 50 + 56 (1 - B)$$

$$A = 65.064$$

$$V = \frac{d}{2}w$$

$$V = 0.16022 \, \frac{m}{s}$$

$$K_{v} = 1.063$$

Assume the size factor as $K_s = 1$

Load-distribution factor K_H

$$K_{H} = 1 + C_{mc} (C_{pf} C_{pm} + C_{ma} C_{e})$$

$$C_{mc} = 1$$

$$C_{pf} = \frac{F}{10 d_{p}} - 0.025$$

$$C_{pf} = 0.0338$$

$$C_{pm} = 1$$

$$C_{ma} = 1 + A + BF + CF^{2}$$

$$C_{ma} = 0.1394$$

$$C_{e} = 1$$

$$K_{H} = 1 + (0.0338 + 0.1394)$$

$$K_{H} = 1.1732$$

Surface Condition Factor Z_R assume as:

$$Z_R = 1$$

Surface strength geometry factor Z_I

$$Z_I = \frac{\cos \varphi \sin \varphi}{2m_N} \times \frac{m_G}{m_G + 1}$$
$$Z_I = 0.1071$$

The Elastic Coefficient \mathbb{Z}_E since we use steel gears, we pick it as follows:

$$Z_E = 163 \sqrt{Mpa}$$

Now we substitute in the stress contact formula to get the stress [14]:

$$\sigma_c = 163 \sqrt{\frac{46404.59 \times 1.063 \times 1.1732}{34 \times 20 \times 0.1071}}$$

$$\sigma_c = 4594.85 \text{ MPa}$$

ASTM 48 gray cast iron Class 40 with $H_B = 201$

Allowable Contact stress S_c

$$S_c = 2.22 \times 201 + 200$$

$$S_c = 646.22 \text{ MPa}$$

Hardness-ratio Factor Z_w

Assume it as $Z_w = 1$

Stress cycle factor Z_N

Assume
$$N = 10^8$$

$$Z_N = 1.4488N^{-0.023}$$

$$Z_N = 0.9484$$

Reliability Factor Yz

Assume reliability =0.99

$$Y_z = 1$$

Temperature factor Y_{θ} for temperatures under 120°C assume as [4]:

$$Y_{\theta} = 1$$

Now substitute in this equation to find the factor of safety for contact stress:

$$\sigma_{c \, all} = \frac{S_c \times Z_N \times Z_w}{S_H \times Y_\theta \times Y_z}$$
(34)
$$S_H = \frac{646.22 \times 0.9484}{4594.85}$$
$$S_H = 0.133$$

Here we got even smaller factor of safety than the previous stage, it is not safe at all

Now we will calculate the bending stress, and the formula for it is as shown below [4].

$$\sigma_{bending} = W^t K_S K_V K_o \times \frac{1}{bm_t} \times \frac{K_H K_B}{Y_I}$$
 (35)

Bending stress geometry factor Y_J , we bring this factor from figure 14-6 in Shigley's Mechanical Engineering Design [4].

$$Y_I = 0.295$$

Rim thickness factor K_B , it will be 1 since we use the same material in pinion and gear.

$$K_R = 1$$

$$\sigma_b = 4904.382 \, Mpa$$

In this equation we can find the factor of safety for bending stress [4].

$$\sigma_{all} = \frac{S_t \times Y_N}{S_F \times Y_\theta \times Y_z}$$
 (36)

Allowable bending stress S_t

$$S_t = 0.533 \times 201 + 88.3$$

 $S_t = 195 MPa$

Stress cycle factor Y_N

$$Y_N = 1.3558 \, N^{-0.0178}$$
$$Y_N = 0.976$$

Now substitute in equation (36) to find the factor of safety:

$$S_f = \frac{195 \times 0.976}{4904.382}$$
$$S_f = 0.039$$

This factor of safety is acceptable at all, and we will try and modify it in the MITCalc section.

MITCalc Gears

After we made hand calculations for each pinion in all stages, we used MITCalc to redo the calculations again and address the mistakes we made before.

Stage 1 Bevel

After we failed to obtain a suitable factor of safety in hand calculations, we managed here find out the mistake we made before. We found that the number of teeth were too small to withstand the load on the gears, we increased them and acquired the proper numbers for factors of safeties.

Figure 9 MITCalc Stage 1

Stage 2 Spur

The same here with stage 2 gears, we increased the number of teeth and got nearly the required factor of safety which are 1.5 contact factor of safety and 2 for bending factor of safety.

Figure 10 MITCalc Stage 2

Stage 3 Spur

The main problem for all of our gears design was the number of teeth for the gears which will affect the diameter and by that affect the stresses for bending and contact. Here we increased the number of teeth which increased the diameter and reduced the stresses.

Figure 11 MITCalc Stage 3

Shaft Design

Now we will start the hand calculations of only the input shaft which is number 1. The rest of the shafts will be designed by using MITCalc software.

Shaft 1

Now we will start designing a suitable shaft by using hand calculations and the method we learned from Shigley's Mechanical Engineering Design [4]. We will use *DE-Goodman* [4] equation to find a suitable diameter "d" for our shaft.

$$d = \left(\frac{16n}{\pi} \left\{ \frac{1}{S_e} \left[4(K_f M_a)^2 + 3(K_{fS} T_a)^2 \right]^{\frac{1}{2}} + \frac{1}{S_{ut}} \left[4(K_f M_m)^2 + 3(K_{fS} T_m)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$
(37)

To use DE-Goodman equation, we need to find the values to substitute in it. We will start with the value of the endurance limit S_e . Too find the endurance limit we have to use the Marine equation [4] as shown in the following formula.

$$S_e = k_a \cdot k_b \cdot k_c \cdot k_d \cdot k_e \cdot k_f \cdot S_e' \quad (38)$$

Where,

 k_a is the surface modification factor

 k_b is size modification factor

 k_c is load modification factor

 k_d is tempretaure modification factor

 k_e is reliability factor

 k_f is miscellaneous — effects modification factor

 S_e' is rotary — beam test speciman endurance limit

Surface Factor k_a

To get the surface factor we must use the following equation [4].

$$k_a = a \cdot S_{ut}^b$$
 (39)

To get the ultimate tensile strength S_{ut} assume the material of the shaft as G10500 CD with $S_{ut} = 690 \, MPa$. As for the values of "a" and "b" we can get them from (Table 6-2) for the cold drawn surface finish [4].

$$a = 4.51$$
, $b = -0.265$
 $k_a = 4.51 \times 690^{-0.265}$

$$k_a = 0.797$$

Size Factor k_b

Since the size factor depends on the diameter of the shaft and it is unknown, we will assume it as:

$$\frac{k_b}{k_b} = 0.9$$

Load Factor k_c

Since we have combined loading of bending and torsion on the shaft the value of the load factor will be [4]:

$$k_c = 1$$

Temperature Factor k_d

Assume this factor as

$$k_d = 1.$$

Reliability Factor ke

$$k_e = 1 - 0.08 \cdot z_a$$
 (40)

To get the value of z_a we assume a reliability of 99.9%, then from (Table 6-5) we get z_a as:

$$z_a = 3.091$$

$$k_e = 1 - 0.08 \times 3.091$$

$$k_e = 0.753$$

Miscellaneous-effect Factor k_f

The value of this factor has not been established yet, so we will put it as [4]:

$$k_f = 1$$

Rotating-beam Specimen S'_e

Since the value of S_{ut} is less than 1400 MPa, we use the following equation:

$$S_e' = 0.5 \cdot S_{ut} (41)$$

$$S_e' = 0.5 \times 690$$

$$S_e' = 345 MPa$$

After finding all the necessary factors we substitute in the endurance limit equation:

$$\underline{S_e} = 0.797 \times 0.9 \times 1 \times 1 \times 0.753 \times 1 \times 345$$

$$S_e = 186.34 \, MPa$$

Stress Concentrations Factors K_f , K_{fs}

 K_f and K_{fs} are the fatigue stress-concentration factors for bending and torsion, respectively. These two factors depend on the diameter of the shaft, so we will assume their values according to our experience.

$$K_f = 1.4$$
 $K_{fs} = 1.25$

Shaft Force Analysis

We will assume the length of the shaft as 300mm to help us calculate the necessary forces and reactions. Since we have a completely reversed stress on the shaft the values of the mean bending moment " M_m " and the amplitude torsion " T_a " are equal to zero.

First, we will find the mean torsion " T_m " using the following formula from Shigley's Mechanical Engineering Design [4].

$$T_m = \frac{P}{\omega} = \frac{P}{\frac{2\pi}{60} \times n} (42)$$

$$T_m = \frac{7435 \times 10^3}{\frac{2\pi}{60} \times 1800}$$

$$T_m = 39444 N \cdot m$$

Then we calculated the reactions to find the maximum bending moment applied on the shaft " M_a ". The gear is placed at point C and the reactions are at A and B.

xy-plane

Figure 12 Moment diagram xy-plane

We take moment about point A to find the reaction at B and A:

$$\sum M_A = 0 \to B_y \cdot (150) - 1232.7 \times 300 = 0$$

$$B_y = 2465.4 \, N \uparrow$$

$$A_y = B_y - W_t$$

$$A_y = 2465.4 - 1232.7$$

$$A_y = 1232.7 \, N \downarrow$$

From the moment diagram of XY-plane we can see the maximum moment location is at point B, and we can substitute by the following equation find its value:

$$M_{a_{xy}} = A_y \cdot (150)$$

$$M_{a_{xy}} = 1232.7 \times 150$$

$$M_{a_{xy}} = 184905 N \cdot mm$$

xz-plane

Figure 13 Moment diagram xz-plane

The same procedure will be done here to find " $M_{a_{xz}}$ ".

$$\sum M_A = 0 \to B_z \cdot (150) - 440 \times 300 = 0$$

$$B_Z = 880 N$$

$$A_Z = B_Z - 440$$

$$A_Z = 880 - 440$$

$$A_Z = 440 N$$

$$M_{a_{xz}} = A_Z \cdot (150)$$

$$M_{a_{xz}} = 440 \times 150$$

$$M_{a_{xz}} = 66000 N \cdot mm$$

After finding the bending moment about xy and xz planes, now we take the resultant between them:

$$M_a = \sqrt{M_{axy}^2 + M_{axz}^2}$$

$$M_a = \sqrt{184905^2 + 66000^2}$$

$$M_a = 196331 N. mm$$
(43)

Now substituting in *DE-Goodman* equation:

Assuming factor of safety:

$$n = 2.5$$

$$d = \left(\frac{16 \times 2.5}{\pi} \left\{ \frac{1}{186.34} \times \left[4(1.4 \times 196331)^2 + 0 \right]^{\frac{1}{2}} + \frac{1}{690} \left[0 + 3(1.25 \times 39444)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$$

$$d = 22.32 \ mm$$

Take the diameter according to the standard so,

$$d = 25 mm$$

MITCalc Shafts

For each shaft we made shoulders for the gears to fix one side of the gear, the diameter of these shoulders were increased by 5mm of the whole shaft diameter.

Shaft 1

Here are the results of shaft 1 from the MITCalc software. As shown from the picture below our hand calculations for shaft1 were correct and came up with shaft diameter od 30mm the same as MITCalc.

Figure 14 MITCalc Shaft 1

Shaft 2

From the MITCalc we got a shaft diameter of 60mm with static factor of safety 17.57 and dynamic factor of safety 2.55.

Figure 15 MITCalc Shaft 2

Shaft 3

The base diameter of the third shaft is 90mm with factor of safeties of 12.25 and 2.58 for static and dynamic, respectively.

Figure 16 MITCalc Shaft 3

Shaft 4

As for the final shaft we got 90mm as base diameter and static factor of safety of 12.90 and dynamic factor of safety 2.65.

Figure 17 MITCalc Shaft 4

Bearings Selection

For selecting bearings, we made hand calculations only for one bearing, while the other bearings we used MITCalc software to select them.

Bearing for Shaft 1

This bearing must withstand both radial and axial loads, so for that we selected a tapered roller bearing because it is suitable for these two types of loads on bearings.

First assume the lifetime for the bearing in hours which is:

$$L_{10h} = 20000 \ hours$$

Then calculate the number of revolutions made by the bearing by the following formula:

$$L_{10} = \frac{60 \cdot n \cdot L10h}{10^6} \, (44)$$

$$L_{10} = \frac{60 \times 1800 \times 20000}{10^6}$$

 $L_{10} = 2160$ Millions of revolutions

Then we found the radial load F_r and the axial load F_a by using MITCalc software in force analysis section for shaft 1.

$$F_r = 2624 \, N$$
 $F_a = 88 \, N$

Then we find the value of ratio of axial load to radial load.

$$\frac{F_a}{F_r} = 0.0355$$

Choose bearing 30205 with bore diameter $d = 25 \, mm$ and e = 0.37 and compare between the value of "e" and " $\frac{F_a}{F_r}$ " and specifications as following [5]:

$$C = 38.1 \, kN$$
 $C_0 = 33.5 \, kN$

$$if\begin{cases} \frac{F_a}{F_r} \le e & \to P = F_r \\ \frac{F_a}{F_r} \ge e & \to P = XF_r + YF_a \end{cases}$$

$$0.0355 \le 0.37 \qquad \text{then,}$$

$$P = F_r = 2624 N$$

$$C' = P \cdot (L_{10})^{1/k} (45)$$

$$k = \frac{10}{3} \text{ for roller bearings}$$

$$C' = 2624 \times 10^{-3} \times (2160)^{\frac{1}{10/3}}$$

$$C' = 26.26 \text{ kN}$$

Since $C' \leq C$ we will see a bearing that has lower dynamic than this one, and bigger of equal to the value we obtained.

After looking into the table, we found bearing 32005X with C = 33.2 kN and this bearing is the most cost efficient.

MITCalc Bearings

In this section we found the suitable bearing for each shaft by using MITCalc software for bearings selection.

Bearing for Shaft 1

For this bearing we selected the bearing by hand calculations, after that we used the MITCalc to check whether our work is correct or not. After inserting the necessary data the software selected the same bearing that we came up with which is tapered roller bearing 32005-X with bore diameter of 25mm.

Figure 18 MITCalc Bearing for shaft 1

Bearings for Shaft 2

This shaft has axial forces so we will also pick tapered roller bearings for it. After using MITCalc we found that the two bearings here are the same which is 32911 with bore diameter of 55mm.

Figure 19 MITCalc Bearing for shaft 2

Bearings for Shaft 3

This shaft does not have any axial forces due to the use of spur gears, so we will use deep grove ball bearings for both bearings. We found that the two bearings are the same which is bearing 6017 with bore diameter of 85mm.

Figure 20 MITCalc Bearing for shaft 3

Bearings for Shaft 4

The two bearings used here have different diameters due to the shaft design, the first one is bearing 61918 with bore diameter 90mm, the second one is bearing 61917 with bore diameter 85mm.

Figure 21 MITCalc Bearing 1 for shaft 4

Figure 22 MITCalc Bearing 2 for shaft 4

Key Design

The key is an important element to transmit torque between the gear and the shaft. So, in this section we will talk about how to design a key for a gear and shaft.

Key for Shaft 1

In the beginning, we have to determine the shaft's diameter to help us select a size for the key.

The diameter of the first shaft is $d_1 = 25 \text{ mm}$. According to the standards we have to pick the size:

Key size:

 $w \times h$

 8×7

Where "w" is the width of the key and "h" is the key height.

Then we assume the key material as G10300 CD with $S_y = 390 MPa$

The next step is to find the minimum length of the key according to the bending and torsional moment by using the following formulas.

Length for Bending Moment

$$L_c = \frac{4 \cdot n \cdot T}{S_y \cdot h \cdot d} (46)$$

Length for Torsion

$$L_S = \frac{4 \cdot n \cdot T}{S_y \cdot w \cdot d} (47)$$

Where,

T is the torque on the key

n is the factor of safety assumed as = 3

d is the shaft's diameter

Now we substitute for equation

N. mm $L_c = \frac{4 \times 3 \times 39470}{390 \times 7 \times 25}$

$$L_c = 6.94 \ mm$$

Substitute in equation

$$L_{\parallel} = \frac{4 \times 3 \times 39470}{390 \times 8 \times 25}$$

$$L_{\parallel} = 6.07 \text{ mm}$$

 $L_{\rm p} = \frac{4\times3\times39470}{390\times8\times25}$ $L_{\rm p} = 6.07~mm$ Now, since we got the lengths for each case we will pick a length that is bigger than them and matching for key size standards.

$$L = 18 mm$$

Key for Shaft 2

The second key is on shaft 2 and we have to keys in this case and we will design the for both since the diameter and torque is the same.

Key size:
$$18 \times 11$$

$$L_c = \frac{4 \times 3 \times 197350}{390 \times 11 \times 60}$$

$$L_c = 9.2 \text{ mm}$$

$$L_s = \frac{4 \times 3 \times 197350}{390 \times 18 \times 60}$$

$$L_s = 5.6 \text{ mm}$$

Pick Length:

$$L = 20 mm$$

Key for Shaft 3

We will design the keys for shaft 3, and they will be the same.

Key size:
$$25 \times 14$$

$$L_c = \frac{4 \times 3 \times 789410}{390 \times 14 \times 90}$$

$$L_c = 19.3 \ mm$$

$$L_s = \frac{4 \times 3 \times 789410}{390 \times 25 \times 90}$$

$$L_s = 10.8 \ mm$$

Pick Length:

$$L = 32 mm$$

K<mark>ey</mark> for Shaft 4

On shaft 4 we have only one gear, so only on key for this part.

Key size:
$$25 \times 14$$

$$L_c = \frac{4 \times 3 \times 1578820}{390 \times 14 \times 90}$$

$$L_c = 38.6 \ mm$$

$$L_s = \frac{4 \times 3 \times 1578820}{390 \times 25 \times 90}$$

$$L_s = 21.6 \, mm$$

Pick Length:

$$L = 40 mm$$

Technical Drawings

In this part we will show you a drawing of our project that was chosen with the dimensions and measurements that were worked on above, and we will also show you the assembly and sub-assembly drawings and some parts of our drawing, and this part is very important for any engineer to know the dimensions of the drawing and how to understand the drawing better, and we drew the Figure below using Solid Work.

Figure 23 Bill of material for gearbox

Figure 24 Drawing sheet for gear

In this part, we have two pictures from the sheet drawing, the first image shows us the assembly, and in this sheet, there are parts have been created and have been merged together, and also there are Ball of Materials. Finally, explode view were made for the customer to see the details of this drawing, and in the second image, we have some of the parts that have been worked on.

Simulation

Structural mechanics solutions from ANSYS software provide the ability to Simulate every structural aspect of a product, including nonlinear static analysis that Provides stresses & deformations in addition to modal analysis that determines vibration characteristics. Using ANSYS software solutions, we will import geometries of complex assembly that was done using Solid works, to check the most critical points and parts in the design. ANSYS software was used to be certain that the system design is acceptable.

Figure 25 Yield strength in simulation

Project Impacts

Environmental Impact.

The environmental impact in this report is very important and must be presented for its importance. The speed reducer is placed in a wet environment, which may cause tool wear and affect the efficiency of the speed reducer.

Social Impact

Speed reducer will be a new product in the market due to its inexpensive tools. It will increase competition between firms and reduce prices of speed reducers. Our project design emits medium noise, so it will depend on where the speed reducer is placed.

Conclusion

First, the project objectives were to make a complete design of a three-stage speed reducer and there was a specific power should out of this gear box. We created an input rotational speed of 1800 rpm. The first shaft rotates with 1800 rpm. The next shaft rotates with 360 rpm. The third shaft rotates with 90 rpm and finally, the out shaft rotates with 45 rpm. And the input shaft has the bevel gear which will rotate the input shaft 90°

The speed reducer will consist of spur and bevel gears, it is cheap but makes some noise. A motor that has an output 5 kW has been used, also, 8 bearings.

The team gained experience during the implementation of the solution and new engineering skills. This project takes us 4 weeks to finish the whole design. We used solid work, Microsoft, and MIT calc to be sure of our calculation. At the end, we learnt a lot and gain more experience and skills that will help us in the future.

Recommendations

We will be listing some recommendations for added safety and quality:

- 1. We have required continuous maintenance throughout the project.
- 2. Do not exceed the maximum load during operation.
- 3. To be used by a professional worker as it requires specific skills.

References

- Wilcox L., and Coleman W., "Application of Finite Element to the Analysis of Gear Tooth Stresses", Journal of Engineering for Industry, Vol. 95, No. 4, pp. 1139 -1148, 1973.
- Elkholy A.H., "Tooth Load Sharing in High Contact Ratio Spur Gears", Journal of Mechanisms, Transmissions, and Automation in Design", Vol. 107, No. 1, pp. 11-16, 1985.
- 3. Mohanty S.C., "Tooth Load Sharing and Contact Stress Analysis of High Contact Ratio Spur Gears in Mesh", national Convention of Mechanical Engineers, Roukela, 2002
- 4. Shigley's mechanical engineering design. —Tenth edition / Richard G. Budynas, professor emeritus, Kate Gleason College of Engineering, Rochester Institute of Technology, J. Keith Nisbett, associate professor of mechanical engineering, Missouri University of Science and Technology

Appendix

Stage 1 Bevel

6.1	Number of teeth Pinion / Gear	_	Z	32	160	
6.2	Transverse module (outer, midle, inner)	met,mmt,mit	2.1305	2.0000	1.8695	[mm]
6.3	Normal module (outer, midle, inner)	men,mmn,min	2.1305	2.0000	1.8695	[mm]
6.4	Cone length (outer, midle, inner)	Re,Rm,Ri	173.819	163.169	152.519	[mm]
6.5	Pitch cone angle		δ	11.3099	78.6901	[°]
6.6	Addendum cone angle		δα	12.3211	79.0833	[°]
6.7	Dedendum cone angle		δf	10.7762	77.5385	[°]
6.8	Tip diameter (outer)		dae	74.194	341.354	[mm]
6.9	Tip diameter (midle)		dam	69.648	320.439	[mm]
6.10	Tip diameter (inner)		dai	65.102	299.524	[mm]
6.11	Pitch diameter (outer)		de	68.177	340.886	[mm]
6.12	Pitch diameter (midle)		dm	64.000	320.000	[mm]
6.13	Pitch diameter (inner)		di	59.823	299.114	[mm]
6.14	Root diameter (outer)		dfe	65.002	339.516	[mm]
6.15	Root diameter (midle)		dfm	61.019	318.713	[mm]
6.16	Root diameter (inner)		dfi	57.036	297.911	[mm]
6.17	Addendum angle		θ a	1.0112	0.3933	[°]
6.18	Dedendum angle		θf	0.5337	1.1516	[°]
6.19	Addendum (outer)		hae	3.0680	1.1931	[mm]
6.20	Addendum (midle)		ha	2.8800	1.1200	[mm]
6.21	Addendum (inner)		hai	2.6920	1.0469	[mm]
6.22	Dedendum (outer)		hfe	1.6192	3.4941	[mm]
6.23	Dedendum (midle)		hf	1.5200	3.2800	[mm]
6.24	Dedendum (inner)		hfi	1.4208	3.0659	[mm]
6.25	Normal pressure angle		αn	20.0	0000	[°]

Stage 2 Spur

6.1	Number of teeth Pinion / Gear	Z	42	168	
	Face width (Pinion / Gear)	b	34	33	[mm]
6.3	Normal module	mn	1.75		[mm]
6.4	Transverse module	mt	1.7500		[mm]
6.5	Circular pitch	р	5.498		[mm]
6.6	Transverse circular pitch	pt	5.498		[mm]
6.7	Base circular pitch	ptb	5.166		[mm]
6.8	Center distance (pitch)	a	183.7500		[mm]
6.9	Center distance (production)	av	183.7500		[mm]
6.10	Center distance (working)	aw	183.7500		[mm]
	Pressure angle	α	20.0000		[°]
6.12	Transverse pressure angle	αt	20.0000		[°]
	Pressure angle at the pitch cylinder	αwn	20.0000		[°]
6.14	Transverse pressure angle at the pitch cylinder	αwt	20.0000		[°]
6.15	Helix angle	β	0.00		[°]
6.16	Base helix angle	βb	0.0000		[°]
6.17	Tip diameter	da	77.0000	297.5000	[mm]
6.18	Reference diameter	d	73.5000	294.0000	[mm]
6.19	Base diameter	db	69.0674	276.2696	[mm]
6.20	Root diameter	df	69.1250	289.6250	[mm]
6.21	Operating pitch diameter	dw	73.5000	294.0000	[mm]
6.22	Addendum	ha	1.7500	1.7500	[mm]
6.23	Dedendum	hf	2.1875	2.1875	[mm]

Stage 3 Spur

6.1	Number of teeth Pinion / Gear	Z	42	84	
6.2	Face width (Pinion / Gear)	b	38	37	[mm]
6.3	Normal module	mn	3		[mm]
6.4	Transverse module	mt	3.0000		[mm]
6.5	Circular pitch	р	9.425		[mm]
6.6	Transverse circular pitch	pt	9.425		[mm]
6.7	Base circular pitch	ptb	8.856		[mm]
6.8	Center distance (pitch)	a	189.0000		[mm]
6.9	Center distance (production)	av	189.0000		[mm]
6.10	Center distance (working)	aw	189.0000		[mm]
6.11	Pressure angle	α	20.0000		[°]
6.12	Transverse pressure angle	αt	20.0000		[°]
6.13	Pressure angle at the pitch cylinder	αwn	20.0000		[°]
6.14	Transverse pressure angle at the pitch cylinder	αwt	20.0000		[°]
6.15	Helix angle	β	0.00		[°]
6.16	Base helix angle	βb	0.0000		[°]
6.17	Tip diameter	da	132.0000	258.0000	[mm]
6.18	Reference diameter	d	126.0000	252.0000	[mm]
6.19	Base diameter	db	118.4013	236.8025	[mm]
6.20	Root diameter	df	118.5000	244.5000	[mm]
6.21	Operating pitch diameter	dw	126.0000	252.0000	[mm]
6.22	Addendum	ha	3.0000	3.0000	[mm]
6.23	Dedendum	hf	3.7500	3.7500	[mm]

Shaft 1

Shaft 2

Shaft 3

Shaft 4

