Dr. G. Tapken Dr. D. Gröger

5. Wiederholungsblatt zur Mathematik 2

Aufgabe W 5.1

Bestimmen Sie das Volumen, dass bei der Rotation der Funktion $f(x) = x^2 - 1$ mit $x \in [0, 2]$ um die x-Achse

Skizzieren Sie den Schnitt des entstandenen Rotationskörpers mit der x - y-Ebene.

Aufgabe W 5.2

a)	lim	$\frac{e^{3x^2}-1}{x^3-x^2}$	=

 $\Box -3$ $\Box 0$ $\Box 3$ $\Box 6$ □∞ $\square - \infty$ ☐ nicht definiert

Rechnung:

b) $\lim_{n \to \infty} \sqrt[n]{5^{2n} + 5^n + n^2}$

 $\Box 1$ $\Box 5$ $\Box 6$ \square 25 $\square 30$ $\square \infty$ □ nicht definiert

Rechnung:

c) Die Funktion $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x) = |x-1| \cdot (x+2)$ ist im Punkt x = 1 differenzierbar □ja \square nein **Rechnung:**

Aufgabe W 5.3
a) Bestimmen Sie: $\frac{d}{dx} \left(\int_{-x}^{x} (\cos(t))^2 dt \right)$

b) Berechnen Sie das folgende Integral, indem Sie mit $t(x) = \ln(x)$ substituieren: $\int_{1}^{e} \frac{1}{x \cdot \sqrt{1 - (\ln(x))^2}} dx$

Aufgabe W 5.4
a) Bestimmen Sie :
$$\frac{d}{dx} \int_{5}^{2x} \sqrt{t^4 + 2t^2} dt$$

- b) Bestimmen Sie mittels partieller Integration $\int x \cdot \ln(x^2) dx$
- c) Bestimmen Sie die Lösungsmenge von $(x-3) \cdot (x+3) \le (x-3)$

Aufgabe W 5.5

Die Graphen von $f_a(x)=a\cdot\sin(x)$ und $g_a(x)=-\frac{1}{a}\cdot\sin(x)$ (a>0) begrenzen für $x\in[0,\pi]$ eine Fläche.

- a) Skizzieren Sie die Fläche.
- b) Berechne Sie den Flächeninhalt dieser Fläche.

Aufgabe W 5.6

Skizzieren Sie die Gerade f(x) = x + 1 und die Parabel $g(x) = -x^2 + 6x - 3$ zwischen ihren Schnittpunkten und berechnen Sie den Inhalt der Fläche, die von diesen beiden Kurven zwischen ihren Schnittpunkten eingeschlossen wird.