INSTITUTO FEDERAL CATARINENSE – CAMPUS CAMBORIÚ

Disciplina: Arquitetura e Organização de Computadores

Professor: Alexandre A. Amaral

Turma: BSI 19

Discente: Guilherme de Barros da Rocha

Matrícula: 2019015315

Exercícios

- 1. Qual é, em termos gerais, a distinção entre a organização e a arquitetura do computador?
 - Arquitetura: Atributos que impactarão na execução dos sistemas e programas neste computador.
 - **Organização:** Atributos relacionados a implementação do hardware, como tecnologias por exemplo.
- 2. Qual é, em termos gerais, a distinção entre a estrutura e a função do computador?
 - Estrutura: Forma com que os componentes físicos do computador estão organizados.
 - Função: Operação individual de cada componente.
- **3.** Quais são as quatro funções principais de um computador?
 - Processamento de Dados;
 - Armazenamento de Dados;
 - Movimentação de Dados;
 - Controle.
- 4. Qual a razão para termos diferentes tipos de memórias nos computadores atuais?
 - Aumento crescente da velocidade das CPU, muito superior ao tempo de acesso da memória;
 - Capacidade de armazenamento, dado o aumento do tamanho dos programas e volume de dados.
- 5. Defina o conceito de volatilidade e temporariedade de memórias.
 - Volatilidade: É referente ao armazenamento do dado mesmo sem alimentação energética.
 - O Volátil: A informação se perde após o desligamento da energia.
 - o Não-volátil: Mesmo após o desligamento da energia o dado continua salvo, ele não se perde.
 - **Temporariedade:** Refere-se ao tempo em que o dado fica armazenado em um dado tipo de memória.
 - o Permanente: o dado permanece armazenado por um tempo indeterminado.
 - o Transitório: o dado fica armazenado por um curto período de tempo.
- **6.** Um computador possui uma memória principal cujo endereço de sua última célula é (131071)₁₀ e possui células com capacidade para 8 bits. Qual a capacidade da Memória Principal em bits? Qual o tamanho mínimo do RDM e do REM?
 - Última célula: 131.071
 - Quantidade de Células: (131.071 + 1) / 1024 = 128K células
 - Capacidade da MP: 128K células * 8 bits = 1024Kbits ou 1Mbits
 - Tamanho Mínimo do RDM: 8 bits que é equivalente a 1 célula
 - Tamanho Mínimo do REM: 128k células é $2^7 * 2^{10} = 2^{17} \log 0$ o tamanho mínimo do REM é: 17 bits
- 7. Um processador possui um RDM com capacidade de armazenar 32 bits e um REM com capacidade de 24 bits. Sabendo-se que em cada acesso são lidas duas células da MP e que o barramento de dados (BD) tem tamanho igual a palavra. Pergunta-se:
- a. Qual é a capacidade máxima de endereçamento?
 - $2^{24} = 2^4 * 2^{20} = 16M$
- b. Qual é o total máximo de bits que pode ser armazenado na MP?
 - 32 bits RDM / 2 celulas por vez = 16 bits por célula * 16M endereços = 256Mb

c. Qual é o tamanho da palavra desse computador e o tamanho de cada célula da memória?

Tamanho da Palavra: 32bitsTamanho da Célula: 16bits

8. Um computador possui uma memória capaz de armazenar um total de 1 Gbits. Cada célula é capaz de armazenar números com 8 bits. O RDM deste computador tem capacidade para 32 bits.

Responda:

- a. Qual o tamanho mínimo do REM?
 - 1 Gbits => 1024 Mbits / 8 bits = 128M | 128M = 2⁷ * 2²⁰ = 2²⁷ logo tamanho mínimo do REM é 27 bits
- b. Quantas células são lidas em uma única operação de leitura?
 - RDM = 32 bits / 8bits por célula = 4 células lidas por vez
- 9. Quais são as diferenças entre acesso sequencial, acesso direto e acesso aleatório?
 - **Sequencial:** Os dados são gravados de forma sequencial, logo o tempo de acesso depende do quão "longe" o dado está.
 - **Direto:** Semelhante ao sequencial, porém há endereços pra ir direto ao dado. Ainda assim o tempo do acesso depende da "localização" do dado.
 - Aleatório: O tempo de acesso é o mesmo independente da localização do dado.
- 10. Como o princípio da localidade se relaciona com o uso de múltiplos níveis de memória?
 - Caso um dado esteja em um nível de memória mais próximo do processador, não há a necessidade de o mesmo buscar o dado na memória principal que é consideravelmente mais lenta que o processador.
- **11.** Quais são as diferenças entre mapeamento direto, mapeamento associativo e mapeamento associativo por conjunto?
 - Mapeamento Direto: Método que utiliza um cálculo matemático (MOD) para definir a linha a qual o bloco deve ser armazenado.
 - Mapeamento Associativo: Bloco de memória pode ser armazenado em qualquer linha da cache.
 - Mapeamento Associativo por Conjunto: Separa a cache em conjuntos e utiliza o método associativo dentro de cada conjunto, diminui a quantidade de comparações da tag.
- **12.** Por que não é necessário um algoritmo de substituição em memórias cache utilizando o mapeamento direto?
 - Pois cada bloco já tem uma linha previamente definida que vai armazenar aquele bloco.
- **13.** Quais é a diferença, em termos de endereço, capacidade e total de bits, entre as seguintes organizações de MP?
 - Memórias B e C tem a mesma quantidade de células e Memória A tem o dobro de células que as demais, porém cada célula da memória B tem o dobro de tamanho que as células das memórias A e C, logo memória A e B tem o mesmo tamanho, porém B utiliza menos bits para endereçar. Memória C apesar de ter a mesma quantidade de células da memória B ela tem metade da capacidade total.
- a. Memória A: 32K células de 8 bits cada;

• Endereço: 15 bits

Capacidade total: 256Kbits

b. Memória B: 16K células de 16 bits cada;

• Endereço: 14 bits

• Capacidade total: 256Kbits

c. Memória C: 16K células de 8 bits cada?

• Endereço: 14 bits

• Capacidade total: 128Kbits

- **14.** Um computador possui uma de memória principal com 32K células, cada uma capaz de armazenar uma palavra de 8 bits. Pergunta-se:
- **a.** Qual o maior endereço de memória?
 - $32K = 2^5 * 2^{10} = 2^{15}$ ou 32766
- **b.** Qual o tamanho do barramento de endereços deste sistema?
 - Verificado na letra A da questão: 15 bits
- c. Qual é o total de bits que podem ser armazenados nesta memória?
 - 32K * 8 bits = 256Kbits
- **15.** Considere um computador que possui uma memória principal com capacidade de endereçamento de 64K células. Para criar um sistema de controle e funcionamento da cache, a memória principal é constituída de blocos de 8 palavras cada. A memória é do tipo *mapeamento direto*, contendo 32 linhas. Pergunta-se:
- a. Como seria organizado o endereço da MP em termos de tag, número da linha e palavra?
 - Tag: 64K = 2¹⁶ endereços são utilizados 16 bits para endereçar a MP, logo se utiliza-se 3 bits para a palavra e 5 para o numero de linha sobra 8 bits para a tag.
 - Número de linha: 32 linhas = 2⁵ logo utiliza-se 5 bits para endereçar linhas
 - Palavra: 8 = 2³ palavras por bloco logo utiliza-se 3 bits para endereçar a palavra.
- **b.** Em que linha estaria contido a palavra armazenada no endereço 0001 0001 0001 1011?
 - 0001000100011011
 - Número de linha: 00011 ou 3
- **16.** Considere um computador com memória cache de 128KB de capacidade, constituída de linhas com 8 bytes de largura. A MP possui capacidade de 64MB. Calcule a quantidade de bits necessária para implementação da cache com *mapeamento associativo*.
 - 64MB / 8B = 2^{26} / 2^3 = 2^{23} logo utiliza-se 23 bits para a tag
 - 8B = 2³ logo utiliza-se 3 bits para a palavra
 - Qntd de linhas = 128Kb / 8B = 16K linhas
 - Bits para tag: 16K linhas * 23 bits = 368Kb
 - Tamanho da cache em bits: 128KB * 8 = 1024Kb
 - Bits para implementação da cache: 1024Kb + 386Kb = 1392Kb
- 17. Seja uma MP constituída de blocos com largura de 32 bytes, associada a uma cache de 64 KB usando o mapeamento associativo por conjunto de 4. Em dado instante o processador realizar um acesso, colocando o endereço 0011 1111 1100 1001 0010 1011 0110 no BD

(barramento de endereço). Determine qual será o valor binário do campo conjunto e da palavra que será localizado pelo sistema de controle da cache.

- Palavra: largura do bloco 32B = 2⁵ logo a palavra usa 5 bits
- Qnt de Conjuntos: $64KB / 32B = 2^{16} / 2^5 = 2^{11} /$ conjuntos de 4 ou $2^2 = 2^9$ logo utiliza-se 9 bits para endereçar os conjuntos.
- 0011 1111 1100 10<mark>01 0010 101</mark>1 0110
- Campo Conjunto: 010010101
- Palavra: 10110

18. Considere um sistema que utiliza mapeamento direto na sua cache e o formato dos endereços é:

Tag	Linha	Palavra
8 bits	12 bits	4 bits

Pergunta-se:

- a. Qual a capacidade da MP, em bytes?
 - 8+12+4 = 20 bits para endereçar logo 2²⁰ ou 1MB
- **b.** Quantas linhas possui a memória cache?
 - 12 bits logo 2¹² = 4K linhas
- **c.** Quantas células possui cada bloco/linha?
 - 4 bits para endereçar logo 2⁴ = 16 células
- **19.** Uma cache *associativa por conjunto* consiste em 64 linhas divididas em conjuntos de 4 linhas. A memória principal contém 4K blocos de 128 palavras cada. Mostre o formato dos endereços da memória principal.
 - 128 palavras por bloco = 2^7 logo utiliza-se 7 bits para endereçar a palavra.
 - 64 linhas / 4 linhas por conjuntos = 16 conjuntos = 24 logo utiliza-se 4 bits para endereçar os conjuntos
 - 4K blocos * 7 palavras por bloco = 2¹⁹ células logo utiliza-se 19 bits para endereçar a MP.
 - 7 bits para palavra, 4 bits para o conjunto e sobram 8 bits para tag.
 - 000 0000 0<mark>000 0</mark>000 0000

•

- **20.** Uma cache *associativa por conjunto* (2 linhas por conjunto) possui linhas de 16 bytes e um tamanho total de 8 KBytes. A memória principal é 64 MBytes é endereçável por byte. Mostre o formato dos endereços da memória principal.
 - 64MB = 2²⁶ logo o endereçamento da MP utiliza 26 bits
 - Cada linha da cache possui 16B = 2⁴ logo o endereçamento da palavra precisa de 4 bits
 - 8KB / 16B = 2¹³ / 2⁴ = 2⁹ Linhas então 2⁹ linhas / 2¹ (linhas /conjunto) = 2⁸ conjuntos, logo precisamos de 8 bits para endereçar os conjuntos e o restante dos bits para endereçar a tag
 - 00 0000 0000 0000 <mark>0000 0000 0000</mark>
- 21. Faça um comparativo dos algoritmos de substituição de dados na cache FIFO, LRU, LFU e aleatório.
 - **FIFO:** First-in-first-out (Primeiro a entrar é o primeiro a sair) que substitui o bloco mais antigo, independente da usabilidade do mesmo.
 - LRU: Least Recently Used, substitui o bloco que permaneceu mais tempo sem utilização.
 - LFU: Least Frequently Used, substitui o bloco menos utilizado.
- **22.** Um computador tem uma memória cache de 64KB de capacidade, constituída de linhas com 16 bytes de largura e conjunto de 8 linhas. A MP possui capacidade de 256MB. Calcule a quantidade de bits necessárias para implementação da cache com *mapeamento associativo por conjunto*.
 - $64KB / 16B = 2^{26} / 2^4 = 2^{12} linhas$
 - 2¹² linhas / 2³ (linhas por conjunto) = 2⁹ conjuntos, logo precisa de 9 bits para endereçar os conjuntos;
 - Cada linha da cache tem 16B = 2⁴ B, logo precisamos de 4 bits para endereçar a palavra.
 - 256MB / 16B = 2²⁸ / 2⁴ = 2²⁴ blocos
 - Endereçar Tag: Log $(2^{24} / 2^9) = \log 2^{15} = 15$ bits
 - Total tamanho Tag = 15 bits * 2¹² linhas = 60Kb
 - Tamanho da cache em bits = 64KB * 8 = 512Kb
 - Tamanho necessário para implementação: 512Kb + 60Kb = **572Kbits**

- **23.** Considere um sistema de armazenamento constituído de uma memória principal, que é endereçada por byte e que tem uma capacidade de 256 MB, sendo organizada em blocos de 16 bytes de largura. Considerando que se usa neste sistema o método de *mapeamento direto* para uma cache constituída de 128 linhas, pergunta-se:
- **a.** Qual deverá ser o formato do endereço a ser interpretado pelo sistema de controle da cache, indicando a largura de cada campo?
 - 256MB = 2²⁸ = 28 bits para endereçar a MP
 - Blocos de 16B = 2⁴ logo utiliza-se 4 bits para a palavra;
 - 128 linhas = 2⁷ logo utiliza-se 7 bits para endereçar a linha
 - O endereço tem um total de 28 bits, sendo os 4 primeiros para a palavra, os próximos 7 para a linha e o restante para a tag(17 bits).
 - 1011 1110 0010 1001 1<mark>101 0000 1100</mark>
- **b.** Em que linhas deverão ser armazenados os bytes que possuam os seguintes endereços:
- 1011 1110 0010 1001 1101 0000 1100? R: $2^5 + 2^7 = 160$
- 0001 1010 0011 0001 0111 1000 1111? R: $2^7 * 2^6 * 2^5 * 2^4 = 240$
- c. Qual deverá ser o total de bits consumido nessa cache?
 - Total dados = 2^7 linhas de 2^4 B = 2^{11} B * 2^3 = 2^{14} bits ou 16Kbits
 - Total cache tag = 128 linhas * 17bits = 2176 bits
 - Total consumido na cache: 2176 bits + 16384 bits = 18560 bits / 1024 = 18,125Kbits
- d. Qual deverá ser o endereço do bloco que contém um byte com o seguinte endereço:

0010 1110 1001 0001 1110 0011 1110?

- Endereço acima em decimal: 48.832.062
- Bloco ao qual o endereço acima pertence: 48.832.062 / 16 = 3.052.003
- Endereço do bloco em binário: 0010 1110 1001 0001 1110 0011

OU

- Utiliza-se 4 bits para endereçar a palayra
- $256MB / 16B = 2^{28} / 2^4 = 2^{24}$ blocos, logo utiliza-se 24 bits para endereçar os blocos.
- 28 4 = 24 bits para os blocos
- **24.** Supondo o um sistema utilize o método de *mapeamento associativo por conjunto* de 4 linhas e que o formato do endereço de cache é:

Tag	Conjunto	Palavra
8 bits	8 bits	4 bits

Pergunta-se:

- a. Qual a capacidade, em bytes, de armazenamento da MP?
 - 8 + 8 + 4 = 20 então $2^{20} = 1$ MB
- **b.** Quantas linhas possui a memória cache?
 - 28 conjuntos * 24 linhas por conjunto = 212 ou 4K linhas
- **c.** Quantos conjuntos possui a memória cache?
 - 28 conjuntos = 256 conjuntos
- d. Quantas células possui cada bloco/linha?
 - 2⁴ = 16 células
- 25. Quais as principais diferenças entre EPROM, EEPROM e memória flash?
 - As principais diferenças são os mecanismos de apagamento de cada uma delas que é diferente:
 - EPROM: Utiliza luz UV em nível de pastilha;
 - **EEPROM:** Apaga eletricamente byte a byte;
 - Flash: Apaga eletricamente igual o EEPROM, porém de blocos em blocos.