Exploitation des symétries dynamiques pour la résolution des problèmes SAT

Thèse de doctorat de Sorbonne Université

Hakan METIN

Supervisors:

SOUHEIB BAARIR FABRICE KORDON Maître de conférences, Université Paris Nanterre Professeur, Sorbonne Université

Jury Members:

PASCAL FONTAINE
LAURE PETRUCCI
JEAN-MICHEL COUVREUR
EMANUELLE ENCRENAZ
SOUHEIB BAARIR
FABRICE KORDON

Maître de conférences, Université de Lorraine Professeur, Université Paris 13 Professeur, Université d'Orléans Maître de conférences, Sorbonne Université Maître de conférences, Université Paris Nanterre Professeur, Sorbonne Université

Motivation

SAT is widely used in different domains:

- Artificial intelligence (planning, games, ...)
- Bioinformatics (haplotype inference, ...)
- Security (cryptanalysis, inversion attack on hash function)
- Computationally hard problems (graph coloring, ...)
- Formal Methods (hardware model checking, ...)

Outline

SAT overview

SAT basics SAT and symmetries

2 Existing approaches

Static symmetry breaking Dynamic symmetry breaking

3 Contribution and results

CDCL [Sym]
Combination of different approaches

Is it possible to attribute each group to a classroom?

Is it possible to attribute each group to a classroom?

YES!

Is it possible to attribute each group to a classroom?

YES! Many solutions

5/10

5/10

Formula (CNF)
$$\underbrace{\left(x_1 \lor x_2 \lor \neg x_3\right)}_{Clause} \land \left(\neg x_1 \lor \neg x_2\right) \land \left(x_2 \lor \neg x_4\right)$$

Computing symmetries of a SAT problem $(x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6) \land (x_7 \lor x_8 \lor x_9)$

CNF formula

 $\begin{array}{c} (x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6) \land (x_7 \lor x_8 \lor x_6) \\ \land (\neg x_1 \lor \neg x_4) \land (\neg x_1 \lor \neg x_7) \land (\neg x_4 \lor \neg x_7) \\ \land (\neg x_2 \lor \neg x_5) \land (\neg x_2 \lor \neg x_8) \land (\neg x_5 \lor \neg x_8) \\ \land (\neg x_3 \lor \neg x_6) \land (\neg x_3 \lor \neg x_9) \land (\neg x_6 \lor \neg x_9) \end{array}$

¹http://www.tcs.hut.fi/Software/bliss/

²http://vlsicad.eecs.umich.edu/BK/SAUCY/

 $\wedge (\neg x_2 \vee \neg x_5) \wedge (\neg x_2 \vee \neg x_8) \wedge (\neg x_5 \vee \neg x_8)$ $\wedge(\neg x_3 \vee \neg x_6) \wedge (\neg x_3 \vee \neg x_9) \wedge (\neg x_6 \vee \neg x_9)$

colored graph

Computing symmetries of a SAT problem $(x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6) \land (x_7 \lor x_8 \lor x_9)$

CNF formula $\wedge(\neg x_1 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_7) \wedge (\neg x_4 \vee \neg x_7)$ $\wedge (\neg x_2 \vee \neg x_5) \wedge (\neg x_2 \vee \neg x_8) \wedge (\neg x_5 \vee \neg x_8)$ $\wedge(\neg x_3 \vee \neg x_6) \wedge (\neg x_3 \vee \neg x_9) \wedge (\neg x_6 \vee \neg x_9)$ colored graph (bliss 1 or saucy 2) graph automorphism

¹http://www.tcs.hut.fi/Software/bliss/

²http://vlsicad.eecs.umich.edu/BK/SAUCY/

Computing symmetries of a SAT problem

CNF formula

 \Downarrow

colored graph

graph automorphism ↓

set of symmetries

 $⁽x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6) \land (x_7 \lor x_8 \lor x_9)$ $\wedge(\neg x_1 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_7) \wedge (\neg x_4 \vee \neg x_7)$ $\wedge(\neg x_2 \vee \neg x_5) \wedge (\neg x_2 \vee \neg x_8) \wedge (\neg x_5 \vee \neg x_8)$ $\wedge(\neg x_3 \vee \neg x_6) \wedge (\neg x_3 \vee \neg x_9) \wedge (\neg x_6 \vee \neg x_9)$ (bliss 1 or saucy 2) $g_1 = (x_2 \ x_3)(x_5 \ x_6)(x_8 \ x_9)$ $g_2 = (x_4 \ x_7)(x_5 \ x_8)(x_6 \ x_9)$ $g_3 = (x_1 \ x_2)(x_4 \ x_5)(x_7 \ x_8)$ $q_4 = (x_1 \ x_4)(x_2 \ x_5)(x_3 \ x_6)$

¹http://www.tcs.hut.fi/Software/bliss/

²http://vlsicad.eecs.umich.edu/BK/SAUCY/

example solving arbre

Conflict Driven Clause Learning Algorithm (CDCL)

Tree

