12 - Sensors

CEG 4330/6330 - Microprocessor-Based Embedded Systems
Max Gilson

Wall-Following Mobile Robot System

- IR Emitter and Detector
 - Uses ADC
 - Measures distance from walls
- Hall Effect Sensor
 - Uses ADC
 - Detects mines or magnets
- DC Motors
 - Flyback diode, opto-isolator,
 H-bridge, and PWM
 - Allows the robot to move

Infrared Emitter and Detector

- IR emitters and detectors come in a similar size/shape as an LED
- As the name suggests, the emitter emits IR light
- The receiver acts like a switch
 - Closed when IR light is detected
 - Opened when no IR light is detected
 - Somewhere in between when the IR light is not as strong or is reflected off of surface
- The signal from the receiver can be connected to an ADC to measure the distance from the wall

Inverse Square Law

- The intensity of light over distance is reduced by 1/x^2 where x is a unit of distance
- Due to this, the light measured by the IR sensor is not linear with respect to distance
- In order to properly calculate the distance measured, the output voltage must be linearized
 - Linearization will result in a constant rate of change for distance when a constant rate of change of the output voltage is measured

Once the light is 2 yards away, it is illuminating an area 4x the initial surface area at 1 yard. This results in 25% of the available light at 2 yards. Our "Tall" systems employ proprietary dual layer optical systems to narrow this beam of light. This results in less fall-off over distance.

Other IR Devices

- Some devices combine both emitter and receiver into the same device
 - Can be used for a more compact or simpler design
- An IR interrupter can be used to detect a moving part, door, or conveyor belt

Hall Effect Sensor

 Hall effect sensors detects the magnitude of a magnetic field using the Hall effect

 Used in driftless joysticks, gear position measurement, ABS anti-lock brakes, steering wheels, or contactless switches

Bipolar vs Unipolar

 Magnets have a north and south pole

 A bipolar sensor can detect both north and south poles

A unipolar sensor can only detect one pole

DC Motor

- Assume a robot has 2 wheels
 - If both wheels are rotating at the same angular velocity in the same direction, the robot will move in that direction
 - Turning the robot requires more angular velocity on one wheel compared to the other
 - Rotating in place can be achieved by rotating both wheels at the same angular velocity and opposite directions

- To achieve this movement and rotation a power MOSFET and a flyback diode can be used to control the DC motor
- The power MOSFET receives a PWM signal from a microcontroller
- By changing the duty cycle of the PWM signal, the speed of the motor can be controlled
 - 0% for no movement
 - 100% for full speed
- This system is necessary because the microcontroller is not capable of delivering enough current to power the motor by itself

- The motor must be driven at a high enough frequency to smooth out or average the duty cycle
- Here is an example where you can change the duty cycle and frequency for an equivalent DC motor circuit: link

- A motor is a bundle of wires that is actually an inductor
- The voltage across and inductor:

$$V=Lrac{dI}{dt}$$

- When the rate of change in current is high, the voltage across the inductor (motor) will spike
- To prevent damaging the MOSFET or the power supply, a flyback diode is used to feed excess current back into the motor when the MOSFET is off

- To remove all direct electrical contact between the microcontroller and the motor drive circuit, sometimes an opto-isolator is used
- The opto-isolator is an IR transmitter and receiver, used to transmit the PWM signal using light instead of electricity
- Since the motor drive circuit usually has high voltage, high current, and high noise, the opto-isolator can be used to protect the microcontroller

- To allow a motor to rotate in two directions, an H bridge can be used
- 4 MOSFETS are used to switch the direction of current for the motor
- This switching allows for rotating the motor in both directions

Other Examples

- Motor speed control using optical tachometer
 - Same as conveyor belt example we did earlier in the semester
- Flying robot or drone
 - Gyroscope and accelerometer sensors used to measure the orientation of the drone
 - Depending on the orientation of the drone, the microcontroller can speed up/down the propellers attached to motors

Other Types of Sensors

- Motion
 - PIR (passive infrared), optical, radar
- Temperature
- Pressure
- Acceleration/Orientation
 - Accelerometer, gyroscope, magnetometer
- Distance
- Sound
- Camera
- Proximity
 - Capacitive, optical, inductive, magnetic (reed switch)
- Water
 - Presence, level
- Touch
 - Resistive, capacitive

Different Types of Sensors

Other Types of Sensors

- Sensor interfaces
 - Analog:
 - Analog voltage PWM
 - Digital:
 - SCI
 - SPI
 - I2C
 - Parallel
- Many sensors are sold on break out boards
 - You can buy the sensor
 - individually
 You can buy the sensor
 soldered to a board with all necessary components

 Much easier to connect to
 - microcontroller

