8 avril 2022 CIR 1 et CNB 1

Quiz de Mathématiques

Durée : 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

- Les questions peuvent présenter une ou plusieurs réponses correctes.
- Noircir les cases, ne pas faire des croix sur les cases.
- En cas d'erreur, utilisez du « blanco ».
- Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.

BON COURAGE!

- 1. Quelle(s) est(sont) la(les) assertion(s) vraie(s)?
 - (1) Une application $f: \mathbb{R} \to \mathbb{R}$ ne peut pas être linéaire.
 - Une application $f: \mathbb{R}^2 \to \mathbb{R}^2$ est linéaire si et seulement s'il existe des réels a, b, c et d tels que f([x,y]) = [ax + by, cx + dy] pour tout $(x,y) \in \mathbb{R}^2$
 - Une application $f: \mathbb{R}^3 \to \mathbb{R}^3$ est linéaire si et seulement s'il existe des réels a,b et c tels que f([x,y]) = [ax,by,cz] pour tout $(x,y,z) \in \mathbb{R}^3$
 - $_{(4)}\square$ Une application bijective est toujours linéaire.
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- $2. \ \, {\rm On} \, \, {\rm consid\`ere} \, \, {\rm les} \, \, {\rm deux} \, \, {\rm applications} \, \, {\rm suivantes} \, :$

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 telle que $[x, y, z] \mapsto [x + y, x - z]$ et $g: \mathbb{R}^3 \to \mathbb{R}^2$ telle que $[x, y, z] \mapsto [xy, xz]$.

Quelle(s) est(sont) la(les) assertion(s) vraie(s)?

$$f([0,0]) = [0,0,0]$$
 $g([1,1,0]) = g([1,0,0]) + g([0,1,0])$ $g([0,1,0]) = g([1,0,0]) + g([0,1,0])$ aucune des réponses précédentes n'est correcte.

3. On considère \mathbb{R} et \mathbb{R}^2 munis de leurs bases canoniques et f l'application définie par :

$$f:\mathbb{R}^2 \to \mathbb{R}$$
telle que $[x,y] \mapsto [y-x]$

La matrice de f relativement aux bases canoniques est :

- 4. On considère f un endomorphisme de \mathbb{R}^3 avec B la base canonique et B' une autre base. On note A la matrice de f, P la matrice de passage de la base B à la base B', Q la matrice de passage de la base Q à la base Q et Q la matrice de Q dans la base Q. Quelle(s) est(sont) la(les) assertion(s) vraie(s)?
 - $(1) \square \quad A = P^{-1}NP \qquad (2) \blacksquare \quad N = P^{-1}AP \qquad (3) \blacksquare \quad A^n = PN^nP^{-1}, \text{ avec } n \in \mathbb{N}^*$ $(4) \square \quad N^n = PA^nP^{-1}, \text{ avec } n \in \mathbb{N}^* \qquad (5) \square \quad \text{aucune des réponses précédentes n'est correcte.}$

5. Soient $u_1 = [1, 0, 0], u_2 = [1, 1, 0], u_3 = [0, 1, 1], v_1 = [1, 1], v_2 = [1, -1]$ et f l'application linéaire définie

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 telle que $[x, y, z] \mapsto [x + y, x - z]$

La matrice de f par rapport aux bases $\{u_1, u_2, u_3\}$ et $\{v_1, v_2\}$ est ...

6. On considère \mathbb{R}^2 muni de sa base canonique et f l'application définie par :

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 telle que $[x, y] \mapsto [2x + y, 4x - 3y]$

Quelle(s) est(sont) la(les) assertion(s) vraie(s)?

- La matrice de f dans la base canonique est : $\begin{bmatrix} 2 & 1 \\ 4 & -3 \end{bmatrix}$ La matrice de f dans la base canonique est : $\begin{bmatrix} 2 & 1 \\ 4 & -3 \end{bmatrix}$ (1)
- (2)
- f est injective. (3)
- f est bijective. (4)
- aucune des réponses précédentes n'est correcte. (5)
- 7. Dans \mathbb{R}^3 , on considère la base canonique $B = \{e_1, e_2, e_3\}$ et la base $B' = \{u_1, u_2, u_3\}$ où $u_1 = [1, 1, -1]$, $u_2 = [0, 2, 1]$ et $u_3 = [0, 1, 1]$.

On note P la matrice de passage de la base B à la base B' et Q la matrice de passage de la base B' à la base B.

Quelle(s) est(sont) la(les) assertion(s) vraie(s)?

$$(1) \blacksquare \quad P = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 1 \end{bmatrix} \qquad (2) \square \quad Q = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 1 \end{bmatrix} \qquad (3) \blacksquare \quad Q = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & -1 \\ 3 & -1 & 2 \end{bmatrix}$$

$$(4) \square \quad P \text{ est inversible et } P^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 1 \end{bmatrix} \qquad (5) \square \quad \text{aucune des réponses précédentes n'est correcte.}$$

- 8. On considère $f: \mathbb{R}^2 \to \mathbb{R}^2$ une application linéaire, $B_1 = \{\varepsilon_1, \varepsilon_2\}$ et $B_2 = \{\varepsilon_1', \varepsilon_2'\}$ deux bases de \mathbb{R}^2 . Quelle(s) est(sont) la(les) assertion(s) vraie(s)?
 - La matrice de passage de B_1 vers B_2 contient en colonnes les coordonnées des vecteurs de la base B_2 exprimées dans B_1 .
 - La matrice de passage de B_1 vers B_2 contient en colonnes les vecteurs de la base B_2 .
 - La matrice de passage de B_2 vers B_1 contient en colonnes les coordonnées des vecteurs de la base B_2 exprimées dans B_1 .
 - La matrice de passage de B_2 vers B_1 contient en colonnes les vecteurs de la base B_1 . (4)
 - aucune des réponses précédentes n'est correcte.
- 9. On considère $f: \mathbb{R}^2 \to \mathbb{R}^2$ une application linéaire, $B_1 = \{\varepsilon_1, \varepsilon_2\}$ et $B_2 = \{\varepsilon_1', \varepsilon_2'\}$ deux bases de \mathbb{R}^2 . La matrice associée à l'application linéaire f dans les bases B_1 vers B_2 ...
 - contient en colonnes les coordonnées des vecteurs de la base B_2 exprimés dans B_1 . (1)
 - $_{(2)}\square$ contient en colonnes les coordonnées des vecteurs de la base B_1 exprimés dans B_2 .
 - a pour colonnes l'image par f des vecteurs de la base B_1 exprimée dans la base B_2 . (3)
 - (4)a pour colonnes l'image par f des vecteurs de la base B_2 exprimée dans la base B_1 .
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

10.). Soit $A \in Gl(\mathbb{R}^n)$ et $f : \mathbb{R}^n \to \mathbb{R}^n$ l'application linéaire de matrice A dans la base canonique d'Quelle(s) est(sont) la(les) assertion(s) vraie(s)?	
	$(1) \blacksquare$ $(2) \blacksquare$ $(3) \blacksquare$ $(4) \blacksquare$ $(5) \square$	f est bijective. Le noyau de f est réduit au vecteur nul. Le rang de f est f . Le rang de f est f . aucune des réponses précédentes n'est correcte.
11.		F deux espaces vectoriels et $f: E \to F$ une application linéaire. $t(sont)$ la(les) assertion(s) vraie(s)?
	$(1) \square$ $(2) \square$ $(3) \square$ $(4) \square$ $(5) \blacksquare$	$\operatorname{Ker} f$ peut être vide. $\operatorname{Ker} f$ est le vecteur nul. $0_E \in \operatorname{Im} f$ $\operatorname{Im}(f) = F$ aucune des réponses précédentes n'est correcte.
12. Soient E et F deux espaces vectoriels et $f: E \to F$ une applicate Quelle(s) est(sont) la(les) assertion(s) vraie(s)?		
	$(1) \square$ $(2) \square$ $(3) \blacksquare$ $(4) \square$ $(5) \square$	f est injective si et seulement si Ker f est vide. f est injective si et seulement si dim Ker f vaut 1 f est surjective si et seulement si $\mathrm{Im} f = F$. f est bijective si et seulement si $\mathrm{Im} f = F$. aucune des réponses précédentes n'est correcte.
13. Soit f une application linéaire de \mathbb{R}^3 dans \mathbb{R}^5 . Quelle(s) est(sont) la(les) assertion(s) vraie(s)?		
	$(1) \square$ $(2) \blacksquare$ $(3) \square$ $(4) \blacksquare$ $(5) \square$	Si $\operatorname{Ker} f = \{[0,0,0]\}$, alors f est surjective. f est injective si et seulement si $\operatorname{dim} \operatorname{Im} f = 3$. f est bijective si et seulement si $\operatorname{Ker} f = \{[0,0,0]\}$. $\operatorname{dim} \operatorname{Ker}(f) + \operatorname{dim} \operatorname{Im}(f) = 3$ aucune des réponses précédentes n'est correcte.
14. On considère l'application :		e l'application :
		$f: \mathbb{R}^3 \to \mathbb{R}^3$ telle que $[x,y,z] \mapsto [x-y,y-z,x+z]$
	Quelle(s) est(sont) la(les) assertion(s) vraie(s)?	
	₍₁₎ □ di	m Ker $f=1$ $_{(2)}\blacksquare$ f est injective $_{(3)}\blacksquare$ dim Im $f=3$ $_{(4)}\blacksquare$ f est bijective $_{(5)}\Box$ aucune des réponses précédentes n'est correcte.
15.	On considèr	e l'application :
		$f: \mathbb{R}^3 \to \mathbb{R}^3$ telle que $[x,y,z] \mapsto [x-z,y+z,x+y]$
	Quelle(s) es	t(sont) la(les) assertion(s) vraie(s)?
	${}_{(1)}\blacksquare \mathrm{Ker}\ f=\{[1,-1,1]\}\qquad {}_{(2)}\square f\ \mathrm{est\ bijective}\qquad {}_{(3)}\square f\ \mathrm{est\ injective}$	
	($\dim \operatorname{Im}(f) = 2$ (5) aucune des réponses précédentes n'est correcte.

16.	F.	F deux \mathbb{R} —espaces vectoriels de dimensions finies et f une application linéaire de E dans $\operatorname{t}(\operatorname{sont})$ la(les) assertion(s) vraie(s)?
	$(1) \square$ $(2) \square$ $(3) \square$ $(4) \blacksquare$ $(5) \square$	Si f est injective, alors f est surjective. Si f est surjective, alors f est injective. Si $\dim E = \dim F$, alors f est bijective. Si f est bijective, alors $\dim E = \dim F$. aucune des réponses précédentes n'est correcte.
17.	Soit $f : E$ – Soit $A = M$ Soit $N = M$	deux espaces vectoriels munis de leurs bases canoniques \mathcal{B}_E et \mathcal{B}_F . $\Rightarrow F$ une application linéaire. at $\mathcal{B}_E, \mathcal{B}_F(f)$ la matrice de l'application linéaire f dans ses bases canoniques. lat $\mathcal{B}'_E, \mathcal{B}'_F(f)$ la matrice de f par rapport aux nouvelles bases \mathcal{B}'_E pour E et \mathcal{B}'_F pour F . It (sont) la(les) assertion(s) vraie(s)?
	$(1) \blacksquare$ $(2) \blacksquare$ $(3) \blacksquare$ $(4) \blacksquare$ $(5) \square$	$f = id_F \circ f \circ id_E$ $N = P_{\mathcal{B}'_F, \mathcal{B}_F} \cdot \operatorname{Mat}_{\mathcal{B}_E, \mathcal{B}_F}(f) \cdot P_{\mathcal{B}_E, \mathcal{B}'_E}$ $(E, \mathcal{B}'_E) \stackrel{id_E}{\to} (E, \mathcal{B}_E) \stackrel{f}{\to} (F, \mathcal{B}_F) \stackrel{id_F}{\to} (F, \mathcal{B}'_F)$ $N = \operatorname{Mat}_{\mathcal{B}_F, \mathcal{B}'_F}(id_F) \cdot \operatorname{Mat}_{\mathcal{B}_E, \mathcal{B}_F}(f) \cdot \operatorname{Mat}_{\mathcal{B}'_E, \mathcal{B}_E}(id_E)$ aucune des réponses précédentes n'est correcte.
18. Soit f un endomorphisme et soit A sa matrice associée. Quelle(s) est(sont) la(les) assertion(s) vraie(s)?		-
	$ \begin{array}{c} (1) \square \\ (2) \square \\ (3) \square \\ (4) \square \\ (5) \blacksquare \end{array} $	Une valeur propre ne peut pas être nulle. Le polynôme caractéristique de A est $A-\lambda Id$ A est toujours diagonalisable. Un vecteur propre est unique. aucune des réponses précédentes n'est correcte.
19.	Soit $A \in M_n(\mathbb{R})$. Quelle(s) est(sont) la(les) assertion(s) vraie(s)?	
	$(1) \blacksquare$ $(2) \blacksquare$ $(3) \square$ $(4) \square$ $(5) \square$	Si A est diagonalisable, elle est semblable à une matrice diagonale. A est diagonalisable si et seulement si elle possède n vecteurs propres formant une base. A est diagonalisable si et seulement si les valeurs propres sont simples. A n'est pas diagonalisable si elle possède des valeurs propres coïncidentes. aucune des réponses précédentes n'est correcte.

20. Parmi les matrices suivantes, la(lesquelles) est(sont) diagonalisable(s)?

$$(1) \blacksquare \quad \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \qquad (2) \square \quad \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \qquad (3) \blacksquare \quad \begin{bmatrix} 3 & 0 & 0 \\ 0 & 6 & 0 \\ -2 & -2 & -1 \end{bmatrix} \qquad (4) \blacksquare \quad \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.