Fundamentos Teóricos da Computação

CIÊNCIA DA COMPUTAÇÃO

Prof. Dr. João Paulo Aramuni

Conceitos Preliminares

- * Precisamos revisar, de forma sucinta, os conceitos matemáticos necessários para o entendimento desta disciplina.
- * Vamos relembrar alguns assuntos da época da escola...

Conceitos Preliminares

* Sumário:

- * Conjuntos
- * Relações
- * Funções
- * Conjuntos Enumeráveis
- Definições Recursivas

* Conjuntos

* Conceito

- * Um conjunto é uma abstração matemática que captura o conceito de uma coleção de objetos.
- * Os objetos de um conjunto, chamados elementos ou membros do conjunto, podem ser também conjuntos.

* Para se dizer que um elemento, *a*, pertence, ou não, ao conjunto *A*

$$a \in A \qquad a \notin A$$

* A ordem dos elementos na lista do conjunto é irrelevante

$$\{1,2\} = \{2,1\} = \{1,2,1\} = \{2,1+1,2-1,\sqrt{4}\}$$

* Conjunto de objetos homogêneos

{Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano, Netuno, Plutão}

* Conjunto de objetos heterogêneos

{10, Marte, {0}, {Terra, 1, 2, 3}}

* Conjunto vazio

$$\emptyset = \{\}$$

- * Conjuntos infinitos importantes
 - * N, o conjunto dos números naturais
 - * **Z**, o conjunto dos números inteiros
 - * R, o conjunto dos números reais
 - * **Q**, o conjunto dos números racionais: os números reais que podem ser expressos na forma *m/n* em que *m* e *n* são números inteiros

Conjuntos unitários

$$\{Terra\}, \{10\}, \{\emptyset\}$$

* Subconjunto

$$A \subseteq B \leftrightarrow \forall x \in A \rightarrow x \in B$$

- * Diz-se que A está contido em B
- Subconjunto próprio

$$A \subset B \leftrightarrow A \subseteq B \ e \ A \neq B$$

Definindo Conjuntos

* Conjunto de todos os elementos x tais que x satisfaz a propriedade P

$$\{x|P(x)\}$$

* Ou de forma mais clara

$$\{x \in B | P(x)\}$$
 ou $\{x | x \in B \in P(x)\}$

Exemplos de Definição de Conjuntos

* Conjunto dos números naturais ímpares

$$\{k|k=2n+1 \text{ e } n \in \mathbb{N}\}$$

* Conjunto dos números reais entre 0 e 1, incluindo 0 e 1

$$\{k \in \mathbb{R} | 0 \le k \le 1\}$$

União, interseção e diferença

* União

$$A \cup B = \{x | x \in A \text{ ou } x \in B\}$$

* Interseção

$$A \cap B = \{x | x \in A \in x \in B\}$$

* Diferença

$$A - B = \{x | x \in A \in x \notin B\}$$

União, interseção e diferença

Complemento

* Complemento

$$\overline{A} = U - A$$

* Elementos do Complemento

$$x \in \overline{A} \leftrightarrow x \in (U - A)$$
$$x \in \overline{A} \leftrightarrow x \notin A$$

Complemento

- * O complemento de um conjunto A com relação a um conjunto universo U é U-A. Em um determinado contexto, fixando-se um certo conjunto U como o conjunto universo, passa-se a expressar o complemento de um conjunto A por: \overline{A}
- * Neste caso, dizer que: $x \in \overline{A}$ é equivalente a dizer que: $x \in (U-A)$ e, também, que: $x \notin A$

Propriedades da união, interseção e diferença

$A \cup A = A$	Idempotência	$A \cap A = A$
$A \cup \emptyset = A$	Identidade	$A \cap U = A$
$A \cup B = B \cup A$	Comutatividade	$A \cap B = B \cap A$
$(A \cup B) \cup C = A \cup (B)$	Associatividade $B \cup C$ $(A \cap B)$	$(B) \cap C = A \cap (B \cap C)$
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$		
$\frac{A \cup \overline{A} = U}{\overline{U} = \emptyset}$	Complementação	$A \cap \overline{\overline{A}} = \emptyset$
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	Leis de De Morgan	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
$A - \emptyset = A$	Diferença $A-A=\emptyset$	$\emptyset - A = \emptyset$

Leis de De Morgan

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Leis de De Morgan

* As leis de De Morgan para os conjuntos são intimamente relacionadas com as leis de De Morgan para os conectivos lógicos "e" e "ou".

Outros operadores de união e interseção

$$\bigcup_{i=1}^{n} A_{i} = A_{1} \cup A_{2} \cup ... \cup A_{n}, n \in \mathbb{N} \text{ e } n \ge 1$$

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \dots \cap A_n, n \in \mathbb{N} \text{ e } n \ge 1$$

Conjunto Potência

st O conjunto potência de um conjunto A é o conjunto de todos os subconjuntos de A

$$\mathcal{P}(A) = \{X | X \subseteq A\}$$

Em particular

$$\emptyset \in \mathcal{P}(A) \ \mathrm{e} \ A \in \mathcal{P}(A)$$

Número de Elementos do Conjunto

* O número de elementos do conjunto finito A é denotado por $\left|A\right|$

$$|\{\emptyset, a, \{a, b, c, d\}\}| = 3$$

$$|\mathcal{P}(A)| = 2^{|A|}$$

Número de Elementos do Conjunto

* Número de elementos de um conjunto potência de um conjunto \boldsymbol{A}

*
$$A = \{x,y,z\}$$

*
$$|A| = 3$$

*
$$P(A) = \{\{\}, \{x\}, \{y\}, \{z\}, \{x,y\}, \{x,z\}, \{y,z\}, \{x,y,z\}\}\}$$

$$* |P(A)| = 8$$

Produto Cartesiano

Produto entre 2 conjuntos

$$A \times B = \{(a,b) | a \in A \in b \in B\}$$

Generalizando

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) | a_1 \in A_1, a_2 \in A_2, ..., a_n \in A_n\}$$

Produto cartesiano do mesmo conjunto

$$A \times A \times A \times ... \times A(\text{n vezes}) = A^n$$

Produto Cartesiano

- * O produto cartesiano de dois conjuntos A e B, A x B, é o conjunto de todos os pares ordenados tais que o primeiro elemento pertence a A e o segundo pertence a B.
- * Exemplo: Sejam $A = \{1,2\} \in B = \{2,3\}$. Tem-se:
 - * $A \times B = \{(1,2), (1,3), (2,2), (2,3)\};$
 - * $A \times A = A^2 = \{(1,1), (1,2), (2,1), (2,2)\};$
 - * $A \times B \times A = \{(1,2,1), (1,2,2), (1,3,1), (1,3,2), (2,2,1), (2,2,2), (2,3,1), (2,3,2)\};$

Relações

* Relações

Relações

* Uma relação sobre os conjuntos A_1 , A_2 , ..., A_n é um subconjunto de $A_1 \times A_2 \times ... \times A_n$

* Ex:

$$\{(a,d)|a\in A\ \mathrm{e}\ d\in D\ \mathrm{e}\ a\ \mathrm{est\'a}\ \mathrm{matriculado}\ \mathrm{em}\ d\}$$

* Onde A é o conjunto de todos os alunos de certo curso e D é o conjunto das disciplinas do curso

$$R \subseteq A \times B$$

- R é a relação (comumente escrita xRy)
- * A é o domínio
- * B é o contradomínio
- * A imagem de R é o conjunto

$$\{y|(x,y)\in R \text{ para algum } x\}$$

* A relação inversa de R é

$$R^{-1} = \{(y, x) | (x, y) \in R\}$$

$$R \subseteq A^2$$

- * A relação binária acima é:
 - * Reflexiva se xRx para $x \in A$;
 - * Simétrica se $xRy \rightarrow yRx$ para todo $x, y \in A$;
 - * Transitiva se xRy e yRz -> xRz para todo x,y,z \in A;

- * A relação binária "é irmão (ou irmã) de", considerada sobre o conjunto das pessoas do mundo em um certo instante, é:
- * Reflexiva?
- * Simétrica?
- * Transitiva?

- * A relação binária "é irmão (ou irmã) de", considerada sobre o conjunto das pessoas do mundo em um certo instante, é:
- * Reflexiva
- * Simétrica
- * Transitiva

- * A relação binária "é irmão (ou irmã) de", considerada sobre o conjunto das pessoas do mundo em um certo instante, é:
- * não reflexiva: uma pessoa não é irmã de si mesma;
- * simétrica: se fulano é irmão de beltrano, então beltrano é irmão de fulano; e
- * não transitiva: quando fulano é irmão de beltrano, beltrano é irmão de fulano (simetria), mas fulano não é irmão de fulano.

Relação de Equivalência

- * A relação de equivalência R divide um conjunto A em classes de equivalência. Estas classes formam uma partição de A
 - Relação de equivalência é uma relação reflexiva, simétrica, transitiva
 - * Classe de equivalência que contém x é chamada [x]

$$[x] = \{y | xRy\}$$
$$[x] = [y] \leftrightarrow xRy$$

Relação de Equivalência

* Uma relação de equivalência pode ser:

$$R = \{(x, y) \in \mathbb{N}^2 | x \mod n = y \mod n \}$$

- * Onde n é um número natural
- * Outra relação de equivalência é:

$$\mathcal{A} = \{(p,q) \in P^2 | p \in q \text{ fazem aniversário no mesmo dia} \}$$

- * onde P é o conjunto das pessoas do mundo
- st é uma relação de equivalência que particiona P em 366 classes de equivalência, uma para cada dia do ano

Funções

* Funções

Função Parcial

* "f de A para B"

$$f:A\to B$$

st fé uma relação binária

$$f \subseteq A \times B$$
$$(x,y) \in f \in (x,z) \in f \to y = z$$

- * Uma notação mais utilizada para dizer que $(x,y) \in f \in f(x) = y$
- * Se não existe y tal que f(x)=y, diz-se que f é indefinida para o argumento x

Função Parcial

- * Exemplo de função parcial:
- * Há pelo menos um elemento no conjunto de partida, que não se relaciona com nenhum elemento do contradomínio

Não é função

* Um único elemento do domínio não deve possuir duas imagens. $(x,y)\in f$ e $(x,z)\in f\to y=z$

Não é função!

Função Total

- * É uma função parcial definida em todo argumento $x \in A$
- * Se para todo $x \in A$ existe y tal que f(x) = y, diz-se que a função é total.

Função Total

* Ex: Um exemplo de função total é a soma sobre os reais

$$+:\mathbb{R}^2\to\mathbb{R}$$

* A soma $x + y^n$ sempre existe para quaisquer reais $x \in y$. Já a divisão $/: \mathbb{R}^2 \to \mathbb{R}$ não é total, visto que não é definida quando o segundo argumento for 0 (zero).

Função e Relação

- * Uma função é uma relação, valendo todas as definições realizadas para relações.
 - * Em especial, os termos **domínio**, **contradomínio** e **imagem** podem ser utilizados para as funções.

Função total injetora

- * Injetora
 - * Se para $x, y \in A$ quaisquer, $x \neq y \rightarrow f(x) \neq f(y)$

Função total sobrejetora

- * Sobrejetora
 - st Se a imagem de f é o contradomínio de f

Função total bijetora

- * Bijetora
 - * Se a função é injetora e sobrejetora

Exemplos

- * $f: \mathbb{N} \to \mathbb{N}$, tal que f(x) = 2x
 - * Injetora
- * $g: \mathbf{Z} \to \mathbf{N}$, tal que g(x) = |x|
 - * Sobrejetora
- * $h: \mathbf{Z} \to \mathbf{N}$, tal que

$$h(x) = \begin{cases} 2x \text{ se } x \ge 0\\ -(2x+1) \text{ se } x < 0 \end{cases}$$

* Bijetora

Conjuntos Enumeráveis

* Conjuntos Enumeráveis

- * Dois conjuntos finitos, $A \in B$, têm o mesmo tamanho se |A| = |B|
- * Como fazemos para comparar conjuntos infinitos?
 - Utiliza-se a noção de Cardinalidade
 - * Com este artifício é possível mostrar que o número de funções (que é infinito) é maior que o número de programas em qualquer linguagem (que também é infinito)
 - * O que permite concluir que existem funções que **não** são programáveis em qualquer linguagem de programação

- * Dois conjuntos, A e B, têm a mesma cardinalidade se existe uma função bijetora de A para B
 - * Card(A) = Card(B)
- st Um conjunto A é infinito se

$$B \subset A \in Card(A) = Card(B)$$

- * Um conjunto é finito se tem a mesma cardinalidade de $\{k \in \mathbb{N} | k \leq n\}, \text{ para algum } n \in \mathbb{N}$
- * A relação de cardinalidade é reflexiva, simétrica e transitiva
 - * É uma relação de equivalência

- * O conjunto dos naturais, **N**, é infinito?
- * Seja P o conjunto dos naturais pares, incluindo o zero.
 - * Qual conjunto possui maior cardinalidade, P ou N?

- * O conjunto dos naturais, N, é infinito? R: Sim, pois
 - a) $N \{0\}$ é um subconjunto próprio de N; e
 - b) $f: \mathbb{N} \rightarrow \mathbb{N} \{0\}$ tal que f(x) = x + 1 é uma função bijetora
- * Seja P o conjunto dos naturais pares, incluindo o zero.
 - * Qual conjunto possui maior cardinalidade, P ou N?

Por um lado, tem sentido dizer que N é maior, pois N contém todos os elementos de P mais todos os números naturais ímpares. Do outro, existe uma função bijetora: $f:N \rightarrow P$ tal que f(x) = 2x. Assim, P e N têm a mesma cardinalidade.

Conjunto Enumerável

- * Para um conjunto ser enumerável, este deve ter a mesma cardinalidade de **N**
- * Um conjunto é dito contável se for finito ou enumerável
- * Neste curso, trataremos apenas de conjuntos contáveis

Teorema 1

- * As seguintes afirmativas são equivalentes
 - * O conjunto A é contável
 - Existe uma função injetora de A para N
 - * A = {} ou existe uma função sobrejetora de **N** para A

Teorema 1

- * O seguinte teorema pode facilitar a demonstração de que determinados conjuntos são contáveis
- * As seguintes afirmativas são equivalentes
 - * O conjunto A é contável;
 - * Existe uma função injetora de A para N;
 - * $A = \{\}$ ou existe uma função sobrejetora de **N** para A;

Outras afirmativas

- * Além do Teorema 1, os seguintes resultados também podem ser úteis para determinar se um conjunto é ou não contável:
 - * Todo subconjunto de conjunto contável é contável;
 - * $A \times B$ é contável, se A e B são contáveis;
 - * $A \cup B$ é contável, se $A \in B$ são contáveis;

- * Uma propriedade importante dos conjuntos enumeráveis é que eles podem ser definidos por meio de uma definição recursiva (ou indutiva).
- * Uma definição recursiva especifica como um conjunto contável pode ser **gerado** a partir de um subconjunto do mesmo aplicando-se determinadas **operações** um número finito de vezes.

- * Para definir A recursivamente
- * Base: especificação de um conjunto base* B C A;
- * Passo recursivo: especificação de um elenco de operações
 - * Aplicadas sobre A geram elementos de A
- * Fechamento**: afirmação que os únicos elementos de A são aqueles que podem ser obtidos a partir dos elementos de B, aplicando-se um número finito de vezes as operações especificadas em (b)
- * * O conjunto base deve ser contável e pode ser definido recursivamente
- * ** O passo **fechamento** muitas vezes é omitido

- * Exemplos:
- * 1) Definir o conjunto **N** recursivamente
- * 2) Definir a operação de soma (+) sobre os naturais recursivamente
- * 3) Definir a operação de multiplicação (*) sobre os naturais recursivamente

* 1) Definir o conjunto N recursivamente

- **a)** $0 \in \mathbb{N}$;
- **b)** se $n \in \mathbb{N}$. então $s(n) \in \mathbb{N}$;
- c) só pertence a N o número que pode ser obtido de acordo com (a) e (b).

- * 2) Definir a operação de soma (+) sobre os naturais recursivamente
- * Utilizando a representação de número natural dada pela definição recursiva do exemplo 1, em que a representação de um número n>0 é dada por s(s(...s(0)...)), onde aparece n sucessores:
 - **a)** n + 0 = n, para todo $n \in \mathbb{N}$;
 - **b)** m + s(n) = s(m + n), para todo $m, n \in \mathbb{N}$;

* 3) Definir a operação de multiplicação (*) sobre os naturais recursivamente

```
a) n * 0 = 0, para todo n \in \mathbb{N};
```

b)
$$m * s(n) = m + (m * n)$$
, para todo $m, n \in \mathbb{N}$;

Obrigado.

joaopauloaramuni@gmail.com joaopauloaramuni@fumec.br

