Logical Agents (I) AIMA Chapter 7

Knowledge-Based Agents

- Until now trying to find an optimal solution via search.
- Assignment of values to variables CSP.
- No real model of what the agent knows.
- This class: represent agent domain knowledge using logical formulas.

Knowledge Base (KB)

Inference Engine

_____ Domain-independent algorithms

Knowledge Base

_____ Domain-specific content

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
 - TFI it what it needs to know
- Then it can Ask itself what to do answers should follow from the KB
- Agents can be viewed at the knowledge level
 i.e., specify knowledge and goals, regardless of implementation
- Or at the implementation level
 - i.e., data structures in KB and algorithms that manipulate them

What is the best action at time *t*?

What did I perceive at time *t*?

What happened?

function KB-AGENT(percept) returns an action persistent: KB, a knowledge base t, a counter, initially 0, indicating time

What have I done?

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t)) $action \leftarrow Ask(KB$, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action, t)) $t \leftarrow t + 1$

return action

The agent must be able to:

- Represent states, actions, etc.
- Incorporate new percepts
- Update internal world representations
- Deduce hidden world properties, and deduce actions

Wumpus World

SS SSSS Stench S Breeze -PIT Breeze -- Breeze -PIT \$5.555 \$Stench \$ - Breeze -- Breeze -- Breeze -PIT START 2 3

3

2

Performance Measure?

Environment?

Actuators?

Sensors?

Performance measure

- gold +1000, death -1000
- -1 per action, -10 for using the arrow

Actuators

- Turn left/right, Forward
- Shoot: kills wumpus if facing it; uses up the only arrow
- Grab: picks up gold if in same square
- Climb: get out of cave if in [1,1]

Environment

- 4 × 4 grid of rooms
- agent, wumpus, gold, pits

Sensors

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Gets bumped if agent walks into a wall
- Hears scream if wumpus killed

Properties of Wumpus World

Fully Observable?	No – only local perception
Deterministic?	Yes
Episodic?	No – sequential actions
Static?	Yes – nothing moves
Discrete?	Yes
Single-Agent?	Yes

Agent's view

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	² , ² P ?	3,2	4,2
VA OK	BA OK	3,1 P ?	4,1

 \mathbf{A} = Agent

B = Breeze

G = Glitter, Gold

OK = Safe Square

 \mathbf{P} = Pit

S = Stench

V = Visited

4	SS SSSS Stendt S		Breeze -	PIT
3	V:: 7	SS SSSS Stench S	PIT	Breeze
2	\$5555 Stench		Breeze -	
1	START	Breeze	PIT	Breeze

Agent's view

	1,4	2,4	3,4	4,4
No Breez		2,3	3,3	4,3
No Stench	SA OK	P? OK	3,2	4,2
at [2,1]	vA OK	B B OK	3,1 P ?	4,1

 \mathbf{A} = Agent

 \mathbf{B} = Breeze

G = Glitter, Gold

OK = Safe Square

 \mathbf{P} = Pit

S = Stench

V = Visited

4	\$5555 Stench \$		Breeze	PIT
3	Vii)	Breeze \$5 \$555 \$ Stench \$	PIT	Breeze
2	\$5555 Stendt \$		Breeze	
1	START	Breeze	PIT	Breeze
	1	2	3	4

Agent's view

1,4	2,4	3,4	4,4
1,3 W !	2,3 A OK	3,3	4,3
S XX OK	2,2 OK	3,2 OK	4,2
V OK	B V OK	3,1 P !	4,1

A = Agent

 \mathbf{B} = Breeze

G = Glitter, Gold

OK = Safe Square

 \mathbf{P} = Pit

S = Stench

V = Visited

4	SS SSS S		Breeze	PIT
3	V::	S S S S S S S S S S S S S S S S S S S	PIT	Breeze
2	SS SSSS Stench S		Breeze	
1	START	Breeze	PIT	Breeze

Agent's view

1,4	2,4	3,4	4,4
w !	SBG OK	3,3	4,3
S V OK	V OK	3,2 OK	4,2
V OK	B V OK	3,1 P !	4,1

A = Agent

 \mathbf{B} = Breeze

G = Glitter, Gold

OK = Safe Square

 \mathbf{P} = Pit

S = Stench

V = Visited

4	SS SSSS Stendi		Breeze	PIT
3	V::	SS SSS Stench S	PIT	Breeze
2	\$5555 Stendt		Breeze	
1	START	Breeze /	PIT	Breeze -
	1	2	3	4

Logic in General

- Logic: formal language for KR, infer conclusions
- Syntax: defines the sentences in the language
- Semantics: define the "meaning" of sentences;
 - i.e., define truth of a sentence in a world
- E.g., language of arithmetic
 - $x + 2 \ge y$ is a sentence; x2y +> is not a sentence
 - $x + 2 \ge y$ is true in a world where x = 7, y = 1
 - $x + 2 \ge y$ is false in a world where x = 0, y = 6

Entailment

• Modeling: m models α if α is true under m. For example, what are models for the following?

$$\alpha = (q \in \mathbb{Z}_+) \land (\forall n, m \in \mathbb{Z}_+: q = nm \Rightarrow n \lor m = 1)$$

- We let $M(\alpha)$ be the set of all models for α
- Entailment means that one thing follows from another:

$$\alpha \vDash \beta$$
 or equivalently $M(\alpha) \subseteq M(\beta)$

For example:

$$\alpha = (q \text{ is prime}) \text{ entails}$$

 $\beta = (q \text{ is odd}) \lor (q = 2).$

Entailment in the Wumpus World

- Situation after detecting nothing in [1,1], moving right, breeze in [2,1]
- Consider possible models for KB assuming only pits

3 Boolean choices ⇒8 possible models

KB = wumpus-world rules + percepts

- KB = wumpus-world rules + percepts
- α_1 = "[1,2] is safe", $KB \models \alpha_1$, proved by model checking
- The agent can infer that [1,2] is safe

- KB = wumpus-world rules + percepts
- α_2 = "[2,2] is safe", $KB \not\models \alpha_2$
- The agent cannot infer that [2,2] is safe (or unsafe)!

Inference algorithm: is a sentence α is derived from KB?

- Define $KB \vdash_{\mathcal{A}} \alpha$ to be "sentence α is derived from KB by inference algorithm \mathcal{A} "
 - \mathcal{A} is **sound** if $KB \vdash_{\mathcal{A}} \alpha$ implies $KB \vDash \alpha$. "don't infer nonsense"
 - \mathcal{A} is **complete** if $KB \models \alpha$, implies $KB \vdash_{\mathcal{A}} \alpha$. "If it's implied, it can be inferred"

Is an inference algorithm complete and sound?

Completeness: \mathcal{A} is complete if whenever $KB \models \alpha$, it is also true that $KB \vdash_{\mathcal{A}} \alpha$

- An incomplete inference algorithm cannot reach all possible conclusions
- Equivalent to completeness in search (chapter 3)

Propositional Logic: Syntax

- A simple logic illustrates basic ideas
- Defines allowable sentences
- Sentences are represented by symbols e.g. S_1, S_2
- Logical connectives for constructing complex sentences from simpler ones:
 - If S is a sentence, $\neg S$ is a sentence (negation)
 - If S_1 and S_2 are sentences:
 - $S_1 \wedge S_2$ is a sentence (conjunction)
 - $S_1 \vee S_2$ is a sentence (disjunction)
 - $S_1 \Rightarrow S_2$ is a sentence (implication)
 - $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Propositional Logic: Semantics

A model is then just a truth assignment to the basic variables.

If a model has *n* variables, how many truth assignments are there?

All other sentences' truth value is derived according to logical rules.

$$x_1 = T; x_2 = F; x_3 = T$$
$$(x_1 \land \neg x_2) \Rightarrow \neg (x_3 \lor (\neg x_1 \land x_2)) = ?$$

Knowledge Base for Wumpus World

- P_{ij} = True \Leftrightarrow there is a pit in [i,j].
- B_{ij} = True \Leftrightarrow there is breeze in [i,j]
- Rules:
 - $R_1: \neg P_{1,1}$
 - R_4 : $\neg B_{1.1}$
 - $R_5: P_{2,1}$

KB is true iff $\bigwedge_{k=1,\ldots,5} R_k$ is true

- "Pits cause breezes in adjacent squares"
 - $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$
 - $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$

Inference

- Given a knowledge base, infer something nonobvious about the world.
- Mimic logical human reasoning
- After exploring 3 squares, we have some understanding of the Wumpus world
- Inference
 ⇒ Deriving knowledge out of percepts

Given KB and α , we want to know if $KB \vdash \alpha$

Truth Table for Inference

Is $lpha_1$ t	rue wh	eneve	r $_{,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	α_1
K	B is tru	je?	se	false	false	false	false	false	true
	alse	false	false	false	false	false	true	false	true
		÷	:	i	:	:	:	:	:
	false	true	false	false	false	false	false	false	true
	false	true	false	false	false	false	true	\underline{true}	\underline{true}
	false	true	false	false	false	true	false	\underline{true}	\underline{true}
	false	true	false	false	false	true	true	\underline{true}	\underline{true}
	false	true	false	false	true	false	false	false	true
	:	i	:	:	:	:	:	:	:
	true	true	true	true	true	true	true	false	false

 R_1 : $\neg P_{1,1}$ $\alpha_1 = \neg P_{1,2}$ R_4 : $\neg B_{1,1}$ Does KB entail α_1 ? R_5 : $B_{2,1}$ Can we infer that [1,2] is safe from pits?

Inference by Truth-Table Enumeration

- Depth-first enumeration of all models is sound and complete
- For n symbols, time complexity is $\mathcal{O}(2^n)$, space complexity is $\mathcal{O}(n)$

```
function TT-ENTAILS? (KB, \alpha) returns true or false
  inputs: KB, the knowledge base, a sentence in propositional logic
          \alpha, the query, a sentence in propositional logic
  symbols \leftarrow a list of the proposition symbols in KB and \alpha
  return TT-CHECK-ALL(KB, \alpha, symbols, \{\})
function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false
  if EMPTY?(symbols) then
      if PL-True?(KB, model) then return PL-True?(\alpha, model)
                                                                                Check all
      else return true // when KB is false, always return true
                                                                            possible truth
  else do
      P \leftarrow \text{FIRST}(symbols)
                                                                             assignments
      rest \leftarrow REST(symbols)
      return (TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = true\})
             and
              TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = false \}))
```

Validity and Satisfiability

A sentence is valid if it is true in all models,

e.g.,
$$True$$
, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

Validity is connected to entailment via the Deduction Theorem:

$$KB \models \alpha \text{ iff } (KB \Rightarrow \alpha) \text{ is valid}$$

A sentence is satisfiable if it is true in some model e.g., $A \lor B$, C

A sentence is unsatisfiable if it is true in no models e.g., $A \land \neg A$

Satisfiability is connected to entailment via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable