

DECLARATION OF IAN MACLACHLAN, PH.D. UNDER 37 CFR 1,132

I, Ian MacLachlan, Ph.D., declare as follows:

- All statements herein made of my own knowledge are true, and statements made on information or belief are believed to be true and correct.
- 2. I currently hold the position of Chief Scientific Officer for Protiva Biotherapeutics, Inc, located in Burnaby, British Columbia, Canada, a licensee of U.S. Patent Application Serial No. 09/431,594, entitled "Lipid-Nucleic Acid Particles Prepared Via a Hydrophobic Lipid-Nucleic Acid Complex Intermediate and Use For Gene Transfer." My field of expertise is nucleic acid delivery and molecular gene therapy. I have authored over twenty-five publications in the field of nucleic acid delivery technology, molecular gene therapy and molecular genetics, and I am a member of the American Society of Gene Therapy and the Oligonucleotide Therapeutics Society. A copy of my Curriculum Vitae is attached hereto (Exhibit A).
- 3. I have read and am familiar with the above-identified patent application, and the Office Action mailed March 7, 2006 by the United States Patent & Trademark Office in the above-referenced patent application. It is my understanding that U.S. Patent No. 5,820,873 (Choi et al.) and U.S. Patent No. 5,885,613 (Holland et al.) are cited by the Examiner as allegedly disclosing nucleic acid particles that meet the structural limitations of the particles claims in the above-referenced patent application.
- 4. I submit this Declaration for the purpose of providing additional evidence regarding the ability of the lipid hydranon-extrusion method described in Choi et al. Holland et al. to be used to encapsulate nucleic acids. Specifically, this declaration is provided to supplement my prior declarations submitted December 21, 2005 and May 30, 2005, which demonstrated that the methods of Choi et al. and Holland et al. could not be used to efficiently encapsulate plasmid DNA, and to present additional data regarding the

Corp. 200