Algebraische Grundlagen der Informatik

SoSe 2024

KAPITEL I: Komplexe Zahlen

1. Grundlagen

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Erinnerung: bisherige Zahlbereiche

- $ightharpoonup \mathbb{N} = \{0,1,2,3,\ldots\}$ "Menge der natürlichen Zahlen"
- $ightharpoonup \mathbb{Z} = \{0,1,-1,2,-2,3,-3,\ldots\}$ "Menge der ganzen Zahlen"
- $ightharpoonup \mathbb{Q} = \left\{ rac{m}{n} : m, n \in \mathbb{Z}, n
 eq 0
 ight\}$ "Menge der rationalen Zahlen"
- $ightharpoonup \mathbb{R} = \mathsf{Menge}$ aller Dezimalzahlen "Menge der reellen Zahlen"

Bemerkung

- ▶ Die Gleichung x + 2 = 1 ist nicht in \mathbb{N} lösbar, aber in \mathbb{Z} .
- ▶ Die Gleichung 2x = 1 ist nicht in \mathbb{Z} lösbar, aber in \mathbb{Q} .
- ▶ Die Gleichung $x^2 = 2$ ist nicht in \mathbb{Q} lösbar, aber in \mathbb{R} .
- ▶ Die Gleichung $x^2 = -1$ ist nicht in \mathbb{R} lösbar.

Komplexe Zahlen

Definition

Unter der Menge der komplexen Zahlen $\mathbb C$ versteht man die Menge

$$\mathbb{C} := \mathbb{R} \times \mathbb{R}$$
.

Die Addition "+", Subtraktion "–" und Multiplikation "·" zweier komplexer Zahlen (x,y) und (u,v) sind definiert durch

- (x,y)+(u,v):=(x+u,y+v),
- (x,y)-(u,v):=(x-u,y-v),
- $(x,y)\cdot (u,v):=(xu-yv,xv+yu).$

Beobachtungen

- ▶ Addition, Multiplikation sind kommutativ. (→ nachrechnen)
- ► Es gelten Assoziativ- und Distributivgesetz. (→ nachrechnen)
- ▶ (0,0) ist das "Neutralelement" der Addition, denn

$$(x,y)+(0,0)=(x+0,y+0)=(x,y).$$

ightharpoonup (1,0) ist das "Neutralelement" der Multiplikation, denn

$$(x,y)\cdot(1,0)=(x\cdot 1-y\cdot 0,x\cdot 0+y\cdot 1)=(x,y).$$

Division in C

Beobachtung

Falls $(x, y) \neq (0, 0)$, dann ist

$$(x,y) \cdot \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

$$= \left(x\frac{x}{x^2 + y^2} - y\frac{-y}{x^2 + y^2}, x\frac{-y}{x^2 + y^2} + y\frac{x}{x^2 + y^2}\right)$$

$$= (1,0).$$

Damit definiere nun die Division:

Definition

Falls $(u, v), (x, y) \in \mathbb{C}$ und $(x, y) \neq (0, 0)$, so definiert man

$$\frac{(u,v)}{(x,y)} := (u,v) \cdot \left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right).$$

4

Einbettung von $\mathbb R$ in $\mathbb C$

Beobachtung

Für alle $x_1, x_2 \in \mathbb{R}$ gilt:

- $(x_1,0)+(x_2,0)=(x_1+x_2,0)$
- $(x_1,0)\cdot(x_2,0)=(x_1x_2,0)$

Komplexe Zahlen der Form (x,0) werden also wie reelle Zahlen addiert und multipliziert.

Fazit

Jede reelle Zahl x kann also als komplexe Zahl (x,0) aufgefasst werden. In diesem Sinn ist

$$\mathbb{R}\subseteq\mathbb{C}$$
.

Andere Notation für komplexe Zahlen

Wir verwenden meistens folgende Notation:

- ► *x* statt (*x*, 0)
- ▶ i statt (0,1)

Wegen

$$(x,y) = (x,0) + (0,y) = (x,0) + (0,1) \cdot (y,0) = x + iy$$

schreiben wir

 \triangleright x + iy statt (x, y).

Beispiele

$$ightharpoonup$$
 $i^2 = (0,1) \cdot (0,1) = (-1,0) = -1$

$$(1+2i)(2+3i) \stackrel{\text{Distr.}}{=} 1 \cdot (2+3i) + 2i \cdot (2+3i)$$

$$= 2+3i+4i+6i^2$$

$$= -4+7i$$

▶ Darstellung von $\frac{1+2i}{2-3i}$ in der Form x + iy, $x, y \in \mathbb{R}$:

$$\frac{1+2\,\mathrm{i}}{2-3\,\mathrm{i}} = \frac{1+2\,\mathrm{i}}{2-3\,\mathrm{i}} \cdot \frac{2+3\,\mathrm{i}}{2+3\,\mathrm{i}} = \frac{-4+7\,\mathrm{i}}{13} = -\frac{4}{13} + \frac{7}{13}\,\mathrm{i} \,.$$

wichtige Begriffe

Definition

Sei $z := x + i y \in \mathbb{C}$, wobei $x, y \in \mathbb{R}$.

- ightharpoonup Re(z) := x ist der Realteil von z.
- ▶ Im(z) := y ist der Imaginärteil von z.
- $ightharpoonup \overline{z} := x i y$ ist die zu z konjugiert komplexe Zahl.
- $|z| := \sqrt{x^2 + y^2}$ ist der Betrag von z.

Abstand von z zu w

Bemerkung

Für z = x + i y, w = u + i v mit $x, y, u, v \in \mathbb{R}$ wird |z - w| interpretiert als der Abstand von z zu w, denn

$$|z-w| = \sqrt{(\text{Re}(z-w))^2 + (\text{Im}(z-w))^2} = \sqrt{(x-u)^2 + (y-v)^2}.$$

Skizze:

Rechenregeln

Für $z, w \in \mathbb{C}$ gelten:

- 1. $\overline{\overline{z}} = z$
- 2. $\overline{z+w} = \overline{z} + \overline{w}$, $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- 3. Ist z = x + iy mit $x, y \in \mathbb{R}$, so ist $|z|^2 = z \cdot \overline{z} = x^2 + y^2$.
- 4. Falls $z \neq 0$, dann ist $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$.
- 5. $Re(z) = \frac{1}{2}(z + \overline{z}), \quad Im(z) = \frac{1}{2i}(z \overline{z})$
- 6. $|z| = |\overline{z}|$
- 7. $|\text{Re}(z)| \le |z|$, $|\text{Im}(z)| \le |z|$
- 8. $|z \cdot w| = |z| \cdot |w|$, $\left|\frac{z}{w}\right| = \frac{|z|}{|w|}$ falls $w \neq 0$

Beweisidee:

1.–8. kann man direkt nachprüfen.

Dreiecksungleichung

Satz

Für alle $z,w\in\mathbb{C}$ gilt

$$|z+w|\leq |z|+|w|.$$

Algebraische Grundlagen der Informatik SoSe 2024

KAPITEL I: Komplexe Zahlen

2. Polardarstellung

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Erinnerung (WiSe 2023/2024): Sinus und Kosinus

$$\varphi = \frac{\text{Länge des Kreisbogens}}{r}$$

$$\sin(\varphi) = \frac{y}{r}$$

$$\cos(\varphi) = \frac{x}{r}$$
 Kreiszahl $\pi = 3, 141...$

Kreisumfang $2\pi r$

▶ $\sin : \mathbb{R} \to [-1,1]$ und $\cos : \mathbb{R} \to [-1,1]$ $\sin 2\pi$ -periodisch, das heißt, für alle $\varphi \in \mathbb{R}$ gilt: $\sin(\varphi + 2\pi) = \sin(\varphi)$ und $\cos(\varphi + 2\pi) = \cos(\varphi)$.

	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
sin	0	1	0	-1	0
cos	1	0	-1	0	1

- $ightharpoonup \cos(-\varphi) = \cos(\varphi)$, $\sin(-\varphi) = -\sin(\varphi)$ für alle $\varphi \in \mathbb{R}$
- ► Trigonometrischer Pythagoras: $\sin^2(\varphi) + \cos^2(\varphi) = 1$ für alle $\varphi \in \mathbb{R}$.

Additionstheoreme

Für alle $\varphi, \psi \in \mathbb{R}$ gelten:

Trigonometrische Darstellung komplexer Zahlen

Eine komplexe Zahl $0 \neq z = x + \mathrm{i}\, y, x, y \in \mathbb{R}$ lässt sich nun schreiben als

$$z = x + i y$$

$$= |z| \frac{x}{|z|} + i |z| \frac{y}{|z|}$$

$$= |z| \left(\frac{x}{|z|} + i \frac{y}{|z|} \right)$$

$$= |z| \left(\cos(\varphi) + i \sin(\varphi) \right),$$

wobei $\varphi \in \mathbb{R}$ bis auf Vielfache von 2π festgelegt ist. Oft fordert man $\varphi \in [0, 2\pi)$, um Eindeutigkeit zu erhalten.

Polardarstellung komplexer Zahlen

Definition

Für $\varphi \in \mathbb{R}$ definiere

$$e^{i\varphi} := \cos(\varphi) + i\sin(\varphi).$$

Bemerkung

Jedes $z \in \mathbb{C}$ besitzt eine Darstellung (die so genannte "Polardarstellung") der Form

$$z=re^{\mathrm{i}\,arphi}$$
 mit $r\in[0,\infty)$ und $arphi\in\mathbb{R}.$

Dabei ist r = |z|.

Falls $z \neq 0$, dann wird φ als ein Argument von z bezeichnet und ist bis auf Addition von $2k\pi$, $k \in \mathbb{Z}$, eindeutig bestimmt.

Beispiele zur Polardarstellung

$$i = 1 \cdot e^{i\pi/2} \quad \left(=\underbrace{\cos(\pi/2)}_{=0} + i\underbrace{\sin(\pi/2)}_{=1}\right)$$

$$-1 = 1 \cdot e^{i\pi} \quad \left(=\underbrace{\cos(\pi)}_{=-1} + i\underbrace{\sin(\pi)}_{=0}\right)$$

Umrechnung: Polardarstellung \rightarrow kartesische Form

Umrechnung von Polardarstellung in kartesische Form

Sei
$$z = re^{i\varphi} \in \mathbb{C}$$
, wobei $r \in [0, \infty), \varphi \in \mathbb{R}$.

- 1.) $x = r \cos(\varphi)$
- 2.) $y = r \sin(\varphi)$

Kartesische Form von z: z = x + y i.

Umrechnung: kartesische Form \rightarrow Polardarstellung

Umrechnung von kartesischer Form in Polardarstellung

Sei
$$z = x + y$$
 i $\in \mathbb{C} \setminus \{0\}$, wobei $x, y \in \mathbb{R}$.
1.) $r = |z| = \sqrt{x^2 + y^2}$
2.) $\varphi = \begin{cases} \arccos \frac{x}{|z|}, & \text{falls } y \geq 0 \\ 2\pi - \arccos \frac{x}{|z|}, & \text{falls } y < 0 \end{cases}$
Polardarstellung von z : $z = re^{i\varphi}$

Multiplikation komplexer Zahlen

Satz

Seien $z, w \in \mathbb{C}$ mit Polardarstellungen

$$z = r e^{i \varphi}, w = s e^{i \psi}, \text{ wobei } r, s \in [0, \infty), \varphi, \psi \in \mathbb{R}.$$

Dann ist

$$z w = r s e^{i(\varphi + \psi)}$$
.

Bemerkung

Bei der Multiplikation komplexer Zahlen werden die Beträge multipliziert und die Argumente/Winkel addiert.

Beweis des Satzes.

$$z w = r \left(\cos(\varphi) + i\sin(\varphi)\right) s \left(\cos(\psi) + i\sin(\psi)\right)$$

$$= rs\left(\cos(\varphi)\cos(\psi) - \sin(\varphi)\sin(\psi)\right) + i\left(\sin(\varphi)\cos(\psi) + \cos(\varphi)\sin(\psi)\right)$$

$$\stackrel{\text{Add.thm.}}{=} \cos(\varphi + \psi)$$

$$= r s \left(\cos(\varphi + \psi) + i\sin(\varphi + \psi)\right) = r s e^{i(\varphi + \psi)}$$

Algebraische Grundlagen der Informatik SoSe 2024

KAPITEL I: Komplexe Zahlen

3. Komplexe Wurzeln

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Lösungen der Gleichung $z^n = w$

Problem

Für $w \in \mathbb{C} \setminus \{0\}$ und $n \in \mathbb{N}$, $n \ge 1$, finde alle $z \in \mathbb{C}$ mit

$$z^n = w$$
.

Lösungen der Gleichung $z^n = w$

Seien $n \in \mathbb{N}, n \ge 1$, r > 0, $\varphi \in \mathbb{R}$ und $w = r \cdot e^{i\varphi}$. Dann gibt es n verschiedene komplexe Lösungen von

$$z^n = w$$
,

nämlich

$$z_k = \sqrt[n]{r}e^{i\left(\frac{\varphi}{n} + \frac{2k\pi}{n}\right)}, \quad k = 0, \dots, n-1.$$

Einheitswurzeln

Speziell für $w=1=1\cdot e^{\mathrm{i}\cdot 0}$ erhält man die \emph{n} -ten Einheitswurzeln

$$z_k=e^{i\frac{2k\pi}{n}}, \quad k=0,\ldots,n-1.$$

Beispiel: (n = 6)

$$z_0=1, \quad z_1=e^{i\,\frac{\pi}{3}}, \quad z_2=e^{i\,\frac{2\pi}{3}}, \quad z_3=-1, \quad z_4=e^{i\,\frac{4\pi}{3}}, \quad z_5=e^{i\,\frac{5\pi}{3}}$$

Algebraische Grundlagen der Informatik

SoSe 2024

KAPITEL II: Relationen und algebraische Strukturen

1. Relationen

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Erinnerung (WiSe 2023/2024): Binäre Relationen

Erinnerung: Sind A und B Mengen und $R \subseteq A \times B$, so bezeichnet man R als binäre oder zweistellige Relation zwischen A und B.

Definition

Eine binäre Relation $R \subseteq A \times B$ heißt

- ▶ linkstotal, falls für alle $x \in A$ ein $y \in B$ existiert mit $(x, y) \in R$.
- rechtstotal, falls für alle $y \in B$ ein $x \in A$ existiert mit $(x, y) \in R$.
- ▶ linkseindeutig, falls für alle $x_1, x_2 \in A$ und für alle $y \in B$ aus $(x_1, y), (x_2, y) \in R$ folgt, dass $x_1 = x_2$.
- ▶ rechtseindeutig, falls für alle $x \in A$ und für alle $y_1, y_2 \in B$ aus $(x, y_1), (x, y_2) \in R$ folgt, dass $y_1 = y_2$.

Erinnerung (WiSe 2023/2024): Funktionen

Definition

Seien A und B Mengen. Eine Relation $R \subseteq A \times B$ ist eine Abbildung oder Funktion, falls sie

▶ linkstotal

und

rechtseindeutig

ist.

Bemerkung

Das heißt, jedem Element in A wird genau ein Element in B zugeordnet.

weitere Sprechweisen

Bemerkung

- Eine partielle Funktion ist eine rechtseindeutige (und im Allgmeinen nicht linkstotale) Relation $R \subseteq A \times B$.
- ▶ Die Umkehrrelation einer Relation $R \subseteq A \times B$ ist die Relation

$$R^{-1} = \{(y, x) \in B \times A : (x, y) \in R\}.$$

Ist R eine bijektive Funktion, so ist R^{-1} gerade die Umkehrfunktion.

Relationen auf einer Menge

Definition

Sei M eine Menge. Eine Relation R auf M ist eine Teilmenge von $M \times M$, also $R \subseteq M \times M$.

Bemerkung

Andere Schreibweisen für " $(x, y) \in R$ " sind zum Beispiel:

- \triangleright x R y,
- \triangleright $x \sim_R y$,
- \triangleright $x \sim y$.

Andere Schreibweisen für " $(x, y) \notin R$ " sind zum Beispiel:

- ► x R y,
- \triangleright $x \not\sim_R y$,
- \triangleright $x \not\sim y$.

Beispiele

- (i) $M := \{2, 4, 5, 8\}, R := \{(2, 2), (2, 4), (4, 2), (5, 8)\}$
- (ii) $M := \mathbb{N}, \quad R_{<} := \{(x, y) \in M \times M : x \le y\}$
- (iii) $M := \mathbb{N}, \quad R_{<} := \{(x, y) \in M \times M : x < y\}$
- (iv) $M := \mathbb{Z}$, $R_3 := \{(x, y) \in M \times M : 3 \text{ teilt } y x \text{ ohne Rest}\}$
- (v) $M := \mathbb{N} \times \mathbb{N}$, $R := \{((k, l), (m, n)) \in M \times M : k l = m n\}$
- (vi) $\emptyset \neq K$ Menge, $M := \mathbb{P}(K)$, $R := \{(X, Y) \in M \times M : X \subseteq Y\}$

Eigenschaften von Relationen

Definition

Eine Relation R auf einer Menge M heißt

- reflexiv, falls für alle $x \in M$ gilt: $x \sim_R x$.
- ▶ irreflexiv, falls für alle $x \in M$ gilt: $x \nsim_R x$.
- ▶ symmetrisch, falls für alle $x, y \in M$ gilt: Wenn $x \sim_R y$ gilt, dann gilt auch $y \sim_R x$.
- ▶ asymmetrisch, falls für alle $x, y \in M$ gilt: Aus $x \sim_R y$ folgt $y \not\sim_R x$.
- ▶ transitiv, falls für alle $x, y, z \in M$ gilt: Wenn $x \sim_R y$ und $y \sim_R z$ gelten, dann gilt auch $x \sim_R z$.
- ▶ antisymmetrisch, falls für alle $x, y \in M$ gilt: Aus $x \sim_R y$ und $y \sim_R x$ folgt x = y.

Beispiel von Seite 27

- (i) $M := \{2, 4, 5, 8\}, R := \{(2, 2), (2, 4), (4, 2), (5, 8)\}$
- (ii) $M := \mathbb{N}, \quad R_{<} := \{(x, y) \in M \times M : x \le y\}$
- (iii) $M := \mathbb{N}, \quad R_{<} := \{(x, y) \in M \times M : x < y\}$
- (iv) $M := \mathbb{Z}$, $R_3 := \{(x, y) \in M \times M : 3 \text{ teilt } y x \text{ ohne Rest}\}$
- (v) $M := \mathbb{N} \times \mathbb{N}$, $R := \{((k, l), (m, n)) \in M \times M : k l = m n\}$
- (vi) $\emptyset \neq K$ Menge, $M := \mathbb{P}(K)$, $R := \{(X, Y) \in M \times M : X \subseteq Y\}$

	refl.	irrefl.	symm.	asymm.	trans.	antisymm.
(i)	_	_	_	_	_	_
(ii)	✓	_	_	_	\checkmark	\checkmark
(iii)	_	\checkmark	-	\checkmark	\checkmark	\checkmark
(iv)	✓	_	\checkmark	_	\checkmark	_
(v)	✓	_	\checkmark	_	\checkmark	_
(vi)	✓	_	_	_	\checkmark	\checkmark

Ordnungs- und Äquivalenzrelationen

Definition

Sei M eine Menge. $R \subseteq M \times M$ ist eine

- (a) Ordungsrelation, falls *R* reflexiv, transitiv und antisymmetrisch ist.
 - Sind zwei beliebige Elemente $x,y\in M$ immer vergleichbar, das heißt, gilt für beliebige Elemente $x,y\in M$ immer $x\sim_R y$ oder $y\sim_R x$, so spricht man von einer totalen Ordnung. Ist dies nicht unbedingt der Fall, so spricht man von einer partiellen Ordnung.
- (b) strikte Ordnungsrelation, falls *R* transitiv und asymmetrisch ist.
- (c) Äquivalenzrelation, falls *R* reflexiv, symmetrisch und transitiv ist.

Beispiel von Seite 27

- (i) $M := \{2, 4, 5, 8\}, R := \{(2, 2), (2, 4), (4, 2), (5, 8)\}$
- (ii) $M := \mathbb{N}, \quad R_{<} := \{(x, y) \in M \times M : x \le y\}$
- (iii) $M := \mathbb{N}, \quad R_{<} := \{(x, y) \in M \times M : x < y\}$
- (iv) $M := \mathbb{Z}$, $R_3 := \{(x, y) \in M \times M : 3 \text{ teilt } y x \text{ ohne Rest}\}$
- (v) $M := \mathbb{N} \times \mathbb{N}$, $R := \{((k, l), (m, n)) \in M \times M : k + n = m + l\}$
- (vi) $\emptyset \neq K$ Menge, $M := \mathbb{P}(K)$, $R := \{(X, Y) \in M \times M : X \subseteq Y\}$

Bemerkung

- (ii) und (vi) sind Ordnungsrelationen.
- (iii) ist eine strikte Ordnungsrelation.
- (iv) und (v) sind Äquivalenzrelationen.

Äquivalenzklassen

Definition

lst R eine Äquivalenzrelation auf der Menge M und ist $x \in M$, so ist die Menge

$$[x]_R := \{ y \in M : x \sim_R y \}$$

die Äquivalenzklasse von x (bzgl. R).

Andere Notation: [x] statt $[x]_R$.

- ► Ein Element aus [x] heißt Vertreter dieser Äquivalenzklasse.
- ▶ M/\sim_R , beziehungsweise nur M/\sim , bezeichnet die Menge der Äquivalenzklassen bezüglich R, also

$$M/\sim_R = \{[x]_R : x \in M\}.$$

Zu Beispiel (iv) von Seite 27

Für $R_3 \subseteq \mathbb{Z} \times \mathbb{Z}$ mit

$$x \sim_{R_3} y$$
, falls $3|(y-x)$

ist

▶
$$[0] = \{y \in \mathbb{Z} : 0 \sim_{R_3} y\} = \{y \in \mathbb{Z} : 3|y\}$$

= $\{0, 3, -3, 6, -6, \ldots\} = \{3z : z \in \mathbb{Z}\},$

▶
$$[1] = \{ y \in \mathbb{Z} : 1 \sim_{R_3} y \} = \{ y \in \mathbb{Z} : 3 | (y - 1) \}$$

= $\{ 1, 4, 7, \ldots \} \cup \{ -2, -5, -8, \ldots \} = \{ 3z + 1 : z \in \mathbb{Z} \},$

▶ [2] =
$$\{y \in \mathbb{Z} : 2 \sim_{R_3} y\} = \{y \in \mathbb{Z} : 3 | (y - 2)\}$$

= $\{2, 5, 8, ...\} \cup \{-1, -4, -7, ...\} = \{3z + 2 : z \in \mathbb{Z}\}.$

Desweiteren ist $[3] = [0], [4] = [1], [5] = [2], \dots$ und $[-1] = [2], [-2] = [1], [-3] = [0], \dots$ Wir haben also

$$\mathbb{Z}/\sim_{R_3} = \{[0], [1], [2]\}.$$

Restklassen

Allgemein:

Falls für $n \in \mathbb{N}$, $n \ge 2$, die Relation $R_n \subseteq \mathbb{Z} \times \mathbb{Z}$ definiert ist durch

$$x \sim_{R_n} y$$
, falls $n|(y-x)$,

so ist

$$\mathbb{Z}/\sim_{R_n}=\{[0],[1],[2],\ldots,[n-1]\}=:\mathbb{Z}_n,$$

wobei

$$[k] = \{k + nz : z \in \mathbb{Z}\}.$$

[k] heißt Restklasse modulo n, da alle darin enthaltenen Zahlen bei Division durch n den gleichen Rest lassen.

Zu Beispiel (v) von Seite 27

Sei $M:=\mathbb{N}\times\mathbb{N}$, wobei $(k,l)\sim (m,n)$ falls k-l=m-n.

Beobachtung

- ► In einer Äquivalenzklasse sind genau die Zahlenpaare, deren Differenzen gleich sind.
- Die Abbildung

$$f: \mathbb{N} \times \mathbb{N}/\sim \to \mathbb{Z}, \quad [(n,m)] \mapsto n-m,$$

ist also bijektiv. Insbesondere gilt für $n \in \mathbb{N}$

$$f([(n+1,1)]) = n, \quad f([(1,n+1)]) = -n.$$

Partition einer Menge durch Äquivalenzrelation

Satz

Sei R eine Äquivalenzrelation auf M und $x_1, x_2 \in M$. Dann gelten:

- (a) Ist $x_1 \sim_R x_2$, so ist $[x_1]_R = [x_2]_R$.
- (b) Ist $x_1 \not\sim_R x_2$, so ist $[x_1]_R \cap [x_2]_R = \emptyset$.

(c)
$$\bigcup_{x \in M} [x]_R = M$$

Verknüpfung von Relationen

Definition

▶ Sind A, B, C Mengen und $R \subseteq A \times B, S \subseteq B \times C$, so ist die Verkettung oder Verknüpfung der Relationen S und R gegeben durch

$$S \circ R = \{(a, c) \in A \times C : \exists b \in B \text{ so dass } (a, b) \in R \text{ und } (b, c) \in S\}.$$

▶ Ist R eine Relation auf einer Menge M, so definiert man

$$R^{n+1} = R \circ R^n, \quad n \ge 1.$$

Reflexive, transitive und symmetrische Hülle einer Relation

Definition

Sei M eine Menge und $R \subseteq M \times M$ eine Relation.

▶ Die reflexive Hülle von R ist

$$R \cup \{(x,x) : x \in M\}.$$

▶ Die symmetrische Hülle von *R* ist

$$R \cup R^{-1}$$
.

$$\bigcup_{n>1} R^n$$

Aus einer Relation eine Äquivalenzrelation gewinnen

Bemerkung

Ist R eine Relation auf einer Menge M und bildet man zunächst die

ightharpoonup reflexive Hülle R_r von R,

dann die

ightharpoonup symmetrische Hülle $(R_r)_s$ von R_r

und schließlich die

▶ transitive Hülle $((R_r)_s)_t$ von $(R_r)_s$,

so erhält man die kleinste Äquivalenzrelation, die R enthält.

Algebraische Grundlagen der Informatik SoSe 2024

KAPITEL II: Relationen und algebraische Strukturen

2. Erinnerung: Euklidischer Algorithmus

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Teilbarkeit

Definition

1. $a \in \mathbb{Z}$ heißt durch $b \in \mathbb{Z}$ teilbar, beziehungsweise b teilt a, falls es ein $z \in \mathbb{Z}$ gibt mit $a = z \cdot b$.

Notation:
$$\begin{cases} b \mid a, & \text{falls } a \text{ durch } b \text{ teilbar}, \\ b \nmid a, & \text{sonst.} \end{cases}$$

2. Seien $a, b \in \mathbb{Z}$. Es sind a und b kongruent modulo $m \in \mathbb{N}^*$, wenn gilt: m|(b-a).

Notation: $a \equiv b \mod m$ oder $a \equiv b \pmod m$.

Division mit Rest

Bemerkung

Sind $a \in \mathbb{Z}$ und $m \in \mathbb{N}^*$, so gibt es eindeutig bestimmte Zahlen $q \in \mathbb{Z}$ und $r \in \{0, \dots, m-1\}$, so dass

$$a = q \cdot m + r$$
.

Dabei ist *r* der Rest.

Notation: $r = a \mod m$

- ▶ Beachten Sie, dass der Rest nicht negativ ist!
- ► Falls $b \in \mathbb{Z}$ und $a \equiv b \mod m$ gilt, so lassen a und b bei Division durch m den gleichen Rest r:

$$r = a \mod m = b \mod m$$
.

größter gemeinsamer Teiler

Definition

Seien $a, b \in \mathbb{Z}$ und a und b nicht beide = 0.

- (a) Der größte gemeinsame Teiler ggT(a, b) von a und b ist die größte Zahl $k \in \mathbb{N}$ mit k|a und k|b.
- (b) Ist ggT(a, b) = 1, so heißen a und b teilerfremd.

Bemerkung

- ggT(a,b) = ggT(|a|,|b|)

Euklidischer Algorithmus

Satz

Seien $a, b \in \mathbb{Z} \setminus \{0\}$. Folgendes Verfahren endet nach einer endlichen Anzahl von Schritten und liefert ggT(a, b):

Schritt 0:

$$\begin{cases} a_0 := |a|, & a_1 := |b|, & \text{falls } |a| > |b|; \\ a_0 := |b|, & a_1 := |a|, & \text{sonst.} \end{cases}$$

Schritt k, k > 1:

("Führe so lange Division mit Rest aus, bis Rest 0 auftaucht.")

- ▶ Bestimme $q_{k-1} \in \mathbb{N}$, $a_{k+1} \in \mathbb{N}$ mit $0 \le a_k$, so dass $a_{k-1} = q_{k-1}a_k + a_{k+1}$.
- Ist $a_{k+1} = 0$, dann ist $ggT(a, b) = a_k$ und das Verfahren endet.
- lst $a_{k+1} \neq 0$, dann weiter mit Schritt k+1.

Darstellung des ggT

Korollar

Seien $a,b\in\mathbb{Z}\setminus\{0\}$. Dann gibt es $s,t\in\mathbb{Z}$, so dass

$$ggT(a, b) = sa + tb.$$

Algebraische Grundlagen der Informatik

SoSe 2024

KAPITEL II: Relationen und algebraische Strukturen

3. Gruppen, Ringe, Körper

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Verknüpfungen

Definition

Eine Abbildung $*: M \times M \rightarrow M$ heißt Verknüpfung auf M.

Notation: Statt *((x, y)) schreibt man x * y. Zum Beispiel 3 + 7 statt +((3,7)).

Beispiel

- ightharpoonup ,, +" und ,, ·" sind Verknüpfungen auf \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} .
- ▶ "—" ist eine Verknüpfung auf $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, nicht aber auf \mathbb{N} .

Gruppen

Definition

Sei $G \neq \emptyset$ und $*: G \times G \rightarrow G$ eine Verknüpfung auf G. Dann heißt (G,*) oder kurz G Gruppe, falls

- 1. * assoziativ ist, das heißt für alle $a,b,c\in G$ gilt a*(b*c)=(a*b)*c; (\rightarrow Klammern können weggelassen werden)
- 2. es ein Neutralelement $e \in G$ gibt, das heißt, es existiert ein $e \in G$, so dass für alle $a \in G$ gilt: a * e = e * a = a;
- jedes a ∈ G ein inverses Element besitzt, das heißt, zu jedem a ∈ G existiert ein b ∈ G, so dass a * b = b * a = e.
 Notation für das Inverse: a⁻¹ oder -a.

Die Gruppe (G,*) heißt kommutativ oder abelsch, falls für alle $a,b\in G$ gilt: a*b=b*a.

Beispiele

- $ightharpoonup (\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+)$ sind Gruppen.
- \blacktriangleright (N, ·), (Z, ·) sind keine Gruppen.
- \blacktriangleright ($\mathbb{Q}\setminus\{0\},\cdot$), ($\mathbb{R}\setminus\{0\},\cdot$), ($\mathbb{C}\setminus\{0\},\cdot$) sind Gruppen.
- X eine beliebige nicht-leere Menge und

$$G := \{f : X \to X \mid f \text{ bijektiv}\}.$$

Dann ist (G, \circ) eine Gruppe.

Ist
$$n \in \mathbb{N}^*$$
, $X := \{1, \ldots, n\}$ und

$$S_n := \{f : X \to X \mid f \text{ bijektiv}\},\$$

so heißt die Gruppe (S_n, \circ) symmetrische Gruppe. Die Elemente dieser Gruppe nennt man auch Permutationen.

Eigenschaften von Gruppen

Satz

Sei (G, *) eine Gruppe. Dann gelten:

- (a) Das Neutralelement ist eindeutig.
- (b) Zu jedem $a \in G$ gibt es genau ein inverses Element.
- (c) Seien $a, x, y \in G$. Dann gelten folgende Kürzungsregeln:
 - $ightharpoonup a * x = a * y \Rightarrow x = y,$
 - $\triangleright x * a = y * a \Rightarrow x = y.$

Kongruenzrelationen

Definition

Sei M eine Menge, auf der eine Verknüpfung "*" definiert ist, und sei R eine Äquivalenzrelation auf M. Gilt für alle $a_1, a_2, b_1, b_2 \in M$ mit $a_1 \sim a_2$ und $b_1 \sim b_2$ auch

$$a_1 * b_1 \sim a_2 * b_2$$
,

so bezeichnet man R als Kongruenzrelation.

Beispiel

Die Teilbarkeitsrelation R_n (von Seite 34) ist eine Kongruenzrelation auf $\mathbb Z$ bezüglich "+" und "·".

Addition und Multiplikation mit Restklassen

Erinnerung: Für $n \in \mathbb{N}$, $n \ge 2$, ist

$$\mathbb{Z}_n = \{[0], [1], \ldots, [n-1]\},\$$

wobei
$$[k] = \{k + nz : z \in \mathbb{Z}\}.$$

Definiere Verknüpfungen "+" und " \cdot " auf \mathbb{Z}_n durch

- ightharpoonup [a] + [b] := [a + b],
- $\triangleright [a] \cdot [b] := [a \cdot b].$

Bemerkung

Die Verknüpfungen sind "wohldefiniert", das heißt unabhängig von dem jeweiligen Vertreter der Äquivalenzklasse, da die Teilbarkeitsrelation R_n (von Seite 34) eine Kongruenzrelation auf $\mathbb Z$ bezüglich "+" und "·" ist.

Verknüpfungstafeln von $(\mathbb{Z}_4,+)$ und (\mathbb{Z}_4,\cdot)

		[1]				[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]	[0]	[0]	[0]	[0]	[0]
[1]	[1]	[2]	[3]	[0]	[1]	[0]	[1]	[2]	[3]
[2]	[2]	[3]	[0]	[1]	[2]	[0]	[2]	[0]	[2]
		[0]			[3]	[0]	[3]	[2]	[1]

Beobachtung

- $(\mathbb{Z}_4, +)$ ist eine (kommutative) Gruppe. (Neutralelement: [0], Inverses zu [a]: [a])
- \triangleright (\mathbb{Z}_4 , ·) ist keine Gruppe.
- ▶ Die invertierbaren Elemente in (\mathbb{Z}_4, \cdot) sind [1] und [3].
- ► ({[1],[3]},·) ist eine Gruppe, wobei die Verknüpfungstafel gegeben ist durch

	[1]	[3]
[1]	[1]	[3]
[3]	[3]	[1]

Gruppeneigenschaft von $(\mathbb{Z}_n, +)$

Beobachtung

Allgemein gilt:

Für jedes $n \in \mathbb{N}$, $n \ge 2$, ist $(\mathbb{Z}_n, +)$ eine kommutative Gruppe.

Dabei ist jeweils

- ▶ [0] das Neutralelement.
- ▶ [-k] das Inverse zu [k] für $k \in \mathbb{Z}$.

Invertierbarkeit in (\mathbb{Z}_n,\cdot)

Satz

Sei $n \in \mathbb{N}$, $n \ge 2$. Dann ist $[k] \in \mathbb{Z}_n$ genau dann invertierbar bezüglich "·", wenn ggT(k,n) = 1.

Prime Restklassengruppe modulo n

Definition

Für $n \in \mathbb{N}$, $n \ge 2$, heißt

$$\mathbb{Z}_n^* := \{ [k] \in \mathbb{Z}_n : \operatorname{\mathsf{ggT}}(k, n) = 1 \}$$

prime Restklassengruppe modulo n.

Beispiel

- $ightharpoonup \mathbb{Z}_4^* = \{[1], [3]\}$
- ▶ Ist p eine Primzahl, so ist $\mathbb{Z}_p^* = \{[1], [2], \dots, [p-1]\}.$

Satz

Sei $n \in \mathbb{N}, n \geq 2$. Dann ist (\mathbb{Z}_n^*, \cdot) eine kommutative Gruppe.

Ringe

Definition

Sei $R \neq \emptyset$ eine Menge, auf der zwei Verknüpfungen $+: R \times R \rightarrow R$ und $\cdot: R \times R \rightarrow R$ definiert sind. Dann heißt $(R,+,\cdot)$ oder kurz R Ring, falls

- (i) (R, +) eine abelsche Gruppe ist,
- (ii) für alle $a, b, c \in R$ gilt:

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$
 (Assoziativgesetz),

(iii) für alle $a, b, c \in R$ gilt: $a \cdot (b+c) = a \cdot b + a \cdot c$ und $(a+b) \cdot c = a \cdot c + b \cdot c$ (Distributivgesetze).

Ist die Verknüpfung "·" kommutativ, so heißt der Ring kommutativ. Gibt es zusätzlich noch ein neutrales Element bezüglich "·", also ein Element $1 \in R$ mit $a \cdot 1 = 1 \cdot a = 1$ für alle $a \in R$, so ist $(R,+,\cdot)$ ein kommutativer Ring mit Eins.

Beispiele

- $(\mathbb{Z},+,\cdot)$, $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$, $(\mathbb{C},+,\cdot)$ sind kommutative Ringe mit Eins.
- ▶ $(\mathbb{Z}_n, +, \cdot)$ ist für $n \in \mathbb{N}, n \geq 2$, ein kommutativer Ring mit Eins.
- Später lernen wir noch den Ring der $n \times n$ -Matrizen kennen.

Eigenschaften von Ringen

Satz

Sei $(R, +, \cdot)$ ein Ring, wobei 0 das Neutralelement bezüglich "+" bezeichnet.

(a) Für alle $a \in R$ gilt

$$a \cdot 0 = 0 \cdot a = 0$$
.

(b) Ist R ein Ring mit 1, $a \in R$ invertierbar und $a \cdot b = 0$ oder $b \cdot a = 0$, dann ist b = 0.

Bemerkung

Ein Element $a \in R \setminus \{0\}$ ist ein Nullteiler, falls ein $b \in R \setminus \{0\}$ existiert mit $a \cdot b = 0$ oder $b \cdot a = 0$. Teil (b) des Satzes besagt, dass invertierbare Elemente eines Rings mit 1 keine Nullteiler sein können.

Körper

Definition

Sei $K \neq \emptyset$ eine Menge, auf der zwei Verknüpfungen $+: K \times K \to K$ und $\cdot: K \times K \to K$ definiert sind. Dann heißt $(K,+,\cdot)$ oder kurz K Körper, falls

- (i) (K, +) eine abelsche Gruppe ist,
- (ii) $(K \setminus \{0\}, \cdot)$ eine abelsche Gruppe ist und
- (iii) für alle $a, b, c \in K$ gilt: $a \cdot (b+c) = a \cdot b + a \cdot c$ und $(a+b) \cdot c = a \cdot c + b \cdot c$ (Distributivgesetze).

Bemerkung

Zumeist wird das Neutralelement bezüglich "+" mit 0 bezeichnet und das Neutralelement bezüglich " \cdot " mit 1.

Beispiele

- $ightharpoonup (\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$, $(\mathbb{C},+,\cdot)$ sind Körper.
- \blacktriangleright $(\mathbb{Z},+,\cdot)$ ist kein Körper.
- \triangleright ($\mathbb{Z}_p,+,\cdot$), p Primzahl, ist ein Körper.
- ▶ $(\mathbb{Z}_n, +, \cdot)$ ist kein Körper, falls n keine Primzahl, (denn nicht alle Elemente besitzen Inverses bezüglich Multiplikation).
- Jeder Körper ist ein kommutativer Ring mit Eins, aber die Umkehrung gilt im Allgemeinen nicht.

Beispiel: $(\mathbb{Z},+,\cdot)$ ist kein Körper, jedoch ein kommutativer Ring mit Eins.

Eigenschaften von Körpern

Satz

Sei $(K,+,\cdot)$ ein Körper, wobei 0 das Neutralelement bezüglich "+" und 1 das Neutralelement bezüglich " \cdot " bezeichnet.

- (a) Für alle $a \in K$ gilt $a \cdot 0 = 0 \cdot a = 0$.
- (b) Aus $a, b \in K$, $a \cdot b = 0$ folgt a = 0 oder b = 0. ("nullteilerfrei")

Anwendung: Prüfziffern

Aufbau ISBN-Nummer:

$$x_{10} - x_9 x_8 x_7 - x_6 x_5 x_4 x_3 x_2 - x_1$$

wobei $x_2 ..., x_{10} \in \{0, ..., 9\}$, $x_1 \in \{0, ..., 9, 10\}$.

 x_1 ist die sogenannte Prüfziffer und wird so gewählt, dass

$$\sum_{k=1}^{10} k \cdot x_k \equiv 0 \mod 11,$$

das heißt, in \mathbb{Z}_{11} gilt

$$\left[\sum_{k=1}^{10} k \cdot x_k\right] = [0] \quad \text{bzw.} \quad [x_1] = \left[-\sum_{k=2}^{10} k \cdot x_k\right].$$

Beispiel

ISBN-Nummer: 3-519-32079-?

Wir berechnen

$$\sum_{k=1}^{10} k \cdot x_k = 1 \cdot x_1 + 2 \cdot 9 + 3 \cdot 7 + \ldots + 10 \cdot 3 = 213 + x_1.$$

Für
$$x_1 = 7$$
 ist $\sum_{k=1}^{10} k \cdot x_k = 220$, und es gilt 220 mod 11 = 0.

Welche Fehler werden bei ISBN-Nummern erkannt?

Behauptung

Folgende Fehler werden immer erkannt:

- Eingabe genau einer falschen Ziffer.
- Vertauschung von genau zwei Ziffern.

Erstellung von Prüfziffernverfahren

- Sollen Ziffern zwischen 0 und 9 verwendet werden, so muss man in \mathbb{Z}_n , $n \geq 10$, arbeiten, um diese unterscheiden zu können.
- ▶ Die Prüfziffer $P(x_r \cdots x_2) \in \{0, \dots, n-1\}$ einer Ziffernfolge $x_r \cdots x_2$ mit $x_i \in \{0, \dots, n-1\}$ wird so berechnet, dass

$$[P(x_r\cdots x_2)] = \left[-\sum_{k=2}^r g_k x_k\right]$$

gilt, wobei $g_j \in \{0,\ldots,n-1\}$ "Gewichte" sind.

Erstellung von Prüfziffernverfahren – Einzelfehler

► Enthält $y_r \cdots y_2$ genau eine falsche Eingabe an Position I verglichen mit $x_r \cdots x_2$, so ist

$$[P(y_r\cdots y_2)-P(x_r\cdots x_2)]=[g_I]\underbrace{[y_I-x_I]}_{\neq [0]}.$$

Ist $[g_I]$ invertierbar, so ist $[g_I][y_I - x_I] \neq [0]$, und der Fehler wird erkannt.

▶ Um genau eine falsche Eingabe an Position / zu erkennen, wähle das Gewicht g_l also so, dass $[g_l]$ invertierbar in \mathbb{Z}_n ist.

Erstellung von Prüfziffernverfahren - Vertauschungsfehler

Enthält $y_r \cdots y_2$ genau eine Vertauschung von Positionen / und m verglichen mit $x_r \cdots x_2$, so ist

$$[P(y_r\cdots y_2)-P(x_r\cdots x_2)]=[g_I-g_m]\underbrace{[x_m-x_I]}_{\neq [0]}.$$

Ist $[g_l]$ invertierbar, so ist $[g_l - g_m][x_m - x_l] \neq [0]$, und der Fehler wird erkannt.

▶ Um einen Vertauschungsfehler von Positionen I und m zu erkennen, wähle die Gewichte g_I und g_m also so, dass $[g_I - g_m]$ invertierbar in \mathbb{Z}_n ist.

Algebraische Grundlagen der Informatik

SoSe 2024

KAPITEL III: Lineare Gleichungssysteme

1. Lineare Gleichungssysteme

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Beispiel

Betrachten Sie die Geraden

$$f: \mathbb{R} \to \mathbb{R}, \quad f(t) := 2t + 1,$$

 $g: \mathbb{R} \to \mathbb{R}, \quad g(t) := -t - 5.$

- ► Schneiden sich die Geraden?
- ► Wenn ja, wo?

Beispiel - Fortsetzung

Gesucht ist also ein Punkt (x, y), der

$$2x + 1 = y$$
 (i)
 $-x - 5 = y$ (ii)

erfüllt.

Man erhält also ein lineares Gleichungssystem mit zwei Gleichungen und zwei Unbekannten.

Beispiel Schnitt zweier Geraden

Erinnerung voriges Beispiel:

$$2x + 1 = y$$
 (i)
-x - 5 = y (ii)

Durch Umformen erhält man

$$\underbrace{\frac{2}{a_{11}}\underbrace{x}_{x_1}}_{x_1} + \underbrace{(-1)}_{a_{12}}\underbrace{y}_{x_2} = \underbrace{-1}_{b_1} \quad (i)$$

$$\underbrace{(-1)}_{a_{21}}\underbrace{x}_{x_1} + \underbrace{(-1)}_{a_{22}}\underbrace{y}_{x_2} = \underbrace{5}_{b_2} \quad (ii)$$

Es ist also von der Form

$$\begin{array}{rcl}
a_{11}x_1 & + & a_{12}x_2 & = & b_1 \\
a_{21}x_1 & + & a_{22}x_2 & = & b_2
\end{array} \right\} (G)$$

Lineare Gleichungssysteme

Definition

Ein reelles lineares Gleichungssystem (kurz: LGS) mit m Gleichungen und n Unbekannten hat die Form

$$\begin{vmatrix}
a_{11}x_1 & + & \cdots & + & a_{1n}x_n & = & b_1 \\
\vdots & & & & & \vdots \\
a_{m1}x_1 & + & \cdots & + & a_{mn}x_n & = & b_m
\end{vmatrix} (G)$$

wobei $a_{ij} \in \mathbb{R}, i = 1, ..., m, j = 1, ..., n$, die Koeffizienten sind, $x_1, ..., x_n$ die Unbekannten und $b_i \in \mathbb{R}, i = 1, ..., m$ die "rechte Seite".

Bemerkung

Gesucht sind $x_1, \ldots, x_n \in \mathbb{R}$, so dass (G) erfüllt ist.

Bezeichnungen und Kurznotation bei LGS

- Für das LGS (G) schreibt man kurz Ax = b, wobei A die Koeffizientenmatrix ist, $b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{R}^m$ die rechte Seite

enthält und in
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$
 die Unbekannten stehen.

lst $b_1 = \ldots = b_m = 0$, so heißt das LGS homogen.

Lineare Gleichungssysteme

Definition

▶ Die Lösungsmenge des LGS (G) ist

$$L(G) := \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n : \begin{array}{l} a_{k1}x_1 + \cdots + a_{kn}x_n = b_k \\ \text{für jedes } k \in \{1, \dots, m\} \end{array} \right\}.$$

Koeffizientenmatrix.

Oft schreibt man dann L(A|b) statt L(G), um die Lösungsmenge zu bezeichnen.

Fragen

- ► Existieren Lösungen von (*G*)?
- ► Wenn ja, wie viele?
- ▶ Wie findet man die Lösungen?

Auffinden von Lösungen

Beobachtung

Folgende Umformungen an (G) ändern nichts an L(G):

- (Z_1) Vertauschen zweier Zeilen.
- (Z_2) Multiplikation einer Zeile mit $\lambda \in \mathbb{R}, \lambda \neq 0$.
- (Z_3) Addition eines Vielfachen einer Zeile zu einer anderen Zeile.

Idee

Forme (G) mit Hilfe der "elementaren Zeilenumformungen" $(Z_1), (Z_2)$ und (Z_3) so lange um, bis die Lösungsmenge L(G) ablesbar ist.

Bemerkung

Um Schreibarbeit zu sparen, führt man diese Umformungen nur an der erweiterten Koeffizientenmatrix (A|b) durch, nicht an (G).

Zeilenstufenform einer Matrix

Definition

Eine Matrix ist in Zeilenstufenform, falls

▶ je tiefer die Zeile, desto weiter rechts der Zeilenkopf (d. h. erster Nicht-Nulleintrag der Zeile).

(Damit sind automatisch unterhalb eines Zeilenkopfes nur Nullen - außer in der letzten Zeile.)

Nullzeilen (falls vorhanden) ganz unten sind.

Bemerkung

Hat man die erweiterte Koeffizientenmatrix eines LGS in Zeilenstufenform überführt, so kann man daraus die Lösung ablesen.

Gauß¹-Verfahren zum Auffinden von Lösungen

Betrachte die erweiterte Koeffizientenmatrix (A|b) des LGS.

- Besitzt die Koeffizientenmatrix "führende Nullspalten", so streiche diese in Gedanken und wende das Verfahren auf das verkürzte System an.
- 2. Eintrag links oben muss $\neq 0$ sein. (Dies ist mit (Z_1) erreichbar.)
- 3. Mit (Z_3) sukzessive Nullspalte unterhalb des Eintrags links oben erzeugen.
- 4. Schritt 2. und 3. für verkürztes System (das heißt, oberste Zeile und "führende Nullspalten" gestrichen) wiederholen usw. bis Matrix in Zeilenstufenform.

¹Genaues Verfahren u. Begriffe in G. Fischer, *Lineare Algebra*, Abschnitt 0.4.

Gauß-Verfahren zum Auffinden von Lösungen

Ablesen der Lösungsmenge aus der Zeilenstufenform:

- 1. Freie Variablen¹ falls vorhanden umbenennen und das zur Zeilenstufenform gehörende LGS aufschreiben.
- Gleichungen von unten nach oben der Reihe nach nach den gebundenen Variablen¹ auflösen und das Ergebnis jeweils in die darüber liegenden Gleichungen einsetzen.
- 3. Angabe der Lösungsmenge L(A|b).

¹"gebundene Variablen" gehören zu den Zeilenköpfen; die anderen Variablen sind "freie Variablen"

Rang einer Matrix

Definition

Sei A die Koeffizientenmatrix und (A|b) die erweiterte Koeffizientenmatrix eines linearen Gleichungssystems. Angenommen, daraus ergibt sich durch Umformen die Matrix $(\tilde{A}|\tilde{b})$ in Zeilenstufenform. Dann ist daran der Rang von A bzw. (A|b) ablesbar:

- $ightharpoonup \mathsf{Rang}(A) := \# \mathsf{Nicht-Nullzeilen} \; \mathsf{in} \; \tilde{A}$
- $lackbox{\sf Rang}(A|b) := \# \ {\sf Nicht-Nullzeilen} \ {\sf in} \ (ilde{A}| ilde{b})$

Bemerkung

Es gilt für ein LGS mit *n* Unbekannten:

- ightharpoonup # gebundene Variablen = Rang(A)
- ightharpoonup # freie Variablen $= n \mathsf{Rang}(A)$

Lösungen von LGS mit n Unbekannten

Beobachtung

- ▶ LGS lösbar \Leftrightarrow Rang(A) = Rang(A|b).
- Falls das LGS lösbar ist, dann gelten:
 - ▶ Rang(A) = n ⇒ genau eine Lösung vorhanden
 - ▶ Rang(A) < n ⇒ unendlich viele Lösungen vorhanden

Normierte Zeilenstufenform

Definition

Eine Matrix ist in normierter Zeilenstufenform, falls sie

- in Zeilenstufenform ist,
- ▶ jeder Zeilenkopf (d.h. erster Nicht-Nulleintrag) gleich 1 ist und
- biber jedem Zeilenkopf (außer in Zeile 1) stehen nur Nullen.

Bemerkung

Jede Matrix A kann in normierte Zeilenstufenform gebracht werden durch:

- 1. Umformen von A in Zeilenstufenform.
- Division der nicht-Nullzeilen durch den jeweiligen Zeilenkopf (→ Zeilenköpfe werden zu 1.)
- Für jeden Zeilenkopf: Subtrahiere von den darüberliegenden Zeilen jeweils ein geeignetes Vielfaches der Zeile mit dem betrachteten Zeilenkopf, so dass darüber nur noch Nullen stehen.

Algebraische Grundlagen der Informatik

SoSe 2024

KAPITEL III: Lineare Gleichungssysteme

2. Determinanten

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

LGS mit "quadratischer" Koeffizientenmatrix

In diesem Abschnitt betrachten wir lineare Gleichungssysteme mit genauso vielen Gleichungen wie Unbekannten, also

- n Gleichungen und
- n Unbekannten.

Die Koeffizientenmatrix ist dann "quadratisch", das heißt, sie besitzt genauso viele Zeilen wie Spalten, also

- n Zeilen und
- ▶ *n* Spalten.

Eindeutige Lösbarkeit bei 1 Gl. und 1 Unb.

Frage:

Wie erkennt man an der Koeffizientenmatrix, ob ein LGS mit n Gleichungen und n Unbekannten eindeutig lösbar ist, das heißt, ob |L(G)|=1 gilt?

Beispiel (n = 1)

$$a_{11}x_1=b_1 \quad (G)$$

- $a_{11} \neq 0 \Rightarrow L(G) = \left\{ \frac{b_1}{a_{11}} \right\}$
- ▶ $a_{11} = 0, b_1 = 0$ \Rightarrow $L(G) = \mathbb{R}$ (unendlich viele Lösungen)

Fazit

$$|L(G)|=1 \quad \Leftrightarrow \quad a_{11}\neq 0$$

Eindeutige Lösbarkeit von LGS, 2 Gl. und 2 Unb.

Beispiel
$$(n = 2)$$

$$\begin{bmatrix}
a_{11}x_1 & + & a_{12}x_2 & = & b_1 \\
a_{21}x_1 & + & a_{22}x_2 & = & b_2
\end{bmatrix} (G)$$

► $a_{11} \neq 0$:

$$\begin{pmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{pmatrix} \xrightarrow{(ii) - \frac{a_{21}}{a_{11}}(i)} \begin{pmatrix} a_{11} & a_{12} & b_1 \\ 0 & a_{22} - \frac{a_{21}}{a_{11}} a_{12} & b_2 - \frac{a_{21}}{a_{11}} b_1 \end{pmatrix}$$

$$|L(G)| = 1$$
 \Leftrightarrow Rang $(A) = 2$ \Leftrightarrow $a_{22} - \frac{a_{21}}{a_{11}} a_{12} \neq 0$ \Leftrightarrow $a_{11}a_{22} - a_{21}a_{12} \neq 0$

ightharpoonup Ähnlich überlegt man sich den Fall $a_{11}=0$.

Fazit

$$|L(G)| = 1 \quad \Leftrightarrow \quad a_{11}a_{22} - a_{21}a_{12} \neq 0$$

Definition der Determinante

Sei
$$n \in \mathbb{N}^*$$
 und $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$. Die Determinante von A

ist

$$\det A := \left\{ \begin{array}{ll} a_{11}, & n = 1, \\ \sum_{k=1}^{n} (-1)^{k+1} a_{k1} \det A_{k1}, & n \geq 2, \end{array} \right.$$

wobei A_{k1} aus A durch Streichung von Zeile k und Spalte 1 entsteht:

$$A_{k1} = \begin{pmatrix} a_{11} & \cdots & \cdots & a_{1n} \\ \vdots & & & \vdots \\ a_{k1} & \cdots & \cdots & a_{kn} \\ \vdots & & & \vdots \\ a_{n1} & \cdots & \cdots & a_{nn} \end{pmatrix}$$

Eindeutige Lösbarkeit von LGS mit *n* Gl. und *n* Unb.

Satz

Ein LGS (G) mit n Gleichungen und n Unbekannten und Koeffizientenmatrix A ist genau dann eindeutig lösbar, wenn det $A \neq 0$ gilt, das heißt:

$$|L(G)| = 1 \Leftrightarrow \det A \neq 0.$$

Bemerkung

Die Aussage wird später klar, wenn wir uns die Änderung der Determinante unter elementaren Zeilenumformungen überlegen.

Determinantenberechnung für n = 2

$$\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \sum_{k=1}^{2} (-1)^{k+1} a_{k1} \det A_{k1}$$

$$= a_{11} \det A_{11} - a_{21} \det A_{21}$$

$$= a_{11} \det \begin{pmatrix} -a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} - a_{21} \det \begin{pmatrix} a_{11} & a_{12} \\ -a_{21} & a_{22} \end{pmatrix}$$

$$= a_{11} a_{22} - a_{21} a_{12}$$

Determinantenberechnung für n = 3

$$\det\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \sum_{k=1}^{3} (-1)^{k+1} a_{k1} \det A_{k1}$$

$$= a_{11} \det A_{11} - a_{21} \det A_{21} + a_{31} \det A_{31}$$

$$= a_{11} \det\begin{pmatrix} -a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} - a_{21} \det\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ -a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$+ a_{31} \det\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ -a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= a_{11}(a_{22}a_{33} - a_{32}a_{23}) - a_{21}(a_{12}a_{33} - a_{32}a_{13}) + a_{31}(a_{12}a_{23} - a_{22}a_{13})$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}$$

Determinantenberechnung für n = 3

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}$$

Merkregel (Regel von Sarrus)

Achtung: Dieses Schema funktioniert nur für n = 3.

Determinantenberechnung von "oberen Dreiecksmatrizen"

$$\det\begin{pmatrix} a_{11} & \cdots & \cdots & a_{1n} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix} = a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn} = \prod_{k=1}^{n} a_{kk}$$

Laplacescher Entwicklungssatz

Satz (ohne Beweis)

Sei A eine Matrix mit n Zeilen und n Spalten.

Für jedes $l \in \{1, ..., n\}$ gilt:

$$\det A = \sum_{k=1}^{n} (-1)^{k+l} a_{kl} \det A_{kl}.$$

("Entwicklung nach Spalte I")

▶ Für jedes $k \in \{1, ..., n\}$ gilt:

$$\det A = \sum_{l=1}^{n} (-1)^{k+l} a_{kl} \det A_{kl}.$$

("Entwicklung nach Zeile k")

Bemerkung

Enthält A eine Nullzeile oder Nullspalte, so ist

$$\det A = 0$$
.

lst
$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$
, so ist die Transponierte A^T von A gegeben durch

$$A^{T} = \begin{pmatrix} a_{11} & \cdots & a_{m1} \\ \vdots & & \vdots \\ a_{1n} & \cdots & a_{mn} \end{pmatrix}.$$

Ist A eine quadratische Matrix, so ist

$$\det(A) = \det(A^T).$$

Änderung von det unter elementaren Zeilenumformungen

Man kann zeigen, dass sich die Determinante einer Matrix unter elementaren Zeilenumformungen wie folgt verhält:

- (Z_1) Die Determinante ändert ihr Vorzeichen bei Vertauschung zweier Zeilen.
- (Z_2) Die Determinante wird mit λ multipliziert bei Multiplikation einer Zeile mit $\lambda \neq 0$.
- (Z_3) Die Determinante ändert sich nicht, addiert man das Vielfache einer Zeile zu einer anderen.

Bemerkung

Die Determinante wird 0 bei Multiplikation einer Zeile mit 0. (Dies ist jedoch keine elementare Zeilenumformung.)

Änderung von det unter elementaren Spaltenumformungen

Entsprechendes gilt auch für Spaltenumformungen:

- (S_1) Die Determinante ändert ihr Vorzeichen bei Vertauschung zweier Spalten.
- (S_2) Die Determinante wird mit λ multipliziert bei Multiplikation einer Spalte mit $\lambda \neq 0$.
- (S_3) Die Determinante ändert sich nicht, addiert man das Vielfache einer Spalte zu einer anderen.

Bemerkung

Die Determinante wird 0 bei Multiplikation einer Spalte mit 0. (Dies ist jedoch keine elementare Spaltenumformung.)

Algebraische Grundlagen der Informatik

SoSe 2024

KAPITEL IV: Der Vektorraum \mathbb{R}^n und lineare Abbildungen

1. Der Vektorraum \mathbb{R}^n

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Der Vektorraum \mathbb{R}^n

Definition

▶ Unter dem Vektorraum \mathbb{R}^n verstehen wir die Menge \mathbb{R}^n (siehe Kap. III, S. 71) zusammen mit der Addition

$$+: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n, \quad \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} := \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

und der Skalarmultiplikation

$$\cdot: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n, \quad \lambda \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} := \begin{pmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{pmatrix}.$$

(Der Malpunkt "·" wird meistens weggelassen.)

ightharpoonup Die Elemente von \mathbb{R}^n werden als Vektoren bezeichnet.

Der Vektorraum \mathbb{R}^n

Definition (Fortsetzung)

Außerdem definieren wir

(Oft schreibt man auch nur 0 statt $0_{\mathbb{R}^n}$.)

Rechenregeln in \mathbb{R}^n

Man prüft leicht nach, dass für $\lambda \in \mathbb{R}$ und $x \in \mathbb{R}^n$ folgende Rechenregeln gelten:

- (a) $0 \cdot x = 0_{\mathbb{R}^n}$,
- (b) $\lambda \cdot 0_{\mathbb{R}^n} = 0_{\mathbb{R}^n}$,
- (c) $\lambda \cdot x = 0_{\mathbb{R}^n} \quad \Rightarrow \quad \lambda = 0 \text{ oder } x = 0_{\mathbb{R}^n}$,
- (d) $(-1) \cdot x = -x$.

Vektorräume – allgemein

Eine Menge V zusammen mit einer Addition

$$+: V \times V \to V, \quad (v, w) \mapsto v + w$$

und einer Skalarmultiplikation

$$\cdot : \mathbb{R} \times V \to V, \quad (\lambda, \nu) \mapsto \lambda \cdot \nu$$

heißt \mathbb{R} -Vektorraum oder Vektorraum (VR) über \mathbb{R} falls:

- (V1) (V, +) ist eine kommutative Gruppe.
- (V2) Für alle $\lambda, \mu \in \mathbb{R}, v, w \in V$ gelten:
 - $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$
 - $\lambda \cdot (v + w) = \lambda \cdot v + \lambda \cdot w$
 - $\lambda \cdot (\mu \cdot v) = (\lambda \cdot \mu) \cdot v$
 - $1 \cdot v = v$

Ein Element $v \in V$ heißt Vektor. (Ersetzt man \mathbb{R} durch \mathbb{C} , so erhält man einen \mathbb{C} -Vektorraum.)

Beispiele für Vektorräume

Natürlich ist \mathbb{R}^n mit der zu Beginn eingeführten Addition und Skalarmultiplikation ein Vektorraum über \mathbb{R} .

Es gibt aber noch andere Vektorräume, zum Beispiel:

 $V := \text{Menge der Funktionen von } \mathbb{R} \text{ nach } \mathbb{R},$

wobei für $f,g\in V,\lambda\in\mathbb{R}$

$$f+g:\mathbb{R}\to\mathbb{R},\quad x\mapsto f(x)+g(x)$$

und

$$\lambda \cdot f : \mathbb{R} \to \mathbb{R}, \quad x \mapsto \lambda f(x).$$

Untervektorräume

Definition

 $U \subseteq V$ ist ein Untervektorraum (UVR) des Vektorraumes V, falls

(i) $U \neq \emptyset$

und falls für alle $u, v \in U$ und alle $\lambda \in \mathbb{R}$ gelten

- (ii) $u + v \in U$, ("abgeschlossen bezüglich Addition")
- (iii) $\lambda u \in U$. ("abgeschlossen bezüglich Skalarmultiplikation")

Beispiele

- $ightharpoonup \mathbb{R}^n$ und $\{0_{\mathbb{R}^n}\}$ sind UVR von \mathbb{R}^n .
- Man prüft leicht nach, dass die Lösungsmenge eines homogenen LGS mit n Unbekannten ein UVR von \mathbb{R}^n ist.
- ► Es ist

$$U := \{p : \mathbb{R} \to \mathbb{R} | p \text{ Polynom}\}$$

ein Untervektorraum des Vektorraums der Funktionen von $\mathbb R$ nach $\mathbb R$

Lineare Hülle

Definition

Sei $k \in \mathbb{N}^*$ und seien $v_1, \ldots, v_k \in \mathbb{R}^n$.

Die lineare Hülle von v_1, \ldots, v_k ist die Menge aller Linearkombinationen

$$lin\{v_1,\ldots,v_k\} := \{\lambda_1v_1 + \cdots + \lambda_kv_k : \lambda_1,\ldots,\lambda_k \in \mathbb{R}\}.$$

Außerdem definiert man

$$\mathsf{lin}\,\emptyset := \{0_{\mathbb{R}^n}\}.$$

Bemerkung

Seien $v_1, \ldots, v_k \in \mathbb{R}^n$.

- ▶ Es ist $lin\{v_1, ..., v_k\}$ ein UVR von \mathbb{R}^n .
- ▶ Sind $w_1, \ldots, w_m \in lin\{v_1, \ldots, v_k\}$, so gilt

 $lin\{w_1,\ldots,w_m\}\subseteq lin\{v_1,\ldots,v_k\}.$

Lineare Unabhängigkeit

Definition

Die Vektoren $v_1,\ldots,v_k\in\mathbb{R}^n$ heißen linear unabhängig, falls aus

$$\lambda_1 v_1 + \dots + \lambda_k v_k = 0_{\mathbb{R}^n} \quad \text{mit } \lambda_1, \dots, \lambda_k \in \mathbb{R}$$

stets folgt, dass

$$\lambda_1 = \ldots = \lambda_k = 0.$$

Andernfalls heißen v_1, \ldots, v_k linear abhängig.

Test auf lineare Unabhängigkeit im \mathbb{R}^n

Bemerkung

▶ Der Test auf lineare Unabhängigkeit von k Vektoren

$$v_1 = \begin{pmatrix} v_{1,1} \\ \vdots \\ v_{1,n} \end{pmatrix}, \dots, v_k = \begin{pmatrix} v_{k,1} \\ \vdots \\ v_{k,n} \end{pmatrix} \text{ im } \mathbb{R}^n \text{ führt auf ein LGS (G)}$$

mit *n* Gleichungen und *k* Unbekannten $\lambda_1, \ldots, \lambda_k$:

$$\begin{vmatrix}
v_{1,1}\lambda_1 & + & \cdots & + & v_{k,1}\lambda_k & = & 0 \\
\vdots & & & & & \vdots \\
v_{1,n}\lambda_1 & + & \cdots & + & v_{k,n}\lambda_k & = & 0
\end{vmatrix} (G)$$

Die Vektoren sind genau dann linear unabhängig, wenn $L(G) = \{0_{\mathbb{R}^n}\}$ gilt.

Anleitung zum Test auf lineare Unabhängigkeit im \mathbb{R}^n

Test auf lineare Unabhängigkeit der Vektoren $v_1, \ldots, v_k \in \mathbb{R}^n$:

- ightharpoonup Schreibe die Vektoren $v_1, \dots v_k$ als Spalten in eine Matrix A.
- ightharpoonup Bestimme Rang(A).
- ► Ist

$$Rang(A) = Anzahl Spalten von A,$$

so sind die Vektoren linear unabhängig, andernfalls linear abhängig.

Ist k = n, so kann man auch die Determinante verwenden:

- Schreibe die Vektoren v_1, \ldots, v_n als Spalten in eine Matrix A.
- ▶ Bestimme det *A*.
- ► Ist

$$\det A \neq 0$$
,

so sind die Vektoren linear unabhängig, andernfalls linear abhängig.

Basis und Dimension

Definition

Sei U ein UVR von \mathbb{R}^n , wobei $U \neq \{0_{\mathbb{R}^n}\}$, und seien $b_1, \ldots, b_k \in U$.

Es ist $\{b_1, \ldots, b_k\}$ eine Basis von U, falls

- 1. b_1, \ldots, b_k linear unabhängig sind,
- 2. $lin\{b_1,\ldots,b_k\}=U$ gilt.

Es ist dann k die Dimension des UVR.

Notation: dim U = k.

Ist $U = \{0_{\mathbb{R}^n}\}$, so setzt man als Basis die leere Menge und dim U = 0.

Kanonische Basis im \mathbb{R}^n

Beispiel

Für $k \in \{1, \ldots, n\}$ sei

$$e_k := \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow \mathsf{Position} \ k.$$

Dann ist

$$\{e_1,\ldots,e_n\}$$

eine Basis von \mathbb{R}^n , die sogenannte kanonische Basis.

Bemerkung (ohne Beweis)

- ▶ Jeder UVR U des \mathbb{R}^n besitzt eine Basis.
- ▶ Jeder UVR $U \neq \{0_{\mathbb{R}^n}\}$ des \mathbb{R}^n besitzt unendlich viele verschiedene Basen. Unterschiedliche Basen eines UVR haben jedoch immer gleich viele Basisvektoren. (Sonst würde die Definition der *Dimension* keinen Sinn ergeben.)
- ▶ Ist U ein UVR mit dim U = n und sind $v_1, \ldots, v_{n+1} \in U$, dann sind v_1, \ldots, v_{n+1} linear abhängig.
- ▶ Ist U ein UVR mit dim U = n und sind $b_1, \ldots, b_n \in U$ linear unabhängig, dann ist $\{b_1, \ldots, b_n\}$ bereits eine Basis von U.

Sämtliche Untervektorräume des \mathbb{R}^2

- ▶ 0-dimensional: $U = \{0_{\mathbb{R}^2}\}$
- ▶ 1-dimensional: $U_v = \text{lin}\{v\}$ für $v \in \mathbb{R}^2, v \neq 0$ Anschaulich: Ursprungsgerade durch v
- ightharpoonup 2-dimensional: \mathbb{R}^2

Sämtliche Untervektorräume des \mathbb{R}^3

- ▶ 0-dimensional: $U = \{0_{\mathbb{R}^3}\}$
- ▶ 1-dimensional: $U_v = lin\{v\}$ für $v \in \mathbb{R}^3, v \neq 0$ Anschaulich: Ursprungsgerade durch v
- ▶ 2-dimensional: $U_{v,w} = \text{lin}\{v,w\}$ für linear unabhängige $v,w \in \mathbb{R}^3$

Anschaulich: Von v und w aufgespannte Ebene, die $0_{\mathbb{R}^3}$ enthält.

▶ 3-dimensional: \mathbb{R}^3

Eindeutigkeit der Darstellung bezüglich einer Basis

Satz

Sei V ein UVR von \mathbb{R}^n mit Basis $\mathcal{B} = \{b_1, \ldots, b_k\}$. Dann gibt es zu jedem $v \in V$ eindeutig bestimmte Koeffizienten $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ mit

$$v = \lambda_1 b_1 + \cdots + \lambda_k b_k.$$

Definition

 $\lambda_1, \ldots, \lambda_k$ sind die Koordinaten von v bezüglich der Basis \mathcal{B} .

Koordinatenabbildung

Bemerkung

▶ Sei $\mathcal{B} = \{b_1, \dots, b_m\}$ eine Basis eines m-dimensionalen Untervektorraums V von \mathbb{R}^n . Die Koordinatenabbildung

$$K_{\mathcal{B}}: V \to \mathbb{R}^m, \quad v = \sum_{k=1}^m \lambda_k b_k \mapsto \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_m \end{pmatrix}$$

ordnet jedem Vektor $v \in V$ seine Koordinaten bezüglich der Basis $\mathcal B$ zu.

Die Koordinatenabbildung ist bijektiv.

Beispiel

$$\mathcal{B}_1 := \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\} \text{ und } \mathcal{B}_2 := \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\} \text{ sind Basen des UVR}$$

$$V := \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_2 \end{pmatrix} : x_1, x_2 \in \mathbb{R} \right\} \text{ des } \mathbb{R}^3.$$
Für $v = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \in V \text{ gilt nun}$

 $v = 3 \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 1 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Somit sind

- ▶ 3 und −1 die Koordinaten von v bezüglich \mathcal{B}_1 , also $\mathcal{K}_{\mathcal{B}_1}(v) = \binom{3}{-1}$.
- ▶ 4 und -1 die Koordinaten von v bezüglich \mathcal{B}_2 , also $\mathcal{K}_{\mathcal{B}_2}(v) = \left(\begin{smallmatrix} 4 \\ -1 \end{smallmatrix} \right)$.

Algebraische Grundlagen der Informatik SoSe 2024

KAPITEL IV: Der Vektorraum \mathbb{R}^n und lineare Abbildungen

2. Lineare Abbildungen und Matrizen

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Lineare Abbildungen

Definition

Seien $U \subseteq \mathbb{R}^n$ und $V \subseteq \mathbb{R}^m$ UVR. Eine Abbildung

$$f:U\to V$$

heißt linear, falls für alle $x, y \in U$ und $\lambda \in \mathbb{R}$ gilt:

(L1)
$$f(\lambda x) = \lambda f(x)$$
,

(L2)
$$f(x + y) = f(x) + f(y)$$
.

Bemerkung

Es gilt

$$f(0_U) = f(0 \cdot 0_U) \stackrel{(L1)}{=} 0 \cdot f(0_U) = 0_V.$$

Beispiele für lineare Abbildungen

- 1. $\mathbb{R}^n \to \mathbb{R}^m$, $x \mapsto 0_{\mathbb{R}^m}$ ist linear.
- 2. $\mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto \alpha x$ ist für jedes $\alpha \in \mathbb{R}$ linear.
- 3. $P: \mathbb{R}^n \to \mathbb{R}, \quad \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto x_1 \quad \text{ist linear.}$
- 4. $S: \mathbb{R}^2 \to \mathbb{R}^2$, $\binom{x_1}{x_2} \mapsto \binom{-x_1}{x_2}$ ist linear. ("Spiegelung an der *y*-Achse")
- 5. $f: \mathbb{R}^2 \to \mathbb{R}^3$, $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + x_2 \\ 2x_1 \\ 4x_1 + 2x_2 \end{pmatrix}$ ist linear.
- 6. $D_{\alpha}: \mathbb{R}^2 \to \mathbb{R}^2$, $\binom{x_1}{x_2} \mapsto \binom{\cos(\alpha)x_1 \sin(\alpha)x_2}{\sin(\alpha)x_1 + \cos(\alpha)x_2}$ ist für jedes $\alpha \in \mathbb{R}$ linear. ("Drehung um den Winkel α ")

Wie erkennt man lineare Abbildungen auf einen Blick?

Bemerkung

Abbildungen der Form

$$f: \mathbb{R}^n \to \mathbb{R}^m, \quad \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix}$$

mit $a_{ij} \in \mathbb{R}$, i = 1, ..., m, j = 1, ..., n, sind linear und umgekehrt ist jede lineare Abbildung von dieser Form.

Beispiele für Abbildungen, die nicht linear sind

- 7. $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x + 1$ ist nicht linear.
- 8. $\tilde{f}: \mathbb{R}^3 \to \mathbb{R}^3$, $x \mapsto x + \begin{pmatrix} -\frac{1}{2} \\ -\frac{2}{2} \end{pmatrix}$ ist nicht linear.
- 9. $g: \mathbb{R}_+ \to \mathbb{R}, \quad x \mapsto \sqrt{x}$ ist nicht linear.
- 10. $h: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ ist nicht linear.
- 11. cos, sin, tan sind nicht linear.

Darstellende Matrizen

Beobachtung und Definition

Sei $\{e_1,\ldots,e_n\}$ die kanonische Basis des \mathbb{R}^n . Ist $f:\mathbb{R}^n\to\mathbb{R}^m$ linear und ist $x=\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}\in\mathbb{R}^n$, so ist

$$f(x) = f(x_1e_1 + \ldots + x_ne_n) \stackrel{f \text{ linear}}{=} x_1f(e_1) + \ldots + x_nf(e_n) \quad (\in \mathbb{R}^m).$$

- ▶ Um f(x) zu berechnen, muss also nur $f(e_1), \ldots, f(e_n)$ bekannt sein.
- Schreibe $f(e_1), \ldots, f(e_n)$ als Spalten einer Matrix A_f . A_f hat dann m Zeilen und n Spalten. Sprechweise: A_f ist eine $m \times n$ -Matrix.
- $ightharpoonup \mathbb{R}^{m \times n} := \mathsf{Menge} \; \mathsf{aller} \; m \times n \mathsf{-Matrizen}.$
- $ightharpoonup A_f$ heißt darstellende Matrix der linearen Abbildung f.

Beispiele (darstellende Matrizen zu S. 114)

1.
$$\begin{pmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{pmatrix} \in \mathbb{R}^{m \times n}$$
2.
$$\begin{pmatrix} \alpha & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \alpha \end{pmatrix} \in \mathbb{R}^{n \times n}$$
3.
$$\begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix} \in \mathbb{R}^{1 \times n}$$

3.
$$(1 \quad 0 \quad \cdots \quad 0) \in \mathbb{R}^{1 \times n}$$

$$4. \ \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$5. \quad \begin{pmatrix} 1 & 1 \\ 2 & 0 \\ 4 & 2 \end{pmatrix}$$

6.
$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

Multiplikation "Matrix · Vektor"

Idee:

"Matrix · Vektor" soll so definiert werden, dass

$$A_f \cdot x = f(x)$$

gilt, wenn A_f die darstellende Matrix für die lineare Abbildung f ist und x im Definitionsbereich von f liegt.

Multiplikation "Matrix · Vektor"

Definition

$$\operatorname{Ist} A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

(Kurznotation:
$$A = (a_{ij}) \in \mathbb{R}^{m \times n}$$
)

und
$$x = \begin{pmatrix} x_1 \\ \vdots \end{pmatrix} \in \mathbb{R}^n$$
, so definiert man

$$Ax := x_1 \begin{pmatrix} a_{11} \\ \vdots \end{pmatrix} + \ldots + x_n \begin{pmatrix} a_{1n} \\ \vdots \end{pmatrix}.$$

Bemerkung

Es ist $Ax \in \mathbb{R}^m$ und

$$Ax = \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix} = \begin{pmatrix} \sum_{k=1}^n a_{1k}x_k \\ \vdots \\ \sum_{k=1}^n a_{mk}x_k \end{pmatrix}.$$

Beispiele

$$\begin{array}{ccc}
 & \begin{pmatrix} 3 & -2 \\ 2 & 0 \\ 1 & 4 \end{pmatrix} & \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \cdot 1 - 2 \cdot 2 \\ 2 \cdot 1 + 0 \cdot 2 \\ 1 \cdot 1 + 4 \cdot 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 9 \end{pmatrix} \in \mathbb{R}^{3}
\end{array}$$

$$\underbrace{\begin{pmatrix} 1 & -2 & 0 & 4 \\ -3 & -1 & 2 & 1 \end{pmatrix}}_{\in \mathbb{R}^{2 \times 4}} \underbrace{\begin{pmatrix} 1 \\ 0 \\ -1 \\ 2 \end{pmatrix}}_{\in \mathbb{R}^4} = \underbrace{\begin{pmatrix} 1 \cdot 1 - 2 \cdot 0 + 0 \cdot (-1) + 4 \cdot 2 \\ -3 \cdot 1 - 1 \cdot 0 + 2 \cdot (-1) + 1 \cdot 2 \end{pmatrix}}_{\in \mathbb{R}^4} = \underbrace{\begin{pmatrix} 9 \\ -3 \end{pmatrix}}_{\in \mathbb{R}^2} \in \mathbb{R}^2$$

Beispiele (Fortsetzung)

$$\underbrace{\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}}_{\text{GIB2} \times 2} \underbrace{\begin{pmatrix} 5 \\ 6 \end{pmatrix}}_{\text{GIB2}} = \begin{pmatrix} 1 \cdot 5 + 2 \cdot 6 \\ 3 \cdot 5 + 4 \cdot 6 \end{pmatrix} = \begin{pmatrix} 17 \\ 39 \end{pmatrix} \in \mathbb{R}^2$$

$$\begin{array}{ccc}
& 1 & 2 \\
3 & 4 \\
5 & 6
\end{array}
\begin{array}{c}
7 \\
8 \\
9
\end{array}$$

$$\in \mathbb{R}^3 \times 2$$

Rote Zahlen stimmen nicht überein – ist also nicht definiert!

Bemerkung

▶ Für $A \in \mathbb{R}^{m \times n}$ ist die Abbildung

$$\mathbb{R}^n \to \mathbb{R}^m, \quad x \mapsto Ax$$

linear.

▶ Ist (*G*) ein LGS mit Koeffizientenmatrix $A \in \mathbb{R}^{m \times n}$ und rechter Seite $b \in \mathbb{R}^m$, so ist

$$L(G) = \{x \in \mathbb{R}^n : Ax = b\}.$$

Beobachtung (ohne Beweis)

- ▶ Sind $f: \mathbb{R}^n \to \mathbb{R}^m$ und $g: \mathbb{R}^n \to \mathbb{R}^m$ lineare Abbildungen und ist $\lambda \in \mathbb{R}$, so sind auch
 - $f+g: \mathbb{R}^n \to \mathbb{R}^m, \quad x \mapsto f(x)+g(x),$
 - $\lambda f: \mathbb{R}^n \to \mathbb{R}^m, \quad x \mapsto \lambda f(x)$

lineare Abbildungen.

- ▶ Sind $f: \mathbb{R}^n \to \mathbb{R}^r$ und $g: \mathbb{R}^r \to \mathbb{R}^m$ linear, so ist auch
 - $ightharpoonup g \circ f : \mathbb{R}^n \to \mathbb{R}^m$

linear.

Frage

Wie sehen die darstellenden Matrizen A_{f+g} , $A_{\lambda f}$ und $A_{g \circ f}$ aus?

Addition/ Skalarmultiplikation von Matrizen und Matrizenprodukt

Definition

▶ Sind $A = (a_{ij})$ und $B = (b_{ij})$ beide in $\mathbb{R}^{m \times n}$, so definiert man

$$A + B := (a_{ii} + b_{ii}) \in \mathbb{R}^{m \times n}$$
.

Ist $\lambda \in \mathbb{R}$, so definiert man

$$\lambda A := (\lambda a_{ij}) \in \mathbb{R}^{m \times n}.$$

▶ Ist $A = (a_{ij}) \in \mathbb{R}^{m \times r}$ und $B = (b_{ij}) \in \mathbb{R}^{r \times n}$, so definiert man

$$A \cdot B := (c_{ii}) \in \mathbb{R}^{m \times n}$$

wobei

$$c_{ij}=\sum_{k=1}^{r}a_{ik}b_{kj}.$$

Darstellende Matrizen für Addition, Skalarmultiplikation, Komposition

Beobachtung (ohne Beweis)

- ▶ Sind $f: \mathbb{R}^n \to \mathbb{R}^m$ und $g: \mathbb{R}^n \to \mathbb{R}^m$ lineare Abbildungen und ist $\lambda \in \mathbb{R}$, so gilt für die darstellenden Matrizen
 - $A_{f+g} = A_f + A_g,$ $A_{\lambda f} = \lambda A_f.$
- ▶ Sind $f: \mathbb{R}^n \to \mathbb{R}^r$ und $g: \mathbb{R}^r \to \mathbb{R}^m$ linear, so gilt für die darstellenden Matrizen
 - $ightharpoonup |A_{g \circ f} = A_g A_f|.$

Beispiele

$$\underbrace{\begin{pmatrix} 3 & 2 \\ 4 & 1 \\ 0 & -6 \end{pmatrix}}_{\in \mathbb{R}^{3 \times 2}} \underbrace{\begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}}_{\in \mathbb{R}^{2 \times 2}} = \begin{pmatrix} 3 \cdot 1 + 2 \cdot 2 & 3 \cdot 0 + 2 \cdot (-1) \\ 4 \cdot 1 + 1 \cdot 2 & 4 \cdot 0 + 1 \cdot (-1) \\ 0 \cdot 1 - 6 \cdot 2 & 0 \cdot 0 - 6 \cdot (-1) \end{pmatrix} = \underbrace{\begin{pmatrix} 7 & -2 \\ 6 & -1 \\ -12 & 6 \end{pmatrix}}_{\in \mathbb{R}^{3 \times 2}}$$

$$\begin{array}{c|c}
 & 3 & 2 \\
4 & 1 \\
0 & -6
\end{array}$$

$$\begin{array}{c}
 & 3 & 2 \\
4 & 1 \\
0 & -6
\end{array}$$

$$\begin{array}{c}
 & 3 & 2 \\
4 & 1 \\
0 & -6
\end{array}$$

Rote Zahlen stimmen nicht überein – ist also nicht definiert!

Beispiele (Fortsetzung)

$$\blacktriangleright \ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Beachte: Das Matrizenprodukt ist i. A. nicht kommutativ!

$$\qquad \qquad \bullet \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Beachte: Das Produkt ist die "Nullmatrix", obwohl keine der Matrizen die Nullmatrix ist.

Rechenregeln für Matrizen

Bemerkung

Sind A, B und C Matrizen (mit passender Dimension für nachfolgende Operationen) und ist $\lambda \in \mathbb{R}$, so gelten:

- $(\lambda A)B = \lambda (AB) = A(\lambda B)$
- Assoziativgesetz: (AB)C = A(BC)
- Distributivgesetze:
 - \triangleright (A+B)C = AC + BC
 - ightharpoonup A(B+C)=AB+AC

Kern und Bild

Definition

Sei $A \in \mathbb{R}^{m \times n}$.

▶ Der Kern von A ist

$$\ker A := \{x \in \mathbb{R}^n : Ax = 0_{\mathbb{R}^m}\}.$$

▶ Das Bild von A ist

$$im A := \{Ax : x \in \mathbb{R}^n\}.$$

Bemerkung

Es ist

- ightharpoonup ker A ein Untervektorraum von \mathbb{R}^n ,
- ightharpoonup im A ein Untervektorraum von \mathbb{R}^m .

Rangsatz

Satz (ohne Beweis)

Sei $A \in \mathbb{R}^{m \times n}$. Dann gilt:

$$\dim \ker(A) + \dim \operatorname{im}(A) = n.$$

Bemerkung (ohne Beweis)

Es ist

$$\dim \operatorname{im}(A) = \operatorname{Rang}(A).$$

Zusammenhang Rang(A) und Injektivität, Surjektivität, Bijektivität der zugehörigen linearen Abbildung

Bemerkung (ohne Beweis)

Sei $A \in \mathbb{R}^{m \times n}$. Die lineare Abbildung $f : \mathbb{R}^n \to \mathbb{R}^m, x \mapsto Ax$ ist

- injektiv $\Leftrightarrow \ker(A) = \{0_{\mathbb{R}^n}\}\$ $\Leftrightarrow \operatorname{\mathsf{Rang}}(A) = n,$
- ▶ surjektiv \Leftrightarrow dim im(A) = m \Leftrightarrow Rang(A) = m,
- bijektiv $\Leftrightarrow m = n \text{ und } \operatorname{Rang}(A) = n$ $\Leftrightarrow m = n \text{ und } \det(A) \neq 0.$

Darstellende Matrix für Umkehrabbildung

Beobachtung (ohne Beweis)

Ist $f: \mathbb{R}^n \to \mathbb{R}^n$ linear und bijektiv, so ist auch die Umkehrabbildung $f^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ linear.

Frage

Wie sieht die darstellenden Matrix A_{f-1} aus?

Überlegung

Da

$$f^{-1} \circ f = \mathrm{id}_{\mathbb{R}^n} = f \circ f^{-1},$$

muss also gelten

$$A_{f^{-1}}A_f=A_{\mathrm{id}_{\mathbb{R}^n}}=A_fA_{f^{-1}}.$$

Definition

ightharpoonup Mit I oder I_n wird die Einheitsmatrix

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix} \in \mathbb{R}^{n \times n}$$

bezeichnet.

▶ Ist $A \in \mathbb{R}^{n \times n}$, und gibt es eine Matrix $A^{-1} \in \mathbb{R}^{n \times n}$ mit

$$AA^{-1} = A^{-1}A = I_n,$$

so nennt man A invertierbar, und A^{-1} ist die zu A inverse Matrix.

Bemerkung (ohne Beweis)

- Für alle $A \in \mathbb{R}^{n \times n}$ gilt $AI_n = I_n A = A$.
- lst $f: \mathbb{R}^n \to \mathbb{R}^n$ linear und bijektiv, so ist A_f invertierbar und

$$(A_f)^{-1} = A_{f^{-1}}.$$

► Es gilt für $A \in \mathbb{R}^{n \times n}$:

$$A$$
 invertierbar \Leftrightarrow det $A \neq 0$ \Leftrightarrow Rang $(A) = n$.

- ▶ Ist $A \in \mathbb{R}^{n \times n}$ invertierbar und gilt AB = I oder BA = I für ein $B \in \mathbb{R}^{n \times n}$, so ist $B = A^{-1}$.
- Die Inverse zu einer invertierbaren Matrix ist eindeutig bestimmt.
- Ist $A \in \mathbb{R}^{n \times n}$ invertierbar und $b \in \mathbb{R}^n$, so ist $x = A^{-1}b$ die Lösung für das LGS Ax = b.

Möglichkeit 1

Der Ansatz $A^{-1}A = I_n$ oder $AA^{-1} = I_n$ führt auf ein LGS mit

- ▶ n^2 Gleichungen (vom Vergleich der n^2 Einträge auf der linken mit den n^2 Einträgen auf der rechten Seite) und
- $ightharpoonup n^2$ Unbekannten (den Einträgen von A^{-1}).

Löse das LGS und erhalte so die Einträge von A^{-1} .

Beispiel (mit Möglichkeit 1)

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, A^{-1} = \begin{pmatrix} \widetilde{a}_{11} & \widetilde{a}_{12} \\ \widetilde{a}_{21} & \widetilde{a}_{22} \end{pmatrix}$$
Ansatz:
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} \widetilde{a}_{11} & \widetilde{a}_{12} \\ \widetilde{a}_{21} & \widetilde{a}_{22} \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Vergleich der Einträge auf linker und rechter Seite liefert das LGS

$$\widetilde{a}_{11} + 2\widetilde{a}_{21} = 1
3\widetilde{a}_{11} + 4\widetilde{a}_{21} = 0
\widetilde{a}_{12} + 2\widetilde{a}_{22} = 0
3\widetilde{a}_{12} + 4\widetilde{a}_{22} = 1$$

Löse das LGS und erhalte $\tilde{a}_{11}=-2$, $\tilde{a}_{21}=\frac{3}{2}$, $\tilde{a}_{12}=1$, $\tilde{a}_{22}=-\frac{1}{2}$, das heißt,

$$A^{-1} = \begin{pmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

Möglichkeit 2

Löse

$$Ax^{(1)} = e_1, \dots, Ax^{(n)} = e_n$$

simultan, wobei e_k den k-ten kanonischen Basisvektor bezeichnet. Forme dazu A mit Gaußverfahren so lange um, bis A in die Einheitsmatrix umgeformt ist. Führe die gleichen Umformungen an I_n durch. Die daraus resultierende Matrix ist A^{-1} :

$$(A|I_n) \rightarrow \dots$$
 Gauß-Verfahren $\dots \rightarrow (I_n|A^{-1})$.

Beispiel (mit Möglichkeit 2)

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$(A|I_{2}) = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \end{pmatrix} \xrightarrow{(ii)-3(i)} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -2 & -3 & 1 \end{pmatrix}$$

$$\xrightarrow{-\frac{1}{2}(ii)} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & \frac{3}{2} & -\frac{1}{2} \end{pmatrix} \xrightarrow{(i)-2(ii)} \begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

Links von dem senkrechten Strich steht nun die Einheitsmatrix und Rechts davon die Inverse von A:

$$A^{-1} = \begin{pmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}.$$

Was passiert mit der Determinante bei den Matrizenoperationen?

Bemerkung (ohne Beweis)

Seien $A, B \in \mathbb{R}^{n \times n}$ und $\lambda \in \mathbb{R}$. Dann gilt Folgendes:

- ▶ Determinantenmultiplikationssatz: det(AB) = det(A) det(B), insbesondere: $det(A^{-1}) = \frac{1}{det(A)}$.

Darstellende Matrix der Koordinatenabbildung

▶ Sei $\mathcal{B} = \{b_1, \dots, b_n\}$ eine Basis des \mathbb{R}^n . Die Koordinatenabbildung

$$\mathcal{K}_{\mathcal{B}}: \mathbb{R}^n \to \mathbb{R}^n, \quad x = \sum_{k=1}^n \lambda_k b_k \mapsto \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

ordnet jedem Vektor $x \in \mathbb{R}^n$ seine Koordinaten bezüglich der Basis \mathcal{B} zu und ist bijektiv, siehe Seite 111.

ightharpoonup Außerdem ist $K_{\mathcal{B}}$ linear.

Frage

Was ist die darstellende Matrix von K_B ?

Darstellende Matrix der Koordinatenabbildung

Überlegung

▶ Die Koordinaten von $x \in \mathbb{R}^n$ bezüglich \mathcal{B} sind die eindeutig bestimmten Koeffizienten $\lambda_1, \ldots, \lambda_n$, so dass gilt:

$$x = \lambda_1 b_1 + \ldots + \lambda_n b_n$$
.

▶ Ist S die $n \times n$ -Matrix, deren k-te Spalte gerade b_k ist, also $S = (b_1 \cdots b_n) \in \mathbb{R}^{n \times n}$, so gilt

$$x = \lambda_1 b_1 + \ldots + \lambda_n b_n = S \underbrace{\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}}_{=K_B(x)}.$$

Da S invertierbar ist, folgt

$$S^{-1}x = K_{\mathcal{B}}(x).$$

Fazit

 S^{-1} ist die darstellende Matrix der Koordinatenabbildung.

Zusammenfassung der Umrechnung

Sei $\mathcal{B}=\{b_1,\ldots,b_n\}$ eine Basis des \mathbb{R}^n und sei S die $n\times n$ -Matrix, deren k-te Spalte gerade b_k ist, also $S=(b_1\cdots b_n)\in\mathbb{R}^{n\times n}$. Sei $x\in\mathbb{R}^n$ und seien in $x_{\mathcal{B}}$ die Koordinaten von x bezüglich \mathcal{B} , also $x_{\mathcal{B}}=K_{\mathcal{B}}(x)$.

Die Darstellungen können wie folgt ineinander umgerechnet werden.

▶ Umrechnung von $x \in \mathbb{R}^n$ in die Darstellung bezüglich \mathcal{B} :

$$x_{\mathcal{B}} = S^{-1}x$$
.

► Umrechnung der Darstellung bezüglich *B* in die Standarddarstellung:

$$x = Sx_{\mathcal{B}}$$

Abbildungsmatrix bezüglich beliebiger Basis

- ▶ Sei $f : \mathbb{R}^n \to \mathbb{R}^n$ linear mit darstellender Matrix $A_f \in \mathbb{R}^{n \times n}$.
- ▶ Sei $\mathcal{B} = \{b_1, \dots, b_n\}$ eine Basis von \mathbb{R}^n .
- Sei S die $n \times n$ -Matrix, deren k-te Spalte gerade b_k ist, also $S = (b_1 \cdots b_n) \in \mathbb{R}^{n \times n}$.

Frage:

Wie sieht die darstellende Matrix $A_{\mathcal{B},f}$ von f bezüglich \mathcal{B} aus?

Darstellende Matrix bezüglich beliebiger Basis

Besitzt
$$x$$
 die Koordinaten $\lambda_1,\ldots,\lambda_n$ bezüglich \mathcal{B} , also $\mathcal{K}_{\mathcal{B}}(x)=\begin{pmatrix}\lambda_1\\\vdots\\\lambda_n\end{pmatrix}$, so soll $A_{\mathcal{B},f}\begin{pmatrix}\lambda_1\\\vdots\\\lambda_n\end{pmatrix}$ die Koordinaten von $f(x)$ bezüglich \mathcal{B} liefern.

Antwort:
$$A_{\mathcal{B},f} = S^{-1}A_fS$$

Algebraische Grundlagen der Informatik

SoSe 2024

KAPITEL V: Eigenwerte und Eigenvektoren

1. Grundlagen

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Darstellende Matrix bezüglich beliebiger Basis

Sei im Folgenden immer $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$.

Erinnerung

- ▶ Sei $f : \mathbb{K}^n \to \mathbb{K}^n$ linear mit darstellender Matrix $A_f \in \mathbb{K}^{n \times n}$.
- ▶ Sei $\mathcal{B} = \{b_1, \ldots, b_n\}$ eine Basis des \mathbb{K}^n .
- ▶ Sei *S* die Matrix mit Spalten b_1, \ldots, b_n .

Dann ist die darstellende Matrix $A_{\mathcal{B},f}$ von f bezüglich \mathcal{B} gegeben durch

$$A_{\mathcal{B},f} = S^{-1}A_fS.$$

Ziel

Finde eine Basis $\mathcal B$ so, dass $A_{\mathcal B,f}$ besonders einfach wird, am besten eine Diagonalmatrix D.

Fragen

- ▶ Wann gibt es solch eine Basis *B*?
- ▶ Wie findet man sie in diesem Fall?

Bedingung für "Diagonalisierbarkeit"

Beobachtung

Sei S eine invertierbare $n \times n$ -Matrix mit Spalten b_1, \ldots, b_n und D eine Diagonalmatrix mit Diagonaleinträgen $\lambda_1, \ldots, \lambda_n$, so dass

$$S^{-1}A_fS=D$$

gilt. Dann gilt

$$A_f S = SD$$
,

woraus wiederum folgt

$$A_f b_1 = \lambda_1 b_1, \quad \dots \quad , A_f b_n = \lambda_n b_n.$$

Fazit

Man benötigt n linear unabhängige Vektoren, die durch A_f nur skaliert werden.

Eigenwerte und Eigenvektoren

Definition

Sei $A \in \mathbb{K}^{n \times n}$.

► Ein $\lambda \in \mathbb{K}$ heißt Eigenwert (EW) von A, falls es ein $x \in \mathbb{K}^n, x \neq 0_{\mathbb{K}^n}$, gibt mit

$$Ax = \lambda x$$
.

- \triangleright x heißt dann Eigenvektor (EV) von A zum Eigenwert λ .
- $ightharpoonup \sigma(A)$ bzw. $\sigma_{\mathbb{K}}(A)$ bezeichnet die Menge der Eigenwerte von A.

Bemerkung

- Achtung: $0_{\mathbb{K}^n}$ ist nie ein Eigenvektor! Hingegen kann 0 als Eigenwert vorkommen.
- ▶ Ist x ein Eigenvektor von A zum Eigenwert λ , dann auch cx für alle $c \in \mathbb{K} \setminus \{0\}$.

Auffinden von Eigenwerten

Beobachtung

$$Ax = \lambda x \quad \Leftrightarrow \quad Ax - \lambda x = 0_{\mathbb{K}^n} \quad \Leftrightarrow \quad (A - \lambda I)x = 0_{\mathbb{K}^n}$$

Also:

$$\lambda$$
 EW von A \Leftrightarrow Es gibt ein $x \neq 0_{\mathbb{K}^n}$ so, dass $(A - \lambda I)x = 0_{\mathbb{K}^n}$. \Leftrightarrow Rang $(A - \lambda I) < n$ \Leftrightarrow det $(A - \lambda I) = 0$

Die EW von A sind also gerade die Nullstellen von $det(A - \lambda I)$.

Charakteristisches Polynom

Definition

Sei $A \in \mathbb{K}^{n \times n}$. Dann ist

$$p_A(\lambda) := \det(A - \lambda I)$$

das charakteristische Polynom von A.

Bemerkung

- \triangleright p_A ist ein Polynom (in λ) vom Grad n.
- ▶ Die Nullstellen von p_A sind gerade die Eigenwerte von A.

Eigenräume

Definition

▶ Ist λ ein Eigenwert von $A \in \mathbb{K}^{n \times n}$, so ist

$$\mathsf{Eig}(A,\lambda) := \{ x \in \mathbb{K}^n : (A - \lambda I)x = 0_{\mathbb{K}^n} \}$$

der Eigenraum von A zum Eigenwert λ .

▶ Die geometrische Vielfachheit von λ ist

$$V_g(A,\lambda) := \dim \operatorname{Eig}(A,\lambda).$$

Bemerkung

Der Menge der Eigenvektoren von A zum Eigenwert λ ist

$$Eig(A, \lambda) \setminus \{0_{\mathbb{K}^n}\}.$$

Vorgehen zur Bestimmung der EW und EV von $A \in \mathbb{K}^{n \times n}$

- 1. Charakteristisches Polynom $p_A(\lambda) = \det(A \lambda I)$ aufstellen.
- Bestimmung der Nullstellen von p_A.
 (Dies sind genau die Eigenwerte von A.)
- 3. Bestimmung der Eigenräume Eig (A, λ) für jeden Eigenwert λ von A durch Lösen des LGS

$$(A-\lambda I)x=0_{\mathbb{K}^n}.$$

(Jedes $x \in \text{Eig}(A, \lambda) \setminus \{0_{\mathbb{K}^n}\}$ ist Eigenvektor von A zum Eigenwert λ .)

Algebraische Grundlagen der Informatik

SoSe 2024

KAPITEL V: Eigenwerte und Eigenvektoren

2. Polynome

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Fundamentalsatz der Algebra

Satz (ohne Beweis)

Jedes Polynom p mit komplexen Koeffizienten und grad $(p) \ge 1$ besitzt mindestens eine Nullstelle in \mathbb{C} .

Polynomdivision

Bemerkung

lst λ_0 eine Nullstelle des Polynoms p, so gilt

$$p(\lambda) = (\lambda - \lambda_0)q(\lambda),$$

wobei q ebenfalls ein Polynom ist mit grad(q) = grad(p) - 1.

- ▶ Die Nullstellen von p sind λ_0 und die Nullstellen von q.
- Das Polynom q erhält man durch "Polynomdivision".

Polynome

Satz und Definition

► Jedes Polynom

$$p(\lambda) = a_n \lambda^n + \ldots + a_1 \lambda + a_0$$

mit $n \in \mathbb{N}^*$, $a_0, \ldots, a_n \in \mathbb{C}$, $a_n \neq 0$, zerfällt in Linearfaktoren, das heißt, sind $\lambda_1, \ldots, \lambda_r \in \mathbb{C}$ die paarweise verschiedenen Nullstellen von p, so gilt

$$p(\lambda) = a_n \prod_{k=1}^r (\lambda - \lambda_k)^{m_k},$$

wobei $m_k \in \mathbb{N}^*$ eindeutig bestimmt ist.

▶ m_k wird als die algebraische Vielfachheit der Nullstelle λ_k bezeichnet.

$$Es gilt: \sum_{k=1}^{r} m_k = n.$$

Bemerkung

 $A \in \mathbb{C}^{n \times n}$ besitzt also mindestens einen und höchstens n verschiedene Eigenwerte in \mathbb{C} .

Beispiele

p(λ) = λ² + 1 = (λ − i)(λ + i)
 Die Nullstellen i und − i haben jeweils die algebraische Vielfachheit 1.

 $p(\lambda) = -\lambda^3 + 3\lambda^2 - 4 = -(\lambda - 2)^2(\lambda + 1)$

Die Nullstelle 2 hat algebraische Vielfachheit 2. Die Nullstelle -1 hat algebraische Vielfachheit 1.

Algebraische Vielfachheit von Eigenwerten

Definition

Ist $\lambda_0 \in \mathbb{C}$ ein Eigenwert einer Matrix $A \in \mathbb{C}^{n \times n}$, so ist die algebriasche Vielfachheit $V_a(A,\lambda_0)$ des Eigenwerts λ_0 gerade die algebraische Vielfachheit der Nullstelle λ_0 im charakteristischen Polynom.

Nullstellen von Polynomen vom Grad 2

Satz

Sei $p(\lambda) = a\lambda^2 + b\lambda + c$ mit $a, b, c \in \mathbb{R}$, $a \neq 0$. Die Nullstellen von p sind

$$\left\{ \begin{array}{ll} \displaystyle \frac{-b\pm\sqrt{b^2-4ac}}{2a}, & \text{falls } b^2-4ac>0, \\ \displaystyle -\frac{b}{2a}, & \text{falls } b^2-4ac=0, \\ \displaystyle -\frac{b}{2a}\pm\mathrm{i}\,\frac{\sqrt{4ac-b^2}}{2a}, & \text{falls } b^2-4ac<0. \end{array} \right.$$

Beweis.

Mit "quadratischer Ergänzung", siehe Literatur.

Beispiel

Die Nullstellen von

$$p(\lambda) = -\lambda^2 + \lambda + 2$$

sind

$$\lambda_1 = \frac{-1 + \sqrt{1+8}}{-2} = -1$$
 und $\lambda_2 = \frac{-1 - \sqrt{1+8}}{-2} = 2$.

Die Nullstellen von

$$p(\lambda) = \lambda^2 + 2\lambda + 2$$

sind

$$\lambda_1 = \frac{-2 + i\sqrt{8-4}}{2} = -1 + i \text{ und } \lambda_2 = \frac{-2 - i\sqrt{8-4}}{2} = -1 - i.$$

Algebraische Grundlagen der Informatik

SoSe 2024

KAPITEL V: Eigenwerte und Eigenvektoren

3. Diagonalisierbarkeit

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Diagonalisierbarkeit

Definition

Eine Matrix $A \in \mathbb{K}^{n \times n}$ heißt diagonalisierbar, wenn es eine invertierbare Matrix $S \in \mathbb{K}^{n \times n}$ gibt, so dass

$$S^{-1}AS$$

eine Diagonalmatrix ist.

Charakterisierung von Diagonalisierbarkeit

Satz (ohne Beweis)

Eine Matrix $A \in \mathbb{C}^{n \times n}$ ist genau dann diagonalisierbar, wenn für jedes $\lambda \in \sigma_{\mathbb{C}}(A)$ gilt: $V_g(A, \lambda) = V_a(A, \lambda)$

In diesem Fall gibt es eine Basis von \mathbb{C}^n aus Eigenvektoren von A.

Ist $\mathcal{B} = \{b_1, \dots, b_n\}$ eine Basis von \mathbb{C}^n aus Eigenvektoren von A und ist $S := (b_1 \cdots b_n) \in \mathbb{C}^{n \times n}$, so ist

$$S^{-1}AS = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix},$$

wobei λ_k der zu b_k gehörende Eigenwert ist.

Klassen diagonalisierbarer Matrizen

Man kann zeigen, dass folgende Matrizen immer diagonalisierbar sind:

- Diagonalmatrizen
- ▶ Matrizen in $\mathbb{C}^{n \times n}$ mit *n* verschiedenen Eigenwerten.
- ▶ symmetrische Matrizen in $\mathbb{R}^{n \times n}$ (Eine Matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ ist symmetrisch, falls $a_{ij} = a_{ji}$ für alle $i, j \in \{1, ..., n\}$ gilt.)
- hermitesche Matrizen in $\mathbb{C}^{n\times n}$ (Eine Matrix $A=(a_{ij})\in\mathbb{C}^{n\times n}$ ist hermitesch, falls $a_{ij}=\overline{a_{ji}}$ für alle $i,j\in\{1,\ldots,n\}$ gilt.)
- ▶ normale Matrizen in $\mathbb{C}^{n\times n}$ (Eine Matrix $A=(a_{ij})\in\mathbb{C}^{n\times n}$ ist normal, falls $AA^*=A^*A$ gilt, wobei $A^*=(\overline{a_{ji}})$.)
- ▶ orthogonale Matrizen in $\mathbb{C}^{n\times n}$ (Eine Matrix $A=(a_{ij})\in\mathbb{C}^{n\times n}$ ist orthogonal, falls A invertierbar und $A^{-1}=A^T$, wobei $A^T=(a_{ji})$ die Transponierte bezeichnet.)

Algebraische Grundlagen der Informatik SoSe 2024

KAPITEL VI: Abstände und Winkel in \mathbb{R}^n

1. Norm und Skalarprodukt

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Die Norm eines Vektors im \mathbb{R}^n

Definition

Ist $x = (x_1, \dots, x_n)^T \in \mathbb{R}^n$, so ist

$$||x||:=\sqrt{x_1^2+\cdots+x_n^2}\in[0,\infty)$$

die (euklidische) Norm von x.

Bemerkung

Die Norm eines Vektors interpretiert man oft als den "Abstand von x zu $0_{\mathbb{R}^n}$ " bzw. als "Länge von x".

Beispiel

$$\| \binom{1}{2} \| = \sqrt{1^2 + 2^2} = \sqrt{5}$$

$$\| \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix} \| = \sqrt{(-1)^2 + 2^2 + (-3)^2} = \sqrt{14}$$

Eigenschaften der Norm

Seien $x, y \in \mathbb{R}^n$. Dann gelten:

- $\|x\| = 0 \Leftrightarrow x = 0_{\mathbb{R}^n},$
- $\blacktriangleright \|\lambda x\| = |\lambda| \|x\| \text{ für alle } \lambda \in \mathbb{R},$
- $\|x+y\| \le \|x\| + \|y\|.$ ("Dreiecksungleichung")

Ziel

Was ist der Winkel zwischen zwei Vektoren?

Skalarprodukt im \mathbb{R}^n

Definition

Für
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$$
 definieren wir das (Standard-)Skalarprodukt von x und y durch

$$\langle x,y\rangle := \sum_{k=1}^n x_k y_k.$$

Beispiel

$$\left\langle \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ -6 \end{pmatrix} \right\rangle = (-1) \cdot 4 + 2 \cdot 5 + (-3) \cdot (-6) = 24$$

Beobachtung

Für
$$x \in \mathbb{R}^n$$
 ist $||x|| = \sqrt{\langle x, x \rangle}$.

Eigenschaften des Skalarprodukts

- Für alle $x \in \mathbb{R}^n$ gilt $\langle x, x \rangle \geq 0$; außerdem $\langle x, x \rangle = 0 \Leftrightarrow x = 0_{\mathbb{R}^n}$. ("positiv definit")
- Für alle $x, y \in \mathbb{R}^n$ gilt $\langle x, y \rangle = \langle y, x \rangle$. ("symmetrisch")
- ▶ Für alle $x, y, z \in \mathbb{R}^n$ und alle $\alpha, \beta \in \mathbb{R}$ gelten

 - $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$

("bilinear")

Cauchy-Schwarz-Ungleichung

Satz (Cauchy-Schwarz-Ungleichung)

Für $x, y \in \mathbb{R}^n$ gilt:

$$|\langle x,y\rangle| \leq ||x|| \, ||y|| \, .$$

Es gilt $|\langle x, y \rangle| = ||x|| \, ||y||$ genau dann, wenn x und y linear abhängig sind.

Beweis.

siehe Literatur.

Folgerung

Für alle $x, y \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$ ist

$$\frac{\langle x, y \rangle}{\|x\| \|y\|} \in [-1, 1].$$

Erinnerung (Kosinussatz aus der Schule)

$$c^2 = a^2 + b^2 - 2ab\cos(\gamma)$$

bzw.

$$||x - y||^{2}$$

$$= ||x||^{2} + ||y||^{2} - 2||x|| ||y|| \cos(\gamma)$$

Umformen ergibt $cos(\gamma) = \frac{\langle x, y \rangle}{\|x\| \|y\|}$.

Definition

Für $x, y \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$ heißt

$$\varphi(x,y) := \arccos\left(\frac{\langle x,y\rangle}{\|x\| \|y\|}\right) \in [0,\pi]$$

der von x und y eingeschlossene Winkel.

Algebraische Grundlagen der Informatik

SoSe 2024

KAPITEL VI: Abstände und Winkel in \mathbb{R}^n

2. Orthogonalität

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Orthogonal und parallel

Definition

- ▶ $x, y \in \mathbb{R}^n$ sind orthogonal, falls $\langle x, y \rangle = 0$. Notation: $x \perp y$
- ▶ $x, y \in \mathbb{R}^n$ sind parallel, falls $x = \lambda y$ für ein $\lambda \in \mathbb{R}$. Notation: x||y

Orthogonalprojektion

Satz (und Definition)

Sei $v \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$. Jedes $x \in \mathbb{R}^n$ kann bezüglich v eindeutig in zwei zueinander orthogonale Komponenten $x_{p,v}$ und $x_{o,v}$ zerlegt werden, so dass

$$x = x_{p,v} + x_{o,v}$$
 und $x_{p,v} || v$, $x_{o,v} \perp v$.

Dabei ist

$$x_{p,v} = \frac{\langle x, v \rangle}{\langle v, v \rangle} v$$
 und $x_{o,v} = x - x_{p,v} = x - \frac{\langle x, v \rangle}{\langle v, v \rangle} v$.

Man bezeichnet $x_{p,v}$ als orthogonale Projektion von x in Richtung v und $x_{o,v}$ als das orthogonale Komplement von x in Richtung v.

Bemerkung

Dieser Satz ist die Grundlage für die Abstandsberechnung zwischen Punkten, Geraden und Ebenen.

Orthogonale Matrizen

Definition

Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt orthogonal, falls

$$AA^T = A^TA = I$$

gilt, das heißt, A ist invertierbar und $A^{-1} = A^{T}$.

Bemerkung

Eine orthogonale Matrix A erhält Abstände und Winkel, denn für alle $x,y\in\mathbb{R}^n$ gilt

- $\langle Ax, Ay \rangle = x^T A^T A y = x^T A^{-1} A y = x^T y = \langle x, y \rangle,$
- $||Ax||^2 = \langle Ax, Ax \rangle = \langle x, x \rangle = ||x||^2.$

Beispiele für orthogonale Matrizen

$$D_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

(Drehung in \mathbb{R}^2 um den Winkel α gegen den Uhrzeigersinn.)

$$S_{\alpha} = \begin{pmatrix} \cos(2\alpha) & \sin(2\alpha) \\ \sin(2\alpha) & -\cos(2\alpha) \end{pmatrix}$$

(Spiegelung in \mathbb{R}^2 an der Ursprungsgeraden, die durch $\binom{\cos(\alpha)}{\sin(\alpha)}$ geht.)

Orthogonale Vektoren in \mathbb{R}^2

Bemerkung

Ist
$$v=\begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$$
, so sind zum Beispiel die Vektoren $\begin{pmatrix} -b \\ a \end{pmatrix}$ und $\begin{pmatrix} b \\ -a \end{pmatrix}$ orthogonal zu v .

Vektorprodukt im \mathbb{R}^3

Definition

Sind $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$, $w = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \in \mathbb{R}^3$, so ist das Vektorprodukt oder Kreuzprodukt von v und w der Vektor

$$v \times w := \begin{pmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{pmatrix} \in \mathbb{R}^3.$$

Bemerkung

Sind $v, w \in \mathbb{R}^3$, so prüft man leicht nach, dass gilt:

- \triangleright $v \times w \perp v$,
- \triangleright $v \times w \perp w$.

Flächeninhalt eines Parallelogramms in \mathbb{R}^3

Seien $v, w \in \mathbb{R}^3 \setminus \{0_{\mathbb{R}^3}\}.$

Der Flächeninhalt des von v und w aufgespannten Parallelogramms ist

$$A_{Parallelogramm} = ||v|| ||w|| |\sin(\gamma)|.$$

Zusammenhang zum Vektorprodukt

Erinnerung: Seien $v, w \in \mathbb{R}^3 \setminus \{0_{\mathbb{R}^3}\}$ und γ der Winkel zwischen v und w. Dann gilt $\cos(\gamma) = \frac{\langle v, w \rangle}{\|v\| \|w\|}$ bzw.

$$\langle v, w \rangle^2 = ||v||^2 ||w||^2 \cos^2(\gamma).$$
 (*)

Damit erhält man

$$||v \times w||^{2} \stackrel{\text{nachrechnen}}{=} ||v||^{2} ||w||^{2} - \langle v, w \rangle^{2}$$

$$\stackrel{(*)}{=} ||v||^{2} ||w||^{2} - ||v||^{2} ||w||^{2} \cos^{2}(\gamma)$$

$$= ||v||^{2} ||w||^{2} (1 - \cos^{2}(\gamma))$$

$$\stackrel{\text{trig. Pyth.}}{=} ||v||^{2} ||w||^{2} \sin^{2}(\gamma).$$

Daraus folgt

$$||v \times w|| = ||v|| \, ||w|| \, |\sin(\gamma)|$$
.

Flächeninhalt eines Parallelogramms in \mathbb{R}^3

Fazit

Die Norm des Vektorprodukts von v und w gibt den Flächeninhalt des von v und w erzeugten Parallelogramms in \mathbb{R}^3 an:

$$A_{\mathsf{Parallelogramm}} = \|v\| \|w\| |\mathsf{sin}(\gamma)| = \|v \times w\|.$$

Flächeninhalt eines Parallelogramms in \mathbb{R}^2

Seien
$$v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, w = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \in \mathbb{R}^2$$
.

Um den Flächeninhalt des von v und w erzeugten Parallelogramms zu bestimmen, "betten wir zunächst v und w in \mathbb{R}^3 ein":

- ▶ Statt $v \in \mathbb{R}^2$ betrachte $\tilde{v} := \begin{pmatrix} v_1 \\ v_2 \\ 0 \end{pmatrix} \in \mathbb{R}^3$.
- ▶ Statt $w \in \mathbb{R}^2$ betrachte $\tilde{w} := \begin{pmatrix} w_1 \\ w_2 \\ 0 \end{pmatrix} \in \mathbb{R}^3$.

Der Flächeninhalt ergibt sich nun zu

$$A_{\mathsf{Parallelogramm}} = \|\tilde{v} \times \tilde{w}\| = \left\| \begin{pmatrix} 0 \\ v_1 w_2 - v_2 w_1 \end{pmatrix} \right\| = |v_1 w_2 - v_2 w_1|.$$

Fazit

Der Flächeninhalt des von v und w aufgespannten Parallelogramms ist

$$A_{\mathsf{Parallelogramm}} = |v_1 w_2 - v_2 w_1| = \left| \mathsf{det} \begin{pmatrix} v_1 & w_1 \\ v_2 & w_2 \end{pmatrix} \right|.$$