Distributed Real-Time Control Systems

Module 6

PID Control

Bibliography

Section 8.5.

Section 3.3.

Online:

https://www.cds.caltech.edu/~murray/courses/cds101/fa02/caltech/astrom-ch6.pdf

Objectives of Control

- Set point control set the controlled variable to a pre-specified set point.
- Trajectory tracking make the controlled variable follow a prespecified trajectory.
- Disturbance rejection make the controlled variable react to external disturbances to accomplish its task as well as possible.

Illumination Control: Objectives

Set point control: set the illuminance to its desired value (r) as soon as fast as possible.

Disturbance rejection: keep the value at the desired set point (or above) in reaction to external disturbances (e.g. a window is opened).

In any case, avoid perceivable overshoots and oscillations – these are quite uncomfortable to the users.

Feedforward Control

- Goal: Set the illuminance to a desired value (L)
- Solution Feedforward control
- Assumption We know the static gain of the system (G).
- \Longrightarrow What should be the value of the feedforward command (u_{ff})?
- \bigcirc What will happen if the gain G is different from expected?
- What will happen if there is a non-zero disturbance (d)?

Proportional Feedback Control

- Goal: React to disturbance **d** (e.g. a window is opened).
- **№** Solution Proportional control.
- Will the steady state illuminance be the one required?

$$u_{fb}(t) = K_p e(t) \qquad \text{with} \qquad e(t) = r(t) - y(t)$$

Integral Feedback Control

Goal: Cancel steady state external disturbances **d** and allow exact set point control.

Solution – Proportional Integral control.

What will be the value of the integral term in steady state?

$$u_{fb}(t) = K_i \int_{t_0}^t e(\tau) d\tau$$

Steady State Analysis

$$u_{fb}(t) = K_i \int_{t_0}^t e(\tau) d\tau$$

Show that, if the closed loop is stable, then:

$$\lim_{t \to \infty} e(t) = 0$$

Type 0 systems

Let G be the static gain:

$$y(\infty) = Gu_{ff}(\infty) + Gu_{fb}(\infty) + d(\infty)$$

If the feedforward term is computed as:

$$u_{ff}(\infty) = G^{-1}y(\infty)$$

then the feedback term converges to:

$$u_{fb}(\infty) = -G^{-1}d(\infty)$$

PID Controllers

The oldest controllers in industry and still the most used.

Available in most control boards, microcontrollers, automation modules, etc.

In general, can solve 90% dof the control problems: motors, pressure, level, temperature, etc.

There are particular techniques for their implementation, both in continuous time and discrete time.

PID Control Textbook Version (only feedback)

$$u(t) = K igg(e(t) + rac{1}{T_i} \int\limits_0^t \, e(au) d au + T_d \, rac{de(t)}{dt} igg)$$

$$U(s) = K \left(1 + \frac{1}{T_i s} + T_d s \right)$$

$$\uparrow \qquad \uparrow$$
P - roportional I - ntegral D - erivative

Proportional Term

- Makes reaction faster but:
 - Increases overshoot and the frequency of oscillations
 - May not lead to zero static error (for systems without integrators).
 - May not stabilize the system (for systems with significant delays).

Integral Term

- Integral control alone decreases stability. It is usually combined with proportional control.
 - PI control is effective for systems without integrators (achieves steady state zero error and makes response faster).
 - PI control may slow down systems with integrators.
 - PI control may wind-up if actuators saturate.

Derivative Control

- Derivative terms do some prediction about the output evolution.
 - PD control is effective in stabilizing systems with large delays.
 - PID control is able to speed up response and keep low overshoot and oscillations frequency.
 - However, is very sensitive to noise.

Derivative Term w/ Noise Reduction

The derivative operator should not be applied "as is" to very high frequency signals, such as noise and discontinuities in the error signal. Additional lowpass terms, with bandwidth **N**, are introduced:

Note: for the range of frequencies of interest $]0,0.1a/T_d]$ the three operators are equivalent i.e. they have the same gain and phase.

Typical values for *N* in [3...20]

Set Point Weighting

The Textbook version of the PID controller has two main problems:

- Does not include feedforward term to improve set-point control
- The derivative term is subject to step changes in the reference (what happens when a derivative sees a discontinuity?)

The **PID** with **Set** Point Weighting addresses these problems.

$$u(t) = K \left(br(t) - y(t) + rac{1}{T_i} \int\limits_0^t e(au) d au + T_d \left(c rac{dr(t)}{dt} - rac{dy(t)}{dt}
ight)
ight)$$

Compare to the textbook form:

$$u(t) = K \left(e(t) + rac{1}{T_i} \int\limits_0^t e(au) d au + T_d \, rac{de(t)}{dt}
ight)$$

Set Point Weighting

$$u(t) = K \left(br(t) - y(t) + rac{1}{T_i} \int_0^t e(au) d au + T_d \left(c rac{dr(t)}{dt} - rac{dy(t)}{dt}
ight)
ight)$$

Set Point Weighting

$$u(t) = K \left(br(t) - y(t) + rac{1}{T_i} \int\limits_0^t e(au) d au + T_d \left(c rac{dr(t)}{dt} - rac{dy(t)}{dt}
ight)
ight)$$

The PID controller with set point weighting is a **controller with two degrees of freedom** because it decouples the transfer functions Y -> U and R -> U

$$rac{U(s)}{Y(s)} = C_{\mathrm{y}}(s) = K \left(1 + rac{1}{sT_i} + sT_d
ight)$$
 Identical to original

$$rac{U(s)}{R(s)} = C_r(s) = K\left(b + rac{1}{sT_i} + csT_d
ight)$$
 Can tune b and c to improve set point control

Model-Based vs Model-Free PID Tuning

Model-Based Tuning

 Use a model of the system (or an approximation) to analytically compute the properties of the controlled systems as a function of the controller parameters.

Model-Free Tuning

 Tune the controller parameters on the real system by trial and error. Some tips in https://www.cds.caltech.edu/~murray/courses/cds101/fa02/caltech/astrom-ch6.pdf, section 6.6.

Case Study: Project System

Analysis of a set point weighting PID controller for the linear approximation of the lab system (check slides of last lecture to understand the involved approximations and assumptions).

Compute the transfer function from x_{ref} to x (set-point TF) and from d to x (disturbance TF)

Set-point TF

$$X = G\left(bKHX_{ref} - \frac{KH}{s\tau + 1}X + \frac{K}{T_is}(HX_{ref} - \frac{H}{s\tau + 1}X)\right)$$

$$X\left(1 + \frac{GHK}{s\tau + 1} + \frac{GHK}{(s\tau + 1)T_is} + \right) = X_{ref}\left(bGHK + \frac{GHK}{T_is}\right)$$

$$X\left(\frac{(s\tau+1)T_is+GHKT_is+GHK}{(s\tau+1)T_is}+\right)=X_{ref}\left(\frac{bGHKT_is+GHK}{T_is}\right)$$

$$\frac{X}{X_{ref}} = \frac{(bGHKT_is + GHK)(s\tau + 1)}{(s\tau + 1)T_is + GHKT_is + GHK}$$

$$\frac{X}{X_{ref}} = \frac{(bT_i s + 1)(s\tau + 1)}{(s\tau + 1)\frac{T_i s}{GHK} + T_i s + 1}$$

Set-point TF

$$\frac{X}{X_{ref}} = \frac{(bT_i s + 1)(s\tau + 1)}{(s\tau + 1)\frac{T_i s}{GHK} + T_i s + 1}$$

Homework:

- 1. Show that the resulting illuminance converges to the reference value.
- Compute the disturbance TF
- 3. Select good values for the PID controller: b, Ti, K

Advice for Project

Note that the project system is non-linear: gain and time constant depend on the illuminance. The PID gains may need to be dynamically changed depending on the set points.

Because the approximation is non-ideal, you may still need to fine tune the controller weights. But you should be able to get a good starting point.

Saturations in the Control Action

Every actuator has limits!

When the control signal saturates, the integral part keeps integrating. Known as integrator-windup or reset-windup**.

^{**}an integrator is often denoted by "reset" due to its effect in the controller. When appropriatelly used, it "resets" the tracking errors.

Windup-Effect

Illustration of the Windup Effect

Anti-Windup

Some Windup solutions:

- Setpoint and Setpoint rate limitation
 - Slows down system response.
 - Does not prevent windup due to disturbances.
- Reset integral term
 - Generates discontinuities in the command.
- Stop Integrating.
 - Only discharges the integrator when actuator is not saturated.
- Back-Calculation (slow discharge integrator)
 - Must tune one extra parameter.

Back Calculation

Saturation error $e_s = u - v$

During the saturation period, the saturation error e_s tends to

$$e_s = -rac{KT_t}{T_i} \, \epsilon$$

In steady state the output tends to

$$v = u_{\lim} + \frac{KT_t}{T_i} e^{-t}$$

Back Calculation

