Unemployment Insurance

Pascal Michaillat https://pascalmichaillat.org/c1/

_____/

unem plox me	nY	ſ						
	state	u	>	65,	6	duna	rian i	f ut
	benefi							
	state	u;	,	8%	dus	ation 1	to	+6 week
	dde ti'a							
Introducing UI	inho	mot d	ung	model				
- One-period mode								
- All workers								
- Sore of				•				
. Unemploye.						Mat	E	>0
_, Aggregate								
				_				
							0	
_ tinmo y	oak	V va	canc	uies to		unt c	vake	y
_ Marching	funo	k.m	g	ives -	4 d	wah	u-11	in
marches					\			

- Labor market typhtress is
$$\theta = V/E$$
.

- Probability to find a job / unit of sifet $f(\theta)$

- Probability to find a job $E \times f(\theta)$

Labor dimand

One representative firm. - L workers

- N producers

- R recounters

. production Junction. $Y = a N$

. wage function $W = W(a, UE)$

. recounter - produce natio $T(\theta) = R/N$

L have - $T = V \times V = V \times V$

7(6) - T T(6) x N = R Prof. t TI = a. Nd - W x [14 7(6)] x N (s) same as in usual model same labor demand. $L^{d}(6,UI) = \left[\frac{a}{W(a,UI)} \left[1+7(6)\right]^{d}\right]^{l-d}$. downward - doping labor demand if LLI _ but haizontal labor demand of d=1 - Ld responds to UI if W dos Representative worker · employed waker: consume Ce · unemployed waker: consume OLC u L Ce -> gap between Ce L C" is determined by UI - generous UI system, ce clare to ce

global maximum_ take derivative of objedice sun dien f(6) DU - E = 0 Effort chosen by wakers $E(\Theta, UE) = f(\Theta) \Delta U$ · UI) gam from working 1 =) incentive to search 1 -> E 1 DES/JUT < 0 . OT = neturn on effort T = incentive to peard (=) E 1 ∂€5/36 >0 Labor supply $L^{S}(\theta,UE) = E^{S}(\theta,UE) \times f(\theta)$ 25 = 0 - 912/9 NI < 0 UI degresses labor 04ply

 $SW = L \cdot U(C^e) + (I-L) \cdot U(C^u) - E_2^2$ Social planmer chooses ut to madimize SW pubjects to the following constraints; · budget constraint for government (=) resource total consumption $E = E^{S}(\Theta, UI)$ $L = L^{S}(\Theta, UI)$ wakers reoponse · equelbrium response - 0 - 0 (UI) given by Ld (O, UI) = L5(B, UI) . Solving paual planner's problem * All variables in social planner's problem can be expressed as function of (0, UI)

* Soual welfane can be expressed as fundian f (O, UI) * Social planner's problem becomes max SW(O(UI), UI) Optimel UI iv gruen by finst-order condition BAILY-CHETTY CORRECTION TEAM dsw = 0 D 35W 0 UI that maxim tes welfare, beeping 6 constant -> optimal UI in a "partial equilibrium" setup a " mas" octup -, UI solving ophomally tradeoff b/W incertives & In Duran Cl -> UI given by a

public-finance formula called "Baily-Chettry formula". Formula griss optimal UI as a Junction of 2 statistics, - Em microelasticity of unem ployment was to UI - U'(ce) / U'(cu), natrio of marginal utilités, measuring reed for imparance c[0,1] U'(ce)/U'(cu) 1 => optimal UI V mourance value of UI V 2) 25W UI efficiency term captures whether the labor market operates efficiently a not_ Three pomble cases

-0. laba market t-ghtmass a) 35W _ Baily - chetty omains valid 9<u>8</u> (9 > 0 : labor market tightness is imefrciently low -> claba market is imefficiently -s Baily chetty Vo not valid anymore c) <u>Sem</u> 70 tightness is implicantly high -> labor market 10 inefficiently tight. - Barly - chetty formula is not valid anymore Effect of UI on equilibrium do/duI tigh trees UI has no effect an a) $d\theta/dUI = 0$ tightness

=> Optimal UI i's man generous Kan in booms (os in US) in Plumps c) do/dut < 0 0 t when UI 1 · happens in standard matching model (bargaining + linear production Jandian) • 0 2 2 m 2 2 m -> Baily - hety Jamila has to be careched => Optimal UT . procyclical > Optimal UI ib more generous in booms than in slumps (opposite of Us policy)