

NON-LOCAL KALMAN: A RECURSIVE VIDEO DENOISING ALGORITHM

Thibaud Ehret, Jean-Michel Morel and Pablo Arias CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France

Contributions

We propose a recursive patch-based video denoising method with the following advantages:

- Particularly suited for real-time processing
- Produces temporally consistent videos, which are much better visually
- Competitive with current state-of-the-art denoising methods

Non-local Kalman

Pipeline of the recursive video denoising algorithm:

Registration and registration quality assessment

The registration is used to track patches from one frame to the next:

- Assumption: patches move with the optical flow of their center
- We use TV-L1 [1] on a downscaled version of the images to limit problems due to the noise

The detection of occlusion and missmatch can be done using a statistical framework:

- When a patch is correctly tracked by the optical flow the distance between the two instances of the patches follows a χ^2 distribution.
- The number of false alarm frame work based on a contrario gives an optimum threshold on the distance to detect occlusions and missmatch

Spatial denoising: creation of groups of trajectories

Use NL-Bayes [2] to create groups of patches and denoise them:

- Search for local nearest neighbors q_i for a given query patch q_i these patches constitute the group
- Use a MAP estimate: $\hat{\mathbf{p}} = \mu + C(C + \sigma^2 I)^{-1}(\mathbf{q} \mu)$ where $\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{q}_i$ and $\hat{C} = \frac{1}{N} \sum_{i=1}^{N} \overline{\mathbf{q}}_i \overline{\mathbf{q}}_i^T - \sigma^2 I$,

Temporal filtering: Kalman filtering along patches trajectories

For the patches in a group we assume the following model:

$$\begin{aligned} \mathbf{p}_{t+1,i} &= \mathbf{p}_{t,i} + \mathbf{w}_{t,i} \text{ with } \mathbf{w}_{t,i} \sim \mathcal{N}(\mathbf{0}, C_t) \\ \mathbf{q}_{t,i} &= \mathbf{p}_{t,i} + \mathbf{n}_{t,i} \text{ with } \mathbf{n}_{t,i} \sim \mathcal{N}(\mathbf{0}, \sigma^2 I). \end{aligned}$$

where q_i s are the observation (noisy patch) and the p_i s what we tried to estimate. We apply Kalman filter [3] to estimate the $p_{t,i}$ s.

Remarks

The study of the algorithm showed some limits on how video denoising algorithms are studied:

- Optical flow, while being suited to video processing, is difficult to use when the video has been degraded:
- PSNR are not a good fit to measure the quality of video denoising. The eye prefers a temporally consistent and it's not a problem if there's slight deformation.

References

- [1] Zach et al. "A duality based approach for realtime TV-L 1 optical flow". Joint Pattern Recognition Symposium,
- [2] Lebrun et al. "A nonlocal bayesian image denoising algorithm". SIAM, 2013.
- [3] Kalman "A new approach to linear filtering and prediction problems." Journal of basic Engineering 82, 1960
- [4] Dabov et al. "Video denoising by sparse 3D transform-domain collaborative filtering". EUSIPCO, 2007.
- [5] Maggioni et al. "Video denoising by sparse 3D transform-domain collaborative filtering". *IEEE TIP*, 2012.

Experiments

Quantitative evaluation

Our algorithm is compared against VBM3D [4] and VBM4D [5], two state-of-the-art algorithms:

σ Method	Bus	Foreman	Pedestrian_area	Crowd_run	Touchdown_pass	Station2	Average
10 VBM3D	33.32/.7824	37.40 /.6681	40.78 /.6577	35.62/.8017	39.08/.6103	38.92/.7266	37.52/.7078
VBM4D	33.39 /.8237	37.39/ .6871	40.56/ .7463	35.69/.8457	39.60 /.6752	39.93 /.7746	37.76 /.7588
NL-Kalman	33.34/ .8502	36.16/.6782	38.67/.7420	34.29/.8383	38.82/ .6940	39.91/ .7916	36.86/ .7657
NL-Kalman (oracle)	33.87/.8713	36.93/.7230	39.23/.7592	34.64/.8514	<i>39.58/.7433</i>	40.50/.8059	37.46/.7923
20 VBM3D	29.57/.6064	34.60/.5763	36.93 /.5579	32.22 /.7122	36.09/.4703	35.45/.5689	34.14/.5820
VBM4D	29.55/.6856	34.61/.6073	36.75/ .6468	32.07/.7439	36.41 /.4795	36.23/.6395	34.27 /.6338
NL-Kalman	29.58/.7291	33.19/.5844	35.61/.6444	30.89/ .7478	35.91/ .5181	36.81/.6868	33.66/ .6518
NL-Kalman (oracle)	30.43/.7752	34.18/.6301	36.45/.6738	31.44/.7746	36.99/.6135	37.46/.7116	34.49/.6965
30 VBM3D	27.59 /.4995	32.77/.5224	34.44/.4869	30.14 /.6394	34.55/.3906	33.36/.4536	32.14/.4987
VBM4D	27.53/.5988	32.91/.5612	34.45/.5745	29.95/.6704	34.76 /.3801	34.14/.5420	32.29 / 5545
NL-Kalman	27.30/ .6327	31.27/.5335	33.27/.5680	28.64/ .6708	33.91/ .4034	34.73/.5986	31.52/ .5678
NL-Kalman (oracle)	28.48/.6993	32.50/.5802	34.43/.6102	29.44/.7078	35.20/.5186	35.46/.6338	32.59/.6250

Qualitative evaluation

Detail of the Crowd_run sequence (noise standard deviation $\sigma = 30$):

Detail of the Pedestrian_area sequence (noise standard deviation $\sigma =$ 30):

Original