MATH 257 Cheatsheet with LATEX

Basics

Solve 1st order ODE

Solve 2nd order ODE

Special Case

Cauchy-Euler/Egidimensional:

$$x^2y'' + axy' + by = 0$$

use $y = x^r$ to solve.

Series solution

Power Series: $f(x) = \sum_{i=0}^{\infty} a_i x^i$

Talyor Series: condition on power series that series is continuous and infinitely differentiable.

$$f(x) = \sum_{i=0}^{\infty} \frac{f^n(x_0)}{n!} (x - x_0)^n$$

 $f(x) = \sum_{i=0}^{\infty} \frac{f^n(x_0)}{n!} (x - x_0)^n$ **Maclaurin Series**: taylor series where $x_0 = 0$

$$f(x) = \sum_{i=0}^{\infty} \frac{f^{n}(0)}{n!} (x)^{n}$$

Convergence

 $|x-x_0| < P$, where P is the radius of convergnece. Use ratio test: $\lim_{i\to\infty} \left| \frac{Q_{i+1}}{Q_i} \right| < 1$

Analytic: T-series expansion exist at x_1 , then the function is analytic at x_0 with the radius of convergence.

Singular point

Take function

$$\mathcal{L}y = P(x)y'' + Q(x)y' + R(x)y = 0$$

Transform function to

$$\mathcal{L}y = y'' + p(x)y' + q(x)y = 0$$

where $p(x) = \frac{Q(x)}{P(x)}$ and $q(x) = \frac{R(x)}{P(x)}$. if p(x) or q(x) does not converge at x_0 , there is a SP at x_0 (Also not analytic)

Regular Singular Point (RSP):

Transform function to

$$\mathcal{L}y = (x - x_0)^2 y'' + \alpha(x)(x - x_0)y' + \beta(x)y = 0$$

where $\alpha(x) = \frac{Q(x)}{P(x)}(x-x_0), \ \beta(x) = \frac{R(x)}{P(x)}(x-x_0)^2$. if $\lim_{x\to x_0} \alpha(x) = c_1$ and $\lim_{x\to x_0} \beta(x) = c_2$, then x_0 is RSP. Other wise it's an Iregular Singuar point(IRSP).

Solve RP

Frobenius Series: $f(x) = (x - x_0)^r \sum_{i=0}^{\infty} a_i (x - x_0)^i$

PDE solving Methods

Boundary Condition

- Dirichlet:
 - Heat: u(0,t) = u(L,t) = 0
 - Laplace: finite:
 semi-infinite strip
- Neumann: $u_x(0,t) = u_x(L,t) = 0$

• Periodic:

– Heat:
$$\begin{cases} u(0,t) = u(L,t) \\ u_x(0,t) = u_x(L,t) \end{cases}$$

- Wave
- Laplace
- Mixed type A: $\begin{cases} u(0,t) = u_x(L,t) = 0 \\ u(x,0) = f(x) \end{cases}$ Mixed type B: $\begin{cases} u_x(0,t) = u(L,t) = 0 \\ u(x,0) = f(x) \end{cases}$

Laplace's Equation

Special steady state of Wave or Heat equations where there is no time invariant: $\frac{\partial u}{\partial t} = \frac{\partial u^2}{\partial t^2} = 0$

$$\Delta u = \frac{\partial u^2}{\partial^2 t} + \frac{\partial u^2}{\partial^2 x} = 0$$

Types

Circle

Laplace: Transform to polar coordinate

$$u_{xx} + u_{yy} = U_{rr} + \frac{1}{r}U_r + \frac{1}{r^2}U_{\theta\theta} = 0$$
where
$$\begin{cases} r = (x^2 + y^2)^{\frac{1}{2}} \\ \theta = atan(\frac{y}{\pi}) \end{cases}$$

Wedge

characteristics: $u_{xx} + u_{yy} = U_{rr} + \frac{1}{r}U_r + \frac{1}{r^2}U_{\theta\theta} = 0$, where 0 < r < a, $0 < \theta < \alpha$

- $u(r,0) = c_1$, $u(r,\alpha) = c_2$, $u(r,\theta)$ bounded as $r \to 0, u(\alpha, \theta) = f(\theta)$
- $u_{\theta}(r,0) = c_1$, $u_{\theta}(r,\alpha) = c_2$, $u(r,\theta)$ bounded as $r \to 0, u(\alpha, \theta) = f(\theta)$
- $u_{\theta}(r,0) = c_1$, $u(r,\alpha) = c_2$, $u(r,\theta)$ bounded as $r \to 0, u(\alpha, \theta) = f(\theta)$
- Neumann on the interior of circle: $u_r(a,\theta) = f(\theta)$, as $r \to \infty$, $u(r,\theta) < \infty$ and periodic: $u(r,\theta) = u(r,\theta + 2\pi)$

Special types

- Wedge with hole: on top of wedge, some edge $u(b,\theta)$ is also defined. $u(r,0) = c_1$, $u(r,\alpha) = c_2$ $u(b,\theta) = 0$, $u(r,\theta)$ bounded as $r \to 0$, $u(\alpha,\theta) = f(\theta)$
- Dirichlet on the interior of circle: $u(a, \theta) = f(\theta)$, as $r \to 0$, $u(r,\theta) < \infty$ and periodic: $u(r,\theta) = u(r,\theta + 2\pi)$
- Dirichlet on the exterior of circle: $u(a, \theta) = f(\theta)$, as $r \to \infty$, $u(r,\theta) < \infty$ and periodic: $u(r,\theta) = u(r,\theta + 2\pi)$

Possion integral forma

Strum-Louisville Boundary Value Problem

Definition 1. Boundary value problem of the form:

$$(p(x)y')' - q(x)y + \lambda r(x)y = 0 \ 0 < x < \ell$$

$$\alpha_1 y(0) + \alpha_2 y'(0) = 0 \ \beta_1 y(\ell) + \beta_2 y'(\ell) = 0$$

where p, p', q, r are continuous on $0 \le x \le \ell$ and $p(x) \ge 0$ and $r(x) > 0 \text{ on } 0 < x < \ell$

Then Strum-Liouville eigenvalue problem:

$$\mathcal{L} = \lambda r y = -(py')' + qy$$

$$\alpha_1 y(0) + \alpha_2 y'(0) = 0 \ \beta_1 y(\ell) + \beta_2 y'(\ell) = 0$$

$$p(x) > 0, r(x) > 0$$

Properties

Robin Boundary Condition

$$X'' + \lambda X = 0$$

$$X'(0) = h_1 X(0),$$

$$X'(\ell) = -h_2 X(\ell), \ h_2 \ge 0, \ h_2 \ge 0$$

$$X(x) = A \cos \mu x + B \sin \mu x,$$

$$X'(x) = -A\mu \sin \mu x + B\mu \cos \mu x$$

Solve for $\tan(\mu \ell) = \left[\frac{\mu(h_1 + h_2)}{\mu^2 - h_1 h_2}\right]$ • $h_1, h_2 \neq 0$

•
$$h_1, h_2 \neq$$

$$X_n = \frac{\mu_n}{h_1} \cos \mu_n x + \sin \mu_n x, \ \mu_n \to \frac{n\pi}{\ell} \ as \ n \to \infty$$

•
$$h_1 \neq 0, h_2 = 0$$

$$X_n = \frac{\mu_n}{h_1} \cos \mu_n x + \sin \mu_n x = \frac{\cos \mu_n (\ell - x)}{\sin \mu_n x}$$

•
$$h_1 \to \infty$$
, $h_2 \neq 0$

$$X_n = \sin \mu_n x, \ \mu_n \to \left[\left(\frac{2n+1}{2} \right) \frac{\pi}{\ell} \right]$$

Tools and Useful Equations

Cauchy-Euler/Egidimensional:

$$x^2y'' + axy' + by = 0$$

Legendre Equation:

$$(1 - x^2)y'' - 2xy' + \alpha(\alpha + 1)y = 0$$

Bessel's Equation:

$$x^2y'' + xy' + (x^2 - v^2)y = 0$$

Miscs

Math 257-316 PDE Formula sheet - final exam

Trigonometric and Hyperbolic Function identities

$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha$	$\sin^2 t + \cos^2 t = 1$
$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \beta \sin \alpha.$	$\sin^2 t = \frac{1}{2} \left(1 - \cos(2t) \right)$
$\sinh(\alpha \pm \beta) = \sinh\alpha \cosh\beta \pm \sinh\beta \cosh\alpha$	$\cosh^2 t - \sinh^2 t = 1$
$\cosh(\alpha \pm \beta) = \cosh \alpha \cosh \beta \pm \sinh \beta \sinh \alpha.$	$\sinh^2 t = \frac{1}{2} \left(\cosh(2t) - 1 \right)$

Basic linear ODE's with real coefficients

	constant coefficients	Euler eq
ODE	ay'' + by' + cy = 0	$ax^2y'' + bxy' + cy = 0$
indicial eq.	$ar^2 + br + c = 0$	ar(r-1) + br + c = 0
$r_1 \neq r_2 \text{ real}$	$y = Ae^{r_1x} + Be^{r_2x}$	$y = Ax^{r_1} + Bx^{r_2}$
$r_1 = r_2 = r$	$y = Ae^{rx} + Bxe^{rx}$	$y = Ax^r + Bx^r \ln x $
$r = \lambda \pm i\mu$	$e^{\lambda x}[A\cos(\mu x) + B\sin(\mu x)]$	$x^{\lambda}[A\cos(\mu \ln x) + B\sin(\mu \ln x)]$

Series solutions for y'' + p(x)y' + q(x)y = 0 (*) around $x = x_0$.

Ordinary point x_0 : Two linearly independent solutions of the form:

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

Regular singular point x_0 : Rearrange (\star) as:

$$(x-x_0)^2 y'' + [(x-x_0)p(x)](x-x_0)y' + [(x-x_0)^2q(x)]y = 0$$

If $r_1 > r_2$ are roots of the indicial equation: $r(r-1) + br + c = 0$ where $b = \lim_{x \to x_0} (x-x_0)p(x)$ and $c = \lim_{x \to x_0} (x-x_0)^2q(x)$ then a solution of (\star) is

$$y_1(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{n+r_1}$$
 where $a_0 = 1$.

The second linerly independent solution y_2 is of the form:

Case 1: If $r_1 - r_2$ is neither 0 nor a positive integer:

$$y_2(x) = \sum_{n=0}^{\infty} b_n (x - x_0)^{n+r_2}$$
 where $b_0 = 1$.

Case 2: If $r_1 - r_2 = 0$:

$$y_2(x) = y_1(x) \ln(x - x_0) + \sum_{n=1}^{\infty} b_n(x - x_0)^{n+r_2}$$
 for some $b_1, b_2...$

Case 3: If $r_1 - r_2$ is a positive integer:

$$y_2(x) = ay_1(x)\ln(x-x_0) + \sum_{n=0}^{\infty} b_n(x-x_0)^{n+r_2}$$
 where $b_0 = 1$.

Fourier, sine and cosine series

Let f(x) be defined in [-L,L]then its Fourier series Ff(x) is a 2L-periodic function on \mathbf{R} : $Ff(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left\{ a_n \cos(\frac{n\pi x}{L}) + b_n \sin(\frac{n\pi x}{L}) \right\}$ where $a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx$ and $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n\pi x}{L}) dx$

Theorem (Pointwise convergence) If f(x) and f'(x) are piecewise continuous, then Ff(x) converges for every x to $\frac{1}{2}[f(x-)+f(x+)]$.

Parseval's indentity

$$\frac{1}{L} \int_{-L}^{L} |f(x)|^2 dx = \frac{|a_0|^2}{2} + \sum_{n=1}^{\infty} (|a_n|^2 + |b_n|^2).$$

For f(x) defined in [0, L], its cosine and sine series are

$$Cf(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\frac{n\pi x}{L}), \quad a_n = \frac{2}{L} \int_0^L f(x) \cos(\frac{n\pi x}{L}) dx,$$

$$Sf(x) = \sum_{n=1}^{\infty} b_n \sin(\frac{n\pi x}{L}), \quad b_n = \frac{2}{L} \int_0^L f(x) \sin(\frac{n\pi x}{L}) dx.$$

D'Alembert's solution to the wave equation

PDE: $u_{tt} = c^2 u_{xx}$, $-\infty < x < \infty$, t > 0 **IC**: u(x,0) = f(x), $u_t(x,0) = g(x)$. **SOLUTION**: $u(x,t) = \frac{1}{2}[f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) ds$

Sturm-Liouville Eigenvalue Problems

ODE: $[p(x)y']' - q(x)y + \lambda r(x)y = 0$, a < x < b.

BC: $\alpha_1 y(a) + \alpha_2 y'(a) = 0$, $\beta_1 y(b) + \beta_2 y'(b) = 0$.

Hypothesis: p, p', q, r continuous on [a, b]. p(x) > 0 and r(x) > 0 for $x \in [a, b]$. $\alpha_1^2 + \alpha_2^2 > 0$. $\beta_1^2 + \beta_2^2 > 0$.

Properties (1) The differential operator Ly = [p(x)y']' - q(x)y is symmetric in the sense that (f, Lg) = (Lf, g) for all f, g satisfying the BC, where $(f, g) = \int_a^b f(x)g(x) dx$. (2) All eigenvalues are real and can be ordered as $\lambda_1 < \lambda_2 < \cdots < \lambda_n < \cdots$ with $\lambda_n \to \infty$ as $n \to \infty$, and each eigenvalue admits a unique (up to a scalar factor) eigenfunction ϕ_n .

- (3) Orthogonality: $(\phi_m, r\phi_n) = \int_a^b \phi_m(x)\phi_n(x)r(x) dx = 0$ if $\lambda_m \neq \lambda_n$.
- (4) **Expansion**: If $f(x):[a,b]\to \mathbf{R}$ is square integrable, then

$$f(x) = \sum_{n=1}^{\infty} c_n \phi_n(x), \ a < x < b \ , \ c_n = \frac{\int_a^b f(x) \phi_n(x) r(x) \, dx}{\int_a^b \phi_n^2(x) r(x) \, dx}, \ n = 1, 2, \dots$$