Output tables for the test of Multiple comparisons.

June 23, 2019

1 Average rankings of Friedman test

Average ranks obtained by applying the Friedman procedure

20		~1			-			~1
Ranking	2.3654	2.3462	6.1154	1.5385	5.6154	3.75	6.5	7.7692
Algorithm	DSC-R	DSC-S	KMeanClustering	LearnppCDS	LearnppNIE	REA	OUSE	MLPClassifier

Table 1: Average Rankings of the algorithms

Friedman statistic considering reduction performance (distributed according to chi-square with 7 degrees of freedom: 160.637821.

2 Post hoc comparisons

Results achieved on post hoc comparisons for $\alpha=0.05,\,\alpha=0.10$ and adjusted p-values.

2.1 P-values for $\alpha = 0.05$

algorithms LearnppCDS vs. MLPClassifier		$z = (R_0 - R_i)/SE$ 9.171444	<i>d</i> 0
DSC-S vs. MLPClassifier	sifier	7.982553	0
DSC-R vs. MLPClassifier	sifier	7.954246	0
LearnppCDS vs. OUSE	ISE	7.303187	0
KMeanClustering vs. LearnppCDS	rnppCDS	6.737048	0
DSC-S vs. OUSE		6.114296	0
DSC-R vs. OUSE	(c)	6.085989	0
LearnppCDS vs. LearnppNIE	ppNIE	6.001068	0
REA vs. MLPClassifier	ifier	5.916148	0
DSC-S vs. KMeanClustering	stering	5.548157	0
DSC-R vs. KMeanClustering	tering	5.519851	0
DSC-S vs. LearnppNIE	VIE.	4.812177	0.000001
DSC-R vs. LearnppNIE	VIE.	4.78387	0.000002
REA vs. OUSE		4.04789	0.000052
KMeanClustering vs. REA	REA	3.481752	0.000498
LearnppCDS vs. REA	A	3.255296	0.001133
LearnppNIE vs. MLPClassifier	assifier	3.170376	0.001522
LearnppNIE vs. REA	3A	2.745772	0.006037
KMeanClustering vs. MLPClassifier	Classifier	2.434396	0.014917
DSC-S vs. REA		2.066406	0.03879
DSC-R vs. REA		2.038099	0.04154
OUSE vs. MLPClassifier	ifier	1.868257	0.061726
LearnppNIE vs. OUSE	SE	1.302119	0.192876
DSC-R vs. LearnppCDS	CDS	1.217198	0.223529
DSC-S vs. LearnppCDS	DS	1.188891	0.234483
KMeanClustering vs. LearnppNIE	rnppNIE	0.73598	0.461743
KMeanClustering vs. OUSE	OUSE	0.566139	0.5713
DSC-R vs. DSC-S	à	0.028307	0.977417

Table 2: P-values Table for $\alpha = 0.05$

z = (filer	d	0	0	0	0	0	0	0	0	0	0	0	0.000001	0.000002	0.000052	0.000498	0.001133	0.001522	0.006037	0.014917	0.03879	0.04154	0.061726	0.192876	0.223529	0.234483	0.461743	0.5713	0.977417
	\parallel	9.171444	7.982553	7.954246	7.303187	6.737048	6.114296	6.085989	6.001068	5.916148	5.548157	5.519851	4.812177	4.78387	4.04789	3.481752	3.255296	3.170376	2.745772	2.434396	2.066406	2.038099	1.868257	1.302119	1.217198	1.188891	0.73598	0.566139	0.028307
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	algorithms	LearnppCDS vs. MLPClassifier	DSC-S vs. MLPClassifier	DSC-R vs. MLPClassifier	LearnppCDS vs. OUSE	KMeanClustering vs. LearnppCDS	DSC-S vs. OUSE	DSC-R vs. OUSE	LearnppCDS vs. LearnppNIE	REA vs. MLPClassifier	DSC-S vs. KMeanClustering	DSC-R vs. KMeanClustering	DSC-S vs. LearnppNIE	DSC-R vs. LearnppNIE	REA vs. OUSE	KMeanClustering vs. REA	LearnppCDS vs. REA	LearnppNIE vs. MLPClassifier	LearnppNIE vs. REA	KMeanClustering vs. MLPClassifier	DSC-S vs. REA	DSC-R vs. REA	OUSE vs. MLPClassifier	LearnppNIE vs. OUSE	DSC-R vs. LearnppCDS	DSC-S vs. LearnppCDS	KMeanClustering vs. LearnppNIE	KMeanClustering vs. OUSE	DSC-R vs. DSC-S
I control of the cont	\dot{i}	28	27	56	22	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	œ	7	9	ಬ	4	က	2	1

Table 3: P-values Table for $\alpha = 0.10$

Nemenyi's procedure rejects those hypotheses that have an unadjusted p-value ≤ 0.003571 .

p_{Neme}	0	0	0	0	0	0	0	0	0	0.000001	0.000001	0.000042	0.000048	0.001447	0.013948	0.031717	0.042628	0.169032	0.417667	1.086126	1.163122	1.728335	5.400524	6.258811	6.565513	12.928799	15.996389	27.367686
unadjusted p	0	0	0	0	0	0	0	0	0	0	0	0.000001	0.000002	0.000052	0.000498	0.001133	0.001522	0.006037	0.014917	0.03879	0.04154	0.061726	0.192876	0.223529	0.234483	0.461743	0.5713	0.977417
hypothesis	LearnppCDS vs .MLPClassifier	DSC-S vs .MLPClassifier	DSC-R vs .MLPClassifier	LearnppCDS vs .OUSE	KMeanClustering vs .LearnppCDS	DSC-S vs .OUSE	DSC-R vs .OUSE	LearnppCDS vs .LearnppNIE	REA vs .MLPClassifier	DSC-S vs .KMeanClustering	DSC-R vs .KMeanClustering	DSC-S vs .LearnppNIE	DSC-R vs .LearnppNIE	REA vs.OUSE	KMeanClustering vs .REA	LearnppCDS vs .REA	LearnppNIE vs .MLPClassifier	LearnppNIE vs .REA	KMeanClustering vs .MLPClassifier	DSC-S vs .REA	DSC-R vs .REA	OUSE vs .MLPClassifier	LearnppNIE vs .OUSE	DSC-R vs .LearnppCDS	DSC-S vs .LearnppCDS	KMeanClustering vs .LearnppNIE	KMeanClustering vs.OUSE	DSC-R vs .DSC-S
	П	2	3	4	2	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	22	56	27	28

Table 4: Adjusted p-values