Chapter 5 Solutions, Susanna Epp Discrete Math 5th Edition

https://github.com/spamegg1

June 8, 2023

Contents

1	$\mathbf{E}\mathbf{xe}$	rcise Set 5.1
	1.1	Exercise 1
	1.2	Exercise 2
	1.3	Exercise 3
	1.4	Exercise 4
	1.5	Exercise 5
	1.6	Exercise 6
	1.7	Exercise 7
	1.8	Exercise 8
	1.9	Exercise 9
	1.10	Exercise 10
	1.11	Exercise 11
	1.12	Exercise 12
	1.13	Exercise 13
	1.14	Exercise 14
	1.15	Exercise 15
	1.16	Exercise 16
	1.17	Exercise 17
	1.18	Exercise 18
		1.18.1 (a)
		1.18.2 (b)
		1.18.3 (c)
		1.18.4 (d)
		1.18.5 (e)
	1.19	Exercise 19
	1.20	Exercise 20
	1.21	Exercise 21
	1.22	Exercise 22
	1.23	Exercise 23
	1.24	Exercise 24

1.25	Exercise 25								 																				9
1.26	Exercise 26								 																				9
1.27	Exercise 27								 																				9
1.28	Exercise 28								 																				9
1.29	Exercise 29								 																				9
1.30	Exercise 30								 																				10
1.31	Exercise 31								 																				10
1.32	Exercise 32								 																				10
1.33	Exercise 33								 																				10
1.34	Exercise 34								 																				10
1.35	Exercise 35								 																				10
1.36	Exercise 36								 																				11
1.37	Exercise 37								 																				11
1.38	Exercise 38								 																				11
1.39	Exercise 39								 																				11
1.40	Exercise 40								 																				11
1.41	Exercise 41								 																				12
1.42	Exercise 42								 																				12
1.43	Exercise 43								 																				12
1.44	Exercise 44								 																				12
1.45	Exercise 45								 																				12
1.46	Exercise 46								 																				13
1.47	Exercise 47								 																				13
1.48	Exercise 48								 																				13
1.49	Exercise 49								 																				13
1.50	Exercise 50								 																				13
1.51	Exercise 51								 																				13
1.52	Exercise 52								 																				14
1.53	Exercise 53								 																				14
	Exercise 54								 																				14
_	Exercise 55																												14
	Exercise 56																												15
	Exercise 57																												15
	Exercise 58																												15
	Exercise 59																												16
	Exercise 60	-	-	-	 -	-	-	-		-	-	-	-	-	-	-	-	-	-		-				-	-		-	16
	Exercise 61																												16
_	Exercise 62																												16
_	Exercise 63																												16
	Exercise 64																												17
_	Exercise 65	-		-	 -	-	-	-		-	-		-	-		-		-	-			-	-			-		-	17
	Exercise 66	-		-	 -	-	-	-		-	-		-	-		-		-	-			-	-			-		-	17
	Exercise 67	-	-	-	 -	-	-	-		-	-	-	-	-	-	-	-	-	-			-	-			-		-	17
	Exercise 68																												17
	Exercise 69																												17
	Exercise 70																												18
T.10	TVOTORE IO	•	•	•	 •	•	•	•	 	•	•	•	•	 •	•	•		•	•	•	•	•	•	•	•	•	•	•	10

1.71	Exercise 71			 															18
1.72	Exercise 72			 															18
1.73	Exercise 73			 															18
1.74	Exercise 74																		18
1.75	Exercise 75																		18
1.76	Exercise 76																		19
1.77	Exercise 77																		19
	1.77.1 (a) .																		19
	1.77.2 (b) .		,	 															19
	1.77.3 (c) .																		19
1.78	Exercise 78																		19
1.79	Exercise 79			 															20
1.80	Exercise 80									 									20
	1.80.1 (a) .									 									21
	1.80.2 (b) .																		21
1.81	Exercise 81			 															21
1.82	Exercise 82																		21
1.83	Exercise 83																		22
1.84	Exercise 84																		22
1.85	Exercise 85			 															22
1.86	Exercise 86																		23
1.87	Exercise 87																		23
1.88	Exercise 88			 															23
1.89	Exercise 89																		23
1.90	Exercise 90																		24
1.91	Exercise 91																		24

1 Exercise Set 5.1

Write the first four terms of the sequences defined by the formulas in 1-6.

1.1 Exercise 1

 $a_k = \frac{k}{10+k}$, for every integer $k \ge 1$.

Proof.
$$\frac{1}{11}, \frac{2}{12}, \frac{3}{13}, \frac{4}{14}$$

1.2 Exercise 2

 $b_j = \frac{5-j}{5+j}$, for every integer $j \ge 1$.

Proof.
$$\frac{4}{6}, \frac{3}{7}, \frac{2}{8}, \frac{1}{9}$$

1.3 Exercise 3

 $c_i = \frac{(-1)^i}{3^i}$, for every integer $i \ge 0$.

Proof.
$$1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}$$

1.4 Exercise 4

 $d_m = 1 + \left(\frac{1}{2}\right)^m$, for every integer $m \ge 0$.

Proof.
$$2, \frac{3}{2}, \frac{5}{4}, \frac{9}{8}$$

1.5 Exercise 5

 $e_n = \left\lfloor \frac{n}{2} \right\rfloor \cdot 2$, for every integer $n \geq 0$.

Proof.
$$0, 0, 2, 2$$

1.6 Exercise 6

 $f_n = \left\lfloor \frac{n}{4} \right\rfloor \cdot 4$, for every integer $n \geq 1$.

Proof.
$$0, 0, 0, 4$$

1.7 Exercise 7

Let $a_k = 2k + 1$ and $b_k = (k - 1)^3 + k + 2$ for every integer $k \ge 0$. Show that the first three terms of these sequences are identical but that their fourth terms differ.

Proof.
$$a_0 = 2(0) + 1 = 1$$
, $a_1 = 2(1) + 1 = 3$, $a_2 = 2(2) + 1 = 5$, $a_3 = 2(3) + 1 = 7$.
 $b_0 = (0-1)^3 + 0 + 2 = 1$, $b_1 = (1-1)^3 + 1 + 2 = 3$, $b_2 = (2-1)^3 + 2 + 2 = 5$, $b_3 = (3-1)^3 + 3 + 2 = 13$.

Compute the first fifteen terms of each of the sequences in 8 and 9, and describe the general behavior of these sequences in words. (a definition of logarithm is given in Section 7.1.)

1.8 Exercise 8

 $g_n = \lfloor \log_2 n \rfloor$ for every integer $n \geq 1$.

Proof.
$$g_1 = \lfloor \log_2 1 \rfloor = 0, g_2 = \lfloor \log_2 2 \rfloor = 1, g_3 = \lfloor \log_2 3 \rfloor = 1, g_4 = \lfloor \log_2 4 \rfloor = 2,$$

 $g_5 = \lfloor \log_2 5 \rfloor = 2, g_6 = \lfloor \log_2 6 \rfloor = 2, g_7 = \lfloor \log_2 7 \rfloor = 2, g_8 = \lfloor \log_2 8 \rfloor = 3,$

$$g_9 = \lfloor \log_2 9 \rfloor = 3, g_{10} = \lfloor \log_2 10 \rfloor = 3, g_{11} = \lfloor \log_2 11 \rfloor = 3, g_{12} = \lfloor \log_2 12 \rfloor = 3,$$

 $g_{13} = \lfloor \log_2 13 \rfloor = 3, g_{14} = \lfloor \log_2 14 \rfloor = 3, g_{15} = \lfloor \log_2 15 \rfloor = 3.$

When n is an integral power of 2, g_n is the exponent of that power. For instance, $8 = 2^3$ and $g_8 = 3$. More generally, if n = 2k, where k is an integer, then $g_n = k$. All terms of the sequence from g_{2^k} up to, but not including, $g_{2^{k+1}}$ have the same value, namely k. For instance, all terms of the sequence from g_8 through g_{15} have the value 3.

1.9 Exercise 9

 $h_n = n |\log_2 n|$ for every integer $n \ge 1$.

Proof.
$$h_1 = 1\lfloor \log_2 1 \rfloor = 0, h_2 = 2\lfloor \log_2 2 \rfloor = 2, h_3 = 3\lfloor \log_2 3 \rfloor = 3, h_4 = 4\lfloor \log_2 4 \rfloor = 8,$$
 $h_5 = 5\lfloor \log_2 5 \rfloor = 10, h_6 = 6\lfloor \log_2 6 \rfloor = 12, h_7 = 7\lfloor \log_2 7 \rfloor = 14, h_8 = 8\lfloor \log_2 8 \rfloor = 24,$
 $h_9 = 9\lfloor \log_2 9 \rfloor = 27, h_{10} = 10\lfloor \log_2 10 \rfloor = 30, h_{11} = 11\lfloor \log_2 11 \rfloor = 33,$
 $h_{12} = 12\lfloor \log_2 12 \rfloor = 36, h_{13} = 13\lfloor \log_2 13 \rfloor = 39, h_{14} = 14\lfloor \log_2 14 \rfloor = 42,$
 $h_{15} = 15\lfloor \log_2 15 \rfloor = 45.$

Find explicit formulas for sequences of the form a_1, a_2, a_3, \ldots with the initial terms given in 10-16.

Exercises 10 - 16 have more than one correct answer.

1.10 Exercise 10

$$-1, 1, -1, 1, -1, 1$$

Proof.
$$a_n = (-1)^n$$
, where n is an integer and $n \ge 1$

1.11 Exercise 11

$$0, 1, -2, 3, -4, 5$$

Proof.
$$a_n = (n-1)(-1)^n$$
, where n is an integer and $n \ge 1$

1.12 Exercise 12

$$\frac{1}{4}, \frac{2}{9}, \frac{3}{16}, \frac{4}{25}, \frac{5}{36}, \frac{6}{49}$$

Proof.
$$a_n = \frac{n}{(n+1)^2}$$
, where n is an integer and $n \ge 1$

1.13 Exercise 13

$$1 - \frac{1}{2}, \frac{1}{2} - \frac{1}{3}, \frac{1}{3} - \frac{1}{4}, \frac{1}{4} - \frac{1}{5}, \frac{1}{5} - \frac{1}{6}, \frac{1}{6} - \frac{1}{7}$$

Proof.
$$a_n = \frac{1}{n} - \frac{1}{n+1}$$
, where n is an integer and $n \ge 1$

1.14 Exercise 14

$$\frac{1}{3}, \frac{4}{9}, \frac{9}{27}, \frac{16}{81}, \frac{25}{243}, \frac{36}{729}$$

Proof.
$$a_n = \frac{n^2}{3^n}$$
, where n is an integer and $n \ge 1$

1.15 Exercise 15

$$0, -\frac{1}{2}, \frac{2}{3}, -\frac{3}{4}, \frac{4}{5}, -\frac{5}{6}, \frac{6}{7}$$

Proof.
$$a_n = \frac{n-1}{n} \cdot (-1)^{n-1}$$
, where n is an integer and $n \ge 1$

1.16 Exercise 16

3, 6, 12, 24, 48, 96

Proof.
$$a_n = 3 \cdot 2^{n-1}$$
, where n is an integer and $n \ge 1$

1.17 Exercise 17

Consider the sequence defined by $a_n = \frac{2n + (-1)^n - 1}{4}$ for every integer $n \ge 0$. Find an alternative explicit formula for an that uses the floor notation.

Proof. $a_0 = 0, a_1 = 0, a_2 = 1, a_3 = 1, a_4 = 2, a_5 = 2$. It seems to be following the pattern: $a_n = \left\lfloor \frac{n}{2} \right\rfloor$. Let's try to prove this. When n is even, n = 2k for some integer k, so we have

$$a_n = a_{2k} = \frac{2(2k) + (-1)^{2k} - 1}{4} = \frac{4k + 1 - 1}{4} = \frac{4k}{4} = k = \frac{n}{2} = \lfloor \frac{n}{2} \rfloor$$

When n is odd, n = 2k + 1 for some integer k, so we have

$$a_n = a_{2k+1} = \frac{2(2k+1) + (-1)^{2k+1} - 1}{4} = \frac{4k + 2 - 1 - 1}{4} = \frac{4k}{4} = k = \frac{n-1}{2} = \left\lfloor \frac{n}{2} \right\rfloor$$

So
$$a_n = \left\lfloor \frac{n}{2} \right\rfloor$$
 for all $n \ge 0$.

1.18 Exercise 18

Let $a_0 = 2$, $a_1 = 3$, $a_2 = -2$, $a_3 = 1$, $a_4 = 0$, $a_5 = -1$, and $a_6 = -2$. Compute each of the summations and products below.

1.18.1 (a)

$$\sum_{i=0}^{6} a_i$$

Proof. 2+3+(-2)+1+0+(-1)+(-2)=1

1.18.2 (b)

$$\sum_{i=0}^{0} a_i$$

Proof. $a_0 = 2$

1.18.3 (c)

$$\sum_{j=1}^{3} a_{2j}$$

Proof. $a_2 + a_4 + a_6 = -2 + 0 + (-2) = -4$

1.18.4 (d)

$$\prod_{k=0}^{6} a_k$$

Proof. $2 \cdot 3 \cdot (-2) \cdot 1 \cdot 0 \cdot (-1) \cdot (-2) = 0$

1.18.5 (e)

$$\prod_{k=2}^{2} a_k$$

 \square

Compute the summations and products in 19-28.

1.19 Exercise 19

$$\sum_{k=1}^{5} (k+1)$$

Proof.
$$2+3+4+5+6=20$$

1.20 Exercise 20

$$\prod_{k=2}^{4} k^2$$

Proof.
$$2^2 \cdot 3^2 \cdot 4^2 = 576$$

1.21 Exercise 21

$$\sum_{k=1}^{3} (k^2 + 1)$$

Proof.
$$(1^2 + 1) + (2^2 + 1) + (3^2 + 1) = 2 + 5 + 10 = 17$$

1.22 Exercise 22

$$\prod_{j=0}^{4} \left(-1\right)^{j}$$

Proof.
$$(-1)^0 \cdot (-1)^1 \cdot (-1)^2 \cdot (-1)^3 \cdot (-1)^4 = 1$$

1.23 Exercise 23

$$\sum_{i=1}^{1} i(i+1)$$

Proof.
$$1(1+1) = 2$$

1.24 Exercise 24

$$\sum_{j=0}^{0} (j+1) \cdot 2^j$$

Proof.
$$(0+1) \cdot 2^0 = 1$$

1.25 Exercise 25

$$\prod_{k=2}^{2} \left(1 - \frac{1}{k}\right)$$

Proof.
$$(1-1/2)=1/2$$

1.26 Exercise 26

$$\sum_{k=-1}^{1} (k^2 + 3)$$

Proof.
$$((-1)^2 + 3) + (0^2 + 3) + (1^2 + 3) = 11$$

1.27 Exercise 27

$$\sum_{n=1}^{6} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

Proof.
$$\left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{8}\right) + \left(\frac{1}{8} - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{6}\right) + \left(\frac{1}{5} - \frac{1}{6}\right) + \left(\frac{1}{5} - \frac{1}{6}\right) = 1 - \frac{1}{7} = \frac{6}{7}$$

1.28 Exercise 28

$$\prod_{i=2}^{5} \frac{i(i+2)}{(i-1)\cdot(i+1)}$$

Proof.
$$\frac{2(2+2)}{(2-1)(2+1)} \cdot \frac{3(3+2)}{(3-1)(3+1)} \cdot \frac{4(4+2)}{(4-1)(4+1)} \cdot \frac{5(5+2)}{(5-1)(5+1)}$$
$$= \frac{8}{3} \cdot \frac{15}{8} \cdot \frac{24}{15} \cdot \frac{35}{24} \cdot = \frac{35}{3}$$

Write the summations in 29 - 32 in expanded form.

1.29 Exercise 29

$$\sum_{i=1}^{n} (-2)^i$$

Proof.
$$(-2)^1 + (-2)^2 + (-2)^3 + \dots + (-2)^n = -2 + 2^2 - 2^3 + \dots + (-1)^n 2^n$$

1.30 Exercise 30

$$\sum_{j=1}^{n} j(j+1)$$

Proof.
$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + n(n+1)$$

1.31 Exercise 31

$$\sum_{k=0}^{n+1} \frac{1}{k!}$$

Proof.
$$\sum_{k=0}^{n+1} \frac{1}{k!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{(n+1)!}$$

1.32 Exercise 32

$$\sum_{i=1}^{k+1} i(i!)$$

Proof.
$$1(1!) + 2(2!) + 3(3!) + \cdots + (k+1)(k+1)!$$

Evaluate the summations and products in 33-36 for the indicated values of the variable.

1.33 Exercise 33

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}; \ n = 1$$

Proof.
$$\frac{1}{1^2} = 1$$

1.34 Exercise 34

$$1(1!) + 2(2!) + 3(3!) + \cdots + m(m!); m = 2$$

Proof.
$$1(1!) + 2(2!) = 1 + 4 = 5$$

1.35 Exercise 35

$$\left(\frac{1}{1+1}\right)\left(\frac{2}{2+1}\right)\left(\frac{3}{3+1}\right)\cdots\left(\frac{k}{k+1}\right);\ k=3$$

Proof.
$$\left(\frac{1}{1+1}\right)\left(\frac{2}{2+1}\right)\left(\frac{3}{3+1}\right) = \frac{1}{2}\frac{2}{3}\frac{3}{4} = \frac{1}{4}$$

1.36 Exercise 36

$$\left(\frac{1\cdot 2}{3\cdot 4}\right)\left(\frac{2\cdot 3}{4\cdot 5}\right)\left(\frac{3\cdot 4}{5\cdot 6}\right)\cdots\left(\frac{m\cdot (m+1)}{(m+2)\cdot (m+3)}\right); m=1$$

Proof.
$$\frac{1\cdot 2}{3\cdot 4} = \frac{3}{8}$$

Write each of 37 - 39 as a single summation.

1.37 Exercise 37

$$\sum_{i=1}^{k} i^3 + (k+1)^3$$

Proof.
$$\sum_{i=1}^{k+1} i^3$$

1.38 Exercise 38

$$\sum_{k=1}^{m} \frac{k}{k+1} + \frac{m+1}{m+2}$$

Proof.
$$\sum_{k=1}^{m+1} \frac{k}{k+1}$$

1.39 Exercise 39

$$\sum_{m=0}^{n} (m+1)2^{n} + (n+2)2^{n+1}$$

Proof.
$$\sum_{m=0}^{n+1} (m+1)2^n$$

Rewrite 40-42 by separating off the final term.

1.40 Exercise 40

$$\sum_{i=1}^{k+1} i(i!)$$

Proof.
$$\sum_{i=1}^{k} i(i!) + (k+1)(k+1)!$$

1.41 Exercise 41

$$\sum_{k=1}^{m+1} k^2$$

Proof.
$$\sum_{k=1}^{m} k^2 + (m+1)^2$$

1.42 Exercise 42

$$\sum_{m=1}^{n+1} m(m+1)$$

Proof.
$$\sum_{m=1}^{n} m(m+1) + (n+1)(n+2)$$

Write each of 43 - 52 using summation or product notation.

Exercises 43 - 52 have more than one correct answer.

1.43 Exercise 43

$$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + 7^2$$

Proof.
$$\sum_{k=1}^{7} (-1)^{k+1} k^2$$
 or $\sum_{k=0}^{6} (-1)^k (k+1)^2$

1.44 Exercise 44

$$(1^3 - 1) - (2^3 - 1) + (3^3 - 1) - (4^3 - 1) + (5^3 - 1)$$

Proof.
$$\sum_{k=1}^{5} (k^3 - 1)$$

1.45 Exercise 45

$$(2^2-1)\cdot(3^2-1)\cdot(4^2-1)$$

Proof.
$$\prod_{k=2}^{4} (k^2 - 1)$$

1.46 Exercise 46

$$\frac{2}{3\cdot 4} - \frac{3}{4\cdot 5} + \frac{4}{5\cdot 6} - \frac{5}{6\cdot 7} + \frac{6}{7\cdot 8}$$

Proof.
$$\sum_{j=2}^{6} \frac{(-1)^{j} j}{(j+1)(j+2)}$$

1.47 Exercise 47

$$1 - r + r^2 - r^3 + r^4 - r^5$$

Proof.
$$\sum_{i=0}^{5} (-1)^i r^i$$

1.48 Exercise 48

$$(1-t)\cdot(1-t^2)\cdot(1-t^3)\cdot(1-t^4)$$

Proof.
$$\prod_{k=1}^{4} (1-t^k)$$

1.49 Exercise 49

$$1^3 + 2^3 + 3^3 + \dots + n^3$$

Proof.
$$\sum_{k=1}^{n} k^3$$

1.50 Exercise 50

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!}$$

Proof.
$$\sum_{k=1}^{n} \frac{k}{(k+1)!}$$

1.51 Exercise 51

$$n + (n-1) + (n-2) + \cdots + 1$$

Proof.
$$\sum_{i=0}^{n-1} (n-i)$$

1.52 Exercise 52

$$n + \frac{n-1}{2!} + \frac{n-2}{3!} + \frac{n-3}{4!} + \dots + \frac{1}{n!}$$

Proof.
$$\sum_{i=0}^{n-1} \frac{n-i}{(i+1)!}$$

Transform each of 53 and 54 by making the change of variable i = k + 1.

1.53 Exercise 53

$$\sum_{k=0}^{5} k(k-1)$$

Proof. When k = 0, we have i = 0 + 1 = 1 and when k = 5 we have i = 5 + 1 = 6. Solving for k we get k = i - 1. So

$$\sum_{k=0}^{5} k(k-1) = \sum_{i=1}^{6} (i-1)(i-2)$$

1.54 Exercise 54

$$\prod_{k=1}^{n} \frac{k}{k^2 + 4}$$

Proof. When k = 1, we have i = 1 + 1 = 2 and when k = n we have i = n + 1. Solving for k we get k = i - 1. So

$$\prod_{k=1}^{n} \frac{k}{k^2 + 4} = \prod_{i=2}^{n+1} \frac{i-1}{(i-1)^2 + 4}$$

Transform each of 55-58 by making the change of variable j=i-1.

1.55 Exercise 55

$$\sum_{i=1}^{n+1} \frac{(i-1)^2}{i \cdot n}$$

Proof. When i=1, we have j=1-1=0 and when i=n+1 we have j=n+1-1=n. Solving for i we get i=j+1. So

$$\sum_{i=1}^{n+1} \frac{(i-1)^2}{i \cdot n} = \sum_{j=0}^{n} \frac{(j+1-1)^2}{(j+1) \cdot n} = \sum_{j=0}^{n} \frac{j^2}{(j+1) \cdot n}$$

1.56 Exercise 56

$$\sum_{i=3}^{n} \frac{i}{i+n-1}$$

Proof. When i = 3, we have j = 3 - 1 = 2 and when i = n we have j = n - 1. Solving for i we get i = j + 1. So

$$\sum_{i=3}^{n} \frac{i}{i+n-1} = \sum_{j=2}^{n-1} \frac{j+1}{j+1+n-1} = \sum_{j=2}^{n-1} \frac{j+1}{j+n}$$

1.57 Exercise 57

$$\sum_{i=1}^{n-1} \frac{i}{(n-i)^2}$$

Proof. When i = 1, we have j = 1 - 1 = 0 and when i = n - 1 we have j = n - 1 - 1 = n - 2. Solving for i we get i = j + 1. So

$$\sum_{i=1}^{n-1} \frac{i}{(n-i)^2} = \sum_{j=0}^{n-2} \frac{j+1}{(n-(j+1))^2}$$

1.58 Exercise 58

$$\prod_{i=n}^{2n} \frac{n-i+1}{n+i}$$

Proof. When i = n, we have j = n - 1 and when i = 2n we have j = 2n - 1. Solving for i we get i = j + 1. So

$$\prod_{i=n}^{2n} \frac{n-i+1}{n+i} = \prod_{j=n-1}^{2n-1} \frac{n-(j+1)+1}{n+j+1} = \prod_{j=n-1}^{2n-1} \frac{n-j}{n+j+1}$$

Write each of 59 - 61 as a single summation or product.

1.59 Exercise 59

$$3\sum_{k=1}^{n}(2k-3) + \sum_{k=1}^{n}(4-5k)$$

Proof.
$$\sum_{k=1}^{n} [3(2k-3) + (4-5k)] = \sum_{k=1}^{n} [6k-9+4-5k] = \sum_{k=1}^{n} [k-5]$$

1.60 Exercise 60

$$2\sum_{k=1}^{n}(3k^{2}+4)+5\sum_{k=1}^{n}(2k^{2}-1)$$

Proof.
$$\sum_{k=1}^{n} [2(3k^2+4)+5(2k^2-1)] = \sum_{k=1}^{n} [6k^2+8+10k^2-5] = \sum_{k=1}^{n} [16k^2+3] \quad \Box$$

1.61 Exercise 61

$$\prod_{k=1}^{n} \frac{k}{k+1} \prod_{k=1}^{n} \frac{k+1}{k+2}$$

Proof.
$$\prod_{k=1}^{n} \frac{k}{k+1} \prod_{k=1}^{n} \frac{k+1}{k+2} = \prod_{k=1}^{n} \frac{k}{k+1} \frac{k+1}{k+2} = \prod_{k=1}^{n} \frac{k}{k+2}$$

Compute each of 62-76. Assume the values of the variables are restricted so that the expressions are defined.

1.62 Exercise 62

 $\frac{4!}{3!}$

Proof.
$$\frac{4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} = 4$$

1.63 Exercise 63

 $\frac{6!}{8!}$

Proof.
$$\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = \frac{1}{56}$$

1.64 Exercise 64

$$\frac{4!}{0!}$$

Proof.
$$\frac{4!}{0!} = \frac{24}{1} = 24$$

1.65 Exercise 65

$$\frac{n!}{(n-1)!}$$

Proof.
$$\frac{n \cdot (n-1) \cdots 2 \cdot 1}{(n-1) \cdots 2 \cdot 1} = n$$

1.66 Exercise 66

$$\frac{(n-1)!}{(n+1)!}$$

Proof.
$$\frac{(n-1)\cdots 2\cdot 1}{(n+1)\cdot n\cdot (n-1)\cdots 2\cdot 1} = \frac{1}{(n+1)n}$$

1.67 Exercise 67

$$\frac{n!}{(n-2)!}$$

Proof.
$$\frac{n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1}{(n-2) \cdots 2 \cdot 1} = n(n-1)$$

1.68 Exercise 68

$$\frac{((n+1)!)^2}{(n!)^2}$$

Proof.
$$= \left(\frac{(n+1)!}{n!}\right)^2 = \left(\frac{(n+1)n(n-1)\cdots 2\cdot 1}{n(n-1)\cdots 2\cdot 1}\right)^2 = (n+1)^2$$

1.69 Exercise 69

$$\frac{n!}{(n-k)!}$$

Proof.
$$\frac{n \cdot (n-1) \cdots (n-k+1) \cdot (n-k)(n-k-1) \cdots 2 \cdot 1}{(n-k)(n-k-1) \cdots 2 \cdot 1} = n(n-1) \cdots (n-k+1)$$

1.70 Exercise 70

$$\frac{n!}{(n-k+1)!}$$

Proof.
$$\frac{n \cdot (n-1) \cdots (n-k+2) \cdot (n-k+1)(n-k) \cdots 2 \cdot 1}{(n-k+1)(n-k) \cdots 2 \cdot 1} = n(n-1) \cdots (n-k+2)$$

1.71 Exercise 71

$$\binom{5}{3}$$

Proof.
$$\binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5!}{3! \cdot 2!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(3 \cdot 2 \cdot 1) \cdot (2 \cdot 1)} = 10$$

1.72 Exercise 72

$$\binom{7}{4}$$

Proof.
$$\binom{7}{4} = \frac{7!}{4!(7-4)!} = \frac{7!}{4! \cdot 3!} = \frac{7 \cdot \cancel{0} \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(4 \cdot 3 \cdot 2 \cdot 1) \cdot (3 \cdot 2 \cdot 1)} = 35$$

1.73 Exercise 73

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

Proof. 1
$$\Box$$

1.74 Exercise 74

$$\binom{5}{5}$$

1.75 Exercise 75

$$\binom{n}{n-1}$$

Proof.
$$\binom{n}{n-1} = \frac{n!}{(n-1)!(n-(n-1))!} = \frac{n!}{(n-1)! \cdot 1!} = \frac{n \cdot (n-1) \cdots 2 \cdot 1}{(n-1) \cdots 2 \cdot 1} = n$$

1.76 Exercise 76

$$\binom{n+1}{n-1}$$

Proof.
$$\binom{n+1}{n-1} = \frac{(n+1)!}{(n-1)!(n+1-(n-1))!} = \frac{(n+1)!}{(n-1)! \cdot 2!}$$

$$= \frac{(n+1) \cdot n \cdot (n-1) \cdots 2 \cdot 1}{(n-1) \cdots 2 \cdot 1 \cdot 2} = \frac{(n+1)n}{2}$$

1.77 Exercise 77

1.77.1 (a)

Prove that n! + 2 is divisible by 2, for every integer $n \geq 2$.

Proof. Let n be an integer such that $n \geq 2$. By definition of factorial,

$$n! = \begin{cases} 2 \cdot 1 & \text{if } n = 2\\ 3 \cdot 2 \cdot 1 & \text{if } n = 3\\ n \cdot (n-1) \cdots 2 \cdot 1 & \text{if } n > 3 \end{cases}$$

In each case, n! has a factor of 2, and so n! = 2k for some integer k. Then n! + 2 = 2k + 2 = 2(k + 1). Since k + 1 is an integer, n! + 2 is divisible by 2.

1.77.2 (b)

Prove that n! + k is divisible by k, for every integer $n \ge 2$ and k = 2, 3, ..., n.

Proof. For every k = 2, 3, ..., n, from the definition of n! in part (a), we can see that n! has a factor of k, so n! = ka for some integer a. Then n! + k = ka + k = k(a+1) where a + 1 is an integer. Therefore n! + k is divisible by k for every k = 2, 3, ..., n.

1.77.3 (c)

Given any integer $m \geq 2$, is it possible to find a sequence of m-1 consecutive positive integers none of which is prime? Explain your answer.

Proof. Yes. By part (b), m! + k is divisible by k, for all k = 2, 3, ..., m. So m! + 2, m! + 3, ..., m! + m are m - 1 consecutive integers none of which is prime.

1.78 Exercise 78

Prove that for all nonnegative integers n and r with $r+1 \le n$, $\binom{n}{r+1} = \frac{n-r}{r+1} \binom{n}{r}$.

Proof. Suppose n and r are nonnegative integers with $r+1 \le n$. The right-hand side of the equation to be shown is

$$\frac{n-r}{r+1} \cdot \binom{n}{r} = \frac{n-r}{r+1} \cdot \frac{n!}{r!(n-r)!}$$

$$= \frac{n-r}{r+1} \cdot \frac{n!}{r!(n-r)(n-r-1)!}$$

$$= \frac{n!}{(r+1)!(n-r-1)!}$$

$$= \frac{n!}{(r+1)!(n-(r+1))!}$$

$$= \binom{n}{r+1}$$

which is the left-hand side of the equality to be shown.

1.79 Exercise 79

Prove that if p is a prime number and r is an integer with 0 < r < p, then $\binom{p}{r}$ is divisible by p.

Proof. We know that

$$\binom{p}{r} = \frac{p!}{r!(p-r)!} = \frac{p \cdot (p-1) \cdots 2 \cdot 1}{[r \cdot (r-1) \cdots 2 \cdot 1][(p-r) \cdot (p-r-1) \cdots 2 \cdot 1]}$$

is an integer. Notice that all the factors in the denominator are less than p. So, since p is prime, p is not divisible by any of the factors in the denominator. This means that every factor in the denominator is canceled out by the factors of $(p-1)\cdots 2\cdot 1$. Thus

$$M = \frac{(p-1)\cdots 2\cdot 1}{[r\cdot (r-1)\cdots 2\cdot 1][(p-r)\cdot (p-r-1)\cdots 2\cdot 1]}$$

is also an integer (otherwise $p \cdot M$ would not be an integer, since p cannot cancel out anything in the denominator). Therefore $\binom{p}{r} = p \cdot M$ where M is an integer, so it is divisible by p.

1.80 Exercise 80

Suppose $a[1], a[2], a[3], \ldots, a[m]$ is a one-dimensional array and consider the following algorithm segment:

$$sum := 0$$

for $(k := 1 \text{ to } m)$
 $sum := sum + a[k]$
next k

Fill in the blanks below so that each algorithm segment performs the same job as the one shown in the exercise statement.

1.80.1 (a)

$$sum \coloneqq 0$$

$$for (i \coloneqq 0 \text{ to } \underline{\hspace{1cm}})$$

$$sum \coloneqq \underline{\hspace{1cm}}$$

$$next i$$

Proof.
$$m-1$$
, $sum+a[i+1]$

1.80.2 (b)

$$sum := 0$$
for $(j := 2 \text{ to } ___)$
 $sum := ___$
next j

Proof.
$$m+1$$
, $sum+a[j-1]$

Use repeated division by 2 to convert (by hand) the integers in 81 - 83 from base 10 to base 2.

1.81 Exercise 81

90

$$90 / 2 = 45$$
, remainder = 0
 $45 / 2 = 22$, remainder = 1
 $22 / 2 = 11$, remainder = 0
 $22 / 2 = 5$, remainder = 1
 $35 / 2 = 2$, remainder = 1
 $35 / 2 = 1$, remainder = 0
 $35 / 2 = 1$, remainder = 0
 $35 / 2 = 1$, remainder = 1

So $90_{10} = 1011010_2$.

1.82 Exercise 82

98

$$98 / 2 = 49$$
, remainder = 0
 $49 / 2 = 24$, remainder = 1
 $24 / 2 = 12$, remainder = 0
 $Proof.$ $12 / 2 = 6$, remainder = 0
 $6 / 2 = 3$, remainder = 0
 $3 / 2 = 1$, remainder = 1
 $1 / 2 = 0$, remainder = 1

So
$$98_{10} = 1100010_2$$
.

1.83 Exercise 83

205

So $205_{10} = 11001101_2$.

Make a trace table to trace the action of algorithm 5.1.1 on the input in 84-86.

1.84 Exercise 84

23

	a	23					
	i	0	1	2	3	4	5
	q	23	11	5	2	1	0
$D_{moo}f$	r[0]		1				
Proof.	r[1]			1			
	r[2]				1		
	r[3]					0	
	r[4]						1

1.85 Exercise 85

28

	a	28					
	i	0	1	2	3	4	5
	q	28	14	7	3	1	0
Proof.	r[0]		0				
1 100j.	r[1]			0			
	r[2]				1		
	r[3]					1	
	r[4]						1

1.86 Exercise 86

44

	a	44						
	i	0	1	2	3	4	5	6
	q	44	22	11	5	2	1	0
	r[0]		0					
Proof.	r[1]			0				
	r[2]				1			
	r[3]					1		
	r[4]						0	
	r[5]							1

1.87 Exercise 87

Write an informal description of an algorithm (using repeated division by 16) to convert a nonnegative integer from decimal notation to hexadecimal notation (base 16).

Proof. Suppose a is a nonnegative integer. Divide a by 16 using the quotient-remainder theorem to obtain a quotient q[0] and a remainder r[0]. If the quotient is nonzero, divide by 16 again to obtain a quotient q[1] and a remainder r[1]. Continue this process until a quotient of 0 is obtained. At each stage, the remainder must be less than the divisor, which is 16. Thus each remainder is always among $0, 1, 2, \ldots, 15$. Read the divisions from the bottom up.

Use the algorithm you developed for exercise 87 to convert the integers in 88-90 to hexadecimal notation.

1.88 Exercise 88

287

$$287 / 16 = 17$$
, remainder = $15 = F$
 $Proof.$ $17 / 16 = 1$, remainder = 1
 $1 / 16 = 0$, remainder = 1

So
$$287_{10} = 11F_{16}$$
.

1.89 Exercise 89

$$Proof.$$
 $693 / 16 = 43$, remainder = 5
 $Proof.$ $43 / 16 = 2$, remainder = $11 = B$
 $2 / 16 = 0$, remainder = 2

So $693_{10} = 2B5_{16}$.

1.90 Exercise 90

2301

Proof.
$$2301 / 16 = 143$$
, remainder = $13 = D$
 $143 / 16 = 8$, remainder = $15 = F$
 $8 / 16 = 0$, remainder = 8

So $2301_{10} = 8FD_{16}$.

1.91 Exercise 91

Write a formal version of the algorithm you developed for exercise 87. *Proof:*

```
Decimal to Hexadecimal Conversion Using Repeated Division by 16
Input: a [a nonnegative integer]
Algorithm Body:
q := a, i := 0
while (i = 0 \text{ or } q \neq 0)
r[i] := q \mod 16
q := q \text{ div } 16
[r[i] \text{ and } q \text{ can be obtained by calling the division algorithm.}]
end while
[After \ execution \ of \ this \ step, \ the \ values \ r[0], r[1], \dots, r[i-1] \ are \ all \ 0's and 1's, and a = (r[i-1]r[i-2] \dots r[1]r[0])_{16}.
Output: r[0], r[1], \dots, r[i-1] [a sequence of integers]
```