PROPERTIES OF FUNCTORS Def. (Essential Sursectivity, Faithfulness, Eullness): A functor F: C→D is: 1) ESSENTIALLY SURSECTIVE if: $\forall x \in Ob(D) \exists x \in Ob(C) \text{ s.t. } F(x) \cong x$ 2) FAITHFUL if: $\forall f, g: X \rightarrow Y \text{ in } C \text{ we have } :$ $F(f) = F(g) \Rightarrow f = g$ 3) Full if: $\forall X, Y \in Ob(C) \ \forall g: F(X) \rightarrow F(Y) \ \text{in } D$ $\exists f: X \rightarrow Y \ \text{in } C \ \text{s.t.} F(f) = g$ 4) FULLY FAITHFUL if it is both faithful and full Proposition Let $F: C \longrightarrow D$ and consider the following map: $Hom_{\mathcal{E}}(X,Y) \longrightarrow Hom_{\mathcal{D}}(F(X), F(Y))$ $f \longmapsto F(f)^{D}$ Then Fis: 1) faithful iff the map is insective $\forall X, Y \in Ob(C)$ 2) full iff the map is surjective $\forall X, Y \in Ob(C)$ 3) fully faithful if the map is lisective $\forall X,Y \in Ob(C)$ Def. (Elementory Equivalence, Equivalent Categnies): A function is an ELEMENTARY EQUIVALENCE if it is fully Soithful and exentially sursective. 2 categories are EQUIVALENT if I elementary equivalence between them. example: 1) Given C, D as follows: F(idx)=idy F(x) = U F(x) = U

the function $F: C \rightarrow D$ s.t. F(x) = U, $F(id_x) = id_U$ is an elementary equivalence. C, D are equivalent C and C are equivalent C are equivalent C and C are equivalent C are equivalent C and C are equivalent C an

Remark:

Equivalent categories have exactly the same categorical properties (NO COMPARISON OF OBSECTS UP TO EQUALITY!!!)

<u>Leuma</u>:

Functors preserve commutative diagrams and isomorphisms

Proof:

2) if
$$f \circ g = id \land g \circ f = id$$
, then $F(f) \circ F(g) = F(id) = id \land F(g) \circ F(f) = F(id) = id$

NATURAL TRANSFORMATIONS

$$\times \longmapsto \times$$

<u>Non example</u>: 1) X → X

$$\begin{array}{c} 1) \times \longrightarrow \times \\ \times \longmapsto \begin{cases} 7 & \times \in \mathbb{R} \\ \times & \text{otherwise} \end{cases}$$

2) List
$$(\times)$$
 List (\times)

$$[\times_1, ..., \times_n] \longmapsto [\times_n, ..., \times_1]$$

2)
$$List(X) \longrightarrow List(X)$$

$$[\times_{1},...,\times_{n}] \longmapsto \begin{cases} [5,\pi] & \times \in \mathbb{IR} \\ [\times_{1},...,\times_{n}] & \text{otherwise} \end{cases}$$

Natural Transformations are uniform families of morphisms

Det. (Notural Transformation):

A NATURAL TRANSFORMATION 4: F > 6 between the functors F, G: C D (C,D categories) consists of:

1) ∀X ∈ Ob(C) a mayshism y_X: F(X) → G(X) in D s.t. ∀f: X→ X in C the naturality square commutes:

$$\times$$
 $F(\times) \xrightarrow{\mathscr{U}_{\times}} G(\times)$

$$\forall \mathcal{L} \mid : F(\mathcal{L}) \mid \mathscr{U} \qquad \downarrow G(\mathcal{L}) \Rightarrow G(\mathcal{L}) \circ \mathscr{U}_{\times} = \mathscr{U}_{\times} \circ F(\mathcal{L})$$

$$\times F(\mathcal{L}) \longrightarrow G(\mathcal{L})$$

$$\frac{\text{example}:}{X \longrightarrow X^3}$$

$$\times \longmapsto (x, x, x)$$
 is a natural transformation. More precisely

the map $\mathcal{M}_{Se+}: id_{Se+} \Rightarrow \mathcal{G}$ given by $\forall X \in Ob(Se+)$ the maps

$$y_{\times}: id_{Se+}(X) \longrightarrow G(X)$$
, $id_{Se+}: Se+ \longrightarrow Se+$, $\times \longmapsto (\times, \times, \times)$ $X \longmapsto X$

$$f \longmapsto f$$

G: Set
$$\longrightarrow$$
 Set
 $\times \longmapsto \times^3$
 $f \longmapsto ((x,y,z) \longmapsto (f(x),f(y),f(z)))$

is a natural transformation: given $f: X \rightarrow X$ an arbitrary map we have that the naturality square communities:

