П

Aufgabe 7

Bezeichne $U_{d_0,\epsilon}(a):=\{x\in X: d_0(x,a)<\epsilon\}$ die Umgebung bezüglich einer beliebigen Metrik $d_0:X\times X\to\mathbb{R}.$

Lemmata:

(L1) Für alle $x, y \in X$ gilt

$$d(x,y) \ge d_f(x,y).$$

Beweis. Seien $x, y \in X$.

$$d(x,y) \ge d_f(x,y) \iff d(x,y) \ge \frac{d(x,y)}{1+d(x,y)} \iff d^2(x,y) \ge 0$$

Wegen $d(x, y) \ge 0$ für alle $x, y \in X$ folgt die Behauptung.

(L2) Für alle $x, y \in \mathbb{R}_{>0}$ gilt

$$\frac{x}{x+1} \le \frac{y}{y+1} \iff x \le y.$$

Beweis. Für $x, y \in \mathbb{R}_{\geq 0}$ gilt: $\frac{x}{x+1} \leq \frac{y}{y+1} \iff x(y+1) \leq y(x+1) \iff x \leq y$.

(L3) Seien d_+, d_- Metriken in X mit $d_+(x,y) \geq d_-(x,y)$ für alle $x,y \in X$. Sei $p \in X$. Für alle $\epsilon > 0$ gilt

$$U_{d_+,\epsilon}(p) \subset U_{d_-,\epsilon}(p)$$
.

Beweis. Sei $x \in U_{d_+,\epsilon}(p)$. Es gilt $d_+(x,p) < \epsilon$. Nach Voraussetzung folgt $d_-(x,p) \le d_+(x,p) < \epsilon$ und somit $x \in U_{d_-,\epsilon}(p)$.

(i) **Behauptung:** Falls eine Menge offen bezüglich d ist, so auch bezüglich d_f

Gegeben: metrischer Raum (X,d), offene Menge $A\subset X$ bezüglich der Metrik d, beliebiges $a\in A$ **Gesucht:** ein $\epsilon>0$, sodass $U_{d_f,\epsilon}(a)\subset A$

Beweis. A ist offen. Dann ist A eine Umgebung für jedes seiner Punkte bezüglich d. Für den Punkt a muss es demnach ein $\tilde{\epsilon} > 0$ mit $U_{d,\tilde{\epsilon}}(a) \subset A$ geben. Wähle $\epsilon = \frac{\tilde{\epsilon}}{1+\tilde{\epsilon}}$. Es gilt für alle $x \in X$, dass

$$x \in U_{d_f,\epsilon}(a) \iff d_f(x,a) = \frac{d(x,a)}{1+d(x,a)} < \epsilon = \frac{\tilde{\epsilon}}{1+\tilde{\epsilon}} \iff d(x,a) < \tilde{\epsilon} \iff x \in U_{d,\tilde{\epsilon}}.$$

Also
$$U_{d_f,\epsilon}(a) = U_{d,\epsilon}(a) \subset A$$
.

Behauptung: Falls eine Menge offen bezüglich d_f ist, so auch bezüglich d

Gegeben: metrischer Raum (X, d), offene Menge $A \subset X$ bezüglich der Metrik d_f , beliebiges $a \in A$ **Gesucht:** ein $\epsilon > 0$, sodass $U_{d,\epsilon}(a) \subset A$

Beweis. A ist offen. Also gibt es ein $\tilde{\epsilon} > 0$ mit $U_{d_f,\tilde{\epsilon}}(a) \subset A$. Wegen (L1) ist $d \geq d_f$. Nach (L3) gilt $U_{d,\tilde{\epsilon}}(a) \subset U_{d_f,\tilde{\epsilon}}(a) \subset A$. Wähle also $\epsilon = \tilde{\epsilon}$.

(ii) Sei $\Xi := \{A \subset X : A \text{ ist beschränkt bezüglich } d_f.\}$.

Gesucht: Ξ (Menge aller beschränkten Teilmengen in (X, d_f))

Beweis. Falls $X=\emptyset$, so ist $\Xi=\{\emptyset\}$, da \emptyset beschränkt ist. Andernfalls, betrachte $X\neq\emptyset$. Nehme ein beliebiges $x\in X$. Für jedes $A\subset X$ gilt

$$\forall a \in A : d_f(x, a) = \frac{d(x, a)}{1 + d(x, a)} < 1.$$

Damit ist $\Xi = \mathcal{P}(X)$ (Potenzmenge von X).

(iii) Betrachte $X=\mathbb{R},\ d(x,y)=|x-y|$ und die Teilmenge $M\subset X$ mit M=X. Aus (ii) wissen wir, dass M beschränkt in d_f ist (wegen $M\subset X$). In (X,d) ist die Teilmenge $M=X=\mathbb{R}$ offensichtlich nicht beschränkt (sollen wir das wirklich noch zeigen? hier eine Beweisskizze: für jede Schranke $S\in\mathbb{R}$ für ein $x\in X$, findet man einen Punkt $m=x+S+1\in M$, sodass d(m,x)=S+1>S).

Aufgabe 8

(i) Die Reihe D(f,g) konvergiert für alle $f,g\in\mathcal{C}$. Denn wegen $\frac{x}{1+x}<1$ für alle $x\geq 0$ und der geometrischen Reihe $\sum_{k=0}^{\infty}0.5^k=2$ gilt

$$\sum_{n=1}^{\infty} \frac{D_n(f,g)}{2^n (1 + D_n(f,g))} \le \sum_{n=1}^{\infty} \frac{1}{2^n} = 1.$$
 (1)

Symmetrie von D gilt auch, weil

$$D_n(f,g) = \sup |f(x) - g(x)| = \sup |g(x) - f(x)| = D_n(g,f).$$

 $D(f,g) \geq 0$ für alle $f,g \in \mathcal{C}$, da $D_n(f,g) \geq 0$ (siehe Betrag). Falls f=g, so ist

$$D_n(f,g) = \sup |f(x) - g(x)| = 0 \implies D(f,g) = \sum_{n=1}^{\infty} \frac{D_n(f,g)}{2^n (1 + D_n(f,g))} = 0.$$

Falls $D(f,g) = \sum_{n=1}^{\infty} \frac{D_n(f,g)}{2^n(1+D_n(f,g))} = 0$, so muss wegen $D_n(f,g) \geq 0$ gelten, dass $D_n(f,g) = \sup_{-n \leq x \leq n} |f(x) - g(x)| = 0$ für alle $n \in \mathbb{N}$. Also

$$\forall x \in \mathbb{R} : f(x) = g(x) \implies f = g.$$

Überprüfe nun ob, $D(f,g) \leq D(f,h) + D(h,g)$. $D_n(f,g)$ ist eine Metrik (siehe Satz 11), denn f und g sind stetig auf einem beschränkten Intervall [-n,n] und somit stellen f und g beschränkte Funktionen dar. Also gilt für alle $f,g,h \in \mathcal{C}$

$$D_n(f,g) \le D_n(f,h) + D_n(h,g). \tag{2}$$

Aus der Monotonie von $\frac{x}{1+x}$ ergibt sich für alle $f,g,h\in\mathcal{C}$

$$D(f,g) = \sum_{n=1}^{\infty} 2^{-n} \frac{D_n(f,g)}{1 + D_n(f,g)} \le \sum_{n=1}^{\infty} \frac{D_n(f,h) + D_n(h,g)}{2^n (1 + D_n(f,h) + D_n(h,g))}$$

$$= \sum_{n=1}^{\infty} \frac{D_n(f,h)}{2^n (1 + D_n(f,h) + \underbrace{D_n(h,g)}_{\geq 0})} + \underbrace{\frac{D_n(h,g)}{2^n (1 + \underbrace{D_n(f,h)}_{\geq 0} + D_n(h,g))}}$$

$$\le \sum_{n=1}^{\infty} \frac{D_n(f,h)}{2^n (1 + D_n(f,h))} + \underbrace{\frac{D_n(h,g)}{2^n (1 + D_n(h,g))}}_{\geq 0}$$

$$= D(f,h) + D(h,g).$$

D ist eine Metrik.

(ii) Falls $\epsilon \geq 1$, so ist jede Funktion $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ auch in $B_{\epsilon}(0)$ enthalten wegen Gleichung (1) aus Aufgabe 8(i). Man kann $k \in \mathbb{N}_{>0}$ und $\delta > 0$ beliebig wählen.

Falls $\epsilon < 1$, so definiere $\xi(x) := \frac{\epsilon - 2^{-x}}{1 - 2^{-x}}$. Damit $\xi(x) > 0$ ist, muss der Zähler größer als null sein. Das ist der Fall, wenn

$$\epsilon > 0.5^x \iff x > \frac{\ln \epsilon}{\ln \frac{1}{2}}$$

Wähle $k \in \mathbb{N}$, sodass $k > \max(0, \frac{\ln \epsilon}{\ln 0.5})$ und $\delta = \frac{\xi(k)}{1-\xi(k)}$. Insbesondere ist δ größer null, da das k so ausgewählt wurde, dass der Zähler von δ positiv ist. Der Nenner wird genau dann null oder negativ, wenn

$$1 - \xi(x) \le 0 \iff 1 \le \frac{\epsilon - 2^{-x}}{1 - 2^{-x}} \iff \epsilon \ge 1.$$

Wegen $k > \frac{\ln \epsilon}{\ln 0.5}$ und $\epsilon < 1$ gilt $\delta > 0$. Sei $\Gamma := \{g \in \mathcal{C}(\mathbb{R}, \mathbb{R}) : D_k(0, g) < \delta\}$. Wegen $\sum_{i=1}^j 0.5^i = \frac{1-0.5^{j+1}}{0.5} - 1$ gilt nun für jedes $f \in \Gamma$, dass

$$D(0,f) = \sum_{n=1}^{\infty} 2^{-n} \frac{D_n(0,f)}{1 + D_n(0,f)} \le \underbrace{\frac{\sum_{k=0}^{\infty} \frac{1}{1 + D_k(0,f)}}{\sum_{k=0}^{\infty} \frac{1}{1 + D_k(0,f)}}_{< 1+\delta} = \underbrace{\sum_{k=0}^{\infty} \frac{1}{1 + \sum_{k=0}^{\infty} \frac{1}{1$$

Also $D(0, f) < \epsilon$ und $f \in B_{\epsilon}(0)$.

(iii) Sei $f_k : \mathbb{R} \to \mathbb{R}$ definiert durch

$$f_k(x) := \begin{cases} \pi, & \text{falls } x \in [-k, k] \\ x + \pi - k, & \text{falls } x \in (k, \infty) \\ x + \pi + k & \text{falls } x \in (-\infty, -k) \end{cases}$$

und $g: \mathbb{R} \to \mathbb{R}, x \mapsto \pi$. Die Funktion g ist stetig und auch f, da

$$\lim_{x \nearrow k} f_k(x) = \pi = \lim_{x \searrow k} x + \pi - k = \lim_{x \searrow k} f_k(x),$$
$$\lim_{x \searrow -k} f_k(x) = \pi = \lim_{x \nearrow -k} x + \pi + k = \lim_{x \nearrow -k} f_k(x).$$

Nun ist $f_k(x) - g(x) = 0$ für alle $x \in [-k, k]$. Also $D_n(f_k, g) = 0$ für n = 1, ..., k. Also ist $D^k(f_k, g) = 0$, obwohl $f \neq g$.

