Chapter 1

Systems of Linear Equations

1.1 HW1 Complex Stuff

Excercise 1.1.1.

1. For n=2, we have

$$A_2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},$$

and for each even n > 2, we have

$$A_n = \begin{bmatrix} A_2 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_2 \end{bmatrix},$$

such that $A_n^2 = -I$.

2. If $A^2 = -I$, then A^2 has the only eigenvalue -1 (with a mutiplicity of n). On the other hand, if n is odd and A is real, then the n-degree real-coefficient eigenpolynomial of A does have at least one real root. Therefore A has at least one real eigenvalue, whose square is -1, which is impossible.

Excercise 1.1.2.

1. For any $k = a + bi \in \mathbb{C}$ where $a, b \in \mathbb{R}$ and $\mathbf{v} \in \mathbb{R}^n$,

$$B(k\mathbf{v}) = B((a+bi)\mathbf{v}) = B(a\mathbf{v} + bi\mathbf{v}) = B(a\mathbf{v} + bA\mathbf{v}) = aB\mathbf{v} + bBA\mathbf{v},$$

$$kB\mathbf{v} = (a+bi)(B\mathbf{v}) = a(B\mathbf{v}) + bi(B\mathbf{v}) = aB\mathbf{v} + bAB\mathbf{v}.$$

Therefore, $B(k\mathbf{v}) = kB\mathbf{v}$ if and only if AB = BA.

2. No. For example, let

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad X = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}.$$

Then $A^2 = X^2 = -I$, but

$$AX = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -1 & -2 \end{bmatrix}$$

$$\neq XA = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1 & -1 \end{bmatrix}.$$

3. Since $C^2 = I$, C have n complex eigenvalues whose square are 1. Hence the eigenvalues must be 1 or -1, and because they are all real, C is diagonalizable.

Suppose the eigenspaces for 1 and -1 are F and G respectively. For each $\mathbf{v} \in F$, since CA = -AC, we have

$$C(A\mathbf{v}) = (CA)\mathbf{v} = (-AC)\mathbf{v} = -A(C\mathbf{v}) = -A\mathbf{v},$$

i.e. $A\mathbf{v}$ is in G. Note that A is invertible $(A^{-1} = -A)$, so A gives a bijection between F and G, and therefore they have the same dimension.

4. An example is

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},$$

and

$$C = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Excercise 1.1.3.

- 1. It is real linear but not complex linear, as for each element c in any vector, only if k is real do we have $\overline{kc} = k\overline{c}$.
- 2. \mathbb{C} -linear implies \mathbb{R} -linear, because if $L(k\mathbf{v}) = kL\mathbf{v}$ for all $k \in \mathbb{C}$ and $\mathbf{v} \in V$, then this is also true for any $k \in \mathbb{R}$, since a real number is as well a complex number.
- 3. An \mathbb{R} -basis for \mathbb{C}^2 is

$$\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}i\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix},\begin{bmatrix}0\\i\end{bmatrix}\}.$$

It is 4-real-dimension. And a \mathbb{C} -basis for \mathbb{C}^2 is

$$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}.$$

It is 2-complex-dimension.

- 4. \mathbb{C} -linearly independent implies \mathbb{R} -linearly independent, because if a bunch of vectors $\{\mathbf{v}_i\}$ are not \mathbb{R} -linearly independent, then we have a set of real coeffcient $\{a_i\}$ all of which are not zero, such that $\sum a_i \mathbf{v}_i = \mathbf{0}$. And this is also true for complex $\{a_i\}$, since a real number is as well a complex number, and therefore $\{\mathbf{v}_i\}$ are not \mathbb{C} -linearly independent.
- 5. \mathbb{R} -spanning implies \mathbb{C} -spanning, because for a bunch of vectors $\{\mathbf{v}_i\}$, if any $\mathbf{v} \in V$ can be represented as $\mathbf{v} = \sum a_i \mathbf{v}_i$ where $\{a_i\}$ are all real, then this is as well true for complex $\{a_i\}$, since a real number is as well a complex number.

Excercise 1.1.4.

1.

$$P\begin{bmatrix}1\\1\\1\\1\\1\end{bmatrix} = \begin{bmatrix}1\\1\\1\\1\end{bmatrix}, P\begin{bmatrix}1\\i\\-1\\-i\\-i\end{bmatrix} = \begin{bmatrix}i\\-1\\-i\\1\end{bmatrix}.$$

2.

$$PF_4 = P \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$$

$$= \begin{bmatrix} 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -i \end{bmatrix}$$

$$= F_4 D.$$

Therefore, the four eigenvectors and eigenvalues of P are the columns of F_4 and the diagonal entries of D respectively.

3.

$$C \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} c_0 + c_1 + c_2 + c_3\\c_3 + c_0 + c_1 + c_2\\c_2 + c_3 + c_0 + c_1\\c_1 + c_2 + c_3 + c_0 \end{bmatrix},$$

$$C \begin{bmatrix} 1\\i\\-1\\-i \end{bmatrix} = \begin{bmatrix} c_0 + c_1 \mathbf{i} + c_2(-1) + c_3(-\mathbf{i})\\c_3 + c_0 \mathbf{i} + c_1(-1) + c_2(-\mathbf{i})\\c_2 + c_3 \mathbf{i} + c_0(-1) + c_1(-\mathbf{i})\\c_1 + c_2 \mathbf{i} + c_3(-1) + c_0(-\mathbf{i}) \end{bmatrix} = \begin{bmatrix} c_0 - c_2 + (c_1 - c_3) \mathbf{i}\\c_3 - c_1 + (c_0 - c_2) \mathbf{i}\\c_2 - c_0 + (c_3 - c_1) \mathbf{i}\\c_1 - c_3 + (c_2 - c_0) \mathbf{i} \end{bmatrix}.$$

4. Obviously $C = c_0 P^0 + c_1 P^1 + c_2 P^2 + c_3 P^3 = \sum_n c_n P^n$. For the *i*-th column of F (also a eigenvector of P, with eigenvalue λ_i) \mathbf{F}_i , we have

$$P^n \mathbf{F}_i = \lambda_i^n \mathbf{F}_i$$
.

Note that $\mathbf{F}_i = (\lambda_i^0, \lambda_i^1, \lambda_i^2, \lambda_i^3)$, therefore

$$C\mathbf{F}_i = \sum_n c_n P^n \mathbf{F}_i = \sum_n c_n \lambda_i^n \mathbf{F}_i = (\mathbf{c} \cdot \mathbf{F}_i) \mathbf{F}_i,$$

where $\mathbf{c} = (c_0, c_1, c_2, c_3)$. Therefore the eigenvectors and the eigenvalues are \mathbf{F}_i and $(\mathbf{c} \cdot \mathbf{F}_i)$ respectively.