Sathyaprakash Narayanan

♦ https://satabios.github.io/ ✓ snaray17@ucsc.edu +1 (831) 529-7133

Education

University of California, Santa Cruz.

2022-2024

Masters in Electrical and Computer Engineering

Visa Status: Student F1 Visa

Anna University; RMD Engineering College, Chennai *Bachelors of Engineering, Electronics and Communication* Cumlative GPA: 8.14/10 [3.47/4] (WES Certified)

2014-2018

Work Experience _____

• Machine Learning Scientist II

Oct 2021- April 2022

Lytx

Bangalore, Karnataka, India

- * Development of low resource intensive DL/ML model designed for edge devices
- * DL model pruning for efficient training/deployment of models onto hardware
- * Development of ML/DL models for mmwave radar
- Torch Model Compression (tomoco) Package

• Research Associate

Dec 2017- Sep 2021

NeuRonICS Lab, DESE Department., Indian Institute of Science, Bangalore

Real-Time Object Detection and Localization in Compressive Sensing Video

ICIP 2021

Research Associate under Dr. Chetan Singh Thakur in collaboration with:

Qualcom, USA; tinyVision.ai, USA and IISc, Bangalore

- Object detection and localization can be possible directly in the Compressed Domain.
- Achieved SOTA 46.27% mAP on a GeForce GTX 1080 Ti with an inference time of 23ms.
- Deployed on a NVIDIA TX2 embedded board with 45.11% mAP with an inference time of 34ms.

n-EAR: Neuromorphic Ego motion vehicle Activity Recognition

US Patent App. 17/377,761; 2022

Research Associate under Dr. Chetan Singh Thakur collaboration with:

Wipro Research; IISc, Bangalore

- A Neuromorphically inspired attention sampling technique
- A light weight end to end trainable bio-inspired deep learning two stream architecture that bridges the event data and the conventional frame-based data for egocentric vehicle activity recognition

N-HAR: A neuromorphic event-based human activity recognition system

ISCAS 2019

Research Associate with Dr. Chetan Singh Thakur and Dr. Anirban Chakraborty, CEDT, IISc

- First system to achieve the task of human activity recognition based on the event-based camera data
- Memory surfaces to make the sparse event data compatible with deep convolutional neural networks (CNNs)
- Achieved SOTA accuracy of 94.3% using event memory surfaces on our activity recognition dataset.

Real-time implementation of proto-object based visual saliency model on NVIDIA $\ensuremath{\mathsf{TX}}$

ISCAS 2019

Research Associate with Dr. Chetan Singh Thakur in collaboration with Jamal Lottier, JHU

- Real-Time Biological proto-object visual saliency model

- Implementation considers the dynamic temporal motion change by convoluting using CUDA
- We have implemented the model on an NVIDIA Jetson TX1 board

Teaching Assistant and Support for Deep Learning Certificate Program Great Learning, Bangalore

2018-2019

- Responsible for developing content for assignments and in course code-walkthroughs
- Conduct one-to-one online support and doubt clarification sessions
- Review and Evaluate coding assignments

Publications

Real-Time Object Detection and Localization in Compressive Sensing Video

Sathyaprakash Narayanan*, Yeshwanth Ravi Theja*, Venkat Rangan, Anirban Charkraborty, Chetan Singh Thakur *IEEE International Conferenceon Image Processing* (**ICIP**) 2021.

N-HAR: A neuromorphic event-based human activity recognition system using memory surfaces Pradhan Bibrat Ranjan, Yeshwanth Ravi Theja, **Sathyaprakash Narayanan**, Anirban Charkraborty, Chetan Singh Thakur *IEEE International Symposiumon Circuits and Systems* (**ISCAS**) 2019.

Real-time implementation of proto-object based visual saliency model on NVIDIA Jetson TX **Sathyaprakash Narayanan**, Yeshwanth Ravi Theja, Chetan Singh Thakur *IEEE International Symposiumon Circuits and Systems* (**ISCAS**) 2019.

A Compressive Sensing Video dataset using Pixel-wise coded exposure **Sathyaprakash Narayanan**, Yeshwanth Ravi Theja, Chetan Singh Thakur *arXiv*:1905.10054 (arXiv) 2018.

*- equal contribution

Patents

Method and system for recognizing activities in surrounding environment for controlling navigation of autonomous vehicle

Sathyaprakash Narayanan, Pradhan Bibrat Ranjan, Anirban Charkraborty, Chetan Singh Thakur US Patent App. 17/377,761

System and Method for exhale controlled Augmentative and Assistive Communication device for communication and controlling IOT device

Sathyaprakash Narayanan IN Patent: 201641044496

Selected Awards and Honors _____

• Awarded Top 20 Innovators of India, by Intel and DST	2016
Represented India in MIT MedHacks, Yale University, CT, USA	2016
Represented India in MIT Loomo hacks, NTU Singapore	2016
Awarded Best Student by ISTE Chapter	
for overall performance in academic and extracurricular activities	2017
• Represented India in Hack the North at University of Waterloo, Canada	2017

Responsibilities _____

Reviewer

- WACV 2019, 2020, 2022, 2023
- TPAMI IEEE Transactions on Pattern Analysis and Machine Intelligence