${\bf Projekt dokumentation}$

 $\begin{array}{c} {\rm Autor} \ {\rm I-E\text{-}Mail} \\ {\rm Autor} \ {\rm II-E\text{-}Mail} \\ \\ {\rm HTWK} \ {\rm Leipzig} \end{array}$

Inhaltsverzeichnis

I. Anforderungsspezifikation

I.1 Initiale Kundenvorgaben

Autor: xxx

Maecenas sed ultricies felis. Sed imperdiet dictum arcu a egestas. In sapien ante, ultricies quis pellentesque ut, fringilla id sem. Proin justo libero, dapibus consequat auctor at, euismod et erat. Sed ut ipsum erat, iaculis vehicula lorem. Cras non dolor id libero blandit ornare. Pellentesque luctus fermentum eros ut posuere. Suspendisse rutrum suscipit massa sit amet molestie. Donec suscipit lacinia diam, eu posuere libero rutrum sed. Nam blandit lorem sit amet dolor vestibulum in lacinia purus varius. Ut tortor massa, rhoncus ut auctor eget, vestibulum ut justo.

I.2 Produktvision

Autor: Alex Hofmann

Product Vision Board:

Target Group	Needs	Product
-Maschinenbau-Studenten	Vgl. zu händisch:	-Webanwendung
Maschinenbau-Profs	einheitlicher, schneller	-Als Graph
-Lehrende	-plattformunabhängig	\rightarrow quasi als Baukasten
	-Open Source	\rightarrow Kantengewichtung, Bausteine
	-Einfach zu bedienen	wählbar
		-Import/Export von Modellen
		Normalisierung des Graphen

Die Webanwendung VarG ist entwickelt für Lehrende und Lernende aus dem Maschinenbau Bachelorstudiengang. Diese erleichtert die einheitliche Erstellung, Bearbeitung, Optimierung sowie Imbzw. Exportierung von sogenannten Variantenfolgegraphen. Darunter ist eine graphische Übersicht zu verstehen, die die möglichen Varianten eines Produktionsprozesses für ein Werkstück darstellt.

I.3 Liste der funktionalen Anforderungen

XXX

I.4 Liste der nicht-funktionalen Anforderungen

I.5 Weitere Zuarbeiten zum Produktvisions-Workshop

XXX

I.5.1 Zuarbeit von Autor X

XXX

I.5.2 Zuarbeit von Autor Y

XXX

I.6 Liste der Kundengespräche mit Ergebnissen

Autor: xxx XXX

II. Architektur und Entwurf

II.1 Zuarbeiten der Teammitglieder

XXX

II.2 Entscheidungen des Technologieworkshops

Autor: xxx XXX

II.3 Überblick über Architektur

Autor: Linus Herterich

VarG ist eine Web-App nach dem Client-Server Modell, wobei der Großteil der Berechnungen per JavaScript auf dem clientseitigen Browser durchgeführt werden.

Serverseitig wird eine Datenbank (inkl API-Schnittstelle) zum persistenten speichern der erstellten Graphen angeboten.

Die Architektur der Web-App basiert auf dem Javascript-Webframework "Vue.js", mit dem Webanwendungen nach dem MVVM Muster (Model View ViewModel) realisiert werden können. Die
gesamte App ist nach logischen Sites (Seiten, bei denen sich die URL ändert) und Components (wiederverwendbare, abgeschlossene Software-Schnipsel) aufgebaut. Jede Vue Component (.vue Dateien) enthält ein HTML-Template (GUI), sowie Daten, mit denen das Template befüllt wird. Zudem
werden Funktionen definiert, die entweder zu bestimmten Laufzeitbedingungen der App oder durch
Events und Trigger aufgerufen werden. Die Kommunikation zwischen Components wird über Vererbungen zu Eltern-/ Kind-Components realisiert.

Die Web-App besteht im Entwicklungszustand aus vielen hunderten Dateien, welche vom Framework verwaltet werden. Sobald die App in den Produktionsstatus wechselt, muss das Projekt kompiliert werden. Dies übernimmt ebenfalls das Framework, welches hierfür Technologien wie "WebPack" einsetzt. So bleiben lediglich wenige HTML, CSS und JavaScript Dateien übrig, die anschließend auf einem Web-Server (z.B. Apache) zur Verfügung gestellt werden müssen.

Um die Darstellung einheitlich zu halten, haben wir die UI-Bibliothek "vuetify" genutzt. Diese

hält sich an den Industriestandard "Material Design" von Google. Damit konnten wir alle unsere im Vorfeld erstellten Design-Konzepte umsetzen. Um an den "vuetify" Elementen weitere optische Anpassungen vorzunehmen haben wir die CSS-Language-Extension "less" verwendet. Mit dieser war es möglich übersichtliche und einheitliche Style-Vorgaben die Design-Komponenten anzuwenden.

Damit Alle Daten Component-Übergreifend auf einen gemeinsamen Datenstamm zugreifen können und die Daten auch nach einer Session persistent gespeichert werden können, haben wir die vue.js-Erweiterung "vuex" eingesetzt. Diese bietet eine zentralisierte Speichermöglichkeit für alle Daten, die übergreifend verwendet werden müssen (beispielsweise Log-In Daten oder der Zustand des Variantenfolgegraphen).

Für die Darstellung des Graphen (Knoten + Kanten und deren Beschriftung) haben wir das JavaScript Framework "cytoscape.js" verwendet. Das Framework hält alle Graph-Daten in einem JavaScript Objekt, auf das mit verschiedenen API-Funktionen zugegriffen werden kann. Die Darstellung des Graphen wird über ein Canvas HTML Element realisiert, in welches cytoscape die angelegten Knoten und Kanten zeichnet. Cytoscape.js bietet ebenfalls eine Hand voll Algorithmen zur analytischen Auswertung des Graphen. Da die Optimierung des Variantenfolgegraphen allerdings zusätzlicher Bedingungen und Parametern unterliegt, wurde ein eigener Variantenfolgegraph-Optimierungsalgorithmus entwickelt.

Bei der Wahl der serverseitigen Architektur haben wir eine REST-Konforme (Representational State Transfer) Architektur eingesetzt, in dessen Mitte eine MySQL Datenbank zur Speicherung der cytoscape Objekte, sowie Authentifizierungsdaten steht. Auf die Daten der Datenbank greift eine API-Schnittstelle zu, welche mit Node.js umgesetzt ist (weitere Details zur Schnittstelle: siehe II.4 - Schnittstellen). Anfragen an die API werden mit dem "axios" Framework per "Promise-based" HTTP-Requests gestellt. Die HTTP-Requests folgen einem klaren Schema, welches vom serverseitigen Node.js interpretiert und an die Datenbank weitergeleitet wird.

Um die Web-App großflächig zu testen haben wir uns zum einen für das Framework "cypress" entschieden, welches Integrationstests anhand der HTML-Elemente übernimmt. Cypress wertet aus, ob bestimmte Elemente unter bestimmten Bedingungen vorhanden sind, beziehungsweise spezielle Eigenschaften aufweisen. Die Cypress Tests haben wir auch erfolgreich an die "CI / CD Pipeline" von GitLab angeschlossen, sodass nach jedem push die Tests durchlaufen (Stichwort: Regressionstest).

Zum anderen haben wir das Framework "jestëingesetzt, mit dem einzelne Funktionen auf ihre Richtigkeit überprüft werden konnten. Vorallem für die Optimierungsalgorithmen sind isolierte Tests nötig gewesen.

Um eine Client-Server Architektur zu simulieren haben wir "Docker" eingesetzt. Dieses Tool erlaubt es virtuelle Maschinen zu erstellen, welche untereinander kommunizieren können. Für Entwicklungszwecke haben wir einen Docker-Container für eine MySQL Datenbank und einen Node.js-Webserver (API Schnittstelle) erzeugt.

II.4 Definierte Schnittstellen

Autor: xxx

XXX

II.5 Liste der Architekturentscheidungen

Autor: xxx

XXX (bewusste und unbewusste Entscheidungen mit zeitlicher Einordnung)

III. Prozess- und Implementationsvorgaben

III.1 Definition of Done

Autor: Tim Henning

Im Allgemeinen wurde in dem Projekt die Definition von "doneness" nicht all zu umfangreich gestaltet, da es für viele Teammitglieder eines der ersten Softwareprojekte war. So wurden als Definition of Done folgende Punkte für alle Userstories aufgestellt:

- >50% Testabdeckung
- Technische Kommentare im Code
- Einhaltung der festgelegten Code Konventionen

Das Team hatte an sich zu den meisten Zeitpunkten eine klare Vorstellung was einen "fertigen Entwurf" kennzeichnet und wurde so auch in den Reviews untereinander kommuniziert. Dies wiederum führte zu einer klaren Transparenz im Team, was die Qualität des Produktes erhöhte und das Zusammenarbeiten erleichterte. Größtenteils wurde sich an die allgemeinen Akzeptanzkritieren gehalten und viele Backlog-Einträge als "done" erklärt. Zu fast jeder Komponente wurde getestet und zu den Methoden der einzelnen Komponenten wurden erklärende sinnvolle Codekommentare geschrieben. Außerdem wurde im Team umfangreich kommuniziert und die Kriterien angepasst, wenn die Fertigstellung einer Userstorie doch mal nicht gänzlich klar war. So wurde es ermöglicht nach der Hälfte des Projektes, am Ende jedes Sprints einen fertigen Productionbuild dem Kunden zu liefern.

III.2 Coding Style

Autor: xxx XXX

III.3 Zu nutzende Werkzeuge

IV. Sprint 1

IV.1 Ziel des Sprints

Autor: Erik Heldt

Der erste Sprint des VarG-Projekts lief vom 05.12.2019 bis zum 16.12.2019. Ziel war es, eine fundamentale Struktur und grundlegende Funktionalitäten für die Anwendung zu entwickeln, auf denen man später weiter aufbauen kann. Währenddessen konnte man allgemeine Erfahrungen mit dem Ablauf eines Sprints machen.

IV.2 User-Stories des Sprint-Backlogs

Autor: Erik Heldt

Grundstruktur Die Anwendung sollte zu Beginn ein grundlegendes Fundament aufweisen, damit sich alle Teammitglieder vorstellen können, wie am Ende das Programm aussehen soll. Dazu gehörte zu Beginn das Design der Startseite mit dem VarGraph im Zentrum und der Einbindung von Cytoscape in die Programmstruktur.

Datenstruktur für Knoten Es sollte mit Hilfe von Cytoscape herausgefunden werden, wie man Knoten im Programmcode hinzufügen und speichern kann. Dafür sollte dann eine Datei im Programm angelegt werden.

Knoten zu bestehender Datenstruktur hinzufügen Die Anwendung sollte eine einfache Funktionalität zum Erstellen neuer Knoten aka Produktionsschritte erhalten, um sich mit den Cytoscape-Funktionen näher vertraut zu machen. Hier war erstmal noch keine graphische Darstellung in der GUI notwendig, es reichte per Console logs zu testen.

Darstellung eines Graphen in Weboberfläche In der Anwendung sollte zunächst ein statischer Graph mit Hilfe einer Cytoscape-Datenstruktur sichtbar dargestellt werden, damit man sehen konnte, wie so ein "CytoGraph" überhaupt aussieht. User-Interaktion war hier noch nicht notwendig.

Kanten anlegen Zusätzlich zu Knoten sollten auch Kanten zwischen bestehenden Knoten hinzugefügt werden können. Diese Kanten sollten mit verschiedenen Attributen in der Cytoscape-Datenstruktur gespeichert werden.

Berechnung verschiedener Eigenschaften Anhand der mit den Kanten gespeicherten Attribute sollte eine Funktionalität entwickelt werden, welche die Gesamtkosten (Auswahl von Geld oder Zeit) aller unterschiedlichen Pfade berechnen und anzeigen sollte. Dies war der erste Schritt in Richtung Optimierung, d.h. später sollte diese Funktionalität automatisch den günstigsten Pfad herausfinden und anzeigen.

IV.3 Liste der durchgeführten Meetings

Autor: Erik Heldt

- Planning 05.12.2019
- Weekly Scrum 1 09.12.2019
- Weekly Scrum 2 12.12.2019
- Review 16.12.2019
- Retrospektive 19.12.2019

IV.4 Ergebnisse des Planning-Meetings

Autor: Erik Heldt

Im Planning-Meeting erklärten die Projektmanager zu Beginn noch einmal kurz, wie ein Sprint im Allgemeinen abläuft und haben auf die Bedeutsamkeit der Coding Guidelines hingewiesen. Anschließend wurden die ersten User-Stories vom Project Owner vorgestellt und von den Bachelorstudenten per Finger-System in ihrer Komplexität eingeschätzt. Weiterhin wurde festgelegt, dass die Bachelorstudenten während des Sprints die User-Stories selbst in Tasks aufteilen und diese dann bearbeiten sollen.

IV.5 Aufgewendete Arbeitszeit pro Person+Arbeitspaket

Autor: xxx

Arbeitspaket	Person	Start	Ende	h	Artefakt
Vue.js "Getting Star-	Buchmann, Lennart	07.12.19	07.12.19	3	Tutorial abgeschlossen
ted"Tutorial durcharbei-					
ten (für alle)					
Beispielgraph erstellen	Buxel, Nils	09.12.19	09.12.19	1	index.js
Kürzesten Weg mit A*-	Buxel, Nils	16.12.19	16.12.19	1	index.js
Algorithm berechnen u					
anzeigen lassen					
Funktionen zu Buttons	Gwozdz, Jonas	14.12.19	16.12.19	4	MenuControls.vue
hinzufügen					
Task: Einbindung in Vue-	Heldt, Erik	15.12.19	15.12.19	3	MenuControls.vue, BasicData.js
Dateistruktur					
Graphenanordnung	Heldt, Erik	05.12.19	05.12.19	3	Graphenanordnung.pdf
Vue.js "Getting Star-	Heldt, Erik	11.12.19	11.12.19	2	Tutorial abgeschlossen
ted"Tutorial durcharbei-					
ten (für alle)					
Funktionen zu Buttons	Henning, Tim	10.12.19	10.12.19	2	MenuControls.vue
hinzufügen					
Vue.js "Getting Star-	Henning, Tim	06.12.19	06.12.19	3	Tutorial abgeschlossen
ted"Tutorial durcharbei-					
ten (für alle)					
Einbindung von Cytos-	Herterich, Linus	10.12.19	10.12.19	4	index.js
cape in Vue					
Buttons für Knoten und	Herterich, Linus	13.12.19	13.12.19	3	CreateControls.vue
Kantenerstellung					
Knoten zu Graph hinzufü-	Herterich, Linus	16.12.19	16.12.19	2,5	index.js, CreateControls.vue
gen					
Grundstruktur aufbauen	Herterich, Linus	05.12.19	07.12.19	9,5	Vue-Dateistruktur, sämtliche Startkom
Task: Basic Datenstruktur	Hohlfeld, Julius	15.12.19	15.12.19	8	BasicData.js, MenuControls.vue

IV.6 Konkrete Code-Qualität im Sprint

Autor: Erik Heldt

Zu Beginn wurde viel experimentiert und hauptsächlich sollte der Code erstmal ein funktionierendes Programm erzeugen, weswegen weniger auf die Qualität geachtet wurde. Trotzdem wurde sich größtenteils an die Coding Conventions gehalten und bereits einige Kommentare verfasst.

IV.7 Konkrete Test-Überdeckung im Sprint

Autor: Erik Heldt

Da der erste Sprint größtenteils nur zur Erstellung einer grundlegenden Datenstruktur und zur Einarbeitung in JavaScript und den genutzten Frameworks bzw. Bibliotheken gedient hat, gab es noch keine Tests.

IV.8 Ergebnisse des Reviews

Autor: Erik Heldt

Im ersten Review-Meeting stellten die Bachelorstudenten ihre Ergebnisse aus dem Sprint vor und die Manager gaben ihr Feedback dazu. Da sich die meisten Teammitglieder noch nicht richtig in Vue.js und Cytoscape einarbeiten konnten und teilweise große Schwierigkeiten mit den Frameworks hatten, gab es noch viele offene Aufgaben und nicht jeder hatte etwas vorzuzeigen. Als erstes stellten Julius H. und Erik die Datenstruktur für die Knoten vor. Weiterhin zeigte Julius, wie ein Knoten in der Anwendung dargestellt wird und dass dieser durch ungeschickte Verschiebung und Skalierung aus der GUI verschwinden kann. Deshalb kamen Vorschläge, zukünftig den Zoom zu limitieren und das grundsätzliche Graph-Layout nochmal zu überarbeiten. Um allen den Einstieg in die neuen Programmiersprachen und Bibliotheken etwas zu vereinfachen, stellte daraufhin Linus die Grundstruktur vor und erklärte noch einmal genau die einzelnen Elemente in der Dateistruktur. Weiterhin zeigte er, wie man ESLint-Fehler bei der Konsolenausgabe verhindern kann. Danach wurde zwischen den Managern und den Bachelorstudenten noch die zukünftige Berechnung der kürzesten Wege und die unbearbeiteten User-Stories besprochen und dass diese in den nächsten Sprint mit einfließen werden. Zum Schluss wurden noch ein paar allgemeine Fragen zum Testen und zu Git geklärt.

IV.9 Ergebnisse der Retrospektive

Autor: Erik Heldt

In der Retrospektive konnte jedes Teammitglied vor an die Tafel gehen und verschiedene Aspekte des Sprints mit einem Strich in einer Tabelle bewerten. Die Bewertung ging ausgeglichen aus. Die Gruppenleistung und das Gesamtergebnis waren gut, aber die Einzelleistungen der meisten Teammitglieder nicht. Viele Aufgaben blieben offen und wurden nicht erledigt, wozu in der Diskussion verschiedene Gründe angeführt wurden. Einerseits war es für die meisten schwer, sich selbst in die neue Programmierumgebung samt den Frameworks und Bibliotheken einzuarbeiten. Andererseits wussten viele nicht, was und wie viel sie machen sollten, was auf die nicht festgelegte Aufgabenzuteilung im Planning und die schlechte Kommunikation im Team während des Sprints zurückgeführt wurde. Letzteres Problem plante man damit zu lösen, in zukünftigen Plannings immer direkt Verantwortliche für bestimmte User-Stories festzulegen und entsprechende Tickets sofort im Anschluss zu erstellen und zuzuweisen. Beim Thema der Daily Meetings ist man zu dem Schluss gekommen, dass diese wenn möglich immer persönlich bleiben sollten und nur in Ausnahmefällen online z.B. über Discord stattfinden sollten. Weiterhin wurde diskutiert, ob die Zeitspanne zwischen Donnerstag und Montag evtl. zu kurz ist, um schon weitreichende Ergebnisse zu erzielen, da am Wochenende einige Teammitglieder nicht programmieren können. Deshalb sollten die ersten Meetings beim nächsten Sprint stattdessen Montag und Donnerstag stattfinden. Ein weiterer Themenpunkt war die Organisation im Git. Es wurde festgelegt, dass der Master-Branch während des Sprints unberührt bleiben sollte, da dieser immer lauffähig sein muss. Stattdessen sollte sich jeder seinen eigenen Branch erstellen und diesen nach Abschluss der eigenen Aufgaben auf den neuen Developer-Branch namens "targetbranch" mergen. Am Ende jedes Sprints würde dann der Developer-Branch mit dem Master-Branch gemerged werden.

IV.10 Abschließende Einschätzung des Product-Owners

Autor: xxx XXX

IV.11 Abschließende Einschätzung des Software-Architekten

Autor: xxx XXX

IV.12 Abschließende Einschätzung des Team-Managers

V. Sprint 2

V.1 Ziel des Sprints

Autor: Linus Herterich

Nachdem im ersten Sprint hauptsächlich die Grundstruktur sowie erste Datenstrukturen entworfen wurden, war es nun wichtig, dass sich das gesamte Team im Sprint 2 mit der Projektstruktur (besonders mit dem Framework Vue) auseinandersetzt und erste UserStories direkt am Code umsetzt. Zudem blieben einige Tickets noch vom letzten Sprint offen, welche nun auch bearbeitet werden sollten.

V.2 User-Stories des Sprint-Backlogs

Autor: Linus Herterich

• Designumsetzung nach Adobe Preview

Als Benutzer der WebApplikation möchte ich ein ansehnliche und intuitive Oberflächengesstaltung haben, damit ich die Applikation gerne verwende.

• Authentifizierung eines Nutzers

Als Nutzer möchte ich mich in die Web Applikation einloggen können, damit nicht jeder meine erzeugten Graphen einsehen kann.

• Logische verknüpfung zwischen Knoten erstellen

(wurde in Sprint 1 nicht abgeschlossen)

Ein Nutzer muss eine Abfolge der Knoten definieren können, damit ersichtlich wird welcher Produktionsschritt auf den nächsten folgt

• Berechnung der Eingenschaften des Gesamtgraphs

(wurde in Sprint 1 nicht abgeschlossen)

Ein Nutzer der Webanwendung VarG muss die berechneten gesamt Eigenschaften jedes Zusammenhängendes Pfades ausgeben lassen können um eine Auswahl eines Pfades zu treffen.

• Datenstruktur Ausarbeiten & Knoten zu einer vorhandenen Datenstruktur hinzufügen

(wurde in Sprint 1 nicht abgeschlossen)

Als Nutzer möchte ich Knoten zu der Datenstruktur hinzufügen können um die möglichen Produktionsschritte des Werkstücks überblicken zu können

V.3 Liste der durchgeführten Meetings

Autor: Linus Herterich

- 19.12.2019: Planning Meeting
- 23.12.2019: Daily Meeting (in Discord)
- 28.12.2019: Daily Meeting (in Discord)
- 05.01.2020: Review Meeting
- 06.01.2020: Retrospektive

V.4 Ergebnisse des Planning-Meetings

Autor: Linus Herterich

Neben der Aufgabenverteilung wurde im Planning darüber gesprochen, dass die Arbeitsaufteilung im letzten Sprint nicht gut geklappt hat. Es wurde anschließend beschlossen im nächsten Sprint die User-Stories direkt an Studenten zuzuweisen, damit jeder einen Teilbereich hat, den er bearbeiten muss.

Desweiteren wurde eine Änderung im Git angekündigt. In Zukunft müsse der "Master"-Branch während eines Sprints immer gleich bleiben und Funktionalitäten werden auf einen "Developer"-Branch gemerged. Am Ende des Sprints wird dann der "Developer"-Branch auf den "Master"-Branch gemerged. wichtig ist, dass der "Master"-Branch zu jedem Zeitpunkt lauffähig ist.

Für den folgenden Sprint wurde beschlossen, die Daily Meetings online (auf einem Discord Server) abzuhalten, da viele Studenten über die Weihnachtsferien in der Heimat sind und somit ein persönliches wöchentliches treffen nicht möglich wäre.

V.5 Aufgewendete Arbeitszeit pro Person+Arbeitspaket

Autor: Linus Herterich

Arbeitspaket	Person	Start	Ende	h	Artefakt
UI: Login	Berger, Mat-	22.12.19	22.12.19	3,5	Login Funktionalität &
	thias				Design
UI: Login	Buchmann,	22.12.19	22.12.19	6	Login Funktionalität &
	Lennart				Design
UI: Grapheneditor	Gwozdz, Jo-	23.12.19	04.01.20	9	GraphHeader.vue, Tool-
	nas				bar.vue
Task: Einbindung in Vue-	Heldt, Erik	19.12.19	19.12.19	$0,\!25$	BasicData.js
Dateistruktur					
Abrufbaren Knoten in	Heldt, Erik	23.12.19	26.12.19	3,5	BasicData.js, TestData-
Graph einfügen					base.js
Testdatenbank mit Spei-	Heldt, Erik	27.12.19	27.12.19	3,5	TestDatabase.js
chern und Laden					
Highlighting eines kürzes-	Henning,	24.12.19	03.01.20	9	OptimizeControls.vue,
ten Pfades nach Anwen-	Tim				$ $ index.js \rightarrow Graph $ $
dung des A* Algorithmus					Highlighting
Protokoll: Meeting	Herterich,	19.12.19	19.12.19	1	meeting_19_12_19.pdf
19.12.19	Linus				
UI: Login	Herterich,	20.12.19	20.12.19	5	LoginForm.vue, Log-
	Linus				in.vue
UI: Home	Herterich,	23.12.19	23.12.19	7	HomeMenu.vue (compo-
	Linus				nent), Home.vue (view),
					Menu.vue (view)
UI: Neuer Graph	Herterich,	28.12.19	28.12.19	1,5	NewGraph.vue (view),
	Linus				NewGraph.vue (compo-
					nent)
UI: Grapheneditor	Herterich,	02.01.20	04.01.20	11,75	Graph.vue (view), zahl-
	Linus				reiche components
Graph zu Datenstruktur	Hohlfeld, Ju-	21.12.19	23.12.19	4	BasicData.js, TestData-
hinzufügen	lius				base.js

Testdatenbank mit Spei-	Hohlfeld, Ju-	27.12.19	03.01.20	8	BasicData.js, TestData-
chern und Laden	lius				base.js, index.js, JSon-
					Persistence.js
Mergen und Anpassen	Hohlfeld, Ju-	04.01.20	04.01.20	2	Bugs entfernt & Merge-
	lius				konflikte behoben
UI: Datenbank-Import	Karkoutli,	31.01.20	04.01.20	12,5	Database.vue (view),
Fenster	Alaa Aldin				DatabaseForm.vue
					(component)
Kanten zu Graph hinzufü-	Koch, David	23.12.20	04.01.20	10	Änderungen an index.js,
gen					CreateControls.vue
					(component)

V.6 Konkrete Code-Qualität im Sprint

Autor: Linus Herterich

Es wurde sich größtenteils an die Coding-Guidelines gehalten. An wichtigen Stellen sowie vor jeder Funktion wurden Kommentare geschrieben. Die Trennung zwischen Views und Components sowie die Auslagerung der Style-Dateien wurde ebenfalls eingehalten.

V.7 Konkrete Test-Überdeckung im Sprint

Autor: Linus Herterich

Ein Student wurde beauftragt bis zum Ende des Sprints ein geeignetes Test-Framework zu finden. Somit wurden während des Sprints noch keine Tests geschrieben.

V.8 Ergebnisse des Reviews

Autor: Linus Herterich

Es wurden fast alle UserStories umgesetzt. Somit war der zweite Sprint erfolgreich. Alle Studenten konnten sich in das Projekt einarbeiten und haben die Strukturierung größtenteils verstanden und eingehalten.

Das User-Interface wurde nach der Designvorlage umgesetzt und die ersten Graphen-Funktionen (Hinzufügen von Knoten und Kanten & Optimieren) funktionieren bereits.

Da noch nicht feststeht, wo die Software gehostet werden soll und wie die Datenbank-Funktionalität umgesetzt werden soll, wurde zunächst eine lokale Speicherlösung als "Datenbank"verwendet. Somit konnten die Speichern- und Laden-Funktionen erfolgreich implementiert werden.

Die Login-Funktionalität ist derzeit nur sporadisch eingerichtet und wird finalisiert, sobald feststeht, wie die Authentifizierung der Nutzer erfolgen soll (Anbindung an HTWK Login?).

Leider ist immernoch kein geeignetes Testframework gefunden worden, mit dem sich sowohl Vue.js als auch cytoscape (Graphen-Funktionalitäten) testen lassen.

V.9 Ergebnisse der Retrospektive

Autor: Linus Herterich

Das Happiness-Barometer für diesen Sprint ist sehr gut ausgefallen. Das liegt hauptsächlich an der guten Aufgabenverteilung sowie an den großen Erfolgen, die diesen Sprint erzielt wurden.

Kritisiert wurde die die Kommunikation gegen Ende des Sprints. Das finale Mergen aller Branches war zu hektisch und unsicher.

Es wurde sich darauf geeinigt in Zukunft zwei Dailies pro Woche abzuhalten und das letzte Meeting eines Sprints zum gemeinsamen Mergen zu verwenden.

V.10 Abschließende Einschätzung des Product-Owners

Autor: xxx XXX

V.11 Abschließende Einschätzung des Software-Architekten

Autor: xxx XXX

V.12 Abschließende Einschätzung des Team-Managers

VI. Sprint 3

VII. Sprint 4

VII.1 Ziel des Sprints

Autor: Jonas Gwozdz

Während der Semesterferien haben wir an Sprint 4 weitergearbeitet. Dieser dauerte vom 23.01.2020 bis zum 09.04.2020. Der Ablauf war dabei weitestgehend planmäßig, bis auf dass die Meetings zum Review und der Retrospektive wegen Corona ohne persönliches Treffen stattfinden mussten. In der Vorlesungsfreien Zeit besprachen wir uns gelegentlich über den aktuellen Zwischenstand. Der größte Fortschritt am Projekt wurde während der letzten beiden Wochen erzielt.

VII.2 User-Stories des Sprint-Backlogs

Autor: Jonas Gwozdz

• Tests für bereits geschriebenen Code

Als Benutzer möchte ich eine Software benutzen, die getestet ist, damit keine unerwarteten Probleme auftauchen.

• Validierung der möglichen Eingaben

Als Nutzer möchte ich bei versehentlicher falscher Eingabe wenn möglich gewarnt werden, damit ich nichts falsches abspeichere.

- Bug: Validation bei gleichem Knoten-Namen
- Darstellung von Kanten/Attributen

Als Benutzer will ich alle Kanten/Knoten gleichzeitig sehen können(nicht übereinander), damit ich einen schnelleren Überblick über das gesamte Konstrukt bekomme.

• Bug: Mehrere Edges zwischen Knoten nicht möglich

Wenn man mehrere Kanten zwischen zwei Knoten anlegt, sind diese nicht sichtbar. Löscht man dann einen Knoten, an dem diese ünsichtbaren "knoten hängen, so stürzt cytoscape ab.

• Remodel von Component NewGraph

VII.3 Liste der durchgeführten Meetings

Autor: Jonas Gwozdz

• 23.01.2020: Planning

• 05.03.2020: Weekly

• 12.03.2020: Weekly

• 06.04.2020: Review

• 09.04.2020: Retro

VII.4 Ergebnisse des Planning-Meetings

Autor: Jonas Gwozdz

Anwesend: Alex, Julius J., Julius H., Linus, Jonas, Erik, Lennart, Nils, Tim, David, Matthias, Manuel

Innerhalb dieses Meetings haben wir die Schwerpunkte des Sprints festgelegt und über den Workload über die Vorlesungsfreie Zeit diskutiert und den Zeitaufwand der User-Stories abgeschätzt.

oberste Priorität: Tests

Da wird bis zum bisherigen Zeitpunkt keine Testumgebung gefunden haben, die sich auf unseren Cytoscape-Graphen anwenden lässt, und wir dadurch viel Nachholbedarf in Sachen Testen hatten, musste dieses Ticket am dringendsten abgearbeitet werden.

Sprint über Semesterferien

Wir haben uns im Planning darauf geeinigt, den Sprint über die Semesterferien mit weniger User-Stories als üblich auszulegen, da nicht alle Teammitglieder in dieser Zeit voll verfügbar waren, Grund dafür waren vor Allem die noch andauernden Prüfungen und die Anschließenden Ferien, die evtl. schon anderweitig verplant waren. Zudem haben wir uns darauf geeinigt, regelmäßig Absprache über den Fortschritt unserer Arbeit zu halten.

Datenbanken

Die Datenbankrecherche hat ergeben, dass für unsere Zwecke mySQL oder NodeJS am optimalsten wäre. Die Definition der Datenbankschnittstelle zwischen DB und Frontend muss ebenfalls noch erledigt werden. Zudem haben wir festgestellt, dass die Bisher entworfene Datenbankoberfläche optisch nicht zum Rest der Anwendung passt, und deshalb überarbeitet werden muss.

Weitere Sprintziele:

- Optimierung der Kostendarstellung
- negative Zahleingaben abfangen
- automatische Zoomfunktion bei Knoten- oder Kantenwahl
- allgemeine Bugfixes

VII.5 Aufgewendete Arbeitszeit pro Person+Arbeitspaket

Autor: Jonas Gwozdz

Arbeitspaket	Person	Start	Ende	h	Artefakt
Tests für bereits geschrie-	Heldt, Erik	04.03.20	04.03.20	2	Tests für ModifyData-
benen Code					Controls.vue
Neue Strukturierung	Heldt, Erik	26.01.20	26.01.20	1	Umstrukturierung des
					Projekts
Header Buttons und	Heldt, Erik	05.03.20	12.03.20	6,75	GraphHeader.vue
Metadaten-Speicherung					
Aufräumen der Branches	Heldt, Erik	29.03.20	29.03.20	1	Organisatorische Aufga-
im GitLab					be
Entfernen veralteter Kom-	Heldt, Erik	31.03.20	31.03.20	2	Organisatorische Aufga-
ponenten und Methoden					be

Tests für Graphoptimie-	Henning,	04.04.20	40.40.20	12	vargraph.spec.js
rung	Tim				
Tests für bereits geschrie-	Herterich,	30.01.20	12.02.20	7,5	/code/cypress/integration/
benen Code	Linus				
Header Buttons und	Herterich,	28.03.20	31.03.20	2,25	/vargraph/graph/ &
Metadaten-Speicherung	Linus				GraphHeader.vue
Aufräumen der Branches	Herterich,	30.03.20	30.03.20	1	Organisatorische Aufga-
im GitLab	Linus				be
Darstellung von Kan-	Herterich,	03.04.20	03.04.20	2	VarGraph.vue
ten/Attributen	Linus				
Remodel von Component	Herterich,	30.03.20	30.03.20	3	/vargraph/graph/
NewGraph	Linus	33.33.23	00.00.20		/ rangrapii/grapii/
Refactoring	Herterich,	29.03.20	30.03.20	9	/vargraph/graph/
Ttelactoring	Linus	25.05.20	00.00.20		/ vargraph/graph/
Validierung: Login	Herterich,	31.03.20	30.03.20	1,5	/components/login/LoginF
vandiciung. Login	Linus	31.03.20	30.03.20	1,0	/components/login/Login
Einheitliche Alerts	Herterich,	31.03.20	31.03.20	3	Dialogs.vue
Elimetthene Alerts	Linus	31.03.20	31.03.20	3	Dialogs.vue
Validierung CreateCon-	Herterich,	31.03.20	01.04.20	5,5	CreateControls.vue &
trols & DetailControls	Linus	31.03.20	01.04.20	3,3	DetailControls.vue
Bug: Mehrere Edges zwi-	Herterich,	01.04.20	01.04.20	2	
-	· '	01.04.20	01.04.20		/vargraph/graph/
schen Knoten nicht mög-	Linus				
lich	TT / 1	01.04.00	01 04 00	1 5	
Knoten dort erstellen, wo	Herterich,	01.04.20	01.04.20	1,5	/vargraph/graph/
rechtsklick passiert	Linus	00.04.00	00.04.00	-1	
keybinds für Menüs	Herterich,	02.04.20	02.04.20	1	
	Linus	00.04.00	02.04.20		
Keine Knoten aufeinander	Herterich,	02.04.20	02.04.20	3	/vargraph/graph/
schieben	Linus				
Einstellungsmenü erstel-	Herterich,	03.40.20	05.04.20	5,5	
len	Linus				
Tests für bereits geschrie-	Hohlfeld, Ju-	05.02.20	04.03.20	10	ZoomControls.spec &
benen Code	lius				SaveMenu.spec & New-
					GraphMenu.spec &
					DownloadMenu.spec
Dialogfenster für Spei-	Hohlfeld, Ju-	24.01.20	24.01.20	2	Toolbar.vue
chern, Laden und Export	lius				
Validierung der möglichen	Hohlfeld, Ju-	06.04.20	06.04.20	2	divers
Eingaben	lius				
Refactoring	Hohlfeld, Ju-	31.03.20	31.03.20	2	/vargraph/graph/
~	lius				
Testing für Kanten hinzu-	Koch, David	22.03.20	02.04.20	5	addEdges.spec
fügen	,				
~	I.	I .	l		1

VII.6 Konkrete Code-Qualität im Sprint

Autor: Jonas Gwozdz

Die Codequatlität im allgemeinen wurde während des Sprints erheblich durch das Refactoring verbessert. Zudem wurden in nahezu allen Dateien einleitende Kommentare geschrieben, um die

zukünftige Identifizierung der gebrauchten Dateien schneller und übersichtlicher zu gestalten.

VII.7 Konkrete Test-Überdeckung im Sprint

Autor: Jonas Gwozdz

Die geschriebenen Cypress-Tests decken bereits eine Vielzahl an Funktionalitäten des Programms ab. Dazu zählen die Buttons für die Database, den Download, das Ausloggen. Zudem wurde getestet: der Speicherdialog, die Zoomeinstellungen, der Header des Graphen, das Hinzufügen von Knoten und das Erstellen eines neuen Graphen.

VII.8 Ergebnisse des Reviews

Autor: Jonas Gwozdz

Anwesend: David, Erik, Julius J., Julius H., Jonas, Linus, Manuel, Matthias, Tim

Im Rahmen des Reviews haben wir wie gewohnt die Ergebnisse des Sprint bewertet und Schwierigkeiten besprochen.

generelle Schwierigkeit: Testen

Um unsere Programm zu testen, entschieden wir uns für das Framework "Cypressëntschieden. dieses bietet End-to-End Testing an, welches allerdings nur Ausgaben des Programms auswerten kann, und deshalb sozusagen keinen Blick unter die Haube zulässt, und somit eventuell Fehler unentdeckt bleiben.

David:

- Tests für Knotenfunktionalität geschrieben
- mit Kantentests begonnen

Erik:

- Data Controls durch Header Buttons ersetzt
- Editierungsfenster entfernt
- Header Buttons getestet

Jonas:

- Testübersicht erstellt
- Möglichkeit zum Informationsaustausch über Lücken und Bugs in Tests bereitgestellt

Julius H.:

• Tests für Toolbar, Zoom-Controls, Buttons und Eingabereihenfolgen geschrieben

Julius H, Erik, Linus:

• Refactoring des Graphen, Bugfixing und Validierung von Eingaben

Linus:

- Dialogue-Popups erstellt
- Kürzelgenerierung implementiert

- Knotenüberlagerung unterbunden, Mindestabstand implementiert
- Einstellungsmenü erstellt und Implementation begonnen
- Recherche zu Datenbankfenster

VII.9 Ergebnisse der Retrospektive

Autor: Jonas Gwozdz

Anwesend: Alex, Erik, Julius J., Julius H., Jonas, Linus, Matthias, Tim

Zu Beginn des Sprints gab es keine Fortschritte zu vermelden, da vorerst die Prüfungen zu überstehen waren. In den beiden Wochen vor Sprintende wurden allerdings die wichtigsten User-Stories und sogar etwas mehr abgearbeitet.

Positiv	Negativ
-produktive Endphase	-anfangs keine Kommunikation
-viel Motivation bei Einigen	- wenig Motivation bei Einigen
	-vereinzelt Tests ohne Sinn
	-ausgefallene Meetings

VII.10 Abschließende Einschätzung des Product-Owners

Autor: xxx XXX

VII.11 Abschließende Einschätzung des Software-Architekten

Autor: xxx XXX

VII.12 Abschließende Einschätzung des Team-Managers

VIII. Dokumentation

VIII.1 Handbuch

Autor: xxx XXX

VIII.2 Installationsanleitung

Autor: xxx XXX

VIII.3 Software-Lizenz

Autor: xxx XXX

IX. Projektabschluss

IX.1 Protokoll der Abnahme und Inbetriebnahme beim Kunden

Autor: xxx XXX

IX.2 Präsentation auf der Messe

Autor: xxx

Poster, Bericht

IX.3 Abschließende Einschätzung durch Product-Owner

Autor: xxx XXX

IX.4 Abschließende Einschätzung durch Software-Architekt

Autor: xxx XXX

IX.5 Abschließende Einschätzung durch Team-Manager