

تمرین درس کنترل دیجیتال

نيمسال دوم : ۱۴۰۲–۱۴۰۳

استاد درس : دکتر طالبی

دانشگاه صنعتی امیرکبیر

۱ بخش مقدماتی (۳۵ نمره)

حل دو سوال از این بخش الزامی است.

سوال اول

: تبدیل Z) به روش بسط کسر های جزئی تبدیل معکوس Z زیر را بدست آورید X(z) =
$$\frac{2z^3+z}{(z-2)^3(z-1)}$$

سوال دوم

(تحقق) تابع تبديل G(z) را درنظر بگيريد.

 $G(z) = \frac{z-2}{(z-0.1)(z^2-0.5z+1)}$

الف) تحقق موازی سیستم ذیل را بدست آورید (برای بلوکهای موازی از تحقق رؤیت پذیر استفاده نمایید) ب) معادلات حالت سیستم را تعیین کنید.

سوال سوم

(نگهدار ها) نشان دهید مدار شکل زیر بصورت یک نگهدار مرتبه صفر عمل می کند.

شكل ١: شكل سوال سوم

استاد درس : دكتر طالبي

سوال چهارم

(نگهدار ها) دیاگرام بلوکی شکل زیر را در نظر بگیرید نشان دهید هرگاه سیگنالی با مقدار ۱ در نقطه ۰ و مقدار ۰ در سایر نقاط (سیگنال ضربه گسسته) به عنوان ورودی به آن اعمال شود مانند نگهدار مرتبه اول عمل می کند. (خروجی را رسم کنید.)

شکل ۲: شکل سوال چهارم

سوال پنجم

. تبدیل ستاره) تبدیل ستاره تابع تبدیل زیر را با روش دلخواه بدست اَورید. $G(s) = \frac{s+2}{s(s+1)}$

۲ بخش متوسط (۳۵ نمره)

حل دو سوال از این بخش الزامی است.

سوال ششم

(تبدیل Z) با توجه به معادله تفاضلی زیر به سوالات پاسخ دهید. y(0)=y(1)=0, e(0)=0, e(k)=1, k=1,2,...

 $y(k+2) - \frac{3}{4}y(k+1) + \frac{1}{8}y(k) = e(k)$

الف) y(k) را به صورت عددی برای $k \leq 4 \leq 0$ بدست آورید. ب) آیا تابع تبدیل این سیستم پایدار است؟ استدلال کنید.

سوال هفتم

(تحقق) تابع تبدیل زیر را در نظر بگیرید.

 $D(z)=rac{2z^2-2.4z+0.72}{z^2-1.4z+0.98}$ (تا بدست آورید (مقصود از T تاخیر است) با توجه به شکل ضرایب مجهول را بدست

٣ تكليف سرى دوم كنترل ديجيتال

شكل ٣: شكل سوال هفتم

سوال هشتم

(تحقق) تابع تبدیل زیر را در نظر بگیرید.

 $D(z) = rac{2z^2 - 2.4z + 0.72}{z^2 - 1.4z + 0.98}$ (تاخیر است آورید (مقصود از T تاخیر است) با توجه به شکل ضرایب مجهول را بدست آورید

سوال نهم

(نگهدار ها) یک سیستم با تابع تبدیل زمان پیوستهی G(s) را در نظر بگیرید: $G(s) = \frac{e^{-s}}{(s+1)(s+2)}$ با استفاده از نگهدار مرتبه صفر و T=0.5 سیستم را نمونه برداری ُنمایید. ُ

سوال دهم

(تبدیل ستاره) الف) تبدیل ستاره را برای دو تابع زیر به ازای T=0.1s بدست آورید توضیح دهید که چرا پاسخ آنها یکسان است؟

 $1)cos(4\pi t)$ $2)cos(16\pi t)$

ب) تابع دیگری را معرفی کنید که تبدیل ستاره برابر با آنچه بدست آوردید داشته باشد

استاد درس : دکتر طالبی

شكل ۴: شكل سوال هشتم

۳ بخش تکمیلی (۳۰ نمره)

حل دو سوال از این بخش الزامی است.

سوال يازدهم

(تبدیل z) هر یک از توابع پالسی ذیل متناظر با پاسخهای پلهی A - F هستند. این تناظر را با ذکر دلیل و استدلال کامل مشخص کنید.

سوال دوازدهم

(تبدیل ستاره) برای سیستم نمونهبرداری شده شکل ذیل؛ تنها با استفاده از روش مدل گذر سیگنال C(s) و C(s) را بیابید.

سوال سيزدهم

(در صورت وجود) $\frac{Y(s)}{R^*(s)}$ و $\frac{Y(z)}{R(z)}$ (تبدیل ستاره) مطلوبست

$$G_{\gamma}(z) = \frac{1}{z^{\gamma} + ..\Lambda \square + ... \gamma} \qquad G_{\varphi}(z) = \frac{1}{z^{\gamma} - ..\Lambda \square + ... \gamma}$$

$$G_{\varphi}(z) = \frac{1}{z^{\gamma} - ..\Lambda \square + ... \gamma} \qquad G_{\varphi}(z) = \frac{1}{z^{\gamma} - ..\Lambda \square + ... \gamma}$$

$$G_{\varphi}(z) = \frac{1}{z^{\gamma} - ..\Lambda \square + ... \gamma}$$

$$G_{\varphi}(z) = \frac{1}{z^{\gamma} - ..\Lambda \square + ... \gamma}$$

$$G_{\varphi}(z) = \frac{1}{z^{\gamma} - ... \gamma}$$

$$G_{\varphi}(z) = \frac{1}{$$

شكل ۵: شكل سوال يازدهم

شكل ۶: شكل سوال دوازدهم

استاد درس : دکتر طالبی

شكل ٧: شكل سوال سيزدهم

سوال چهاردهم

ریر را در نظر بگیرید. تحقق) (میانترم ۱۴۰۱) تابع تبدیل G(z)

 $G(z)=rac{z+0.2}{(z-0.1)(z^2-0.5z+1)}$ ریر را در نظر بعیرید. $G(z)=rac{z+0.2}{(z-0.1)(z^2-0.5z+1)}$ الف) تحقق موازی سسیستم فوق را بدست آورید (برای بلوک های موازی از نحقق کنترل پذیر استفاده کنید.)

ب) معادلات حالت سیستم را بدست آورید.

سوال پانزدهم

 $G(s)=rac{s+b}{s+a}, a>0, b<0$ این تابع تبدیل را با روش تبدیل z استاندارد با پریود T گسسته سازی نمایید. آیا تابع تبدیل گسسته نیز نامینیمم فاز خواهد بود؟ آیا پریود نمونه برداری وجود دارد که سیستم معادل گسسته مینیمم فاز باشد؟