Université de Bordeaux Computational Number Theory – N1MA9W11 Master 2 MATH Année 2013–2014

EXERCISES, SESSION nº 1

Exercise 1 – Let R be a commutative ring containing a root of unity ω of order n such that $(1 - \omega^{\ell})$ is invertible for all ℓ not divisible by n. Prove that for all $T \in R[X]$, $\deg T < n$, we have

$$\mathcal{F}(\mathcal{F}(T,\omega),\omega^{-1})=nT.$$

Exercise 2 – For $k \in \mathbb{Z}_{>0}$, write Φ_k for the k-th cyclotomic polynomial. Let R be a commutative ring, $n = p^k$ a power of a prime p. Let further $\omega \in R^*$ be of order n, such that $\Phi_n(\omega) = 0$. (This is automatic if R is a domain, but need not be true in general.) Using the factorization

$$\sum_{i < n} X^i = \prod_{j=1}^k \Phi_{p^j}(X) = \prod_{j=1}^k \Phi_p(X^{p^{j-1}}),$$

show that we still have

$$\sum_{i \le n} \omega^{i\ell} = 0 \quad \text{when } \ell \not\equiv 0 \pmod{n},$$

so the conclusion of Exercise 1 still holds for $T \in R[X]$.

Exercise 3 – Representing polynomials in $\mathbb{Z}[X]$ by the vector of their coefficients, implement both the naive and Karatsuba multiplication algorithms in $\mathbb{Z}[X]$.

Exercise 4 – Let R be a commutative ring, m be an integer and $T \in R[X]$.

- let $T^{\#} \in R[X, Y]$ be the unique bivariate polynomial such that $T^{\#}(X, X^m) = T(X)$, $\deg_X T^{\#} < m$. Note that $\deg_Y T^{\#} = \lfloor \deg T/m \rfloor$.
- let $D = R[X]/(X^{2m} + 1)$, in which $\omega = X$ is a primitive 4m-th root of 1. We let $T^*(Y) = T^{\#}(X,Y) \mod X^{2m} + 1 \in D[Y]$.

Study Algorithm 2 below and prove that its algebraic complexity C(n) satisfies

$$C(n) \le tC(2m) + O(n\log n).$$

Algorithm 1. Fast multiplication in D[Y], $D = R[X]/(X^{2m} + 1)$, $m = 2^k$

Input: $S, T \in D[Y]$, where deg S, deg T < t, where t = m or 2m.

Output: $t \times S \times T \pmod{Y^t - 1}$.

- 1: Let ω be the class of X^2 (t=2m), resp. the class of X^4 (t=m); then ω is a primitive t-th root of 1 in D.
- 2: Compute $\omega^2, \ldots, \omega^{t-1}$.
- 3: Compute $\mathcal{F}(S, \omega) = (a_0, \dots, a_{t-1})$.
- 4: Compute $\mathcal{F}(T, \omega) = (b_0, \dots, b_{t-1})$.
- 5: Return $\mathcal{F}((a_0b_0,\ldots,a_{t-1}b_{t-1}),\omega^{-1}).$

Algorithm 2. Fast multiplication in R[X], $CharR \neq 2$ (Schönhage-Strassen)

Input: $f, g \in R[X]$ of degree $< n = 2^k$.

Output: $2^{e(n)}fg \mod X^n + 1$ for some $e(n) \in \mathbb{Z}_{\geq 0}$.

- 1: If $k \leq 2$, return $f \times g \mod X^n + 1$ using a naïve algorithm. In particular, e(1) = e(2) = e(4) = 0.
- 2: Let $m = 2^{\lfloor k/2 \rfloor}$ and t = n/m = m or 2m. Let $D = R[X]/(X^{2m} + 1)$, and $f^*, g^* \in D[Y]$ be as above, with degree < t. Let η be a root of order 2t in D, namely $\eta = \omega$ (t = 2m) or ω^2 (t = m).
- 3: Compute $\mathcal{F}(f^*(\eta Y), \eta^2) = (a_0, \dots, a_{t-1}) \in D^t$, using Algorithm 1.
- 4: Compute $\mathcal{F}(g^*(\eta Y), \eta^2) = (b_0, \dots, b_{t-1}) \in D^t$.
- 5: Compute $\mathcal{F}((2^{e(2m)}a_0b_0,\ldots,2^{e(2m)}a_{t-1}b_{t-1}),\eta^{-2})=2^{e(2m)+t}h^*(\eta Y)$ in D[Y], deg $h^* < t$. We call ourselves recursively for the t multiplications a_ib_i in D, where we perform the multiplication on representatives of degree < 2m in R[X], yielding $2^{e(2m)}a_ib_i$ in $R[X]/(X^{2m}+1)$.
- 6: Recover $h^*(Y)$ from $h^*(\eta Y)$, then $h^\# \in R[X,Y]$ from h^* (lift all coefficients in D to their representative of minimal X-degree). Finally use $h^\#(X,X^m) = (fg)(X)$ to recover $2^{e(n)}fg \in R[X]$, with e(n) = e(2m) + t.

Exercise 5 – Let $B, C_0, C_1, \dots \in R[X]$ such that B(0) = 1 (so that B is invertible in R[[X]]), $C_0 = 1$ and $C_{i+1} \equiv 2C_i - BC_i^2$ (mod $X^{2^{i+1}}$).

- 1) Prove that $BC_i \equiv 1 \pmod{X^{2^i}}$, for all $i \geqslant 0$.
- 2) Let $M(n) := M_{R[X]}(n)$. Assume that $2M(n) \leq M(2n)$ and that M is increasing. Prove that the above allows to compute $1/B \mod X^{\ell}$ in time $O(M(\ell))$.