Задача 1-1 (30 баллов). Пусть заданы n ключей a_1, \ldots, a_n и m запросов на поиск k-й порядковой статистики $k_1, \ldots, k_m, \ m \geqslant 2$. Предложите алгоритм, который выполняет все эти запросы за время $O(n\log m + m)$. Указание: вообразите процесс одновременного (sic!) поиска ответов для всех k_i с помощью алгоритма Quick-Select, в котором на каждом вызове используется линейный детерминированный алгоритм поиска медианы. Очевидно, что одновременное знание всех k_i позволяет переиспользовать значительную часть результатов для разных k_i .

Решение. Предложим алгоритм, основанный на модификации детерминированного алгоритма выбора порядковой статистики (Select), который одновременно обрабатывает все запросы из множества K. Алгоритм работает рекурсивно и на каждом шаге делит как массив элементов, так и множество искомых порядковых статистик.

Шаг 1: Инициализация

Сортируем множество K по возрастанию:

$$k_1 \leqslant k_2 \leqslant \ldots \leqslant k_m$$
.

Вызываем рекурсивную функцию Select(A, K, l = 1), где l — смещение индексов относительно исходного массива (изначально равно 1).

Шаг 2: Рекурсивная функция Select

Функция Select(A, K, l) выполняет следующие действия:

- 1. **Базовый случай**: Если |K| = 0 или |A| = 0, то возвращаемся.
- 2. **Поиск медианы**: Находим медиану массива A с помощью детерминированного линейного алгоритма поиска медианы. Обозначим найденную медиану как x.
- 3. **Разбиение массива**: Разбиваем массив A на три подмассива:

$$A_L = \{a \in A \mid a < x\}, \quad A_M = \{a \in A \mid a = x\}, \quad A_R = \{a \in A \mid a > x\}$$

Обозначим размеры подмассивов:

$$n_L = |A_L|, \quad n_M = |A_M|, \quad n_R = |A_R|$$

- 4. **Разбиение множества К**: Для каждого $k \in K$ определяем, в какой подмассив попадает искомая порядковая статистика:
 - Если $k l + 1 \le n_L$, то k относится к подмножеству K_L .
 - Если $n_L < k l + 1 \le n_L + n_M$, то k относится к подмножеству K_M .
 - Если $k l + 1 > n_L + n_M$, то k относится к подмножеству K_R .

Обозначим соответствующие подмножества как K_L , K_M , K_R .

5. Рекурсивные вызовы:

- Для левого подмассива: Вызываем Select (A_L, K_L, l) .
- Для элементов, равных медиане: Для каждого $k \in K_M$ присваиваем ответ x.
- Для правого подмассива: Вызываем Select $(A_R, K_R, l' = l + n_L + n_M)$, где l' новое смещение индексов.

Анализ сложности

Рассмотрим временную сложность алгоритма:

- Поиск медианы: На каждом уровне рекурсии поиск медианы выполняется за O(|A|).
- Разбиение массива: Разбиение массива относительно медианы также занимает O(|A|).
- Разбиение множества K: Так как множество K отсортировано, разбиение его на подмножества K_L , K_M , K_R выполняется за O(|K|) с использованием техники двух указателей.

Общая временная сложность на каждом уровне рекурсии составляет O(|A| + |K|).

Общее время работы

Так как на каждом уровне рекурсии размеры массивов уменьшаются как минимум вдвое благодаря выбору медианы в качестве опорного элемента, глубина рекурсии составляет $O(\log m)$, где m — число запросов.

Суммарное время работы алгоритма:

$$T(n,m) = \sum_{i=0}^{\log m} O\left(\frac{n}{2^i} + \frac{m}{2^i}\right) = O(n\log m + m).$$

Таким образом, общее время работы алгоритма составляет $O(n \log m + m)$.