Subtyping Relation as Reducibility Set Inclusion

Peng Fu

Last revised: March 28,2010

1 Descriptions

1.1 Types

$$T ::= b| T_1 \rightarrow T_2$$

1.2 Terms.

$$t ::= x \mid (t_1 \ t_2) \mid \lambda x.t$$

1.3 Type assignment rules.

$$\frac{\Gamma(x) = T}{\Gamma \vdash x : T} \ T _Var$$

$$\frac{\Gamma \vdash t_1: T_2 \rightarrow T_1 \quad \Gamma \vdash t_2: T_2}{\Gamma \vdash t_1 \ t_2: T_1} \ T_App$$

$$\frac{\Gamma, x: T_1 \ \vdash t: T_2}{\Gamma \vdash \lambda x.t: T_1 \to T_2} \ \textit{T_Lam}$$

$$\frac{\Gamma \vdash t: T_1 \quad T_1 <: T_2}{\Gamma \vdash t: T_2} \ T _Sub$$

1.4 Subtyping

$$\overline{T <: b} \ ^T\!op$$

$$\frac{T_1' <: T_1 \quad T_2 <: T_2'}{T_1 \rightarrow T_2 <: T_1' \rightarrow T_2'} \quad Coercion$$

2 Interpretation

2.1 Properties of Reduciblity Sets

Definition Let N be the set of terms which have a normal form under our reduction setting. We define sets RED_T by induction on T

- 1. $t \in RED_b$ iff $t \in N$ and closed.
- 2. $t \in RED_{T_1 \to T_2}$ iff $\forall u \ (u \in RED_{T_1} \Rightarrow (t \ u) \in RED_{T_2})$.

CR 1 If $t \in RED_T$, then $t \in N$ and closed.

CR 2 If $t \in RED_T$ and $t \rightsquigarrow t'$, then $t' \in RED_T$.

CR 3 If t is a closed term, $t \rightsquigarrow t'$ and $t' \in RED_T$, then $t \in RED_T$.

CR 4 RED_T is a non-empty set.

Theorem(Soundness of Subtyping) If $t \in RED_T$ and T <: T', then $t \in RED_{T'}$.

Proof: We will do the induction on the structure of T:

Base Case: T = b

By inversion on subtyping relation, T'=b, so it's trivially true.

Step Case: $T = T_1 \rightarrow T_2$

If $T'=b,\,t\in RED_T$, by CR 1, $t\in N$, so $t\in RED_b$. If $T'=T_1'\to T_2'$, by inversion on the subtyping relation, $T_1'<:T_1$ and $T_2<:T_2'$. So for arbitrary $u\in RED_{T_1'}$, by IH, $u\in RED_{T_1}$. By definition of $RED_{T_1\to T_2}$, $tu\in RED_{T_2}$. Again, by IH, $tu\in RED_{T_2'}$. So by definition of $RED_{T_1'\to T_2'}$, $t\in RED_{T_1'\to T_2'}$.

3 Conclusion

If we interpret type T as RED_T , then we can interpret subtyping relation T <: T' as $RED_T \subseteq RED_{T'}$.