

Ejercicios de paralelismo y triángulos.

De acuerdo a los conceptos estudiados en el tema 2. Triángulos y cuadriláteros de la unidad de geometría plana, el estudiante deberá resolver los siguientes ejercicios donde aplicará todo lo aprendido:

- 1. En un $\angle XOY$ se traza su bisectriz \overline{OZ} . Por un punto A sobre el lado \overline{OX} se traza la paralela a \overline{OY} , que corta a \overline{OZ} en B. Justificar que el $\triangle AOB$ es isósceles.
- 2. En un $\triangle ABC$ se trazan las bisectrices de los ángulos exteriores B y C que se cortan en I. Por I se traza $\overline{DE} \parallel \overline{BC}$, D y E respectivamente sobre las prolongaciones de \overline{AB} y \overline{AC} . Mostrar que $\overline{DE} = \overline{BD} + \overline{CE}$. Sugerencia: Primero muestre que los triángulos $\triangle BDI$ y $\triangle CIE$ son isósceles.
- 3. Justificar que en un triángulo rectángulo la altura relativa a la hipotenusa divide al ángulo recto en dos ángulos iguales a los ángulos agudos del triángulo.
- 4. Si un triángulo rectángulo tiene un ángulo de 30°. Pruebe que la mediana y la altura relativas a la hipotenusa, dividen al ángulo recto en tres ángulos iguales.
- 5. Grafique un triángulo Rectángulo con un ángulo de 20°, Halle las medida del ángulo entre la altura y la bisectriz relativas a la hipotenusa.
 - 6. Grafique un triángulo Rectángulo con un ángulo de 35°, Halle las medida del ángulo entre la altura y la mediana relativas a la hipotenusa.
 - 7. Considere el $\triangle ABC$, $\angle B=125^\circ$ y $\angle C=35^\circ$. Identifique lados mayor, mediano y menor. Trace

- a. L_1 : altura al lado menor.
- b. L_2 : mediana al lado mediano.
- c. L_3 : mediatriz al lado mayor.
- d. L_4 : bisectriz del ángulo exterior en $\angle B$.

Halle las medidas de los ángulos entre L_1 y L_3 , entre L_1 y L_4 y entre L_3 y L_4

- 8. En un paralelogramo ABCD se trazan las diagonales \overline{AC} y \overline{BD} que se cortan en O. Demostrar que $\triangle OAB = \triangle OCD$.
 - 9. Demostrar que si dos paralelas son cortadas por una secante, entonces las bisectrices de los ángulos interiores forman un rectángulo.
 - 10.Probar que si se unen los puntos medios de los lados consecutivos de un trapecio isósceles el cuadrilátero que se forma es un rombo.
 - 11.En un \triangle ABC cualquiera se traza la bisectriz \overline{AF} del \angle A, con B, F y C colineales. Se trazan $\overline{FE}//\overline{AB}$, y ED//BC, con E sobre \overline{AC} y D sobre \overline{AB} . Probar que $\overline{AE} = \overline{BD}$.