

CHEM2100J Chemistry Autumn 2024

Chapter 03 Chemical Bonds

Dr. Milias Liu

Assistant Teaching Professor

UM-SJTU Joint Institute

Room 407A, Longbin Building
milias.liu@sjtu.edu.cn

The Journey So Far

Bonds between Atoms

Each atom is unique due to their differing:

- sizes,
- electron affinities,
- ionization energies.

Atoms minimize these imbalances by forming bonds.

Bonds between Atoms

Atoms strive to fill their outer shells with electrons just like a noble gas does.

In a generalized way, atoms can achieve satisfaction by forming two types of bonds: ionic and covalent.

lonic is gaining and losing electrons.

Covalent is sharing electrons.

The resulting bond is **lower** in energy than the separate atoms.

Ionic Bonds

If electrons transfer from one or more atoms, the entire compound is held together by electrostatic attractions between all the ions.

This attraction is called an ionic bond.

The new ionic partnership is lower in energy than the separate atoms.

Ionic Bonds

Binary ionic compounds form between metals and a non-metallic element.

Cations and anions stack into alternating, oppositely charged ions that line up in three dimensions.

Metals

Metals form cations, by <u>losing electrons</u> to their **noble-gas core** or octet of electrons.

noble-gas core

Ion Configuration

Li⁺ [He] or $1s^2$

Be²⁺ [He]

Na⁺ [Ne] or [He] $2s^22p^6$

 Mg^{2+} [Ne]

Figure 2A.2

Atkins, Chemical Principles: The Quest for Insight, 7e

W. H. Freeman & Company, © 2016 by P. W. Atkins, L. L. Jones, and L. E. Laverman

Short Quiz

A Group 4 metal will:

- A. Lose 2 electrons
- B. Lose 4 electrons
- C. Gain 4 electrons
- D. Gain 14 electrons

Periodic Table of the Elements

Molar masses (atomic weights) quoted to the number of significant figures given here can be regarded as typical of most naturally occurring samples.

Elements 113, 115, 117, and 118 have been identified but not yet (in 2016) formally named.

Atkins, Chemical Principles: The Quest for Insight, 7e W. H. Freeman & Company, © 2016 by P. W. Atkins, L. L. Jones, and L. E. Laverman

Short Quiz

What would the electron configuration be for V⁵⁺ (vanadium)?

- A. [Ar] $3d^34s^2$ B. [Ar] $4s^2$

- D. [Ar] $3d^{10}4s^24p^6$

 $V [Ar] 3d^{3}4s^{2} \rightarrow V^{5+} [Ar]$ Valence Electrons lost

Periodic Table of the Elements

Molar masses (atomic weights) quoted to the number of significant figures given here can be regarded as typical of most naturally occurring samples.

Lanthanoids

(lanthanides)

Actinoids (actinides)

Elements 113, 115, 117, and 118 have been identified but not yet (in 2016) formally named.

Atkins, Chemical Principles: The Quest for Insight, 7e W. H. Freeman & Company, © 2016 by P. W. Atkins, L. L. Jones, and L. E. Laverman

232.04

140.91

4f36s2

231.04

144.24

238.03

(145)

4f56s2

150.36

Non-metals

Nonmetals rarely lose electrons because their ionization and electron affinity energies are too high.

Instead, nonmetal atoms acquire electrons to fill their outer shell.

$$N ([He]2s^22p^3) + 3e^- \rightarrow N^{3-}([Ne])$$

noble-gas core

Ion Configuration

 N^{3-} [Ne] or $2s^22p^6$

 O^{2-} [Ne]

F⁻ [Ne]

Cl⁻ [Ar] or [Ne] $2s^22p^6$

Atkins, *Chemical Principles: The Quest for Insight*, 7e W. H. Freeman & Company, © 2016 by P. W. Atkins, L. L. Jones, and L. E. Laverman

Lewis Dot Notation

A single dot represents a valence electron, the outermost electron in the last shell, in the atom.

A pair of dots represents two paired electrons sharing an orbital.

Each symbol is thought of as having four sides, a north, south, east, and west position, where valance electrons are shown as dots.

Lewis Dot Notation

An ionic formula starts by removing valance electrons from the metal and transferring them to the nonmetal atom to complete its valence shell.

The **calcium** atom loses its two valence electrons.

Each **chlorine** atom has a vacancy for one electron, therefore it forms one bond.

Lewis Dot Notation

:Cl-: Ca²⁺ :Cl-:

Two chloride ions (Cl⁻) balances the charge for each calcium ion (Ca²⁺) resulting in the formula CaCl₂; the overall charge is zero.

There are **no** CaCl₂ molecules, only **crystals** of three-dimensional arrays of Ca²⁺ and Cl⁻ ions held by the vast array of opposite charges spread throughout the crystal—hence CaCl₂ is called a formula unit.

Crystal Formation

Crystal formation starts when large numbers of oppositely charged ions, rush together, releasing large amounts of energy.

Crystal Formation

Figure 2A.5
Atkins, Chemical Principles: The Quest for Insight, 7e
W. H. Freeman & Company, © 2016 by P. W. Atkins, L. L. Jones, and L. E. Laverman

A **crystal** of sodium chloride has lower energy than separated sodium and chlorine atoms.

Formation of the solid takes place in three steps:

- 1. Sodium atoms release electrons.
- 2. These <u>electrons attach to chlorine</u> atoms.
- 3. Newly formed <u>cations and anions</u> <u>clump together</u> as a crystal.

Crystal Lattice Formation: Energy

Lattice Energy

Lattice energy is a "global" characteristic of the entire crystal, a <u>net lowering</u> of energy in the entire crystal (once the cations and anions clump together as a crystal).

A high lattice energy value indicates a stronger ion pair, which produces a more tightly bonded solid.

Coulomb's potential energy measures the strength between individual ion pairs.

Note: Lattice energies describe the dispersion of a crystal into gaseous ions and are therefore **always positive**.

	Lattice energy / kJ·mol ⁻¹
Lil	759
Nal	700
KI	645
RbI	632
CsI	601

Short Quiz

Which of the following compounds would be expected to have the strongest ionic bonds?

A. KI

B. Nal

C. CsF

D. LiF

Smaller ions have higher effective nuclear charges and are therefore bound together more tightly, which produces higher lattice energies.

	Lattice energy / kJ·mol ⁻¹
Lil	759
Nal	700
KI	645
RbI	632
CsI	601

Macroscopic Consequences

The strong attraction (Coulomb's potential energy) between oppositely charged ions accounts for the typical properties of ionic solids:

high melting points and

brittleness.

Figure 2A.6
Atkins, Chemical Principles: The Quest for Insight, 7e
W. H. Freeman & Company, © 2016 by P. W. Atkins, L. L. Jones, and L. E. Laverman

Coulomb Interactions

Measure of the ion—ion force

$$E_{P,12} = \frac{z_1 z_2 e^2}{4\pi \varepsilon_0 d_{12}}$$

- *e* is the fundamental charge (the absolute value of the charge of an electron)
- z_1 and z_2 are the charge numbers of the two ions, e.g., +2,+ 1, -1...
- d_{12} is the distance between the centers of the ions
- ε_0 is the vacuum permittivity

Covalent Bonds

Covalent bonds form between two non-metals that do not form ions.

The nature of nonmetal bonds *puzzled* scientists until 1916, when G. N. Lewis published his explanation.

A brilliant insight, before anyone knew anything about quantum mechanics

1 Shared electron pair

Atkins, Chemical Principles: The Quest for Insight, Te W. H. Freeman & Company, © 2016 by P. W. Atkins, L. L. Jones, and L. E. Laverman

Lewis' Octet Rule

Lewis called this principle the octet rule, reaching a noble-gas configuration.

Ionic bonds form when one element loses electrons and the other atom gains electrons, until both atoms reach a noble-gas configuration.

Figure 2A.8

Atkins, Chemical Principles: The Quest for Insight, 7e

Prof. P. Motta/Science Source

Covalent bonds form by atoms sharing electrons until they reach a *noble-gas configuration*.

Covalent Bonds

A fluorine atom can achieve an octet by accepting a share in an electron from another fluorine atom.

$$: \overrightarrow{F} \cdot + \cdot \overrightarrow{F} : \longrightarrow (: \overrightarrow{F} : \overrightarrow{F} :), \text{ or } : \overrightarrow{F} - \overrightarrow{F} :$$

The octet (or duplet) shows lines (bonding pairs) and dots (lone pairs).

Methane CH₄

The Lewis dot symbols for carbon and hydrogen:

The first element is the central atom. Arrange other atoms in a North, South, West, and East position.

Because the carbon atom is linked by four bonds, the carbon is *tetravalent*: It has a valence of 4.

Lewis Dot Structures

Example: Lewis Dot Structures

H_2O

Step 1: Count valence electrons, adjust for charge of ions

Step 2: Arrange atoms, the first atom is typically the central atom, except hydrogen

Step 3: Connect atoms with bonds

Step 4: Electrons on the outside first

Step 5: Complete octet

Step 6: Add charge if needed

1 + 1 + 6 = 8 H + H + O

H O H

H - O - H

 $H-\ddot{O}-H$

Cyanate CNO-

$$4 + 5 + 6 + 1 = 16$$

C + N + O + e⁻

N C O

$$\begin{array}{c}
N - C - O \\
\vdots N - C -$$

Helpful Hints

1. Remember **simple** Lewis dot structures

one bond, four bonds, two bonds to complete their octet

2. Molecules have symmetry

$$C_2H_4$$
 H
 $C=C$
 H

Helpful Hints

3. Read the formula for order of atom attachment

Short Quiz

Which of the following is the correct Lewis structure for N₂O?

N: $5 VE \times 2 = 10$

O: 6 VE

total 16 VE

A.

Only 14 VE

B.

Exceeds the Octet

D.

Exceeds the Octet

Example: Lewis Dot Structures

: 0:

Step 1: Count valence electrons, adjust for charge of ions

Step 2: Arrange atoms, the first atom is typically the central atom, except hydrogen

Step 3: Connect atoms with bonds

Step 4: Electrons on the outside first

Step 5: Complete octet

Step 6: Add charge if needed

NO₃-

Resonance Structures

hop from one atom to another; no discretion as long as it's the same atom pair.

Formal Charge

Formal Charge =
$$V - \left(L + \frac{1}{2}B\right)$$

- Valence electrons
- Lone-pair electrons
- **Bonding electrons**

The sum of formal charges is equal to the overall charge of the molecule or ion; electrically neutral molecules have a formal charge of zero.

$$0 6 - (4 + \frac{1}{2} 4) = 0$$

CI
$$7 - (6 + \frac{1}{2} 2) = 0$$

$$\mathbf{C} \quad 4 - (0 + \frac{1}{2} \, 8) = 0$$

Formal Charge Calculations

Formal Charge =
$$V - \left(L + \frac{1}{2}B\right)$$

Formal charges can predict the most favourable Lewis structure:

The structure with the lowest formal charges (absolute value) on each atom is the most favourable (lowest energy) structure.

Short Quiz

Predict the most *favourable* Lewis structure for CNS⁻:

Exceptions to the Octet Rule

Radicals are something you cannot isolate, are very unstable, and are highly reactive.

Piranha Solution

Mixture of H₂SO₄ and H₂O₂

 $3:1 H_2SO_4$ conc. and 30 wt% H_2O_2

Add H₂O₂ to acid very slowly, never in reverse order!

Mixing is extremely exothermic

Prone to explosions

(T too high, $c_{H_2O_2}$ too high, too much contaminant)

Strong oxidizing agent

Will decompose most organic matter

Will hydroxylate most surfaces (adding OH groups)

Easily dissolves fabric and skin

High risk of severe chemical burns

Exceptions to the Octet Rule

Dissociation of PCl₅

Carbon, nitrogen, oxygen, and fluorine obey the octet rule rigorously. Period 3 and subsequent periods can accommodate more than 8 electrons in its valence shell, up to 18 electrons.

$$PCl_3(l) + Cl_2(g) \rightarrow PCl_5(s)$$

Phosphorus trichloride, PCl₃

$$\begin{bmatrix} \vdots \ddot{Cl} \vdots \\ \vdots \ddot{Cl} - P - \ddot{Cl} \vdots \\ \vdots \ddot{Cl} - P - \ddot{Cl} \vdots \end{bmatrix}^{+} \begin{bmatrix} \vdots \ddot{Cl} \vdots \ddot{Cl} \vdots \\ P & \vdots \ddot{Cl} \end{bmatrix}^{-}$$

$$(a) \ PCl_{4}^{+} \qquad (b) \ PCl_{6}^{-}$$

Phosphorus pentachloride, PCl₅(s)

Exceptions to the Octet Rule

Determine the most stable structure

$$\begin{array}{c|c}
-1 & O : & 7^{3-} \\
-1 & | & & \\
-1 & | & & \\
O - P & O : \\
-1 & O : \\
-1 & O : \\
\end{array}$$

P:
$$5 - (0 + \frac{1}{2} \times 8) = +1$$

$$0:6-(6+\frac{1}{2}\times1)=-1$$

P:
$$5 - (0 + \frac{1}{2} \times 10) = 0$$

$$0: 6 - (4 + \frac{1}{2} \times 4) = 0$$

O:
$$6 - (6 + \frac{1}{2} \times 1) = -1$$

P:
$$5 - (0 + \frac{1}{2} \times 12) = -1$$

O:
$$6 - (4 + \frac{1}{2} \times 4) = 0$$

O:
$$6 - (6 + \frac{1}{2} \times 1) = -1$$

Exceptions to the Octet Rule

 CIO_4^- (VE 7+24+1=32)

CI:
$$7-4=+3$$

net -

All atoms have a charge

CI:
$$7-5=+2$$

O: 6-6=0

net: -1
High charge for Cl

O: 6-6=0

net -1 Charge for Cl and O

0:6-6=0

O: 6-7= -1

net -1

Short Quiz

Which is the correct Lewis structure for BF₃?

Boron trifluoride, BF3

F:
$$7 - (6 + \frac{1}{2} 2) = 0$$

B:
$$3 - (0 + \frac{1}{2} 6) = 0$$

F:
$$7 - (4 + \frac{1}{2} 4) = +1$$

B:
$$3 - (0 + \frac{1}{2} 8) = -1$$

C. Neither of these

Ionic or Covalent?

Ionic and covalent bonding are **two extreme bonding models**. Most bonds lie somewhere between purely ionic and purely covalent.

Ionic
$$\ddot{C}l: Ca^{2+} \ddot{C}l: Ca^{2+}$$

Bonds between a metal and non-metal are present in ionic compounds.

Covalent
$$\overset{0}{\circ} = \overset{0}{\circ} = \overset{0}{\circ}$$

In bonds between non-metals, covalent bonding is a good model.

Can we describe these bonds more accurately by improving the two basic models?

Correcting the Covalent Model

$$:\ddot{\mathbf{C}}\mathbf{I}-\ddot{\mathbf{C}}\mathbf{I}:\longleftrightarrow :\ddot{\mathbf{C}}\mathbf{I}:_{-}\ddot{\mathbf{C}}\mathbf{I}:_{+}\longleftrightarrow :\ddot{\mathbf{C}}\mathbf{I}_{+}:\ddot{\mathbf{C}}\mathbf{I}:_{-}$$

Both ionic structures have the same resonance hybrid energy.

Heterodiatomic molecules do not have the same resonance hybrid energy.

$$H - \ddot{C}l: \longleftrightarrow H: \ddot{C}l: \longleftrightarrow H^+: \ddot{C}l: \ddot{C}l: \overset{-}{\longleftrightarrow} H^+: \ddot{C}l:$$

Experiments show a small net negative charge on the CI atom and positive on the H. This is a <u>limitation of formal charge</u> which estimates a net zero charge.

Electronegativity

Linus Pauling proposed a quantitative electron-pulling power ability of an atom in a molecule, called its electronegativity X.

Red line shows pure (top) versus actual (bottom) offset electron cloud distribution due to an atom with a greater electronegativity.

Electronegativity Values

If an atom gives up an electron reluctantly it has high ionization energy, and if the electron attaches favourably, it has high electron affinity.

Figure 2D.2

Atkins, Chemical Principles: The Quest for Insight, 7e

W. H. Freeman & Company, © 2016 by P. W. Atkins, L. L. Jones, and L. E. Laverman

Electronegativity Difference, Δχ

Polarization

Polarization by small, highly charged cations of larger, nearby anions.

Bond Strength

Bond Energy

Electrons in double and triple bonds are not as concentrated (located) between two atoms as they are in a single bonds.

Bond Strength vs. Atomic Radius

Atomic Radii / pm

Figure 1F.4 Atkins, *Chemical Principles: The Quest for Insight, 7e* W. H. Freeman & Company, © 2016 by P. W. Atkins, L. L. Jones, and L. E.

Atkins, Chemical Principles: The Quest for Insight, 7e W. H. Freeman & Company, © 2016 by P. W. Atkins, L. L. Jones, and L. E. Laverman

Bond Length vs. Atomic Radius

Figure 2D.10
Atkins, Chemical Principles: The Quest for Insight, 7e
W. H. Freeman & Company, © 2016 by P. W. Atkins, L. L. Jones, and L. E. Laverman

Atkins, Chemical Principles: The Quest for Insight, 7e

W. H. Freeman & Company, © 2016 by P. W. Atkins, L. L. Jones, and L. E. Laverman

Atomic Radii / pm

n ∯

Figure 1F.4 Atkins, *Chemical Principles: The Quest for Insight, 7e* W. H. Freeman & Company, © 2016 by P. W. Atkins, L. L. Jones, and L. E.

Short Quiz

Which molecule has the shortest C—O bond?

Triple bonds are shorter and stronger than double bonds, which are shorter and stronger than single bonds.