

FCC TEST REPORT

For

Winner Wave Limited

EZCast Pro Dongle 2

Model No.: D10

Prepared For : Winner Wave Limited

Address : 4F-5, No.736, Jhongiheng Road, Jhonghe Dist., New Taipei City, Taiwan

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW180821012-01

Date of Recipt : Aug. 21, 2018

Date of Test : Aug. 21~Sept. 11, 2018

Date of Report : Sept. 11, 2018

Contents

1. General Information		Orek	Kopore	Arr	V	, potek	4
1.1. Client Information	Nu.		tek	Anb			4
1.1. Client Information	otek	Yupo.		3/K	^{opote} .	Anu-	4
1.3. Auxiliary Equipment Used During	Test	"upote.	Anv		Mootek.	Anbor	4
1.4. Description of Test Modes		¹ Ody.	N VUI		P. COR	k phpc	5
1.5. List of channels	Anbo.	6 be.	otek	Mpote.	Amb		6
1.6. Description Of Test Setup	Anbote	Plu,		hotel	Anb	o, b	7
1.7. Test Equipment List	dp,,	otek	Anbo		18K	upote.	8
1.8. Description of Test Facility		wotek.	Pupote.	Anu		"hotek	9
2. Summary of Test Results	, p		- Vupoke	P.	100.	hotek	10
3. Conducted Emission Test	poter	Anbe	,	otek	Anbore	Ans	11
3.1. Test Standard and Limit	Notok	Anbote	Yu.		botel	Anbo	11
3.2. Test Setup	All of the	i in	oter	iupo rak		16 ^K	11
3.3. Test Procedure	Anb	V	otek.	Aupore	- Pro-	- Nek	11
3.4. Test Data	Anb		r, ropek	odna	'er b	Up.	11
4. Radiation Spurious Emission and Band E	dge	opoter	Ann	·····	otek	Anbore	14
4.1. Test Standard and Limit		neotek.	Anbor		, , , , e, k	Roboten	14
4. Radiation Spurious Emission and Band E 4.1. Test Standard and Limit 4.2. Test Setup	por	Pr. Crej	t gob	ore.	Anb	امىيىا	14
4.3. Test Procedure	Pupote.	Mur	V	Motek	Anbor		15
4.4. Test Data	, dootel	Anb	o. b	., cyck	odou	yer An	16
5. Maximum Peak Output Power Test 5.1. Test Standard and Limit	be.	rek.	upote,	Vun	ω	hotek	38
5.1. Test Standard and Limit	Anv	Xox	"potek	Anbo.			38
						V 61/2	
5.3. Test Procedure	otek	Anbore	Am	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, upotek	Anbo	38
5.4. Test Data		botel	Aup,		Motek	pubol	38
5.2. Test Setup	Aup		tek h	abole	An-	, N	40
6.1. Test Standard	Anboro	P.D.		Anhotek	Anbo		40
6.2. Test Setup	odn _M	ior V	Up		9.K	pore	40
6.3. Test Procedure	(V	potek	Anbort	Pu.	Yey	Kipotek	40
In Tun							

TEST REPORT

Applicant : Winner Wave Limited

Manufacturer : Winner Wave Limited

Product Name : EZCast Pro Dongle 2

Model No. : D10

Trade Mark : EZCast

Rating(s) : Input: DC 5V, 1.5A

Test Standard(s) : FCC Part15 Subpart E 2017, Paragraph 15.407

ANSI C63.10: 2013,

Test Method(s)

: KDB 789033 D02 General UNII Test Procedures New Rules v02r01

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart E requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Prepared by

(Engineer / Oliay Yang)

Reviewer

(Supervisor / Snowy Meng)

Approved & Authorized Signer

(Manager / Sally Zhang)

1. General Information

1.1. Client Information

Applicant	:	Winner Wave Limited
Address	:	4F-5, No.736, Jhongjheng Road, Jhonghe Dist., New Taipei City, Taiwan
Manufacturer	:	Winner Wave Limited
Address	:	4F-5, No.736, Jhongjheng Road, Jhonghe Dist., New Taipei City, Taiwan
Factory	:	Winner Wave Limited
Address	:	4F-5, No.736, Jhongjheng Road, Jhonghe Dist., New Taipei City, Taiwan

1.2. Description of Device (EUT)

Product Name	:	EZCast Pro Dongle 2	Anbotek Anbotek Anbotek Anbotek
Model No.	:	D10	Anbotek Anbotek Anbotek Anbotek
Trade Mark	:	EZCast	ek Anbotek Anbotek Anbotek Anbote
Test Power Supply		DC 5V by USB Port	botek Anbote Anbotek Anbotek Anbotek
Test Sample No.	:	S1(Normal Sample), S2(Er	ngineering Sample)
		Operation Frequency:	5180MHz~5240MHz
Product Description	:	Number of Channel:	4 Channels for 802.11n(HT20) 4 Channels for 802.11ac(HT20) 2 Channels for 802.11n(HT40) 2 Channels for 802.11ac(HT40) 1 Channels for 802.11ac(HT80)
		Modulation Type:	OFDM with BPSK/QPSK/16QAM/64QAM/ 256QAM for 802.11ac
		Antenna Type:	PIFA Antenna
		Antenna Gain(Peak):	1.5 dBi (two antennas are the same)

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

Wo. The	Manufacturer: SONY	10
TV	: M/N: KDL-26EX550 S/N: 1012240 CE , FCC: DOC	bote
	Lotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	PUI
	Manufacturer: Samsung	
Adapter	M/N: ETA-U90CBC : S/N: RT6FB17ZS/B-E	ek
	Input: 100-240V~ 50-60Hz, 0.35A Output: DC 5V, 2A	- ab

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Mode	Test channel	Frequency (MHz)
And hotek Anbotek	CH 36	5180MHz
OFDM(802.11n(HT20))	CH 40	5200MHz
bote And botek An	CH 48	5240MHz
OFDM(002.11 (HT40))	CH 38	5190MHz
OFDM(802.11n(HT40))	CH 46	5230MHz

Mode	Test channel	Frequency (MHz)
Anbot All abotek	CH 36	5180MHz
OFDM(802.11ac(HT20))	CH 40	5200MHz
	CH 48	5240MHz
OFDM(902.11(UT40))	CH 38	5190MHz
OFDM(802.11ac(HT40))	CH 46	5230MHz
OFDM(802.11ac(HT80))	CH 42	5210MHz

Note:

- 1. The measurements are performed at the highest, middle, lowest available channels.
- 2. The EUT has been tested as an independent unit. And Continual Transmitting in maximum power.
- 3. For the relevant Conducted Measurement, the temporary antenna connector is used during the measurement. Antenna Connector Impedance: $50\,\Omega$, Cable Loss: 1.0 dB
- 4. The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is more than 98%

1.5. List of channels

802.11n(HT20)/ac(HT20)

	Channel	Freq.	Channel	Freq.
		(MHz)		(MHz)
6	36	5180	notel 44	5220
No.	40	5200	48	5240

802.11n(HT40)/ac(HT40)

Channel	Freq.	Channel	Freq.
	(MHz)		(MHz)
38	5190	46	5230

802.11ac(HT80)

	U AV
Channel	Freq.
	(MHz)
42	5210

1.6. Description Of Test Setup

RE

1.7. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
cek 1. potek	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 17, 2017	1 Year
2.00	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 17, 2017	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 17, 2017	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 17, 2017	1 Year
5.	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 18, 2017	1 Year
6.	Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Nov. 17, 2017	1 Year
7.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2017	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 20, 2017	1 Year
9.	Loop Antenna	Schwarzbeck	HFH2-Z2	100047	Nov. 17, 2017	1 Year
10.	Horn Antenna	Schewarzbeck	BBHA9170	9170-375	Nov. 17, 2017	1 Year
AT.	Pre-amplifier	SONOMA	310N	186860	Nov. 17, 2017	1 Year
12.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
13.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 18, 2017	1 Year
14.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 17, 2017	1 Year
15.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 17, 2017	1 Year
16.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 18, 2017	1 Year
17.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 18, 2017	1 Year
18.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 18, 2017	1 Year
19.	DC Power Supply	LW MOO	TPR-6410D	349315	Nov. 01, 2017	1 Year
20.	Constant Temperature Humidity Chamber	Sertep	ZJ-HWHS80B	ZJ-17042804	Nov. 01, 2017	1 Year
-21	Power Meter	Agilent	E4419B	GB40202909	Nov. 17, 2017	1 Year

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

Standard		Test Type	Result	
e _K	15.207 & 15.407	Conducted Emission	PASS	
potek	15.205/15.209	Spurious Emission	PASS	
Anbotek	15.407(b)	Band Edge	PASS	
Aupor	15.407(a)(5)	Occupy Bandwidth	PASS	
K An'	15.407(a)(1)(3)	Maximum Conducted Output Power	PASS	
tek	15.407(a)(1)(3)	Peak Power Spectral Density	PASS	
potek	15.203/15.407g	Antenna Requirement	PASS	

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.20	FCC Part15 Section 15.207&15.407				
	F.,,	Maximum RF	Line Voltage (dBuV)			
	Frequency	Quasi-peak Level	Average Level			
Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
	500kHz~5MHz	56	Marek And And			
	5MHz~30MHz	60	50			

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

Please to see the following pages

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+Charging Mode

DC 5V by USB Port Test Specification:

Comment: Live Line

Tem.: 25.4°C Hum.: 54%

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+Charging Mode

Test Specification: DC 5V by USB Port

Comment: Neutral Line

Tem.: 25.4°C Hum.: 54%

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.2	209, 15.205 and 15.40)7 hotek	Anboten	Tupo Jek
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	obotek - Anbo	co Fun	300
	0.490MHz-1.705MHz	24000/F(kHz)	Anbotek Ar	Pose Vin	notek 30 Anb
	1.705MHz-30MHz	30	Anbatek	Anbore P	30
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3.ek
	88MHz~216MHz	150	43.5	Quasi-peak	3 _{botek}
	216MHz~960MHz	200	46.0	Quasi-peak	iek 3 nbotek
	960MHz~1000MHz	500	54.0	Quasi-peak	ntek 3
	A b 1000MII-	500	54.0	Average	3
	Above 1000MHz	botek - Anbote	68.2	Peak	3

Remark:

- (1) The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.
- (3)Above 1GHz limit: $E[dB\mu V/m] = EIRP[dBm] + 95.2=68.2 dBuV/m$, for EIPR[dBm]=-27dBm.

4.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying

aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW = 1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

.

For above 1GHz, Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Test Results (30~1000MHz)

Job No.: SZAWW180821012-01 Temp.(°C)/Hum.(%RH): 24.9°C/57%RH

Standard: FCC PART 15C Power Source: DC 5V by USB Port

Test Mode: Keeping TX+Charging Mode Polarization: Horizontal

Test Results (30~1000MHz)

Job No.: SZAWW180821012-01 Temp.(℃)/Hum.(%RH): 24.9℃/57%RH

Standard: FCC PART 15C Power Source: DC 5V by USB Port

Test Mode: Keeping TX+Charging Mode Polarization: Vertical

Test Results (Above 1000MHz)

Test mode:	IEEE 802.	11n(HT20)			Test channel:		Low CH	
Peak value:	Vol.	botek	Anbore	VII.	VAPOLEN.	Anbo	note	K Anb
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10360.00	39.81	31.98	17.08	33.91	54.96	68.20	-13.24	NA VER
15540.00	36.21	32.65	20.03	34.85	54.04	68.20	-14.16	Vootel
10360.00	37.15	31.98	17.08	33.91	52.30	68.20	-15.90	H
15540.00	36.25	32.65	20.03	34.85	54.08	68.20	-14.12	Н Апь

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10360.00	31.12	31.98	17.08	33.91	46.27	54.00	-7.73	Vanbo
15540.00	28.32	32.65	20.03	34.85	46.15	54.00	-7.85	vek V
10360.00	30.57	31.98	17.08	33.91	45.72	54.00	-8.28	Н
15540.00	28.35	32.65	20.03	34.85	46.18	54.00	-7.82	H H

Test mode:					Test channel:		Mid CH	
Peak value:	And	rek	botek	Anbor	Ni. otek	Anboten	Anbo	4 .00
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10400.00	40.35	32.44	17.18	33.91	56.06	68.20	-12.14	V
15600.00	39.12	32.78	20.12	34.86	57.16	68.20	-11.04	And V rek
10400.00	38.35	32.44	17.18	33.91	54.06	68.20	-14.14	H ₄
15600.00	36.12	32.78	20.12	34.86	54.16	68.20	-14.04	Hanbol

Tribiage raide.								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10400.00	29.13	32.44	17.18	33.91	44.84	54.00	-9.16	V
15600.00	27.32	32.78	20.12	34.86	45.36	54.00	-8.64	V
10400.00	29.03	32.44	17.18	33.91	44.74	54.00	-9.26	H An
15600.00	28.36	32.78	20.12	34.86	46.40	54.00	-7.60	ote ^K H

Test mode:	IEEE 802.	11n(HT20)			Test channel:		High CH	
Peak value:	, not	ek Ant	ote. An	, sek	abotek	Aupor.	Vi.	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10480.00	41.21	32.59	18.02	33.92	57.90	68.20	-10.30	nbotV
15720.00	38.35	32.87	20.15	34.88	56.49	68.20	-11.71	Viek
10480.00	36.23	32.59	18.02	33.92	52.92	68.20	-15.28	H A
15720.00	38.13	32.87	20.15	34.88	56.27	68.20	-11.93	H

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10480.00	31.25	32.59	18.02	33.92	47.94	54.00	-6.06	Voote
15720.00	32.41	32.87	20.15	34.88	50.55	54.00	-3.45	V
10480.00	29.32	32.59	18.02	33.92	46.01	54.00	-7.99	H
15720.00	28.74	32.87	20.15	34.88	46.88	54.00	-7.12	H A

Test mode:	IEEE 802.	11ac(HT20)			Test channel:		Low CH	
Peak value:	Anbore	Aur	rox.	nbotek	Vupo.	P. Potek	Anbote	Aug
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol. Ar
10360.00	41.87	31.98	17.08	33.91	57.02	68.20	-11.18	V
15540.00	35.23	32.65	20.03	34.85	53.06	68.20	-15.14	AnbQ
10360.00	38.46	31.98	17.08	33.91	53.61	68.20	-14.59	Hotek
15540.00	35.05	32.65	20.03	34.85	52.88	68.20	-15.32	H voo'

Average value.				4 17 10				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10360.00	32.16	31.98	17.08	33.91	47.31	54.00	-6.69	V
15540.00	29.34	32.65	20.03	34.85	47.17	54.00	-6.83	Valor
10360.00	30.25	31.98	17.08	33.91	45.40	54.00	-8.60	ing H May
15540.00	27.22	32.65	20.03	34.85	45.05	54.00	-8.95	H

Test mode:	IEEE 802.1	1ac(HT20)			Test channel:		Mid CH	
Peak value:	K NO	cek Ant	ote. An	10 FBK	abotek	Aupor	e Over Limit (dB) -11.76 -12.75 -13.27	Vupote
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit	Pol.
10400.00	40.73	32.44	17.18	33.91	56.44	68.20	-11.76	nbotV
15600.00	37.41	32.78	20.12	34.86	55.45	68.20	-12.75	Viek
10400.00	39.22	32.44	17.18	33.91	54.93	68.20	-13.27	H otel
15600.00	36.10	32.78	20.12	34.86	54.14	68.20	-14.06	H

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10400.00	30.35	32.44	17.18	33.91	46.06	54.00	-7.94	Voote
15600.00	27.49	32.78	20.12	34.86	45.53	54.00	-8.47	V
10400.00	29.42	32.44	17.18	33.91	45.13	54.00	-8.87	H
15600.00	27.15	32.78	20.12	34.86	45.19	54.00	-8.81	H N

Test mode:	IEEE 802.	11ac(HT20)			Test channel:		High CH	
Peak value:	Anbore	Aur	101	nbotek	Aupor	K. Ciek	Anboter	Ano
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10480.00	40.34	32.59	18.02	33.92	57.03	68.20	-11.17	V
15720.00	38.56	32.87	20.15	34.88	56.70	68.20	-11.50	AnbV
10480.00	39.22	32.59	18.02	33.92	55.91	68.20	-12.29	Hotek
15720.00	37.25	32.87	20.15	34.88	55.39	68.20	-12.81	H oo

Triciage varae.	00							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10480.00	30.17	32.59	18.02	33.92	46.86	54.00	-7.14	V
15720.00	28.14	32.87	20.15	34.88	46.28	54.00	-7.72	Vapor
10480.00	28.85	32.59	18.02	33.92	45.54	54.00	-8.46	vek H ant
15720.00	27.42	32.87	20.15	34.88	45.56	54.00	-8.44	H-VeV-H

Test mode:	IEEE 802.	11n(HT40)			Test channel:		Low CH	
Peak value:	not	ek Ant	Jose Vu	rek.	abotek	Anbor	Al. otek	anbot
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10380.00	37.76	31.98	17.08	33.91	52.91	68.20	-15.29	abot V
15570.00	35.87	32.65	20.03	34.85	53.70	68.20	-14.50	Viek
10380.00	37.63	31.98	17.08	33.91	52.78	68.20	-15.42	H
15570.00	35.74	32.65	20.03	34.85	53.57	68.20	-14.63	H

Average value:

_								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10380.00	30.11	31.98	17.08	33.91	45.26	54.00	-8.74	Vhote
15570.00	28.83	32.65	20.03	34.85	46.66	54.00	-7.34	V
10380.00	30.11	31.98	17.08	33.91	45.26	54.00	-8.74	H
15570.00	27.34	32.65	20.03	34.85	45.17	54.00	-8.83	H N

Test mode:	IEEE 802.	11n(HT40)			Test channel:		High CH	
Peak value:	Anbore	Aur	tel.	nbotek	Anbo	K. Lotek	Anbote	Aug
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	e ^K Pol. Ar
10460.00	42.25	32.59	18.02	33.92	58.94	68.20	-9.26	V
15690.00	39.12	32.87	20.15	34.88	57.26	68.20	-10.94	Anb
10460.00	37.41	32.59	18.02	33.92	54.10	68.20	-14.10	Hotek
15690.00	38.53	32.87	20.15	34.88	56.67	68.20	-11.53	H NOO'

Triorage varies.								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10460.00	32.13	32.59	18.02	33.92	48.82	54.00	-5.18	V
15690.00	29.49	32.87	20.15	34.88	47.63	54.00	-6.37	Valo
10460.00	31.47	32.59	18.02	33.92	48.16	54.00	-5.84	ek H an
15690.00	28.41	32.78	20.12	34.86	46.45	54.00	-7.55	H-Vey

Test mode:	IEEE 802.	11ac(HT40)			Test channel:		Low CH	
Peak value:	not	ek Ant	ote. An	, ek	abotek	Aupor	An otek	Vupot
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10380.00	37.48	31.98	17.08	33.91	52.63	68.20	-15.57	V
15570.00	35.27	32.65	20.03	34.85	53.10	68.20	-15.10	Vek
10380.00	37.21	31.98	17.08	33.91	52.36	68.20	-15.84	H ote
15570.00	35.53	32.65	20.03	34.85	53.36	68.20	-14.84	H

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10380.00	35.21	31.98	17.08	33.91	50.36	54.00	-3.64	Voote
15570.00	30.24	32.65	20.03	34.85	48.07	54.00	-5.93	V
10380.00	32.50	31.98	17.08	33.91	47.65	54.00	-6.35	H
15570.00	28.24	32.65	20.03	34.85	46.07	54.00	-7.93	H N

Test mode:	Test mode: IEEE 802.11ac(1				Test channel:		High CH	
Peak value:	Anboro	Aur	tok.	nbotek	Aupor	k. otek	Anbote	Aug
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10460.00	41.78	32.59	18.02	33.92	58.47	68.20	-9.73	V
15690.00	38.47	32.87	20.15	34.88	56.61	68.20	-11.59	AnbQ
10460.00	39.27	32.59	18.02	33.92	55.96	68.20	-12.24	Hotek
15690.00	37.42	32.87	20.15	34.88	55.56	68.20	-12.64	H do

riverage value.				4 1715				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10460.00	31.78	32.59	18.02	33.92	48.47	54.00	-5.53	V
15690.00	28.89	32.87	20.15	34.88	47.03	54.00	-6.97	Valo
10460.00	30.27	32.59	18.02	33.92	46.96	54.00	-7.04	ek H an
15690.00	28.35	32.78	20.12	34.86	46.39	54.00	-7.61	H

Test mode:	IEEE 802.	11ac(HT80)			Test channel:			
Peak value:	h.	ek Ant	Jose Vu	P P P P	anbotek Anbot		Air otek	Anboth
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10420.00	41.29	32.44	17.18	33.91	57.00	68.20	-11.20	abot V
15630.00	36.49	32.78	20.12	34.86	54.53	68.20	-13.67	Viek
10420.00	38.73	32.44	17.18	33.91	54.44	68.20	-13.76	ATT H
15630.00	35.47	32.78	20.12	34.86	53.51	68.20	-14.69	H

Average value:

					. W. W.			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Pol.
10420.00	30.19	32.44	17.18	33.91	45.90	54.00	-8.10	Vooten
15630.00	28.25	32.78	20.12	34.86	46.29	54.00	-7.71	V
10420.00	30.04	32.44	17.18	33.91	45.75	54.00	-8.25	H by
15630.00	27.93	32.78	20.12	34.86	45.97	54.00	-8.03	H M

Note:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. This data is under mimo mode.

Radiated Band Edge:

pr 8	1-0%	VUS		401	100° Dir.	92	16,0
		Test Mo	de: 802.11n(HT20)			
			Peak Value				
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
41.67	28.65	13.58	31.04	52.86	68.20	-15.34	Hy
42.15	29.16	14.68	31.96	54.03	68.20	-14.17	H H
42.35	28.65	13.58	31.04	53.54	68.20	-14.66	V
43.07	29.16	14.68	31.96	54.95	68.20	-13.25	V
		A	verage Value	÷			
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
34.25	28.65	13.58	31.04	45.44	54.00	-8.56	H
35.78	29.16	14.68	31.96	47.66	54.00	-6.34	\mathbf{H}_{up}
34.74	28.65	13.58	31.04	45.93	54.00	-8.07	V
36.05	29.16	14.68	31.96	47.93	54.00	-6.07	V
	(dBuV) 41.67 42.15 42.35 43.07 Read Level (dBuV) 34.25 35.78 34.74	Read Level (dBuV) Factor (dB/m) 41.67 28.65 42.15 29.16 42.35 28.65 43.07 29.16 Antenna Factor (dB/m) 34.25 28.65 35.78 29.16 34.74 28.65	Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) 41.67 28.65 13.58 42.15 29.16 14.68 42.35 28.65 13.58 43.07 29.16 14.68 Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) 34.25 28.65 13.58 35.78 29.16 14.68 34.74 28.65 13.58	Peak Value Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) 41.67 28.65 13.58 31.04 42.15 29.16 14.68 31.96 42.35 28.65 13.58 31.04 43.07 29.16 14.68 31.96 Average Value Read Level (dBuV) Antenna Factor (dB) Preamp Factor (dB) (dB/m) Cable Loss (dB) Preamp Factor (dB) (dB) 31.04 35.78 29.16 14.68 31.96 34.74 28.65 13.58 31.04	Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dBuV/m) Level (dBuV/m) 41.67 28.65 13.58 31.04 52.86 42.15 29.16 14.68 31.96 54.03 42.35 28.65 13.58 31.04 53.54 43.07 29.16 14.68 31.96 54.95 Average Value Read Level (dBuV) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) 34.25 28.65 13.58 31.04 45.44 35.78 29.16 14.68 31.96 47.66 34.74 28.65 13.58 31.04 45.93	Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) Limit (dBuV/m) 41.67 28.65 13.58 31.04 52.86 68.20 42.15 29.16 14.68 31.96 54.03 68.20 42.35 28.65 13.58 31.04 53.54 68.20 43.07 29.16 14.68 31.96 54.95 68.20 Average Value Read Level (dBuV) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) Limit (dBuV/m) 34.25 28.65 13.58 31.04 45.44 54.00 35.78 29.16 14.68 31.96 47.66 54.00 34.74 28.65 13.58 31.04 45.93 54.00	Peak Value Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) Limit (dBuV/m) Over Limit (dB) 41.67 28.65 13.58 31.04 52.86 68.20 -15.34 42.15 29.16 14.68 31.96 54.03 68.20 -14.17 42.35 28.65 13.58 31.04 53.54 68.20 -14.66 43.07 29.16 14.68 31.96 54.95 68.20 -13.25 Average Value Read Level (dBuV) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) Cimit (dBuV/m) Over Limit (dB) 34.25 28.65 13.58 31.04 45.44 54.00 -8.56 35.78 29.16 14.68 31.96 47.66 54.00 -6.34 34.74 28.65 13.58 31.04 45.93 54.00 -8.07

		Test Mod	de: 802.11ac((HT20)			
			Peak Value				
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
41.29	28.65	13.58	31.04	52.48	68.20	-15.72	Anbe
42.64	29.16	14.68	31.96	54.52	68.20	-13.68	H
43.31	28.65	13.58	31.04	54.50	68.20	-13.70	V
42.77	29.16	14.68	31.96	54.65	68.20	-13.55	V
		Α	verage Value	•			
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
33.78	28.65	13.58	31.04	44.97	54.00	-9.03	H
34.64	29.16	14.68	31.96	46.52	54.00	-7.48	Н
34.12	28.65	13.58	31.04	45.31	54.00	-8.69	ooteN
35.44	29.16	14.68	31.96	47.32	54.00	-6.68	AnbVe
	(dBuV) 41,29 42.64 43.31 42.77 Read Level (dBuV) 33.78 34.64 34.12	Read Level (dBuV) Factor (dB/m) 41.29 28.65 42.64 29.16 43.31 28.65 42.77 29.16 Read Level (dBuV) Antenna Factor (dB/m) 33.78 28.65 34.64 29.16 34.12 28.65	Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) 41.29 28.65 13.58 42.64 29.16 14.68 43.31 28.65 13.58 42.77 29.16 14.68 Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) 33.78 28.65 13.58 34.64 29.16 14.68 34.12 28.65 13.58	Peak Value Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) 41.29 28.65 13.58 31.04 42.64 29.16 14.68 31.96 43.31 28.65 13.58 31.04 42.77 29.16 14.68 31.96 Average Value Read Level (dBuV) Antenna Factor (dB) Preamp Factor (dB) (dB/m) Cable Loss (dB) Factor (dB) 33.78 28.65 13.58 31.04 34.64 29.16 14.68 31.96 34.12 28.65 13.58 31.04	Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dBuV/m) Level (dBuV/m) 41.29 28.65 13.58 31.04 52.48 42.64 29.16 14.68 31.96 54.52 43.31 28.65 13.58 31.04 54.50 42.77 29.16 14.68 31.96 54.65 Average Value Read Level (dBuV) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) 33.78 28.65 13.58 31.04 44.97 34.64 29.16 14.68 31.96 46.52 34.12 28.65 13.58 31.04 45.31	Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) Limit (dBuV/m) 41,29 28.65 13.58 31.04 52.48 68.20 42.64 29.16 14.68 31.96 54.52 68.20 43.31 28.65 13.58 31.04 54.50 68.20 42.77 29.16 14.68 31.96 54.65 68.20 Average Value Read Level (dBuV) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) Limit (dBuV/m) 33.78 28.65 13.58 31.04 44.97 54.00 34.64 29.16 14.68 31.96 46.52 54.00 34.12 28.65 13.58 31.04 45.31 54.00	Peak Value Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dBuV/m) Level (dBuV/m) Limit (dBuV/m) Over Limit (dB) 41.29 28.65 13.58 31.04 52.48 68.20 -15.72 42.64 29.16 14.68 31.96 54.52 68.20 -13.68 43.31 28.65 13.58 31.04 54.50 68.20 -13.70 42.77 29.16 14.68 31.96 54.65 68.20 -13.55 Average Value Read Level (dBuV) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) Limit (dBuV/m) Over Limit (dB) 33.78 28.65 13.58 31.04 44.97 54.00 -9.03 34.64 29.16 14.68 31.96 46.52 54.00 -7.48 34.12 28.65 13.58 31.04 45.31 54.00 -8.69

			Test Mo	de: 802.11n(HT40)			
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
5150.00	41.47	28.65	13.58	31.04	52.66	68.20	-15.54	H
5350.00	42.61	29.16	14.68	31.96	54.49	68.20	-13.71	Yup H
5150.00	41.77	28.65	13.58	31.04	52.96	68.20	-15.24	V
5350.00	43.81	29.16	14.68	31.96	55.69	68.20	-12.51	Vant
			A	verage Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
5150.00	33.53	28.65	13.58	31.04	44.72	54.00	-9.28	μĤ
5350.00	34.25	29.16	14.68	31.96	46.13	54.00	-7.87	Ηνp
5150.00	33.78	28.65	13.58	31.04	44.97	54.00	-9.03	V
5350.00	35.13	29.16	14.68	31.96	47.01	54.00	-6.99	ote ^K V

abolo	Dir.	0	Key Pup,	br.	You	-pore A	Up.	250
			Test Mod	de: 802.11ac(HT40)			
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
5150.00	41.25	28.65	13.58	31.04	52.44	68.20	-15.76	H _{rel}
5350.00	42.37	29.16	14.68	31.96	54.25	68.20	-13.95	Anbo
5150.00	41.54	28.65	13.58	31.04	52.73	68.20	-15.47	V
5350.00	43.41	29.16	14.68	31.96	55.29	68.20	-12.91	V
			A	verage Value	2			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
5150.00	33.47	28.65	13.58	31.04	44.66	54.00	-9.34	H
5350.00	34.61	29.16	14.68	31.96	46.49	54.00	-7.51	ΗМ
5150.00	33.62	28.65	13.58	31.04	44.81	54.00	-9.19	V
5350.00	35.01	29.16	14.68	31.96	46.89	54.00	7.11	oo ^{tel} V

			Test Mod	de: 802.11ac	(HT80)			
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
5150.00	41.63	28.65	13.58	31.04	52.82	68.20	-15.38	Anb Hen
5350.00	42.49	29.16	14.68	31.96	54.37	68.20	-13.83	Hot
5150.00	41.21	28.65	13.58	31.04	52.40	68.20	-15.80	V
5350.00	43.82	29.16	14.68	31.96	55.70	68.20	-12.50	← V
			Α	verage Value	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
5150.00	33.65	28.65	13.58	31.04	44.84	54.00	-9.16	Hart
5350.00	34.45	29.16	14.68	31.96	46.33	54.00	-7.67	Н
5150.00	33.72	28.65	13.58	31.04	44.91	54.00	-9.09	tekV
5350.00	35.31	29.16	14.68	31.96	47.19	54.00	-6.81	V

For conducted test:

ANT A

802.11n(HT20): Band Edge, Left Side

802.11n(HT20): Band Edge, Right Side

802.11ac(HT20): Band Edge, Left Side

802.11ac(HT20): Band Edge, Right Side

802.11n(HT40): Band Edge, Left Side

802.11n(HT40): Band Edge, Right Side

802.11ac(HT40): Band Edge, Left Side

802.11ac(HT40): Band Edge, Right Side

802.11ac(HT80): Band Edge, Left Side

802.11ac(HT80): Band Edge, Right Side

ANTB

802.11n(HT20): Band Edge, Left Side

802.11n(HT20): Band Edge, Right Side

802.11ac(HT20): Band Edge, Left Side

802.11ac(HT20): Band Edge, Right Side

802.11n(HT40): Band Edge, Left Side

802.11n(HT40): Band Edge, Right Side

802.11ac(HT40): Band Edge, Left Side

802.11ac(HT40): Band Edge, Right Side

802.11ac(HT80): Band Edge, Left Side

802.11ac(HT80): Band Edge, Right Side

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15 C	C Section 15.4	07 (a)(1) (3)	hotek	Anbotek	Anbo	p.
Test Limit	29.99 dBm	Anbotek	Anboto	An	Anbotek	Anboatel	K

5.2. Test Setup

5.3. Test Procedure

- 1. The Transmitter output (antenna port) was connected to the power meter.
- 2. Turn on the EUT and power meter and then record the power value.
- 3. Repeat above procedures on all channels needed to be tested.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

5.4. Test Data

Test Item	:	Max. peak output power	Test Mode	:	CH Low ~ CH High
Test Voltage	:	DC 5V by USB Port	Temperature	:	24℃
Test Result	:	PASS	Humidity	:	55%RH

ANT A

V	"O, D'.	181	Y	C. C. Line
Mode	Channel Frequency (MHz)	Peak Power output (dBm)	Limit (dBm)	Results
ek hotek	5180	8.72	24.00	PASS
802.11n(HT20)	5200	8.55	24.00	PASS
botek Anbote	5240	8.40	24.00	PASS
Ant hotek Ant	5180	8.72	24.00	PASS
802.11ac(HT20)	5200	8.28	24.00	PASS
k abotek	5240	8.38	24.00	PASS
002 11(HT40)	5190	8.98	24.00	PASS
802.11n(HT40)	5230	8.25	24.00	PASS
002.11 (UT40)	5190	8.80	24.00	PASS
802.11ac(HT40)	5230	8.19	24.00	PASS
802.11ac(HT80)	5210	7.74	24.00	PASS
01,	184	Y 1/	(c. 14)	. Ac.

FCC ID: 2ADFS-D10

ANT B

194	ND Y	-010 VIII	LOV V	Dr.
Mode	Channel Frequency	Peak Power output	Limit	Results
Wiode	(MHz)	(dBm)	(dBm)	Results
otek Anbotek	5180	An 7.17	24.00	PASS
802.11n(HT20)	5200	9.84	24.00	PASS
abotek Anbo	5240	9.49	24.00	PASS
Anbotek A	5180	9.71 Annotati	24.00	PASS
802.11ac(HT20)	5200	9.21	24.00	PASS
tek Anbotek	5240	7.03	24.00	PASS
902 11m(HT40)	5190	7.62	24.00	PASS
802.11n(HT40)	5230	9.77	24.00	PASS
002 11(HT40)	5190	8.80	24.00	PASS
802.11ac(HT40)	5230	8.19	24.00	PASS
802.11ac(HT80)	5210	7.65	24.00	PASS
DAY.	400 400	- W - W	D. D. D.	5 P.V

SUM

A Uto.	Ans and	100 Dir.	7.07	
Channel Frequency	Peak Power output	Limit	Results	
(MHz)	(dBm)	(dBm)	Results	
5180	11.02	29.99	PASS	
5200	12.25	29.99	PASS	
5240	11.99	29.99	PASS	
5180	12.25	29.99	PASS	
5200	11.78	29.99	PASS	
5240	10.77	29.99	PASS	
5190	11.36	29.99	PASS	
5230	12.09	29.99	PASS	
5190	Anbore 11.81	29.99	PASS	
5230	11.20	29.99	PASS	
5210	10.71	29.99	PASS	
	(MHz) 5180 5200 5240 5180 5240 5180 5200 5240 5190 5230 5190 5230	(MHz) (dBm) 5180 11.02 5200 12.25 5240 11.99 5180 12.25 5200 11.78 5240 10.77 5190 11.36 5230 12.09 5190 11.81 5230 11.20	(MHz) (dBm) (dBm) 5180 11.02 29.99 5200 12.25 29.99 5240 11.99 29.99 5180 12.25 29.99 5200 11.78 29.99 5240 10.77 29.99 5190 11.36 29.99 5230 12.09 29.99 5190 11.81 29.99 5230 11.20 29.99	

Directional Gain=Gant + 10log (Nant) =6.01dBi Calculation Limit=Original Limit - (Directional Gain - 6) =30-0.01= 29.99 dBm

6. Occupy Bandwidth Test

6.1. Test Standard

Test Standard	FCC Part15 C Section 15.407 (a)(5)	Ann	abotek	Anbo	br.
	TOTAL MARKET TOTAL	-100	57.	10,	100

6.2. Test Setup

6.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

26 dB &99%bandwidth

RBW = approximately 1% of the emission bandwidth;

Set the VBW>RBW;

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

6 dB bandwidth

RBW = 100kHz;

Set the video bandwidth (VBW) ≥ 3 RBW;

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Measure the maximum width of the emission that is 26dB /6dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer.
- 5. Repeat until all the rest channels are investigated.

6.4. Test Data

FCC ID: 2ADFS-D10

Test Item : 6dB & 26dB BW Test Mode : CH Low ~ CH High

Test Voltage : DC 5V by USB Port Temperature : 24°C

Test Result : PASS Humidity : 55%RH

ANT A

Mode	Channel Frequency (MHz)	6dB BW(MHz)	Limit	Results
k abotek	5180	17.67	An.	PASS
802.11n(HT20)	5200	17.63	ek abotek	PASS
otek Anbotek	5240	17.69	otek Anbotek	PASS
hotek Anbot	5180	17.71 A	otek Anbote	PASS
802.11ac(HT20)	5200	17.68	Anbo otek Ant	PASS
Annabotek	5240	17.66	>0.5MHz	PASS
802.11n(HT40)	5190 Andrew	36.59 Ambott	ek Ant botek	PASS
802.1111(H140)	5230	36.55	Lek Ant botek	PASS
902 11aa(UT40)	5190	36.56	botek Anbote	PASS
802.11ac(HT40)	5230	36.57	Anbor Anb	PASS
802.11ac(HT80)	5210	76.26	Anbo otek	PASS

No.	70° D3	46, 70	, , , , , , , , , , , , , , , , , , ,
Mode	Channel Frequency	26 AD DW/MIL-)	99% Bandwidth
Mode	(MHz)	26dB BW(MHz)	(MHz)
Anborek Anbo	5180	21.05	17.657
802.11n(HT20)	5200	21.00	17.648
ok hotek	5240	20.82	17.657
Lek Ambotek	5180	21.10	17.670
802.11ac(HT20)	5200	20.84	17.654
Anbot atek Anbot	5240	20.94	17.671
902 11 _m (HT40)	5190	42.85	36.410
802.11n(HT40)	5230	42.80	36.442
902 11(HT40)	5190	42.84	36.402
802.11ac(HT40)	5230	42.42	36.399
802.11ac(HT80)	5210	80.97	75.449

FCC ID: 2ADFS-D10

ANT B

Mode	Channel Frequency (MHz)	6dB BW(MHz)	Limit	Results
otek Anbotek	5180	16.97	V Wolek	PASS
802.11n(HT20)	5200	17.07	rek And botek	PASS
upor Air	5240	16.70	abote Ani	PASS
Anbo otek on	5180	17.08	Anbotek Anbot	PASS
802.11ac(HT20)	5200	17.08	Anbo. atek	PASS
And hotek	5240	16.95	>0.5MHz	PASS
802.11n(HT40)	5190	35.66	ter Anbo hotek	PASS
802.11n(H140)	5230	35.96	pote And	PASS
902 11cc(UT40)	5190	35.82	Anbote And	PASS
802.11ac(HT40)	5230	35.76	Auport Au	PASS
802.11ac(HT80)	5210	75.27	Anbore	PASS

Mode	Channel Frequency	26dB BW(MHz)	99% Bandwidth
	(MHz)	,	(MHz)
Anbo otek	5180	21.12	17.644
802.11n(HT20)	5200	21.29	17.680
ter Anbo	5240	20.84	17.633
pose, Yun	5180	20.98	17.641
802.11ac(HT20)	5200	20.76	17.600
Auport Au	5240	20.93	17.647
902 11m/HT40)	5190	42.60	36.408
802.11n(HT40)	5230	42.69	36.365
002.11 (UT40)	5190	42.62	36.424
802.11ac(HT40)	5230	42.04	36.355
802.11ac(HT80)	5210	81.91	75.401

ANT A

6dB Bandwidth

Test Mode: 802.11n(HT20)---Low

Test Mode: 802.11n(HT20)---High

Test Mode: 802.11ac(HT20)--Low

Test Mode: 802.11ac(HT20)---Middle

Test Mode: 802.11ac(HT20)---High

Test Mode: 802.11n(HT40)---Low

Test Mode: 802.11n(HT40)---High

Test Mode: 802.11ac(HT40)---Low

Test Mode: 802.11ac(HT40)---High

Test Mode: 802.11ac(HT80)

ANT A

26dB & 99% Bandwidth

Test Mode: 802.11n(HT20)---Low

Test Mode: 802.11n(HT20)---High

Test Mode: 802.11ac(HT20)--Low

Test Mode: 802.11ac(HT20)---Middle

Test Mode: 802.11ac(HT20)---High

Test Mode: 802.11n(HT40)---Low

Test Mode: 802.11n(HT40)---High

Test Mode: 802.11ac(HT40)---Low

Test Mode: 802.11ac(HT40)---High

Test Mode: 802.11ac(HT80)

ANT B

6dB Bandwidth

Test Mode: 802.11n(HT20)---Low

Test Mode: 802.11n(HT20)---High

Test Mode: 802.11ac(HT20)--Low

Test Mode: 802.11ac(HT20)---Middle

Test Mode: 802.11ac(HT20)---High

Test Mode: 802.11n(HT40)---Low

Test Mode: 802.11n(HT40)---High

Test Mode: 802.11ac(HT40)---Low

Test Mode: 802.11ac(HT40)---High

Test Mode: 802.11ac(HT80)

ANT B

26dB & 99% Bandwidth

Test Mode: 802.11n(HT20)---Low

Test Mode: 802.11n(HT20)---High

Test Mode: 802.11ac(HT20)--Low

Test Mode: 802.11ac(HT20)---Middle

Test Mode: 802.11ac(HT20)---High

Test Mode: 802.11n(HT40)---Low

Test Mode: 802.11n(HT40)---High

Test Mode: 802.11ac(HT40)---Low

Test Mode: 802.11ac(HT40)---High

Test Mode: 802.11ac(HT80)

-- End of Report --