Prednášky z Matematiky (4) — Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Katedra aplikovanej informatiky FMFI UK Bratislava

Letný semester 2018/2019

2. prednáška

Sémantika výrokovej logiky

25. februára 2019

Obsah 2. prednášky

Výroková logika Syntax výrokovej logiky Sémantika výrokovej logiky Tautológie, (ne)splniteľnosť, falzifikovateľnosť

2.2

Syntax výrokovej logiky

Symboly jazyka výrokovej logiky

Definícia 2.3

Symbolmi jazyka výrokovej logiky sú:

- výrokové premenné z nejakej spočítateľnej množiny $\mathcal{V} = \{p_1, p_2, \dots, p_n, \dots\}$, ktorej prvkami nie sú symboly \neg , \land , \lor , \rightarrow , (a), ani jej prvky tieto symboly neobsahujú;
- logické symboly (logické spojky): ¬, ∧, ∨, → (nazývané, v uvedenom poradí, symbol negácie, symbol konjunkcie, symbol disjunkcie, symbol implikácie a čítané "nie", "a", "alebo", "ak ..., tak ... ");
- pomocné symboly: (a) (ľavá zátvorka a pravá zátvorka).

Spojka ¬ je unárna (má jeden argument). Spojky \land , \lor , \rightarrow sú binárne (spájajú dve formuly).

Symboly jazyka výrokovej logiky

Symboly jazyka sú matematickou formalizáciou

- základných výrokov,
- pomocných slov,
- interpunkcie,

z ktorých môžeme skladať vety/výroky.

Dohoda

Výrokové premenné budeme *označovať* písmenami p, q, ..., podľa potreby aj s dolnými indexmi.

Výrokové formuly

Definícia 2.6

Množina \mathcal{E} všetkých **výrokových formúl** nad množinou výrokových premenných \mathcal{V} je najmenšia množina postupností symbolov, pre ktorú platí:

- i) každá výroková premenná $p \in \mathcal{V}$ je výrokovou formulou z \mathcal{E} (hovoríme jej *atomická formula* alebo iba *atóm*);
- ii) ak A je výroková formula z \mathcal{E} , tak aj postupnosť symbolov $\neg A$ je výrokovou formulou z \mathcal{E} (*negácia* formuly A);
- iii) ak A a B sú výrokové formuly z \mathcal{E} , tak aj $(A \wedge B)$, $(A \vee B)$ a $(A \to B)$ sú výrokovými formulami z \mathcal{E} (nazývanými konjunkcia, disjunkcia, implikácia formúl A a B).

Výrokové formuly

Formuly sú matematickou formalizáciou výrokov (viet a súvetí, o ktorých pravdivosti má zmysel uvažovať).

Dohoda

Formuly označujeme veľkými písmenami A, B, C, X, Y, Z, podľa potreby s indexmi.

Vytvárajúca postupnosť

Definícia 2.8

 $\mathit{Vytv\'araj\'acou}$ postupnosťou nad množinou výrokových premenných $\mathcal V$ je ľubovoľná konečná postupnosť postupností symbolov, ktorej každý člen

- je výroková premenná z \mathcal{V} , alebo
- má tvar ¬A, pričom A je niektorý predchádzajúci člen postupnosti, alebo
- má jeden z tvarov (A ∧ B), (A ∨ B), (A → B), kde A a B sú niektoré
 predchádzajúce členy postupnosti.

Vytvárajúcou postupnosťou pre X je ľubovoľná vytvárajúca postupnosť, ktorej posledným prvkom je X.

Tvrdenie 2.9

Postupnosť symbolov A je formulou vtedy a len vtedy, keď existuje vytvárajúca postupnosť pre A.

Spomeňte si II.1

Ktoré z nasledujúcich postupností symbolov sú formulami nad množinou výrokových premenných $\mathcal{V} = \{p, q, r, \ldots\}$?

$$\triangle$$
 $(p \lor \neg q \lor \neg r),$

$$\bigcirc \neg (\neg (\neg p)),$$

Ekvivalencia

Dohoda

Pre každú dvojicu formúl $A, B \in \mathcal{E}$ je zápis $(A \leftrightarrow B)$ skratka za formulu $((A \to B) \land (B \to A))$.

Jednoznačnosť rozkladu formúl výrokovej logiky

Čo keby sme zadefinovali "formuly" takto?

Definícia "formúl"

Množina \mathcal{E} všetkých výrokových "formúl" nad množinou výrokových premenných $\mathcal V$ je najmenšia množina postupností symbolov, kde platí:

- \bigcirc každá výroková premenná $p \in \mathcal{V}$ je "formulou" z \mathcal{E} ;
- ii) ak A je "formula" z \mathcal{E} , tak aj postupnosť symbolov $\neg A$ je "formulou" z \mathcal{E} ;
- \blacksquare ak A a B sú "formuly" z \mathcal{E} , tak ai $A \wedge B$, $A \vee B$ a $A \rightarrow B$ sú "formulami" z \mathcal{E} :
- \overrightarrow{w} ak A je "formula" z \mathcal{E} , tak aj postupnosť symbolov (A) je "formulou" z \mathcal{E} .
 - Bola by potom ($jim \rightarrow kim \rightarrow \neg sarah$) "formulou"?
- Aký by bol jej význam?

Jednoznačnosť rozkladu formúl výrokovej logiky

Pre našu definíciu formúl platí:

Tvrdenie 2.11 (o jednoznačnosti rozkladu)

Pre každú formulu $X \in \mathcal{E}$ nad množinou výrokových premenných \mathcal{V} platí práve jedna z nasledujúcich možností:

- X je výroková premenná z V.
- Existuje práve jedna formula $A \in \mathcal{E}$ taká, že $X = \neg A$.
- Existujú práve jedna dvojica formúl A, B $\in \mathcal{E}$ a jedna spojka $b \in \{\land, \lor, \rightarrow\}$ také, že X = (A b B).

Problémy s vytvárajúcou postupnosťou

Vytvárajúca postupnosť popisuje konštrukciu formuly podľa definície formúl:

```
jim, sarah, \negjim, kim, \negsarah, (\negjim \land kim), ((\negjim \land kim) \rightarrow \negsarah)
```

ale

- môže obsahovať "zbytočné" prvky;
- nie je jasné ktoré z predchádzajúcich formúl sa bezprostredne použijú na vytvorenie nasledujúcej formuly.

Akou "dátovou štruktúrou" vieme vyjadriť konštrukciu formuly bez týchto problémov?

Vytvárajúci strom

Konštrukciu si ale vieme predstaviť ako strom:

Takéto stromy voláme vytvárajúce.

Ako ich presne a všeobecne popíšeme — zadefinujeme?

Vytvárajúci strom formuly

Definícia 2.12

Vytvárajúci strom T pre formulu X je binárny strom obsahujúci v každom vrchole formulu, pričom platí:

- v koreni T je formula X,
- ak vrchol obsahuje formulu ¬A, tak má práve jedno dieťa, ktoré obsahuje formulu A,
- ak vrchol obsahuje formulu (A b B), kde b je jedna z binárnych spojok, tak má dve deti, pričom ľavé dieťa obsahuje formulu A a pravé formulu B,
- vrcholy obsahujúce výrokové premenné sú listami.

Syntaktické vzťahy formúl

Uvažujme formulu:

$$((\neg jim \land kim) \rightarrow \neg sarah)$$

Ako nazveme formuly, z ktorých vznikla?

sarah,
$$\neg$$
jim, $(\neg$ jim \land kim), . . .

Ako nazveme formuly, z ktorých bezprostredne/priamo vznikla?

$$(\neg jim \wedge kim)$$
 a $\neg sarah$

• Ako tieto pojmy presne zadefinujeme?

Podformuly

Definícia 2.13 (Priama podformula)

- Priamou podformulou ¬A je formula A.
- Priamymi podformulami $(A \land B)$, $(A \lor B)$ a $(A \to B)$ sú formuly A (*l'avá* priama podformula) a B (*pravá* priama podformula).

Definícia 2.14 (Podformula)

Vzťah byť podformulou je najmenšia relácia na formulách spĺňajúca:

- Ak X je priamou podformulou Y, tak X je podformulou Y.
- Ak X je podformulou Y a Y je podformulou Z, tak X je podformulou Z.

Meranie syntaktickej zložitosti formúl

Miera zložitosti/veľkosti formuly:

- Jednoduchá: dĺžka, teda počet symbolov
 - Počíta aj pomocné symboly
 - Atóm má mieru 1. nič nemá mieru 0.
- Lepšia: počet netriviálnych krokov pri konštrukcii formuly
 - pridanie negácie,
 - spojenie formúl spojkou

Lepšiu mieru nazývame stupeň formuly

Príklad 2.15

Aký je stupeň formuly $((p \lor \neg q) \land \neg (q \to p))$?

Meranie syntaktickej zložitosti formúl

Ako stupeň zadefinujeme?

Podobne ako sme zadefinovali formuly — induktívne:

- 1 určíme hodnotu stupňa pre atomické formuly,
- určíme, ako zo stupňa priamych podformúl vypočítame stupeň z nich zloženej formuly.

Stupeň formuly

Definícia 2.16 (Stupeň formuly)

- Výroková premenná je stupňa 0.
- Ak A je formula stupňa n, tak $\neg A$ je stupňa n + 1.
- Ak A je formula stupňa n_1 a B je formula stupňa n_2 , tak $(A \wedge B)$, $(A \lor B)$ a $(A \to B)$ sú stupňa $n_1 + n_2 + 1$.

Definícia 2.16 (Stupeň formuly stručne, symbolicky)

Stupeň deg(X) formuly $X \in \mathcal{E}$ definujeme pre každú výrokovú premennú $p \in \mathcal{V}$ a pre všetky formuly A, $B \in \mathcal{E}$ nasledovne:

$$\deg(p) = 0,$$

 $\deg(\neg A) = \deg(A) + 1,$
 $\deg((A \land B)) = \deg((A \lor B)) = \deg((A \to B)) = \deg(A) + \deg(B) + 1.$

Indukcia na stupeň formuly

Veta 2.17 (Princíp indukcie na stupeň formuly)

Nech P je ľubovoľná vlastnosť formúl ($P \subseteq \mathcal{E}$). Ak platí súčasne

báza indukcie: každá formula stupňa 0 má vlastnosť P,

indukčný krok: pre každú formulu X z predpokladu, že všetky formuly menšieho stupňa ako deg(X) majú vlastnosť P,

vyplýva, že aj X má vlastnosť P,

tak všetky formuly majú vlastnosť P ($P = \mathcal{E}$).

Množina výrokových premenných formuly

Definícia 2.18 (Množina výrok. prem. formuly [vars(X)])

- Ak p je výroková premenná, množinou výrokových premenných atomickej formuly p je $\{p\}$.
- Ak V je množina výrokových premenných formuly A, tak V je tiež množinou výrok. prem. formuly $\neg A$.
- Ak V₁ je množina výrok. prem. formuly A a V_2 je množina výrok. prem. formuly B, tak $V_1 \cup V_2$ je množinou výrokových premenných formúl (A \wedge B), $(A \vee B)$ a $(A \rightarrow B)$.

Množina výrokových premenných formuly

Stručná definicia

Definícia 2.18 (Množina výrok. prem. formuly [vars(X)])

- Ak p je výroková premenná, tak vars(p) = {p}.
- Ak A a B sú formuly, tak $vars(\neg A) = vars(A)$ a $vars((A \land B)) = vars((A \lor B)) = vars((A \to B)) = vars(A) \cup vars(B)$.

Spomeňte si II.2

Je nasledujúce tvrdenie pravdivé? Odpovedzte áno/nie.

Vďaka jednoznačnosti rozkladu má každá formula práve jednu priamu podformulu.

Spomeňte si II.3

Určte pre formulu $((p \lor \neg q) \land \neg (q \rightarrow p))$ jej:

- priame podformuly,
- ii podformuly,
- iii vytvárajúci strom.

Spomeňte si II.4

2.3

Sémantika výrokovej logiky

Sémantika výrokovej logiky

- Syntax jazyka výrokovej logiky hovorí iba tom, ako sa zapisujú formuly ako postupnosti symbolov.
- Nehovorí nič o význame týchto postupností.
- Ten im dáva sémantika jazyka výrokovej logiky.
- Za význam výrokov považujeme ich pravdivostnú hodnotu.

Predstava výrokovej logiky o svete

Výroková logika vníma svet veľmi zjednodušene. Zaujíma ju iba

- obmedzené množstvo jednoduchých výrokov,
- ich pravdivosť alebo nepravdivosť v danom stave sveta.

Formalizácia výrokového pohľadu na svet

- V matematickej výrokovej logike jednoduché výroky predstavujú výrokové premenné
- Ako vieme programátorsky popísať pravdivosť výrokových premenných v nejakom stave sveta?
- A matematicky?

Ohodnotenie výrokových premenných

Definícia 2.19

Nech (t, f) je usporiadaná dvojica *pravdivostných hodnôt*, $t \neq f$, pričom hodnota t predstavuje pravdu a f nepravdu.

Ohodnotením množiny výrokových premenných ${\mathcal V}$ nazveme

každé zobrazenie v množiny $\mathcal V$ do množiny $\{t,f\}$

(teda každú funkciu $v: \mathcal{V} \to \{t, f\}$).

Výroková premenná p je **pravdivá** pri ohodnotení v, ak v(p) = t.

Výroková premenná p je **nepravdivá** pri ohodnotení v, ak v(p) = f.

Ohodnotenie výrokových premenných

Príklad 2.20

Zoberme $t \neq f$ (napr. t = 1, f = 0), $\mathcal{V} = \{a, \dot{a}, \ddot{a}, \dots, \dot{z}, 0, \dots, 9, \}^+$. Dnešné ráno by popísalo ohodnotenie v_1 množiny \mathcal{V} , kde (okrem iného):

$$v_1(\text{svieti_slnko}) = t$$
 $v_1(\text{zobral_som_si_čiapku}) = f$

Pondelkové ráno pred týždňom opisuje ohodnotenie v₂, kde okrem iného

$$v_2(\text{svieti_slnko}) = f$$
 $v_2(\text{zobral_som_si_čiapku}) = f$

Jednu zo situácií v probléme pozývania kamarátov na párty by popísalo ohodnotenie, v ktorom (okrem iného):

$$v_3(sarah) = t$$
 $v_3(kim) = f$ $v_3(jim) = t$

Prečo "okrem iného"?

Kde v informatickej praxi **nie je** f = 0 a t = 1?

Splňanie výrokových formúl

- Na formulu sa dá pozerať ako na podmienku, ktorú stav sveta buď spĺňa (je v tomto stave pravdivá) alebo nespĺňa (je v ňom nepravdivá).
- Z pravdivostného ohodnotenia výrokových premenných v nejakom stave sveta, vieme jednoznačne povedať, ktoré formuly sú v tomto stave splnené.

Spĺňanie výrokových formúl

Príklad 2.21

Nech v_3 je ohodnotenie množiny $\mathcal{V} = \{a, \ldots, z\}^+$, také že

$$v_3(kim) = t$$
 $v_3(jim) = f$ $v_3(sarah) = t$.

Spĺňa svet s týmto ohodnotením formulu (\neg jim $\rightarrow \neg$ sarah)?

Zoberieme vytvárajúcu postupnosť, prejdeme ju zľava doprava:

Formulu	jim	sarah	−jim	¬sarah	$(\neg jim \to \neg sarah)$
ohodnotenie v_3	nespĺňa	spĺňa	spĺňa	nespĺňa	nespĺňa

Spĺňanie výrokových formúl – vytvárajúci strom

Príklad 2.21 (pokračovanie)

$$v_3(kim) = t$$
 $v_3(jim) = f$ $v_3(sarah) = t$.

Iná možnosť je použiť vytvárajúci strom:

$$(\neg j \text{im} \rightarrow \neg \text{sarah}) - v_3 \text{ nespĺňa}$$
 $v_3 \text{ spĺňa} - \neg j \text{im}$
 $v_3 \text{ nespĺňa} - \neg j \text{im}$
 $v_3 \text{ nespĺňa} - \neg j \text{im}$
 $v_3 \text{ sarah} - v_3 \text{ spĺňa}$

Spĺňanie výrokových formúl – program

 Proces zisťovania, či ohodnotenie spĺňa formulu, vieme naprogramovať:

```
def satisfies (v, A):
```

Veľmi podobne vieme zadefinovať splnenie matematicky.

Spĺňanie výrokových formúl – definícia

Definícia 2.22

Nech $\mathcal V$ je množina výrokových premenných. Nech v je ohodnotenie množiny \mathcal{V} . Pre všetky výrokové premenné p z \mathcal{V} a všetky formuly A, B nad \mathcal{V} definujeme:

- v spĺňa atomickú formulu p vtt v(p) = t;
- v spĺňa formulu ¬A vtt v nespĺňa A;
- v spĺňa formulu (A ∧ B) vtt v spĺňa A a v spĺňa B;
- v spĺňa formulu (A ∨ B) vtt v spĺňa A alebo v spĺňa B;
- $v \text{ spĺňa formulu } (A \rightarrow B) \text{ vtt } v \text{ nespĺňa } A \text{ alebo } v \text{ spĺňa } B.$

Dohoda

- Skratka vtt znamená vtedy a len vtedy, keď.
- Vzťah ohodnotenie v spĺňa formulu X skrátene zapisujeme $v \models X$, ohodnotenie v nespĺňa formulu X zapisujeme v $\not\models X$.
- Namiesto v (ne)spĺňa X hovoríme aj X je (ne)pravdivá pri v.

Spĺňanie výrokových formúl – definícia

Definícia 2.22 (symbolicky)

Nech $\mathcal V$ je množina výrokových premenných. Nech v je ohodnotenie množiny $\mathcal V$. Pre všetky výrokové premenné p z $\mathcal V$ a všetky formuly A, B nad $\mathcal V$ definujeme:

$$v \models p$$
 vtt $v(p) = t;$
 $v \models \neg A$ vtt $v \not\models A;$
 $v \models (A \land B)$ vtt $v \models A \text{ a } v \models B;$
 $v \models (A \lor B)$ vtt $v \models A \text{ alebo } v \models B;$
 $v \models (A \rightarrow B)$ vtt $v \not\models A \text{ alebo } v \models B.$

Vzťah ⊨ je súčasťou programovacích jazykov — vyhodnocovanie boolovských výrazov

Spĺňanie výrokových formúl – príklad

Príklad 2.23

Nech v_3 je ohodnotenie množiny $\mathcal{V} = \{a, \dots, z\}^+$, také že

$$v_3(kim) = t$$
 $v_3(jim) = f$ $v_3(sarah) = t$.

Zistime, ktoré z formúl

$$((\mathsf{kim} \lor \mathsf{jim}) \lor \mathsf{sarah})$$

$$(\mathsf{kim} \to \neg \mathsf{sarah}) \qquad (\mathsf{jim} \to \mathsf{kim}) \qquad (\neg \mathsf{jim} \to \neg \mathsf{sarah})$$

ohodnotenie v_3 spĺňa a ktoré nespĺňa.

2.4

Tautológie, (ne)splniteľnosť, falzifikovateľnosť

Spĺňanie z hľadiska formuly

- Predchádzajúca definícia a príklad: spĺňanie mnohých formúl jedným ohodnotením (stavom sveta)
- Obráťme perspektívu: spĺňanie jednej formuly mnohými ohodnoteniami
- Ktoré stavy sveta vyhovujú podmienke vyjadrenej formulou?

Dohoda

V definíciách a tvrdeniach predpokladáme, že sme si *pevne zvolili* nejakú množinu výrokových premenných V a hodnoty t, f.

Formulou rozumieme formulu nad množinou výrok. prem. $\mathcal V$.

Ohodnotením rozumieme ohodnotenie množiny výrok. prem. ${\mathcal V}$.

Tautológia

Definícia 2.24

Formulu X nazveme *tautológiou* (skrátene $\models X$) vtt každé ohodnotenie výrokových premenných spĺňa X (teda **pre každé** ohodnotenie výrokových premenných v platí v $\models X$).

Tautológia — testovanie

- Ak máme nekonečne veľa výrokových premenných, máme aj nekonečne veľa ohodnotení
- Musíme skúmať všetky, aby sme zistili, či je formula X tautológiou?

Tautológia — testovanie

Tyrdenie 2.25

Splnenie výrokovej formuly pri ohodnotení výrokových premenných závisí iba od ohodnotenia konečného počtu výrokových premenných, ktoré sa v nej vyskytujú.

Presnejšie:

Pre každú formulu X a všetky ohodnotenia v_1 a v_2 , ktoré zhodujú na množine vars(X) výrokových premenných vyskytujúcich sa v X,

platí $v_1 \models X \text{ vtt } v_2 \models X$.

- Takže stačí skúmať ohodnotenia, ktoré sa líšia na výrokových premenných vyskytujúcich sa v X, ktorých je iba konečne veľa
- Koľko je takých ohodnotení?

Tautológia — testovanie

Príklad 2.26

Zistime, či je $X = (\neg(p \land q) \rightarrow (\neg p \lor \neg q))$ tautológiou.

Preskúmame všetky rôzne ohodnotenia výrokových premenných, ktoré sa vyskytujú v X:

	/						
р	q	$(p \land q)$	$\neg(p \land q)$	¬р	$\neg q$	$(\neg p \lor \neg q)$	$(\neg(p \land q) \to (\neg p \lor \neg q))$
f	f	 ≠	=	=	=	=	
t	f	 ≠	=	≠	=	=	 =
f	t	 ≠	=	=	≠	=	 =
t	t	⊨	 ≠	⊭	⊭	¥	=

Pretože všetky skúmané ohodnotenia spĺňajú X, je X tautológiou.

Ohodnotenia zhodujúce sa na premenných formuly

Dôkaz.

Indukciou na stupeň formuly X.

Báza: Nech X je stupňa 0. Podľa vety o jednoznačnosti rozkladu a definície stupňa musí byť X = p pre nejakú výrokovú premennú. Zoberme ľubovoľné ohodnotenia v_1 a v_2 , ktoré sa zhodujú na premenných v X, teda aj na p. Podľa definície spĺňania $v_1 \models p \text{ vtt } v_1(p) = t \text{ vtt } v_2(p) = t \text{ vtt } v_2 \models p.$

Krok: Nech X je stupňa n > 0 a tvrdenie platí pre všetky formuly stupňa nižšieho ako n (indukčný predpoklad). Zoberme ľubovoľné ohodnotenia v_1 a v_2 , ktoré sa zhodujú na premenných v X. Podľa definície stupňa a jednoznačnosti rozkladu nastáva práve jeden z prípadov:

- $X = \neg A$ pre práve jednu formulu A. Pretože $\deg(X) = \deg(A) + 1 > \deg(A)$, podľa ind. predpokladu tvrdenie platí pre A. Ohodnotenia v_1 a v_2 sa zhodujú na premenných v A (rovnaké ako v X). Preto $v_1 \models A$ vtt $v_2 \models A$, a teda $v_1 \models \neg A$ vtt $v_1 \not\models A \text{ vtt } v_2 \not\models A \text{ vtt } v_2 \models \neg A.$
- $X = (A \land B)$ pre práve jednu dvojicu formúl A, B. Pretože deg(X) = deg(A) + deg(B) + 1 > deg(A) aj deg(B), podľa ind. predpokladu pre A aj B tvrdenie platí. Podobne pre ďalšie binárne spojky.

Splniteľnosť

Definícia 2.27

Formulu X nazveme splniteľnou

vtt nejaké ohodnotenie výrokových premenných spĺňa X (teda **existuje** také ohodnotenie výrokových premenných v, že v $\models X$).

Falzifikovateľnosť

Definícia 2.28

Formulu X nazveme falzifikovateľnou vtt **nejaké** ohodnotenie výrokových premenných **nespĺňa** X (teda **existuje** také ohodnotenie výrokových premenných v, že v $\not\models X$).

Nesplniteľnosť

Definícia 2.29

Formulu X nazveme *nesplniteľnou* vtt **každé** ohodnotenie výrokových premenných **nespĺňa** X (teda **pre každé** ohodnotenie výrokových premenných v platí v **≠** X).

"Geografia" výrokových formúl podľa spĺňania

- Tautológie sú výrokovologické pravdy. Sú zaujímavé najmä pre klasický pohľad na logiku ako skúmanie správneho usudzovania.
- Vo výpočtovej logike je zaujímavá splniteľnosť a konkrétne spĺňajúce ohodnotenia.

Obrázok podľa 🌑 [Papadimitriou, 1994]

Zamyslite sa II.5

Ak formula nie je falzifikovateľná, je:

A splniteľná,

C tautológia.

Literatúra

- Christos H. Papadimitriou. *Computational complexity*. Addison-Wesley, 1994. ISBN 978-0-201-53082-7.
- Raymond M. Smullyan. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.
- Vítězslav Švejdar. *Logika*: *neúplnost*, *složitost*, *nutnost*. Academia, 2002. Prístupné aj na http://www1.cuni.cz/~svejdar/book/LogikaSve2002.pdf.