Mocniny a odmocniny

Mocniny s prirodzeným exponentom

Definícia: Zápis a^n (čítame "a na n-tú"), kde $a \in \mathbb{R}$, $n \in \mathbb{N}$, sa nazýva n -tá mocnina čísla a a platí: $a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n \text{ činiteľov}}$, pričom $a^I = a$

$$a^n = \underbrace{a.a.a.a.a.....a}_n$$

Číslo a sa nazýva základ (mocnenec) mocniny, číslo n sa nazýva exponent (mocniteľ) mocniny.

Príklady:
$$2^1 = 2$$
, $2^3 = 2 \cdot 2 \cdot 2 = 8$, $\left(\frac{2}{3}\right)^4 = \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} = \frac{2^4}{3^4} = \frac{16}{81}$

POZOR!!! $a^n \neq a . n$, t.j. $3^2 \neq 3 . 2$ ani 2 . 3!!!

Pravidlá pre počítanie s mocninami:

- a) $\forall n \in \mathbb{N}: a > 0 => a^n > 0$
- b) $\forall n \in \mathbb{N}: a = 0 \Longrightarrow a^n = 0$
- c) $\forall n \in \mathbb{N}, n \text{ je párne: } a < 0 \Longrightarrow a^n > 0$
- d) $\forall n \in \mathbb{N}, n$ je nepárne: $a < 0 \Rightarrow a^n < 0$
- e) $\forall n \in \mathbb{N}: \mathbf{1}^n = \mathbf{1}$
- f) $\forall r, s \in \mathbb{N}, \ \forall a, b \in \mathbb{R}$: $a^r \cdot a^s = a^{r+s}$

D1: Podľa definície $a^r = a \cdot a \cdot a \cdot a$ a $a^s = a \cdot a \cdot a \cdot a$. Na pravej strane dostávame súčin r + s čísel a, čo je spätne podľa definície $a^{r + s}$

$$a^r.a^s = \underbrace{a.a.a...a}_{r}.\underbrace{a.a.a...a}_{s} = \underbrace{a.a.a.a...a}_{r+s} = a^{r+s}$$

$$a^{r}: a^{s} = \frac{a^{r}}{a^{s}} = a^{r-s}, a \neq 0, r > s$$

D2: Podľa definície $a^r = a \cdot a \dots \cdot a$ a $a^s = a \cdot a \dots \cdot a$. Na pravej strane dostávame zlomok, kde v čitateli je súčin r čísel a v menovateli súčin s čísel a, čo po vykrátení znamená, že zostane práve súčin n-m čísel a a to je spätne podľa definície a^{r-s}

$$\frac{a^r}{a^s} = \frac{\overbrace{a.a.a..a}^r}{\underbrace{a.a...a}_s} = a^r : a^s = \underbrace{a.a.a..a}_r : \underbrace{a.a...a}_s = a^{r-s}$$

 $(a^r)^s = a^{r.s}$

D3: Podľa definície $a^r = a \cdot a \dots \cdot a$ a $c^s = c \cdot c \dots \cdot c$. Na pravej strane dostávame súčin s čísel a^r , čo je opäť súčin r čísel a, teda dohromady práve súčin $r \cdot s$ čísel a, čo je spätne podľa definície $a^{r \cdot s}$

1

$$(a^r)^s = \underbrace{a^r.a^r.a^r...a^r}_{s} = \underbrace{\frac{(a.a...a)...(a.a...a)}{r}}_{s} = \underbrace{\frac{(a.a...a)...(a.a...a)}{r}}_{s} = \underbrace{\frac{a.a.a...a}{r.s}}_{r.s} = a^{r.s}$$

D4: Podľa definície $a^r = a \cdot a \dots \cdot a$ a $b^r = b \cdot b \dots \cdot b$. Na pravej strane dostávame súčin r čísel a krát súčin r čísel b. Platí komutatívnosť, takže môžeme súčin $a \cdot a \dots \cdot a \cdot b \cdot b \dots \cdot b$ preusporiadať tak, že dostaneme $a \cdot b \cdot a \cdot b \dots \cdot a \cdot b$, kde dvojíc $a \cdot b$ je práve r, čo je spätne podľa definície $(a \cdot b)^r$

$$(a.b)^n = a^n.b^n$$

$$(a.b)^n = \underbrace{(a.b).(a.b)....(a.b)}_n = \underbrace{a.a.a....a}_n \underbrace{b.b.b....b}_n = \underbrace{a^n.b^n}_n$$

$$a^r: b^r = \left(\frac{a}{b}\right)^r$$
, $b \neq 0$

D5: Podľa definície $a^r = a \cdot a \dots \cdot a$ a $b^r = b \cdot b \dots \cdot b$. Na pravej strane dostávame súčin r čísel a vydelených súčin r čísel b. Pre násobenie zlomkov platí, že násobíme čitateľa s čitateľom a menovateľa s menovateľom a pretože v čitateli i v menovateli máme len súčiny, tak môžeme

zlomok rozdeliť na n zlomkov $\frac{a}{b}$, čo je spätne podľa definície $\left(\frac{a}{b}\right)^r$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\left(\frac{a}{b}\right)^n = \underbrace{\left(\frac{a}{b}\right)}_{n} \cdot \underbrace{\left(\frac{a}{b}\right)}_{n} \cdot \dots \cdot \underbrace{\left(\frac{a}{b}\right)}_{n} = \underbrace{\frac{a \cdot a \cdot \dots \cdot a}{b \cdot b \cdot \dots \cdot b}}_{n} = \frac{a^n}{b^n}$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} , b \neq 0$$

Príklady:
$$2^3 = 2 \cdot 2 \cdot 2 = 8$$
 (pravidlo a)
 $0^4 = 0$ (pravidlo b)
 $(-2)^4 = 16$ (pravidlo c)
 $(-2)^3 = -8$ (pravidlo d)
 $1^6 = 1$ (pravidlo e)

<u>Príklady na pravidla f):</u> $2^3 \cdot 2^2 = 2^{3+2} = 25$, $2^{10} : 2^8 = 2^{10-8} = 2^2 = 4$ (keby neexistovalo toto pravidlo, museli by sme počítať $2^{10} : 2^8 = 1024 : 256 = 4$)

$$(2^3)^2 = 2^{3 \cdot 2} = 2^6 = 64$$

 $2^2 \cdot 5^2 = (2 \cdot 5)^2 = 10^2 = 100$

(bez tohto pravidla by sme museli počítať 2^2 . $5^2 = 4$. 25 = 100)

$$6^2: 3^2 = (6:3)^2 = 2^2 = 4$$

(bez tohto pravidla by sme museli počítať $6^2: 3^2 = 36: 9 = 4$).

Mocniny s celočíselným exponentom

Už vieme, že platí a^r : $a^s = a^{r-s}$, napr.: 2^5 : $2^3 = 2^{5-3} = 2^2 = 4$

Čo keď ale bude prvý exponent menší než druhý? Potom nám podľa rovnakého pravidla vyjde napr. $2^3: 2^5 = 2^{3-5} = 2^{-2}$

Keď ale nepoužijeme toto pravidlo, ale napíšeme si podiel v tvare zlomku, ktorý potom vykrátime, dostaneme pre rovnaký príklad:

$$2^3: 2^5 = \frac{2^3}{2^5} = \frac{2.2.2}{2.2.2.2.2} = \frac{1}{2.2} = \frac{1}{2^2}$$

Nakoľko oba postupy sú správne, musia sa rovnať aj výsledky, t.j. platí: $2^{-2} = \frac{1}{2^2}$

Podobne môžeme počítať buď 2^3 : $2^3 = 8$: 8 = 1 alebo 2^3 : $2^3 = 2^{3-3} = 2^0$ odkiaľ dostávame $2^0 = 1$

Obecne sa definujú mocniny so záporným exponentom takto:

$$\forall k \in \mathbb{Z}, k < 0, \ \forall a \in \mathbb{R}, a \neq 0: \ a^k = \frac{1}{a^{-k}}$$

Pre výpočty s mocninami so záporným exponentom platia rovnaké pravidla ako pre počítanie s mocninami s prirodzeným exponentom.

3

Podobne platí: $\forall a \in \mathbb{R}, a \neq 0: a^0 = 1$

Príklady:

$$5^{-3} = \frac{1}{5^3} = \frac{1}{125}$$
, $\left(\frac{2}{3}\right)^{-4} = \frac{1}{\left(\frac{2}{3}\right)^4} = \frac{1}{\frac{2^4}{3^4}} = \frac{3^4}{2^4} = \left(\frac{3}{2}\right)^4$, $(-0,153)^0 = 1$

Platí: $\forall n \in \mathbb{N}, \ \forall a,b \in \mathbb{R} - \{0\}: \left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}$

POZOR: 0⁰ nie je definované!

Mocniny s racionálnym exponentom

Nech $\sqrt[3]{a^6} = b$, t.j. podľa definície odmocniny platí $b^3 = a^6$ alebo $b.b.b = a^2.a^2.a^2$,

t.j.
$$b = a^2$$
 alebo $b = a^2 = a^{\frac{2}{1}} = a^{\frac{2.3}{1.3}} = a^{\frac{6}{3}}$

Záver:
$$\sqrt[3]{a^6} = a^{\frac{6}{3}}$$

Definícia:

$\forall a \in \mathbb{R}^+, \forall r \in \mathbb{Z}, \forall s \in \mathbb{N}: \quad a^{\frac{r}{s}} = \sqrt[s]{a^r}$

<u>Príklady:</u> $8^{\frac{1}{3}} = \sqrt[3]{8^1} = 2$ alebo $8^{\frac{1}{3}} = (2^3)^{\frac{1}{3}} = 2^{\frac{3 \cdot \frac{1}{3}}{3}} = 2^{\frac{3}{3}} = 2^1 = 2$ $243^{0,2} = 243^{\frac{1}{5}} = \sqrt[5]{243} = \sqrt[5]{3^5} = 3$

Úlohy – súhrn:

1) Vypočítajte spamäti:

b)
$$0^{7}$$

c)
$$2^5$$

d)
$$\left(\frac{1}{2}\right)^5$$

2) Vypočítajte:

a)
$$\frac{2^5 \cdot 2^7}{2^{10}}$$

a)
$$\frac{2^5 \cdot 2^7}{2^{10}}$$
 b) $\frac{(-3)^3 \cdot (-3)^6}{(-3)^5 \cdot 3^2}$ c) $\frac{(2^3 \cdot 3^2)^3}{(2 \cdot 3)^5}$

c)
$$\frac{(2^3 \cdot 3^2)^3}{(2 \cdot 3)^5}$$

3) Dané výrazy vyjadrite ako mocniny so základom 2 alebo 3 a vypočítajte:

a)
$$\frac{(2^{10} \cdot 3)^2}{2 \cdot 3^{13}} \cdot \left(\frac{81}{64}\right)^3$$

b)
$$\frac{9^5 \cdot 2^7}{27^2 \cdot 96} \cdot \frac{36}{6^3}$$

4) Vypočítajte:

a)
$$\frac{2(ab)^3}{3a^2b} \cdot \frac{(3a^3b^2)^3}{a^5b^3}$$

b)
$$\frac{5a^3b^7}{2ab^6} \cdot \left(\frac{2a^2b^3}{ab^2}\right)^{\frac{1}{2}}$$

a)
$$\frac{2(ab)^3}{3a^2b} \cdot \frac{(3a^3b^2)^2}{a^5b^3}$$
 b) $\frac{5a^3b^7}{2ab^6} \cdot \left(\frac{2a^2b^3}{ab^2}\right)^3$ c) $\frac{2x^5y^4}{(2x^2y)^2} : \left(\frac{xy}{2xy^2}\right)^3$

5) Vypočítajte:

a)
$$2^0$$
, 2^2 , -2^2 , $(-2)^2$, $\left(\frac{2}{3}\right)^3$; 0.05^2 ; $(-0.2)^4$ b) $2^{12} \cdot 2^8 \cdot 2^{21}$, $(2^2)^3 \cdot (2^3)^2 \cdot (2^4)^3$

c)
$$5.0.2^2 + (5.0.2)^2$$

6) Vypočítajte:

a)
$$2^0$$
, 2^{-2} , -2^{-2} , $(-2)^{-2}$; 0.05^{-2} ; $(-0.2)^{-2}$

a)
$$2^{0}$$
, 2^{-2} , -2^{-2} , $(-2)^{-2}$; 0.05^{-2} ; $(-0.2)^{-4}$ b) 2^{8} . 2^{24} . 2^{-36} , $\frac{2^{-17} \cdot 2^{12}}{2^{-8}}$, $(2^{-2})^{-3}$. $(2^{2})^{-3}$. $(2^{-4})^{-3}$

c)
$$-\left(\frac{10^{-15} \cdot 10^4}{10^{-13}}\right)^2$$

c)
$$-\left(\frac{10^{-15} \cdot 10^4}{10^{-13}}\right)^2$$
 d) $\frac{1300^2 \cdot 1,6 \cdot 10^{-20}}{(2 \cdot 10^{-5})^3}$

7) Vypočítajte:

a)
$$25^{\frac{1}{2}}$$

b)
$$8^{\frac{1}{3}}$$

c)
$$5.16^{\frac{1}{4}}$$

d)
$$8^{\frac{2}{3}}$$

a)
$$25^{\frac{1}{2}}$$
 b) $8^{\frac{1}{3}}$ c) $5 \cdot 16^{\frac{1}{4}}$ d) $8^{\frac{2}{3}}$ e) $2^{-2} \cdot 64^{-\frac{1}{2}}$ f) $100^{-\frac{1}{2}}$

f)
$$100^{-\frac{1}{2}}$$

8) Vypočítajte a uveď te podmienky, pri ktorých majú zmysel výrazy:

a)
$$a^{\frac{2}{3}} \cdot a^{\frac{1}{5}} \cdot a^{\frac{3}{2}}$$

b)
$$(x-y)^{\frac{2}{3}} \cdot (y-x)^{\frac{3}{4}}$$

c)
$$\left(a^{\frac{7}{4}}\right)^{\frac{1}{9}} \cdot \left(a^{\frac{13}{12}}\right)^{\frac{1}{3}} : \left(a^{\frac{8}{3}}\right)^{\frac{1}{6}}$$
 d) $3 \cdot a^{\frac{7}{10}} \cdot a^{\frac{2}{5}} \cdot 2a^{\frac{15}{14}} : a^{\frac{9}{28}}$

d)
$$3 \cdot a^{\frac{7}{10}} \cdot a^{\frac{2}{5}} \cdot 2a^{\frac{15}{14}} : a^{\frac{9}{28}}$$

e)
$$\left(a^{\frac{1}{2}} + 1\right)^2 - \left(a^{\frac{1}{2}} - 1\right)^2$$
 f) $\frac{a-1}{a^{\frac{1}{2}} + 1} + \frac{a-1}{a^{\frac{1}{2}} - 1}$

f)
$$\frac{a-1}{a^{\frac{1}{2}}+1} + \frac{a-1}{a^{\frac{1}{2}}-1}$$

9) Napíšte pomocou jednej odmocniny:

a)
$$a^{\frac{1}{2}}$$

b)
$$b^{-\frac{2}{3}}$$

c)
$$7^{-\frac{7}{2}}$$

d)
$$y^{-0.13}$$

10) Zapíšte ako odmocniny

1.)
$$3^{0.5}$$
, $5^{0.75}$, $0.25^{\frac{2}{9}}$, $1.75^{-\frac{1}{9}}$, $15^{-\frac{4}{7}}$

2.)
$$x^{\frac{2}{3}}$$
, $y^{\frac{6}{11}}$, $x^{-0.25}$, $x^{-0.8}$, $y^{\frac{17}{6}}$

11) Zapíšte v tvare mocniny s racionálnym exponentom:

1.)
$$\sqrt{7}$$
, $\sqrt[3]{9^2}$, $\sqrt[5]{0,4^2}$, $\sqrt[5]{0,4^{-2}}$, $\sqrt[4]{\left(\frac{1}{3}\right)^5}$, $\sqrt[4]{\frac{1}{3^5}}$, $\sqrt[3]{6^{-2}}$

2.)
$$\sqrt[4]{x}$$
, $\sqrt[3]{x^2}$, $\sqrt[7]{\left(\frac{1}{x}\right)^3}$, $\sqrt[5]{\left(\frac{1}{x}\right)^{-3}}$, $\sqrt{x^{-3}}$, $\sqrt[6]{x^{-9}}$

12) Upravte:

1.) a)
$$5^{\frac{2}{3}} \cdot 5^{\frac{1}{3}}$$

b)
$$0.5^{\frac{6}{7}} \cdot 0.5^{-\frac{5}{14}}$$

c)
$$2^{-\frac{2}{15}} \cdot 2^{-\frac{9}{30}}$$

d)
$$5^{\frac{2}{3}}:5^{\frac{1}{3}}$$

e)
$$11^{-\frac{3}{4}}:11^{-\frac{5}{8}}$$

1.) a)
$$5^{\frac{2}{3}} \cdot 5^{\frac{1}{3}}$$
 b) $0.5^{\frac{6}{7}} \cdot 0.5^{-\frac{5}{14}}$ **c)** $2^{-\frac{2}{15}} \cdot 2^{-\frac{9}{30}}$ **d)** $5^{\frac{2}{3}} : 5^{\frac{1}{3}}$ **e)** $11^{-\frac{3}{4}} : 11^{-\frac{5}{8}}$ **f)** $\left(\frac{1}{3}\right)^{-2} : \left(\frac{1}{3}\right)^{-3}$

2.) **a)**
$$\left(5^{\frac{3}{7}}\right)^2$$
 b) $\left(3^{-\frac{1}{8}}\right)^{1,25}$ **c)** $\left(0,3^{-\frac{9}{5}}\right)^{-\frac{2}{3}}$ **d)** $\left(2^{-7}\right)^{-\frac{2}{3}}$ **e)** $\left(1,8^{-\frac{4}{7}}\right)^{\frac{8}{5}}$ **f)** $\left(6^{\frac{1}{27}}\right)^{-9}$

3.) a)
$$2^{\frac{3}{10}} \cdot 3^{\frac{3}{10}}$$
 b) $5^{\frac{6}{7}} \cdot 3^{\frac{6}{7}}$ c) $2^{\frac{1}{10}} \cdot 2^{\frac{1}{5}}$ d) $4^{\frac{1}{6}} \cdot 2^{\frac{4}{6}}$

Odmocniny

Definícia odmocniny:

Ku každému nezápornému číslu "a" a každému prirodzenému číslu "n" existuje práve <u>jedno nezáporné</u> číslo "b" také, že platí: $b^n = a$ a zapisujeme $\sqrt[n]{a} = b$.

<u>Pomenovanie:</u> \mathbf{a} – základ odmocniny = *odmocnenec*, \mathbf{n} – stupeň odmocniny = *exponent*, **b** – hodnota odmocniny = *odmocnitel*.

$$\forall a \in R_0^+, \forall n \in \mathbb{N}, \exists b \in R_0^+ \colon \sqrt[n]{a} = b \iff b^n = a$$

t.j. n - tá odmocnina z určitého nezáporného čísla je nezáporné číslo, ktoré keď umocníme na n - tú, dostaneme pôvodné číslo.

Príklady:

- a) $\sqrt{16} = \sqrt[2]{16} = 4$, lebo $4^2 = 16$ (pokial' neuvedieme exponent, ide o druhú odmocninu)
- b) $\sqrt[3]{8} = 2$, lebo $2^3 = 8$
- c) Nech $\sqrt{-9} = \mathbf{x}$ ($x \in \mathbb{R}$), potom $\mathbf{x}^2 = -9$, t.j. $\mathbf{x} \in \emptyset$ $\sqrt{-9}$ <u>neexistuje v R</u>.
- d) Nech $\sqrt{25} = 5$, lebo $5^2 = 25$ a $\sqrt{25} = -5$, lebo $(-5)^2 = 25$. Potom platí: - 5 = $\sqrt{25}$ = 5, t.i. - 5 = 5 - spor

Poznámky:

- 1) V R je odmocnina definovaná len pre nezáporné čísla a výsledkom odmocniny je tiež len nezáporné číslo.
- 2) Znamienko odmocniny má tiež aj funkciu zátvoriek ak máme pod odmocninou výraz, obvykle postupujeme tak, že najskôr vypočítame výraz pod odmocninou a až potom odmocníme.

Pravidlá pre počítanie s odmocninami:

b)
$$\forall n \in \mathbb{N}: \sqrt[n]{0} = 0$$

e)
$$\forall n \in \mathbb{N}: \sqrt[n]{1} = 1$$

f) $\forall n, p \in \mathbb{N}, \forall m \in \mathbb{Z}, \forall a, b \in \mathbb{R}^+$:

1.
$$\sqrt[n]{a}$$
, $\sqrt[n]{b} = \sqrt[n]{ab}$ 2. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$; $b \neq 0$ 3. $(\sqrt[n]{a})^m = \sqrt[n]{a^m} = a^{\frac{m}{n}}$ 4. $\sqrt[n]{a} = \sqrt[n]{a}$ 5. $\sqrt[n]{a} = \sqrt[n-p]{a^p}$

5.
$$\sqrt[n]{a} = \sqrt[n.p]{a^p}$$

Poznámky:

- Pri počítaní s odmocninami je potrebné robiť podmienky, nakoľko <u>výraz pod odmocninou</u> v množine reálnych čísel nemôže nadobudnúť zápornú hodnotu.
- Taktiež je potrebné dávať pozor na zlomky pod odmocninami, vtedy sa menovateľ nesmie rovnať nule.
- Pri riešení úloh s odmocninami je niekedy výhodné tieto odmocniny podľa vzorca $\frac{\sqrt[n]{a}^m}{\sqrt[n]{a^m}} = \sqrt[n]{a^m} = a^{\frac{m}{n}}$ zapísať ako mocniny s racionálnym exponentom, vykonať riešenie s týmito mocninami a podľa potreby výsledok znova zapísať v tvare odmocnín.

P.S.: Poriadne ovládať vzorce aspoň pre mocniny!!!

Napr.:

$$\sqrt[3]{\frac{x^{3}.\sqrt{x.\sqrt{x^{-5}}}}{\sqrt[4]{x}.\sqrt[3]{\sqrt{x}}}} = \frac{x^{\frac{3}{3}}.(x^{\frac{1}{2}})^{\frac{1}{3}}.((x^{-\frac{5}{2}})^{\frac{1}{2}})^{\frac{1}{3}}}{(x^{\frac{1}{4}})^{\frac{1}{3}}.((x^{\frac{1}{2}})^{\frac{1}{3}})^{\frac{1}{3}}} = \frac{x.x^{\frac{1}{6}}.x^{-\frac{5}{12}}}{x^{\frac{1}{12}}.x^{\frac{1}{18}}} = x^{1+\frac{1}{6}-\frac{5}{12}-\frac{1}{12}-\frac{1}{18}} = x^{\frac{36+6-15-3-2}{36}} = x^{\frac{22}{36}} = x^{\frac{11}{18}} = \sqrt[18]{x^{11}}$$

Príklady:

1) Rozložte *odmocnenca* na súčin prvočísel a potom odmocnite $\sqrt{2450}$ aj použitím pravidiel.

$$\sqrt{2450} = \sqrt{2.5^2.7^2} = \sqrt{2}.\sqrt{5^2}.\sqrt{7^2} = 5.7.\sqrt{2} = 35\sqrt{2}$$

<u>Poznámka:</u> Zápis odmocniny čísla ako súčin racionálneho čísla a odmocniny s čo najmenším odmocnencom – argumentom nazývame čiastočné odmocnenie.

2) Vypočítajte bez použitia kalkulačky $\frac{1}{\sqrt{2}}$ na 6 desatinných miest a výsledok zaokrúhlite na 5 desatinných miest, ak $\sqrt{2} \sim 1,41421$.

1:
$$\sqrt{2}$$
 ~ 1: 1, 4 1 4 2 1 = $\frac{1000000}{1000000}$: 1, 4 1 4 2 1 = 0, 7 0 7 1 0 8 $\frac{989947}{153530}$ $\frac{989947}{153530}$ $\frac{141421}{1210900}$ $\frac{141421}{1210900}$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2} =$$

$$= \sqrt{2} : 2 \sim \underbrace{\frac{1, 41421}{14}}_{14} : 2 = 0, 707105$$

$$\underbrace{\frac{14}{14}}_{2}$$

$$\underbrace{\frac{2}{2}}_{10}$$

<u>Poznámka:</u> Druhý výpočet, keď v menovateli nie je odmocnina, je pre určenie hodnoty bez použitia kalkulačky jednoduchší.

Úprava zlomku, pri ktorej z menovateľ a odstránime odmocniny sa nazýva *usmernenie zlomku*. Robí sa *metódou rozšírenia zlomku*:

a) pre menovateľa \sqrt{a} :

$$\frac{1}{\sqrt{a}} = \frac{1}{\sqrt{a}} \cdot \frac{\sqrt{a}}{\sqrt{a}} = \frac{\sqrt{a}}{(\sqrt{a})^2} = \frac{\sqrt{a}}{\sqrt{a^2}} = \frac{\sqrt{a}}{a}$$
napr.:
$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{3^2}} = \frac{\sqrt{3}}{3}$$

pre menovateľa $\sqrt[n]{a^k}$, ak $\mathbf{n} > \mathbf{k}$ rozšírime zlomok číslom $\sqrt[n]{a^{n-k}}$

$$\frac{1}{\sqrt[5]{8}} = \frac{1}{\sqrt[5]{2^3}} = \frac{\sqrt[5]{2^{5-3=2}}}{\sqrt[5]{2^3} \cdot \sqrt[5]{2^{5-3=2}}} = \frac{\sqrt[5]{2^2}}{\sqrt[5]{2^3} \cdot \sqrt[5]{2^2}} = \frac{\sqrt[5]{2^2}}{\sqrt[5]{2^3} \cdot 2^2} = \frac{\sqrt[5]{2^2}}{\sqrt[5]{2^3} \cdot 2^2} = \frac{\sqrt[5]{2^2}}{\sqrt[5]{2^5}} = \frac{\sqrt[5]{2^2}}{\sqrt[5]{2^5}} = \frac{\sqrt[5]{2^2}}{\sqrt[5]{2^5}} = \frac{\sqrt[5]{2^2}}{\sqrt[5]{2^5}} = \frac{\sqrt[5]{2^2}}{\sqrt[5]{2^5}} = \frac{\sqrt[5]{2^2}}{\sqrt[5]{2^5}} = \frac{\sqrt[5]{2^5}}{\sqrt[5]{2^5}} = \frac{\sqrt[5]{2^5}}$$

b) <u>pre menovateľa</u> $\sqrt{a} \pm \sqrt{b}$ - využíva sa vzorec $(a-b) \cdot (a+b) = a^2 - b^2$:

$$\frac{R}{\sqrt{a}-\sqrt{b}} = \frac{R}{\sqrt{a}-\sqrt{b}} \cdot \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}} = \frac{R.(\sqrt{a}+\sqrt{b})}{(\sqrt{a}-\sqrt{b}).(\sqrt{a}+\sqrt{b})} = \frac{R.(\sqrt{a}+\sqrt{b})}{(\sqrt{a})^2-(\sqrt{b})^2} = \frac{R.(\sqrt{a}+\sqrt{b})}{\sqrt{a^2}-\sqrt{b^2}} = \frac{R.(\sqrt{a}+\sqrt{b})}{a-b}$$

Napr.:

$$\frac{6}{\sqrt{15} - \sqrt{12}} = \frac{6}{\sqrt{15} - \sqrt{12}} \cdot \frac{\sqrt{15} + \sqrt{12}}{\sqrt{15} + \sqrt{12}} = \frac{6(\sqrt{15} + \sqrt{12})}{(\sqrt{15} - \sqrt{12})(\sqrt{15} + \sqrt{12})} = \frac{6(\sqrt{15} + \sqrt{12})}{\sqrt{15^2} - \sqrt{12}^2} = \frac{6(\sqrt{15} + \sqrt{12})}{15 - 12} = \frac{6(\sqrt{15} +$$

$$= \frac{6(\sqrt{15} + \sqrt{12})}{3} = 2(\sqrt{15} + \sqrt{12})$$

3) Rozhodnite *bez použitia kalkulačky*, ktoré z čísel má *väčšiu hodnotu*:

a)
$$3\sqrt{5}...a...5\sqrt{3}$$
 : $3\sqrt{5} = \sqrt{9.5} = \sqrt{45}$ a $5\sqrt{3} = \sqrt{25.3} = \sqrt{75}$

Záver: 45 < 75, preto $\sqrt{45} < \sqrt{75}$, t.i. $3\sqrt{5} < 5\sqrt{3}$

b)
$$\sqrt{180} + \sqrt{245} ... a ... 29$$

$$\sqrt{180} + \sqrt{245} = \sqrt{36.5} + \sqrt{49.5} = 6\sqrt{5} + 7\sqrt{5} = 13\sqrt{5} = \sqrt{169.5} = \sqrt{845}$$
 a $29 = \sqrt{841}$

Záver: ...
$$\sqrt{180} + \sqrt{245} > 29$$

c)
$$2\sqrt[3]{4}...a...4\sqrt{3}$$
 : $2\sqrt[3]{4} = \sqrt[3]{8.4} = \sqrt[3]{32} = \sqrt[6]{32^2} = \sqrt[6]{1024}$ a

$$4\sqrt{3} = \sqrt{16.3} = \sqrt{48} = \sqrt[6]{48^3} = \sqrt[6]{110592}$$

Záver: ...
$$2\sqrt[3]{4} < 4\sqrt{3}$$

Poznámka: Odmocniny *porovnávame* tak, že ich vyjadríme pomocou odmocnín s rovnakým exponentom a potom porovnáme základy odmocnín.

Úlohy – súhrn:

I. Vypočítajte:

1.
$$\sqrt[4]{2} \cdot \sqrt[4]{8}$$

5.
$$\sqrt{2} \cdot \sqrt{32}$$

9.
$$\sqrt{\frac{16}{25}}$$

13.
$$\sqrt{20} \cdot \sqrt{24} \cdot \sqrt{30}$$

17.
$$\sqrt[3]{96}$$
 : $\sqrt[3]{12}$

2.
$$\sqrt[3]{3} \cdot \sqrt[3]{5} \cdot \sqrt[3]{225}$$

6.
$$\sqrt[3]{3} \cdot \sqrt[3]{9}$$

10.
$$\sqrt{1\frac{9}{16}}$$

1.
$$\sqrt[4]{2} \cdot \sqrt[4]{8}$$
5. $\sqrt{2} \cdot \sqrt{32}$
9. $\sqrt{\frac{16}{25}}$
13. $\sqrt{20} \cdot \sqrt{24} \cdot \sqrt{30}$
17. $\sqrt[3]{96} : \sqrt[3]{12}$
2. $\sqrt[3]{3} \cdot \sqrt[3]{5} \cdot \sqrt[3]{225}$
6. $\sqrt[3]{3} \cdot \sqrt[3]{9}$
10. $\sqrt{1\frac{9}{16}}$
14. $\sqrt[3]{13\frac{1}{3}} \cdot \sqrt[3]{11\frac{1}{9}} \cdot \sqrt[3]{2}$
18. $\sqrt[3]{1} : \sqrt[3]{64}$
3. $\sqrt[3]{\frac{125}{8}}$
7. $\sqrt[3]{4} \cdot \sqrt[3]{16}$
11. $\sqrt[3]{\frac{8}{27}}$
15. $\sqrt{45} : \sqrt{5}$
19. $(\sqrt[3]{8} : \sqrt[3]{27}) \cdot \sqrt[5]{32}$

18.
$$\sqrt[3]{1}:\sqrt[3]{6^2}$$

3.
$$\sqrt[3]{\frac{125}{8}}$$

7.
$$\sqrt[3]{4} \cdot \sqrt[3]{16}$$

11.
$$\sqrt[3]{\frac{8}{27}}$$

15.
$$\sqrt{45}:\sqrt{5}$$

19.
$$(\sqrt[3]{8}:\sqrt[3]{27})\cdot\sqrt[5]{32}$$

4.
$$\sqrt{3} \cdot \sqrt{12}$$

8.
$$\frac{\sqrt[3]{500}}{\sqrt[3]{4}}$$

12.
$$\sqrt[3]{3\frac{3}{8}}$$

4.
$$\sqrt{3} \cdot \sqrt{12}$$
 8. $\frac{\sqrt[3]{500}}{\sqrt[3]{4}}$ **12.** $\sqrt[3]{3}$ **16.** $\sqrt{56} : \sqrt{7}$

9

20.
$$\sqrt{81} \cdot \frac{\sqrt[5]{243}}{\sqrt[4]{256}}$$

II. Upravte výraz na tvar súčinu racionálneho čísla a odmocniny čo z najmenšieho prirodzeného čísla (Čiastočne odmocnite):

1
$$\sqrt{125}$$

1.
$$\sqrt{125}$$
 8. $\sqrt{960}$

15.
$$\sqrt[3]{48}$$

15.
$$\sqrt[3]{48}$$
 22. $\sqrt[4]{128}$

29.
$$\sqrt[3]{ab^{10}}$$

2.
$$\sqrt{240}$$

9.
$$\sqrt{2\frac{7}{9}}$$

16.
$$\sqrt[3]{250}$$

23.
$$\sqrt[4]{21\ 000}$$

2.
$$\sqrt{240}$$
 9. $\sqrt{2\frac{7}{9}}$ **16.** $\sqrt[3]{250}$ **23.** $\sqrt[4]{21000}$ **30.** $\sqrt[4]{x^5}y^4z$

3.
$$\sqrt{315}$$

10.
$$\sqrt[3]{16}$$

17.
$$\sqrt[3]{x^5}$$

24.
$$\sqrt[11]{x^{45}}$$

3.
$$\sqrt{315}$$
 10. $\sqrt[3]{16}$ **17.** $\sqrt[3]{x^5}$ **24.** $\sqrt[11]{x^{45}}$ **31.** $\sqrt[4]{81s^4r^8p^{12}}$

4.
$$\sqrt{12}$$

$$\sqrt{9a^3b}$$

32.
$$\sqrt[10]{x^{20} y^{10} z}$$

5.
$$\sqrt{50}$$

12.
$$\sqrt[3]{320}$$

19.
$$\sqrt[3]{\frac{3}{8}}$$

26.
$$\sqrt{4a^5b^3}$$

4.
$$\sqrt{12}$$
 11. $\sqrt[3]{128}$ **18.** $\sqrt[3]{54}$ **25.** $\sqrt{9a^3b}$ **32.** $\sqrt[10]{x^{20}y^{10}z}$ **5.** $\sqrt{50}$ **12.** $\sqrt[3]{320}$ **19.** $\sqrt[3]{\frac{3}{8}}$ **26.** $\sqrt{4a^5b^3}$ **33.** $\sqrt[3]{625a^6b^7}$

6.
$$\sqrt{128}$$

6.
$$\sqrt{128}$$
 13. $\sqrt[3]{500}$

20.
$$\sqrt[4]{162}$$

20.
$$\sqrt[4]{162}$$
 27. $\sqrt{27a^9b^{11}c^{21}}$

34.
$$\sqrt[3]{1000}$$

7.
$$\sqrt{72}$$

7.
$$\sqrt{72}$$
 14. $\sqrt[3]{80}$

21.
$$\sqrt[4]{0,012}$$

21.
$$\sqrt[4]{0,012}$$
 28. $\sqrt[3]{8a^7b^8}$

35.
$$\sqrt[3]{10\ 000}$$

III. Vyjadrite pomocou jednej odmocniny

1.
$$\sqrt{\sqrt{2}}$$

1.
$$\sqrt{\sqrt{2}}$$
 6. $\sqrt{\frac{a}{b}}\sqrt{\frac{a}{b}}$ 11. $\sqrt[3]{s\sqrt[3]{s}}$ 16. $\sqrt{\sqrt{a}}.\sqrt[3]{a}$

11.
$$\sqrt[3]{s\sqrt[3]{s}}$$

16.
$$\sqrt{\sqrt{a}} \cdot \sqrt[3]{a}$$

2.
$$\sqrt[3]{\sqrt{2}}$$

7.
$$\sqrt{\frac{x}{y}}\sqrt[3]{\frac{y}{x}}$$

12.
$$\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x}}}$$

2.
$$\sqrt[3]{\sqrt{2}}$$
 7. $\sqrt{\frac{x}{y}} \sqrt[3]{\frac{y}{x}}$ **12.** $\sqrt[3]{x} \sqrt[3]{x} \sqrt[3]{x}$ **17.** $\frac{\sqrt{a} \cdot \sqrt[3]{a^2} \cdot \sqrt[4]{a^3}}{\sqrt[6]{a^5}}$

3.
$$\sqrt{2\sqrt{2}}$$

8.
$$a\sqrt[3]{\frac{b^2}{a\sqrt{ab}}}$$

$$13. \sqrt{\frac{\sqrt[3]{a^2b}}{ab}}$$

3.
$$\sqrt{2\sqrt{2}}$$
 8. $a\sqrt[3]{\frac{b^2}{a\sqrt{ab}}}$ 13. $\sqrt{\frac{\sqrt[3]{a^2b}}{ab}}$ 18. $\sqrt{\frac{3}{5}} \cdot \sqrt[3]{\frac{3}{5}} \sqrt{5 \cdot \frac{1}{3}}$

4.
$$\sqrt{2\sqrt[3]{5}}$$

4.
$$\sqrt{2\sqrt[3]{5}}$$
 9. $\sqrt{\frac{c}{d}\sqrt[3]{\left(\frac{d}{c}\right)^5}}$ **14.** $\sqrt{a^4\sqrt[3]{a^2\sqrt{a}}}$ **19.** $\sqrt[3]{3\cdot\sqrt[3]{3\cdot\sqrt[3]{3}}}$

14.
$$\sqrt{a^4 \sqrt[3]{a^2 \sqrt{a}}}$$

19.
$$\sqrt[3]{3 \cdot \sqrt[3]{3 \cdot \sqrt[3]{3}}}$$

5.
$$\sqrt[3]{3\sqrt[3]{2}}$$

10.
$$\sqrt{a} \cdot \sqrt[3]{a^2} \cdot \sqrt[4]{a^3}$$

5.
$$\sqrt[3]{3\sqrt[3]{2}}$$
 10. $\sqrt{a} \cdot \sqrt[3]{a^2} \cdot \sqrt[4]{a^3}$ **15.** $\sqrt{\frac{1}{m^2} \sqrt{\frac{1}{m}} \sqrt{m}}$ **20.** $\sqrt{x^2} : \sqrt[9]{x^5}$

20.
$$\sqrt{x^2} : \sqrt[9]{x^5}$$

IV. Odstráňte odmocninu z menovateľa:

1.
$$\frac{1}{\sqrt{2}}$$

5.
$$\frac{\sqrt{5}}{2\sqrt{12}}$$

9.
$$\frac{1}{\sqrt{2} + \sqrt{3}}$$

1.
$$\frac{1}{\sqrt{2}}$$
 5. $\frac{\sqrt{5}}{2\sqrt{12}}$ 9. $\frac{1}{\sqrt{2}+\sqrt{3}}$ 13. $\frac{5\sqrt{3}-2\sqrt{6}}{2\sqrt{12}}$ 17. $\frac{4}{\sqrt{2ab}}$

17.
$$\frac{4}{\sqrt{2ab}}$$

2.
$$\frac{1}{\sqrt[3]{2}}$$

6.
$$\frac{\sqrt[3]{3}}{2\sqrt[4]{5}}$$

2.
$$\frac{1}{\sqrt[3]{2}}$$
 6. $\frac{\sqrt[3]{3}}{2\sqrt[4]{5}}$ **10.** $\frac{4\sqrt{2}+\sqrt{6}}{2\sqrt{2}-\sqrt{6}}$ **14.** $\frac{3}{2\sqrt{11}+5\sqrt{2}}$ **18.** $\frac{4x^2}{\sqrt{8xy^3}}$

14.
$$\frac{3}{2\sqrt{11} + 5\sqrt{2}}$$

18.
$$\frac{4x^2}{\sqrt{8xy^3}}$$

3.
$$\frac{3}{\sqrt{5}}$$

7.
$$\frac{1}{\sqrt{2}+1}$$

11.
$$\frac{1}{2-3\sqrt{7}}$$

15.
$$\frac{5\sqrt{3}}{\sqrt{27} - \sqrt{12}}$$

19.
$$\sqrt{\frac{1}{5}}$$

4.
$$\frac{\sqrt{5}}{\sqrt{7}}$$

8.
$$\frac{\sqrt{2}}{\sqrt{3}-1}$$

12.
$$\frac{2+\sqrt{5}}{\sqrt{5}-1}$$

3.
$$\frac{3}{\sqrt{5}}$$
 7. $\frac{1}{\sqrt{2}+1}$ 11. $\frac{1}{2-3\sqrt{7}}$ 15. $\frac{5\sqrt{3}}{\sqrt{27}-\sqrt{12}}$ 19. $\sqrt{\frac{1}{5}}$
4. $\frac{\sqrt{5}}{\sqrt{7}}$ 8. $\frac{\sqrt{2}}{\sqrt{3}-1}$ 12. $\frac{2+\sqrt{5}}{\sqrt{5}-1}$ 16. $\frac{2\sqrt{3}+\sqrt{8}-\sqrt{10}}{2\sqrt{10}-\sqrt{3}}$ 20. $\sqrt{\frac{4}{1-\sqrt{2}}}$

20.
$$\sqrt{\frac{4}{1-\sqrt{2}}}$$

V. Určte, kedy majú dané výrazy zmysel a potom ich zjednodušte:

1.
$$3\sqrt{2x} - 5\sqrt{18x} + 4\sqrt{50x}$$

3.
$$\sqrt[3]{y} + 2\sqrt[4]{x} + \sqrt[3]{27y} + 2\sqrt[3]{y} - \sqrt[4]{81x}$$

2.
$$\sqrt{7y} + \sqrt{28y} - \sqrt{63y} + 2\sqrt{7}$$

4.
$$\sqrt{4+4x^2} + 2\sqrt{+9x^2} - 5\sqrt{1+x^2}$$

1. Rozhodnite, ktoré z daných čísel sú prirodzené a ktoré iracionálne čísla:

a)
$$\sqrt{3}, \sqrt{5}, \sqrt{12}$$

b)
$$\sqrt{361}$$
, $\sqrt{444}$, $\sqrt{225}$

2. Pre ktoré x majú zmysel výrazy:

a)
$$\sqrt{2x-1}$$

b)
$$\sqrt{1-3x}$$

c)
$$\sqrt{-x}$$

d)
$$\sqrt{7x-4}$$

e)
$$\sqrt{x^2 - 1}$$

f)
$$\sqrt{9-25x^2}$$

3. Čiastočne odmocnite:

a)
$$\sqrt{50}$$

b)
$$\sqrt{112}$$

c)
$$\sqrt{35,2}$$

d)
$$\sqrt[3]{54}$$

e)
$$\sqrt[3]{9000}$$

f)
$$\sqrt[3]{162}$$

g)
$$\sqrt[3]{243}$$

g)
$$\sqrt[3]{243}$$
 h) $\sqrt[3]{46208}$

i)
$$\sqrt[3]{500000}$$

j)
$$\sqrt{0,125}$$

k)
$$\sqrt[3]{0,125}$$

1)
$$\sqrt{0.8}$$

m)
$$\sqrt[3]{0,008}$$

n)
$$\sqrt[3]{625}$$

o)
$$\sqrt{52272}$$

4. Upravte podľa viet o počítaní s odmocninami a uveďte, kedy majú zmysel:

a)
$$\sqrt{5}.\sqrt{125}$$

b)
$$\sqrt{72}.\sqrt{2}$$

c)
$$\sqrt{5}.\sqrt{10}.\sqrt{180}.\sqrt{40}$$

d)
$$\sqrt[3]{1,6}.\sqrt[3]{8,8}.\sqrt[3]{0,66}.\sqrt[3]{25}$$

a)
$$\sqrt{5}.\sqrt{125}$$
 b) $\sqrt{72}.\sqrt{2}$ c) $\sqrt{5}.\sqrt{10}.\sqrt{180}.\sqrt{40}$ d) $\sqrt[3]{1,6}.\sqrt[3]{8,8}.\sqrt[3]{0,66}.\sqrt[3]{25}$ e) $\sqrt{3\frac{1}{7}}.\sqrt{2,4}.\sqrt{7,6}$ f) $\sqrt[3]{a^{r-1}}\cdot\sqrt[3]{a^{4-r}}\cdot\sqrt[3]{a^{3\cdot(r-1)}}$

f)
$$\sqrt[3]{a^{r-1}} \cdot \sqrt[3]{a^{4-r}} \cdot \sqrt[3]{a^{3.(r-1)}}$$

g)
$$\sqrt[4]{x^7} \cdot \sqrt[4]{27x^3} \cdot \sqrt[4]{27x}$$
 h) $\sqrt[3]{a^{2n+1}}$

h)
$$\sqrt[3]{a^{2n+1}}$$

5. Vypočítajte:

a)
$$\sqrt{49.64}$$

a)
$$\sqrt{49.64}$$
 b) $\sqrt[3]{0.5} \cdot \sqrt[3]{0.25}$

c)
$$\sqrt{\frac{81}{7}}$$

d)
$$\frac{\sqrt[3]{72}}{\sqrt[3]{9}}$$

e)
$$\sqrt[3]{\sqrt[4]{27}}$$

f)
$$\left(\sqrt[3]{a^4}\right)^5$$

g)
$$\sqrt[9]{a^6b^3}$$

6. Vypočítajte a uveď te kedy majú výrazy zmysel:

a)
$$\sqrt[3]{(25a^4b^5)^2}$$

b)
$$\left(\sqrt{2x^2} \cdot \sqrt[3]{5x^4} \cdot \sqrt{4x^5}\right)^6$$

c)
$$\sqrt[4]{a^3} \cdot \sqrt[6]{a^5} \cdot \sqrt[12]{a^{13}}$$

d)
$$\sqrt[3]{10} \cdot \sqrt[3]{100} \cdot \sqrt[3]{0,0001}$$

a)
$$\sqrt[3]{(25a^4b^5)^2}$$
 b) $(\sqrt{2x^2} \cdot \sqrt[3]{5x^4} \cdot \sqrt{4x^5})^6$ c) $\sqrt[4]{a^3} \cdot \sqrt[6]{a^5} \cdot \sqrt[12]{a^{13}}$ d) $\sqrt[3]{10} \cdot \sqrt[3]{100} \cdot \sqrt[3]{0,0001}$ e) $\sqrt[3]{x^2 - y^2} \cdot \sqrt[3]{\left(\frac{x - y}{x + y}\right)^2}$ f) $\sqrt[3]{9a \cdot \sqrt{\frac{a^2}{16} \cdot \sqrt{81a^4}}}$

f)
$$\sqrt[3]{9a \cdot \sqrt{\frac{a^2}{16} \cdot \sqrt{81a^4}}}$$

g)
$$\sqrt{\frac{a}{b}} \cdot \sqrt[3]{\frac{a^2}{b^2}} \cdot \sqrt[4]{\frac{a^3}{b^3}}$$

g)
$$\sqrt{\frac{a}{b}} \cdot \sqrt[3]{\frac{a^2}{b^2}} \cdot \sqrt[4]{\frac{a^3}{b^3}}$$
 h) $\sqrt[9]{\frac{(xy+y^2)^6}{(x^2-xy)^4}} : \sqrt[6]{\frac{(xy-y^2)^4}{(x^2+xy)^3}}$ i) $\sqrt[9]{\frac{625a^{13}b^9}{5c^5}} : \sqrt{\frac{5a^{11}b^7}{c^3}}$

i)
$$\sqrt[9]{\frac{625a^{13}b^9}{5c^5}}:\sqrt{\frac{5a^{11}b^7}{c^3}}$$

j) $\sqrt{\frac{2a^3}{3b^2}} : \left(\sqrt[3]{\frac{3a^4}{4b^5}} \cdot \sqrt[6]{\frac{6a}{b^5}} \right)$

7. Upravte podľa viet o počítaní s mocninami a uveďte, kedy majú výrazy zmysel:

a)
$$\sqrt{2} \cdot \sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[6]{2} \cdot \sqrt[12]{2}$$

b)
$$\sqrt{2} \cdot \sqrt[3]{4} \cdot \sqrt[4]{8} \cdot \sqrt[12]{16}$$

c)
$$\sqrt[3]{8} \cdot \sqrt[5]{16} \cdot \sqrt[15]{32}$$

d)
$$2\sqrt{6} \cdot \sqrt[4]{12} \cdot \sqrt[8]{24}$$

e)
$$\sqrt[18]{x^{2n+6}} \cdot \sqrt[12]{x^{2n+3}}$$

f)
$$\sqrt[15]{a^{2x+3y}} : \sqrt[12]{a^{2y-3x}}$$

a)
$$\sqrt{2} \cdot \sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[6]{2} \cdot \sqrt[12]{2}$$
 b) $\sqrt{2} \cdot \sqrt[3]{4} \cdot \sqrt[4]{8} \cdot \sqrt[12]{16}$ c) $\sqrt[3]{8} \cdot \sqrt[5]{16} \cdot \sqrt[15]{32}$ d) $2\sqrt{6} \cdot \sqrt[4]{12} \cdot \sqrt[8]{24}$ e) $\sqrt[18]{x^{2n+6}} \cdot \sqrt[12]{x^{2n+3}}$ f) $\sqrt[15]{a^{2x+3y}} : \sqrt[12]{a^{2y}}$ g) $\sqrt[n]{a^{1-2n}} \cdot \sqrt[n+1]{a} \cdot \sqrt[n]{a^{n-1}} \cdot \sqrt[n+1]{a^{1+2n}}$ h) $\sqrt[3]{x^{2n-5}} : \sqrt[5]{x^{4n-5}}$

h)
$$\sqrt[3]{x^{2n-5}} : \sqrt[5]{x^{4n-5}}$$

8. Vypočítaite:

(a)
$$2\sqrt{5} - \sqrt{5} + 3\sqrt{5} + 4\sqrt{5}$$

b)
$$4\sqrt{3} - 2\sqrt{3} - \sqrt{27} + \sqrt{12}$$

c)
$$\sqrt{2} - 7\sqrt{2} + \sqrt[4]{4} + 5\sqrt{18}$$

d)
$$(4+\sqrt{3})(4-\sqrt{3})$$

e)
$$\sqrt{75} + 2\sqrt{5} - 2\sqrt{12}$$

f)
$$\sqrt[3]{2} - 3\sqrt[3]{2^4} + \sqrt[3]{54} - \sqrt[3]{64.2}$$

9. Vypočítajte a uveďte, kedy majú výrazy zmysel:

a)
$$2\sqrt{2x^3} + \sqrt{18x^3} + x\sqrt{8x}$$

b)
$$(1-\sqrt[3]{x^2})\cdot \sqrt[3]{x}-1$$

c)
$$(\sqrt{1+a} + \sqrt{2}) \cdot (\sqrt{2} - \sqrt{1+a})$$
 d) $6\sqrt{2a} + \sqrt[4]{64a^2} - \sqrt{18a^3}$

d)
$$6\sqrt{2a} + \sqrt[4]{64a^2} - \sqrt{18a^3}$$

10. Vypočítajte a uveďte, kedy majú výrazy zmysel:

a)
$$\sqrt[3]{16x^2y} + \sqrt{4x^2z} - \sqrt{x^2y} - \sqrt[3]{54x^2y} - \frac{3}{5}\sqrt[3]{\frac{125x^3y}{9}}$$

b)
$$5\sqrt[3]{a^2b^5} + 2b^2\sqrt[3]{\frac{a^2}{b}} + \frac{4b}{a^2}\sqrt[3]{a^8b^2} - 6ab\sqrt[3]{\frac{b^2}{a}} - \frac{3}{2}ab^2\sqrt[3]{\frac{8}{ab}}$$

c)
$$\left(\sqrt{\frac{1}{x}} + \sqrt{\frac{1}{y}} - \sqrt{\frac{1}{xy}}\right) \cdot \sqrt{xy}$$

d)
$$3\sqrt[3]{54} + 4\sqrt[3]{16} - \sqrt[3]{2} + 6\sqrt[3]{128}$$

e)
$$\sqrt{3}(\sqrt{5} + \sqrt{6}) + \sqrt{5}(\sqrt{3} + \sqrt{6}) - \sqrt{6}(\sqrt{3} + \sqrt{5})$$

11. Odstráňte odmocninu z menovateľa:

a)
$$\frac{8}{\sqrt{2}}$$

b)
$$\frac{15}{\sqrt{3}}$$

$$c) \frac{3 - \sqrt{12}}{\sqrt{3}}$$

d)
$$\frac{5+\sqrt{5}}{\sqrt{5}}$$

$$e) \ \frac{\sqrt{3}}{\sqrt{5} - 4}$$

f)
$$\frac{6}{\sqrt{11} - \sqrt{10}}$$

e)
$$\frac{\sqrt{3}}{\sqrt{5}-4}$$
 f) $\frac{6}{\sqrt{11}-\sqrt{10}}$ g) $\frac{2\sqrt{2}}{3\sqrt{3}-5\sqrt{5}}$ h) $\frac{2+\sqrt{3}}{\sqrt{2}+3}$

$$h) \frac{2+\sqrt{3}}{\sqrt{2}+3}$$

i)
$$\frac{2+\sqrt{3}}{\sqrt{2}-\sqrt{3}}$$
 j) $\frac{\sqrt{5}}{\sqrt{7}}$ k) $\sqrt[3]{\frac{6\sqrt{5}}{5\sqrt{3}}}$ l) $\sqrt[4]{\frac{2}{5}}$

$$j)~\frac{\sqrt{5}}{\sqrt{7}}$$

$$k) \sqrt[3]{\frac{6\sqrt{5}}{5\sqrt{3}}}$$

1)
$$\sqrt[4]{\frac{2}{5}}$$

m)
$$\frac{\sqrt[3]{45}}{\sqrt[4]{5\sqrt[3]{3^2.5}}}$$
 n) $\frac{1}{5-\sqrt{2}}$ o) $\frac{26}{\sqrt{3}-4}$

$$n)\frac{1}{5-\sqrt{2}}$$

o)
$$\frac{26}{\sqrt{3}-4}$$

12. Upravte lomené výrazy a uveďte, kedy majú zmysel:

a)
$$\frac{x}{\sqrt{x}}$$

b)
$$\frac{1-a}{1+\sqrt{a}}$$

b)
$$\frac{1-a}{1+\sqrt{a}}$$
 c) $\frac{a}{a-\sqrt{a}}$

d)
$$\frac{a-b}{\sqrt{a}+\sqrt{b}}$$

e)
$$\frac{ab\sqrt{a}}{\sqrt{a\sqrt[3]{ab^2}}}$$
 f) $\frac{b-a}{\sqrt{a}-\sqrt{b}}$

f)
$$\frac{b-a}{\sqrt{a}-\sqrt{b}}$$

13. Vypočítajte a výsledné zlomky upravte. Uveďte, kedy majú dané lomené výrazy zmysel:

a)
$$\frac{\sqrt{a} - \sqrt{b}}{\sqrt{a} + \sqrt{b}}$$

b)
$$\frac{x\sqrt{x} - y\sqrt{y}}{\sqrt{x} - \sqrt{y}}$$

a)
$$\frac{\sqrt{a} - \sqrt{b}}{\sqrt{a} + \sqrt{b}}$$
 b) $\frac{x\sqrt{x} - y\sqrt{y}}{\sqrt{x} - \sqrt{y}}$ c) $\frac{a + \sqrt{b}}{a - \sqrt{b}} - \frac{a - \sqrt{b}}{a + \sqrt{b}}$

d)
$$\frac{1-\sqrt{x}}{1+\sqrt{x}} + \frac{3\sqrt{x}}{1+\sqrt{x}} - \frac{3+\sqrt{x}}{1-x}$$

14. Vypočítajte:

a)
$$\sqrt{\frac{3+\sqrt{3}}{3-\sqrt{3}}}$$

b)
$$\frac{6}{\sqrt{\sqrt{10}-2\sqrt{2}}}$$

c)
$$\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)^2$$

a)
$$\sqrt{\frac{3+\sqrt{3}}{3-\sqrt{3}}}$$
 b) $\frac{6}{\sqrt{\sqrt{10}-2\sqrt{2}}}$ c) $\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)^2$ d) $\left(\sqrt{8+\sqrt{15}}-\sqrt{8-\sqrt{15}}\right)^2$

15. Napíšte pomocou jednej mocniny:

a)
$$\sqrt[3]{a}$$

b)
$$\sqrt[4]{a^3}$$

c)
$$(\sqrt[4]{c})^7$$
 d) $\sqrt[4]{a^{-5}}$

d)
$$\sqrt[4]{a^{-5}}$$

16. Upravte na jednu mocninu:

a)
$$\frac{x^{-\frac{2}{3}}}{x^{\frac{1}{2}}}$$

a)
$$\frac{x^{-\frac{2}{3}}}{x^{\frac{1}{2}}}$$
 b) $\left(\frac{x^{-\frac{2}{3}} \cdot x^{\frac{1}{4}}}{x^{\frac{7}{6}}}\right)^{-2}$ c) $\frac{\sqrt{x\sqrt[3]{x\sqrt[4]{x}}}}{\sqrt[4]{x\sqrt[3]{x\sqrt{x}}}}$

c)
$$\frac{\sqrt{x\sqrt[3]{x\sqrt[4]{x}}}}{\sqrt[4]{x\sqrt[3]{x\sqrt{x}}}}$$

17. Upravte na odmocninu z čo najmenšieho prirodzeného čísla:

a)
$$\sqrt{8}$$

b)
$$\sqrt[3]{50625}$$

c)
$$\sqrt[6]{216}$$