Problems and Solutions:

26. Prove that

$$\frac{\left[\binom{n+1}{r+1} - \binom{n}{r}\right] \binom{n-1}{r-1}}{\binom{n}{r}^2 - \binom{n+1}{r+1} \binom{n-1}{r-1}} = r.$$

Solution. Since

$$\binom{n+1}{r+1} = \frac{n+1}{r+1} \binom{n}{r}$$

and

$$\binom{n}{r} = \frac{n}{r} \binom{n-1}{r-1},$$

we obtain

$$\frac{\left[\binom{n+1}{r+1} - \binom{n}{r}\right] \binom{n-1}{r-1}}{\binom{n}{r}^2 - \binom{n+1}{r+1} \binom{n-1}{r-1}} = \frac{\left[\binom{n}{r} \frac{n+1}{r+1} - \binom{n}{r}\right] \binom{n-1}{r-1}}{\binom{n}{r}^2 - \frac{n+1}{r+1} \binom{n}{r} \binom{n-1}{r-1}} = \frac{\left[\binom{n}{r} \frac{n+1}{r+1} - \binom{n}{r}\right] \binom{n-1}{r-1}}{\binom{n}{r}^2 - \frac{n+1}{r+1} \binom{n}{r} \binom{n-1}{r-1}} = \frac{\left[\binom{n}{r} \frac{n+1}{r+1} - \binom{n}{r}\right] \binom{n-1}{r-1}}{\binom{n}{r}^2 - \binom{n-1}{r+1} \binom{n}{r}} = \frac{\left[\binom{n}{r} \frac{n+1}{r+1} - \binom{n}{r}\right] \binom{n-1}{r-1}}{\binom{n}{r}^2 - \binom{n-1}{r+1} \binom{n-1}{r-1}} = \frac{\left[\binom{n}{r} \frac{n+1}{r+1} - \binom{n}{r}\right] \binom{n-1}{r-1}}{\binom{n}{r}^2 - \binom{n-1}{r+1} \binom{n-1}{r-1}} = \frac{\left[\binom{n}{r} \frac{n+1}{r+1} - \binom{n}{r}\right] \binom{n-1}{r-1}}{\binom{n}{r}^2 - \binom{n-1}{r+1} \binom{n-1}{r-1}} = \frac{\left[\binom{n}{r} \frac{n+1}{r+1} - \binom{n}{r}\right] \binom{n-1}{r-1}}{\binom{n}{r}^2 - \binom{n-1}{r+1} \binom{n-1}{r-1}} = \frac{\left[\binom{n}{r} \frac{n+1}{r+1} - \binom{n}{r}\right] \binom{n-1}{r-1}}{\binom{n}{r}^2 - \binom{n-1}{r+1} \binom{n-1}{r-1}} = \frac{\left[\binom{n}{r} \frac{n+1}{r+1} - \binom{n}{r}\right] \binom{n-1}{r-1}}{\binom{n-1}{r-1}} = \frac{\left[\binom{n}{r} \frac{n+1}{r+1} - \binom{n}{r}\right]}{\binom{n-1}{r-1}} = \frac{n+1}{r+1} \binom{n}{r-1}$$

$$=\frac{\binom{n}{r}\left[\frac{n+1}{r+1}-1\right]\binom{n-1}{r-1}}{\binom{n}{r}\left[\binom{n}{r}-\frac{n+1}{r+1}\binom{n-1}{r-1}\right]}=\frac{\left[\frac{n+1}{r+1}-1\right]\binom{n-1}{r-1}}{\left[\frac{n}{r}\binom{n-1}{r-1}-\frac{n+1}{r+1}\binom{n-1}{r-1}\right]}=$$

A. R. Moghaddamfar

Discrete Mathematics

$$= \frac{\left[\frac{n+1}{r+1} - 1\right] \binom{n-1}{r-1}}{\binom{n-1}{r-1} \left[\frac{n}{r} - \frac{n+1}{r+1}\right]} = \frac{\frac{n+1}{r+1} - 1}{\frac{n}{r} - \frac{n+1}{r+1}} = \frac{\frac{n-r}{r+1}}{\frac{n-r}{r(r+1)}} = r.$$

27. Prove that

(a)
$$1 - 3\binom{n}{2} + 9\binom{n}{4} - 27\binom{n}{6} + \dots = (-1)^n 2^n \cos \frac{2n\pi}{3}$$
.

(b)
$$\binom{n}{1} - 3\binom{n}{3} + 9\binom{n}{5} - \dots = \frac{(-1)^{n+1} \cdot 2^n}{\sqrt{3}} \sin \frac{2n\pi}{3}$$
.

Solution. We have

$$\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^n = \left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)^n = \cos\frac{2n\pi}{3} + i\sin\frac{2n\pi}{3}.$$

It follows by *Binomial Theorem* that

$$\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{n} = \left[\left(-\frac{1}{2}\right)(1 - i\sqrt{3})\right]^{n} = \frac{(-1)^{n}}{2^{n}}(1 - i\sqrt{3})^{n}$$

$$= \frac{(-1)^{n}}{2^{n}}\left[1 + \binom{n}{1}(-i\sqrt{3}) + \binom{n}{2}(-i\sqrt{3})^{2} + \binom{n}{3}(-i\sqrt{3})^{3} + \cdots\right]$$

$$= \frac{(-1)^{n}}{2^{n}}\left[\left[1 - 3\binom{n}{2} + 9\binom{n}{4} - \cdots\right] - i\sqrt{3}\left[\binom{n}{1} - 3\binom{n}{3} + 9\binom{n}{5} - \cdots\right]\right]$$

$$= \frac{(-1)^{n}}{2^{n}}\left[1 - 3\binom{n}{2} + 9\binom{n}{4} - 27\binom{n}{6} + \cdots + (-1)^{n}2^{n}\cos\frac{2n\pi}{3}.$$

$$\binom{n}{1} - 3\binom{n}{3} + 9\binom{n}{5} - \cdots + \frac{(-1)^{n+1} \cdot 2^{n}}{\sqrt{3}}\sin\frac{2n\pi}{3}.$$

28. Prove that for m > n,

$$\sum_{k=0}^{n} \frac{n(n-1)\cdots(n-k+1)}{m(m-1)\cdots(m-k+1)} = \frac{m+1}{m-n+1},$$

and

$$\sum_{k=0}^{n} \frac{\binom{n}{k} \binom{n}{r}}{\binom{2n}{k+r}} = \frac{2n+1}{n+1}.$$

Solution. We have

$$\sum_{k=0}^{n} \frac{n(n-1)\cdots(n-k+1)(n-k)!(m-k)!}{m(m-1)\cdots(m-k+1)(m-k)!(n-k)!} = \sum_{k=0}^{n} \frac{n!(m-k)!}{m!(n-k)!}$$

$$= \sum_{k=0}^{n} \frac{(m-k)!}{\frac{m!}{n!}(n-k)!} = \sum_{k=0}^{n} \frac{(m-k)!}{\frac{m!}{n!(m-n)!}(n-k)!(m-n)!} = \sum_{k=0}^{n} \frac{\binom{m-k}{m-n}}{\binom{m}{n}}$$

$$=\frac{1}{\binom{m}{n}}\sum_{k=0}^{n}\binom{m-k}{m-n}=\frac{1}{\binom{m}{n}}\left[\binom{m}{m-n}+\binom{m-1}{m-n}+\cdots+\binom{m-n}{m-n}\right]$$

$$=\frac{\binom{m+1}{m-n+1}}{\binom{m}{n}}=\frac{\frac{(m+1)!}{(m-n+1)!n!}}{\frac{m!}{n!(m-n)!}}=\frac{m+1}{m-n+1}.$$

$$\sum_{k=0}^{n} \frac{\binom{n}{k} \binom{n}{r}}{\binom{2n}{k+r}} = \frac{n! \binom{n}{r}}{(2n)!} \sum_{k=0}^{n} \frac{(k+r)!(2n-k-r)!}{k!(n-k)!}$$

Discrete Mathematics

$$=\frac{(n!)^2}{(2n)!}\sum_{k=0}^n\frac{(k+r)!(2n-k-r)!}{r!(n-r)!k!(n-k)!}=\frac{(n!)^2}{(2n)!}\sum_{k=0}^n\frac{(k+r)!}{r!k!}\cdot\frac{(2n-k-r)!}{(n-r)!(n-k)!}$$

$$=\frac{(n!)^2}{(2n)!}\sum_{k=0}^n\binom{k+r}{r}\binom{2n-k-r}{n-r}=\frac{(n!)^2}{(2n)!}\binom{2n+1}{n+1}=\frac{2n+1}{n+1}\,.$$

29. Consider the following numerical triangle

and prove that in every row, beginning with the third, there is an even number.

Solution. We have

A. R. Moghaddamfar

Discrete Mathematics

30. Consider the following numerical triangle

and prove that the element of the last row of the triangle is divisible by 1958.

Solution. We will show that:

- (1) each row of the triangle is an arithmetic progression, and
- (2) the sum of elements equidistant from the ends is divisible by 1958.

By induction on the number of the row.

1. The initial step

1th row
$$0 + 1958 = 1958$$
, $1 + 1957 = 1958$, $2 + 1956 = 1958$, ...,
2th row $1 + 3915 = 3916 = 2 \times 1958$, $3 + 3913 = 2 \times 1958$, ...,

2. Inductive step

$$a, a + d, a + 2d, a + 3d, ..., a + (k - 1)d$$

$$1958 | a + (a + (k - 1)d) = 2a + (k - 1)d,$$

$$1958 | a + d + (a + (k - 2)d) = 2a + (k - 1)d,$$

$$\vdots$$

$$a + sd, \quad a + (s + 1)d, \quad a + (s + 2)d$$

$$(n + 1)\text{th row}$$

$$2a + (2s + 1)d, \quad 2a + (2s + 3)d$$

$$[2a + (2s + 3)d] - [2a + (2s + 1)d] = 2d$$

A. R. Moghaddamfar

Discrete Mathematics

The sum of elements equidistant from the ends of (n + 1)th row:

(2r+d) + (2s-d) = 2(r+s) 1958 | 2(r+s)

