# **Upper School 2 - Coding**FruityLoops



Nasri Academy Thurs. Sept. 19<sup>th</sup>, 2019 By Julio B. Figueroa

### **Overview**

- Review
- Loops
  - For
  - While
- Choice
  - If/Else
  - switch
- Def my\_function():
- Assignment: function(myFunction)
- Introduction to matrices

### Review

- https://docs.python.org/3/
- Click on tutorial to get started

#### Download

Download these documents

#### Docs by version

Python 3.9 (in development) Python 3.8 (pre-release) Python 3.7 (stable) Python 3.6 (security-fixes) Python 3.5 (security-fixes) Python 2.7 (stable)

#### Other resources

All versions

PEP Index Beginner's Guide Book List Audio/Visual Talks

#### Python 3.7.4 documentation

Welcome! This is the documentation for Python 3.7.4.

#### Parts of the documentation:

#### What's new in Python 3.7?

or all "What's new" documents since 2.0

#### Tutorial

start here

#### Library Reference

keep this under your pillow

#### Language Reference

describes syntax and language elements

#### Python Setup and Usage

how to use Python on different platforms

#### Python HOWTOs

in-depth documents on specific topics

Indicae and tables

#### **Installing Python Modules**

installing from the Python Package Index & other

#### **Distributing Python Modules**

publishing modules for installation by others

#### Extending and Embedding

tutorial for C/C++ programmers

#### Python/C API

reference for C/C++ programmers

#### **FAQs**

frequently asked questions (with answers!)

# Loops

These structures control execution of a program.

They run repeatedly until some condition(s) is/are met

We introduce two types of loops

- For loops
- While loops



### For

These loops continue until a condition is met.

- If that condition is not met, the execution jumps to the else portion
- For j < 1:
  - Do something
- Else j = 0:
  - Do something else
- Else j > 0:
  - Do yet another thing

# For (cont.)

```
# for example (pun intended)
      words = ['dog', 'funeral', 'flowers']
      for i in words:
           print(i, len(i))
 5
      # i is an index that ranges from 0 to 2
 6
      # word is a list with 3 values
 8
      # len() stands for length
 9
10
      for i in range(10):
          i = i+i*2
11
12
      print(i)
13
        PEMDAS rules apply
```



# While

```
i = 1
while i < 6:
    print(i)
    i = i + 1

# save before running this next part
x = 1
while x >= 1:
    print("Ha Ha Ha")
x = x + 1
```



# While (cont.)

- while a < 10:</li>
- while A > 10:
- while the sky is blue && dogs > cats
   An exit strategy is recommended

# If/Else

```
# loop stuff
      import random
      a = random.randint(-10, 10)
      if a > 0:
6
          print("yes")
      else:
8
          print("no")
9
10
      # run this (ctrl+shift+b) 10 times
      # Do you see the two different outcomes?
```

# Def my\_function():

- Sets are not mutable
  - Or non-mutable
  - It means they can't be modified like lists
- Used to check for membership
  - Sets use curls {}
- Use sets to check for membership or to delete duplicate entries
  - Ask if c is a set of B
    - $B = \{a, b, c, d, e, f\}$
  - You can't have duplicate entries
    - B \= {a, b, a, d, e, f}

# **Assignment: function(myFunction)**

- To search through lists, tuples, and sets we use an index
  - -A = [1, 2, 3, 4]
- An index is like a house address
  - A[0] = 1
  - A[1] = 2
  - A[2] = 3
  - A[3] = 4
- The index starts at 0, and runs through 3 in this example
  - 0, 1, 2, 3
- What if?
  - -B = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1028]
  - What is B[2] + A[3]
  - What is A[5] + B[0]



### Introduction to matrices

- Singular Matrix
- Plural Matrices
  - Aka the rice of mathematics
- The index address uses 2 values

$$-A[1,2] = A_{12}$$

$$\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & & & A_{2n} \\ \vdots & & & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$