지능형 IoT 네트워크

2024.09.04.

1. 강의 계획서

• 교과목명 : 지능형 IoT 네트워크

• 담당교수 : 전 선 국

전화 : 1466

• 카톡방 : 24-2학기 지능형 IoT 네트워크

• E-Mail : seonkuk.jeon@gmail.com

[강의계획서] 지능형 IoT 네트워크.pdf

Roadmap

- 1. What is the Internet?
- Network edge
 - end systems, access networks, links
- 3. Network core
 - circuit switching, packet switching, network structure
- 4. Protocol layers, service models
- Networks under attack: security

What's the Internet: "nuts and bolts" view

millions of connected computing devices: hosts

= end systems

- running network apps
- communication links

 fiber, copper, radio, satellite

transmission rate = bandwidth

routers: forward packets (chunks of data)

What's the Internet: "nuts and bolts" view

- protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, Skype, Ethernet
- Internet: "network of networks"
 - · loosely hierarchical
 - public Internet versus private intranet
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

What's the Internet: a service view

- communication infrastructure enables distributed applications:
 - Web, VoIP, email, games, e-commerce, file sharing
- communication services provided to apps:
 - reliable data delivery from source to destination
 - "best effort" (unreliable) data delivery

What's a protocol?

<u>human protocols:</u>

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

What's a protocol?

a human protocol and a computer network protocol:

Q: Other human protocols?

7

A closer look at network structure:

- network edge: applications and hosts
- access networks, physical media: wired, wireless communication links
- □ network core:
 - interconnected routers
 - network of networks

The network edge:

- □ end systems (hosts):
 - run application programs
 - e.g. Web, email
 - at "edge of network"

client/server model

- client host requests, receives service from always-on server
- e.g. Web browser/server;
 email client/server
- peer-peer model:
 - minimal (or no) use of dedicated servers
 - e.g. Skype, BitTorrent

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks

Keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Dial-up modem/xDSL/Ethernet Cable modems/Fiber to the Home

Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka "access point"
- wireless LANs:
 - 802.11b/g (WiFi): 11 or 54 Mbps
- wider-area wireless access
 - provided by telco operator
 - ~1Mbps over cellular system (EVDO, HSDPA)
 - next up (?): WiMAX (10's Mbps) over wide area

Home networks

Typical home network components:

- □ DSL or cable modem
- router/firewall/NAT
- Ethernet
- wireless accesspoint

wireless laptops

point

Physical Media

- Bit: propagates between transmitter/rcvr pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

Twisted Pair (TP)

- two insulated copper wires
 - Category 3: traditional phone wires, 10 Mbps Ethernet
 - Category 5: 100Mbps Ethernet

Physical Media

Coaxial cable:

- two concentric copper conductors
- bidirectional
- baseband:
 - single channel on cable
 - legacy Ethernet
- broadband:
 - multiple channels on cable
 - · HFC

Fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10's-100's Gps)
- low error rate: repeaters spaced far apart; immune to electromagnetic noise

Physical Media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - · reflection
 - obstruction by objects
 - · interference

Radio link types:

- terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., Wifi)
 - 11Mbps, 54 Mbps
- □ wide-area (e.g., cellular)
 - 3G cellular: ~ 1 Mbps
- satellite
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude

The Network Core

- mesh of interconnected routers
- <u>the</u> fundamental question: how is data transferred through net?
 - circuit switching: dedicated circuit per call: telephone net
 - packet-switching: data sent thru net in discrete "chunks"

Internet structure: network of networks

□ a packet passes through many networks!

Protocol "Layers"

Networks are complex!

- many "pieces":
 - hosts
 - routers
 - links of various media
 - applications
 - protocols
 - hardware,software

Question:

Is there any hope of organizing structure of network?

Or at least our discussion of networks?

Organization of air travel

ticket (purchase) ticket (complain)

baggage (check) baggage (claim)

gates (load) gates (unload)

runway takeoff runway landing

airplane routing airplane routing

airplane routing

a series of steps

Layering of airline functionality

airport

Layers: each layer implements a service

control centers

- · via its own internal-layer actions
- * relying on services provided by layer below

airport

Why layering?

Dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system
- layering considered harmful?

Internet protocol stack

- application: supporting network applications
 - · FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - · PPP, Ethernet
- physical: bits "on the wire"

application

transport

network

link

physical

ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machinespecific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
 - these services, if needed, must be implemented in application
 - needed?

application presentation session

transport network

link

physical

Encapsulation

Network Security

- The field of network security is about:
 - * how bad guys can attack computer networks
 - how we can defend networks against attacks
 - how to design architectures that are immune to attacks
- Internet not originally designed with (much) security in mind
 - original vision: "a group of mutually trusting users attached to a transparent network"
 - Internet protocol designers playing "catch-up"
 - Security considerations in all layers!

Bad guys can put malware into hosts via Internet

- Malware can get in host from a virus, worm, or trojan horse.
- Spyware malware can record keystrokes, web sites visited, upload info to collection site.
- Infected host can be enrolled in a botnet, used for spam and DDoS attacks.
- Malware is often self-replicating: from an infected host, seeks entry into other hosts

Bad guys can put malware into hosts via Internet

Trojan horse

- Hidden part of some otherwise useful software
- Today often on a Web page (Active-X, plugin)

Virus

- infection by receiving object (e.g., e-mail attachment), actively executing
- self-replicating: propagate itself to other hosts, users

Worm:

- infection by passively receiving object that gets itself executed
- self- replicating: propagates to other hosts, users

Bad guys can attack servers and network infrastructure

- Denial of service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic
 - 1. select target
 - break into hosts around the network (see botnet)
 - send packets toward target from compromised hosts

The bad guys can sniff packets

Packet sniffing:

- broadcast media (shared Ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g., including passwords!) passing by

 Wireshark software used for end-of-chapter labs is a (free) packet-sniffer

The bad guys can use false source addresses

☐ *IP spoofing:* send packet with false source address

The bad guys can record and playback

- record-and-playback: sniff sensitive info (e.g., password), and use later
 - password holder is that user from system point of view

컴퓨터 네트워크

OSI 7 계층 모델 (OSI 7 Layer Model)

- OSI 모형 (Open Systems Interconnection Reference Model)은 국제표준화기구 (ISO: International Standard Organization)에서 개발한 모델로, 컴퓨터 네트워크 프로토콜 디자인과 통신을 계층(layer)으로 나누어 설명한 것이다.
- OSI 7 모델은 네트워크를 물리적인 구조를 구분하는 것이 아니라, 각각의 디바이스(네트워크 장치 혹은 컴퓨터) 내에서 네트워크 통신을 수행하는 하드웨어 부품 및 소프트웨어들의 역할을 논리적으로 구분하는 것이다.
- 프로토콜(protocol)을 기능별로 나누어 각 계층은 하위 계층의 기능만을 이용하고, 상위 계층에게 기능을 제공한다. '프로토콜 스택' 혹은 '스택'은 이러한 계층들로 구성되는 프로토콜 시스템이 구현된 시스템을 가리키는데, 프로토콜 스택은 하드웨어나 소프트웨어 혹은 둘의 혼합으로 구현될 수 있다. 일반적으로 하위 계층들은 하드웨어로, 상위 계층들은 소프트웨어로 구현된다.

https://www.electronicdesign.com/technologies/communications/article/21800810/electronic-design-whats-the-difference-between-the-osi-seven-layer-network-model-and-tcp-ip

OSI 7 계층별 역할 및 기능

- 1 계층, 물리적 계층 (Physical layer)
 - 물리적 매체(physical medium)를 통한 비트 스트림(bit stream) 전송
- 2 계층, 데이터 연결 계층 (Data-Link layer)
 - 비트(bit)등을 프레일(frame)이라고 불리는 논리적 단위로 구성.
 - 노드 간 전송 (Node-to-node delivery)
- · 3 계층, 네트워크 계층 (Network layer)
 - 패킷(packet)을 송신이지(source)에서 목적지(destination)으로 전송
- 4 계층, 전송 계층 (Transport layer)
 - 송신지에서 목적지로 전체 메시지를 전송.
- 5 계층, 세션 계층 (Session layer)
 - 통신 시스템 간의 대화(dialog)를 구축(establish), 관리, 동기화(synchronize)
- 6 계층, 표현 계층 (Presentation layer)
 - 서로 다른 시스템 간에 데이터 포맷(format) 차이를 처리.
- 7 계층, 어플리케이션 계층 (Application layer)
 - 사용자(혹은 서비스)가 네트워크에 접속할 수 있도록 함.

OSI 7 계층 - 물리적 계층

- 물리적 계층 (Physical Layer)
 - 네트워크의 물리적/전기적 특성을 정의한다.
 - 물리적 계층은 각 컴퓨터에 어떤 종류의 네트워크 카드가 설치되어야 하는지, 어떤 종류의 허브를 써야 하는지를 정의한다.
 - 달리 말이서 물리적 계층은 컴퓨터 네트워크 하드웨어와 네트워크 소프트웨어 간의 도관(conduit, connection)이다.
 - 데이터 연결 계층와 통신을 하며, 물리적인 매체를 통해 전송되는 비트 스트림을 통제(regulate) 한다.
 - 케이블을 통해 전송되는 데이터가 어떤 전송 기법(transmission technique)으로 전송되는지 정의한다.
 - 물리적 계층 장비: 허브(hub), 리피터(repeater)

OSI 7 계층 - 데이터 연결 계층

- 데이터 연결 계층 (Data link layer)
 - 데이터 연결 계층의 역할은 회선(line)을 통해 전송되는 데이터의 전송 오류가 없도록 하고, 노드(node)간의 전송을 책임진다.
 - 전송 측에서 데이터 연결 계층은 네트워크 계층에서 전달된 비트 스트림(bit stream)을 프레임(frame) 이라는 형식(form)으로 분할한다.
 - 분리된 데이터 프레임(data frame)들은 순차적으로 수신 측으로 전송된다.
 - 수신 측의 데이터 연결 계층에서는 물리적 계층을 통해 전달된 전송 데이터의 오류를 검출하고, 수정한다.
 - 데이터 연결 계층 장비: 스위치(switch), 브리지(bridge)

OSI 7 계층 - 네트워크 계층

- 네트워크 계층 (Nework layer)
 - 네트워크 계층은 송신과 수신 단의 데이터가 전송되는 물리적 경로를 결정(physical routing) 한다.
 - 전송 계층에서 전달된 외부로 전송되야 하는 데이터(outbound data)는 네트워크 계층 프로토콜로 캡슐화(encapsulated)되고, 다시 분할하고 전송하기 위해 데이터 연결 계층으로 보내진다.
 - 네트워크 계층에서 데이터 연결 계층에서 전달된 프레임(frame)들을 패킷으로 재조립한 후 전송 계층으로 전달한다.
 - 네트워크 계층을 일정한 네트워크 주소 지정 체계(uniform addressing mechanism)를 통해 하나 이상의 네트워크들이 통신할 수 있게끔 한다.
 - 네트워크 계층 장비: 라우터(router)

OSI 7 계층 - 전송 계층

- · 전송 계층 (Transfort layer)
 - 전송 계층의 기본 기능은 데이터 패킷의 오류 검출(error recognition) 및 복구(recovery) 다.
 - 송신및 수신 디바이스 간의 연결을 확정(establish), 유지(maintain), 종료(terminate)하는 역할을 담당한다.
 - 수신 측 전송 계층은 패킷을 원본 메시지(original message)로 재구성(rebuild)하고, 패킷이 정상적으로 동작하는 것을 보증한다. 수신 측 전송 계층은 수신 확인(receipt acknowledgments)을 전송한다.

Appendix:

OSI 7 계층 - 세션 계층

- 세션 계층 (Session layer)
 - 세션 계층은 송신 및 수신 어플리케이션 간의 데이터 교환(exchange)를 구성하고 동기화(synchronize) 한다.
 - 세션 계층은 각 어플리케이션이 네트워크 반대편의 상태(status)를 알 수 있게끔한다.
 - 송신 측 어플리케이션의 오류는 세션 계층에서 다루어지며, 이로 인해 수신 어플케이션은 오류가 발생한 것을 알 수 있다.
 - 세션 계층을 현재 연결된 어플리케이션 간의 재동기화(resynchroize)를 수행할수 있다.
 - 재동기화는 통신 중 일시적으로 오류가 발생하거나, 전송 결과 데이터가 유실(loss) 되었을 때, 문제 해결을 위해 필요하다.

OSI 7 계층 - 표현 계층

- 표현 계층 (Presentation layer)
 - 표현 계층의 기본 기능은 한쪽 시스템에서 송신된 정보가 다른 시스템의 어플리케이션 계층에서 조회할 수 있게끔 보장하는 것이다.
 - 실행 중인 어플리케이션이 사용할 수 있게끔 어플리케이션 데이터를 포장(pack) 하거나, 풀어내는(unpack)을 작업을 수행하다.
 - 표현 계층에서는 보안을 위해 데이터 암호화를 암호화 하거나, 네트워크를 통해 전송되는 데이터 크기를 줄이기 위해 암축하는 등일 기능을 담당할 수 있다.

OSI 7 계층 - 어플리케이션 계층

- 어플리케이션 계층 (Application layer)
 - 어플리케이션 계층을 프로그램이 OSI 모델을 사용하기 위해 접근하는 진입점(entrance point)이며, 네크워크 자원을 사용하는 계층이다.
 - 어플리케이션 계층은 어플리케이션 기능(혹은 서비스)를 직접적으로 표현하는 계층이며, 최종 사용자(end user)에게 가장 가까운 계층이다.
 - 전자우편과 같은 네트워크 기반 소프트웨어의 사용자 인터페이스와 기능을 사용자에게 직접적으로 제공하는 계층이다.

계층별 프로토콜

IP Networking model			
Applications Layer	FTP	HTTP	
	SMTP TIME		
	Telnet	Ping	RPC
Host-to-Host Layer	TCP UDP		
Internet Layer	ARP	ICMP IP	RIP
Network protocols Layer	Ethernet	Toker	Ring ATM
Hardware			

OSI 참조 모델

Application
Presentation
Session
Transfort
Network
Data Link

Physical

