Contents

CONTENTS

Chapter 1

Real Analysis

```
(1.5)
                              \mathbf{y}[<,S] := \forall_{x,y \in S} (x < y \lor x = y \lor y < x)
          r[<,S] := (OrderTrichotomy[<,S]) \land (OrderTransitivity[<,S])
(1.7)
  Bounded Above [E,S,<]:=(Order[<,S]) \land (E\subset S) \land \Big(\exists_{\beta\in S} \forall_{x\in E} (x\leq \beta)\Big)
 Bounded Below [E,S,<]:=\overline{(Order[<,S]) \land (E \subset S) \land \left(\exists_{\beta \in S} \forall_{x \in E} (\beta \leq x)\right)}
                    \operatorname{nd}[\beta, E, S, <] := (\operatorname{Order}[<, S]) \land (E \subset S) \land (\beta \in S \land \forall_{x \in E} (x \le \beta))
                    \operatorname{nd}\left[\beta,E,\overline{S},<\right]:=\left(\operatorname{Order}\left[<,S\right]\right)\wedge\left(E\subset S\right)\overline{\wedge\left(\beta\in S\wedge\forall_{x\in E}(\beta\leq x)\right)}
(1.8)
LUB[\alpha, E, S, <] := (UpperBound[\alpha, E, S, <]) \land (\forall_{\gamma} (\gamma < \alpha \implies \neg UpperBound[\gamma, E, S, <]))
GLB[\alpha, E, S, <] := (LowerBound[\alpha, E, S, <]) \land \left( \forall_{\beta} (\alpha < \beta \implies \neg LowerBound[\beta, E, S, <]) \right)
(1.10)
 \text{$LU$ B Property}[S,<] := \forall_E \Big( \big( (\emptyset \neq E \subset S) \land (Bounded Above[E,S,<]) \implies \exists_{\alpha \in S} (LUB[\alpha,E,S,<]) \Big) \Big) 
GLBProperty[S,<] := \forall_E \Big( (\emptyset \neq E \subset S) \land (Bounded Below[E,S,<]) \implies \exists_{\alpha \in S} (GLB[\alpha,E,S,<]) \Big) \Big)
(1.11)
(1) LUBProperty[S, <] \implies ...
   (1.1) \quad (\emptyset \neq B \subset S \land BoundedBelow[B, S, <]) \implies \dots
       (1.1.1) Order[<, S] \land \exists_{\delta' \in S}(LowerBound[\delta', B, S, <])
       (1.1.2) \quad |B| = 1 \implies \dots
          (1.1.2.1) \quad \exists_{u'}(u' \in B) \quad \blacksquare \ u := choice(\{u'|u' \in B\}) \quad \blacksquare \ B = \{u\}
           (1.1.2.2) \quad \mathbf{GLB}[u, B, S, <] \quad \blacksquare \quad \exists_{\epsilon_0 \in S} (\mathbf{GLB}[\epsilon_0, B, S, <])
       (1.1.3) \quad |B| = 1 \implies \exists_{\epsilon_0 \in S} (GLB[\epsilon_0, B, S, <])
       (1.1.4) |B| \neq 1 \implies \dots
                                                                                                                                                                                                                              from: LUBProperty, 1
          (1.1.4.1) \quad \forall_E \left( (\emptyset \neq E \subset S \land Bounded Above[E, S, <]) \implies \exists_{\alpha \in S} (LUB[\alpha, E, S, <]) \right)
          (1.1.4.2) \quad L := \{ s \in S | \underline{LowerBound}[s, B, S, <] \}
          (1.1.4.3) \quad |B| > 1 \land OrderTrichotomy[<, S] \quad \blacksquare \quad \exists_{b_1' \in B} \exists_{b_0' \in B} (\overline{b_0'} < b_1')
          (1.1.4.4) \quad b_1 := choice\Big(\{b_1' \in B | \exists_{b_0' \in B}(b_0' < b_1')\}\Big) \quad \blacksquare \quad \neg LowerBound[b_1, B, S, <]
          (1.1.4.5) b_1 \notin L \blacksquare L \subset S
                                                                                                                                                                                                                                        from: 1.1.1
          (1.1.4.6) \quad \delta := choice(\{\delta' \in S | \underline{LowerBound}[\delta', B, S, <]\}) \quad \blacksquare \quad \delta \in L \quad \blacksquare \quad \emptyset \neq L
           (1.1.4.7) \quad \emptyset \neq L \subset S
           (1.1.4.8) \quad \forall_{y \in L}(\underline{LowerBound}[y_0, B, S, <]) \quad \blacksquare \quad \forall_{y \in L} \forall_{x \in B}(y_0 \le x)
```

```
(1.1.4.9) \quad \forall_{x \in B} \left( x \in S \land \forall_{y \in L} (y_0 \le x) \right) \quad \blacksquare \quad \forall_{x \in B} (UpperBound[x, L, S, <])
          (1.1.4.10) \quad \exists_{x \in S}(UpperBound[x, L, S, <]) \quad \blacksquare \quad BoundedAbove[L, S, <]
                                                                                                                                                                                                                                       from: 1.1.4.7.1.1.4.10
          (1.1.4.11) \emptyset \neq L \subset S \land Bounded Above[L, S, <]
          (1.1.4.12) \quad \exists_{\alpha' \in S}(LUB[\alpha', L, S, <]) \quad \blacksquare \quad \alpha := choice(\{\alpha' \in S | (LUB[\alpha', L, S, <])\})
          (1.1.4.13) \quad \forall_{x}(x \in \overline{B} \implies \underline{UpperBound[x, L, S, <]})
          (1.1.4.14) \quad \forall_x (\neg UpperBound[x, L, S, <] \implies x \notin B)
          (1.1.4.15) \gamma < \alpha \implies \dots
                                                                                                                                                                                                                                from: LUB, 1.1.4.12, 1.1.4.14
              (1.1.4.15.1) \quad \neg UpperBound[\gamma, L, S, <] \quad \blacksquare \quad \gamma \notin B
          (1.1.4.16) \quad \gamma < \alpha \implies \gamma \notin B \quad \blacksquare \quad \gamma \in B \implies \gamma \ge \alpha
          (1.1.4.17) \quad \forall_{\gamma \in B} (\alpha \leq \gamma) \quad \blacksquare \quad LowerBound[\alpha, B, S, <]
          (1.1.4.18) \alpha < \beta \implies \dots
                                                                                                                                                                                                                                from: LUB, 1.1.4.12, 1.1.4.18
              (1.1.4.18.1) \quad \forall_{v \in L} (y_0 \le \alpha < \beta) \quad \blacksquare \quad \forall_{v \in L} (y_0 \ne \beta)
              (1.1.4.18.2) \beta \notin L \ \square \neg LowerBound[\beta, B, S, <]
          (1.1.4.19) \quad \alpha < \beta \implies \neg LowerBound[\beta, B, S, <] \quad \blacksquare \quad \forall_{\beta \in S} (\alpha < \beta \implies \neg LowerBound[\beta, B, S, <])
          (1.1.4.20) \quad LowerBound[\alpha, B, S, <] \land \forall_{\beta \in S} (\alpha < \beta \implies \neg LowerBound[\beta, B, S, <])
          (1.1.4.21) \quad \mathbf{GLB}[\alpha, B, S, <] \quad \blacksquare \quad \exists_{\epsilon_1 \in S} (\mathbf{GLB}[\epsilon_1, B, S, <])
      (1.1.5) |B| \neq 1 \implies \exists_{\epsilon_1 \in S} (GLB[\epsilon_1, B, S, <])
      (1.1.6) \quad \left( |B| = 1 \implies \exists_{\epsilon_0 \in S} (GLB[\epsilon_0, B, S, <]) \right) \land \left( |B| \neq 1 \implies \exists_{\epsilon_1 \in S} (GLB[\epsilon_1, B, S, <]) \right)
       (1.1.7) \quad (|B| = 1 \lor |B| \ne 1) \implies \exists_{\varepsilon \in S} (GLB[\varepsilon, B, S, <]) \quad \blacksquare \quad \exists_{\varepsilon \in S} (GLB[\varepsilon, B, S, <])
   (1.2) \quad (\emptyset \neq B \subset S \land Bounded Below[B, S, <]) \implies \exists_{\epsilon \in S} (GLB[\epsilon, B, S, <])
   (1.3) \quad \forall_{B} \left( (\emptyset \neq B \subset \overline{S \land Bounded Below}[B, S, <]) \implies \exists_{\epsilon \in S} (GLB[\epsilon, B, S, <]) \right)
   (1.4) GLBProperty[S, <]
(2) LUBProperty[S,<] \Longrightarrow GLBProperty[S,<]
```

(1.12)

$$(1.12)$$

$$Field[F, +, *] := \exists_{0,1 \in F} \forall_{x,y,z \in F} \begin{cases} x + y \in F & \land & x * y \in F & \land \\ x + y = y + x & \land & x * y = y * x & \land \\ (x + y) + z = x + (y_0 + z) & \land & (x * y) * z = x * (y_0 * z) & \land \\ 1 \neq 0 & \land & x * (y_0 + z) = (x * y) + (x * z) & \land \\ 0 + x = x & \land & 1 * x = x & \land \\ \exists_{-x \in F} (x + (-x) = 0) & \land (x \neq 0 \implies \exists_{1/x \in F} (x * (1/x) = 1)) \end{cases}$$

(1)
$$y = 0 + y = (x + (-x)) + y = ((-x) + x) + y = (-x) + (x + y) = \dots$$

(2)
$$(-x) + (x+z) = ((-x) + x) + z = (x + (-x)) + z = 0 + z = z$$

$$(1) \quad x + y = x = 0 + x = x + 0$$

(2) y = 0

veInverseUniqueness := $(x + y = 0) \implies y = -x$

Additive I dentity Uniqueness := $(x + y = x) \implies y = 0$

$$(1) \quad x + y = \emptyset = x + (-x)$$

from: AdditiveCancellatio

(2) y = -x

(1)
$$0 = x + (-x) = (-x) + x \quad 0 = (-x) + x$$

from: AdditiveInverseUnique (2) x = -(-x)(1.15)iplicative I dentity Uniqueness: $= (x \neq 0 \land x * y = x) \implies y = 1$ iplicative I nver se Uniqueness: $= (x \neq 0 \land x * y = 1) \implies y = 1/x$ Couble Reciprocal := $(x \neq 0) \implies x = 1/(1/x)$ (1.16)Domination := 0 * x = 0(1) 0 * x = (0 + 0) * x = 0 * x + 0 * x 0 * x = 0 * x + 0 * xfrom: AdditiveIdentityUniquene $(2) \quad \mathbb{0} * x = \mathbb{0}$ (1) $(x \neq 0 \land y \neq 0) \implies \dots$ $(1.1) \quad (x * y = 0) \implies \dots$ $(1.1.1) \quad \mathbb{1} = \mathbb{1} * \mathbb{1} = (x * (1/x)) * (y * (1/y)) = (x * y) * ((1/x) * (1/y)) = \mathbb{0} * ((1/x) * (1/y)) = \mathbb{0}$ $(1.1.2) \quad 1 = 0 \land 1 \neq 0 \quad \blacksquare \perp$ $(1.2) \quad (x * y = 0) \implies \bot \quad \blacksquare \quad x * y \neq 0$ $(2) \quad (x \neq 0 \land y \neq 0) \implies x * y \neq 0$ (1) x * y + (-x) * y = (x + -x) * y = 0 * y = 0 x * y + (-x) * y = 0(2) (-x) * y = -(x * y)(3) $x * y + x * (-y) = x * (y_0 + -y) = x * 0 = 0$ x * y + x * (-y) = 0(4) x * (-y) = -(x * y)(5) (-x) * y = -(x * y) = x * (-y) $(1) \quad (-x) * (-y) = -(x * (-y)) = -(-(x * y)) = x * y$ (1.17)
$$\begin{split} I[F,+,*,<] := \left(\begin{array}{ccc} Field[F,+,*] & \wedge & Order[<,F] & \wedge \\ \forall_{x,y,z \in F}(y_0 < z \implies x+y < x+z) & \wedge \\ \forall_{x,y \in F} \left((x > 0 \wedge y > 0) \implies x * y > 0 \right) \end{array} \right) \end{split}$$
 $(1.1) \quad 0 = (-x) + x > (-x) + 0 = -x \quad \blacksquare \quad 0 > -x \quad \blacksquare \quad -x < 0$ $(2) \quad x > 0 \implies -x < 0$ $(3) -x < 0 \implies \dots$ $(3.1) \quad 0 = x + (-x) < x + 0 = x \quad 0 < x \quad x > 0$ (4) $-x < 0 \implies x > 0$ $(5) \quad x > 0 \implies -x < 0 \land -x < 0 \implies x > 0 \quad \blacksquare \quad x > 0 \iff -x < 0$ ositive Factor Preserves Order := $(x > 0 \land y < z) \implies x * y < x * z$

(1.1) (-y) + z > (-y) + y = 0 $\blacksquare z + (-y) = 0$ (1.2) x * (z + (-y)) > 0 $\blacksquare x * z + x * (-y) > 0$

from: 1.2

 $(1.2) \quad q$

 $(1.3.2) \quad (q = p) \implies (p \in \alpha \land p \notin \alpha) \implies \bot \quad \blacksquare \quad q \neq p$

 $(1.3) \quad (q \notin \alpha) \implies \dots$

(1.3.1) $q \ge p$

	CHILI I EK I. KELETII VIETOIO
(1.3) x*z = 0 + x*z = (x*y + -(x*y)) + x*z = (x*y + x*(-y)) + x*z =	from: Field, NegationCommutativity
(1.4) x * y + (x * z + x * (-y)) > x * y + 0 = x * y	from: Field, 1.2
(1.5) x*z > x*y	from: 1.3, 1.4
$(2) (x > 0 \land y < z) \implies x * z > x * y$	
Negative Factor Flips Order: = $(x < 0 \land y < z) \implies x * y > x * z$ $(1) (x < 0 \land y < z) \implies \dots$	
(1.1) -x > 0	from: NegationOnOrder
$(1.2) (-x) * y < (-x) * z \blacksquare 0 = x * y + (-x) * y < x * y + (-x) * z \blacksquare 0 < x * y + (-x) * z$	from: PositiveFactorPreservesOrder
$(1.3) 0 < (-x) * (-y+z) \blacksquare 0 > x * (-y+z) \blacksquare 0 > -(x*y) + x * z$	from: NegationOnOrder
(1.4) x * y > x * z	
$(2) (x < 0 \land y < z) \implies x * y > x * z$	
Square 1 s Positive := $(x \neq 0) \implies x * x > 0$	
$(1) (x > 0) \implies x * x > 0$	from: Ordered Field
$(2) (x < 0) \implies \dots$	
$(2.1) -x > 0 \blacksquare x * x = (-x) * (-x) > 0 \blacksquare x * x > 0$	from: NegationOnOrder, Ordered Field, Negative Multiplication
$(3) (x < 0) \implies x * x > 0$ $(4) x \neq 0 \implies (x > 0 \lor x < 0) \implies x * x > 0 \blacksquare x \neq 0 \implies x * x > 0$	from: OrderTrichotomy, 1, 3
$(1) x + 0 \longrightarrow (x \times 0 \times x \times 0) \longrightarrow x + x \times 0 \longrightarrow x + x \times 0$	
Onels Positive := 1 > 0	
$(1) 1 \neq 0 1 1 = 1 * 1 > 0$	
ReciprocationOnOrder := $(0 < x < y) \implies 0 < 1/y < 1/x$ (1) $(0 < x < y) \implies$	
$(1.1) x * (1/x) = 1 > 0 \blacksquare x * (1/x) > 0$	from: Field, One Is Positive
$(1.2) 1/x < 0 \implies x * (1/x) < 0 \land x * (1/x) > 0 \implies \bot \blacksquare 1/x > 0$	from: NegativeFactorFlipsOrder, 1
$(1.3) y * (1/y) = 1 > 0 \blacksquare y * (1/y) > 0$	from: Field, One Is Positive
$(1.4) 1/y < 0 \implies y * (1/y) < 0 \land y * (1/y) > 0 \implies \bot $	$from:\ Negative Factor Flips Order, 1$
(1.5) (1/x) * (1/y) > 0	
(1.6) 0 < 1/y = ((1/x) * (1/y)) * x < ((1/x) * (1/y)) * y = 1/x	
(1.19) Ordered Field $\mathbb{Q} := Ordered Field [\mathbb{Q}, +, *, <]$ —	
Subfield $[K, F, +, *] := Field[F, +, *] \land K \subset F \land Field[K, +, *]$ Ordered Subfield $[K, F, +, *, <] := Ordered Field[F, +, *, <] \land K \subset F \land Ordered Field[K, +, *, <]$	
$CutI[\alpha] := \emptyset \neq \alpha \subset \mathbb{Q}$	
$\begin{array}{l} \textbf{Cutl1}[\alpha] := \forall_{p \in \alpha} \forall_{q \in \mathbb{Q}} (q$	
$\mathbb{R} := \{ \alpha \in \mathbb{Q} CutI[\alpha] \wedge CutII[\alpha] \wedge CutIII[\alpha] \}$	
$CutCorollary := (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q$	
$(1) (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies \dots$	
$(1.1) \forall_{p' \in \alpha} \forall_{q' \in \mathbb{Q}} (q' < p' \implies q' \in \alpha)$	

```
(1.3.3) \quad q \ge p \land q \ne p \quad \blacksquare \quad p < q
    (1.4) \quad q \notin \alpha \implies p < q \quad \blacksquare \quad p < q
(2) \quad (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q
   \overline{\text{CutCorollaryll}} := (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
(1) \quad (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies \dots
    (1.2) \quad s \in \alpha \implies (r \in \mathbb{Q} \implies (r < s \implies r \in \alpha)) \quad \blacksquare \quad s \in \alpha \implies r \in \alpha
    (1.3) \quad r \notin \alpha \implies s \notin \alpha \quad \blacksquare \quad s \notin \alpha
(2) \quad (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
  <_{\mathbb{R}}[\alpha,\beta] := \alpha,\beta \in \mathbb{R} \land \alpha \subset \beta
      rderTrichotomyOfR:=OrderTrichotomy[\mathbb{R},<_{\mathbb{R}}]
(1) \quad (\overline{\alpha, \beta \in \mathbb{R}}) \implies \dots
    (1.1) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \implies \dots
         (1.1.1) \quad \alpha \not\subset \beta \land \alpha \neq \beta
         (1.1.2) \quad \exists_{p'}(p' \in \alpha \land p' \notin \beta) \quad \blacksquare \quad p := choice(\{p' | p' \in \alpha \land p' \notin \beta\})
         (1.1.3) q \in \beta \implies \dots
          (1.1.3.1) \quad p, q \in \mathbb{Q}
             (1.1.3.2) q < p
             (1.1.3.3) q \in \alpha
        (1.1.4) \quad q \in \beta \implies q \in \alpha
         (1.1.5) \quad \forall_{q \in \beta} (q \in \alpha) \quad \blacksquare \quad \beta \subseteq \alpha
         (1.1.6) \quad \beta \subset \alpha \quad \blacksquare \quad \beta <_{\mathbb{R}} \quad \alpha
     (1.2) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \implies \beta <_{\mathbb{R}} \alpha
     (1.3) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \lor (\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \quad \blacksquare \ (\beta <_{\mathbb{R}} \alpha) \lor (\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta)
    (1.4) \quad \alpha = \beta \implies \neg(\alpha <_{\mathbb{R}} \beta \lor \beta <_{\mathbb{R}} \alpha)
    (1.5) \quad \alpha <_{\mathbb{R}} \beta \implies \neg(\alpha = \beta \lor \beta <_{\mathbb{R}} \alpha)
    (1.6) \quad \beta <_{\mathbb{R}} \alpha \implies \neg(\alpha = \beta \lor \alpha <_{\mathbb{R}} \beta)
    (1.7) \quad \alpha <_{\mathbb{R}} \beta \vee \alpha = \beta \vee \alpha <_{\mathbb{R}} \beta
(2) \ (\alpha,\beta\in\mathbb{R}) \implies (\alpha<_{\mathbb{R}}\beta\veebar\alpha=\beta\veebar\alpha<_{\mathbb{R}}\beta)
(3) \quad \forall_{\alpha,\beta \in \mathbb{R}} (\alpha <_{\mathbb{R}} \beta \underline{\vee} \alpha = \beta \underline{\vee} \alpha <_{\mathbb{R}} \beta)
(4) OrderTrichotomy[\mathbb{R}, <_{\mathbb{R}}]
                        ansitivityOfR := OrderTransitivity[\mathbb{R}, <_{\mathbb{R}}]
(1) (\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots
    (1.1) \quad (\alpha <_{\mathbb{R}} \beta \wedge \beta <_{\mathbb{R}} \gamma) \implies \dots
        (1.1.1) \quad \alpha \subset \beta \land \beta \subset \gamma
         (1.1.2) \quad \overline{\forall_{a \in \alpha} (a \in \beta) \land \forall_{b \in \beta} (b \in \gamma)}
         (1.1.3) \quad \forall_{\alpha \in \alpha} (\alpha \in \gamma) \quad \blacksquare \quad \alpha \subset \gamma \quad \blacksquare \quad \alpha <_{\mathbb{R}} \quad \gamma
   (1.2) \quad (\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma
(2) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies \left( (\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma \right)
(3) \quad \forall_{\alpha,\beta,\gamma\in\mathbb{R}} \left( (\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma \right)
(4) OrderTransitivity[\mathbb{R}, <_{\mathbb{R}}]
```

 $OrderOfR := Order[<_{\mathbb{R}}, \mathbb{R}]$

 $(1.1) \quad \gamma := \{ p \in \mathbb{Q} | \exists_{\alpha \in A} (p \in \alpha) \}$

 $\frac{LUBPropertyOfR := LUBProperty[\mathbb{R}, <_{\mathbb{R}}]}{(1) \quad (\emptyset \neq A \subset \mathbb{R} \land Bounded Above[A, \mathbb{R}, <_{\mathbb{R}}]) \implies \dots}$

```
(1.2) \quad A \neq \emptyset \quad \blacksquare \quad \exists_{\alpha} (\alpha \in A) \quad \blacksquare \quad \alpha_0 := choice(\{\alpha \mid \alpha \in A\})
     (1.3) \quad \alpha_0 \neq \emptyset \quad \blacksquare \ \exists_a (a \in \alpha_0) \quad \blacksquare \ a_0 := choice(\{a | a \in \alpha_0\}) \quad \blacksquare \ a_0 \in \gamma \quad \blacksquare \ \gamma \neq \emptyset
     (1.4) Bounded Above [A, \mathbb{R}, <_{\mathbb{R}}]  \blacksquare \exists_{\beta} (UpperBound[\beta, A, \mathbb{R}, <_{\mathbb{R}}])
     (1.5) \quad \beta_0 := choice(\{\beta | \underline{UpperBound}[\beta, A, \mathbb{R}, <_{\mathbb{R}}]\})
     (1.6) \quad UpperBound[\beta_0, A, \mathbb{R}, <_{\mathbb{R}}] \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \beta_0) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \subseteq \beta_0) \quad \blacksquare \quad \forall_{\alpha \in A} \forall_{\alpha \in A} (\alpha \in \beta_0)
     (1.7) \quad (\alpha \in A \land a \in \alpha) \iff a \in \gamma \quad \blacksquare \quad \forall_{a \in \gamma} (a \in \beta_0) \quad \blacksquare \quad \gamma \subseteq \beta_0
     (1.8) \quad \beta_0 \subset \mathbb{Q} \quad \blacksquare \quad \gamma \subseteq \beta_0 \subset \mathbb{Q} \quad \blacksquare \quad \gamma \subset \mathbb{Q}
     (1.9) \quad \emptyset \neq \gamma \subset \mathbb{Q} \quad \blacksquare \quad CutI[\gamma]
     (1.10) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies \dots
         (1.10.1) \quad p \in \gamma \quad \blacksquare \ \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \ \alpha_1 := choice(\{\alpha \in A | p \in \alpha\})
          (1.10.2) \quad p \in \alpha_1 \land q \in \mathbb{Q} \land q 
      (1.11) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies q \in \gamma \quad \blacksquare \quad \forall_{p \in \gamma} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \gamma) \quad \blacksquare \quad CutII[\gamma]
     (1.12) \quad p \in \gamma \implies \dots
          (1.12.1) \quad \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \ \alpha_2 := choice(\{\alpha \in A | p \in \alpha\})
          (1.12.2) \quad \alpha_2 \in \mathbb{R} \quad \blacksquare \quad CutII[\alpha_2] \quad \blacksquare \quad \exists_{r \in \alpha_2}(p < r) \quad \blacksquare \quad r_0 := choice(\{r \in \alpha_2 | p < r\})
          (1.12.3) \quad r_0 \in \alpha_2 \quad \boxed{r_0 \in \gamma}
          (1.12.4) \quad p < r_0 \quad \blacksquare \quad p < r_0 \land r_0 \in \gamma \quad \blacksquare \quad \exists_{r \in \gamma} (p < r)
      (1.13) \quad p \in \gamma \implies \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad \forall_{p \in \gamma} \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad CutIII[\gamma]
     (1.14) \quad CutI[\gamma] \wedge CutII[\gamma] \wedge CutIII[\gamma] \quad \boxed{\gamma} \in \mathbb{R}
     (1.15) \quad \forall_{\alpha \in A} (\alpha \subseteq \gamma) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \gamma)
     (1.16) \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \gamma) \land \gamma \in \mathbb{R} \quad \blacksquare \quad UpperBound[\gamma, A, \mathbb{R}, <_{\mathbb{R}}]
     (1.17) \quad \delta <_{\mathbb{R}} \gamma \implies \dots
          (1.17.1) \quad \delta \subset \gamma \quad \blacksquare \ \exists_s (s \in \gamma \land s \notin \delta) \quad \blacksquare \ s_0 := choice(\{s \in \mathbb{Q} | s \in \gamma \land s \notin \delta\})
          (1.17.2) \quad s_0 \in \gamma \quad \blacksquare \quad \exists_{\alpha \in A} (s_0 \in \alpha) \quad \blacksquare \quad \alpha_3 := choice(\{\alpha \in A | s_0 \in \alpha\})
          (1.17.3) \quad s_0 \in \alpha_3 \land s_0 \notin \delta \quad \blacksquare \quad \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)
          (1.17.4) \delta \geq_{\mathbb{R}} \alpha_3 \implies \dots
              (1.17.4.1) \quad \alpha_3 \subseteq \delta \quad \blacksquare \quad \forall_{s \in \mathbb{Q}} (s \in \alpha_3 \implies s \in \delta) \quad \blacksquare \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)
               (1.17.4.2) \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \land \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \quad \blacksquare \quad \bot
          (1.17.5) \quad \delta \geq_{\mathbb{R}} \alpha_3 \implies \bot \quad \blacksquare \quad \delta <_{\mathbb{R}} \alpha_3 \quad \blacksquare \quad \exists_{\alpha \in A} (\delta <_{\mathbb{R}} \alpha) \quad \blacksquare \quad \exists_{\alpha \in A} (\neg (\alpha \leq_{\mathbb{R}} \delta))
           (1.17.6) \quad \neg \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \delta) \quad \blacksquare \quad \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}]
     (1.18) \quad \delta <_{\mathbb{R}} \gamma \implies \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}]) \quad \blacksquare \quad \forall_{\delta} (\delta <_{\mathbb{R}} \gamma \implies \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}])
     (1.19) \quad UpperBound[\gamma, A, \mathbb{R}, <_{\mathbb{R}}] \land \forall_{\delta} (\delta <_{\mathbb{R}} \gamma \implies \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}])
     (1.20) \quad LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}] \quad \blacksquare \, \exists_{\gamma \in S}(LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}])
(2) \quad (\emptyset \neq A \subset \mathbb{R} \land Bounded Above[A, \mathbb{R}, <_{\mathbb{R}}]) \implies \exists_{\gamma \in S}(LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}])
(3) \ \forall_{A} \Big( (\emptyset \neq A \subset \mathbb{R} \land Bounded Above[A, \mathbb{R}, <_{\mathbb{R}}]) \implies \exists_{\gamma \in S} (LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}]) \Big) \ \blacksquare \ LUBProperty[\mathbb{R}, <_{\mathbb{R}}]
    \mathbf{r}_{\mathbb{R}}[\alpha,\beta] := \alpha,\beta \in \mathbb{R} \land (\alpha +_{\mathbb{R}} \beta) = \{r + s | r \in \alpha \land s \in \beta\}
  \mathbf{O}_{\mathbb{R}} := \{ x \in \mathbb{Q} | x < 0 \}
0InR := 0_{\mathbb{R}} \in \mathbb{R}
(1) \quad -1 \in 0_{\mathbb{R}} \land 1 \notin 0_{\mathbb{R}} \quad \blacksquare \quad \emptyset \neq 0_{\mathbb{R}} \subseteq \mathbb{Q} \quad \blacksquare \quad CutI[0_{\mathbb{R}}]
(2) \quad (x \in \overline{0_{\mathbb{R}} \land y \in \mathbb{Q} \land y < x)} \implies y < x < 0 \implies y < 0 \implies y \in 0_{\mathbb{R}} \quad \blacksquare \quad \forall_{x \in 0_{\mathbb{R}}} \forall_{y \in \mathbb{Q}} (y_0 < x \implies y \in 0_{\mathbb{R}}) \quad \blacksquare \quad CutII[0_{\mathbb{R}}]
(3) \quad y := x/2 \quad \blacksquare \quad (x \in 0_{\mathbb{R}}) \implies (x < y < 0) \implies \exists_{y \in 0_{\mathbb{R}}} (x < y) \quad \blacksquare \quad \forall_{x \in 0_{\mathbb{R}}} \exists_{y \in 0_{\mathbb{R}}} (x < y) \quad \blacksquare \quad CutIII[0_{\mathbb{R}}]
(4) \quad CutI[0_{\mathbb{R}}] \wedge CutII[0_{\mathbb{R}}] \wedge CutIII[0_{\mathbb{R}}] \quad \blacksquare \quad 0_{\mathbb{R}} \in \mathbb{R}
                                                        reOfR := (\alpha, \beta \in \mathbb{R}) \implies ((\alpha +_{\mathbb{R}} \beta) \in \mathbb{R})
(1) (\alpha, \beta \in \mathbb{R}) \implies \dots
```

 $(1.1) \quad (\alpha +_{\mathbb{R}} \beta) = \{r + s | r \in \alpha \land s \in \beta\}$

 $(1.2) \quad \emptyset \neq \alpha \subset \mathbb{Q} \land \emptyset \neq \beta \subset \mathbb{Q}$

```
(1.5) \quad \forall_{r \in \alpha}(r < x_0) \; ; \; \forall_{s \in \beta}(s < y_0) \quad \blacksquare \quad \forall_{r \in \alpha} \forall_{s \in \beta}(r + s < x_0 + y_0) \quad \blacksquare \quad x_0 + y_0 \notin \alpha +_{\mathbb{R}} \beta
     (1.6) \quad \emptyset \neq \alpha +_{\mathbb{R}} \beta \subset \mathbb{Q} \quad \blacksquare \quad CutI[\alpha +_{\mathbb{R}} \beta]
     (1.7) \quad (p \in \alpha +_{\mathbb{R}} \beta \land q \in \mathbb{Q} \land q < p) \implies \dots
         (1.7.1) \quad \exists_{r \in \alpha} \exists_{s \in \beta} (p = r + s) \quad \blacksquare (r_0, s_0) := choice((r, s) \in \alpha \times \beta | p = r + s)
         (1.7.2) \quad q 
         (1.7.3) \quad s_0 \in \beta \quad \blacksquare \quad q = (q - s_0) + s_0 \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad q \in \alpha +_{\mathbb{R}} \beta
     (1.8) \quad (p \in \alpha +_{\mathbb{R}} \beta \land q \in \mathbb{Q} \land q < p) \implies q \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{D}} \beta} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \alpha +_{\mathbb{R}} \beta) \quad \blacksquare \quad CutII[\alpha +_{\mathbb{R}} \beta]
     (1.9) p \in \alpha \implies \dots
         (1.9.1) \quad \exists_{r \in \alpha} \exists_{s \in \beta} (p = r + s) \quad \blacksquare (r_1, s_1) := choice(\{(r, s) \in \alpha \times \beta | p = r + s\})
         (1.9.2) \quad r_1 \in \alpha \quad \blacksquare \quad \exists_{t \in \alpha} (r_1 < t) \quad \blacksquare \quad t_0 := choice(\{t \in \alpha | r_1 < t\})
         (1.9.3) \quad \overline{s_1 \in \beta} \quad \blacksquare \quad t + s_1 \in \alpha +_{\mathbb{R}} \beta \land p = r_1 + s_1 < t + s_1 \quad \blacksquare \quad \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r)
     (1.10) \quad p \in \alpha \implies \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r) \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} \beta} \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r) \quad \blacksquare \quad CutIII[\alpha +_{\mathbb{R}} \beta]
    (1.11) \quad CutI[\alpha +_{\mathbb{R}} \beta] \wedge CutII[\alpha +_{\mathbb{R}} \beta] \wedge CutIII[\alpha +_{\mathbb{R}} \beta] \quad \boxed{\alpha +_{\mathbb{R}} \beta \in \mathbb{R}}
(2) \quad (\alpha, \beta \in \mathbb{R}) \implies ((\alpha +_{\mathbb{R}} \beta) \in \mathbb{R})
      \underline{eld} \, \underline{AdditionCommutativityOf} \, \underline{R} \, := (\alpha, \beta \in \mathbb{R}) \implies (\alpha +_{\mathbb{R}} \beta = \beta +_{\mathbb{R}} \alpha)
(1) \quad \alpha +_{\mathbb{R}} \beta = \{r + s | r \in \alpha \land s \in \beta\} = \{s + r | s \in \beta \land r \in \alpha\} = \beta +_{\mathbb{R}} \alpha
                                                                 \text{vityOf } R := (\alpha, \beta, \gamma \in \mathbb{R}) \implies \left( (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma) \right)
(1) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots
   (1.1) \quad (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \{(a+b) + c | a \in \alpha \land b \in \beta \land c \in \gamma\} = \dots
    (1.2) \quad \{a + (b+c) | a \in \alpha \land b \in \beta \land c \in \gamma\} = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma)
(2) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma)
  \overline{C_{iold} \, Addition \, Identity \, O_f \, R} := (\alpha \in \mathbb{R}) \implies 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
(1) \alpha \in \mathbb{R} \implies \dots
    (1.1) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \implies \dots
     (1.1.1) \quad s < 0 \quad \blacksquare r + s < r + 0 = r \quad \blacksquare r + s < r \quad \blacksquare r + s \in \alpha
    (1.2) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \implies r + s \in \alpha \quad \blacksquare \quad \forall_{r \in \alpha} \forall_{s \in 0_{\mathbb{R}}} (r + s \in \alpha)
     (1.3) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \iff (r + \overline{s} \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}) \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}} (p \in \alpha) \quad \blacksquare \quad \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \subseteq \alpha
    (1.4) p \in \alpha \implies ...
        (1.4.1) \quad \exists_{r \in \alpha} (p < r) \quad \blacksquare \quad r_2 := choice(\{r \in \alpha | p < r\})
         (1.4.2) \quad p < r_2 \quad \blacksquare \quad p - r_2 < r_2 - r_2 = 0 \quad \blacksquare \quad (p - r_2) < 0 \quad \blacksquare \quad (p - r_2) \in 0_{\mathbb{R}}
         (1.4.3) \quad r_2 \in \alpha \quad \blacksquare \quad p = r_2 + (p - r_2) \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}
    (1.5) \quad p \in \alpha \implies p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad \forall_{p \in \alpha} (p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}) \quad \blacksquare \quad \alpha \subseteq \alpha +_{\mathbb{R}} 0_{\mathbb{R}}
    (1.6) \quad \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \subseteq \alpha \wedge \alpha \subseteq \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
(2) \quad \alpha \in \mathbb{R} \implies 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
     ield\ Addition\ Inverse\ Of\ R:=(\alpha\in\mathbb{R}) \implies \overline{\exists_{-\alpha\in\mathbb{R}} \big(\alpha+_{\mathbb{R}}(-\alpha)=\overline{0}_{\mathbb{R}}\big)}
\overline{(1)} \alpha \in \mathbb{R} \implies \dots
    (1.1) \quad \beta := \{ p \in \mathbb{Q} | \exists_{r>0} (-p - r \notin \alpha) \}
    (1.2) \quad \alpha \subset \mathbb{Q} \quad \blacksquare \ \exists_{s \in \mathbb{Q}} (s \notin \alpha) \quad \blacksquare \ s_0 := choice(\overline{\{s \mid s \notin \alpha\}}) \quad \blacksquare \ p_0 := -s_0 - 1
     (1.3) \quad -p_0 - 1 = -(-s_0 - 1) - 1 = s_0 \not\in \alpha \quad \blacksquare \quad -p_0 - 1 \not\in \alpha \quad \blacksquare \quad \exists_{r > 0} (-p_0 - r \not\in \alpha) \quad \blacksquare \quad p_0 \in \beta
     (1.4) \quad \emptyset \neq \alpha \quad \blacksquare \quad \exists_{q \in \alpha} \quad \blacksquare \quad q_0 := choice(\{q \in \mathbb{Q} | q \in \alpha\})
     (1.5) r > 0 \Longrightarrow \dots
      (1.5.1) \quad q_0 \in \alpha \quad \blacksquare \quad -(-q_0) - r = q_0 - r < q_0 \quad \blacksquare \quad -(-q_0) - r < q_0 \quad \blacksquare \quad -(-q_0) - r \in \alpha
     (1.6) \quad \forall_{r>0} \left( -(-q_0) - r \in \alpha \right) \quad \blacksquare \quad \neg \exists_{r>0} \left( -(-q_0) - r \notin \alpha \right) \quad \blacksquare \quad -q_0 \notin \beta
```

 $(1.3) \quad \exists_a (a \in \alpha) \; ; \; \exists_b (b \in \beta) \quad \blacksquare \; a_0 \mathrel{\mathop:}= choice(\{a | a \in \alpha\}) \; ; \; b_0 \mathrel{\mathop:}= \overline{choice(\{b | b \in \beta\})} \; \; \blacksquare \; a_0 + \overline{b_0} \in \alpha +_{\mathbb{R}} \beta = \overline{b_0} \; ; \; b_0 \mathrel{\mathop:}= \overline{choice(\{b | b \in \beta\})} \; \; \blacksquare \; a_0 + \overline{b_0} \in \alpha +_{\mathbb{R}} \beta = \overline{b_0} = \overline{b_0}$

 $(1.4) \quad \exists_{x}(x \notin \alpha) \; ; \; \exists_{y}(y_{0} \notin \beta) \quad \blacksquare \; x_{0} \; \vcentcolon= choice(\{x | x \notin \alpha\}) \; ; \; y_{0} \; \vcentcolon= choice(\{y | y \notin \beta\})$

 $(1.7) \quad \emptyset \neq \beta \subset \mathbb{Q} \quad \blacksquare \quad CutI[\beta]$

```
(1) (x, y \in \mathbb{R} \land x > 0) \implies \dots
      (1.1) \quad \overline{A} := \{ nx | n \in \mathbb{N}^+ \} \quad \blacksquare \quad (\emptyset \neq A \subset \mathbb{R}) \land (a \in A \iff \exists_{m \in \mathbb{N}^+} (mx = a)) 
      (1.2) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \implies \dots
            (1.2.1) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \quad \blacksquare \quad \forall_{n \in \mathbb{N}^+} (nx \le y) \quad \blacksquare \quad UpperBound[y_0, A, \mathbb{R}, <] \quad \blacksquare \quad Bounded Above[A, \mathbb{R}, <]
             (1.2.2) CompletenessOf R \parallel LUBProperty[\mathbb{R}, <]
            (1.2.3) \quad (\underline{LU} BProperty[\mathbb{R}, <]) \land (\emptyset \neq A \subset \mathbb{R}) \land (\underline{Bounded Above}[A, \mathbb{R}, <]) \quad \blacksquare \ \exists_{\alpha \in \mathbb{R}} (\underline{LUB}[\alpha, A, \mathbb{R}, <]) \ \ldots
            (1.2.4) \quad \dots \alpha_0 := choice(\{\alpha \in \mathbb{R} | LUB[\alpha, A, \mathbb{R}, <]\}) \quad \blacksquare LUB[\alpha_0, A, \mathbb{R}, <]
             (1.2.5) x > 0   \alpha_0 - x < \alpha_0
             (1.2.6) \quad (\alpha_0 - x < \alpha_0) \land (LUB[\alpha_0, A, \mathbb{R}, <]) \quad \blacksquare \quad \neg UpperBound[\alpha_0 - x, A, \mathbb{R}, <]
            (1.2.7) \quad \neg UpperBound[\alpha_0 - x, A, \mathbb{R}, <] \quad \blacksquare \quad \exists_{c \in A} (\alpha_0 - x < c) \quad \dots
            (1.2.8) 	 \ldots c_0 := choice(\{c \in A | \alpha_0 - x < c\}) \quad \blacksquare (c_0 \in A) \land (\alpha_0 - x < c_0)
            (1.2.9) \quad (c_0 \in A) \land \left(a \in A \iff \exists_{m \in \mathbb{N}^+} (mx = a)\right) \quad \blacksquare \quad \exists_{m \in \mathbb{N}^+} (mx = c_0) \quad \dots
            (1.2.10) \quad \dots m_0 := choice(\{m \in \mathbb{N}^+ | mx = c_0\}) \quad \blacksquare \quad (m_0 \in \mathbb{N}^+) \land (m_0 x = c_0)
            (1.2.11) \quad (\alpha_0 - x < c_0) \land (m_0 x = c_0) \quad \blacksquare \quad \alpha_0 - x < c_0 = m_0 x \quad \blacksquare \quad \alpha_0 < m_0 x + x \quad \blacksquare \quad \alpha_0 < (m_0 + 1) x
             (1.2.12) m_0 \in \mathbb{N}^+ \mid m_0 + 1 \in \mathbb{N}^+
            (1.2.13) \quad (m_0 + 1 \in \mathbb{N}^+) \land \left(a \in A \iff \exists_{m \in \mathbb{N}^+} (mx = a)\right) \quad \blacksquare \quad (m_0 + 1)x \in A
            (1.2.14) \quad \left(\alpha_0 < (m_0 + 1)x\right) \land \left((m_0 + 1)x \in A\right) \quad \blacksquare \quad \exists_{c \in A} (\alpha_0 < c)
            (1.2.15) \quad \underline{LUB}[\alpha_0, A, \mathbb{R}, <] \quad \boxed{\hspace{-0.5cm} UpperBound}[\alpha_0, A, \mathbb{R}, <] \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \forall_{c \in A}(c \leq \alpha_0) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(c > \alpha_0) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0
             (1.2.16) \quad \left( \exists_{c \in A} (\alpha_0 < c) \right) \land \left( \neg \exists_{c \in A} (\alpha_0 < c) \right) \quad \blacksquare \perp
      (1.3) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \implies \bot \quad \blacksquare \quad \exists_{n \in \mathbb{N}^+} (nx > y)
(2) \quad (x, y \in \mathbb{R} \land x > 0) \implies \exists_{n \in \mathbb{N}^+} (nx > y) \quad \blacksquare \quad \forall_{x, y \in \mathbb{R}} \left( x > 0 \implies \exists_{n \in \mathbb{N}^+} (nx > y) \right)
(1) (x, y \in \mathbb{R} \land x < y) \implies \dots
      (1.1) \quad x < y \quad \blacksquare \quad (0 < y - x) \land (y - x \in \mathbb{R})
      (1.2) \quad Archimedean Property Of R \wedge (0 < y - x) \wedge (y - x, 1 \in \mathbb{R}) \quad \blacksquare \quad \exists_{n \in \mathbb{N}^+} (n(y - x) > 1) \quad \dots
      (1.3) \quad \dots \quad n_0 := choice(\{n \in \mathbb{N}^+ | n(y-x) > 1\}) \quad \blacksquare \quad (n_0 \in \mathbb{N}^+) \land (n_0(y-x) > 1)
      (1.4) \quad (n_0 \in \mathbb{N}^+) \land (x \in \mathbb{R}) \quad \blacksquare \quad n_0 x, -n_0 x \in \mathbb{R}
      (1.5) \quad Archimedean Property Of R \land (1 > 0) \land (n_0 x, 1 \in \mathbb{R}) \quad \blacksquare \quad \exists_{m \in \mathbb{N}^+} (m(1) > n_0 x) \dots
      (1.6) 	 \dots m_1 := choice(\{m \in \mathbb{N}^+ | m(1) > n_0 x\}) 	 \blacksquare (m_1 \in \mathbb{N}^+) \land (m_1 > n_0 x)
      (1.7) \quad Archimedean Property Of R \land (1 > 0) \land (-n_0 x, 1 \in \mathbb{R}) \quad \blacksquare \quad \exists_{m \in \mathbb{N}^+} \left( m(1) > -n_0 x \right) \dots
      (1.8) 	 \dots m_2 := choice(\{m \in \mathbb{N}^+ | m(1) > -n_0 x\}) 	 \blacksquare (m_2 \in \mathbb{N}^+) \land (m_2 > -n_0 x)
      (1.9) \quad (m_1 > n_0 x) \land (m_2 > -n_0 x) \quad \blacksquare \quad -m_2 < n_0 x < m_1
      (1.10) \quad m_1, m_2 \in \mathbb{N}^+ \quad || \quad |m_1 - (-m_2)| \ge 2
      (1.11) \quad (-m_2 < n_0 x < m_1) \land (|m_1 - (-m_2)| \ge 2) \quad \blacksquare \quad \exists_{m \in \mathbb{Z}} ((-m_2 < m < m_1) \land (m-1 \le n_0 x < m)) \quad \dots
      (1.12) \quad \dots m_0 := choice \left\{ \{m \in \mathbb{Z} | (-m_2 < m < m_1) \land (m-1 \le n_0 x < m) \} \right\} \quad \left[ (-m_2 < m_0 < m_1) \land (m_0 - 1 \le n_0 x < m_0) \right\}
      (1.13) \quad \left( n_0(y-x) > 1 \right) \land \left( m_0 - 1 \le n_0 x < m_0 \right) \quad \blacksquare \quad n_0 x < m_0 \le 1 + n_0 x < n_0 y \quad \blacksquare \quad n_0 x < m_0 < n_0 y 
      (1.14) \quad (n_0 \in \mathbb{N}^+) \land (n_0 x < m_0 < n_0 y) \quad \blacksquare \ x < m_0 / n_0 < y
      (1.15) m_0, n_0 \in \mathbb{Z} \mid m_0/n_0 \in \mathbb{Q}
      (1.16) \quad (m_0/n_0 \in \mathbb{Q}) \land (x < m_0/n_0 < y) \quad \blacksquare \ \exists_{p \in \mathbb{Q}} (x < p < y)
(2) \quad (x,y \in \mathbb{R} \land x < y) \implies \exists_{p \in \mathbb{Q}} (x < p < y) \quad \blacksquare \quad \forall_{x,y \in \mathbb{R}} \left( x < y \implies \exists_{p \in \mathbb{Q}} (x < p < y) \right)
(1.21)
                                na := (0 < a < b) \implies (b^n - a^n \le (b - a)nb^{n-1})
(1) \quad (0 < a < b) \implies \dots
     (1.1) \quad b^n - a^n = (b - a) \sum_{i=1}^n (b^{n-i} a^{i-1})
      (1.2) 0 < a < b \mid b/a > 1
```

12 CHAPTER I. REAL ANALISI

```
(1.3) \quad b/a > 1 \quad \blacksquare \quad \sum_{i=1}^{n} (b^{n-i}a^{i-1}) \le \sum_{i=1}^{n} \left( b^{n-i}a^{i-1}(b/a)^{i-1} \right) = \sum_{i=1}^{n} (b^{n-1}) = nb^{n-1} \quad \blacksquare \quad \sum_{i=1}^{n} (b^{n-i}a^{i-1}) \le \sum_{i=1}^{n} (b^{n-1}) = nb^{n-1} = nb^
```

$$(1.4) \quad b^n - a^n = (b - a) \sum_{i=1}^n (b^{n-i}a^{i-1}) \le (b - a)nb^{n-1} \quad \blacksquare \quad b^n - a^n \le (b - a)nb^{n-1}$$

(2)
$$(0 < a < b) \implies (b^n - a^n \le (b - a)nb^{n-1})$$

$RootExistenceInR := \forall_{0 < x \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} \exists !_{0 < y \in \mathbb{R}} (y_0^n = x)$

(1) $(0 < x \in \mathbb{R} \land 0 < n \in \mathbb{Z}) \implies \dots$

- $(1.1) \quad E := \{ t \in \mathbb{R} | t > 0 \land t^n < x \} \quad \blacksquare \quad t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)$
- $(1.2) \quad t_0 := x/(1+x) \quad \blacksquare \quad (t_0 = x/(1+x)) \land (t_0 \in \mathbb{R})$
- (1.3) $0 < x \mid 0 < x < 1 + x \mid t_0 = x/(1+x) > 0 \mid t_0 > 0$
- $(1.4) \quad 1 = (1+x)/(1+x) > x/(1+x) = t_0 \quad \blacksquare \quad 1 > t_0$
- $(1.5) \quad (t_0 > 0) \land (1 > t_0) \quad \blacksquare \quad 0 < t_0 < 1$
- $(1.6) \quad (0 < n \in \mathbb{Z}) \land (0 < t_0 < 1) \quad \blacksquare \ t_0^n \le t_0$
- $(1.7) \quad 0 < x \quad \blacksquare \quad x > x/(1+x) = t_0 \quad \blacksquare \quad x > t_0$
- $(1.8) \quad (t_0^n \le t_0) \land (x > t_0) \quad \blacksquare \ t_0^n < x$
- $(1.9) \quad \left(t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)\right) \land (t_0 \in \mathbb{R}) \land (t_0 > 0) \land (t_0^n < x) \quad \blacksquare \quad t_0 \in E \quad \blacksquare \quad \emptyset \neq E$
- $(1.10) \quad t_1 := choice(\{t \in \mathbb{R} | t > 1 + x\}) \quad \blacksquare \quad (t_1 \in \mathbb{R}) \land (t_1 > 1 + x)$
- $(1.11) \quad x > 0 \quad \blacksquare \quad t_1 > 1 + x > 1 \quad \blacksquare \quad t_1 > 1 \quad \blacksquare \quad t_1^n \ge t_1$
- $(1.12) \quad (t_1^n \ge t_1) \land (t_1 > 1 + x) \land (1 > 0) \quad \blacksquare \ t_1^n \ge t_1 > 1 + x > x \quad \blacksquare \ t_1^n > x$
- $(1.13) \quad \left(t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)\right) \land (t_1^n > x) \quad \blacksquare t_1 \notin E \quad \blacksquare E \subset \mathbb{R}$
- $(1.14) \quad (\emptyset \neq E) \land (E \subset \mathbb{R}) \quad \blacksquare \quad \emptyset \neq E \subset \mathbb{R}$
- $(1.15) \quad t \in E \implies \dots$
 - $(1.15.1) \quad (t \in E) \land (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \quad \blacksquare t^n < x$
 - $(1.15.2) \quad (t_1^n > x) \land (t^n < x) \quad \blacksquare \ t^n < x < t_1^n \quad \blacksquare \ t < t_1$
- $(1.16) \quad t \in E \implies t < t_1 \quad \blacksquare \quad \forall_{t \in E} (t \le t_1) \quad \blacksquare \quad UpperBound[t_1, E, \mathbb{R}, <] \quad \blacksquare \quad Bounded \ Above[E, \mathbb{R}, <]$
- (1.17) CompletenessOf $R \mid LUBProperty[\mathbb{R}, <]$
- $(1.18) \quad (LUBProperty[\mathbb{R}, <]) \land (\emptyset \neq E \subset \mathbb{R}) \land (Bounded Above[E, \mathbb{R}, <]) \quad \blacksquare \ \exists_{v \in \mathbb{R}} (LUB[y, E, \mathbb{R}, <]) \ \dots$
- $(1.19) \quad \dots y_0 := choice(\{y \in \mathbb{R} | LUB[y, E, \mathbb{R}, <]\}) \quad \blacksquare \quad LUB[y_0, E, \mathbb{R}, <]$
- $(1.20) \quad (LUB[y_0, E, \mathbb{R}, <]) \land (t_0 \in E) \land (t_0 > 0) \quad \blacksquare \quad 0 < t_0 \le y_0 \in \mathbb{R} \quad \blacksquare \quad 0 < y_0 \in \mathbb{R}$
- $(1.21) \quad y_0^n < x \implies \dots$
 - $(1.21.1) \quad k_0 := \frac{x y_0^n}{n(y_0 + 1)^{n 1}} \quad \blacksquare \quad k_0 \in \mathbb{R}$
 - $(1.21.2) \quad y_0^n < x \quad \blacksquare \quad 0 < x y_0^n$
 - $(1.21.3) \quad (n > 0) \land (y_0 > 0) \quad \blacksquare \ 0 < n(y_0 + 1)^{n-1}$
 - $(1.21.4) \quad (0 < x y_0^n) \land \left(0 < n(y_0 + 1)^{n-1}\right) \quad \blacksquare \quad 0 < \frac{x y_0^n}{n(y_0 + 1)^{n-1}} = k_0 \quad \blacksquare \quad 0 < k_0$
 - $(1.21.5) \quad \overline{(0 < 1 \in \mathbb{R}) \land (0 < k_0 \in \mathbb{R})} \quad \blacksquare \quad 0 < \min(\overline{1, k_0}) \in \mathbb{R}$
 - $(1.21.6) \quad \underline{QDenseInR} \land \left(0, min(1, k_0) \in \mathbb{R}\right) \land \left(0 < min(1, k_0)\right) \quad \blacksquare \quad \exists_{h \in \mathbb{Q}} \left(0 < h < min(1, k_0)\right) \quad \dots$
 - $(1.21.7) \quad \dots h_0 := choice \left(\{ h \in \mathbb{Q} | 0 < h < min(1, k_0) \} \right) \quad \blacksquare \quad (0 < h_0 < 1) \land \left(h_0 < k_0 = \frac{x y_0^n}{n(y_0 + 1)^{n-1}} \right)$
- $(1.21.8) \quad (y_0 > 0) \land (h_0 > 0) \quad \blacksquare \quad 0 < y_0 < y_0 + h_0$
- $(1.21.9) \quad \textit{Root Lemma} \land (0 < y_0 < y_0 + h_0) \quad \blacksquare \quad (y_0 + h_0)^n y_0^n < h_0 n (y_0 + h_0)^{n-1}$
- $(1.21.10) \quad h_0 < 1 \quad \blacksquare \quad h_0 n(y_0 + h_0)^{n-1} < h_0 n(y_0 + 1)^{n-1}$
- $(1.21.11) \quad \left((y_0 + h_0)^n y_0^n < h_0 n (y_0 + h_0)^{n-1} \right) \wedge \left(h_0 n (y_0 + h_0)^{n-1} < h_0 n (y_0 + 1)^{n-1} \right) \quad \blacksquare \quad (y_0 + h_0)^n y_0^n < h_0 n (y_0 + 1)^{n-1}$
- $(1.21.12) \quad \left(0 < n(y_0 + 1)^{n-1}\right) \land \left(h_0 < k_0 = \frac{x y_0^n}{n(y_0 + 1)^{n-1}}\right) \quad \blacksquare \quad h_0 n(y_0 + 1)^{n-1} < x y_0^n$
- $(1.21.13) \quad \left((y_0 + h_0)^n y_0^n < h_0 n (y_0 + 1)^{n-1} \right) \wedge \left(h_0 n (y_0 + 1)^{n-1} < x y_0^n \right) \quad \blacksquare \quad (y_0 + h_0)^n y_0^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n < x y_0^n \quad (y_0 + h_0)^n < x y_0^n < x -$
- $(1.21.14) \quad (y_0 + h_0)^n y_0^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x$
- $(1.21.15) \quad (0 < y_0 \mathbb{R}) \land (0 < h_0 < \mathbb{R}) \quad \blacksquare \quad 0 < y_0 < y_0 + h_0 \in \mathbb{R}$
- $(1.21.16) \quad (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \land ((y_0 + h_0)^n < x) \land (0 < y_0 + h_0 \in \mathbb{R}) \quad \blacksquare (y_0 + h_0)^n \in E$

```
(1.21.17) \quad \left( (y_0 + h_0)^n \in E \right) \land (y_0 < y_0 + h_0) \quad \blacksquare \quad \exists_{e \in E} (y_0 < e)
        (1.21.18) \quad \overline{LUB}[y_0, E, \mathbb{R}, <] \quad \boxed{UpperBound}[y_0, E, \mathbb{R}, <] \quad \boxed{U} \quad \forall_{e \in E}(e \leq y_0) \quad \boxed{\Box} \quad \exists_{e \in E}(e > y_0)
        (1.21.19) \quad \left(\exists_{e \in E} (e > y_0)\right) \land \left(\neg \exists_{e \in E} (e > y_0)\right) \quad \blacksquare \perp
    (1.22) \quad y_0^n < x \implies \bot \quad \blacksquare \quad y_0^n \ge x
    (1.23) \quad y_0^n > x \implies \dots
        (1.23.1) \quad k_1 := \frac{y_0^{n-x}}{ny_0^{n-1}} \quad \blacksquare \quad (k_1 \in \mathbb{R}) \land (k_1 ny_0^{n-1} = y_0^{n} - x)
        (1.23.2) \quad (0 < x) \land (0 < n \in \mathbb{Z}) \quad \blacksquare \quad y_0^n - x < y_0^n \le n y_0^n \quad \blacksquare \quad y_0^n - x < n y_0^n
        (1.23.3) \quad y_0^n - x < ny_0^n \quad \blacksquare \quad k_1 = \frac{y_0^n - x}{ny_0^{n-1}} < \frac{ny_0^n}{ny_0^{n-1}} = y_0 \quad \blacksquare \quad k_1 < y_0
         (1.23.4) \quad y_0^n > x \quad \blacksquare \quad 0 < y_0^n - x
        (1.23.5) \quad (n > 0) \land (y_0 > 0) \quad \blacksquare \quad 0 < ny_0^{n-1}
        (1.23.6) \quad (0 < y_0^n - x) \land 0 < (ny_0^{n-1}) \quad \blacksquare \quad 0 < \frac{y_0^n - x}{ny_0^{n-1}} = k_1 \quad \blacksquare \quad 0 < k_1
         (1.23.7) \quad (k_1 < y_0) \land (0 < k_1) \quad \blacksquare \quad (0 < k_1 < y_0) \land (0 < y_0 - k_1 < y_0)
        (1.23.8) t \ge y_0 - k_1 \implies \dots
            (1.23.8.1) \quad t \ge y_0 - k_1 \quad \blacksquare \quad t^n \ge (y_0 - k_1)^n \quad \blacksquare \quad -t^n \le -(y_0 - k_1)^n \quad \blacksquare \quad y_0^n - t^n \le y_0^n - (y_0 - k_1)^n
            (1.23.8.2) \quad \textit{RootLemma} \land (0 < y_0 - k_1 < y_0) \quad \blacksquare \ y_0{}^n - (y_0 - k_1)^n < k_1 n y_0{}^{n-1}
            (1.23.8.3) \quad \left(y_0^n - t^n \le y_0^n - (y_0 - k_1)^n\right) \wedge \left(y_0^n - (y_0 - k_1)^n < k_1 n y_0^{n-1}\right) \quad \blacksquare \quad y_0^n - t^n < k_1 n y_0^{n-1}
            (1.23.8.4) \quad \overline{(k_1 n y_0^{n-1} = y_0^n - x) \wedge (y_0^n - t^n < k_1 n y_0^{n-1})} \quad \blacksquare \quad y_0^n - t^n < y_0^n - x \quad \blacksquare \quad -t^n < \overline{-x} \quad \blacksquare \quad t^n > x
            (1.23.8.5) \quad (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \land (t^n > x) \quad \blacksquare \ t \notin E
         (1.23.9) \quad t \geq y_0 - k_1 \implies t \not\in E \quad \blacksquare \quad t \in E \implies t < y_0 - k_1 \quad \blacksquare \quad \forall_{t \in E} (t \leq y_0 - k_1) \quad \blacksquare \quad \overline{U} \quad pperBound[y_0 - k_1, E, \mathbb{R}, <]
        (1.23.10) \quad (LUB[y_0, E, \mathbb{R}, <] \land (y_0 - k_1 < y_0)) \quad \blacksquare \quad \neg UpperBound[y_0 - k_1, E, \mathbb{R}, <]
         (1.23.11) \quad (UpperBound[y_0 - k_1, E, \mathbb{R}, <]) \land (\neg UpperBound[y_0 - k_1, E, \mathbb{R}, <]) \quad \blacksquare \ \bot
    (1.24) \quad y_0^n > x \implies \bot \quad \blacksquare \quad y_0^n \le x
    (1.25) Order[\mathbb{R}, <] \ \square \ OrderTrichotomy[\mathbb{R}, <]
    (1.26) \quad (OrderTrichotomy[\mathbb{R}, <]) \land (y_0^n \ge x) \land (y_0^n \le x) \quad \blacksquare \ y_0^n = x
    (1.27) \quad (y_0^n = x) \land (y_0 \in \mathbb{R}) \quad \blacksquare \quad \exists_{v \in \mathbb{R}} (y^n = x)
    (1.28) y_1, y_2 := choice(\{y \in \mathbb{R} | y^n = x\})
    (1.29) \quad y_1 \neq y_2 \implies \dots
        (1.29.1) (OrderTrichotomy[\mathbb{R}, <]) \land (y_1 \neq y_2) \blacksquare (y_1 < y_2) \lor (y_2 < y_1) . . .
        (1.29.2) 	 \dots (x = y_1^n < y_2^n = x) \lor (x = y_2^n < y_1^n = x) \blacksquare (x < x) \lor (x > x) \blacksquare \bot \lor \bot \blacksquare \bot
   (1.30) \quad y_1 \neq y_2 \implies \bot \quad \blacksquare \quad y_1 = y_2 \quad \blacksquare \quad \forall_{a,b \in \mathbb{R}} \left( (a^n = x \land b^n = x) \implies a = b \right)
   (1.31) \quad \left(\exists_{y \in \mathbb{R}} (y^n = x)\right) \land \left(\forall_{a,b \in \mathbb{R}} \left( (a^n = x \land b^n = x) \implies a = b \right) \right) \quad \blacksquare \quad \exists!_{y \in \mathbb{R}} (y^n = x)
(2) \quad (0 < x \in \mathbb{R} \land 0 < n \in \mathbb{Z}) \implies \exists!_{v \in \mathbb{R}} (y^n = x) \quad \blacksquare \quad \forall_{0 < x \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} \exists!_{0 < v \in \mathbb{R}} (y_0^n = x)
                                             \text{Corollary} := \forall_{0 < a \in \mathbb{R}} \forall_{0 < b \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} \left( (ab)^{1/n} = a^{1/n} b^{1/n} \right)
          unded Real System [\bar{\mathbb{R}}, +, *, <] := 

\begin{bmatrix}
\bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\} & \wedge & -\infty < x < \infty & \wedge \\
x + \infty = +\infty & \wedge & x - \infty = -\infty & \wedge & \frac{x}{+\infty} = \frac{x}{-\infty} = 0 & \wedge \\
(x > 0) \implies (x * (+\infty) = +\infty \wedge x * (-\infty) = -\infty) \wedge \\
(x < 0) \implies (x * (+\infty) = -\infty \wedge x * (-\infty) = +\infty)
\end{bmatrix}

\mathbb{C} := \{ \langle a, b \rangle \in \mathbb{R} \times \mathbb{R} \}
    [\langle a, b \rangle, \langle c, d \rangle] := \langle a +_{\mathbb{R}} c, b +_{\mathbb{R}} d \rangle
     [\langle a, b \rangle, \langle c, d \rangle] := \langle a *_{\mathbb{R}} c - b *_{\mathbb{R}} d, a *_{\mathbb{R}} d + b *_{\mathbb{R}} c \rangle
        ubfieldC := Subfield[\mathbb{R}, \mathbb{C}, +, *]
i := \langle 0, 1 \rangle \in \mathbb{C}
    Property: =i^2=-1
                    y := (a, b \in \mathbb{R}) \implies (\langle a, b \rangle = a + bi)
```

14 CHAPTER I. KEAL AWALISIS

Conjugate
$$[\overline{a+bi}] := a-bi$$

Conjugate Properties := $(w, z \in \mathbb{C}) \implies \dots$ —

- $(1) \quad \overline{z+w} = \overline{z} + \overline{w}$
- $(2) \quad \overline{z*w} = \overline{z}*\overline{w}$
- $\overline{(3) \quad Re(z) = (1/2)(z+\overline{z}) \wedge Im(z) = (1/2)(z-\overline{z})}$
- $(4) \quad 0 \le z * \overline{z} \in \mathbb{R}$

AbsoluteV alueC[|z|] =
$$(z * \overline{z})^{1/2}$$

AbsoluteV alueProperties := $(z, w \in \mathbb{C}) \implies \dots$

(1) 123123

TODO: - MORE EXPLICIT MODUS PONENS ON OrderTrichotomyR ??? - name all properties - hyperlink all definitions ???

Chapter 2

Abstract Algebra

```
Relation(f, X) := f \subseteq X
Function(f, X, Y) := X \neq \emptyset \neq Y \land Relation(f, X \times Y) \land \forall_{x \in X} \exists !_{y \in Y} ((x, y) \in f)
(Function(f, X, Y) \land A \subseteq X \land B \subseteq Y) \implies \dots
(1) Domain(f) := X; Codomain(f) := Y
(2) Image(f, A) := \{f(a) | a \in A\}; Preimage(f, B) := \{a | f(a) \in B\}
(3) \quad Range(f) := Image(Domain(f))
Injective(f, X, Y) := Function(f, X, Y) \land \forall_{x_1, x_2 \in X} (x_1 \neq x_2 \implies f(x_1) \neq f(x_2))
Surjective(f, X, Y) := Function(f, X, Y) \land \forall_{y \in Y} \exists_{x \in X} (y_0 = f(x))
Bijective(f, X, Y) := Injective(f, X, Y) \land Surjective(f, X, Y)
                               := (Range(f) = Codomain(f)) \implies Surjective(f)
(Function(f, X, Y) \land Function(g, Y, Z)) \implies (f \circ g)(x) := f(g(x)); Function(f \circ g, X, Z)
               of Functions := (Function(f, A, B) \land Function(g, B, C) \land Function(h, C, D)) \implies \dots
(1) h \circ (g \circ f) = (h \circ g) \circ f
(2) \quad \left(Injective(f) \land \overline{Injective(g)}\right) \implies Injective(g \circ f)
(3) \quad \left( Surjective(f) \land Surjective(g) \right) \implies Surjective(g \circ f)
(4) \quad \left(Bijective(f,A,B)\right) \implies \exists_{f^{-1}} \Bigg(Function(f^{-1},B,A) \land \forall_{a \in A} \Big(f^{-1}\big(f(a)\big) = a\Big) \land \forall_{b \in B} \Big(f\Big(f^{-1}(b)\big) = b\Big)\Bigg)
(a,b) := a, b \in \mathbb{Z} \land a \neq 0 \land \exists_{c \in \mathbb{Z}} (b = ac)
   ivisibility Theorems: =(a,b,c,m,x,y\in\mathbb{Z})\implies \dots
(1) (a|b) \implies a|bc
(2) (a|b \wedge b|c) \implies a|c|
(3) \quad (a|b \wedge b|c) \implies a|(bx + cy)
(4) (a|b \wedge b|a) \implies a = \pm b
(5) (a|b \land a > 0 \land b > 0) \implies (a \le b)
(6) (a|b) \iff (m \neq 0 \land ma|mb)
   ivision \underbrace{Algorithm} := (a, b \in \mathbb{Z} \land a > 0) \implies \exists !_{q,r \in \mathbb{Z}} (b = aq + r)
   D(a,b,c) := a,b,c \in \mathbb{Z} \land a|b \land a|c
     {}^{\mathbf{L}}\mathbf{D}(a,b,c) := CD(a,b,c) \land \forall_d ((d|b \land d|c) \implies d|a)
```

Chapter 3

Linear Algebra

 $I := (Scalar(I)) \land (i_{d.d} = 1)$

```
Matrix(A, m, n) := [a_{i,j}]_{m \times n} := m \text{ rows, } n \text{ columns of real numbers}
+(A,B):=(A+B=[a_{i,j}+b_{i,j}]_{m\times n})\wedge \left(Matrix(A,m,n)\right)\wedge \left(Matrix(B,m,n)\right)
*(r,A) := (r*A = [ra_{i,j}]_{m \times n}) \wedge (Matrix(A, m, n))
* (A, B) := \left(A * B = \left[\sum_{k=1}^{p} (a_{i,k} b_{k,j})\right]_{m \times n}\right) \wedge \left(Matrix(A, m, p)\right) \wedge \left(Matrix(B, p, n)\right)
^{T}(A) := (A^{T} = [a_{i,i}]_{n \times m}) \wedge (Matrix(A, m, n))
AddCom := A + B = B + A \quad \blacksquare \leftarrow A + B = [a_{i,j} + b_{i,j}] = [b_{i,j} + a_{i,j}] = B + A
AddAssoc := (A + B) + C = \overline{A} + (B + C) \quad \blacksquare \leftarrow (A + B) + \overline{C} = [(a_{i,j} + b_{i,j}) + c_{i,j}] = [a_{i,j} + (b_{i,j} + c_{i,j})] = A + (B + C)
AddId := A + O = A = O + A \quad \blacksquare \leftarrow A + O = [a_{i,j} + 0] = A = [0 + a_{i,j}] = O + A
 \overrightarrow{AddInv} := \overrightarrow{A} + (-A) = O = (-A) + \overrightarrow{A} \quad \blacksquare \leftarrow \overrightarrow{A} + (-A) = [a_{i,j} - a_{i,j}] = O = [-a_{i,j} + a_{i,j}] = (-A) + A 
MulAssoc := (A * B) * C = A * (B * C)  \blacksquare \leftarrow
(1) \quad (A*B)*C = \left[\sum_{k_1=1}^{p_1} (a_{i,k_1} b_{k_1,j})\right] *C = \left|\sum_{k_2=1}^{p_2} \left(\sum_{k_1=1}^{p_1} (a_{i,k_1} b_{k_1,k_2}) c_{k_2,j}\right)\right| = \left[\sum_{k_2=1}^{p_2} \sum_{k_1=1}^{p_1} (a_{i,k_1} b_{k_1,k_2} c_{k_2,j})\right] = \dots
(2) \quad \dots \left[ \sum_{k_1=1}^{p_1} \sum_{k_2=1}^{p_2} (a_{i,k_1} b_{k_1,k_2} c_{k_2,j}) \right] = \left[ \sum_{k_1=1}^{p_1} \left( a_{i,k_1} \sum_{k_2=1}^{p_2} (b_{k_1,k_2} c_{k_2,j}) \right) \right] = \dots = A * (B * C)
LeftDist := (A + B) * C = A * C + B * C  \blacksquare \leftarrow
(1) (A+B)*C = [a_{i,j}+b_{i,j}]*C = \left[\sum_{k=1}^{p} \left((a_{i,k}+b_{i,k})c_{k,j}\right)\right] = \dots
(2) \quad \dots \left[ \sum_{k=1}^{p} (a_{i,k} c_{k,j} + b_{i,k} c_{k,j}) \right] = \left[ \sum_{k=1}^{p} (a_{i,k} c_{k,j}) \right] + \left[ \sum_{k=1}^{p} (b_{i,k} c_{k,j}) \right] = A * C + B * C
RightDist := C * (A + B) * C = C * A + C * B
Scalar1 := r(sA) = (rs)A = s(rA)
Scalar2 := A(rb) = r(AB)
Scalar3 := (r+s)A = rA + rS
Scalar4 := r(A + B) = rA + rB
Trans1 := A = (A^T)^T \quad \blacksquare \leftarrow A = [a_{i,i}] = [a_{i,i}]^T = ([a_{i,i}]^T)^T = (A^T)^T
\overline{Trans2} := (A + B)^T = A^T + B^T
Trans3 := (A * B)^T = B^T * A^T \quad \blacksquare \leftarrow (A * B)^T = \left[\sum_{k=1}^p (a_{i,k}b_{k,j})\right]^T = \left[\sum_{k=1}^p (a_{j,k}b_{k,i})\right] = \left[\sum_{k=1}^p (b_{k,i}a_{j,k})\right] = \left[\sum_{k=1}^p (b_{i,k}^T a_{k,j}^T)\right] = B^T * A^T
Sym(A) := A = A^T; SkewSym(A) := A = -A^T
SymGen := Sym(A + A^{T}) \quad \blacksquare \leftarrow (A + A^{T})^{T} = A^{T} + (A^{T})^{T} = A^{T} + A = A + A^{T}
SkewSymGem := SkewSym(A - A^{T}) \quad \blacksquare \leftarrow -(A - A^{T})^{T} = -(A^{T} - (A^{T})^{T}) = -(A^{T} - A) = (A - A^{T})
\overline{SymDec} := A = (1/2) * (A + A^T) + (1/2) * (A - A^T)
Square(A) := Matrix(A, n, n)
Diagonal(A) := (Square(A)) \land (i \neq j \implies a_{i,j} = 0)
Scalar(A) := (Diagonal(A)) \land (a_{ij} = k)
```

CHAPTER 3. LINEAR ALGEBRA

```
MulId := A * I = A = I * A
UpperTriangular(A) := (Square(A)) \land (i > \implies a_{i,j} = 0)
LowerTriangular(A) := (Square(A)) \land (i < j \implies a_{i,j} = 0)
Invertible(A) := \exists_{A^{-1}}(A * A^{-1} = I = A^{-1} * A)
Unique Inverse := ((A * B_1 = I) \land (A * B_2 = I)) \implies B_1 = B_2
Inv1 := (Invertible(A) \land Invertible(B)) \implies (A * B)^{-1} = B^{-1} * A^{-1} \blacksquare \leftarrow
\overline{(1) \ (A*B)*(A*B)^{-1} = I \ \blacksquare \ B*(A*B)^{-1} = A^{-1} \ \blacksquare \ (A*B)^{-1} = B^{-1}*A^{-1}}
Inv2 := \overline{\left(Invertible(A)\right)} \implies \left(\left(Invertible(A^{-1}) \land (A = (A^{-1})^{-1}\right)\right)
InvTrans := (Invertible(A)) \implies ((Invertible(A^T) \land ((A^T)^{-1} = (A^{-1})^T)) \blacksquare \leftarrow
(1) \quad A^T * (A^{-1})^T = (A^{-1} * A)^T = I^T = I \quad \blacksquare (A^{-1})^T = (A^T)^{-1}
Sys(A, X, B) := (A * X = B) \land (Matrix(A, m, n)) \land (Matrix(X, n, 1)) \land (Matrix(B, m, 1))
Sol(X, A, B) := Sys(A, X, B)
TrivSol(X, A, B) := (Sol(X, A, B)) \land (a_{i,i} = 0)
RREF(A) := (Definition 1.18)
ElementaryRowOperation(\phi) := (Definition1.19)
RowEquiv(A,B):=\exists_{\Phi}\Big(\forall_{\phi\in\Phi}\Big(ElementaryRowOperation(\phi)\Big)\wedge|\Phi|\in\mathbb{N}\wedge\Phi(A)=B\Big)
(A \neq O) \implies \left(\exists_B \left(RREF(B) \land RowEquiv(A, B)\right)\right) (By Gauss-Jordan Elimination)
(Sys(A, X_1, B) \land Sys(C, X_2, D) \land RowEquiv([A|B], [C|D])) \implies (X_1 = X_2) (By algebra on systems of equations)
(RowEquiv(A, B)) \implies (Sys(A, X_1, O) \land Sys(B, X_1, O)) (Corollary)
(m < n) \implies \left(\exists_X \left(\neg TrivSol(X, A, O)\right)\right) \ \blacksquare \ \left(\forall_X (TrivSol(X, A, O)\right) \implies (m \ge n) \ \blacksquare \leftarrow n
(1) Let B = GaussJordan(A) and let r be the number of non-zero rows of B \blacksquare r \le m
(2) \quad (r \le m) \land (m < n) \quad \blacksquare \quad r < n \quad \blacksquare \quad 0 < n - r
     The solution of B will have r fixed variables and n - r free variables which is also more then zero
      The solution of B will have at least one free variable that can be non-zero, i.e., non-trivial
Elem(A) := RowEquiv(A, I)
(Elem_i(A)) \implies (Invertible(A) \land Elem_i(A^{-1}))
 Elementary Row Operation (\phi) \land (B = \phi(A)) \Longrightarrow (Elem(E) \land B = E * A)
(RowEquiv(A, B)) \iff (B = \Pi(E_i) * A)
(RowEquiv(I,B)) \iff (B=\Pi(E_i))
(\forall_X (TrivSol(X, A, O)) \implies (RowEquiv(A, I)) \blacksquare \leftarrow
(1) Let B = GaussJordan(A) \mid RowEquiv(A, B)
(2) \quad \forall_X (TrivSol(X, B, O) \quad \blacksquare \quad n \ge n \quad \blacksquare \quad n = n \quad \blacksquare \quad B = I
(3) RowEquiv(A, B) \blacksquare RowEquiv(A, I)
(Invertible(A)) \iff (A = \Pi(E_i)) \blacksquare \leftarrow
(1) Invertible(A) \implies ...
  (1.1) \quad AX = O \quad \blacksquare \quad X = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X, A, O))
```

 $\left(Invertible(A)\right) \iff \left(RowEquiv(I,A)\right)) \quad \blacksquare \leftarrow \left(RowEquiv(I,B) \iff B = \Pi(E_i)\right) \land \left(\left(Invertible(A)\right) \iff \left(A = \Pi(E_i)\right)\right)$

 $(1.2) \quad \forall_X (TrivSol(X, A, O) \quad \blacksquare \quad RowEquiv(A, I) \quad \blacksquare \quad A = \Pi(E_i)$

(2) $A = \Pi(E_i) \implies \dots$

(2.1) $\Pi(E_{-i}^{-1}) = A^{-1} \prod Invertible(A)$ (3) $(Invertible(A)) \iff (A = \Pi(E_i))$ $\Big(\forall_X \Big(TrivSol(X,A,O)\Big)\Big) \implies \Big(Invertible(A)\Big) \ \blacksquare \leftarrow$

$$\overline{ (1) \ \left(\left(\forall_X \big(TrivSol(X,A,O) \big) \implies \left(RowEquiv(A,I) \right) \right) \wedge \left(\left(Invertible(A) \right) \iff \left(RowEquiv(I,A) \right) \right) \right) }$$