Numerikus módszerek C

10. előadás: Csebisev polinomok

Krebsz Anna

ELTE IK

Tartalomjegyzék

- 1 Csebisev-polinomok
- 2 Az interpolációs polinomok konvergencia kérdései
- 3 A Lagrange-interpoláció öröklött hibája
- 4 Inverz interpoláció

Tartalomjegyzék

- 1 Csebisev-polinomok
- 2 Az interpolációs polinomok konvergencia kérdései
- 3 A Lagrange-interpoláció öröklött hibája
- 4 Inverz interpoláció

Definíció: Csebisev-polinom

A $T_n(x) := \cos(n \cdot \arccos(x))$, $x \in [-1; 1]$ függvényt n-edfokú (elsőfajú) Csebisev-polinomnak nevezzük.

Definíció: Csebisev-polinom

A $T_n(x) := \cos(n \cdot \arccos(x))$, $x \in [-1; 1]$ függvényt n-edfokú (elsőfajú) Csebisev-polinomnak nevezzük.

A 8-adfokú Csebisev-polinom:

1. Tétel: Rekurzió

$$T_0(x) := 1, \quad T_1(x) := x,$$

 $T_{n+1}(x) := 2x \cdot T_n(x) - T_{n-1}(x), \quad (n = 1, 2, ...).$

1. Tétel: Rekurzió

$$T_0(x) := 1, \quad T_1(x) := x,$$

 $T_{n+1}(x) := 2x \cdot T_n(x) - T_{n-1}(x), \quad (n = 1, 2, ...).$

Biz.: Vezessük be az $\alpha = \arccos(x)$ jelölést $(x = \cos(\alpha))$:

$$2x \cdot T_n(x) - T_{n-1}(x) = 2\cos(\alpha)\cos(n\alpha) - \cos((n-1)\alpha) =$$

$$= 2\cos(\alpha)\cos(n\alpha) - [\cos(n\alpha)\cos(\alpha) + \sin(n\alpha)\sin(\alpha)] =$$

$$= \cos(n\alpha)\cos(\alpha) - \sin(n\alpha)\sin(\alpha) = \cos((n+1)\alpha) = T_{n+1}(x).$$

1. Tétel: Rekurzió

$$T_0(x) := 1, \quad T_1(x) := x,$$

 $T_{n+1}(x) := 2x \cdot T_n(x) - T_{n-1}(x), \quad (n = 1, 2, ...).$

Biz.: Vezessük be az $\alpha = \arccos(x)$ jelölést $(x = \cos(\alpha))$:

$$2x \cdot T_n(x) - T_{n-1}(x) = 2\cos(\alpha)\cos(n\alpha) - \cos((n-1)\alpha) =$$

$$= 2\cos(\alpha)\cos(n\alpha) - [\cos(n\alpha)\cos(\alpha) + \sin(n\alpha)\sin(\alpha)] =$$

$$= \cos(n\alpha)\cos(\alpha) - \sin(n\alpha)\sin(\alpha) = \cos((n+1)\alpha) = T_{n+1}(x).$$

2. Tétel:

 $T_n \in P_n$ és főegyütthatója: 2^{n-1} $(n \ge 1)$ -re.

Definíció:

$$\widetilde{T}_n := \frac{1}{2^{n-1}} T_n(x)$$

az 1 főegyütthatós Csebisev-polinom. $\widetilde{T}_n \in P_n^{(1)}$, ahol $P_n^{(1)}$: az 1 főegyütthatós n-edfokú polinomok halmaza.

Definíció:

$$\widetilde{T}_n := \frac{1}{2^{n-1}} T_n(x)$$

az 1 főegyütthatós Csebisev-polinom. $\widetilde{T}_n \in P_n^{(1)}$, ahol $P_n^{(1)}$: az 1 főegyütthatós n-edfokú polinomok halmaza.

3. Tétel:

• T_n -nek n db különböző valós gyöke van [-1;1]-en.

Definíció:

$$\widetilde{T}_n := \frac{1}{2^{n-1}} T_n(x)$$

az 1 főegyütthatós Csebisev-polinom. $\widetilde{T}_n \in P_n^{(1)}$, ahol $P_n^{(1)}$: az 1 főegyütthatós n-edfokú polinomok halmaza.

3. Tétel:

- T_n -nek n db különböző valós gyöke van [-1; 1]-en.
- A gyökök a 0-ra szimmetrikusan helyezkednek el.

Definíció:

$$\widetilde{T}_n := \frac{1}{2^{n-1}} T_n(x)$$

az 1 főegyütthatós Csebisev-polinom. $\widetilde{T}_n \in P_n^{(1)}$, ahol $P_n^{(1)}$: az 1 főegyütthatós n-edfokú polinomok halmaza.

3. Tétel:

- T_n -nek n db különböző valós gyöke van [-1; 1]-en.
- A gyökök a 0-ra szimmetrikusan helyezkednek el.
- Ha n páros, akkor T_n páros függvény,
 ha n páratlan, akkor T_n páratlan függvény.

Biz.:
$$\cos(n \arccos(x)) = 0 \Leftrightarrow n \arccos(x_k) = \frac{\pi}{2} + k\pi, \ (k \in Z)$$

$$x_k = \cos\left(\frac{2k+1}{2n}\pi\right), \ (k=0,1,\ldots,n-1)$$

Biz.:
$$\cos(n \arccos(x)) = 0 \Leftrightarrow n \arccos(x_k) = \frac{\pi}{2} + k\pi, \ (k \in Z)$$

$$x_k = \cos\left(\frac{2k+1}{2n}\pi\right), \ (k=0,1,\ldots,n-1)$$

A 11-edfokú Csebisev-polinom gyökei:

4. Tétel:

 T_n -nek n+1 db szélsőérték helye van [-1;1]-en.

4. Tétel:

 T_n -nek n+1 db szélsőérték helye van [-1;1]-en.

Biz.:
$$\cos(n \arccos(x)) = (-1)^k \Leftrightarrow n \arccos(\xi_k) = k\pi, \ (k \in \mathbb{Z})$$

 $\xi_k = \cos\left(\frac{k\pi}{n}\right), \ (k = 0, 1, \dots, n)$

4. Tétel:

 T_n -nek n+1 db szélsőérték helye van [-1;1]-en.

Biz.:
$$\cos(n \arccos(x)) = (-1)^k \Leftrightarrow n \arccos(\xi_k) = k\pi, \ (k \in \mathbb{Z})$$

 $\xi_k = \cos\left(\frac{k\pi}{n}\right), \ (k = 0, 1, \dots, n)$

A 11-edfokú Csebisev-polinom szélsőértékhelyei:

5. Tétel: $(T_n, n \in \mathbb{N})$ ortogonális polinomrendszer

A Csebisev-polinomok ortogonális rendszert alkotnak [-1;1]-en a $w(x):=\frac{1}{\sqrt{1-x^2}}$ súlyfüggvénnyel, azaz

$$\langle T_n, T_k \rangle_w = \int_{-1}^1 \frac{T_n(x) \cdot T_k(x)}{\sqrt{1 - x^2}} dx = 0 \quad n \neq k.$$

5. Tétel: $(T_n, n \in \mathbb{N})$ ortogonális polinomrendszer

A Csebisev-polinomok ortogonális rendszert alkotnak [-1;1]-en a $w(x):=rac{1}{\sqrt{1-x^2}}$ súlyfüggvénnyel, azaz

$$\langle T_n, T_k \rangle_w = \int_{-1}^1 \frac{T_n(x) \cdot T_k(x)}{\sqrt{1 - x^2}} dx = 0 \quad n \neq k.$$

Biz.: Hf. Helyettesítéses integrállal $y := \arccos(x)$ változó bevezetésével.

6. Tétel: Csebisev-tétel

A $(T_n, n \in \mathbb{N})$ rendszer extremális tulajdonsága:

$$\min_{\widetilde{Q}\in P_n^{(1)}} \|\widetilde{Q}\|_{\infty} = \|\widetilde{T}_n\|_{\infty} = \frac{1}{2^{n-1}},$$

$$\text{ahol } \|\widetilde{Q}\|_{\infty} := \|\widetilde{Q}\|_{C[-1;1]}.$$

6. Tétel: Csebisev-tétel

A $(T_n, n \in \mathbb{N})$ rendszer extremális tulajdonsága:

$$\min_{\widetilde{Q}\in P_n^{(1)}} \|\widetilde{Q}\|_{\infty} = \|\widetilde{T}_n\|_{\infty} = \frac{1}{2^{n-1}},$$

$$\text{ahol } \|\widetilde{Q}\|_{\infty} := \|\widetilde{Q}\|_{C[-1;1]}.$$

Biz.: Táblán.

6. Tétel: Csebisev-tétel

A $(T_n, n \in \mathbb{N})$ rendszer extremális tulajdonsága:

$$\min_{\widetilde{Q}\in P_n^{(1)}}\|\widetilde{Q}\|_{\infty}=\|\widetilde{T}_n\|_{\infty}=\frac{1}{2^{n-1}},$$
 ahol $\|\widetilde{Q}\|_{\infty}:=\|\widetilde{Q}\|_{C[-1;1]}.$

Biz.: Táblán.

Köv.: Az interpolációs hibaformulában az $\omega_n(x) = \prod_{j=0}^n (x-x_j)$ függvény 1 főegyütthatós n+1-edfokú polinom, alkalmazhatjuk rá a Csebisev-tételt. Ha a [-1;1]-en vett interpoláció során az alappontok az n+1-edfokú Csebisev-polinom gyökei, vagyis $\omega_n(x) \equiv \widetilde{T}_{n+1}(x)$, akkor a hiba a [-1;1] intervallumon minimális lesz.

6. Tétel: Az interpoláció hibája [-1; 1]-en

A [-1;1]-en vett interpoláció és $f\in C^{(n+1)}[-1;1]$ függvény esetén az interpoláció hibája pontosan akkor minimális, ha az alappontok a Csebisev-polinom gyökei. Ekkor

$$||f - L_n||_{\infty} \le \frac{M_{n+1}}{(n+1)!} \cdot ||\widetilde{T}_{n+1}||_{\infty} = \frac{M_{n+1}}{(n+1)!} \cdot \frac{1}{2^n}.$$

6. Tétel: Az interpoláció hibája [-1; 1]-en

A [-1;1]-en vett interpoláció és $f\in C^{(n+1)}[-1;1]$ függvény esetén az interpoláció hibája pontosan akkor minimális, ha az alappontok a Csebisev-polinom gyökei. Ekkor

$$||f - L_n||_{\infty} \le \frac{M_{n+1}}{(n+1)!} \cdot ||\widetilde{T}_{n+1}||_{\infty} = \frac{M_{n+1}}{(n+1)!} \cdot \frac{1}{2^n}.$$

Biz.: Lásd a Csebisev-tételt és a következményét.

6. Tétel: Az interpoláció hibája [-1; 1]-en

A [-1;1]-en vett interpoláció és $f\in C^{(n+1)}[-1;1]$ függvény esetén az interpoláció hibája pontosan akkor minimális, ha az alappontok a Csebisev-polinom gyökei. Ekkor

$$||f - L_n||_{\infty} \le \frac{M_{n+1}}{(n+1)!} \cdot ||\widetilde{T}_{n+1}||_{\infty} = \frac{M_{n+1}}{(n+1)!} \cdot \frac{1}{2^n}.$$

Biz.: Lásd a Csebisev-tételt és a következményét.

Megj.: Ha az interpolációs alappontokat választhatjuk, akkor azok

a Csebisev-polinom gyökei legyenek.

Emlékeztető: Csebisev polinom nélkül a hiba:

$$|f(x) - p_n(x)| \le \frac{M_{n+1}}{(n+1)!} \cdot |\omega_n(x)|$$

7. Tétel: Az interpoláció hibája [a; b]-n

Az [a;b]-n vett interpoláció és $f \in C^{(n+1)}[a;b]$ függvény esetén az interpoláció hibája pontosan akkor minimális, ha az alappontok az [a;b]-be transzformált Csebisev gyökök. Ekkor

$$||f - L_n||_{\infty} \le \frac{M_{n+1}}{(n+1)!} \cdot \left(\frac{b-a}{2}\right)^{n+1} \cdot ||\widetilde{T}_{n+1}||_{\infty} =$$

$$= \frac{M_{n+1}}{(n+1)!} \cdot \frac{1}{2^n} \cdot \left(\frac{b-a}{2}\right)^{n+1}.$$

7. Tétel: Az interpoláció hibája [a; b]-n

Az [a;b]-n vett interpoláció és $f \in C^{(n+1)}[a;b]$ függvény esetén az interpoláció hibája pontosan akkor minimális, ha az alappontok az [a;b]-be transzformált Csebisev gyökök. Ekkor

$$||f - L_n||_{\infty} \le \frac{M_{n+1}}{(n+1)!} \cdot \left(\frac{b-a}{2}\right)^{n+1} \cdot ||\widetilde{T}_{n+1}||_{\infty} =$$

$$= \frac{M_{n+1}}{(n+1)!} \cdot \frac{1}{2^n} \cdot \left(\frac{b-a}{2}\right)^{n+1}.$$

Biz.: Lásd a Csebisev-tételt és a $\varphi: [-1;1] \to [a;b]$ lineáris transzformációt:

$$\varphi(x) := \frac{b-a}{2}x + \frac{a+b}{2}, \quad x \in [-1;1].$$

Tartalomjegyzék

1 Csebisev-polinomok

2 Az interpolációs polinomok konvergencia kérdései

3 A Lagrange-interpoláció öröklött hibája

4 Inverz interpoláció

Az $(x_k^{(n)}: k = 0, 1..., n)$ alappontsorozat esetén jelöljük (L_n) -nel az alappontokhoz tartozó interpolációs polinom sorozatot.

Az $(x_k^{(n)}: k = 0, 1..., n)$ alappontsorozat esetén jelöljük (L_n) -nel az alappontokhoz tartozó interpolációs polinom sorozatot.

Kérdések:

Az $(x_k^{(n)}: k = 0, 1..., n)$ alappontsorozat esetén jelöljük (L_n) -nel az alappontokhoz tartozó interpolációs polinom sorozatot.

Kérdések:

 \bullet (L_n) egyenletesen konvergál-e f-hez?

$$\lim_{n\to\infty} \|f-L_n\|_{\infty} = 0 ?$$

Az $(x_k^{(n)}: k = 0, 1, \dots, n)$ alappontsorozat esetén jelöljük (L_n) -nel az alappontokhoz tartozó interpolációs polinom sorozatot.

Kérdések:

 \bullet (L_n) egyenletesen konvergál-e f-hez?

$$\lim_{n\to\infty} \|f-L_n\|_{\infty} = 0 ?$$

2 Milyen f-re?

Az $(x_k^{(n)}: k = 0, 1, \dots, n)$ alappontsorozat esetén jelöljük (L_n) -nel az alappontokhoz tartozó interpolációs polinom sorozatot.

Kérdések:

 \bullet (L_n) egyenletesen konvergál-e f-hez?

$$\lim_{n\to\infty} \|f-L_n\|_{\infty} = 0 ?$$

- 2 Milyen f-re?
- 3 Milyen alappontrendszer esetén?

Divergencia példák egyenletes felosztásra:

1
$$f(x) = |x|, x \in [-1, 1], (f \in C[-1; 1])$$

Divergencia példák egyenletes felosztásra:

- **1** $f(x) = |x|, x \in [-1, 1], (f \in C[-1; 1])$
- **2** Runge példája: $f(x) = \frac{1}{1+25x^2}, x \in [-1,1], (f \in C^{\infty}[-1;1])$

Divergencia példák egyenletes felosztásra:

- **1** $f(x) = |x|, x \in [-1, 1], (f \in C[-1; 1])$
- **2** Runge példája: $f(x) = \frac{1}{1+25x^2}, \ x \in [-1,1], \ (f \in C^{\infty}[-1;1])$

Matlab:

Növekvő számú alappont esetén egyenletes felosztásokra megnézni a példákat. Az intervallum mely részén divergál az interpolációs polinomok sorozata?

Divergencia példák egyenletes felosztásra:

- **1** $f(x) = |x|, x \in [-1,1], (f \in C[-1;1])$
- **2** Runge példája: $f(x) = \frac{1}{1+25x^2}, x \in [-1,1], (f \in C^{\infty}[-1;1])$

Matlab:

- Növekvő számú alappont esetén egyenletes felosztásokra megnézni a példákat. Az intervallum mely részén divergál az interpolációs polinomok sorozata?
- 2 Csebisev alappontrendszeren mindkét függvényre igaz az egyenletes konvergencia.

Tétel:

1 Tegyük fel, hogy $f \in C^{\infty}[a; b]$ és

Ekkor
$$\forall \; (x_k^{(n)}: k=0,1\ldots,n)$$
 alappontrendszer sorozat esetén

$$\lim_{n\to\infty} \|f-L_n\|_{\infty} = 0.$$

Tétel:

- **1** Tegyük fel, hogy $f \in C^{\infty}[a; b]$ és
- $\exists M > 0: \|f^{(n)}\|_{\infty} \leq M^n \ (\forall n \in \mathbb{N}).$

Ekkor $\forall (x_k^{(n)}: k = 0, 1, ..., n)$ alappontrendszer sorozat esetén

$$\lim_{n\to\infty} \|f-L_n\|_{\infty} = 0.$$

Tétel:

- **1** Tegyük fel, hogy $f \subset C^{\infty}[a; b]$ és

Ekkor $\forall (x_k^{(n)}: k = 0, 1, ..., n)$ alappontrendszer sorozat esetén

$$\lim_{n\to\infty}\|f-L_n\|_{\infty}=0.$$

Biz.: Táblán a hibaformulából.

Tétel: Marcinkiewicz

 $\forall \ f \in C[a;b]$ esetén $\exists \ (x_k^{(n)}: k=0,1\ldots,n)$ alappontrendszer sorozat, hogy

$$\lim_{n\to\infty}\|f-L_n\|_{\infty}=0.$$

Tétel: Marcinkiewicz

 $\forall f \in C[a; b]$ esetén $\exists (x_k^{(n)} : k = 0, 1, ..., n)$ alappontrendszer sorozat, hogy

$$\lim_{n\to\infty}\|f-L_n\|_{\infty}=0.$$

Tétel: Faber

 $\forall (x_{k}^{(n)}: k = 0, 1..., n)$ alappontrendszer sorozat esetén $\exists f \in C[a; b], hogy$

$$\lim_{n\to\infty}\|f-L_n\|_{\infty}\neq 0.$$

Tétel: Marcinkiewicz

 $\forall f \in C[a; b]$ esetén $\exists (x_k^{(n)} : k = 0, 1, ..., n)$ alappontrendszer sorozat, hogy

$$\lim_{n\to\infty}\|f-L_n\|_{\infty}=0.$$

Tétel: Faber

 $\forall (x_k^{(n)}: k = 0, 1..., n)$ alappontrendszer sorozat esetén $\exists f \in C[a; b]$, hogy

$$\lim_{n\to\infty}\|f-L_n\|_{\infty}\neq 0.$$

Nem biz.

Tartalomjegyzék

- 1 Csebisev-polinomok
- 2 Az interpolációs polinomok konvergencia kérdései
- 3 A Lagrange-interpoláció öröklött hibája
- 4 Inverz interpoláció

Kérdés: Ha az interpolációs feladatban a függvényértékeket csak közelítően ismerjük, akkor a hibás adatokból készített interpolációs polinomnak mennyi a hibája?

Kérdés: Ha az interpolációs feladatban a függvényértékeket csak közelítően ismerjük, akkor a hibás adatokból készített interpolációs polinomnak mennyi a hibája?

1 Az $f(x_0), \ldots, f(x_n)$ értékekhez elkészítjük az L_n interpolációs polinomot.

Kérdés: Ha az interpolációs feladatban a függvényértékeket csak közelítően ismerjük, akkor a hibás adatokból készített interpolációs polinomnak mennyi a hibája?

- **1** Az $f(x_0), \ldots, f(x_n)$ értékekhez elkészítjük az L_n interpolációs polinomot.
- **2** Az $\widetilde{f}(x_0), \ldots, \widetilde{f}(x_n)$ értékekhez elkészítjük az \widetilde{L}_n interpolációs polinomot.

Kérdés: Ha az interpolációs feladatban a függvényértékeket csak közelítően ismerjük, akkor a hibás adatokból készített interpolációs polinomnak mennyi a hibája?

- **1** Az $f(x_0), \ldots, f(x_n)$ értékekhez elkészítjük az L_n interpolációs polinomot.
- **2** Az $\widetilde{f}(x_0), \ldots, \widetilde{f}(x_n)$ értékekhez elkészítjük az \widetilde{L}_n interpolációs polinomot.
- **3** Milyen becslést adhatunk $|L_n(x) \widetilde{L}_n(x)|$ -re?

Definíció: Lebesque-függvény

Legyen $x_0, \ldots, x_n \in [a; b]$, az

$$L_n(x) := \sum_{k=0}^n |\ell_k(x)|, \ x \in [a; b].$$

függvényt Lebesque-függvénynek nevezzük.

Definíció: Lebesque-függvény

függvényt Lebesque-függvénynek nevezzük.

Definíció: Lebesque-állandó

A Legesque-állandó a Lebesgue-függvény ∞ normája:

$$\Lambda_n := \max_{x \in [a:b]} \mathsf{L}_n(x) = \|\mathsf{L}_n\|_{\infty}.$$

Tétel: A Lebesque-állandó becslése

$$\Lambda_n \geq \frac{2}{\pi} \ln(n+1) + c, \quad (n \in \mathbb{N})$$

ahol $c \in \mathbb{R}$ állandó.

Tétel: A Lebesque-állandó becslése

$$\Lambda_n \geq \frac{2}{\pi} \ln(n+1) + c, \quad (n \in \mathbb{N})$$

ahol $c \in \mathbb{R}$ állandó.

Nem biz.

Tétel: A Lebesque-állandó becslése

$$\Lambda_n \geq \frac{2}{\pi} \ln(n+1) + c, \quad (n \in \mathbb{N})$$

ahol $c \in \mathbb{R}$ állandó.

Nem biz.

Tétel: Az interpoláció öröklött hibája

$$|L_n(x) - \widetilde{L}_n(x)| \le \varepsilon \cdot \Lambda_n, \ (x \in [a; b])$$

ahol
$$\varepsilon := \max_{i=0}^{n} |f(x_i) - \widetilde{f}(x_i)|.$$

Tétel: A Lebesque-állandó becslése

$$\Lambda_n \geq \frac{2}{\pi} \ln(n+1) + c, \quad (n \in \mathbb{N})$$

ahol $c \in \mathbb{R}$ állandó.

Nem biz.

Tétel: Az interpoláció öröklött hibája

$$|L_n(x) - \widetilde{L}_n(x)| \le \varepsilon \cdot \Lambda_n, \ (x \in [a; b])$$

ahol $\varepsilon := \max_{i=0}^{n} |f(x_i) - \widetilde{f}(x_i)|.$

Biz.: Táblán.

Tartalomjegyzék

- 1 Csebisev-polinomok
- 2 Az interpolációs polinomok konvergencia kérdései
- 3 A Lagrange-interpoláció öröklött hibája
- 4 Inverz interpoláció

Inverz interpoláció

Az interpoláció alkalmazása f(x) = 0 típusú egyenletek megoldására, az x^* gyök közelítésére.

Inverz interpoláció

Az interpoláció alkalmazása f(x) = 0 típusú egyenletek megoldására, az x^* gyök közelítésére.

1 Az $x_0, \ldots, x_n \in [a; b]$ alappontokra és $f(x_0), \ldots, f(x_n)$ függvényértékekre felírjuk az $L_n(x)$ interpolációs polinomot.

$$L_n(x^*) = 0$$
 megoldjuk $\rightarrow x_{k+1} := x^*$

Ezt alkalmaztuk a szelő-módszer és a Newton-módszer esetén is. n > 2-re problémás a gyökkeresés, nem általánosítható.

Inverz interpoláció

Az interpoláció alkalmazása f(x) = 0 típusú egyenletek megoldására, az x^* gyök közelítésére.

1 Az $x_0, \ldots, x_n \in [a; b]$ alappontokra és $f(x_0), \ldots, f(x_n)$ függvényértékekre felírjuk az $L_n(x)$ interpolációs polinomot.

$$L_n(x^*) = 0$$
 megoldjuk $\rightarrow x_{k+1} := x^*$

Ezt alkalmaztuk a szelő-módszer és a Newton-módszer esetén is. n > 2-re problémás a gyökkeresés, nem általánosítható.

2 Tegyük fel, hogy f invertálható [a; b]-n, ekkor az f függvény helyett az inverzét közelítjük.

$$f(x^*) = 0 \Leftrightarrow x^* = f^{-1}(0)$$
 helyettesítés

Az $f(x_0), \ldots, f(x_n)$ alappontokra és $x_0, \ldots, x_n \in [a; b]$ függvényértékekre felírjuk az $Q_n(y)$ interpolációs polinomot.

$$Q_n(y) \approx f^{-1}(y), \quad \rightarrow \quad x_{k+1} := Q_n(0)$$