Math 500: Graduate Algebra. Instructor: Walton

Homework #1 on an Introduction to Groups

Due: Wednesday, September 4, 2019 at the beginning of class.

Include full statements of problems in your solution set. See syllabus for grading guide.

Let *G* denote a group.

- (1) Dummit-Foote §1.1 #9
- (2) Dummit-Foote §1.1 #25
- (3) Dummit-Foote \$1.2 #7
- (4) Dummit-Foote §1.3 #15, 19
- (5) Dummit-Foote §1.4 #1, 2, 7
- (6) Let X be a finite nonempty set with associative binary operation * so that X is closed under *, and further,

$$x * y = x * z \Rightarrow y = z$$
 and $y * x = z * x \Rightarrow y = z$

for all $x, y, z \in X$.

- (a) Prove that (X, *) admits the structure of a finite group.
- (b) Show that (X,*) does not necessarily admit the structure of a group if X is an infinite set.
- (7) Determine if the following subsets G' of the groups G below are subgroups.
 - (a) $G = S_n$ for $n \ge 3$, and G' is the set of transpositions in S_n .
 - (b) $G = D_8$, and $G' = \{1_G, r^2, sr, sr^3\}$.
 - (c) $G = GL_n(\mathbb{C})$, and $G' = SL_n(\mathbb{C})$.
 - (d) $G = GL_n(\mathbb{C})$, and $G' = \{(a_{ij}) \in GL_n(\mathbb{C}) \mid a_{ij} = 0, \forall i > j\}$ (upper triangular matrices).
 - (e) $G = GL_n(\mathbb{C})$, and $G' = \{(a_{ij}) \in GL_n(\mathbb{C}) \mid a_{ii} = 0\}$.
- (8) Prove that the following pairs of groups are not isomorphic:
 - (a) \mathbb{R}^{\times} and \mathbb{Q}^{\times} ;
- (b) $(\mathbb{R}, +)$ and $(\mathbb{Q}, +)$; (c) D_8 and Q_8 ; (d) D_{24} and S_4 .
- (9) Give an example of an epimorphism from \mathbb{R}^{\times} onto $(\mathbb{R}, +)$, and show that homomorphisms from \mathbb{R}^{\times} onto $(\mathbb{R}, +)$ cannot be injective.

- (10) (a) Prove that G acts faithfully on a set X if and only if the kernel of the action is $\langle 1_G \rangle$.
 - (b) Find the kernel of the left regular action of G on itself.
 - (c) Show that if G is non-abelian, then the maps $g \cdot x = xg$ for all $g, x \in G$ do <u>not</u> yield a left action of the group G on itself. Determine if the maps yield a *right* action of the group G on itself. If so, find the kernel of the action.
 - (d) Verify that the maps $g \cdot x = xg^{-1}$ for all $g, x \in G$ do yield a left action of the group G on itself. Find the kernel of the action.
 - (e) Verify that the maps $g \cdot x = gxg^{-1}$ for all $g, x \in G$ do yield a left action of the group G on itself. (This is called *conjugation*.) Find the kernel of the action.