Network Security Laboratory CS 6823

NetID: spg349

1. RSA

- a. Computing the Public (n,e) and Private Key (n,d)
 - i. Prime Numbers p=13 and q=3

ii. Compute
$$n = pq = 13 * 3 = 39$$

PHI = $(p-1)(q-1) = 12 * 2 = 24$

iii. Select **e < PHI** (such that they are relatively PRIME)
Possible values of e = 5,7,11,13..

Selecting small value e = 5

iv. Compute **ed mod PHI = 1** (to calculate d)

5d mod 24 =1

- Method 1:
 - a. $5 * 5 \mod 24 = 25 \mod 24 = 1$
- Method 2:

- b. Select k = 1 gives d = 5
- v. Therefore the Public Key is (n,e) = (39, 5)

 And the Private Key is (n,d) = (39, 5)
- b. Last Two Digits of NYU ID = **49**

Message = 49 mod 38 = 11

Encrypt Message **= m^e mod n** = 11 ^ 5 mod 39 = 20

- 11^1 mod 39 = 11
- 11^2 mod 39 =(11^1mod39*11^1mod39)mod39= 11 * 11 mod 39=4
- 11⁵ mod 39 =
 (11²mod39*11²mod39*11¹m
 od39)mod39
 = 4*4*11 mod 39 = 20

Decrypt Message = **20[^]d mod n =** 20 [^] 5 mod 39 = 11

Network Security Lab — Cryptography Srinivas Piskala Ganesh Babu — spq349 & N13138339

- 20^1 mod 39 = 20
- 20^2 mod 39 = 20*20mod39 = 10
- 20³ mod 39 =
 (20²mod39*20¹mod39)mod39
 = 20*10 mod 39 = 5
- 20^5 mod 39 =
 (20^3mod39*20^2mod39)mod39
 = 5*10 mod 39 = 11

2. Diffi-Helman:

a. Net ID – 49

therefore, Alice choice a = 14

Bob choice b = 19

- b. g = 3; n = 11;
- c. Alice computation: $A = g^a \mod n = 3^14 \mod 11 = 4$
 - 3^1 mod 11 = 3
 - 3^2 mod 11 = (3^1mod11*3^1mod11)mod11 = 9
 - 3^4 mod 11 = 9*9 mod 11 = 4
 - 3^8 mod 11 = 4*4 mod 11 = 5
 - 3^14 mod 11 =
 ((3^8mod11)*(3^4mod11)*(3^2mod
 11)mod11) = 5*4*9 mod 11 = 4

Bob computation: $\mathbf{B} = \mathbf{g^hb} \mod \mathbf{n} = 3^19 \mod 11 = 4$

- 3^19 mod 11 =
 (3^14mod11*3^4mod11*3^1mod11)
 mod11 = 4*4*3 mod 11 = 48mod11 =
 4
- d. Alice Computation: **Key = B^a mod n** = 4^14 mod 11 = 3
 - 4^1 mod 11 = 4
 - 4^2 mod 11 = 4*4 mod 11 = 5
 - 4^3 mod 11 = 5*4 mod 11 = 9
 - 4^6 mod 11 = (4^3mod11*4^3mod11)mod11 = 4

Network Security Lab - Cryptography Srinivas Piskala Ganesh Babu - spg349 & N13138339

- 4^12 mod 11 = 4*4mod11 = 5
- 4^14 mod 11 =
 (4^12mod11*4^2mod11)mod11 =
 5*5 mod 11 = 3

Bob Computation: **Key = A^b mod n** = $4^19 \mod 11 = 3$

4^19 mod 11 =
 ((4^14mod11)*(4^3mod11)*(4^2mod11)mod11) = 3*9*5 mod 11 = 3

Both the Keys Match, hence the calculation is correct.