1.	What are the three types of buses?	Address bus Carries the address for the current memory or I/O operation.
		Data bus Transfers data between the processor and memory or I/O.
		Control bus Issues control signals to decide the type of operation like read,
		write etc.
		Together they are called the SYSTEM bus
2.	What is an instruction cycle?	The total process of fetching an instruction from the memory, decoding the
		opcode to understand the operation and finally executing the instruction is
		called an instruction cycle.
3.	What is PC?	PC Program Counter
		It is a register present inside the processor. It contains address of the next
		instruction. PC gets incremented as soon as any instruction is fetched.
4.	What is SP? Where it is used?	SP Stack Pointer
		It is a register present inside the processor. It contains address of the top of
		stack. SP gets decremented in every Push and incremented in every Pop
		operation.
		Used in Interrupt Handling (when multiple interrupts occur together)
5.	What are GPRs?	GPRs General Purpose Registers
		These are registers present inside the processor. They are available to the
		programmer for storing operands and getting results in a program.
6.	What is the difference between Von	Von Neumann Model
	Neumann and Harvard Model?	Common memory used to store programs and data. E.g.:: 8085, 8086.
		Harvard Model
		Separate program memory and data memory. E.g.:: 8051.
7.	Explain Flag register?	It gives the status of the current result. It has flag bits that indicate if there
		was a carry, if the result was zero, the sign of the result, its
		parity etc. Flags are changed by the ALU after every operation.

8.	Why are signed numbers stored in 2's	Because it does not produce a negative zero. 2's complement of any number
	complement form?	gives –(that number) but 2's complement of 0 gives back 0 itself.
9.	What is half adder and a full adder?	Half Adder Adds the two current bits.
		Produces a sum and a carry. Cannot be scaled to a bigger adder.
		Full Adder Adds the two current bits along with the carry of the previous
		stage. Produces a sum and a carry. Can be scaled (combined) to form a bigger
		adder.
10.	How is subtraction performed?	We never really "subtract" Subtraction is performed by the same
		circuit used for addition by simply adding the 2's complement of the number.
		Note: Draw Adder/ Subtractor circuit
11.	Why cant we do multiplication by repeated	Because it is too slow! 1000 x 1000 will require 1000 steps!
	addition?	Hence we use faster algorithms like Booth's Algorithm!
12.	Briefly explain Booth's algorithm?	Keep checking bit transitions in the multiplier from right to left starting with
		an imaginary 0 beyond the LSB. Do the following actions:
		0 to 1 Subtract Multiplicand, Right Shift
		1 to 0 Add Multiplicand, Right Shift
		0 to 0 Right Shift
		1 to 1 Right Shift
13.	Why cant we do division by repeated	Because it is too slow!
	subtractions?	1000 ÷ 1 will require 1000 steps!
		Hence we use faster algorithms like restoring and non restoring division!
14.	Explain restoring division in brief?	At each step, left shift the dividend and subtract the divisor.
		If result is positive (or 0) then successful. Quotient bit is 1. Restoration not needed.

		If result i the diviso		ccessful. Quotient b	oit is 0. Res	tore by adding back
		Repeat fo	or all bits of divide	end.		
15.	Explain non restoring division in brief?	At each st	tep, left shift the	dividend and subtr	act the divi	sor.
		If result ineeded.	is positive (or 0)	then successful. Qu	otient bit is	s 1. Restoration not
					t is 0. Don'	t Restore! Next step
			ldition instead of			
		Repeat for	or all bits of divid	end.		
16.	Describe Normalization and normalized		•		t there mu	st be only one non-
	form of a number ?	_	to the left of the	•		
			ed form of a nun	nber		
		(-1) ^S x 1.N				
		S: Sign N	M: Mantissa E:	Exponent		
17.	Convert 0101.001 into Normalized form?	$(-1)^0 \times 1.0$)101001 x 2 ²			
18.	Explain Single Precision format?	IEEE754 3	32bit Single Preci	sion		
		IEEE7	54 32bit Sin	gle Precision		
		S	E	М		
		(1)	(8)	(23)		
		Bias value	e: 127			
19.	Explain Double Precision format?	IEEE75	54 64bit Doub	le Precision		
		S	Е	M		
		(1)	(11)	(52)		

		Bias value: 1023
20.	Explain Floating point Addition in brief?	Compare exponents. If Equal, add the mantissas, else Shift the mantissa till
21	What is Floating point overflow exception?	exponent becomes equal, then add the mantissa. When the exponent is too large to be stored. It is denoted by exponent all 1's.
21.	what is Hoating point overnow exception:	Such a number is also called NaN.
22.	What is Floating point overflow exception?	When the exponent is too small to be stored. It is denoted by exponent all
		0's. Such a number is also called a DeNormal
		Number.
23.	How do you represent 0 and 1 in Single	O:
	precision format? (any number can be asked)	S = 0 E = 0 M = 0
	askeuj	1:
		$S = O \mid E = (127)_2 \mid M = O$
24.	What is the difference between a subroutine	When we CALL a subroutine, the program control shifts from the main
	(procedure) and a macro?	program to the subroutine, and after execution, returns to the next
		instruction after CALL. When we invoke a macro, the macro code is pasted
		into our program at the location where the macro was invoked.
25.	What is an instruction format?	Label: Opcode, Operands; Comment Label Location Identifier (optional)
		Opcode Binary code of the operation (compulsory)
		Operands Values taking part in the operation (optional)
		Comment Purpose of the instruction (optional)
26.	What are the types of instructions?	Data Transfer
		E.g.: MOV, LOAD, STORE etc.
		Data Processing
		E.g.: ADD, SUB, AND etc.
		Control instructions

		E.g.: JMP, CALL etc.
27.	What is instruction level pipelining?	Overlapping different stages of an instruction is called pipelining.
	, , , , , , , , , , , , , , , , , , ,	E.g.:: Fetch, Decode, Execute, Store etc.
28.	Give examples of pipelined processors?	8086 2 stage
		Fetch, Exec.
		80386 3 stage
		Fetch, Decode, Exec.
		Pentium 5 stage
		Fetch, Decode, Addr Gen, Exec, Store
29.	What are Pipelining Hazards?	Data Hazard
		Structural Hazard
		Control Hazard
30.	What do you mean by addressing modes.	It is the manner in which an operand is given in the instruction.
	List some with examples?	Most popular ones are
		Immediate Register Direct Indirect Implied
31.	What are the micro-operations required for	T1: MAR ← PC
	fetching?	T2: MDR ← instruction from memory
		T3: IR ← MDR
		PC ← PC + 1
32.	What is an instruction cycle, machine cycle	Instruction cycle Total process of fetching, decoding and executing an
	and T-state?	instruction.
		Machine cycle One complete operation of the system bus.
		T-state One clock cycle.
		Instruction cycle has several machine cycles. Machine cycles have several
		Tstates.
33.	Give characteristics of a RISC processor?	RISC Reduced Instruction Set Computers

		. Fixed sized instructions
		Fixed sized instructions
		Mainly Register based operations
		Fewer addressing modes
		Smaller instruction set
		Simpler instructions
		Prefer Hardwired Control Units
		 Suited for μControllers
34.	Give characteristics of a CISC processor?	CISC Complex Instruction Set Computers
		Variable sized instructions
		Mainly Memory based operations
		More addressing modes
		Bigger instruction set
		Complex instructions
		 Prefer μ-Programmed Control Units
		Suited for μProcessors
35.	What are the two main types of Control	Hardwired Control Unit
	Units?	Microprogrammed Control Unit
36.	What is a Hardwired Control Unit?	It generates control signals using dedicated HARDWARE.
		Common types are
		1) State Table method
		2) Delay Element method
		3) Sequence Counter method
37.	What is a Microprogrammed Control Unit?	It generates control signals for any instruction using its µinstructions.
		Typical modern Microprogrammed Control Units are made following Wilke's
		Design.

38.	What are μPrograms?	A set of µinstructions responsible for generating control signals for a
		particular instruction is called its μ program. M programs are stored in the
		control memory.
39.	What are μ instruction sequencing	Two main techniques
	techniques?	1) Dual Address Field
		2) Single Address Field
40.	What are μ instruction formats?	Two main formats
		1) Horizontal μ instructions
		2) Vertical μ instructions
41.	Compare Hardwired Control Unit and	Hardwired Control Unit
	Microprogrammed Control Unit?	Faster No Control Memory needed Suited for RISC
		Hardwired Control Unit
		Flexible Supports Emulation Control
		Memory needed Suited for CISC
42.	List "typical" sizes of these memories?	Hard Disk 1 TB
		CD 700 MB
		DVD 4.7 GB
		Pen Drives 2 GB – 128 GB
		RAM 4GB, 8GB, 16GB, 32GB
		Cache 1 MB – 4 MB
43.	Compare SRAM and DRAM?	Static RAM
		Faster Uses Flip-Flops Expensive used
		in Cache
		Dynamic RAM
		Slower Uses Capacitors Cheaper used
		in main memory

44.	What are advanced DRAMs?	RDRAM Rambus DRAM
		SDRAM Synchronous DRAM
45.	What are the types of ROM?	ROM Read Only Memory
		PROM Programmable ROM
		EPROM Erasable PROM
		EEPROM Electrically EPROM
		Flash ROM Electrically EPROM Most
		Popular in modern systems
46.	Where does your phone store images, songs	In secondary storage implemented using Flash ROM
	etc?	
47.	What does primary memory consist of?	RAM and ROM.
		RAM for operations
		ROM mainly for the BIOS
48.	List important Page replacement policies?	FIFO, LRU, LFU, OPT
49.	What are dirty pages?	These are pages modified in the main memory.
50.	What is TLB?	TLB Translation Look-aside Buffer Contains the most recently used entries
		of the page table to make page translation faster.
51.	What is a page fault?	Page Fault
		When the desired page is not present in the main memory it is called a miss
		or a page fault.
52.	Most memory systems contain both a	Although the TLB and the cache both hold copies of main memory data, they
	translation lookaside buffer (TLB) used by	are used in different parts of the memory subsystem, and accesses to them
	the virtual memory system, and a cache	have different characteristics. Each entry in the TLB contains a pair of
	memory. Both the cache and the TLB have	addresses: a virtual page number and a page frame address. Because
	similar functions: they store main memory	individual TLB entries translate a large number of virtual addresses (a full
	data in a faster "cache-like" memory that	page each), relatively few of them are active at any time. So a TLB tends to be

	can be accessed at nearly processor speeds. The question is why do these two separate	fairly small, and the hardware to look up a virtual page number is fully associative. The regular cache, on the other hand, has much more data per
	mechanisms exist when they have such a similar purpose? Why have both a cache and	row to exploit locality of instruction and data memory references. It also tends to be much larger than a TLB to get a reasonably large hit rate, so it is
	a TLB? Why not just a single "supercache"	not practical to use fully associative addressing. Instead, most caches tend to
	that would hold both regular memory data	be 2-way or 4-way set associative. A TLB miss and a cache miss are also
	as well as frequently used page table	handled in quite different ways. A TLB miss requires walking the page table;
	entries?	a cache miss does not use a secondary data structure. A final difference is
		that the TLB and the cache are used in different parts of a memory access. A
		TLB uses the virtual address to locate data, while a cache normally uses the
		physical (translated) address as the index and tag. Because of these
		differences it makes sense to use specialized hardware optimized for each
		function rather than having a single "super cache".
53.	What are interleaving techniques?	Lower order interleaving and higher order interleaving.
54.	What is cache consistency?	When data in cache memory and main memory has same value, the cache is
		consistent. Main policies: Write Through and Write back.
55.	What are cache layouts?	Look Through Cache and Look Aside Cache.
56.	What are cache mapping techniques?	Associative Mapping
	Adv and Disadv	Direct Mapping
		Set Associative Mapping
57.	What are the main types of multiprocessor	Closely Coupled and Loosely Coupled
	systems?	systems.
58.	What are Bus Arbitration techniques? Adv and Disadv	Daisy Chaining, Polling and Independent requests.
59.	What are I/O data transfer techniques?	Polling/ Programmed I/O
		Interrupt driven I/O

		DMA
		I/O Processors
60.	What are I/O mapping techniques?	Memory mapped I/O and I/O mapped I/O (also called Isolated I/O)
61.	Give characteristics of interrupts?	Software, hardware, vectored, nonvectored, edge triggered, level
		triggered, Maskable, non Maskable.
62.	What are some popular DMA transfer	Block Transfer (Burst Mode)
	techniques?	Cycle Stealing (Single Byte Transfers)
		Demand Transfer
		Hidden Mode (Transparent Mode)
63.	Name a popular I/O Processor?	8089 I/O Processor is used with 8086 μP.
64.	Give Flynn's Classification?	It classifies multiprocessor systems into 4
		different categories, based on the instruction
		stream and the data streams.
		1) SISD Single Instruction Single Data
		2) SIMD Single Instruction Multiple Data
		3) MISD Multiple Instruction Single Data
		4) MIMD Multiple Instruction Multiple Data
65.	What is serial and parallel communication?	Serial Communication
		One bit at a time Slower Cheaper Long Distance
		Parallel Communication
		Multiple bits at a time Faster Costlier Short Distance
66.	What is VLIW? Superscalar architecture.	Very long instruction word (VLIW) describes a computer processing
		architecture in which a language compiler or pre-processor breaks
		program instruction down into basic operations that can be performed by
		the processor in parallel (that is, at the same time). These operations are put

into a very long instruction word which the processor can then take apart without further analysis, handing each operation to an appropriate functional unit.

VLIW is sometimes viewed as the next step beyond the reduced instruction set computing (RISC) architecture, which also works with a limited set of relatively basic instructions and can usually execute more than one instruction at a time (a characteristic referred to as *superscalar*). The main advantage of VLIW processors is that complexity is moved from the hardware to the software, which means that the hardware can be smaller, cheaper, and require less power to operate. The challenge is to design a compiler or preprocessor that is intelligent enough to decide how to build the very long instruction words.

- 67 Module Test 1 (Amdahl's law), Test 2 and Test 3 Questions (Problems on Cache)
- Refer this link for additional questions https://mucomputergraphics.wordpress.com/2017/05/04/coa-viva-question/