

This is a pair of 8-bit registers that can be independently read and written by the two processors (one reads, one writes). The registers are assumed to written from the Sega's shared data bus and read by the microcontroller. Each register has its own write-enable and read-enable, but only one register can be read at a time, and only one can be written at a time. It is safe to read from one register while writing to another. Everything runs on +3.3V, but must be compatible with 5V inputs. If using a slightly different part number, please check input voltages in the data sheet. The data outputs are 3.3V, which the Sega can read. +3.3V U12 3V signals +3.30 5V signals 74AHC373 D_IN[0..7]D--DD_OUT[0..7] D_OUTO 4 D1 D_IN1 D_OUT1 01 D_IN2 D_OUT2 D2 8 D3 D_IN3 D_OUT3 C10 - C11 U2G 22nF 22nF 22nF D_IN4 D_OUT4 04 74AHC04 14 D5 05 15 D_IN5 D_OUT5 17 D6 06 16 D_IN6 D_OUT6 U2A D_IN7 18 D7 D_OUT7 19 74AHC04 3V signals REG_0_WE REG_O_WED GND REG_0_OED GND These are unused gates. +3.3V U2C U2E The write-enable signals from our address decoder are active-low, 74AHC04 74AHC04 but the latch signal here is active—high. Hence the inverter. U14 74AHC373

D_OUTO D_OUT1 D1 01 D_OUT2 D2 U2D U2F D_IN3 D_OUT3 74AHC04 74AHC04 D_IN4 D_OUT4 04 14 D5 D_IN5 05 15 D_OUT5 17 D6 06 16 D_OUT6 D_IN6 U2B 18 D7 07 19 74AHC04 D_IN7 D_OUT7 3V signals REG_1_WE REG_1_WE D REG_1_0E D

> Sheet: /register-file-internal/ File: register-file-internal.kicad_sch

Title: Kinetoscope Register File connected to buses								
Size: A4	Date:						Rev:	
KiCad E.D.A. 8.0.5							ld: 6/6	

1 2 3 4 5

These are synchronization tokens between the M68k and the microcontroller.

The tokens will be cleared on boot/reset.

The M68k will be able to set the command token $(\overline{\text{CMD_SET}})$, indicating to the microcontroller that a command is ready to be executed.

The microcontroller will be able to clear the command token $(\overline{\text{CMD_CLR}})$, indicating to the M68k that the command has been executed.

Command codes and arguments are passed through a separate register file.

The microcontroller can also flag an error (ERR_SET) to the M68k, who can clear it (ERR_CLR) after noticing.

The M68k and microcontroller both will be able to read the current state of either token through OUTPUT_5V, which goes to the shared data bus with 5V logic. 3.3V version of both tokens are output to the microcontroller on dedicated lines.

Sheet: /sync-token-internal/ File: sync-token-internal.kicad_sch

Title: Kinetoscope Sync Token

 Size: A4
 Date:
 Rev:

 KiCad E.D.A. 8.0.5
 Id: 7/6