

Classification of Diabetic Retinopathy using Residual Learning with a Custom Balanced Softmax Loss

Project Presentation & Defense

Computer Science

Part 1 Background

Part 2 Dataset

Part 3 Model and Loss Function

Part 4 Results and Deployment

Part 5 Future Work

Contents

Background

Diabetic Retinopathy:

- Millions affected globally
- Major cause of blindness in working-age adults

Current Challenge

- Limited, low-quality DR images with class imbalance
- Manual diagnosis by doctors after image capture

Goal

- •Improve classification accuracy by addressing class imbalance.
- Automate image screening for early detection of diabetic retinopathy

Impact

Early detection can prevent blindness

Indian DR patients

Dataset – Kaggle APTOS 2019 (3662)

Classes

- •Images are labeled with 5 severity levels of diabetic retinopathy:
 - No DR
 - Mild DR
 - Moderate DR
 - Severe DR
 - Proliferative DR

■ Diabetic Retinopathy Level

Data Preprocessing

Model

ResNet: Residual connections for deeper learning.

Squeeze-and-Excitation: Enhances important features by recalibrating channels.

Wavelet Transforms: Captures multi-resolution features for better detail.

Attention Mechanism: Focuses on relevant features for better context.

MaxPooling: Reduces spatial dimensions to retain essential features.

Feedforward Neural Network: Fully connected layers for decision making after feature extraction.

Model Structure

Loss Function

Problem:

Standard Softmax favors majority classes in imbalanced datasets.

Solution:

Balanced Softmax adjusts logits using class frequency (log counts), increasing focus on minority classes.

Softmax Activation Function

Softmax Activation Curve

 $Adjusted\ Logits = Logits + log(Class\ Frequency)$

Core formula of Balanced Softmax loss function

Model Convergence Achieved+

Balanced Performance Good Generalization

ResNet Model

My Model

ROC-AUC:

- Class 0 (No DR) achieved AUC of 1.00.
- Other classes show strong performance, with AUCs ranging from 0.91 to 0.94.

Precision-Recall:

- Class 0 (No DR) has the best precision and recall.
- Severe and Proliferative DR show lower precision and recall with AUCs of 0.25 and 0.55.

Model	Acc (Micro)	Acc (Macro)	F1-S	Pre	Rec	Spec	Total params
EfficientNetV2B0	0.83	0.64	0.64	0.66	0.64	0.96	6083925
InceptionV3	0.83	0.71	0.70	0.69	0.71	0.96	22584437
MobileNetV2	0.80	0.60	0.62	0.69	0.60	0.94	2422597
ResNet50	0.85	0.68	0.69	0.71	0.68	0.96	23850629
VGG16	0.85	0.67	0.69	0.72	0.67	0.96	14780997
My model	0.83	0.73	0.70	0.68	0.73	0.96	8394029

Performance Comparison of Pretrained Models

	_	Acc					
Model	Acc (Micro)	(Macr o)	F1-S	Pre	Rec	LOSS	
ResNet5	0.05	0.60	0.00	0.71	0.60	Categorical	
0	0.85	0.68	0.69	0.71	0.68	Crossentropy	
ResNet5	0.04	0.76	0.70	0.60	0.70	Balanced Softmax	
0	0.81	0.76	0.70	0.68	0.76	Loss	
Му	0.04	0.64	0.64	0.67	0.64	Categorical	
model	0.84	0.64	0.64	0.67	0.64	Crossentropy	
My	0.83	0.73	0.70	0.68	0.73	Balanced Softmax	
model	0.63	0.73	0.70	0.00	0.73	Loss	

Model	Acc (Micro)	Acc (Macro)	F1- S	Pre	Rec	LOSS	Class
ResNet 50	0.87	0.79	0.80	0.83	0.79	Categorical Crossentropy	4
My model	0.87	0.84	0.81	0.80	0.84	Balanced Softmax Loss	4
ResNet 50	0.85	0.68	0.69	0.71	0.68	Categorical Crossentropy	5
My model	0.83	0.73	0.70	0.68	0.73	Balanced Softmax Loss	5

Performance Comparison of ResNet50 and Proposed Performance Comparison for 4-Class vs 5-Class **Model with Different Loss Functions**

Classification with Different Loss Functions

XAI - LIME, Grad-CAM, SHAP

 Method
 Explanation Style

 LIME
 Highlights important regions using green and red overlays.

 Grad-CAM
 Generates colorful heatmaps to show where the model focuses.

 SHAP
 Uses red-blue shading to show pixel-level contribution scores.

GUI - enabled web deployment

Future Work

Pretrained model integration

To boost classification accuracy and improve handling of class imbalance.

Lightweight model exploration

To reduce training time and enable faster, more efficient deployment.

Cross-dataset generalization

To evaluate performance on other imbalanced medical image datasets.

Thank You!

