

Iterative Entity Alignment via Joint Knowledge Embeddings

Hao Zhu

Jointly work with Ruobing Xie, Zhiyuan Liu, Maosong Sun

Natural Language Processing Lab, Department of Computer Science and Technology, Tsinghua University

NLP Lab Tsinghua University

Entity Alignment

Goal

Align synonymous entity pairs from heterogeneous
 Knowledge Graphs

Knowledge Graphs
Knowledge Representation Learning
Knowledge Alignment

BACKGROUND

Existing Knowledge Graphs

Knowledge Alignment

Graph-based models

- MELBOURNE
- time-consuming on large-scale KGs
- Other conventional models
 - crowd-sourcing
 - well-designed hand-crafted features
- MTransE [Chen et al. 2016]
 - similar idea, but from different assumption
 - experimental result shows our method is better

Knowledge Representation Learning

- TransE [Bordes et al., 2013] and its extensions
- RESCAL [Nickel et al., 2011; 2012]
- HOLE [Nickel et al., 2016]
- NTN [Socher et al., 2013]

TransE

Embedding:

– Entity: vectors

Relation: translation vectors

• Goal: h+r=t

PTransE [Lin et. al 2015]

 Besides entities and relations, also embed relation path into the same space.

What could KRL help us?

Representation ——— Intrinsic Meaning

Closer Representations Higher Probability to be Synonymous

Knowledge Representation Learning
Parameter Sharing Model
Iterative Alignment Model

Our Model(ITransE)

Knowledge Representation Learning

4 -

Tsinghua University

Parameter Sharing Model

11

Tsinghua University

Iterative learning Model

43

Tsinghua University

Empirical Evaluation

Data

- DFB-1,2,3

Dataset	R	E	$ T_1 $	$ T_2 $	$ \mathbb{L} $	#Valid	O
DFB-1	1,345	14,951	444,159	444,160	5,000	1,000	0.5
DFB-2	1,345	14,951	444,159	444,160	500	1,000	0.5
DFB-3	1,345	14,951	325,717	325,717	500	1,000	0.1

- DFB-4: Training set, test set and auxiliary training set are 399, 856/59, 071/399, 857 respectively.
- Task
 - Entity Alignment
 - Knowledge Completion

Entity Alignment

Goal

- infer the synonymous entity pairs

Metric	DFB-1			DFB-2			DFB-3		
	Hits@1	Hits@10	Mean Rank	Hits@1	Hits@10	Mean Rank	Hits@1	Hits@10	Mean Rank
MTransE (LT)	38.9	61.0	237.7	12.3	33.8	419.2	6.5	22.0	699.8
MTransE (TB)	13.6	35.1	547.7	13.9	35.4	675.7	4.5	16.1	1255.5
TransE + PS	61.9	79.2	105.2	41.1	67.0	154.9	12.2	34.6	431.9
ITransE (HA)	62.6	78.9	100.0	41.2	66.9	151.9	12.3	33.7	432.3
ITransE (SA)	67.1	83.1	80.1	<i>57.7</i>	77.7	109.3	16.2	40.9	367.2
PTransE + PS	65.8	83.4	62.9	46.3	72.1	96.8	15.8	40.2	346.9
IPTransE (HA)	66.1	83.3	59.1	46.2	72.6	94.2	15.1	39.7	337.6
IPTransE (SA)	71.7	86.5	49.0	63.5	82.2	67.5	20.4	47.4	281.0

Entity Alignment

Hits@1 and Mean Rank of our methods through different iterations. (Hits@10 has similar trends to Hits@1.) We conduct soft alignment every 500 iterations from the 1000-th iteration.

Knowledge Completion

Goal

- help learn better knowledge embeddings

	Entity Prediction				Relation Prediction			
Metric	Mean Rank		Hits@10		Mean Rank		Hits@1	
	Raw	Filter	Raw	Filter	Raw	Filter	Raw	Filter
MTransE (LT)	240.8	131.3	36.4	47.3	37.2	36.9	48.3	56.9
MTransE (TB)	851.3	759.7	9.4	10.8	293.7	293.4	27.4	27.7
TransE	246.1	131.6	42.5	54.3	55.9	55.6	44.2	50.7
TransE + Aux	232.8	121.5	43.3	54.9	50.1	49.8	44.4	50.9
ITransE (SA)	209.2	101.0	44.2	55.1	19.8	19.6	54.2	60.7
PTransE	213.0	97.2	50.9	72.1	2.33	1.96	67.4	86.9
PTransE + Aux	206.3	80.4	52.7	80.7	2.34	1.93	68.8	90.5
IPTransE (SA)	197.5	70.6	53.0	80.8	2.03	1.62	68.6	90.8

NLP Lab Tsinghua University

Conclusion

 This paper presents iterative entity alignment via joint knowledge embeddings, by encoding both entities and relations of various KGs into a unified semantic space.

- A simple and effective Parameter Sharing Model
- An Iterative Alignment Model
- We evaluate on entity alignment and knowledge graph completion.
- Experiment results show the effectiveness of our methods as compared with other baselines.

Future Work

• incorporate rich external information of KGs for entity alignment

 explore the effectiveness of other KRL models in our methods for entity alignment.

Our code and data will be available at https://github.com/thunlp/IEAJKE

Questions?

