一、 實驗設計與結果

本章節中,根據第三章之研究方法以各項實驗驗證系統之設計,並介紹各實驗之目的與設計、評估方式以及結果與分析,透過以下五章子節進行說明:臉部偵測準確度實驗、臉部偵測執行時間實驗、臉部遮擋辨識實驗、姿勢辨識實驗及影片危險偵測實驗。

另外,本章各項實驗皆於相同硬體環境操作,詳細資訊如下:

• 作業系統: Windows 10

• CPU: Intel(R) Core(TM) i7-10700KF CPU @ 3.80GHz

• 記憶體:128GB

• GPU: NVIDIA GeForce GTX 1660

1.1 臉部偵測準確度實驗

在收集嬰兒臉部資料集時,需針對嬰兒影像擷取出臉部範圍,進而 後續之臉部遮擋辨識階段。

為了使本系統擁有較佳的臉部偵測準確性且兼具執行效能,本文透過1.1節及1.2節之實驗,分別進行臉部偵測演算法準確度與執行時間之比較,進而驗證以下設計:先使用 SSD 演算法偵測嬰兒臉部,此方法之召回率雖低,但其準確度很高,故能利用此算法之時間優勢;而若 SSD 演算法找不到嬰兒面部時,則接續使用 RetinaFace 演算法,利用其正確率及準確率皆高之優點進行嬰兒臉部偵測。

1.1.1 實驗目的與設計

本實驗為計算人臉偵測演算法之嬰兒面部擷取準確度,使用??節的嬰兒姿勢資料集共15416張影像,分析 RetinaFace deng_retinaface_2020、MTCNN zhang_joint_2016、SSD ye_face_2021及 Haar cascade goyal_face_2017等演算法之偵測結果。

1.1.2 實驗評估方式

透過分類標註四項演算法偵測嬰兒臉部之結果影像,計算出各演算法的 accuracy、precision 及 recall。

1.1.3 實驗結果與分析

由表 1.1、表 1.2、表 1.3及表 1.4 分別為 RetinaFace、MTCNN、SSD 及 Haar cascade 之詳細實驗結果。

+	1 1.	Datina	Eaga da	na matinafa	~~ 2020	/占 /m/ IE	(コロム	かりみ田
衣	1.1.	Reuma	irace ue	ng retinafa	ce zuzu	浿测妥	一人人放	可給木

	True(預測有臉)	False (預測無臉)
True	12925	11
(實際有臉)	12723	11
False	33	2447
(實際無臉)	33	2117
Total	12958	2458

表 1.2: MTCNN zhang joint 2016 偵測嬰兒臉部結果

	True(預測有臉)	False(預測無臉)
True	9361	3399
(實際有臉)	9301	3399
False	517	2140
(實際無臉)	317	2140
Total	9877	5539

表 1.3: SSD ye_face_2021 偵測嬰兒臉部結果

	True(預測有臉)	False (預測無臉)
True	4830	8141
(實際有臉)	4030	0171
False	5	2440
(實際無臉)	3	2110
Total	4835	10581

表 1.4: Haar cascade goyal face 2017 偵測嬰兒臉部結果

	True (預測有臉)	False (預測無臉)
True	2882	9546
(實際有臉)	2002	7540
False	725	2263
(實際無臉)	123	2203
Total	3607	11809

而再經計算後,四項演算法之 accuracy、precision 及 recall 值如表 1.5。

表 1.5: 人臉偵測準確度結果

演算法	Accuracy	Precision	Recall
RetinaFace	99.71%	99.75%	99.91%
MTCNN	74.60%	94.78%	73.36%
SSD	47.16%	99.90%	37.24%
Haar cascade	33.37%	79.90%	23.19%

故透過本實驗結果可得出選用 RetinaFace 演算法行嬰兒臉部偵測,可擁有較佳的偵測準確度。另外,值得注意的是,雖然 SSD 的 accuracy 及 recall 很低,但其 precision 達 99.90%,也就是說其將多數影像誤判為無臉,但判斷為有臉的結果幾乎正確。

因此,本研究接續進行1.2節的實驗,希望利用 SSD 這樣的特質。

1.2 臉部偵測執行時間實驗

本研究進行嬰兒臉部偵測除了考量準確度外,亦希望提升整體系統 之執行效率。

1.2.1 實驗目的與設計

本實驗為計算人臉偵測演算法之執行時間,使用??節的嬰兒姿勢資料集共 15416 張影像,分析 RetinaFace deng_retinaface_2020、MTCNN zhang_joint_2016、SSD ye_face_2021及 Haar cascade goyal_face_2017等演算法之偵測結果。

1.2.2 實驗評估方式

透過計算四項演算法偵測完整資料集所花費之時間,計算各演算法平均偵測一張影像之執行時間。

1.2.3 實驗結果與分析

RetinaFace、MTCNN、SSD 及 Haar cascade 四項演算法之詳細實驗結果,請見表 1.6。

演算法	總花費時間(15416張影像)	每張影像平均時間
RetinaFace	5 小時 42 分 2.10 秒	1.33 秒
MTCNN	2 小時 8 分 22.05 秒	0.50 秒
SSD	9分17.26秒	0.04 秒
Haar cascade	18分01.78秒	0.07 秒

表 1.6: 人臉偵測執行時間結果

故透過本實驗結果可得出使用 SSD 演算法進行嬰兒臉部偵測,將可擁有較佳的偵測速度。而1.1節實驗中,準確度最高的 RetinaFace 其平均偵測一張影像需 1.33 秒,為 SSD 的 33.25 倍。

因此,總結1.1節與1.2節之實驗結果,驗證本系統先使用 SSD 演算法偵測嬰兒臉部,未如期找到目標時,則改以 RetinaFace 演算法偵測,達成兼具準確性及執行效率之系統目標。

1.3 臉部遮擋辨識實驗

本研究中,利用深度學習技術辨識嬰兒臉部是否遭非奶嘴之異物遮蔽,進而判斷嬰兒是否處於危險情境中。

1.3.1 實驗目的與設計

本實驗為訓練針對嬰兒臉部遮擋辨識之模型,以 ResNet50 he_deep_2016訓練??節的嬰兒臉部資料集,並透過驗證集進行模型驗證。

程式實作中,網路訓練回合數為 20,設定影像資料大小為 224x224,包含三個類別 (臉部無遮擋之安全狀態、使用奶嘴及面部遭異物遮蔽之警示狀態),且透過 data augmentation 技術生成訓練及測試資料,輸出層使用 softmax 作為激發函數,並使用 Adam 作為 optimizer 且將學習率設為 0.000001 以進行微調。

1.3.2 實驗結果分析

模型最終訓練準確率達 98.06%,而測試準確率達 99.43%,詳細訓練結果請見圖 1.1。

我們使用 342 張之驗證集影像進行模型驗證,所有影像皆辨識正確。 此模型之混淆矩陣如表 1.7,表中數字為各類影像之張數及比例,並於最 右行展示各類別召回率。

圖 1.1: 臉部辨識訓練及測試結果

表 1.7:	臉部遮擋辨識模型之混淆矩陣	(單位:張	(百分比)

	預測類別			召回率	
	安全 奶嘴 警示				
實際	安全	120 (100.00)	0 (0.00)	0 (0.00)	100.00%
	奶嘴	0 (0.00)	115 (100.00)	0 (0.00)	100.00%
類別	警示	0 (0.00)	0 (0.00)	107 (100.00)	100.00%

1.4 姿勢辨識實驗

本研究中,利用深度學習技術辨識嬰兒基礎姿勢,進而判斷嬰兒是 否處於危險情境中。

1.4.1 實驗目的與設計

本實驗為訓練針對嬰兒姿勢辨識之模型,以 ResNet50 he_deep_2016訓練??節的嬰兒姿勢資料集,並透過驗證集進行模型驗證。

程式實作中,網路訓練回合數為 20,設定影像資料大小為 224x224,包含四個類別(正躺、趴躺、坐姿及站立),且透過 data augmentation技術生成訓練及測試資料,輸出層使用 softmax 作為激發函數,並使用Adam 作為 optimizer 且將學習率設為 0.000001 以進行微調。

1.4.2 實驗結果分析

模型最終訓練準確率達 99.45%,而測試準確率達 99.71%,詳細訓練結果請見圖 1.2。

圖 1.2: 姿勢辨識訓練及測試結果

我們使用 744 張之驗證集進行模型驗證,包含了五張類別辨識錯誤的影像,其中三張將坐姿誤判為趴躺姿勢,推測原因為嬰兒雖呈現坐姿,但上半身貼近其腿部(如圖 1.3),而導致誤判。此模型之混淆矩陣如表 1.8,表中數字為各類影像之張數及比例,並於最右行展示各類別召回率。

圖 1.3: 姿勢辨識錯誤之影像: 坐姿誤判為趴躺

	預測類別					
	正躺 趴躺 坐姿 站立					
	正躺	164 (100.00)	0 (0.00)	0 (0.00)	0 (0.00)	100.00%
實際	趴躺	1 (0.52)	191 (99.48)	0 (0.00)	0 (0.00)	99.48%
類別	坐姿	0 (0.00)	3 (1.50)	196 (98.00)	1 (0.50)	98.00%
	站立	0 (0.00)	0 (0.00)	0 (0.00)	192 (100.00)	100.00%

表 1.8: 姿勢辨識模型之混淆矩陣 (單位:張/百分比)

1.5 影片危險偵測實驗

本研究基於嬰兒影像進行臉部遮擋及姿勢辨識,透過讀取嬰兒影片達成危險監測之目標。

1.5.1 實驗目的與設計

本實驗為驗證此系統能基於嬰兒影像進行危險監測,利用網路之真 實嬰兒影片,包含不同之拍攝視角、嬰兒樣貌及狀態等,實驗臉部遮擋 辨識模型與姿勢辨識模型之準確性。

1.5.2 實驗評估方式

透過輸出每幀影像之臉部遮擋及姿勢辨識結果,計算其 accuracy、precision 及 recall,以驗證此二模型得以應用在監測嬰兒危險情境。

1.5.3 實驗結果分析

本實驗使用之影片,包含嬰兒許多的不同情境,如:清醒與否、不同衣著、穿戴帽子與否及相異背景環境等,進行其臉部遮擋(無遮蔽、使用奶嘴及遭異物遮擋)與姿勢(正躺、趴躺、坐姿及站立)之危險辨識。

首先,姿勢辨識的部分,包含了多張誤判為趴躺姿勢的影像,推測

原因為嬰兒身體遭棉被遮擋(如圖 1.4),而只拍攝到露出的嬰兒臉部,故造成姿勢辨識錯誤。

圖 1.4: 姿勢辨識錯誤之影像:正躺誤判為趴躺

其次,臉部遮擋辨識的部分,會先刪去嬰兒臉部未被偵測之影像 (如圖 1.5),而後判斷有多張影像類別應為嬰兒正在使用奶嘴或安全狀態,但誤判為遭異物遮蔽之警示狀態,推測原因為影像中之奶嘴或嬰兒臉部遭手部等遮擋(如圖 1.6),而誤判類別。

圖 1.5: 未偵測嬰兒臉部之影像

雨部分之混淆矩陣如表 1.9及表 1.10,表中數字為各類影像之張數及 比例,並於最右行展示各類別召回率。

圖 1.6: 臉部遮擋誤判之為警示狀態

表 1.9: 實驗影片姿勢辨識之混淆矩陣 (單位:張/百分比)

			預測類別					
	正躺 趴躺 坐姿 站立							
	正躺	3223 (90.87)	324 (9.13)	0 (0.00)	0 (0.00)	90.87%		
實際	趴躺	0 (0.00)	161 (100.00)	0 (0.00)	0 (0.00)	100.00%		
類別	坐姿	0 (0.00)	0 (0.00)	214 (100.00)	0 (0.00)	100.00%		
	站立	4 (1.87)	1 (0.47)	0 (0.00)	209 (97.66)	97.66%		

表 1.10: 實驗影片臉部遮擋辨識之混淆矩陣 (單位:張/百分比)

			召回率		
		安全	奶嘴	警示	
實際	安全	1429 (85.83)	52 (3.12)	184 (11.05)	85.83%
類別	奶嘴	17 (0.84)	1615 (80.23)	381 (18.93)	80.23%
 	警示	40 (11.90)	0 (0.00)	296 (88.10)	88.10%