Faults Detection and Location Methods

Classification:

- Single faults:
 - Fault table method (Fixed schedule)
 - Adaptive schedule (using Diagnosing tree)
 - Path sensitizing method
 - Boolean difference method
- Multiple faults:
 - Kohavi algorithm method

Adaptive Schedule Method:

- Choice of test schedules is dependent on the outcomes of the experiment (length of test schedule may vary depending upon the fault)
- Example: If test set = {2,3,4,5}
- Then length = 4 (fixed) for fixed-schedule or fault table method
- But for adaptive, length may be 1 or 2 or 3 or 4 depending upon which fault needs to be identified.
- Uses <u>Diagnosing tree</u> (directed graph whose nodes are tests)
- 3 var= 8 tests possible = 8 nodes
- Levels 1 2 3 4 5 6 7 8 length=8
- Adaptive Fault table, length=4 (detection) and <=5(location)

Diagnosing Tree:

Directed graph whose nodes are tests

Outgoing branches from a node represent the different outcomes of

the particular test.

Diagnosing Tree Preparation:

• Test set = $\{2,3,5,6\}$ for fault detection = $\{2,3,6+1,4 \text{ or } 1,5 \text{ or } 4,5\}$ for fault location

Test	$X_1 X_2 X_3$	f_0	f ₁	f ₂	f ₃	f ₄	f ₅	f ₆
0	000	0	0	0	0	0	0	1
1	001	0	0	0	0	0	1	1
2	010	0	0	1	0	0	0	1
3	011	1	1	1	1	0	1	1
4	100	0	0	0	1	0	0	1
5	101	0	0	0	1	0	1	1
6	110	1	0	1	1	1	1	1
7	111	1	1	1	1	1	1	1

Fault Detection & Location Diagnosing Tree:

- Test set = {2,3,5,6} for fault detection
- Length of test set= 4 (whether for fixed-schedule or adaptive-schedule method)
- Fault-free output (f0) needs to be separated using diagnosing tree.
- Test set $= \{2,3,6 + 1,4 \text{ or } 1,5 \text{ or } 4,5\}$ for fault location
- Lets assume Test set = {2,3,6,4,5}, so length = 5 (fault location)
- Minimum Length of test set = 5 {tests in any order} for fixed-schedule
- Length of test set = 4 {5, 3, 6, 2} or 5 {5,4,6,3,2} depending upon order of tests for adaptive-schedule method.

Adaptive-Schedule Using Matrix Form Method:

- Test set = {2,3,5,6} for fault detection
- Length of test set= 4 (whether for fixed-schedule or adaptive-schedule method)
- Fault-free output (f0) needs to be separated using diagnosing tree.

- Test set $= \{2,3,6+1,4 \text{ or } 1,5 \text{ or } 4,5\}$ for fault location
- Lets assume Test set = {2,3,6,4,5}, so length = 5 (fault location)
- Minimum Length of test set = 5 {tests in any order} for fixed-schedule
- Length of test set = 4 {5, 3, 6, 2} or 5 {5,4,6,3,2} depending upon order of tests for adaptive-schedule method.

Path Sensitizing Method:

- Fault table method requires construction of big tables if there are many lines within the circuit.
- Need to have an alternative method.

• Principle:

Examine the path of transmission from the location of an assumed fault to one of its primary outputs.

Definitions:

• Primary input: A line that is not fed by any other line in the circuit.

• **Primary output:** A line whose signal output is accessible to the exterior of the circuit.

• <u>Transmission path:</u> Path of a combinational circuit is a connected directed graph containing no loops from a primary input or internal line to one of its primary outputs.

Steps for Path Sensitizing Method:

- 1. Choose a path from the faulty line to one of its primary outputs.
- 2. Assign a faulty line a value of '0' or '1' if the fault is a s-a-1 or s-a-0.
- 3. Along the chosen path, except the lines of path,
 Assign a value '0' to the OR and NOR gates in the path.
 Assign a value '1' to the AND and NAND gates in the path.
- 4. Trace back along the sensitized path towards the circuit inputs.

Tree-line Circuits:

- Tree-line circuit is defined as a circuit in which
 - each input is an independent input line to the circuit
 - Fan-out of every gate is 1.

Fan-out: defines number of devices/gates which can be connected at output of that particular gate/device.

The complete test set for tree-like circuits by using path sensitizing method.

Here, every path of the circuit is sensitizable.

But if the fan-out of a gate is >1, then some paths may not be sensitizable.

Boolean Difference Method:

- Algebraic method to determine set of test vectors for fault detection and location by using properties of Boolean Algebra.
- Any circuit with 'n' variables F(x₁, x₂, ...x_n) has:
 - F(X) representing output of fault-free circuit
 - F'(X) representing output in presence of a fault
- Complete test set of test vectors for any input vector $X = (x_1, x_2, ...x_n)$ is $\{X \mid F(X) \oplus F'(X)\} = 1$
- Boolean difference of a logic function F(X) wrt to an input variable x_i is defined as:

$$\frac{d F(X)}{dxi} = F(x_1, x_2, ... x_i, ... x_n) \oplus F(x_1, x_2, ... x_i, ... x_n)$$

Boolean Difference Theorems:

• Boolean difference of a logic function F(X) wrt to an input variable x_i is defined as:

$$\frac{d F(X)}{dxi} = F(x_1, x_2, ... x_i, ... x_n) \oplus F(x_1, x_2, ... x_i, ... x_n)$$

- F(X) when x_i assumes values '0' and '1' as F_i(0) and F_i(1)
- $F_i(0) = F(x_1, x_2, ... 0, ... x_n)$
- $F_i(1) = F(x_1, x_2, ... 1_i, ... x_n)$

$$\frac{d F(X)}{dxi} = F_i(0) \oplus F_i(1)$$

- Test set for stuck-at-0 fault on input line x_i is $F(X) \oplus F_i(0) = 1$
- Test set for stuck-at-1 fault on input line x_i is $F(X) \oplus F_i(1) = 1$

Let us denote the values of the function F(X) when x_i assumes the values 0 and 1, respectively, as $F_i(0)$ and $F_i(1)$, that is,

$$F_{i}(0) = F(x_{1}, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_{n})$$

$$F_{i}(1) = F(x_{1}, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_{n})$$

$$F_i(1) = F(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n)$$

Then it is easy to see that

$$\frac{dF(X)}{dx_i} = F_i(0) \oplus F_i(1) \tag{1}$$

First, we describe the method of test generation assuming a fault in one of the input lines. Later this result is generalized to a fault in any line. Consider a stuck-at-0 fault on an input line, say x_i . Then the function realized in the presence of the fault is $F'(X) = F_i(0)$. Hence, by Theorem 6.7.1, the test set for the fault can be obtained by solving the equation

$$F(X) \oplus F_i(0) = 1 \tag{2}$$

Similarly, it can be seen that the test set for a stuck-at-1 fault on input line x_i can be obtained by solving $F(X) \oplus F_i(1) = 1$

$$F(X) \oplus F_i(1) = 1 \tag{3}$$

percurations astemn two s Now we state a theorem that provides a method for solving the equations above using Boolean differences.

Theorem 6.7.2. Equations (2) and (3) can be expressed, respectively, as

and (a) Equations (2) and (3) can be expressed, respectively, as
$$\frac{dF(X)}{dx_i} = 1$$

$$x_i' \frac{dF(X)}{dx_i} = 1$$
Hence, the test sets for the faults SAO and SA1 on input x are respectively.

Hence, the test sets for the faults SA0 and SA1 on input x_i are, respectively,

$$\left\{X \mid x_i \frac{dF(X)}{dx_i} = 1\right\}$$

$$\left\{X \mid x_i' \frac{dF(X)}{dx_i} = 1\right\}$$

Kohavi Algorithm Method:

- Used for multiple faults (multiple faults at the same time) in two-level networks.
- Determine two sets of tests: a-tests and b-tests.
- Three Conditions are:
- 1. The network must be a 2-level AND-OR or OR-AND network.
- 2. Each AND gate must realize a prime cube.
- 3. AND-OR network must implement a Boolean function, which is a *sum of irredundant prime implicants* (sum does not contain either a redundant PI or a redundant literal i.e. it is not in minimal SOP form).

Example:

Example: If a function, $f = \sum m (0,1,3,5,7,8,12,13)$ has two irredundant sum forms.

 $f_1 = 0XX1 + X000 + 110X = 0001, 0011, 0101, 0111, 0000, 1000, 1100, 1101$

 $f_2 = 0XX1 + 000X + X101 + 1X00 = 0001, 0011, 0101, 0111, 0000, 0001, 0101, 1101,$

1<u>0</u>00, 1<u>1</u>00 (Irredundant sum term)