COMP30026 Models of Computation Assignment 1

XuLin Yang, 904904

September 9, 2019

Challenge 1

 $F = \forall x (\neg P(x, x))$

 $G = \forall x \ \forall y \ \forall z \ (P(x,y) \land P(y,z) \Rightarrow P(x,z))$

 $G' = \forall x \ \forall y \ \forall z \ (P(x,y) \land P(y,z) \Rightarrow \neg P(x,z))$

 $H \quad = \quad \forall x \ \forall y \ (P(x,y) \Rightarrow \neg P(y,x))$

a. Show that $F \vee G \vee G' \vee H$ is not valid.

note: $\mathbf{f} = \text{false}, \, \mathbf{t} = \text{true} \text{ in the following answers.}$

domain	P(a,b)	formula				
		F	G	G'	Н	
$\{-1, 0, 1\}$	$P(a,b) = 2a + b \ge 0$	x = 1	x = 0, y = 1, z = -1	x = 0, y = 0, z = 0	x = 0, y = 0	
		\mathbf{f}	f	f	f	

So we have one interretation gives $F \vee G \vee G' \vee H = \mathbf{f}$.

It shows $F \vee G \vee G' \vee H$ is not valid.

b. Show that $F \wedge G' \wedge H$ is satisfiable.

domain	P(a,b)		formula			
	$P(a,b) = \mathbf{f}$	F	G'	Н	$F \wedge G' \wedge H$	
Jol	$I(a,b) = \mathbf{I}$	$\overline{\mathbf{t}}$	t	t	t	

The listed interretation shows $F \wedge G' \wedge H$ is satisfiable.

c. Show that $(F \wedge G) \Rightarrow H$ is valid.

Let
$$K = (F \wedge G) \Rightarrow H$$
,

Proof. K is valid

is equivalent to prove $\neg K$ is unsatisfiable.

$$\neg K \equiv \neg[(F \land G) \Rightarrow H]$$

$$\equiv \neg[\neg(F \land G) \lor H] \qquad \text{(by implication)}$$

$$\equiv F \land G \land \neg H \qquad \text{(by deriving negation in)}$$

$$\equiv [\forall x \ (\neg P(x,x))] \land \{\forall x \ \forall y \ \forall z \ [(\neg(P(x,y) \land P(y,z)) \lor P(x,z)]\} \land [\neg \forall x \ \forall y \ (\neg P(x,y) \lor \neg P(y,x))]$$

$$\text{(by replacing occurrence of } \Rightarrow)$$

$$\equiv [\forall x \ (\neg P(x,x))] \land [\forall x \ \forall y \ \forall z \ (\neg P(x,y) \lor \neg P(y,z) \lor P(x,z))] \land [\exists x \ \exists y \ (P(x,y) \land P(y,x))]$$

$$\text{(by deriving negation in)}$$

$$\equiv [\forall x \ (\neg P(x,x))] \land [\forall u \ \forall v \ \forall w \ (\neg P(u,v) \lor \neg P(v,w) \lor P(u,w))] \land [\exists z \ \exists y \ (P(z,y) \land P(y,z))]$$

$$\text{(by standarizing apart)}$$

$$\rightsquigarrow [\forall x \ (\neg P(x,x))] \land [\forall u \ \forall v \ \forall w \ (\neg P(u,v) \lor \neg P(v,w) \lor P(u,w))] \land P(a,b) \land P(b,a)$$

$$\text{(by skolemization)}$$

$$\equiv \neg P(x,x) \land (\neg P(u,v) \lor \neg P(v,w) \lor P(u,w)) \land P(b,a)$$

$$\text{(by dropping universal quantifiers)}$$

and written as a set of sets of literals:

$$\left\{ \begin{cases} \{\neg P(x,x)\}, \\ \{\neg P(u,v), \neg P(v,w), P(u,w)\}, \\ \{P(a,b)\}, \\ \{P(b,a)\} \end{cases} \right\}$$

and do the resolution:

As resolution shows: $\neg K$ is unsatisfiable.

 $\therefore K$ is valid.

Challenge 2

- F(x), which stands for "the force is with x"
- J(x), which stands for "x is a Jedi master"
- E(x, y), which stands for "x exceeds y"
- P(x,y), which stands for "x is a pupil of y"
- V(x), which stands for "x is venerated"

and use the constant 'a' to denote Yoda.

a. For each of the statements S_1 , ..., S_4 , express it as a formula in first-order predicate logic (not clausal form):

$$S_{1} = \forall x(J(x) \Rightarrow F(x))$$

$$S_{2} = \exists y(J(y) \land E(a, y))$$

$$S_{3} = \forall z \{ \{J(z) \Rightarrow [F(z) \land (\forall u(P(u, z) \Rightarrow E(u, z)))] \} \Rightarrow V(z) \}$$

$$S_{4} = \forall v \{ [J(v) \Rightarrow (\neg \exists w(P(w, v)))] \Rightarrow V(v) \}$$

b. Translate S_1 - S_3 to clausal form.

$$S_1 \equiv \forall x (J(x) \Rightarrow F(x))$$

 $\equiv \forall x (\neg J(x) \lor F(x))$ (by replacing occurrence of \Rightarrow)
 $\equiv \neg J(x) \lor F(x)$ (by dropping universal quantifiers)

and written as a set of sets of literals:

$$\{ \{ \neg J(x), F(x) \} \}$$

$$S_2 \equiv \exists y (J(y) \land E(a, y))$$

 $\leadsto J(b) \land E(a, b)$ (by skolemization)

and written as a set of sets of literals:

$$\left\{ \begin{cases} \{J(b)\}, \\ \{E(a,b)\} \end{cases} \right\}$$

$$S_3 \equiv \forall z \{ \{J(z) \Rightarrow [F(z) \land (\forall u(P(u,z) \Rightarrow E(u,z)))] \} \Rightarrow V(z) \}$$

$$\equiv \forall z \{ \neg \{ \neg J(z) \lor [F(z) \land (\forall u(\neg P(u,z) \lor E(u,z)))] \} \lor V(z) \}$$
(by replacing occurrence of \Rightarrow)
$$\equiv \forall z \{ \{J(z) \land \neg [F(z) \land (\forall u(\neg P(u,z) \lor E(u,z)))] \} \lor V(z) \}$$
(by deriving negation in)
$$\equiv \forall z \{ \{J(z) \land [\neg F(z) \lor \neg (\forall u(\neg P(u,z) \lor E(u,z)))] \} \lor V(z) \}$$
(by deriving negation in)
$$\equiv \forall z \{ \{J(z) \land [\neg F(z) \lor (\exists u(P(u,z) \land \neg E(u,z)))] \} \lor V(z) \}$$
(by deriving negation in)
$$\Rightarrow \forall z \{ \{J(z) \land [\neg F(z) \lor (P(f(z),z) \land \neg E(f(z),z))] \} \lor V(z) \}$$
(by skolemization)
$$\equiv \{J(z) \land [\neg F(z) \lor (P(f(z),z) \land \neg E(f(z),z))] \} \lor V(z)$$
(by dropping universal quantifiers)
$$\equiv (J(z) \lor V(z)) \land [(V(z) \lor \neg F(z)) \lor (P(f(z),z) \land \neg E(f(z),z))]$$
(by distributivity)
$$\equiv (J(z) \lor V(z)) \land [(V(z) \lor \neg F(z) \lor P(f(z),z)) \land (V(z) \lor \neg F(z) \lor \neg E(f(z),z))]$$
(by distributivity)

and written as a set of sets of literals:

$$\begin{cases}
\{J(z), V(z)\}, \\
\{V(z), \neg F(z), P(f(z), z)\}, \\
\{V(z), \neg F(z), \neg E(f(z), z)\}
\end{cases}$$

c. Translate the negation of S_4 to clausal form.

$$\neg S_4 \equiv \neg \forall v \{ [J(v) \Rightarrow (\neg \exists w (P(w,v)))] \Rightarrow V(v) \}$$

$$\equiv \neg \forall v \{ \neg [\neg J(v) \lor (\neg \exists w (P(w,v)))] \lor V(v) \}$$
(by replacing occurrence of \Rightarrow)
$$\equiv \exists v \{ [\neg J(v) \lor (\forall w (\neg P(w,v)))] \land \neg V(v) \}$$
(by deriving negation in)
$$\Rightarrow \{ [\neg J(c) \lor (\forall w (\neg P(w,c)))] \land \neg V(c) \}$$
(by skolemization)
$$\equiv (\neg J(c) \lor \neg P(w,c)) \land \neg V(c)$$
(by dropping universal quantifiers)

and written as a set of sets of literals:

$$\left\{ \left\{ \neg J(c), \neg P(w, c) \right\}, \right\}$$

d. Give a proof by resolution to show that S_4 follows from the other statements.

Proof.
$$S_1 \wedge S_2 \wedge S_3 \models S_4$$

is equivalent to prove: $S_1 \wedge S_2 \wedge S_3 \wedge \neg S_4$ is unsatisfiable.

As resolution shows: $S_1 \wedge S_2 \wedge S_3 \wedge \neg S_4$ is unsatisfiable

$$\therefore S_1 \land S_2 \land S_3 \models S_4$$

Challenge 3

a. Consider the Boolean vector function $\mathbf{f}_a(b_1, b_2) = (\neg b_1, b_1 \oplus b_2)$. Show that this function is reversible. Note: 0 = false, 1 = true in the following answers.

b_1	b_2	$ \neg b_1$	$b_1 \oplus b_2$
0	0	1	0
0	1	1	1
1	0	0	1
1	1	0	0

As we can see every input has an unique output, $\mathbf{f}_a(b_1, b_2)$ is reversible.

b. Consider the Boolean vector function $\mathbf{f}_b(b_1, b_2, b_3) = (b_1 \oplus b_2, b_2 \oplus b_3, b_3 \oplus b_1)$. Show that this function is *not* reversible.

_	b_1	b_2	b_3	$b_1 \oplus b_2$	$b_2 \oplus b_3$	$b_3 \oplus b_1$
_	0	0	0	0	0	0
	0	0	1	0	1	1
	0	1	0	1	1	0
	0	1	1	1	0	1
	1	0	0	1	0	1
	1	0	1	1	1	0
	1	1	0	0	1	1
	1	1	1	0	0	0

As we can see $\mathbf{f}_b(0,0,0) = \mathbf{f}_b(1,1,1)$, $\mathbf{f}_b(b_1,b_2,b_3)$ is nor reversible.

c. Is the Boolean vector function $\mathbf{f}_c(b_1, b_2, b_3) = (b_1 \oplus b_3, \neg b_3, b_1 \oplus b_2)$ reversible? Justify your answer.

b_1	b_2	b_3	$b_1 \oplus b_3$	$\neg b_3$	$b_1 \oplus b_2$
0	0	0	0	1	0
0	0	1	1	0	0
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	1	1	1
1	0	1	0	0	1
1	1	0	1	1	0
1	1	1	0	0	0

As we can see every input has an unique output, $\mathbf{f}_c(b_1,b_2,b_3)$ is reversible.

d. Give a formula, in terms of n, for the fraction of distinct n-dimensional Boolean vector functions that are reversible.

note: # means the number of

#permutation without replacement of k input = k!

#permutation with replacement of k input = k^k

A n-dimensional boolean vector function has 2^n inputs.

To make a k input function invertible is just to choose k samples from input and each input picked once. This is equivalent to a permute without replacement of k input.

#invertible n-dimensional boolean vector function =#invertible function with 2^n inputs =#permutation without replacement of 2^n inputs $=(2^n)!$

To enumerate all possible ways to mapping k input function with k output is equivalent to find distinct choices of sampling from inputs. This is achieved by permuting with replacement.

- #n-dimensional boolean vector function
 - = #function with 2^n inputs mapped to 2^n with replacement
 - = #permutation with replacement of 2^n inputs
 - $= (2^n)^{2^n}$

With all discussed above,

fraction of distinct n-dimensional invertible Boolean vector functions

 $= \frac{\#\text{n-dimensional invertible Boolean vector functions}}{\#\text{n-dimensional Boolean vector functions}}$

$$= \frac{(2^n)!}{(2^n)^{2^n}}$$