Benchmark for fuzzy sphere Ising model

Zheng Zhou

28 November, 2023

Model Hamiltonian

$$H = \sum_{m_1 m_2 m_3 m_4} 2U_{m_1 m_2 m_3 m_4} c^{\dagger}_{m_1 \uparrow} c^{\dagger}_{m_2 \downarrow} c_{m_3 \downarrow} c_{m_4 \uparrow} - h \sum_{m \sigma} c^{\dagger}_{m \sigma} c_{m \bar{\sigma}}$$

$$\tag{0.1}$$

$$U_{m_1 m_2 m_3 m_4} = \sum_{l} U_l (4s - 2l + 1) \begin{pmatrix} s & s & 2s - l \\ m_1 & m_2 & -m_1 - m_2 \end{pmatrix} \begin{pmatrix} s & s & 2s - l \\ m_4 & m_3 & -m_4 - m_3 \end{pmatrix}$$
(0.2)

Parameters

$$N_{\text{orb}} = 6$$
, $s = 5/2$, $U_0 = 4.75$, $U_1 = 1$, $h = 3.16$ (0.3)

Table 1. The lowest spectrum for benchmark for fuzzy sphere Ising model

E_i	Δ_i	ℓ	\mathbb{Z}_2	P
-10.7542	0.0000	0	+	+
-7.6594	0.5218	0	_	+
-2.5417	1.3847	0	+	+
-1.8399	1.5030	1	_	+
3.1984	2.3525	1	+	+
3.7840	2.4513	0	_	+
4.1006	2.5046	2	_	+
7.0382	3.0000	2	+	+

Notes:

- 1. There might be a constant shift, only the energy difference matters;
- 2. The U_l have a 1/2 factor different from the expression in the paper, as $2n_{\uparrow}n_{\downarrow} = \frac{1}{2}(n_0^2 n_z^2)$.