Recurrent Neural Networks

CS114 Lab 8

Kenneth Lai

March 13, 2020

Sequence Labeling

▶ Suppose we observe a list of words *X*. What are the respective parts of speech *Y*?

Sequence Labeling

- ▶ Suppose we observe a list of words *X*. What are the respective parts of speech *Y*?
 - ▶ What is P(Y|X)?

► Generative approach: Hidden Markov Models

- ► Generative approach: Hidden Markov Models
 - $P(Y|X) \propto P(X,Y) = P(X|Y)P(Y)$

- Generative approach: Hidden Markov Models
 - $P(Y|X) \propto P(X,Y) = P(X|Y)P(Y)$
- ► Independence Assumptions

- Generative approach: Hidden Markov Models
 - $P(Y|X) \propto P(X,Y) = P(X|Y)P(Y)$
- Independence Assumptions
 - ► (First-order) Markov Assumption: the probability of a tag depends only on the previous tag

$$P(Y) = \prod_{i=1}^{T} P(y_i|y_{i-1})$$

- Generative approach: Hidden Markov Models
 - $P(Y|X) \propto P(X,Y) = P(X|Y)P(Y)$
- Independence Assumptions
 - ► (First-order) Markov Assumption: the probability of a tag depends only on the previous tag

$$P(Y) = \prod_{i=1}^{T} P(y_i|y_{i-1})$$

 Output Independence: the probability of a word at time i depends only on the tag at time i

$$P(X|Y) = \prod_{i=1}^{T} P(x_i|y_i)$$

- Generative approach: Hidden Markov Models
 - $P(Y|X) \propto P(X,Y) = P(X|Y)P(Y)$
- Independence Assumptions
 - ► (First-order) Markov Assumption: the probability of a tag depends only on the previous tag

$$P(Y) = \prod_{i=1}^T P(y_i|y_{i-1})$$

Output Independence: the probability of a word at time i depends only on the tag at time i

$$P(X|Y) = \prod_{i=1}^{T} P(x_i|y_i)$$

$$P(Y|X) \propto \prod_{i=1}^{T} P(x_i|y_i) \times \prod_{i=1}^{T} P(y_i|y_{i-1})$$

▶ Discriminative approach: Neural Networks

- ▶ Discriminative approach: Neural Networks
 - ▶ Start small: at time i, compute $P(y_i|...)$ directly

- ▶ Discriminative approach: Neural Networks
 - ▶ Start small: at time *i*, compute $P(y_i|...)$ directly
 - ► For now, factor ... into two parts:

- ▶ Discriminative approach: Neural Networks
 - ▶ Start small: at time *i*, compute $P(y_i|...)$ directly
 - ► For now, factor ... into two parts:
 - Current word x_i

- ▶ Discriminative approach: Neural Networks
 - ▶ Start small: at time *i*, compute $P(y_i|...)$ directly
 - ► For now, factor ... into two parts:
 - Current word x_i
 - History/(past) context h_{i-1} = everything else useful for computing y_i

Graphical Representation of a Neuron

Simplifying assumptions:

- Simplifying assumptions:
 - ► Suppose that our neurons are grouped into a sequence of layers
 - Also suppose that these layers are fully connected (every neuron in one layer is connected to every neuron in the next layer, and no others)

- ► Input layer
- ► Hidden layer
- Output layer

- ► Input layer **x**
- ► Hidden layer **h**
- Output layer y

- ▶ Input layer x
- ► Hidden layer **h**
- Output layer y
- Weight matrices W, V

▶ At each time *i*, the input to the neural network consists of:

- ▶ At each time *i*, the input to the neural network consists of:
 - ightharpoonup Current word vector \mathbf{x}_i

- ▶ At each time *i*, the input to the neural network consists of:
 - Current word vector x_i
 - ▶ History/(past) context vector h_{i-1}

► The output of the hidden state at one time step is the history/past context input for the next time step!

- ► The output of the hidden state at one time step is the history/past context input for the next time step!
- ▶ What context information is embedded in \mathbf{h}_{i-1} ?

- ► The output of the hidden state at one time step is the history/past context input for the next time step!
- ▶ What context information is embedded in \mathbf{h}_{i-1} ?
 - ▶ Previous word \mathbf{x}_{i-1}
 - Previous context \mathbf{h}_{i-2}

- ► The output of the hidden state at one time step is the history/past context input for the next time step!
- ▶ What context information is embedded in \mathbf{h}_{i-1} ?
 - ▶ Previous word \mathbf{x}_{i-1}
 - ▶ Previous context \mathbf{h}_{i-2}
 - ▶ Previous previous word \mathbf{x}_{i-2}
 - ▶ Previous previous context \mathbf{h}_{i-3}

- ► The output of the hidden state at one time step is the history/past context input for the next time step!
- ▶ What context information is embedded in \mathbf{h}_{i-1} ?
 - ► All previous words

- ► The output of the hidden state at one time step is the history/past context input for the next time step!
- ▶ What context information is embedded in \mathbf{h}_{i-1} ?
 - All previous words
 - What about previous parts of speech (as in HMMs)?

- ► The output of the hidden state at one time step is the history/past context input for the next time step!
- ▶ What context information is embedded in \mathbf{h}_{i-1} ?
 - ► All previous words
 - What about previous parts of speech (as in HMMs)?
 - ▶ At least enough information to predict previous tags

Recurrent Neural Networks

Recurrent Neural Networks

► Neural networks in which the output of a layer in one time step is input to a layer in the next time step

 Sequence labeling: predict current tag given current word, history

- Sequence labeling: predict current tag given current word, history
- ► Language modeling: predict next word given current word, history

- Sequence labeling: predict current tag given current word, context
- Language modeling: predict next word given current word, context

▶ What context information is embedded in h_T?

- ▶ What context information is embedded in h_T?
 - ► Current word **x**_T
 - ▶ Context h_{T-1}

- ▶ What context information is embedded in h_T?
 - ► All words (i.e. the whole text)

- ▶ What context information is embedded in h_T?
 - ► All words (i.e. the whole text)
- ▶ Use \mathbf{h}_T to predict class \mathbf{y}_T of entire document

- ▶ What context information is embedded in h_T?
 - ► All words (i.e. the whole text)
- ▶ Use \mathbf{h}_T to predict class \mathbf{y}_T of entire document
 - Ignore other outputs

- ► For each matrix of weights **W**, starting from the output and working backwards:
 - ▶ Compute gradient $\nabla_{\mathbf{W}} L$
- ► For each matrix of weights W:
 - ▶ Move in direction of negative gradient

ightharpoonup Compute gradient $\nabla_{\mathbf{V}} L$

- ▶ Compute gradient $\nabla_{\mathbf{V}} L$
- ▶ Use $\nabla_{\mathbf{V}} L$ to compute gradient $\nabla_{\mathbf{W}} L$

Start at the end of the text and work backwards

- Start at the end of the text and work backwards
 - Let $\nabla_{\mathbf{W},i,j}L$ denote the part of the gradient for weight matrix \mathbf{W} at time i that comes from the output at time j

- Start at the end of the text and work backwards
 - ▶ Compute gradient $\nabla_{\mathbf{V},T,T}L$

- Start at the end of the text and work backwards
 - ▶ Compute gradient $\nabla_{\mathbf{V},T,T}L$
 - ▶ Use $\nabla_{\mathbf{V},T,T}L$ to compute gradients $\nabla_{\mathbf{W},T,T}L$ and $\nabla_{\mathbf{U},T,T}L$

- Start at the end of the text and work backwards
 - ▶ Compute gradient $\nabla_{\mathbf{V},T,T}L$
 - ▶ Use $\nabla_{\mathbf{V},T,T}L$ to compute gradients $\nabla_{\mathbf{W},T,T}L$ and $\nabla_{\mathbf{U},T,T}L$
 - ▶ Use $\nabla_{\mathbf{U},T,T}L$ to compute gradients $\nabla_{\mathbf{W},T-1,T}L$ and $\nabla_{\mathbf{U},T-1,T}L$

- Start at the end of the text and work backwards
 - ▶ Compute gradient $\nabla_{\mathbf{V},T,T}L$
 - ▶ Use $\nabla_{\mathbf{V},T,T}L$ to compute gradients $\nabla_{\mathbf{W},T,T}L$ and $\nabla_{\mathbf{U},T,T}L$
 - ▶ Use $\nabla_{\mathbf{U},T,T}L$ to compute gradients $\nabla_{\mathbf{W},T-1,T}L$ and $\nabla_{\mathbf{U},T-1,T}L$
 - etc.

- Start at the end of the text and work backwards
 - ▶ Compute gradient $\nabla_{\mathbf{V},T-1,T-1}L$

- Start at the end of the text and work backwards
 - ▶ Compute gradient $\nabla_{\mathbf{V},T-1,T-1}L$
 - ▶ Use $\nabla_{\mathbf{V},T-1,T-1}L$ to compute gradients $\nabla_{\mathbf{W},T-1,T-1}L$ and $\nabla_{\mathbf{U},T-1,T-1}L$

- Start at the end of the text and work backwards
 - ▶ Compute gradient $\nabla_{\mathbf{V},T-1,T-1}L$
 - ▶ Use $\nabla_{\mathbf{V},T-1,T-1}L$ to compute gradients $\nabla_{\mathbf{W},T-1,T-1}L$ and $\nabla_{\mathbf{U},T-1,T-1}L$
 - etc.

▶ The overall gradient for a weight matrix \mathbf{W} is the sum of the gradients at each time i from each output \mathbf{y}_i

► The overall gradient for a weight matrix W is the sum of the gradients at each time i from each output y_j

► The overall gradient for a weight matrix W is the sum of the gradients at each time i from each output y_j

$$\nabla_{\mathbf{W}} L = \sum_{i=1}^{T} \sum_{j=i}^{T} \nabla_{\mathbf{W},i,j} L$$

► Then move in direction of negative gradient (assuming stochastic gradient descent)