Requirements and specifications

Paolo Burgio paolo.burgio @unimore.it

Expectations

vs reality

From specifications, to requirements

Specifications are a **contract** between us and the customer

- > At a first step, we define what the system must do, and we derive a set of requirements
 - Specification requirements
 - We speak of software functionalities

Then, for each phase of the development flow, we create a more detailed/tech set of requirements

- > System specs&reqs
- > Module/component specs®s
- > From each of them, we create tests

These are agreed between designers and developers, the customer has nothing to do with this!

- Unless he has some constraint / expertise in the field
- > Beware: often, the customer thinks that SW development is easy!
- "Lo fa anche ammiocuggino"

What vs How

Specs tells us what the system should do

> So, functional requirements do

Implementation tells us **how** the system does things

- > So, system/module/component requirements do
- > Typically, start with a top-down (*divide-et-impera*) approach, and include existing modules, if necessary

Every step of the development process defines a contract between its sub-parts

> This contract can be, e.g., a Middleware protocol in the system design phase, or Java interfaces of the sub-modules of a single module/component

..and so on, and so on...

> The deeper we go in the process, the more in detail we go with technology

What vs How: example

What: users shall authenticate in the system

How

- > Users shall enter their data in a form
- > Design: is it a custom webform? Is it a google form?

More deeper

Users shall enter the password in an obfuscated field in the webform, and click "submit"

Even more deeper

> The data shall be transmitted to a webservice that returns 400 in case age is null

...and so on, and so on...

Highest-level: system requirements

Requirements describe of system functionalities

- > Every requirement describes a specific use-case / scenario
- > Functional requirements to describe how the system reacts to input, which output it produces and how its state changes (e.g., a DB)
- > Non-functional requirements describe properties such as performance, reliability, etc.

Domain-specific requirements

- > Often, implicit, and the customer won't tell you!
- > Ex: Real-time systems, deal with worst case execution time, not with average case exection time, and it is a **functional** requirement

FURPS model

Requirements are classified in:

- > Functionality
- > **U**sability
- > Reliability
- > Performance
- > Supportability

Communicating the requirements

"The hardest single part of building a software system is deciding precisely what to build" (Fred Brooks)

> Often, not even customers know what they want

Specifications must be

- > Clear, non-ambiguous
- Consistent among them
- > Complete
- > Incrementally build with customer

Communicating the requirements

We use formalism

- > E.g., Finite State Machines, Use-case charts, E/R diagrams
- > Might depend on the specific application domain (e.g., FSM are good for RT systems)
- > We'll see them later on....

Specifications can be

- Operational: what the system shall do
 - "The system must record users' age"
- Descriptional: how the system is made
 - "We store users' data, such as age, in a DB" "We expose a web server"
- > Tech: how the system is implemented
 - Typically, due to existing applications/legacy codebase

TRL – Technology readiness level

A Number from 1 to 9 estimating the maturity of a technology

Developed by NASA in 1970s for the space missions

Assessing TRL of SW

TRL	NASA usage ^[4]	European Union ^[5]
1	Basic principles observed and reported	Basic principles observed
2	Technology concept and/or application formulated	Technology concept formulated
3	Analytical and experimental critical function and/or characteristic proof-of concept	Experimental proof of concept
4	Component and/or breadboard validation in laboratory environment	Technology validated in lab
5	Component and/or breadboard validation in relevant environment	Technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies)
6	System/subsystem model or prototype demonstration in a relevant environment (ground or space)	Technology demonstrated in relevant environment (industrially relevant environment in the case of key enabling technologies)
7	System prototype demonstration in a space environment	System prototype demonstration in operational environment
8	Actual system completed and "flight qualified" through test and demonstration (ground or space)	System complete and qualified
9	Actual system "flight proven" through successful mission operations	Actual system proven in operational environment (competitive manufacturing in the case of key enabling technologies; or in space)

> Always remember: it depends on the Operational Scenario! F1/10 example...

IEEE 830 standard (circa 1998)

> Used only for requirements, does not speak of implementation, nor about quality of code

It must be:

- Correct
- > Unambiguous
- > Complete
- > Consistent
- > Orders requirement by their priority/level of abstraction
- > Verifiable
- > Modifiable
- > Traceable

Correct

> To correctly model system behaviour

Unambiguous

- Has the right notations, terminology and Data Dictionary (DD)
- No ambiguity in language: use must/not and shall/not
- > Based on the concept of entity, process, behaviour

Complete

- Covers all requirements, functional and non-functional
- > Defines a response for every possible state/input of the system (spoiler: FSMs do)
- > Enhanced with figures

Consistent

- > No conflicts might arise
- > Typically, because multiple contributors to the document don't speak each other!!!
- > Defining a syllabus / DD is the first step

Orders requirement by their priority/level of abstraction

- Assign an identifier, and a priority
- > Describe the requisite in details
- > E.g., Failure Mode and Effects Analysis (FMEA) for electronic devices

Verifiable

- Assign metrics and Key Performance Indicators to requirements
- » «Response time under 7 secs [in 90% of cases]»

Modifiable

- > Often, requirements change
- > The document must be well organized, and requirements should not be redundant

Traceable

- > We shall understand where each requirements come from
- > High level (e.g., functional) requirements must be approved by the customer
- > Tech requirements are typically agreed between the dev team

Example of requirements for svc/db modules

> Functional requirement

ID	Description	Parents
USR_568	The user must be able to modify his/her birth date in DB	

> SVC component requirement

ID	Description	Parents	Siblings
WEBSVC_11	The web services returns 400 if age is null The web services handle null value errors in DB returning 400	USR_568,	DBMS_49784,

> DBMS component requirement

ID	Description	Parents	Siblings
DBMS_49784	DB shall throw an exception if age is null	USR_568, WEBSVC_11,	

H

Structure of a SRS

1. Introduction

- 1.1 Purpose document
- 1.2 Scope of the document
- 1.3 Definitions, acronyms and abbreviations
- 1.4 [References]
- 1.5 Overview / document structure

2. General description

- 2.1 Product perspective
- 2.2 Product functions
- 2.3 User characteristics
- 2.4 General constraints
- 2.5 Assumptions and dependencies
- 2.6 Apportioning of requirements

3. Requirements

- 3.1 System interface and frontend
- 3.2 Functional requirements
- 3.3 Non-functional requirements

Appendix / [References]

Index

1. Introduction

1.1 Purpose of the document

- What is our goal (remember: customer might not have a complete idea, so better clarifying everything!)
- > Audience (tech people? Non tech people?)

1.2 Scope of the document

- > Name of the product
- > Goals
- > Benefits
- > What we plan to do/solve
- > What we don't plan to do/solve now
- > What we might plan to do/solve in the future

1. Introduction

1.3 Definitions, acronyms and abbreviations

> Typically, a list + table for acronyms

1.4 References

> Can also be in appendix

1.5 Overview / document structure

- > Briefly and concisely, go through every section
- > In case of migrations, typically they are split in as-is + to-be

2. General description

Main features of our system, and main rules constraints it shall adhere to

- > Not yet the real requirements..
- 2.1 Product perspective similar products
- > 2.1.1 System interface
 - Are we using a framework/middleware? Which Web server?
- > 2.1.2 User interface
 - WebApi? WebForm?
- > 2.1.3 Hardware interface
 - How to configure it
- > 2.1.4 Software interface
 - Which libraries to use
 - Interface towards other systems and services (e.g., an existing DB)

2.1 Product perspective (cont'd)

- > 2.1.5 Communication interface
 - TCP/IP? MQTT? ROS2?
- > 2.1.6 Memory requirements
 - Remember that I work in embedded systems...
- > 2.1.7 Initialization, backup and recovery
 -
- > 2.1.8 Installation and configuration
 - In case of micro-services, for instance, we deploy auth and comm bus first...
 - What is the security level? Do we need to set up a DMZ? An application gateway?

2. General description

2.2 Product functions

- > What do the system do?
- > Not too many details...

2.3 User characteristics

- > Newbie, experts in the domain, tech vs. non-tech
- > Will they require a training to use the system? If so, we must provide a cost entry for this in quotation!

2.4 General constraints

- > Functional and performance, when interacting with other systems
- > Parallel/concurrent system? I.e., a web server
- Any criticality

2. General description

2.5 Assumptions and dependencies

> Existing system, knowledge base, licenses

2.6 Apportioning of requirements

- > We are not omniscient! We cannot know everything (especially at this stage ©)
- > Specify which are these aspects, and who shall work on them

3. (Func and non-func) requirements

3.1 System interface / frontend

- > Refines what's in 2.1 and 2.2
- > Input and output data formats, and protocols

3.2 Functional requirements

- > Every requirements has a dedicated table/sheet, or/and a row in a table
- Intro: specifies the context, the functionality, and the entities/actors involved
- Input and output
- > Description:
 - Validation /format of data
 - Operations that will be performed
 - What happens in case of errors?
 - What output should we expect?
 - Etc..

3.2 Functional requirement: example

NOTE this is just *a possible representation*. As soon as you are clear, complete, etc, you can devise your own!

USR_568	User account	Update birth date	
Input	User ID, the new birth date		
Description User wants to update the birth date with a new it, and, in case user does not exist, it creates a fields		•	
Error messages	In case birth date is a future date, or it is e meaningful message is shown. The error is described in requirement LOCAL_45		
Output	Information is updated in the persistent storage; all views that contain the datum are automatically updated, or get the fresh new datum when manually updated.		

> (Possible additional) compact representation

ID	Description	Parents
USR_568	The user must be able to modify his/her birth date in DB	

3.2 Functional requirement: example

NOTE this is just a possible representation to each as you are clear, complete, etc, you can devise your own!

ID | Area | Short desc

USR_568	User account	Update birth date		
Input Description	User ועו, the new pirth dat (sub) funct User wants to update the birth dat with a	ionalities to new one; the system updat othe		
Non-tech language	it, and, in case user does not exist, it creates a new user with empty fields meaningful message is shown. The error is shown in user language, as described in requirement LOCAL 45			
Output	Information is updated in the persistent sto datum are automatically updated, or get the manually updated.			

> (Possible additional) compact rep

Here, we also assume that other modules/areas have different optional functionalities

ID	Description	Parents
USR_568	The user must be able to modify his/her birth date in DB	

3.3 Non-functional requirements

3.3.1 Performance requirements

- > How many concurrent accesses?
- > How many users shall we store?
- > How many concurrent asynchronous workflows shall we have in-place?

3.3.2 Database / storage

> Do we have any tech constraint?

3.3.3 General constraints

- > Shall we adhere to standards?
- > Do we have HW limitations / OS constraint?
- > Shall we use some specific language?
- >

3.3.4 System attributes

Reliability / dependability

> Down time, faults we can/shall/must tolerate...

Accessibility

> Checkpoints, backup, recovery time under faults...

Security

Mantainability

Portability

3.3.5. Other requirements

Development / staging / production software lines

- > CI/CD pipelines
- > Possible public releases

User groups, visibility rules, access rules

Scalability

- > Performance: "up" and "out" (replicas)
- > Number of users
- Cost/pricing of scalability

Appendix / index

Everything that is non-essential should go in appendix

- > Ex: we use AWS. It is useful to know its structure and protocol, because we might interact with it. But we shouldn't embed a full guide to AWS in our Section 2!!!
- > Also, typically references are here

Index

- > Index of sections
- > Index of terms..?
- **>** ..

References

Course website

http://hipert.unimore.it/people/paolob/pub/ProgSW/index.html

Book

- > I. Sommerville, "Introduzione all ingegneria del software moderna", Pearson
- > Chapter 6-7-8 for requirements and system analysis

My contacts

- > paolo.burgio@unimore.it
- http://hipert.mat.unimore.it/people/paolob/
- https://github.com/pburgio