Appendix: Improving the Generalization Performance of Multi-class SVM via Angular Regularization

Jianxin Li¹, Haoyi Zhou¹, Pengtao Xie^{2,3}, Yingchun Zhang¹

School of Computer Science and Engineering, Beihang University
 Machine Learning Department, Carnegie Mellon University
 Petuum Inc, USA

1 Supplementary for intuitive figure

Recall the intuitive figure Fig. 1 (in main paper), it is better to run an example of how the angular regularization technique taking effects on multi-class SVM. Here, we have a try on randomized toy data to verify its correctness.

Figure 1: (a) Without angular regularization; (b) with angular regularization. The toy data is generated on a 2D-plane with 3 categories. Remarking that the solid red triangles are the training samples while the void ones denote test samples.

2 Proof of Lemma 1

To prove Theorem 1 (in main paper), the following lemma is needed.

Lemma 1. Let the weight vector \mathbf{w}_k of hyperplane k be decomposed into $\mathbf{w}_k = \mathbf{x}_k + l_k \mathbf{e}_k$, where $\mathbf{x}_k = \sum_{j=1, j \neq k}^K \alpha_j \mathbf{w}_j$ lies in the subspace L spanned by $\{\mathbf{w}_1, \dots, \mathbf{w}_K\} \setminus \{\mathbf{w}_k\}$, \mathbf{e}_k is in the orthogonal complement of L, $\|\mathbf{e}_k\| = 1$, $\mathbf{e}_k \cdot \mathbf{w}_k > 0$, l_k is a scalar. Then the gradient of $\widehat{\mathcal{R}}(\mathbf{W})$ w.r.t \mathbf{w}_k is $p_k \mathbf{x}_k + q_k \mathbf{e}_k$, where p_k is a positive scalar.

Proof To prove Lemma 1, the following lemma is needed.

Lemma 2. [Xie et al., 2015a] Let the weight vector \mathbf{w}_k of hyperplane k be decomposed into $\mathbf{w}_k = \mathbf{x}_k + l_k \mathbf{e}_k$, where $\mathbf{x}_k = \sum_{j=1, j \neq k}^K \alpha_j \mathbf{w}_j$ lies in the subspace L spanned by $\{\mathbf{w}_1, \dots, \mathbf{w}_K\} \setminus \{\mathbf{w}_k\}$, \mathbf{e}_k is in the orthogonal complement of L, $\|\mathbf{e}_k\| = 1$, $\mathbf{e}_k \cdot \mathbf{w}_k > 0$, l_k is a scalar. Then $\det(\mathbf{W}^\top \mathbf{W}) = \det(\mathbf{W}^\top_k \mathbf{W}_{-k})(l_k \mathbf{e}_k \cdot \mathbf{w}_k)$, where $\mathbf{W}_{-i} = [\mathbf{w}_1, \dots, \mathbf{w}_{k-1}, \mathbf{w}_{k+1}, \dots, \mathbf{w}_K]$ with \mathbf{w}_k excluded.

According to the chain rule, the gradient of $\mathcal{R}(\mathcal{W})$ w.r.t \mathbf{w}_k can be written as

$$\begin{split} \frac{\partial \mathcal{R}(\mathcal{W})}{\partial \mathbf{w}_k} = & g'(\text{tr}(\mathbf{W}^\top \mathbf{W})) \frac{\partial \text{tr}(\mathbf{W}^\top \mathbf{W})}{\partial \mathbf{w}_k} \\ & - \frac{1}{K} g'(\text{det}(\mathbf{W}^\top \mathbf{W})) \frac{\partial \text{det}(\mathbf{W}^\top \mathbf{W})}{\partial \mathbf{w}_k} \end{split}$$

where $g(x) = \log(x)$. It is easy to check that g(x) is an increasing function and g'(x) = 1/x. As assumed earlier, the weight vectors in \mathbf{W} are linearly independent and hence $\operatorname{tr}(\mathbf{W}^{\top}\mathbf{W}) > 0$ and $\det(\mathbf{W}^{\top}\mathbf{W}) > 0$.

According to Lemma 2, we have

$$\frac{\partial \mathrm{det}(\mathbf{W}^{\top}\mathbf{W})}{\partial \mathbf{w}_{k}} = \mathrm{det}(\mathbf{W}_{-k}^{\top}\mathbf{W}_{-k})l_{k}\mathbf{e}_{k},$$

where $\det(\mathbf{W}_{-k}^{\top}\mathbf{W}_{-k}) > 0$ and $l_k > 0$ (knowing from $\det(\mathbf{W}^{\top}\mathbf{W}) = \det(\mathbf{W}_{-k}^{\top}\mathbf{W}_{-k})l_k\mathbf{e}_k \cdot \mathbf{w}_k > 0$ and $\mathbf{e}_k \cdot \mathbf{w}_k > 0$). Besides, we have

$$\frac{\partial \mathrm{tr}(\mathbf{W}^{\top}\mathbf{W})}{\partial \mathbf{w}_{k}} = 2\mathbf{w}_{k},$$

Substitute above equations into the gradient of $\widehat{\mathcal{R}}(\mathbf{W})$

$$\frac{\partial \widehat{\mathcal{R}}(\mathbf{W})}{\partial \mathbf{w}_k} = \frac{2\mathbf{w}_k}{\operatorname{tr}(\mathbf{W}^\top \mathbf{W})} - \frac{1}{K} \frac{\det(\mathbf{W}_{-k}^\top \mathbf{W}_{-k}) l_k \mathbf{e}_k}{\det(\mathbf{W}^\top \mathbf{W})}.$$

With the weight vector \mathbf{w}_k decomposition, we have

$$\frac{\partial \widehat{\mathcal{R}}(\mathbf{W})}{\partial \mathbf{w}_{k}} = \frac{2}{\operatorname{tr}(\mathbf{W}^{\top}\mathbf{W})} \mathbf{x}_{k}
+ \left[\frac{2}{\operatorname{tr}(\mathbf{W}^{\top}\mathbf{W})} - \frac{\det(\mathbf{W}_{-k}^{\top}\mathbf{W}_{-k})}{K\det(\mathbf{W}^{\top}\mathbf{W})} \right] l_{k} \mathbf{e}_{k}
= p_{k} \mathbf{x}_{k} + q_{k} \mathbf{e}_{k},$$

where
$$p_k = \frac{2}{\operatorname{tr}(\mathbf{W}^{\top}\mathbf{W})} > 0$$
 and $q_k = \left[\frac{2}{\operatorname{tr}(\mathbf{W}^{\top}\mathbf{W})} - \frac{\det(\mathbf{W}^{\top}_{-k}\mathbf{W}_{-k})}{K\det(\mathbf{W}^{\top}\mathbf{W})}\right]l_k$.

Supplement to the proof of Theorem 1

In the main paper, we give a brief proof of Theorem 1 and ignore the time stamp t for simplicity. Our aim is to declare that the minimum angle $\mathcal{R}(\mathbf{W})$ will decrease alongside with the negative gradient direction of the regularizer $\mathcal{R}(\mathbf{W})$. We use its cosine similarity to measure the minimum angle (denotes by *):

$$s_{min}(\mathbf{W}^{(t)}) = \cos(-\mathcal{R}(\mathbf{W}^{(t)})) = \cos(\theta_{i*j*}).$$
(1)

Equally, we first analysis $\widehat{\mathcal{R}}(\mathbf{W})$'s behaviour on a trivial angle θ_{ij} :

$$s_{ij}(\mathbf{W}^{(t)}) = \cos(\theta_{ij}). \tag{2}$$

Some notations need to be introduced. Let $V = \{(i, j) | 1 \le i \le j \le n \}$ $i, j \leq K, i \neq j, \mathbf{w}_{i}^{(t)} \cdot \mathbf{w}_{i}^{(t)} = 0$, $N = \{(i, j) | 1 \leq i, j \leq i \leq m \}$ $K, i \neq j, \mathbf{w}_i^{(t)} \cdot \mathbf{w}_i^{(t)} \neq 0$, where $\mathbf{w}_i^{(t)}$ is the *i*-th column of \mathbf{W}_t . Let $x_{ij}^{(t)} = \mathbf{w}_i^{(t)} \cdot \mathbf{w}_j^{(t)}$, $y_{ij}^{(t)} = \|\mathbf{w}_i^{(t)}\|_2 \cdot \|\mathbf{w}_j^{(t)}\|_2$, $x_{ij}^{(t+1)} = \mathbf{w}_i^{(t+1)} \cdot \mathbf{w}_j^{(t+1)}$, $y_{ij}^{(t+1)} = \|\mathbf{w}_i^{(t+1)}\|_2 \cdot \|\mathbf{w}_i^{(t+1)}\|_2$. Following the gradient direction of $\widehat{\mathcal{R}}(\mathbf{W})$ from Lemma 1, we have

$$\mathbf{w}_{i}^{(t+1)} = \mathbf{w}_{i}^{(t)} - \eta(p_{i}\mathbf{x}_{i} + q_{i}\mathbf{e}_{i})$$

$$\mathbf{w}_{i}^{(t+1)} = \mathbf{w}_{i}^{(t)} - \eta(p_{j}\mathbf{x}_{j} + q_{j}\mathbf{e}_{j})$$

and acquire some important equations

$$\mathbf{e}_{i} \cdot \mathbf{w}_{j}^{(t)} = 0, \quad \mathbf{e}_{j} \cdot \mathbf{w}_{i}^{(t)} = 0$$

$$\mathbf{e}_{i} \cdot \mathbf{x}_{i} = 0, \quad \mathbf{e}_{j} \cdot \mathbf{x}_{j} = 0$$

$$\mathbf{e}_{i} \cdot \mathbf{x}_{j} = \alpha_{i} \mathbf{e}_{i} \cdot \mathbf{w}_{i}^{(t)}, \quad \mathbf{e}_{j} \cdot \mathbf{x}_{i} = \alpha_{j} \mathbf{e}_{j} \cdot \mathbf{w}_{j}^{(t)}$$

Thus, we have:

$$x_{ij}^{(t+1)} = [\mathbf{w}_i^{(t)} - \eta(p_i \mathbf{x}_i + q_i \mathbf{e}_i)][\mathbf{w}_j^{(t)} - \eta(p_j \mathbf{x}_j + q_j \mathbf{e}_j)]$$

$$= \mathbf{w}_i^{(t)} \cdot \mathbf{w}_j^{(t)} - \eta(p_j \mathbf{w}_i^{(t)} \cdot \mathbf{x}_j + p_i \mathbf{x}_i \cdot \mathbf{w}_j^{(t)})$$

$$+ \eta^2(p_i \mathbf{x}_i + q_i \mathbf{e}_i)(p_j \mathbf{x}_j + q_j \mathbf{e}_j)$$

$$= \mathbf{w}_i^{(t)} \cdot \mathbf{w}_i^{(t)} - \eta a + \eta^2 b$$

where
$$a = p_j \mathbf{w}_i^{(t)} \cdot \mathbf{x}_j + p_i \mathbf{x}_i \cdot \mathbf{w}_j^{(t)}$$
;

$$\begin{aligned} y_{ij}^{(t+1)} &= \sqrt{(\mathbf{w}_i^{(t)} - \eta(p_i \mathbf{x}_i + q_i \mathbf{e}_i))^2} \sqrt{(\mathbf{w}_j^{(t)} - \eta(p_j \mathbf{x}_j + q_j \mathbf{e}_j))^2} \\ &= \sqrt{\mathbf{w}_i^{(t)} \cdot \mathbf{w}_i^{(t)} - 2\eta(p_i \mathbf{x}_i \cdot \mathbf{x}_i + q_i l_i) + \eta^2(p_i^2 \mathbf{x}_i \cdot \mathbf{x}_i + q_i^2)} \\ &\cdot \sqrt{\mathbf{w}_j^{(t)} \cdot \mathbf{w}_j^{(t)} - 2\eta(p_j \mathbf{x}_j \cdot \mathbf{x}_j + q_j l_j) + \eta^2(p_j^2 \mathbf{x}_j \cdot \mathbf{x}_j + q_j^2)}, \end{aligned}$$

$$= \sqrt{\mathbf{w}_i^{(t)} \cdot \mathbf{w}_i^{(t)} - 2\eta c + \eta^2 d_i \sqrt{\mathbf{w}_i^{(t)} \cdot \mathbf{w}_i^{(t)} - 2\eta c + \eta^2 f}}$$

where $c = p_i \mathbf{x}_i \cdot \mathbf{x}_i + q_i l_i$ and $e = p_i \mathbf{x}_i \cdot \mathbf{x}_i + q_i l_i$.

Thereby, we can represent the cosine similarity s_{ij} as

$$s_{ij}(\mathbf{W}^{(t+1)}) = \frac{x_{ij}^{(t+1)}}{y_{ij}^{(t+1)}}, \qquad s_{ij}(\mathbf{W}^{(t)}) = \frac{x_{ij}^{(t)}}{y_{ij}^{(t)}}$$

The following lemma 3 and lemma 4 are needed for proving Theorem 1.

Lemma 3. $\forall (i,j) \in V$, we have $s_{ij}(\mathbf{W}^{(t+1)}) - s_{ij}(\mathbf{W}^{(t)}) =$ $o(\eta)$, where $\lim_{\eta \to 0} \frac{o(\eta)}{\eta} = 0$.

Proof For
$$(i,j) \in V$$
, $\mathbf{w}_i^{(t)} \cdot \mathbf{w}_j^{(t)} = 0$, thereby $x_{ij}^t = 0$ and
$$s_{ij}(\mathbf{W}^{(t+1)}) - s_{ij}(\mathbf{W}^{(t)}) = x_{ij}^{(t+1)}/y_{ij}^{(t+1)} - 0.$$

Simply we have $x_{ij}^{(t+1)} = -\eta a + \eta^2 b$, where

$$a = p_j \mathbf{w}_i^{(t)} \cdot \mathbf{x}_j + p_i \mathbf{x}_i \cdot \mathbf{w}_j^{(t)}$$

$$= p_j \mathbf{w}_i^{(t)} \cdot (\mathbf{w}_j^{(t)} - l_j \mathbf{e}_j) + p_i (\mathbf{w}_i^{(t)} - l_i \mathbf{e}_i) \cdot \mathbf{w}_j^{(t)}$$

$$= p_j \mathbf{w}_i^{(t)} \cdot \mathbf{w}_j^{(t)} + p_i \mathbf{w}_i^{(t)} \cdot \mathbf{w}_j^{(t)}$$

$$= (p_j + p_i) \mathbf{w}_i^{(t)} \cdot \mathbf{w}_j^{(t)}$$

$$= 0$$

Thus we can derive
$$x_{ij}^{(t+1)}=\eta^2 b$$
. Next we consider $1/y_{ij}^{(t+1)}=\frac{1}{\sqrt{\mathbf{w}_i^{(t)}\cdot\mathbf{w}_i^{(t)}-2\eta\cdot c+\eta^2\cdot d}}$. $\frac{1}{\sqrt{\mathbf{w}_j^{(t)}\cdot\mathbf{w}_j^{(t)}-2\eta\cdot e+\eta^2\cdot f}}$, we take $\|\mathbf{w}_i^{(t)}\|_2$ out and discuss the first term in denominator. Using the Taylor expansion of

 $\frac{1}{\sqrt{1+x}}$ at x=0, we obtain that

$$\begin{split} \frac{1}{\|\mathbf{w}_{i}^{(t)}\|_{2} \sqrt{1 + \frac{-2\eta \cdot c + \eta^{2} \cdot d}{\mathbf{w}_{i}^{(t)} \cdot \mathbf{w}_{i}^{(t)}}}} \\ &= \frac{1}{\|\mathbf{w}_{i}^{(t)}\|_{2}} [1 - \frac{1}{2} (\frac{-2\eta \cdot c + \eta^{2} \cdot d}{\mathbf{w}_{i}^{(t)} \cdot \mathbf{w}_{i}^{(t)}}) + o(\frac{-2\eta \cdot c + \eta^{2} \cdot d}{\mathbf{w}_{i}^{(t)} \cdot \mathbf{w}_{i}^{(t)}})] \\ &= \frac{1}{\|\mathbf{w}_{i}^{(t)}\|_{2}} [1 + \frac{\eta \cdot c}{\mathbf{w}_{i}^{(t)} \cdot \mathbf{w}_{i}^{(t)}} + o(\eta)] \end{split}$$

Thereby, we have

$$\begin{split} 1/y_{ij}^{(t+1)} \\ &= \frac{1}{\|\mathbf{w}_i^{(t)}\|_2} [1 + \frac{\eta \cdot c}{\mathbf{w}_i^{(t)} \cdot \mathbf{w}_i^{(t)}} + o(\eta)] \\ & \cdot \frac{1}{\|\mathbf{w}_j^{(t)}\|_2} [1 + \frac{\eta \cdot e}{\mathbf{w}_j^{(t)} \cdot \mathbf{w}_j^{(t)}} + o(\eta)] \\ &= \frac{1}{\|\mathbf{w}_i^{(t)}\|_2 \|\mathbf{w}_j^{(t)}\|_2} [1 + (\frac{c}{\mathbf{w}_i^{(t)} \cdot \mathbf{w}_i^{(t)}} + \frac{e}{\mathbf{w}_j^{(t)} \cdot \mathbf{w}_j^{(t)}}) \eta + o(\eta)] \end{split}$$

Now we prove $\lim_{\eta \to 0} \frac{s_{ij}(\mathbf{W}^{(t+1)}) - s_{ij}(\mathbf{W}^{(t)})}{\eta} = 0$. Consider $x_{ij}^{(t+1)}/y_{ij}^{(t+1)} = \frac{\eta^2 b}{\|\mathbf{w}_i^{(t)}\|\|\mathbf{w}_j^{(t)}\|} [1 + (\frac{c}{\mathbf{w}_i^{(t)} \cdot \mathbf{w}_i^{(t)}} + \frac{e}{\mathbf{w}_i^{(t)} \cdot \mathbf{w}_j^{(t)}})\eta +$ $o(\eta)] = o(\eta)$, then $\lim_{\eta \to 0} \frac{x_{ij}^{(t+1)}/y_{ij}^{(t+1)}}{n} = 0$ and $\lim_{\eta \to 0} \frac{x_{ij}^{(t+1)}}{y^{(t+1)}} = 0$. Thereby we have

$$\lim_{\eta \to 0} \frac{s_{ij}(\mathbf{W}^{(t+1)}) - s_{ij}(\mathbf{W}^{(t)})}{\eta} = \lim_{\eta \to 0} \frac{x_{ij}^{(t+1)} / y_{ij}^{(t+1)} - 0}{\eta}.$$

The proof completes.

Lemma 4. $\forall (i,j) \in N$, $\exists \psi_{ij} < 0$, such that $s_{ij}(\mathbf{W}^{(t+1)})/s_{ij}(\mathbf{W}^{(t)}) = 1 + \psi_{ij}\eta + o(\eta), \text{ where}$ $\lim_{\eta \to 0} \frac{o(\eta)}{\eta} = 0.$

Proof For $(i, j) \in N$, $\mathbf{w}_i^{(t)} \cdot \mathbf{w}_i^{(t)} \neq 0$, thereby

$$s_{ij}(\mathbf{W}^{(t+1)})/s_{ij}(\mathbf{W}^{(t)}) = \frac{x_{ij}^{(t+1)}/y_{ij}^{(t+1)}}{x_{ij}^{(t)}/y_{ij}^{(t)}}$$

According to the definition of $x_{ij}^{(t+1)}/y_{ij}^{(t+1)}$, we have

$$x_{ij}^{(t+1)}/y_{ij}^{(t+1)} = \frac{x_{ij}^{(t)}}{y_{ij}^{(t)}} \frac{1 + \frac{-\eta a + \eta^2 b}{\mathbf{w}_i^{(t)} \cdot \mathbf{w}_j^{(t)}}}{\sqrt{1 + \frac{-2\eta \cdot c + \eta^2 \cdot d}{\mathbf{w}_i^{(t)} \cdot \mathbf{w}_i^{(t)}}}} \sqrt{1 + \frac{-2\eta \cdot e + \eta^2 \cdot f}{\mathbf{w}_j^{(t)} \cdot \mathbf{w}_j^{(t)}}}$$

Easily $1+\frac{-\eta a+\eta^2 b}{\mathbf{w}_i^{(t)}\cdot\mathbf{w}_j^{(t)}}=1-\frac{a}{\mathbf{w}_i^{(t)}\cdot\mathbf{w}_j^{(t)}}\eta+o(\eta)$. Recall the analysis in previous proof, $\frac{1}{\sqrt{1+\frac{-2\eta c+\eta^2 d}{\mathbf{w}_i^{(t)}\cdot\mathbf{w}_i^{(t)}}}\sqrt{1+\frac{-2\eta e+\eta^2 f}{\mathbf{w}_j^{(t)}\cdot\mathbf{w}_j^{(t)}}}}=1+(\frac{c}{\mathbf{w}_i^{(t)}\cdot\mathbf{w}_i^{(t)}}+\frac{e}{\mathbf{w}_j^{(t)}\cdot\mathbf{w}_j^{(t)}})\eta+o(\eta)$. Substituting the above equa-

tions to $x_{ij}^{(t+1)}/y_{ij}^{(t+1)}$, we can obtain that

$$\begin{split} x_{ij}^{(t+1)}/y_{ij}^{(t+1)} \\ &= \frac{x_{ij}^{(t)}}{y_{ij}^{(t)}} [1 - \frac{a}{\mathbf{w}_i^{(t)} \cdot \mathbf{w}_j^{(t)}} \eta + o(\eta)] \\ & \cdot [1 + (\frac{c}{\mathbf{w}_i^{(t)} \cdot \mathbf{w}_i^{(t)}} + \frac{e}{\mathbf{w}_j^{(t)} \cdot \mathbf{w}_j^{(t)}}) \eta + o(\eta)] \\ &= \frac{x_{ij}^{(t)}}{y_{ij}^{(t)}} [1 - (\frac{a}{\mathbf{w}_i^{(t)} \cdot \mathbf{w}_j^{(t)}} - \frac{c}{\mathbf{w}_i^{(t)} \cdot \mathbf{w}_i^{(t)}} - \frac{e}{\mathbf{w}_j^{(t)} \cdot \mathbf{w}_j^{(t)}}) \eta \\ & + o(\eta)] \end{split}$$

Thereby,

$$s_{ij}(\mathbf{W}^{(t+1)})/s_{ij}(\mathbf{W}^{(t)}) = \frac{x_{ij}^{(t+1)}/y_{ij}^{(t+1)}}{x_{ij}^{(t)}/y_{ij}^{(t)}}$$
$$= 1 - (\frac{a}{\mathbf{w}_{i}^{(t)} \cdot \mathbf{w}_{i}^{(t)}} - \frac{c}{\mathbf{w}_{i}^{(t)} \cdot \mathbf{w}_{i}^{(t)}} - \frac{e}{\mathbf{w}_{i}^{(t)} \cdot \mathbf{w}_{i}^{(t)}})\eta + o(\eta)$$

Let $\psi = -\left[\frac{e}{\mathbf{w}_i^{(t)} \cdot \mathbf{w}_j^{(t)}} - \frac{c}{\mathbf{w}_i^{(t)} \cdot \mathbf{w}_i^{(t)}} - \frac{e}{\mathbf{w}_j^{(t)} \cdot \mathbf{w}_j^{(t)}}\right]$ and then we prove $\psi < 0$. Consider the first ter

$$\frac{a}{\mathbf{w}_{i}^{(t)} \cdot \mathbf{w}_{j}^{(t)}} = \frac{(p_{j} + p_{i})\mathbf{w}_{i}^{(t)} \cdot \mathbf{w}_{j}^{(t)}}{\mathbf{w}_{i}^{(t)} \cdot \mathbf{w}_{j}^{(t)}}.$$
$$= p_{j} + p_{i}$$

Actually, we have $p_i = p_j = \frac{2}{\operatorname{tr}(\mathbf{W}^\top \mathbf{W})} > 0$ and it indicates that $\frac{a}{\mathbf{w}_i^{(t)} \cdot \mathbf{w}_j^{(t)}} > 0$.

Before moving further, we look into the decomposition $\mathbf{w}_k = \mathbf{x}_k + l_k \mathbf{e}_k$ firstly. If we square both side of the equation,

$$\mathbf{w}_k \cdot \mathbf{w}_k = \mathbf{x}_k \cdot \mathbf{x}_k + l_k^2$$

notice $\mathbf{w}_k \cdot \mathbf{w}_k$ is square of the norm of \mathbf{w}_k . With simple algebraic geometry, we have $\mathbf{x}_k \cdot \mathbf{x}_k \geq 0$ and $\mathbf{w}_k \mathbf{w}_k \geq l_k^2$. Consider the last two terms

$$\frac{c}{\mathbf{w}_{i}^{(t)} \cdot \mathbf{w}_{i}^{(t)}} = \frac{p_{i} \mathbf{x}_{i} \cdot \mathbf{x}_{i} + q_{i} l_{i}}{\mathbf{w}_{i}^{(t)} \mathbf{w}_{i}^{(t)}} > 0,$$

$$\frac{d}{\mathbf{w}_{j}^{(t)} \cdot \mathbf{w}_{j}^{(t)}} = \frac{p_{j} \mathbf{x}_{j} \cdot \mathbf{x}_{j} + q_{j} l_{j}}{\mathbf{w}_{j}^{(t)} \cdot \mathbf{w}_{j}^{(t)}} > 0.$$

Substitute above equation and we have

$$\frac{c}{\mathbf{w}_{i}^{(t)} \cdot \mathbf{w}_{i}^{(t)}} = \frac{p_{i}(\mathbf{x}_{i} \cdot \mathbf{x}_{i}) + q_{i}l_{i}}{\mathbf{w}_{i}^{(t)} \cdot \mathbf{w}_{i}^{(t)}}$$

$$= \frac{p_{i}(\mathbf{w}_{i}^{(t)} \cdot \mathbf{w}_{i}^{(t)} - l_{i}^{2}) + q_{i}l_{i}}{\mathbf{w}_{i}^{(t)} \cdot \mathbf{w}_{i}^{(t)}}$$

$$= p_{i} + \frac{q_{i}l_{i} - p_{i}l_{i}^{2}}{\|\mathbf{w}_{i}^{(t)}\|^{2}}$$

and

$$\frac{d}{\mathbf{w}_{j}^{(t)} \cdot \mathbf{w}_{j}^{(t)}} = p_{j} + \frac{q_{j}l_{j} - p_{j}l_{j}^{2}}{\|\mathbf{w}_{j}^{(t)}\|^{2}}$$

Thereby, we have

$$\psi = -[(p_i + p_j) - (p_i + \frac{q_i l_i - p_i l_i^2}{\|\mathbf{w}_i^{(t)}\|^2}) - (p_j + \frac{q_j l_j - p_j l_j^2}{\|\mathbf{w}_j^{(t)}\|^2})]$$

$$= -[\frac{p_i l_i^2 - q_i l_i}{\|\mathbf{w}_i^{(t)}\|^2} + \frac{p_j l_j^2 - q_j l_j}{\|\mathbf{w}_i^{(t)}\|^2}]$$

If $\frac{p_i l_i^2 - q_i l_i}{\|\mathbf{w}_i^{(t)}\|^2} > 0$ and $\frac{p_j l_j^2 - q_j l_j}{\|\mathbf{w}_j^{(t)}\|^2} > 0$, we can immediately draw

Obviously, we only need to discuss one case. From Lemma 2, we have $p_i = \frac{2}{\operatorname{tr}(\mathbf{W}^{\top}\mathbf{W})} > 0$ and $q_i = [\frac{2}{\operatorname{tr}(\mathbf{W}^{\top}\mathbf{W})} - \frac{\det(\mathbf{W}_{-i}^{\top}\mathbf{W}_{-i})}{K\det(\mathbf{W}^{\top}\mathbf{W})}]l_i$. Let $\Omega_i = \frac{\det(\mathbf{W}_{-i}^{\top}\mathbf{W}_{-i})}{K\det(\mathbf{W}_{-i}^{\top}\mathbf{W}_{-i})}$, we have

$$q_i = (p_i - \Omega_i)l_i,$$

$$\Omega_i = \frac{\det(\mathbf{W}_{-i}^{\top}\mathbf{W}_{-i})}{K \cdot \det(\mathbf{W}_{-i}^{\top}\mathbf{W}_{-i})(l_i\mathbf{e}_i \cdot \mathbf{w}_i^{(t)})}$$

$$= \frac{1}{Kl_i\mathbf{e}_i \cdot \mathbf{w}_i^{(t)}}$$

Thereby,

$$\begin{split} \frac{p_i l_i^2 - q_i l_i}{\|\mathbf{w}_i^{(t)}\|^2} &= \frac{p_i l_i^2 - (p_i - \Omega_i) l_i \cdot l_i}{\|\mathbf{w}_i^{(t)}\|^2} \\ &= \frac{\Omega_i l_i^2}{\|\mathbf{w}_i^{(t)}\|^2} \\ &= \frac{l_i}{K(\mathbf{e}_i \cdot \mathbf{w}_i^{(t)}) \|\mathbf{w}_i^{(t)}\|^2} \end{split},$$

where K denotes the number of hyperplanes, $l_i > 0$ and $(\mathbf{e}_i \cdot \mathbf{w}_i^{(t)}) > 0$ (discussed in Lemma 2). Thus,

$$\frac{p_i l_i^2 - q_i l_i}{\|\mathbf{w}_i^{(t)}\|^2} > 0.$$

The proof completes.

Given these two lemmas, we can prove Theorem 1 now. *Proof* For the cosine similarity $s(\mathbf{W}^{(t)})$ between hyperplanes \mathbf{w}_i and \mathbf{w}_i ,

A. if
$$s_{ij}(\mathbf{W}^{(t)}) \in V$$
,

$$\lim_{\eta \to 0} \frac{s_{ij}(\mathbf{W}^{(t+1)}) - s_{ij}(\mathbf{W}^{(t)})}{\eta} = \lim_{\eta \to 0} \frac{o(\eta)}{\eta}.$$

If $s_{min}(\mathbf{W}^{(t)}) = 0$, we have

$$\lim_{\eta \to 0} \frac{s_{min}(\mathbf{W}^{(t+1)}) - s_{min}(\mathbf{W}^{(t)})}{\eta} = 0.$$
 (3)

B. if
$$s_{ij}(\mathbf{W}^{(t)}) \in N$$
,

$$\lim_{\eta \to 0} \frac{s_{ij}(\mathbf{W}^{(t+1)}) - s_{ij}(\mathbf{W}^{(t)})}{\eta}$$

$$= \lim_{\eta \to 0} \frac{\frac{s_{ij}(\mathbf{W}^{(t+1)})}{s_{ij}(\mathbf{W}^{(t)})} - 1}{\eta} \cdot s_{ij}(\mathbf{W}^{(t)})$$

$$= \psi_{ij} \cdot s_{ij}(\mathbf{W}^{(t)})$$

Since the minimal angle $\theta_{i*j*} \in [0, \frac{\pi}{2})$, we have $s_{min}(\mathbf{W}^{(t)}) > 0$. Then

$$\lim_{\eta \to 0} \frac{s_{min}(\mathbf{W}^{(t+1)}) - s_{min}(\mathbf{W}^{(t)})}{\eta} < 0$$

So $\exists \kappa > 0$, such that $\forall \eta \in (0,\kappa)$, we have $\frac{s_{min}(\mathbf{W}^{(t+1)}) - s_{min}(\mathbf{W}^{(t)})}{\eta} < 0$. That is $s_{min}(\mathbf{W}^{(t+1)}) - s_{min}(\mathbf{W}^{(t)}) < 0$.

Combine both A. and B., we have:

$$s_{min}(\mathbf{W}^{(t+1)}) - s_{min}(\mathbf{W}^{(t)}) \le 0.$$

Using the $\cos(\cdot)$'s monotonicity in $[0, \frac{\pi}{2}]$ and $s_{min}(\mathbf{W}^{(t)}) = \cos(-\mathcal{R}(\mathbf{W}^{(t)}))$, we have

$$\mathcal{R}(\mathbf{W}^{(t+1)}) \le \mathcal{R}(\mathbf{W}^{(t)}),\tag{4}$$

where
$$\mathbf{W}^{(t+1)} = \mathbf{W}^{(t)} - \eta \nabla \widehat{\mathcal{R}}(\mathbf{W}^{(t)})$$
.
The proof completes.

4 Proof of Theorem 2

4.1 Preliminary

We first present the problem setup before further discussion.

- Task: Large Margin Machine for Multi-class Learning
- Input: $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$ is a set of m training examples, where \mathbf{x}_i is drawn from a domain $\mathcal{X} \subseteq \mathbb{R}^D$ and each label y_i is an integer from $\mathcal{Y} = \{1, \dots, K\}$.
- Distribution: \mathbb{D} represents true distribution of sample S and $\widehat{\mathbb{D}}$ is the empirical distribution.
- Hypothesis set: Parameterizing with hyperplanes matrix
 W, a family of hypotheses is defined

$$H = \{ h | h(\mathbf{x}, y) = \mathbf{w}_{y}^{\mathsf{T}} \mathbf{x}, \ \mathbf{x} \in \mathcal{X}, \ y \in \mathcal{Y} \}, \quad (5)$$

which maps $\mathcal{X} \times \mathcal{Y}$ to \mathbb{R} . For each hypothesis $h \in H$, its multi-class margin for the input-output pair (\mathbf{x}, y) is

$$\rho_h(\mathbf{x}, y) = h(\mathbf{x}, y) - \max_{r \neq y} h(\mathbf{x}, r). \tag{6}$$

• Loss set: The hinge loss function is

$$\mathcal{A} = \{l|l(\mathbf{x}, y) = \Phi_{p}(\rho_{h}(\mathbf{x}, y))\},\tag{7}$$

where $\Phi_p(x) = \max(0, 1 - x/p)$ is a *p*-margin hinge loss taking values in $[0, +\infty)$. Typically, *p* is set to 1.

 \bullet Error: The generalization error of a hypothesis h is

$$L(h) = E_{(\mathbf{x},y) \sim \mathbb{D}} [\Phi_p(\rho_h(\mathbf{x},y))]. \tag{8}$$

And the training error of a hypothesis h is

$$\widehat{L}(h) = E_{(\mathbf{x},y) \sim \widehat{\mathbb{D}}}[\Phi_p(\rho_h(\mathbf{x},y))]. \tag{9}$$

Moreover, we need extra bounds in error analysis.

- Let input vector $\mathbf{x}_i \in \mathbb{R}^n$ bounded with $\|\mathbf{x}_i\|_2 \leq C_1$.
- Let each hyperplane $\mathbf{w}_r \in \mathbb{R}^n$ w.r.t class r bounded with $\|\mathbf{w}_r\| \le C_2$. The minimal pairwise angle is $-\mathcal{R}(\mathbf{W}) = \min_{i \ne j} \theta_{ij}$, denoting by θ_{min} for short.

The Rademacher complexity $R_m(\mathcal{A})$ of the loss function set \mathcal{A} is defined as $R_m(\mathcal{A}) = \mathbb{E}[\sup_{l \in \mathcal{A}} \frac{1}{m} \sum_{i=1}^m \sigma_i \cdot l(\mathbf{x}_i, y_i)]$, where σ_i is uniform over $\{-1, 1\}$ and $(\mathbf{x}_i, y_i)_{i=1}^m$ are i.i.d samples drawn from \mathbb{D} . The following analysis is based on Bartlett and Mendelson; Percy [2002; 2015]'s Corollary.

Lemma 5. Fix p > 0. With probability at least $1 - \delta$

$$L(\hat{h}) - L(h^*) \le 4R_m(\mathcal{A}) + B\sqrt{\frac{2\log(2/\delta)}{m}}$$
 (10)

for $B \ge \sup_{\mathbf{x}, y, l} |l(\mathbf{x}, y)|$.

Regarding to two situations H^0 and H^1 , further sequently boundings on $R_m(\mathcal{A})$ and B complete the proof.

4.2 A1. Upper bound the term $R_m(A)$

Firstly, we should find an upper bound of the Rademacher complexity of the hypothesis set H, that is

$$R_m(\mathcal{A}) = \mathbb{E}[\sup_{l \in \mathcal{A}} \frac{1}{m} \sum_{i=1}^m \sigma_i \cdot l(\mathbf{x}_i, y_i)]. \tag{11}$$

However, the hypothesis set H has no direct connection with the loss function set (no matter $0\cdot 1$ or hinge loss), defined on the multi-class margin. Let \widetilde{H} be the family of hypothesis mapping $\mathcal{X}\times\mathcal{Y}$ to \mathbb{R} defined by $\widetilde{H}=\{z=(\mathbf{x},y)\mapsto \rho_h(\mathbf{x},y):\mathbf{x}\in\mathcal{X},\ y\in\mathcal{Y},\ h\in H\}$. Then we expand the intractable Rademacher complexity term as

$$R_m(\mathcal{A}) = R_n(l \circ \widetilde{H}). \tag{12}$$

To employ the conclusion from [Bartlett and Mendelson, 2002], we rewrite the Rademacher complexity $R_m(\mathcal{A})$ in Eq.(11)'s definition in absolute form

$$R_m^{\parallel}(\mathcal{A}) = \mathbb{E}[\sup_{l \in \mathcal{A}} \frac{2}{m} \sum_{i=1}^{m} |\sigma_i \cdot l(\mathbf{x}_i, y_i)|]. \tag{13}$$

Considering previous definition with the loss function $l(\cdot) \ge 0$ in Eq.(11), we have

$$R_m(\mathcal{A}) \le \frac{1}{2} R_m^{\parallel}(\mathcal{A}). \tag{14}$$

From Eq.(12), it is natural that

$$R_m^{\parallel}(\mathcal{A}) = R_m^{\parallel}(l \circ \widetilde{H}). \tag{15}$$

Bounding $R_m^{\parallel}(\mathcal{A})$ equals bounding $R_m^{\parallel}(\widetilde{H})$ through discussing the L-Lipschitz property on two kinds of loss function, and the analysis of $R_m^{\parallel}(\widetilde{H})$ is put in advance for brevity. It requires us to extend the proof of Theorem 1 in Cortes *et al.* [2013]'s work.

Let $H_{\mathcal{X}}$ denotes a set of functions defined over \mathcal{X} and derived from H as follows: $H_{\mathcal{X}} = \{\mathbf{x} \mapsto h(\mathbf{x},y) : y \in \mathcal{Y}, \ h \in H\}$. For any fixed $y \in \mathcal{Y}, H_{\mathcal{X}}$ only takes \mathbf{x} into consideration and its empirical Rademacher complexity becomes an upper bound of \widetilde{H} , which is given in Lemma 6 (proof is given in Sec. 5).

Lemma 6. With the definition of $\rho_h(\mathbf{x}, y)$ and H, the empirical Rademacher complexity:

$$R_m^{\parallel}(\widetilde{H}) \le K^2 R_m^{\parallel}(H_{\mathcal{X}}). \tag{16}$$

Next, we bound $R_m^{\parallel}(H_{\mathcal{X}})$ [Xie *et al.*, 2015b]. For any $y\in\mathcal{Y}$ we have following key steps

$$\begin{split} R_m^{\parallel}(H_{\mathcal{X}}) &= \mathbb{E}[\ \sup_{h \in H_{\mathcal{X}}} \frac{2}{m} | \sum_{i=1}^m \sigma_i \mathbf{w}_y^{\top} \mathbf{x}_i | \] \\ &\leq \frac{2C_2}{m} \mathbb{E}[\ \| \sum_{i=1}^m \sigma_i \mathbf{x}_i \|_2 \] \quad (\| \mathbf{w}_r \| \leq C_2) \\ &= \frac{2C_2}{m} \mathbb{E}_{\mathbb{D}}[\ \mathbb{E}_{\sigma}[\ \| \sum_{i=1}^n \sigma_i \mathbf{x}_i \|_2 \ | \ \mathbf{x}_i \sim \mathbb{D} \] \] \\ &\quad \text{(the definition of Rademacher complexity,} \\ &\quad \text{expanding Expectation)} \\ &= \frac{2C_2}{m} \mathbb{E}_{\mathbb{D}}[\ \sqrt{\mathbb{E}_{\sigma}[\ \sum_{i=1}^n \sigma_i^2(\mathbf{x}_i)^2 \ | \ \mathbf{x}_i \sim \mathbb{D} \]} \] \end{split}$$

$$= \frac{2C_2}{m} \mathbb{E}_{\mathbb{D}} \left[\sqrt{\sum_{i=1}^{m} (\mathbf{x}_i)^2} \right]$$

$$(\mathbf{x}_i \text{ are i.i.d samples from } \mathbb{D}, \text{ same to } \mathbf{x}_i)$$

$$\leq \frac{2C_1C_2}{\sqrt{m}} \quad (\|\mathbf{x}_i\| \leq C_1)$$

Plug above results into Lemma 6,

$$R_m^{\parallel}(\widetilde{H}) \le \frac{2K^2C_1C_2}{\sqrt{m}}.\tag{17}$$

Ultimately, we discuss the Lipschitz connectivity of the $0\cdot 1$ loss and p-margin hinge loss. It's easy to find that both of them are differentiable almost everywhere, that is, differentiable at every point outside a set of Lebesgue measure zero (e.x. x=0 for $\mathbb{I}(\cdot)$, x=p for $\Phi_p(\cdot)$). We have Lipschitz constants

$$\mathcal{L}_{0\cdot 1} = 1, \qquad \mathcal{L}_{hing} = \frac{1}{n}. \tag{18}$$

Let $l'(\cdot)=l(\cdot)-l(0),$ then l'(0)=0 and l' is also \mathcal{L} -Lipschitz. Then

$$R_{m}^{\parallel}(l \circ \widetilde{H}) = R_{m}^{\parallel}(l' \circ \widetilde{H} + l(0))$$

$$\leq R_{m}^{\parallel}(l' \circ \widetilde{H}) + \frac{\parallel l(0) \parallel_{\infty}}{\sqrt{m}}$$

$$\leq 2 \cdot \mathcal{L}R_{m}^{\parallel}(\widetilde{H}) + \frac{\parallel l(0) \parallel_{\infty}}{\sqrt{m}}$$
(19)

The last two inequations are derived from Theorem 12.5 and Theorem 12.4 in Bartlett and Mendelson [2002]' work. Note that the l(0) is required to be uniformly bounded function by Bartlett's work. For the $0\cdot 1$ loss function, $\mathbb{I}(0)$ can be assigned any value t while maintains its measurable property. For the p-margin hinge loss, $\Phi_p(0) = \max(0, 1 - 0/p) = 1$. Without lose of generality, we set t = 1 and l(0) is uniformly bounded within $[1-\epsilon, 1+\epsilon]$ for all ϵ . So we have $\|l(0)\|_{\infty} = 1$ with $\epsilon \to 0$ for both of them. This is different from previous work [Xie et al, 2015b].

So far, we find an upper bound for $4R_m(A)$ in RHS of Eq.(10) through combing Eq.(14, 15, 19, 17) sequently.

4.3 A2. Find the upper bound B

Finding the maximum of $|l(\mathbf{x},y)|$ completes our prove. Given the formulation of p-margin hinge loss as $l(\cdot) = \Phi_p(\cdot)$ and its $\frac{1}{p}$ -Lipschitz property, we have

$$|\Phi_p(\mathbf{z}) - \Phi_p(\mathbf{0})| \le \frac{1}{p}|\mathbf{z} - \mathbf{0}|$$

$$\Rightarrow |\Phi_p(\mathbf{z}) - 1| \le \frac{1}{p}|\mathbf{z}|$$

$$\Rightarrow |\Phi_p(\mathbf{z})| \le \frac{1}{p}||\mathbf{z}|| + 1$$

With the margin condition $\rho_h(\mathbf{x}, y) \leq p$ and $p \geq 0$ we let $z = \rho_h(\mathbf{x}, y)$:

$$|l(\mathbf{x}, y)| = |\Phi_p(\rho_h(\mathbf{x}, y))| \le \frac{1}{p} |\rho_h(\mathbf{x}, y)| + 1, \qquad (20)$$

where the only remaining issue is to bound $|\Phi_p(\rho_h(\mathbf{x}, y))|$. Due to the different formulation of cost function, this proof is different from [Xie *et al.*, 2015b].

With the hyperplanes set \mathbf{W} , we define an adjunction one $\mathbf{W}_y = \{\mathbf{w}_y \dots \mathbf{w}_y \dots \mathbf{w}_y\}$ for a fixed $y \in \mathcal{Y}$. Let $\mathbf{w}_R^\top \mathbf{x} = \max_{r \in \mathcal{Y} \setminus y} \mathbf{w}_r^\top \mathbf{x}$, $\mathbf{w}_{r*}^\top \mathbf{x} = \{\mathbf{w}_r^\top \mathbf{x} \mid r \in \mathcal{Y} \setminus \{y, R\}\}$ and we have

$$\mathbf{w}_R^{\top}\mathbf{x} > all(\mathbf{w}_{r*}^{\top}\mathbf{x}).$$

Moreover, we define $\mathbf{w}_{r+}^{\top}\mathbf{x} = \{\mathbf{w}_{r}^{\top}\mathbf{x} \mid \mathbf{w}_{r}^{\top}\mathbf{x} \geq 0, r \in \mathcal{Y} \setminus \{y, R\}\}$ and $\mathbf{w}_{r-}^{\top}\mathbf{x}$ reversely, the inequalities hold

$$\mathbf{w}_R^\top \mathbf{x} > all(\mathbf{w}_{r+}^\top \mathbf{x}) \quad , \quad \mathbf{w}_R^\top \mathbf{x} > all(\mathbf{w}_{r-}^\top \mathbf{x}).$$

Let $g(\cdot)$ be an auxiliary function as

$$g(z) = |\mathbf{w}_y^{\top} \mathbf{x} - z|. \tag{21}$$

From the analysis in Sec.6, we have that condition A1c, A2c and B1a all share an important property

$$\mathbf{w}_R^{\top} \mathbf{x} \leq \mathbf{w}_u^{\top} \mathbf{x} \quad \Leftrightarrow \quad \max_{r \in \mathcal{Y} \setminus y} \mathbf{w}_r^{\top} \mathbf{x} \leq \mathbf{w}_u^{\top} \mathbf{x},$$

which indicates that the labeled input data (\mathbf{x}, y) has the biggest activation other than wrong labels $\mathcal{Y} \setminus y$ in weighted matrix \mathbf{W} . The analysis is given in the extreme situation from the worst \mathbf{W} to perfect \mathbf{W} .

Proposition 1. If $g(\mathbf{w}_R^{\top}\mathbf{x}) < g(any(\mathbf{w}_{r*}^{\top}\mathbf{x}))$, then we can put the alongside

$$\begin{aligned} |\mathbf{w}_y^\top \mathbf{x} - \mathbf{w}_R^\top \mathbf{x}| &< |\mathbf{w}_y^\top \mathbf{x} - any(\mathbf{w}_{r+}^\top \mathbf{x})| \\ |\mathbf{w}_y^\top \mathbf{x} - \mathbf{w}_R^\top \mathbf{x}| &< |\mathbf{w}_y^\top \mathbf{x} - any(\mathbf{w}_{r-}^\top \mathbf{x})| \\ |\mathbf{w}_y^\top \mathbf{x} - \mathbf{w}_R^\top \mathbf{x}| &= |\mathbf{w}_y^\top \mathbf{x} - \mathbf{w}_R^\top \mathbf{x}| \\ 0 &= |\mathbf{w}_y^\top \mathbf{x} - \mathbf{w}_y^\top \mathbf{x}| \end{aligned}$$

We take square on both sides, add them all and have

$$\begin{split} |\mathbf{w}_y^\top \mathbf{x} - \mathbf{w}_R^\top \mathbf{x}|^2 &\leq \tfrac{1}{K} \sum\nolimits_{r \in \mathcal{Y}} |\mathbf{w}_y^\top \mathbf{x} - \mathbf{w}_r^\top \mathbf{x}|^2 \\ \Rightarrow |\mathbf{w}_y^\top \mathbf{x} - \mathbf{w}_R^\top \mathbf{x}|^2 &\leq \tfrac{1}{K} \|\mathbf{W}^\top \mathbf{x} - \mathbf{W}_y^\top \mathbf{x}\|_2^2 \end{split}$$

Building further on above proposition, we should bound ${\cal B}$ by two separated situations.

B1. For hypothesis set $H^0 = \{h|h(\mathbf{x},y) = \mathbf{w}_y^\top \mathbf{x}, \mathbf{w}_y^\top \mathbf{x} < \mathbf{w}_R^\top \mathbf{x}\}$, then $|\rho_h(\mathbf{x},y)|$ has a natural upper bound by expanding $\rho_h(\mathbf{x},y)$'s definition on hypothesis set H

$$|\rho_{h}(\mathbf{x}, y)| = |\mathbf{w}_{y}^{\top} \mathbf{x} - \max_{r \in \mathcal{Y} \setminus y} \mathbf{w}_{r}^{\top} \mathbf{x}|$$

$$\leq |\mathbf{w}_{y}^{\top} \mathbf{x}| + |\mathbf{w}_{R}^{\top} \mathbf{x}|$$

$$\leq ||\mathbf{w}_{y}|| \cdot ||\mathbf{x}|| + ||\mathbf{w}_{R}|| \cdot ||\mathbf{x}||$$

$$\leq 2C_{1}C_{2}$$
(22)

B2. For hypothesis set $H^1 = \{h|h(\mathbf{x},y) = \mathbf{w}_y^\top \cdot \mathbf{x}, \mathbf{w}_y^\top \mathbf{x} \geq \mathbf{w}_R^\top \mathbf{x}\}, |\rho_h(\mathbf{x},y)| \text{ has a tighter upper bound}$

$$|\rho_{h}(\mathbf{x}, y)|^{2} = |\mathbf{w}_{y}^{\top} \mathbf{x} - \max_{r \in \mathcal{Y} \setminus y} \mathbf{w}_{r}^{\top} \mathbf{x}|^{2}$$

$$\leq \frac{1}{K} ||\mathbf{W}^{\top} \mathbf{x} - \mathbf{W}_{y}^{\top} \mathbf{x}||_{2}^{2}$$

$$\leq \frac{1}{K} ||(\mathbf{W} - \mathbf{W}_{y})^{\top}||_{op}^{2} ||\mathbf{x}||_{2}^{2}$$

$$= \frac{1}{K} ||\mathbf{W} - \mathbf{W}_{y}||_{op}^{2} ||\mathbf{x}||_{2}^{2}$$
(23)

Following the property of $\|\cdot\|_{op}$ (operator norm)

$$\|\mathbf{W} - \mathbf{W}_y\|_{op}^2 \le \|\mathbf{W}\|_{op}^2 + \|\mathbf{W}_y\|_{op}^2.$$
 (24)

Next we can make use of the lower bound of θ_{ij} between weights \mathbf{w}_i and \mathbf{w}_j ($i \neq j$), which is θ_{min} , to get the bound of $\|\mathbf{W}\|_{op}$ (see in Xie *et al.* [2015b]). Here only gives main

steps:

$$\|\mathbf{W}\|_{op}^{2} = \sup_{\|\mathbf{u}\|_{2}=1} \|\mathbf{W}\mathbf{u}\|_{2}^{2}$$

$$= \sup_{\|\mathbf{u}\|_{2}=1} (\mathbf{u}^{\top}\mathbf{W}^{\top}\mathbf{W}\mathbf{u})$$

$$= \sup_{\|\mathbf{u}\|_{2}=2} \sum_{p=1}^{K} \sum_{q=1}^{K} \mathbf{u}_{p} \mathbf{u}_{q} \mathbf{w}_{p} \cdot \mathbf{w}_{q}$$

$$\leq \sup_{\|\mathbf{u}\|_{2}=2} \sum_{p=1}^{K} \sum_{q=1}^{K} |\mathbf{u}_{p}| |\mathbf{u}_{q}| |\mathbf{w}_{p}| |\mathbf{w}_{q}| \cos(\theta_{pq})$$

$$\leq C_{2}^{2} \sup_{\|\mathbf{u}\|_{2}=2} \sum_{p=1}^{K} \sum_{q=1}^{K} |\mathbf{u}_{p}| |\mathbf{u}_{q}| \cos(\theta_{pq})$$

$$(\|\mathbf{w}_{r}\| \leq C_{2})$$

$$\leq C_{2}^{2} \sup_{\|\mathbf{u}\|_{2}=2} \sum_{p=1}^{K} \sum_{q=1}^{K} |\mathbf{u}_{p}| |\mathbf{u}_{q}| \cos(\theta_{min}).$$

$$\mathbb{I}(p \neq q) + \sum_{p=1}^{K} |\mathbf{u}_{p}|^{2}]$$

Define $\mathbf{u}' = [|\mathbf{u}_1|, \dots, |\mathbf{u}_{K^\mathbf{u}}|]^\top$, $Q \in \mathbb{R}^{K^\mathbf{u} \times K^\mathbf{u}} : Q_{pq} = \cos \theta_{pq}$ for $p \neq q$ and $Q_{pp} = 1$, then we have $\|\mathbf{u}'\|_2 = \|\mathbf{u}\|$ and

$$\begin{aligned} \|\mathbf{W}\|_{op}^{2} &\leq C_{2}^{2} \sup_{\|\mathbf{u}\|_{2}=2} [\mathbf{u}'^{\top} Q \mathbf{u}'] \\ &\leq C_{2}^{2} \sup_{\|\mathbf{u}\|_{2}=2} [\lambda_{1}(Q) \|\mathbf{u}'\|_{2}^{2}] , \\ &\leq C_{2}^{2} \lambda_{1}(Q) \end{aligned}$$

where $\lambda_1(Q)$ denotes the largest eigenvalue of Q and we can derive $\lambda_1(Q)=(K-1)\cos\theta_{min}+1$. Thus

$$\|\mathbf{W}\|_{op}^2 \le ((K-1)\cos\theta_{min} + 1)C_2^2.$$
 (25)

Since columns in \mathbf{W}_{y} are same, we get

$$\|\mathbf{W}_y\|_{op}^2 \le KC_2^2.$$
 (26)

Put above equations together, we have the upper bound:

$$|\rho_{h}(\mathbf{x}, y)| \leq \sqrt{\frac{1}{K}} (\|\mathbf{W}\|_{op}^{2} + \|\mathbf{W}_{y}\|_{op}^{2}) \|\mathbf{x}\|_{2}^{2}$$

$$\leq \sqrt{\frac{1}{K}} ((K - 1)\cos\theta_{min} + K + 1)C_{2}^{2} \|\mathbf{x}\|_{2}^{2}.$$

$$\leq \sqrt{(1 - \frac{1}{K})(\cos\theta_{min} + \frac{K + 1}{K - 1})} C_{1}C_{2}$$
(27)

From the above **B1** and **B2**, if the hypothesis set $H \rightsquigarrow H^0$ (such as $W_r = 0$ at the start of the training), then

$$|l(\mathbf{x}, y)| \le \frac{2}{p} C_1 C_2 + 1.$$
 (28)

Otherwise the hypothesis set $H \rightsquigarrow H^1$ (while training), then

$$|l(\mathbf{x}, y)| \le \frac{1}{p} \sqrt{(1 - \frac{1}{K})(\cos(-\mathcal{R}(\mathbf{W})) + \frac{K+1}{K-1})} C_1 C_2 + 1.$$
 (29)

4.4 A3. Combination

Finally, combining A1's results and Eq.(20, 28, 29) sequently in A2, we acquire desired results in Theorem 2.

5 Proof of Lemma 6

Proof For any fixed $y \in \mathcal{Y}$ and any $i \in [1, m]$, define ϵ_i as $2(\mathbb{I}(y=y_i))-1$. Naturally $\epsilon_i \in \{-1, +1\}$, the Rademacher random variables σ_i and $\sigma_i \epsilon_i$ follow the same distribution. Thus

Let $H_{\mathcal{X}}^{(\backslash y)} = \{ \max(h_1, \ldots) : h_j \in H_{\mathcal{X}}, j \in [1, \ldots, k] \backslash y \}$, and we have $R_m^{\parallel}(H_{\mathcal{X}}^{(\backslash y)}) \leq (k-1)R_m^{\parallel}(H_{\mathcal{X}})$ from Ledoux and Talagrand [2013]'s conclusion similar to the empirical case.

Next, we can rewrite $\rho_h(\mathbf{x}_i, y_i)$ explicitly

$$\begin{split} R_m^{\parallel}(\widetilde{H}) &\leq \tfrac{2}{m} \sum_{y \in \mathcal{Y}} \mathbb{E}[\sup_{h \in H} \sum_{i=1}^m |\sigma_i(h(\mathbf{x}_i, y) \\ &- \max_{r \neq y} h(\mathbf{x}_i, r))|] \\ &\leq \sum_{y \in \mathcal{Y}} [\ \tfrac{2}{m} \mathbb{E}[\sup_{h \in H} \sum_{i=1}^m |\sigma_i h(\mathbf{x}_i, y)|] \\ &+ \tfrac{2}{m} \mathbb{E}[\sup_{h \in H} \sum_{i=1}^m |- \sigma_i \max_{r \neq y} h(\mathbf{x}_i, r)|]\] \\ &= \sum_{y \in \mathcal{Y}} [\ \tfrac{2}{m} \mathbb{E}[\sup_{h \in H} \sum_{i=1}^m |\sigma_i h(\mathbf{x}_i, y)|] \\ &+ \tfrac{2}{m} \mathbb{E}[\sup_{h \in H} \sum_{i=1}^m |\sigma_i \max_{r \neq y} h(\mathbf{x}_i, r)|]\] \\ &= \sum_{y \in \mathcal{Y}} [\ \tfrac{2}{m} \mathbb{E}[\sup_{h \in H_{\mathcal{X}}} \sum_{i=1}^m |\sigma_i \max_{r \neq y} h(\mathbf{x}_i)|]\] \\ &+ \tfrac{2}{m} \mathbb{E}[\sup_{h \in H_{\mathcal{X}}} \sum_{i=1}^m |\sigma_i \max_{r \neq y} h(\mathbf{x}_i)|]\] \\ &\leq k[\ \tfrac{2k}{m} \mathbb{E}[\sup_{h \in H_{\mathcal{X}}} \sum_{i=1}^m |\sigma_i h(\mathbf{x}_i)|]\] \\ &= k^2 R_m^{\parallel}(H_{\mathcal{X}}) \end{split}$$

That concludes the proof.

6 Analysis of the function $g(\cdot)$

Depending on the positive and negative property of $\mathbf{w}_y^{\top} \mathbf{x}$, our results are divided into several situations. For the sake of

simplifying, some shorthands are defined as

$$R \triangleq g(\mathbf{w}_R^{\top} \mathbf{x}),$$

$$r + \triangleq g(any(\mathbf{w}_{r+}^{\top} \mathbf{x})), \quad r - \triangleq g(any(\mathbf{w}_{r-}^{\top} \mathbf{x}))$$

If A: $\mathbf{w}_R^{\top} \mathbf{x} \ge -p$ with margin p > 0:

1.	$0 < \mathbf{w}_y^{T} \mathbf{x} \le \mathbf{w}_R^{T} \mathbf{x} + p$	
	a) $2\mathbf{w}_y^{\top}\mathbf{x} \leq \mathbf{w}_R^{\top}\mathbf{x}$	R > r+, R ? r-
	b) $\mathbf{w}_y^{\top} \mathbf{x} < \mathbf{w}_R^{\top} \mathbf{x} < 2 \mathbf{w}_y^{\top} \mathbf{x}$	R?r+, R>r-
	$\mathbf{c}) - p \le \mathbf{w}_R^{\top} \mathbf{x} < \mathbf{w}_y^{\top} \mathbf{x}$	$R < g(any(\mathbf{w}_{r*}^{\top}\mathbf{x}))$
2.	$-p < \mathbf{w}_y^{T} \mathbf{x} \le 0 \le \mathbf{w}_R^{T} \mathbf{x} + p$	
	a) $\mathbf{w}_y^{T} \mathbf{x} < 0 \le \mathbf{w}_R^{T} \mathbf{x}$	R > r+, R ? r-
	b) $\mathbf{w}_y^{\top} \mathbf{x} \leq \mathbf{w}_R^{\top} \mathbf{x} < 0$	$\{\mathbf{w}_{r+}^{\top}\mathbf{x}\} = \emptyset, R ? r -$
	$\mathbf{c}) - p \le \mathbf{w}_R^{\top} \mathbf{x} < \mathbf{w}_y^{\top} \mathbf{x}$	$\{\mathbf{w}_{r+}^{\top}\mathbf{x}\} = \emptyset, R < r -$
3.	, g - 1t	p
	a) $\mathbf{w}_R^{T} \mathbf{x} \ge -p$	$\{\mathbf{w}_{r+}^{\top}\mathbf{x}\} = \emptyset, R ? r -$

If B: $\mathbf{w}_R^{\top} \mathbf{x} < -p$ with margin p > 0:

1.	$\mathbf{w}_y^{T}\mathbf{x} < 0$, because $\mathbf{w}_y^{T}\mathbf{x} \leq \mathbf{w}_R^{T}\mathbf{x} + p < 0$	
		$\{\mathbf{w}_{r+}^{\top}\mathbf{x}\} = \emptyset, R ? r -$
	b) $\mathbf{w}_y^{\top} \mathbf{x} < \mathbf{w}_R^{\top} \mathbf{x} < -p$	$\{\mathbf{w}_{r+}^{\top}\mathbf{x}\} = \emptyset, R ? r -$

The Fig. 3 below gives the reference sketch used to analyse above conditions.

Figure 2: Reference sketch

7 Calculation of the gradient

The primal objective function is defined as

$$P_i(\mathbf{W}) = \frac{\lambda}{2} ||\mathbf{W}||_2^2 + L(\mathbf{W}; (\mathbf{x}_i, \mathbf{y}_i))$$
$$+ \frac{\beta}{2} \log \operatorname{tr}(\mathbf{W}^\top \mathbf{W}) - \frac{\beta \cdot \mathbb{I}}{2K} \log |\mathbf{W}^\top \mathbf{W}|.$$

Using SGD to solve this problem, we have to calculate the gradient of $P_i(\mathbf{W})$. Though the **W** is a $n \times k$ (n denotes the feature vectors' dimension and k is the number of classes) matrix, the results of $P_i(\mathbf{W})$ applied with a matrix variable is a scoring $\in \mathbb{R}$. To our knowledge, there is a matrices expression of $\frac{\partial P_i(\mathbf{W})}{\partial \mathbf{W}}$ for a typical formulation. To make it clearly, we define

$$\frac{\partial P_{i}(\mathbf{W})}{\partial \mathbf{W}} = \frac{\lambda}{2} \frac{\partial \|\mathbf{W}\|_{2}^{2}}{\partial \mathbf{W}} + \frac{\partial L(\mathbf{W}; (\mathbf{x}_{i}, y_{i}))}{\partial \mathbf{W}} + \frac{\beta}{2} \frac{\partial \log \operatorname{tr}(\mathbf{W}^{\top} \mathbf{W})}{\partial \mathbf{W}} - \frac{\beta \cdot \mathbb{I}}{2K} \frac{\partial \log |\mathbf{W}^{\top} \mathbf{W}|}{\partial \mathbf{W}} \\
= \frac{\lambda}{2} \nabla_{L2} + \nabla_{Loss} + \frac{\beta}{2} \nabla_{logtr} - \frac{\beta \cdot \mathbb{I}}{2K} \nabla_{logdet}$$
(30)

Then, we do the derivation partly.

(1) Firstly, we have

$$\nabla_{L2} = \frac{\partial [\|\mathbf{W}\|_{2}^{2}]_{1\times 1}}{\partial [\mathbf{W}]_{n\times k}}$$

$$= \frac{\partial [\mathbf{1}^{\top}\mathbf{W}^{\top}\mathbf{W}\mathbf{1}]_{1\times 1}}{\partial [\mathbf{W}]_{n\times k}}$$

$$= \mathbf{W}(\mathbf{1}\mathbf{1}^{\top} + \mathbf{1}\mathbf{1}^{\top})$$

$$= [\mathbf{W}]_{n\times k}[(\mathbf{1}\mathbf{1}^{\top} + \mathbf{1}\mathbf{1}^{\top})]_{k\times k}$$

$$= \mathbf{W} \cdot 2\mathbf{I}$$

$$= 2\mathbf{W}$$
(31)

(2) Secondly, the ∇_{Loss} needs the updating rules with subgradient and

$$\nabla_{Loss} = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 + \mathbf{w}_{r_i}^{\top} \mathbf{x}_i - \mathbf{w}_{y_i}^{\top} \mathbf{x}_i).$$
 (32)

• If hingloss Eq.(32) equals zero:

$$\nabla^{j}_{Loss} = 0,$$

• If hingloss Eq.(32) is above zero:

$$\nabla_{Loss}^{j} = \begin{cases} [-\mathbf{x}_{i}]_{n \times 1}, & \text{if } j = y_{i} \\ [\mathbf{x}_{i}]_{n \times 1}, & \text{if } j = R_{i} \\ 0, & \text{otherwise} \end{cases}$$

And all the $[\nabla^1_{Loss}\dots \nabla^j_{Loss}\dots \nabla^k_{Loss}]$ make the ∇_{Loss} . (3) Thirdly, we have

$$\nabla_{logtr} = \frac{\partial [\log \operatorname{tr}(\mathbf{W}^{\top}\mathbf{W})]_{1\times 1}}{\partial [\mathbf{W}]_{n\times k}}$$

$$= \frac{1}{\operatorname{tr}(\mathbf{W}^{\top}\mathbf{W})} \cdot \frac{\partial [\operatorname{tr}(\mathbf{W}^{\top}\mathbf{W})]_{1\times 1}}{\partial [\mathbf{W}]_{n\times k}}$$

$$= \frac{2\mathbf{W}}{\operatorname{tr}(\mathbf{W}^{\top}\mathbf{W})}$$
(33)

(4) Fourthly, the ∇_{logdet} term's results are divided based on the gradient direction we pursuit as

$$\nabla_{logdet} = \frac{\partial [\log |\mathbf{W}^{\top}\mathbf{W}|]_{1\times 1}}{\partial [\mathbf{W}]_{n\times k}}.$$
 (34)

If we regard each coordinate's partial direction W(i, j) as a whole to replace the gradient direction, we have

$$\nabla_{logdet}(i,j)$$

$$= \frac{\partial [\log |\mathbf{W}^{\top} \mathbf{W}|]_{1\times 1}}{\partial [W_{ij}]_{n\times 1}}$$

$$= tr(\frac{\partial \log |\mathbf{W}^{\top} \mathbf{W}|}{\partial \mathbf{W}^{\top} \mathbf{W}} \frac{\partial (\mathbf{W}^{\top} \mathbf{W})^{\top}}{\partial W_{ij}})$$

$$= tr(((\mathbf{W}^{\top} \mathbf{W})^{\top})^{-1} \frac{\partial \mathbf{W}^{\top} \mathbf{W}}{\partial W_{ij}})$$

$$= tr((\mathbf{W}^{\top} \mathbf{W})^{-1} \frac{\partial \mathbf{W}^{\top} \mathbf{W}}{\partial W_{ij}})$$

$$= tr(((\mathbf{W}^{\top} \mathbf{W})^{-1} (\frac{\partial \mathbf{W}^{\top} \mathbf{W}}{\partial W_{ij}}) + \mathbf{W}^{\top} \frac{\partial \mathbf{W}}{\partial W_{ij}})) , \qquad (35)$$

$$= \sum_{p=1}^{k} (\mathbf{W}^{\top} \mathbf{W})_{pi}^{-1} \mathbf{W}_{jp}$$

$$+ \sum_{p=1}^{k} (\mathbf{W}^{\top} \mathbf{W})_{jp}^{-1} \mathbf{W}_{pi}^{\top}$$

$$= 2 \cdot \sum_{p=1}^{k} (\mathbf{W}^{\top} \mathbf{W})_{jp}^{-1} \mathbf{W}_{pi}^{\top}$$

$$= 2(((\mathbf{W}^{\top} \mathbf{W})^{-1} \mathbf{W}^{\top})_{ji}$$

where $W_{ij} \in \mathbb{R}^{n \times k}$ which requires $n \leq k$ which is common in ordinary dataset and \mathbf{W}^+ denotes the pseudo inverse of W. Thus we have the gradient

$$\nabla_{logdet} = 2\mathbf{W}(\mathbf{W}^{\top}\mathbf{W})^{-1}, \tag{36}$$

where the symmetric matrix $\mathbf{W}^{\top}\mathbf{W}$ is invertible.

References

[Bartlett and Mendelson, 2002] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. JMLR, 3(Nov):463–482, 2002.

[Cortes et al., 2013] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Multi-class classification with maximum margin multiple kernel. In ICML, pages 46-54, 2013.

[Ledoux and Talagrand, 2013] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and processes. Springer Science & Business Media, 2013.

[Percy, 2015] Liang Percy. Lecture notes of statistical learning theory. https://web.stanford.edu/class/ cs229t/notes.pdf, 2015.

[Xie et al., 2015a] Pengtao Xie, Yuntian Deng, and Eric Xing. Diversifying restricted boltzmann machine for document modeling. In SIGKDD, pages 1315-1324. ACM, 2015.

[Xie et al., 2015b] Pengtao Xie, Yuntian Deng, and Eric Xing. On the generalization error bounds of neural networks under diversity-inducing mutual angular regularization. arXiv, 2015.