手游玩家付费预测EDA

目的:利用制表、作图、特征分析等方法,对手游玩家的付费数据进行探索性数据分析,找出不同玩家之间的特点和规律,为接下来的预测模型提供思路和方法

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
plt.rcParams['font.sans-serif']=['simHei']
import warnings
warnings.filterwarnings('ignore')
```

```
data.shape
```

(2288007, 109)

观察和理解特征

data.head()

	user_id	register_time	wood_add_value	wood_reduce_value	stone_add_value	stone_reduce_value	ivory_add_value
0	1	2018-02-02 19:47:15	20125.0	3700.0	0.0	0.0	0.0
1	1593	2018-01-26 00:01:05	0.0	0.0	0.0	0.0	0.0
2	1594	2018-01-26 00:01:58	0.0	0.0	0.0	0.0	0.0
3	1595	2018-01-26 00:02:13	0.0	0.0	0.0	0.0	0.0
4	1596	2018-01-26 00:02:46	0.0	0.0	0.0	0.0	0.0

data.describe()

	user_id	wood_add_value	wood_reduce_value	stone_add_value	stone_reduce_value	ivory_add_value	ivory_reduce_value
count	2.288007e+06	2.288007e+06	2.288007e+06	2.288007e+06	2.288007e+06	2.288007e+06	2.288007e+06
mean	1.529543e+06	4.543069e+05	3.698433e+05	1.897788e+05	1.376074e+05	8.075623e+04	3.613170e+04
std	9.399393e+05	4.958667e+06	3.737720e+06	4.670620e+06	3.370166e+06	2.220540e+06	1.782499e+06
min	1.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
25%	7.499925e+05	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
50%	1.419095e+06	4.203800e+04	9.830000e+03	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
75%	2.299006e+06	1.531180e+05	9.855700e+04	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
max	3.190530e+06	1.239962e+09	7.995875e+08	1.214869e+09	7.962378e+08	5.744961e+08	4.481972e+08

数据类型的观察 (int/float/str) 与转换 (时间类型)

```
data.columns[data.dtypes=='object']
Index(['register_time'], dtype='object')
data.dtypes.value_counts()
data.select_dtypes(include='object').head()
```

	reg	gister_time
0	2018-02-02 19:47:15	
1	2018-01-26 00:01:05	
2	2018-01-26 00:01:58	
3	2018-01-26 00:02:13	
4	2018-01-26 00:02:46	

去除时分秒

data.register_time = pd.to_datetime(data.register_time).dt.normalize()

缺失值检测与 填充/删除

数据无缺失值

(data.isnull().sum()==0).value_counts()

True 109

提取信息

切比雪夫来消除极值

data[data.wood_add_value<20000000].wood_add_value.plot.hist()

累加图,可以看出大部分的贡献集中在少部分玩家中,二八法则

 $\label{lem:data.sort_values('wood_add_value', ascending = False).wood_add_value.cumsum().reset_index(drop=True).plot()} \\$

每日新增用户数,总体下降,2月19号前后有一波大高潮

data.groupby('register_time').user_id.count().plot()

45日内无消费用户占比

(data.prediction_pay_price==0).value_counts()

True 2242019 False 45988

抽样分析有代表性特征的分布情况

data.wood_reduce_value.plot.hist()

 ${\tt data.cavalry_add_value.plot.hist()}$

data.bd_healing_lodge_level.plot.hist()

${\tt data.bd_stronghold_level.plot.hist()}$

data.sr_cavalry_tier_2_level.plot.hist()

${\tt data.pvp_battle_count.plot.hist()}$

data.avg_online_minutes.plot.hist()

data[['pay_price','pay_count','prediction_pay_price']].hist()

• 整体特征都严重偏斜,大部分玩家只玩了很短的时间

```
lt = []
lt.append(data[data.pay_count==0].pay_count.count())
lt.append(data[data.pay_count>0].pay_count.count())
lt.append(data[data.pay_count==1].pay_count.count())
lt.append(data[data.pay_count>1].pay_count.count())
```

```
df = pd.DataFrame(lt, index=['no_pay_user', 'pay_user', 'pay_one_user', 'pay_more_user'])
df.iloc[0:2].plot.bar()
plt.xticks(rotation=0)
df.iloc[2:].plot.bar()
plt.xticks(rotation=0)
# 付费率
print('付费率:', round(data[data.pay_count>0].user_id.count() / data.user_id.count(), 3)
```

付费率: 0.018

- 大部分是不付费用户
- 在付费用户中,多次付费的用户高于只付费一次的用户,因此要提高付费率

• 付费多次的用户付费总额也远高于付费一次的用户

data['price_diff'] = data.prediction_pay_price - data.pay_price
data.price_diff.plot.hist()

前7日付费后不再付费用户

 $\label{local_unactive_user} \begin{array}{ll} unactive_user = data[(data.pay_price>0) & (data.price_diff==0)] \\ unactive_user.shape \\ \end{array}$

(30130, 110)

前7日不付费,后45日有付费的用户

data[(data.pay_price==0) & (data.price_diff>0)].shape

(4549, 110)

(unactive_user.pay_count>1).value_counts().plot.bar()

• 前7日付费后不再付费用户中,只付费1次与付费多次的占比相当

```
# ARPU ARPPU
print('ARPU =', data.pay_price.sum() / data.user_id.count())
print('ARPPU =', data.pay_price.sum() / data[data.pay_price>0].user_id.count())
```

```
ARPU = 0.5346691072186407
ARPPU = 29.52114336735926
```

```
# 所有用户日平均在线时长,和周平均在线时长
print('所有用户日平均在线时长(min):', data.avg_online_minutes.sum()/data.user_id.count())
print('所有用户周平均在线时长(min):', data.avg_online_minutes.sum()*7/data.user_id.count())
```

```
所有用户日平均在线时长(min): 10.20
所有用户周平均在线时长(min): 71.45
```

付费用户日平均在线时长 与 不付费用户日平均在线时长 print('付费用户日平均在线时长(min):', data[data.pay_price>0].avg_online_minutes.sum()/data[data.pay_price>0].user_id.count()) print('不付费用户日平均在线时长(min):', data[data.pay_price==0].avg_online_minutes.sum()/data[data.pay_price==0].user_id.count())

```
付费用户日平均在线时长(min): 140.19 不付费用户日平均在线时长(min): 7.81
```

用象限法 划分 活跃与付费

第一象限:活跃且付费,重点维护用户第二象限:不活跃但付费,重点发展用户第三象限:不活跃也不付费,一般发展用户第四象限:活跃但不付费,一般维护用户

```
data['user_label'] = 'a'
data['user_label'] [(data['avg_online_minutes']>15)& (data['pay_price']>0)] = '活跃且付费用户'
data['user_label'] [(data['avg_online_minutes']<=15)& (data['pay_price']>0)] = '不活跃但付费'
data['user_label'] [(data['avg_online_minutes']<=15)& (data['pay_price']==0)] = '不活跃也不付费'
data['user_label'] [(data['avg_online_minutes']>15)& (data['pay_price']==0)] = '活跃但不付费'
```

各类型用户占比, 重点维护付费且活跃用户, 重点发展付费但不活跃用户, 一般维护活跃但不付费用户data.groupby('user_label').user_id.count().plot.bar()

data['weekday'] = data.register_time.dt.weekday+1
data.groupby('weekday').user_id.count().plot.bar()

• 不同星期新增用户数对比: 周一与周日比较多, 周三最少