Graph Theory and Complex Networks: An Introduction

Maarten van Steen

VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl

Chapter 09: Social networks

Version: May 12, 2014

vrije Universiteit amsterdam

Contents

Chapter	Description		
01: Introduction	History, background		
02: Foundations	Basic terminology and properties of graphs		
03: Extensions	Directed & weighted graphs, colorings		
04: Network traversal	Walking through graphs (cf. traveling)		
05: Trees	Graphs without cycles; routing algorithms		
06: Network analysis	Basic metrics for analyzing large graphs		
07: Random networks	Introduction modeling real-world networks		
08: Computer networks	The Internet & WWW seen as a huge graph		
09: Social networks	Communities seen as graphs		

2/33

Introduction
Observation
Observation
Sociologists have always been interested in social structures:
formation of groups
 influence relationships
ties of families and friends
(dis)likings in groups of people
Observation
Graphs form a natural way for modeling social structures
 Sociograms and blockmodeling
 Basic concepts: balance, cohesiveness, affiliation networks
Equivalence

4/33

Example: Workers on strike Russ Utrecht ○ Quint Union negotiators Ozzie Carlos Lanny Alejandro Domingo John Mike Hal Eduardo Gill Frank 🖯

Example: The influence of the Medici's Giovani di Bicci created the Medici Bank and became very rich. His son, Cosimo de' Medici, is the actual founder of the Medici dynasty. Cosimo made sure that the right people got married to each other, resulting in more power. Guadagni Bischeri Lambertes Pucci Strozzi Albizzi Castellan Ridolfi Medici Ginori - Pazzi Salviati •

Observation

The Strozzi family was richer and had more representatives in the local legislature. Yet the Medici's power surpassed that of the Strozzi's.

Reconsider the betweenness centrality:

$$c_B(u) = \sum_{x \neq y \neq u} \frac{|S(x, u, y)|}{|S(x, y)|}$$

with

- S(x, u, y) is collection of shortest (x, y) paths containing u
- S(x,y) is set of shortest paths between vertices x and y.

Example: The influence of the Medici's **Normalization** Normalize $c_B(u)$ by the maximum possible pairs of families that u can connect: $\binom{n-1}{2}$ $c_B(Medici) = 0.522 \text{ whereas } c_B(Strozzi) = 0.103$

Starters: sociograms

Already early in the 1930s Jacob Moreno introduced graph-like representations for social structures and suggested that they could be used for discovering new features.

Sociograms in the classroom

In order to get an impression of how a class operates, teachers can ask their pupils to list the three classmates they (dis)like the most.

(largest Strongly Connected Component)

Eccentricity

Recall: Eccentricity *u* is maximal minimal distance to other vertices

Child:	1	2	4	5	7	9	11	12
Ecc.:	5	6	6	4	7	7	7	5
Child:	13	14	15	16	17	19	20	23
Ecc.:	6	3	6	5	6	5	4	6

Observations

Child #14 is one of the few nominating a boy *and* a girl. She also seems to be "in the middle."

13/33

Concentrate on SCC

Closeness

Recall: $c_C(u) = \frac{1}{\sum_{v \in V(G)} d(u,v)}$

Child:	1	2	4	5	7	9	11	12
Close:	.23	.21	.18	.25	.18	.18	.18	.22
Child:	13	14	15	16	17	19	20	23
Close:	.18	.30	.21	.21	.21	.25	.25	.21

Observation

The closeness confirms that child #14 is close to everyone.

1/33

Social Networks

Sociograms

Concentrate on SCC

Betweenness

Child:	1	2	4	5	7	9	11	12
Betw.:	.140	.153	.050	.105	.083	.007	.155	.220
Child:	13	14	15	16	17	19	20	23
Betw.:	.016	.054	.083	.140	.017	.466	.469	.029

Observation

The picture has changed dramatically: child #14 may be close, but her importance should be questioned.

5/33 15/3

G is simple and (strongly) connected. S(x,y) is set of shortest paths between x and y. $S(x, u, y) \subseteq S(x, y)$ paths that pass through u. Betweenness centrality: $c_B(u) = \sum_{x \neq y \neq u} \frac{|S(x,u,y)|}{|S(x,y)|}$.

Prestige **Definition (Degree prestige)**

Let D be a directed graph. The degree prestige $p_{deg}(v)$ of a vertex

 $v \in V(D)$ is defined as its indegree $\delta^-(v)$.

Definition (Proximity prestige)

Let *D* be a directed graph with *n* vertices. The influence domain $R^-(v)$ is the set of vertices from where v can be reached through a directed path, that is, $R^-(v) = \{u \in V(D) | \exists (u, v)\text{-path}\}$. The proximity prestige:

$$\rho_{prox}(v) = \frac{|R^{-}(v)|/(n-1)}{\sum_{u \in R^{-}(v)} d(u,v)/|R^{-}(v)|}$$

Ranked prestige

Definition

Consider a simple directed graph D with vertex set $\{1, 2, ..., n\}$ with adjacency matrix **A** The ranked prestige of a vertex k is:

$$p_{rank}(k) = \sum_{i=1,i \neq k}^{n} \mathbf{A}[i,k] \cdot p_{rank}(i)$$

Simple example

ID	Α	В	С
Α	_	0.5	0.4
В	0.1	_	0.6
С	0.9	0.5	_

$$\begin{array}{lcl} p_{rank}(A) & = & 0.5 \cdot p_{rank}(B) + 0.4 \cdot p_{rank}(C) \\ p_{rank}(B) & = & 0.1 \cdot p_{rank}(A) + 0.6 \cdot p_{rank}(C) \\ p_{rank}(C) & = & 0.9 \cdot p_{rank}(A) + 0.5 \cdot p_{rank}(B) \end{array}$$

 $\mathbf{ID}[i,j]$: how much is i appreciated by j?

Computing ranked presitige

Some simple rewriting

$p_{rank}(A)=0.5 \cdot p_{rank}(B)+0.4 \cdot p_{rank}(C)$	$x = 0.5 \cdot y + 0.4 \cdot z$ (1)
$p_{rank}(B)=0.1 \cdot p_{rank}(A) + 0.6 \cdot p_{rank}(C)$	$y = 0.1 \cdot x + 0.6 \cdot z$ (2)
$p_{rank}(C)=0.9 \cdot p_{rank}(A) + 0.5 \cdot p_{rank}(B)$	$z=0.9 \cdot x + 0.5 \cdot y$ (3)

Some simple substitutions

- Substitute (2) into (3)
- 2 Substitute (3) into (2)

Results

$$x = 0.52$$
 $y = 0.48$ $z = 0.71$

19/33

Structural balance

Basic idea

Consider **triads**: potential relationships between triples of social entities, and label every relationship as positive or negative. We then consider **balanced** triads.

A-B	В-С	A-C	B/I	Description
+	+	+	В	Everyone likes each other
+	+	-	ı	Dislike A–C stresses relation B has with either of them
+	-	+	Τ	Dislike B–C stresses relation A has with either of them
+	-	-	В	A and B like each other, and both dislike C
-	+	+	Τ	Dislike A–B stresses relation C has with either of them
_	+	-	В	B and C like each other, and both dislike A
-	-	+	В	A and C like each other, and both dislike B
-	-	-	ı	Nobody likes each other

20/33 20

Structural balance: signed graphs

Definition

A **signed graph** is a simple graph G in which each edge e is labeled with either a positive ("+") or negative ("-") sign, sign(e).

Definition

The **product of two signs** s_1 and s_2 is again a sign, denoted as $s_1 \cdot s_2$. It is negative if and only if *exactly one* of s_1 and s_2 is negative. The **sign of a trail** T is the product of the signs of its edges: $sign(T) = \Pi_{e \in E(T)} sign(e)$.

Definition

An undirected signed graph is balanced when all its cycles are positive.

/33 21/33

Balanced networks: special characterization	
Theorem	
An undirected signed complete graph G is balanced if and only if $V(G)$ can be partitioned into two disjoint subsets V_0 and V_1 such that each negative-signed edge is incident to a vertex from V_0 and one from V_1 , and each positive-signed edge is incident to vertices from the same set.	
More formally	
Let $E^-(G)$ be the edges with negative sign, and $E^+(G)$ the ones with positive sign. Then, $E^-(G) = \{\langle x,y \rangle x \in V_0, y \in V_1 \}$ and $E^+(G) = \{\langle x,y \rangle x,y \in V_0 \text{ or } x,y \in V_1 \}.$	
Proof: V can be properly partitioned $\Rightarrow G$ is balanced	
Every cycle in G contains an even number of edges from $E^-(G)$. All other edges have positive sign. G must be balanced.	
other edges have positive sign. O must be balanced.	22/33
Social Networks Basic concepts	Social Networks Basic concepts
D (
Proof	
Proof	
Proof: G is balanced $\Rightarrow V$ can be partitioned	
Proof: <i>G</i> is balanced \Rightarrow <i>V</i> can be partitioned • Let $u \in V(G)$ and let $N^+(u) = \{v \in N(u) sign(\langle u, v \rangle) = "+"\}$	
Proof: G is balanced $\Rightarrow V$ can be partitioned	
Proof: <i>G</i> is balanced \Rightarrow <i>V</i> can be partitioned • Let $u \in V(G)$ and let $N^+(u) = \{v \in N(u) sign(\langle u, v \rangle) = "+"\}$ • Set $V_0 \leftarrow \{u\} \cup N^+(u)$ and $V_1 \leftarrow V(G) \setminus V_0$. • Consider $v_0, w_0 \in V_0$, other than u . Note: $\langle u, v_0 \rangle$ and $\langle u, w_0 \rangle$ are positive signed \Rightarrow also $\langle v_0, w_0 \rangle$ is positive signed.	
Proof: <i>G</i> is balanced $\Rightarrow V$ can be partitioned • Let $u \in V(G)$ and let $N^+(u) = \{v \in N(u) sign(\langle u, v \rangle) = "+"\}$ • Set $V_0 \leftarrow \{u\} \cup N^+(u)$ and $V_1 \leftarrow V(G) \setminus V_0$. • Consider $v_0, w_0 \in V_0$, other than u . Note: $\langle u, v_0 \rangle$ and $\langle u, w_0 \rangle$ are	
Proof: <i>G</i> is balanced \Rightarrow <i>V</i> can be partitioned • Let $u \in V(G)$ and let $N^+(u) = \{v \in N(u) sign(\langle u, v \rangle) = "+"\}$ • Set $V_0 \leftarrow \{u\} \cup N^+(u)$ and $V_1 \leftarrow V(G) \setminus V_0$. • Consider $v_0, w_0 \in V_0$, other than u . Note: $\langle u, v_0 \rangle$ and $\langle u, w_0 \rangle$ are positive signed \Rightarrow also $\langle v_0, w_0 \rangle$ is positive signed. • Consider $v_1, w_1 \in V_1$. The triangle with vertices u, v_1, w_1 must be positive; $\langle u, v_1 \rangle$ and $\langle u, w_1 \rangle$ are negative signed $\Rightarrow \langle v_1, w_1 \rangle$ must be positive signed.	
Proof: <i>G</i> is balanced \Rightarrow <i>V</i> can be partitioned • Let $u \in V(G)$ and let $N^+(u) = \{v \in N(u) sign(\langle u, v \rangle) = "+"\}$ • Set $V_0 \leftarrow \{u\} \cup N^+(u)$ and $V_1 \leftarrow V(G) \setminus V_0$. • Consider $v_0, w_0 \in V_0$, other than u . Note: $\langle u, v_0 \rangle$ and $\langle u, w_0 \rangle$ are positive signed \Rightarrow also $\langle v_0, w_0 \rangle$ is positive signed. • Consider $v_1, w_1 \in V_1$. The triangle with vertices u, v_1, w_1 must be positive; $\langle u, v_1 \rangle$ and $\langle u, w_1 \rangle$ are negative signed $\Rightarrow \langle v_1, w_1 \rangle$ must	
 Proof: G is balanced ⇒ V can be partitioned Let u ∈ V(G) and let N⁺(u) = {v ∈ N(u) sign(⟨u, v⟩) = "+"} Set V₀ ← {u} ∪ N⁺(u) and V₁ ← V(G) \ V₀. Consider v₀, w₀ ∈ V₀, other than u. Note: ⟨u, v₀⟩ and ⟨u, w₀⟩ are positive signed ⇒ also ⟨v₀, w₀⟩ is positive signed. Consider v₁, w₁ ∈ V₁. The triangle with vertices u, v₁, w₁ must be positive; ⟨u, v₁⟩ and ⟨u, w₁⟩ are negative signed ⇒ ⟨v₁, w₁⟩ must be positive signed. Consider ⟨v₀, v₁⟩, sign(⟨u, v₀⟩) is positive, sign(⟨u, v₁⟩) negative 	
 Proof: G is balanced ⇒ V can be partitioned Let u ∈ V(G) and let N⁺(u) = {v ∈ N(u) sign(⟨u, v⟩) = "+"} Set V₀ ← {u} ∪ N⁺(u) and V₁ ← V(G) \ V₀. Consider v₀, w₀ ∈ V₀, other than u. Note: ⟨u, v₀⟩ and ⟨u, w₀⟩ are positive signed ⇒ also ⟨v₀, w₀⟩ is positive signed. Consider v₁, w₁ ∈ V₁. The triangle with vertices u, v₁, w₁ must be positive; ⟨u, v₁⟩ and ⟨u, w₁⟩ are negative signed ⇒ ⟨v₁, w₁⟩ must be positive signed. Consider ⟨v₀, v₁⟩, sign(⟨u, v₀⟩) is positive, sign(⟨u, v₁⟩) negative ⇒ ⟨v₀, v₁⟩ must be negative signed. 	23/33
 Proof: G is balanced ⇒ V can be partitioned Let u ∈ V(G) and let N⁺(u) = {v ∈ N(u) sign(⟨u, v⟩) = "+"} Set V₀ ← {u} ∪ N⁺(u) and V₁ ← V(G) \ V₀. Consider v₀, w₀ ∈ V₀, other than u. Note: ⟨u, v₀⟩ and ⟨u, w₀⟩ are positive signed ⇒ also ⟨v₀, w₀⟩ is positive signed. Consider v₁, w₁ ∈ V₁. The triangle with vertices u, v₁, w₁ must be positive; ⟨u, v₁⟩ and ⟨u, w₁⟩ are negative signed ⇒ ⟨v₁, w₁⟩ must be positive signed. Consider ⟨v₀, v₁⟩, sign(⟨u, v₀⟩) is positive, sign(⟨u, v₁⟩) negative 	23/33
 Proof: G is balanced ⇒ V can be partitioned Let u ∈ V(G) and let N⁺(u) = {v ∈ N(u) sign(⟨u, v⟩) = "+"} Set V₀ ← {u} ∪ N⁺(u) and V₁ ← V(G) \ V₀. Consider v₀, w₀ ∈ V₀, other than u. Note: ⟨u, v₀⟩ and ⟨u, w₀⟩ are positive signed ⇒ also ⟨v₀, w₀⟩ is positive signed. Consider v₁, w₁ ∈ V₁. The triangle with vertices u, v₁, w₁ must be positive; ⟨u, v₁⟩ and ⟨u, w₁⟩ are negative signed ⇒ ⟨v₁, w₁⟩ must be positive signed. Consider ⟨v₀, v₁⟩, sign(⟨u, v₀⟩) is positive, sign(⟨u, v₁⟩) negative ⇒ ⟨v₀, v₁⟩ must be negative signed. 	23/33
 Proof: G is balanced ⇒ V can be partitioned Let u ∈ V(G) and let N⁺(u) = {v ∈ N(u) sign(⟨u, v⟩) = "+"} Set V₀ ← {u} ∪ N⁺(u) and V₁ ← V(G) \ V₀. Consider v₀, w₀ ∈ V₀, other than u. Note: ⟨u, v₀⟩ and ⟨u, w₀⟩ are positive signed ⇒ also ⟨v₀, w₀⟩ is positive signed. Consider v₁, w₁ ∈ V₁. The triangle with vertices u, v₁, w₁ must be positive; ⟨u, v₁⟩ and ⟨u, w₁⟩ are negative signed ⇒ ⟨v₁, w₁⟩ must be positive signed. Consider ⟨v₀, v₁⟩, sign(⟨u, v₀⟩) is positive, sign(⟨u, v₁⟩) negative ⇒ ⟨v₀, v₁⟩ must be negative signed. 	23/33

Balanced networks: path characterization Theorem Consider an undirected signed graph G and two distinct vertices $u, v \in V(G)$. G is balanced if and only if all (u, v)-paths have the same sign. Proof: G is balanced \Rightarrow all (u, v)-paths have the same sign • Let P and Q be two distinct (u, v)-paths. • Let $E' = (E(P) \cup E(Q)) \setminus (E(P) \cap E(Q))$. • H = G[E'] consists of edge-disjoint positive-signed cycles. • For each cycle $C \subseteq H$: $E(C) = E(\hat{P}) \cup E(\hat{Q})$ with \hat{P} a subpath of P and \hat{Q} a subpath of Q. • $sign(C) = sign(\hat{P}) \cdot sign(\hat{Q})$ is positive \Rightarrow signs of \hat{P} and \hat{Q} must be the same.

Social Networks Basic concepts	Social Networks Basic concepts
Balanced networks: path characterization	
Proof: all (u, v) -paths have the same sign $\Rightarrow G$ is balanced	
Note:	
 u and v have been chosen arbitrarily 	
 Every cycle C can be constructed as the union of two edge-disjoint paths P and Q 	
Consequence : for all C : $sign(C) = sign(P) \cdot sign(Q)$ must be positive $\Rightarrow G$ is balanced.	
07/00	05/00
25/33	25/33

Social Networks Basic concepts	Social Networks Basic concepts
Balanced networks: general characterization	
Theorem	· -
An undirected signed graph G is balanced if and only if $V(G)$ can be	
partitioned into two disjoint subsets V ₀ and V ₁ such that	
$E^-(G) = \{\langle x, y \rangle x \in V_0, y \in V_1 \}$ and	
$E^+(G) = \{\langle x, y \rangle x, y \in V_0 \text{ or } x, y \in V_1 \}.$	
Proof: V can be properly partitioned $\Rightarrow G$ is balanced	
• Add $e = \langle u, v \rangle$ to G , with u, v nonadjacent	
• u and v in same subset $\Rightarrow sign(e)$ becomes positive, otherwise	
negative.	· ·
 Continue until reaching complete signed graph G*. 	
• We know G^* is balanced $\Rightarrow G$ is balanced.	

Social Networks Basic concepts	Social Networks Basic concepts
Balanced networks: general characterization	
Proof: G is balanced $\Rightarrow V$ can be properly partitioned	
Assume G is connected. Prove by induction on number of edges	
m.	
• Trivially OK for $m = 1$. Assume correct for $m > 1$ edges.	
• Consider nonadjacent vertices u and v : all (u, v) -paths have the same sign. Add $e = \langle u, v \rangle$ with $sign(e)$ the same as a (u, v) -path.	
 New cycle C will consist of e and a (u, v)-path P from G. 	
• $sign(C) = sign(e) \cdot sign(P)$, and $sign(e) = sign(P) \Rightarrow C$ must be positive.	
• Continue until reaching complete graph G^* , and subsequently partition $V(G^*)$.	

27/33

27/33

Social Networks Basic concepts	Social Networks Basic concepts
Checking for balance	
Algorithm (Balanced graphs)	
Consider an undirected signed graph G. $N^+(v)$ is the set of vertices adjacent to v through a positive-signed edge. $N^-(v)$ is analogous. Let	
I be the set of inspected vertices so far.	
The the set of inspected vertices so lar.	
Select an arbitrary vertex $u \in V(G)$ and set $V_0 \leftarrow \{u\}$ and $V_1 \leftarrow \emptyset$.	
Set $I \leftarrow \emptyset$.	
Select arbitrary vertex $v \in (V_0 \cup V_1) \setminus I$. Assume $v \in V_i$.	
• For all $w \in N^+(v)$: $V_i \leftarrow V_i \cup \{w\}$.	
• For all $w \in N^-(v) : V_{(i+1) \mod 2} \leftarrow V_{(i+1) \mod 2} \cup \{w\}.$	
• Also, $I \leftarrow I \cup \{v\}$.	
If $V_0 \cap V_1 \neq \emptyset$ stop: G is not balanced. Otherwise, if $I = V(G)$ stop:	
G is balanced. Otherwise, repeat the previous step.	

Affiliation networks

Basic idea

Social structures are assumed to consist of actors and events. Actors are tied to each other through their participation in an event. Two events are bound through the actors that participate in both events \Rightarrow two-mode networks.

Observation

Affiliation networks are naturally represented as bipartite graphs: Let V_A represent the actors and V_E the events. Edge (v_a, v_e) if actor a participates in event e.

Social Networks Affiliation networks	Social Networks Affiliation networks
THE END	
33/33	33/33