$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

$\Upsilon(1S)$ MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
9460.30±0.26 OUR AVERAGE				
$9460.51 \pm 0.09 \pm 0.05$	¹ ARTAMONOV	00	MD1	$e^+e^- o$ hadrons
$9459.97 \pm 0.11 \pm 0.07$	MACKAY	84	REDE	$e^+e^- o$ hadrons
• • • We do not use the following	ng data for averages	, fits,	limits, e	etc. • • •
$9460.60 \pm 0.09 \pm 0.05$	^{2,3} BARU	92 B	REDE	$e^+e^- ightarrow $ hadrons
9460.59 ± 0.12	-			$e^+e^- o$ hadrons
9460.6 \pm 0.4	^{3,4} ARTAMONOV	84	REDE	$e^+e^- ightarrow $ hadrons

 $^{^1\,\}rm Reanalysis$ of BARU 92B and ARTAMONOV 84 using new electron mass (COHEN 87). $^2\,\rm Superseding$ BARU 86. $^3\,\rm Superseded$ by ARTAMONOV 00.

$\Upsilon(1S)$ WIDTH

DOCUMENT ID

See the Note on "Width Determinations of the Υ 54.02 ± 1.25 OUR EVALUATION States"

$\Upsilon(1S)$ DECAY MODES

					Sc	cale factor/
-	Mode		Fraction	(Γ_i/Γ)	Confi	idence level
Γ ₁	$\tau^+\tau^-$		(2.60	±0.10) %	
Γ_2	e^+e^-		(2.38	± 0.11) %	
Γ ₃	$\mu^+\mu^-$		(2.48	± 0.05) %	
		Hadronic dec	cays			
Γ_4	ggg		(81.7	± 0.7) %	
Γ_5	γ gg		(2.2	± 0.6) %	
Γ_6	$\eta'(958)$ anything		(2.94	± 0.24) %	
Γ_7	$J/\psi(1\mathcal{S})$ anything		(5.4	± 0.4	$) \times 10^{-4}$	S=1.4
Γ ₈	$J/\psi(1S)\eta_{m{c}}$		< 2.2		$\times 10^{-6}$	CL=90%
Γ_9	$J/\psi(1S)\chi_{c0}$		< 3.4		\times 10 ⁻⁶	CL=90%
Γ_{10}	$J/\psi(1S)\chi_{c1}$		(3.9	± 1.2	$) \times 10^{-6}$	
Γ_{11}	$J/\psi(1S)\chi_{c2}$		< 1.4		$\times 10^{-6}$	CL=90%
Γ_{12}	$J/\psi(1S)\eta_c(2S)$		< 2.2		\times 10 ⁻⁶	CL=90%
Γ_{13}	$J/\psi(1S)X(3940)$		< 5.4		\times 10 ⁻⁶	CL=90%
Γ_{14}	$J/\psi(1S)X(4160)$		< 5.4		$\times 10^{-6}$	CL=90%
Γ ₁₅	X(4350) anything,	$X \rightarrow$	< 8.1		$\times 10^{-6}$	CL=90%
	$J/\psi(1S)\phi$					

HTTP://PDG.LBL.GOV

Page 1

⁴ Value includes data of ARTAMONOV 82.

Γ ₁₆	$X(3900)^\pm$ anything, $X o J/\psi(1S)\pi^\pm$	< 1.3	$\times 10^{-5}$	CL=90%
Γ ₁₇	$X(4200)^\pm$ anything, $X o J/\psi(1S)\pi^\pm$	< 6.0	$\times 10^{-5}$	CL=90%
Γ ₁₈	$X(4430)^\pm$ anything, $X o J/\psi(1S)\pi^\pm$	< 4.9	× 10 ⁻⁵	CL=90%
Γ_{19}	X_{cs}^{\pm} anything, $X o J/\psi K^{\pm}$	< 5.7	\times 10 ⁻⁶	CL=90%
Γ ₂₀	$X(3872)$ anything, $X o J/\psi(1S)\pi^+\pi^-$	< 9.5	× 10 ⁻⁶	CL=90%
Γ ₂₁	$X(4260)$ anything, $X ightarrow J/\psi(1S)\pi^+\pi^-$	< 3.8	\times 10 ⁻⁵	CL=90%
Γ ₂₂	$X(4260)$ anything, $X ightarrow J/\psi(1S) K^+ K^-$	< 7.5	× 10 ⁻⁶	CL=90%
Γ ₂₃	$X(4140)$ anything, $X ightarrow J/\psi(1S)\phi$	< 5.2	× 10 ⁻⁶	CL=90%
Γ_{24}	χ_{c0} anything	< 4	$\times10^{-3}$	CL=90%
Γ ₂₅	χ_{c1} anything	(1.90 ± 0.3		
Γ_{26}^{-3}	χ_{c2} anything	(2.8 ±0.8		
Γ ₂₇	$\psi(2S)$ anything	(1.23 ±0.2		
Γ ₂₈	$\psi(2S)\eta_c$	< 3.6	× 10 ⁻⁶	CL=90%
Γ ₂₉	$\psi(2S)\chi_{c0}$	< 6.5	\times 10 ⁻⁶	CL=90%
Γ ₃₀	$\psi(2S)\chi_{c1}$	< 4.5	× 10 ⁻⁶	CL=90%
Γ ₃₁	$\psi(2S)\chi_{c2}$	< 2.1	× 10 ⁻⁶	CL=90%
Γ ₃₂	$\psi(2S)\eta_c(2S)$	< 3.2	× 10 ⁻⁶	CL=90%
Γ ₃₃	$\psi(2S)X(3940)$	< 2.9	× 10 ⁻⁶	CL=90%
Γ ₃₄	$\psi(2S)X(4160)$	< 2.9	× 10 ⁻⁶	CL=90%
Γ ₃₅	$X(4260)$ anything, $X \rightarrow$	< 7.9	× 10 ⁻⁵	CL=90%
	ψ (2S) $\pi^+\pi^-$			
Γ ₃₆	$X(4360)$ anything, $X ightarrow \psi(2S)\pi^+\pi^-$	< 5.2	× 10 ⁻⁵	CL=90%
Γ ₃₇	$X(4660)$ anything, $X o \psi(2S)\pi^+\pi^-$	< 2.2		CL=90%
Γ ₃₈	$X(4050)^\pm$ anything, $X o \psi(2S)\pi^\pm$	< 8.8	× 10 ⁻⁵	CL=90%
Γ ₃₉	$X(4430)^\pm$ anything, $X o \psi(2S)\pi^\pm$	< 6.7	× 10 ⁻⁵	CL=90%
Γ_{40}	$ ho\pi$	< 3.68	$\times10^{-6}$	CL=90%
Γ ₄₁	$\omega \pi^0$	< 3.90	$\times10^{-6}$	CL=90%
Γ ₄₂	$\pi^+\pi^-$	< 5	$\times 10^{-4}$	CL=90%
Γ ₄₃	K^+K^-	< 5	$\times 10^{-4}$	CL=90%
Γ ₄₄	p p	< 5	$\times 10^{-4}$	CL=90%
Γ_{45}	$\pi^+\pi^-\pi^0$		$) \times 10^{-6}$	
Γ ₄₆	ϕ K ⁺ K ⁻	(2.4 ±0.5	_	
Γ ₄₇	$\omega \pi^+ \pi^-$	(4.5 ±1.0		
• •		`	•	

Γ ₄₈	$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	$(4.4 \pm 0.8) \times 10^{-6}$	
Γ_{49}	$\phi f_2'(1525)$	$< 1.63 \times 10^{-6}$	CL=90%
Γ ₅₀	$\omega f_2(1270)$	$< 1.79 \times 10^{-6}$	CL=90%
	$\rho(770) a_2(1320)$	$< 2.24 \times 10^{-6}$	CL=90%
	$K^*(892)^0\overline{K}_2^*(1430)^0+$ c.c.	$(3.0 \pm 0.8) \times 10^{-6}$	
Γ ₅₃	$K_1(1270)^{\pm}K^{\mp}$	$< 2.41 \times 10^{-6}$	CL=90%
Γ ₅₄	$K_1(1400)^\pm K^\mp$	$(1.0 \pm 0.4) \times 10^{-6}$	
Γ ₅₅	$b_1(1235)^{\pm}\pi^{\mp}$	$< 1.25 \times 10^{-6}$	CL=90%
Γ ₅₆	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$(1.28 \pm 0.30) \times 10^{-5}$	
Γ ₅₇	$K_S^0 K^+ \pi^- + \text{c.c.}$	$(1.6 \pm 0.4) \times 10^{-6}$	
Γ ₅₈	$K^*(892)^0 \overline{K}{}^0 + { m c.c.}$	$(2.9 \pm 0.9) \times 10^{-6}$	
0.5	$K^*(892)^-K^+ + \text{c.c.}$	$< 1.11 \times 10^{-6}$	CL=90%
Γ ₆₀	$D^*(2010)^\pm$ anything	($2.52\ \pm0.20$) %	
Γ_{61}	2H anything	$(2.85 \pm 0.25) \times 10^{-5}$	
Γ ₆₂	Sum of 100 exclusive modes	$(1.200\pm0.017)\%$	

Radiative decays

Γ ₆₃	$\gamma \pi^+ \pi^-$	(6.3	± 1.8	$) \times 10^{-5}$	
Γ ₆₄	$\gamma \pi^0 \pi^0$	(1.7	±0.7	$) \times 10^{-5}$	
Γ ₆₅	$\gamma \pi^0 \eta$	< 2.4		$\times 10^{-6}$	CL=90%
Γ ₆₆	γ K ⁺ K ⁻	[a] (1.14	± 0.13	$) \times 10^{-5}$	
Γ ₆₇	$\gamma p \overline{p}$	[b] < 6		$\times 10^{-6}$	CL=90%
Γ ₆₈	$\gamma 2h^+2h^-$	(7.0	±1.5	$) \times 10^{-4}$	
Γ ₆₉	$\gamma 3h^+3h^-$	(5.4	±2.0	$) \times 10^{-4}$	
	γ 4 h^+ 4 h^-	(7.4		$) \times 10^{-4}$	
Γ_{71}	$\gamma \pi^+ \pi^- K^+ K^-$	(2.9	±0.9	,	
	$\gamma 2\pi^+ 2\pi^-$	(2.5	±0.9	$) \times 10^{-4}$	
Γ_{73}	γ 3 π^+ 3 π^-	(2.5		$) \times 10^{-4}$	
Γ_{74}	γ 2 π^+ 2 π^- K $^+$ K $^-$	(2.4	± 1.2	$) \times 10^{-4}$	
Γ ₇₅	$\gamma \pi^+ \pi^- \rho \overline{ ho}$	(1.5	± 0.6	$) \times 10^{-4}$	
	$\gamma 2\pi^+ 2\pi^- \rho \overline{ ho}$	(4	± 6	$) \times 10^{-5}$	
Γ_{77}	γ 2 K^+ 2 K^-	(2.0	± 2.0	$) \times 10^{-5}$	
Γ ₇₈	$\gamma \eta'$ (958)	< 1.9		$\times 10^{-6}$	CL=90%
Γ_{79}	$\gamma \eta$	< 1.0		$\times 10^{-6}$	CL=90%
Γ ₈₀	$\gamma f_0(980)$	< 3		$\times10^{-5}$	CL=90%
Γ ₈₁	$\gamma f_2'(1525)$	(3.8	± 0.9	$) \times 10^{-5}$	
Γ ₈₂	$\gamma f_2(1270)$	(1.01		$) \times 10^{-4}$	
Γ ₈₃	$\gamma \eta (1405)$	< 8.2		$\times 10^{-5}$	CL=90%
Γ ₈₄	$\gamma f_0(1500)$	< 1.5		$\times10^{-5}$	CL=90%
Γ ₈₅	$\gamma f_0(1710)$	< 2.6		$\times 10^{-4}$	CL=90%
_	$\gamma f_0(1710) \rightarrow \gamma K^+ K^-$	< 7		$\times 10^{-6}$	CL=90%
Γ ₈₇	0 0	< 1.4		$\times 10^{-6}$	CL=90%
Γ ₈₈	$\gamma f_0(1710) \rightarrow \gamma \eta \eta$	< 1.8		$\times10^{-6}$	CL=90%
Γ ₈₉	$\gamma f_4(2050)$	< 5.3		$\times10^{-5}$	CL=90%
33	, ,				

Γ ₉₀	$\gamma f_0(2200) \rightarrow \gamma K^+ K^-$	<	2	\times 10 ⁻⁴	CL=90%
Γ_{91}	$\gamma f_J(2220) \rightarrow \gamma K^+ K^-$	<	8	\times 10 ⁻⁷	CL=90%
Γ_{92}	$\gamma f_J(2220) \rightarrow \gamma \pi^+ \pi^-$	<	6	\times 10 ⁻⁷	CL=90%
Γ ₉₃	$\gamma f_J(2220) \rightarrow \gamma p \overline{p}$	<	1.1	\times 10 ⁻⁶	CL=90%
Γ ₉₄	$\gamma \eta$ (2225) $ ightarrow \gamma \phi \phi$	<	3	$\times 10^{-3}$	CL=90%
Γ_{95}	$\gamma \eta_c(1S)$	<	5.7	\times 10 ⁻⁵	CL=90%
Γ ₉₆	$\gamma \chi_{c0}$	<	6.5	\times 10 ⁻⁴	CL=90%
Γ ₉₇	$\gamma \chi_{c1}$	<	2.3	\times 10 ⁻⁵	CL=90%
Γ ₉₈	$\gamma \chi_{c2}$	<	7.6	\times 10 ⁻⁶	CL=90%
Γ ₉₉	$\gamma X(3872) \rightarrow \pi^+ \pi^- J/\psi$	<	1.6	\times 10 ⁻⁶	CL=90%
Γ_{100}	$\gamma X(3872) \rightarrow \pi^+ \pi^- \pi^0 J/\psi$	<	2.8	\times 10 ⁻⁶	CL=90%
Γ_{101}	$\gamma X(3915) \rightarrow \omega J/\psi$	<	3.0	\times 10 ⁻⁶	CL=90%
Γ_{102}	$\gamma X(4140) \rightarrow \phi J/\psi$	<	2.2	\times 10 ⁻⁶	CL=90%
Γ_{103}	$\gamma X_{\underline{}}$	[c]	4.5	\times 10 ⁻⁶	CL=90%
Γ_{104}	$\gamma X \overline{X} (m_X < 3.1 \text{ GeV})$	[d]	1	$\times 10^{-3}$	CL=90%
Γ_{105}	$\gamma X \overline{X} (m_X < 4.5 \text{ GeV})$	[e]	2.4	\times 10 ⁻⁴	CL=90%
Γ_{106}	$\gamma X \rightarrow \gamma + \geq 4 \text{ prongs}$	[f]	1.78	\times 10 ⁻⁴	CL=95%
Γ_{107}	$\gamma a_1^0 \rightarrow \gamma \mu^+ \mu^-$	[g] <	9	\times 10 ⁻⁶	CL=90%
Γ_{108}	$\gamma a_1^0 \rightarrow \gamma \tau^+ \tau^-$	[a]	1.30	$\times 10^{-4}$	CL=90%
Γ_{109}	$\gamma a_1^{ar{0}} ightarrow \ \gamma g g$	[h]	1	%	CL=90%
Γ_{110}	$\gamma a_1^{ar{0}} ightarrow \gamma s \overline{s}$	[h]	1	\times 10 ⁻³	CL=90%

Lepton Family number (LF) violating modes

$$\Gamma_{111}$$
 $\mu^{\pm}\tau^{\mp}$ LF < 6.0 \times 10⁻⁶ CL=95%

Other decays

 Γ_{112} invisible < 3.0 $\times\,10^{-4}$ CL=90%

- [a] $2m_{\tau} < M(\tau^+ \tau^-) < 9.2 \text{ GeV}$
- [b] 2 GeV $< m_{K^+K^-} < 3$ GeV
- [c] X = scalar with m < 8.0 GeV
- [d] $X\overline{X} = \text{vectors with } m < 3.1 \text{ GeV}$
- [e] X and $\overline{X}=$ zero spin with m< 4.5 GeV
- $[f] 1.5 \text{ GeV} < m_X < 5.0 \text{ GeV}$
- [g] 201 MeV < M($\mu^+\mu^-$) < 3565 MeV
- [h] 0.5 GeV $< m_X <$ 9.0 GeV, where m_X is the invariant mass of the hadronic final state.

$\Upsilon(1S) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

HTTP://PDG.LBL.GOV

Page 4

$\Gamma(\text{hadrons}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_0\Gamma_2/\Gamma$

VALUE (keV)	DOCUMENT ID		TECN	COMMENT
1.240 ± 0.016 OUR AVERAGE				
$1.252 \pm 0.004 \pm 0.019$				$9.5 e^+e^- \rightarrow \text{hadrons}$
$1.187 \pm 0.023 \pm 0.031$				$e^+e^- ightarrow hadrons$
$1.23 \pm 0.02 \pm 0.05$				$e^+e^- ightarrow $ hadrons
$1.37 \pm 0.06 \pm 0.09$				$e^+e^- ightarrow hadrons$
$1.23 \pm 0.08 \pm 0.04$				$e^+e^- ightarrow hadrons$
$1.13 \pm 0.07 \pm 0.11$				$e^+e^- ightarrow $ hadrons
1.09 ± 0.25	⁶ BOCK	80	CNTR	$e^+e^- ightarrow hadrons$
1.35 ± 0.14	⁷ BERGER	79	PLUT	$e^+e^- o$ hadrons

⁵ Radiative corrections evaluated following KURAEV 85.

$\Upsilon(1S)$ PARTIAL WIDTHS

 $\Gamma(e^+e^-)$

DOCUMENT ID

VALUE (keV)

1.340±0.018 OUR EVALUATION

$\Upsilon(1S)$ BRANCHING RATIOS

 $\Gamma(au^+ au^-)/\Gamma_{\mathsf{total}}$

 Γ_1/Γ

 Γ_2/Γ

Created: 5/30/2017 17:21

 Γ_2

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
2.60±0.10 OUR AV	/ERAGE				
$2.53\!\pm\!0.13\!\pm\!0.05$	60k	⁸ BESSON	07	CLEO	$e^+e^- \rightarrow \Upsilon(1S) \rightarrow \tau^+\tau^-$
$2.61\!\pm\!0.12\!+\!0.09 \\ -0.13$	25k	CINABRO	94 B	CLE2	$e^+e^- \rightarrow \tau^+\tau^-$
$2.7 \pm 0.4 \pm 0.2$		⁹ ALBRECHT			$\Upsilon(2S) ightarrow \ \pi^+ \pi^- au^+ au^-$
$3.4 \pm 0.4 \pm 0.4$		GILES	83	CLEO	$e^+e^- ightarrow \ au^+ au^-$

⁸ BESSON 07 reports $[\Gamma(\Upsilon(1S) \to \tau^+ \tau^-)/\Gamma_{\text{total}}] / [B(\Upsilon(1S) \to \mu^+ \mu^-)] = 1.02 \pm 0.02 \pm 0.05$ which we multiply by our best value $B(\Upsilon(1S) \to \mu^+ \mu^-) = (2.48 \pm 0.05) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(e^+e^-)/\Gamma_{\mathsf{total}}$

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
2.38±0.11 OUR AVE	RAGE				
$2.29\!\pm\!0.08\!\pm\!0.11$		ALEXANDER	98	CLE2	$\Upsilon(2S) \rightarrow \pi^+\pi^-e^+e^-$
$2.42\!\pm\!0.14\!\pm\!0.14$	307	ALBRECHT	87	ARG	$\Upsilon(2S) \rightarrow \pi^+\pi^-e^+e^-$
$2.8 \pm 0.3 \pm 0.2$	826	BESSON			$\Upsilon(2S) \rightarrow \pi^+\pi^-e^+e^-$
5.1 ± 3.0		BERGER	80C	PLUT	$e^+e^- ightarrow e^+e^-$

⁶ Radiative corrections reevaluated by BUCHMUELLER 88 following KURAEV 85.

⁷ Radiative corrections reevaluated by ALEXANDER 89 using B($\mu\mu$) = 0.026.

⁹ Using B($\Upsilon(1S) \rightarrow ee$) = B($\Upsilon(1S) \rightarrow \mu\mu$) = 0.0256; not used for width evaluations.

$\Gamma(\mu^+\mu^-)/\Gamma_{ ext{total}}$					Г ₃ /Г
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.0248±0.0005 OUR AV	ERAGE				
$0.0249 \pm 0.0002 \pm 0.0007$	345k	ADAMS	05	CLEO	$e^+e^- ightarrow \ \mu^+\mu^-$
$0.0249 \pm 0.0008 \pm 0.0013$		ALEXANDER	98	CLE2	$\Upsilon(2S) ightarrow$
					$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$
$0.0212 \pm 0.0020 \pm 0.0010$		¹⁰ BARU	92	MD1	$e^+e^- ightarrow~\mu^+\mu^-$
$0.0231 \pm 0.0012 \pm 0.0010$		¹⁰ KOBEL	92	CBAL	$e^+e^- ightarrow \ \mu^+\mu^-$
$0.0252 \pm 0.0007 \pm 0.0007$		CHEN	89 B	CLEO	$e^+e^- ightarrow \ \mu^+\mu^-$
$0.0261 \!\pm\! 0.0009 \!\pm\! 0.0011$		KAARSBERG	89	CSB2	$e^+e^- ightarrow \mu^+\mu^-$
$0.0230 \pm 0.0025 \pm 0.0013$	86	ALBRECHT	87	ARG	$\Upsilon(2S) ightarrow$
					$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$
$0.029 \pm 0.003 \pm 0.002$	864	BESSON	84	CLEO	$\Upsilon(2S) ightarrow$
					$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$
$0.027 \pm 0.003 \pm 0.003$		ANDREWS	83	CLEO	$e^+e^- ightarrow \mu^+\mu^-$
$0.032 \pm 0.013 \pm 0.003$		ALBRECHT	82	DASP	$e^+e^- ightarrow~\mu^+\mu^-$
$0.038 \ \pm 0.015 \ \pm 0.002$		NICZYPORUK	82	LENA	$\mathrm{e^+e^-} ightarrow \; \mu^+\mu^-$
$0.014 \begin{array}{c} +0.034 \\ -0.014 \end{array}$		воск	80	CNTR	$e^+e^- \rightarrow \mu^+\mu^-$
0.022 ± 0.020		BERGER	79	PLUT	$e^+e^- ightarrow \mu^+\mu^-$

 $^{^{10}}$ Taking into account interference between the resonance and continuum.

$\Gamma(\tau^+\tau^-)/\Gamma(\mu^+\mu^-)$	⁻)					Γ_1/Γ_3
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
1.008±0.023 OUR A	/ERAGE					
$1.005\!\pm\!0.013\!\pm\!0.022$	0.7M	¹¹ DEL-AMO-SA	10c	BABR	$\Upsilon(3S) ightarrow$	$\pi^+\pi^- \Upsilon(1S)$
$1.02 \pm 0.02 \pm 0.05$	60k	BESSON	07	CLEO	$e^+e^- \rightarrow$	$\Upsilon(1S)$
11						

 11 Allows any number of extra photons with total energy < 500 MeV.

 Γ (ggg)/ Γ total Γ 4/ Γ VALUE (units 10⁻²) EVTS DOCUMENT ID TECN COMMENT 81.7±0.7 20M 12 BESSON 06A CLEO Υ (1S) → hadrons

 $\Gamma(\gamma gg)/\Gamma_{total}$ VALUE (units 10⁻²)

2.20±0.60 Γ_{5}/Γ DOCUMENT ID

TECN

COMMENT

γ + hadrons

 $\Gamma(\gamma gg)/\Gamma(ggg)$ VALUE (units 10⁻²)

2.70±0.01±0.27

EVTS

DOCUMENT ID

TECN

COMMENT

TECN

γ(1S) \rightarrow (γ +) hadrons

 $^{^{12}}$ Calculated using the value $\Gamma(\gamma g g)/\Gamma(g g g)=(2.70\pm0.01\pm0.13\pm0.24)\%$ from BESSON 06A and PDG 08 values of B($\mu^+\mu^-$) = (2.48 \pm 0.05)% and R_{hadrons} = 3.51. The statistical error is negligible and the systematic error is partially correlated with that of $\Gamma(\gamma g g)/\Gamma_{\text{total}}$ measurement of BESSON 06A.

 $^{^{13}}$ Calculated using BESSON 06A values of $\Gamma(\gamma g \, g)/\Gamma(g \, g \, g) = (2.70 \pm 0.01 \pm 0.13 \pm 0.24)\%$ and $\Gamma(g \, g \, g)/\Gamma_{\text{total}}$. The statistical error is negligible and the systematic error is partially correlated with that of $\Gamma(g \, g \, g)/\Gamma_{\text{total}}$ measurement of BESSON 06A.

$\Gamma(\eta'(958))$ anythin	$_{ m ng})/\Gamma_{ m total}$					Γ ₆ /Γ
VALUE	<u> </u>	DOCUMENT ID		TECN	COMMENT	
0.0294±0.0024 OU				C1 = 2	00(1.0)	,
$0.030 \pm 0.002 \pm 0.0$		AQUINES			, ,	η' anything
$0.028 \pm 0.004 \pm 0.0$	002	ARTUSO	03	CLE2	$I(15) \rightarrow$	η' anything
$\Gamma(J/\psi(1S)$ anyth	$\log)/\Gamma_{ m total}$					Γ_7/Γ
VALUE (units 10^{-4})		DOCUMENT IL			COMMEN	T
5.4 ±0.4 OUR F						
5.4 ±0.4 OUR A					1	
$5.25 \pm 0.13 \pm 0.25$	3k	SHEN			. e ⁺ e ⁻ -	, ,
	730	BRIERE	04	CLEC) e e - \ + -	$\rightarrow J/\psi X$ $+ - \checkmark$
11 ± 4 ± 2 • • • We do not us	م دام المسام	14 FULTON				\rightarrow μ μ λ
	_	_				1
<6.8	90	ALBRECHT	92	J ARG	$e^+e^ \mu^+\mu^-$	
<17	90	MASCHMAN	NN 90	CBAI	_ e ^{+'} e ^{-'} -	→ hadrons
<200	90	NICZYPORU	JK 83	LEN/	١.	
14 Using B $((J/\psi)$ -	$\rightarrow \mu^+\mu^-) =$	$(6.9 \pm 0.9)\%$.				
$\Gammaig(J/\psi(1S)\eta_cig)/\Gamma$	total					Г ₈ /Г
VALUE		DOCUMENT ID		TECN	COMMENT	-,
<2.2 × 10 ⁻⁶	90				$e^+e^- \rightarrow$	
		171110		DELL		$J/\psi X$
$\Gamma(J/\psi(1S)\chi_{c0})/$	Γ _{total}					7 ₉ /۲
	<u>CL%</u>	DOCUMENT ID				
$<3.4\times10^{-6}$	90	YANG	14	BELL	$e^+e^- \rightarrow$	$J/\psi X$
$\Gamma(J/\psi(1S)\chi_{c1})/$	/ _{Ctotal}					Γ ₁₀ /Γ
VALUE (units 10^{-6})		DOCUMENT ID		TECN	COMMENT	,
3.90±1.21±0.23	20	YANG			$e^+e^- \rightarrow$	
3.30 ± 1.21 ± 0.23	20	TANG	17	DELL	e e →	$3/\psi \lambda$
$\Gamma(J/\psi(1S)\chi_{c2})/$	$\Gamma_{ ext{total}}$					Γ_{11}/Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	
$<1.4 \times 10^{-6}$	90	YANG	14	BELL	$e^+e^- \rightarrow$	$J/\psi X$
$\Gamma(J/\psi(1S)\eta_c(2S))$	S))/[Γ ₁₂ /Γ
*	/// total <u>CL%</u> _	DOCUMENT ID		TECN	COMMENT	-
<u>VALUE</u> <2.2 × 10 ^{−6}	90	YANG	14	RFII	$e^+e^- \rightarrow$	1/2/2 X
ZIZ X 10	90	IANO	17	DELL	e e →	$J/\psi X$
$\Gamma(J/\psi(1S)X(394))$	40))/Γ _{total}					Γ ₁₃ /Γ
VALUE <5.4 × 10 ^{−6}	<u>CL%</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	
$< 5.4 \times 10^{-6}$	90	YANG	14	BELL	$e^+e^- \rightarrow$	$J/\psi X$
$\Gamma(J/\psi(1S)X(410))$	60))/F _{total}					Γ ₁₄ /Γ
		DOCUMENT ID		TECN	COMMENT	
VALUE <5.4 × 10⁻⁶	90	YANG				
40 × = v	30				2 0 /	5/ 7 /

```
\Gamma(X(4350)) anything, X \to J/\psi(1S)\phi)/\Gamma_{\text{total}}
                                                                                                               \Gamma_{15}/\Gamma
                                                                          TECN
 < 8.1 \times 10^{-6}
                                                                                     \Upsilon(1S) \rightarrow J/\psi K^+ K^- X
                               90
                                                                          BELL
                                              SHEN
                                                                   16
\Gamma(X(3900)^{\pm} \text{ anything, } X \to J/\psi(1S)\pi^{\pm})/\Gamma_{\text{total}}
                                                                                                               \Gamma_{16}/\Gamma
                                  CL%
                                                 DOCUMENT ID
                                                                             TECN
 <1.3 \times 10^{-5}
                                                 SHEN
                                                                                        \Upsilon(1S) \rightarrow J/\psi \pi^{\pm} X
                                  90
                                                                             BELL
                                                                      16
\Gamma(X(4200)^{\pm} \text{ anything, } X \to J/\psi(1S)\pi^{\pm})/\Gamma_{\text{total}}
<6.0 \times 10^{-5}
                                                                                        \Upsilon(1S) \rightarrow J/\psi \pi^{\pm} X
                                  90
                                                 SHEN
                                                                             BELL
\Gamma(X(4430)^{\pm} \text{ anything, } X \to J/\psi(1S)\pi^{\pm})/\Gamma_{\text{total}}
                                                                                                               \Gamma_{18}/\Gamma
                                  CL%
 <4.9 \times 10^{-5}
                                                                                        \Upsilon(1S) \rightarrow J/\psi \pi^{\pm} X
                                  90
                                                 SHEN
                                                                      16
                                                                             BELL
\Gamma(X_{cs}^{\pm}) anything, X \to J/\psi K^{\pm}/\Gamma_{total}
                                                                                                               \Gamma_{19}/\Gamma
                                                 DOCUMENT ID
                                                                             TECN COMMENT
< 5.7 \times 10^{-6}
                                                                             BELL \Upsilon(1S) \rightarrow J/\psi K^- X
                                                 SHEN
\Gamma(X(3872) \text{ anything, } X \to J/\psi(1S)\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                               \Gamma_{20}/\Gamma
<9.5 \times 10^{-6}
                                                                                      \Upsilon(1S) \rightarrow J/\psi \pi^+ \pi^- X
                                                                          BELL
                               90
                                              SHEN
                                                                   16
\Gamma(X(4260) \text{ anything, } X \to J/\psi(1S)\pi^+\pi^-)/\Gamma_{\text{total}}
                               CL%
                                              DOCUMENT ID
 < 3.8 \times 10^{-5}
                                                                                     \Upsilon(1S) \rightarrow J/\psi \pi^+ \pi^- X
                               90
                                              SHEN
                                                                          BELL
\Gamma(X(4260) \text{ anything, } X \to J/\psi(1S)K^+K^-)/\Gamma_{\text{total}}
                                                                                                               \Gamma_{22}/\Gamma
                               CL%
                                              DOCUMENT ID
                                                                                     COMMENT
 < 7.5 \times 10^{-6}
                                                                                      \Upsilon(1S) \rightarrow J/\psi K^+ K^- X
                               90
                                              SHEN
                                                                          BELL
\Gamma(X(4140) \text{ anything, } X \to J/\psi(1S)\phi)/\Gamma_{\text{total}}
                               CL%
                                              <u>DOCUMENT</u> ID
                                                                          TECN
                                                                                     \Upsilon(1S) \rightarrow J/\psi K^+ K^- X
 < 5.2 \times 10^{-6}
                               90
                                              SHEN
                                                                   16
                                                                          BELL
\Gamma(\chi_{c0} \text{ anything})/\Gamma(J/\psi(1S) \text{ anything})
                                                                                                             \Gamma_{24}/\Gamma_{7}
<u>VAL</u>UE
                                                 DOCUMENT ID
                                  CL%
                                                                             TECN COMMENT
                                                                             CLEO e^+e^- \rightarrow J/\psi X
 <7.4
                                  90
                                                 BRIERE
                                                                      04
\Gamma(\chi_{c1} \text{ anything})/\Gamma_{total}
                                                                                                               \Gamma_{25}/\Gamma
VALUE (units 10<sup>-4</sup>)
                                                 DOCUMENT ID
                                                                             TECN
                                                                                        COMMENT
1.90 ± 0.35 OUR FIT
1.90 \pm 0.43 \pm 0.14
                                   215
                                                 JIA
                                                                             BELL \Upsilon(1S) \rightarrow \gamma J/\psi(1S)
\Gamma(\chi_{c1} \text{ anything})/\Gamma(J/\psi(1S) \text{ anything})
                                                                                                             \Gamma_{25}/\Gamma_{7}
                                                 DOCUMENT ID
                                                                            TECN COMMENT
0.35±0.07 OUR FIT
                                                                      04 CLEO e^+e^- \rightarrow J/\psi X
0.35\pm0.08\pm0.06
                                                 BRIERE
                             52 \pm 12
HTTP://PDG.LBL.GOV
                                                     Page 8
                                                                              Created: 5/30/2017 17:21
```

$\Gamma(\chi_{c2} \text{ anything})$	$^{\prime}\Gamma(J/\psi(1S))$) anything)				Γ_{26}/Γ_{7}
VALUE	EVTS	DOCUMENT ID		<u>TECN</u>	COMMENT	
$0.52\pm0.12\pm0.09$	47 ± 11	BRIERE	04	CLEO	$e^+e^- \rightarrow J/\eta$	b X
$\Gamma(\psi(2S))$ anything	$g)/\Gamma_{total}$					Γ_{27}/Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
1.23±0.17±0.11	215	SHEN	16	BELL	$e^+e^- \rightarrow \psi$	2 <i>S</i>) <i>X</i>
$\Gamma(\psi(2S))$ anything		(15) anything) DOCUMENT ID		TECN	COMMENT	Γ_{27}/Γ_7
0.41±0.11±0.08		BRIERE			$e^+e^- \rightarrow J/v$	$\sqrt{\pi + \pi - X}$
$\Gamma(\psi(2S)\eta_c)/\Gamma_{\rm tot}$	al				, ,	Γ ₂₈ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID				
$< 3.6 \times 10^{-6}$	90	YANG	14	BELL	$e^+e^- \rightarrow \psi$	2 <i>S</i>) <i>X</i>
$\Gamma(\psi(2S)\chi_{c0})/\Gamma_{tc}$	otal					Γ_{29}/Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$<6.5 \times 10^{-6}$	90	YANG	14	BELL	$e^+e^- \rightarrow \psi$	2 <i>S</i>) <i>X</i>
$\Gamma(\psi(2S)\chi_{c1})/\Gamma_{tc}$						Γ_{30}/Γ
VALUE	<u>CL%</u>	DOCUMENT ID			COMMENT	
$<4.5\times10^{-6}$	90	YANG	14	BELL	$e^+e^- \rightarrow \psi$ (25) X
$\Gamma(\psi(2S)\chi_{c2})/\Gamma_{tc}$						Γ ₃₁ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID				
$<2.1\times10^{-6}$	90	YANG	14	BELL	$e^+e^- o \psi$ (25) X
$\Gamma(\psi(2S)\eta_c(2S))$	/Γ _{total}					Γ_{32}/Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$<3.2\times10^{-6}$	90	YANG	14	BELL	$e^+e^- o \psi$ (2S) X
$\Gamma(\psi(2S)X(3940)$	$)/\Gamma_{ ext{total}}$					Γ ₃₃ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$< 2.9 \times 10^{-6}$	90	YANG	14	BELL	$e^+e^- \rightarrow \psi$	2 <i>S</i>) <i>X</i>
Γ(ψ(2 <i>S</i>) <i>X</i> (4160)						Γ ₃₄ /Γ
<u>VALUE</u> <2.9 × 10 ^{−6}	<u>CL%</u>	DOCUMENT ID		<u> </u>	<u>COMMENT</u>	200)) (
<2.9 × 10 ⁻⁰	90	YANG	14	BELL	$e^+e^- o \psi$ (25) X
$\Gamma(X(4260))$ anyth						Γ ₃₅ /Γ
VALUE <7.9 × 10 ^{−5}	<u>CL%</u>	DOCUMENT ID	<u>T</u>	ECN C	OMMENT	
$< 7.9 \times 10^{-5}$	90	SHEN 1	6 B	SELL 7	$\psi(1S) \rightarrow \psi(2S)$	$\pi^+\pi^-X$
$\Gamma(X(4360))$ anyth						Г ₃₆ /Г
<i>VALUE</i> <5.2 × 10 ^{−5}	<u>CL%</u>	DUCUMENT ID		ECIV C	OMMEN I	<u> </u>
<5.2 × 10 °	90	SHEN 1	о В	ELL 7	$\psi(15) \rightarrow \psi(25)$	$(\pi'\pi X)$

Γ(X(4660) anythi		$\psi(2S)\pi^+\pi^-)$		ECN C	OMMENT	Γ ₃₇ /Γ
<2.2 × 10 ⁻⁵	90	SHEN			$\gamma(1S) \rightarrow \psi(2S)$	$(\pi^+\pi^-X)$
$\Gamma(X(4050)^{\pm} \text{ anyt})$	hing, X →	$\psi(2S)\pi^{\pm})/$	Γ _{total}			Γ ₃₈ /Γ
VALUE	<u>CL%</u>	DOCUMENT	ID	TECN	COMMENT	
$< 8.8 \times 10^{-5}$	90	SHEN	16	BELL	$\Upsilon(1S) \rightarrow \psi$	$(2S)\pi^{\pm}X$
$\Gamma(X(4430)^{\pm} \text{ anyt})$				TECN	COMMENT	Γ ₃₉ /Γ
<u>VALUE</u> <6.7 × 10 ^{−5}	90	<u>DOCUMENT</u>			$rac{ extit{COMMENT}}{ au(1S) ightarrow \psi}$	(ac) ± v
	90	SHEN	16	BELL	$I(15) \rightarrow \psi$	$(25)\pi^{\perp}X$
$\Gamma(ho\pi)/\Gamma_{total}$						Γ_{40}/Γ
<i>VALUE</i> (units 10^{-6})	CL%	<u>DOCUMENT</u>	ID			
<3.68	90	SHEN	13	BELL	$\Upsilon(1S) ightarrow \pi^{-1}$	$+_{\pi}{\pi} 0$
• • • We do not use	the following	ng data for aver	ages, fits,	limits,	etc. • • •	
$< 1 \times 10^3$	90	BLINOV	90	MD1	$\gamma(1S) ightarrow ho^0$	0_{π} 0
$<$ 2 \times 10 ²	90	FULTON	90 B		$\gamma(1S) \rightarrow \rho^0$	0_{π} 0
$<2.1 \times 10^3$	90	NICZYPOI	RUK 83	LENA	$\Upsilon(1S) \rightarrow \ ho^{0}$	0_{π} 0
$\Gamma(\omega\pi^0)/\Gamma_{ m total}$						Γ_{41}/Γ
VALUE (units 10^{-6})	CL%	DOCUMENT I	D	TECN	COMMENT	
<3.90	90	SHEN	13	BELL	$\Upsilon(1S) \rightarrow \pi^+$	$\pi^-\pi^0\pi^0$
$\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$						Γ_{42}/Γ
VALUE (units 10^{-4})	CL%	DOCUMENT	ID	TECN	COMMENT	
<5	90	BARU	92	MD1	$\Upsilon(1S) \rightarrow \pi$	$+_{\pi}$
$\Gamma(K^+K^-)/\Gamma_{\text{total}}$						Γ ₄₃ /Γ
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT	ID	TECN	COMMENT	
<5	90	BARU	92	MD1	$\Upsilon(1S) ightarrow K$	+ K-
$\Gamma(p\overline{p})/\Gamma_{\text{total}}$						Γ ₄₄ /Γ
VALUE (units 10^{-4})	<u>CL%</u>	15 BARU	ID	TECN	COMMENT	
			96	MD1	$\Upsilon(1S) \rightarrow p_1$	p
¹⁵ Supersedes BARI	J 92 in this	node.				
$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm tot}$						Γ ₄₅ /Γ
VALUE (units 10^{-6})	CL% EV					
2.14±0.72±0.34 • • • We do not use					LL $\varUpsilon(1S) ightarrow$ etc. $ullet$ $ullet$	$\pi^{+}\pi^{-}\pi^{0}$
<18.4	90				E_2 $e^+e^- \rightarrow$	hadrons
$\Gamma(\phi K^+ K^-)/\Gamma_{\text{tot}}$						Γ ₄₆ /Γ
VALUE (units 10^{-6})	EVTS	DOCUMENT			COMMENT	
2.36±0.37±0.29	56	SHEN	12A	BELL	$\Upsilon(1S) ightarrow 2($	(K ⁺ K ⁻)
HTTP://PDG.LB	L.GOV	Page 1	0	Crea	ted: 5/30/20	17 17:21

$\Gamma(\omega\pi^+\pi^-)/\Gamma_{\rm tot}$	al	Γ ₄₇ /Γ
$VALUE$ (units 10^{-6})	EVTS	DOCUMENT ID TECN COMMENT
$4.46\pm0.67\pm0.72$	64	SHEN 12A BELL $\Upsilon(1S) o 2(\pi^+\pi^-)\pi^0$
Γ(K*(892) ⁰ K ⁻ 7	τ ⁺ + c.c.)/l	Γ_{total} Γ_{48}/Γ
$VALUE$ (units 10^{-6})	EVTS	DOCUMENT ID TECN COMMENT
$4.42\pm0.50\pm0.58$	173	SHEN 12A BELL $\Upsilon(1S) \rightarrow K^+ K^- \pi^+ \pi^-$
$\Gamma(\phi f_2'(1525))/\Gamma_2$	total	Γ ₄₉ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID TECN COMMENT
<1.63	90	SHEN 12A BELL $\Upsilon(1S) o 2(K^+K^-)$
$\Gamma(\omega f_2(1270))/\Gamma_t$		Γ ₅₀ /Γ
$VALUE$ (units 10^{-6})	<u>CL%</u>	DOCUMENT ID TECN COMMENT
<1.79	90	SHEN 12A BELL $r(1S) \rightarrow 2(\pi^+\pi^-)\pi^0$
$\Gamma(\rho(770) a_2(1320)$)))/Γ _{total}	Γ ₅₁ /Γ
$VALUE$ (units 10^{-6})	<u>CL%</u>	DOCUMENT ID TECN COMMENT
<2.24	90	SHEN 12A BELL $r(1S) \rightarrow 2(\pi^+\pi^-)\pi^0$
$\Gamma(K^*(892)^0\overline{K}_2^*(1$	L430) ⁰ + c.d	c.)/ Γ_{total} Γ_{52}/Γ
$VALUE$ (units 10^{-6})	EVTS	DOCUMENT ID TECN COMMENT
$3.02\pm0.68\pm0.34$	42	SHEN 12A BELL $\Upsilon(1S) \rightarrow K^+ K^- \pi^+ \pi^-$
$\Gamma(K_1(1270)^{\pm}K^{\mp}$	•	Γ ₅₃ /Γ
<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID TECN COMMENT
<2.41	90	SHEN 12A BELL $\Upsilon(1S) \rightarrow K^+K^-\pi^+\pi^-$
$\Gamma(K_1(1400)^{\pm}K^{\mp}$)/F _{total}	Γ ₅₄ /Γ
$VALUE$ (units 10^{-6})	EVTS	DOCUMENT ID TECN COMMENT
$1.02 \pm 0.35 \pm 0.22$	24	SHEN 12A BELL $\Upsilon(1S) \rightarrow K^+ K^- \pi^+ \pi^-$
$\Gamma(b_1(1235)^{\pm}\pi^{\mp})$	$)/\Gamma_{ ext{total}}$	Γ ₅₅ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID TECN COMMENT
<1.25	90	SHEN 12A BELL $\Upsilon(1S) \rightarrow 2(\pi^+\pi^-)\pi^0$
$\Gamma(\pi^+\pi^-\pi^0\pi^0)/$	Γ _{total}	Γ ₅₆ /Γ
$VALUE$ (units 10^{-6})	EVTS	DOCUMENT ID TECN COMMENT
	143 ± 22	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\Gamma(K_S^0K^+\pi^-+c)$.c.)/Γ _{total}	Γ ₅₇ /Γ
$VALUE$ (units 10^{-6})	CL% EVT.	
1.59±0.33±0.18		
		ng data for averages, fits, limits, etc. • • •
<3.4	90	16 DOBBS 12A $\gamma(1S) \rightarrow \kappa_S^0 \kappa^- \pi^+$
Obtained by ana	alyzing CLEO	III data but not authored by the CLEO Collaboration.
HTTP://PDG.LI	BL.GOV	Page 11 Created: 5/30/2017 17:21

$\Gamma(K^*(892)^0\overline{K}^0+$	- c.c.)/Γ _{tot}	al				Г ₅₈ /Г
VALUE (units 10^{-6})	EVTS	DOCUMENT IL)	TECN	COMMENT	
$2.92 \pm 0.85 \pm 0.37$	16 ± 5	SHEN	13	BELL	$\Upsilon(1S) ightarrow$	$\kappa_S^0 \kappa^- \pi^+$
Γ(K*(892)-K+	+ c.c.)/Γ _t	otal				Γ ₅₉ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT IL)	TECN	COMMENT	
<1.11	90	<u>DOCUMENT IE</u> SHEN	13	BELL	$\Upsilon(1S) ightarrow$	$\kappa_S^0 \kappa^- \pi^+$
$\Gamma(D^*(2010)^{\pm} \text{ and }$	ything)/ Γ_{t}	otal				Γ ₆₀ /Γ
VALUE (units 10^{-3})	CL% EVTS	DOCUMENT IL) -	TECN	COMMENT	
		17 AUBERT				$\tau^+\pi^-\gamma_{(1S)}$
• • • We do not us						,
<19	00	¹⁸ ALBRECHT	92J A	ARG	$e^+e^- ightarrow I$	$^{0}\pi^{\pm}X$
$^{17} { m For}\; { m x}_p > { m 0.1.}$						
¹⁸ For $x_p > 0.2$.						
i or xp > o.e.						
$\Gamma(\overline{^2H} \text{ anything})$	/Γ _{total}					Γ ₆₁ /Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT IL)	TECN	COMMENT	
2.85±0.25 OUR AV						
$2.81\!\pm\!0.49\!+\!0.20\\-0.24$		LEES			$e^+e^- \rightarrow$	
$2.86\!\pm\!0.19\!\pm\!0.21$	455	ASNER	07	CLEO	$e^+e^- \rightarrow$	$\overline{^{2}H}$ X
Γ(Sum of 100 exc	lusive mod	es)/ Γ_{total}				Γ ₆₂ /Γ
VALUE (units 10 ⁻²) 1.200±0.017		DOCUMENT IL)	СОММЕ	ENT	,
1.200±0.017		19,20 DOBBS	12A	$\gamma(1S)$	\rightarrow hadrons	
¹⁹ DOBBS 12A pro						
modes of four to	ten pions,	kaons, or protons.				
²⁰ Obtained by ana	lyzing CLEC	III data but not	authore	d by the	CLEO Colla	aboration.
$\Gamma(ggg, \gamma gg \rightarrow$	\overline{d} anythin	σ)/Γ(σσσ. νσ	$\sigma \rightarrow a$	nvthin	σ)	
VALUE (units 10^{-5})	EVTS	DOCUMENT IL			COMMENT	
3.36±0.23±0.25	455	ASNER				$\overline{d}X$
						_
$\Gamma(\gamma\pi^+\pi^-)/\Gamma_{\text{tota}}$						Γ ₆₃ /Γ
$VALUE$ (units 10^{-5})		DOCUMENT IL				
6.3±1.2±1.3		²¹ ANASTASSO)V 99	CLE2	$e^+e^- \rightarrow$	hadrons
21 For $m_{\pi\pi}>$ 1 Ge	eV.					
$\Gamma(\gamma\pi^0\pi^0)/\Gamma_{ m total}$						Γ ₆₄ /Γ
VALUE (units 10^{-5})		DOCUMENT IL)	TECN	COMMENT	
1.7±0.6±0.3		22 ANASTASSO				
22 For $m_{\pi\pi}>1$ Ge	√					
$15\pi\pi$						

$\Gamma(\gamma\pi^0\eta)/\Gamma_{ m total}$					Γ ₆₅ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<2.4	90	²³ BESSON	07A	CLEO	$e^+e^- ightarrow~ \varUpsilon(1S)$
²³ BESSON 07A ob	tained this l	imit for 0.7 $< m_{\pi^0}$	$\eta < 3$	GeV.	
$\Gamma(\gamma K^+ K^-)/\Gamma_{\text{tot}}$ $(2 < m_{K^+ K^-})$	al (< 3 GeV)				Γ ₆₆ /Γ
VALUE (units 10^{-5})		DOCUMENT ID			
$1.14\pm0.08\pm0.10$	90	ATHAR	06	CLE3	$\Upsilon(1S) \rightarrow \gamma K^+ K^-$
$\Gamma(\gamma p \overline{p})/\Gamma_{ ext{total}} \ (2 < m_{p \overline{p}} <$					Γ ₆₇ /Γ
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT
<0.6	90	ATHAR	06	CLE3	$\Upsilon(1S) ightarrow \ \gamma p \overline{p}$
$\Gamma(\gamma 2h^+2h^-)/\Gamma_{tc}$					Γ ₆₈ /Γ
VALUE (units 10 ⁻⁴)		<u></u>		-	COMMENT
$7.0\pm1.1\pm1.0$	80 ± 12	FULTON	90 B	CLEO	$e^+e^- o hadrons$
$\Gamma(\gamma 3h^+3h^-)/\Gamma_{tc}$					Γ ₆₉ /Γ
<u>VALUE</u> (units 10 ⁻⁴)					<u>COMMENT</u>
5.4±1.5±1.3	39 ± 11	FULTON	90B	CLEO	$e^+e^- ightarrow hadrons$
$\Gamma(\gamma 4h^+4h^-)/\Gamma_{tc}$		DOCUMENT ID		TECH	Γ ₇₀ /Γ
<u>VALUE</u> (units 10 ⁻⁴)					COMMENT +
7.4±2.5±2.5	36 ± 12	FULTON	90B	CLEO	$e^+e^- ightarrow ext{hadrons}$
$\Gamma(\gamma \pi^+ \pi^- K^+ K^-)$		DOCUMENT ID		TECN	Γ ₇₁ /Γ
VALUE (units 10 ⁻⁴)		DOCUMENT ID			$e^+e^- \rightarrow \text{hadrons}$
2.9 \pm 0.7 \pm 0.6 $\Gamma(\gamma 2\pi^{+}2\pi^{-})/\Gamma_{to}$		FULTON	90B	CLEO	$e^+e^- ightarrow nadrons$
VALUE (units 10 ⁻⁴)		DOCUMENT ID		TECN	
2.5±0.7±0.5					$e^+e^- \rightarrow \text{ hadrons}$
		TOLTON	90 D	CLLO	e e → Hadrons
$\Gamma(\gamma 3\pi^+ 3\pi^-)/\Gamma_{ m to}$					Γ ₇₃ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
2.5±0.9±0.8	17 ± 5	FULTON	90 B	CLEO	$e^+e^- ightarrow $ hadrons
$\Gamma(\gamma 2\pi^+ 2\pi^- K^+)$	$(K^-)/\Gamma_{tota}$	l			Γ ₇₄ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
$2.4\pm0.9\pm0.8$	18 ± 7	FULTON	90 B	CLEO	$e^+e^- ightarrow hadrons$
$\Gamma(\gamma\pi^+\pi^-p\overline{p})/\Gamma$					Γ ₇₅ /Γ
VALUE (units 10^{-4})		DOCUMENT ID			·
1.5±0.5±0.3	22 ± 6	FULTON	90 B	CLEO	$e^+e^- o$ hadrons
HTTP://PDG.LE	BL.GOV	Page 13		Crea	ted: 5/30/2017 17:21

```
\Gamma(\gamma 2\pi^+ 2\pi^- p \overline{p})/\Gamma_{\text{total}}
                                                                                                                           \Gamma_{76}/\Gamma
VALUE (units 10^{-4})
0.4\pm0.4\pm0.4
                                    7 \pm 6
                                                                              90B CLEO e^+e^- \rightarrow hadrons
                                                       FULTON
\Gamma(\gamma 2K^+2K^-)/\Gamma_{\text{total}}
                                                                                                                           \Gamma_{77}/\Gamma
VALUE (units 10^{-4})
                                     EVTS
                                                                                       TECN
0.2 \pm 0.2
                                                                              90B CLEO
\Gamma(\gamma \eta'(958))/\Gamma_{\text{total}}
                                                                                                                           \Gamma_{78}/\Gamma
VALUE (units 10^{-6}) CL%
                                         DOCUMENT ID
                                                                                   COMMENT
                                                                                  \Upsilon(1S) \rightarrow \gamma \eta' \rightarrow \gamma \pi^+ \pi^- \eta, \gamma \rho
 < 1.9
                            90
                                         ATHAR
                                                               07A CLEO
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
                                                                                  \Upsilon(1S) \rightarrow \gamma \eta' \rightarrow \gamma \eta \pi^+ \pi^-
                                                               01B CLE2
 <16
                            90
                                         RICHICHI
\Gamma(\gamma\eta)/\Gamma_{\text{total}}
                                                                                                                           \Gamma_{79}/\Gamma
VALUE (units 10^{-6})
                                                   DOCUMENT ID
                                  CL%
                                                                                              \gamma(1S) \rightarrow \gamma \eta \rightarrow \gamma \gamma \gamma, \ \gamma \pi^+ \pi^- \pi^0, \ \gamma 3\pi^0
                                                                                  CLEO
                                  90
                                                   ATHAR
                                                                          07A
• • We do not use the following data for averages, fits, limits, etc.
 <21
                                                   MASEK
                                                                          02
                                                                                CLEO \Upsilon(1S) \rightarrow \gamma \eta
\Gamma(\gamma f_0(980))/\Gamma_{\text{total}}
                                                                                                                           \Gamma_{80}/\Gamma
VALUE (units 10^{-5})
 <3
                                      90
  <sup>24</sup> Assuming B(f_0(980) \rightarrow \pi\pi) = 1.
\Gamma(\gamma f_2'(1525))/\Gamma_{\text{total}}
                                                                                                                           \Gamma_{81}/\Gamma
VALUE (units 10^{-5}) CL\%
                                                        DOCUMENT ID
                                                                                       TECN COMMENT
     3.8 ± 0.9 OUR AVERAGE
                                      17\pm5 BESSON
                                                                               11 CLEO \Upsilon(1S) \rightarrow \kappa_S^0 \kappa_S^0
     4.0\pm 1.4\pm 0.1
     3.7^{+0.9}_{-0.7} \pm 0.8
                                                        ATHAR
                                                                                       CLE3 \Upsilon(1S) \rightarrow \gamma K^+ K^-
                                                                               06
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                               90B CLEO \Upsilon(1S) \rightarrow \gamma K^+ K^-
89 ARG \Upsilon(1S) \rightarrow \gamma K^+ K^-
                                                    <sup>26</sup> FULTON
                            90
 <14
                                                    <sup>26</sup> ALBRECHT
 <19.4
                            90
  ^{25} BESSON 11 reports (4.0 \pm 1.3 \pm 0.6) 	imes 10^{-5} from a measurement of [\Gamma(\varUpsilon(1S) 
ightarrow
     \gamma f_2'(1525))/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(f_2'(1525) \to \ K\overline{K})] \text{ assuming } \mathsf{B}(f_2'(1525) \to \ K\overline{K}) = (88.8 \pm 1.0)
     3.1) \times 10^{-2}, which we rescale to our best value B(f_2'(1525) \rightarrow K\overline{K}) = (88.7 \pm
     2.2) \times 10^{-2}. Our first error is their experiment's error and our second error is the
     systematic error from using our best value. The result also assumes B(K_S^0 	o \pi^+\pi^-)
     = (69.20 \pm 0.05)\% \text{ and } \mathsf{B}(f_2'(1525) \to \ \kappa \overline{\kappa}) = 4 \ \mathsf{B}(f_2'(1525) \to \ \kappa_S^0 \, \kappa_S^0).
  <sup>26</sup> Assuming B(f_2'(1525) \rightarrow K\overline{K}) = 0.71.
```

$\Gamma(\gamma f_2(1270))/\Gamma_{\text{total}}$						Γ ₈₂ /Γ
VALUE (units 10^{-5})		DOCUMENT IL)	TECN	COMMENT	
10.1±0.9 OUR AVER	AGE					
$10.5\!\pm\!1.6^{+1.9}_{-1.8}$		²⁷ BESSON	07A	CLE3	$\Upsilon(1S) \rightarrow \gamma \gamma$	$\pi^0 \pi^0$
$10.2\!\pm\!0.8\!\pm\!0.7$		ATHAR	06	CLE3	$\Upsilon(1S) \rightarrow \gamma \gamma$	$\pi^+\pi^-$
$8.1 \pm 2.3 {+2.9 \atop -2.7}$		²⁸ ANASTASSO	V 99	CLE2	$e^+e^- ightarrow$ ha	drons
• • • We do not use the	e followin	ng data for averag	es, fits,	limits,	etc. • • •	
<21	90	²⁸ FULTON				
<13		²⁸ ALBRECHT	89	ARG	$\Upsilon(1S) \rightarrow \gamma \gamma$	$\pi^+\pi^-$
<81	90	SCHMITT			$\Upsilon(1S) \rightarrow \gamma \Sigma$	
27 Using B($f_2(1270)$ – $(0.845 + 0.025 - 0.012)$ %.	$\rightarrow \pi^0 \pi^0$	$) = B(f_2(1270))$	$\rightarrow \pi \tau$	τ)/3 and	H B(f ₂ (1270) -	\rightarrow $\pi\pi) =$
²⁸ Using B($f_2(1270) \rightarrow$	$\pi\pi)=$	0.84.				
$\Gamma(\gamma\eta(1405))/\Gamma_{\text{total}}$						Γ ₈₃ /Γ
VALUE (units 10^{-5})	CL%	DOCUMENT ID)	TECN	COMMENT	037
VALUE (units 10 ⁻⁵) <8.2	90	²⁹ FULTON	90 B	CLEO	$\gamma(1S) \rightarrow \gamma F$	$\kappa^{\pm}\pi^{\mp}\kappa^{0}$
²⁹ Includes unknown br						3
$\Gamma(\gamma f_0(1500))/\Gamma_{\text{total}}$				J		Γ ₈₄ /Γ
$VALUE$ (units 10^{-5}) $CL\%$		OCUMENT ID	TECN	COMN	1ENT	
<1.5 90	30 BE	SSON 07A	CLEC) e ⁺ e ⁻	$^- ightarrow ~ \gamma(1S) ~ -$	$\rightarrow \gamma \pi^0 \pi^0$
• • • We do not use the	e followin	ng data for averag	es, fits,	limits,	etc. • • •	
<6.1 90	31 BE	SSON 07A	CLEC) e ⁺ e ⁻	$^- ightarrow ~ arphi(1\mathcal{S}) ~-$	$\rightarrow \gamma \eta \eta$
30 Using B($f_0(1500)$ –	$_{\rightarrow}$ $\pi^{0}\pi^{0}$	$) = B(f_0(1500))$	$\rightarrow \pi \tau$	τ)/3 and	$B(f_0(1500) -$	$\rightarrow \pi\pi) =$
$(0.349 \pm 0.023)\%$.					•	
³¹ Calculated by us usi	$\log B(t_0)$	$1500) \rightarrow \eta \eta) =$	(5.1 ±	0.9)%.		
$\Gamma(\gamma f_0(1710))/\Gamma_{\text{total}}$						Γ ₈₅ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT IL)	TECN	COMMENT	
< 2.6	90	³² ALBRECHT	89	ARG	$\Upsilon(1S) ightarrow \gamma$	$\kappa^+ \kappa^-$
• • • We do not use the	e followin	ng data for averag	es, fits,	limits,	etc. • • •	
< 6.3	90	32 FULTON			$\Upsilon(1S) ightarrow \gamma T$	
<19	90	³² FULTON	90 B	CLEO	$\Upsilon(1S) ightarrow \gamma$	$\kappa_S^0 \kappa_S^0$
< 8	90	33 ALBRECHT			$\Upsilon(1S) \rightarrow \gamma \gamma$	
<24	90	³⁴ SCHMITT	88	CBAL	$\gamma(1S) \rightarrow \gamma \gamma$	X
32 Assuming B(f_0 (1710						
33 Assuming B(f_0 (1710						
³⁴ Assuming B(f_0 (1710	$0) \rightarrow \eta \eta$) = 0.18.				
$\Gamma(\gamma f_0(1710) \rightarrow \gamma K^{-1})$	[⊦] K ⁻)/I	T _{total}				Γ ₈₆ /Γ

<0.7

06

 ATHAR

CLEO $e^+e^- \rightarrow \Upsilon(1S) \rightarrow \gamma K^+K^-$

$\Gamma(\gamma f_0(1710) \rightarrow$	$\gamma \pi^0 \pi^0$	$/\Gamma_{ ext{total}}$				Γ ₈₇ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID	TECN	СОММЕ	NT	
<1.4	90	BESSON	07A CLEO	e ⁺ e ⁻	$\rightarrow \gamma(1S)$	$\rightarrow \gamma \pi^0 \pi^0$
$\Gamma(\gamma f_0(1710) \rightarrow$	$\gamma \eta \eta)/\Gamma$	total				Г ₈₈ /Г
VALUE (units 10^{-6})	, -		ID TEC	CN COMI	MENT	
<1.8	90	BESSON				$1S) \rightarrow \gamma \eta \eta$
$\Gamma(\gamma f_4(2050))/I$	total					Г ₈₉ /Г
		% DOCUME	NT ID	TECN (COMMENT	,
VALUE (units 10 ⁻⁵) < 5.3	90	35 ATHAR	06	CLF3	$\Upsilon(1S) \rightarrow$	$\gamma_{\pi} + \pi^{-}$
35 Assuming B(f_2				CLLS	(13)	,
$\Gamma(\gamma f_0(2200) \rightarrow$						Γ ₉₀ /Γ
		.,*	ENT ID	TECN (COMMENT	1 90/1
<0.0002	90	BARU				$\gamma K^+ K^-$
\0.0002	90	BARO	09	IVIDI	<i>I</i> (13) →	y K · K
$\Gamma(\gamma f_J(2220) \rightarrow$	$\gamma K^+ K^-$	⁻)/Γ _{total}				Γ_{91}/Γ
$VALUE$ (units 10^{-7})	CLS	<u>DOCUME</u>	ENT ID	TECN	COMMENT	
< 8	90		06	CLE3	$\Upsilon(1S) ightarrow$	$\gamma K^+ K^-$
ullet $ullet$ We do not	use the foll	owing data for a	verages, fits,	limits, etc	c. • • •	
< 160	90	MASEK	02	CLEO	$\Upsilon(1S) ightarrow$	$\gamma K^+ K^-$
< 150	90	FULTO	N 90B	CLEO	$\Upsilon(1S) \rightarrow$	$\gamma K^+ K^-$
< 290	90	ALBRE				$\gamma K^+ K^-$
<2000	90	BARU	89	MD1	$\Upsilon(1S) ightarrow$	$\gamma K^+ K^-$
$\Gamma(\gamma f_J(2220) \rightarrow$	$\gamma \pi^+ \pi^-$)/Γ _{total}				Γ ₉₂ /Γ
<i>VALUE</i> (units 10^{-7})	CLS	% DOCUME	ENT ID	TECN (COMMENT	-
< 6	90	ATHAR	<u> </u>		$\Upsilon(1S) ightarrow$	$\gamma \pi^+ \pi^-$
• • • We do not	use the foll	owing data for a			` '	,
<120	90	MASEK	02	CLEO	$\Upsilon(1S) ightarrow$	$\gamma \pi^+ \pi^-$
$\Gamma(\gamma f_J(2220) \rightarrow$	· γρ <u></u> ρ)/Γ	total				Г93/Г
VALUE (units 10^{-7})			NT ID	TECN (COMMENT	
< 11	90	ATHAR			$\Upsilon(1S) ightarrow$	γp <u>p</u>
ullet $ullet$ We do not	use the foll	owing data for a	verages, fits,	limits, et	c. • • •	,
<160	90	MASEK	02	CLEO	$\Upsilon(1S) \rightarrow$	$\gamma p \overline{p}$
$\Gamma(\gamma\eta(2225) \rightarrow$	$\gamma \phi \phi)/\Gamma_1$	otal				Г ₉₄ /Г
VALUE	-	<u>DOCUMENT ID</u>	TECN	COMME	ENT	J .,
<0.003	90	BARU	89 MD1	$r_{(1S)}$	$\rightarrow \gamma K^+$	K-K+K-
$\Gamma(\gamma\eta_c(1S))/\Gamma_{\rm t}$	ntal					Γ ₉₅ /Γ
	CLS	% DOCUME	ENT ID	TECN /	COMMENT	- 95/ -
< 5.7	90	SHEN			$\Upsilon(1S) ightarrow$	~ X
40	30	JIILIN	107	<i></i>	. (10)	, , ,

$\Gamma(\gamma \chi_{c0})/\Gamma_{\text{total}}$						Γ ₉₆ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<6.5	90	SHEN			$\gamma(1S) \rightarrow \gamma X$	
$\Gamma(\gamma \chi_{c1})/\Gamma_{total}$						Γ ₉₇ /Γ
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	
<2.3	90	SHEN	10A		$\Upsilon(1S) \rightarrow \gamma X$	
$\Gamma(\gamma \chi_{c2})/\Gamma_{ ext{total}}$						Γ ₉₈ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<7.6	90	SHEN	10A	BELL	$\Upsilon(1S) \rightarrow \gamma X$	
$\Gamma(\gamma X(3872) \rightarrow \pi^+\pi$	$^-J/\psiig)/\Gamma$	total				Г99/Г
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.6	90	SHEN	10A	BELL	$\Upsilon(1S) \rightarrow \gamma X$	
$\Gamma(\gamma X(3872) \rightarrow \pi^+\pi$	$-\pi^0 J/\psi)$	$/\Gamma_{ m total}$				Γ ₁₀₀ /Γ
<i>VALUE</i> (units 10 ^{−6}) <2.8	CL%	DOCUMENT ID		TECN	COMMENT	
<2.8	90	SHEN	10A		$\gamma(1S) \rightarrow \gamma X$	
$\Gamma(\gamma X(3915) \rightarrow \omega J/\sigma$	$\psi)/\Gamma_{total}$					Γ ₁₀₁ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<3.0	90				$\Upsilon(1S) \rightarrow \gamma X$	
$\Gamma(\gamma X(4140) \rightarrow \phi J/\gamma)$	$p)/\Gamma_{total}$					Γ ₁₀₂ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<2.2	90	SHEN	10A	BELL	$\Upsilon(1S) \rightarrow \gamma X$	
$\Gamma(\gamma X)/\Gamma_{\text{total}}$ $(X = \text{scalar with } r$	n < 8.0 Ge	eV)				Γ ₁₀₃ /Γ
VALUE (units 10^{-6})	< 0.0 0.	DOCUMENT ID		TECN	COMMENT	
< 4.5	90 36	DEL-AMO-SA.	11J	BABR	$e^+e^- \rightarrow \gamma +$	X
• • • We do not use the	following o	data for averages	s, fits,	limits, e	etc. • • •	
<30					$e^+e^- \rightarrow \gamma +$	X
36 For a noninteracting 37 For a noninteracting	scalar X wi pseudoscala	th mass $m < 8$. ar X with mass	0 GeV < 7.2	′. GeV.		
$\Gamma(\gamma X \overline{X} (m_X < 3.1 G))$ $(X \overline{X} = \text{vectors with})$						Γ ₁₀₄ /Γ
				TECN	COMMENT	
<i>VALUE</i> (units 10 ^{−3}) <1	90 38	³ BALEST	95	CLEO	$e^+e^- ightarrow \gamma +$	$X\overline{X}$
³⁸ For a noninteracting	vector X w	ith mass < 3.1 (GeV.			
$\Gamma(\gamma X \overline{X} (m_X < 4.5 G))$ $X \text{ and } \overline{X} = \text{zero sp}$	eV))/Γ _{tot}	al < 4.5 CoV				Γ ₁₀₅ /Γ
VALUE (units 10 ⁻⁵)	CI %	DOCUMENT ID		TFCN	COMMENT	
<i>VALUE</i> (units 10 ^{−5}) <24	90 39	DEL-AMO-SA	11।	BARR	$e^+e^- \rightarrow \gamma +$	$X\overline{X}$
³⁹ For a noninteracting						,,,,
HTTP://PDG.LBL.G	SOV	Page 17		Creat	ed: 5/30/201	7 17:21

Γ_{106}/Γ $\Gamma(\gamma X \to \gamma + \ge 4 \text{ prongs})/\Gamma_{\text{total}}$ $(1.5 \text{ GeV} < m_X < 5.0 \text{ GeV})$ VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT 07A CLEO $e^+e^- \rightarrow \gamma X$ <1.78 **ROSNER** $\Gamma(\gamma a_1^0 \to \gamma \mu^+ \mu^-)/\Gamma_{\text{total}}$ Γ_{107}/Γ $(201 < M(\mu^+\mu^-) < 3565 \text{ MeV})$ VALUE (units 10^{-6}) CL%DOCUMENT ID TECN COMMENT 08 CLEO $e^+e^- \rightarrow \gamma a_1^0 \rightarrow \gamma \mu^+\mu^-$ ⁴⁰ LOVE <9 90 • • We do not use the following data for averages, fits, limits, etc. • 13C BABR $e^+e^- \rightarrow \gamma a_1^0 \rightarrow \gamma \mu^+\mu^-$ ⁴¹ LEES 40 For a narrow scalar or pseudoscalar a_1^0 with $201 < {\sf M}(\mu^+\mu^-) < 3565$ MeV, excluding J/ψ . Measured 90% CL limits as a function of M($\mu^+\mu^-$) range from 1–9 \times 10⁻⁶.

 41 For a narrow scalar or pseudoscalar a_1^0 with mass in the range 212–9200 MeV, excluding

 J/ψ and $\psi(2S)$. Measured 90% CL limits as a function of m_{a0} range from 0.28–9.7 imes 10^{-6}

 $\Gamma(\gamma a_1^0 \to \gamma \tau^+ \tau^-)/\Gamma_{\text{total}}$

 Γ_{108}/Γ

 $(2m_{\tau} < M(\tau^+ \tau^-) < 9.2 \text{ GeV})$

13R BABR $\gamma(2S) \rightarrow \gamma \tau^+ \tau^- \pi^+ \pi^-$ VALUE (units 10^{-6}) CL% ⁴² LEES

• • We do not use the following data for averages, fits, limits, etc. • •

08 CLEO $e^+e^- \rightarrow \gamma a_1^0 \rightarrow \gamma \tau^+\tau^-$ ⁴³ LOVE < 50

 42 For a narrow scalar a_1^0 with $2m_{ au} < {
m M}(a_1^0) < 9.2$ GeV, which result in a 90% CL upper limits of 0.9×10^{-5} at M(a_1^0) = $2m_T$, $\approx 1.5 \times 10^{-5}$ at M(a_1^0) = 7.5 GeV, and 13×10^{-5} at $M(a_1^0) = 9.2 \text{ GeV}.$

 43 For a narrow scalar or pseudoscalar a_1^0 with $2m_{_T}~<{
m M}(a_1^0)<7.5$ GeV, which result in a 90% CL limits ranging from 1×10^{-5} at $M(a_1^0) = 2m_{\tau}$ to 5×10^{-5} at $M(a_1^0) = 7.5$ GeV.

$$\Gamma(\gamma a_1^0 \rightarrow \gamma g g)/\Gamma_{\text{total}}$$

(0.5 GeV < m < 9.0 GeV)

 Γ_{109}/Γ

VALUECL%DOCUMENT IDTECNCOMMENT
$$<1 \times 10^{-2}$$
9044 LEES13LBABR $\Upsilon(1S) \rightarrow \gamma X$

⁴⁴ For a narrow, *CP*-odd pseudoscalar a_1^0 searched for in 26 hadronic decay modes with invariant mass 0.5 GeV $< m_{ ilde{X}} <$ 9.0 GeV. Measured 90% CL limit as a function of $m_{ ilde{X}}$ range from 10^{-6} to 10^{-2} .

$$\Gamma(\gamma a_1^0 \rightarrow \gamma s \overline{s})/\Gamma_{\text{total}}$$
(0.5 GeV < m < 9.0 GeV)

 Γ_{110}/Γ

VALUE CL% DOCUMENT ID TECN COMMENT

$$<1 \times 10^{-3}$$
90
 45 LEES
13L BABR $\Upsilon(1S) \rightarrow \gamma X$

 $^{^{45}\,\}mathrm{For}$ a narrow, *CP*-odd pseudoscalar a_1^0 searched for in 14 hadronic decay modes with invariant mass 1.5 GeV $< m_{\hbox{\scriptsize χ}} <$ 9.0 GeV. Measured 90% CL limit as a function of $m_{\hbox{\scriptsize χ}}$ range from 10^{-5} to 10^{-3} .

- LEPTON FAMILY NUMBER (*LF*) VIOLATING MODES -----

$\Gammaig(\mu^{\pm} au^{\mp}ig)/\Gamma_{total}$					Γ ₁₁₁ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<6.0	95	LOVE	08A	CLEO	$e^+e^- ightarrow \mu^{\pm} au^{\mp}$

OTHER DECAYS —

$\Gamma(\text{invisible})/\Gamma_{\text{total}}$	Γ ₁₁₂ /Ι
,	•

$VALUE$ (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
< 3.0	90	AUBERT	09AX	BABR	$\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(1S)$
• • • We do not use	the followi	ng data for aver	ages,	fits, limi	ts, etc. • • •
<39	90	RUBIN	07	CLEO	$\Upsilon(2S) \rightarrow \pi^+\pi^-\Upsilon(1S)$
<25	90	TAJIMA	07	BELL	$\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(1S)$

$\Upsilon(1S)$ REFERENCES

JIA	17	PR D95 012001	S. Jia <i>et al</i> .	(BELLE Collab.)
SHEN	16	PR D93 112013	C.P. Shen et al.	(BELLE Collab.)
LEES	14G	PR D89 111102	J.P. Lees <i>et al.</i>	(BABAR Collab.)
YANG	14	PR D90 112008	S.D. Yang et al.	(BELLE Collab.)
LEES	13C	PR D87 031102	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	13L	PR D88 031701	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	13R	PR D88 071102	J.P. Lees <i>et al.</i>	(BABAR Collab.)
SHEN	13	PR D88 011102	C.P. Shen <i>et al.</i>	(BELLE Collab.)
DOBBS	12A	PR D86 052003	S. Dobbs <i>et al.</i>	(5222 66.142.)
SHEN	12A	PR D86 031102	C.P. Shen et al.	(BELLE Collab.)
BESSON	11	PR D83 037101	D. Besson <i>et al.</i>	(CLEO Collab.)
DEL-AMO-SA		PRL 107 021804	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
AUBERT	10C	PR D81 011102	B. Aubert <i>et al.</i>	(BABAR Collab.)
DEL-AMO-SA		PRL 104 191801	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
SHEN	10A	PR D82 051504	C.P. Shen et al.	(BELLE Collab.)
AUBERT	-	PRL 103 251801	B. Aubert <i>et al.</i>	(BABAR Collab.)
LOVE	08	PRL 101 151802	W. Love <i>et al.</i>	(CLEO Collab.)
LOVE	08A	PRL 101 151602 PRL 101 201601	W. Love et al.	(CLEO Collab.)
PDG	08	PL B667 1	C. Amsler <i>et al.</i>	(PDG Collab.)
ASNER	07	PR D75 012009	D.M. Asner <i>et al.</i>	(CLEO Collab.)
ATHAR	07A	PR D76 072003	S.B. Athar <i>et al.</i>	(CLEO Collab.)
BESSON	07A	PRL 98 052002	D. Besson <i>et al.</i>	(CLEO Collab.)
	07A	PR D75 072001	D. Besson <i>et al.</i>	,
BESSON	07A 07A		J.L. Rosner <i>et al.</i>	(CLEO Collab.)
ROSNER	07A 07	PR D76 117102	P. Rubin <i>et al.</i>	(CLEO Collab.)
RUBIN		PR D75 031104		(CLEO Collab.)
TAJIMA	07	PRL 98 132001	O. Tajima <i>et al.</i>	(BELLE Collab.)
AQUINES	06A	PR D74 092006	O. Aquines <i>et al.</i>	(CLEO Collab.)
ATHAR	06	PR D73 032001	S.B. Athar <i>et al.</i>	(CLEO Collab.)
BESSON	06A	PR D74 012003	D. Besson <i>et al.</i>	(CLEO Collab.)
ROSNER	06	PRL 96 092003	J.L. Rosner <i>et al.</i>	(CLEO Collab.)
ADAMS	05	PRL 94 012001	G.S. Adams <i>et al.</i>	(CLEO Collab.)
BRIERE	04	PR D70 072001	R.A. Briere et al.	(CLEO Collab.)
ARTUSO	03	PR D67 052003	M. Artuso <i>et al.</i>	(CLEO Collab.)
MASEK	02	PR D65 072002	G. Masek <i>et al.</i>	(CLEO Collab.)
RICHICHI	01B	PRL 87 141801	S.J. Richichi <i>et al.</i>	(CLEO Collab.)
ARTAMONOV	00	PL B474 427	A.S. Artamonov <i>et al.</i>	(6150 6 11 1)
ANASTASSOV		PRL 82 286	A. Anastassov et al.	(CLEO Collab.)
ALEXANDER	98	PR D58 052004	J.P. Alexander <i>et al.</i>	(CLEO Collab.)
BARU	96	PRPL 267 71	S.E. Baru et al.	(NOVO)
BALEST	95	PR D51 2053	R. Balest <i>et al.</i>	(CLEO Collab.)
CINABRO	94B	PL B340 129	D. Cinabro et al.	(CLEO Collab.)
ALBRECHT	92J	ZPHY C55 25	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
BARU	92	ZPHY C54 229	S.E. Baru <i>et al.</i>	(NOVO)
BARU	92B	ZPHY C56 547	S.E. Baru et al.	(NOVO)
KOBEL	92	ZPHY C53 193	M. Kobel <i>et al.</i>	(Crystal Ball Collab.)

BLINOV FULTON MASCHMANN ALBRECHT ALEXANDER BARU CHEN FULTON KAARSBERG BUCHMUEL	89 89 89 89B 89 89	PL B245 311 PR D41 1401 ZPHY C46 555 ZPHY C42 349 NP B320 45 ZPHY C42 505 PR D39 3528 PL B224 445 PRL 62 2077 HE e ⁺ e ⁻ Physics 412	A.E. Blinov et al. R. Fulton et al. W.S. Maschmann et al. H. Albrecht et al. J.P. Alexander et al. S.E. Baru et al. W.Y. Chen et al. R. Fulton et al. T.M. Kaarsberg et al. W. Buchmueller, S. Coc	(ARGUS Collab.) (LBL, MICH, SLAC) (NOVO) (CLEO Collab.) (CLEO Collab.) (CUSB Collab.)
Editors: A. Ali and P. Soeding, World Scientific, Singapore				
JAKUBOWSKI	88	ZPHY C40 49	Z. Jakubowski <i>et al.</i>	(Crystal Ball Collab.) IGJPC
SCHMITT	88	ZPHY C40 199	P. Schmitt et al.	(Crystal Ball Collab.)
ALBRECHT	87	ZPHY C35 283	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
COHEN	87	RMP 59 1121	E.R. Cohen, B.N. Taylor	r (RISC, NBS)
BARU	86	ZPHY C30 551	S.E. Baru <i>et al.</i>	(NOVO)
ALBRECHT	85C	PL 154B 452	H. Albrecht et al.	(ARGUS Collab.)
KURAEV	85	SJNP 41 466	E.A. Kuraev, V.S. Fadin	
		Translated from YAF 41	733.	` ,
ARTAMONOV	84	PL 137B 272	A.S. Artamonov et al.	(NOVO)
BESSON	84	PR D30 1433	D. Besson et al.	(CLEO Collab.)
GILES	84B	PR D29 1285	R. Giles et al.	(CLEO Collab.)
MACKAY	84	PR D29 2483	W.W. MacKay et al.	(CUSB Collab.)
ANDREWS	83	PRL 50 807	D.E. Andrews et al.	(CLEO Collab.)
GILES	83	PRL 50 877	R. Giles et al.	(HARV, OSU, ROCH, RUTG+)
NICZYPORUK	83	ZPHY C17 197	B. Niczyporuk et al.	(LENA Collab.)
ALBRECHT	82	PL 116B 383	H. Albrecht et al.	(DESY, DORT, HEIDH $+$)
ARTAMONOV	82	PL 118B 225	A.S. Artamonov et al.	` (NOVO)
NICZYPORUK	82	ZPHY C15 299	B. Niczyporuk et al.	(LENA Collab.)
BERGER	80C	PL 93B 497	C. Berger et al.	(PLUTO Collab.)
BOCK	80	ZPHY C6 125	P. Bock <i>et al.</i>	(HEIDP, MPIM, DESY, HAMB)
BERGER	79	ZPHY C1 343	C. Berger et al.	(PLUTO Collab.)
			-	, ,