Jacobian 3x3 & Taylor Series two variable

Saturday, 19 April 2025 12:02 pm

JACOBIANS

If u and v are functions of the two independent variables x and y, then the determinant

is called the jacobian of u, v with respect to x, y and is written as

$$\frac{\partial (u, v)}{\partial (x, y)}$$
 or $J\left(\frac{u, v}{x, y}\right)$

Similarly, the jacobian of u, v, w with respect to x, y, z is

$$\frac{\partial (u, v, w)}{\partial (x, y, z)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{vmatrix}$$

Screen clipping taken: 19/04/2025 12:03 pm

Example 64. If
$$y_1 = \frac{x_2 x_3}{x_1}$$
, $y_2 = \frac{x_3 x_1}{x_2}$, $y_3 = \frac{x_1 x_2}{x_3}$.

Show that the Jacobian of y_1 , y_2 , y_3 with respect to x_1 , x_2 , x_3 is 4. (U.P. I Sem. Jan 2011; 2004, Comp. 2002, A.M.I.E., Summer 2002, 2000, Winter 2001)

Solution. Here, we have
$$y_1 = \frac{x_2 x_3}{x_1}, y_2 = \frac{x_3 x_1}{x_2}, y_3 = \frac{x_1 x_2}{x_3}$$

$$\frac{\partial (y_1, y_2, y_3)}{\partial (x_1, x_2, x_3)} = \begin{vmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \frac{\partial y_1}{\partial x_3} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_2}{\partial x_3} \\ \frac{\partial y_3}{\partial x_1} & \frac{\partial y_3}{\partial x_2} & \frac{\partial y_3}{\partial x_3} \end{vmatrix} = \begin{vmatrix} -\frac{x_2 x_3}{x_1^2} & \frac{x_3}{x_1} & \frac{x_2}{x_2} \\ \frac{x_3}{x_2} & -\frac{x_3 x_1}{x_2^2} & \frac{x_1}{x_2} \\ \frac{x_2}{x_3} & \frac{x_1}{x_3} & -\frac{x_1 x_2}{x_2^2} \end{vmatrix}$$

$$= \frac{1}{x_1^2 x_2^2 x_3^2} \begin{vmatrix} -x_2 x_3 & x_3 x_1 & x_1 x_2 \\ x_2 x_3 & -x_3 x_1 & x_1 x_2 \\ x_2 x_3 & x_3 x_1 & -x_1 x_2 \end{vmatrix} = \frac{x_1^2 x_2^2 x_3^2}{x_1^2 x_2^2 x_2^2} \begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix}$$

$$= -1 (1-1) - 1 (-1-1) + 1 (1+1) = 0 + 2 + 2 = 4$$
 Proved.

Screen clipping taken: 19/04/2025 12:03 pm

Example 65. If
$$x = r \sin \theta \cos \varphi$$
, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$, Show that $\frac{\partial}{\partial (r, \theta, \varphi)} = r^2 \sin \theta$. (U.P., I Semester; Winter 2000)

Solution. We have, $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$

$$\frac{\partial}{\partial r} = \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial r} = \sin \theta \sin \varphi$, $\frac{\partial}{\partial r} = \cos \theta$

$$\frac{\partial}{\partial \theta} = r \cos \theta \cos \varphi$$
, $\frac{\partial}{\partial \theta} = r \cos \theta \sin \varphi$, $\frac{\partial}{\partial \theta} = -r \sin \theta$

$$\frac{\partial}{\partial \theta} = r \sin \theta \sin \varphi$$
, $\frac{\partial}{\partial \theta} = r \sin \theta \sin \varphi$, $\frac{\partial}{\partial \theta} = -r \sin \theta$

$$\frac{\partial}{\partial \theta} = r \sin \theta \sin \varphi$$
, $\frac{\partial}{\partial \theta} = r \sin \theta \cos \varphi$, $\frac{\partial}{\partial \theta} = -r \sin \theta$

$$\frac{\partial}{\partial \theta} = r \sin \theta \sin \varphi$$
, $\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \sin \varphi$$
, $\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = -r \sin \theta$

$$\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$$
, $\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$, $\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$, $\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$, $\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$, $\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$, $\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$, $\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$, $\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$, $\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$, $\frac{\partial}{\partial \varphi} = r \sin \theta \cos \varphi$, $\frac{\partial}{\partial \varphi} = r \cos \theta \cos \varphi$, $\frac{\partial}{\partial \varphi} = r \cos \theta \cos \varphi$, $\frac{\partial}{\partial \varphi} = r \cos \theta \cos \varphi$, $\frac{\partial}{\partial \varphi} = r \cos \theta \cos \varphi$, $\frac{\partial}{\partial \varphi} = r \cos \theta \cos \varphi$, $\frac{\partial$

1.26 TAYLOR'S SERIES OF TWO VARIABLES

If f(x, y) and all its partial derivatives upto the *n*th order are finite and continuous for all points (x, y), where

$$a \le x \le a+h, \ b \le y \le b+k$$
 Then $f(a+h,b+k) = f(a,b) + \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)f + \frac{1}{2!}\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^2 f + \frac{1}{3!}\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^3 f + \dots$

Example 78. Expand e^x sin y in powers of x and y, x = 0, y = 0 as far as terms of third degree. Solution.

		x = 0, y = 0
f(x, y)	$e^x \sin y$,	0
$f_x(x, y)$	$e^x \sin y$,	0
$f_{y}(x, y)$	$e^x \cos y$,	1
$f_{xx}(x, y)$	$e^x \sin y$,	0
$f_{xy}(x,y)$	$e^x \cos y$,	1
$f_{yy}(x,y)$	$-e^x \sin y$,	0
$f_{xxx}(x, y)$	$e^x \sin y$,	0
$f_{xxy}(x,y)$	$e^x \cos y$,	1
$f_{xyy}(x,y)$	$-e^x \sin y$,	0
$f_{yyy}(x,y)$	$-e^x\cos y$,	- 1

By Taylor's theorem

$$f(x, y) = f(0, 0) + \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}\right) f(0, 0) + \frac{1}{2!} \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}\right)^{2} f(0, 0) + \frac{1}{3!} \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}\right)^{3} f(0, 0) + \dots$$

$$= f(0, 0) + x f_{x}(0, 0) + y f_{y}(0, 0) + \frac{x^{2}}{2!} f_{xx}(0, 0) + \frac{2xy}{2!} f_{xy}(0, 0) + \frac{y^{2}}{2!} f_{yy}(0, 0) + \frac{y^{2}}{2!} f_{yy}(0, 0) + \frac{1}{3!} x^{3} f_{xxx}(0, 0) + \frac{3x^{2}y}{3!} f_{xxy}(0, 0) + \frac{3}{3!} x y^{2} f_{xyy}(0, 0) + \frac{1}{3!} y^{3} f_{yyy}(0, 0) + \dots$$

$$e^{x} \sin y = 0 + x(0) + y(1) + \frac{x^{2}}{2}(0) + xy(1) + \frac{y^{2}}{2}(0) + \frac{x^{3}}{6}(0) + \frac{3x^{2}y}{6}(1) + \frac{3xy^{2}}{6}(0) + \frac{y^{3}}{6}(-1) + \dots$$

$$= y + xy + \frac{x^{2}y}{2} - \frac{y^{3}}{6} + \dots$$
Ans.

Example 79. Find the expansion for $\cos x \cos y$ in powers of x, y upto fourth order terms. Solution.

By Taylor's Series

$$f(x,y) = f(0,0) + x f_x(0,0) + y f_y(0,0) + \frac{1}{2!} \left[x^2 f_x^2(0,0) + 2x y f_{xy}(0,0) + y^2 f_{yy}(0,0) \right]$$

$$+ \frac{1}{3!} \left[x^3 f_x^3(0,0) + 3x^2 y f_{xy}^2(0,0) + 3x y^2 f_{xy}^2(0,0) + y^3 f_y^3(0,0) \right]$$

$$+ \frac{1}{4!} \left[x^4 f_x^4(0,0) + 4x^3 y f_{xy}^3(0,0) + 6x^2 y^2 f_{xy}^{22}(0,0) + 4x y^3 f_{xy}^3(0,0) + y^4 f_y^4(0,0) \right] + \dots$$

$$\cos x \cos y = 1 + 0 + 0 + \frac{1}{2} (-x^2 + 0 - y^2) + \frac{1}{6} (0 + 0 + 0 + 0) + \frac{1}{24} (x^4 + 0 + 6x^2 y^2 + 0 + y^4)$$

$$= 1 - \frac{x^2}{2} - \frac{y^2}{2} + \frac{x^4}{24} + \frac{x^2 y^2}{4} + \frac{y^2}{24} + \dots$$
Ans.

		x = 0, y = 0
f(x, y)	$\cos x \cos y$,	1
f_{x}	$-\sin x \cos y$,	0
f_y	$-\cos x \sin y$,	0
f_y f_{xx}	$-\cos x \cos y$,	- 1
f_{xy}	$\sin x \sin y$,	0
f_{yy}	$-\cos x \cos y$,	- 1
f_{xxx}	$\sin x \cos y$,	0
$f_{xx,y}$	$\cos x \sin y$,	0
$f_{x,y,y}$	$\sin x \cos y$,	0
f_{yyy}	$\cos x \sin y$,	0
f_{xxxx}	$\cos x \cos y$,	1
$f_{x x x y}$	$-\sin x \sin y$,	0
$f_{xx,yy}$	$\cos x \cos y$,	1
f_{xyyy}	$-\sin x \sin y$,	0
f_{yyyy}	$\cos x \cos y$,	1

Example 80. Find the first six terms of the expansion of the function $e^x \log (I + y)$ in a Taylor's series in the neighbourhood of the point (0,0).

Solution.

Taylor's series is

$$f(x, y) = f(0, 0) + \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}\right)$$

$$+ \frac{1}{2!} \left(x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2}\right) + \dots$$

$$\Rightarrow e^x \log(1 + y) = 0 + (x \times 0 + y \times 1)$$

$$+ \frac{1}{2!} [x^2 \times (0) + 2xy \times 1 + y^2 \times (-1)] + \dots$$

$$\Rightarrow e^x \log(1 + y) = y + xy - \frac{y^2}{2} \quad \text{Ans.}$$

		x = 0, y = 0
f(x, y)	$e^x \log (1+y)$	0
$\frac{\partial f}{\partial x}$	$e^x \log (1+y)$	0
$\frac{\partial f}{\partial y}$	$\frac{e^x}{1+y}$	1
$\frac{\partial^2 f}{\partial x^2}$	$e^x \log (1+y)$	0
$\frac{\partial^2 f}{\partial y^2}$	$-\frac{e^x}{(1+y)^2}$	- 1
$\frac{\partial^2 f}{\partial x \partial y}$	$\frac{e^x}{(1+y)}$	1