Quantale model of noncommutative linear logic with subexponentials

1 Calculus

Definition 1. A subexponential signature is an ordered quintuple: $\Sigma = \langle I, \leq, W, C, E \rangle$,

where $I = \{s_1, \ldots, s_n\}, \langle I, \leq \rangle$ is a preorder. W, C, E are subsets of I and $W \cup C \subseteq E$.

Definition 2. Noncommutative linear logic with subexponentials $(SMALC_{\Sigma})$, where Σ is a subexponential signature.

$$\begin{split} \frac{\Gamma, !^s A, \Delta, !^s A, \Theta \Rightarrow B}{\Gamma, \Delta, !^s A, \Theta \Rightarrow B} & \mathbf{ncontr}_2, s \in C \\ \frac{\Gamma, \Delta, !^s A, \Theta \Rightarrow B}{\Gamma, !^s A, \Delta, \Theta \Rightarrow A} & \mathbf{ex}_1, s \in E \\ \frac{\Gamma, !^s A, \Delta, \Theta \Rightarrow B}{\Gamma, \Delta, !^s A, \Theta \Rightarrow A} & \mathbf{ex}_1, s \in E \end{split}$$

Lemma 1. Let $A \Leftrightarrow B$, then $C[p_i := A] \Leftrightarrow C[p_i := B]$

Proof. By induction on C.

Lemma 2. • $!_{s_i}\Gamma \to A \text{ iff } !_{s_i}\Gamma \to !_{s_i}A$.

• $!_{s_i}A \leftrightarrow !_{s_i}(!_{s_i}A)$

Proof.

1. $!_{s_i}\Gamma \to A \text{ iff } !_{s_i}\Gamma \to !_{s_i}A;$

$$\frac{!_{s_i}\Gamma \to A}{!_{s_i}\Gamma \to !_{s_i}A} \to !_{s_i}$$

$$\frac{!_{s_i}\Gamma \to !_{s_i}A}{!_{s_i}\Gamma \to A} \frac{\frac{A \to A}{!_{s_i}A \to A}}{\mathrm{cut}}!_{s_i} \to$$

 $2. !_{s_i} A \leftrightarrow !_{s_i} !_{s_i} A$

$$\frac{A \to A}{\underset{!_{s_i}A \to !_{s_i}A}{!_{s_i}A \to !_{s_i}A}}$$

$$\frac{1}{\underset{!_{s_i}!_{s_i}A \to !_{s_i}A}{|_{s_i}A \to !_{s_i}A}}$$

2 Semantics

Definition 3. Quantale A quantale is a triple $\langle A, \bigvee, \cdot \rangle$, such that $\langle A, \bigvee \rangle$ is a complete lattice and $\langle A, \cdot \rangle$ is a semigroup. A quantate is called unital, if $\langle A, \cdot \rangle$ is a monoid.

It is easy to see, that any (unital) quantale is a residual (monoid) semigroup. We define divisions as follows:

1. $a \setminus b = \bigvee \{c \mid a \cdot c \leqslant b\}$

2. $b/a = \bigvee \{c \mid c \cdot a \leq b\}$

Definition 4. Let $\langle A, \bigvee, \cdot \rangle$ be a quantale. The center of a quantale is the set $Z(Q) = \{a \in Q \mid \forall b \in Q, a \cdot b = b \cdot a\}$

Definition 5. An open modality on quantale Q is a map $I: Q \to Q$, such that

1.
$$I(x) \leq x$$
;
2. $I(x) = I(I(x))$;
3. $x \leq y \Rightarrow I(x) \leq I(y)$;
4. $I(x) \cdot I(y) = I(I(x) \cdot I(y))$.

Lemma 3.

Let $\langle A, \bigvee, \cdot \rangle$ be a quantale and $I: Q \to Q$ is an open modality on Q, then $I(x) \cdot I(y) \leq I(x \cdot y)$.

Proof

$$I(x) \cdot I(y) \leqslant x \cdot y$$
, then $I(I(x) \cdot I(y)) \leqslant I(x \cdot y)$, but $I(x) \cdot I(y) \leqslant I(I(x) \cdot I(y))$. Thus, $I(x) \cdot I(y) \leqslant I(x \cdot y)$.

Definition 6. An open modality is called central, if $\forall a, b \in Q, I(a) \cdot b = b \cdot I(a)$.

Definition 7. An open modality is called weak idempotent, if $\forall a, b \in Q, I(a) \cdot b \leq I(a) \cdot b \cdot I(a)$ and $b \cdot I(a) \leq I(a) \cdot b \cdot I(a)$.

Definition 8. An open modality is called unital, if $\forall a \in Q, I(a) \leq e$.

Lemma 4. Let I be an interior on some unital quantale $\langle Q, \bigvee, \cdot, e \rangle$. Then, if I is unital and weak idempotent, then I is central.

Proof.

```
b \cdot I(a) \leqslant
Right weak idempotence
I(a) \cdot b \cdot I(a) \leqslant
Unitality
I(a) \cdot b \cdot I(e) \leqslant
Identity
I(a) \cdot b \leqslant
Left weak idempotence
I(a) \cdot b \cdot I(a) \leqslant
Unitality
e \cdot b \cdot I(a) \leqslant
Identity
b \cdot I(a)
Hence, b \cdot I(a) = I(a) \cdot b
```

Proposition 1.

Let Q be a quantale and $S \subseteq Q$ a subquantale, then $I: Q \to Q$, such that $I(a) = \bigvee \{s \in S \mid x \leq a\}$, is an open modality. Moreover, $\{x \in Q \mid I(x) = x\} = S$.

Proposition 2.

```
Let Q be a quantale and S_1, S_2 \subseteq Q, such that S_1 \subseteq S_2.
Then I_1(a) \leq I_2(a).
```

Proof.

Let
$$a \in Q$$
, so $\{s \in S_1 \mid s \leqslant a\} \subseteq \{s \in S_2 \mid s \leqslant a\}$, so $\bigvee \{s \in S_1 \mid s \leqslant a\} \subseteq \bigvee \{s \in S_2 \mid s \leqslant a\}$. Thus, $I_1(a) \leqslant I_2(a)$.

Proposition 3.

Let Q be a quantale and $S \subseteq Q$ a subquantale, then the following operations are open modalities:

- 1. $I_z(a) = \bigvee \{ s \in S \mid s \leq a, s \in Z(Q) \};$
- 2. $I_{1}(a) = \bigvee \{s \in S \mid s \leq a, s \leq 1\};$
- 3. $I_{idem}(a) = \bigvee \{ s \in S \mid s \leqslant a, \forall b \in Q, b \cdot s \lor s \cdot b \leqslant s \cdot b \cdot s \};$
- 4. $I_{z,1}, I_{z,idem}, I_{1,idem}, I_{z,1,idem}$.

Proof. Immediatly.

Proposition 4.

- 1. $\forall a \in Q, I_{1,idem}(a) \leq I_z(a)$.
- 2. $\forall a \in Q, I_{z \parallel idem} = I_{\parallel idem}(a)$

Proof. Follows from Lemma 3.

Proposition 5.

- 1. $I_z(a) \vee I_1(a) \vee I_{idem}(a) \leq I(a)$
- 2. $I_{z,1,idem} \leq I_{z,1}(a) \wedge I_{z,idem}(a)$

Lemma 5. $\forall a \in Q, I_1(a) \leq I_2(I_1(a)), \text{ if } I_1(a) \leq I_2(a).$

$$Proof. \ I_1(a) \leq I_1(I_1(a)) \leq I_2(I_1(a))$$

Lemma 6. $I_1(a_1) \cdot I_2(a_2) \leq I'(I_1(a_1) \cdot I_2(a_2))$, where $I_i \leq I'$, i = 1, 2.

Proof.

$$I_1(a_1) \cdot I_2(a_2) \leqslant I_1(I_1(a_1)) \cdot I_2(I_2(a_2)) \leqslant I'(I_1(a_1)) \cdot I'(I_2(a_2)) \leqslant I'(I_1(a_1) \cdot I_2(a_2))$$

Definition 9. Interpretation of subexponential signature

Let $\Sigma = \langle I, \leq, W, C, E \rangle$ be a subexponential signature, where |I| = n and $S = \{\Box_1, \ldots, \Box_n\}$ be a set of open modalities on quantale Q. Subexponential interpretation is a contravariant map $\sigma : I \to S$ defined as follows:

$$\sigma(s_i) = \begin{cases} \Box_i : Q \to Q, \ s.t. \forall a \in Q, \Box_i(a) = \{s \in S_i \mid s \leqslant a\}, \\ if \ s_i \notin W \cap C \cap E \\ \Box_i : Q \to Q, \ s.t. \forall a \in Q, \Box_i(a) = \{s \in S_i \mid s \leqslant a, \leqslant 1\}, \\ if \ s_i \in W \\ \Box_i : Q \to Q, \ s.t. \forall a \in Q, \Box_i(a) = \{s \in S_i \mid s \leqslant a, \in Z(Q)\}, \\ if \ s_i \in E \\ \Box_i : Q \to Q, \ s.t. \forall a \in Q, \Box_i(a) = \{s \in S_i \mid s \leqslant a, \forall b, b \cdot s \lor s \cdot b \leqslant s \cdot b \cdot s\}, \\ if \ s_i \in E \\ otherwise, \ if \ s_i \ belongs \ to \ some \ intersection \ of \ subsets, \ then \ we \ combine \ the \ relevant \ conditions \end{cases}$$

Definition 10. Let Q be a quantale, $f: Tp \to Q$ a valuation and $\sigma: I \to \mathcal{S}$ a subexponential interpretation, then interpretation is defined inductively:

Theorem 1. $\Gamma \to A \Rightarrow \llbracket \Gamma \rrbracket \leqslant \llbracket A \rrbracket$

Proof. We consider the case with polymodal promotion rule.

Let $!_{s_1}A_1, \ldots, !_{s_n}A_n \to A$ and $\forall i, s \leq s_i$. Then $\forall a \in Q, \sigma(s_i)(a) \leqslant \sigma(s)(a)$.

By IH, $\sigma(s_1)[\![A_1]\!] \cdot \cdots \cdot \sigma(s_n)[\![A_n]\!] \leq [\![A]\!]$.

Thus, $\sigma(s)(\sigma(s_1)[A_1]] \cdot \cdot \cdot \cdot \sigma(s_n)[A_n]) \leq \sigma(s)([A]).$

By Lemma 5, $\sigma(s_1)[A_1]\cdots\sigma(s_n)[A_n] \leqslant \sigma(s)(\sigma(s_1)[A_1]\cdots\sigma(s_n)[A_n]).$

So, $\sigma(s_1) \llbracket A_1 \rrbracket \cdots \sigma(s_n) \llbracket A_n \rrbracket \leqslant \sigma(s) (\llbracket A \rrbracket)$.

3 Quantale completeness

Definition 11.

Let $\mathcal{F} \subseteq Fm$, an ideal is a subset $\mathcal{I} \subseteq \mathcal{F}$, such that:

- If $B \in \mathcal{I}$ and $A \to B$, then $A \in \mathcal{I}$;
- If $A, B \in \mathcal{I}$, then $A \vee B \in \mathcal{I}$.

Definition 12.

Let
$$S \subseteq \mathcal{F} \subseteq Fm$$
, then $\bigvee S = \bigcap \{ \mathcal{I} \subseteq \mathcal{F} \mid S \subseteq \mathcal{I} \}$

Proposition 6. $\bigvee S$ is an ideal.

Lemma 7. $A \in \mathcal{F}$, then $\{B \mid B \to A\} = \bigvee \{A\}$.

Proof.

Let
$$A \in \mathcal{F}$$
. Then $\{B \mid B \to A\} \subseteq \bigvee \{A\}$.

On the other hand, $\{B \mid B \to A\}$ is an ideal, hence, $\{A\} \subseteq \{B \mid B \to A\}$.

Lemma 8. $\bigvee \{A\} \subseteq \bigvee \{B\} \ iff A \to B$.

Proof. Let $\bigvee \{A\} \subseteq \bigvee \{B\}$, then $\{C|C \to A\} \subseteq \{C \mid C \to B\}$.

 $A \in \{C | C \to A\}$, so far as $A \to A$, but $\{C | C \to B\}$, hence $A \to B$.

On the other hand, let $A \to B$ and $C \in \bigvee \{A\}$. Then $C \in \bigvee \{C' \mid C' \to A\}$, hence, $C \to A$, thus $C \to B$ by cut. So, $C \in \bigvee \{A\}$.

Lemma 9. Let $Q = \{\bigvee S | S \subseteq Fm\}$ and $\bigvee A \cdot \bigvee B = \{A \bullet B | A \in A, B \in B\}$. Then $\langle Q, \subseteq, \cdot, \bigvee \mathbf{1} \rangle$ is a quantale.

Proof. See \Box

Lemma 10. Interior lemma.

Let $Q_1 \subseteq \mathcal{Q}$, define a map $\square : Q \to Q$, such that $\square(A) = \{Q \in Q_1 \mid Q \subseteq A\}$. Then \square is a quantic conucleus.

Lemma 11. Let $!_s \in I$, $I \notin W \cap E \cap C$ and $Q \subseteq Q$. Then there exist a subset $Q \subseteq Q$ and a quantic conucleus $\Box_s(\bigvee \{A\}) = \{\bigvee Q \in Q \mid \}$

$$Proof.$$
 See

Lemma 12. Let $Q \subseteq \mathcal{Q}$, then the following operators are quantic conuclei:

1.
$$\Box_z(A) = \bigvee \{\bigvee \{W\} \in Q \mid \bigvee \{W\} \subseteq \bigvee \{A\}, \bigvee \{W\} \in Z(Q)\};$$

$$\mathcal{Z}. \ \Box_{\mathbf{1}}(A) = \bigvee \{ \bigvee \{W\} \in Q \mid \bigvee \{W\} \subseteq \bigvee \{A\}, \bigvee \{W\} \subseteq \bigvee \{\mathbf{1}\}\};$$

3.
$$\Box_{idem}(A) = \bigvee\{\bigvee\{W\} \in Q \mid \bigvee\{W\} \subseteq \bigvee\{A\}, \forall B \in Fm, (\bigvee\{B\} \cdot \bigvee\{W\}) \cup (\bigvee\{W\} \cdot \bigvee\{B\}) \subseteq \bigvee\{W\} \cdot \bigvee\{A\} \cdot \bigvee\{W\}\};$$

$$4. \quad \Box_{z,1}, \Box_{z,idem}, \Box_{1,idem}, \Box_{z,1,idem}.$$

Proof. Follow from one of lemmas above.

Lemma 13. Let $!_s \in I$, $I \notin W \cap E \cap C$, then $\Box_s(\bigvee A) = \bigvee \{\bigvee (!_s W) \mid \bigvee !_s W \subseteq \bigvee A\}$ is a quantic conucleus.

Proof.

- 1. $\Box_s(\bigvee A) \subseteq \bigvee A$; $\bigvee (!_s W) \in \Box_s(\bigvee A)$, then $\bigvee (!_s W) \in \bigvee \{\bigvee (!_s W) | \bigvee !_s W \subseteq \bigvee A\}$. Hence, $\bigvee (!_s F) \subseteq \bigvee \{A\}$, so, $!_s F \to A$. Therefore, $!_s F \in \bigvee \{A\}$.
- 2. $\Box_s(\Box_s(\bigvee A)) = \bigvee \Box_s(\bigvee A);$ $\Box_s(\Box_s(\bigvee A)) = \{\bigvee (!_s!_sF) \mid \bigvee (!_s!_sF) \subseteq \bigvee A\}.$ Let $\bigvee (!_s!_sF) \in \Box_s(\Box_s(\bigvee A)),$ then $!_s!_sF \to A$, hence $!_sF \to A$ by equivalence, so $\bigvee (!_s!_sF) \in \Box_s(\bigvee A)$
- 3. $\bigvee A \subseteq \bigvee B \Rightarrow \Box_s(\bigvee A) \subseteq \Box_s(\bigvee B)$;
- 4. $\Box_s \bigvee A \cdot \Box_s \bigvee A = \Box_s (\Box_s \bigvee A \cdot \Box_s \bigvee A)$.

Lemma 14. Let Q be a quantale constructed above and $\square_1, \ldots, \square_n$ be a family of quantic conuclei on Q. Then there exist a model $\langle Q, \llbracket . \rrbracket \rangle$, such that $\llbracket A \rrbracket = \bigvee \{A\}, A \in Fm$.

Theorem 2. $\Gamma \models A \Rightarrow \Gamma \rightarrow A$.