

REVENDICATIONS

1. Utilisation d'au moins un polypeptide comprenant au moins un fragment d'une protéine pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N° 10 à SEQ ID N° 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

2. Utilisation d'au moins deux polypeptides en combinaison, lesdits polypeptides comprenant chacun au moins un fragment d'une protéine, pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à une séquence peptidique choisie parmi SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N° 10, SEQ ID N° 29, et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N° 10 à SEQ ID N° 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine

plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

3. Utilisation d'au moins un polypeptide comprenant au moins un fragment d'une protéine pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 8, SEQ ID N° 17 et SEQ ID N° 24 et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 8, SEQ ID N° 17 et SEQ ID N° 24.

4. Utilisation selon la revendication 3, de cinq polypeptides en combinaison, lesdits polypeptides comprenant chacun au moins un fragment d'une protéine, pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 8, SEQ ID N° 17 et SEQ ID N° 24 et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 8, SEQ ID N° 17 et SEQ ID N° 24.

5. Utilisation selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la séquence peptidique dudit polypeptide comprend une séquence choisie parmi l'une quelconque des SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 8, SEQ ID N° 17 et SEQ ID N° 24.

6. Utilisation selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la séquence peptidique dudit polypeptide consiste en une séquence choisie parmi l'une quelconque des SEQ ID N° 2, SEQ ID N° 4, SEQ ID N° 8, SEQ ID N° 17 et SEQ ID N° 24.

7. Utilisation d'un fragment polypeptidique défini dans la revendication 1 ou dans la revendication 3 pour la préparation d'un peptide immunogène, caractérisé en ce que ledit peptide comprend tout ou partie d'au moins une des séquences référencée SEQ ID N° 58 à 65.

5 8. Utilisation d'au moins un fragment nucléotidique, pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, selon laquelle ledit fragment nucléotidique est choisi parmi des fragments qui codent pour au moins un fragment d'une protéine, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29 et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N° 10 à 29, les fragments complémentaires desdits fragments et les fragments qui codent pour les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisie parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

20 9. Utilisation selon la revendication 8, caractérisée en ce que ledit fragment nucléotidique code pour ladite protéine.

25 10. Utilisation selon la revendication 9, caractérisée en ce que la séquence peptidique de ladite protéine à l'état natif consiste en une séquence choisie parmi l'une quelconque des SEQ ID N° 1 à 8 et SEQ ID N° 10 à 29 et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

11. Utilisation d'au moins un fragment nucléotidique pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune selon laquelle ledit fragment est un fragment d'une séquence nucléique choisie parmi l'une quelconque des SEQ ID N° 30, SEQ ID N° 31, SEQ ID N° 32, SEQ ID N° 33, SEQ ID N° 34, SEQ ID N° 35, SEQ ID N° 36, SEQ ID N° 37, SEQ ID N° 38, SEQ ID N° 39, SEQ ID N° 40, SEQ ID N° 41, SEQ ID N° 42, SEQ ID N° 43, SEQ ID N° 44, SEQ ID N° 45, SEQ ID N° 46 et SEQ ID N° 47, SEQ ID N° 48, SEQ ID N° 49 et SEQ ID N° 50, SEQ ID N° 51, SEQ ID N° 52, SEQ ID N° 53, SEQ ID N° 54, SEQ ID N° 55, SEQ ID N° 56, SEQ ID N° 57, SEQ ID N° 67, SEQ ID N° 66, SEQ ID N° 69, SEQ ID N° 70 et SEQ ID N° 71 et leurs séquences complémentaires.

12. Utilisation d'un ligand spécifique d'un polypeptide ou d'un fragment nucléotidique selon l'une quelconque des revendications précédentes pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune.

13. Utilisation selon l'une quelconque des revendications précédentes, caractérisée en ce que la maladie dégénérative et/ou auto-immune est la sclérose en plaques.

14. Procédé pour détecter au moins une protéine associée à une maladie dégénérative et/ou auto-immune, dans un échantillon biologique, caractérisé en ce que l'on met en contact l'échantillon biologique avec au moins un ligand spécifique d'au moins un polypeptide, ledit polypeptide comprenant au moins un fragment d'une protéine et ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29 et les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 %

d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N° 10 à 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B, puis on détecte la formation d'un complexe entre ledit polypeptide et ledit ligand.

15. Procédé selon la revendication 14, caractérisé en ce que ledit ligand est un anticorps monoclonal, un anticorps polyclonal, un récepteur, un substrat d'activité enzymatique ou une enzyme dont ledit polypeptide est un cofacteur.

10 16. Procédé pour détecter au moins un ligand associé à une maladie dégénérative et/ou auto-immune, dans un échantillon biologique, caractérisé en ce que l'on met en contact l'échantillon biologique avec au moins un polypeptide comprenant au moins un fragment d'une protéine, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5 SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N° 10 à SEQ ID N° 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisie parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B, puis on détecte la formation d'un complexe entre ledit polypeptide et ledit ligand.

20 25 30 17. Procédé selon la revendication 16, caractérisé en ce que le ligand est un anticorps, un récepteur, un substrat d'activité enzymatique ou une enzyme dont ledit polypeptide est un cofacteur.

18. Procédé selon l'une quelconque des revendications 14 à 17, caractérisé en ce que la séquence dudit polypeptide comprend une séquence peptidique choisie parmi l'une quelconque des SEQ ID N° 1 à 8 et SEQ ID N° 10 à 29.

19. Procédé selon l'une quelconque des revendications 14 à 17, caractérisé en ce que la séquence dudit polypeptide consiste en une séquence peptidique choisie parmi l'une quelconque des SEQ ID N° 1 à 8 et SEQ ID N° 10 à 29.

20. Procédé selon l'une quelconque des revendications 14 à 19, caractérisé en ce que l'échantillon biologique est l'urine, le liquide céphalo-rachidien ou le sérum.

21. Procédé selon l'une quelconque des revendications 14 à 20, caractérisé en ce que la maladie dégénérative et/ou auto-immune est la sclérose en plaques.

22. Polypeptide caractérisé en ce qu'il comprend au moins un fragment d'une protéine dont la séquence peptidique correspond à SEQ ID N° 9, ledit fragment comprenant au moins une mutation par rapport à la séquence de référence SEQ ID N° 8.

23. Polypeptide selon la revendication 22, caractérisé en ce qu'il comprend au moins deux mutations par rapport à la séquence de référence SEQ ID N° 8.

24. Polypeptide selon la revendication 22, caractérisé en ce qu'il est choisi parmi les polypeptides qui comprennent la séquence en acides aminés FSWDNCFEGKDPAVIR, référencée SEQ ID N° 68 et la séquence en acides aminés YSLPKSEFAVPDLELP, référencée SEQ ID N° 72.

25. Polypeptide selon l'une des revendications 22 à 24, caractérisé en ce qu'il comprend une protéine dont la séquence peptidique correspond à SEQ ID N° 9.

26. Polypeptide selon l'une des revendications 22 à 25, caractérisé en ce qu'il consiste en une protéine dont la séquence peptidique correspond à SEQ ID N° 9.

27. Utilisation d'au moins un polypeptide selon l'une quelconque des revendications 22 à 26 pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune.

28. Utilisation selon la revendication 26, caractérisée en ce que le polypeptide tel que défini dans l'une quelconque des revendications 22 à 26 est utilisé

en mélange avec au moins un polypeptide tel que défini dans l'une quelconque des revendications 1 à 5.

29. Procédé pour détecter au moins un ligand associé à une maladie dégénérative et/ou auto-immune, dans un échantillon biologique, caractérisé en ce que 5 l'on met en contact l'échantillon biologique avec au moins un polypeptide tel que défini dans l'une quelconque des revendications 22 à 26, puis on détecte la formation d'un complexe entre ledit polypeptide et le ligand.

30. Procédé selon la revendication 29, caractérisé en ce que l'on met en 10 contact l'échantillon biologique avec un polypeptide tel que défini dans l'une quelconque des revendications 22 à 26 et avec au moins un polypeptide tel que défini dans l'une quelconque des revendications 1 à 5.

31. Procédé selon la revendication 29 ou 30, caractérisé en ce que ledit 15 ligand est un anticorps, un récepteur, un substrat d'activité enzymatique ou une enzyme dont ledit polypeptide est un cofacteur.

32. Procédé pour détecter au moins un polypeptide tel que défini dans l'une quelconque des revendications 22 à 26 dans un échantillon biologique caractérisé 20 en ce que l'on met en contact l'échantillon biologique avec au moins un ligand spécifique dudit polypeptide, puis on détecte la formation d'un complexe entre ledit polypeptide et ledit ligand.

33. Procédé selon la revendication 32, caractérisé en ce que ledit ligand est 25 anticorps monoclonal, un anticorps polyclonal, un récepteur, un substrat d'activité enzymatique ou une enzyme dont ledit polypeptide est un cofacteur.

34. Procédé selon la revendication 30 ou 31, caractérisé en ce que l'on met 30 en contact l'échantillon biologique avec un ligand tel que défini dans l'une quelconque des revendications 31 et 33 et au moins un ligand spécifique d'au moins un polypeptide tel que défini dans l'une quelconque des revendications 1 à 5, puis on détecte la

formation de complexes entre lesdits polypeptides et lesdits ligands spécifiques desdits polypeptides.

35. Procédé selon la revendication 34, caractérisé en ce que le ligand est
5 un anticorps monoclonal, un anticorps polyclonal, un récepteur, un substrat d'activité enzymatique ou une enzyme dont ledit polypeptide est un cofacteur.

36. Fragment nucléotidique caractérisé en ce qu'il code pour un polypeptide tel que défini dans l'une quelconque des revendications 22 à 26.

10

37. Utilisation d'un fragment nucléotidique pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, pronostiquer, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou auto-immune, selon laquelle ledit fragment nucléotidique est le
15 fragment nucléotidique défini dans la revendication 35, éventuellement en association avec au moins un fragment nucléotidique tel que défini dans l'une quelconque des revendications 8 à 11, et les fragments complémentaires desdits fragments.

38. Procédé selon l'une quelconque des revendications 29 à 35, caractérisé
20 en ce que l'échantillon biologique est l'urine, le liquide céphalo-rachidien ou le sérum.

39. Procédé selon l'une quelconque des revendications 29 à 36 caractérisé en ce que la maladie dégénérative et/ou auto-immune est la sclérose en plaques.

25

40. Procédé pour détecter au moins un polypeptide tel que défini dans l'une quelconque des revendications 1 à 5 ou dans l'une quelconque des revendications 22 à 26, selon lequel on prélève un échantillon d'un fluide biologique d'un patient présentant un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune et éventuellement après purification dudit échantillon de fluide
30 biologique, on analyse par spectrométrie de masse le profil de masse obtenu à partir du fluide biologique et on compare à un profil de masse de référence.

41. Utilisation d'au moins un polypeptide comprenant au moins un fragment d'une protéine pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 8, SEQ ID N° 9, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 8 à SEQ ID N° 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B, et de préférence SEQ ID Nos :8, 9, 17 et 24.

42. Utilisation, selon la revendication 41, dans laquelle les séquences peptidiques sont comprennent les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le précurseur de l'activateur du ganglioside GM2 et de la saposine B.

43. Utilisation, selon l'une quelconque des revendications 41 ou 42, qui est associée à l'utilisation d'une détection d'une activité gliotoxique.

44. Procédé de diagnostic ou de pronostic dans lequel on dose au moins un polypeptide, selon l'une quelconque des revendications 41 à 43, pour détecter ou prévenir un état pathologique, le dosage permettant d'obtenir une valeur de concentration qui est comparer à une valeur seuil représentative d'une maladie dégénérative et/ou neurologique et/ou auto-immune.

30

45. Procédé, selon la revendication 44, dans lequel la valeur seuil est obtenu par un test ELISA pour un échantillon d'urine, cette valeur étant de :

- 400 ng/ml pour le précurseur de l'activateur du ganglioside GM2, pour l'anticorps GM2AP84, et
- 2 µg/ml pour la saposine B, pour l'anticorps SAPB84.

5 46. Procédé de diagnostic ou de pronostic dans lequel on détecte au moins un polypeptide, selon l'une quelconque des revendications 41 à 43, pour prévenir un état pathologique, la détection s'effectuant dans des cellules ou dans les surnageants desdites cellules d'un patient susceptible d'être atteint par une maladie dégénérative et/ou neurologique et/ou auto-immune.

10

47. Procédé, selon la revendication 46, dans lequel la détection s'effectue sur des cellules monocytes ou macrophages ou dans les surnageants de ces cellules issues d'un patient susceptible d'être atteint par une maladie dégénérative et/ou neurologique et/ou auto-immune.

15

48. Procédé, selon l'une quelconque des revendications 46 ou 47, dans lequel la détection s'effectue sur des cellules ou dans les surnageants de ces cellules en culture, après un délai compris entre 6 et 12 jours de culture, préférentiellement après 9 jours.

20

49. Procédé, selon l'une quelconque des revendications 46 ou 47, dans lequel la détection s'effectue sur des cellules, *in vivo* ou *ex vivo*, préférentiellement monocytes ou macrophages, dans des cerveaux de patient susceptible d'être atteint par une maladie dégénérative et/ou neurologique et/ou auto-immune.

25

50. Utilisation ou procédé, selon l'une quelconque des revendications 41 à 49, caractérisée en ce que la maladie dégénérative et/ou neurologique et/ou auto-immune est la sclérose en plaques ou bien une forme (progressive, rémittente, rémittente-progressive) ou phase d'activité (poussées) de cette maladie.

30

51. Utilisation d'au moins un polypeptide comprenant au moins un fragment d'une protéine pour tester l'efficacité d'un agent thérapeutique, ladite

protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 9, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ 5 ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et les 10 séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisie parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

15 52. Utilisation d'au moins un polypeptide comprenant au moins un fragment d'une protéine pour la préparation d'une composition pharmaceutique destinée au traitement d'une maladie dégénérative et/ou neurologique et/ou autoimmune, telle que la sclérose en plaques, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 9, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, les 20 séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et les séquences peptidiques ou les 25 fragments desdites séquences appartenant à une même famille de protéines choisie parmi le perlacan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline et de la saposine. 30

53. Utilisation selon la revendication 51 ou 52, caractérisée en ce que le polypeptide est choisi parmi SEQ ID N° 2, 4, 8, 9, 17, 24.

54. Utilisation d'au moins un fragment nucléotidique, pour tester l'efficacité d'un agent thérapeutique pour un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, selon laquelle ledit fragment nucléotidique est choisi parmi les fragments qui codent pour au moins un fragment d'une protéine, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 9, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et les fragments complémentaires desdits fragments et les fragments qui codent pour les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisie parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

55. Utilisation pour tester l'efficacité d'un agent thérapeutique pour un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, de protéines recombinantes et/ou codées par tout ou partie des fragments nucléotidiques définis à la revendication 54.

56. Utilisation d'au moins un fragment nucléotidique pour la préparation d'une composition pharmaceutique destinée au traitement d'une maladie dégénérative et/ou neurologique et/ou auto-immune, telle que la sclérose en plaques, selon laquelle ledit fragment nucléotidique est choisi parmi des fragments qui codent pour au moins un fragment d'une protéine, ladite protéine étant choisie parmi les protéines dont la

séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 9, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et les fragments complémentaires desdits fragments et les fragments qui codent pour les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisie parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

15 57. Utilisation pour la préparation d'une composition pharmaceutique destinée au traitement d'une maladie dégénérative et/ou neurologique et/ou autoimmune, telle que la sclérose en plaques, de protéines recombinantes et/ou codées par tout ou partie des fragments nucléotidiques définis à la revendication 56.

20 58. Utilisation selon la revendication 54 ou 56, caractérisée en ce que ledit fragment nucléotidique code pour ladite protéine.

25 59. Utilisation selon la revendication 58, caractérisée en ce que la séquence peptidique de ladite protéine à l'état natif consiste en une séquence choisie parmi l'une quelconque des SEQ ID N° 1 à 29, les séquences peptidiques qui présentent au moins 70 % d'identité de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatique de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

60. Utilisation selon la revendication 59, caractérisée en ce que les polypeptides sont choisis parmi SEQ ID N° 2, 4, 8, 9, 17, 24.

61. Utilisation d'au moins un fragment nucléotidique, pour tester
5 l'efficacité d'un agent thérapeutique pour un état pathologique associé à une maladie
dégénérative et/ou neurologique et/ou auto-immune selon laquelle ledit fragment est un
fragment d'une séquence nucléique choisie parmi l'une quelconque des SEQ ID N° 30,
SEQ ID N° 31, SEQ ID N° 32, SEQ ID N° 33, SEQ ID N° 34, SEQ ID N° 35, SEQ ID
N° 36, SEQ ID N° 37, SEQ ID N° 38, SEQ ID N° 39, SEQ ID N° 40, SEQ ID N° 41,
10 SEQ ID N° 42, SEQ ID N° 43, SEQ ID N° 44, SEQ ID N° 45, SEQ ID N° 46 et SEQ
ID N° 47, SEQ ID N° 48, SEQ ID N° 49 et SEQ ID N° 50, SEQ ID N° 51, SEQ ID N°
52, SEQ ID N° 53, SEQ ID N° 54, SEQ ID N° 55, SEQ ID N° 56, SEQ ID N° 57, SEQ
ID N° 66, SEQ ID N° 67, SEQ ID N° 69, SEQ ID N° 70, SEQ ID N° 71, et leurs
séquences complémentaires.

15

62. Utilisation d'au moins un fragment nucléotidique pour la préparation
d'une composition pharmaceutique destinée au traitement d'une maladie dégénérative
et/ou neurologique et/ou auto-immune, telle que la sclérose en plaques selon laquelle
ledit fragment est un fragment d'une séquence nucléique choisie parmi l'une
20 quelconque des SEQ ID N° 30, SEQ ID N° 31, SEQ ID N° 32, SEQ ID N° 33, SEQ ID
N° 34, SEQ ID N° 35, SEQ ID N° 36, SEQ ID N° 37, SEQ ID N° 38, SEQ ID N° 39,
SEQ ID N° 40, SEQ ID N° 41, SEQ ID N° 42, SEQ ID N° 43, SEQ ID N° 44, SEQ ID
N° 45, SEQ ID N° 46 et SEQ ID N° 47, SEQ ID N° 48, SEQ ID N° 49 et SEQ ID N°
50, SEQ ID N° 51, SEQ ID N° 52, SEQ ID N° 53, SEQ ID N° 54, SEQ ID N° 55, SEQ
25 ID N° 56, SEQ ID N° 57, SEQ ID N° 66, SEQ ID N° 67, SEQ ID N° 69, SEQ ID N° 70
, SEQ ID N° 71, et leurs séquences complémentaires.

63. Utilisation selon la revendication 61 ou 62, caractérisée en ce que la
séquence nucléique est choisie parmi SEQ ID N° 30, 31, 42, 53.

30

64. Utilisation de la lycorine pour la préparation d'une composition pour la prévention et/ou le traitement de maladie dégénérative et/ou neurologique et/ou auto-immune.

Lapins anti GM2

► Ganglioside GM2 activator

2 peptides de 13,15 acides aminés lapins 189 190

1 peptide de 18 acides aminés lapin 191 et 192

MQSLMQAPLL IALGLLLATP AQAHLKKPSQ
LSSFSWDNCD EGKDPAVIRS LTLEPDPIVV
PGNVTLSVVG STSVPLSSPL KVDLVLEKEV
AGLWIKIPCT DYIGSCTFEH FCDVLDMLIP
TGEPCPCEPLR TYGLPCHCPF KEGTYSLPKS
EFVVPDLELP SWLTTGNYRI ESVLSSSGKRV
LGCIIKIAASLKGII

GM2A

ATG CAG TCC CTG ATG CAG GCT CCC CTC ATC GCC CTG CTC ATC GCG CTC TGC CTC CTC GCG ACC CCT GCG CAA GCC CAC CTG
 M Q S L H Q A P L I A L G I L A T P A Q A H L
 CCA TCC CAG CTC ATG AGC TTT TCC TGG GAT AAC TGT GAT GAA GGG AAG GAC CCT GCG GTG ATC AGA AGC CTG ACT
 P S Q L S S F S W D N C D E G K D P A V I R S L A T
 CCT GAC CCC ATC GTC CCT GCA AAT GTC ACC CTC ATG GTC GCG GGC AGC ACC AGT GTC CCC CTG AGT TCT CCT
 P D P I V V P G N V T I S V G S T S V P L S S P
 GTC GAT TTA GTC TTG GAG GTC GCT GGC CTC TGG ATC ARG ATC CCA TGC ACA GAC TAC ATT GGC AGC TGT
 V D L V L E K E V A G L W I K I P C T D Y I G S C
 GAA CAC TTC TGT GAT GTC CTC GAC ATG TTA ATT CCT ACT GGG GAG CCC TGC CCA GAG CCC CTG CGT AGC TAT GGG
 E H P C D V L D H L I P T G E P C P E P L R T Y G
 TGC CAC TGT CCC TTC AAA GAA GGA ACC TAC TCA CTG CCC AAG AGC GAA TTC TTG CCT GAC CTG GAG CCT
 P C H C P F K E G T Y S L P K S E V P D L E L P
 CTC ACC ACC GGG AAC TAC CGC ATA GAG AGC GTC CTC ACC AGC AGT GGG AAG CGT CTG GGC TGC ATC AAG ATC CCT
 L T T G N Y R I E S V L S S G K R L G C I K I A
 CTA AAG GCC ATA L K G I

FIG. 1

Lapins anti MRP14

2 peptides de 13, 19 acides aminés lapin 193
 1 peptide de 17 acides aminés lapin 195-196

MTCKMSQLER NIETIINTFH QYSVKLGHPD
TLNQGEFKEL VRKDLQNFLK KENKNEKVIE
HIMEDDLDTN ADKQLSFEFF IMLMARLTWA
SHEKMHEGDE GPGHHHKPGL GEGTP

MRP1

ATG ACT TGC AAA ATG TCG CAG CTC GAA CGG AAC ATA GAG ACC ATC ATC AAC ACC TTC CAC CAA TAC TCT GTC GGG CAC CCA
 H T C K M S Q L E R N I E T I N F H Q F H Q Y S V K L G H C
 CTG AAC CAG CGG GAA TTC AAA GAG CTG GTG CGA AAA GAT CTG CAA AAT TTT CTC AAG AAG GAG ANT ARG ANT GAA ARG GTC ATA
 L N Q G E F R K E L V R K D L Q N P I K K E N K E K V I E
 ATG GAG GAC CTG GAC ACA ATT GCA GAC AAG CAG CTG AGC TTC GAG GAG CTG ATG GCG AGG GTA ACC TGG GCC TCC CAC
 H E D L T N A D K Q L S F E P I H L M A R L T W A S H
 ATG CAC GAG GGT GAC GAG GCG CCT GGC CAC CAC CAT AAC CCA GGC CTC GGG GAG GGC ACC CCC
 H B G D E G P G H H K P G I G E G T

FIG. 2

3/18

Lapin anti Saposine

3 peptides de 12,15, 15 acides aminés lapin 74-75
 3 peptides de 12,15,15 acides aminés lapin 72-73

GDVVCQDCIQM VTDIQTAVRT NSTFVQALVE
HVKEECDRLG PGMADICKNY ISQYSEIAIQ
MMMHMQDQQQP KEICALVGFC DEV

Sap

ATG	GAA	GAC	GTC	GTT	TGC	TCC	ATT	CAG	ATG	GTC	ACT	GAC	ATC	CAG	ACT	GCT	GTA	CGG	ACC	AAC	TCC	TTT	GTC	CAG		
GCC	G	D	V	C	Q	D	C	I	Q	M	V	T	D	I	Q	T	A	V	R	T	N	S	T	F	V	Q
A	TTC	GAA	CAT	GTC	AAG	GAG	GAG	TGT	GAC	CGC	CTG	GGC	ATG	GCC	GAC	ATA	TGC	ARG	AAC	TAT	ATC	AGC	CAG	TAT		
L	V	E	H	V	K	E	E	C	D	R	L	G	P	A	M	A	D	I	C	N	Y	I	S	Q	Y	
S	I	A	T	Q	W	N	H	M	Q	P	K	E	I	C	A	L	V	G	F	C	D	E				

GAA ATT GCT ATC CAG ATG ATG CAC ATG CAA CCC AAG AAG ATC TAT GCA CTC ATT GGG TGC TAT GAT GAG TGA

FIG. 3

4/18

Dosage MRP 8

FIG. 4

5/18

Dosage MRP14

FIG. 5

6/18

Dosage MRP8/14

FIG. 6

Taux urinaire moyen par catégorie de population

FIG. 7

8/18

Figure 8

9/18

Figure 9

10/18

Figure 10

11/18

Figure 11
Patient SEP forme Rémittent Progressive

12/18

Figure 12

13/18

Figure 13

Patient SEP - Progressive

GM2AP & Gliotoxicité

14/18

Figure 14

15/18

Figure 15

16/18

Figure 16

17/18

Figure 17

Figure 18

LISTE DE SEQUENCES

<110> BIOMERIEUX STELHYS

5 <120> Utilisation d'un polypeptide pour détecter, prévenir ou traiter un état pathologique associé à une maladie dégénérative, neurologique ou auto-immune

<130> SEP22

10

<140>

<141>

<150> FR9909372

15

<151> 1999-07-15

<160> 75

<170> PatentIn Ver. 2.1

20

<210> 1

<211> 4393

<212> PRT

<213> Homo sapiens

25

<400> 1

Met Gly Trp Arg Ala Pro Gly Ala Leu Leu Leu Ala Leu Leu His
1 5 10 15

30

Gly Arg Leu Leu Ala Val Thr His Gly Leu Arg Ala Tyr Asp Gly Leu
20 25 30Ser Leu Pro Glu Asp Ile Glu Thr Val Thr Ala Ser Gln Met Arg Trp
35 40 45

35

Thr His Ser Tyr Leu Ser Asp Asp Glu Asp Met Leu Ala Asp Ser Ile
50 55 60

40

Ser Gly Asp Asp Leu Gly Ser Gly Asp Leu Gly Ser Gly Asp Phe Gln
65 70 75 80Met Val Tyr Phe Arg Ala Leu Val Asn Phe Thr Arg Ser Ile Glu Tyr
85 90 95

45

Ser Pro Gln Leu Glu Asp Ala Gly Ser Arg Glu Phe Arg Glu Val Ser
100 105 110Glu Ala Val Val Asp Thr Leu Glu Ser Glu Tyr Leu Lys Ile Pro Gly
115 120 125

50

Asp Gln Val Val Ser Val Val Phe Ile Lys Glu Leu Asp Gly Trp Val
130 135 140

55

Phe Val Glu Leu Asp Val Gly Ser Glu Gly Asn Ala Asp Gly Ala Gln
145 150 155 160Ile Gln Glu Met Leu Leu Arg Val Ile Ser Ser Gly Ser Val Ala Ser
165 170 175

Tyr Val Thr Ser Pro Gln Gly Phe Gln Phe Arg Arg Leu Gly Thr Val
 180 185 190
 5 Pro Gln Phe Pro Arg Ala Cys Thr Glu Ala Glu Phe Ala Cys His Ser
 195 200 205
 Tyr Asn Glu Cys Val Ala Leu Glu Tyr Arg Cys Asp Arg Arg Pro Asp
 210 215 220
 10 Cys Arg Asp Met Ser Asp Glu Leu Asn Cys Glu Glu Pro Val Leu Gly
 225 230 235 240
 Ile Ser Pro Thr Phe Ser Leu Leu Val Glu Thr Thr Ser Leu Pro Pro
 15 245 250 255
 Arg Pro Glu Thr Thr Ile Met Arg Gln Pro Pro Val Thr His Ala Pro
 260 265 270
 20 Gln Pro Leu Leu Pro Gly Ser Val Arg Pro Leu Pro Cys Gly Pro Gln
 275 280 285
 Glu Ala Ala Cys Arg Asn Gly His Cys Ile Pro Arg Asp Tyr Leu Cys
 290 295 300
 25 Asp Gly Gln Glu Asp Cys Glu Asp Gly Ser Asp Glu Leu Asp Cys Gly
 305 310 315 320
 Pro Pro Pro Cys Glu Pro Asn Glu Phe Pro Cys Gly Asn Gly His
 30 325 330 335
 Cys Ala Leu Lys Leu Trp Arg Cys Asp Gly Asp Phe Asp Cys Glu Asp
 340 345 350
 35 Arg Thr Asp Glu Ala Asn Cys Pro Thr Lys Arg Pro Glu Glu Val Cys
 355 360 365
 Gly Pro Thr Gln Phe Arg Cys Val Ser Thr Asn Met Cys Ile Pro Ala
 370 375 380
 40 Ser Phe His Cys Asp Glu Glu Ser Asp Cys Pro Asp Arg Ser Asp Glu
 385 390 395 400
 Phe Gly Cys Met Pro Pro Gln Val Val Thr Pro Pro Arg Glu Ser Ile
 45 405 410 415
 Gln Ala Ser Arg Gly Gln Thr Val Thr Phe Thr Cys Val Ala Ile Gly
 420 425 430
 50 Val Pro Ala Pro Phe Leu Ile Asn Trp Arg Leu Asn Trp Gly His Ile
 435 440 445
 Pro Ser Gln Pro Arg Val Thr Val Thr Ser Glu Gly Gly Arg Gly Thr
 450 455 460
 55 Leu Ile Ile Arg Asp Val Lys Glu Ser Asp Gln Gly Ala Tyr Thr Cys
 465 470 475 480

Glu Ala Met Asn Ala Arg Gly Met Val Phe Gly Ile Pro Asp Gly Val
 485 490 495
 Leu Glu Leu Val Pro Gln Arg Ala Gly Pro Cys Pro Asp Gly His Phe
 5 500 505 510
 Tyr Leu Glu His Ser Ala Ala Cys Leu Pro Cys Phe Cys Phe Gly Ile
 515 520 525
 10 Thr Ser Val Cys Gln Ser Thr Arg Arg Phe Arg Asp Gln Ile Arg Leu
 530 535 540
 Arg Phe Asp Gln Pro Asp Asp Phe Lys Gly Val Asn Val Thr Met Pro
 545 550 555 560
 15 Ala Gln Pro Gly Thr Pro Pro Leu Ser Ser Thr Gln Leu Gln Ile Asp
 565 570 575
 20 Pro Ser Leu His Glu Phe Gln Leu Val Asp Leu Ser Arg Arg Phe Leu
 580 585 590
 Val His Asp Ser Phe Trp Ala Leu Pro Glu Gln Phe Leu Gly Asn Lys
 595 600 605
 25 Val Asp Ser Tyr Gly Gly Ser Leu Arg Tyr Asn Val Arg Tyr Glu Leu
 610 615 620
 Ala Arg Gly Met Leu Glu Pro Val Gln Arg Pro Asp Val Val Leu Val
 625 630 635 640
 30 Gly Ala Gly Tyr Arg Leu Leu Ser Arg Gly His Thr Pro Thr Gln Pro
 645 650 655
 Gly Ala Leu Asn Gln Arg Gln Val Gln Phe Ser Glu Glu His Trp Val
 35 660 665 670
 His Glu Ser Gly Arg Pro Val Gln Arg Ala Glu Leu Leu Gln Val Leu
 675 680 685
 40 Gln Ser Leu Glu Ala Val Leu Ile Gln Thr Val Tyr Asn Thr Lys Met
 690 695 700
 Ala Ser Val Gly Leu Ser Asp Ile Ala Met Asp Thr Thr Val Thr His
 705 710 715 720
 45 Ala Thr Ser His Gly Arg Ala His Ser Val Glu Glu Cys Arg Cys Pro
 725 730 735
 Ile Gly Tyr Ser Gly Leu Ser Cys Glu Ser Cys Asp Ala His Phe Thr
 50 740 745 750
 Arg Val Pro Gly Gly Pro Tyr Leu Gly Thr Cys Ser Gly Cys Ser Cys
 755 760 765
 55 Asn Gly His Ala Ser Ser Cys Asp Pro Val Tyr Gly His Cys Leu Asn
 770 775 780
 Cys Gln His Asn Thr Glu Gly Pro Gln Cys Lys Lys Cys Lys Ala Gly

	785	790	795	800
	Phe Phe Gly Asp Ala Met Lys Ala Thr Ala Thr Ser Cys Arg Pro Cys			
	805	810	815	
5	Pro Cys Pro Tyr Ile Asp Ala Ser Arg Arg Phe Ser Asp Thr Cys Phe			
	820	825	830	
	Leu Asp Thr Asp Gly Gln Ala Thr Cys Asp Ala Cys Ala Pro Gly Tyr			
10	835	840	845	
	Thr Gly Arg Arg Cys Glu Ser Cys Ala Pro Gly Tyr Glu Gly Asn Pro			
	850	855	860	
15	Ile Gln Pro Gly Gly Lys Cys Arg Pro Val Asn Gln Glu Ile Val Arg			
	865	870	875	880
	Cys Asp Glu Arg Gly Ser Met Gly Thr Ser Gly Glu Ala Cys Arg Cys			
	885	890	895	
20	Lys Asn Asn Val Val Gly Arg Leu Cys Asn Glu Cys Ala Asp Arg Ser			
	900	905	910	
	Phe His Leu Ser Thr Arg Asn Pro Asp Gly Cys Leu Lys Cys Phe Cys			
25	915	920	925	
	Met Gly Val Ser Arg His Cys Thr Ser Ser Ser Trp Ser Arg Ala Gln			
	930	935	940	
30	Leu His Gly Ala Ser Glu Glu Pro Gly His Phe Ser Leu Thr Asn Ala			
	945	950	955	960
	Ala Ser Thr His Thr Thr Asn Glu Gly Ile Phe Ser Pro Thr Pro Gly			
	965	970	975	
35	Glu Leu Gly Phe Ser Ser Phe His Arg Leu Leu Ser Gly Pro Tyr Phe			
	980	985	990	
	Trp Ser Leu Pro Ser Arg Phe Leu Gly Asp Lys Val Thr Ser Tyr Gly			
40	995	1000	1005	
	Gly Glu Leu Arg Phe Thr Val Thr Gln Arg Ser Gln Pro Gly Ser Thr			
	1010	1015	1020	
45	Pro Leu His Gly Gln Pro Leu Val Val Leu Gln Gly Asn Asn Ile Ile			
	1025	1030	1035	1040
	Leu Glu His His Val Ala Gln Glu Pro Ser Pro Gly Gln Pro Ser Thr			
	1045	1050	1055	
50	Phe Ile Val Pro Phe Arg Glu Gln Ala Trp Gln Arg Pro Asp Gly Gln			
	1060	1065	1070	
	Pro Ala Thr Arg Glu His Leu Leu Met Ala Leu Ala Gly Ile Asp Thr			
55	1075	1080	1085	
	Leu Leu Ile Arg Ala Ser Tyr Ala Gln Gln Pro Ala Glu Ser Arg Val			
	1090	1095	1100	

Ser Gly Ile Ser Met Asp Val Ala Val Pro Glu Glu Thr Gly Gln Asp
1105 1110 1115 1120

5 Pro Ala Leu Glu Val Glu Gln Cys Ser Cys Pro Pro Gly Tyr Arg Gly
1125 1130 1135

Pro Ser Cys Gln Asp Cys Asp Thr Gly Tyr Thr Arg Thr Pro Ser Gly
1140 1145 1150

10 Leu Tyr Leu Gly Thr Cys Glu Arg Cys Ser Cys His Gly His Ser Glu
1155 1160 1165

Ala Cys Glu Pro Glu Thr Gly Ala Cys Gln Gly Cys Gln His His Thr
15 1170 1175 1180

Glu Gly Pro Arg Cys Glu Gln Cys Gln Pro Gly Tyr Tyr Gly Asp Ala
1185 1190 1195 1200

20 Gln Arg Gly Thr Pro Gln Asp Cys Gln Leu Cys Pro Cys Tyr Gly Asp
1205 1210 1215

Pro Ala Ala Gly Gln Ala Ala His Thr Cys Phe Leu Asp Thr Asp Gly
1220 1225 1230

25 His Pro Thr Cys Asp Ala Cys Ser Pro Gly His Ser Gly Arg His Cys
1235 1240 1245

Glu Arg Cys Ala Pro Gly Tyr Tyr Gly Asn Pro Ser Gln Gly Gln Pro
30 1250 1255 1260

Cys Gln Arg Asp Ser Gln Val Pro Gly Pro Ile Gly Cys Asn Cys Asp
1265 1270 1275 1280

35 Pro Gln Gly Ser Val Ser Ser Gln Cys Asp Ala Ala Gly Gln Cys Gln
1285 1290 1295

Cys Lys Ala Gln Val Glu Gly Leu Thr Cys Ser His Cys Arg Pro His
1300 1305 1310

40 His Phe His Leu Ser Ala Ser Asn Pro Asp Gly Cys Leu Pro Cys Phe
1315 1320 1325

Cys Met Gly Ile Thr Gln Gln Cys Ala Ser Ser Ala Tyr Thr Arg His
45 1330 1335 1340

Leu Ile Ser Thr His Phe Ala Pro Gly Asp Phe Gln Gly Phe Ala Leu
1345 1350 1355 1360

50 Val Asn Pro Gln Arg Asn Ser Arg Leu Thr Gly Glu Phe Thr Val Glu
1365 1370 1375

Pro Val Pro Glu Gly Ala Gln Leu Ser Phe Gly Asn Phe Ala Gln Leu
1380 1385 1390

55 Gly His Glu Ser Phe Tyr Trp Gln Leu Pro Glu Thr Tyr Gln Gly Asp
1395 1400 1405

Lys Val Ala Ala Tyr Gly Gly Lys Leu Arg Tyr Thr Leu Ser Tyr Thr
 1410 1415 1420

Ala Gly Pro Gln Gly Ser Pro Leu Ser Asp Pro Asp Val Gln Ile Thr
 5 1425 1430 1435 1440

Gly Asn Asn Ile Met Leu Val Ala Ser Gln Pro Ala Leu Gln Gly Pro
 1445 1450 1455

10 Glu Arg Arg Ser Tyr Glu Ile Met Phe Arg Glu Glu Phe Trp Arg Arg
 1460 1465 1470

Pro Asp Gly Gln Pro Ala Thr Arg Glu His Leu Leu Met Ala Leu Ala
 1475 1480 1485

15 Asp Leu Asp Glu Leu Leu Ile Arg Ala Thr Phe Ser Ser Val Pro Leu
 1490 1495 1500

Val Ala Ser Ile Ser Ala Val Ser Leu Glu Val Ala Gln Pro Gly Pro
 20 1505 1510 1515 1520

Ser Asn Arg Pro Arg Ala Leu Glu Val Glu Glu Cys Arg Cys Pro Pro
 1525 1530 1535

25 Gly Tyr Ile Gly Leu Ser Cys Gln Asp Cys Ala Pro Gly Tyr Thr Arg
 1540 1545 1550

Thr Gly Ser Gly Leu Tyr Leu Gly His Cys Glu Leu Cys Glu Cys Asn
 1555 1560 1565

30 Gly His Ser Asp Leu Cys His Pro Glu Thr Gly Ala Cys Ser Gln Cys
 1570 1575 1580

Gln His Asn Ala Ala Gly Glu Phe Cys Glu Leu Cys Ala Pro Gly Tyr
 35 1585 1590 1595 1600

Tyr Gly Asp Ala Thr Ala Gly Thr Pro Glu Asp Cys Gln Pro Cys Ala
 1605 1610 1615

40 Cys Pro Leu Thr Asn Pro Glu Asn Met Phe Ser Arg Thr Cys Glu Ser
 1620 1625 1630

Leu Gly Ala Gly Gly Tyr Arg Cys Thr Ala Cys Glu Pro Gly Tyr Thr
 1635 1640 1645

45 Gly Gln Tyr Cys Glu Gln Cys Gly Pro Gly Tyr Val Gly Asn Pro Ser
 1650 1655 1660

Val Gln Gly Gln Cys Leu Pro Glu Thr Asn Gln Ala Pro Leu Val
 50 1665 1670 1675 1680

Val Glu Val His Pro Ala Arg Ser Ile Val Pro Gln Gly Gly Ser His
 1685 1690 1695

55 Ser Leu Arg Cys Gln Val Ser Gly Arg Gly Pro His Tyr Phe Tyr Trp
 1700 1705 1710

Ser Arg Glu Asp Gly Arg Pro Val Pro Ser Gly Thr Gln Gln Arg His

	1715	1720	1725
	Gln Gly Ser Glu Leu His Phe Pro Ser Val Gln Pro Ser Asp Ala Gly		
	1730	1735	1740
5	Val Tyr Ile Cys Thr Cys Arg Asn Leu His Arg Ser Asn Thr Ser Arg		
	1745	1750	1755
	1760		
10	Ala Glu Leu Leu Val Thr Glu Ala Pro Ser Lys Pro Ile Thr Val Thr		
	1765	1770	1775
	Val Glu Glu Gln Arg Ser Gln Ser Val Arg Pro Gly Ala Asp Val Thr		
	1780	1785	1790
15	Phe Ile Cys Thr Ala Lys Ser Lys Ser Pro Ala Tyr Thr Leu Val Trp		
	1795	1800	1805
	Thr Arg Leu His Asn Gly Lys Leu Pro Thr Arg Ala Met Asp Phe Asn		
	1810	1815	1820
20	Gly Ile Leu Thr Ile Arg Asn Val Gln Leu Ser Asp Ala Gly Thr Tyr		
	1825	1830	1835
	1840		
25	Val Cys Thr Gly Ser Asn Met Phe Ala Met Asp Gln Gly Thr Ala Thr		
	1845	1850	1855
	Leu His Val Gln Ala Ser Gly Thr Leu Ser Ala Pro Val Val Ser Ile		
	1860	1865	1870
30	His Pro Pro Gln Leu Thr Val Gln Pro Gly Gln Leu Ala Glu Phe Arg		
	1875	1880	1885
	Cys Ser Ala Thr Gly Ser Pro Thr Pro Thr Leu Glu Trp Thr Gly Gly		
	1890	1895	1900
35	Pro Gly Gly Gln Leu Pro Ala Lys Ala Gln Ile His Gly Gly Ile Leu		
	1905	1910	1915
	1920		
40	Arg Leu Pro Ala Val Glu Pro Thr Asp Gln Ala Gln Tyr Leu Cys Arg		
	1925	1930	1935
	Ala His Ser Ser Ala Gly Gln Gln Val Ala Arg Ala Val Leu His Val		
	1940	1945	1950
45	His Gly Gly Gly Pro Arg Val Gln Val Ser Pro Glu Arg Thr Gln		
	1955	1960	1965
	Val His Ala Gly Arg Thr Val Arg Leu Tyr Cys Arg Ala Ala Gly Val		
	1970	1975	1980
50	Pro Ser Ala Thr Ile Thr Trp Arg Lys Glu Gly Gly Ser Leu Pro Pro		
	1985	1990	1995
	2000		
55	Gln Ala Arg Ser Glu Arg Thr Asp Ile Ala Thr Leu Leu Ile Pro Ala		
	2005	2010	2015
	Ile Thr Thr Ala Asp Ala Gly Phe Tyr Leu Cys Val Ala Thr Ser Pro		
	2020	2025	2030

Ala Gly Thr Ala Gln Ala Arg Ile Gln Val Val Val Leu Ser Ala Ser
2035 2040 2045

5 Asp Ala Ser Gln Pro Pro Val Lys Ile Glu Ser Ser Ser Pro Ser Val
2050 2055 2060

Thr Glu Gly Gln Thr Leu Asp Leu Asn Cys Val Val Ala Gly Ser Ala
2065 2070 2075 2080

10 His Ala Gln Val Thr Trp Tyr Arg Arg Gly Gly Ser Leu Pro His His
2085 2090 2095

Thr Gln Val His Gly Ser Arg Leu Arg Leu Pro Gln Val Ser Pro Ala
15 2100 2105 2110

Asp Ser Gly Glu Tyr Val Cys Arg Val Glu Asn Gly Ser Gly Pro Lys
2115 2120 2125

20 Glu Ala Ser Ile Thr Val Ser Val Leu His Gly Thr His Ser Gly Pro
2130 2135 2140

Ser Tyr Thr Pro Val Pro Gly Ser Thr Arg Pro Ile Arg Ile Glu Pro
2145 2150 2155 2160

25 Ser Ser Ser His Val Ala Glu Gly Gln Thr Leu Asp Leu Asn Cys Val
2165 2170 2175

Val Pro Gly Gln Ala His Ala Gln Val Thr Trp His Lys Arg Gly Gly
30 2180 2185 2190

Ser Leu Pro Ala Arg His Gln Thr His Gly Ser Leu Leu Arg Leu His
2195 2200 2205

35 Gln Val Thr Pro Ala Asp Ser Gly Glu Tyr Val Cys His Val Val Gly
2210 2215 2220

Thr Ser Gly Pro Leu Glu Ala Ser Val Leu Val Thr Ile Glu Ala Ser
2225 2230 2235 2240

40 Val Ile Pro Gly Pro Ile Pro Pro Val Arg Ile Glu Ser Ser Ser Ser
2245 2250 2255

Thr Val Ala Glu Gly Gln Thr Leu Asp Leu Ser Cys Val Val Ala Gly
45 2260 2265 2270

Gln Ala His Ala Gln Val Thr Trp Tyr Lys Arg Gly Gly Ser Leu Pro
2275 2280 2285

50 Ala Arg His Gln Val Arg Gly Ser Arg Leu Tyr Ile Phe Gln Ala Ser
2290 2295 2300

Pro Ala Asp Ala Gly Gln Tyr Val Cys Arg Ala Ser Asn Gly Met Glu
55 2305 2310 2315 2320

Ala Ser Ile Thr Val Thr Val Thr Gly Thr Gln Gly Ala Asn Leu Ala
2325 2330 2335

Tyr Pro Ala Gly Ser Thr Gln Pro Ile Arg Ile Glu Pro Ser Ser Ser
 2340 2345 2350
 Gln Val Ala Glu Gly Gln Thr Leu Asp Leu Asn Cys Val Val Pro Gly
 5 2355 2360 2365
 Gln Ser His Ala Gln Val Thr Trp His Lys Arg Gly Gly Ser Leu Pro
 2370 2375 2380
 10 Val Arg His Gln Thr His Gly Ser Leu Leu Arg Leu Tyr Gln Ala Ser
 2385 2390 2395 2400
 Pro Ala Asp Ser Gly Glu Tyr Val Cys Arg Val Leu Gly Ser Ser Val
 2405 2410 2415
 15 Pro Leu Glu Ala Ser Val Leu Val Thr Ile Glu Pro Ala Gly Ser Val
 2420 2425 2430
 Pro Ala Leu Gly Val Thr Pro Thr Val Arg Ile Glu Ser Ser Ser Ser
 20 2435 2440 2445
 Gln Val Ala Glu Gly Gln Thr Leu Asp Leu Asn Cys Leu Val Ala Gly
 2450 2455 2460
 25 Gln Ala His Ala Gln Val Thr Trp His Lys Arg Gly Gly Ser Leu Pro
 2465 2470 2475 2480
 Ala Arg His Gln Val His Gly Ser Arg Leu Arg Leu Leu Gln Val Thr
 2485 2490 2495
 30 Pro Ala Asp Ser Gly Glu Tyr Val Cys Arg Val Val Gly Ser Ser Gly
 2500 2505 2510
 Thr Gln Glu Ala Ser Val Leu Val Thr Ile Gln Gln Arg Leu Ser Gly
 35 2515 2520 2525
 Ser His Ser Gln Gly Val Ala Tyr Pro Val Arg Ile Glu Ser Ser Ser
 2530 2535 2540
 40 Ala Ser Leu Ala Asn Gly His Thr Leu Asp Leu Asn Cys Leu Val Ala
 2545 2550 2555 2560
 Ser Gln Ala Pro His Thr Ile Thr Trp Tyr Lys Arg Gly Gly Ser Leu
 2565 2570 2575
 45 Pro Ser Arg His Gln Ile Val Gly Ser Arg Leu Arg Ile Pro Gln Val
 2580 2585 2590
 Thr Pro Ala Asp Ser Gly Glu Tyr Val Cys His Val Ser Asn Gly Ala
 50 2595 2600 2605
 Gly Ser Arg Glu Thr Ser Leu Ile Val Thr Ile Gln Gly Ser Gly Ser
 2610 2615 2620
 55 Ser His Val Pro Arg Val Ser Pro Pro Ile Arg Ile Glu Ser Ser Ser
 2625 2630 2635 2640
 Pro Thr Val Val Glu Gly Gln Thr Leu Asp Leu Asn Cys Val Val Ala

	2645	2650	2655
	Arg Gln Pro Gln Ala Ile Ile Thr Trp Tyr Lys Arg Gly Gly Ser Leu		
	2660	2665	2670
5	Pro Ser Arg His Gln Thr His Gly Ser His Leu Arg Leu His Gln Met		
	2675	2680	2685
10	Ser Val Ala Asp Ser Gly Glu Tyr Val Cys Arg Ala Asn Asn Asn Ile		
	2690	2695	2700
	Asp Ala Leu Glu Ala Ser Ile Val Ile Ser Val Ser Pro Ser Ala Gly		
	2705	2710	2715
	2720		
15	Ser Pro Ser Ala Pro Gly Ser Ser Met Pro Ile Arg Ile Glu Ser Ser		
	2725	2730	2735
	Ser Ser His Val Ala Glu Gly Glu Thr Leu Asp Leu Asn Cys Val Val		
	2740	2745	2750
20	Pro Gly Gln Ala His Ala Gln Val Thr Trp His Lys Arg Gly Gly Ser		
	2755	2760	2765
	Leu Pro Ser Tyr His Gln Thr Arg Gly Ser Arg Leu Arg Leu His His		
25	2770	2775	2780
	Val Ser Pro Ala Asp Ser Gly Glu Tyr Val Cys Arg Val Met Gly Ser		
	2785	2790	2795
	2800		
30	Ser Gly Pro Leu Glu Ala Ser Val Leu Val Thr Ile Glu Ala Ser Gly		
	2805	2810	2815
	Ser Ser Ala Val His Val Pro Ala Pro Gly Gly Ala Pro Pro Ile Arg		
	2820	2825	2830
35	Ile Glu Pro Ser Ser Arg Val Ala Glu Gly Gln Thr Leu Asp Leu		
	2835	2840	2845
	Lys Cys Val Val Pro Gly Gln Ala His Ala Gln Val Thr Trp His Lys		
40	2850	2855	2860
	Arg Gly Gly Asn Leu Pro Ala Arg His Gln Val His Gly Pro Leu Leu		
	2865	2870	2875
	2880		
45	Arg Leu Asn Gln Val Ser Pro Ala Asp Ser Gly Glu Tyr Ser Cys Gln		
	2885	2890	2895
	Val Thr Gly Ser Ser Gly Thr Leu Glu Ala Ser Val Leu Val Thr Ile		
	2900	2905	2910
50	Glu Pro Ser Ser Pro Gly Pro Ile Pro Ala Pro Gly Leu Ala Gln Pro		
	2915	2920	2925
	Ile Tyr Ile Glu Ala Ser Ser His Val Thr Glu Gly Gln Thr Leu		
55	2930	2935	2940
	Asp Leu Asn Cys Val Val Pro Gly Gln Ala His Ala Gln Val Thr Trp		
	2945	2950	2955
	2960		

Tyr Lys Arg Gly Gly Ser Leu Pro Ala Arg His Gln Thr His Gly Ser
 2965 2970 2975
 5 Gln Leu Arg Leu His His Val Ser Pro Ala Asp Ser Gly Glu Tyr Val
 2980 2985 2990
 Cys Arg Ala Ala Gly Gly Pro Gly Pro Glu Gln Glu Ala Ser Phe Thr
 2995 3000 3005
 10 Val Thr Val Pro Pro Ser Glu Gly Ser Ser Tyr Arg Leu Arg Ser Pro
 3010 3015 3020
 Val Ile Ser Ile Asp Pro Pro Ser Ser Thr Val Gln Gln Gly Gln Asp
 15 3025 3030 3035 3040
 Ala Ser Phe Lys Cys Leu Ile His Asp Gly Ala Ala Pro Ile Ser Leu
 3045 3050 3055
 20 Glu Trp Lys Thr Arg Asn Gln Glu Leu Glu Asp Asn Val His Ile Ser
 3060 3065 3070
 Pro Asn Gly Ser Ile Ile Thr Ile Val Gly Thr Arg Pro Ser Asn His
 3075 3080 3085
 25 Gly Thr Tyr Arg Cys Val Ala Ser Asn Ala Tyr Gly Val Ala Gln Ser
 3090 3095 3100
 Val Val Asn Leu Ser Val His Gly Pro Pro Thr Val Ser Val Leu Pro
 30 3105 3110 3115 3120
 Glu Gly Pro Val Trp Val Lys Val Gly Lys Ala Val Thr Leu Glu Cys
 3125 3130 3135
 35 Val Ser Ala Gly Glu Pro Arg Ser Ser Ala Arg Trp Thr Arg Ile Ser
 3140 3145 3150
 Ser Thr Pro Ala Lys Leu Glu Gln Arg Thr Tyr Gly Leu Met Asp Ser
 3155 3160 3165
 40 His Thr Val Leu Gln Ile Ser Ser Ala Lys Pro Ser Asp Ala Gly Thr
 3170 3175 3180
 Tyr Val Cys Leu Ala Gln Asn Ala Leu Gly Thr Ala Gln Lys Gln Val
 45 3185 3190 3195 3200
 Glu Val Ile Val Asp Thr Gly Ala Met Ala Pro Gly Ala Pro Gln Val
 3205 3210 3215
 50 Gln Ala Glu Glu Ala Glu Leu Thr Val Glu Ala Gly His Thr Ala Thr
 3220 3225 3230
 Leu Arg Cys Ser Ala Thr Gly Ser Pro Ala Arg Thr Ile His Trp Ser
 3235 3240 3245
 55 Lys Leu Arg Ser Pro Leu Pro Trp Gln His Arg Leu Glu Gly Asp Thr
 3250 3255 3260

Leu Ile Ile Pro Arg Val Ala Gln Gln Asp Ser Gly Gln Tyr Ile Cys
 3265 3270 3275 3280
 Asn Ala Thr Ser Pro Ala Gly His Ala Glu Ala Thr Ile Ile Leu His
 5 3285 3290 3295
 Val Glu Ser Pro Pro Tyr Ala Thr Thr Val Pro Glu His Ala Ser Val
 3300 3305 3310
 10 Gln Ala Gly Glu Thr Val Gln Leu Gln Cys Leu Ala His Gly Thr Pro
 3315 3320 3325
 Pro Leu Thr Phe Gln Trp Ser Arg Val Gly Ser Ser Leu Pro Gly Arg
 3330 3335 3340
 15 Ala Thr Ala Arg Asn Glu Leu Leu His Phe Glu Arg Ala Ala Pro Glu
 3345 3350 3355 3360
 Asp Ser Gly Arg Tyr Arg Cys Arg Val Thr Asn Lys Val Gly Ser Ala
 20 3365 3370 3375
 Glu Ala Phe Ala Gln Leu Leu Val Gln Gly Pro Pro Gly Ser Leu Pro
 3380 3385 3390
 25 Ala Thr Ser Ile Pro Ala Gly Ser Thr Pro Thr Val Gln Val Thr Pro
 3395 3400 3405
 Gln Leu Glu Thr Lys Ser Ile Gly Ala Ser Val Glu Phe His Cys Ala
 3410 3415 3420
 30 Val Pro Ser Asp Arg Gly Thr Gln Leu Arg Trp Phe Lys Glu Gly Gly
 3425 3430 3435 3440
 Gln Leu Pro Pro Gly His Ser Val Gln Asp Gly Val Leu Arg Ile Gln
 35 3445 3450 3455
 Asn Leu Asp Gln Ser Cys Gln Gly Thr Tyr Ile Cys Gln Ala His Gly
 3460 3465 3470
 40 Pro Trp Gly Lys Ala Gln Ala Ser Ala Gln Leu Val Ile Gln Ala Leu
 3475 3480 3485
 Pro Ser Val Leu Ile Asn Ile Arg Thr Ser Val Gln Thr Val Val Val
 3490 3495 3500
 45 Gly His Ala Val Glu Phe Glu Cys Leu Ala Leu Gly Asp Pro Lys Pro
 3505 3510 3515 3520
 Gln Val Thr Trp Ser Lys Val Gly Gly His Leu Arg Pro Gly Ile Val
 50 3525 3530 3535
 Gln Ser Gly Gly Val Val Arg Ile Ala His Val Glu Leu Ala Asp Ala
 3540 3545 3550
 55 Gly Gln Tyr Arg Cys Thr Ala Thr Asn Ala Ala Gly Thr Thr Gln Ser
 3555 3560 3565
 His Val Leu Leu Leu Val Gln Ala Leu Pro Gln Ile Ser Met Pro Gln

	3570	3575	3580	
	Glu Val Arg Val Pro Ala Gly Ser Ala Ala Val Phe Pro Cys Ile Ala			
5	3585	3590	3595	3600
	Ser Gly Tyr Pro Thr Pro Asp Ile Ser Trp Ser Lys Leu Asp Gly Ser			
	3605	3610	3615	
10	Leu Pro Pro Asp Ser Arg Leu Glu Asn Asn Met Leu Met Leu Pro Ser			
	3620	3625	3630	
	Val Gln Pro Gln Asp Ala Gly Thr Tyr Val Cys Thr Ala Thr Asn Arg			
	3635	3640	3645	
15	Gln Gly Lys Val Lys Ala Phe Ala His Leu Gln Val Pro Glu Arg Val			
	3650	3655	3660	
	Val Pro Tyr Phe Thr Gln Thr Pro Tyr Ser Phe Leu Pro Leu Pro Thr			
	3665	3670	3675	3680
20	Ile Lys Asp Ala Tyr Arg Lys Phe Glu Ile Lys Ile Thr Phe Arg Pro			
	3685	3690	3695	
25	Asp Ser Ala Asp Gly Met Leu Leu Tyr Asn Gly Gln Lys Arg Val Pro			
	3700	3705	3710	
	Gly Ser Pro Thr Asn Leu Ala Asn Arg Gln Pro Asp Phe Ile Ser Phe			
	3715	3720	3725	
30	Gly Leu Val Gly Gly Arg Pro Glu Phe Arg Phe Asp Ala Gly Ser Gly			
	3730	3735	3740	
	Met Ala Thr Ile Arg His Pro Thr Pro Leu Ala Leu Gly His Phe His			
	3745	3750	3755	3760
35	Thr Val Thr Leu Leu Arg Ser Leu Thr Gln Gly Ser Leu Ile Val Gly			
	3765	3770	3775	
40	Asp Leu Ala Pro Val Asn Gly Thr Ser Gln Gly Lys Phe Gln Gly Leu			
	3780	3785	3790	
	Asp Leu Asn Glu Glu Leu Tyr Leu Gly Gly Tyr Pro Asp Tyr Gly Ala			
	3795	3800	3805	
45	Ile Pro Lys Ala Gly Leu Ser Ser Gly Phe Ile Gly Cys Val Arg Glu			
	3810	3815	3820	
	Leu Arg Ile Gln Gly Glu Glu Ile Val Phe His Asp Leu Asn Leu Thr			
	3825	3830	3835	3840
50	Ala His Gly Ile Ser His Cys Pro Thr Cys Arg Asp Arg Pro Cys Gln			
	3845	3850	3855	
55	Asn Gly Gly Gln Cys His Asp Ser Glu Ser Ser Tyr Val Cys Val			
	3860	3865	3870	
	Cys Pro Ala Gly Phe Thr Gly Ser Arg Cys Glu His Ser Gln Ala Leu			
	3875	3880	3885	

His Cys His Pro Glu Ala Cys Gly Pro Asp Ala Thr Cys Val Asn Arg
 3890 3895 3900

5 Pro Asp Gly Arg Gly Tyr Thr Cys Arg Cys His Leu Gly Arg Ser Gly
 3905 3910 3915 3920

Leu Arg Cys Glu Glu Gly Val Thr Val Thr Pro Ser Leu Ser Gly
 3925 3930 3935

10 Ala Gly Ser Tyr Leu Ala Leu Pro Ala Leu Thr Asn Thr His His Glu
 3940 3945 3950

15 Leu Arg Leu Asp Val Glu Phe Lys Pro Leu Ala Pro Asp Gly Val Leu
 3955 3960 3965

Leu Phe Ser Gly Gly Lys Ser Gly Pro Val Glu Asp Phe Val Ser Leu
 3970 3975 3980

20 Ala Met Val Gly Gly His Leu Glu Phe Arg Tyr Glu Leu Gly Ser Gly
 3985 3990 3995 4000

Leu Ala Val Leu Arg Thr Ala Glu Pro Leu Ala Leu Gly Arg Trp His
 4005 4010 4015

25 Arg Val Ser Ala Glu Arg Leu Asn Lys Asp Gly Ser Leu Arg Val Asn
 4020 4025 4030

30 Gly Gly Arg Pro Val Leu Arg Ser Ser Pro Gly Lys Ser Gln Gly Leu
 4035 4040 4045

Asn Leu His Thr Leu Leu Tyr Leu Gly Gly Val Glu Pro Ser Val Pro
 4050 4055 4060

35 Leu Ser Pro Ala Thr Asn Met Ser Ala His Phe Arg Gly Cys Val Gly
 4065 4070 4075 4080

Glu Val Ser Val Asn Gly Lys Arg Leu Asp Leu Thr Tyr Ser Phe Leu
 4085 4090 4095

40 Gly Ser Gln Gly Ile Gly Gln Cys Tyr Asp Ser Ser Pro Cys Glu Arg
 4100 4105 4110

45 Gln Pro Cys Gln His Gly Ala Thr Cys Met Pro Ala Gly Glu Tyr Glu
 4115 4120 4125

Phe Gln Cys Leu Cys Arg Asp Gly Ile Lys Gly Asp Leu Cys Glu His
 4130 4135 4140

50 Glu Glu Asn Pro Cys Gln Leu Arg Glu Pro Cys Leu His Gly Gly Thr
 4145 4150 4155 4160

Cys Gln Gly Thr Arg Cys Leu Cys Leu Pro Gly Phe Ser Gly Pro Arg
 4165 4170 4175

55 Cys Gln Gln Gly Ser Gly His Gly Ile Ala Glu Ser Asp Trp His Leu
 4180 4185 4190

Glu Gly Ser Gly Gly Asn Asp Ala Pro Gly Gln Tyr Gly Ala Tyr Phe
4195 4200 4205

His Asp Asp Gly Phe Leu Ala Phe Pro Gly His Val Phe Ser Arg Ser
5 4210 4215 4220

Leu Pro Glu Val Pro Glu Thr Ile Glu Leu Glu Val Arg Thr Ser Thr
4225 4230 4235 4240

10 Ala Ser Gly Leu Leu Leu Trp Gln Gly Val Glu Val Gly Glu Ala Gly
4245 4250 4255

Gln Gly Lys Asp Phe Ile Ser Leu Gly Leu Gln Asp Gly His Leu Val
15 4260 4265 4270

Phe Arg Tyr Gln Leu Gly Ser Gly Glu Ala Arg Leu Val Ser Glu Asp
4275 4280 4285

20 Pro Ile Asn Asp Gly Glu Trp His Arg Val Thr Ala Leu Arg Glu Gly
4290 4295 4300

Arg Arg Gly Ser Ile Gln Val Asp Gly Glu Glu Leu Val Ser Gly Arg
25 4305 4310 4315 4320

Ser Pro Gly Pro Asn Val Ala Val Asn Ala Lys Gly Ser Ile Tyr Ile
4325 4330 4335

Gly Gly Ala Pro Asp Val Ala Thr Leu Thr Gly Gly Arg Phe Ser Ser
30 4340 4345 4350

Gly Ile Thr Gly Cys Val Lys Asn Leu Val Leu His Ser Ala Arg Pro
4355 4360 4365

Gly Ala Pro Pro Pro Gln Pro Leu Asp Leu Gln His Arg Ala Gln Ala
35 4370 4375 4380

Gly Ala Asn Thr Arg Pro Cys Pro Ser
4385 4390

40

<210> 2
<211> 195
<212> PRT
45 <213> Homo sapiens

<400> 2
Asp Ala Pro Gly Gln Tyr Gly Ala Tyr Phe His Asp Asp Gly Phe Leu
1 5 10 15

50 Ala Phe Pro Gly His Val Phe Ser Arg Ser Leu Pro Glu Val Pro Glu
20 25 30

Thr Ile Glu Leu Glu Val Arg Thr Ser Thr Ala Ser Gly Leu Leu Leu
55 35 40 45

Trp Gln Gly Val Glu Val Gly Glu Ala Gly Gln Gly Lys Asp Phe Ile
50 55 60

65 Ser Leu Gly Leu Gln Asp Gly His Leu Val Phe Arg Tyr Gln Leu Gly
65 70 75 80

5 Ser Gly Glu Ala Arg Leu Val Ser Glu Asp Pro Ile Asn Asp Gly Glu
85 90 95

10 Trp His Arg Val Thr Ala Leu Arg Glu Gly Arg Arg Gly Ser Ile Gln
100 105 110

10 Val Asp Gly Glu Glu Leu Val Ser Gly Arg Ser Pro Gly Pro Asn Val
115 120 125

15 Ala Val Asn Ala Lys Gly Ser Val Tyr Ile Gly Gly Ala Pro Asp Val
130 135 140

145 Ala Thr Leu Thr Gly Gly Arg Phe Ser Ser Gly Ile Thr Gly Cys Val
145 150 155 160

20 Lys Asn Leu Val Leu His Ser Ala Arg Pro Gly Ala Pro Pro Pro Gln
165 170 175

180 Pro Leu Asp Leu Gln His Arg Ala Gln Ala Gly Ala Asn Thr Arg Pro
185 190

25 Cys Pro Ser
195

30 <210> 3
<211> 508
<212> PRT
<213> Homo sapiens

35 <400> 3
1 Arg Thr Cys Arg Cys Lys Asn Asn Val Val Gly Arg Leu Cys Asn Glu
5 10 15

40 Cys Ala Asp Arg Ser Phe His Leu Ser Thr Arg Asn Pro Asp Gly Cys
20 25 30

35 Leu Lys Cys Phe Cys Met Gly Val Ser Arg His Cys Thr Ser Ser Ser
40 45

45 Trp Ser Arg Ala Gln Leu His Gly Ala Ser Glu Glu Pro Gly His Phe
50 55 60

50 Ser Leu Thr Asn Ala Ala Ser Thr His Thr Thr Asn Glu Gly Ile Phe
65 70 75 80

85 Ser Pro Thr Pro Gly Glu Leu Gly Phe Ser Ser Phe His Arg Leu Leu
90 95

55 Ser Gly Pro Tyr Phe Trp Ser Leu Pro Ser Arg Phe Leu Gly Asp Lys
100 105 110

Val Thr Ser Tyr Gly Gly Glu Leu Arg Phe Thr Val Thr Gln Arg Ser

115 120 125

Gln Pro Gly Ser Thr Pro Leu His Gly Gln Pro Leu Val Val Leu Gln
130 135 140

5 Gly Asn Asn Ile Ile Leu Glu His His Val Ala Gln Glu Pro Ser Pro
145 150 155 160

Gly Gln Pro Ser Thr Phe Ile Val Pro Phe Arg Glu Gln Ala Trp Gln
10 165 170 175

Arg Pro Asp Gly Gln Pro Ala Thr Arg Glu His Leu Leu Met Ala Leu
180 185 190

15 Ala Gly Ile Asp Thr Leu Leu Ile Arg Ala Ser Tyr Ala Gln Gln Pro
195 200 205

Ala Glu Ser Arg Leu Ser Gly Ile Ser Met Asp Val Ala Val Pro Glu
210 215 220

20 Glu Thr Gly Gln Asp Pro Ala Leu Glu Val Glu Gln Cys Ser Cys Pro
225 230 235 240

Pro Gly Tyr Leu Gly Pro Ser Cys Gln Asp Cys Asp Thr Gly Tyr Thr
25 245 250 255

Arg Thr Pro Ser Gly Leu Tyr Leu Gly Thr Cys Glu Arg Cys Ser Cys
260 265 270

30 His Gly His Ser Glu Ala Cys Glu Pro Glu Thr Gly Ala Cys Gln Gly
275 280 285

Cys Gln His His Thr Glu Gly Pro Arg Cys Glu Gln Cys Gln Pro Gly
290 295 300

35 Tyr Tyr Gly Asp Ala Gln Arg Gly Thr Pro Gln Asp Cys Gln Leu Cys
305 310 315 320

Pro Cys Tyr Gly Asp Pro Ala Ala Gly Gln Ala Ala Leu Thr Cys Phe
40 325 330 335

Leu Asp Thr Asp Gly His Pro Thr Cys Asp Ala Cys Ser Pro Gly His
340 345 350

45 Ser Gly Arg His Cys Glu Arg Cys Ala Pro Gly Tyr Tyr Gly Asn Pro
355 360 365

Ser Gln Gly Gln Pro Cys Gln Arg Asp Ser Gln Val Pro Gly Pro Ile
370 375 380

50 Gly Cys Asn Cys Asp Pro Gln Gly Ser Val Ser Ser Gln Cys Asp Ala
385 390 395 400

Ala Gly Gln Cys Gln Cys Lys Ala Gln Val Glu Gly Leu Thr Cys Ser
55 405 410 415

His Cys Arg Pro His His Phe His Leu Ser Ala Ser Asn Pro Asp Gly
420 425 430

Cys Leu Pro Cys Phe Cys Met Gly Ile Thr Gln Gln Cys Ala Ser Ser
 435 440 445

5 Ala Tyr Thr Arg His Leu Ile Ser Thr His Phe Ala Pro Gly Asp Phe
 450 455 460

Gln Gly Phe Ala Leu Val Asn Pro Gln Arg Asn Ser Arg Leu Thr Gly
 465 470 475 480

10 Glu Phe Thr Val Glu Pro Val Pro Glu Gly Ala Gln Leu Ser Phe Gly
 485 490 495

Asn Phe Ala Gln Leu Gly His Glu Ser Phe Tyr Trp
 15 500 505

20 <210> 4
 <211> 199
 <212> PRT
 <213> Homo sapiens

25 <400> 4
 Met Lys Trp Val Trp Ala Leu Leu Leu Ala Ala Trp Ala Ala Ala
 1 5 10 15

Glu Arg Asp Cys Arg Val Ser Ser Phe Arg Val Lys Glu Asn Phe Asp
 20 25 30

30 Lys Ala Arg Phe Ser Gly Thr Trp Tyr Ala Met Ala Lys Lys Asp Pro
 35 40 45

Glu Gly Leu Phe Leu Gln Asp Asn Ile Val Ala Glu Phe Ser Val Asp
 35 50 55 60

Glu Thr Gly Gln Met Ser Ala Thr Ala Lys Gly Arg Val Arg Leu Leu
 65 70 75 80

40 Asn Asn Trp Asp Val Cys Ala Asp Met Val Gly Thr Phe Thr Asp Thr
 85 90 95

Glu Asp Pro Ala Lys Phe Lys Met Lys Tyr Trp Gly Val Ala Ser Phe
 100 105 110

45 Leu Gln Lys Gly Asn Asp Asp His Trp Ile Val Asp Thr Asp Tyr Asp
 115 120 125

Thr Tyr Ala Val Gln Tyr Ser Cys Arg Leu Leu Asn Leu Asp Gly Thr
 130 135 140

50 Cys Ala Asp Ser Tyr Ser Phe Val Phe Ser Arg Asp Pro Asn Gly Leu
 145 150 155 160

55 Pro Pro Glu Ala Gln Lys Ile Val Arg Gln Arg Gln Glu Glu Leu Cys
 165 170 175

Leu Ala Arg Gln Tyr Arg Leu Ile Val His Asn Gly Tyr Cys Asp Gly

180 185 190

Arg Ser Glu Arg Asn Leu Leu
195

5

<210> 5
<211> 199
10 <212> PRT
<213> Homo sapiens

<400> 5
Met Lys Trp Val Trp Ala Leu Leu Leu Ala Ala Trp Ala Ala Ala
15 1 5 10 15

Glu Arg Asp Cys Arg Val Ser Ser Phe Arg Val Lys Glu Asn Phe Asp
20 20 25 30

20 Lys Ala Arg Phe Ser Gly Thr Trp Tyr Ala Met Ala Lys Lys Asp Pro
35 35 40 45

Glu Gly Leu Phe Leu Gln Asp Asn Ile Val Ala Glu Phe Ser Val Asp
25 50 55 60

Glu Thr Gly Gln Met Ser Ala Thr Ala Lys Gly Arg Val Arg Leu Leu
65 65 70 75 80

Asn Asn Trp Asp Val Cys Ala Asp Met Val Gly Thr Phe Thr Asp Thr
30 85 90 95

Glu Asp Pro Ala Lys Phe Lys Met Lys Tyr Trp Gly Val Ala Ser Phe
100 105 110

35 Leu Gln Lys Gly Asn Asp Asp His Trp Ile Val Asp Thr Asp Tyr Asp
115 120 125

40 Thr Tyr Ala Val Gln Tyr Ser Cys Arg Leu Leu Asn Leu Asp Gly Thr
130 135 140

Cys Ala Asp Ser Tyr Ser Phe Val Phe Ser Arg Asp Pro Asn Gly Leu
145 150 155 160

45 Pro Pro Glu Ala Gln Lys Ile Val Arg Gln Arg Gln Glu Glu Leu Cys
165 170 175

Leu Ala Arg Gln Tyr Arg Leu Ile Val His Asn Gly Tyr Cys Asp Gly
180 185 190

50 Arg Ser Glu Arg Asn Leu Leu
195

55 <210> 6
<211> 199
<212> PRT
<213> Homo sapiens

<400> 6

Met	Lys	Trp	Val	Trp	Ala	Leu	Leu	Leu	Leu	Ala	Ala	Trp	Ala	Ala	Ala
1					5					10			15		

Glu	Arg	Asp	Cys	Arg	Val	Ser	Ser	Phe	Arg	Val	Lys	Glu	Asn	Phe	Asp
					20					25			30		

Lys	Ala	Arg	Phe	Ser	Gly	Thr	Trp	Tyr	Ala	Met	Ala	Lys	Lys	Asp	Pro
10						35			40			45			

Glu	Gly	Leu	Phe	Leu	Gln	Asp	Asn	Ile	Val	Ala	Glu	Phe	Ser	Val	Asp
					50			55			60				

15	Glu	Thr	Gly	Gln	Met	Ser	Ala	Thr	Ala	Lys	Gly	Arg	Val	Arg	Leu	Leu
					65			70			75			80		

Asn	Asn	Trp	Asp	Val	Cys	Ala	Asp	Met	Val	Gly	Thr	Phe	Thr	Asp	Thr
					85				90			95			

20	Glu	Asp	Pro	Ala	Lys	Phe	Lys	Met	Lys	Tyr	Trp	Gly	Val	Ala	Ser	Phe
					100			105			110					

25	Leu	Gln	Lys	Gly	Asn	Asp	Asp	His	Trp	Ile	Val	Asp	Thr	Asp	Tyr	Asp
					115			120			125					

Thr	Tyr	Ala	Val	Gln	Tyr	Ser	Cys	Arg	Leu	Leu	Asn	Leu	Asp	Gly	Thr
					130		135			140					

30	Cys	Ala	Asp	Ser	Tyr	Ser	Phe	Val	Phe	Ser	Arg	Asp	Pro	Asn	Gly	Leu
					145		150			155			160			

35	Pro	Pro	Glu	Ala	Gln	Lys	Ile	Val	Arg	Gln	Arg	Gln	Glu	Glu	Leu	Cys
					165			170			175					

35	Leu	Ala	Arg	Gln	Tyr	Arg	Leu	Ile	Val	His	Asn	Gly	Tyr	Cys	Asp	Gly
					180			185			190					

40	Arg	Ser	Glu	Arg	Asn	Leu	Leu								
					195										

<210> 7

45 <211> 182

<212> PRT

<213> Homo sapiens

<400> 7

50	Glu	Arg	Asp	Cys	Arg	Val	Ser	Ser	Phe	Arg	Val	Lys	Glu	Asn	Phe	Asp
					1		5		10		15					

55	Lys	Ala	Arg	Phe	Ser	Gly	Thr	Trp	Tyr	Ala	Met	Ala	Lys	Lys	Asp	Pro
					20			25			30					

55	Glu	Gly	Leu	Phe	Leu	Gln	Asp	Asn	Ile	Val	Ala	Glu	Phe	Ser	Val	Asp
					35			40			45					

50 Glu Thr Gly Gln Met Ser Ala Thr Ala Lys Gly Arg Val Arg Leu Leu
55 60

5 Asn Asn Trp Asp Val Cys Ala Asp Met Val Gly Thr Phe Thr Asp Thr
65 70 75 80

85 Glu Asp Pro Ala Lys Phe Lys Met Lys Tyr Trp Gly Val Ala Ser Phe
90 95

10 Leu Gln Lys Gly Asn Asp Asp His Trp Ile Val Asp Thr Asp Tyr Asp
100 105 110

115 Thr Tyr Ala Val Gln Tyr Ser Cys Arg Leu Leu Asn Leu Asp Gly Thr
120 125

130 135 140

145 Pro Pro Glu Ala Gln Lys Ile Val Arg Gln Arg Gln Glu Glu Leu Cys
150 155 160

165 Leu Ala Arg Gln Tyr Arg Leu Ile Val His Asn Gly Tyr Cys Asp Gly
170 175

180 25 Arg Ser Glu Arg Asn Leu

30 <210> 8
<211> 193
<212> PRT
<213> Homo sapiens

35 <400> 8
1 Met Gln Ser Leu Met Gln Ala Pro Leu Leu Ile Ala Leu Gly Leu Leu
5 10 15

20 40 Leu Ala Thr Pro Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu Ser
25 30

35 Ser Phe Ser Trp Asp Asn Cys Asp Glu Gly Lys Asp Pro Ala Val Ile
40 45

50 Arg Ser Leu Thr Leu Glu Pro Asp Pro Ile Val Val Pro Gly Asn Val
55 60

65 Thr Leu Ser Val Val Gly Ser Thr Ser Val Pro Leu Ser Ser Pro Leu
70 75 80

85 50 Lys Val Asp Leu Val Leu Glu Lys Glu Val Ala Gly Leu Trp Ile Lys
90 95

100 55 Ile Pro Cys Thr Asp Tyr Ile Gly Ser Cys Thr Phe Glu His Phe Cys
105 110

115 55 Asp Val Leu Asp Met Leu Ile Pro Thr Gly Glu Pro Cys Pro Glu Pro
120 125

Leu Arg Thr Tyr Gly Leu Pro Cys His Cys Pro Phe Lys Glu Gly Thr
 130 135 140

5 Tyr Ser Leu Pro Lys Ser Glu Phe Val Val Pro Asp Leu Glu Leu Pro
 145 150 155 160

Ser Trp Leu Thr Thr Gly Asn Tyr Arg Ile Glu Ser Val Leu Ser Ser
 165 170 175

10 Ser Gly Lys Arg Leu Gly Cys Ile Lys Ile Ala Ala Ser Leu Lys Gly
 180 185 190

15 Ile

20 <210> 9
 <211> 193
 <212> PRT
 <213> Homo sapiens

25 <400> 9
 Met Gln Ser Leu Met Gln Ala Pro Leu Leu Ile Ala Leu Gly Leu Leu
 1 5 10 15

Leu Ala Thr Pro Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu Ser
 20 25 30

30 Ser Phe Ser Trp Asp Asn Cys Phe Glu Gly Lys Asp Pro Ala Val Ile
 35 40 45

Arg Ser Leu Thr Leu Glu Pro Asp Pro Ile Val Val Pro Gly Asn Val
 35 50 55 60

Thr Leu Ser Val Val Gly Ser Thr Ser Val Pro Leu Ser Ser Pro Leu
 65 70 75 80

40 Lys Val Asp Leu Val Leu Glu Lys Glu Val Ala Gly Leu Trp Ile Lys
 85 90 95

Ile Pro Cys Thr Asp Tyr Ile Gly Ser Cys Thr Phe Glu His Phe Cys
 100 105 110

45 Asp Val Leu Asp Met Leu Ile Pro Thr Gly Glu Pro Cys Pro Glu Pro
 115 120 125

Leu Arg Thr Tyr Gly Leu Pro Cys His Cys Pro Phe Lys Glu Gly Thr
 50 130 135 140

Tyr Ser Leu Pro Lys Ser Glu Phe Ala Val Pro Asp Leu Glu Leu Pro
 145 150 155 160

55 Ser Trp Leu Thr Thr Gly Asn Tyr Arg Ile Glu Ser Val Leu Ser Ser
 165 170 175

Ser Gly Lys Arg Leu Gly Cys Ile Lys Ile Ala Ala Ser Leu Lys Gly

180 185 190

Ile

5

<210> 10

<211> 178

10 <212> PRT

<213> Homo sapiens

<400> 10

Leu Leu Ala Thr Pro Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu
15 1 5 10 15Ser Ser Phe Ser Trp Asp Asn Cys Asp Glu Gly Lys Asp Pro Ala Val
20 25 3020 Ile Arg Ser Leu Thr Leu Glu Pro Asp Pro Ile Val Val Pro Gly Asn
35 40 45Val Thr Leu Ser Val Val Gly Ser Thr Ser Val Pro Leu Ser Ser Pro
50 55 6025 Leu Lys Val Asp Leu Val Leu Glu Lys Glu Val Ala Gly Leu Trp Ile
65 70 75 80Lys Ile Pro Cys Thr Asp Tyr Ile Gly Ser Cys Thr Phe Glu His Phe
30 85 90 95Cys Asp Val Leu Asp Met Leu Ile Pro Thr Gly Glu Pro Cys Pro Glu
100 105 11035 Pro Leu Arg Thr Tyr Gly Leu Pro Cys His Cys Pro Phe Lys Glu Gly
115 120 125Thr Tyr Ser Leu Pro Lys Ser Glu Phe Val Val Pro Asp Leu Glu Leu
130 135 14040 Pro Ser Trp Leu Thr Thr Gly Asn Tyr Arg Ile Glu Ser Val Leu Ser
145 150 155 160Ser Ser Gly Lys Arg Leu Gly Cys Ile Lys Ile Ala Ala Ser Leu Lys
45 165 170 175

Gly Ile

50

<210> 11

<211> 200

<212> PRT

55 <213> Homo sapiens

<400> 11

Arg Ala Gly Pro Pro Phe Pro Met Gln Ser Leu Met Gln Ala Pro Leu

1	5	10	15	
Leu Ile Ala Leu Gly Leu Leu Leu Ala Ala Pro Ala Gln Ala His Leu				
	20	25	30	
5	Lys Lys Pro Ser Gln Leu Ser Ser Phe Ser Trp Asp Asn Cys Asp Glu			
	35	40	45	
10	Gly Lys Asp Pro Ala Val Ile Arg Ser Leu Thr Leu Glu Pro Asp Pro			
	50	55	60	
15	Ile Ile Val Pro Gly Asn Val Thr Leu Ser Val Met Gly Ser Thr Ser			
	65	70	75	80
20	Val Pro Leu Ser Ser Pro Leu Lys Val Asp Leu Val Leu Glu Lys Glu			
	85	90	95	
25	Val Ala Gly Leu Trp Ile Lys Ile Pro Cys Thr Asp Tyr Ile Gly Ser			
	100	105	110	
30	Cys Thr Phe Glu His Phe Cys Asp Val Leu Asp Met Leu Ile Pro Thr			
	115	120	125	
35	Gly Glu Pro Cys Pro Glu Pro Leu Arg Thr Tyr Gly Leu Pro Cys His			
	130	135	140	
40	Cys Pro Phe Lys Glu Gly Thr Tyr Ser Leu Pro Lys Ser Glu Phe Val			
	145	150	155	160
45	Val Pro Asp Leu Glu Leu Pro Ser Trp Leu Thr Thr Gly Asn Tyr Arg			
	165	170	175	
50	Ile Glu Ser Val Leu Ser Ser Ser Gly Lys Arg Leu Gly Cys Ile Lys			
	180	185	190	
55	Ile Ala Ala Ser Leu Lys Gly Ile			
	195	200		
60	<210> 12			
	<211> 189			
	<212> PRT			
	<213> Homo sapiens			
65	<400> 12			
	Met Gln Ala Pro Leu Leu Ile Ala Leu Gly Leu Leu Leu Ala Thr Pro			
	1	5	10	15
70	Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu Ser Ser Phe Ser Trp			
	20	25	30	
75	Asp Asn Cys Asp Glu Gly Lys Asp Pro Ala Val Ile Arg Ser Leu Thr			
	35	40	45	
80	Leu Glu Pro Asp Pro Ile Val Val Pro Gly Asn Val Thr Leu Ser Val			
	50	55	60	

Val Gly Ser Thr Ser Val Pro Leu Ser Ser Pro Leu Lys Val Asp Leu
 65 70 75 80

Val Leu Glu Lys Glu Val Ala Gly Leu Trp Ile Lys Ile Pro Cys Thr
 5 85 90 95

Asp Tyr Ile Gly Ser Cys Thr Phe Glu His Phe Cys Asp Val Leu Asp
 100 105 110

10 Met Leu Ile Pro Thr Gly Glu Pro Cys Pro Glu Pro Leu Arg Thr Tyr
 115 120 125

Gly Leu Pro Cys His Cys Pro Phe Lys Glu Gly Thr Tyr Ser Leu Pro
 130 135 140

15 Lys Ser Glu Phe Val Val Pro Asp Leu Glu Leu Pro Ser Trp Leu Thr
 145 150 155 160

Thr Gly Asn Tyr Arg Ile Glu Ser Val Leu Ser Ser Ser Gly Lys Arg
 20 165 170 175

Leu Gly Cys Ile Lys Ile Ala Ala Ser Leu Lys Gly Ile
 180 185

25

<210> 13
 <211> 193
 <212> PRT
 30 <213> Homo sapiens

<400> 13
 Met Gln Ser Leu Met Gln Ala Pro Leu Leu Ile Ala Leu Gly Leu Leu
 1 5 10 15

35 Leu Ala Thr Pro Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu Ser
 20 25 30

Ser Phe Ser Trp Asp Asn Cys Asp Glu Gly Lys Asp Pro Ala Val Ile
 40 35 40 45

Arg Ser Leu Thr Leu Glu Pro Asp Pro Ile Val Val Pro Gly Asn Val
 50 55 60

45 Thr Leu Ser Val Val Gly Ser Thr Ser Val Pro Leu Ser Ser Pro Leu
 65 70 75 80

Lys Val Asp Leu Val Leu Glu Lys Glu Val Ala Gly Leu Trp Ile Lys
 85 90 95

50 Ile Pro Cys Thr Asp Tyr Ile Gly Ser Cys Thr Phe Glu His Phe Cys
 100 105 110

Asp Val Leu Asp Met Leu Ile Pro Thr Gly Glu Pro Cys Pro Glu Pro
 55 115 120 125

Leu Arg Thr Tyr Gly Leu Pro Cys His Cys Pro Phe Lys Glu Gly Thr
 130 135 140

Tyr Ser Leu Pro Lys Ser Glu Phe Val Val Pro Asp Leu Glu Leu Pro
 145 150 155 160

5 Ser Trp Leu Thr Thr Gly Asn Tyr Arg Ile Glu Ser Val Leu Ser Ser
 165 170 175

Ser Gly Lys Arg Leu Gly Cys Ile Lys Ile Ala Ala Ser Leu Lys Gly
 180 185 190

10 Ile

15 <210> 14
 <211> 193
 <212> PRT
 <213> Homo sapiens

20 <400> 14
 Met Gln Ser Leu Met Gln Ala Pro Leu Leu Ile Ala Leu Gly Leu Leu
 1 5 10 15

25 Leu Ala Thr Pro Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu Ser
 20 25 30

Ser Phe Ser Trp Asp Asn Cys Asp Glu Gly Lys Asp Pro Ala Val Ile
 35 40 45

30 Arg Ser Leu Thr Leu Glu Pro Asp Pro Ile Val Val Pro Gly Asn Val
 50 55 60

Thr Leu Ser Val Val Gly Ser Thr Ser Val Pro Leu Ser Ser Pro Leu
 35 65 70 75 80

Lys Val Asp Leu Val Leu Glu Lys Glu Val Ala Gly Leu Trp Ile Lys
 85 90 95

40 Ile Pro Cys Thr Asp Tyr Ile Gly Ser Cys Thr Phe Glu His Phe Cys
 100 105 110

Asp Val Leu Asp Met Leu Ile Pro Thr Gly Glu Pro Cys Pro Glu Pro
 115 120 125

45 Leu Arg Thr Tyr Gly Leu Pro Cys His Cys Pro Phe Lys Glu Gly Thr
 130 135 140

Tyr Ser Leu Pro Lys Ser Glu Phe Val Val Pro Asp Leu Glu Leu Pro
 50 145 150 155 160

Ser Trp Leu Thr Thr Gly Asn Tyr Arg Ile Glu Ser Val Leu Ser Ser
 165 170 175

55 Ser Gly Lys Arg Leu Gly Cys Ile Lys Ile Ala Ala Ser Leu Lys Gly
 180 185 190

Ile

5 <210> 15
 <211> 193
 <212> PRT
 <213> Homo sapiens

10 <400> 15
 Met Gln Ser Leu Met Gln Ala Pro Leu Leu Ile Ala Leu Gly Leu Leu
 1 5 10 15

15 Leu Ala Thr Pro Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu Ser
 20 25 30

20 Ser Phe Ser Trp Asp Asn Cys Asp Glu Gly Lys Asp Pro Ala Val Ile
 35 40 45

25 Arg Ser Leu Thr Leu Glu Pro Asp Pro Ile Val Val Pro Gly Asn Val
 50 55 60

30 Thr Leu Ser Val Val Gly Ser Thr Ser Val Pro Leu Ser Ser Pro Leu
 65 70 75 80

35 Lys Val Asp Leu Val Leu Glu Lys Glu Val Ala Gly Leu Trp Ile Lys
 85 90 95

40 Ile Pro Cys Thr Asp Tyr Ile Gly Ser Cys Thr Phe Glu His Phe Cys
 100 105 110

45 Asp Val Leu Asp Met Leu Ile Pro Thr Gly Glu Pro Cys Pro Glu Pro
 115 120 125

50 Leu Arg Thr Tyr Gly Leu Pro Cys His Cys Pro Phe Lys Glu Gly Thr
 130 135 140

55 Tyr Ser Leu Pro Lys Ser Glu Phe Val Val Pro Asp Leu Glu Leu Pro
 145 150 155 160

60 Ser Trp Leu Thr Thr Gly Asn Tyr Arg Ile Glu Ser Val Leu Ser Ser
 165 170 175

65 Ser Gly Lys Arg Leu Gly Cys Ile Lys Ile Ala Ala Ser Leu Lys Gly
 180 185 190

70 Ile

75

80 <210> 16
 <211> 193
 <212> PRT
 <213> Homo sapiens

85 <400> 16
 Met Gln Ser Leu Met Gln Ala Pro Leu Leu Ile Ala Leu Gly Leu Leu

1	5	10	15	
Leu Ala Thr Pro Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu Ser				
	20	25	30	
5	Ser Phe Ser Trp Asp Asn Cys Asp Glu Gly Lys Asp Pro Ala Val Ile			
	35	40	45	
10	Arg Ser Leu Thr Leu Glu Pro Asp Pro Ile Val Val Pro Gly Asn Val			
	50	55	60	
Thr Leu Ser Val Val Gly Ser Thr Ser Val Pro Leu Ser Ser Pro Leu				
	65	70	75	80
15	Lys Val Asp Leu Val Leu Glu Lys Glu Val Ala Gly Leu Trp Ile Lys			
	85	90	95	
Ile Pro Cys Thr Asp Tyr Ile Gly Ser Cys Thr Phe Glu His Phe Cys				
	100	105	110	
20	Asp Val Leu Asp Met Leu Ile Pro Thr Gly Glu Pro Cys Pro Glu Pro			
	115	120	125	
Leu Arg Thr Tyr Gly Leu Pro Cys His Cys Pro Phe Lys Glu Gly Thr				
25	130	135	140	
Tyr Ser Leu Pro Lys Ser Glu Phe Val Val Pro Asp Leu Glu Leu Pro				
	145	150	155	160
30	Ser Trp Leu Thr Thr Gly Asn Tyr Arg Ile Glu Ser Val Leu Ser Ser			
	165	170	175	
Ser Gly Lys Arg Leu Gly Cys Ile Lys Ile Ala Ala Ser Leu Lys Gly				
	180	185	190	
35	Ile			
40				
<210> 17				
<211> 114				
<212> PRT				
<213> Homo sapiens				
45	<400> 17			
	Met Thr Cys Lys Met Ser Gln Leu Glu Arg Asn Ile Glu Thr Ile Ile			
	1	5	10	15
50	Asn Thr Phe His Gln Tyr Ser Val Lys Leu Gly His Pro Asp Thr Leu			
	20	25	30	
Asn Gln Gly Glu Phe Lys Glu Leu Val Arg Lys Asp Leu Gln Asn Phe				
	35	40	45	
55	Leu Lys Lys Glu Asn Lys Asn Glu Lys Val Ile Glu His Ile Met Glu			
	50	55	60	

Asp Leu Asp Thr Asn Ala Asp Lys Gln Leu Ser Phe Glu Glu Phe Ile
65 70 75 80

Met Leu Met Ala Arg Leu Thr Trp Ala Ser His Glu Lys Met His Glu
5 85 90 95

Gly Asp Glu Gly Pro Gly His His His Lys Pro Gly Leu Gly Glu Gly
100 105 110

10 Thr Pro

15 <210> 18
<211> 93
<212> PRT
<213> Homo sapiens

20 <400> 18
Met Leu Thr Glu Leu Glu Lys Ala Leu Asn Ser Ile Ile Asp Val Tyr
1 5 10 15

His Lys Tyr Ser Leu Ile Lys Gly Asn Phe His Ala Val Tyr Arg Asp
25 20 25 30

Asp Leu Lys Lys Leu Leu Glu Thr Glu Cys Pro Gln Tyr Ile Arg Lys
35 40 45

30 Lys Gly Ala Asp Val Trp Phe Lys Glu Leu Asp Ile Asn Thr Asp Gly
50 55 60

Ala Val Asn Phe Gln Glu Phe Leu Ile Leu Val Ile Lys Met Gly Val
65 70 75 80

35 Ala Ala His Lys Lys Ser His Glu Glu Ser His Lys Glu
85 90

40 <210> 19
<211> 92
<212> PRT
<213> Homo sapiens

45 <400> 19
Met Thr Lys Leu Glu Glu His Leu Glu Gly Ile Val Asn Ile Phe His
1 5 10 15

50 Gln Tyr Ser Val Arg Lys Gly His Phe Asp Thr Leu Ser Lys Gly Glu
20 25 30

Leu Lys Gln Leu Leu Thr Lys Glu Leu Ala Asn Thr Ile Lys Asn Ile
35 40 45

55 Lys Asp Lys Ala Val Ile Asp Glu Ile Phe Gln Gly Leu Asp Ala Asn
50 55 60

10 Gln Asp Glu Gln Val Asp Phe Gln Glu Phe Ile Ser Leu Val Ala Ile
65 70 75 80

5 Ala Leu Lys Ala Ala His Tyr His Thr His Lys Glu
85 90

10 <210> 20
<211> 92
<212> PRT
<213> Homo sapiens

15 <400> 20
Met Thr Lys Leu Glu Glu His Leu Glu Gly Ile Val Asn Ile Phe His
1 5 10 15

20 Gln Tyr Ser Val Arg Lys Gly His Phe Asp Thr Leu Ser Lys Gly Glu
20 25 30

20 Leu Lys Gln Leu Leu Thr Lys Glu Leu Ala Asn Thr Ile Lys Asn Ile
35 40 45

25 Lys Asp Lys Ala Val Ile Asp Glu Ile Phe Gln Gly Leu Asp Ala Asn
50 55 60

30 Gln Asp Glu Gln Val Asp Phe Gln Glu Phe Ile Ser Leu Val Ala Ile
65 70 75 80

30 Ala Leu Lys Ala Ala His Tyr His Thr His Lys Glu
85 90

35 <210> 21
<211> 91
<212> PRT
<213> Homo sapiens

40 <400> 21
Thr Lys Leu Glu Glu His Leu Glu Gly Ile Val Asn Ile Phe His Gln
1 5 10 15

45 Tyr Ser Val Arg Lys Gly His Phe Asp Thr Leu Ser Lys Gly Glu Leu
20 25 30

50 Lys Gln Leu Leu Thr Lys Glu Leu Ala Asn Thr Ile Lys Asn Ile Lys
35 40 45

50 Asp Lys Ala Val Ile Asp Glu Ile Phe Gln Gly Leu Asp Ala Asn Gln
50 55 60

55 Asp Glu Gln Val Asp Phe Gln Glu Phe Ile Ser Leu Val Ala Ile Ala
65 70 75 80

55 Leu Lys Ala Ala His Tyr His Thr His Lys Glu
85 90

5 <210> 22
 <211> 93
 <212> PRT
 <213> Homo sapiens

10 <400> 22
 Met Leu Thr Glu Leu Glu Lys Ala Leu Asn Ser Ile Ile Asp Val Tyr
 1 5 10 15

15 His Lys Tyr Ser Leu Ile Lys Gly Asn Phe His Ala Val Tyr Arg Asp
 20 25 30

20 Asp Leu Lys Lys Leu Leu Glu Thr Glu Cys Pro Gln Tyr Ile Arg Lys
 35 40 45

25 Lys Gly Ala Asp Val Trp Phe Lys Glu Leu Asp Ile Asn Thr Asp Gly
 50 55 60

30 Ala Val Asn Phe Gln Glu Phe Leu Ile Leu Val Ile Lys Met Gly Val
 65 70 75 80

35 Ala Ala His Lys Lys Ser His Glu Glu Ser His Lys Glu
 85 90

40 <210> 23
 <211> 92
 <212> PRT
 <213> Homo sapiens

45 <400> 23
 Met Thr Lys Leu Glu Glu His Leu Glu Gly Ile Val Asn Ile Phe His
 1 5 10 15

50 Gln Tyr Ser Val Arg Lys Gly His Phe Asp Thr Leu Ser Lys Gly Glu
 20 25 30

55 Leu Lys Gln Leu Leu Thr Lys Glu Leu Ala Asn Thr Ile Lys Asn Ile
 35 40 45

60 Lys Asp Lys Ala Val Ile Asp Glu Ile Phe Gln Gly Leu Asp Ala Asn
 50 55 60

65 Gln Asp Glu Gln Val Asp Phe Gln Glu Phe Ile Ser Leu Val Ala Ile
 65 70 75 80

70 Ala Leu Lys Ala Ala His Tyr His Thr His Lys Glu
 85 90

75 <210> 24
 <211> 85
 <212> PRT
 <213> Homo sapiens

<400> 24

Asp	Asn	Gly	Asp	Val	Cys	Gln	Asp	Cys	Ile	Gln	Met	Val	Thr	Asp	Ile
1				5					10				15		

5

Gln	Thr	Ala	Val	Arg	Thr	Asn	Ser	Thr	Phe	Val	Gln	Ala	Leu	Val	Glu
				20				25				30			

His	Val	Lys	Glu	Glu	Cys	Asp	Arg	Leu	Gly	Pro	Gly	Met	Ala	Asp	Ile
10					35			40				45			

Cys	Lys	Asn	Tyr	Ile	Ser	Gln	Tyr	Ser	Glu	Ile	Ala	Ile	Gln	Met	Met
				50			55				60				

15	Met	His	Met	Gln	Asp	Gln	Gln	Pro	Lys	Glu	Ile	Cys	Ala	Leu	Val	Gly
	65				70				75				80			

Phe	Cys	Asp	Glu	Val											
				85											

20

<210> 25

<211> 381

25 <212> PRT

<213> Homo sapiens

<400> 25

Met	Ala	Glu	Ser	His	Leu	Leu	Gln	Trp	Leu	Leu	Leu	Leu	Pro	Thr
30	1				5				10				15	

Leu	Cys	Gly	Pro	Gly	Thr	Ala	Ala	Trp	Thr	Thr	Ser	Ser	Leu	Ala	Cys
					20			25				30			

35	Ala	Gln	Gly	Pro	Glu	Phe	Trp	Cys	Gln	Ser	Leu	Glu	Gln	Ala	Leu	Gln
		35						40				45				

Cys	Arg	Ala	Leu	Gly	His	Cys	Leu	Gln	Glu	Val	Trp	Gly	His	Val	Gly
		50				55				60					

40	Ala	Asp	Asp	Leu	Cys	Gln	Glu	Cys	Glu	Asp	Ile	Val	His	Ile	Leu	Asn
	65				70					75			80			

45	Lys	Met	Ala	Lys	Glu	Ala	Ile	Phe	Gln	Asp	Thr	Met	Arg	Lys	Phe	Leu
						85			90			95				

Glu	Gln	Glu	Cys	Asn	Val	Leu	Pro	Leu	Lys	Leu	Leu	Met	Pro	Gln	Cys
				100				105				110			

50	Asn	Gln	Val	Leu	Asp	Asp	Tyr	Phe	Pro	Leu	Val	Ile	Asp	Tyr	Phe	Gln
		115					120					125				

Asn	Gln	Ile	Asp	Ser	Asn	Gly	Ile	Cys	Met	His	Leu	Gly	Leu	Cys	Lys
		130				135					140				

55	Ser	Arg	Gln	Pro	Glu	Pro	Glu	Gln	Glu	Pro	Gly	Met	Ser	Asp	Pro	Leu
	145				150				155			160				

Pro Lys Pro Leu Arg Asp Pro Leu Pro Asp Pro Leu Leu Asp Lys Leu
 165 170 175

5 Val Leu Pro Val Leu Pro Gly Ala Leu Gln Ala Arg Pro Gly Pro His
 180 185 190

Thr Gln Asp Leu Ser Glu Gln Gln Phe Pro Ile Pro Leu Pro Tyr Cys
 195 200 205

10 Trp Leu Cys Arg Ala Leu Ile Lys Arg Ile Gln Ala Met Ile Pro Lys
 210 215 220

Gly Ala Leu Arg Val Ala Val Ala Gln Val Cys Arg Val Val Pro Leu
 225 230 235 240

15 Val Ala Gly Gly Ile Cys Gln Cys Leu Ala Glu Arg Tyr Ser Val Ile
 245 250 255

20 Leu Leu Asp Thr Leu Leu Gly Arg Met Leu Pro Gln Leu Val Cys Arg
 260 265 270

Leu Val Leu Arg Cys Ser Met Asp Asp Ser Ala Gly Pro Arg Ser Pro
 275 280 285

25 Thr Gly Glu Trp Leu Pro Arg Asp Ser Glu Cys His Leu Cys Met Ser
 290 295 300

Val Thr Thr Gln Ala Gly Asn Ser Ser Glu Gln Ala Ile Pro Gln Ala
 305 310 315 320

30 Met Leu Gln Ala Cys Val Gly Ser Trp Leu Asp Arg Glu Lys Cys Lys
 325 330 335

Gln Phe Val Glu Gln His Thr Pro Gln Leu Leu Thr Leu Val Pro Arg
 340 345 350

Gly Trp Asp Ala His Thr Thr Cys Gln Ala Leu Gly Val Cys Gly Thr
 355 360 365

40 Met Ser Ser Pro Leu Gln Cys Ile His Ser Pro Asp Leu
 370 375 380

45 <210> 26
 <211> 379
 <212> PRT
 <213> Homo sapiens

50 <400> 26
 Met Ala Glu Ser His Leu Leu Gln Trp Leu Leu Leu Leu Pro Thr
 1 5 10 15

55 Leu Cys Gly Pro Gly Thr Ala Ala Trp Thr Thr Ser Ser Leu Ala Cys
 20 25 30

Ala Gln Gly Pro Glu Phe Trp Cys Gln Ser Leu Glu Gln Ala Leu Gln
 35 40 45

Cys Arg Ala Leu Gly His Cys Leu Gln Glu Val Trp Gly His Val Gly
50 55 60

5 Ala Asp Asp Leu Cys Gln Glu Cys Glu Asp Ile Val His Ile Leu Asn
65 70 75 80

Lys Met Ala Lys Glu Ala Ile Phe Gln Asp Thr Met Arg Lys Phe Leu
10 85 90 95

Glu Gln Glu Cys Asn Val Leu Pro Leu Lys Leu Leu Met Pro Gln Cys
100 105 110

Asn Gln Val Leu Asp Asp Tyr Phe Pro Leu Val Ile Asp Tyr Phe Gln
15 115 120 125

Asn Gln Thr Asp Ser Asn Gly Ile Cys Met His Leu Gly Cys Lys Ser
130 135 140

20 Arg Gln Pro Glu Pro Glu Gln Glu Pro Gly Met Ser Asp Pro Leu Pro
145 150 155 160

Lys Pro Leu Arg Asp Pro Leu Pro Asp Pro Leu Leu Asp Lys Leu Val
165 170 175

25 Leu Pro Val Leu Pro Gly Ala Leu Gln Ala Arg Pro Gly Pro His Thr
180 185 190

Gln Asp Leu Ser Glu Gln Gln Phe Pro Ile Pro Leu Pro Tyr Cys Trp
30 195 200 205

Cys Arg Ala Leu Ile Lys Arg Ile Gln Ala Met Ile Pro Lys Gly Ala
210 215 220

35 Leu Arg Val Ala Val Ala Gln Val Cys Arg Val Val Pro Leu Val Ala
225 230 235 240

Gly Gly Ile Cys Gln Cys Leu Ala Glu Arg Tyr Ser Val Ile Leu Leu
245 250 255

40 Asp Thr Leu Leu Gly Arg Met Leu Pro Gln Leu Val Cys Arg Leu Val
260 265 270

Leu Arg Cys Ser Met Asp Asp Ser Ala Gly Pro Arg Ser Pro Thr Gly
45 275 280 285

Glu Trp Leu Pro Arg Asp Ser Glu Cys His Leu Cys Met Ser Val Thr
290 295 300

50 Thr Gln Ala Gly Asn Ser Ser Glu Gln Ala Ile Pro Gln Ala Met Leu
305 310 315 320

Gln Ala Cys Val Gly Ser Trp Leu Asp Arg Glu Lys Cys Lys Gln Phe
325 330 335

55 Val Glu Gln His Thr Pro Gln Leu Leu Thr Leu Val Pro Arg Gly Trp
340 345 350

Asp Ala His Thr Thr Cys Gln Ala Leu Gly Val Cys Gly Thr Met Ser
355 360 365

Ser Pro Leu Gln Cys Ile His Ser Pro Asp Leu
5 370 375

<210> 27
10 <211> 527
<212> PRT
<213> Homo sapiens

<400> 27
15 Met Tyr Ala Leu Phe Leu Leu Ala Ser Leu Leu Gly Ala Ala Leu Ala
1 5 10 15

Gly Pro Val Leu Gly Leu Lys Glu Cys Thr Arg Gly Ser Ala Val Trp
20 25 30

20 Cys Gln Asn Val Lys Thr Ala Ser Asp Cys Gly Ala Val Lys His Cys
35 40 45

Leu Gln Thr Val Trp Asn Lys Pro Thr Val Lys Ser Leu Pro Cys Asp
25 50 55 60

Ile Cys Lys Asp Val Val Thr Ala Ala Gly Asp Met Leu Lys Asp Asn
65 70 75 80

30 Ala Thr Glu Glu Glu Ile Leu Val Tyr Leu Glu Lys Thr Cys Asp Trp
85 90 95

Leu Pro Lys Pro Asn Met Ser Ala Ser Cys Lys Glu Ile Val Asp Ser
100 105 110

35 Tyr Leu Pro Val Ile Leu Asp Ile Ile Lys Gly Glu Met Ser Arg Pro
115 120 125

Gly Glu Val Cys Ser Ala Leu Asn Leu Cys Glu Ser Leu Gln Lys His
40 130 135 140

Leu Ala Glu Leu Asn His Gln Lys Gln Leu Glu Ser Asn Lys Ile Pro
145 150 155 160

45 Glu Leu Asp Met Thr Glu Val Val Ala Pro Phe Met Ala Asn Ile Pro
165 170 175

Leu Leu Leu Tyr Pro Gln Asp Gly Pro Arg Ser Lys Pro Gln Pro Lys
180 185 190

50 Asp Asn Gly Asp Val Cys Gln Asp Cys Ile Gln Met Val Thr Asp Ile
195 200 205

Gln Thr Ala Val Arg Thr Asn Ser Thr Phe Val Gln Ala Leu Val Glu
55 210 215 220

His Val Lys Glu Glu Cys Asp Arg Leu Gly Pro Gly Met Ala Asp Ile
225 230 235 240

Cys Lys Asn Tyr Ile Ser Gln Tyr Ser Glu Ile Ala Ile Gln Met Met
 245 250 255

5 Met His Met Gln Asp Gln Gln Pro Lys Glu Ile Cys Ala Leu Val Gly
 260 265 270

Phe Cys Asp Glu Val Lys Glu Met Pro Met Gln Thr Leu Val Pro Ala
 275 280 285

10 Lys Val Ala Ser Lys Asn Val Ile Pro Ala Leu Glu Leu Val Glu Pro
 290 295 300

Ile Lys Lys His Glu Val Pro Ala Lys Ser Asp Val Tyr Cys Glu Val
 15 305 310 315 320

Cys Glu Phe Leu Val Lys Glu Val Thr Lys Leu Ile Asp Asn Asn Lys
 325 330 335

20 Thr Glu Lys Glu Ile Leu Asp Ala Phe Asp Lys Met Cys Ser Lys Leu
 340 345 350

Pro Lys Ser Leu Ser Glu Glu Cys Gln Glu Val Val Asp Thr Tyr Gly
 355 360 365

25 Ser Ser Ile Leu Ser Ile Leu Glu Val Ser Pro Glu Leu Val
 370 375 380

Cys Ser Met Leu His Leu Cys Ser Gly Thr Arg Leu Pro Ala Leu Thr
 30 385 390 395 400

Val His Val Thr Gln Pro Lys Asp Gly Gly Phe Cys Glu Val Cys Lys
 405 410 415

35 Lys Leu Val Gly Tyr Leu Asp Arg Asn Leu Glu Lys Asn Ser Thr Lys
 420 425 430

Gln Glu Ile Leu Ala Ala Leu Glu Lys Gly Cys Ser Phe Leu Pro Asp
 435 440 445

40 Pro Tyr Gln Lys Gln Cys Asp Gln Phe Val Ala Glu Tyr Glu Pro Val
 450 455 460

Leu Ile Glu Ile Leu Val Glu Val Met Asp Pro Ser Phe Val Cys Leu
 45 465 470 475 480

Lys Ile Gly Ala Cys Pro Ser Ala His Lys Pro Leu Leu Gly Thr Glu
 485 490 495

50 Lys Cys Ile Trp Gly Pro Ser Tyr Trp Cys Gln Asn Thr Glu Thr Ala
 500 505 510

Ala Gln Cys Asn Ala Val Glu His Cys Lys Arg His Val Trp Asn
 515 520 525

55

<211> 523

<212> PRT

<213> Homo sapiens

5 <400> 28

Met Tyr Ala Leu Phe Leu Leu Ala Ser Leu Leu Gly Ala Ala Leu Ala
1 5 10 1510 Gly Pro Val Leu Gly Leu Lys Glu Cys Thr Arg Gly Ser Ala Val Trp
20 25 3015 Cys Gln Asn Val Lys Thr Ala Ser Asp Cys Gly Ala Val Lys His Cys
35 40 4520 Leu Gln Thr Val Trp Asn Lys Pro Thr Val Lys Ser Leu Pro Cys Asp
50 55 60Ile Cys Lys Asp Val Val Thr Ala Ala Gly Asp Met Leu Lys Asp Asn
65 70 75 8025 Ala Thr Glu Glu Glu Ile Leu Val Tyr Leu Glu Lys Thr Cys Asp Trp
85 90 95Leu Pro Lys Pro Asn Met Ser Ala Ser Cys Lys Glu Ile Val Asp Ser
100 105 110Tyr Leu Pro Val Ile Leu Asp Ile Ile Lys Gly Glu Met Ser Arg Pro
115 120 12530 Gly Glu Val Cys Ser Ala Leu Leu Cys Glu Ser Leu Gln Lys His Leu
130 135 140Ala Glu Leu Asn His Gln Lys Gln Leu Glu Ser Asn Lys Ile Pro Glu
145 150 155 16035 Leu Asp Met Thr Glu Val Val Ala Pro Phe Met Ala Asn Ile Pro Leu
165 170 17540 Leu Leu Tyr Pro Gln Asp Gly Pro Arg Ser Lys Pro Gln Pro Lys Asp
180 185 190Asn Gly Asp Val Cys Gln Asp Cys Ile Gln Met Val Thr Asp Ile Gln
195 200 20545 Thr Ala Val Arg Thr Asn Ser Thr Phe Val Gln Ala Leu Val Glu His
210 215 220Val Lys Glu Glu Cys Asp Arg Leu Gly Pro Gly Met Ala Asp Ile Cys
225 230 235 24050 Lys Asn Tyr Ile Ser Gln Tyr Ser Glu Ile Ala Ile Gln Met Met Met
245 250 255His Met Gln Pro Lys Glu Ile Cys Ala Leu Val Gly Phe Cys Asp Glu
260 265 27055 Val Lys Glu Met Pro Met Gln Thr Leu Val Pro Ala Lys Val Ala Ser
275 280 285

Lys Asn Val Ile Pro Ala Leu Glu Leu Val Glu Pro Ile Lys Lys His
 290 295 300

5 Glu Val Pro Ala Lys Ser Asp Val Tyr Cys Glu Val Cys Glu Phe Leu
 305 310 315 320

Val Lys Glu Val Thr Lys Leu Ile Asp Asn Asn Lys Thr Glu Lys Glu
 10 325 330 335

Ile Leu Asp Ala Phe Asp Lys Met Cys Ser Lys Leu Pro Lys Ser Leu
 340 345 350

Ser Glu Glu Cys Gln Glu Val Val Asp Thr Tyr Gly Ser Ser Ile Leu
 15 355 360 365

Ser Ile Leu Leu Glu Glu Val Ser Pro Glu Leu Val Cys Ser Met Leu
 370 375 380

20 His Leu Cys Ser Gly Thr Arg Leu Pro Ala Leu Thr Val His Val Thr
 385 390 395 400

Gln Pro Lys Asp Gly Gly Phe Cys Glu Val Cys Lys Lys Leu Val Gly
 405 410 415

25 Tyr Leu Asp Arg Asn Leu Glu Lys Asn Ser Thr Lys Gln Glu Ile Leu
 420 425 430

Ala Ala Leu Glu Lys Gly Cys Ser Phe Leu Pro Asp Pro Tyr Gln Lys
 30 435 440 445

Gln Cys Asp Gln Phe Val Ala Glu Tyr Glu Pro Val Leu Ile Glu Ile
 450 455 460

35 Leu Val Glu Val Met Asp Pro Ser Phe Val Cys Leu Lys Ile Gly Ala
 465 470 475 480

Cys Pro Ser Ala His Lys Pro Leu Leu Gly Thr Glu Lys Cys Ile Trp
 485 490 495

40 Gly Pro Ser Tyr Trp Cys Gln Asn Thr Glu Thr Ala Ala Gln Cys Asn
 500 505 510

Ala Val Glu His Cys Lys Arg His Val Trp Asn
 45 515 520

<210> 29
 50 <211> 380
 <212> PRT
 <213> Homo sapiens

<400> 29
 55 Met Ala Glu Ser His Leu Leu Gln Trp Leu Leu Leu Leu Pro Thr
 1 5 10 15

Leu Cys Gly Pro Gly Thr Ala Ala Trp Thr Thr Ser Ser Leu Ala Cys

	20	25	30	
	Ala Gln Gly Pro Glu Phe Trp Cys Gln Ser Leu Glu Gln Ala Leu Gln			
	35	40	45	
5	Cys Arg Ala Leu Gly His Cys Leu Gln Glu Val Trp Gly His Val Gly			
	50	55	60	
	Ala Asp Asp Leu Cys Gln Glu Cys Glu Asp Ile Val His Ile Leu Asn			
10	65	70	75	80
	Lys Met Ala Lys Glu Ala Ile Phe Gln Asp Thr Met Arg Lys Phe Leu			
	85	90	95	
15	Glu Gln Glu Cys Asn Val Leu Pro Leu Lys Leu Leu Met Pro Gln Cys			
	100	105	110	
	Asn Gln Val Leu Asp Asp Tyr Phe Pro Leu Val Ile Asp Tyr Phe Gln			
	115	120	125	
20	Asn Gln Thr Asp Ser Asn Gly Ile Cys Met His Gly Leu Cys Lys Ser			
	130	135	140	
	Arg Gln Pro Glu Pro Glu Gln Glu Pro Gly Met Ser Asp Pro Leu Pro			
25	145	150	155	160
	Lys Pro Leu Arg Asp Pro Leu Pro Asp Pro Leu Leu Asp Lys Leu Val			
	165	170	175	
30	Leu Pro Val Leu Pro Gly Ala Leu Gln Ala Arg Pro Gly Pro His Thr			
	180	185	190	
	Gln Asp Leu Ser Glu Gln Gln Phe Pro Ile Pro Leu Pro Tyr Cys Trp			
	195	200	205	
35	Leu Cys Arg Ala Leu Ile Lys Arg Ile Gln Ala Met Ile Pro Lys Gly			
	210	215	220	
	Ala Leu Ala Val Ala Val Ala Gln Val Cys Arg Val Val Pro Leu Val			
40	225	230	235	240
	Ala Gly Gly Ile Cys Gln Cys Leu Ala Glu Arg Tyr Ser Val Ile Leu			
	245	250	255	
45	Leu Asp Thr Leu Leu Gly Arg Met Leu Pro Gln Leu Val Cys Arg Leu			
	260	265	270	
	Val Leu Arg Cys Ser Met Asp Asp Ser Ala Gly Pro Arg Ser Pro Thr			
	275	280	285	
50	Gly Glu Trp Leu Pro Arg Asp Ser Glu Cys His Leu Cys Met Ser Val			
	290	295	300	
	Thr Thr Gln Ala Gly Asn Ser Ser Glu Gln Ala Ile Pro Gln Ala Met			
55	305	310	315	320
	Leu Gln Ala Cys Val Gly Ser Trp Leu Asp Arg Glu Lys Cys Lys Gln			
	325	330	335	

Phe Val Glu Gln His Thr Pro Gln Leu Leu Thr Leu Val Pro Arg Gly
 340 345 350

5 Trp Asp Ala His Thr Thr Cys Gln Ala Leu Gly Val Cys Gly Thr Met
 355 360 365

Ser Ser Pro Leu Gln Cys Ile His Ser Pro Asp Leu
 370 375 380

10

<210> 30

<211> 4124

15 <212> ADN

<213> Homo sapiens

<400> 30

20 atgagagaat gggttctgtc catgtccgtg ctgctctgtg gcctggctgg ccccacacac 60
 ctgttccagc caaggcttgt gctggacatg gccaaggatcc tcttggataa ctactgcttc 120
 ccggagaacc tgctggcat gcaggaagcc atccagcagg ccatcaagag ccatgagatt 180
 ctgagcatct cagacccgca gacgctggcc agtgtgctga cagccgggtt gcagagctcc 240
 ctgaacgatc ctcgcttgtt catctcctat gagcccagca ccccccggcc tccccccacaa 300
 gtcccagcac tcaccagcct tcagaagag gaactgcttg cctggctgca aaggggcctc 360
 25 cgccatgagg ttctggaggg taatgtgggc tacctgcccc tggacagcgt cccggggccag 420
 gaggtgctga gcatgatggg ggagttcttg gtggcccaacg tcttggggaa tctcatggc 480
 acctccgcct tagtgcgtga tctccggcac tgcacaggag gccaggtctc tggcattccc 540
 tacatcatct cctacactgca cccagggAAC accatcctgc acgtggacac tatctacaac 600
 cggccctcca acaccaccac ggagatctgg accttgcacc ccagggggcgt ggccgaggac 660
 30 ggtggcaca aggatgtggg ggtcctcacc agcagccaga ccagggggcgt ggccgaggac 720
 atcgegcaca tccttaagca gatgcgcagg gccatcgtgg tgggcgagcg gactggggga 780
 gggggccctgg acctccggaa gctgaggata ggcgagtcgt acttcttctt cacgtgtccc 840
 gtgtccaggt ccctggggcc ccttgggtgga ggcagccaga cgtggggagg cagccgggtg 900
 ctgcccgtg tggggactcc ggccgagcag gcccctggaga aagccctggc catcctcact 960
 35 ctgcccgcagc cccttccagg ggtagtcac tgcctccagg aggtcctgaa ggactactac 1020
 acgctggtgg accgtgtgcc caccctgtc cagcacttgg ccagcatgga cttctccacg 1080
 gtggcttcg aggaagatct ggtcaccaag ctcaatgcgg gcctgcaggc tgcgtctgag 1140
 gatcccagcc tcctgggtcg agccatcggg cccacagaaa ctcccttctt gccccggccc 1200
 gacgctgcag ccgaagactc accaggggtg gccccaggt tgcctgagga cgaggctatc 1260
 40 cggcaagcac tggggactc tgggttccag gtgtcggtgc tgccaggcaa tggggctac 1320
 ctgcccgttc atagtttgc tgacgcctcc gtccctgggtg tggggccccc atatgtcctg 1380
 cggccagggtgt gggagccgct acaggacacg gagcacctca tcatggacct gcgcacaac 1440
 cctggagggc catcctctgc tggcccctg ctccctgtcct acttccaggg ccctgaggcc 1500
 gggccctgtc accttccac cacatatgtat cggccacca acatcacgca ggagcacttc 1560
 45 agcccatatgg agctccccc cccacgctac agcacccaaac gtgggggtgtc tctgctcacc 1620
 agccaccgca cggccacggc cggggaggag ttcgccttcc ttatgcagtc gctgggctgg 1680
 gcccacactgg taggtgagat caccgcgggc aacctgctgc acacccgcac ggtggccgtg 1740
 ctggacacac cccgaaggcag cctcgccgtc accgtggccgg tcctcacctt catgacaat 1800
 cacggcgagg cctggctggg tgggtggagtg gtgcggcgtat ccacgtgtcgtt ggccgaggag 1860
 50 gcccctggaca aagcccagga agtgcgtggag ttccacaaaa gcctgggggc cttgtggag 1920
 ggcacaggggc acctgcgtga gggccactat gctccggccag aggtcgtggg gcagaccagt 1980
 gcccctctgc gggccaaagct gggccaggcc gcctaccgc cagctgtgga cttggagtt 2040
 ctggcctctc agctcacagc agacctccag gaggtgtctg gggaccaccc cttgtctagtg 2100
 ttccacagccc ctggcgagct ggtggtagag gaagcaccccc caccaccccc tgcgttcccc 2160
 55 tctccagagg agctcaccta cttattgtat gcccctttca agacagaggt gctggccggc 2220
 cagctgggtt acctgcgttt tgacgcccatt gctgaactgg agacagtgaa gggccgtgggg 2280
 ccacagctgg tgccggctggg atggcaaaag ctgggtggaca cggctgcgt ggtgatcgac 2340
 ctgcgtaca accctggcag ctactccacg gccatccgc tgcgtctgc tcaacttctt 2400

5 gaggcagagc cccgccagca cctgtattct gtcttgaca gggccaccc 2460
 gaggtgtgga ccttgcggca ggtcgccggc cagcgctacg gctcacacaa ggacctctac 2520
 atcctgatga gcccacaccag tggctctgctg gccgaggcc ttgcacacac catgcaggac 2580
 ctgcagcggg ccacggcat tggggagccc acggccggag ggcgactctc tggggcattc 2640
 10 taccagggtgg gcagcagccc ttatatgca tccatgccc cccagatggc catgagtgcc 2700
 accacaggca aggccctggga cctggctggt gtggagcccg acatcaactgt gcccattgagc 2760
 gaagccctt ccatagccc ggacatagtg gctctgcgtg ccaaggtgcc cacgggtctg 2820
 cagacggccg ggaagctgtt ggctgataac tatgcctctg ccgagctggg ggccaagatg 2880
 gcccacaaac tgagcggctc gcagagccgc tactccaggg tgacctcaga agtggcccta 2940
 15 gccgagatcc tggggctga cctgcagatg ctctccggag acccacaccc gaaggcagcc 3000
 catatccctg agaatgccaa ggaccgcatt cctggaaattt tgcccatgca gatcccttcc 3060
 cctgaagtat ttgaagagct gatcaagttt tccttccaca ctaacgtgt tgaggacaac 3120
 attggctact tgaggtttga catgtttggg gacggtgagc tgctcaccca ggtctccagg 3180
 ctgctgggtgg agcacatctg gaagaagatc atgcacacgg atgcacatgt catgcacatg 3240
 20 aggttcaaca tcggtgccccc cacatccctc attcccatct tgcacatctc ctttttgat 3300
 gaaggccctc cagttctgtt ggacaagatc tacagccggc ctgatgactc tgcgtgtaa 3360
 ctctggacac acgcccaggt tgcgggtgaa cgctatggct ccaagaagag catggtcatt 3420
 ctgaccagca gtgtgacggc cggcaccggc gaggagttca cctatatcat gaagaggctg 3480
 25 ggccggggccc tggtcattgg ggaggtgacc agtggggct gccagccacc acagacctac 3540
 cacgtggatg acaccaaccc ctacccactt atccccacgg cccgttctgt gggggctcg 3600
 gatggcagct cctgggaagg ggtgggggtg acacccatg tgggtgtccc tgcagaagag 3660
 gctctcgcca gggccaagga gatgctccag cacaaccagc tgagggtgaa gcgagccca 3720
 ggcctgcagg accacctgtt gggaaaggcc ccataggcag agccccaggg cagacagaac 3780
 ctctgggaca cacaccaagg gcactcttc aggtggcccg gcctgaggtt cccaggagca 3840
 30 25 gcaaaggggc ctgtcgagct ctggtaggt tacagctgg ggtgtgtata tatacacaca 3900
 cacacatgtt tatacacata tataatgtta tgcataatata tgcataatata tatggcttc 3960
 caataaccac ctaaaattttt acaaagggtt ctttaatgtt gtagaacttg ggggtgtatt 4020
 tttaccttcc ttcttcatac tttgctctt ttcttaataa ctcattaaatg tgcataatata 4080
 attatttca gatgcagcta tcattattcc aaaataacaaa ataa 4124

30

<210> 31
 <211> 579
 <212> ADN
 35 <213> Homo sapiens

<400> 31
 atgcarwsny tnatgcargc nccnytnytn athgcnytng gnytnytnyt ngcnacnccn 60
 gcncargcnc ayytnaaraa rccnwsncar ytnwsnwsnt tywsntggga yaaytgygay 120
 40 garginnaarg ayccngcngt nathmgnwsn ytnacnytng arccngaycc nathgtngtn 180
 ccnggnaayg tnacnytnws ngtngtnnn wsnaclnwsng tnccnytnws nwsnccnytn 240
 aargtngayy tngtnytna raargargtn gcnggnytnt ggathaarat hcctngyacn 300
 gaytayathg gnwsntgyac nttygarcay ttytgygag tnytngayat gytnathccn 360
 acnggngarc cngcngcna rccnytnmgn acntayggny tnccntgyca ytgyccntty 420
 45 aargarggna cngcngcnaa ytaaymgnath garwsngtng tnccngayyt ngarytnccn 480
 wsntggytyna cnacnggnaa ytaaymgnath garwsngtng tnwsnwsnws ngnnaarmgn 540
 ytnngngtyna thaarathgc ngcnwsnytn aarggnath 579

50 <210> 32
 <211> 633
 <212> ADN
 <213> Homo sapiens

55 <400> 32
 tttctttgcg taaccaatac tggaaaggcat taaaaggacc tctgcccctt cagacccctgc 60
 agttaactcc gcccattgaccc acccttcccg atgcagtc tgcacatctc tccctccctg 120
 atcgccttgc gcttgcattt cgcgaccctt ggcgaagccc acctgaaaaa ggtgagtgca 180

ccctttta agagtctgtt tgcagcctcc tggcccagct acgggtgtgc gggctggct 240
 gagatatggg ggtggccact ccgttctcta gaattggttc tctgcactag agcctccaa 300
 agtaactaat tatgggattc tggctctgtac aatgagggtg gcctctaaag acttgttctg 360
 5 ctccaggccc ttttggaga gattaatctc acgtctgcac tctcctgccc tcctccaag 420
 cgccggagtg aaaatgcaga cagccttaaa actaaggcat tgcccccaag agattcagtc 480
 ctgttaaccc tgcacccctac tcctgacccc cactccttat gtccccatg ataaggcctg 540
 ctgcctcatac tcttcccctg ctgcgaatgcc ctgaggtctt cctgagagtt gggagggtt 600
 gagagcttc caaggccaag aggattcact aag 633

10 <210> 33
 <211> 1047
 <212> ADN
 <213> Homo sapiens

15 <400> 33
 caggagctt ccctttgtt gggattccaa cgctggctgg agaggagtgg gcagcaggga 60
 ggtggaaagt cagagaaggt gcccacccaa ggcatttag gtcagtctcc tggttggaaag 120
 ttccaggctt atcatatcct gccttatagt ttacaataca cttttggag attatgtctt 180
 20 ttgagtcttt tagtttagtc ctgcctataa aatgagtagg ataagtgtt tccctaggctc 240
 ataggatagg agtctcatag atgaggctca gggacggggg tgcctcaccc aaggcacac 300
 tgccaggagc tcattttcc tggatctgt gatagtttct tttgtcaacc tttttttct 360
 tctccttcct tgctgcctga ttgtccccag ccatccccagc tcaagtagtt ttcctggat 420
 aactgtgtatg aagggaaagga ccctcgccgtg atcagaagcc tgactctgga gcctgacccc 480
 25 atcgtcggtc ctggaaatgt gaccctcaatgt gtcgtggca gcaccagtgt cccctgtgt 540
 tctcctctga aggtgagcct ggggggtgggt ggagaagggg aggtgcgagg gtctggccag 600
 caggggtact gggcgtatgtc tgctggggg actgtgaaga atttcagaat cctggattcc 660
 cagagaatag tacaggacat gttagattcag acactcttc acaggttcat ggaatctcag 720
 30 gatcataaga ttgaaaggaa tctctgtatgt cagcggccagc aacttcctgg tgagggcagg 780
 agtgacggat accttgcacc tggcagaagc gtcctggcct tctctggcc tggtggccaa 840
 ctgctcatta ttatctgaca gctctgggtt gccaatttgg ttttgcgttt aattataaaa 900
 ttgatataacc aattagccag taatataatag tcactttaga aaacacaagt ggtcaaaaaaa 960
 taaataaaaat aggccaagtg tggtaacttc atgcctgtaa ttcccacacc cttaggaggc 1020
 tgaaggtggg tggatcctt tttgagg 1047

35 <210> 34
 <211> 1706
 <212> ADN
 <213> Homo sapiens

<400> 34
 acagtagatg ccagtgcatt tcaatgcaag tggtagagcc aatcaatggg tagtgactac 60
 ctaaagaatt ttaagactat ggattgagca tggatggctca cggcctgtaa tcctcaggctt 120
 45 tggaaaggta aggtgaaagg attgcttgc gcccaggat ccagaccac ttggcaaca 180
 aagtgagccc catctctaca aaaaatacaa aattagctgg gtgtggggc atgtgcctgt 240
 ctgtgtttcc cacctacatg ggaggctgag gcaggaggat cgtctgagcc caggagttt 300
 aggctgcagt gagtgcagtgc aecatgata caaaaaaaaaa aaataaagaa ttctaaagtct 360
 atgtatagtt cagtgttaggg gggaaattca cattttgtt ttaatgtctg ccatgggcac 420
 50 aataatacac tataactcaca catggccac aatgttgcctt tcctctagaac agactatctc 480
 taagatctca tccagttaaa aattctatgt ttaaaatata ttgctgtttt ttggagac 540
 gaagagctgg tatgtttgcctt ctggaaattttt cacttataac ctttttcaaa cttttttttt 600
 atttttttt accaggtggat ttttagtttgc gagaaggagg tggctggcct ctggatcaag 660
 atccccatgca cagactacat tggcagctgtt accttgcac acttctgttga tttgtgttgc 720
 55 atgttaattt ctaactgggaa gcccctggca gagccccctgc gtacctatgg gcttccttgc 780
 cactgtccct tcaaagaagt aagtacttag ggaggagaga gcgttacccc tggcttgc 840
 gagatgggggt tggagagaa gggtcttgc attctccttc tgcagatctg catgtctctg 900
 gatttgcgttgcac ctatcaggaa tcacttatct tcctggagcc tcagttatcc 960

atctacgaaa tgggagactt gaacttagat gtatcttca gggccctta tccatataat 1020
 ccatgtctca cagtgtatg gccgtcttc atcttgcg gctgtttga gaatggaaag 1080
 aggggtggta gttcatggct gcaatccatg cagtggctc aggagaaaaga ccccatcagt 1140
 aggctccac tgaactggcg tccactggct ttcccgcagg gAACCTACTC actgccaag 1200
 5 agcgaattcg ttgtgcctga cctggagctg cccagttggc tcaccaccgg gaactaccgc 1260
 atagagagcg tcctgagcag cagtggaaag cgctctggct gcatcaagat cgctgcctct 1320
 ctaaaggca tatacatgg catctgccac agcagaatgg agcgtgtga ggaagggtccc 1380
 ttttctctg ttttgtttt gccaaggcca aactcccact ctctgcccccc cttaatccc 1440
 ctttctacag tgagtccact accctcactg aaaaatcattt tgtaccactt acattttagg 1500
 10 ctggggcaag cagccctgac ctaaggaga atgagttgga cagttctga tagcccaggg 1560
 catctgctgg gctgaccacg ttactcatcc ccgttaacat tctctctaaa gagcctcggt 1620
 catttccaaa gcagtttaagg aatgggaaca gagtttttta ggacctgaag aatctttatg 1680
 actctctctc tttctctttt tttttt 1706

15 <210> 35
 <211> 633
 <212> ADN
 <213> Homo sapiens

20 <400> 35
 tttctttgcg taaccaatac tggaaaggcat ttaaaggacc tctgccct cagaccttgc 60
 agttaactcc gccctgaccc acccttcccg atgcagttcc tcatgcagggc tccctcctg 120
 atcgccctgg gtttgcctct cgcgaccctt ggcgaagccc acctgaaaaaa ggtgagtgca 180
 25 ccctcttta agagtctgtt tgcagccctcc tggcccaagct acgggtgtgc gggctggct 240
 gagatatggg ggtggccact ccgttctcta gaattggttc tctgcactag agccttccaa 300
 agtaactaat tatgggattc tggtctgtac aatgagggtt ggcctctaaag acttggctg 360
 ctccaggccc ttttggaga gattaatctc acgtctgcac tctcctgccc tccctccaag 420
 30 cggccggagtg aaaatgcaga cagccttaaa actaaggcat tgccttcaag agattcagtc 480
 ctgttaaccc tgcacccctac tccgtacccccc cactccttat gtccttcatg ataaggcctg 540
 ctgcctcatc tcttccctg ctcgaatgcc ctgaggctt cctgagagtt gggagggttt 600
 gagagcttca aagccaaag aggattcaact aag 633

35 <210> 36
 <211> 1047
 <212> ADN
 <213> Homo sapiens

40 <400> 36
 caggagcttgc ccctcttgc gggattccaa cgctggctgg agaggagtg gcaagcaggaa 60
 ggtggaaagt cagagaaggt gcccacccaa ggcctattag gtcagtcctc tttttggaaag 120
 ttccaggctt atcatatcct gccttatagt ttacaataca cttttggag attatgtctt 180
 ttgagtcttt tagtttagtc ctgcctataaa aatgagtagg ataagtgtt tccctagg 240
 45 ataggtatgg agtctcatag atgaggctca gggacggggg tgcctcaccc aaggtcacac 300
 tgccaggagc tcattttcc tttgtatctgt gatagttct tttgtcaacc tttttcttct 360
 tctcccttct tgcgtcctga ttgtccccag ccatcccagc tcagtagctt tccctggat 420
 aactgtgtatgg aaggaaagga ccctgcgggtg atcagaagcc tgactctggc ggcctgaccc 480
 atcgtctgttcc ctggaaatgt gaccctcaat gtcgtggc gacccatgtt cccctgtatg 540
 50 tctccctctga aggtgagcct ggggggtgggt ggagaagggg aggtgcgagg gtcgtggcc 600
 caggggtact ggggcattgtt tgccttgggaa actgtgaaga atttcagaat cctggattcc 660
 cagagaatacg tacaggacat gtagattcag acactcttc acaggatctcat ggaatctcag 720
 gatcataaga ttgaaaggaa tctctgtatgt cagcgtccacg aacttccctgg tgaggggcagg 780
 agtgcacggat accttgcacc tggcagaagc gtcctggct tctctggcc tgggtggccaa 840
 55 ctgctcatta ttatctgaca gtcgtgggtt gccaatttgg ttttgcgtt aattataaaa 900
 ttgatataacc aattagccag taatataatag tcactttaga aaacacaatg ggtcaaaaaaa 960
 taaataaaaat aggccaaatgt tggtaacttc atgcctgtaa ttcccacacc ctttaggaggc 1020
 tgaagggtggg tggatcctt tttgagg 1047

5 <210> 37
 <211> 1706
 <212> ADN
 <213> Homo sapiens

10 <400> 37
 acagtagatg ccagtgcatt tcaatgcagg tggtagagcc aatcaatggg tagtgactac 60
 ctaaagaatt ttaagactat ggattgagca ttagtgcctca cggcctgtaa tcccaagcc 120
 tggaaaggta aggtgaaagg attgcttgcg gccaggagtt ccagaccagc ttgggcaaca 180
 aagtggcccc catctctaca aaaaatacaa aattagctgg gtgtggtggc atgtgcctgt 240
 ctgtgttcc cacttacatg ggaggctgag gcaggaggat cgtctgagcc caggagttt 300
 aggctgcagt gagtgcagtg agccatgata caaaaaaaaaaa aaataaaagaa ttctaagtct 360
 15 atgtatagtt cagtgttaggg gggaaaatca cattgatta ttaatgtctg ccatgggcac 420
 aataatacac tataactcaca catggggccac aatgttgcca ttcctagaac agactatctc 480
 taagatctca tccagttaaa aattctatga ttaaaaatata ttgctgcctt ttgaagaca 540
 gaagagctgg tatgtttgcg ctggaaatttta cacttataac ctttttcaaa cctttgtttt 600
 atttttttt accagggtgg a tttagtttg gagaaggagg tggctggcct ctggatcaag 660
 20 atccccatgca cagactacat tggcagctgt accttgcac acttctgtga tggcttgac 720
 atgttaattt ctaactgggg gcccctgcca gagccccctgc gtacctatgg gcttccttgc 780
 cactgtccct tcaaagaagt aagtacttag ggaggagaga gcgttacccc tggcttcaaa 840
 gagatgggggt ttggagagaa gggcttgc attctccctc tgcagatctg catgtctctg 900
 gatttgcagg ccagtgtgac ctatcaggaa tcacttatct tccgggagcc tcagttatcc 960
 25 atctacgaaa tggggagactt gaaacttagat gtgatcttca gggcccttta tccatataat 1020
 ccatgctcta cagtgcata gccgtctctc atcttgcgc gctgttttga gaatggaaag 1080
 agggttggta gttcatggct gcaatccatg cagtggctct aggagaaaga ccccatcagt 1140
 aggctccac tgactggcg tccactggct tcccccgcagg gAACCTACTC actgcccac 1200
 agcgaattcg ttgtgcctga cctggagctg cccagttggc tcaccacccg gaactaccgc 1260
 30 atagagagcg tcctgagcag cagtggaaag cgtctggct gcatcaagat cgctgectct 1320
 ctaaaggggca tatacatgg catctgcccac agcagaatgg agcgggtgtga ggaaggtccc 1380
 ttttctcttg ttttgcgtt gccaaggggca aactccact ctctgcccc ctttaatccc 1440
 ctttctacag tgagtccact accctcactg aaaatcattt tggaccactt acattttagg 1500
 ctggggcaag cagccctgac ctaagggaga atgatggc cagttcttgc tagcccgagg 1560
 35 catctgctgg gctgaccacg ttactcatcc ccgttaacat tctctctaaa gagcctcggt 1620
 catttccaaa gcagtttaagg aatgggaaca gagtgcgttta ggacctgaaag aatctttatg 1680
 actctctctc tttctctctt tttttt 1706

40 <210> 38
 <211> 1043
 <212> ADN
 <213> Homo sapiens

45 <400> 38
 tttctttgcg taaccaatac tggaaaggcat ttaaaggacc tctgcccctt cagacccctgc 60
 agttaactcc gcccctgaccc acccttcccc atgcagtcctc ttagtgcaggg tcccctcctg 120
 atcgccctgg gcttgccttc cgcgaccctt ggcgaagccc acctgaaaaaa gccatcccc 180
 ctcagtagct tttccctggta taactgtgtat gaagggaagg accctgcgggt gatcagaagc 240
 50 ctgactctgg agcctgaccc catgtcgctt cctggaaatgt tgaccctcag tggctggc 300
 agcaccaggta tccccctgag ttctcctctg aagggtggatt tagttttggaa gaaggaggta 360
 gctggccctt ggatcaagat cccatgcaca gactacattt gcagctgtac ctttgaacac 420
 ttctgtgtat tgcttgacat gttaaattctt actggggagc cctgccccaga gcccctgcgt 480
 acctatgggc ttccctgcca ctgtcccttc aaagaaggaa cctactcaact gcccacagc 540
 55 gaattcggtg tgcctgaccc ggagctgccc agttggctca ccaccgggaa ctaccgcata 600
 gagagcgtcc tgagcagcag tggaaagcgt ctgggctgca tcaagatcgc tgcctctct 660
 aaggggcatat agcatggcat ctgcccacagc agaatggagc ggtgtgagga aggtcccttt 720
 tcctctgttt tggtttgcg aaggccaaac tcccaactctc tggccccctt taatccccctt 780

5 tctacagtga gtccactacc ctcactaaaa atcattttgt accacttaca ttttaggctg 840
 gggcaagcag ccctgaccta agggagaatg agttggacag ttcttgatag cccagggcat 900
 ctgctggct gaccacgtta ctcatccccg ttaacattct ctctaaagag cctcgatcat 960
 ttccaaagca gttaaaggaat gggAACAGAG tgTTTtagga cctgaagaat ctttatgact 1020
 ctctctctt ctcttttt ttt 1043

10 <210> 39
 <211> 1047
 <212> ADN
 <213> Homo sapiens

15 <400> 39
 caggagcttg ccctcttgct gggattccaa cgctggctgg agaggagtgg gcagcaggga 60
 ggtggaaagt cagagaaggt gcccacccaa ggcctattag gtcagtcctcc tgTTTggaaag 120
 ttccaggctt atcatatcct gccttatagt ttacaataca cttttggag attatgtctt 180
 ttgagtctt tagtttagtc ctgcctataa aatgagtagg ataagtgta tcccagggttc 240
 ataggtatgg agtctcatag atgaggctca gggacggggg tgcctcaccc aaggtcacac 300
 tgccaggagc tcattttcc tttgtatctgt gatagtttct tttgtcaacc ttttcttct 360
 20 ttccttcct tgctgcctga ttgtccccag ccatcccagc tcagtagctt ttccctggat 420
 aactgtgatg aaggaaagga ccctgcgggt atcagaagcc tgactctgga gcctgacccc 480
 atcgtcggtc ctggaaatgt gaccctcagt gtcgtggca gcaccagtgt cccctgagt 540
 ttcctctga aggtgagcct ggggggtgggt ggagaagggg aggtgcgagg gtctggccag 600
 caggggtact ggggcatgtta tgcttgggaa actgtgaaga atttcagaat cctggattcc 660
 25 cagagaatacg tacaggacat gtagattcag acacttttc acaggttcat ggaatctcag 720
 gatcataaga ttgaaaggaa tctctgatgt cagcgcgcagc aacttcctgg tgagggcagg 780
 agtgacggat accttgcacc tggcagaagc gtcctggct tctctggcc tggtggccaa 840
 ctgctcatta ttatctgaca gctctgggtt gccaatttgg ttttgcgttt aattataaaa 900
 ttgatataacc aattagccag taatataatg tcactttaga aaacacaatg ggtcaaaaaaa 960
 30 taaataaaaat aggccaagtg tggtaacttc atgcctgtaa ttcccacacc cttaggaggc 1020
 tgaaggtggg tgggatcctt tttgagg 1047

35 <210> 40
 <211> 1705
 <212> ADN
 <213> Homo sapiens

40 <400> 40
 acagtagatg ccagtgtatTTT caatgcagaatg gtttagagccaa atcaatgggt agtgactacc 60
 taaaagaattt taagactatg gattgagcat gatggctcac ggcctgtat cccagccctt 120
 ggaaggtgaa ggtggaaaggaa ttgcttgagg ccaggagttc cagaccagct tggcaacaa 180
 agtgagccccc atctctacaa aaaatacataaa attagctggg tttgtggca tttgcctgtc 240
 tttgtttccc acctacatgg gaggctgagg caggaggatc gtcctgagccc aggagttga 300
 45 ggctgcagtg agtgcagtgaa gccatgatac aaaaaaaaaa aataaaagaat tctaagtctt 360
 ttgtatgttc agtgttagggg gaaaattcac atttgattat taatgtctgc catggcaca 420
 ataatacacat atactcacac atgggcccaca atgttgccat tcctagaaca gactatctt 480
 aagatctcat ccagttaaaaa attctatgtat taaaataatat tgctgtttt ttgaagacag 540
 aagagctggt atgtttgccc tggaaatttac acttataacc ttttcaaaac ctttgggttta 600
 50 tttttttta ccaggtggat tttagttttgg agaaggaggt ggctggccctc tggatcaaga 660
 tcccatgcac agactacatt ggcagctgtt ctttgaaca cttctgtgtat gtgcctgaca 720
 tggtaattcc tactggggag ccctgcccag agcccctgcg tacctatggg cttccttgcc 780
 actgtccctt caaagaagta agtacttagg gaggagagag cgttaccctt gtggctaaag 840
 agatgggggtt tggagagaag ggtctttgca ttctcttctt gcagatctgc atgtctctgg 900
 55 atttgtaaatc cagtgtgacc tttttttttt cttttttttt ccggggggccct cttttttttt 960
 tctacgaaat gggagacttg aacttagatg tgatcttcag ggcctttat ccatataatc 1020
 catgctctac agtgcatatgg ccgtctctca ttttttttttgg cttttttttttagg aatggaaaga 1080
 ggggtggtag ttttttttttgg ctttttttttgg ctttttttttgg ctttttttttgg aatggaaaga 1140

5 ggctccact gactggcggt ccactggctt tcccgaggg aacctactca ctgcccaga 1200
 gcgaaattcggt tggcctgac ctggagctgc ccagttggct caccaccggg aactaccgca 1260
 tagagagcggt cctgagcagc agtgggaagc gtctgggctg catcaagatc gctgcctetc 1320
 taaagggcat atagcatggc atctgccaca gcagaatgga gcggtgtgag gaagggtccct 1380
 10 tttcctctgt tttgttttgc ccaaggccaa actccactc tctgcccccc tttatcccc 1440
 tttctacagt gagtccacta ccctcaactga aaatcatttt gtaccactta catttttaggc 1500
 tggggcaagc agccctgacc taagggagaa tgagttggac agttcttgat agcccagggc 1560
 atctgctggg ctgaccacgt tactcatccc cgttaacatt ctctctaaag agectcggtc 1620
 atttccaaag cagttaaagga atggaaacag agtgttttag gacctgaaga atctttatga 1680
 15 ctctctctct ttctctcttt tttt 1705

15 <210> 41
 <211> 1043
 <212> ADN
 <213> Homo sapiens

20 <400> 41
 tttctttgcg taaccaatac tggaaggcat ttaaaggacc tctgcccctt cagaccttgc 60
 agttaactcc gcccgtgaccc acccttcccg atgcagtccc tgatgcaggc tcccttcctg 120
 atcgccctgg gcttgcttct cgcgaccctt ggcgaagccc acctgaaaaa gccatcccg 180
 ctcagtagct tttcctggga taactgtgtat gaagggaaagg accctgcccgtt gatcagaagc 240
 ctgactctgg agcctgaccc catcgctgtt cctggaaatg tgaccctcag tgcgtgggc 300
 agcaccagtg tccccctgat ttctcctctg aaggtggatt tagttttgaa gaaggaggtg 360
 25 gctggccctt ggatcaagat cccatgcaca gactacattt gcaatgttac ctttgaacac 420
 ttctgtgtat tgcttgacat tttaatttctt actggggagc cctgcccaga gcccctgcgt 480
 acctatgggc ttcccttgcca ctgtcccttc aaagaaggaa cctactcaact gccaagagc 540
 gaattcgttgc tgcctgaccc ggagctgccc agtggctca ccaccggaa ctaccgcata 600
 30 gagagcgtcc tgagcagcag tgggaagcgt ctggctgca tcaagatgc tgccctctca 660
 aaggccatat agcatggcat ctgcccacagc agaatggagc ggtgtgagga aggtcccttt 720
 tcctctgttt tggtttgcc aaggccaaac tccactctc tgccccctt taatccccctt 780
 tctacagtgat gtccactacc ctcactggaa atcattttgtt accacttaca ttttaggctg 840
 gggcaagcag ccctgaccta agggagaatg agtggacag ttcttgatag cccagggcat 900
 ctgctgggtt gaccacgtt ctcatcccc ttaacattct ctctaaagag cctcggtcat 960
 35 ttccaaagca gttaaggaat gggaaacagag tgttttgaa cctgaagaat ctttatgact 1020
 ctctctcttt ctctcttttt ttt 1043

40 <210> 42
 <211> 342
 <212> ADN
 <213> Homo sapiens

45 <400> 42
 atgacntgya aratgwsnca rytngrmgn aayathgara cnathathaa yacnnttcay 60
 cartaywsng tnaarytnng ncayccngay acnytnaayc arggngartt yaargarytn 120
 gtnmgnarg ayytncaraa ytttytnaar aargaraaya araaygaraa rgtnathgar 180
 cayathatgg argayytnga yacnaaygn gayaarcary tnwsnttyga rgarttyath 240
 atgytnatgg cnmgnnytnac ntggcnwsn caygaraara tgcaygargg ngaygarggn 300
 50 ccnggnacayc aycayaarcc ngnnytnngn garggnacnc cn 342

55 <210> 43
 <211> 4195
 <212> ADN
 <213> Homo sapiens

<400> 43

ttccacctt tggctttgtt aaataatgct gctatgaaca tgaatgtaca aacatctgtt 60
 tgaatccctg cattcaattc ttttgcataat atacccagga gcagaatgtat ggatcatatg 120
 gtaattctgt gtttattttt ttgaggaaca aacttgcgtt tttccataac agctgcacta 180
 ttttacattc ccactaacag tgcatttaggc ttccaattctt ctatgccctc accaacactt 240
 5 gtttctggg ttttaaaaaga agtagtagtc atccttgcgtt gtgtcaggtg gtatcttattt 300
 gtcgttttc ttcatgtttt cctaaagatt agtaatttc atatgcattt tgaccattt 360
 tataatcttct tcggagaagt gtctatttga gtctttccccc aattttgatt ggtttgggg 420
 tttttgttg ttgagttgtt gggattcttt tatattctgg atattaatcc cttatcagat 480
 atttgttttta caaatatttt ctttgcataa acagaaacac accacagttc tcaaggttgg 540
 10 aagccagtttta atctgagtag cattttgttta gtgtggggg gaggattttgtt ccctcctgaa 600
 atcctgggggatttggccacc tcccttttctt ctcttaggca tgaagcgcgtt ctggcttctc 660
 caaagaactc ttcccctcca ctacctcaga gttagcttcc tctttcagc cagtgatctt 720
 ggggtcccaag acacaataat taaccaagag agggtggaaag gtcctctgt gtgttatgc 780
 aatggctcag gcccttgcgtt agtgcgcagg gaccccaagc agcctccatc tcccaggggca 840
 15 tggtccatcc ccagtttca cagaacagga aagctgttgg gtagtgcgttggggg cagcagggtt 900
 ggaatggata tagcccttgg caacaacaca tttccccaca aagcaccac caaaaagaac 960
 aacaacgata gttttagttt ttagtaatga gaacaatagt tctcatgact aaaagccatc 1020
 agccaggaca ctgttctcaa cccttttgcgtt gtctttggac cctttgaaac tctgacagaa 1080
 20 gccatggagg aatgttctca ctgagttgttgcgtt gactcaaaa ttagtgcatttca aacttcaattt 1140
 cagtttcagg gatgtatggc ctgaccacca atgcaggggg ttagcaatcg caatagtgg 1200
 gagggcatgg gagtggaaat ctggctggat caagcaagtg gatgccagca gcccagaaaa 1260
 agagcccccc tacctgtttt ttccttccttgg ggcactatttgc cccagcaat gccttcctct 1320
 ttccgcttctt cctacccccc caccggaaat tttcatttgcgtt cacagtatttgc cccacattca 1380
 ctggttgaga aacagagact gtagcaactc tggcaggggg aagctgttctc tgatggcctg 1440
 25 aagctgtggg cagctggcca agcctaaccg ctataaaaag gagctgcctc tcagccctgc 1500
 atgtctcttgc ttagtgcgtt ttcagaagac ctggtaatgtt ggactgtctg ggttggcccc 1560
 gcactttggg cttcttttgcgtt ggagggttcag ggaagtggag cagccttccttctt gggacttgcct 1620
 agagaaaagct cagggagggtc tggagcaaaat atactcctgg aggtggggag tgaggcagg 1680
 ataaggaagg agagtatccct ccagcacctt ccagtgggtt gggccacattt gtctccttgc 1740
 30 ctggactttt ttgagcaga ggggtgggtt gtaaggaaag tctacggggcc cccgtgtgtt 1800
 tgcacatgtc tctgtgttgcgtt ggaccccttcc cccttcccac acgtgtatcc ctatcatccc 1860
 acccttcccac ccagaggcca tagccatcttgcgtt tatttgcgttgc tgcaggccag 1920
 gacaaggcca tgccttggggg catgaatccct ctgcgtacttgcgtt ccctggccag atgcaattt 1980
 cctgcccattttt gattccccag aagggttctgtt tttcagggtt gggcaagttc cgtggcattc 2040
 35 atgttgaccg agctggagaa agccttgcac tctatcatgc acgtctacca caagtactcc 2100
 ctgataaaaagg ggaatttcca tgcgttcttgcgtt agggatgacc tgaagaaaattt gctagagacc 2160
 gagtgtccctc agtatatccatgcgtt ggtgaggagg ggctgggttgcgtt ggcggggctt ctctgcctgg 2220
 ttctggggctt gcccggggcc agcggcttcccttgcgtt ccctggccaccc ttcatagatg ctatgcctcg 2280
 gctctctcttgcgtt agatctttaa actctgggttcttccatgcgtt aatcttgcata gaaaaagggt 2340
 40 gcagacgttgcgtt ggttccaaaga gttggatattt aacactgtatgcgtt gtcagttaa cttccaggag 2400
 ttcctcatcc tgggtataaa gatggggcttgcgtt gcagcccaca aaaaagcca tgaagaaaagc 2460
 cacaaagagt agctgagtttgcgtt ctggggccatgcgtt aggtggggcc cctggacatgcgtt tacctgcaga 2520
 ataataaaatgcgtt catcaatacc tcatgccttgcgtt ctcttgcgtt tttgtggaaat gagggttcttgcgtt 2580
 ggtgtggagg gagggttggaa aaccccaaaag gaagaaaaag aatctatgtt tateccacccc 2640
 45 tacctcttccatgcgtt aagctttccatgcgtt tgccttaccc ctcacccatgcgtt ctctggccca catttcattca 2700
 gccccttccatgcgtt tgcgttccatgcgtt gatttgcgttgcgtt ttaaggattt aaaaagtcgtt catgaatata 2760
 gctgtatgttgcgtt ttatgttgcgtt tctgaaatgg gtcggggattt tgggaacagg gtggtagtat 2820
 aagaacaact gatactgttgcgtt tctaagcttgcgtt atcttagctt ccagctacccatgcgtt gtcttagatg 2880
 tggctcttgcgtt gaacccatgcgtt gttgtatgttgcgtt catagaatgtt tttgtgggttgcgtt tttgtgtgttgcgtt 2940
 50 tctgtgtgttgcgtt tttgtgtgttgcgtt agagagacag acagaaagag agcaagagag ggaaggggggg 3000
 agagggttgcgtt tttgtgtgttgcgtt gttgtatgttgcgtt ggtggacaat gttcagatgcgtt ctccattaaac 3060
 aggataatccatgcgtt ccacacccatgcgtt ctggatccatgcgtt cttggggattt ttgaaaattt 3120
 ttcctccatgcgtt tccacccatgcgtt aactcccaac tcaattaaat gataaagaa taggcaaaataa 3180
 gggaaaataaaatgcgtt ttagaaaaac ttaagtccaaatgcgtt gaataggtt ttcatacgttgcgtt gcctatggga 3240
 55 ttctatgttgcgtt tttgtgtatgcgtt aaattatcttgcgtt aaaaatacttgcgtt cccaaagggttgcgtt ggtacaagg 3300
 aggccagaag acgagttgttgcgtt cttctcttgcgtt gttgtatgttgcgtt aaaaaaagaaag aaaaatgttgcgtt 3360
 ggaacccatgcgtt gacaagaatgcgtt tcaccccaaaatgcgtt ctggatccatgcgtt atgctgtgttgcgtt gtggggattt 3420
 ttctgttgcgtt tttgtgtatgcgtt cttctcttgcgtt gttgtatgttgcgtt tttgtgggttgcgtt tttgtgtgttgcgtt 3480

425

ttccc

5 <210> 47
 <211> 565
 <212> ADN
 <213> Homo sapiens

10 <400> 47
 aattcgctcg gctttgacag agtgcacagc gatgacttgc aaaatgtcgc agctggaacg 60
 caacatagag accatcatca acaccttcca ccaatactct gtgaagctgg ggacccaga 120
 caccctgaac caggggaaat tcaaagagct ggtgcgaaaa gatctgaaa atttctcaa 180
 gaaggagaat aagaatgaaa aggtcataga acacatcatg gaggacctgg acacaaatgc 240
 agacaagcag ctgagctcg aggagttcat catgctgatg gcgaggctaa cctgggcctc 300
 15 ccacgagaag atgcacgagg gtgacgaggg ccctggccac caccataagc caggcctcgg 360
 ggagggcacc ccctaagacc acagtggcca agatcacagt ggccacggcc atggccacag 420
 tcatggtgc cacggccaca ggccactaat caggaggcca ggccacccctg cctctaccca 480
 accagggccc cggggcctgt tatgtcaaac tgtctggct gtggggctag gggctgggc 540
 20 ccaaataaagt ctttcctcc aagct 565

25 <210> 48
 <211> 430
 <212> ADN
 <213> Homo sapiens

30 <400> 48
 gacttggagg aagagacttt atttggccccc agcccttagc cccacagccca agacagttt 60
 acataacagg ccccccggcc ctgggtgggt agagggcaggg tggcctggcc tcctgattag 120
 tggctgtgc cgtggccacc atgactgtgg ccgtggccgt ggccactgtg atcttggcca 180
 ctgtggtctt aggggggtgcc ctccccgagg cctggcttat ggtggtggcc agggccctcg 240
 tcaccctcgt gcatcttctc gtgggagggcc caggttagcc tcgccatcag catgatgaac 300
 tcctcgaagc tcagctgctt gtctgcattt gtgtccaggt cctccatgat gtgttctatg 360
 35 accttttcat tcttattctc cttcttgaga aaattttgca gatctttcg caccagctct 420
 ttgaattccc 430

40 <210> 49
 <211> 305
 <212> ADN
 <213> Homo sapiens

45 <400> 49
 tgacttggag gaaaaaaactt tatttggccc cagccccctag ccccacagcc aaaacagttt 60
 gacataacag gccccggggc cctgggtggg tagaggcagg ggggcctggc ctccctgatta 120
 gtggctgtgg ccggggccac catgactgtg gccggggccg gggccactgt gatcttgc 180
 ctggggtctt aggggggtgcc ctccccgagg cctggtttat ggtggtggcc agggcccttg 240
 tcacccttgt gcatttttc gtgggaggccc caggttagcc tcgccatcag catgatgaac 300
 50 tcctc 305

55 <210> 50
 <211> 452
 <212> ADN
 <213> Homo sapiens

<400> 50
 ggaggaagag actttatgg gccccagccc ctagccccac agccaagaca gtttgacata 60

acaggccccg gggccctgg tggtagagg cagggtgcc tggcctcctg attagtggct 120
 gtggccgtgg ccaccatgac tggccgtgg gccgtggcca ctgtgatctt ggcactgtg 180
 gtcttagggg gtggccctcc cgaggcctgg ctatggtgg tggccagggc cctcgtcacc 240
 ctcgtgatt ttctcggtgg aggcccaggt tagcctcgcc atcagcatga tgaactcctc 300
 5 gaagctcagc tgcttgcgtc catttgcgtc caggtcctcc atgatgtgtt ctatgacctt 360
 ttcttctta ttctccttct tgagaaaatt ttgcagatct ttgcacca gctcttgaa 420
 ttccccctgg ttcagggtgt ctgggtgccc ca 452

10 <210> 51
 <211> 4439
 <212> ADN
 <213> Homo sapiens

15 <400> 51
 atcaactgtgg agtagggaa gggcactcct ggggtggcaa ggtgggaggt gggccctgtg 60
 ttcccacagt gggcagggag gtagtggaaag ggaagctggc cggacaggaa gggccattcc 120
 aagagggctt tggcgcagg gctaagccaa gcttctcca taggcaatgg ggagcaactg 180
 gaggttcgtt gcaaggagaag gacacatcaa gcccaccagg aggctaagta aaaacagttg 240
 20 tctcccaagt tataagttcc tggaaaccctt gctgggagca ggatttgaa aaatgatgct 300
 gagagatgtt agaaacatata tcggcctgag gctctctcac tcagactgca agaggaaggt 360
 atcatcagaa ttggcccttaa ccaggaacca gaatagctgg gtcggccctt tgccaagtca 420
 gcaaccagct atgtgacctt gtcagggtcc atctccgggt gtcagttct tcatactacaa 480
 tgcaagaggg ttggccaccc ctgagaaacc ttctaaaccc aaatctcacc ctatgaatct 540
 25 aagaacacaa cccctcgcca tcctaagat cacagagcc ggcacatg ggtgagagct 600
 cagaccatcc ttgttggact aaaaggaagg ggcacactgc catggggggc agccgagagg 660
 gtcaggcccc cataggtcct cagcctgttt caacccctaaa ggggatgggg ggctgagttg 720
 tgccagagga gcacggcgtc cgctcgggga gatggggcc ttaggataga agggaaatga 780
 actaaacaaac cagcttcctg caaaccagtt tcaggccagg gctgggatt tcacaaaaaa 840
 30 gcagaaggcg ctctgtgaac atttctgtcc ccggcccccgc ccccttcctg gcagcattag 900
 cacactgttc acctgtgaag caatcttccg gagacaggc caaaggccaa gtggccctgt 960
 caggagctgc ctataaatgc cgacccgtca cagctctggc aaacactctg tggctctt 1020
 cggcttttgtt aagtggactt ccagcttccc caggcagaag cctgcctgca gattccctt 1080
 ttccttcctt gacccaaattt cctcccaat cctcccttca gaagccctcc ttgggtggcc 1140
 35 ctgcctactt taaagcttct ttcacattt ctttaggtcat gttccctgg ggcctcctgc 1200
 cctcaaatgc tttgtttttt ggcactctgt agatattcta aaaaatcatt ttgtacatgt 1260
 gtgtgacagg ccacccatcca gttaaagtgc agcctgtgt ttctttttt tttgcaactt 1320
 ccccaactatt tctgtgatgt ctttagtagga agtgcacaaag aagcttgaca gcattttctt 1380
 ctaagtgtcc caactcttgg tttccatata cacagacaga gtgcacacg atgacttgca 1440
 40 aaatgtcgca gctggAACgc aacatagaga ccatcatcaa caccttcac caataactctg 1500
 tgaagctggg gcacccagac accctgaacc agggggatt caaagagctg gtgcggaaag 1560
 atctgcaaaa ttttctcaag gttagggctgg actctggcag gtctgaccca gcctcaccgc 1620
 agtttgggtt gacaagggag gatgggagta tgggctacag caatcaaggg gaagatttg 1680
 gtcctggag cccagccccca agacgcacgc agtgcctgt tatacaggc aggtgctcac 1740
 45 agttacacag gacgacaggg tcaagaaaatt gctcaattga acacctgcta tttgtcgggc 1800
 cctgttctgg gcagagggat gttaggtttaa atgggagccc actattccat gaggagacac 1860
 acagtaaatgt tggggccaa taaagagac agataaaagcc aaatgccaat aagtgcctgg 1920
 aagaaaaatgt gataagatgtc gctgtggca atgggctgg gtgggggtt ggtgaccagt 1980
 tagggatcat gagaagggcc tctttggat ggtacacattt gagctgagcc cgcacatgtt 2040
 50 gggagggaaag cccctgagga tgacacttgg cacaagctg aggagaccc aagccctcagg 2100
 gcgacccctgg ggtggaaagac ttgggggtt ttctaaatcc aagggtctgc ggtggaaaat 2160
 gaatgcataa agacccatg gagacccatc gcacacact cagggaaactg ggagggtttt 2220
 ccccccctcc aaaaatgtt aggcacgtt aagaaaaagg ctgacactt ccaacacgcct 2280
 ttttgggtttc ttttcaattt tggggaaaat cggggaaacag aggcctgtcat taagaagggt 2340
 55 ggaacacatg ggttcagtc tcagttccag tcccccggcc agacatctg ggttaggtcc 2400
 ccagccctcc cagtcggccctt ccctccggct tggtaagggt gagaattgca gcctcagag 2460
 ttagggccccc tgacagatct ccatagggtgg aggcctcagg cagggcaggat gtcgggtggg 2520
 gtggcaaga aaggccccag cagagaggcc gcatcgaaaa actatcctcc atgtgacccc 2580

ctatccccgc ttcacccccc acctgacatc ccccaccaga agcaaagcga tgctgtggga 2640
 aaggaagcag agcctcatgg atgggctgca caggagagtg ctgcattgg ctgggtaccc 2700
 cacaggttct gggaggggac ttagcgaggt gactcagtgc ctggcctcc caaagtgctg 2760
 ggattacaag catgagccac cctgtccgac catctccctt ttatacttt atcacaccct 2820
 5 tgaggtcagc ggagcacata ctctgcttc tgaccctcca tctccctgc ccacacctag 2880
 gttttctag tgttccccg ttgtatttgg tgaataagt ttcactaatt ggttaacctcc 2940
 agagggaaagg gaagggaggg caggggaagg agtgaagtgc agagggtag cagagtggaa 3000
 ctggcctcta agtcaagatct gaatttgcatt gcctcaata gtcaagcctg tgaaaactaa 3060
 tgaccctctc taggactggt ttcaagtctt cctccaggaa gataccattc ctatgttta 3120
 10 aagttgttat aaggacccaa tgaggtgaca ttccaggct tactcatgcc atgaccagg 3180
 caagaccctg gaactcagct tcctcttcta taaatagaga atcagcaccc aagtacagg 3240
 gtcattggagg gaataaaactg gagagcgtt ggtatgtct cagtgtctgc tccattgtgc 3300
 gcactcagcc tatgttcatt ttaatttt aaatccagcc ccagggtcga ggcttccttg 3360
 tacatttgcc agctggtcat ttactgtct cccagtcctt acctctggcc acacccagct 3420
 15 ctcacagcct tctctccca cccgcagaag gagaataaga atgaaaaggat catagaacac 3480
 atcatggagg acctggacac aaatgcagac aagcagctga gttcagggat gttcatcatg 3540
 ctgatggcga ggctaaacctg ggcctccac gagaagatgc acgagggtga cgagggccct 3600
 ggcaccaccataaaggcagg cctcggggag ggcacccctt aagaccacag tggccaaagat 3660
 20 cacagtggcc acggccacgg ccacagtcat ggtggccacg gccacaggcc actaatcagg 3720
 aggccaggcc accctgcctc tacccaaacca gggcccccggg gctgttatgt caaactgtct 3780
 tggctgtggg gctaggggct ggggcaataa agtcttcc tccaagtcag tgctctgtgt 3840
 gtttcttcca cctcttctcc aaccctgcct tcccaaggct ctggcattta gacagccctg 3900
 tccttatctg tgactcagcc ccctcattca gtattaacaa aatgagaagc agaaaaacat 3960
 gggctgtgc tggggccctt ggctcacccct cctgaccatg tcctcacccct tgacttcagg 4020
 25 cccccactgtt cagatcccag gctccctgcc ccacatcaga caccctgtcc agcctgtcca 4080
 gcctgacaaa tggcccttgc cactgtacac tgttagaaagc aaaaaggcat atctctaccc 4140
 cttgatatgc ctgctacccctt accaaccacg cccaaaggctg tcttcaccca tcactgtcta 4200
 cacagccctc tctctcttcc aacagaattt tattcctctg aaagtcttca gaaactggac 4260
 30 ctatgtatgc ccatgtctgg ggaggaat ggcaccaggc agtggaaaca aggacagatc 4320
 ggtgtgttat ctcacatttgc atcagagagc atgatcttc ttaacagacc tgccaccctt 4380
 atcaacggga gtgctcacac aagtgggagt ctgagagctt agccctatgc ccaccctgg 4439

35 <210> 52
 <211> 565
 <212> ADN
 <213> Homo sapiens

40 <400> 52
 aattcgtcg gcttgacag agtgcacatc gatgacttgc aaaatgtcgc agctggaaacg 60
 caacatagag accatcatca acaccccttcca ccaataactct gtgaagctgg ggcacccaga 120
 caccctgaac cagggggaaat tcaaagagct ggtgcggaaa gatctgcacaa attttctcaa 180
 gaaggagaat aagaatggaa aggtcataga acacatcatg gaggacctgg acacaaatgc 240
 agacaagcag ctgagcttcg aggagttcat catgtctgatg gcgaggctaa cctggggccctc 300
 45 ccacgagaag atgcacggagg gtgacgggg ccctggccac caccataagc caggcctcg 360
 ggagggcacc cccttaagacc acagtggcca agatcacagt ggccacggcc atggccacag 420
 tcatggtgcc cacggccaca ggccactaat caggaggcca ggccacccctg cctctaccca 480
 accagggccc cggggccctgt tatgtcaaac tgtcttgct gtggggctag gggctggggc 540
 caaataaaagt ctcttccctcc aagct 565

50 <210> 53
 <211> 255
 <212> ADN
 55 <213> Homo sapiens

<400> 53
 gayaayggng aiygtntgyca rgaytgyath caratggtna cngayathca racngcngtn 60

mgnacnaayw snacn ttygt ncargcnytn gtn garcayg tna argarga rtgy gaymgn 120
 ytn ggnccng gnatggcnga yath tgya ar aaytayathw sncartayws ngarathgcn 180
 ath caratga t gatgcayat gcargaycar carccnaarg arath tgygc nytn gngn 240
 ttytgyayg argtn 255

5

<210> 54
 <211> 2724
 <212> ADN

10 <213> Homo sapiens

<400> 54

cgcgctatgt acgccttctt cctcctggcc agccctctgg ggcggctct agccggcccg 60
 gtcctggac taaaagaatg caccaggggc tcggcagtgt ggtgccagaa tgtgaagacg 120
 15 gcgtccgact gcggggcagt gaagcactgc ctgcagaccg tttggAACAA gccaacagtg 180
 aaatcccttc cctgcgacat atgcaaagac gttgtcaccg cagctggta tatgctgaag 240
 gacaatgcca ctgaggagga gatccttggta tacttggaga agacctgtga ctggcttccg 300
 aaaccgaaca tgtctgcctc atgcaaggag atagtggact cctacccccc tgtcatcctg 360
 20 gacatcatta aaggagaaat gagccgtcct ggggagggtgt gctctgtct caacctctgc 420
 gagtctctcc agaagcacct agcagagctg aatcaccaga agcagctgga gtccaataag 480
 atcccagacg tggacatgac tgaggtgggt gcccccttca tggccaaatccat ccctcttcctc 540
 ctctaccctc aggacggccc cgcgcgcaag ccccagccaa aggataatgg ggacggttgc 600
 caggactgca ttcagatggt gactgacatc cagactgctg tacggaccaa ctccacctt 660
 25 gtccaggcct tggtggaca tgcaggag gagggtgtacc gcctggggcc tggcatggcc 720
 gacatatgca agaactatata cagccagttat tctgaaattt ctatccagat gatgatgcac 780
 atgcaaccca aggagatctg tgcgtgggtt ggggtctgtg atgaggtaa agagatgccc 840
 atgcagactc tggccccgc caaagtggcc tccaaagatg tcatccctgc cctggaaactg 900
 30 gtggagccca ttaagaagca cgaggtccca gcaaaagtctg atgtttactg tgaggtgtgt 960
 gaattcctgg tgaaggaggt gaccaagctg attgacaaca acaagactga gaaagaataa 1020
 ctcgacgctt ttgacaaaat gtgcgtgaag ctgcgcgaaat ccctgtcgga agagtgcac 1080
 gaggtgggtt acacgtacgg cagtcctatc ctgtccatcc tgctggagga ggtcagccct 1140
 35 gagctgggtt gcagcatgtc gcacctctgc tctggcgcgc ggcgcctgc actgaccgtt 1200
 cacgtgactc agccaaagga cgggtggcttc tgccaaatgt gcaagaagct ggtgggttat 1260
 ttggatcgca acctggagaa aaacagcacc aagcaggaga tcctggctgc tcttgagaaa 1320
 ggctgcagct tcctgcaga cccttaccag aagcagtgtg atcagttgtt ggcagatgc 1380
 40 gagcccgctgc tgatcgagat cctgggtggag gtatggatc ctgcgttgcgt gtgttgaaa 1440
 attggagccct gccccctggc ccataagccc ttgttggaa ctgagaatg tatatggggc 1500
 ccaagctact ggtgcagaa cacagagaca gcagcccgat gcaatgtgt cgagcattgc 1560
 aaacgcctatg tggtaacta ggaggagaa tattccatct tggcagaaac cacagattg 1620
 45 gttttttctt acttgtgtgt ctggggaaat gaacgcacag atctgtttga ctttgtata 1680
 aaaatagggc tccccccaccc ccccccatttc tgggtccctt attgttagcat tgctgtctgc 1740
 aaggggagccct ctagccccctg gcagacatag ctgcgttgcgt gcccctttc tctctgttag 1800
 atggatgtt atgcactgga ggtcttttag cctggcccttgcatggccct gctggaggag 1860
 gagagagctc tgctggcatg agccacatgt tcttgactgg aggccatcaa ccctttgg 1920
 50 tgaggcccttgc ttctgagccc tgacatgtgc ttggcactg gtggccctgg gcttctgagg 1980
 tggcctcctg ccctgatcag ggaccctccc cgcttccctg ggcctctcag ttgaacccaaa 2040
 gcagcaaaac aaaggcagttt ttatatgaaa gattagaagc ctggaaataat caggctttt 2100
 55 aaatgatgtatccatctgtaatagcata gggattttgg aagcagctgc tggggcttg 2160
 ggacatcagt gggccaagg gttctctgtc cctgggttca ctgtgatgg gcttccctgt 2220
 gtcttcctg gtatgcctt gtttgggtt ctgtgggtt ggggtggaaag agggcccatc 2280
 tgcctgaatgtaaacctgtca gctctccgaa gcccctggcggg cctggctgt gtgagcgtgt 2340
 ggacagttgtt ggccgcgtcg tgcctgtcg tggccttgc atgtccctgg ctgttgaggc 2400
 gctgcttcag cctgcacccc tccctttgtc tcatagatgc tccttttgc ctttcaat 2460
 aaatatggat ggcaagctcc taggcctctg ctccctggta gagggcgcga tgccgaagg 2520
 tctgctgggt gtggattgga tgctgggttgg tgggggttgg aagctgtctg tggccactt 2580
 gggcaccac gcttctgtcc acttctgtttt gccaggagac agcaagccaa gccagcagga 2640
 catgaagttt gatccatatt gacttcgtga tttttttt gcaactaaat ttctgtgatt 2700
 taacaataaa attctgttag ccag 2724

5 <210> 55
 <211> 2171
 <212> ADN
 <213> Homo sapiens

10 <400> 55
 cgcgctatgt acgcctctt ctcctggcc agcctcctgg gcgcggctct agccggcccg 60
 gtcctggac taaaagaatg caccaggggc tcggcagtgt ggtgccagaa tgtgaagacg 120
 gcgtccgact gcggggcagt gaagcactgc ctgcagaccc tttggAACAA gccaacagtg 180
 aaatcccttc ctcgcacat atgcaaagac gttgtcaccg cagctggta tatgtgaag 240
 gacaatgcga ctgaggagga gatecttggta tactggaga agacctgtga ctgggttccg 300
 aaaccgaaca tgtctgttc atgcaaggag atagtgact cttacccccc tgtcatcctg 360
 15 gacatcatta aaggagaaat gagccgtcct ggggagggtgt getctgtct caacctctgc 420
 gagtctctcc agaagcacctt agcagagctg aatcaccaga agcagctgaa gtccaataag 480
 atcccagage tggacatgac tgaggtgggt gcccccttca tggccaaat ccctctcc 540
 ctctaccctc aggacggccc cccgcagcaag ccccaaggccaa aggataatgg ggacgtttgc 600
 caggactgca ttcatgtgtt gactgacatc cagactgtg tacggaccaa ctccacctt 660
 20 gtccaggcct tggtaaca tgcataaggag gagtgtgacc gcctggccc tggcatggcc 720
 gacatatgca agaactatat cagccagtat tctggaaattt ctatccagat gatgtgcac 780
 atgcaaccca aggagatctg tgcgtgtt ggggtctgtg atgaggtgaa agagatgccc 840
 atgcagactc tggccccccca caaaatggcc tccaaagatg tcatccctgc cctggaaactg 900
 gtggagccca ttaagaagca cgagggtccca gcaaagtctg atgtttactg tgaggtgtgt 960
 25 gaattccctgg tgaaggaggt gaccaagctg attgacaaca acaagactga gaaagaaaata 1020
 ctcgacgctt ttgacaaaat gtgtcgaag ctgcgaagt ccctgtcgga agagtgcag 1080
 gaggtgtgtt acacgtacgg cagctccatc ctgtccatcc tgctggagga ggtcagccct 1140
 gagctgtgtt gcagcatgct gcacccctgc tctggcacgc ggctgcctgc actgaccgtt 1200
 30 cacgtgactc agccaaagga cgggtggctc tgcgaagtgt gcaagaagct ggtgggttat 1260
 ttggatcgca acctggagaa aaacagcacc aagcaggaga tccctggctgc tcttggagaa 1320
 ggctgcagct tccctggcaga cccttaccag aagcagtgtg atcagttgtt ggcagagttac 1380
 gagccctgtc tgatcgagat cctgggtggag gtgtatggatc cttccctgtgttggat 1440
 attggagcct gccccctggc ccataagccc ttgttggaa ctgagaagtg tataatgggc 1500
 ccaagctact ggtccagaa cacagagaca gcagccctgt gcaatgtgtt cgagcattgc 1560
 35 aaacgcccattg tggtaacta ggaggagggaa tattccatct tggcagaaac cacagcattt 1620
 gttttttctt acttgtgtgtt ctggggaaat gacgcacag atctgttttga ctttggatata 1680
 aaaataggcc tccccccaccc ccccccatttc tggtaactt attgttagat tgctgtctgc 1740
 aaggggagccc ttagccccctg gcagacatag ctgctttagt gccccctttc tctctgttag 1800
 atggatgttg atgcactgga ggtcttttag cctggcccttgc catggcgctt gctggaggag 1860
 40 gagagagctc tgcgtggcatg agccacatgtt tcttgactgg aggccatcaa ccctcttgg 1920
 tgaggcccttgc ttctgagccc tgacatgtgc ttggccactg gttggcctgg gcttctgagg 1980
 tggccctgtccctg ccctgtatcgg ggaccctccc cgcttccctg ggcctctcag ttgaacccaa 2040
 gcagccaaac aaaggcgtt tttatgtaaa gattagaagc ctgaaataat caggctttt 2100
 aaatgtatgtt atccccactg taatagcata gggatttgg aagcagctgc tggatggctt 2160
 45 ggacatcgtt g 2171

50 <210> 56
 <211> 35465
 <212> ADN
 <213> Homo sapiens

55 <400> 56
 gatcttggct cactgcaacc tccgcctcca aggttcaagc gatcctccca ctcagccctc 60
 ccaagtagct gggattacaa gcgtgtgttca tcacacccctgg ctaattttta tattttgg 120
 agagatgggg tttcaccttg ttgggttagtgc tggcttggaa ctcctgtaccc caggtgttct 180
 gcctgcctca gcctcccaa gtgctggat tacaggtgtg agccaccgcg cccagccctga 240
 ccctttctt ctctactggc aaaactcctg ctcctttta aagccaaatg catgtcacct 300

cctctgtgaa gtcctcgctg actccccaa cggtcagtgt ctctctcgta tgggctcccc 360
 ggcccctgca ctgctctcca tcacaccctg accactctgg gcagtgccc ccctccccac 420
 ccactgacta tggctcctt gaaggcaggg cctgggtctg ccccatctct gtgtccccag 480
 caatgctggg cataggtcag cctcagaaga catctgtga atggctgcaa accagaggaa 540
 5 atatctccag cctcaggctg ggacccttcc cctctctctt cccacctctg acttcataacc 600
 actcaccctc cagagtcttc aatgcccact attacttac acagttggcc tggacaggc 660
 aatcaggctca tcgtccacgg ctaccagggt tttcatgtct actgtgactt ccaggaccac 720
 aagcccttt gcgcccacca tgccttacc taagagatct tcaaagccca gtatgtctct 780
 ggcaccctgtt ggatcctcca tgcccactgc ggatcccaag cctcctgcct ccttgaagtc 840
 10 caccaaatac gcaacacccaa acagatcctt agtcccacc aaaccagcga catcccgtaa 900
 ctcagtcatg agcccaagca gttcaagtc caccaaatacg accagtacaa aaagagcccc 960
 ttctaaccgg cccagcagca ggtcccgagt ccgcagcaaa gcaagaacac ccagcagggt 1020
 gagcaccggc accaggacca gcaaaaggccag caaggccagc gacgtgagat gccaccagcg 1080
 gagggggcaca cacagccggg gtaggacacc tggcagaagg ggaagccgca gctccaagag 1140
 15 gtcaccctgc agggccagca ctccctggcag gataagaact catggtgcca gaccaggcat 1200
 ggccagcagg gtgagaactc ccacttcaca gcaaaaagggg agccggggaa agagttacgg 1260
 ccggcttaga accagcaaca gggaaaggag tgacagccag cctagaaatc tgagcaagaa 1320
 gagttaccgc ccaccaggag gtcaggat agggaggagt tccgagctgg ctgttaactcc 1380
 cagtacagcc aagtgtcaaa ccccgactgg aattccctcc aaggagaaga gtgacaaccc 1440
 20 atctccatcc tcatcaagga aggtgaagag ctacggcag atgatcatcc ccagttaggaa 1500
 aaagagttac agccccactg aaatgtccag cagggtcaag agttataacc agggcagcac 1560
 ccgcagcagg ccgcaaaatgc acagccaaatc tagaagcccc agaaggtaaa gaagtggcag 1620
 tcagaagagg acgcacagca gagtgagaag tcacagttgg aagagaaacc atagcaggc 1680
 aagaagtgc accccggaaagg gaattctgag ccagatggga agacacagcc agtctagaag 1740
 25 ccacagcaag gggaaaatgc aaaaccaatc tagaaccccc agaagaggaa gaagtccacaa 1800
 ctggcttaga aaccccgacca agggaaagaag tcatagccat tccagaagct ccagcaaaaga 1860
 gagagatcac agggatcta gcagccccag gaaggagagt ggtcgagtc aatcaggaag 1920
 ccccaacaag cagagagatc acagccgatc tagaaatccc aacaaggcga gagatcgccag 1980
 ccgatctaga agtccctaca aggccgagaga tcgcagccga tctagaagtc ccaacaaggc 2040
 30 gagagattgc agccgatcta gaagtcctca caaggcgaga gatcgccagcc gatctagaag 2100
 tcccaacaag gcaagagatc atagccgatc tagaagtc tccagaagcc aacaaggcga gagatcgccag 2160
 ccgatctaga agcccccacca agggaaagaga tcacagccaa cttgaaagcc ccagcaaaaga 2220
 gagagatcac agacgatcta gaagccccag caaggagaga cagtgcagac aatctagaag 2280
 ctccagcaaa gagagagatc acagacgatc tagaagcccc agcaaggaga gacagcgcag 2340
 35 acaatctaga agccccaaaca aggagagaga tcgcagccaa tctagaagcc ccagcgagga 2400
 gagagagac agacaatcca gaagccccag caaagagaga gatcgccagac gatggagaag 2460
 ccccagcaag gagagagac gcagacaatc tagaagctcc agcgaggaga gagatcacag 2520
 ccgatctaga agccccaaata agcagatgg ttacagtcga cctagagctt ccagcaagga 2580
 gaaagctcat agccgatcta gaaccccccag caaagaagga aatcatagcc aatctagaac 2640
 40 ctctagcaag gagagcgacc ccagtcaatc tacagtcccc agaagtcccg actggaaagag 2700
 atccccactt actggccatca gtcctcgtca gaatagaacc cctagcaaga caagcagcca 2760
 ctccccatca acatttccca gtgggggcca aaccctaagc caggatgaca gtcaagccga 2820
 cgcaccacc tctaaggcca ctttacccgg gggaaagggtt tcatcatctt cttccaagct 2880
 ggcgttagccc ccagtctcag ctggctcagc ggtctctgtc atgaccgggg gaggggacag 2940
 45 gagacaggag cagagcagca gtcgagcagc gtcctcccc ggccagctct ccacagccac 3000
 acctccggcc acaagttctc taatacagga tggggcagg tagagaggaa tgctggatag 3060
 ggggaaagga aagacctgtg atgattcaat aaatttttac atagcacccaa tccccaccaa 3120
 gccccactgt gtgtcactg ctggcatgg gcacagagga ccccaatctt gtcctgact 3180
 gtctacaggg tcttgcactgc aagccctgca cctctcttgg ttttttttt tttttagaca 3240
 50 gagtctctt ctgtgccc ggctggagtg cagtgggtgt atctcagctc actgcacactt 3300
 ccacctccca ggctcaagca attctccatc ctcagcttcc cgagtagctg gaactacaag 3360
 tgtgcgtctt cacgccccggc taattttgtt tttttagtag agatggggct tcaccatgtt 3420
 ggccaggctg ggctcgaact cctgacccca ggtgatccac atgcctcaac ctcgcaaaatg 3480
 gctgggatata taggcatgag ccaccgcacc cgtccccctc tctaggtctt aattccgc 3540
 55 tgtgggcaac aaggctgcct tctgggttctt attcagtgaa gtagggagag gtgacactcc 3600
 aaatattcaa cagtggggac tgggtgtggc accaatacaga actgagagtg gagcgggacg 3660
 gataccaggc cttaccctt tagttgcgtt accatggggaa ggtctgggt tggggaaatg 3720
 ttatggggaa aaaaaaccct ccaaactgtt ttttccctca ctctcacact atcacaacaa 3780

tcataaacac agaattctgt gaccaaatgt gtggggcttt ttccccacac actacacagc 3840
 agacaacagc taggtgtccc ctccgattcc attccaaacgc tgcacccaca cccagcta 3900
 tttgttattt ttggaaagaga cagggttca ccatgttgcc cagagctcaa gcaatctgcc 3960
 cacttcagcc ctccaaagtg ctggattac aggctgagc caccacaccc gacttttta 4020
 5 aaaaaataaa aataaggccg ggccgactgt cccatgcctg taatcccagc actttggag 4080
 gccgagggtgg gcagatcacc tgagctcagg agtttgcac cagcctaggc aacatggcaa 4140
 acttgcctct aaaaaaaaaa aaaaaattac aaaagttac cgggtgtggg gcatgtgttt 4200
 atagtcccgag ctacctgaga ggctgaggca ggaggataaa ttgagctgg aaggtcaagg 4260
 ctgcagtgag ccgtgaccc gccactgcac tcaagcctgg atgaccatc ttacaaaaaa 4320
 10 aaaattttg ctggagctgc tcacagaact caaggaaatg cttactttaga tttactgggtt 4380
 tattataagag gatattgcaa agaacaaga tgaagagatg tggtagggcaa ggtataaggg 4440
 aaggggcagg gagcttcacg ccctccctgg ggtgttaccc tacaggaacc ctcaggtgg 4500
 tagctatgcg gaagctctcc aaacccagtc ctcttgggtt tttacggagg cttaaagaca 4560
 15 gcagcattgg gcatggactt ctctgaaaag tggcttaaga ccaacaatca agaagggtgg 4620
 gaagattaga gtcttgcctt gggcagggaa atggagggca ggaggaggtc agagagattc 4680
 tggttctca gacctgcccc aggcctaagg tacacaacat tataacaaga gactgtaaaca 4740
 aaggctgttag gagttaccag ccaggaactg tggatggaaa ccaatataatt tataatata 4800
 ataccacaaag gggggctcaa agtggcagtt agggacaggg agtacttgg tagcagtgac 4860
 acaccaaccc atcttggaaat attttaaat taaacaatt ggtatggcta tactagttt 4920
 20 tgattatccat ccttagttct gtatcaattt gcaagatagt gtcttaggtt gccacactct 4980
 agctgtgttag caccaagcaa agaacttaac ttctctagcc tgtttccctt tcttggaaagaa 5040
 aggggcttcc aggccttaac tcacgtactc cccataacta gactggaaat tatctccctt 5100
 gtacagatga ggaaacagac acagaggtga taagtggatg gcccagggtc accatctgg 5160
 aagtggatga actaggattt gaaaggccac ctttcataaa atgatttctc agctcaaaaag 5220
 25 gttttctga agattcactgaa ggctcactga tagaaattgc tgggtgtgtgg ctgttattcc 5280
 atcaagatgt gcccattacta ctcccaccc tgccttctta taaactccag atgttccaga 5340
 cctctcatct ctccctgtgc acacaaggcc tttcacatc tgggtgttctt agtacacccca 5400
 ctgttgcgtt caagaatgtc ctccctccctt tttttttttt tttttttttagt atggagtctc 5460
 30 actttgttgc ccaggctggaa gtacagttagc gcatgttcag ctcaactgca cctcttaccct 5520
 gcatcagctt cccttagtagc tgggattaca ggcagccacc accaccatgc ccggctaaatt 5580
 ttttggtatt ttttagtagag acagggttcc attatgtcag ccaggctggt ctcaaaactcc 5640
 tgacctcagg tgatccattt accttggctt cccagagtgc tgggattaca ggcaagagcc 5700
 accacgccccca gccccttccccccttgc gctggagaa ctccctttca cccttcaaag 5760
 cccaccacaa acataagaac ctctataactt ctggcccgct gaaataactgc ctgtccagg 5820
 35 aaggcttctg tgacttctct ctctcccttc tcaaccaacgg accggccccgg ccccccacca 5880
 accccacccac acacacacac cactactgtc ttccactgtt ctccctgaca gtagagaacc 5940
 aaggcaggccc agttgatgca gcctcagctt tatttttttac atgcaaggc ccatgcactg 6000
 gggatacaat ggtggaaaat acatggtccc ttcaaagtct ggatgtcaag tttaatgtctg 6060
 gggactaaag agaaaagctt cagattggaaa cttggaggtg gctggggcaa aggaccattt 6120
 40 gcatcattgg caggcaact tcctaaagaa agcacctaaa tttttttttt taaagacaga 6180
 tttcataattt ggcagaggag aattctaatg ataccctattt gcctacaggc ccccatctaa 6240
 tttgggattt ctactttata ccaagataag attggccagat ttagcaataaaaacagaag 6300
 acatccaattt aattttttttt tttttttttt ggtttttttt gctggatgg tttttttttt 6360
 ttttgcggaaag gctgtgtca aatttcttgc tcaaaacatc ctccctgcctt ggcccccac 6420
 45 tttccaaagt gctgggatata caggcatgag ctaccacacc tggcccttat ttattttttt 6480
 atttaatttt ttttttttttggg acggagggttc actctgtcgc ccagggttgg ggcgcactg 6540
 gcatctcggtt ctcactgca cctctgcctc ctgggttcaa gcatgttaccc tggcccgcc 6600
 tcccaagtag ctgggactac aggccgtgtc caccatggcc ggtttttttt tttttttttt 6660
 tttttttttt gagacggagt cttgtctgtt cggccaggct ggatgtcactt ggcacgtatct 6720
 50 cggctactg caagctccgc ctccctgggtt caccatggcc tccctgcctca gccttccgg 6780
 tagctgggac tacaggcgcc tgccaccacg cccgactatt tttttttttt ttagtagaga 6840
 tggggtttca ccgtgttagc caggatgttc tgcattctt gacctgtga tccacccggc 6900
 tcggccctccc aaagtgtctgg gattacaggc gtgagccacc gcccaggcc tacttattta 6960
 tttttttttttaa gagacgggtt ctcgtctgtt tgccaggct ggatgtcactt aggtgtatct 7020
 55 gtagggaaagg ggcttccagg cttaactca tgcactcccc cataaccagg ttggggagg 7080
 agctcaactgt aacccatcaac tcctgtgtcc aagttaccctt actagccctt aggagagcc 7140
 ctgggactac aggtatgcgc caccatggca ggcttaattt ttactttttt tttttttttt 7200
 tttttttttttaa gagacgggggg ttcactata ttggccaggc tggctttgaa ctccctgg 7260

5 caagcgatcc tcctgcctta gcctccaaa gtattggtat cactgcaact agcccaaaga 7320
 attaatata tagtgcataat ttgtatattt ggacatact tttctaaaag gttgtatctt 7380
 ttggatataa ttgttatct gaaattcaaa tttaactaga cattgtatat ttatacggc 7440
 aaccacacac ctgggacaat caagacattc cctgaagttt ccaggagaca atgcccac 7500
 5 gcctacactt ttccaagccc acgtcacaca aggccccttc cagagtattc cagacgtcag 7560
 gtagggccat cccttggttc acaagtccca ctccctaccac gcctatggca gccaaactga 7620
 aaggcaaca cagtgcgtga gacccacaa tggccctggc ctatagcagt caattccca 7680
 gatgccccgc gtgaacacaa taggcacccg ttccaatgct cgagcaaaga gaccaggc 7740
 10 aaaccttcca ctacgggaca ataacggca gttcccacaa ttctgttgg cagttcttc 7800
 caggatgcct taggcctata gcgaccaccc tcccagactc cccgtgttga agcgctccaa 7860
 gcctccagga cggtcagcgg caggtgtggg ataaaaggaa ccggctctcga caaggatctg 7920
 ggacactctt tcccaggatg caccaggct acgactagcg gaccgactcc cacagcgctt 7980
 caaggcggag cgctcggttc tcccaggatg ccccaggcgc gcacaaacgc gttaggggag 8040
 15 aaaaagaagc cctcggtca ccacggcccc agaccgcgg ctccccggg acgggagtcg 8100
 tcgctcccat catgcagcgg ggcgtageg cccgcttccc ggcacgcctc ggcacccct 8160
 gccccggaca ctcacccggc cggcggcccc ccgcctccggc tctgcggcgg cgctgcacg 8220
 cccagctct gcgcctgcgt cgcaagttagt gttaggacagc ggcaggggg cgtgaagagc 8280
 20 cttagggcgct tgcgcggcga gacggactag ttctgttagcg ctgtggaaag aggggctatg 8340
 cgcgtcgggc cgtcgacgag acccgccggg ggggcgcgt gctttggccc tcgctgcctg 8400
 ggtttacttg gtacagcccg cggcccaaag gaacaagaag ctgaagggtt cgcgcgtgc 8460
 tggcggggc aggaacgcgc cttacaaaac tggatgcgc tgggggttgg qggcgtatg 8520
 tcggactgga tcctggggcc gaggcctgct tatttgcata atcctagcgc ggacaaatga 8580
 aaggcctccc gcaactggaag gagtgattt catattcccc ggagggcct tactccagag 8640
 25 cgcagtgtt agcatatggc gggggcaacc tgagcaaagc gcatgcgcgc agggactgca 8700
 gactgacgcg aagtgggtag ctttgccttc gttagggatc agttgcata ctgagagagg 8760
 gcacgagggc caggaccctt cccaaaccagg ataaagggtt attgatctcc taggtgtcag 8820
 gccccatgct ggccgattct gtggttctg cagtgaacca tactcctgtt ctcacggcac 8880
 cccagtcgaa ggagatacgc acctaattag acaactacta cccagaaggc cagacctgg 8940
 gtgaggaaca cagggggctg tgggagccta agaggcgcgtt gccccggcct ctggttctag 9000
 30 aaagacttcc aggaggttgtt gatcctaag ccaagtacga ataggagcca actagaatgg 9060
 gaatgggtct ggcagaatga actgcaagcg ccaaggccca gaggccaaaa aaaaaaaaaa 9120
 aaaaatagaa ggcatgttt tgattgagga agcaagagca gcttagttagt cctagaacct 9180
 aactggagac gggaaatggt tctatacgc atgttagagt tcaactatgg ctacattcca 9240
 35 gtcttcctgt aagtgcattt gtcacattt ggtttaaaac tcccccaaaag gatcccatt 9300
 agaaaaaaa aaaaatccaa aaatctttat catggcctca gggctataca cctggctctgg 9360
 ccgtgcttat ctttctgacc ccacctactt cctccctccct ccatttctgt ccagctccac 9420
 cttacccaa actctttacc agctcggcc tctgtcttgc ccttccttc cgcctgaaaa 9480
 tgctttccc tctgacccctt gaatacctac tcttgcgc accattcata tcttggtaca 9540
 gatgtcaatc tgagaggctt ttctgtatct cttccataata gcacttacac attgactgg 9600
 40 agttatggat aaatcgggat tggccatgag ttgggtgggat ttgtactgg catgaagagt 9660
 acatggggct gggcgccgt gctcacgccc gtaatcccag cactttggg gggcaggct 9720
 ggtgtatcac ctgaggtcag gagcttggaa ccagcctggg caacatgtt aaaccctgcc 9780
 tctattaaaa ctacaaaaat tagccagggg ttatgggggg tgcctgtat cttgtctact 9840
 tgggaggctg aggacacgaa atcaactgaa ccctggaggc agaggttgca ttgagtcgag 9900
 45 attgagccac tgcactccag cttggccac ccacgcgagac tctggcttc gcctgtatc 9960
 ccagcaccc gggaggccga ggcggggcga tcacgtcaga agatcgagac catcctggcc 10020
 atcctagacc atttctacta aaaatacaaa aaaaaaaaaa aaaaaattag cggggcgtgg 10080
 tggcaggcgc ctgttagtccc agctactcgg gaggctgagg caggagaatg gctgtac 10140
 gggaggccga gcttcgtatg atccgagatg ggcctactgc actccagcct gggcagaca 10200
 50 gcgagactt gtcataaaaa aaagagatca tgggacgttta ttgtccgtc tactcctgt 10260
 ggtttgaagt ttccataat gacaatggca taccacatca ccatactctg catttatatt 10320
 aatagttctt atcacaatct gaactttctt tgcttcttgc tttttagtgc tttctctat 10380
 aaagcttcat gagggtaaga atggagtcgc ctttttcac tttgggtct caatgtttag 10440
 agcaggatca gatttcagat tagtgcgttgc ctgtctttaa cacttaacat ttgcctgtt 10500
 55 tattcaccat ggactctaga actttgagca gcacccggca catcgtaaga gttatttt 10560
 taaagttaga ataatacata taaaatgtac atgaatgaat gagaggctg ggatgccaga 10620
 ctaaagagct ttgacttggt ctaaagggtga tggggagcta ggcacaaagggtt ttgagagttt 10680
 aactttaatt caaagttccc ttggagacta atgtctgggg taggggaag ccaggtaag 10740

ggtccgggcc atggaatggg gtagctcagt cgctatcaa aagacaagac tgtgactatt 10800
 tggctgaaga aatggccaaa cccaggttc tggggaggc gaggtaccc cagtgaggc 10860
 aggaccttct cctggcctat actgtccacc agcaaccatc acactcctcc ctcccctctc 10920
 ccttagttcc cctcccaatg gtacagccct tgacagcagg acagacacac agccacccca 10980
 5 aacacttggt ctctcctcag ttaatggtg gttagtgaga ttgccaaacc ccctccccat 11040
 tcccctcccc accccgtaca aaatgtgtg gtgggtttt tttttttttt 11100
 taacaagaaa aagggggcaa aagccagaa tggggagagg ggggtcaat ctgatatttt 11160
 catacagact tttgatttt taatataatta tatataaaac catgaagacc acgaatcctc 11220
 cccaaactcc tttcccccctc cccggggggc ctggaggaga gatggggaaag gcccccccaag 11280
 10 gagtggttgg acagagagac aaatatggat gggacagacg ttgggggaga agtagagag 11340
 aaggggagcc caggaacctg gggaaaggggg attggagaaa aggggtgggg ctgtctccct 11400
 cactgcccccc atcaaagtt tgacacaaag acacagaatc cctatttcca cgcctcccc 11460
 ccaccatcc ccccacccgtg caaacatggc tttgcaaaaga agtgcggcaga gctctgtgga 11520
 actcttacaa tggctggcat ggggtctagg acccccaaag aaatctgtgt tccccttccc 11580
 15 tgccccccccc acccttccca gaaactgacc ccctccccac aagacctggt tttttagcct 11640
 agggggccctg gccttcccccc agttatcttc ccccaaccca atccctactg ccctcaactgg 11700
 acttgggggg tctggacctt tggcccttc cccctggggg acccagaccc ctggccctc 11760
 acttctggcc cttacagaga tccaggcatc caacacccccc atccctgccc aagcgtctga 11820
 ggtgttagtg gtggggggag aagccacca tccagactc tggtaatgt ctttgctgg 11880
 20 tccttgccagc tggcagtggg ggggacccca gcccaggccc aggcttaggc ctgggggtggg 11940
 gatagggtca gatgaagaat tccttttcc tcttgtgtcc gtcgctgcca ttgaggaagg 12000
 cttcttttc ttcctccctgt tcataccaagc cactggcttc gtgggtcaga tagaacctg 12060
 agggggtgac agaccccccgg ggcagggggg acatatttgat ggatccagga gttggacaga 12120
 agtataaggg aagaggggaga cagacaagac acatgccagg cgaaggaaga gggagaaacg 12180
 25 gaacacacag ggagaggcag agaaaagaggt aaacagtggc agagaaagag gtaaaagcag 12240
 aatttaggaag actccaaaag ctcaccggaa gtgccaccct tateccttct cttggaggt 12300
 tttcccttgcc ctgctcccaag cgaattcagc aatttaggaaa ataaatttgat ttattcaat 12360
 ccatgctctt ttttccctt aattttttgt attttttagta gaaaaggggc tgccatgg 12420
 tgcccaggct ggtctcgacc tccttagcttc tcaagtgttt tatccgcctt ggctcccaa 12480
 30 cgtgctggga ttacaggcgt gagccacccg gccaacccgc aaatctatgc ttttaattca 12540
 gcttctaaat tctacccctt ttcgagtatt gtggcggaaag ccccgcccccc tttgtcatct 12600
 ccgccccccgg tgcggcggga tttggaatcc agagcctagg ctccgcctc tcgttaccc 12660
 ggctctaggc cccgcctt tccgagccct acaaccaacc aaccgttagag tccaggcccc 12720
 gtcactca ccctctgccc gtaccgagca ccagaccatg cccactagca cacatatgat 12780
 35 cagaaacacc agcagcgcca ggtatggcc cacaatggca taggaaaccg acgtctgagc 12840
 ctctaccacc gcaccagggt ctgcccagg gacacggcac aggaccagg catcagagga 12900
 cgatcccagt ctggcccccctt cgctgccaag cttttaagcc attctgcaca cgcttaaccg 12960
 tgcctttta tggccacac ccctcaaaaa ttactgcccctt cttgtatgtt ctctctttc 13020
 cagatgcttgg tttttttgtt cactgccccca cccctccctt gagtcatgtt acattttctt 13080
 40 tttcttttcc ttgttttctt ttgcagagac ggggtctca ctatgtggcc caggctgatc 13140
 ttaaactccct gggctcaagc gatectccgg cctaggccctc ccaaagtact gggatttagag 13200
 gcgtgagcga ccgcaccccg ccatacccttt tcttttactt caagtttctt cttccactaa 13260
 gaaacagagt ccaagaaaaca ggtccaagtc ccttcccacc ttgtctaaaa cgctccaagt 13320
 atttaaagtg ctggcccaa ctacaaaaat ttctgccccca ccgtcataga gctaaacaca 13380
 45 gaacagctgt gtcttagagc ccattccaaac caccatcat atttagtca cataatcttc 13440
 acaacagccct tgttatatacg gtcttattgt ttatccatc ttactgtatg ggtaaactga 13500
 ggcgcagaca ggttcgtta cctgcaatag aatgcagcca acccgaattt gagcccccgcg 13560
 ggccagtcg gttccaaaac aaaaagaact ctgttggctg ccgaaccctt gagttatgt 13620
 50 gcctctttgc tcaagccccg ccccccgcac ctggccccc gccccccccc tcagtcggcc 13680
 gcagctgtct ctcaccgttag accacaagta cgttagagcgc ctcgcattgg ccgtcttat 13740
 tggacgcctc gcaagtgttag gtggcttat ccgcggatcc cagaccggc agcgtgagcg 13800
 tctctccccac ggcctccggcc ctctccggca aagacttattt cccgcgggtt cagcggatct 13860
 ggtttggcct ggggtggggat aaagtatagt gagagttagg aaccggaggtg ccagcacc 13920
 attctgactt gtcaagaatc tagacatgc actctcatcc cgcaggggacc tccaaataag 13980
 55 aggcttcctg ctatctcttt cctttctgga aaaccaacag tcctggccct actccaccc 14040
 atcaccacagg tctcaggaaat tctagccctg gctgaacatg gtggctttagt cctgcaatcc 14100
 cagcacttta ggaggctgag acgggaggac tgcttaaggc cagcagtcc agaccagcc 14160
 gggcaacaca gggagacccc gtcactacaa taaaaataa ataataataa taataataat 14220

tctagccctc ccacgccatt ccatcctcag caaccaggag tctgaggctg cacagcttca 14280
 gtattggga gtctgagcct ccagattctt cctccctcag gatccaggag tccaggtccc 14340
 agatccctat tcgtccagg cccagctct ctcctcctca ggacccaggaa atccagggtcc 14400
 tagctccctg tttgtccagg tcctcagtc tctctctt aggaccaggaa agtccaagtc 14460
 5 cctggccctt gtttccctcag gtccccagct ttctctctt gaggacgcag gaggccccca 14520
 gagctcacct ggggttcccccc gtgacagcac acgtcaaacac cagcgtgtct ccctccctca 14580
 ccacagcttgc ggaggcatga atccggggcg tgggggagtc tgtaggcaa aagtaagagg 14640
 agagagtagt ttccaagcca tcacgcagga caagggggac cctcgcgggt gcgggtggct 14700
 ggcgttgga tcccttgggt cctggccccc cggtaacttca cactgcacat ccagcacgtt 14760
 10 ctgcgtctgc ttgtgtgtc cggagggcag cgcctggttc tgccctcact agatgtatgt 14820
 accaccgtcg tccttacggt ccacacgaaa ccgtactgtg ctggccacgc tccagacctt 14880
 gccatttcc tggctgtc tcactcctgc cacaccccggtc tagacactg tcaggccaca 14940
 attccggctc catccaccca cccaccccgag ccaacgcacaa agcaggctat ttgccaagct 15000
 ccacccctta cccacaggcc cgccttgc tcctccaagc tacggccctc ccctaaccctt 15060
 15 gcccacgtgc ctcctccaa agctttccc tcttcacgc tcatgcttcc tcgtctatca 15120
 atccatttaa ttgttatata tataaaaaca taaatttata tataactta gagacagggt 15180
 ctcacaatgt tggcagggtt gaactcctgta cctcaagcaa tcctccatc tcaggccccc 15240
 aaagtgttag gactacaggc gtgagccacc gcgctcgaca tcaaccacta catattgaat 15300
 gtccagtgtc tggaaaacc tggggcttccct tcctccatataa aacaacctc tcctaagtcc 15360
 20 cacccctcc ccatcccttgc tcagcactcg gcccagggtt ctttcagct cttgcgggtc 15420
 ccggtaccag cgcagggtgg cagccggacg ggaccgcggg acgaggcagc tgagctccac 15480
 ctcggccccc tctaccgcct gctccggac tcctaccacca ggattctctg gggccactgc 15540
 cgcaggggaga agggaaagtaa ggggttaaag aaggcacgaa cgtgggctca aagcgatcg 15600
 gctgcctgtt cccagcgacc atagggaaacc aggtcccag gtggcaggggg tcaaagggg 15660
 25 gaggtcagga gccagatgcc catccaggat gttaaaaata gccatggtct gaaagtctca 15720
 ggagaagaga gaagcagaga agaaaaggagg agaggatgcg tctgacaagg gggagggcgt 15780
 tacctagtagtac cgtgagcgtg gcaatctgg tgggggtgtc ttctgttag agctggcaga 15840
 aatagcccccc ctcgtccctc aggcgggcat ctgagagccg gatccgcacc cggcgtgggg 15900
 agaactcctc aagctggaaa cgctcatct tcaaggctag agagagttag gggaaagggt 15960
 30 tgaatttcgg gagtcctggc ctcacaagtc ccaccccttc gacaggagct tagatccag 16020
 ccctctgcct ctttctcca gccatatcta tgagtcttagt gtttccaaactt attactccc 16080
 ttgaggaccc agcattattc aagtccttgc gcctgcagga ccagcacttcc gggaccccg 16140
 cccttcttc tccgagaccc aggagaccaa acttcagggtt gtttccctt tcaggacatg 16200
 ggagectggg cccccagccct ctcttcctt aagactcctg agtctggtcc ccagcactca 16260
 35 ccacgggtgc cattgaagaa gagggtctgc cggctgggt tctggatgac aactatggac 16320
 ccatcataact ggtcagacg gcaggtgatc tcagccaccc caccctcactg cactgtcactg 16380
 ttctctgtct gtacttcctg tcctggccct ggacgattag acaaagagac agatagaag 16440
 acttaactgag agtgcatttcaattttcc ttctccctc ttcccccattcc aaacctccaa 16500
 tccctctt tccccctcatt cattccatttgc cactgaacat ttctgcagg ctagacttca 16560
 40 ggacaggggag gaaatctgct ccctactcta aaagagctgc agtcaagatt tagataata 16620
 tgctctaatacg agggcagcac agggcacaactt aggagccagg gactattata 16680
 gaattgccta gagagatggg tagccagaga gggctctgca agaaagctcc attggatctg 16740
 gatcttaaag agtaagcagg aggctgagcg cggggctca tgcctgtat cccagcactt 16800
 tgagaggccg aggtggccgg atgcgaaggta caagagatag agaccatctt gccaacatg 16860
 45 gtgaaaccct gtcactacta aaaataaaaaaaa aaaaaaaaaaaa aaattagctg ggtgtgggt 16920
 tgcgcacccctg tagtccctcgt tactcggggag gctgaggcag gggaaatcgt tgaacccggg 16980
 agttggaaatgt tgcagtgtac cgagatggag ccactgcactt ccaggctggg cgacagagcg 17040
 agactctgtc tcaaaaaaaaaaa aaagaaaagaa aaaaaagagt aagcaggagt tcacaagggt 17100
 tgggagactg ctgtgtgttc accaagcctc atcttcaca cctggccaca tggtagcc 17160
 50 cgttgcataa gataccgtat atattcttctt gtcctggac atggcccttgc caagttgatt 17220
 ttgcattcc tcccttgcgtt aaggcactttt gtccttactt agtctgggtt agccttgaga 17280
 gttgctttgtt ccaatagaat ttgttagaaat tggatattgtt gctaggcctt aagaggccctt 17340
 gtagcttccatccctt aagactgttg catgaagata cccagacttag tggctttgttca 17400
 gatgaacaat catggtaaaa gagaagccca gcccggcagcc agcaccatac gccagctgt 17460
 55 tgagtgtggc catccctggat catccagcccc cagctggggcc accagctgac agcagccaca 17520
 caagtgcacc cagttgagac caataaaaaga tctgccttgc tgcatacgcc caaactgttgc 17580
 aaccccaaaaaa tcatgaacaa ataagggttggt ggttgggttta agtccttaag ttgtgggtga 17640
 tctgttctac tgctaaagtt aactgataca atacataattt aggctataact tcccgatcc 17700

ctttatagtt aggtggggcc atgtgaccaa ttctggccaa tggatgtag gtgaaagaga 17760
 aacaccttgc acggctgac ccatctccct cataatcctt cacactgct gaacagagag 17820
 gactccaagg agccttagagg agggcagaat cacaagccag aaggAACCTG ggtctctaac 17880
 tgactgtccc ccatgaccccg cctgtatagg actgtgatat gagaagaaa tataccttt 17940
 5 tggtaagcca ttgagattc aggggtgtct gttacagcct ttaacctacc ctgattaatc 18000
 catcagaaaa acaagggtggg gaatctagaa ccatcagaga aaagcatta ggaaagctga 18060
 aagccaagac taatcatcag cattaatatac atcatctgtt gtcttcaaaa taacaataac 18120
 ccccatagct accaattatt aggtacttgc agtggtagtc cctgtctaa gggcattacc 18180
 catataacctt acctttaatc ctcacaatcc ctgtgttaagg tagacatgat tattatcatt 18240
 10 attattatata ttttggaca gaggattgt ctgttgccta ggctggagtg cagtggtgtg 18300
 atctcagctc attgaaaccc cccacccca agttcaagcg attcttcagc ctcagccctcc 18360
 caagtagctg gaattacagg catgcaccac catgccggc taatttttat ttttagtaga 18420
 gacagagttt agccatattt gcctggctgg tctcgaactc ctggcctcaa gtgatccgccc 18480
 tgcctcagcc tcccaaagtc cagggattac aggtgcgacc caccgcgcct ggcattat 18540
 15 tattattatata ttaatttga gacaaggta ggctggagtg cagtgccacg atctcagctc 18600
 actgcaatgt ctgcctccca ggctcgagtg atcccaccc acgcctccca gtagctggaa 18660
 ctacagggtc acaacatcac acctggctaa cttttgtatt ttttagaga cggagtttca 18720
 ccgtgttgcc caggctggc ttgaacttgc gagctcaagt gaactgcctg cttcggccctc 18780
 20 ccaaagtgtt gggattacag gcatgagcca ctgtgcccgg cctgcgtat tattatcccc 18840
 attttgccttgcctt ctattatccc cattttcccc catttccatt tttctttct 18900
 tttttttttt ttttttttt tgagacattt ttttgccttgc tggcccaagg tagagtgcag 18960
 tggtagcata tcggctcaact gcaacccca cttcccccggg tcaagcaatt ctccgcctc 19020
 agcctcccaaa gtagctgggaa ttataggac ctggccactgc acttggctaa tcttgggtt 19080
 ttttagtaaag acggggcttc accatctgg ccaggctgg ctggaaactcc tgacctcg 19140
 25 atccacccgc ctcggcctcc caaaggctgt ggattacagg ctggagctat cgtgtctgc 19200
 tcccattttcc attttatagg tgagaaaatt ggcccacaga gatgaaatga cttgcccagg 19260
 ttcacagccca agatggcag tgccaaaatc ttctgtccaa tctctgattt tttatcctga 19320
 atctgtatata ccactcctgg ctgtctgtat taagtgtcca tcattggcag ggggttgtga 19380
 gagccgctt tgatgggcct cgaatgccaa cctaggagat ttgcttcat cctaaggggcc 19440
 30 agtgaagggtt ttgaaggcagg aatatgcattt gattagatct ggctatttgc tttaagtgc 19500
 tggataacta tccatgtctt ttacatttcg gtgtgggtt gcattcatc aggagtattt 19560
 cctgagcatc acgttaggtt tcagggctg agtagtcaga gatgagttt atgaggtccc 19620
 tgccctttaa gatttatggg aaggtagaa ccaatcacgg taatcaaaag tttatgtgg 19680
 ctgggcacgg tggctcacac ctgtatccc agcactttgg gaggccgagg tggccggatc 19740
 35 acaagggtcag gagttcgaga ccagcctgac caacatgggt aaacccctc tttactaaaa 19800
 atacaaaaat tagccagggtg tgggtggggg tgcttgcata tccagctact caggaggctg 19860
 aggcatagaat atcgcttgc cctggggaggc agagggtgca gtgagccaa atcgccac 19920
 tgcagtccac cctgggtgac agagcaagac tccgttcaaa aaaaagaaaa aaaaaaagaa 19980
 ataaaataaaa gaaagtgtt tttttctgt aagagggtt gtaacctaattt ttgaaaggtt 20040
 40 agggtagaa aagattatcc ctggggatg gagacagaga ctctggctt cctattctga 20100
 catccattttt tccctttctc ctcaaaaa gaaaagaaca ctgggtgtat tttatgggtt 20160
 cactatgtcc agcagaaaaaa ggcattccctc agtctccctt cagcaaggta aagccatctg 20220
 ataaaattttt gtccagttgg atataagcca aaatgttgcg tgacaattttt gggaggactt 20280
 cctgaaacac gtggacaaac ctttttcttca ctgagtcacc ttgtgcac ctgaaactaa 20340
 45 cagtgtgacg cgtggaaattt aggccatcattt gaggacaaga gcaatggggaa 20400
 tggcggaaacc aagagcttgc aggtgcctga gtctctgggg aagatgttgc gctgctgtaa 20460
 cagccctcaa ctccttagttc tggacttctt ttatgttttta gtgtacgtt ttgggtattt 20520
 ttatTTTTTTT aattttttt agagatgagg ttttactatg ttgccttaggc tggactcaaa 20580
 ctcttatgtt caagcagtcc tcctgcctca gtttcatgat tagtgcac tatacgactt 20640
 50 tgggtatttc agccactgtt tgagggtttt ctgcacccctc ctggaaatatac aagcttaaca 20700
 tgtccaatcc ttggcccaaga tttttcttc cccaaattttt ctcaatctca ataaatgtca 20760
 ccaccatcca cctgggtgct caggtaaaa accttagaaat cattcaagtt ctccctttt 20820
 ccctcatccc caatatccat tccatcgca acatctgtcc attctaccc tcagacatata 20880
 cccagatctc atcaccccttgc ttcgccttc ctaccctcac ttttcatccag catcatccct 20940
 55 cacctggact ctgcaaaaagc ctactcggtt gtctgtctgc atccctgtct gcctccctca 21000
 gggccattct ccacccagtg gccggatcga ttttcaaaag agttaatca gatcaattca 21060
 ctttctgtt taaaaccctc cgagggctgc cgttaacatg tagataaaaa tagagacccc 21120
 ttcccgggga tttcaaggtt ctatatggcc tggcccttgc ctgaccccttac ttcaactctgg 21180

5 gctcgcttagc cttgctgtcc ctc当地acatg ctgagctgc tcccaccaca gggcctttc 21240
 ccttttttc cttctgcctg gaatgttctt ctccccacct cccaagcccc atcttcccag 21300
 ggctgactcc tggcccatt tgggtctcaa atcatatcag taccttctca gagagggcctt 21360
 ccctcaactgc tcatcccttc accttttagaa cactttcttt tcttttaaga gacaaagtca 21420
 gcccagtgcg gtggctcactg cctgtataac cagcactttt gagaggccaa ggcggggcaga 21480
 tcacctcagg tcagggatc aagaccagcc tggccaaacgt ggcgaaaccc cgctctact 21540
 aaaaaataac aaaaattagc taggcagtgg tagcccccggc tactcaggag gctgaggcag 21600
 aattgctga acccaggagg cagaggttgc agtgagccg gattgagcca ctgcacccca 21660
 acctgggtga cagagagaga ctctgtctca aaaaaaaaaa aaaaaaaaaaag agacagggtt 21720
 10 ttgctctgtc acccaggctg gagtgcagtg gtgcaatcat ggctcaactgc agcctcgaa 21780
 tcctgggctc aagccatctt cccacccctcag cctccataagt agctgagatt ataggctcct 21840
 cccaccacac ctggcttaatt tttgtctttt ttgtggagac acagattctc catgttgc 21900
 aggctggctc ccaactcttc gggtaaagg atccctcttc ctcggcttcc caaagtgtc 21960
 ggattacagg cgtgagccac tgccctggc ccagaacact tgctattcc tcaccattgc 22020
 15 tttatttctt ctatgaagat ttcaactggaa ttatcagatt aatttgc 22080
 gtctgtttgt caccatgac tggaaatgtat actctaggaa ggcaggata taatccaatg 22140
 ggtttactgc tgcaccccttta gtaaccagaa gagtgcttgg cacctgataa gtgtctgggg 22200
 aacttgctac atgaattaca tggtcagat gggatatctg ttctgttttc ttctctttt 22260
 tttttttctc tctttcttc tctttttttt tcttttttct ttttttgaga 22320
 20 taaggtctcg ctctgtcacc caggcttagag tgcagtgggtg caatcatggc tcactgcaac 22380
 cttgaacatg tgggctcaag cgatccccc acctcaggct accaaatagc taagactaca 22440
 gaggtgcgta gctatgccc gctaattaaa aaaaaaaaaa tttttttttt ttttttagaga 22500
 tgggggtctc aatatcttc ccaggttggt cttgaactcc taggctcaag caatccccct 22560
 gccttggctt cccaaagtgc tgggattata ggcattgagcc attgcagctg gcccagacag 22620
 25 aatctcattt cagcccgaca actttgtgac atcattattt tcatcttaaa cacctagg 22680
 gatcccagct caaccacttg ccatctgtgt gacctgtggg caagtgcaccc taccttcgg 22740
 agcctcattt gcccacatcta taaaatggga atgatgccc tgcctgcctc ataaggatga 22800
 gccccgtcc tgaagctcag ggagccctt ctgcaaggct gttttagtgc aacctccgga 22860
 aacatgccc tgcattgtgaa aactggcatg cacattctgg tgcttttaaa aacatctcg 22920
 30 agcctatcca cagatcctgg acctcaagac tggttcagtg ctggccccc attttacaga 22980
 tgggagaat gaggttttagc gggcccagg caagtca 23040
 ggagccatca ggttcctctg gatctgc 23100
 ggggtgcacat ggggtgagg 23160
 cagtaaccaa cagttctgt gccttggaaata ttaatgtctc agcagctttt gttttgggg 23220
 35 ttgggggtgg tggggcgggg actttctggt cagaggggg ctgagctttt gggactgagg 23280
 cactggccct ttaaactgtg ttgacagccca ggagtcgtca tggggatgg 23340
 ggggacaggg agggtttggg aaagagttgc ggagcaggta atgcgtaaaga cccaggaatc 23400
 cagcccccaa ctacccctc tccaggacc caggatctt ggcctcc 23460
 tcaggttcca ggagtctgaa accccggctt cttccgc 23520
 40 ccaaccaccc cctctctcag gttccggaaa tccagacccc tagcccccctt ctgcattcagg 23580
 acccaggagt ctgggtgtc agcagccctt cccttcaac ctaggatc 23640
 ccctctctca gcttagacac aggagtctgg gcctccagcc ccctccctt tcaggaccca 23700
 ggagccaggg gtcagagta cacagctgtt ggatgtttcc acggagacta agcagggtgg 23760
 ggggagcgt tcctgggtcc tgagtca 23820
 45 ccgggaaggt caccaccacc ccctctgtat ccgcctccca ggggcttcc 23880
 ctccctcccc cttccctccct tagggaggtg gtacatccct 23940
 tcagcccccc atcaatggcg gatccgaac atccctcgac aaagcgtca 24000
 gctcagcctt gtgaaggcgc ctgtattcgc aggacctagg 24060
 ctccctcaga aacccatgc 24120
 50 ggagtctgtt tcctcatccc ttccctccct aagacctagg agtgtggact cccagcccc 24180
 ttttccttcc ggacacagga gttccagccc tcggccctt cctctttt 24240
 ctaagacccc agccctccctc tccctcaac tcaggatctt aagatcc 24300
 cctcagactc aggagtctaa gatccca 24360
 ccccaaggccc ctccctccctc agactcagga gtctaaagatc 24420
 55 acccaggagt ctaagacccc agccctccctt ccctcagact caggatctt 24480
 ccctccctcc tcagactca 24540
 cctaagaccc cagcccccctc ctccctgaga cccaggagtc taagaccc 24600
 ccttagacc cattagtc 24660

	ccccagcccc	tcctccatca	gatccagccc	ctccctcct	aaaaactttt	gactctaact	24720
	ccccagtct	caaccctag	aagcacagtc	ctgccttcc	tcaatccct	gtcccctccc	24780
5	atctgggac	ctaggcatca	ggtggggcgc	taggggttag	tcagcaacct	cacacacaaa	24840
	gtccccctg	tggcccccac	attccctggga	tattccggac	tccctggatt	ccaggcctca	24900
	gccccagcca	gggagtgggg	agtcccccag	aggtcctccc	tgggtgtggg	gtacgagagg	24960
	aattccctgct	ccgggaaggg	tgcaggctcg	caetgagctc	cctctgtccg	aacccctcagc	25020
	cccagtgc	cttattcacc	cccttccc	agaagagccc	aggctcagca	cctgcccctt	25080
10	gccccactgg	gtgcccacgg	aggagcctgc	gtgcctgctc	cctatggcc	tgggtctgc	25140
	acaggcggaa	atcagtgggt	gttccggtc	tgatgccaca	ggccatttga	tgctggcggg	25200
	tctgactgtc	tccaggccac	ccccccacccc	tcccagagag	agaaaagtc	ctttgtgttc	25260
	tccaagatgg	ggacaggcca	ggctcgacg	acattaaccc	agccttaggc	cccagccctg	25320
	ctgtgtctaa	ggtcttggaa	tccactgcag	aacctgaccc	ccaccccccag	gctctggga	25380
	cacaggcggc	tggtcatgg	gtgggtgggt	gggggggtca	gtgatagaaa	cctccaaaac	25440
15	ctgttcctg	gggtgactca	caatggaggg	agggtccccc	tattctcaag	agtggctgg	25500
	cagaatttta	gcagaaaaaa	gtgagtcacc	ctgggaagga	aacattattt	agggaccaac	25560
	aactgcccc	tccacaagac	ccctcaactc	ctaatacgct	ctctatttctt	tctttgtatt	25620
	gatatatctgt	ttccctctct	cccttctgtt	ctacccagtt	tctggctgc	ggtcccattt	25680
	ctgcctgggt	gcatccctgg	gcaggcaacc	catccctccc	tcttgcttc	tctctctgc	25740
20	ccacccttgg	tcctcttttgc	ggcataaaatc	tcatcttctt	ctgctatgt	cagaagatga	25800
	atgaaccagg	agagagagaa	catgtttta	aaatggcgca	aatgcacccc	atctcccccg	25860
	attccctgtc	gttggcaag	gtgagagagg	aagaagtgc	taagagagaa	atgtggaaac	25920
	aacagatacc	ccctaaaatg	tggtagccaa	ggccactgag	aaatatccaa	tggaaaggag	25980
	agcaggaagg	gcccctccaag	accacatgt	acagcctctt	accccatgt	ttacagaacg	26040
	gaaaagtaag	gcccagagag	ggacaaggac	tgatcaaaaa	ttatactaaa	gggtcctggg	26100
25	taaggcttgg	acccaagttc	cttagctccc	agctgagagc	tcttccatg	acaccaagct	26160
	cagtttctac	tggtaaaagc	cacatactat	ttacttttaga	gaaagtttac	agagagggtt	26220
	agggtgccag	gaagcagtga	cttggaaatc	aaacgaggga	cagggctgt	gacctaactc	26280
	ccagaagcac	cagagaaagg	ctttgcacg	ggccgggtgg	tcaccttaag	ctatattctg	26340
	atccctgagaa	ttcaaagtct	gatgattcta	agctgtcagg	attctaaatg	tcatagatgt	26400
30	caagatccag	gaactccaag	acatcaagat	ttcacgattt	ttaagacgtc	aagatgctag	26460
	catgctaaca	ccatcacgg	tctagaactt	taaaggtgtc	aagattctaa	agccttctgg	26520
	attctagaat	cctgttagatg	tcagcattct	aaagtaccat	caggttcttt	atttactgg	26580
	ttcatttagt	ccagattct	atgagcctgg	tgttagcct	aaaaaataaa	gataaattaa	26640
35	aattgtatgg	aatgtcactg	agttacaaa	gttctcatct	gggaaattgt	ggcatgtctg	26700
	ttgttaaagaa	aggaggtat	gatgcaagtt	ctaaagcagt	cacagaagac	tagagaagaa	26760
	agaaaagacag	tgagaggaca	gcttggccc	tcatcttggc	cgaggtgagg	atggctctgc	26820
	ctcaaaccct	ggagtgggg	acatgttaacc	gcactcaact	tgccagaaac	cccttcacgg	26880
	tctgagctgg	cgttccctt	catgtcactg	agttcaacat	cctcacttta	cagaaagaga	26940
40	aacagaagcc	tggagagagg	aagggttta	ccatggctg	cgatggcaaa	tggcaagac	27000
	caagatttaa	gcccaggccg	ccagccccc	gccaccttgc	tataacttct	ctcaccaatc	27060
	tctgccgaac	acccagccct	cctgcttctg	cctagccacc	ttccaaatct	ctgttcccttc	27120
	caaaaagtggc	cttatccacc	agggaggggt	gaccctggc	aggttcaaga	cttacacagt	27180
	gtgagaggtt	gtgtgggtga	catttcctga	ccttgcctcc	attctcaggg	tcacccaacc	27240
	tcgggggtct	ccagttctc	acagtgtgt	atgagggtat	gtggatggct	ccctggatgt	27300
45	cctggacagg	ggttctctg	tgagtcaagc	ctgggtgtgt	gaatgggtga	gcagggtttg	27360
	gagaggcatt	cgctgaatcc	acgtgtgtgc	ctacacgcca	aggtccccc	ttctcacttc	27420
	cccacacaca	tgcacacaga	tgttccctc	caggctctt	tagaatggcc	tgcctgactg	27480
	atttccctt	cagggcaca	gaggataga	gagagggagg	aaggtaggat	ggaaatggga	27540
	gatcccggga	tggaggctgt	aagcgttagag	agagggaggca	cagcagaaag	acagggatgg	27600
50	agatagtgg	acagagaagg	gggaaagaga	caggtgacag	aaagggttag	agaaacgagt	27660
	gacagaaaaga	caggggacag	agacaagggg	atggggcaga	taggggacag	agaaaaagg	27720
	acagaaaaac	aagggtgaca	gcgagacaga	gacagggacc	aagaataggg	gcagagaggg	27780
	agggcagaaa	tccgggggaa	agagaataga	caggatgt	gaggggacag	agtgacccag	27840
	aaaaagggga	cagagaccag	gggacagagg	taggggacaa	agacagaata	gatgaggaac	27900
55	accgaggcaa	gaagagaggg	agacagacag	aaggaggac	aggacttcga	gactgaggga	27960
	tagaggacaa	gggttaggggg	acgaggagcc	agacgggggg	gttcagagac	gggcggacag	28020
	agggacgcag	agactggaca	gaaggacagc	gggaccggcc	tggggagggc	ggacttgcgt	28080
	gtgttaggggg	gtctcgggccc	cttgcctccc	gccggatcc	agcctgcgcg	ggtgggggggg	28140

ctgcggcacg gcggccgggc cccgcgcccc ctcccccgtc cgtcgctccc ggctccggc 28200
 ccgcgtgcg ctttgtccc gggagggggc cggccccggc cccgcgcgc ttgttcggcc 28260
 tctgcggccc cgaggctgcc gggctgtcac cacagegcgc cccgcgcgc agcccgccg 28320
 gccgaccccc gcccccgacc ctacctggcc cccgcgcgc cgcgcacagc agcagcagcg 28380
 5 gccactggaa ggcgcggggc cggccatgg tgccgcggcc gccgcgcgc cgcgcgtc 28440
 cggccccggc acctgcaccg cccgcgcgc cggcccgcc cccgcgcgc cgcgcgtc 28500
 cggccccggg gcgccccggc gaggccggg cggggccggg gaggggaggg ggagacggag 28560
 gagaggccccg gagacaatcg gggggacggc acgtggggg aacggtgcgg ggtgcgaaag 28620
 ctggagagga gaggggtgag gagggcgga aggggtgcgc gggagggcga cagcggcgtg 28680
 10 ggagcagggtg ggggatctcg gtgagcgcgg gaaatggagg gtgttgggtg aggggtgtgc 28740
 gtgcgggccc aggtgctgcg cgcgagggtg cggagttgt ggcatgcagg gtgttgcgc 28800
 tgcgcggagg ggaggggtggc agggtgttcg tggaggctgt gcgagggtgg gggcgcgggc 28860
 gtcgtgggtt gcggtgtgtg cgaagggaga gcgtggccag cgtacgggg gacgttaagg 28920
 15 gagggaggtgc gacgtggaa aggtgaggtg gagaggcgtg ctgcgggcag gtgggtgtct 28980
 ggagtcttagc gagaggctgt gagctgagcc accgggacag gggaggctgc agctggaggt 29040
 cggagggtc cggaggtcga ggcaggtcaa gatctccca gggcaggcgc aggctggggc 29100
 tcaggagtggtt ggtggggtca gttccctccc tccctcttc ctgttctgac ctgaaaaccc 29160
 cgtgtttccg cgttatttc cgggaggggc cccctgaaag tgaactaact ggaaggaagc 29220
 20 ctgaatctcg ggtcccagga gggagaggt cctgtgaaca ctttccaagc cttggcgtcc 29280
 cctctctcc ctgtgtctc cctgcggccag cctctctccc tctctctgca tgtatggcc 29340
 tctgccttc ctctctcccc atctttgagg gtactcacc cttccagact tagtccctt 29400
 ctccctctcg ggagtgggtt tccctgagcc cacttctgtg acaccctgtt gacctgatgc 29460
 gggatcatta cctatgggac ccagaaagag tgagaaacca tggaaagaag gcctcgacct 29520
 ctctcatgcc catttgcgtag gcaaaactgtg gtccagaagt gccaattatg aacattttc 29580
 25 ctccccccct cccccctccc cgcggcagac ggtctcgct ctgttgcggc ggctggagtg 29640
 cagtggcacg atctcgactc actgcaacct ctgcctccca ggttccagtg attctctgc 29700
 ctcagcctcc cgagtagctg agattacagg cggccgcac catgccttagc taattttt 29760
 attttttagta gagacggagt tttgccatgc tggccaggct ggttttgcac tccttacctc 29820
 aggtgatcca tctgtctggc ctcccaaagt gttggattac aggctgtgac caccatgcct 29880
 30 ggctgaaaat ctttactttt tattccgact aaaaaatttt acatccagtc ccacaaggga 29940
 cttagcttc acacaccctt tctgtccca gtacccagct cccagttatcc ttctgacct 30000
 caaaaaccata gctaccatca acccttgggt cccaggacca tggctcccg tgccttctt 30060
 gtcctcaggg tccaagctcc catcaactcc tttgttccca ggaccacggc tccctgatcc 30120
 ctctctgtcc ttcagggtcca agtcccatc aaccctgtg aacggggacc atggctccca 30180
 35 gcatccttc tgccttcagg gtccaaagtc ctatcaactc ctgtgtcccc aggacgatgg 30240
 ctccagcaat cttctctgtc ctgagagccc aagttctaa ctgcggccgt gtcccccagat 30300
 ccatagccct gagaacttc ctttttttc agtctcagc ttccctgatcc ctgttagactt 30360
 gggaaagagat agtctctaat ctttttcca gggctcacat tctgtgactt ttgttagatg 30420
 ggagaggaat gtttgatctg cttttggaaat actggtccaa ggggttaacta gtatgtgcct 30480
 40 tttcccgac gaccaatag gcccgtcac tctgtgtct gacagatgtc tcctgtccca 30540
 gctgaagggg aacccctggga gatgttgggt tggttctcac ctgtcatccct taagtccac 30600
 cattccatgt gaagacatca caagagtgt ggtcctgacg ggcgcgttgg ctcacacac 30660
 taatcccacg actttgggag gccaagggtgg gccgatact tgaggtcagg agtttgagac 30720
 cagcctgacc aaccggccaa catggtggaa caccatctt accaaaaaaa aaaaaaaa 30780
 45 ttagcaaggc gtgggtgcac gtgcctgtaa tccctggcttgc tcggaaaggct gaggcatgag 30840
 aatcccctga acttgggagg cagagggtgc agttagctaa gatcatgcgc ctgcactcca 30900
 gcctgggtga cagaatgaga ctcatgttata ataataataa taataataat aataataata 30960
 ataataataa taaatagaat agtggtctgt tccctatctt acttcagggt accctgtcc 31020
 ttagggatt agtgcaggatc acagcaaggta caacccaaact gtttgagag aaagagaact 31080
 50 ggttcacaca taacaaaaaaat tccttctatg gctggcttgc gcgaggctgc tcaatctctg 31140
 tcctaaaggat gcatggctcc cttctgttag caagatggct ggcagatacc cctggggcca 31200
 gattcatatt tgggggtgatt aagattctgc aagagagaga caacctttat ttcacacac 31260
 ttttcaattt tgcctgtcc ctgggtgagac tcggagaccc agtcttgc tggtttctaa 31320
 actttcaata acaccgtttt tgcttaagtc agcacaacaa gattttattt cttgcaagca 31380
 55 aagattccctg aacaacaact tcagagccgt taacaatgg gtcctgtatca caagctatgg 31440
 tataggacgt gagaaatttg tcccttagct caatatctgc tggagggcat catggaataa 31500
 gtatttctat cctctgtatcc ccactgttagg gcatcatggg atatataatc ctaacccatca 31560
 atctctgcac tagatgttca taggcaatgc agtccttagcc tcaatatgtt gttagggatt 31620

5	atgggaaagg taaaattttc ctcattata atacagagca ttcagaaaa tgcgtttt 31680 gcctcatctc tgctgttagg catcatggg gatatacttc tggcccaatt tttttgtaa 31740 gttgcctat aagatgcgt ctttccttc ttccctttt tctttctt ctttcttct 31800 ttttttttt ttttattatg tagagacagg gtctctcgat atgttgcaca ggctggct 31860 gaactcctgg gctcaagcag ttctcctgcc ttggccccc aaagtgcgtt gattacaggc 31920 aagagccatt gcacccagtc ctttcctcc tttcttctt catcacctgc catattccag 31980 gcacttaggaa taaatcatca agtaaataaa cggccttacc ctccctggca attataatgg 32040 gaaaaggtag ctaaaaacaa acaaaaatata ctgttccatt taaccatcgc tgaataacaa 32100 aatacccccag aacgtatgg tttgtaaacaa caaccttta attttatgtat tctgtgagtc 32160 10 aggaatttga gcaggattgg tttgtatctg cttcatgtat aactggagcc aaaaatgaac 32220 tagctggAAC agctggagat ggagggggg ggcataagg gccatataatc taagctgg 32280 gttgggtttt gtgggtttt aatagtgtcc tccaagtaaa atatatgtt aagttctagc 32340 ccctggatc ttttgcgtt accttattt gaaataaaat ctttgcacat gtaattact 32400 tttttgcgtt ttttgcgtt tgctcgagac tgatctcgat tctgtcaccg aggctggagt 32460 15 gcagttggcat gatctcgct cactgttacc ttccacccctt ggggtcaagc gattctcctg 32520 cctcaggccctt ccaagtagct gggattatag gcacgtgtca ccatggccag ctaattttt 32580 tattttcagt agggacgggg tttcaccatg ttggccaggc tggctctgaa ctccctgac 32640 caaatgttcc gccacccatg cttcccaaaag tgctgggattt ataggcatgg ggcactgc 32700 cctggccaggat ttttgcgtt ttccacccctt gggatctttt gcatgtact ttatggaa 32760 20 ataagggtggg ttttttttctt gttttttttt ttttttttga gacagtttca ctttgcgt 32820 caggctggag tttcagtttca taatctcagc tcactgttacc ctctgcctcc gaggctcaag 32880 cgatcccccgcctt ccaagtagct cccgagtcac tggactacg ggcacggccc accacacccg 32940 gctaattgtt gcaatgggg tagagatggg gtttgcgtt gttggccaggc cggtctccaa 33000 tttgcgttccat caagcaattt atccgcctcg gcctcccaaaat gtttgcgtt gttggccaggc 33060 25 agccatggcg cccggccaga aagtcttttgc agatttagttt gatattatgca ctaatgtt 33120 ccatgcttag ttagagttgg ctctaaatcc aatgttgcgtt atggggttt aaggagagat 33180 atttggagac atagccacag tcccaaggaa ggtggacattt ggaagacaga ggttagggatt 33240 agagtgtatgc agctacaaggc caaggaatggg caaagattgc tggcgttcc tcagaagcaa 33300 30 aggagaggca aggaagggtt ctccctgtt gactttttt tttttttttt agacggagtc 33360 tcactgtgtt cagccctcagc tggagtgttca tggcgttcc tcggctcaact gcaacctctg 33420 cctccctaggat tccagcaattt ctccctgcctt agccctcccaaaat gtaactgaga ttacaggc 33480 ccggccaccat gcctggcttgc ttttgcattt ttttagtagat atggggattt accctgttgg 33540 ccaggctgtt ctcgaactcc tggacttcagg tgatccaccc gcctggccctt cccaaatgtc 33600 tgggattaca ggtgttccat ccggagactt taaaagcatg gctttccccc tgacgttta 33660 35 aaagcgtggc tttccctgtt agacttcaac accttgggtt tggacattttt gatattatgca 33720 ctgtgagaga acaagtttctt agtgtgtgtt ttttgcgtt ttttgcgtt ttttgcgtt 33780 tgggtgttca ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 33840 tcaatctcggtt ctcactgttca actccgcctt ttttgcgtt ttttgcgtt ttttgcgtt 33900 tcccaaggat ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 33960 40 ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 34020 gcctcaagtg atatgcgttcc ttttgcgttcc ttttgcgtt ttttgcgtt ttttgcgtt 34080 cacacctggc ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 34140 tttgcgttcc ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 34200 tgcaagctcc ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 34260 45 actacaggca cccaccatca cggccaggat ttttgcgtt ttttgcgtt ttttgcgtt 34320 tcatcatgtt agccaggatg ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 34380 cccgaaattgc ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 34440 agccacccctt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 34500 tgaataatata ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 34560 50 ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 34620 catggcttcc ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 34680 tggggcttcc ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 34740 gagatgaggt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 34800 cctttcttcc ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 34860 55 atgatgtttt gatattaggca cacaatgtgtt tagtttataa agtttgcgtt aatttgcgtt 34920 aggcaggccctt agggaaactaa tatagccaaat ttttgcgtt ttttgcgtt ttttgcgtt 34980 tggggcttcc ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 35040 ctggaaacatc ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt ttttgcgtt 35100
---	--

atggccaagc cacatgtgac gcctgtgccc caggctacac tggccgccc tggagagct 2640
 gtgccccgg atacgagggc aacccatcc agcccgccgg gaagtgcagg cccgtcaacc 2700
 aggagattgt gcgctgtgac gagcgtggca gcatggggac ctccggggag gctgcccgt 2760
 gtaagaacaa tgggtgggg cgcttggca atgaatgtgc tgacggctct ttccacctga 2820
 5 gtacccgaaa ccccgatggc tgccctcaagt gttctgtcat ggggtgtcagt cggcaactgca 2880
 ccagctttc atggagccgt gcccaggatgc atggggctc tgaggagccct ggtcaacttca 2940
 gcctgaccaa cgccgcaagc acccacacca ccaacgaggg catcttctcc cccacgccc 3000
 gggaaactggg attctctcc ttccacagac tcttatctgg accctacttc tggagccctcc 3060
 cttcacgctt cttgggggac aaggtgaccc tctatggagg agagctgccc ttcacagtga 3120
 10 cccagaggtc ccagccgggc tccacacccc tgacacggca gccgttgggt gtgctgcaag 3180
 gtaacaacat catcctagag caccatgtgg cccaggagcc cagccccggc cagcccagca 3240
 ctttcatgt gcctttccgg gagcaagcat ggcagcggcc cgatggcag ccagccacac 3300
 gggagcacct gctgatggca ctggcaggca tgcacacccct cctgatccga gcatcctacg 3360
 cccagcagcc cgctgagagc agggctctg gcatcagcat ggacgtggct gtgcccggagg 3420
 15 aaaccggcca ggaccccgcg ctggaaatgg aacagtgtc ctgcccaccc ggttaccgtg 3480
 gggccgtctg ccaggactgt gacacaggct acacacgcac gcccagtggc ctctacctgg 3540
 gtacctgtga acgctgccc tgccatggcc actcagaggc tgagcggcc gaaacaggtg 3600
 cctggccaggc ctggcaggcat cacacggagg gcctcggtg tgagcgtgc cagccaggat 3660
 actacggggc cgcccagcgg gggacaccac aggactgcca gctgtcccc tgcacggag 3720
 20 accctgtgc cggccaggct gcccacactt gtttctgga cacagacggc caccggcac 3780
 gtgatgcgtg ctccccaggc cacagtggc gtcactgtga gaggtgcgc cctggctact 3840
 atggcaaccc cagccagggc cagccatgcc agagagacag ccaggtgcca ggccccatag 3900
 gctgcaactg tgacccccc ggcagcgtca gcagccagtg tgatgtgc ggtcagtgcc 3960
 agtgcacggc ccaggttagaa ggcctcaactt gcagccactg cggcccccac cacttccacc 4020
 25 tgagtgccag caacccagac ggctgcctgc cctgttctg tatggccatc acccagcagt 4080
 ggcgcagtc tgcttacaca cgcacactga tctccaccca ctttgcctt gggacttcc 4140
 aaggcttgc cctggtaac ccacagcgaa acagccgctt gacaggagaa ttcaactgtgg 4200
 aacccgtgcc cgagggtgcc cagctcttt ttggcaactt tgcccaactc ggcacatgat 4260
 ctttctactg gcagctgccc gagacatacc agggagacaa ggtggccgc tacgggtggg 4320
 30 agttgcata caccctctcc tacacagcag gcccacaggc cagcccaactc tggacccccc 4380
 atgtgcagat cacgggcaac aacatcatgc tagtggcctc ccagccagcg ctgcaggggc 4440
 cagagaggag gagctacagag atcatgttcc gagaggaatt ctggccggg cccgatggg 4500
 agccggccac acggcagcac ctccgtatgg cactggccga cttggatgag ctccgtatcc 4560
 gggccacatt ctcctccgtg ccgtgttgg ccagcatcag cgcagtcagc ctggagggtcg 4620
 35 cccagccggg gcccctaaac agaccccgcg ccctcgaggt ggaggagtgc cgtgccccgc 4680
 caggctacat cggctgtcc tgccaggact gtggggccgg ctacacgcgc accgggagtg 4740
 ggctctacct cggccactgc gagctatgtg aatgcaatgg ccactcagac ctgtgccacc 4800
 cagagactgg ggctgtctcg caatgccagc acaacgccc aggggagttc tgcagcttt 4860
 gtccccctgg ctactacggc gatgccacag cggggacgccc tgaggactgc cagccctgtg 4920
 40 cctgccccact gaccaaccca gagaacatgt tttccgcac ctgtgagagc ctgggagccg 4980
 gcggttaccc ctgcacggcc tgcaacccg gctacactgg ccagtactgt gaggcgtgtg 5040
 gcccaggta cgtggtaac cccagtgtgc aaggggggca gtgcctgcca gagacaaacc 5100
 aagccccact ggtggtcgag gtccatctg ctcgaagcat atgccccaa ggtggctccc 5160
 actccctgcg gtgtcaggat agtggagcc caccggacta ttctattgg tccctgtgagg 5220
 45 atggcgccc tggcccagc ggcacccaggc agcgacatca aggctccgag ctccacttcc 5280
 ccagcgatcca gcccctggat gctggggctc acatgtgcac tgccgtaat ctccaccaat 5340
 ccaataccag cccggcaggag ctgctggtca ctgaggctcc aagcaagccc atcacagtga 5400
 ctgtggagga gcagcggagc cagagctgc gccccggagc tgacgtcacc ttcatctgca 5460
 cagccaaaag caagttccca gcctataccc tgggtgtggac ccgcctgcac aacgggaaac 5520
 50 tggccaccc agccatggat ttcaatggca tcctgaccat tcgcaacgtc cagctgagtg 5580
 atgcaggcac ctacgtgtgc accggctcca acatgttgc catggaccag ggcacagc 5640
 ctctacatgt gcaggccctcg ggcacccctgt ccggggccgt ggtctccatc cattcgccac 5700
 agctcacatgt gcagccccggg caactggcgg agtccctgt cagcgcacaca gggagcccc 5760
 cggccacccct cgagtggaca gggggccccg gggcccgact ccctgccaag gcacaaatcc 5820
 55 acggcggcat cctgcgcctg ccagctgtcg agccacggc tcaggcccag tacttgtcc 5880
 gagccccacag cagcgctggg cagcaggatgg ccagggtgt gctccacgtg catggggccg 5940
 gtggccacag agtccaaatgt agcccagaga ggacccaggt ccacgcaggc cggaccgtca 6000
 ggctgtactg cagggctgca ggctgccta ggcacccat cacctggagg aaggaagggg 6060

5 gcagcctccc accacaggcc cggtcagagc gcacagacat cgcgacactg ctcatcccag 6120
 ccatcacgac tgcgtacgccc ggcttctacc tctgcgtggc caccagccct gcaggcactg 6180
 cccaggccc gatcaagtg gttgtccctt cagcctcaga tgccagccca cccggggtca 6240
 agattgagtc ctcatcgcc tctgtgacag aaggggcaaac actcgaccc tc aactgtgtgg 6300
 10 tggcagggtc agcccatgcc caggtcacct ggtacaggcg aggggtagc ctgcctcccc 6360
 acacccaggc gcacggctcc cgtctgcggc tcccccaaggc ctcaccagct gattctggag 6420
 aatatgtgtg ccgtgtggag aatggatcgg gccccaaaggc ggcctccatt actgtgtctg 6480
 tgctccacgg caccattct ggcccccaact acaccccaact gcccggcagc accccggccca 6540
 tccgcatcga gcctccctcc tcacacgtgg cgaaaggcga gaccctggat ctgaactgcg 6600
 15 tggtgcccg gcaggcccac gcccaggcga cgtggcacaa gcgtggggc agcctccctg 6660
 cccggcacca gaccacggc tcgctgtgc ggctgcacca ggtgaccccg gccgactcag 6720
 gcgagtatgt gtccatgtg gtgggcaccc cccggccccc agaggcctca gtccctggtca 6780
 ccatcgaagc ctctgtcatt cctggaccca tcccacctgt caggatcgag tcttcattcct 6840
 ccacagtggc cggggccag accctggatc tgagctgcgt ggtggcaggc cagggccacg 6900
 20 cccaggtcac atggtacaag cgtggggca gcctccctgc cccgcaccag gttcgtggct 6960
 cccgcctgta catcttccag gcctcacctg cccatgcggg acagtacgtc tgccgggcca 7020
 gcaacggcat ggaggectcc atcacggcga cagaactgg gaccagggg gccaacttag 7080
 cctaccctgc cggcagcacc cagcccatcc gcacggcacc ctcctctcg caagtggcgg 7140
 aagggcagac cctggatctg aactgcgtgg tgccggcga gtcccatgcc caggtcacgt 7200
 25 ggcacaagcg tggggcagc ctccctgtcc ggcacccagc ccacggctcc ctgctgagac 7260
 tctaccaage gtccccccgc gactcggcg agtacgtgtg cccgagtgtg ggcagctccg 7320
 tgccctctaga ggcctctgtc ctggtcacca ttgagctgc gggctcagtg cctgcacttg 7380
 gggtcacccc cacggtccgg atcgagtcat cgtcttcgca agtggccgag ggcagacccc 7440
 tggacctgaa ctgcctcggt gctggtcagg cccatggcc ggtcacgtgg cacaagcgcg 7500
 30 ggggcagcc cccggcccg caccagggtc atggctcgag gtcacgcctg ctccagggtga 7560
 ccccagctga ttcaagggag tacgtgtgc gtgtggtcgg cagctcagg acccaggaag 7620
 cctcagttct tgcaccatc cagcagcgc tttagtggctc ccactccca ggtgtggcgt 7680
 accccgtccg catcgatcc tcctcagcc cccatggccaa tggacacacc ctgacactca 7740
 actgccttgtt tgccagccag gtcctccaca cccatcacctg gtataagcgt ggaggcagct 7800
 35 taccgcggcc gcaccagatc gtgggctccc ggctgcggat ccctcagggtg actccggcag 7860
 actcggcga gtacgtgtt cagtcagta acgggtcagg ctcccgagg acctcgctca 7920
 tcgtcaccat ccaggcggcgc ggttcctccc acgtgcccag cgtctccca cccatcgaga 7980
 tcgagtcgtc ttcccccaag gtggtggaaag ggcagaccc ggtctgaac tgctgtgtcg 8040
 ccaggcagcc ccaggctatc atcacatgtt acaagcgtgg gggcagcctt ccctcccgac 8100
 40 accagacca tggctccac ctgcgggtgc accaaatgtc tggcgtgac tggggcagat 8160
 atgtgtggcg ggccaacaac aacatcgat ccctggaggc ctccatcgatc atcccgctt 8220
 cccctagcgc cggcagcccc tccggccctg gcagtcctat gcccatacaga attgagtcat 8280
 cctcctcaca cgtggccgaa gggagaccc tggatctgaa ctgcgtgtc cccggccagg 8340
 cccatgcaca ggtcaacttgg cacaagcgtg gggcagcc ccccaactc catcagacccc 8400
 45 gcggtcactc gtcggggctg caccatgtgt cccggccga ctgggtgaa tacgtgtgcc 8460
 ggggtatggg cagctctggc cccctggagg cctcagtcct ggtcaccatc gaagcctctg 8520
 gtcacagtgc tgcacatgc cccggccca gttggagcccc acccatccgc atcgagccct 8580
 cctccctcccg agtggcagaa gggcagaccc tggatctgaa gtgcgtgtg cccggccagg 8640
 cccacgcaca ggtcacatgg cacaagcgtg gagaaacct ccctggccgg caccagggtcc 8700
 50 acggcccaact gtcggggctg aaccagggtt cccggctga ctctggcag tactcggtcc 8760
 aagtgaccgg aagctcaggc accctggagg catctgtctt ggtcacaatt gagccctcca 8820
 gcccaggacc cattcctgtc ccaggactgg cccagccat ctacatcgag gcctcccttt 8880
 cacacgtgac tgaagggcag actctggatc tgaactgtgt ggtggccggg caggcccatg 8940
 cccaggtcac gtggtacaag cgcggggca gcctcccccgc cccggcaccag acccatggct 9000
 55 cccagctgctc gtcacatcc tc tccctgtc ccaggactcagg cggatgtg tgctgtgcag 9060
 ccaggcggcc aggcctcgag caagaaggct ctttcacagt cccatcgatc cccagggtagg 9120
 ggtcttcata cgcctttagg agcccggtca ttcacatcgat cccggccagg agcaccgtgc 9180
 agcagggcga ggtggccagc ttcaagtgcc tcaatccatga cggggcagcc cccatcagcc 9240
 tcgagtgaa gaccggaaac caggagctgg aggacaacgt ccacatcagt cccatggct 9300
 ccatcatcaca catcggtggc acccgccca gcaaccacgg tacctaccgc tgcgtggct 9360
 ccaatgccta cgggtgtggc cagagtgtgg tgaacctcag tgcgtacggg cccctacag 9420
 tgcgtgtctc ccccgaggc cccgtgtggg taaaatgggg aaaggctgtc accctggagt 9480
 gtgtcactgtc eggggagccc cgttcctctg ctcgttggac ccggatcagc agcaccctcg 9540

ccaagttgga gcagcggaca tatgggctca tggacagcca cgcggtgctg cagatttcat 9600
 cagctaaacc atcagatcg ggcacttatg tgcgttgc tcagaatgca ctaggcacag 9660
 cacagaagca ggtggaggtg atcgtggaca cggcgccat ggccccaggg gcccctcagg 9720
 5 tccaagctga agaagctgag ctgactgtgg aggtggaca cacggccacc ttgcgtgtc 9780
 cagccacagg cagcccccgcc cccaccatcc actggtccaa gtcgttcc ccaactgcct 9840
 ggcagcaccg gctggaaggt gacacactca tcataccccc ggtageccag caggactcg 9900
 gccagtacat ctgcaatgcc actagccctg ctgggcacgc tgaggccacc atcatectgc 9960
 acgtggagag cccaccatat gccaccacgg tcccagagca cgcttcggtg caggcagggg 10020
 agacggtgca gtcggcgtgc ctggctcactg ggacacccccc actcacccctc cagtggagcc 10080
 10 gcggtggcag cagccttcct gggagggcga cggccaggaa cgagctgctg cactttgagc 10140
 gtgcagcccc tgaggactca ggccgttacc gtcgtgggtt caccacaag gtgggctcag 10200
 ccgaggcctt tgccctagctg ctgcgttccaa gcccctccgg ctctctccct gccacactcca 10260
 tcccagcagg gtccacgccc accgtgcagg tcacgcctca gctagagacc aagagcattg 10320
 gggccagcgt tgagttccac tgcgtgtgc ccagcgacca gggtaaccag ctccgttgg 10380
 15 tcaaggaagg gggtcagctg ctcgggttc acagcgtgca ggatgggtg ctccgaatcc 10440
 agaacttgggca ccagagctgc caagggacgt atatatgcca ggcccatgga cttggggga 10500
 aggcccaggc cagtgcctcctg ctggttatcc aagccctgca ctccgtgtc atcaacatcc 10560
 ggacctctgt gcagaccgtg gtgggtggcc acggcgttggaa gttcaatgc ctggcactgg 10620
 gtgaccccaa gcctcagggtg acatggagca aagttggagg gcacctgcgg ccaggcattg 10680
 20 tgcagagcgg aggtgtcgtc aggatcgccc acgttagagct ggctgatgcg ggacagtatc 10740
 gtcgcactgc caccacgcgca gtcggaccca cacaatccca cgtctgtc ctttgcaag 10800
 ctttgccttca gatctcaatg ccccaagaag tccgtgtgcc tgctggttct gcaactgtct 10860
 tcccctgcattt agcctcaggc tacccctactc ctgacatcag ctggagcaag ctggatggca 10920
 gcctgcaccacc tgacagccgc ctggagaaca acatgtgtat gtcgcctca gtccgacccc 10980
 25 aggacgcagg tacctacgtc tgcaccggca ctaaccggca gggcaaggtc aaagcctttg 11040
 cccacctgca ggtgccagag cgggtgggtc cctacttcac gcagacccccc tactccttcc 11100
 taccgctgcc caccatcaag gatgcctaca ggaagtttca gatcaagatc accttccggc 11160
 ccgactcagc cgatggatg ctgcgttaca atgggcagaa gcgagtccca gggagccca 11220
 ccaacctggc caacccggcag cccgacttca tctccttcgg ctcgtgggg ggaaggcccg 11280
 30 agttccgggtt cgatgcaggc tcaggcatgg ccaccatccg ccatcccaca ccactggccc 11340
 tgggcattt ccacaccgtg accctgtgc gcagcctcac ccagggctcc ctgattgtgg 11400
 gtgacctgca cccgttcaat gggacctccc agggcaagtt ccagggcttg gatctgaacg 11460
 aggaactcta cctgggtggc tatcctgtact atggtccat ccccaaggcg gggctgagca 11520
 35 gcggttcat aggctgtgtc cgggagctgc gcatccaggg cgaggagatc gtctccatg 11580
 acctcaacct cacggcgcac ggcatttccc actgccccac ctgtcggtac cggccctgccc 11640
 agaatggccgg tcagtgcctt gactctgaga gcagcagcta cgtgtcgctc tgcccagctg 11700
 gtttacccgg gagccgtgt gagcaactgc agggccctca ctgccatcca gaggcctgtg 11760
 gccccgacgc cacctgtgtc aaccggctt acggtcgagg ctacacctgc cgctgccacc 11820
 tgggcgttcc ggggttgcgg tgcgtggaaat gtgtgacagt gaccacccccc tgcgtgtcgg 11880
 40 gtgctgggtc tttttttttt tcacccggcc tcaccaacac acaccacagg ctacccctgg 11940
 acgtggagtt caagccactc gcccctgacg gggcttgcgtt gttcaggggg gggaaagagcg 12000
 ggcctgttggaa ggacttcgtt tccctggcga tgggtggggccg ccacctggag ttccgtatg 12060
 agttgggttcc agggctggcc gttctggca ggcggcggacc gtcggccctg ggcggctggc 12120
 accgtgtgtc tgcagagcgt ctcaacaagg acggcagctt gcggttgaat ggtggacgcc 12180
 45 ctgtgtgtcg ctcctcgccc ggcaagagcc agggccttca ctcgtcacacc ctgtcttacc 12240
 tgggggggtgt ggagcccttcc gtcgttgcgtt ccccgccac caacatgagc gtcacttcc 12300
 gcggtgtgtt gggcgagggtg tcagtgtatg gcaaaacggctt ggaccttccacc tacatgtttcc 12360
 taggcagcca gggcatcggtt caatgtatg atagttttttt atgtgagcgc cagccctgccc 12420
 aacatgggtc cacgtgcattt cccgtggcg agttagatggt ccagtgcctg tgcgtggatg 12480
 50 gattcaaaagg agacccgtt gggccatggg agaacccttcc ccagtcctgtt gaaaccctgtc 12540
 tgcgtggggg cacctgccc ggcacccctt gtcgttgcctt ccctggcttc tctggccacc 12600
 gctggcaaca aggttgcgtt catggcatag cagatgttca ctggcatctt gaaggcagcg 12660
 gggcaatgtt tgcccttggg cagtttttca ccgttgcgtt ccgttgcgtt ttccttcgtt 12720
 55 ttcggaccag cacagccagt ggccttcgtt ccgttgcgtt ccgttgcgtt ccgttgcgtt 12780
 gccaaggccaa ggacttcatc agcctcgcc ttcagacgg gcaaccccttcc ttcaggttacc 12840
 agctgggttag tggggaggcc cgcctggctt ctgaggaccc catcaatgac ggcggatggc 12900
 accgggttgcac agcactgcgg gaggccat ccaagtcgac ggtgaggagc 13020

tggtcagcgg ccggccccca ggtcccaacg tggcagtcaa cgccaagggc agcgtctaca 13080
 tcggcggagc ccctgacgtg gccacgctga cggggggcag attctccctcg ggcatcacag 13140
 gctgtgtcaa gaacctgggt ctgcactcgg cccgacccgg cgccccgccc ccacagcccc 13200
 tggacctgca gcaccgcgcc caggccggg ccaacacacg cccctgcccc tcgttaggcac 13260
 5 ctgcctgccc cacacggact cccggccac gccccagccc gacaatgtcg agtatattat 13320
 tattaatatt attatgaatt ttgttaagaa accgaggcga tgccacgtt tgctgctacc 13380
 gcccctggct ggactggagg tgggcatgcc accctcacac acacagctgg gcaaagccac 13440
 aaggctggcc agcaaggcag gttggatggg agtgggcacc tcagaaaagtc accaggactt 13500
 ggggtcagga acagtggctg ggtgggccca gaactgcccc cactgtcccc ctacccacgg 13560
 10 atggagcccc cagatagagc tgggtggcct gttctgcag cccttggca gtttcactc 13620
 ctaggagagc caacctcgcc ttgtgggctg gtggccca caca gctacctgag acgggcatcg 13680
 caggagtctc tgccacccac tcaggatgg gaattgtctt tagtgcggc tggagca 13740
 aaggcagctc acccctggc aggcggtccc catccccacc agtcgttt tcagcacccc 13800
 caccaccc caccacgccc ctggcaccc tcctggcaga ctccccctcc taccacgtcc 13860
 15 tcctggctg cattccccacc ccctcctgccc agcacacacg ctggggtccc tccctcaggg 13920
 gctgttaaggg aaggccccacc ccaacttta ccaggagctg ctacaggcag agcccagcac 13980
 tgatagggcc ccccccaccc ggccccggcc accccaggcc acatccccc ccatctggaa 14040
 gtgaaggccc agggactcct ccaacagaca acggacggac ggtatggcgt ggtgctcagg 14100
 aagagctagt gccttaggtg ggggaaggca ggactcacga ctgagagaga gaggaggggg 14160
 20 atatgaccac cctggcccat ctgcaggagc ctgaagatcc agctcaagt ccacccctcc 14220
 agtggccccc agactgtggg gttgggacgc ctggcctctg tgcctagaa gggaccctcc 14280
 tgtggcttt gtcttgattt ttcttaataa acggtgctat cccccccc 14327

25 <210> 58
 <211> 15
 <212> PRT
 <213> Homo sapiens

30 <400> 58
 Ile Pro Thr Gly Glu Pro Cys Pro Glu Pro Leu Arg Thr Tyr Gly
 1 5 10 15

35 <210> 59
 <211> 13
 <212> PRT
 <213> Homo sapiens

40 <400> 59
 Ile Glu Ser Val Leu Ser Ser Ser Gly Lys Arg Leu Gly
 1 5 10

45 <210> 60
 <211> 18
 <212> PRT
 <213> Homo sapiens

<400> 60
 Ala Thr Pro Ala Gln Ala His Leu Lys Lys Pro Ser Gln Leu Ser Ser
 1 5 10 15

55 Phe Ser

5 <210> 61
 <211> 15
 <212> PRT
 <213> Homo sapiens

10 <400> 61
 Arg Ile Gln Ala Met Ile Pro Lys Gly Ala Leu Arg Val Ala Val
 1 5 10 15

15 <210> 62
 <211> 15
 <212> PRT
 <213> Homo sapiens

20 <400> 62
 Gly Ile Cys Gln Cys Leu Ala Glu Arg Tyr Ser Val Ile Leu Leu
 1 5 10 15

25 <210> 63
 <211> 17
 <212> PRT
 <213> Homo sapiens

30 <400> 63
 Glu Lys Met His Glu Gly Asp Glu Gly Pro Gly His His His Lys Pro
 1 5 10 15

35 Gly

40 <210> 64
 <211> 13
 <212> PRT
 <213> Homo sapiens

45 <400> 64
 Asp Leu Gln Asn Phe Leu Lys Lys Glu Asn Lys Asn Glu
 1 5 10

50 <210> 65
 <211> 19
 <212> PRT
 <213> Homo sapiens

55 <400> 65
 Val Lys Leu Gly His Pro Asp Thr Leu Asn Gln Gly Glu Phe Lys Glu
 1 5 10 15

Leu Val Arg

5 <210> 66
<211> 48
<212> ADN
<213> Homo sapiens

10 <400> 66
ttywsntggg ayaaytgytt ygarggnaar gaycengcng tnathmgn 48

15 <210> 67
<211> 48
<212> ADN
<213> Homo sapiens

20 <400> 67
taywsnytnc cnaarwsnga rttygcngtn ccngayytng arytnccn 48

25 <210> 68
<211> 16
<212> PRT
<213> Homo sapiens

30 <400> 68
Phe Ser Trp Asp Asn Cys Phe Glu Gly Lys Asp Pro Ala Val Ile Arg
1 5 10 15

35 <210> 69
<211> 585
<212> ADN
<213> Homo sapiens

40 <400> 69
gaygcnccng gncartaygg ngcntayttc caygaygayg gntyytngc nttyccnggn 60
caygtnttyw snmgnwsnyt nccngargtn ccngaracna thgarytna rgtnmgnacn 120
wsnacngcnw snggnytnyt nyntggcar gggngtngarg tngngargc nggnccnggn 180
aargaytta thwsnytngg nytnccargay ggnccaytng nttytmgnta ycarytnggn 240
45 wsnggngarg cnmgnnytngt nwsngargay ccnathaayg ayggngartg gcaymgngtn 300
acngcnnytnm gngarggnmg nmgnnggnwsn mgncargtng ayggngarga rytngtwnsn 360
ggnmgnwsnc cnggnccnaa ygtngcngtn aaygcnaarg gnwsngtnta yathgnggn 420
gcncncngayg tngcnacnyt naclnggnngn mgnttywsnw snggnathac ngngtgygt 480
50 aaraayytng tnytnccayws ngcnmgncen gggngccnc cnccncarcc nytnccaytng 540
carcaymgng cncargcngg ngcnaayacn mgncntgyc cnwsn 585

55 <210> 70
<211> 597
<212> ADN
<213> Homo sapiens

<400> 70

5 atgaartggg tntgggcnyt nytnytnyt gcngcntggg cngcngcnga rmgngaytgy 60
 mgngtnwsnw snttymngnt naargaraay ttygayaarg cnmgnttyws ngnacntgg 120
 taygcnatgg cnaaraarga yccngarggn ytnttlytnc argayaayat htngcngar 180
 ttywsngtng aygaracngg ncaratgwsn gcnaacngcna arggnmgngt nmgnytnyt 240
 10 aayaaytggg aygtntgygc ngayatggtn ggnacnttya cngayacnnga rgayccngcn 300
 aarttyaara tgaartaytg gggngtngcn wsnttlytnc araarggnaa ygaygacy 360
 tggathgtng ayacngayta ygayacntay gcngtncart aywsntgymg nytnytnaay 420
 ytngaygna cntgygcnga ywsntaywsn ttygtnttyw snmgngaycc naayggnyt 480
 ccncncngarg cncaraarat htgnmgncar mgncargarg arytnqyyt ncgnmgncar 540
 15 taymgnytna thgtncayaa yggntaytgy gayggnmgnw sngarmgnaa yytnyt 597

15 <210> 71
 <211> 579
 <212> ADN
 <213> Homo sapiens
 20 <400> 71
 atgcarwsny tnatgcargc nccnytnyt athgcnytng gnytnytnyt ncnaacnccn 60
 gcncargcnc ayytnaaraa rccnwsncar ytnwsnwsnt tywsntggga yaaytgyt 120
 garginnaarg ayccngcngt nathmgwnsn ytnacnytng arcngaycc nathgtngtn 180
 ccnggnaayg tnacnytnws ngtngtnggn wsnaclnwsng tnccnytnws nwsnccnytn 240
 aargtngayy tngtntyngn raargargtn gcnggnytnt ggathaarat hcctgyacn 300
 25 gaytayathg gnwsntgyac nttygarccay ttytgygag ytnytnayat gytnathccn 360
 acngngarc cntgyccnnga rccnytnmgn acntayggn ytnccntgyca ytgccntty 420
 aargarggna cntaywsnyt nccnaarwsn garttygcnng tnccngayyt ngarytnccn 480
 wsntggytna cnacnggnaa ytaymgnaht garwsngtng tnwsnwsnws nggnaarmgn 540
 30 ytnngntgya thaarathgc ncwtnsnytn aarggnath 579

35 <210> 72
 <211> 16
 <212> PRT
 <213> Homo sapiens
 40 <400> 72
 Tyr Ser Leu Pro Lys Ser Glu Phe Ala Val Pro Asp Leu Glu Leu Pro
 1 5 10 15

45 <210> 73
 <211>
 <212> PRT
 <213> Homo sapiens
 50 <400> 73
 MQSLMQAPLL IALGLLLATP AQAHKKPSQ
 LSSFSWDNCD EGKDPAVIRS LTLEPDPIVV
 PGNVTLSVG STSVPLSSPL KVDLVLEKEV
 AGLWIKIPCT DYIGSCTFEH FCOVLDMLJP
 TGEPCPEPLR TYGLPCHCPF KEGTYSLPKS
 EFVVPDLELP SWLTTGNYRI ESVLSSSGKR
 LGCIKIAASLKGI

5 <210> 74
 <211>
 <212> PRT
 <213> Homo sapiens
 <400> 74

10 **GDVCQDCIQM VTDIQTAVRT NSTFVQALVE**
 HVKEECDRLG PGMADICKNY ISQYSEIAIQ
 MMMHMQDQQP KEICALVGFC DEV

15 <210> 75
 <211>
 <212> PRT
20 <213> Homo sapiens
 <400> 75

25 **MTCKMSQLER NIETIINTFH QYSVKLGHPD**
 TLNQGEFKEL VRKDLQNFLK KENKNEKVIE
 HIMEDDLDTN ADKQLSFEEF IMLMARLTWA
 SHEKMHEGDE GPGHHHKPGL GEGTP

30

35

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international

(43) Date de la publication internationale
25 janvier 2001 (25.01.2001)

PCT

(10) Numéro de publication internationale
WO 01/05422 A3

(51) Classification internationale des brevets⁷ :
G01N 33/68, 33/564, C07K 14/47, A61K 38/17

(21) Numéro de la demande internationale :
PCT/FR00/02057

(22) Date de dépôt international : 17 juillet 2000 (17.07.2000)

(25) Langue de dépôt : français

(26) Langue de publication : français

(30) Données relatives à la priorité :
99/09372 15 juillet 1999 (15.07.1999) FR

(71) Déposant (pour tous les États désignés sauf US) :
BIOMERIEUX STELHYS [FR/FR]: Chemin de
L'Orme, F-69280 Marcy L'Etoile (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (pour US seulement) : ROECK-
LIN, Dominique [FR/FR]: 14 Rue de la Paix, F-67500
Niederschaeffolsheim (FR). KOLBE, Hanno [FR/FR]: 6

Rue des Tuiliers, F-67204 Achenheim (FR). CHARLES,
Marie-Hélène [FR/FR]: 3 Allée de la Lamperte, F-69420
Condrieu (FR). MALCUS, Carine [FR/FR]: 9 Rue des
Ronzières, F-69530 Brignais (FR). SANTORO, Lyse
[FR/FR]: 47 Avenue Bergeron, F-69260 Charbonnières les
Bains (FR). PERRON, Hervé [FR/FR]: 15 Rue de Boyer,
F-69005 Lyon (FR).

(74) Mandataire : DIDIER, Mireille; Cabinet Germain et
Maureau, Boîte Postale 6153, F-69466 Lyon Cedex 06
(FR).

(81) États désignés (national) : AE, AG, AL, AM, AT, AU, AZ,
BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE,
DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,
ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO,
NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR,
TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) États désignés (régional) : brevet ARIPO (GH, GM, KE,
LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,

[Suite sur la page suivante]

(54) Title: USE OF A POLYPEPTIDE FOR DETECTING, PREVENTING OR TREATING A PATHOLOGICAL CONDITION
ASSOCIATED WITH A DEGENERATIVE, NEUROLOGICAL OR AUTOIMMUNE DISEASE

(54) Titre : UTILISATION D'UN POLYPEPTIQUE POUR DETECTER, PREVENIR OU TRAITER UN ETAT PATHOLOGIQUE
ASSOCIE A UNE MALADIE DEGENERATIVE, NEUROLOGIQUE AUTOIMMUNE

(57) Abstract: The invention concerns the use of at least one polypeptide comprising a protein fragment to obtain a diagnostic, prognostic, prophylactic or therapeutic composition for detecting, preventing or treating a pathological condition associated with a degenerative and/or neurological and/or autoimmune disease. said protein being selected among the proteins whereof the peptide sequence in native state corresponds to SEQ ID No 1, SEQ ID No 2, SEQ ID No 3, SEQ ID No 4, SEQ ID No 5, SEQ ID No 6, SEQ ID No 7, SEQ ID No 8, SEQ ID No 9, SEQ ID No 10, SEQ ID No 11, SEQ ID No 12, SEQ ID No 13, SEQ ID No 14, SEQ ID No 15, SEQ ID No 16, SEQ ID No 17, SEQ ID No 18, SEQ ID No 19, SEQ ID No 20, SEQ ID No 21, SEQ ID No 22, SEQ ID No 23, SEQ ID No 24, SEQ ID No 25, SEQ ID No 26, SEQ ID No 27, SEQ ID No 28 and SEQ ID No 29, and the peptide sequences having at least 70 % identity, preferably at least 80 % identity and advantageously at least 98 % identity with any one of the peptide sequences SEQ ID No 1 to SEQ ID No 8 and SEQ ID No 10 to SEQ ID No 29, and the peptide sequences or fragments of said sequences belonging to a common family of proteins selected among perlecan, the precursor of the retinol-binding plasmatic protein, of the precursor of the activator of GM2 ganglioside, of calgranulin B and of saposin B.

(57) Abrégé : Utilisation d'au moins un polypeptide comprenant au moins un fragment d'une protéine pour obtenir une composition diagnostique, pronostique, prophylactique ou thérapeutique destinée à détecter, prévenir ou traiter un état pathologique associé à une maladie dégénérative et/ou neurologique et/ou auto-immune, ladite protéine étant choisie parmi les protéines dont la séquence peptidique à l'état natif correspond à SEQ ID N° 1, SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6, SEQ ID N° 7, SEQ ID N° 8, SEQ ID N° 10, SEQ ID N° 11, SEQ ID N° 12, SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18, SEQ ID N° 19, SEQ ID N° 20, SEQ ID N° 21, SEQ ID N° 22, SEQ ID N° 23, SEQ ID N° 24, SEQ ID N° 25, SEQ ID N° 26, SEQ ID N° 27, SEQ ID N° 28 et SEQ ID N° 29, et les séquences peptidiques qui présentent au moins 70 % d'identité, de préférence au moins 80 % d'identité et avantageusement au moins 98 % d'identité avec l'une quelconque des séquences peptidiques SEQ ID N° 1 à SEQ ID N° 8 et SEQ ID N° 10 à SEQ ID N° 29, et les séquences peptidiques ou les fragments desdites séquences appartenant à une même famille de protéines choisies parmi le perlecan, le précurseur de la protéine plasmatische de liaison au rétinol, du précurseur de l'activateur du ganglioside GM2, de la calgranuline B et de la saposine B.

WO 01/05422 A3

MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

Publiée :

-- *avec rapport de recherche internationale*

(88) Date de publication du rapport de recherche

internationale: 28 février 2002

INTERNATIONAL SEARCH REPORT

Inte onal Application No
PCT/FR 00/02057

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G01N33/68 G01N33/564 C07K14/47 A61K38/17

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 G01N C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

BIOSIS, WPI Data, PAJ, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 876 954 A (DOBRANSKY TOMAS ET AL) 2 March 1999 (1999-03-02) column 28; claim 17 & EP 0 667 354 A 16 August 1995 (1995-08-16) claim 5 & WO 95 21859 A cited in the application ---	1-21,40, 51-62
X	WO 97 33466 A (BIO MERIEUX ; RIEGER FRANCOIS (FR); PERRON HERVE (FR); BENJELLOUN N) 18 September 1997 (1997-09-18) cited in the application claims ---	1-21,40, 51-62 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

30 January 2001

Date of mailing of the international search report

08.02.2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Hoekstra, S

INTERNATIONAL SEARCH REPORT

Int'l	Serial Application No
PCT/FR 00/02057	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 08 308582 A (KAO CORP) 26 November 1996 (1996-11-26) the whole document ---	23
A	RIEGER F ET AL: "UN FACTEUR GLIOTOXIQUE ET LA SCLEROSE EN PLAQUES GLIOTOXICITY IN MULTIPLE SCLEROSIS" COMPTES RENDUS DES SEANCES DE L'ACADEMIE DES SCIENCES. SERIE III: SCIENCES DE LA VIE, NL, ELSEVIER, AMSTERDAM, vol. 319, no. 4, 1 April 1996 (1996-04-01), pages 343-350, XP000602023 ISSN: 0764-4469 abstract ---	1-21, 40, 51-62
A	KISILEVSKY R ET AL: "ARRESTING AMYLOIDOSIS IN VIVO USING SMALL-MOLECULE ANIONIC SULPHONATES OR SULPHATES: IMPLICATIONS FOR ALZHEIMER'S DISEASE" NATURE MEDICINE, US, NATURE PUBLISHING, CO, vol. 1, no. 2, 1 February 1995 (1995-02-01), pages 143-148, XP000611547 ISSN: 1078-8956 the whole document ---	1-21, 40, 51-62
A	WO 90 07712 A (BISSENDORF PEPTIDE GMBH) 12 July 1990 (1990-07-12) page 2 ---	1-21, 40, 51-62
A	WO 98 11439 A (BIO MERIEUX ; PERRON HERVE (FR); MALCUS VOCANSON CARINE (FR); MANDR) 19 March 1998 (1998-03-19) the whole document ---	1-21, 40, 51-62
A	CA 2 214 843 A (HSC RESEARCH AND DEVELOPMENT LIMITED PARTNERSHIP, CA) 30 April 1999 (1999-04-30) the whole document -----	1-63

INTERNATIONAL SEARCH REPORT

International application No.

PCT/FR 00/02057

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See additional sheet

After review as per PCT Rule 40.2(e), no fee is to be refunded.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

22-39 (completely); 1-21, 40-63 (partly)

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims: it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/FR 00 02057

The International Searching Authority found several (groups of) inventions in the international application, namely:

1. Claims: 1-21, 40, 51-62 (partly)

Perlecan polypeptides involved in diagnostic, prognostic, prophylactic or therapeutic methods (For example: SEQ ID No. 1, 2, 69).

2. Claims: 1-21, 40, 51-63 (partly)

Polypeptides precursor of the retinol-binding plasmatic protein involved in diagnostic, prognostic, prophylactic or therapeutic methods (For example: SEQ ID No.4, 5, 6, 7, 30, 70).

3. Claims: 22-39 (completely); 1-21, 40-63 (partly)

Polypeptides precursor of the GM2 ganglioside involved in diagnostic, prognostic, prophylactic or therapeutic methods (For example: SEQ ID No. 8-16, 66-68, 72).

4. Claims: 1-21, 40-44, 46-63 (partly)

Polypeptides calgranulin B involved in diagnostic, prognostic, prophylactic or therapeutic methods (For example: SEQ ID No. 17-23, 43-52).

5. Claims: 1-21, 40-63 (partly)

Polypeptides saposin B involved in diagnostic, prognostic, prophylactic or therapeutic methods (For example: SEQ ID No. 24-29, 53-55).

6. Claim: 64

Use of lycorin.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte
onal Application No
PCT/FR 00/02057

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5876954	A 02-03-1999	FR 2716198	A	18-08-1995
		AU 701972	B	11-02-1999
		AU 1815295	A	29-08-1995
		CA 2142557	A	16-08-1995
		EP 0667354	A	16-08-1995
		FI 954876	A	13-10-1995
		WO 9521859	A	17-08-1995
		JP 2803910	B	24-09-1998
		JP 8511808	T	10-12-1996
		NO 954081	A	13-12-1995
		NZ 281260	A	27-05-1998
		US 5728540	A	17-03-1998
WO 9733466	A 18-09-1997	FR 2745974	A	19-09-1997
		AU 2165897	A	01-10-1997
		CA 2221028	A	18-09-1997
		EP 0825811	A	04-03-1998
		JP 11512623	T	02-11-1999
JP 08308582	A 26-11-1996	NONE		
WO 9007712	A 12-07-1990	NONE		
WO 9811439	A 19-03-1998	EP 0925504	A	30-06-1999
CA 2214843	A	NONE		

RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale N°
PCT / FR 00 / 02057

<p>A. CLASSEMENT DE L'OBJET DE LA DEMANDE IPC 7 G01N 33/68 G01N 33/564 C07K 14/47 A61K 38/17</p> <p>Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la (CIB)</p>													
<p>B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE Documentation minimale consultée (système de classification suivi des symboles de classement) IPC 7 G01N C07K</p> <p>Documentation consultée au que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche</p>													
<p>Base de données électroniques consultées au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés) BIOSIS, WPI Data, PAJ, EPO-Internal</p>													
<p>C. DOCUMENTS CONSIDÉRÉS COMME PERTINENTS</p> <table border="1"> <thead> <tr> <th>Catégorie°</th> <th>Identification des documents cités avec, le cas échéant, l'indication des passages pertinents</th> <th>n°. des revendications visées</th> </tr> </thead> <tbody> <tr> <td>X</td> <td>US 5 876 954 A (DOBRANSKY TOMAS ET AL) 2 mars 1999 (02.03.99) colonne 28; revendication 17 & EP 0 667 354 A 16 août 1995 (16.08.95) revendication 5 & WO 95 21859 A cité dans la demande</td> <td>1-21, 40, 51-62</td> </tr> <tr> <td>X</td> <td>WO 97 33466 A (BIO MERIEUX; RIEGER FRANCOIS (FR); PERRON HERVE (FR); BENJELLOUN N) 18 septembre 1997 (18.09.97) cité dans la demande revendications</td> <td>1-21, 40, 51-62</td> </tr> </tbody> </table>					Catégorie°	Identification des documents cités avec, le cas échéant, l'indication des passages pertinents	n°. des revendications visées	X	US 5 876 954 A (DOBRANSKY TOMAS ET AL) 2 mars 1999 (02.03.99) colonne 28; revendication 17 & EP 0 667 354 A 16 août 1995 (16.08.95) revendication 5 & WO 95 21859 A cité dans la demande	1-21, 40, 51-62	X	WO 97 33466 A (BIO MERIEUX; RIEGER FRANCOIS (FR); PERRON HERVE (FR); BENJELLOUN N) 18 septembre 1997 (18.09.97) cité dans la demande revendications	1-21, 40, 51-62
Catégorie°	Identification des documents cités avec, le cas échéant, l'indication des passages pertinents	n°. des revendications visées											
X	US 5 876 954 A (DOBRANSKY TOMAS ET AL) 2 mars 1999 (02.03.99) colonne 28; revendication 17 & EP 0 667 354 A 16 août 1995 (16.08.95) revendication 5 & WO 95 21859 A cité dans la demande	1-21, 40, 51-62											
X	WO 97 33466 A (BIO MERIEUX; RIEGER FRANCOIS (FR); PERRON HERVE (FR); BENJELLOUN N) 18 septembre 1997 (18.09.97) cité dans la demande revendications	1-21, 40, 51-62											
<input checked="" type="checkbox"/> Voir la suite du cadre C pour la fin de la liste des documents		<input checked="" type="checkbox"/> Les documents de familles de brevets sont indiqués en annexe											
<p>° Catégorie spéciale de documents cités :</p> <p>“A” document définissant l'état général de la technique, n'étant pas considéré comme particulièrement pertinent</p> <p>“E” document antérieur, mais publié à la date de dépôt international ou après cette date</p> <p>“L” document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)</p> <p>“O” document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens</p> <p>“P” document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée</p> <p>“T” document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour permettre de comprendre le principe ou la théorie constituant la base de l'invention</p> <p>“X” document particulièrement pertinent: l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément</p> <p>“Y” document particulièrement pertinent: l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier</p> <p>“&” document qui fait partie de la même famille de brevets</p>													
Date à laquelle la recherche a été effectivement achevée 30 janvier 2001 (30.01.01)		Date d'expédition du rapport de recherche 08 février 2001 (08.02.01)											
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen Brevets n° de télécopieur		Fonctionnaire autorisé n° de téléphone											

RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale n°
PCT / FR 00 / 02057

C. (suite). DOCUMENTS CONSIDÉRÉS COMME PERTINENTS		
Catégorie	Documents cités avec, le cas échéant, l'indication des passages pertinents	n° des revendications visées
X	JP 08 308582 A (KAO CORP) 26 novembre 1996 (26.11.96) le document en entier	23
A	RJEGER F ET AL : "UN FACTEUR GLIOTOXIQUE ET LA SCLEROSE EN PLAQUES GLIOTOXICITY IN MULTIPLE SCLEROSIS" COMPTES RENDUS DES SEANCES DE L'ACADEMIE DES SCIENCES. SERIE III: SCIENCE DE LA VIE, NL, ELSEVIER, AMSTERDAM, Vol. 319, no. 4, 1 avril 1996 (01.04.96), pages 343-350, XP000602023 ISSN: 0764-4469 Abrégé	1-21, 40, 51-62
A	KISILEVSKY R ET AL: "ARRESTING AMYLOIDOSIS IN VIVO USING SMALL-MOLECULE ANIONIC SULPHONATES OR SULPHATES: IMPLICATIONS FOR ALZHEIMER'S DISEASE" NATURE MEDICINE, US, NATURE PUBLISHING, CO, Vol. 1, no. 4, 1 février 1995 (01.02.95), pages 143-148, XP0611547 ISSN: 1078-8956 Le document en entier	1-21, 40, 51-62
A	WO 90 07712 A (BISSENDORE PEPTIDE GMBH) 12 juillet 1990 (12.07.90) page 2	1-21, 40, 51-62
A	WO 98 11439 A (BIO MERIEUX ; PERRON HERVE (FR); MALCUS VOCANSON CARINE (FR); MANDOR) 19 mars 1998 (19.03.98) Le document en entier	1-21, 40, 51-62
A	CA 2 214 843 A (HSC RESEARCH AND DEVELOPMENT LIMITED PARTNERSHIP, CA) 30 avril 1999 (30.04.99) Le document en entier	1-63

RAPPORT DE RECHERCHE INTERNATIONALE

mande internationale n°
PCT/FR 00/02057

Cadre I Observations – lorsqu'il a été estimé qu' certaines revendications ne pouvaient pas faire l'objet d'une recherche (suite du point 1 de la première feuille)

Conformément à l'article 17.2)a), certaines revendications n'ont pas fait l'objet d'une recherche pour les motifs suivants:

1. Les revendications n°s se rapportent à un objet à l'égard duquel l'administration n'est pas tenue de procéder à la recherche, à savoir:

2. Les revendications n°s se rapportent à des parties de la demande internationale qui ne remplissent pas suffisamment les conditions prescrites pour qu'une recherche significative puisse être effectuée, en particulier:

3. Les revendications n°s sont des revendications dépendantes et ne sont pas rédigées conformément aux dispositions de la deuxième et de la troisième phrases de la règle 6.4.a).

Cadre II. Observations – lorsqu'il y a absence d'unité de l'invention (suite du point 2 de la première feuille)

L'administration chargée de la recherche internationale a trouvé plusieurs inventions dans la demande internationale, à savoir:

voir feuille supplémentaire

Après réexamen selon la Règle 40.2(e) PCT,
aucune taxe additionnelle n'est à rembourser.

1. Comme toutes les taxes additionnelles ont été payées dans les délais par le déposant, le présent rapport de recherche internationale porte sur toutes les revendications pouvant faire l'objet d'une recherche.
2. Comme toutes les recherches portant sur les revendications qui s'y prétaient ont pu être effectuées sans effort particulier justifiant une taxe additionnelle, l'administration n'a sollicité le paiement d'aucune taxe de cette nature.
3. Comme une partie seulement des taxes additionnelles demandées a été payée dans les délais par le déposant, le présent rapport de recherche internationale ne porte que sur les revendications pour lesquelles les taxes ont été payées, à savoir les revendications n°^{os}
22-39 complet, 1-21 and 40-63 en partie
4. Aucune taxe additionnelle demandée n'a été payée dans les délais par le déposant. En conséquence, le présent rapport de recherche internationale ne porte que sur l'invention mentionnée en premier lieu dans les revendications; elle est couverte par les revendications n°^{os}

Remarque quant à la réserve

Les taxes additionnelles étaient accompagnées d'une réserve de la part du déposant.

Le paiement des taxes additionnelles n'était assorti d'aucune réserve.

SUITE DES RENSEIGNEMENTS INDIQUES SUR PCT/SA/ 210

L'administration chargée de la recherche internationale a trouvé plusieurs (groupes d') inventions dans la demande internationale, à savoir:

1. revendications: 1-21, 40, 51-62 en partie

Polypeptides perlecans être impliquées dans les méthodes diagnostiques, pronostique, prophylactiques ou thérapeutiques (Par exemple: SEQ ID No 1, 2, 69).

2. revendications: 1-21, 40, 51-63 en partie

Polypeptides précurseur de la protéine plasmatique de liaison de rétinol être impliquées dans les méthodes diagnostiques, pronostique, prophylactiques ou thérapeutiques (Par exemple: SEQ ID No 4, 5, 6, 7, 30, 70).

3. revendications: 22-39 complet; 1-21, 40-63 en partie

Polypeptides précurseur de l'activateur du ganglioside GM2 être impliquées dans les méthodes diagnostiques, pronostique, prophylactiques ou thérapeutiques (Par exemple: SEQ ID No. 8-16, 66-68, 72).

4. revendications: 1-21, 40-44, 46-63 en partie

Polypeptides calgranuline B être impliquées dans les méthodes diagnostiques, pronostique, prophylactiques ou thérapeutiques (Par exemple: SEQ ID No.17-23, 43-52).

5. revendications: 1-21, 40-63 en partie

Polypeptides saposine B être impliquées dans les méthodes diagnostiques, pronostique, prophylactiques ou thérapeutiques (Par exemple: SEQ ID No. 24-29, 53-55).

6. revendication : 64

Utilisation de la lycorine

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Demande Internationale No

PCT/FR 00/02057

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
US 5876954	A 02-03-1999	FR 2716198 A		18-08-1995
		AU 701972 B		11-02-1999
		AU 1815295 A		29-08-1995
		CA 2142557 A		16-08-1995
		EP 0667354 A		16-08-1995
		FI 954876 A		13-10-1995
		WO 9521859 A		17-08-1995
		JP 2803910 B		24-09-1998
		JP 8511808 T		10-12-1996
		NO 954081 A		13-12-1995
		NZ 281260 A		27-05-1998
		US 5728540 A		17-03-1998
WO 9733466	A 18-09-1997	FR 2745974 A		19-09-1997
		AU 2165897 A		01-10-1997
		CA 2221028 A		18-09-1997
		EP 0825811 A		04-03-1998
		JP 11512623 T		02-11-1999
JP 08308582	A 26-11-1996	NONE		
WO 9007712	A 12-07-1990	NONE		
WO 9811439	A 19-03-1998	EP 0925504 A		30-06-1999
CA 2214843	A	NONE		