Differentiation

Partial Differentiation in Linear System (선형시스템에서의 편미분, aka 행렬미분)

소프트웨어 꼰대 강의

노기섭 교수 (kafa46@cju.ac.kr)

Course Overview

Topic	Contents	
01. Orientation	Course introduction, motivations, final objectives	
오리엔테이션	과정 소개, 동기부여, 최종 목표	
02. Learning in deeplearning	How does the deeplearing learns knowledge from data	
딥러닝 학습	어떻게 딥러닝은 데이터로부터 지식을 배우는가?	
03. Principle of differentiation	Basics of differentiation (concepts, notation, operations)	
미분의 원리	미분 기본지식 (개념, 표기, 연산)	
04. Partial differentiation	Concept & operation of partial differenciation	
편미분	편미분 개념, 연산	
05. Gradient descent	Concept, interpretation and learning in gradient descent	
경사 하강법	경사하강 알고리즘 개념, 해석 및 학습	
06. Chain rule	Concept & operation of chain rule	
연쇄법칙	연쇄법칙 개념 및 연산	
07. Matrix differentiation	Partial differentiation in linear system	
행렬미분	선형시스템에서의 편미분	
08. Back propagation	The mechanism of back propagation	
역전파 학습	역전파 학습의 작동 방법	
09. Gradient vanishing 기울기 소실	Quick overview on activation function, cause root of gradient vanishing and its counter-measure 활성함수 간단 소개, 기울기 소실 근본원인과 대책	

Beautiful References - 강추!

- 3Blue1Brown, 역전파 미적분 | 심층 학습 4장, YouTube, 2017.
 - https://www.youtube.com/watch?v=tIeHLnjs5U8
- Brent Scarff, Understanding Backpropagation, Web blog, Jan. 13, 2021.
 - A visual derivation of the equations that allow neural networks to learn
 - https://towardsdatascience.com/understanding-backpropagation-abcc509ca9d0
- Miclael Nielsen, How the backpropagation algorithm works, Sept. 2019.
 - http://neuralnetworksanddeeplearning.com/chap2.html
- 42bsk, Is there an easier way to compute derivatives of vector-valued functions with respect to parameter matrices in Pytorch?, StackOverflow, May 18, 2023.
 - $\underline{\ \ \, \underline{\ \ } \ \ } \underline{\ \ }$
- Herman Kamper, Vector and matrix derivatives, YouTube, 2021.
 - https://www.youtube.com/watch?v=FCWrduAxf-Q
- Ahmed Fathi, '237 [ENG] Derivative of a vector with respect to a matrix,' YouTube, 2019.
 - https://www.youtube.com/watch?v=7oDHThXECt8
- Pytorch, TORCH.AUTOGRAD 에 대한 간단한 소개, Official Docs in PytorchKorea.
 - https://tutorials.pytorch.kr/beginner/blitz/autograd_tutorial.html

변수(파라미터)가 겁나게 많은 경우

딥러닝에서의 미분구조

그림이 복잡하네요...

좀 더 간단히 표현해 보겠습니다 ^^

선형 시스템을 합성함수로 바라보기

$H_1 = W_1^T X$	$H_2 = W_2^T H_1$ $= W_1^T (W_1^T X_1)$	$\hat{Y} = W_3^T H_2$ $= W_3^T \left(W_1^T (W_1^T X_1) \right)$	$L(\theta) = \sum (\hat{Y} - Y)^2$ $= \sum (W_3^T (W_1^T (W_1^T X_1)) - Y)^2$
$H_1 = f(X)$	$H_2 = g(f(X))$ $= g \circ f$	$H_2 = p(g(X))$ $= p \circ g \circ f$	$L = l(p(X)) = l(p(g(f(X)))$ $= l \circ p \circ g \circ f$

한꺼번에 처리? - Computer Architecture (a.k.a 컴구)

선형 시스템의 미분 (partial derivative scalor w.r.t vector)

Scalor를 vector로 미분

[Note]

♡ : 'nabla (나블라)' 라고 읽음 편미분을 간단하게 표현하는 기호^^

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \xrightarrow{f: \mathbb{R}^n \to \mathbb{R}} Y = y$$

$$Y = f(X) = f\left(\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}\right) \qquad \mathbb{R}^n \qquad \nabla_X Y = \frac{\partial Y}{\partial X} = \begin{pmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_n} \end{pmatrix}$$

선형 시스템의 미분 (partial derivative scalor w.r.t matrix)

Scalor를 matrix로 미분

[Note]

♡ : 'nabla (나블라)' 라고 읽음 편미분을 간단하게 표현하는 기호^^

$$X = \begin{pmatrix} x_{11} & \cdots & x_{1m} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nm} \end{pmatrix} \xrightarrow{f : \mathbb{R}^{n \times m} \to \mathbb{R}} Y = y$$

$$Y = f(X) = f\left(\begin{pmatrix} x_{11} & \cdots & x_{1m} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nm} \end{pmatrix}\right) \qquad \nabla_X Y = \frac{\partial Y}{\partial X} = \begin{pmatrix} \frac{\partial y}{\partial x_{11}} & \cdots & \frac{\partial y}{\partial x_{1m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{n1}} & \cdots & \frac{\partial y}{\partial x_{nm}} \end{pmatrix}$$

선형 시스템의 미분 (partial derivative vector w.r.t vector)

Vector를 vector로 미분

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = Y = f(X) = f \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
$$f: \mathbb{R}^n \to \mathbb{R}^m$$

Recommendation: a beautiful video: https://youtu.be/FCWrduAxf-Q?si=uPc3QjIMwUClud -

[Note]

♡ : 'nabla (나블라)' 또는 'del(델)' 라고 읽음 편미분을 간단하게 표현하는 기호^^

Scalor를 vector로 미분하는 것과 똑같다.

선형 시스템의 미분 (partial derivative vector w.r.t matrix)

Vector를 matrix로 미분

[Note]

♡ : 'nabla (나블라)' 또는 'del(델)' 라고 읽음 편미분을 간단하게 표현하는 기호^^

$$X = \begin{pmatrix} x_{11} & \cdots & x_{1m} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nm} \end{pmatrix} \xrightarrow{f \colon \mathbb{R}^{n \times m} \to \mathbb{R}^m} Y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = Y = f(X) = f \begin{pmatrix} x_{11} & \cdots & x_{1m} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nm} \end{pmatrix}$$

Scalor를 matrix로 미분하는 것과 똑같다.

$$\nabla_X Y = \frac{\partial Y}{\partial X} = \left(\begin{array}{c} \frac{\partial y_1}{\partial X}, \cdots, \frac{\partial y_m}{\partial X} \end{array} \right)$$

Recommendation: a beautiful video: https://youtu.be/7oDHThXECt8?si=8U

43T 77nvXX32vv

다음 슬라이드로....

선형 시스템의 미분 (partial derivative vector w.r.t matrix) - cont.

$$X = \begin{pmatrix} x_{11} & \cdots & x_{1m} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nm} \end{pmatrix} \qquad Y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

$$\nabla_X Y = \frac{\partial Y}{\partial X} = \left(\begin{array}{c} \frac{\partial y_1}{\partial X}, \dots, \frac{\partial y_m}{\partial X} \end{array} \right)$$

$$= \left(\begin{pmatrix} \frac{\partial y_1}{\partial x_{11}} & \cdots & \frac{\partial y_1}{\partial x_{1m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_{n1}} & \cdots & \frac{\partial y_1}{\partial x_{nm}} \end{pmatrix} \right) \cdots \begin{pmatrix} \frac{\partial y_m}{\partial x_{11}} & \cdots & \frac{\partial y_m}{\partial x_{1m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_{n1}} & \cdots & \frac{\partial m}{\partial x_{nm}} \end{pmatrix} \right)$$

Play with Toy Example (1/8)

$$L(\theta) = \frac{1}{2} (\hat{Y} - Y)^2 = \frac{1}{2} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

Scalar를 vector로 미분

Loss $L(\theta)$ 를 W_i 에 대하여 미분하려면?

 $\nabla_{W_i} L = \frac{\partial L(\theta)}{\partial W_i} = \underbrace{\left(\frac{\partial L(\theta)}{\partial \hat{Y}}\right)} \cdot \underbrace{\left(\frac{\partial \hat{Y}}{\partial W_i}\right)}$

합성함수의 미분

∼Vector를 Matrix로 미분

다음 슬라이드에서 구체적으로....

Play with Toy Example (2/8)

Loss $L(\theta)$ 를 W_i 에 대하여 미분하려면?

$$\nabla_{W_i} L = \frac{\partial L(\theta)}{\partial W_i} = \left[\frac{\partial L(\theta)}{\partial \hat{Y}} \right] \cdot \frac{\partial \hat{Y}}{\partial W_i}$$

Scalar를 vector로 미분

이미 공부한 내용^^

$$abla_{\hat{Y}}L(\theta) = rac{\partial L(\theta)}{\partial \hat{Y}} = egin{pmatrix} rac{L(\theta)}{\partial \hat{y}_1} \\ rac{L(\theta)}{\partial \hat{y}_2} \end{pmatrix}$$

Play with Toy Example (3/8)

Loss $L(\theta)$ 를 W_i 에 대하여 미분하려면?

$$\nabla_{W_i} L = \frac{\partial L(\theta)}{\partial W_i} = \frac{\partial L(\theta)}{\partial \hat{Y}} \cdot \left[\frac{\partial \hat{Y}}{\partial W_i} \right]$$

Vector를 Matrix로 미분

이미 공부한 내용^^

다음 슬라이드에서 살펴보겠습니다 ^^

Play with Toy Example (4/8)

$$W_i = \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \end{pmatrix} \qquad W_i^T = \begin{pmatrix} w_{11} & w_{21} & w_{31} \\ w_{12} & w_{22} & w_{32} \end{pmatrix} \qquad \hat{Y} = \begin{pmatrix} \hat{y}_1 \\ \hat{y}_2 \end{pmatrix}$$

$$\hat{Y} = W_i^T \cdot H_i = \begin{pmatrix} w_{11}h_1^i + w_{21}h_2^i + w_{31}h_3^i \\ w_{12}h_1^i + w_{22}h_2^i + w_{32}h_3^i \end{pmatrix} = \begin{pmatrix} \hat{y}_1 \\ \hat{y}_2 \end{pmatrix}$$

$$\frac{\partial \hat{Y}}{\partial W_i} = \left(\begin{array}{c} \frac{\partial \hat{y}_1}{\partial W_i} \\ \frac{\partial \hat{y}_2}{\partial W_i} \end{array} \right)$$

사실... 각각의 값에 대하여 행렬로 미분한 것을 모아놓은 것에 불과함

$$= \left(\begin{pmatrix} \frac{\partial \hat{y}_1}{\partial w_{11}} & \frac{\partial \hat{y}_1}{\partial w_{12}} \\ \frac{\partial \hat{y}_1}{\partial w_{21}} & \frac{\partial \hat{y}_1}{\partial w_{22}} \\ \frac{\partial \hat{y}_1}{\partial w_{31}} & \frac{\partial \hat{y}_1}{\partial w_{32}} \end{pmatrix}, \begin{pmatrix} \frac{\partial \hat{y}_2}{\partial w_{11}} & \frac{\partial \hat{y}_2}{\partial w_{12}} \\ \frac{\partial \hat{y}_2}{\partial w_{21}} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial \hat{y}_2}{\partial w_{31}} & \frac{\partial \hat{y}_2}{\partial w_{32}} \end{pmatrix} \right)$$

$$= \left(\begin{pmatrix} h_1^i & 0 \\ h_2^i & 0 \\ h_3^i & 0 \end{pmatrix}, \begin{pmatrix} 0 & h_1^i \\ 0 & h_2^i \\ 0 & h_3^i \end{pmatrix} \right)$$

실제 손으로 미분해 보기

Play with Toy Example (5/8)

최종 값 구하기

Scalar를 vector로 미분 Vector를 Matrix로 미분

 $\nabla_{W_i} \hat{Y} = \frac{\partial \hat{Y}}{\partial W_i} = \left(\frac{\partial \hat{y}_1}{\partial W_i}, \frac{\partial \hat{y}_2}{\partial W_i} \right)$

$$\nabla_{W_i} L = \frac{\partial L(\theta)}{\partial W_i} = \underbrace{\left(\frac{\partial L(\theta)}{\partial \hat{Y}}\right) \cdot \left(\frac{\partial \hat{Y}}{\partial W_i}\right)}_{}$$

$$abla_{\hat{Y}}L(heta) = rac{\partial L(heta)}{\partial \hat{Y}} = egin{pmatrix} rac{L(heta)}{\partial \hat{y}_1} \\ rac{L(heta)}{\partial \hat{y}_2} \end{pmatrix}$$

$$= \left(\begin{pmatrix} h_1^i & 0 \\ h_2^i & 0 \\ h_3^i & 0 \end{pmatrix}, \begin{pmatrix} 0 & h_1^i \\ 0 & h_2^i \\ 0 & h_3^i \end{pmatrix} \right)$$

손으로 직접 최종 값 구해보기 ^^

$$\frac{\partial L(\theta)}{\partial w_{11}} = \frac{L(\theta)}{\partial \hat{y}_1} \times h_1^i$$

$$\frac{\partial L(\theta)}{\partial w_{11}} = \frac{L(\theta)}{\partial \hat{y}_1} \times h_1^i \qquad \frac{\partial L(\theta)}{\partial w_{12}} = \frac{L(\theta)}{\partial \hat{y}_2} \times h_1^i$$

$$\frac{\partial L(\theta)}{\partial w_{21}} = \frac{L(\theta)}{\partial \hat{v}_1} \times h_2^i$$

$$\frac{\partial L(\theta)}{\partial w_{21}} = \frac{L(\theta)}{\partial \hat{y}_1} \times h_2^i \qquad \frac{\partial L(\theta)}{\partial w_{22}} = \frac{L(\theta)}{\partial \hat{y}_2} \times h_2^i$$

$$\frac{\partial L(\theta)}{\partial w_{31}} = \frac{L(\theta)}{\partial \hat{y}_1} \times h_3^i$$

$$\frac{\partial L(\theta)}{\partial w_{31}} = \frac{L(\theta)}{\partial \hat{y}_1} \times h_3^i \qquad \frac{\partial L(\theta)}{\partial w_{32}} = \frac{L(\theta)}{\partial \hat{y}_2} \times h_3^i$$

Play with Toy Example (6/8) > Tensor Product 잠깐 복습하기

Play with Toy Example (7/8)

$$\frac{\partial \hat{Y}}{\partial W_i} = \begin{pmatrix} \frac{\partial \hat{y}_1}{\partial W_i}, \frac{\partial \hat{y}_2}{\partial W_i} \end{pmatrix} = \begin{pmatrix} \frac{\partial \hat{y}_1}{\partial W_{11}} & \frac{\partial \hat{y}_1}{\partial W_{12}} \\ \frac{\partial \hat{y}_1}{\partial W_{21}} & \frac{\partial \hat{y}_1}{\partial W_{22}} \\ \frac{\partial \hat{y}_1}{\partial W_{31}} & \frac{\partial \hat{y}_1}{\partial W_{32}} \end{pmatrix}, \begin{pmatrix} \frac{\partial \hat{y}_2}{\partial W_{11}} & \frac{\partial \hat{y}_2}{\partial W_{12}} \\ \frac{\partial \hat{y}_2}{\partial W_{21}} & \frac{\partial \hat{y}_2}{\partial W_{22}} \\ \frac{\partial \hat{y}_2}{\partial W_{31}} & \frac{\partial \hat{y}_2}{\partial W_{32}} \end{pmatrix}$$
Shape: (2 × 1)
$$3 - \begin{pmatrix} \frac{1 \times 2}{\partial W_{11}} & \frac{1 \times 2}{\partial W_{12}} \\ \frac{1 \times 2}{\partial W_{21}} & \frac{1 \times 2}{\partial W_{32}} \end{pmatrix}$$

$$\frac{\partial \hat{Y}}{\partial W_i} \rightarrow (3 \times 2)$$
Shape: (3 × 1 × 2)

Play with Toy Example (8/8): 수식으로 이해하기

$$\begin{pmatrix} \left(\frac{\partial \hat{y}_1}{\partial w_{11}} & \frac{\partial \hat{y}_1}{\partial w_{22}} \\ \frac{\partial \hat{y}_1}{\partial w_{21}} & \frac{\partial \hat{y}_1}{\partial w_{22}} \\ \frac{\partial \hat{y}_2}{\partial y_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial \hat{y}_2}{\partial w_{21}} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial \hat{y}_2}{\partial w_{31}} & \frac{\partial \hat{y}_1}{\partial w_{21}} + \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial L(\theta)}{\partial \hat{y}_1} & \frac{\partial \hat{y}_1}{\partial w_{21}} + \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial L(\theta)}{\partial \hat{y}_1} & \frac{\partial \hat{y}_1}{\partial w_{21}} + \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_1}{\partial w_{22}} \\ \frac{\partial L(\theta)}{\partial \hat{y}_1} & \frac{\partial \hat{y}_2}{\partial w_{21}} + \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial L(\theta)}{\partial \hat{y}_1} & \frac{\partial \hat{y}_2}{\partial w_{21}} + \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial L(\theta)}{\partial \hat{y}_1} & \frac{\partial \hat{y}_2}{\partial w_{21}} + \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial L(\theta)}{\partial \hat{y}_1} & \frac{\partial \hat{y}_2}{\partial w_{21}} + \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial L(\theta)}{\partial \hat{y}_1} & \frac{\partial \hat{y}_2}{\partial w_{21}} + \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial L(\theta)}{\partial \hat{y}_1} & \frac{\partial \hat{y}_2}{\partial w_{21}} + \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial L(\theta)}{\partial \hat{y}_1} & \frac{\partial \hat{y}_2}{\partial w_{21}} + \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial L(\theta)}{\partial \hat{y}_1} & \frac{\partial \hat{y}_2}{\partial w_{21}} + \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial L(\theta)}{\partial \hat{y}_1} & \frac{\partial \hat{y}_2}{\partial w_{21}} + \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial L(\theta)}{\partial \hat{y}_1} & \frac{\partial \hat{y}_2}{\partial w_{21}} + \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} & \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial L(\theta)}{\partial \hat{y}_1} & \frac{\partial \hat{y}_2}{\partial w_{22}} & \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} & \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} & \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\ \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} & \frac{\partial L(\theta)}{\partial \hat{y}_2} & \frac{\partial \hat{y}_2}{\partial w_{22}} \\$$

교수님...ㅠ 간단한 연산 방법은 없나요?

교수님.... 너무 복잡해요 ㅠㅠ 간단한 방법이 있을 것 같아요 ㅠㅠ

너무 깊게 들어가는 것 같아서 약간 미안.....

Jacobian matrix (야코비안 행렬) 이라는 것이 있습니다. ^^

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

$$\mathcal{J} = \begin{pmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{pmatrix} = \begin{pmatrix} \nabla^T f_1 \\ \vdots \\ \nabla^T f_m \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

, where $\nabla^T f_1$ is the transpose of the gradient of i-th component

Jacobian Example

, where $\nabla^T f_1$ is the transpose of the gradient of i-th component

딥러닝 프레임워크 구현 - Pytorch Case

Tutorials > PyTorch로 딥러닝하기: 60분만에 끝장내기 > torch.autograd 에 대한 간단한 소개

선택적으로 읽기(Optional Reading) - autograd 를 사용한 벡터 미적분(calculus)

수학적으로, 벡터 함수 $\vec{y} = f(\vec{x})$ 에서 \vec{x} 에 대한 \vec{y} 의 변화도는 야코비안 행렬(Jacobian Matrix) \vec{J} : 입니다:

$$J = \begin{pmatrix} \frac{\partial \mathbf{y}}{\partial x_1} & \dots & \frac{\partial \mathbf{y}}{\partial x_n} \end{pmatrix} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \dots & \frac{\partial y_m}{\partial x_n} \end{pmatrix}$$

일반적으로, torch.autograd 는 벡터-야코비안 곱을 계산하는 엔진입니다. 이는, 주어진 어떤 벡터 $ec{v}$ 에 대해 $J^T \cdot ec{v}$ 을 연산합니다.

만약 \vec{v} 가 스칼라 함수 $l=g(\vec{y})$ 의 변화도(gradient)인 경우:

$$\vec{v} = \left(\begin{array}{ccc} \frac{\partial l}{\partial y_1} & \cdots & \frac{\partial l}{\partial y_m} \end{array}\right)^T$$

이며, 연쇄 법칙(chain rule)에 따라, 벡터-야코비안 곱은 \vec{x} 에 대한 l 의 변화도(gradient)가 됩니다:

$$J^T \cdot \vec{v} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_n} & \cdots & \frac{\partial y_m}{\partial x_n} \end{pmatrix} \begin{pmatrix} \frac{\partial l}{\partial y_1} \\ \vdots \\ \frac{\partial l}{\partial y_m} \end{pmatrix} = \begin{pmatrix} \frac{\partial l}{\partial x_1} \\ \vdots \\ \frac{\partial l}{\partial x_n} \end{pmatrix}$$

위 예제에서 벡터-야코비안 곱의 이러한 특성을 사용했습니다; $external_grad$ 가 \vec{v} 를 뜻합니다.

실습 with Toy Example

Target Network

수고하셨습니다 ..^^..