Worksheet: Conversions Between Binary, Octal, and Hexadecimal (Example 7)

Part A — Worked Example

Problem. Find the octal and hexadecimal expansions of $(11\ 1110\ 1011\ 1100)_2$ and the binary expansions of $(765)_8$ and $(A8D)_{16}$.

Step 1: Convert $(11\ 1110\ 1011\ 1100)_2$ to octal.

- Group binary digits into blocks of 3 (add leading zeros if needed):

- Convert each block to octal: 3, 7, 2, 7, 4.

$$(11\ 1110\ 1011\ 1100)_2 = (37274)_8$$

Step 2: Convert $(11\ 1110\ 1011\ 1100)_2$ to hexadecimal.

- Group binary digits into blocks of 4:

- Convert each block: 3, E, B, C.

$$(11\ 1110\ 1011\ 1100)_2 = (3EBC)_{16}$$

Step 3: Convert $(765)_8$ to binary.

- Each octal digit becomes 3 binary digits:

$$7 = 111, 6 = 110, 5 = 101$$

 $(765)_8 = (111110101)_2$

Step 4: Convert $(A8D)_{16}$ to binary.

- Each hex digit becomes 4 binary digits:

$$A = 1010, 8 = 1000, D = 1101$$

 $(A8D)_{16} = (101010001101)_2$

Final Answers: $(37274)_8$, $(3EBC)_{16}$, $(111110101)_2$, $(101010001101)_2$

Part B — Easier Practice Problems

1. Convert $(101101)_2$ to octal. 2. Convert $(47)_8$ to binary.

Part C — Harder Challenge

Convert $(111011110101)_2$ into both octal and hexadecimal.