Bayesian Inference

Uncertainty

Uncertainty

Classical logic

- Only permit exact reasoning
- Assume perfect knowledge exists
- Assume law of excluded middle can be applied

IF A is true IF A is false

THEN A is not false THEN A is not true

Uncertainty

Information

- Can be unsuitable for solving problem
 - Incomplete
 - Inconsistent
 - Uncertain

Uncertainty

- Lack of exact knowledge
 - Reach perfectly reliable conclusion

Weak implications

- Domain experts and knowledge engineers
 - Difficult to establish concrete correlations for some rules
 - Between IF (condition) and THEN (action) parts
- Expert systems need to handle vague associations
 - Accept degree of correlations
 - Numerical certainty factors

Imprecise language

- Natural language is ambiguous and imprecise
- Describe facts with terms
 - Often and sometimes, frequently and hardly ever
- Difficult to express knowledge
 - In precise IF-THEN form of production rules
- Quantify meaning of the facts
 - Can be used in expert systems

- In 1944, Ray Simpson asked
 - 355 high school and college students
 - Place 20 terms like often
 - On a scale between 1 and 100
- In 1968, Milton Hakel repeated this experiment

Quantification of Ambiguous and Imprecise Terms on a Time-Frequency Scale

Ray Simpson (1944)		Milton Hakel (1968)	
Term	Mean value	Term	Mean value
Always	99	Always	100
Very often	88	Very often	87
Usually	85	Usually	79
Often	78	Often	74
Generally	78	Rather often	74
Frequently	73	Frequently	72
Rather often	65	Generally	72
About as often as no	t 50	About as often as not	50
Now and then	20	Now and then	34
Sometimes	20	Sometimes	29
Occasionally	20	Occasionally	28
Once in a while	15	Once in a while	22
Not often	13	Not often	16
Usually not	10	Usually not	16
Seldom	10	Seldom	9
Hardly ever	7	Hardly ever	8
Very seldom	6	Very seldom	7
Rarely	5	Rarely	5
Almost never	3	Almost never	2
Never	0	Never	0

Combining views of different experts

- Large expert systems
 - Combine knowledge and expertise of a number of experts
 - Have contradictory opinions
 - Produce conflicting rules
 - To resolve the conflict
 - Attach a weight to each expert
 - Calculate the composite conclusion
 - No systematic method exists to obtain these weights

Unknown data

- When data is incomplete or missing
- Only solution Accept the value "unknown"
- Proceed to an approximate reasoning with this value

Concept of probability

- Long history, go back thousands of years
- When the following words were introduced into spoken languages
 - "probably", "likely", "maybe", "perhaps" and "possibly"
- Mathematical theory of probability was formulated
 - Only in 17th century

Probability of an event

- Proportion of cases in which the event occurs
- Defined as a scientific measure of chance

Probability

- Expressed mathematically as a numerical index
- With a range between zero to unity
- From an absolute impossibility to an absolute certainty

Most events have a probability index

- Strictly between 0 and 1
- At least two possible outcomes
 - Favorable outcome or success
 - Unfavorable outcome or failure

$$P(success) = \frac{the number of successes}{the number of possible outcomes}$$

$$P(failure) = \frac{the number of failures}{the number of possible outcomes}$$

s: the number of times success can occur

f: the number of times failure can occur

$$P(success) = p = \frac{s}{s+f}$$
 $P(failure) = q = \frac{f}{s+f}$

Throw a coin

Probability of getting a head = Probability of getting a tail

In a single throw

•
$$s = f = 1$$

Probability of getting a head (or a tail) is 0.5

$$P(success) = p = \frac{s}{s+f}$$
 $P(failure) = q = \frac{f}{s+f}$ $p+q=1$

Conditional Probability

A: An event in the world B: Another event in the world

Events A and B are not mutually exclusive

Occur conditionally on the occurrence of the other

Conditional probability

- Probability that event A will occur if event B occurs
- Denoted mathematically as p(A|B)
 - Vertical bar represents GIVEN
 - Complete probability expression is interpreted as
 - "Conditional probability of event A occurring given that event B has occurred"

$$p(A|B) = \frac{\text{the number of times A and B can occur}}{\text{the number of times B can occur}}$$

Conditional Probability

Joint probability of A and B

- The number of times A and B can occur
- Probability that both A and B will occur
- Represented mathematically as $p(A \cap B)$

Probability of B, p(B)

• The number of times B can occur $p(A|B) = \frac{p(A \cap B)}{p(B)}$

Conditional probability of event B occurring

Given that event A has occurred

$$p(B|A) = \frac{p(B \cap A)}{p(A)}$$

Conditional Probability

Joint probability

$$p(B \cap A) = p(B|A) \times p(A)$$

$$p(A \cap B) = p(B|A) \times p(A)$$

Substituting the last equation into the equation

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$

yields the Bayesian rule

Bayesian Rule

$$p(A|B) = \frac{p(B|A) \times p(A)}{p(B)}$$

p(A|B)

- Conditional probability that event A occurs
 - Given event B has occurred

p(B|A)

- Conditional probability of event B occurring
 - Given event A has occurred

p(A)

Probability of event A occurring

p(B)

Probability of event B occurring

Conditionality Probability

Concept of conditionality probability

Event A is dependent upon event B

Can be extended

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$

- Event A is dependent on
 - A number of mutually exclusive events B₁, B₂,..., B_n

$$p(A \cap B_1) = p(A|B_1) \times p(B_1)$$

$$p(A \cap B_2) = p(A|B_2) \times p(B_2)$$

$$\sum_{i=1}^{n} p(A \cap B_i) = \sum_{i=1}^{n} p(A|B_i) \times p(B_i)$$

$$p(A \cap B_n) = p(A|B_n) \times p(B_n)$$

Joint Probability

$$\sum_{i=1}^{n} p(A \cap B_i) = \sum_{i=1}^{n} p(A|B_i) \times p(B_i)$$

For All Events B_i

$$\sum_{i=1}^{n} p(A \cap B_i) = \sum_{i=1}^{n} p(A|B_i) \times p(B_i)$$

$$\sum_{i=1}^{n} p(A \cap B_i) = p(A)$$

Therefore

$$p(A) = \sum_{i=1}^{n} p(A|B_i) \times p(B_i)$$

For All Events B_i

If occurrence of event A depends on

- Only two mutually exclusive events
- B and NOT B

$$p(A) = p(A|B) \times p(B) + p(A|\neg B) \times p(\neg B)$$

$$p(B) = p(B|A) \times p(A) + p(B|\neg A) \times p(\neg A)$$

Substitute into Bayesian rule yields:

$$p(A|B) = \frac{p(B|A) \times p(A)}{p(B|A) \times p(A) + p(B|A) \times p(A)}$$

Suppose all rules in KB are represented as:

IF E is true

THEN H is true {with probability p}

Imply that

- If event E occurs
- Then probability that event H will occur is p

In expert systems

- H usually represents hypothesis
- E denotes evidence to support the hypothesis

Express Bayesian rule in terms of hypotheses and evidence

$$p(H|E) = \frac{p(E|H) \times p(H)}{p(E|H) \times p(H) + p(E|\neg H) \times p(\neg H)}$$

$$p(H)$$

Prior probability of hypothesis H being true

Probability that hypothesis H being true will result in evidence E

$$p(\neg H)$$

Prior probability of hypothesis H being false

$$p(E|\neg H)$$

Probability of finding evidence E even when hypothesis H is false

Probabilities required to solve a problem

Provided by expert

Prior probabilities

Possible hypotheses p(H) and p(¬H)

Conditional probabilities, observing evidence E

- If hypothesis H is true, p(E|H)
- If hypothesis H is false, $p(E|\neg H)$

Users provide information about evidence observed

Expert system computes probability p(H|E)

Posterior probability of hypothesis H upon observing evidence E

Take into account

- Multiple hypotheses H₁, H₂,..., H_m
- Multiple evidences E₁, E₂,..., E_n
- Must be mutually exclusive and exhaustive

Single evidence E and multiple hypotheses:

$$p(H_i|E) = \frac{p(E|H_i) \times p(H_i)}{\sum_{k=1}^{m} p(E|H_k) \times p(H_k)}$$

Multiple evidences and multiple hypotheses:

$$p(H_i|E_1 E_2 ... E_n) = \frac{p(E_1 E_2 ... E_n|H_i) \times p(H_i)}{\sum_{k=1}^{m} p(E_1 E_2 ... E_n|H_k) \times p(H_k)}$$

Multiple evidences and multiple hypotheses

- Obtain conditional probabilities
 - All possible combinations of evidences for all hypotheses
 - Enormous burden on expert

Assume conditional independence among evidences

$$p(H_i|E_1 E_2 ... E_n) = \frac{p(E_1|H_i) \times p(E_2|H_i) \times ... \times p(E_n|H_i) \times p(H_i)}{\sum_{k=1}^{m} p(E_1|H_k) \times p(E_2|H_k) \times ... \times p(E_n|H_k) \times p(H_k)}$$

Simple Example

Given to expert

- Three conditionally independent evidences
 - \circ E₁, E₂ and E₃

Expert determines

- Three mutually exclusive and exhaustive hypotheses
 - \circ H₁, H₂ and H₃
- Prior probabilities for these hypotheses
 - $p(H_1)$, $p(H_2)$ and $p(H_3)$
- Conditional probabilities of observing each evidence for all possible hypotheses

The Prior and Conditional Probabilities

Probability	Hypothesis			
	i = 1	i=2	i=3	
$p(H_i)$	0.40	0.35	0.25	
$p(E_1 H_i)$	0.3	0.8	0.5	
$p(E_2 H_i)$	0.9	0.0	0.7	
$p(E_3 H_i)$	0.6	0.7	0.9	

Posterior Probabilities

First observe evidence E₃

Compute posterior probabilities for all hypotheses

$$p(H_i|E_3) = \frac{p(E_3|H_i) \times p(H_i)}{\sum_{k=1}^{3} p(E_3|H_k) \times p(H_k)}, \qquad i = 1, 2, 3$$

Belief in hypothesis H₁

Decrease

- $p(H_1|E_3) = \frac{0.6 \cdot 0.40}{0.6 \cdot 0.40 + 0.7 \cdot 0.35 + 0.9 \cdot 0.25} = 0.34$
- Equal to belief in hypothesis H₂

Belief in hypothesis H₃ $p(H_2|E_3) = \frac{0.7 \cdot 0.35}{0.6 \cdot 0.40 + 0.7 \cdot 0.35 + 0.9 \cdot 0.25} = 0.34$

- Increase
- Nearly reach beliefs in hypotheses H₁ and H₂

$$p(H_3|E_3) = \frac{0.9 \cdot 0.25}{0.6 \cdot 0.40 + 0.7 \cdot 0.35 + 0.9 \cdot 0.25} = 0.32$$

Posterior Probabilities

Observe evidence E₁

$$p(H_i|E_1E_3) = \frac{p(E_1|H_i) \times p(E_3|H_i) \times p(H_i)}{\sum_{k=1}^{3} p(E_1|H_k) \times p(E_3|H_k) \times p(H_k)}, \qquad i = 1, 2, 3$$

Hypothesis H₂ become most likely one

$$p(H_1|E_1E_3) = \frac{0.3 \cdot 0.6 \cdot 0.40}{0.3 \cdot 0.6 \cdot 0.40 + 0.8 \cdot 0.7 \cdot 0.35 + 0.5 \cdot 0.9 \cdot 0.25} = 0.19$$

$$p(H_2|E_1E_3) = \frac{0.8 \cdot 0.7 \cdot 0.35}{0.3 \cdot 0.6 \cdot 0.40 + 0.8 \cdot 0.7 \cdot 0.35 + 0.5 \cdot 0.9 \cdot 0.25} = 0.52$$

$$p(H_3|E_1E_3) = \frac{0.5 \cdot 0.9 \cdot 0.25}{0.3 \cdot 0.6 \cdot 0.40 + 0.8 \cdot 0.7 \cdot 0.35 + 0.5 \cdot 0.9 \cdot 0.25} = 0.29$$

Posterior Probabilities

Observe evidence E₂, final posterior probabilities

$$p(H_{i}|E_{1}E_{2}E_{3}) = \frac{p(E_{1}|H_{i}) \times p(E_{2}|H_{i}) \times p(E_{3}|H_{i}) \times p(H_{i})}{\sum_{k=1}^{3} p(E_{1}|H_{k}) \times p(E_{2}|H_{k}) \times p(E_{3}|H_{k}) \times p(H_{k})}, \qquad i = 1, 2, 3$$

Initial ranking is H₁, H₂ and H₃

After all evidences are observed

Only H₁ and H₃ remain under consideration

$$p(H_1|E_1E_2E_3) = \frac{0.3 \cdot 0.9 \cdot 0.6 \cdot 0.40}{0.3 \cdot 0.9 \cdot 0.6 \cdot 0.40 + 0.8 \cdot 0.0 \cdot 0.7 \cdot 0.35 + 0.5 \cdot 0.7 \cdot 0.9 \cdot 0.25} = 0.45$$

$$p(H_2|E_1E_2E_3) = \frac{0.8 \cdot 0.0 \cdot 0.7 \cdot 0.35}{0.3 \cdot 0.9 \cdot 0.6 \cdot 0.40 + 0.8 \cdot 0.0 \cdot 0.7 \cdot 0.35 + 0.5 \cdot 0.7 \cdot 0.9 \cdot 0.25} = 0$$

$$p(H_3|E_1E_2E_3) = \frac{0.5 \cdot 0.7 \cdot 0.9 \cdot 0.25}{0.3 \cdot 0.9 \cdot 0.6 \cdot 0.40 + 0.8 \cdot 0.0 \cdot 0.7 \cdot 0.35 + 0.5 \cdot 0.7 \cdot 0.9 \cdot 0.25} = 0.55$$

Naïve Bayes Classifiers

Bayes Rules

$$p(A|B) = \frac{p(B|A) \times p(A)}{p(B)}$$

p(A|B)

- Conditional probability that event A occurs
- Given event B has occurred

p(B|A)

- Conditional probability of event B occurring
- Given event A has occurred

p(A)

Probability of event A occurring

p(B)

Probability of event B occurring

Bayes Rules

Bayes Rules can be represented based on

Hypothesis and evidence

$$p(H|E) = \frac{p(E|H) \times p(H)}{p(E)}$$

Maximum A Posteriori (MAP)

Given a set of events E

Compute maximum a posteriori hypothesis

$$h_{MAP} = \underset{h \in H}{\operatorname{arg max}} P(h \mid E)$$

$$h_{MAP} = \underset{h \in H}{\operatorname{arg max}} \frac{P(E \mid h)P(h)}{P(E)}$$

$$h_{MAP} = \underset{h \in H}{\operatorname{arg max}} P(E \mid h)P(h)$$

Omit P(E)

- Constant
- Independent of the hypothesis

Maximum A Posteriori (MAP)

A set of training examples

Records with conjunctive attributes $(a_1, a_2, ... a_n)$

Target function is finite set of classes V

$$\begin{aligned} v_{MAP} &= \arg\max_{v_{j} \in V} P(v_{j} \mid a_{1}, a_{2}, ..., a_{n}) \\ v_{MAP} &= \arg\max_{v_{j} \in V} \frac{P(a_{1}, a_{2}, ..., a_{n} \mid v_{j}) P(v_{j})}{P(a_{1}, a_{2}, ..., a_{n})} \\ v_{MAP} &= \arg\max_{v_{j} \in V} P(a_{1}, a_{2}, ..., a_{n} \mid v_{j}) P(v_{j}) \end{aligned}$$

Maximum A Posteriori (MAP)

$$v_{MAP} = \underset{v_j \in V}{\operatorname{arg max}} P(a_1, a_2, ..., a_n \mid v_j) P(v_j)$$

 $P(v_i)$ can easily be estimated

Compute frequency of target class in training set

 $P(a_1, a_2, ..., a_n | v_i)$ is difficult to estimate

Naïve Bayes Classifiers

Assume attributes values are conditionally independent

$$P(a_1, a_2, ..., a_n | v_j) = \prod_i P(a_i | v_j)$$

What we know

$$v_{MAP} = \underset{v_j \in V}{\arg \max} P(a_1, a_2, ..., a_n \mid v_j) P(v_j)$$

Therefore

$$v_{NB} = \underset{v_j \in V}{\operatorname{arg\,max}} P(v_j) \prod_i P(a_i \mid v_j)$$

Naïve Bayes Classifiers

Estimate $P(a_i | v_j)$ instead of $P(a_1, a_2, ..., a_n | v_j)$

Greatly reduce number of parameters

Learning step in Naïve Bayes

- Estimate $P(a_i | v_j)$ and $P(v_j)$
 - Based on frequencies in training data

No search during training

Classify an unseen instance

Compute class that maximizes posterior

Day	Outlook	Тетр	Humidity	Wind	Play
					Tennis
Dl	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Out	look		Tempe	rature		Hun	nidity		V	Vind		Pl	ay
	yes	no		yes	no		yes	no		yes	no	yes	no
Sunny	2	3	Hot	2	2	High	3	4	Weak	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	Strong	3	3		
Rainy	3	2	Cool	3	1								
·				•									
	yes	no		yes	no		yes	no		yes	no	yes	no
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	Weak	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	Strong	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

Classify following new instance:

Outlook = sunny

Temp = cool

Humidity = high

Wind = strong

$$\begin{aligned} v_{NB} &= \underset{v_{j} \in \{yes, no\}}{\text{max}} P(v_{j}) \prod_{i} P(a_{i} \mid v_{j}) \\ v_{NB} &= \underset{v_{j} \in \{yes, no\}}{\text{max}} P(v_{j}) P(outlook = sunny \mid v_{j}) P(temp = cool \mid v_{j}) P(humidity = high \mid v_{j}) P(wind = strong \mid v_{j}) \end{aligned}$$

First calculate prior probabilities

$$P(play = yes) = 9/14$$

$$P(play = no) = 5/14$$

$$P(yes)P(sunny | yes)P(cool | yes)P(high | yes)P(strong | yes)$$

$$= 9/14 \times 2/9 \times 3/9 \times 3/9 \times 3/9 = 0.0053$$

$$P(no)P(sunny | no)P(cool | no)P(high | no)P(strong | no)$$

$$= 5/14 \times 3/5 \times 1/5 \times 4/5 \times 3/5 = 0.0206$$

$$v_{NB} = \underset{v_j \in \{yes, no\}}{\arg \max} P(v_j)P(sunny | v_j)P(cool | v_j)$$

$$v_j \in \{yes, no\}$$

$$P(high | v_j)P(strong | v_j) = no$$

Bayesian Network

Bayesian Network

Directed acyclic graph

Set of tables for each node in the graph

А	P(A)
True	0.4
False	0.6

Α	В	P(B A)
True	True	0.3
True	False	0.7
False	True	0.99
False	False	0.01

В	С	P(C B)	В	D	
True	True	0.1	True	True	
True	False	0.9	True	False	
False	True	0.6	False	True	
False	False	0.4	False	False	

P(D|B)

0.95

0.05

0.98

0.02

Directed Acyclic Graph

Each node is a random variable

An arrow from node X to node Y

- Node X is a parent of node Y
- Node X has direct influence on node Y

Set of Tables

Each node X_i has conditional probability distribution P(X_i|Parent(X_i))

Quantify effect of parent on the node

					Α	В	P(B A)
	Α	P(A)			True	True	0.3
	True	0.4	***************************************		True	False	0.7
	False	0.6		A	False	True	0.99
				В	False	False	0.01
В	С	P(C	(B)		В	D	P(D B)
B True			(B)	CD	B True	D True	P(D B) 0.95
	True	0					
True	True False	0	.1		True	True	0.95

|B)

Set of Tables

Conditional probability distribution for B given A

Α	В	P(B A)	
True	True	0.3	l
True	False	0.7	
False	True	0.99	l
False	False	0.01	

For a given value of the parent

- Sum of entries for P(X_i|ConstantValue) = 1
- E.g. P(B = True | A = True) + P(B = False | A = True) = 0.3 + 0.7 = 1
 P(B = True | A = False) + P(B = False | A = False) = 0.99 + 0.01 = 1

If a Boolean variable has k Boolean parents

- Table with 2^{k+1} rows of entries
- But only 2^k need to be stored

Conditional Independence

Given parents P₁ and P₂

- Node X is conditionally independent of
 - Its non descendants ND₁ and ND₂

Joint Probability Distribution

Joint probability distribution

Over all variables X₁, ..., X_n

$$\mathrm{P}(X_1=x_1,\ldots,X_n=x_n)=\prod_{v=1}^n\mathrm{P}(X_v=x_v\mid X_j=x_j ext{ for each } X_j ext{ which is a parent of } X_v\,)$$

Bayesian Network Example

Calculate joint probability

A = True, B = True, C = True, D = True

P(A = True, B = True, C = True, D = True)

= $P(A = True) \times P(B = True \mid A = True) \times$

 $P(C = True \mid B = True) \times P(D = True \mid B = True)$

 $= 0.4 \times 0.3 \times 0.1 \times 0.95$ From tables

= 0.0114

Α	P(A)
True	0.4
False	0.6

Α	В	P(B A)
True	True	0.3
True	False	0.7
False	True	0.99
False	False	0.01

В	С	P(C B)
True	True	0.1
True	False	0.9
False	True	0.6
False	False	0.4

В	D	P(D B)
True	True	0.95
True	False	0.05
False	True	0.98
False	False	0.02

Inference

Use Bayesian network to compute probability Involves queries of the form $P(X \mid E)$

- X = Query variable(s)
- E = Evidence variable(s)

Inference

Query example

P(HasAnthrax = True | HasFever = True, HasCough = True)

HasDifficultyBreathing, HasWideMediastinum

- In Bayesian network
- Not given in query
- Not query variables nor evidence variables
- Treated as unobserved variables

