Лекция 2

Ilya Yaroshevskiy

20 февраля 2021 г.

Содержание

1	Aĸ	сиоматическое опредление верояности	1
	1.1	Свойства операция сложения, умножения	3
	1.2	Независимые события	4

1 Аксиоматическое опредление верояности

Колмагоров

• Ω — пространство элементарных исходов

Систему $\mathcal{F} \subset \Omega$ называем σ -алгеброй событий если:

- 1. $\Omega \in \mathcal{F}$
- 2. Если $A \in \mathcal{F}$, то $\overline{A} \in \mathcal{F}$
- 3. Если $A_1, A_2, \dots \in \mathcal{F}$, то $\bigcup_{i=1}^{+\infty} A_i \in \mathcal{F}$

Примечание. Свойства:

- 1. $\emptyset \in \mathcal{F}$, t.k. $\overline{\Omega} = \emptyset \in \mathcal{F}$
- 2. Если $A_1, A_2, \dots \in \mathcal{F}$, то $\bigcap_{i=1}^{+\infty} A_i \in \mathcal{F}$

Доказательство.

$$A_1, A_2, \dots \in \mathcal{F} \Rightarrow \overline{A_1}, \overline{A_2}, \dots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{+\infty} \overline{A_i} \in \mathcal{F} \Rightarrow \overline{\bigcup_{i=1}^{+\infty} \overline{A_i}} = \bigcap_{i=1}^{+\infty} A_i \in \mathcal{F}$$

- 3. (a) $F = \{\Omega, \emptyset\}$
 - (b) $F = \{\Omega, \emptyset, A, \overline{A}\}\$

Определение.] Ω — пространство элементарных исходовб \mathcal{F} — его σ -алгебра. Вероятностью на (Ω, \mathcal{F}) обозначается функция $P(A): \mathcal{F} \to \mathbb{R}$ со свойствами:

- 1. $P(A) \ge 0$ свойство **неотрицательности**
- 2. Если событие A_1,A_2,\ldots попарно несовместны $(\forall i,j:\ A_i\cap A_j=\emptyset),$ то:

$$P(\bigcup_{i=1}^{+\infty} A_i) = \sum_{i=1}^{+\infty} P(A_i)$$

- свойство счетной аддитивности
- 3. $P(\Omega) = 1$ свойство ????

Определение. Тройка (Ω, \mathcal{F}, P) — вероятностное пространство

 Πpu мечание. Свойства:

1. $P(\emptyset) = 0$

Доказательство. \emptyset и Ω — несовместные события

$$P(\underbrace{\emptyset + \Omega}_{\Omega}) = P(\emptyset) + P(\Omega) = 1$$

$$P(\emptyset) + 1 = 1$$

$$P(\emptyset) = 0$$

2. Формула обратной вероятности

$$P(A) = 1 - P(\overline{A})$$

Доказательство. A и \overline{A} — несовметсные, $A \cup \overline{A} = \Omega$

$$P(A+\overline{A})=P(A)+P(\overline{A})=1\Rightarrow P(A)=1-P(\overline{A})$$

3. $0 \le P(A) \le 1$

Доказательство.

- (a) $P(A) \ge 0$
- (b) $P(A) = 1 P(\overline{A}) \le 1$

Аксиома 1. Пусть имеется убывающая цепочка событий $A_1\supset A_2\supset A_3\supset\ldots,\ \bigcap_{i=1}^{+\infty}A_i=\emptyset$ <u>Тогда</u> $P(A_n)\xrightarrow[n\to\infty]{}0$

Примечание. При непрерывном изменении области $A \subset \mathbb{R}^n$ соответствующая вероятность также должна изменяться непрерывно. Аксиома непрерывности следует из аксиомы счетной аддитивности

Доказательство.

$$A_n = \sum_{i=n}^{+\infty} A_i \overline{A_{i+1}} \cup \bigcap_{i=n}^{+\infty} A_i$$

т.к. эти события несовместны

$$P(A_n) = \sum_{i=1}^{+\infty} P(A_i \overline{A_{i+1}}) + P(\bigcap_{i=1}^{+\infty} A_i)$$

т.к. $P(\bigcap_{i=1}^{+\infty}A_i)=\emptyset$ и $\bigcap_{i=n}^{+\infty}A_i=\bigcap_{i=1}^{+\infty}A_i,$ то $P(\bigcap_{i=n}^{+\infty}A_i)=0$

$$P(A_n) = \sum_{i=n}^{+\infty} P(A_i \overline{A_{i+1}})$$

$$\sum_{i=1}^{+\infty} P(A_i \overline{A_{i+1}}) = P(A_i)$$

$$P(A_n) \xrightarrow[n \to +\infty]{} 0$$

Примечание. Аксимома счетной аддитивности следует из аксиомы непрерывности и свойства конечной аддитивности

1.1 Свойства операция сложения, умножения

Определение.

- 1. Свойство дистрибутивности $A \cdot (B + C) = AB + AC$
- 2. Формула сложения. Если A и B несовместны, то P(A+B) = P(A) + P(B) если несовместны, то P(A+B) = P(A) + P(B) P(AB)

Доказательство.

$$A + B = A\overline{B} + AB + \overline{A}B \Rightarrow P(A + B) = P(A\overline{B}) + P(AB) + P(\overline{A}B) =$$
$$= P(A\overline{B}) + P(AB) + (P(\overline{A}B) + P(AB)) - P(AB) = P(A) + P(B) - P(AB)$$

Задача 1. n писем раскладываются в n конвертов. Найти вероятность того что хотя бы одно письмо попадет в свой коверт. Чему равна эта вероятность при $n \to +\infty$

 $Peшение. \ A_i - i$ письмо попало в свой коверт A — хотя бы одно письмо попало в свой конверт

 $A = A_1 + A_2 + \dots + A_n$ $P(A_i) = \frac{1}{n}, \ P(A_i A_j) = \frac{1}{A_n^2}, \ P(A_i A_j A_k) = \frac{1}{A_n^3}, \dots P(A_1 A_2 \dots A_n) = \frac{1}{n!}$ $P(A) = n \cdot \frac{1}{n} - C_n^2 \cdot \frac{1}{A_n^2} + \dots + (-1)^{n+1} \frac{1}{n!} = 1 - \frac{1}{2!} + \frac{1}{3!} - \dots + (-1)^{n+1} \frac{1}{n!}$ $e^{-1} = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \dots$ $P(A) \xrightarrow[n \to +\infty]{} 1 - e^{-1}$

1.2 Независимые события

Примечание.
$$\Omega = n, |A| = m_1, |B| = m_2$$

 $|\Omega \times \Omega| = n^2, AB = m_1 m_2$

Определение. События A и B называются **независимыми**, если P(AB) = P(A)P(B)

 Π римечание. Свойство: если A и B — независимы, то A и \overline{B} — независимые

Доказательство.
$$P(A) = P(A(B + \overline{B})) = P(AB + A\overline{B}) = P(AB) + P(A\overline{B}) \Rightarrow P(A\overline{B}) = P(A) - P(AB) = P(A) \cdot P(B) = P(A) \cdot (1 - P(B)) = P(A) \cdot P(\overline{B}) \Rightarrow A$$
 и \overline{B} — независимы

Определение. События A_1,A_2,\ldots,A_n называются независимыми в совкупности, если для любого набора $1\leq i_1,i_2,\ldots,i_k\leq n$ $P(A_{i_1}A_{i_2}\ldots A_{i_k})=P(A_{i_1})P(A_{i_2})\ldots P(A_{i_k})$

 $\Pi pumeчaнue$. Если события независимы в совокупности, то события независимы попарно(при k=2). Обратное неверно

Пример (Берштейна). Три грани правильного тетраэдра выкрашены в красный, синий, зленый цвета, а четвертая грань во все жти три цвета

]A-грань содержит красный цвет, B-синий, C-зеленый

$$P(A) = P(B) = P(C) = \frac{2}{4} = \frac{1}{2}$$

$$P(AB) = P(AC) = P(BC) = \frac{1}{4}$$

$$P(AB) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = P(A)P(B)$$

⇒ все события попарно независим

$$P(ABC) = \frac{1}{4} \neq P(A)P(B)P(C) = \frac{1}{8}$$

⇒ события не независимы в совокупности

Примечание. Если в условии есть "хотябы т.е. требуется найти вероятность совместных независимых событий, то применяем формулу обратной вероятности

Задача 2. Найти веротяность того, что при 4 бросаниях кости, хотябы один раз выпадет шестерка.

 $Peшение. \]A_1$ — при 1 броске "6 A_2 — при 2х бросках "6 . . . , A — хотя бы один раз "6"

$$P(A_1) = P(A_2) = P(A_3) = P(A_4) = \frac{1}{6}$$

 $P(\overline{A_1}) = P(\overline{A_2}) = P(\overline{A_3}) = P(\overline{A_4}) = \frac{5}{6}$

 $A = A_1 + A_2 + A_3 + A_4$

 \overline{A} — ни разу не выпадет

$$\overline{A} = \overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3} \cdot \overline{A_4}$$

$$P(\overline{A}) = \left(\frac{5}{6}\right)^4$$

$$P(A) = 1 - P(\overline{A})$$

Задача 3. Два стрелка стреляют по мишени. Вероятность попадания первого -0.6, второго -0.8

 $egin{aligned} Pewerue. & A_1 - 1$ й попал $A_2 - 2$ й попалA -один попал

$$A = A_1 \cdot \overline{A_2} + \overline{A_1} A_2$$

$$P(A) = P(A) \cdot P(\overline{A_2}) + P(\overline{A_1}) \cdot P(A_2)$$