Table 1: Results of the parameter sensitivity analysis of the parameters that may influence the *prediction* result. The baseline parameters and their values are shown in the table. For each system, we show the precision and recall when the parameter changes. The values in the parentheses indicate the increase/decrease from the baseline precision and recall.

Baseline Values: $K=500$, $II=10,000$, W cut-off=0.05, δ =0.01, PCA cut-off=90%					
	Lower	, , ,	1	Higher	
New Value	Precision	Recall	New Value	Precision	Recall
Mylyn 2.0 (Baseline			1		
	0.81 (-0.01)	0.76 (-0.16)		0.80 (-0.02)	0.89 (-0.03)
$K = {}^{600}_{400}$	0.80 (-0.02)	0.91 (-0.01)	$K = {}^{600}_{700}$	0.90 (+0.08)	0.96 (+0.04)
	0.85 (+0.03)	0.98 (+0.06)		0.78 (-0.04)	0.92 (—)
$II = {8 \mathrm{K} \atop 9 \mathrm{K}}$	0.84 (+0.02)	0.97 (+0.05)	$II = {}^{11}_{12}$ K	0.86 (+0.04)	0.95 (+0.03)
W cut-off=0.025	$0.91\ (+0.09)$	0.89 (-0.03)	W cut-off=0.1	0.79 (-0.03)	0.93 (+0.01)
$\delta = 0.005$	0.82(—)	0.95 (+0.03)	δ =0.02	0.82 (—)	0.92 (—)
PCA cut-off= 80%	0.82 (—)	0.92 ()	PCA cut-off=95%	0.82 (—)	0.92 ()
Mylyn 3.0 (Baseline Precision = 0.78, Base Recall = 0.79)					
$K = {}^{300}_{400}$	0.88 (+0.09)	0.70 (-0.09)	$K=\frac{600}{700}$	0.63 (-0.15)	0.85 (+0.06)
$\Lambda =_{400}$	0.74 (-0.04)	0.64 (-0.15)		0.52 (-0.26)	0.89 (+0.07)
$II=_{9K}^{8K}$	0.79 (+0.01)	0.78 (-0.01)	$II = {}^{11}_{12}$ K	0.76 (-0.02)	0.74 (-0.05)
	0.73 (-0.05)	0.78 (-0.01)		0.78 (—)	0.76 (-0.03)
W cut-off= 0.025	0.77 (-0.01)	0.74 (-0.05)	W cut-off=0.1	0.71 (-0.07)	$0.76 \ (-0.03)$
$\delta = 0.005$	0.78 (—)	0.78 (-0.01)	δ =0.02	0.78 (—)	0.79 ()
PCA cut-off=80%	0.78 (—)	0.79 (—)	PCA cut-off=95%	0.78 (—)	0.79 (—)
Eclipse 2.1 (Baseline Precision = 0.79 , Base Recall = 0.63)					
$K = {}^{300}_{400}$	0.86 (+0.07)	0.83 (+0.20)	_v _600	0.85 (+0.06)	0.72 (+0.09)
	0.82 (+0.03)	0.63 (—)	$K = \frac{600}{700}$	0.74 (-0.05)	0.65 (+0.02)
$II=_{9K}^{8K}$	0.79 (—)	0.62 (-0.01)	$II=_{12\mathrm{K}}^{11\mathrm{K}}$	0.80 (+0.01)	0.61 (-0.02)
	0.77 (-0.02)	0.67 (+0.04)		0.80 (+0.01)	0.65 (+0.02)
W cut-off= 0.025	0.79 (—)	0.62 (-0.01)	W cut-off=0.1	0.78 (-0.01)	0.65 (+0.02)
$\delta = 0.005$	0.79 ()	0.63 ()	δ =0.02	0.81 (+0.02)	0.63 ()
PCA cut-off=80%	0.79 (—)	0.63 (—)	PCA cut-off=95%	0.79 (—)	0.63 (—)
Eclipse 3.0 (Baseline Precision = 0.84, Base Recall = 0.79)					
$K = {}^{300}_{400}$	0.73 (-0.11)	0.94 (+0.15)	600	0.77 (-0.07)	0.86 (+0.07)
$^{\kappa}_{-400}$	0.78 (-0.06)	0.84 (+0.05)	$K = \frac{600}{700}$	0.75 (-0.09)	0.78 (-0.01)
$II=_{9K}^{8K}$	0.80 (-0.04)	0.77 (-0.02)	$II=_{12\mathrm{K}}^{11\mathrm{K}}$	0.84 ()	0.78 (-0.01)
	0.80 (-0.04)	0.79 (—)		0.81 (-0.03)	0.79 ()
W cut-off=0.025	0.82 (-0.02)	0.78 (-0.01)	W cut-off=0.1	0.84 (—)	0.81 (+0.02)
δ =0.005	0.84 (—)	0.81 (+0.02)	δ =0.02	0.81 (-0.03)	0.79 (—)
PCA cut-off=80%	0.84 (—)	0.79 (—)	PCA cut-off=95%	0.84 (—)	0.79 (—)
NetBeans 5.0 (Baseline Precision = 0.65, Base Recall = 0.60)					
$\kappa - 300$	0.56 (-0.09)	0.63 (+0.03)	_K _600	0.67 (+0.02)	0.58 (-0.02)
$K = {}^{300}_{400}$	0.60 (-0.05)	0.63 (+0.03)	$K = {}^{600}_{700}$	0.68 (+0.03)	0.60 (—)
$II=_{9K}^{8K}$	0.64 (-0.01)	0.62 (+0.02)		0.64 (-0.01)	0.59 (-0.01)
	0.63 (-0.02)	0.59 (-0.01)	$II=_{12K}^{11K}$	0.61 (-0.04)	0.61 (+0.01)
W cut-off=0.025	0.65 (—)	0.57 (-0.03)	W cut-off=0.1	0.65 (—)	0.63 (+0.03)
δ =0.005	0.65 (—)	0.60 (—)	δ =0.02	0.63 (-0.02)	0.60 (—)
PCA cut-off=80%	0.65 (—)	0.60 (—)	PCA cut-off=95%	0.65 (—)	0.60 (—)
NetBeans 5.5.1 (Baseline Precision = 0.64, Base Recall = 0.86)					
$K = {}^{300}_{100}$	0.58 (-0.06)	0.88 (+0.02)	$K = \frac{600}{100}$	0.65 (+0.01)	0.79 (-0.07)
$\kappa =_{400}$	0.67 (+0.03)	0.94 (+0.08)	700	0.68 (+0.04)	0.90 (+0.04)
$_{II}$ $^{8\mathrm{K}}$	0.65 (+0.01)	0.88 (+0.02)	$II = {}^{11}_{12}$ K	0.65 (+0.01)	0.85 (-0.01)
$II=_{9K}^{8K}$	0.68 (+0.04)	0.88 (+0.02)		0.63 (-0.01)	0.83 (-0.03)
W cut-off= 0.025	0.66 (+0.02)	0.86 (—)	W cut-off=0.1	0.62 (-0.02)	0.85 (-0.01)
δ =0.005	0.65 (+0.01)	0.86 (—)	δ =0.02	0.61 (-0.03)	0.85 (-0.01)
PCA cut-off=80%	0.64 ()	0.86 (—)	PCA cut-off=95%	0.64 ()	0.86 ()