Package 'robustreg'

October 14, 2022

Version 0.1-11 **Date** 2019-05-09

Title Robust Regression Functions
Author Ian M. Johnson <ijca2013@gmail.com></ijca2013@gmail.com>
Maintainer Ian M. Johnson <ijca2013@gmail.com></ijca2013@gmail.com>
Depends R (>= 3.6.0)
Description Linear regression functions using Huber and bisquare psi functions. Optimal weights are calculated using IRLS algorithm.
License GPL (>= 2)
Imports stats (>= 3.6.0), Matrix (>= 1.1.0), Rcpp (>= 0.11.3)
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-05-10 07:50:03 UTC
R topics documented:
fit_rcpp
mad_rcpp
median_rcpp
psiBS_rcpp
psiHuber_rcpp
robustRegBS
robustRegH
Index 8

2 mad_rcpp

fit_rcpp

Predict y from X and b

Description

Predict y vector from X design matrix and b vector

Usage

```
fit_rcpp(X,b)
```

Arguments

X Design matrixb Estimates of beta

Author(s)

Ian M. Johnson

Examples

```
j <- rep(1, 5)
x1 <- rnorm(5)
x2 <- rnorm(5, 10, 20)
X = as.matrix(data.frame(j, x1, x2))
b <- 1:3
fit_rcpp(X, b)</pre>
```

mad_rcpp

Median Absolute Deviation (MAD)

Description

Rcpp fast implementation of median absolute deviation (MAD)

Usage

```
mad_rcpp(r,scale_factor = 1.4826)
```

Arguments

r A numeric vector scale_factor Scale factor

median_rcpp 3

Author(s)

Ian M. Johnson

Examples

mad(1:100)

median_rcpp

Median

Description

Rcpp fast implementation of median

Usage

```
median_rcpp(x)
```

Arguments

Х

A numeric vector containing the values whose median is to be computed.

Author(s)

Ian M. Johnson

Examples

```
median_rcpp(1:100)
```

psiBS_rcpp

Tukey's Bisquare Psi Function

Description

Rcpp fast implementation of Tukey's Bisquare psi function

Usage

```
psiBS_rcpp(r,c)
```

Arguments

r A numeric vector

c Tuning constant

psiHuber_rcpp

Author(s)

Ian M. Johnson

Examples

```
## Not run:
psiBS_rcpp(r,c)
## End(Not run)
```

psiHuber_rcpp

Huber Psi Function

Description

Rcpp fast implementation of Huber's Psi Function

Usage

```
psiHuber_rcpp(r,c)
```

Arguments

r A numeric vector

c Tuning constant

Author(s)

Ian M. Johnson

Examples

```
## Not run:
psiHuber_rcpp(r,c)
## End(Not run)
```

robustRegBS 5

robustRegBS Robust Fitting of Linear Models using Bisquare Psi Function

Description

Using iteratively reweighted least squares (IRLS), the function calculates the optimal weights to perform m-estimator or bounded influence regression. Returns robust beta estimates, mean squared error (MSE) and prints robust ANOVA table.

Usage

robustRegBS(formula,data,tune=4.685,m=TRUE,max.it=1000,tol=1e-5,anova.table=FALSE)

Arguments

formula	Model
data	A data frame containing the variables in the model.
tune	Tuning Constant. Default value of 4.685 is 95% asymptotically efficient against outliers
m	If TRUE, calculates m estimates of beta. If FALSE, calculates bounded influence estimates of beta
max.it	Maximum number of iterations to achieve convergence in IRLS algorithm
tol	Tolerance level in determining convergence
anova.table	If TRUE, prints robust ANOVA table

Details

M-estimates of beta should be used when evaluating least squares estimates of beta and diagnostics show outliers. Least squares estimates of beta should be used as starting points to achieve convergence.

Bounded influence estimates of beta should be used when evaluating least squares estimates of beta and diagnostics show large values of the "Hat Matrix" diagonals and outliers.

Note

Original package written in 2006

Author(s)

Ian M. Johnson

References

Tukey,

Birch, Robust F-Test, 1983

6 robustRegH

See Also

```
robustRegH()
```

Examples

```
data(stackloss)
robustRegBS(stack.loss~Air.Flow+Water.Temp,data=stackloss)
#If X matrix contained large values of H matrix (high influence points)
robustRegBS(stack.loss~Air.Flow+Water.Temp,data=stackloss,m=FALSE)
```

robustRegH

Robust Fitting of Linear Models using Huber Psi Function

Description

Using iteratively reweighted least squares (IRLS), the function calculates the optimal weights to perform m-estimator or bounded influence regression. Returns robust beta estimates, mean squared error (MSE) and prints robust ANOVA table

Usage

```
robustRegH(formula,data,tune=1.345,m=TRUE,max.it=1000,tol=1e-5,anova.table=FALSE)
```

Arguments

formula	Model
data	A data frame containing the variables in the model.
tune	Tuning Constant. Default value of 1.345 is 95% asymptotically efficient against outliers
m	If TRUE, calculates m estimates of beta. If FALSE, calculates bounded influence estimates of beta $$
max.it	Maximum number of iterations to achieve convergence in IRLS algorithm
tol	Tolerance level in determining convergence
anova.table	If TRUE, prints robust ANOVA table

Details

M-estimates of beta should be used when evaluating least squares estimates of beta and diagnostics show outliers. Least squares estimates of beta are used as starting points to achieve convergence.

Bounded influence estimates of beta should be used when evaluating least squares estimates of beta and diagnostics show large values of the "Hat Matrix" diagonals and outliers.

Note

Original package written in 2006

robustRegH 7

Author(s)

Ian M. Johnson

References

```
P. J. Huber (1981) Robust Statistics. Wiley.
Birch (1983) Robust F-Test
```

See Also

robustRegBS()

Examples

```
data(stackloss)
robustRegH(stack.loss~Air.Flow+Water.Temp,data=stackloss)
#If X matrix contained large values of H matrix (high influence points)
robustRegH(stack.loss~Air.Flow+Water.Temp,data=stackloss,m=FALSE)
```

Index

```
* regression
robustRegBS, 5
robustRegH, 6
fit_rcpp, 2
mad_rcpp, 2
median_rcpp, 3
psiBS_rcpp, 3
psiHuber_rcpp, 4
robustRegBS, 5
robustRegH, 6
```