Занятие 3

Сигнатура $\sigma = \langle Cnst, Fn, Pr \rangle$ — это фиксированный набор констант, функциональных символов и предикатных символов. Она определяет язык первого порядка (элементарный язык) сигнатуры σ . Синтаксис языка содержит определения правильно построенных выражений двух сортов — термов и формул.

Фиксируем множество $Var = \{x_0, x_1, \ldots\}$ индивидных переменных (мыслятся пробегающими одно и то же множество значений).

Термы (Tm).

- $Cnst \cup Var \subseteq Tm$
- Если $t_1, \ldots, t_n \in Tm$, $f \in Fn$, arity(f) = n, то $f(t_1, \ldots, t_n) \in Tm$.

 Φ ормулы (Fm).

- Если $t_1, \ldots, t_n \in Tm, P \in Pr, arity(P) = n, \text{ то } P(t_1, \ldots, t_n) \in Tm.$
- Если $\varphi, \psi \in Fm$, то $(\neg \varphi), (\varphi \land \psi), (\varphi \lor \psi), (\varphi \to \psi), (\varphi \leftrightarrow \psi) \in Fm$.
- Если $\varphi \in Fm$, $x \in Var$, то $(\forall x \varphi)$, $(\exists x \varphi) \in Fm$. В этих случаях φ считается областью действия квантора, а все вхождения переменной x в φ (если они есть) объявляются связанными.

Переменные, которые имеют несвязанное вхождение в формулу, называются *свободными* переменными формулы (или ее параметрами). Формула без свободных переменных называется *замкнутой*.

Семантика. Фиксируем интерпретацию *I* сигнатуры в некоторой математической структуре (модели языка). Переменные пробегают носитель структуры, константы обозначают конкретные (выделенные) элементы носителя, функциональные символы — конкретные (выделенные) операции на носителе, а предикатные символы — конкретные (выделенные) предикаты на носителе структуры. Замкнутые формулы получают однозначно определенное истинностное значение — 0 или 1.

Получаем язык для описания свойств этой структуры.

1. Сигнатура содержит двухместные $=^2$, \in^2 , \perp^2 . Констант нет. Носитель интерпретации M — все точки и прямые на плоскости. Предикатные символы интерпретируются равенством, принадлежностью

(точка лежит на прямой) и перпендикулярностью (прямых). Выразить:

- (a) "x точка", "x прямая".
- (b) "Прямые x и y параллельны".
- (c) "x, y, z вершины (невырожденного) треугольника".
- (d) "Высоты каждого треугольника пересекаются в одной точке".
- (e) "Точки x, y, z , t являются последовательными вершинами параллелограмма".
- (f) "Точка z делит отрезок x, y пополам".
- 2. Язык арифметики. На множестве натуральных чисел заданы трехместные предикаты $S(x,y,z)=u\iff x+y=z, P(x,y,z)=u\iff x\cdot y=z.$ На языке первого порядка с предикатными символами S,P записать:
 - (a) формулы с одной свободной переменной a, истинные тогда и только тогда, когда $a=0,\ a=1,\ a=2,\ a$ чётное число, a нечётное число;
 - (b) формулы с двумя свободными переменными a и b, истинные тогда и только тогда, когда a = b, $a \le b$, a делит b;
 - (c) формулы с тремя свободными переменными a, b и c, истинные тогда и только тогда, когда a наименьшее общее кратное чисел b и c, a наибольший общий делитель чисел b и c.

 β -функция Гёделя. В стандартной интерпретации (см. задачу 2) языка арифметики выразим график β -функции Геделя. Эта такая функция, что для каждой конечной последовательности натуральных чисел a_1, \ldots, a_n существуют x, y такие, что

$$\beta(x, y, 0) = n, \quad \beta(x, y, 1) = a_1, \quad \dots \quad \beta(x, y, n) = a_n.$$

3. Доказать выразимость в стандартной интерпретации языка арифметики условия " $y=2^x$ ".

Техника доказательства невыразимости. Если отношение не сохраняется при некотором автоморфизме модели, то оно невыразимо. (Автоморфизм — это биекция носителя на себя, сохраняющая все сигнатурные операции, отношения и константы.) Выразимы ли следующие отношения?

- 4. a = b, b = a + 1, c = a + b B (**Z**, <).
- 5. $a = 0, a = b, a < b \text{ B } (\mathbf{Z}, a + b = c).$
- 6. a = b, a = 1, a = 3 в (**N**, a : b) где $a : b \Leftrightarrow \exists k (a = k \cdot b),$ т.е. 0 : 0.

Домашнее задание

- 7. Доделать задачи 1 и 2.
- 8. Пусть график функции $f: \mathbb{N}^2 \to \mathbb{N}$ выразим в стандартной интерпретации языка арифметики. Доказать выразимость графика функции g, определенной рекурсией: g(0) = a, g(n+1) = f(n, g(n)).
- 9. Выразимы ли следующие отношения?
 - (a) a = b, |a b| = 2 B (\mathbb{R} , |a b| = 1).
 - (b) a < b, a = 0, a = 1, a = 2 B (N, a + b = c).
 - (c) "a простое число" в ($\mathbf{N}, a \\\vdots b$).
 - (d) a = 1, a = 2 в ($\mathbf{Z}, a + b = c$).
 - (e) a = 0 в (**Z**, a = b + 1).
 - (f) a = b + 1 B (**Z**, a = b + 2).
 - (g) a = b + 1 B (**Z**, |a b| = 1).
 - (h) |a-b|=3 в $(\mathbf{R}, |a-b|=1)$.

Логика и алгоритмы весна 2019. Задачи для семинара N 1.

исчисление высказываний

Шпаргалка (аксиомы и правило вывода):

$$A_{1}: A \to (B \to A);$$

$$A_{2}: (A \to (B \to C)) \to ((A \to B) \to (A \to C));$$

$$A_{3}: A \land B \to A;$$

$$A_{4}: A \land B \to B;$$

$$A_{5}: A \to (B \to (A \land B));$$

$$A_{6}: A \to (A \lor B);$$

$$A_{7}: B \to (A \lor B);$$

$$A_{8}: (A \to C) \to ((B \to C) \to ((A \lor B) \to C));$$

$$A_{9}: (A \to B) \to ((A \to \neg B) \to \neg A);$$

$$A_{10}: \neg \neg A \to A.$$

Modus Ponens : $\frac{A, A \to B}{B}$.

Теорема о дедукции: $\Gamma, A \vdash B \iff \Gamma \vdash A \to B$.

- 1. Докажите что:
 - (a) если $\Gamma \vdash A$ и $\Gamma \vdash B$, то $\Gamma \vdash A \land B$;
 - (b) если $\Gamma, A \vdash C$ $\Gamma, B \vdash C$, то $\Gamma, A \lor B \vdash C$ (правило разбора случаев).
- 2. Докажите что:
 - (a) если $\Gamma, A \vdash B$ $\Gamma, A \vdash \neg B$, то $\Gamma \vdash \neg A$ (рассуждение от противного),
 - (b) $\vdash (A \to B) \to (\neg B \to \neg A)$,
 - (c) $\vdash \neg \neg (A \lor \neg A)$,
 - (d) $\vdash A \lor \neg A$,
 - (e) если $\Gamma, A \vdash C$ $\Gamma, \neg A \vdash C$, то $\Gamma \vdash C$.
- 3. Докажите выводимость следующих формул:
 - (a) $A \wedge B \to B \wedge A$;
 - (b) $A \vee B \rightarrow B \vee A$;
 - (c) $A \wedge (B \wedge C) \rightarrow (A \wedge B) \wedge C$;
 - (d) $A \lor (B \lor C) \to (A \lor B) \lor C$;
 - (e) $(A \lor B \to C) \to ((A \to C) \land (B \to C));$

- (f) $(A \land C) \lor (B \land C) \rightarrow (A \lor B) \land C$;
- (g) $(A \vee B) \wedge C \rightarrow (A \wedge C) \vee (B \wedge C)$;
- (h) $(A \lor C) \land (B \lor C) \rightarrow (A \land B) \lor C$:
- (i) $(A \wedge B) \vee C \rightarrow (A \vee C) \wedge (B \vee C)$.
- 4. Докажите выводимость следующих формул:
 - (a) $A \rightarrow \neg \neg A$:

(d) $A \vee B \rightarrow (\neg A \rightarrow B)$;

- (b) $A \wedge \neg A \rightarrow B$:
- (c) $(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$.
- (e) $(\neg A \to B) \to A \lor B$.
- 5. Докажите выводимость формул, соответствующих законам де Моргана.
 - (a) $\neg (A \lor B) \to \neg A \land \neg B$:
- (c) $\neg (A \land B) \rightarrow \neg A \lor \neg B$:
- (b) $\neg A \land \neg B \rightarrow \neg (A \lor B)$;
- (d) $\neg A \lor \neg B \to \neg (A \land B)$.

Множество формул Γ называется *непротиворечивым*, если нет такой формулы A, для которой одновременно $\Gamma \vdash A$ и $\Gamma \vdash \neg A$. Максимальное по включению непротиворечивое множество формул называется максимально непротиворечивым.

Множество формул Γ называется *полным*, если для любой формулы A из гипотез Γ выводима ровно одна из формул A, $\neg A$.

- 6. Пусть дана функция $f: Var \longrightarrow \{0,1\}$ (оценка пропозициональных переменных). Докажите, что множество формул $\Gamma_f = \{A \mid f(A) = 1\}$ максимально непротиворечиво.
- 7. Докажите, что Γ полно тогда и только тогда, когда множество всех формул, выводимых из Г, максимально непротиворечиво.
- 8. В этой задаче будем считать, что формулы содержат только три переменные p,qи г. Для следующих множеств формул определите, являются ли они непротиворечивыми и являются ли они полными.
 - (a) $\{p \to q, q \to p\}$,
- (c) $\{p \land q \land r\},$ (e) $\{p \land q \rightarrow q \lor r, r, \neg (p \lor q)\},$
- (b) \varnothing ,

- (d) $\{p \lor q \to r, \neg r, p \lor q\},$ (f) $\{\neg (p \to \neg q), \neg p\}.$

Логика предикатов.

9. Рассмотрим сигнатуру $\{\cdot, +, =\}$, где $\cdot, + -2$ -местные функциональные символы, = — 2-местный предикатный символ. Рассмотрим нормальную модель этой сигнатуры $(P(A), \cap, \cup)$, где A — некоторое множество, P(A) — множество всех его подмножеств (т.е. \cdot интерпретируется как операция пересечения, а + — как операция объединения на P(A)).

Рассмотрим модель $(P(A),=,\cap,\cup)$, где «=» — предикат равенства, \cap и \cup — соответственно, пересечение и объединение множеств. Запишите формулу, говорящую, что в этой модели

- (a) $a \subset b$;
- (b) a одноэлементное множество;
- (c) a двухэлементное множество.
- 10. Для каждой из следующих формул определите, являются ли они выполнимыми или опровержимыми:
 - (a) $\exists x \forall y (Q(x,x) \land \neg Q(x,y));$
 - (b) $\exists x \exists y (P(x) \land \neg P(y));$
 - (c) $\forall x \exists y (P(x) \leftrightarrow \neg P(y));$
 - (d) $\exists y \forall x (P(x) \leftrightarrow \neg P(y));$
 - (e) $\forall x \neg \forall y \neg P(x, y) \land \neg \exists z \forall y P(y, z)$;
 - (f) $\forall x (\neg P(x, x) \land \exists z P(z, x) \land \forall y \exists z (P(x, z) \land P(z, y) \lor \neg P(x, y))).$
- 11. общезначимы ли следующие формулы?
 - (a) $\exists x \forall y Q(x,y) \rightarrow \forall y \exists x Q(x,y);$
 - (b) $\forall y \exists x Q(x,y) \rightarrow \exists x \forall y Q(x,y);$
 - (c) $\forall x (P(x) \to \neg Q(x)) \to \neg (\exists x P(x) \land \forall x Q(x)).$