

现代密码学

第四十五讲 RSA签名算法

信息与软件工程学院

RSA签名算法---密钥生成

- 1、选两个保密的大素数p和q,计算 $n=p\times q$, $\phi(n)=(p-1)(q-1)$;
- 2、选一整数e,满足 $1 < e < \phi(n)$,且 $gcd(\phi(n),e)=1$;
- 3、计算d, 满足 $d \in 1 \mod \phi(n)$;
- 4、以 $\{e,n\}$ 为公钥, $\{d,n\}$ 为私钥。

RSA签名算法---签名算法

设消息为 $m \in Z_n$, 对其签名为

 $s \equiv m^d \mod n$

消息m的签名为s

RSA签名算法---验证算法

接收方在收到消息加和签名5后,验证

$$m \equiv s^e \mod n$$

• 如果等式成立,则 s是消息 m的有效签名;反之,则是无效签名。

RSA签名的正确性

- 因为 $d \cdot e \equiv 1 \mod \phi(n)$
- 所以 $s^e \equiv m^{de} \equiv m^{1+k\phi(n)} \equiv m^l m^{k\phi(n)} \equiv m \mod n$
- 其中 / 为某个整数

RSA签名算法---缺点

- 对任意 $y \in Z_n$,任何人可计算 $x \equiv y^e \mod n$,因此任何人可伪造对随机消息x的签名。
- 如果消息 x_1 和 x_2 的签名分别为 y_1 和 y_2 ,则知道 x_1 , y_1 , x_2 , y_2 的人可伪造消息 x_1 x_2 的签名 y_1 y_2 。
- 在RSA签名方案中,需签名的消息 $x \in Z_n$,所以每次只能对 $\lfloor \log_2 n \rfloor$ 位长的消息进行签名。签名速度慢。
- 解决方法: 引入hash函数

RSA的安全基础

• RSA签名方案的安全性归约于大数分解问题