Economic Analysis of Breeding Programs in Competitive Markets Impact on Market Share

Jack Dekkers

Evaluating returns from breeding programs:

- Based on extra profit at the commercial production level based on GeneFlow methods
- Based on evaluating impact on market share and sale of breeding stock
 - More relevant for programs that operate in a competitive marker environment

A Competitive Global Dairy Al Industry

- global competition for germplasm from progeny-tested bulls
- competition for contracting bull dams
- all competitors have access to semen from all progeny-tested sires for use as bull sires.

- an AI firm's program is part of a single global breeding program
- at equilibrium, all AI firms improve at the same rate but with genetic lags

Impact of Improving Rate of Response by Firm A in a Competitive Market

Based on these considerations, commercial breeding firms must look at breeding programs from a different perspective

Breeding Company View of Al Progeny Testing Programs

Returns generated by sale of germplasm from marketable bulls

Determined by:

- # marketable bulls
- Ranking of marketable bulls
 - → # doses sold
 - → \$/dose sold

Three ways to increase Market Share

Example of Economic Optimization of Progeny Group Size in Dairy Cattle

Dekkers, VanderVoort and Burnside 1995, J. Dairy Sci. 79:2056-2070

Optimal combination of # bulls to sample and # daughters tested per bull for a fixed testing capacity?

= total # young bull daughters

Based on Stochastic Simulation of 3 competing AI firms

Base program: each AI firm tests 60 bulls/yr with 60 daughters/bull

Maximizing Genetic Gain in the Population Based on collective effect of all three firms

Market Share with Fixed Test Capacity

For an Al firm that changes its program while the other two firms maintain the base program (60/60)

Maximizing Net Returns from Semen Sales

Costs = (# bulls tested) x (Fixed costs/bull) + (test capacity) x (cost/daughter)

Sensitivity Analysis of Optimal progeny group size for fixed test capacity

	101 1	IACA U	cot oapa	Jity					
	Test Capacity								
	2700		36	3600		4500			
	Fixed costs per bull (x10 ³)								
Deviation from base ¹	\$20	\$30	\$20	\$30		\$20	\$30		
	Optimum progeny group size								
None	98	102	97	102		97	103		
Linear price function	92	97	91	98		91	98		
Population size +20%	96	100	95	100		95	100		
Population size -20%	100	104	100	105		100	107		
Semen price +20%	97	100	95	100		95	100		
Semen price -20%	100	104	100	105		100	107		
Interest 8%	100	104	99	104		100	106		
One competitor at 100 dt/bull	99	102	99	103		99	105		
	E	xtra profit (x	104 \$/yr) at optim	um versus a	t 60 d	laughters/b	ull		
None	49	66	49	73		56	86		
One competitor at 100 dt/bull	54	72	56	80		61	92		
Linear semen price	28	44	28	50		34	61		
	Shadow value of test capacity (\$/daughter)								
None	376	274	338	238		289	195		
Linear semen price	397	287	352	246		305	207		
Population size +20%	454	348	416	313		377	278		
Population size -20%	259	161	229	134		200	109		
Semen price +20%	495	389	448	344		398	300		
Semen price -20%	259	161	229	134		200	109		
Interest 8%	282	183	251	155		219	128		
One competitor at 100 dts/bull	261 s 950 000 cc	163 ows semen prid	242 ce is based on a quad	145 Iratic function o	f estim:	222 ated breeding	129		

One competitor at 100 dts/bull 261 163 242 145 222 129 In the base situation population size is 950,000 cows, semen price is based on a quadratic function of estimated breeding value, average semen price is \$15, interest rate is 5% per year, and the three competing AI firms sample 60 bulls with 60 daughters each.

Increasing Market Share by improving Average Genetic Merit of Young Bulls entered into Progeny Testing Program

1. Increase genetic merit of bull sires and bull dams

2. Pre-selection of young bulls based on markers or GEBV

Deterministic modeling of the effect of preselection on market share

Deterministic modeling of the effect of preselection on market share

This can be modeled using Multrunc.xls or Truncsel.xls

Truncation selection across multiple distributions.

Function multrunc returns the unique truncation point (T) across N normal distributions that make up a population to select an overall proportion P of the population.

Each distribution has a frequency, mean and standard deviation, which must be provided.

Data to be provided - yellow highlight:

ingingin.			
Proportio	n		
selected P =		0.3	
Distributi	Frequenc		
on	у	Mean	Stdev
1	0.30	15	0.5
2	0.70	12	0.5
3	0.00	16	0.5
4	0.00	9	0.5

Answer	Unique truncation	
=	point T =	13.565

Derived data

Fraction	
selected	Cumulativ e
from each	proportion
distribution	selected
0.998	0.299
0.001	0.300
1.000	0.300
0.000	0.300

Exercise

Use Multrunc.xls to evaluate the impact of pre-selection of young-bulls based on GEBV on # marketable progeny-tested bulls

Assumptions:

- •Selection is for total merit with $h^2 = 0.3$ and $\sigma_g = 10$
- Competitors and your company have equal access to the same groups of bull dams and bull sires.
- Competitors jointly test 200 bulls without pre-selection and 60 dtrs/bull
- Your company tests 100 bulls with pre-selection and 60 dtrs/bull
 - Pre-selection is based on selecting the best 100 out of 200 calves based on a GEBV with accuracy = 0.4
- The top 30 bulls based on their progeny test EBV (based on 60 daughters only) are marketable
 - GEBV or pedigree do not contribute to progeny test EBV

Economic Appraisal of the Utilization of Genetic Markers in Dairy Cattle Breeding

E. W. BRASCAMP, J.A.M. van ARENDONK, and A. F. GROEN

Department of Animal Breeding Wageningen Agricultural University PO Box 338

6700 AH Wageningen, The Netherlands

Financial returns, \$ per cow	7.0	14.0	21.0	20.1	40.2	60.3

¹Financial returns were calculated using Equation [2]. GR* = ΔG (DF/DR) where GR is the discounted financial returns, ΔG is the annual genetic improvement, DF/DR is the approximated discounted expression, and 1/DR is the discounted expression per cow if genetic improvement is expressed immediately in yr 1 after selection and pertained to infinity. The following parameters were used: $\sigma_A = \$67$, DF/R was 7 for progeny-testing and 10 for open nucleus %) for the breeding schemes.

onal semen

sales (\$1000) at a discount rate of 0 and .05 for two reactions of competitors (A and B).1

Alternative	Effect of preselection	Fraction of	Share in proven bulls used	Cumulative extra semen sales ²	
	$(\sigma_{\mathbf{A}})$	young bulls selected		r = 0	r = .05
Base	0	.1000	.2500	0	0
A	.15	.1229	.3073	10,314	5032
A	.30	.1476	.3690	21,419	10,450
A	.45	.1737	.4343	33,173	16,184
В	.15	.1229	.3073	516	385

In alternative A, the changing firm changes to markers to continue selection for 25 vr. and the competitors do not react. In alternative B, the competitors use markers from

affects the semen sales during 1 yr. For an AI firm with 250,000 cows and an effect of preselection of .15 σ_A , the expected returns using the first approach were \$1,750,000, but greater discounted returns from extra semen sales were only \$281,000. The results for the

²The extra semen sales have been computed for a total o The returns from one successful AI are \$12.