1

- $\bullet\,$ $\,\mathbb{N}$ sind die Natürlichen Zahlen
- $\bullet \ \mathbb{Z}$ sind die Ganzen Zahlen
- \bullet \in beschreibt die zugehörigkeit zu einer Menge
- ε leeres Wort
- Σ Alphabet
- Σ^* Menge aller Wörter
- $\bullet~\emptyset$ leere Menge
- ∃ Existenzquantor

$\mathbf{2}$

- 1. $A \subsetneq B$: Aussage
- 2. $A \setminus B$: Menge
- 3. $A \cap B$: Menge
- 4. $A \subseteq B$: Aussage
- 5. $A \subset B$: Aussage
- 6. $A \nsubseteq B$: Aussage
- 7. $A \cup B$: Aussage
- 8. $\mathbb{P}(A)$: Menge
- 9. 2^A : Menge

3

3.1

$$\Sigma^{n} = \{(w_1, w_2, \dots, w_n) | w_1, w_2, \dots, w_n \in \Sigma\}$$

3.2

$$\Sigma^{\leq n} = \bigcup_{k \leq n} \Sigma^n$$

3.3

$$\begin{split} \Sigma^k \Sigma^l &= \{uv | u \in \Sigma^k, v \in \Sigma^l\} \\ &= \{uv | u \in \{x \in \Sigma^* | \ |x| \leq k\}, v \in \{y \in \Sigma^* | \ |y| \leq l\}\} \\ &= \{\sigma \in \Sigma^* | \ |\sigma| \leq k+l\} \\ &= \Sigma^k \Sigma^l \end{split}$$

3.4

$$\Sigma^{k} \Sigma^{l} = \{ \sigma \in \Sigma^{*} | |\sigma| \le k + l \}$$
$$= \{ \sigma \in \Sigma^{*} | |\sigma| \le l + k \}$$
$$= \Sigma^{l} \Sigma^{k}$$

3.5

- $L = \{0, 1\}$
- $K = \{2, 3\}$

4

4.1

$$\begin{split} \Sigma &= \{a,b\} \\ V &= \{S,A,B\} \\ P &= \{S \rightarrow AB,AB \rightarrow AABB,A \rightarrow (a,\varepsilon),B \rightarrow (b,\varepsilon)\} \end{split}$$

4.2

$$\begin{split} \Sigma &= \{a,b\} \\ V &= \{S,A\} \\ P &= \{S \rightarrow A, A \rightarrow (bA,b)\} \end{split}$$

4.3

4.3.1

Nein, Sei $L^{'}$ eine Sprache vom Typ 2, so kann diese von einer Grammatik $G^{'}$ vom Typ 2 erzeugt werden. Da $G^{'}$ vom Typ 2 ist, ist $G^{'}$ ebenfalls vom Typ 1 und $L(G^{'})$ ist auch vom Typ 1.

4.3.2

Ja

4.3.3

Nein, Sei $G = (V, \Sigma, \{S \to AB, \ldots\})$ ist vom Typ 0, aber nicht typ 3

4.4

Nein, Sei $L((\{S,A\},\{a\},\{S\rightarrow A,A\rightarrow (aA,\varepsilon)\},S))$

5

5.1

Sei
$$L^*=\{a,b\},$$
 dann ist $(L^*)*=\{\{a,b\},\ldots\}$ Anmerkung: $L^{\Omega(1)}=L^*$ usw, $\lim_{n\to\infty}L^{\Omega(n)}$

5.2

Nein, wieder Wörter aus Mengen bzw menge aus Wörtern

5.3

Nein, wieder Wörter aus Mengen bzw menge aus Wörtern

5.4

$$\begin{split} L(K \cap P) &= L\{w|w \in K \wedge w \in P\} \\ &= \{lv|l \in L, v \in \{w|w \in K \wedge w \in P\}\} \\ &= \{lv|l \in L, v \in K \wedge v \in P\}\} \\ &= \{lk|l \in L, k \in K\} \cap \{lp|l \in L, p \in P\} \\ &= LK \cap LP \end{split}$$

5.5

$$\begin{split} L(K \cup P) &= L\{w|w \in K \vee w \in P\} \\ &= \{lv|l \in L, v \in \{w|w \in K \vee w \in P\}\} \\ &= \{lv|l \in L, v \in K \vee v \in P\}\} \\ &= \{lk|l \in L, k \in K\} \cup \{lp|l \in L, p \in P\} \\ &= LK \cup LP \end{split}$$

6

6.1

6.2

Typ 3 $\{a,b\}^*$

6.3

 $\mathrm{Typ}\ 1\\ \{a+b+\}$