Problem Set 2

Course: Mathematical Physics II (Winter 2022)

Due Date: 5:00 PM - Thursday, 12th of Esfand 1400

Analytical Problems

Problem 1. Find the eigenvalues and corresponding normalized eigenvectors of the following matrix:

$$A = \begin{pmatrix} 0 & 0 & -1+i & -1-i \\ 0 & 0 & -1+i & 1+i \\ -1-i & -1-i & 0 & 0 \\ -1+i & 1-i & 0 & 0 \end{pmatrix}$$
 (1)

Problem 2. Find the unitary matrices that diagonalize the following hermitian matrices:

$$A = \begin{pmatrix} 2 & -1+i \\ -1-i & -1 \end{pmatrix} , B = \begin{pmatrix} 2 & 0 & i \\ 0 & -1 & -i \\ -i & i & 0 \end{pmatrix}$$

Problem 3. Let
$$|a_1\rangle \equiv {\bf a}_1 = (1,1,-1)$$
 and $|a_2\rangle \equiv {\bf a}_2 = (-2,1,-1)$

- 1. Construct (in the form of a matrix) the projection operators P_1 and P_2 that project onto the directions of $|a_1\rangle$ and $|a_2\rangle$, respectively. Verify that they are indeed projection operators
- 2. Construct (in the form of a matrix) the operator $\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2$ and verify directly that it is a projection operator
- 3. Let **P** act on an arbitrary vector (x, y, z). What is the dot product of the resulting vector with the vector $\mathbf{a}_1 \times \mathbf{a}_2$? Is that what you expect?

Problem 4. If σ_x , σ_y and σ_z are Pauli's matrices What is the result of the $e^{i\theta\sigma_x}\sigma_z e^{-i\theta\sigma_x}$

Problem 5. Consider matrix M and its corresponding eigenvalues λ_1 , λ_2 and λ_3

$$M = \begin{pmatrix} \cos^2 \alpha & 0 & \beta \cos \alpha \\ 0 & -1 & 0 \\ \beta^* \cos^2 \alpha & \beta^* & \sin^2 \alpha \end{pmatrix}$$
 (2)

in which α is a real number and β is a imaginary number. Find $\lambda_1^3 + \lambda_2^3 + \lambda_4^3$.

Problem 6. Show that the quadratic surface

$$5x^2 + 11y^2 + 5z^2 - 10yz + 2xz - 10xy = 4$$
 (3)

is an ellipsoid.

Problem 7. Point $\mathbf{a} = (a_1, a_2, ..., a_2) \in \mathbb{R}$ is maximum (minimum) of function

$$f(x_1, x_2, ..., x_n) \equiv f(\mathbf{r}) \tag{4}$$

if $\nabla|_{r=a} \equiv (\frac{\partial f}{\partial x_1},...,\frac{\partial f}{\partial x_n}) = 0$ and if for small values of $\delta = \mathbf{r} - \mathbf{a}$ differential of $f(\mathbf{r}) - f(\mathbf{a})$ is negative (positive). Show that $f(\mathbf{r})$ only has a minimum (maximum) if the n-by-n matrix $(D)_{ij} \equiv (\frac{\partial^2 f}{\partial x_i \partial x_j})_{\mathbf{a}}$ has non-negative (non-positive) eigenvalues.