1 ベクトル束の定義

定義 1.1. B を位相空間、n を非負整数とする。B 上の次元 n のベクトル束とは、

- 1. 位相空間 E
- 2. 連続写像 $\pi: E \to B$
- 3. 各 $b \in B$ に対する $E_b := \pi^{-1}(b)$ 上のベクトル空間の構造

の組 (E,π) であって次の条件 (局所自明性) を満たすもののことをいう。 すなわち,すべての $b \in B$ に対して b の開近傍 U と同相写像 $h: U \times \mathbb{R}^n \to \pi^{-1}(U)$ の組 (U,h) が存在し,次を満たす.

- (1) $p: U \times \mathbb{R}^n \to U$ を U への射影とするとき $\pi \circ h = p$ である.
- (2) 各 $u \in U$ に対して $h_u : \mathbb{R}^n \to E_b$ を $h_u(x) = h(u,x)$ で定めると、これは線型同型写像である.
- **注 1.2.** (1) 上の定義において, E を全空間, B を底空間, π を射影, E_b を b 上のファイバーという. また, (U,h) を局所自明化という.
 - (2) \mathbb{R} を \mathbb{C} にとりかえたものを複素ベクトル束という.
 - (3) $1 \le r \le \infty$ に対して E, B を C^r 級多様体, π を C^r 級写像, h を C^r 級微分同相写像にしたものを C^r 級ベクトル束という.
 - (4) しばしばベクトル束を一つのギリシャ文字 ξ などで表し、その全空間を $E(\xi)$ 、射影を $\pi(\xi)$ と書く. $\xi=(E(\xi),\pi(\xi))$ である.

以降は単にベクトル束といえば定義 1.1 で定められたものを指すことにする.

定義 1.3. ξ_1 , ξ_2 を B 上のベクトル束とする. ξ_1 から ξ_2 への同型写像とは、同相写像 $f: E(\xi_1) \to E(\xi_2)$ であって次の二つの条件を満たすもののことである.

- (1) $\pi(\xi_2) \circ f = \pi(\xi_1)$.
- (2) すべての $b \in B$ で $f|_{E(\xi_1)_b}: E(\xi_1) \to E(\xi_2)$ は線型同型写像である.

例 1.4. B 上のベクトル東 ε_B^n を次で定める.

- (1) $E(\varepsilon_B^n) = B \times \mathbb{R}^n$.
- (2) $\pi(\varepsilon_B^n) \colon B \times \mathbb{R}^n \to B, \, \pi(\varepsilon_B^n)(b, x) = b.$
- (3) $E(\varepsilon_B^n)_b = \{b\} \times \mathbb{R}^n$ 上のベクトル空間の構造を次で定める.

$$(b,x) + (b,y) = (b,x+y), r(b,x) = (b,rx).$$

ただし, $r \in \mathbb{R}$ である.

 $arepsilon_B^n$ を B 上の n 次元積束という. $arepsilon_B^n$ と同型なベクトル束を自明束という.

以下, 自明なベクトル束の特徴づけを与える.

定義 1.5. ξ を B 上のベクトル束とする.

$$\Gamma(\xi) = \{s \colon B \to E(\xi) \mid s$$
 は連続写像かつ $\pi \circ s = \mathrm{id}_B \}$

の元を ξ の切断という. また, $s_0: B \to E(\xi)$ を

$$s_0(B) = 0_{E(\xi)_b}$$

で定義するとこれは連続である. s_0 を ξ の零切断という.

命題 1.6. ξ を B 上のベクトル束とする。 ξ が自明であることの必要十分条件は、切断の族 $s_1, s_2, \ldots s_n \in \Gamma(\xi)$ が存在し、 δ $b \in B$ に対して $s_1(b), s_2(b), \ldots s_n(b)$ が $E(\xi)_b$ の基底になることである。

証明の前に補題を用意する.

補題 1.7. $\xi_1 = (E_1, \pi_1), \ \xi_2 = (E_2, \pi_2)$ を B 上のベクトル束とする. $f: E_1 \to E_2$ が

- (1) $\pi_2 \circ f = \pi_1$,
- (2) すべての $b \in B$ に対して $f|_{(E_1)_b}: (E_1)_b \to (E_2)_b$ は線型同型写像

を満たせば f は同相写像であり、したがって同型写像である.

証明. すべての $b \in B$ に対して b の開近傍 U が存在し, $f|_{\pi_1^{-1}(U)}:\pi_1^{-1}(U) \to \pi_2^{-1}(U)$ が同相写像であることを示せばよい。b を含む ξ_1 , ξ_2 の局所自明化 (U,h_1) , (U,h_2) をとり, $U=U_1\cap U_2$ とおく。 $g=h_2^{-1}\circ f\circ h_1\colon U\times\mathbb{R}^n\to U\times\mathbb{R}^n$ とおくとこれは連続写像で,さらにこれは連続写像 $A\colon U\to GL_n(\mathbb{R})$ を用いて

$$g(u,x) = (u, A(u)x)$$

と書ける. g の逆写像が連続であればよい. ところで, $F\colon GL_n(\mathbb{R})\to GL_n(\mathbb{R})$ を $F(X)=X^{-1}$ で定めるとこれは連続写像である. したがって

$$g^{-1}(u, x) = (u, F(A(u))x)$$

は連続写像である.

命題 1.6 の証明. 補題から,連続写像 $f\colon B\times\mathbb{R}^n\to E$ (ξ) で $\pi(\xi)\circ f=\pi(\varepsilon_B^n)$ かつすべての $b\in B$ について $f|_{\{b\}\times\mathbb{R}^n}:\{b\}\times\mathbb{R}^n\to E(\xi)_b$ が同型であるものの存在との同値性をいえばよい.

 ξ が自明なら、 $f: B \times \mathbb{R}^n \to E(\xi)$ を同型写像として、 $1 \le i \le n$ に対して $s_i(b) = f(b, e_i)$ とおけばよい、ただし $e_1, e_2, \dots e_n$ は \mathbb{R}^n の標準基底である.

逆に題意のn個の切断があるとき、

$$f\left(b, \sum_{i=1}^{n} t_i e_i\right) = \sum_{i=1}^{n} t_i s_i(b)$$

とおけばよい.