What is claimed is:

1. A process for preparing a cycloorganylphosphane of **formula I** $(R^1P)_n$ by reaction of a dihalo(organyl)phosphane of formula R^1PHal_2 , wherein

R¹ is C₁-C₁₂alkyl; C₃-C₁₂cycloalkyl, aryl or heteroaryl,

Hal is F, Cl, Br or I, and

n is a number from 3 to 20,

with

- a) activated zinc in an organic solvent, or with
- b) an alkali metal or alkaline earth metal in a non-polar organic solvent in the presence of an activator selected from the group consisting of ethers and polyethers, amines and polyamines, aromatic N-heterocycles and carbonic acid derivatives, wherein the ratio by volume of non-polar solvent to activator is from 10:0.1 to 10:5.
- 2. A process for preparing a cycloorganylphosphane of formula I (R¹P)_n according to claim 1 by reaction of a dihalo(organyl)phosphane of formula R¹PHal₂ with activated zinc in an ethereal solvent.
- 3. A process for preparing a cycloorganylphosphane of **formula I** (\mathbb{R}^1P)_n according to claim 1 by reaction of a dihalo(organyl)phosphane of formula \mathbb{R}^1PHal_2 with an alkali metal or alkaline earth metal in a non-polar organic solvent in the presence of an activator selected from the group consisting of ethers and polyethers, amines and polyamines, aromatic N-heterocycles and carbonic acid derivatives, wherein the ratio by volume of non-polar solvent to activator is from 10:0.1 to 10:5.
- 4. A process according to claim 3 wherein the non-polar organic solvent is toluene and the activator is tetramethylethylenediamine or dimethoxymethane.
- 5. A process according to any one of claims 1 to 3 wherein R¹ is phenyl.
- 6. A di(alkali metal/alkaline earth metal) oligophosphanediide of the structural formula 2, 3 or 4

wherein

R is C₁-C₆alkyl; C₃-C₆cycloalkyl, aryl or heteroaryl;

M is Li, Na, K, Cs or Mg;

Hal is F, Cl, Br or I;

L is an activator; and

n and m denote the number of coordinated molecules L, which may be from 1 to 8.

- 7. A di(alkali metal/alkaline earth metal) oligophosphanediide according to claim 6 wherein R is phenyl and L is tetramethylethylenediamine or 1,2-dimethoxyethane.
- 8. The preparation of a di(alkali metal/alkaline earth metal) oligophosphanediide of formula (2), (3) or (4) according to claim 6 by reaction of a dihalo(organyl)phosphane of formula RPHal₂, wherein

R is C₁-C₁₂alkyl; C₃-C₁₂cycloalkyl, aryl or heteroaryl,

Hal is F, Cl, Br or I, and

n is a number from 3 to 20,

with an alkali metal or alkaline earth metal in a non-polar organic solvent in the presence of an activator, wherein the molar ratio of alkali metal or alkaline earth metal to RPHal₂ is > 1.

9. The use of a di(alkali metal/alkaline earth metal) oligophosphanediide of formula (2), (3) or (4) according to claim 6 in the preparation of an organophosphorus compound.