Negação de Proposições Tautologia, Contradição e Contingência Implicação Lógica Equivalência Lógica

Prof. Vladimir Píccolo Barcelos

Simbologia de Operadores

- Negação: ~ ¬ !
- Conjunção (and): ^ &&
- Disjunção (or): ∨ ||
- Disjunção exclusiva (xor):
 ∨
- Condicional (se): →
- Bi-condicional (se e somente se): ↔
- Implicação: ⇒
- Equivalência: ⇔

Construção de Tabelas-Verdade

- ❖ Uma coisa muito importante que deve ser dita neste momento é que, na hora de construirmos a *tabela-verdade* de uma proposição composta qualquer, teremos que seguir uma certa **ordem de precedência** dos conectivos. Ou seja, os nossos passos terão que obedecer a uma sequência. Começaremos sempre trabalhando com o que houver **dentro dos parênteses**. Só depois, passaremos ao que houver fora deles. Em ambos os casos, sempre obedecendo à seguinte ordem:
 - 1. Faremos as negações (~);
 - 2. Faremos as conjunções ou disjunções, na ordem em que aparecerem;
 - 3. Faremos o condicional;
 - 4. Faremos o bicondicional.
- **Exemplo:** Para fixar nossos conhecimentos vamos construir a tabela-verdade da seguinte proposição composta: $P(p,q) = (p \land \sim q) \ V(q \land \sim p)$.

Precedência dos Operadores Lógicos

Precedência	Descrição
1	Parênteses
2	NÃO (Negação)
3	E (Conjunção), OU (Disjunção)
4	Se Então (Condição), Se e somente se (Bicondição)

Exercício

Qual o resultado das seguintes expressões lógicas:

- a) V e (V ou F)
- b) V e não (V ou não F)
- c) (F ou V) e não (F)

Exercício

Qual o resultado das seguintes expressões lógicas:

- a) V e (V ou F): Temos somente os parênteses para resolver
 - V e V: Resolvido a disjunção do parênteses
 - V: Resolvido a conjunção (resultado final)
- b) V e não (V ou não F): Temos parênteses e negação
 - V e não (V ou V): Resolvida a negação do parêntese
 - V e não V: Resolvida a disjunção dentro do parêntese
 - V e F: Resolvido a negação do resultado do parêntese
 - F: Resolvido a conjunção (resultado final)
- c) (F ou V) e não (F): Temos parênteses e negação
 - V e não F: Resolvido o primeiro parêntese
 - V e V: Resolvido a negação do segundo parêntese
 - V: Resolvido a conjunção (resultado final)

Construa a tabela verdade da seguinte proposição P, composta por duas proposições simples quaisquer:

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

Construa a tabela verdade da seguinte proposição P, composta por duas proposições simples quaisquer:

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

- Vamos analisar: A proposição 'P' é composta por duas proposições simples 'p' e 'q'.
- Neste contexto, não importa o conteúdo de cada proposição simples.

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

• 1º passo: Montamos a tabela inicial com as TODAS combinações possíveis de valores lógicos que 'p' e 'q' podem assumir:

p	q
V	V
V	F
F	V
F	F

$$P(p,q) = (p \land \neg q) \lor (q \land \neg p)$$

- Verificamos que P é composto por dois parênteses disjuntos.
 Resolveremos um parêntese por vez.
- 2º passo (resolver o primeiro parêntese): Precisamos saber o valor da negação de q (em cinza).

p	q	~q
V	V	F
V	F	V
F	V	F
F	F	V

$$P(p,q) = (p \land \neg q) \lor (q \land \neg p)$$

 2º passo (resolver o primeiro parêntese): Agora fazemos a conjunção de 'p' com '~q' (em cinza)

p	q	~q	p∧~q
V	V	F	F
V	F	V	V
F	V	F	F
F	F	V	F

Pronto, o primeiro parêntese foi resolvido. Sabemos os valores lógicos de (p^~q).

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

• 3º passo (resolver o segundo parêntese): Precisamos saber os valores de '~p' (em cinza)

p	q	~q	p∧~q	~p
	_		1 1	•
V	V	F	F	F
V	F	V	V	F
F	V	F	F	V
F	F	V	F	V

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

• 3º passo (resolver o segundo parêntese): Agora fazemos a conjunção de 'q' com '~p' (em cinza)

	۲ ۲				
р	q	~q	p∧~q	~ p	q ∧~ p
V	V	F	F	F	F
V	F	V	V	F	F
F	V	F	F	V	V
F	F	V	F	V	F

Pronto, o segundo parêntese foi resolvido. Sabemos os valores lógicos de $(q \land \sim p)$.

$$P(p,q) = (p \land \neg q) \lor (q \land \neg p)$$

 4º passo (resolver a disjunção): Agora fazemos a disjunção do primeiro parêntese com o segundo

p	q	~q	p∧~q	~p	q ∧~ p	(p∧~q)∨(q∧~p)
V	V	F	F	F	F	F
V	F	V	V	F	F	V
F	V	F	F	V	V	V
F	F	V	F	V	F	F

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

p	q	~q	p ∧~ q	~p	q∧~p	(p∧~q)∨(q∧~p)
V	V	F	F	F	F	F
V	F	V	V	F	F	V
F	V	F	F	V	V	V
F	F	V	F	V	F	F

PRONTO!

- ❖ Para negar uma proposição no formato de conjunção (**p e q**), faremos o seguinte:
 - 1. Negaremos a primeira parte (~p);
 - 2. Negaremos a segunda parte (~q);
 - 3. Trocaremos e por ou.
- **Exemplo:** Considere a seguinte frase:

"Não é verdade que João é médico e Pedro é dentista",

Encontre uma outra frase que seja logicamente equivalente a frase acima.

- ❖ Para negar uma proposição no formato de conjunção (**p e q**), faremos o seguinte:
 - 1. Negaremos a primeira parte (~p);
 - 2. Negaremos a segunda parte (~q);
 - 3. Trocaremos e por ou.
- **Exemplo:** Considere a seguinte frase:

"Não é verdade que João é médico e Pedro é dentista",

Encontre uma outra frase que seja logicamente equivalente a frase acima.

```
p = João é médicoq = Pedro é dentista
```

Não é verdade que João é médico e Pedro é dentista = \sim (p \wedge q)

- ❖ Para negar uma proposição no formato de conjunção (**p e q**), faremos o seguinte:
 - Negaremos a primeira parte (~p);
 - 2. Negaremos a segunda parte (~q);
 - 3. Trocaremos e por ou.
- Exemplo: a questão dirá: "Não é verdade que João é médico e Pedro é dentista", e pedirá que encontremos, entre as opções de resposta, aquela frase que seja logicamente equivalente a esta fornecida.

Solução:

- 1. Nega-se a primeira parte (~p) = João não é médico;
- 2. Nega-se a segunda parte (~q) = Pedro não é dentista;
- 3. Troca-se E por OU, e o resultado final será o seguinte:

JOÃO NÃO É MÉDICO OU PEDRO NÃO É DENTISTA. $\sim (p \land q) = \sim p \ V \sim q$

$$\sim (p \wedge q) = \sim p \vee \sim q$$

p	q	~p	~q	p ∧q	~(p \land q)	~p ∨ ~q

$$\sim$$
(p \wedge q) = \sim p V \sim q

p	q	~p	~q	$p \land q$	~(p \ q)	~p V ~q
V	V	F	F	V	F	F
V	F	F	V	F	V	V
F	V	V	F	F	V	V
F	F	V	V	F	V	V

Traduzindo para a linguagem da lógica, dizemos que:

Traduzindo para a linguagem da lógica, dizemos que:

$$\sim$$
(p \wedge q) = \sim p \vee \sim q

Não é verdade que João é médico e Pedro é dentista João não é médico ou **=** Pedro não é dentista

~(p \land q)	~p V ~q
F	F
V	V
V	V
V	V

- ❖ Para negar uma proposição no formato de disjunção (**p ou q**), faremos o seguinte:
 - 1. Negaremos a primeira parte (~p);
 - 2. Negaremos a segunda parte (~q);
 - 3. Trocaremos ou por e.
- **Exemplo:** Considere a seguinte frase:

"**Não é verdade que** João é médico **ou** Pedro é dentista"

Encontre uma outra frase que seja logicamente equivalente a frase acima.

```
p = João é médicoq = Pedro é dentista
```

Não é verdade que João é médico ou Pedro é dentista = ~(p ∨ q)

- ❖ Para negar uma proposição no formato de disjunção (**p ou q**), faremos o seguinte:
 - 1. Negaremos a primeira parte (~p);
 - 2. Negaremos a segunda parte (~q);
 - 3. Trocaremos ou por e.
- Exemplo: a questão dirá: "Não é verdade que João é médico ou Pedro é dentista", e pedirá que encontremos, entre as opções de resposta, aquela frase que seja logicamente equivalente a esta fornecida.
 Sol:
 - 1. Nega-se a primeira parte (~p) = João não é médico;
 - 2. Nega-se a segunda parte (~q) = Pedro não é dentista;
 - 3. Troca-se OU por E, e o resultado final será o seguinte:

JOÃO NÃO É MÉDICO E PEDRO NÃO É DENTISTA.

Traduzindo para a linguagem da lógica, dizemos que:

$$\sim (p V q) = \sim p \land \sim q$$

Como fomos chegar à essa conclusão?

~(p V q)	~p ∧~q
F	F
F	F
F	F
V	V

Negação de uma Proposição Condicional

- * Para negar uma proposição no formato condicional $(p \rightarrow q)$, faremos o seguinte:
 - 1. Mantém-se a primeira parte (p); E
 - 2. Nega-se a segunda parte (~q).
- Exemplo: Como fica a negativa de "se chover então levarei o guarda-chuva".
 Sol:
 - 1. Mantém-se a primeira parte (p) = Chove;
 - 2. Nega-se a segunda parte (~q) = Não levo o guarda-chuva;

CHOVE E NÃO LEVO O GUARDA-CHUVA.

Negação de uma Proposição Condicional

Traduzindo para a linguagem da lógica, dizemos que:

$$\sim (p \rightarrow q) = p \land \sim q$$

Recapitulando

Estrutura	É verdade quando	É falso quando	
Lógica			
$\mathbf{p} \wedge \mathbf{q}$	p e q são, ambos, verdade	um dos dois for falso	
p V q	um dos dois for verdade	p e q , ambos, são falsos	
p → q	Nos demais casos	p é verdade e q é falso	
p↔q	p e q tiverem valores lógicos iguais	p e q tiverem valores lógicos diferentes	
~p	p é falso	p é verdade	

Recapitulando

Negativa de (p e q)	~p ou ~q
Negativa de (p ou q)	~p e ~q
Negativa de (p → q)	p e ~q
Negativa de (p↔q)	[(p e ~q) ou (q e ~p)]

Tautologia

- Uma proposição composta por duas ou mais proposições simples (p, q, r, ...) será dita uma Tautologia se ela for sempre verdadeira.
- Vejamos o Exemplo:

$$(b \lor d) \to (b \lor d)$$

Tautologia

Uma proposição composta por duas ou mais proposições simples (p, q, r, ...) será dita uma **Tautologia** se ela for **sempre** verdadeira.

 $\begin{array}{c|cccc} & & & & & & & & & & & & \\ p & & q & & p \wedge q & & p \vee q & & & & & \\ p & & p \wedge q & & p \vee q & & & & & \\ p & & p \wedge q & & p \wedge q & & & & \\ p & & p \wedge q & & p \wedge q & & & \\ p & & p \wedge q & & p \wedge q & & \\ p & & p \wedge q & & p \wedge q & & \\ p & & p \wedge q & & p \wedge q & & \\ p & & p \wedge q & & p \wedge q & & \\ p & & p \wedge q & & p \wedge q & & \\ p & p & p \wedge q & & p \wedge q & & \\ p & p & p \wedge q & & p \wedge q & & \\ p & p & p & p \wedge q & & \\ p & p & p \wedge q & & \\ p & p & p \wedge q & & \\ p & p & p \wedge q & & \\ p &$

Tautologia

Uma proposição composta por duas ou mais proposições simples (p, q, r, ...) será dita uma **Tautologia** se ela for **sempre** verdadeira.

$$(p \land q) \rightarrow (p \lor q)$$

p	q	$\mathbf{p} \wedge \mathbf{q}$	$\mathbf{p} \lor \mathbf{q}$	$(\mathbf{p} \wedge \mathbf{q}) \rightarrow (\mathbf{p} \vee \mathbf{q})$
V	V	V	V	V
V	F	F	V	V
F	V	F	V	V
F	F	F	F	V

Contradição

Uma proposição composta por duas ou mais proposições simples (p, q, r, ...) será dita uma Contradição se ela for sempre falsa.

Exemplo: $\sim ((p \land q) \rightarrow (p \lor q))$

p	q	$\mathbf{p} \wedge \mathbf{q}$	$\mathbf{p} \lor \mathbf{q}$	$(p \land q) \rightarrow (p \lor q)$	$\sim ((p \land q) \rightarrow (p \lor q))$
V	V	V	V	V	
V	F	F	V	V	
F	V	F	V	V	
F	F	F	F	V	

Contradição

Uma proposição composta por duas ou mais proposições simples (p, q, r, ...) será dita uma Contradição se ela for sempre falsa.

Exemplo: $\sim ((p \land q) \rightarrow (p \lor q))$

p	q	$\mathbf{p} \wedge \mathbf{q}$	$\mathbf{p} \lor \mathbf{q}$	$(\mathbf{p} \wedge \mathbf{q}) \rightarrow (\mathbf{p} \vee \mathbf{q})$	$\sim ((p \land q) \rightarrow (p \lor q))$
V	V	V	V	V	F
V	F	F	V	V	F
F	V	F	V	V	F
F	F	F	F	V	F

Contingência

Uma proposição composta que não é uma Tautologia e nem uma Contradição é uma Contingência.

Exemplo: p∧~q

p	q	~q	p∧~q
V	V	F	F
V	F	V	V
F	V	F	F
F	F	V	F

Exercícios

Monte a tabela-verdade e classifique as seguintes proposições abaixo como Tautologia, Contradição ou Contingência.

a)
$$\sim p \rightarrow (q \rightarrow \sim p)$$

b)
$$p \vee \neg q \rightarrow (p \rightarrow \neg q)$$

c)
$$\sim p \vee \sim q \rightarrow (p \rightarrow q)$$

d)
$$\sim$$
(p \leftrightarrow \sim p)

Implicação Lógica

- Sejam duas proposições compostas P e Q:
 - A proposição P implica a proposição Q, quando a condicional P → Q for uma Tautologia.
 - O símbolo P ⇒ Q (P implica Q) representa a implicação lógica.

ATENÇÃO:

- Símbolo → representa a operação de condicional entre as proposições P e Q, com valor lógico V ou F.
- Símbolo ⇒ representa a não ocorrência de Falsidade na tabela-verdade de P → Q, ou ainda que o valor lógico da condicional P → Q será sempre V, ou então que P → Q é uma tautologia.

- Considere:
 - $-P=p\Lambda q$
 - $-Q = p \leftrightarrow q$

Prove que P ⇒ Q (P implica em Q)

- Considere:
 - $-P=p\Lambda q$
 - $-Q = p \leftrightarrow q$
- Prove que P ⇒ Q (P implica em Q)
- Solução: Para provar que P ⇒ Q (P implica em Q), devemos verificar se P → Q (P então Q) é uma tautologia.
 - $P \rightarrow Q$ é o mesmo que $(p \land q) \rightarrow (p \leftrightarrow q)$

		P	Q	P Q	
p	q	$\mathbf{p} \wedge \mathbf{q}$	$p \leftrightarrow q$	$(p \land q) \Rightarrow (p \leftrightarrow q)$	

Tabela Verdade:

		P	Q	$P \rightarrow Q$	
p	q	$p \wedge q$	$\mathbf{p} \leftrightarrow \mathbf{q}$	$(p \land q) \rightarrow (p \leftrightarrow q)$	
V	V	V	V	V	
V	F	F	F	V	
F	V	F	F	V	
F	F	F	V	V	

(p Λ q) → (p ↔ q) é uma tautologia, por isso

$$(p \land q) \Rightarrow (p \leftrightarrow q)$$

- Duas expressões lógicas P e Q são equivalentes se possuem os mesmos valores verdade.
 - O símbolo P ⇔ Q (P equivale a Q) representa a equivalência lógica.
 - P \Leftrightarrow Q se e somente se P \leftrightarrow Q é uma **Tautologia**.

ATENÇÃO:

- Símbolo ↔ representa a operação de condição dupla entre as proposições P e Q, com valor lógico V ou F.
- Símbolo ⇔ representa a não ocorrência
 de Falsidade na tabela-verdade de P ↔ Q, ou ainda que o valor lógico da condicional P ↔ Q será sempre V, ou então que P ↔ Q é uma tautologia.

Considere:

$$-P=p \rightarrow q$$

$$-Q = \sim q \rightarrow \sim p$$

Prove que P ⇔ Q (P é equivalente em Q)

Considere:

$$-P=p \rightarrow q$$

$$-Q = \sim q \rightarrow \sim p$$

- Prove que P ⇔ Q (P é equivalente em Q)
- Solução: Para provar que P

 Q (P é
 equivalente em Q), devemos verificar se P

 Q (P se e somente se Q) é uma Tautologia.

 $P \leftrightarrow Q$ é o mesmo que $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$

p	q	~p	~q	p → q	~q → ~p	$(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$

p	q	~p	~q	p → q	~q > ~p	$(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$
V	V	F	F	V	V	V
V	F	F	V	F	F	V
F	V	V	F	V	V	V
F	F	V	V	V	V	V

p	q	~p	~q	p → q	~q → ~p	$(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$
V	V	F	F	V	V	V
V	F	F	V	F	F	V
F	V	V	F	V	V	V
F	F	V	V	V	V	V

$$(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$$

é uma tautologia,
por isso
 $(p \rightarrow q) \Leftrightarrow (\sim q \rightarrow \sim p)$

O que vimos até agora

- Conceitos básicos de lógica das proposições
- Operadores lógicos:
 - Negação
 - Conjunção
 - Disjunção
 - Disjunção Exclusiva
 - Condicional
 - Bicondicional
- Construção de tabelas-verdade
- Tautologia, Contradição, Contingência
- Implicação e Equivalência Lógica

Exercícios Implicação Lógica

 Utilizando tabelas-verdade, verifique se existem as relações de implicação lógica seguintes:

1.
$$p \wedge q \Rightarrow q \wedge p$$

2.
$$\sim (p \land q) \Rightarrow \sim p \lor \sim q$$

3.
$$p \rightarrow q \land r \rightarrow \neg q \Rightarrow r \rightarrow \neg p$$

4.
$$\sim p \land (\sim q \rightarrow p) \Rightarrow \sim (p \land \sim q)$$

Exercícios Implicação Lógica

 Utilizando tabelas-verdade, verifique se existem as relações de implicação lógica seguintes:

- 1. $p \land q \Rightarrow q \land p$ (existe)
- 2. \sim (p \lambda q) \Rightarrow \sim p \vee \sim q (existe)
- 3. $p \rightarrow q \land r \rightarrow \neg q \Rightarrow r \rightarrow \neg p$ (não existe)
- 4. $\sim p \land (\sim q \rightarrow p) \Rightarrow \sim (p \land \sim q)$ (existe)

Exercícios Equivalência Lógica

 Demonstre, utilizando tabelas-verdade, as seguintes relações de equivalência:

1.
$$p \wedge (p \vee q) \Leftrightarrow p$$

2.
$$p \lor (p \land q) \Leftrightarrow p$$

3.
$$(p \rightarrow q) \lor (p \rightarrow r) \Leftrightarrow p \rightarrow p \lor r$$

4.
$$p \vee q \Leftrightarrow (p \vee q) \wedge \sim (p \wedge q)$$

Exercícios Equivalência Lógica

 Demonstre, utilizando tabelas-verdade, as seguintes relações de equivalência:

- 1. $p \land (p \lor q) \Leftrightarrow p$ (equivalentes)
- 2. $p \lor (p \land q) \Leftrightarrow p$ (equivalentes)
- 3. $(p \rightarrow q) \lor (p \rightarrow r) \Leftrightarrow p \rightarrow p \lor r$ (não equivalentes)
- 4. $p \vee q \Leftrightarrow (p \vee q) \wedge \sim (p \wedge q)$ (equivalentes)

Perguntas???

