MATH 8851 Homework 3

James Harbour

February 23, 2023

Problem 1

Let $G = A \ltimes_{\varphi} B$ be the (external) semidirect product of groups A and B corresponding to some homomorphism $\varphi : A \to \operatorname{Aut}(B)$. Suppose we are given presentations by generators and relations for both A and B:

$$A = \langle X_1 | R_1 \rangle \qquad B = \langle X_2 | R_2 \rangle.$$

Find (with proof) a presentation for G in terms of X_1, X_2, R_1, R_2 and φ .

Note: If you succeeded in proving Hall's Theorem asserting that an extension of finitely presented groups is finitely presented (HW# 2.2), this problem should be straightforward. If you did not succeed in solving HW# 2.2, you may want to start with this problem and then come back to HW# 2.2.

Problem 2

Let p be a prime. Prove that the lamplighter group $G_p = \mathbb{Z} \operatorname{wr} \mathbb{Z}/p\mathbb{Z}$ is not finitely presented.

Proof. By HW# 2.4(c), G_p admits the following presentation

$$\langle x, y \mid y^p = 1, [y, y^x] = 1, [y, y^{x^2}] = 1, [y, y^{x^{N-1}}] = 1, \ldots \rangle.$$

Suppose, for the sake of contradiction, that G_p is finitely presented. Then there exists some $N \in \mathbb{N}$ such that in fact we have the following finite presentation

$$\langle x, y \mid y^p = 1, [y, y^x] = 1, [y, y^{x^2}] = 1, [y, y^{x^{N-1}}] = 1 \rangle.$$

and $[y, y^{x^i}] = 1$ for all $i \in \mathbb{N} \cup \{0\}$.

By von Dyck's theorem, there exists a homomorphism $\varphi: G_p \to S_M$ such that $\varphi(x) = s$, $\varphi(y) = t$. Now, observe that

$$1 = \varphi(1) = \varphi([y, y^{x^N}]) = [\varphi(y), \varphi(y)^{\varphi(x)^N}] = [t, t^{s^N}] \neq 1,$$

which is a contradiction.

Hint: Now prove that this is impossible as follows. Show that for sufficiently large M (depending on N) the symmetric group S_M contains 2 elements t and s such that $t^p = 1$ and $[t, t^{s^i}] = 1$ for all $1 \le i \le N - 1$, but $[t, t^{s^N}] \ne 1$. Then apply von Dyck's theorem to get a contradiction.

Problem 3

Recall from class that $\operatorname{Aut}^+(F_n)$ is the preimage of $SL_n(\mathbb{Z})$ under the natural "abelianization" map π : $\operatorname{Aut}(F_n) \to GL_n(\mathbb{Z})$ (which is surjective, as proved in Lecture 8) and thus $[\operatorname{Aut}(F_n) : \operatorname{Aut}^+(F_n)] = 2$. The goal of this problem is to prove that $\operatorname{Aut}^+(F_n)$ is generated by the elements R_{ij} and L_{ij} (recall that R_{ij} sends x_i to $x_i x_j$ and fixes all other x_k and L_{ij} sends x_i to $x_j x_i$ and fixes all other x_k).

Define $H = \langle R_{ij}, L_{ij} \rangle$. Then $H \subseteq \operatorname{Aut}^+(F_n)$, and to prove the equality it suffices to show that $[\operatorname{Aut}(F_n) : H] = 2$.

- (a) Recall that $\operatorname{Aut}(F_n)$ is generated by the elements R_{ij} , L_{ij} , I_i and P_{σ} , with $\sigma \in S_n$, where I_i inverts x_i and fixes all other x_k and P_{σ} sends x_k to $x_{\sigma(k)}$ for all k. Use this fact to prove that H is normal in $\operatorname{Aut}(F_n)$.
- (b) For any $1 \le i \ne j \le n$ let Q_{ij} be the element of $\operatorname{Aut}(F_n)$ given by $x_i \mapsto x_j$, $x_j \mapsto x_i^{-1}$ and $x_k \to x_k$ for $k \ne i, j$. Prove by direct computation that $Q_{ij} \in \operatorname{Aut}^+(F_n)$.
- (c) Given $g \in \operatorname{Aut}(F_n)$, let \overline{g} denote the image of g in $\operatorname{Aut}(F_n)/H$. Use (b) to show that $\overline{P_{(ij)}} = \overline{I_i}$ for any $i \neq j$ (here (ij) is the transposition swapping i and j). Deduce from this that $|\operatorname{Aut}(F_n)/H| = 2$ and thus $[\operatorname{Aut}(F_n) : H] = 2$.

Problem 4

Recall from class that IA_n (also called the Torelli subgroup of $\operatorname{Aut}(F_n)$) is the kernel of $\pi: \operatorname{Aut}(F_n) \to GL_n(\mathbb{Z})$.

- (a) Prove that IA_n contains $Inn(F_n)$, the subgroup of inner automorphsisms of F_n .
- (b) Magnus (1935) proved that IA_n is generated by the elements K_{ij} with $1 \le i \ne j \le n$ and K_{ijm} with i, j, m distinct where K_{ij} sends x_i to $x_j^{-1}x_ix_j$ and fixes all other x_k and K_{ijm} sends x_i to $x_i[x_j, x_m]$ and fixes all other x_k . Verify that the elements K_{ij} and K_{ijm} indeed lie in IA_n .
- (c) Use (b) to show that $IA_2 = Inn(F_2)$. We will discuss a different proof of this result later in the course.

Problem 5

The proof of the Nielsen reduction theorem (Theorem 7.5) yields a general algorithm which, given an n-tuple of elements of F_n , decides whether these elements generate F_n or not. In the case n = 2 one can answer this question almost immediately using the following commutator test.

Theorem 1 (Commutator test). Let $\{x,y\}$ be a free generating set of F_2 , and take any $u,v \in F_2$. Then u and v generate F_2 if and only if the commutator $[u,v] = u^{-1}v^{-1}uv$ is conjugate (in F_2) to [x,y] or $[y,x] = [x,y]^{-1}$.

- (a) Prove the 'only if' (\Rightarrow) part of the commutator test. **Hint:** Use Nielsen moves.
- (b) Now think of how you would prove the 'if' part. I do not know of a nice short algebraic argument. One possible proof is outlined in the following paper of Shpilrain (see Proposition 2.4):