

A STUDY OF THE CHARACTERISTICS OF THE DATA SYSTEMS TEST KINEMATIC FIELDS

by

Allan Joseph McGlasson

A thesis submitted to the faculty of the University of Utah in partial fulfillment of the requirements for the degree of

Master of Science

Department of Meteorology
University of Utah
August 1977

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE

CHRITY CLASSIFICATION OF THIS DAGGIERMO DAIN KNIA

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPIRVISORY COMMITTEE APPROVAL

of a thesis submitted by

Allan Joseph McGlasson

degree. 6/15/11	Julia Whayle
Date	dulia N. Paegle
	Chairman, Supervisory Committee
I have read this thesis ar	nd have found it to be of satisfactory quality for a master's
degree.	
degree. 6/15/77	Jan Roesle
	Jan Paegle
6/15/77	Jan Paegle Member, Supervisory Committee
6/15/77 Date I have read this thesis ar	Jan Paegle
Date	Jan Paegle Member, Supervisory Committee

ACCESSION for

NTIS

DDC

BATTER TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOTAL

11

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

I have read the thesis of
6/15/11 Julia 2 Paigle Julia N. Paegle
Member, Supervisory Committee
Approved for the Major Department
Er. V. Vuo
S.K. Kao Chairman/Dean
Approved for the Graduate Council
Sterling M. McMurrin Dean of The Graduate School
iii

ABSTRACT

Winter 1976 Data Systems Test wind data was used to produce a number of global kinematic fields. The data was prepared by the Goddard Institute for Space Studies Atmospheric General Circulation Model. An interpolation scheme was developed to move the wind data from sigma levels to constant pressure levels. Time-averaged fields of the zonal wind component, meridional wind component, divergence, vorticity, steady energy and transient energy were computed for 200 mb, 500 mb and 850 mb. In addition, the standing kinetic energy and transient kinetic energy were decomposed by wavenumbers into energy spectra for 200 mb and 500 mb for different latitudes.

Results of this research were compared with other similar studies and showed favorable correlation. Resolution of synoptic scale features was good. Organized areas were found in the time-averaged divergence fields indicating that divergence features can be resolved in this data. This study shows that the Goddard Model is well suited for global studies of the general atmospheric circulation.

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Dr. Julia Paegle for all the help and time she gave me during the preparation of this thesis. In addition, I want to thank Drs. Jan Paegle and Elford Astling for their suggestions which helped improve this thesis and for their interest in this work.

I also want to thank my wife and children for all the love and patience they gave me during my work on this thesis. Special thanks are due my wife for typing the draft copy and to Michael for delaying his arrival until after I had finished my thesis defense.

A special thanks is also due Fred Lewis for his programing assistance and his preparation of the data into horizontal arrays. Finally, I want to express my appreciation to Dr. William Quirk and the Goddard Institute for Space Studies for supplying the data for this research and for providing valuable information about the data and its preparation.

TABLE OF CONTENTS

ABSTRACT											•									iv
ACKNOWLED	BEMEN	TS								•	•									٧
LIST OF F	GURE	S																		vii
CHAPTER																				
ī.	INTR	ODUC	TIC	NC																1
II.	DESC	RIPT	101	N A	ND	TI	REA	ATM	IEN	IT	OF	. [AT	ГА						3
III.	TIME	-AVE	RA	GED	F	ΙEΙ	.DS	5	•											13
IV.	KINE	TIC	EN	ERG	Y (OF	TH	ŧΕ	ST	AN	IDI	Ne	i 4	IA۷	ES					54
٧.	KINE	TIC	EN	ERG	Υ (OF	TF	RAN	ISI	EN	IT	WA	VE	S						60
VI.	SUMM	ARY	ANI	C	ON	CLU	ISI	ON	IS		•									65
REFERENCES								•		•										68
VITA																				69

LIST OF FIGURES

			P	age
Figure	1	GISS Model Grid. Primary grid points are represented by o's while the +'s denote secondary grid points	•	4
Figure	2	GISS Model Northern Hemisphere Topography Terrain heights are given in meters		6
Figure	3	GISS Model Southern Hemisphere Topography Terrain heights are given in meters		7
Figure	4	Test Wind Profilewind speed is in m/sec, pressure is in mb		9
Figure	5	Time-average of u wind component at 200 mb (m/sec)	,	15
Figure	6	Time-average of u wind component at 500 mb (m/sec)		16
Figure	7	Time-average of u wind component at 850 mb (m/sec); asterisks indicate areas where 850 mb surface is below ground	•	17
Figure	8	Time-average of v wind component at 200 mb (m/sec)	•	18
Figure	9	Time-average of v wind component at 500 mb (m/sec)		19
Figure	10	Time-average of v wind component at 850 mb (m/sec); asterisks indicate areas where 850 mb surface is below ground		20
Figure	11	Standard deviation of time-averaged u wind component at 500 mb (m/sec)		21
Figure	12	Standard deviation of time-averaged v wind component at 500 mb (m/sec)		22
Figure	13	Vertical cross section of time-and-longitude averaged u wind component (m/sec)		25

			Pag
Figure 14	Standing kinetic energy per unit mass for N.H. at 200 mb (m^2/sec^2); dashed isolines are for values of 500, 1000, 1500 and 2000; dotted isoline denotes a value of 750	•	. 28
Figure 15	Standing kinetic energy per unit mass for S.H. at 200 mb (m^2/sec^2); dashed isolines are for a value of 500, dotted isolines denote 750 values	•	. 29
Figure 16	Standing kinetic energy per unit mass for N.H. at 500 mb (m^2/sec^2); dashed isolines are for values of 200, 300, 400 and 500	•	. 30
Figure 17	Standing kinetic energy per unit mass for S.H. at 500 mb (m^2/sec^2); dashed isolines are for values of 200, 300 and 400	•	. 31
Figure 18	Standing kinetic energy per unit mass for N.H. at $850 \text{ mb } (\text{m}^2/\text{sec}^2)$; dashed isolines are for values of 50 , 75 and 100 ; areas where 850 mb surface is below ground are blank		. 32
Figure 19	Standing kinetic energy per unit mass for S.H. at $850 \text{ mb } (\text{m}^2/\text{sec}^2)$; dashed isolines are for values of 50 , 75 and 100 ; areas where 850 mb surface is below ground are blank		. 33
Figure 20	Time-averaged transient kinetic energy per unit mass for N.H. at 200 mb (m^2/sec^2); isolines are for SKE and are from Figure 14		. 35
Figure 21	Time-averaged transient kinetic energy per unit mass for S.H. at 200 mb (m^2/sec^2); isolines are for SKE and are from Figure 15		. 36
Figure 22	Time-averaged transient kinetic energy per unit mass for N.H. at 500 mb (m^2/sec^2); isolines are for SKE and are from Figure 16		37
Figure 23	Time-averaged transient kinetic energy per unit mass for S.H. at 500 mb (m^2/sec^2); isolines are for SKE and are from Figure 17		38
Figure 24	Time-averaged transient kinetic energy per unit mass for N.H. at 850 mb (m²/sec²); isolines are for SKE and are from Figure 18; areas where 850 surface is below ground are blank	mb	39

			Page
Figure	25	Time-averaged transient kinetic energy per unit mass for S.H. at 850 mb (m²/sec²); isolines are for SKE and are from Figure 19; areas where 850 mb surface is below ground are blank	40
Figure	26	Positive time-averaged divergence at 200 mb $(x10^{-6}sec^{-1})$	43
Figure	27	Positive time-averaged divergence at 500 mb (x10 ⁻⁶ sec ⁻¹)	44
Figure	28	Positive time-averaged divergence at 850 mb $(x10^{-6}sec^{-1})$	45
Figure	29	Negative time-averaged divergence at 200 mb $(x10^{-6}sec^{-1})$	46
Figure	30	Negative time-averaged divergence at 500 mb $(x10^{-6}sec^{-1})$	47
Figure	31	Negative time-averaged divergence at 850 mb (x10-6sec-1)	48
Figure	32	Positive time-averaged relative vorticity at 500 mb (x10-6sec-1)	49
Figure	33	Negative time-averaged relative vorticity at 500 mb (x10-6sec-1)	50
Figure	34	Standard deviation of time-averaged divergence at 500 mb (x10-6sec-1)	51
Figure	35		52

CHAPTER I

INTRODUCTION

The general circulation of the atmosphere is still not well understood. Lorenz (1967) mentions that even though there have been over a thousand excellent studies on the subject, a full explanation of the distribution of the atmospheric wind patterns is lacking. The atmosphere is so vast and motions in it are so complex that it was impossible to collect global circulation data until this century. It is obvious from our current knowledge of the atmosphere that to successfully unravel this mystery we need more clues.

The clues in this case are more complete data sets. Data is needed for the entire globe at several levels in the atmosphere. The only way that the required volumes of data can be collected is through international cooperation of countries. Although much data is collected and exchanged daily by many countries, it is not sufficient for the task of fully explaining the general circulation.

Meteorologists recognized several years ago that it was time to formulate a plan for gathering more detailed global data. As a result, the Global Atmospheric Research Project (GARP) was formulated. GARP will be the most intensive effort yet to collect and analyze atmospheric data for the entire globe. It will involve many countries, thousands of scientists and much sophisticated equipment when it is implemented at the end of this decade.

To be useful, the massive amount of data which will be generated by GARP will have to be placed into a format which will allow computer analysis. The Goddard Institute for Space Studies (GISS) Nine-Level Atmospheric General Circulation Model has been selected for this data preparation. This study uses a set of data generated by the GISS model.

The objective of this study was to compare the data prepared by the GISS model to data from other sources. This was done partly to assess the quality of the data produced by the model and partly to get a feel for what type features can be resolved by this data. The analysis of the data was divided into two basic areas. First, a number of time-averaged fields were generated. These included time-averaged wind components, divergences and vorticities. The second area of study involved a wave number decomposition of the kinetic energy for the standing and transient eddies. The period covered by the data (one month) was too short to consider any attempt to add to the theory of the general circulation. However, this study gives an indication of the type and amount of data which will soon be available.

CHAPTER II

DESCRIPTION AND TREATMENT OF DATA

Global, synoptic scale wind data, which covers 35 days at 12 hour intervals, was used for this analysis. The data covers the period from 00Z/29 JAN 76 until 12Z/3 MAR 76. It was prepared by the GISS atmospheric circulation model and is designated Data System Test (DST) data. The model uses five primary quantities to represent the behaviour of the atmosphere: u--the zonal wind speed (west to east), v--the meridional wind speed (south to north), T--the temperature, q--the specific humidity of water vapor, and π --the surface pressure minus the pressure at the top of the model. This study used only the u, v, and π data. Three forcing terms are included in the differential equations used by the model to update the primary quantities. These terms are designed to represent the physical processes of earth-atmosphere and sun-atmosphere interaction and include a horizontal frictional force term, a diabatic heating rate term, and a rate of moisture addition term. For detailed information on the GISS model consult Somerville et al. (1974).

The model uses a split global grid in spherical coordinates. The grid is diagramed in Figure 1. The primary grid points, denoted by o's, contain T, q, and π data while u and v data is carried at the secondary grid points, the +'s. The poles are primary grid points, while the equator is at secondary grid points. Grid points are spaced every four degrees of latitude and every five degrees of longitude on

Figure 1 GISS Model Grid. Primary grid points are represented by o's while the +'s denote secondary grid points.

both grids. This makes a total of 3312 points over the globe per grid. The primary grid has 46 points from pole to pole and 72 points around a latitude circle.

The secondary grid contains the same number of points, but the row which falls below the South Pole is meaningless so it only has 45 meaningful latitude circles. Figures 2 and 3 show the primary grid for the Northern Hemisphere and Southern Hemisphere respectively with the topography used by the model given in meters.

A sigma vertical coordinate system is used. Sigma ($\boldsymbol{\sigma}$) is defined by

$$\sigma = \frac{P-P_T}{P_S-P_T} = \frac{P-P_T}{\pi}$$
 (2.1)

where P is the pressure at the level of measurement,

 P_S is the surface pressure at the grid point,

 P_{T} is the pressure at the top of the atmosphere.

Note: P_T is 10 mb in this model. There are nine levels above the surface with sigma at each level (σ_{ℓ}) given by Equation (2.2).

$$\sigma_{\ell} = \frac{\ell - .5}{9}$$
, $\ell = 1, 2 \cdots 9$. (2.2)

Level one is the highest level and nine is the lowest. Note that σ is zero at the top of the atmosphere and one at the surface.

Sigma Coordinates Over Mountains

Divergence fields at constant pressure were computed at several sigma levels using the following equation for divergence:

100		:	10	14	10	22	26	30	34	36	*2	*6	50	54	50	*2	305	70	7	78	92	66	90 9 180 9 175
170	i	:	i		:				i	i	:			,			152						0 175 0 170 0 165
100			•				. !		i	:			:		366	366 732	518	427 752					0 160 0 155
150						:			0			:		:	:	975 1128	1219	853 732	:			0	0 150
140		:	. :	0			0			:	:	:	:	:	1036	1311	884			0	:	0	0 140
130	:	:	:	:	:	:	:	0	. 0			:	1006	1402	1402	975	457		0	8		9	0 130
115		:	•	:	:			792 1341	1311	975 1737 1981	1890	1311 1708 1646	1494	1402 1128 752	1036 671 457	610 0 244	305 183 183	122 152 152	91 91	0			0 120 0 115 0 110
105 109					671	914	1189	1341	1737 1524 914	1646	1524	1169	823 518	349	366	244	183	122	91	30		9	0 105
95				ŏ	910 396		0	305	366	457	457 305	396	335	152	152	152	152	152	457	579		0	0 95
90 45			244	396 335		0	0	30	213	335	305	274	152	91		0	61	213	549	792	701 823	•	0 85 0 80 0 75
75	792	762	579	•	:	8	0	0	0		274	305	305	305	213	91	183	152	0		396		0 70
. 65 60 55	427 244 122	274	427			0	0		0		0	122	244	122	183	0	152	0		853 1311	671		0 65 0 60 0 55
50					6				0		0			ě		701	1524	1372	1006 1676 2195	1676			0 50
35	i						i	. 0	0	ě	0	0				0	1311	2134	2377	2012	1158	0	0 40
45 35 30 25 20 15	:	:	:	0	:	:		0	0		0			:		:	. 0	1097	1510	1433	945		0 30
15				91	91	91	0	0			. 0	:	0	:			0	0	640	864	610	i	0 20
10		122	183 244 305	213 305 335	213 274 396	335 457	366 518 579	427 671	640 579	305 549	427	396	0	91	61		:	. 0			0	. 0	0 15 0 10 0 5.
5	127	335	427 549	427	488	579	610	549	366		0	610 792	486	244	ċ	213		è					0 10
15 20 25	579	671	671	549	549	549 518	486	305	0	305	610	853 732	488	274	183	305	305	274	0	0			0 15
20	702	671 653	792	701	610	488	335	152	0	274 549	488	518 274	366	163	152	152	183	122	:	.0	0	. 0	0. 25
40	914	1189	1158	1158	610	518	488	305 518	732	945	762 792	244 427 396	163 213 213	183 183	152 152 183	155	91 61	0		0	i		0 35 0 40 0 45
50	457	70	396	975	762 457	579 396 244	488 0 549	610 671 864	914 914 943	823 640	274	122	163	213	244	213	122		61	0		ě	0 50 0 55
50 55 60 65 70 75	i			:		0	640 579		1097	792	396 853	427	274 305	396	457 335	305	335	152	:	0		0	0 60
70	:	:		143	244	335	549 823	1798	1920 2591	2530	1859	792 1097	427 579	305	163	152	61	30		0		0	0 70 0 75
98 98		:	•1	152	244	468	1676	3414	3993	2635 3109	2042	1463	1097	701 1067	213 366 579	122 213 366	183	61 152 366	213	0	. 0	0	0 85
100		30		275	427 671	1006	2164	3566	3993	2545	2225	1676 1859 1659	1737	1341	762	468	549	549 518	335	122		0	0 95
105	•		•	213	514	1036			2134	1920	1640	1615	1554	1280	853 975	549	457	396	244			0	0 105
110	-1			30		0	360	152	488	610	792 510	914	823	1036	1036	671	335	183	0		0	:	0 115
150	:	:	:			0		0	0	213	335	516	671	792	853	701	701	305	0	0	0	:	0 125
140		:	0	:				0	30	61	0	396	274	610	671	823 823 792	914	518	152	ě	i		0 135 0 140 0 145
150	0		0	0	:			0	. 0	0	30		0	0	0	732	823 792	457 396 335	0			0	0 150
140		•	9	0		0	0	0		0	0	0	0	244	579	823	823	0	:	0		0	0 160
175	:	:			. 0			0	0	0	0	0		:		640	701	0		:	:	:	0 170

Figure 2 GISS Model Northern Hemisphere Topography Terrain heights are given in meters.

-90 -86 -82 -78 -74	70 -66 -62 -58 -	54 -50 -46 -42 -38	-34 -30 -26 -22	-10 -14 -10 -6 -2
100 2469 1524 0 0 0 175 2469 1494 0 0 0		: : : :	0 0 0	0 0 0 0 0 180
170 2469 1463 0 0 0				0 0 0 0 0 170
140 2449 1402 0 0 0				0 0 0 0 0 165
155 2469 1433 0 61 0			0 0 0	0 0 0 0 0 155
1-5 2409 1554 702 305 0				0 0 0 0 0 145
140 2409 1554 884 457 0				0 0 0 0 0 140
130 2409 1076 1149 853 0	0 0 0 0	0 0 0 0		0 0 0 0 0 130
120 2469 1920 1402 975 468 115 2469 207J 1524 664 0	0 0 0	0 0 0 0		0 0 0 0 0 120
110 2409 2256 1076 914 0				0 0 0 0 0 110
105 2+09 2377 1859 1007 0				0 0 0 0 105
95 2469 2377 1920 1280 610 96 2469 2225 1737 1189 610	0 0 0 0	0 0 0 0		
#5 2469 1481 1402 914 468	0.00		0 0 0	0 0 0 0 0 65
00 2404 1798 1097 671 366 75 2469 1707 914 579 468		0 427 610 518 0		0 1505 1524 1150 945 75
	71 0 0 0 14 701 366 0 0	0 0 0 505 510 671 0 0 0 0 0 510 671 671 671 671 671 671 671 671 671 671	945 1311 1554 1707 823 1128 1372 1494	1951 2042 1463 762 579 70 1524 1260 762 335 244 65
e0 2469 1737 792 0 0		0 0 0 0 152	274 396 518 610 61 122 244 335	640 549 335 163 163 60 396 366 274 213 152 55
50 2+69 1766 762 0 0			0 0 213 396	457 427 335 213 122 80
48 2409 1798 623 0 0			0 0 0 335	488 457 366 213 91 45 274 335 274 183 0 40
35 2409 1981 1097 G 0 30 2409 2103 1372 610 0			: : : :	0 0 0 91 0 35
45 2469 2425 1676 1006 0				4 4 4 4 25
28 2469 2347 1961 1494 623 15 2469 2469 2256 1890 1158			: : : :	0 0 0 0 0 20
10 8409 2560 2438 2164 1341 5 2409 2652 2021 2408 1615	0 0 0			0 0 0 0 10
8 2469 2713 2743 2621 1951 1 8 2469 2774 2865 2804 2225 11	0 0 0			
10 2469 2604 2957 2926 2347 12	10 0 d			0 0 0 0 305 10
15 2409 2665 3048 3016 2408 13 26 2469 2926 3139 3078 2438 13	280 0 0 0		213 516 823 975	1067 1097 1036 853 671 20
25 2409 2967 3231 3139 2499 13 30 2409 3018 3292 3200 2560 13	0 0 0	0 0 0 0	0 671 914 914	732 853 975 1126 1128 30
35 2409 3048 3322 3292 2652 1	33 0 0 0		0 0 0 335	427 549 701 945 1097 35
45 2469 3109 3383 3322 2743 19	07 0 0 0		0 0 152	183 0 0 0 0 45
30 2469 3169 3353 3231 2743 16 35 2469 3169 3292 3169 2591 17				0 122 0 0 0 50
60 2469 3139 3261 2926 2286 1	02 0 0 0			0 0 0 0 0 65
70 2469 3170 3322 2865 1981				0 0 0 0 70
75 2469 3170 3363 3046 2225 11 60 2469 3170 3414 3231 2591 14	28 0 0 0		: : : :	0 0 0 0 75
#5 2469 3170 3444 3363 2696 17 90 2469 3139 3444 3444 3048 19	757 0 0 0		: : : :	0 0 0 0 0 85
95 2469 3169 3414 3444 3078 2	03 884 0 0			0 0 0 0 0 95
100 2469 3078 3353 3363 3018 23 105 2469 3018 3261 3292 2926 20	12 853 0 0		: : : :	0 0 0 0 61 105
110 2409 2957 3170 3173 2835 18			0 0 122 91	0 0 0 0 0 110
	0 0 0	1 1 1 1	30 152 244 213 0 213 305 274	152 0 0 0 0 120
130 2469 2/74 4835 2035 2062 19	20 853 0 0		0 213 305 305	183 61 0 0 0 130
135 2409 2743 2713 2713 2560 10			0 213 274 274	183 61 0 0 0 135
145 2469 2591 2449 2406 2164 1.	72 0 0 0	0 0 0 30 0	213 305 244 163 163 244 163 0	91 0 0 346 0 145
195 2409 2408 2104 2012 1707	75 0 0 0			0 0 0 0 0 155
165 2469 1/37 0 0 488	71 0 0 0		: : : :	0 0 0 0 0 160
176 2469 1585 0 0 0	: : : :	0 0 0 61 0	: : : :	0 0 0 0 170

Figure 3 GISS Model Southern Hemisphere Topography Terrain heights are given in meters.

$$\nabla_{\mathbf{p}} \cdot \mathbf{W} = \frac{1}{\mathbf{a}} \left[\frac{1}{\cos \phi} \frac{\partial \mathbf{u}}{\partial \lambda} + \frac{\partial \mathbf{v}}{\partial \phi} - \mathbf{v} \tan \phi \right]$$

$$-\frac{\sigma}{\pi} \left[\frac{\partial \mathbf{u}}{\partial \sigma} \left(\frac{1}{\mathbf{a} \cos \phi} \frac{\partial \pi}{\partial \lambda} \right) + \frac{\partial \mathbf{v}}{\partial \sigma} \left(\frac{1}{\mathbf{a}} \frac{\partial \pi}{\partial \phi} \right) \right]. \tag{2.3}$$

The finite difference form of Equation (2.3) which was used is

$$(\nabla_{p} \cdot \mathbf{V})_{\mathbf{i},\mathbf{j}} = \frac{1}{a} \left[\frac{1}{\cos \phi_{\mathbf{j}}} \frac{u_{\mathbf{i}+1},\mathbf{j}^{-}u_{\mathbf{i}-1},\mathbf{j}}{\Delta \lambda} + \frac{v_{\mathbf{i},\mathbf{j}+1}^{-}v_{\mathbf{i},\mathbf{j}-1}}{\Delta \phi} \right]$$

$$- v_{\mathbf{i},\mathbf{j}} \tan \phi \right] \frac{\sigma}{\pi} \left[\frac{u_{\mathbf{i},\mathbf{j}}^{\ell+1} - u_{\mathbf{i},\mathbf{j}}^{\ell-1}}{\Delta \sigma} \left(\frac{1}{a \cos \phi_{\mathbf{j}}} \frac{\pi_{\mathbf{i}+1},\mathbf{j}^{-}\pi_{\mathbf{i}-1},\mathbf{j}}{\Delta \lambda} \right) \right]$$

$$+ \frac{v_{\mathbf{i},\mathbf{j}}^{\ell+1} - v_{\mathbf{i},\mathbf{j}}^{\ell-1}}{\Delta \sigma} \left(\frac{1}{a} \frac{(\pi_{\mathbf{i},\mathbf{j}+1}^{-}\pi_{\mathbf{i},\mathbf{j}-1})}{\Delta \phi} \right) \right] .$$

$$(2.4)$$

After examining these fields, it was suspected that the values over the mountains were spurious. Thus, the following test was conducted. A vertical wind profile, constant at a given pressure, was selected and entered at all grid points. Figure 4 illustrates the wind profile, The divergence was then computed for several sigma levels for the π field of 002/8 FEB 76 using Equation (2.4). Values over the oceans were small (order $10^{-8}~\text{sec}^{-1}$ or smaller) as they should have been. However, over mountains such as the Andes, values on the order of $10^{-6}~\text{sec}^{-1}$ were obtained. These values occurred because of the steep slopes of the sigma surfaces as they cross over the mountains. It is not possible to correctly approximate the derivatives involved by finite differences for the coarse grid used in this version of the GISS model. At this point the decision was made to interpolate the wind data to constant pressure levels to partially circumvent this problem.

Figure 4 Test Wind Profile--wind speed is in m/sec, pressure is in mb.

Interpolation Scheme

Although the advantages of sigma coordinates are well known, (Phillips,1957), having the data on constant sigma surfaces proved to be inconvenient for this study. As seen in the previous section, it was not possible to produce meaningful divergence fields on constant sigma surfaces in the vicinity of mountains. Also, if the data was analyzed at constant sigma levels, it could not be readily compared with other data since most analyses of the type performed here are done at constant pressure levels. For these reasons the decision was made to interpolate the data from the sigma levels to constant pressure levels. Three levels were chosen for study, 200 mb, 500 mb, and 850 mb.

A cubic spline was used for the interpolation from sigma levels to constant pressure levels. The spline was essentially the one contained in Conte and de Boor (1965). The procedure involves constructing a piecewise-cubic polynomial which interpolates the function at each of the known points. This is done by constructing a certain cubic polynomial of the form

$$P_{i}(x) = a_{1,i} + a_{2,i}x + a_{3,i}x^{2} + a_{4,i}x^{3}$$
 (2.5)

for each sub-interval so that the resulting piece-wise cubic interpolant is twice continuously differentiable,

$$P_{i-1}(x_i) = P_i(x_i)$$
, i=2, 3,...N-1

where N is the number of known points. A piece-wise cubic interpolant of this form is known as a cubic spline.

The subroutine developed for use in this interpolation required

knowledge of the function values at each known point plus the slope of the function at the two end points. The end point slopes were found by finding the derivative of a quadratic polynomial passing through the end point and the two adjacent points. The subroutine then used Gauss elimination to solve for the coeffecients $a_{1,i}$, $a_{2,i}$, $a_{3,i}$ and $a_{4,i}$ of Equation (2.5). A minimum of four points are needed for the cubic spline of this subroutine.

To interpolate the winds to constant pressure levels it was necessary to have π values at the secondary grid points. These values were derived by summing the π values at the four primary points surrounding a secondary point and dividing by four. Though simple, this procedure produced acceptable results.

Once the π value at a secondary grid point was known, the pressure at each sigma level was computed. The nine pressure values were then passed to the spline as the x_i values and the wind components at each level were passed as the $f(x_i)$ values. The cubic spline then computed f(x) values at 200 mb, 500 mb, and 850 mb.

For levels which were below ground, a value of 999999 was assigned as a flag. The effect of this flagging appears in the 850 mb charts presented in the following chapter.

The cubic spline was tested on several known functions. Table 1 shows the functions, the exact value of the function, and the interpolated value of the function, and the error. From the results one can see that the cubic spline is sufficiently accurate for any reasonably smooth wind profile. The results presented in the next chapters suggest that this interpolation scheme was very successful.

TABLE 1 Test Results for Cubic Spline

Pressure Level (mb)	Exaet Value (m/sec)	Interpolated Value (m/sec)	Error (m/sec)	Exact Value (m/sec)	Interpolated Value (m/sec)	Error (m/sec)
	Function:	Function=10 ln((1050-P)/100)	(100)	Function	Function=50 cos(P/100)	
200	22.51	22.51	.208-02 .547-03	23.43	27.02 -20.81	.359+01
004	18.72	18.72	240-03	-32.66	-32.68 -14.18	260-01
200	25.5 25.5 25.5	15.85 25.85	169-02	47.98	48.01	327-01
800	3.85	9.16	.238+00	-7.99 -42.74	-7.28 -45.56	282+01
	Function	Function=((1500-P)/500) ⁴	_	Function=sinh((-0071	P)/275)
100	61.51	61.47	.399-01	56.67 39.22 27.30	56.49 39.26 27.29	.491-01
200	23.43 16.00 16.00	23.43	472-03	18.96	18.96	206-02
800 800 800	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	10.50 6.55 3.84	.157-03 .106-02 .461-02	4.38 4.38	4.5° 4.3° 4.3°	. 142-03 . 980-03 . 321-02
006	2.05	2.07	.190-01	2.99	3.00	.138-01

CHAPTER III

TIME-AVERAGED FIELDS

Time-averaged fields of several quantities were constructed for 200 mb, 500 mb, and 850 mb levels. These fields are presented in this chapter with a discussion of how they compare with similar fields computed from other data. It should be noted that for both hemispheres positive values of u denote flows from west to east and positive v values indicate flows from south to north.

Wind Fields

For each grid point the time-averaged zonal and meridional wind components were defined in the usual manner with Equations (3.1) and (3.2).

$$\overline{u} = \frac{1}{T} \int_{0}^{T} u dt$$
 (3.1)

$$\overline{v} = \frac{1}{T} \int_{0}^{T} v dt$$
 (3.2)

u = zonal wind

 \overline{u} = time-averaged zonal wind

v = meridional wind

 \overline{v} = time-averaged meridional wind

T = time interval

The quantities \overline{u} and \overline{v} were evaluated by Equation (3.3);

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{3.3}$$

with x = u or v. For this sample N = 70. Figures 5, 6, and 7 show the \overline{u} fields for 200 mb, 500 mb, and 850 mb respectively. Figures 8, 9, and 10 display the corresponding \overline{v} fields. The asterisks on the 850 mb charts represent grid points where the 850 mb surface is below the surface of the earth in the model.

At each grid point the standard deviation (SD) for the above fields was also computed as follows:

$$SD = \{ \frac{1}{N} \left[\sum_{i=1}^{N} x_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} x_i \right)^2 \right] \}^{1/2}$$
 (3.4)

where N = 70 and $x_i = u_i$ or v_i .

Figures 11 and 12 present the standard deviations of the \overline{u} and \overline{v} fields respectively at 500 mb. The standard deviations at the other levels showed similar patterns so they are not included.

A comparison of the time-averaged fields with fields from other data sets, (Van Loon, 1971), (Sadler, 1975), showed good agreement and indicated that the time-averaged wind patterns for February 1976 conformed closely to expected values. Some points of interest on the \overline{u} charts, include the band of pronounced westerly flow at all levels in the Southern Hemisphere centered around 48° S latitude, the strong westerly flow at 200 mb in the Pacific centered about 4° S, and the easterly flow at 200 mb in the Southern Hemisphere tropics which seems

Figure 5 Time-average of u wind component at 200 mb (m/sec).

Figure 6 Time-average of u wind component at 500 mb (m/sec).

Figure 7 Time-average of u wind component at 850 mb (m/sec); asterisks indicate areas where 850 mb surface is below ground.

Figure 8 Time-average of v wind component at 200 mb (m/sec).

Figure 9 Time-average of v wind component at 500 mb (m/sec).

Figure 10 Time-average of v wind component at 850 mb (m/sec); asterisks indicate areas where 850 mb surface is below ground.

Figure 11 Standard deviation of time-averaged u wind component at 500 mb (m/sec).

Figure 12 Standard deviation of time-averaged v wind component at 500 mb (m/sec).

to correspond with the continents. Also, the \overline{u} fields show that the expected maximums of westerly flow in the Northern Hemisphere are visible at all levels. They occur along the eastern United States, over northern Africa, and off the coast of Asia.

Extensive easterly flow is evident at 850 mb throughout much of the tropics. This 850 mb easterly flow shows a distinct maximum near the equator under the maximum of the 200 mb westerly jet. This may represent the Walker circulation described by Krishnamurti et al. (1973).

At all levels standard deviations of \overline{u} are generally smaller than the corresponding value of \overline{u} . For the 200 mb and 500 mb levels the SD values are 25 - 50 % of \overline{u} . The standard deviations of \overline{v} are generally larger than \overline{v} at all levels. Many SD values are twice the value of \overline{v} and sometimes the SD is an order of magnitude larger than \overline{v} . The fact that \overline{v} shows more variability than \overline{u} is consistant with a pattern of waves traveling around the latitude circles.

The \overline{v} fields show a high degree of vertical continuity when the three levels are compared and indicate good resolution of the vertical characteristics of the waves. A comparison of the long wave patterns with the continents supports the hypothesis that large land masses play a primary role in the production of the long waves.

It is interesting to note that there are many climatological charts of zonal flow available for many levels, but global charts of the time-averaged meridional flow are not readily available. More charts of this type will probably appear because of the relative ease of producing them from a global model such as this.

Longitude-and-time averaged values of u and v, which are defined by Equation (3.5) were computed using Equation (3.6).

$$x_{o} = \frac{1}{2\pi T} \int_{0}^{2\pi} \int_{0}^{T} x dT d\lambda$$
 (3.5)

$$x_0 = \frac{1}{NM} \sum_{j=1}^{M} \sum_{j=1}^{N} (x_j)_j$$
 (3.6)

where $\lambda = longitude$,

 $(x_i)_i = (u_i)_i \text{ or } (v_i)_i$

M = 70 (number of time periods)

and N = 72 (number of longitudinal grid points).

Figure 13 is a vertical cross section for u_0 . Values were computed at 200 mb, 500 mb, and 850 mb. The x's along these three axes represent the points where the isotach values occurred. The M's along the axes indicate points where relative positive maximums occurred, and the N's indicate where the largest absolute values of negative u_0 's occurred. The results for v_0 at the three levels are tabulated in Table 2.

Figure 13 agrees very closely with results obtained by Heastie and Stephenson (1960) for January 1958. There is a slight indication of both the polar jet and the subtropical jet at 500 mb in the Northern Hemisphere. In the Southern Hemisphere the only jet indicated is located about 48°S latitude.

The v_0 values are generally smaller than those of Sadler, (1975), and Oort and Rasmusson (1971), for the tropical latitudes, but are comparable to those which may be inferred from Fig. 1 of Krishnamurti et al, (1973). There is good indication of the northern Hadley cell in the v_0 field and also of the position of the ITCZ at about 20°S

Figure 13 Vertical cross section of time-and-longitude averaged u wind component (m/sec).

 $\begin{tabular}{ll} TABLE 2 \\ Time-and-Longitude Averaged v Wind Component \\ \end{tabular}$

Latitude	850mb	500mb	200mb
84N	0	2	.1
80N	.1	3	0
76N	3	3	1
72N	3	1	5
68N	2	2	3
64N	2	2	3
60N	3	4	4
56N	•5 •3	5	2
52N	•3	2	2
48N	.1	2	2
744N	.1	.0	3
40N 36N	.2	.2	1
32N	.0	.1	0 2
28N	.1	.3	0
24N	.0	.4	.8
20N	0	.3	1.2
16N	1	.4	1.6
12N	3	.6	1.3
8N	5	•7	1.4
4N	5	•3	1.0
0	8	•3	.7
45	-1.0	3	.4
88	7	3	.1
125	6	3	.0
168	5	2	2
205	2	2	7
245	1	2	4
28 s 32 s	.0	1 .0	4 .1
36S	.1	0	:
40S	.1	1	3
445	i	-:i	3
485	0	.1	.0
528	1	.1	.1
568	1	.1	0
60 s	.0	1	2
648	1	2	2
68 s	2	1	2
728	2	0	2
76 s	.1	1	1
80S	2	.0	0
8 4 S	.0	.1	0

Units are m/sec

at 850 mb. It also appears that an equator-ward slope with height is detectable for the ITCZ.

Time-Averaged Kinetic Energy Fields

The standing kinetic energy per unit mass (SKE) at each point is defined as:

$$SKE = \frac{\overline{u}^2 + \overline{v}^2}{2} . \qquad (3.8)$$

SKE fields for the three levels were computed from the time-averaged wind fields. Figures 14 and 15 are the 200 mb SKE fields for the Northern and Southern Hemispheres respectively. Figures 16, 17, 18 and 19 are the corresponding fields for 500 mb and 850 mb.

These charts show the average jet stream positions. Three distinct jets are detectable in the Northern Hemisphere in mid-latitudes at 200 mb and 500 mb. One along the East Coast of the United States, one over northern African and the Middle East, and the strongest one off the coast of Asia. At 850 mb there are only two wind maxima, the one off the East Coast of the United States, which is the strongest, and the one off the coast of Asia. The 500 mb chart shows some indication of the flow splitting and going around the Tibetian high country. The locations of the jet cores are in good agreement with climatological charts for January and February, (Namias, 1963), (Sadler, 1975).

In the Southern Hemisphere only one mid-latitude jet is detectable but it appears at all three levels. This jet is centered along the 48° S latitude line and runs west to east. This is in constrast to the Northern Hemisphere jets which are oriented from southwest to northeast. The position of this jet core, centered about 48° S latitude and between

Figure 14 Standing kinetic energy per unit mass for N.H. at 200 mb (m²/sec²); dashed isolines are for values of 500, 1000, 1500 and 2000; dotted isoline denotes a value of 750.

a la de de de de la constante

Figure 15 Standing kinetic energy per unit mass for S.H. at 200 mb (m²/sec²); dashed isolines are for a value of 500, dotted isolines denote 750 values.

Figure 16 Standing kinetic energy per unit mass for N.H. at 500 mb (m^2/\sec^2) ; dashed isolines are for values of 200, 300, 400 and 500.

Figure 17 Standing kinetic energy per unit mass for S.H. at 500 mb (m^2/sec^2) ; dashed isolines are for values of 200, 300 and 400.

Figure 18 Standing kinetic energy per unit mass for N.H. at 850 mb (m²/sec²); dashed isolines are for values of 50, 75 and 100; areas where 850 mb surface is below ground are blank.

Figure 19 Standing kinetic energy per unit mass for S.H. at 850 mb (m^2/sec^2) ; dashed isolines are for values of 50, 75, and 100; areas where 850 mb surface is below ground are blank.

37° E and 78° E longitude is also in agreement with other similar analyses, (van Loon, 1971).

In the tropical Pacific area, the westerly jet at 200 mb, which crosses the equator is of interest. The core is at 4° S latitude and the wind speeds are considerably stronger than the February average given by Sadler, (1975). He shows about 45 knots as the maximum where this data has an area with wind speeds of near 60 knots with the maximum about 65 knots. An examination of the \overline{u} , \overline{v} and steady energy charts for 200 mb reveals a large Pacific trough associated with this jet.

Equation (3.8) defines the time-averaged transient kinetic energy (\overline{TKE}) per unit mass as

$$\overline{TKE} = \frac{1}{7} \int_{0}^{T} \frac{u^{*2} + v^{*2}}{2} dt$$
 (3.8)

with $u^* = u - \overline{u}$ and $v^* = v - \overline{v}$.

The $\overline{\text{TKE}}$ was computed directly from the standard deviation fields of the time-averaged wind components as follows:

$$\overline{SDX}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2$$
 (3.9)

$$x_i = u_i \text{ or } v_i \text{ and } N = 70.$$

$$\overline{\text{TKE}} = \frac{\overline{\text{SDU}}^2 + \overline{\text{SDV}}^2}{2} \tag{3.10}$$

where \overline{SDU} and \overline{SDV} are the standard deviations of \overline{u} and \overline{v} respectively. These fields are depicted in Figures 20, 21, 22, 23, 24 and 25.

Figure 20 Time-averaged transient kinetic energy per unit mass for N.H. at 200 mb (m²/sec²); isolines are for SKE and are from Figure 14.

Figure 21 Time-averaged transient kinetic energy per unit mass for S.H. at 200 mb (m²/sec²); isolines are for SKE and are from Figure 15.

Figure 22 Time-averaged transient kinetic energy per unit mass for N.H. at 500 mb (m^2/sec^2) ; isolines are for SKE and are from Figure 16.

The second of th

Figure 23 Time-averaged transient kinetic energy per unit mass for S.H. at 500 mb (m^2/sec^2); isolines are for SKE and are from Figure 17.

Figure 24 Time-averaged transient kinetic energy per unit mass for N.H. at 850 mb (m²/sec²); isolines are for SKE and are from Figure 18; areas where 850 mb surface is below ground are blank.

Figure 25 Time-averaged transient kinetic energy per unit mass for S.H. at 850 mb (m²/sec²); isolines are for SKE and are from Figure 19; areas where 850 mb surface is below ground are blank.

The isotachs from the corresponding standing kinetic energy charts are included on the $\overline{\text{TKE}}$ fields. This makes it possible to compare the transient energy with the average position of the wind maxima.

By using the \overline{u} charts it is possible to compare the transient energy on the upwind and downwind sides of mountains in several locations. By following along the 44° N latitude circle it is possible to detect a drop in the transient energy to the east of the Rockies and the Himalayas. This suggests that the mountains are responsible for deflecting the transient eddies.

Time-Averaged Divergence and

Relative Vorticity Fields

Divergence and relative vorticity fields were produced from the time-averaged wind fields. In spherical coordinates, the horizontal divergence and vorticity along a constant pressure surface are given by

DIV =
$$\frac{1}{a \cos \phi} \frac{\partial u}{\partial \lambda} + \frac{1}{a} \frac{\partial v}{\partial \phi} - \frac{v \tan \phi}{a}$$
 (3.11)

and

VOR =
$$\frac{1}{a \cos \phi} \frac{\partial v}{\partial \lambda} - \frac{1}{a} \frac{\partial u}{\partial \phi} + \frac{u \tan \phi}{a}$$
 (3.12)

where a is the radius of the earth, λ is longitude and φ is latitude.

To compute the divergence and the vorticity, Equations (3.11) and (3.12) were put into the following finite-difference form:

$$DIV_{i,j} = \frac{1}{a} \left[\frac{u_{i+1,j} - u_{i-1,j}}{\Delta \lambda \cos \phi_{j}} + \frac{v_{i,j+1} - v_{i,j-1}}{\Delta \phi} - v_{ij} \tan \phi_{j} \right]$$
(3.13)

$$VOR_{i,j} = \frac{1}{a} \left[\frac{v_{i+1,j} - v_{i-1,j}}{\Delta \lambda \cos \phi_{j}} - \frac{u_{i,j+1} - u_{i,j-1}}{\Delta \phi} + u_{ij} \tan \phi_{j} \right].$$
(3.14)

Centered space differencing was used to approximate the derivatives.

To aid in the identification of clusters, these fields were output in two parts. One part has the negative values blanked out and the other omits the positive values. The positive, time-averaged divergence fields are contained in Figures 26 , 27 and 28 . Figures 29 , 30 and 31 show the corresponding negative divergences. Positive time-averaged vorticities for 500 mb are in Figure 32, while Figure 33 has the negative values. The vorticity charts at 200 mb and 850 mb showed similar patterns so they were not included. It should be noted that positive relative vorticities correspond to cyclonic vorticity in the Northern Hemisphere and anticyclonic vorticities in the Southern Hemisphere. Standard deviations for the above charts were calculated using Equation (3.4) with X₁ replaced by the divergence or the relative vorticity. Figures 34 and 35 are the standard deviations of the time-averaged divergences and vorticity fields at 500 mb.

A comparison of the time-averaged divergence fields with their standard deviations shows that the standard deviations are generally larger than the time-averaged divergences. At some points the standard deviations are an order of magnitude larger. This suggests that the time-averages are small numbers resulting from oscillations between

Figure 26 Positive time-averaged divergence at 200 mb $(x10^{-6}sec^{-1})$.

Figure 27 Positive time-averaged divergence at 500 mb $(x10^{-6}sec^{-1})$.

Figure 28 Positive time-averaged divergence at 850 mb ($x10^{-6}sec^{-1}$).

Figure 29 Negative time-averaged divergence at 200 mb ($x10^{-6}sec^{-1}$).

Figure 30 Negative time-averaged divergence at 500 mb ($x10^{-6}sec^{-1}$).

Figure 31 Negative time-averaged divergence at 850 mb ($x10^{-6}sec^{-1}$).

Figure 32 Positive time-averaged relative vorticity at 500 mb $(x10^{-6}sec^{-1})$.

Figure 33 Negati time-averaged relative vorticity at 500 mb (x10-1).

Figure 34 Standard deviation of time-averaged divergence at 500 mb $(x10^{-6}sec^{-1})$.

Figure 35 Standard deviation of time-averaged relative vorticity at $500 \text{ mb } (x10^{-6}\text{sec}^{-1})$.

relatively large positive and negative divergence values.

Although the time-averaged divergence fields do not show patterns which are as organized as the patterns on the time-averaged vorticity charts, there are several clusters of interest. These clusters are best seen at 200 mb where organized areas of positive devergence are present in the tropics over South America, Africa and in the vicinity of Australia. These areas are similar, except for an eastward shift of about 30° longitude, to those which may be inferred from Fig. 1 of Krishnamurti et al, (1973). A smaller cluster is found over and south of India. Also, there is some evidence of organized patterns associated with the Northern Hemisphere jet streams in the Pacific and Atlantic Oceans.

In the Southern Hemisphere tropics, it is interesting to note that the largest standard deviations of the time-averaged divergences generally occur in conjunction with the clusters mentioned above. GOES movie loops show that these regions in South America and Africa often experience extensive diurnal convective development. Thus, one may speculate that the large standard deviations in these areas reflect diurnal oscillations associated with the growth and decay of large scale convection.

Distinct, organized patterns appear in the time-averaged relative vorticity charts in both hemispheres. These patterns correlate well with the jet stream positions which produces confidence in the credibility of the time-averaged vorticity fields. The standard deviations of these fields are of the same order of magnitude as the fields themselves. These patterns imply that the vorticity fields do not vary with time as much as the divergence fields.

CHAPTER IV

KINETIC ENERGY OF THE STANDING WAVES

The distribution of the kinetic energy of the standing eddies and the transient eddies, as a function of wave number was computed. This was done for wave numbers 0 to 36 at both 200 mb and 500 mb by using a Fourier analysis to decompose the time-and-longitudinally averaged kinetic energy into an energy spectrum. Contributions to the kinetic energy from the zonal and meridional wind components were calculated separately.

The energy spectrum for the transient energy is presented in Chapter V, while the spectrum for the standing eddies is covered in this chapter. A comparison of the two energy spectrums is included in the discussion of the results in Chapter V. It should be noted that throughout this discussion the term kinetic energy implies kinetic energy per unit mass, since the total kinetic energy has been defined as

$$KE = \frac{u^2 + v^2}{2}. (4.1)$$

Equation (3.6) defined the time-averaged kinetic energy of the standing eddies (SKE) for each grid point in terms of \overline{u} and \overline{v} . However, \overline{u} and \overline{v} are defined by:

$$\overline{u} = u_0 + u^* \tag{4.2}$$

$$\overline{v} = v_0 + v^* \tag{4.3}$$

where u_0 , v_0 are the time-and-longitudinally averaged quantities defined by Equation (3.5) and u', v' represent deviations from the average values. Substitution for \overline{u} and \overline{v} in Equation (3.5) yields

SKE =
$$\frac{(u_0 + u^2)^2}{2} + \frac{(v_0 + v^2)^2}{2}$$
. (4.4)

To find the longitude-averaged standing kinetic energy for a given latitude, Equation (4.4) needs to be integrated around the latitude circle. Since \mathbf{u}_0 is independent of longitude and \mathbf{u}' averaged around a latitude circle is zero, the following result is obtained for the \mathbf{u} -component:

$$\frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{\overline{u}^{2}}{2}\right) d\lambda = \frac{u_{0}^{2}}{2} + \frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{u^{2}}{2}\right) d\lambda$$
 (4.5)

where $\frac{u_0^2}{2}$ represents the kinetic energy of the stationary zonal motion, wave number zero, and the integral on the right hand side gives the total longitude-averaged kinetic energy of the standing eddies.

It is possible to express $\overline{u}(\lambda r)$ in terms of a Fourier Series as follows:

$$u(\lambda r) = \overline{A}_0 + \sum_{m=1}^{n} (\overline{A}_m \cos \frac{2\pi\lambda_r}{N\Delta\lambda^2} + \overline{B}_m \sin \frac{2\pi\lambda_r}{N\Delta\lambda^2})$$
 (4.6)

where $\Delta \lambda^{\prime} = a \cos \phi \Delta \lambda$,

 $\lambda_r = r\Delta\lambda^*$

a = radius of the earth,

 ϕ = latitude,

N = number of points around latitude circle (72 for this analysis),

n = N/2,

and r = index denoting the point on the latitude circle.

The coefficients \overline{A}_m and \overline{B}_m , for m \neq 0, are defined as:

$$\overline{A}_{m} = \frac{2}{N} \sum_{r=-n}^{n-1} \overline{u}_{r} \cos \frac{2\pi mr}{N}$$
 (4.7)

and

$$\overline{B}_{m} = \frac{2}{N} \sum_{r=-n}^{n-1} \overline{u}_{r} \sin \frac{2\pi mr}{N} , \qquad (4.8)$$

Since n is even, \overline{B}_n is zero. For m = 0,

$$\overline{A}_0 = \frac{1}{N} \sum_{r=-n}^{n-1} \overline{u}_r$$
 and $B_0 = 0$.

Using the Fourier Series expansion for u and Parseval's Theorem, it is possible to express the longitude-averaged standing kinetic engergy as:

$$\frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{\overline{u}^{2}}{2}\right) d\lambda = \frac{1}{2N} \sum_{r=-n}^{n-1} \overline{u}_{r}^{2} = \frac{\overline{A}_{0}^{2}}{2} + \frac{1}{4} \sum_{m=1}^{n} (\overline{A}_{m}^{2} + \overline{B}_{m}^{2}).$$
(4.9)

Comparing Equation (4.5) and (4.9) leads to the conclusion that

$$\bar{A}_0^2 = u_0^2$$
 (4.10)

and

$$\frac{1}{2\pi} \int_{0}^{2\pi} (u^{2})^{2} d\lambda = \frac{1}{2} \sum_{m=1}^{n} (\overline{A}_{m}^{2} + \overline{B}_{m}^{2}). \qquad (4.11)$$

From Equation (4.11) it is evident that the contribution to the longitude-averaged kinetic energy of the standing eddies for a given wave number (SKE_m) can be computed as follows:

$$SKE_{m} = \frac{\overline{A}_{m}^{2} + \overline{B}_{m}^{2}}{2} . \qquad (4.12)$$

Longitudinal averages of kinetic energy for the meridional wind components are found in the same manner by replacing u quantities by the corresponding v quantities.

Equation (4.12) was used to calculate the values of SKE_m for wave numbers 0 to 36 at fourteen latitudes. Values for u and v components were computed separately. The results for wave numbers 0 to 18 are contained in Table 3.

Analysis of these results did not produce anything unexpected. In mid-latitudes much of the standing kinetic energy is contained in wave number zero of the u component. At 200 mb for the u component, there is a shift of the energy to wave numbers 2, 3, and 4 near the equator. In fact, at 4° S and 4° N wave number zero contains essentially no energy at 200 mb. However, at 500 mb the maximum energy is still contained in wave number zero. The increase in the total 200 mb standing

TABLE 3

Decomposed Standing Kinetic Energy
for Waye Numbers 0-18

KE F	OR U	CC	MPC	NEN	TA	T 2	00	MB												
12 4 36 28 20 12 4 -4 -12 -20 -28 -36 -44 -52	206 346 497 721 349 45 1 0 4 2 91 213 404 313	12 19 34 98 19 25 36 32 5 1 0 1 5	15 25 17 1 3 3 28 43 14 1 12 0 2	4 7 22 34 2 7 10 20 10 0 6 1	0 1 0 3 0 1 4 8 7 4 8 1 0 3	0 0 1 0 0 1 1 2 1 0 0 1	0 1 0 2 2 0 1 1 2 1 1 0 1 1	0 0 0 0 0 0 0 0 0 0	000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0TAL 238 400 574 860 377 83 85 110 49 15 122 217 415 332
,	(0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
v= 1	FOR V	. ~	NO.	wet		т э	00	MD												
KE I LAT 52 44 436 28 20 12 4 -4 -12 -20 -28 -36 -44 -52	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11115220000	10 1 0 2 3 3 4 1 2 3 0 0 0	12 8 2 7 12 5 1 0 4 4 1 0 0	2000010002445443	1 1 1 0 1 0 2 0 0 1 1 2 1	1 1 2 1 1 1 0 0 0 1 3 5 3 1	0 1 1 0 0 0 1 1 0 0 0 2 1 0 0	0 0 0 1 1 0 0 0 1 1 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000000	0000000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000	TOTAL 27 14 9 14 24 18 12 8 17 27 22 13
	K O	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
KE 52 44 36 28 20 12 -4 -12 -20 -28 -36 -44 -52	76 148 122 107 67 1 6 2 3 3 12 70 212	6 14 5 18 13 2 3 1 2 0 0 2	12	4 6 7 11 4 4 1	0 1 0 0 1 1 1 2 1 0 1	100000000000000000000000000000000000000	010000000000000000000000000000000000000	MB 000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	139 139 139 139 139 126 69 77 218 172
1	K O	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
							00	MB												
KE	FOR 1	Y C	OMP	ONE	A TH	11 3														
LAT 52 44 4 36 28 20 12 4 - 12 - 20 - 28 - 36 - 44 - 52	000000000000000000000000000000000000000	101000000000000000000000000000000000000	0MP	6 6 3 0 1 0 0 0 0 0 0 0 0 0 1	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	001000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	010000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	200000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	16 10 7 4 4 2 1 1 2 2 2 3 4 4 4

kinetic energy at 4° S is a reflection of the mid-Pacific jet.

For all latitudes there is little detectable energy above wave number 5. Another contrast between 200 mb and 500 mb is the latitude at which the maximum total KE occurs in the Northern Hemisphere. At 200 mb the maximum occurs at 28° N latitude, while the 500 mb maximum occurs at 44° N. The same trend appears in the distribution of maximum energy for wave number zero. This indicates that the maximum kinetic energy at 200 mb is associated with the sub-tropical jet, while the maximum energy at 500 mb occurs in conjunction with the polar jet. It is obvious from this example that an apparent trend at one level of the atmosphere cannot always be extrapolated to a different level.

The v component shows a preference for wave number three in the Northern Hemisphere and wave number four in the Southern Hemisphere at both 200 mb and 500 mb. The 200 mb total column shows a maximum in the sub-tropics in both hemispheres, but the 500 mb v component has only one significant maximum at 52° N. This again suggests that the maximum energy at 500 mb is associated with the polar front. At 200 mb it appears there is about as much standing kinetic energy of the v component associated with the polar jet as with the sub-tropical jet. The results obtained from the spectral analysis of the DST data agree with the general features of those reported in other investigations (see i.e., Kao and Wendell, 1970).

Also, Winn-Nielson (1967) found that the N.H. maximum of the zonal kinetic energy occurred in February and the minimum occurred in July. Thus, it can be assumed that the values given in Table 3 represents approximate maximum values for the Northern Hemisphere and minimum values for the Southern Hemisphere.

CHAPTER V

KINETIC ENERGY OF TRANSIENT WAVES

The time-and-longitude averaged kinetic energy for the transient waves was decomposed in wave number space in a manner similiar to that described in Chapter IV. The transient part of the flow is defined as the instantaneous departure from the time-averaged flow as follows:

$$u^* = u - \overline{u} \tag{5.1}$$

and

$$v^* = v - \overline{v} \tag{5.2}$$

where \overline{u} , \overline{v} are defined by equations (3.1) and (3.2), u, v are the actual wind components for each observation and u^* , v^* are the components of the transient flow.

Substitution of u_r^* for \overline{u}_r in Equation (4.9), results in the following equation for the longitude-averaged transient energy:

$$\frac{1}{2\pi} \int_{0}^{2\pi} \frac{(u^{\star})^{2}}{2} d\lambda = \frac{1}{2N} \sum_{r=-n}^{n-1} (u^{\star}_{r})^{2} = \frac{A^{\star 2}}{2} + \frac{1}{2} \sum_{m=1}^{n} (A^{\star 2}_{m} + B^{\star 2}_{m})$$
(5.3)

where A_m^* and B_m^* , for $m \neq 0$, are defined by

$$A_{\rm m}^{\star} = \frac{2}{N} \sum_{r=-n}^{n-1} u_{\rm r}^{\star} \cos \frac{2\pi mr}{N}$$
 (5.4)

and

$$B_{m}^{*} = \frac{2}{N} \sum_{r=-n}^{n-1} u_{r}^{*} \sin \frac{2\pi mr}{N} . \qquad (5.5)$$

For m = 0,
$$A_0^* = \frac{1}{N} \sum_{r=-n}^{n-1} u_r^*$$
 and $B_0^* = 0$.

All quantities except the starred ones are defined the same as in Chapter IV. To calculate the time-and-longitude averaged transient energy, it is necessary to integrate Equation (5.3) over the time period in the following manner:

$$\frac{1}{2\pi T} \int_{0}^{T} \int_{0}^{2\pi} \frac{(u^{*})^{2}}{2} d\lambda dt = \frac{1}{2NT} \int_{0}^{T} (\sum_{r=-n}^{n-1} \cdot u_{r}^{*2}) dt$$

$$= \frac{1}{T} \int_{0}^{T} (\frac{A_{0}^{*2}}{2} + \frac{1}{4} \sum_{m=1}^{n} (A_{m}^{*2} + B_{n}^{*2})) dt . \qquad (5.6)$$

Moving the integral on the right hand side of Equation (5.6) inside the wave number summation and replacing it with a summation over time yields:

$$\frac{1}{T} \int_{0}^{T} \frac{1}{2N} \left(\sum_{r=-n}^{n-1} u_{r}^{\star 2} \right) dt = \frac{1}{M} \sum_{i=1}^{M} \frac{A_{i}^{\star 2}}{2} + \frac{1}{4M} \sum_{m=1}^{n} \left[\sum_{i=1}^{M} (A_{m}^{\star 2} + B_{m}^{\star 2})_{i} \right]$$
(5.7)

where M = 70.

If it is considered that the transient flow is composed of a

zonally average value and a deviation from this average, u* can be written as

where u_0^* = transient part of zonal average and $u^{*'}$ = transient eddy.

Applying the above definition to the terms on the right hand side of Equation (5.7) results in $A_0^{\star 2} = u_0^{\star 2}$ and

$$\frac{1}{2\pi T} \int_{0}^{T} \int_{0}^{2\pi} \frac{(u^{\star *})^{2}}{2} d\lambda dt = \frac{1}{4M} \sum_{m=1}^{n} \left[\sum_{j=1}^{M} (A_{m}^{\star 2} + B_{m}^{\star 2})_{j} \right].$$

Thus, the contribution to the time-and-longitude average transient kinetic energy for each wave number (\widetilde{TKE}_m) can be computed from

$$\widetilde{TKE}_{m} = \frac{1}{4M} \sum_{i=1}^{M} (A_{m}^{*2} + B_{m}^{*2})_{i}$$
 (5.8)

The results of using Equation (5.8) to compute the values of $\widetilde{\mathsf{TKE}}_{\mathsf{m}}$ are presented in Table 4. The latitudes and wave numbers are the same as for the standing eddies.

Again the results are not unexpected. Table 4 shows several contrasts when compared with Table 3. The total transient kinetic energy of the u component is much smaller than the standing kinetic energy in mid-latitudes. At the equator, the contributions from the u components are about the same magnitude for the transient and standing kinetic energies. For the v components the transient kinetic energy is significantly larger than the standing kinetic energy at all latitudes.

TABLE 4

Decomposed Time-averaged Transient Kinetic

Energy for Wave Numbers 0-18

52 44 36 28 20 12	6 4 3 6 3	22 8 17 10 9	14 24 17 9	20 19 19 5 6	11 10 13 6 3	10 6	7 7 4 4	6 6 4 2	4 7 4 2 3	3 3 2 2	2 2 2 1	1 2 1 2	1 2 1 1	1 2 1 2	1 1 1	1 1 1 2	1 1 1	1 1 1	1 1 1	9/ 111 110 1117
-4 -12 -20 -28 -36 -44 -52	4 4 2 2 3 3 1 2	6 6 4 5 4 11 9	6 5 4 6 9 12 7 9	8 6 6 6 6 13 6 5	5 4 8 5 8 7 5	3 5 6 4 7 10 4 7	4 3 4 3 4 5 3 3	2 2 4 3 4 5 4 3 4	4 2 3 3 3 2 5 3 2 2	22332223421	2 2 2 1 1 2 2 2 2 3 2 2	2 2 3 1 2 2 1 2	2 2 2 1 2 2 1	2 2 2 1 2 1 2 1 1	1 2 2 1 1 1 1	2 1 2 1 1 1 1 1 1 1	1 1 1 1 0 1	1 1 1 1 1 0	1 1 1 1 1 0	11 7 6: 6: 6: 6: 6: 6: 6: 6: 6: 6: 6: 6: 6:
K	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
KE FO	R	α)MP(ONEN	NT /	AT :	200	MB												
LAT 52 44 36 28 20 12 4 -4 -12 -20 -28 -36 -44 -52	00000111100111000	21211221111111111	842443321112222	12 10 5 4 5 2 3 3 1 1 1 2 2 4 5	21 14 9 5 4 3 3 2 1 2 3 4 6 6	16 16 19 16 8 4 4 4 2 3 5 9	10 13 12 9 6 3 3 2 2 3 6 7 7	11 15 16 15 8 4 4 2 3 4 4 7 12 7	6 12 15 13 8 4 3 3 2 3 5 5 5 5 5	46886422235544	234332223345444	2343322212433333	1 2 3 3 3 2 1 1 2 2 2 2 2 2 2 2 2 2	1 2 2 2 2 1 1 1 2 2 3 2 2 2 2	1 1 1 1 1 1 1 1 2 1 2 1	111111111111111111111111111111111111111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	105 113 112 105 81 61 54 54 65 73 71 85
K	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
	Ĭ	•		Ī		Ť	٠	•		Ī										
KE FO LAT 52 44 36 28 20 12 4 -4 -12 -20 -28 -36 -44 -52					NT / 8 6 6 6 4 2 2 2 2 3 3 4 4			MB 3 3 3 3 2 1 1 1 1 1 1 2 2 2 2	3 3 3 2 2 2 1 1 1 1 1 1 2 1	122111111111111111111111111111111111111	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111111111111111111111111111111111111111	111111111111111111111111111111111111111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111111111111111111111111111111111111111	111111111111111111111111111111111111111	0 0 0 1 1 1 1 1 1 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0		8: 7: 5: 5: 3: 3: 3: 3: 2: 2: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3:
LAT 52 44 36 28 20 12 4 -4 -12 -20 -28 -36 -44	7 3 4 3 2 2 2 1 1 1 1 1 1 1 1	14 15 6 7 3 2 3 2 3 2 4 6	111 9 8 8 5 3 3 1 3 3 3 3 3	15 14 6 9 4 3 3 2 2 2	86 66 42 22 23 32 34	7 6 4 4 4 3 2 2 1 1 1 2 4 2	500 4 3 3 4 2 1 1 1 1 1 2	MB 3 3 3 3 2 1 1 1 1 1 1 1 1	3 3 3 2 2 2 1 1 1 1 1 1 1 1 1	122111111111111111111111111111111111111	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111111111111111111111111111111111111111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111111111111111111111111111111111111111	111111111111111111111111111111111111111	0 0 1 1 1 1 1 1 1 1 0 0 0 0	0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0	000000000000000000000000000000000000000	82 77 5. 5. 5. 5. 5. 5. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.
LAT 52 44 36 28 20 12 4 -1 -12 -20 -28 -36 -44 -52 K	7 3 4 3 2 2 2 1 1 1 1 1 1 2 1 0	14 15 6 7 3 2 3 2 2 4 6 6 1	111 9 8 8 5 3 3 3 3 3 3 3 4	15 14 6 9 4 3 3 2 2 2 2 2 4 5 2	8 6 6 6 4 2 2 2 2 3 3 4 4 4 4	7 6 4 4 3 2 2 1 1 1 2 4 2 4 5	500 4 3 3 4 2 1 1 1 1 1 2 2 1	MB 3 3 3 3 2 1 1 1 1 1 2 2 2 7	3 3 3 2 2 2 1 1 1 1 1 1 2 1	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111111111111111111111111111111111111111	111111111111111111111111111111111111111	111111111111111111111111111111111111111	111111111111111111111111111111111111111	111111111111111111111111111111111111111	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	8: 7: 5: 5: 3: 3: 3: 3: 2: 2: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3:

Also, the distribution of energy with respect to wave number is different for the transient energy.

The transient kinetic energy of the u component is concentrated in wave numbers 1 to 4 with only a small amount of the total in wave number one. For the v component the transient kinetic energy is clustered between wave numbers 3 and 8. However, in the tropics, the transient energy is spread out fairly evenly over all the wave numbers. This implies that there is no dominate mechanism in the tropics in this data set which can be associated with the transient kinetic energy.

It should also be noted that some of the kinetic energy in the larger wave numbers may be due to gravity type waves. Some are probably real but others may be induced by the numerical approximations of the model.

The supposition that the model is producing some spurious waves results from the fact that at some latitudes there was an increase in the kinetic energy around wave numbers 33-36.

CHAPTER VI

SUMMARY AND CONCLUSIONS

The analyses presented here indicate that the DST data assimilated by the GISS model is useful for global studies of the general atmospheric circulation. The time-averaged charts presented in Chapter III correlated very well with previously produced charts. A close look at the time-averaged charts reveals that this data set is only valid between about 60° S and 60° N. Poleward of these latitudes there are many places where two or more grid points have the same values. Lack of sufficient data and the closeness of grid points probably contributed to this duplication. Given sufficient data to totally initialize the grid, the GISS model should provide fine quality data for the entire globe. A positive feature of the DST data is the ease with which it can be handled in horizontal arrays.

Interpolation of the wind components from sigma levels to constant pressure levels by a cubic spline appears to have been very successful. There was some concern as to the effectiveness of interpolating the π fields to wind data points, however, the results support the technique used here.

The success of this technique suggests it could be used to generate winds at most any level, between the top and bottom sigma levels, for which winds are desired. By making full use of the vertical resolution of the model, it should be possible to see the time-and-longitude

averaged meridional circulation in more detail.

It was encouraging to see significate, though small, values of the time-and-longitude averaged meridional wind component which were organized into patterns. Also, the time-averaged values of the meridional wind show organized wave patterns in both hemispheres which are very well defined. Thus, the winds in this data set are much less constrained than in earlier studies.

An original objective of this research was to study the DST divergence fields. The time-averaged divergence showed areas of organization, especially at 200 mb, indicating that the DST data can be used for divergence studies. However, it is uncertain how much detail can be resolved in the divergence fields. The randomness observed in some areas of Figures 26 to 31 may be due to some partial contamination by gravity type waves. This conclusion results from the fact that an increase was observed in the kinetic energy for high wave numbers at some latitudes. Another source of uncertainty for both the vorticity and divergence fields is the mountain effect on the fields. This effect was discussed in Chapter II and was probably greatly reduced by the interpolation to constant pressure levels.

Wave number decomposition of the kinetic energy spectrum around latitude circles is easy to accomplish because of the structure of the grid. Although there were no surprises in the results from Chapter IV and Chapter V, it was noted that there is some difference between the relative amounts of energy carried by waves of a certain wave number at different levels. Thus, to adequately describe the energy transport in the atmosphere, it is important to consider several vertical levels.

Most of the features observed in the data conformed to previously calculated averages. The 200 mb mid-Pacific trough over the equator stands out as a subject worthy of future research. From this data it appears that flow from south of the equator is feeding into the subtropical jet which extends across Central America. A study of the energy transfer involved in this process could prove to be very interesting and informative.

REFERENCES

- Conte, S.D., and Carl de Boor, 1972: <u>Elementary Numerical Analysis:</u>
 <u>An Algorithmic Approach</u>, McGraw-Hill Book Company, New York, 233-240.
- Heastie, H., and P.M. Stephenson, 1960: Upper winds over the world.
 Parts I and II. Geophys. Mem. No. 103, Meteor. Off. London, H.M.
 Stationery Off., 217 pp.
- Kao, S.K., and L.L. Wendell, 1970: The kinetic energy of the large-scale atmospheric motion in wavenumber-frequency space, <u>Journal of the Atmospheric Sciences</u>, <u>27</u>, 359-375.
- Krishnamurti, T.N., M. Kanamitsu, W.J. Koss, and J.D. Lee, 1973: Tropical east-west circulations during the northern winter, <u>Journal of the Atmospheric Sciences</u>, <u>30</u>, 780-787.
- Lorenz, E.N., 1967: The Nature and Theory of the General Circulation of the Atmosphere, World Meteorological Organization.
- Namias, J., 1963: Interactions of circulation and weather between hemispheres, <u>Monthly Weather Review</u>, <u>91</u>, 482-486.
- Oort, A.H., and E.M. Rasmusson, 1971: Atmospheric circulation statistics, NOAA Professional Paper 5, Rockville, Md.
- Phillips, N.A., 1957: A coordinate system having some special advantages for numerical forecasting, <u>Journal of Meteorology</u>, <u>14</u>, 184-185.
- Sadler, J.C., 1975: The upper tropospheric circulation over the global tropics, UHMET-75-05, Dept. of Meteorology, University of Hawaii.
- Somerville, R.C.J., P.H. Stone, M. Halem, J.E. Hansen, J.S. Hogan, L.M. Druyan, G. Russel, A.A. Lacis, W.J. Quirk, and J. Tenenbaum, 1974: The GISS model of the global atmosphere, <u>Journal of the Atmospheric Sciences</u>, <u>31</u>, 84-117.
- Van Loon, H., J.J. Taljaard, R.L. Jenne, and H.L. Crutcher, 1971: Climate of the upper air: southern hemisphere. Vol. II, Zonal Geostrophic Winds. NCAR TN/STR-57 and NAVAIR 50-1C-56, Boulder, Colo., National Center for Atmospheric Research, 43 pp.
- Winn-Nielson, A., 1967: On the annual variation and spectral distribution of atmospheric energy, <u>Tellus</u>, <u>XIX</u> (4), 540-559.

VITA

Name Allan Joseph McGlasson Birthplace Corvallis, Oregon Birthdate April 13, 1945 High School LaGrande Senior High School LaGrande, Oregon University Oregon State University 1963-1967 Corvallis, Oregon College Eastern Oregon State College 1967-1969 LaGrande, Oregon

University University of Utah 1969-1970 Salt Lake City, Utah 1976-1977

Degrees B.S., Oregon State University Corvallis, Oregon

1970 B.S., University of Utah Salt Lake City, Utah

Honorary Societies Phi Kappa Phi, Chi Epsilon Pi

Professional Position Weather Officer United States Air Force