Práctica 0 Preliminares de Análisis

Pablo Brianese

26 de abril de 2021

Definición 1. Dadas $f, g : \mathbb{R}^n \to \mathbb{R}$ ambas en $L(\mathbb{R}^n)$, definimos la convolución de la siguiente manera

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y)dy$$
 (1)

Ejercicio 1. Probar que si $f, g, h \in L^1(\mathbb{R}^n)$ y $\lambda \in \mathbb{R}$, entonces valen:

1.
$$f * g = g * f$$

2.
$$f * (g + h) = f * g + f * h$$
 a la vez que $(g + h) * f = g * f + h * f$

3.
$$f * (g * h) = (f * g) * h$$

4.
$$\lambda(f*q) = (\lambda f)*q = f*(\lambda q)$$

5.
$$||f * g||_1 \le ||f||_1 ||g||_1$$

Observación 1. Las propiedades anteriores se pueden resumir diciendo que $(L^1(\mathbb{R}^n),\|-\|_1)$ es un álgebra de Banach conmutativa con la convolución como producto.

Lema propio 1.
$$\int_{\mathbb{R}^n} h(y) dy = \int_{\mathbb{R}^n} h(x-y) dy$$
 para toda $h \in L^1(\mathbb{R}^n)$.

Demostración. Sea H la clase formada por las funciones $h \in L^1(\mathbb{R}^n)$ que verifican el enunciado. Por la linealidad de la integral, la combinación $\alpha h_1 + \beta h_2$ pertenece a H siempre que $h_1, h_2 \in H$ y $\alpha, \beta \in \mathbb{R}$. Por el teorema de convergencia monótona, si $\{h_m\}_m \subseteq H$ es una sucesión nodecreciente de funciones nonegativas que converge a una función integrable g, entonces $g \in H$. Para concluir, debemos probar que las funciones características integrables están en H. Supongamos que $h \in L^1(\mathbb{R}^n)$ es la función característica $h = \mathbbm{1}_A$ de un conjunto medible $A \subseteq \mathbb{R}^n$ de medida finita. Observemos que $\mathbbm{1}_A(x-y) = \mathbbm{1}_{x-A}(y)$ para todo par $x,y \in \mathbb{R}^n$. A partir de esta relación pordemos calcular como, para todo $x \in \mathbb{R}^n$

$$\int_{\mathbb{R}^n} \mathbb{1}_A(y) dy = \lambda(A) \qquad \int_{\mathbb{R}^n} \mathbb{1}_A(x - y) dy = \int_{\mathbb{R}^n} \mathbb{1}_{x - A}(y) dy = \lambda(x - A) \qquad (2)$$

Ahora la ecuación que necesitamos se sigue de la invarianza por traslaciones (+x) y reflexiones (-) de la medida de Lebesgue, una propiedad que es facil de ver en el caso de los rectángulos que generan su σ -álgebra. Concretamente, sucede $\lambda(A) = \lambda(x-A)$ para todo $x \in \mathbb{R}^n$.

Demostración. 1 Para todo $x \in \mathbb{R}^n$, como consecuencia del lema 1

$$f * g(x) = \int_{\mathbb{R}^n} f(y)g(x - y) dy$$
 (3)

$$= \int_{\mathbb{R}^n} f(x-y)g(x-(x-y))dy \tag{4}$$

$$= \int_{\mathbb{R}^n} g(y)f(x-y)\mathrm{d}y \tag{5}$$

$$=g*f(x) (6)$$

Demostraci'on. 2 Por la ley distributiva de los números reales y la linealidad de la integral, para todo $x \in \mathbb{R}^n$

$$f * (g+h)(x) = \int_{\mathbb{R}^n} f(y)(g+h)(x-y) dy$$
 (7)

$$= \int_{\mathbb{R}^n} f(y)g(x-y) + f(y)h(x-y)dy$$
 (8)

$$= \int_{\mathbb{R}^n} f(y)g(x-y)dy + \int_{\mathbb{R}^n} f(y)h(x-y)dy$$
 (9)

$$= f * g(x) + f * h(x) \tag{10}$$

La demostración del enunciado (g+h)*f=g*f+h*f es similar. \Box

Demostración. 4 Sea $x \in \mathbb{R}^n$ arbitrario. Por la linealidad de la integral

$$(\lambda(f*g))(x) = \lambda \int_{\mathbb{R}^n} f(y)g(x-y)dy = \int_{\mathbb{R}^n} \lambda(f(y)g(x-y))dy$$
 (11)

Pero por asociatividad del producto entre números reales

$$(\lambda f) * g(x) = \int_{\mathbb{R}^n} (\lambda f(x)) g(x - y) dy = \int_{\mathbb{R}^n} \lambda (f(y)g(x - y)) dy$$
 (12)

$$f * (\lambda g)(x) = \int_{\mathbb{D}^n} f(x)(\lambda g(x-y)) dy = \int_{\mathbb{D}^n} \lambda(f(y)g(x-y)) dy$$
 (13)

Comparando los extremos derechos de las desigualdades se obtiene $\lambda(f*g) = (\lambda f)*g = f*(\lambda g)$.

Lema propio 2 (Convergencia monótona para convoluciones). Si $f \in L^1(\mathbb{R}^n)$, $y \{g_m\}_m$ es una sucesión nodecreciente de funciones nonegativas que convergen puntualmente a una $g \in L^1(\mathbb{R}^n)$, entonces $\lim_{m\to\infty} f * g_m = f * g y$ de forma $similar \lim_{m\to\infty} g_m * f = g * f$.

Demostración. Sea $x \in \mathbb{R}^n$ arbitrario. Si f^+ y f^- son las partes nonegativa y negativa de f, y f^\pm es cualquiera de ellas entonces por el teorema de convergencia dominada

$$\lim_{m \to \infty} f^{\pm} * g_m(x) = \lim_{m \to \infty} \int_{\mathbb{R}^n} f^{\pm}(y) g_m(x - y) dy$$
 (14)

$$= \int_{\mathbb{R}^n} \lim_{m \to \infty} f^{\pm}(y) g_m(x - y) \mathrm{d}y \tag{15}$$

$$= \int_{\mathbb{R}^n} f^{\pm}(y)g(x-y)\mathrm{d}y \tag{16}$$

$$= f^{\pm} * g(x) \tag{17}$$

En consecuencia el límite de las convoluciones es la convolución con el límite

$$\lim_{m \to \infty} f * g_m(x) = \lim_{m \to \infty} f^+ * g_m(x) - \lim_{m \to \infty} f^- * g_m(x)$$
 (18)

$$= f^{+} * g(x) - f^{-} * g(x)$$
(19)

$$= f * g(x) \tag{20}$$

La demostración del enunciado $\lim_{m\to\infty} g_m * f(x) = g * f(x)$ es idéntica a la que recién presentamos.

Demostración. 5 Sean $f, g \in L^1(\mathbb{R}^n)$. Una primera desigualdad es simple

$$||f * g||_1 = \int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} f(y)g(x - y) dy \right| dx \le \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(y)g(x - y)| dy dx \qquad (21)$$

El teorema de Tonelli nos permite intercambiar el orden de integración para obtener

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(y)g(x-y)| dy dx = \int_{\mathbb{R}^n} |f(y)| \int_{\mathbb{R}^n} |g(x-y)| dx dy$$
 (22)

El lema propio 1 simplifica esta integral mediante $\|g\|_1 = \int_{\mathbb{R}^n} |g(x-y)| \mathrm{d}x$

$$\int_{\mathbb{R}^n} |f(y)| \int_{\mathbb{R}^n} |g(x-y)| dx dy = \int_{\mathbb{R}^n} |f(y)| ||g||_1 dy = ||f||_1 ||g||_1$$
 (23)

Lema propio 3. Si $g \in L^1(\mathbb{R}^n)$ y $\psi \in C_c(\mathbb{R}^n)$ entonces $f * \psi$ es uniformemente continua.

Demostración. Sean $x, x' \in \mathbb{R}^n$. Una primera desigualdad es sencilla

$$|f * \psi(x) - f * \psi(x')| = \left| \int_{\mathbb{R}^n} f(y)\psi(x - y) dy - \int_{\mathbb{R}^n} f(y)\psi(x' - y) dy \right|$$
(24)

$$= \left| \int_{\mathbb{R}^n} f(y)(\psi(x-y) - \psi(x'-y)) dy \right| \tag{25}$$

$$\leq \int_{\mathbb{R}^n} |f(y)| |\psi(x-y) - \psi(x'-y)| \mathrm{d}y \tag{26}$$

Ahora bien, dado $\varepsilon > 0$, existe un $\delta > 0$ tal que $|\psi(u) - \psi(u')| < \varepsilon$ si $||u - u'|| < \delta$ porque ψ , al ser continua de soporte compacto, es uniformemente continua. Luego $||x - x'|| < \delta$ implica

$$|f * \psi(x) - f * \psi(x')| \le \int_{\mathbb{R}^n} |f(y)| |\psi(x - y) - \psi(x' - y)| dy$$
 (27)

$$<\varepsilon \int_{\mathbb{R}^n} |f(y)| \mathrm{d}y$$
 (28)

$$=\varepsilon \|f\|_1 \tag{29}$$

Siendo que $\|f\|_1<\infty,$ podemos con
luir que $f*\psi$ es uniformemente continua. \qed

Ejercicio 2. Probar que si $f \in L^1_{loc}(\mathbb{R}^n)$ y $\psi \in C_c(\mathbb{R}^n)$ entonces $f * \psi$ es continua.

Demostración. Sean $B_m = \bar{B}_m(0)$ las bolas cerradas de radio m centradas en 0. Aproximamos f mediante $f_m = f \mathbbm{1}_{B_m}$ $(m \in \mathbb{N})$. La integrabilidad local de f hace de cada f_m una función integrable. Por el lema 3, las funciones $f_m * \psi$ son uniformemente continuas. Además, se da la convergencia uniforme en compactos $f_m * \psi \to f * \psi$. Para verlo fijemos un conjunto compacto $K \subseteq \mathbb{R}^n$. Existe un $M \in \mathbb{N}$ lo suficientemente grande, dependiendo de K, tal que $K \subseteq B_M$. Luego, para todo $x \in K$ y para todo $m \geq M$

$$f_m * \psi(x) = \int_{\mathbb{R}^n} f_m(y)\psi(x - y) dy$$
 (30)

$$= \int_{\mathbb{R}^n} f(y) \mathbb{1}_{B_m}(y) \psi(x-y) dy \tag{31}$$

$$= \int_{\mathbb{R}^n} f(y)\psi(x-y)\mathrm{d}y \tag{32}$$

$$= f * \psi(x) \tag{33}$$

Queda probada la convergencia uniforme en compactos. Pero el límite, en este caso $f * \psi$, uniforme en compactos de una sucesión de funciones uniformemente continuas, aquí las f_m , es continuo. Por lo tanto $f * \psi$ es una función continua.