Abstract

Diese Arbeit behandelt eine neue Methodik für der Planung des öffentlichen Nahverkehrs. Dabei wird von keinem, auf einem statischen Linienverkehr basierenden Fahrplan ausgegangen sondern ein dynamischer Ansatz behandelt, der jeden Fahrgast als individuellen Passagier möglichst schnell und Komfortabel ans Ziel bringen soll. Dies gelingt durch die Analyse und Verwendung verschiedener Optimierungsverfahren aus dem Bereich der Tourenoptimierung.

Die Optimierung ergab die komplette Reduzierung der Haltepunkte für einen einzelnen Fahrgast, wodurch jedoch die durchschnittlich benötigte Fahrzeit um 15 % stieg.

Die Pläne für die Menschen von Morgen

Autoren: Stefan Bieliauskas , Hasbulat Kadiev

Version: 0.6

Versionsdatum: 24.03.2013

Inhalt

lr	halt		. 3
1	Ein	führung	. 4
	1.1	Ausgangssituation	4
	1.2	Projektziel	5
	1.3	Spezifizierung der Problemstellung	5
2	Dur	chführung	. 8
	2.1	Aktueller Forschungsstand der Tourenoptimierung	8
	2.1	.1 Exakte Lösungsverfahren	. 8
	2.1	.2 Problemspezifische-Heuristiken	. 8
	2.1	.3 Metaheuristiken	. 9
	2.2	Lösungsansatz	11
	2.3	Der Ameisenalgorithmus	12
3	Tes	stverfahren und Ergebnis	16
	3.1	Fazit und Ausblick	16
	3.2	Projektablaufplan	17
	3.3	Projektarbeit	18
4	Anł	nang	19
	4.1	Formeldefinitionen	19
	4.2	Tabellenverzeichnis	19
	4.3	Abbildungsverzeichnis	19
	4.4	Quellen	20
	4.5	Protokolle	21
	46	Abstract	23

1 Einführung

Der nachfolgende Abschnitt erläutert das genaue Projektziel. Anschließend werden Verfahren aus dem Bereich der Tourenoptimierung behandelt und ein Lösungsverfahren beschrieben. Abschließend wird das Testverfahren erläutert und die Ergebnisse präsentiert.

Der Abschluss bildet das Fazit und der Ausblick über die Möglichkeiten, die aus dieser Arbeit resultieren.

1.1 Ausgangssituation

Im Rahmen des Schülerwettbewerbs 2012 / 2013 der Siemens Stiftung, unter dem Motto "Stadt – Land – Fluss Zukunftsplanung ist ein Muss!", hat sich das Projektteam mit der Zuwanderung in die Städte und die dadurch entstehenden Problematiken befasst.

Der Wandel der Gesellschaft in den letzten Jahren hat gezeigt, dass die Zuwanderung vom Land in die Großstätte die städtische Infrastruktur an Ihre Grenzen bringt bis hin zu einer Überlastung einzelner Systeme. Dies beeinträchtigt die Lebensqualität und Attraktivität einer Stadt erheblich.¹ ²Der Nahverkehr bildet hierbei eines der Schlüsselsysteme, da die Qualität des Angebots direkten Einfluss auf die täglichen Gewohnheiten hat und den Stresslevel der Bewohner beeinträchtigt. ³Außerdem lassen sich mit einem guten öffentlichen Nahverkehrsangebot Probleme, die aus der Automobilnutzung in Großstädten resultierend, reduzierenden. Die Entwicklung zeigt, dass auch in Zukunft die Menschen in den Großstätten auf ein eigenes Auto verzichten⁴, wenn die Nahverkehrsangebote entsprechend günstig, zuverlässig und schnell sind.

¹ J. Ehmer, "Bevölkerungsgeschichte und Historische Demographie: 1800-2000," Oldenbourg Verlag, 2004.

² J. Fiedler, "Urbanisierung, globale," Böhlau Verlag Wien, 2004, p. 117.

³ H. Knoflacher, Zur Harmonie von Stadt und Verkehr: Freiheit vom Zwang zum Autofahren, Wien: Böhlau Verlag, 1996.

 $^{^4}$ cst/dapd, "UNI Düsburg - Essen," 23 07 2012. [Online]. Available: http://www.unidue.de/~hk0378/publikationen/2012/20120727_Spiegel-Online.pdf. [Zugriff am 18 11 2012].

1.2 Projektziel

Ziel dieser Arbeit ist die Evaluierung von Einsparungsmöglichkeiten für Betreiber und Kunden des öffentlichen Nahverkehrs durch eine Senkung der Haltepunkte und die Verringerung der Umstiegs-Ereignisse. Dabei werden durch die Verwendung verschiedener Algorithmen statistische Daten analysiert und ein möglichst optimales Beförderungskonzept für die gegeben Daten ermittelt.

Das Verfahren soll auf Basis der zur Verfügung stehenden Ressourcen einen Vorschlag zur Beförderung der Personen zu Ihren gewünschten Zielorten ausgeben.

1.3 Spezifizierung der Problemstellung

Der öffentliche Nahverkehr basiert in den Großstätten auf Fahrplänen, die festlegen zu welchen Zeitpunkten und an welchen Orten Fahrzeuge zur Beförderung der Öffentlichkeit zur Verfügung stehen. Die rapide Entwicklung des Internets hat in den letzten Jahren für einen steigenden Bedarf an direkten Abrufen dieser Fahrplaninformationen über Web- oder Mobil-Angebote gesorgt.

Durch diese internetbasierten Dienste geben die Nutzer präzise Informationen über Start / Zielort und gewünschten Ankunfts- / Abfahrtszeiten an. Diese bilden unsere Basis, um für die Stadt der Zukunft einen ersten Schritt in Richtung eines dynamischen Nahverkehrs zu machen. Dabei sollen Anfragen aus Webdiensten miteinander vergleichen und ein möglichst optimaler Vorschlag zur Beförderung generiert werden.

Abbildung 1 - Optimierungsverfahren Beispiel

Aus der "Abbildung 1 - Optimierungsverfahren Beispiel" lässt sich erkennen wie das Verfahren arbeiten soll und den Fahrgästen einen komfortableren Service und direkte Verbindungen angeboten werden könnten. Der ÖPNV kann auf Basis dieser vorgeschlagenen Touren einen besseren Fahrplan entwickeln und im Idealfall seinen Kunden einen dynamischen Service anbieten.

Das Grundproblem lässt sich dabei auf mehrere Optimierungsprobleme der Transportlogistik zurückführen. Das sogenannte "Pickup-and-Delivery-Problem" wurde bereits in mehreren Arbeiten behandelt und gilt im klassischen Sinne für den Transport von Gütern vom Ausgangsort (Pickup-Point) zum Zielort (Delivery-Point). In diesem Falle geht es um den Transport von Personen weshalb eine Abwandlung benötigt wird. Dabei handelt es sich um das "Dial-a-Ride-Problem" (DARP) was häufig zusätz-

liche Restrektionen bezüglich Qualitätsanforderungen, z.B. der maximalen Reisezeit, beinhaltet. ⁵

Das DARP ist in vielen Anwendungsbereichen zu finden. Beispielsweise bei Ambulanten Pflegediensten oder dem Taxiservice. Diese Servicedienstleister müssen für Ihre Kunden direkte Fahrten organisieren. ⁶

Beim DARP ist zwischen verschieden Varianten zu unterscheiden. Dem heterogenen und homogenen Fuhrpark. Letzteres besagt, dass nur ein Fahrzeugtyp zur Verfügung steht der immer die gleichen Eigenschaften besitzt. Dieser wird in diesem Projekt zum Tragen kommen. Außerdem wird zwischen dem statischen- und dynamischen-DARP unterschieden. Bei der statischen Variante sind alle Aufträge im Vorfeld bekannt und es können keine Änderungen im laufenden Planungszyklus vorgenommen werden, was durch die statistischen Daten in unserem Fall gegeben ist.

⁵ J. Puchinger, "Optimierungsverfahren in der Transportlogistik," AIT - Mobility Department.

⁶ G. L. Jean-François Cordeau, "The Dial-a-Ride Problem (DARP) - Variants, modeling issues and algorithms," 08 2002.

2 Durchführung

2.1 Aktueller Forschungsstand der Tourenoptimierung

Das Forschungsmaterial auf dem Gebiet der Tourenoptimierung ist vielfältig. Der Vergleich verschiedener Arbeiten ist, aufgrund von einer nicht existierender Norm für ein Pickup-and-Delivery-Problem oder auch das in dieser Arbeit behandelte Dial-a-Ride-Problem, umfangreich. Deswegen haben wir uns in diesem Abschnitt auf einen Überblick mit exemplarischen Lösungsansätzen für NP-Schwere Probleme der Tourenoptimierung beschränkt.

2.1.1 Exakte Lösungsverfahren

Bei exakten Lösungsansätzen wird versucht alle möglichen Kombinationen eines Problems zu berechnen, um nachweislich die optimale Lösung zu finden. Aufgrund des meist hohen Rechenaufwands sind die Einsatzmöglichkeiten beschränkt.

2.1.2 Problemspezifische-Heuristiken

Diese heuristischen Verfahren wurden bereits für auf eine bestimmte Problemstellung und Zielsetzung zugeschnitten und liefern wahrscheinliche, optimale Lösungen.

Die schwäche von problemspezifischen Heuristiken liegt im Finden von lokalen Optima, wodurch nicht immer das Gesamtoptimum der Problemstellung gefunden wird. Dies lässt sich laut **Krypczyk** meist nur durch eine erweitere Such- oder Konstruktionsstrategie und somit einer Meta-Heuristik erreichen. ⁷

Die problemspezifischen Heuristiken können in 2 Gruppen eingeteilt werden: Verbesserungsverfahren und Konstruktionsverfahren. Beim letzteren gelangt die Heuristik, durch einsetzten oder entfernen von Elementen von einer meist unzulässigenbzw. unvollständigen- Lösung, zu einer optimierten Lösung. Dabei können die Verfahren nochmal unterteilt werden, ob die beiden grundsätzlichen Probleme der Tourenplanung, das Gruppierungs-und das Wegfindungsproblem, zusammen (einstufig) oder getrennt (zweistufig) gelöst werden.

Bei einem Verbesserungsverfahren wird von einer bestehenden Ausgangslösung, die beispielsweise durch ein Konstruktionsverfahren erzeugt wurde, eine oder meh-

Veikko Krypczyk, Nachbarschaftssucheverfahren für dynamische Pickup- und Delivery-Probleme, 2009 ff

rere Nachbarschaftslösungen NB(x) aufgrund bestimmter Regeln erzeugt. Diese Nachbarn x' E NB werden kontinuierlich erzeugt und je nach gewählter Strategie (frist-accept, best-accept) die nächste verbesserte Lösung ausgewählt. Dabei können die Verbesserungsverfahren nochmals in Intra-Tour und Inter-Tour gegliedert werden.

Inter-Tour beschreibt dabei den Austausch von Aufträgen zwischen den einzelnen Touren wogegen Intra-Tour nur die Reihenfolge der Aufträge innerhalb einer Tour tauscht.⁸ In unserem Fall ist auch das Gruppierungsproblem über z.B. ein Inter-Tour-Verfahren zu lösen.

2.1.3 Metaheuristiken

Metaheuristiken dienen zur Vermeidung von lokalen Optima, die häufig bei problemspezifischen Heuristiken auftreten. Gerade bei Problemstellungen mit großen Lösungsräumen, wie das DRP werden in der Regel Metaheuristiken zur Lösung verwendet.

Der Unterschied zu problemspezifischen Heuristiken besteht darin, dass Metaheuristiken auch eine zeitweilige Verschlechterung der Lösung zulassen, um den lokalen Optima zu entkommen. Eine Metaheuristik ist grundsätzlich sehr allgemein gehalten und bedient sich für die Lösung spezifischer Probleme häufig exakten Verfahren und bzw. oder problemspezifischer Heuristiken. Für das Dail-and-Ride-Problem ist eine Metaheuristik notwendig, um den vielen lokalen Optima zu entgehen und eine möglichst gute Gesamtqualität zu erzielen.

In der nachfolgenden "Tabelle - Übersicht einzelner Lösungsverfahren" werden einige mögliche Algorithmen für die einzelnen Verfahrensansätze in ihren Grundzügen beschrieben.

Exakte Lösungsverfahren				
A*	Dient hauptsächlich zur Ermittlung des kürzesten Pfades zwischen 2			
Knoten in einem Graphen mit positiven Kantengewichten. Das				
ren erzeugt pro benachbarten Knoten, unter Verwendung der Ge				

8 Tirza Hizgilov Anwendung eines Standardsoftwarepaketes für die Lösung von Tourenplanungsproblemen, 2009, S24-25

_								
	tung des möglichen Knotens, eine wahrscheinliche Entfernung zum							
	Ziel und führt diesen Schritt für jeden Knoten erneut durch, sodass sich							
	der Algorithmus schneller in die Richtung des Ziels ausbreitet.							
	Er wurde erstmals 1968 von Peter Hart, Nils J. Nils-							
	son und Bertram Raphael ⁹ beschreiben							
	+ Liefert zuverlässig den schnellsten Weg							
	 Hohe Speicherauslastung aufgrund der immer größer werden- 							
	den Matrix							
Problemsp	pezifische-Heuristiken							
Konstruktio	nsverfahren							
Saving	Das von CLARK und WRIGHT 1964 ¹⁰ entwickelte Verfahren basiert auf							
	der Ersparnis, die durch Verknüpfung einzelner Aufträge zu einer Tour							
	entsteht. Dabei wird zunächst von einem Depot D zu jedem Auftrag eine							
	Route gebildet. Durch Kombination von 2 Aufträgen entsteht das "Saving",							
	die Entfernung, die durch das Zusammenlegen gespart wurde. Dieser Pro-							
	zess wird wiederholt, bis ein Abbruchkriterium erreicht wurde.							
Verbesseru	ingsverfahren							
k-Opt	Durch den entfernen von k-Aufträgen aus einer Tour und unter Be-							
(intra-	rücksichtigung von Restriktionen erneutes einfügen in die gleiche Tou-							
Tour)	ren werden neue verbesserte Lösungen produziert.							
Cross	Im Gegensatz zu Intra-Tour wird hierbei durch tauschen Aufträge zwi-							
Exchange	schen den Touren eine Verbesserung erzielt.							
(inter-	In jeder Interation wird der Prozess des Tauschens solange durchführt							
Tour)	bis eine Verbesserung eintritt. Ist dies der Fall wird die Verbesserte							
	Lösung akzeptiert und eine neue Interation beginnt.11							
Meta-Heuristiken								
Generisch	Als Vorbild des generischen Algorithmus dient die Zellteilung und Mu-							
1	I							

 ⁹ Paul Muljadi Introduction to Graphs Theroy 2012, S69
 ¹⁰ Vgl. Clarke, G. und Wright W.: Scheduling, 1964, S. 568-581

¹¹ Tirza Hizgilov Anwendung eines Standardsoftwarepaketes für die Lösung von Tourenplanungsproblemen 2009, S24-25

tation in der Natur. Das Verfahren in dieser Spezifikation wurde erstmals von **John H. Holland** 1975 beschrieben¹² und erlangt durch teilen und Rekombination einzelner Touren eine Verbesserung. Bei einer meist zufallsgesteuerten Mutation werden nach bestimmten Regeln Aufträge entfernt und/oder hinzugefügt, sodass auch eine Verschlechterung akzeptiert wird.

Tabelle 1 - Übersicht einzelner Lösungsverfahren

2.2 Lösungsansatz

Für das DARP eigenen sich mehrerer der oben aufgeführten Lösungsansätze, jedoch lassen sich einige aufgrund des breiten Lösungsraums direkt wieder ausließen.

Ein exaktes Verfahren, zur Lösung des Gruppierungs- und bzw. oder Routingproblem, ist aufgrund des hohen Datenaufkommens und Anzahl an Kombinationsmöglichkeiten für die Praxis ungeeignet, da diese Verfahren zu lange benötigen würden um das optimale Ergebnis zu produzieren.

Problemspezifische Heuristiken lösen die Problematik des großen Lösungsraums. Durch die Eigenart eine ständige Verbesserung einer Lösung erzielen zu wollen erreichen diese Verfahren häufig nur ein lokales Optima und präsentieren dies als optimale Lösung, "Abbildung 2 - lokales- und globales Maximum" zeigt hier exemplarisch die Unterschiede zwischen der Qualität der Lösungen. Das globale Maximum beschreibt im Lösungsraum das optimalste Ergebnis.

Abbildung 2 - lokales- und globales Maximum

¹² John H. Holland: Adaptation in Natural and Artificial Systems. University of Michigan Press 1975, ISBN 0-262-58111-6

2.3 Der Ameisenalgorithmus

Hierbei handelt es sich um ein Optimierungsverfahren das aus der Natur abgeleitet und von **Dorigo u.a.** 1991 erstmals beschrieben wurde. ¹³

Dabei liegen dem Verfahren ein Ameisennest und der Prozess der Futtersuche jeder einzelnen Ameise zugrunde. Eine einzelne Ameise arbeitet bei der Futtersuche grundsätzlich vollkommen Autark und sucht nach neuen Futterquellen. Wurde eine Futterquelle gefunden hinterlässt die Ameise auf dem Rückweg eine besondere Duftspur (Pheromonspur). Dabei folgen einige Ameisen dieser Durftspur, entscheiden sich jedoch bei jedem Schritt erneut ob sie der Spur folgen oder einen eigenen Weg gehen möchten.

Je mehr Pheromone auf einem Weg liegen desto mehr Ameisen folgen diesem Weg.

Abbildung 3 - Ameisenalgorithmus Futtersuche¹⁴

_

¹³DORIGO U.A., 1991

In Abbildung 3 wird verdeutlicht wie die Futtersuche der Ameisen funktioniert. Dieses Prinzip lässt sich auf das DAPWTW einfach übertragen. Zu besuchende Punkte V werde in einem gerichteten Graphen abgebildet. Daraus ergibt sich folgender Lösungsraum: $G(V, V \times V)$.

Die Strecken zwischen den einzelnen Knoten werden als gerichtet Kanten angegeben sodass G(i,j) die Strecke zwischen Punkt i und Punkt j im Graphen G beschreibt. Für jede dieser Kanten kann über eine Funktion P(i,j) ein Pheromonlevel bestimmt werden.

Durch die Eigenschaft der ständigen, wahrscheinlichkeitsbasierten Entscheidung welcher Weg gewählt wird löst ein Ameisenalgorithmus das Gruppierungs- und Sortierungsproblem gleichzeitig und bildet dabei einen kompakten Umfang in der Implementierung weswegen wir uns für diesen Lösungsansatz entschieden haben.

2.3.1.1 Programmablauf

In diesem Abschnitt erläutern wir die Funktionsweise des Programms und stellen die grundlegenden Abläufe in Pseudocodeform dar. Nachfolgend wird die Initialsuche nach einer optimalen Lösung abgebildet.

```
initialisiere Ausgangspunkte;

while Abbruchbedingung nicht erfüllt

while k<= Quotient von Anzahl Agents / Anzahl Ausgangspunkte

while alle Aufträge noch nicht erfüllt

for Ausgangspunkt in Ausgangspunkte

Mache Schritt für Agent "k" im Ausgangspunkt

end for

end while

k++

end while

update Pheromonlevel

Evaluiere Lösung und speichere wenn besser
```

¹⁴ Johann Dréo, 27.05.2006

end while

Abbildung 4 - Code: Suchablauf

Nach der Initialisierung aller Ausgangspunkte gehen wir schrittweise einen Agenten pro Ausgangspunkt durch und berechnen dessen nächsten Schritt.

Sobald alle Agents eine Tour ermittelt haben wird der Pheromonlevel aktualisiert und die beste Lösung der Runde gespeichert.

Im Nachfolgenden wird die Entscheidungsfindung eines Agents bei einem einzelnen Schritt beschrieben. (siehe "

initialisiere Ausgangspunkte;

while Abbruchbedingung nicht erfüllt

while k<= Quotient von Anzahl Agents / Anzahl Ausgangspunkte

while alle Aufträge noch nicht erfüllt

for Ausgangspunkt in Ausgangspunkte

Mache Schritt für Agent "k" im Ausgangspunkt

end for

end while

k++

end while

update Pheromonlevel

Evaluiere Lösung und speichere wenn besser

end while

Abbildung 4 - Code: Suchablauf")

if Anzahl der Aufträge auf dem jetzigen Punkt >1 berechne "pOrder(k)" aller Aufträge des Punktes wähle den Auftrag mit dem höchsten Ergebnis entscheide nach den berechneten Wahrscheinlichkeiten aus "pOrder(k)" die weitere Annahme der Aufträge else if Anzahl der Aufträge auf dem jetzigen Punkt =1 nehme den einzigen Auftrag an

end if

entscheide nächsten Punkt nach Wahrscheinlichkeitsberechnung "p(k)" gehe zum berechneten Punkt

Abbildung 5 - Code: Auswahl nächster Punkt

Der Agent muss sich für einen sichtbaren Punkt im Graphen entscheiden den er als nächstes besucht. Die Menge der sichtbaren Punkte M(k), für den Agenten "k", setzt sich durch die Menge der noch nicht besuchten Aufnahmepunkte oder aller verfügbaren Abgabepunkte zusammen.

Die Wahl des Punktes trifft er abhängig von der Distanz zum Punkt und des Pheromonenlevels auf dieser Strecke, was folgende Formel mathematisch darstellt.

$$p_k(i,j) = \left\{ \frac{t(i,j)^{\alpha} * d(i,j)^{\beta}}{\sum_{u \in M(k)} t(i,u)^{\alpha} * d(i,u)^{\beta}} \right\}$$

Die oben genannte Formel gibt die Wahrscheinlichkeit an vom Punkt i den Agenten k sich für j zu entscheiden. Dabei geben die Variablen α und β die Gewichtung von Pheromonen und Distanz / Kosten der Strecke (i,j) an. Weitere Erläuterungen finden Sie im Anhang unter "4.1- Formeldefinitionen".

$$pOrder_k(i,id) = \left\{ \frac{d(i,j)^{\alpha} * d(j,sD(j,V(k)))^{\beta}}{\sum_{u \in M(k)} d(i,u)^{\alpha} * d(j,sD(j,V(k)))^{\beta}} \right\}$$

Wahrscheinlichkeit eines Agenten k vom Punkt i den Auftrag id anzunehmen.

Dabei wird die Funktion sD(i,M) verwendet die den Punkt mit der kürzesten Distanz zu i aus einer Menge von Punkten M ermittelt.

3 Testverfahren und Ergebnis

<<Kürzung der öffentlichen Version aufgrund des Datenschutzes>>

3.1 Fazit und Ausblick

Durch die starke Verringerung der Umstiegs-Punkte bei den einzelnen Fahrten wird deutlich das hier der Komfort einer Fahrt mit den öffentlichen Verkehrsmitteln erhöht wurde, denn durch keinen Umstieg in andere Fahrzeuge verringern sich die Abhängigkeiten für eine termingerechte und entspannte Fahrt. Durch Verspätungen einzelner Linien wird nicht mehr die Fahrt anderer verzögert sondern lediglich die der Passgiere, des betroffenen Fahrzeugs. Dies schafft eine höhere Transparenz bei der Frage warum eine Verzögerung im Ablauf eingetreten ist und ggf. ein erhöhtes Verständnis.

Aufgrund gesetzlicher Regelungen ist ein solch dynamisches System zurzeit von den Verkehrsbetrieben nicht in die Praxis umzusetzen. Wir denken jedoch, dass ein solches Model eine Zukunft hat, um die steigenden Anforderungen an das Beförderungskonzept moderner Großstädte zu bewältigen.

Das Projekt bietet eine gute Basis für die Weiterentwicklung dieses Optimierungsverfahren. Wir haben bereits mit der Ausarbeitung eines entsprechenden Konzepts begonnen und freuen uns auf die weitere Entwicklung.

3.2 Projektablaufplan

In dem nachfolgenden Programmablaufplan wird der Unterscheid zwischen der ursprünglichen Planung (grau) und dem Tatsächlichen Ablauf deutlich gemacht.

Die genaueren Erläuterungen bezüglich dieser Abweichungen finden Sie im Abschnitt "3.3 - Projektarbeit")

Abbildung 6 - Projektablaufplan

3.3 Projektarbeit

Die komplexe Aufgabenstellung stellte das Projektteam in der frühen Phase vor einige Herausforderungen, da die Recherche zum aktuellen Forschungsstand in der Tourenoptimierung sehr umfangreich und sehr detailliert ist. Das Problem vor dem wir standen war das jede Abhandlung spezifische Probleme behandelte und somit kein Vergleich detaillierter Ansätze möglich war. Wir haben hierbei verschiedenste Arbeiten analysiert und daraus das Wissen zur Lösung unseres Problems extrahiert. Dies dauerte jedoch erheblich länger als zunächst im PAP einplanten.

Diese detaillierte Recherche erwies sich bei der Auswahl des grundsätzlichen Lösungsansatzes, der Bildung einzelner Formeln und der Programmstruktur als sehr nützlich und beschleunigte diesen Vorgang.

Bei den wöchentlichen Treffen wurden die Projektfortschritte besprochen und die Ziele für die kommende Woche festgelegt. Diese Methodik ermöglichte es uns den Fortschritt des Projekts kontinuierlich zu Überprüfen und unsere Planung entsprechend zu korrigieren. Aus diesem Grund konnten wir eine Verzögerung, resultierend aus des umfangreichen Informationsmaterials, rechtzeig erkennen und mehr Vorgänge parallelisieren als zunächst geplant. Somit wurde das Projektziel trotz einer kurzen Planungsphase fristgerecht erreicht (siehe Abbildung 6 - Projektablaufplan)

Wir haben durch dieses Projekt das wissenschaftliche Arbeiten kennengelernt und konnten durch diese Erfahrung unsere Fähigkeiten beim Erstellen einer solchen Arbeit erweitern. Außerdem konnten wir feststellen wie durch sinnvolle Arbeitsteilung und kontinuierliche Planung Teamarbeit sinnvoll funktioniert. Wir werden das Projekt weiterverfolgen und haben bereits begonnen dies weiterzuentwickeln.

4 Anhang

Im Anhang werden entsprechende Dokumente, Protokolle und Verzeichnisse abgelegt.

4.1 Formeldefinitionen

$p_k(i,j) = \left\{ \frac{t(i,j)^{\alpha} * d(i,j)^{\beta}}{\sum_{u \in M(k)} t(i,u)^{\alpha} * d(i,u)^{\beta}} \right\}$	Wahrscheinlichkeit das Agent <i>k</i> vom Punkt <i>i</i> nach <i>i</i> wandert			
t(i,j)	Menge der Pheromonen bei Strecke (i,j)			
d(i,j)	Kehrwert der Distanz/Kosten bei Strecke			
	(i,j)			
$M(k) = \{ u \mid u \notin W(k) \lor u \in V(k) \}$	Menge aller verfügbaren Abgabepunkten			
	oder noch nicht besuchten Aufnahme-			
	punkten des Agenten k			
W	Menge der besuchten Aufnahmepunkte			
V(k)	Menge alles Abgabepunkte von Aufträ-			
	gen dessen Annahmepunkte besucht			
	wurden, jedoch noch nicht abgeliefert			
$pOrder_k(i,id)$	Wahrscheinlichkeit das Agent k den Auf-			
$= \left\{ \frac{d(i,j)^{\alpha} * d(j,sD(j,V(k)))^{\beta}}{\sum_{u \in M(k)} d(i,u)^{\alpha} * d(j,sD(j,V(k)))^{\beta}} \right\}$	trag id vom Punkt i annimmt			
sD(i,id)	Ermittelt den Punkt mit der kürzesten			
	Distanz zu <i>i</i> aus einer Menge von Punk-			
	ten M			

4.2 Tabellenverzeichnis

Tabelle 1 - Übersicht einzelner Lösungsverfahren	1	1
--	---	---

4.3 Abbildungsverzeichnis

Abbildung 1 - Optimierungsverfahren Beispiel	. 6
Abbildung 2 - lokales- und globales Maximum	11

Abbildung 3 - Ameisenalgorithmus Futtersuche	12
Abbildung 4 - Code: Suchablauf	14
Abbildung 5 - Code: Auswahl nächster Punkt	15
Abbildung 6 - Projektablaufplan	17

QuellenBierwagen, J. (2012). Connect GmbH.

Clarke, G. u. (1964). Scheduling.

cst/dapd. (23. 07 2012). *UNI Düsburg - Essen.* Abgerufen am 18. 11 2012 von http://www.uni-due.de/~hk0378/publikationen/2012/20120727_Spiegel-Online.pdf

Ehmer, J. (2004). Bevölkerungsgeschichte und Historische Demographie: 1800-2000. Oldenbourg Verlag.

Fiedler, J. (2004). Urbanisierung, globale. Böhlau Verlag Wien.

Hizgilov, T. (02-2009). Anwendung eines Standardsoftwarepaketes für die Lösung von Tourenplanungsproblemen. Wien.

Jean-François Cordeau, G. L. (08 2002). *The Dial-a-Ride Problem (DARP) - Variants, modeling issues and algorithms*. Abgerufen am 25. 11 2012 von http://prolog.univie.ac.at/teaching/LVAs/KFK-

Seminar/WS0506/Cordeau_DialARide.pdf

Knoflacher, H. (1996). Zur Harmonie von Stadt und Verkehr: Freiheit vom Zwang zum Autofahren. Wien: Böhlau Verlag.

Krypczyk, D.-K. V. (2009). *Konstruktions-dynamische Pickup- und Delivery-Probleme* . Hagen.

Muljadi, P. (2012). Introduction to Graphs Theroy. Paul Muljadi.

Puchinger, J. Optimierungsverfahren in der Transportlogistik. AIT - Mobility Department.

U.A., D. (1991).

4.4 Protokolle

				Dauer
Datum	Name	Bezeichnung	Teilprojekt	[decimal]
22.11.2012	SBI	Erstellen der Zeiterfassungstabelle	Dokumentation	0,25
21.11.2012	SBI	Erstellen der Projektmappe in One-Note	Dokumentation	0,25
21.11.2012	SBI	Suche nach Informationen und Arbeiten zum "Pickup and Delivery-Problem" In- formationen in Asana festgehalten	Information sammeln	1,00
20.11.2012	SBI	Projektmeeting mit HAS und festlegen der Ziele für Freitag	Meeting	0,50
20.11.2012	HAS	Projektmeeting mit SBI und festlegen der Ziele für Freitag	Meeting	0,50
23.11.2012	SBI	Projektmeeting, Ergebnisse der Woche besprochen; Ziele für folgende Woche festgelegt	Meeting	0,50
23.11.2012	HAS	Projektmeeting, Ergebnisse der Woche besprochen; Ziele für folgende Woche festgelegt Projektdokumentation aufgesetzt und	Meeting	0,50
25.11.2012	SBI	Zielsetzung geschrieben	Dokumentation	1,50
26.11.2012	SBI	Zielsetzung verfeinert	Dokumentation	1,00
26.11.2012	SBI	Ziele für kommende Woche vereinbart	Meeting	1,00
26.11.2012	HAS	Ziele für kommende Woche vereinbart	Meeting	1,00
28.11.2012	SBI	Ansprechpartner für Beispieldaten ermittelt	Information sammeln	3,00
29.11.2012		Informationen in Abhandlungen zum Pi- ckup and Delivery Problem gelesen	Information sammeln	4,00
30.11.2012	SBI	Ergebnisse der Woche besprechen	Meeting	1,00
30.11.2012	HAS	Ergebnisse der Woche besprechen	Meeting	1,00
01.12.2012	SBI	Mail für Ansprechpartner erstellt	Entwicklung	1,50
03.12.2012	HAS	Projektmeeting mit kommenden Zielen	Meeting	1,00
03.12.2012	SBI	Projektmeeting mit kommenden Zielen	Meeting	1,00
03.12.2012	SBI	Besprechung der genauen Problemstel- lung und der Teilprobleme	Meeting	1,00
03.12.2012	HAS	Besprechung der genauen Problemstel- lung und der Teilprobleme Rückläufer der Mail behandelt, beantwor-	Meeting	1,00
04.12.2012	SBI	ten Präsentation des Projekts einem Verant-	Entwicklung	1,00
05.12.2012	SBI	wortlichen	Entwicklung	2,50
05.12.2012	HAS	Erstellen erster Beispielgleichung	Entwicklung	3,00
07.12.2012	SBI	Ergebnisse der Woche besprechen	Meeting	1,00
07.12.2012	HAS	Ergebnisse der Woche besprechen	Meeting	1,00
09.12.2012	HAS	Optimale Routenfindung behandelt	Entwicklung	1,00
10.12.2012	SBI	Dokumentation aufgesetzt	Dokumentation	2,00
11.12.2012	HAS	Testweise Programm erstellt	Entwicklung	1,00

			Information	
15.12.2012	HAS	Weitere Informationen gesammelt	sammeln	4,00
		Weitere Informationen gesammelt mit	Information	
15.12.2012	SBI	HAS	sammeln	4,00
		Dokumentation erweitert um Lösungs-		
16.12.2012	SBI	möglichkeiten	Dokumentation	3,00
		Ziele der vergangenen Woche durchge-		
17.12.2012	SBI	gangen & neue Ziele gesetzt	Meeting	1,00
		Ziele der vergangenen Woche durchge-		
17.12.2012	HAS	gangen & neue Ziele gesetzt	Meeting	1,00
		Versuch für wahrscheinlichkeitsbasierte		
19.12.2012	HAS	Formel der kOder Funktion	Entwicklung	2,00
		Daten vom Ansprechpartner erhalten &		
20.12.2012	SBI	geprüft	Entwicklung	2,00
		Möglichkeit geprüft die Daten zur Verar-		
22.12.2012		beitung aufzuarbeiten	Entwicklung	5,00
21.12.2012	SBI	Ergebnisse der Woche besprechen	Meeting	1,00
21.12.2012	HAS	Ergebnisse der Woche besprechen	Meeting	1,00
		Erhaltene Beispieldaten Import fertigge-		
23.12.2012	SBI	stellt, Daten einmalig durchrechen lassen	Entwicklung	3,00
		Wahrscheinlichkeiten händisch durchge-		
24.12.2012	HAS	rechnet und Funktionen angepasst	Entwicklung	4,00
		Meeting um weiteres Vorgehen zu be-		
25.12.2012	SBI	sprechen	Meeting	1,00
		Meeting um weiteres Vorgehen zu be-		
25.12.2012	HAS	sprechen	Meeting	1,00
		Informationen in Dokumentationen ge-	Information	
26.12.2012	HAS	sammelt für das Gruppierungsproblem	sammeln	3,00
27.12.2012	HAS	1. Code für den Algorithmus geschrieben	Entwicklung	3,00
		Aufbereitete Beispieldaten geprüft und		
		Probleme mit der Masse erkannt (Quota		• • •
28.12.2012	SBI	von GAE wurden überschritten)	Entwicklung	2,00
20 42 2042		Telefonat wie es weiter geht, bezüglich	NA salina	4.00
29.12.2012	HAS	Projektverzug	Meeting	1,00
		Telefonat wie es weiter geht, bezüglich		
29.12.2012	SBI	Projektverzug, Ergebnis: parallele Dokumentation	Mooting	1,00
			Meeting	
30.12.2012	HAS	Programmcode geschrieben	Entwicklung	4,00
		Dokumentation erweitert um Quellenan-		
21 12 2012	CDI	gaben und detaillierter Informationen	Dokumentation	4.00
31.12.2012		zum Entscheidungsprozess		4,00
02.01.2013	SBI	Dokumentation auf Fehler überprüft	Dokumentation	2,00
		Programm erweitert um Gruppierungs-		
02 01 2012	LIAC	problem; Problem bei der Implementie-	Entwickless	2.00
02.01.2013	HAS	rung festgestellt	Entwicklung	3,00
		Dokumentation erweitert um den Punkte der Testverfahren und Platzhalter einge-		
04.01.2013	SBI	fügt	Dokumentation	2,00
05.01.2013	HAS	Entwicklung des Programms	Entwicklung	2,00

		Erste Tests mit Beispieldaten durchge-		
		führt, Probleme aufgrund der Menge an		
05.01.2013	SBI	Daten bekommen	Entwicklung	2,00
07.01.2013	SBI	Ziele für die kommende Woche festgelegt	Meeting	1,00
08.01.2013	HAS	Fehlerbehebung im Programmcode	Entwicklung	2,00
09.01.2013	SBI	Fehlerüberprüfung des Ergebnis	Entwicklung	1,00
		Dokumentation erweitert z.B. Gantt ent-		
10.01.2013	SBI	fernt	Dokumentation	3,00
11.01.2013	SBI	Testlauf durchgeführt	Entwicklung	4,00
11.01.2013	HAS	Testlauf durchgeführt	Entwicklung	4,00
12.01.2013	HAS	Ergebnisse besprechen	Entwicklung	2,00
12.01.2013	HAS	Ergebnisse besprechen	Entwicklung	2,00
		Ergebnisse in Dokumentation eingefügt &		
13.01.2013	SBI	Fazit angefangen	Dokumentation	1,00
		Dokumentation für Abgabe vorbereitet		
14.01.2013	HAS	(Formeln einfügen usw.)	Dokumentation	3,00
		Dokumentation für Abgabe vorbereitet		
14.01.2013	SBI	(Formeln einfügen usw.)	Dokumentation	3,00
		Meeting um Abgabe für Schule zu Bespre-		
20.03.2013	HAS	chen	Meeting	2,00
		Meeting um Abgabe für Schule zu Bespre-		
20.03.2013	SBI	chen	Meeting	2,00
24.03.2013	SBI	Dokumentation angepasst	Dokumentation	2,00
		Summe		129,00

4.5 Abstract

Diese Arbeit behandelt eine neue Methodik für der Planung des öffentlichen Nahverkehrs. Dabei wird von keinem, auf einem statischen Linienverkehr basierenden Fahrplan ausgegangen sondern ein dynamischer Ansatz behandelt, der jeden Fahrgast als individuellen Passagier möglichst schnell und Komfortabel ans Ziel bringen soll. Dies gelingt durch die Analyse und Verwendung verschiedener Optimierungsverfahren aus dem Bereich der Tourenoptimierung.

Die Optimierung ergab die komplette Reduzierung der Haltepunkte für einen einzelnen Fahrgast, wodurch jedoch die durchschnittlich benötigte Fahrzeit um 15 % stieg.