CIS770 Homework 3

Andre Gregoire

February 25, 2016

Problem1

1.1.

This DFA was built directly. I first made a DFA to follow (abb*)* and then complemented it in order to fit the question. I have a state q_0 that remembers if it has seen the first a, and a state another state q_2 that remember if there was any number of b's following the first a as well as a dead state, q_1 that is gone to if it does not fit the language requirements. There is also an initial state q_{ϵ} , after this initial DFA was constructed I complemented it and the resulting DFA is below.

1.2.

Step 1. Convert DFA to GNFA

Step 2. Remove q_2 and q_1

Step 3. Remove q_0 and ϵ

Now that all the states have been removed we can put together the pieces to make R_{eg} which is:

$$R_{eq} = b(a \cup b)^* \cup a(bb^*a)^* (\epsilon \cup a(a \cup b)^*)$$

Problem 2

2.1. left(A) =
$$\{\epsilon, 10\}$$

2.2.
$$left(A) = L(0^*1)$$

2.3. $M = (Q, \Sigma, \delta, q_0, F)$, M is the DFA that recognizes A, to determine if some word w belongs to left(A) we can simultaneously check the forward path at the initial state and backward path at the final state of w in our DFA M, the states of our new DFA are the same states as our old DFA M and the new initial state.

The new DFA M'= $(Q', \Sigma, \delta', q_0', F')$ where:

$$Q' = (Q \times Q) \cup \{q_0'\}$$

$$F' = \{(q,q) \mid q \in Q\}$$

 $q_0' = \{q_0, F\}$: because we start at both ends of the original machine M

$$\delta'(q',a) = \begin{cases} \{q_0\} \ge F & \text{if } q' = q_0' \text{ and } a = \epsilon \\ \{(q_1',q_2')|\delta(q_1,a) = q_1' and \delta(q_2,a) = q_2' & \text{if } q' = (q_1,q_2) \text{ and } a \in \Sigma \\ \emptyset & \text{else} \end{cases}$$

Problem 3

Assume C is regular, for contradiction, with p as the pumping lemma length. let $w = 1^p 01^p$ and $w \in C$.

x, y, z such that w = xyz and has the following properties: |y| > 0 $|xy| \le p$

Assume $x = 1^i$, $y = 1^j$, $z = 1^k01^p$, where i+j+k = p and j > 0.

Now $w'=xy^0z=1^{\mathrm{i+k}}01^{\mathrm{p}}$. The number of ones preceding the first 0 is less than p and there are p ones following the first zero. Because there are p-1 number of ones preceding the first zero there must be p-1 number of ones following the first zero however there are p number of ones following so $w \notin \mathbb{C}$. \mathbb{C} does not satisfy the pumping lemma and therefore is not regular.

Problem 4

4.1.

A = $F \cap L(ab^*c^*) = \{ab^nc^n|n \geq 0\}$, we can define a homomorphism h: $\{a,b,c\}^* \to \{0,1\}^*$ where h(a) = ϵ , h(b) = 0 and h(c) = 1. Now if we apply the homomorphism to our language A, h(A) = $\{0^n1^n|n \geq 0\} = L_{0^n1^n}$

Now consider h(A) to be regular, and let p be the pumping length for $L_{0^{n_1}}^n$. $w = 0^{p_1}$

Since |w| > p there are x, y, z such that w = xyz where:

$$|xy| \le p$$

$$|y| > 0$$
and $x = 0^r$, $y = 0^s$, $z = 0^t 1^p$ where $|y| > 0$ and $s > 0$

$$xy^0 z = 0^r \epsilon 0^t 1^p = 0^{r+t} 1^p$$

since r+t < p, $xy^0z \notin L_{0^n1^n}$ this contradicts that h(A) is regular, thus proving F is also not regular.

4.2.

Let p = 3, where any $w \in F$ where $|w| \ge p$.

Since i cannot be 0 and the word w is already divided for the case i=1, we only need to show for cases when i=2 and when $i\neq 2$, or when it is greater than 2.

If i=2, divide w into x,y,z. x=aa, y can be the next symbol and z makes up what is left of word w. This satisfies the properties that $|xy| \le p$, and |y| > 0.

If $i \neq 2$, divide w into x, y, z. ...

Note: come back and finish 4.2