Ex 1 A l'aide des équivalents, déterminer les limites suivantes :

a)
$$\lim_{x \to 0} \frac{1 - \cos(3x)}{1 - \cos(7x)}$$

c)
$$\lim_{x \to 0} e^{\frac{(1 - \cos x)\sin x}{x^3}}$$

e)
$$\lim_{x\to 0} \frac{3^x - 1}{2^x - 1}$$

g)
$$\lim_{x \to 1} (x^2 + x - 2) \tan \frac{\pi x}{2}$$

i)
$$\lim_{x\to 0} \frac{\ln(\cos(ax))}{\ln(\cos(bx))}$$
 avec $ab \neq 0$

$$k) \quad \lim_{x \to +\infty} x^2 \left(e^{\frac{1}{x+1}} - e^{\frac{1}{x}} \right)$$

$$\text{m)} \quad \lim_{x \to 0} \frac{\sqrt[3]{x+27} - 3}{\sqrt[4]{x+16} - 2}$$

o)
$$\lim_{x\to 0} \frac{\sqrt{e^x} - 1}{\sqrt[3]{x+8} - 2}$$

q) $\lim_{x\to 0} \operatorname{ch}(x)^{1/\sin(x)^2}$

q)
$$\lim_{x\to 0} \operatorname{ch}(x)^{1/\sin(x)^2}$$

s)
$$\lim_{x \to \infty} (2 + \cos(x))^{\cot(x)^2}$$

b)
$$\lim_{x \to 0} \frac{(1 - \cos(x)) \ln (1 + x^2)}{x^2 \tan(x)}$$

d)
$$\lim_{x \to 0} \frac{(1 - e^x) \sin x}{x^2 + x^3}$$

f)
$$\lim_{x \to 0} \frac{\sin(x)}{\sqrt{1+x}-1}$$

h)
$$\lim_{x \to \pi/2} \tan x \tan 2x$$

$$j) \quad \lim_{x \to \pi/2} \frac{\ln 2x - \ln \pi}{\cos x}$$

1)
$$\lim_{x \to 0+} \left(\frac{a^x + b^x}{2} \right)^{1/x}$$
 $(a > 0, b > 0)$

n)
$$\lim_{x \to +\infty} \sqrt{4x+1} \ln \left(1 - \frac{\sqrt{x+1}}{x+2}\right)$$

$$p) \quad \lim_{x \to e} (\ln x)^{\tan \frac{\pi x}{2e}}$$

r)
$$\lim_{x \to 2} (2^x - 3)^{\tan \frac{\pi a}{4}}$$

r)
$$\lim_{x \to 2} (2^x - 3)^{\tan \frac{\pi x}{4}}$$

t) $\lim_{x \to +\infty} \left(\frac{x^2 + 2x - 3}{x^2 - x + 1} \right)^x$

Ex 2 Même question:

a)
$$\lim_{x \to 0} \frac{\ln \cos x - x^2}{x \left(\sqrt{x+1} - \cos x\right)}$$

c)
$$\lim_{x \to 0} \frac{\sin(x)^x - 1}{x^x - 1}$$

b)
$$\lim_{x \to 0} \frac{1}{x} + \ln \frac{x}{x+1}$$

d)
$$\lim_{x \to +\infty} \left(\left[\prod_{k=1}^{n} (x+k) \right]^{1/n} - x \right) \ (n \in \mathbb{N}^*)$$

Ex 3 Etudier la limite de la suite (u_n) de terme général $u_n = \sin(2\sqrt{n^2 + 1}\pi)$

Ex 4 Soit $x \in \mathbb{R}$. Etudier la convergence de la suite de termes général : $u_n = \frac{1}{2i} \left(\left(1 + \frac{ix}{n} \right)^n - \left(1 - \frac{ix}{n} \right)^n \right)$.

Ex 5 Trouver un équivalent simple au voisinage de 0 de

a)
$$\frac{5^x - 1}{\sin(x)}$$

c)
$$\ln(\cos(x))$$

g)
$$\frac{x^3 + 1 - \cos(x)}{(x^2 - 2x)\tan(3x)}$$

$$b) \quad \sqrt[5]{\frac{1-\cos(x)}{\ln(1+x)}}$$

d)
$$(\tan(x))^3 ((\cos(x))^{x^2} - 1)$$

f)
$$ch(x) - 1$$

h)
$$\sqrt[4]{x+\sqrt{x}}$$

Ex 6 a) Déterminer un équivalent de $\tan(x)$ au voisinage de $\frac{\pi}{2}$

b) Déterminer un équivalent de $e^{\sin(x)} - e$ au voisinage de $\frac{\pi}{2}$

Ex 7 Soit $a \in \mathbb{R}$. Déterminer un équivalent de $\left(x^2 + ax + 3\right) \tan\left(\frac{\pi x}{2}\right)$ au voisinage de 1.

Ex 8 A l'aide de sin $\arccos x$, montrer que $\arccos x \sim \sqrt{2}\sqrt{1-x}$

PCSI 1 Thiers 2019/2020 Ex 9 Trouver un équivalent simple au voisinage de $+\infty$ de

a)
$$\ln\left(x+\sqrt{x^2+1}\right)$$

b)
$$\frac{\ln(x) + \ln(x)^2}{\sqrt{\ln(x)} + \sqrt[3]{\ln(x)}}$$

c)
$$e^{\sqrt{x+1}} - e^{\sqrt{x}}$$

d)
$$(x+1)^{\frac{1}{x+1}} - x^{\frac{1}{x}}$$

Ex 10 Trouver un équivalent simple au voisinage de 0 et de $+\infty$ de

a)
$$\frac{x^3 + x^2 + 1}{\sqrt{x} + x^2}$$

b)
$$\sqrt{x+\sqrt{x+\sqrt{x}}}$$

c)
$$\frac{\ln(x+1) - \ln(x)}{\sqrt{x+1} - \sqrt{x}}$$

d)
$$\frac{e^x + x + \ln(|x|)}{x + \sqrt{|x|}}$$
 (et en $-\infty$)

e)
$$\frac{1+x^{\alpha}}{x^{\beta}}$$
 où $(\alpha,\beta) \in \mathbb{R}^2$

f)
$$\frac{\ln(1+x^{\alpha})}{x^{\beta}}$$
 où $(\alpha,\beta) \in \mathbb{R}^2$

Ex 11 Donner un équivalent de la suite $u_n = \sin\left(\frac{n^2 + n + 1}{n + 1}\pi\right)$

Ex 12 Montrer que $\sum_{k=1}^{n} k! \sim n!$ (on pourra montrer $\lim_{n \to \infty} \frac{1}{n!} \sum_{k=1}^{n} k! = 1$ par encadrement)

Ex 13 Etudier les branches infinies de la fonction $f: x \to \sqrt[3]{x^2 (x-3)}$

Ex 14 Comparer à l'infini les suites 0.5^n , $n^{1/9}$, n^n , $\ln^3 n$, $\frac{1}{n^{15}}$, n!, 2^n , e^{2n} , $e^{-n/2}$, $\frac{1}{\sqrt{n}}$, 1.

Ex 15 a) Comparer (en justifiant) les fonctions suivantes au voisinage de $+\infty$:

$$x^{2} (\ln x)^{2} e^{2x}$$
; $x^{3} (\ln x)^{3} 3^{x}$; $x^{4} (\ln x)^{3} e^{x}$; $x^{3} (\ln x)^{4} e^{x}$; $x^{5} (\ln x)^{3} e^{x}$

b) Comparer à l'infini les suites $(\ln n)^a n^b c^n$ et $(\ln n)^{a'} n^{b'} c'^n$ en discutant sur a, b, c > 0, a', b', c' > 0

Ex 16 Comparer $\frac{\ln(x)}{x}$ et $\frac{1}{\sqrt{x}}$ au voisinage de 0.

Ex 17 Comparer $x^{\ln(x)}$ et x^x au voisinage de $+\infty$ puis de 0.

Ex 18 Justifier: $\ln(\ln(x)) = o(\ln(x))$. En déduire $\lim_{x \to +\infty} \left(\frac{\ln(x)}{x}\right)^{1/x}$.

Ex 19 Comparer au voisinage de $+\infty$ les fonctions suivantes :

a)
$$x^{(x^x)}$$
 et $(x^x)^x$

a)
$$x^{(x^x)}$$
 et $(x^x)^x$ b) $a^{(b^x)}$ et $b^{(a^x)}$, où $1 < a < b$ c) $x^{(x^a)}$ et $a^{(a^x)}$ où $1 < a < b$

c)
$$x^{(x^a)}$$
 et $a^{(a^x)}$ où $1 < a$

Ex 20 Soit $f: x \mapsto (2x+1) \ln \left(1 + \frac{1}{x}\right) - 2$ a) Calculer $\lim_{t \to \infty} f$.

b) Montrer que $\forall t \geqslant 0$, $t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} \leqslant \ln(1+t) \leqslant t - \frac{t^2}{2} + \frac{t^3}{3}$. En déduire un encadrement de f sur \mathbb{R}_+

c) Donner un équivalent de f au voisinage de $+\infty$ (en justifiant correctement la réponse).

Ex 21 Pour tout entir n > 0, on note f_n la fonction définie pour x > 0 par $f_n(x) = 1 + x^2 - 2x^2 (n + \ln x)$.

a) Montrer que l'équation $f_a\left(x\right)=0$ admet une unique solution notée $x_n\in\left]0,+\infty\right[$.

b) Calculer $\lim_{n\to+\infty} f_n\left(\frac{1}{n}\right)$ et $\lim_{n\to+\infty} f_n\left(\frac{1}{\sqrt{n}}\right)$, et en déduire $\frac{1}{n} \leqslant x_n \leqslant \frac{1}{\sqrt{n}}$ à partir d'un certain rang

c) Montrer que $x_n = O\left(\frac{1}{\sqrt{n}}\right)$ et $\ln x_n = o\left(n\right)$.

d) Trouver un équivalent de x_n , et montrer que $\ln x_n \sim -\frac{\ln n}{2}$

e) Montrer que x_n , $-\frac{1}{\sqrt{2n}} \sim \frac{\ln n}{4\sqrt{2}n\sqrt{n}}$, ce qui s'écrit aussi x_n , $=\frac{1}{\sqrt{2n}} + \frac{\ln n}{4\sqrt{2}n\sqrt{n}} + o\left(\frac{\ln n}{n^{3/2}}\right)$