MATH 60604 Modélisation statistique § 5f - Autres modèles de covariance

HEC Montréal Département de sciences de la décision

Choix de la structure de covariance: autres possibilités

- Avec des données longitudinales, il arrive parfois que la variance des observations varie en fonction du temps de mesure.
- Plusieurs des structures de covariance possibles dans la procédure mixed possèdent aussi une version hétérogène, c'est-à-dire une version où les variances peuvent être distinctes pour les différents temps de mesure.
- Par exemple, la structure AR(1) que nous venons de voir possèdent une version hétérogène, appelée ARH(1), dont la structure de covariance est

$$\boldsymbol{\Sigma}_{i} = \begin{pmatrix} \sigma_{1}^{2} & \sigma_{1}\sigma_{2}\rho & \sigma_{1}\sigma_{3}\rho^{2} & \sigma_{1}\sigma_{4}\rho^{3} & \sigma_{1}\sigma_{5}\rho^{4} \\ \sigma_{2}\sigma_{1}\rho & \sigma_{2}^{2} & \sigma_{2}\sigma_{3}\rho & \sigma_{2}\sigma_{4}\rho^{2} & \sigma_{2}\sigma_{5}\rho^{3} \\ \sigma_{3}\sigma_{1}\rho^{2} & \sigma_{3}\sigma_{2}\rho & \sigma_{3}^{2} & \sigma_{3}\sigma_{4}\rho & \sigma_{3}\sigma_{5}\rho^{2} \\ \sigma_{4}\sigma_{1}\rho^{3} & \sigma_{4}\sigma_{2}\rho^{2} & \sigma_{4}\sigma_{3}\rho & \sigma_{4}^{2} & \sigma_{4}\sigma_{5}\rho \\ \sigma_{5}\sigma_{1}\rho^{4} & \sigma_{5}\sigma_{2}\rho^{3} & \sigma_{5}\sigma_{3}\rho^{2} & \sigma_{5}\sigma_{2}\rho & \sigma_{5}^{2} \end{pmatrix}.$$

• Mais au lieu de supposer une variance commune σ^2 à tous les temps de mesure, on suppose plutôt que la variance au temps j est σ^2

Syntaxe pour l'ajustement du modèle ARH(1)

Code SAS pour ajuster le modèle ARH(1)

```
proc mixed data=vengeance method=reml;
class id tcat;
model vengeance = sexe age vc wom t / solution;
repeated tcat / subject=id type=arh(1) r=1 rcorr=1;
run;
```

Matrice de corrélation et de covariance pour le sujet 1

Matrice R estimée pour id 1									
Ligne	Col1 Col2 Col3 Col4 Col5								
1	0.2937	0.1756	0.09260	0.05184	0.02271				
2	0.1756	0.3937	0.2077	0.1162	0.05093				
3	0.09260	0.2077	0.4109	0.2300	0.1008				
4	0.05184	0.1162	0.2300	0.4829	0.2116				
5	0.02271	0.05093	0.1008	0.2116	0.3477				

Matrice de corrélation R estimée pour id 1						
gne	Col1	Col2	Col3	Col4	Col5	
1	1.0000	0.5163	0.2666	0.1376	0.07107	
2	0.5163	1.0000	0.5163	0.2666	0.1376	
3	0.2666	0.5163	1.0000	0.5163	0.2666	
4	0.1376	0.2666	0.5163	1.0000	0.5163	
5	0.07107	0.1376	0.2666	0.5163	1.0000	

- La matrice de covariance montre bien que la variance des observations est différente pour chaque temps de mesure
- la matrice de corrélation montre, comme pour la structure AR(1), que la corrélation entre 2 observation décroit avec le temps.

Estimés des paramètres de covariance du modèle ARH(1)

Valeur estimée du paramètre de covariance					
Param. de cov.	Sujet	Estimation			
Var(1)	id	0.2937			
Var(2)	id	0.3937			
Var(3)	id	0.4109			
Var(4)	id	0.4829			
Var(5)	id	0.3477			
ARH(1)	id	0.5163			

- Ce modèle comporte six paramètres pour la structure de covariance.
- Dans le tableau, on voit les estimations des variances pour les cinq unités de temps.
- L'estimation du paramètre ρ est $\hat{\rho}=0,516$, très semblable à celui du modèle précédent (0,492).

Test du rapport de vraisemblance pour le modèle ARH(1)

Test du rapport de vraisemblance du modèle nul

 DDL
 khi-2
 Pr > khi-2

 5
 101.31
 <.0001</td>

- La sortie SAS inclut les résultats du test de rapport de vraisemblance comparant le modèle ARH(1) (modèle complet) au modèle homoscédastique sans corrélation (modèle réduit).
- Les hypothèses de ce test sont $\mathcal{H}_0: \rho=0$, $\sigma_1^2=\sigma_2^2=\cdots=\sigma_5^2$ et $\mathcal{H}_1: \rho\neq 0$ ou au moins une des variances différente.
- La valeur-p est négligeable et on rejette \mathcal{H}_0 ; on conclut en faveur de l'utilisation de la structure de covariance ARH(1).

Choix de la structure de covariance: autre possibilité

 Une autre possibilité serait de ne spécifier aucune structure pour la covariance et estimer tous les paramètres du modèle

$$\mathbf{\Sigma}_{i} = \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} & \sigma_{13} & \sigma_{14} & \sigma_{15} \\ \sigma_{21} & \sigma_{2}^{2} & \sigma_{23} & \sigma_{24} & \sigma_{25} \\ \sigma_{31} & \sigma_{32} & \sigma_{3}^{2} & \sigma_{34} & \sigma_{35} \\ \sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_{4}^{2} & \sigma_{45} \\ \sigma_{51} & \sigma_{52} & \sigma_{53} & \sigma_{54}^{2} & \sigma_{5}^{2} \end{pmatrix}$$

- Cette structure peut parfois être utile pour explorer la structure de covariance sans imposer un modèle rigide dès le départ. Mais son nombre de paramètres, $n_i(n_i-1)/2$, restreint son utilisation aux cas où le nombre maximum d'observations par groupe est petit et le nombre de groupes m est grand.
- Dans notre exemple, on obtient 15 paramètres contrairement à deux pour les structures d'équicorrélation et AR(1), et à six pour la structure ARH(1).

Ajustement du modèle de covariance non structuré

Code SAS pour ajuster un modèle non structuré

```
proc mixed data=vengeance method=reml;
class id tcat;
model vengeance = sexe age vc wom t / solution;
repeated tcat / subject=id type=un r=1 rcorr=1;
run;
```

Matrice de corrélation et de covariance pour le sujet 1

Matrice R estimée pour id 1							
Ligne	Col1 Col2 Col3 Col4 Co						
1	0.3133	0.2165	0.07287	0.05930	0.03405		
2	0.2165	0.4233	0.2258	0.1355	0.07025		
3	0.07287	0.2258	0.4204	0.2371	0.1689		
4	0.05930	0.1355	0.2371	0.4508	0.1444		
5	0.03405	0.07025	0.1689	0.1444	0.3179		

Matrice de corrélation R estimée pour id 1						
Ligne	Col1	Col2	Col3	Col4	Col5	
1	1.0000	0.5946	0.2008	0.1578	0.1079	
2	0.5946	1.0000	0.5354	0.3103	0.1915	
3	0.2008	0.5354	1.0000	0.5446	0.4621	
4	0.1578	0.3103	0.5446	1.0000	0.3815	
5	0.1079	0.1915	0.4621	0.3815	1.0000	

- On voit que les variances sont différentes pour chaque temps et il n'y a pas de structure spéciales pour la corrélation.
 - 1. Les variances semblent être à peu près les mêmes pour les mesures.
 - 2. La corrélation entre deux observations semble bel et bien décroître au fur et à mesure que le temps entre deux mesures augmente.
- Ceci suggère que la structure AR(1) est préférable à la structure d'équicorrélation.

Paramètres de covariance du modèle non structuré

Valeur estimée du paramètre de covariance					
Param. de cov.	Sujet	Estimation			
UN(1,1)	id	0.3133			
UN(2,1)	id	0.2165			
UN(2,2)	id	0.4233			
UN(3,1)	id	0.07287			
UN(3,2)	id	0.2258			
UN(3,3)	id	0.4204			
UN(4,1)	id	0.05930			
UN(4,2)	id	0.1355			
UN(4,3)	id	0.2371			
UN(4,4)	id	0.4508			
UN(5,1)	id	0.03405			
UN(5,2)	id	0.07025			
UN(5,3)	id	0.1689			
UN(5,4)	id	0.1444			
UN(5,5)	id	0.3179			

Critères d'information et test du rapport de vraisemblance

Tests d'ajustement				
-2 log-vraisemblance restreinte	659.3	Test du rapport de vraisemblance du		
AIC (préférer les petites valeurs)	689.3	modèle nul		
AICC (préférer les petites valeurs)	690.6	DDL	khi-2	Pr > khi-2
BIC (préférer les petites valeurs)	725.0	14	117.34	<.0001

- Comme d'ordinaire, la sortie inclut les critères AIC et BIC, que l'on pourra utiliser pour comparer les modèles de covariance non emboîtés.
- Le test du rapport de vraisemblance teste l'hypothèse nulle que tous les paramètres de variance (diagonale) sont égaux et que tous les termes hors diagonale sont nuls. Cette hypothèse est rejetée.