수학2 강의노트

1. 함수의 극한

1) 극한의 직관적 이해

 $oldsymbol{x}$ 가 $oldsymbol{1}$ 보다 크지만 $oldsymbol{1}$ 에 한없이 가까워질 때 :

 $oldsymbol{x}$ 가 $oldsymbol{1}$ 보다 작지만 $oldsymbol{1}$ 에 한없이 가까워질 때 :

 $oldsymbol{x}$ 가 $oldsymbol{1}$ 이 아니면서 $oldsymbol{1}$ 에 한없이 가까워질 때 :

2) 좌극한과 우극한

$$\lim_{x \to a+} f(x) = L$$

3) 함수의 수렴과 발산(1) - x → a 일 때

$$\lim_{x \to 1-} f(x) =$$

$$\lim_{x \to 1+} f(x) =$$

$$\lim_{x \to 2-} f(x) =$$

$$\lim_{x \to 2+} f(x) =$$

* 극한값이 존재(수렴)할 조건

- ① 한글 표현 :
- ② 식 표현:

4) 함수의 수렴과 발산(2) - $x \rightarrow \pm \infty$ 일 때

∞ 의 정의 :

5) 유리함수의 그래프

$$f(x) = \frac{2x}{x - 2}$$

$$g(x) = \frac{1}{(x+2)^2}$$

* 유리함수 작도 방법

- 1
- 2
- 3

6) 무리함수의 그래프

$$f(x) = \sqrt{x}$$

$$g(x) = -\sqrt{2x - 4}$$

$$h(x) = -\sqrt{5 - x}$$

* 유리함수 작도 방법

7) 구간을 나누어 표현한 함수의 그래프

8) 절댓값이 포함된 함수의 그래프

9) 약분 전 분모가 0이 되는 함수

10) 합성함수의 극한 조사

Sol1. 속함수 치환

$$\lim_{x \to 2-} f(f(x)) =$$

$$\lim_{x \to 2+} f(f(x)) =$$

Sol2. 근삿값으로 계산

$$\lim_{x \to 2-} f(f(x)) =$$

$$\lim_{x \to 2+} f(f(x)) =$$

11) 함수의 극한의 기본 성질

$$\lim_{x \to a} f(x) = \alpha, \ \lim_{x \to a} g(x) = \beta$$
 012,

- 1
- **(2)**
- * $x \rightarrow a +$, $x \rightarrow a$, $x \rightarrow \infty$, $x \rightarrow -\infty$ 일 때도 모두 성립

12) 함수의 극한의 기본 성질

(1)
$$\lim_{x \to 1} (x^2 - 2x) =$$

(2)
$$\lim_{x \to 1} \frac{2x}{x - 2} =$$

(3)
$$\lim_{x \to 1} \sqrt{x^2 + 3x + 2} =$$

* 모든 극한식의 계산은,

13) 가우스 기호가 포함된 함수의 극한

 \Longrightarrow

(1)
$$\lim_{x \to 2^{-}} ([x] + x) =$$

(2)
$$\lim_{x \to 1^-} [x - 1] =$$

(3)
$$\lim_{x \to -1^{-}} \left(\left[x^2 \right] + \left[x \right]^2 + 2 \right)$$

14) 함수의 극한의 기본 성질을 이용한 명제의 참, 거짓 판단

 \Longrightarrow

- (1) $\lim_{x \to a} f(x)$, $\lim_{x \to a} g(x)$ **EXHOLE**, $\lim_{x \to a} \left\{ f(x) g(x) \right\}$ **EXH**
- (2) $\lim_{x \to a} \{f(x)g(x)\}$ 존재하지 않으면, $\lim_{x \to a} f(x)$, $\lim_{x \to a} g(x)$ 모두 존재 \mathbf{x}
- (3) $\lim_{x\to a} \{f(x) + g(x)\}$ 존재하지 않으면, $\lim_{x\to a} f(x)$, $\lim_{x\to a} g(x)$ 중 적어도 하나는 존재 \mathbf{x}
- (4) $\lim_{x\to a} f(x)$, $\lim_{x\to a} \frac{g(x)}{f(x)}$ 존재하면, $\lim_{x\to a} g(x)$ 도 존재
- (5) $\lim_{x \to a} f(x)$, $\lim_{x \to a} \frac{f(x)}{g(x)}$ **EXHOLE**, $\lim_{x \to a} g(x)$ **EXH**