

# Lecture 6

# **Topic 2**First Law of Thermodynamics

Topic 2.4
- Introduction to enthalpy
- Specific Heat

Reading:

Ch 3.7-3.11 Borgnakke & Sonntag Ed. 8 Ch 4-3 & 4-4 Cengel and Boles Ed. 5

### **Lecture material**



Definition of Enthalpy (thermodynamic property)

$$-H = U + PV \quad OR \quad h = u + Pv$$

• Specific heats  $C_v \& C_P$  to determine  $\Delta U \& \Delta H$ 

$$\Delta U + \Delta KE + \Delta PE = Q_{process} - W_{process} + \Delta E_{mass}$$

- Focus on the following substances
  - Ideal gases (e.g. air, N<sub>2</sub>, CO<sub>2</sub>)
  - Liquids
  - Solids





### 2.3.4 Enthalpy



- Example: Heat addition under constant pressure process
  - Work:  $W_{21} = \int_{1}^{2} P dV = P(V_2 V_1)$
  - 1<sup>st</sup> Law:  $Q_{21} W_{21} = U_2 U_1$
  - $\rightarrow Q_{21} = U_2 U_1 + P(V_2 V_1)$  OR  $(U_2 + P_2V_2) (U_1 + P_1V_1)$
  - U, P and V are all thermodynamic properties



$$-H = U + PV$$
 OR  $h = u + Pv$ 



Heat transfer for constant pressure moving boundary system:

- 
$$Q_{21} = H_2 - H_1 = m(h_2 - h_1)$$

- Specific enthalpy (h) is an intensive variable
  - Thermodynamic tables

TABLE B.1.1 (continued)
Saturated Water

|               |                 | I                 |                |                  |
|---------------|-----------------|-------------------|----------------|------------------|
| Temp.<br>(°C) | Press.<br>(kPa) | Sat. Liquid $h_f$ | Evap. $h_{fg}$ | Sat. Vapor $h_g$ |
| 0.01          | 0.6113          | 0.00              | 2501.35        | 2501.35          |
| 5             | 0.8721          | 20.98             | 2489.57        | 2510.54          |
| 10            | 1.2276          | 41.99             | 2477.75        | 2519.74          |
|               |                 |                   |                |                  |

### 2.4 Specific heats



It takes different amounts of energy to increase the temperature of identical masses of different substances by 1°C.

#### Example:

- Takes 4.5 kJ to raise the temp. of 1kg iron from 20°→30°C
- Takes 41.8 kJ to raise the temp. of 1kg water from 20°→30°C

**Specific heat:** energy required to raise the temperature of a substance (unit mass) by one degree.



Specific heats for two cases:

- Specific heat at constant volume (C<sub>V</sub>): energy required to raise the temp. of a substance (unit mass) by one degree as the volume is maintained constant.
- Specific heat at constant pressure (C<sub>P</sub>): energy required to raise the temp. of a substance (unit mass) by one degree as the <u>pressure is maintained constant</u>.

# 2.4.1 $C_p$ , $C_v$ , U and H



- Relating C<sub>p</sub> and C<sub>v</sub> to other thermodynamic properties.
- Consider a fixed mass in a stationary, closed system undergoing a <u>constant-volume process</u>.
  - 1<sup>st</sup> law gives:
    - $\delta Q \delta W = dU \rightarrow \delta Q = dU$
    - Definition of specific heat:  $mC_v dT = \delta Q \rightarrow mC_v dT = dU$
- Consider a fixed mass in a stationary, closed system undergoing a constant-pressure process.
  - 1<sup>st</sup> law gives:
    - $\delta Q \delta W = dU \rightarrow \delta Q = dU + PdV = dH$
    - Definition of specific heat:  $mC_p dT = \delta Q \rightarrow mC_p dT = dH$
- Specific heats:

$$C_V = \left(\frac{\partial u}{\partial T}\right)_V \quad \text{and} \quad C_P = \left(\frac{\partial h}{\partial T}\right)_P$$

C<sub>V</sub> & C<sub>P</sub> are thermodynamic properties





James Prescott Joule (1843) – <u>Ideal gas</u>: internal energy is a function of <u>temperature</u> <u>only</u>.

- Two tanks are submerged in a water bath, connected by a pipe with a valve.
- Water & tanks are in thermal equilibrium.
- Valve is opened & pressure is equalized.
- Water temperature does not change
  - No heat was transferred to / from the air.
- No work done. U is therefore independent of change in P and v.
- Internal energy for IDEAL GAS is function of temperature only: u = u(T)



TABLE 3.1
Internal Energy for Superheated Vapor Steam

|       | P, kPa |        |        |        |  |
|-------|--------|--------|--------|--------|--|
| T, °C | 10     | 100    | 500    | 1000   |  |
| 200   | 2661.3 | 2658.1 | 2642.9 | 2621.9 |  |
| 700   | 3479.6 | 3479.2 | 3477.5 | 3475.4 |  |
| 1200  | 4467.9 | 4467.7 | 4466.8 | 4465.6 |  |



- u = u(T) for an ideal gas
- Recall, h = u + Pv and Pv = RT
  - -h=u+RT=h(T) for an ideal gas.
  - All variables are function of temperature only
- Ideal gas: specific heats (C<sub>v</sub> and C<sub>p</sub>) will be a function of temperature only.

$$C_{V} = \left(\frac{\partial u}{\partial T}\right)_{V} \qquad C_{V} = \left(\frac{du}{dT}\right)_{ideal\ gas} \qquad du = C_{V} dT$$

$$C_{P} = \left(\frac{\partial h}{\partial T}\right)_{P} \qquad C_{P} = \left(\frac{dh}{dT}\right)_{ideal\ gas} \qquad dh = C_{P} dT$$

$$m(u_2 - u_1) = mC_V(T_2 - T_1)$$
 &  $m(h_2 - h_1) = mC_P(T_2 - T_1)$ 

#### Example 2-4

A ridig tank contains nitrogen at 27°C. Heat is transferred to the system and the gas temperature rises to 127°C. Assume that nitrogen is an ideal gas with  $C_v = 0.743 \text{ kJ/(kgK)}$ .

#### Find:

- (a) the <u>heat transfer per unit mass</u>
- (b) the ratio of the final pressure to the initial pressure.

#### **Solution:**





#### Relation between C<sub>P</sub> and C<sub>V</sub> for Ideal Gases

Recall definitions

$$-h=u+Pv$$

$$- Pv = RT$$

$$- dh = C_P dT \& du = C_V dT$$

$$h = u + Pv$$

$$dh = du + d(RT)$$

$$C_P dT = C_V dT + RdT$$

$$C_P = C_V + R$$

The specific heat ratio k is defined as

$$k = \frac{C_P}{C_V}$$

Relationships between C<sub>P</sub> and C<sub>V</sub> for ideal gases:

$$C_P = \frac{kR}{k-1}$$
 and  $C_V = \frac{R}{k-1}$ 

# 2.4.3 Values for $C_p$ and $C_v$



THE UNIVERSITY of EDINBURGH School of Engineering

- Where we do find these values?
- Are C<sub>P</sub> and C<sub>V</sub> constant?
- · Specific heats are dependent on temperature

### Options (using $C_P$ as example):

- (1) Constant value: Table A-5
  - least accurate, but okay for low temperatures
- (2) Use average value over  $T_2$  and  $T_1$ 
  - $C_{PAVG} = (C_{P@T2} + C_{P@T1}) / 2$
  - More accurate than (1)
- (3) Table A.6 Calculate  $C_P$  using empirical formula
  - $C_P = C_0 + C_1\theta + C_2\theta^2 + C_3\theta^3$
  - Coefficients given in table A.6
  - More accurate than (1) & (2), but more work
- (4) Ideal Gas Tables (A7, air), (A.8: N<sub>2</sub>, O<sub>2</sub>, CO<sub>2</sub>)
  - u & h values directly
  - More accurate, but have to look up values



Ideal Gas Properties of Various Substances, Entrop Mass Basis

|          | Carbon Dioxide (CO <sub>2</sub> )<br>R = 0.1889  kJ/kg-K<br>M = 44.010  kg/kmol |              |                                          |            |
|----------|---------------------------------------------------------------------------------|--------------|------------------------------------------|------------|
| T<br>(K) | u<br>(kJ/kg)                                                                    | h<br>(kJ/kg) | s <sub>T</sub> <sup>0</sup><br>(kJ/kg-K) |            |
| 200      | 97.49                                                                           | 135.28       | 4.5439                                   | <b>1</b> 0 |

# 2.4.3 Values for $C_p$ and $C_v$

#### Specific heat variation with temperature

 Which method do we choose? In this course: (1) & (4) will be the most common methods used.

### Options (using $C_P$ as example):

- (1) Constant value: Table A-5
  - least accurate, but okay for low temperatures
- (2) Use average value over  $T_2$  and  $T_1$ 
  - i.e.  $C_{PAVG} = (C_{P \otimes T2} + C_{P \otimes T1}) / 2$
  - More accurate than (1)
- (3) Table A.6 Calculate  $C_P$  using empirical formula
  - $C_P = C_0 + C_1\theta + C_2\theta^2 + C_3\theta^3$
  - Coefficients given in table A.6
  - More accurate than (1) & (2), but more work
- (4) Ideal Gas Tables (A7, air), (A.8: N<sub>2</sub>, O<sub>2</sub>, CO<sub>2</sub>)
  - u & h values directly
  - More accurate, but have to look up values
- Problem statement will specify which method for you to use

### 2.4.4 Specific heat for solids & liquids



### Solids & Liquids

- Incompressible substances (i.e. constant specific volume)
  - Specific heats are identical.

$$C_P = C_V = C$$
  $\left(\frac{kJ}{kg \cdot K}\right)$ 

Assuming constant specific heats

$$du = C_V dT = CdT$$
$$\Delta u = C\Delta T = C(T_2 - T_1)$$



• The differential of enthalpy: 
$$dh = du + Pdv + vdP$$

• For incompressible 
$$dh = du + Pd\psi^0 + vdP$$
 substances,  $dv = 0$  
$$dh = du + vdP$$



### 2.4.4 Specific heat for solids & liquids



• If  $\Delta u = C\Delta T$ , find an expression for  $\Delta h$ :

$$\Delta h = \Delta u + v \Delta P = C \Delta T + v \Delta P$$

Table A.3 & A.4: specific heats of selected liquids and solids

### **SOLIDS**

• The term  $v\Delta P$  is insignificant (v is very small)

$$\Delta h_{solid} = \Delta u_{solid} + \psi^0 \Delta P$$

$$\Delta h_{solid} = \Delta u_{solid} \cong C\Delta T$$

### **LIQUIDS**

Two special cases are encountered:

- 1) Constant-pressure processes ( $\Delta P = 0$ ):
  - $\Delta h_{liquid} = \Delta u_{liquid} \cong C\Delta T$
- 2) Constant-temperature processes  $(\Delta T = 0)$ 
  - $\Delta h_{liquid} = \Delta u_{liquid} + v\Delta P \cong C\Delta T + v\Delta P$
  - $\Delta h_{liquid} = v \Delta P$

### **2.4.5 Example**

#### Example 2-5:

A piston-cylinder device contains helium gas initially at 150 kPa, 20°C, and 0.5m³. The helium is now compressed in a polytropic process (PV<sup>n</sup> = Constant) to 400 kPa and 140°C. Assume constant specific heats with

•  $R_{He} = 2.08 \text{ kJ/kgK}$ ;  $C_V = 3.12 \text{ kJ/kg K}$ ; n = 1.536.

Using constant specific heats, determine the:

- (a) Boundary work
- (b) Heat transfer

#### Solution:

- 1) Sketch the system and show energy crossing the boundaries
- 2) Determine the proper relation (ideal gas or tables?)
- 3) Determine the states of the system
- 4) Determine the process and sketch the process diagram
- 5) Determine relevant equations
- 6) Solve

