

TLB Access and Mapping

Comprehensive Course on Operating System for GATE - 2024/25

1 • Asked by Paarth S

Please help me with this doubt

- 3.12 An operating system implements a policy that requires a process to release all resources before making a request for another resource.

 Select the TRUE statement from the following:
 - (a) Both starvation and deadlock can occur
 - (b) Starvation can occur but deadlock cannot occur
 - (c) Starvation cannot occur but deadlock can occur
 - (d) Neither starvation nor deadlock can occur

[2008: 2 Marks]

▲ 1 • Asked by Jai pls explain sir c option

Consider the below statements:

Select one or more answers

User Level Threads requires non-blocking system calls

B Kernel Level Threads requires non-blocking system calls

A full Thread Control Block (TCB) is maintained for each Kernel Level Threads are fast and efficient compared to User Level Threads

Operating System TLB Mapping & Segmentation

By: Vishvadeep Gothi

TLBMapping

- Fully Associative
- 2. Direct
 - Set-Associative

TLB Mapping: Direct

8 rage table culics

Turias ricelly 9 dd. Toy P = 001 0 DI

.

Questacatelis, 64 entrés Direct mapping L.A. = 14-670 Page size = 16 bites

stiB entry no-= 6 bits

Am = 4-5:10

Quis academy de a direct mapped TiB which can store 128 page Table entries. The page size is 1kbytes and logical address Space is lams. The try size in TLB is ____ bits?

Ans = 7 24 — J

Tog TIB enti
7 7 10

Questionsider a direct mapped TLB of size 2 to store P.T. entries each of size 4 bytes. 2 libytes and used Logical adsherses are of 26 bits. The Top size is ____ — Pip 6 if page size is 2 kbytes. no. of entires = $\frac{2 \times B}{4B} = 29$ L.A.

Tag Tub.

The same of th 6-bits 9 Am = 6-640

10-bits

Ams = 10

A computer system implements a 31- bit virtual address, page size of 8 kilobytes, and a 256-entry translation look-aside buffer (TLB) organized as direct mapped. The minimum length of the TLB tag in bits is ______?

	31	
7~	Tirs entry 10.	2
	8	13

Question

A computer system implements a 44- bit virtual address, page size of 1 kilobytes, and a 16KB look-aside buffer (TLB) organized as direct mapped. Each page table entry is of 4bytes. The minimum length of the TLB tag in bits is ______?

no- of entries =
$$\frac{T_{1}B_{1}S_{1}S_{2}}{1 \text{ entry Sise}}$$

= $\frac{16 \text{ kg}}{4 \text{ B}}$
= $\frac{16 \text{ kg}}{4 \text{ B}}$

TLB Mapping: Set Associative

2-way set associative mapping => 1 set 2 entires

0 8 0,4,8,12

4 way set associative

eg: 1-way set associative
$$256 \text{ entries T2B} \qquad \begin{array}{l} no.6b \\ *ets = \frac{257}{4} \\ = 64 \end{array}$$

no af sets in rib - no of entires set associativity

L.A. TLB set no. emissionement sets in TiB = 16 => 5 et no - = 4 - bits b = 10 bits z-way set associative TLB Tong 1 bits - ____ bits

demo. of entries in The 4-way set associative 123 L.A. = 30 bits sije = Zk byles bits =>/11 19-575

Dus consider a page table which contains many page table entries. To inprove the performance of page tuble access a TLB is used. The TLB is 4-way set associative and can stone 2x bytes. Each page table entry is of Sije zøjtes. If a process has 22) payes. Then Tag Side in TLB is _____ bits ? 501 P?> · no of untres in ris = 2kB Tisset no. = <u>1</u>k ho-of sets = 1K

m ris = 28 15 bits 8

7 To reduce -> reduce tage sive.

m m

Paging suffers from internal fragmentation

Assuming process => 101(B)

Process => 41(47tes)

TLB, Cache Used L> Tang are E.M.A.T. = ? we will discuss: cache => thysically adversed

L> cache memory is accessed only using main memory address.

(we an't search cache with Logical

Jurearthem Will hot store p. T- entries.

unacademy

cru => L.A.

carte

ILB Hit search in cache V rie miss Access Access conlent content from trom cache mm

TIB Miss + Search in Page table in mm searth in cache rit miss 9 cess 9 ccess content Content Swn

Emagademy HriB * tris + Heache * tcm + (1-Heache)* (tcm+tmm) + (I-HTLB) / tTLB + tmm + Meache & tem + (I-Muche) (tentum)

To check
miss
in reg
Pose to Page table access

$$= \frac{501}{2}$$

$$= \frac{10 + 0.3 \times 25 + 0.1 \times (25 + 200)}{10 + 200 + 0.5 \times 25}$$

$$= \frac{10 + 200 + 0.5 \times 25}{10 + 200}$$

-> No livision in mm.

- Divide Process in logically related partitions (Segments)
- Segments are scattered in physical memory

Rouss 200 1 Sey 10 450B Say 1 503 Sag 2 sey 3 3000 1000 biles

o in mm segnet > 0 < 200 100 lyle o 1101 byte 1 200 bytes in seg 0. add. af byte od seg = 1106 1 2 309 0 = 1101 = 1102 1239 1163 1100 79

Find physical address for the following requests?

S	d	Physical Address
0	194	1234
2_	46	2246
3	298	1798
1	403	203
2	62	seg. foult

0	00	200
	100	450
2	2300	50
3	0 صرد ا	300

- Size of segment can vary, so along with base, keep limit information also
- Limit defines max number of words within the segment

- Size of segment can vary, so along with base, keep limit information also
- Limit defines max number of words within the segment

Question

Maximum segment size = 16KB = $2^{14}D$ => 4 = 14 bitNumber of segments in process = 2^{10} Logical address = ____ bits ??

Segmentation suffers from external fragmentation

Virtual Memory

- Seature of OS
- © Enables to run larger process with smaller available memory

Demand Paging

Demand Paging:

Bring pages in memory when CPU demands

Page Fault:

When the demanded page is not available in physical memory

How to Ensure the Page hit or fault?

Page Swap Time Saving

Page Swap Time Saving

Effective Memory Access Time

Happy Learning.!

