Rewriting Approach to Type Assignment

Peng Fu, Aaron Stump

September 30, 2011

Background I: Basic Formalism

- Term rewriting concepts
 - ▶ Reduction relation: $x_1 \rightarrow x_2$.
 - ▶ Reflexive transitive closure: $x_1 \stackrel{*}{\rightarrow} x_2$
- Lambda calculus
 - ▶ Pure lambda terms: $t ::= x \mid \lambda x.t \mid tt$
 - ▶ Beta-Reduction: $(\lambda x.t)t' \rightarrow_{\beta} [t'/x]t$

Background II: Simply Typed Lambda Calculus

Church-Style

- ▶ Terms: $t ::= x \mid \lambda x : T.t \mid tt$
- ▶ Types: $T ::= B \mid T_1 \Rightarrow T_2$
- ▶ Typing Context: $\Gamma := \cdot \mid \Gamma, x : T$
- ▶ Reduction: $(\lambda x : T.t)t' \rightarrow_{\beta} [t'/x]t$
- Typed Terms(Type Assignment):

$$\frac{(x:T)\in\Gamma}{\Gamma\vdash x:T}$$

$$\frac{\Gamma, x: T_1 \vdash t: T_2}{\Gamma \vdash \lambda x: T.t: T_1 \Rightarrow T_2}$$

$$\frac{\Gamma \vdash t_1 : T_1 \Rightarrow T_2 \quad \Gamma \vdash t_2 : T_1}{\Gamma \vdash t_1 \ t_2 : T_2}$$

Background III: Simply Typed Lambda Calculus

Curry-Style

- ▶ Terms: $t ::= x \mid \lambda x.t \mid tt$
- ▶ Types: $T ::= B \mid T_1 \Rightarrow T_2$
- ▶ Typing Context: $\Gamma ::= \cdot \mid \Gamma, x : T$
- ▶ Reduction: $(\lambda x.t)t' \rightarrow_{\beta} [t'/x]t$
- Type assignment:

$$\frac{(x:T) \in \Gamma}{\Gamma \vdash x:T} \qquad \frac{\Gamma, x:T_1 \vdash t:T_2}{\Gamma \vdash \lambda x.t:T_1 \Rightarrow T_2}$$

$$\frac{\Gamma \vdash t_1 : T_1 \Rightarrow T_2 \quad \Gamma \vdash t_2 : T_1}{\Gamma \vdash t_1 \ t_2 : T_2}$$

Rewrite rules for Church-Style STLC

- ▶ mixed terms: $m ::= x \mid \lambda x : T.m \mid mm' \mid B \mid T \Rightarrow m$
- ▶ standard terms: $t ::= x \mid \lambda x : T . t \mid t t'$
- ▶ Idea: from $\Gamma \vdash t : T$ to $\Gamma t \stackrel{*}{\to} T$. Here Γ means substitue term variables with its types.
- ► Rewriting rules for typing: $\hat{m}[(T \Rightarrow m) \ T] \rightarrow_{\epsilon} \hat{m}[m]$ $\hat{m}[\lambda x : T. m] \rightarrow_{\lambda} \hat{m}[T \Rightarrow [T/x]m]$
- ▶ Example: $\lambda x : T.x \rightarrow_{\lambda} T \Rightarrow T$.

Rewrite rules for Curry-Style STLC

- ▶ mixed terms: $m ::= x \mid \lambda x. m \mid m m' \mid B \mid T \Rightarrow m$
- ▶ standard terms: $t ::= x \mid \lambda x. t \mid t t'$
- ▶ Reductions:

$$\hat{m}[(T \Rightarrow m) \ T] \rightarrow_{\epsilon} \hat{m}[m]$$

 $\hat{m}[\lambda x. \ m] \rightarrow_{\lambda} \hat{m}[T \Rightarrow [T/x]m]$

- ▶ Example: $\lambda x.x \rightarrow_{\lambda} T \Rightarrow T$.
- ▶ Notice: \rightarrow_{λ} is infinite branching.

Curry System F

We can extend curry-STLC to curry-sytem F by adding new types and type assignments.

- ▶ Types: *T* ::= ... | ∀*X*.*T*
- New typing rules: $\frac{\Gamma \vdash t : T \quad X \notin FV(\Gamma)}{\Gamma \vdash t : \forall X.T} \quad \frac{\Gamma \vdash t : \forall X.T'}{\Gamma \vdash t : [T/X]T'}$
- Two temptative new rewriting rules: $\hat{m}[\forall X.m] \rightarrow_{\iota} \hat{m}[[T/X]m]$ $\hat{m}[m] \rightarrow_{\pi} \hat{m}[\forall X.m]$ Assuming $m ::= ... |\forall X.m$.
- ▶ Problem: $[x : X]x \equiv X \rightarrow_{\pi} \forall X.X$, but $x : X \not\vdash x : \forall X.X$.

Rewriting Simulation for Curry System F: an attempt

Keep the typing context Γ around.

- ▶ Pretypes: $P ::= T \mid \Gamma t \mid \Gamma T \mid P_1 P_2 \mid P_1 \rightarrow P_2 \mid \lambda x.P \mid \forall X.P$
- New rewrite rules:

$$\hat{P}[(\lambda x.P)] \rightsquigarrow_{\lambda} \hat{P}[T \rightarrow [x:T]P].$$

$$\hat{P}[(T \to P)T] \leadsto_{\epsilon} \hat{P}[P].$$

$$\hat{P}[P] \leadsto_{\pi} \hat{P}[\forall X.P]$$
, where $X \notin \Gamma V(P)$ and $P \notin \textbf{Types}$.

$$\hat{P}[\forall X.P] \leadsto_{\iota} \hat{P}[[T/X]P].$$

$$\hat{P}[\Gamma x] \leadsto_{\mathcal{S}} \hat{P}[\Gamma T]$$
, where $(x : T) \in \Gamma$.

$$\hat{P}[\Gamma T] \leadsto_r \hat{P}[T].$$

▶ Example: $[x : X]x \leadsto_s [x : X]X \leadsto_r X$.

Future Works and Conclusion

- ▶ Show $\Gamma \vdash t : T$ iff $\Gamma t \stackrel{*}{\to} T$.
- Prove type preservation for curry system F using rewriting approach.
- For more details, talk to me afterward.
- Thank you very much for listening.