EXPERIMENT NO. 7

AIM: Implementation and analysis of RSA cryptosystem.

REQUIREMENTS: Virtual Lab

THEORY:

RSA (Rivest-Shamir-Adleman) is a widely used public-key cryptosystem that enables secure communication over an insecure network. It is an asymmetric encryption algorithm, meaning it uses two different keys:

- Public Key: Used for encryption and can be shared openly.
- Private Key: Used for decryption and must be kept secret.

The security of RSA is based on the mathematical difficulty of factoring large prime numbers, making it a strong encryption method for secure data exchange.

PROCEDURE:

- **Step 1 :** Enter the input text to be encrypted in the 'Plaintext' area
- Step 2: Select keysize of public key from RSA Private key section by clicking on one of the key button.
- **Step 3 :** Click on **encrypt** button to generate a ciphertext.

RESULT:

Virtual As Mod Queld Hoto Massin	Public-Key Cryptosystems (PKCSv1.5)	
Plaintext (string):		
test encrypt		
Ciphertext (hex): 40d2f82d615e29cb4ea0f1af11be937c22e2b338f24460d531fb97b56955a6ce fa1f33d5f74532c67bf497a62a5fd205e7e1eba6d0980f04848b41e27a63512b decrypt		
Decrypted Plaintext (string): test		
Status: Decryption Time: 3ms		
RSA private key		
1024 bit 1024 bit (e=3) 512 bit 512 bit (e=3) Generate	bits = 512	

= <u>6</u>	Virtual Line miles	Public-Key Cryptosystems (PKCSv1.5)
Modulus (hex):		
	7568874ACECF2A115E613021EAF1ED5EF2958EC2BED899D FE381AF67A7B7CBB48D85235E72AB595ABF8FE840D5F8DB	
Public exponent (he:	x, F4=0x10001):	
Private exponent (he	ex):	
	4e47af87348a1c0b9440cac1474bf394a1b929d729e5bbc 78c091f7e5dacd3f8edae2effe3164d7e0eeada87ee817b	
P (hex):		
ef3fc61e21867a900e	e01ee4b1ba69f5403274ed27656da03ed88d7902cce693f	
Q (hex):		Ω
	68f85b50e749539bc01b10a68472fe1302058104821cd65	
D mod (P-1) (hex):		
	9569edcbd19bf8d576f89e1a439e6ad4905e50ac8899b7f	
D mod (Q-1) (hex):		8
	9b503ce09a30e267d567606f02f7540cac03ab5856bde43	
1/Q mod P (hex):		α
412d6b551d93ee1bd	7dccafc63d7a6d031fc66035ecc630ddf75f949a378cd9d	

ASSIGNMENT:

Q1: Let p = 17, q = 11 and N = pq. If (in the public-key) e = 7, then a possible value for the trap-door d (in the private-key) in an RAS cryptosystem is....

A: 23

Q2: Encrypt the message m = 57 with the textbook RSA with the public key pk = N = 253, e = 3...

A: 196

Q3: In Asymmetric-Key cipher, the sender uses the _____ key

A: Public Key

Q4: Why PKCSv1.5 is more secure?

A: PKCSv1.5 improves security by using padding to prevent attacks like Bleichenbacher's attack, adding randomness, and strengthening RSA encryption in SSL/TLS. It protects against chosen ciphertext attacks and ensures safer cryptographic implementations.

CONCLUSION:

In this experiment, we successfully implemented and analyzed the RSA cryptosystem. We explored the key generation process, encryption, and decryption mechanisms. The experiment demonstrated how RSA ensures secure communication using asymmetric encryption, where the public key is used for encryption and the private key for decryption. Additionally, we examined the importance of key sizes and security enhancements like PKCS1 v1.5. The results validate that RSA is an effective and widely used cryptographic algorithm for secure data transmission.