Матан вторая домашка.

Шахматов Андрей, Б02-304 24 марта 2024 г.

Содержание

1	T1	1
2	${f T2}$	2
3	T3	4
4	T4	4
5	$\mathbf{T}6$	4
6	Т7. Признак Дини	4
7	T8	5
8	$\mathbf{T}9$	5
9	T10	5
10	T11	6
11	T13	7
12	T14	7
13	T17	7
14	Интегрируемость функции Римана	7
15	20.13	8

1 T1

$$f_n(x) = \frac{x}{n} \ln \frac{x}{n} \to 0, n \to 0$$

При x > 1 выберем последовательность $x_n = 2n$:

$$f_n(x_n) = 2\ln 2 = \varepsilon$$

При 0 < x < 1 исследуем функцию на монотонность:

$$f_n'(x) = \frac{1}{n} \left(\ln \frac{x}{n} + 1 \right)$$

Тогда функция $|f_n(x)|$ возрастает при $x < \frac{n}{e}$, то есть при n > 3 функция монотонна на (0,1). Тогда она принимает максимальное значение в точке x = 1:

$$|f_n(x)| \le \frac{1}{n} \ln \frac{1}{n} \to 0, n \to \infty$$

 Γ)

$$f_n(x) = n \arctan \frac{x}{n} \to x$$

При x > 1 выберем $x_n = 2n$:

$$n \operatorname{arctg} 2 \ge \operatorname{arctg} 2 = \varepsilon$$

При 0 < x < 1:

$$|f_n(x) - x| = \left| n \left[\frac{x}{n} + \frac{1}{2(1 + \varepsilon^2)} \left(\frac{x}{n} \right)^2 \right] - x \right| \le \frac{1}{2n} \to 0, n \to \infty.$$

д)

$$f_n = x^n - x^{n+1} = x^n(1-x) \to 0$$

Рассмотрим $f_{n+1}(x) - f_n(x)$:

$$f_{n+1}(x) - f_n(x) = x^{n+1}(1-x) - x^n(1-x) = x^n(1-x)(x-1) \le 0$$

To есть f_n - монотонна по n, тогда по признаку Дини сходимость равномерная.

e) $f_n = x^n - x^{2n} = x^n(1 - x^n) \to 0$

Функция достигает максимума в точке $x^n = \frac{1}{2} \implies f_{max} = \frac{1}{4} \implies \sup f_n(x) = \frac{1}{4} \not\to 0$

2 T2

б)

$$\sum_{n=1}^{\infty} \frac{\sqrt{x}}{n} \sin \frac{x}{n}$$

При $x \in (0,1)$:

$$\sum_{n=1}^{\infty} \left| \frac{\sqrt{x}}{n} \sin \frac{x}{n} \right| \le \sum_{n=1}^{\infty} \frac{x\sqrt{x}}{n^2} \le \sum_{n=1}^{\infty} \frac{1}{n^2}$$

Тогда по признаку Вейерштрасса ряд сходится равномерно. При $x \in (1, +\infty)$ рассмотрим сумму из отрицания критерия Коши при n(N) = N, p(N) = N, x = 2N:

$$\sum_{k=N}^{2N} \frac{\sqrt{2N}}{k} \sin \frac{2N}{k} \ge N\sqrt{2N} \sin \frac{1}{2N} = \sqrt{2N} \frac{\sin \frac{1}{2}}{2N} \ge \frac{\sin \frac{1}{2}}{\sqrt{2}}$$

в)

$$\sum_{n=1}^{\infty} \frac{nx}{n^2 + x^2} \arctan \frac{x}{n}$$

При $x \in (0,1)$:

$$\sum_{n=1}^{\infty} \left| \frac{nx}{n^2 + x^2} \arctan \frac{x}{n} \right| \le \sum_{n=1}^{\infty} \frac{x^2}{n^2 + x^2} \le \sum_{n=1}^{\infty} \frac{1}{2n^2}$$

Тогда по признаку Вейерштрасса ряд сходится равномерно. Рассмотрим последовательность x = n, тогда с n > 1 выполняется:

$$u_n(x_n) = \frac{n^2}{n^2 + n^2} \operatorname{arctg} \frac{n}{n} = \frac{1}{2} \operatorname{arctg} 1 = \varepsilon$$

То есть невыполняется необходимое условие сходимости ряда, а значит ряд не сходится равномерно, при $x \in (1, +\infty)$.

 Γ)

$$\sum_{n=1}^{\infty} \frac{n^2 x^2}{n^4 + x^4} \sin \frac{n}{x}$$

При x > 1 рассмотрим последовательность $x_n = n$, тогда:

$$u_n(x_n) = \frac{n^3}{2n^4} \sin 1 = \frac{1}{2} \sin 1 = \varepsilon$$

Не выполняется необходиомое условие равномерной сходимости. При 0 < x < 1:

$$\sum_{n=1}^{\infty} \left| \frac{n^2 x^2}{n^4 + x^4} \sin \frac{n}{x} \right| \le \sum_{n=1}^{\infty} \frac{n^2 x^2}{n^4 + x^4} \le \sum_{n=1}^{\infty} \frac{1}{2n^2}$$

По признаку Вейерштрасса сходится равномерно.

e)

$$\sum_{n=1}^{\infty} \frac{x \ln nx}{n^2}$$

При x > 1 выбрем $x_n = 2n^2$:

$$u_n(x_n) = 2 \ln 2n^3 = 2 \ln 2 + 6 \ln n > 2 \ln 2 = \varepsilon$$

Не выполняется необходимое условие сходимости. Для определения равномерной сходимости исследуем функцию $u_n(x) = \left| \frac{x \ln nx}{n^2} \right|$ на максимум на интервале (0,1):

$$u'_n(x) = \frac{1}{n^2} (\ln nx + 1)$$

Тогда в точке $x = \frac{1}{ne}$ находится экстремум, а значит максимальное значение функции:

$$\sup u_n = \max \left\{ u_n(\frac{1}{ne}), u_n(1) \right\} = \max \left\{ \frac{1}{n^3 e}, \frac{\ln n}{n^2} \right\}$$

Так как оба ряда $\sum_{n=1}^{\infty} \frac{1}{n^3 e}$ и $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$ сходятся, то исходный ряд сходится по признаку Вейерштрасса.

3 T3

Так как функции u_n - монотонны на [a,b], то:

$$|u_n| \le \sup |u_n| = \max \{|u_n(a)|, |u_n(b)|\} \le |u_n(a)| + |u_n(b)|$$

Но так как ряды $\sum_{n=1}^{\infty} |u_n(a)|$ и $\sum_{n=1}^{\infty} |u_n(b)|$ сходятся абсолютно, то и ряд $\sum_{n=1}^{\infty} |u_n(a)| + |u_n(b)|$ сходится абсолютно, а значит по признаку Вейерштрасса ряд $\sum_{n=1}^{\infty} u_n$ равномерно сходится на [a,b].

4 T4

Докажем по признаку Абеля, для этого нужно доказать, что $b_n = \frac{1}{n^x}$ монотонна и ограничена. Ограниченность очевидна $b_n \leq 1$, покажем монотонность:

$$\frac{\frac{1}{(n+1)^x}}{\frac{1}{n^x}} = \frac{1}{\left(1 + \frac{1}{n}\right)^x} \le 1$$

последовательность убывает при любом фиксированном x.

5 T6

Запишем $w_f(t_n) = \sup\{|f(x) - f(x+\delta)| \mid \delta \le t_n\} \ge |f(x) - f(x-t_n)|$. Тогда по теореме Кантора функция равномерно-непрерывна, тогда $w_f(t_n) \to 0, t_n \to 0$.

6 Т7. Признак Дини

Рассмотри множество $Q_n = \{x \mid |f_n(x) - f(x)| \le \varepsilon\}$, каждое из таких множеств является открытым, так как $|f_n(x) - f(x)|$ - непрерывна, и множество задаётся строгим неравенством. Так как $f_n \to f$ следует, что $[a,b] \subset \bigcup_{n=1}^{\infty} Q_n$. Из того, что функции монотонны по n следует вложеннность Q_n $Q_1 \subset Q_2 \subset \cdots \subset Q_n$. Тогда так как [a,b] - компакт следует, что из $\bigcup_{n=1}^{\infty} Q_n$ можно выбрать конечное подпокрытие $Q_k \cup \cdots \cup Q_N = Q_N$. Получили, что найдётся N, такое что $\forall n > N \ \forall x \in [a,b]$ $x \in Q_N \subset Q_n$.

б)

$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} z^n$$

Воспользуемся формулой Даламбера:

$$\frac{1}{R} = \lim_{n \to \infty} \frac{((n+1)!)^2}{(n!)^2} \frac{(2n)!}{(2n+2)!} = \lim_{n \to \infty} \frac{(n+1)^2}{2(2n+1)(n+1)} = \frac{1}{2} \lim_{n \to \infty} \frac{n+1}{2n+1} = \frac{1}{4}$$

А значит радиус сходиомсти R = 4. доп)

$$\sum_{n=1}^{\infty} \frac{x^{pn}}{(1-i)^n}$$

По формуле Коши-Адамара:

$$\frac{1}{R} = \overline{\lim}_{n \to \infty} |c_n|^{\frac{1}{n}} = \lim_{k \to \infty} \left| \frac{1}{(1-i)^k} \right|^{\frac{1}{pk}} = \frac{1}{\sqrt[p]{2}}$$

8 T9

a)

$$\sum_{n=1}^{\infty} (\sqrt[n]{a} - 1)x^n$$

По формуле Даламбера:

$$\frac{1}{R} = \lim_{n \to \infty} \frac{a^{\frac{1}{n+1}} - 1}{a^{\frac{1}{n}} - 1} = \lim_{n \to \infty} \frac{\frac{1}{n+1} \ln a}{\frac{1}{n} \ln a} + o(1) = 1$$

Радиус сходимости равен 1. При x = 1:

$$\sum_{n=1}^{\infty} \sqrt[n]{a} - 1 = \sum_{n=1}^{\infty} e^{\frac{1}{n} \ln a} - 1 \ge \sum_{n=1}^{\infty} \frac{1}{n} \ln a - \text{расходится}$$

При x = -1:

$$\sum_{n=1}^{\infty} (-1)^n \left(\sqrt[n]{a} - 1 \right)$$

По признаку Лейбница сходится условно.

9 T10

a)
$$\frac{1}{x^2 - 2x - 3} = \frac{1}{(x+1)(x-3)} = \frac{1}{4} \left(\frac{1}{x-3} - \frac{1}{x+1} \right) = \frac{1}{4} \cdot \frac{1}{1+x} - \frac{1}{12} \cdot \frac{1}{1-\frac{x}{3}}$$

$$\frac{1}{4} \cdot \frac{1}{1+x} = \sum_{n=0}^{\infty} \frac{1}{4} (-1)^n x^n$$

$$\frac{1}{12} \cdot \frac{1}{1 - \frac{x}{3}} = \sum_{n=1}^{\infty} \frac{x^n}{12 \cdot 3^n}$$

Тогда:

$$\frac{1}{x^2 - 2x - 3} = \sum_{n=1}^{\infty} x^n \left(\frac{(-1)^n}{4} + \frac{1}{12 \cdot 3^n} \right)$$

Радиус сходимости равен минимуму из радиусов сходимости составных рядов, т.е R=1.

$$\frac{1}{(x^2+2)^2} = \frac{1}{\sqrt{2}} \cdot \frac{1}{\left(1+\left(\frac{x}{\sqrt{2}}\right)^2\right)^2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{2}} (n+1) \frac{x^{2n}}{2^n}$$

Радиус сходимости равен $R=1^2\cdot\sqrt{2}=\sqrt{2}$

в)

$$\ln \frac{2+x^2}{\sqrt{1-2x^2}} = \ln 2 + \ln \left(1 + \frac{x^2}{2}\right) - \frac{1}{2}\ln \left(1 - 2x^2\right) = \ln 2 + \sum_{n=1}^{\infty} \frac{x^{2n}}{n} \left(\frac{(-1)^{n+1}}{2^n} - 2^{n-1}\right)$$

Радиус сходимости $R = \frac{1}{\sqrt{2}}$

 $_{\Gamma})$

$$\sin^3 x = 3\sin x - 4\sin 3x = \sum_{n=0}^{\infty} \frac{3(-1)^n x^{2n+1}}{(2n+1)!} - \sum_{n=0}^{\infty} \frac{4(-1)^n x^{6n+3}}{(2n+1)!}$$

Ну тут дальше можно кусочно задать явную формулу для коэффициентов ряда. Радиус сходимости $R=\infty$.

д)

$$\arctan \frac{2-x}{1+2x} = \arctan 2 - \arctan x = \arctan 2 + \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{2n-1}$$

Радиус сходимости R=1.

10 T11

б)

$$\sum_{n=0}^{\infty} n^2 x^n$$

Рассмотрим сумму из пункта а:

$$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n$$

Почленно продифференцировав получим:

$$\sum_{n=1}^{\infty} n^2 x^{n-1} = \frac{1+x}{(1-x)^3} \implies \sum_{n=0}^{\infty} n^2 x^n = \frac{x(1+x)}{(1-x)^3}$$

11 T13

$$\int_0^{\pi} \sin x \, \mathrm{d}x$$

Разобъём отрезок равномерно, тогда выбрав представителя в виде $f(k) = \sin \pi \frac{k}{n}$:

$$S = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{\pi}{n} \sin \pi \frac{k}{n} = \lim_{n \to \infty} \frac{\pi}{n} \frac{\sin \left(\frac{n+1}{2} \frac{\pi}{n}\right) \sin \frac{\pi}{2}}{\sin \left(\frac{\pi}{2n}\right)} = 2$$

12 T14

Так как $\frac{1}{x}$ непрерывна, то она интегрируема на любом отрезке из области определения. Найдём интеграл $\int_1^2 \frac{1}{x} \, \mathrm{d}x$, выберем разбиение, где точки составляют геометрическую прогрессию: $1, q^1, q^2 \dots q^n$, где $q = \sqrt[n]{2}$, в качестве представителя выберем самые правые точки, т.е $f(t_k) = \frac{1}{q^k}$. Тогда сумма Римана будет иметь вид:

$$S = \frac{1}{q}(q-1) + \frac{1}{q^2}(q^2 - q) + \dots + \frac{1}{q^n}(q^n - q^{n-1}) = \frac{n}{q}(q-1) = \frac{n(\sqrt[n]{2} - 1)}{\sqrt[n]{2}} = \frac{n(2^{\frac{1}{n}} - 1)}{2^{\frac{1}{n}}} \to \ln 2$$

Предел является одним из замечательных пределов для логарифма. Далее замечаем, что искомая сумма:

$$S' = \sum_{k=1}^{n} \frac{1}{1 + \frac{k}{n}} \frac{1}{n}$$

тоже является суммой Римана, но только для равномерного разбиения, тогда так как эти суммы сходятся к одному и тому же интегралу получим, что сумма $S' = \ln 2$.

13 T17

a)
$$1 + x^n \le e^{-x^n} \implies \int_0^1 1 + x^n \, \mathrm{d}x < \int_0^1 e^{-x^n} \, \mathrm{d}x \implies 1 - \frac{1}{n} < \int_0^1 e^{-x^n} \, \mathrm{d}x$$

14 Интегрируемость функции Римана

Для любого $\varepsilon>0$ тогда функция Римана принимает значение большее $\frac{\varepsilon}{2}$ конечное число раз, покроем все точки x для которых $R(x)>\frac{\varepsilon}{2}$ семейством окрестностей $U_{\frac{\varepsilon}{4}},U_{\frac{\varepsilon}{8}},\ldots$, тогда взвешенная сумма колебаний по таким окрестностям не превосходит:

$$\Omega(f_U, \tau_U) \le 1 \cdot \frac{\varepsilon}{4} + 1 \cdot \frac{\varepsilon}{8} + \dots < \frac{\varepsilon}{2}$$

В остальных точках значение функции Римана не превосходит $\frac{\varepsilon}{2}$, а значит взвешенная сумма колебаний не превосходит $1 \cdot \frac{\varepsilon}{2}$, тогда взвешенная сумма колебаний по всему разбиению не превосходит ε .

$15 \quad 20.13$

Для нахождения радиуса сходимости воспользуемся формулой Даламбера:

$$\frac{1}{R} = \lim_{n \to \infty} \frac{(\alpha + n)(\beta + n)}{n(\gamma + n)} = 1$$

Для исследования ряда на границе сходиомсти подробнее изучим коэффициенты ряда F_n :

$$F_n = \prod_{k=1}^n \frac{(\alpha+k)(\beta+k)}{(\gamma+k)(1+k)} = \prod_{k=1}^n \frac{(1+\frac{\alpha}{k})(1+\frac{\beta}{k})}{(1+\frac{\gamma}{k})(1+\frac{1}{k})} = \exp\left\{\sum_{k=1}^n \left[\ln\left(1+\frac{n}{k}\right) + \ln\left(1+\frac{\beta}{k}\right) - \ln\left(1+\frac{\gamma}{k}\right) - \ln\left(1+\frac{1}{k}\right)\right]\right\} = \exp\left\{\sum_{k=1}^n \left[\frac{\alpha+\beta-\gamma-1}{k} + O\left(\frac{1}{k^2}\right)\right]\right\} = \exp\left\{(\alpha+\beta-\gamma-1)\ln k + A\right\} = e^A k^{\alpha+\beta-\gamma-1},$$

в преобразованиях использована ассимтотическая формула разложения гармонического ряда $\sum_{k=1}^n \frac{1}{k} = \ln k + C + o(k)$. Мы получили ассимптотическую формулу, где A - некоторая положительная константа, зависящая от α, β, γ . Далее нетрудно провести анализ сходимости ряда, при x=1 ряд ведёт себя как эталонный и сходится при $\alpha+\beta-\gamma-1<-1\implies \alpha+\beta<\gamma$. При $\alpha+\beta\geq\gamma$ ряд расходится. При x=-1 ряд сходится абсолютно при $\alpha+\beta<\gamma$ и сходится условно при $\alpha+\beta-\gamma-1<0$ по признаку Даламбера. При $\alpha+\beta-\gamma-1\geq 0$ ряд расходится.

16 Т3.НИР