Introdução a linguagem Stan (*rstan*), um software para modelos bayesianos.

Universidade Federal do Oeste do Pará (UFOPA) Campus de Monte Alegre – Engenharia de Aquicultura

Universidade Federal de Lavras (UFLA) PPG – Estatística e Experimentação Agropecuária

Professor: Carlos Antônio Zarzar

E-mail: carloszarzar_@hotmail.com

carlos.zarzar@ufopa.edu.br

Data: 09/03/2022

AGRADECIMENTO E COLABORADORES:

- Estatística Bayesiana;
- Modelos Hierárquicos;
- Método computacional de integração MCMC;
- Algoritmo de amostragem;
 - Gibbs;
 - Metropolis-Hasting;
 - Hamiltoniano Monte Carlo;
 - NUTS;

Métodos computacionais de integrações

- Método de Monte Carlo (MC);
- Método de Monte Carlo via Cadeia de Markov (MCMC);
- Aplicação à Estatística Bayesiana.

• Teorema de Bayes:

$$p(\theta|x) = \frac{p(\theta,x)}{p(x)} = \frac{p(x|\theta)p(\theta)}{p(x)} = \frac{p(x|\theta)p(\theta)}{\int p(\theta,x)d\theta}$$

Monte Carlo é um método de integração numérico conhecido:

- Integração de Monte Carlo;
- Método de Monte Carlo.

• Teorema de Bayes:

$$p(\theta|x) = \frac{p(\theta,x)}{p(x)} = \frac{p(x|\theta)p(\theta)}{p(x)} = \frac{p(x|\theta)p(\theta)}{\int p(\theta,x)d\theta}$$

Monte Carlo é um método de integração numérico conhecido:

Integração de Monte Carlo;

Método de Monte Carlo.

Monte Carlo é um método de integração numérico conhecido:

Integração de Monte Carlo;

Geração de variáveis aleatórias independentes com mesma distribuição

- Número de pontos <u>fora</u> da curva = 172;
- Número de pontos <u>abaixo</u> da curva = 328;
- Número de pontos <u>Totais</u> = 500;

$$\int_0^h f(x)dx = \int_{-2}^2 -x^2 + 4 \, dx$$

Monte Carlo é um método de integração numérico conhecido:

Integração de Monte Carlo;

Geração de variáveis aleatórias independentes com mesma distribuição

- Número de pontos <u>fora</u> da curva = 172;
- Número de pontos <u>abaixo</u> da curva = 328;
- Número de pontos <u>Totais</u> = 500;

Área
$$f(x) = \frac{328}{500} * (4x4) = 10,496$$

Monte Carlo é um método de integração numérico conhecido:

Integração de Monte Carlo;

Geração de variáveis aleatórias independentes com mesma distribuição

- Número de pontos <u>fora</u> da curva = 172;
- Número de pontos <u>abaixo</u> da curva = 328;
- Número de pontos **Totais** = 500;

Área
$$f(x) = \frac{328}{500} * (4x4) = 10,496$$

$$\int_0^h f(x)dx = \int_{-2}^2 -x^2 + 4 \, dx = 10,667$$

Monte Carlo é um método de integração numérico conhecido:

Integração de Monte Carlo;

Geração de variáveis aleatórias independentes com mesma distribuição

• Número de pontos <u>fora</u> da curva = 172;

- Número de pontos <u>abaixo</u> da curva = 328;
- Número de pontos **Totais** = 500;

Lei Forte dos Grandes Números

Seja Y_1, Y_2, \ldots, Y_n variáveis *i.i.d.*

$$\mu = E[Y] < \infty$$

$$\frac{1}{n} \sum_{i=1}^{n} Y_i \to \mu \quad \text{Convergindo quase certo} \\ n \to \infty$$

$$P\left(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n Y_i = \mu\right) = 1$$

Monte Carlo é um método de integração numérico conhecido:

Integração de Monte Carlo;

Geração de variáveis aleatórias independentes com mesma distribuição

Monte Carlo é um método de integração numérico conhecido:

- Integração de Monte Carlo;
- Método de Monte Carlo.

$$P\left(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}Y_{i}=\mu\right)=1$$

Monte Carlo é um método de integração numérico conhecido:

Integração de Monte Carlo;

$$P\left(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}Y_{i}=\mu\right)=1$$

Geração de variáveis aleatórias independentes com mesma distribuição

Monte Carlo é um método de integração numérico conhecido:

Integração de Monte Carlo;

Método de Monte Carlo.

$$P\left(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n Y_i = \mu\right) = 1$$

Monte Carlo é um método de integração numérico conhecido:

Integração de Monte Carlo;

Método de Monte Carlo.

➤ Lei Forte dos Grandes Números

Seja Y_1, Y_2, \ldots, Y_n variáveis *i.i.d.*

$$\mu = E[Y] < \infty$$

$$\frac{1}{n} \sum_{i=1}^{n} Y_i \to \mu \quad \text{Convergindo quase certo} \\ n \to \infty$$

$$P\left(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}Y_{i}=\mu\right)=1$$

Monte Carlo é um método de integração numérico conhecido:

Integração de Monte Carlo;

Método de Monte Carlo.

$$\frac{1}{n} \sum_{i=1}^{n} Y_i \to \mu \quad \text{Convergindo quase certo} \\ n \to \infty$$

$$P\left(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}Y_{i}=\mu\right)=1$$

carloszarzar @hotmail.com 09/03/2022

Monte Carlo é um método de integração numérico conhecido:

Integração de Monte Carlo;

ou

Método de Monte Carlo.

$$\frac{1}{n} \sum_{i=1}^{n} Y_i \to \mu \quad \text{Convergindo quase certo} \\ n \to \infty$$

$$P\left(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}Y_{i}=\mu\right)=1$$

Monte Carlo é um método de integração numérico conhecido:

Integração de Monte Carlo;

Método de Monte Carlo.

Seja Y_1, Y_2, \ldots, Y_n variáveis *i.i.d.*

$$\mu = E[Y] < \infty$$

$$\frac{1}{n} \sum_{i=1}^{n} Y_i \to \mu \quad \text{Convergindo quase certo} \\ n \to \infty$$

$$P\left(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}Y_{i}=\mu\right)=1$$

Monte Carlo é um método de integração numérico conhecido:

- Integração de Monte Carlo;
 - Método de Monte Carlo.

$$P\left(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}Y_{i}=\mu\right)=1$$

Geração de variáveis aleatórias independentes com mesma distribuição

Monte Carlo Via Cadeia de Markov:

A posteriori: Bimodal Distribuição Normal mista

$$f(x) = 0.4 * N(17; 3) + 0.6 * N(30; 2)$$

Monte Carlo Via Cadeia de Markov:

A posteriori: Bimodal Distribuição Normal mista

$$f(x) = 0.4 * N(17; 3) + 0.6 * N(30; 2)$$

Monte Carlo Via Cadeia de Markov:

A posteriori: Bimodal Distribuição Normal mista

$$f(x) = 0.4 * N(17; 3) + 0.6 * N(30; 2)$$

Monte Carlo Via Cadeia de Markov:

A posteriori: Bimodal Distribuição Normal mista

$$f(x) = 0.4 * N(17; 3) + 0.6 * N(30; 2)$$

Monte Carlo Via Cadeia de Markov:

A posteriori: Bimodal Distribuição Normal mista

$$f(x) = 0.4 * N(17; 3) + 0.6 * N(30; 2)$$

Monte Carlo Via Cadeia de Markov:

A posteriori: Bimodal Distribuição Normal mista

$$f(x) = 0.4 * N(17; 3) + 0.6 * N(30; 2)$$

Monte Carlo Via Cadeia de Markov:

A posteriori: Bimodal Distribuição Normal mista

$$f(x) = 0.4 * N(17; 3) + 0.6 * N(30; 2)$$

Monte Carlo Via Cadeia de Markov:

A posteriori: Bimodal Distribuição Normal mista

$$f(x) = 0.4 * N(17; 3) + 0.6 * N(30; 2)$$

Monte Carlo Via Cadeia de Markov:

A posteriori: Bimodal Distribuição Normal mista

$$f(x) = 0.4 * N(17; 3) + 0.6 * N(30; 2)$$

Monte Carlo Via Cadeia de Markov:

A posteriori: Bimodal Distribuição Normal mista

$$f(x) = 0.4 * N(17; 3) + 0.6 * N(30; 2)$$

Monte Carlo Via Cadeia de Markov:

 $\theta_t \sim N(\theta_{t-1}, \sigma^2)$ $\theta_{t+1} \sim N(\theta_t, \sigma^2)$ $\theta_{t+2} \sim N(\theta_{t+1}, \sigma^2)$ t-1t + 1t+2

A posteriori: Bimodal Distribuição Normal mista

$$f(x) = 0.4 * N(17; 3) + 0.6 * N(30; 2)$$

Monte Carlo Via Cadeia de Markov:

Geração de variáveis aleatórias independentes dependentes

 $\theta_t \sim N(\theta_{t-1}; \sigma)$

A posteriori: Bimodal Distribuição Normal mista

$$f(x) = 0.4 * N(17;3) + 0.6 * N(30;2)$$

Monte Carlo Via Cadeia de Markov:

Intermediate

 $\theta_t \sim N(\theta_{t-1}; \sigma)$

Geração de variáveis aleatórias independentes dependentes

A posteriori: Bimodal Distribuição Normal mista

$$f(x) = 0.4 * N(17; 3) + 0.6 * N(30; 2)$$

Monte Carlo Via Cadeia de Markov:

A posteriori: Bimodal Distribuição Normal mista

$$f(x) = 0.4 * N(17; 3) + 0.6 * N(30; 2)$$

Espaço paramétrico da distribuição a posteriori

Métodos computacionais de integrações

carloszarzar_@hotmail.com

Desconhecido

Espaço paramétrico da distribuição *a posteriori*

Espaço paramétrico da distribuição *a posteriori*

• Random walk MCMC

Espaço paramétrico da distribuição a posteriori

• Random walk MCMC

Espaço paramétrico da distribuição *a posteriori*

• Random walk MCMC

Espaço paramétrico da distribuição *a posteriori*

• Random walk MCMC

carloszarzar_@hotmail.com

Custo computacional muito grande para amostrar todo o espaço paramétrico.

Espaço paramétrico da distribuição a posteriori

• Random walk MCMC

carloszarzar_@hotmail.com

Espaço paramétrico da distribuição *a posteriori*

- Random walk MCMC
- Amostrador em avaliação;

carloszarzar_@hotmail.com

Espaço paramétrico da distribuição *a posteriori*

- Random walk MCMC
- Amostrador em avaliação;
- Amostrador rejeitado;

carloszarzar_@hotmail.com

Espaço paramétrico da

- Random walk MCMC
- Amostrador em avaliação;
- Amostrador rejeitado;

carloszarzar_@hotmail.com

Espaço paramétrico da

- Random walk MCMC
- Amostrador em avaliação;
- Amostrador rejeitado;

carloszarzar_@hotmail.com

Espaço paramétrico da distribuição a posteriori

- Random walk MCMC
- Amostrador em avaliação;
- Amostrador rejeitado;

carloszarzar_@hotmail.com

- Método a amostragem:
 - Gibbs
 - Metropolis-Hasting
 - Hamiltoniano MC
 - NUTS

Introdução a linguagem Stan (*rstan*), um software para modelos bayesianos.

Universidade Federal do Oeste do Pará (UFOPA) Campus de Monte Alegre – Engenharia de Aquicultura

Obrigado !!!

Professor: Carlos Antônio Zarzar

E-mail: carloszarzar_@hotmail.com

carlos.zarzar@ufopa.edu.br

Data: 09/03/2022

AGRADECIMENTO E COLABORADORES:

