VLSI Devices Lecture 16

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
Department of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology (GIST)

Coverage

- Two YouTube lectures reserved for advanced topics
 - -L14: Substrate bias, channel mobility
 - -L15: 3.2.1
 - -L16: 3.2.1 (Continued)
 - -L17: Velocity saturation (3.2.2)
 - -L18: Channel length modulation and so on (3.2.3, 3.2.4, 3.2.5)
 - -L19: MOSFET scaling
 - L20: MOSFET scaling (Continued)
 - -L21: Quantum effect (4.2.4)
 - L22: Double-gate MOSFETs (10.3)
 - -L23: FinFETs
 - -L24: CFETs

Drain-induced barrier lowering (DIBL)

Much worse than the long-channel device

$$-45 \text{ mV/V} @ I_D = 10^{-6} \text{ A/}\mu\text{m}$$

Conduction band, again

• At a high V_{ds} , the energy barrier is further reduced.

Simplified geometry for an analytic solution

Poisson equation

-For AFGH
$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$
 Taur, Eq. (A9.1)
-For ABEF (Depleted) $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = \frac{qN_a}{\epsilon_{si}}$ Taur, Eq. (A9.2)

Simplified geometry (Taur, Fig. A9.1)

Boundary conditions

- Potential reference is $\phi(\infty, y) = -\phi_B$.
 - -Along GH: $\phi = V_{gs} V_{fb}$ Taur, Eq. (A9.3)
 - -Along AB: $\phi = \phi_{bi} \approx \frac{E_g}{2q} + \phi_B$ Taur, Eq. (A9.4)
 - -Along EF: $\phi = \phi_{bi} + V_{ds}$ Taur, Eq. (A9.5)
 - -Along CD: $\phi = 0$ Taur, Eq. (A9.6)

 $-(3t_{ox}$ for uniform permittivity)

Solution

- Poisson equation with boundary conditions
 - Try the following function for the electrostatic potential:

$$\phi(x,y) = v(x,y) + u_L(x,y) + u_R(x,y) + u_B(x,y)$$
 Taur, Eq. (A9.9)

Poisson equation with upper b.c. (Long-channel)

Laplace equation to match left b.c.

Laplace equation to match right

b.c. Laplace equation to match bottom b.c.

Solution, v(x, y)

- Actually, it is v(x).
 - -For the oxide region ($-3t_{ox} \le x \le 0$), $v(x,y) = \phi_s \frac{V_{gs} V_{fb} \phi_s}{3t_{ox}}x$
 - For the silicon region ($0 \le x \le W_d$),

$$v(x,y) = \phi_S \left(1 - \frac{x}{W_d} \right)^2$$

- It is noted that

$$\phi_s = \frac{qN_aW_d^2}{2\epsilon_{si}}$$

Taur, Eq. (A9.10)

Taur, Eq. (A9.11)

Taur, Eq. (A9.12)

A mode for $u_R(x, y)$

- For three boundaries, it should vanish.
 - At only one side, it has non-zero values.
 - We can try ($\lambda \equiv W_d + 3t_{ox}$)

$$u_{R,n}(x,y) = \sinh\left(\frac{n\pi y}{\lambda}\right) \sin\left(\frac{n\pi(x+3_{tox})}{\lambda}\right)$$

$$u_R = 0$$

$$u_R = \phi(x, L) - v(x, L)$$

$$u_R = 0$$

Series expansion of $u_R(x,y)$

- $u_R(x,L) = \phi(x,L) v(x,L)$ can be expanded with coefficients
 - -Therefore,

$$u_R(x,y) = \sum_{n=1}^{\infty} c_n \frac{\sinh\left(\frac{n\pi y}{\lambda}\right)}{\sinh\left(\frac{n\pi L}{\lambda}\right)} \sin\left(\frac{n\pi(x+3_{tox})}{\lambda}\right)$$
 Taur, Eq. (A9.15)

• Similar solutions are found for $u_L(x,y)$ and $u_B(x,y)$.

ilar solutions are found for
$$u_L(x,y)$$
 and $u_B(x,y)$.
$$u_L(x,y) = \sum_{n=1}^{\infty} b_n \frac{\sinh\left(\frac{n\pi(L-y)}{\lambda}\right)}{\sinh\left(\frac{n\pi L}{\lambda}\right)} \sin\left(\frac{n\pi(x+3_{tox})}{\lambda}\right)$$
Taur, Eq. (A9.14)

GIST Lecture

10

First-order expansion

- Keep only b_1 and c_1 . (u_B is neglected.)
 - -Then, $\phi(x,y)$ Taur, Eq. (A9.22)
 - –Approximate values for b_1 and c_1 are $\frac{4}{\pi}(\phi_{bi}-a\phi_s)$ and $\frac{4}{\pi}(\phi_{bi}+$ $V_{ds} - a\phi_s$), respectively. $a \approx 0.4$.

Surface potential

• At x = 0,

$$\phi(0,y) = \phi_S + \frac{b_1 \sinh\left(\frac{\pi(L-y)}{\lambda}\right) + c_1 \sinh\left(\frac{\pi y}{\lambda}\right)}{\sinh\left(\frac{\pi L}{\lambda}\right)} \sin\left(\frac{\pi 3t_{ox}}{\lambda}\right)$$
Taur, Eq. (A9.22)

-Let's find the maximum potential.

$$\frac{d}{dy}\phi(0,y) = \frac{\pi}{\lambda} \frac{-b_1 \cosh\left(\frac{\pi(L-y)}{\lambda}\right) + c_1 \cosh\left(\frac{\pi y}{\lambda}\right)}{\sinh\left(\frac{\pi L}{\lambda}\right)} \sin\left(\frac{\pi 3t_{ox}}{\lambda}\right) = 0$$

$$b_1 \cosh\left(\frac{\pi(L-y)}{\lambda}\right) = c_1 \cosh\left(\frac{\pi y}{\lambda}\right)$$

Position for maximum potential, $y = y_c$

• For a positive
$$z$$
, $\cosh z \approx \frac{\exp z}{2}$.
$$\exp \frac{\pi (L^2 - 2y_c)}{\lambda} = \frac{c_1}{b_1}$$
$$y_c = \frac{L}{2} - \frac{\lambda}{2\pi} \ln \frac{c_1}{b_1} \approx \frac{L}{2} - \frac{W_d + 3t_{ox}}{2\pi} \ln \left(1 + \frac{V_{ds}}{\phi_{bi} - a\phi_s}\right)$$

Taur, Eq. (A9.23)

Potential profile (Taur, Fig. 3.20(b))

Maxium potential at $y = y_c$

Using some approximations,

$$\phi(0, y_c) = \phi_s + 2\sqrt{b_1 c_1} \exp\left(-\frac{\pi L}{2\lambda}\right) \sin\left(\frac{\pi 3 t_{ox}}{\lambda}\right)$$

$$\approx \phi_s$$

$$\approx \phi_{s} + \left(\frac{6\pi t_{ox}}{\lambda}\right) \left(\sqrt{\phi_{bi}(\phi_{bi} + V_{ds})} - \frac{2\phi_{bi} + V_{ds}}{2\sqrt{\phi_{bi}(\phi_{bi} + V_{ds})}} a\phi_{s}\right) \exp\left(-\frac{\pi L}{2\lambda}\right)$$

~ Taur, Eq. (A9.24)

-Threshold voltage lowering, ΔV_t ,

$$= \left(\frac{24t_{ox}}{W_{dm}}\right) \left(\sqrt{\phi_{bi}(\phi_{bi} + V_{ds})} - a(2\phi_B)\right) \exp\left(-\frac{\pi L}{2(W_{dm} + 3t_{ox})}\right)$$

Taur, Eq. (A9.25)

Typical values in the textbook

Following Taur, Eq. (3.67),

$$= \left(\frac{24t_{ox}}{W_{dm}}\right) \left(\sqrt{\phi_{bi}(\phi_{bi} + V_{ds})} - a(2\phi_B)\right) \exp\left(-\frac{\pi L}{2(W_{dm} + 3t_{ox})}\right)$$

- Using typical values,

$$0.1 = (2.4)(\sqrt{2} - 0.4) \exp\left(-\frac{\pi L}{2(1.3W_{dm})}\right)$$

- -We get $L \approx 2.6W_{dm} \approx 2(W_{dm} + 3t_{ox})$.
- -The minimum allowable channel length is $L_{min} \approx 2(W_{dm} + 3t_{ox})$.

Thank you!