$$\Upsilon(4S)$$
 or $\Upsilon(10580)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

$\Upsilon(4S)$ MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
10579.4±1.2 OUR AVERAGE				
$10579.3 \pm 0.4 \pm 1.2$	AUBERT	05Q	BABR	$e^+e^- o$ hadrons
10580.0 ± 3.5	$^{ m 1}$ BEBEK	87	CLEO	$e^+e^- o$ hadrons
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
10577.4 ± 1.0	² LOVELOCK	85	CUSB	$e^{\displaystyle +}e^{\displaystyle -}\rightarrow \ \ \text{hadrons}$
$\frac{1}{2}$ Reanalysis of BESSON 85.				

² No systematic error given.

$\Upsilon(4S)$ WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
20.5±2.5 OUR AVERAGE				
$20.7 \pm 1.6 \pm 2.5$	AUBERT	•		$e^+e^- ightarrow hadrons$
$20 \pm 2 \pm 4$	BESSON	85	CLEO	$e^+e^- ightarrow $ hadrons
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
25 ±2.5	LOVELOCK	85	CUSB	$e^{\displaystyle +e^{\displaystyle -}} \rightarrow \ hadrons$

Υ (4S) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
$\overline{\Gamma_1}$	$B\overline{B}$	> 96	% 95%
Γ_2	B^+B^-	(51.4 ± 0.6)	%
Γ3	D_s^+ anything $+$ c.c.	(17.8 ± 2.6)	%
Γ_4	$B^0 \overline{B}{}^0$	(48.6 ± 0.6)	%
Γ_5	$J/\psi K_S^0 + (J/\psi, \eta_c) K_S^0$	< 4	$\times 10^{-7}$ 90%
Γ_6	non- $B\overline{B}$	< 4	% 95%
Γ_7	$\mathrm{e^{+}e^{-}}$	(1.57 ± 0.08)	$\times 10^{-5}$
Γ ₈	$\rho^+\rho^-$	< 5.7	$\times 10^{-6}$ 90%
Γ ₉	$K^*(892)^0 \overline{K}{}^0$	< 2.0	$\times 10^{-6}$ 90%
Γ_{10}	$J/\psi(1S)$ anything	< 1.9	$\times 10^{-4}$ 95%
Γ_{11}	D^{st+} anything $+$ c.c.	< 7.4	% 90%
Γ_{12}	ϕ anything	(7.1 ± 0.6)	
Γ_{13}	$\phi\eta$		$\times 10^{-6}$ 90%
Γ_{14}	$\phi\eta'$		$\times 10^{-6}$ 90%
Γ_{15}	$ ho\eta$	< 1.3	$\times 10^{-6}$ 90%

Γ_{16}	$ ho\eta'$	$< 2.5 \times 10^{-6} 90\%$
Γ_{17}	$\varUpsilon(1S)$ anything	$< 4 \times 10^{-3} 90\%$
Γ_{18}	$\Upsilon(1S)\pi^+\pi^-$	$(8.1 \pm 0.6) \times 10^{-5}$
Γ_{19}	$\Upsilon(1S)\eta$	$(1.96\pm0.28)\times10^{-4}$
Γ ₂₀	Υ (2S) $\pi^+\pi^-$	$(8.6 \pm 1.3) \times 10^{-5}$
Γ_{21}	$h_b(1P)\pi^+\pi^-$	not seen
Γ ₂₂	$h_b(1P)\eta$	$(2.18\pm0.21)\times10^{-3}$
Γ ₂₃	2H anything	$< 1.3 \times 10^{-5} 90\%$

$\Upsilon(4S)$ PARTIAL WIDTHS

 Γ (e⁺e⁻)

VALUE (keV)

0.272±0.029 OUR AVERAGE

DOCUMENT ID

TECN
COMMENT

Error includes scale factor of 1.5. See the ideogram below.

AUBERT

05Q BABR e⁺e⁻ → hadrons

³Using LEYAOUANC 77 parametrization of $\Gamma(s)$.

The ratio of branching fraction to charged and neutral B mesons is often derived assuming isospin invariance in the decays, and relies on the knowledge of the B^+/B^0 lifetime ratio. "OUR EVALUATION" is obtained based on averages of rescaled data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account the common dependence of the measurement on the value of the lifetime ratio.

 $\Gamma(B^0\overline{B}^0)/\Gamma_{\text{total}}$ Γ_4/Γ

 $(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is

VALUE DOCUMENT ID TECN COMMENT

0.486 \pm 0.006 OUR EVALUATION Assuming B($\Upsilon(4S) \rightarrow B\overline{B}$) = 1

the systematic error from using our best value.

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 $0.487 \pm 0.010 \pm 0.008$ S AUBERT,B O5H BABR $\varUpsilon(4S)
ightarrow \; \overline{B} \, B
ightarrow \; D^* \ell
u_\ell$

 $\Gamma(B^+B^-)/\Gamma(B^0\overline{B}^0)$ TO CHIMFNE ID TECH COMMENT

VALUE	DOCUMENT ID		TECN	COMMENT
1.058±0.024 OUR EVALUAT	TON			
$1.006 \pm 0.036 \pm 0.031$	⁶ AUBERT	04F	BABR	$\Upsilon(4S) ightarrow B \overline{B} ightarrow J/\psi K$
$1.01 \pm 0.03 \pm 0.09$	⁶ HASTINGS	03	BELL	$\Upsilon(4S) ightarrow \ B\overline{B} ightarrow \ {\sf dileptons}$
$1.058\!\pm\!0.084\!\pm\!0.136$	⁷ ATHAR	02	CLEO	$\Upsilon(4S) ightarrow B \overline{B} ightarrow D^* \ell u$
$1.10\ \pm0.06\ \pm0.05$	⁸ AUBERT	02	BABR	$\Upsilon(4S) \rightarrow B\overline{B} \rightarrow (c\overline{c})K^*$
$1.04\ \pm0.07\ \pm0.04$	⁹ ALEXANDER	01	CLEO	$\Upsilon(4S) \rightarrow B\overline{B} \rightarrow J/\psi K^*$

⁶ HASTINGS 03 and AUBERT 04F assume $\tau(B^+)$ / $\tau(B^0)$ = 1.083 \pm 0.017.

⁵ Direct measurement. This value is averaged with the value extracted from the $\Gamma(B^+B^-)$ / $\Gamma(B^0\overline{B}^0)$ measurements.

⁷ ATHAR 02 assumes $\tau(B^+)$ / $\tau(B^0)$ = 1.074 \pm 0.028. Supersedes BARISH 95.

⁸ AUBERT 02 assumes $\tau(B^+) / \tau(B^0) = 1.062 \pm 0.029$.

⁹ ALEXANDER 01 assumes $\tau(B^+) / \tau(B^0) = 1.066 \pm 0.024$.

$\left[\Gamma(J/\psi K_{S}^{0}) + \Gamma(0)\right]$ Forbidden by C	$(J/\psi,~\eta_c)$ P invariant	$(K_S^0)]/\Gamma_{\text{total}}$				Γ ₅ /Γ
VALUE (units 10^{-7})				TECN	COMMENT	
<4	90	10 TAJIMA	07A	BELL	$\gamma(4S) \rightarrow$	$B^0\overline{B}^0$
10 $\Upsilon(4S)$ with CP =	= +1 decay				` '	
, ,		− non-BB DECA			_	
$\Gamma(\text{non-}B\overline{B})/\Gamma_{\text{tota}}$	I					Γ ₆ /Γ
VALUE		DOCUMENT ID		TECN	<u>COMMENT</u>	
<0.04	95	BARISH	96 B	CLEO	e^+e^-	
$\Gamma(e^+e^-)/\Gamma_{ m total}$						Γ ₇ /Γ
VALUE (units 10 ⁻⁵)		DOCUMENT ID		TECN	COMMENT	
1.57±0.08 OUR AVE	RAGE				ı	
$1.55 \pm 0.04 \pm 0.07$		AUBERT				
$2.77 \pm 0.50 \pm 0.49$		¹¹ ALBRECHT	95E	ARG	$e \mid e \rightarrow$	hadrons
¹¹ Using LEYAOUA	NC 77 para	metrization of $\Gamma(s)$.				
$\Gamma(\rho^+\rho^-)/\Gamma_{\text{total}}$	CL 0/	DOCUMENT ID		TECN	COMMENT	Γ ₈ /Γ
<i>VALUE</i> <5.7 × 10 ^{−6}		<u>DOCUMENT ID</u> AUBERT				
<5.7 × 10	90	AUBERT	0880	BABK	e ' e →	π π 2π
$\Gamma(K^*(892)^0\overline{K}^0)/\Gamma_{VALUE}$	total <u>CL%</u>	DOCUMENT ID		TECN	COMMENT	Г9/Г
c	90	SHEN				K*(802)0 <u>K</u> 0
(2.0 × 10	30	SHEW	15/	DELL	C C /	N (032) N
$\Gamma(J/\psi(1S))$ anythi	•					Γ ₁₀ /Γ
VALUE (units 10 ⁻⁴) CL9	<u>6</u> <u>DC</u>	OCUMENT ID T	ECN	COMMI	ENT	.1
<1.9 95 • • • We do not use		BE 02D E				$\rightarrow \ell^+\ell^-X$
< 4.7 90		JBERT 01C E				0+0-V
12 Uses B($J/\psi ightarrow e$	(e) = 0	0.0593 ± 0.0010 and	$B(J/\sqrt{2})$	$\psi \rightarrow \mu$	μ) = 0.0	$588 \pm 0.0010.$
$\Gamma(D^{*+} \text{ anything } +$	- c.c.)/Γ _t					Γ_{11}/Γ
<i>VALUE</i> <0.074	CL%	DOCUMENT ID		TECN	<u>COMMENT</u>	
<0.074	90	¹³ ALEXANDER	90 C	CLEO	e^+e^-	
13 For $x > 0.473$.						
$\Gamma(\phi \text{ anything})/\Gamma_{to}$						Γ ₁₂ /Γ
VALUE (units 10^{-2})	CL%					
$7.1 \pm 0.1 \pm 0.6$		HUANG			` ,	ϕX
• • • We do not use	the followi					
< 0.23	90	¹⁴ ALEXANDER	90 C	CLEO	e^+e^-	
14 For $x > 0.52$.						

$\Gamma(\phi\eta)/\Gamma_{ m total}$						Γ_{13}/Γ	
VALUE (units 10^{-6})							
<1.8	90	¹⁵ BELOUS	09	BELL	$e^+e^- \rightarrow$	$\phi\eta$	
• • • We do not use the	e followin	ng data for avera	ges, fits,	limits,	etc. • • •		
< 2.5	90	AUBERT,BI	∃ 06F	BABR	$e^+e^- \rightarrow$	$\phi\eta$	
¹⁵ Using all intermedite	branchir	ng fraction value	s from P	DG 08.			
$\Gamma(\phi\eta')/\Gamma_{total}$						Γ ₁₄ /Γ	
	CL%	DOCUMENT I	'D	TECN	COMMENT	. 14/ -	
<4.3			<u> </u>	RFII	$\frac{e^+e^-}{}$	$\phi n'$	
16 Using all intermedite					C C ,	Ψ'Ι	
	Diancini	ing maction value	5 110111 1	DG 00.			
$\Gamma(\rho\eta)/\Gamma_{total}$						Γ ₁₅ /Γ	
VALUE (units 10^{-6})	CL%	DOCUMENT I	D	TECN	COMMENT		
<1.3		¹⁷ BELOUS			$e^+e^ \rightarrow$	$ ho\eta$	
¹⁷ Using all intermedite	branchir	ng fraction value	s from P	DG 08.			
$\Gamma(ho\eta')/\Gamma_{total}$						Γ ₁₆ /Γ	
VALUE (units 10^{-6})	CL%	DOCUMENT I	D	TECN	COMMENT	=	
<2.5	90	DOCUMENT I 18 BELOUS	09	BELL	$e^+e^- \rightarrow$	$\rho \eta'$	
¹⁸ Using all intermedite							
		S				- /-	
$\Gamma(\Upsilon(1S) \text{ anything})/$			_			Γ ₁₇ /Γ	
VALUE		<u>DOCUMENT I</u> ALEXANDE			<u>COMMENT</u>		
<0.004	90	ALEXANDE	.R 90C	CLEO	e ' e		
$\Gamma(\Upsilon(1S)\pi^+\pi^-)/\Gamma_{tc}$	otal					Γ ₁₈ /Γ	
$VALUE$ (units 10^{-5}) $CL\%$		<u>DOCUMEN</u>	T ID	TECN	COMMENT	_	
8.1 \pm 0.6 OUR AVER		. 10			1	1 1	
	113 ± 16	00				$\mu^{+}\pi^{-}\mu^{+}\mu^{-}$	
$8.00 \pm 0.64 \pm 0.27$ • • • We do not use the	430 e followin					-'π ℓ'ℓ	
	c ronowin	^{21,22} SOKOLO				++	
$17.8 \pm 4.0 \pm 0.3$ $9.0 \pm 1.5 \pm 0.2$	167 ± 19	o 23 Alibert	06R F	SARR /	$e^+e^- \rightarrow \pi$	$+\pi^{-}\mu^{+}\mu^{-}$	
<12 90	101 ± 13	GLENN		CLE2		κ μ μ	
¹⁹ SOKOLOV 09 repor	ts [Γ(Υ (4	$4S) \rightarrow \Upsilon(1S)\pi$	$+\pi^{-})/$		\times [B(Υ (1S)	$\rightarrow u^+u^-)1$	
$= (0.211 \pm 0.030 \pm$	± 0.014)	$\times 10^{-5}$ which	we divid	e by ou	r best value	$B(\Upsilon(1S) \rightarrow$	
$\mu^{+}\mu^{-}) = (2.48 \pm$	= $(0.211 \pm 0.030 \pm 0.014) \times 10^{-5}$ which we divide by our best value B($\Upsilon(1S) \rightarrow \mu^+\mu^-$) = $(2.48 \pm 0.05) \times 10^{-2}$. Our first error is their experiment's error and our						
second error is the s							
20	ystematic	c error from using	g our be	st value.		\	
$\begin{array}{c} 20 \text{ Using B}(\varUpsilon(1S) \rightarrow 0.05)\% \end{array}$	ystematic	c error from using	g our be	st value.		-) = (2.48 ±	
0.05)%.	ystematic e^+e^-)	e error from using $= (2.38 \pm 0.11)$	g our beal 1% and 1	st value. B($\varUpsilon(1S$	$) \rightarrow \mu^+ \mu^-$		
0.05)%. ²¹ SOKOLOV 07 repor	ystematic $e^+e^-)$ ts [$\Gamma(\varUpsilon(4))$	e error from using $= (2.38 \pm 0.11)$ $\pm 0.15 \pm 0.15$	g our besond $+\pi^-)/$	st value. $B(\varUpsilon(1S))$ $\left[\Gamma_{total} \right]$	$) ightarrow \ \mu^+\mu^- \ imes [{\sf B}(\varUpsilon(1S)$	$\rightarrow \mu^+\mu^-)]$	
$0.05)\%.$ $21 \text{SOKOLOV} 07 \text{repor}$ $= (4.42 \pm 0.81 \pm 0.9) \times 10^{-2} (2.48 \pm 0.05) \times $	ystematic $e^+e^-)$ ts $[\Gamma(\varUpsilon(456) imes10^-0.00)]$	c error from using $=(2.38\pm0.11)^{-6}$ $ ag{15}$ $ ag{15}$ $ ag{15}$ $ ag{15}$ $ ag{15}$ $ ag{15}$ which we divide the first error is the	g our besults out by $+\pi^-)/2$ de by our bein exper	st value. $B(\varUpsilon(1S))$ F_{total}	$ ho ightarrow \mu^+ \mu^- \ imes [{\sf B}(\varUpsilon(1S)]$ slue ${\sf B}(\varUpsilon(1S)]$	$\rightarrow \mu^{+}\mu^{-})]$ $)\rightarrow \mu^{+}\mu^{-})$	
$0.05)\%.$ 21 SOKOLOV 07 repor $= (4.42 \pm 0.81 \pm 0.81)$	ystematic $e^+e^-)$ ts $[\Gamma(\varUpsilon(456) imes10^-2)]$ Ou or from u	c error from using $= (2.38 \pm 0.11)$ $4S) \rightarrow \Upsilon(1S)\pi^{-6}$ which we divide a first error is the using our best va	g our beging our begins and $\pi^+\pi^-)/\pi^-$ de by our eir exper lue.	st value. $B(\varUpsilon(1S))$ $\Gamma_{ ext{total}}$	$) ightarrow \ \mu^+\mu^- \ imes [{\mathsf B}(\varUpsilon(1S)]$ slue ${\mathsf B}(\varUpsilon(1S)]$ error and ou	$\rightarrow \mu^{+}\mu^{-})]$ $)\rightarrow \mu^{+}\mu^{-})$	

 23 Superseded by AUBERT 08BP. AUBERT 06R reports [$\Gamma(\Upsilon(4S) o \Upsilon(1S)\pi^+\pi^-)/$ Γ_{total}] \times [B($\Upsilon(1S) \rightarrow \mu^+\mu^-$)] = (2.23 \pm 0.25 \pm 0.27) \times 10⁻⁶ which we divide by our best value B($\Upsilon(1S) \rightarrow \mu^+ \mu^-)$ = (2.48 \pm 0.05) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\Upsilon(1S)\eta)/\Gamma_{\text{total}}$

VALUE (units 10^{-4}) $1.96 \pm 0.26 \pm 0.09$

• • We do not use the following data for averages, fits, limits, etc.

²⁵ TAMPONI < 2.7 90 BELL $e^+e^- \rightarrow \gamma \eta +$

²⁴ Using B($\Upsilon(1S) \rightarrow e^+e^-$) = (2.38 ± 0.11)% and B($\Upsilon(1S) \rightarrow \mu^+\mu^-$) = (2.48 ±

²⁵ Using B($\eta \to 2\gamma$) = (39.41 ± 0.20)%.

$\Gamma(\Upsilon(1S)\eta)/\Gamma(\Upsilon(1S)\pi^+\pi^-)$

 Γ_{19}/Γ_{18}

DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • •

²⁶ AUBERT 08BP BABR $\Upsilon(4S) \rightarrow \pi^+\pi^-(\pi^0)\ell^+\ell^-$ 56 $2.41 \pm 0.40 \pm 0.12$

²⁶ Not independent of other values reported by AUBERT 08BP.

$\Gamma(\Upsilon(2S)\pi^{+}\pi^{-})/\Gamma_{\text{total}}$

 Γ_{20}/Γ

VALUE (units 10^{-4}) CL%²⁷ AUBERT 08BP BABR $\Upsilon(4S) \rightarrow \pi^+ \pi$ 220 $0.86\pm0.11\pm0.07$

• • We do not use the following data for averages, fits, limits, etc. • •

 97 ± 15 ²⁸ AUBERT 06R BABR $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\mu^{+}\mu^{-}$ $0.88 \pm 0.17 \pm 0.08$ **GLENN** CLE2 e^+e^-

²⁷ Using B($\Upsilon(2S) \to e^+e^-$) = (1.91 \pm 0.16)% and B($\Upsilon(2S) \to \mu^+\mu^-$) = (1.93 \pm 0.17)%.

²⁸ Superseded by AUBERT 08BP. AUBERT 06R reports $[\Gamma(\Upsilon(4S) \rightarrow \Upsilon(2S)\pi^+\pi^-)/$ $\Gamma_{\text{total}}] \times [B(\varUpsilon(2S) \rightarrow \mu^+\mu^-)] = (1.69 \pm 0.26 \pm 0.20) \times 10^{-6}$ which we divide by our best value B($\Upsilon(2S) \to \mu^+ \mu^-$) = $(1.93 \pm 0.17) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\Upsilon(2S)\pi^+\pi^-)/\Gamma(\Upsilon(1S)\pi^+\pi^-)$

TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • •

²⁹ AUBERT

DOCUMENT ID

08BP BABR $\Upsilon(4S) \rightarrow \pi^+\pi^-\ell^+\ell^ 1.16 \pm 0.16 \pm 0.14$ 220 ²⁹ Using B($\Upsilon(1S) \rightarrow e^+e^-$) = (2.38 ± 0.11)%, B($\Upsilon(1S) \rightarrow \mu^+\mu^-$) = (2.48 ± 0.05)%, $B(\Upsilon(2S) \to e^+e^-) = (1.91 \pm 0.16)\%$, and $B(\Upsilon(2S) \to \mu^+\mu^-) = (1.93 \pm 0.17)\%$. Not independent of other values reported by AUBERT 08BP.

$\Gamma(h_b(1P)\pi^+\pi^-)/\Gamma_{\text{total}}$

Created: 5/30/2017 17:21

 $\frac{DOCUMENT\ ID}{30}\ \frac{TECN}{ADACHI} \ 12 \ BELL \ 10.58\ e^+e^- \rightarrow \ h_b(1P)\,\pi^+\pi^$ not seen

³⁰ From the upper limit on the ratio of $\sigma(e^+e^- \to h_h(1P)\pi^+\pi^-)$ at the $\Upsilon(4S)$ to that at the $\Upsilon(5S)$ of 0.27.

HTTP://PDG.LBL.GOV

Page 6

$\Gamma(h_b(1P)\eta)/\Gamma_{\text{total}}$

 Γ_{22}/Γ

(<i>D</i> () /// cotal					/
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
2.18±0.11±0.18	112k	31 TAMPONI	15	BELL	$e^+e^- \rightarrow h_b(1P)\eta$
31 Using B($n \rightarrow 2\gamma$) =	= (39.41	+ 0.20)%.			

$\Gamma(\overline{^2H} \, {\rm anything})/\Gamma_{\rm total}$

 Γ_{23}/Γ

VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT
<1.3	90	ASNER	07	CLEO	$e^+e^- ightarrow \overline{d}X$

Υ (4S) REFERENCES

TAMPONI	15	PRL 115 142001	U. Tamponi <i>et al.</i>	(BELLE Collab.)
SHEN	13A	PR D88 052019	C.P. Shen <i>et al.</i>	(BELLE Collab.)
ADACHI	12	PRL 108 032001	I. Adachi <i>et al</i> .	(BELLE Collab.)
BELOUS	09	PL B681 400	K. Belous <i>et al.</i>	(BELLE Collab.)
SOKOLOV	09	PR D79 051103	A. Sokolov <i>et al.</i>	(BELLE Collab.)
AUBERT	08BO		B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08BP	PR D78 112002	B. Aubert <i>et al.</i>	(BABAR Collab.)
PDG	08	PL B667 1	C. Amsler <i>et al.</i>	(PDG Collab.)
ASNER	07	PR D75 012009	D.M. Asner <i>et al.</i>	(CLEO Collab.)
HUANG	07	PR D75 012002	G.S. Huang <i>et al.</i>	(CLEO Collab.)
SOKOLOV	07	PR D75 071103	A. Sokolov <i>et al.</i>	(BELLE Collab.)
TAJIMA	07A	PRL 99 211601	O. Tajima <i>et al.</i>	(BELLE Collab.)
AUBERT	06R	PRL 96 232001	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,BE	06F	PR D74 111103	B. Aubert <i>et al.</i>	(BABAR Collab.)
ARTUSO	05B	PRL 95 261801	M. Artuso et al.	`(CLEO Collab.)
AUBERT	05Q	PR D72 032005	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	05H	PRL 95 042001	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	04F	PR D69 071101	B.Aubert et al.	,
HASTINGS	03	PR D67 052004	N.C. Hastings et al.	(BELLE Collab.)
ABE	02D	PRL 88 052001	K. Abe <i>et al.</i>	(BELLE Collab.)
ATHAR	02	PR D66 052003	S.B. Athar <i>et al.</i>	(CLEO Collab.)
AUBERT	02	PR D65 032001	B. Aubert <i>et al.</i>	(BABAR Collab.)
ALEXANDER	01	PRL 86 2737	J.P. Alexander et al.	`(CLEO Collab.)
AUBERT	01C	PRL 87 162002	B. Aubert <i>et al.</i>	(BABAR Collab.)
GLENN	99	PR D59 052003	S. Glenn <i>et al.</i>	,
BARISH	96B	PRL 76 1570	B.C. Barish et al.	(CLEO Collab.)
ALBRECHT	95E	ZPHY C65 619	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
BARISH	95	PR D51 1014	B.C. Barish et al.	(CLEO Collab.)
ALEXANDER	90C	PRL 64 2226	J. Alexander et al.	(CLEO Collab.)
BEBEK	87	PR D36 1289	C. Bebek <i>et al.</i>	(CLEO Collab.)
BESSON	85	PRL 54 381	D. Besson et al.	(CLEO Collab.)
LOVELOCK	85	PRL 54 377	D.M.J. Lovelock et al.	(CUSB Collab.)
LEYAOUANC	77	PL B71 397	A. Le Yaouanc <i>et al.</i>	(ORSAY)