CS113/DISCRETE MATHEMATICS-SPRING 2024

Worksheet 2

Topic: Logic And Proofs

Use the given tables of laws/Truth tables to construct equivalences between compound propositions. Happy Learning!

Student's Name and ID: .	
Instructor's name:	

1 Laws Of Logical Equivalences:

Equivalence	Name
$p \wedge T \equiv p$	Identity laws
1 -	Identity laws
$p \vee F \equiv p$	
$p \vee T \equiv T$	Domination laws
$p \wedge F \equiv F$	
$p \vee p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \vee q \equiv q \vee p$	Commutative laws
$p \wedge q \equiv q \wedge p$	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \land q) \land r \equiv p \land (q \land r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg (p \lor q) \equiv \neg p \land \neg q$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \land (p \lor q) \equiv p$	
$p \vee \neg p \equiv T$	Negation laws
$p \land \neg p \equiv F$	

D 1	D 1
Equivalence	Rule
Conditional Law 1	$p \to q \equiv \neg p \lor q$
Conditional Law 2	$p \to q \equiv \neg q \to \neg p$
Conditional Law 3	$p \lor q \equiv \neg p \to q$
Conditional Law 4	$p \land q \equiv \neg(p \to \neg q)$
Conditional Law 5	$\neg (p \to q) \equiv p \land \neg q$
Conditional Law 6	$(p \to q) \land (p \to r) \equiv p \to (q \land r)$
Conditional Law 7	$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$
Conditional Law 8	$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$
Conditional Law 9	$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$

Equivalence	Rule
Biconditional Law 1	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
Biconditional Law 2	$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$
Biconditional Law 3	$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$
Biconditional Law 4	$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

1. Show that following conditional statements are tautologies. (use laws of equivalences and not the truth table to prove it.)

(a)

$$(\neg p \land (p \lor q)) \to q$$

(b)

$$((p \to q) \land (q \to r)) \to (p \to r)$$

(c)

$$(p \land (p \to q)) \to q$$

(d)

$$((p \vee q) \wedge (p \to r) \wedge (q \to r)) \to r$$

2. Show using truth table that $(p \to r) \land (q \to r)$ and $(p \lor q) \to r$ are logically equivalent.

3. Show using truth table that $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$ is tautology.