User-Specific Cryptographic Asset Recommendation System

By: Luis, Dawn, Kevinray, Connor

Business Case & Project Description

Business Problem

Solution

Project Description

RMDS wants to increase usage of NFT & user engagement on platform

Integrated NFT Recommendation System

- Legitimacy
- Liquidity
- Engagement

Created & Designed NFT Recommendation System

- Created a Supervised Machine Learning model (SVM) & Natural Language Processor (NPL)
- Built a User similarity Score to provide NFT recommendations
- Redesigned RMDS Platform to drive engagement

Datasets

NFT classification

- NFT historical sales dataset
- 108147 rows of NFT data
- 7 selected feature set

User Similarity

- Stack Overflow dataset
- 50000 rows of user data
- 14 selected feature set

dt	F2.head()						
	collection_name	asset_id	asset_name	asset_description	event_quantity	event_payment_symbol	event_total_price
0	Rarible	18214580	Daft Punk Never Die	Piece art Daft Punk always hears Size x	1.0	ETH	0.070000
1	Rarebit Bunnies	18276844	Rarebit #164 - Wax Off Bunny	When comes high kicks Rarebit back paws lethal	1.0	ETH	0.150000
2	Rarible	16911700	Meditation	Meditation Diana Minted NFT collectibles	1.0	ETH	0.001000
3	Rarible	16986936	I'm OG	This one first NFTs human history	1.0	ETH	0.000647
4	ChainGuardians	13382164	Celia B100 #105	One original androids created within Chainguar	1.0	ETH	0.200000

ut[7]:	MainBranch	Employment	Country	EdLevel	DevType	Org Size	Currency	CompTotal	CompFreq	Age	Gender	Ethnicity	Accessibility	MentalHe
	I am a developer by profession	Independent contractor, freelancer, or self-em	Slovakia	Secondary school (e.g. American high school, G	Developer, mobile	20 to 99 employees	EUR European Euro	4800.0	Monthly	25- 34 years old	Man	White or of European descent	None of the above	None of ab
	I am a student who is learning to code	Student, full- time	Netherlands	Bachelor's degree (B.A., B.S., B.Eng., etc.)	NaN	NaN	NaN	NaN	NaN	18- 24 years old	Man	White or of European descent	None of the above	None of ab
	I am not primarily a developer, but I write co	Student, full- time	Russian Federation	Bachelor's degree (B.A., B.S., B.Eng., etc.)	NaN	NaN	NaN	NaN	NaN	18- 24 years old	Man	Prefer not to say	None of the above	None of ab
	I am a developer by profession	Employed full-time	Austria	Master's degree (M.A., M.S., M.Eng., MBA, etc.)	Developer, front-end	100 to 499 employees	EUR European Euro	NaN	Monthly	35- 44 years old	Man	White or of European descent	I am deaf / hard of hearing	1
	I am a developer by profession	Independent contractor, freelancer, or self-em	United Kingdom of Great Britain and Northern I	Master's degree (M.A., M.S., M.Eng., MBA, etc.)	Developer, desktop or enterprise applications;	Just me - I am a freelancer, sole proprietor,	GBP\tPound sterling	NaN	NaN	25- 34 years old	Man	White or of European descent	None of the above	1

Techniques Breakdown

Results Table - Grouping

Model

Validation results using 70,000 Training cases & 30,000 Testing Cases:

SVM 1: Accuracy (RBF Kernel): 87.33 F1 (RBF Kernel): 85.01

SVM 2: Accuracy (RBF Kernel): 95.59 F1 (RBF Kernel): 94.60

Final: Accuracy (RBF Kernel): 97.10 F1 (RBF Kernel): 96.58

K-Means (K = 20)

SSE 6982.01

Silhouette Score: 0.5815

Baseline

Accuracy Level: 97% for SVM (Song et al, 2018)

K-Means:

- 1. Standardization needs to be and can affect the performance of K-Means.
 Also, datasets have different scales of measurement (Su et al, 2009)
- 2. Typical 2-4 clusters depending on datasets but can increase based on the data size to improve the model (Pham & Nguyen, 2005)

Results Table - Similarity Score

Model

Validated on 50,000 users dataset

<u>Top 3 recommendation for a user most similar to someone from USA</u>

```
In [180]: recommendation('United States of America')

(20836, 0.8577661764387349) United States of America
(28177, 0.8577661764387349) United States of America
(36353, 0.8520209591874592) United States of America
```

Sample output, to find the user similarity in cases of cold start for a new user.

Baseline

- 1. TF-IDF & Cosine similarity matrix
- 2. "CountVectorizer method creates a highly sparse representation of a document over the vocabulary". (Shahmirzadi et al 2018)
- 3. Cosine similarity has higher positive correlation in comparison to Euclidean (Adeyaniu *et al*, 2018)

Results table - Final Framework

Framework

- Combined both previous models (SVM & Similarity Scores)
 - a. Generates a User Specific Recommendations
- 2. Incorporates user clicking history dataset

```
3 10248 []
4 2058 [https://opensea.io/assets/0x629a673a8242c2ac4...
... ... ...
49995 11889 [https://opensea.io/assets/0x495f947276749ce64...
```

Implementation

- 1. Divided users into two groups
- 2. Gathers data from clicking history get URLs of NFTs users visited
- 3. Acquires needed features from URLs, then fit features to predict preferred collections
- 4. Cold Start → Recommends similar users' preferences

```
array(['sorare', 'sorare', 'tekhne', 'beeple', 'rarible'], dtype=object),
```

5. Incorporated price filter and trending products into model

Demo: Final Outputs

Example case

User ID: 2052

User type: new Test case for user 2052 : new user

NFT Group Prediction (based on clicking histories of similar users)

Price filtering in ETH

Enter a lower bound for price in ETH: 0 Enter a higher bound for price in ETH: 1000

Recommendation

recommending user 2052 [('axie', 3), ('hashmasks', 6), ('sorare', 30)]

Demo - UI (User Interface)

UI RECORDED DEMO: Click Here

UI LIVE DEMO: Click Here

Deliverables Explanation

- 1. **Team Skill Sets & Background:** 2 coders and 2 designers
- 2. **Goal:** Maximize personal utility, reflect personal skill sets
- 3. **Progress:** 97.1% accuracy on backend model, comprehensive/point on implementation representing algorithm/suggestions to stakeholder.
- 4. **Concern:** Diminishing return for code implementation. Contribution of designers goes down, focus shift/workload inflation for coders.
- 5. Claim: Non-coding UI prototype is NOT a representation of slacking off, but an unanimous decision within the group from the start of the semester to deliver a better project & product to the stakeholder

Improvements

UI & Backend Connection

Continuous Improvement of Accuracy

Increase Customer Research

References

- 1. Beel, J., Langer, S., Genzmehr, M., Gipp, B., Breltinger, C., & Numberger, A. (2013). Research Paper Recommender System Evaluation: A Quantitative Literature Survey. *International Journal on Digital Libraries*, 1-34. doi: 10.1007/s00799-015-0156-0
- 2. Garcia, S., Gallego-Ramirez, S., Luengo, J., Benitez, J., & Herrera F. (2016). Big data preprocessing: methods and prospects. *Big Data Analytics*, 1,9. doi: https://doi.org/10.1186/s41044-016-0014-0
- 3. Ioffe, S., & Szegedy, C. (2015). *Batch normalization: Accelerating deep network training by reducing internal covariate shift.* Cornell University Library, arXiv.org.
- 4. Kozak, S. (2018). Shrinking the Cross Section. Retrieved from, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2945663
- 5. Pham, Dimov, S. S., & Nguyen, C. D. (2005). Selection of K in K-means clustering. Proceedings of the Institution of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science, 219(1), 103–119. https://doi.org/10.1243/095440605X8298
- 6. Putri, D., Leu, J., Seda, P. (2019). Design of an Unsupervised Machine Learning-Based Movie Recommender System. *Symmetry*, 12,185. doi: doi:10.3390/sym12020185
- 7. Piyadigama, D., & Poravi, G. (2022). Exploration of the possibility of infusing Social Media Trends into generating NFT Recommendations. *Cornell University RecSys.* doi: https://doi.org/10.48550/arXiv.2205.11229
- 8. Piyadigama, D., & Poravi, G. (2022). An Analysis of the Features Considerable for NFT Recommendations. *Cornell University*. doi: https://doi.org/10.48550/arXiv.2205.00456
- 9. Song, D., , Y., Min, Q., Sun, Q., Ye, K., Zhou, C., Yuan, S., Sun, Z., Liao, J. (2018). Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies. *Journal of Clinical Pharmacy and Therapeutics*, 44, 268-275. doi: https://doi-org.libproxv1.usc.edu/10.1111/jcpt.12786
- 10. Su, C., Zhan, J., & Sakurai, K. (2009). Importance of Data Standardization in Privacy-Preserving K-Means Clustering. Database Systems for Advanced Applications, 5667, 276–286. https://doi.org/10.1007/978-3-642-04205-8_23
- 11. Syakur, M., Khotimah, B., Rochman, E., Satoto, B. (2017). Integration K-Mean Clustering Method and Elbow Method For Identification of The Best Customer Profile Cluster. *Materials Science and Engineering*, 336. doi: 10.1088/1757-899X/336/1/012017