- 1. What is your name?
- 2. Determine whether or not the following proposition is true; indicate your determination by circling either "T" or "F" and then prove your determination is correct:

 $\forall \Omega, \exists A, B \in \{ \text{ events of } \Omega \} \ni A \text{ and } B \text{ are mutually exclusive }$

F

Sample proof attempt:

By definition 029E, $C \in \{ \text{ events of } \Omega \} \Leftrightarrow C \subseteq \Omega$. And we proved the following theorem while engaged in homework for Meeting #2: $S \in \{ \text{ sets } \} \Rightarrow \emptyset \subseteq S$. Therefore, $\emptyset \subseteq \Omega$,.

Now remind ourselves of the definition of *mutually exclusive*:

037D. Given $A \subseteq \Omega \land B \subseteq \Omega$, (A and B are mutually-exclusive relative to one another $\Leftrightarrow p(A \cap B) = 0$)

So choose \emptyset for A and we have $A \cap B = \emptyset \Rightarrow p(A \cap B) = 0$

Q.E.D. (I think!)

3. Smile.

