

2nd MTES exam - SCAN FIRST January, 14 (1 h 30 min) Correction and Grading scale

Exercise 1 : coordinate systems [4 pts.]

Exercise 2 : Expansion of a Van der Waals gas $[3\,\mathrm{pts.}]$

1.a with $w = w_1 dT + w_2 dV$ with $w_1 = nC$ and $w_2 = \frac{n^2 a}{V^2} \frac{\partial w_1}{\partial V} = 0$ and $\frac{\partial w_2}{\partial T} = 0$ so $\frac{\partial w_1}{\partial V} = \frac{\partial w_2}{\partial T}$. Therefore, w is closed.	0.75
w is closed and the domain is simply connected so w is exact.	0.5
1.b $\frac{\partial U}{\partial T} = nC$ and $\frac{\partial U}{\partial V} = \frac{n^2 a}{V^2}$. This gives $U(T, V) = nCT - \frac{n^2 a}{V} + Constant$.	1 (0.75 if no constant)
$2 q = w + P dV = nC dT + \frac{n^2 a}{V^2} dV + P dV = nC dT + \left(\frac{n^2 a}{V^2} + P\right) dV.$ But $\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$, so $q = nC dT + \frac{nRT}{V - nb} dV$. Hence $q = nC dT + \frac{nRT}{V - nb} dV$	0.25
$\frac{\partial w_1}{\partial V} = 0$ and $\frac{\partial w_3}{\partial T} = \frac{nR}{V - nb} \neq 0$. So $\frac{\partial w_1}{\partial V} \neq \frac{\partial w_3}{\partial T}$, which means q is not closed.	0.5

Exercise 3 : Differential calculus $[6\,\mathrm{pts.}]$

1. $S = 2\pi R^2 + 2\pi Rh$	0.5
2.a. differential $dA = 2\pi ((2R + h)dR + R dh)$	1
uncertainty: $\Delta A = 2\pi ((2R + h)\Delta R + R\Delta h)$	0.5
2.b. $\Delta A \approx 270 \text{ cm}^2$	0.5
$A = (11.6 \pm 2.7) \mathrm{dm}^2$	0.5
3. cylinder volume : $V = \pi R^2 h$	0.5

differential: $dV = \pi R(2h dR + R dh)$	0.5
$A = constant: dA = 0 \text{ implies } dh = -\frac{2R+h}{R} dR$ Hence $dV = \pi R (2h dR + R dh) = \pi R (2h - (2R + h)) dR = \pi R (h - 2R) dR$	0.5 0.5
we find $dV = 0$ when $R = \frac{h}{2}$	0.5
we can check this corresponds to a maximum value of V by studying the sign of $\frac{\partial V}{\partial R}$	0.5

Exercise 4 : Cardioid [5 pts.]

1. we use Cartesian coordinates : $x(t) = r\cos(t)$ and $y(t) = r\sin(t)$. $x'(t) = 4\sin(t)\cos(t) - 2\sin(t)$ and $y'(t) = 2\sin^2(t) - 2\cos^2(t) + 2\cos(t)$	0.5
$t=\pi/2$ is a regular point : the tangent vector is $T_{\pi/2}(x'(\pi/2)=-2,y'(\pi/2)=2)$	0.5
t = 0 is a singular point as $x'(0) = 0$ and $y'(0) = 0$, so we have to compute $x''(t)$ and $y''(t)$	
$x''(t) = 2(\cos^2(t) - \sin^2(t)) \text{ and } y''(t) = 8\cos(t)\sin(t)$	0.5
so the tangent vector is $\vec{T}_0(x''(0) = 2, y''(0) = 0)$	0.5
$2. \vec{OM} = r\vec{e_r}$	0.5
$\vec{v} = \frac{d\vec{OM}}{dt} = \frac{dr}{dt}\vec{e_r} + r\frac{d\vec{e_r}}{dt} \text{ with } \frac{d\vec{e_r}}{dt} = \frac{d\theta}{dt}\vec{e_\theta} \text{ Hence } \vec{v} = 2\sin(t)\vec{e_r} + 2(1-\cos(t))\vec{e_\theta}$	1

Exercise 5 [2 pts.]

1. $\frac{\partial^2 E}{\partial z^2} = -k^2 E_0 e^{j(\omega t - kz)}$ and $\frac{\partial E}{\partial t} = j\omega E_0 e^{j(\omega t - kz)}$	1
$2. k^2 = -j\omega\mu\gamma$	1
3. $k = \pm \sqrt{\omega \mu \gamma} e^{\frac{-j\pi}{4}} = \pm \sqrt{\frac{\omega \mu \gamma}{2}} (1-j)$	0.5