

# Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2022-1

[Cod: CM4F1 Curso: Análisis y Modelamiento Numérico I]

## Solucionario Primera Práctica Calificada

1. Indique y justifique la veracidad (V) o falsedad (F) de cada una de las siguientes afirmaciones:

- a)  $[1 \ pto.]$  Sea  $f: \mathbb{R} \to \mathbb{R}$  de clase  $C^2$ , con f(0) = 0. Se cumple que la sucesión  $\alpha_n = f\left(\frac{1}{n}\right)n$  posee una tasa de convergencia  $O\left(\frac{1}{n}\right)$ .
- b)  $[1,5\ pts.]$  Dado  $\|\cdot\|$  una norma en  $\mathbb{R}^n$ , se cumple que  $\{x\in\mathbb{R}^n\ :\ \|x\|\le 1\}$  es convexo no vacío.
- c) [1,5 pts.] Dados  $a \ge 0$  y  $b \le 0$  representables en complemento a dos, usando n bits, entonces la representación, usando n bits, de a + b es la suma en base 2 de las representaciones de a y b.

#### Solucionario

a) (Verdadero) Por taylor se sabe que para x>0, existe  $\theta\in[0,x]$  tal que

$$\frac{f(x)}{x} - f'(0) = \frac{f''(\theta)}{2}x$$

considerando  $x=\frac{1}{n},$  se tiene que existen  $\theta_n\in\left[0,\frac{1}{n}\right]\subseteq\left[0,1\right]$  y por la continuidad de f'', existe M>0

$$\left| f\left(\frac{1}{n}\right)n - f'(0) \right| \leq \frac{|f''(\theta_n)|}{2} \frac{1}{n} \leq M \frac{1}{n}.$$

b) (Verdadero) Sea  $S:=\{x\in\mathbb{R}^n\ :\ ||x||\leq 1\},$  se cumple que  $0\in S.$  Además, dado  $\lambda\in[0,1],$   $x,y\in S$ 

$$\|\lambda x + (1-\lambda)y\| \le \lambda \|x\| + (1-\lambda)\|y\| \le \lambda + 1 - \lambda = 1$$

entonces  $\lambda x + (1 - \lambda)y \in S$ .

- c) (Falso) Sean a = 1 y b = -1 representables usando 3 bits, como |0|0|1| y |1|1|1|, pero la suma de estas representaciones en base 2 es  $(001)_2 + (111)_2 = (1000)_2$  lo cual es distinto a la representación |0|0|0| de a + b = 0, usando 3 bits.
- 2. Sea la sucesión definida por:

$$x_n = rac{Sen\left(rac{1}{n}
ight)}{rac{1}{n}}, \; orall n \geq 1.$$

- a)  $[1\ pto.]$  Determine la tabla de los 10 primeras iteraciones usando 10 decimales.
- b) [1 pto.] Para f(x) = Sen(x), determine su desarrollo usando la fórmula de Taylor en torno de x = 0 hasta su segundo orden.
- c) [1 pto.] Determine la rapidez de convergencia de la sucesión usando (b).
- d) [1 pto.] Usando (c) indique la nueva sucesión a la que equivale su convergencia.

#### Solucionario

a) [1 pto.] La tabla es:

| $\boldsymbol{n}$ | 1            | 2            | 3            | 4            | 5            |
|------------------|--------------|--------------|--------------|--------------|--------------|
| $x_n$            | 0,8414709848 | 0,9588510772 | 0,9815840904 | 0,9896158370 | 0,9933466540 |
| n                | 6            | 7            | 8            | 9            | 10           |
| $x_n$            | 0,9953767962 | 0,9966021085 | 0,9973978671 | 0,9979436566 | 0,9983341665 |

b)  $[1 \ pto.]$  Aplicando la fórmula de Taylor en torno de x=0 es:

$$f(x) = f(0) + \frac{f'(0)}{1!}(x-0) + \frac{f''(0)}{2!}(x-0)^2 + \frac{f'''(\xi(x))}{3!}(x-0)^3$$

Reemplazando:

$$Sen(x) = x - Cos(\xi(x)) \frac{x^3}{3!}, \ \xi(x) \in ]0, x[$$

c) [1 pto.] De b) al despejar:

$$\frac{Sen(x)-x}{x^3} \leq \frac{Cos(\xi(x))}{6}, \ \forall x \in ]0,x[;$$

Tomano valor absoluto m.a.m. tenemos:

$$\left|\frac{\left|\frac{Sen(x)}{x}-1\right|}{x^2}=\frac{\left|Cos(\xi(x))\right|}{6}\leq \frac{\displaystyle\max_{[0,x]}\left|Cos(x)\right|}{6}\leq \frac{1}{6},\;\forall x\in ]0,x[.$$

Haciendo  $x = \frac{1}{n}$  y asociamos a este último resultado con la definición de rapidez de convergencia, tenemos:

$$\frac{\left|\frac{Sen\left(\frac{1}{n}\right)}{\frac{1}{n}} - 1\right|}{\frac{1}{n^2}} \le \frac{1}{6}.$$

d) [1 pto.] De c) concluimos que:

$$\frac{Sen\left(\frac{1}{n}\right)}{\frac{1}{n}}=1+O\left(\frac{1}{n^2}\right).$$

Es decir, que la sucesión  $\frac{sen\left(\frac{1}{n}\right)}{\frac{1}{n}}$  tiene una convergencia equivalente a  $\frac{1}{n^2}$ .

3. Al formarse una celda convectiva en la atmósfera, un rollo de aire que gira a medida que el aire celiente sube y el aire frío baja, el sentido de su giro X se puede representar por un valor comprendido entre 0 y 1, de modo que si X > 0,5 el giro se produce en sentido de las agujas del reloj y si X < 0,5 el giro se produce en sentido contratio a las agujas del reloj. Suponga que si  $X_n$  representa el valor del giro durante la hora n, entonces el valor del giro  $X_{n+1}$  en la próxima hora n+1 está dada por la siguiente recurrencia.

$$X_{n+1} = 3.9 \cdot X_n \cdot (1 - X_n).$$

Usando para los calculos 10 decimales.

- a) [1 pto.] Determine el fenómeno atmosférico para n=20 con  $X_0=0.5$ .
- b) [1 pto.] Determine el fenómeno atmosférico para n=20 con  $X_0=0.501$ .
- c) [1 pto.] Determine el fenómeno atmosférico para n=20 con  $X_0=0.51$ .
- d) [1 pto.] Explique el efecto que ocurre en sus resultados anteriores obtenidos.

### Solucionario

a) [1 pto.] La tabla que se genera es:

| n                | 0            | 1            | 2            | 3            | 4            | 5            | 6            |
|------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| $x_n$            | 0,5000000000 | 0,9750000000 | 0,0950625000 | 0,3354999223 | 0,8694649253 | 0,4426331091 | 0,9621652553 |
| $\boldsymbol{n}$ | 7            | 8            | 9            | 10           | 11           | 12           | 13           |
| $x_n$            | 0,1419727794 | 0,4750843862 | 0,9725789275 | 0,1040097133 | 0,3634476020 | 0,9022784261 | 0,3438710647 |
| n                | 14           | 15           | 16           | 17           | 18           | 19           | 20           |
| $x_n$            | 0,8799326468 | 0,4120396173 | 0,9448255872 | 0,2033077681 | 0,6316975062 | 0,9073574907 | 0,3278335116 |

b) [1 pto.] La tabla que se genera es:

| n                | 0            | 1            | 2            | 3            | 4            | 5            | 6            |
|------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| $x_n$            | 0,5010000000 | 0,9749961000 | 0,0950769494 | 0,3355455602 | 0,8695234752 | 0,4424643650 | 0,9620896378 |
| $\boldsymbol{n}$ | 7            | 8            | 9            | 10           | 11           | 12           | 13           |
| $x_n$            | 0,1422453500 | 0,4758452807 | 0,9727245432 | 0,1034728745 | 0,3617883310 | 0,9005003847 | 0,3494378231 |
| $\boldsymbol{n}$ | 14           | 15           | 16           | 17           | 18           | 19           | 20           |
| $x_n$            | 0,8865910205 | 0,3921347932 | 0,9296238789 | 0,2551509583 | 0,7411908925 | 0,7481251181 | 0,7348923105 |

c) [1 pto.] La tabla que se genera es:

| n                | 0            | 1            | 2            | 3            | 4            | 5            | 6            |
|------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| $x_n$            | 0,5100000000 | 0,9746100000 | 0,0965068568 | 0,3400533053 | 0,8752271377 | 0,4258979211 | 0,9535846394 |
| $\boldsymbol{n}$ | 7            | 8            | 9            | 10           | 11           | 12           | 13           |
| $x_n$            | 0,1726178020 | 0,5570014961 | 0,9623282348 | 0,1413851528 | 0,4734420264 | 0,9722492287 | 0,1052245972 |
| n                | 14           | 15           | 16           | 17           | 18           | 19           | 20           |
| $x_n$            | 0,3671942873 | 0,9062143064 | 0,3314607553 | 0,8642186397 | 0,4576446517 | 0,9680034954 | 0,1207936402 |

- d) [1 pto.] Que al multiplicar los errores se amplifican por los factores involucrados en el producto lo que hay en los fenómenos atmosféricos, conocido como el efecto mariposa.
- 4. a) [2 pts.] Determine la representación de punto flotante, usando una palabra de 12 bits [emplee 4 bits para la representación del exponente y 7 bits para la mantiza] en base 2, para el número: 5,6875.
  - b) [2 pts.] Muestre que si  $a \ge 0$  y b < 0 son representables en complemento a dos, usando n bits, cumpliendo a + b < 0, entonces a + b admite la representación en complemento a dos, usando n bits, siendo igual a la suma en base 2 de las representaciones de a y b.

#### Solucionario

- a) Se tiene que  $5 = (101)_2$  y  $0.6875 = (0.1011)_2$ , luego  $5.6875 = (0.1011011)_2$ ,  $2^3 = (0.1011011)_2$ ,  $2^{(11)_2}$ . Entonces la mantiza tiene la representación |1|0|1|1|0|1|1|; la representación del exponencial (considerando el signo) |0|0|1|1|. Por tanto se obtiene la representación |0|0|0|1|1|0|1|1|0|1|1|.
- b) Veamos primero que a+b puede representarse, usando n bits, lo que es equibalente a que  $a+b \in [-2^{n-1}, 2^{n-1}-1]$ , lo cual se sigue de sumar las desigualdades que cumplen a y b al ser representables  $0 \le a \le 2^{n-1}-1$ ;  $-2^{n-1} \le b \le 0$ . Por tanto al ser a+b < 0, se tiene

$$a+b \in [-2^{n-1}, 1] \tag{1}$$

Ahora veamos como es la representación de a+b, para ello recordamos que se tiene la siguiente propiedad: Si  $c \in [-2^{n-1}, 1]$  entonces su representación, usando n bits, se obtiene de  $R_2(2^n+c)$ , siendo  $R_2$  el cambio a la base 2. Entonces de (1) se obtiene la representación de a+b es

$$R_2(2^n + a + b) = R_2(a) + R_2(2^n + b)$$

lo cual muestra que es la suma en base  ${\bf 2}$  de las representaciones, usando  ${\bf n}$  bits, de  ${\bf a}$  y  ${\bf b}.$ 

04 de Mayo del 2022