Date: Mar 28 Made by Eric

In this note, V always stand for a vector space over \mathbb{F} , V^- stands for a finite dimensional vector space over \mathbb{F} , and T is always a linear operator on V^-

Definitions

Definition 1. Let $V = W_1 \oplus W_2$. T is a **projection** on W_1 if for all $w_1 \in W_1$ and $w_2 \in W_2$

$$T(w_1 + w_2) = w_1$$

(Notice the definition of T solely depends on W_1 and not on W_2)

Theorem 1. T is a projection if and only if $T = T^2$

Proof. (\longrightarrow)

Let T be a projection on W_1 along W_2

Arbitrarily pick v from V and express v in the form of $v = w_1 + w_2$

$$T^{2}(v) = T^{2}(w_{1} + w_{2}) = T(w_{1}) = w_{1} = T(v)$$
 (\longleftarrow)

We first prove $N(T) \oplus R(T)$

Let $v \in N(T) \cap R(T)$

Because $v \in R(T)$, we know there exists $w \in V$ such that v = T(w)

Because $v \in N(T)$, we deduce $v = T(w) = T^2(w) = T(v) = 0$

Now we have concluded, $N(T) \cap R(T) = \{0\}$

By Rank-Nullity Theorem, dim(N(T)) + dim(R(T)) = dim(V) (done)

We now prove T is a projection on R(T) along N(T)

Arbitrarily pick v from V and express v in the form of $v=v_1+T(v_2)$, where $v_1\in N(T)$

$$T(v) = T(v_1 + T(v_2)) = T(v_1) + T^2(v_2) = T(v_2)$$
 (done)

Corollary 1.1. If T is a projection, $V = N(T) \oplus R(T)$

Definition 2. T is an orthogonal projection if T is a projection and $N(T) \perp R(T)$

Theorems

Theorem 2. T is an orthogonal projection if and only if

$$T^*$$
 exists and $T^2 = T = T^*$

Proof.
$$(\longrightarrow)$$

Notice the definition of adjoint is $\forall x, y \in V, \langle T(x), y \rangle = \langle x, T^*(y) \rangle$

We show such linear transformation T^* exists and $T^* = T$ by showing $\forall x, y \in V, \langle T(x), y \rangle = \langle x, T(y) \rangle$

Arbitrarily pick $x, y \in V$

Because T is a projection, so we know $V = N(T) \oplus R(T)$

We express x, y in the form of $x = v_1 + v_2$, $y = w_1 + w_2$ where $v_1, w_1 \in N(T)$ and $v_2, w_2 \in R(T)$

Because T is an orthogonal projection, we know $\langle v_1, w_2 \rangle = 0 = \langle v_2, w_1 \rangle$

Then we can deduce $\langle T(x), y \rangle = \langle v_2, w_1 + w_2 \rangle = \langle v_2, w_2 \rangle = \langle v_1 + v_2, w_2 \rangle = \langle x, T(y) \rangle$ (done)

$$(\longleftarrow)$$

We show $N(T) \perp R(T)$

Arbitrarily pick $v \in N(T)$, and arbitrarily pick $T(w) \in R(T)$

$$\langle v, T(w) \rangle = \langle T^*(v), w \rangle = \langle T(v), w \rangle = \langle 0, w \rangle = 0 \text{ (done)}$$

Theorem 3. Suppose that T is orthogonally diagonalizable on V^- with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. For each i, let W_i be the eigenspace of T corresponding to the eigenvalue λ_i and let T_i be the orthogonal projection on W_i

(a)
$$W_i^{\perp} = W_1 \oplus \cdots \oplus W_{i-1} \oplus W_{i+1} \oplus \cdots \oplus W_k$$

(b) $I = T_1 + \cdots + T_k$
(c) $T = \lambda_1 T_1 + \cdots + \lambda_k T_k$

Proof. (a)

Notice that because T is orthogonally diagonalizable, so $V = W_1 \oplus \cdots \oplus W_k$

Arbitrarily pick $v \in W_i^{\perp}$ and express v in the form of $v = w_1 + \cdots + w_k$ where $w_i \in W_i$

$$0 = \langle v, w_i \rangle = \langle w_1 + \dots + w_k, w_i \rangle = \langle w_i, w_i \rangle \implies w_i = 0 \implies v \in W_1 \oplus \dots \oplus W_{i-1} \oplus W_{i+1} \oplus \dots \oplus W_k$$

So we have concluded $W_i^{\perp} \subseteq W_1 \oplus \cdots \oplus W_{i-1} \oplus W_{i+1} \oplus \cdots \oplus W_k$

Arbitrarily pick $w_i \in W_i$ and arbitrarily pick $w_1 + \cdots + w_{i-1} + w_{i+1} + \cdots + w_k \in W_1 \oplus \cdots \oplus W_{i-1} \oplus W_{i+1} \oplus \cdots \oplus W_k$

$$\langle w_i, w_1 + \dots + w_{i-1} + w_{i+1} + \dots + w_k \rangle = \langle w_i, 0 \rangle = 0$$

So we have concluded $W_1 \oplus \cdots \oplus W_{i-1} \oplus W_{i+1} \oplus \cdots \oplus W_k \subseteq W_i^{\perp}$

(b)

Arbitrarily pick $v \in V$ and express v in the form of $v = w_1 + \cdots + w_k$, where $w_i \in W_i$

$$(T_1 + \dots + T_k)(v) = (T_1 + \dots + T_k)(v_1 + \dots + v_k) = T_1v_1 + \dots + T_kv_k = v_1 + \dots + v_k = v$$

(c)

Arbitrarily pick $v \in V$ and express v in the form of $v = w_1 + \cdots + w_k$, where $w_j \in W_j$

$$T(v) = T(v_1 + \dots + v_k) = T(v_1) + \dots + T(v_k) = \lambda_1 v_1 + \dots + \lambda_k v_k = \lambda_1 T_1(v) + \dots + \lambda_k T_k(v) = (\lambda_1 T_1 + \dots + \lambda_k T_k)(v)$$

Exercises

2.

Proof.
$$\frac{1}{5} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
 $\frac{1}{2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

4.

Let W be a finite dimensional subspace of an inner product space V. Show that if T is orthogonal projection of V on W, then I-T is the orthogonal projection of V on W^{\perp}

Proof. Because T is an orthogonal projection of V on W, we know $V=N(T)\oplus W$ and $N(T)\perp W$

We first show $N(T) = W^{\perp}$

Because $N(T) \perp W$, so we know $N(T) \subseteq W^{\perp}$

Arbitrarily pick $v \in W^{\perp}$ and express v in the form of $v_1 + w$, where $v_1 \in N(T)$ and $w \in W$

$$0 = \langle v, w \rangle = \langle v_1 + w, w \rangle = \langle w, w \rangle \implies w = 0 \implies v = v_1$$

$$T(v) = T(v_1) = 0 \implies v \in N(T)$$

We have concluded $W^{\perp} \subseteq N(T)$ (done)

With Violet, we now know T project V on W along W^{\perp}

Arbitrarily pick $v \in V$ and express v in the form of $v_1 + w$, where $v_1 \in W^\perp$ and $w \in W$

$$(I-T)(v) = v - T(v) = v_1 + w - w = v_1$$

So I-T is a projection on W^{\perp}

Lastly, to show I-T is not just a projection, but an orthogonal projection, we prove $N(I-T)\perp W^\perp$

Arbitrarily pick $v \in N(I-T)$ and $v' \in W^{\perp}$

Because
$$W=R(T)$$
, so we deduce $v\in N(I-T)\implies v-T(v)=0\implies v=T(v)\implies \langle v,v'\rangle=\langle T(v),v'\rangle=0$ (done)

7.

Let T be a normal operator on a finite-dimensional complex inner product space V. Express T in the form of spectral decomposition $T=\lambda_1T_1+\cdots+\lambda_kT_k$

7.**(a)**

Let g be a polynomial

Show
$$g(T) = g(\lambda_1)T_1 + \cdots + g(\lambda_k)T_k$$

Proof. Let
$$n \in \mathbb{Z}_0^+$$

We first prove $T^n = \lambda_1^n T_1 + \cdots + \lambda_k^n T_k$

From Theorem 3, we have already proven $T^0=\lambda_1^0T_1+\cdots+\lambda_k^0T_k$ and $T^1=\lambda_1^1T_1+\cdots+\lambda_k^1T_k$

Let $m \in \mathbb{N}$

We only have to prove $T^m=\lambda_1^mT_1+\cdots+\lambda_k^mT_k\implies T^{m+1}=\lambda_1^{m+1}T_1+\cdots+\lambda_k^{m+1}T_k$

Notice $T_i T_j = \delta_{i,j} T_i$, so we deduce

$$T^{m+1}=TT^m=(\lambda_1T_1+\cdots+\lambda_kT_k)(\lambda_1^mT_1+\cdots+\lambda_k^mT_k)=\lambda_1^{m+1}T_1+\cdots+\lambda_k^{m+1}T_k \text{ (done)}$$

Express g(x) in the form of $g(x) = \sum_{i=0}^{r} c_i x^i$

$$g(T) = \sum_{i=0}^{r} c_i T^i = \sum_{i=0}^{r} c_i (\lambda_1^i T_1 + \dots + \lambda_k^i T_k) = \sum_{i=0}^{r} c_i \lambda_1^i T_1 + \dots + \sum_{i=0}^{r} c_i \lambda_k^i T_k = g(\lambda_1) T_1 + \dots + g(\lambda_k) T_k$$