Clasificación de Opiniones Ciudadanas en ODS

- Ximena Lopez 202312848
- Juliana Ferreira 202312785
- María Juliana Ballesteros 202313216

Objetivo del proyecto

Desarrollar un modelo de aprendizaje automático capaz de clasificar opiniones ciudadanas en los ODS 1, 3 y 4 de manera automática, precisa y balanceada, apoyando el análisis de grandes volúmenes de información para la toma de decisiones.

- ODS 1 Fin de la pobreza: Busca erradicar la pobreza extrema y reducir la pobreza en todas sus formas en el mundo.
- ODS 3 Salud y bienestar: Garantizar una vida sana y promover el bienestar para todo.
- ODS 4 Educación de calidad: asegurar una educación inclusiva, equitativa y de calidad.

Sobre nosotros

Perfilamiento de datos

01

Estructura del data set

Dos columnas

- **Textos:** Contiene las opiniones de la ciudadania
- **Labels:** Indica el ODS al que pertenece la opinion

02

Distribución de clases

Como se observa en el histograma, la **clase 4** tiene mayor concentración que la **clase 1**.

03

- **Longitud promedio**: ~500 palabras (textos medianos)
- Datos completos: sin nulos ni duplicados

Sobre nosotros

Limpieza de datos

- **Limpieza**: Se paso todo a minúsculas, eliminación de acentos, puntuación y espacios extra.
- Tokenización: división en palabras.
- **Stopwords**: eliminación de palabras vacías (ej. el, la, de).
- **Vectorización**: representación numérica con TF-IDF.

Texto original

"La Educación es clave para el futuro"

["educacion", "clave", "futuro"] \rightarrow [0.21, 0, 0.08, ...]

Modelos probados

Regresión logistica

Modelo lineal que estima la probabilidad de pertenencia a cada clase. Se adapta muy bien a datos de texto con TF-IDF y logra alta precisión.

K-Vecinos

Clasifica un texto comparándolo con sus vecinos más cercanos en el espacio vectorial. La categoría más común entre esos vecinos es la asignada.

Naive bayes

Se basa en la probabilidad de que un texto pertenezca a una clase, asumiendo independencia entre palabras. Es simple, rápido y funciona bien en texto.

Resultados de cada modelo

Regresión Logística

F1-Score: 0.9622.

Modelo más robusto y equilibrado, con resultados sobresalientes en todas las clases.

K-vecinos

F1-Score: 0.945882

Aunque su desempeño es ligeramente inferior al de la Regresión Logística, KNN ofrece resultados consistentes y confiables, siendo una alternativa válida.

Bayes Ingenuo

F1-Score: 0.954057

Modelo simple pero muy eficaz, con predicciones consistentes y pocos errores incluso en la clase menos representada

Modelos probados

Modelos probados

Modelo	Exactitud	Precisión (macro)	Recall (macro)	F1 (macro)	Observaciones
Regresión Logística	~96,5%	~96.5%	~96%	0,962	Mejor desempeño general. Balanceado y robusto, pocos errores entre ODS1 y ODS3.
Naive Bayes	~95%	~95%	~95%	0,954	Simple y eficiente. Muy buen rendimiento, especialmente en ODS4 (Educación).
KNN	~94–95%	~94%	~94%	0,946	Estable y consistente, sin sesgo hacia una clase. Ligeramente inferior a Logística.

Modelo seleccionado

Regresión logistica

Mostró un equilibrio sólido entre las clases ODS 1, 3 y 4, evitando sesgos hacia la clase mayoritaria.

Logró el mayor desempeño en todas las métricas (Exactitud, Precisión y F1-Score). Es un modelo interpretativo y confiable, lo que permite a la organización entender los patrones lingüísticos detrás de cada predicción.

Intuición del modelo y estrategias

Palabras representativas por ODS

ODS 1 - Fin de la pobreza:

pobreza, ingresos, empleo, economía, oportunidades

ODS 3 - Salud y bienestar:

• salud, hospital, médico, enfermedad, bienestar

ODS 4 - Educación de calidad:

 educación, aprendizaje, escuela, profesor, conocimiento

Monitoreo en tiempo real

• Uso del modelo para clasificar opiniones al instante y detectar tendencias emergentes (ej. salud, educación).

Campañas dirigidas

 Identificar palabras clave (ej. empleo, pobreza) y enfocar acciones y programas en necesidades reales.

Conclusiones

En conclusión, nuestro mejor modelo fue Regresión Logística, con un F1-macro de 0.962, demostrando ser el más confiable para la clasificación de opiniones ciudadanas en los ODS 1, 3 y 4.

Desde la perspectiva del negocio, estos resultados significan que la organización ahora cuenta con una herramienta robusta y automática para procesar grandes volúmenes de opiniones ciudadanas, reduciendo tiempos de análisis y facilitando la toma de decisiones estratégicas. En una siguiente etapa, este modelo puede integrarse en una plataforma web de monitoreo en tiempo real, permitiendo identificar tendencias emergentes y responder de forma ágil en temas críticos como pobreza, salud y educación.

Gracias!