Comparação das Características de Simuladores de Arquiteturas Heterogêneas

Andrei Silva¹, Carlos Vinícius Rasch Alves¹, Felipe Leivas Teixeira¹, Vinícius Krolow da Silva¹, Mauricio Lima Pilla¹

{assilva, cvralves, flteixeira, vkdasilva, pilla}@inf.ufpel.edu.br

¹Universidade Federal de Pelotas (UFPEL) Computação - CDTec

Resumo. Um problema da computação atualmente é que as demandas computacionais estão exigindo cada vez mais recursos de computação. Com isso uma solução é utilizar aquiteturas heterogêneas. Este trabalho compara as características de quatro simuladores de arquiteturas heterogêneas. Como resultado podemos observar que a maioria das características recebem suporte de todos os simuladores, enquanto outras são especificas ou não recebem suporte.

1. Introdução

Atualmente os problemas computacionais estão exigindo cada vez mais recursos de computação. Uma solução para este problema é utilizar arquiteturas heterogêneas [Spafford et al. 2012].

Neste artigo foi desenvolvido um comparativo das características de simuladores de arquiteturas heterogêneas. Visto que saber as características de cada simulador facilita o usuário na seleção do simulador que melhor se adapta com suas necessidades. Os simuladores escolhidos foram: gem5+GPGPU-Sim, FusionSim, Multi2Sim e BarraSim.

O artigo está dividido da seguinte forma: a Seção 2 apresenta os simuladores. Na Seção 3 é feita a comparação das características de cada simulador. Por fim a Seção 4 discute as conclusões e trabalhos futuros.

2. Simuladores

Os simuladores utilizados para fazer a comparação foram:

- **gem5+GPGPU-Sim**: O gem5+GPGPU [Power et al. 2014] é um simulador que combina o modelo de computação do GPGPU-Sim e a CPU e o modelo de sistema de memória do gem5. O gem5 e GPGPU-Sim executam como dois processos separados e a comunicação ocorre por meio da memória compartilhada.
- MUlti2Sim: O multi2sim [Ubal et al. 2012] é um framework para simulação CPU-GPU para computação heterogênea escrito em C. O multi2sim possibilita criar benchmarks em X86 CPU, AMD Evergreen e Southern Islands GPU no sistema GNU/Linux à nível de aplicação.
- FusionSim: O FusionSim [Zakharenko et al. 2013] é um simulador focado em simulações de propósito geral baseadas no CUDA. Este simulador analisa as cargas de trabalho em sistemas x86 que compõem CPU GPU.
- **Barra-Sim**: O Barra-sim [Collange et al. 2009] é um simulador, baseado na linguagem Tesla ISA. O grande ganho de usar o barra, é a possibilidade de obter um stack de 100% do que que está sendo executado.

3. Comparação

A Tabela 1 mostra as características de cada um dos simuladores. Como podemos observar, os simuladores tem algumas características em comum. Estas são: Simulação de CPU, Simulação de GPU, Hierarquia de Memória, Suporte a CUDA, Coerência de Cache e *Opensource*.

Mas também podemos destacar que existem algumas características exclusivas de alguns simuladores. Um exemplo é a Interface Gráfica, que só o Multi2Sim apresenta esse recurso para facilitar na análise e compreensão dos resultados e da simulação. Outro exemplo é o Suporte a OpenCL, que somente o gem5+GPGPU e o Multi2sim apresentam. Suporte a OpenACC não ocorre em nenhum desses simuladores.

Tabela 1. Comparação de características dos simuladores.

	gem5+GPGPU	Multi2Sim	Barra-Sim	FusionSim
Simulação a CPU	X	X	X	X
Simulação a GPU	X	X	X	X
Hierarquia de Memória	X	X	X	X
Interface Gráfica	-	X	_	-
Suporte a CUDA	X	X	X	X
Suporte a OpenCL	X	X	_	-
Suporte a OpenACC	-	_	_	-
Coerência de Cache	X	X	X	X
Opensource	X	X	X	X

4. Conclusão

Neste trabalho foi feito uma comparação de características de quatro simuladores de arquiteturas heterogêneas. Podemos observar que a maioria são suportadas por todos os simuladores. Nenhum simulador, no entanto, suporta OpenACC, por restrições de algumas de suas características. Como trabalhos futuros pretende-se aprofundar a comparação, simulando a execução de *benchmarks* nos mesmos.

Referências

- Collange, S., Defour, D., and Parello, D. (2009). Barra, a modular functional gpu simulator for gpgpu. 2009-09-24). http://hal. archi ves-ouvertes. fr/hal-00359342.
- Power, J., Hestness, J., Orr, M., Hill, M., and Wood, D. (2014). gem5-gpu: A heterogeneous cpu-gpu simulator.
- Spafford, K. L., Meredith, J. S., Lee, S., Li, D., Roth, P. C., and Vetter, J. S. (2012). The tradeoffs of fused memory hierarchies in heterogeneous computing architectures. In *Proceedings of the 9th conference on Computing Frontiers*, pages 103–112. ACM.
- Ubal, R., Jang, B., Mistry, P., Schaa, D., and Kaeli, D. (2012). Multi2Sim: A Simulation Framework for CPU-GPU Computing. In *Proc. of the 21st International Conference on Parallel Architectures and Compilation Techniques*.
- Zakharenko, V., Aamodt, T., and Moshovos, A. (2013). Characterizing the performance benefits of fused cpu/gpu systems using fusionsim. In *Proceedings of the Conference on Design, Automation and Test in Europe*, DATE '13, pages 685–688, San Jose, CA, USA. EDA Consortium.