10. HMI 및 SCADA 연동

10.1 HMI와 PLC 연결 개념

(사람과 기계가 통신하는 핵심 인터페이스 구조의 본질적 개념 정리)

✓ 개요

HMI (Human Machine Interface)는 사람이 PLC 기반 자동화 시스템을 **직관적이고 쉽게 제어하고 모니터링**하도록 만들어진 인터페이스다.

HMI는 PLC와 **실시간 통신**을 수행하며, 장비 상태 확인, 명령 송신, 경고 감시 등 모든 운영자의 눈과 손 역할을 수행한다.

☑ 1. HMI와 PLC의 관계

역할	설명
PLC	장비의 실제 동작 제어, 센서/액추에이터 연결
НМІ	PLC 내부 데이터를 시각화, 명령 송신 인터페이스 제공

1 | 운영자 → HMI → PLC → 기계 제어 → PLC → HMI → 운영자

• HMI는 **직접 기계를 제어하지 않음** \rightarrow 항상 PLC를 통해 간접 제어

☑ 2. 통신 방식의 본질

★ HMI는 PLC의 변수 태그와 통신

- PLC 내부의 메모리 변수(태그, 레지스터, 메모리 주소) 를 읽고 씀
- PLC와 HMI는 공통 통신 프로토콜을 사용해 태그에 접근

★ 데이터 흐름 예시

동작	흐름
버튼 누름	HMI → PLC: "StartMotor" 변수 TRUE 설정
센서값 보기	PLC → HMI: "Temperature" 값 읽어와 화면 표시
알람 발생	PLC → HMI: "AlarmOverheat" 태그 TRUE → 경고등 표시

☑ 3. 주요 통신 프로토콜

프로토콜	특징	제조사
OPC UA	표준 통합, 보안 내장	범용
Profinet	이더넷 기반 실시간 통신	Siemens
EtherNet/IP	태그 기반 통신	Allen-Bradley
MODBUS TCP	범용 이더넷 통신	모든 제조사
MODBUS RTU	RS-485 시리얼 통신	모든 제조사
MC Protocol, FINS	제조사 전용 시리얼	Mitsubishi, Omron

대부분의 상용 HMI는 여러 PLC 브랜드를 지원하는 **통합 드라이버 라이브러리** 내장

✓ 4. HMI ↔ PLC 연결 흐름 구조

```
1 [ 운영자 입력 ]
2  ↓ ↓
3 [ HMI 화면 오브젝트 ]
4  ↓
5 [ HMI 내부 태그 ]
6  ↓
7 [ 통신 드라이버 ]
8  ↓
9 [ PLC 변수(메모리 영역) ]
10  ↓
11 [ 실제 제어 동작 ]
```

- 운영자는 화면의 버튼이나 입력창을 조작
- HMI가 PLC의 변수 메모리에 실시간 접근

☑ 5. 주요 연결 방식

연결 유형	설명	실무 예시
직결	HMI 패널과 PLC 1:1 연결	단일 기계 로컬 패널
네트워크 연결	HMI ↔ PLC 다수 연결	SCADA, 복수 장비 통합
Remote HMI (원격 접근)	모바일, 클라우드 HMI	스마트폰 모니터링 앱

☑ 6. HMI 설계 시 필수 고려 요소

항목	설명
통신 프로토콜 설정	PLC와 동일 통신 방식, IP, 포트 확인
태그 매핑 정확성	HMI 태그 ↔ PLC 변수 정확히 일치해야 함
통신 속도 설정	데이터 읽기 주기 설정 (예: 500ms~1초)
에러 상태 표시	통신 끊김 시 사용자에게 경고 표시
보안 설정	로그인, 권한 제한 등 적용 가능

☑ 7. 간단한 실무 연결 예시

- Siemens S7-1200 ↔ Proface HMI
 → Profinet 설정 → S7-1200 DB 블록 태그 자동 매핑
- Mitsubishi Q PLC ↔ GOT2000 HMI
 → MC Protocol 설정 → 직접 내부 레지스터 (D, M 등) 접근
- LS PLC ↔ XGT Panel
 → XGT 전용 드라이버 → 직접 태그명 매칭 가능

8. HMI ↔ PLC 연결 설계 시 주의사항

문제	방지 대책
주소 중복 오류	HMI-PLC 태그 동기화 관리
통신 지연	중요 변수는 그룹핑, 필요한 값만 갱신
장시간 통신 단절	Watchdog, 타임아웃 기능 활용
네트워크 불안정	전용 스위치, 이중화 네트워크 사용

✓ 정리

- HMI는 PLC의 실시간 상태를 시각화하고 명령을 전달하는 인터페이스 장치
- HMI ↔ PLC는 항상 **통신을 통해 변수(태그)를 공유**
- 통신 설정, 태그 일치, 통신 주기 설정이 HMI 프로젝트 설계의 핵심
- 모든 제어 권한은 항상 PLC에 있음 (HMI는 명령 인터페이스 역할)

10.2 터치스크린 화면 구성

(HMI 터치 패널 설계의 화면 구조, UI/UX 구성, 태그 매핑 원칙 정리)

☑ 개요

터치스크린 HMI는 현장 오퍼레이터가 가장 많이 접하는 인터페이스다. 따라서 터치 패널 화면 설계는 단순히 미적인 문제가 아니라:

- 작업 효율성
- 오류 방지
- 안전성 확보
- 실시간 피드백

이 모든 핵심 제어 품질에 직접적으로 영향을 미친다.

☑ 1. HMI 화면 구성의 기본 원칙

핵심 요소	설계 기준
직관성	누구나 쉽게 이해
반응성	실시간 빠른 피드백
오류 방지	오입력, 잘못된 조작 방지
단계별 이동	메뉴 계층화, 중요 정보 구분
일관성	전체 시스템 통일된 디자인

☑ 2. 화면 구성의 기본 레이아웃

📌 기본 구조 예시

• 상단: 전체 시스템 상태

• 중앙: 실시간 공정 흐름과 주요 수치

• 하단: 조작 버튼 및 화면 전환

☑ 3. 주요 화면 유형

화면 유형	설명
메인 화면	공정 전체 흐름도, 설비 개요
운전 화면	개별 장비 제어, 상태 확인
알람 화면	경고, 장애 이력 조회
이력 화면	데이터 트렌드, 기록 조회
설정 화면	파라미터 입력, 관리자 설정

☑ 4. 버튼 설계 시 주의사항

요소	기준
크기	손가락 누르기 쉬운 최소 20~30mm 이상
색상	동작별 색상 통일 (녹색: 시작, 적색: 정지 등)
상태 변화	누름/해제 상태 시각적 피드백
이중 확인	위험 조작은 확인 팝업 적용

☑ 5. 태그 매핑 설계

📌 태그 기본 개념

PLC 내부 태그	HMI 연결 태그	설명
MotorRun	MotorRun	ON/OFF 표시
Temperature	TempDisp	수치 표시
Alarm_Overheat	OverheatAlarm	알람 점등

• 모든 화면 오브젝트는 PLC의 태그와 1:1로 연결됨

★ HMI 내 태그 그룹 관리

- 운전 제어 그룹
- 센서 상태 그룹
- 알람 그룹
- 이력 기록 그룹
- → 그룹화하여 데이터 갱신 주기 최적화 가능

☑ 6. 알람 표시 기본 구조

요소	설명
알람 표시등	상단 항상 표시 (점멸 등 강조)
알람 이력 화면	시간 순 알람 목록
알람 확인 버튼	수동 리셋 구조 포함
우선순위 구분	긴급/경고/정보 등 색상 차별화

☑ 7. 다국어 지원 (i18n)

- HMI 소프트웨어 대부분 **다국어 텍스트 테이블** 제공
- 운영자 국가별 언어 전환 가능
- 다국적 공정일수록 다국어 설계 필수

☑ 8. 예시 화면 구성 흐름

- 항상 '홈'으로 쉽게 복귀할 수 있도록
- 복잡한 메뉴 깊이 피하기 (최대 3~4단계 권장)

☑ 9. 실무 HMI 화면 샘플 예시

화면 구성	포함 요소
컨베이어 제어 화면	Start/Stop 버튼, 모터 상태 표시, 속도 입력창
온도 제어 화면	온도 수치, 히터 상태, 타이머, 알람 경고
자동라인 전체	각 유닛 블록별 상태 도식, 색상 실시간 변화
관리자 메뉴	파라미터 입력, 레시피 관리, 로그인 인증

☑ 10. 실무 설계 팁

항목	팁
공정 흐름 시각화	현장 설비와 최대한 유사하게 배치
숫자 입력	슬라이더, 숫자패드 병행 제공
알람 발생 시	반드시 즉시 화면상 강조
조작 이중 확인	긴급동작은 팝업 확인 삽입
터치 오작동 대비	일정 무반응 구간 이후 재시작 화면 복귀 설정

✓ 정리

- 터치스크린 HMI는 실제 기계 제어의 얼굴
- 화면 배치, 색상, 크기, 피드백 구조 모두 작업자의 실수 방지를 중심으로 설계
- 태그 연결 정확성과 통신 신뢰성 확보가 가장 중요한 기술적 핵심
- 현장 경험이 쌓일수록 UI가 단순해지고 안정성이 높아진다

10.3 알람, 트렌드, 레시피 구성

(HMI 시스템에서 실시간 운전 감시, 이력 분석, 공정 설정을 지원하는 핵심 구성 요소 설계)

✓ 개요

HMI 시스템이 단순히 화면만 제공하는 시대는 끝났다.

알람 시스템, **트렌드 이력 기록**, **레시피 관리**는 현대 HMI의 **3대 핵심 기능**이다. 이들은 **현장 운영의 안정성, 품질 유지, 생산 효율성**에 직접적인 영향을 준다.

☑ 1. 알람 시스템 구성

★ 알람이란?

- PLC 내부 상태 \rightarrow HMI로 전송 \rightarrow 경고/에러 표시
- 안전/장비 보호/공정 품질 유지에 필수

★ 알람 발생 흐름

1 [PLC 감지] → [알람 태그 ON] → [HMI 알람 표시] → [HMI 알람 이력 기록]

★ 알람 분류

레벨	의미	표시 예시
정보 (Info)	상태 정보	파라미터 변경
경고 (Warning)	조치 필요	온도 이상 경향
위험 (Alarm)	즉각 조치	과전류 발생
치명적 (Emergency)	즉시 정지	비상 정지

★ 알람 구성 요소

요소	설명
발생 시간	알람 발생 시각 기록
알람 코드	고유 번호 부여
알람 메시지	상세 원인 설명
확인 상태	확인 여부 관리 (ACK 기능)
이력 저장	장기 보관 가능성

★ 알람 설계 팁

- 모든 PLC 알람 태그를 HMI 알람 테이블과 1:1 매칭
- 긴급 알람일수록 점멸, 팝업, 음향 경보 적용
- 알람 발생 시 HMI 상단 **상태바 항상 표시**

☑ 2. 트렌드 시스템 구성

★ 트렌드란?

- 시간에 따른 변수 변화를 실시간으로 그래프화
- 품질 분석, 이상 탐지, 유지보수에 필수 도구

★ 기본 구성 요소

요소	설명
변수 선택	표시할 PLC 변수 (온도, 압력 등)
시간 축	실시간, 단기, 장기 전환 가능
샘플링 주기	100ms ~ 10초 (데이터 부하 고려)
이력 저장	최대 보관 기간 설정

★ 실시간 트렌드 예시

```
1 [PLC → HMI → 그래프 패널 표시]
2 - 온도 상승 → 히터 제어 확인
3 - 압력 변화 → 밸브 동작 확인
```

★ 이력 트렌드 활용 예

- 장기 품질 이력 분석
- 공정 튜닝 최적화
- 에러 발생 시 과거 원인 추적

📌 트렌드 설계 팁

- 중요 변수 그룹은 샘플링 주기 차등 적용
- 이력 데이터 백업 경로 이중화 (내부 메모리 + 외부 저장소)

☑ 3. 레시피 시스템 구성

★ 레시피란?

- 공정 조건의 사전 설정값 집합
- 제품별, 작업별 빠른 조건 변경 가능

★ 레시피 데이터 구성 예시

항목	설명	변수
제품명	표시 이름	String
목표 온도	제어값	Target_Temp
공정 시간	타이머 설정	Process_Time
압력 설정	유압 설정	Target_Pressure

📌 레시피 사용 흐름

1 | 운영자 → 레시피 선택 → HMI → PLC 변수 세팅 → 즉시 적용

📌 레시피 저장방식

저장 위치	특징
HMI 내장 메모리	접근속도 빠름
PLC 내부 저장	전원 복귀 시 자동 복구 가능
외부 USB/SD 카드	대용량, 백업 용이

저장 위치	특징
클라우드 서버	중앙 관리, 이력 보관

🖈 레시피 설계 팁

- 레시피마다 버전 관리 (날짜, 작성자 기록)
- 수동 입력 오류 방지 위해 범위 제한, 입력 검증 적용
- 레시피 백업/복구 기능 반드시 구현

☑ 4. 알람-트렌드-레시피 통합 활용 예

- 레시피 설정값 적용 → 트렌드로 품질 안정성 확인
- 트렌드 변화 감지 → 알람 시스템이 즉시 경고
- 알람 이력과 트렌드 이력 비교 \rightarrow 문제 발생 원인 추적

🔽 5. 실무 설계 실전 예시 화면 흐름

```
1 메인 화면
2 ↓
3 공정 운전 화면
4 ↓
5 알람 모니터링 화면 (실시간 발생 감시)
6 ↓
7 트렌드 이력 분석 화면
8 ↓
9 레시피 관리 화면 (제품 변경 시 적용)
```

☑ 6. 시스템 안전성 확보를 위한 설계 원칙

요소	설명
이중 기록	알람, 트렌드 이력은 이중 저장 (내장 + 외장)
암호화 및 인증	레시피 관리 화면은 관리자 권한 부여
이력 검색 기능	알람코드, 기간, 장치별 검색 기능 포함
알람 진단 보고서	알람 이력 자동 보고서 출력 기능 탑재

✓ 정리

- **알람 시스템** \rightarrow 실시간 장애 감시와 사고 방지
- **트렌드 시스템** → 공정 품질 안정화 및 분석 도구
- **레시피 시스템** → 다품종 소량생산 체계의 자동화 핵심

HMI 시스템의 완성도는 이 3대 시스템을 얼마나 정교하게 통합 설계했느냐에 좌우된다.

10.4 SCADA 시스템 개요

(PLC 상위 통합 시스템으로서의 SCADA 본질, 구조, 역할 정리)

✓ 개요

SCADA (Supervisory Control And Data Acquisition) 시스템은

복수의 PLC·장비·공정을 통합하여 중앙에서 실시간 감시, 제어, 이력 수집, 분석, 보고를 수행하는 고급 상위 시스템이다.

현장 단위 제어를 담당하는 PLC와 HMI를 **상위에서 통합·조정·최적화**하는 것이 SCADA의 핵심 역할이다.

✓ 1. SCADA의 기본 역할

기능	설명
실시간 감시	PLC, 센서, I/O 상태 실시간 표시
원격 제어	원격에서 설비 가동·정지·파라미터 조정
알람 관리	실시간 경보 감지, 이력 기록, 보고
이력 수집	공정 데이터 장기 저장 및 추이 분석
보고서 생성	품질, 생산성, 운영 리포트 자동 생성
유지보수 지원	장애 이력 분석, 예방정비 지원

☑ 2. SCADA 시스템의 기본 구조

- SCADA 서버가 중심, 클라이언트-서버 아키텍처
- 수백~수천 개 PLC 데이터를 실시간으로 통합 관리 가능

☑ 3. SCADA 구성요소 상세

구성 요소	기능
데이터 수집 모듈	PLC, RTU, 장비로부터 데이터 수집
통신 드라이버	MODBUS, OPC, Profinet, EtherNet/IP 등 다수 지원
알람 관리 시스템	실시간 경고 감지, 이력 기록
트렌드 및 이력 DB	장기 데이터 저장, 통계 분석
그래픽 화면 생성기	공정 흐름도, 제어 화면 설계
보고서 엔진	생산성, 장애, 품질 분석 리포트 생성
사용자 권한 시스템	다단계 권한 부여, 보안 강화

☑ 4. SCADA와 HMI의 차이

항목	нмі	SCADA
제어 대상	단일 장비	복수 장비 전체 공정
위치	로컬 장비 부착	중앙 통제실 또는 서버룸
데이터 기록	기본 이력 (짧음)	장기 이력 (수개월~수년)
확장성	제한적	고도 확장 가능
보고서 기능	제한적	고급 자동 보고서 생성

항목	НМІ	SCADA
보안 관리	기본 로그인	중앙 통합 인증, 이중 보안

☑ 5. SCADA 시스템 주요 상용 솔루션

제품	제조사	특징
WinCC	Siemens	Profinet, OPC UA 통합
FactoryTalk SCADA	Rockwell	EtherNet/IP 최적화
iFIX	GE	OPC, SQL DB 연동 강력
Citect SCADA	Schneider	전통적 산업용 표준
Ignition	Inductive Automation	MQTT, 클라우드, lloT 통합 최적

☑ 6. SCADA 실전 구성 예시

```
1 현장 PLC (20대)
2 ↓ RTU/게이트웨이 (필드 네트워크 집선)
4 ↓ ↓
5 SCADA 서버 (중앙 통합 DB, OPC UA 기반 수집)
6 ↓ ↓
7 운영자 스테이션 (Operator Console)
8 ↓ ↓
9 생산관리 MES 연계, 클라우드 분석 시스템 연동
```

☑ 7. SCADA 설계 시 고려사항

요소	설명
통신 안정성	이중화 네트워크 (Ring 구조 권장)
데이터 부하	중요도별 태그 그룹핑, 샘플링 주기 설정
이중화 서버	Hot-Standby, 장애 대응 설계
보안	사용자 인증, 이중 로그인, VPN
표준화	OPC UA 중심 통합 플랫폼 추천

☑ 8. SCADA의 확장 방향 (현대 스마트팩토리)

기술	적용 분야
OPC UA	이기종 PLC 통합
MQTT	클라우드 데이터 송신
MES 연계	생산 관리 시스템 통합
AI 기반 분석	이상 예지정비 (Predictive Maintenance)
lloT	센서 레벨 데이터까지 통합 수집

✓ 정리

- SCADA는 **PLC를 포함한 전체 공정을 중앙 통제·감시·최적화**하는 핵심 상위 시스템
- 현대 자동화 시스템은 PLC → SCADA → MES/ERP → **클라우드**로 계층화됨
- 통신 안정성, 이력 정확성, 운영자 UX, 이중화 설계가 SCADA의 핵심 성공 포인트

10.5 데이터 로깅 및 원격 모니터링

(SCADA/HMI 시스템의 장기 이력 수집, 분석, 외부 원격 운영을 위한 핵심 설계 기법)

☑ 개요

데이터 로깅 (Data Logging)은 SCADA/HMI 시스템의 핵심 기능 중 하나로, PLC·센서로부터 수집한 데이터를 **장기적으로 저장하고 분석 가능하게 만드는 이력 관리 시스템**이다. 이 로깅 데이터는 이후 **품질 분석, 생산성 개선, 장애 추적, 예방정비, 최적화** 등에 광범위하게 활용된다.

동시에 **원격 모니터링(Remote Monitoring)**을 통해 관리자는 외부에서 실시간으로 공장의 상황을 감시하고, 일부 제어까지 수행할 수 있다.

🔽 1. 데이터 로깅 시스템 구조

1 [PLC, RTU] → [SCADA 실시간 수집] → [이력 DB (History Database)] → [분석/보고서]

📌 주요 저장 데이터 유형

데이터 유형	예시
운전 상태	모터 ON/OFF, 생산 속도
공정 변수	온도, 압력, 유량, 진동 등
알람 이력	발생시간, 원인, 대응
품질 데이터	제품별 생산 기록, 검사 결과

데이터 유형	예시
에너지 사용량	전력, 가스, 스팀 소모량

☑ 2. 데이터 로깅 주기 설계

데이터 중요도	추천 샘플링 주기
긴급 이벤트	실시간 (100~500ms)
주요 운전 변수	1~5초
공정 품질 이력	10~60초
장기 통계 데이터	1분~10분 간격

★ 데이터 그룹화(Grouping) 로 네트워크 부하 최적화 가능

☑ 3. 로깅 시스템 아키텍처 예시

```
1 [PLC] + [SCADA Server]
2 ↓ 실시간 태그 수집
3 [History Database (SQL, InfluxDB, TimeSeries DB)]
4 ↓
5 [데이터 분석 서버] → [보고서 엔진, BI Tool]
```

- 대규모 시스템은 SCADA와 이력 DB를 분리
- 시간 기반의 Time Series Database (TSDB) 사용 증가

☑ 4. 데이터 로깅 소프트웨어 예시

제품	특징
WinCC Historian (Siemens)	SCADA 연동 통합 DB
iFIX Historical Database	GE SCADA 내장 이력기록
FactoryTalk Historian	Rockwell 통합 이력 시스템
Ignition Historian	SQL 기반 고성능 TSDB 지원
InfluxDB	오픈소스 Time Series DB (lloT 연동 최적)

☑ 5. 데이터 보관 정책

항목	기준
보관 기간	6개월~10년 (품질 데이터는 장기 보관 권장)
백업 주기	일간, 주간 이중 백업 권장
데이터 압축	장기 이력 데이터는 압축 저장 활용
보안 관리	암호화, 접근권한 제한

☑ 6. 원격 모니터링 시스템 구조

★ 일반 구성

```
1 [현장 PLC + SCADA]
2 ↓
3 [인터넷/VPN]
4 ↓
5 [원격 클라이언트 (PC, Mobile App)]
```

🖈 사용 기술

기술	설명
VPN	보안 터널로 원격 연결
Web HMI	브라우저 기반 HMI 접근
MQTT	클라우드 서버 통해 원격 구독
OPC UA	방화벽 통과 가능한 표준 통신

☑ 7. 원격 모니터링 기능 예시

기능	상세
실시간 공정 상태 조회	장비 상태, 생산량, 알람 확인
알람 발생 즉시 알림	SMS, 이메일, 모바일 푸시
제어 명령 일부 허용	관리자 등급 로그인 후 제한적 제어 가능
데이터 이력 조회	원격에서 트렌드 그래프 확인

☑ 8. 원격 접속 보안 설계

위험	대응책
해킹 위험	VPN 전용선 사용, 이중 인증 적용
데이터 노출	SSL/TLS 암호화
무단 조작	사용자 권한 계층 분리, 제어 제한 설정
원격 장애	이중화 서버, Watchdog 적용

☑ 9. 실무 적용 예시

분야	구현 예
제조 공장	MES ↔ SCADA ↔ 클라우드 모니터링
에너지 관리	발전소 → 중앙 SCADA → 원격 유지보수
유틸리티 관리	수도, 가스, 전력 → 원격 상태 감시
해외 공장 연계	각국 공장 SCADA → 중앙 서버 통합

☑ 10. 데이터 로깅 & 원격 모니터링 통합 흐름 예

• 현장 안정성 확보 + 중앙 빅데이터 분석 + 경영 통합 모니터링 완성

☑ 정리

- 데이터 로깅: 공정 품질 관리, 추적성, 유지보수에 필수
- 원격 모니터링: 현장 관리자의 실시간 현장 가시성 확보
- IoT 기반 통합: MQTT, OPC UA, VPN 활용으로 안전하고 유연한 시스템 구축 가능

10.6 PLC Tag 매핑 및 연동

(PLC와 HMI/SCADA가 통신하기 위한 핵심 구조인 태그 설계와 데이터 연동 기법 정리)

☑ 개요

PLC 태그 매핑(Tag Mapping)이란,

PLC 내부 메모리(변수)를 HMI·SCADA·상위 시스템과 통신하기 위해 **명확하게 주소화하고 매칭하는 작업**이다.

이 매핑 구조가 깔끔하게 정리되어야 전체 시스템이:

- **신뢰성 있게 동작**하고,
- 유지보수가 쉬워지고,
- **통합 확장이 가능**해진다.

☑ 1. 태그의 개념

용어	설명
PLC Tag	PLC 내부 변수명 (메모리 주소 포함)
HMI Tag	HMI 프로젝트 내 매칭된 통신용 변수
SCADA Tag	중앙 서버 통합 변수

🖈 예시

PLC 내부 변수	설명	HMI 연결
MotorStart	모터 ON/OFF 명령	HMI 버튼 연결
MotorSpeed	모터 속도 설정값	HMI 입력창 연결
Alarm_OverHeat	과열 경고	HMI 알람 표시 연결
Temperature	현재 온도값	HMI 수치 표시 연동

☑ 2. 태그 매핑의 목적

- HMI/SCADA와 PLC 간 정확한 데이터 송수신
- 중복 주소·충돌 방지
- 유지보수 시 가독성 확보

☑ 3. 태그 정의 방식

방식	특징	적용 예
고정 메모리 주소 (Symbolic Addressing)	PLC 주소 직접 지정	D100, M0, DB1.DBD0

방식	특징	적용 예
심볼릭 태그 이름 (Named Tag)	변수명으로 주소 자동 매칭	MotorSpeed, Temp_Setpoint

★ 심볼릭 태그 방식이 현대 표준

- 가독성 뛰어남
- 확장성, 유지보수성 우수
- HMI에서 태그 읽기 쉽게 가능 (예: Siemens TIA Portal 자동 스캔 지원)

☑ 4. 태그 그룹화 설계 원칙

★ 태그 그룹 설계 예시

그룹	포함 변수
운전 제어 그룹	Start, Stop, Mode
상태 모니터 그룹	센서, 온도, 압력
알람 그룹	과열, 센서 오류, 압력 이상
설정 파라미터 그룹	목표 속도, 설정값
유지보수 그룹	진단 코드, 동작 카운터

- 그룹화로 태그 관리 편의성 증가
- 통신 드라이버 최적화 가능 (그룹별 주기 차등)

☑ 5. 통신 시 태그 매핑 흐름

- 1 PLC → (통신 드라이버) → HMI 태그 라이브러리 → 화면 오브젝트 연결
- HMI 소프트웨어에서 PLC 드라이버 설정 후 태그 불러오기 (자동/수동)
- 오브젝트(버튼, 표시기, 그래프 등)에 태그를 직접 연결

☑ 6. 태그 네이밍 규칙 예시

규칙	예시	비고
접두어 활용	CMD_, STS_, ALM_	명확한 역할 구분
소속 장비 표시	CONV1_SPEED	장비 식별
데이터 형식 표시	_BOOL, _INT, _REAL	자료형 일관성

규칙	예시	비고
알람 순번	ALM_001_OVERHEAT	이력 조회용 활용

☑ 7. 태그형식 매칭 (HMI ↔ PLC 자료형 주의)

PLC 자료형	HMI 자료형	주의사항
BOOL	BOOL	ON/OFF 표시기
INT	INT	16bit 정수
REAL	FLOAT	소수점 수치 표시
STRING	TEXT	모델명, 작업자명 등 표시

☑ 8. 이기종 PLC간 태그 통합 전략

- **OPC UA 태그 브라우징 사용** (자동 인식 지원)
- 태그 매핑 서버 활용 (e.g. Kepware, Matrikon)
- 통합 데이터 서버에서 중앙 태그 DB화 (MES, ERP 연계)

☑ 9. 태그 유지보수 관리 팁

관리 방법	설명
태그 목록 문서화	통신 변수 목록 표준화
변경이력 관리	버전별 태그 변경 기록
태그 백업 자동화	PLC·HMI 프로젝트별 태그 스냅샷 백업
신규 장비 통합 준비	태그 명명 규칙 미리 확립

☑ 10. 실전 태그 매핑 프로젝트 흐름

- 1 **1** PLC 변수명 설계 →
- 2 <mark>2 HMI/SCADA</mark> 통신 드라이버 연결 →
- 3 집 자동 태그 스캔 (가능 시) →
- 4 **MI** 오브젝트 ↔ 태그 매핑 →
- 5 통신 테스트 및 오류 확인 →
- 6 6 알람 시스템 통합 →
 - 7 이력 기록 연동 →
- 8 8 원격 시스템 태그 확장

☑ 정리

- PLC 태그 매핑은 모든 통신과 화면 설계의 출발점
- 심볼릭 네이밍 체계가 유지보수성을 결정
- 태그 설계 초기에 잘 정리해놓아야 확장 시 혼란 방지
- HMI, SCADA, 클라우드 통합까지 확장 가능한 체계적 태그 시스템 구축이 최적의 산업제어 설계