Câu 1.

Cho dãy số (u_n) xác định bởi:

$$u_1=0,\ u_{n+1}=rac{1}{3-2u_n}, orall n\geq 1$$

- 1. Chứng minh (u_n) tăng + bị chặn trên.
- 2. Tìm $sup(u_n|n\geq 1)=\lim_{n\to\infty}u_n$

Câu 1.

- 1. Chứng minh (u_n) tăng và bị chặn trên:
- Dễ dàng thấy $u_{n+1}=rac{1}{3-2u_n}$ và $u_1=0.$
- ullet Chứng minh dãy tăng: Ta chứng minh $u_{n+1}>u_n$ bằng cách giải bất phương trình $rac{1}{3-2u_n}>u_n$.
- Chứng minh bị chặn trên: Giả sử $u_n \le 1$, ta có $u_{n+1} = \frac{1}{3-2u_n} \le 1$. Do đó, dãy bị chặn trên bởi 1.

Kết luận: Dãy (u_n) tăng và bị chặn trên bởi 1.

- 2. Tìm $\lim_{n\to\infty}u_n$:
- Giả sử $\lim_{n \to \infty} u_n = L$, ta có phương trình:

$$L = \frac{1}{3 - 2L}.$$

Giải phương trình này ta được:

$$L=rac{1}{2} \quad ext{(vì } L=1$$
 không hợp lý với dãy tăng).

Kết luận: $\lim_{n \to \infty} u_n = \frac{1}{2}$.

Câu 2.

Cho hàm số

$$f(x) = egin{cases} a\sin x + x - 1, \; x \leq 0 \ ax^2 - b\cos x, \quad x > 0 \end{cases}$$

trong đó a,b là các tham số thực.

- 1. Tìm a, b để f(x) liên tục trên R.
- 2. Tìm a, b để f(x) có đạo hàm trên R.

Câu 2.

1. Liên tục trên R:

- Hàm liên tục tại x=0 nếu $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0)$.
- Tính f(0) = -1.
- Giới hạn bên trái $\lim_{x \to 0^-} f(x) = -1$.
- Giới hạn bên phải $\lim_{x o 0^+} f(x) = -b$.
- Để liên tục, ta cần b = 1.

Kết luận: b = 1, không có điều kiện về a.

- 2. Đạo hàm trên R:
- ullet Hàm có đạo hàm tại x=0 nếu $\lim_{x o 0^-}f'(x)=\lim_{x o 0^+}f'(x).$
- $f'(x)=a\cos x+1$ khi $x\leq 0$, và $\lim_{x o 0^-}f'(x)=a+1$.
- $f'(x)=2ax-b\sin x$ khi x>0, và $\lim_{x o 0^+}f'(x)=0$.
- Để hàm có đạo hàm tại x=0, ta cần $a+1=0 \Rightarrow a=-1$.

Kết luận: a = -1 và b = 1.

Câu 3.

- 1. Cho hàm số f(x) có $f'(x) = 0, \forall x \in R$. Chứng minh f(x) là hàm số hằng.
- 2. Viết khai triển Maclaurin của $f(x) = \ln(1+x)$ đến cấp 2. Áp dụng chứng minh:

$$\ln(1+x)>x-\frac{x^2}{2}, \forall x>0$$

Câu 3.

- 1. Chứng minh f(x) là hàm số hằng:
- Nếu f'(x)=0 với mọi $x\in\mathbb{R}$, thì f(x) là một hàm số hằng.
- Cụ thể, với mọi $x_1,x_2\in\mathbb{R}$, ta có:

$$f(x_2)-f(x_1)=\int_{x_1}^{x_2}f'(x)dx=\int_{x_1}^{x_2}0\,dx=0.$$

- Do đó, $f(x_2) = f(x_1)$, chứng tỏ f(x) là hằng.
- 2. Khai triển Maclaurin của $f(x) = \ln(1+x)$ đến cấp 2:
- Đạo hàm:

•
$$f'(x) = \frac{1}{1+x}, f'(0) = 1,$$

•
$$f''(x) = -\frac{1}{(1+x)^2}, f''(0) = -1.$$

• Khai triển Maclaurin đến cấp 2:

$$f(x) = 0 + x - rac{x^2}{2} + O(x^3).$$

Áp dụng chứng minh:

•
$$f(x)=\ln(1+x)>x-rac{x^2}{2}$$
 với mọi $x>0$.

Câu 4.

- 1. Minh họa hình học tích phân $\int_0^3 \sqrt{9-x^2} dx$. Và cho biết kết quả của nó.
- 2. Khảo sát sự hội tụ của $\int_1^{+\infty} \frac{x+2}{x^3+10} dx$.

Câu 4.

- 1. Minh họa hình học tích phân $\int_0^3 \sqrt{9-x^2} dx$:
- Tích phân này đại diện cho diện tích hình cung của phần bán kính bán kính 3 của đường tròn $x^2 + y^2 = 9$ trong khoảng từ x = 0 đến x = 3.
- Hàm $y = \sqrt{9-x^2}$ mô tả bán cung phía trên trục x của đường tròn bán kính 3 với tâm tại gốc toa đô.
- Diện tích dưới cung này chính là diện tích của phần bán tròn với bán kính 3, do đó:

$$\int_0^3 \sqrt{9-x^2} \, dx = rac{\pi r^2}{2} = rac{\pi imes 3^2}{2} = rac{9\pi}{2}.$$

Kết quả:

$$\int_0^3 \sqrt{9 - x^2} dx = \frac{9\pi}{2}.$$

- 2. Khảo sát sự hội tụ của $\int_1^\infty rac{x+2}{x^3+10} dx$:
- Xét hàm $f(x) = \frac{x+2}{x^3+10}$ khi $x \to \infty$.
- Khi x lớn, ta có:

$$f(x)pprox rac{x}{x^3}=rac{1}{x^2}.$$

- Vì $\int_1^\infty \frac{1}{x^2} dx$ hội tụ (có giá trị 1), ta có thể so sánh $\int_1^\infty \frac{x+2}{x^3+10} dx$ với $\int_1^\infty \frac{1}{x^2} dx$.
- Do đó, hàm f(x) suy rộng giống như $1/x^2$ khi $x \to \infty$, và tích phân hội tụ.

Kết luận: Tích phân hội tụ.

Câu 5.

Tìm miền hội tụ của:

$$\sum_{n=1}^{\infty}\frac{1}{n\sqrt{n}}(x-2)^n$$

Câu 5.

Miền hội tụ của chuỗi lũy thừa:

Xét chuỗi:

$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} (x-2)^n.$$

Áp dụng định lý kiểm tra tỷ lệ (Test the Ratio Test) để tìm miền hội tụ.

1. Xét tỷ lệ:

$$L=\lim_{n o\infty}\left|rac{a_{n+1}}{a_n}
ight|=\lim_{n o\infty}\left|rac{rac{1}{(n+1)\sqrt{n+1}}(x-2)^{n+1}}{rac{1}{n\sqrt{n}}(x-2)^n}
ight|.$$

• Tính toán tỷ lệ:

$$L = \lim_{n o\infty} \left| rac{n\sqrt{n}}{(n+1)\sqrt{n+1}} \cdot (x-2)
ight|.$$

• Khi $n \to \infty$, ta có:

$$L = |x - 2|$$
.

2. Điều kiện hội tụ theo định lý kiểm tra tỷ lệ là L < 1:

$$|x - 2| < 1$$
.

Miền hội tụ của chuỗi là:

$$1 < x < 3$$
.

Vậy miền hội tụ của chuỗi là (1,3).

Giải

Câu 1.

- 1. Chứng minh (u_n) tăng và bị chặn trên:
- Dễ dàng thấy $u_{n+1}=rac{1}{3-2u_n}$ và $u_1=0.$
- Chứng minh dãy tăng: Ta chứng minh $u_{n+1}>u_n$ bằng cách giải bất phương trình $\frac{1}{3-2u_n}>u_n$.
- Chứng minh bị chặn trên: Giả sử $u_n \leq 1$, ta có $u_{n+1} = \frac{1}{3-2u_n} \leq 1$. Do đó, dãy bị chặn trên bởi 1.

Kết luận: Dãy (u_n) tăng và bị chặn trên bởi 1.

- 2. Tìm $\lim_{n\to\infty}u_n$:
- ullet Giả sử $\lim_{n o\infty}u_n=L$, ta có phương trình:

$$L = \frac{1}{3 - 2L}.$$

Giải phương trình này ta được:

$$L=rac{1}{2} \quad ext{(vì } L=1$$
 không hợp lý với dãy tăng).

Kết luận: $\lim_{n \to \infty} u_n = \frac{1}{2}$.

Câu 2.

1. Liên tục trên R:

- Hàm liên tục tại x=0 nếu $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0)$.
- Tính f(0) = -1.
- Giới hạn bên trái $\lim_{x \to 0^-} f(x) = -1$.
- Giới hạn bên phải $\lim_{x o 0^+} f(x) = -b$.

• Để liên tục, ta cần b = 1.

Kết luận: b = 1, không có điều kiện về a.

2. Đạo hàm trên R:

- ullet Hàm có đạo hàm tại x=0 nếu $\lim_{x o 0^-}f'(x)=\lim_{x o 0^+}f'(x).$
- $f'(x)=a\cos x+1$ khi $x\leq 0,$ và $\lim_{x o 0^-}f'(x)=a+1.$
- $f'(x)=2ax-b\sin x$ khi x>0, và $\lim_{x o 0^+}f'(x)=0.$
- Để hàm có đạo hàm tại x=0, ta cần $a+1=0 \Rightarrow a=-1$.

Kết luận: a = -1 và b = 1.

Câu 3.

- 1. Chứng minh f(x) là hàm số hằng:
- Nếu f'(x)=0 với mọi $x\in\mathbb{R}$, thì f(x) là một hàm số hằng.
- Cụ thể, với mọi $x_1,x_2\in\mathbb{R}$, ta có:

$$f(x_2)-f(x_1)=\int_{x_1}^{x_2}f'(x)dx=\int_{x_1}^{x_2}0\,dx=0.$$

- Do đó, $f(x_2)=f(x_1)$, chứng tỏ f(x) là hằng.
- 2. Khai triển Maclaurin của $f(x) = \ln(1+x)$ đến cấp 2:
- Đao hàm:
 - $f'(x) = \frac{1}{1+x}, f'(0) = 1,$
 - $f''(x) = -\frac{1}{(1+x)^2}, f''(0) = -1.$
- Khai triển Maclaurin đến cấp 2:

$$f(x) = 0 + x - rac{x^2}{2} + O(x^3).$$

Áp dụng chứng minh:

•
$$f(x)=\ln(1+x)>x-rac{x^2}{2}$$
 với mọi $x>0$.

Câu 4.

1. Minh họa hình học tích phân $\int_0^3 \sqrt{9-x^2} dx$:

- Tích phân này đại diện cho diện tích hình cung của phần bán kính bán kính 3 của đường tròn $x^2 + y^2 = 9$ trong khoảng từ x = 0 đến x = 3.
- Hàm $y=\sqrt{9-x^2}$ mô tả bán cung phía trên trục x của đường tròn bán kính 3 với tâm tại gốc tọa đô.
- Diện tích dưới cung này chính là diện tích của phần bán tròn với bán kính 3, do đó:

$$\int_0^3 \sqrt{9-x^2} \, dx = rac{\pi r^2}{2} = rac{\pi imes 3^2}{2} = rac{9\pi}{2}.$$

Kết quả:

$$\int_0^3 \sqrt{9 - x^2} dx = \frac{9\pi}{2}.$$

- 2. Khảo sát sự hội tụ của $\int_1^\infty rac{x+2}{x^3+10} dx$:
- Xét hàm $f(x) = \frac{x+2}{x^3+10}$ khi $x \to \infty$.
- Khi x lớn, ta có:

$$f(x)pproxrac{x}{x^3}=rac{1}{x^2}.$$

- Vì $\int_1^\infty \frac{1}{x^2} dx$ hội tụ (có giá trị 1), ta có thể so sánh $\int_1^\infty \frac{x+2}{x^3+10} dx$ với $\int_1^\infty \frac{1}{x^2} dx$.
- Do đó, hàm f(x) suy rộng giống như $1/x^2$ khi $x \to \infty$, và tích phân hội tụ.

Kết luận: Tích phân hội tụ.

Câu 5.

Miền hội tụ của chuỗi lũy thừa:

Xét chuỗi:

$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} (x-2)^n.$$

Áp dụng định lý kiểm tra tỷ lệ (Test the Ratio Test) để tìm miền hội tụ.

1. Xét tỷ lệ:

$$L=\lim_{n o\infty}\left|rac{a_{n+1}}{a_n}
ight|=\lim_{n o\infty}\left|rac{rac{1}{(n+1)\sqrt{n+1}}(x-2)^{n+1}}{rac{1}{n\sqrt{n}}(x-2)^n}
ight|.$$

• Tính toán tỷ lệ:

$$L = \lim_{n o\infty} igg| rac{n\sqrt{n}}{(n+1)\sqrt{n+1}} \cdot (x-2)igg|.$$

• Khi $n \to \infty$, ta có:

$$L = |x - 2|$$
.

2. Điều kiện hội tụ theo định lý kiểm tra tỷ lệ là L < 1:

$$|x-2| < 1.$$

Miền hội tụ của chuỗi là:

$$1 < x < 3$$
.

Vậy miền hội tụ của chuỗi là (1,3).