Towards Dynamic Switching in Per-Run Algorithm Selection

July 9, 2025

Continuous Black-Box Optimization

- ▶ Goal: Optimize a function $f: \mathbb{R}^D \to \mathbb{R}$
- Black-Box: Optimization is limited to sampling

Per-Instance Algorithm Selection

- 1. Sample f randomly
- 2. Compute ELA features from samples
- 3. Use features as input for a machine learning model that chooses the algorithm
- 4. Run the algorithm

Per-Run Algorithm Selection

- Approach from Kostovska et al. 2022:
 - After 150 evaluations, calculate ELA features from CMA-ES samples
 - 2. Random Forest regression models predict target precisions of the six $\mathcal{A}2$ algorithms
 - 3. Choose A2 algorithm with lowest predicted precision
 - 4. Warm-start second algorithm
- A1 budget is static!

Why is Dynamic Switching Necessary?

Recording of 2400 runs conducted on BBOB functions

BBOB Test Suite (Hansen et al. 2016)

- Set of 24 synthetic noiseless black-box functions
- Each function has several instances
- Standard benchmarking set

Why is Dynamic Switching Necessary?

General Setup

1. Switching Decision

2. Algorithm Selection

First Approach

- ▶ For each run, we try to find the switching points defined as above
- Selection process consists of two parts:

Switching Decision

- Let s_1, \ldots, s_n be the considered switching points
- At switching point s_i , we predict the precision of the best algorithm at $s_i, s_{i+1}, \ldots, s_n$
- We switch if the predicted precision of the current switching point is the lowest

Algorithm Selection

Predict the precisions of all six algorithms, switch to the algorithm with the lowest precision

First Approach: Our setup

- ► Switching points: 8, 16, ..., 96, 100, 150, 200, ..., 1000
- Machine learning input:
 - ELA features from CMA-ES samples
 - CMA-ES internal state during the last iteration
- Model training on first 5 instances of all BBOB functions, 20 runs each
- Evaluation on instances 6 and 7, 20 runs each
- Parameter tuning using ASF
- Baselines:
 - SBS: (Algorithm, Budget) combination that is best on the training set
 - VBS: Chooses the best switching point and algorithm at that switching point for each run
- Metric:

$$cg_{selector} = \frac{m_{SBS} - m_{selector}}{m_{SBS} - m_{VBS}}$$

First Approach: Results

Poor Performance

- Switching decision based on performance of best algorithm
 ⇒ Switch too early
- ▶ ELA features do not capture enough run-specific information

Second Approach

Let s_1, \ldots, s_n be the switching points, a_1, \ldots, a_n be the algorithm selectors and sd_1, \ldots, sd_n be the switching decision models

1. Evaluate Performances of a_1, \ldots, a_n

- 1. Record the performances of a_1, \ldots, a_n on first five instances
- 2. For each function, determine which a_i performed best $\Rightarrow s_i$ is optimal for that function

2. Training data for sd_1, \ldots, sd_n

- 1. For ELA-features and CMA-ES data belonging to a run at s_i , we label them as true iff s_i is greater or equal than the optimal switching point of the run's function
- 2. For each s_i , train a binary classifier, predicting whether or not to switch

Second Approach: Results

Second Approach: Results

Permutation Test: Selector vs Static Baseline

Setup

- Data: Precision values per run for selector and static baseline selector
- ► Test: Permutation test using SciPy with 10,000 resamples
- Statistic: Mean difference in reached precision

Null Hypothesis

- Null Hypothesis (H₀): The selector and static baseline have the same distribution of precision values. Any observed difference is due to random chance.
- ⇒ Found statistical significance

Next Step: In-Depth Empirical Evaluation

- Repeat experiments for dimension 10
- BBOB functions are purely synthetic
- ▶ Evaluation of the selector on LassoBench (Šehić et al. 2022)
 - Real-world HPO functions for weighted lasso regression
- Function from LassoBench do not have instances
 - \Rightarrow Train-test splits using different runs on each function
- And other real-world benchmarks

Take-Home Message

- Dynamic Switching leads to improvements over static switching
- First approach did not work
 - ▶ ELA features do not seem to capture run-specific information
 - Suboptimal performance of algorithm selectors across budgets
- Second approach leads to significant improvements over static switching
- Next step: Evaluate robustness of the selector

Permutation Test Results

Switching Budgets: First Approach

Switching Budgets: Second Approach

Algorithm Portfolio (Schröder et al. 2022)

- ▶ Broyden-Fletcher-Goldfarb-Shanno (BFGS): Deterministic line-search, approximates the hessian, local search
- ▶ Differential Evolution (DE): Random mutation of target solutions using binomial crossover
- Multi-Level Single Linkage (MLSL): Local searches based on clustering heuristics
- Particle Swarm Optimization (PSO): Swarm-based, velocity of particles gets adjusted based on their own and the global optimum
- CMA-ES elitism/non-elitism: In each iteration, does the offspring become the new population or does the new population consist of the best samples from both the old population and the offspring?

: 18