Lecture 12: Comparison Sorts

CSE 332: Data Structures & Parallelism
Winston Jodjana
Summer 2023

Take Handouts!
(Raise your hand if you need one)

Today

- Sorting Algorithm 1: Insertion Sort
- Sorting Algorithm 2: Selection Sort
- Sorting Algorithm 3: Heap Sort
 - In-place optimization
- Sorting Algorithm 4: Merge Sort
 - Merging
- Sorting Algorithm 5: Quick Sort
 - Picking a pivot
 - Partioning
- Comparison Sorting Lower Bound

Sorting: An introduction

- Why sorting?
 - Want to know "all the data items" in some order
 - Very common to need data sorted somehow
 - Alphabetical list of people
 - Population list of countries
 - Search engine results by relevance
 - Binary search
- Why many ways of sorting?
 - Tradeoffs...
 - Asymptotic vs Constant Factors
 - Different properties

Sorting: Goals (Terminology)

1. Stable

- Maybe in the case of ties we should preserve the original ordering
- One way to sort twice, Ex: Sort movies by year, then for ties, alphabetically

2. In-Place (Space)

- No more than O(1) "auxiliary space"
- Only use original array by swapping elements

3. Fast (Time)

- Typically, $O(n \log n)$
- Or good constant factors

Sorting: The Big Picture

Sorting Algorithm 1: Insertion Sort

Intuition: Given a hand of cards, sort it

Algorithm:

Maintain a sorted subarray

- 1. Sort first 2 elements
- 2. Insert 3rd element in order
- 3. Insert 4th element in order
- 4. ...

Insertion Sort: Pseudocode

```
insertionSort(int[] arr) {
    for (i=0; i < arr.length; i++) {
         int curr = i
        while(arr[curr-1] > arr[curr]){
             swap(arr[curr-1], arr[curr])
             curr -= 1
```

Insertion Sort: Visual

Insertion Sort: Analysis

- 1. Stable?
 - Yes!
- 2. In-Place?
 - Yes!
- 3. Fast?
 - No :((in terms of asymptotics)
 - Best Case: $\mathcal{O}(n)$
 - Worst Case: $\mathcal{O}(n^2)$
 - Good constant factors!

Today

- Sorting Algorithm 1: Insertion Sort
- Sorting Algorithm 2: Selection Sort
- Sorting Algorithm 3: Heap Sort
 - In-place optimization
- Sorting Algorithm 4: Merge Sort
 - Merging
- Sorting Algorithm 5: Quick Sort
 - Picking a pivot
 - Partioning
- Comparison Sorting Lower Bound

Sorting Algorithm 2: Selection Sort

Algorithm:

- Maintain a sorted subarray
 - 1. Find the smallest element remaining in the unsorted subarray
 - 2. Append it at the end of the sorted part
 - 3. Repeat

Selection Sort: Visual

Selection Sort: Analysis

- 1. Stable?
 - No : ((e.g., try [2₁, 2₂, 1])
- 2. In-Place?
 - Yes!
- 3. Fast?
 - No :((in terms of asymptotics)
 - Best Case: $\mathcal{O}(n^2)$
 - Worse than insertion sort when array is almost fully sorted
 - Worst Case: $\mathcal{O}(n^2)$
 - Good constant factors!

Sorting Algorithm null: Bubble Sort

- We pretend it doesn't exist
- Bad asymptotic complexity: $\mathcal{O}(n^2)$
- Bad constant factors
- Literally should never be used
 - Anything it is good at, another algorithm is at least good at
- IDK WHY THE INTERNET LIKES USING IT

Any Questions?

Today

- Sorting Algorithm 1: Insertion Sort
- Sorting Algorithm 2: Selection Sort
- Sorting Algorithm 3: Heap Sort
 - In-place optimization
- Sorting Algorithm 4: Merge Sort
 - Merging
- Sorting Algorithm 5: Quick Sort
 - Picking a pivot
 - Partioning
- Comparison Sorting Lower Bound

Sorting Algorithm 3: Heap Sort

Intuition: Use a heap

Algorithm:

- 1. Put all elements into a heap (e.g., with buildHeap)
- 2. Remove elements one by one and put back into the array

Heap Sort (unoptimized): Pseudocode

```
heapSort(int[] arr){
    heap = buildHeap(arr)
    for(i=0; i < arr.length; i++) {
        arr[i] = heap.deleteMin()
    }
}</pre>
```

(Max) Heap Sort: In-place Optimization

- Treat the initial array as a heap (via buildHeap)
- When you delete the ith element, put it at arr[n-i] (the back)
 - It's not part of the heap anymore!

Any Questions?

Heap Sort: Analysis

- 1. Stable? Try: 3 3 2 1
 - No, no guarantees on which key comes first
 - Technically it can be but it makes it not in-place (we don't talk about this).
- 2. In-Place?
 - Yes!
- 3. Fast?
 - Yes! (in terms of asymptotics)
 - Best Case: $O(n \log n)$
 - Worst Case: $O(n \log n)$
 - Worse constant factors...
 - Think: have to maintain Heap, using buildHeap, etc.

Sorting Algorithm null: AVL Sort

- We pretend it doesn't exist
- Idea $\mathcal{O}(n \log n)$:
 - insert all elements into some balanced tree, $O(n \log n)$
 - in-order traversal, O(n)
- Not in-place
- Worse constant factors
- Heap Sort is just better...

Today

- Sorting Algorithm 1: Insertion Sort
- Sorting Algorithm 2: Selection Sort
- Sorting Algorithm 3: Heap Sort
 - In-place optimization
- Sorting Algorithm 4: Merge Sort
 - Merging
- Sorting Algorithm 5: Quick Sort
 - Picking a pivot
 - Partioning
- Comparison Sorting Lower Bound

Divide and Conquer

Very important technique in algorithm design

- 1. Divide problems into smaller parts
- 2. Solve each part independently
 - Think: recursion, parallelism (later)
- 3. Combine each part's solution to produce overall solution e.g.,
- Sort each half of the array, combine together
- to sort each half, split into halves
- ...

Divide and Conquer Sorting

1. Merge Sort

- Sort the left half of the elements (recursively)
- Sort the right half of the elements (recursively)
- Merge the two sorted halves into a sorted whole

2. Quick Sort

- Divide elements into those less-than pivot and those greater-than pivot
- Sort the two divisions (recursively on each)
- Merge as [sorted-less-than then pivot then sorted-greater-than]

Sorting Algorithm 4: Merge Sort

- Algorithm, (recursively) sort from position 10 to position hi:
 - 1. If lo to hi is 1 element long,
 - 1. Sorted! Because its 1 element...
 - 2. Else, split into halves:
 - 1. Sort from lo to (hi+lo)/2 (lo to the middle)
 - 2. Sort from (hi+lo)/2 to hi
 - 3. Merge the two halves together
- How to merge 2 sorted halves?
 - O(n) time but needs auxiliary space...

Merge Sort: Merging Visualization

Start with: After we return from left and right recursive calls (pretend it works for now)

(After merge, copy back to original array)

and 1 more array

4

5

6

Use 3 "fingers" and 1 more array

Use 3 "fingers" and 1 more array

1 2 3 4 5 6 8

Merge Sort: Splitting Visualization

Merge Sort: Splitting Visualization

When a recursive call ends, it's sub-arrays are each in order; just need to merge them in order together

Merge Sort: Copy Array Optimization

First recurse down to lists of size 1

As we return from the recursion, switch off arrays

Any Questions?

Merge Sort: Analysis

- 1. Stable?
 - Yes! Just prioritize left array
- 2. In-Place?
 - No : ($\mathcal{O}(n)$ space
- 3. Fast?
 - Yes! (in terms of asymptotics)
 - Best Case: $O(n \log n)$
 - Worst Case: $O(n \log n)$ Why?
 - Worse constant factors...
 - Think: recursive splitting, merging, etc.

Merge Sort: Runtime Analysis

Recurrence Relation:

$$T(n) = \begin{cases} c_0 \\ 2T(\frac{n}{2}) + c_1 n + c_2 \end{cases}$$
 for $n = 1$ otherwise

Solving:

$$T(n) = 2^{\log n} T(1) + n \log n = n + n \log n \in \mathcal{O}(n \log n)$$

Today

- Sorting Algorithm 1: Insertion Sort
- Sorting Algorithm 2: Selection Sort
- Sorting Algorithm 3: Heap Sort
 - In-place optimization
- Sorting Algorithm 4: Merge Sort
 - Merging
- Sorting Algorithm 5: Quick Sort
 - Picking a pivot
 - Partioning
- Comparison Sorting Lower Bound

Quick Sort Warning

There are millions of versions of Quick Sort on the internet. Use ours.

Sorting Algorithm 5: Quick Sort

- Algorithm:
 - 1. Pick a pivot element
 - Hopefully the ~median element
 - Important, performance based on this
 - 2. Divide elements into 2 "halves":
 - A. less-than pivot
 - B. the pivot
 - C. greater-than pivot
 - 3. Recursively sort A and C
 - 4. Sorted output: [sorted-less-than then pivot then sorted-greater-than]

Quick Sort: Visualization 1

Quick Sort: Visualization 2

Merge Sort vs Quick Sort

MergeSort Recursion Tree

QuickSort Recursion Tree

Quick Sort: Picking a (good) Pivot

void quicksort(int[] arr, int lo, int hi)
arr
lo hi-1

- 1. Option 1: Pick arr[lo] or arr[hi-1]
 - Fast to pick but likely worst-case (e.g., arr is sorted)
- 2. Option 2: Pick random element
 - Good. But pseudo-randomness is expensive!
- 3. Option 3: Median of 3
 - e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
 - Common, tends to work well

Quick Sort: Partitioning Problem

- Problem: Given good pivot, how to split to two?
 - e.g., [8, 4, 2, 9, 3, 5, 7] and pivot 5,
 - how to split to two 4, 2, 3 and 8, 9, 7?
- Ideals:
 - Fast $\mathcal{O}(n)$ linear time
 - In-place

Ideas?

Quick Sort: "Hoare" Partitioning Approach

- 1. Swap pivot with arr[lo] (i.e., move it out of the way)
- 2. Use 2 pointers 1 and r, starting at 10+1 and hi-1
 - Idea: Move 1 and r such that:
 - arr[1] should be on the right of pivot and arr[r] should be on the left of pivot

```
while (l < r)
  if(arr[l] <= pivot) l++
  else if(arr[r] > pivot) r--
  else swap arr[l] and arr[r]
```

3. Put pivot back in middle (Swap with arr[r])

Quick Sort: Example

Pick pivot 7, median of 3	3	4	9	1	7	0	5	2	6	8
Start "Hoare" Partition:	3	4	9	1	7	0	5	2	6	8
Move 7, init l and r :	7	4	9	1	3	0	5	2	6	8
		1								r
Move 1 and r:	7	4	9	1	3	0	5	2	6	8
			1						r	
Swap arr[l] and arr[r]:	7	4	6	1	3	0	5	2	9	8
			1						r	

Quick Sort: Example (cont.)

After swap:	7	4	6	1	3	0	5	2	9	8
			1						r	
Move l and r:	7	4	6	1	3	0	5	2	9	8
					•			r	1	
r <= 1, move pivot back	7	4	6	1	3	0	5	2	9	8
								r	1	
"Hoare" Partitioned!	2	4	6	1	3	0	5	7	9	8

Any Questions?

Quick Sort: Analysis

- 1. Stable?
 - No :(
- 2. In-Place?
 - Yes!
- 3. Fast?
 - Yes! (in terms of asymptotics)
 - Best Case: $O(n \log n)$
 - Average Case: $O(n \log n)$ (when good pivot)
 - Worst Case: $O(n^2)$ Why?
 - Worse constant factors...
 - Think: recursive splitting, merging, etc.
 - In practice: way, way better

Quick Sort: Runtime Analysis

Best Case:

$$T(n) = \begin{cases} c_0 & \text{for } n = 0 \text{ or } 1\\ 2T\left(\frac{n}{2}\right) + c_1 n + c_2 & \text{otherwise} \end{cases}$$

Worst Case:

$$T(n) = \begin{cases} c_0 & \text{for } n = 0 \text{ or } 1 \\ T(n-1) + c_1 n + c_2 & \text{otherwise} \end{cases}$$

Average Case (good pivot):

$$T(n) \in \mathcal{O}(n \log n)$$

Proof is in the textbook, Weiss 7.7

Comparison Sorting: CUTOFF Strategy

```
void sort(int[] arr, int lo, int hi) {
  if(hi - lo < CUTOFF)
    insertionSort(arr,lo,hi); // or Selection Sort
  else
    quickSort(arr,lo,hi) // or Merge Sort, etc.
}</pre>
```

Comparison Sorting: Comparisons

	Run-time	Stable?	In-Place?	
Insertion Sort	Best Case: $\mathcal{O}(n)$ Worst Case: $\mathcal{O}(n^2)$ Average Case: $\mathcal{O}(n^2)$	Stable	In-place	
Selection Sort	$O(n^2)$	Not Stable	In-place	
Heap Sort	$O(n \log n)$	Not Stable	In-place	
Merge Sort	$O(n \log n)$	Stable	Not In-place	
Quick Sort ("Hoare" Partition)	Best Case: $\mathcal{O}(n \log n)$ Worst Case: $\mathcal{O}(n^2)$ Average Case: $\mathcal{O}(n \log n)$	Not Stable	In-place	

Today

- Sorting Algorithm 1: Insertion Sort
- Sorting Algorithm 2: Selection Sort
- Sorting Algorithm 3: Heap Sort
 - In-place optimization
- Sorting Algorithm 4: Merge Sort
 - Merging
- Sorting Algorithm 5: Quick Sort
 - Picking a pivot
 - Partioning
- Comparison Sorting Lower Bound

Comparison Sorting Lower Bound

We keep hitting $O(n \log n)$ in the worst case.

Can we do better?

Or is this $O(n \log n)$ pattern a fundamental barrier?

Without more information about our data set, we cannot do better.

Comparison Sorting Lower Bound

Any sorting algorithm which only interacts with its input by comparing elements must take $\Omega(n \log n)$ time.

Decision Trees

- Suppose we have a size 3 array to sort.
- We will figure out which array to return by comparing elements.
- When we know what the correct order is, we'll return that array.

Lower bound on Height

A binary tree of height h has at most how many leaves?

```
L \leq 2^h
```

A binary tree with L leaves has height at least:

```
h \geq \log_2 L
```

- The decision tree has how many leaves: N!
- So the decision tree has height:

$$h \ge \log_2 N!$$

Complete the Proof

- How many operations can we guarantee in the worst case?
 - Equal to the height of the tree.
- How tall is the tree if the array is length *n*?
 - One of the children has at least half of the possible inputs.
 - What level can we guarantee has an internal node? $log_2(n!)$
- What's the simplified $\Omega()$?

$$\log_2(n!) = \log_2(n) + \log_2(n-1) + \log_2(n-2) + \dots + \log_2(1)$$

$$\geq \log_2\left(\frac{n}{2}\right) + \log_2\left(\frac{n}{2}\right) + \dots + \log_2\left(\frac{n}{2}\right)$$
 (only $n/2$ copies)

•
$$\geq \frac{n}{2}\log_2\left(\frac{n}{2}\right) = n/2(\log_2(n) - 1) = \Omega(n\log n)$$

Takeaways

A tight lower bound like this is **very** rare.

This proof had to argue about every possible algorithm

that's really hard to do.

We can't come up with a more clever recurrence to sort faster.

Unless we make some assumptions about our input.

And get information without doing the comparisons.

Sorting: The Big Picture

