Многоканальные источники бесперебойного питания для видеонаблюдения

О.Д. Скарлупин, исполнительный директор ПО "БАСТИОН"

В рамках данного материала будут рассмотрены вопросы обеспечения качественным электропитанием 12-ти вольтовых видеокамер (ВК). Такие ВК достаточно широко применяются для построения систем видеонаблюдения (СВН) крупных и средних объектов, характерной особенностью которых является наличие большого количества зон наблюдения, находящихся как внутри помещений, так и на открытом воздухе. При этом зоны наблюдения, а следовательно, и ВК могут быть уда-

лены от поста наблюдения на значительные расстояния.

этой связи применение традиционных источников бесперебойного питания (ИБП) с номинальным выходным напряжением 12 В постоянного тока, выпускаемых для электропитания аппаратуры ОПС, в составе СВН сопряжено с рядом проблем.

Во-первых, выходное напряжение ИБП для ОПС, как правило, представляет собой диапазон: обычно от 10,5 - 11 В до 13,5 - 14 В, а в отдельных случаях - от 9 до 14,8 В. Верхнее значение диапазона соответствует напряжению заряда аккумуляторной батареи (АКБ), а нижнее - пороговому значению напряжения на клеммах АКБ, при достижении которого производится автоматическое отключения нагрузки схемой защиты АКБ от глубокого разряда в режиме резервного электропитания. Такой диапазон вполне приемлем для электропитания аппаратуры ОПС, так как абсолютное большинство охранных и часть пожарных извещателей рассчитаны на напряжение питания от 9 до 15 В. ВК в этом смысле гораздо более требовательны к величине питающего напряжения.

Во-вторых, размещение ВК на значительном расстоянии от поста наблюдения предполагает использование длинных соединительных линий электропитания, на которых происходит существенное падение напряжения. Оценить величину напряжения на нагрузке с учетом падения напряжения на соединительной линии можно по формуле (1) в соответствии с эквивалентной схемой приведенной на **рис.1**.

$$U_H = U_0 - 2*R_L*I_H,$$
 (1)

где $2*RL = 3.6*10^{-2}L/S$ - сопротивление 2-х медных токопроводящих жил кабеля (соединительной линии) электропитания:

Uo -выходное напряжение ИБП (В);

Ін -ток потребляемый нагрузкой (А);

L -длина кабеля (соединительной линии) электропитания (м);

S -сечение токопроводящей жилы кабеля электропитания (мм²).

Рис. 1

В таблицах 1 и 2 приведены значения напряжения на нагрузке с учетом падения напряжения на соединительной линии длиной 50 метров, рассчитанные по формуле (1) для нижнего (таблица 1) и верхнего (таблица 2) значения диапазона выходного напряжения ИБП для ОПС.

То есть, чем длиннее кабель электропитания и меньше его сечение, ниже выходное напряжение ИБП и больше ток нагрузки, тем больше падение напряжения на соединительной линии и тем ниже напряжение на нагрузке. Как видно из таблиц, в ряде случаев напряжение на нагрузке принимает значения, величина которых не достаточна для питания ВК. При этом чаще всего отдельные ВК удалены от поста наблюдения на различные расстояния, а следовательно, и падения напряжений на соединительных линиях электропитания к ним будут различны. Все это делает применение ИБП, выпускаемых для электропитания аппаратуры ОПС, в составе СВН не оптимальным.

Разумной альтернативой ИБП для ОПС, способной минимизировать указанные выше проблемы, являются специализированные многоканальные ИБП серии "SKAT.V", модельный ряд которых представлен 4-х (SKAT.V5), 8-ми (SKAT.V8), 16-ти (SKAT.V16) и 32-х (SKAT.V32) канальными устройствами. Отличительной особенностью этих ИБП является **стабильное во всех режимах** работы значение выходного напряжения, которое может быть отрегулировано пользователем независимо по каждой паре выходов в пределах от 12 до 15 В. Следует также отметить, что в данных ИБП предусмотрена возможность объединения двух выходов одной пары для удвоения значения номинального тока нагрузки. На рис. 2 в качестве примера приведены варианты использования SKAT-V.16, а в таблице 3 - значения напряжения на нагрузке с учетом падения

напряжения на соединительных линиях различной длины, рассчитанные по формуле (1) для одного канала SKAT-V.16.

Отметим, что многоканальные ИБП серии "**SKAT.V**" особенно эффективны в СВН предполагающих радиальную схему организации электропитания ВК (располагаются в виде звезды или куста, в центре которого находится ИБП).

Если "куст" ВК удален на значительное расстояние от ИБП, то целесообразнее применять распределенную систему электропитания ВК. В состав распре-

Таблица 1. Значения UH (напряжение на нагрузке) при U0 (напряжение на выходе ИБП) = 10,5В, L (длина кабеля электропитания) = 50м для различных IH (ток нагрузки) и S (сечение медного проводника кабеля электропитания)

S, KB.MM	D, мм	Ін=0,125А	Ін=0,25А	Ін=0,5А	Ін=1,0А	Ін=2,0 А	Ін=3,0А	IH=4,0A	Ін=5,0А
0,5	0,80	10,05	9,60	8,70	6,90	3,30	0,00	0,00	0,00
0,75	0,98	10,20	9,90	9,30	8,10	5,70	3,30	0,90	0,00
1	1,13	10,28	10,05	9,60	8,70	6,90	5,10	3,30	1,50
1,5	1,38	10,35	10,20	9,90	9,30	8,10	6,90	5,70	4,50
2	1,60	10,39	10,28	10,05	9,60	8,70	7,80	6,90	6,00
4	2,26	10,44	10,39	10,28	10,05	9,60	9,15	8,70	8,25
6	2,76	10,46	10,43	10,35	10,20	9,90	9,60	9,30	9,00

Таблица 2. Значения UH (напряжение на нагрузке) при UO (напряжение на выходе ИБП) = 13,5В, L (длина кабеля электропитания) = 50 м для различных IH (ток нагрузки) и S (сечение медного проводника кабеля электропитания)

	S, кв.мм	D, мм	Ін=0,125А	Ін=0,25А	Ін=0,5А	Iн=1,0A	Ін=2,0 А	Ін=3,0А	Iн=4,0A	Ін=5,0А
	0,5	0,80	13,05	12,60	11,70	9,90	6,30	2,70	0,00	0,00
1	0,75	0,98	13,20	12,90	12,30	11,10	8,70	6,30	3,90	1,50
	1	1,13	13,28	13,05	12,60	11,70	9,90	8,10	6,30	4,50
	1,5	1,38	13,35	13,20	12,90	12,30	11,10	9,90	8,70	7,50
	2	1,60	13,39	13,28	13,05	12,60	11,70	10,80	9,90	9,00
	4	2,26	13,44	13,39	13,28	13,05	12,60	12,15	11,70	11,25
	6	2,76	13,46	13,43	13,35	13,20	12,90	12,60	12,30	12,00

Рис.2 Варианты использования SKAT-V.16

Рис. 3 Варианты использования PN.V8 исп.5

Таблица 3. Значения UH (напряжение на нагрузке) при U0 (напряжение на выходе ИБП) = 15В, IH (ток нагрузки) = 0,35 А для различных L (длина кабеля электропитания) и S (сечение медного проводника кабеля электропитания)

S, KB.MM	D, мм	L=30 м	L=50 м	L=75 м	L=100 м	L=150 м	L=200 м	L=250 м	L=300 м
0,5	0,80	13,92	13,20	12,30	11,40	9,60	7,80	6,00	4,20
0,75	0,98	14,28	13,80	13,20	12,60	11,40	10,20	9,00	7,80
1	1,13	14,46	14,10	13,65	13,20	12,30	11,40	10,50	9,60
1,5	1,38	14,64	14,40	14,10	13,80	13,20	12,60	12,00	11,40
2	1,60	14,73	14,55	14,33	14,10	13,65	13,20	12,75	12,30
4	2,26	14,87	14,78	14,66	14,55	14,33	14,10	13,88	13,65
6	2,76	14,91	14,85	14,78	14,70	14,55	14,40	14,25	14,10

Таблица 4. Модельный ряд специализированных преобразователей напряжения серий "ПН", "PN" и "PN.V"

Изделие	Входное напряжение, В	Выходное напряжение, В	Диапазон регулировки выходного напряжения, В	Номиналь- ный ток нагрузки, А	Исполнение
ПН-12-03	9,5 - 30,0	12	"+/- 1	0,35	Бескорпусное
ПН-12-1,0	9,0 - 30,0	12		1	Бескорпусное
ПН-24/12-0,5	15,0 - 30,0	12	"+/- 1	0,5	Бескорпусное
PN-12-1,0	10,0 - 40,0	12	от 11,9 до 15,2	1	Бескорпусное
PN-12-1,5	10,0 - 50,0	12	от 12,0 до 15,5	1,5	Бескорпусное
PN-V.4	20,0 - 50,0	4 вых. по 12	от 12,4 до 16,5	4вых. по 0,33	Бескорпусное
PN-V.8	18,0 - 40,0	8 вых. по 12	от 12,2 до 15,2	8вых. по 0,5	Бескорпусное
PN-V.8 исп.1	18,0 - 40,0	8 вых. по 12	от 12,2 до 15,2	8вых. по 0,5	В корпусе
PN-V.8 исп.5	18,0 - 40,0	8 вых. по 12	от 12,2 до 15,2	8вых. по 0,5	В боксе ІР56

Таблица 5. Значения UH (напряжение на нагрузке) при UO (напряжение на выходе ИБП) = 21В, IH (ток нагрузки) = 4,0 А для различных L (длина кабеля электропитания) и S (сечение медного проводника кабеля электропитания)

S, кв.мм	D, мм	L=30 м	L=50 м	L=75 м	L=100 м	L=150 м
1	1,13	16,68	13,80	10,20	6,60	0,00
1,5	1,38	18,12	16,20	13,80	11,40	6,60
2	1,60	18,84	17,40	15,60	13,80	10,20
4	2,26	19,94	19,20	18,30	17,40	15,60
6	2,76	20,28	19,80	19,20	18,60	17,40

деленной системы электропитания ВК входит базовый ИБП и один или несколько специализированных преобразователей напряжения серий "ПН", "PN" и "PN.V", модельный ряд которых представлен в таблице 4. На рис.3 в качестве примера приведены варианты использования PN.V8 исп.5. В качестве базового рекомендуется применять ИБП серии "СКАТ" или любой другой с номинальным напряжением выхода 24В постоянного тока. Выходное напряжение таких ИБП

также обычно представляет собой диапазон: от 21-22 В до 27-28 В, однако в данном случае это не создает проблем, так как преобразователи напряжения сохраняют работоспособность в широком диапазоне входных напряжений.

В **таблице 5** приведены значения напряжения на нагрузке *(PN.V8)* с учетом падения напряжения на соединительных линиях различной длины, рассчитанные по формуле (1).

Для оценки напряжения на ВК с учетом падения напряжения на соединительных линиях между **PN.V8 исп.5** и ВК можно воспользоваться формулой (1) и таблицей 3, как и в случае с **SKAT-V.16**