Week 11 – Linear & Nonlinear Control of Manipulators

Advanced Robotic Systems – MANU2453

Dr Ehsan Asadi, School of Engineering RMIT University, Victoria, Australia Email: ehsan.asadi@rmit.edu.au

Lectures

Wk	Date	Lecture (NOTE: video recording)	Maths Difficulty	Hands-on Activity	Related Assessment
1	24/7	Introduction to the CourseSpatial Descriptions & Transformations			
2	31/7	Spatial Descriptions & TransformationsRobot Cell Design	•		Robot Cell Design Assignment
3	7/8	Forward KinematicsInverse Kinematics			
4	14/8	ABB Robot Programming via Teaching PendantABB RobotStudio Offline Programming		ABB RobotStudio Offline Programming	Offline Programming Assignment
5	21/8	Jacobians: Velocities and Static Forces			
6	28/8	Manipulator Dynamics			
7	11/9	Manipulator Dynamics		MATLAB Simulink Simulation	
8	18/9	Robotic Vision		MATLAB Simulation	Robotic Vision Assignment
9	25/9	Robotic Vision II		MATLAB Simulation	
10	2/10	Trajectory Generation	•		
11	9/10	Linear & Nonlinear Control		MATLAB Simulink Simulation	
12	16/10	Introduction to I4.0Revision			Final Exam

Content

- Introduction
- Control of Second Order Linear Systems
- Control-Law Partitioning
- Trajectory Following
- Nonlinear and Time-Varying Systems
- Nonlinear Control of Multi-Input-Multi-Output System
- Matlab Simulink Simulation

RMIT Classification: Trusted

Content

- Introduction
- Control of Second Order Linear Systems
- Control-Law Partitioning
- Trajectory Following
- Nonlinear and Time-Varying Systems
- Nonlinear Control of Multi-Input-Multi-Output System
- Matlab Simulink Simulation

Introduction

Microcontroller

Introduction

 Last week, we discussed about the trajectory which the robot is required to follow.

 In today's lecture, we will study how we can control the robot (or joints) so that they follow the desired trajectory.

Introduction – Linear Control

- We will first explore linear control techniques.
- That is, we assume or approximate the nonlinear, coupled manipulator as a few linear and decoupled joints/links, and we control each joints individually.

Introduction – Linear Control

- The controller of each joint only cares about bringing that particular joint to reach a goal, or to track a trajectory,
- while ignoring coupling effects from all other links or just treat them as disturbances.

Introduction – Linear Control

- While this method seems crude, it is in fact quite widely used in industrial robotic manipulators.
- Advantage:
 - Simple
 - Acceptable performance.
- Disadvantage:
 - Performance not as good as using nonlinear control.
 - Performance may vary at different configurations.

Introduction – Nonlinear Control

- The disadvantages of linear control method are due to the following reasons:
- The joints or links are highly coupled.
 - The inertia (and other) matrices are NOT constant.

$$\begin{bmatrix} (m_{1} + m_{2})L_{1}^{2} + m_{2}L_{2}^{2} + 2m_{2}L_{1}L_{2}c_{2} & m_{2}L_{2}^{2} + m_{2}L_{1}L_{2}c_{2} \end{bmatrix} \begin{bmatrix} \ddot{\theta}_{1} \\ m_{2}L_{2}^{2} + m_{2}L_{1}L_{2}c_{2} & m_{2}L_{2}^{2} \end{bmatrix} \\ + \begin{bmatrix} -m_{2}L_{1}L_{2}s_{2}\dot{\theta}_{2}^{2} \\ m_{2}L_{1}L_{2}s_{2}\dot{\theta}_{1}^{2} \end{bmatrix} + \begin{bmatrix} -2m_{2}L_{1}L_{2}s_{1}\dot{\theta}_{1}\dot{\theta}_{2} \\ 0 \end{bmatrix} + \begin{bmatrix} m_{2}gL_{2}c_{12} + (m_{1} + m_{2})gL_{1}c_{1} \\ m_{2}gL_{2}c_{12} \end{bmatrix} = \begin{bmatrix} \tau_{1} \\ \tau_{2} \end{bmatrix} \\ \underbrace{Centrifugal} & \underbrace{Coriolis} & \underbrace{$$

large inertia seen from joint 1

Introduction – Nonlinear Control

- The use of linear control will therefore lead to undesirable results.
 - E.g. the damping will NOT be uniform throughout the workspace.
- Thus, we will also learn about some nonlinear control techniques to achieve better performance.
- Using nonlinear techniques, we will design the controller for the robot as a multi-input-multi-output system, instead of individual joints.

Introduction – Open Loop Control

We have the dynamic equation of the robot:

$$M(q)\ddot{q} + V(q,\dot{q}) + G(q) = \tau$$

We also have the desired trajectories for position, speed and acceleration.

$$q_d, \dot{q}_d, \ddot{q}_d$$

In an ideal world where there is no modeling error or disturbance, then
designing the joint torques as:

$$\tau = M(q_d)\ddot{q}_d + V(q_d, \dot{q}_d) + G(q_d)$$

- could make the robot follow the desired trajectories!
- → Open Loop Control.
- Unfortunately, real world system definitely has modelling error and disturbances.
 - Therefore the robot will deviate from the desired trajectory.

Introduction - Feedback Control

- To make sure the robot joint actually follows the desired trajectory, we need feedback control.
 - Use sensors to measure joint angles and velocities.
 - If there are errors (difference between desired and actual trajectory), then
 provide corrective actions (increase or reduce torque) so that the actual
 trajectory moves back towards the desired trajectory.

We need to ensure the stability of such closed-loop systems.

RMIT Classification: Trusted

Content

- Introduction
- Control of Second Order Linear Systems
- Control-Law Partitioning
- Trajectory Following
- Nonlinear and Time-Varying Systems
- Nonlinear Control of Multi-Input-Multi-Output System
- Matlab Simulink Simulation

Control of only one joint/link

To control a single joint with <u>feedback control</u>.

Control of only one joint/link

P-Control, assuming desired Theta is zero.

Motor Model: JO - T

P means T

15 proportional

to error (e)

Control signal: T= Kp. e

$$= Kp(9d-\theta) = - Kp\theta (2)$$

To analyse the closed loop system , to ρωτ (2) im to (1)

$$\Rightarrow 3\theta = 7 = -kp\theta$$

$$3\theta + kp\theta = 0$$

- let's have an understanding of natural systems first.
- Imagine you have a mass-spring-system on a frictionless surface:

mx+ Kx=0

• Let the equilibrium position be x = 0.

 If you perturb the mass from its equilibrium position, and then release it, the mass will swing back and forth continuously.

 Mathematically, the differential equation (Newton's Law) for the mass-spring system on frictionless surface is:

$$m\ddot{x} = -kx$$
 Or $m\ddot{x} + kx = 0$

Natural Frequency

Solving the differential equation gives:

$$x = C_1 \cos\left(\sqrt{\frac{k}{m}}t\right) + C_2 \sin\left(\sqrt{\frac{k}{m}}t\right)$$

Control of only one joint/link

P-Control, assuming desired Theta is zero.

To analyse the closed loop system

Control of only one joint/link

PD-Control, assuming desired Theta is zero.

D: means Proportional to the Derivative of error (e)

Control:
$$Z = Kpe + Kpe = Kp(91-8) + Kp(91-8)$$

To analyse the closed loop system

$$= -Kp\theta - Kp\theta$$

- Now, imagine the surface is not frictionless anymore.
- Instead it has a viscous friction b.

• Let the equilibrium position be x = 0.

 Mathematically, the differential equation (Newton's Law) for the mass-spring system on surface with viscous friction is:

$$m\ddot{x} = -b\dot{x} - kx$$
or
$$m\ddot{x} + b\dot{x} + kx = 0$$

- This is also equivalent to a mass-spring-damper system.
- The roots of the characteristic equation $ms^2 + bs + k = 0$ are:

$$s_1 = \frac{-b + \sqrt{b^2 - 4mk}}{2m}$$

$$s_2 = \frac{-b - \sqrt{b^2 - 4mk}}{2m}$$

$$b^{2} > 4mK$$
 $b^{2} < 4mK$
 $b^{2} = 4mK$

 Depending on the relationship between b and k, we have one of the three possible solutions:

1

• If $b^2 > 4mk$: Real and unequal roots

S18 52

- Overdamped response.
- Decreases to equilibrium position (0) very slowly.

overdamped

• If b² < 4mk: Complex roots

$$S_{1,2} = \frac{-b \pm \sqrt{b^2 - 4mk}}{2m} = \lambda \pm \mu i$$

Oscillatory response, with reducing amplitude.

underdamped

- Another way to write 2nd order system is: $s^2 + 2\xi\omega_n s + \omega_n^2 = 0$
- where ξ is the damping ratio.
- Comparing all equations, we have: $\lambda = -\xi \omega_n$ $\mu = \omega_n \sqrt{1 \xi^2}$

$$\xi = \frac{b}{2\sqrt{km}}$$

$$\omega_n = \sqrt{\frac{k}{m}}$$

$$\lambda = -\xi \omega_n \qquad \mu = \omega_n \sqrt{1 - \xi^2}$$

Damped natural frequency

• Finally, if $b^2 = 4mk$:

$$s_1 = s_2$$
 = $-\frac{b}{2m}$
 $x(t) = (c_1 + c_2 t)e^{s_1 t}$

Critically damped response.

- System reaches equilibrium position rapidly and without oscillation!
- Highly desirable!
- In this case:

$$\xi = \frac{b}{2\sqrt{km}} = \frac{b}{2\sqrt{b^2/4}} = 1$$

Damping ratio for critically damped system

Example (1)

- Find the response of the mass-spring-damper system for m = 1, b = 5, k = 6, when the block is released from position x = -1.
- Answer:
 - b^2 (= 25) > 4mk (= 24).
 - Roots of characteristic equation:

$$s_{1,2} = \frac{-b \pm \sqrt{b^2 - 4mk}}{2m} = \frac{-5 \pm 1}{2} = -3 \& -2$$

• Thus:

$$x(t) = c_1 e^{-3t} + c_2 e^{-2t}$$

$$\dot{x}(t) = -3c_1e^{-3t} - 2c_2e^{-2t}$$

• To find c₁ and c₂, use initial conditions:

$$x(0) = c_1 + c_2 = -1$$

$$\dot{x}(0) = -3c_1 - 2c_2 = 0$$

• This gives: $c_1 = 2$ $c_2 = -3$

Thus the complete solution is:

$$x(t) = 2e^{-3t} - 3e^{-2t}$$

Example (2)

- Find the response of the mass-spring-damper system for m = 1, b = 1, k = 1, when the block is released from position x = -1.
- Answer:
 - b^2 (= 1) < 4mk (= 4).
 - Roots of characteristic equation: $s_{1,2} = \frac{-b \pm \sqrt{b^2 4mk}}{2m} = \frac{-1 \pm \sqrt{1 4}}{2} = \frac{-1 \pm \sqrt{3}i}{2}$
 - Thus:

$$x(t) = c_1 e^{-\frac{1}{2}t} \cos\left(\frac{\sqrt{3}}{2}t\right) + c_2 e^{-\frac{1}{2}t} \sin\left(\frac{\sqrt{3}}{2}t\right) = e^{-\frac{1}{2}t} \left(c_1 \cos\left(\frac{\sqrt{3}}{2}t\right) + c_2 \sin\left(\frac{\sqrt{3}}{2}t\right)\right)$$

$$\dot{x}(t) = -\frac{1}{2}e^{-\frac{1}{2}t}\left(c_1\cos\left(\frac{\sqrt{3}}{2}t\right) + c_2\sin\left(\frac{\sqrt{3}}{2}t\right)\right) + e^{-\frac{1}{2}t}\left(-\frac{\sqrt{3}}{2}c_1\sin\left(\frac{\sqrt{3}}{2}t\right) + \frac{\sqrt{3}}{2}c_2\cos\left(\frac{\sqrt{3}}{2}t\right)\right)$$

• To find c₁ and c₂, use initial conditions:

$$x(0) = c_1 = -1$$

$$\dot{x}(0) = c_1 = -1 \qquad \dot{x}(0) = -\frac{1}{2}c_1 + \frac{\sqrt{3}}{2}c_2 = \frac{1}{2} + \frac{\sqrt{3}}{2}c_2 = 0$$

$$x(t) = e^{-\frac{1}{2}t} \left(-\cos\left(\frac{\sqrt{3}}{2}t\right) - \frac{1}{\sqrt{3}}\sin\left(\frac{\sqrt{3}}{2}t\right) \right)$$

Example (3)

- Find the response of the mass-spring-damper system for m = 1, b = 4, k = 4, when the block is released from position x = -1.
- Answer:
 - b^2 (= 16) < 4mk (= 16).
 - Roots of characteristic equation:

$$s_{1,2} = \frac{-b \pm \sqrt{b^2 - 4mk}}{2m} = \frac{-4 \pm \sqrt{16 - 16}}{2} = -2$$

• Thus:

$$x(t) = (c_1 + c_2 t)e^{-2t}$$

$$\dot{x}(t) = (c_1 + c_2 t)e^{-2t}$$
 $\dot{x}(t) = -2(c_1 + c_2 t)e^{-2t} + c_2 e^{-2t}$

To find c₁ and c₂, use initial conditions:

$$x(0) = c_1 = -1$$

$$\dot{x}(0) = -2c_1 + c_2 = 0$$

• This gives:
$$x(t) = (-1 - 2t)e^{2t}$$

Control of only one joint/link

PD-Control, assuming desired Theta is zero.

- We learnt that if the relationship between b, k and m is $b^2 = 4mk$, then we have the critically damped response which is fast and non-oscillatory.
- Therefore, we decide on a good k_p (this determines the stiffness of the mass), and then let:

$$k_D^2 = 4Jk_p$$

$$k_D = 2\sqrt{Jk_p}$$

Control of only one joint/link

PD-Control, assuming desired Theta is zero.

- Problems of this method
- It relies on model $J\ddot{\theta} = \tau$; In real world, J may change : e.g. if robot pick an object
- If model is not some friction. $J\ddot{\theta}=\tau$, then the solution is not optimal. e.g. system has

$$J\theta + b\theta = \tau$$

$$friction$$

RMIT Classification: Trusted

Content

- Introduction
- Control of Second Order Linear Systems
- Control-Law Partitioning
- Trajectory Following
- Nonlinear and Time-Varying Systems
- Nonlinear Control of Multi-Input-Multi-Output System
- Matlab Simulink Simulation

Question 1:

• Determine the motion of a mass-spring-damper system if parameter values are m = 2, b = 6 and k = 4, and the mass (initially at rest) is released from the position x = 1.

Question 2:

• Determine the motion of a mass-spring-damper system if parameter values are m = 1, b = 2 and k = 1, and the mass (initially at rest) is released from the position x = 4.

Question 3:

• Determine the motion of a mass-spring-damper system if parameter values are m = 1, b = 4 and k = 5, and the mass (initially at rest) is released from the position x = 2.

Question 4:

- Consider a mass-spring-damper system with parameter values m = 1, b = 4 and k = 5.
- The system is known to possess an unmodeled resonance at $\omega_{res} = 6$ rad/sec.
- Determine the gains k_{ν} and k_{p} which will critically damp the system with as high a stiffness as reasonable.

Question 5:

• Give the nonlinear control equations for the system:

$$(2\sqrt{\theta}+1)\ddot{\theta}+3\dot{\theta}^2-\sin(\theta)=\tau$$

• Choose gains so that this system is always critically damped with closed-loop stiffness K_{Cl} of 10.

Question 6:

• Give the nonlinear control equations for the system:

$$2\ddot{\theta} + 5\theta\dot{\theta} - 13\dot{\theta}^3 + 5 = \tau$$

• Choose gains so that this system is always critically damped with closed-loop stiffness K_{Cl} of 10.

Question 7:

 Design a trajectory-following control system for a system with the following dynamic equations:

$$m_1 l_1^2 \ddot{\theta}_1 + m_1 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 = \tau_1$$

 $m_2 l^2 (\ddot{\theta}_1 + \ddot{\theta}_2) + v_2 \dot{\theta}_2 = \tau_2$

Thank you!

Have a good evening.

