2.3. Integral de una función medible

1. Sea $f: X \to \mathbb{R}$ una función medible con $f(X) = \{0, 1, 2, \dots\}$. Mostrar que

$$\int_X f \, d\mu = \sum_{n=1}^\infty \mu(\{f \ge n\}).$$

- 2. Sea f una función medible e integrable. Mostrar que si f está acotada, entonces f^2 es también integrable. Si f no está acotada el resultado no es cierto en general. Encontrar un contraejemplo en este caso.
- 3. Sea (X, \mathcal{F}, μ) un espacio de medida y $f \in \mathcal{L}^1(\mu)$. Mostrar que para cada $\epsilon > 0$ existe un $\delta > 0$ tal que

$$\left| \int_A f \, d\mu \right| < \epsilon$$
, siempre que $A \in \mathcal{F}$ y $\mu(A) < \delta$.

Sugerencia: Proceder por reducción al absurdo. Tomar una sucesión A_n con $\mu(A_n) < 1/2^n$ que no verifique el enunciado. Considerar $B = \limsup A_n$ y usar el primer lemma de Borel-Cantelli para llegar a una contradicción.

4. Consideramos la función

$$f(x) = \begin{cases} 0, & \text{si } x \in \mathbb{Q}, \\ \left\lfloor \frac{1}{x} \right\rfloor, & \text{si } x \in \mathbb{R} - \mathbb{Q}, \end{cases}$$

donde $\lfloor \cdot \rfloor$ es la función suelo o parte entera. Mostrar que f es medible y calcular $\int_{(0,1)} f$.

5. Sea (X, \mathcal{F}, μ) espacio de medida y $f: X \to \overline{\mathbb{R}}$ una función medible. Mostrar la desiqualdad de Chebyshev, es decir, para $\epsilon > 0$ y $\alpha > 0$, se verifica

$$\mu(\{|f| \ge \epsilon\}) \le \frac{1}{\epsilon^{\alpha}} \int_X |f|^{\alpha} d\mu.$$

- **6**. Consideramos la medida delta de Dirac (concentrada en el punto a) sobre el espacio medible $(X, \mathcal{P}(X))$, es decir, $\delta_a(A) = 1_A(a)$, para $A \subset X$ y $f: X \to \overline{\mathbb{R}}$.
 - (a) ¿Cuáles son las funciones medibles en este espacio?
 - (b) Calcular su integral de una función medible cualquiera f.
 - (c) ¿Cuáles son los funciones integrables en este espacio de medida?
- 7. En $(\mathbb{Z}, \mathcal{P}(\mathbb{Z}))$ consideramos μ la medida de contar, es decir, $\mu(A) = \operatorname{card}(A)$.
 - (a) ¿Qué funciones son integrables? ¿Cuánto vale su integral?

- (b) Mostrar que si $f_n \to f$ en $\mathcal{L}^1(\mu)$, entonces $f_n \to f$ (puntualmente).
- (c) Consideramos la sucesión

$$f_n(k) = \begin{cases} 1/n, & \text{si } 1 \le k \le n, \\ 0, & \text{en otro caso.} \end{cases}$$

Mostrar que f_n converge uniformemente, pero no converge en $\mathcal{L}^1(\mu)$. Recordatorio: $\{f_n\}$ converge uniformemente a f sobre el conjunto D si para cada $\epsilon > 0$ existe un n_0 tal que para todo $n \geq n_0$, se tiene que $|f_n(x) - f(x)| < \epsilon$, para todo $x \in D$.

(d) Probar que la sucesión

$$f_n(k) = \begin{cases} 1/k, & \text{si } 1 \le k \le n, \\ 0, & \text{en otro caso,} \end{cases}$$

está en $\mathcal{L}^1(\mu)$ y converge uniformemente a una función que no está en $\mathcal{L}^1(\mu)$.

- 8. Si f es una función medible en un espacio completo y f = g a.e., se tiene que g es medible y $\int f d\mu = \int g d\mu$.
- 9. Calcular la integral de Lebesgue sobre el conjunto $[0, \pi/2]$ de las siguientes funciones:
 - (a) $f(x) = \sin x$.

(b)
$$f(x) = \begin{cases} \sin x, & \text{si } x \in \mathbb{Q}, \\ \cos x, & \text{si } x \notin \mathbb{Q}. \end{cases}$$

(c)
$$f(x) = \begin{cases} \sin x, & \text{si } \cos x \in \mathbb{Q}, \\ \sin^2 x, & \text{si } \cos x \notin \mathbb{Q}. \end{cases}$$

- 10. Calcular la integral de Lebesgue sobre $(0, \infty)$ de las siguientes funciones:
 - (a) $f(x) = e^{-\lfloor x \rfloor}$.
- (b) $f(x) = \frac{1}{\lfloor x+1 \rfloor \lfloor x+2 \rfloor}$.
- (c) $f(x) = \frac{1}{\lfloor x \rfloor!}$.
- 11. Definimos $f:[0,1] \to \mathbb{R}$ de la siguiente forma: $f(x) = \infty$, si $x \in C$, donde C es el conjunto ternario de Cantor en [0,1]; f(x) = n en cada intervalo del complementario de C de longitud $\frac{1}{3^n}$. Demostrar que f es medible Lebesgue y calcular $\int_0^1 f(x) dx$.