

Vojtěch Havlena, et al.

Brno University of Technology, Czech Republic

MOSCA'25

SMT String constraint solving

Checking satisfiability of formulae with string variables and operations

 $\underbrace{x = yz \land y \neq u \land x \in (ab)^* a^+(b|c) \land |a| = 2|u| + 1}_{(dis)equations} \land \underbrace{x = yz \land y \neq u \land x \in (ab)^* a^+(b|c) \land |x| = 2|u| + 1}_{more\ complex\ operations} \land \underbrace{x = yz \land y \neq u \land x \in (ab)^* a^+(b|c) \land |x| = 2|u| + 1}_{more\ complex\ operations}$

SMT String constraint solving

Checking satisfiability of formulae with string variables and operations

```
x = yz \land y \neq u \land x \in (ab)^* a^+(b|c) \land |x| = 2|u| + 1 \land contains(u, replace(z, b, c)) \land \dots
(dis)equations

(dis)equations
```

- Motivation: large and complex real-world programs need security guarantees
 - analysis of string manipulating programs (vulnerabilities of web applications)

```
let x = y.substring(1, y.length - 1); x_0 = substr(y, 1, |y| - 1) \land let z = y.concat(x); z_0 = y \cdot x_0 \land x_0 \neq z_0
```

analysing access control policies (AWS/Rego)

```
action: deactivate, A = "deactivate" \land resource: (a1, a2), (R = "a1" <math>\lor R = "a2") \land condition: \{StringLike, s3:prefix, home*\}
```

- verification of cockpit systems (Boeing), etc.
- efficient and expressive SMT string solvers are needed

- Based on SMT solver Z3
 - Z3-Noodler replaces Z3's string theory solver
 - low-level interaction with Z3 (given by the theory interface)
 - gathers conjunction of string constraints (provided by SMT core)
 - core Noodler's procedure
 - provide theory lemma
 - uses Z3's linear arithmetic (LIA) theory solver

- Based on SMT solver Z3
 - Z3-Noodler replaces Z3's string theory solver
 - low-level interaction with Z3 (given by the theory interface)
 - gathers conjunction of string constraints (provided by SMT core)
 - core Noodler's procedure
 - provide theory lemma
 - uses Z3's linear arithmetic (LIA) theory solver
- Uses Nondeterministic finite automata (Mata automata library)

[TACAS'24]

- Based on SMT solver Z3
 - Z3-Noodler replaces Z3's string theory solver
 - low-level interaction with Z3 (given by the theory interface)
 - gathers conjunction of string constraints (provided by SMT core)
 - core Noodler's procedure
 - provide theory lemma
 - uses Z3's linear arithmetic (LIA) theory solver
- Uses Nondeterministic finite automata (Mata automata library)

[TACAS'24]

Combines various decision procedures for different fragments

- Based on SMT solver Z3
 - Z3-Noodler replaces Z3's string theory solver
 - low-level interaction with Z3 (given by the theory interface)
 - gathers conjunction of string constraints (provided by SMT core)
 - core Noodler's procedure
 - provide theory lemma
 - uses Z3's linear arithmetic (LIA) theory solver
- Uses Nondeterministic finite automata (Mata automata library)

[TACAS'24]

- Combines various decision procedures for different fragments
- Support for various string functions/predicates
 - more complex string functions/predicates (replace, substr, indexof ...)
 - string-integer conversions, transducer constraints (replace_all)

- Based on SMT solver Z3
 - Z3-Noodler replaces Z3's string theory solver
 - low-level interaction with Z3 (given by the theory interface)
 - gathers conjunction of string constraints (provided by SMT core)
 - core Noodler's procedure
 - provide theory lemma
 - uses Z3's linear arithmetic (LIA) theory solver
- Uses Nondeterministic finite automata (Mata automata library)

[TACAS'24]

- Combines various decision procedures for different fragments
- Support for various string functions/predicates
 - more complex string functions/predicates (replace, substr, indexof ...)
 - string-integer conversions, transducer constraints (replace_all)
- the winner of SMT-COMP'24 string division

Combining decision procedures

- **interface** of decision procedure
 - isSuitable(ψ) $\rightarrow \mathbb{B}$
 - \blacksquare init(ψ)
 - preprocess()

- nextSolution() $\rightarrow \mathbb{B}_3$
- **getLIA()** $\rightarrow \Phi_{LIA} \times \{\text{precise}, \text{underapprox}\}\$
- **getModel** $(\theta, x) \rightarrow \Sigma^*$

Combining decision procedures

- **interface** of decision procedure
 - isSuitable(ψ) $\rightarrow \mathbb{B}$
 - \blacksquare init(ψ)
 - preprocess()

- nextSolution() $\rightarrow \mathbb{B}_3$
- **getLIA()** $\rightarrow \Phi_{LIA} \times \{\text{precise}, \text{underapprox}\}\$
- getModel(θ , x) $\rightarrow \Sigma^*$

- procedure selection
 - suitability check
 - ordered by the most specific to the most general

Combining decision procedures

- **interface** of decision procedure
 - isSuitable(ψ) $\rightarrow \mathbb{B}$
 - \blacksquare init(ψ)
 - preprocess()

- **nextSolution()** $\rightarrow \mathbb{B}_3$
- \blacksquare qetLIA() $\rightarrow \Phi_{LIA} \times \{\text{precise}, \text{underapprox}\}\$
- getModel(θ , x) $\rightarrow \Sigma^*$

- procedure selection
 - suitability check
 - ordered by the most specific to the most general
- execution
 - iteratively call nextSolution()
 - check if getLIA() is satisfiable

[FM'23], [OOPSLA'23]

$$x = yz \quad \land \quad y \neq u \quad \land \quad x \in (ab)^*a^+(b|c) \quad \land \quad |x| = 2|u| + 1$$
(dis)equations

- tight integration of equations with regular constraints
- complete on chain-free constraints
- iteratively **refining the languages** of variables *Lang*; until **stable form**
- feasible equation splits refining languages computed by noodlification
- create LIA formula encoding possible lengths of words in each language in Lang

Noodlification (No-lengths)

$$xyx = zu$$
 $u \mapsto (baba)^*a \quad z \mapsto a(ba)^* \quad x \mapsto \Sigma^* \quad y \mapsto \Sigma^*$

- Use right side to refine languages of variables x, y on the left side
- Leads to two feasible noodles:

Noodlification (No-lengths)

- Use right side to refine languages of variables x, y on the left side
- Leads to two feasible noodles:

Two refinements

$$\boxed{u\mapsto (baba)^*a\quad z\mapsto a(ba)^*\quad x\mapsto \textbf{a}\quad y\mapsto \textbf{(ba)*}}$$

$$\boxed{u\mapsto (baba)^*a\quad z\mapsto a(ba)^*\quad x\mapsto \textbf{\epsilon}\quad y\mapsto \textbf{a(ba)*a}}$$

Noodlification (Lengths)

$$|xy = uv| x \mapsto a^* \quad y \mapsto b^* \quad u \mapsto \Sigma^* \quad v \mapsto b^*$$

Align&Split augmented with noodlification

[Abdulla-CAV'14]

- epsilon transitions possibly on right side (only between relevant variables)
- epsilons defines alignments (derive substitutions with fresh variables)
- generate only language-feasible splits

Noodlification (Lengths)

$$|xy = uv| x \mapsto a^* \quad y \mapsto b^* \quad u \mapsto \Sigma^* \quad v \mapsto b^*$$

Align&Split augmented with noodlification

[Abdulla-CAV'14]

- epsilon transitions possibly on right side (only between relevant variables)
- epsilons defines alignments (derive substitutions with fresh variables)
- generate only language-feasible splits

Example:
$$xx = w \land z = xy \land w \in a^+ \land |z| = 2|w| - |x|$$

$$v_1 \mapsto a^+ \quad y \mapsto \Sigma^* \quad x \mapsto v_1 \quad w \mapsto v_1 v_1 \quad z \mapsto v_1 y$$

- **stable solution** (*Lang*, σ):
 - language assignment *Lang*: $v_1 \mapsto a^+, y \mapsto \Sigma^*$
 - **substitution map** σ : $x \mapsto v_1, w \mapsto v_1v_1, z \mapsto v_1y$

Example:
$$xx = w \land z = xy \land w \in a^+ \land |z| = 2|w| - |x|$$

$$v_1 \mapsto a^+ \quad y \mapsto \Sigma^* \quad x \mapsto v_1 \quad w \mapsto v_1 v_1 \quad z \mapsto v_1 y$$

- **stable solution (***Lang*, σ **)**:
 - Language assignment Lang: $v_1 \mapsto a^+, v \mapsto \Sigma^*$
 - **substitution map** $\sigma: X \mapsto V_1, W \mapsto V_1V_1, Z \mapsto V_1V_2$
- **LIA formula** encoding **possible lengths** of variables:

$$\varphi_{\operatorname{len}} \overset{\operatorname{def.}}{\Leftrightarrow} \qquad \wedge \qquad \wedge$$

$$\land$$

$$\wedge$$

$$\wedge$$

Example:
$$xx = w \land z = xy \land w \in a^+ \land |z| = 2|w| - |x|$$

$$v_1 \mapsto a^+ \quad y \mapsto \Sigma^* \mid x \mapsto v_1 \quad w \mapsto v_1 v_1 \quad z \mapsto v_1 y$$

- **stable solution** (*Lang*, σ):
 - language assignment Lang: $v_1 \mapsto a^+, y \mapsto \Sigma^*$
 - **substitution map** σ : $x \mapsto v_1, w \mapsto v_1v_1, z \mapsto v_1y$
- **LIA formula** encoding **possible lengths** of variables:

$$arphi_{\mathsf{len}} \overset{\mathsf{def.}}{\Leftrightarrow} |v_1| \geq 1 \, \land$$

\

 \wedge

Λ

Example:
$$xx = w \land z = xy \land w \in a^+ \land |z| = 2|w| - |x|$$

$$v_1 \mapsto a^+ \quad y \mapsto \Sigma^* \quad x \mapsto v_1 \quad w \mapsto v_1 v_1 \quad z \mapsto v_1 y$$

- **stable solution** (*Lang*, σ):
 - language assignment Lang: $v_1 \mapsto a^+, y \mapsto \Sigma^*$
 - **substitution map** σ : $x \mapsto v_1, w \mapsto v_1v_1, z \mapsto v_1y$
- **LIA formula** encoding **possible lengths** of variables:

$$\varphi_{\mathsf{len}} \overset{\mathsf{def.}}{\Leftrightarrow} |v_1| \geq 1 \wedge |y| \geq 0 \wedge$$

 \wedge

 \wedge

Example:
$$xx = w \land z = xy \land w \in a^+ \land |z| = 2|w| - |x|$$

$$v_1 \mapsto a^+ \quad y \mapsto \Sigma^* \quad x \mapsto v_1 \quad w \mapsto v_1 v_1 \quad z \mapsto v_1 y$$

- **stable solution** (*Lang*, σ):
 - language assignment Lang: $v_1 \mapsto a^+, y \mapsto \Sigma^*$
 - **substitution map** $\sigma: \mathbf{X} \mapsto \mathbf{V}_1, \mathbf{W} \mapsto \mathbf{V}_1 \mathbf{V}_1, \mathbf{Z} \mapsto \mathbf{V}_1 \mathbf{Y}_1$
- **LIA formula** encoding **possible lengths** of variables:

$$\varphi_{\mathsf{len}} \stackrel{\mathsf{def.}}{\Leftrightarrow} |v_1| \ge 1 \land |y| \ge 0 \land |x| = |v_1| \land \qquad \qquad \land$$

Example:
$$xx = w \land z = xy \land w \in a^+ \land |z| = 2|w| - |x|$$

$$v_1 \mapsto a^+ \quad y \mapsto \Sigma^* \quad x \mapsto v_1 \quad w \mapsto v_1 v_1 \quad z \mapsto v_1 y$$

- **stable solution** (*Lang*, σ):
 - language assignment Lang: $v_1 \mapsto a^+, y \mapsto \Sigma^*$
 - **substitution map** σ : $x \mapsto v_1, w \mapsto v_1v_1, z \mapsto v_1y$
- LIA formula encoding possible lengths of variables:

$$\varphi_{\mathsf{len}} \overset{\mathsf{def.}}{\Leftrightarrow} |v_1| \geq 1 \land |y| \geq 0 \land |x| = |v_1| \land |w| = |v_1| + |v_1| \land |v| = |v_1| + |v_1| \land |v| = |v| + |$$

Example:
$$xx = w \land z = xy \land w \in a^+ \land |z| = 2|w| - |x|$$

$$v_1 \mapsto a^+ \quad y \mapsto \Sigma^* \mid x \mapsto v_1 \quad w \mapsto v_1 v_1 \quad z \mapsto v_1 y$$

- **stable solution** (*Lang*, σ):
 - language assignment Lang: $v_1 \mapsto a^+, y \mapsto \Sigma^*$
 - **substitution map** σ : $x \mapsto v_1, w \mapsto v_1v_1, z \mapsto v_1y$
- LIA formula encoding possible lengths of variables:

$$\varphi_{\mathsf{len}} \overset{\mathsf{def.}}{\Leftrightarrow} |v_1| \geq 1 \land |y| \geq 0 \land |x| = |v_1| \land |w| = |v_1| + |v_1| \land |z| = |v_1| + |y|$$

Example:
$$xx = w \land z = xy \land w \in a^+ \land |z| = 2|w| - |x|$$

$$v_1 \mapsto a^+ \quad y \mapsto \Sigma^* \mid x \mapsto v_1 \quad w \mapsto v_1 v_1 \quad z \mapsto v_1 y$$

- **stable solution** (*Lang*, σ):
 - language assignment Lang: $v_1 \mapsto a^+, y \mapsto \Sigma^*$
 - **substitution map** σ : $x \mapsto v_1, w \mapsto v_1v_1, z \mapsto v_1y$
- LIA formula encoding possible lengths of variables:

$$\varphi_{\mathsf{len}} \overset{\mathsf{def.}}{\Leftrightarrow} |v_1| \geq 1 \land |y| \geq 0 \land |x| = |v_1| \land |w| = |v_1| + |v_1| \land |z| = |v_1| + |y|$$

- ask LIA solver if $|z| = 2|w| |x| \wedge \varphi_{len}$ is satisfiable
 - it is, we have model $|v_1| = |x| = 1$, |w| = |y| = 2, |z| = 3
 - we can choose any word from $Lang(v_1)$ and Lang(y) with correct lengths:

$$v_1 = a$$
 and $y = bc$

models for x, w, and z are computed using the substitution map σ :

$$x = v_1 = a, w = v_1v_1 = aa, and z = v_1y = abc$$

$$\bigwedge_{1 \leq i \leq n} x \in \mathcal{S}_i \quad \land \quad \bigwedge_{1 \leq i \leq m} x \notin \mathcal{R}_i$$

- \blacksquare aut(S): Regex \leadsto NFA
- $L(P) \cap L(U) \neq \emptyset$ where $P = \bigcap_{1 < i < n} \operatorname{aut}(S_i), U = \bigcap_{1 < i < m} \operatorname{aut}(\mathcal{R}_i)^{\complement}$
- Problem: Expensive complement computation (determinization) for negations

$$\bigwedge_{1 < i < n} x \in \mathcal{S}_i \quad \land \quad \bigwedge_{1 < i < m} x \notin \mathcal{R}_i$$

- \blacksquare aut(S): Regex \leadsto NFA
- lacksquare $L(P) \cap L(U)
 eq \emptyset$ where $P = \bigcap_{1 < i < n} \operatorname{aut}(\mathcal{S}_i), U = \bigcap_{1 < i < m} \operatorname{aut}(\mathcal{R}_i)^{\complement}$
- Problem: Expensive complement computation (determinization) for negations
- eager simulation redunction/determinisation (if necessary) for aut
- \blacksquare sort S_i by **estimated NFA size**
- inclusion/universality checking: $L(P) \not\subseteq L(V)$ where $V = \bigcup_{1 \le i \le m} \operatorname{aut}(\mathcal{R}_i)$
 - antichain-based algorithms: perform well on real-world problems
- avoid construction for simpler cases

Pure regular constraints: Syntactic check

- Analyze single regexes ($x \in \mathcal{R}, x \notin \mathcal{R}$) to extract syntactic properties
- used to decide emptiness/universality
- **Propagate flags** (e, u, ℓ) through operations:
 - $e \in \mathbb{B}_3$: the regex includes the empty word

 $\mathbb{B}_3 = \{\top, \bot, \mathsf{undef}\}$

- $u \in \mathbb{B}_3$: the regex is universal
- $\ell \in \mathbb{N} \cup \{\text{undef}\}$: the minimum length of words recognized by the regex

$$R_1:(e_1,u_1,\ell_1)$$
 $R_2:(e_2,u_2,\ell_2)$ re.++ (R_1,R_2) $(e_1 \wedge e_2,u,\ell_1+\ell_2),\ell_1+\ell_2>0 \rightsquigarrow u=\bot$, otherwise $u=u_1 \wedge u_2$

- Completely avoid the NFA construction by reasoning about the flags
- undef: when flags are insufficient \rightsquigarrow construct NFAs

Nielsen transformation

- Quadratic (each variable has at most two occurrences) and beyond
- Create a Nielsen graph (finite for a quadratic system)
 - node: set of equations, Nielsen tranformation metarules
 - priority queue; pruning of the state space
- lengths: counter abstraction system

[LIN-LMCS'21]

- heuristics for LIA formulae generation
- iteratively generating LIA for **extended runs** (under-approximation)
- self-loop saturation

$$(x \hookrightarrow \alpha x) : \frac{(xu = \alpha v) \in \mathcal{E}}{\operatorname{trim}(\mathcal{E}[x/\alpha x])}$$

$$(x \hookrightarrow \epsilon) : \frac{(xu = v) \in \mathcal{E}}{\operatorname{trim}(\mathcal{E}[x/\epsilon])}$$

Nielsen transformation

- Quadratic (each variable has at most two occurrences) and beyond
- Create a Nielsen graph (finite for a quadratic system)
 - node: set of equations, Nielsen tranformation metarules
 - priority queue; pruning of the state space
- lengths: counter abstraction system

[LIN-LMCS'21]

- heuristics for LIA formulae generation
- iteratively generating LIA for **extended runs** (under-approximation)
- self-loop saturation

$$(x \hookrightarrow \alpha x) : \frac{(xu = \alpha v) \in \mathcal{E}}{\operatorname{trim}(\mathcal{E}[x/\alpha x])}$$

$$(x \hookrightarrow \epsilon) : \frac{(xu = v) \in \mathcal{E}}{\operatorname{trim}(\mathcal{E}[x/\epsilon])}$$

$$xaby = yabx \land |x| \ge 50$$

$$xaby = yabx \land |x| \ge 50$$

$$xaby = yabx \land |x| \ge 50$$

Fresh counter variables for each step

$$\varphi(x,y) \Leftrightarrow x_0 = 0 \land y_0 = 0 \land$$

$$x_1 = 0 \land y_1 = y_0 \land$$

$$x_2 = x_1 + 2k \land y_2 = y_1 \land$$

$$y_3 = 0 \land x_3 = x_2 \land$$

$$x = x_3 \land y = y_3$$

$$xaby = yabx \land |x| \ge 50$$

Fresh counter variables for each step

$$\varphi(x,y) \Leftrightarrow x_0 = 0 \land y_0 = 0 \land$$

$$x_1 = 0 \land y_1 = y_0 \land$$

$$x_2 = x_1 + 2k \land y_2 = y_1 \land$$

$$y_3 = 0 \land x_3 = x_2 \land$$

$$x = x_3 \land y = y_3$$

Is
$$\varphi(|x|,|y|) \wedge |x| \geq 50$$
 satisfiable?

Length-based decision procedure

$$x = abyc \land x = zw \land x = uddc \land y = vad \land y = as \land |x| + |y| \ge 20$$

- Large systems (many equations, unrestricted variables and literals)

 → noodles explosion
- positions of literals matters
- Symbolically encode all possible alignments of literals (their positions) into LIA formulae
- String formula reduced into a LIA formula

Length-based decision procedure

$$x = abyc \land x = zw \land x = uddc \land y = vad \land y = as \land |x| + |y| \ge 20$$

- Large systems (many equations, unrestricted variables and literals)

 → noodles explosion
- positions of literals matters
- Symbolically encode all possible alignments of literals (their positions) into LIA formulae
- String formula reduced into a LIA formula
- Block graph: dependencies between blocks
- Block-acyclic string constraint: acyclic block graph

$$\bigwedge_{1\leq i\leq n}x=R_i$$

Length-based decision procedure: Alignments to LIA formula

$$x = abyc \land x = zw \land x = uddc \land y = vad \land y = as$$

string-integer conversions: to_int, from_code, etc.

[SAT'24]

- stable solution (*Lang*, σ); set of conversion constraints $C = \{k = \text{to_int}(x), y = \text{from_code}(l), \dots\}$, assume finite Lang(x)
- **create concise** φ_c for $c \in \mathcal{C}$

string-integer conversions: to_int, from_code, etc.

SAT'24]

- stable solution (Lang, σ); set of conversion constraints $C = \{k = \text{to_int}(x), y = \text{from_code}(l), \dots \}, \text{ assume finite } Lang(x)$
- **create concise** φ_c for $c \in \mathcal{C}$
- combining lengths and conversions $|x| \ge 3 \land to_int(x) < 100$
- handle substitutions $x \mapsto x_1 \cdots x_n \in \sigma$, ℓ_i : possible length of x_i (constant)

$$\mathsf{to_int}(x) = \sum_{1 \leq i \leq n} \Bigl(\mathsf{to_int}(x_i) \cdot 10^{\ell_{i+1} + \dots + \ell_n} \Bigr) \wedge \bigwedge_{1 \leq i \leq n} \Bigl(|x_i| = \ell_i \Bigr)$$

string-integer conversions: to_int, from_code, etc.

[SAT'24]

- stable solution (*Lang*, σ); set of conversion constraints $C = \{k = \text{to_int}(x), y = \text{from_code}(l), \dots \}, \text{ assume finite } Lang(x)$
- **create concise** φ_c for $c \in \mathcal{C}$
- combining lengths and conversions $|x| \ge 3 \land \text{to_int}(x) < 100$
- handle substitutions $x \mapsto x_1 \cdots x_n \in \sigma$, ℓ_i : possible length of x_i (constant)

$$\texttt{to_int}(x) = \sum_{1 \leq i \leq n} \Bigl(\texttt{to_int}(x_i) \cdot 10^{\ell_{i+1} + \dots + \ell_n} \Bigr) \wedge \bigwedge_{1 \leq i \leq n} \Bigl(|x_i| = \ell_i \Bigr)$$

- intervals $(0 \le \text{to_int}(x) \le 7 \land |x| = 1) \lor (20 \le \text{to_int}(x) \le 59 \land |x| = 2)$
- encoding invalid strings
- **underapproximation** of infinite languages

- transducer constraints (T(xy, uv)): replace_all
 - transducer noodlification: sequence of transducers
 - stable solution \(\sim \) construct multitape transducer composing the same variables substitutions
 - Parikh image for lengths

- transducer constraints (T(xy, uv)): replace_all
 - transducer noodlification: sequence of transducers
 - stable solution

 construct multitape transducer composing the same variables substitutions
 - Parikh image for lengths
- hard-positional constraints: ¬contains

[PLDI'25]

conversion to quandified LIA after stable solution found

Experimental evaluation

- SMT-LIB benchmarks, split into 3 categories:
 - Regex (mainly regular and length constraints): AutomatArk, Denghang, Redos, StringFuzz, Sygus-qgen
 - Equations (mostly word equations and length constraints with some small number of more complex constraints): Kaluza, Kepler, Norn, Omark, Slent, Slog, Webapp, Woorpje
 - Predicates (complex predicates): FullStrint, LeetCode, PyEx, StrSmallRw, Transducer+

■ Timeout: 120 s, memory limit: 8 GiB

Experimental evaluation: Procedures comparison

	number	Regex proc.		Nielsen transf.		Length-based		Stabillization-based	
	of calls	called	solved	called	solved	called	solved	called	solved
Sygus-qgen	747	100%	100%	0%	0%	0%	0%	0%	0%
Denghang	999	0.10%	0.10%	0%	0%	96.10%	96.10%	3.80%	3.80%
AutomatArk	20,062	99.97%	99.97%	0%	0%	0.02%	0.02%	0.01%	0.01%
StringFuzz	9,941	46.45%	46.45%	0%	0%	27.98%	27.96%	25.58%	25.58%
Redos	2,952	70.02%	70.02%	0%	0%	11.21%	11.21%	18.77%	18.77%
Full Regex	34,701	79.21%	79.21%	0%	0%	11.75%	11.74%	9.04%	9.04%
LeetCode	874	1.37%	1.37%	0%	0%	59.27%	16.70%	81.92%	81.92%
StrSmallRw	6,327	0%	0%	0%	0%	4.85%	3.75%	96.25%	96.25%
PyEx	26,045	0.10%	0.10%	0%	0%	0.08%	0.08%	99.82%	99.82%
FullStrInt	9,003	0.04%	0.04%	0%	0%	0.26%	0.26%	99.70%	99.70%
Transducer+	0	-				-			
Full Deadlestee	42.240	0.400/	0.400/	0%		2.06%	4.04.0/	98.89%	00.000/
Full Predicates	42,249	0.10%	0.10%	0%	0%	2.06%	1.01%	98.89%	98.89%
Norn	918	11.76%	11.76%	0%	0%	6.86%	6.86%	81.37%	81.37%
Slog	1,565	25.37%	25.37%	0%	0%	0.13%	0.13%	74.50%	74.50%
Slent	1,489	0.40%	0.40%	0%	0%	35.19%	30.09%	69.51%	69.51%
Omark	9	0%	0%	11.11%	11.11%	11.11%	0%	88.89%	88.89%
Kepler	579	0%	0%	99.83%	99.83%	0%	0%	0%	0%
Woorpje	478	0.84%	0.84%	43.10%	42.47%	30.96%	27.20%	20.50%	20.50%
Webapp	381	0.52%	0.52%	0%	0%	2.36%	0.26%	99.21%	99.21%
Kaluza	11,222	35.31%	35.31%	0%	0%	63.45%	61.78%	2.91%	2.91%
Full Equations	16,641	26.92%	26.92%	4.72%	4.70%	47.27%	45.53%	22.59%	22.59%
All	93,591	34.20%	34.20%	0.84%	0.84%	13.69%	12.91%	52.01%	52.01%

Experimental evaluation: Running time

	Regex (32,242)		Equations (25,727)		Predicates (45,436)		All (103,405)	
	solved	time	solved	time	solved	time	solved	time
Z3-Noodler	32,232	3,688	25,301	1,147	45,035	6,353	102,568	11,118
Z3-Noodler $^{\mathcal{M}}$	32,228	4,010	25,299	1,456	45,035	7,321	102,562	12,787
cvc5	29,290	59,705	25,214	2,529	45,337	11,627	99,841	73,861
$cvc5^\mathcal{M}$	29,287	59,892	25,214	2,756	45,337	12,220	99,838	74,868
Z3	29,075	51,379	24,569	3,240	44,101	74,094	97,745	128,712
$Z3^\mathcal{M}$	29,064	51,830	24,571	4,013	44,096	74,708	97,731	130,551

Experimental evaluation: Comparison with other solvers

Times are in seconds, axes are logarithmic, timeouts on side dashed lines (120 s)

• Regex, • Equations, and • Predicates.

Conclusion and Acknowledgments

List of collaborators:

- František Blahoudek
- Yu-Fang Chen
- David Chocholatý
- Vojtěch Havlena
- Michal Hečko
- Lukáš Holík
- Jan Hranička
- Ondřej Lengál
- Juraj Šíč

Conclusion and Acknowledgments

List of collaborators:

- František Blahoudek
- Yu-Fang Chen
- David Chocholatý
- Vojtěch Havlena
- Michal Hečko
- Lukáš Holík
- Jan Hranička
- Ondřej Lengál
- Juraj Síč

Future work:

- optimization of transducer constraints
- application of Z3-Noodler on the analysis of the security of web applications

