Instance-Wise Minimax-Optimal Algorithms for Logistic Bandits

MARC ABEILLE¹, LOUIS FAURY^{1,2}, CLÉMENT CALAUZÈNES¹ ¹Criteo AI Lab, ²LTCI Télécom Paris

MOTIVATION

Toward non-linear reward model.

- Parametric bandit results mostly concern the linear setting,
- Non-linearity often arises in real-world application,
- Impact of non-linearity on the exploration-exploitation tradeoff is poorly understood.

The logistic bandit setting.

- Non-linear reward signal,
- Compact and minimal setting,
- Widely used for practical applications.

We characterize the impact of non-linearity for Logistic Bandit:

- → First problem-dependent lower-bound,
- → Minimax-optimal algorithm.

The Logistic Bandit problem

The reward model.

- $\mathcal{X} \subset \mathbb{R}^d$ is the arm set,
- $r(x) \in \{0,1\}$ is the reward associated with arm $x \in \mathcal{X}$,
- $\theta_{\star} \in \mathbb{R}^d$ unknown parameter.

[Binary reward] $r(x) \sim \texttt{Bernoulli}(\mu(x^\mathsf{T}\theta_\star))$

[Non-linear link function] $\mu(z) = (1 + \exp(-z))^{-1}$

The learning problem.

At each step $t \leq T$:

- Choose a arm $x_t \in \mathcal{X}$,
- Receive $r(x_t)$,

Objective: Minimize Regret

$$R_{\theta_{\star}}(T) = \sum_{t=1}^{T} \left[\max_{x \in \mathcal{X}} \mu(x^{\mathsf{T}} \theta_{\star}) - \mu(x_{t}^{\mathsf{T}} \theta_{\star}) \right] .$$

Quantifying non-linearity We consider two important problemdependent constants:

$$\kappa_{\star} := 1/\dot{\mu}(\max_{x \in \mathcal{X}} x^{\mathsf{T}} \theta_{\star})$$
$$\kappa_{\star} := 1/\min_{x \in \mathcal{X}} \dot{\mu}(x^{\mathsf{T}} \theta_{\star})$$

- κ_{\star} : "distance to linearity" around the optimal action,
- κ_{χ} : worst-case "distance to linearity" over the decision set.

Non-linearity: blessing or curse?

From LB to LogB

 $\mathbb{E}ig[m{r_t}ig|m{x_t}ig] = m{x_t}^{\mathsf{T}}m{ heta_\star}$

 $\mathbb{E}[\mathbf{r_t}|\mathbf{x_t}] = (1 + \exp(-\mathbf{x_t}^\mathsf{T}\boldsymbol{\theta_\star}))^{-1}$

Impact on the learning.

Different richness of information associated with sampling an arm: LogB High in the center, low in the LB Same everywhere, tails!

Despite non-linearity \rightarrow available conf. set. \mathcal{C}_t for LogB [Faury et al, Improved Optimistic Algorithms for Logistic Bandits, ICML'20]

Some regions are *harder* to learn that other \rightarrow the conf. set. \mathcal{C}_t is *not* an ellipsoid!

Impact on the predicted performance

LogB deviation in parameters \rightarrow little to no deviation in performance in the tails

$$\|\theta - \theta_{\star}\| = \delta \quad \Rightarrow \quad \mu(x^{\mathsf{T}}\theta) \simeq \mu(x^{\mathsf{T}}\theta_{\star})$$

Open question: does easy prediction cancel out hard learning?

Related Work and Contributions

Related work.

[Filippi et al., NIPS'10]

$$R_{\theta_{\star}}(T) = \lesssim \kappa_{\varkappa} d\sqrt{T}$$

[Faury et al., ICML'20]

$$R_{\theta_{\star}}(T) \lesssim d\sqrt{T} + \kappa_{\varkappa}$$

[Dong et al., COLT'19]

In the worst case, $R_{\theta_{\star}}(T)$ must increase with κ_{χ}

Contributions.

Theorem 1. (Regret Upper Bound) The regret of OFU-Log satisfies with high-probability:

$$R(T) \lesssim d\sqrt{\frac{T}{\kappa_{\star}}} + (\kappa_{\star}).$$

Theorem 2. (Local Lower Bound) Let $\mathcal{X} = \mathcal{S}_d(0,1)$, for any θ_{\star} and T large enough, it exists $\epsilon > 0$ small enough s.t.

$$\min_{\pi} \max_{\|\theta - \theta_{\star}\| \le \epsilon} \mathbb{E} [R_{\theta}^{\pi}(T)] = \Omega \left(d\sqrt{\frac{T}{\kappa_{\star}}} \right).$$

OPTIMISTIC ALGORITHM OFULog

for $t = \{0, ..., T\}$ do Set $\lambda_t \leftarrow d \log(t)$.

(Learning) Solve $\theta_t = \arg\min_{\theta} \mathcal{L}_t(\theta)$.

(Planning) Solve $(x_t, \theta_t) \in \arg \max_{\mathcal{X}, \mathcal{C}_t(\delta)} \mu (x^\mathsf{T} \theta)$.

Play x_t and observe reward r_{t+1} .

end for

where $\mathcal{L}_t(\theta)$ and $\mathcal{C}_t(\delta)$ are the log-likelihood function and confidence set associated with the learning problem.

IDEAS BEHIND THE LOWER BOUND

Objective and approach

- we shoot for a *problem-dependent* lower-bound
- standard approach consider worst-case over all possible instance
- inspired by [Simchowitz et al., ICML'20] \rightarrow local lower-bound
- consider worst-case over all nearby alternative around a given *prob*lem instance.

ideas

- we consider a given instance parametrized by θ_{\star} ,
- let π denote a policy that outputs a sequence of arms, and $R^{\pi}_{\theta}(T)$ the induced expected regret.

Small regret ↔ low exploration

$$R_{\theta_{\star}}^{\pi}(T) \propto 1/\kappa_{\star} \sum_{t=1}^{T} \|x_t - x_{\star}(\theta_{\star})\|^2, \quad x_{\star}(\theta_{\star}) = \arg\max_{x \in \mathcal{X}} \mu(x^{\mathsf{T}}\theta_{\star})$$

- $R_{\theta_{\star}}^{\pi}(T)$ small $\leftrightarrow x_t \simeq x_{\star}(\theta_{\star})$,
- directions orthogonal to $x_{\star}(\theta_{\star})$ are poorly explored!
- Larger $\kappa_{\star} \to smaller$ impact when deviating from $x_{*}(\theta_{\star})!$

Low exploration ↔ large set of plausible alternative

• We quantify the *similarity* between instances θ , θ_{\star} under policy π by the *discrepancy*

$$D_{\mathsf{KL}}\left(\mathbb{P}^\pi_{ heta}, \mathbb{P}^\pi_{ heta_\star}
ight)$$

large $D_{\mathsf{KL}}\left(\mathbb{P}^{\pi}_{\theta},\mathbb{P}^{\pi}_{\theta_{\star}}\right) \to \mathit{easy}$ to distinguish θ and θ_{\star} under π , small $D_{\mathsf{KL}}\left(\mathbb{P}^{\pi}_{\theta},\mathbb{P}^{\pi}_{\theta_{+}}\right) \to \mathsf{hard}$ to distinguish θ and θ_{\star} under π , $\{D_{\mathsf{KL}}\left(\mathbb{P}^{\pi}_{\theta},\mathbb{P}^{\pi}_{\theta_*}\right)\leq 1\}$

$$D_{\mathsf{KL}}\left(\mathbb{P}^{\pi}_{\theta}, \mathbb{P}^{\pi}_{\theta_{\star}}\right) \propto \sqrt{\frac{T}{\kappa_{\star}}} \|\theta - \theta_{\star}\|^{2}$$

• large κ_{\star} degrades the richness of acquired information,

Tension and trade-off

- Policy π cannot perform well on two *distinct* instances,
- but may not yield similar information.

Trade-off

- Let π perform well for θ_{\star} ,
- consider an alternative instance θ such that $\|\theta \theta_{\star}\|^2 \approx \sqrt{\frac{\kappa_{\star}}{T}}$,
- the regret of π for the instance θ must be large:

$$R_{\theta}^{\pi}(T) \approx 1/\kappa_{\star} \sum_{t=1}^{T} \|x_t - x_*(\theta)\|^2 \approx 1/\kappa_{\star} \sum_{t=1}^{T} \|x_*(\theta_{\star}) - x_*(\theta)\|^2$$

IDEAS BEHIND THE UPPER BOUND

Permanent and transitory regimes

• Regret decomposition:

$$R_{\theta_{\star}}(T) = R^{\text{perm}}(T) + R^{\text{trans}}(T)$$

$$\tilde{\mathcal{O}}(\sqrt{T})$$

$$\tilde{\mathcal{O}}(1)$$

Permanent regime: intuition.

- Sublinear regret \Rightarrow play mostly around the best arm x_{\star} . \longrightarrow Almost a linear bandit with slope $1/\kappa_{\star}$.
- A finer analysis is coherent with this conceptual argument:

$$R^{\mathrm{perm}}(T) \leq d\sqrt{\sum_{t=1}^{T} \dot{\mu}(x_t^\mathsf{T} \theta_\star)} \approx d\sqrt{T/\kappa_\star}$$

• Formal proof: thanks to self-concordance property.

Transitory regime and detrimental arms.

• Detrimental arm \mathcal{X}_{-} : low-information and large gap far left tail of the reward signal:

• Transitory regime: how long before discarding detrimental arms:

$$R^{\operatorname{trans}}_{\theta_{\star}}(T) \leq \min \left(\kappa_{\varkappa}, \sum_{t=1}^{T} \mathbb{1}(x_{t} \in \varkappa_{-}) \right)$$

• Fast if the proportion of detrimental arm is small:

Proposition 1. (Transitory regret) With h.p.:

$$R^{\text{trans}}_{\theta_{\star}}(T) \lesssim_{T} d^{2} + dK$$
 if $|\mathcal{X}_{-}| \leq K$,
 $R^{\text{trans}}_{\theta_{\star}}(T) \lesssim_{T} d^{3}$ if $\mathcal{X} = \mathcal{B}_{d}(0, 1)$.

 \longrightarrow independent of κ_{χ} for reasonable configurations.

• Convex relaxation. bla

experiment. $\kappa = 400$ $300 \operatorname{Regret}(T)$

CONCLUSION

- Blah
- Blah Blah
- Blah

REFERENCES

- Y. Abbasi-Yadkori, Cs. Szepesvári. Regret Bounds for the Adaptive Control of Linear Quadratic Systems. In Proceedings of COLT, 2011
- S. Bittanti and M.C. Campi. Adaptive control of linear time invariant systems: the "bet on the best" principle. Commun. Inf. Syst. Volume 6, 2006. M.K.S. Faradonbeh, A. Tewari, and G. Michailidis. Finite Time Analysis of
- Optimal Adaptive Policies for Linear-Quadratic Systems. arXiv:1711.07230. Y. Ouyang, M. Gagrani, and R. Jain. Learning-based Control of Unknown Linear
- Systems with Thompson Sampling. arXiv:1709.04047. l. Osband, and B. Van Roy. Model-based Reinforcement Learning and the Eluder
- Dimension NIPS, 2014. M. Abeille, and A. Lazaric. Thompson Sampling for Linear-Quadratic Control

Problems. Proceedings of AISTATS, 2017.