3.14 Theorem. Given any integer a and any natural number n, there exists a unique integer t in the set $\{0, 1, 2, ..., n-1\}$ such that $a \equiv t \pmod{n}$.

Proof. Let $a \in \mathbb{Z}$ be given. By TDA, there exists a unique quotient q and unique remainder t such that

$$a = nq + t \text{ for } n \in \mathbb{Z},$$
$$a - t = nq.$$

Thus, by definition, $a \equiv t \pmod{n}$.