Predicting IMDb Scores Using Machine Learning Phase 2 Submission Document Team Members ABIN BINU JACOB – 961721104002 SELVAK S - 961721104011 ARUN D - 961721104304 VASANTH P.S - 961721104317 SANTHOSH KUMAR R – 961721104314			
Phase 2 Submission Document Team Members ABIN BINU JACOB – 961721104002 SELVAK S - 961721104011 ARUN D - 961721104304 VASANTH P.S - 961721104317			
Phase 2 Submission Document Team Members ABIN BINU JACOB – 961721104002 SELVAK S - 961721104011 ARUN D - 961721104304 VASANTH P.S - 961721104317			
Phase 2 Submission Document Team Members ABIN BINU JACOB – 961721104002 SELVAK S - 961721104011 ARUN D - 961721104304 VASANTH P.S - 961721104317			
Phase 2 Submission Document Team Members ABIN BINU JACOB – 961721104002 SELVAK S - 961721104011 ARUN D - 961721104304 VASANTH P.S - 961721104317			
Team Members ABIN BINU JACOB – 961721104002 SELVAK S - 961721104011 ARUN D - 961721104304 VASANTH P.S - 961721104317	<u>Predictin</u>	g IMDb Scores	Using Machine Learning
ABIN BINU JACOB – 961721104002 SELVAK S - 961721104011 ARUN D - 961721104304 VASANTH P.S - 961721104317		Phase 2 Submis	sion Document
ABIN BINU JACOB – 961721104002 SELVAK S - 961721104011 ARUN D - 961721104304 VASANTH P.S - 961721104317			
ABIN BINU JACOB – 961721104002 SELVAK S - 961721104011 ARUN D - 961721104304 VASANTH P.S - 961721104317			
ABIN BINU JACOB – 961721104002 SELVAK S - 961721104011 ARUN D - 961721104304 VASANTH P.S - 961721104317			
ABIN BINU JACOB – 961721104002 SELVAK S - 961721104011 ARUN D - 961721104304 VASANTH P.S - 961721104317			
ABIN BINU JACOB – 961721104002 SELVAK S - 961721104011 ARUN D - 961721104304 VASANTH P.S - 961721104317			
ABIN BINU JACOB – 961721104002 SELVAK S - 961721104011 ARUN D - 961721104304 VASANTH P.S - 961721104317			
ABIN BINU JACOB – 961721104002 SELVAK S - 961721104011 ARUN D - 961721104304 VASANTH P.S - 961721104317			
ABIN BINU JACOB – 961721104002 SELVAK S - 961721104011 ARUN D - 961721104304 VASANTH P.S - 961721104317			
ABIN BINU JACOB – 961721104002 SELVAK S - 961721104011 ARUN D - 961721104304 VASANTH P.S - 961721104317			Toom Mombors
SELVAK S - 961721104011 ARUN D - 961721104304 VASANTH P.S - 961721104317			
ARUN D - 961721104304 VASANTH P.S - 961721104317			
VASANTH P.S - 961721104317			

Project: Predicting IMDb Scores

Introduction

Predicting IMDb scores is valuable for movie studios, distributors, and viewers. It assists in understanding a movie's potential success, guiding marketing strategies, and aiding investment decisions. This report details the process of building an IMDb score prediction model.

Content for Project Phase 2

Data Overview

Data Pre-processing

Feature Engineering

Model Selection

Model Training

Model Evaluation

Data Source

A good data source for house price prediction using machine learning should be Accurate, Complete, Covering the geographic area of interest, Accessible.

Dataset Link: (https://www.kaggle.com/code/imdb-score-prediction-for-movies)

Data Overview

We collected a comprehensive dataset of movies, including various features such as genres, cast, director, budget, and release year. The dataset also includes IMDb scores, which serve as our target variable

Data Processing

To prepare the data for modelling, we executed the following preprocessing tasks

- Handling missing data
- Encoding categorical variables
- Normalizing or scaling numeric features
- Addressing outliers, if necessary

Feature Engineering

Feature engineering involved extracting valuable features from the dataset, including

- Genre-based features
- Actor and director-related features
- Budget normalization
- o Release year transformation

Model Selection

We experimented with several machine learning models suitable for regression tasks, including

- Linear Regression
- o Random Forest
- Gradient Boosting
- Neural Networks

Model Training

The selected model was trained on a portion of the dataset, and hyperparameters were tuned for optimal performance

Model Evaluation

The model's performance was assessed using various evaluation metrics, including

- Mean Absolute Error (MAE)
- Root Mean Squared Error (RMSE)
- o R-squared (R2)

These metrics provided insights into the model's predictive accuracy and its ability to estimate IMDb scores effectively

Program:

Predicting IMDb Scores

In[1]:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from plotnine import *

Introduction

To Predict an IMDb Scores using Machine Language

Background

This dataset contains the information about the movies. For a movie to be commercial success, it depends on various factors like director, actors, critic reviews and viewers reaction. IMDb score is one of the important factors to measure the movie's success.

Description of dataset attributes

- Color :- Movie is black or coloured
- Director_name:- Name of the movie director
- num_critic_for_reviews :- No of critics for the movie
- duration:- movie duration in minutes
- director_facebook_likes:-Number of likes for the Director on his Facebook Page
- actor_3_facebook_likes:- No of likes for the actor 3 on his/her facebook Page
- actor2_name:- name of the actor 2
- actor_1_facebook_likes:- No of likes for the actor 1 on his/her facebook Page

- o gross:- Gross earnings of the movie in Dollars
- genres:- Film categorization like 'Animation', 'Comedy',
 'Romance', 'Horror', 'Sci-Fi', 'Action', 'Family'
- o actor_1_name:- Name of the actor 1
- o movie title:-Title of the movie
- num_voted_users:-No of people who voted for the movie
- o cast_total_facebook_likes:- Total facebook like for the movie
- o actor 3 name:- Name of the actor 3
- facenumber_in_poster:- No of actors who featured in the movie poster
- o plot keywords:-Keywords describing the movie plots
- o movie imdb link:-Link of the movie link
- o num_user_for_reviews:- Number of users who gave a review
- o language:- Language of the movie
- o country:- Country where movie is produced
- content_rating:- Content rating of the movie
- o budget:- Budget of the movie in Dollars
- title_year:- The year in which the movie is released
- o actor 2 facebook likes:- facebook likes for the actor 2
- imdb_score:- IMDB score of the movie
- o aspect ratio: Aspect ratio the movie was made in
- o movie_facebook_likes:- Total no of facebook likes for the movie

Case Study

The dataset here gives the massive information about the movies and their IMDB scores respectively. We are going to analyze each and every factor which can influence the IMDb ratings so that we can predict better results. The movie with the higher IMDb score is more successful as compared to the movies with low IMDb score.

Data Processing

In[2]:

movie_df=pd.read_csv("/kaggle/input/imdb-5000-movie-dataset/movie_metadata.csv")

In[3]:

movie_df.head(10)

Out[3]:

	color	director_name	num_critic_for_reviews	duration	director_facebook_likes	actor_3_facebook_likes	actor_2_name	actor_1_facebook_likes	gross	genres
0	Color	James Cameron	723.0	178.0	0.0	855.0	Joel David Moore	1000.0	760505847.0	Action Advent
1	Color	Gore Verbinski	302.0	169.0	563.0	1000.0	Orlando Bloom	40000.0	309404152.0	Action Advent
2	Color	Sam Mendes	602.0	148.0	0.0	161.0	Rory Kinnear	11000.0	200074175.0	Action Advent
3	Color	Christopher Nolan	813.0	164.0	22000.0	23000.0	Christian Bale	27000.0	448130642.0	Action Thriller
4	NaN	Doug Walker	NaN	NaN	131.0	NaN	Rob Walker	131.0	NaN	Documentary
5	Color	Andrew Stanton	462.0	132.0	475.0	530.0	Samantha Morton	640.0	73058679.0	Action Advent
6	Color	Sam Raimi	392.0	156.0	0.0	4000.0	James Franco	24000.0	336530303.0	Action Advent
7	Color	Nathan Greno	324.0	100.0	15.0	284.0	Donna Murphy	799.0	200807262.0	Adventure Ani
8	Color	Joss Whedon	635.0	141.0	0.0	19000.0	Robert Downey Jr.	26000.0	458991599.0	Action Advent
9	Color	David Yates	375.0	153.0	282.0	10000.0	Daniel Radcliffe	25000.0	301956980.0	Adventure Far

In[4]:

movie_df.shape

Out[4]:

(5043, 28)

In[5]:

movie_df.dtypes

Out[5]:

color object director_name object num_critic_for_reviews float64 float64 director_facebook_likes float64 float64 actor_3_facebook_likes actor_2_name object actor_1_facebook_likes float64 gross float64 genres object actor_1_name object object movie_title num_voted_users int64 cast_total_facebook_likes int64 actor_3_name object facenumber_in_poster float64 plot_keywords object movie_imdb_link object num_user_for_reviews float64 language object country object content_rating object budget float64 title_year float64 actor_2_facebook_likes float64 imdb_score float64 float64 aspect_ratio movie_facebook_likes int64 dtype: object

In[6]:

 $movie_df.describe().T$

Out[6]:

	count	mean	std	min	25%	50%	75%	max
num_critic_for_reviews	4993.0	1.401943e+02	1.216017e+02	1.00	50.00	110.00	195.00	8.130000e+02
duration	5028.0	1.072011e+02	2.519744e+01	7.00	93.00	103.00	118.00	5.110000e+02
director_facebook_likes	4939.0	6.865092e+02	2.813329e+03	0.00	7.00	49.00	194.50	2.300000e+04
actor_3_facebook_likes	5020.0	6.450098e+02	1.665042e+03	0.00	133.00	371.50	636.00	2.300000e+04
actor_1_facebook_likes	5036.0	6.560047e+03	1.502076e+04	0.00	614.00	988.00	11000.00	6.400000e+05
gross	4159.0	4.846841e+07	6.845299e+07	162.00	5340987.50	25517500.00	62309437.50	7.605058e+08
num_voted_users	5043.0	8.366816e+04	1.384853e+05	5.00	8593.50	34359.00	96309.00	1.689764e+06
cast_total_facebook_likes	5043.0	9.699064e+03	1.816380e+04	0.00	1411.00	3090.00	13756.50	6.567300e+05
facenumber_in_poster	5030.0	1.371173e+00	2.013576e+00	0.00	0.00	1.00	2.00	4.300000e+01
num_user_for_reviews	5022.0	2.727708e+02	3.779829e+02	1.00	65.00	156.00	326.00	5.060000e+03
budget	4551.0	3.975262e+07	2.061149e+08	218.00	6000000.00	20000000.00	45000000.00	1.221550e+10
title_year	4935.0	2.002471e+03	1.247460e+01	1916.00	1999.00	2005.00	2011.00	2.016000e+03
actor_2_facebook_likes	5030.0	1.651754e+03	4.042439e+03	0.00	281.00	595.00	918.00	1.370000e+05
imdb_score	5043.0	6.442138e+00	1.125116e+00	1.60	5.80	6.60	7.20	9.500000e+00
aspect_ratio	4714.0	2.220403e+00	1.385113e+00	1.18	1.85	2.35	2.35	1.600000e+01
movie_facebook_likes	5043.0	7.525965e+03	1.932045e+04	0.00	0.00	166.00	3000.00	3.490000e+05

In[7]:

movie_df.drop('movie_imdb_link', axis=1, inplace=True)

In[8]:

movie_df["color"].value_counts()
movie_df.drop('color',axis=1,inplace=True)

In[9]:

 $movie_df.columns$

Out[9]:

In[10]:

movie_df.isna().any()

Out[10]:

director_name True num_critic_for_reviews True director_facebook_likes True actor_3_facebook_likes True actor_2_name True actor_1_facebook_likes True gross True genres False actor_1_name False movie_title num_voted_users False cast_total_facebook_likes actor_3_name True facenumber_in_poster plot_kevwords True num_user_for_reviews True language country True content_rating budget True title_year True actor_2_facebook_likes imdb_score False aspect_ratio True movie_facebook_likes False dtype: bool

In[11]:

movie_df.isna().sum()

Out[11]:

director_name	104
num_critic_for_reviews	50
duration	15
director_facebook_likes	104
actor_3_facebook_likes	23
actor_2_name	13
actor_1_facebook_likes	7
gross	884
genres	0
actor_1_name	7
movie_title	0
num_voted_users	0
cast_total_facebook_likes	0
actor_3_name	23
facenumber_in_poster	13
plot_keywords	153
num_user_for_reviews	21
language	12
country	5
content_rating	303
budget	492
title_year	108
actor_2_facebook_likes	13
imdb_score	0
aspect_ratio	329
movie_facebook_likes	0
dtype: int64	

In[12]:

movie_df.dropna(axis=0,subset=['director_name', 'num_critic_for_reviews','duration','director_facebook_likes','actor_3_facebook_likes','actor_2_name','actor_1_facebook_likes','actor_1_name','actor_3_name','facenumber_in_poster','num_user_for_reviews','language','country','actor_2_facebook_likes','plot_keywords'],inpl ace=True)

In[13]:

movie_df.shape

Out[13]:

(4737, 26)

In[14]:

movie_df["content_rating"].fillna("R", inplace = True

In[15]:

movie_df["budget"].fillna(movie_df["budget"].median(),inplace=True)

In[17]:

movie_df['gross'].fillna(movie_df['gross'].median(),inplace=True)

In[18]:

movie_df.isna().sum()

Out[18]:

director_name	0
num_critic_for_reviews	0
duration	0
director_facebook_likes	0
actor_3_facebook_likes	0
actor_2_name	0
actor_1_facebook_likes	0
gross	0
genres	0
actor_1_name	0
movie_title	0
num_voted_users	0
cast_total_facebook_likes	9
actor_3_name	0
facenumber_in_poster	0
plot_keywords	0
num_user_for_reviews	0
language	0
country	0
content_rating	0
budget	0
title_year	0
actor_2_facebook_likes	0
imdb_score	0
aspect_ratio	0
movie_facebook_likes	0
dtype: int64	

In[19]:

movie_df.drop_duplicates(inplace=True)
movie_df.shape

Out[19]:

(4695, 26)

In[20]:

movie_df["language"].value_counts()

Zulu

Out[20]:

English	4405	Hungarian	1
French	69	•	
Spanish	35	Mongolian	1
Hindi	25	Greek	1
Mandarin	24		
German	18	Romanian	1
Japanese	16	Bosnian	1
Russian	11	DOSHILAH	'
Italian	10	Telugu	1
Cantonese	10	Maya	1
Portuguese	8	riaya	1
Korean	8	Polish	1
Danish	5	Filinino	1
Norwegian	4	Filipino	1
Swedish	4	Czech	1
Hebrew	4	Dzonakho	1
Dutch	4	Dzongkha	1
Persian	4	Kazakh	1
Arabic	3	Vietnemese	1
Thai	3	Vietnamese	1
Indonesian	2	Icelandic	1
None	2	A	4
Aboriginal	2	Aramaic	1
Dari	2	Name: language,	dtype: int64
711711	2	zangaage,	,po. 2

In[21]:

```
plt.figure(figsize=(40,10))
sns.countplot(movie_df["language"])
plt.show()
```

In[22]:

movie_df.drop('language',axis=1,inplace=True)

In[23]:

```
movie_df["Profit"]=movie_df['budget'].sub(movie_df['gross'], axis = 0)
movie_df.head(5)
```

Out[23]:

	director_name	num_critic_for_reviews	duration	director_facebook_likes	actor_3_facebook_likes	actor_2_name	actor_1_facebook_likes	gross	genres
0	James Cameron	723.0	178.0	0.0	855.0	Joel David Moore	1000.0	760505847.0	Action Adventure Far Fi
1	Gore Verbinski	302.0	169.0	563.0	1000.0	Orlando Bloom	40000.0	309404152.0	Action Adventure Far
2	Sam Mendes	602.0	148.0	0.0	161.0	Rory Kinnear	11000.0	200074175.0	Action Adventure Th
3	Christopher Nolan	813.0	164.0	22000.0	23000.0	Christian Bale	27000.0	448130642.0	Action Thriller
5	Andrew Stanton	462.0	132.0	475.0	530.0	Samantha Morton	640.0	73058679.0	Action Adventure Sci

In[24]:

```
movie_df['Profit_Percentage']=(movie_df["Profit"]/movie_df["gross"])*100
movie_df
```

Out[24]:

	director_name	num_critic_for_reviews	duration	director_facebook_likes	actor_3_facebook_likes	actor_2_name	actor_1_facebook_likes	gross	genres
0	James Cameron	723.0	178.0	0.0	855.0	Joel David Moore	1000.0	760505847.0	Action Adventur
1	Gore Verbinski	302.0	169.0	563.0	1000.0	Orlando Bloom	40000.0	309404152.0	Action Adventur
2	Sam Mendes	602.0	148.0	0.0	161.0	Rory Kinnear	11000.0	200074175.0	Action Adventur
3	Christopher Nolan	813.0	164.0	22000.0	23000.0	Christian Bale	27000.0	448130642.0	Action Thriller
5	Andrew Stanton	462.0	132.0	475.0	530.0	Samantha Morton	640.0	73058679.0	Action Adventur
5034	Neill Dela Llana	35.0	80.0	0.0	0.0	Edgar Tancangco	0.0	70071.0	Thriller
5035	Robert Rodriguez	56.0	81.0	0.0	6.0	Peter Marquardt	121.0	2040920.0	Action Crime Dr
5037	Edward Burns	14.0	95.0	0.0	133.0	Caitlin FitzGerald	296.0	4584.0	Comedy Drama
5038	Scott Smith	1.0	87.0	2.0	318.0	Daphne Zuniga	637.0	26005908.0	Comedy Drama
5042	Jon Gunn	43.0	90.0	16.0	16.0	Brian Herzlinger	86.0	85222.0	Documentary

In[25]:

value_counts=movie_df["country"].value_counts()
print(value_counts)

Out[25]:

USA	3568	Poland	2
UK	420	Taiwan	2
France	149	Iceland	2
Canada	107	Romania	2
Germany	96		_
Australia	53	Hungary	2
Spain	32	Greece	2
India	27	Soviet Union	1
China	24	Slovakia	1
Japan	21	Finland	1
Italy	20	Official site	1
Hong Kong	16	Turkey	1
New Zealand	14		-
South Korea	12	Peru	1
Ireland	11	Libya	1
Denmark	11	Afghanistan	1
Russia	11	Cambodia	1
Mexico	11	Indonesia	1
South Africa	8	Nigeria	1
Brazil	8		1
Norway	7	Kyrgyzstan	-
Netherlands	5	Colombia	1
Sweden	5	New Line	1
Thailand	4	Philippines	1
Iran	4	Bahamas	1
Argentina	4	Bulgaria	1
Czech Republic	3		-
Switzerland	3	Georgia	1
Belgium	3	Aruba	1
Israel	3	Chile	1
West Germany	3	Name: country,	dtype: int64

In[26]:

```
vals = value_counts[:2].index
print (vals)
movie_df['country'] = movie_df.country.where(movie_df.country.isin(vals), 'other')
```

In[27]:

movie_df["country"].value_counts()

Out[27]:

USA 3568 other 707 UK 420

Name: country, dtype: int64

In[28]:

movie_df.head(10)

Out[28]:

	director_name	num_critic_for_reviews	duration	director_facebook_likes	actor_3_facebook_likes	actor_2_name	actor_1_facebook_likes	gross	genres
0	James Cameron	723.0	178.0	0.0	855.0	Joel David Moore	1000.0	760505847.0	Action Adventure Fa
1	Gore Verbinski	302.0	169.0	563.0	1000.0	Orlando Bloom	40000.0	309404152.0	Action Adventure Fa
2	Sam Mendes	602.0	148.0	0.0	161.0	Rory Kinnear	11000.0	200074175.0	Action Adventure Tr
3	Christopher Nolan	813.0	164.0	22000.0	23000.0	Christian Bale	27000.0	448130642.0	Action Thriller
5	Andrew Stanton	462.0	132.0	475.0	530.0	Samantha Morton	640.0	73058679.0	Action Adventure Sc
6	Sam Raimi	392.0	156.0	0.0	4000.0	James Franco	24000.0	336530303.0	Action Adventure Ro
7	Nathan Greno	324.0	100.0	15.0	284.0	Donna Murphy	799.0	200807262.0	Adventure Animation
8	Joss Whedon	635.0	141.0	0.0	19000.0	Robert Downey Jr.	26000.0	458991599.0	Action Adventure Sc
9	David Yates	375.0	153.0	282.0	10000.0	Daniel Radcliffe	25000.0	301956980.0	Adventure Family Fa
10	Zack Snyder	673.0	183.0	0.0	2000.0	Lauren Cohan	15000.0	330249062.0	Action Adventure Sc

Data Visualization

```
In[29]:
(ggplot(movie_df)
    + aes(x='title_year')
    + geom_bar(size=20)
)
```

In[30]:

```
ggplot(aes(x='imdb_score', y='Profit'), data=movie_df) +\
geom_line() +\
stat_smooth(colour='blue', span=1)
```


Out[30]:

<ggplot: (8779159653317)>

In[31]:

```
ggplot(aes(x='imdb_score', y='Profit'), data=movie_df) +\
  geom_line() +\
  stat_smooth(colour='blue', span=1)
```


Out[31]:

<ggplot: (8779159577103)>

In[32]:

```
ggplot(aes(x='country', y='imdb_score'), data=movie_df) +\
geom_line() +\
stat_smooth(colour='blue', span=1)
```


Out[32]:

<ggplot: (-9223363257695236576)>

In[33]:

(ggplot(movie_df)

- + aes(x='imdb_score', y='movie_facebook_likes')
- + geom_line()

```
+ labs(title='IMDB_Score vs. Facebook like for Movies', x='IMDB scores', y='Facebook Likes for movies')
```


Out[33]:

<ggplot: (8779159517781)>

In[34]:

```
plt.figure(figsize=(10,8))

movie_df= movie_df.sort_values(by ='Profit', ascending=False)

movie_df_new=movie_df.head(20)

ax=sns.pointplot(movie_df_new['Profit'], movie_df_new['budget'],
hue=movie_df_new['movie_title'])

ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")

plt.tight_layout()

plt.show()
```


In[35]:

```
plt.figure(figsize=(10,8))

movie_df= movie_df.sort_values(by ='Profit_Percentage', ascending=False)

movie_df_new=movie_df.head(20)

ax=sns.pointplot(movie_df_new['Profit_Percentage'], movie_df_new['budget'],
hue=movie_df_new['movie_title'])

ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")

plt.tight_layout()

plt.show()
```


In[36]:

```
plt.figure(figsize=(10,8))

movie_df= movie_df.sort_values(by ='imdb_score', ascending=False)

movie_df_new=movie_df.head(20)

ax=sns.pointplot(movie_df_new['director_name'], movie_df_new['imdb_score'],
hue=movie_df_new['movie_title'])

ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")

plt.tight_layout()

plt.show()
```


In[37]:

```
movie_df= movie_df.sort_values(by ='Profit_Percentage', ascending=False)

movie_df_new=movie_df.head(20)

(ggplot(movie_df_new)

+ aes(x='imdb_score', y='gross',color = "content_rating")

+ geom_point()

+ geom_hline(aes(yintercept = 600)) +

geom_vline(aes(xintercept = 10)) +

xlab("Imdb score") +

ylab("Gross money earned in million dollars") +

ggtitle("Commercial success Vs Critical acclaim") +

annotate("text", x = 8.5, y = 700, label = "High ratings \n & High gross"))
```


Out[37]:

ggplot: (8779159511195)>

In[38]:

```
plt.figure(figsize=(10,8))

movie_df= movie_df.sort_values(by ='Profit_Percentage', ascending=False)

movie_df_new=movie_df.head(20)

ax=sns.pointplot(movie_df_new['actor_1_name'], movie_df_new['Profit_Percentage'],
hue=movie_df_new['movie_title'])

ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")

plt.tight_layout()

plt.show()
```


In[39]:

```
plt.figure(figsize=(10,8))

movie_df= movie_df.sort_values(by ='imdb_score', ascending=False)

movie_df_new=movie_df.head(20)

ax=sns.pointplot(movie_df_new['actor_1_name'], movie_df_new['imdb_score'],
hue=movie_df_new['movie_title'])

ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")

plt.tight_layout()

plt.show()
```


In[40]:

```
plt.figure(figsize=(10,8))

movie_df= movie_df.sort_values(by ='imdb_score', ascending=False)

movie_df_new=movie_df.head(20)

ax=sns.pointplot(movie_df_new['country'], movie_df_new['imdb_score'],
hue=movie_df_new['movie_title'])

ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")

plt.tight_layout()

plt.show()
```


Data Preparation for the models

Removing Columns with names

In[41]:

movie_df.drop('director_name', axis=1, inplace=True)

In[42]:

movie_df.drop('actor_1_name',axis=1,inplace=True)

```
In[43]:
movie_df.drop('actor_2_name',axis=1,inplace=True)
In[44]:
movie_df.drop('actor_3_name',axis=1,inplace=True)
In[45]:
movie_df.drop('movie_title',axis=1,inplace=True)
In[46]:
movie_df.drop('plot_keywords',axis=1,inplace=True)
In[47]:
movie_df['genres'].value_counts()
Out[47]:
```

Drama	209
Comedy	186
Comedy Drama Romance	182
Comedy Drama	180
Comedy Romance	149
Comedy Drama Horror	1
Mystery Western	1
Animation Comedy Drama Romance	1
Adventure Drama Romance Western	1
Drama War Western	1
Name: genres, Length: 875, dtype:	int64

In[48]:

movie_df.drop('genres',axis=1,inplace =True)

Remove the Linear dependent variables

In[49]:

movie_df.drop('Profit',axis=1,inplace=True)

In[50]:

movie_df.drop('Profit_Percentage',axis=1,inplace=True)

In[51]:

```
import matplotlib.pyplot as plt
import seaborn as sns
corr = movie_df.corr()
sns.set_context("notebook", font_scale=1.0, rc={"lines.linewidth": 2.5})
plt.figure(figsize=(13,7))
# create a mask so we only see the correlation values once
mask = np.zeros_like(corr)
mask[np.triu_indices_from(mask, 1)] = True
a = sns.heatmap(corr,mask=mask, annot=True, fmt='.2f')
rotx = a.set_xticklabels(a.get_xticklabels(), rotation=90)
roty = a.set_yticklabels(a.get_yticklabels(), rotation=30)
```



```
In[52]:
movie_df['Other_actor_facebbok_likes']=movie_df["actor_2_facebook_likes"] +
movie_df['actor_3_facebook_likes']
In[53]:
movie_df.drop('actor_2_facebook_likes',axis=1,inplace=True)
In[54]:
movie_df.drop('actor_3_facebook_likes',axis=1,inplace=True)
In[55]:
movie_df.drop('cast_total_facebook_likes',axis=1,inplace=True)
In[56]:
movie_df['critic_review_ratio']=movie_df['num_critic_for_reviews']/movie_df['num_user_fo
r reviews']
In[57]:
movie_df.drop('num_critic_for_reviews',axis=1,inplace=True)
movie_df.drop('num_user_for_reviews',axis=1,inplace=True)
```

In[58]:

```
import matplotlib.pyplot as plt
import seaborn as sns

corr = movie_df.corr()

sns.set_context("notebook", font_scale=1.0, rc={"lines.linewidth": 2.5})

plt.figure(figsize=(13,7))

mask = np.zeros_like(corr)

mask[np.triu_indices_from(mask, 1)] = True

a = sns.heatmap(corr,mask=mask, annot=True, fmt='.2f')

rotx = a.set_xticklabels(a.get_xticklabels(), rotation=90)

roty = a.set_yticklabels(a.get_yticklabels(), rotation=30)
```


In[59]:

movie_df["imdb_binned_score"]=pd.cut(movie_df['imdb_score'], bins=[0,4,6,8,10],
right=True, labels=False)+1

In[60]:

movie_df.drop('imdb_score',axis=1,inplace=True)

In[61]:

movie_df.head(5)

Out[61]:

	duration	director_facebook_likes	actor_1_facebook_likes	gross	num_voted_users	facenumber_in_poster	country	content_rating	budget	title_year
1937	142.0	0.0	11000.0	28341469.0	1689764	0.0	USA	R	25000000.0	1994.0
3466	175.0	0.0	14000.0	134821952.0	1155770	1.0	USA	R	6000000.0	1972.0
66	152.0	22000.0	23000.0	533316061.0	1676169	0.0	USA	PG-13	185000000.0	2008.0
2837	220.0	0.0	22000.0	57300000.0	790926	1.0	USA	R	13000000.0	1974.0
3355	178.0	16000.0	13000.0	107930000.0	1324680	1.0	USA	R	8000000.0	1994.0

Handling the categorical Data

In[62]:

```
movie_df = pd.get_dummies(data = movie_df, columns = ['country'] , prefix = ['country'] , drop_first = True)
```

movie_df = pd.get_dummies(data = movie_df, columns = ['content_rating'], prefix = ['content_rating'], drop_first = True)

In[63]:

movie df.columns

Out[63]:

Splitting the Data into Training and test Data

In[64]:

```
X=pd.DataFrame(columns=['duration','director_facebook_likes','actor_1_facebook_likes','gr oss','num_voted_users','facenumber_in_poster','budget','title_year','aspect_ratio','movie_fa cebook_likes','Other_actor_facebbok_likes','critic_review_ratio','country_USA','country_oth er','content_rating_G','content_rating_GP','content_rating_M','content_rating_NC-17','content_rating_Not Rated','content_rating_PG','content_rating_PG-13','content_rating_PG-13','content_rating_PG-14','content_rating_TV-14','content_rating_TV-G','content_rating_Unrated','content_rating_X'],data=movie_df)

y=pd.DataFrame(columns=['imdb_binned_score'],data=movie_df)

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=0.3,random_state=100)
```

Feature Scaling

In[65]:

from sklearn.preprocessing import StandardScaler

sc_X = StandardScaler()

X_train = sc_X.fit_transform(X_train)

X_test = sc_X.transform(X_test)

Classification Model Selection

Logistic Regression

In[66]:

from sklearn.linear_model import LogisticRegression

logit =LogisticRegression()

logit.fit(X_train,np.ravel(y_train,order='C'))

y_pred=logit.predict(X_test)

In[67]:

```
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(y_test, y_pred)
print(cnf_matrix)

print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
```

Out[67]:

```
[[ 0 24 22 0]
[ 0 93 285 0]
[ 0 67 851 6]
[ 0 1 28 32]]
```

Accuracy: 0.6926898509581263

KNN

In[68]:

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=22)
knn.fit(X_train, np.ravel(y_train,order='C'))
knnpred = knn.predict(X_test)
cnf_matrix = metrics.confusion_matrix(y_test, knnpred)
print(cnf_matrix)
print("Accuracy:",metrics.accuracy_score(y_test, knnpred))
```

Out[68]:

```
[[ 0 24 22 0]
[ 0 155 223 0]
[ 0 153 771 0]
[ 0 2 47 12]]
```

Accuracy: 0.6657203690560681

SVC

In[69]:

```
from sklearn.svm import SVC
svc= SVC(kernel = 'sigmoid')
svc.fit(X_train, np.ravel(y_train,order='C'))
svcpred = svc.predict(X_test)
cnf_matrix = metrics.confusion_matrix(y_test, svcpred)
print(cnf_matrix)
print("Accuracy:",metrics.accuracy_score(y_test, svcpred))
```

Out[69]:

```
[[ 1 36 9 0]
[ 2 157 219 0]
[ 4 175 730 15]
[ 0 8 33 20]]
Accuracy: 0.6444286728176012
```

Naive Bayes

In[70]:

```
from sklearn.naive_bayes import GaussianNB
gaussiannb= GaussianNB()
gaussiannb.fit(X_train, np.ravel(y_train,order='C'))
gaussiannbpred = gaussiannb.predict(X_test)
cnf_matrix = metrics.confusion_matrix(y_test, gaussiannbpred)
print(cnf_matrix)
print("Accuracy:",metrics.accuracy_score(y_test, gaussiannbpred))
```

Out[70]:

```
[[ 42  0  1  3]
[326  1  1  50]
[530  0  5  389]
[ 8  1  0  52]]
```

Accuracy: 0.07097232079488999

Decision Tree

In[71]:

```
from sklearn.tree import DecisionTreeClassifier

dtree = DecisionTreeClassifier(criterion='gini')

dtree.fit(X_train, np.ravel(y_train,order='C'))

dtreepred = dtree.predict(X_test)

cnf_matrix = metrics.confusion_matrix(y_test, dtreepred)

print(cnf_matrix)

print("Accuracy:",metrics.accuracy_score(y_test, dtreepred))
```

Out[71]:

```
[[ 5 24 17 0]
[ 24 194 160 0]
[ 15 192 706 11]
[ 0 2 23 36]]
```

Accuracy: 0.6678495386799148

ADA Boosting

In[72]:

```
from sklearn.ensemble import AdaBoostClassifier

abcl = AdaBoostClassifier(base_estimator=dtree, n_estimators=60)

abcl=abcl.fit(X_train,np.ravel(y_train,order='C'))
```

```
abcl_pred=abcl.predict(X_test)
cnf_matrix = metrics.confusion_matrix(y_test, abcl_pred)
print(cnf_matrix)
print("Accuracy:",metrics.accuracy_score(y_test, abcl_pred))
```

Out[72]:

```
[[ 7 25 14 0]
[ 20 194 164 0]
[ 13 205 689 17]
[ 0 1 29 31]]
Accuracy: 0.6536550745209369
```

Random Forest

In[73]:

```
from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier(n_estimators = 200)#criterion = entopy,gini

rfc.fit(X_train, np.ravel(y_train,order='C'))

rfcpred = rfc.predict(X_test)

cnf_matrix = metrics.confusion_matrix(y_test, rfcpred)

print(cnf_matrix)

print("Accuracy:",metrics.accuracy_score(y_test, rfcpred))
```

Out[73]:

```
[[ 2 31 13 0]
[ 0 177 201 0]
[ 0 77 846 1]
[ 0 0 34 27]]
```

Accuracy: 0.7466288147622427

Bagging Classifier

In[74]:

```
new_movie_df=movie_df.pop("imdb_binned_score")
```

In[75]:

```
from sklearn.ensemble import BaggingClassifier

bgcl = BaggingClassifier(n_estimators=60, max_samples=.7, oob_score=True)
```

```
bgcl = bgcl.fit(movie_df, new_movie_df)
print(bgcl.oob_score_)
```

Out[75]:

0.7429179978700745

Gradient Boosting

In[76]:

```
from sklearn.ensemble import GradientBoostingClassifier

gbcl = GradientBoostingClassifier(n_estimators = 50, learning_rate = 0.09, max_depth=5)

gbcl = gbcl.fit(X_train,np.ravel(y_train,order='C'))

test_pred = gbcl.predict(X_test)

cnf_matrix = metrics.confusion_matrix(y_test, test_pred)

print(cnf_matrix)

print("Accuracy:",metrics.accuracy_score(y_test, test_pred))
```

Out[76]:

```
[[ 1 38 7 0]
 [ 0 211 167 0]
 [ 2 100 817 5]
 [ 1 0 30 30]]
Accuracy: 0.751596877217885
```

XG Boosting

In[77]:

```
from xgboost import XGBClassifier

xgb = XGBClassifier()

xgb.fit(X_train, np.ravel(y_train,order='C'))

xgbprd = xgb.predict(X_test)

cnf_matrix = metrics.confusion_matrix(y_test, xgbprd)

print(cnf_matrix)

print("Accuracy:",metrics.accuracy_score(y_test, xgbprd))
```

Out[77]:

```
[[ 1 36 9 0]
[ 2 198 178 0]
[ 1 101 818 4]
[ 0 2 26 33]]
```

Accuracy: 0.7452093683463449

Model Comparison

In[78]:

from sklearn.metrics import classification_report

```
print('Logistic Reports\n',classification_report(y_test, y_pred))

print('KNN Reports\n',classification_report(y_test, knnpred))

print('SVC Reports\n',classification_report(y_test, svcpred))

print('Naive BayesReports\n',classification_report(y_test, gaussiannbpred))

print('Decision Tree Reports\n',classification_report(y_test, dtreepred))

print('Ada Boosting\n',classification_report(y_test, abcl_pred))

print('Random Forests Reports\n',classification_report(y_test, rfcpred))

print('Bagging Clasifier',bgcl.oob_score_)

print('Gradient Boosting',classification_report(y_test, test_pred))

print('XGBoosting\n',classification_report(y_test, xgbprd))
```

Out[78]:

Logistic	Repo	Reports						
		precision	recall	f1-score	support			
	1	0.00	0.00	0.00	46			
	2	0.50	0.25	0.33	378			
	3	0.72	0.92	0.81	924			
	4	0.84	0.52	0.65	61			
accur	acy			0.69	1409			
macro	avg	0.52	0.42	0.45	1409			
weighted	avg	0.64	0.69	0.65	1409			
KNN Repor	ts							
		precision	recall	f1-score	support			
	1	0.00	0.00	0.00	46			
	2	0.46	0.41	0.44	378			
	3	0.73	0.83	0.78	924			
	4	1.00	0.20	0.33	61			
accur	acy			0.67	1409			
macro	avg	0.55	0.36	0.39	1409			
weighted	avg	0.64	0.67	0.64	1409			

SVC Repor	rts								
OVO Nepol	SVC Reports		recal	l f1-scor	e support				
	1	0.14	0.00	0.04	46				
	1	0.14 0.42	0.02						
	2		0.42						
	3		0.79						
	4	0.57	0.33	0.42	61				
accuracy				0.64	1409				
macro	macro avg		0.39	0.41	1409				
weighted	avg	0.62	0.64	0.63	1409				
Naive Ray	Naive BayesReports								
Naive bay	yeshep	precision	recal	l f1-scor	e support				
		precision	recar	1 11-3001	е ѕиррогс				
	1	0.05	0.91	0.09	46				
	2	0.50	0.00	0.01	378				
	3	0.71	0.01	0.01	924				
	4	0.11	0.85	0.19	61				
200111	racy			0.07	1409				
accui		0.24	0.44						
macro		0.34	0.44						
weighted	avg	0.61	0.07	0.02	1409				
Decision	Tree	Reports							
		precision	recal	l f1-scor	e support				
	1	0.11	0.11	0.11	46				
	2		0.51	0.49	378				
3		0.47 0.78	0.76						
4		0.77	0.59						
	7	0.77	0.07	0.07					
accui	racy			0.67	1409				
macro	avg	0.53	0.49	0.51	1409				
weighted	avg	0.67	0.67	0.67	1409				
Ada Boosting									
3	pre	ecision	recall	f1-score	support				
1		0.17	0.15	0.16	46				
2	2 0.46		0.51	0.48	378				
3		0.77	0.75	0.76	924				
4		0.65	0.51	0.57	61				
accuracy				0.65	1409				
macro avg		0.51	0.48	0.49	1409				
weighted avg		0.66	0.65	0.66	1409				

Random Forests Reports									
	precision	recall	f1-score	support					
	1 00	0.04	0.00	46					
1	1.00	0.04	0.08	46					
2	0.62	0.47	0.53	378					
3	0.77	0.92	0.84	924					
4	0.96	0.44	0.61	61					
			0.75	1400					
accuracy		0.47	0.75	1409					
macro avg	0.84	0.47	0.52	1409					
weighted avg	0.75	0.75	0.72	1409					
Bagging Clasifier 0.7429179978700745									
Gradient Boost				recall f1-scor	re support				
014410111 50000	2119	p. c	0101011	100011 11 0001	о опрроге				
1	0.25	0.02	0.04	46					
2	0.60	0.56	0.58	378					
3	0.80	0.88	0.84	924					
4	0.86	0.49	0.62	61					
accuracy			0.75	1409					
macro avg	0.63	0.49	0.52	1409					
weighted avg	0.73	0.75	0.74	1409					
XGBoosting									
	precision	recall	f1-score	support					
1	0.25	0.02	0.04	46					
2	0.59	0.52	0.55	378					
3	0.79	0.89	0.84	924					
4	0.89	0.54	0.67	61					
accuracy			0.75	1409					
macro avg	0.63	0.49	0.53	1409					
weighted avg	0.72	0.75	0.73	1409					

Conclusion

The conclusion is that Random Forest Algorithm along with the gradient boosting have the accuracy of 74.5 and 75.5 respectively

This analysis compares certain attributes regarding Facebook and IMDB site against the gross revenue of a film. The higher number of Facebook likes from the primary actor and supporting actors plays a significant role in generating revenue from a film. Through both models and the sensitivity analysis, someone can easily see the support in this conclusion. Directors and producers can take this dataset and implement it into their thought process when planning their movie. Movie-goers can use this dataset to make the same predictions once the movie is announced with primary and supporting actors/actresses. It could possibly save movie-goers money when debating on whether to go see a movie or not.

This project has helped me substantially in practicing with running analysis on certain topics and generating a result. It has developed my skill in Excel and XL Miner by using the Missing Data handle, the Reduce Categories handle, the Data Partition handle, the Multiple Linear Regression handle, and a sensitivity analysis. Overall, the effectiveness of this project was very useful for me in the preparation for my career. I can take this project as proof of knowledge in these areas as well as knowing associated terms.