10/579107 (AP20Rec'd PGT/PTO 12 MAY 2006

SEQUENCE LISTING

<110		Vollr Muel:						Konra	ad							
<120)>	METHO THERI		OF II	DENT:	IFYII	NG NE	EOPL	ASM-S	SPEC:	FIC	ANT	BODI	ES A	AMD	USES
<130)>	50308/013002														
<150 <151		PCT/IB2004/004453 2004-11-12														
<150 <151		US 60/519,550 2003-11-12														
<160)>	8														
<170)>	Pater	ntIn	vers	sion	3.3										
<210 <211 <212 <213	L> 2>	1 119 PRT Homo	sap:	iens												
<400)>	1														
Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly	
Ser	Leu	ı Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr	
Ala	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
Ser	Ala 50	lle	Ser	Gly	Ser	Gly 55	Gly	Ser	Thr	Tyr	Tyr 60	Ala	Asp	Ser	Val	
Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
Ala	Lys	a Asp	Gly 100	Tyr	Asp	Ser	Ser	Gly 105	Tyr	Ser	Glu	Glu	Tyr 110	Tyr	Tyr	
Tyr	Tyr	Tyr 115	Tyr	Met	Asp	Val										

<210> 2 <211> 357 <212> DNA Homo sapiens <213> <400> 2 gaggtgcagc tgttggagtc tgggggaggc ttggtacagc ctggggggtc cctgagactc tectgtgcag cetetggatt cacetttage agetatgeca tgagetgggt cegecagget ccagggaagg ggctggagtg ggtctcagct attagtggta gtggtggtag cacatactac gcagactccg tgaagggccg gttcaccatc tccagagaca attccaagaa cacgctgtat ctgcaaatga acagcctgag agccgaggac acggccgtat attactgtgc gaaagatggc tatgatagta gtggttattc ggaagaatat tactactact actactacat ggacgtc <210> 3 <211> 100 <212> PRT <213> Homo sapiens <400> 3 Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly Gln 5 15 Thr Ala Arg Ile Thr Cys Ser Gly Asp Ala Leu Pro Lys Lys Tyr Ala 20 30 Tyr Trp Tyr Gln Gln Lys Ser Gly Gln Ala Pro Val Leu Val Ile Tyr Glu Asp Ser Lys Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser Ser Ser Gly Thr Met Ala Thr Leu Thr Ile Ser Gly Ala Gln Val Glu 65 70 75 Asp Glu Ala Asp Tyr Tyr Cys Tyr Ser Thr Asp Ser Ser Gly Asn His 85 90

60

120

180

240

300

357

<210> 4

Ser Tyr Val Phe

100

<211> 300 <212> DNA <213> Homo sapiens <400> 4 tectatgtgc tgacteagec acceteggtg teagtgteec caggacaaac ggccaggate acctgctctg gagatgcatt gccaaaaaaa tatgcttatt ggtaccagca gaagtcaggc caggecectg tgetggteat etatgaggae ageaaacgae ceteegggat eeetgagaga ttctctqqct ccaqctcaqq gacaatqqcc accttqacta tcaqtqqqqc ccaqqtqqaq gatgaagctg actactactg ttactcaaca gacagcagtg gtaatcatag ctatgtgttc <210> 5 <211> 108 <212> PRT <213> Homo sapiens <400> 5 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 Ser Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 Ser Ser Ile Ser Ser Ser Ser Tyr Ile Tyr Tyr Ala Asp Ser Val 50 55 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 95 Ala Arg His Gly Asn Tyr Tyr Tyr Tyr Met Asp Val <210> 6 <211> 324

<212> DNA

<400> 6

<213> Homo sapiens

60

120

180

240

300

gaggtgcagc	tggtggagtc	tgggggaggc	ctggtcaagc	ctggggggtc	cctgagactc	60
tcctgtgcag	cctctggatt	caccttcagt	agctatagca	tgaactgggt	ccgccaggct	120
ccagggaagg	ggctggagtg	ggtctcatcc	attagtagta	gtagtagtta	catatactac	180
gcagactcag	tgaagggccg	attcaccatc	tccagagaca	acgccaagaa	ctcactgtat	240
ctgcaaatga	acagcctgag	agccgaggac	acggctgtgt	attactgtgc	gagacatggg	300
aactactact	actacatgga	cgtc				324

<210> 7

<211> 102

<212> PRT

<213> Homo sapiens

<400> 7

Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln 1 5 10 15

Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Ile Gly Ala Gly 20 25 30

Tyr Asp Val His Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu 35 40 45

Leu Ile Tyr Gly Asn Ser Asn Arg Pro Ser Gly Val Pro Asp Arg Phe 50 60

Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu 65 70 75 80

Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Ser 85 90 95

Leu Ser Ala Leu Val Phe 100

<210> 8

<211> 306

<212> DNA

<213> Homo sapiens

<400> 8

cagtctgtgt tgacgcagcc gccctcagtg tctggggccc cagggcagag ggtcaccatc 60

tcctgcactg ggagcagctc caacatcggg gcaggttatg atgtacactg gtaccagcag 120

cttccaggaa	cagcccccaa	actcctcatc	tatggtaaca	gcaatcggcc	ctcaggggtc	180
cctgaccggt	tctctggctc	caagtctggc	acctcagcct	ccctggccat	cactgggctc	240
caggctgagg	atgaggctga	ttattactgc	cagtcctatg	acagcagcct	gagtgccttg	300
gtattc						306