Лабораторна робота №8

Виконання операцій з плаваючою точкою та вивчення команд х87 FPU

Мета: Навчитися програмувати операції з плаваючою точкою на асемблері.

Завдання:

- 1. Створити у середовищі MS Visual Studio проект з ім'ям Lab8.
- 2. Написати вихідний текст програми згідно варіанту завдання. У проекті мають бути головний файл **main8.asm** та інші модулі (за необхідності).
- 3. У цьому проекті кожний модуль може окремо компілюватися.
- 4. Скомпілювати вихідний текст і отримати виконуємий файл програми.
- 5. Перевірити роботу програми. Налагодити програму.
- 6. Отримати результати файл числових значень згідно варіанту завдання.
- 7. Проаналізувати та прокоментувати результати, вихідний текст та дизасембльований машинний код програми.

Теоретичні відомості

Середовище x87 FPU

Блок, який отримав назву x87 FPU (*Floating Point Unit*), виконує операції у форматах з плаваючою точкою. Спочатку це був окремий пристрій (сопроцесор 8087). Починаючи з Intel 80486 такий блок міститься усередині центрального процесора.

Для виконання у середовищі х87 FPU операцій з плаваючою точкою є декілька десятків команд, яки можна використовувати у програмах на асемблері. Для цього програмістам потрібно уявляти, хоча б загалом, з чого складається блок х87 FPU, які він має ресурси, та як їх можна використовувати. Іншими словами, програмісту надається деяке середовище — у даному випадку це х87 FPU, у якому виконуватимуться його програми. Це середовище утворюється з апаратних ресурсів, інтерфейсів доступу до них, та інших дозволів та заборон, які враховуються на певному програмному рівні.

Рис. 1. Елементи середовища x87 FPU

Регістр статусу. Цей 16-бітовий регістр зберігає інформацію про стан x87 FPU у вигляді значень бітів-прапорців:

Рис. 2. Perictp статусу x87 FPU (згідно джерела: Intel® 64 and IA-32 Architectures. Software Developer's Manual).

Три біти 11-13 є значенням ТОР (*Top of Stack Pointer*), яке означає адресу вершини ST(0) стеку даних. Іншими словами, TOP — це номер (від 0 до 7) регістру R_{TOP} , який на даний момент представляє вершину стеку.

Стек даних FPU

Для виконання операцій потрібно завантажувати дані у стек FPU.

Стек даних x87 FPU складається з восьми 80-бітових регістрів R0-R7. Цей стек організований як кільце. Доступ до стеку даних можливий тільки через його вершину, яка зветься ST(0). Вершині стеку відповідає один з регістрів R0-R7, на який вказує 3-х бітове значення вказівника TOP.

Запис до стеку. Це можна зробити командою FLD

FLD src

Значення операнду src записується у вершину стека ST(0). Наприклад:

```
myvar dt 35.247
. . .
fld tbyte ptr[myvar]
```

При виконанні команди FLD спочатку TOP зменшується на одиницю (причому, якщо TOP дорівнював 0, то буде TOP = 7) — так визначається нове розташування ST(0); а потім у відповідний регістр R_{TOP} записується числове значення операнду (рис. 3).

Рис. 3. Запис у стек одного числа командою FLD

Розглянемо приклад запису у стек x87 FPU декількох значень. Простежимо зміни стану стеку впродовж виконання команд FLD.

Рис. 4. Стек FPU може зберігати одночасно не більше восьми значень

Читання зі стеку. Це можна зробити командою FSTP

FSTP dest

Наприклад:

```
myvar dt ?
. . .
fstp tbyte ptr[myvar] ; myvar = 35.247
```

Значення вершини стека ST(0) записується у операнд призначення dest. Після цього TOP збільшується на одиницю (причому, якщо TOP дорівнював 7, то буде TOP = 0) — так визначається нове розташування ST(0).

Рис. 4. Читання зі стеку одного числа командою FSTP

Операндом команди FSTP може бути 80-бітова, або 64-бітова, або 32-бітова перемінна, наприклад:

```
Var32 dd ?
Var64 dq ?
Var80 dt ?
. . . .

fstp dword ptr[Var32]
fstp qword ptr[Var64]
fstp tbyte ptr[Var80]
```

При читанні значення зі стеку FPU у 32-бітову перемінну, виконується перетворення у 32-бітовий формат Single-Precision з плаваючою точкою. При читанні значення зі стеку FPU у 64-бітову перемінну, виконується перетворення у 64-бітовий формат Double-Precision з плаваючою точкою. Якщо такі перетворення неможливі, то у регістр статусу записується відповідне бітове значення.

Прочитати дані зі стеку також можна й командою FST

FST dest

Ця команда відрізняється від FSTP тим, що не виштовхує значення зі стеку (рор), тобто не змінює вказівник вершини стеку ST(0). Ще одна відмінність: команда FST не може прочитати 80-бітове значення — можна тільки у 64- або 32-бітовому форматах.

<u>Короткий огляд команд x87 FPU</u>

Імена усіх команд x87 FPU починаються з букви 'F'. Виділимо, у першу чергу ті команди, які будуть корисні для виконання завдань лабораторної роботи.

FADD/FADDP Додавання FSUB/FSUBP Віднімання FMUL/FMULP Множення FDIV/FDIVP Ділення

FABS Абсолютна величина FSQRT Квадратний корінь

FSIN Cuhyc FCOS Kocuhyc

FSINCOS Синус та косинус

FPTAN Тангенс

FPATAN Арктангенс

FYL2X Логарифм ($y*log_2x$) FYL2XP1 Логарифм ($y*log_2(x+1)$)

F2XM1 Експонента $(2^x - 1)$

FSCALE Множення операнду на степінь 2

Докладні відомості про команди x87 FPU можна знайти у літературному джерелі від розробників процесорів: "Intel® 64 and IA-32 Architectures. Software Developer's Manual".

Приклад обчислень

Розглянемо приклад обчислення у середовищі x87 FPU двох пар добутків $Res = A \times B + C \times D$. Процес обчислень проілюстровано на рис. 5.

Рис. 5. Обчислення $Res = A \times B + C \times D$

Показ значень чисел, записаних у форматі з плаваючою точкою

Для того, щоб відображати результати обчислень, потрібно створити процедуру, яка перетворює значення, записане у форматі з плаваючою точкою, у текст дробу з десяткових цифр.

У попередній лабораторній роботі №3 вже були розглянуті основні відомості щодо стандартних (IEEE754) двійкових форматів з плаваючою точкою. Тепер розглянемо деякі аспекти щодо переводу у десяткову систему числення.

Звичайне число з плаваючою точкою можна описати формулою

$$V = (-1)^S 2^E M$$
,

де:

S – знак (0 означає плюс, 1 означає мінус);

Е – експонента;

М – мантиса, яка дорівнює 1. F, де F – дробова частина мантиси

Приклад двійкового коду числа у 32-бітовому форматі з плаваючою точкою

$$V = 420F12A1_{16} = 01000010000011110001001010100001_{2}$$

Виділимо у цього коду групи бітів елементів двійкового формату

де:

S – біт знаку;

e - 8-бітовий зміщений код експоненти, причому e = E + 127;

F – 23-бітова дробова частина мантиси.

Мантиса дорівнює 1.F = 1.00011110001001010100001

Обчислимо експоненту Е. Оскільки у форматі записується її зміщений код

$$e = E + 127$$
,

тоді

$$E = e - 127$$

Маємо $e = 10000100_2 = 132_{10}$, відповідно E = 132 - 127 = 5

Тоді число можна записати у наступному вигляді:

$V = 2^5 \cdot 1.00011110001001010100001$

Запишемо це число без експоненти, як звичайне дробове число. Для цього помножимо мантису на 2^5 , тобто, виконаємо зсув мантиси вліво на 5 бітів

V = 100011.110001001010100001

Як перевести дробове двійкове число у десяткову систему? Таке завдання можна розчленувати на два кроки: окремо переводити у десятковий код цілу частину і окремо – дробову частину.

1. Перевести двійковий код цілої частини у десятковий можна послідовним **діленням на десять** у двійковому коді (двійковий код десяти ε 1010₂):

$$100011_2:1010_2=11_2$$
 , залишок 101_2 — це десяткова цифра 5 $11_2:1010_2=0$, залишок 11_2 — це десяткова цифра 3

Таким чином, ціла частина у десятковому коді дорівнює 35.

2. Переведення у десятковий код дробової частини виконується **множенням на** десять у двійковому коді. Після кожного множення десяткова цифра є цілою частиною добутку. Можна порекомендувати швидкий алгоритм множення числа на 10 у двійковому коді: число (D) зсувається на біт вліво (2D) і до нього додається те саме число, зсунуте на три біти вліво (8D), тобто 10D = 2D+8D. Виконаємо це для конкретного двійкового коду дробової частини:

	.110001001010100001	D_1
	1.10001001010100001	$2D_1$
	110.001001010100001	$8D_1$
Перша цифра:	7 ← 111.10101110100100101	10D ₁
	.10101110100100101	D_2
	1.0101110100100101	$2D_2$
	101.01110100100101	$8D_2$
Друга цифра:	6 ← 110.1101000110111001	10D ₂
	.1101000110111001	D_3
	1.101000110111001	$2D_3$
	110.1000110111001	8D ₃
Третя цифра:	8 ← 1000.001100010011101	10D ₃

	.001100010011101	D_4
Четверта цифра:	0.01100010011101 001.100010011101 1 ← 001.11101100010001	2D ₄ 8D ₄ 10D ₄
	.11101100010001	D_5
П'ята цифра:_	1.1101100010001 111.01100010001 9 - 1001.0011101010101	2D ₅ 8D ₅ 10D ₅
	.0011101010101	D_6
Шоста цифра: 	0.011101010101 001.1101010101 2 ← 010.010010101001	2D ₆ 8D ₆ 10D ₆

Якщо обмежитися шістьма цифрами дробової частини, то отримаємо такий результат:

 $V \approx 35.768192$

Особливі випадки у форматах з плаваючою точкою. Передбачено, що деякі комбінації бітів коду двійкового формату із плаваючою точкою використовуються для позначення особливих випадків — не число ($Not\ a\ Number\ -\ NaN$), безкінечність, нуль тощо. Ці особливі випадки позначаються кодами e=00...0, а також e=11...1.

Зміщена експонента е = E + зсув	Дроб F	Значення числа V	Назва числа
	F = 0	$V = (-1)^S 0$	нуль
$e = e_{min} - 1 = 000$	F ≠ 0	$V = (-1)^S 2^{Emin} (0.F)$	ненормалізоване число
$e_{min}\!\leq\!e\leq e_{max}$	F	$V = (-1)^S 2^E (1.F)$	нормалізоване число
$e = e_{max} + 1 = 111$	F = 0	$V = (-1)^S \infty$	безкінечність зі знаком
	F ≠ 0	V = NaN	не число

Алгоритм дешифрування двійкового формату з плаваючою точкою

Для перетворення у десятковий запис двійкового коду 32-бітового формату з плаваючою точкою можна рекомендувати алгоритм дешифрування (аналізу), наведений на рис. 6. Подібний алгоритм можна використати також для дешифрування 64-бітового та 80-бітового форматів.

Рис. 6. Алгоритм дешифрування 32-бітового формату з плаваючою точкою

Варіанти завдання

Запрограмувати на асемблері обчислення на основі команд х87 FPU. Результат надати у вікні MessageBox у вигляді десяткового дробу з цілої частини, точки та 6 розрядів дробової частини, отриманих з 32-бітового формату з плаваючою точкою. Перетворення з двійкового формату з плаваючою точкою у рядок десяткових цифр оформити у вигляді процедури з ім'ям **FloatToDec**. Заохочення: студентам, які запрограмують таку процедуру, яка виконує перетворення у текст десяткового дробу з 64-бітового або 80-бітового форматів з плаваючою точкою, може бути суттєво підвищена оцінка.

Варіант згідно номеру студента у журналі.

№ вар	Що потрібно обчислити	Формат даних для A,B,X
1	$Res = A_0 + A_1X + A_2X^2 + + A_{n-1}X^{n-1}$	32-бітовий
2	$Res = A_0 B_0 + A_1 B_1 + + A_{n-1} B_{n-1} $	64-бітовий
3	$Res = A_0 + A_1 \sin B + A_2 \sin(2B) + + A_n \sin(nB)$	32-бітовий
4	$X_1, X_2 = $ Рішення системи лінійних рівнянь 2-го порядку	64-бітовий
5	$Res = $ квадратний корінь $(B^2_0 + B^2_1 + + B^2_{n-1})$	32-бітовий
6	$Res = A_0 + A_1 \sin X + A_2 \sin^2 X + + A_n \sin^n X$	64-бітовий
7	Res = $(A_0 B_0 + A_1 B_1 + + A_{n-1} B_{n-1}) / (A_0 + A_1 + + A_{n-1})$	32-бітовий
8	Res = $A_1 (X-B_1) + A_2 (X-B_2)^2 + + A_n (X-B_n)^n$	64-бітовий
9	Res = $((A_{n-1} X+A_{n-2}) X + A_{n-3}) X + A_1) X + A_0$	32-бітовий
10	Res = B / $(A_0X^2 + A_1X^2 + + A_{n-1}X^2)$	64-бітовий
11	$Res = A_0 + A_1 \cos B + A_2 \cos^2 B + + A_n \cos^n B$	32-бітовий
12	$Res = A_0 + A_1 \cos B + A_2 \cos(2B) + + A_n \cos(nB)$	64-бітовий
13	Res = $(X-A_0)^2 + (X-A_1)^2 + + (X-A_{n-1})^2$	32-бітовий
14	$Res =$ логарифм $(A_0B_0 + A_1B_1 + + A_{n-1}B_{n-1})$	64-бітовий
15	Res = $ A_0/B_0 + A_1/B_1 + + A_{n-1}/B_{n-1} $	32-бітовий
16	Res = Детермінант 3-го порядку	64-бітовий
17	Res = $A_0 + A_1 tgB + A_2 tg^2B + + A_n tg^nB$	32-бітовий
18	Res = максимальне значення $(A_i - B_i)^2$, для $i = 0, 1,, n-1$	64-бітовий
19	$X_1, X_2 =$ Корені рівняння $AX^2 + BX + C = 0$	32-бітовий
20	Res = мінімальне значення $(A_i + B_i)^2$, для $i = 0, 1,, n-1$	64-бітовий
21	$Res = arctg(A_0 / B_0) + arctg(A_1 / B_1) + \ldots + arctg(A_{n-1} / B_{n-1})$	32-бітовий

Зміст звіту:

- 1. Титульний лист
- 2. Завдання
- 3. Роздруківка тексту програми
- 4. Роздруківка результатів виконання програми
- 5. Аналіз, коментар результатів, вихідного тексту та дизасембльованого машинного коду
- 6. Висновки

Контрольні питання:

- 1. Що виконується у середовищі x87 FPU?
- 2. Як організований стек даних x87 FPU?
- 3. Що таке ТОР?
- 4. Які команди забезпечують запис та читання даних у стек x87 FPU?
- 5. Що таке нормалізоване число?
- 6. Як кодується нуль, безкінечність, не-число у форматі з плаваючою точкою?
- 7. Як перевести дробове число з двійкового у десятковий код?