ECE 250 Data Structures & Algorithms

Algorithm Analysis

Ziqiang Patrick Huang
Electrical and Computer Engineering
University of Waterloo

WATERLOO | ENGINEERING

Admin

- Lab0 released.
 - Start early!
 - Remember: devise algorithms before translate them into code
 - Aim to at least have a solid plan (step 1-4) before coming to the lab session next week and ready to code (step 5)
- Reminders
 - Login your Gitlab account
 - Enroll Piazza
 - Do the exercise at the end of L2
- Aside: if you need access to GPUs (for academic work!), contact Mike Cooper-Stachowsky (mstachow@uwaterloo.ca)

Motivation: How to Measure Efficiency?

- How fast is a piece of code?
 - It depends ...
 - What are the inputs?
 - What compiler optimizations are done?
 - Different compilers produce different assembly
 - Most have different optimization settings: -O0, ... -O3
 - What hardware is it running on?
- Given two algorithms, how to tell which is better(faster)?
 - Implement and run both?
 - Somewhat accurate but not very practical
 - What about something we could keep in our head as we develop?
 - Algorithm analysis

What is Algorithm Analysis?

- Analyzing an algorithm to understand how long it will run and/or how much memory it will take
 - Also known as complexity analysis: time complexity and space complexity
 - Other "complexities" to keep in mind:
 - Programmability: how easy to implement?
 - Scalability: how easy to scale? (often related to hardware, e.g., multicores)
 - Security: how difficult to be hacked?

Algorithm Analysis: What do We Want?

- Measure both time and space complexity
- Platform/hardware independent
- High level description of algorithm
- Determine how efficient the algorithm is in terms of input size
 - Result can be expressed as a function of input size

High Level Description

- Primitive Operations (algorithmic steps)
 - Assign Value
 - Arithmetic operation
 - Comparing two entities
 - Function call and returns (not the function body)
 - Access an element or follow a pointer
- Primitive operations execute in constant time
 - Treating all primitive operations the same
- Count the operations

Measuring Complexity as a Function

- f(n) represents the function of primitive operations on an input of n
- Three cases worth considering:
 - Worst-Case: the algorithm running with the worst set of data, worst performance
 - Best-Case: the algorithm running with the best designed set of data, fastest performance
 - Average-Case: somewhere between
- For algorithm analysis: we want the most accurate worst-case analysis
 - Why?
 - "Never forget the six-foot-tall man who drowned crossing the river that was five feet deep on average"
 - Also applies to many other things in life (e.g., investing)

Big-O Notation

- We need to formalize our notion of efficiency of an algorithm
- Big-O Notation
 - Denoted O(f(n)) where n is the size of our input(s)
 - Typically represents an upper bound, but for this class we want the most accurate upper bound
 - E.g., most of things in this course is $O(n^4)$, but this is not a very helpful description of performance
 - Other Measures: o(n), $\Omega(n)$, $\Theta(n)$, etc

Big-O: Asymptotic Behavior

- Observation: small things generally don't matter
 - Computers: pretty fast
 - Difference between 20 on 50 instructions: you won't notice
- Instead, think about behavior on large inputs
 - How does the execution time scale as input size grows?
 - Use Big-O to approximate with some conventions/simplifications
 - Ignore constant factors, drop lower order terms, etc.

Big-O: Formal Definition

Big-O notation is a mathematical formalism

$$f(x)$$
 is $O(g(x)) \iff \exists x_0, \ c. \forall x > x_0. \ f(x) \le cg(x)$

f(x) is O(g(x)), but g(x) is not O(f(x))

cannot pick an x_0 such that For $x > x_0$, $2x \le x + 1$

c = 2, and
$$x_0 = 0$$
,
For x > 0, 2x \leq 2(x + 1)

f(x) is O(g(x)), and g(x) is O(f(x))

Determine Big-O Relationship

- How to determine Big-O between two functions?
 - Taking $\lim_{n\to\infty} \left| \frac{f(x)}{g(x)} \right|$

$\lim_{x\to\infty} \left \frac{f(x)}{g(x)} \right $	f(x) is $O(g(x))$?	g(x) is $O(f(x))$
0	Yes	No
non-zero, finite	Yes	Yes
∞	No	Yes
undefined	Unknown	

Big-O: Not so much Formalism Here

- Advanced algorithm classes (e.g., ECE 406): prove things
 - Use formal definition, prove functions O(other functions)
 - Prove (formally) the code executes in O(something) time
 - Clearly differentiate between O, o, Ω, Θ
- We don't do these things
 - But we will talk about Big-O to understand the efficiency of our algorithms

Common Complexities

- O(1): constant time
 - Runtime doesn't vary with problem size
 - May require setting up the data structures
 - Example: find k^{th} smallest element in a sorted array
- O(log(N)): logarithmic time
 - Runtime scales logarithmically with problem size
 - Such algorithms typically involves splitting input in half at each step
 - Example: binary search a word in the dictionary
 - Note: The base doesn't matter due to change of base (m constant)

•
$$\log_m(n) = \frac{\log_2(n)}{\log_2(m)} = \log_m(2)\log_2(n) = \operatorname{Clog}_2(n) \to O(\log(n))$$

Common Complexities Continued

- O(N): linear time
 - Double problem size, double runtime
 - Example: find the maximum element of an unsorted array
 - Difference between O(N) and log(N) can be huge, e.g., log(1billion) ~= 30
- $O(N^2)$: quadratic time
 - Double problem size, quadruple runtime
 - Usually involve examine all parings of the input data
 - Example: many sorting algorithms, e.g., bubble sort
 - General: $O(N^c) \rightarrow polynomial time \rightarrow tractable$

Complexities You Do Not Want

- $O(2^N)$: exponential time
 - Increase problem size by 1, double runtime
 - N = 60, 2^{60} = 1 quintillion (same as O(N^2), N = 1 billion)
 - NP-complete problems
 - Best known algorithm → Exponential time
 - Solve one in polynomial time → Solve all of them (million-dollar question)
 - E.g., traveling salesman, graph coloring
- O(N!): Factorial time
 - $20! \approx 2^{61}, 22! \approx 2^{70}, 24! \approx 2^{80}, 26! \approx 2^{88}, 28! \approx 2^{98}, 30! \approx 2^{108}$
 - Example: list all permutations of an array

Big-O Conventions

Drop Constant Factors:

$$O(4n) \rightarrow O(n)$$

$$O(0.5n^2) \rightarrow O(n^2)$$

• Drop Lower Order Terms:

$$O(n^2 + 2000n - 5) \rightarrow O(n^2)$$

$$O(3n + 2\log(n) + n\log(n)) \rightarrow O(n\log(n))$$

Big-O example: Count Duplicates

```
int countDuplicates (int * array, int n) {
       int dupCount = 0;
       for (int i = 0; i < n; i++) {
                                                                       O(1)
               for (int j = i+1; j < n; j++) {
                                                                       This takes O(N) time.
                       if (array[i] == array[j]) {
                                                                       Maybe N-1, or N-5, etc..
                              dupCount++;
                                                                       But we call those O(N)
       return dupCount;
                                       We repeat this O(N) work O(N) times.
                                       O(N) * O(N) is O(N^2)
```

Big-O Exercise

What is the time complexity of the following function using Big-O?

```
int someFuntion (int * array, int n) {
       int count = 0;
       for (int i = 0; i < n; i++) {
               for (int j = i+1; j < n; j++) {
                      for (int k = j+1, k < 100; k++) {
                              if (array[i] + array[j] == array[k])
                                      count++;
       return count;
```

Common Complexities (Closer Look)

Complexity Name	Big-O Notation	
Constant	O(1)	
Logarithmic	O(log(n))	
Linear	O(n)	
Log-Linear	O(nlog(n))	
Quadratic	O(n²)	
Cubic	O(n³)	
Exponential	O(a ⁿ), a constant	

For small n, hard to tell

Example: 100 Operations with 1000 Inputs

Algorithm Complexity	N = 1000
O(1)	constant
O(log(n))	0.09966
O(n)	10
O(nlog(n))	99.66
O(n²)	10,000
O(n³)	100,000,000
O(2 ⁿ)	1.07×10^{299}

Big Picture: High-Performance Programming

- Efficient Algorithm
 - Including choosing the proper data structures
 - This is what this course is about.
- High-performance implementation
 - Choose proper programming languages (e.g., Python vs C++)
 - Understand the underlying hardware (e.g., Multicores, GPUs)
 - Compiler knowledge also helpful (e.g., understanding various optimizations)
 - Profile your code → Find where your code is spending time
 - Interested? Consider taking: ECE 320, ECE 351, ECE 459

Exercise For You: Shuffle the Deck

- Considering a deck of cards stored in an array, how would you devise an algorithm to shuffle a deck?
- What is the time complexity of the algorithm your algorithm?
- How could you use lots of space, but very little time, to quickly get a shuffled deck when you need one? (Don't worry about how practical your solution would be; this is a "thought exercise")

Wrap Up

- In this lecture we talked about:
 - Why do we need algorithm analysis?
 - What is Big-O notation?
 - How to determine Big-O relationships?
 - What are some of the common complexities?
 - What are some of the algorithms that exhibit those complexities?
- Next Up:
 - Abstract Data Types (ADTs)

Suggested Complimentary Readings

- Data Structure and Algorithms in C++: Chapter 2
- Introduction to Algorithms: Chapter 3.1

Acknowledgement

- This slide builds on the hard work of the following amazing instructors:
 - Andrew Hilton (Duke)
 - Mary Hudachek-Buswell (Gatech)