→ Abhishek Gupta

Intern started: 01-July-2023

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

!gdown 1xUYRNb4xYDQ2c2aJ4FRYWsFIkToXaWP_

Downloading...
From: https://drive.google.com/uc?id=1xUYRNb4xYDQ2c2aJ4FRYWsFIkToXaWP
To:/content/iris.csv
190% 5.12k/5.12k [00:00<00:00, 14.7MB/s]

iris = pd.read_csv('iris.csv')
iris

ID Sepallengthincm Sepalwidthincm Petallengthincm Petalwidthincm</pre>
```

		ID	Sepallengthincm	Sepalwidthincm	Petallengthincm	Petalwidthincm
	0	1	5.1	3.5	1.4	0.2
	1	2	4.9	3.0	1.4	0.2
_	2	3	4.7	3.2	1.3	0.2
	To undo menu	cell del	etion use Ctrl+M Z or	the Undo option in t	he Edit X	0.2
	4	5	5.0	3.6	1.4	0.2
	145	146	6.7	3.0	5.2	2.3
	4					+

iris = iris.drop('ID',axis=1)
iris

	Sepallengthincm	Sepalwidthincm	Petallengthincm	Petalwidthincm	С
0	5.1	3.5	1.4	0.2	Sŧ
1	4.9	3.0	1.4	0.2	Sŧ
2	4.7	3.2	1.3	0.2	Sŧ
3	4.6	3.1	1.5	0.2	Sŧ
4	5.0	3.6	1.4	0.2	Sŧ
145	6.7	3.0	5.2	2.3	virç
4					-

```
iris.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

Column Non-Null Count Dtype
----0 Sepallengthincm 150 non-null float64
1 Sepalwidthincm 150 non-null float64

2 Petallengthincm 150 non-null float64
3 Petalwidthincm 150 non-null float64
4 Class 150 non-null object
dtypes: float64(4), object(1)
memory usage: 6.0+ KB

iris.describe()

Sepallengthincm Sepalwidthincm Petallengthincm Petalwidthincm 150.000000 150.000000 150.000000 150.000000 count 5.843333 3.054000 3.758667 1.198667 mean 0.763161 std 0.828066 0.433594 1.764420 4.300000 1.000000 0.100000 2.000000 min 25% 5.100000 2.800000 1.600000 0.300000 50% 5.800000 3.000000 4.350000 1.300000 75% 6.400000 3.300000 5.100000 1.800000

iris.isna().sum()

Sepallengthincm 0
Sepalwidthincm 0
Petallengthincm 0
Petalwidthincm 0
Class 0
dtype: int64

To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu

Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50
Name: Class, dtype: int64

iris.head()

Clas	Petalwidthincm	Petallengthincm	Sepalwidthincm	Sepallengthincm	
Iris setosa	0.2	1.4	3.5	5.1	0
Iris setosa	0.2	1.4	3.0	4.9	1
Iris	0.2	1.3	3.2	4.7	2

×

→ UniVariate Analysis

```
plt.figure(figsize=(6,4))
sns.histplot(iris['Sepallengthincm'])
plt.show()
```

```
sns.histplot(iris['Class'])
```

<Axes: xlabel='Class', ylabel='Count'>

plt.figure(figsize=(6,4))
sns.histplot(iris['Petallengthincm'])
plt.show()


```
plt.figure(figsize=(6,4))
sns.histplot(iris['Petalwidthincm'],bins=6)
plt.show()
```


▼ MultiVariate Analysis

iris['color'] = ['pink'] if i=='Iris-setosa' else 'purple' if i=='Iris-versicolor' else 'blue' for i in iris['Class']] iris

3	Sepallengthincm	Sepalwidthincm	Petallengthincm	Petalwidthincm	Class	color
0	5.1	3.5	1.4	0.2	Iris- setosa	pink
1	4.9	3.0	1.4	0.2	Iris- setosa	pink
2	4.7	3.2	1.3	0.2	Iris- setosa	pink
3	4.6	3.1	1.5	0.2	Iris- setosa	pink
4	5.0	3.6	1.4	0.2	Iris- setosa	pink
145	6.7	3.0	5.2	2.3	Iris- virginica	blue
146	6.3	2.5	5.0	1.9	Iris- virginica	blue
4						—

 $sns.scatterplot(data=iris, x='Sepallengthincm', y='Sepalwidthincm', hue='Class') \\ plt.show$

<function matplotlib.pyplot.show(close=None, block=None)>


```
sns.scatterplot(data=iris,x='Sepallengthincm',y='Petalwidthincm',hue='Class')
plt.legend(loc='lower right')
plt.show()
```


iris.corr()

<ipython-input-21-156dd03bc859>:1: FutureWarning: The default value of num
iris.corr()

	Sepallengthincm	Sepalwidthincm	Petallengthincm	Petalwi
Sepallengthincm	1.000000	-0.109369	0.871754	(
Sepalwidthincm	-0.109369	1.000000	-0.420516	-(
Petallengthincm	0.871754	-0.420516	1.000000	(
Petalwidthincm	0.817954	-0.356544	0.962757	1
4				>

```
plt.figure(figsize=(6,4))
sns.heatmap(iris.corr(), annot=True, cmap='Blues',linewidth=0.5)
plt.show()
```

<ipython-input-22-d4c2a8171b8e>:2: FutureWarning: The default value of num
sns.heatmap(iris.corr(), annot=True, cmap='Blues',linewidth=0.5)

from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
iris['encoded_labels'] = label_encoder.fit_transform(iris['Class'])
iris.head()

	Sepallengthincm	Sepalwidthincm	Petallengthincm	Petalwi	dthincm	Clas
0	5.1	3.5	1.4		0.2	Iris setosa
1	4.9	3.0	1.4		0.2	Iris setosa
To undo cell deletion use Ctrl+M Z or the Undo option in the Edit X menu					0.2	Iris

▼ Evaluate the performance of a model

```
from sklearn.model_selection import train_test_split
x_value = iris.drop(['Class','color'],axis=1)
y_value = iris['Class']
x_train, x_test, y_train, y_test = train_test_split(x_value, y_value, test_size=0.2)
x_value
```

	Sepallengthincm	Sepalwidthincm	Petallengthincm	Petalwidthincm	enc
0	5.1	3.5	1.4	0.2	
1	4.9	3.0	1.4	0.2	
2	4.7	3.2	1.3	0.2	
3	4.6	3.1	1.5	0.2	
4	5.0	3.6	1.4	0.2	
145	6.7	3.0	5.2	2.3	
146	6.3	2.5	5.0	1.9	
147	6.5	3.0	5.2	2.0	
148	6.2	3.4	5.4	2.3	
4					+

```
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()

model.fit(x_train,y_train)
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-reg
    n_iter_i = _check_optimize_result(
    v LogisticRegression
    logisticRegression()

print('Accuracy:',model.score(x_test,y_test)*100)

Accuracy: 100.0
```

To undo cell deletion use Ctrl+M Z or the Undo option in the Edit menu

✓ 0s completed at 2:33 PM