杭州电子科技大学信息工程学院

《QT 图形界面编程》 软件设计报告

题	目	基于 QT 的数字图像增强软件	
系		计算机系	
专	业	计算机科学与技术	
学	期	2019-2020-1	
学	号	17905827	
姓	名	唐铃沐	
任课教师		孙志海	
完成日期		2019年12月	

目录

一、软件设计任务概述	4
1.应用背景	4
2.任务	4
3.开发环境搭建	4
二、可行性研究、需求分析及分工	4
1.可行性	4
2.需求分析	4
3.分工	4
三、软件设计的基本原理和采用的主要方法(算法)与技术	4
1.设计原理	4
2.主要算法	4
(1)Gamma 变换	4
(2) 图像反转	5
(3) 灰度直方图均值化	5
(4) 高斯滤波	5
(5) Sobel 边缘检测	5
四、实现的过程与步骤	6
1.界面设计	6
2.几何变换	6
3.灰度处理	7
4.图像增强	7
5.颜色模型	7
6.输出窗口	7
7.属性窗口	7
8.绘图	7
9.其他功能	
10.视频处理	
11.发布名称、图标设置	
12	7

五、遇到的困难与获得的主要成果	8
1.困难	
六、测试与运行记录	8
七、结果分析与小结	13
1.结果分析	13
2.总结	13

自编图像处理软件 myPs

一、 软件设计任务概述

应用背景: myPs 是一个带有几何变换、 灰度变换、图像增强、绘图等功能的图像编辑软件。可以广泛应用于生活、工作中,对于 有平面设计、图形、绘图等需求的人群也可 以选择。

任务: 实现图像处理软件的基本功能, 其中包括,

几何变换:图像大小变换、图像缩放、图 像旋转、图像翻转;

灰度变换:线性变换、指数变换、伽马变换、二值图、灰度图、图像反转,直方图均值化:

图像增强:可调模板大小的均值滤波、 高斯滤波、中值滤波, sobe 边缘检测、laplacian 检测;

RGB模型: R分量图, G分量图, B分量图:

绘画:可以通过画笔、直线和各种形状(圆、三角、长方形等)在图像上进行绘画并保存,可以调节画笔线宽和颜色;

输出窗口:显示操作记录

属性窗口:图像基本信息;

其他:各种窗口部件的隐藏和显示、全 屏、关于、设置、皮肤切换、语言转换、跨平 台等;

开发环境搭建: Qt5.6

二、可行性研究、需求分析及分工

可行性: 生活中越来越多的人想要让自己的照片看起来更漂亮,而主流的 Ps 一类软件较大,不轻便,对于新手不友好,难以掌握其用法;

需求:急需一款跨平台的轻便、简单的图像处理软件;

分工: 开发人员 唐铃沐:

三、 软件设计的基本原理和采用的 主要方法(算法)与技术

设计原理:着重于软件的轻便、容易上手、在主窗口能完成所有基本操作、图像处理准确无误;

主要算法:

伽马变换

变换公式就是对原图像上每一个像素点 RGB 值做乘积运算:

$$s = cr^{\gamma}$$
 $r \in [0,1]$

所以在实现中需要对像素值进行归一化,即乘上 1/255,C 默认 1;

实现:

- 1. 定义 double a = 1.0 / 255.0;
- 遍历每一个像素点,分别对其 RGB 值 pow(RGB * a, gamma)操作;
- 3. 将新值赋给图像;

流程图:

图像反转:

对每个像素点 RGB 值进行取反或者 255-RGB 值,再赋给原图像;

$$y = \sim x$$

或者

$$y = 255 - x$$

实现:

- 1. 遍历每一个像素点;
- 2. 取出 RGB 值分别取反:
- 3. 将取反后的值赋给新图像:

直方图均值化

- 1. 首先绘制图像的灰度直方图
- 2. 计算出每一种灰度值出现的概率;灰度值出现概率 = 这一种灰度值出现的次数 / 总像素点个数
- 3. 计算累计概率; 灰度值的累计概率 = 这一种灰度值出现的概率与这一种灰度值之前出现的概率之和;
- 4. 计算各个像素点的灰度值; 灰度值 = 原灰度值 * 原灰度值的累计概率

流程图:

高斯滤波:

(-1,1)	(0,1)	(1,1)
(-1,0)	(0,0)	(1,0)
(-1,-1)	(0,-1)	(1,-1)

1. 选择模板大小,将模板中心点设为 (0,0),通过高斯二维函数:

$$G(x,y)=rac{1}{2\pi\sigma^2}e^{-rac{x^2+y^2}{2\sigma^2}}$$

计算出每个模板点的权值;

- 2. 此时模板中各点权值和不为1,因此将每个模板点权值除以所有模板点权值和,使他们和为一;
- 3. 计算像素点的 RGB 值,每个模板点分别乘以上一步计算出的权值,总和就为中心点(0,0)的值:

流程图:

Sobel 算子:

1. 计算每个像素点的灰度值

$$Gray = (R+G+B)/3;$$

2. 计算梯度

(-1,1)	(0,1)	(1,1)
(-1,0)	(0,0)	(1,0)
(-1,-1)	(0,-1)	(1,-1)

Gx = Gray(-1,1)- Gray(-1,-1) + 2* (Gray(0,1) - Gray(0,-1)) + Gray(1,1)- Gray(1,-1);

Gy = Gray(-1,1)- Gray(1,1) + 2* (Gray(-1,0)-Gray(1,0))+Gray(-1,-1)-Gray(1,-1)1);

$$G = \sqrt{G_x^2 + G_y^2}$$

有时为了简便计算 G = |Gx| + |Gy|;

3. 最后通过 G 与阈值 key 比较,确定为 RGB(0,0,0)或者 RGB(255,255,255) 描绘边缘;

流程图:

四、 实现的过程与步骤

1. 界面设计

主界面由菜单栏,工具栏,以及工具箱、 图像、几何变换、灰度变换、图像增强、颜色 模型、输出、属性九个 Dock 窗口; 其中图像 窗口为主窗口且不可关闭, 几何变换、灰度 变换、图像增强、颜色模型合并, 默认几何窗口显示最前端。输出、属性窗口合并, 默认输出窗口显示在最前端:

工具栏包括新建、打开、保存、另存为、撤销、重做、画笔宽度、画笔颜色等

菜单栏包括文件、编辑、视图、几何变换、 灰度变换、图像增强、颜色模型、帮助:

2. 几何变换

图像大小:设置宽高,通过 scaled(int width, int height)完成;

图像缩放:倍数放大缩小,通过 scaled(int width, int height)完成;

图像旋转:旋转的角度,QMatrix 对象rotate(qreal degrees)完成;

图像翻转:将图像水平或竖直翻转,Tlm 类中 symmetry(QImage img,bool t);

3. 灰度变换

线性变换: 通过 y=kx+b 对像素点处理, Tlm 类中 linearImage(QImage img, double k, int b)完成;

指数变换: 通过 y = x^a 对像素点处理, Tlm 类中 expImage(QImage img,double t)完成 伽马变换: 通过 y = cr^gamma , r 范围 为 [0,1] 对 像 素 点 处 理 , Tlm 类 中 gammaImage(QImage img,double gamma)完成;

二值图像:像素点灰度值和阈值比较, 赋值白或黑,Tlm 类中 TowValue(QImage img, int value)完成;

灰度图像: 通过 Gray =(R+G+B)/3, 赋值 给像素点, Tlm 类中 Graylevel(QImage src)完 成:

反转变换:通过对像素点取反对像素点进行处理,Tlm类中reverseImage(QImage img) 完成

直方图均值化: 见主要算法一栏;

4. 图像增强

图像平滑:

均值滤波:将模板像素点取平均,赋 给中心点;Tlm类中averageImage(QImage src, int length)完成;

高斯滤波: 将模板像素点通过二维高斯函数加权计算后赋给中心点, Tlm 类中gaussImage(QImage image, int length, double sigma)完成;

中值滤波:将模板像素点排序,取中间值赋给中间点,Tlm类中medianImage(QImage src, int length)完成;

图像锐化:

Sobel 边缘检测: 通过 sobel 算子对图像进行边缘检测, Tlm类中 sobelImage(QImage image, int key)完成; (详细过程见"主要算法"一栏)

Laplacian 边缘检测:用 Laplacian 算子对图像进行边缘检测,Tlm 类中laplaImage(QImage img, int key)完成;

5. 颜色模型

RGB 模型:通过仅保留 R、G 或者 B 值, 提取 R、G、B 分量图, Tlm 类中 splitBGR(QImage src, int color)完成;

6. 输出窗口

通过 QLabel 的 append 方法,在每次图 像处理后进行输出操作;

7. 属性窗口

每次显示图片后更新图片信息;

8. 绘图

通过 paint 类实现基本绘图功能;

9. **其他功能**(全屏、窗口部件隐藏显示、关于、设置、换皮肤、中英文转换)

全 屏 : 通 过 showFullScreen() 和 showNormal()实现全屏和退出全屏;

关于: 自定义窗口,显示软件信息和作者信息:

设置:自定义窗口,可进行皮肤切换、语言切换;

10. 视频处理

创建视频播放 Dock 窗口和视频控制 Dock 窗口。播放窗口进行视频正常播放,可以停止、暂停、调节亮度、对比度、色相、饱和度;控制窗口是控制图片帧在 label 上的显示,可以通过暂停对这一帧进行上述图像各种处理,将修改后的图片帧保存,预览按钮可以播放刚刚修改过的视频,此外还能输入帧数进行查看。

11. 发布名称、图标设置

略

12. 跨平台

在 Ubuntu 虚拟机下载 Qt 以及配置插件等,对项目进行编译。即可运行

五、遇到的困难与获得的主要成果

困难: 其实不管是界面模块、图像处理 的功能模块还是视频处理模块,都没有那么 顺畅的完成,大大小小很多可能印象不是很 深了,所以列举一些印象深一点的困难。

Sobel 边缘检测:这一类还包括高斯滤波、直方图均值化等需要浮点数类型的处理。在方法实现中稍微没有控制好或者考虑到数据类型转换问题,就会精度下降或者图片全白全黑等问题。

中值滤波:我实现的滤波基本都是四层循环,外面两层遍历像素点,里面两层遍历模板,而中值滤波需要对模板点排序,所以我又实现了一个冒泡排序,导致一共六层循环,复杂度很高。在 3x3 等小一点的模板示例图片速度还行,但是当模板变大一点,循环次数是爆炸性的增长,所以处理时间也会非常长。

视频处理:在对播放帧的处理是,将视频转化为一帧帧图片,通过我显示图像的Label显示,同时存入我的QImage数组,我想暂停后对这一帧进行图片处理后再存入QImage数组,但是怎么也实现不了,因为处理完成之前,图片已经存入了,你修改后在label显示的图片只会被后面帧的图片冲掉。最后我的解决方案是定义int counters[100]和QImage editeImageVideo[100]两个数组存放修改的帧数和这一帧修改后的图像,当我点击预览的时候,将这些修改的帧插入存视频帧的QImage数组后,再播放,实现了播放修改后的视频;

视频修改后预览: 我是遍历 QImage 数

组里面的图像信息,显示到 Label,这样界面的情况是会直接显示最后一张图片,原因是因为遍历数组太快了。所以我在遍历中用到计时器,通过获取视频总时长除以总帧数得到每一帧的间隔,在遍历时加上这一间隔的时间,最后能达到还原播放的效果;

六、测试与运行记录

原图:

图像大小: 长 500, 宽 500

图像缩放:缩放倍数 -1

线性变换: K 2.00, B 50

图像翻转: 水平翻转

指数变换: Exp 1.10

竖直翻转:

伽马变换: Gamma 2.00

二值图像: 阈值 142

灰度直方图均值化:

灰度图像:

均值滤波: 模板 7x7

图像反转:

高斯滤波: 模板 7x7

中值滤波:模板 7x7

G 分量图:

Sebel 边缘检测:

B 分量图:

R 分量图:

绘图: 画笔、直线、圆形、三角形、长方 形、六边形

视图: 所有可隐藏窗口窗口隐藏(可在 视图菜单栏打开)

关于窗口

皮肤切换:

设置窗口:

切换英文:

七、结果分析与小结 结果分析:

全部实现了考核任务,并在此基础上还添加了许多额外功能,如绘图、换皮肤、灰度直方图均值化、RGB分量图等等。但是细心的话可以看到在一些图像处理上面还不够细致,如滤波边缘我采用保留原值的方法,在多次滤波或者改用较大的模板时,边缘会有明显的层次感;又如边缘检测,还是会有少数噪声干扰;高斯滤波响应速度慢;视频取帧等很多操作流程还待完善;视频的存储等很多问题。

总结:

其实每学期期末的节奏都是很紧的,自己也多少有点适应这种情况了。这次大作业 大概加班加点也有两周时间,我也很庆幸有 这次大作业形式的考核。其中除了熟悉和新 学到很多关于 Qt 编程的知识, 更让我兴奋的 是重新认识了一遍图形图像的处理。当初上 图像图像这门课也学的不是很好, 这次通过 Qt 大作业的形式重新翻看了之前的书, 并且 把大部分图像算法都实现了一遍, 有了很深 的认识。此外, 我最近对人脸识别等类似的 基于图像识别的东西也比较感兴趣, 算是丰 富了一下知识储备。最后, 这次图像处理软 件的制作也有非常多的难题, 在与同学交流 和查阅资料中大多也都能想到一些解决方案, 也有一小部分甚至到现在都还没解决的。所 以我也深知, 还有很多东西等着我去了解和 学习, 我也希望能更加脚踏实地充满信心的 走下去。