

GMQA: Modelo de processo de desenvolvimento de software integrado a um sistema de medição de desempenho

Gabriel L. Baptista
Professor Orientador José A. A. Salles

Maio de 2012

Programação

- 1. Contextualização do Problema
- 2. Questionamento da pesquisa
- 3. Justificativa do estudo
- 4. Conceitos aplicados no modelo
- Modelo GMQA
- 6. Questionário

Contextualização do Problema

A engenharia de *software*, disciplina que se preocupa com todos os aspectos da produção de *software*, vem sofrendo ao longo dos anos com a questão de conseguir atingir **prazos**, **custos** e **funcionalidades** esperados, o que torna tais fatores desafiadores para a área.

(DIJKSTRA, 1972; HUMPHREY, 1995; SOMMERVILLE, 2007)

Contextualização do Problema

Chaos Report (STANDISH, 2009)

- Projetos encerrados com sucesso (32%)
- Projetos atrasados, acima do custo, e/ou com menos funcionalidades (44%)
- Projetos cancelados ou nunca usados (24%)

Questionamento da pesquisa

A hipótese levantada pelo trabalho sugere que a criação de um modelo de processo de desenvolvimento direcionado por indicadores técnicos e estratégicos poderia incentivar a adaptação de tal modelo para processos de desenvolvimento de software mais adequados e alinhados com a necessidade da empresa.

Modelo de processo de desenvolvimento?

Base teórica possível de adaptação para que as empresas de desenvolvimento possam criar os processos para produção do software adequados para cada realidade.

(PRESSMAN, 2011)

Justificativa do estudo

Infelizmente os desenvolvedores de software estão muito distantes de outros profissionais quanto ao estabelecimento de padrões de medição e objetivos relevantes.

(JONES, 2008)

Somente 39,6% das empresas medem o desempenho do processo de *software* de forma sistemática.

(MCT, 2009).

Conceitos PRODUÇÃO Mestrado aplicados no modelo

- Melhores Práticas no Desenvolvimento de Software (BOOCH, 1998)
- Princípios Lean para desenvolvimento de software (POPPENDIECK e POPPENDIECK, 2011)
- Passos para desenvolver um SMD (NEELY et. al, 1995)
- Papéis da Medição (HUMPHREY, 1989)
- CMMI-DEV (SEI, 2010)
- MPS.BR (SOFTEX, 2011)
- SCRUM (SHWABER e SUTHERLAND, 2011)
- ISO 15939 (ISO, 2007)
- Stage-Gates (COOPER, 2007)

Aderência do modelo

Gestão, Medição, Qualidade e seus Artefatos

Macro atividade de Arquitetura

- Avaliação dos pedidos
- Transformação de necessidades em software modelado
- Escolha de tecnologia
- Definição do que deve ser reutilizado
- Decisão do que será gerado para reuso

Macro atividade de Desenvolvimento

- Codificação
- Garantia da manutenibilidade
- Determinação das situações de teste
- Análise da cobertura dos testes

Macro atividade de Implantação

- Instalação
- Treinamento
- Acompanhamento após instalação
- Verificação e validação de acordo com as características do cliente

Princípios GMQA

Entrega

- Comparação entre tarefas planejadas e executadas
- Análise do que foi medido
- Entrega dos artefatos
- Confirmação do nível de qualidade

<u>Planejamento</u>

- Tarefas
- Métricas
- Artefatos
- Níveis de Qualidade

GMQA

Execução

- Monitoramento das tarefas
- Medição
- Geração dos artefatos planejados
- Garantia da Qualidade

Voltar

Princípio de Gestão

- Contínua
- Organizada em ciclos, de acordo com a priorização definida
- Entregas parciais
- Ciclos de no máximo um mês
- Separação ou não das macro etapas
- Não é recomendado a interrupção de um ciclo
- Três fases:
 - Planejamento
 - Execução
 - Entrega

Fase da Gestão: Planejamento

- Que tarefas que serão executadas?
- Que riscos podem impedir a execução das tarefas?
- Quem são os responsáveis por cada tarefa?
- Quais métricas serão utilizadas?
- Que artefatos serão entregues?
- Quais indícios de qualidade serão divulgados?

Fase da Gestão: Execução

- Execução das Tarefas;
- Monitoramento;
- Mitigação de riscos;
- Geração de artefatos pelos responsáveis;
- Coleta e armazenamento de métricas;
- Garantia da Qualidade do Produto e do Processo;
- Verificação;
- Validação.

Fase da Gestão: Entrega

- Analisar o que foi medido;
- Entregar o que foi concluído;
- Garantir que o que foi entregue está de acordo com os níveis de qualidade determinados.

Princípio de Medição

- Controle
- Entendimento
- Avaliação
- Previsão
- Alinhado a objetivos estratégicos da empresa
- Pontos mínimos de medição exigidos
 - M1, M2, M3 e M4
- Métricas sugeridas

Princípio de

- Quanto mais cedo um problema for detectado, melhor!
- Aplicação de Técnicas de Verificação, Validação, Garantia da Qualidade do Produto e do Processo

Princípio de

- Controle
- Comprovação do andamento do projeto
- Definição dos artefatos a serem produzidos
- Definição dos responsáveis pela geração dos artefatos
- Diferentes abordagem de desenvolvimento geram diferentes artefatos
- Artefatos sugeridos

Pontos mínimos de

medição exigidos

M1 – Estoque de necessidades a serem avaliadas

Quantidade de requisitos de usuário sem avaliação

- A entrada de novas necessidades geradas pela idealização de um novo produto.
- A entrada de novas necessidades oriundas da evolução do produto.
- O reenvio de requisitos que já iniciaram o processo de desenvolvimento por conta de troca de prioridades.

Pontos mínimos de medição exigidos

M2 – Estoque de software arquitetado

Quantidade de funcionalidades arquitetadas

- Documentação essencial para construção do software
- O desenvolvimento dessa arquitetura ainda não foi executado pois:
 - Falta de recursos
 - Falta de aprovação de custo

Pontos mínimos de medição exigidos

M3 – Estoque de software construído

Quantidade de funcionalidades desenvolvidas

- Software considerado pronto para instalação
- Não foi ainda entregue ao seu usuário final, pois:
 - Falta treinamento
 - Falta recursos para instalação

Pontos mínimos de medição exigidos

M4 – Estoque de software descartado

Quantidade de funcionalidades descartadas

- Necessidades que n\u00e3o foram evolu\u00eddas
 - Mudanças no projeto
 - Mudanças externas ao projeto

G1 – Priorização dos requisitos de usuário que serão arquitetados

- Tenho estoques em M2 e M3 que precisariam ser liberados antes da avaliação de meu estoque M1?
- Quais das minhas necessidades são mais relevantes de início de análise?
- Tenho autorização para realizar a análise de quais necessidades?
- Tenho estoques em M1 que devem ser transferidos para M4?

Voltar

G2 – Definição do que será desenvolvido

- Tenho produtos arquitetados em M2 que precisam ser reavaliados (enviados novamente para M1)?
- Tenho capacidade de execução da macroatividade de Desenvolvimento?
- Tenho um alto estoque em M1?
- Tenho um alto estoque em M3?

G3 – Definição do que será implantado

- Tenho produtos desenvolvidos em M3 que precisam ser reavaliados (enviados novamente para M1)?
- Tenho capacidade de execução da macroatividade de Implantação?
- Tenho um alto estoque em M1?
- Tenho um alto estoque em M2?

Artefatos sugeridos pelo modelo

- Lista de defeitos reportados
- Solicitação de mudança
- Plano do ciclo
- Plano do projeto
- Resultados do ciclo
- Plano para verificação e validação
- Critério de aceitação do sistema
- Relatório de verificação e validação
- Lista de impedimentos do projeto
- Critério de aceitação do projeto
- Lista de não conformidades do projeto
- Requisitos de usuário
- Requisitos de sistema
- Modelo de Casos de uso
- Diagrama de classes
- Diagrama Entidade-Relacionamento
- Arquitetura do sistema
- Manual técnico do produto

- Manual de usuário
- Treinamento do produto
- Código-fonte
- Executável
- Scripts de banco
- Notas de liberação

Métricas sugeridas pelo modelo

- Quantidade de requisitos de usuário sem avaliação
- Quantidade de funcionalidades arquitetadas
- Quantidade de funcionalidades desenvolvidas.
- Quantidade de funcionalidades implantadas
- Quantidade de funcionalidades descartadas
- Quantidade de solicitações de mudança por ciclo
- Quantidade de artefatos ajustados por solicitação de mudança
- Porcentagem de acerto das estimativas
- Quantidade de bugs por ciclo
- Quantidade de defeitos por ciclo
- Quantidade de casos de teste gerados
- Quantidade de casos de teste executados por ciclo
- Quantidade de casos de teste por requisito
- Quantidade de impedimentos existentes
- Horas investidas no projeto por ciclo
- Custo para execução do ciclo
- Quantidade de n\u00e3o conformidades detectadas por ciclo

Métricas sugeridas pelo modelo

- Quantidade de casos de uso levantados
- Quantidade de classes do sistema
- Quantidade de tabelas do sistema
- Número de linhas de código geradas
- Complexidade do sistema
- Porcentagem de riscos confirmados
- Quantidade de pessoas capacitadas no projeto
- Quantidade de problemas encontrados após implantação

Referências

BECK, K. Embracing Change with Extreme Programming. **IEEE Computer**, 1999. Boehm, B. A Spiral Model of Software Development and Enhancement. **IEEE Computer**, 1988.

BOOCH, G. Leaving Kansas. IEEE Software 15(1), 1998.

COOPER, R. G. Winning at new products, accelerating the process from idea to launch. Reading, M. A., Perseus Books, 1993.

COOPER, R. G. **Doing it Right:** Winning with new products. Innovation Framework Technologies, 2007.

HUMPHREY, W. S. Managing the software process. Addison-Wesley, 1989.

ISO/IEC 15939-2:2007 **Systems and software engineering – Measurement process**.

KAPLAN, R. S., NORTON, D. P. **A Estratégia em Ação: Balanced Scorecard**. Rio de Janeiro: Campus, 1997.

KARLSTRÖM, D., RUNESON, P. Integrating agile software development into stage-gate managed product Development. **Empirical Software Engineering**, 2006. KRUTCHEN, P. **The Rational Unified Process – An Introduction**. Addison-Wesley, 2003.

NEELY, A.; GREGORY, M. J.; PLATTS, K. Performance measurement system design: A literature review and research agenda. **International Journal of Operations & Production Management**, 1995.

Referências

PETERSEN, K., WOHLIN, C. Software process improvement throught the Lean Measurement (SPI-LEAM) method. **The Journal of Systems and Software,** 2010. PROJECT MANAGEMENT INSTITUE **Um Guia do Conjunto de Conhecimentos em Gerenciamento de Projetos (PMBOK)**, 3ª Edição, 2004.

POPPENDIECK, M., POPPENDIECK, T. Implementando o desenvolvimento Lean de Software: do conceito ao dinheiro. Porto Alegre: Bookman, 2011.

PRESSMAN, R. S. **Engenharia de Software:** Uma abordagem profissional. Porto Alegre: AMGH, 2011.

Royce, W. W. Managing the Development of Large Software Systems. **WESCON**, 1970.

SCHWABER, K., SUTHERLAND, J. **The Definitive Guide to Scrum**: The rules of the game. Scrum.org, 2011.

SOFTWARE ENGINEERING INSTITUTE **CMMI®** for **Development**, Version 1.3. Pittsburgh, 2010.

SLACK, N. et. al. Administração da Produção. 3ª ed. São Paulo: Atlas, 2009.

SOFTEX MPS.BR – **Melhoria de Processo do Software Brasileiro: Guia Geral**, 2011.

SOMMERVILLE, IAN. **Engenharia de Software**. 8ª ed. São Paulo: Pearson Addison-Wesley, 2007.

STANDISH GROUP INTERNATIONAL. **CHAOS Summary 2009 Report**. Boston, 2009.