HTWK

Prof. Dr. habil. H.-J. Dobner

§25 Das unbestimmte Integral

=>> INFORMATIK

Simulation

Warteschlangen

Computergrafik

<u>Integral</u>

Fläche unter beliebig geformten Kurven

Volumenbestimmung beliebiger Körper

Integration ist als Umkehrung der Differentiation.

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzig

Zum Einstieg

Nehmen Sie an, dass wir die Funktion f nicht kennen, dass wir aber wissen, dass ihre Ableitung gleich x^2 ist, so dass $f'(x)=x^2$. Was ist f? Da die Ableitung x^3 gleich $3x^2$ ist, sehen wir, dass $1/3x^3$ die Ableitung x^2 hat. Aber auch $1/3x^3+C$, wobei C eine beliebige Konstante ist, hat diese Ableitung, da additive Konstanten beim Differenzieren verschwinden.

Konsequenz:

Ist g(x) eine beliebige Funktion, welche x^2 als Ableitung hat, dann ist die Ableitung von g(x)-1/3 x^3 gleich Null für alle x. Eine Funktion, deren Ableitung für alle x gleich 0 ist, muss konstant sein.

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzic

Problem:

Geg: Funktion
$$y = f(x), x \in (a, b) \subseteq \mathbb{R}$$

$$f(x) = x^2, x \in \mathbb{R}$$

Geg: Funktion
$$y = f(x), x \in (a,b) \subseteq \mathbb{R}$$
 $f(x) = x^2, x \in \mathbb{R}$ Ges: Funktion $F(x)$ mit $F'(x) = f(x)$ $F(x) = \frac{x^3}{3}$

$$F(x) = \frac{x^3}{3}$$

Definition 1

Eine in (a,b) definierte Funktion F(x) heißt Stammfunktion von f(x), wenn für alle $x \in (a,b)$ gilt:

$$F'(X) = f(X)$$

Beispiel 1

$$F(x) = \frac{x^3}{3}$$
 ist Stammfunktion von $f(x) = x^2$

Aber auch $\frac{x^3}{3} + 7$ ist Stammfunktion von $f(x) = x^2$

Definition 2

Ist F(x) Stammfunktion von f(x) so hat jede andere Stammfunktion von f(x) die Form F(x)+C, wobei C eine (beliebige) reelle Konstante ist

F(x)+C heißt **unbestimmtes Integral** der Funktion f(x)

Schreibweise
$$\int f(x) dx$$

Schreibweise
$$\int f(x) dx$$

$$\int f(x) dx = F(x) + C, C$$