Розпізнавання образів.

Згорткові нейронні мережі

Сьогодні на лекції

Згортка

Input Feature Map

Output Feature Map

Visualization of the receptive field

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

Pixel representation of the receptive field

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(50*30)+(50*30)=6600 (A large number!)

Visualization of the receptive field

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

Pixel representation of the receptive field

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(50*30)+(50*30)=6600 (A large number!)

Пулінг (підвибірка)

Feature Map

1	3	2	5
0	8	7	0
6	3	1	9
2	3	0	7

Max Pooling	Average Pooling

Max pooling and Average pooling of a 4x4 input map with a 2x2 pooling window and stride = 2 thedatabus.io

S=2

При застосуванні згортки 5х5х3, 256 разів, вихідна карта ознак матиме скільки каналів?

3

5

256

8

LeNet5

Функції активації

$$\begin{cases} 0 & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$$
$$= \max\{0, x\}$$

 $\left\{ egin{array}{ll} lpha x & ext{if } x < 0 \ x & ext{if } x \geq 0 \ \end{array}
ight.$ with parameter lpha

15	20	-10	35
18	-110	25	100
20	-15	25	-10
101	75	18	23

ReLU Layer

Dropout

$$\hat{w_{ij}} = egin{cases} w_{ij}, & ext{with } P(c) \ 0, & ext{otherwise} \end{cases}$$

$$\hat{\mathbf{w}}_j = \begin{cases} \mathbf{w}_j, & \text{with } P(c) \\ \mathbf{0}, & \text{otherwise} \end{cases}$$

AlexNet

10 6

VGGnet

Softmax

$$\sigma(ec{z})_i \, = \, rac{e^{\,z_i}}{\sum_{j=1}^K \, e^{\,z_j}}$$

- Z –вектор
- Zi елементи ветора
- К кількість класів

$$egin{bmatrix} P(ext{cat}) \ P(ext{dog}) \end{bmatrix} \ = \sigma(egin{bmatrix} 1.2 \ 0.3 \end{bmatrix}) \ = egin{bmatrix} rac{e^{1.2}}{e^{1.2} + e^{0.3}} \ rac{e^{0.3}}{e^{1.2} + e^{0.3}} \end{bmatrix} = egin{bmatrix} 0.71 \ 0.29 \end{bmatrix}$$

VGGnet16

Дуже повільна швидкість навчання. Сама архітектура мережі важить надто багато

Transfer learning

augmentation

Inception-v1 (GoogLeNet)

Inception модуль

Згортка 1х1

Inception-v1

SGD

miniBatch (розмір 4)

$$L_i=rac{1}{2}(y_i-wx_i)^2$$

$$g_{SGD} = rac{\partial L}{\partial w} = -(y_i - wx_i)x_i$$

$$w = w - lr \cdot g_{SGD}$$

$$L = rac{1}{2}ig((y_1 - wx_1)^2 + \dots + (y_4 - wx_4)^2ig)$$

$$L = rac{1}{2}ig((y_5 - wx_5)^2 + \cdots + (y_8 - wx_8)^2ig)$$

.....

$$g_{mini-batch} = rac{\partial L}{\partial w} = -\left((y_1 - wx_1)x_1 + \cdots + (y_4 - wx_4)x_4
ight)$$

$$w = w - lr * g_{mini-batch}$$

Batch Normalization

$$\mu_B=rac{1}{m}\sum_{i=1}^m x_i$$
 , and $\sigma_B^2=rac{1}{m}\sum_{i=1}^m (x_i-\mu_B)^2$ $\qquad \qquad x=(x^{(1)},\ldots,x^{(d)})$

$$\hat{x}_i^{(k)} = rac{x_i^{(k)} - \mu_B^{(k)}}{\sqrt{\left(\sigma_B^{(k)}
ight)^2 + \epsilon}}$$
 , where $k \in [1,d]$ and $i \in [1,m]$

$$y_i^{(k)} = \gamma^{(k)} \hat{x}_i^{(k)} + eta^{(k)}$$

Layer Normalization

Inception-v2 i Inception-v3

Inception-v2

- декомпозиція шару з фільтром 5х5 на два шари 3х3.
- Batch Normalization

Inception-v3

- декомпозиція фільтрів NxN двома послідовними фільтрами 1xN і Nx1
- RMSProp

Нащо потрібна згортка 1х1?

ResNet (Residual Network)

$$H(x) = f(x)+x,$$

$$f(x) = 0$$

$$H(x) = x$$

варіанти залишкових блоків

Inception-v4 i Inception-ResNet

Figure 3. The schema for stem of the pure Inception-v4 and Inception-ResNet-v2 networks. This is the input part of those networks. Cf. Figures 9 and 15

Figure 9. The overall schema of the Inception-v4 network. For the detailed modules, please refer to Figures 3, 4, 5, 6, 7 and 8 for the detailed structure of the various components.

Inception блок A

Figure 10. The schema for 35×35 grid (Inception-ResNet-A) module of Inception-ResNet-v1 network.

Модуль Inception-ResNet-C для Inception-ResNet-v1

Wide ResNet

ResNeXt

Нащо нам пропускні з'єднання?

Допомогти мережі вивчити тотожнє перетворення

Передати ваги вперед в мережі

Щоб збільшити складність в мережі

Додати нелінійності

Spatial Separable Convolutions

• Ядро 3х3 можна замінити на 2 ядра 3х1 і 1х3

$$\begin{bmatrix} 3 & 6 & 9 \\ 4 & 8 & 12 \\ 5 & 10 & 15 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

Simple Convolution

Spatial Separable Convolution

Xception

Depthwise Convolution

Pointwise Convolution

DenseNet

MobileNet

Table	1. MobileNet	Body	Architecture
-------	--------------	------	--------------

Type / Stride	Filter Shape	Input Size
Conv/s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$
Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$
Conv/s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$
Conv dw / s2	$3 \times 3 \times 64 \mathrm{dw}$	$112 \times 112 \times 64$
Conv/s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$
Conv dw / s1	$3 \times 3 \times 128 \mathrm{dw}$	$56 \times 56 \times 128$
Conv/s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
Conv/s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
Conv/s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
Conv/s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$
5× Conv dw / s1	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
Onv/sl	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$
Conv dw / s2	$3 \times 3 \times 512 \mathrm{dw}$	$14 \times 14 \times 512$
Conv/s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$
Conv/s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$
Avg Pool / s1	Pool 7 × 7	$7 \times 7 \times 1024$
FC/sl	1024×1000	$1 \times 1 \times 1024$
Softmax / s1	Classifier	$1 \times 1 \times 1000$

EfficientNet

EfficientNet

$$\mathcal{N} = \bigodot_{i=1...s} \mathcal{F}_i^{L_i} \left(X_{\langle H_i, W_i, C_i \rangle} \right)$$

$$\mathcal{N}(d, w, r) = \bigodot_{i=1...s} \hat{\mathcal{F}}_{i}^{d \cdot \hat{L}_{i}} \left(X_{\langle r \cdot \hat{H}_{i}, r \cdot \hat{W}_{i}, w \cdot \hat{C}_{i} \rangle} \right)$$

depth: $d = \alpha^{\phi}$

width: $w = \beta^{\phi}$

resolution: $r = \gamma^{\phi}$

s.t. $\alpha \cdot \beta^2 \cdot \gamma^2 \approx 2$

 $\alpha \ge 1, \beta \ge 1, \gamma \ge 1$