Fundamentos de análisis y diseño de algoritmos

Montículos y Heapsort

Comparación de algoritmos de ordenamiento
Propiedades de orden y forma de los montones
Operaciones HEAPIFY, BUILD-HEAP Y HEAP-SORT
Análisis de complejidades
Colas de prioridad

Problema de ordenamiento

```
- Insertion
    O(n^2)
     Ordena in-place
- Merge
     ⊕(nlgn)
     No ordena in-place
- Heapsort
     O(nlgn)
     Ordena in-place
- Quicksort
     \Theta(n^2), Caso promedio: \Theta(nlgn)
     Ordena in-place
```

Insertion, Merge, Heapsort y Quicksort son algoritmos de ordenamiento basados en comparación. Estos tienen la característica de que son del orden de $\Omega(nlgn)$

¿Es posible bajar esta cota?

Insertion, Merge, Heapsort y Quicksort son algoritmos de ordenamiento basados en comparación. Estos tienen la característica de que son del orden de $\Omega(nlgn)$

¿Es posible bajar esta cota?

- ·Counting sort
- ·Radix sort
- Bucket sort

Heapsort

Idea: utilizar las fortalezas de MergeSort y de InsertionSort

Utiliza un representación lógica, conocida como montículo (heap), de un arreglo que permite ordenar los datos del arreglo in-place

Montículos

Es un arreglo que puede ser visto como un árbol binario que cumple dos propiedades:

- Propiedad del orden: La raíz de cada subarbol es mayor o igual que cualquier de sus nodos restantes
- Propiedad de forma: La longitud de toda rama es h o h-1, donde h es la altura del árbol. Además, no puede existir un rama de longitud h a la derecha de una rama de longitud h-1

Analizar las propiedades de orden y de forma

Falla la propiedad de orden, en el subarbol 4-2-1, la raíz no cumple con ser mayor o igual los demás elementos

Indique si se cumplen las propiedades de orden y de forma

Indique si se cumplen las propiedades de orden y de forma

Los datos se almacenan en el arreglo recorriendo, por niveles, de izquierda a derecha

8 5 7 4 3 1 2

Los datos se almacenan en el arreglo recorriendo, por niveles, de izquierda a derecha

Indique si se cumplen las propiedades de orden y de forma

 $A=\{20, 10, 5, 4, 3, 1\}$ donde heap-size[A]=6 y length[A]=10

Indique si se cumplen las propiedades de orden y de forma

 $A=\{20, 10, 5, 4, 3, 1, \}$ donde heap-size[A]=6 y length[A]=10 $A=\{8, 4, 2, 1, 7, 9\}$ donde heap-size[A]=4 y length[A]=10

Los datos se almacenan en el arreglo recorriendo, por niveles, de izquierda a derecha

Evalue [i/2] para i=2 y 3

Evalue $\lfloor i/2 \rfloor$ para i=4 y 5

Evalue [i/2] para i=6 y 7

Los datos se almacenan en el arreglo recorriendo, por niveles, de izquierda a derecha

Evalue [i/2] para i=2 y 3

Evalue $\lfloor i/2 \rfloor$ para i=4 y 5

Evalue [i/2] para i=6 y 7

Padre(i): [i/2]

Raíz del árbol: A[1]

Padre(i): [i/2]

Izq(i): A[2*i]

Der(i): A[2*i + 1]

Operaciones con montículos:

- Heapify: O(lg n)
- Build-Heap: O(n)
- HeapSort: O(nlgn)
- Max-Heap-Insert, Heap-Extract-Max,
 Heap-Increase-Key, Heap-Maximum: O(lg n) Colas de prioridad

La altura de un montículo de n elementos es $\Theta(Ign)$

Heapify

Precondición: subarbol con raíz Izq(i) y subarbol con raíz Der(i) son montículos

Poscondición: subárbol con raíz es un montículo

Heapify

Precondición: subarbol con raíz Izq(i) y subarbol con raíz Der(i) son montículos

Poscondición: subárbol con raíz es un montículo

¿Cómo sería el montón resultante?

Heapify

Precondición: subarbol con raíz Izq(i) y subarbol con raíz Der(i) son montículos

Poscondición: subárbol con raíz es un montículo

Se debe conocer cuál es el mayor entre la raíz Izq(i), la raiz Der(i) e A[i]

Heapify

Precondición: subarbol con raíz Izq(i) y subarbol con raíz Der(i) son montículos

Poscondición: subárbol con raíz es un montículo

Al hacer el cambio de valores se debe verificar que el montón 3-8-7 cumpla la propiedad de orden

```
HEAPIFY(A, i)
I ← LEFT(i)
r ← RIGHT(i)
if l≤heap-size[A] and A[l]>A[i]
   then largest ← l
   else largest ← i
if r \leq heap-size[A] and A[r]>A[largest]
  then largest ← r
if largest≠i
  then exchange A[i] \leftrightarrow A[largest]
        HEAPIFY(A, largest)
```


Aplique el algoritmo HEAPIFY(A, 1)

```
HEAPIFY(A, i)
I ← LEFT(i)
r ← RIGHT(i)
if l≤heap-size[A] and A[l]>A[i]
   then largest ← l
   else largest ← i
if r \leq heap-size[A] and A[r]>A[largest]
  then largest ← r
if largest≠i
  then exchange A[i] \leftrightarrow A[largest]
        HEAPIFY(A, largest)
```


Aplique el algoritmo HEAPIFY(A, 1)

```
HEAPIFY(A, i)
I ← LEFT(i)
r \in RIGHT(i)
if l \leq heap-size[A] and A[l] > A[i]
    then largest \leftarrow 1
    else largest ← i
if r \leq heap-size[A] and A[r] > A[largest]
   then largest \leftarrow r
if largest≠i
  then exchange A[i] \leftrightarrow A[largest]
        HEAPIFY(A, largest)
```

Aplique el algoritmo HEAPIFY(A, 1)


```
HEAPIFY(A, i)
I ← LEFT(i)
r \in RIGHT(i)
if l \leq heap-size[A] and A[l] > A[i]
    then largest \leftarrow 1
    else largest ← i
if r \leq heap-size[A] and A[r] > A[largest]
   then largest \leftarrow r
if largest≠i
  then exchange A[i] \leftrightarrow A[largest]
        HEAPIFY(A, largest)
```

¿Cuál es la complejidad del algoritmo?

```
HEAPIFY(A, i)
I←LEFT(i)
r ← RIGHT(i)
if l≤heap-size[A] and A[l]>A[i]
   then largest \leftarrow 1
   else largest ← i
if r≤heap-size[A] and A[r]>A[largest]
   then largest \leftarrow r
if largest≠i
  then exchange A[i] \leftrightarrow A[largest]
        HEAPIFY(A, largest)
```

Complejidad

$$T(n) \leq T(2n/3) + \Theta(1)$$

 $\Theta(1)$ para calcular el mayor + Heapify con 2/3 de los elementos en el peor de los casos

Por teorema maestra, caso 2, T(n)=O(lgn)

BUILD-HEAP(A)

Precondición: A es un arreglo de elementos

Poscondición: A es un montículo

BUILD-HEAP(A)

Precondición: A es un arreglo de elementos

Poscondición: A es un montículo

La organización es lógica, aun cuando en el arreglo no se especifica

BUILD-HEAP(A)

Precondición: A es un arreglo de elementos

Poscondición: A es un montículo

¿Sobre qué nodo se

BUILD-HEAP(A)

Precondición: A es un arreglo de elementos

Poscondición: A es un montículo

¿Sobre qué nodo se

BUILD-HEAP(A)

Precondición: A es un arreglo de elementos

Poscondición: A es un montículo

BUILD-HEAP(A)

Precondición: A es un arreglo de elementos

Poscondición: A es un montículo

BUILD-HEAP(A)

Precondición: A es un arreglo de elementos

Poscondición: A es un montículo

BUILD-HEAP(A)

Precondición: A es un arreglo de elementos

BUILD-HEAP(A)

Precondición: A es un arreglo de elementos

Poscondición: A es un montículo

BUILD-HEAP(A)

Precondición: A es un arreglo de elementos

BUILD-HEAP(A)

Precondición: A es un arreglo de elementos

Poscondición: A es un montículo

BUILD-HEAP(A)

Precondición: A es un arreglo de elementos

Poscondición: A es un montículo

BUILD-HEAP(A)

Precondición: A es un arreglo de elementos

Poscondición: A es un montículo

BUILD-HEAP(A)

Precondición: A es un arreglo de elementos

Poscondición: A es un montículo

BUILD-HEAP(A)

Precondición: A es un arreglo de elementos

Poscondición: A es un montículo

BUILD-HEAP(A)

heap-size[A] \leftarrow length[A] for i \leftarrow [length[A]/2] downto 1 do HEAPIFY(A,i)

Aplique el algoritmo BUILD-HEAP(A), para A={5, 7, 10, 1, 4, 6, 8, 2, 9, 12} y heap-size(A)=10

BUILD-HEAP(A)

heap-size[A] \leftarrow length[A] for i \leftarrow [length[A]/2] downto 1 do HEAPIFY(A,i)

Complejidad

- · Cada llamado a HEAPIFY cuesta O(lgn)
- · Se hacen O(n) llamados
- Estimacion: O(nlgn)
 - -O(n) es una estimación más precisa

HEAP-SORT(A)

HEAP-SORT(A)

El valor más grande quedará en la raíz del árbol

Se intercambio el valor A[1], el mayor, con el valor A[heap-size[A]] y se disminuye en 1 valor heap-size[A]

HEAP-SORT(A)

Se intercambio el valor A[1], el mayor, con el valor A[heap-size[A]] y se disminuye en 1 valor heap-size[A]

HEAP-SORT(A)

HEAP-SORT(A)

HEAP-SORT(A)

9 0

HEAP-SORT(A)

9 0

HEAP-SORT(A)

HEAP-SORT(A)

HEAP-SORT(A)

 $\left(2\right)$

 $\left(3\right)$

 $\left(4\right)$

 $\left(\underline{6}\right)$ $\left(7\right)$

 $\left(8\right)$

9


```
HEAP-SORT(A)

BUILD-HEAP(A)

for i \leftarrow length[A] downto 2

do exchange A[1] \leftrightarrow A[i]

heap-size[A] \leftarrow heap-size[A] -1

HEAPIFY(A,1)
```

Aplique el algoritmo HEAP-SORT(A), para $A=\{12, 9, 10, 7, 8, 1\}$ y heap-size(A)=6

```
HEAP-SORT(A)

BUILD-HEAP(A)

for i \leftarrow length[A] downto 2

do exchange A[1] \leftrightarrow A[i]

heap-size[A] \leftarrow heap-size[A] -1

HEAPIFY(A,1)
```

Aplique el algoritmo HEAP-SORT(A), para A={5, 7, 10, 1, 4, 6, 8, 2, 9, 12} y heap-size(A)=10

```
HEAP-SORT(A)

BUILD-HEAP(A)

for i \leftarrow length[A] downto 2

do exchange A[1] \leftrightarrow A[i]

heap-size[A] \leftarrow heap-size[A] -1

HEAPIFY(A,1)
```

¿Cuál es la complejidad?

```
HEAP-SORT(A)

BUILD-HEAP(A)

for i \leftarrow length[A] downto 2

do exchange A[1] \leftrightarrow A[i]

heap-size[A] \leftarrow heap-size[A] -1

HEAPIFY(A,1)
```

¿Cuál es la complejidad?

- BUILD-HEAP toma O(n)
- · Se llama (n-1) veces a HEAPIFY que toma O(lgn)
- · La complejidad es de O(nlgn)

Colas de prioridad

- · Es una estructura de datos con servicios de inserción y retiro de elementos con base en una prioridad (valor numérico almacenado en el árbol)
- · Se retira (atiende) al elemento con mayor prioridad
- · Las operaciones básicas son:
 - -INSERT(C,x): insertar el elemento con clave x
 - -MAX(C): devuelve el elemento de máxima prioridad
 - -EXTRACT-MAX(C): elimina y devuelve el elemento de máxima prioridad

HEAP-MAXIMUM(C)

return A[1]

Tiempo de ejecución: $\Theta(1)$

```
HEAP-EXTRACT-MAX(C)
if heap-size[A]<1
  then error "heap underflow"
max \leftarrow A[1]
A[1] \leftarrow A[heap-size[A]]
heap-size[A] \leftarrow heap-size[A]-1
HEAPIFY(A,1)
return max
```

Tiempo de ejecución: O(Ign)

```
HEAP-INCREASE-KEY(A, i, key)
if key<A[i]
then error "key error "
A[i] ← key
while i>1 and A[PARENT(i)]<A[i]
  do exchange A[i] ↔ A[PARENT(i)]
     i ← PARENT(i)
```

Tiempo de ejecución: O(Ign)

```
MAX-HEAP-INSERT(A, key)
heap-size[A] \leftarrow heap-size[A]+1
i ← heap-size[A]
while i>1 and A[PARENT(i)] key
  do exchange A[i] ↔ A[PARENT(i)]
     i ← PARENT(i)
A[i] ← key
```

Tiempo de ejecución: O(Ign)

Referencias

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press. Chapter 6

Gracias

Próximo tema:

Ordenamiento: Quicksort