

La microbiologie prévisionnelle

OU

Modélisation du développement microbien dans un aliment

septembre 2011

Contexte historique

- Années 1920 modèles simples d'inactivation thermique
- Années 1980
 nombreux modèles de croissance et de décroissance (naissance de la "Microbiologie
 - Prévisionnelle")
- Années 1990
 utilisation de ces modèles en appréciation des risques

Objectifs de la microbiologie prévisionnelle

conditions de vie du produit micro-organisme pathogène ou d'altération produit alimentaire croissance microbienne? décroissance microbienne? niveau microbien final?

Aliments

 Produits frais et prêts à consommer traitements thermiques réduits peu ou pas de conservateur

Produits d'origine animale poisson, viande, lait, fromage, ...

facteurs de croissance intrinsèques : nutriments, pH, aw, structure, conservateurs ...

Micro-organismes

Micro-organismes pathogènes

Listeria monocytogenes, Escherichia coli O157: H7, Salmonella spp, Staphylococcus aureus, Bacillus cereus, Clostridium spp, Yersinia enterocolitica, Campylobacter spp, ...

Micro-organismes d'altération

Pseudomonas spp, Enterobacter spp, Brochothrix thermosphacta, Bacillus stearothermophilus, ...

Conditions de vie du produit

- Historique thermique conditions de conservation traitements thermiques
- Atmosphère gazeuse atmosphère modifiée sous vide

= facteurs de croissance extrinsèques

Pourquoi modéliser?

- Développement microbien dans les aliments
 - □ un problème très complexe
- Traditionnels tests de croissance
 - □ lents
 - □ coûteux
 - résultats valables uniquement sur l'aliment étudié dans les conditions étudiées
- Modéliser pour
 - mieux comprendre les phénomènes biologiques
 - prévoir le développement microbien à partir des principaux facteurs environnementaux

Niveaux de modélisation

Niveau primaire

Evolution du nombre de micro-organismes en fonction du temps

Niveau secondaire

Effet des facteurs environnementaux sur les paramètres des modèles primaires Exemple

Exemple

Objectifs pédagogiques

- Comprendre la démarche de modélisation de la croissance ou de la survie microbienne
- Découvrir quelques outils intégrant ces modèles
- Découvrir quelques applications de ces outils

Plan

- 1. Les modèles primaires
- 2. Les modèles secondaires
- 3. Les applications des modèles

Plan

- 1. Les modèles primaires
- 2. Les modèles secondaires
- 3. Les applications des modèles

Caractérisation d'un cinétique de croissance

- Modèles primaires
 Modèles secondaires
- 3. Applications

Exemple du modèle de Baranyi (1994)

- 1. Modèles primaires
- 2. Modèles secondaires
- 3. Applications

$$\frac{dx}{xdt} = \mu_{\text{max}} \alpha(t) f(x) \quad \text{avec} \quad x(t=0) = x_0$$
adaptation freinage

adaptation (latence)

$$\alpha(t) = \frac{q(t)}{1+q(t)} \quad \text{avec} \quad \frac{dq}{dt} = \mu_{\text{max}} q$$

et
$$q(t=0) = q_0 = \frac{1}{\exp(\mu_{\text{max}} \lambda) - 1}$$

In(x)

temps

freinage (saturation)

$$f(x) = \left(1 - \frac{x}{x_{\text{max}}}\right)$$

Ex. d'ajustement sur un jeu de données

- Modèles primaires
 Modèles secondaires
- 3. Applications

Courbe ajustée par régression non linéaire

Modèles de survie

- Modèles primaires
 Modèles secondaires
- 3. Applications

Approche de modélisation très similaire

Exemple du modèle de Geeraerd (2000)

1. Modèles primaires

2. Modèles secondaires3. Applications

$$\frac{dx}{xdt} = -k_{\text{max}} \alpha(t) f(x) \quad \text{avec} \quad x(t=0) = x_0$$
épaulement concentration
résiduelle

■ Epaule (*S_I* : shoulder) avant décroissance exponentielle

$$\alpha(t) = \frac{1}{1 + C_c(t)}$$
 avec $\frac{dC_c}{dt} = -k_{\text{max}}C_c$

et
$$C_c(t=0) = \exp(k_{\text{max}}S_l) - 1$$

■ Concentration résiduelle (x_{res})

$$f(x) = 1 - \frac{x_{res}}{x}$$

Ex. d'ajustement sur un jeu de données

- Modèles primaires
 Modèles secondaires
- 3. Applications

A retenir

1. Modèles primaires

2. Modèles secondaires

Modèles primaires

- décrivent les cinétiques de croissance ou de survie d'une population microbienne
- permettent d'estimer les paramètres de croissance ou de survie
 - □ taux spécifique de croissance maximum µ_{max}
 - \Box temps de latence λ
 - □ temps de réduction décimale D
 - ...

Plan

- 1. Les modèles primaires
- 2. Les modèles secondaires
- 3. Les applications des modèles

Modèle secondaire

- 1. Modèles primaires
- 2. Modèles secondaires
- 3. Applications

Effet des facteurs environnementaux (T, pH, aw ou NaCl,)

Sur les paramètres de croissance μ_{max} , λ ou de survie D

Exemple de l'effet de la température T

Modèle « racine carrée »

Ratkowsky et al., 1982

- 1. Modèles primaires
- 2. Modèles secondaires
- 3. Applications

augmentation linéaire de $\sqrt{\mu_{max}}$ avec la température

$$\sqrt{\mu_{\text{max}}} = b * (T - T_{\text{min}})$$

T_{min}: température minimale de croissance

Modèle « racine carrée »

Ratkowsky et al., 1982

- Modèles primaires
 Modèles secondaires
- 3. Applications

valable aux plus fortes températures ?

Tendance sur une gamme de température plus étendue

- Modèles primaires
 Modèles secondaires
- 3. Applications

Ex. du modèle des T cardinales Rosso *et al.*, 1993

- 1. Modèles primaires
- 2. Modèles secondaires
- 3. Applications

pour
$$T_{min} < T < T_{max}$$
,

$$\mu_{\text{max}}$$
 (T) = μ_{opt} γ (T)

$$\gamma (T) = \frac{(T-T_{max})(T-T_{min})^2}{(T_{opt}-T_{min})[(T_{opt}-T_{min})(T-T_{opt}) - (T_{opt}-T_{max})(T_{opt}+T_{min}-2T)]}$$

pour T <
$$T_{min}$$
 ou T > T_{max} ,

$$\mu_{\text{max}}(T) = 0$$

Ex. d'ajustement sur un jeu de données

- Modèles primaires
 Modèles secondaires
- 3. Applications

Modélisation du temps de latence

- 1. Modèles primaires
- 2. Modèles secondaires
- 3. Applications

Paramètre plus difficile à modéliser

Influence du passé de la population microbienne et de sa taille

Effet

- de l'état physiologique initial
- de l'écart entre les conditions de culture et les conditions de préculture
- du nombre initial de cellules
 variabilité de la latence cellulaire ayant plus d'impact pour des faibles inoculums
- Différentes approches de modélisation
 Modèles en cours de développement

Modélisation du temps de réduction décimale

- 1. Modèles primaires
- 2. Modèles secondaires
- 3. Applications
- Modélisation de la température Modèle de Bigelow (1961)

$$log_{10}(D) = log_{10}(D_r) - (T-T_r) / z$$

$$D = D_r \times 10^{-(T-Tr)/z}$$

Z : augmentation de température → division de D par 10

 Quelques modèles décrivant l'effet d'autres facteurs

A retenir

- 1. Modèles primaires
- 2. Modèles secondaires
- 3. Applications

Modèles secondaires

- décrivent l'effet des facteurs environnementaux (T, pH,...) sur les paramètres de croissance ou de survie (μ_{max}, λ, D)
 - $\square \mu_{max}$: de nombreux modèles
 - λ: difficile à modéliser
 effet du nombre de cellules et de leur état initial
 - D: modèles de destruction thermique essentiellement

Plan

- 1. Les modèles primaires
- 2. Les modèles secondaires
- 3. Les applications des modèles

Une aide pour

- Modèles primaires
 Modèles secondaires
- 3. Applications

- estimer les DLC ou DLUO
- développer de nouveaux produits microbiologiquement stables
- définir les traitements thermiques (ex.: barêmes de pasteurisation)
- mettre en place une démarche HACCP
- évaluer l'exposition dans le cadre de l'évaluation des risques

Logiciels de simulation disponibles

- 1. Modèles primaires
- 2. Modèles secondaires
- 3. Applications

- Logiciels d'accès libre
 - □ Pathogen Modeling Program (US)
 - □ ComBase Predictor (UK)
 - □ . . .

- Logiciel d'accès payant
 - □ Sym'Previus (France)

Exemple 1

- Modèles primaires
 Modèles secondaires
- 3. Applications

Simulation de la croissance de *Bacillus* cereus dans du lait pasteurisé depuis la pasteurisation jusqu'à la consommation

Choix des modèles et paramètres

- Modèles primaires
 Modèles secondaires
- 3. Applications

Modèle secondaire: racine carrée

$$\sqrt{\mu} = b (T - T_{min})$$

- □ données de la littérature : T_{min} = 0°C (psychrophiles)
- □ cinétique à 30°C dans du lait pasteurisé : μ_{30°C} = 1.13 h⁻¹

Calage du modèle : estimation de b = $\sqrt{\mu_{30^{\circ}C}}$ / 30 = 0.0354

■ Modèle primaire: exponentiel (λ =0, pire cas)

$$log_{10}x = log_{10}x_0 + \mu/ln(10) * d$$

$$= log_{10}x_0 + b^2 *T^2 /ln(10) * d$$

$$\Delta log_{10}x = 0.000545 *T^2 * d$$
pour chaque étape caractérisée par d et T

Contamination initiale (x₀): 1 UFC/ml (pire cas)

Une simulation

- Modèles primaires
 Modèles secondaires
 Applications

Phase	T°C	durée (jours)	durée (heures)	log ₁₀ x
usine	4	2		
distributeur	7	2		
consommateur	8	5		

Une simulation

- Modèles primaires
 Modèles secondaires
 Applications

Phase	T°C	durée (jours)	durée (heures)	log ₁₀ x
usine	4	2	48	0.42
distributeur	7	2	48	1.70
consommateur	8	5	120	5.89

2 simulations "pire cas" à différentes T° de conservation

Effet de la température de conservation sur la DLC

- 1. Modèles primaires
- 2. Modèles secondaires
- 3. Applications

Durée de conservation chez le consommateur d_{crit}
 conduisant au niveau critique log₁₀x_{crit}=5 en fonction de la température du frigo T_{frigo} en supposant les deux 1ères phases identiques

$$\begin{aligned} \log_{10} x_{crit} - \log_{10} x_{dist} &= 0.000545 \ ^*T^2_{frigo} \ ^* d_{crit} \\ d_{crit} &= (5 - 1.70) \ / \ (0.000545 \ ^*T^2_{frigo}) \\ &= 6050 \ / \ T^2_{frigo} \ (en heures) \end{aligned}$$

Effet de la température de conservation sur la DLC

- 1. Modèles primaires
- 2. Modèles secondaires
- 3. Applications

Durée de conservation au frigo (jours) donnant un niveau de 10⁵ UFC/ml

Température de conservation chez le consommateur

Exemple 2

- Modèles primaires
 Modèles secondaires
- 3. Applications

Risque lié à *listeria monocytogenes* : durée raisonnable de conservation de rillettes en fonction de leur température de stockage

Ce sera à vous de jouer!

Indicateurs temps température (ITT)

- 1. Modèles primaires
- 2. Modèles secondaires
- 3. Applications
- Indicateurs physiques ou chimiques
 - Ex.: basé sur une réaction enzymatique modélisable (modèle t-T proche de la croissance microbienne) et induisant une coloration quantifiable
- Indicateurs biologiques
 - Ex.: croissance de bactéries lactiques qui en croissant abaissent le pH du milieu, induisant une coloration de ce milieu
- Indicateurs électroniques (plus cher)

Ex.: utilisation des ITT en distribution

- Modèles primaires
 Modèles secondaires
- 3. Applications

une nouvelle vision de la fraîcheur

Si bonne conservation

TRACEO® est transparent, le produit est frais, le code-barres passe en caisse.

Si mauvaise conservation

TRACEO® est rose, le produit n'est plus consommable, le code-barres est voilé et ne passe plus en caisse.

Ex.: ITT pour la distribution des poissons pêchés en mer

- Modèles primaires
 Modèles secondaires
- 3. Applications

Méthode SMAS Koutsoumanis et al., 2005

A retenir

- Modèles primaires
 Modèles secondaires
- 3. Applications

Applications

- Applications logicielles
 - □ Logiciels de simulation
 - Outils plus complets permettant des prévisions dans l'aliment pour des conditions environnementales variables

Prise en compte des sources d'incertitude et de variabilité recommandée

- Indicateurs Temps Température
- → Aide pour la maîtrise des dangers microbiologiques

Conclusions

- La microbiologie prévisionnelle constitue un outil d'intérêt pour aider à la maîtrise des dangers en complément aux méthodes plus classiques
- Quelques défis à relever en modélisation
 - □ de la latence
 - des interactions microbiennes
 - □ des effets de la structure de l'aliment