PWM controller design with Zynq SoC

Antonio Minighin

July 13, 2023

Outline

Topics

- Embedded SoC + FPGA
 - CPU timing
 - DSP acceleration
- DPWM Control System
 - PWM technique
 - PID controller

Final

- Zynq DPWM controller
 - SAW-TRI modulation
 - HW-SW processing

Block Diagram

design.vhd

- DSP pipeline SMAC4
- ADC axis router
- DPWM timer comparator

program.c

- config
 - DSP coefficients/bypass
 - ADC instants/openloop
 - DPWM ramp/range
- runtime
 - IRQ handler

SW/HW Controller


```
void IRQHandler(void *CallBackRef){
 // >>> AXI READ >>>
 reg = AXI mRead(XADC, IPISR);
 adc = AXI_mRead(XADC, VAUX) >> 4;
// >>> SOFTWARE PID >>>
 err = ref - adc:
xi = kiT*err >> shift:
 xd = kdF*err >> shift;
 xp = kp*err >> shift;
 yi = yold + xi;
 vd = xd - xold;
 y = yi + xp + yd;
 // >>> STORE VARIABLES >>>
yold = yi;
 xold = xd;
// >>> AXI WRITE >>>
 AXI_mWrite(DSP, CMP, y);
 AXI_mWrite(XADC, IPISR, reg);
```


Timing $T_{CLK} = 10 \text{ns}$

Digital PWM

SAW TRI Timing

Test setup MOD = 24kHz

Step response SAW-TRI

Thank you!

FIN

