0.1 Mixed Dimensional Mesh

Here I show the cooling and heating effects of a rod on a plate. Here is the initial mesh:

Figure 1: A line and square joined together

The topological space has 3 strata:

- 1) The left rod
- 2) The right rod
- 3) The square

0.2 Studying the square

The square will have a heat equation v(x, y, t). Here is the square's diffusion equation:

$$\alpha_1(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}) = \frac{\partial v}{\partial t}$$

0.3 Square without the rod

For the equations below, I will assume it's a line and square. One part of the boundary of the square forms part of the line.

0.4 Heat Equation Over Rod

The heat equation for the rod u(x,t) is as follows:

$$\alpha_1 \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$

The boundary conditions will be as follows:

$$u(0,t) = 0$$

$$u(3,t) = 0$$

The initial condition is as follows:

$$u(x,0) = -5x(x-3)$$

0.5 Heat Equation Over Square

The square will have a separate heat equation v(x, y, t). Here is the square's diffusion equation:

$$\alpha_2(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}) = \frac{\partial v}{\partial t}$$

The boundary condition on the square will be the values at the rod. Formally this means

$$v(x,0,t) = u(x,t)$$

I assumed the square was uniformly heated initially in the y-direction. More formally,

$$v(x, y, 0) = u(x, 0)$$