

Faculty of Engineering & Technology Electrical & Computer Engineering Department

Communications Lab - ENEE4103

Pre-Lab #3

Experiment NO. 3: FM Experiment

Prepared by:

Eman Asfour 1200206

Instructor: Dr. Alhareth Zyoud

Teacher Assistant: Eng. Shadi Bannoura

Section: 4

Date: 12-04-2023

prelab 4		grade	out of
	m(t)	1	1
	ds/dt	1	1
Hand Solution	m'(t)	1	1
	modulation	1	1
block diagram	demodulation	1	1
	m(t)	0.5	0.5
	s(t)	0.5	0.5
	ds/dt	1	1
	m'(t) PLL	0	1
graphs/resluts	discussion	0	2
		7	10

Table of contents

1.	Part 1: 1 Extract the message signal m(t).:. Error! Bookmark not defined
2.	Part 2: Plot message signal m(t) and s(t) versus t for $-1 \le t \le 1$ Error! Bookmark not defined
3	Part 3: Differentiate s(t) with respect to t and plot $ds(t)/dt$ for $-1 \le t \le 1$
4	Part 4: Extract message signal by using phase-locked loop (PLL)

1. Extract the message signal m(t).:

Figure 1.1: Extract Signal

2. Part 2: Plot message signal m(t) and s(t) versus t for $-1 \le t \le 1$

Figure 2.1: Modulated Signal

Figure 2.1: Modulated Signal Output

Figure 2.3: Message setting

Part 3: Differentiate s(t) with respect to t and plot ds(t)/dt for $-1 \le t \le 1$

Figure 3.1: Differentiate signal

Figure 2.1: Differentiate signal Output

Part 4: Extract message signal by using phase-locked loop (PLL):

Figure 4.1: Block Diagram PLL

5-Apply ds(t)/dt to an ideal envelope detector, subtract the dc term and show that the detector's output is linearly proportional to m(t)

5.1:The Answer