Exam 3A Chem 1121 Fall 2018

Q5.

A) Na₂SO₄ B) KCl C) LiNO₃ D) PbCl₂

Naı	me:KEY
Sho	w all work to receive credit.
Mult	iple Choice. [4 pts. each.] Select the best answer on the scantron sheet.
Q1.	What mass would 1 mol of silver weigh? A) 107.9 g B) 121.8 g C) 197.0 g D) 200.6 g
Q2.	What mass would 1 mol of NH ₄ NO ₃ weigh? A) 10.03 g B) 34.02 g C) 68.05 g D) 80.06 g
Q3.	How many moles of H ₂ O are there in 12.5 g of H ₂ O? A) 18.0 mol B) 12.5 mol C) 0.694 mol D) 0.125 mol
Q4.	Given the balanced chemical equation: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ How many moles of NH_3 will theoretically be formed from 1.50 mol N_2 ? A) 6.00 mol (B) 8.00 mol (C) 1.50 mol (D) 0.750 mol

Which of the following ionic compounds would be insoluble in water?

Q6.	A solution where the maximum amount of solute is dissolved in a given amount of solvent is best said to be: A) concentrated B) super-saturated C) saturated D) hypotonic
Q7.	The molar concentration of a solution formed by dissolving 0.25 mol NaCl in water such that the total volume is 500. mL is: A) 0.00050 M B) 0.0025 M C) 0.25 M D) 0.50 M
Q8.	The number of moles of CaCl ₂ contained in 3.2 L of a 0.30 M CaCl ₂ (aq) solution is: (A) 0.96 mol B) 0.74 mol C) 0.56 mol D) 0.30 mol
Q9.	What volume of 0.30 M CaCl ₂ (aq) is needed to contain 0.096 mol CaCl ₂ ? (A) 320 mL B) 450 mL C) 750 mL D) 960 mL
Q10.	The molarity of a solution formed by dissolving 14.0 g NaCl in water, such that the total volume is 2.0 L is: A) 0.060 M B) 0.090 M C) 0.12 M D) 0.24 M
Q11.	A solution made by dissolving 5.0 g of NaCl in 25.0 g of water would have a %(w/w) concentration of: A) 5.0% (w/w) B) 17% (w/w) C) 20.% (w/w) D) 30.% (w/w)
Q12.	Which of the following solutions will have the lowest freezing point: (A) 1.00 M FeCl ₃ (aq) B) 1.00 M Cu(NO ₃) ₂ (aq) C) 1.00 M glucose (aq) D) They would all have the same freezing point

- Q13. A red blood cell placed in a hypotonic solution would tend to:
 - A) contract or shrivel up (crenation)
 - B) stay unchanged
 - C) lower the boiling point of the solution
 - (D) expand and possibly explode (hemolysis)
- Q14. Which of the following is not a physical quantity associated with gases
 - A) volume
 - (B) osmotic pressure
 - C) temperature
 - D) number of moles
- Q15. The device used to measure atmospheric pressure is called
 - A) hygrometer
 - (B) barometer
 - C) manometer
 - D) sphygmomanometer

Short Response. Show your work (where appropriate) to receive full credit!

Q16. [10 pts] Given the balanced chemical equation for the oxidation of glucose ($C_6H_{12}O_6$): $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$

Hint: be sure to show all work, and you must use the conversion-factor method to receive full credit.

a) How many moles of CO₂ can be formed from 0.15 mol C₆H₁₂O₆?

b) How many grams of CO₂ can be formed from 25.0 g of C₆H₁₂O₆?

$$\frac{C_6 H_{12}O_6}{6 \times C = 6 \times 12.01}$$

$$12 \times H = 12 \times 1.01$$

$$6 \times O = \frac{6 \times 16.00}{180.18}$$

c) If 8.50 g of CO₂ is actually formed in the previous step, calculate the percent yield for this reaction.

Q17. [10 pts] Complete and balance the following chemical equations below. Be sure to balance the equations, show all state symbols, and charges as necessary:

Molecular equation: $Ba(NO_3)_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + 2NaNO_3(ag)$

(4

Complete ionic equation:

(4

Net-ionic equation:

2

Q18. [10 pts.] A sample of air has a volume of 34.0 L at a pressure of 455 mmHg. If the air pressure is increased to 955 mmHg, calculate what the new volume will be? Assume that the number of

$$P_1 V_1 = P_2 V_2$$

$$\Rightarrow V_2 = \frac{P_1 V_1}{P_2} = \frac{455 \text{ mint}_5 \times 34.01}{955 \text{ mint}_5} = 16.2 \text{ L}$$

moles and temperature of the gas do not change.

- Q19. [10 pts.] Using the conversion-factor method, calculate the following:
 - a) The number of moles of NaCl in 0.300 L of a 0.100 M NaCl(aq) solution.

b) The volume of 0.100 M NaCl(aq) solution needed to contain 0.350 mol NaCl.

c) The mass in grams of NaCl in 325 mL of a 3.50 %(w/v) solution of NaCl(aq).

BONUS Question:

Who invented the first instrument to measure air pressure?

Torrielli

Useful Information

IA	IIA		Perio	odic I	able (of the	Elem	ients				IIIA	IVA	VA	VIA	VIIA	VIIIA
1 H																	2 He
1.01	2											13	14	15	16	17	4.00
3 Li	Be											5 B	C 6	N N	8	9 F	Ne
6.94	9.01											10.81	12.01	14.01	16 00	19.00	20 18
11	12											13	14	15	16	17	18
Na 22.99	Mg 24.31	3		5		7						AI 26.98	Si 28.09	P 30.97	S 32.07	CI 35.45	Ar 39.95
19	20	21	22	23	6 24	25	26	9 27	10	29	12	31	32	33	34	35	36
ĸ	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.2
CS S	Ba*	71 Lu	Hf	Ta	74 W	Re	76 Os	lr	Pt	Au	Hg	81 TI	Pb	Bi	Po	At	Rn Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr [223]	Ra**	Lr [262]	Rf [261]	Db [262]	Sg [266]	Bh [264]	Hs [265]	Mt [268]	[269]	[272]	[277]		[285]		[289]		[293]
	Г	57	58	59	60	61	62	63	64	65	66	67	68	69	70	I	
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
		138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		
		89	90	91	92	93	94	95	96	97	96	99	100	101	102	İ	
	**	Ac [227]	Th 232.04	Pa 231.04	U 238.03	Np [237]	Pu [244]	Am [243]	Cm [247]	Bk [247]	Cf [251]	Es [252]	Fm [257]	Md [258]	No [259]		

Soluble	Exceptions
Ammonium compounds (NH ₄ ⁺)	None
Lithium compounds (Li ⁺)	None
Sodium compounds (Na ⁺)	None
Potassium compounds (K ⁺)	None
Nitrates (NO ₃ ⁻)	None
Perchlorates (CIO ₄ ⁻)	None
Acetates (CH ₃ CO ₂ ⁻)	None
Chlorides (CI ⁻)	(
Bromides (Br ⁻)	Ag^+ , Hg_2^{2+} , and Pb^{2+} compounds
lodides (I ⁻)	
Sulfates (SO ₄ ²⁻)	Ba ²⁺ , Hg ₂ ²⁺ , and Pb ²⁺ compounds

$$T(K) = t(^{\circ}C) + 273$$

1 atm = 760 mmHg = 760 torr = 101,325 Pa
 $P_1V_1 = P_2V_2$ $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$