Bank Loan modelling

Personal Loan classification problem

최종발표

목차

- 1 리뷰
- 2 모델 학습
- 3 종합 해석
- 4 컬러 DT

- **분석 과제**: 은행의 대출 잠재고객을 파악하는 분류 모델을 개발
 - [데이터셋] 은행의 대출 마케팅을 실행한 고객 정보 및 해당 고객의 대출 실행 여부

이상치 처리(끝 0 추가)

시(카운티) 기준 변수 변환

이상치 처리(+3)

연령층 범주형 변수 생성

• [변수] 고객 인적사항·금융정보 12개 변수(ID 제외)·대출 여부 1개 타겟 변수(불균형) / 5,000개 데이터 샘플

	IE) Ag	e Experience	Income	ZIP Code	Family	CCAvg	Education	Mortgage	Securities Account	CD Account	Online	CreditCard	Personal Loan	0.8		
0	•	1 2	5 1	49	91107	4	1.6	1	0	1	0	0	0	0	0.8		
1	2	2 4	5 19	34	90089	3	1.5	1	0	1	0	0	0	0	0.6		
2	3	3 3	9 15	11	94720	1	1.0	1	0	0	0	0	0	0	.		
3	4	4 3	5 9	100	94112	1	2.7	2	0	0	0	0	0	0	0.4		
4	5	5 3	5 8	45	91330	4	1.0	2	0	0	0	0	1	0	0.2 -		9.6%
•••																	
															0.0	ໍ (타	 겟변수 분포) ⁻

(변수 설명)

연 기준 변환

※ 기존 변수 12개 + 파생변수 2개 데이터 분석 및 모델 학습

- [변수 분석] 대출 잠재고객을 구분하기 위한 중요 변수를 파악
 - (도메인 조사 기준) 총 부채 ↑ (* 현재 변수로 파악불가), 연 카드소비액 ↑ : 대출 가능성 ↑
 - (EDA 기준) 연소득 ↑, 연 카드소비액 ↑, 모기지론 ↑, 가족 수 ↑, CD 계좌 보유, 교육수준 석사이상 : 대출 가능성 ↑
 - (DT 룰 기준) 연소득 ↑, 연 카드소비액 ↑, 가족 수 ↑, CD 계좌 보유, 교육수준 석사이상 : 대출 가능성 ↑

✓ 도메인 조사

미국은 기존 부채를 통합·신용카드 금액을 재융자하는데 개인대출을 많이 활용

(출처 : LendingTree - 온라인 대출플랫폼)

✓ Debt consolidation : 부채 통합

✓ Credit card refinance : 신용카드 재융자

Source: LendingTree user data on closed personal loans for the first quarter of 2023.

- [변수 분석] 대출 잠재고객을 구분하기 위한 중요 변수를 파악
 - (도메인 조사 기준) 총 부채 ↑ (* 현재 변수로 파악불가), 연 카드소비액 ↑ : 대출 가능성 ↑
 - (EDA 기준) 연소득 ↑, 연 카드소비액 ↑, 모기지론 ↑, 가족 수 ↑, CD 계좌 보유, 교육수준 석사이상 : 대출 가능성 ↑
 - (DT 룰 기준) 연소득 ↑, 연 카드소비액 ↑, 가족 수 ↑, CD 계좌 보유, 교육수준 석사이상 : 대출 가능성 ↑

✓ EDA 기준

[수치형] 개인대출 고객(1)과 아닌 고객(0)을 구분한 데이터 시각화

[범주형] 개인대출 고객(1)과 아닌 고객(0)을 구분한 빈도표(정규화) 시각화

- [변수 분석] 대출 잠재고객을 구분하기 위한 중요 변수를 파악
 - (도메인 조사 기준) 총 부채 ↑ (* 현재 변수로 파악불가), 연 카드소비액 ↑ : 대출 가능성 ↑
 - (EDA 기준) 연소득↑, 연 카드소비액↑, 모기지론 ↑, 가족 수↑, CD 계좌 보유, 교육수준 석사이상 : 대출 가능성 ↑
 - (DT 룰 기준) 연소득 ↑, 연 카드소비액 ↑, 가족 수 ↑, CD 계좌 보유, 교육수준 석사이상 : 대출 가능성 ↑ * 연소득·교육수준이 중요변수

순번	룰 : y = 1 (개인대출 O)	Gini index	Cover age
1	(연소득 > 116.5) & (교육수준 : 석사·전문학위) * (해석) 전문직 고소득 고객층	0.0	0.062
2	(연소득 > 113.5) & (교육수준 : 학사학위) & (가족 수 : 3명 이상)	0.0	0.016
3	(연소득 =< 113.5) & (연 카드소비액 >35.4) & (CD 계좌 보유)	0.375	0.006

순번	룰 : y = 0 (개인대출 X)	Gini index	Cover age
4	(연소득 <= 113.5) & (연 카드소비액 <= 35.4) * (해석) 중·저소득 및 소비가 적은 고객층	0.006	0.745
5	(연소득 > 113.5) & (교육수준 : 학사학위) & (가족 수 : 2명 이하)	0.0	0.114
6	(연소득 =< 113.5) & (연 카드소비액 >35.4) & (CD 계좌 보유X)	0.292	0.054

[참고] (연소득 > 113.5·116.5) : 연소득 기준 <u>상위 20%</u>에 해당하는 값 (연 카드소비액 <= 35.4) : 연 카드소비액 기준 하위 20%에 해당하는 값

- [변수 분석] 대출 잠재고객을 구분하기 위한 중요 변수를 파악
 - (도메인 조사 기준) 총 부채 ↑ (* 현재 변수로 파악불가), 연 카드소비액 ↑ : 대출 가능성 ↑
 - (EDA 기준) 연소득↑, 연 카드소비액↑, 모기지론↑, 가족 수↑, CD 계좌 보유, 교육수준 석사이상 : 대출 가능성↑
 - (DT 룰 기준) 연소득 ↑, 연 카드소비액 ↑, 가족 수 ↑, CD 계좌 보유, 교육수준 석사이상 : 대출 가능성 ↑ * 연소득·교육수준이 중요변수

2 모델 학습

- [모델 구현] 중요 변수 파악을 위한 분류 트리·랜덤포레스트·그래디언트 부스팅·로지스틱 회귀 4개 모델 선정
 - Grid Search를 통한 하이퍼파라미터 튜닝 적용(* 선형모델의 경우 불필요한 변수를 제거하며 성능 개선)
 - 데이터 불균형을 고려한 오버샘플링(SMOTE) 추가 적용
 - ✔ (오버샘플링 수행하지 않은) 랜덤포레스트가 가장 성능 ↑ : 다양한 변수를 활용하여 일반화 성능 개선

* 평균 value(평균 std)

	분류 트리	랜덤포레스트	그래디언트 부스팅	로지스틱 회귀
F1	0.917(0.017)	0.930(0.008)	0.928(0.015)	0.706(0.024)
ROC-AUC	0.986(0.006)	0.997(0.001)	0.997(0.001)	0.957(0.010)
Accuracy	0.984(0.002)	0.987(0.001)	0.986(0.002)	0.949(0.004)

% 오버샘플링 수행 : test set에 대한 precision 값이 낮아지면서 성능 개선 X

	분류 트리	랜덤포레스트	그래디언트 부스팅	로지스틱 회귀
F1	0.879(0.030)	0.884(0.034)	0.839(0.012)	0.545(0.035)
ROC-AUC	0.989(0.005)	0.993(0.002)	0.994(0.001)	0.927(0.014)
Accuracy	0.975(0.007)	0.976(0.007)	0.965(0.002)	0.861(0.015)

2 모델 학습

- [모델 해석] 대출 잠재고객 파악을 위한 중요 변수 파악
 - 트리 기반 모델(DT, RF, GB): 연소득, 교육수준, 연카드 소비액, 가족수, CD 계좌 보유*방향성은 대출 여부와 양의 관계라고 추측

2 모델 학습

- [모델 해석] 대출 잠재고객 파악을 위한 중요 변수 파악
 - 로지스틱 회귀 모델 : 연소득 ↑, CD 계좌 보유, 교육수준 석사이상 : 대출 가능성 ↑ * 모델의 적합도가 낮으므로 과대 해석 주의 ※ 분석을 위해 불필요 변수 제외·수치형 변수에 대한 정규화(정규분포) 적용 ·교육수준 범주형 변수는 학사/석사이상(0/1)로 변환

3 종합 해석

- [중간 발표 변수 분석]
- (도메인 조사 기준) 총 부채 ↑ (* 현재 변수로 파악불가), 연 카드소비액 ↑ : 대출 가능성 ↑
- (EDA 기준) 연소득 ↑, 연 카드소비액 ↑, 모기지론 ↑, 가족 수 ↑, CD 계좌 보유, 교육수준 석사이상 : 대출 가능성 ↑
- (DT 기준) 연소득 ↑, 연 카드소비액 ↑, 가족 수 ↑, CD 계좌 보유, 교육수준 석사이상 : 대출 가능성 ↑ * 연소득·교육수준이 가장 중요변수
- [모델 해석 변수 분석]
- 트리 기반 모델(DT, RF, GB): 연소득, 연카드 소비액, 가족수, CD 계좌 보유, 교육수준 * 방향성은 대출 여부와 양의 관계라고 추측
- 로지스틱 회귀 모델: 연소득 ↑, CD 계좌 보유, 교육수준 석사이상: 대출 가능성 ↑ * 모델의 적합도가 낮으므로 과대 해석 주의

- → 중간 발표에서의 변수 분석과 모델 해석을 통한 변수 분석과 동일하다고 판단
 - ✔ (중요변수) 연소득, 연 카드소비액, 교육수준, 가족 수, 양도성예금증서 계좌 여부
 - 전문직 고소득 고객층이 개인대출을 받을 가능성이 높고, 중·저소득층에서 소비가 적은 고객은 대출 가능성이 낮다.
 - 가족 수나 양도성예금증서 보유 여부가 잠재고객 판단에 활용될 수 있는 중요 변수가 될 수 있다.

■ Color DT 시각화

• max depth = 3 (Gini index 기준)

• F1 스코어: 0.884

■ Color DT 분석

Ratio:[1.000, 0.000] [0.888, 0.112] [0.822, 0.178][0.250, 0.750][1.000, 0.000] [0.000, 1.000] [0.500, 0.500] [0.000, 1.000]

- Color DT 분석
 - type 2 리프노드 룰 Irrelevant condition 제거 후 homogeneity 비교(* 5번 리프노드의 경우 기존 DT에 이미 반영)

6

- 1·2번 리프노드 : homogeneity 증가 / 3·4번 리프노드의 경우 homogeneity 소폭 감소 (* 모든 리프노드 : 커버리지 증가)

* value(샘플	수)
------------	----

순번	리프노드 룰	예측 Class	homogeneity
1	(소득 <= 113.5) & (카드소비액 > 35.4) & (CD 계좌 X)	0	0.822 (214)
2	(소득 <= 113.5) & (카드소비액 > 35.4) & (CD 계좌 보유)	1	0.750 (24)
3	(소득 > 113.5) & (교육수준 : 학사) & (가족 수 : 2명 이하)	0	1.000 (454)
4	(소득 > 113.5) & <u>(교육수준 : 학사)</u> & (가족 수 : 3명 이상)	1	1.000 (62)

※ Irrelevant condition 제거

* 비율 검정

순번	underlying 룰	예측 Class	homogeneity	검정 p 값
1	(소득 <= 113.5) & (카드소비액 > 35.4) & (CD 계좌 X)	0	0.985 (3080)	0.000
2	(소득 <= 113.5) & (카드소비액 > 35.4) & (CD 계좌 보유)	1	0.838 (99)	0.016
3	(소득 > 113.5) & (교육수준 : 학사) & (가족 수 : 2명 이하)	0	0.989 (1064)	0.000
4	(소득 > 113.5) & (교육수준 : 학사) & (가족 수 : 3명 이상)	1	0.977 (180)	0.043

- Color DT 인사이트
 - 불필요한 룰을 제거 → 기존 트리의 룰을 더 명료하게 이해할 수 있어서 **트리 모델 해석 및 설명**(변수 분석) 용이
 - ✓ 기존 DT 를

순번	룰 : y = 1 (개인대출 O)	homogeneity
1	(연소득 > 116.5) & (교육수준 : 석사·전문학위) * (해석) 전문직 고소득 고객층	1.000
2	(연소득 > 113.5) & (교육수준 : 학사학위) & (가족 수 : 3명 이상)	1.000
3	(연소득 =< 113.5) & (연 카드소비액 >35.4) & (CD 계좌 보유)	0.750

순번	룰 : y = 0 (개인대출 X)	homogeneity
4	(연소득 <= 113.5) & (연 카드소비액 <= 35.4) * (해석) 중·저소득 및 소비가 적은 고객층	0.996
5	(연소득 > 113.5) & (교육수준 : 학사학위) & (가족 수 : 2명 이하)	1.000
6	(연소득 =< 113.5) & (연 카드소비액 >35.4) & (CD 계좌 보유X)	0.822

✓ 컬러 DT - underlying 룰

룰 : y = 1 (개인대출 O)	homogeneity
(연소득 > 116.5) & (교육수준 : 석사·전문학위) * (해석) 전문직 - 고소득 고객층	1.000
(연소득 > 113.5) & (가족 수 : 3명 이상) * (해석) 고소득 - 자녀가 있는 고객층	0.977
(연 카드소비액 >35.4) & (CD 계좌 보유) * (해석) 소비가 일정규모 - CD계좌 보유 고객층	0.838

룰 : y = 0 (개인대출 X)	homogeneity
(연소득 <= 113.5) & (연 카드소비액 <= 35.4) * (해석) 중·저소득 - 소비가 적은 고객층	0.996
(교육수준 : 학사학위) & (가족 수 : 2명 이하) * (해석) 학사 - 자녀가 없는 고객층	0.989
(연소득 =< 113.5) & (CD 계좌 보유X) * (해석) 중·저소득 - CD 계좌 없는 고객층	0.985

감사합니다

※ 참고 자료

- 미국 개인대출 조사 https://www.forbes.com/advisor/personal-loans/statistics/ https://www.lendingtree.com/personal/personal-loans-statistics/ - 캐글 노트북 참고 https://www.kaggle.com/code/farzadnekouei/imbalanced-personal-bank-loan-classification