CS311: Data Communication

Medium Access Control - I

Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur

E-mail: manaskhatua@iitj.ac.in

Outline of the lecture

- > Inroduction
- > Broadcast networks
- ► Issues in MAC
- ➤ Goals in MAC
- > MAC techniques
- > Random Access MAC techniques
- ALOHA CSMA
- CSMA/CD CSMA/CA

On completion, the student will be able to

- ा वं बानमधे विवानस्थेति ॥
- Explain the goals and requirements MAC techniques
- ➤ Identify the key issues related to MAC techniques
- ➤ Give an outline of possible techniques
- ➤ Distinguish between centralized distributed MAC techniques
- Classify various contention based techniques such ALOHA, CSMA, CSMA/CD, CSMA/CA
- ➤ Compare performance of contention based techniques

Introduction

- > Types of network
 - Switched communication networks:
- Users are interconnected by means of transmission lines, multiplexers and switches.
 - Broadcast networks:
- A single transmission media is shared by all the users and information is broadcast by an user into the medium.

Broadcast Networks

> Examples:

- Multi-tapped bus
- Ring networks sharing a medium
- Satellite communication using sharing of uplink and downlink frequency bands
 - Packet radio network
- Wireless communication stations sharing a frequency band
- Broadcast network require a protocol to orchestrate the transmission from the users

Issues in MAC

The question is "who goes next?"

The protocols used for this purpose are known as medium access control (MAC) techniques

➤ The key issues involved — where and how the control excercised

Where?

- ➤ Centralized: a designated station has an authority to grant access to the network.
- Simple logic at each station
- Greater control to provide features like priority, overrides and guaranteed bandwidth
- Easy coordination
- Lower reliability
- ➤ Distributed: stations can dynamically determine transmission order.
- Complex, reliable and scalable

How?

- ➤ Synchronous: dedicated specific capacity to a connection.
- > Asynchronous: allocates capacity dynamically

Goals of MAC

- > Initialisation
- > Fairness
- Priority
- > Limitation to one station
- Receipt
- > Error limitation
- Recovery
- > Reconfigurability
- Compatibility
- > Reliability

MAC Techniques

Packet Radio Network

ALOHA

ALOHA Random Access Scheme

Slotted ALOHA

- > Transmits frame in fixed time slots
- Vulnerable period reduces to 2T from T of pure ALOHA
- > Performance:

CSMA

When a station sends a packet, others know about it within a fraction of packet transmission time. This led to the development of carrier-Sense-Multiple-Access (CSMA) Protocol. Station listens to the medium before transmitting;

Listen before talking (LBT).

Nonpersistent

> Persistent

CSMA

- ➤ Nonpersistent CSMA
- If medium is idle, transmit
- If medium is busy, wait random period and then resense medium
- ➤ 1-persistent CSMA
- If medium is idle, transmit
- If medium is busy, continue to listen until the channel is sensed idle; then transmit immediately
- P-persistent: If medium is idle, transmit with probability p.

CSMA Vulnerable Period

➤ Vulnerable period = t(prop) (one propagation time)

Performance of CSMA

CSMA/CD

- CSMA with Collision Detection (CSMA/CD)
- ➤ Stations listens to the medium while transmitting; Listen while talking (LWT).
- Three cases:
- If channel idle:
- Packet is transmitted if nonpersistent or 1persistent
- For p-persistent, the packet is sent with probability p or delayed by the end-to-end propagation delay with probability (1-p).

CSMA/CD

- If channel is busy:
- The packet is backed off and the algorithm is repeated for nonpersistent case
- The station defers transmission until the channel is sensed idle and then immediately transmits in 1-persistent case
- For p-persistent CSMA/CD the stations defers until the channel is idle, then follow the channel idle procedure.

Collision detection in CSMA/CD

CSMA/CD

0<r<2(k),
Where k= (n,10),
n=unsuccessful
attempts

CSMA/CD

- > Three states:
- Contention
- Transmission
- Idle

Performance Comparison

Reference Books

- 1. Stallings, W., (2010), Data and Computer Communications, Prentice Hall
- 2. Forouzan, B. A., (2012), Data Communications and Networking, McGraw-Hill
- 3. NPTL Lectures, *Data Communications*, Prof. Ajit Pal, IIT Kharagpur

Thanks!