Домашня робота з математичного аналізу #4

Студента 2 курсу групи МП-21 Захарова Дмитра Олеговича 22 лютого 2023 р.

1 Завдання 3656

Умова. Знайти точки умовного екстремуму $z(x,y) = x^2 + y^2$ за умови $\frac{x}{a} + \frac{y}{b} = 1$.

Розв'язок. Побудуємо функцію Лагранжа:

$$\mathcal{L}(x,y \mid \lambda) = (x^2 + y^2) + \lambda \left(\frac{x}{a} + \frac{y}{b} - 1\right)$$

Знаходимо повний диференціал:

$$d\mathcal{L}(x, y \mid \lambda) = \left(2x + \frac{\lambda}{a}\right)dx + \left(2y + \frac{\lambda}{b}\right)dy$$

Нам потрібно знайти, коли він дорівнює 0 разом з умовою x/a+y/b=1, а отже

$$\begin{cases} 2x + \lambda/a = 0 \\ 2y + \lambda/b = 0 \\ x/a + y/b = 1 \end{cases}$$

З першим двох рівнянь маємо $x=-\frac{\lambda}{2a},y=-\frac{\lambda}{2b}$. Підставляємо у третє:

$$-\frac{\lambda}{2a^2} - \frac{\lambda}{2b^2} = 1 \to \frac{\lambda}{2} \left(\frac{1}{a^2} + \frac{1}{b^2} \right) = -1 \to \lambda = -\frac{2a^2b^2}{a^2 + b^2}$$

Підставляємо у вирази для x, y:

$$(x_0, y_0) = \left(-\frac{\lambda}{2a}, -\frac{\lambda}{2b}\right) = \left(\frac{ab^2}{a^2 + b^2}, \frac{a^2b}{a^2 + b^2}\right)$$

Перевіримо, чи є це точкою мінімуму чи максимуму. Знайдемо другий диференціал:

$$d^{2}\mathcal{L} = 2dx^{2} + 2dy^{2} = 2(dx^{2} + dy^{2}) \succ 0$$

Отже, маємо додатно визначену матрицю другого диференціалу, що означає, що шукана стаціонарна точка відповідає умовному мінімуму. Знайдемо це значення:

$$z(x_0, y_0) = \frac{a^2b^4 + a^4b^2}{(a^2 + b^2)^2} = \frac{a^2b^2(a^2 + b^2)}{(a^2 + b^2)^2} = \frac{a^2b^2}{a^2 + b^2}$$

Відповідь. Точка $(ab^2/(a^2+b^2), a^2b/(a^2+b^2))$ зі значенням $a^2b^2/(a^2+b^2)$ є точкою умовного мінімуму.

2 Завдання 3661

Умова. Знайти точки умовного екстремуму $u(x,y,z)=x^2+y^2+z^2$ за умови $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1,\ a,b,c>0.$

Розв'язок. Побудуємо функцію Лагранжа:

$$\mathcal{L}(x, y, z \mid \lambda) = x^2 + y^2 + z^2 + \lambda \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1\right)$$

Знаходимо диференціал:

$$d\mathcal{L} = 2x\left(1 + \frac{\lambda}{a^2}\right)dx + 2y\left(1 + \frac{\lambda}{b^2}\right)dy + 2z\left(1 + \frac{\lambda}{c^2}\right)dz$$

Дорівнюємо його до 0:

$$\begin{cases} 2x \left(1 + \frac{\lambda}{a^2}\right) = 0\\ 2y \left(1 + \frac{\lambda}{b^2}\right) = 0\\ 2z \left(1 + \frac{\lambda}{c^2}\right) = 0\\ \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \end{cases}$$

Помітимо, що рівняння 1-3 можуть виконуватись або якщо x=y=z=0, але тоді четверте рівняння не буде виконуватись, або при $\lambda=-a^2,-b^2,-c^2$. Тому маємо такий набір стаціонарних точок:

$$(0,0,-c),(0,0,c)$$
 при $\lambda=-c^2$
 $(0,b,0),(0,-b,0)$ при $\lambda=-b^2$
 $(a,0,0),(-a,0,0)$ при $\lambda=-a^2$

Знаходимо другий диференціал:

$$d^{2}\mathcal{L} = 2\left(1 + \frac{\lambda}{a^{2}}\right)dx^{2} + 2\left(1 + \frac{\lambda}{b^{2}}\right)dy^{2} + 2\left(1 + \frac{\lambda}{c^{2}}\right)dz^{2}$$

При умові:

$$\frac{xdx}{a^2} + \frac{ydy}{b^2} + \frac{zdz}{c^2} = 0$$

Отже, підставляємо стаціонарні точки. Нехай $(0,0,\pm c)$ при $\lambda=-c^2$. Тоді dz=0, тому:

$$d^{2}\mathcal{L} = 2\left(1 - \frac{c^{2}}{a^{2}}\right)dx^{2} + 2\left(1 - \frac{c^{2}}{b^{2}}\right)dy^{2}$$

Оскільки a>b>c>0 то обидва коефіцієнти перед квадрами диференціалів є додатніми, а отже $d^2\mathcal{L}\succ 0$, звідки маємо локальний мінімум.

Якщо $(0,0,\pm a)$ при $\lambda = -a^2$, то отримаємо:

$$d^{2}\mathcal{L} = 2\left(1 - \frac{a^{2}}{b^{2}}\right)dy^{2} + 2\left(1 - \frac{a^{2}}{c^{2}}\right)dz^{2}$$

Тут навпаки усі коефіцієнти є від'ємними, а отже $d^2\mathcal{L} \prec 0$, то маємо максимум.

Якщо ж $(0,\pm b,0)$ при $\lambda=-b^2$

$$d^{2}\mathcal{L} = 2\left(1 - \frac{b^{2}}{a^{2}}\right)dx^{2} + 2\left(1 - \frac{b^{2}}{c^{2}}\right)dz^{2}$$

А тут вже коефіцієнт перед dx^2 є додатнім, а перед dz^2 є від'ємним. Не знаю, як саме з цього випливає відсутність екстремуму, скоріше за все подрібно розглянути околи точок $(0,\pm b,0)$ та довести наявність значень як більших, так і менших за $u(0,\pm b,0)=b^2$.

Відповідь. Точки $(0,0,\pm c)$ є точками умовного мінімума, а $(\pm a,0,0)$ умовного максимума.

3 Завдання 3662

Умова. Знайти точки умовного екстремуму $u(x,y,z) = xy^2z^3$ за умови x+2y+3z=a.

Розв'язок. Побудуємо функцію Лагранжа:

$$\mathcal{L}(x, y, z \mid \lambda) = xy^2z^3 + \lambda(x + 2y + 3z - a)$$

Знаходимо диференціал:

$$d\mathcal{L} = (y^2z^3 + \lambda)dx + (2xyz^3 + 2\lambda)dy + (3xy^2z^2 + 3\lambda)dz$$

Отже, маємо систему рівнянь, що ми маємо розв'язати:

$$\begin{cases} y^2 z^3 + \lambda = 0 \\ xyz^3 + \lambda = 0 \\ xy^2 z^2 + \lambda = 0 \\ x + 2y + 3z = a \end{cases}$$

Розіб'ємо все на 2 випадки.

Випадок $\lambda \neq 0$. Помітимо, що $x, y, z \neq 0$, інакше хоча б одне з рівнянь 1-3 при умові $\lambda \neq 0$ не виконувалось.

З першого рівняння $z^3 = -\frac{\lambda}{y^2}$, підставляємо у друге:

$$xy \cdot \left(-\frac{\lambda}{y^2}\right) + \lambda = 0 \iff \frac{\lambda x}{y} = \lambda \to x = y$$

Підставляємо це у третє рівняння:

$$y^3 z^2 = -\lambda$$

Враховуючи попереднє відношення $z^3y^2=-\lambda$, маємо $y^3z^2=z^3y^2$. Оскільки всі числа не нуль, маємо y=z, а отже x=y=z. Позначимо $\beta:=x=y=z$. Перші 3 рівняння зведуться до:

$$\beta^5 = -\lambda \to \beta = -\sqrt[5]{\lambda}$$

Підставляємо у четверте. Маємо:

$$6\beta = a \to \beta = \frac{a}{6} \to -\sqrt[5]{\lambda} = \frac{a}{6} \to \lambda = -\frac{a^5}{7776}$$

Отже ми знайшли стаціонарну точку $\left(\frac{a}{6}, \frac{a}{6}, \frac{a}{6}\right)$ при $\lambda = -\frac{a^5}{7776}$.

Випадок $\lambda = 0$. Тоді маємо рівняння:

$$\begin{cases} y^2 z^3 = yxz^3 = xy^2 z^2 = 0\\ x + 2y + 3z = a \end{cases}$$

Як бачимо, хоча б одне з x,y,z є нулем. Нехай це y. В такому разі маємо набір стаціонарних точок x+3z=a.

Нехай x=0. В такому випадку або y, або z теж є нулем. Нехай x=y=0. Тоді $z=\frac{a}{3}$ і маємо стаціонарну точку (0,0,a/3) при $\lambda=0$. Якщо ж x=z=0, то $y=\frac{a}{2}$ і тоді інша стаціонарна точка (0,a/2,0) при $\lambda=0$.

Якщо ж нарешті z=0, то маємо набір стаціонарних точок x+2y=a при $\lambda=0$.

Остаточно, маємо наступні стаціонарні точки:

$$\left(\frac{a}{6}, \frac{a}{6}, \frac{a}{6}\right) \text{ при } \lambda = -\frac{a^5}{7776},$$

$$\left(0, 0, \frac{a}{3}\right) \text{ при } \lambda = 0,$$

$$\left(0, \frac{a}{2}, 0\right) \text{ при } \lambda = 0,$$

$$(x, 0, z), x + 3z = a, \text{ при } \lambda = 0$$

$$(x, y, 0), x + 2y = a, \text{ при } \lambda = 0$$

Отже, знаходимо другий диференціал. Маємо:

$$d^{2}\mathcal{L} = 2xz^{3}dy^{2} + 6xy^{2}zdz^{2} + 4yz^{3}dxdy + 6y^{2}z^{2}dxdz + 12xyz^{2}dydz$$

Причому маємо обмеження по диференціалам:

$$dx + 2dy + 3dz = 0 \rightarrow dx = -2dy - 3dz$$

Позначимо через ξ_{ij} коефіцієнти при диференціалі $dx_i dx_j$ де $x_1 \equiv x, x_2 \equiv y, x_3 \equiv z$, то маємо:

$$d^{2}\mathcal{L} = \xi_{22}dy^{2} + \xi_{33}dz^{2} + \xi_{12}dy(-2dy - 3dz) + \xi_{13}dz(-2dy - 3dz) + \xi_{23}dydz$$
$$d^{2}\mathcal{L} = (\xi_{22} - 2\xi_{12})dy^{2} + (-3\xi_{12} - 2\xi_{13} + \xi_{23})dydz + (\xi_{33} - 3\xi_{13})dz^{2}$$

То маємо квадратичну форму, якщо позначити $\boldsymbol{\delta} = \begin{bmatrix} dy \\ dz \end{bmatrix}$:

$$d^{2}\mathcal{L} = \boldsymbol{\delta}^{T} \begin{bmatrix} \xi_{22} - 2\xi_{12} & -\frac{3}{2}\xi_{12} - \xi_{13} + \frac{1}{2}\xi_{23} \\ -\frac{3}{2}\xi_{12} - \xi_{13} + \frac{1}{2}\xi_{23} & \xi_{33} - 3\xi_{13} \end{bmatrix} \boldsymbol{\delta}$$

Підставляємо наші ξ_{ij} :

$$d^{2}\mathcal{L} = \boldsymbol{\delta}^{T} \begin{bmatrix} 2xz^{3} - 8yz^{3} & -6yz^{3} - 6y^{2}z^{2} + 6xyz^{2} \\ -6yz^{3} - 6y^{2}z^{2} + 6xyz^{2} & 6xy^{2}z - 18y^{2}z^{2} \end{bmatrix} \boldsymbol{\delta}$$

Матрицю з цими коефіцієнтами позначимо як М.

Підставляємо спочатку точку $(a/6, a/6, a/6) =: (\beta, \beta, \beta)$:

$$\mathbf{M} = \begin{bmatrix} -6\beta^4 & -6\beta^4 \\ -6\beta^4 & -12\beta^4 \end{bmatrix}$$

Отже, маємо детермінанти кутових мінорів:

$$\Delta_1 = -6\beta^4 < 0, \ \Delta_2 = 72\beta^8 - 36\beta^8 = 36\beta^8 > 0$$

Отже форма є від'ємно визначеною, тому точка (a/6, a/6, a/6) зі значенням $u = \left(\frac{a}{6}\right)^6$ є точкою умовного максимуму.

Якщо ж ми маємо одночасно дві компоненти, що дорівнюють нулю, то ми просто будемо мати:

$$\mathbf{M} = \mathbf{0}^{2 \times 2}$$

Де через $\mathbf{0}^{2\times 2}$ ми позначили матрицю з нулів. Тому для точок (0,0,a/3),(0,a/2,0) маємо $\Delta_2=0,$ а отже ектремуму там немає.

Підставимо набір точок, що задаються параметрично (a-3t,0,t), то будемо мати:

$$\mathbf{M} = \begin{bmatrix} 2(a-3t)t^3 & 0\\ 0 & 0 \end{bmatrix}$$

Оскільки $\Delta_2 = 0$, то екстремуму не маємо.

Нарешті, нехай (a-2t,t,0), то будемо мати $\mathbf{M}=\mathbf{0}^{2\times 2}$.

Відповідь. Точка $\left(\frac{a}{6},\frac{a}{6},\frac{a}{6}\right)$ зі значенням $z_{\max}=\left(\frac{a}{6}\right)^6$ є точкою умовного максимума.