<u> </u>	with 20: Sheaves.
71	esheaf of abelian groups on topl space X
	on assignment
	$\frac{u c x}{e} \xrightarrow{f} f(u) \left(-\Gamma(u, f)\right)$
	together w U C) V
	$\mathcal{F}(v) \longrightarrow \mathcal{F}(u).$
1	n other words, or presheef is a functor
	$\mathcal{F}: \mathcal{O}_{pen}(x) \longrightarrow \mathcal{A}_{b}.$
†	A sheaf is a presheaf J s.t. for every U
	and every open cover {u:1 of u then the
{	sequence: $1r_i$?
	0 - 4(u) - 174(u;)- 174(u;nu;)
	is exact. So: for any collection of set f(ui)
	s.t. si a; au = si a; then there is a
	unique se $f(u)$ set. $s _{u} = s$.

In other words: sections which bocally agree on
In other words: sections which locally agree on intersutions can be "global" to a global scetton.
Shoof whomology: Consider a short exact
sequence of sheaves of abelian groups
$- \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow O$
con a space X. Then the global sections
may pail to be surjective. My fail to be surjective.
In other words: the global scations functor
す トーラ チ(X) = 「(X, y)
is not an exact functor.
. Its failure to be exact is sheaf cohomology.
We will fours on a specific model for it called Cech cohomology.
Let J be a sheaf of abelian groys on X.

· Let $U = {U_{\lambda}} {U_{\lambda}} {v_{\lambda}} {v_$

Spave X. Defin

io (m, f) = [] f(u_1)

 $\ddot{c}'(u, f) = \Pi f(u_{\alpha}, u_{\beta})$

Defu - s: č° - č'

 $(sf)_{\alpha\beta} = f_{\alpha} - f_{\beta}$

- S: Č⁴ - Č⁴⁺¹

 $\frac{\left(\int f\right)_{d_0 \cdots d_{q+1}}}{i=0} = \frac{\int_{d_0 \cdots d_1 \cdots d_q + 1}^{q+1}}{\int_{d_0 \cdots d_1 \cdots d_q + 1}^{q+1}}$

87: S2 = 0

The wodrain complex (c'(n, f), s) is the Ceeh whain uplx associated to M, F. her S ; q 49 (w, 7) = im 8 -1 · Observe that if U is any cover then: $0 \rightarrow f(x) \rightarrow \mathring{C}^{\circ}(u, f) \rightarrow \mathring{C}^{\prime}(u, f)$ is exact by shoof property (this is the shoof property). Thus: H°(W,3) = 3(X). · The Cech cohomology depends on the cover chosen. To get a commically define dject one takes a limit our refinerus. 7 = {VB7 refres M = {U27 2E F

