

Search courses

Q (Search courses)

Commencé le	lundi 22 mars 2021, 15:40
État	Terminé
Terminé le	lundi 22 mars 2021, 16:00
Temps mis	19 min 34 s
Note	3 50 sur 14 00 (25%)

Partiellement correct

Note de 0,67 sur 1,00 Pourquoi initialiser les éléments des tableaux et pourquoi le faire avec des valeurs pseudo-aléatoires déterministes (reproductibles d'un run à l'autre) dans des intervalles précis (par ex entre 0 et 2)?

Veuillez choisir au moins une réponse :

- a. Pour qu'ils soient résidents en cache/mémoire.
- b. Pour pouvoir comparer deux runs (notamment deux versions différentes d'une boucle).
- c. Pour éviter des exceptions flottantes (divisions par 0 etc.) ou des dépassements de capacités ("overflow").
- d. Pour permettre la vectorisation.

Votre réponse est partiellement correcte.

Vous en avez sélectionné correctement 2.

Les réponses correctes sont : Pour qu'ils soient résidents en cache/mémoire., Pour éviter des exceptions flottantes (divisions par 0 etc.) ou des dépassements de capacités ("overflow")., Pour pouvoir comparer deux runs (notamment deux versions différentes d'une boucle).

Correct

Note de 1,00 sur 1,00 A quoi servent les "méta-répétitions" (le fait de répéter plusieurs fois l'expérience complète) ? Si ça peut vous aider, réfléchissez à ce qui se passerait si on s'en passait ?

Veuillez choisir une réponse :

- a. Avoir des mesures plus stables (par ex écart type faible).
- b. Avoir des mesures plus précises (rapport entre temps mesuré et biais du timer).
- c. Evaluer/mesurer la stabilité (par ex via un écart type ou l'écart entre vue médiane et un minimum).

Votre réponse est correcte.

La réponse correcte est : Evaluer/mesurer la stabilité (par ex via un écart type ou l'écart entre une médiane et un minimum).

d. Accélérer le processeur à sa fréquence nominale.

Votre réponse est incorrecte.

Les réponses correctes sont : Charger les tableaux dans le niveau mémoire visé., Passer le régime transitoire (pour ne mesurer que lors du régime permanent)., Accélérer le processeur à sa fréquence nominale.

Partiellement correct

Note de 0,50 sur 1,00 Comment accélérer (compilateur + code source) la boucle suivante (dont la plupart du temps est passé à diviser par d[j]) ? Une ou plusieurs bonnes réponses possibles.

```
// float a[], b[], c[], d[];
for (i=0; i<n; i++)
a[i] = (b[i] / d[j]) + (c[i] / d[j]);
```

Veuillez choisir au moins une réponse :

- a. Remplacer la division par la multiplication par son inverse (1/d[j]).
- b. Factoriser la somme => (b[i] + c[i]) / d[j]
- c. Vectorisation.
- d. Utiliser une option du compilateur (relative aux divisions).

Votre réponse est partiellement correcte.

Vous en avez sélectionné correctement 2.

Les réponses correctes sont : Vectorisation., Remplacer la division par la multiplication par son inverse (1/d[j])., Utiliser une option du compilateur (relative aux divisions)., Factoriser la somme => (b[i] + c[i]) / d[j]

Question 5	A quoi reconnaissez-vous une boucle vectorisée ?	
Note de 0,00 sur 1,00	Veuillez choisir une réponse : a. En x86 et pour des flottants simple/double précision, son code assembleur utilise des instructions suffixées par SS/SD.	×
	 b. En x86 et pour des flottants simple/double précision, son code assembleur utilise des instructions suffixées par PS/PD. 	
	oc. Il est impossible de le savoir même au niveau assembleur.	
	od. Son code source manipule des tableaux.	
	 e. Son code source est régulier et simple. 	

Votre réponse est incorrecte.

La réponse correcte est : En x86 et pour des flottants simple/double précision, son code assembleur utilise des instructions suffixées par PS/PD.

Correct

Note de 1,00 sur 1,00 Quelle est la meilleure façon d'optimiser la boucle suivante (on considère que les options permettant la vectorisation sont présentes et que f, g et h sont vectorisables) ?

```
// n%4 == 0
for (i=0; i<3*n; i++) {
  if (i < n) f(i);
  else if (i < 2*n) g(i);
  else h(i);
}</pre>
```

Veuillez choisir une réponse :

```
for (i=0; i<3*n; i+=4) {
   if (i < n) {
     f(i); f(i+1); f(i+2); f(i+3);
   } else if (i < 2*n) {
     g(i); g(i+1); g(i+2); g(i+3);
   } else {
     h(i); h(i+1); h(i+2); h(i+3);
   }
}</pre>
```

```
b. for (i= 0; i< n; i+=4) { f(i); f(i+1); f(i+2); f(i+3); }
for (i= n; i<2*n; i+=4) { g(i); g(i+1); g(i+2); g(i+3); }
for (i=2*n; i<3*n; i+=4) { h(i); h(i+1); h(i+2); h(i+3); }</pre>
```

```
for (i=0; i<n; i++) f(i);
for (i=n; i<2*n; i++) g(i);
for (i=2*n; i<3*n; i++) h(i);</pre>
```

Votre réponse est correcte.

La réponse correcte est :

```
for (i=0; i<n; i++) f(i);
for (i=n; i<2*n; i++) g(i);
for (i=2*n; i<3*n; i++) h(i);
```

Question	/

Incorrect

Note de 0,00 sur 1,00

Comment la localité temporelle est elle exploitée par le matériel ? Une ou plusieurs bonnes réponses.		
Veuillez choisir au moins une réponse : a. Caches (de données, d'instructions et TLB)		
 b. Cachelines (lignes de caches, fait de charger les données par bloc plutôt qu'octet par octet). 		
c. Hardware prefetchers.		
d. Pipeline.		
e. Elle n'est pas exploitée par le matériel.	×	

Votre réponse est incorrecte.

La réponse correcte est : Caches (de données, d'instructions et TLB)

Votre réponse est incorrecte.

La réponse correcte est : Propriété qu'ont les prochains accès à être regroupés (adresses proches)

Partiellement correct

Note de 0,17 sur 1,00 Parmi les runs suivants, lesquels seront assez longs pour que les profils (coût des différentes fonctions/boucles) soit suffisamment fiable/précis (au moins 500 échantillons).

Par défaut MAQAO échantillonne à 200 Hz mais on peut le pousser à 1000 Hz avec lprof_params="sampling-rate=high".

Veuillez choisir au moins une réponse :

- a. 0.05s à 1000 Hz
- c. 0.52s à 200 Hz
- ☐ d. 2.6s à 200 Hz
- e. 2.4s à 200 Hz

Votre réponse est partiellement correcte.

Vous en avez sélectionné correctement 1.

Les réponses correctes sont : 0.52s à 1000 Hz, 2.6s à 200 Hz

Question 10 Incorrect Note de 0,00 sur 1,00	Quelle est la meilleure clause pour équilibrer la boucle suivante ? #pragma omp parallel for for (i=0; i <n; +="" a[i]="b[i]" c[i];<="" i++)="" td=""><td>_</td></n;>	_
	Veuillez choisir une réponse : a. schedule(dynamic) b. schedule(guided) c. schedule(static)] *

Votre réponse est incorrecte.

La réponse correcte est : schedule(static)

Question 11

Partiellement correct

Quelles actions peuvent impacter la durée nécessaire (nb de répétitions) de warmup (donc le profil du régime transitoire) ?

Obtenir l'app mobile