Отчет по практическому заданию №2 "**Применение линейных моделей для определения токсичности комментария**".

Логистическая регрессия и градиентный спуск.

Содержание

1	Введение Эксперименты			2	
2					
	2.1	Иссле	дование поведения градиентного спуска	2	
		2.1.1	Параметр размера шага step alpha	2	
		2.1.2	Параметр размера шага step beta	2	

1 Введение

В данном документе представлен отчет о проделанных экспериментах по практическому заданию №2, анализ результатов. Краткое описание задания: необходимо реализовать линейный классификатор с произвольной функцией потерь.

2 Эксперименты

В этом блоке приведены все обязательные эксперименты, которые изложены в формулировке задания. Все эксперименты проводились на упрощенном датасете (рассматривается задача бинарной классификации) из соревнования **Toxic Comment Classification Challenge**, в котором нужно определить токсичность комментария.

Стандартный дизайн эксперимента:

- Оценка качества и подбор параметров модели проводились на каждой эпохе с помощью отложенной тренировочной выборки (30%). Все графики ниже построены по значениям ассигасу, посчитанным на отложенной выборке.
- В тренировочную выборку был добавлен признак, состоящий из всех единиц, который позволяет учитывать смещение (bias). Было решено не использовать смещение в L2-регуляризации, чтобы даже при плохом выборе коэффициента регуляризации решающая гиперплоскость не вырождалась в 0.
- В стохастическом градиентном спуске проверяется критерий останова на каждой эпохе (не итерации).

2.1 Исследование поведения градиентного спуска

Обновления весов модели при использовании градиетного спуска происходит по следующей формуле:

$$w_t = w_{t-1} - \frac{\alpha}{t^{\beta}} \times \frac{1}{N} \times \sum_{i=1}^{N} \nabla_w \mathbf{L}(x_i, y_i | w_{t-1}), \tag{1}$$

где t - номер итерации, β - **step beta**, $\nabla_w \mathbb{E}(x_i, y_i | w_{t-1})$ - градиент функции потерь.

2.1.1 Параметр размера шага step_alpha

Параметр $step_alpha$ (α) используется в градиентном спуске при обновлении весов в формуле 1. Рассмотрим следующие зависимости при разных значениях параметра $step_alpha$:

- 1. зависимость значения функции потерь от реального времени работы метода
- 2. зависимость значения функции потерь от итерации метода
- 3. зависимость точности (accuracy) от реального времени работы метода
- 4. зависимость точности (accuracy) от итерации метода

Соответствующие графики приведены на

2.1.2 Параметр размера шага step_beta

Параметр **step_beta** (β) используется в градиентном спуске при обновлении весов в формуле 1. Аналогично предыдущему пункту рассмотрим зависимости из 2.1.1 при разных значениях параметра **step_beta** и проанализруем соответсвующие графики: