# H1 Mergable Priority Queues

- what if we wanted to merge two priority queues?
- normal min-heap implementation does not support this in a smart way
  - with min-heap data structure, must take all elements from both and construct new heap from scratch

# H2 Operations

- insert(A, x)
  - add an element x
- min(A)
  - · return the highest priority element
- extract\_min(A)
  - remove and return the highest priority element
- union(A, B)
  - create a new heap with all the elements of both A and B
- decrease\_key(A, x, k)
  - decrease the key of x to k
- remove(A, x)
  - remove x from the heap entirely

## H<sub>2</sub> Binomial Trees

 $H_4$   $B_k$  Trees defined recursively:







In general, create  $B_{n+1}$  tree by taking two  $B_n$  trees, A and B and making the root of B the first child of the root of A

### H<sub>4</sub> Properties of $B_k$

- number of nodes is  $2^k$
- height of tree is k
- number of nodes with height h is binomial coefficient  $\begin{pmatrix} k \\ h \end{pmatrix}$

# $_{ m H3}$ Binomial Forest of size n ( $F_n$ )

A sequence of  $B_k$  trees with k strictly decreasing with n total nodes

- this is always possible because we can always represent n>0 in binary, so we can always write it as a sum of unique powers of 2
- if  $\alpha(n)$  is the number of 1s in the binary representation of n

- $F_n$  has  $\alpha(n)$  trees
- $F_n$  has  $n-\alpha(n)$  edges
- $\alpha(n) \in \mathcal{O}(\log(n))$

# H2 Min Binomial Heap

A min binomial heap is a binomial forest where:

- each node of  $F_n$  stores one element
- ullet each tree in  $F_n$  is min-heap ordered

## H<sub>3</sub> Implementation

#### H<sub>4</sub> Storage

- edges as drawn are not exactly stored as pointers
- each node stores pointers to:
  - parent
  - left\_child
  - right\_sibling
- tree stores pointer to head, aka rightmost top level node

## $_{ m H4}$ Merging min binomial heaps of same size $P_k$ and $Q_k$

- if Pk.root < Qk.root then make Pk.left\_child = Qk.root,</li>
   otherwise Qk.left\_child = Pk.root
  - change parent pointers similarly

### H4 Union of min binomial forests (union(A, B))

(works exactly like algorithm for addition of binary numbers)

- 1. start at smallest  $B_k$  tree in both
- 2. if tree is only in one forest (or is carry), then keep as-is in the union forest
- 3. If there are  $B_k$  trees with same size in both, merge them to get a

```
B_{k+1} tree
```

4. carry the new  $B_{k+1}$  tree, repeat from step 2

for  $|A| \leq n$  and  $|B| \leq n$ , the complexity of union(A, B) is  $\mathcal{O}(\log(n))$ 

#### H<sub>4</sub> insert(A, x)

Make a new binomial forest with a single  $B_0$  tree which stores x, then "add" it to A

```
def insert(A, x):
    b = new B_0 Tree
    b.insert(x)
    B = new BinomialHeap(b)
    A = union(A, B)
```

H4 decrease\_key(A, x, k)