

The MOSFET is specified as $V_T=1V$ and $k=0.5\ mA/V^2$. Find I_D and V_O for $V_I=2V$.

Solution:

Step 1: Assume the MOSFET in saturation

Step 2:
$$I_D = \frac{k}{2} V_{OV}^2$$
 Here, $V_{GS} = V_G - V_S = V_G - 0 = V_G = V_I = 2V$
Therefore, $V_{OV} = V_{GS} - V_T = 2 - 1 = 1V$

$$\therefore I_D = \frac{0.5}{2}(1)^2 = 0.25 \, mA$$

Again,
$$V_{DS} = V_D - V_S = V_D - 0 = V_D = V_O$$

KVL along
$$L_1$$
: $I_D \times 1k\Omega + V_o = 5 - 0 \Rightarrow V_0 = 5 - I_D \times 1k\Omega$

$$\Rightarrow V_o = 5 - 0.25 \times 1 = 4.75 V = V_{DS}$$

Step 3:
$$V_{GS} = 2V > V_T \sqrt{\frac{1}{V_{DS}}}$$
 Therefore, **assumption correct**! $V_{DS} = 1V > V_{OV} \sqrt{\frac{1}{V_{DS}}}$ Correct ans: $I_D = 0.25 \ mA$, $V_O = 4.75 \ V_O = 1.00 \ V_O = 1.00$

The MOSFET is specified as $V_T = 1V$ and $k = 0.5 \, mA/V^2$. Find I_D and V_O for $V_I = 5V$.

Solution:

Step 1: Assume the MOSFET in saturation

Step 2:
$$I_D = \frac{k}{2} V_{OV}^2$$
 Here, $V_{GS} = V_G - V_S = V_G - 0 = V_G = V_I = 5V$
Therefore, $V_{OV} = V_{GS} - V_T = 5 - 1 = 4V$

$$\therefore I_D = \frac{0.5}{2}(4)^2 = 4 \, mA$$

Again,
$$V_{DS} = V_D - V_S = V_D - 0 = V_D = V_O$$

KVL along
$$L_1$$
: $I_D \times 1k\Omega + V_o = 5 - 0 \Rightarrow V_0 = 5 - I_D \times 1k\Omega$

$$\Rightarrow V_o = 5 - 4 \times 1 = 1 \ V = V_{DS}$$

Step 3:
$$V_{GS} = 5V > V_T \sqrt{\text{Therefore, assumption wrong!}}$$

 $V_{DS} = 1V \gg V_{OV} \times$

The MOSFET is specified as $V_T = 1V$ and $k = 0.5 \, mA/V^2$. Find I_D and V_O for $V_I = 5V$.

Repeat:

Step 1: Assume the MOSFET in **triode**

Step 2:
$$I_D = k[V_{OV}V_{DS} - \frac{1}{2}V_{DS}^2]$$

Here,
$$V_{GS} = V_G - V_S = V_G - 0 = V_G = V_I = 5V$$

Therefore,
$$V_{OV} = V_{GS} - V_{T} = 5 - 1 = 4V$$

Again,
$$V_{DS} = V_D - V_S = V_D - 0 = V_D = V_o$$
. Assuming $V_{DS} = x$

KVL along
$$L_1$$
: $I_D \times 1k\Omega + V_o = 5 - 0 \Rightarrow I_D = \frac{5 - V_{DS}}{1} = 5 - x$

$$\therefore I_D = 0.5 \left[4 \times V_{DS} - \frac{1}{2} V_{DS}^2 \right] \Rightarrow (5 - x) = 0.5 \left[4x - \frac{1}{2} x^2 \right]$$

$$\Rightarrow 5 - x = 2x - 0.25x^2 \Rightarrow 0.25x^2 - 3x + 5 = 0$$

Solving,
$$x = 2V$$
, $x = 10V$ Since $V_{DS} = x$ is small in triode, smaller value of x is favorable

Therfore,
$$V_o = V_{DS} = x = 2V$$
, and $I_D = 5 - x = 3 \text{ mA}$

Step 3:
$$V_{GS} = 5V > V_T \sqrt{\text{Therefore, assumption correct!}}$$

 $V_{DS} = 2V < V_{OV} \sqrt{\text{Correct ans: } I_D = 3 \, mA, V_o = 2 \, V}$

The MOSFET is specified as $V_T = 1V$ and $k = 4 mA/V^2$. Find I_D and V_O

Solution:

Step 1: Assume the MOSFET in **saturation**

Step 2:
$$I_D = \frac{k}{2} V_{ov}^2$$

Let's assume $V_0 = V_S = x$

Here,
$$V_{GS} = V_G - V_S = V_G - V_o = 2 - x$$

Therefore,
$$V_{OV} = V_{GS} - V_T = (2 - x) - 1 = 1 - x$$

Again,
$$V_{DS} = V_D - V_S = V_D - V_0 = 5 - x$$

Ohm's law for the resistor: $I_D = \frac{V_0 - 0}{1 k \Omega} = x$

$$\therefore x = \frac{4}{2}(1-x)^2 \Rightarrow x = 2(1-2x+x^2) \Rightarrow x = 2-4x+2x^2$$

$$\Rightarrow 2x^2 - 5x + 2 = 0$$

Solving,
$$x = 0.5$$
, $x = 2V$ Since $V_{DS} = 5 - x$ is large in saturation

smaller value of x is favorable

$$V_o = V_S = x = 0.5V, I_D = x = 0.5 \, mA,$$

 $V_{DS} = 5 - x = 4.5V, V_{GS} = 2 - x = 1.5V, \text{ and } V_{OV} = 1 - x = 0.5V$

Step 3:
$$V_{GS} = 1.5V > V_T \sqrt{\text{Therefore, assumption correct!}}$$
 $V_{DS} = 4.5V > V_{OV} \sqrt{\text{Correct ans: } I_D = 0.5 \ mA, V_o = 0.5 \ V}$

Practice

Question 4 [CO1, CO4]

Analyze the following circuit to find the values of I_D and V_{DS} using the Method of Assumed State. You must validate your assumptions.

Hint: Use I_D as unknown x. Use Ohm's law to represent V_D and V_S in terms of x.

Hint Explanation

Assume
$$I_D=x$$
. For $5k\Omega$: $I_D=\frac{10-V_D}{5}\Rightarrow V_D=10-5\times I_D=10-5x$. For $3k\Omega$: $I_D=\frac{V_S-0}{3}\Rightarrow V_S=3\times I_D=3x$.

Therefore,
$$V_{GS} = V_G - V_S = 5 - 3x$$
, and $V_{OV} = V_{GS} - V_T = (5 - 3x) - 1$
Also, $V_{DS} = V_D - V_S = (10 - 5x) - 3x = 10 - 8x$

10

$$[7 + 3]$$

Now if you assume saturation:

$$I_D = \frac{k}{2} V_{OV}^2 \Rightarrow \mathbf{x} = \frac{2}{2} (4 - 3\mathbf{x})^2$$

And if you assume triode:

$$I_D = k[V_{OV}V_{DS} - \frac{1}{2}V_{DS}^2]$$

$$\Rightarrow x = 2[(4 - 3x)(10 - 8x) - 0.5 \times (10 - 8x)^{2}]$$

Solve for x, take the _____ root