

SRM Institute of Science and Technology Set B

College of Engineering and Technology School of Computing

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2022-23 (Even)

Test: CLA-T1

Course Code & Title: 18CSC204J Design and Analysis of Algorithms
Year & Sem: II Year / IV Sem

Date: 13-02-2023

Duration: 60 mins
Max. Marks: 25

Course Articulation Matrix:

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	-	-	-	-	-	-	-	-
CO2	-	3	2	-	-	-	-	-	-	-	-	-
CO3	-	3	3	-	-	-	-	-	-	-	-	-
CO4	3	2	3	-	-	-	-	-	-	-	-	-
CO5	2	3	-	-	-	-	-	-	-	-	-	-
CO6	-	2	3	-	-	-	-	-	-	-	-	-

Inci	Part – A (5x 1 = 5 Marks) tructions: Answer all					
Q. N	Question	Marks	BL	СО	PO	PI Code
1	criteria denote that, each step in an algorithm must be such that it can, at least in principle, be done by a person using pencil and paper in a finite amount of time. a) Finiteness b) Definiteness c) Effectiveness d) Ambiguous	1	1	1	2	2.1.1
2	The running time of the recursive algorithm can be determined by a) Operation count b) Iterative method c) Recurrence relation d) Tabular method	1	2	1	2	2.3.1
3	If $f(n)=O(g(n))$ then $g(n)=O(h(n))$, then a) $f(n)=\theta(h(n))$ b) $f(n)=\Omega(h(n))$ c) $f(n)=O(h(n))$ d) either b or c	1	1	1	2	2.1.1
4	There are four algorithms A1, A2, A3, A4 to solve the given problem with the order n, n², n² logn and 2n respectively. Which is the worst algorithm? a) A1 b) A2 c) A3 d) A4	1	2	1	2	2.3.1

5	Which of the following uses divide and conquer approach? a) Factorial b) Fibonacci c) Merge sort d) Sequential search Part – B	1	2	1	2	2.3.1
Inct	rart – B (2 x 10 Marks = 20 Marks) ructions: Answer any 2 Questions					
6	You are playing a game where your task is to arrange the cards in ascending order. You have an option to exchange the one card at a time from your neighbor. The given cards are 6,4,1,2,5. Find the suitable algorithm to arrange cards in order and analyze the time complexities of the given scenario. Ans:	10	3	1	2	2.2.3
	Insertion Sort pseudocode (5)					
	for $(i = 1; i \times n; i + 1)$ temp = a [i]; while $(i > 0)$ and a [j] > temp a [j+1] = a [j]; a [j+1] = bemp: 3 a [j+1] = bemp:					
	Sorted: 1, 2, 4, 5,6 Dry run: (3) Time Complexity Analysis: (2) Best case - O(n) Worst case - O(n^2)					
7	Deduce the time complexity of a given relation using Recursion Tree approach. $T(n) = T(n/3) + T(2n/3) + n; n>1$ $1 ; n=1$	10	3	1	2	2.3.2

	T (2) T (2) T (2) T (4) T (2) T (4) T (2)	T(n) = T(n/3) + T(2n/3) + n $T(n) = T(n/3) + T(2n/3) + n$ $T(n) = T(n) + T(n) + T(n)$ $T(n) = T(n/3) + T(2n/3) + n$ $T(n) = T(n/3) + T(2n/4) + n$ $T(n/3) = T(2n/4) + T(2n/4) + n$ $T(n/4) = T(2n/4) + n$ $T(n/4$					
8	(i)	Given $g(n)=2n^3 + 3n^2+4$ and $f(n)=n^2\log n$. Show that $f(n)=O(g(n))$ and $g(n)=\Omega(f(n))$.	5	3	1	2	2.2.2
		Set B 8(1) $g(n) = 2n^3$ $f(n) = n^2 \log n$ $f(n) = 0$ ($g(n)$)	5	3	1	2	2.3.2
	(ii)	Examine the following pseudocode and calculate the time complexity using operation count method. Begin sum=0; for (i=4;i <n;i++) (j="0;j<=i;j++)" for="" sum++;<="" td=""><td></td><td></td><td></td><td></td><td></td></n;i++)>					

	end for end for end	
i	J	Cost
4	0,1,2,3,4	5
5	0,1,2,3,4,5	6
6	0,1,2,3,4,5.6	7
7	0,1,2,3,4,5,6,7	8
TC=5	5+6+7+8+n=n(n+1)/2=O	(n^2)

^{*}Program Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.
Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Audit Professor/Course Coordinator