Statistics for the Sciences

Repeated Measures - Part II

Xuemao Zhang East Stroudsburg University

January 18, 2025

Outline

- Factorial designs with repeated measures
 - Data format
 - ► Model description
 - Model fit
- Lab
- Repeated measures on both factors

- Example (garcia.csv): Garcia et al. (2015) studied the effect of the appetite-regulating hormone leptin on appetite and mating preferences in the spadefoot toad Spea bombifrons. Eighteen female toads collected from the wild were allocated to a treatment group (n = 9) which received a subcutaneous injection of leptin once per day for six days, and a control group (n = 9), which received saline injections with the same frequency. One hour after the day 6 injections, each toad was presented with approximately 50 crickets. The response variable was the cumulative number of attacks by each toad over three-minute intervals for 15 minutes. Treatment (leptin versus control was the fixed between-subject factor and toads were the subjects. The within-subjects fixed factor was time with five groups representing 3, 6, 9, 12 and 15 minutes after the introduction of crickets.
 - Response variable: cumattack cumulative number of attacks
 - between-subject factor: treatment
 - within-subjects factor: timefac
 - Subjects toad
 - * Repeated measures on one factor only treatment

##		toad	${\tt treatment}$		numattack	${\tt cumattack}$	timefac
##		1	Leptin	3	7	7	3
##	2	1	Leptin	6	2	9	6
##	3	1	Leptin	9	7	16	9
##	4	1	Leptin	12	4	20	12
##	5	1	Leptin	15	0	20	15
##	6	2	Leptin	3	1	1	3
##	7	2	Leptin	6	2	3	6
##	8	2	Leptin	9	4	7	9
##	9	2	Leptin	12	4	11	12
##	10	2	Leptin	15	3	14	15
##	11	3	Saline	3	12	12	3
##	12	3	Saline	6	8	20	6
##	13	3	Saline	9	11	31	9
##	14	3	Saline	12	11	42	12
##	15	3	Saline	15	5	47	15
##	16	4	Saline	3	14	14	3
##	17	4	Saline	6	6	20	6
##	18	4	Saline	9	8	28	9
##	19	4	Saline	12	5	33	12
##	20	4	Saline	15	1	34	15
##		5	Saline	3	5	5	3
##		5	Saline	6	6	11	6
##		5	Saline	9	6	17	9
##		5	Saline	12	9	26	12
	25	5	Saline	15	6	32	15
##		6	Leptin	3	11	11	3
##		6	Leptin	6	3	14	6
##		6	Leptin	9	3	17	9
##		6	Leptin	12	0	17	12
##		6	Leptin	15	4	21	15
##		7	Saline	3	8	8	3
##		7	Saline	6	3	11	6
	33	7	Saline	9	7	18	. 9
##	34		Saline	12	4	22	12
##	35	7	Saline	15	11	33	15
	36	8	Leptin	3	9	9	3
##	37	8	Leptin	6	5	14	6
##	38	8	Leptin	9	5	19	9

• Levels of treatment

```
## [1] "Leptin" "Saline"
```

• Levels of timefac

```
## [1] "3" "6" "9" "12" "15"
```

• Levels of toad

```
## [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" ## [16] "16" "17" "18"
```


- Check homogeneity of within-group variances
 - very different variances

```
##
      treatment time N cumattack
                                         sd
                                                           сi
                                                  se
                                   3.789606 1.263202 2.912949
## 1
         Leptin
                   3 9
                        6.888889
                     9 10.777778 4.918785 1.639595 3.780913
         Leptin
## 2
## 3
         Leptin
                     9 13.666667
                                   5.612486 1.870829 4.314139
## 4
         Leptin
                  12 9 15.888889
                                   5.883121 1.961040 4.522167
                                   5.811865 1.937288 4.467395
## 5
         Leptin
                  15
                     9 17.444444
## 6
         Saline
                        8.888889
                                   3.855011 1.285004 2.963224
## 7
         Saline
                     9 14.777778
                                   5.674015 1.891338 4.361434
## 8
         Saline
                     9 22.444444
                                  7.731609 2.577203 5.943041
##
         Saline
                  12 9 28.222222
                                   9.351173 3.117058 7.187948
## 10
         Saline
                  15 9 33.111111 11.285438 3.761813 8.674756
```

• So consider log10 transformation of the response

Check homogeneity of within-group variances again

```
##
      treatment time N logcumattack
                                            sd
                                                        se
                                                                  ci
## 1
         Leptin
                   3 9
                          0.7391454 0.3626558 0.12088527 0.2787619
                   6
                     9
                          0.9789913 0.2498358 0.08327859 0.1920408
##
         Leptin
                   9
                     9
                           1.0950095 0.2122436 0.07074786 0.1631449
## 3
         Leptin
         Leptin
                  12 9
                           1.1675887 0.1933196 0.06443987 0.1485986
## 4
## 5
         Leptin
                  15 9
                           1.2137940 0.1771414 0.05904712 0.1361629
## 6
         Saline
                   3 9
                          0.9087618 0.2027180 0.06757267 0.1558229
         Saline
                   6 9
                           1.1354505 0.1920079 0.06400263 0.1475903
##
## 8
         Saline
                   9
                     9
                           1.3256738 0.1620029 0.05400096 0.1245264
         Saline
                  12.9
                           1.4280959 0.1511606 0.05038687 0.1161923
##
## 10
         Saline
                  15 9
                           1.4954104 0.1599347 0.05331156 0.1229367
```

- Description of Design (with repeated measures on one factor only):
- Suppose there are two factors: A and B
 - A has two levels: 1, 2
 - ▶ B has two levels: 1, 2
 - ▶ Repeated measures on factor B
 - ► Again, each subject is a block

		В	
A	Subject	1	2
	T	A_1B_1	A ₁ B ₂
A ₁	÷		
	s	A_1B_1	A ₁ B ₂
	s + 1	A_2B_2	A ₂ B ₁
A ₂	÷		
	2 s	A_2B_1	A ₂ B ₂

- Assumption: there are no interactions between treatments and subjects
- Statistical model:
 - subject effect is random; it is nested within factor A

$$Y_{ijk} = \mu + \rho_{i(j)} + \alpha_j + \beta_k + (\alpha\beta)_{jk} + \varepsilon_{ijk}, i = 1, \dots, s; j = 1, \dots, a; k = 1, \dots, b$$

- $\rho_{i(i)} \sim N(0, \sigma_{\rho}^2)$ are independent
- $\sum_{j=1}^{k} \alpha_{j} = 0$ $\sum_{j=1}^{k} \beta_{k} = 0$
- $(\alpha\beta)_{jk}$ are constants subject to $\sum_i (\alpha\beta)_{jk} = 0$ for all k and $\sum_k (\alpha\beta)_{jk} = 0$ for
- $\varepsilon_{ijk} \sim N(0, \sigma^2)$ are independent
- \triangleright $\rho_{i(i)}$ and ε_{ii} are independent

Table 1: ANOVA Table for 2-factor with repeated measures on factor B

Source	df	SS	MS	F
Factor A	a − 1	SS_A	$SS_A/(a-1)$	$MS_A/MS_{S(A)}$
Factor B	b-1	SS_B	$SS_B/(b-1)$	MS_B/MS_E
AB interactions	(a-1)(b-1)	SS_{AB}	$SS_{AB}/[(a-1)(b-1)]$	SS_{AB}/MS_{E}
Subjects (within A)	a(s-1)	$SS_{S(A)}$	$SS_{S(A)}/[a(s-1)]$	$SS_{S(A)}/MS_E$
Error	a(s-1)(b-1)	SSE	SSE/[a(s-1)(b-1)]	,
Total	abs-1	SS_{total}		

•
$$E(MS_A) = \sigma^2 + b\sigma_\rho^2 + bs \frac{\sum \alpha_j^2}{a-1}$$

• $E(MS_B) = \sigma^2 + as \frac{\sum \beta_k^2}{b-1}$
• $E(MS_{AB}) = \sigma^2 + s \frac{\sum \sum (\alpha \beta)_{jk}^2}{(a-1)(b-1)}$
• $E(MS_{S(A)}) = \sigma^2 + b\sigma_\rho^2$

•
$$E(MS_B) = \sigma^2 + as \frac{\sum \beta_k^2}{b-1}$$

•
$$E(MS_{AB}) = \sigma^2 + s \frac{\sum \sum (\alpha \beta)_{jk}^2}{(a-1)(b-1)}$$

•
$$E(MS_{S(A)}) = \sigma^2 + b\sigma_\rho^2$$

•
$$E(MS_F) = \sigma^2$$

- Testing interaction H_0 : all $(\alpha\beta)_{jk} = 0$
- Testing factor A main effects H_0 : all $\alpha_i = 0$
- Testing factor B main effects H_0 : all $\beta_k = 0$

Example

Model fit

```
## Linear mixed model fit by REML. t-tests use Satterthwaite's method
## lmerModLmerTest]
## Formula: logcumattack ~ treatment * timefac + (1 | toad)
##
     Data: garcia
##
## REML criterion at convergence: -70.7
##
## Scaled residuals:
##
      Min 1Q Median 3Q
                                    Max
## -4.2504 -0.4142 0.0109 0.4192 2.5557
##
## Random effects:
   Groups Name Variance Std.Dev.
##
## toad (Intercept) 0.036304 0.19053
## Residual
            0.009734 0.09866
## Number of obs: 90, groups: toad, 18
##
## Fixed effects:
```

Example

ANOVA table

```
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

## treatment 0.0553 0.05531 1 16 5.6823 0.02987 *

## timefac 3.2808 0.82020 4 64 84.2656 < 2e-16 ***

## treatment:timefac 0.0546 0.01364 4 64 1.4016 0.24353

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- After importing data garcia.csv, we add a variable of log10 transformation of the response cumattack
- In the Linear Mixed Models dialog, click on Continue
- Then add the dependent variable and factors

Add the fixed effects

Add the random effect

• We may want to compare the means of the fixed effects

Model Dimensiona

		Number of Levels	Covariance Structure	Number of Parameters
Fixed Effects	Intercept	1		1
	treatment	2		1
	time	5		4
	treatment * time	10		4
Random Effects	toad	18	Variance Components	1
Residual				1
Total		36		12

a. Dependent Variable: logcumattack.

Fixed Effects

Type III Tests of Fixed Effectsa

Source	Numerator df	Denominator df	F	Sig.
Intercept	1	16	621.042	<.001
treatment	1	16	5.682	.030
time	4	64.000	84.266	<.001
treatment * time	4	64.000	1.402	.244

a. Dependent variable, logodinattac

Estimates of Fixed Effects^a

						95% Confid	ence Interval
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound
Intercept	1.495	.072	22.940	20.909	<.001	1.347	1.643
[treatment=Leptin]	282	.101	22.940	-2.784	.011	491	072
[treatment=Saline]	0_{ρ}	0					
[time=3]	587	.047	64.000	-12.614	<.001	680	494
[time=6]	360	.047	64.000	-7.740	<.001	453	267
[time=9]	170	.047	64.000	-3.650	<.001	263	077
[time=12]	067	.047	64.000	-1.447	.153	160	.026
[time=15]	0_{ρ}	0					
[treatment=Leptin] * [time=3]	.112	.066	64.000	1.703	.093	019	.243
[treatment=Leptin] * [time=6]	.125	.066	64.000	1.903	.062	006	.257
[treatment=Leptin] * [time=9]	.051	.066	64.000	.775	.441	080	.182
[treatment=Leptin] * [time=12]	.021	.066	64.000	.321	.749	110	.153
[treatment=Leptin] * [time=15]	0ρ	0					

Estimated Marginal Means

1. treatment

Estimates^a

				95% Confidence Interval		
treatment	Mean	Std. Error	df	Lower Bound	Upper Bound	
Leptin	1.039	.065	16	.901	1.177	
Saline	1.259	.065	16	1.120	1.397	

a. Dependent Variable: logcumattack.

Pairwise Comparisonsa

		Mean Difference				95% Confiden Diffe	ce Interval for rence ^c
(I) treatment	(J) treatment	(I-J)	Std. Error	df	Sig.c	Lower Bound	Upper Bound
Leptin	Saline	220**	.092	16	.030	415	024
Saline	Leptin	.220**	.092	16	.030	.024	.415

Based on estimated marginal means

^{*.} The mean difference is significant at the .05 level.

a. Dependent Variable: logcumattack.

2. time

Estimatesa

			95% Confidence Interval				
time	Mean	Std. Error	df	Lower Bound	Upper Bound		
3	.824	.051	22.940	.719	.929		
6	1.057	.051	22.940	.953	1.162		
9	1.210	.051	22.940	1.106	1.315		
12	1.298	.051	22.940	1.193	1.402		
15	1.355	.051	22.940	1.250	1.459		

a. Dependent Variable: logcumattack.

Pairwise Comparisons^a

		Mean Difference				95% Confidence Interval for Difference ^c	
(I) time	(J) time	(I-J)	Std. Error	df	Sig.c	Lower Bound	Upper Bound
3	6	233*	.033	64.000	<.001	329	138
	9	386*	.033	64.000	<.001	482	291
	12	474*	.033	64.000	<.001	570	378
	15	531*	.033	64.000	<.001	626	435
б	3	.233*	.033	64.000	<.001	.138	.329
	9	153*	.033	64.000	<.001	249	058
	12	241*	.033	64.000	<.001	336	145
	15	297*	.033	64.000	<.001	393	202
9	3	.386*	.033	64.000	<.001	.291	.482
	6	.153*	.033	64.000	<.001	.058	.249
	12	088	.033	64.000	.098	183	.008
	15	144*	.033	64.000	<.001	240	049
12	3	.474*	.033	64 000	< .001	.378	.570

Repeated measures on both factors

Description of Design:

- Suppose there are two factors: A and B
 - A has two levels: 1, 2
 - ▶ B has two levels: 1, 2
 - Repeated measures on both factors: A and B
 - Again, each subject is a block

		Treatment Order						
	1	2	3	4				
Subject 1	A_1B_2	A ₂ B ₂	A_1B_1	A ₂ B ₁				
2	A_2B_1	A ₁ B ₂	A ₂ B ₂	A_1B_1				
3	A_2B_2	A_1B_1	A ₂ B ₁	A ₁ B ₂				
4	A_1B_1	A ₂ B ₁	A ₁ B ₂	A_2B_2				

Repeated measures on both factors

Statistical model:

$$Y_{ijk} = \mu + \rho_i + \alpha_j + \beta_k + (\alpha\beta)_{jk} + (\rho\alpha)_{ij} + (\rho\beta)_{ik} + \varepsilon_{ijk}, i = 1, \dots, s; j = 1, \dots, a; k = 1, \dots, b$$

- $\rho_i \sim N(0, \sigma_\rho^2)$ are independent
- $ightharpoonup \sum \alpha_j = 0$
- $\triangleright \sum \beta_k = 0$
- $(\alpha\beta)_{jk}$ are constants subject to $\sum_j (\alpha\beta)_{jk} = 0$ for all k and $\sum_k (\alpha\beta)_{jk} = 0$ for all j
- $(\rho\alpha)_{ij}$ and $(\rho\beta)_{ik}$ are mixed effects:
- $\varepsilon_{ijk} \sim N(0, \sigma^2)$ are independent
- ρ_i , $(\rho\alpha)_{ij}$ and $(\rho\beta)_{ik}$ are pairwise independent
- ε_{ij} are independent of ρ_i , $(\rho\alpha)_{ij}$ and $(\rho\beta)_{ik}$

Repeated measures on both factors

Table 2: ANOVA Table for 2-factor with repeated measures on both factors

Source	df	SS	MS	F
Subjects(S)	s-1	SSs	$SS_S/(s-1)$	SS_S/MS_E
Factor A	a-1	SS_A	$SS_A/(a-1)$	MS_A/MS_{AS}
Factor B	b-1	SS_B	$SS_B/(b-1)$	MS_B/MS_{BS}
AB interactions	(a-1)(b-1)	SS_{AB}	$SS_{AB}/[(a-1)(b-1)]$	SS_{AB}/MS_{E}
AS interactions	(a-1)(s-1)	SS_{AS}	$SS_{AS}/[(a-1)(s-1)]$	SS_{AS}/MS_{E}
BS interactions	(b-1)(s-1)	SS_{BS}	$SS_{BS}/[(b-1)(s-1)]$	SS_{BS}/MS_{E}
Error	(a-1)(b-1)(s-1)	SSE	SSE/[(a-1)(b-1)(s-1)]	
Total	abs-1	SS_{total}		

$$\bullet \ E(MS_S) = \sigma^2 + ab\sigma^2$$

$$\begin{aligned} \bullet & E(MS_S) = \sigma^2 + ab\sigma_\rho^2 \\ \bullet & E(MS_A) = \sigma^2 + b\sigma_{\rho\alpha}^2 + bs\frac{\sum_{a=1}^{\alpha_j^2}}{a-1} \\ \bullet & E(MS_B) = \sigma^2 + a\sigma_{\rho\beta}^2 + as\frac{\sum_{a=1}^{\alpha_k^2}}{b-1} \end{aligned}$$

•
$$E(MS_B) = \sigma^2 + a\sigma_{\rho\beta}^2 + as\frac{2}{b-1}$$

•
$$E(MS_{AB}) = \sigma^2 + s \frac{\sum \sum (\alpha \beta)_{jk}^2}{(a-1)(b-1)}$$

$$E(MS_{AS}) = \sigma^2 + b\sigma_{\rho\alpha}^2$$

•
$$E(MS_{BS}) = \sigma^2 + a\sigma_{\rho\beta}^2$$

•
$$E(MS_F) = \sigma^2$$

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.