

Dihypergraph decomposition: application to closure system representations 8th FCA4AI Workshop

Lhouari Nourine and Simon Vilmin.

LIMOS, UCA

August 2020

Implications, Dihypergraphs

- ▶ Set *V* of vertices (attributes)
- ▶ Dependencies in V: implications $B \rightarrow h$, $B \subseteq V$, $h \in V$
- ▶ Represented by a dihypergraph $\mathcal{H} = (V, \mathcal{E})$, the arc (B, h) models $B \rightarrow h$

Dihypergraphs, Closure systems

- ▶ F models (B, h) if $B \subseteq F \implies h \in F$
- \triangleright F closed in \mathcal{H} if F models \mathcal{E} (forward chaining)
- $\blacktriangleright \ \mathcal{F} = \{ F \subseteq V \mid F \text{ closed in } \mathcal{H} \} \text{ is a } \textit{closure system} \text{:}$
 - $\triangleright V \in \mathcal{F}$
 - $\, \triangleright \, \, F_1, F_2 \in \mathfrak{F} \implies \, F_1 \cap F_2 \in \mathfrak{F}$

Closure systems, Meet-irreducible

	1	2	3	4	5
24		×		×	
34			×	×	
35			×		×
15	×				×
245		×		×	×
145	×			×	×
2345		×	×	×	×
1345	×		×	×	×

▶ \emptyset obtained by intersection, brings no informationsame for 4, 3, 5, 45, 345, 1234524 cannot be obtained, it is meet-irreducible Meet-irreducible $\mathfrak{M} \equiv$ reduced context

Problem

Problem - Enumerating Meet-Irreducible

- ▶ Input: a dihypergraph $\mathcal{H} = (V, \mathcal{E})$.
- ▶ Output: the set \mathcal{M} of meet-irreducible elements of \mathcal{F} .
- ▶ survey in [Bertet et al., 2018]
- ▶ Negative side:
 - ▶ harder than hypergraph dualization [Khardon, 1995]
 - ▶ pseudo-intent recognition coNP-C [Babin, Kuznetsov, 2013]
- ▶ Positive side:
 - ▷ generic algorithms [Mannila, Räihä, 1992]
 - ▶ classes of closure systems [Beaudou et al., 2017, Defrain et. al., 2019]

Strategy

- ► Acyclic split of H:
 - ho bipartition (V_1,V_2) of V s.t. any arc (B,h) is either in V_1 , in V_2 or $B\subseteq V_1$ and $h\in V_2$
 - $\,\,\vartriangleright\,$ partitions ${\mathfrak H}$ into ${\mathfrak H}[V_1],\,{\mathfrak H}[V_2]$ and a bipartite dihypergraph ${\mathfrak H}[V_1,V_2]$
- ► Application :
 - ▷ characterization of M
 - ightharpoonup recursive application to obtain hierarchical decomposition of ${\mathcal H}$

Acyclic split

Closure system construction

- ▶ First case: $\mathcal{H}[V_1, V_2]$ has *no* arcsSecond case: $\mathcal{H}[V_1, V_2]$ has arcs
- ▶ $F_2 \in \mathcal{F}_2$ combined with any $F_1 \in \mathcal{F}_1$ copies of \mathcal{F}_1 on each $F_2 \in \mathcal{F}_2\mathcal{F}$ direct product of $\mathcal{F}_1, \mathcal{F}_2$ Extensions of F_2 are controlled by $\mathcal{H}[V_1, V_2]$ Increasing copies of *ideals* of \mathcal{F}_1 on \mathcal{F}_2

Formal sum-up

- $ightharpoonup (V_1, V_2)$ is an acyclic split of $\mathcal H$
- ▶ trace (projection) \mathcal{F} : $V_1 = \{F \cap V_1 \mid F \in \mathcal{F}\}$
- ▶ \mathcal{F} is built by adding parts of \mathcal{F}_1 to each $F_2 \in \mathcal{F}_2$:
 - ho Ext $(F_2) = \{ F \in \mathcal{F} \mid F \cap V_2 = F_2 \}$, extensions of $F_2 \in \mathcal{F}_2$
 - $\,\,\vartriangleright\,\, \mathsf{Ext}(\textit{F}_2)$ corresponds to an ideal of \mathfrak{F}_1 controlled by $\mathfrak{H}[\mathsf{V}_1,\mathsf{V}_2]$
 - $ightharpoonup F_2 \subseteq F_2'$ implies $\operatorname{Ext}(F_2) \colon \operatorname{V}_1 \subseteq \operatorname{Ext}(F_2') \colon \operatorname{V}_1$
 - ho $F_2' \succ F_2$ implies that extensions of F_2' cover extensions of F_2
- ▶ Note: $Ext(V_2)$: V_1 is \mathcal{F}_1

Meet-irreducible identification

Meet-irreducible characterization

Theorem (Nourine, V., 2020+)

Let $\mathcal{H}=(V,\mathcal{E})$ be a dihypergraph and (V_1,V_2) an acyclic split of \mathcal{H} . Meet-irreducible elements of \mathcal{M} of \mathcal{F} are given by the following equality:

$$\mathfrak{M} = \{ \mathit{M}_1 \cup \mathsf{V}_2 \mid \mathit{M}_1 \in \mathfrak{M}_1 \} \cup \{ \mathit{F} \in \mathsf{max}_{\subseteq}(\mathsf{Ext}(\mathit{M}_2)) \mid \mathit{M}_2 \in \mathfrak{M}_2 \}$$

where $\mathcal{M}_1, \mathcal{M}_2$ are meet-irreducible elements of $\mathcal{H}[V_1], \mathcal{H}[V_2]$ respectively.

Finding maximal extensions

▶ $\mathcal{H}[V_1, V_2]$ defines the antichain of minimum forbidden extensions Pick an hypergraph $\mathcal{H} = (V, \mathcal{E})$, turn each arc B into (B, z) Acyclic split (V, z) Extensions of \emptyset are determined by $MIS(\mathcal{H})$

Finding maximal extensions

Problem - Finding Maximal Extensions (FME)

- ▶ Input: a dihypergraph $\mathcal{H} = (V, \mathcal{E})$ with acyclic split (V_1, V_2) , $\mathcal{H}[V_1]$, $\mathcal{H}[V_2]$, $\mathcal{H}[V_1, V_2]$, $\mathcal{M}_1, \mathcal{M}_2$ and $F_2 \in \mathcal{F}_2$.
- ▶ Output: $\max_{\subseteq} (Ext(F_2))$.
- ▶ Open in general
- ▶ if $\mathcal{H}[V_1]$ has no arcs, FME \equiv hypergraph dualization!
- ⇒ output quasi-polynomial time algorithm [Fredman, Khachiyan, 1996]

New tractable cases

Main idea: connecting blocks in an acyclic way

Ranked convex geometries

▶ ranked convex geometry

Theorem [Defrain et. al., 2019]

Enumerating meet-irreducible elements ${\mathfrak M}$ from ${\mathfrak H}$ in ranked convex geometries can be done in output quasi-polynomial time.

Conclusion

- ▶ Problem:
 - ▶ enumeration of meet-irreducible elements of a dihypergraph (implications)
 - ▶ harder than hypergraph dualization in general
- ▶ Our contribution (Nourine, V., 2020+):
 - ▶ use of a decomposition operation, acyclic split
 - \triangleright recursive characterization of ${\mathfrak M}$
 - □ polication to new tractable classes of closure systems, generalizing
 □ polication et. al., 2019
 □
- ▶ Future works:
 - ▷ characterize/improve tractable cases

Thank you for your attention!

References

R. Khardon.

Translating between Horn Representations and their Characteristic Models. *Journal of Artificial Intelligence Research*, 3:349-372, 1995.

▶ O. Defrain, L. Nourine, S. Vilmin.

Translating between the representations of a ranked convex geometry. arXiv:1907.09433, 2019.

M. Babin, S. Kuznetsov.

Computing premises of a minimal cover of functional dependencies is intractable. *Discrete Applied Mathematics*. 161:742-749, 2013.

L. Beaudou, A. Marv, and L. Nourine.

Algorithms for *k*-meet-semidistributive lattices. *Theoretical Computer Science*, 658:391-398, 2017.

► H. Mannila, K.-J. Räihä.

The design of relational databases.

Addison-Wesley Longman Publishing Co., Inc., 1992.

M. Fredman, L. Khachiyan.

On the complexity of dualization of monotone disjunctive normal forms. *Journal of Algorithms*, 21:618-628, 1996.

► K. Bertet, C. Demko, J.-F. Viaud, and C. Guérin.

Lattices, closures systems and implication bases: A survey of structural aspects and algorithms. *Theoretical Computer Science* 743:93-109, 2018.