

زبان های توصیف سخت افزار و مدارها

دانشگاه صنعتی اصفهان

دانشکده مهندسی برق و کامپیوتر

امير خورسندي

زمستان ۱۴۰۱

زبان توصیف سخت افزار Verilog

تاریخچه

- زبان توصیف سخت افزار
- ارائه شده در سال ۱۹۸۳
 - استاندارد 1364 IEEE
- قواعد دستوری مشابه زبان ۲
- اجرای موازی و همروند دستورات

مقایسه HDL با Programming Language

- خروجی PL یک برنامه کامپیوتری است.
- برنامه کامپیوتری مجموعه ای از دستورات متوالی است که برای پردازنده مشخص می کند به ترتیب و در طول زمان چه کارهایی را انجام دهد.
 - خروجی HDL یک مدل برای مدار سخت افزاری دیجیتال است.
- این مدار شامل بلوک های مختلفی است که به طور همزمان کارهای متفاوتی را انجام می دهند.

۴ امیر خورسندی

سطوح مختلف توصيف سخت افزار

- ترانزیستورها
- دروازه های منطقی
 - RTL •
- توصيف رفتاري (الگوريتمي)

امير خورسندى ا

روش های مختلف طراحی

- طراحی سلسله مراتبی
 - طراحی از بالا به پایین
 - طراحی از پایین به بالا
- در عمل طراحی با استفاده از روش ترکیبی و با شروع از هر دو جهت انجام می شود.

مثال

• شمارنده ۴ بیتی

مثال (ادامه)

• فلیپ فلاپ نوع T

مثال (ادامه)

• فليپ فلاپ نوع D

• نگه دار نوع D

مثال (ادامه)

• نگه دار نوع SR

توصیف در سطح ترانزیستور برای طراحی با FPGA کاربردی ندارد.

۱۰ امیر خورسندی

روندنمای طراحی سخت افزار با FPGA

مقادير سيگنال

توضيحات	مقدار
صفر منطقى	0
یک منطقی	1
شناور	Z
نامشخص	X

سطوح توان سیگنال

توضيحات	سطح
تغذیه کننده	Supply
تغذیه کننده	Strong
تغذیه کننده	Pull
ذخيره كننده	Large
ذخيره كننده	Weak
ذخيره كننده	Medium
ذخيره كننده	Small
مقاومت زياد	Highz

انواع متغير

• سیم: دقیقاً مانند یک سیم عمل می کند که همواره باید به آن یک مقدار تغذیه شود. در غیر این صورت مقدار آن z خواهد بود.

wire a;

• متغیر حافظه دار: مقدار آن همواره برابر مقداری است که در آخرین انتساب به آن داده شده است. مقدار پیش فرض آن ها x است.

reg b;

• متغیر reg لزوماً معادل سخت افزار یک ثبات نیست.

انواع متغير (ادامه)

• بردار:

wire [7:0] c; reg [0:31] d;

c[7] d[5:8] • امكان دسترسى انتخابي وجود دارد:

انواع متغير (ادامه)

integer cnt;

real pi;

integer x [0:7]; reg [0:3] port_id [9:0]; • اعداد صحیح

• اعداد حقیقی

• آرایه

انواع متغير (ادامه)

time sim_time;

• زمان

روش های مقداردهی

• اعداد:

<size>`<base><num>

4`b11?0 12`haxc -16`d2_439

- علامت سوال معادل Z است.
- ۰ در مبنای ۱۶ هر رقم X و یا Z معادل ۴ بیت هستند.
- در مقداردهی اگر بیت پرارزش 0، x و یا z باشد به تمام بیت های بالا دست سرایت می کند اما اگر یک باشد مابقی بیت ها صفر خواهند شد.

امیر خورسندی

قواعد نامگذاری

- ترکیب حروف، اعداد، _ و \$
- حساس به حروف کوچک و بزرگ
- حرف اول نمی تواند عدد و یا \$ باشد.
- استفاده از کلمات کلیدی مجاز نیست.
 - شناسه مرکب:
 - معنادار بودن نامگذاری

New-Name

امير خورسندي امير خورسندي

كلمات كليدي

always and assign attribute begin buf bufif0 bufif1 case casex casez cmos deassign default defparam disable edge else end endattribute		large macromodule nand negedge nmos nor notif0 notif1 or output parameter pmos posedge primitive pull0 pull1 pulldown pullup rcmos	reg release repeat rnmos rpmos rtran rtranif0 rtranif1 scalared signed small specify specparam strength strong0 strong1 supply0 supply1 table task	tranif0 tranif1 tri tri0 tri1 triand trior trireg unsigned vectored wait wand weak0 weak1 while wire wor xnor xor
	_			YOT
endcase	medium	real	time	
endfunction	module	realtime	tran	

عناصر پایه

Primitive	Description	Outputs	Inputs
and	and	output	in1,, inN
nand	nand	output	in1,, inN
or	or	output	in1,, inN
nor	nor	output	in1,, inN
xor	xor	output	in1,, inN
xnor	xnor	output	in1,, inN
buf	buffer input	output	input
bufif0	buffer input if 0, otherwise hi-z	output	input, control
bufif1	buffer input if 1, otherwise hi-z	output	input, control
not	not input	output	input
notif0	not input if 0, otherwise hi-z	output	input, control
notif1	not input if 1, otherwise hi-z	output	input, control
pulldown	Pulldown to supply 0	output	none
pullup	Pullup to supply 1	output	none
nmos	Unidirectional NMOS transistor	output	input, gate
pmos	Unidirectional PMOS transistor	output	input, gate
amos	Unidirectional CMOS transistor	output	input, ngate, pgate
mmos	Unidirectional NMOS transistor (resistive)	output	input, gate
rpmos	Unidirectional PMOS transistor (resistive)	output	input, gate
remos	Unidirectional CMOS transistor (resistive)	output	input, ngate, pgate
tran	Bi-directional pass gate	inout, inout	none
tranif0	Bi-directional pass (if 0) gate	inout, inout	control
tranif1	Bi-directional pass (if 1) gate	inout, inout	control
rtran	Bi-directional pass gate (resistive)	inout, inout	none
rtranif0	Bi-directional pass (if 0) gate (resistive)	inout, inout	control
rtranif1	Bi-directional pass (if 1) gate (resistive)	inout, inout	control

عملگرها

• تک عملوندی: !، ~، &، |، •

- سه عملوندی: x?y:z
 - الحاق: {x, y}
 - تكرار : {i{x}}}

ماژول

• هر ماژول توصیف کننده یک بلوک سخت افزاری با عملکرد و اتصالات مشخص است.

```
module <name> [(<port_list>)];
...
        [<ports and variables>]
...
        [< implementation>]
...
endmodule
```



```
module SR_Latch(Q, Qbar, Sbar, Rbar);
output Q, Qbar;
input Sbar, Rbar;
nand n1(Q, Sbar, Qbar);
nand n2(Qbar, Rbar, Q);
endmodule
```

فراخواني ماژول

• پس از تعریف یک ماژول باید متناسب با بلوک های سخت افزاری موجود در طرح، این ماژول فراخوانی گردد.

<module_name> <instance_name>[(port_mapping)];

- به این کار Instantiation گویند.
- به ازای هر فراخوانی یک Instance مستقل ایجاد می گردد.
- ماژول ها در سلسله مراتب طراحی می توانند به صورت تو در تو درون ماژول های دیگر فراخوانی شوند.
 - تعریف ماژول نمی تواند درون یک ماژول دیگر قرار گیرد.

پورت

• برای ارتباط دادن ماژول با ماژول های سطح بالاتر در سلسله مراتب طرح به کار می رود.

- انواع:
- input •
- output
 - inout •

• وجود پورت در ماژول اختیاری است به گونه ای که مثلاً ماژول سطح بالا در شبیه سازی پورت ندارد.

قواعد اتصال پورت ها

نحوه اتصال پورت ها

• بر اساس ترتیب

SR_Latch L1(L1_Q, L1_Qbar, L1_Sbar, L1_Rbar)

• بر اساس نام

```
SR_Latch L2(.Sbar(L2_Sbar),
.Rbar(L2_Rbar),
.Q(L2_Q),
.Qbar(L2_Qbar));
```

- نمی توان به صورت ترکیبی از هر دو روش پورت ها را متصل نمود.
 - در روش دوم ممکن است تعدادی از پورت ها متصل نشوند.