Вероятности

Дефиниция: (вероятност): Нека Ω е множество от елементарни събития и \mathcal{A} е σ -алгебра над Ω .

Тогава изображението $\mathbb{P}:\mathcal{A} o [0,1]$ се нарича вероятност, ако е изпълнено:

- $\mathbb{P}(\Omega) = 1$
- ullet Ако $A\in \mathcal{A}$, то $\mathbb{P}(A^C)=1-\mathbb{P}(A)$
- ullet Ако $orall i\geq 1$ $A_i\in \mathcal{A}$ и $A_i\cap A_j=\emptyset$ за i
 eq j, то $\mathbb{P}(igcup_{i=1}^\infty A_i)=\sum\limits_{i=1}^\infty \mathbb{P}(A_i)$

Твърдение: Нека $\mathbb{P}:\mathcal{A} o [0,1]$ е вероятност. Тогава за $A,B\in\mathcal{A}$ е изпълнено:

- $\mathbb{P}(\emptyset) = 0$
- $\mathbb{P}(B) = \mathbb{P}(B \cap A) + \mathbb{P}(B \cap A^C)$
- ullet Ако $A\subseteq B$, то $\mathbb{P}(A)\leq \mathbb{P}(B)$
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

$$ullet$$
 Ако $A_1\supseteq A_2\supseteq\cdots\supseteq A_n\supseteq\cdots$, то $\mathbb{P}(igcap_{i=1}^\infty A_i)=\lim_{n o\infty}\mathbb{P}(A_n)$

$$ullet$$
 Ако $A_i \in \mathcal{A}$, то $\mathbb{P}(igcup_{i=1}^\infty A_i) \leq \sum\limits_{i=1}^\infty \mathbb{P}(A_i)$

• Доказателство:

$$\circ \ \mathbb{P}(\Omega)=1$$
 и $\emptyset=\Omega^C$, то $\mathbb{P}(\emptyset)=\mathbb{P}(\Omega^C)=1-\mathbb{P}(\Omega)=0$

$$\circ\;B=(A\cap B)\cup (A^C\cap B)$$
 - непресичащи се

$$\circ \ A\subseteq B\Rightarrow B=A\cup (A^C\cap B)$$
 - непресичащи се, тогава $\mathbb{P}(B)=\mathbb{P}(A)+\mathbb{P}(B\cap A^C)\geq \mathbb{P}(A)$

$$\circ \ A\cup B=A\cup (A^C\cap B)$$
 и $A^C\cap B=B\setminus (A\cap B)$, тогава $\mathbb{P}(A\cup B)=\mathbb{P}(A)+\mathbb{P}(B\cap A^C)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A\cap B)$

$$\circ$$
 Нека $A = igcap_{i=1}^{\infty} A_i$

Конструираме множествата $B_j = A_j \setminus A_{j+1}$

$$A_1=(igcup_{j=1}^\infty A_j\setminus A_{j+1})\cup A$$
 и $1\geq \mathbb{P}(A_1)=\sum\limits_{i=1}^\infty B_i+\mathbb{P}(A)$, което означава, че редът

$$\sum\limits_{i=1}^{\infty}B_{i}$$
 е сходящ, откъдето $\lim\limits_{n
ightarrow\infty}\sum\limits_{i=n}^{\infty}B_{i}=0$

Също
$$A_n=(igcup_{j=n}^\infty B_j)\cup A$$
 и $\mathbb{P}(A_n)=\sum\limits_{i=n}^\infty B_i+\mathbb{P}(A)$ и след граничен преход $n o\infty$

получаваме
$$\lim_{n o\infty}\mathbb{P}(A_n)=\mathbb{P}(A)$$

$$\circ$$
 Нека $B_k = A_k \setminus (igcup_{j=1}^{k-1} A_j) \subseteq A_k$ откъдето $\mathbb{P}(B_k) \leq \mathbb{P}(A_k)$

Сега трябва да проверим, дали
$$A = igcup_{j=1}^\infty A_j = igcup_{j=1}^\infty B_j = B$$

Понеже $B_k \subseteq A_k$, то $B \subseteq A$

Сега да проверим обратното. Нека $w \in A$ и нека k е най-малкото такова, че $w \in A_k$.

Тогава
$$w
otin igcup_{j=1}^{k-1} A_j$$
 откъдето $w\in (A_k\setminus igcup_{j=1}^{k-1} A_j)=B_k$ и $B\subseteq A$

Понеже
$$A=B$$
, то $\mathbb{P}(A)=\mathbb{P}(B)$, $\mathbb{P}(A)=\sum\limits_{i=1}^{\infty}\mathbb{P}(A_i)$ и $\mathbb{P}(B)=\sum\limits_{i=1}^{\infty}\mathbb{P}(B_i)$

Но от по-горно свойство, имаме, че $\sum\limits_{i=1}^\infty \mathbb{P}(A_i) \leq \sum\limits_{i=1}^\infty \mathbb{P}(B_i)$ и получихме търсеното

$$\mathbb{P}(igcup_{i=1}^{\infty} A_i) \leq \sum\limits_{i=1}^{\infty} \mathbb{P}(A_i).$$

■ Или алтернативно: От по-горното свойство имаме, че $\mathbb{P}(A_1\cup A_2)=\mathbb{P}(A_1)+\mathbb{P}(A_2)-\mathbb{P}(A_1\cap A_2)$ Откъдето $\mathbb{P}(A_1\cup A_2)\leq \mathbb{P}(A_1)+\mathbb{P}(A_2)$.

От тук по индукция следва, че $\mathbb{P}(igcup_{i=1}^{\infty}A_i)\leq \sum\limits_{i=1}^{\infty}\mathbb{P}(A_i)$

Дефиниция: (вероятностно пространство): Наредената тройка $(\Omega, \mathcal{A}, \mathbb{P})$, където Ω е пространство от елементарни събития, $\mathcal{A} \subseteq 2^{\Omega}$ е σ -алгебра и $\mathbb{P}: \mathcal{A} \to [0,1]$, се нарича вероятностно пространство

! ЗАБЕЛЕЖКА: От тук нататък във всички дефиниции формално трябва да присъства опоменаването на вероятностно простраство $V=(\Omega,\mathcal{A},\mathbb{P})$

Дефиниция: (дискретна вероятност): Ако имаме краен брой елементарни изходи $\Omega=\{\omega_1,\ldots,\omega_n\}\simeq\{1,\ldots,n\}$. Стандартно избираме $\mathcal{A}=2^\Omega$ и избираме числата p_1,\ldots,p_n , такива, че $\sum\limits_{i=1}^np_i=1$. Така дефинираме $orall A\in\mathcal{A}$ $\mathbb{P}(A)=\sum\limits_{i\in A}p_i$

• Проверка за коректност: $\mathbb{P}(\Omega)=\sum_{i=1}^n p_i=1$ и ако $A_1,\dots A_k$ са непресичащи се събития, то $\mathbb{P}(\bigcup_{j=1}^k A_j)=\sum_{i\in\bigcup_{j=1}^k A_j} p_i=\sum_{j=1}^k \sum_{i\in A_j} p_i=\sum_{j=1}^k \mathbb{P}(A_j)$

Дефиниция: (равномерна вероятност): Ако имаме краен брой елементарни изходи $\Omega=\{\omega_1,\ldots,\omega_n\}\simeq\{1,\ldots,n\}$ и стандартно избираме $\mathcal{A}=2^\Omega$, вероятността $\forall A\in\mathcal{A}\ \ \mathbb{P}(A)=\sum\limits_{i\in A}\frac{1}{n}=\frac{|A|}{n}$ наричаме равномерна и $\mathbb{P}(\{i\})=\frac{1}{n}$

• Ако имаме безкрайно $\Omega=\{1,2,\dots\}$, понеже $\sum\limits_{n=1}^{\infty} \frac{1}{n^2}=\frac{\pi}{6}$, то може да дефинираме вероятността, като $\mathbb{P}(\{k\})=p_k=(\frac{6}{\pi^2}\cdot\frac{1}{k^2})$

Дефиниция: (геометрична вероятност): Геометричната вероятност е пример за вероятностно разпределение върху неизброимо множество. Най-простият вариант разпределя равномерно вероятностите. Ако $\Omega \subseteq \mathbb{R}^2$, избираме $\mathcal{A} = \mathcal{B}(\Omega)$ и имаме, че $|\Omega| = \iint\limits_{\Omega} dx < \infty$. Тогава $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$ за всяко $A \in \mathcal{A}$ - отворено. Вероятността зависи само от площта на A, а не от формата и разположението. $\mathbb{P}(\{x\}) = 0$ за всяко $x \in \Omega$, понеже лицето на точка е 0.