Algorithm Frid LCS (String SI, Strigging S2)
11 Computer the longest common subsequence electiveen 2 stongs 11 Input: Two strings SI & SZ 11 output: LCS of the strings

Jet m = 51. length & ## n = \$2 - length

Declare a table of m+1 rows & n+1

columns of entry strings Jon i= I tom: Jon j = 1 to n: if si Ci-17 == S2Cj-17: talele (i](i] = talele (i-1)[j-1]+1 else: table (i-1)[j] and table (i][j-1],
bused on their length return table [no][n] line complexity: i) Let 'c' lette constant time taken for the invertion in the loops.

ii) The first loops was found I to m & saw 2nd loop suns from I to n

loop suns from I to n

iii) The T = 5 : T = (n=1)(n=1)(c) (m)(n)(c) : Ty amin Hence time complexity is O(mn) where men are the lengths of the istring. Sundaram

Algorithm Find LCS Multiple (Strings S) 11 Confutes the LCS among n strings 11 Input: Array of n strings 11 Output: 2CS of n strings you i= 0 ton-1: LCS: SCI] for j = 0 to n-1: if i + j: LCS = Find LCS(LCS, SC;]) il LCS >= "11: LCS-May-Seg = Man (maa-seg, LCS, key = length) return man- seg. Tone Conflexity: to get the constant time taken for the invovat arrection (i) There are two outer looks, cere from To the uncorrect operation, consuling
the US is O(b2) in the worst case [Current LCs & cether storng house scare length] (Assume an average stong length of 2) T- 5 2 CL2 = O(N2 L2) (Sundaram)

7 -1	10 44
Test cases.	Perult
1)['cosc,	CCBBCC
11	
2) ["BCHA "]	BBBBB
3)[((0)	BBBBBC
(000)	
A) L DD BB,	BBBBCBB
A) [DDBB - , BBAN] 5) [ABBC - , BBAN]	BCBBBBB.
BBBC	
6)[DBCA,_	All sequences reed Scare length All sequences reed Scare length
, BISCC	Same length
7) [((185)	All sequences read
, ABRC]	scorre length
8) [Ancc]	Number of sequences less than 20.
	less than 20.
9) [ABOB.	Mundon of sequences
	less Hand 20
10) [AX]	Number of sequences
	Munder of sequences Verstrain 20 Number of sequences less than 20

Algorithm Matrin Chain Multiplication (N. 900) 112 mput: An avoray containing the material dimensions 1
10 multiple : Smallest number of multiple cations of optimal order. Define of [1. N] [1. N] as a 2D array to Store minimum multiplication pasts Define of [1. N@][1. N] as the split Jan L=2 to N-1: // Length of chain segment

Jan i=1 to N-L: // Start molen of chain

j=i+L-1 // End molen of chain

ap Edp [:][j]=00 Jon k= i to j-1: 11 Possible split paints

q: dp[i][k] + dp[x+i][j]

+ avr(i-1] * avr(k] * avr(j] if q < dp(i)(j): dp(i)Cj)=qK. optimal order: Cet aptimal Order (1, N-1)
return dp (1] (N-1], optimal order Cotaptional Order (i, j): wi = j return "M"+i

k = split(i](j)

left = Ceet Optimal Order(i, k)

return (sept 3 x Eright 3)

FOR EDUCATIONAL USE Jundarmel

Time Complexity i) There are 3 rested loops in the algorithms

· Outer loop: L= 2 to N-1

· Middle loop: i=1 to N-L

· Irver loop: K-i to i+L-2

ii) Survey up the loop operations T= N-1 N-Lø i+L-2

T= Z Z Z O(1)

L=2 i=1 K=1 Nasie operation = 5 5 O(L) -02 (N-L)(L) $= 0 \left(N. \sum_{i=2}^{N-1} 1^{-2} \right)$ 30 (N. W2 - N3) 2 0(N3)

Test cases.		
Each testage represents -	the dirensions of	
neterological data	U	
Eg. [7,3,7,4,7,5,7,6]		
Mr: 7×3		
M2: 3x7		
Wz : 7x4		
M4: 4×7		
Mg: 7x5	•	
m6:5+7		
M- : 7×6		
714	8 h + 1 0 - 11 +	
Input	Enfected Outfut	
1) (7,3,7,4,7,5,7,6)	0 20	
2) [7,5,7,6,7,7,7,8]	1470	
-> C . Maria (18)		
3) [7,4,7,8,7,3,7,9]	882	
4) [7,2,7,10,7,4,7,5]	532	
S) [7,6,7,3,7,6,7,2]	476	
6) [7,9,7,5,-7,10,-7,3]	natrin diversions	
	must be positive	
7) [7,7]	Only I reating provided	
8) [7,-10,7,3,-7,9,7,5]	Only I reating provided Mathin diversions must	
G) C. 2	le positive.	
9) (10]	No natrices provided	
10)	No matrices provided.	
FOR EDUCATIONAL USE		