

Omics Data Handling and Visualization in R

17.5.2023 Sci.PSU

Agricultural Biotech & Bioinformatics Lab, Division of Biological Science, Faculty of Sciences PSU

Agricultural Biotech & Bioinformatics Lab, PSU

Speakers and teaching assistants

Asst. Prof. Ponsit Sathapondecha, PhD

Jiratchaya Nuanpirom, MSc

Prasert Yodsawat, MSc

Khunanon Chanasongkhram, BSc

Online Handout & R installation

- https://jirathnuan.github.io/r-handviz-workshop/schedule.html
- https://jirathnuan.github.io/r-handviz-workshop/prerequisite.html

Data in excel

Presentation

Role of data visualization in research

Graphical representation of information and data.

- Reveals pattern/trend of the data
- Allowing discover new insights into the data
- Facilitating communication

Misconceptions about data visualization

"The goal of data visualization is to impress"

- Think of data visualization is about ART only.
- Adding an optional wow factors not present in the data itself.
- Using gaudy colors than necessary.

- Data visualization is about **ART** and **SCIENCE**, in order to make it glam and interpretable.
- The goal of data visualization is to reveal **patterns in data**.
- It would prefer to use thematic or minimal colors.

Misconceptions about data visualization

"Data visualization is easy"

Misconceptions about data visualization

"Studying data visualization is unnecessary"

Free online data viz courses:

COUISEIO 7-days free

- Data Visualization with R by IBM
- Data Visualization in R with ggplot2 by John Hopkins University

<u>Data Science: Visualization</u> (free for audit)

Free all time

"VISUALIZATION == IMAGING"

PMID: 25572103

PMID: 30464048

D

0464048 visualization

imaging

visualization

ACIII

https://github.com/kevinblighe/EnhancedVolcano

visualization

Data in excel

Visualization with excel

Choose a right chart

Note: figures for 1980 and 1990 shares are not shown for sake of clarity.

Misleading consideration

Same Data, Different Y-Axis

How to obtain omics data

NGS: RNAseq, AmpliconSeq, Metgenomic-Seq, GBS etc.

QC data (intermediate data)

Post analyzed Data Most common in <u>matrix</u>

	Cell1	Cell2	 CellN
Gene1	3	2	13
Gene2	2	3	1
Gene3	1	14	18
GeneM	25	0	0

?

Omics studies deals with big data!

Too big files for excel

More Complicated
Some manipulations such as transpose are impossible

To manipulate To analyze To visualize

Heatmap

Multilayer-Circular segmented plot

Vasaikar, S.V., Savage, A.K., Gong, Q. *et al.* A comprehensive platform for analyzing longitudinal multi-omics data. *Nat Commun* **14**, 1684 (2023).

Volcano

PCA/tSNE plot

Scatter plot

Bar chart

Bolis, M., Bossi, D., Vallerga, A. *et al.* Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression. *Nat Commun* **12**, 7033 (2021). **16** https://doi.org/10.1038/s41467-021-26840-5

What we will learn

- Analyzing omics data quantification
 ..we already taught it in our previous session..
- Advance analytics and graphic visualizations
 ..it's up on the character of your data, instead, after this course, you will know
 tutorials and how to deal with the data by yourself..

- Basic programming in R
- Some basic operations to look through your data before intensive analysis and visualization
- Some publication-quality plots (originated from omics data, in particular transcriptomics, metagenomics, other omics are applicable)

Today

- Basic visualization
- Data manipulation
- Omics data visualization (generals; transcriptomics)
- Omics data visualization (metagenomics)

Omics data visualization (1)

Hierarchical Clustering; Heatmap

PCA or **PCoA plot**

Omics data visualization (1)

Functional annotation visualization

KEGG, COG, and GO Bar chart

Stacked bar chart; Abundance of Features

Diversity indices

Alpha diver; boxplot, dotplot

Beta diver; PCA

	Publisher						
	PLOS	MDPI	ВМС	Cell Press	Frontiers		
File format	TIFF or EPS	TIFF, JPEG, EPS and PDF	TIFF, JPEG, EPS, PDF, PNG,BMP, PowerPoint	TIFF, JPEG, EPS, and PDF	TIFF, JPEG, EPS		
Resolution (dpi)	300 - 600	at least 600	at least 300	300 - 1000	300		
Dimensions maximum (W*H)	2250*2625	-	1200px (W)	-	-		
Dimensions minimum (W*H)	789 (W)	1000*1000	600px (W)	-	-		
File size	<10 MB	120 MB (in total)	10 MB	20 MB, 3 MB (PDF)	-		
link	Publisher's site	Publisher's site	Publisher's site	Publisher's site	Publisher's site		

Remarks: Depending on the journal of choice, graphic requirements may vary. It may be necessary for authors to check the journal's website before preparing graphics.

Thank You

shutterstock.com · 1263463690

FEEDBACK

https://certificate.sci.ps u.ac.th/site/a#/publish/ course/41/question

Bioinformatics Workshop EP3.

GWAS and marker selection in agriculture 3-5 July 2023 PSU

ABBLab Sequencing Platform

Metagenomic/Amplicon sequencing Microorganism genome sequencing Genotyping by sequencing

Ponsit.sat@gmail.com, ponsit.s@psu.ac.th

