Lineer Algebra f(x) X, X2 R-1 sets of real number $x \in \mathcal{E}$ f (a, x, +a2x2) = a,f(x,) + a2 f(x2) on ER X1=1 d2:1 az ER f(x1+x2) = f(x1)+f(x2) $X_1 + X_2 - 1 = X_1 - 1 + X_1 - 1$ $x_1 + x_2 - 1 \neq y_1 + x_2 - 2$ f(x)=x 1(x,+x2) = f(x,) + f(x2) $x_1 + X_2 = X_1 + X_2$ f(x) = x-1 f(x,+x2) = x,+x2. f(x1) = x1-1 1. Addition f(x2)= X2-1 2. Multiplication 3 Division : 4. Substraction -

GIPTA

1 = Q11 Q1	= a]	a _m :	Om)	x - \(\begin{align*}	2
$a_1 = \begin{bmatrix} a_{11} \\ a_{12} \\ \vdots \\ a_{1n} \end{bmatrix} \qquad a_2 = \begin{bmatrix} a_{11} \\ a_{12} \\ \vdots \\ a_{1n} \end{bmatrix}$	lan J		am	[xn]	6
$X = \begin{bmatrix} \alpha_n & \alpha_n \end{bmatrix}$					
0, T Y = b					6
a2 1 = b1					6
$a_1 \times b_1$ $a_m \times b_m$,				9
	7				
0, X ₁					
[ant] [xn]	l bm				
(au au	a _{in}) [x, 7	[b1]		- 4
021 012		×2 =	ba		
Omi Omi	o _{ma}	h]	l bm		
aroan lact Pau O	perations				
ementary 8aw 0					
$(a_1, x_1 + a_2, x_3)$					
021 X1 + 022 X	1 N	ın Xn	ba		GIPTA
	1	0 ×0 =	pw ;		
Qm, X, 4 Om; X1	, , , on		-103		
					GIPTA

(a) (x,) + a, f	+ + +				4	(41	K1 4 d2	X-
~1 \ t(x,)9x+	χı ∫ f	(x1)4	x					
					9x		dx dx	
Q11 X1 + Q12 X2 +	01	m.Xo.	- ku					
a,, X, +0,, X, 1.								
1								ŀ
0, X, +0, /2 +	O/							İ
Ax = .b		A	-) Aug	greente	d Mat	riX		+
A = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		an	Χz	[xi]	ь	=	0)	
021 011 023		ain		Xz			bi	
Om Om Day		2ma		[x^]		-	om]	
		. 1				_		
$\hat{A} = [A_1 b]$	Â=	011	Q12 .	0.0	1 8	01		
			- 0112		1			
		00,-	am.	Oma	1 6	,]		
1. Unique solution								
2 mukpy sound								
3. No solution						1	-	+

X : X + X + X - X - X - X		HIII	İTTI	T
2 X1 - 2 X2 + 2 X3 - 2 X4	_ 2			
2 x 1 + 2 x 2 + 2 x 3 - 2 x				
-x1 + x2 - x3 + x6 =				
701182-021-04-2				Ì
1 4 1 -1 17		-2 (le corp		kı
	(3) 1. satir	-2 fle carp 3	erre	
-1 1 -1 1 1	(4) 2 satis	1/2 the cors	o lie exte	
[1 1 - 1 1]	x, 7 [1			
7 0-4 0 0 -4 0 0 0 0 0 0	$\begin{array}{c c} X_1 & & I \\ X_1 & = & -\frac{L_1}{4} \\ X_3 & & 0 \end{array}$			
[00000]	X4 \ 0			
X4-8 X3-X	X2 = [
$x_1 + 1 + x_2 - x_5 = 1$	>	X1 = -X3 + X4		
		x1. B-a		
M=n				-
Number of constar	t of values	is equal to	o the number	0
sknown parameters -				
				-
ero elements				

$X_1 + X_2 = 2$ $2X_1 + 2X_2 = 3$ $X_1 - Y_2 = 0$ $X_1 - Y_2 = 0$ $X_2 = 0$ $X_3 = 0$ $X_4 =$	Ex!	12-0 mr3 nr2
$A = \begin{cases} a_{13} \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_6 \\ x_6 \\ x_7 \\ x_8 \\ x_8 \\ x_8 \\ x_9 \\ x$		
Ax= b A= {ais mxn X: xi	2X1+2X	2 > 3 Consutent degil
Ax= b A= {ais mxn X: xi	x, - y.	1 - 0
W= \langle \text{ and }		
W= \langle \text{ and }		
W= \langle \text{ and }	Ax=b	
N=1 (xi) bi bi bi cm n=1 number of unknown variables m=2 number of equations There are no nonzero rows k		- 7
N=1 xill be be considered the constant of equations There are no conservations	A = { 9 };	2] W×U
N=1 xill be be considered the constant of equations There are no conservations		
n-invincer of unknown variables m-invincer of eguations There are no confer rows [[]] nonzero [[]]		
n-inumber of unknown variables m-inumber of equations There are no rangero rows k		
m-) number of equations There are no conservations $ \begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix} $ min $ x - y - y constant variables y - y - y constant variables $	(")	[km]
m-) number of equations There are no conservations $ \begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix} $ min $ x - y - y constant variables y - y - y constant variables $	0-10mber	at uni namo variables
1) m=n Tree one no conserto rows [] o o] m=n		
$ \begin{bmatrix} $	m- unwast	of equations
$ \begin{bmatrix} $		
$n-v \rightarrow constant variables$	1) m=n	Tree one no rangero rows
$n-v \rightarrow constant variables$	f -	77.
n-v -> onstant variables		
n-v -> constant variables		
n-v -> constant variables		1)
	n-k-) 00	nstant variables
k=n n-v=0		
	k=n	n-v=0

Vectors

$$X = \begin{bmatrix} x^{1} \\ \dot{x}^{2} \\ \dot{x}^{3} \end{bmatrix} \qquad A = \begin{bmatrix} a^{1} \\ \dot{a}^{2} \\ \dot{a}^{3} \end{bmatrix} \qquad \beta = \begin{bmatrix} 5^{1} \\ \dot{a}^{3} \\ \dot{a}^{3} \end{bmatrix}$$

Inner Product	
x.y x y = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	= X, y, + X2 y = Xn yn
;) f(x,y)=f(x,x)	
(i) f(x+y, 7) = f(x	(2) + f(y,3)
iii) + (ax,y) = x f(x	(9)
Dot product -> f	(x,y) = x[y
Makeres	
Matrices	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A = \{a_{ij}\}_{m \times n}$ $A \in \mathbb{R}^{m \times n}$
Square Matrix -	
Diagonal Elements aii	, 1 = 1,2 0
off-diagonal elements	
$A = \left\{ a(3) \right\} m \times n$	8={1013}mxn
C= A+B = (01)	1tbij}mxn
$C: \{C:J\}_{m\times n}$ $C: \{C:J\}_{m\times n}$	
Cn = on + on	1, 1 = 1.2

A- () X ()	6
[an one one by bp. bp.	2
C:A.6	
$C = \begin{bmatrix} C_0 & c_{11} & C_{10} \\ C_0 & C_{11} & C_{10} \end{bmatrix} \qquad C_{11} = \begin{bmatrix} C_{11} & C_{11} & C_{12} \\ C_{11} & C_{12} & C_{12} \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$	
$C = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{22} & C_{23} & C_{23} \end{bmatrix}$ $C_{11} = \begin{bmatrix} C_{11} & C_{12} \\ C_{13} & C_{23} \end{bmatrix}$ $C_{12} = \begin{bmatrix} C_{11} & C_{12} \\ C_{13} & C_{23} \end{bmatrix}$ $C_{13} = \begin{bmatrix} C_{13} & C_{13} \\ C_{23} & C_{23} \end{bmatrix}$ $C_{14} = \begin{bmatrix} C_{11} & C_{12} \\ C_{23} & C_{23} \end{bmatrix}$ $C_{15} = \begin{bmatrix} C_{11} & C_{12} \\ C_{23} & C_{23} \end{bmatrix}$	
$a_{j} = \begin{bmatrix} a_{11} \\ a_{22} \end{bmatrix} \qquad a_{1} T = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1p} \end{bmatrix}$ $\begin{bmatrix} a_{1p} \end{bmatrix}$	7 7 7
φ _g [b ₁₂] η _{f=1,2} η	
[
Cfj = 01 T.bg = Z ALbij	-10
C13 = 2 012.063 = 01. 612+012 613 + 012 633	
(3 3 9 9) Se (6) Se (7)	
51 0 x 22 br. burkey	
Car 2 an bu	-
	ATCHE

			111		
2 1 1 0		> 0	1 -1 -1 2		
	$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \times \begin{bmatrix} 2 \\ 1 \end{bmatrix}$		0] —	A-1, A=	7
→ A= [1]		1B +BA			
		1 1 1	o] Tersi	yok - No	inverse
→ AA = \ AG	an aon -	Kan Kan			
αοη	don.	dan			
) (AB) =	1 12 12 11 11				
(AB) ^T =					
	α-' A-'				
(A+B) T					
(dA) =	ν Α ⁻ ') ^Τ				

	nors (and	Cofactors	
A=	fais}	٥٨٥		
A =		on:	- an an an an an an an an an an an an an	minors \rightarrow mig cofac fors \rightarrow C is α_{ij} (n-1)x(n-1)
A = (0 a a a a a a a a a a a a a a a a a a	011 011 011 011 011 011	033	1.	$C_{ij} = (-1)^{i \cdot j}$ m_{ij} $i_{i,j} = l_{i,2}$ $n_{i,j} = l_{i,2}$ $n_{i,j} = l_{i,j}$ $m_{i,j} = l$
ng r	0, 0,	2		
n ₁₁ = 0	05, 02 112 02 131 03	3 =	On2 033 - (
$D_{II} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	05, 02 112 02 131 03	3 =	012 033 - 0	

Cij = (-1) 1+3 mij 1,3=1,2- - 7 or on con + our con tayou = au (on 033 - 032 023) + 012 (031 923 - 021 935) + 913 (021032 -031022) = 0,022 033 -0,0 032 + 0,2 0,0 033 - 0,202,033 + 0,302,03 -013031022 det (A) = anch + anguz + auscis = 021C21 +022C22 +023 C23 = anch + an Con + an Con J. column J=112... pajon de+(A)= Orgcis + Ozzczz + i. row de+(A)= a:1c: +ancn -1. Oin Cin orign + orner + orsers - angran an - an an an - on an ans + on an on + on an azz asi azz = 0

3)

ai -

A:

ACT =

Lowery principal miner

Lineer combinations

X; ER, YI $X_0, Y_1, Y_2, Y_3 = \dots, X_0$ $\kappa_i \in e_i \forall_i$ a, aL. Y= a x1 + x x x + ... + x x = Exxx S: } x. x1 - : Yo } - set of recors. (2) noge = Y span Linearly independent vector sets - Uneerbegins: XIXI + XIX X t 1 . . .

V spor (S)

$$V = \alpha_{11} \hat{V}_{1} + \alpha_{12} \hat{V}_{2} + \alpha_{13} \hat{V}_{2} + \alpha_{14} \hat{V}_{2}$$
 $V = \alpha_{11} \hat{V}_{1} + \alpha_{12} \hat{V}_{2} + \alpha_{13} \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_{2}$
 $V = A \hat{V}_$

	V {v, 0,	Un }				
	dim (U) =	n				
	S={0,0,			ا الله الله الله الله الله الله الله ال	V: [0]	
)	\$ = \(\hat{\partial}\), \(\hat{\partial}\),	,				
	1 = a. v.	40,02+.	Om		P. AU	
)	9n = 0m V, 1					
	m>∪-	n Depende	\+		B.T.Q.	BIA
	4 B2 V2 -1	1	Sm Om= 0			
	β= [β β- β- + β- β- +	:0 вт	ŷ.o			
	BTAU-	7 C	A 13 = 0	A ⁺ {	ς, ξ	

If the above conditions are sotisfied, then V defines a vector space over the field R V-I vector space 5 - { 0, 0:, 0. Basis 1. S is a linearly independent set 2. V= Spon (5) Up = x V, + 02 V2 + . . . tan Un 0=[v, v, vn]] * a is the representation of U. with respect to the bosis U 9. 01 dr ... dr 00 = a, 0, + a, 0, + ... a, 0, = \(\hat{\chi}_{\alpha} \alpha_{\beta} \beta_{\beta} \b U, 2, v, +2, v, + 2, 2, 2, v. Σαιο: ξα; O; ξ (α; -α)) Q; = 0 (dy-2) U, + (d2-2) U, + (dx-2) Vn =0 d1: 2, d2=22 x0:20