SWAT

Generated by Doxygen 1.8.16

2 Modules Index 7 2.1 Modules List 7 3 Data Type Index 9 3.1 Data Types List 9 4 File Index 11 4.1 File List 11 5 Module Documentation 13 5.1 parm Module Reference 13 5.1.2 Variable Documentation 68 5.1.2 Variable Documentation 68 6.1 parm:asscrv Interface Reference 69 6.2 parm:astr Interface Reference 69 6.3 parm:assrv Interface Reference 69 6.3 parm:astr Interface Reference 69 6.3 parm:astr Interface Reference 69 6.4 parm:distr Interface Reference 70 6.5 parm:de Interface Reference 70 6.5 parm:de Interface Reference 70 6.5 parm:de Interface Reference 71 6.7 parm:regol Interface Reference 71 6.8 parm:dQDAV Interface Reference 71 6.10 parm:apara Interface Reference 71 6.10 parm:apara Interface Reference 71 6.12 parm:regora Interface Reference 72 6.13 parm:reddaa Interface Reference 72	1 SWAT	1
3 Data Type Index 9 3.1 Data Types List 9 4 File Index 11 4.1 File List 11 5 Module Documentation 13 5.1 parm Module Reference 13 5.1.1 Detailed Description 68 5.1.2 Variable Documentation 68 5.1.2 Type Documentation 68 6.1 parm:ascriv Interface Reference 69 6.2 parm:ascri Interface Reference 69 6.3 parm:asunif Interface Reference 69 6.4 parm:dstn1 Interface Reference 70 6.5 parm:ese Interface Reference 70 6.5 parm:ese Interface Reference 70 6.7 parm:dgd Interface Reference 70 6.7 parm:dgd Interface Reference 71 6.10 parm:aperspiit Interface Reference 71 6.10 parm:aperspiit Interface Reference 71 6.12 parm:regers Interface Reference 72 6.13 parm:redaa Interface Reference 72 6.14 parm:regers Interface Reference 72 6.15 parm:that Interface Reference 72 6.16 parm:xbt Interface Reference 72 6.15 parm:that Interface Reference	2 Modules Index	7
3.1 Data Types List 9 4 File Index 11 4.1 File List 11 5 Module Documentation 13 5.1 parm Module Reference 13 5.1 parm Module Reference 13 5.1.1 Detailed Description 68 5.1.2 Variable Documentation 68 5.1.2.1 igropt 68 6 Data Type Documentation 69 6.1 parm:assrv Interface Reference 69 6.2 parm:astri Interface Reference 69 6.3 parm:aunif Interface Reference 69 6.4 parm:dstrl Interface Reference 70 6.5 parm:expo Interface Reference 70 6.6 parm:expo Interface Reference 70 6.7 parm:idqd Interface Reference 70 6.8 parm:tlqdq Interface Reference 70 6.9 parm:idqd Interface Reference 71 6.10 parm:indenit Interface Reference 71 6.11 parm:qman Interface Reference 71 6.12 parm:regres Interface Reference 72 6.13 parm:tlqderinterface Reference 72 6.14 parm:tlqdrain Interface Reference 72 6.15 parm:itedia Interface Reference 72 6.16 parm:theta Interface Reference 72 6.17 parm:tregres Interface Reference 72 6.18 parm:tlater Interface Reference 72 6.19 parm:tredea Interface Reference 72 6.19 parm:tredea Interface Reference 72 6.10 parm:theta Interface Reference 72 6.11 parm:tredea Interface Reference 72 6.12 parm:tredea Interface Reference 72 6.13 parm:theta Interface Reference 72 6.14 parm:theta Interface Reference 72 6.15 parm:theta Interface Reference 72 6.16 parm:vbl Interface Reference 72 7.1.1 Detailed Description 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunit.f90 File Reference 74	2.1 Modules List	7
4 File Index 11 4.1 File List 11 5 Module Documentation 13 5.1 parm Module Reference 13 5.1.1 Detailed Description 68 5.1.2 Variable Documentation 68 5.1.2.1 igropt 68 6 Data Type Documentation 69 6.1 parm::ascrv Interface Reference 69 6.2 parm::astr Interface Reference 69 6.3 parm::ascrv Interface Reference 69 6.4 parm::distr1 Interface Reference 70 6.5 parm::el Interface Reference 70 6.5 parm::dep Interface Reference 70 6.6 parm::dxpo Interface Reference 70 6.7 parm::dxpo Interface Reference 70 6.8 parm::HQDAV Interface Reference 71 6.10 parm::dxportil Interface Reference 71 6.10 parm::dxportil Interface Reference 71 6.11 parm::gxps Interface Reference 72 6.12 parm::regres Interface Reference 72 6.13 parm::reseda Interface Reference 72 6.14 parm::tair Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::v	3 Data Type Index	9
4.1 File List 11 5 Module Documentation 13 5.1 parm Module Reference 13 5.1.1 Detailed Description 68 5.1.2 Variable Documentation 68 5.1.2.1 igropt 68 6 Data Type Documentation 69 6.1 parm::ascrv Interface Reference 69 6.2 parm::atri Interface Reference 69 6.3 parm::aunif Interface Reference 69 6.4 parm::dstn1 Interface Reference 70 6.5 parm::el Interface Reference 70 6.5 parm::expc Interface Reference 70 6.7 parm::dcgd Interface Reference 70 6.8 parm::AUDAV Interface Reference 71 6.10 parm::dcpd Interface Reference 71 6.10 parm::dcpd Interface Reference 71 6.11 parm::regres Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::regres Interface Reference 72 6.14 parm::tair Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7.1 allocate parms::f90 File Reference 73	3.1 Data Types List	9
4.1 File List 11 5 Module Documentation 13 5.1 parm Module Reference 13 5.1.1 Detailed Description 68 5.1.2 Variable Documentation 68 5.1.2.1 igropt 68 6 Data Type Documentation 69 6.1 parm::ascrv Interface Reference 69 6.2 parm::atri Interface Reference 69 6.3 parm::aunif Interface Reference 69 6.4 parm::dstn1 Interface Reference 70 6.5 parm::el Interface Reference 70 6.5 parm::expc Interface Reference 70 6.7 parm::dcgd Interface Reference 70 6.8 parm::AUDAV Interface Reference 71 6.10 parm::dcpd Interface Reference 71 6.10 parm::dcpd Interface Reference 71 6.11 parm::regres Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::regres Interface Reference 72 6.14 parm::tair Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7.1 allocate parms::f90 File Reference 73	4 File Index	11
5.1 parm Module Reference 13 5.1.1 Detailed Description 68 5.1.2 Variable Documentation 68 5.1.2.1 igropt 68 6 Data Type Documentation 69 6.1 parm::ascrv Interface Reference 69 6.2 parm::atri Interface Reference 69 6.3 parm::aunif Interface Reference 69 6.4 parm::dstn1 Interface Reference 70 6.5 parm::e Interface Reference 70 6.6 parm::expo Interface Reference 70 6.7 parm::fcgd Interface Reference 70 6.8 parm::HQDAV Interface Reference 71 6.10 parm::denit Interface Reference 71 6.11 parm::regres Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::resedaa Interface Reference 72 6.14 parm::regres Interface Reference 72 6.15 parm::rheta Interface Reference 72 6.16 parm::rbeta Interface Reference 72 6.17 parm::rbeta Interface Reference 72 6.18 parm::rbeta Interface Reference 72 6.19 parm::rbeta Interface Reference 73 7.1 allocate_parms.f90 File Reference <td></td> <td>11</td>		11
5.1 parm Module Reference 13 5.1.1 Detailed Description 68 5.1.2 Variable Documentation 68 5.1.2.1 igropt 68 6 Data Type Documentation 69 6.1 parm::ascrv Interface Reference 69 6.2 parm::atri Interface Reference 69 6.3 parm::aunif Interface Reference 69 6.4 parm::dstn1 Interface Reference 70 6.5 parm::e Interface Reference 70 6.6 parm::expo Interface Reference 70 6.7 parm::fcgd Interface Reference 70 6.8 parm::HQDAV Interface Reference 71 6.10 parm::denit Interface Reference 71 6.11 parm::regres Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::resedaa Interface Reference 72 6.14 parm::regres Interface Reference 72 6.15 parm::rheta Interface Reference 72 6.16 parm::rbeta Interface Reference 72 6.17 parm::rbeta Interface Reference 72 6.18 parm::rbeta Interface Reference 72 6.19 parm::rbeta Interface Reference 73 7.1 allocate_parms.f90 File Reference <td>5 Module Documentation</td> <td>12</td>	5 Module Documentation	12
5.1.1 Detailed Description 68 5.1.2 Variable Documentation 68 5.1.2.1 igropt 68 6 Data Type Documentation 69 6.1 parm::ascrv Interface Reference 69 6.2 parm::atri Interface Reference 69 6.3 parm::aunif Interface Reference 69 6.4 parm::dstr1 Interface Reference 70 6.5 parm::en Interface Reference 70 6.6 parm::expo Interface Reference 70 6.7 parm::fogd Interface Reference 70 6.8 parm::hQDAV Interface Reference 71 6.10 parm::hqbox Interface Reference 71 6.11 parm::qman Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::rsedaa Interface Reference 72 6.14 parm::tair Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7.1 allocate_parms:f90 File Reference 73 7.2 ascrv:f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.3 aunif.f90 File Reference 74 <td></td> <td>_</td>		_
5.1.2 Variable Documentation 68 5.1.2.1 igropt 68 6 Data Type Documentation 69 6.1 parm::ascrv Interface Reference 69 6.2 parm::atri Interface Reference 69 6.3 parm::aunif Interface Reference 69 6.4 parm::dstn1 Interface Reference 70 6.5 parm::ee Interface Reference 70 6.6 parm::expo Interface Reference 70 6.7 parm::doll Interface Reference 70 6.9 parm::doll Interface Reference 71 6.10 parm::deprisit Interface Reference 71 6.10 parm::dayersplit Interface Reference 71 6.11 parm::qman Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::rsedaa Interface Reference 72 6.14 parm::talir Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7.1 allocate_parms.!90 File Reference 73 7.2 ascrv.!90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.3 aunif.!90 File Reference <td>•</td> <td></td>	•	
5.1.2.1 igropt 68 6 Data Type Documentation 69 6.1 parm::ascrv Interface Reference 69 6.2 parm::atri Interface Reference 69 6.3 parm::aunif Interface Reference 69 6.4 parm::distri Interface Reference 70 6.5 parm::expo Interface Reference 70 6.6 parm::expo Interface Reference 70 6.7 parm::fcgd Interface Reference 70 6.8 parm::HQDAV Interface Reference 71 6.9 parm::layersplit Interface Reference 71 6.10 parm::layersplit Interface Reference 71 6.11 parm::grapa Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::regres Interface Reference 72 6.14 parm::theta Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7 File Documentation 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.3.3 aunif.f90 File Reference 74 7.3.4 aunif.f90 File Reference	·	
6 Data Type Documentation 69 6.1 parm::ascrv Interface Reference 69 6.2 parm::atri Interface Reference 69 6.3 parm::aunif Interface Reference 69 6.4 parm::dstn1 Interface Reference 70 6.5 parm::ee Interface Reference 70 6.6 parm::expo Interface Reference 70 6.7 parm::fogd Interface Reference 70 6.8 parm::HQDAV Interface Reference 71 6.9 parm::layersplit Interface Reference 71 6.19 parm::layersplit Interface Reference 71 6.10 parm::layersplit Interface Reference 71 6.12 parm::regres Interface Reference 71 6.12 parm::regres Interface Reference 72 6.14 parm::tair Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7 File Documentation 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2 I ascrv() 74 7.3 aunif.f90 File Reference 74		
6.1 parm::ascrv Interface Reference 69 6.2 parm::atri Interface Reference 69 6.3 parm::aunif Interface Reference 69 6.4 parm::dstn1 Interface Reference 70 6.5 parm::el Interface Reference 70 6.6 parm::expo Interface Reference 70 6.7 parm::flogd Interface Reference 70 6.8 parm::HQDAV Interface Reference 71 6.9 parm::layersplit Interface Reference 71 6.10 parm::ndenit Interface Reference 71 6.11 parm::qman Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::rsedaa Interface Reference 72 6.14 parm::theta Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7.1.1 Detailed Description 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.3 aunif.f90 File Reference 74 7.3 aunif.f90 File Reference 74	5.1.2.1 igropt	00
6.2 parm::aunif Interface Reference 69 6.3 parm::aunif Interface Reference 69 6.4 parm::dstn1 Interface Reference 70 6.5 parm::ee Interface Reference 70 6.6 parm::expo Interface Reference 70 6.7 parm::fcgd Interface Reference 70 6.8 parm::HQDAV Interface Reference 71 6.9 parm::layersplit Interface Reference 71 6.10 parm::ndenit Interface Reference 71 6.11 parm::qman Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::rsedaa Interface Reference 72 6.14 parm::tair Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7 File Documentation 73 7.1 allocate_parms:f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 scrv/f90 File Reference 73 7.2.2 Function/Subroutine Documentation 74 7.3 aunif.f90 File Reference 74 7.3 aunif.f90 File Reference 74	6 Data Type Documentation	69
6.3 parm::aunif Interface Reference 69 6.4 parm::dstn1 Interface Reference 70 6.5 parm::ee Interface Reference 70 6.6 parm::expo Interface Reference 70 6.7 parm::fcgd Interface Reference 70 6.8 parm::HQDAV Interface Reference 71 6.9 parm::layersplit Interface Reference 71 6.10 parm::ndenit Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::regres Interface Reference 72 6.14 parm::tair Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7 File Documentation 73 7.1 allocate_parms.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74 7.3 aunif.f90 File Reference 74	6.1 parm::ascrv Interface Reference	69
6.4 parm::dstn1 Interface Reference 70 6.5 parm::ee Interface Reference 70 6.6 parm::expo Interface Reference 70 6.7 parm::fcgd Interface Reference 70 6.8 parm::HQDAV Interface Reference 71 6.9 parm::layersplit Interface Reference 71 6.10 parm::ndenit Interface Reference 71 6.11 parm::qman Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::rsedaa Interface Reference 72 6.15 parm::theta Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7 File Documentation 73 7.1 allocate_parms.f90 File Reference 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.3 aunif.f90 File Reference 74 7.3 aunif.f90 File Reference 74	6.2 parm::atri Interface Reference	69
6.5 parm::ee Interface Reference 70 6.6 parm::expo Interface Reference 70 6.7 parm::fcgd Interface Reference 70 6.8 parm::HQDAV Interface Reference 71 6.9 parm::layersplit Interface Reference 71 6.10 parm::ndenit Interface Reference 71 6.11 parm::qman Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::rsedaa Interface Reference 72 6.14 parm::tair Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7.1 allocate_parms.f90 File Reference 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74	6.3 parm::aunif Interface Reference	69
6.6 parm::expo Interface Reference 70 6.7 parm::fogd Interface Reference 70 6.8 parm::HQDAV Interface Reference 71 6.9 parm::layersplit Interface Reference 71 6.10 parm::ndenit Interface Reference 71 6.11 parm::qman Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::rsedaa Interface Reference 72 6.14 parm::tair Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7 File Documentation 73 7.1 allocate_parms.f90 File Reference 73 7.1.1 Detailed Description 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74	6.4 parm::dstn1 Interface Reference	70
6.7 parm::fcgd Interface Reference 70 6.8 parm::HQDAV Interface Reference 71 6.9 parm::layersplit Interface Reference 71 6.10 parm::ndenit Interface Reference 71 6.11 parm::qman Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::resedaa Interface Reference 72 6.14 parm::tair Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7 File Documentation 73 7.1 allocate_parms.f90 File Reference 73 7.1.1 Detailed Description 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74	6.5 parm::ee Interface Reference	70
6.8 parm::HQDAV Interface Reference 71 6.9 parm::layersplit Interface Reference 71 6.10 parm::ndenit Interface Reference 71 6.11 parm::qman Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::rsedaa Interface Reference 72 6.14 parm::tair Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7 File Documentation 73 7.1 allocate_parms.f90 File Reference 73 7.1.1 Detailed Description 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74	6.6 parm::expo Interface Reference	70
6.9 parm::layersplit Interface Reference 71 6.10 parm::ndenit Interface Reference 71 6.11 parm::qman Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::rsedaa Interface Reference 72 6.14 parm::tair Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7 File Documentation 73 7.1 allocate_parms.f90 File Reference 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74	6.7 parm::fcgd Interface Reference	70
6.10 parm::ndenit Interface Reference 71 6.11 parm::qman Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::rsedaa Interface Reference 72 6.14 parm::tair Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7 File Documentation 73 7.1 allocate_parms.f90 File Reference 73 7.1 Detailed Description 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74	6.8 parm::HQDAV Interface Reference	71
6.11 parm::qman Interface Reference 71 6.12 parm::regres Interface Reference 72 6.13 parm::rsedaa Interface Reference 72 6.14 parm::tair Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7 File Documentation 73 7.1 allocate_parms.f90 File Reference 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74	6.9 parm::layersplit Interface Reference	71
6.12 parm::regres Interface Reference 72 6.13 parm::rsedaa Interface Reference 72 6.14 parm::tair Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7 File Documentation 73 7.1 allocate_parms.f90 File Reference 73 7.1.1 Detailed Description 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74	6.10 parm::ndenit Interface Reference	71
6.12 parm::regres Interface Reference 72 6.13 parm::rsedaa Interface Reference 72 6.14 parm::tair Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7 File Documentation 73 7.1 allocate_parms.f90 File Reference 73 7.1.1 Detailed Description 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74	6.11 parm::qman Interface Reference	71
6.14 parm::tair Interface Reference 72 6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7 File Documentation 73 7.1 allocate_parms.f90 File Reference 73 7.1.1 Detailed Description 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74		72
6.15 parm::theta Interface Reference 72 6.16 parm::vbl Interface Reference 72 7 File Documentation 73 7.1 allocate_parms.f90 File Reference 73 7.1.1 Detailed Description 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74	6.13 parm::rsedaa Interface Reference	72
6.16 parm::vbl Interface Reference 72 7 File Documentation 73 7.1 allocate_parms.f90 File Reference 73 7.1.1 Detailed Description 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74	6.14 parm::tair Interface Reference	72
7 File Documentation 73 7.1 allocate_parms.f90 File Reference 73 7.1.1 Detailed Description 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74	6.15 parm::theta Interface Reference	72
7.1 allocate_parms.f90 File Reference 73 7.1.1 Detailed Description 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74	6.16 parm::vbl Interface Reference	72
7.1 allocate_parms.f90 File Reference 73 7.1.1 Detailed Description 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74	7 File Documentation	73
7.1.1 Detailed Description 73 7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74		73
7.2 ascrv.f90 File Reference 73 7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74	_	73
7.2.1 Detailed Description 73 7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74		
7.2.2 Function/Subroutine Documentation 74 7.2.2.1 ascrv() 74 7.3 aunif.f90 File Reference 74		73
7.2.2.1 ascrv()	•	74
7.3 aunif.f90 File Reference		
7.5.1 Detailed Description	7.3.1 Detailed Description	74

7.3.2 Function/Subroutine Documentation
7.3.2.1 aunif()
7.4 caps.f90 File Reference
7.4.1 Detailed Description
7.4.2 Function/Subroutine Documentation
7.4.2.1 caps()
7.5 gcycl.f90 File Reference
7.5.1 Detailed Description
7.6 getallo.f90 File Reference
7.6.1 Detailed Description
7.7 hruallo.f90 File Reference
7.7.1 Detailed Description
7.8 jdt.f90 File Reference
7.8.1 Detailed Description
7.8.2 Function/Subroutine Documentation
7.8.2.1 jdt()
7.9 main.f90 File Reference
7.9.1 Detailed Description
7.10 modparm.f90 File Reference
7.10.1 Detailed Description
7.11 readbsn.f90 File Reference
7.11.1 Detailed Description
7.12 readchm.f90 File Reference
7.12.1 Detailed Description
7.13 readfcst.f90 File Reference
7.13.1 Detailed Description
7.14 readfert.f90 File Reference
7.14.1 Detailed Description
7.15 readfig.f90 File Reference
7.15.1 Detailed Description
7.16 readfile.f90 File Reference
7.16.1 Detailed Description
7.17 readhru.f90 File Reference
7.17.1 Detailed Description
7.18 readlup.f90 File Reference
7.18.1 Detailed Description
7.19 readpest.f90 File Reference
7.19.1 Detailed Description
7.20 readplant.f90 File Reference
7.20.1 Detailed Description
7.21 readsdr.f90 File Reference
7.21.1 Detailed Description

Index	145
Bibliography	143
7.32.1 Detailed Description	141
7.32 zeroini.f90 File Reference	141
7.31.1 Detailed Description	140
7.31 zero_urbn.f90 File Reference	140
7.30.1 Detailed Description	140
7.30 zero2.f90 File Reference	140
7.29.1 Detailed Description	140
7.29 zero1.f90 File Reference	140
7.28.1 Detailed Description	139
7.28 zero0.f90 File Reference	139
7.27.1 Detailed Description	139
7.27 simulate.f90 File Reference	139
7.26.1 Detailed Description	139
7.26 readwwq.f90 File Reference	139
7.25.1 Detailed Description	138
7.25 readurban.f90 File Reference	138
7.24.1 Detailed Description	138
7.24 readtill.f90 File Reference	138
7.23.1 Detailed Description	138
7.23 readsno.f90 File Reference	138
7.22.1 Detailed Description	137
7.22 readsepticbz.f90 File Reference	137

Chapter 1

SWAT

An updated SWAT 2012 revision 670 code

Objectives

- Standard indentation and translation to Fortran 90 by using findent. See the translate-fortran90.pl perl script file (:heavy_check_mark:)
- Exhaustive use of the "implicit none" directive to detect bad variable usage (:heavy_check_mark:)
- Generate a GNU Make makefile and compile with GNU GFortran. See the gernerate-makefile.pl perl script file (:heavy_check_mark:)
- Remove non-used variables and format labels (:heavy_check_mark:)
- Detect and solve all uninitialized variables (:heavy_check_mark: :construction:, some proposed solutions could be incorrect)
- Remove unneeded variable initializations (:heavy check mark:) as:

```
j=0 ! this line is not necessary j=ihru
```

- Remove redundant code (:heavy_check_mark:)
- Exhaustive use of the "parameter" directive on constants (:heavy_check_mark:)
- Generate a detailed list of issues detected in the original code (:heavy_check_mark:, see at the end of this README)
- Remove obsolete commented code (:x:)
- Update variable descriptions in comments (:construction:, a lot of work)
- Standardize comments by using Doxygen style in order to generate documentation. See at latex/refman.pdf (:construction:, a lot of work)

2 SWAT

Required tools

- GFortran (to compile the source code)
- · Make (to build the executable file)
- Perl (optional: to execute the perl scripts to update the makefile or to translate original files to Fortran 90)
- Findent (optional: to translate original files to Fortran 90 with a standard indentation)
- Doxygen (optional: to generate a reference programming manual from source code)
- Tex Live or MikTex (optional: to generate a reference programming manual from source code)
- On Microsoft Windows systems you have to install MSYS2 and the required utilities (GFortran and Make). You can follow detailed instructions in install-unix

Instructions to generate Fortran 90 style code from original code

In order to generate Fortran 90 style code with standard indentation from original code you have to type on a UNIX type terminal (you need Perl and Findent):

\$ perl translate-fortran90.pl

Instructions to generate an initial GNU make Makefile

Type on the UNIX type terminal, when translated the original code to Fortran 90 style (you need Perl):

\$ perl generate-makefile.pl

Instructions to generate an executable to test

Type on the UNIX type terminal (you need GFortran and Make)

· In UNIX type operative systems:

\$ make

• In a MSYS2 terminal in Microsoft Windows:

\$ EXE=".exe" LDFLAGS="-static" make

• Cross-compiling a 32 bits Microsoft Windows executable in a UNIX type operative system:

\$ prefix="i686-w64-mingw32-" EXE=".exe" LDFLAGS="-static" make

· Cross-compiling a 64 bits Microsoft Windows executable in a UNIX type operative system:

\$ prefix="x86_64-w64-mingw32-" EXE=".exe" LDFLAGS="-static" make

Instructions to generate an optimized executable file

Type on the UNIX type terminal (you need GFortran and Make)

· In UNIX type operative systems:

```
$ CFLAGS="-march=native -flto" LDFLAGS="-flto" make strip
```

In a MSYS2 terminal in Microsoft Windows:

```
$ EXE=".exe" CFLAGS="-flto" LDFLAGS="-flto -static" make strip
```

· Cross-compiling a 32 bits Microsoft Windows executable in a UNIX type operative system:

```
$ prefix="i686-w64-mingw32-" EXE=".exe" CFLAGS="-flto" LDFLAGS="-flto -static" make strip
```

Cross-compiling a 64 bits Microsoft Windows executable in a UNIX type operative system:

```
$ prefix="x86\ 64-w64-mingw32-" EXE=".exe" CFLAGS="-flto" LDFLAGS="-flto -static" make strip
```

Instructions to generate a reference programming manual from source code

Type on the UNIX type terminal (you need Doxygen and TeX Live or MiKTeX):

- \$ doxygen
- \$ cd latex
- \$ make

The reference programming manual file latex/refman.pdf is generated from source code in PDF format

Issues in the original source code

This is a list of possible issues detected in the original source code. These issues have been mostly detected by the GFortran compiler warnings. Some of them could not arise because the logic of the variables is not possible.

- · In biofilm.f:
 - "dcoef" is used but not initialized. dcoef=3 as in watqual.f? Then, I propose at beginning: real*8, parameter :: dcoef = 3.
- · In bmp_ri_pond.f:
 - "qseep" and "qet" could be used not initialized at lines 133 and 134. However the problem only arises for nstep<1
- In bmp_sand_filter.f:
 - "sed\ removed" at line 342 could be used not initialized if sfsedstdev<=0
- In bpm_sed_pond.f:
 - bmp_sed _pond seems to be bmp_sed_pond at line 186

4 SWAT

- In bmp_wet_pond.f:
 - "hvol" could be used not initialized in "ext\ dpth" subroutine at line 267 in first bucle iteration
- · In clicon.f:
 - "tmxbsb", "tmnbsb", "rbsb", "rstpbsb", "rhdbsb", "rabsb", "rmxbsb", "daylbsb", "fradbsb" and "u10bsb" could be used not initialized at 186-207 lines
- · In conapply.f:
 - "k" and "kk" could be used not initialized at 121-122 lines if iday_pest(j) /=ipst_freq(j) and curyr>nyskip
- · In confert.f:
 - "ifrt" seems to be "it" at line 214
- · In curno.f:
 - "smxold" could be used not initialized if cn1 (h) <=1.e−6 and curyr/=0 at line 96
- · In drains.f:
 - "nlayer" could be used not initialized at line 23. However, the problem only arises if it is not set in the previous bucle (mlyr <= 1 or $sol_z(j1, j) <= 0$)
- · In etact.f:
 - "sev" could be used not initialized at line 286 if dep>=esd and ly==2
- · In filter.f:
 - "remove21" seems to be "remove2" at line 316
- · In grass wway.f:
 - "sf_depth" and "sf_sed" could be used not initialized at lines 133 and 137 if $sf_area>0$ and $sf_\leftrightarrow area<=1.e-6$
- · In hhnoqual.f:
 - "algon" seems to be "algcon" at line 190
- · In hhwatqual.f
 - "orgnpin" seems to be "orgpin" at line 278
 - thour=1.0 at line 377 overwrites previous "thour" calculation. It is wrong
- · In hmeas.f:
 - "rhdbsb" could be used not initialized at line 84
- In killop.f:
 - "ff1" and "ff2" are used but not initialized at lines 167 and 267. They are set in harvkillop.f file (lines 257-258). They have to be included in modparm.f to share harvkillop.f values? or they have to be redefined as in harvkillop.f?
- In NCsed leach.f90:
 - "perc\ clyr" could be used not initialized at line 221 if sol nly (j) <2
- In nrain.f:
 - "no2pcp" seems to be "no3pcp" at line 72
- In pmeas.f:

- "rbsb" could be used not initialized at line 143
- "flag" could be used not initialized if 'a==' 'at line 210
- "rainsb" could be used not initialized, however only ifnstep<=0`
- In pminrl2.f:
 - at line 95 a comma is necessary between "base" and "vara"
 - "ssp" could be used not initialized at line 196 if $xx \le 1.e-6$
- · In pothole.f:
 - "solp_tileo" could be used not initialized at line 593 if $pot_vol(j) \le 1.e-6$ or $potvol_{\leftarrow} tile \le 1.e-6$
- · In potholehr.f:
 - "potflow" seems to be "potflwo" at line 447
- · In readatmodep.f:
 - momax=12*nbyr is defined at line 65 but not used. It has to be "mo_max"? but then, it overwrites the file read
- In readops.f:
 - year = 0. seems to be iyear = 0 at line 98
 - "mg13" seems to be "mgt13" at line 206
- In readpnd.f:
 - "vselsetlpnd" seems to be "velsetlpnd" at line 279
- · In readru.f:
 - "tck" is used but not initialized at line 79
- · In readsepticbz.f:
 - **–** at line 135 4. e-8 seems to be 4.e-8
- In rewind_init.f:
 - "orig_tnylda" is used but not initialized at line 174
- · In routels.f:
 - "dstor" is used but not initialized at line 134. It has to be calculated as in watbal.f? or as in the commented line 109?
 - "latgout" and "gwgout" could be used not initialized at lines 142-143
- In rtbact.f:
 - "netwtr" could be used not initialized at line 124, however only if nstep<1
- In rthpest.f:
 - thour=1.0 at line 183 overwrites previous "thour" calculation. It is wrong
 - "frsol" and "frsrb" could be used not initialized at lines 289-290 if hrtwtr(ii) > 0.001 and hrtwtr(ii) / (idt*60) <= 0.01
- In rtpest.f:
 - tday=1.0 at line 180 overwrites previous "tday" calculation. It is wrong
- In sched_mgt.f:
 - < = seems to be <= at 202 line

6 SWAT

- "husc" and "igrow" at lines 264-265 are used but not initialized. "husc" has to be phu_op (iop, ihru) has in readmgt.f? "igrow" has to be igro (ihru) has in readmgt.f?

- · In smeas.f:
 - "rabsb" could be used not initialized at line 86
- · In sweep.f:
 - "fr_curb" is used but not initialized at line 56. It has to be added to modparm.f to share result with sched_mgt.f? or it has to be mgt5op (nop (ihru), ihru) as in sched_mgt.f?
- · In tmeas.f:
 - "tmxbsb" and "tmnbsb" could be used not initialized at lines 109-110
- · In transfer.f:
 - "ratio", "xx" and "ratio1" could be used not initialized at lines 236, 239 and 241 if ihout==2
- · In wmeas.f:
 - "u10bsb" could be used not initialized at line 85
- In zero0.f:
 - "sol_sumn03" seems to be "sol_sumno3" at line 508
- In zero_urbn.f:
 - "stp_stagdis" seems to be "dtp_stagdis" at line 84
 - "subdr_kg" seems to be "subdr_km" at line 149
 - "spl_eros" is not defined at line 21, it could be "eros_spl"?

Chapter 2

Modules Index

2.1 Modules List

Here is a lis	t of all documented modules with brief descript	ions:	
parm			
•	Main module containing the global variables		 13

8 Modules Index

Chapter 3

Data Type Index

3.1 Data Types List

Here are the data types with brief descriptions:

parm::ascrv	69
parm::atri	69
parm::aunif	69
parm::dstn1	70
parm::ee	70
parm::expo	70
parm::fcgd	70
parm::HQDAV	71
parm::layersplit	
parm::ndenit	71
parm::qman	71
parm::regres	72
parm::rsedaa	72
parm::tair	72
parm::theta	72
narmovhl	72

10 Data Type Index

Chapter 4

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

allocate_parms.f90	73
ascrv.f90	73
aunif.f90	74
caps.f90	75
gcycl.f90	76
getallo.f90	76
hruallo.f90	76
jdt.f90	77
main.f90	78
modparm.f90	78
readbsn.f90	134
readchm.f90	134
readfcst.f90	134
	135
	135
	135
	136
· ·	136
	136
	137
	137
	137
	138
	138
	138
	139
	139
	139
	140
	140
	140
zerojni f90	141

12 File Index

Chapter 5

Module Documentation

5.1 parm Module Reference

main module containing the global variables

Data Types

- · interface ascrv
- interface atri
- interface aunif
- interface dstn1
- interface ee
- interface expo
- interface fcgd
- interface HQDAV
- · interface layersplit
- interface ndenit
- interface qman
- interface regres
- · interface rsedaa
- interface tair
- · interface theta
- interface vbl

Variables

- integer, parameter mvaro = 33

 max number of variables routed through the reach
- integer, parameter mhruo = 79

max number of variables in output.hru

- integer, parameter mrcho = 62
 - max number of variables in reach file
- integer, parameter msubo = 24
 - max number of variables in output.sub
- integer, parameter mstdo = 113

max number of variables summarized in output.std

- integer, parameter motot = 600
- · integer icalen
- real *8 prf bsn

Basinwide peak rate adjustment factor for sediment routing in the channel. Allows impact of peak flow rate on sediment routing and channel reshaping to be taken into account.

- real *8 co2 x2
- real *8 co2 x
- real *8, dimension(:), allocatable alph_e
- real *8, dimension(:), allocatable cdn

denitrification exponential rate coefficient

real *8, dimension(:), allocatable nperco

nitrate percolation coefficient (0-1)

0:concentration of nitrate in surface runoff is zero

1:percolate has same concentration of nitrate as surface runoff

real *8, dimension(:), allocatable surlag

Surface runoff lag time. This parameter is needed in subbasins where the time of concentration is greater than 1 day. SURLAG is used to create a "storage" for surface runoff to allow the runoff to take longer than 1 day to reach the subbasin outlet (days)

- real *8, dimension(:), allocatable co_p
- real *8, dimension(:), allocatable cmn

rate factor for humus mineralization on active organic N

real *8, dimension(:), allocatable phoskd

Phosphorus soil partitioning coefficient. Ratio of soluble phosphorus in surface layer to soluble phosphorus in runoff.

real *8, dimension(:), allocatable psp

Phosphorus availibility index. The fraction of fertilizer P remaining in labile pool after initial rapid phase of P sorption.

real *8, dimension(:), allocatable sdnco

denitrification threshold: fraction of field capacity triggering denitrification

real *8 r2adj bsn

basinwide retention parameter adjustment factor (greater than 1)

- real *8 yield
- real *8 burn_frlb
- real *8 pst_kg
- real *8 vieldgrn
- real *8 yieldbms
- real *8 yieldtbr
- real *8 yieldn
- real *8 yieldp
- real *8 hi bms
- real *8 hi_rsd
- real *8 yieldrsd
- real *8, dimension(:), allocatable I_k1
- real *8, dimension(:), allocatable I_k2
- real *8, dimension(:), allocatable I_lambda
- real *8, dimension(:), allocatable I beta
- real *8, dimension(:), allocatable I gama
- real *8, dimension(:), allocatable I_harea
- real *8, dimension(:), allocatable I_vleng
- real *8, dimension(:), allocatable I_vslope
- real *8, dimension(:), allocatable I_ktc
- real *8, dimension(:), allocatable biofilm_mumax
- real *8, dimension(:), allocatable biofilm_kinv
- real *8, dimension(:), allocatable biofilm klw
- real *8, dimension(:), allocatable biofilm_kla

- real *8, dimension(:), allocatable biofilm_cdet
- real *8, dimension(:), allocatable biofilm_bm
- real *8, dimension(:,:), allocatable hru_rufr
- real *8, dimension(:,:), allocatable daru_km
- real *8, dimension(:,:), allocatable ru_k
- real *8, dimension(:,:), allocatable ru_c
- real *8, dimension(:,:), allocatable ru_eiq
- real *8, dimension(:,:), allocatable ru_ovsl
- real *8, dimension(:,:), allocatable ru_a
- real *8, dimension(:,:), allocatable ru_ovs
- real *8, dimension(:,:), allocatable ru_ktc
- real *8, dimension(:), allocatable gwq_ru
- real *8, dimension(:), allocatable qdayout
- integer, dimension(:), allocatable ils2
- integer, dimension(:), allocatable ils2flag
- · integer iru
- · integer mru
- · integer irch
- · integer isub
- · integer idum
- integer mhyd_bsn
- · integer ipest
- · integer ils_nofig
- · integer mhru1
- integer, dimension(:), allocatable mhyd1
- · integer, dimension(:), allocatable irtun
- real *8 wshd_sepno3
- real *8 wshd sepnh3
- real *8 wshd_seporgn
- real *8 wshd_sepfon
- real *8 wshd_seporgp
- real *8 wshd_sepfop
- real *8 wshd_sepsolp
- real *8 wshd_sepbod
- real *8 wshd_sepmm
- integer, dimension(:), allocatable isep_hru
- real *8 fixco

nitrogen fixation coefficient

real *8 nfixmx

maximum daily n-fixation (kg/ha)

real *8 res_stlr_co

reservoir sediment settling coefficient

real *8 rsd_covco

residue cover factor for computing frac of cover

real *8 vcrit

critical velocity

- real *8 wshd sw
- real *8 wshd_snob
- real *8 wshd_pndfr
- real *8 wshd pndv
- real *8 wshd_pndsed
- real *8 percop

pesticide percolation coefficient (0-1)

0: concentration of pesticide in surface runoff is zero

1: percolate has same concentration of pesticide as surface runoff

- real *8 wshd_wetfr
- real *8 wshd_resfr
- real *8 wshd_resha
- real *8 wshd pndha
- real *8 wshd_fminp
- real *8 wshd_ftotn
- real *8 wshd_fnh3
- real *8 wshd_fno3
- real *8 wshd_forgn
- real *8 wshd_forgp
- real *8 wshd_ftotp
- real *8 wshd_yldn
- real *8 wshd_yldp
- real *8 wshd fixn
- real *8 wshd_pup
- real *8 wshd wstrs
- real *8 wshd_nstrs
- real *8 wshd_pstrs
- real *8 wshd_tstrs
- real *8 wshd_astrs
- real *8 ffcb

initial soil water content expressed as a fraction of field capacity

- real *8 wshd hmn
- real *8 wshd rwn
- real *8 wshd_hmp
- real *8 wshd_rmn
- real *8 wshd_dnit
- real *8 wdpq

die-off factor for persistent bacteria in soil solution (1/day)

- real *8 wshd rmp
- real *8 wshd_voln
- real *8 wshd nitn
- real *8 wshd_pas
- real *8 wshd_pal
- real *8 wof_p

wash off fraction for persistent bacteria on foliage during a rainfall event

- real *8 wshd_plch
- real *8 wshd_raino3
- real *8 ressedc
- real *8 basno3f
- · real *8 basorgnf
- real *8 wshd_pinlet
- real *8 wshd_ptile
- real *8 sftmp

Snowfall temperature (deg C)

real *8 smfmn

Minimum melt rate for snow during year (Dec. 21) where deg C refers to the air temperature. (mm/deg C/day)

real *8 smfmx

Maximum melt rate for snow during year (June 21) where deg C refers to the air temperature. SMFMX and SM FMN allow the rate of snow melt to vary through the year. These parameters are accounting for the impact of soil temperature on snow melt. (mm/deg C/day)

real *8 smtmp

Snow melt base temperature. Mean air temperature at which snow melt will occur. (deg C)

real *8 wgpq

growth factor for persistent bacteria in soil solution (1/day)

- real *8 basminpf
- real *8 basorgpf
- real *8 wdlpq

die-off factor for less persistent bacteria in soil solution (1/day)

- real *8 wshd_resv
- real *8 wshd_ressed
- · real *8 basno3i
- · real *8 basorgni
- real *8 basminpi
- real *8 wdps

die-off factor for persistent bacteria adsorbed to soil particles (1/day)

real *8 wglpq

growth factor for less persistent bacteria in soil solution (1/day)

- real *8 basorgpi
- · real *8 peakr
- real *8 pndsedin
- real *8 sw excess
- · real *8 albday
- real *8 timp

Snow pack temperature lag factor (0-1)

1 = no lag (snow pack temp=current day air temp) as the lag factor goes to zero, the snow pack's temperature will be less influenced by the current day's air temperature.

- real *8 wtabelo
- real *8 tilep
- real *8 wt_shall
- real *8 sq_rto
- real *8 tloss
- real *8 inflpcp
- real *8 snomlt
- real *8 snofall
- real *8 fixn
- · real *8 qtile
- real *8 crk
- real *8 latlyr
- real *8 pndloss
- real *8 wetloss
- real *8 potloss
- real *8 Ipndloss
- real *8 lwetloss
- real *8 sedrch
- real *8 fertn
- · real *8 sol rd
- real *8 cfertn
- real *8 cfertp
- real *8 sepday
- real *8 bioday
- real *8 sepcrk
- real *8 sepcrktot
- real *8 fertno3
- real *8 fertnh3

- · real *8 fertorgn
- real *8 fertsolp
- real *8 fertorgp
- real *8 wgps

growth factor for persistent bacteria adsorbed to soil particles (1/day)

- real *8 fertp
- real *8 grazn
- real *8 grazp
- real *8 soxy
- real *8 qdfr
- real *8 sdti
- real *8 rtwtr
- real *8 ressa
- real *8 wdlps

die-off factor for less persistent bacteria absorbed to soil particles (1/day)

real *8 wglps

growth factor for less persistent bacteria adsorbed to soil particles (1/day)

real *8 da km

area of the watershed in square kilometers (km²)

- real *8 rttime
- real *8 rchdep
- real *8 rtevp
- real *8 rttlc
- real *8 resflwi
- real *8 wdprch

die-off factor for persistent bacteria in streams (1/day)

- real *8 resflwo
- real *8 respcp
- real *8 resev
- real *8 ressep
- real *8 ressedi
- · real *8 ressedo
- real *8 dtot
- real *8 pperco_bsn

phosphorus percolation coefficient. Ratio of soluble phosphorus in surface to soluble phosphorus in percolate

• real *8 nperco_bsn

basin nitrate percolation coefficient (0-1)

0:concentration of nitrate in surface runoff is zero

1:percolate has same concentration of nitrate as surface runoff

real *8 rsdco

residue decomposition coefficient. The fraction of residue which will decompose in a day assuming optimal moisture, temperature, C:N ratio, and C:P ratio

- real *8 phoskd_bsn
- real *8 voltot
- real *8 msk_x

weighting factor controling relative importance of inflow rate and outflow rate in determining storage on reach

- real *8 volcrmin
- real *8 bactkdq

bacteria soil partitioning coefficient. Ratio of solution bacteria in surface layer to solution bacteria in runoff soluble and sorbed phase in surface runoff.

real *8 wdpf

die-off factor for persistent bacteria on foliage (1/day)

real *8 uno3d

- · real *8 canev
- real *8 usle
- real *8 rcn
- real *8 surlag_bsn
- real *8 precipday
- real *8 thbact

temperature adjustment factor for bacteria die-off/growth

real *8 wlpq20

overall rate change for less persistent bacteria in soil solution (1/day)

real *8 wlps20

overall rate change for less persistent bacteria adsorbed to soil particles (1/day)

real *8 wpq20

overall rate change for persistent bacteria in soil solution (1/day)

real *8 wps20

overall rate change for persistent bacteria adsorbed to soil particles (1/day)

- real *8 bactrop
- real *8 bactsedp
- real *8 wgpf

growth factor for persistent bacteria on foliage (1/day)

- real *8 bactlchp
- real *8 bactlchlp
- real *8 enratio
- real *8 wetpcp
- real *8 pndpcp
- real *8 wetsep
- real *8 pndsep
- real *8 wetev
- real *8 pndev
- real *8 pndsedo
- real *8 wetsedo
- real *8 pndflwi
- real *8 wetflwi
- real *8 pndflwo
- real *8 wetflwo
- real *8 wetsedi
- real *8 da_ha
- real *8 vpd
- real *8 evlai

leaf area index at which no evaporation occurs. This variable is used in ponded HRUs where evaporation from the water surface is restricted by the plant canopy cover. Evaporation from the water surface equals potential ET when LAI = 0 and decreased linearly to O when LAI = EVLAI

· real *8 evrch

Reach evaporation adjustment factor. Evaporation from the reach is multiplied by EVRCH. This variable was created to limit the evaporation predicted in arid regions.

real *8 wdlpf

die-off factor for less persistent bacteria on foliage (1/day)

- real *8 bactrolp
- real *8 bactsedlp
- real *8 pet_day
- real *8 ep_day
- real *8 adj pkr

peak rate adjustment factor in the subbasin. Used in the MUSLE equation to account for impact of peak flow on erosion.

real *8 n_updis

nitrogen uptake distribution parameter. This parameter controls the amount of nitrogen removed from the different soil layer layers by the plant. In particular, this parameter allows the amount of nitrogen removed from the surface layer via plant uptake to be controlled. While the relationship between UBN and N removed from the surface layer is affected by the depth of the soil profile, in general, as UBN increases the amount of N removed from the surface layer relative to the amount removed from the entire profile increases

real *8 nactfr

nitrogen active pool fraction. The fraction of organic nitrogen in the active pool.

real *8 p_updis

phosphorus uptake distribution parameter This parameter controls the amount of phosphorus removed from the different soil layers by the plant. In particular, this parameter allows the amount of phosphorus removed from the surface layer via plant uptake to be controlled. While the relationship between UBP and P uptake from the surface layer is affected by the depth of the soil profile, in general, as UBP increases the amount of P removed from the surface layer relative to the amount removed from the entire profile increases

- real *8 snoev
- real *8 sno3up
- real *8 reactw
- real *8 sdiegropq
- real *8 sdiegrolpq
- real *8 sdiegrops
- real *8 sdiegrolps
- real *8 es_day
- real *8 wof lp

wash off fraction for less persistent bacteria on foliage during a rainfall event

- real *8 sbactrop
- real *8 sbactrolp
- real *8 sbactsedp
- real *8 sbactsedlp
- real *8 ep_max
- real *8 sbactlchp
- real *8 sbactlchlp
- real *8 psp_bsn
- real *8 rchwtr
- real *8 resuspst
- real *8 setIpst
- real *8 bsprev
- real *8 bssprev
- real *8 spadyo
- real *8 spadyev
- real *8 spadysp
- real *8 spadyrfv
- real *8 spadyosp
- real *8 qday
- real *8 usle_ei
- real *8 al5
- real *8 pndsedc
- real *8 no3pcp
- real *8 rcharea
- real *8 volatpst
- real *8 ubw

water uptake distribution parameter. This parameter controls the amount of water removed from the different soil layers by the plant. In particular, this parameter allows the amount of water removed from the surface layer via plant uptake to be controlled. While the relationship between UBW and H2O removed from the surface layer is affected by the depth of the soil profile, in general, as UBW increases the amount of water removed from the surface layer relative to the amount removed from the entire profile increases

real *8 uobn

nitrogen uptake normalization parameter. This variable normalizes the nitrogen uptake so that the model can easily verify that upake from the different soil layers sums to 1.0

real *8 uobp

phosphorus uptake normalization parameter. This variable normalizes the phosphorus uptake so that the model can easily verify that uptake from the different soil layers sums to 1.0

real *8 uobw

water uptake normalization parameter. This variable normalizes the water uptake so that the model can easily verify that uptake from the different soil layers sums to 1.0

real *8 wglpf

growth factor for less persistent bacteria on foliage (1/day)

- real *8 wetsedc
- real *8 respesti
- real *8 rcor

correction coefficient for generated rainfall to ensure that the annual means for generated and observed values are comparable (needed only if IDIST=1)

real *8 rexp

value of exponent for mixed exponential rainfall distribution (needed only if IDIST=1)

real *8 snocov1

1st shape parameter for snow cover equation. This parameter is determined by solving the equation for 50% snow cover

real *8 snocov2

2nd shape parameter for snow cover equation. This parameter is determined by solving the equation for 95% snow cover

real *8 snocovmx

Minimum snow water content that corresponds to 100% snow cover. If the snow water content is less than SNOC← OVMX, then a certain percentage of the ground will be bare (mm H2O)

- real *8 lyrtile
- real *8 lyrtilex
- real *8 sno50cov

Fraction of SNOCOVMX that corresponds to 50% snow cover. SWAT assumes a nonlinear relationship between snow water and snow cover.

real *8 ai0

ratio of chlorophyll-a to algal biomass (ug chla/mg alg)

real *8 ai1

fraction of algal biomass that is nitrogen (mg N/mg alg)

real *8 ai2

fraction of algal biomass that is phosphorus (mg P/mg alg)

real *8 ai3

the rate of oxygen production per unit of algal photosynthesis (mg O2/mg alg)

real *8 ai4

the rate of oxygen uptake per unit of algae respiration (mg O2/mg alg)

real *8 ai5

the rate of oxygen uptake per unit of NH3 nitrogen oxidation (mg O2/mg N)

real *8 ai6

the rate of oxygen uptake per unit of NO2 nitrogen oxidation (mg O2/mg N)

real *8 rhoq

algal respiration rate (1/day or 1/hr)

real *8 tfact

fraction of solar radiation computed in the temperature heat balance that is photosynthetically active

real *8 k_l

half-saturation coefficient for light (MJ/(m2*hr))

real *8 k n

michaelis-menton half-saturation constant for nitrogen (mg N/L)

real *8 k_p

michaelis-menton half saturation constant for phosphorus (mg P/L)

· real *8 lambda0

non-algal portion of the light extinction coefficient (1/m)

real *8 lambda1

linear algal self-shading coefficient (1/(m*ug chla/L))

· real *8 lambda2

nonlinear algal self-shading coefficient ((1/m)(ug chla/L)**(-2/3))

real *8 mumax

maximum specific algal growth rate (1/day or 1/hr)

real *8 p_n

algal preference factor for ammonia

- real *8 rnum1
- real *8 autop
- real *8 auton
- real *8 etday
- · real *8 hmntl
- real *8 rwntl
- real *8 hmptl
- real *8 rmn2tl
- real *8 rmptl
- real *8 wdntl
- real *8 cmn bsn
- real *8 rmp1tl
- real *8 roctl
- real *8 gwseep
- real *8 revapday
- real *8 reswtr
- real *8 wdlprch

die-off factor for less persistent bacteria in streams (1/day)

real *8 wdpres

die-off factor for persistent bacteria in reservoirs (1/day)

- real *8 bury
- real *8 difus
- real *8 reactb
- real *8 solpesto
- · real *8 petmeas
- real *8 wdlpres

die-off factor for less persistent bacteria in reservoirs (1/day)

- · real *8 sorpesto
- real *8 spcon_bsn
- real *8 spexp bsn
- · real *8 solpesti
- real *8 sorpesti
- real *8 msk co1

calibration coefficient to control impact of the storage time constant for the reach at bankfull depth (phi(10,:) upon the storage time constant for the reach used in the Muskingum flow method

real *8 msk_co2

calibration coefficient to control impact of the storage time constant for the reach at 0.1 bankfull depth (phi(13,:) upon the storage time constant for the reach used in the Muskingum flow method

- real *8 snoprev
- real *8 swprev
- real *8 shallstp

- · real *8 deepstp
- real *8 ressolpo
- · real *8 resorgno
- real *8 resorgpo
- real *8 resno3o
- real *8 reschlao
- real *8 resno2o
- real *8 resnh3o
- real *8 qdbank
- real *8 potpcpmm
- real *8 potevmm
- real *8 potsepmm
- real *8 potflwo
- · real *8 bactminlp

Threshold detection level for less persistent bacteria. When bacteria levels drop to this amount the model considers bacteria in the soil to be insignificant and sets the levels to zero (cfu/m^2 2)

real *8 bactminp

Threshold detection level for persistent bacteria. When bacteria levels drop to this amount the model considers bacteria in the soil to be insignificant and sets the levels to zero (cfu/m^2)

real *8 trnsrch

fraction of transmission losses from main channel that enter deep aquifer

real *8 wp20p_plt

overall rate change for persistent bacteria on foliage (1/day)

- real *8 potsedo
- real *8 pest_sol
- real *8 bact_swf

fraction of manure containing active colony forming units (cfu)

real *8 bactmx

bacteria percolation coefficient. Ratio of solution bacteria in surface layer to solution bacteria in percolate

· real *8 cncoef

plant ET curve number coefficient

real *8 wp20lp_plt

overall rate change for less persistent bacteria on foliage (1/day)

- real *8 cdn bsn
- real *8 sdnco_bsn
- · real *8 bactmin
- real *8 cn froz

drainge coefficient (mm day -1)

real *8 dorm_hr

time threshold used to define dormant (hours)

real *8 smxco

adjustment factor for max curve number s factor (0-1)

real *8 tb_adj

adjustment factor for subdaily unit hydrograph basetime

real *8 chla_subco

regional adjustment on sub chla_a loading (fraction)

real *8 depimp bsn

depth to impervious layer. Used to model perched water tables in all HRUs in watershed (mm)

real *8 ddrain_bsn

depth to the sub-surface drain (mm)

real *8 tdrain_bsn

time to drain soil to field capacity (hours)

```
real *8 gdrain_bsn
real *8 rch_san
· real *8 rch_sil
• real *8 rch cla

    real *8 rch sag

 real *8 rch_lag

 real *8 rch_gra

real *8 hlife_ngw_bsn
     Half-life of nitrogen in groundwater? (days)

    real *8 ch opco bsn

• real *8 ch onco bsn

    real *8 decr_min

     Minimum daily residue decay.

 real *8 rcn sub bsn

     Concentration of nitrogen in the rainfall (mg/kg)
real *8 bc1_bsn
real *8 bc2_bsn

    real *8 bc3_bsn

 real *8 bc4 bsn

real *8 anion_excl_bsn
• real *8, dimension(:), allocatable wat_tbl

    real *8, dimension(:), allocatable sol_swpwt

• real *8, dimension(:,:), allocatable vwt
• real *8 re bsn
     Effective radius of drains (range 3.0 - 40.0) (mm)

    real *8 sdrain bsn

     Distance bewtween two drain or tile tubes (range 7600.0 - 30000.0) (mm)

    real *8 sstmaxd bsn

 real *8 drain co bsn
     Drainage coeffcient (range 10.0 - 51.0) (mm-day-1)

    real *8 latksatf bsn

     Multiplication factor to determine lateral ksat from SWAT ksat input value for HRU (range 0.01 - 4.0)

 real *8 pc bsn

     Pump capacity (def val = 1.042 mm h-1 or 25 mm day-1) (mm h-1)
· integer i_subhw
· integer imgt
· integer idlast
· integer iwtr
· integer ifrttyp

    integer mo_atmo

· integer mo atmo1
· integer ifirstatmo
· integer iyr_atmo
integer iyr_atmo1
· integer matmo

    integer mch

     maximum number of channels
· integer mcr
     maximum number of crops grown per year
```

· integer mfcst

· integer mcrdb

maximum number of forecast stations

maximum number of crops/landcover in database file (crop.dat)

integer mfdb

max number of fertilizers in fert.dat

· integer mhru

maximum number of HRUs in watershed

integer mhyd

maximum number of hydrograph nodes

· integer mpdb

max number of pesticides in pest.dat

integer mrg

max number of rainfall/temp gages

· integer mcut

maximum number of cuttings per year

· integer mgr

maximum number of grazings per year

· integer mnr

max number of years of rotation

· integer myr

max number of years of simulation

integer isubwq

subbasin water quality code

0 do not calculate algae/CBOD 1 calculate algae/CBOD drainmod tile equations

- · integer ffcst
- · integer isproj

special project code: 1 test rewind (run simulation twice)

integer nbyr

number of calendar years simulated

· integer irte

water routing method: 0 variable storage method 1 Muskingum method

integer nrch

number of reaches in watershed (none)

· integer nres

number of reservoirs in watershed (none)

- integer nhru
- integer mo
- · integer immo
- · integer i_mo
- · integer wndsim

wind speed input code
1 measured data read for each subbasin

2 data simulated for each subbasin

· integer ihru

HRU number (none)

- integer icode
- · integer ihout
- integer inum1
- integer inum2
- integer inum3
- integer inum4
- integer icfac

icfac = 0 for C-factor calculation using Cmin (as described in manual) = 1 for new C-factor calculation from RUSLE (no minimum needed)

- · integer inum5
- · integer inum6
- · integer inum7
- · integer inum8
- · integer mrech

maximum number of rechour files

integer nrgage

number of raingage files

· integer nrgfil

number of rain gages per file

· integer nrtot

total number of rain gages

integer ntgage

number of temperature gage files

· integer ntgfil

number of temperature gages per file

· integer nttot

total number of temperature gages

· integer tmpsim

temperature input code

1 measured data read for each subbasin

2 data simulated for each subbasin

integer icrk

crack flow code

1: compute flow in cracks

· integer irtpest

number of pesticide to be routed through the watershed

· integer igropt

Qual2E option for calculating the local specific growth rate of algae

1: multiplicative.

· integer lao

Qual2E light averaging option. Qual2E defines four light averaging options. The only option currently available in SWAT is #2.

integer npmx

number of different pesticides used in the simulation (none)

- · integer curyr
- · integer iihru
- integer itdrn

tile drainage equations flag/code

1 simulate tile flow using subroutine drains(wt_shall)

0 simulate tile flow using subroutine origtile(wt_shall,d)

· integer iwtdn

water table depth algorithms flag/code

1 simulate wt_shall using subroutine new water table depth routine

0 simulate wt_shall using subroutine original water table depth routine

integer ismax

maximum depressional storage selection flag/code

0 = static depressional storage

1 = dynamic storage based on tillage and cumulative rainfall

· integer iroutunit

not being implemented in this version drainmod tile equations

• integer ires_nut

· integer iclb

auto-calibration flag

integer mrecc

maximum number of recenst files

integer mrecd

maximum number of recday files

integer mrecm

maximum number of recmon files

· integer mtil

max number of tillage types in till.dat

· integer mudb

maximum number of urban land types in urban.dat

· integer idist

rainfall distribution code

0 for skewed normal dist

1 for mixed exponential distribution

· integer mrecy

maximum number of recyear files

integer nyskip

number of years to not print output

· integer slrsim

solar radiation input code

1 measured data read for each subbasin

2 data simulated for each subbasin

· integer ideg

channel degredation code

1: compute channel degredation (downcutting and widening)

· integer ievent

rainfall/runoff code

0 daily rainfall/curve number technique 1 sub-daily rainfall/Green&Ampt/hourly routing 3 sub-daily rainfall/ \leftarrow Green&Ampt/hourly routing

integer ipet

code for potential ET method

0 Priestley-Taylor method

1 Penman/Monteith method

2 Hargreaves method

3 read in daily potential ET data

- integer iopera
- · integer idaf

beginning day of simulation (julian date)

integer idal

ending day of simulation (julian date)

· integer rhsim

relative humidity input code

1 measured data read for each subbasin

2 data simulated for each subbasin

- · integer id1
- · integer leapyr
- · integer mo_chk
- integer nhtot

number of relative humidity records in file

· integer nstot

number of solar radiation records in file

· integer nwtot

number of wind speed records in file

- · integer ifirsts
- · integer ifirsth
- integer ifirstw
- integer icst
- integer ilog

streamflow print code

· integer itotr

number of output variables printed (output.rch)

· integer iyr

beginning year of simulation (year)

· integer iwq

stream water quality code

0 do not model stream water quality

1 model stream water quality (QUAL2E & pesticide transformations)

· integer i

forecast region number or subbasin number (none)

- integer iskip
- · integer ifirstpet
- integer iprp

print code for output.pst file

0 do not print pesticide output

1 print pesticide output

· integer itotb

number of output variables printed (output.sub)

· integer itots

number of output variables printed (output.hru)

· integer itoth

number of HRUs printed (output.hru/output.wtr)

• integer pcpsim

rainfall input code

1 measured data read for each subbasin

2 data simulated for each subbasin

- integer nd_30
- integer iops
- integer iphr
- integer isto
- integer isol
- integer fcstcycles

number of times forecast period is simulated (using different weather generator seeds each time)

· integer fcstday

beginning date of forecast period (julian date)

· integer fcstyr

beginning year of forecast period

integer iscen

scenarios counter

· integer subtot

number of subbasins in watershed (none)

- · integer ogen
- · integer mapp

maximum number of applications

integer mlyr

maximum number of soil layers

integer mpst

max number of pesticides used in wshed

integer mres

maximum number of reservoirs

· integer msub

maximum number of subbasins

· integer igen

random number generator code:

0: use default numbers

1: generate new numbers in every simulation

integer iprint

print code: 0=monthly, 1=daily, 2=annual

- · integer iida
- · integer icn

CN method flag (for testing alternative method):

0 use traditional SWAT method which bases CN on soil moisture

1 use alternative method which bases CN on plant ET.

· integer ised det

max half-hour rainfall fraction calc option:

0 generate max half-hour rainfall fraction from triangular distribution

1 use monthly mean max half-hour rainfall fraction

- · integer fcstcnt
- · integer mtran
- · integer idtill
- integer, dimension(100) ida lup
- integer, dimension(100) iyr_lup
- integer no_lup
- integer no_up
- · integer nostep
- character(len=8) date

date simulation is performed where leftmost eight characters are set to a value of yyyymmdd, where yyyy is the year, mm is the month and dd is the day

• character(len=10) time

time simulation is performed where leftmost ten characters are set to a value of hhmmss.sss, where hh is the hour, mm is the minutes and ss.sss is the seconds and milliseconds

• character(len=5) zone

time difference with respect to Coordinated Universal Time (ie Greenwich Mean Time)

character(len=80) prog

SWAT program header string.

• character(len=13) calfile

name of file containing calibration parameters

• character(len=13) rhfile

relative humidity file name (.hmd)

• character(len=13) slrfile

solar radiation file name (.slr)

character(len=13) wndfile

wind speed file name (.wnd)

• character(len=13) petfile

potential ET file name (.pet)

- character(len=13) atmofile
- character(len=13) lucfile
- character(len=13) septdb

name of septic tank database file (septwq1.dat)

- character(len=13) dpd file
- character(len=13) wpd_file
- · character(len=13) rib_file
- · character(len=13) sfb file
- character(len=13) lid_file
- integer, dimension(9) idg

array location of random number seed used for a given process

- · integer, dimension(:), allocatable ifirstr
- · integer, dimension(:), allocatable ifirsthr
- · integer, dimension(8) values

values(1): year simulation is performed

values(2): month simulation is performed

values(3): day in month simulation is performed

values(4): time difference with respect to Coordinated Universal Time (ie Greenwich Mean Time)

values(5): hour simulation is performed

values(6): minute simulation is performed

values(7): second simulation is performed

values(8): millisecond simulation is performed

• integer, dimension(13) ndays

julian date for last day of preceding month (where the array location is the number of the month) The dates are for leap years (julian date)

- integer, dimension(13) ndays noleap
- integer, dimension(13) ndays_leap
- integer mapex
- real *8, dimension(:), allocatable flodaya
- real *8, dimension(:), allocatable seddaya
- real *8, dimension(:), allocatable orgndaya
- real *8, dimension(:), allocatable orgpdaya
- real *8, dimension(:), allocatable no3daya
- real *8, dimension(:), allocatable minpdaya
- real *8, dimension(:), allocatable hi_targ

index target of cover defined at planting

- real *8, dimension(:), allocatable bio_targ
- real *8, dimension(:), allocatable tnyld
- · integer, dimension(:), allocatable idapa
- integer, dimension(:), allocatable iypa
- · integer, dimension(:), allocatable ifirsta
- integer, dimension(100) mo_transb
- integer, dimension(100) mo_transe
- integer, dimension(100) ih_tran
- integer msdb
- integer iseptic
- real *8, dimension(:), allocatable sptqs
- real *8, dimension(:), allocatable percp
- real *8, dimension(:), allocatable sptbodconcs
- real *8, dimension(:), allocatable spttssconcs
- real *8, dimension(:), allocatable spttnconcs
- real *8, dimension(:), allocatable sptnh4concs
- real *8, dimension(:), allocatable sptno3concs
- real *8, dimension(:), allocatable sptno2concs
- real *8, dimension(:), allocatable sptorgnconcs
- real *8, dimension(:), allocatable spttpconcs
- real *8, dimension(:), allocatable **sptminps**
- real *8, dimension(:), allocatable sptorgps
- real *8, dimension(:), allocatable sptfcolis

```
    real *8, dimension(:), allocatable failyr

• real *8, dimension(:), allocatable qstemm

    real *8, dimension(:), allocatable bio_amn

• real *8, dimension(:), allocatable bio bod

    real *8, dimension(:), allocatable biom

    real *8, dimension(:), allocatable rbiom

• real *8, dimension(:), allocatable fcoli

    real *8, dimension(:), allocatable bio_ntr

    real *8, dimension(:), allocatable bz_perc

    real *8, dimension(:), allocatable sep_cap

      number of permanent residents in the hourse (none)

    real *8, dimension(:), allocatable plqm

  real *8, dimension(:), allocatable bz_area
  real *8, dimension(:), allocatable bz z
      Depth of biozone layer(mm)

    real *8, dimension(:), allocatable bz thk

      thickness of biozone (mm)
  real *8, dimension(:), allocatable bio bd
      density of biomass (kg/m<sup>\(\circ\)</sup>3) carbon outputs for .hru file
  real *8, dimension(:), allocatable cmup_kgh
  real *8, dimension(:), allocatable cmtot_kgh
  real *8, dimension(:), allocatable coeff_denitr
      denitrification rate coefficient (none)

    real *8, dimension(:), allocatable coeff_bod_dc

      BOD decay rate coefficient (m^3/day)

    real *8, dimension(:), allocatable coeff_bod_conv

      BOD to live bacteria biomass conversion factor (none)

    real *8, dimension(:), allocatable coeff_fc1

      field capacity calibration parameter 1 (none)

    real *8, dimension(:), allocatable coeff_fc2

      field capacity calibration parameter 2 (none)

    real *8, dimension(:), allocatable coeff_fecal

      fecal coliform bacteria decay rate coefficient (m<sup>\(\circ\)</sup> 3/day)

    real *8, dimension(:), allocatable coeff mrt

      mortality rate coefficient (none)

    real *8, dimension(:), allocatable coeff_nitr

      nitrification rate coefficient (none)

    real *8, dimension(:), allocatable coeff_plg

      conversion factor for plaque from TDS (none)

    real *8, dimension(:), allocatable coeff_rsp

      respiration rate coefficient (none)

    real *8, dimension(:), allocatable coeff_slg1

      slough-off calibration parameter (none)

    real *8, dimension(:), allocatable coeff_slg2

      slough-off calibration parameter (none)

    real *8, dimension(:), allocatable coeff_pdistrb

  real *8, dimension(:), allocatable coeff solpslp
  real *8, dimension(:), allocatable coeff_solpintc
• real *8, dimension(:), allocatable coeff_psorpmax
  integer, dimension(:), allocatable isep typ
      septic system type (none)

    integer, dimension(:), allocatable i_sep
```

- integer, dimension(:), allocatable isep_opt
 septic system operation flag (1=active, 2=failing, 3=not operated) (none)
- integer, dimension(:), allocatable sep tsincefail
- · integer, dimension(:), allocatable isep_tfail
- · integer, dimension(:), allocatable isep_iyr
- integer, dimension(:), allocatable sep_strm_dist
- integer, dimension(:), allocatable sep_den
- real *8, dimension(:), allocatable sol_sumno3
- real *8, dimension(:), allocatable sol sumsolp
- real *8, dimension(:), allocatable strsw_sum
- real *8, dimension(:), allocatable strstmp sum
- real *8, dimension(:), allocatable strsn_sum
- real *8, dimension(:), allocatable strsp_sum
- real *8, dimension(:), allocatable strsa_sum
- real *8, dimension(:), allocatable spill hru
- real *8, dimension(:), allocatable tile_out
- real *8, dimension(:), allocatable hru_in
- real *8, dimension(:), allocatable spill_precip
- real *8, dimension(:), allocatable pot_seep
- real *8, dimension(:), allocatable pot evap
- real *8, dimension(:), allocatable pot_sedin
- real *8, dimension(:), allocatable pot_solp
- real *8, dimension(:), allocatable pot solpi
- real *8, dimension(:), allocatable pot_orgp
- real *8, dimension(:), allocatable pot_orgpi
- real *8, dimension(:), allocatable pot_orgn
- real *8, dimension(:), allocatable pot orgni
- real *8, dimension(:), allocatable pot_mps
- real *8, dimension(:), allocatable pot_mpsi
- real *8, dimension(:), allocatable pot mpa
- real *8, dimension(:), allocatable pot_mpai
- real *8, dimension(:), allocatable pot_no3i
- real *8, dimension(:), allocatable precip_in
- real *8, dimension(:), allocatable tile_sedo
- real *8, dimension(:), allocatable tile_no3o
- real *8, dimension(:), allocatable tile_solpo
- real *8, dimension(:), allocatable tile_orgno
- real *8, dimension(:), allocatable tile_orgpo
- real *8, dimension(:), allocatable tile_minpso
- real *8, dimension(:), allocatable tile_minpao
- integer ia b
- · integer ihumus
- · integer itemp
- integer isnow
- integer, dimension(41) icolrsv
- · integer, dimension(mhruo) icols
- integer, dimension(mrcho) icolr
- integer, dimension(msubo) icolb
- integer, dimension(46) ipdvar
 - output variable codes for output.rch file
- integer, dimension(mhruo) ipdvas
 - output varaible codes for output.hru file
- integer, dimension(msubo) ipdvab
 - output variable codes for output.sub file

- integer, dimension(:), allocatable ipdhru
 - HRUs whose output information will be printed to the output.hru and output.wtr files.
- real *8, dimension(mstdo) wshddayo
- real *8, dimension(mstdo) wshdmono
- real *8, dimension(mstdo) wshdyro
- real *8, dimension(16) fcstaao
- real *8, dimension(mstdo) wshdaao
- real *8, dimension(:,:), allocatable wpstdayo
- real *8, dimension(:,:), allocatable wpstmono
- real *8, dimension(:,:), allocatable wpstyro
- real *8, dimension(:,:), allocatable yldkg
- real *8, dimension(:,:), allocatable bio_hv
- real *8, dimension(:,:), allocatable wpstaao
- real *8, dimension(:,:), allocatable rchmono
- real *8, dimension(:,:), allocatable rchyro
- real *8, dimension(:,:), allocatable rchaao
- real *8, dimension(:,:), allocatable rchdy
- real *8, dimension(:,:), allocatable hrumono
- real *8, dimension(:,:), allocatable hruyro
- real *8, dimension(:,:), allocatable hruaao
- real *8, dimension(:,:), allocatable submono
- real *8, dimension(:,:), allocatable subyro
- real *8, dimension(:,:), allocatable subaao
- real *8, dimension(:,:), allocatable resoutm
- real *8, dimension(:,:), allocatable resouty
- real *8, dimension(:.:), allocatable resouta
- real *8, dimension(12, 8) wshd_aamon
- real *8, dimension(:,:), allocatable wtrmon
- real *8, dimension(:,:), allocatable wtryr
- real *8, dimension(:,:), allocatable wtraa
- real *8, dimension(:,:), allocatable sub_smfmx

max melt rate for snow during year (June 21) for subbasin(:) where deg C refers to the air temperature. SUB_SMFMX and SMFMN allow the rate of snow melt to vary through the year. These parameters are accounting for the impact of soil temperature on snow melt (range: -5.0/5.0) (mm/deg C/day)

real *8, dimension(:,:), allocatable sub_smfmn

min melt rate for snow during year (Dec 21) for subbasin(:) (range: -5.0/5.0) where deg C refers to the air temperature (mm/deg C/day)

- real *8, dimension(:,:,:), allocatable hrupstd
- real *8, dimension(:,:,:), allocatable hrupsta
- real *8, dimension(:,:,:), allocatable hrupstm
- real *8, dimension(:,:,:), allocatable hrupsty
- · integer, dimension(:), allocatable ifirstt
- integer, dimension(:), allocatable ifirstpcp
- integer, dimension(:), allocatable elevp
- · integer, dimension(:), allocatable elevt
- real *8, dimension(:,:), allocatable ftmpmn

avg monthly minimum air temperature (deg C)

real *8, dimension(:,:), allocatable ftmpmx

avg monthly maximum air temperature (deg C)

real *8, dimension(:,:), allocatable ftmpstdmn

standard deviation for avg monthly minimum air temperature (deg C)

real *8, dimension(:,:), allocatable ftmpstdmx

standard deviation for avg monthly maximum air temperature (deg C)

real *8, dimension(:,:,:), allocatable fpcp_stat

```
fpcp_stat(:,1,:): average amount of precipitation falling in one day for the month (mm/day)
     fpcp_stat(:,2,:): standard deviation for the average daily precipitation (mm/day)
     fpcp_stat(:,3,:): skew coefficient for the average daily precipitationa (none)
 real *8, dimension(:,:), allocatable fpr w1
     probability of wet day after dry day in month (none)

    real *8, dimension(:,:), allocatable fpr w2

     probability of wet day after wet day in month (none)
  real *8, dimension(:,:), allocatable fpr w3
     proportion of wet days in the month (none)
  real *8, dimension(:), allocatable flwin
  real *8, dimension(:), allocatable flwout
  real *8, dimension(:), allocatable bankst
  real *8, dimension(:), allocatable ch_wi
  real *8, dimension(:), allocatable ch d
  real *8, dimension(:), allocatable ch onco
     channel organic n concentration (ppm)
  real *8, dimension(:), allocatable ch_opco
     channel organic p concentration (ppm)
  real *8, dimension(:), allocatable ch orgn
  real *8, dimension(:), allocatable ch orgp
  real *8, dimension(:), allocatable drift
  real *8, dimension(:), allocatable rch_dox
  real *8, dimension(:), allocatable rch bactp
  real *8, dimension(:), allocatable alpha bnk
  real *8, dimension(:), allocatable alpha bnke
  real *8, dimension(:), allocatable disolvp
  real *8, dimension(:), allocatable algae
  real *8, dimension(:), allocatable sedst
  real *8, dimension(:), allocatable rchstor
  real *8, dimension(:), allocatable organicn
  real *8, dimension(:), allocatable organicp
  real *8, dimension(:), allocatable chlora
  real *8, dimension(:), allocatable nitraten
  real *8, dimension(:), allocatable nitriten
  real *8, dimension(:), allocatable ch_li
  real *8, dimension(:), allocatable ch_si
  real *8, dimension(:), allocatable ch_bnk_san
  real *8, dimension(:), allocatable ch_bnk_sil
  real *8, dimension(:), allocatable ch_bnk_cla
  real *8, dimension(:), allocatable ch bnk gra
  real *8, dimension(:), allocatable ch bed san
  real *8, dimension(:), allocatable ch_bed_sil
  real *8, dimension(:), allocatable ch bed cla
  real *8, dimension(:), allocatable ch_bed_gra
  real *8, dimension(:), allocatable depfp
  real *8, dimension(:), allocatable depsanfp
  real *8, dimension(:), allocatable depsilfp
  real *8, dimension(:), allocatable depclafp
  real *8, dimension(:), allocatable depsagfp
  real *8, dimension(:), allocatable deplagfp
  real *8, dimension(:), allocatable depch
  real *8, dimension(:), allocatable depsanch
  real *8, dimension(:), allocatable depsilch
```

real *8, dimension(:), allocatable depclach

- real *8, dimension(:), allocatable depsagch
- real *8, dimension(:), allocatable deplagch
- real *8, dimension(:), allocatable depgrach
- real *8, dimension(:), allocatable depgrafp
- real *8, dimension(:), allocatable grast
- real *8, dimension(:), allocatable depprch
- real *8, dimension(:), allocatable depprfp
- real *8, dimension(:), allocatable prf
- real *8, dimension(:), allocatable r2adi
- real *8, dimension(:), allocatable spcon

linear parameter for calculating sediment reentrained in channel sediment routing

real *8, dimension(:), allocatable spexp

exponent parameter for calculating sediment reentrained in channel sediment routing

- real *8, dimension(:), allocatable sanst
- real *8, dimension(:), allocatable silst
- real *8, dimension(:), allocatable clast
- real *8, dimension(:), allocatable sagst
- real *8, dimension(:), allocatable lagst
- real *8, dimension(:), allocatable pot_san
- real *8, dimension(:), allocatable pot_sil
- real *8, dimension(:), allocatable pot_cla
- real *8, dimension(:), allocatable pot_sag
- real *8, dimension(:), allocatable pot_lag
- real *8, dimension(:), allocatable potsani
- real *8, dimension(:), allocatable potsali
- real *8, dimension(:), allocatable potclai
- real *8, dimension(:), allocatable potsagi
- real *8, dimension(:), allocatable **potlagi**
- real *8, dimension(:), allocatable sanyld
- real *8, dimension(:), allocatable silyld
- real *8, dimension(:), allocatable clayId
- real *8, dimension(:), allocatable sagyld
- real *8, dimension(:), allocatable lagyld
- real *8, dimension(:), allocatable grayId
- real *8, dimension(:), allocatable res_san
- real *8, dimension(:), allocatable res_sil
- real *8, dimension(:), allocatable res_cla
- real *8, dimension(:), allocatable res_sag
- real *8, dimension(:), allocatable res_lag
- real *8, dimension(:), allocatable res_gra
- real *8, dimension(:), allocatable pnd_san
- real *8, dimension(:), allocatable pnd_sil
- real *8, dimension(:), allocatable pnd_cla
- real *8, dimension(:), allocatable pnd_sag
- real *8, dimension(:), allocatable pnd_lag
- real *8, dimension(:), allocatable wet_san
- real *8, dimension(:), allocatable wet_sil
- real *8, dimension(:), allocatable wet_cla
- real *8, dimension(:), allocatable wet_lag
- real *8, dimension(:), allocatable wet_sag
- real *8 ressano
- real *8 ressilo
- real *8 resclao
- real *8 ressago

- · real *8 reslago
- real *8 resgrao
- real *8 ressani
- real *8 ressili
- · real *8 resclai
- real *8 ressagi
- real *8 reslagi
- real *8 resgrai
- real *8 potsano
- real *8 potsilo
- real *8 potclao
- real *8 potsago
- real *8 potlago
- real *8 pndsanin
- real *8 pndsilin
- real *8 pndclain
- real *8 pndsagin
- real *8 pndlagin
- real *8 pndsano
- real *8 pndsilo
- · real *8 pndclao
- real *8 pndsago
- real *8 pndlago
- real *8, dimension(:), allocatable ch_di
- real *8, dimension(:), allocatable ch_erod
- real *8, dimension(:), allocatable ch_l2
- real *8, dimension(:), allocatable ch_cov
- real *8, dimension(:), allocatable ch_cov1
- real *8, dimension(:), allocatable ch_cov2
- real *8, dimension(:), allocatable ch_bnk_bd
- real *8, dimension(:), allocatable ch bed bd
- real *8, dimension(:), allocatable ch_bnk_kd
- real *8, dimension(:), allocatable ch_bed_kd
- real *8, dimension(:), allocatable **ch_bnk_d50**
- real *8, dimension(:), allocatable ch_bed_d50
- real *8, dimension(:), allocatable tc_bed
- real *8, dimension(:), allocatable tc_bnk
- integer, dimension(:), allocatable ch_eqn
- real *8, dimension(:), allocatable chpst_conc
- real *8, dimension(:), allocatable chpst_rea
- real *8, dimension(:), allocatable chpst vol
- real *8, dimension(:), allocatable chpst_koc
- real *8, dimension(:), allocatable chpst_stl
- real *8, dimension(:), allocatable chpst_rsp
- real *8, dimension(:), allocatable chpst_mix
- real *8, dimension(:), allocatable sedpst_conc
- real *8, dimension(:), allocatable ch wdr
- real *8, dimension(:), allocatable sedpst_rea
- real *8, dimension(:), allocatable sedpst_bry
- real *8, dimension(:), allocatable sedpst_act
- real *8, dimension(:), allocatable rch_cbod
- real *8, dimension(:), allocatable rch_bactlp
- real *8, dimension(:), allocatable chside
- real *8, dimension(:), allocatable rs1
- real *8, dimension(:), allocatable rs2

```
    real *8, dimension(:), allocatable rs3

• real *8, dimension(:), allocatable rs4
• real *8, dimension(:), allocatable rs5
• real *8, dimension(:), allocatable rs6

    real *8, dimension(:), allocatable rs7

    real *8, dimension(:), allocatable rk1

    real *8, dimension(:), allocatable rk2

• real *8, dimension(:), allocatable rk3
• real *8, dimension(:), allocatable rk4
• real *8, dimension(:), allocatable rk5

    real *8, dimension(:), allocatable bc1

      rate constant for biological oxidation of NH3 to NO2 in reach at 20 deg C (1/hr)
• real *8, dimension(:), allocatable bc2
      rate constant for biological oxidation of NO2 to NO3 in reach at 20 deg C (1/hr)

    real *8, dimension(:), allocatable bc3

      rate constant for hydrolysis of organic N to ammonia in reach at 20 deg C (1/hr)

    real *8, dimension(:), allocatable bc4

      rate constant for the decay of organic P to dissolved P in reach at 20 deg C (1/hr)

    real *8, dimension(:), allocatable rk6

    real *8, dimension(:), allocatable ammonian

  real *8, dimension(:), allocatable orig_sedpstconc

    real *8, dimension(:,:), allocatable wurch

• integer, dimension(:), allocatable icanal

    integer, dimension(:), allocatable itb

    real *8, dimension(:), allocatable ch_revap

    real *8, dimension(:), allocatable dep_chan

    real *8, dimension(:), allocatable harg_petco

      coefficient related to radiation used in hargreaves eq (range: 0.0019 - 0.0032)

    real *8, dimension(:), allocatable subfr_nowtr

  real *8, dimension(:), allocatable cncoef sub
      soil water depletion coefficient used in the new (modified curve number method) same as soil index coeff used in
      APEX range: 0.5 - 2.0
real *8, dimension(:), allocatable dr_sub
• real *8, dimension(:), allocatable wcklsp

    real *8, dimension(:), allocatable sub_fr

    real *8, dimension(:), allocatable sub_minp

    real *8, dimension(:), allocatable sub sw

• real *8, dimension(:), allocatable sub_sumfc

    real *8, dimension(:), allocatable sub gwno3

    real *8, dimension(:), allocatable sub_gwsolp

• real *8, dimension(:), allocatable co2
      CO2 concentration (ppmv)

    real *8, dimension(:), allocatable sub km

      area of subbasin in square kilometers (km^2)

    real *8, dimension(:), allocatable sub_tc

• real *8, dimension(:), allocatable wlat
• real *8, dimension(:), allocatable sub_pet

    real *8, dimension(:), allocatable welev

    real *8, dimension(:), allocatable sub_orgn

    real *8, dimension(:), allocatable sub_orgp
```

real *8, dimension(:), allocatable sub_bd

```
    real *8, dimension(:), allocatable sub wtmp

    real *8, dimension(:), allocatable sub sedpa

real *8, dimension(:), allocatable sub_sedps
• real *8, dimension(:), allocatable sub minpa

    real *8, dimension(:), allocatable sub minps

    real *8, dimension(:), allocatable daylmn

    real *8, dimension(:), allocatable latcos

    real *8, dimension(:), allocatable latsin

  real *8, dimension(:), allocatable phutot
 real *8, dimension(:), allocatable plaps
     precipitation lapse rate: precipitation change due to change in elevation (mm H2O/km)

    real *8, dimension(:), allocatable tlaps

      temperature lapse rate: temperature change due to change in elevation (deg C/km)

    real *8, dimension(:), allocatable tmp_an

    real *8, dimension(:), allocatable sub precip

  real *8, dimension(:), allocatable pcpdays

    real *8, dimension(:), allocatable rcn sub

    real *8, dimension(:), allocatable rammo_sub

    real *8, dimension(:), allocatable atmo day

    real *8, dimension(:), allocatable sub snom

    real *8, dimension(:), allocatable sub_qd

    real *8, dimension(:), allocatable sub sedy

    real *8, dimension(:), allocatable sub_tran

• real *8, dimension(:), allocatable sub_no3
  real *8, dimension(:), allocatable sub latno3

    real *8, dimension(:,:), allocatable sub_sftmp

      snowfall temperature for subbasin(:). Mean air temperature at which precip is equally likely to be rain as snow/freezing
     rain (range: -5.0/5.0) (deg C)

    real *8, dimension(:,:), allocatable sub_smtmp

      snow melt base temperature for subbasin(:) mean air temperature at which snow melt will occur (range: -5.0/5.0)
      (dea C)

    real *8, dimension(:,:), allocatable sub_timp

      snow pack temperature lag factor (0-1) (none)

    real *8, dimension(:), allocatable sub_tileno3

real *8, dimension(:), allocatable sub_solp

    real *8, dimension(:), allocatable sub subp

    real *8, dimension(:), allocatable sub_etday

    real *8, dimension(:), allocatable sub_elev

      average elevation of subbasin (m)

    real *8, dimension(:), allocatable sub wyld

    real *8, dimension(:), allocatable sub_surfq

  real *8, dimension(:), allocatable gird

    real *8, dimension(:), allocatable sub_gwq

    real *8, dimension(:), allocatable sub_sep

    real *8, dimension(:), allocatable sub_chl

• real *8, dimension(:), allocatable sub cbod

    real *8, dimension(:), allocatable sub dox

    real *8, dimension(:), allocatable sub_solpst

    real *8, dimension(:), allocatable sub sorpst

    real *8, dimension(:), allocatable sub_yorgn

    real *8, dimension(:), allocatable sub_yorgp

  real *8, dimension(:), allocatable sub_lat
      latitude of subbasin (degrees)
```

real *8, dimension(:), allocatable sub_bactp

- real *8, dimension(:), allocatable sub_bactlp
- real *8, dimension(:), allocatable sub_latq
- real *8, dimension(:), allocatable sub_gwq_d
- real *8, dimension(:), allocatable sub_tileq
- real *8, dimension(:), allocatable sub_vaptile
- real *8, dimension(:), allocatable sub_dsan
- real *8, dimension(:), allocatable sub dsil
- real *8, dimension(:), allocatable sub_dcla
- real *8, dimension(:), allocatable sub_dsag
- real *8, dimension(:), allocatable sub dlag
- real *8 vap tile
- real *8, dimension(:), allocatable wnan
- real *8, dimension(:,:), allocatable sol_stpwt
- real *8, dimension(:,:), allocatable sub_pst
- real *8, dimension(:,:), allocatable sub_hhqd
- real *8, dimension(:,:), allocatable sub_hhwtmp
- real *8, dimension(:,:), allocatable huminc

monthly humidity adjustment. Daily values for relative humidity within the month are rasied or lowered by the specified amount (used in climate change studies) (none)

• real *8, dimension(:,:), allocatable radinc

monthly solar radiation adjustment. Daily radiation within the month is raised or lowered by the specified amount. (used in climate change studies) (MJ/m^2)

real *8, dimension(:,:), allocatable rfinc

monthly rainfall adjustment. Daily rainfall within the month is adjusted to the specified percentage of the original value (used in climate change studies)(%)

• real *8, dimension(:,:), allocatable tmpinc

monthly temperature adjustment. Daily maximum and minimum temperatures within the month are raised or lowered by the specified amount (used in climate change studies) (deg C)

real *8, dimension(:), allocatable ch_k1

effective hydraulic conductivity of tributary channel alluvium (mm/hr)

- real *8, dimension(:), allocatable ch_k2
- real *8, dimension(:,:), allocatable elevb

elevation at the center of the band (m)

real *8, dimension(:,:), allocatable elevb_fr

fraction of subbasin area within elevation band (the same fractions should be listed for all HRUs within the subbasin) (none)

- real *8, dimension(:,:), allocatable wndav
- real *8, dimension(:), allocatable ch_n1

Manning's "n" value for the tributary channels (none)

- real *8, dimension(:), allocatable ch_n2
- real *8, dimension(:), allocatable ch_s1

average slope of tributary channels (m/m)

- real *8, dimension(:), allocatable ch_s2
- real *8, dimension(:), allocatable ch_w1

average width of tributary channels (m)

- real *8, dimension(:), allocatable ch_w2
- real *8, dimension(:,:), allocatable dewpt
- real *8, dimension(:,:), allocatable amp_r
- real *8, dimension(:,:), allocatable solarav
- real *8, dimension(:,:), allocatable tmpstdmx
- real *8, dimension(:,:), allocatable tmpstdmn
- real *8, dimension(:,:), allocatable pcf
- real *8, dimension(:,:), allocatable tmpmn
- real *8, dimension(:,:), allocatable tmpmx

```
• real *8, dimension(:,:), allocatable otmpstdmn
```

- real *8, dimension(:,:), allocatable otmpmn
- real *8, dimension(:,:), allocatable otmpmx
- real *8, dimension(:,:), allocatable otmpstdmx
- real *8, dimension(:,:), allocatable ch_erodmo
- real *8, dimension(:,:), allocatable uh
- real *8, dimension(:,:), allocatable hqdsave
- real *8, dimension(:,:), allocatable hsdsave
- real *8, dimension(:,:), allocatable pr_w1
- real *8, dimension(:,:), allocatable pr_w2
- real *8, dimension(:,:), allocatable pr w3
- real *8, dimension(:,:,:), allocatable pcp_stat
- real *8, dimension(:,:), allocatable opr_w1
- real *8, dimension(:,:), allocatable opr_w2
- real *8, dimension(:,:), allocatable opr_w3
- real *8, dimension(:,:,:), allocatable opcp_stat
- integer, dimension(:), allocatable hrutot
- · integer, dimension(:), allocatable hru1
- integer, dimension(:), allocatable ireg
- integer, dimension(:), allocatable ihgage

subbasin relative humidity data code (none)

• integer, dimension(:), allocatable isgage

subbasin radiation gage data code (none)

• integer, dimension(:), allocatable iwgage

subbasin wind speed gage data code (none)

• integer, dimension(:), allocatable subgis

GIS code printed to output files (output.sub) (none.

integer, dimension(:), allocatable irgage

subbasin rain gage data code (none)

• integer, dimension(:), allocatable itgage

subbasin temp gage data code (none)

- integer, dimension(:), allocatable fcst_reg
- integer, dimension(:), allocatable irelh
- real *8, dimension(:,:), allocatable sol_aorgn
- real *8, dimension(:,:), allocatable sol_tmp
- real *8, dimension(:,:), allocatable sol_fon
- real *8, dimension(:,:), allocatable sol_awc
- real *8, dimension(:,:), allocatable sol_prk
- real *8, dimension(:,:), allocatable volcr
- real *8, dimension(:,:), allocatable pperco_sub

subbasin phosphorus percolation coefficient. Ratio of soluble phosphorus in surface to soluble phosphorus in percolate

- real *8, dimension(:,:), allocatable sol_actp
- real *8, dimension(:,:), allocatable sol_stap
- real *8, dimension(:,:), allocatable conv_wt
- real *8, dimension(:,:), allocatable sol_solp

soluble P concentration in top soil layer (mg P/kg soil)

- real *8, dimension(:,:), allocatable sol_ul
- real *8, dimension(:,:), allocatable sol fc
- real *8, dimension(:,:), allocatable crdep
- real *8, dimension(:,:), allocatable sol z
- real *8, dimension(:,:), allocatable sol up
- real *8, dimension(:,:), allocatable sol_bd

 real *8, dimension(:,:), allocatable sol_st • real *8, dimension(:,:), allocatable flat real *8, dimension(:,:), allocatable sol_nh3 real *8, dimension(:,:), allocatable sol_hk real *8, dimension(:,:), allocatable sol clay real *8, dimension(:,:), allocatable sol_ec real *8, dimension(:,:), allocatable sol_orgn organic N concentration in top soil layer (mg N/kg soil) real *8. dimension(:::), allocatable sol por real *8, dimension(:,:), allocatable sol wp real *8, dimension(:,:), allocatable sol_orgp organic P concentration in top soil layer (mg P/kg soil) real *8, dimension(:,:), allocatable sol hum real *8, dimension(:,:), allocatable sol_wpmm real *8, dimension(:,:), allocatable sol no3 concentration of nitrate in soil layer (mg N/kg) real *8, dimension(:,:), allocatable sol k real *8, dimension(:,:), allocatable sol_cbn real *8, dimension(:,:), allocatable sol rsd real *8, dimension(:,:), allocatable sol fop real *8, dimension(:,:), allocatable sol_silt real *8, dimension(:,:), allocatable sol_sand real *8, dimension(:,:), allocatable sol_rock real *8, dimension(:,:), allocatable orig solno3 real *8, dimension(:,:), allocatable orig solorgn real *8, dimension(:,:), allocatable orig_solsolp real *8, dimension(:,:), allocatable orig solorgp real *8, dimension(:,:), allocatable orig soltmp real *8, dimension(:,:), allocatable orig solrsd real *8, dimension(:,:), allocatable orig solfop real *8, dimension(:,:), allocatable orig_solfon real *8, dimension(:,:), allocatable orig solaorgn real *8, dimension(:,:), allocatable orig_solst real *8, dimension(:,:), allocatable orig solactp real *8, dimension(:,:), allocatable orig solstap real *8, dimension(:,:), allocatable orig_volcr real *8, dimension(:,:), allocatable conk real *8, dimension(:,:,:), allocatable sol_pst sol pst(:,:,1) pesticide concentration in soil (mg/kg) real *8, dimension(:,:,:), allocatable sol_kp real *8, dimension(:,:,:), allocatable orig_solpst real *8, dimension(:), allocatable velsetlr real *8, dimension(:), allocatable velsetlp real *8, dimension(:), allocatable br1 real *8, dimension(:), allocatable res k real *8, dimension(:), allocatable Ikpst conc real *8, dimension(:), allocatable evrsv real *8, dimension(:), allocatable res_evol real *8, dimension(:), allocatable res_pvol • real *8, dimension(:), allocatable res_vol real *8, dimension(:), allocatable res psa real *8, dimension(:), allocatable lkpst_rea real *8, dimension(:), allocatable lkpst vol

real *8, dimension(:), allocatable br2

- real *8, dimension(:), allocatable res_rr
- real *8, dimension(:), allocatable res sed
- real *8, dimension(:), allocatable lkpst_koc
- real *8, dimension(:), allocatable lkpst stl
- real *8, dimension(:), allocatable lkpst_rsp
- real *8, dimension(:), allocatable lkpst_mix
- real *8, dimension(:), allocatable lkspst conc
- real *8, dimension(:), allocatable lkspst_rea
- real *8, dimension(:), allocatable theta n
- real *8, dimension(:), allocatable theta p
- · real *8, dimension(:), allocatable con_nirr
- real *8, dimension(:), allocatable con_pirr
- real *8, dimension(:), allocatable lkspst_bry
- real *8, dimension(:), allocatable lkspst_act
- real *8, dimension(:), allocatable sed_stlr
- real *8, dimension(7) resdata
- real *8, dimension(:), allocatable wurtnf
- real *8, dimension(:), allocatable res nsed
- real *8, dimension(:), allocatable chlar
- real *8, dimension(:), allocatable res_orgn
- real *8, dimension(:), allocatable res_orgp
- real *8, dimension(:), allocatable res no3
- real *8, dimension(:), allocatable res_solp
- real *8, dimension(:), allocatable res_chla
- real *8, dimension(:), allocatable res_seci
- real *8, dimension(:), allocatable res_esa
- real *8, dimension(:), allocatable seccir
- real *8, dimension(:), allocatable res_no2
- real *8, dimension(:), allocatable res_nh3
- real *8, dimension(:), allocatable res_bactp
- real *8, dimension(:), allocatable res_bactlp
- real *8, dimension(:), allocatable oflowmn_fps
- real *8, dimension(:), allocatable **starg_fps**
- real *8, dimension(:), allocatable weirc
 real *8, dimension(:), allocatable weirk
- real *8, dimension(:), allocatable weirw
- real *8, dimension(:), allocatable acoef
- real *8, dimension(:), allocatable bcoef
- real *8, dimension(:), allocatable ccoef
- real *8, dimension(:), allocatable orig_resvol
- real *8, dimension(:), allocatable orig ressed
- real *8, dimension(:), allocatable orig_lkpstconc
- real *8, dimension(:), allocatable orig_lkspstconc
- real *8, dimension(:), allocatable orig_ressolp
- real *8, dimension(:), allocatable orig_resorgp
- real *8, dimension(:), allocatable orig_resno3
- real *8, dimension(:), allocatable orig_resno2
- real *8, dimension(:), allocatable orig_resnh3
- real *8, dimension(:), allocatable orig_resorgn
- real *8, dimension(:,:), allocatable starg
- real *8, dimension(:,:), allocatable oflowmx
- · real *8, dimension(:,:), allocatable oflowmn
- real *8, dimension(:), allocatable psetIr1
- real *8, dimension(:), allocatable psetlr2
- real *8, dimension(:), allocatable nsetIr1

```
    real *8, dimension(:), allocatable nsetlr2

• real *8, dimension(:,:), allocatable wuresn
• real *8, dimension(:,:,:), allocatable res_out

    integer, dimension(:), allocatable ires1

• integer, dimension(:), allocatable ires2

    integer, dimension(:), allocatable res_sub

· integer, dimension(:), allocatable iresco
• integer, dimension(:), allocatable mores
• integer, dimension(:), allocatable iyres
• integer, dimension(:), allocatable iflod1r

    integer, dimension(:), allocatable iflod2r

• integer, dimension(:), allocatable ndtargr

    real *8, dimension(:), allocatable ap ef

      application efficiency (0-1) (none)

    real *8, dimension(:), allocatable decay f

      exponential of the rate constant for degradation of the pesticide on foliage (none)
• real *8, dimension(:), allocatable skoc
      soil adsorption coefficient normalized for soil organic carbon content ((mg/kg)/(mg/L))

    real *8, dimension(:), allocatable decay s

      exponential of the rate constant for degradation of the pesticide in soil (none)

    real *8, dimension(:), allocatable hlife f

      half-life of pesticide on foliage (days)

    real *8, dimension(:), allocatable hlife s

      half-life of pesticide in soil (days)

    real *8, dimension(:), allocatable pst wof

      fraction of pesticide on foliage which is washed-off by a rainfall event (none)

    real *8, dimension(:), allocatable pst_wsol

      solubility of chemical in water (mg/L (ppm))

    real *8, dimension(:), allocatable irramt

    real *8, dimension(:), allocatable phusw

  real *8, dimension(:), allocatable phusw nocrop

    integer, dimension(:), allocatable pstflg

      flag for types of pesticide used in watershed array location is pesticide ID number
      0: pesticide not used
      1: pesticide used
• integer, dimension(:), allocatable nope
      sequence number of pesticide in NPNO(:) (none)
• integer, dimension(:), allocatable nop
• integer, dimension(:), allocatable vr skip

    integer, dimension(:), allocatable isweep

• integer, dimension(:), allocatable icrmx

    integer, dimension(:), allocatable nopmx

• integer, dimension(:,:), allocatable mgtop
• integer, dimension(:,:), allocatable idop

    integer, dimension(:,:), allocatable mgt1iop

    integer, dimension(:,:), allocatable mgt2iop

    integer, dimension(:,:), allocatable mgt3iop

    real *8, dimension(:,:), allocatable mgt4op

• real *8, dimension(:,:), allocatable mgt5op

    real *8, dimension(:,:), allocatable mgt6op

    real *8, dimension(:,:), allocatable mgt7op

 real *8, dimension(:,:), allocatable mgt8op
```

real *8, dimension(:,:), allocatable mgt9op

```
• real *8, dimension(:,:), allocatable mgt10iop
real *8, dimension(:,:), allocatable phu_op

    real *8, dimension(:), allocatable cnyld

      fraction of nitrogen in yield (kg N/kg yield)

    real *8, dimension(:), allocatable rsdco pl

     plant residue decomposition coefficient. The fraction of residue which will decompose in a day assuming optimal
     moisture, temperature, C:N ratio, and C:P ratio (none)

    real *8, dimension(:), allocatable wac21

      1st shape parameter for radiation use efficiency equation (none)

    real *8, dimension(:), allocatable wac22

      2nd shape parameter for radiation use efficiency equation (none)

    real *8, dimension(:), allocatable alai_min

     minimum LAI during winter dormant period (m^2/m^2)

    real *8, dimension(:), allocatable leaf1

      1st shape parameter for leaf area development equation (none)

    real *8, dimension(:), allocatable leaf2

      2nd shape parameter for leaf area development equation (none)
• real *8, dimension(:), allocatable wsyf
      Value of harvest index between 0 and HVSTI which represents the lowest value expected due to water stress
      ((kg/ha)/(kg/ha))
• real *8, dimension(:), allocatable bio_e
      biomass-energy ratio. The potential (unstressed) growth rate per unit of intercepted photosynthetically active
      radiation.((kg/ha)/(MJ/m**2))
• real *8, dimension(:), allocatable hvsti
      harvest index: crop yield/aboveground biomass ((kg/ha)/(kg/ha))

    real *8, dimension(:), allocatable t_base

      minimum temperature for plant growth (deg C)

    real *8, dimension(:), allocatable t opt

      optimal temperature for plant growth (deg C)

    real *8, dimension(:), allocatable chtmx

      maximum canopy height (m)

    real *8, dimension(:), allocatable cvm

      natural log of USLE_C (none)

    real *8, dimension(:), allocatable gsi

     maximum stomatal conductance (m/s)

    real *8, dimension(:), allocatable vpd2

      rate of decline in stomatal conductance per unit increase in vapor pressure deficit ((m/s)*(1/kPa))

    real *8, dimension(:), allocatable wavp

      rate of decline in radiation use efficiency as a function of vapor pressure deficit (none)

    real *8, dimension(:), allocatable bio leaf

      fraction of leaf/needle biomass that drops during dormancy (for trees only) (none)
• real *8, dimension(:), allocatable blai
     maximum (potential) leaf area index (none)

    real *8, dimension(:), allocatable cpyld

      fraction of phosphorus in yield (kg P/kg yield)

    real *8, dimension(:), allocatable dlai

      fraction of growing season when leaf area declines (none)

    real *8, dimension(:), allocatable rdmx

     maximum root depth (m)

    real *8, dimension(:), allocatable bio n1

      1st shape parameter for plant N uptake equation (none)
```

```
    real *8, dimension(:), allocatable bio_n2

      2nd shape parameter for plant N uptake equation (none)

    real *8, dimension(:), allocatable bio p1

      1st shape parameter for plant P uptake equation (none)

    real *8, dimension(:), allocatable bio_p2

      2st shape parameter for plant P uptake equation (none)
• real *8, dimension(:), allocatable bm dieoff
      fraction above ground biomass that dies off at dormancy (fraction)

    real *8, dimension(:), allocatable bmx_trees

  real *8, dimension(:), allocatable ext_coef
  real *8, dimension(:), allocatable rsr1
      initial root to shoot ratio at the beg of growing season

    real *8, dimension(:), allocatable rsr2

      root to shoot ratio at the end of the growing season

    real *8, dimension(:), allocatable pltnfr1

      nitrogen uptake parameter #1: normal fraction of N in crop biomass at emergence (kg N/kg biomass)

    real *8, dimension(:), allocatable pltnfr2

      nitrogen uptake parameter #2: normal fraction of N in crop biomass at 0.5 maturity (kg N/kg biomass)

    real *8, dimension(:), allocatable pltnfr3

      nitrogen uptake parameter #3: normal fraction of N in crop biomass at maturity (kg N/kg biomass)

    real *8, dimension(:), allocatable pltpfr1

      phosphorus uptake parameter #1: normal fraction of P in crop biomass at emergence (kg P/kg biomass)

    real *8, dimension(:), allocatable pltpfr2

      phosphorus uptake parameter #2: normal fraction of P in crop biomass at 0.5 maturity (kg P/kg biomass)

    real *8, dimension(:), allocatable pltpfr3

      phosphorus uptake parameter #3: normal fraction of P in crop biomass at maturity (kg P/kg biomass)

    integer, dimension(:), allocatable idc

      crop/landcover category:
      1 warm season annual legume
      2 cold season annual legume
      3 perennial legume
      4 warm season annual
      5 cold season annual
      6 perennial
      7 trees
integer, dimension(:), allocatable mat_yrs
  real *8, dimension(:), allocatable bactpdb
      concentration of persistent bacteria in manure (fertilizer) (cfu/g manure)

    real *8, dimension(:), allocatable fminn

      fraction of mineral N (NO3 + NH3) (kg minN/kg fert)

    real *8, dimension(:), allocatable forgn

      fraction of organic N (kg orgN/kg fert)

    real *8, dimension(:), allocatable forgp

      fraction of organic P (kg orgP/kg fert)

    real *8, dimension(:), allocatable bactkddb

      bacteria partition coefficient (none):
      1: all bacteria in solution
      0: all bacteria sorbed to soil particles

    real *8, dimension(:), allocatable bactlpdb

      concentration of less persistent bacteria in manure (fertilizer) (cfu/g manure)
  real *8, dimension(:), allocatable fminp
```

fraction of mineral P (kg minP/kg fert)

real *8, dimension(:), allocatable fnh3n
 fraction of NH3-N in mineral N (kg NH3-N/kg minN)

• character(len=8), dimension(200) fertnm

name of fertilizer

• real *8, dimension(:), allocatable curbden

curb length density in HRU (km/ha)

real *8, dimension(:), allocatable dirtmx

maximum amount of solids allowed to build up on impervious surfaces (kg/curb km)

real *8, dimension(:), allocatable fimp

fraction of HRU area that is impervious (both directly and indirectly connected)(fraction)

• real *8, dimension(:), allocatable urbcoef

wash-off coefficient for removal of constituents from an impervious surface (1/mm)

real *8, dimension(:), allocatable thalf

time for the amount of solids on impervious areas to build up to 1/2 the maximum level (days)

• real *8, dimension(:), allocatable tnconc

concentration of total nitrogen in suspended solid load from impervious areas (mg N/kg sed)

real *8, dimension(:), allocatable tno3conc

concentration of NO3-N in suspended solid load from impervious areas (mg NO3-N/kg sed)

real *8, dimension(:), allocatable tpconc

concentration of total phosphorus in suspended solid load from impervious areas (mg P/kg sed)

real *8, dimension(:), allocatable fcimp

fraction of HRU area that is classified as directly connected impervious (fraction)

• real *8, dimension(:), allocatable urbcn2

SCS curve number for moisture condition II in impervious areas (none)

- · real *8 sweepeff
- real *8 frt_kg
- real *8 pst dep
- real *8 fr curb
- real *8, dimension(:), allocatable ranrns_hru
- · integer, dimension(:), allocatable itill
- real *8, dimension(:), allocatable deptil

depth of mixing caused by operation (mm)

real *8, dimension(:), allocatable effmix

mixing efficiency of operation (none)

real *8, dimension(:), allocatable ranrns

random roughness of a given tillage operation (mm)

• character(len=8), dimension(550) tillnm

8-character name for the tillage operation

real *8, dimension(:), allocatable rnum1s

For ICODES equal to (none)

0,1,3,5,9: not used

2: Fraction of flow in channel

4: amount of water transferred (as defined by INUM4S)

7,8,10,11: drainage area in square kilometers associated with the record file.

- real *8, dimension(:), allocatable hyd_dakm
- real *8, dimension(:,:), allocatable varoute
- real *8, dimension(:,:), allocatable shyd
- real *8, dimension(:,:), allocatable vartran
- real *8, dimension(:,:,:), allocatable hhvaroute
- integer, dimension(:), allocatable icodes

```
routing command code (none):
     0 = finish
      1 = subbasin
     2 = route
     3 = routres
      4 = transfer
      5 = add
      6 = rechour
      7 = recmon
     8 = recyear
      9 = save
      10 = recday
      11 = reccnst
      12 = structure
      13 = apex
      14 = saveconc
      15 =
· integer, dimension(:), allocatable ihouts
      For ICODES equal to (none)
      0: not used
      1,2,3,5,7,8,10,11: hydrograph storage location number
      4: departure type (1=reach, 2=reservoir)
     9: hydrograph storage location of data to be printed to event file
      14:hydrograph storage location of data to be printed to saveconc file.
· integer, dimension(:), allocatable inum1s
     For ICODES equal to (none)
     0: not used
      1: subbasin number
     2: reach number
     3: reservoir number
      4: reach or res # flow is diverted from
     5: hydrograph storage location of 1st dataset to be added
      7,8,9,10,11,14: file number.
• integer, dimension(:), allocatable inum2s
     For ICODES equal to (none)
     0,1,7,8,10,11: not used
     2,3: inflow hydrograph storage location
      4: destination type (1=reach, 2=reservoir)
      5: hydrograph storage location of 2nd dataset to be added
      9,14:print frequency (0=daily, 1=hourly)
• integer, dimension(:), allocatable inum3s
      For ICODES equal to (none)
      0,1,2,3,5,7,8,10,11: not used
     4: destination number. Reach or reservoir receiving water
      9: print format (0=normal, fixed format; 1=txt format for AV interface, recday)
· integer, dimension(:), allocatable inum4s
     For ICODES equal to (none)
     0.2.3.5.7.8.9.10.11: not used
      1: GIS code printed to output file (optional)
      4: rule code governing transfer of water (1=fraction transferred out, 2=min volume or flow left, 3=exact amount trans-
      ferred)
• integer, dimension(:), allocatable inum5s

    integer, dimension(:), allocatable inum6s

• integer, dimension(:), allocatable inum7s
· integer, dimension(:), allocatable inum8s
· integer, dimension(:), allocatable subed
• character(len=10), dimension(:), allocatable recmonps

    character(len=10), dimension(:), allocatable recenstps

    character(len=5), dimension(:), allocatable subnum
```

character(len=4), dimension(:), allocatable hruno

- real *8, dimension(:), allocatable grwat_n
- real *8, dimension(:), allocatable grwat_i
- real *8, dimension(:), allocatable grwat_l
- real *8, dimension(:), allocatable grwat_w
- real *8, dimension(:), allocatable grwat d
- real *8, dimension(:), allocatable grwat_s
- real *8, dimension(:), allocatable grwat_spcon
- real *8, dimension(:), allocatable tc_gwat
- real *8, dimension(:), allocatable pot_volmm
- real *8, dimension(:), allocatable pot tilemm
- real *8, dimension(:), allocatable pot_volxmm
- real *8, dimension(:), allocatable pot_fr
- real *8, dimension(:), allocatable pot_tile
- real *8, dimension(:), allocatable pot vol
- real *8, dimension(:), allocatable potsa
- real *8, dimension(:), allocatable pot volx
- real *8, dimension(:), allocatable potflwi
- real *8, dimension(:), allocatable potsedi
- real *8, dimension(:), allocatable wfsh
- real *8, dimension(:), allocatable pot_nsed
- real *8, dimension(:), allocatable pot no3l
- real *8, dimension(:), allocatable newrti
- real *8, dimension(:), allocatable gwno3
- real *8, dimension(:), allocatable pot_sed
- real *8, dimension(:), allocatable pot_no3
- real *8, dimension(:), allocatable fsred
- real *8, dimension(:), allocatable tmpavp
- real *8, dimension(:), allocatable evpot
- real *8, dimension(:), allocatable dis_stream
- real *8, dimension(:), allocatable pot_solpl
- real *8, dimension(:), allocatable **sed_con**
- real *8, dimension(:), allocatable orgn_con
- real *8, dimension(:), allocatable orgp_con
- real *8, dimension(:), allocatable soln_con
- real *8, dimension(:), allocatable solp_con
- real *8, dimension(:), allocatable pot k
- real *8, dimension(:), allocatable n_reduc
- real *8, dimension(:), allocatable n_lag
- real *8, dimension(:), allocatable n In
- real *8, dimension(:), allocatable n_Inco
- · integer, dimension(:), allocatable ioper
- · integer, dimension(:), allocatable ngrwat
- real *8, dimension(:), allocatable filterw
- real *8, dimension(:), allocatable sumix
- real *8, dimension(:), allocatable usle_ls
- real *8, dimension(:), allocatable phuacc
- real *8, dimension(:), allocatable epco
 - plant water uptake compensation factor (0-1)
- real *8, dimension(:), allocatable esco
 - soil evaporation compensation factor (0-1)
- real *8, dimension(:), allocatable slsubbsn
- real *8, dimension(:), allocatable hru_slp
- real *8, dimension(:), allocatable erorgn
- real *8, dimension(:), allocatable erorgp

- real *8, dimension(:), allocatable biomix
- real *8, dimension(:), allocatable pnd_seci
- · real *8, dimension(:), allocatable flowmin
- real *8, dimension(:), allocatable divmax
- real *8, dimension(:), allocatable canmx
- real *8, dimension(:), allocatable usle_p
- real *8, dimension(:), allocatable lat_sed
- real *8, dimension(:), allocatable rch_dakm
- real *8, dimension(:), allocatable pnd_no3s
- real *8, dimension(:), allocatable cn1
- real *8, dimension(:), allocatable cn2
- real *8, dimension(:), allocatable lat_ttime
- real *8, dimension(:), allocatable flowfr
- real *8, dimension(:), allocatable sol_zmx
- · real *8, dimension(:), allocatable tile ttime
- real *8, dimension(:), allocatable slsoil
- real *8, dimension(:), allocatable sed_stl
- real *8, dimension(:), allocatable gwminp
- real *8, dimension(:), allocatable sol_cov
- real *8, dimension(:), allocatable yldanu
- real *8, dimension(:), allocatable pnd solp
- real *8, dimension(:), allocatable pnd_no3
- real *8, dimension(:), allocatable ov_n
- · real *8, dimension(:), allocatable driftco

coefficient for pesticide drift directly onto stream (none)

- real *8, dimension(:), allocatable pnd_orgp
- real *8, dimension(:), allocatable pnd_orgn
- real *8, dimension(:), allocatable cn3
- real *8, dimension(:), allocatable twlpnd
- real *8, dimension(:), allocatable twlwet
- real *8, dimension(:), allocatable sol_sumul
- real *8, dimension(:), allocatable pnd_chla
- real *8, dimension(:), allocatable hru_fr
- real *8, dimension(:), allocatable hru_km

area of HRU in square kilometers (km²)

- real *8, dimension(:), allocatable bio_ms
- real *8, dimension(:), allocatable sol_alb
- real *8, dimension(:), allocatable strsw
- real *8, dimension(:), allocatable pnd_fr
- real *8, dimension(:), allocatable pnd_psa
- real *8, dimension(:), allocatable pnd_pvol
- real *8, dimension(:), allocatable pnd_k
- real *8, dimension(:), allocatable pnd_esa
- · real *8, dimension(:), allocatable pnd_evol
- real *8, dimension(:), allocatable pnd_vol
- real *8, dimension(:), allocatable yldaa
- real *8, dimension(:), allocatable pnd_sed
- real *8, dimension(:), allocatable pnd_nsed
- real *8, dimension(:), allocatable strsa
- real *8, dimension(:), allocatable dep_imp
- real *8, dimension(:), allocatable evpnd
- real *8, dimension(:), allocatable evwet
- real *8, dimension(:), allocatable wet_fr
- real *8, dimension(:), allocatable wet_nsa

- real *8, dimension(:), allocatable wet_nvol
- real *8, dimension(:), allocatable wet_k
- integer, dimension(:), allocatable iwetgw
- integer, dimension(:), allocatable iwetile
- real *8, dimension(:), allocatable wet_mxsa
- real *8, dimension(:), allocatable wet_mxvol
- real *8, dimension(:), allocatable wet_vol
- real *8, dimension(:), allocatable wet_sed
- real *8, dimension(:), allocatable wet_nsed
- real *8, dimension(:), allocatable smx
- real *8, dimension(:), allocatable sci
- real *8, dimension(:), allocatable bp1
- real *8, dimension(:), allocatable bp2
- real *8, dimension(:), allocatable bw1
- real *8, dimension(:), allocatable bw2
- real *8, dimension(:), allocatable bactpg
- real *8, dimension(:), allocatable bactp_plt
- real *8, dimension(:), allocatable bactlp_plt
- real *8, dimension(:), allocatable cnday
- real *8, dimension(:), allocatable bactlpq
- real *8, dimension(:), allocatable auto eff
- real *8, dimension(:), allocatable sol_sw
- real *8, dimension(:), allocatable secciw
- real *8, dimension(:), allocatable bactps
- real *8, dimension(:), allocatable bactlps
- real *8, dimension(:), allocatable tmpav
- real *8, dimension(:), allocatable chlaw
- real *8, dimension(:), allocatable sno_hru
 - amount of water stored as snow (mm H2O)
- real *8, dimension(:), allocatable subp
- real *8, dimension(:), allocatable hru_ra
- real *8, dimension(:), allocatable wet_orgn
- real *8, dimension(:), allocatable tmx
- real *8, dimension(:), allocatable tmn
- real *8, dimension(:), allocatable rsdin
- real *8, dimension(:), allocatable tmp_hi
- real *8, dimension(:), allocatable tmp_lo
- real *8, dimension(:), allocatable rwt
- real *8, dimension(:), allocatable olai
- real *8, dimension(:), allocatable usle k
- real *8, dimension(:), allocatable tconc
- real *8, dimension(:), allocatable hru_rmx
- real *8, dimension(:), allocatable usle_cfac
- real *8, dimension(:), allocatable usle_eifac
- real *8, dimension(:), allocatable anano3
- real *8, dimension(:), allocatable aird
- real *8, dimension(:), allocatable t_ov
- real *8, dimension(:), allocatable sol_sumfc
- real *8, dimension(:), allocatable sol_avpor
- real *8, dimension(:), allocatable usle_mult
- real *8, dimension(:), allocatable wet_orgp
- real *8, dimension(:), allocatable aairr
- real *8, dimension(:), allocatable cht
- real *8, dimension(:), allocatable u10

- real *8, dimension(:), allocatable rhd
- · real *8, dimension(:), allocatable shallirr
- real *8, dimension(:), allocatable deepirr
- real *8, dimension(:), allocatable lai_aamx
- real *8, dimension(:), allocatable ch_l1

longest tributary channel length in subbasin (km)

- real *8, dimension(:), allocatable canstor
- real *8, dimension(:), allocatable ovrlnd
- real *8, dimension(:), allocatable wet_no3
- real *8, dimension(:), allocatable irr_mx
- real *8, dimension(:), allocatable auto_wstr
- real *8, dimension(:), allocatable cfrt_id
- real *8, dimension(:), allocatable cfrt_kg
- real *8, dimension(:), allocatable cpst_id
- real *8, dimension(:), allocatable cpst_kg
- real *8, dimension(:), allocatable irr_asq
- real *8, dimension(:), allocatable irr_eff
- real *8, dimension(:), allocatable irrsq
- real *8, dimension(:), allocatable irrefm
- real *8, dimension(:), allocatable irrsalt
- real *8, dimension(:), allocatable bio eat
- real *8, dimension(:), allocatable bio_trmp
- · integer, dimension(:), allocatable ifrt_freq
- integer, dimension(:), allocatable ipst freq
- integer, dimension(:), allocatable irr_noa
- · integer, dimension(:), allocatable irr_sc
- integer, dimension(:), allocatable irr_no
- integer, dimension(:), allocatable imp_trig
- integer, dimension(:), allocatable fert_days
- integer, dimension(:), allocatable irr_sca
- integer, dimension(:), allocatable pest_days
- integer, dimension(:), allocatable idplt
- integer, dimension(:), allocatable wstrs_id
- real *8, dimension(:,:), allocatable bio_aahv
- real *8, dimension(:), allocatable cumei
- real *8, dimension(:), allocatable cumeira
- real *8, dimension(:), allocatable cumrt
- real *8, dimension(:), allocatable cumrai
- real *8, dimension(:), allocatable wet_solp
- real *8, dimension(:), allocatable wet_no3s
- real *8, dimension(:), allocatable wet_chla
- real *8, dimension(:), allocatable wet_seci
- real *8, dimension(:), allocatable pnd_no3g
- real *8, dimension(:), allocatable pstsol
- real *8, dimension(:), allocatable gwht
- real *8, dimension(:), allocatable delay
- real *8, dimension(:), allocatable gw_q
- real *8, dimension(:), allocatable pnd_solpg
- real *8, dimension(:), allocatable alpha_bf
- real *8, dimension(:), allocatable alpha_bfe
- real *8, dimension(:), allocatable gw_spyld
- real *8, dimension(:), allocatable alpha_bf_d
- real *8, dimension(:), allocatable alpha_bfe_d
- real *8, dimension(:), allocatable gw_qdeep

real *8, dimension(:), allocatable gw_delaye

```
    real *8, dimension(:), allocatable gw_revap

 real *8, dimension(:), allocatable rchrg_dp
• real *8, dimension(:), allocatable anion excl
     fraction of porosity from which anions are excluded

    real *8, dimension(:), allocatable revapmn

  real *8, dimension(:), allocatable rchrg
  real *8, dimension(:), allocatable ffc

    real *8, dimension(:), allocatable bio min

  real *8, dimension(:), allocatable surgsolp
  real *8, dimension(:), allocatable cklsp

    real *8, dimension(:), allocatable deepst

  real *8, dimension(:), allocatable shallst
  real *8, dimension(:), allocatable wet_solpg
 real *8, dimension(:), allocatable rchrq src

    real *8, dimension(:), allocatable wet_no3g

real *8, dimension(:), allocatable sol_avbd
• real *8, dimension(:), allocatable trapeff

    real *8, dimension(:), allocatable gwgmn

• real *8, dimension(:), allocatable tdrain
  real *8, dimension(:), allocatable ppInt

    real *8, dimension(:), allocatable snotmp

• real *8, dimension(:), allocatable gdrain
     drain tile lag time (hours)
• real *8, dimension(:), allocatable ddrain
 real *8, dimension(:), allocatable sol_crk

    real *8, dimension(:), allocatable dayl

  real *8, dimension(:), allocatable brt
• real *8, dimension(:), allocatable sstmaxd
     static maximum depressional storage; read from .sdr (mm)

 real *8, dimension(:), allocatable re

     effective radius of drains (mm)

    real *8, dimension(:), allocatable sdrain

     distance between two drain tubes or tiles (mm)
• real *8, dimension(:), allocatable ddrain_hru
  real *8, dimension(:), allocatable drain co
     drainage coefficient (mm/day)

    real *8, dimension(:), allocatable latksatf

     multiplication factor to determine conk(j1,j) from sol_k(j1,j) for HRU (none)

    real *8, dimension(:), allocatable pc

     pump capacity (default pump capacity = 1.042mm/hr or 25mm/day) (mm/hr)

    real *8, dimension(:), allocatable stmaxd

· real *8, dimension(:), allocatable twash
  real *8, dimension(:), allocatable rnd2
• real *8, dimension(:), allocatable rnd3

    real *8, dimension(:), allocatable sol_cnsw

  real *8, dimension(:), allocatable doxq

    real *8, dimension(:), allocatable rnd8

• real *8, dimension(:), allocatable rnd9
  real *8, dimension(:), allocatable percn

    real *8, dimension(:), allocatable sol_sumwp

 real *8, dimension(:), allocatable tauton

    real *8, dimension(:), allocatable tautop
```

- real *8, dimension(:), allocatable cbodu
- real *8, dimension(:), allocatable chl_a
- · real *8, dimension(:), allocatable qdr
- real *8, dimension(:), allocatable tfertn
- real *8, dimension(:), allocatable tfertp
- real *8, dimension(:), allocatable tgrazn
- real *8, dimension(:), allocatable tgrazp
- real *8, dimension(:), allocatable latno3
- real *8, dimension(:), allocatable latq
- real *8, dimension(:), allocatable minpgw
- real *8, dimension(:), allocatable no3gw
- real *8, dimension(:), allocatable npInt
- real *8, dimension(:), allocatable tileq
- real *8, dimension(:), allocatable tileno3
- real *8, dimension(:), allocatable sedminpa
- real *8, dimension(:), allocatable sedminps
- real *8, dimension(:), allocatable sedorgn
- real *8, dimension(:), allocatable sedorgp
- real *8, dimension(:), allocatable sedyld
- real *8, dimension(:), allocatable sepbtm
- real *8, dimension(:), allocatable strsn
- real *8, dimension(:), allocatable strsp
- real *8, dimension(:), allocatable strstmp
- · real *8, dimension(:), allocatable surfq
- real *8, dimension(:), allocatable surqno3
- real *8, dimension(:), allocatable tcfrtn
- real *8, dimension(:), allocatable tcfrtp
- real *8, dimension(:), allocatable hru_ha
- real *8, dimension(:), allocatable hru_dafr
- real *8, dimension(:), allocatable drydep_no3
- real *8, dimension(:), allocatable drydep_nh4
- real *8, dimension(:), allocatable phubase
- real *8, dimension(:), allocatable bio_yrms
- real *8, dimension(:), allocatable hvstiadj
- real *8, dimension(:), allocatable laimxfr
- real *8, dimension(:), allocatable laiday
- real *8, dimension(:), allocatable chlap
- real *8, dimension(:), allocatable pnd_psed
- real *8, dimension(:), allocatable wet_psed
- real *8, dimension(:), allocatable seccip
- real *8, dimension(:), allocatable plantn
- real *8, dimension(:), allocatable plt_et
- real *8, dimension(:), allocatable plt_pet
- real *8, dimension(:), allocatable plantp
- real *8, dimension(:), allocatable bio_aams
- real *8, dimension(:), allocatable bio_aamx
- real *8, dimension(:), allocatable lai_yrmx
- real *8, dimension(:), allocatable dormhr
- real *8, dimension(:), allocatable lat_pst
- real *8, dimension(:), allocatable orig_snohru
- real *8, dimension(:), allocatable orig potvol
- real *8, dimension(:), allocatable fld_fr
- real *8, dimension(:), allocatable orig_alai
- real *8, dimension(:), allocatable orig_bioms
- real *8, dimension(:), allocatable pltfr_n

- real *8, dimension(:), allocatable orig phuacc
- real *8, dimension(:), allocatable orig sumix
- real *8, dimension(:), allocatable pltfr_p
- real *8, dimension(:), allocatable orig phu
- real *8, dimension(:), allocatable phu_plt
- real *8, dimension(:), allocatable orig_shallst
- real *8, dimension(:), allocatable orig deepst
- real *8, dimension(:), allocatable orig_pndvol
- real *8, dimension(:), allocatable orig pndsed
- real *8, dimension(:), allocatable rip_fr
- real *8, dimension(:), allocatable orig_pndno3
- real *8, dimension(:), allocatable orig_pndsolp
- real *8, dimension(:), allocatable orig pndorgn
- real *8, dimension(:), allocatable orig pndorgp
- real *8, dimension(:), allocatable orig_wetvol
- real *8, dimension(:), allocatable orig_wetsed
- real *8, dimension(:), allocatable orig_wetno3
- real *8, dimension(:), allocatable orig_wetsolp
- real *8, dimension(:), allocatable orig_wetorgn
- real *8, dimension(:), allocatable orig wetorgp
- real *8, dimension(:), allocatable orig_solcov
- real *8, dimension(:), allocatable orig solsw
- real *8, dimension(:), allocatable orig potno3
- real *8, dimension(:), allocatable orig_potsed
- real *8, dimension(:), allocatable wtab
- real *8, dimension(:), allocatable wtab_mn
- real *8, dimension(:), allocatable wtab mx
- real *8, dimension(:), allocatable shallst n
- real *8, dimension(:), allocatable gw nloss
- real *8, dimension(:), allocatable rchrg n
- real *8, dimension(:), allocatable det_san
- real *8, dimension(:), allocatable det_sil
- real *8, dimension(:), allocatable det_cla
- real *8, dimension(:), allocatable det_sag
- real *8, dimension(:), allocatable det_lag
 real *8, dimension(:), allocatable tnvlda
- real *8, dimension(:), allocatable afrt surface
- real *8 frt surface
- real *8, dimension(:), allocatable auto_nyr
- real *8, dimension(:), allocatable auto napp
- real *8, dimension(:), allocatable manure kg
- real *8, dimension(:), allocatable auto_nstrs
- real *8, dimension(:,:), allocatable rcn_mo
- real *8, dimension(:,:), allocatable rammo_mo
- real *8, dimension(:,:), allocatable drydep no3 mo
- real *8, dimension(:,:), allocatable drydep nh4 mo
- real *8, dimension(:), allocatable rcn d
- real *8, dimension(:), allocatable rammo d
- real *8, dimension(:), allocatable drydep_no3_d
- real *8, dimension(:), allocatable drydep_nh4_d
- real *8, dimension(:,:), allocatable yldn
- real *8, dimension(:,:), allocatable gwati
- real *8, dimension(:,:), allocatable gwatn
- real *8, dimension(:.:), allocatable qwatl
- real *8, dimension(:,:), allocatable gwatw

- real *8, dimension(:,:), allocatable gwatd
- real *8, dimension(:,:), allocatable gwatveg
- real *8, dimension(:,:), allocatable gwata
- real *8, dimension(:,:), allocatable gwats
- real *8, dimension(:,:), allocatable gwatspcon
- real *8, dimension(:,:), allocatable rfqeo_30d
- real *8, dimension(:,:), allocatable eo_30d
- real *8, dimension(:), allocatable psetlp1
- real *8, dimension(:), allocatable psetlp2
- real *8, dimension(:,:), allocatable wgncur
- real *8, dimension(:,:), allocatable wgnold
- real *8, dimension(:,:), allocatable wrt
- real *8, dimension(:,:), allocatable pst_enr

pesticide enrichment ratio (none)

- real *8, dimension(:,:), allocatable **zdb**
- real *8, dimension(:,:), allocatable pst_surq
- real *8, dimension(:,:), allocatable plt_pst

pesticide on plant foliage (kg/ha)

- real *8, dimension(:), allocatable psetlw1
- real *8, dimension(:), allocatable psetlw2
- real *8, dimension(:,:), allocatable pst_sed
- · real *8, dimension(:,:), allocatable pcpband
- real *8, dimension(:,:), allocatable wupnd
- real *8, dimension(:,:), allocatable tavband
- real *8, dimension(:,:), allocatable phi
- real *8, dimension(:,:), allocatable wat phi
- real *8, dimension(:,:), allocatable snoeb

initial snow water content in elevation band (mm H2O)

- real *8, dimension(:,:), allocatable wushal
- real *8, dimension(:,:), allocatable wudeep
- real *8, dimension(:,:), allocatable tmnband
- real *8, dimension(:), allocatable bss1
- real *8, dimension(:), allocatable bss2
- real *8, dimension(:), allocatable bss3
- real *8, dimension(:), allocatable bss4
- real *8, dimension(:), allocatable nsetlw1
- real *8, dimension(:), allocatable nsetlw2
- real *8, dimension(:,:), allocatable snotmpeb
- real *8, dimension(:,:), allocatable surf_bs
- real *8, dimension(:), allocatable nsetlp1
- real *8, dimension(:), allocatable nsetlp2
- real *8, dimension(:,:), allocatable tmxband
- real *8, dimension(:,:), allocatable rainsub
- real *8, dimension(:,:), allocatable frad
- real *8, dimension(:), allocatable rstpbsb
- real *8, dimension(:,:), allocatable orig_snoeb
- real *8, dimension(:,:), allocatable orig_pltpst
- real *8, dimension(:,:), allocatable terr_p
- real *8, dimension(:,:), allocatable terr_cn
- real *8, dimension(:,:), allocatable terr_sl
- real *8, dimension(:,:), allocatable drain_d
- real *8, dimension(:,:), allocatable drain_t
- real *8, dimension(:,:), allocatable drain_g
- real *8, dimension(:,:), allocatable drain_idep

- real *8, dimension(:,:), allocatable cont_cn
- real *8, dimension(:,:), allocatable cont_p
- real *8, dimension(:,:), allocatable filt_w
- real *8, dimension(:,:), allocatable strip_n
- real *8, dimension(:,:), allocatable strip cn
- real *8, dimension(:,:), allocatable strip c
- real *8, dimension(:,:), allocatable strip_p
- real *8, dimension(:,:), allocatable fire_cn
- real *8, dimension(:,:), allocatable cropno upd
- real *8, dimension(:,:), allocatable hi_upd
- real *8, dimension(:,:), allocatable laimx_upd
- real *8, dimension(:,:,:), allocatable pst_lag
- real *8, dimension(:,:,:), allocatable phug
- · integer, dimension(:), allocatable hrupest
 - pesticide use flag (none)
 - 0: no pesticides used in HRU
 - 1: pesticides used in HRU
- integer, dimension(:), allocatable nrelease
- · integer, dimension(:), allocatable swtrg
- · integer, dimension(:), allocatable nro
- integer, dimension(:), allocatable nrot
- · integer, dimension(:), allocatable nfert
- integer, dimension(:), allocatable igro
- · integer, dimension(:), allocatable nair
- integer, dimension(:), allocatable ipnd1
- integer, dimension(:), allocatable ipnd2
- · integer, dimension(:), allocatable nirr
- integer, dimension(:), allocatable iflod1
- integer, dimension(:), allocatable iflod2
- · integer, dimension(:), allocatable ndtarg
- · integer, dimension(:), allocatable iafrttyp
- integer, dimension(:), allocatable nstress
- integer, dimension(:), allocatable **igrotree**
- integer, dimension(:), allocatable grz_days
- integer, dimension(:), allocatable nmgt
- integer, dimension(:), allocatable icr
- integer, dimension(:), allocatable ncut
- integer, dimension(:), allocatable nsweep
- integer, dimension(:), allocatable nafert
- · integer, dimension(:), allocatable irn
- integer, dimension(:), allocatable irrno
- integer, dimension(:), allocatable sol_nly
- integer, dimension(:), allocatable npcp
- integer, dimension(:), allocatable igrz
- integer, dimension(:), allocatable ndeat
- · integer, dimension(:), allocatable ngr
- integer, dimension(:), allocatable ncf
- integer, dimension(:), allocatable hru sub
 - subbasin in which HRU is located (none)
- integer, dimension(:), allocatable idorm
- integer, dimension(:), allocatable urblu
- integer, dimension(:), allocatable Idrain
- integer, dimension(:), allocatable hru seq
- integer, dimension(:), allocatable iurban

- integer, dimension(:), allocatable iday_fert
- · integer, dimension(:), allocatable icfrt
- · integer, dimension(:), allocatable ifld

number of HRU (in subbasin) that is a floodplain (none)

• integer, dimension(:), allocatable irip

number of HRU (in subbasin) that is a riparian zone (none)

- integer, dimension(:), allocatable ndcfrt
- · integer, dimension(:), allocatable hrugis
- integer, dimension(:), allocatable orig_igro
- integer, dimension(:), allocatable ntil
- integer, dimension(:), allocatable irrsc
- integer, dimension(:), allocatable iwatable
- integer, dimension(:), allocatable curyr_mat
- integer, dimension(:), allocatable ncpest
- integer, dimension(:), allocatable icpst
- integer, dimension(:), allocatable ndcpst
- integer, dimension(:), allocatable iday pest
- · integer, dimension(:), allocatable irr flag
- · integer, dimension(:), allocatable irra_flag
- integer, dimension(:,:), allocatable rndseed

random number generator seed. The seeds in the array are used to generate random numbers for the following purposes:

- (1) wet/dry day probability
- (2) solar radiation
- (3) precipitation
- (4) USLE rainfall erosion index
- (5) wind speed
- (6) 0.5 hr rainfall fraction
- (7) relative humidity
- (8) maximum temperature
- (9) minimum temperature
- (10) generate new random numbers
- integer, dimension(:,:), allocatable iterr
- integer, dimension(:,:), allocatable iyterr
- integer, dimension(:,:), allocatable itdrain
 integer, dimension(:,:), allocatable iydrain
- integer, dimension(:,:), allocatable ncrops
- integer, dimension(:), allocatable manure_id
- integer, dimension(:,:), allocatable mgt_sdr
- integer, dimension(:,:), allocatable idplrot
- integer, dimension(:,:), allocatable icont
- integer, dimension(:,:), allocatable iycont
- integer, dimension(:,:), allocatable ifilt
- integer, dimension(:,:), allocatable iyfilt
- integer, dimension(:,:), allocatable istrip
- integer, dimension(:,:), allocatable iystrip
- integer, dimension(:,:), allocatable iopday
- integer, dimension(:,:), allocatable iopyr
- integer, dimension(:,:), allocatable mgt ops
- real *8, dimension(:), allocatable wshd_pstap
- real *8, dimension(:), allocatable wshd_pstdg
- integer, dimension(12) ndmo
- integer, dimension(:), allocatable npno

array of unique pesticides used in watershed (none)

integer, dimension(:), allocatable mcrhru

```
    character(len=13), dimension(18) rfile

     rainfall file names (.pcp)
· character(len=13), dimension(18) tfile
     temperature file names (.tmp)

    character(len=4), dimension(1000) urbname

     name of urban land use

    character(len=1), dimension(;), allocatable hvdqrp

  character(len=1), dimension(:), allocatable kirr
  character(len=16), dimension(:), allocatable snam
  character(len=17), dimension(300) pname
     name of pesticide/toxin adding qtile to output.hru write 3/2/2010 gsm increased heds(70) to heds(71)

    character(len=13), dimension(79) heds

  character(len=13), dimension(24) hedb
  character(len=13), dimension(46) hedr
  character(len=13), dimension(41) hedrsv
  character(len=13), dimension(40) hedwtr
  character(len=4), dimension(60) title
     description lines in file.cio (1st 3 lines)

    character(len=4), dimension(5000) cpnm

     four character code to represent crop name

    character(len=17), dimension(50) fname

  real *8, dimension(:,:,:), allocatable flomon
  real *8, dimension(:,:,:), allocatable solpstmon
  real *8, dimension(:,:,:), allocatable srbpstmon
  real *8, dimension(:,:,:), allocatable sedmon
  real *8, dimension(:,:,:), allocatable orgnmon
  real *8, dimension(:,:,:), allocatable orgpmon
  real *8, dimension(:,::), allocatable no3mon
  real *8, dimension(:,:,:), allocatable minpmon
  real *8, dimension(:,:,:), allocatable nh3mon
  real *8, dimension(:,:,:), allocatable no2mon
 real *8, dimension(:,:,:), allocatable bactpmon
  real *8, dimension(:,:,:), allocatable bactlpmon
  real *8, dimension(:,:,:), allocatable cmtl1mon
  real *8, dimension(:,:,:), allocatable cmtl2mon
  real *8, dimension(:,:,:), allocatable cmtl3mon
  real *8, dimension(:,:,:), allocatable chlamon
  real *8, dimension(:,:,:), allocatable disoxmon
  real *8, dimension(:,:,:), allocatable cbodmon
  real *8, dimension(:,:), allocatable floyr
  real *8, dimension(:,:), allocatable sedyr
  real *8, dimension(:,:), allocatable orgnyr
  real *8, dimension(:,:), allocatable orgpyr
  real *8, dimension(:,:), allocatable no3yr
  real *8, dimension(:,:), allocatable minpyr
 real *8, dimension(:,:), allocatable nh3yr
  real *8, dimension(:,:), allocatable no2yr
  real *8, dimension(:,:), allocatable bactpyr
  real *8, dimension(:,:), allocatable bactlpyr
• real *8, dimension(:,:), allocatable cmtl1yr
  real *8, dimension(:,:), allocatable cmtl2vr
  real *8, dimension(:,:), allocatable cmtl3yr
 real *8, dimension(:.:), allocatable chlavr

    real *8, dimension(:,:), allocatable disoxyr
```

- real *8, dimension(:,:), allocatable cbodyr
- real *8, dimension(:,:), allocatable solpstyr
- real *8, dimension(:,:), allocatable srbpstyr
- real *8, dimension(:,:), allocatable sol_mc
- real *8, dimension(:,:), allocatable sol_mn
- real *8, dimension(:,:), allocatable sol_mp
- real *8, dimension(:), allocatable flocnst
- real *8, dimension(:), allocatable sedcnst
- real *8, dimension(:), allocatable orgncnst
- real *8, dimension(:), allocatable orgpcnst
- real *8, dimension(:), allocatable no3cnst
- real *8, dimension(:), allocatable minpcnst
- real *8, dimension(:), allocatable nh3cnst
- real *8, dimension(:), allocatable no2cnst
- real *8, dimension(:), allocatable bactpcnst
- real *8, dimension(:), allocatable cmtl1cnst
- real *8, dimension(:), allocatable cmtl2cnst
- real *8, dimension(:), allocatable bactlpcnst
- real *8, dimension(:), allocatable cmtl3cnst
- real *0, dimension(.), anocatable circles
- real *8, dimension(:), allocatable chlacnst
- real *8, dimension(:), allocatable disoxcnst
- real *8, dimension(:), allocatable cbodcnst
- real *8, dimension(:), allocatable solpstcnst
- real *8, dimension(:), allocatable srbpstcnst
- · integer nstep

max number of time steps per day

integer idt

length of time step used to report precipitation data for sub-daily modeling (minutes)

- real *8, dimension(:), allocatable hrtwtr
- real *8, dimension(:), allocatable hhstor
- real *8, dimension(:), allocatable hdepth
- real *8, dimension(:), allocatable hsdti
- real *8, dimension(:), allocatable hrchwtr
- · real *8, dimension(:), allocatable halgae
- real *8, dimension(:), allocatable horgn
- real *8, dimension(:), allocatable hnh4
 real *8, dimension(:), allocatable hno2
- real (0, dimension(1), allegatable bre?
- real *8, dimension(:), allocatable hno3
- real *8, dimension(:), allocatable horgp
 real *8, dimension(:), allocatable hsolp
- real *8, dimension(:), allocatable hbod
- real *8, dimension(:), allocatable hdisox
- real *8, dimension(:), allocatable hchla
- · real *8, dimension(:), allocatable hsedyld
- · real *8, dimension(:), allocatable hsedst
- real *8, dimension(:), allocatable hharea
- real *8, dimension(:), allocatable hsolpst
- real *8, dimension(:), allocatable hsorpst
- real *8, dimension(:), allocatable hhqday
- real *8, dimension(:), allocatable precipdt
- real *8, dimension(:), allocatable hhtime
- real *8, dimension(:), allocatable hbactp
- real *8, dimension(:), allocatable hbactlp
- integer, dimension(10) ivar_orig

- real *8, dimension(10) rvar_orig
- · integer nsave

number of save commands in .fig file

- · integer nauto
- · integer iatmodep
- real *8, dimension(:), allocatable wattemp
- real *8, dimension(:), allocatable lkpst_mass
- real *8, dimension(:), allocatable Ikspst_mass
- real *8, dimension(:), allocatable vel chan
- real *8, dimension(:), allocatable vfscon
- real *8, dimension(:), allocatable vfsratio
- real *8, dimension(:), allocatable vfsch
- real *8, dimension(:), allocatable vfsi
- real *8, dimension(:,:), allocatable filter_i
- real *8, dimension(:,:), allocatable filter_ratio
- real *8, dimension(:,:), allocatable filter_con
- real *8, dimension(:,:), allocatable filter_ch
- real *8, dimension(:,:), allocatable sol_n
- · integer cswat
 - = 0 Static soil carbon (old mineralization routines)
 - = 1 C-FARM one carbon pool model
 - = 2 Century model
- real *8, dimension(:,:), allocatable sol_bdp
- real *8, dimension(:,:), allocatable tillagef
- real *8, dimension(:), allocatable rtfr
- real *8, dimension(:), allocatable stsol_rd
- · integer urban_flag
- integer dorm_flag
- real *8 bf_flg
- · real *8 iabstr
- real *8, dimension(:), allocatable ubnrunoff
- real *8, dimension(:), allocatable ubntss
- real *8, dimension(:,:), allocatable sub_ubnrunoff
- real *8, dimension(:,:), allocatable sub_ubntss
- real *8, dimension(:,:), allocatable ovrlnd_dt
- real *8, dimension(:,:,:), allocatable hhsurf_bs
- integer iuh

unit hydrograph method: 1=triangular UH; 2=gamma funtion UH;

integer sed_ch

channel routing for HOURLY; 0=Bagnold; 2=Brownlie; 3=Yang;

real *8 eros_expo

an exponent in the overland flow erosion equation ranges 1.5-3.0

real *8 eros_spl

coefficient of splash erosion varing 0.9-3.1

• real *8 rill mult

Multiplier to USLE_K for soil susceptible to rill erosion, range 0.5-2.0.

- real *8 sedprev
- real *8 c_factor
- real *8 ch d50

median particle diameter of channel bed (mm)

real *8 sig_g

geometric standard deviation of particle sizes for the main channel. Mean air temperature at which precipitation is equally likely to be rain as snow/freezing rain.

real *8 uhalpha

alpha coefficient for estimating unit hydrograph using a gamma function (*.bsn)

- real *8 abstinit
- real *8 abstmax
- real *8, dimension(:,:), allocatable hhsedy
- real *8, dimension(:,:), allocatable sub subp dt
- real *8, dimension(:,:), allocatable sub_hhsedy
- real *8, dimension(:,:), allocatable sub atmp
- real *8, dimension(:), allocatable rhy
- real *8, dimension(:), allocatable init abstrc
- real *8, dimension(:), allocatable dratio
- real *8, dimension(:), allocatable hrtevp
- real *8, dimension(:), allocatable hrttlc
- real *8, dimension(:,:,:), allocatable rchhr
- real *8, dimension(:), allocatable hhresflwi
- real *8, dimension(:), allocatable hhresflwo
- real *8, dimension(:), allocatable hhressedi
- real *8, dimension(:), allocatable hhressedo
- character(len=4), dimension(:), allocatable lu nodrain
- integer, dimension(:), allocatable bmpdrain
- real *8, dimension(:), allocatable sub_cn2
- real *8, dimension(:), allocatable sub_ha_urb
- real *8, dimension(:), allocatable bmp recharge
- real *8, dimension(:), allocatable sub ha imp
- real *8, dimension(:), allocatable subdr_km
- real *8, dimension(:), allocatable subdr_ickm
- real *8, dimension(:,:), allocatable sf_im
- real *8, dimension(:,:), allocatable sf_iy
- real *8, dimension(:,:), allocatable sp_sa
- real *8, dimension(:,:), allocatable sp_pvol
- real *8, dimension(:,:), allocatable sp_pd
- real *8, dimension(:,:), allocatable sp_sedi
- real *8, dimension(:,:), allocatable sp_sede
- real *8, dimension(:,:), allocatable ft_sa
- real *8, dimension(:,:), allocatable ft_fsa
 real *8, dimension(:,:), allocatable ft_dep
- real *8, dimension(:::), allocatable ft h
- real *8, dimension(:,:), allocatable ft_pd
- real *8, dimension(:,:), allocatable ft k
- real *8, dimension(:,:), allocatable ft_dp
- real *8, dimension(:,:), allocatable ft_dc
- real *8, dimension(:,:), allocatable ft por
- real *8, dimension(:,:), allocatable tss_den
- real *8, dimension(:,:), allocatable ft_alp
- real *8, dimension(:,:), allocatable sf_fr
- real *8, dimension(:,:), allocatable sp_qi
- real *8, dimension(:,:), allocatable sp k
- real *8, dimension(:,:), allocatable ft_qpnd
- real *8, dimension(:,:), allocatable sp_dp
- real *8, dimension(:,:), allocatable ft_qsw
- real *8, dimension(:,:), allocatable ft_qin
- real *8, dimension(:,:), allocatable ft_qout
- real *8, dimension(:,:), allocatable ft_sedpnd
- real *8, dimension(:,:), allocatable sp_bpw
- real *8, dimension(:,:), allocatable ft bpw
- real *8, dimension(:,:), allocatable ft_sed_cumul

- real *8, dimension(:,:), allocatable sp sed cumul
- · integer, dimension(:), allocatable num sf
- integer, dimension(:,:), allocatable sf_typ
- integer, dimension(:,:), allocatable sf_dim
- integer, dimension(:,:), allocatable ft_qfg
- integer, dimension(:,:), allocatable sp_qfg
- integer, dimension(:,:), allocatable sf ptp
- integer, dimension(:,:), allocatable ft_fc
- real *8 sfsedmean
- real *8 sfsedstdev
- integer, dimension(:), allocatable dtp_subnum
- integer, dimension(:), allocatable dtp_imo
- integer, dimension(:), allocatable dtp_iyr
- integer, dimension(:), allocatable dtp_numweir
- integer, dimension(:), allocatable dtp_numstage
- integer, dimension(:), allocatable dtp_stagdis
- integer, dimension(:), allocatable dtp_reltype
- integer, dimension(:), allocatable dtp onoff
- real *8, dimension(:), allocatable cf
- real *8, dimension(:), allocatable cfh
- · real *8, dimension(:), allocatable cfdec
- real *8, dimension(:), allocatable lat orgn
- real *8, dimension(:), allocatable lat orgp
- integer, dimension(:,:), allocatable dtp_weirtype
- integer, dimension(:,:), allocatable dtp weirdim
- real *8, dimension(:), allocatable dtp_evrsv
- real *8, dimension(:), allocatable dtp inflvol
- real *8, dimension(:), allocatable dtp totwrwid
- real *8, dimension(:), allocatable dtp_lwratio
- real *8, dimension(:), allocatable dtp wdep
- real *8, dimension(:), allocatable dtp_totdep
- real *8, dimension(:), allocatable dtp_watdepact
- real *8, dimension(:), allocatable dtp_outflow
- real *8, dimension(:), allocatable dtp_totrel
- real *8, dimension(:), allocatable dtp_backoff
- real *8, dimension(:), allocatable dtp_seep_sa
- real *8, dimension(:), allocatable dtp_evap_sa
- real *8, dimension(:), allocatable dtp_pet_day
- real *8, dimension(:), allocatable dtp_pcpvol
- real *8, dimension(:), allocatable dtp_seepvol
- real *8, dimension(:), allocatable dtp evapvol
- real *8, dimension(:), allocatable dtp_flowin
- real *8, dimension(:), allocatable dtp_backup_length
- real *8, dimension(:), allocatable dtp_intcept
- real *8, dimension(:), allocatable dtp_expont
- real *8, dimension(:), allocatable dtp_coef1
- real *8, dimension(:), allocatable dtp_coef2
- real *8, dimension(:), allocatable dtp_coef3
- real *8, dimension(:), allocatable dtp_dummy1
- real *8, dimension(:), allocatable dtp_dummy2
- real *8, dimension(:), allocatable dtp_dummy3
- real *8, dimension(:), allocatable dtp_ivol
- real *8, dimension(:), allocatable dtp_ised
- integer, dimension(:,:), allocatable so res flag
- integer, dimension(:,:), allocatable ro_bmp_flag

- real *8, dimension(:,:), allocatable sol_watp
- real *8, dimension(:,:), allocatable sol_solp_pre
- real *8, dimension(:,:), allocatable psp_store
- real *8, dimension(:,:), allocatable ssp_store
- real *8, dimension(:,:), allocatable so_res
- real *8, dimension(:,:), allocatable sol_cal
- real *8, dimension(:,:), allocatable sol_ph
- integer sol_p_model
- integer, dimension(:,:), allocatable a_days
- integer, dimension(:,:), allocatable b_days
- real *8, dimension(:), allocatable harv_min
- real *8, dimension(:), allocatable fstap
- real *8, dimension(:), allocatable min_res
- real *8, dimension(:,:), allocatable ro_bmp_flo
- real *8, dimension(:,:), allocatable ro_bmp_sed
- real *8, dimension(:,:), allocatable ro_bmp_bac
- real *8, dimension(:,:), allocatable ro_bmp_pp
- real *8, dimension(:,:), allocatable ro_bmp_sp
- real *8, dimension(:,:), allocatable ro_bmp_pn
- real *8, dimension(:,:), allocatable ro_bmp_sn
- real *8, dimension(:,:), allocatable ro_bmp_flos
- real *8, dimension(:,:), allocatable ro_bmp_seds
- real *8, dimension(:,:), allocatable ro_bmp_bacs
- real *8, dimension(:,:), allocatable ro_bmp_pps
- real *8, dimension(:,:), allocatable ro_bmp_sps
- real *8, dimension(:,:), allocatable ro_bmp_pns
- real *8, dimension(:,:), allocatable ro_bmp_sns
- real *8, dimension(:,:), allocatable ro_bmp_flot
- real *8, dimension(:,:), allocatable ro_bmp_sedt
- real *8, dimension(:,:), allocatable ro_bmp_bact
- real *8, dimension(:,:), allocatable ro bmp ppt
- real *8, dimension(:,:), allocatable ro bmp spt
- real *8, dimension(:,:), allocatable ro_bmp_pnt
- real *8, dimension(:,:), allocatable ro_bmp_snt
- real *8, dimension(:), allocatable bmp_flo
- real *8, dimension(:), allocatable bmp_sed
- real *8, dimension(:), allocatable bmp_bac
- real *8, dimension(:), allocatable bmp_pp
- real *8, dimension(:), allocatable bmp_sp
- real *8, dimension(:), allocatable bmp_pn
- real *8, dimension(:), allocatable bmp_sn
 real *8, dimension(:), allocatable bmp_flag
- Call Co. III Call
- real *8, dimension(:), allocatable bmp_flos
- real *8, dimension(:), allocatable bmp_seds
- real *8, dimension(:), allocatable bmp_bacs
- real *8, dimension(:), allocatable bmp_pps
- real *8, dimension(:), allocatable bmp_sps
- real *8, dimension(:), allocatable bmp_pns
- real *8, dimension(:), allocatable bmp_sns
 real *8, dimension(:), allocatable bmp_flot
- real *8, dimension(:), allocatable bmp_sedt
- 1 Collins in () the stable being best
- real *8, dimension(:), allocatable bmp_bact
- real *8, dimension(:), allocatable bmp_ppt
- real *8, dimension(:), allocatable bmp_spt
- real *8, dimension(:), allocatable bmp_pnt

- real *8, dimension(:), allocatable bmp snt
- real *8, dimension(:,:), allocatable dtp_wdratio
- real *8, dimension(:,:), allocatable dtp_depweir
- real *8, dimension(:,:), allocatable dtp_diaweir
- real *8, dimension(:,:), allocatable dtp_retperd
- real *8, dimension(:,:), allocatable dtp_pcpret
- real *8, dimension(:,:), allocatable dtp_cdis
- real *8, dimension(:,:), allocatable dtp_flowrate
- real *8, dimension(:,:), allocatable dtp wrwid
- real *8, dimension(:,:), allocatable dtp_addon
- real *8, dimension(:), allocatable ri subkm
- real *8, dimension(:), allocatable ri_totpvol
- real *8, dimension(:), allocatable irmmdt
- real *8, dimension(:,:), allocatable ri_sed
- real *8, dimension(:,:), allocatable ri_fr
- real *8, dimension(:,:), allocatable ri dim
- real *8, dimension(:,:), allocatable ri_im
- real *8, dimension(:,:), allocatable ri iv
- real *8, dimension(:,:), allocatable ri_sa
- real *8, dimension(:,:), allocatable ri vol
- real *8, dimension(:,:), allocatable ri_qi
- real *8, dimension(:,:), allocatable ri k
- real *8, dimension(:,:), allocatable ri dd
- real *8, dimension(:,:), allocatable ri_evrsv
- real *8, dimension(:,:), allocatable ri dep
- real *8, dimension(:,:), allocatable ri_ndt
- real *8, dimension(:,:), allocatable ri_pmpvol
- real *8, dimension(:,:), allocatable ri_sed_cumul
- real *8, dimension(:,:), allocatable hrnopcp
- real *8, dimension(:,:), allocatable ri_qloss
- real *8, dimension(:,:), allocatable ri_pumpv
- real *8, dimension(:,:), allocatable ri_sedi
- character(len=4), dimension(:,:), allocatable ri_nirr
- integer, dimension(:), allocatable num_ri
- integer, dimension(:), allocatable ri_luflg
- integer, dimension(:), allocatable num_noirr
- integer, dimension(:), allocatable wtp_subnum
- integer, dimension(:), allocatable wtp_onoff
- integer, dimension(:), allocatable wtp_imo
- integer, dimension(:), allocatable wtp_iyr
- integer, dimension(:), allocatable wtp dim
- · integer, dimension(:), allocatable wtp_stagdis
- integer, dimension(:), allocatable wtp_sdtype
- real *8, dimension(:), allocatable wtp_pvol
- real *8, dimension(:), allocatable wtp_pdepth
- real *8, dimension(:), allocatable wtp_sdslope
- real *8, dimension(:), allocatable wtp_lenwdth
- real *8, dimension(:), allocatable wtp_extdepth
- real *8, dimension(:), allocatable wtp_hydeff
- real *8, dimension(:), allocatable wtp_evrsv
- real *8, dimension(:), allocatable wtp_sdintc
- real *8, dimension(:), allocatable wtp_sdexp
- real *8, dimension(:), allocatable wtp sdc1
- real *8, dimension(:), allocatable wtp sdc2
- real *8, dimension(:), allocatable wtp_sdc3

- real *8, dimension(:), allocatable wtp_pdia
- real *8, dimension(:), allocatable wtp_plen
- real *8, dimension(:), allocatable wtp_pmann
- real *8, dimension(:), allocatable wtp_ploss
- real *8, dimension(:), allocatable wtp k
- real *8, dimension(:), allocatable wtp_dp
- real *8, dimension(:), allocatable wtp sedi
- real *8, dimension(:), allocatable wtp_sede
- real *8, dimension(:), allocatable wtp_qi
- real *8 bio init
- real *8 lai init
- real *8 cnop
- real *8 hi ovr
- real *8 harveff
- real *8 frac_harvk
- real *8 lid vacl
- real *8 lid_vgcm
- real *8 lid gsurf total
- real *8 lid farea sum
- real *8, dimension(:,:), allocatable lid_cuminf_last
- real *8, dimension(:,:), allocatable lid_sw_last
- real *8, dimension(:,:), allocatable interval_last
- real *8, dimension(:,:), allocatable lid_f_last
- real *8, dimension(:,:), allocatable lid_cumr_last
- real *8, dimension(:,:), allocatable lid_str_last
- real *8, dimension(:,:), allocatable lid_farea
- real *8, dimension(:,:), allocatable lid_qsurf
- real *8, dimension(:,:), allocatable lid_sw_add
- real *8, dimension(:,:), allocatable **lid_cumqperc_last**
- real *8, dimension(:,:), allocatable lid_cumirr_last
- real *8, dimension(:,:), allocatable lid_excum_last
- integer, dimension(:,:), allocatable gr_onoff
- integer, dimension(:,:), allocatable **gr_imo**
- integer, dimension(:,:), allocatable gr_iyr
- real *8, dimension(:,:), allocatable gr_farea
 real *8, dimension(:,:), allocatable gr_solop
- real *8, dimension(:,:), allocatable gr_etcoef
- real *8, dimension(:,:), allocatable gr_fc
- real *8, dimension(:,:), allocatable gr_wp
- real *8, dimension(:,:), allocatable gr_ksat
- real *8, dimension(:,:), allocatable gr por
- real *8, dimension(:,:), allocatable gr_hydeff
- real *8, dimension(:,:), allocatable gr_soldpt
- real *8, dimension(:,:), allocatable gr_dummy1
- real *8, dimension(:,:), allocatable gr_dummy2
- real *8, dimension(:,:), allocatable gr_dummy3
- real *8, dimension(:,:), allocatable gr_dummy4
- real *8, dimension(:,:), allocatable gr_dummy5
- integer, dimension(:,:), allocatable rg_onoff
- integer, dimension(:,:), allocatable rg_imo
- integer, dimension(:,:), allocatable rg_iyr
- real *8, dimension(:,:), allocatable rg_farea
- real *8, dimension(:,:), allocatable rg_solop
- real *8, dimension(:,:), allocatable rg_etcoef
- real *8, dimension(:,:), allocatable rg_fc

- real *8, dimension(:,:), allocatable rg wp
- real *8, dimension(:,:), allocatable rg ksat
- real *8, dimension(:,:), allocatable rg_por
- real *8, dimension(:,:), allocatable rg hydeff
- real *8, dimension(:,:), allocatable rg_soldpt
- real *8, dimension(:,:), allocatable rg_dimop
- real *8, dimension(:,:), allocatable rg sarea
- real *8, dimension(:,:), allocatable rg_vol
- real *8, dimension(:,:), allocatable rg sth
- real *8, dimension(:.:), allocatable rg sdia
- real *8, dimension(:,:), allocatable rg_bdia
- real *8, dimension(:,:), allocatable rg_sts
- real *8, dimension(:,:), allocatable rg_orifice
- real *8, dimension(:,:), allocatable rg_oheight
- real *8, dimension(:,:), allocatable rg_odia
- real *8, dimension(:,:), allocatable rg_dummy1
- real *8, dimension(:,:), allocatable rg_dummy2
- real *8, dimension(:,:), allocatable rg dummy3
- real *8, dimension(:,:), allocatable rg_dummy4
- real *8, dimension(:,:), allocatable rg_dummy5
- integer, dimension(:,:), allocatable cs_onoff
- integer, dimension(:,:), allocatable cs_imo
- integer, dimension(:,:), allocatable cs_iyr
- integer, dimension(:,:), allocatable cs_grcon
- integer, dimension(i,i), directable co_green
- real *8, dimension(:,:), allocatable cs_farea
- real *8, dimension(:,:), allocatable cs_vol
- real *8, dimension(:,:), allocatable cs_rdepth
- real *8, dimension(:,:), allocatable cs_dummy1
- real *8, dimension(:,:), allocatable **cs_dummy2**
- real *8, dimension(:,:), allocatable cs_dummy3
- real *8, dimension(:,:), allocatable cs_dummy4
- real *8, dimension(:,:), allocatable cs_dummy5
- integer, dimension(:,:), allocatable pv_onoff
- integer, dimension(:,:), allocatable pv_imo
- integer, dimension(:,:), allocatable pv_iyr
- integer, dimension(:,:), allocatable pv_solop
- real *8, dimension(:,:), allocatable pv_grvdep
- real *8, dimension(:,:), allocatable pv_grvpor
- real *8, dimension(:,:), allocatable pv_farea
- real *8, dimension(:,:), allocatable pv_drcoef
- real *8, dimension(:,:), allocatable pv fc
- real *8, dimension(:,:), allocatable pv_wp
- real *8, dimension(:,:), allocatable pv_ksat
- real *8, dimension(:,:), allocatable pv_por
- real *8, dimension(:,:), allocatable pv_hydeff
- real *8, dimension(:,:), allocatable pv_soldpt
- real *8, dimension(:,:), allocatable pv_dummy1
- real *8, dimension(:,:), allocatable pv_dummy2
- real *8, dimension(:,:), allocatable pv_dummy3
- real *8, dimension(:,:), allocatable pv_dummy4
- real *8, dimension(:,:), allocatable pv_dummy5
- · integer, dimension(:,:), allocatable lid_onoff
- real *8, dimension(:,:), allocatable sol_bmc
- real *8, dimension(:.:), allocatable sol bmn
- real *8, dimension(:,:), allocatable sol_hsc

- real *8, dimension(:,:), allocatable sol_hsn
- real *8, dimension(:,:), allocatable sol_hpc
- real *8, dimension(:,:), allocatable sol_hpn
- real *8, dimension(:,:), allocatable sol_lm
- real *8, dimension(:,:), allocatable sol_lmc
- real *8, dimension(:,:), allocatable sol_lmn
- real *8, dimension(:,:), allocatable sol Is
- real *8, dimension(:,:), allocatable sol_lsl
- real *8, dimension(:,:), allocatable sol lsc
- real *8, dimension(:,:), allocatable sol_lsn
- real *8, dimension(:,:), allocatable sol_rnmn
- real *8, dimension(:,:), allocatable sol_lslc
- real *8, dimension(:,:), allocatable sol_lsinc
- real *8, dimension(:,:), allocatable sol_rspc
- real *8, dimension(:,:), allocatable sol_woc
- real *8, dimension(:,:), allocatable sol won
- real *8, dimension(:,:), allocatable sol_hp
- real *8, dimension(:,:), allocatable sol_hs
- real *8, dimension(:,:), allocatable sol bm
- real *8, dimension(:,:), allocatable sol_cac
- real *8, dimension(:,:), allocatable sol_cec
- real *8, dimension(:,:), allocatable sol percc
- real *8, dimension(:,:), allocatable sol latc
- real *8, dimension(:), allocatable sedc_d
- real *8, dimension(:), allocatable surfqc_d
- real *8, dimension(:), allocatable latc_d
- real *8, dimension(:), allocatable percc d
- real *8, dimension(:), allocatable foc_d
- real *8, dimension(:), allocatable nppc_d
- real *8, dimension(:), allocatable rsdc_d
- real *8, dimension(:), allocatable grainc d
- real *8, dimension(:), allocatable stoverc d
- real *8, dimension(:), allocatable soc_d
- real *8, dimension(:), allocatable rspc_d
- real *8, dimension(:), allocatable emitc_d
- real *8, dimension(:), allocatable sub_sedc_d
- real *8, dimension(:), allocatable sub_surfqc_d
- real *8, dimension(:), allocatable sub_latc_d
- real *8, dimension(:), allocatable sub_percc_d
- real *8, dimension(:), allocatable sub_foc_d
- real *8, dimension(:), allocatable sub_nppc_d
 real *8, dimension(:), allocatable sub_rsdc_d
- real *8, dimension(:), allocatable sub grainc d
- mand of dimension(), allocatable out_granio_u
- real *8, dimension(:), allocatable sub_stoverc_d
- real *8, dimension(:), allocatable sub_emitc_d
- real *8, dimension(:), allocatable sub_soc_d
- real *8, dimension(:), allocatable sub_rspc_d
- real *8, dimension(:), allocatable sedc_m
- real *8, dimension(:), allocatable surfqc_m
- real *8, dimension(:), allocatable latc_m
- real *8, dimension(:), allocatable percc_m
- real *8, dimension(:), allocatable foc_m
- real *8, dimension(:), allocatable nppc_m
- real *8, dimension(:), allocatable rsdc_m
- real *8, dimension(:), allocatable grainc_m

68 Module Documentation

- real *8, dimension(:), allocatable stoverc_m
- real *8, dimension(:), allocatable emitc_m
- real *8, dimension(:), allocatable soc_m
- real *8, dimension(:), allocatable rspc_m
- real *8, dimension(:), allocatable sedc_a
- real *8, dimension(:), allocatable surfqc_a
- real *8, dimension(:), allocatable latc a
- real *8, dimension(:), allocatable percc_a
- real *8, dimension(:), allocatable foc a
- real *8, dimension(:), allocatable nppc_a
- real *8, dimension(:), allocatable rsdc_a
- real *8, dimension(:), allocatable grainc_a
- real *8, dimension(:), allocatable stoverc a
- real *8, dimension(:), allocatable emitc a
- real *8, dimension(:), allocatable soc_a
- real *8, dimension(:), allocatable rspc a
- integer, dimension(:), allocatable tillage_switch
- real *8, dimension(:), allocatable tillage_depth
- integer, dimension(:), allocatable tillage days
- real *8, dimension(:), allocatable tillage_factor
- real *8 dthy

time interval for subdaily routing

- integer, dimension(4) ihx
- integer, dimension(:), allocatable nhy
- real *8, dimension(:), allocatable rchx
- real *8, dimension(:), allocatable rcss
- real *8, dimension(:), allocatable qcap
- real *8, dimension(:), allocatable chxa
- real *8, dimension(:), allocatable chxp
- real *8, dimension(:,:,:), allocatable qhy
- real *8 ff1
- real *8 ff2

5.1.1 Detailed Description

main module containing the global variables

5.1.2 Variable Documentation

5.1.2.1 igropt

integer parm::igropt

Qual2E option for calculating the local specific growth rate of algae 1: multiplicative.

u = mumax fll fnn fpp

2: limiting nutrient

 $u = mumax fll \min(fnn, fpp)$

3: harmonic mean

$$u = mumax fll \frac{2}{\frac{1}{fnn} + \frac{1}{fpp}}$$

Chapter 6

Data Type Documentation

6.1 parm::ascrv Interface Reference

Public Member Functions

• subroutine **ascrv** (x1, x2, x3, x4, x5, x6)

The documentation for this interface was generated from the following file:

• modparm.f90

6.2 parm::atri Interface Reference

Public Member Functions

• real *8 function atri (at1, at2, at3, at4i)

The documentation for this interface was generated from the following file:

· modparm.f90

6.3 parm::aunif Interface Reference

Public Member Functions

• real *8 function aunif (x1)

The documentation for this interface was generated from the following file:

modparm.f90

6.4 parm::dstn1 Interface Reference

Public Member Functions

• real *8 function dstn1 (rn1, rn2)

The documentation for this interface was generated from the following file:

· modparm.f90

6.5 parm::ee Interface Reference

Public Member Functions

• real *8 function ee (tk)

The documentation for this interface was generated from the following file:

• modparm.f90

6.6 parm::expo Interface Reference

Public Member Functions

• real *8 function expo (xx)

The documentation for this interface was generated from the following file:

• modparm.f90

6.7 parm::fcgd Interface Reference

Public Member Functions

• real *8 function fcgd (xx)

The documentation for this interface was generated from the following file:

modparm.f90

6.8 parm::HQDAV Interface Reference

Public Member Functions

• subroutine hqdav (A, CBW, QQ, SSS, ZCH, ZX, CHW, FPW, jrch)

The documentation for this interface was generated from the following file:

· modparm.f90

6.9 parm::layersplit Interface Reference

Public Member Functions

subroutine layersplit (dep_new)

The documentation for this interface was generated from the following file:

• modparm.f90

6.10 parm::ndenit Interface Reference

Public Member Functions

• subroutine **ndenit** (k, j, cdg, wdn, void)

The documentation for this interface was generated from the following file:

· modparm.f90

6.11 parm::qman Interface Reference

Public Member Functions

real *8 function qman (x1, x2, x3, x4)

The documentation for this interface was generated from the following file:

modparm.f90

6.12 parm::regres Interface Reference

Public Member Functions

• real *8 function regres (k)

The documentation for this interface was generated from the following file:

· modparm.f90

6.13 parm::rsedaa Interface Reference

Public Member Functions

· subroutine rsedaa (years)

The documentation for this interface was generated from the following file:

· modparm.f90

6.14 parm::tair Interface Reference

Public Member Functions

• real *8 function tair (hr, jj)

The documentation for this interface was generated from the following file:

· modparm.f90

6.15 parm::theta Interface Reference

Public Member Functions

• real *8 function theta (r20, thk, tmp)

The documentation for this interface was generated from the following file:

• modparm.f90

6.16 parm::vbl Interface Reference

Public Member Functions

• subroutine vbl (evx, spx, pp, qin, ox, vx1, vy, yi, yo, ysx, vf, vyf, aha)

The documentation for this interface was generated from the following file:

• modparm.f90

Chapter 7

File Documentation

7.1 allocate_parms.f90 File Reference

Functions/Subroutines

• subroutine allocate_parms
this subroutine allocates array sizes

7.1.1 Detailed Description

this subroutine allocates array sizes

Author

modified by Javier Burguete

7.2 ascrv.f90 File Reference

Functions/Subroutines

• subroutine ascrv (x1, x2, x3, x4, x5, x6)

this subroutine computes shape parameters x5 and x6 for the S curve equation

7.2.1 Detailed Description

file containing the subroutine ascrv

Author

modified by Javier Burguete

7.2.2 Function/Subroutine Documentation

7.2.2.1 ascrv()

```
subroutine ascrv (
    real*8, intent(in) x1,
    real*8, intent(in) x2,
    real*8, intent(in) x3,
    real*8, intent(in) x4,
    real*8, intent(out) x5,
    real*8, intent(out) x6)
```

this subroutine computes shape parameters x5 and x6 for the S curve equation

$$x = \frac{y}{y + \exp(x5 + x6y)}$$

given 2 (x,y) points along the curve. x5 is determined by solving the equation with x and y values measured around the midpoint of the curve (approx. 50% of the maximum value for x) and x6 is determined by solving the equation with x and y values measured close to one of the endpoints of the curve (100% of the maximum value for x). This subroutine is called from readbsn.f90 and readplant.f90

Parameters

in	х1	value for x in the above equation for first datapoint, x1 should be close to 0.5 (the midpoint of the curve)
in	x2	value for x in the above equation for second datapoint, x2 should be close to 0.0 or 1.0
in	хЗ	value for y in the above equation corresponding to x1
in	x4	value for y in the above equation corresponding to x2
out	x5	1st shape parameter for S curve equation characterizing the midpoint of the curve
out	х6	2nd shape parameter for S curve equation characterizing the regions close to the endpoints of
		the curve

7.3 aunif.f90 File Reference

Functions/Subroutines

• real *8 function aunif (x1)

This function generates random numbers ranging from 0.0 to 1.0. In the process of calculating the random number, the seed (x1) is set to a new value. This function implements the prime-modulus generator.

7.3.1 Detailed Description

file containing the function aunif

Author

modified by Javier Burguete

7.3.2 Function/Subroutine Documentation

7.3.2.1 aunif()

This function generates random numbers ranging from 0.0 to 1.0. In the process of calculating the random number, the seed (x1) is set to a new value. This function implements the prime-modulus generator.

$$xi = 16807 xi \mod (2^{31} - 1)$$

using code which ensures that no intermediate result uses more than 31 bits. The theory behind the code is summarized in [1]

Parameters

|x1| random number generator seed (integer) where 0 < x1 < 2147483647

Returns

random number ranging from 0.0 to 1.0

7.4 caps.f90 File Reference

Functions/Subroutines

• subroutine caps (file name)

this subroutine reads the input and output names given in file.cio and converts all capital letters to lowercase letters.

7.4.1 Detailed Description

file containing the subroutine caps

Author

modified by Javier Burguete

7.4.2 Function/Subroutine Documentation

7.4.2.1 caps()

this subroutine reads the input and output names given in file.cio and converts all capital letters to lowercase letters.

Parameters

file_name dummy argument, file name character string

7.5 gcycl.f90 File Reference

Functions/Subroutines

· subroutine gcycl

This subroutine initializes the random number seeds. If the user desires a different set of random numbers for each simulation run, the random number generator is used to reset the values of the seeds.

7.5.1 Detailed Description

file containing the subroutine gcycl

Author

modified by Javier Burguete

7.6 getallo.f90 File Reference

Functions/Subroutines

· subroutine getallo

This subroutine calculates the number of HRUs, subbasins, etc. in the simulation. These values are used to allocate array sizes.

7.6.1 Detailed Description

file containing the subroutine getallo

Author

modified by Javier Burguete

7.7 hruallo.f90 File Reference

Functions/Subroutines

subroutine hruallo

This subroutine calculates the number of management operation types, etc. used in the simulation. These values are used to allocate array sizes for processes occurring in the HRU.

7.7.1 Detailed Description

file containing the subroutine hruallo

Author

modified by Javier Burguete

7.8 jdt.f90 File Reference

Functions/Subroutines

• integer function jdt (numdays, i, m)

this function computes the julian date given the month and the day of the month

7.8.1 Detailed Description

file containing the function jdt

Author

modified by Javier Burguete

7.8.2 Function/Subroutine Documentation

7.8.2.1 jdt()

```
integer function jdt (
          integer, dimension (13), intent(in) numdays,
          integer, intent(in) i,
           integer, intent(in) m )
```

this function computes the julian date given the month and the day of the month

Parameters

in	numdays	julian date for last day of preceding month (where the array location is the number of the month). The dates are for leap years (numdays=ndays) (julian date)
in	i	day
in	т	month

7.9 main.f90 File Reference

Functions/Subroutines

· program main

this is the main program that reads input, calls the main simulation model, and writes output

7.9.1 Detailed Description

file containing the main program that reads input, calls the main simulation model, and writes output.

Author

modified by Javier Burguete Tolosa

7.10 modparm.f90 File Reference

Data Types

- interface parm::atri
- · interface parm::aunif
- interface parm::dstn1
- interface parm::ee
- interface parm::expo
- interface parm::fcgd
- interface parm::qman
- interface parm::regres
- interface parm::tair
- interface parm::theta
- interface parm::ascrv
- interface parm::HQDAV
- interface parm::layersplit
- interface parm::ndenit
- interface parm::rsedaa
- interface parm::vbl

Modules

module parm

main module containing the global variables

Variables

• integer, parameter parm::mvaro = 33

max number of variables routed through the reach

• integer, parameter parm::mhruo = 79

max number of variables in output.hru

integer, parameter parm::mrcho = 62

max number of variables in reach file

integer, parameter parm::msubo = 24

max number of variables in output.sub

• integer, parameter parm::mstdo = 113

max number of variables summarized in output.std

- integer, parameter parm::motot = 600
- integer parm::icalen
- real *8 parm::prf_bsn

Basinwide peak rate adjustment factor for sediment routing in the channel. Allows impact of peak flow rate on sediment routing and channel reshaping to be taken into account.

- real *8 parm::co2 x2
- real *8 parm::co2 x
- real *8, dimension(:), allocatable parm::alph_e
- real *8, dimension(:), allocatable parm::cdn

denitrification exponential rate coefficient

real *8, dimension(:), allocatable parm::nperco

nitrate percolation coefficient (0-1)

0:concentration of nitrate in surface runoff is zero

1:percolate has same concentration of nitrate as surface runoff

real *8, dimension(:), allocatable parm::surlag

Surface runoff lag time. This parameter is needed in subbasins where the time of concentration is greater than 1 day. SURLAG is used to create a "storage" for surface runoff to allow the runoff to take longer than 1 day to reach the subbasin outlet (days)

- real *8, dimension(:), allocatable parm::co_p
- real *8, dimension(:), allocatable parm::cmn

rate factor for humus mineralization on active organic N

real *8, dimension(:), allocatable parm::phoskd

Phosphorus soil partitioning coefficient. Ratio of soluble phosphorus in surface layer to soluble phosphorus in runoff.

real *8, dimension(:), allocatable parm::psp

Phosphorus availibility index. The fraction of fertilizer P remaining in labile pool after initial rapid phase of P sorption.

• real *8, dimension(:), allocatable parm::sdnco

denitrification threshold: fraction of field capacity triggering denitrification

real *8 parm::r2adj_bsn

basinwide retention parameter adjustment factor (greater than 1)

- real *8 parm::yield
- real *8 parm::burn_frlb
- real *8 parm::pst_kg
- real *8 parm::yieldgrn
- real *8 parm::yieldbms
- real *8 parm::yieldtbr
- real *8 parm::yieldn
- real *8 parm::yieldp
- real *8 parm::hi_bms
- real *8 parm::hi_rsd
- real *8 parm::yieldrsd
- real *8, dimension(:), allocatable parm::l_k1

- real *8, dimension(:), allocatable parm::l_k2
- real *8, dimension(:), allocatable parm::l_lambda
- real *8, dimension(:), allocatable parm::l_beta
- real *8, dimension(:), allocatable parm:: gama
- real *8, dimension(:), allocatable parm::l_harea
- real *8, dimension(:), allocatable parm::l_vleng
- real *8, dimension(:), allocatable parm:: vslope
- real *8, dimension(:), allocatable parm::l_ktc
- real *8, dimension(:), allocatable parm::biofilm_mumax
- real *8, dimension(:), allocatable parm::biofilm kinv
- real *8, dimension(:), allocatable parm::biofilm klw
- real *8, dimension(:), allocatable parm::biofilm_kla
- weel (0, disserting (1) elleretable permutable film add
- real *8, dimension(:), allocatable parm::biofilm_cdet
- real *8, dimension(:), allocatable parm::biofilm_bm
 real *8, dimension(:,:), allocatable parm::hru_rufr
- real *8, dimension(:,:), allocatable parm::daru_km
- real *8, dimension(:,:), allocatable parm::ru k
- real *8, dimension(:,:), allocatable parm::ru_c
- real *8, dimension(:,:), allocatable parm::ru_eiq
- real *8, dimension(:,:), allocatable parm::ru_ovsl
- real *8, dimension(:,:), allocatable parm::ru_a
- real *8, dimension(:,:), allocatable parm::ru_ovs
- real *8, dimension(:,:), allocatable parm::ru_ktc
- real *8, dimension(:), allocatable parm::gwg ru
- real *8, dimension(:), allocatable parm::qdayout
- integer, dimension(:), allocatable parm::ils2
- integer, dimension(:), allocatable parm::ils2flag
- integer parm::iru
- integer parm::mru
- · integer parm::irch
- · integer parm::isub
- integer parm::idum
- integer parm::mhyd_bsn
- · integer parm::ipest
- integer parm::ils_nofig
- integer parm::mhru1
- integer, dimension(:), allocatable parm::mhyd1
- integer, dimension(:), allocatable parm::irtun
- real *8 parm::wshd sepno3
- real *8 parm::wshd_sepnh3
- real *8 parm::wshd seporgn
- real *8 parm::wshd_sepfon
- real *8 parm::wshd_seporgp
- real *8 parm::wshd_sepfop
- real *8 parm::wshd_sepsolp
- real *8 parm::wshd_sepbod
- real *8 parm::wshd_sepmm
- integer, dimension(:), allocatable parm::isep_hru
- real *8 parm::fixco

nitrogen fixation coefficient

real *8 parm::nfixmx

maximum daily n-fixation (kg/ha)

• real *8 parm::res stlr co

reservoir sediment settling coefficient

```
real *8 parm::rsd_covco
     residue cover factor for computing frac of cover

    real *8 parm::vcrit

     critical velocity
real *8 parm::wshd_sw

    real *8 parm::wshd snob

real *8 parm::wshd_pndfr
real *8 parm::wshd_pndv

    real *8 parm::wshd_pndsed

• real *8 parm::percop
     pesticide percolation coefficient (0-1)
     0: concentration of pesticide in surface runoff is zero
     1: percolate has same concentration of pesticide as surface runoff
real *8 parm::wshd wetfr
real *8 parm::wshd_resfr
real *8 parm::wshd_resha

    real *8 parm::wshd_pndha

real *8 parm::wshd_fminp

    real *8 parm::wshd_ftotn

real *8 parm::wshd fnh3
real *8 parm::wshd fno3
real *8 parm::wshd_forgn
real *8 parm::wshd_forgp
real *8 parm::wshd_ftotp
real *8 parm::wshd_yldn
real *8 parm::wshd yldp
real *8 parm::wshd_fixn
real *8 parm::wshd_pup

    real *8 parm::wshd wstrs

real *8 parm::wshd_nstrs

    real *8 parm::wshd_pstrs

real *8 parm::wshd_tstrs
real *8 parm::wshd_astrs

    real *8 parm::ffcb

     initial soil water content expressed as a fraction of field capacity
real *8 parm::wshd hmn
real *8 parm::wshd_rwn
real *8 parm::wshd_hmp
real *8 parm::wshd_rmn
real *8 parm::wshd_dnit
real *8 parm::wdpq
     die-off factor for persistent bacteria in soil solution (1/day)
real *8 parm::wshd_rmp
real *8 parm::wshd_voln
real *8 parm::wshd_nitn
real *8 parm::wshd_pas
real *8 parm::wshd_pal
real *8 parm::wof_p
     wash off fraction for persistent bacteria on foliage during a rainfall event
real *8 parm::wshd_plch
real *8 parm::wshd raino3
• real *8 parm::ressedc
real *8 parm::basno3f
real *8 parm::basorgnf
```

- real *8 parm::wshd_pinlet
- real *8 parm::wshd_ptile
- real *8 parm::sftmp

Snowfall temperature (deg C)

real *8 parm::smfmn

Minimum melt rate for snow during year (Dec. 21) where deg C refers to the air temperature. (mm/deg C/day)

real *8 parm::smfmx

Maximum melt rate for snow during year (June 21) where deg C refers to the air temperature. SMFMX and SM← FMN allow the rate of snow melt to vary through the year. These parameters are accounting for the impact of soil temperature on snow melt. (mm/deg C/day)

real *8 parm::smtmp

Snow melt base temperature. Mean air temperature at which snow melt will occur. (deg C)

real *8 parm::wgpq

growth factor for persistent bacteria in soil solution (1/day)

- real *8 parm::basminpf
- real *8 parm::basorgpf
- real *8 parm::wdlpq

die-off factor for less persistent bacteria in soil solution (1/day)

- real *8 parm::wshd_resv
- real *8 parm::wshd_ressed
- real *8 parm::basno3i
- real *8 parm::basorgni
- real *8 parm::basminpi
- real *8 parm::wdps

die-off factor for persistent bacteria adsorbed to soil particles (1/day)

real *8 parm::wglpq

growth factor for less persistent bacteria in soil solution (1/day)

- real *8 parm::basorgpi
- real *8 parm::peakr
- real *8 parm::pndsedin
- real *8 parm::sw excess
- real *8 parm::albday
- real *8 parm::timp

Snow pack temperature lag factor (0-1)

1 = no lag (snow pack temp=current day air temp) as the lag factor goes to zero, the snow pack's temperature will be less influenced by the current day's air temperature.

- real *8 parm::wtabelo
- real *8 parm::tilep
- real *8 parm::wt shall
- real *8 parm::sq_rto
- real *8 parm::tloss
- real *8 parm::inflpcp
- real *8 parm::snomlt
- real *8 parm::snofall
- real *8 parm::fixn
- real *8 parm::qtile
- real *8 parm::crk
- real *8 parm::latlyr
- real *8 parm::pndloss
- real *8 parm::wetloss
- real *8 parm::potloss
- real *8 parm::lpndloss
- real *8 parm::lwetloss
- real *8 parm::sedrch

```
    real *8 parm::fertn

real *8 parm::sol_rd
• real *8 parm::cfertn
real *8 parm::cfertp
real *8 parm::sepday

    real *8 parm::bioday

real *8 parm::sepcrk
real *8 parm::sepcrktot
• real *8 parm::fertno3
real *8 parm::fertnh3

    real *8 parm::fertorgn

    real *8 parm::fertsolp

    real *8 parm::fertorgp

real *8 parm::wgps
     growth factor for persistent bacteria adsorbed to soil particles (1/day)
real *8 parm::fertp
• real *8 parm::grazn
real *8 parm::grazp
real *8 parm::soxy
real *8 parm::qdfr
real *8 parm::sdti
real *8 parm::rtwtr
real *8 parm::ressa
· real *8 parm::wdlps
     die-off factor for less persistent bacteria absorbed to soil particles (1/day)
real *8 parm::wglps
     growth factor for less persistent bacteria adsorbed to soil particles (1/day)
real *8 parm::da_km
     area of the watershed in square kilometers (km<sup>2</sup>)
real *8 parm::rttime
real *8 parm::rchdep
real *8 parm::rtevp
real *8 parm::rttlc

    real *8 parm::resflwi

    real *8 parm::wdprch

     die-off factor for persistent bacteria in streams (1/day)

    real *8 parm::resflwo

real *8 parm::respcp
real *8 parm::resev
real *8 parm::ressep

    real *8 parm::ressedi

    real *8 parm::ressedo

real *8 parm::dtot
 real *8 parm::pperco_bsn
     phosphorus percolation coefficient. Ratio of soluble phosphorus in surface to soluble phosphorus in percolate
real *8 parm::nperco_bsn
     basin nitrate percolation coefficient (0-1)
     0:concentration of nitrate in surface runoff is zero
     1:percolate has same concentration of nitrate as surface runoff
real *8 parm::rsdco
     residue decomposition coefficient. The fraction of residue which will decompose in a day assuming optimal moisture,
     temperature, C:N ratio, and C:P ratio
```

real *8 parm::phoskd_bsnreal *8 parm::voltot

real *8 parm::msk_x

weighting factor controling relative importance of inflow rate and outflow rate in determining storage on reach

- real *8 parm::volcrmin
- real *8 parm::bactkdq

bacteria soil partitioning coefficient. Ratio of solution bacteria in surface layer to solution bacteria in runoff soluble and sorbed phase in surface runoff.

real *8 parm::wdpf

die-off factor for persistent bacteria on foliage (1/day)

- real *8 parm::uno3d
- real *8 parm::canev
- real *8 parm::usle
- real *8 parm::rcn
- real *8 parm::surlag bsn
- real *8 parm::precipday
- real *8 parm::thbact

temperature adjustment factor for bacteria die-off/growth

real *8 parm::wlpq20

overall rate change for less persistent bacteria in soil solution (1/day)

real *8 parm::wlps20

overall rate change for less persistent bacteria adsorbed to soil particles (1/day)

real *8 parm::wpg20

overall rate change for persistent bacteria in soil solution (1/day)

real *8 parm::wps20

overall rate change for persistent bacteria adsorbed to soil particles (1/day)

- real *8 parm::bactrop
- real *8 parm::bactsedp
- real *8 parm::wgpf

growth factor for persistent bacteria on foliage (1/day)

- real *8 parm::bactlchp
- real *8 parm::bactlchlp
- real *8 parm::enratio
- real *8 parm::wetpcp
- real *8 parm::pndpcp
- real *8 parm::wetsep
- real *8 parm::pndsep
- real *8 parm::wetev
- real *8 parm::pndev
- real *8 parm::pndsedo
- real *8 parm::wetsedo
- real *8 parm::pndflwireal *8 parm::wetflwi
- real *8 parm::pndflwo
- real *8 parm::wetflwo
- real *8 parm::wetsedi
- real *8 parm::da_ha
- real *8 parm::vpd
- real *8 parm::evlai

leaf area index at which no evaporation occurs. This variable is used in ponded HRUs where evaporation from the water surface is restricted by the plant canopy cover. Evaporation from the water surface equals potential ET when LAI = 0 and decreased linearly to O when LAI = EVLAI

· real *8 parm::evrch

Reach evaporation adjustment factor. Evaporation from the reach is multiplied by EVRCH. This variable was created to limit the evaporation predicted in arid regions.

real *8 parm::wdlpf

die-off factor for less persistent bacteria on foliage (1/day)

- real *8 parm::bactrolp
- real *8 parm::bactsedlp
- real *8 parm::pet_day
- real *8 parm::ep_day
- real *8 parm::adj pkr

peak rate adjustment factor in the subbasin. Used in the MUSLE equation to account for impact of peak flow on erosion.

real *8 parm::n updis

nitrogen uptake distribution parameter. This parameter controls the amount of nitrogen removed from the different soil layer layers by the plant. In particular, this parameter allows the amount of nitrogen removed from the surface layer via plant uptake to be controlled. While the relationship between UBN and N removed from the surface layer is affected by the depth of the soil profile, in general, as UBN increases the amount of N removed from the surface layer relative to the amount removed from the entire profile increases

· real *8 parm::nactfr

nitrogen active pool fraction. The fraction of organic nitrogen in the active pool.

real *8 parm::p updis

phosphorus uptake distribution parameter This parameter controls the amount of phosphorus removed from the different soil layers by the plant. In particular, this parameter allows the amount of phosphorus removed from the surface layer via plant uptake to be controlled. While the relationship between UBP and P uptake from the surface layer is affected by the depth of the soil profile, in general, as UBP increases the amount of P removed from the surface layer relative to the amount removed from the entire profile increases

- real *8 parm::snoev
- real *8 parm::sno3up
- real *8 parm::reactw
- real *8 parm::sdiegropq
- real *8 parm::sdiegrolpq
- real *8 parm::sdiegrops
- real *8 parm::sdiegrolps
- real *8 parm::es_day
- real *8 parm::wof_lp

wash off fraction for less persistent bacteria on foliage during a rainfall event

- real *8 parm::sbactrop
- real *8 parm::sbactrolp
- real *8 parm::sbactsedp
- real *8 parm::sbactsedlp
- real *8 parm::ep_max
- real *8 parm::sbactlchp
- real *8 parm::sbactlchlp
- real *8 parm::psp_bsn
- real *8 parm::rchwtr
- real *8 parm::resuspst
- real *8 parm::setlpst
- real *8 parm::bsprev
- real *8 parm::bssprev
- real *8 parm::spadyo
- real *8 parm::spadyev
- real *8 parm::spadysp
- real *8 parm::spadyrfv
- real *8 parm::spadyosp
- real *8 parm::qday
- real *8 parm::usle_ei
- real *8 parm::al5
- real *8 parm::pndsedc

- real *8 parm::no3pcp
- real *8 parm::rcharea
- · real *8 parm::volatpst
- real *8 parm::ubw

water uptake distribution parameter. This parameter controls the amount of water removed from the different soil layers by the plant. In particular, this parameter allows the amount of water removed from the surface layer via plant uptake to be controlled. While the relationship between UBW and H2O removed from the surface layer is affected by the depth of the soil profile, in general, as UBW increases the amount of water removed from the surface layer relative to the amount removed from the entire profile increases

real *8 parm::uobn

nitrogen uptake normalization parameter. This variable normalizes the nitrogen uptake so that the model can easily verify that upake from the different soil layers sums to 1.0

real *8 parm::uobp

phosphorus uptake normalization parameter. This variable normalizes the phosphorus uptake so that the model can easily verify that uptake from the different soil layers sums to 1.0

real *8 parm::uobw

water uptake normalization parameter. This variable normalizes the water uptake so that the model can easily verify that uptake from the different soil layers sums to 1.0

real *8 parm::wqlpf

growth factor for less persistent bacteria on foliage (1/day)

- real *8 parm::wetsedc
- real *8 parm::respesti
- real *8 parm::rcor

correction coefficient for generated rainfall to ensure that the annual means for generated and observed values are comparable (needed only if IDIST=1)

real *8 parm::rexp

value of exponent for mixed exponential rainfall distribution (needed only if IDIST=1)

real *8 parm::snocov1

1st shape parameter for snow cover equation. This parameter is determined by solving the equation for 50% snow

real *8 parm::snocov2

2nd shape parameter for snow cover equation. This parameter is determined by solving the equation for 95% snow cover

real *8 parm::snocovmx

Minimum snow water content that corresponds to 100% snow cover. If the snow water content is less than SNOC← OVMX, then a certain percentage of the ground will be bare (mm H2O)

- real *8 parm::lyrtile
- real *8 parm::lyrtilex
- real *8 parm::sno50cov

Fraction of SNOCOVMX that corresponds to 50% snow cover. SWAT assumes a nonlinear relationship between snow water and snow cover.

real *8 parm::ai0

ratio of chlorophyll-a to algal biomass (ug chla/mg alg)

real *8 parm::ai1

fraction of algal biomass that is nitrogen (mg N/mg alg)

real *8 parm::ai2

fraction of algal biomass that is phosphorus (mg P/mg alg)

real *8 parm::ai3

the rate of oxygen production per unit of algal photosynthesis (mg O2/mg alg)

real *8 parm::ai4

the rate of oxygen uptake per unit of algae respiration (mg O2/mg alg)

real *8 parm::ai5

the rate of oxygen uptake per unit of NH3 nitrogen oxidation (mg O2/mg N)

real *8 parm::ai6

```
the rate of oxygen uptake per unit of NO2 nitrogen oxidation (mg O2/mg N)
· real *8 parm::rhoq
     algal respiration rate (1/day or 1/hr)

    real *8 parm::tfact

     fraction of solar radiation computed in the temperature heat balance that is photosynthetically active
real *8 parm::k_l
     half-saturation coefficient for light (MJ/(m2*hr))
real *8 parm::k_n
     michaelis-menton half-saturation constant for nitrogen (mg N/L)
real *8 parm::k_p
     michaelis-menton half saturation constant for phosphorus (mg P/L)
• real *8 parm::lambda0
     non-algal portion of the light extinction coefficient (1/m)

    real *8 parm::lambda1

     linear algal self-shading coefficient (1/(m*ug chla/L))
real *8 parm::lambda2
     nonlinear algal self-shading coefficient ((1/m)(ug chla/L)**(-2/3))
real *8 parm::mumax
     maximum specific algal growth rate (1/day or 1/hr)
real *8 parm::p_n
     algal preference factor for ammonia
real *8 parm::rnum1
real *8 parm::autop
real *8 parm::auton
real *8 parm::etday
real *8 parm::hmntl
real *8 parm::rwntl
real *8 parm::hmptl
real *8 parm::rmn2tl
real *8 parm::rmptl
real *8 parm::wdntl
real *8 parm::cmn_bsn
real *8 parm::rmp1tl
real *8 parm::roctl
real *8 parm::gwseep
real *8 parm::revapday
real *8 parm::reswtr
real *8 parm::wdlprch
     die-off factor for less persistent bacteria in streams (1/day)

    real *8 parm::wdpres

     die-off factor for persistent bacteria in reservoirs (1/day)
real *8 parm::bury
real *8 parm::difus
• real *8 parm::reactb
• real *8 parm::solpesto
• real *8 parm::petmeas
real *8 parm::wdlpres
     die-off factor for less persistent bacteria in reservoirs (1/day)

    real *8 parm::sorpesto

• real *8 parm::spcon_bsn
real *8 parm::spexp_bsn

    real *8 parm::solpesti
```

- real *8 parm::sorpesti
- real *8 parm::msk_co1

calibration coefficient to control impact of the storage time constant for the reach at bankfull depth (phi(10,:) upon the storage time constant for the reach used in the Muskingum flow method

real *8 parm::msk co2

calibration coefficient to control impact of the storage time constant for the reach at 0.1 bankfull depth (phi(13,:) upon the storage time constant for the reach used in the Muskingum flow method

- real *8 parm::snoprev
- real *8 parm::swprev
- real *8 parm::shallstp
- real *8 parm::deepstp
- real *8 parm::ressolpo
- real *8 parm::resorgno
- real *8 parm::resorgpo
- real *8 parm::resno3o
- real *8 parm::reschlao
- real *8 parm::resno2o
- real *8 parm::resnh3o
- real *8 parm::qdbank
- real *8 parm::potpcpmm
- real *8 parm::potevmm
- real *8 parm::potsepmm
- real *8 parm::potflwo
- real *8 parm::bactminlp

Threshold detection level for less persistent bacteria. When bacteria levels drop to this amount the model considers bacteria in the soil to be insignificant and sets the levels to zero (cfu/m^2)

• real *8 parm::bactminp

Threshold detection level for persistent bacteria. When bacteria levels drop to this amount the model considers bacteria in the soil to be insignificant and sets the levels to zero (cfu/m^2)

real *8 parm::trnsrch

fraction of transmission losses from main channel that enter deep aquifer

real *8 parm::wp20p_plt

overall rate change for persistent bacteria on foliage (1/day)

- real *8 parm::potsedo
- real *8 parm::pest_sol
- real *8 parm::bact_swf

fraction of manure containing active colony forming units (cfu)

real *8 parm::bactmx

bacteria percolation coefficient. Ratio of solution bacteria in surface layer to solution bacteria in percolate

real *8 parm::cncoef

plant ET curve number coefficient

real *8 parm::wp20lp_plt

overall rate change for less persistent bacteria on foliage (1/day)

- real *8 parm::cdn_bsn
- real *8 parm::sdnco_bsn
- real *8 parm::bactmin
- real *8 parm::cn_froz

drainge coefficient (mm day -1)

real *8 parm::dorm_hr

time threshold used to define dormant (hours)

real *8 parm::smxco

adjustment factor for max curve number s factor (0-1)

real *8 parm::tb_adj

```
adjustment factor for subdaily unit hydrograph basetime
• real *8 parm::chla_subco
     regional adjustment on sub chla_a loading (fraction)
• real *8 parm::depimp bsn
     depth to impervious layer. Used to model perched water tables in all HRUs in watershed (mm)

    real *8 parm::ddrain bsn

     depth to the sub-surface drain (mm)

    real *8 parm::tdrain bsn

     time to drain soil to field capacity (hours)

    real *8 parm::gdrain_bsn

real *8 parm::rch_san
real *8 parm::rch_sil

    real *8 parm::rch_cla

real *8 parm::rch_sag
real *8 parm::rch_lag
• real *8 parm::rch_gra
real *8 parm::hlife_ngw_bsn
     Half-life of nitrogen in groundwater? (days)
real *8 parm::ch_opco_bsn
• real *8 parm::ch_onco_bsn
real *8 parm::decr_min
     Minimum daily residue decay.
real *8 parm::rcn_sub_bsn
     Concentration of nitrogen in the rainfall (mg/kg)
real *8 parm::bc1_bsn
real *8 parm::bc2 bsn
real *8 parm::bc3_bsn
real *8 parm::bc4 bsn
real *8 parm::anion_excl_bsn
real *8, dimension(:), allocatable parm::wat_tbl
real *8, dimension(:), allocatable parm::sol_swpwt

    real *8, dimension(:,:), allocatable parm::vwt

    real *8 parm::re bsn

     Effective radius of drains (range 3.0 - 40.0) (mm)
real *8 parm::sdrain_bsn
     Distance bewtween two drain or tile tubes (range 7600.0 - 30000.0) (mm)
real *8 parm::sstmaxd_bsn
 real *8 parm::drain_co_bsn
     Drainage coeffcient (range 10.0 - 51.0) (mm-day-1)

    real *8 parm::latksatf bsn

     Multiplication factor to determine lateral ksat from SWAT ksat input value for HRU (range 0.01 - 4.0)

    real *8 parm::pc bsn

     Pump capacity (def val = 1.042 mm h-1 or 25 mm day-1) (mm h-1)
· integer parm::i_subhw
· integer parm::imgt
· integer parm::idlast
· integer parm::iwtr
· integer parm::ifrttyp
· integer parm::mo_atmo
· integer parm::mo atmo1
· integer parm::ifirstatmo
integer parm::iyr_atmo
integer parm::iyr_atmo1
```

```
· integer parm::matmo
 integer parm::mch
     maximum number of channels
· integer parm::mcr
     maximum number of crops grown per year

    integer parm::mcrdb

     maximum number of crops/landcover in database file (crop.dat)
· integer parm::mfcst
     maximum number of forecast stations
· integer parm::mfdb
     max number of fertilizers in fert.dat
· integer parm::mhru
     maximum number of HRUs in watershed

    integer parm::mhyd

     maximum number of hydrograph nodes

    integer parm::mpdb

     max number of pesticides in pest.dat
· integer parm::mrg
     max number of rainfall/temp gages
· integer parm::mcut
     maximum number of cuttings per year
  integer parm::mgr
     maximum number of grazings per year
· integer parm::mnr
     max number of years of rotation
· integer parm::myr
     max number of years of simulation
· integer parm::isubwq
     subbasin water quality code
     0 do not calculate algae/CBOD 1 calculate algae/CBOD drainmod tile equations
integer parm::ffcst
  integer parm::isproj
     special project code: 1 test rewind (run simulation twice)
· integer parm::nbyr
     number of calendar years simulated
• integer parm::irte
     water routing method:
     0 variable storage method
      1 Muskingum method

    integer parm::nrch

     number of reaches in watershed (none)

    integer parm::nres

     number of reservoirs in watershed (none)
• integer parm::nhru
· integer parm::mo
· integer parm::immo
  integer parm::i mo
```

· integer parm::wndsim

wind speed input code

1 measured data read for each subbasin 2 data simulated for each subbasin · integer parm::ihru

HRU number (none)

- · integer parm::icode
- integer parm::ihout
- integer parm::inum1
- integer parm::inum2
- · integer parm::inum3
- integer parm::inum4
- · integer parm::icfac

icfac = 0 for C-factor calculation using Cmin (as described in manual)

= 1 for new C-factor calculation from RUSLE (no minimum needed)

- integer parm::inum5
- integer parm::inum6
- · integer parm::inum7
- · integer parm::inum8
- integer parm::mrech

maximum number of rechour files

• integer parm::nrgage

number of raingage files

· integer parm::nrgfil

number of rain gages per file

· integer parm::nrtot

total number of rain gages

· integer parm::ntgage

number of temperature gage files

integer parm::ntgfil

number of temperature gages per file

· integer parm::nttot

total number of temperature gages

• integer parm::tmpsim

temperature input code

1 measured data read for each subbasin

2 data simulated for each subbasin

· integer parm::icrk

crack flow code

1: compute flow in cracks

• integer parm::irtpest

number of pesticide to be routed through the watershed

integer parm::igropt

Qual2E option for calculating the local specific growth rate of algae

1: multiplicative.

· integer parm::lao

Qual2E light averaging option. Qual2E defines four light averaging options. The only option currently available in SWAT is #2.

integer parm::npmx

number of different pesticides used in the simulation (none)

- · integer parm::curyr
- · integer parm::iihru
- integer parm::itdrn

tile drainage equations flag/code

1 simulate tile flow using subroutine drains(wt_shall)

0 simulate tile flow using subroutine origtile(wt_shall,d)

• integer parm::iwtdn

water table depth algorithms flag/code

1 simulate wt_shall using subroutine new water table depth routine

0 simulate wt_shall using subroutine original water table depth routine

• integer parm::ismax

maximum depressional storage selection flag/code

0 = static depressional storage

1 = dynamic storage based on tillage and cumulative rainfall

· integer parm::iroutunit

not being implemented in this version drainmod tile equations

- · integer parm::ires_nut
- · integer parm::iclb

auto-calibration flag

• integer parm::mrecc

maximum number of recenst files

· integer parm::mrecd

maximum number of recday files

integer parm::mrecm

maximum number of recmon files

integer parm::mtil

max number of tillage types in till.dat

· integer parm::mudb

maximum number of urban land types in urban.dat

· integer parm::idist

rainfall distribution code

0 for skewed normal dist

1 for mixed exponential distribution

· integer parm::mrecy

maximum number of recyear files

· integer parm::nyskip

number of years to not print output

• integer parm::slrsim

solar radiation input code

1 measured data read for each subbasin

2 data simulated for each subbasin

integer parm::ideg

channel degredation code

1: compute channel degredation (downcutting and widening)

integer parm::ievent

rainfall/runoff code

0 daily rainfall/curve number technique 1 sub-daily rainfall/Green&Ampt/hourly routing 3 sub-daily rainfall/—Green&Ampt/hourly routing

· integer parm::ipet

code for potential ET method

0 Priestley-Taylor method

1 Penman/Monteith method

2 Hargreaves method

3 read in daily potential ET data

- · integer parm::iopera
- integer parm::idaf

beginning day of simulation (julian date)

· integer parm::idal

ending day of simulation (julian date)

• integer parm::rhsim

```
relative humidity input code
      1 measured data read for each subbasin
     2 data simulated for each subbasin
integer parm::id1
· integer parm::leapyr
· integer parm::mo_chk
· integer parm::nhtot
     number of relative humidity records in file

    integer parm::nstot

     number of solar radiation records in file
integer parm::nwtot
     number of wind speed records in file
· integer parm::ifirsts
· integer parm::ifirsth
· integer parm::ifirstw
· integer parm::icst
· integer parm::ilog
      streamflow print code
· integer parm::itotr
      number of output variables printed (output.rch)
· integer parm::iyr
     beginning year of simulation (year)
· integer parm::iwq
     stream water quality code
     0 do not model stream water quality
      1 model stream water quality (QUAL2E & pesticide transformations)

    integer parm::i

      forecast region number or subbasin number (none)
· integer parm::iskip
• integer parm::ifirstpet
· integer parm::iprp
     print code for output.pst file
     0 do not print pesticide output
      1 print pesticide output

    integer parm::itotb

     number of output variables printed (output.sub)
· integer parm::itots
     number of output variables printed (output.hru)

    integer parm::itoth

     number of HRUs printed (output.hru/output.wtr)

    integer parm::pcpsim

     rainfall input code
      1 measured data read for each subbasin
     2 data simulated for each subbasin
integer parm::nd_30
· integer parm::iops
integer parm::iphr
· integer parm::isto
· integer parm::isol
```

number of times forecast period is simulated (using different weather generator seeds each time)

Generated by Doxygen

integer parm::fcstcycles

· integer parm::fcstday

beginning date of forecast period (julian date)

· integer parm::fcstyr

beginning year of forecast period

· integer parm::iscen

scenarios counter

integer parm::subtot

number of subbasins in watershed (none)

- integer parm::ogen
- integer parm::mapp

maximum number of applications

· integer parm::mlyr

maximum number of soil layers

integer parm::mpst

max number of pesticides used in wshed

· integer parm::mres

maximum number of reservoirs

integer parm::msub

maximum number of subbasins

integer parm::igen

random number generator code:

0: use default numbers

1: generate new numbers in every simulation

integer parm::iprint

print code: 0=monthly, 1=daily, 2=annual

- · integer parm::iida
- · integer parm::icn

CN method flag (for testing alternative method):

0 use traditional SWAT method which bases CN on soil moisture

1 use alternative method which bases CN on plant ET.

• integer parm::ised_det

max half-hour rainfall fraction calc option:

0 generate max half-hour rainfall fraction from triangular distribution

1 use monthly mean max half-hour rainfall fraction

- · integer parm::fcstcnt
- · integer parm::mtran
- integer parm::idtill
- integer, dimension(100) parm::ida_lup
- integer, dimension(100) parm::iyr_lup
- integer parm::no_lup
- integer parm::no_up
- integer parm::nostep
- character(len=8) parm::date

date simulation is performed where leftmost eight characters are set to a value of yyyymmdd, where yyyy is the year, mm is the month and dd is the day

character(len=10) parm::time

time simulation is performed where leftmost ten characters are set to a value of hhmmss.sss, where hh is the hour, mm is the minutes and ss.sss is the seconds and milliseconds

character(len=5) parm::zone

time difference with respect to Coordinated Universal Time (ie Greenwich Mean Time)

character(len=80) parm::prog

SWAT program header string.

character(len=13) parm::calfile

name of file containing calibration parameters

character(len=13) parm::rhfile

```
relative humidity file name (.hmd)

    character(len=13) parm::slrfile

     solar radiation file name (.slr)
• character(len=13) parm::wndfile
      wind speed file name (.wnd)
• character(len=13) parm::petfile
     potential ET file name (.pet)

    character(len=13) parm::atmofile

    character(len=13) parm::lucfile

  character(len=13) parm::septdb
     name of septic tank database file (septwq1.dat)

    character(len=13) parm::dpd_file

character(len=13) parm::wpd_file

    character(len=13) parm::rib_file

· character(len=13) parm::sfb_file

    character(len=13) parm::lid_file

    integer, dimension(9) parm::idg

     array location of random number seed used for a given process
· integer, dimension(:), allocatable parm::ifirstr
• integer, dimension(:), allocatable parm::ifirsthr

    integer, dimension(8) parm::values

      values(1): year simulation is performed
     values(2): month simulation is performed
     values(3): day in month simulation is performed
     values(4): time difference with respect to Coordinated Universal Time (ie Greenwich Mean Time)
     values(5): hour simulation is performed
     values(6): minute simulation is performed
     values(7): second simulation is performed
     values(8): millisecond simulation is performed
• integer, dimension(13) parm::ndays
     julian date for last day of preceding month (where the array location is the number of the month) The dates are for
     leap years (julian date)
integer, dimension(13) parm::ndays_noleap
integer, dimension(13) parm::ndays_leap
integer parm::mapex
• real *8, dimension(:), allocatable parm::flodaya

    real *8, dimension(:), allocatable parm::seddaya

    real *8, dimension(:), allocatable parm::orgndaya

    real *8, dimension(:), allocatable parm::orgpdaya

  real *8, dimension(:), allocatable parm::no3daya

    real *8, dimension(:), allocatable parm::minpdaya

    real *8, dimension(:), allocatable parm::hi targ

     index target of cover defined at planting

    real *8, dimension(:), allocatable parm::bio_targ

    real *8, dimension(:), allocatable parm::tnyld

• integer, dimension(:), allocatable parm::idapa
• integer, dimension(:), allocatable parm::iypa

    integer, dimension(:), allocatable parm::ifirsta

integer, dimension(100) parm::mo_transb
integer, dimension(100) parm::mo_transe

    integer, dimension(100) parm::ih_tran

· integer parm::msdb
```

integer parm::iseptic

real *8, dimension(:), allocatable parm::sptqs

- real *8, dimension(:), allocatable parm::percp
- real *8, dimension(:), allocatable parm::sptbodconcs
- real *8, dimension(:), allocatable parm::spttssconcs
- real *8, dimension(:), allocatable parm::spttnconcs
- real *8, dimension(:), allocatable parm::sptnh4concs
- real *8, dimension(:), allocatable parm::sptno3concs
- real *8, dimension(:), allocatable parm::sptno2concs
- real *8, dimension(:), allocatable parm::sptorgnconcs
- real *8, dimension(:), allocatable parm::spttpconcs
- real *8, dimension(:), allocatable parm::sptminps
- real *8, dimension(:), allocatable parm::sptorgps
- real *8, dimension(:), allocatable parm::sptfcolis
- real *8, dimension(:), allocatable parm::failyr
- real *8, dimension(:), allocatable parm::qstemm
- real *8, dimension(:), allocatable parm::bio amn
- real *8, dimension(:), allocatable parm::bio bod
- real *8, dimension(:), allocatable parm::biom
- real *8, dimension(:), allocatable parm::rbiom
- real *8, dimension(:), allocatable parm::fcoli
- real *8, dimension(:), allocatable parm::bio_ntr
- real *8, dimension(:), allocatable parm::bz perc
- real *8, dimension(:), allocatable parm::sep_cap
 - number of permanent residents in the hourse (none)
- real *8, dimension(:), allocatable parm::plqm
- real *8, dimension(:), allocatable parm::bz_area
- real *8, dimension(:), allocatable parm::bz_z
 Depth of biozone layer(mm)
- real *8, dimension(:), allocatable parm::bz_thk thickness of biozone (mm)
- real *8, dimension(:), allocatable parm::bio_bd
 density of biomass (kg/m[^]3) carbon outputs for .hru file
- real *8, dimension(:), allocatable parm::cmup_kgh
- real *8, dimension(:), allocatable parm::cmtot_kgh
- real *8, dimension(:), allocatable parm::coeff_denitr denitrification rate coefficient (none)
- real *8, dimension(:), allocatable parm::coeff_bod_dc
 BOD decay rate coefficient (m^{^3}/3/day)
- real *8, dimension(:), allocatable parm::coeff_bod_conv
 BOD to live bacteria biomass conversion factor (none)
- real *8, dimension(:), allocatable parm::coeff_fc1
 field capacity calibration parameter 1 (none)
- real *8, dimension(:), allocatable parm::coeff_fc2
 field capacity calibration parameter 2 (none)
- real *8, dimension(:), allocatable parm::coeff_fecal fecal coliform bacteria decay rate coefficient (m[^]3/day)
- real *8, dimension(:), allocatable parm::coeff_mrt
 mortality rate coefficient (none)
- real *8, dimension(:), allocatable parm::coeff_nitr
 nitrification rate coefficient (none)
- real *8, dimension(:), allocatable parm::coeff_plq conversion factor for plaque from TDS (none)
- real *8, dimension(:), allocatable parm::coeff_rsp

```
respiration rate coefficient (none)

    real *8, dimension(:), allocatable parm::coeff_slg1

     slough-off calibration parameter (none)

    real *8, dimension(:), allocatable parm::coeff_slg2

     slough-off calibration parameter (none)

    real *8, dimension(:), allocatable parm::coeff pdistrb

• real *8, dimension(:), allocatable parm::coeff_solpslp
  real *8, dimension(:), allocatable parm::coeff solpintc
  real *8, dimension(:), allocatable parm::coeff_psorpmax

    integer, dimension(:), allocatable parm::isep_typ

     septic system type (none)
  integer, dimension(:), allocatable parm::i_sep
 integer, dimension(:), allocatable parm::isep_opt
     septic system operation flag (1=active, 2=failing, 3=not operated) (none)

    integer, dimension(:), allocatable parm::sep tsincefail

  integer, dimension(:), allocatable parm::isep tfail
  integer, dimension(:), allocatable parm::isep iyr
  integer, dimension(:), allocatable parm::sep_strm_dist
  integer, dimension(:), allocatable parm::sep den
  real *8, dimension(:), allocatable parm::sol_sumno3
  real *8, dimension(:), allocatable parm::sol sumsolp
  real *8, dimension(:), allocatable parm::strsw_sum

    real *8, dimension(:), allocatable parm::strstmp sum

  real *8, dimension(:), allocatable parm::strsn sum
  real *8, dimension(:), allocatable parm::strsp_sum
  real *8, dimension(:), allocatable parm::strsa sum
  real *8, dimension(:), allocatable parm::spill_hru
  real *8, dimension(:), allocatable parm::tile out
  real *8, dimension(:), allocatable parm::hru in
  real *8, dimension(:), allocatable parm::spill_precip
  real *8, dimension(:), allocatable parm::pot seep
  real *8, dimension(:), allocatable parm::pot_evap

    real *8, dimension(:), allocatable parm::pot sedin

  real *8, dimension(:), allocatable parm::pot solp

    real *8, dimension(:), allocatable parm::pot_solpi

  real *8, dimension(:), allocatable parm::pot orgp
  real *8, dimension(:), allocatable parm::pot_orgpi
  real *8, dimension(:), allocatable parm::pot_orgn
  real *8, dimension(:), allocatable parm::pot orgni

    real *8, dimension(:), allocatable parm::pot mps

  real *8, dimension(:), allocatable parm::pot mpsi
  real *8, dimension(:), allocatable parm::pot_mpa

    real *8, dimension(:), allocatable parm::pot_mpai

  real *8, dimension(:), allocatable parm::pot_no3i
  real *8, dimension(:), allocatable parm::precip in
  real *8, dimension(:), allocatable parm::tile sedo
• real *8, dimension(:), allocatable parm::tile_no3o
  real *8, dimension(:), allocatable parm::tile_solpo
  real *8, dimension(:), allocatable parm::tile_orgno
• real *8, dimension(:), allocatable parm::tile_orgpo
  real *8, dimension(:), allocatable parm::tile minpso
  real *8, dimension(:), allocatable parm::tile_minpao
  integer parm::ia b
```

· integer parm::ihumus

- · integer parm::itemp
- integer parm::isnow
- · integer, dimension(41) parm::icolrsv
- integer, dimension(mhruo) parm::icols
- integer, dimension(mrcho) parm::icolr
- integer, dimension(msubo) parm::icolb
- integer, dimension(46) parm::ipdvar

output variable codes for output.rch file

• integer, dimension(mhruo) parm::ipdvas

output varaible codes for output.hru file

• integer, dimension(msubo) parm::ipdvab

output variable codes for output.sub file

integer, dimension(:), allocatable parm::ipdhru

HRUs whose output information will be printed to the output.hru and output.wtr files.

- real *8, dimension(mstdo) parm::wshddayo
- real *8, dimension(mstdo) parm::wshdmono
- real *8. dimension(mstdo) parm::wshdvro
- real *8, dimension(16) parm::fcstaao
- real *8, dimension(mstdo) parm::wshdaao
- real *8, dimension(:,:), allocatable parm::wpstdayo
- real *8, dimension(:,:), allocatable parm::wpstmono
- real *8, dimension(:,:), allocatable parm::wpstyro
- real *8, dimension(:,:), allocatable parm::yldkg
- real *8, dimension(:,:), allocatable parm::bio_hv
- real *8, dimension(:,:), allocatable parm::wpstaao
- real *8, dimension(:,:), allocatable parm::rchmono
- real *8, dimension(:,:), allocatable parm::rchyro
- real *8, dimension(:,:), allocatable parm::rchaao
- real *8, dimension(:,:), allocatable parm::rchdy
- real *8, dimension(:,:), allocatable parm::hrumono
- real *8, dimension(:,:), allocatable parm::hruyro
- real *8, dimension(:,:), allocatable parm::hruaao
- real *8, dimension(:,:), allocatable parm::submono
- real *8, dimension(:,:), allocatable parm::subyro
- real *8, dimension(:,:), allocatable parm::subaao
- real *8, dimension(:,:), allocatable parm::resoutm
- real *8, dimension(:,:), allocatable parm::resouty
- real *8, dimension(:,:), allocatable parm::resouta
- real *8, dimension(12, 8) parm::wshd_aamon
- real *8, dimension(:,:), allocatable parm::wtrmon
- real *8, dimension(:,:), allocatable parm::wtryr
- real *8, dimension(:,:), allocatable parm::wtraa
- real *8, dimension(:,:), allocatable parm::sub_smfmx

max melt rate for snow during year (June 21) for subbasin(:) where deg C refers to the air temperature. SUB_SMFMX and SMFMN allow the rate of snow melt to vary through the year. These parameters are accounting for the impact of soil temperature on snow melt (range: -5.0/5.0) (mm/deg C/day)

real *8, dimension(:,:), allocatable parm::sub_smfmn

min melt rate for snow during year (Dec 21) for subbasin(:) (range: -5.0/5.0) where deg C refers to the air temperature (mm/deg C/day)

- real *8, dimension(:,:,:), allocatable parm::hrupstd
- real *8, dimension(:,:,:), allocatable parm::hrupsta
- real *8, dimension(:,:,:), allocatable parm::hrupstm
- real *8, dimension(:,:,:), allocatable parm::hrupsty
- integer, dimension(:), allocatable parm::ifirstt

integer, dimension(:), allocatable parm::ifirstpcp

```
integer, dimension(:), allocatable parm::elevp
  integer, dimension(:), allocatable parm::elevt

    real *8, dimension(:,:), allocatable parm::ftmpmn

     avg monthly minimum air temperature (deg C)

    real *8, dimension(:,:), allocatable parm::ftmpmx

     avg monthly maximum air temperature (deg C)
• real *8, dimension(:,:), allocatable parm::ftmpstdmn
     standard deviation for avg monthly minimum air temperature (deg C)

    real *8, dimension(:,:), allocatable parm::ftmpstdmx

     standard deviation for avg monthly maximum air temperature (deg C)

    real *8, dimension(:,:,:), allocatable parm::fpcp_stat

     fpcp_stat(:,1,:): average amount of precipitation falling in one day for the month (mm/day)
     fpcp_stat(:,2,:): standard deviation for the average daily precipitation (mm/day)
     fpcp_stat(:,3,:): skew coefficient for the average daily precipitationa (none)

    real *8, dimension(:,:), allocatable parm::fpr w1

     probability of wet day after dry day in month (none)

    real *8, dimension(:,:), allocatable parm::fpr w2

     probability of wet day after wet day in month (none)

    real *8, dimension(:,:), allocatable parm::fpr w3

     proportion of wet days in the month (none)
 real *8, dimension(:), allocatable parm::flwin
  real *8, dimension(:), allocatable parm::flwout
  real *8, dimension(:), allocatable parm::bankst
  real *8, dimension(:), allocatable parm::ch wi
  real *8, dimension(:), allocatable parm::ch_d
  real *8, dimension(:), allocatable parm::ch onco
     channel organic n concentration (ppm)

    real *8, dimension(:), allocatable parm::ch opco

     channel organic p concentration (ppm)
  real *8, dimension(:), allocatable parm::ch orgn
  real *8, dimension(:), allocatable parm::ch_orgp
 real *8, dimension(:), allocatable parm::drift
  real *8, dimension(:), allocatable parm::rch dox
  real *8, dimension(:), allocatable parm::rch_bactp

    real *8, dimension(:), allocatable parm::alpha bnk

  real *8, dimension(:), allocatable parm::alpha bnke
  real *8, dimension(:), allocatable parm::disolvp
  real *8, dimension(:), allocatable parm::algae
  real *8, dimension(:), allocatable parm::sedst

    real *8, dimension(:), allocatable parm::rchstor

  real *8, dimension(:), allocatable parm::organicn
• real *8, dimension(:), allocatable parm::organicp
  real *8, dimension(:), allocatable parm::chlora
  real *8, dimension(:), allocatable parm::nitraten
• real *8, dimension(:), allocatable parm::nitriten
  real *8, dimension(:), allocatable parm::ch_li
  real *8, dimension(:), allocatable parm::ch_si
• real *8, dimension(:), allocatable parm::ch_bnk_san
  real *8, dimension(:), allocatable parm::ch bnk sil
  real *8, dimension(:), allocatable parm::ch_bnk_cla
  real *8, dimension(:), allocatable parm::ch bnk gra
  real *8, dimension(:), allocatable parm::ch bed san
```

```
real *8, dimension(:), allocatable parm::ch bed sil
real *8, dimension(:), allocatable parm::ch bed cla
real *8, dimension(:), allocatable parm::ch_bed_gra
real *8, dimension(:), allocatable parm::depfp
real *8, dimension(:), allocatable parm::depsanfp
real *8, dimension(:), allocatable parm::depsilfp
real *8, dimension(:), allocatable parm::depclafp
real *8, dimension(:), allocatable parm::depsagfp
real *8, dimension(:), allocatable parm::deplagfp
real *8, dimension(:), allocatable parm::depch
real *8, dimension(:), allocatable parm::depsanch
real *8, dimension(:), allocatable parm::depsilch
real *8, dimension(:), allocatable parm::depclach
real *8, dimension(:), allocatable parm::depsagch
real *8, dimension(:), allocatable parm::deplagch
real *8, dimension(:), allocatable parm::depgrach
real *8, dimension(:), allocatable parm::depgrafp
real *8, dimension(:), allocatable parm::grast
real *8, dimension(:), allocatable parm::depprch
real *8, dimension(:), allocatable parm::depprfp
real *8, dimension(:), allocatable parm::prf
real *8, dimension(:), allocatable parm::r2adj
real *8, dimension(:), allocatable parm::spcon
   linear parameter for calculating sediment reentrained in channel sediment routing
real *8, dimension(:), allocatable parm::spexp
   exponent parameter for calculating sediment reentrained in channel sediment routing
real *8, dimension(:), allocatable parm::sanst
real *8, dimension(:), allocatable parm::silst
real *8, dimension(:), allocatable parm::clast
real *8, dimension(:), allocatable parm::sagst
real *8, dimension(:), allocatable parm::lagst
real *8, dimension(:), allocatable parm::pot_san
real *8, dimension(:), allocatable parm::pot_sil
real *8, dimension(:), allocatable parm::pot_cla
real *8, dimension(:), allocatable parm::pot sag
real *8, dimension(:), allocatable parm::pot_lag
real *8, dimension(:), allocatable parm::potsani
real *8, dimension(:), allocatable parm::potsili
real *8, dimension(:), allocatable parm::potclai
real *8, dimension(:), allocatable parm::potsagi
real *8, dimension(:), allocatable parm::potlagi
real *8, dimension(:), allocatable parm::sanyld
real *8, dimension(:), allocatable parm::silyld
real *8, dimension(:), allocatable parm::clayId
real *8, dimension(:), allocatable parm::sagyld
real *8, dimension(:), allocatable parm::lagyld
real *8, dimension(:), allocatable parm::grayId
real *8, dimension(:), allocatable parm::res san
real *8, dimension(:), allocatable parm::res_sil
real *8, dimension(:), allocatable parm::res_cla
real *8, dimension(:), allocatable parm::res_sag
real *8, dimension(:), allocatable parm::res lag
```

real *8, dimension(:), allocatable parm::res_gra real *8, dimension(:), allocatable parm::pnd_san

- real *8, dimension(:), allocatable parm::pnd_sil
- real *8, dimension(:), allocatable parm::pnd cla
- real *8, dimension(:), allocatable parm::pnd_sag
- real *8, dimension(:), allocatable parm::pnd_lag
- real *8, dimension(:), allocatable parm::wet_san
- real *8, dimension(:), allocatable parm::wet_sil
- real *8, dimension(:), allocatable parm::wet cla
- real *8, dimension(:), allocatable parm::wet_lag
- real *8, dimension(:), allocatable parm::wet_sag
- real *8 parm::ressano
- real *8 parm::ressilo
- real *8 parm::resclao
- real *8 parm::ressago
- real *8 parm::reslago
- real *8 parm::resgrao
- real *8 parm::ressani
- real *8 parm::ressili
- real *8 parm::resclai
- real *8 parm::ressagi
- real *8 parm::reslagi
- real *8 parm::resgrai
- real *8 parm::potsano
- real *8 parm::potsilo
- real *8 parm::potclao
- real *8 parm::potsago
- real *8 parm::potlago
- real *8 parm::pndsanin
- real *8 parm::pndsilin
- real *8 parm::pndclain
- real *8 parm::pndsagin
- real *8 parm::pndlagin
- real *8 parm::pndsano
- real *8 parm::pndsilo
- real *8 parm::pndclaoreal *8 parm::pndsago
- real *8 parm::pndlago
- real *8, dimension(:), allocatable parm::ch_di
- real *8, dimension(:), allocatable parm::ch_erod
- real *8, dimension(:), allocatable parm::ch_l2
- real *8, dimension(:), allocatable parm::ch_cov
- real *8, dimension(:), allocatable parm::ch cov1
- real *8, dimension(:), allocatable parm::ch_cov2
- real *8, dimension(:), allocatable parm::ch_bnk_bd
- real *8, dimension(:), allocatable parm::ch_bed_bd
- real *8, dimension(:), allocatable parm::ch bnk kd
- real *8, dimension(:), allocatable parm::ch bed kd
- real *8, dimension(:), allocatable parm::ch_bnk_d50
- real *8, dimension(:), allocatable parm::ch_bed_d50
- real *8, dimension(:), allocatable parm::tc_bed
- real *8, dimension(:), allocatable parm::tc_bnk
- integer, dimension(:), allocatable parm::ch_eqn
- real *8, dimension(:), allocatable parm::chpst_conc
- real *8, dimension(:), allocatable parm::chpst_rea
- real *8, dimension(:), allocatable parm::chpst_vol
- real *8, dimension(:), allocatable parm::chpst_koc

- real *8, dimension(:), allocatable parm::chpst_stl
- real *8, dimension(:), allocatable parm::chpst_rsp
- real *8, dimension(:), allocatable parm::chpst_mix
- real *8, dimension(:), allocatable parm::sedpst_conc
- real *8, dimension(:), allocatable parm::ch_wdr
- real *8, dimension(:), allocatable parm::sedpst_rea
- real *8, dimension(:), allocatable parm::sedpst_bry
- real *8, dimension(:), allocatable parm::sedpst_act
- real *8, dimension(:), allocatable parm::rch cbod
- real *8, dimension(:), allocatable parm::rch bactlp
- real *8, dimension(:), allocatable parm::chside
- real *8, dimension(:), allocatable parm::rs1
- real *8, dimension(:), allocatable parm::rs2
- real *8, dimension(:), allocatable parm::rs3
- real *8, dimension(:), allocatable parm::rs4
- real *8, dimension(:), allocatable parm::rs5
- real *8, dimension(:), allocatable parm::rs6
- real *8, dimension(:), allocatable parm::rs7
- real *8, dimension(:), allocatable parm::rk1
- real *8, dimension(:), allocatable parm::rk2
- real *8, dimension(:), allocatable parm::rk3
- real *8, dimension(:), allocatable parm::rk4
- real *8, dimension(:), allocatable parm::rk5
- real (0, dimension(i), allocatable parmilled
 - real *8, dimension(:), allocatable parm::bc1

rate constant for biological oxidation of NH3 to NO2 in reach at 20 deg C (1/hr)

real *8, dimension(:), allocatable parm::bc2

rate constant for biological oxidation of NO2 to NO3 in reach at 20 deg C (1/hr)

real *8, dimension(:), allocatable parm::bc3

rate constant for hydrolysis of organic N to ammonia in reach at 20 deg C (1/hr)

real *8, dimension(:), allocatable parm::bc4

rate constant for the decay of organic P to dissolved P in reach at 20 deg C (1/hr)

- · real *8, dimension(:), allocatable parm::rk6
- real *8, dimension(:), allocatable parm::ammonian
- real *8, dimension(:), allocatable parm::orig_sedpstconc
- real *8, dimension(:,:), allocatable parm::wurch
- integer, dimension(:), allocatable parm::icanal
- integer, dimension(:), allocatable parm::itb
- real *8, dimension(:), allocatable parm::ch_revap
- real *8, dimension(:), allocatable parm::dep_chan
- real *8, dimension(:), allocatable parm::harg_petco

coefficient related to radiation used in hargreaves eq (range: 0.0019 - 0.0032)

- real *8, dimension(:), allocatable parm::subfr_nowtr
- real *8, dimension(:), allocatable parm::cncoef sub

soil water depletion coefficient used in the new (modified curve number method) same as soil index coeff used in APEX range: 0.5 - 2.0

- real *8, dimension(:), allocatable parm::dr_sub
- real *8, dimension(:), allocatable parm::wcklsp
- real *8, dimension(:), allocatable parm::sub fr
- real *8, dimension(:), allocatable parm::sub_minp
- real *8, dimension(:), allocatable parm::sub sw
- real *8, dimension(:), allocatable parm::sub_sumfc

```
    real *8, dimension(:), allocatable parm::sub_gwno3

    real *8, dimension(:), allocatable parm::sub_gwsolp

  real *8, dimension(:), allocatable parm::co2
      CO2 concentration (ppmv)

    real *8, dimension(:), allocatable parm::sub_km

     area of subbasin in square kilometers (km<sup>2</sup>)

    real *8, dimension(:), allocatable parm::sub_tc

    real *8, dimension(:), allocatable parm::wlat

  real *8, dimension(:), allocatable parm::sub_pet

    real *8, dimension(:), allocatable parm::welev

    real *8, dimension(:), allocatable parm::sub_orgn

real *8, dimension(:), allocatable parm::sub_orgp
real *8, dimension(:), allocatable parm::sub_bd

    real *8, dimension(:), allocatable parm::sub wtmp

    real *8, dimension(:), allocatable parm::sub sedpa

    real *8, dimension(:), allocatable parm::sub_sedps

    real *8, dimension(:), allocatable parm::sub minpa

    real *8, dimension(:), allocatable parm::sub_minps

• real *8, dimension(:), allocatable parm::dayImn

    real *8, dimension(:), allocatable parm::latcos

• real *8, dimension(:), allocatable parm::latsin

    real *8, dimension(:), allocatable parm::phutot

    real *8, dimension(:), allocatable parm::plaps

     precipitation lapse rate: precipitation change due to change in elevation (mm H2O/km)

    real *8, dimension(:), allocatable parm::tlaps

     temperature lapse rate: temperature change due to change in elevation (deg C/km)

    real *8, dimension(:), allocatable parm::tmp an

    real *8, dimension(:), allocatable parm::sub_precip

    real *8, dimension(:), allocatable parm::pcpdays

    real *8, dimension(:), allocatable parm::rcn sub

    real *8, dimension(:), allocatable parm::rammo_sub

  real *8, dimension(:), allocatable parm::atmo_day

    real *8, dimension(:), allocatable parm::sub_snom

    real *8, dimension(:), allocatable parm::sub qd

    real *8, dimension(:), allocatable parm::sub_sedy

    real *8, dimension(:), allocatable parm::sub tran

    real *8, dimension(:), allocatable parm::sub_no3

    real *8, dimension(:), allocatable parm::sub_latno3

 real *8, dimension(:,:), allocatable parm::sub_sftmp
     snowfall temperature for subbasin(:). Mean air temperature at which precip is equally likely to be rain as snow/freezing
     rain (range: -5.0/5.0) (deg C)

    real *8, dimension(:,:), allocatable parm::sub_smtmp

     snow melt base temperature for subbasin(:) mean air temperature at which snow melt will occur (range: -5.0/5.0)
     (deg C)

    real *8, dimension(:,:), allocatable parm::sub_timp

     snow pack temperature lag factor (0-1) (none)

    real *8, dimension(:), allocatable parm::sub tileno3

    real *8, dimension(:), allocatable parm::sub_solp

  real *8, dimension(:), allocatable parm::sub_subp
  real *8, dimension(:), allocatable parm::sub_etday

    real *8, dimension(:), allocatable parm::sub_elev

     average elevation of subbasin (m)

    real *8, dimension(:), allocatable parm::sub_wyld

 real *8, dimension(:), allocatable parm::sub_surfq
```

- real *8, dimension(:), allocatable parm::gird
- real *8, dimension(:), allocatable parm::sub gwq
- real *8, dimension(:), allocatable parm::sub_sep
- real *8, dimension(:), allocatable parm::sub_chl
- real *8, dimension(:), allocatable parm::sub cbod
- real *8, dimension(:), allocatable parm::sub dox
- real *8, dimension(:), allocatable parm::sub solpst
- real *8, dimension(:), allocatable parm::sub_sorpst
- real *8, dimension(:), allocatable parm::sub_yorgn
- real *8, dimension(:), allocatable parm::sub yorgp
- real *8, dimension(:), allocatable parm::sub_lat

latitude of subbasin (degrees)

- real *8, dimension(:), allocatable parm::sub_bactp
- real *8, dimension(:), allocatable parm::sub_bactlp
- real *8, dimension(:), allocatable parm::sub_latq
- real *8, dimension(:), allocatable parm::sub_gwq_d
- real *8, dimension(:), allocatable parm::sub_tileq
- real *8, dimension(:), allocatable parm::sub_vaptile
- real *8, dimension(:), allocatable parm::sub dsan
- real *8, dimension(:), allocatable parm::sub_dsil
- real *8, dimension(:), allocatable parm::sub dcla
- real *8, dimension(:), allocatable parm::sub dsag
- real *8, dimension(:), allocatable parm::sub_dlag
- real *8 parm::vap_tile
- real *8, dimension(:), allocatable parm::wnan
- real *8, dimension(:,:), allocatable parm::sol_stpwt
- real *8, dimension(:,:), allocatable parm::sub_pst
- real *8, dimension(:,:), allocatable parm::sub_hhqd
- real *8, dimension(:,:), allocatable parm::sub_hhwtmp
- real *8, dimension(:,:), allocatable parm::huminc

monthly humidity adjustment. Daily values for relative humidity within the month are rasied or lowered by the specified amount (used in climate change studies) (none)

real *8, dimension(:.:), allocatable parm::radinc

monthly solar radiation adjustment. Daily radiation within the month is raised or lowered by the specified amount. (used in climate change studies) (MJ/m^2)

• real *8, dimension(:,:), allocatable parm::rfinc

monthly rainfall adjustment. Daily rainfall within the month is adjusted to the specified percentage of the original value (used in climate change studies)(%)

real *8, dimension(:,:), allocatable parm::tmpinc

monthly temperature adjustment. Daily maximum and minimum temperatures within the month are raised or lowered by the specified amount (used in climate change studies) (deg C)

real *8, dimension(:), allocatable parm::ch_k1

effective hydraulic conductivity of tributary channel alluvium (mm/hr)

- real *8, dimension(:), allocatable parm::ch_k2
- real *8, dimension(:,:), allocatable parm::elevb

elevation at the center of the band (m)

• real *8, dimension(:,:), allocatable parm::elevb fr

fraction of subbasin area within elevation band (the same fractions should be listed for all HRUs within the subbasin) (none)

- real *8, dimension(:,:), allocatable parm::wndav
- real *8, dimension(:), allocatable parm::ch_n1

Manning's "n" value for the tributary channels (none)

- real *8, dimension(:), allocatable parm::ch_n2
- real *8, dimension(:), allocatable parm::ch_s1

average slope of tributary channels (m/m)

- real *8, dimension(:), allocatable parm::ch_s2
- real *8, dimension(:), allocatable parm::ch_w1
 average width of tributary channels (m)
- real *8, dimension(:), allocatable parm::ch_w2
- real *8, dimension(:,:), allocatable parm::dewpt
- real *8, dimension(:,:), allocatable parm::amp_r
- real *8, dimension(:,:), allocatable parm::solarav
- real *8, dimension(:,:), allocatable parm::tmpstdmx
- real *8, dimension(:,:), allocatable parm::tmpstdmn
- real *8, dimension(:,:), allocatable parm::pcf
- real *8, dimension(:,:), allocatable parm::tmpmn
- real *8, dimension(:,:), allocatable parm::tmpmx
- real *8, dimension(:,:), allocatable parm::otmpstdmn
- real *8, dimension(:,:), allocatable parm::otmpmn
- real *8, dimension(:,:), allocatable parm::otmpmx
- real *8, dimension(:,:), allocatable parm::otmpstdmx
- real *8, dimension(:,:), allocatable parm::ch_erodmo
- real *8, dimension(:,:), allocatable parm::uh
- real *8, dimension(:,:), allocatable parm::hqdsave
- real *8, dimension(:,:), allocatable parm::hsdsave
- real *8, dimension(:,:), allocatable parm::pr_w1
- real *8, dimension(:,:), allocatable parm::pr_w2
- real *8, dimension(:,:), allocatable parm::pr w3
- real *8, dimension(:,:,:), allocatable parm::pcp_stat
- real *8, dimension(:,:), allocatable parm::opr_w1
- real *8, dimension(:,:), allocatable parm::opr_w2
- real *8, dimension(:,:), allocatable parm::opr_w3
- real *8, dimension(:,:,:), allocatable parm::opcp_stat
- integer, dimension(:), allocatable parm::hrutot
- integer, dimension(:), allocatable parm::hru1
- integer, dimension(:), allocatable parm::ireg
- integer, dimension(:), allocatable parm::ihgage subbasin relative humidity data code (none)
- integer, dimension(:), allocatable parm::isgage subbasin radiation gage data code (none)
- integer, dimension(:), allocatable parm::iwgage subbasin wind speed gage data code (none)
- integer, dimension(:), allocatable parm::subgis
 GIS code printed to output files (output.sub) (none.
- integer, dimension(:), allocatable parm::irgage subbasin rain gage data code (none)
- integer, dimension(:), allocatable parm::itgage subbasin temp gage data code (none)
- integer, dimension(:), allocatable parm::fcst_reg
- integer, dimension(:), allocatable parm::irelh
- real *8, dimension(:,:), allocatable parm::sol_aorgn
- real *8, dimension(:,:), allocatable parm::sol_tmp
- real *8, dimension(:,:), allocatable parm::sol_fon
- real *8, dimension(:,:), allocatable parm::sol_awc
- real *8, dimension(:,:), allocatable parm::sol_prk
- real *8, dimension(:,:), allocatable parm::volcr
- real *8, dimension(:,:), allocatable parm::pperco_sub

subbasin phosphorus percolation coefficient. Ratio of soluble phosphorus in surface to soluble phosphorus in percoreal *8, dimension(:,:), allocatable parm::sol_actp real *8, dimension(:,:), allocatable parm::sol_stap real *8, dimension(:,:), allocatable parm::conv wt real *8, dimension(:,:), allocatable parm::sol solp soluble P concentration in top soil layer (mg P/kg soil) real *8, dimension(:,:), allocatable parm::sol_ul real *8, dimension(:,:), allocatable parm::sol_fc real *8, dimension(:,:), allocatable parm::crdep real *8, dimension(:,:), allocatable parm::sol z real *8, dimension(:,:), allocatable parm::sol up real *8, dimension(:,:), allocatable parm::sol bd real *8, dimension(:,:), allocatable parm::sol_st real *8, dimension(:,:), allocatable parm::flat real *8, dimension(:,:), allocatable parm::sol_nh3 real *8, dimension(:,:), allocatable parm::sol hk real *8, dimension(:,:), allocatable parm::sol clay real *8, dimension(:,:), allocatable parm::sol ec real *8, dimension(:,:), allocatable parm::sol_orgn organic N concentration in top soil laver (ma N/ka soil) real *8, dimension(:,:), allocatable parm::sol por real *8, dimension(:,:), allocatable parm::sol_wp real *8, dimension(:,:), allocatable parm::sol orgp organic P concentration in top soil layer (mg P/kg soil) real *8, dimension(:,:), allocatable parm::sol_hum real *8, dimension(:,:), allocatable parm::sol_wpmm real *8, dimension(:,:), allocatable parm::sol no3 concentration of nitrate in soil layer (mg N/kg) real *8, dimension(:,:), allocatable parm::sol k real *8, dimension(:,:), allocatable parm::sol cbn real *8, dimension(:,:), allocatable parm::sol rsd real *8, dimension(:,:), allocatable parm::sol_fop real *8, dimension(:,:), allocatable parm::sol_silt real *8, dimension(:,:), allocatable parm::sol_sand real *8, dimension(:,:), allocatable parm::sol rock real *8, dimension(:,:), allocatable parm::orig solno3 real *8, dimension(:,:), allocatable parm::orig_solorgn real *8, dimension(:,:), allocatable parm::orig_solsolp real *8, dimension(:,:), allocatable parm::orig_solorgp real *8, dimension(:,:), allocatable parm::orig_soltmp real *8, dimension(:,:), allocatable parm::orig solrsd real *8, dimension(:,:), allocatable parm::orig_solfop real *8, dimension(:,:), allocatable parm::orig solfon real *8, dimension(:,:), allocatable parm::orig_solaorgn real *8, dimension(:.:), allocatable parm::orig solst real *8, dimension(:,:), allocatable parm::orig_solactp real *8, dimension(:,:), allocatable parm::orig_solstap real *8, dimension(:,:), allocatable parm::orig volcr real *8, dimension(:,:), allocatable parm::conk

real *8, dimension(:,;;), allocatable parm::sol_pst
sol_pst(:,;,1) pesticide concentration in soil (mg/kg)
real *8, dimension(:,;;), allocatable parm::sol_kp
real *8, dimension(:,;;), allocatable parm::orig_solpst

- real *8, dimension(:), allocatable parm::velsetlr
- real *8, dimension(:), allocatable parm::velsetlp
- real *8, dimension(:), allocatable parm::br1
- real *8, dimension(:), allocatable parm::res_k
- real *8, dimension(:), allocatable parm::lkpst_conc
- real *8, dimension(:), allocatable parm::evrsv
- real *8, dimension(:), allocatable parm::res evol
- real *8, dimension(:), allocatable parm::res_pvol
- real *8, dimension(:), allocatable parm::res_vol
- real *8, dimension(:), allocatable parm::res_psa
- real *8, dimension(:), allocatable parm::lkpst_rea
- real *8, dimension(:), allocatable parm::lkpst_vol
- real *8, dimension(:), allocatable parm::br2
- real *8, dimension(:), allocatable parm::res_rr
- real *8, dimension(:), allocatable parm::res_sed
- real *8, dimension(:), allocatable parm::lkpst koc
- real *8, dimension(:), allocatable parm::lkpst_stl
- real *8, dimension(:), allocatable parm::lkpst_rsp
- real *8, dimension(:), allocatable parm::lkpst_mix
- real *8, dimension(:), allocatable parm::lkspst_conc
- real *8, dimension(:), allocatable parm::lkspst_rea
- real *8, dimension(:), allocatable parm::theta_n
- real *8, dimension(:), allocatable parm::theta p
- real *8, dimension(:), allocatable parm::con_nirr
- real *8, dimension(:), allocatable parm::con_pirr
- real *8, dimension(:), allocatable parm::lkspst_bry
- real *8, dimension(:), allocatable parm::lkspst_act
- real *8, dimension(:), allocatable parm::sed_stlr
- real *8, dimension(7) parm::resdata
- real *8, dimension(:), allocatable parm::wurtnf
- real *8, dimension(:), allocatable parm::res_nsed
- real *8, dimension(:), allocatable parm::chlar
- real *8, dimension(:), allocatable parm::res_orgn
- real *8, dimension(:), allocatable parm::res_orgp
- real *8, dimension(:), allocatable parm::res_no3
- real *8, dimension(:), allocatable parm::res_solp
- real *8, dimension(:), allocatable parm::res_chla
 real *8, dimension(:), allocatable parm::res_seci
- real *8, dimension(:), allocatable parm::res_esa
 real *8, dimension(:), allocatable parm::res_esa
- real *8, dimension(:), allocatable parm::seccir
- real *8, dimension(:), allocatable parm::res no2
- real *8, dimension(:), allocatable parm::res_nh3
- real *8, dimension(:), allocatable parm::res_bactp
- real *8, dimension(:), allocatable parm::res_bactlp
- real *8, dimension(:), allocatable parm::oflowmn_fps
- real *8, dimension(:), allocatable parm::starg fps
- real *8, dimension(:), allocatable parm::weirc
- real *8, dimension(:), allocatable parm::weirk
- real *8, dimension(:), allocatable parm::weirw
- real *8, dimension(:), allocatable parm::acoef
- real *8, dimension(:), allocatable parm::bcoef
 real *8, dimension(:), allocatable parm::ccoef
- real *8, dimension(:), allocatable parm::orig_resvol
- real *8, dimension(:), allocatable parm::orig_ressed
- real *8, dimension(:), allocatable parm::orig_lkpstconc

```
    real *8, dimension(:), allocatable parm::orig lkspstconc

    real *8, dimension(:), allocatable parm::orig_ressolp

 real *8, dimension(:), allocatable parm::orig_resorgp
• real *8, dimension(:), allocatable parm::orig_resno3

    real *8, dimension(:), allocatable parm::orig resno2

  real *8, dimension(:), allocatable parm::orig_resnh3

    real *8, dimension(:), allocatable parm::orig_resorgn

  real *8, dimension(:,:), allocatable parm::starg

    real *8, dimension(:,:), allocatable parm::oflowmx

    real *8, dimension(:,:), allocatable parm::oflowmn

  real *8, dimension(:), allocatable parm::psetIr1

    real *8, dimension(:), allocatable parm::psetlr2

    real *8, dimension(:), allocatable parm::nsetlr1

  real *8, dimension(:), allocatable parm::nsetlr2

    real *8, dimension(:,:), allocatable parm::wuresn

    real *8, dimension(:...:), allocatable parm::res out

    integer, dimension(:), allocatable parm::ires1

• integer, dimension(:), allocatable parm::ires2
· integer, dimension(:), allocatable parm::res_sub
• integer, dimension(:), allocatable parm::iresco
• integer, dimension(:), allocatable parm::mores

    integer, dimension(:), allocatable parm::iyres

    integer, dimension(:), allocatable parm::iflod1r

  integer, dimension(:), allocatable parm::iflod2r
· integer, dimension(:), allocatable parm::ndtargr

    real *8, dimension(:), allocatable parm::ap ef

      application efficiency (0-1) (none)

    real *8, dimension(:), allocatable parm::decay f

      exponential of the rate constant for degradation of the pesticide on foliage (none)

    real *8, dimension(:), allocatable parm::skoc

      soil adsorption coefficient normalized for soil organic carbon content ((mg/kg)/(mg/L))

    real *8, dimension(:), allocatable parm::decay_s

      exponential of the rate constant for degradation of the pesticide in soil (none)

    real *8, dimension(:), allocatable parm::hlife f

     half-life of pesticide on foliage (days)
• real *8, dimension(:), allocatable parm::hlife s
      half-life of pesticide in soil (days)

    real *8, dimension(:), allocatable parm::pst_wof

      fraction of pesticide on foliage which is washed-off by a rainfall event (none)

    real *8, dimension(:), allocatable parm::pst wsol

      solubility of chemical in water (mg/L (ppm))

    real *8, dimension(:), allocatable parm::irramt

• real *8, dimension(:), allocatable parm::phusw
  real *8, dimension(:), allocatable parm::phusw nocrop
  integer, dimension(:), allocatable parm::pstflg
      flag for types of pesticide used in watershed array location is pesticide ID number
      0: pesticide not used
      1: pesticide used

    integer, dimension(:), allocatable parm::nope

      sequence number of pesticide in NPNO(:) (none)

    integer, dimension(:), allocatable parm::nop

 integer, dimension(:), allocatable parm::yr skip

    integer, dimension(:), allocatable parm::isweep
```

```
    integer, dimension(:), allocatable parm::icrmx

• integer, dimension(:), allocatable parm::nopmx
integer, dimension(:,:), allocatable parm::mgtop

    integer, dimension(:,:), allocatable parm::idop

    integer, dimension(:,:), allocatable parm::mgt1iop

    integer, dimension(:,:), allocatable parm::mgt2iop

    integer, dimension(:,:), allocatable parm::mgt3iop

    real *8, dimension(:,:), allocatable parm::mgt4op

    real *8, dimension(:,:), allocatable parm::mgt5op

    real *8, dimension(:,:), allocatable parm::mgt6op

    real *8, dimension(:,:), allocatable parm::mgt7op

    real *8, dimension(:,:), allocatable parm::mgt8op

    real *8, dimension(:,:), allocatable parm::mgt9op

    real *8, dimension(:,:), allocatable parm::mgt10iop

    real *8, dimension(:,:), allocatable parm::phu_op

    real *8, dimension(:), allocatable parm::cnyld

      fraction of nitrogen in yield (kg N/kg yield)

    real *8, dimension(:), allocatable parm::rsdco_pl

     plant residue decomposition coefficient. The fraction of residue which will decompose in a day assuming optimal
     moisture, temperature, C:N ratio, and C:P ratio (none)

    real *8, dimension(:), allocatable parm::wac21

      1st shape parameter for radiation use efficiency equation (none)

    real *8, dimension(:), allocatable parm::wac22

      2nd shape parameter for radiation use efficiency equation (none)

    real *8, dimension(:), allocatable parm::alai min

      minimum LAI during winter dormant period (m^2/m^2)

    real *8, dimension(:), allocatable parm::leaf1

      1st shape parameter for leaf area development equation (none)

    real *8, dimension(:), allocatable parm::leaf2

      2nd shape parameter for leaf area development equation (none)

    real *8, dimension(:), allocatable parm::wsyf

      Value of harvest index between 0 and HVSTI which represents the lowest value expected due to water stress
      ((kg/ha)/(kg/ha))

    real *8, dimension(:), allocatable parm::bio_e

      biomass-energy ratio. The potential (unstressed) growth rate per unit of intercepted photosynthetically active
     radiation.((kg/ha)/(MJ/m**2))

    real *8, dimension(:), allocatable parm::hvsti

      harvest index: crop yield/aboveground biomass ((kg/ha)/(kg/ha))

    real *8, dimension(:), allocatable parm::t_base

      minimum temperature for plant growth (deg C)

    real *8, dimension(:), allocatable parm::t opt

      optimal temperature for plant growth (deg C)

    real *8, dimension(:), allocatable parm::chtmx

      maximum canopy height (m)

    real *8, dimension(:), allocatable parm::cvm

      natural log of USLE_C (none)

    real *8, dimension(:), allocatable parm::gsi

      maximum stomatal conductance (m/s)

    real *8, dimension(:), allocatable parm::vpd2
```

rate of decline in stomatal conductance per unit increase in vapor pressure deficit ((m/s)*(1/kPa))

rate of decline in radiation use efficiency as a function of vapor pressure deficit (none)

real *8, dimension(:), allocatable parm::wavp

```
    real *8, dimension(:), allocatable parm::bio_leaf

      fraction of leaf/needle biomass that drops during dormancy (for trees only) (none)

    real *8, dimension(:), allocatable parm::blai

      maximum (potential) leaf area index (none)
  real *8, dimension(:), allocatable parm::cpyld
      fraction of phosphorus in yield (kg P/kg yield)

    real *8, dimension(:), allocatable parm::dlai

      fraction of growing season when leaf area declines (none)
  real *8, dimension(:), allocatable parm::rdmx
      maximum root depth (m)

    real *8, dimension(:), allocatable parm::bio n1

      1st shape parameter for plant N uptake equation (none)

    real *8, dimension(:), allocatable parm::bio_n2

      2nd shape parameter for plant N uptake equation (none)

    real *8, dimension(:), allocatable parm::bio p1

      1st shape parameter for plant P uptake equation (none)

    real *8, dimension(:), allocatable parm::bio p2

      2st shape parameter for plant P uptake equation (none)

    real *8, dimension(:), allocatable parm::bm_dieoff

      fraction above ground biomass that dies off at dormancy (fraction)

    real *8, dimension(:), allocatable parm::bmx trees

    real *8, dimension(:), allocatable parm::ext_coef

  real *8, dimension(:), allocatable parm::rsr1
      initial root to shoot ratio at the beg of growing season

    real *8, dimension(:), allocatable parm::rsr2

      root to shoot ratio at the end of the growing season

    real *8, dimension(:), allocatable parm::pltnfr1

      nitrogen uptake parameter #1: normal fraction of N in crop biomass at emergence (kg N/kg biomass)

    real *8, dimension(:), allocatable parm::pltnfr2

      nitrogen uptake parameter #2: normal fraction of N in crop biomass at 0.5 maturity (kg N/kg biomass)

    real *8, dimension(:), allocatable parm::pltnfr3

      nitrogen uptake parameter #3: normal fraction of N in crop biomass at maturity (kg N/kg biomass)

    real *8, dimension(:), allocatable parm::pltpfr1

     phosphorus uptake parameter #1: normal fraction of P in crop biomass at emergence (kg P/kg biomass)

    real *8, dimension(:), allocatable parm::pltpfr2

     phosphorus uptake parameter #2: normal fraction of P in crop biomass at 0.5 maturity (kg P/kg biomass)
  real *8, dimension(:), allocatable parm::pltpfr3
     phosphorus uptake parameter #3: normal fraction of P in crop biomass at maturity (kg P/kg biomass)

    integer, dimension(:), allocatable parm::idc

     crop/landcover category:
      1 warm season annual legume
      2 cold season annual legume
      3 perennial legume
      4 warm season annual
     5 cold season annual
      6 perennial
      7 trees

    integer, dimension(:), allocatable parm::mat_yrs

  real *8, dimension(:), allocatable parm::bactpdb
      concentration of persistent bacteria in manure (fertilizer) (cfu/g manure)

    real *8, dimension(:), allocatable parm::fminn
```

fraction of mineral N (NO3 + NH3) (kg minN/kg fert) real *8, dimension(:), allocatable parm::forgn fraction of organic N (kg orgN/kg fert) real *8, dimension(:), allocatable parm::forgp fraction of organic P (kg orgP/kg fert) real *8, dimension(:), allocatable parm::bactkddb bacteria partition coefficient (none): 1: all bacteria in solution 0: all bacteria sorbed to soil particles real *8, dimension(:), allocatable parm::bactlpdb concentration of less persistent bacteria in manure (fertilizer) (cfu/g manure) real *8, dimension(:), allocatable parm::fminp fraction of mineral P (kg minP/kg fert) real *8, dimension(:), allocatable parm::fnh3n fraction of NH3-N in mineral N (kg NH3-N/kg minN) character(len=8), dimension(200) parm::fertnm name of fertilizer real *8, dimension(:), allocatable parm::curbden curb length density in HRU (km/ha) real *8, dimension(:), allocatable parm::dirtmx maximum amount of solids allowed to build up on impervious surfaces (kg/curb km) real *8, dimension(:), allocatable parm::fimp fraction of HRU area that is impervious (both directly and indirectly connected)(fraction) • real *8, dimension(:), allocatable parm::urbcoef wash-off coefficient for removal of constituents from an impervious surface (1/mm) real *8, dimension(:), allocatable parm::thalf time for the amount of solids on impervious areas to build up to 1/2 the maximum level (days) real *8, dimension(:), allocatable parm::tnconc concentration of total nitrogen in suspended solid load from impervious areas (mg N/kg sed) real *8, dimension(:), allocatable parm::tno3conc concentration of NO3-N in suspended solid load from impervious areas (mg NO3-N/kg sed) real *8, dimension(:), allocatable parm::tpconc concentration of total phosphorus in suspended solid load from impervious areas (mg P/kg sed) • real *8, dimension(:), allocatable parm::fcimp fraction of HRU area that is classified as directly connected impervious (fraction) real *8, dimension(:), allocatable parm::urbcn2 SCS curve number for moisture condition II in impervious areas (none) real *8 parm::sweepeff real *8 parm::frt_kg real *8 parm::pst_dep real *8 parm::fr curb • real *8, dimension(:), allocatable parm::ranrns_hru integer, dimension(:), allocatable parm::itill • real *8, dimension(:), allocatable parm::deptil depth of mixing caused by operation (mm) real *8, dimension(:), allocatable parm::effmix mixing efficiency of operation (none) real *8, dimension(:), allocatable parm::ranrns random roughness of a given tillage operation (mm) character(len=8), dimension(550) parm::tillnm

8-character name for the tillage operationreal *8, dimension(:), allocatable parm::rnum1s

```
For ICODES equal to (none)
     0,1,3,5,9: not used
     2: Fraction of flow in channel
     4: amount of water transferred (as defined by INUM4S)
      7,8,10,11: drainage area in square kilometers associated with the record file.

    real *8, dimension(:), allocatable parm::hyd dakm

• real *8, dimension(:,:), allocatable parm::varoute

    real *8, dimension(:,:), allocatable parm::shvd

• real *8, dimension(:,:), allocatable parm::vartran
• real *8, dimension(:,:,:), allocatable parm::hhvaroute

    integer, dimension(:), allocatable parm::icodes

      routing command code (none):
      0 = finish
      1 = subbasin
     2 = route
     3 = routres
     4 = transfer
     5 = add
     6 = rechour
      7 = recmon
     8 = recyear
     9 = save
      10 = recday
      11 = reccnst
      12 = structure
      13 = apex
      14 = saveconc
      15 =
• integer, dimension(:), allocatable parm::ihouts
      For ICODES equal to (none)
     0: not used
      1,2,3,5,7,8,10,11: hydrograph storage location number
      4: departure type (1=reach, 2=reservoir)
      9: hydrograph storage location of data to be printed to event file
      14:hydrograph storage location of data to be printed to saveconc file.
• integer, dimension(:), allocatable parm::inum1s
      For ICODES equal to (none)
     0: not used
      1: subbasin number
     2: reach number
     3: reservoir number
     4: reach or res # flow is diverted from
     5: hydrograph storage location of 1st dataset to be added
      7,8,9,10,11,14: file number.
• integer, dimension(:), allocatable parm::inum2s
      For ICODES equal to (none)
      0,1,7,8,10,11: not used
     2,3: inflow hydrograph storage location
      4: destination type (1=reach, 2=reservoir)
     5: hydrograph storage location of 2nd dataset to be added
      9,14:print frequency (0=daily, 1=hourly)
• integer, dimension(:), allocatable parm::inum3s
      For ICODES equal to (none)
      0.1.2.3.5.7.8.10.11: not used
      4: destination number. Reach or reservoir receiving water
      9: print format (0=normal, fixed format; 1=txt format for AV interface, recday)

    integer, dimension(:), allocatable parm::inum4s

     For ICODES equal to (none)
     0,2,3,5,7,8,9,10,11: not used
```

1: GIS code printed to output file (optional)

4: rule code governing transfer of water (1=fraction transferred out, 2=min volume or flow left, 3=exact amount transferred)

- integer, dimension(:), allocatable parm::inum5s
- integer, dimension(:), allocatable parm::inum6s
- integer, dimension(:), allocatable parm::inum7s
- integer, dimension(:), allocatable parm::inum8s
- integer, dimension(:), allocatable parm::subed
- character(len=10), dimension(:), allocatable parm::recmonps
- character(len=10), dimension(:), allocatable parm::reccnstps
- character(len=5), dimension(:), allocatable parm::subnum
- character(len=4), dimension(:), allocatable parm::hruno
- real *8, dimension(:), allocatable parm::grwat_n
- real *8, dimension(:), allocatable parm::grwat_i
- real *8, dimension(:), allocatable parm::grwat_l
- real *8, dimension(:), allocatable parm::grwat_w
- real *8, dimension(:), allocatable parm::grwat_d
- real *8, dimension(:), allocatable parm::grwat_s
- real *8, dimension(:), allocatable parm::grwat_spcon
- real *8, dimension(:), allocatable parm::tc gwat
- real *8, dimension(:), allocatable parm::pot_volmm
- real *8, dimension(:), allocatable parm::pot_tilemm
- real *8, dimension(:), allocatable parm::pot_volxmm
- real *8, dimension(:), allocatable parm::pot_fr
- real *8, dimension(:), allocatable parm::pot tile
- real *8, dimension(:), allocatable parm::pot_vol
- real *8, dimension(:), allocatable parm::potsa
- real *8, dimension(:), allocatable parm::pot_volx
- real *8, dimension(:), allocatable parm::potflwi
- real *8, dimension(:), allocatable parm::potsedi
- real *8, dimension(:), allocatable parm::wfsh
- real *8, dimension(:), allocatable parm::pot_nsed
- real *8, dimension(:), allocatable parm::pot_no3l
- real *8, dimension(:), allocatable parm::newrti
- real *8, dimension(:), allocatable parm::gwno3
- real *8, dimension(:), allocatable parm::pot_sed
- real *8, dimension(:), allocatable parm::pot_no3
- real *8, dimension(:), allocatable parm::fsred
- real *8, dimension(:), allocatable parm::tmpavp
- real *8, dimension(:), allocatable parm::evpot
- real *8, dimension(:), allocatable parm::dis_stream
- real *8, dimension(:), allocatable parm::pot_solpl
- real *8, dimension(:), allocatable parm::sed_con
- real *8, dimension(:), allocatable parm::orgn_con
- real *8, dimension(:), allocatable parm::orgp_con
- real *8, dimension(:), allocatable parm::soln_con
- real *8, dimension(:), allocatable parm::solp con
- real *8, dimension(:), allocatable parm::pot k
- real *8, dimension(:), allocatable parm::n reduc
- real *8, dimension(:), allocatable parm::n_lag
- real *8, dimension(:), allocatable parm::n_ln
- real *8, dimension(:), allocatable parm::n_Inco
- integer, dimension(:), allocatable parm::ioper
- integer, dimension(:), allocatable parm::ngrwat
- real *8, dimension(:), allocatable parm::filterw
- real *8, dimension(:), allocatable parm::sumix

 real *8, dimension(:), allocatable parm::usle Is real *8, dimension(:), allocatable parm::phuacc real *8, dimension(:), allocatable parm::epco plant water uptake compensation factor (0-1) real *8, dimension(:), allocatable parm::esco soil evaporation compensation factor (0-1) real *8, dimension(:), allocatable parm::slsubbsn real *8, dimension(:), allocatable parm::hru slp real *8, dimension(:), allocatable parm::erorgn real *8, dimension(:), allocatable parm::erorgp real *8, dimension(:), allocatable parm::biomix real *8, dimension(:), allocatable parm::pnd_seci real *8, dimension(:), allocatable parm::flowmin real *8, dimension(:), allocatable parm::divmax real *8, dimension(:), allocatable parm::canmx real *8, dimension(:), allocatable parm::usle p real *8, dimension(:), allocatable parm::lat_sed real *8, dimension(:), allocatable parm::rch dakm real *8, dimension(:), allocatable parm::pnd no3s real *8, dimension(:), allocatable parm::cn1 real *8, dimension(:), allocatable parm::cn2 real *8, dimension(:), allocatable parm::lat_ttime real *8, dimension(:), allocatable parm::flowfr real *8, dimension(:), allocatable parm::sol_zmx real *8. dimension(:), allocatable parm::tile ttime real *8, dimension(:), allocatable parm::slsoil real *8, dimension(:), allocatable parm::sed_stl real *8, dimension(:), allocatable parm::gwminp real *8, dimension(:), allocatable parm::sol_cov real *8, dimension(:), allocatable parm::yldanu real *8, dimension(:), allocatable parm::pnd solp real *8, dimension(:), allocatable parm::pnd no3 real *8, dimension(:), allocatable parm::ov_n real *8, dimension(:), allocatable parm::driftco coefficient for pesticide drift directly onto stream (none) real *8, dimension(:), allocatable parm::pnd orgp real *8, dimension(:), allocatable parm::pnd orgn real *8, dimension(:), allocatable parm::cn3 real *8, dimension(:), allocatable parm::twlpnd real *8, dimension(:), allocatable parm::twlwet real *8, dimension(:), allocatable parm::sol sumul real *8, dimension(:), allocatable parm::pnd chla real *8, dimension(:), allocatable parm::hru_fr real *8, dimension(:), allocatable parm::hru km area of HRU in square kilometers (km²) real *8, dimension(:), allocatable parm::bio ms real *8, dimension(:), allocatable parm::sol_alb real *8, dimension(:), allocatable parm::strsw real *8, dimension(:), allocatable parm::pnd_fr real *8, dimension(:), allocatable parm::pnd_psa real *8, dimension(:), allocatable parm::pnd pvol real *8, dimension(:), allocatable parm::pnd_k real *8, dimension(:), allocatable parm::pnd esa real *8, dimension(:), allocatable parm::pnd_evol

real *8, dimension(:), allocatable parm::pnd vol real *8, dimension(:), allocatable parm::yldaa real *8, dimension(:), allocatable parm::pnd_sed real *8, dimension(:), allocatable parm::pnd nsed real *8, dimension(:), allocatable parm::strsa real *8, dimension(:), allocatable parm::dep_imp real *8, dimension(:), allocatable parm::evpnd real *8, dimension(:), allocatable parm::evwet real *8, dimension(:), allocatable parm::wet_fr real *8, dimension(:), allocatable parm::wet_nsa real *8, dimension(:), allocatable parm::wet nvol real *8, dimension(:), allocatable parm::wet k integer, dimension(:), allocatable parm::iwetgw integer, dimension(:), allocatable parm::iwetile real *8, dimension(:), allocatable parm::wet_mxsa real *8, dimension(:), allocatable parm::wet_mxvol real *8, dimension(:), allocatable parm::wet_vol real *8, dimension(:), allocatable parm::wet_sed real *8, dimension(:), allocatable parm::wet_nsed real *8, dimension(:), allocatable parm::smx real *8, dimension(:), allocatable parm::sci real *8, dimension(:), allocatable parm::bp1 real *8, dimension(:), allocatable parm::bp2 real *8, dimension(:), allocatable parm::bw1 real *8, dimension(:), allocatable parm::bw2 real *8, dimension(:), allocatable parm::bactpq real *8, dimension(:), allocatable parm::bactp plt real *8, dimension(:), allocatable parm::bactlp_plt real *8, dimension(:), allocatable parm::cnday real *8, dimension(:), allocatable parm::bactlpq real *8, dimension(:), allocatable parm::auto_eff real *8, dimension(:), allocatable parm::sol sw real *8, dimension(:), allocatable parm::secciw real *8, dimension(:), allocatable parm::bactps real *8, dimension(:), allocatable parm::bactlps real *8, dimension(:), allocatable parm::tmpav real *8, dimension(:), allocatable parm::chlaw real *8, dimension(:), allocatable parm::sno hru amount of water stored as snow (mm H2O) real *8, dimension(:), allocatable parm::subp real *8, dimension(:), allocatable parm::hru_ra real *8, dimension(:), allocatable parm::wet_orgn real *8, dimension(:), allocatable parm::tmx real *8, dimension(:), allocatable parm::tmn real *8, dimension(:), allocatable parm::rsdin real *8, dimension(:), allocatable parm::tmp hi real *8, dimension(:), allocatable parm::tmp_lo real *8, dimension(:), allocatable parm::rwt real *8, dimension(:), allocatable parm::olai real *8, dimension(:), allocatable parm::usle_k real *8, dimension(:), allocatable parm::tconc real *8, dimension(:), allocatable parm::hru_rmx real *8, dimension(:), allocatable parm::usle cfac

real *8, dimension(:), allocatable parm::usle_eifac

real *8, dimension(:), allocatable parm::anano3 real *8, dimension(:), allocatable parm::aird real *8, dimension(:), allocatable parm::t ov real *8, dimension(:), allocatable parm::sol sumfc real *8, dimension(:), allocatable parm::sol avpor real *8, dimension(:), allocatable parm::usle_mult real *8, dimension(:), allocatable parm::wet_orgp real *8, dimension(:), allocatable parm::aairr real *8, dimension(:), allocatable parm::cht real *8, dimension(:), allocatable parm::u10 real *8, dimension(:), allocatable parm::rhd real *8, dimension(:), allocatable parm::shallirr real *8, dimension(:), allocatable parm::deepirr real *8, dimension(:), allocatable parm::lai_aamx real *8, dimension(:), allocatable parm::ch | 11 longest tributary channel length in subbasin (km) real *8, dimension(:), allocatable parm::canstor real *8, dimension(:), allocatable parm::ovrlnd real *8, dimension(:), allocatable parm::wet no3 real *8, dimension(:), allocatable parm::irr_mx real *8, dimension(:), allocatable parm::auto wstr real *8, dimension(:), allocatable parm::cfrt_id real *8, dimension(:), allocatable parm::cfrt_kg real *8, dimension(:), allocatable parm::cpst id real *8, dimension(:), allocatable parm::cpst_kg real *8, dimension(:), allocatable parm::irr asq real *8, dimension(:), allocatable parm::irr_eff real *8, dimension(:), allocatable parm::irrsq real *8, dimension(:), allocatable parm::irrefm real *8, dimension(:), allocatable parm::irrsalt real *8, dimension(:), allocatable parm::bio eat real *8, dimension(:), allocatable parm::bio_trmp integer, dimension(:), allocatable parm::ifrt_freq integer, dimension(:), allocatable parm::ipst freq integer, dimension(:), allocatable parm::irr_noa integer, dimension(:), allocatable parm::irr_sc integer, dimension(:), allocatable parm::irr no integer, dimension(:), allocatable parm::imp_trig integer, dimension(:), allocatable parm::fert_days integer, dimension(:), allocatable parm::irr sca integer, dimension(:), allocatable parm::pest_days integer, dimension(:), allocatable parm::idplt integer, dimension(:), allocatable parm::wstrs_id real *8, dimension(:,:), allocatable parm::bio_aahv real *8, dimension(:), allocatable parm::cumei real *8, dimension(:), allocatable parm::cumeira real *8, dimension(:), allocatable parm::cumrt real *8, dimension(:), allocatable parm::cumrai real *8, dimension(:), allocatable parm::wet_solp real *8, dimension(:), allocatable parm::wet_no3s real *8, dimension(:), allocatable parm::wet_chla real *8, dimension(:), allocatable parm::wet_seci

real *8, dimension(:), allocatable parm::pnd_no3g real *8, dimension(:), allocatable parm::pstsol

```
real *8, dimension(:), allocatable parm::gwht
  real *8, dimension(:), allocatable parm::delay
  real *8, dimension(:), allocatable parm::gw_q
  real *8, dimension(:), allocatable parm::pnd_solpg

    real *8, dimension(:), allocatable parm::alpha bf

  real *8, dimension(:), allocatable parm::alpha bfe
  real *8, dimension(:), allocatable parm::gw_spyld
  real *8, dimension(:), allocatable parm::alpha bf d
  real *8, dimension(:), allocatable parm::alpha bfe d
 real *8, dimension(:), allocatable parm::gw_qdeep
  real *8, dimension(:), allocatable parm::gw delaye
  real *8, dimension(:), allocatable parm::gw_revap

    real *8, dimension(:), allocatable parm::rchrg dp

  real *8, dimension(:), allocatable parm::anion_excl
     fraction of porosity from which anions are excluded
  real *8, dimension(:), allocatable parm::revapmn
  real *8, dimension(:), allocatable parm::rchrg
  real *8, dimension(:), allocatable parm::ffc
  real *8, dimension(:), allocatable parm::bio min
  real *8, dimension(:), allocatable parm::surgsolp
  real *8, dimension(:), allocatable parm::cklsp
  real *8, dimension(:), allocatable parm::deepst
  real *8, dimension(:), allocatable parm::shallst
  real *8, dimension(:), allocatable parm::wet_solpg
  real *8, dimension(:), allocatable parm::rchrg_src
  real *8, dimension(:), allocatable parm::wet no3g
  real *8, dimension(:), allocatable parm::sol_avbd
 real *8, dimension(:), allocatable parm::trapeff
  real *8, dimension(:), allocatable parm::gwqmn
• real *8, dimension(:), allocatable parm::tdrain
  real *8, dimension(:), allocatable parm::ppInt
  real *8, dimension(:), allocatable parm::snotmp
  real *8, dimension(:), allocatable parm::gdrain
     drain tile lag time (hours)

    real *8, dimension(:), allocatable parm::ddrain

  real *8, dimension(:), allocatable parm::sol_crk
  real *8, dimension(:), allocatable parm::dayl
  real *8, dimension(:), allocatable parm::brt
  real *8, dimension(:), allocatable parm::sstmaxd
     static maximum depressional storage; read from .sdr (mm)

    real *8, dimension(:), allocatable parm::re

     effective radius of drains (mm)

    real *8, dimension(:), allocatable parm::sdrain

     distance between two drain tubes or tiles (mm)
  real *8, dimension(:), allocatable parm::ddrain_hru
  real *8, dimension(:), allocatable parm::drain_co
     drainage coefficient (mm/day)

    real *8, dimension(:), allocatable parm::latksatf

     multiplication factor to determine conk(j1,j) from sol_k(j1,j) for HRU (none)

    real *8, dimension(:), allocatable parm::pc

     pump capacity (default pump capacity = 1.042mm/hr or 25mm/day) (mm/hr)
 real *8, dimension(:), allocatable parm::stmaxd
 real *8, dimension(:), allocatable parm::twash
```

- real *8, dimension(:), allocatable parm::rnd2
- real *8, dimension(:), allocatable parm::rnd3
- real *8, dimension(:), allocatable parm::sol_cnsw
- real *8, dimension(:), allocatable parm::doxq
- real *8, dimension(:), allocatable parm::rnd8
- real *8, dimension(:), allocatable parm::rnd9
- real *8, dimension(:), allocatable parm::percn
- real *8, dimension(:), allocatable parm::sol_sumwp
- real *8, dimension(:), allocatable parm::tauton
- real *8, dimension(:), allocatable parm::tautop
- real *8, dimension(:), allocatable parm::cbodu
- real *8, dimension(:), allocatable parm::chl a
- real *8, dimension(:), allocatable parm::qdr
- real *8, dimension(:), allocatable parm::tfertn
- real *8, dimension(:), allocatable parm::tfertp
- real *8, dimension(:), allocatable parm::tgrazn
- real *8, dimension(:), allocatable parm::tgrazp
- real *8, dimension(:), allocatable parm::latno3
- real *8, dimension(:), allocatable parm::latq
- real *8, dimension(:), allocatable parm::minpgw
- real *8, dimension(:), allocatable parm::no3gw
- real *8, dimension(:), allocatable parm::npInt
- real *8, dimension(:), allocatable parm::tileq
- real *8, dimension(:), allocatable parm::tileno3
- real *8, dimension(:), allocatable parm::sedminpa
- real *8, dimension(:), allocatable parm::sedminps
- real *8, dimension(:), allocatable parm::sedorgn
- real *8, dimension(:), allocatable parm::sedorgp
- real *8, dimension(:), allocatable parm::sedvld
- real *8, dimension(:), allocatable parm::sepbtm
- real *8, dimension(:), allocatable parm::strsn
- real *8, dimension(:), allocatable parm::strsp
- real *8, dimension(:), allocatable parm::strstmp
- real *8, dimension(:), allocatable parm::surfq
- real *8, dimension(:), allocatable parm::surqno3
- real *8, dimension(:), allocatable parm::tcfrtn
- real *8, dimension(:), allocatable parm::tcfrtp
- real *8, dimension(:), allocatable parm::hru_ha
- real *8, dimension(:), allocatable parm::hru_dafr
 real *8, dimension(:), allocatable parm::drydep no3
- real *8, dimension(:), allocatable parm::drydep nh4
- real *8, dimension(:), allocatable parm::phubase
- real *8, dimension(:), allocatable parm::bio_yrms
- real *8, dimension(:), allocatable parm::hvstiadj
- real *8, dimension(:), allocatable parm::laimxfr
- real *8, dimension(:), allocatable parm::laiday
- real *8, dimension(:), allocatable parm::chlap
- real *8, dimension(:), allocatable parm::pnd psed
- real *8, dimension(:), allocatable parm::wet_psed
- real *8, dimension(:), allocatable parm::seccip
- real *8, dimension(:), allocatable parm::plantn
- real *8, dimension(:), allocatable parm::plt_et
- real *8, dimension(:), allocatable parm::plt_pet
- real *8, dimension(:), allocatable parm::plantp
- real *8, dimension(:), allocatable parm::bio_aams

- real *8, dimension(:), allocatable parm::bio_aamx
 real *8, dimension(:), allocatable parm::lai_yrmx
- real *8, dimension(:), allocatable parm::dormhr
- real *0, dimension(.), allocatable **parm..domini**
- real *8, dimension(:), allocatable parm::lat_pst
- real *8, dimension(:), allocatable parm::orig_snohru
- real *8, dimension(:), allocatable parm::orig_potvol
- real *8, dimension(:), allocatable parm::fld_fr
- real *8, dimension(:), allocatable parm::orig_alai
- real *8, dimension(:), allocatable parm::orig bioms
- real *8, dimension(:), allocatable parm::pltfr_n
- real *8, dimension(:), allocatable parm::orig_phuacc
- real *8, dimension(:), allocatable parm::orig_sumix
- real *8, dimension(:), allocatable parm::pltfr_p
- real *8, dimension(:), allocatable parm::orig phu
- real *8, dimension(:), allocatable parm::phu_plt
- real *8, dimension(:), allocatable parm::orig shallst
- real *8, dimension(:), allocatable parm::orig_deepst
- real *8, dimension(:), allocatable parm::orig_pndvol
- real *8, dimension(:), allocatable parm::orig_pndsed
- real *8, dimension(:), allocatable parm::rip_fr
- real *8, dimension(:), allocatable parm::orig_pndno3
- real *8, dimension(:), allocatable parm::orig_pndsolp
- real *8, dimension(:), allocatable parm::orig pndorgn
- real *8, dimension(:), allocatable parm::orig_pndorgp
- real *8, dimension(:), allocatable parm::orig wetvol
- real *8, dimension(:), allocatable parm::orig_wetsed
- real *8, dimension(:), allocatable parm::orig_wetno3
- real *8, dimension(:), allocatable parm::orig_wetsolp
- real *8, dimension(:), allocatable parm::orig_wetorgn
- real *8, dimension(:), allocatable parm::orig_wetorgp
- real *8, dimension(:), allocatable parm::orig_solcov
 real *8, dimension(:), allocatable parm::orig_solsw
- real *8, dimension(:), allocatable parm::orig_potno3
- real *8, dimension(:), allocatable parm::orig potsed
- real *8, dimension(:), allocatable parm::wtab
- real *8, dimension(:), allocatable parm::wtab_mn
- real *8, dimension(:), allocatable parm::wtab_mx
- real *8, dimension(:), allocatable parm::shallst_n
- real *8, dimension(:), allocatable parm::gw_nloss
- real *8, dimension(:), allocatable parm::rchrg_n
- real *8, dimension(:), allocatable parm::det san
- real *8, dimension(:), allocatable parm::det_sil
- real *8, dimension(:), allocatable parm::det_cla
- real *8, dimension(:), allocatable parm::det_sag
- real *8, dimension(:), allocatable parm::det_lag
- real *8, dimension(:), allocatable parm::tnylda
- real *8, dimension(:), allocatable parm::afrt_surface
- real *8 parm::frt surface
- real *8, dimension(:), allocatable parm::auto_nyr
- real *8, dimension(:), allocatable parm::auto_napp
- real *8, dimension(:), allocatable parm::manure_kg
- real *8, dimension(:), allocatable parm::auto_nstrs
- real *8, dimension(:,:), allocatable parm::rcn_mo
- real *8, dimension(:,:), allocatable parm::rammo_mo
- real *8, dimension(:,:), allocatable parm::drydep_no3_mo

```
    real *8, dimension(:,:), allocatable parm::drydep nh4 mo

  real *8, dimension(:), allocatable parm::rcn d
  real *8, dimension(:), allocatable parm::rammo_d
```

- real *8, dimension(:), allocatable parm::drydep_no3_d
- real *8, dimension(:), allocatable parm::drydep nh4 d
- real *8, dimension(:,:), allocatable parm::yldn
- real *8, dimension(:,:), allocatable parm::gwati
- real *8, dimension(:,:), allocatable parm::gwatn
- real *8, dimension(:,:), allocatable parm::gwatl
- real *8. dimension(:::), allocatable parm::qwatw
- real *8, dimension(:,:), allocatable parm::gwatd
- real *8, dimension(:,:), allocatable parm::gwatveg
- real *8, dimension(:,:), allocatable parm::gwata
- real *8, dimension(:,:), allocatable parm::gwats
- real *8, dimension(:,:), allocatable parm::gwatspcon
- real *8, dimension(:,:), allocatable parm::rfgeo 30d
- real *8, dimension(:,:), allocatable parm::eo_30d
- real *8, dimension(:), allocatable parm::psetlp1
- real *8, dimension(:), allocatable parm::psetlp2
- real *8, dimension(:,:), allocatable parm::wgncur
- real *8, dimension(:,:), allocatable parm::wgnold
- real *8, dimension(:.:), allocatable parm::wrt
- real *8, dimension(:,:), allocatable parm::pst_enr

pesticide enrichment ratio (none)

- real *8, dimension(:,:), allocatable parm::zdb
- real *8, dimension(:,:), allocatable parm::pst surg
- real *8, dimension(:,:), allocatable parm::plt_pst

pesticide on plant foliage (kg/ha)

- real *8, dimension(:), allocatable parm::psetlw1
- real *8, dimension(:), allocatable parm::psetlw2
- real *8, dimension(:.:), allocatable parm::pst sed
- real *8, dimension(:,:), allocatable parm::pcpband
- real *8, dimension(:,:), allocatable parm::wupnd
- real *8, dimension(:,:), allocatable parm::tavband
- real *8, dimension(:,:), allocatable parm::phi
- real *8. dimension(:.:), allocatable parm::wat phi
- real *8, dimension(:,:), allocatable parm::snoeb

initial snow water content in elevation band (mm H2O)

- real *8, dimension(:,:), allocatable parm::wushal
- real *8, dimension(:,:), allocatable parm::wudeep
- real *8, dimension(:,:), allocatable parm::tmnband
- real *8, dimension(:), allocatable parm::bss1
- real *8, dimension(:), allocatable parm::bss2
- real *8, dimension(:), allocatable parm::bss3
- real *8, dimension(:), allocatable parm::bss4
- real *8, dimension(:), allocatable parm::nsetlw1
- real *8, dimension(:), allocatable parm::nsetlw2
- real *8, dimension(:,:), allocatable parm::snotmpeb
- real *8, dimension(:,:), allocatable parm::surf_bs
- real *8, dimension(:), allocatable parm::nsetlp1
- real *8, dimension(:), allocatable parm::nsetlp2
- real *8, dimension(:,:), allocatable parm::tmxband
- real *8, dimension(:,:), allocatable parm::rainsub
- real *8, dimension(:,:), allocatable parm::frad

real *8, dimension(:), allocatable parm::rstpbsb real *8, dimension(:,:), allocatable parm::orig snoeb real *8, dimension(:,:), allocatable parm::orig_pltpst real *8, dimension(:,:), allocatable parm::terr p real *8, dimension(:,:), allocatable parm::terr cn real *8, dimension(:,:), allocatable parm::terr_sl real *8, dimension(:.:), allocatable parm::drain d real *8, dimension(:,:), allocatable parm::drain_t real *8, dimension(:,:), allocatable parm::drain_g real *8, dimension(:,:), allocatable parm::drain_idep real *8, dimension(:,:), allocatable parm::cont_cn real *8, dimension(:,:), allocatable parm::cont p real *8, dimension(:,:), allocatable parm::filt_w real *8, dimension(:,:), allocatable parm::strip n real *8, dimension(:,:), allocatable parm::strip_cn real *8, dimension(:,:), allocatable parm::strip c real *8, dimension(:,:), allocatable parm::strip p real *8, dimension(:,:), allocatable parm::fire cn real *8, dimension(:,:), allocatable parm::cropno_upd real *8, dimension(:,:), allocatable parm::hi_upd real *8, dimension(:,:), allocatable parm::laimx_upd real *8, dimension(:,:,:), allocatable parm::pst_lag real *8, dimension(:,:,:), allocatable parm::phug integer, dimension(:), allocatable parm::hrupest pesticide use flag (none) 0: no pesticides used in HRU 1: pesticides used in HRU • integer, dimension(:), allocatable parm::nrelease integer, dimension(:), allocatable parm::swtrg integer, dimension(:), allocatable parm::nro integer, dimension(:), allocatable parm::nrot integer, dimension(:), allocatable parm::nfert integer, dimension(:), allocatable parm::igro integer, dimension(:), allocatable parm::nair integer, dimension(:), allocatable parm::ipnd1 integer, dimension(:), allocatable parm::ipnd2 integer, dimension(:), allocatable parm::nirr integer, dimension(:), allocatable parm::iflod1 integer, dimension(:), allocatable parm::iflod2 integer, dimension(:), allocatable parm::ndtarg integer, dimension(:), allocatable parm::iafrttyp integer, dimension(:), allocatable parm::nstress integer, dimension(:), allocatable parm::igrotree integer, dimension(:), allocatable parm::grz_days integer, dimension(:), allocatable parm::nmgt integer, dimension(:), allocatable parm::icr integer, dimension(:), allocatable parm::ncut integer, dimension(:), allocatable parm::nsweep integer, dimension(:), allocatable parm::nafert integer, dimension(:), allocatable parm::irn integer, dimension(:), allocatable parm::irrno integer, dimension(:), allocatable parm::sol nly integer, dimension(:), allocatable parm::npcp integer, dimension(:), allocatable parm::igrz

integer, dimension(:), allocatable parm::ndeat

- integer, dimension(:), allocatable parm::ngr
- integer, dimension(:), allocatable parm::ncf
- integer, dimension(:), allocatable parm::hru_sub

subbasin in which HRU is located (none)

- integer, dimension(:), allocatable parm::idorm
- integer, dimension(:), allocatable parm::urblu
- integer, dimension(:), allocatable parm::ldrain
- integer, dimension(:), allocatable parm::hru_seq
- integer, dimension(:), allocatable parm::iurban
- integer, dimension(:), allocatable parm::iday_fert
- integer, dimension(:), allocatable parm::icfrt
- · integer, dimension(:), allocatable parm::ifld

number of HRU (in subbasin) that is a floodplain (none)

integer, dimension(:), allocatable parm::irip

number of HRU (in subbasin) that is a riparian zone (none)

- · integer, dimension(:), allocatable parm::ndcfrt
- integer, dimension(:), allocatable parm::hrugis
- integer, dimension(:), allocatable parm::orig_igro
- integer, dimension(:), allocatable parm::ntil
- integer, dimension(:), allocatable parm::irrsc
- integer, dimension(:), allocatable parm::iwatable
- integer, dimension(:), allocatable parm::curyr_mat
- integer, dimension(:), allocatable parm::ncpest
- integer, dimension(:), allocatable parm::icpst
- · integer, dimension(:), allocatable parm::ndcpst
- integer, dimension(:), allocatable parm::iday_pest
- integer, dimension(:), allocatable parm::irr_flag
- integer, dimension(:), allocatable parm::irra_flag
- integer, dimension(:,:), allocatable parm::rndseed

random number generator seed. The seeds in the array are used to generate random numbers for the following purposes:

- (1) wet/dry day probability
- (2) solar radiation
- (3) precipitation
- (4) USLE rainfall erosion index
- (5) wind speed
- (6) 0.5 hr rainfall fraction
- (7) relative humidity
- (8) maximum temperature
- (9) minimum temperature
- (10) generate new random numbers
- integer, dimension(:,:), allocatable **parm::iterr**
- integer, dimension(:,:), allocatable parm::iyterr
- integer, dimension(:,:), allocatable parm::itdrain
- integer, dimension(:,:), allocatable parm::iydrain
- integer, dimension(:,:), allocatable parm::ncrops
- integer, dimension(:), allocatable parm::manure_id
- integer, dimension(:,:), allocatable parm::mgt_sdr
- integer, dimension(:,:), allocatable parm::idplrot
- integer, dimension(:,:), allocatable parm::icont
- integer, dimension(:,:), allocatable parm::iycont
- integer, dimension(:,:), allocatable parm::ifilt
- integer, dimension(:,:), allocatable parm::iyfilt
- integer, dimension(:,:), allocatable parm::istrip
- integer, dimension(:,:), allocatable parm::iystrip

```
    integer, dimension(:,:), allocatable parm::iopday

integer, dimension(:,:), allocatable parm::iopyr

    integer, dimension(:,:), allocatable parm::mgt_ops

    real *8, dimension(:), allocatable parm::wshd pstap

    real *8, dimension(:), allocatable parm::wshd pstdg

    integer, dimension(12) parm::ndmo

    integer, dimension(:), allocatable parm::npno

     array of unique pesticides used in watershed (none)

    integer, dimension(:), allocatable parm::mcrhru

  character(len=13), dimension(18) parm::rfile
     rainfall file names (.pcp)

    character(len=13), dimension(18) parm::tfile

     temperature file names (.tmp)

    character(len=4), dimension(1000) parm::urbname

     name of urban land use
  character(len=1), dimension(:), allocatable parm::hvdqrp

    character(len=1), dimension(:), allocatable parm::kirr

    character(len=16), dimension(:), allocatable parm::snam

 character(len=17), dimension(300) parm::pname
     name of pesticide/toxin adding gtile to output.hru write 3/2/2010 gsm increased heds(70) to heds(71)
  character(len=13), dimension(79) parm::heds

    character(len=13), dimension(24) parm::hedb

    character(len=13), dimension(46) parm::hedr

  character(len=13), dimension(41) parm::hedrsv
  character(len=13), dimension(40) parm::hedwtr

    character(len=4), dimension(60) parm::title

     description lines in file.cio (1st 3 lines)

    character(len=4), dimension(5000) parm::cpnm

     four character code to represent crop name

    character(len=17), dimension(50) parm::fname

  real *8, dimension(:,:,:), allocatable parm::flomon
  real *8, dimension(:,:,:), allocatable parm::solpstmon
 real *8, dimension(:,:,:), allocatable parm::srbpstmon

    real *8, dimension(:,:,:), allocatable parm::sedmon

• real *8, dimension(:,:,:), allocatable parm::orgnmon
  real *8, dimension(:,:,:), allocatable parm::orgpmon
• real *8, dimension(:,:,:), allocatable parm::no3mon
  real *8, dimension(:,:,:), allocatable parm::minpmon

    real *8, dimension(:,:,:), allocatable parm::nh3mon

real *8, dimension(:,:,:), allocatable parm::no2mon

    real *8, dimension(:,:,:), allocatable parm::bactpmon

    real *8, dimension(:,:,:), allocatable parm::bactlpmon

• real *8, dimension(:,:,:), allocatable parm::cmtl1mon
  real *8, dimension(:,:,:), allocatable parm::cmtl2mon
  real *8, dimension(:,:,:), allocatable parm::cmtl3mon

    real *8, dimension(:,:,:), allocatable parm::chlamon

  real *8, dimension(:,:,:), allocatable parm::disoxmon

    real *8, dimension(:,:,:), allocatable parm::cbodmon

    real *8, dimension(:,:), allocatable parm::floyr

  real *8, dimension(:,:), allocatable parm::sedyr
  real *8, dimension(:,:), allocatable parm::orgnyr
  real *8, dimension(:,:), allocatable parm::orgpyr
  real *8, dimension(:,:), allocatable parm::no3yr
```

```
    real *8, dimension(:,:), allocatable parm::minpyr
    real *8, dimension(:,:), allocatable parm::nh3yr
```

- real *8, dimension(:,:), allocatable parm::no2yr
- real *8, dimension(:,:), allocatable parm::bactpyr
- real *8, dimension(:,:), allocatable parm::bactlpyr
- real *8, dimension(:,:), allocatable parm::cmtl1yr
- real *8, dimension(:,:), allocatable parm::cmtl2yr
- real *8, dimension(:,:), allocatable parm::cmtl3yr
- real + 0, dimension(++), allegatable marmuchleur
- real *8, dimension(:,:), allocatable parm::chlayr
- real *8, dimension(:,:), allocatable parm::disoxyr
- real *8, dimension(:,:), allocatable parm::cbodyr
- real *8, dimension(:,:), allocatable parm::solpstyr
- real *8, dimension(:,:), allocatable parm::srbpstyr
- real *8, dimension(:,:), allocatable parm::sol_mc
- real *8, dimension(:,:), allocatable parm::sol mn
- real *8, dimension(:,:), allocatable parm::sol_mp
- real *8, dimension(:), allocatable parm::flocnst
- real *8, dimension(:), allocatable parm::sedcnst
- real *8, dimension(:), allocatable parm::orgncnst
- real *8, dimension(:), allocatable parm::orgpcnst
- real *8, dimension(:), allocatable parm::no3cnst
- real *8, dimension(:), allocatable parm::minpcnst
- real *8, dimension(:), allocatable parm::nh3cnst
- real *8, dimension(:), allocatable parm::no2cnst
- real *8, dimension(:), allocatable parm::bactpcnst
- real *8, dimension(:), allocatable parm::cmtl1cnst
- real *8, dimension(:), allocatable parm::cmtl2cnst
- real *8, dimension(:), allocatable parm::bactlpcnst
- real *8, dimension(:), allocatable parm::cmtl3cnst
- real *8, dimension(:), allocatable parm::chlacnst
- real *8, dimension(:), allocatable parm::disoxcnst
- real *8, dimension(:), allocatable parm::cbodcnst
- real *8, dimension(:), allocatable parm::solpstcnst
- real *8, dimension(:), allocatable parm::srbpstcnst
- integer parm::nstep

max number of time steps per day

· integer parm::idt

length of time step used to report precipitation data for sub-daily modeling (minutes)

- real *8, dimension(:), allocatable parm::hrtwtr
- real *8, dimension(:), allocatable parm::hhstor
- real *8, dimension(:), allocatable parm::hdepth
- real *8, dimension(:), allocatable parm::hsdti
- real *8, dimension(:), allocatable parm::hrchwtr
- real *8, dimension(:), allocatable parm::halgae
- real *8, dimension(:), allocatable parm::horgn
- real *8, dimension(:), allocatable parm::hnh4
- real *8, dimension(:), allocatable parm::hno2
- real *8, dimension(:), allocatable parm::hno3
- real *8, dimension(:), allocatable parm::horgp
- real *8, dimension(:), allocatable parm::hsolp
- real *8, dimension(:), allocatable parm::hbod
- real *8, dimension(:), allocatable parm::hdisox
- real *8, dimension(:), allocatable parm::hchla
- real *8, dimension(:), allocatable parm::hsedyld

```
    real *8, dimension(:), allocatable parm::hsedst

• real *8, dimension(:), allocatable parm::hharea
• real *8, dimension(:), allocatable parm::hsolpst

    real *8, dimension(:), allocatable parm::hsorpst

    real *8, dimension(:), allocatable parm::hhgday

    real *8, dimension(:), allocatable parm::precipdt

    real *8, dimension(:), allocatable parm::hhtime

    real *8, dimension(:), allocatable parm::hbactp

• real *8, dimension(:), allocatable parm::hbactlp

    integer, dimension(10) parm::ivar orig

• real *8, dimension(10) parm::rvar_orig

    integer parm::nsave

     number of save commands in .fig file
• integer parm::nauto
integer parm::iatmodep

    real *8, dimension(:), allocatable parm::wattemp

    real *8, dimension(:), allocatable parm::lkpst_mass

    real *8, dimension(:), allocatable parm::lkspst_mass

    real *8, dimension(:), allocatable parm::vel_chan

• real *8, dimension(:), allocatable parm::vfscon

    real *8, dimension(:), allocatable parm::vfsratio

• real *8, dimension(:), allocatable parm::vfsch

    real *8, dimension(:), allocatable parm::vfsi

    real *8, dimension(:,:), allocatable parm::filter_i

• real *8, dimension(:,:), allocatable parm::filter_ratio

    real *8, dimension(:,:), allocatable parm::filter_con

    real *8, dimension(:,:), allocatable parm::filter_ch

  real *8, dimension(:,:), allocatable parm::sol_n

    integer parm::cswat

     = 0 Static soil carbon (old mineralization routines)
     = 1 C-FARM one carbon pool model
     = 2 Century model

    real *8, dimension(:,:), allocatable parm::sol bdp

    real *8, dimension(:,:), allocatable parm::tillagef

    real *8, dimension(:), allocatable parm::rtfr

  real *8, dimension(:), allocatable parm::stsol_rd
• integer parm::urban_flag
· integer parm::dorm_flag
real *8 parm::bf_flg
real *8 parm::iabstr

    real *8, dimension(:), allocatable parm::ubnrunoff

    real *8, dimension(:), allocatable parm::ubntss

real *8, dimension(:,:), allocatable parm::sub_ubnrunoff
• real *8, dimension(:,:), allocatable parm::sub ubntss

    real *8, dimension(:,:), allocatable parm::ovrlnd dt

    real *8, dimension(:,:,:), allocatable parm::hhsurf_bs

    integer parm::iuh

     unit hydrograph method: 1=triangular UH; 2=gamma funtion UH;

    integer parm::sed ch

     channel routing for HOURLY; 0=Bagnold; 2=Brownlie; 3=Yang;

    real *8 parm::eros expo

     an exponent in the overland flow erosion equation ranges 1.5-3.0
  real *8 parm::eros spl
     coefficient of splash erosion varing 0.9-3.1
```

real *8 parm::rill mult

Multiplier to USLE_K for soil susceptible to rill erosion, range 0.5-2.0.

- real *8 parm::sedprev
- real *8 parm::c factor
- real *8 parm::ch d50

median particle diameter of channel bed (mm)

real *8 parm::sig g

geometric standard deviation of particle sizes for the main channel. Mean air temperature at which precipitation is equally likely to be rain as snow/freezing rain.

real *8 parm::uhalpha

alpha coefficient for estimating unit hydrograph using a gamma function (*.bsn)

- real *8 parm::abstinit
- real *8 parm::abstmax
- real *8, dimension(:,:), allocatable parm::hhsedy
- real *8, dimension(:,:), allocatable parm::sub_subp_dt
- real *8, dimension(:,:), allocatable parm::sub_hhsedy
- real *8, dimension(:,:), allocatable parm::sub_atmp
- real *8, dimension(:), allocatable parm::rhy
- real *8, dimension(:), allocatable parm::init abstrc
- real *8, dimension(:), allocatable parm::dratio
- real *8, dimension(:), allocatable parm::hrtevp
- real *8, dimension(:), allocatable parm::hrttlc
- real *8, dimension(:,:,:), allocatable parm::rchhr
- real *8, dimension(:), allocatable parm::hhresflwi
- real *8, dimension(:), allocatable parm::hhresflwo
- real *8, dimension(:), allocatable parm::hhressedi
- real *8, dimension(:), allocatable parm::hhressedo
- character(len=4), dimension(:), allocatable parm::lu nodrain
- integer, dimension(:), allocatable parm::bmpdrain
- real *8, dimension(:), allocatable parm::sub cn2
- real *8, dimension(:), allocatable parm::sub ha urb
- real *8, dimension(:), allocatable parm::bmp_recharge
- real *8, dimension(:), allocatable parm::sub ha imp
- real *8, dimension(:), allocatable parm::subdr_km
- real *8, dimension(:), allocatable parm::subdr_ickm
- real *8, dimension(:,:), allocatable parm::sf_im
- real *8, dimension(:,:), allocatable parm::sf_iy
- real *8, dimension(:,:), allocatable parm::sp_sa
- real *8, dimension(:,:), allocatable parm::sp_pvol
- real *8, dimension(:,:), allocatable parm::sp_pd
- real *8, dimension(:,:), allocatable parm::sp_sedi
- real *8, dimension(:,:), allocatable parm::sp_sede
- real *8, dimension(:,:), allocatable parm::ft sa
- real *8, dimension(:,:), allocatable parm::ft_fsa
- real *8, dimension(:,:), allocatable parm::ft_dep
- real *8, dimension(:,:), allocatable parm::ft_h
- real *8, dimension(:,:), allocatable parm::ft_pd
- real *8, dimension(:,:), allocatable parm::ft_k
- real *8, dimension(:,:), allocatable parm::ft_dp
- real *8, dimension(:,:), allocatable parm::ft_dc
- real *8, dimension(:,:), allocatable parm::ft_por
 real *8, dimension(:,:), allocatable parm::tss_den
- real *8, dimension(:,:), allocatable parm::ft alp
- real *8, dimension(:,:), allocatable parm::sf_fr

- real *8, dimension(:,:), allocatable parm::sp_qi
 real *8, dimension(:,:), allocatable parm::sp_k
 real *8, dimension(:,:), allocatable parm::ft_qpnd
- real *8, dimension(:,:), allocatable parm::sp_dp
- real *8, dimension(:,:), allocatable parm::ft_qsw
- real *8, dimension(:,:), allocatable parm::ft_qin
- real *8, dimension(:,:), allocatable parm::ft_qout
- real *8, dimension(:,:), allocatable parm::ft_sedpnd
- real *8, dimension(:,:), allocatable parm::sp_bpw
- real *8, dimension(:,:), allocatable parm::ft_bpw
- real *8, dimension(:,:), allocatable parm::ft_sed_cumul
- real *8, dimension(:,:), allocatable parm::sp_sed_cumul
- integer, dimension(:), allocatable parm::num_sf
- integer, dimension(:,:), allocatable parm::sf_typ
- integer, dimension(:,:), allocatable parm::sf_dim
- integer, dimension(:,:), allocatable parm::ft_qfg
- integer, dimension(:,:), allocatable parm::sp_qfg
- integer, dimension(:,:), allocatable parm::sf_ptp
- integer, dimension(:,:), allocatable parm::ft_fc
- real *8 parm::sfsedmean
- real *8 parm::sfsedstdev
- integer, dimension(:), allocatable parm::dtp_subnum
- integer, dimension(:), allocatable parm::dtp_imo
- integer, dimension(:), allocatable parm::dtp_iyr
- integer, dimension(:), allocatable parm::dtp_numweir
- integer, dimension(:), allocatable parm::dtp_numstage
- integer, dimension(:), allocatable parm::dtp_stagdis
- integer, dimension(:), allocatable parm::dtp_reltype
- integer, dimension(:), allocatable parm::dtp_onoff
- real *8, dimension(:), allocatable parm::cf
- real *8, dimension(:), allocatable parm::cfh
- real *8, dimension(:), allocatable parm::cfdec
- real *8, dimension(:), allocatable parm::lat_orgn
- real *8, dimension(:), allocatable parm::lat_orgp
- integer, dimension(:,:), allocatable parm::dtp_weirtype
- integer, dimension(:,:), allocatable parm::dtp_weirdim
- real *8, dimension(:), allocatable parm::dtp_evrsv
- real *8, dimension(:), allocatable parm::dtp_inflvol
- real *8, dimension(:), allocatable parm::dtp_totwrwid
- real *8, dimension(:), allocatable parm::dtp lwratio
- real *8, dimension(:), allocatable parm::dtp wdep
- real *8, dimension(:), allocatable parm::dtp_totdep
- real *8, dimension(:), allocatable parm::dtp_watdepact
- real *8, dimension(:), allocatable parm::dtp_outflow
- real *8, dimension(:), allocatable parm::dtp totrel
- real *8, dimension(:), allocatable parm::dtp backoff
- real *8, dimension(:), allocatable parm::dtp_seep_sa
- real *8, dimension(:), allocatable parm::dtp evap sa
- real *8, dimension(:), allocatable parm::dtp_pet_day
- real *8, dimension(:), allocatable parm::dtp_pcpvol
- real *8, dimension(:), allocatable $parm::dtp_seepvol$
- real *8, dimension(:), allocatable parm::dtp_evapvol
- real *8, dimension(:), allocatable parm::dtp_flowin
- real *8, dimension(:), allocatable parm::dtp_backup_length
- real *8, dimension(:), allocatable parm::dtp_intcept

- real *8, dimension(:), allocatable parm::dtp expont
- real *8, dimension(:), allocatable parm::dtp coef1
- real *8, dimension(:), allocatable parm::dtp_coef2
- real *8, dimension(:), allocatable parm::dtp_coef3
- real *8, dimension(:), allocatable parm::dtp_dummy1
- real *8, dimension(:), allocatable parm::dtp_dummy2
- real *8, dimension(:), allocatable parm::dtp dummy3
- real *8, dimension(:), allocatable parm::dtp_ivol
- real *8, dimension(:), allocatable parm::dtp ised
- integer, dimension(:,:), allocatable parm::so res flag
- integer, dimension(:.:), allocatable parm::ro bmp flag
- real *8, dimension(:,:), allocatable parm::sol_watp
- real *8, dimension(:,:), allocatable parm::sol_solp_pre
- real *8, dimension(:,:), allocatable parm::psp_store
- real *8, dimension(:,:), allocatable parm::ssp_store
- real *8, dimension(:,:), allocatable parm::so_res
- real *8, dimension(:,:), allocatable parm::sol_cal
- real *8, dimension(:,:), allocatable parm::sol ph
- integer parm::sol p model
- integer, dimension(:,:), allocatable parm::a days
- integer, dimension(:,:), allocatable parm::b_days
- real *8, dimension(:), allocatable parm::harv_min
- real *8, dimension(:), allocatable parm::fstap
- real *8, dimension(:), allocatable parm::min_res
- real *8, dimension(:,:), allocatable parm::ro_bmp_flo
- real *8, dimension(:,:), allocatable parm::ro_bmp_sed
- real *8, dimension(:,:), allocatable parm::ro bmp bac
- real *8, dimension(:,:), allocatable parm::ro_bmp_pp
- real *8, dimension(:,:), allocatable parm::ro_bmp_sp
- real *8, dimension(:,:), allocatable parm::ro_bmp_pn
- real *8, dimension(:,:), allocatable parm::ro_bmp_sn
- real *8, dimension(:,:), allocatable parm::ro_bmp_flos
- real *8, dimension(:,:), allocatable parm::ro_bmp_seds
 real *8, dimension(:,:), allocatable parm::ro bmp bacs
- real *8, dimension(:,:), allocatable parm::ro_bmp_pps
 real *8, dimension(:,:), allocatable parm::ro bmp_sps
- real *8, dimension(:,:), allocatable parm::ro bmp pns
- real *8, dimension(:,:), allocatable parm::ro bmp sns
- real *8, dimension(:,:), allocatable parm::ro bmp flot
- real *8, dimension(:,:), allocatable parm::ro bmp sedt
- real *8, dimension(:,:), allocatable parm::ro bmp bact
- real *8, dimension(:,:), allocatable parm::ro bmp ppt
- real *8, dimension(:,:), allocatable parm::ro bmp spt
- real *8, dimension(:,:), allocatable parm::ro_bmp_pnt
- real *8, dimension(:,:), allocatable parm::ro bmp snt
- real *8, dimension(:), allocatable parm::bmp flo
- real *8, dimension(:), allocatable parm::bmp sed
- real *8, dimension(:), allocatable parm::bmp bac
- real *8, dimension(:), allocatable parm::bmp pp
- real *8, dimension(:), allocatable parm::bmp_sp
- real *8, dimension(:), allocatable parm::bmp_pn
- real *8, dimension(:), allocatable parm::bmp_sn
- real *8, dimension(:), allocatable parm::bmp_flag
- real *8, dimension(:), allocatable parm::bmp_flos
- real *8, dimension(:), allocatable parm::bmp_seds

- real *8, dimension(:), allocatable parm::bmp_bacs
- real *8, dimension(:), allocatable parm::bmp_pps
- real *8, dimension(:), allocatable parm::bmp_sps
- real *8, dimension(:), allocatable parm::bmp pns
- real *8, dimension(:), allocatable parm::bmp_sns
- real *8, dimension(:), allocatable parm::bmp_flot
- real *8, dimension(:), allocatable parm::bmp sedt
- real *8, dimension(:), allocatable parm::bmp_bact
- real *8, dimension(:), allocatable parm::bmp ppt
- real *8, dimension(:), allocatable parm::bmp_spt
- real *8, dimension(:), allocatable parm::bmp pnt
- real *8, dimension(:), allocatable parm::bmp_snt
- real *8, dimension(:,:), allocatable parm::dtp_wdratio
- real #0, annension(.,.), anocatable parmiatp_waratto
- real *8, dimension(:,:), allocatable parm::dtp_depweir
- real *8, dimension(:,:), allocatable parm::dtp_diaweir
- real *8, dimension(:,:), allocatable parm::dtp_retperd
- real *8, dimension(:,:), allocatable parm::dtp_pcpret
- real *8, dimension(:,:), allocatable parm::dtp_cdis
- real *8, dimension(:,:), allocatable parm::dtp_flowrate
- real *8, dimension(:,:), allocatable parm::dtp_wrwid
- real *8, dimension(:,:), allocatable parm::dtp_addon
- real *8, dimension(:), allocatable parm::ri subkm
- real *8, dimension(:), allocatable parm::ri_totpvol
- real *8, dimension(:), allocatable parm::irmmdt
- real *8, dimension(:,:), allocatable parm::ri_sed
- real *8, dimension(:,:), allocatable parm::ri_fr
- real *8, dimension(:,:), allocatable parm::ri_dim
- real *8, dimension(:,:), allocatable parm::ri_im
- real *8, dimension(:,:), allocatable parm::ri_iy
- real *8, dimension(:,:), allocatable parm::ri_sa
- real *8, dimension(:,:), allocatable parm::ri_vol
 real *8, dimension(:,:), allocatable parm::ri_qi
- real *8, dimension(:,:), allocatable parm::ri_k
- real *8, dimension(:,:), allocatable parm::ri dd
- real *8, dimension(:,:), allocatable parm::ri_evrsv
- real *8, dimension(:,:), allocatable parm::ri dep
- real *8, dimension(:,:), allocatable parm::ri_ndt
- real *8, dimension(:,:), allocatable parm::ri_pmpvol
- real *8, dimension(:,:), allocatable parm::ri_sed_cumul
- real *8, dimension(:,:), allocatable parm::hrnopcp
- real *8, dimension(:,:), allocatable parm::ri gloss
- real *8, dimension(:,:), allocatable parm::ri_pumpv
- real *8, dimension(:,:), allocatable parm::ri_sedi
- character(len=4), dimension(:,:), allocatable parm::ri_nirr
- integer, dimension(:), allocatable parm::num_ri
- integer, dimension(:), allocatable parm::ri luflg
- integer, dimension(:), allocatable parm::num noirr
- integer, dimension(:), allocatable parm::wtp subnum
- integer, dimension(:), allocatable parm::wtp_onoff
- integer, dimension(:), allocatable parm::wtp_imo
- integer, dimension(:), allocatable parm::wtp_iyr
- integer, dimension(:), allocatable parm::wtp_dim
- integer, dimension(:), allocatable parm::wtp_stagdis
- integer, dimension(:), allocatable parm::wtp_sdtype
- real *8, dimension(:), allocatable parm::wtp_pvol

- real *8, dimension(:), allocatable parm::wtp_pdepth
- real *8, dimension(:), allocatable parm::wtp sdslope
- real *8, dimension(:), allocatable parm::wtp_lenwdth
- real *8, dimension(:), allocatable parm::wtp_extdepth
- real *8, dimension(:), allocatable parm::wtp_hydeff
- real *8, dimension(:), allocatable parm::wtp_evrsv
- real *8, dimension(:), allocatable parm::wtp_sdintc
- real *8, dimension(:), allocatable parm::wtp_sdexp
- real *8, dimension(:), allocatable parm::wtp sdc1
- real *8, dimension(:), allocatable parm::wtp sdc2
- real *8, dimension(:), allocatable parm::wtp sdc3
- real *8, dimension(:), allocatable parm::wtp_pdia
- real *8, dimension(:), allocatable parm::wtp_plen
- real *8, dimension(:), allocatable parm::wtp_pmann
- real *8, dimension(:), allocatable parm::wtp_ploss
- real *8, dimension(:), allocatable parm::wtp_k
- real *8, dimension(:), allocatable parm::wtp_dp
- real *8, dimension(:), allocatable parm::wtp_sedi
- real *8, dimension(:), allocatable parm::wtp_sede
 real *8, dimension(:), allocatable parm::wtp_gi
- real *8 parm::bio init
- real *8 parm::lai init
- real *8 parm::cnop
- real *8 parm::hi ovr
- real *8 parm::harveff
- real *8 parm::frac_harvk
- real *8 parm::lid vgcl
- real *8 parm::lid vgcm
- real *8 parm::lid gsurf total
- real *8 parm::lid farea sum
- real *8, dimension(:,:), allocatable parm::lid_cuminf_last
- real *8, dimension(:,:), allocatable parm::lid_sw_last
- real *8, dimension(:,:), allocatable parm::interval_last
- real *8, dimension(:,:), allocatable parm::lid_f_last
- real *8, dimension(:,:), allocatable parm::lid_cumr_last
- real *8, dimension(:,:), allocatable parm::lid_str_last
- real *8, dimension(:,:), allocatable parm::lid_farea
- real *8, dimension(:,:), allocatable parm::lid_qsurf
- real *8, dimension(:,:), allocatable parm::lid sw add
- real *8, dimension(:,:), allocatable parm::lid cumqperc last
- real *8, dimension(:,:), allocatable parm::lid cumirr last
- real *8, dimension(:,:), allocatable parm::lid excum last
- integer, dimension(:,:), allocatable parm::gr_onoff
- integer, dimension(:,:), allocatable parm::gr_imo
- integer, dimension(:,:), allocatable parm::gr iyr
- real *8, dimension(:,:), allocatable parm::gr farea
- real *8. dimension(:.:), allocatable parm::gr solop
- real *8, dimension(:,:), allocatable parm::gr etcoef
- real *8, dimension(:,:), allocatable parm::gr fc
- real *8, dimension(:,:), allocatable parm::gr_wp
- real *8, dimension(:,:), allocatable parm::gr_ksat
- real *8, dimension(:,:), allocatable parm::gr_por
- real *8, dimension(:,:), allocatable parm::gr_hydeff
- real *8, dimension(:,:), allocatable parm::gr_soldpt
- real *8, dimension(:,:), allocatable parm::gr_dummy1

real *8, dimension(:,:), allocatable parm::gr dummy2 real *8, dimension(:,:), allocatable parm::gr dummy3 real *8, dimension(:,:), allocatable parm::gr_dummy4 real *8, dimension(:,:), allocatable parm::gr dummy5 integer, dimension(:,:), allocatable parm::rg onoff integer, dimension(:,:), allocatable parm::rg_imo integer, dimension(:,:), allocatable parm::rg iyr real *8, dimension(:,:), allocatable parm::rg_farea real *8, dimension(:,:), allocatable parm::rg solop real *8, dimension(:,:), allocatable parm::rg etcoef real *8, dimension(:.:), allocatable parm::rg fc real *8, dimension(:,:), allocatable parm::rg_wp real *8, dimension(:,:), allocatable parm::rg_ksat real *8, dimension(:,:), allocatable parm::rg_por real *8, dimension(:,:), allocatable parm::rg_hydeff real *8, dimension(:.:), allocatable parm::rg soldpt real *8, dimension(:,:), allocatable parm::rg_dimop real *8, dimension(:,:), allocatable parm::rg sarea real *8, dimension(:,:), allocatable parm::rg_vol real *8, dimension(:,:), allocatable parm::rg sth real *8, dimension(:,:), allocatable parm::rg_sdia real *8, dimension(:,:), allocatable parm::rg bdia real *8, dimension(:,:), allocatable parm::rg sts real *8, dimension(:,:), allocatable parm::rg orifice real *8, dimension(:,:), allocatable parm::rg oheight real *8, dimension(:,:), allocatable parm::rg_odia real *8, dimension(:,:), allocatable parm::rg dummy1 real *8, dimension(:,:), allocatable parm::rg dummy2 real *8. dimension(:.:), allocatable parm::rg dummv3 real *8, dimension(:,:), allocatable parm::rg dummy4 real *8, dimension(:,:), allocatable parm::rg dummy5 integer, dimension(:,:), allocatable parm::cs_onoff integer, dimension(:,:), allocatable parm::cs_imo integer, dimension(:.:), allocatable parm::cs ivr integer, dimension(:,:), allocatable parm::cs grcon real *8, dimension(:,:), allocatable parm::cs farea real *8, dimension(:,:), allocatable parm::cs_vol real *8, dimension(:,:), allocatable parm::cs_rdepth real *8, dimension(:,:), allocatable parm::cs_dummy1 real *8, dimension(:.:), allocatable parm::cs dummy2 real *8, dimension(:,:), allocatable parm::cs dummy3 real *8, dimension(:,:), allocatable parm::cs_dummy4 real *8, dimension(:,:), allocatable parm::cs dummy5 integer, dimension(:,:), allocatable parm::pv_onoff integer, dimension(:,:), allocatable parm::pv imo integer, dimension(:,:), allocatable parm::pv iyr integer, dimension(:,:), allocatable parm::pv solop real *8, dimension(:,:), allocatable parm::pv grvdep real *8, dimension(:,:), allocatable parm::pv grvpor real *8, dimension(:,:), allocatable parm::pv_farea real *8, dimension(:,:), allocatable parm::pv_drcoef real *8, dimension(:,:), allocatable parm::pv fc real *8, dimension(:,:), allocatable parm::pv_wp

real *8, dimension(:,:), allocatable parm::pv_ksat real *8, dimension(:,:), allocatable parm::pv_por

- real *8, dimension(:,:), allocatable parm::pv_hydeff
- real *8, dimension(:,:), allocatable parm::pv soldpt
- real *8, dimension(:,:), allocatable parm::pv_dummy1
- real *8, dimension(:,:), allocatable parm::pv_dummy2
- real *8, dimension(:,:), allocatable parm::pv_dummy3
- real *8, dimension(:,:), allocatable parm::pv dummy4
- real *8, dimension(:,:), allocatable parm::pv dummy5
- integer, dimension(:,:), allocatable parm::lid_onoff
- real *8, dimension(:,:), allocatable parm::sol bmc
- real *8, dimension(:.:), allocatable parm::sol bmn
- real *8, dimension(:.:), allocatable parm::sol hsc
- real *8, dimension(:,:), allocatable parm::sol_hsn
- real *8, dimension(:,:), allocatable parm::sol hpc
- real *8, dimension(:,:), allocatable parm::sol_hpn
- real *8, dimension(:,:), allocatable parm::sol_lm
- real *8, dimension(:.:), allocatable parm::sol Imc
- real *8, dimension(:,:), allocatable parm::sol_lmn
- real *8, dimension(:.:), allocatable parm::sol is
- real *8, dimension(:,:), allocatable parm::sol_lsl
- real *8, dimension(:,:), allocatable parm::sol_lsc
- real *8, dimension(:,:), allocatable parm::sol_lsn
- real *8, dimension(:,:), allocatable parm::sol_rnmn
- real *8, dimension(:,:), allocatable parm::sol Islc
- real *8, dimension(:,:), allocatable parm::sol Islnc
- real *8, dimension(:,:), allocatable parm::sol rspc
- real *8, dimension(:,:), allocatable parm::sol_woc
- real *8, dimension(:,:), allocatable parm::sol won
- real *8, dimension(:,:), allocatable parm::sol hp
- real *8, dimension(:,:), allocatable parm::sol_hs
- real *8, dimension(:,:), allocatable parm::sol_bm
- real *8, dimension(:,:), allocatable parm::sol_cac
- real *8, dimension(:,:), allocatable parm::sol_cec
- real *8, dimension(:,:), allocatable parm::sol_percc
- real *8, dimension(:,:), allocatable parm::sol_latc
- real *8, dimension(:), allocatable parm::sedc_d
- real *8, dimension(:), allocatable parm::surfqc_d
- real *8, dimension(:), allocatable parm::latc_d
- real *8, dimension(:), allocatable parm::percc_d
- real *8, dimension(:), allocatable parm::foc_d
- real *8, dimension(:), allocatable parm::nppc d
- real *8, dimension(:), allocatable parm::rsdc d
- real *8, dimension(:), allocatable parm::grainc_d
- real *8, dimension(:), allocatable parm::stoverc_d
- real *8, dimension(:), allocatable parm::soc_d
- real *8, dimension(:), allocatable parm::rspc_d
- real *8, dimension(:), allocatable parm::emitc_d
- real *8, dimension(:), allocatable parm::sub_sedc_d
- real *8, dimension(:), allocatable parm::sub surfqc d
- real *8, dimension(:), allocatable parm::sub latc d
- real *8, dimension(:), allocatable parm::sub_percc_d
- real *8, dimension(:), allocatable parm::sub_foc_d
- real *8, dimension(:), allocatable parm::sub_nppc_d
- real *8, dimension(:), allocatable parm::sub_rsdc_d
- real *8, dimension(:), allocatable parm::sub_grainc_d
- real *8, dimension(:), allocatable parm::sub_stoverc_d

- real *8, dimension(:), allocatable parm::sub_emitc_d real *8, dimension(:), allocatable parm::sub_soc_d real *8, dimension(:), allocatable parm::sub_rspc_d real *8, dimension(:), allocatable parm::sedc m real *8, dimension(:), allocatable parm::surfqc_m real *8, dimension(:), allocatable parm::latc_m real *8, dimension(:), allocatable parm::percc_m real *8, dimension(:), allocatable parm::foc m real *8, dimension(:), allocatable parm::nppc_m real *8, dimension(:), allocatable parm::rsdc_m real *8, dimension(:), allocatable parm::grainc m real *8, dimension(:), allocatable parm::stoverc_m real *8, dimension(:), allocatable parm::emitc_m real *8, dimension(:), allocatable parm::soc_m real *8, dimension(:), allocatable parm::rspc m real *8, dimension(:), allocatable parm::sedc_a real *8, dimension(:), allocatable parm::surfqc_a real *8, dimension(:), allocatable parm::latc a real *8, dimension(:), allocatable parm::percc a real *8, dimension(:), allocatable parm::foc_a real *8, dimension(:), allocatable parm::nppc_a real *8, dimension(:), allocatable parm::rsdc a real *8, dimension(:), allocatable parm::grainc a real *8, dimension(:), allocatable parm::stoverc_a real *8, dimension(:), allocatable parm::emitc_a real *8, dimension(:), allocatable parm::soc_a real *8, dimension(:), allocatable parm::rspc a integer, dimension(:), allocatable parm::tillage switch real *8, dimension(:), allocatable parm::tillage_depth integer, dimension(:), allocatable parm::tillage days real *8, dimension(:), allocatable parm::tillage_factor real *8 parm::dthy time interval for subdaily routing integer, dimension(4) parm::ihx integer, dimension(:), allocatable parm::nhy real *8, dimension(:), allocatable parm::rchx real *8, dimension(:), allocatable parm::rcss real *8, dimension(:), allocatable parm::qcap real *8, dimension(:), allocatable parm::chxa
- real *8, dimension(:), allocatable parm::chxp
- real *8, dimension(:,:,:), allocatable parm::qhy
- real *8 parm::ff1
- · real *8 parm::ff2

Detailed Description

file containing the module parm

Author

modified by Javier Burguete Tolosa

7.11 readbsn.f90 File Reference

Functions/Subroutines

· subroutine readbsn

this subroutine reads data from the basin input file (.bsn). This file contains information related to processes modeled or defined at the watershed level

7.11.1 Detailed Description

file containing the suborutine readbsn

Author

modified by Javier Burguete

7.12 readchm.f90 File Reference

Functions/Subroutines

· subroutine readchm

This subroutine reads data from the HRU/subbasin soil chemical input file (.chm). This file contains initial amounts of pesticides/nutrients in the first soil layer. (Specifics about the first soil layer are given in the .sol file.) All data in the .chm file is optional input.

7.12.1 Detailed Description

file containing the subroutine readchm

Author

modified by Javier Burguete

7.13 readfcst.f90 File Reference

Functions/Subroutines

· subroutine readfcst

this subroutine reads the HRU forecast weather generator parameters from the .cst file

7.13.1 Detailed Description

file containing the subroutine readfcst

Author

7.14 readfert.f90 File Reference

Functions/Subroutines

· subroutine readfert

this subroutine reads input parameters from the fertilizer/manure (i.e. nutrient) database (fert.dat)

7.14.1 Detailed Description

file containing the subroutine readfert

Author

modified by Javier Burguete

7.15 readfig.f90 File Reference

Functions/Subroutines

· subroutine readfig

reads in the routing information from the watershed configuration input file (.fig) and calculates the number of subbasins, reaches, and reservoirs

7.15.1 Detailed Description

file containing the subroutine readfig

Author

modified by Javier Burguete

7.16 readfile.f90 File Reference

Functions/Subroutines

· subroutine readfile

this subroutine opens the main input and output files and reads watershed information from the file.cio

7.16.1 Detailed Description

file containing the subroutine readfile

Author

7.17 readhru.f90 File Reference

Functions/Subroutines

· subroutine readhru

this subroutine reads data from the HRU general input file (.hru). This file contains data related to general processes modeled at the HRU level.

7.17.1 Detailed Description

file containing the subroutine readhru

Author

modified by Javier Burguete

7.18 readlup.f90 File Reference

Functions/Subroutines

· subroutine readlup

this subroutine reads data from the HRU/subbasin management input file (.mgt). This file contains data related to management practices used in the HRU/subbasin.

7.18.1 Detailed Description

file containing the subroutine readlup

Author

modified by Javier Burguete

7.19 readpest.f90 File Reference

Functions/Subroutines

· subroutine readpest

this subroutine reads parameters from the toxin/pesticide database (pest.dat)

7.19.1 Detailed Description

file containing the subroutine readpest

Author

7.20 readplant.f90 File Reference

Functions/Subroutines

· subroutine readplant

this subroutine reads input parameters from the landuse/landcover database (plant.dat)

7.20.1 Detailed Description

file containing the subroutine readplant

Author

modified by Javier Burguete

7.21 readsdr.f90 File Reference

Functions/Subroutines

· subroutine readsdr

this subroutine reads data from the HRU/subbasin management input file (.mgt). This file contains data related to management practices used in the HRU/subbasin.

7.21.1 Detailed Description

file containing the subroutine readsdr

Author

modified by Javier Burguete

7.22 readsepticbz.f90 File Reference

Functions/Subroutines

• subroutine readsepticbz

this subroutine reads data from the septic input file (.sep). This file contains information related to septic tanks modeled or defined at the watershed level

7.22.1 Detailed Description

file containing the subroutine readsepticbz

Author

7.23 readsno.f90 File Reference

Functions/Subroutines

· subroutine readsno

this subroutine reads snow data from the HRU/subbasin soil chemical input

7.23.1 Detailed Description

file containing the subroutine readsno

Author

modified by Javier Burguete

7.24 readtill.f90 File Reference

Functions/Subroutines

subroutine readtill

this subroutine reads input data from tillage database (till.dat)

7.24.1 Detailed Description

file containing the subroutine readtill

Author

modified by Javier Burguete

7.25 readurban.f90 File Reference

Functions/Subroutines

· subroutine readurban

this subroutine reads input parameters from the urban database (urban.dat). Information from this database is used only if the urban buildup/washoff routines are selected for the modeling of urban areas

7.25.1 Detailed Description

file containing the subroutine readurban

Author

7.26 readwwq.f90 File Reference

Functions/Subroutines

· subroutine readwwq

this subroutine reads the watershed stream water quality input data (.wwq file) and initializes the QUAL2E variables which apply to the entire watershed

7.26.1 Detailed Description

file containing the subroutine readwwq

Author

modified by Javier Burguete

7.27 simulate.f90 File Reference

Functions/Subroutines

· subroutine simulate

this subroutine contains the loops governing the modeling of processes in the watershed

7.27.1 Detailed Description

file containing the subroutine simulate

Author

modified by Javier Burguete

7.28 zero0.f90 File Reference

Functions/Subroutines

• subroutine zero0

this subroutine initializes the values for some of the arrays

7.28.1 Detailed Description

file containing the subroutine zero0

Author

7.29 zero1.f90 File Reference

Functions/Subroutines

subroutine zero1

this subroutine initializes the values for some of the arrays

7.29.1 Detailed Description

file containing the subroutine zero1

Author

modified by Javier Burguete

7.30 zero2.f90 File Reference

Functions/Subroutines

• subroutine zero2

this subroutine zeros all array values

7.30.1 Detailed Description

file containing the subroutine zero2

Author

modified by Javier Burguete

7.31 zero_urbn.f90 File Reference

Functions/Subroutines

• subroutine zero_urbn

this subroutine zeros all array values used in urban modeling

7.31.1 Detailed Description

file containing the subroutine zero_urbn

Author

7.32 zeroini.f90 File Reference

Functions/Subroutines

• subroutine zeroini

this subroutine zeros values for single array variables

7.32.1 Detailed Description

file containing the subroutine zeroini

Author

Bibliography

[1] P Bratley, B L Fox, and L E Schrage. A Guide to Simulation. Springer-Verlag, New York, USA, 1983. 75

144 BIBLIOGRAPHY

Index

readbsn.f90, 134

allocate_parms.f90, 73 ascrv	readchm.f90, 134 readfcst.f90, 134
ascrv.f90, 74	readfert.f90, 135
ascrv.f90, 73	readfig.f90, 135
ascrv, 74	readfile.f90, 135
aunif	readhru.f90, 136
aunif.f90, 75	readlup.f90, 136
aunif.f90, 74	readpest.f90, 136
aunif, 75	readplant.f90, 137
	readsdr.f90, 137
caps	readsepticbz.f90, 137
caps.f90, 75	readsno.f90, 138
caps.f90, 75	readtill.f90, 138
caps, 75	readurban.f90, 138
1,00 =0	readwwq.f90, 139
gcycl.f90, 76	
getallo.f90, 76	simulate.f90, 139
hruallo.f90, 76	zero0.f90, 139
dano	zero1.f90, 140
igropt	zero2.f90, 140
parm, 68	zero_urbn.f90, 140
,	zeroini.f90, 141
jdt	20101111100, 111
jdt.f90, 77	
jdt.f90, 77	
jdt, 77	
main.f90, 78	
modparm.f90, 78	
parm, 13	
igropt, 68	
parm::ascrv, 69	
parm::atri, 69	
parm::aunif, 69	
parm::dstn1, 70	
parm::ee, 70	
parm::expo, 70	
parm::fcgd, 70	
parm::HQDAV, 71	
parm::layersplit, 71	
parm::ndenit, 71	
parm::qman, 71	
parm::regres, 72	
parm::rsedaa, 72	
parm::tair, 72	
parm::theta, 72	
parm::vbl, 72	