1 Problem 1

Homework 6

2 Problem 2

The minimum and maximum height (depth) of the tree are 3 and 5 respectively.

Work:

```
Given the tree has 300 records and is n = 5:
```

Leaf nodes:

Pointers: $\lceil (n+1)/2 \rceil = 3$ Keys: $\lceil (n+1)/2 \rceil - 1 = 2$

Non-leaf nodes:

Pointers: $\lceil n/2 \rceil = 3$ Keys: $\lceil n/2 \rceil - 1 = 2$

Root node:

Pointers: 2 Keys: 1

Maximum:

First, we take all leaf nodes as having minimum keys: 300 / 2 = 150 leaf nodes. Then, we take all non-leaf nodes to have minimum number of pointers: 3 pointers per non-leaf nodes i.e. 3 children. So, we have 150 / 3 = 50, $50 / 3 \approx 17$, $17 / 3 \approx 6$, 6 / 3 = 2, root. This is a height of 5.

Minimum:

First, we take all leaf nodes as having maximum keys: 300 / 4 = 75 leaf nodes. Then, we take all non-leaf nodes to have maximum number of pointers: 5 pointers per non-leaf nodes i.e. 5 children. So, we have 75 / 5 = 15, 15 / 5 = 3, root. This is a height of 3.

3 Problem 3

Original	106	115	916	0	96	126	16	15	31
Hash	01101010	01110011	10010100	00000000	01100000	01111110	00010000	00001111	00011111

