Virtual large cardinals

EUROPEAN SET THEORY CONFERENCE, VIENNA

Dan Saattrup Nielsen University of Bristol

July 2019

What are they?

Rough definition

A large cardinal κ defined via *set-sized* elementary embeddings is **virtual** if the elementary embeddings exist in a generic extension.

What are they?

Rough definition

A large cardinal κ defined via *set-sized* elementary embeddings is **generic** if the elementary embeddings and the target model exist in a generic extension.

Why should we care?

Theorem (Schindler '00)

A virtually strong cardinal is equiconsistent with $\mathrm{Th}(\mathcal{L}(\mathbb{R}))$ being unchangeable by proper forcing.

Why should we care?

Theorem (Schindler '00)

A virtually strong cardinal is equiconsistent with $\mathrm{Th}(L(\mathbb{R}))$ being unchangeable by proper forcing.

Theorem (Schindler-Wilson '18)

A virtually Shelah cardinal is equiconsistent with every universally Baire set of reals having the perfect set property.

Why should we care?

Theorem (Schindler '00)

A virtually strong cardinal is equiconsistent with $\mathrm{Th}(L(\mathbb{R}))$ being unchangeable by proper forcing.

Theorem (Schindler-Wilson '18)

A virtually Shelah cardinal is equiconsistent with every universally Baire set of reals having the perfect set property.

Theorem (Wilson '19)

A virtually Vopěnka cardinal is equiconsistent with $\Theta = \omega_2$ and Σ_2^1 being the class of all ω_1 -Suslin sets.

Where are they?

How do they behave?

Theorem (Gitman)

Virtually strongs are equivalent to virtually supercompacts.

How do they behave?

Theorem (Gitman)

Virtually strongs are equivalent to virtually supercompacts.

Theorem (N.)

Virtually measurables are equiconsistent with virtually strongs.

How do they behave?

Theorem (Gitman)

Virtually strongs are equivalent to virtually supercompacts.

Theorem (N.)

Virtually measurables are equiconsistent with virtually strongs.

Theorem (Schindler-N.)

There exists a game representation for the generically measurables.

How do they behave level by level?

① Are virtually θ -strongs equivalent to virtually θ -supercompacts?

- **①** Are virtually θ -strongs equivalent to virtually θ -supercompacts?
- Mow do virtually Woodin cardinals behave?

- **1** Are virtually θ -strongs equivalent to virtually θ -supercompacts?
- Mow do virtually Woodin cardinals behave? Vopěnka cardinals?

- Are virtually θ -strongs equivalent to virtually θ -supercompacts?
- Mow do virtually Woodin cardinals behave? Vopěnka cardinals?
- Virtualising small embedding cardinals like Ramsey cardinals and below?

- **1** Are virtually θ -strongs equivalent to virtually θ -supercompacts?
- 4 How do virtually Woodin cardinals behave? Vopěnka cardinals?
- Virtualising small embedding cardinals like Ramsey cardinals and below?
- Game characterisations of other generic large cardinals?

- **1** Are virtually θ -strongs equivalent to virtually θ -supercompacts?
- 4 How do virtually Woodin cardinals behave? Vopěnka cardinals?
- Virtualising small embedding cardinals like Ramsey cardinals and below?
- Game characterisations of other generic large cardinals?
- Indestructibility properties?