Домашняя работа по ТМВ №1

Трофимов И.С., группа A-05-19 27 марта 2022 г.

Задание 1

Построить конечные автоматы, распознающие следующие языки

1.
$$L_1 = \{\omega \in \{a, b, c\}^* : |\omega|_c = 1\}$$

2. $L_2 = \{\omega \in \{a,b\}^* : |\omega|_a \leqslant 2, |\omega|_b \geqslant 2\}$ Рассмотрим автоматы $A = \{\omega \in \{a,b\}^* : |\omega|_a \leqslant 2\}$ и $B = \{\omega \in \{a,b\}^* : |\omega|_B \geqslant 2\}$, распознающие каждое условие по отдельности:

Тогда $L_2 = A \times B$. Терминальными состояниями в L_2 будут вершины 13, 23 и 33. Теперь выпишем переходы для произведения автоматов в виде таблицы:

A	B	переход по a	переход по b
1	1	21	12
2	2	32	23
3	3	-	33
1	2	22	13
2	3	33	23
3	1	-	32
1	3	23	13
2	1	31	22
3	2	-	33

После прямого произведения двух автоматов получим окончательный ответ:

3. $L_3 = \{ \omega \in \{a, b\}^* : |\omega|_a \neq |\omega|_b \}$

Этот язык нельзя описать с помощью ДКА, т.к. для описания языка необходимо запоминать количество символов одного типа, что ДКА сделать не может.

4. $L_4 = \{\omega \in \{a, b\}^* : \omega\omega = \omega\omega\omega\}$

Очевидно, что такой язык описывает только пустые слова:

Строить граф для данного ДКА нецелесообразно, т.к. он будет слишком большим.

Задание 2

Построить конечные автоматы, распознающие слудеющие языки, используя прямое произведение:

1. $L_1 = \{\omega \in \{a,b\}^* : |\omega|_a \geqslant 2 \land |\omega|_b \geqslant 2\}$ Рассмотрим автоматы $A = \{\omega \in \{a,b\}^* : |\omega|_a \geqslant 2\}$ и $B = \{\omega \in \{a,b\}^* : |\omega|_b \geqslant 2\}$, распознающие каждое условие по отдельности:

$$0 \qquad \begin{array}{c} b \\ \hline 1 \\ \hline \end{array} \qquad \begin{array}{c} a \\$$

Тогда $L_1 = A \times B$, имеем $\Sigma = \{a, b\}$, s = 11 и $T = \{33\}$. Теперь выпишем переходы для произведения автоматов в виде таблицы:

A	В	переход по a	переход по b
1	1	21	12
2	2	32	23
3	3	33	33
1	2	22	13
2	3	33	23
3	1	31	32
1	3	23	13
2	1	31	22
3	2	32	33

После прямого произведения двух автоматов получим окончательный ответ:

2. $L_2=\{\omega\in\{a,b\}^*:|\omega|\geqslant 3 \land |\omega|$ нечётное} Рассмотрим автоматы $A=\{\omega\in\{a,b\}^*:|\omega|\geqslant 3\}$ и $B=\{\omega\in\{a,b\}^*:|\omega|$ нечётное}:

Тогда $L_2=A\times B,$ имеем $\Sigma=\{a,b\},\,s=11$ и $T=\{33\}.$ Переходы для произведения автоматов:

A	B	переход по a или b
1	1	22
2	1	32
3	1	42
4	1	42
1	2	21
2	2	31
3	2	41
4	2	41

После прямого произведения двух автоматов получим окончательный ответ:

ДКА можно упростить, т.к. невозможно попасть в узлы 12, 21 и 32:

С другой стороны, описать данный язык можно с помощью более компактного автомата, созданного "вручную":

3. $L_3 = \{\omega \in \{a,b\}^* : |\omega|_a$ чётно $\wedge |\omega|_b$ кратно $3\}$ Рассмотрим автоматы $A = \{\omega \in \{a,b\}^* : |\omega|_a$ чётно $\}$ и $B = \{\omega \in \{a,b\}^* : |\omega|_b$ кратно $3\}$:

Тогда $L_3=A\times B,$ имеем $\Sigma=\{a,b\},$ s=11 и $T=\{11\}.$ Переходы для произведения автоматов:

A	B	переход по a	переход по b
1	1	21	12
2	2	12	23
1	2	22	13
2	3	13	21
1	3	23	11
2	1	11	22

После прямого произведения двух автоматов получим окончательный ответ:

4. $L_4=\neg L_3$ Имеем, $T_4=Q_3\setminus T_3=\{12,13,21,22,23\}$, тогда можно легко построить ДКА:

5. $L_5=L_2\setminus L_3$ Так как $L_5=L_2\setminus L_3=L_2\cap \neg L_3=\neg L_3\times L_2$, тогда имеем: $\Sigma=\{a,b\},\ s=\langle 11,11\rangle$ и $T=\{\langle 12,42\rangle,\langle 13,42\rangle,\langle 21,42\rangle,\langle 22,42\rangle,\langle 23,42\rangle\}$ Выпишем переходы для L_5 :

$\neg L_3$	L_2	переход по a	переход по b
11	11	21, 22	12, 22
11	22	21, 31	12, 31
11	31	21, 42	12, 42
11	42	21, 41	12, 41
11	41	21, 42	12, 42
12	11	22, 22	13, 22
12	22	22, 31	13, 31
12	31	22, 42	13, 42
12	42	22, 41	13, 41
12	41	22, 42	13, 42
13	11	23, 22	11, 22
13	22	23, 31	11, 31
13	31	23, 42	11, 42
13	42	23, 41	11, 41
13	41	23, 42	11, 42
21	11	11, 22	22, 22
21	22	11, 31	22, 31
21	31	11, 42	22, 42
21	42	11, 41	22, 41
21	41	11, 42	22, 42
22	11	12, 22	23, 22
22	22	12, 31	23, 31
22	31	12, 42	23, 42
22	42	12, 41	23, 41
22	41	12, 42	23, 42
23	11	13, 22	21, 22
23	22	13, 31	21, 31
23	31	13, 42	21, 42
23	42	13, 41	21, 41
23	41	13, 42	21, 42

Задание 3

Построить минимальные ДКА по регулярным выражениям:

$1. \ (ab + aba)^*a$

Составим недетерминированный автомат, чтобы затем преобразовать его в детерминированный:

Преобразуем:

2. $a(a(ab)^*b)^*(ab)^*$