1 point

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For	refe	ren	Ce.
1 01	rere	101	CC.

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F₁ score = (2 * precision * recall) / (precision + recall)

What is the classifier's accuracy (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

|--|

2. Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

1 point

Which are the two?

lacksquare The features x contain sufficient

information to predict y accurately. (For example, one

way to verify this is if a human expert on the domain

can confidently predict y when given only x).

We train a learning algorithm with a

large number of parameters (that is able to

learn/represent fairly complex functions).

- ☐ We train a model that does not use regularization.
- ☐ We train a learning algorithm with a

small number of parameters (that is thus unlikely to

overfit).

3. Suppose you have trained a logistic regression classifier which is outputing $h_{ heta}(x)$.

1 point

Currently, you predict 1 if $h_{\theta}(x) \ge \text{threshold}$, and predict 0 if $h_{\theta}(x) < \text{threshold}$, where currently the threshold is set to 0.5.

Suppose you increase the threshold to 0.9. Which of thefollowing are true? Check all that apply.

- The classifier is likely to now have higher precision.
- ☐ The classifier is likely to have unchanged precision and recall, but

higher accuracy.

- ☐ The classifier is likely to now have higher recall.
- $\hfill \square$ The classifier is likely to have unchanged precision and recall, and

thus the same F_1 score.

4.		Suppose you are working on a spam classifier, where spam	1 point
emails are		emails are positive examples $(y=1)$ and non-spam emails are	
		negative examples ($y=0$). You have a training set of emails	
	in which 99% of the emails are non-spam and the other 1% is		
		spam. Which of the following statements are true? Check all	
		that apply.	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
		your classifier will have a recall of 0% and precision	
		of 99%.	
	~	If you always predict non-spam (output	
		y=0), your classifier will have an accuracy of	
		99%.	
	~	If you always predict spam (output $y=1$),	
		your classifier will have a recall of 100% and precision	
	See See	of 1%.	
	~	If you always predict non-spam (output	
		y=0), your classifier will have a recall of	
		0%.	
5.	Whi	ich of the following statements are true? Check all that apply.	1 point
		After training a logistic regression	
		classifier, you must use 0.5 as your threshold	
		for predicting whether an example is positive or	
		negative.	
✓ Using a very large training set			
		makes it unlikely for model to overfit the training	
		data.	
✓ On skewed datasets (e.g., when there are			
		more positive examples than negative examples), accuracy	
		is not a good measure of performance and you should	
		instead use F_1 score based on the	
		precision and recall.	
		If your model is underfitting the	
		training set, then obtaining more data is likely to	
		help.	
	Ш	It is a good idea to spend a lot of time	
		collecting a large amount of data before building	
		your first version of a learning algorithm.	