Ecuación de Navier-Stokes

Introducción

Estas ecuaciones se obtienen a partir de

$$\frac{1}{\rho} \left(-\frac{\partial p}{\partial x} + \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} \right) + g_x = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}$$
 (1)

$$\frac{1}{\rho} \left(-\frac{\partial p}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} \right) + g_y = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z}$$
 (2)

$$\frac{1}{\rho} \left(-\frac{\partial p}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} \right) + g_z = \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z}$$
 (3)

Demostración

En la dirección x

$$\frac{1}{\rho} \left(-\frac{\partial p}{\partial x} + \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} \right) + g_x = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}$$

Los esfuerzos serán

$$\sigma_{xx} = \mu \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} \right) \tag{4}$$

$$\tau_{yx} = \mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \tag{5}$$

$$\tau_{zx} = \mu \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) \tag{6}$$

Reemplazando las ecuaciones (4), (5) y (6) en la ecuación (1)

$$\frac{1}{\rho} \left\{ -\frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) \right] \right\} + g_x = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}$$

Derivando el lado derecho

$$\frac{1}{\rho} \left[-\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} \right) + \mu \left(\frac{\partial^2 v}{\partial y \partial x} + \frac{\partial^2 u}{\partial y^2} \right) + \mu \left(\frac{\partial^2 w}{\partial z \partial x} + \frac{\partial^2 u}{\partial z^2} \right) \right] + g_x$$

Intercambiando el orden de las derivadas

$$\frac{1}{\rho} \left[-\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} \right) + \mu \left(\frac{\partial^2 v}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} \right) + \mu \left(\frac{\partial^2 w}{\partial x \partial z} + \frac{\partial^2 u}{\partial z^2} \right) \right] + g_x$$

Reordenando

$$-\frac{1}{\rho} \left(\frac{\partial p}{\partial x} \right) + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} \right) + \nu \left(\frac{\partial^2 v}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} \right) + \nu \left(\frac{\partial^2 w}{\partial x \partial z} + \frac{\partial^2 u}{\partial z^2} \right) + g_x$$

Reagrupando

$$-\frac{1}{\rho}\bigg(\frac{\partial p}{\partial x}\bigg) + \nu\bigg(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial x \partial y} + \frac{\partial^2 w}{\partial x \partial z}\bigg) + \nu\bigg(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\bigg) + g_x$$

Factorizando la derivada parcial respecto de x

$$-\frac{1}{\rho} \left(\frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial x} \left[\nu \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \right] + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + g_x$$

Reemplazando la ecuación de continuidad

$$-\frac{1}{\rho} \left(\frac{\partial p}{\partial x} \right) + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + g_x$$

Realizando el mismo procedimiento para las otras direcciones, se obtiene

$$-\frac{1}{\rho} \left(\frac{\partial p}{\partial x} \right) + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + g_x = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}$$
 (7)

$$-\frac{1}{\rho} \left(\frac{\partial p}{\partial y} \right) + \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) + g_y = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z}$$
 (8)

$$-\frac{1}{\rho} \left(\frac{\partial p}{\partial z} \right) + \nu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) + g_z = \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z}$$
 (9)

Referencias

[1] Bengt Andersson; et al. Computational fluid dynamics for engineers. Cambridge University Press, 2012.