RES'A PCT/PTO 22 DEU 2004

BUNDESREPUBLIK DEUTSCHLAND

REC'D **3 1 JUL 2003**WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 28 162.9

Anmeldetag:

24. Juni 2002

Anmelder/Inhaber:

DaimlerChrysler AG,

Stuttgart/DE

Bezeichnung:

Lenksäulenstrang eines Kraftfahrzeugs

IPC:

B 62 D, F 16 D

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 26. Juni 2003

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Hoiß

DaimlerChrysler AG

Schmidt 21.06.2002

Lenksäulenstrang eines Kraftfahrzeugs

5 Die Erfindung betrifft einen Lenksäulenstrang eines Kraftfahrzeugs gemäß dem Oberbegriff des Patentanspruchs 1.

Aus der DE 37 23 034 A1 ist ein Lenksäulenstrang für ein Kraftfahrzeug bekannt. Lenksäulenstränge für Kraftfahrzeuge zeichnen sich dadurch aus, dass sie mehrteilig ausgebildet sind, um bei vorgegebenen Bauraumverhältnissen das vom Lenkrad auf den Lenksäulenstrang gebrachte Drehmoment zum Lenkgetriebe zu übertragen. Dazu ist eine das Lenkrad tragende Lenkspindel mit einer zum Lenkgetriebe führenden Lenkwelle durch ein drehmomentenübertragendes Gelenk verbunden. In der Regel werden solche drehmomentenübertragenden Verbindungen durch Kreuzgelenke hergestellt, damit der Verlauf des Lenksäulenstrangs bis zum Lenkgetriebe entsprechend den vorliegenden Bauraumverhältnissen erfolgen kann. Für die Komfortverstellung des Lenkrades sowie für eine Schwingungsentkopplung vom Lenkgetriebe wird in den Lenksäulenstrang ein axial bewegliches Schwingenelement zwischengeschaltet.

Das unmittelbar hinter dem Lenkgetriebe zwischengeschaltete Schwingenelement ist in der DE 37 23 034 A1 als Einfachschwinge oder Parallelogrammschwinge ausgebildet, wobei bei beiden Ausführungen ein Koppelglied mit zwei parallelen Drehachsen vorgesehen ist, die etwa rechtwinklig zur axialen Erstreckung des Lenksäulenstrangs verlaufen.

10

15

20

30

35

Die Problematik derartiger Schwingenelemente liegt darin, dass in Abhängigkeit vom Umdrehungswinkel des Lenksäulenstrangs dessen Masseschwerpunkt verlagert wird und es dadurch zu unerwünschten Vibrationen des Lenkrades oder zu Rückkopplungen auf die Servölenkung kommen kann, die den Fahrkomfort beeinträchtigen.

Es ist daher Aufgabe der Erfindung, einen Lenksäulenstrang zu entwickeln, der die Nachteile des Standes der Technik vermeidet.

Die Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst.

Ein erfindungsgemäßer Lenksäulenstrang umfasst eine Lenkspindel, die das Lenkrad trägt, sowie eine Lenkwelle, die mit dem Lenkgetriebe verbunden ist. Die Lenkspindel und die Lenkwelle sind drehmomentenübertragend miteinander verbunden. Diese drehmomentenübertragende Verbindung wird -im Gegensatz zum Stand der Technik- nicht durch ein Kreuzgelenk gebildet, sondern durch ein Zapfenkreuz, das an dem dem Lenkrad gegenüberliegenden Ende der Lenkspindel angelenkt ist und einem Koppelglied eines Schwingenelements. Das Koppelglied und das Zapfenkreuz sind derart zueinander ausgerichtet, dass eine Achse des Zapfenkreuzes eine Drehachse des Koppelglieds bildet.

Durch die direkte Anbindung des Koppelglieds an dem Zapfenkreuz und damit am Ende der Lenkspindel schneiden sich die
Längsachse der Lenkspindel und die Mittellängsachse des Koppelglieds immer in einem gemeinsamen Schnittpunkt. Bei entsprechender Anbindung der Lenkwelle an das Koppelglied kann
erreicht werden, dass auch ein gemeinsamer Schnittpunkt zwischen der Drehachse der Lenkwelle und der Längsachse der
Lenkspindel besteht. Der Abstand zwischen beiden Schnittpunkten wird nach Möglichkeit so gering als möglich gehalten, so
dass die Krafteinleitung der Massenkräfte der Lenkwelle und

15

20

30

35

des Schwingenelements eindeutig definiert werden kann. Durch die definierte Krafteinleitung können Unwuchten im Lenksäulenstrang vermieden und damit Vibrationen im Lenkrad unterbunden werden. In Abhängigkeit des gewünschten Verschiebewegs der Lenkwelle, der Montierbarkeit der Lenkwelle an das Lenkgetriebe, des unteren Kreuzgelenks zwischen Lenkwelle und Lenkgetriebe sowie der Geometrieänderung des Schwingenelements bei Lenkbewegungen wird die Länge des Koppelglieds bestimmt. Je kleiner jedoch das Koppelglied dimensioniert ist, desto kleiner ist das Blockmaß, so dass das Crashverhalten verbessert ist.

Vorteilhafte Ausgestaltungen sind den Unteransprüchen zu entnehmen.

In einer bevorzugten Ausführungsform ist das Zapfenkreuz in einer Gelenkgabel gelagert. Der Abstand zwischen den beiden Schnittpunkten kann damit weiter verkürzt werden, so dass die Taumelbewegung der Lenkwelle reduziert werden kann.

Zwei Querzapfen des Zapfenkreuzes können vorteilhafterweise einen Querbolzen des Koppelglieds bilden, wobei der Querbolzen eine der Drehachsen des Koppelglieds bildet. Dadurch kann eine platzsparende Verbindung zwischen der Lenkspindel und der Lenkwelle geschaffen werden.

Zwei Längszapfen des Zapfenkreuzes können die Schwenkachse der Gelenkgabel bilden, so dass eine radiale Verschwenkbarkeit der Lenkwelle relativ zur Lenkspindel ermöglicht wird.

Das Koppelglied kann zwei Seitenplatten umfassen, die von zwei Querbolzen durchsetzt sind. Die Querbolzen sind dabei derart mit der Lenkwelle und der Lenkspindel verbunden, dass sie die Drehachsen des Koppelglieds bilden.

Die Lenkwelle kann an ihrem der Lenkspindel zugewandten Ende einen Flansch aufweisen, der in einem Abstand zu der Längs-

30

achse der Lenkwelle endet. Je größer dieser Abstand gehalten ist, desto größer kann die Länge des Koppelglieds gestaltet sein.

Da die Drehachse der Lenkwelle und die Längsachse der Lenkwelle in der Regel nicht identisch sind, entsteht ein Hebelarm, über den eine Momenteneinleitung in die Lenkspindel, also in das Lenkrad erfolgt. Der Flansch kann mit einer Zusatzmasse versehen sein, damit ein Auswuchten des Lenksäulenstrangs in sogenannter Konstruktionslage so erfolgt, dass eine Momenteneinleitung in das Lenkrad unterbleibt. Die Konstruktionslage eines Lenksäulenstrangs ist dabei die Lage, in der sich das Fahrzeug in Geradeausfahrt befindet.

15 Zur Aufnahme von Verformungen kann die Lenkwelle zumindest bereichsweise Wellrohrabschnitte aufweisen.

Unabhängig davon, wie das Schwingenelement gestaltet ist, ist es für das Reduzieren der Rückkopplung auf die Servolenkung wichtig, dass sich sowohl die Achse des Gelenks, die Drehachse des Wellrohrs als auch die Mittelachse des Koppelglieds mit der Längsachse der Lenkspindel schneiden.

Eine bevorzugte Ausgestaltung der Erfindung wird anhand der Zeichnung erläutert. Dabei zeigen:

- Fig. 1 einen Lenksäulenstrang in einer perspektivischen Ansicht von der Seite,
- Fig. 2 ein Schwingenelement gemäß Fig. 1 in einer Strecklage sowie
 - Fig. 3 ein Schwingenelement gemäß Fig. 1 in einer Stauchlage.

Die Darstellung in Fig. 1 zeigt einen Lenksäulenstrang 1 für 35 ein nicht dargestelltes Kraftfahrzeug in einer perspektivischen Ansicht schräg von der Seite.

Der Lenksäulenstrang 1 umfasst eine Lenkspindel 2 sowie eine Lenkwelle 3, die über ein axial bewegliches Schwingenelement 4 miteinander verbunden sind.

5

10

Die Lenkspindel 2 nimmt an ihrem nicht weiter dargestellten, dem Fahrzeuginnenraum zugewandten Ende ein Lenkrad auf, wobei die Lenkspindel 2 in bekannter Art und Weise über ein andeutungsweise dargestelltes Mantelrohr 5 fahrzeugfest gelagert ist. Das dem Lenkrad gegenüberliegende Ende der Lenkspindel 2 ist geht hakenförmig in eine Gelenkgabel 6 über, das in einem Abstand zur Längsachse ALS der Lenkspindel 2 endet.

Die Lenkwelle 3 steht an ihrem unteren, dem Motorraum zuge-

15 20

wandten Ende über ein Kreuzgelenk 8 mit dem nicht weiter dargestellten Lenkgetriebe in Verbindung. Der obere Bereich der Lenkwelle 3 wird durch einen Wellrohrabschnitt 9 gebildet, an den sich ein Flansch 10 anschließt. Der Flansch 10 erstreckt sich von dem Wellrohrabschnitt 9 derart, dass er in einem Abstand zur Achse der Lenkwelle A_{LW} endet. Am unteren Ende des Wellrohrabschnitts 9 schließt sich eine Dichtmanschette 11 an, die den Lenksäulenstrang 1 bei der Durchführung durch eine nicht dargestellte Stirnwand abdichtet.

Das Schwingenelement 4 und dessen Wirkungsweise wird im folgenden anhand von Fig. 2 und 3 näher erläutert.

30

Das Schwingenelement 4 umfasst ein Koppelglied 12, das etwa H-förmig gestaltet ist. Die zwei parallel zueinander verlaufenden Seitenplatten 13 und 14 des Koppelglieds 12 werden an ihrem oberen und an ihrem unteren Ende von zwei Querbolzen 15 und 16 durchsetzt.

35

Der obere Querbolzen 15 ist mit dem Flansch 10 der Lenkwelle 3 gelenkig verbunden, so dass der Flansch 10 eine Schwenkbewegung gemäß Pfeilrichtung B um die durch den Querbolzen 15 gebildete Drehachse DBO ausführen kann.

10

15

20

30

35

Der untere Querbolzen 16 bildet zwei sich gegenüberliegende Querzapfen eines Zapfenkreuzes 17 und ist gelenkig mit dem Koppelglied 12 verbunden, so dass das Koppelglied 12 eine Schwenkbewegung gemäß Pfeilrichtung C um die durch den Querbolzen 16 gebildete Drehachse D_{BU} ausführen kann. Die beiden Längszapfen 18 und 19 des Zapfenkreuzes 17 bilden die Achse A_{G} der Gelenkgabel 6, so dass die Lenkwelle 3 radial gemäß Pfeilrichtung D um die Achse AG der Gelenkgabel 6 verschwenkt werden kann.

In Abhängigkeit von der Dimensionierung des Lenksäulenstrangs 1 wird eine Zusatzmasse 20 dem Flansch 10 vorgesehen, um den Lenksäulenstrang 1 für die Rotationsbewegung auszuwuchten. Die Positionierung und die Größe der Zusatzmasse 20 wird auf die erzeugten Vibrationen im Lenkrad so abgestimmt, dass eine Reduzierung dieser erfolgt. Die Zusatzmasse 20 sollte so angeordnet sein, dass sich durch entsprechende Masseverteilung der Gesamtschwerpunkt von Lenkwelle 3 und Schwingenelement 4 auf der Drehachse D_{LW} der Lenkwelle 3 befindet.

Durch das erfindungsgemäße Koppelglied 12 und dessen Anbindung an die Lenkspindel 2 bzw. Lenkwelle 3 lässt sich der Lenksäulenstrang 1 in axialer Richtung zusammenschieben, wobei zusätzlich die Lenkwelle 3 radial zur Lenkspindel 2 verschwenkbar ist.

Wenn also beispielsweise bei der Lenkradverstellung in Längsrichtung oder bei Schwingungen, die vom Lenkgetriebe auf den Lenksäulenstrang übertragen werden, ein axialer Längenausgleich erforderlich ist, wird dieser durch Auslenkung des Koppelglieds 12 um dessen Mittellinie K gemäß Pfeilrichtung C erreicht, wobei die Schwenkachse des Koppelglieds 12 durch die Drehachse DBU des unteren Bolzens festgelegt ist.

Durch die erfindungsgemäße Ausgestaltung des drehmomentenübertragenden Schwingenelements 4 wird erreicht, dass die

15

20

Längsachse A_{LS} der Lenkspindel 2 das Koppelglied 12 etwa in dessen Mittellinie K in einem Schnittpunkt S_1 schneidet. In Konstruktionslage des Lenksäulenstrangs 1 ist die Drehachse D_{LW} der Lenkwelle 3, die nicht identisch sein muss mit der Längsachse A_{LW} der Lenkwelle 3, so ausgerichtet, dass ein gemeinsamer Schnittpunkt S_2 mit der Längsachse A_{LS} der Lenkspindel 2 entsteht. Beide Schnittpunkte liegen optimalerweiser so nah wie möglich beieinander, um den Hebelarm von Massekräften zu verkürzen. Damit werden die in die Lenkspindel 2 eingeleiteten Momente reduziert, so dass Vibrationen des Lenkrads unterbunden werden.

Im Crashfall wird infolge von Stirnwandintrusionen die Lenkspindel 2 erst sehr spät mit hohen Kräften beaufschlagt, so dass sich zuerst des Schwingenelement 4 zusammenfaltet. Erst wenn das Schwingenelement 4 vollständig zusammengefaltet ist, d.h. die Blockbildung erreicht ist, verformt sich der untere Wellrohrabschnitt 9. Bei entsprechend zur Verfügung stehenden Bauraum kann auch die Lenkspindel 2 mit einem zusätzlichen Wellrohrabschnitt versehen sein. Dadurch kann dann unter anderem sichergestellt werden, dass in allen Crashsituationen ein zusätzlicher Deformationsweg zur Verfügung gestellt wird. D.h. unabhängig von welcher Richtung, also seitens des Lenkrads oder des Lenkgetriebes, die Krafteinleitung einsetzt, hat das Schwingenelement 4 die Möglichkeit sich in jede Richtung zusammenzufalten.

DaimlerChrysler AG

Schmidt 21.06.2002

<u>Patentansprüche</u>

- 5 Lenksäulenstrang für ein Kraftfahrzeug mit einer ein Lenkrad tragenden Lenkspindel, die mit einer Lenkwelle verbunden ist, wobei die Verbindung zwischen der Lenkspindel und der Lenkwelle durch ein drehmomentenübertragendes Gelenk gebildet ist, und mit einem axial bewegli-10 chen Schwingenelement zum axialen Längenausgleich, wobei das Schwingenelement zumindest ein Koppelglied mit zwei parallelen Drehachsen umfasst, dadurch gekennzeichnet, dass an dem dem Lenkrad gegenüberliegenden Ende der Lenk-15 spindel (2) ein Zapfenkreuz (17) angelenkt ist, wobei eine Achse des Zapfenkreuzes (17) eine Drehachse (DBU) des Koppelglieds (12) bildet.
- Lenksäulenstrang nach Anspruch 1,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass das Zapfenkreuz (17) in einer Gelenkgabel (6) gelagert ist, das am dem Lenkrad gegenüberliegenden Ende der Lenkspindel (2) angeordnet ist.
- 25 3. Lenksäulenstrang nach Anspruch 2,
 dadurch gekennzeichnet,
 dass zwei Querzapfen des Zapfenkreuzes (17) einen Querbolzen (16) des Koppelglieds (12) bilden.
- 30 4. Lenksäulenstrang nach Anspruch 3, dadurch gekennzeichnet,

10

15

20

dass zwei Längszapfen (18, 19) des Zapfenkreuzes (17) eine Schwenkachse (A_G) des Gelenkgabels (6) bilden.

- 5. Lenksäulenstrang nach Anspruch 4,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass das Koppelglied (12) zwei Seitenplatten (13, 14) umfasst, die von zwei Querbolzen (15, 16) durchsetzt sind,
 wobei die Querbolzen (15, 16) die Drehachsen (DBU, DBO)
 des Koppelglieds (12) bilden.
 - 6. Lenksäulenstrang nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , dass die Lenkwelle (3) einen Flansch (10) aufweist, der in einem Abstand zu der Längsachse (A_{LW}) der Lenkwelle (3) endet.
 - 7. Lenksäulenstrang nach Anspruch 6,
 d a d u r c h g e k e n n z e i c h n e t ,
 dass der Flansch (10) mit einer Zusatzmasse (20) versehen
 ist
 - 8. Lenksäulenstrang nach Anspruch 7, dadurch gekennzeichnet, dass die Lenkwelle (3) mit einem Wellrohrabschnitt (9) ausgebildet ist.

P800811/DE/1 1/2

DaimlerChrysler AG

Schmidt 21.06.2002

Zusammenfassung

Die Erfindung betrifft einen Lenksäulenstrang (1) für ein Kraftfahrzeug mit einer Lenkspindel (2) und einer Lenkwelle (3), die über ein drehmomententenübertragendes Gelenk miteinander verbunden sind. Zum axialen Längenausgleich ist ein axial bewegliches Schwingenelement (4) vorgesehen, das zumindest ein Koppelglied (12) mit zwei parallelen Schwenkachsen (DBO, DBU) umfasst.

Aufgabe der Erfindung ist, einen Lenksäulenstrang zu entwickeln, bei dem die Schwingungsentkopplung vom Lenkgetriebe verbessert ist.

Erfindungsgemäß ist das Schwingenelement (4) an dem dem Lenkrad gegenüberliegenden Ende der Lenkspindel (2) über ein Zapfenkreuz (17) angelenkt. Dabei sind das Koppelglied und das Zapfenkreuz (17) derart zueinander ausgerichtet, dass eine Achse des Zapfenkreuzes (17) eine Drehachse (D_{BU}) des Koppelglieds (12) bildet.

(Fig. 2)

