Proves d'Accés a la Universitat. Curs 2009-2010

Electrotècnia

Sèrie 2

La prova consta de dues parts que tenen dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A o B), de les quals cal triar-ne UNA.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: -0,16 punts; qüestió no contestada: 0 punts.]

Qüestió 1

Una capacitat, de valor $C = 100 \mu F$, i una inductància, de valor L = 0.1 H, connectades en sèrie, tenen una frequència de ressonància de:

- a) 458,5 Hz
- **b**) 316,2 Hz
- c) 50,33 Hz
- d) 22,51 Hz

Qüestió 2

La impedància equivalent d'una resistència $R=10~\Omega$ i una capacitat de reactància $X_C=10~\Omega$ connectades en sèrie és:

- a) 10Ω
- **b**) 14,1 Ω
- c) 20Ω
- d) 28,2 Ω

Qüestió 3

Un motor de corrent continu d'imants permanents treballa en condicions nominals amb un corrent de 10 A. Si el parell de la càrrega es redueix a la meitat, el nou corrent serà:

- a) Més gran de 10 A.
- **b**) 10 A
- **c**) 5 A
- **d**) Nul.

Qüestió 4

Quina és la funció lògica de la figura següent?

- $a) O = (\bar{a} \cdot \bar{b}) + c$
- **b**) $O = \left(a \cdot \overline{b}\right) + c$
- c) $O = (\bar{a} \cdot b) + \bar{c}$
- $d) O = \left(a \cdot \overline{b}\right) + \overline{c}$

Qüestió 5

Tres resistències, connectades en triangle i alimentades des d'una xarxa de 230 V, consumeixen 30 kW. Si les mateixes resistències es connectessin en estrella i s'alimentessin amb la mateixa xarxa, la potència que consumirien seria:

- a) 10 kW
- **b**) 30 kW
- c) 52 kW
- **d**) 90 kW

Exercici 2

[2,5 punts]

Per al circuit de la figura, determineu:

- a) El valor de la resistència R_1 .
- **b**) El valor de la resistència R_2 .
- c) El corrent a la resistència R_3 .
- d) La tensió de la font U_1 .
- e) La tensió de la font U_2 .

[0,5 punts]

[0,5 punts]

[0,5 punts]

[0,5 punts]

[0,5 punts]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts]

En el circuit de la figura, el valor de la tensió de la font U fa que la potència activa consumida sigui P = 100 W. Determineu:

a) El corrent a la resistència. [0,5 punts]

b) La tensió de la font U. [1 punt]

c) La mesura del voltímetre V_2 . [0,5 punts]

d) La potència reactiva Q consumida. [0,5 punts]

Exercici 4

[2,5 punts]

Un motor de corrent continu d'imants permanents té la placa de característiques següent:

$$P = 200 \text{ W}$$
 $U = 40 \text{ V}$ $I = 6 \text{ A}$ $n = 800 \text{ min}^{-1}$

Les pèrdues mecàniques i en les escombretes es consideren negligibles.

Si el motor treballa en condicions nominals, determineu:

a) El rendiment η . [0,5 punts]

b) El valor R de la resistència de l'induït. [1 punt]

Si el motor treballa a parell nominal, però està connectat a una xarxa de 30 V, determineu:

c) La nova velocitat n' de gir. [1 punt]

OPCIÓ B

Exercici 3

[2,5 punts]

Un motor d'inducció té la placa de característiques següent:

P = 55 kW	<i>U</i> = 230/400 V	<i>I</i> = 187/108 A
$n = 741 \text{ min}^{-1}$	$\cos \varphi = 0.79$	f = 50 Hz

Si el motor treballa en condicions nominals, determineu:

a) El rendiment η .[1 punt]b) El nombre p de parells de pols.[0,5 punts]c) El parell Γ desenvolupat.[0,5 punts]d) La potència reactiva Q consumida.[0,5 punts]

Exercici 4

[2,5 punts]

En el circuit de la figura, els díodes es poden considerar ideals.

Determineu la tensió del terminal O (V_0) quan les tensions dels terminals I_1 i I_2 $(V_1$ i $V_2)$ són, respectivament:

- a) $V_1 = 10 \text{ V i } V_2 = 0 \text{ V}$ [0,5 punts]

 b) $V_1 = 0 \text{ V i } V_2 = 10 \text{ V}$ [0,5 punts]

 c) $V_1 = 0 \text{ V i } V_2 = 0 \text{ V}$ [0,5 punts]

 d) $V_1 = 10 \text{ V i } V_2 = 10 \text{ V}$ [0,5 punts]

 e) Quina és la potència dissipada en el circuit en la situació de l'apartat d?
 [0,5 punts]

