

1 Równania płaszczyzny

Definicja 1. (równanie normalne płaszczyzny)

Równanie płaszczyzny π przechodzącej przez punkt $P_0=(x_0,y_0,z_0)$ o wektorze wodzącym $\vec{r_0}$ i prostopadłej do wektora $\vec{n}=(A,B,C)\neq \vec{0}$ ma postać

$$\pi: (\vec{r} - \vec{r_0}) \circ \vec{n} = 0,$$

gdzie $\vec{r}=(x,y,z)$ jest wektorem wodzącym punktów przestrzeni. Wektor \vec{n} nazywamy wektorem normalnym tej płaszczyzny. Rozpisując powyższy wzór równanie płaszczyzny π przyjmuje postać:

$$\pi: A(x-x_0) + B(y-y_0) + C(z-z_0) = 0.$$

Definicja 2. (równanie ogólne płaszczyzny)

Każde równanie postaci:

$$\pi: Ax + By + Cz + D = 0,$$

gdzie |A|+|B|+|C|>0, przedstawia płaszczyznę. Płaszczyzna ta ma wektor normalny $\vec{n}=(A,B,C)$ i przecina oś Oz w punkcie $z=-\frac{D}{C}$, o ile $C\neq 0$.

Definicja 3. (równanie parametryczne płaszczyzny)

Równanie płaszczyzny π przechodzącej przez punkt $P_0=(x_0,y_0,z_0)$ o wektorze wodzącym $\vec{r_0}$ i rozpiętej na niewspółliniowych wektorach $\vec{u}=(a_1,b_1,c_1)$ i $\vec{v}=(a_2,b_2,c_2)$ ma postać:

$$\pi: \vec{r} = \vec{r_0} + s\vec{u} + t\vec{v}$$
, gdzie $s, t \in \mathbb{R}$

lub inaczej

$$\pi: (x, y, z) = (x_0, y_0, z_0) + s(a_1, b_1, c_1) + t(a_2, b_2, c_2), \text{ gdzie } s, t \in \mathbb{R}.$$

W formie rozpisanej równanie tej płaszczyzny przyjmuje postać:

$$\pi: \begin{cases} x = x_0 + sa_1 + ta_2, \\ y = y_0 + sb_1 + tb_2, \\ z = z_0 + sc_1 + tc_2. \end{cases} \text{ gdzie } s, t \in \mathbb{R}.$$

Fakt 1. (równanie płaszczyzny przechodzącej przez trzy punkty)

Równanie płaszczyzny π przechodzącej przez trzy niewspółliniowe punkty $P_i = (x_i, y_i, z_i)$, gdzie $1 \le i \le 3$, ma postać:

$$\pi: \left| \begin{array}{cccc} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{array} \right| = 0.$$

Fakt 2. (równanie odcinkowe płaszczyzny)

Równanie płaszczyzny π odcinające na osiach Ox, Oy, Oz układu współrzędnych odpowiednio odcinki (zorientowane) $a, b, c \neq 0$ ma postać:

$$\pi: \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$$

2

2 Równania prostej

Definicja 4. (równanie parametryczne prostej)

Równanie prostej l przechodzącej przez punkt $P_0=(x_0,y_0,z_0)$ o wektorze wodzącym $\vec{r_0}$ i wyznaczonej przez niezerowy wektor kierunku $\vec{v}=(a,b,c)$ ma postac:

$$l: \vec{r} = \vec{r_0} + t\vec{v}$$
, gdzie $t \in \mathbb{R}$

lub inaczej

$$l:(x,y,z)=(x_0,y_0,z_0)+t(a,b,c), \text{ gdzie } t \in \mathbb{R}.$$

W formie rozpisanej równanie tej prostej przyjmuje postać:

$$\pi: \begin{cases} x = x_0 + ta, \\ y = y_0 + tb, \\ z = z_0 + tc. \end{cases} \text{ gdzie } t \in \mathbb{R}.$$

Fakt 3. (równanie kierunkowe prostej)

Równanie prostej l przechodzącej przez punkt $P_0 = (x_0, y_0, z_0)$ i wyznaczonej przez niezerowy wektor kierunku $\vec{v} = (a, b, c)$ ma postac:

$$l: \frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}.$$

Uwaga! W mianownikach powyższych ułamków mogą wystąpić zera.

Definicja 5. (równanie krawędziowe prostej)

Prostą l, która jest częścią współną dwóch nierównoległych płaszczyzn $\pi_1:A_1x+B_1y+C_1z+D_1=0, \pi_2:A_2x+B_2y+C_2z+D_2=0$, zapisujemy w postaci:

$$l: \begin{cases} A_1x + B_1y + C_1z + D_1 = 0\\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

Wektor kierunkowy prostej w postaci krawędziowej

$$l: \begin{cases} A_1x + B_1y + C_1z + D_1 = 0\\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

ma postać

$$\vec{v} = (A_1, B_1, C_1) \times (A_2, B_2, C_2).$$

3 Wzajemne położenia punktów, prostych i płaszczyzn

Definicja 6. (rzut punktu na płaszczyznę i na prostą)

Rzutem prostokątnym punktuPna płaszczy
znę π nazywamy punktP'tej płaszczyzny spełniający w
arunek

$$PP' \perp \pi$$
.

Analogicznie rzutem prostokątnym punktu Pna prostą lnazywamy punkt P^\prime tej prostej spełniający warunek

$$PP' \perp l$$
.

Podobnie definiuje się rzut ukośny punktu na płaszczyznę lub na prostą w kierunku ustalonego wektora: Poniżej: rzut ukośny punktu na płaszczyznę

oraz rzut ukośny punktu na prostą

Fakt 4. (odległość punktu od płaszczyzny)

Odległość punktu $P_0=(x_0,y_0,z_0)$ od płaszczy
zny $\pi:Ax+By+Cz+D=0$ wyraża się wzorem:

$$d(P_0, \pi) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

Fakt 5. (odległość płaszczyzn równoległych)

Odległość między równoległymi płaszczyznami π_1 i π_2 o równaniach

$$\pi_1: Ax + By + Cz + D_1 = 0, \quad \pi_2: Ax + By + Cz + D_2 = 0$$

wyraża się wzorem:

$$d(\pi_1, \pi_2) = \frac{|D_1 - D_2|}{\sqrt{A^2 + B^2 + C^2}}.$$

Definicja 7. (kat nachylenia prostej do płaszczyzny)

Kątem nachylenia prostej l do płaszczyzny π nazywamy kąt $\varphi = \frac{\pi}{2} - \alpha$, gdzie α jest kątem ostrym między wektorem normalnym \vec{n} płaszczyzny π i wektorem kierunkowym \vec{v} prostej l. Jeżeli prosta jest równoległa do płaszczyzny to przyjmujemy, że kąt jej nachylenia do tej płaszczyzny jest równy 0.

Kąt nachylenia prostej lo wektorze kierunkowym \vec{v} do płaszczyzny π o wektorze normalnym \vec{n} wyraża się wzorem:

$$\angle(l,\pi) = \arcsin\frac{\vec{n} \circ \vec{v}}{|\vec{n}| \cdot |\vec{v}|}.$$

Definicja 8. (kat między prostymi)

Kątem między prostymi nazywamy kąt ostry utworzony przez wektory kierunkowe tych prostych. Przyjmujemy, że kąt między prostymi równoległymi jest równy 0.

Poniżej: kąt między prostymi przecinającymi się:

oraz kąt między prostymi skośnymi

Kąt między prostymi l_1, l_2 o wektorach kierunkowych $\vec{v_1}, \vec{v_2}$ wyraża się wzorem:

$$\angle(l_1, l_2) = \arccos \frac{\vec{v_1} \circ \vec{v_2}}{|\vec{v_1}| \cdot |\vec{v_2}|}.$$

Definicja 9. (kąt między płaszczyznami)

Kątem między płaszczyznami nazywamy kąt ostry między wektorami normalnymi tych płaszczyzn. Przyjmujemy, że kąt między płaszczyznami równoległymi jest równy 0.

Kąt między płaszczyznami π_1, π_2 o wektorach normalnych $\vec{n_1}, \vec{n_2}$ wyraża się wzorem:

$$\angle(\pi_1, \pi_2) = \arccos \frac{\vec{n_1} \circ \vec{n_2}}{|\vec{n_1}| \cdot |\vec{n_2}|}.$$

Wektorowe wzory na rzuty i odległości punktów, prostych i płaszczyzn

Niech P_0 , P_1 , P_2 będą punktami w przestrzeni \mathbf{R}^3 o wektorach wodzących odpowiednio \vec{r}_0 , \vec{r}_1 , \vec{r}_2 oraz niech \vec{n} , \vec{v} będą niezerowymi, a \vec{v}_1 , \vec{v}_2 nierównoległymi wektorami z \mathbf{R}^3 . Dalej niech π , π_1 , π_2 będą płaszczyznami odpowiednio o równaniach wektorowych

$$\pi: (\vec{r} - \vec{r}_0) \circ \vec{n} = 0,$$

$$\pi_1: (\vec{r}-\vec{r}_1) \circ \vec{n} = 0,$$

$$\pi_2: (\vec{r} - \vec{r}_2) \circ \vec{n} = 0.$$

Ponadto niech l, l_1 , l_2 , k_1 , k_2 będą prostymi, których wektorowe równania parametryczne są postaci

$$l: \vec{r} = \vec{r}_0 + t\vec{v}, \quad l_1: \vec{r} = \vec{r}_1 + t\vec{v}, \quad l_2: \vec{r} = \vec{r}_2 + t\vec{v},$$

$$k_1 : \vec{r} = \vec{r}_1 + t \vec{v}_1, \quad k_2 : \vec{r} = \vec{r}_2 + t \vec{v}_2, \text{ gdzie } t \in \mathbf{R}.$$

Wówczas

1. rzut prostokątny punktu P_1 na płaszczyznę π ma wektor wodzący postaci:

$$ec{r}=ec{r}_1-rac{(ec{r}_1-ec{r}_0)\circec{n}}{|ec{n}|^2}\cdotec{n};$$

2. rzut prostokątny punktu P_1 na prostą l ma wektor wodzący postaci:

7

$$\vec{r} = \vec{r}_0 + \frac{(\vec{r}_1 - \vec{r}_0) \circ \vec{v}}{|\vec{v}|^2} \cdot \vec{v};$$

3. odległość punktu P_1 od płaszczyzny π wyraża się wzorem:

$$d(P_1,\pi) = \frac{|(\vec{r}_1 - \vec{r}_0) \circ \vec{n}|}{|\vec{n}|};$$

4. odległość między równoległymi płaszczyznami π_1 i π_2 wyraża się wzorem:

$$d(\pi_1, \pi_2) = \frac{|(\vec{r}_1 - \vec{r}_2) \circ \vec{n}|}{|\vec{n}|};$$

5. odległość punktu P_1 od prostej l wyraża się wzorem:

$$d(P_1, l) = \frac{\left| (\vec{r}_1 - \vec{r}_0) \times \vec{v} \right|}{\left| \vec{v} \right|};$$

 ${\bf 6.}\,\,$ odległość między prostymi równoległymi l_1 i l_2 wyraża się wzorem:

$$d(l_1, l_2) = \frac{|(\vec{r}_1 - \vec{r}_2) \times \vec{v}|}{|\vec{v}|};$$

7. odległość między prostymi skośnymi k_1 i k_2 wyraża się wzorem :

$$d(k_1, k_2) = \frac{|(\vec{r}_1 - \vec{r}_2, \vec{v}_1, \vec{v}_2)|}{|\vec{v}_1 \times \vec{v}_2|}.$$

Poniżej ilustracja graficzna odległości między prostymi skośnymi.

