Hashing trick, Random projections

Categorical data: 1-hot encoding

	item_type	seller_id
0	book	1234
1	phone	45
2	clothes	45
3	book	46
4	shoes	234

```
X := \text{``item\_type is'' 'book',} \ \text{``seller'' is '1234'} \ X \in \mathbb{R}^d
```

- List all modalities of "item type"
- Assign one index to each modality.
- Idem for other variables

```
{ 'shoes': 1,
  'phone': 2,
  'book': 3,
  'clothes': 4,
    ... }
```

```
0 type is "shoes"
0 type is "phone"
1 type is "book" √
0 type is "clothes
...
0 seller is "45"
1 seller is "1234" √
0 seller is "5678"
...
```

 $\in \mathbb{R}^d$ with d:= nb distinct "types" + nb distinct "seller"

Polynomial Kernel and « Crossfeatures»

"Quadratic Kernel" Formally: $X.X^T \in Matrices^{d,d} \cong \mathbb{R}^{d^2}$

```
X^T
                        0010....010...
                        0000.... 000...
 type is "shoes"
 type is "phone"
                        0000.... 000...
                        0010.... 010...
 type is "book" ✓
                        0000....000...
  type is "clothes
 seller is "45"
 seller is "1234" √
  seller is "5678"
                    0
                                 Type is "book" and
                                 seller is "1234"
                              "Crossfeature" between
                              "type" and "seller"
X \in \mathbb{R}^d
```

Or use index:

```
('phone','45'): 1000,
('phone','46'): 1001,
('phone','47'): 1002,
...
('book','45'): 1013,
('book','46'): 1014,
```

```
type is "shoes"
type is "phone"
type is "book" ✓
type is "clothes
seller is "45"
seller is "1234" √
seller is "5678"
"book" and "45"
"book" and "1234" ✓
"book" and "5678"
```

 $\in \mathbb{R}^{d^2}$

Help I now have too many features!

- I have quite a few high cardinality categorical columns
 - Even building a vocabulary of possible values is a pain
- I want to use cross features and I have too many of them
- I want to limit the size of my model

Hash functions

a hash function:

- Maps complex data to integers
- Deterministic
- But « looks random »

Usages:

- Pseudo random numbers
- Partitioning data
- Internal implementation of « dictionary »
- ... surprisingly useful!

```
print(hash("a"))
print(hash("b"))
print(hash("hello"))
print(hash("this is a longer string"))
complex_object = ("some_structured_data", 123, 45)
print(hash( complex_object ))
print(hash("a"))

4622726560737668235
-6279647101590938825
2716929806936918215
-6349598305679374822
6867566546198076494
4622726560737668235
Hash("a")
Deterministic!
```

```
# Processing ~= 1% of items:
for item in myList:
    if hash(item) % 100 == 0:
        process(item)

# If the same item appears twice, it will be either processed twice, or not at all.
# If we run again, the same items will be selected, even if list is shuffled
```

The Hashing Trick

Building the index without looking at the data

- Hash everything!
- Write "1" at the indexes of the hashes

"type" is "book", "seller" is "1234"

Raw input

Chosen size d
of the output
vector

0

0

1 at index Hash(seller, 1234)

 $X \in \mathbb{R}^d$ with d:= 1000000 (your choice)

Collisions?

```
1 hash(( "seller", "626" ))%1000000
executed in 7ms, finished 15:19:59 2021-03-09

626786

1 hash(( "type", "1674" ))%1000000
executed in 4ms, finished 15:19:59 2021-03-09

626786
```

A "1" at index 626786 may either mean:

- 'type is 1674'
- or 'seller is 62'
- Or something else? (more hashes colliding)

- When learning a model from hashed inputs (eg a linear model X.w), collisions constrain the learned model to set the same weights to colliding features.
- Here, same weight for «seller is 626» and «type is 1674»

Hashing Trick: Why?

- Simple
 - No need to precompute indexes
 - No need to care too much about « new » modalities
- Fixed size model
 - **Known memory footprint** → no surprise crash
- Collisions are not so bad
 - Collision between rare modalities is OK
 - Collisions between frequent modalities is unlikely
 - Also, redondant features may help the model to recover from collisions (eg lots of « crossfeatures »)
- Common use cases
 - (Generalized) linear model with many crossfeatures
 - Input layer of neural networks

Warning: When deploying your model to another machine, make sure that the "hash" implementation is the same on every machine. For example, python internal "hash" function changes when restarting the kernel.

Avoiding Collisions?

```
1 hash(( "seller", "626" ))%100000000

12626786

1 hash(( "type", "1674" ))%100000000

86626786
```

- Increase n → less collisions.
- Difficult to fully avoid: « birthday paradox »
 - K disinct hashed modalities => O(K²) pairs of modalities
 - Each single pair has a probability 1/n of colliding together
 - Overall, O(K²/n) expected collisions
- But increasing n increases the size of the model and the learning time
- Test for best tradeoff!!

- Other options:
 - Keep index of «common» modalities and hash only « rare » modalities
 - Several hashes per modality (more collisions, but more redundancy to recover from those collisions)

But try « Ostrich » algorithm first!!

The hashing trick

https://booking.ai/dont-be-tricked-by-the-hashing-trick-192a6aae3087

Booking dataset

The hashing trick

https://booking.ai/dont-be-tricked-by-the-hashing-trick-192a6aae3087

Criteo dataset

The hashing trick

https://booking.ai/dont-be-tricked-by-the-hashing-trick-192a6aae3087

Avazu dataset

Dimensionality reduction

Reducing the dimensions of input data before applying ML algo. Ideally:

- K << D
- (approximately) preserving distances between examples:
 d(X_i, X_j) ≈ d(f(X_i), f(X_j))
- f linear. f: $X_i \rightarrow A.X_i$. (easy to compute)

Classical method: PCA

- Rows of A := first K eigenvectors of X · X^T
- Good preservation of distances √
- O(ND²) or O(N²D) X
- Data dependent (can we avoid it?)

X A.XN examples

features

- A is a matrix of size (K,D)
- Crazy idea: Choosing A randomly!?

This is hashing trick!! (if X is binary)

 Still requires large K (> 10⁶) to work well

What if...

K features

- I Choose A_{ii} ∈ {0;1}
- Independent columns, with exactly one 1 per column, placed uniformly at random ?

Instead, "Gaussian" random projections:

 A_{ik} iid ~ Gaussian(0,1) * 1/VK

- Is it likely to get
 d(A.Xi, A.Xj) ≈ d(Xi, Xj)?
- For all pairs i,j simultaneously ??

Let $z \in \mathbb{R}^D$ and | | the Euclidian norm. Let's compare $|A.z|^2$ and $|z^2|$. $| A.z |^2 = \sum_k (A_k . z)^2$ Checking that " $|A.z| \approx |z|$ " (with high proba) Set $z := X_i - X_j$ to get $d(X_i, X_j) \approx d(A. X_i, A X_j)$

Lemma:

- A_k.z are iid
- $A_k.z \sim N(0,1) * |z| / VK$

A sum of independent Gaussian variables is Gaussian:

$$A_k.z = sum A_{k,j} * z_j$$
.

 $A_{k,i} * z_i$ are independent and ~ N(0, | z_i |/VK)

Thus:

- $E((A_k.z)^2) = |z|^2/K$
- $E(|A.z|^2) = |z|^2$
- Var ($|A.z|^2$) = $2 |z|^4 / K$

(Variance of a chi²)

O(1/K): With large K, low variance.

Large probability of getting $| A.z | \approx | z |$

Let $\varepsilon > 0$. We would like, for all pair (i,j):

$$(1-\epsilon) \cdot \mathsf{d}(\mathsf{X}_i \,,\, \mathsf{X}_j) < \mathsf{d}(\;\mathsf{A}.\mathsf{X}_i \,,\, \mathsf{A}.\mathsf{X}_j \;) < (1+\epsilon).\mathsf{d}(\;\mathsf{X}_i \,,\, \mathsf{X}_j)$$

Let $\delta > 0$ « accepted Probability of failing »

Theorem (Johnson–Lindenstrauss):

if K > O($log(n/\delta) / \epsilon^2$), the probability that all inequalities above hold is higher than 1- δ

- Does not depend on D!
- O() constant is around 10

Formalizing "d(X_i , X_j) \approx d(A. X_i , A_j)"

No 100% garanty that inequalities are true. Instead, we want them to hold (for all i,j) with a probability $> 1 - \delta$

Proof idea: $O(n^2)$ pairs \rightarrow Let us get Proba of failing for one pair smaller than δ/n^2 Use concentration of $|Az|^2$ around its mean.

• Example:

• In practice, K significantly smaller is often good enough.

Typical values

n = O(1B); d = O(1M) \Rightarrow k = O(10K) Memory: storing A: O(DK) \approx 40GB

- Maybe ok?
- Use only a few bits per entry?
- Store only the seeds?!

Computing A.X: O(ndk) X

But X is usually sparse √

Many variants

- Replace A_{ii} ~ Gaussian by A_{ii} in {+/-1}
 - 1 bit per entry
- "Fast Johnson-Lindenstrauss transform"
 - A is the product of sparse random matrices and a structured matrix allowing fast computation
 - O(n.d.log(d) + nk²) √