

HiPerFET™ Power MOSFETs

IXFH/IXFM 10 N100 IXFH/IXFM 12 N100

 $\begin{array}{c|cccc} V_{\text{DSS}} & I_{\text{D25}} & R_{\text{DS(on)}} \\ 1000 & V & 10 & A & 1.20 & \Omega \\ 1000 & V & 12 & A & 1.05 & \Omega \end{array}$

N-Channel Enhancement Mode High dv/dt, Low t_{rr} , HDMOSTM Family

Test Conditions

Obsolete: IXFM10N100 IXFM12N100

Symbol

t_{rr} ≤ 250 ns

Maximum Ratings TO	-247 AD (IXFH)
--------------------	----------------

V _{DSS} V _{DGR}	$T_J = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$ $T_J = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}; R_{GS} = 1 \text{ M}\Omega$		1000 1000	V
V _{GS} V _{GSM}	Continuous Transient		±20 ±30	V V
I _{D25}	T _C = 25°C	10N100 12N100	10 12	A A
I _{DM}	$T_{\rm C}$ = 25°C, pulse width limited by $T_{\rm JM}$	10N100 12N100	40 48	A A
I _{AR}	$T_{\rm C} = 25^{\circ} C$	10N100 12N100	10 12	A A
E _{AR}	T _C = 25°C		30	mJ
dv/dt	$I_{\underline{S}} \le I_{\underline{DM}}$, di/dt $\le 100 \text{ A/}\mu\text{s}$, $V_{\underline{DD}} \le V_{\underline{DSS}}$,		5	V/ns

TO-204 AA (IXFM)

Package not available

G = Gate.	D = Drain,
S = Source,	TAB = Drain

Features

- International standard packages
- Low $R_{DS (on)}$ HDMOSTM process
- Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
 - easy to drive and to protect
- Fast intrinsic Rectifier

Symbol	Test Conditions	Cha $(T_1 = 25^{\circ}C, \text{ unless o})$	istic Values	
				max.
V _{DSS}	$V_{GS} = 0 \text{ V}, I_D = 3 \text{ mA}$	1000		V
			I	1

DSS	V _{GS} - UV, I _D - UIIIA	1000		v
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 4 \text{ mA}$	2.0	4.5	V
I _{GSS}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$		±100	nΑ
I _{DSS}	$V_{DS} = 0.8 \cdot V_{DSS}$ $T_{J} = 25^{\circ}C$ $V_{GS} = 0 V$ $T_{J} = 125^{\circ}C$		250 1	μA mA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 0.5 \cdot I_{D25}$ 10N100 12N100 Pulse test, t \leq 300 μ s, duty cycle d \leq 2		1.20 1.05	Ω

Applications

- DC-DC converters
- Synchronous rectification
- Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- AC motor control
- Temperature and lighting controls
- Low voltage relays

Advantages

- Easy to mount with 1 screw (TO-247) (isolated mounting screw hole)
- Space savings
- · High power density

Symbol	Test Conditions Ch $(T_J = 25^{\circ}C, unless e min.$	aracter otherwis typ.		cified)
g_{fs}	$V_{DS} = 10 \text{ V}; I_{D} = 0.5 \cdot I_{D25}, \text{ pulse test}$ 6	10		S
C _{iss})	4000		pF
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	310		pF
\mathbf{C}_{rss}		70		pF
t _{d(on)}		21	50	ns
\mathbf{t}_{r}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$	33	50	ns
$\mathbf{t}_{d(off)}$	$R_{\rm G} = 2 \Omega $ (External),	62	100	ns
t _r	J	32	50	ns
$\mathbf{Q}_{g(on)}$		122	155	nC
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$	30	45	nC
\mathbf{Q}_{gd}	J	50	80	nC
R _{thJC}			0.42	K/W
$\mathbf{R}_{ ext{thCK}}$		0.25		K/W

Source-Drain Diode

Characteristic Values

(T₁ = 25°C, unless otherwise specified)

Symbol	Test Conditions	(.j =0 0, a	nin. typ.	max.	
I _s	V _{GS} = 0 V	10N100		10	A
S	GS	12N100		12	Α
		13N100		12.5	Α
I _{sm}	Repetitive;	10N100		40	Α
SIN	pulse width limited by T	12N100		48	Α
	- 01	" 13N100		50	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0 \text{ V}$, Pulse test, $t \le 300 \mu\text{s}$, du	ty cycle d ≤ 2 %		1.5	٧
t _{rr}	$I_{F} = I_{S}$ -di/dt = 100 A/µs,	T _J = 25°C T _J = 125°C		250 400	ns ns
\mathbf{Q}_{RM}	V _R = 100 V	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	1 2	1	μC μC
I _{RM}	J	T _J = 25°C T _J = 125°C	10 15	1	A A

Terminals: 1 - Gate 2 - Drain 3 - Source Tab - Drain

Dim.	Millimeter		Inc	hes
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A ₁	2.2	2.54	.087	.102
A ₂	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b₁	1.65	2.13	.065	.084
b ₂	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
Е	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

TO-204 AA (IXFM) Outline

Pins 1 - Gate 2 - Source Case - Drain

Dim.	Millimeter		Inch	nes
	Min.	Max.	Min.	Max.
Α	6.4	11.4	.250	.450
A1		3.42		.135
Øb	.97	1.09	.038	.043
$\emptyset D$		22.22		.875
е	10.67	11.17	.420	.440
e1	5.21	5.71	.205	.225
L	7.93		.312	
Øp	3.84	4.19	.151	.165
Øp1	3.84	4.19	.151	.165
q	30.18	5 BSC	1.187	BSC
R		13.33		.525
R1		4.77		.188
s	16.64	17.14	.655	.675

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1 Output Characteristics

Fig. 3 $R_{DS(on)}$ vs. Drain Current

Fig. 5 Drain Current vs. Case Temperature

Fig. 2 Input Admittance

Fig. 4 Temperature Dependence of Drain to Source Resistance

Fig. 6 Temperature Dependence of Breakdown and Threshold Voltage

Fig.7 Gate Charge Characteristic Curve

Fig.8 Capacitance Curves

Fig.9 Source Current vs. Source to Drain Voltage 20 18 16 14 12 10 T_J = 125°C 8 6 $T_1 = 25^{\circ}C$ 2 0.0 0.2 0.4 0.6 8.0 1.0 1.2 1.4 V_{SD} - Volts

Fig.10 TransientThermalImpedance

IXYS reserves the right to change limits, test conditions, and dimensions.

