Ministério da Educação

Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE Departamento de Ciências Exatas - DCEX

Disciplina: Matrizes e Sistemas Lineares. Semestre: 2020/1 Prof. Me. Luiz C. M. de Aquino

Lista de Exercícios III

- 1. Em cada item abaixo dê exemplo de uma matriz 4×4 que atenda aos requisitos solicitados.
 - (a) Todos os termos não são nulos e o determinante é igual a 5.
 - (b) Todos os termos são irracionais e o determinante é racional.
- 2. Dizemos que uma matriz A é ortogonal quando sua transposta coincide com sua inversa (ou seja, quando $A^t = A^{-1}$). Considerando a matriz $R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, responda aos quesitos abaixo.
 - (a) Determine $R_{\frac{\pi}{2}}$.
 - (b) Determine $R_{\left(-\frac{\pi}{2}\right)}$.
 - (c) Mostre que R_{θ} é ortogonal.
 - (d) Mostre que $R_{\alpha}R_{\beta} = R_{\alpha+\beta}$.
- 3. Considere a matriz $A = \begin{bmatrix} 1 & 0 & 8 \\ 1 & 2 & 3 \\ 2 & 5 & 3 \end{bmatrix}$
 - (a) Determine a inversa de A.
 - (b) Usando o item (a), resolva o sistema linear abaixo:

$$\begin{cases} x + 8z = 4 \\ x + 2y + 3z = 0 \\ 2x + 5y + 3z = -2 \end{cases}$$

4. O termo a_{ij} de uma matriz A de ordem 10×10 é tal que:

$$a_{ij} = \begin{cases} i+j; & i \ge j \\ 0; & i < j \end{cases}$$

O valor do determinante de A é igual a:

(a)
$$2^{10}$$
 (10!). (b) $2(10!)$. (c) $10^2(10!)$. (d) $2(10^{10})$. (e) 2^{55} .

5. Calcule o determinante da matriz A de três formas distintas: pela definição geral; pelo método de Sarrus; por redução à matriz triangular superior.

$$A = \begin{bmatrix} 5 & -10 & -1 \\ -2 & 5 & 2 \\ -3 & 6 & 1 \end{bmatrix}$$

6. Sabe-se que o determinante da matriz $A = \begin{bmatrix} p & 2 & 2 \\ p & 4 & 4 \\ p & 4 & 1 \end{bmatrix}$ é -18. Sendo assim, calcule o determinante

da matriz
$$B = \begin{bmatrix} p & 2 & 2 \\ 4 & p & 4 \\ 4 & 1 & p \end{bmatrix}$$
.

- 7. Seja a matriz $A = \begin{bmatrix} -13 & 36 \\ -\frac{9}{2} & 14 \end{bmatrix}$. Determine o valor de λ tal que $\det(A \lambda I) = 0$.
- 8. Calcule a inversa das matrizes abaixo:

$$A = \begin{bmatrix} 6 & 2 \\ 4 & 3 \end{bmatrix}, B = \begin{bmatrix} 1 & -2 & 2 \\ 2 & -3 & 6 \\ 1 & 1 & 7 \end{bmatrix} e C = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & 2 \\ 1 & -1 & 2 & 1 \\ 1 & 3 & 3 & 2 \end{bmatrix}$$

- 9. Prove que se $A=B^{-1}CB$, então $A^n=B^{-1}C^nB$ para todo $n\in\mathbb{N}$. (Observação: por convenção considere que $M^0=I$, para toda matriz quadrada M.)
- 10. Vamos usar operações com matrizes para criptografar uma mensagem. Primeiro, converta cada letra da mensagem em um número, como indica a tabela abaixo. Cada grupo de três letras, formará uma linha da matriz de mensagem M, de ordem 3×3 . Agora, escolha uma matriz inversível S, de ordem 3×3 , para ser a chave da criptografia. Para determinar a mensagem criptografada C, calculamos C = SM. Já para recuperar a mensagem original, calculamos $M = S^{-1}C$.

A	В	С	D	E	F	G	Н	I	J	K	L	M
1	2	3	4	5	6	7	8	9	10	11	12	13
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
1.4	15	1.0	17	18	19	20	0.1	22	23	24	25	26

Considerando que a chave de criptografia é a matriz $S = \begin{bmatrix} 1 & -2 & 2 \\ 2 & -3 & 6 \\ 1 & 1 & 7 \end{bmatrix}$ e a mensagem criptografada

é
$$C = \begin{bmatrix} -13 & -4 & 15 \\ -4 & 3 & 80 \\ 48 & 28 & 147 \end{bmatrix}$$
, qual é a mensagem original?