(\bar{p}^{\dagger}) $(q^{\dagger}, q^{\dagger}) \neq (q^{\dagger}, q^{\dagger})$

(ps) there exists a positive integer n such that

d₁ | d_n or d_s | d_n.

Finally we state the

Theorem 1. In an HCF domain of Krull type R, a non zero non unit x, is expressible as the product of a finite number of mutually co-prime packets and this factorization is unique up to associates of the respective packets and up to their order.

Proof. Let x be a non zero non unit in R, let P_1, P_2, \ldots, P_n be the set of all the valued primes containing x and let q_1, q_2, \ldots, q_m be the set of all the distinct minimal subvalued primes of x. By Lemma 2, corresponding to each q_1 there exists a $p_1 \mid x$ such that $p_1 \in q_1$ and $p_2 \nmid q_1$ for

each $i \neq j$. We first take up q_1 ; there exists a p_1 such that $x = p_1 x, \text{ where } p_1 \in q_1 \text{ and } p_1 \not \in q_j \text{ and } p_2 \not \in q_j \text{ ...,} m.$

And by (4) of Lemma 5 we can write $x = x_1 x_2' \text{ where } (x_1, x_2') = 1 \text{ and } x_1 \text{ has } q_1 \text{ as its only}$

minimal subvalued prime i.e. $x_1 \not \in Q_j$ (j = 2,...,m).

Similarly corresponding to q_s , there exists $p_s \in q_s$ such that $p_s \mid x$ and $p_s \not \in q_j$ $j \not = 2$. Being in q_s , p_s is not in the bunch of valued primes of x containing q_1 we conclude that $x = x_1 p_e x_2^u$ and by an application of (μ) of Lemma 3 seain $x = x_1 x_2 x_3^u$; $(x_1 x_2, x_3^u) = 1$.

Repeating the above process we get

 $x = x_1x_2...x_m$; where each x; is a packet

and $(x_i,x_j)=1$ whenever $i\neq j$. Moreover if $x=y_1y_2...y_s$ where y_j are mutually co-prime packets then s=m, because the set of the valued primes(and