# Intrusion Detection with Genetic Algorithms and Fuzzy Logic

#### Emma Ireland

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

December 2013
UMM CSci Senior Seminar Conference

# The Big Picture

- •
- •
- •
- •

#### **Outline**

- Background
- Genetic Algorithm Implementation
- Fuzzy Genetic Algorithm Implementation
- Conclusions



#### **Outline**

- Background
  - Types of Networking Attacks
  - Detection Methodologies
  - Data Sets KDD99 and RLD09
  - Rules
  - Genetic Algorithms
  - Determining the Accuracy of an Algorithm
- Genetic Algorithm Implementation
- 3 Fuzzy Genetic Algorithm Implementation
- 4 Conclusions



# Types of Networking Attacks

Explain DoS, remote to user, user to root, probe



# **Detection Methodologies**

Explain signature-based and anomaly-based detection



6/30

#### KDD99

- Generated by simulating a military network environment in 1999.
- Has long been a standard data set for intrusion detection.
- Data in the set is classified as normal or attack activity.
- KDD99 uses 41 features.
  - Features are properties of a record, (either an attack or normal activity), that are used to describe the activity.

#### Some Features of KDD99

- duration: length of the normal or attack activity in seconds.
- num\_failed\_logins: number of failed login attempts.
- root shell: returns 1 if root shell is obtained, else returns 0.
- serror rate: percentage of connections that have "SYN" errors.

#### RLD09

- RLD09 was created because KDD99 is 14 years old.
- Data was captured from a university in Bangkok, Thailand.
- The data has 10 million data packets, 17 different types of attacks (divided into denial of service and probe attacks), and 12 features.

#### Rules

- Elements of one set are separated into different sets in order to differentiate between normal connections and attacks.
- If-Then format
  - If the length of the activity is 4 seconds, then the probability of it being an attack is 100%.

## **Genetic Algorithms**



# Determining the Accuracy of an Algorithm

- False positive (FP): intrusion detection system incorrectly identifies normal activity as being an attack.
- False negative (FN): intrusion detection system fails to identify harmful activity.
- True positive (TP): intrusion detection system correctly identifies activities to be attacks.
- True negative (TN): intrusion detection system correctly identifies activities to be normal.
- Detection rate (DR): the number of true positives divided by the total number of intrusions that happen.



#### **Outline**

- Background
- Genetic Algorithm Implementation
  - Algorithm Overview
  - Experimental Design and Results
- 3 Fuzzy Genetic Algorithm Implementation
- 4 Conclusions

# **Algorithm Overview**



# **Experimental Design**

#### Results

#### **Outline**

- Background
- 2 Genetic Algorithm Implementation
- Fuzzy Genetic Algorithm Implementation
  - Fuzzy Algorithm
  - Algorithm Overview
  - Experimental Design and Results
- 4 Conclusions

# Measuring the Probability of a Record Being an Attack



#### Example:

- Feature: duration (length of the activity in seconds).
- a=1, b=3, c=5, d=7
- The length of the activity is 6 seconds (between c and d).

• prob = 
$$\frac{d - \text{data}}{d - c} = \frac{7 - 6}{7 - 5} = 0.5$$

# **Encoding of Features and Rules**

- The four parameters are encoded into blocks.
- Each block is a feature with values between 0.0 and 7.0.

A rule has 12 blocks of features, at the end is the type of attack.

| 010 | 011 | 100     | 101 | <br>010 | 011      | 101 | 111 | DoS  |
|-----|-----|---------|-----|---------|----------|-----|-----|------|
| a=2 | b=3 | c=4     | d=5 | <br>a=2 | b=3      | c=5 | d=7 |      |
|     |     | Block 1 |     |         | Block 12 |     |     | Type |

# **Algorithm Overview**

```
for each record do
  for each rule do
     for each feature do
       prob = fuzzy(); // Trapezoidal
       fuzzy rule shape
       totalprob = totalprob + prob;
    end for
     if totalprob > threshold then
       class is attack:
    end if
  end for
  find A, B, \alpha, and \beta
end for
calculate fitness
crossover(), mutation()
```

Fitness function:

$$\frac{lpha}{A} - \frac{eta}{B}$$

A: # of attack records.
B: # of normal records.
α: # of attack records correctly identified as attack.

β: # of normal records incorrectly classified as attack.

- A variety of experiments were run. Two experiments used just RLD09, and three experiments used KDD99 and RLD09 together.
- The experiments used a total of 16,000 records of normal activity and 10,500 records of attack activity. Of the attack records, 4,000 were denial of service attacks and 6,500 were probe attacks.

# **Experiments Using Only RLD09**



# **Experiments Using Only RLD09**



# Experiments Using Both RLD09 and KDD99



#### Fuzzy Genetic Algorithm Implementation

# Experiments Using Both RLD09 and KDD99



# Experiments Using Both RLD09 and KDD99



#### **Outline**

- Background
- 2 Genetic Algorithm Implementation
- 3 Fuzzy Genetic Algorithm Implementation
- Conclusions



#### Conclusions

- •
- a
- 0



#### Thanks!

Thank you for your time and attention!

Questions?



#### References

