Санкт-Петербургский политехнический университет Петра Великого Институт компьютерный наук и технологий Высшая школа программной инженерии

ОТЧЁТ « ПРИМЕНЕНИЕ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ОЦЕНКИ ТРАФИКА МАГАЗИНА »

Ли Ицзя

3530904.90102

Оглавление

Реферат	4
Abstract	5
Ведение	5
ГЛАВА 1 Обзор литературы	6
Распознавание пешеходов	6
Алгоритм распознования объектов YOLO	8
Отследование (Трекинг) людей в виде последовательности	9
Алгоритм треикнга множества объектов DeepSORT	10
Повторная идентификация людей	12
Алгоритм FastReID	16
Метод подсчета количества людей в видеопоследовательности	19
Основные исследования этой статьи	20
ГЛАВА 2 Обучение модели для отследования людей в нескол видеопотоках	
Обучение модели для повторной идентификации FastReID	20
Набор данных	20
Принцип обучения	22
Построить модель	22
Функции потери и алгоритмы оптимизации	23
Ходы обучения	24
Тренировочный процесс	25
Результаты обучения	25
Реализация алгоритма DeepSORT с помощью FastReID и YOLOv5	29
Устраивание модели	29
Набор тестовых данных МОТ-16	29
Эксперимент 1: Сравнительное тестирование улучшенного алгор DeepSORT с исходном алгоритмом DeepSORT	
Эксперимент 2: сравнение улучшенного алгоритма DeepSOI несколькими основными алгоритмами	
ГЛАВА 3 Система оценки трафика магазина основа на нейтронных с	
Непи разработки системы	34

Описание системы	. 35
Общая архитектура системы	. 35
Модуль обнаружения пешеходов	. 35
Модуль отследования пешеходами	. 35
Модуль подсчета и распознавания пешеходного	. 36
Модуль хранения	. 39
Среда разработки	. 39
Демонстрация и тестирование системы	. 40
Общая приципиальная схема системы	. 40
Тестовая среда	. 40
Междукамерное отслеживание пешеходов	. 41
Метрики оценки системы	. 47
ГЛАВА 4 Анализ полученных результатов	. 53
Экспериментальная оценка модели FastReID на открытом наб- данных	_
Экспериментальная оценка улучшенной модели DeepSORT открытом наборе данных	
ЗАКЛЮЧЕНИЕ	. 55
Список Литературы	. 56

Реферат

На - страниц, - рисунков, - таблицы, - приложение

KEY WORDS: Computer vision, Neural networks, Object detection, Multiple object tracking, Pedestrian re-identification

КЛЮЧЕВЫЕ СЛОВА: КОМПЬЮТЕРНОЕ ЗРЕНИЕ, НЕЙРОННЫЕ СЕТИ, ОБНАРУЖЕНИЕ ОБЪЕКТОВ, ОТСЛЕЖИВАНИЕ НЕСКОЛЬКИХ ОБЪЕКТОВ, ПЕРЕИДЕНТИФИКАЦИЯ ПЕШЕХОДОВ, YOLO, Улучшенный DeepSORT алгоритм

Выпускная квалификационная работа на тему: «Применение нейронных сетей для оценки трафика магазина».

В данной работе рассматривается реализации алгоритмов нейронных сетей для оценки трафика в магазине. Для решения поставленных задач были использованы методы глубокого обучения и компьютерного зрения.

Задачи, решаенные в ВКР:

- 1. Для обнаружения пешеходов был использован алгоритм YOLOv5
- 2.Для установления связи между персонажами при работе с несколькими камерами был реализован алгоритм повторного распознавания (reid).
- 3. Для отслеживания локальных зон был реализован алгоритм DeepSORT он основе повторного распознавания.
- 4. На основе методики, описанных в данной статье, была разработана система оценки трафика посетителей для супермаркета.

В результате исследования была создана система оценки трафика посетителей для супермаркетов, которая может идентифицировать входящих и выходящих людей с точностью до 95,5% и повторную идентификацию пешеходов с точностью до 85,0%. В конце, на других больших отерытых наборах данных мы сравнили реализации DeepSORT, FastReID с другими популярными алгоритмами и добились неплохих результатов.

Abstract

Ведение

С развитием розничной торговли и усилением конкуренции, многие отечественные торговые центры осознали важность данных о потоках посетителей для принятия эффективных бизнес-решений. Изучение потока покупателей является ключевым элементом для научного управления торговыми центрами во всех аспектах и повышения комфорта торговой среды.

Традиционный метод искусственного подсчета, который представляет собой непрерывное визуальное подсчитывание посетителей на входе и выходе, не требует больших капиталовложений, однако его использование ограничено трудовыми и материальными ресурсами и подвержено ошибкам.

С появлением механического сенсорного оборудования, инфракрасного сенсорного оборудования и оборудования для камер наблюдения, методы подсчета посетителей прошли две стадии: статистику физического прикосновения и статистику инфракрасного излучения. Однако, данные методы имеют ряд очевидных недостатков, таких как высокие требования к установке оборудования, низкую скорость и точность подсчета.

Для эффективного управления и поддержки принятия решений для супермаркетов необходим более точный, автоматизированный и эффективный метод. В данном исследовании был предложен алгоритм мониторинга и расчета пассажиропотока супермаркетов с использованием метода нейронных сетей.

Основная цель данной работы заключается в разработке метода, который сочетает в себе алгоритмы обнаружения, отслеживания и повторной идентификации пешеходов, чтобы получить точное время посещения магазина. Для этого были использованы зрелые технологии глубокого обучения, такие как алгоритм YOLOv5, алгоритм отслеживания DeepSORT и алгоритм повторной идентификации пешеходов FastReID.

Предложенный метод демонстрирует высокую выполнимость, основываясь на экспериментах, проведенных в реальных условиях супермаркета. Более того, полученные данные могут быть использованы для эффективного управления и принятия решений в супермаркетах, что повышает их конкурентоспособность на рынке.

Для достижения цели данной работы были выполнены следующие задачи:

- 1)Собрать видеонаблюдения супермаркета и выполнить предварительную обработку;
- 2) Разработать и реализовать модуль обнаружения пешеходов на основе алгоритма YOLOv5;
- 3) Разработать и реализовать алгоритм отслеживания DeepSORT на основе алгоритма повторной идентификации пешеходов FastReID, который применяется для отслеживания пешеходов в видеопотоке;
- 4)Разработать и реализовать алгоритм повторной идентификации пешеходов FastReID для ассоциации персонажей с назначенными посетителями под несколькими камерами;
- 5) Хранить и записывать фотографии и времени входа и выхода посетителей, количество посетителей за определенный период времени.

Таким образом, разработанный метод мониторинга и расчета пассажиропотока супермаркетов может эффективно улучшить управление трафиком внутри супермаркета, повысить качество обслуживания клиентов и увеличить прибыльность бизнеса.

ГЛАВА 1 Обзор литературы

Оценка пешеходного трафика — это комплексная задача, объединяющая технологии обнаружения, отслеживания и повторной идентификации пешеходов. Ввиду этого в данной статье сначала описывается исследования обнаружения и отслеживания людей, затем вводится алгоритм повторной идентификации пешеходов и, в конце, вводится исследования подсчета людей на видеопоследовательности. Повторная идентификация пешеходов является самой важной технологией для решения проблемы ассоциации траекторий между камерами, а также основой данной исследовательской работы. Поэтому мы сосредоточимся и подробно представим реализованный нами алгоритм повторной идентификации пешеходов: FastReID.

Обноружевание пешеходов

Суть обнаружения пешеходов заключается в обнаружении объектов. Обнаружение объектов лежит в основе задач многоцелевого сопровождения, основная цель которого — отметить объект, подлежащий обнаружению, прямоугольной рамкой (bounding box) из статической картинки каждого кадра и получить конкретное местоположение объекта на картинке. Если при обнаружении объекта происходит пропущенное обнаружение, цель не будет

отслеживаться позже, поэтому обнаружение объекта играет очень важную роль в задачах отслеживания нескольких целей.

сверточных нейронных сетей значительно эффективность методов обнаружения объектов. Такие алгоритмы можно условно разделить на следующие две категории. Одна из них представляет собой двухэтапный алгоритм обнаружения, который сначала выбирает области-кандидаты на изображении, а затем выполняет задачи классификации этих областей. Этот тип алгоритма характеризуется высокой точностью, но медленная скорость. Например, R-CNN, предложенная Россом [5], сначала предварительно определяет области, которые должны быть обнаружены на изображении, с помощью операции выборочного поиска, а затем извлекает признаки этих областей с помощью сверточной нейронной сети и, в конце, классифицирует их. Хотя алгоритм R-CNN значительно повышает точность обнаружения объектов, он имеет проблему вычислительной избыточности. Алгоритм sppnet, предложенный He [6], устраняет влияние повторяющегося масштабирования изображений R-CNN путем добавления слоя объединения пространственных пирамид. Кроме того, Гиршик [7] предложили алгоритм Fast R-CNN, который дополнительно оптимизировал алгоритмы R-CNN и sppnet, добавив слой объединения регионов. Рен [8] предложили алгоритм Faster R-CNN, который заменил выборочный поиск сетью предложений регионов и обучил сеть от начала до конца, что значительно повысило скорость детектора. Другой представляет собой одноэтапный алгоритм обнаружения, который выполняет регрессию для вывода положения и обнаружения при категории объекта создании областикандидата. Репрезентативным алгоритмом является алгоритм серии YOLO [9].

Серия алгоритмов YOLO была впервые предложена Редмоном В 2016. Он отказался от двухэтапной парадигмы обнаружения «обнаружение предложения + проверка» и напрямую предсказал вероятность категории и положение каждой сетки, разделив изображение на несколько сеток., информация.

Из приведенного выше введения мы делаем вывод, что традиционные подходы к обнаружению объектов обычно требуют ручного проектирования функций и классификаторов, которые плохо работают в сложных сценах и требуют большого опыта и времени для настройки параметров. Напротив, технология обнаружения объектов на основе глубокого обучения использует глубокие нейронные сети для автоматического изучения функций и классификаторов, что обеспечивает более высокую точность и надежность и подходит для различных сложных сцен. Обнаружение объектов является предпосылкой отслеживания объектов. Мы выбрали YOLOv5 в качестве детектора объектов для исследовательского проекта. По словам авторов статьи [14], YOLO являлась самой современной (state-of-the-art) на тот момент моделью, для задачи обнаружения объектов на изображении и была протестирована на известных наборах данных (PASCAL VOC, COCO), показав при этом отличный результат по показателю точности, превзошедший альтернативные подходы (Faster R-CNN и SSD), при этом ещё и выигрывая по обработки. С Оценка людского и транспортного трафика густонаселенных районов города Москвы с использованием видео со стационарных камерР. М. Воробьёв 1

Исходя из вышеперечисленных преимуществ, YOLOv5 больше подходит для наших сценариев использования.

Алгоритм распознования объектов YOLO

YOLOv5 был предложен автором Glenn Jocher. Существует четыре размера моделей, а именно YOLOv5s, YOLOv5m, YOLOv5l и YOLOv5x. Среди них YOLOv5s имеет наименьшее количество сверточных слоев, самую быструю скорость обнаружения и самую низкую точность обнаружения, для остальных трех моделей количество сверточных слоев расположено в порядке возрастания. По мере увеличения сложности модели обнаружение Скорость постепенно снижается, а точность обнаружения постепенно увеличивается.

Структура YOLOv5 состоит из четырех частей: Input, Backbones, Neck и Prediction, как показано на рисунке.

Сторона ввода включает в себя улучшение Mosaic, динамическую опорную рамку, адаптивную обработку изображений и т. Д.; Магистрали включают в себя кросс-этапную локальную сеть СSP, пространственный пирамидный пул SPPF, первый помогает сократить объем вычислений, а второй повышает точность обнаружения; Neck использует FPN+ Структура PAN, понижающая дискретизация улучшает семантическую информацию, повышающая дискретизация улучшает информацию о местоположении; Прогноз является конечным результатом обнаружения.

Чтобы добиться более высокой скорости, мы выбираем предварительно обученную модель YOLOv5s, выпущенную веб-сайтом с открытым исходным кодом YOLOv5 [Примечания].

Отследование (Трекинг) людей в виде последовательности

Задача трекинга объектов в видеопотоке заключается в сопоставлении детекция объекта на последовательности кадров видеопотока треку объекта. Задача трекинга множества объектов (Multi-Object Tracking, MOT) заключается в трекинге нескольких различных объектов. 【ОТСЛЕДОВАНИЕ ЛЮДЕЙ ПО ВИДЕО ПОСЛЕДОВАТЕЛЛЬНОСТИ Н.С. Захаров 】 В частности, алгоритм трекинга множества объектов в основном решает проблему обнаружения объектов, которые мы хотим отслеживать, в каждом кадре видео, получения позиции на кадре и присвоения идентификатора каждому объекту. В процедуру трекинга идентификатор каждого объекта должен оставаться неизменным.

Как показано на рисунке, после ввода последовательности кадров, собранных камерой, в алгоритм МОТ выводятся результаты отслеживания нескольких целей в кадре, включая местоположение объекта на изображении и соответствующую идентификационную информацию.

По сравнению с отслеживанием одной цели задачи отслеживания нескольких целей должны не только сталкиваться с такими проблемами, как изменение освещения, окклюзия и размытие движения, но также решать такие проблемы, как неопределенное количество целей и прерывание траекторий целей во время процесса отслеживания. С непрерывным ростом исследований многоцелевого отслеживания в последние годы, связанные с ними методы появляются бесконечно. Далее расматривается популярный алгоритм МОТ — DeepSORT

Алгоритм треикнга множества объектов DeepSORT

DeepSORT является усовершенствованием алгоритма отслеживания SORT. Основная цель DeepSORT — генерировать непрерывные траектории движения множества персонажей в видеопотоке, а общий рабочий процесс показан на рисунке ниже. Чтобы уменьшить количество переключателей идентификатора цели отслеживания (переключение идентификатора, ID

switch), DeepSORT вводит функции внешнего вида и каскадное сопоставление. Алгоритм DeepSORT принимает координаты кадра обнаружения и достоверность результатов обнаружения сети обнаружения объектов в качестве входных данных, предсказывает положение пешеходов в следующем кадре с помощью алгоритма фильтра Калмана, выполняет каскадное сопоставление, а затем использует венгерский алгоритм для ассоциации данных. В конце, фильтр Калмана обновлен.

DeepSORT вычисляет сходство, используя информацию о движении и внешнем виде цели (человека). Для информации о движении расстояние Махаланобиса используется для оценки корреляции между прогнозируемой целью и обнаруженной целью. Выражение расстояния Махаланобиса:

$$d^{(1)}(i,j) = (d_j - y_i)^T S_i^{-1} (d_j - y_i)$$

Где d_j — позиция bounding box j, y_i - позиция, предсказанное фильтром Калмана, S_i -ковариационная матрица обнаруженных и предсказанных позиций \circ

Когда цель закрыта в течение длительного времени или угол обзора колеблется, необходимо ввести информацию о внешнем виде и использовать косинусное расстояние для решения проблемы переключения идентичности, вызванного окклюзией.

Выражение косинусного расстояния:

$$d^{(2)}(i,j) = \min\left\{1 - r_j^T r_k^{(i)} \mid r_k^{(i)} \in R_i\right\}$$

Где r_j — собственный вектор bouding box d_j ; $r_k^{(i)}$ — набор собственных векторов, соответствующих последним 100 кадрам трекера i; R_i — набор векторов признаков внешнего вида.

Чтобы в полной мере использовать два вида информации, для суммирования используется линейно-взвешенный метод:

$$c_{i,j} = \lambda d^{(1)}(i,j) + (1 - \lambda)d^{(2)}(i,j)$$

В формуле: λ является гиперпараметром тогда и только тогда, когда значение измерения $c_{i,j}$ Существует между $d^{(1)}(i,j)$ И $d^{(2)}(i,j)$, только в этом случае он считается относящимся к цели.

Стоит заметить, что, поскольку алгоритм фильтра Калмана основан на линейном равномерном движении, алгоритм DeepSORT может предсказывать состояние цели только в линейной среде и может быть не в состоянии хорошо предсказать, когда траектория пешехода нелинейна.

Повторная идентификация людей

Повторная идентификация множества людей (Person Re-identification, также известная как Ре-идентификация человека или междукамерное сопровождение) — это новая технология, появившаяся в области интеллектуального анализа видео в последние годы. Ре-идентификация множества людей может быть определена как задача присвоения одного и того же имени или индекса всем образам одного и того же человека, получаемым с пространственно-разнесенных камер, области видимости которых не пересекаются друг с другом, на основе выделения и анализа признаков его изображений. Применение ре-идентификации в пространственнораспределенных системах видеонаблюдения позволяет собирать статистику о количестве уникальных вхождений большой площади, человека на видеонаблюдения. покрываемой несколькими камерами 【СОПРОВОЖДЕНИЕ И ПОВТОРНАЯ ИДЕНТИФИКАЦИЯ ЛЮДЕЙ Р. П.

Богуш В видеонаблюдении из-за разрешения камеры и угла съемки обычно невозможно получить очень качественные изображения лиц. Когда распознавание лиц не работает, reid становится очень важной замещающей технологией. Очень важной особенностью reid является кросскамерность, поэтому при оценке производительности в научных работах необходимо получать одни и те же изображения пешеходов с разных камер.

Такие задачи характеризуется высокой сложностью реализации и требуют точной локализации людей в кадрах и правильной идентификации на текущем кадре или на кадре другой видеокамеры относительно предыдущих. 【СОПРОВОЖДЕНИЕ И ПОВТОРНАЯ ИДЕНТИФИКАЦИЯ ЛЮДЕЙ Р. П. Богуш 】 Одной из основных проблем является выбор дескриптора, описывающего человека. 【Ye, S. Person Tracking and Re-Identification in Video for Indoor Multi-Camera Surveillance Systems / S. Ye, R. Bohush, C. Chen, I. Zakharava, S. Ablameyko // Pattern Recognition and Image Analysis, 2020. - Vol.

30, №4 — Р. 827-837 Для ее решения необходимо выявить отличительные признаки и путем сопоставления изображений людей из разных кадров или выполнения запроса сравнить их между собой или с признаками из имеющейся выборки изображений множества людей (галереи для реидентификации). Поиск и выделение набора наиболее отличительных особенностей объектов на изображениях, в том числе и людей, не формализован. Следовательно, требуется эмпирический поиск признаков, который в большинстве случаев является долгим и трудоемким процессом. сопровождения и повторной идентификации людей. неоднозначности внешнего вида с разных ракурсов, вариаций освещения, различных разрешений камер, окклюзий такой подход требует нерационально большое количество времени. Поэтому долгое время значимые результаты для указанных задач не достигались. Совершенствование средств вычислительной техники и открытия в области глубокого обучения, в частности, развитие сверточных нейронных сетей (СНС) позволили автоматизировать процесс извлечения признаков изображений людей и обеспечить значительное увеличение точности повторной идентификации, однако в полной мере решение не получено в настоящее время. СОПРОВОЖДЕНИЕ И ПОВТОРНАЯ ИДЕНТИФИКАЦИЯ ЛЮДЕЙ Р. П. Богуш

Наиболее часто используемая концепция повторной идентификации пешеходов:

При выполнении задачи повторной идентификации пешеходов мы обычно разделяем все изображения пешеходов на две группы: набор запросов (Query) и набор галерей (Gallery).

Набор запросов (Query): коллекция изображений, которые мы хотим использовать для поиска подобных изображений в наборе галерей.

Набор галерей (Gallery): коллекция всех доступных изображений для поиска.

Зарос (probe или query image): одно изображение или группа связанных изображений для поиска. В нашем случае это изображение человека.

Обычно мы используем запрос("probe") для представления каждого изображения в наборе запросов, которое является целью нашего поиска, а "галерея" представляет собой набор изображений, в которых мы ищем соответствующие изображения. Цель повторной идентификации пешеходов заключается в том, чтобы найти все изображения пешеходов в наборе галереи, которые похожи или совпадают с изображениями в наборе запроса, и могут быть точно аутентифицированы или идентифицированы.

Задача повторной идентификации пешеходов в основном состоит из двух процесса: процесса извлечения признаков и процесса измерения сходства. Извлечение признаков - это обучение особенностей, способных справляться с изменениями пешеходов под разными камерами. Обучение измерения - это отображение обученных признаков в пространство более высокой размерности, таким образом, чтобы одинаковые люди находились ближе друг к другу, а разные люди - дальше.

Традиционный метод заключается в ручном извлечении признаков изображения, например, цвета, НОG (гистограмма ориентированных градиентов)[4], SIFT (масштабно-инвариантное преобразование функций)[5], LOMO (локальный максимальный возникновение) и т. д. Затем используется XQDA (кросс-видовой квадратичный дискриминантный анализ)[6] или KISSME (простое и прямолинейное изучение метрики)[7] для изучения лучшего измерения сходства. Однако традиционные методы ручного описания особенностей имеют ограниченные возможности и трудно применяются к задачам с большим объемом данных в сложных сценах. Кроме того, при обработке больших объемов данных традиционные методы обучения измерений также становятся очень сложными.

В последние годы глубокое обучение, представленное сверточными нейронными сетями, достигло больших успехов в области компьютерного зрения, победив традиционные методы в многих задачах и даже в какой-то мере превзойдя уровень человека [8-9]. В случае повторной идентификации пешеходов методы на основе глубокого обучения могут автоматически извлекать сложные описания признаков и использовать простые евклидовы расстояния для измерения сходства, что дает хорошие результаты. Другими словами, обучение реализовать глубокое может задачу идентификации пешеходов полностью, что делает задачу более простой. В настоящее время методы повторной идентификации пешеходов на основе глубокого обучения значительно превосходят традиционные методы по производительности. Эти преимущества делают глубокое обучение популярным в области повторной идентификации пешеходов.

Принципы повторной идентификации

Повторная идентификация пешеходов обычно используется в сочетании с отслеживанием пешеходов. Эти две технологии составляют интеллектуальную видеосистему с отследованием и повторной идентификацией людей. На рис. показана общая схема этой видеосистемы.

Figure 1 Общая схема интеллектуальной видеосистемы с сопровождением

На каждом кадре F^q из C_1 , C_2 , C_q IP камер, q - номер видеокамеры в системе, с помощью детектора на основе СНС выполняется обнаружение всех людей, попадающих в поле зрения камер, формирование ограничительных рамок для них, которые описывают прямоугольником обнаруженные фигуры. Для каждого изображения человека I_i , где $i=1,\ldots,N_{img},N_{img}$ -общее количество изображений, с помощью другой СНС определяются вектора СНС признаков f_i^{gen} (СНС дескрипторы), формирующие общее пространство СНС признаков $\chi_{I_i} = \{f_i^{gen}\}, i=1,\ldots,N_{img}$. Данное множество дескрипторов представляется в виде таблицы, в которой каждая строка является СНС дескриптором f_i^{gen} для одного изображения.

Для всех сопровождаемых объектов и обнаруженных на текущем кадре вычисляются значения схожести, на основе которых устанавливается соответствие между обнаруженными и сопровождаемыми объектами.

Для описания человека при ре-идентификации дескриптор может быть представлен как:

$$P_{ID} = (p_n^{ID}, f_i^{gen}, f_i^{add}))$$

Где p_n^{ID} — идентификатор (метка) человека; \mathbf{n} — количество возможных идентификаторов которое равно общему числу уникальных людей; f_i^{gen} — СНС признаки для і-го изображения человека быть разделены на глобальные, карактеризующие его изображение в целом, и локальные, которые получают при разделении изображения на части; f_i^{add} — дополнительные признаки, которые могут содержать информацию, позволяющую улучшить эффективность системы ре-идентификации, например, идентификатор камеры C_{ID} , номер кадра с q-й видеокамеры F_m^q , время $t^{F_m^q}$ получения кадра \mathbf{m} с q-й видеокамеры.

Для практической реализации повторной идентификации создается таблица, содержащая изображения людей и их дескрипторы, которая называется галереей. При поступлении запроса для ре-идентификации человека вычисляется его вектор признаков, который используется для нахождения расстояния d_q , определяющего степень подобия между данным запросом и дескрипторами изображений галереи. С использованием найденных расстояний выполняется ранжирование в таблице от d_{min} до d_{max} . С учетом дополнительных признаков исключаются изображения, которые по каким-либо критериям позволяют предполагать, что несмотря на схожесть визуальных признаков, изображение-кандидат не является искомым. После исключения из таблицы признаков всех неподходящих кандидатов, в качестве результата повторной идентификации выводятся изображения людей, f_i^{gen} которых находились вверху списка ранжированной таблицы. Первый человек в ранжированном списке принимается за результат повторной идентификации, как наиболее схожий с запросом.

Имеются раснообразные модели повторной идентификации. Среди них мы выбрали алгоритм FastReID, основанный на метрическом обучении в качестве метода повторной идентификации пешеходов исследовательского проекта. Были проведены экспериментальная оценка и его сравнение с другими алгоритмами. Результаты показали, что она сыграла очень хорошую роль в нашем проекте. Ниже мы представим его подробно.

Алгоритм FastReID

Благодаря построению нейронной сети повторной идентификации WRN, DeepSORT способен эффективно решать проблему перекрытия. WRN состоит главным образом из остаточных блоков, имеет много параметров и требует больших вычислительных затрат. Чтобы улучшить скорость и способность идентификации повторной идентификации сети, мы вводим модель повторной

идентификации человека FastReID взамен WRN. Это позволяет снизить вычислительную сложность, увеличить экспрессивность и достичь более быстрой скорости и лучшего эффекта идентификации. FastReID в целом состоит из четырех частей: предварительная обработка изображения, основная сеть, интеграция функций и головные сети. Общая архитектура показана на следующей рисунке:

Figure 1. The Pipeline of FastReID library.

Training

Модуль предварительной обработки данных (Pre-processing)

В модуле предварительной обработки данных FastReID используются различные методы увеличения данных, такие как Resize, Flipping, Random erasing, Auto-augment, Random patch, Cutout и т.д.; эти приемы повышают устойчивость функций.

Модуль основной сети (Backbone)

Внутри модуля основной сети реализована модель извлечения черт resnet. Мы также добавили модуль instance batch normalization (IBN) в основную часть, чтобы изучить более устойчивые функции.

Модуль интеграции функций (Aggregation)

Модуль интеграции характеристик используется для агрегации функций, сгенерированных основной сетью, в глобальную характеристику. Реализованы четыре операции пулинга: максимальное пулингирование, среднее пулингирование, Gem пулингирование и Attention пулингирование.

Модуль заголовков (Head)

Модуль заголовка - это часть, которая обрабатывает глобальный вектор, созданный модулем агрегации, включая BN Head (batch normalization head), Linear head и Reduction head. Три типа заголовков показаны на рисунке 3: линейный заголовок содержит только один слой decision, BN заголовок содержит слой BN и слой decision, а упрощенный заголовок содержит операции conv+BN+relu+dropout, слой reduction и слой decision.

Batch Normalization применяется для решения проблемы внутреннего сдвига ковариации, так как модели с насыщенной нелинейностью трудно обучать. Упрощенный слой (Reduction layer) направлен на уменьшение размерности высокомерных характеристик до 512 из 2048. Слой решений (Decision layer) выводит вероятности различных классов, отличает различные классы, используется для последующего обучения модели.

Функции потерь: реализовали четыре функции потерь, включая:

- Потерю кросс-энтропии (Cross-entropy loss)
- Тройную потерю (Triplet loss)
- Arcface loss
- Circle loss, предложенная Megvii в 2020 году, считается лучшей в настоящее время для всех видов задач машинного обучения.

Inference

Модуль расстояний (Distance Metric)

После обработки изображений модулями pre-processing, backbone, aggregation и head получается характеристический вектор размерности 512. Модуль расстояний выполняет сравнение вектора функций и галерейного

векторного хранилища и выдает результат поиска: набор изображений, похожих на оригинальное изображение.

Модуль последующей обработки (Post-processing)

Послеобработка относится к обработке результатов поиска, включая два способа повторной классификации (re-rank): k-reciprocal coding [11] и Query Expansion [12].

Модуль оценки производительности (Evaluation)

Для оценки эффективности мы использовали стандартные показатели, которые можно найти в большей части литературы по повторной идентификации личности, а именно кумулятивную кривую соответствия (СМС) и среднюю среднюю точность (mAP). Кроме того, мы добавляем две метрики: кривую рабочих характеристик приемника (ROC) и средний обратный отрицательный штраф (minp).

Модуль визуализации (Visualization)

Предоставляется инструмент рейтингового списка для поиска результатов, который полезен для отображения результатов повторной идентификации человека.

Метод подсчета количества людей в видеопоследовательности

Под визуальным подсчетом людей понимается возможность оценить количество людей в видео наблюдения с помощью определенной обработки. Визуальная статистика потоков людей широко используется во многих областях, в то же время широкое внедрение камер наблюдения и постоянное расширение сценариев применения статистики потоков людей привлекли большое внимание исследователей к проблеме статистики потоков людей.

Многие компании в мире провели множество исследований и экспериментов с прикладными продуктами для подсчета людей, например, серия продуктов для подсчета людей WiseCount от компании Fei Ruisi имеет статистическую точность более 95% и может работать 24 чеса. В практических приложениях он имеет высокую точность в реальном времени и статистическую точность.

Что касается статистики трафика покупателей, мы изучили алгоритм, основанный на сверточной нейронной сети, который может регистрировать конкретное время входа и выхода каждого покупателя из магазина для принятия бизнес-решений и анализа.

Основные исследования этой статьи

На основе изученной литературы в работе было решено разрабатывать и реализовывать алгоритм, сочетающий алгоритм YOLOv5, алгоритм отслеживания DeepSORT и алгоритм повторной идентификации пешеходов FastReID для реализации оценки трафика магазина. Путем оптимизации алгоритмов обнаружения, отслеживания и повторной идентификации пешеходов мы добились точного отслеживания и собирать статистику вренми входа/выхода покупателей под разными углами и в различных условиях освещения, а также разработали систему статистики потока покупателей, ориентированную на магазины.

ГЛАВА 2 Обучение модели для отследования людей в нескольких видеопотоках

Обучение модели для повторной идентификации FastReID Набор данных

Набор данных MSMT17

Для выполнения процедуры обучения нейронной сети возникла необходимость найти такой набор данных, который бы покрывал различные условия съёмки и содержал большое количество кадров с людьми.

На конференции CVPR2018 был предложен новый крупномасштабный набор данных MSMT17, который ближе к реальной сцене, а именно Multi-Scene Multi-Time, охватывающий несколько сцен и несколько периодов времени.

Набор данных MSMT17 использует сеть из 15 камер видеонаблюдения в кампусе, включая 12 наружных камер и 3 внутренние камеры. Для сбора необработанного видео наблюдения было выбрано 4 дня в месяц с разными погодными условиями. Каждый день собирается 3 часа видео, охватывающих три временных периода: утро, полдень и день. Таким образом, общая продолжительность необработанного видео составляет 180 часов.

Три комментатора-человека потратили два месяца на просмотр обнаруженных ограничивающих прямоугольников и пометку пешеходов. В конце, получается 126 441 ограничительная рамка 4 101 пешехода. Сравнение и статистическая информация с другими наборами данных показаны на рисунке ниже:

Dataset	MSMT17	Duke [41, 27]	Market [39]	CUHK03 [20]	CUHK01 [19]	VIPeR [8]	PRID [10]	CAVIAR [3]
BBoxes	126,441	36,411	32,668	28,192	3,884	1,264	1,134	610
Identities	4,101	1,812	1,501	1,467	971	632	934	72
Cameras	15	8	6	2	10	2	2	2
Detector	Faster RCNN	hand	DPM	DPM, hand	hand	hand	hand	hand
Scene	outdoor, indoor	outdoor	outdoor	indoor	indoor	outdoor	outdoor	indoor

Преимущества MSMT17 по сравнению с другими наборами данных заключаются в следующем:

- (1) Больше пешеходов, ограничивающих рамок и камер;
- (2) Сложные сцены и фоны;
- (3) охват нескольких периодов времени, поэтому есть сложные изменения освещения;
- (4) Лучший детектор пешеходов (Faster- RCNN), ограничительная рамка более точная.

Протокол оценки

Набор данных случайным образом делится в соотношении обучениетестирование 1:3, а не поровну, как другие наборы данных. Целью этого является поощрение эффективных стратегий обучения, поскольку маркировка данных очень дорога в реальных приложениях.

В конце, обучающий набор содержит 1041 пешехода с 32621 ограничивающей рамкой, а тестовый набор содержит 3060 пешеходов с 93820 ограничивающими рамками. Для тестового набора 11659 ограничивающих рамок выбираются случайным образом в качестве запроса, а остальные 82161 ограничивающие рамки используются в качестве галереи.

Показатели теста - кривая СМС и mAP.Для каждого запроса может быть несколько положительных совпадений.

Принцип обучения

Принцип обучения модели FastReID заключается в следующем:

- 1.Предварительная обработка данных: сначала изображения в наборе данных предварительно обрабатываются с вероятностью 0,5 обрезки, масштабирования, симметрии и улучшения данных, чтобы повысить устойчивость модели к изображениям людей в разных позах и условиях освещения.
- 2.Извлечение признаков: FastReID использует обученную сверточную нейронную сеть серии resnet в качестве экстрактора признаков для извлечения 512-мерного вектора признаков из входного изображения. В то же время FastReID также вводит некоторые новые методы извлечения признаков, такие как выравнивание с учетом масштаба (SAA) и случайное стирание, для дальнейшего улучшения способности выражения признаков.
- 3.Метричное обучение: вектор признаков сопоставляется с низкоразмерным пространством посредством метрического обучения, а функции потери триплетов и перекрестной энтропийной потери используются для оптимизации модели, так что образцы с одной и той же идентичностью находятся ближе в пространстве признаков., и разные идентичности Образцы находятся дальше друг от друга в пространстве признаков.
- 4.Оптимизация модели: используовать оптимизатор Adam для оптимизации параметров модели, чтобы повысить эффективность обучения и точность модели.

Построить модель

Чтобы ускорить сходимость моделей и повысить производительность модели, мы используем ResNet50, модель сверточной нейронной сети, предварительно обученную на наборе данных imagenet. Imagenet — это широко используемый набор данных для классификации изображений, который содержит 1,4 миллиона изображений в более чем 1000 категориях. Модель resnet50 использует глубокую остаточную сетевую структуру, которая эффективно справляться крупномасштабными \mathbf{c} задачами классификации изображений. После завершения обучения веса модифицированной модели можно использовать В других задачах компьютерного зрения для повышения производительности и эффективности задачи, например, в нашей повторной идентификации пешеходов.

Размерность выходных признаков предварительно обученной модели resnet50 составляет 2048. Мы продолжаем вставлять средний слой пула и

линейный классификатор после магистральной сети. Выходная размерность линейного классификатора равна N. N представляет собой идентификационный номер обучающих данных.

Функции потери и алгоритмы оптимизации

Функция потерь:

Наша модель Ре-идентификация дает два выхода: признак f и предсказанные логиты p. Признак f используются для расчета триплетных потерь, а логиты p используются для расчета энтропии перекрестных потерь.

Cross Entropy Loss

Crossentropyloss — это широко используемая функция потери классификации, которая обычно используется для обучения глубоких нейронных сетей задачам классификации изображений. В частности, для входной выборки х и ее истинной метки у формула расчета перекрестной энтропийной потери выглядит следующим образом:

Cross Entropy Loss =
$$-\sum_{i=1}^{C} y_i \operatorname{Log}(\hat{y}_i)$$

Где С — количество категорий, y_i Представляет вероятность і-й категории (то есть истинной метки), а \hat{y}_i Представляет вероятность того, что модель предсказывает, что х принадлежит і-й категории.

Цель crossentropyloss — минимизировать разрыв между предсказанием и реальной меткой, чтобы модель могла более точно предсказывать категорию, к которой относится каждая выборка (каждый человек в обучающей выборке рассматривается как отдельная категория).

Triplet Loss

Triplet Loss — одна из функций потерь, широко используемых в области распознавания лиц, назначение которой — приблизить векторы встраивания изображений (embedding) одного и того же человека и отдалить векторы встраивания изображений разных людей. В частности, Triplet Loss изучит

вектор встраивания для каждого образца, что может сделать изображения одного и того же человека ближе, а изображения разных людей — дальше.

Для триплета, включающего три изображения привязки, положительное и отрицательное, формула расчета tripletloss выглядит следующим образом:

Triplet Loss =
$$Max(0, d(a, p) - d(a, n) + m)$$

Где d(a,p) представляет собой евклидово расстояние между привязкой и положительным значением, d(a,n) представляет собой евклидово расстояние между привязкой и отрицательным значением, а m представляет собой отступ, который является предустановленным гиперпараметром A, обычно положительным числом. Смысл этой формулы таков: если расстояние между текущим якорем и плюсом минус расстояние между якорем и минусом плюс маржа меньше или равно 0, это означает, что текущий вектор встраивания достаточно хорош и не нуждается в оптимизации.; в противном случае необходимо обновить параметры модели для лучшего встраивания векторов.

Triplet Loss обычно используется в сочетании с Batch Hard Triplet Mining, то есть для обучения в каждой партии выбирается самый сложный триплет. Конкретный метод заключается в выборе изображений пешеходов, очень похожих на якорь, но разных категорий, в качестве отрицательных образцов, и выборе изображений пешеходов, которые сильно отличаются от якоря, но принадлежат к той же категории, что и положительные образцы, чтобы улучшить производительность модели.

Ходы обучения

- Шаг 1: Используем resnet50 (инициализированные веса взяты из предварительно обученной модели imagenet), а затем измените ее полносвязный слой на N. N представляет собой идентификационный номер обучающих данных.
- Шаг 2: Мы случайным образом отбираем P идентификаторов и собираем K изображений для каждого идентификатора, а размер последней партии B = P * K. B этой статье мы устанавливаем P = 16, K = 4.
- Шаг 3. Мы изменили размер каждого изображения на 256×128 и заполнили 10 пикселей значениями 0, а затем повторно обрезали изображение размером 256×128 , используя случайное кадрирование.
- Шаг 4. Каждое изображение случайным образом переворачивается по горизонтали с вероятностью 0,5.
- Шаг 5. Каждое изображение декодируется как 32-битное необработанное значение пикселя с плавающей запятой в [0,1], а затем мы нормализуем каналы RGB, вычитая 0,485, 0,456, 0,406 и разделяя на 0,229, 0,224, 0,225.

- Шаг 6. Предсказать логиты р в соответствии с функциями reid f, выводимыми моделью.
- Шаг 7. Функции reid f используются для расчета триплетных потерь, логиты р используются для расчета энтропии перекрестных потерь, а запас m триплетных потерь устанавливается равным 0,3.
- Шаг 8. Для оптимизации модели используется метод Адама. Начальная скорость обучения установлена на 0,00035 и уменьшается на 0,00010 в 40-ю и 70-ю эпохи соответственно. Всего 120 эпох.

Тренировочный процесс

Результаты обучения

Метрики оценки эффективности модели

В исследованиях повторной идентификации пешеходов для оценки эффективности модели в основном используются два показателя оценки:

кумулятивные характеристики соответствия (Cumulative Matching Characteristics, CMC) и средняя средняя точность (Mean Average Precision, mAP).

Кумулятивная кривая соответствия (СМС)

Кумулятивная кривая соответствия представлена как k-я частота совпадения (ранг-k), которая конкретно относится к вероятности нахождения одного и того же изображения пешехода на k изображениях, наиболее похожих на изображение, которое необходимо получить *probe* в библиотеке изображений-кандидатов G. Выражение выглядит следующим образом:

$$Rank - k = \frac{\sum_{probe \in Q} f(k, index_{probe})}{m}$$

$$f(k, index_{probe}) = \begin{cases} 0, & k \ge index_{probe} \\ 1, & k < index_{probe} \end{cases}$$

Где *index*_{probe} Указывает местоположение первого изображения probe, принадлежащего тому же пешеходу, что и зонд изображения, который должен быть запрошен в результатах поиска, а m указывает количество изображений, которые должны быть извлечены в базе данных Q для извлечения. Вообще говоря, Ранг-1 является наиболее важным показателем для оценки эффективности модели повторной идентификации человека, который может быть выражен как вероятность того, что первое изображение в полученном отсортированном списке является тем же пешеходом, что и изображение, которое нужно получить. В реальных ситуациях, помимо использования ранга-1, другие часто используемые ранг-k включают ранг-5, ранг-10, ранг-20 и т. д.

Пример вычисления Rank-k приведен на рисунке

Средняя средняя точность (тАР)

В ранних наборах данных повторной идентификации пешеходов в библиотеке изображений-кандидатов есть только одно изображение пешехода *probe*, которое совпадает с извлеченным изображением *probe*, но с введением больших наборов данных, таких как Market-1501 и DukeMTMC-ReID,

изображение probe обычно можно найти несколько изображений с одинаковым идентификатором в библиотеке изображенийкандидатов G, и трудно оценить влияние труднодоступных образцов на производительность модели, используя только индекс оценки СМС. Следовательно, для более полной оценки эффективности модели повторной идентификации человека к индексу оценки модели повторной идентификации человека добавляется средняя точность. Средняя точность — это индекс, который может оценить результаты ранжирования всех положительных образцов. Только когда все изображения извлеченного человека ранжируются вверху в библиотеке кандидатов, индекс mAP будет высоким, поэтому он может более полно отражать пешеходов. При расчете mAP сначала вычисляется средняя точность (Average Precision, AP), соответствующая каждому извлекаемому изображению *probe*, которая используется для измерения точности распознавания модели на одном образце запроса. Процесс расчета показан в формуле:

$$AP(q) = \frac{\sum_{k \in k_1, k_2, \dots, k_S} \frac{k_r}{k}}{S}$$

Где S указывает количество положительных образцов, соответствующих полученному изображению probe в библиотеке кандидатов G, $\{k1,k2,...,k_s\}$ — позиция индекса S положительных образцов в результатах сортировки, а k_r указывает количество положительных образцов в первых k результатах. В конце, после вычисления средней точности всех изображений пешеходов в библиотеке Q, содержащей m изображений, можно использовать среднее значение значений AP всех выборок для получения mAP Процесс расчета показан в формуле:

$$mAP = \frac{\sum_{q_i \in Q} AP(q_i)}{m}$$

Пример вычисления mAP приведен на рисунке

Результаты обучения на наборе данных MSMT17

Мы используем 1/3 данных в MSMT17 в качестве образцов для обучения модели FastReID, а затем используем оставшиеся 2/3 данных в качестве проверочного набора для проверки возможностей модели. Результаты экспериментальной оценки приведены в таблице и на рисунке.

Dataset	Rank-1↑	Rank-5↑	Rank-10↑	mAP↑
MSMT17	84.19	90.95	95.10	62.89

По результатам экспериментальной оценки видно, что модель FastReID добилась хороших результатов на наборе данных MSMT17. В частности, она достиг 84,19% точности на 1-м ранге, 90,95% и 95,10% на 5-м и 10-м рангах соответственно. При этом средняя точность (mAP) также достигла 62,89%, что означает, что производительность модели на всем наборе данных относительно стабильна.

В целом эти результаты показывают, что модель FastReID хорошо работает с набором данных MSMT17.

Были проведены сравнение с другими алгоритмами на том же наборе:

Mathada	MSMT17			
Methods	Rank-1↑	MAP↑		
Ianet(IVPR'19)	75.7	45.8		
Auto-reid(ICCV'19)	78.2	52.5		
Osnet(ICCV'19)	78.7	52.9		
Abdnet(ICCV'19)	82.3	60.8		
Circle Loss(CVPR'20)	76.9	52.1		

Ours 84.19 62.89

Через сравнение мы знаем, что точность нашей модели намного выше, чем у других моделей, выпущенных в то же время, и показатели точности являются лучшими.

Реализация алгоритма DeepSORT с помощью FastReID и YOLOv5

Устраивание модели

Шаг 1. Используем DeepSORT в качестве сети отслеживания, чтобы отслеживать каждого человека и сопоставлять его с предыдущими траекториями.

Шаг 2. Используем YOLOv5s в качестве части обнаружения DeepSORT для обнаружения людей в каждом кадре изображения и вывода кадра обнаружения.

Шаг 3. Используем FastReID в качестве экстрактора признаков для извлечения признаков внешнего вида пешеходов, чтобы DeepSORT мог различать разных людей.

Шаг 4. Определим гиперпараметры модели. Параметры обучающей модели следующие:

DEEPSORT:

REID CKPT: "./fast-reid/checkpoint/model-final.pth"

MAX DIST: 0.2

MIN_CONFIDENCE: 0.3 NMS_MAX_OVERLAP: 0.5 MAX_IOU_DISTANCE: 0.7

MAX_AGE: 140

N_INIT: 3

NN BUDGET: 100

Набор тестовых данных МОТ-16

Мы используем общедоступный набор данных о пешеходах МОТ-16 для тестирования нашей модели отслеживания нескольких объектов (DeepSORT после улучшения модуля повторной идентификации пешеходов). Этот набор данных является общим набором данных, используемым для оценки производительности алгоритмов отслеживания нескольких целей.Существуют различные пешеходные сцены, TOM числе видеопоследовательностей, 7 a видеопоследовательностей помечены подробно с идентификаторами пешеходов и позициями кадров, которые используются для обучать многоцелевых пешеходов Алгоритм слежения, еще 7 видеофрагментов служат тестовой выборкой.

Figure 2 An overview of the MOT16 dataset. Top: Training sequences; bottom: test sequences.

Критерии оценки, использованные в эксперименте: точность сопровождения (МОТА), точность сопровождения (МОТР), количество правильно сопровожденных траекторий объекта выше 80% (МТ), количество правильно сопровожденных траекторий объекта ниже 20% (МL), смена идентификатора (IDsw, т.е. ID switch), точность отслеживания и точность отслеживания вычисляются следующим образом:

$$MOTA = 1 - \frac{\sum_{t} (m_t + n_t + s_t)}{\sum_{t} g_t}$$
$$MOTP = \frac{\sum_{i,t} d_i^t}{\sum_{t} c_t}$$

Где t представляет t-й кадр, m_t представляет количество пропущенных целей обнаружения в t-кадре; n_t представляет количество ложных целей обнаружения в t-кадре; s_t представляет количество переключений идентичности в t-кадре; g_t представляет общее количество целей в кадре t; расстояние между прогнозируемой позицией объекта кадра i и реальной позицией; c_t представляет количество успешно сопоставленных целей в кадре t.

Все эксперименты проводились на видеопоследовательности тестового набора МОТ- 16. Чтобы лучше подчеркнуть производительность алгоритма в этой статье, для сравнения были разработаны два разных эксперимента.

Эксперимент 1: Сравнительное тестирование нашего улучшенного алгоритма DeepSORT (YOLOv5+FastReID+DeepSORT) с оригинальном алгоритмом DeepSORT. Протестировать оба варианта на тестовом видео, чтобы проанализировать плюсы и минусы улучшенного алгоритма DeepSORT.

Эксперимент 2. Анализ надежности улучшенного алгоритма в различных сценариях. Сравнить улучшенный алгоритм с несколькими основными алгоритмами и проанализировать преимущества и недостатки улучшенного алгоритма.

Эксперимент 1: Сравнительное тестирование улучшенного алгоритма DeepSORT с исходном алгоритмом DeepSORT.

Процедура эксперимента

Мы протестируем все видеопоследовательности в наборе данных МОТ16, в которых идентификаторы пешеходов и положения границ отмечены вручную (gt.txt), всего 7. Это: МОТ16-02, МОТ16-04, МОТ16-05, МОТ16-09, МОТ16-10, МОТ16-11, МОТ16-13. Здесь в качестве примера взят МОТ16-13, а операции для других видео аналогичны.

1. Загрузить набор данных МОТ16, получить видеофрагменты и соответствующие им файлы gt.txt. Файл gt.txt в МОТ16-13 выглядит следующим образом (частично), а параметры разделены запятыми:

```
1,1,1376,485,37,28,0,11,1

2,1,1379,486,37,28,0,11,1

3,1,1382,487,38,29,0,11,1

4,1,1386,488,38,29,0,11,1

5,1,1389,490,38,29,0,11,1
```

Файл gt.txt представляет собой текстовый файл CSV, каждая строка содержит объект, описывающий отслеживаемый объект в одном из фреймов, с 9 значениями, разделенными запятыми. Trackeval использует только первые 6, номер кадра, идентификатор объекта и 4 координаты кадра отслеживания, а последние 3 (надежность классификации, категория объекта, видимость) не участвуют в расчетах и могут быть проигнорированы следующим образом:

```
<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, <class>, <visibility>
```

2. Запустить программу track.py в созданной нами модели DeepSORT.

Получить файл данных отслеживания MOT16-13.txt, совместимый с форматом MOT16. Файл MOT16-13.txt:

```
3 7 726 247 12 40 -1 -1 -1 0
3 8 269 276 16 45 -1 -1 -1 0
3 9 744 256 13 37 -1 -1 -1 0
4 1 1 341 13 93 -1 -1 -1 0
4 2 773 279 22 57 -1 -1 -1 0
```

Формат МОТ16-13.txt немного отличается от gt.txt, заявляя, что он «совместим» с форматом МОТ16. Формат «совместимость» имеет всего 10 значений, а его параметры разделены пробелами. Первые 6 параметров, участвующих в расчете МОТ16, такие же, как и gt.txt, а последние 4 параметра в расчете индикатора не участвуют, все они равны -1. Формат следующий:

```
<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>,
<conf>, <x>, <y>, <z>
```

3. Запускаем программу оценки и получаем результат:

4. Выполнить ту же операцию для МОТ16-02, МОТ16-04, МОТ16-05, МОТ16-09, МОТ16-10, МОТ16-11 соответственно и просмотрите весь набор данных МОТ16. Получить окончательный результат на этом наборе данных МОТ16.

Результаты эксперимента

Результат сравнения улучшенного алгоритма DeepSORT с исходном показан на таблице:

Algorithm	МОТА↑	MOTP↑	MT / % ↑	ML/%↓	Ids / % ↓
Original DeepSORT	61.4	79.1	32.8	18.2	781
Ours	66.2	80.8	35.3	17.6	760

По результатом видно, что после улучшения алгоритма DeepSORT все Точность сопровождения (МОТА) показатели немного улучшаются. увеличилась на 5,2%, точность сопровождения (МОТР) увеличилась на 1,7%, количество правильно сопровожденных траекторий целей более 80% (МТ) увеличилось на 3,5%, а количество правильно сопровожденных траекторий целей ниже 20%. (ML) сократилось на 0,6%, а общее количество целевых переключателей идентификации (ID) сократилось в 21 раз. Это значит, что DeepSORT может уменьшить количество улучшенный пешеходных переключений.

На основании экспериментальной оценки можно утверждать, что внедрение FastReID и YOLOv5 действительно повышает точность отслеживания алгоритма DeepSORT.

Эксперимент 2: сравнение улучшенного алгоритма DeepSORT с несколькими основными алгоритмами.

Результаты эксперимента 2 представлены в таблице.

Algorithm	МОТА↑	MOTP↑	MT / % ↑	ML / % ↓	Ids / % ↓	FPS / Hz ↑
SORT	59.8	79.6	25.4	22.7	1423	8.6
Original DeepSORT	61.4	79.1	32.8	18.2	781	6.4
JDE	64.4	-	35.4	20	1544	18.5
Ours	66.2	80.8	35.3	17.6	760	9.8

Мы усовершенствовали алгоритм повторной идентификации пешеходов (FastReID) на основе DeepSORT, благодаря чему была повышена точность, точность и возможность сохранения идентификатора пешехода модели. По сравнению с другими моделями наша модель имеет комплексные преимущества: точность сопровождения (МОТА) и точность сопровождения (МОТР) самые высокие, а количество правильно сопровождаемых траекторий целей более чем на 80% (МТ) практически равно JDE и делят первое место. Количество правильно отслеженных траекторий целей ниже 20% (МL) и общее количество переключений идентификации целей (ID) являются самыми низкими.

Кроме того, замечено, что производительность в реальном времени немного хуже, чем у алгоритма JDE, потому что JDE является одноэтапным алгоритмом отслеживания, а отслеживание в реальном времени относительно высоко, но переключение идентификаторов относительно частые, что обусловлено взаимным перекрытием мишеней. В розничной среде часто бывают сцены с большим количеством плотных пешеходов, поэтому наш алгоритм является подходящим выбором в это время.

На основании экспериментальной оценки можно утверждать, что данный алгоритм превосходит аналоги по точности сопровождения, количеству правильно сопровождаемых траекторий и стабильности.

ГЛАВА 3 Система оценки трафика магазина основа на нейтронных сетей

Цели разработки системы

Оценки трафика посетителей на основе видеонаблюдения является сбора бизнес-информации выполнения управления, важным функциональным интеллектуального также компонентом современного интеллектуального видеонаблюдения. В этом проекте будут использоваться передовые технологии компьютерного зрения и глубокого обучения, такие как YOLOv5, DeepSORT и FastReID. В частности, система будет получать видеопотоки в магазине из несколько камеров, использовать YOLOv5 для автоматического обнаружения, появляющихся на видео, затем использовать DeepSORT для отслеживания покупателя и, в конце, использовать FastReID для идентификации и анализа поведение покупателя, чтобы реализовать автоматическую статистику и анализ посещаемости магазина.

Благодаря исследованиям и практике этого проекта он может помочь продавцам более точно понять привычки и предпочтения поведения посетителей, сформулировать более научные и эффективные стратегии продаж, а также повысить прибыльность и рыночную конкурентоспособность магазинов. В то же время система также может предоставлять продавцам функции мониторинга и прогнозирования потоков посетителей в режиме реального времени, помогая продавцам еще больше оптимизировать управление операциями, повышать уровень обслуживания и удобство работы пользователей.

Описание системы

Общая архитектура системы

На основе FastReID и DeepSORT разрабатывается система оценки трафика покупателей, ориентированная на небольшие магазины. Система состоит из четырех модулей: 1)модуль обнаружения пешеходов, 2)модуль отследования пешеходов, 3)модуль подсчета и распознавания пешеходов и 4)модуль хранения. Общая структура системы показана на рисунке.

Модуль обнаружения пешеходов

На вход модуля обнаружения пешеходов подается видеопоток с одной камеры, в процессе реализации в данной работе используется алгоритм обнаружения объектов YOLO. В частности, YOLO используется для выделения пешеходов в каждом кадре видео, и пешеходы помечаются прямоугольным кадром. Конкретное положение пешехода в возвращается картинка, определение которой приведено в формуле:

$$b = [x, y, w, h]$$

Где (x, y) — пиксельные координаты верхнего левого угла кадра обнаружения, а (w, h) — ширина и высота кадра обнаружения.

Модуль отследования пешеходами

Модуль отслеживания пешеходов использует модель DeepSORT, и его входными данными является кадр и координаты всех людей. Цель этой модули

состоит в том, чтобы связать обнаруженные пешеходы в текущем кадре с существующими траекториями в предыдущих кадрах, впоследствии обновлят их. После получения кадра обнаружения и координатов, предоставленных модулем обнаружения пешеходов, сначала использовать модуль FastReID и алгоритм Калмана, чтобы извлечь признаки внешнего вида и признаки движения пешеходных в текущем кадре, а затем вычислить матрицу расстояний между ними, и, в конце, использовать венгерский алгоритм для сопоставления. Алгоритм связывает обнаруженные пешеходные в текущем кадре с существующими траекториями движения в предыдущем кадре, чтобы построить траектории всех пешеходов в видео.

Модуль подсчета и распознавания пешеходного

Вход данной модуля — траектория движения всех людей под одной камерой, и цель — точно зафиксировать в текущий момент количество людей, входящих и выходящих из магазина, и для передвигавшихся вдоль указанных напрвлений выполнить Ре-идентификацию, чтобы собирать статистику о времени и количестве уникальных вхождений человека на магазине, покрываемом несколькими камерами видеонаблюдения. В качестве выходных данных вырезаны ихображения, для которых формированы вектора признаков и, зафиксируются в журнал времени входа/выхода.

Подсчет людей

После рассмотрения реалистичных требований к задаче в этом исследовании используется «метод двух линий» для осуществить подсчёт людей. Конкретный принцип двухлинейного метода заключается в следующем:

В магазине устанавливается стационарная камера и получается видеопоток наблюдения. Причем в видеопотоке отмечаются две счетные линии, которые записываются как А и В. На основе траектории движения тела на пересечении траектории и линии указывается направления (вход/выход) проходящих людей.

В качестве примера предположим, что магазин находится слева от линии В, как показано в рисунке. Видно, что траектория входа посетителя будет сначала соприкасаться с линией А, а затем с контактом с В, это называется поведением входа. И наоборот, траектория ухода пешехода должна сначала коснуться линии В, а затем линии А, это называется поведением выхода. Нам нужно только записать, касается ли траектория пешехода сначала линии А или линии В, а затем мы уже можем определить, входит ли пешеход в магазин или выходит из него. Перебирая весь видеопоток, мы можем получить точное количество людей, входящих и выходящих.

Ре-идентификация

Краткая иллюстрация Ре-идентификации представлена на рисунке.

Когда происходит поведение входа/выхода, будут выделять обнаруженного пешехода, чтобы получить вырезанное изображение и формировать вектор приказов, а также зафиксировать время в журнал.

Для описания человека при ре-идентификации дескриптор может быть представлен как:

$$P_{ID} = (p^{ID}, f^{gen})$$

 Γ де p^{ID} — идентификатор (метка) человека; f^{gen} — вектор признаки для изображения человека, характеризующие его признаки в целом. Создается таблица, содержащая изображения всех посетителей и их дескрипторы, которая называется галереей.

При поступлении запроса, человека вычисляется его вектор признаков f, который используется для нахождения расстояния d, определяющего степень подобия между данным запросом и десрипторами изображений галереи. С использованием найденных расстояний выполняется ранжирование в таблице от d_{min} до d_{max} . Если расстояния d превышает пороговое значение, то считается, что запрос не соответствует ни одному из дескрипторов в галерее, значит изображения-кандидаты в галерее не является искомым. В таком случае добавляется его дискринтор в конце таблицы и возвращается новый уникальный идентификатор человека. После исключения из таблицы признаков всех наподходящих кандидатов, в качестве результата повторной идентификации выводяться идентификатор человека, f^{gen} которых находились вверху списка ранжированной таблицы. Первый человек в

ранжированном списке принимается за результат повторной идентификации, как наиболее схожий с запросом.

Таким образом, все посетители получат уникальные идентификакаторы, и на этой основе зафиксируются времени входы/выхода. В качестве выходных данных создается журнал, где записаны ID камер, идентификакатор человека и вренени появлении.

Модуль хранения

Модуль хранения отвечает за регистрацию времени, когда покупатели заходят в магазин, появляются под камерой и выходят из магазина.

Каждый раз, когда прохожий входит в указанные зоны, будет фиксировать время появления человека и в то же время перехватывать изображение соответствующего человека и извлекать вектор признаков на основе изображения. Если камера является камерой в магазине или на выходе, личность пешехода также учитывается в соответствии с моделью повторной идентификации. В конце, личность человека, в каком отделе он появляется, время появления и изображение человека сохраняются на диске для последующего статистического анализа.

Среда разработки

Аппаратные среды, использованные для разработки, показаны в Таблице 1:

Таблица 1

Предмет	Технические характеристики	Комментарий
Чип	AMD Ryzen 5 5600H with	
Чип	Radeon Graphics 3.30 GHZ	-
Паияти	16.0 GB	ПО использует до 2.1 GB
Камер	1080P	720Р минимум
OC	Windows 10 Professional	-

Программные среды, использованные в разработке, показаны а Таблице 2:

Таблица 2

Предмет	Версия	Комментарий
Python	3.8.16	Данная или выше
Pycharm	2022.1.2 (Educational Edition)	Данная или выше
Opencv	4.5.3	Данная или выше
Pytorch	1.13.0	Данная или выше

Демонстрация и тестирование системы Общая приципиальная схема системы

Общая приципиальная схема системы показана на рисунке ниже:

Для анализа пешеходного потока предполагается использовать кадры, получаемые с камеры в формате видеозаписи или в режиме реального времени. Аппаратной составляющей проекта служит веб-камера и компьютер. Средой разработки алгоритма служит РуСharm. 【降重】

Тестовая среда

Для проверки работоспособности различных функций в этой системе тест проведен в крупном супермаркете ОКЕЙ. Мы развернули 3 фиксированные камеры по траектории пешеходов, входящих в супермаркет, для получения видео. План этажа супермаркета и расположение 3-х камер показаны на рисунке выше. Продолжительность видеозаписи около 2 минут.

Междукамерное отслеживание пешеходов

Отследование людей под одной камерой

Следующие три изображения выбираются соответственно из изображений 300-го, 330-го, 360-го и 390-го кадра под камерой 3, а временной интервал выделения составляет около 1,5 секунды. На 3 рисунках ниже показано отслеживание человека 881.

Видно, что отследование человека у № 881 хорошее в пределах 90 кадров, потому что идентификатор у него всегда сохраняется без переключения. Даже если перекрывание между людями возникает в третьем кадре, идентификатор пешехода остается 881 в четвертом кадре, когда окклюзия исчезает в четвертом кадре. Это роль ассоциации признаков внешнего вида, предоставляемая FastReID. Кроме того, другие пешехода, отличные от 881, такие как 803, 819, 869, также хорошо отслеживаются.

Результаты испытаний доказывают, что система может непрерывно отслеживать нескольких пешеходов под одной камерой.

Отследование людей под несколькими камерами

На трех нижеприведенных снимках показаны результаты отслеживания пешехода cus-43, проходящего через три камеры в хронологическом порядке.

Из результатов теста видно, что при первом появлении пешехода в зоне наблюдения камеры 1 система выдает ей идентификатор: cus-43, который является глобально уникальным. Когда пешеход cus-43 исчез из поля зрения камеры 1 и вошел в камеру 2, система извлекла черты его внешности через FastReID для сравнения, узнала идентификационную информацию пешехода cus-43 и восстановила отслеживание и повторно идентифицировала личность Отображается информация в правом нижнем углу окна обнаружения. Точно так же, когда она вышла из камеры 2 и вошла в камеру 3, система также успешно идентифицировала ее в зоне наблюдения камеры 3.

На кадрах существуют желтая и зеленая виртуальные линии, они не реалины. Эти линии используются только для подсчета качества людей.

Когда пешеходы проходят через линии, в левом нижнем углу экрана печатаются подсказки времени прохождения, личности входящего персонала и общего количества входящих и выходящих.

Запись времени входа и выхода покупателей

Мы используем структуру данных в Python для записи входных и выходных записей всех посетителей за определенный период времени. Распечатаем его, как показано ниже на рисунке.

Вырезанные изображении покупателей

Вырезанные изображении покупателей из 1-ой камерой (частично):

Вырезанные изображении покупателей из 2-ой камерой (частично):

Вырезанные изображении покупателей из 3-ой камерой (частично):

Метрики оценки системы

Для оценки эффекта статистического части в данной работе используются 3 камеры для выборки видео крупного супермаркета ОКЕЙ. Каждое из этих видео длится примерно 2 минуты. Результаты статистического теста представлены в таблице ниже:

Модуль подсчета входов и выходов пешеходов

	Grou	and Truth	(Count	
Камера	Направление	Количество	Направление	Количество	Точность
	посетителпей		посетителпей		
	Вход	30	Вход	30	100.00%
Cam1	Выход	16	Выход	15	93.75%
	Всего	46	Всего	45	97.83%
	Вход	30	Вход	28	93.33%
Cam2	Выход	23	Выход	20	86.96%
	Всего	53	Всего	48	90.57%
	Вход	28	Вход	27	96.43%
Cam3	Выход	25	Выход	25	100.00%
	Всего	53	Всего	52	98.11%
		Вход	96.59%		
		Выход	93.57%		
		Всего	95.50%		

Эти данные получают путем подсчета потока людей двухстрочным методом, включающим реальные и статистические значения трех камер. Видно, что каждая камера имеет разную точность в направлении входа и выхода, но в целом средние точности являются 96,59% (вход), 93,57% (выход) и 95,50% (вход и выход всего).

Заметили, что точность камеры 2 в направлении выхода низкая, есть 86,96%. Это из-за того, что на определенном интервале времени появилось скопление народа. Из-за перекрытия людей, было 3 пропущенных инспекционных персонала, которые понизил среднюю точность.

Точность кулачка 1 и кулачка 3 относительно высока, выше 97%. Это связано с тем, что в этих двух сценариях почти нет больших толп людей, входящих и выходящих из магазина.

В целом, несмотря на то, что еще есть возможности для повышения точности, общая производительность относительно стабильна и точна, что может помочь руководителям объектов лучше понимать поток людей.

Модуль межкамерной Ре-идентификации пешеходов

Всего в этом тесте мы оценили 20 человек. Эти 20 человек идут от камеры 1, через камеру 2, к камере 3, то есть они имеют полную траекторию, пересекающую камеру.

В сат 120 человек, формируют 20 скриншотов посетителей, на данный момент в таблице 20 дискрипторов.

Под камерой-2 прошло 20 человек, а скриншотов сформировалось всего 19, потому что было два пешехода, идущих параллельно и один из них скрыт, показано ниже на рисунке.

Figure 3 Срыв подсчета человека из-за пересечения людей между собой

Из-за этого, происходило одно пропущенное обнаружение. Среди 19 изображений, 18 человек получили правильную идентификаторы с помощью повторной идентификации. 1 человек не смог получить соответствующий идентификатор из-за того, что его схожесть с исходном дискрипторм было слишком низким, поэтому он был назначен новый ID. Следовательно, точность повторной идентификации по кулачку-2 составляет 18/20=90,0 %.

Figure 4 Человек, из внешнего вида которого неуспешно восстановить ID

Figure 5 Правильный дискриптор входящего должна быть такой

Под камерой-3 прошли 20 человек, сформировалось 19 скриншотов, потому что было три пешехода, идущих параллельно и один из них скрыт, показано ниже на рисунке.

Figure 6 Срыв подсчета человека из-за пересечения людей между собой

Из-за этого, происходило одно пропущенное обнаружение. Среди 19 изображений, 19 человек получили правильную идентификаторы с помощью

повторной идентификации. Следовательно, точность повторной идентификации по кулачку-2 составляет 19/20=95,0 %.

Полный результат эксперимента показан следующей таблицей:

ID чел	Cam-1	Cam-2		Cam-3	
2	Сформировался дескриптор	Успешно идентифицирован правильный ID	повторно и получил	Успешно идентифицирован правильный ID	повторно и получил
5	Сформировался дескриптор	Успешно идентифицирован правильный ID	повторно и получил	Успешно идентифицирован правильный ID	повторно и получил
8	Сформировался дескриптор	Успешно идентифицирован правильный ID	повторно и получил	Срыв подсчета ч за пересечения л собой	
21	Сформировался дескриптор	Успешно идентифицирован правильный ID	повторно и получил	Успешно идентифицирован правильный ID	повторно и получил
25	Сформировался дескриптор	Успешно идентифицирован правильный ID	повторно и получил	Успешно идентифицирован правильный ID	повторно и получил
34	Сформировался дескриптор	Успешно идентифицирован правильный ID	повторно и получил	Успешно идентифицирован правильный ID	повторно и получил
43	Сформировался дескриптор	Успешно идентифицирован правильный ID	повторно и получил	Успешно идентифицирован правильный ID	повторно и получил
58	Сформировался дескриптор	Успешно идентифицирован правильный ID	повторно и получил	Успешно идентифицирован правильный ID	повторно и получил
61	Сформировался дескриптор	Срыв подсчета ч за пересечения ли собой		Успешно идентифицирован правильный ID	повторно и получил
77	Сформировался дескриптор	Срыв идентификации, неверную идентиф	повторной получить фикацию	Успешно идентифицирован правильный ID	повторно и получил
123	Сформировался дескриптор	Успешно идентифицирован правильный ID	повторно и получил	Успешно идентифицирован правильный ID	повторно и получил
183	Сформировался дескриптор	Успешно идентифицирован правильный ID	повторно и получил	Успешно идентифицирован правильный ID	повторно и получил
186	Сформировался дескриптор	Успешно идентифицирован правильный ID	повторно и получил	Успешно идентифицирован правильный ID	повторно и получил
188	Сформировался дескриптор	Успешно идентифицирован правильный ID	повторно и получил	Успешно идентифицирован правильный ID	повторно и получил
190	Сформировался дескриптор	Успешно идентифицирован правильный ID	повторно и получил	Успешно идентифицирован правильный ID	повторно и получил
236	Сформировался дескриптор	Успешно идентифицирован правильный ID	повторно и получил	Успешно идентифицирован правильный ID	повторно и получил
249	Сформировался	Успешно	повторно	Успешно	повторно

	дескриптор	идентифицирован	и получил	идентифицирован	и получил
		правильный ID		правильный ID	
	Сформированся	Успешно	повторно	Успешно	повторно
250	Сформировался	идентифицирован	и получил	идентифицирован	и получил
	дескриптор	правильный ID		правильный ID	
	Сформированся	Успешно	повторно	Успешно	повторно
267	Сформировался	идентифицирован	и получил	идентифицирован	и получил
	дескриптор	правильный ID		правильный ID	
	Сформироводод	Успешно	повторно	Успешно	повторно
270	Сформировался	идентифицирован	и получил	идентифицирован	и получил
	дескриптор	правильный ID		правильный ID	

И записали времени, когда они входят в магазин (виртуальное время в экспериментальной среде):

Всего было успешно повторно идентифицировано 17 человек из 20. Частичная таблица представлена ниже:

ID	Cam-1	Cam-2	Cam-3
2			
5			

Экспериментальный анализ: В общей сложности 20 человек прошли под три камерами. Из них 17 были полностью отслежены, что означает, что они были правильно идентифицированы и отслежены на трех камерах. Два человека не были полностью отслежены из-за пропущенных обнаружений, поэтому они не учитывались в полном отслеживании. Один человек был повторно распознан, но из-за недостаточной степени сходства не удалось восстановать его первоначальный ID, поэтому он также не учитывался в полном отслеживании.

Таким образом, всего 20 человек, из которых 17 были успешно отслежены, 2 человека не были отслежены, а один был повторно распознан, но распознавание не удалось. Мы можем вычислить точность (accuracy) как следующее:

Точность =
$$\frac{\text{число правильно отслеженных людей}}{\text{общее число людей}} = \frac{17}{20} = 0.85$$

Экспериментальный вывод: точность отслеживания нашей системы статистики трафика достигает примерно 17/20=85,0%.

ГЛАВА 4 Анализ полученных результатов

Экспериментальная оценка модели FastReID на открытом наборе данных

После завершения обучения модели мы решили протестировать производительность нашей модели на другом наборе данных Market1501 и DukeMTMC и сравнили ее с другими моделями ReID, появившимися в тот же период:

Methods	Market	:1501	DukeMTMC	
Metrious	Rank-1	mAP	Rank-1	mAP
IANet(IVPR'19)	94.4	83.1	87.1	73.4
Auto-ReID(ICCV'19)	94.5	85.1	-	-
OSNet(ICCV'19)	94.8	84.9	88.6	73.5
ABDNet(ICCV'19)	95.6	88.3	89.0	78.6
Circle Loss(CVPR'20)	96.1	87.4	89.0	79.6
ours	95.7	88.4	90.1	81.3

Согласно приведенным выше данным, мы видим, что модель FastReID хорошо работает как с наборами данных Market1501, так и с наборами данных DukeMTMC. Его точность Rank-1 в наборе данных Market1501 составляет 95,7%, mAP — 88,4%, а его точность Rank-1 в наборе данных DukeMTMC — 90,1%, mAP — 81,3%.

По сравнению с другими алгоритмами FastReID показал очень хорошую производительность. Например, в наборе данных Market1501 точность Rank-1 FastReID и mAP превзошли такие алгоритмы, как IANet, Auto-ReID и OSNet соответственно; даже в наборе данных DukeMTMC его точность Rank-1 и mAP превзошли все другие алгоритмы. Это показывает, что FastReID обладает высокой надежностью и способностью к обобщению в задачах повторной идентификации личности.

В заключение, основываясь на этих оценочных метриках, мы можем считать FastReID эффективной моделью повторной идентификации личности, которую предполагается применять в практических сценариях.

Экспериментальная оценка улучшенной модели DeepSORT на открытом наборе данных

Мы провели сравнительный эксперимент на более сложном новом наборе данных MOT17.

Мы протестировали алгоритм многоцелевого отслеживания на четырех подмножествах набора данных МОТ17 и сравнили результаты с результатами в конкурсе МОТ Challenge. В сравнении использовались 4 видеопоследовательностей, для которых в [https://motchallenge.net/results/MOT17/] опубликованы результаты.

Измерение проводилось с использованием 5 показателей точности — MOTA, IDF1, MT, ML и IDs. Среди них МОТА является основной оценочной метрикой для отслеживания нескольких объектов, которая сочетает в себе точность и полноту обнаружения, сопоставления и отслеживания. IDF1 - показатель, уделяющий больше внимания точности следящего устройства. МТ и ML соответственно представляют собой долю количества правильно сопровождаемых целей и долю количества пропущенных сопровождаемых целей в общем количестве обработанных кадров.

Результат показан на таблице:

Traker	МОТА↑	IDF1↑	MT/% ↑	ML/%↓	IDs ↓
MFI	60.1	58.8	26.0	29.7	2065
ISE_MOT17R	60.1	56.4	28.5	28.1	2556
SLA	59.7	63.4	24.0	31.1	1647

LPC_MOT	59.0	66.8	29.9	33.9	1122
MPNTrack	58.8	61.7	28.8	33.5	1185
ours	60.4	64.9	30.2	27.9	1192

По таблице видно, что наш многоцелевой алгоритм отслеживания работает очень хорошо по всем показателям. Ниже представлен анализ каждой метрики:

- 1. МОТА: указывает на общую производительность трекера, включая такие факторы, как пропущенное обнаружение, ложное обнаружение и ошибка позиционирования. Наш трекер имеет оценку МОТА 60,4, что немного выше, чем у большинства других трекеров.
- 2. IDF1: указывает скорость обнаружения дубликатов трекера. Наш трекер имеет более высокий показатель IDF1, чем большинство других трекеров, что означает, что он лучше избегает дублирующихся обнаружений.
- 3. МТ/%: МТ означает «В основном отслеживаемый», указывающий процент правильно отслеживаемого объекта. Наш трекер имеет показатель МТ 30,2%, что выше, чем у большинства других трекеров.
- 4. ML/%: ML расшифровывается как «в основном утерянные», указывая процент объектов, которые были потеряны или не были отслежены. Наш трекер имеет показатель ML 27,9%, что ниже, чем у большинства других трекеров.
- 5. IDs: количество уникальных целей, успешно отслеженных трекером. Несмотря на то, что показатель идентификаторов нашего трекера (1192) ниже, чем у некоторых конкурентов, это не обязательно означает, что ваш алгоритм нуждается в улучшении. Потому что в некоторых сценариях трекер может столкнуться с проблемами, такими как большая плотность объектов и окклюзия, что может повлиять на количество независимых объектов, которые он может успешно отслеживать.

На основании экспериментальной оценки можно утверждать, что данный улучшенный алгоритм является более универсальным, чем другими.

ЗАКЛЮЧЕНИЕ

Работа данной статьи является иследованием применения технологий нейронной сети для оценки трафика магазина. Реализаван алгоритм YOLOv5 для обнаружения пешеходов. Реализаван алгоритм отслеживания DeepSORT для отслеживания пешеходов. Реализаван алгоритм FastReID для повторно идентификации пешеходов под несколькими камерами. Реализован

двухстрочный метод для подсчета количества посетителей магазина. Хранения и записи изображений посетителей, характеристика и времени входа и выхода. В конце, разработала систему оценки трафика магазина на сцене супермаркета.

Основная работа данной статьи включает в себя следующие аспекты:

1. Повторная идентификация пешехода

Реализован алгоритм повторной идентификации пешехода FastReID, который используется для установления связи между идентификаторами пешеходов под несколькими камерами. Модель хорошо зарекомендовала себя на наборах данных Market1501 и DukeMTMC со средней точностью (mAP) 88,4% и 81,3%.

2. Отслеживание пешеходов

На основе алгоритмов YOLOv5, FastReID и DeepSORT разработан и реализован трекер пешеходов, который может выполнять многоцелевое отслеживание под одной и той же камерой, а также может идентифицировать личности между камерами. Результаты тестирования на МОТ16: точность отслеживания (МОТА) 66,2% и точность отслеживания (МОТР) 80,8%.

3. Применение системы подсчета посетителей в супермаркете

В данной статье разработана система оценки потоков людей на основе видео наблюдения, которая фиксирует количество посетителей, изображения посетителей и время, когда посетители появляются в каждой зоне супермаркета на определенном интервале времени. Точность идентификации входящих и выходящих людей достигла 95,50%, а точность отследования + повторной идентификации пешеходов достигла 85%.

4. Сравнить с другими продвинутыми алгоритмами на других наборах данных и выясните преимущества и недостатки модели FastReID и модели DeepSORT.

В сценариях практического применения система отследования множества объектов имеет высокую точность. Но когда появится скопление народа, например 50 около входа, точность отслеживания будет снижена из-за перекрытия. Точность можно повысить, улучшив алгоритмы отслеживания объектов, например, использовать обнаружение центральной точки вместо традиционного обнаружения ограничивающей рамки, использовать облегченную структуру сверточной нейронной сети, применить технологию сегментации объектов для избежания пропущенного обнаружения и т.д.

Список Литературы