

"Identifying and Analyzing Traits Associated with High Performers

Clara Su, Manuel Maldonado, Robert Pimentel and Thomas Pin - **Mentor**: Varada Kolhatkar 05/08/2020

Glentel

- Mobile Phone Retailer in Canada
- · Joint venture between Rogers Communications and Bell Canada Enterprises
- 350 locations spread over three banners
- · 2,000 employees
 - Sales Associate
 - Assistant Manager
 - Sales Manager

((WIRELESSWAVE))

11 boothwireless

Data Science Problem

HR wishes to understand what are the traits that are associated with employees who become high performers?"

Why?

- Decrease turnover rate in new hires.
- Optimize work force in function of performance expectation.

Current Solution

No quantitative support for high-performing traits looked for in new hires.

Data

Two sources of data:

- · Unstructured data
 - 400-600 Resumes (2019 onwards)
- Structured (tabular)
 - Employee demographics
 - Sales: phone/line "activation" data (2018 onwards)
 - Compensation tier based on activations
 - Termination reason
 - Promotions
 - Transfers

Data Challenges

Style_1.pdf Style_2.docx

- Different file formats (PDF's, doc, docx, rtf, txt)
- Different text formats

Data Challenges

- Estimate 5%-8%* are blank (based off of a sample size of 150)

- Resume in both French and English

Data Challenges

· Low sample size, limited primarly by resume data.

Target (Response Variable)

- Performance Level: Binary
 - High Performer (1)
 - Low Performer (0)

- · Requested by the company, based on their payroll tier reached.
- Influenced by sample size.

Target (Response Variable)

· Pay achievement level

Data Preparation: Ideal Data Format

Employee_ID	Text	Feature2	Feature3	Feature_n	Target
231		0	1	0	High Performer
456		1	1	1	Non-High Performer
790		0	0	1	Non-High Performer

Potential Features

- · Hire Type
 - Re-hire
 - Referral

· Resume Features

(Obtained through information retrieval techniques)

- Education
- Experience
- Job hopping
- Job experience (type and time)
- Spelling mistakes
- Language

Our approach; using NLP

- Extracting text from resumes
- Pre-processing (stopwords, special characters, punctuation)
- · Topic modelling.
- Feature engineering:
 - information retrieval
 - count vectorizer

Feature Engineering

Resume	College	Retail	Teamwork	Sales	Communication	Target
Resume 1	1	0	1	0	1	High Performer (1)
Resume 2	0	1	1	0	1	Non-High Performer (0)

- We expect to mix count vectorizer features and engineered features through information retrieval techniques.
- Based on:
 - insights of topic modeling
 - partner's expertise.
 - data scientists' criteria/creativity.

Machine Learning Pipeline

- 1. Feature Scaling
- 2. Cross validation
- 3. Hyperparameter optimization
- 4. Feature Selection
- 5. Model training
- 6. Model Interpretation

Models

- · Baseline: logistic regression
- Ensemble of additional classifiers, such as:
 - SVM
 - Random Forest
 - Multilayer perceptron

Complex Model Limitations

LSTMs

- Low sample size (overall aprox 400 observations)
- Deep learning models are hard to interpret.
- Data senstivity, can't be uploaded to be cloud (names on resume text).

Week 1 May 4 - May 8

- Understanding/defining problem to be solved with Glentel
- Methodology research and definition
- Preliminary EDA on tabular datasets

Partner still extracting resume information.

Week 2 May 11 - May 15

- Final Proposal to partners
- · EDA

- Resume Loading and Processing:
 - Special characters
 - Stop words
 - Lemmatization

Week 3-4 May 18 - May 29

NLP

- Count Vectorizer
- Topic Modelling
- Feature Engineering
 - Based on insights of the previous
 - Based on partner's expertise
 - Based on data scientist's criteria.

Week 5 Jun 1 - Jun 5

Baseline Model Creation: Logistic Regression

- Machine Learning Pipeline
 - scaling
 - cross validation
 - hyperparameter
 - Feature Selection
 - Measuring model Performance

Week 6-7 Jun 8 - Jun 12

Challenging the baseline model with additional classifiers

- Ensemble of additional classifiers, such as:
 - SVM
 - Random Forest
 - Multilayer perceptron

Week 8 Jun 15 - Jun 19

- · Result documentation and comparison
- · Final Model Selection
- Presentation preparation

Gantt Chart

Questions?

