

دانشگاه شهید بهشتی

دانشکده مهندسی و علوم کامپیوتر

کاهش شروعهای سرد در پلتفرمهای بدون سرور

گزارش سمینار کارشناسی ارشد مهندسی کامپیوتر گرایش نرمافزار

> نگارش امیرمحمد کرمزاده

> > استاد راهنما

دكتر عليرضا شاملي

چکیده

لورم ایپسوم متن ساختگی با تولید سادگی نامفهوم از صنعت چاپ و با استفاده از طراحان گرافیک است. چاپگرها و متون بلکه روزنامه و مجله در ستون و سطرآنچنان که لازم است و برای شرایط فعلی تکنولوژی مورد نیاز و کاربردهای متنوع با هدف بهبود ابزارهای کاربردی می باشد. کتابهای زیادی در شصت و سه درصد گذشته، حال و آینده شناخت فراوان جامعه و متخصصان را می طلبد تا با نرم افزارها شناخت بیشتری را برای طراحان رایانه ای علی الخصوص طراحان خلاقی و فرهنگ پیشرو در زبان فارسی ایجاد کرد. در این صورت می توان امید داشت که تمام و دشواری موجود در ارائه راهکارها و شرایط سخت تایپ به پایان رسد وزمان مورد نیاز شامل حروفچینی دستاوردهای اصلی و جوابگوی سوالات پیوسته اهل دنیای موجود طراحی اساسا مورد استفاده قرار گیرد.

واژگان کلیدی: رایانش ابری، رایانش بدون سرور، شروعهای سرد، FaaS ،function-as-a-service

فهرست مطالب

1		مقدمه)
۲	سئله	۱.۱ صورت م	
۲	تحقیق	۲.۱ انگیزهی	
٣	بط	٣.١ مثال مرت	
ķ	بوضوع	۴.۱ اهمیت،	
۵	ى مهم تحقيق	۵.۱ نتیجهها	
۶	ت	مروری بر ادبیار	۲
٧	دون سرور	۱.۲ رایانش ب	
٧	تعریف رایانش بدون سرور	1.1.7	
١.	معماری	7.1.7	
۱۱	ویژگیهای پلتفرمهای بدون سرور ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰	٣.١.٢	
14	پلتفرمهای تجاری	4.1.7	
۱۷	پلتفرمهای آزاد و متن باز	۵.۱.۲	
۱۸		کارهای مرتبط	٣
۲٠		نتىجەگىرى	۴

مراجع

فهرست شكلها

۴	اهمیت شروعسرد	1.1
٩	مرزهای رایانش بدون سرور و رایانش سرورآگاهانه	١.٢
١.	معماری کلے یک بلتفرم بدون سرور	۲.۲

فهرست جداول

فصل ۱

مقدمه

مقدمه

۱.۱ صورت مسئله

چه روشهایی برای کاهش تعداد شروعهای سرد در پلتفرمهای بدون سرور ۱ با حداقل سربار ۲ و زمان اجرایی وجود دارند؟

۲.۱ انگیزهی تحقیق

رایانش بدون سرور ^۳ یکی از مسائل داغ و محبوب اینروزهای دنیای مهندسی نرمافزار و رایانش ابری است. رایانش بدون سرور حوزه ی جدیدی را در توسعه ی محصول و استقرار ^۴ اپلیکیشنها باز کرده است. یکی از دلایل محبوبیت استفاده از پلتفرمهای بدون سرور و تمایل توسعه دهندگان برای مهاجرت به سمت آن، استفاده بیش از پیش از معماری میکروسرویس و نانوسرویس در توسعه ی محصولات و حرکت معماران و مهندسین نرمافزار در تولید و مهاجرت برنامههای کاربردی با این معماری ها است.

از دید توسعه دهنده، رایانش ابری با حذف دخالت مستقیم کاربران انتهایی در مدیریت زیرساخت ازجمله 0 برنامه lrload-balancing یا prauto-scaling موجب بهبود سرعت توسعه محصول و تمرکز کاربران برروی منطق 0 برنامه است. همچنین، برای علاوه بر آسانی استفاده و پنهان سازی پیچیدگی مدیریت سرور از کاربر، به علت اینکه ارائه دهندگان خدمات ابری در نقاط مختلف جهان حضور دارند و همچنین کانفیگ بهینه CDNها؛ ارتباطات بین سرورها و کاربران با حداقل تاخیر 0 صورت می گیرد.

به طور کلی، یک پلتفرم بدون سرور را هر پلتفرم محاسباتی تعریف کرد که در آن مدیریت مستقیم سرور از کاربران مخفی شده و برنامههای کاربردی به صورت اتوماتیک در آن مقیاس پذیر می شوند و تنها هنگامی که در حال استفاده از پلتفرم هستیم، هزینه آن را پرداخت می کنیم. [۱]

یکی از قابلیتهایی که در رایانش بدون سرور باعث محبوبیت آن شده است، قابلیت Scale-to-Zero است. این بدان معنی است که هنگامی که از یک کانتینر استفاده ای نداریم، منابع آن گرفته می شوند و کانتینر اصطلاحا

¹serverless

²Overhead

³Serverless Computing

⁴Deployment

⁵logic

⁶Latency

مقدمه

Zero-Scaled می شود. این خود موجب قابلیت پرداخت تنها در حین مصرف ما از تابع می شود. اما مشکل اصلی زمانی است که درخواست جدیدی برای کانینر Zero-Scale شده می رسد؛ در این حالت باید درخواست منتظر مانده تا سلسله ای از آماده سازی ها انجام شوند تا کانتینر مربوطه مجددا اجرا شود. این خود باعث تاخیری مضاف برای پاسخدهی به درخواست را موجب می شود که به این تاخیر مشکل شروع سرد اگفته می شود. در واقع می توان گفت تاخیر شروع سرد ناشی از تلاش ما در تعادل بین تاخیر در پاسخگویی به درخواستها و هزینه (هزینه های استفاده از رم و سی پی یو و ...) است.

متاسفانه در سالیان اخیر و در عین داغبودن مبحث و نیاز بازار به حل این مشکل، این مشکل چندان در محیطهای آکادمیک مورد بررسی قرار نگرفته است. البته در نگاه کلی تر، مشکلات و مسائل بار مربوط به رایانش بدون سرور، اکثرا در محیطهای آکادمیکی مثل دانشگاهها با کم محلی روبرو شده اند. در این میان، پلتفرمهای متن باز ^۲ که دارای جوامع بسیار گسترده ای نیز هستند، به خاطر این سری مسائل باز که شرکتهای تجاری در حال صرف هزینههای هنگفتی برای حل و فصل مسکلات مربوط به آن هستند، به شدت از رقابت عقب مانده اند. انگیزه ما برای انجام این پژوهش در این است که اولا بتوانیم به راهکار مناسب تری برای حل مشکل مربوط به شروع سرد در پلتفرمهای بدون سرور برسیم و ثانیا بتوانیم با مشارکت در بهبود یکی از پلتفرمهای آزاد در توسعه این پلتفرمها تاثیر کوچکی داشته باشیم.

٣.١ مثال مرتبط

در مقاله [۲] آقای لین و همکارش توانستند تا با اسفاده از استخر گرم و نگهداری کانتینر توابعی که محبوبیت استفاده دارند، مدت زمان پاسخ را در حدود ۸۵٪ کاهش دهند. این بهبود در پلتفرم knative اجرا شد و ایده ی مقالات دیگری نیز بوده است.

¹Cold Start

²Open Source

مقدمه

شكل ۱.۱: اهميت شروعسرد

۴.۱ اهمیت موضوع

اگرچه پلتفرمهای بدون سرور از نظر هزینه، scaling، راحتی استفاده و گستردگی پوشش جغرافیایی برای ما بهینه هستند؛ اما مشکل شروع سرد مشکلی نیست که بتوان به سادگی از آن گذر کرد. تصویر ۱.۱ که از [۳] گرفته شده است، نشان می دهد که بیش از ٪۸۰ زمان اجرای کامل یک کانتینر در پلتفرمهای بدون سرور به آماده سازی آن یا شروع سرد اولیه ۱ مربوط می شود.

ستون قرمز رنگ زمان آماده سازی کانتینر را نمایش میدهد. این زمان همان زمان شروع سرد است که دلایل مختلفی از جمله آماده سازی کانتینر یا حضور در صف انتظار برای تخصیص منابع باشد. بنابراین، با به کارگیری یک استراتژی مناسب می توان این زمان را به حداقل رسانید.

متاسفانه تاخیر شروع سرد باعث شده تا توسعهدهندگان اقبال کمتری به استفاده از پلتفرمهای بدون سرور

¹First Cold Start

مقدمه مقدمه

داشته باشند. به گونهای که از بین ۱۰۰۰ برنامه کاربردی بزرگ در پلتفرم Microsoft Azure، تنها یک مورد مربوط به یک برنامه تجاری باشد [۴]. این موضوع نشان می دهد که علی رغم پتانسیل بالای رایانش بدون سرور، وجود مشکلات جدی از جمله شروع سرد، باعث امتناع توسعه دهندگان از مهاجرت به پلتفرمهای بدون سرور باشد.

۵.۱ نتیجههای مهم تحقیق

لورم ایپسوم متن ساختگی با تولید سادگی نامفهوم از صنعت چاپ، و با استفاده از طراحان گرافیک است، چاپگرها و متون بلکه روزنامه و مجله در ستون و سطرآنچنان که لازم است، و برای شرایط فعلی تکنولوژی مورد نیاز، و کاربردهای متنوع با هدف بهبود ابزارهای کاربردی می باشد، کتابهای زیادی در شصت و سه درصد گذشته حال و آینده، شناخت فراوان جامعه و متخصصان را می طلبد، تا با نرم افزارها شناخت بیشتری را برای طراحان رایانه ای علی الخصوص طراحان خلاقی، و فرهنگ پیشرو در زبان فارسی ایجاد کرد، در این صورت می توان امید داشت که تمام و دشواری موجود در ارائه راهکارها، و شرایط سخت تایپ به پایان رسد و زمان مورد نیاز شامل حروفچینی دستاوردهای اصلی، و جوابگوی سوالات پیوسته اهل دنیای موجود طراحی اساسا مورد استفاده قرار گیرد.

ساختار این گزارش به این ترتیب خواهد بود:

درادبیات موضوع مروری بر واژگان، مفاهیم تخصصی و هر آنچه که در ادامه به آن نیاز پیدا خواهیم کرد، خواهیم درادبیات موضوع مروری بر واژگان، مفاهیم تخصصی و هر آنچه که در ادامه به آن نیاز پیدا خواهیم پرداخت و در خواهیم داشت. سپس در فصل کارهای از مطالعات انجام شده و مسائل باز خواهیم پرداخت.

فصل ۲

مروری بر ادبیات

در این بخش سعی داریم تا با مروری بر اصطلاحات و ابزارهای مورد استفاده در پژوهشهای بررسی شده، با پیشنیازهای مبحث موردنظر آشنا شویم.

۱.۲ رایانش بدون سرور

رایانش بدون سرور ۱ در سال ۲۰۱۴ توسط شرکت آمازون برای اولین بار معرفی شد. تا قبل از این رایانش بدون سرور یک مفهوم انتزاعی ۲ در شبکه بود که شرکت آمازون با ارائه پلتفرم AWS Lambda Functions ابری نیز به ارائه پلتفرمهای بدون سرور خود معرفی آن پرداخت. سپس در سال ۲۰۱۶ سایر ارائه دهندگان خدمات ابری نیز به ارائه پلتفرمهای بدون سرور خود پرداختند. در این سال به ترتیب شرکتهای گوگل پلتفرم google cloud functions یا به اختصار GCP، شرکت مایکروسافت پلتفرم Microsoft Azure functions و شرکت IBM OpenWhisk پرداختند. البته باید توجه داشت که مفهوم رایانش بدون سرور به طور کامل توسط ارائه دهندگاه خدمات ابری پیادهسازی نشده است و جای کار بسیاری دارد (با مطالعه این گزارش به مرور متوجه نواقص موجود خواهید شد).

در رایانش بدون سرور ما از نقطه قوت ماشینهای مجازی که ایزولاسیون برنامههای مختلف از همدیگر بود استفاده کرده ایم. در ادامه راجع به کانتینرها نیز بحث خواهیم کرد.

۱.۱.۲ تعریف رایانش بدون سرور

رایانش بدون سرور مبحثی از رایانش ابری است که در آن بحث مدیریت حافظه یا Storage، مدیریت زیرساخت و بحثهای networking با انتزاع بالایی به مصرف کاربر میرسد. به عبارت دیگر، تمامی مدیریت ای بخشها بر عهده ارائه دهندگان است و ما اصلا با این بحث ها سروکاری نداریم. در واقع، هدف اصلی رایانش بدون سرور هم این است که این پیچیدگیها را از کاربر بگیرد.

به طور کلی، یک پلتفرم بدون سرور را هر پلتفرم محاسباتی تعریف کرد که در آن مدیریت مستقیم سرور از کاربران مخفی شده و برنامههای کاربردی به صورت اتوماتیک در آن مقیاس پذیر می شوند و تنها هنگامی که در

¹Serverless Computing

²abstract

حال استفاده از پلتفرم هستیم، هزینه آن را پرداخت می کنیم. [۱]

بسیاری از افراد، serverless و faas را معادل یک دیگر می دانند در حالی که اصلا این گونه نیست. در ادامه راجع به این بحث به طور مفصلی بحث خواهیم کرد اما باید بدانیم که این دو مقوله کاملا جدا از همدگیر هستند و مجددا تاکید می کنیم که رایانش بدون سرور یک مدل اجرایی در رایانش ابری است.

ازطرفی رایانش بدون سرور را باید نقطه مقابل رایانش سرور آگاهانه ۱ دانست که در آن از اطلاعات سرور در مسلامی انتخار گرفته کاملا اگاهیم، کاملا بر مدیریت آن اشراف داریم و هرگونه تغییر از جمله متعادل سازی بارها، -auto و scaling و ... باید توسط کاربر انجام شود.

یک مثال از پیاده سازی رایانش سرور آگاهانه را در زیرساخت به عنوان سرویس ^۲ یا به اختصار IaaS است. در نقطه مقابل در رایانش بدون سرور هیچ کنترلی بر روی سرور نداریم، تنها می توانیم یک برنامه را بر روی سرور اجرا کنیم یا اجرای آن را به حالت تعلیق درآورده یا آن را از روی سرور حذف کنیم که هیچ کدما از این موارد نیز به صورت مستقیم انجام نمی گیرد؛ بلکه رابط گرافیکی و API وجود دارد که از طریق آنها این تغییرات را اعمال می کنیم. بنابراین در رایانش بدون سرور، عملا هیچ راهی برای مدیریت مستقیم سرور و زیرساخت نداریم.

شکل ۱.۲ مرزهای بین رایانش بدون سرور و رایانش سرور آگاهانه را نمایش می دهد.

البته باید به این نکته توجهداشت که امروزه مرزهای بین رایانش سرور آگاهانه با رایانش بدون سرور در حال کمرنگ شدن و بعضا از بین رفتن است و این تقسیم بندی ابدا قاطعیت ندارد. همچنین تفکیک برخی موارد مانند Platform-as-a-Serice یا به اختصار PaaS به راحتی انجام نمی گیرد بلکه این نوع رایانش می تواند از نوع باسرور یا بدون سرور باشد. در این شکل هرچه به سمت محور افقی حرکت می کنیم دانه بندی و طول عمر افزایش پیدا می کند و هرچه به سمت بالاتر می رویم، scalingz راحت تر انجام می گیرد.

از مزایای رایانش بدون سرور همچنین می توان به پشتیبانی و توسعه راحت تر اپلیکیشن ها با معماری میکروسرویس و نانوسرویس هم اشاره کرد. البته معماری نانوسرویس مبحث جدید تری است و جای پژوهش های بیشتری دارد.

¹Server Aware

²Infrastructure as a service

Increasing size and lifetime -

شکل ۱.۲: مرزهای رایانش بدون سرور و رایانش سروراً گاهانه

شکل ۲.۲: معماری کلی یک پلتفرم بدون سرور

١

۲.۱.۲ معماری

واژه serverless ممکن است این تفکر را به ذهن مبتدر سازد که اصلا در این نوع مدل رایانشی سروری نداریم؛ در حالی که این امر بسیار اشتباه است. در رایانش بدون سرور اگرچه سروری برای مدیریت به کاربر اختصاص داده نمی شود اما این موضوع بدان معنا نیست که اصلا سروری در کار نیست. در واقع مانند تمامی مدل های رایانشی در این جا هم سرور داریم، ولی تمامی تصمیمات مثل توزیع بار، تعداد اپهای روی سرور، انتخاب سرورها برای اجرای این جا هم سرور داریم، ولی تمامی تصمیمات مثل توزیع بار، تعداد اپهای روی سرور، انتخاب سرورها برای اجرای این جا هم سرور داریم، ولی تمامی تصمیمات مثل توزیع بار، تعداد اپهای روی سرور، انتخاب سرورها برای اجرای سرور، بهتر است با معماری آن آشنا باشیم. شکل ۲.۲ معماری یک پلتفرم خدمات ابری را نشان می دهد.

همانگونه که در تصویر مشخص است دوبخش کلی داریم، بخش لبه 7 و بخش رییس 8 ، بخش لبه شامل رابط گرافیکی کاربر 4 ، Gateway API و Cloud Event Source می شود که برای تعامل با سرور رییس مناسب هستند. از طرف دیگر، در سرور رییس، در خواستها ابتدا به صف ر خدادها 8 رسیده. صف ر خدادها مسئول مدیریت ر خداد

²edge

³master

⁴User Interface

⁵master server

⁶Event Queue

و نظم دهی به آنّها است. هر داده در صف رخداد نوبت دهی می شود و سپس به بخش توزیع کننده امی رود. توزیع کنند آپلیکیشن را برای دیپلوی، یا در خواست را برای سرویس دهی به یک نود کارگر هدایت می کند نود کارگر نیز با ارسال کدهای پاسخ 7 با سرور رییس در ارتباط است. [۵]

البته بهتر است بدانیم که امروزه ادبیات رییس-کارگر * برای نامیدن این معماری منسوخ شده و به جای آن از ادبیات رییس-گره 0 استفاده می کنند.

۳.۱.۲ ویژگیهای پلتفرمهای بدون سرور

امروزه پلتفرمهای بدون سرور بسیاری وجود دارند که روزانه بر تعداد آنها افزوده می شود. اما باید دنبال ویژگیهایی برای آنها باشیم که براساس آنها بتوان این پلتفرمها را تفکیک کرد و دست به مقایسه ی آنها زد. شاخصهایی که در این قسمت بررسی می کنیم شاخصهای کمی و کیفی برای مقایسه ی بین این پلتفرمها است.

۱. هزینه:

به طور معمول در رایانش بدون سرور، از مدل پرداخت پرداخت-به-ازای-استفاده 8 استفاده می کنیم. یک ویژگی اساسی در تمایز بین ارائهدهندگان مختلف خدمات ابری، تفاوت آنها در پشتیبانی از ویژگی scale-to-zero در این مدل محاسباتی 9 است. این مورد باعث تفاوت معنی داری از هزینهها در استفاده از پلتفرمهای مختلف می شود. بر خی از پلتفرمها هم متن باز 6 هستند که در این صورت، می توان به آسانی آنها را بر روی ماشین مجازی یا سرور شخصی خود پیاده سازی کرد و برای استفاده از خدمات آن متحمل هیچگونه هزینهای نشد.

۲. کارایی و محدودیتها^۹

¹dispatcher

²worker node

³Response Code

⁴Master-worker

⁵Master-Node

⁶pay-as-you-go

⁷Computational Model

⁸Open Source

⁹Performance and Limits

ارائه دهندگان مختلف، محدودیتهای مختلفی را هم بر روی پلتفرمهای مختلف خودشان اعمال می کنند. این محدودیتها می توانند تعداد همزمان درخواست ها requests)، concurrent of (number حداکثر است. PAM و CPU د توسط یک تابع، حداکثر زمان زنده ماندن بعد از اجرا توسط تابع و ... است. البته برخی از محدودیتها را می توان با صرف هزینه یا خرید پلنهای درامدی سطح بالاتر برطرف کرد. مثلا پلتفرم functions Lambda AWS می تواند با صرف هزینهی بیشتری حداکثر تعداد درخواست را افزایش داد. در حالی که این مورد در پلتفرمهای اوپن سورس وجود ندارد. در حالت کلی پلتفرمهای متن بازی مثل محدودیتهای بیشتری را برای کاربر اعمال می کنند. علت این امر می تواند این باشد بازی مثل نظر تکنولوژی و بازدهی (performance) کاملا از همتایان تجاری خود عقب هستند.

۳. زبان برنامهنویسی ۱

پلتفرمهای بدون سرور از گستره ی عظیمی از زبانهای برنامهنویسی پشتیبانی می کنند که شامل جاوااسکریپت، گو، پایتون، جاوا، سی شارپ، سویفت و پی اچپی می شود. اکثر پلتفرمها حداقل از ۵ زبان برنامهنویسی پشتیبانی می کنند. همچنین بسیاری از پلتفرمها مستقل از زبان ۴ هستند. یعنی در حالی که در داخل کانتینر اجرا می شوند (مثلا کانتینرهای داکر)، دیگر زبان برنامهنویسی برای آنها اهمیتی ندارد. این پلتفرمها توابع را در داخل کانتینر اجرا می کنند و نتیجه را برمی گردانند.

۴. مدل برنامهنویسی ۳

مدلهای مختلفی برای تولید یک متد در پلتفرمهای بدون سرور داریم. شیوه متداول استفاده از یک متد به نام main است که درون آن تابع اصلی تعریف می شود. همچنین معمولا ورودی های تابع در قالب شیئهای json تعریف می شوند.

۵. ترکیب توابع^۴

روشهای گوناگونی برای اینکه یک تابع یا جریان کاری پیچیدهرا پیاده سازی کنیم وجود دارد. یک روش

¹Programming Languages

²Language Independent

³Programming Model

⁴Compositions

استفاده از ترکیبهای توابع است. تا به حال ۷ ترکیب مختلف شناسایی شده است. پلتفرمهای تجاری استفاده از ترکیبهای برای پیاده سازی این ترکیبات در خود تعبیه کرده آند. متاسفانه پلتفرمهای متن باز مثل ۲ از این ترکیب پشتیبانی نمی کنند. در ادامه و در بخش کارهای مرتبط این ویژگیها مطرح خواهند شد. کاربرد اصلی ترکیب توابع پیاده سازی عملکردهای پیچیده در پلتفرم بدون سرور است.

استقرار ۳

پلتفرمها سعی می کنند پیاده سازی ها در رایانش بدون سرور را تا حد ممکن ساده کنند. این یکی از دلایل به وجود آمدن این مدل رایانشی بوده. به صورت معمول پلتفرمها برنامهها را در قالب کانتینرهای داکری دریافت می کنند و درون کانتینر مربوطه کد را اجرا می کنند. علاوه بر داکر پلنهایی از جمله دریافت کد باینری، دریافت سورس کد و سپس کانینرایز کردن آن وجود دارد.

٧. امنیت و حسابدری ٔ

این دو مورد در کنارهمدیگر به کار برده می شوند که معمولاخارج از بحثهای رایانش ابری کاملا جدا از همدگیر به کار برده می شوند. در رایانش بدون سرور لازم است که اپها کاملا از همدگیر جدا اجرا شوند به این دلیل که بتوانیم برای هر کاربر هزینه ای که باید پرداخت کند را محاسبه کنیم. درصورتی که اجرای کاربران از همدگیر تفکیک شده نباشد، محاسبه ی هزینه ممکن نیست. اما اجرای جداگانه ی توابع از یکدیگر علت دیگری نیز دارد، امنیت. لازم است که توابع جداگانه اجرا شوند تا در توابع و کاربران نتوانند در کارهای همدیگر دخالتی داشته باشند. این مورد حتی می تواند باعث به وجود آمد باگهای امینتی و دسترسی کاربران به سیستم کاربران دیگر از طریق مدل رایانشی ما شود.

$^{\Delta}$. پایش و اشکال زدایی $^{\Delta}$

هر پلتفرم رایانشی امکاناتی از جمله پایش اولیه برای در خواستها را به کاربر می دهد. البته این بحث یکی از مسائل باز در این حوزه است و نیاز به بررسی بیشتری دارد. در حال حاضر دیباگینگ از طریق تجزیه

¹orchestrator

²openfaas

³Deployments

⁴Security and Accounting

⁵Monitoring and Debugging

و تحلیل لاگهای سیستم ممکن است ولی ممکن است در آینده بهبودهایی در این حوزه حاصل شود. علت اینکه دیباگینگ بسیار چالش برانگیز است این است که در رایانش بدون سرور اپهای ما کانتینرایز می شوند و چون محیط کانتیر محیطی ایزوله است، امکان مطالعه و دیباگینگ ممکن نیست. بعلاوه توابع تنها در حالت استفاده در پلتفرم زنده هستند؛ پس مدت زمان اشکالزدایی ما نیز بسیار محدود می شود. باید به این نکته دقت داشت که به طور متوسط در رایانش بدون سرور، توابع ۹۹درصد زمان را از تاریخ استقرار روی سرور، درخواب هستند. اما در مورد پایش نرمافزار پلتفرم بدون سرور در داشبورد مدیریتی خود امکاناتی جهت مشاهده منابع مصرف شده، منابع آزاد مدت زمان استفادهشده، تعداد درخواستها و فراخوانی ها، تعداد شروعهای سرد و ... دارد. به علاوه ابزارهای پایش مانند prometheus با این سرورها پلتفرمها امکان اتصال دارند و با پنلهایی مانند grafana می توان از مانیتورینگ مضاعف برای این سرورها بهره برد.

۴.۱.۲ پلتفرمهای تجاری

پلتفرمهای اندکی برای این قسمت وجود دارد. معروفترین آنها عبارتند از: AWS Lambda Funcitons ، AWS Lambda Funcitons

IBM OpenWhisk و Microsoft Azure Functions

AWS Lambda Functions .1

پلتفرم AWS [۶] پلتفرم ارائه شده در بحث رایانش بدون سرور بود که دارای خلاقیتهای بسیاری بود. از مدل برنامهنویسی، مدل هزینهای، محدودیت منابع، امنیت و مانیتورینگ مخصوص خود استفاده می کند. همچنین AWS از زبانهای Python ،Node.js ،Java و سی شارپ پشتیبانی می کند. این پلتفرم ارتباط خوبی با سایر خدمات و سرویسهای AWS دارد و در این اکوسیستم اصطلاحا حل شده است.

Functions Cloud Google .Y

پلتفرم شرکت گوگل با نام Google Cloud Functions [۷] به تازگی از حالت آلفا خارج شده. این سرویس از زبانهای بسیاری ساپورت نمی کند ولی به خوبی به درخواستهای HTTP و HTTPS پاسخ می دهد. در حال حاضر اگرچه عملکرد محدودی برای این پلتفرم شاهد هستیم ولی با توجه به سابقه گوگل و معماری

متفاوت این پلتفرم، آینده خوبی برای آن میتوان متصور بود. این پلتفرم هنوز به خوبی با سرویسهای رایانش ابری گوگل ارتباط برقرار نکرده و جای کار بیشتری دارد.

Functions Azure Microsoft . "

پلتفرم بعدی، پلتفرم بعدی، پلتفرم Microsoft Azure Functions این پلتفرم وبهوکهای HTTP را برای تعامل با کاربر پیاده سازی کرده است. از زبانهای Rode.js ،Python ،PHP ،Bash سیشارپ و افشارپ یا هر زبان اجرایی (چون از کانتیترهای داکری استفاده می کند) پشتیبانی می کند. بخشی از کدها و پروژههای انجام شده با این پلتفرم توسط مایکروسافت در گیتهاب این پروژه متنباز شده اند. همچنین برای راحتی دیباگنگ مایکروسافت در Laching مربوطه امکان وسعهدهندگان رسیده و روز به روز بر امکانات آن است. این پلتفرم به مقبولیت قابل قبولی در بین جوامع توسعهدهندگان رسیده و روز به روز بر امکانات آن افزوده می گردد.

OpenWhisk Apache . §

پلتفرم آخر، پلتفرم OpenWhisk [۹]است که در برابر پلتفرمهای دیگر البته بسیار ساده تر به نظر می رسد. این پلتفرم اپن سورس توسط شرکت IBM تولید و پشتیبانی می شود. از قابلیت استفاده زنجیره ای توابع بهره می برد و در مبحث Orchestration توابع از پلتفرمهای رقیب خود جلوتر است (منبع به مقاله ۱). همچنین OpenWhisk توانایی اجرای هر تابعی را دارد؛ زیرا از داکر به عنوان runtime نیز استفاده می کند. سورس این پروژه در آدرس گیتهاب OpenWhisk موجود است. در شکل زیر نیز می توان معماری آن را مشاهده کرد.

همانگونه که در شکل بالا مشخص است. این معماری خیلی به معماری مینیمال یک پلتفرم بدون سرور شبیه است. البته در مقایسه با شکل قبل امکانات بیشتری از جمله امنیت، مانیتوریگ و لاگگیری را اضافه کرده است.

Apache OpenWhisk .1

لورم ایپسوم متن ساختگی با تولید سادگی نامفهوم از صنعت چاپ، و با استفاده از طراحان گرافیک است، چاپگرها و متون بلکه روزنامه و مجله در ستون و سطرآنچنان که لازم است، و برای شرایط فعلی تکنولوژی مورد

نیاز، و کاربردهای متنوع با هدف بهبود ابزارهای کاربردی می باشد، کتابهای زیادی در شصت و سه درصد گذشته حال و آینده، شناخت فراوان جامعه و متخصصان را می طلبد، تا با نرم افزارها شناخت بیشتری را برای طراحان رایانه ای علی الخصوص طراحان خلاقی، و فرهنگ پیشرو در زبان فارسی ایجاد کرد، در این صورت می توان امید داشت که تمام و دشواری موجود در ارائه راهکارها، و شرایط سخت تایپ به پایان رسد و زمان مورد نیاز شامل حروفچینی دستاوردهای اصلی، و جوابگوی سوالات پیوسته اهل دنیای موجود طراحی اساسا مورد استفاده قرار گیرد.

Openfaas .Y

لورم ایپسوم متن ساختگی با تولید سادگی نامفهوم از صنعت چاپ، و با استفاده از طراحان گرافیک است، چاپگرها و متون بلکه روزنامه و مجله در ستون و سطرآنچنان که لازم است، و برای شرایط فعلی تکنولوژی مورد نیاز، و کاربردهای متنوع با هدف بهبود ابزارهای کاربردی می باشد، کتابهای زیادی در شصت و سه درصد گذشته حال و آینده، شناخت فراوان جامعه و متخصصان را می طلبد، تا با نرم افزارها شناخت بیشتری را برای طراحان رایانه ای علی الخصوص طراحان خلاقی، و فرهنگ پیشرو در زبان فارسی ایجاد کرد، در این صورت می توان امید داشت که تمام و دشواری موجود در ارائه راهکارها، و شرایط سخت تایپ به پایان رسد و زمان مورد نیاز شامل حروفچینی دستاوردهای اصلی، و جوابگوی سوالات پیوسته اهل دنیای موجود طراحی اساسا مورد استفاده قرار گیرد.

OpenLambda . T

لورم ایپسوم متن ساختگی با تولید سادگی نامفهوم از صنعت چاپ، و با استفاده از طراحان گرافیک است، چاپگرها و متون بلکه روزنامه و مجله در ستون و سطرآنچنان که لازم است، و برای شرایط فعلی تکنولوژی مورد نیاز، و کاربردهای متنوع با هدف بهبود ابزارهای کاربردی می باشد، کتابهای زیادی در شصت و سه درصد گذشته حال و آینده، شناخت فراوان جامعه و متخصصان را می طلبد، تا با نرم افزارها شناخت بیشتری را برای طراحان رایانه ای علی الخصوص طراحان خلاقی، و فرهنگ پیشرو در زبان فارسی ایجاد کرد، در این صورت می توان امید داشت که تمام و دشواری موجود در ارائه راهکارها، و شرایط سخت تایپ به پایان رسد و زمان مورد نیاز شامل حروفچینی دستاوردهای اصلی، و جوابگوی سوالات پیوسته اهل دنیای موجود

طراحی اساسا مورد استفاده قرار گیرد.

۵.۱.۲ پلتفرمهای آزاد و متن باز

علاوه بر موارد فوق پلتفرمهای متن بازی برای رایانش بدون سرور ارائه شده که در ادامه شرح خواهیم داد.

فصل ۳

کارهای مرتبط

کارهای مرتبط

لورم ایپسوم متن ساختگی با تولید سادگی نامفهوم از صنعت چاپ، و با استفاده از طراحان گرافیک است، چاپگرها و متون بلکه روزنامه و مجله در ستون و سطرآنچنان که لازم است، و برای شرایط فعلی تکنولوژی مورد نیاز، و کاربردهای متنوع با هدف بهبود ابزارهای کاربردی می باشد، کتابهای زیادی در شصت و سه درصد گذشته حال و آینده، شناخت فراوان جامعه و متخصصان را می طلبد، تا با نرم افزارها شناخت بیشتری را برای طراحان رایانه ای علی الخصوص طراحان خلاقی، و فرهنگ پیشرو در زبان فارسی ایجاد کرد، در این صورت می توان امید داشت که تمام و دشواری موجود در ارائه راهکارها، و شرایط سخت تایپ به پایان رسد و زمان مورد نیاز شامل حروفچینی دستاوردهای اصلی، و جوابگوی سوالات پیوسته اهل دنیای موجود طراحی اساسا مورد استفاده قرار گیرد.

فصل ۴

نتيجهگيري

نتیجه گیری

در فصل قبل در ارتباط با راهکارهای ارائه شده توسط هر یک از مقالهها به تفصیل، تشریح نمودیم. در این فصل میخواهیم به بیان نتایج و مقایسه راهکارهای ارائه شده بپردازیم. در ابتدا به مقایسههای روشهای مبتنی بر مکانیزم DRX/DTX با یکدیگر میپردازیم.

مراجع

- [1] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, "The rise of serverless computing," *Commun. ACM*, vol.62, p.44-54, Nov. 2019.
- [2] P.-M. Lin and A. Glikson, "Mitigating cold starts in serverless platforms: A pool-based approach," arXiv preprint arXiv:1903.12221, 2019.
- [3] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and V. Sukhomlinov, "Agile cold starts for scalable serverless," in 11th {USENIX} Workshop on Hot Topics in Cloud Computing(HotCloud 19), 2019.
- [4] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, "Serverless in the wild: Characterizing and optimizing the serverless workload at a large cloud provider," in 2020 {USENIX} Annual Technical Conference({USENIX}{ATC} 20), pp.205-218, 2020.
- [5] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, *et al.*, "Serverless computing: Current trends and open problems," in *Research Advances in Cloud Computing*, pp.1-20, Springer, 2017.
- [6] A. AWS, "Aws lambda functions," https://aws.amazon.com/lambda/.
- [7] G. INC., "Google cloud fucntions," https://cloud.google.com/functions.
- [8] Microsoft, "Microsoft azure platform," https://azure.microsoft.com/en-us/services/functions/.
- [9] A. openwhisk corporation, "Ibm openwhisk platform," https://openwhisk.apache.org/.