Mathematics for Data Science

Lecture 1: Probability theory and Random Variables

Mohamad GHASSANY

EFREI PARIS

Mohamad GHASSANY 1/6

Mohamad GHASSANY

- ▶ Associate Professor at EFREI Paris, head of Data & Artificial Intelligence Master program.
- ▶ Phd in Computer Science Université Paris 13.
- ▶ Master 2 in Applied Mathematics & Statistics from Université Grenoble Alpes.
- ▶ Personal Website: mghassany.com

Mohamad GHASSANY

Introduction to probability theory

Real Random Variable

Discrete Random Variables

Moments of a discrete random variable

Two Random Variables

Loi Uniforme Discrète $\mathcal{U}(n)$

Loi de Bernoulli $\mathfrak{B}(\mathfrak{p})$

Loi Binomiale $\mathfrak{B}(\mathfrak{n},\mathfrak{p})$

Loi de Poisson $\mathfrak{P}(\lambda)$

Introduction to probability theory

Randomness (Uncertainty)

Fundamental example: consider the game of a die throw.

- ▶ Fundamental example ε : "throw a balanced die" ← Action.
- ▶ Sample space: the set of all possible results of this random experiment

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

- ▶ Events: In this random experiment, one can be interested in more complex events than just a simple result of the experiment.
- ▶ The The Power set Ω , called $\mathcal{P}(\Omega)$, is the set of all subsets of Ω .
- A family of subsets A of Ω . These subsets are called events. We say that the event A has occurred if and only if the result ω of Ω that has occurred belongs to A.
- ▶ σ -Algebra: We call σ -Algebra any family \mathcal{A} of subsets of Ω satisfying:
 - 1. $\Omega \in A$.
 - 2. if $A \in \mathcal{A}$, then $\bar{A} \in \mathcal{A}$.
 - 3. if $(A_n)_{n\in\mathbb{N}}$ is a sequence of elements in \mathcal{A} , then $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{A}$.
- \blacktriangleright (Ω, A) is a measurable space (or a Borel space).

Mohamad GHASSANY

- Let (Ω, \mathcal{A}) be a measurable space:
 - The set A is called σ -Algebra of events. The elements of A are called the events.
 - The event Ω is called certain event. The event \emptyset is called impossible event.
- ▶ Operations on events. Let A and B be two events:
 - \bar{A} is the complement event of A (we also note A^c). $\bar{A} = \Omega \setminus A$. barA occurs if and only if A does not occur.
 - A∩B is the event «A and B». $A \cap B$ occurs when both events occur
 - A ∪ B is the event «A or B». $A \cup B$ occurs when at least one of the two events occurs.
- ▶ Mutually Exclusive Events: A and B are mutually exclusive if their simultaneous realization is impossible: $A \cap B = \emptyset$.
- ▶ Implication: A implies B means that if A occurs, then B also occurs: $A \subset B$.

Introduction to probability theory

▶ Let (Ω, A) a measurable space. A probability function on (Ω, A) , is any map

$$P: \mathcal{A} \to \mathbb{R}$$

such that:

- 1. $\forall A \in \mathcal{A}, P(A) \geq 0$.
- 2. $P(\Omega) = 1$.
- 3. $\forall (A_n)_{n\in\mathbb{N}^*} \in \mathcal{A}^{\mathbb{N}^*}$, a familty of pairwise disjoint (mutually exclusive) events, we have:

$$P(\bigcup_{n\in\mathbb{N}^*} A_n) = \sum_{n=1}^{+\infty} P(A_n)$$

▶ The triplet (Ω, \mathcal{A}, P) is called a **probability space**.

- 1. $P(\emptyset) = 0$.
- 2. $P(A_1 \cup A_2) = P(A_1) + P(A_2) P(A_1 \cap A_2)$.
- 3. If A_1 and A_2 are mutually exclusive, $A_1 \cap A_2 = \emptyset$, $P(A_1 \cup A_2) = P(A_1) + P(A_2)$.
- $4. \ P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) P(A_1 \cap A_2) P(A_1 \cap A_3) P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3).$
- 5. $P(\bar{A}) = 1 P(A)$.
- 6. $P(B \setminus A) = P(B) P(B \cap A)$.
- 7. $A \subset B \Rightarrow P(A) \leqslant P(B)$.

Uniform probability on finite Ω

Let Ω be a finite sample space. We say that P is the **uniform probability** on the measurable space $(\Omega, P(\Omega))$ if:

$$\forall \omega, \omega' \in \Omega$$
. $P(\omega') = P(\omega')$

One also says that there is equiprobability of elementary events.

Let $(\Omega, \mathcal{P}(\Omega), P)$ be a finite probability space. If P is the uniform probability, then

$$\forall A \in \mathcal{A}, \quad P(A) = \frac{Card(A)}{Card(\Omega)}$$

Mohamad GHASSANY Introduction to probability theory

Let (Ω, \mathcal{A}, P) be a probability space and $B \in \mathcal{A}$ such that P(B) > 0. The map function P_B defined on \mathcal{A} by:

$$P_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad \forall A \in A$$

is a probability function on (Ω, A) ; it is called the conditional probability given B. It is the probability of event A occurring given that event B has occurred.

- ▶ Remark: (A|B) is not an event! We use the notation P(A|B) for simplicity, but the notation $P_B(A)$ is the correct one.
- ► Chain rule:

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

- ▶ Law of total probability:
 - $\forall A \in \mathcal{A}, \quad P(A) = P(A \cap B) + P(A \cap \overline{B})$
 - We call partition of Ω , a set of events that are pairwise disjoint and whose union is the sample space Ω . The partition is said to be "countable" if its cardinality is at most equal to that of \mathbb{N} .
 - Let $(B_n)_{n\geq 0}$ a partition of Ω . We have:

$$\forall A \in \mathcal{A}, \qquad P(A) = \sum_{n \geqslant 0} P(A \cap B_n)$$

▶ Independence: Events A and B are independent iff $P(A \cap B) = P(A)P(B)$.

First Bayes' theorem

Let (Ω, \mathcal{A}, P) a probability space. For all events A and B such that $P(A) \neq 0$ and $P(B) \neq 0$, we have:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Second Bayes' theorem

Let (Ω, \mathcal{A}, P) a probability space and $(B_n)_{n\geqslant 0}$ a partition of Ω s.t. for all $n\geqslant 0$ $P(B_n)\neq 0$. We have for all $A\in \mathcal{A}$ s.t. $P(A)\neq 0$

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{n \geqslant 0} P(A|B_n)P(B_n)} \qquad \forall i \geqslant 0$$

Mohamad GHASSANY Introduction to probability theory

Real Random Variable

Concept of Real Random Variable

Definition

Let ε an experiment and (Ω, \mathcal{A}, P) the associated probability space. In many situations, one associates to each result $\omega \in \Omega$ a real number denoted $X(\omega)$; In this way, one builds a map $X:\Omega \to \mathbb{R}$. Historically, ε was a game and X représented the earning of a player.

Example: a die throw

A player throws a fair six faces dice and we observe the obtained number:

- ▶ If the result is 1,3 or 5, the player earns 1 euro.
- ▶ If the result is 2 or 4, the player earns 5 euros.
- ▶ If the result is 6, the player loses 10 euros.

Mohamad GHASSANY Real Random Variable

Analysis

- \triangleright ϵ : "throw a fair die".
- $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- $\rightarrow \mathcal{A} = \mathcal{P}(\Omega).$
- \triangleright P is the equiprobability on (Ω, A) .

Let X the map function from Ω to $\mathbb R$ that associates to each result the corresponding earning.

So we have

$$X(1) = X(3) = X(5) = 1$$

$$X(2) = X(4) = 5$$

$$X(6) = -10$$

We say that X is a **random variable** on Ω .

One can ask what is the probability for the player to win 1 euro:

- $\Rightarrow X(\omega) = 1.$
- ▶ this is the case if and only if $\omega \in \{1, 3, 5\}$.
- ▶ The sought-for probability is therefore $P({1,3,5}) = 1/2$.
- ▶ Which can also be written as P(X = 1) = 1/2.

Thus, we will consider the event:

$$\{X=1\}=\{\omega\in\Omega/X(\omega)=1\}=\{\omega\in\Omega/X(\omega)\in\{1\}\}=X^{-1}(\{1\})=\{1,3,5\}.$$

Similarly, we have:

- P(X = 5) = 1/3.
- P(X = -10) = 1/6.

Concept of Real Random Variable

One can present the three previous probabilities in a table:

xi	-10	1	5
$p_i = P(X = x_i)$	1/6	1/2	1/3

This is tantamount of considering a new sample space:

$$\Omega_{\rm X} = {\rm X}(\Omega) = \{-10, 1, 5\}$$

equipped with the probability P_X defined in the table above. This new probability is called the **probability** distribution of X.

Notice that

$$P(\bigcup_{x_{\mathfrak{i}}\in\Omega_X}\{X=x_{\mathfrak{i}}\})=\sum_{x_{\mathfrak{i}}\in\Omega_X}P(X=x_{\mathfrak{i}})=1$$

In this chapter:

- ▶ We treat the case where $X(\Omega)$ is countable.
- ▶ The random variable in this case is *discrete*.
- ▶ We define its probability law by its probability distribution.
- ▶ We will define the two main numerical characteristics of a discrete random variable:
 - Expected value: characteristic of centrality (the *mean*).
 - Variance: characteristic of dispersion.
- ▶ We will also define the couples of random variables.

Mohamad GHASSANY Real Random Variable

Discrete Random Variables

Definition

We say that a real random variable X is **discrete** if the set of all possible values that X can take is finite or countable.

If we suppose that the set $X(\Omega)$ of all possible values of X admits a smallest element x_1 . Then the discrete real random variable X is completely defined by:

- ▶ The set $X(\Omega)$ of all possible values of X, sorted in ascending order: $X(\Omega) = \{x_1, x_2, ..., x_i, ...\}$ with $x_1 \le x_2 \le ... \le x_i \le ...$
- ▶ The probability distribution defined on $X(\Omega)$ by

$$p_i = p(x_i) = P(X = x_i) \quad \forall i = 1, 2, ...$$

Remarks:

- ▶ $B \subset \mathbb{R}$, $P(X \in B) = \sum_{i/x_i \in B} p(x_i)$.
- $P(a < X \leq b) = \sum_{i/a < x_i \leq b} p(x_i).$
- ho $p(x_i) \geqslant 0$ and $\sum_{i=1}^{\infty} p(x_i) = 1$.
- ▶ If the number of possible values of X is small enough, the probability distribution of X is often presented as a table.

Definition

Given a discrete random variable X, we call cumulative distribution function of X (or simply distribution function), denoted F_X , the function defined by: for any real a,

$$F(\alpha) = P(X \leqslant \alpha) = \sum_{\mathfrak{i}/x_{\mathfrak{i}} \leqslant \alpha} P(X = x_{\mathfrak{i}})$$

The value $F_X(\alpha)$ represents the probability that X takes a value smaller or equal to α .

Properties

- 1. It is a staircase function.
- 2. $F(\alpha) \leq 1$ since it is a probability.
- 3. F(a) is continuous from the right.
- 4. $\lim_{\alpha \to -\infty} F(\alpha) = 0$ and $\lim_{\alpha \to \infty} F(\alpha) = 1$

The distribution function characterizes the distribution of X. In other words, if X and Y are two random variables, we have $F_X = F_Y$ if and only if their probability distributions are the same.

Mohamad GHASSANY Discrete Random Variables

16 / 65

Distribution function and probabilities over X

All the computations of probabilities about X can be carried out using the distribution function. For example,

$$P(a < X \le b) = F(b) - F(a)$$
 pour tout $a < b$

This is easier to understand if one writes the event $\{X \leqslant b\}$ as a union of two incompatible events $\{X \leqslant a\}$ and $\{a < X \leqslant b\}$, Let

$$\{X \leqslant b\} = \{X \leqslant a\} \cup \{a < X \leqslant b\}$$

In this way,

$$P(X \le b) = P(X \le a) + P(a < X \le b)$$

which proves the equality above.

Remark

One can compute the individual probabilities by:

$$p_i = P(X = x_i) = F(x_i) - F(x_{i-1})$$
 pour $1 \le i \le n$

Example

We play three times to "heads or tails" \Rightarrow

- $\Omega = \{P, F\}^3.$
- ▶ $card(\Omega) = |\Omega| = 2^3 = 8$.

Let X the random variable "number of tails obtained" $\Rightarrow X(\Omega) = \{0, 1, 2, 3\}$.

- Let's calculate P(X = 1).
- $X^{-1}(1) = \{(P, F, F), (F, P, F), (F, F, P)\}.$
- $\Rightarrow P(X=1) = \frac{3}{8}$

Using the same method we obtain the probability distribution of X:

k	0	1	2	3
P(X = k)	1/8	3/8	3/8	1/8

Distribution function and probabilities over X

The distribution function X is therefore given by:

$$F(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1/8 & \text{si } 0 \leqslant x < 1 \\ 1/2 & \text{si } 1 \leqslant x < 2 \\ 7/8 & \text{si } 2 \leqslant x < 3 \\ 1 & \text{si } x \geqslant 3 \end{cases}$$

One can represent both the probability distribution and the distribution function of X in the same table:

k	0	1	2	3
P(X = k)	1/8	3/8	3/8	1/8
$F_X(x)$	1/8	1/2	7/8	1

The graph of the distribution function is represented below:

Figure 1: Distribution function

Here is another slightly different representation of the distribution function:

Figure 2: Distribution function

Definition

Let A an event. We call indicator random variable of the event A, the random variable $X = \mathbbm{1}_A$ defined by:

$$X(\omega) = \begin{cases} 1 & \text{si } \omega \in A \\ 0 & \text{si } \omega \in \bar{A} \end{cases}$$

Therefore:

$$P(X = 1) = P(A) = p$$

$$P(X = 0) = P(\bar{A}) = 1 - p$$

The distribution function of the indicator random variable is therefore:

$$F(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 - p & \text{si } 0 \leqslant x < 1 \\ 1 & \text{si } x \geqslant 1 \end{cases}$$

The indicator random variable: Example

Example

- ▶ Let U an urn containing two white ball and three red balls.
- ▶ We randomly take one ball out of the box.
- ▶ Let A : "take one white ball out".
- ▶ Let X be the indicator random variable of A.

Find the probability distribution and the distribution function of X.

The probability distribution of X is

k	0	1
P(X = k)	<u>3</u>	<u>2</u> 5

and its distribution function is:

$$F(x) = \left\{ \begin{array}{ll} 0 & \quad \text{si } x < 0 \\ 3/5 & \quad \text{si } 0 \leqslant x < 1 \\ 1 & \quad \text{si } x \geqslant 1 \end{array} \right.$$

Moments of a discrete random

variable

Definition

For a discrete random variable X with probability distribution $\mathfrak{p}(.)$, we define the expected value of X, called E(X), by

$$E(X) = \sum_{i \in \mathbb{N}} x_i p(x_i)$$

In concrete terms, the expected value of X is the weighted mean of the values of X, the weights being the probabilities associated to the values of X.

Examples

1. In the previous example where we play three times to "heads or tails", the expected value of X is:

$$E(X) = 0 \times \frac{1}{8} + 1 \times \frac{3}{8} + 2 \times \frac{3}{8} + 3 \times \frac{1}{8} = 1.5$$

2. For the indicator random variable of A:

$$E(X) = 0 \times P(X = 0) + 1 \times P(X = 1) = P(A) = p$$

which means that the expected value of the indicator of an event A corresponds to the probability that A occurs.

Theorem

Let X be a discrete random variable whose possible values are x_i , $i\geqslant 1$, and denote by $p(x_i)$ the probability that $X=x_i$ occurs. Then, for any real function g, we have

$$E(g(X)) = \sum_{i} g(x_{i})p(x_{i})$$

Example

Let X be a random variable that can take three values $\{-1,0,1\}$ with the following probabilities:

$$P(X = -1) = 0.2$$
 $P(X = 0) = 0.5$ $P(X = 1) = 0.3$

Calculate $E(X^2)$.

Solution

First method: Let $Y = X^2$. The probability distribution of Y is given by

$$P(Y = 1) = P(X = -1) + P(X = 1) = 0.5$$

$$P(Y = 0) = P(X = 0) = 0.5$$

So

$$E(X^2) = E(Y) = 1(0.5) + 0(0.5) = 0.5$$

Second method: Using the theorem

$$\begin{split} E(X^2) &= (-1)^2(0.2) + 0^2(0.5) + 1^2(0.3) \\ &= 1(0.2 + 0.3) + 0(0.5) = 0.5 \end{split}$$

Remark

$$0.5 = E(X^2) \neq (E(X))^2 = 0.01$$

Properties

1. E(X + a) = E(X) + a, $a \in \mathbb{R}$ results which follows from:

$$\sum_{i} p_{i}(x_{i} + \alpha) = \sum_{i} p_{i}x_{i} + \sum_{i} \alpha p_{i} = \sum_{i} p_{i}x_{i} + \alpha \sum_{i} p_{i} = \sum_{i} p_{i}x_{i} + \alpha$$

2. $E(\alpha X) = \alpha E(X)$, $\alpha \in \mathbb{R}$ to prove it, just write:

$$\sum_{i} p_{i} \alpha x_{i} = \alpha \sum_{i} p_{i} x_{i}$$

3. E(X + Y) = E(X) + E(Y), X and Y being two random variables.

All these three properties are summarised in the claim that the expected value is linear:

$$E(\lambda X + \mu Y) = \lambda E(X) + \mu E(Y), \quad \forall \lambda \in \mathbb{R}, \forall \mu \in \mathbb{R}.$$

Mohamad GHASSANY Moments of a discrete random variable

Definition

Let X be a discrete random variable. We call variance of X, denoted V(X), the quantity defined by, when it exists,

$$V(X) = E[(X - E(X))^2]$$

Thus, the variance is the expected value of the square of the centered random variable X - E(X). The variance can be interpreted as a measure of the dispersion of the possible values of X around its expected value.

Remark

Equivalently, the variance might be defined by the following formula:

$$V(X) = E(X^2) - E^2(X)$$

Indeed:

$$V(X) = E[X^{2} - 2XE(X) + E^{2}(X)]$$

$$= E(X^{2}) - E[2XE(X)] + E[E^{2}(X)]$$

$$= E(X^{2}) - 2E^{2}(X) + E^{2}(X)$$

Example

OLet us compute V(X) in the case where X is the number obtained when throwing a fair die.

Previously, we saw that $E(X) = \frac{7}{2}$. Moreover,

$$\begin{split} E(X^2) &= \sum_i x_i^2 p(x_i) \\ &= 1^2 \left(\frac{1}{6}\right) + 2^2 \left(\frac{1}{6}\right) + 3^2 \left(\frac{1}{6}\right) + 4^2 \left(\frac{1}{6}\right) + 5^2 \left(\frac{1}{6}\right) + 6^2 \left(\frac{1}{6}\right) \\ &= \left(\frac{1}{6}\right) (91) = \frac{91}{6} \end{split}$$

And therefore

$$V(X) = E(X^2) - E^2(X)$$
$$= \frac{91}{6} - \left(\frac{7}{2}\right)^2 = \frac{35}{12}$$

Properties

- 1. $V(X) \ge 0$
- 2. $\forall \alpha \in \mathbb{R}$, $V(X + \alpha) = V(X)$ en effet:

$$V(X + \alpha) = E[[X + \alpha - E(X + \alpha)]^{2}]$$
$$= E[[X + \alpha - E(X) - \alpha]^{2}]$$
$$= E[[X - E(X)]^{2}] = V(X)$$

3. $\forall \alpha \in \mathbb{R}$, $V(\alpha X) = \alpha^2 V(X)$ en effet:

$$V(\alpha X) = E[[\alpha X - E(\alpha X)]^{2}]$$

$$= E[[\alpha X - \alpha E(X)]^{2}]$$

$$= E[\alpha^{2}[X - E(X)]^{2}]$$

$$= \alpha^{2}[E[X - E(X)]^{2}] = \alpha^{2}V(X)$$

Definition

Let X be a discrete random variable. The square root of the variance is called the **standard deviation** of X and is denoted

$$\sigma_X = \sqrt{V(X)}$$

 σ_X has the same physical units as the random variable X.

- ▶ The standard deviation allows to measure the dispersion of a set of data.
- ▶ The smaller sigma is, the closer to each other the values of the data are.
- ▶ Example: the dispersion of the grades in an exam. The smaller sigma is, the more homogeneous the class is.
- ▶ Expected value and standard deviation are linked through Bienaymé-Tchebychev inequality.

Theorem

Let X a random variable of expected value μ and variance σ^2 . For all $\epsilon > 0$, We have:

$$P(|X - E(X)| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$$

Remark

This inequality can be written in a slightly different fashion. Let $k = \varepsilon/\sigma$.

$$P(|X - E(X)| \geqslant k\sigma) \leqslant \frac{1}{k^2}$$

Importance

This inequality relates the probability for X to deviate from its expected value E(X) to its variance, which is precisely an indicator of the dispersion around the expected value. The inequality makes quantitatively precise the statement "the smaller the variance is, the less likely it is to find values far away from the expected value".

Mohamad GHASSANY Moments of a discrete random variable

We call non centered moment of order $r \in \mathbb{N}^*$ of X the quantity, when it exists:

$$m_r(X) = \sum_{\mathfrak{i} \in \mathbb{N}} x_{\mathfrak{i}}^r p(x_{\mathfrak{i}}) = E(X^r).$$

Definition

The centered moment of order $r \in \mathbb{N}^*$ the quantity, when it exists:

$$\mu_r(X) = \sum_{\mathfrak{i} \in \mathbb{N}} p_{\mathfrak{i}} \left[x_{\mathfrak{i}} - E(X) \right]^r = E \left[X - E(X) \right]^r.$$

Remark

The first moments are:

- $\mathbf{m}_1(X) = \mathsf{E}(X), \quad \mu_1(X) = 0.$
- $\mu_2(X) = V(X) = m_2(X) m_1^2(X).$

So far, we have dealt with one random variable. However, it is often necessary to consider events related to two variables simultaneously, or even to more than two variables.

Definition

Let X and Y two discrete random variables, defined on probability space (Ω,\mathcal{A},P) and that

$$X(\Omega)=\{x_1,x_2,\ldots,x_l\} \text{ and } Y(\Omega)=\{y_1,y_2,\ldots,y_k\}, \text{ } l \text{ } \text{and } \text{ } k\in\mathbb{N}.$$

The **probability law of** (X,Y) is defined by joint probabilities:

$$p_{ij} = P(X = x_i; Y = y_j) = P(\{X = x_i\} \cap \{Y = y_j\})$$

We have

$$p_{ij}\geqslant 0$$
 et $\sum_{i=1}^{l}\sum_{j=1}^{k}p_{ij}=1$

The pair (X,Y) is called two dimensional random vector and can have $l \times k$ valeurs.

Joint probability distribution table

The probabilities p_{ij} can be presented in a two dimensional table than we call joint probability distribution table:

Table 1: Joint probability distribution table

$X \setminus Y$	y 1	y ₂	 Уj	 Уk
χ_1	p ₁₁	p_{12}	p_{1j}	p_{1k}
χ_2	p ₂₁	p_{22}	p_{2j}	p_{2k}
:				
x_i	p _{i1}	p_{i2}	p_{ij}	p_{ik}
:				
x_l	p _{l1}	p_{12}	p_{lj}	рıк

In the header we have the possible values of Y and in the first column the possible values of X. The probability $p_{\mathfrak{i}\mathfrak{j}}=P(X=x_{\mathfrak{i}};Y=y_{\mathfrak{j}})$ is at the intersection of \mathfrak{i}^{th} line and \mathfrak{j}^{th} column.

Mohamad GHASSANY Two Random Variables

Example: pair of random variables

Example

Three balls are drawn at random from an urn containing 3 red, 4 white and 5 black balls. X and Y are respectively the number of red and white balls drawn. Determine the joint probability distribution of the pair (X,Y).

Solution

- **ε**: "draw 3 balls from an urn containing 12 balls".
- $|\Omega| = C_{12}^3 = 220.$
- $X(\Omega) = \{0, 1, 2, 3\} \text{ and } Y(\Omega) = \{0, 1, 2, 3\}.$
- $p(X = 0, Y = 0) = p(0, 0) = C_5^3/C_{12}^3 = \frac{10}{220}.$
- $p(0,1) = C_4^1 C_5^2 / C_{12}^3 = \frac{40}{220}.$
- $p(1,0) = C_3^1 C_5^2 / C_{12}^3 = \frac{30}{220}.$

Example: pair of random variables

Example

Three balls are drawn at random from an urn containing 3 red, 4 white and 5 black balls. X and Y are respectively the number of red and white balls drawn. Determine the joint probability distribution of the pair (X,Y).

Solution

Table 2: Joint probability distribution table

X\Y	0	1	2	3
0	10 220	40 220	30 220	4 220
1	30 220	60 220	18 220	0
2	$\frac{15}{220}$	12 220	0	0
3	$\frac{1}{220}$	0	0	0

Mohamad GHASSANY Two Random Variables

When we know the joint distribution of the random variables X and Y, we can also look at the probability distribution of X alone and Y alone. These are the marginal probability distributions.

Marginal distribution of X:

$$p_{i.} = P(X = x_i) = P[\{X = x_i\} \cap \Omega] = \sum_{i=1}^k p_{ij} \qquad \forall i = 1, 2, \dots, l$$

▶ Marginal distribution of Y:

$$p_{.j} = P(Y = y_j) = P[\Omega \cap \{Y = y_j\}] = \sum_{i=1}^{l} p_{ij} \quad \forall j = 1, 2, ..., k$$

We can calculate the marginal distributions directly from the table of the joint distribution.

38 / 65

Marginal Probability Distributions

Table 3: Joint distribution table with marginal distributions

X\Y	y ₁	y ₂	 Уj	 Уk	Marginal of X
χ_1	p ₁₁	p ₁₂	p_{1j}	p _{1k}	p _{1.}
χ_2	p ₂₁	p ₂₂	p_{2j}	p_{2k}	p ₂ .
:					
x_i	p _{i1}	p _{i2}	p_{ij}	p_{ik}	p _{i.}
:					
xl	pu	p ₁₂	p_{lj}	plk	Pı.
Marginal of Y	p.1	p.2	p.ı	p.k	1

Mohamad GHASSANY
Two Random Variables

Example: Marginal Probability Distributions

Example

Three balls are drawn at random from an urn containing 3 red, 4 white and 5 black balls. X and Y are respectively the number of red and white balls drawn. Determine the joint probability distribution of the pair (X,Y).

Solution

Table 4: Joint distribution table

X\Y	0	1	2	3	$p_{i.} = P(X = x_i)$
0	10 220	40 220	30 220	4 220	<u>84</u> 220
1	30 220	60 220	18 220	0	108 220
2	15 220	12 220	0	0	27 220
3	$\frac{1}{220}$	0	0	0	$\frac{1}{220}$
$p_{.j} = P(Y = y_j)$	<u>56</u> 220	112 220	48 220	<u>4</u> 220	1

For each value y_j of Y such that $p_{,j}=P(Y=y_j)\neq 0$ we can define the conditional distribution of X given $Y=y_j$ by

$$p_{i/j} = P(X = x_i/Y = y_j) = \frac{P(X = x_i; Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{.j}}$$
 $\forall i = 1, 2, ..., l$

Same for Y given $X = x_i$:

$$p_{j/i} = P(Y = y_j/X = x_i) = \frac{P(X = x_i; Y = y_j)}{P(X = x_i)} = \frac{p_{ij}}{p_{i,}} \qquad \forall j = 1, 2, \dots, k$$

Mohamad GHASSANY
Two Random Variables

We say that two random variables are independent iff

$$P(X=x_i;Y=y_i)=P(X=x_i)P(Y=y_i) \qquad \forall \, i=1,2,\ldots,l \, \, \text{and} \, \, j=1,2,\ldots,k$$

One demonstrates that

$$P(\{X \in A\} \cap \{Y \in B\}) = P(\{X \in A\})P(\{Y \in B\}) \qquad \forall A \text{ and } B \in A$$

Properties

Let two random variables X and Y.

- 1. E(X + Y) = E(X) + E(Y)
- 2. If X and Y are independent so E(XY) = E(X)E(Y). But the reciprocal is not always true.

Mohamad GHASSANY Two Random Variables

Let two random variables X and Y. The covariance of X and Y, when it exists, is

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))] = \sum_{i} \sum_{j} (x_{i} - E(X))(y_{j} - E(Y))p_{ij}$$

that we can calculate using the formula

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

Properties

- ightharpoonup Cov(X,Y) = Cov(Y,X)
- $Cov(aX_1 + bX_2, Y) = aCov(X_1, Y) + bCov(X_2, Y)$
- V(X+Y) = V(X) + V(Y) + 2Cov(X,Y)
- ▶ If X and Y are independent so
 - Cov(X, Y) = 0 (the reciprocal is not always true)
 - V(X + Y) = V(X) + V(Y) (the reciprocal is not always true)

Mohamad GHASSANY

Linear Correlation (Correlation of Spearman)

Definition

The correlation between X and Y is defined by

$$\rho = \rho(X, Y) = \frac{Cov(X, Y)}{\sqrt{V(X)V(Y)}} = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

We can demonstrate that

$$-1 \leqslant \rho(X, Y) \leqslant 1$$

Interpretation of ρ

- ▶ The correlation coefficient is a measure of the degree of linearity between X and Y.
- \triangleright Values of rho close to 1 or -1 indicate an almost rigorous linearity between X and Y.
- ▶ Values of rho close to 0 indicate the absence of any linear relationship.
- ▶ When $\rho(X, Y)$ is positive, Y tends to increase if X does the same.
- ▶ When $\rho(X,Y) < 0$, Y tends to decrease if X increases.

Linear correlation

Mohamad GHASSANY Two Random Variables

Loi Uniforme Discrète U(n)

Loi Uniforme Discrète

Definition

Une distribution de probabilité suit une loi uniforme lorsque toutes les valeurs prises par la variable aléatoire sont équiprobables. Si n est le nombre de valeurs différentes prises par la variable aléatoire alors on a:

$$P(X = x_i) = \frac{1}{n}$$
 $\forall i \in \{1, ..., n\}$

On dit $X \sim \mathcal{U}(n)$.

Example

La distribution des chiffres obtenus au lancer de dé (si ce dernier est non pipé) suit une loi uniforme dont la loi de probabilité est la suivante :

$\chi_{\mathfrak{i}}$	1	2	3	4	5	6
$P(X = x_i)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Cas particulier

Dans le cas particulier d'une loi uniforme discrète où chaque valeur de la variable aléatoire X correspond à son rang, i.e. $x_i = i \ \forall i \in \{1, \dots, n\}$, on a:

$$E(X) = \frac{n+1}{2}$$
 et $V(X) = \frac{n^2 - 1}{12}$

Démonstration

La démonstration de ces résultats est établie en utilisant les égalités:

$$\sum_{i=1}^n \mathfrak{i} = \frac{\mathfrak{n}(\mathfrak{n}+1)}{2} \quad \text{et} \quad \sum_{i=1}^n \mathfrak{i}^2 = \frac{\mathfrak{n}(\mathfrak{n}+1)(2\mathfrak{n}+1)}{6}.$$

Vous avez la démonstration de ces égalités dans l'Annexe.

Example

L'exemple du lancer du dé: on peut calculer directement les moments de X:

$$E(X) = \frac{6+1}{2} = 3.5$$
 et $V(X) = \frac{6^2-1}{12} = \frac{35}{12} \simeq 2.92$.

Loi de Bernoulli $\mathcal{B}(\mathfrak{p})$

Variable Indicatrice

Soit A un événement quelconque; on appelle v.a. indicatrice de l'événement A, la v.a. définie par $X = \mathbb{1}_A$, c'est à dire:

$$X(\omega) = \mathbb{I}_A(\omega) = \begin{cases} 0 & \text{si } \omega \in \bar{A} \\ 1 & \text{si } \omega \in A \end{cases}$$

Ainsi $X(\Omega) = \{0, 1\}$ avec:

$$\begin{split} P(X=1) &= P\{\omega \in \Omega/X(\omega) = 1\} = P(A) = p \\ P(X=0) &= P\{\omega \in \Omega/X(\omega) = 0\} = P(\bar{A}) = 1 - P(A) = q \\ \text{avec } p+q=1 \end{split}$$

Definition

On dit que X suit une loi de Bernoulli de paramètre p=P(A), ce qu'on écrit symboliquement $X\sim \mathfrak{B}(p)$. Une distribution de Bernoulli est associée à la notion "épreuve de Bernoulli", qui est une épreuve aléatoire à deux issues: succès (X=1) et échec (X=0).

Aefrei

Fonction de répartition de loi de Bernoulli

$$F(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 - p & \text{si } 0 \leqslant x < 1 \\ 1 & \text{si } x \geqslant 1. \end{cases}$$

Espérance de loi de Bernoulli

$$E(X) = 1 \times P(A) + 0 \times P(\bar{A}) = P(A) = p$$

Variance de loi de Bernoulli

$$V(X) = E(X^2) - E^2(X) = p - p^2 = p(1 - p) = pq$$

car

$$E(X^2) = 1^2 \times P(A) + 0^2 \times P(\bar{A}) = P(A) = p$$

Loi Binomiale $\mathfrak{B}(\mathfrak{n},\mathfrak{p})$

Loi Binomiale $\mathfrak{B}(\mathfrak{n},\mathfrak{p})$

- ▶ Décrite pour la première fois par Isaac Newton en 1676 et démontrée pour la première fois par le mathématicien suisse Jacob Bernoulli en 1713.
- ▶ La loi binomiale est l'une des distributions de probabilité les plus fréquemment rencontrées en statistique appliquée.
- ▶ On exécute n épreuves indépendantes de Bernoulli.
- ▶ Chaque épreuve a p pour probabilité de succès et 1 p pour probabilité d'échec.

- X = le nombre de succès sur l'ensemble des n épreuves.
- ▶ X dépend de deux paramètres n et p.

Mohamad GHASSANY Loi Binomiale $\mathfrak{B}(\mathfrak{n},\mathfrak{p})$ 50

- \rightarrow X = le nombre de succès sur l'ensemble des n épreuves.
- $X(\Omega) = \{0, 1, ..., n\}$

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k} \qquad 0 \leqslant k \leqslant n$$

- $\binom{n}{k}$ est le nombre d'échantillons de taille n comportant exactement k succès, de probabilité p^k , indépendamment de l'ordre, et donc n-k échecs, de probabilité $(1-p)^{n-k}$.
- ▶ On écrit $X \sim \mathcal{B}(n, p)$.

Remark

Une variable de Bernoulli n'est donc qu'une variable binomiale de paramètres (1, p).

$$X \sim \mathcal{B}(p) \iff X \sim \mathcal{B}(1, p)$$

Triangle de Pascal & Binôme de Newton

Triangle de Pascal

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \quad \forall n \ge 1 \text{ et } 1 \le k \le n-1$$

$$n = 0: \qquad 1$$

$$n = 1: \qquad 1 \qquad 1$$

$$n = 2: \qquad 1 \qquad 2 \qquad 1$$

$$n = 3: \qquad 1 \qquad 3 \qquad 3 \qquad 1$$

$$n = 4: \quad 1 \qquad 4 \qquad 6 \qquad 4 \qquad 1$$

Binôme de Newton

$$(x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k}$$

Cette formule permet de vérifier que la loi Binomiale est une loi de probabilité:

$$\sum^n P(X = k) = \sum^n \binom{n}{r} p^k (1-p)^{n-k} = [p + (1-p)]^n = 1$$

Example

On jette cinq pièces équilibrées. Les résultats sont supposés indépendants. Donner la loi de probabilité de la variable X qui compte le nombre de piles obtenus.

Solution

- X = nombre de piles (succès).
- n = 5.
- p = 1/2.
- $X \sim \mathcal{B}(5, \frac{1}{2}).$
- $X(\Omega) = \{0, 1, ..., 5\}$
- $P(X=0) = {5 \choose 0} \left(\frac{1}{2}\right)^0 \left(1 \frac{1}{2}\right)^{5-0} = \frac{1}{32}$
- $P(X=1) = {5 \choose 1} {(\frac{1}{2})}^1 {(1-\frac{1}{2})}^4 = \frac{5}{32}$
- $P(X=2) = {5 \choose 2} \left(\frac{1}{2}\right)^2 \left(1 \frac{1}{2}\right)^3 = \frac{10}{32}$
- $P(X=3) = {5 \choose 3} (\frac{1}{2})^3 (1 \frac{1}{2})^2 = \frac{10}{32}$
- $P(X=4) = {5 \choose 4} (\frac{1}{2})^4 (1 \frac{1}{2})^1 = \frac{5}{32}$
- $P(X=5) = {5 \choose 5} (\frac{1}{2})^5 (1 \frac{1}{2})^0 = \frac{1}{32}$

Si
$$X \sim \mathcal{B}(n, p)$$
 alors $E(X) = np$ et $V(X) = np(1-p)$

Démonstration

Première approche: On associe à chaque épreuve $i, 1 \le i \le n$, une v.a. de Bernoulli.

$$\mathbb{1}_A = X_i = \left\{ \begin{array}{ll} 1 & \quad \text{si A est r\'ealis\'e} \\ 0 & \quad \text{si \bar{A} est r\'ealis\'e} \end{array} \right.$$

On peut écrire alors: $X = \sum_{i=1}^n X_i = X_1 + X_2 + \ldots + X_n$ Donc

$$E(X) = E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i) = np$$

et

$$V(X) = V\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} V(X_i) = np(1-p)$$

car les v.a. X_i sont indépendantes.

Deuxième approche: Calcul direct.

$$E(X) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = \dots = np$$

$$V(X) = E(X^2) - E^2(X)$$

- Pour obtenir $E(X^2)$ par un procédé de calcul identique, on passe par l'intermédiaire du moment factoriel E[X(X-1)].
- $V(X) = E(X^2) E^2(X) = E[X(X-1)] + E(X) E(X^2)$
- ightharpoonup $E[X(X-1)] = \sum_{k=0}^{n} k(k-1) \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k} = \ldots = n(n-1)p^2$
- $V(X) = n(n-1)p^2 + np (np)^2 = np(1-p)$

Mohamad GHASSANY

Loi Binomiale B (n. p)

Loi Binomiale $\mathfrak{B}(\mathfrak{n},\mathfrak{p})$

Example

Le nombre de résultats pile apparus au cours de n jets d'une pièce de monnaie suit une loi binomiale $\mathcal{B}(n,1/2)$:

$$P(X = k) = \binom{n}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{n-k} = \frac{\binom{n}{k}}{2^n}, \quad 0 \leqslant k \leqslant n$$

avec E(X) = n/2 et V(X) = n/4

Example

Le nombre N de boules rouges apparues au cours de n tirages avec remise dans une urne contenant deux rouges, trois vertes et une noire suit une loi binomiale $\mathcal{B}(n,1/3)$:

$$P(N=k) = \binom{n}{k} \left(\frac{1}{3}\right)^k \left(\frac{2}{3}\right)^{n-k} = \binom{n}{k} \frac{2^{n-k}}{3^n}, \quad 0 \leqslant k \leqslant n$$

avec E(X) = n/3 et V(X) = 2n/9.

Remark

Si $X_1 \sim \mathcal{B}(n_1, p)$ et $X_2 \sim \mathcal{B}(n_2, p)$, les v.a. X_1 et X_2 étant **indépendantes**, alors $X_1 + X_2 \sim \mathcal{B}(n_1 + n_2, p)$. Ceci résulte de la définition d'une loi binomiale puisqu'on totalise ici le résultat de $n_1 + n_2$ épreuves indépendantes.

Loi de Poisson $\mathfrak{P}(\lambda)$

Une v.a. X suit une loi de Poisson de paramètre $\lambda > 0$ si c'est une variable à valeurs entières, $X(\Omega) = \mathbb{N}$, donc avec une infinité de valeurs possibles, de probabilité:

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k \in \mathbb{N}$$

Cette loi ne dépend qu'un seul paramètre réel positif λ , avec l'écriture symbolique $X \sim \mathcal{P}(\lambda)$.

Remark

$$e^{x} = \sum_{i=0}^{+\infty} \frac{x^{i}}{i!}$$

Donc

$$\sum_{k=0}^{\infty} P(X=k) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1$$

Si
$$X \sim \mathcal{P}(\lambda)$$
 alors $E(X) = \lambda$ et $V(X) = \lambda$

Espérance de loi de Poisson

$$E(X) = \sum_{k=0}^{\infty} kP(X = k)$$
$$= \dots$$
$$= \lambda.$$

Variance de loi de Poisson

▶ On calcule d'abord $E(X^2) = \sum_{k=0}^{\infty} k^2 P(X=k) = ... = \lambda(\lambda+1)$.

Ensuite

$$V(X) = \lambda(\lambda + 1) - \lambda^2 = \lambda$$

Example

- ightharpoonup X = nombre de micro-ordinateurs vendus chaque jour dans un magasin.
- ▶ On suppose $X \sim \mathcal{P}(5)$.
- La probabilité associée à la vente de 5 micro-ordinateurs est

$$P(X = 5) = e^{-5} \frac{5^5}{5!} = e^{-5} \simeq 0.1755$$

La probabilité de vendre au moins 2 micro-ordinateurs est

$$P(X \geqslant 2) = 1 - \left(e^{-5} \frac{5^0}{0!} + e^{-5} \frac{5^1}{1!}\right) \simeq 0.9596$$

Le nombre moyen de micro-ordinateurs vendus chaque jour dans le magasin est égal à 5 puisque $E(X) = \lambda = 5$.

Properties

Si X et Y sont deux variables **indépendantes** suivant des lois de Poisson, $X \sim \mathcal{P}(\lambda)$ et $Y \sim \mathcal{P}(\mu)$, alors leur somme suit aussi une loi de Poisson: $X + Y \sim \mathcal{P}(\lambda + \mu)$.

Mohamad GHASSANY

Approximation d'une loi binomiale

Si
$$n \to \infty$$
 et $p \to 0$ alors $X : \mathfrak{B}(n,p) \sim \mathfrak{P}(\lambda)$.

Remark

Une bonne approximation est obtenue si $n \ge 50$ et $np \le 5$.

Dans ce contexte, la loi de Poisson est souvent utilisée pour modéliser le nombre de succès lorsqu'on répète un très grand nombre de fois une expérience avant une chance très faible de réussir par une loi de Poisson.

Applications de la loi de Poisson

- Le nombre d'individus dépassant l'âge de 100 ans dans une communauté.
- Le nombre de faux numéros téléphoniques composés en un jour.
- Le nombre de clients pénétrant dans un bureau de poste donné en l'espace d'un jour.
- \blacktriangleright Le nombre de particules α émises par un matériau radioactif pendant un certain laps de temps.

La v.a. dans ces exemples est répartie de manière approximativement poissonienne car: on approxime par là une variable binomiale

60 / 65

Mohamad GHASSANY Loi de Poisson $\mathfrak{P}(\lambda)$

Loi Géométrique ou de Pascal $\mathfrak{G}(\mathfrak{p})$

- ε : "On répéte l'épreuve de Bernoulli jusqu'à avoir le premier succès".
- Exemple:

- \triangleright Chaque épreuve a p pour probabilité de succès et 1-p pour probabilité d'échec.
- ▶ X ="le nombre d'épreuves effectuées".

$$\underbrace{E \quad E \quad S}_{k-1}$$

- $X(\Omega) = \mathbb{N}^* = \{1, 2, 3, ...\}.$ On dit $X \sim \mathcal{G}(p)$.
- $\forall k \in \mathbb{N}^* \quad P(X = k) = (1 p)^{k-1}p$
- Attention: Parfois X = "nombre d'épreuves effectuées avant obtenir le premier succès". Dans ce cas $X(\Omega) = \mathbb{R}$. On dit $X \sim \mathcal{G}(\mathfrak{p})$ sur \mathbb{R} .
- Cette loi peut servir à modéliser des temps de vie, ou des temps d'attente, lorsque le temps est mesuré de manière discrète (nombre de jours par exemple).
- Série entière : $\sum_{k=0}^{\infty} x^k = 1/(1-x)$ pour |x| < 1
- $\begin{array}{l} \sum_{k=1}^{\infty} P(X=k) = \sum_{k=1}^{\infty} (1-p)^{k-1} p = p \sum_{j=0}^{\infty} (1-p)^{j} \sum_{k=1}^{\infty} (1-p)^{k-1} p = p \sum_{j=0}^{\infty} (1-p)^{j} = p \sum_{j=0}^{\infty}$

Espérance de loi Géométrique

▶
$$E(X) = \sum_{k=1}^{\infty} kP(X = k) = \sum_{k=1}^{\infty} kp(1-p)^{k-1} = p \sum_{k=1}^{\infty} k(1-p)^{k-1}$$

- ightharpoonup Série entière: $\sum_{k=0}^{\infty} x^k = 1/(1-x)$ pour |x| < 1
- Dérivée première de la série entière: $\sum_{k=1}^{\infty} k x^{k-1} = 1/(1-x)^2$
- ▶ Donc $E(X) = \frac{p}{[1-(1-p)]^2} = \frac{1}{p}$

En d'autres termes, si des épreuves indépendantes ayant une probabilité p d'obtenir un succès sont réalisés jusqu'à ce que le premier succès se produise, le nombre espéré d'essais nécessaires est égal à 1/p. Par exemple, le nombre espéré de jets d'un dé équilibré qu'il faut pour obtenir la valeur 1 est 6.

Variance de loi Géométrique

$$V(X) = E(X^2) - E^2(X) = E[X(X-1)] + E(X) - E^2(X)$$
. Or,

$$\begin{split} \mathsf{E}[\mathsf{X}(\mathsf{X}-1)] &= \sum_{k=2}^{\infty} k(k-1) p (1-p)^{k-1} \\ &= p (1-p) \sum_{k=2}^{\infty} k(k-1) (1-p)^{k-2} \end{split}$$

- ullet Dérivée première de la série entière: $\sum_{k=1}^\infty kx^{k-1} = 1/(1-x)^2$
- ▶ Dérivée seconde de la série entière: $\sum_{k=2}^{\infty} k(k-1)x^{k-2} = 2/(1-x)^3$
- $\qquad \qquad \textbf{Donc} \,\, \mathsf{E}[\mathsf{X}(\mathsf{X}-1)] = \tfrac{2p(1-p)}{[1-(1-p)]^3} = \tfrac{2(1-p)}{p^2}$
- ▶ Et alors $V(X) = E[X(X-1)] + E(X) E^2(X) = \frac{1-p}{p^2}$.

Loi Binomiale Négative $\mathfrak{BN}(r,p)$

- $ightharpoonup \epsilon$: "On répéte l'épreuve de Bernoulli jusqu'à obtenir un total de r succès".
- ightharpoonup Exemple avec r = 3:

$$\bar{A}$$
 A \bar{A} $\bar{A$

▶ Mais on peut obtenir r succès d'autres façons:

- ▶ Chaque épreuve a p pour probabilité de succès et 1 p pour probabilité d'échec.
- ▶ Désignons X = "le nombre d'épreuves nécessaires pour attendre ce résultat".

$$\underbrace{ \begin{bmatrix} r-1 \operatorname{succès} \operatorname{et} k - r\operatorname{\'echecs} \\ E & S & E & E & S & E & E \end{bmatrix}}_{X=k} S$$

- $X(\Omega) = \{r, r+1, r+2, \ldots\}.$ On dit $X \sim \mathcal{BN}(r, p)$.
- $\rightarrow \forall k \in X(\Omega),$

$$P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}$$

$$g(p) = BN(1, p)$$

- ε: "On répéte l'épreuve de Bernoulli jusqu'à obtenir un total de r succès".
- Soit,

- Soit, Y₁ le nombre d'épreuves nécessaires jusqu'au premier succès, Y₂ le nombre d'épreuves supplémentaires nécessaires pour obtenir un deuxième succès, Y₃ celui menant au 3ème et ainsi de suite.
- Càd,

$$\underbrace{E \ \dots \ E \ S}_{Y_1} \ \underbrace{E \ \dots \ E \ S}_{Y_2} \ \underbrace{\dots \ E \ \dots \ E \ S}_{Y_T}$$

- Les tirages étants indépendantes et ayant toujours la même probabilité de succès, chacune des variables Y_1, Y_2, \ldots, Y_r est géométrique $\mathcal{G}(p)$.
- X ="le nombre d'épreuves nécessaires à l'obtention de r succès" = $Y_1 + Y_2 + ... + Y_r$.
- Donc.

$$E(X) = E(Y_1) + E(Y_2) + ... + E(Y_r) = \sum_{i=1}^{r} \frac{1}{p} = \frac{r}{p}$$

et

$$V(X) = \sum_{i=1}^{r} V(Y_i) = \frac{r(1-p)}{p^2}$$

car les Y_i sont indépendantes.