Elementos de Computação em R para Inferência Estatística

PJ

Ultima atualização: 10 de agosto de 2022

1 Inferência para parâmetros da distribuição Gama

O objetivo deste documento é revisar conceitos de inferência estatística, com ênfase na função de verossimilhança. Tratamos aqui de um caso de modelo com dois parâmetros.

1.1 Densidade

Parametrização 1:

Esta é a parametrização utilizada nas funções $\{r,p,q,d\}$ gamma() do R com: $\alpha = shape = a$ e $\beta = scale = s$ (rate = 1/scale).

Note que a=0 define uma fdp trivial com toda massa de probabilidade em zero. Existe um alerta importante na documentação da função sobre a capacidade do computador em representar pequenos valores que ocorrem para certos valores dos parâmetros:

Note that for smallish values of shape (and moderate scale) a large parts of the mass of the Gamma distribution is on values of x so near zero that they will be represented as zero in computer arithmetic. So rgamma can well return values which will be represented as zero. (This will also happen for very large values of scale since the actual generation is done for scale=1.)

Funções e expressões: densidade, esperança, variância, (log)-verossimilhança, escore e hessiano:

$$Y \sim G(\alpha, \beta)$$

$$f(y|\alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} y^{\alpha-1} \exp\{-y/\beta\} \quad y \ge 0 \quad \alpha \ge 0 \quad \beta > 0$$

$$E[Y] = \alpha\beta \quad Var[Y] = \alpha\beta^{2}$$

$$L((\alpha, \beta)|y) = \left(\frac{1}{\Gamma(\alpha)\beta^{\alpha}}\right)^{n} \prod_{i=1}^{n} y_{i}^{\alpha-1} \exp\{-y_{i}/\beta\}$$

$$l((\alpha, \beta)|y) = n\left(-\log(\Gamma(\alpha)) - \alpha\log(\beta) + (\alpha - 1)\overline{\log(y)} - \overline{y}/\beta\right)$$
(1)

Função escore:

$$\begin{cases}
\frac{dl}{d\beta} &= n\left(-\frac{\alpha}{\beta} + \frac{\bar{y}}{\beta^2}\right) \\
\frac{d}{d\alpha} &= n\left(-\psi(\alpha) - \log(\beta) + \overline{\log y}\right)
\end{cases}$$
(2)

em que $\psi(\alpha)=\frac{d}{d\alpha}\log(\Gamma(\alpha))=\frac{\Gamma'(\alpha)}{\Gamma(\alpha)}$ é a $função\ digama$ (calculada no R com função digamma()).

Hessiano, Informação Observada e Esperada:

$$I_O(\alpha, \beta) = -H(\alpha, \beta) = -\begin{bmatrix} \frac{d^2l}{d\beta^2} & \frac{d^2l}{d\alpha d\beta} \\ \frac{d^2l}{d\alpha d\beta} & \frac{d^2l}{d\alpha^2} \end{bmatrix} = \begin{bmatrix} n\left(2\frac{\bar{y}}{\beta^3} - \frac{\alpha}{\beta^2}\right) & \frac{n}{\beta} \\ \frac{n}{\beta} & n\psi'(\alpha) \end{bmatrix}$$
(3)

em que $\psi'(\alpha) = \frac{d^2}{dt^2} \log(\Gamma(\alpha))$ é a $função\ trigama\ (calculada\ no\ R\ com\ função\ trigamma()).$

$$I_E(\alpha, \beta) = E_Y[I_O(\alpha, \beta)] = \dots \tag{4}$$

Funções concentradas (perfilhadas):

Para este caso não existem expressões fechadas para o estimador de máxima verossimilhança. As funções dadas anteriormente são funções de dois parâmetros (α e β) mas, neste caso, é possível reduzir a dimensionalidade e escrevê-las como funções de apenas um parâmetro. Para isto considerase o comportamento da função no estimador de máxima verossimilhança. Igualando a zero primeira função escore em 2 obtemos uma expressão fechada para um dos parâmetros dada por:

$$\hat{\alpha}\hat{\beta} = \bar{y}.\tag{5}$$

Pode-se então isolar um dos parâmetros e reescrever as funções de verossimilhança, escore e hessiana como funções de apenas um parâmetro. Substituindo β por $\hat{\beta} = \bar{y}/\hat{\alpha}$ temos que a log-verossimilhança (1) pode ser escrita na forma concentrada (perfilhada) como função apenas do parâmetro α :

$$pl(\alpha|y) = l_{\hat{\beta}}(\alpha|y) = n\left(-\log(\Gamma(\alpha)) - \alpha(\log(\bar{y}) - \log(\alpha)) + (\alpha - 1)\overline{\log(y)} - \alpha\right). \tag{6}$$

A função escore fica:

$$U_{\hat{\beta}}(\alpha) = n \left(-\psi(\alpha) - \log \bar{y} + \log(\alpha) + \overline{\log y} \right). \tag{7}$$

O hessiano para α é:

$$H_{\hat{\beta}}(\alpha) = n\left(-\psi'(\alpha) + \frac{1}{\alpha}\right). \tag{8}$$

E, neste caso, como a expressão não depende da v.a. Y as informações observadas e esperadas são iguais:

$$I_E(\alpha) = I_O(\alpha) = -H(\alpha)$$

Alternativamente, substituindo $\alpha = \hat{\alpha} = \overline{y}/\hat{\beta}$ pode-se obter expressões para o parâmetro β :

$$pl(\beta|y) = l_{\hat{\alpha}}(\beta|y) = \dots \tag{9}$$

$$U_{\hat{\beta}}(\alpha) = \dots H_{\hat{\beta}}(\alpha) \qquad = \dots I_O(\beta) = \dots I_E(\beta) \qquad = \dots$$
 (10)

Obtenção das estimativas de máxima verossimilhança

O *EMV* é solução conjunta de

$$\begin{cases} \overline{\log y} - \log \beta + &= \psi(\bar{y}/\beta) \\ \hat{\alpha}\hat{\beta} &= \bar{y} \end{cases}$$

que neste caso devem ser obtidas por algorítimos numéricos. Diferentes algorítimos podem ser utilizados conforme será ilustrado mais adiante. Quatro opções serão consideradas:

1. algorítmos de maximização:

- (a) da log-verossimilhança de dois parâmetros,
- (b) da log-verossimilhança concentrada (de um parâmetro) com posterior substituição em (5) para obtenção da estimativa do outro parâmetro
- 2. algorítmos de solução de equações (obtidas igualando a zero as funções escore);
 - (a) do sistema de equações de dois parâmetros,
 - (b) do sistema concentrado (equação de um parâmetro) com posterior substituição em (5) para obtenção da estimativa do outro parâmetro.

Parametrização 2:

Rizzo (2008) e outros autores utilizam a parametrização com $r = \alpha, \lambda = 1/\beta$ em que λ é o parâmetro de taxa (rate). Esta é também a parametrização original do S e S-Plus.

Densidade, esperança, variância, (log) verossimilhança, escore e hessiano:

$$Y \sim G(r, \lambda)$$

$$f(y|r, \lambda) = \frac{\lambda^r}{\Gamma(r)} y^{r-1} \exp\{-\lambda y\} \quad y \ge 0 \quad r \ge 0 \quad \lambda > 0$$

$$E[Y] = r/\lambda \quad Var[Y] = r/\lambda^2$$

$$L((r, \lambda)|y) = \left(\frac{\lambda^r}{\Gamma(r)}\right)^n \prod_{i=1}^n y_i^{r-1} \exp\{-\lambda y_i\}$$

$$l((r, \lambda)|y) = n\left(r\log(\lambda) - \log(\Gamma(r)) + (r-1)\overline{\log(y)} - \lambda \bar{y}\right)$$
(11)

Função escore:

$$\begin{cases} \frac{dl}{d\lambda} &= n\left(\frac{r}{\lambda} - \bar{y}\right) \\ \frac{d}{dr} &= n\left(\log(\lambda) - \frac{\Gamma'(r)}{\Gamma(r)} + \overline{\log y}\right) \end{cases}$$

Igualando as funções a zero, da primeira equação temos $\hat{\lambda} = \hat{r}/\bar{y}$. Substituindo λ por $\hat{\lambda}$ a segunda expressão é escrita como:

$$n\left(\log\frac{\hat{r}}{\bar{y}} + \overline{\log y} - \frac{\Gamma'(r)}{\Gamma(r)}\right) = 0$$

O *MLE* é solução conjunta de:

$$\begin{cases} \log \lambda + \overline{\log y} &= \psi(\lambda \bar{y}) \\ \bar{y} &= r/\lambda \end{cases} \tag{12}$$

em que $\psi(t)=\frac{d}{dt}\log(\Gamma(t))=\frac{\Gamma'(t)}{\Gamma(t)}$ (função digamma()). (Incluir Hessiano, informação e perfiladas como na parametrização anterior)

Parametrização 3:

Aitkin (2010) menciona duas parametrizações sendo a primeira, a mesma implementada no R, apontada como a mais usual, e uma segunda parametrizada por $r = \alpha$ e $\mu = \alpha \beta$.

Esta última parametrização tem propriedades interessantes para inferência. A primeira é a ortogonalidade entre $r \in \mu$ na matriz de informação. Além disto em geral μ é o usualmente o parâmetro de interesse para inferências e r é um parâmetro nuisance. Finalmente a parametrização é adequada

para modelagem estatística na qual usualmente se propõe um modelo de regressão para média μ , como por exemplo em modelos lineares generalizados (GLM).

Densidade, esperança, variância e verossimilhança:

$$\begin{split} Y &\sim \mathrm{G}(r,\mu) \\ f(y|r,\mu) &= \frac{r^r}{\Gamma(r)\,\mu^r} \; y^{r-1} \; \exp\{-ry/\mu\} \quad y \geq 0 \; \; r \geq 0 \; \; \mu \geq 0 \\ E[Y] &= \mu \quad Var[Y] = \mu^2/r \\ L((r,\mu)|y) &= \left(\frac{r^r}{\Gamma(r)\mu^r}\right)^n \prod_{i=1}^n y_i^{r-1} \; \exp\{-ry_i/\mu\} \\ l((r,\mu)|y) &= n \left(r(\log(r) - \log(\mu)) - \log(\Gamma(r)) + (r-1)\overline{\log(y)} - \frac{r}{\mu}\bar{y}\right) \end{split}$$

Função escore:

$$\begin{cases} \frac{dl}{d\mu} &= n\left(-\frac{r}{\mu} + \frac{r\bar{y}}{\mu^2}\right) \\ \frac{d}{dr} &= n\left(\log(r) + 1 - \log(\mu) - \frac{\Gamma'(r)}{\Gamma(r)} + \overline{\log y} - \frac{\bar{y}}{\mu}\right) \end{cases}$$

Igualando as funções a zero, da primeira equação temos $\hat{\mu} = \bar{y}$. Substituindo μ por $\hat{\mu}$ a segunda expressão é escrita como:

$$n\left(\log(\hat{r}) + 1 - \log(\bar{y}) - \frac{\Gamma'(\hat{r})}{\Gamma(\hat{r})} + \overline{\log y} - 1\right) = 0$$

O *MLE* é solução conjunta de:

$$\begin{cases} \log \hat{r} - \psi(\hat{r}) &= \log \bar{y} - \overline{\log y} \\ \hat{\mu} &= \bar{y} \end{cases}$$

em que $\psi(t)=\frac{d}{dt}\log(\Gamma(t))=\frac{\Gamma'(t)}{\Gamma(t)}$ (calculado no R pela função digamma()). **ToDo:**(Incluir Hessiano, informação e perfiladas como na parametrização anterior)

1.2Códigos R para obtenção das estimativas

Não é possível obter MLE em forma analítica fechada para ambos parâmetros da distribuição Gama sendo então necessário o uso de métodos numéricos para obter estimativas. Algumas abordagens numéricas possíveis são:

- 1. via solução de equações (função escore)
 - a. conjunta para dois parâmetros: resolução numérica do sistema de duas equações
 - b. por substituição: resolução numérica de uma equação para encontrar a estimativa de um parâmetro que é substituída na equação conhecida para obter a estimativa do outro parâmetro.
- 2. via maximização de função de log-verossimilhança
 - a. maximização bidimensional (encontra numericamente estimativas dos 2 parâmetros)

b. unidimensional (verossimilhança concentrada/perfilhada para 1 parâmetro, seguida de substituição para o outro parâmetro)

Gerando dados (simulados).

```
set.seed(201107)
dadosG <- rgamma(20, shape = 4.5, rate=2)</pre>
```

Estatísticas amostrais que são as quantidades calculadas com os dados utilizadas nas avaliações das funções.

Estimação utilizando métodos numéricos utilizando a Parametrização 2.

(1.a.) Equações de estimação Definimos uma função em R com sistema de equações definido em 12. As estimativas são dadas pela solução deste sistema que é obtida utilizando a função multiroot() do pacote rootSolve.

```
Umat <- function(par, amostra){
    lambda <- par[1] ; r = par[2]
    UlamUr <- local({
        c(n * ((r/lambda) - media),
            n*(log(lambda) - digamma(lambda*media) + media.logs))
    }, env=amostra)
    return(UlamUr)
}
rootSolve::multiroot(f=Umat, start=c(1,1), amostra=am)[["root"]]
## [1] 2.408413 4.692590</pre>
```

(1.b.) Equações de estimação - substituição

$$\left(\log\frac{\hat{r}}{\bar{y}} + \overline{\log y} - \frac{\Gamma'(r)}{\Gamma(r)}\right) = 0 \quad \text{(numericamente)}$$

$$\hat{\lambda} = \hat{r}/\bar{y} \quad \text{(substituição)}$$

A função uniroot() pode ser usada para resolver numericamente uma equação.

```
hist(dadosG, prob=T, xlim=c(0,5), main="")
lines(density(dadosG));rug(dadosG)
curve(dgamma(x, shape = 4.5, rate=2), 0, 5, add=T, lwd=2)
```


Figura 1: Histograma, densidade empírica e rug dos dados originais e densidade da distribuição simulada (linha grossa).

(2.a.) Maximização da função de log-verossimilhança (2 parâmetros) A função de (negativo) log-verossimilhança pode ser definida no R como uma função a 2 parâmetros.

```
neglLik <- function(par, amostra, modelo=2){</pre>
  if(modelo == 1){
    alpha <- par[1]; beta <- par[2]
    11 <- with(amostra, n*(-alpha*log(beta) - log(gamma(alpha)) +
          (alpha-1) * media.logs - media/beta))
  if(modelo == 2){
    r <- par[1]; lambda <- par[2]
    11 <- with(amostra, n*(r*log(lambda) - log(gamma(r)) +</pre>
          (r-1) * media.logs - lambda * media))
  }
  if(modelo == 3){
    r <- par[1]; mu <- par[2]
    11 \leftarrow with(amostra, n*(r*(log(r) - log(mu)) - log(gamma(r)) +
          (r-1) * media.logs - (r/mu) * media))
  }
  return(-11)
}
```

A seguir é mostrada a obtenção das estimativas em cada parametrização. Para impor limites no espaço paramétrico utiliza-se os argumentos lower e upper e method="L-BFGS-B".

Obtenção de estimativas em uma parametrização a partir das estimativas de outra parametrização é obtida diretamente.

```
1/mod1[2]

## [1] 2.408324

prod(mod1)

## [1] 1.948423
```

Comentários sobre reparametrização

• Reparametrização para garantir validade do espaço paramétrico

No exemplo da Gama, ambos parâmetros devem ser não negativos em todas as parametrizações. Alternativamente a usar lower e upper, pode-se redefinir a função com a opção de que os parâmetros sejam fornecidos em escala logarítmica e desta forma possam assumir valores nos reais. Note que isto exclui o valor nulo do espaço paramétrico original. Aproveitamos e redefinição da função de (negativo) log-verossimilhança para ilustrar sintaxes em R escrevendo a função usando switch() para definir a opção de parametrização.

Obtendo novamente as estimativas (nas escalas logarítmicas e original) agora com o método padrão da função optim().

```
(mod1r <- optim(log(c(1,1)), neglLik, amostra=am, modelo=1, log=T)$par)</pre>
## [1] 1.5460915 -0.8791401
rbind(mod1, exp(mod1r))
##
             [,1]
                       [,2]
## mod1 4.692435 0.4152265
        4.693091 0.4151398
##
(mod2r \leftarrow optim(log(c(1,1)), neglLik, amostra=am, modelo=2, log=T)par)
## [1] 1.5458999 0.8788993
rbind(mod2, exp(mod2r))
##
             [,1]
                      [,2]
## mod2 4.692593 2.408415
        4.692192 2.408247
```

```
(mod3r <- optim(log(c(1,1)), neglLik, amostra=am, modelo=3, log=T)$par)

## [1] 1.5458160 0.6670942

rbind(mod3, exp(mod3r))

## [,1] [,2]

## mod3 4.692591 1.948416

## 4.691798 1.948567</pre>
```

- Reparametrização para interpretabilidade dos parâmetros COMENTAR
- Reparametrização ortogonalização COMENTAR
- Melhor comportamento (quadrático) da função.
 COMENTAR. Invariância dos estimadores de M.V. e transformação direta de limites de intervalos de confiança baseados na verossimilhança ou deviance.

(2.b.) Maximização da função de log-verossimilhança concentrada (1 parâmetro)

Quando possível é conveniente (numericamente) reduzir a dimensionalidade da maximização numérica utilizando a verossimilhança concentrada/perfilhada. No exemplo substituímos a expressão do estimador que possui forma fechada $\hat{\lambda} = \hat{r}/\bar{y}$ na função verossimilhança (11) e obtemos a função de verossimilhança em função de apenas um parâmetro.

$$l(r|y) = n\left(r\log(\hat{\lambda}) - \log(\Gamma(r)) + (r-1)\overline{\log(y)} - \hat{\lambda}\overline{y}\right)$$
(13)

$$= n \left(r \log(r/\bar{y}) - \log(\Gamma(r)) + (r-1)\overline{\log(y)} - r \right)$$
(14)

Esta função é definida e usada para obter a estimativa de r que na sequência é substituída em $\hat{\lambda} = \hat{r}/\bar{y}$ para obter a estimativa de λ .

Como a otimização agora é em apenas uma dimensão utiliza-se a função optimize(). As estimativas em cada parametrização são obtidas com:

```
(est1 <- optimize(neglLik1, lower=0.001, upper=100, amostra=am, modelo=1)$min)

## [1] 0.4152092

(est2 <- optimize(neglLik1, lower=0.001, upper=100, amostra=am, modelo=2)$min)

## [1] 2.408401

(est3 <- optimize(neglLik1, lower=0.001, upper=100, amostra=am, modelo=3)$min)

## [1] 4.692589</pre>
```

mas, na prática, basta obter em uma dessas e as estimativas em outras parametrizações são obtidas de forma trivial.

```
1/est1

## [1] 2.408424

am$media/est1

## [1] 4.692613

am$media*est2

## [1] 4.692568
```

1.3 Uso de algumas funções do R

O R e seus pacotes oferece funções que facilitam os procedimentos acima, bem como cálculos posteriores como intervalos, matriz de covariâncias, dentre outras. Dentre as funções "facilitadoras" já prontas e disponíveis estão a mle() do pacote stats4 e mle2() do pacote bbmle. Nestas funções os parâmetros são passados na forma de listas.

Inicialmente define-se a função de (negativo)log-verossimilhança

que é maximizada para obter as estimativas.

```
require(stats4)
args(mle)
## function (minuslogl, start, optim = stats::optim, method = if (!useLim) "BFGS" else "L-1
       fixed = list(), nobs, lower, upper, ...)
## NUI.I.
(est.mle1 <- mle(nlLik, start=list(r=log(2), lambda=log(2)),
                 method="L-BFGS-B", lower=c(0,0)))
##
## Call:
## mle(minuslogl = nlLik, start = list(r = log(2), lambda = log(2)),
       method = "L-BFGS-B", lower = c(0, 0))
##
## Coefficients:
          r
              lambda
## 1.545982 0.878965
```

Vários resumos e funções extratoras estão imediatamente disponíveis para saídas da mle().

```
## resumo
summary(est.mle1)
## Maximum likelihood estimation
##
## Call:
## mle(minuslogl = nlLik, start = list(r = log(2), lambda = log(2)),
       method = "L-BFGS-B", lower = c(0, 0))
##
## Coefficients:
          Estimate Std. Error
##
          1.545982 0.3056496
## lambda 0.878965 0.3226093
##
## -2 log L: 49.52223
## valor da verossimilhança maximizada
logLik(est.mle1)
## 'log Lik.' -24.76112 (df=2)
## AIC
AIC(est.mle1)
## [1] 53.52223
## estimativas
coef(est.mle1)
```

```
par(mfrow=c(1,2))
plot(profile(est.mle1))
```


Figura 2: Perfis de verossimilhança (na escala de raiz da deviance) para parâmetros do modelo Gama sob a parametrização 2.

```
lambda
          r
## 1.545982 0.878965
## matriz de covariâncias
vcov(est.mle1)
##
                          lambda
                   r
          0.09342171 0.09342167
## lambda 0.09342167 0.10407675
## IC baseado na verossimilhança (deviance) perfilhada
confint(est.mle1, level=0.95)
## Profiling...
##
              2.5 %
                       97.5 %
          0.8868132 2.093177
## lambda 0.1676132 1.449356
```

Assim como funções gráficas também são definidas como por exemplo os perfis de verossimilhança (expressos como raízes da função deviance) mostrados na Figura 2

1.4 Visualizações da função de verossimilhança

A seguir vamos visualizar as superfícies de verossimilhança para cada uma das três parametrizações. Uma função mais conveniente para visualização é a função **deviance** definida por:

$$D(\theta) = -2[l(\theta) - l(\hat{\theta})]$$

que é definida como uma função no R:

```
devFun <- function(theta, est, llFUN, ...){
  return(2 * (llFUN(theta, ...) - llFUN(est, ...)))
}</pre>
```

A seguir tomamos as estimativas e verificamos que as funções estão retornando valores corretamente.

```
(ests <- c(r.est, lambda.est))
## [1] 4.692604 2.408420
## verossimilhancas originais (2 parâmetros)
neglLik(ests, amostra=am, modelo=2)
## [1] 24.76112
neglLik(log(ests), amostra=am, modelo=2, logpar=T)
## [1] 24.76112
## verossimilhanças concentradas
neglLik1(ests[2], amostra=am, modelo=2)
## [1] 24.76112
neglLik1(log(ests[2]), amostra=am, modelo=2, logpar=T)
## [1] 24.76112
## fc deviance (2 parâmetros)
devFun(ests, est=mod2, llFUN=neglLik, amostra=am, modelo=2)
## [1] 8.101608e-11
devFun(log(ests), est=mod2r, 11FUN=neglLik, amostra=am, modelo=2, logp=T)
## [1] -1.014605e-07
## fc deviance concentrada (1 parâmetro)
devFun(ests[2], est=mod2[2], llFUN=neglLik1, amostra=am, modelo=2)
## [1] 8.057555e-11
```

```
devFun(log(ests[2]), est=mod2r[2], llFUN=neglLik1, amostra=am, modelo=2, logp=T)
## [1] -5.047529e-08
## agora para outros valores que não soas os EMV
neglLik(c(4,2.5), amostra=am, modelo=2)
## [1] 26.55084
neglLik(log(c(4,2.5)), amostra=am, modelo=2, logpar=T)
## [1] 26.55084
neglLik1(2.5, amostra=am, modelo=2)
## [1] 24.76866
neglLik1(log(2.5), amostra=am, modelo=2, logpar=T)
## [1] 24.76866
devFun(c(4,2.5), est=mod2, llFUN=neglLik, amostra=am, modelo=2)
## [1] 3.579439
devFun(log(c(4,2.5)), est=mod2r, 1lFUN=neglLik, amostra=am, modelo=2, logp=T)
## [1] 3.579439
devFun(2.5, est=mod2[2], llFUN=neglLik1, amostra=am, modelo=2)
## [1] 0.01508588
devFun(log(2.5), est=mod2r[2], llFUN=neglLik1, amostra=am, modelo=2, logp=T)
## [1] 0.01508583
```

Para obter os gráficos da função de verossimilhança uni e bidimensional é conveniente vetorizar a função para que possa receber uma sequencia de valores do(s) parametro(s) que serão usados na construção do gráfico (isto é equivalente a fazer um for-loop). A função deviance vetorizada é definida como se segue e conferimos com os valores obtidos anteriormente.

```
Ofun <- Vectorize(function(x,y, ...) devFun(c(x,y), ...))
Ofun(4, 2.5, est=ests, llFUN=neglLik, amostra=am, modelo=2)
## [1] 3.579439
Ofun(log(4), log(2.5), est=log(ests), llFUN=neglLik, amostra=am, modelo=2, logpar=T)
## [1] 3.579439</pre>
```

Para obter o gráfico da função deviance a dois parâmetros, definimos uma malha de valores e avaliamos a função a cada ponto da malha. Note que vamos fazer na escala original e também logarítmica dos parâmetros. Começamos com a **parametrização 1** e as superfícies são mostradas na Figura 3.

```
alphaGR <- seq(1.6,10.5, len=100)
betaGR <- seq(0.17,1.35, len=100)
GRdev <- outer(alphaGR, betaGR, FUN = Ofun, est=mod1, llFUN=neglLik, amostra=am, modelo=1)
alphaGRl <- seq(log(1.6),log(10.5), len=100)
betaGRl <- seq(log(0.17),log(1.35), len=100)
GRdevl <- outer(alphaGRl, betaGRl, FUN = Ofun, est=log(mod1), llFUN=neglLik, amostra=am, modelo=1)</pre>
```

Passamos agora à **parametrização 2** e após a definição da malha e avaliaçõa da função, as superfícies são mostradas na Figura 4.

```
rGR <- seq(1.6,10.7, len=100)
lambdaGR <- seq(0.7,5.6, len=100)
GRdev <- outer(rGR, lambdaGR, FUN=0fun, est=mod2, llFUN=neglLik, amostra=am)

rGRl <- seq(log(1.6),log(10.7), len=100)
lambdaGRl <- seq(log(0.7),log(5.6), len=100)
GRdevl <- outer(rGRl, lambdaGRl, FUN=0fun, est=log(mod2), llFUN=neglLik, amostra=am, logpan</pre>
```

O mesmo procedimento é repetido para **parametrização 3** com superfícies mostradas na Figura 5.

```
rGR <- seq(1.5,11, len=100)
muGR <- seq(1.4,2.83, len=100)
GRdev <- outer(rGR, muGR, FUN = Ofun, est=mod3, llFUN=neglLik, amostra=am, modelo=3)

rGRl <- seq(log(1.5),log(11), len=100)
muGRl <- seq(log(1.4),log(2.83), len=100)
GRdevl <- outer(rGRl, muGRl, FUN = Ofun, est=log(mod3), llFUN=neglLik, amostra=am, modelo=3</pre>
```

Gráficos feitos utilizando a reparametrização em escala logarítmica reduzem a assimetria na função. A última parametrização apresenta uma superfície mais próxima da ortogonalidade. Unidimensional, verossimilhança perfilhada

Figura 3: **Parametrização 1**: superfícies de verossimilhanças (expressa como deviance) a dois parâmetros. Gráficos superiores com parâmetros originais e inferiores na escala logarítmica.

Figura 4: **Parametrização 2**: superfícies de verossimilhanças (expressa como deviance) a dois parâmetros. Gráficos superiores com parâmetros originais e inferiores na escala logarítmica.

Figura 5: **Parametrização 3**: superfícies de verossimilhanças (expressa como deviance) a dois parâmetros. Gráficos superiores com parâmetros originais e inferiores na escala logarítmica.

Os gráficos e funções poderiam ser obtidos em escala logarítmica para os parâmetros e os intervalos por transformação dos limites dos IC's baseados em verossimilhança, dada a propriedade de invariância.

Aproximação Quadrática - Aproximação de Taylor de 2a ordem da função verossimilhança e deviance ao redor do estimador de M.V. $\hat{\theta}$.

$$l(\theta) = l(\hat{\theta}) + (\theta - \hat{\theta})l'(\hat{\theta}) + \frac{1}{2}(\theta - \hat{\theta})^2 l''(\hat{\theta})$$
$$= l(\hat{\theta}) + \frac{1}{2}(\theta - \hat{\theta})^2 l''(\hat{\theta})$$

Uma vez que pela definição de E.M.V. $l'(\hat{\theta}) = 0$. A aproximação da função deviance fica:

$$D(\theta) = -2[l(\theta) - l(\hat{\theta})]$$

$$\approx -2[l(\hat{\theta}) + \frac{1}{2}(\theta - \hat{\theta})^2 l''(\hat{\theta}) - l(\hat{\theta})]$$

$$= -(\theta - \hat{\theta})^2 l''(\hat{\theta})$$

As expressões consideram θ escalar, mas a extensão para um vetor de parâmetros é trivial.

Complementos: falta ainda completar texto com alguns tópicos como:

- Mostrar como fica a aproximação quadratica em cada parametrizacao em 1-D (perfilhada) e 2-D
- obter Io/Ie para cada parametrização
- Comparar Io/Ie com o hessiano numérico
- Escrever o algorítmo Newton-Rapson
- escrever e usar as funções gradiente na otimização para funções 1-D e 2-D
- ilustrar obtenção dos intervalos por diferentes métodos (incluindo simulação para mostrar taxas de cobertura)
- . . .