L3: Analyse matricielle

TD 6

Exercice 1

Soit $a \in \mathbb{R}$. On considère la matrice B définie par

$$B = \left(\begin{array}{ccc} 2 & 1 & a \\ 1 & 2 & 1 \\ a & 1 & 2 \end{array}\right).$$

a. Démontrer que B est définie positive si et seulement si $a \in I :=]-1,2[$.

b. On suppose que $a \in I$. Décrire la méthode de relaxation pour résoudre le système linéaire BX = b où $b \in \mathbb{R}^3$.

Pour quel valeur du paramètre de relaxation la méthode converge-t-elle?

c. Donner la matrice de Jacobi pour résoudre le système BX = b puis établir que son polynôme caractéristique p_J est donné par :

$$p_J(\lambda) = -\lambda^3 + (\frac{1}{2} + \frac{1}{4}a^2)\lambda - \frac{a}{4}.$$

d. Vérifier que $\lambda_1 := \frac{a}{2}$ est racine de p_J , puis déterminer toutes les racines de p_J (on établira que les deux autres racines de p_J sont données par $\lambda_2 = -\frac{a}{4} + \frac{1}{4}\sqrt{a^2 + 8}$ et $\lambda_3 = -\frac{a}{4} - \frac{1}{4}\sqrt{a^2 + 8}$).

e. On suppose dans cette question que $a \geq 0$. Donner une condition sur a permettant d'assurer que la méthode de Jacobi appliquée au système linéaire BX = b est convergente.

Exercice 2

Soit r > 0, H, V deux matrices réelles, symétriques telles que rI + H et rI + V soient inversibles. On suppose que A := rI + H + V est symétrique définie positive.

On considère la méthode itérative suivante :

$$\begin{cases} (rI+H)x_{k+\frac{1}{2}} = -Vx_k + b, \\ (rI+V)x_{k+1} = -Hx_{k+\frac{1}{2}} + b. \end{cases}$$
 (1)

1. Montrer que la méthode (1) est convergente si et seulement si

$$\rho((rI+V)^{-1}H(rI+H)^{-1}V) < 1.$$

- On pose $B = \frac{1}{r}H$ et $C = \frac{1}{r}V$. 2. Montrer que $B(I+B)^{-1}$ et $C(I+C)^{-1}$ sont symétriques.
- 3. Établir l'inégalité

$$\rho((rI+V)^{-1}H(rI+H)^{-1}V) \le \rho(B(I+B)^{-1})\rho(C(I+C)^{-1}).$$

- 4. Montrer que $\rho(B(I+B)^{-1}) < 1$ équivaut à $\frac{1}{2}I + B$ symétrique définie positive.
- 5. Établir que si $\frac{r}{2}I + H$ et $\frac{r}{2}I + V$ sont définies positives, alors la méthode (1) converge.

Exercice 3

A. Soit $A \in M_n(\mathbb{R})$ une matrice symétrique, inversible et x_* la solution de AX = b.

Soit M et N deux matrices telles que A = M - N, avec M inversible et $^{t}M + N$ symétrique et définie positive.

Pour $x \in \mathbb{R}^n$, on pose $y = M^{-1}Ax$. Dans la suite, $B = M^{-1}N$.

1. Montrer que

$$(ABx, Bx) = (Ax, x) - ((^{t}M + N)y, y).$$
 (2)

On considère la méthode itérative

$$Mx_{k+1} = Nx_k + b.$$

- 2. Montrer que si A est symétrique définie positive, on a $\rho(B) < 1$. Qu'en déduisez-vous?
- 3. Montrer que

$$(AB^p x, B^p x) \le (Ax, x), \quad \forall x \in \mathbb{R}^n, \ \forall p \in \mathbb{N}.$$

- 4. En déduire que si $\rho(B) < 1$, alors A est symétrique et définie positive.
- B. Dans cette partie, on considère une matrice A symétrique et définie positive telle que A = M - N = P - Q avec ${}^{t}M + N$ et ${}^{t}P + Q$ symétriques et définies positives.

On considère la méthode itérative

$$\begin{cases} Mx_{k+\frac{1}{2}} = Nx_k + b, \\ Px_{k+1} = Qx_{k+\frac{1}{2}} + b. \end{cases}$$
 (3)

On pose $e_k=x_*-x_k$ et $e_{k+\frac{1}{2}}=x_*-x_{k+\frac{1}{2}}.$ 1. Montrer que

$$||e_{k+1}||_A \le ||e_{k+\frac{1}{2}}||_A \le ||e_{k+1}||_A \ \forall k \in \mathbb{N}^*,$$

où $\|.\|_A$ représente la norme induite par le produit scalaire $(x,y)_A=(Ax,y).$

2. En déduire que la méthode (3) converge.