Problem Overview A gentle approach to BNP Modeling the NYC marathon Results

Bayesian Non-parametric Modeling for Marathon Age Grading

Melanie F. Pradier, Fernando Perez-Cruz

Universidad Carlos III of Madrid

February 25, 2014

Interesting Fact: Runner's high

Interesting Fact: Runner's high

THE EVOLUTION OF RUNNER'S HIGH
University of Asiers and inceptions by repose that
anaisely after prolongly acrobe certain
anneys after prolongly acrobe certain e- ochoiced to
encousage our ancesters to cover from distances while
to encousage our ancesters to cover from distances while
to obtain marmials where their dampie is level of mode
boording endocamalsmids were measured:

30%
30-MINUTE RUN
30-MINUTE RUN
30-MINUTE RUN
30-MINUTE RUN
30-MINUTE RUN
30-MINUTE RUN

(Hates running)

TRISH MULLI ASTER / THE GLOSE AND MALE & SOURCE RAICH EN ET AL., ASURNAL OF EXPERIMENTAL BIOLOGY, 2012

54%

2/29

(Loves running)

(Debatable)

Outline

- Problem Overview
- @ Gentle Approach to Bayesian Non-Parametric (BNP)
- 3 A BNP model for Marathon data
- Results

Outline

- Problem Overview
- @ Gentle Approach to Bayesian Non-Parametric (BNP)
- 3 A BNP model for Marathon data
- Results

Definition

$$score = \frac{your time}{world class time}$$

- Ill-defined metric, comparison against outlier
- Age Grading not really used in practice

Definition

$$score = \frac{your \ time}{world \ class \ time}$$

- Ill-defined metric, comparison against outlier
- Age Grading not really used in practice

Definition

$$score = \frac{your \ time}{world \ class \ time}$$

- Ill-defined metric, comparison against outlier
- Age Grading not really used in practice

Definition

$$score = \frac{your \ time}{world \ class \ time}$$

- Ill-defined metric, comparison against outlier
- Age Grading not really used in practice

Entry Requirements

Entry Requirements

Objectives

Our Aim

- data exploration of marathon results
- propose a better Age Grading system to compare athletes
- analyze age impact on physical capabilities

How?

- BNP approach, generative model for p(x)
- Density Estimation using Gaussian Mixture Mode

Objectives

Our Aim

- data exploration of marathon results
- propose a better Age Grading system to compare athletes
- analyze age impact on physical capabilities

How?

- BNP approach, generative model for p(x)
- Density Estimation using Gaussian Mixture Mode

Objectives

Our Aim

- data exploration of marathon results
- propose a better Age Grading system to compare athletes
- analyze age impact on physical capabilities

How?

- BNP approach, generative model for p(x)
- Density Estimation using Gaussian Mixture Model

Outline

- Problem Overview
- Question Gentle Approach to Bayesian Non-Parametric (BNP)
- 3 A BNP model for Marathon data
- Results

Bayesian Non-Parametric

- Bayesian: Combine Prior Knowledge with Data Evidence
- Non-parametric
 - infinite number of parameters
 - complexity depends on input data
 - model selection avoided

Bayesian Non-Parametric

- Bayesian: Combine Prior Knowledge with Data Evidence
- Non-parametric
 - infinite number of parameters
 - · complexity depends on input data
 - model selection avoided

Gaussian Mixture Model

$$p(x) = \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k)$$

 π_k : mixture weights

 ϕ_k : mixture parameters

$$x_i|c_i, \pi_{1:K} \sim N\left(x_i|\mu_{c_i}, \Sigma_{c_i}\right)$$

$$\vdots$$

$$\pi_{1:K} \sim \text{Dirichlet}\left(\frac{\alpha}{K}, \dots, \frac{\alpha}{K}\right)$$

Gaussian Mixture Model

$$p(x) = \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k)$$

 π_k : mixture weights

 ϕ_k : mixture parameters

$$x_i|c_i, \pi_{1:K} \sim N\left(x_i|\mu_{c_i}, \Sigma_{c_i}\right)$$

:

$$\pi_{1:K} \sim \text{Dirichlet}\left(\frac{\alpha}{K}, \dots, \frac{\alpha}{K}\right)$$

Dirichlet Process

 domain itself is a set of probability distributions

$$G \sim \mathrm{DP}(H, \alpha)$$

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$$

H: base measure

 α : concentration parameter

Dirichlet Process

 domain itself is a set of probability distributions

$$G \sim \mathrm{DP}(H, \alpha)$$

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$$

H: base measure

 α : concentration parameter

Dirichlet Process

 domain itself is a set of probability distributions

$$G \sim \mathrm{DP}(\mathrm{H}, \alpha)$$

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$$

H: base measure

 α : concentration parameter

Chinese Restaurant Process

Stick Breaking Process

$$\pi_k = \nu_k \prod_{i=1}^{k-1} (1 - \nu_i)$$

$$v_k \sim \text{Beta}(1, \alpha)$$

Outline

- Problem Overview
- @ Gentle Approach to Bayesian Non-Parametric (BNP)
- A BNP model for Marathon data
- Results

J: number of age groups

$$\begin{array}{lll} \mu_k & \sim & \mathcal{N}\left(\mu_0, \sigma_0^2\right) \\ \theta_j & \sim & \mathcal{N}\left(\mu_d, \sigma_d^2\right) \\ \sigma_x^2 & \sim & \mathrm{IG}\left(a, b\right) \\ \pi_k & \sim & \mathrm{GEM}\left(\alpha\right) \end{array}$$

$$x_{ji}| ext{other vars} \sim N\left(x_{ji}|\mu_{c_{ji}} + \theta_{j}, \sigma_{x}^{2}\right)$$

J: number of age groups

$$\begin{array}{lcl} \mu_k & \sim & N\left(\mu_0, \sigma_0^2\right) \\ \theta_j & \sim & N\left(\mu_d, \sigma_d^2\right) \\ \sigma_x^2 & \sim & \mathrm{IG}\left(a, b\right) \\ \pi_k & \sim & \mathrm{GEM}\left(\alpha\right) \end{array}$$

$$x_{ji}| ext{other vars} \sim N\left(x_{ji}|\mu_{c_{ji}} + \theta_{j}, \sigma_{x}^{2}\right)$$

- Model belongs to family of Dependent Dirichlet Process [MacEachern,2000]
- Prior for a set of mixture models (like the HDP)
- Weights π_k shared across groups
- Stick positions change: $\mu_{jk} = \mu_k + \theta_j$
- We call it: Atom-Dependent Dirichlet Process (ADDP)

- Model belongs to family of Dependent Dirichlet Process [MacEachern,2000]
- Prior for a set of mixture models (like the HDP)
- Weights π_k shared across groups
- Stick positions change: $\mu_{jk} = \mu_k + \theta_j$
- We call it: Atom-Dependent Dirichlet Process (ADDP)

- Model belongs to family of Dependent Dirichlet Process [MacEachern,2000]
- Prior for a set of mixture models (like the HDP)
- Weights π_k shared across groups
- Stick positions change: $\mu_{jk} = \mu_k + heta_j$
- We call it: Atom-Dependent Dirichlet Process (ADDP)

- Model belongs to family of Dependent Dirichlet Process [MacEachern,2000]
- Prior for a set of mixture models (like the HDP)
- Weights π_k shared across groups
- Stick positions change: $\mu_{jk} = \mu_k + \theta_j$
- We call it: Atom-Dependent Dirichlet Process (ADDP)

- Model belongs to family of Dependent Dirichlet Process [MacEachern,2000]
- Prior for a set of mixture models (like the HDP)
- Weights π_k shared across groups
- Stick positions change: $\mu_{jk} = \mu_k + \theta_j$
- We call it: Atom-Dependent Dirichlet Process (ADDP)

- Model belongs to family of Dependent Dirichlet Process [MacEachern,2000]
- Prior for a set of mixture models (like the HDP)
- Weights π_k shared across groups
- Stick positions change: $\mu_{jk} = \mu_k + \theta_j$
- We call it: Atom-Dependent Dirichlet Process (ADDP)

Comparison HDP Vs ADDP

Hierarchical DP $G_0 \sim \mathrm{DP}\left(\alpha, \mathrm{H}\right)$ $G_j \sim \mathrm{DP}\left(\gamma, \mathrm{G}_0\right)$

Atom-Dependent DF $G_0 \sim \mathrm{DP}\left(\alpha,\mathrm{H}\right)$ $G_j = \mathrm{T}_j\left[G_0\right]$ $\mathrm{T}_j:\left[\mu_k\right]
ightarrow \left[\mu_k + \theta_j\right]$

17/29

Comparison HDP Vs ADDP

Hierarchical DP $G_0 \sim \mathrm{DP}(\alpha, \mathrm{H})$ $G_i \sim \mathrm{DP}(\gamma, \mathrm{G}_0)$ Atom-Dependent DP $G_0 \sim \mathrm{DP}\left(\alpha, \mathrm{H}\right)$ $G_j = \mathrm{T}_j \left[G_0\right]$ $\mathrm{T}_j : \left[\mu_k\right] \rightarrow \left[\mu_k + \theta_j\right]$

17/29

Metaphor: Chinese Restaurant Franchise

Inference: Block Gibbs Sampling

- MCMC method: Gibbs Sampling to sample everything
- Slower convergence, but very fast computation

Inference: Block Gibbs Sampling

- MCMC method: Gibbs Sampling to sample everything
- Slower convergence, but very fast computation

Inference: Block Gibbs Sampling

- MCMC method: Gibbs Sampling to sample everything
- Slower convergence, but very fast computation

N	10.000 iterations
47.095	15 min
249.899	1h05 min

Outline

- Problem Overview
- @ Gentle Approach to Bayesian Non-Parametric (BNP)
- 3 A BNP model for Marathon data
- Results

Results Model Fit

Results Age Distribution per Cluster

Figure: Dirichlet Process Prior

Results Age Distribution per Cluster

Figure: Atom Dependent Dirichlet Process Prior

Basic Results Age Grading Curves: θ_i

Basic Results Age Grading Curves: θ_i

Model Improvements Age Delays θ_{jk} dependent on cluster k

25/29

Model Improvements Comparison of Multiple Races

Conclusion

Outlook

- Non-parametric model to compare different group distributions
- Modeling of the NYC Marathon
- Inference of robust age grading curves

Further research topics

- Introduce correlation over age delays
- ② Deal with temporal evolution: Inference of running patterns
- Other applications
 - Pediatrics, Social Studies, Pharmaceutics..

Conclusion

Outlook

- Non-parametric model to compare different group distributions
- Modeling of the NYC Marathon
- Inference of robust age grading curves

Further research topics

- Introduce correlation over age delays
- 2 Deal with temporal evolution: Inference of running patterns
- Other applications
 - Pediatrics, Social Studies, Pharmaceutics...

Conclusion

Outlook

- Non-parametric model to compare different group distributions
- Modeling of the NYC Marathon
- Inference of robust age grading curves

Further research topics

- Introduce correlation over age delays
- 2 Deal with temporal evolution: Inference of running patterns
- Other applications
 - Pediatrics, Social Studies, Pharmaceutics...

Bibliography

- World Masters Athletics homepage, http://www.world-masters-athletics.org/about-us
- Bishop, Pattern Recognition and Machine Learning, 2006
- Whye Teh, et. al, Hierarchical Dirichlet Process, 2005
- MacEachern, Dependent Dirichlet Process, 2000
- Neal, Markov Chain Sampling Methods for Dirichlet Process Mixture Models, 2000

Thank you!

Looking forward to your questions...