CS224N: Lecture 1 - Intro & Word Vectors

Word meaning can be representing rather well by a large vector of real numbers.

1. Human language and word meaning

- How do we represent the meaning of a word?
 - WordNet: A thesaurus containing lists of synonym sets and hypernyms
 - ▼ Problems with resources like WordNet
 - (1) Missing nuance
 - (2) Missing new meanings of words
 - (3) Subjective
 - (4) Requires human labor to create and adapt
 - (5) Can't compute accurate word similarity
 - ▼ Problems of the traditional NLP.
 - Regard words as discrete symbols → Represent words by one-hot vectors
 - Very huge vector dimension (= number of words in vacabulary)
 - If vectors of the word are orthogonal → There is no natural notion of similarity for one-hot vectors
 - Solution : Learn to encode similarity in the vectors themselves

 Distributional semantics: A word's meaning is given by the words that frequently appear close-by (contexts)

2. Word2vec algorithm introduction

- Word vectors
 - Distribted Representation
 - = Word embeddings
 - = (Neural) Word representations
 - Similar contexts appears as similar vector of words
- Word2vec : framework for learning word vectors
 - User the similarity of the word vectors for certain words to calculate the probability of them
 - Keep adjusting the word vectors to maximize the probability

3. Word2vec objective function gradients

- Likelihood: predict context words within a window of fixed size m
- Objective function : (average) negative log likelihood

▼ Slides

For each position t = 1, ..., T, predict context words within a window of fixed size m, given center word w_i . Data likelihood:

Likelihood =
$$L(\theta) = \prod_{t=1}^{T} \prod_{-m \le j \le m} P(w_{t+j} \mid w_t; \theta)$$
 θ is all variables to be optimized

sometimes called a cost or loss function

The objective function $J(\theta)$ is the (average) negative log likelihood:

$$J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ j \ne 0}} \log P(w_{t+j} \mid w_t; \theta)$$

Minimizing objective function

⇔ Maximizing predictive accuracy

· We want to minimize the objective function:

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ j \ne 0}} \log P(w_{t+j} \mid w_t; \theta)$$

- Question: How to calculate $P(w_{t+j} | w_t; \theta)$?
- Answer: We will use two vectors per word w:
 - v_w when w is a center word
 - u_w when w is a context word
- Then for a center word c and a context word o:

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)} = \frac{1}{\sum_{w \in V} \exp(u_w^T v_c)} = \frac{1}{\sum_{v \in V} \exp(u_w^T v_c)} = \frac{1}{\sum_{v \in V} \exp(u_v^T v_c)} = \frac{1}{\sum_{v$$

• This is an example of the softmax function
$$\mathbb{R}^n \to (0,1)^n$$
 open region softmax $(x_i) = \frac{\exp(x_i)}{\sum_{j=1}^n \exp(x_j)} = p_i$

- The softmax function maps arbitrary values x_i to a probability distribution p_i
 - "max" because amplifies probability of largest x_i

"soft" because still assigns some probability to smaller x_i

But sort of a weird name because it returns a distribution!

· Frequently used in Deep Learning

4. Optimization basics

- Optimization
 - Adjust parameters to minimize a loss
 - Optimize parameters by walking down the gradient (compute all vector gradient)

▼ Slides

To train the model: Optimize value of parameters to minimize loss

To train a model, we gradually adjust parameters to minimize a loss

- Recall: θ represents all the model parameters, in one long vector
- In our case, with d-dimensional vectors and V-many words, we have:
- Remember: every word has two vectors

- · We optimize these parameters by walking down the gradient (see right figure)
- · We compute all vector gradients!

5. Looking at word vectors

