

SUPPLY NETWORK ANALYZER

CVM_k-BD-...-H SERIES

INSTRUCTION MANUAL

(M981364/00B - Manual 1/2)

(c) CIRCUTOR S.A.

CVM-BD-...-H SUPPLY NETWORK ANALYZER - MANUAL 1/2

	_		-
n	2	п	
_	а	ч	v

1	BASIC INSTRUCTIONS	2
1.1	- Delivery spot check	
	- Connection procedures	
2	MAIN CHARACTERISTICS	3
3	INSTALLATION AND STARTUP	6
-	- Installation	
	- CVM-BD Connection terminal	
	- Connection drawing for the CVM-BD.	
4	OPERATION MODE	13
5	SETUP	15
-	- Phase-Phase or Phase-Neutral voltages.	
	- Voltage Transformer Primary	
	- Voltage Transformer Secondary	
	- Current Transformer Primary	
	- Parameter SETUP	
	- First Page SET-UP	
	- Maximum power demand	
	- Date / Time SETUP	
	- Clearing energy counters	
6	SPECIFICATIONS	25
7	SAFETY CONSIDERATIONS	26
8	MAINTENANCE	27
Q _	TECHNICAL SERVICE	27

1.- BASIC INSTRUCTIONS

1.1.- Delivery spot check

This manual is issued to help all the CVM-BD users to install and use it in order to get the best from it. After receiving the unit please check the following points:

- (a) Does this device corresponds to your order specifications?
- (b) Check if any damage was done during the shipment process.
- (c) Verify that it includes *One instruction manual .

1.2.- Connection procedures

Before connecting the instrument to the mains verify the following:

(a) Power supply:

- □ 230 V a.c. Power supply Va.c. (Single phase)
 □ Frequency: 50 ... 60 Hz
- (b) Maximum measuring voltage:
 - ☐ Standard: 500 V a.c. phase-neutral / 866 V a.c. between phases
 - A special model for 110 V measuring is available:
 100 V a.c. phase-neutral / 173 V a.c. between phases
- (c) Maximum measuring current: Transformer of In / 5 A a.c.

2.- MAIN CHARACTERISTICS

The CVM-BD power meter is a programmable measuring instrument, offering several operation possibilities selectable in its SETUP option. Before power supplying the instrument, read the **CONNECTIONS and SETUP** sections and choose the most suitable operation mode for getting your desired data.

The CVM-BD is an instrument which measures, calculates and displays all the main electrical parameters at any electrical network (balanced or not). The measuring is true RMS value, through three a.c. Voltage inputs and three a.c. Current inputs (from Current Transformers .../ 5A).

By means of an internal microprocessor it simultaneously measures:

parameter	L1	L2	L3	Average	Addition
Voltage (phase-neutral)	Х	Х	Х	х	
Voltage (phase-phase)	Х	Х	Х	х	
Current	X	X	Х	Х	
Active power	X	X	Х		Х
Reactive power L	Х	Х	Х		Х
Reactive power C	X	X	Х		Х
Power factor	X	X	Х	Х	
Apparent power					Х
Frequency	Χ				

and connecting the Energy + Clock module, besides:

Parameter	CVM-BD	
Date/Time dd/mm/yy hh:mm:ss	TIME	
Active energy (two indep. meters: demanded energy (+)	kWh (+) and ()	
and generated energy ())		
Reactive energy (inductive), two indep. meters	kvarh.L (+) and ()	
Reactive energy (capacitive), two indep. meters	kvarh.C (+) and ()	

Parameter	L1	L2	L3
Voltage THD	Х	Х	Х
Current THD	Х	Х	Х

The CVM-BD allows reading up to 54 electrical parameters in 18 screens shown in a three line numerical display , where you can see:

- (a) Phase-phase or phase-neutral voltage of the three phases
- (b) 51 user-selectable parameters according to the model (see attached table)

And also the **MAXIMUM POWER DEMAND**: The power demand is integrated during a prefixed period.

You can select:

- a) The parameter to be controlled (it can measure active power **kW**, apparent power **kVA** or three phase average current **AIII**).
- b) The demand period (1 to 60 min.).

This power demand function works with <u>sliding window</u>: shows the accumulated demand over the last period from "now".

- Other Characteristics

- DIN rail mounting device with low dimensions.
- True RMS value measurements.
- Measurements in all four quadrants (equivalent to CVMk-4C).
- Power demand
- Memorizes Maximum and Minimum values.
- Autoscaling during data reading.
- Bubble keyboard, with 4 keys, for control and programming functions.
- RED type communication.
- The CVM-BD....H incorporates the calculation of the harmonic distorsion.

3.- INSTALLATION AND STARTUP

The manual you hold in your hands contains information and warnings that the user should respect in order to guarantee a proper operation of all the instrument functions and keep its safety conditions.

The instrument must not be powered and used until its definitive assembly on the cabinet's door.

Whether the instrument is not used as manufacturer's specifications, the protection of the instrument can be damaged.

When any protection failure is suspected to exist (for example, it presents external visible damages), the instrument must be immediately powered off. In this case contact a qualified service representative.

3.1.- Installation

Before applying AC power to the, check following points :

a.- Supply voltage:

- Power supply Vac (Single phase) 50 ...60 Hz **230 V a.c.**

Frequency : 50 ... 60 Hz
Supply tolerance : + 10 % / --15 %
Connection terminals : Terminals 1 - 28

- Instrument burden : 6 VA

b.- Maximum voltage at the voltage measuring circuit:

☐ Standard: 500 V a.c. phase-neutral / 866 V c.a. between phases

☐ A special model CVM-BD for 110 V measurement is also available: 100 V a.c. phase-neutral / 173 V a.c. between phases

- c.- Maximum admissible current: Transformer of In / 5 A a.c.
- d.- Operation conditions :

- Operating temperature: 0 to 50°C

- Humidity : 25 to 80 % R.H. noncondensing

e.- Safety: Designed to meet protection class II as per EN 61010.

Instrument is to be mounted on DIN rail mounting device with low dimensions. All connections keep inside the cabinet.

Note that with the instrument powered on, the terminals could be dangerous to touching and cover opening actions or elements removal may allow accessing dangerous parts. Therefore, the instrument must not be used until this is completely installed.

The instrument must be connected to a power supply circuit protected with gl type (IEC 269) or M type fuses rated between 0.5 and 2 A. This circuit should be provided with an automatic switch or any equivalent element to disconnect the instrument from the power supply network. The supply and measuring voltage circuits will be both connected through a wire with a minimum cross-section of 1 mm². The line of the current transformer secondary will have a minimum cross-section of 2,5 mm².

3.2.- CVM-BD Connection terminal

Terminal Nr	Designation	Concept
1 - 28	A1 - A2	supply voltage : 230 V a.c.
27 - 26	dep. model	Relay output Nº 1 / 1 output of 4- 20 mA
25 - 24	dep. model	Relay output Nº 2 / 2 output of 4- 20 mA
	Termination	240 Ω resistor: adaptation of the line final
23 - 19	resistor (RT)	impedance (bridge 23 22 and 19 20)
		COM1 CVM-B: RS-485 connection to the PC
22	+	22 +> 1 (+)
21	GND	21 GND> 5 converter
20		20> 2 () RS-485/RS-232
		COM2 : connection RS-485 to PERIPHERALS
16		16> ()
17	GND	17 GND> GND "network"
18	+	18 +> (+)
15	N	NEUTRAL
14	VL3	Voltage phase 3
13	VL2	Voltage phase 2
12	VL1	Voltage phase 1
11 - 10	I L3: s1 - s2	Current phase L3/ 5 A
9 - 8	I L2: s1 - s2	Current phase L2/ 5 A
7 - 6	I L1: s1 - s2	Current phase L1 / 5 A

NOTE: Current inputs are isolated in the CVM-BD model

3.3.- Connection drawing for the CVM-BD

a.- Connection diagram of the CVM-BD for a low voltage, three phase network.

IMPORTANT REMARK! If $\underline{power} = \underline{0}$ is shown for any of the phases (codes 03, 09 and 15) and voltage and current are not zero for this phase, check out following points:

- Assure that L1, L2 and L3 phases coincide in voltage and current.
- Correct polarity? Reverse the current transformer placed at this phase.

b.- CVM-BD: 3 current transformers + two voltage transformer:

c.- **CVM-BD**: Two current transformers + 2 voltage transformers.

S2 of the current transformer grounded to earth

S1 of the current transformer grounded to earth

4.- OPERATION MODE

The instrument has a display with three lines (10 characters every line).

When you switch on the power supply of the CVM-BD you will see on the display "Circ CVM-BD ..." (program version) and following you will read "CARD TYPE xxxx" (identification of the output options). After some seconds the instrument is ready to work, showing one of the possible screens.

The display indicates the parameter presently shown.

display

The first display shows the voltage of phase L1 (V1), the voltage of phase L2 (V2) and the voltage of phase L3 (V3).

220	V12
220	V23
220	V31

If you press the "display" key, we are now reading the CURRENT values for each phase (A1, A2, A3). However, this screen can be configured in order to display other different parameters.

When pressing again the "display" key, we will see on display the three previously programmed parameters (see point 5.5.- in the SET-UP section). If you press the "display" key again you repeat the above mentioned process (you can see 1 to 18 displays for the CVM-BD depending of the previous set-up).

max

Pressing the "max" key, the maximum values for the parameters being shown appear in the displays.

XXXX	MAX
XXXX	MAX
XXXX	MAX

This function is only valid while you keep pressing the "max" key. If you stop pressing the key the instantaneous values appear again.

min

Pressing the "min" key, the minimum values for the parameters being shown appear in the displays.

XXXX	MIN
XXXX	MIN
XXXX	MIN

This function is only valid while you keep pressing the "min" key. If you stop pressing the key the instantaneous values appear again.

Reset

Pressing the "**reset**" key the system is reset. This is equivalent to switch off the power supply of the instrument. The stored maximum and minimum values will be automatically deleted from the internal memory.

If you are in the setup process and press the "**reset**" key, you exit it without saving any modification that you have done and making a reset of the system.

5.- SETUP

To access into the **setup menu** just follow these steps:

- (a) Connect (supply) the instrument.
- (b) Press the two green buttons (max, min) simultaneously.

You will see during a few seconds the word "**set**". It means that we are in the setup process. Then we go along the different options, step by step:

5.1.- Phase-Phase or Phase-Neutral voltages

After the word "**set**" you will see on the three displays the voltages of the phases L1, L2, L3.

U1		U12
U2	or	U23
U3		U31

Phase to Neutral Voltages: U1 , U2 , U3 Phase to Phase Voltages: U12 , U23 , U31

- a.- To select one of the voltage options just press the green key "max" and both options will appear alternately.
- b.- When you get in the display the wished option just press the "display" key to validate it and access to the next setup option.

5.2.- Voltage Transformer Primary

On the screen we read the word "SET U P" followed by 6 digits. They allow us setting the primary of the voltage transformer.

Last digit of the first display indicates "U" (Voltage) and first digit of the second display indicates "P" (Primary). It means that we can set the primary of the voltage transformer. To avoid mistakes the Voltage red LEDs remain lit on.

- a.- To write or modify the value just repeatedly press the "max" key and the blinking digit value will be increased.
- b.- When the value on screen is the proper one, we can pass to the next digit by pressing the "min" key in order to modify the other values.
- c.- When the blinking digit is the last one, pressing the "min" key we go back to the initial value: set values can be again modified.
 - d.- Press "display" to pass to the next setup option.

5.3.- Voltage Transformer Secondary

We can now set the value of the secondary of the voltage transformer. Only three digits are available:

Same process than in point 5.2.-:

- "max" key: Allows us modifying the value of the blinking digit. Each time it is pressed the value is increased.
 - "min" key: Allows us the validation of the blinking digit and going to the next one.
 - Press "display" to pass to the next setup option.

If the CVM-BD is directly connected to the mains (without voltage transformer) the values of primary and secondary must be the same, for instance 000001/001.

5.4.- Current Transformer Primary

"SET A P" and five digits appear on screen allowing us to set the primary of the current transformer. The current green LEDs light on to avoid mistakes.

SET A P --

```
--- Supply network analyzer CVMk-BD-...-H ----- M-981 364 Manual 1/2 --- Page N° 18
```

The procedure is the same one done at the previous sections with the "max", "min" and "display" keys.

NOTES:

- The maximum programmable value is 10.000
- The secondary of the current transformers is not programmable. It is automatically taken as 5 A (... / 5 A ac)

5.5.- Parameter SETUP

This option allows to program until 54 optional parameters that you can see on the display; 17 possible programmable pages are available (3 parameters every page). The CVM-BD asks first if you want to programme the default parameters.

"max" key: you can select YES or NO. The "display" key allows the validation of the selected option.

- Select "YES" to programme the default parameters. In this case, it pass to the next option (5.6.-First Page SET-UP)
- ➤ If you select "NO", it allows programming the parameters that you want to see on the display. Every new page, it asks if you want to continue this set-up.

- --- Supply network analyzer CVMk-BD-...-H ----- M-981 364 Manual 1/2 --- Page N° 19
- If you select "SET PAGE YES", you can programme the desired parameters in this page :

XX	A1	
XX	A2	
XX	A3	

Parameter code (set-up) / Parameter symbol

SET-UP:

- "max" key : Allows us modifying the value of the blinking digit. Each time it is pressed the value is increased.
- "min" key : Allows us the validation of the blinking digit and going to the next one.

Each display has two digits to select the desired parameters among the ones in the attached code chart.

Parameter	Symbol phase L1	Code	Symbol phase L2	Code	Symbol phase L3	Code
Single voltage	V 1	01	V 2	07	V 3	13
Current	A 1	02	A 2	08	A 3	14
Active power	kW 1	03	kW 2	09	kW 3	15
Inductive power	kvarL 1	04	kvarL 2	10	kvarL 3	16
Capacitiva power	kvarC 1	05	kvarC 2	11	kvarC 3	17
Power factor	PF 1	06	PF 2	12	PF 3	18

Three phase single voltage	Vav III	19	Frequency	Hz	25
Three phase current	Aav III	20	Three ph. apparent power	kVA III	26
Three phase active power	kW III	21	Ph-Ph voltage L1- L2	V 12	27
Three. ph. inductive power.	kvarL III	22	Ph-Ph voltage L2 - L3	V 23	28
Three ph. capacitive power	kvarC III	23	Ph-Ph voltage L3 - L1	V 31	29
Three ph. power factor.	PF III	24	Three ph. Ph-Ph voltage	Vc III	30

Date/ TIME		TIME	31
dd/mm/yy	hh:mm:ss		

		tariff 1	tariff 2*	tariff 3*
Active energy	kW.h	32	39	46
Reactive energy (inductive)	kvarh.L	33	40	47
Reactive energy (capacitive)	kvarh.C	34	41	48
Demand power (kW, kVA, AIII)	Pd	35	42	49
Active energy generated	kW.h	36	43	50
Reactive energy (inductive) gen.	kvarh.L	37	44	51
Reactive energy (capacitive) gen.	kvarh.C	38	45	52

(*) Change of the billing periods : The type of tariff can be selected by programming the CVM-BD through its serial port by means of a PC .

In case of a CVM-BD...-H, following parameters will be also available:

Parameter	Symbol phase L1	Code	Symbol phase L2	Code	Symbol phase L3	Code
Single voltage	THD V1	54	THD V2	55	THD V3	56
Current	THD A1	57	THD A2	58	THD A3	59

- For passing to the next page , press "display". In this case the CVM-BD ask again (17 PAGES maximum : since page 2 until page 18):

SET	
PAGE	
NUMBI	ER
YES	XX

- If you select "SET PAGE YES", you can set-up a next page.
- If you don't want to set-up more pages, **select "SET PAGE No**", and it pass to the next set-up option (5.6.-First Page SET-UP). You can see the first page of voltages and all the programmed pages.

5.6.- First Page SET-UP

This option allows selecting among fixed or rotary page:

- a.- **Fixed page**: the page is changed pressing the "**display**" key. The page among the available ones that we want to see when the CVM-BD is supplied (or a reset is made) can be selected.
- b.- **Rotary pages**: the page changes to the next one automatically every 5 seconds. ("SET AUTO PAGE: Rotate page select" option).

Set-up:

- The "max" key allows modifying the selected page. The display shows the different possible pages.

<-- set-up parameters

- The "display" key allows the validation of the chosen option.

5.7.- Maximum power demand

Push the key "display" and the following screens will appear by display:

- 1.- DEMAND PERIOD (1 to 60 min.) ("SET Per xx")
- 2.- PARAMETER TO CONTROL ("SET Pd xx")

Three phase active power	kW III	21
Three phase apparent power	kVA III	26
Three phase average current	AavIII	20

Value of power integrated during the programmed demand period.

3.- CLEAR MAXIMUM VALUE IN MEMORY ("CLr Pd xx") **no** or **YES**

PROGRAMMING MODE:

- "max" key: allows choosing the different available options.
- "**min**" key: allows the validation of the blinking digit and go forward to the next digit (only for the "SET Per xx" option).
- To pass to the next option press "display".

If you don't want to modify anything, just press the "**display**" key three times without modifying any value.

Display: If you program the MAXIMUM POWER DEMAND option, parameter
 35, the following appears by display (depending on the pressed key):

display	Present value of the demand power meter (Sliding Window,	
	according to the set demand period) updated every second.	
max	max MAXIMUM integrated value (since last reset)	
min	min HOUR: MINUTE DAY: MONTH (""HH.MM DD/MM")	
	when this maximum has occurred	

5.8.- Date / Time SETUP

Pressing the "display" key we will see in the CVM-BD screen the following:

1.- DAY: MONTH ("SET day dd:mm")

2.- YEAR ("SET YEAR xxxxx") 4 digits

3.- HOURS: MINUTES ("SET HOUR hh:mm")

For their setup:

- "max" key: Allows modifying the value of the blinking digit.
- "min" key: Allows the validation of the blinking digits and go to the next one.
- To pass to the next option press "display".

If you don't want to modify the time, just press three times "display" without making any modification.

- **Display**: If you select the parameter 31, following appears by display:

display	HOUR .MINUTES	
max	DAY. MONTH	
min	MINUTES . SEC.	

5.9.- Clearing energy counters

On display we see "CLR ENER no" (Clear energy counters).

- "max" : To select "YES" or "no"

- "display" : To validate the selected option. Once finishing this option, all the modifications that we have done are saved in memory and the setup process is finished.

- <u>Display</u> : If any of the energies is programmed (kWh, kvarhL or kvarhC), it is displayed as follows:

[display]	XXXX kW.h	4 counter digits (more significant) / units	
[max]	XXX XXX. XXX	complete counter	
[min]	XXXX (1)	4 digits / Tariff type (1, 2 or 3)	

<u>Example</u>: If the accumulated energy is 32.534,810 kWh, it will be displayed as follows:

[display]	2534 kW.h
[max]	32534. 810
[min]	2534 (1)

6.- SPECIFICATIONS

Power supply: see specifications on the CVM-BD

- CVM-BD... : Single phase 230 V a.c.

Voltage tolerance: +10 % / -15 %

Frequency: 50 ... 60 Hz

Power consumption 6 VA Operation temperature 0 to 50° C

Measuring Circuits:

Rated voltage 500 V a.c. Phase - Neutral / 866 V a.c. between phases

Other voltagesWith Voltage Transformers

Permanent overload1.2 In Current input power0.3 VA

Accuracy:

Constructive characteristics

:

Box type : Self-extinguishing, plastic casing

Connection: Metallic terminals with "posidraft" screws

Fixing: Fitted onto symmetrical DIN 46277 (EN 50022) rail

Frontal cover: Lexan

Protection: Built-in relay: IP 41

Terminals : IP 20

Dimensions 140 x 70 x 110 mm (8 modules relay as per DIN 43 880)

- Security Category II , EN-61010

Standards: IEC 664, VDE 0110, UL 94, IEC 801, IEC 348, IEC 571-1

EN 50081-1, EN-61010-1, EN 50082-1

Dimensions:

7.- SAFETY CONSIDERATIONS

All installation specification described at the previous chapters named INSTALLATION AND STARTUP, INSTALLATION MODES and SPECIFICATIONS.

Note that with the instrument powered on, the terminals could be dangerous to touching and cover opening actions or elements removal may allow accessing dangerous parts. This instrument is factory-shipped at proper operation condition.

8.- MAINTENANCE

The CVM-BD does not require any special maintenance. No adjustment, maintenance or repairing action should be done over the instrument open and powered and, should those actions are essential, high-qualified operators must perform them.

Before any adjustment, replacement, maintenance or repairing operation is carried out, the instrument must be disconnected from any power supply source.

When any protection failure is suspected to exist, the instrument must be immediately put our of service. The instrument's design allow a quick replacement in case of any failure.

9.- TECHNICAL SERVICE

For any inquiry about the instrument performance or whether any failure happens, contact to CIRCUTOR's technical service.

CIRCUTOR S.A. - Aftersales Service c/ Lepanto, 49 08223 - TERRASSA - SPAIN Tel - + 34 -93 - 745 29 00 Fax - + 34 -93 - 745 29 14

e-mail: central@circutor.es

SUPPLY NETWORK ANALYZER

CVM_k-BD-...-H SERIES

INSTRUCTION MANUAL

(M981364/00B - Manual 2/2)

(c) CIRCUTOR S.A.

page

CVM-BD SUPPLY NETWORK ANALYZER - MANUAL 2/2

10.1 Additional screen with the Relay Output	
10.2 Additional screen with the <u>4 - 20 mA Outputs</u>	8
11 CVM DD COMMINICATIONS	12
11 CVM-BD COMMUNICATIONS	
11.1 Demand format	
11.2 Commands	
11.2.1 Commands for the parameter reading	
11.2.2 Programming commands	14
11.2.3 Energy commands	
11.2.4 Maximum Power Demand commands	16
11.2.5 Command to read all the CVM-BD parameters	
11.2.6 Commands for the configuration of the Relay Outputs	
11.2.7 Commands for the configuration of the 4 - 20 mA Outputs	17
11.3 Examples	
11.4 Default CVM-BD configuration : 00 / 9.600 / 7 bits / N / 1 bit	18
A APPENDIX: FOUR QUADRANTS OF THE CVM-BD	21
B APPENDIX: SECOND SET-UP OF THE CVM-BD	22
B.1 Communication protocol setup mode	22
B.2 Power units setup	

10.- TYPES OF CVM-BD

The standard CVM-BD are:

CVM-BDH	Туре	Description
7 70 275	CVM-BD-H	4C (display)
7 70 276	CVM-BD-RED-H	4C(RED + display)
7 70 279	CVM-BD-RED-420-H	4C + RED + two 4 -20 mA output
7 70 277	CVM-BD-RED-C2-H	4C + RED + 2 relay outputs
7 70 278	CVM-BD-RED-C420-H	4C + RED + 1 output relay + one 4 -20 mA output

The different CVM-BD-...-H provide more parameters to be displayed (additional SETUP).

10.1.- Additional screen with the Relay Output

> CVM-BD- RED-C2 (2 relays)& CVM-BD-RED-C420 (1 relay)

With this outputs the CVM-BD can be configured for:

- A.- Pulse every certain kW.h or kvar.h (ENERGY). You can define the value corresponding to the energy consumed for generating a pulse (0.5 sec. long): kW.h / 1 pulse or kvar.h / 1 pulse
- B.- **ALARM conditions**: the parameter to be controlled, the maximum value, the minimum value and the "delay" are programmed for each relay output.

On the CVM-BD screen following messages appear at this SET-UP point (provided the right module is connected to the equipment):

OUT 1 RELAY 1
CODE
00 Parameter Nr. (1)

- Depending on the selected variable we will pass to a.- or b.- sections
- \square In case that no parameter is wanted to be programmed set *par. Nr.* = 00.

a.- If an ENERGY parameter is chosen: 32, 33 or 34

(1) Value of energy in kW: four digits with floating decimal point

- For programming:

- "max" key: it allows modifying the value of the blinking value. Every time it is pressed the number is increased.
- "min" key: it allows validating the blinking value and go to the next digit.

NOTE: When you arrive at the last digit, you can move the position of the decimal point with the "max" key.

Example for programming a 500 W / 1 pulse:

Firstly we enter the value, 0500, and following we place the decimal point at the right position with the "max" key \rightarrow 0.500 kW.

- For passing to the next option, press "display": setup options for the second relay will appear (only with the CVM-BD type *CVM-BD-RED-C2*).

Act as before. Pressing again "display" key you exit setup mode.

b.- **ALARM conditions** (1 condition for each relay): If any other parameter (1-30, 54-59 or 35) is selected in (1), two outputs can be configured as alarms. For each output it is possible to program:

1	Any of the parameters measured by the CVM-BD
2	MAXIMUM value
3	MINIMUM value
4	Delay for the conditions

These screens are successively displayed by the CVM-BD once the parameter has been selected (for the setup of each option proceed as in the Section a.-):

b.1.- Programming the maximum value to be controlled:

b.2.- Programming the minimum value to be controlled:

b.3.- Programación del "delay":

- Press "display" to pass to the next option: the setup for the second relay appears (only with CVM-BD type *CVM-BD-RED-C2*).

Proceed as before. Pressing again "display" we exit the setup option.

☑ **ALARM ACTIVATION:** The alarms depend on the programmed values of MAXIMUM and MINIMUM.

F		n
MIN +	MAX +	ON OFF ON
	max > min	3/4 3/4 3/4 1/2/4 3/4 3/4 =======1 3/4 3/4 3/4 3/4
		0 Min Max
MIN +	MAX +	OFF ON OFF
	max < min	====¹/z=== ¹ 3/4 3/4 3/4 3/4 ======
		0 Max Min
MIN	MAX +	ON OFF ON
		3/43/43/43/4 ===1/ 2== 13/43/43/43/4
		Min 0 Max
MIN +	MAX	OFF ON OFF
		===== ¹ 3/4 3/4 1/2/4 3/4 3/4 =======
		Max 0 Min
MIN	MAX	ON OFF ON
	max > min	3/4 3/4 3/4 3/4 ======1 3/4 3/4 3/4 1/2/4 3/4 3/4
		Min Max 0
MIN	MAX	OFF ON OFF
	max < min	==== ¹ 3/4 3/4 3/4 3/4 ====== 1/=====
		Max Min 0

ON = alarm activated -----> relay closed

OFF = alarm deactivated ----> relay open

 $\ \square$ The **DELAY** set value is applied either to the connection or the disconnection when the alarm conditions occur.

☑ The programming units for the different parameters are:

Parameter	Format	Example
Voltage	Without decimals = V (xxxx)	125.0 = 125 kV
_	With decimals = $kV (xxx.x)$	0220 = 220 V
		25.30 = 25.30 kV
Current	A	0150 = 150 A
Powers	kW, kvar, kVA	0.540 = 540 W
		250.5 = 250.5 kW
Energies	kW.h, kvar.h	
Power factor	X.XX	- 0.7 = - 0.70
Frequency	XX.X	50.0 = 50 Hz

Connections of the RELAY OUTPUTS:

a.- CVM-BD-RED-C2 (2 relays) :

Out1	Terminals	Signal	
RELAY1	27 - 26	N.O.	

Out2	Terminals	Signal
RELAY2	25- 24	N.O.

b.- CVM-BD-RED-C420 (1relay) :

Out2	Terminals	Signal
RELAY1	25 - 24	N.O.

- Maximum voltage between terminals = 250 V a.c.

10.2.- Additional screen with the 4 - 20 mA Outputs

➤ 4 - 20 mA outputs: CVM-BD-RED-420 (2 analog outputs) and CVM-BD-RED-C420 (1 relay +1 analog output).

With this outputs we can configure the CVM-BD to give an output of 4 - 20 mA d.c. or of 0 - 20 mA d.c. (resolution of 4.000 points) proportional to any of the parameters measured by the CVM-BD, with the ability of setting the scale (offset and full scale).

On the CVM-BD screen following messages appear at this SET-UP point (provided the right module is connected to the equipment):

a.- Parameter choosing:

- "max" -- "min" keys: allow the selection of any parameter from 1-30 or 54-59
- "display" key: validates the selected option and passes to the next setup screen.

b.- Election of 0 - 20 mA or 4 - 20 mA:

- "display": to validate the selected option and pass to the next setup screen.

c.- Scale offset:

Value of the parameter that we assign as the zero of the scale.

dA 1
Zero
x.xxx

OUTPUT D/A Nr.1
zero of the scale:
allows choosing the zero of the scale
(four digits with floating decimal point)

- "max" key: it allows modifying the value of the blinking value. Every time it is pressed the number is increased.
- "min" key: it allows validating the blinking value and go to the next digit.

NOTE: When you arrive at the last digit, you can move the position of the decimal point with the "max" key.

- "display": to validate the selected option and pass to the next setup screen.
- **d.- Full scale**: Value of the parameter to which we assign the 20 mA.

dA 1
F.ESC
x.xxx

OUTPUT D/A Nr.1
Full scale:
allows choosing the full scale (20 mA)
(four digits with floating decimal point)

Proceed as in the previous section.

- For passing to the next option, press "display": the setup for the second output will appear (only with a CVM-BD type CVM-BD-RED-420).

dA 2 code xxxx OUTPUT D/A Nr.2

Proceed as in the previous sections.

- 1.- Connections of the 4- 20 mA outputs:
- a.- CVM-BD-RED-420 (Two 4-20 mA outputs : channel 1 and channel 2) and b.- CVM-BD-RED-C420 (One 4-20 mA output : channel 1)

	Terminals	Signal
Channel	27	20 mA () (Common)
1 26		20 mA (+)

		Terminals	Signal
ſ	Channel	25	20 mA () (Common)
	2	24	20 mA (+)

2.- Output calculation:

Resolution = 20 - Zero . F. scale - offset	Offset & f. scale = defined by the user Zero = 0 mA or 4 mA
mA = ((F. scale - offset) x Resolution) + Zero	
$mV = mA \times ohms$	$mV_{(100 \text{ ohms})} = mA \times 100$

- Maximum load is of 250 Ω (5 V 20 mA)
- The maximum allowed offset is a value equal to the 90% of the full scale.

Output of the power factor parameter (P.F.):

Ī	0/4 mA		20 mA			
	+0.00	Ind.	1.00	Cap.	-0.00	

3.- Default full scale:

Parameter	Condition	Full scale (20 mA)	
Voltages	Primary < 500	Primary x 500 /secondary	
(V)	Primary > 500	Voltage primary	
Currents (A)		Current primary	
Powers	For one phase	voltage primary x current primary / 1000	
(kW)	Three phase value	voltage primary x current primary x 3 / 1000	
Frequency (Hz)		65	
P.F.		- 0.00	

11.- CVM-BD COMMUNICATIONS

One or some CVM-BD... can be connected to a computer. With this system we can get all the parameters in one central point of reading. The CVM-BD-RED..., has a serial output type RS-485. If we connect more than one CVM-BD-RED... to the same communication line, we have to assign to each of them a different code or direction (from 01 to 99), since the computer needs the identification of every measuring point.

PROTOCOL: Question / Answer

11.1.- Demand format

The demand format is: \$PPCCCAA.... ch [LF] (example = \$00RVI75)

The answer format is: \$PPAA.... ch [LF]

\$	Any message starts with this symbol		
PP	CVM-BD code or direction (00 a 99) (decimal- ASCII)		
CCC	COMMAND		
AA	ARGUMENT: Only with the writing commands Wxx (decimal-ASCII)		
Ch	CHECK-SUM: Check-sum of all the elements forming the message. It is calculated with the decimal addition of all the previous bytes in ASCII and translating the result to hexadecimal. Two digits are taken .		
	$\underline{\text{example}} = \$00\text{RVI}> 36 + 48 + 48 + 82 + 86 + 73 = 373$ 373 decimal = 175 hexad. CHECK-SUM = 75 > \$00RVI75 [LF]		
[LF]	LINE FEED indicates the end of the message. (chr\$(10))		

11.2.- Commands

11.2.1.- Commands for the parameter reading

COM- MAND	CONCEPT	QUESTION	ANSWER	UNITS
RVI	Read V phneutral INST	\$ PP RVI ch	\$PP4x9 digits ch	V
RVM	Read V phneutral MAX	\$ PP RVM ch	\$PP3x9 digits ch	V
RVm	Read V phneutral MIN	\$ PP RVm ch	\$PP3x9 digits ch	V
ROI	Read V phase-ph. INST	\$ PP ROI ch	\$PP4x9 digits ch	V
ROM	Read V.phase-ph. MAX	\$ PP ROM ch	\$PP3x9 digits ch	V
ROm	Read V.phase-ph. MIN	\$ PP ROm ch	\$PP3x9digits ch	V
RAI	Read Current INST	\$ PP RAI ch	\$ PP 4 x 9 digits ch	mA
RAM	Read Current MAX	\$ PP RAM ch	\$PP3x9 digits ch	mA
RAm	Read Current MIN	\$ PP RAm ch	\$PP3x9digits ch	mA
RPI	Read Active power INST	\$ PP RPI ch	\$ PP 4 x 9 digits ch	W
RPM	Read Active power MAX	\$ PP RPM ch	\$PP4x9 digits ch	W
RPm	Read Active power MIN	\$ PP RPm ch	\$PP4x9 digits ch	W
RLI	Read Induc. pow. INST	\$ PP RLI ch	\$PP4x9 digits ch	var.L
RLM	Read Induc. pow. MAX	\$ PP RLM ch	\$PP4x9 digits ch	var.L
RLm	Read Induc. pow. MIN	\$ PP RLm ch	\$ PP 4 x 9 digits ch	var.L
RCI	Read Capac. pow. INST	\$ PP RCI ch	\$PP4x9 digits ch	var.C
RCM	Read Capac. pow. MAX	\$ PP RCM ch	\$ PP 3 x 9 digits ch	var.C
RCm	Read Capac. pow. MIN	\$ PP RCm ch	\$PP3x9 digits ch	var.C
RFI	Read P.F. INST	\$ PP RFI ch	\$ PP 4 x 9 digits ch	x 100
RFM	Read P.F. MAX	\$ PP RFM ch	\$ PP 3 x 9 digits ch	x 100
RFm	Read P.F. MIN	\$ PP RFm ch	\$ PP 3 x 3 digits ch	x 100
RHI	Read Frequency INST	\$ PP RHI ch	\$ PP 1x 3 digits ch	Hz x 10
RHM	Read Frequency MAX	\$ PP RHM ch	\$ PP 1x 3 digits ch	Hz x 10
RHm	Read Frequency MIN	\$ PP RHm ch	\$ PP 1x 3 digits ch	Hz x 10
RQI	Read Apparent pow. INST	\$ PP RQI ch	\$ PP 1 x 9 digits ch	VA
RQM	Read Apparent pow. MAX	\$ PP RQM ch	\$ PP 1 x 9 digits ch	VA
RQm	Read Apparent pow. MIN	\$ PP RQm ch	\$ PP 1 x 9 digits ch	VA
RTH	Read V & A THD INST	\$pp RTH ch	\$pp 6 x 9 dígits ch (3 THDV + 3THDA)	% x 10
RTM	Read V & A THD MAX	\$pp RTM ch	\$pp 6 x 9 dígits ch (3 THDV + 3THDA)	% x 10
RTm	Read V & A THD MIN	\$pp RTm ch	\$pp 6 x 9 dígits ch (3 THDV + 3THDA)	% x 10

11.2.2.- Programming commands

COM- MAND	CONCEPT	QUESTION	ANSWER
RRT	Read transforming ratios (prim V, sec V, prim A)	\$pp RRT ch	\$pp 14 digits ch (6 + 3 + 5)
WRT	Write transforming ratios	\$pp WRT 14 digits ch (6 + 3 + 5)	\$pp ACK ch
RRS	Read communications (*)	\$pp RRS ch	\$pp 13 digits ch
WRS	Write communications (*)	\$pp 13 digits ch	\$pp ACK ch
RPD	Read configuration page "nn" (code of the three parameters)	\$pp RPD nn ch (nn = page nº)	\$pp C1 C2 C3 ch (3 x 2 digits)
WPD	Write configuration. Page "nn"	\$pp WPD nnC1C2C3 ch	\$pp ACK ch
RND	Read pages number + initial page	\$pp RND ch	\$pp nn ii ch (2 x 2 digits)
WND	Write pages number (2 digits)+ initial page (2 digits)	\$pp WND nn ii ch	\$pp ACK ch
RMM	Read type of set voltage (single / compound)	\$pp RMM ch	\$pp 1 digit ch 1=S / 0 =C
WMM	Write measuring mode (single / compound)	\$pp WMM 1 digit ch 1=single / 0 = comp	\$pp ACK ch
VER	Read CVM-BD version	\$pp VER ch	\$pp 4 digits ch
TAR	Read type of outputs (module) + scale kW- MW (Lo - Hi)	\$pp TAR ch	\$pp 5 digits ch (4 card + 1 scale)
DEF	Write default parameters	\$pp DEF ch	\$pp ACK ch
INI	Reset	\$pp INI ch	

(*) NOTE: The RRS / WRS command (communications):

 ² digits peripheral number / 1 digit Parity / 1 digit length / 1 digit Stop bits/
 4 digits Baud rate SERIAL output / 4 digit Baud rate 2nd output (only for "RED" module: 2nd RS-485 output).

11.2.3.- Energy commands (*) negative energies : generated energy (four quadrants).

COM	CONCEPT	QUESTION	ANSWER	UNIT
RWH (*)	Read active energy (positive, negative - absolute value -)	\$pp RWH ch	\$pp 2 x 9 digits ch	W.h
RLH (*)	Read inductive energy (positive, negative - absolute value -)	\$pp RLH ch	\$pp 2 x 9 digits ch	varh.L
RCH (*)	Read capacitive energy (positive, negative - absolute value)	\$pp RCH ch	\$pp 2 x 9 digits ch	varh.C
RCE	Read initial value of the positive energies: kW.h, Kvarh.L and kvarh.C	\$pp RCE ch	\$pp 3 x 9 digits ch	W.h
(*) RCe	Read initial value of the negative energies: kW.h, kvarh.L and kvarh.C	\$pp RCe ch	\$pp 3 x 9 digits ch	W.h
WCE	Write the three positive energies (write initial value).	\$pp 3 x 9 digits ch	\$pp ACK ch	W.h
(*) WCe	Write the absolute value of the three negative energies (write initial value).	\$pp 3 x 9 digits ch	\$pp ACK ch	W.h
RCL	Read date and time dd/mm/yy hh:mm:ss	\$pp RCL ch	\$pp 17 characters ch	
WCL	Write value for the clock dd/mm/yyyy hh:mm:ss	\$pp 19 charac. ch (10 + space +8)	\$pp ACK ch	
RTS	Read SET-UP of three billing period operation mode	\$pp RTS ch	\$pp 3 digits ch arg: 00X X = active tariff type	

11.2.4.- Maximum Power Demand commands

COM.	CONCEPT	QUESTION	ANSWER
RPE	Read power demand period + param. (kW=21, KVA=26 or AIII=20)	\$pp RPE ch	\$pp 2 x 2 digits ch
WPE	Write power demand period (2 dig.) + param. (kW=21, kVA=26, AIII=20)	\$pp WPEXXXXch	\$pp ACK ch
CMD	Delete maximum demand value pd=0	\$pp CMD ch	\$pp ACK ch
RMD	Read maximum demand value: DATE, MAXIMUM (from the last reset), LAST PERIOD MAXIMUM	\$pp RMD ch	\$pp 35 digits ch xx/xx/xx xx:xx:xx xxxxxxxxx (9 dig) xxxxxxxxxx (9 dig)

11.2.5.- Command to read all the CVM-BD parameters

COMMAND	CONCEPT	QUESTION	ANSWER SIZE
RAL	Read TOTAL	\$pp RAL ch	\$pp + 244 bytes + ch

With this parameter all the parameters are requested: 30 x 8 bytes in hexa-ASCII format in the following order:

[0]L12	[1]L23	[2]L31	[3] Av	Voltage phase-phase
[4] L1	[5]L2	[6]L3	[7] Av	Voltage phase-neutral
[8]L1	[9]L2	[10]L3	[11] Av	Current
[12] L1	[13]L2	[14] L3	[15] III	Active power
[16] L1	[17] L2	[18] L3	[19] III	Inductive power
[20] L1	[21] L2	[22] L3	[23] III	Capacitive power
[24] L1	[25] L2	[26] L3	[27] Av	Power factor
			[28]	Frequency
			[29] III	Apparent power

2 bytes : current units 00 - mA / 01 - A2 bytes : power units 00 - W / 01 - kW

(*) - Power factor (x 100) : When is capacitive it adds 200 0 ------ 200 +0.0 Ind. 1.0 Cap. -0.00

11.2.6.- Commands for the configuration of the Relay Outputs

COM.	CONCEPT	QUES	STION		ANSWER
RCC	Read configuration (W.h or kvar.h)	\$pp RCC ch		el 1 para	am. (2 dig) + value1 aram.+value2 (9 dig)
WCC	Write module configuration (W.h or kvar.h)	argument : cha	, , ,		\$pp ACK ch

<u>ALARM CONFIGURATION</u>: parameter + maximum + minimum + delay

RCA	Read alarm configuration 2 relays	\$pp RCA ch	\$pp 2 x 25 digits ch argument: parameter 1 code value 1 (9 dig) +minimum va (4 dig) + relay status (1 dig)	alue 1 (9 dig) + delay
WCA	Write module configuration	argument: cha	\$pp WCA 26 digits ch argument: channel number (2 dig) + parameter code (2 dig)+maximum value (9 dig) +mín v. (9 dig.) + delay (4 dig)	

11.2.7.- Commands for the configuration of the 4 - 20 mA Outputs

COM.	CONCEPT	QUESTION		AN	SWER
RDA	Read configuration	\$pp RDA ch		digits ch node 0-20 mA/ 4 - code (2 dig) + off	
RFE	Read full scale	\$pp RFE ch	RFE ch \$pp 9 digits channel 1 + 9 dig. channel 2 ch		g. channel 2 ch
WDA	Write module configuration	\$pp WDA 24 digits argument: channe mode 0-20 mA/ 4 code (2 dig) + offs (9 dig) + full scale	el number (2 - 20 mA (2 d set value		\$pp ACK ch

11.3.- Examples

```
SEND
         : $00RFI65 [ LF]
                                    ( Power factor)
RECEIVED: $00083083084083F1[LF]
 (\$00, PF1 = 083, PF2 = 083, PF3 = 084 = 0.84 \text{ ind}, Pavg = 0.83)
      : $00RVI75 [LF]
SEND
RECEIVED: $000000021900000012100000010300000014865 [LF]
   00. V1 = 000000219 = 219 V V2 = 000000121 = 121 V
       (V/A ratio)
        : $00RRT7C [LF]
RECEIVED: $000250001100050032 [LF]
   00, Voltage primary = 025000 = 25.000 (6 digits).
        Voltage secondary = 110 = 110 (3 digits).
        Current primary = 00500 =
                                     500 (5 digits).
         : $00RRS7B [LF]
 SEND
                               (Communication)
 RECEIVED: $00000719600480017 [LF]
    $00, Peripheral number = 00
         Parity
                       = 0 = Non (1 dig.)
         Bits
                       = 7
                                 (1 dig.)
                       = 1
         Stop bits
                                 (1 dig.)
         Baud rate
                       = 9600
                                 (4 dig.) (COM1)
         2<sup>a</sup> Baud rate
                         = 4800
                                  (4 dig.) (COM2 - RED module)
SEND
         : $00RAI60 [LF]
RECEIVED: $000002140000001900000018500000019600073 [LF]
  $00, A1= 000214000 = 214000 mA = 214 A
      A2= 000190000 = 190000 mA = 190 A
      A3= 000185000 = 185000 mA = 185 A
      Am =000196000 = 196000 mA = 196 A
```

11.4.- Default CVM-BD configuration: 00 / 9.600 / 7 bits / N / 1 bit

- ----- Supply network analyzer CVMk-BD-...-H ---- M-981 364 Manual 2 / 2 --- Page N° 19
- Available baud rates: 2.400 4.800 9.600 19.200 bauds
- CVM / RS-485 module: DB-9 Male connector

Nr. pin		Signal
	20	TX
	22	TX +
	21	GND

- RS-485 connection will be carried out by means of a **twisted and screened cable**, with a minimum of 3 wires, with a maximum distance between the CVM-BD and the last peripheral of 1.200 m. The CVM-BD uses a RS-485 communication bus allowing up to a maximum of 32 devices in parallel (Multidot bus) per used port of the PC.

- RS-485 COMMUNICATION LINK TO MULTIPLE DEVICES

A.- APPENDIX: FOUR QUADRANTS OF THE CVM-BD...

Example of the phase difference between voltage and current	Active power kW or kW.h	Reactive power kvar or kvar.h	P.F.
30°	kW +	kvar L +	+
300°	kW +	kvar C +	
210°	kW	kvar L	+
120°	kW	kvar C	

B.- APPENDIX: SECOND SET-UP OF THE CVM-BD

It is possible to access to a second MENU of SET-UP that allows the configuration of the CVM-BD with other options different of the standard ones.

To enter into it proceed as follows:

- Without power supply in the CVM-BD, press simultaneously "display", "max" and "min" keys.
 - Keeping these keys pressed, supply the CVM-BD.

We will read on the CVM-BD screen the following:

B.1.- Communication protocol setup mode

- "display" key: allows validating the selected option and pass to the next setup screen:

B.2.- Power units setup

The "max" key allows the modification of this option If MW is chosen, all the powers and energies are measured in "Megas".

- "display" key: allows validating the selected option and passing to the next setup screen:

B.3.- Communication parameters setup

SET
Cdef default configuration
NO "max" key allows choosing NO / YES

- If YES is chosen: the configuration is 00 / 9.600 / 7 bits / N / 1 bit

- If NO is chosen, pressing "display" following options successively appear:

n PER
Baud 1
baud rate
Parity
LEN
Peripheral Nr.
baud rate
No, even, odd
(length) 7 or 8

- Stop bits : 1 or 2

- Baud 2 : com2 ("NETWORK") baud rate - peripherals connection

B.4.- Password

To enable or disable the main setup menu, the option "SET OUT yes/no" has been added to this second menu. Whether this option status is switch, the Password will be inquired.

The password will consist of 4 numeric digits within 1 to 9999 (Default password is **1234)**. In case that the set password is not correct, when the 2nd setup is exited, the modification of the "SET Out" option will be not validated; on the contrary, whether the password is correct, this modification will be validated

The setup lock is only valid for the main (1^{st}) Setup, in the way that the analyzer configuration can be visualized but not modified. This lock does not imply the access to the 2^{nd} Setup.

DEFAULT PASSWORD = 1234

C.- APPENDIX: THREE BILLING PERIODS CVM-BD-RED...

With the CVM-BD-RED..., **THREE billing periods can be controlled**, each one with a meter of kW.h, kvarh.L, kvarh.C and maximum power demand: The CVM-BD-RED... has then a total of 9 METERS (18 meters in the case to work with four quadrants).

We make the change of the billing periods (tariffs) <u>by SOFTWARE</u>: The type of tariff can be selected by programming the CVM-BD through its serial port by means of a PC (see manual of CVM_ST software). The tariffs fixed for each billing period are programmed for every day.

COMMUNICATIONS COMMANDS WITH THREE billing periods (*) negative energies are equivalent to generated energies (four quadrants).

COM	CONCEPT	QUESTION	ANSWER	UNIT
RWHX n (*)	Read active energy (positive, negative - absolute value -)	\$pp RWHXn ch	\$pp 2a x 9 dig ch	W. h
RLHXn (*)	Read inductive energy (positive, negative - absolute value -)	\$pp RLHXn ch	\$pp 2a x 9 dig. ch	varh . L
RCHXn (*)	Read capacitive energy (positive, negative - absolute value)	\$pp RCHXn ch	\$pp 2a x 9 dig. ch	varh. C
RCEXn	Read initial value of the positive energies: kW.h, Kvarh.L and kvarh.C	\$pp RCeXn ch	\$pp 3a x 9 digits ch	W.h
WCEX n	Write the three positive energies (write initial value).	\$pp WCeXn 3a x 9 digits ch	\$pp ACK ch	W.h
(*) RCeXn	Read initial value of the negative energies: kW.h, kvarh.L and kvarh.C	\$pp RCeXn ch	\$pp 3a x 9 digits ch	W.h

(*) WCeXn	Write the absolute value of the three negative energies (write initial value).	\$pp WCeXn 3a x 9 digits. ch	\$pp ACK ch	W.h
RTS	Read SET-UP of three billing period operation mode	\$pp RTS ch	\$pp 3 digits ch arg: 00x x = active tariff type	

- MAXIMUM POWER DEMAND COMMANDS

COM.	CONCEPT	QUESTION	ANSWER
CMDX n	Delete maximum demand value pd=0	\$pp CMDXn ch	\$pp ACK ch
RMDXn	Read maximum demand value: DATE, MAXIMUM (from the last reset), LAST PERIOD MAXIMUM	\$pp RMDXn ch	\$pp 35 digits ch xx/xx/xx xx:xx:xx xxxxxxxxx (9 dig) xxxxxxxxxx (9 dig)

0 ----- Tariff 1 1 ----- Tariff 2 2 ----- Tariff 3

3 ----- The three tariffs

- "a" (the size of the answer) a = 1 if n = 0, 1 or 2

a = 3 if the value n = 3

Examples: To ask the three kW. h counters

\$00RWHX3 [ch] [LF]

D.- APPENDIX: MODBUS © PROTOCOL

The CVM-BD power meter has also the **MODBUS** © protocol .

When the CVM-BD is configured to work with MODBUS protocol, it use the **RTU mode** (Remote terminal Unit). Each 8-bit byte in a message contains two 4-bits hexadecimal characters.

The format for each byte in RTU mode is:

* Code : 8- bit binary, hexadecimal 0-9, A-F

Two hexadecimal characters contained

in each 8-bit field of the message.

* Bits per Byte : 8 data bits

* Error Check Field : Cyclical Redundancy Check (CRC) .

MODBUS FUNCTIONS:

FUNCTION 3 or 4 Reads the n Words (16 bits- 2 bytes). It uses this

function to read all the electrical parameters of the CVMk.

This registers are longs of 32 bits; In this case It is

necessary to read two Words. (4 bytes - XX XX XX XX).

FUNCTION 6 Writing of 1 Word. This function is used to change from

MODBUS to CIRBUS.

Valid Register 0 Valid value 0

----- Supply network analyzer CVMk-BD-...-H ---- M-981 364 Manual $2 \ / \ 2$ --- Page N° 28

Registers of the CVM-BD electrical parameters :

VARIABLE	REGISTERS		
	DECIMAL	HEXA- DECIMAL	
DATE / HOUR *NOTE 1	0 - 1	00 - 01	
V 1	2 - 3	02 - 03	
mA 1	4 - 5	04 - 05	
W 1	6 - 7	06 - 07	
varL 1	8 - 9	08 - 09	
varC 1	10 - 11	0A - 0B	
PF 1	12 - 13	0C - 0D	
V 2	14 - 15	0E - 0F	
mA 2	16 - 17	10 - 11	
W 2	18 - 19	12 - 13	
varL 2	20 - 21	14 - 15	
varC 2	22 - 23	16 - 17	
PF 2	24 - 25	18 - 19	
V 3	26 - 27	1A - 1B	
mA 3	28 - 29	1C - 1D	
W 3	30 - 31	1E - 1F	
varL 3	32 - 33	20 - 21	
varC 3	34 - 35	22 - 23	
PF 3	36 - 37	24 - 25	

VARIABLE	REGISTERS	
	DECIMAL	HEXA- DECIMAL
Vav III N	38 - 39	26 - 27
mAav III	40 - 41	28 - 29
W III	42 - 43	2A - 2B
varL III	44 - 45	2C - 2D
varC III	46 - 47	2E - 2F
PF III	48 - 49	30 - 31
Hz	50 - 51	32 - 33
VA III	52 - 53	34 -35
V 12	54 - 55	36 - 37
V 23	56 - 57	38 - 39
V 31	58 - 59	3A - 3B
Vav III	60 - 61	3C -3D
+ Wh - TARIFF 1	62 - 63	3E - 3F
+ varh L -TAR. 1	64 - 65	40 - 41
+ varh C -TAR. 1	66 - 67	42 - 43
Pd (last period)	68 - 69	44 - 45
- Wh TARIFF 1	70 - 71	46 - 47
- varh L TAR. 1	72 - 73	48 - 49
- varh C TAR. 1	74 - 75	4A- 4B

VARIABLE	REGISTROS		
	DECIMAL	HEXA-	
		DECIMAL	
A 1	76 - 77	4C - 4D	
A2	78 - 79	4E - 4F	
A3	80 - 81	50 - 51	
THD V1	84 - 85	54 - 55	
THD V2	86 - 87	56 - 57	
THD V3	88 - 89	58 - 59	
THD I1	90 - 91	5A - 5B	
THD I2	92 - 93	5C - 5D	
THD I3	94 - 95	5E - 5F	
Fecha-Hora *	100 - 101	64 - 65	
V 12	102 - 103	66 - 67	
V 23	104 - 105	68 - 69	
V 31	106 - 107	6A - 6B	

VARIABLE	REGISTROS	
	DECIMAL	HEXA-
		DECIMAL
V 1	108 - 109	6C - 6D
V2	110 - 111	6E - 6F
V3	112 - 113	70 - 71
mA 1	114 - 115	72 - 73
mA 2	116 - 117	74 - 75
mA 3	118 - 119	76 - 77
W 1	120 - 121	78 - 79
W 2	122 - 123	7A - 7B
W 3	124 - 125	7C - 7D
varL 1	126 - 127	7E - 7F
varL 2	128 - 129	80 - 81
varL 3	130 - 131	82 - 83
+ Wh - TARIFA 1	132 - 133	84 - 85
+ varh L -TAR. 1	134 - 135	86 - 87
- Wh TARIFA 1	136 - 137	88 - 89
- varh L TAR. 1	138 - 139	8A - 8B

* The DATE / HOUR register has the next format :

b0 - b5 seconds

b6 - b11 minutes

b12 - b16 hours

b17 - b21 day

b22 - b25 month

b26 - b31 year + 92

----- Supply network analyzer CVMk-BD-...-H ---- M-981 364 Manual $2 \ / \ 2$ --- Page N° 30

Energy registers (three tariffs):

VARIABLE		REGISTERS	
		DECIMAL	HEXADECIMAL
DATE / HOUR * NOTE 1	TARIFF	200 - 201	C8 - C9
+ Wh	1	202 - 203	CA - CB
+ varh L	1	204 - 205	CC - CD
+ varh C	1	206 - 207	CE - CF
- Wh	1	208 - 209	D0 - D1
- varh L	1	210 - 211	D2 - D3
- varh C	1	212 - 213	D4 - D5
Pd (Date and hour of the maximun demand value) *NOTE 1	1	214 - 215	D6 - D7
Pd (Maximun demand value)	1	216 - 217	D8 - D9
Pd (Last period maximum)	1	218 - 219	DA - DB
+ Wh	2	220 - 221	DC - DD
+ varh L	2	222 - 223	DE - DF
+ varh C	2	224 - 225	E0 - E1
- Wh	2	226 - 227	E2 - E3
- varh L	2	228 - 229	E4 - E5
- varh C	2	230 - 231	E6 - E7
Pd (Date and hour of the maximun demand value) *NOTE 1	2	232 - 233	E8 - E9
Pd (Maximun demand value)	2	234 - 235	EA - EB
Pd (Last period maximum)	2	236 - 237	EC - ED
+ Wh	3	238 - 239	EE - EF
+ varh L	3	240 - 241	F0 - F1
+ varh C	3	242 - 243	F2 - F3
- Wh	3	244 - 245	F4 - F5
- varh L	3	246 - 247	F6 - F7
- varh C	3	248 - 249	F8 - F9
Pd (Date and hour of the maximun demand value) *NOTE 1	3	250 - 251	FA - FB
Pd (Maximun demand value)	3	252 - 253	FC - FD
Pd (Last period maximum)	3	254 - 255	FE - FF

EXAMPLE

00 00 0F A0 00 00 00

00 00 00 00

00 00 00 60

00 00 01 F4 00 00 0F A0

B7 B8

QUERY	0A 03 00 26 00 10 A4 B6
0A 03 00 26 00 10 A4B6	CVMk number, 10 in decimal Reading function Starting address (first register) Number of registers for reading CRC character
RESPONSE	0A 03 20 00 00 00 D4 00 00 23 28 00 00 0F A0 00 00 00 00 00 00 00 00 00 00 00 00
0A 03 20 00 00 00 D4 00 00 23 28	CVM-BD number , 10 in decimal Reading function (03 or 04). Data response bytes Vav III (register 26 Hex) in decimal 212 V mA av III in decimal 9000 mA

W III in decimal 4000 W

varL III in decimal 0 varL

varC III in decimal 0 varC

VA III in decimal 4000 mA

Hz in decimal 50 x 10 -> 50 Hz

PF in decimal 96 PF

CRC character

MODBUS SELECTION

There are two ways for the change of the protocol (CIRBUS or MODBUS):

- a.- It is possible to access to a second MENU of SET-UP that allows the configuration of the CVM-BD: CIRBUS or MODBUS
 (*) see the APPENDIX B.
- b.- With instructions via RS.
- b.1.- When the device is on CIRBUS, for changing to MODBUS via RS, it is done sending the command MBS.

CIRBUS -> MODBUS \$PPMBSch (Lf) ASCII
PP Peripheral number (CVMk)

MBS Instruction to change from CIRBUS to MODBUS
ch CHECK SUM

b.2.- When the device is on MODBUS, for changing to CIRBUS via RS, it is necessary to use the **FUNCTION 6** (Writing of 1 Word).

MODBUS -> CIRBUS PP**06**00000000xxxx BINARY
PP Peripheral number (CVM-BD)
06 Writing function (Only to change).
0000 Writing of 1 Word
0000 Writing register: **0**xxxx CRC