Operating Systems

OS Knowledge, Shell, VM and Containers

SoftUni Team Technical Trainers

Software University

https://about.softuni.bg/

Table of Content

- 1. Operating Systems Overview
- 2. OS Examples
- 3. Virtual Machines and Containers
 - OS inside another OS
 - Remote VM instances
 - OS Emulators
- 4. Shell and Shell Commands

Have a Question?

Operating Systems Overview

Purpose and Structure

What is Operating System?

- An operating system (OS), manages other application programs in a device
- The OS is loaded into a device through a process called booting
- It enables applications to interact with the device's hardware
- Applications make requests for services through a defined interface called an application program interface (API)
- At least one OS must be installed in a device to run basic programs, e.g. web browsers

OS Main Functions

- Booting the process of turning on the device and powering up the system
- Memory management controls and coordinates the computer applications while allocating space for programs
- Loading and execution load / start up, a program and execute it, so that it opens and runs
- Data security OS includes features that keep data and computer programs secure.
- Disk management manages all the drives installed, including hard drives, optical disk drives, and flash drives. Also used to divide disks, format drives, etc.

OS Main Functions

- Process management Allocates resources to different computer processes, allows processes to share information, protects, and synchronizes them
- Device controlling Controls access to devices like removable devices, CD/DVDs, USBs, and more
- Printing controlling takes control of printers connected and manages the printing process
- User interface (UI) allows users to interact with the computer by entering and receiving information through typed commands, code, and other formats

Kernel

- Core component of an operating system
- Bridges hardware and software components
- Translates user queries into machine language
- Facilitates communication between different system components
- Provides complete control over the system
- Always resident in memory
- Essential for running any operating system

User Processes Kernel Hardware

Drivers

- Set of files that enables hardware components to function
- It communicates with the computer's operating system to manage and enable hardware components or peripherals to operate properly
- Drivers are software programs without a user interface (UI)
- All hardware components require a driver

Shell

- Interface to the operating system
- Outermost layer of the OS, located between the kernel and the user
- Incorporates a programming language to control processes and files
- Two types of shells:
 - Command-line shells knowledge of commands, calling syntax, and concepts about the shell-specific scripting language (e.g., bash)
 - Graphical shells easy to use
- Most GUI-enabled operating systems provide CLI shells for advanced tasks

Users in Operating Systems

- Software User is a single user of the Software on a single computer or within a directory environment
- An operating system is a construct that allows the user's application programs to interact with the system's hardware
- A user often has a user account and is identified to the system by a username.

Users in OS

- User accounts allow access to a system's resources.
- Authentication is the process of verifying a user's identity through credentials like passwords.
- Authorization determines what resources a user can access based on their authenticated identity.
- User accounts are important for accounting, security, logging, and resource management.

Authentication vs. Authorization

- Authentication verifies the identity of a user or service
- Authentication answers the question:
 - Who are you?

- Authorization determines the user's access rights
- Authorization answers the question:
 - What are you allowed to do?

User Permissions

- OS can control the use of system and network resources through the interrelated mechanisms of authentication and authorization
- The OS determines if an authenticated user has the correct permissions to access a resource using built-in authorization and access control technologies

User Roles

- Each User account requires a Role assignment.
- The set of roles are Administrator, Publisher, Editor,
 Designer, and Viewer.
- Data & Insights users can also be assigned permissions for individual datasets.

Access Permissions in OS

- Access permissions determine a user's ability to perform a specific action, or access a feature or object
- Set access permissions to specify which users, groups, or roles can access your content
- The most common permissions are read, write, delete, and execute

Processes in OS

- A process is a program in action
- It's the basic unit of work in a system
- Unlike a program, which is passive, a process is an active entity
- For example, when you open a browser to search the web, that's a process

Processes in OS

- When a program is loaded into the memory and it becomes a process, it can be divided into four sections – stack, heap, text and data
- The image shows a simplified layout of a process inside the main memory.

Processes in OS – Component & Description

- Stack contains the temporary data such as method/function parameters, return address and local variables
- Heap dynamically allocated memory to a process during its run time.
- Text the current activity represented by the value of Program
 Counter and the contents of the processor's registers
- Data contains the global and static variables

Task Manager

- In OS, a task manager is a system monitor program used to provide information about the processes and applications running on a device, and the general status of the device
- Some implementations can also be used to terminate processes and applications, and change the processes' scheduling priority
- Task managers can display running services
 (processes) and those that were stopped

Task Manager Overview

- Open Task manager in Windows:
 - CTRL + Alt + Delete
 - Select Task Manager from the menu
- Task Manager allows the system to be shut down or restarted, when it is otherwise busy or unresponsive

N.	Task Manager	⊋ Type a name, p	Type a name, publisher, or PID to s				
≡	Processes	E	Run new task		End task 🕏 Efficiency mod		
l P	^		2%	37%	0%	0%	
4	Name	Status	СРИ	Memory	Disk	Network	
	Apps (6)						
5	> O Google Chrome (53)		0%	1,929.3 MB	0.1 MB/s	0 Mbps	
~yx	> 🔁 Microsoft PowerPoint (2)		0%	217.3 MB	0 MB/s	0 Mbps	
8	> 📫 Microsoft Teams (9)		1.5%	742.6 MB	0 MB/s	0 Mbps	
0)	> 🔼 Task Manager		0.8%	63.0 MB	0 MB/s	0 Mbps	
:≡	>		0%	360.4 MB	0 MB/s	0 Mbps	
₿	> Windows Explorer		0%	152.2 MB	0 MB/s	0 Mbps	
	Background processes (98)						
	Alps Pointing-device Driver		0%	2.6 MB	0 MB/s	0 Mbps	
	Alps Pointing-device Driver		0%	0.9 MB	0 MB/s	0 Mbps	
	Alps Pointing-device Driver f	o	0%	1.1 MB	0 MB/s	0 Mbps	
	> 🔳 Antimalware Service Executal	ole	0%	157.1 MB	0 MB/s	0 Mbps	

Operating Systems

Different Types

Most Popular Operating Systems

- Five main types of operating system
 - Microsoft Windows
 - Apple macOS
 - Google's Android OS
 - Apple iOS
 - Linux Operating System

Microsoft Windows

- Operating system developed by Microsoft that has been around since the 1980s
- Several versions and updates of Windows, including Windows 95, Windows Vista, Windows 7/8/10/11, and more
- One of the most popular operating system types and is typically preloaded on new PC hardware

Apple macOS

- Apple and Macintosh computers run on macOS and OS X, which are proprietary operating systems developed and marketed by Apple Inc
- macOS is a Unix-based operating system that was first released over 20 years ago
- In 2020, Apple began transitioning to its own 64-bit ARM-based Apple M series processors on its latest Macintosh computers

Android OS

- Mobile operating system designed for touchscreen mobile devices
- Based on a modified version of the Linux kernel and other open-source software
- Core operating system is called Android
 Open Source Project (AOSP), free and open-source software, primarily licensed under the Apache License
- Developed and maintained by Google

Apple iOS

- Mobile operating system developed by Apple Inc. exclusively for its hardware devices, including the iPhone, iPad, and iPod Touch
- User interface is based on direct manipulation and uses multi-touch gestures like swipe, tap, pinch, and reverse pinch to interact with the system
- Interface control elements include sliders, switches, and buttons, used to control various settings and features on the device

Linux

- Open source family of operating systems
- It is not proprietary software, which means anyone can modify and distribute it
- Linux's popularity comes from its ease of customization
- It offers a variety of options for those who understand how to use it

Virtual Machines & Containers

Remote Instances & Emulators

Virtual Machines

- A virtual machine (VM) is a software-based computer resource
- Digital versions of physical computers that can run programs and operating systems, store data, connect to networks, and other computing functions
- Require maintenance, such as updates and system monitoring
- Useful for running multiple operating systems on a single physical computer or for testing software in a controlled environment

Containers

- Packages of software that can run in any environment
- They virtualize the operating system and can run on private data centers, public clouds, or personal laptops
- Provide a solution to the problem of running software reliably across different computing environments
- Isolate software from its environment, ensuring consistent performance across different environments
- Work for both Linux and Windows-based applications,
 making containerized software platform-agnostic

OS inside another OS – e.g. Docker Containers

- A Docker container image is a lightweight,
 standalone, executable package of software
- It contains everything needed to run an application, including code, runtime, system tools, system libraries, and settings
- When a Docker container image is run on the Docker Engine, it becomes a container.

 Containers are isolated from the host system and from other containers, making them an efficient and secure way to run applications.

Docker Overview

- An open platform for developing, shipping, and running applications.
- Separates applications from infrastructure for faster delivery.
- Manages infrastructure in the same way as applications for easier deployment and scaling

- Docker's methodologies reduce the delay between writing code and running it in production for faster innovation
- Provides a range of tools and services for streamlined containerized application development and deployment

Remote VM Instances – e.g. Docker Playground

- Containers allow for customizable and replicable instances of an application without interfering with anything else on a user's system
- Play with Docker / Docker Playground is an interactive and fun way to learn Docker
- It lets you run multiple versions of Docker on the same machine to test different software versions without rebuilding

OS Emulators

- Emulation is the use of one program or device to imitate another program or device's behavior
- It can be used to run an operating system on hardware it wasn't originally designed for
- In server virtualization, emulation is similar to a virtual environment, which can be called a partition, guest, instance, or container
- Hardware emulation is the use of hardware to imitate another hardware device's function, usually for connecting devices together

BrowserStack – App & Browser Testing

- BrowserStack provides manual and automated online mobile testing for websites and apps
- BrowserStack Live offers 3000+ device-browser-OS combinations for testing
- QA can choose from a wide range of devices to run their website during testing
- BrowserStack Automate supports automation frameworks and tools like Cypress, Selenium, Puppeteer, Appium, and Playwright
- It also supports popular programming languages like C#, Python, Java, and JavaScript

Shell & Shell Commands

Command Execution

Shell - Navigating Files & Directories

- The file system is the part of the operating system responsible for managing files and directories
- It organizes data into files, and directories (also known as folders), which hold files or other directories
- Various commands are used to create, inspect, rename, and delete files and directories
- To explore these commands, use an open shell window or terminal

Opening Command or Shell Prompt

- Click Start > Run or pressWindows + R key.
- Type cmd
- Click on Command Prompt

Windows Power Shell

- PowerShell is an automation engine and scripting language developed by Microsoft for IT professionals to configure systems and automate tasks
- Commonly used to improve efficiency, reduce manual errors, and build, test, and deploy solutions in CI/CD environments

Commands: Is & dir

- Is is the traditional UNIX method of viewing the files in a directory
- In Linux, the *Is* command stands for list files

- dir is the windows command prompt equivalent
- in Windows, the dir
 command means produce a directory listing

Commands: cd & pwd

- cd changes the current working directory to the specified drive
- The cd command can be used to:
 - change into a subdirectory
 - move back into the parent directory
 - move all the way back to the root directory
 - move to any given directory

- pwd prints the directory you are currently in, it does nothing else
- pwd does not take any arguments
- pwd is equivalent to typing cd without arguments; both display the name of the current working directory

Commands: cat

- If you have worked in Linux, you surely have seen a code snippet that uses the cat command, the most universal and powerful tool
- It is considered to be one of the most frequently used commands
- It can be used to:
 - display the content of a file
 - copy content from one file to another
 - concatenate the contents of multiple files
 - display the line number
 - display \$ at the end of the line, etc.

Can I Run Linux Commands on Windows PC

- You can run Linux commands in Windows 10 and 11 without setting up a virtual machine
- You don't have to configure a virtual machine using VMWare to use Linux
- It is possible through the Windows Subsystem for Linux (WSL)

Run Linux distributions with WSL

- WSL supports running as many different Linux distributions
- This can include choosing distributions from the <u>Microsoft</u>
 <u>Store</u>
- From Windows Command Prompt or PowerShell, open your default Linux distribution inside your current command line, by entering: wsl.exe
- WSL also allows to run Linux command-line tools and apps alongside Windows command-line, desktop and store apps, and to access Windows files from within Linux

Summary

- Operating Systems Overview
- OS Examples
- Virtual Machines & Containers
 - OS inside another OS
 - Remote VM instances
 - OS Emulators
- Shell & Shell Commands

Questions?

SoftUni Diamond Partners

SUPER HOSTING .BG

Educational Partners

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity
- Software University Forums
 - forum.softuni.bg

License

- This course (slides, examples, demos, exercises, homework, documents, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://about.softuni.bg/
- © Software University https://softuni.bg

