

Accelerating Hadoop with Data Optimization

Hank Cohen Altior Inc.

Outline

- Introduction to Hadoop
- Introduction to CeDeFS
- Acceleration via Data Optimization
- 4. Benchmarks
- 5. Results

- A processing system for reliable scalable distributed computing
 - Map/Reduce Framework
 - Hadoop Distributed File System
- Hadoop is designed to manage petabyte processing tasks
- □ Clusters from 10 to 2000 servers
 - Facebook Data Warehouse
 - ■21 Petabytes
 - □2000 nodes, 12 TB/node

A small Hadoop cluster

- 8 Data Nodes
- 2 Name Nodes
- □ Each Data Node
 - 2 sockets Xeon E5640
 - □ 6 core w. hyperthreads
 - 48 GB memory
 - □ 12 x 1 TB disks
- Total 96 cores 192 threads
- Benchmark system courtesy of Supermicro

Hadoop cluster cost

Data Optimization can reduce system cost

Hadoop – Map Reduce Dataflow

Hadoop File System

- □ Files are distributed across the cluster
- Blocks are allocated as files on the local file system on each data node
- The Namenode keeps track of all metadata
 - Where are the blocks rack awareness
 - Replication

HDFS with Data Optimization

Why does data optimization speed execution?

- Hardware accelerated Compression
 - No CPU overhead
 - High compression ratio
 - Asynchronous I/O doesn't stall processing threads
 - I/O system is unburdened
 - Compression multiplies read throughput
 - □ Less I/O wait time for I/O bound processes
- HADOOP fatter data nodes
 - Increased capacity of data nodes means fewer are required. Less shuffle traffic.

Your Mileage may vary!

- Compression is data dependent
 - □ Text can compress very well ~ 6:1
 - Encrypted or random data will not compress at all
 - Compressed data will compress little or none
 - Multi-media files are already compressed
- Hadoop data is usually very compressible
 - ASCII text compresses well
 - "http://www." Might compress to 4 bits

Software compression helps a little

- LZ0 or Snappy in software
 - Compression ratio 2:1 for Calgary Corpus
 - Throughput at input --100MByte/Second/Core

- □ Throughput to disk 50 MB/S/Core
- 100% CPU utilization for dedicated cores

Hardware acceleration helps a lot

- AltraFlex hardware accelerated gzip
 - Compression ratio 3.3:1 for Calgary Corpus
 - Throughput at input -- 1000MByte/Second

- Throughput to disk -- 270MB/S
- Increased information density on the disk
- Fewer I/O ops, less I/O overhead
- Less than 5% CPU overhead

Decompression Delivers I/O Accleration

- □ Data rate = disk throughput x compression ratio
- A single disk ~100 MB/S will deliver 330MB/S to the CPU
- □ GZIP and LZO both deliver about 100MB/S per core but GZIP has 2x better compression so it uses ½ as much disk throughput
- This is faster than an SSD!
- I/O bound tasks spend less time in I/O wait state

CeDeFS - Compression/Decompression Filter Software

- A file system filter layer to manage compression and decompression.
- Increase storage capacity up to 6x
- Compress all Linux applications
- No modifications to applications or workflows
- Preserves native file system semantics
- □ Use any Linux file system: EXT3, EXT4, XFS
- Disk and I/O optimization for Primary,
 Secondary and Archival storage

CeDeFS Block Diagram

Accelerated Hardware Configuration

- A Hadoop Cluster with CeDeFS enabled Nodes consists of
 - ☐ Altior CeDeFS Filter SW
 - AltraFlex hardware accelerator
- CeDeFS is transparent to Hadoop. No code changes required and workflow remains the same
- 3x-6x increase in storage capacity in each node
- Enhanced CPU utilization and reduced runtime through I/O reduction and optimization
- □ Significantly benefits I/O bound tasks.
- Increased data density reduces the shuffle traffic
- □ Reduction in Power Per Node, Per Cluster

Terasort Benchmark Results

Hardware Configuration				
Cluster Size	8 Data Nodes; 2 Name Nodes			
CPU	E5640; Dual Socket 6 Core CPU; 96 Cores Total			
Memory	48 GB			
Storage	12 * 1 TB			
Network Link	1 10G Link; 1 1G Link			
Switch	TBD			
Altior HW	AltraFlex PCIe Card based on GZ350 FPGA			

Software Configuration			
Hadoop Version	CDH3		
Operating System	RHEL 6.2		

Normalized Terasort Test Results 512GB

Elapsed time				
	12 Disks	6 Disks	8 Disks	
Native	100%	207%	141%	
LZO	49%	60%	53%	
CeDeFS	36%	42%	37%	

Additional Datapoints

- A 8 TB terasort test case completed on a 6 disk per node cluster using CeDeFS and AltraFlex accelerators.
- The same 8TB sort using software LZO failed running out of space.

Conclusions

- Hardware accelerated compression provides meaningful acceleration as well as added capacity
- Acceleration plus added capacity means bigger jobs executed in less time
- Very significant savings in both CAPEX and OPEX