INSTITUTO FEDERAL Paraíba
Campus Campina Grande

INSTITUTO FEDERAL DA PARAÍBA - CAMPUS CAMPINA GRANDE

PROJETO: APRENDIZAGEM ASSISTIDA POR IA

PROFESSOR ORIENTADOR: GOLBERY RODRIGUES

DISCENTE PESQUISADOR: JHONNATA VIRGINIO

Data:	/	_/	_	
ALUNO:				

Orientações:

- Essa atividade é de avaliação presencial e possui o peso de 400 (quatrocentos) pontos.
- É totalmente sem consulta.
- Exige-se que o aluno responda individualmente a cada uma das quatro questões.
- A saída do seu programa deve ser **idêntica** a saída solicitada no caso de teste.
- Todas as entradas devem ser realizadas através de input()
- Todas as saídas devem ser realizadas através de **print()**

1°) Números diferentes - 100 pontos

Enunciado:

Escreva um programa que receba um número inteiro \mathbf{n} (onde $\mathbf{n} \ge 0$). O programa deve receber uma sequência de \mathbf{k} números inteiros positivos, que termina com o número -1. O programa deve contar e exibir quantos números da sequência \mathbf{k} são diferentes a \mathbf{n} . A sequência sempre será terminada em -1.

Entrada:

- Um número inteiro n (sendo $n \ge 0$).
- Uma sequência de números inteiros positivos k, onde a sequência termina quando for inserido o número -1.

Saída:

- Se n < 0, exibir "Valor inválido".
- Caso contrário, exibir um número inteiro que representa quantos números da sequência k são diferentes a n e a mensagem "número(s) diferente(s)" logo em seguida.

Subtarefa 1 – 20 pontos: Verificação do valor de n e tratamento de erro

Subtarefa 2 – 30 pontos: Leitura da sequência de números k até encontrar -1

Subtarefa 3 – 30 pontos: Contagem de números diferentes de n

Subtarefa 4 – 20 pontos: Exibição do resultado

Entrada	Saída
5	3 número(s) diferente(s)
1	
5	
7	
5	
3	
5	
-1	

Entrada	Saída
-1	Valor inválido

Entrada	Saída
0	0 número(s) diferente(s)

Entrada	Saída
-5	Valor inválido

Entrada	Saída
20	12 número(s) diferente(s)
90	
32	
14	
20	
5	
6	
20	
1	
0	
-5	
-4	
-20	
20	
3	
50	
-1	

2°) Análise do pH - 100 pontos

Enunciado:

O pH é uma medida da acidez ou basicidade de uma solução aquosa. Ele é uma escala logarítmica que quantifica a concentração de íons hidrogênio (H+) (H^+) (H+) presentes na solução. A escala de pH varia de 0 a 14. Dado isso, escreva um programa que receba um número inteiro N, representando o valor do pH. O programa deve determinar e exibir se o valor de N é "neutro", "ácido", "básico" ou "fora da escala" com base nas seguintes condições:

- pH menor que 0 ou maior que 14: "fora da escala"
- pH igual a 7: "neutro"
- pH maior que 7 e menor ou igual a 14: "básico"
- pH maior ou igual a 0 e menor que 7: "ácido"

Entrada:

• Um número inteiro N, representando o valor do pH.

Saída:

• A classificação do valor de N: "neutro", "ácido", "básico" ou "fora da escala".

Subtarefa 1 - 40 pontos: N = 7

Subtarefa 2 – 40 pontos: $N \subseteq \mathbb{Z} \mid 0 \ge N \le 14$

Subtarefa 3 – 20 pontos: $N \subseteq \mathbb{Z} \mid N < 0, N > 14$

Entrada	Saída
7	neutro

Entrada	Saída
3	ácido

Entrada	Saída
10	básico

Entrada	Saída
15	fora da escala
Entrada	Saída
-1	fora da escala
Entrada	Saída
0	ácido
Entrada	Saída
14	básico

3°) Triângulo Retângulo - 100 pontos

Enunciado:

Em um triângulo retângulo, a hipotenusa é o maior lado, e pode ser calculada usando o Teorema de Pitágoras, que diz que o quadrado da hipotenusa é igual à soma dos quadrados dos catetos. Além disso, sabemos que a soma dos ângulos internos de qualquer triângulo é sempre 180°.

Dado o valor dos dois catetos e de um dos ângulos agudos θ , escreva um programa que calcule e exiba:

- O valor da hipotenusa do triângulo.
- O valor do terceiro ângulo do triângulo, considerando que em um triângulo retângulo, um dos ângulos é sempre 90°.

Use as seguintes informações:

• O valor da hipotenusa h pode ser calculado pela fórmula:

$$h = \sqrt{a^2 + b^2}$$

• O terceiro ângulo α é dado por:

$$\alpha = 90^{\circ} - \theta$$

Entrada:

Dois números reais a e b ($1 \le a$, $b \le 1000$), representando os comprimentos dos dois catetos do triângulo, e um número inteiro θ ($0^{\circ} < \theta < 90^{\circ}$), representando o valor de um dos ângulos agudos do triângulo.

Saída:

Se a, b < 1 ou a, b > 1000, o programa deve exibir a mensagem de erro "Cateto(s) fora do intervalo". Se $\theta \le 0^{\circ}$ ou $\theta \ge 90^{\circ}$, o programa deve exibir a mensagem de erro "O valor do ângulo é inválido". Caso contrário, o programa deve exibir o valor da hipotenusa e o valor do terceiro ângulo α .

Subtarefa 1 – 25 pontos: Verificação dos valores e tratamento de erro

Subtarefa 2 – 30 pontos: Cálculo correto da hipotenusa

Subtarefa 3 – 20 pontos: Cálculo do terceiro ângulo

Subtarefa 4 – 25 pontos: Entrada e saída formatadas corretamente, incluindo precisão e tratamento de erro

Entrada	Saída
3	Hipotenusa: 5.0
4	Ângulo restante: 60
30	

Entrada	Saída
6	O valor do ângulo é inválido
8	
90	

Entrada	Saída
9	O valor do ângulo é inválido
5	
0	

Entrada	Saída
9	Hipotenusa: 41.0
40	Ângulo restante: 20
70	

Entrada	Saída
-2	Cateto(s) fora do intervalo
40	
70	

Entrada	Saída
-2	Cateto(s) fora do intervalo
1001	
60	

4°) Números Primos - 100 pontos

Enunciado:

Números primos são números inteiros maiores que 1, ou seja 1 não é primo, que têm exatamente dois divisores: 1 e eles mesmos. Isso significa que um número primo não pode ser dividido por nenhum outro número inteiro, exceto por 1 e pelo próprio número. Por exemplo, 2, 3, 5, 7,11,13 são números primos. Dado as seguintes afirmações, escreva um programa que receba dois números naturais, \mathbf{n} e \mathbf{m} ($\mathbf{n} \leq \mathbf{m}$), e exiba todos os números primos que estão no intervalo fechado $[\mathbf{n}, \mathbf{m}]$. Caso não exista nenhum número primo no intervalo, o programa deve exibir a mensagem "Nenhum número primo encontrado".

Entrada:

• Dois números naturais n e m $(0 \le n \le m)$.

Saída:

- Se n > m, o programa deve exibir a mensagem "Valores inválidos".
- Todos os números primos no intervalo [n, m], um por linha.
- Caso não haja primos no intervalo, exibir "Nenhum número primo encontrado".

Subtarefa 1 - 20 pontos: n = m

Subtarefa 2 – 20 pontos: | n - m | = 10

Subtarefa 3 - 10 pontos: n, m = 1

Subtarefa 4 – 50 pontos: Nenhuma restrição adicional

Entrada	Saída
2	2
5	3
	5

Entrada	Saída
14	Nenhum número primo encontrado
16	

Entrada	Saída
14	Nenhum número primo encontrado
14	

Entrada	Saída
13	13
13	

Entrada	Saída
16	Valores inválidos
10	

Entrada	Saída
10	11
20	13
	17
	19