# 智能 WiFi 模块通信协议 V1.2

北京甜园科技有限公司

# 内容目录

| 文档历史                      | 3  |
|---------------------------|----|
| 名词解释                      | 4  |
| 1 智能 WiFi 模块网络结构图         | 5  |
| 2系统需求                     | 6  |
| 3 智能 WiFi 模块 UART 通信协议    | 7  |
| 3 .1 智能 WiFi 模块 UART 通信方式 | 7  |
| 3 .2 智能 WiFi 模块 UART 通信协议 | 8  |
| 3.2.1 协议格式                | 8  |
| 3 .2.1.1 基本格式             | 8  |
| 3 .2.1.2 帧长度              | 8  |
| 3 .2.1.3 帧序号              | 9  |
| 3 .2.1.4 帧控制              |    |
| 3 .2.1.5 设备端点             | 9  |
| 3 .2.1.6 命令标识             | 9  |
| 3 .2.1.7 校验和              | 10 |
| 3 .2.1.8 其他说明             | 10 |
| 3 .2.2 帧数据格式              | 11 |
| 3 .2.2.1 属性读取格式           | 11 |
| 3 .2.2.2 属性读取应答格式         | 12 |
| 3 .2.2.3 属性写入格式           | 13 |
| 3 .2.2.4 属性写入应答格式         | 14 |
| 3 .2.2.5 数据上报格式           | 15 |
| 3 .2.2.6 默认应答格式           | 16 |
| 3 .2.2.7 属性结构化读取格式        | 17 |
| 3.2.3 数据定义                | 18 |
| 3.2.3.1 设备端点              | 18 |
| 3.2.3.2 设备簇和属性            | 18 |
| 3 .2.3.3 状态码定义            | 19 |

# 文档历史

| 版本  | 作者  | 时间         | 备注                        |
|-----|-----|------------|---------------------------|
| 1.0 | 徐际威 | 2016.12.20 | 根据UART通信协议、服务端通信协议、智能网关通信 |
|     |     |            | 协议整理                      |
| 1.1 | 徐际威 | 2016.12.22 | 张鹏寿、孔令新、范鸿闯、杨立建 review    |
| 1.2 | 徐际威 | 2016.12.27 | 修改部分属性值                   |
|     |     |            |                           |

# 名词解释

| 智能 WiFi 模块 | 基于 WiFi 芯片(模块)的设备硬件和软件;<br>通过接入到甜园智能平台,实现设备的远程控制、设备联动、智能<br>场景等功能 |
|------------|-------------------------------------------------------------------|
| 甜园智能平台     | 北京甜园科技有限公司开发的智能平台                                                 |
|            |                                                                   |
|            |                                                                   |
|            |                                                                   |
|            |                                                                   |

# 1智能WiFi模块网络结构图

智能 WiFi 模块通过无线连接到路由器,通过 UART 和单片机(或者上位机)通信;



# 2 系统需求

- 1. 用户可以通过 APP 发现、添加、删除智能设备;
- 2. 用户可以通过 APP 远程查询、控制智能设备;
- 3. 智能设备可以向云服务发送数据和事件;
- 4. 用户可以获取云服务上的智能设备数据和事件;
- 5. 智能模块可以在线升级;

# 3 智能 WiFi 模块 UART 通信协议

# 3.1 智能 WiFi 模块 UART 通信方式

波特率:115200

数据位:8

奇偶校验:无

停止位:1

### 3.2 智能 WiFi 模块 UART 通信协议

#### 3.2.1 协议格式

#### 3.2.1.1 基本格式

| 字段   | 长度(字节) | 示例          |
|------|--------|-------------|
| 帧头   | 2      | 0x5AA5      |
| 帧长度  | 1      | [0x12]      |
| 帧序号  | 1      | 【0x11】      |
| 帧控制  | 1      | 【0x11】      |
| 设备端点 | 1      | [0x00]      |
| 设备簇  | 2      | [0x0000]    |
| 命令标识 | 1      | [0x00]      |
| 帧数据  | 可变     | 帧数据符合命令标识定义 |
| 校验和  | 1      | [0x33]      |

#### 【说明一】<mark>所有的数据都采用十六进制表示</mark>;

【说明二】每个字节内,高位在前,低位在后;比如十进制 8 = 十六进制 0x08 = 二进制 0b00001000 ;

| Н |   |   |   |   |   |   | L |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |

【说明三】<mark>对于多字节数据,使用小端模式</mark>,低字节在前,高字节在后;比如用 4 个字节(eg.int 整型数据)表示十进制数据 55,十六进制是 0x00000037,存储序列见下图:

| L    |      |      | Н    |
|------|------|------|------|
| 0x37 | 0x00 | 0x00 | 0x00 |

#### 3.2.1.2 帧长度

从帧头开始到帧尾结束的长度总和,最大帧长度不能超过255;

#### 3.2.1.3 帧序号

帧序号用来实现异步通信应答,应答方在应答的时候,把发送方生成的帧序号传入,从而实 现发送方和应答方的异步通信;

<mark>帧序号的范围</mark>:帧序号由发送方生成,用来作为帧的唯一标识,也是做为异步应答的标识, 为了更好的区分帧的发送方,对 UART 双方帧序号范围做了划分;

| WiFi 模块帧序号范围   | 0x00~0x7F | 到了 0x7F 从 0x00 开始循环 |
|----------------|-----------|---------------------|
| 非 WiFi 模块帧序号范围 | 0x80~0xFF | 到了 0xFF 从 0x80 开始循环 |

【注】为了和服务器的消息对应起来,WiFi 模块在内部需要建立一个服务器消息 ID 和帧序号的映射表

#### 3.2.1.4 帧控制

| 帧控制位        | 帧控制位描述                    |
|-------------|---------------------------|
| bit3-bit0   | 协议版本,b0000~b1111          |
| bit4        | 命令类型<br>0:通用命令<br>1:特殊簇命令 |
| Bit7 ~ bit5 | 备用                        |

#### 3.2.1.5 设备端点

#### 见设备端点定义;

#### 3.2.1.6 命令标识

#### 命令标识用来区别不同命令以及数据格式;

| 命令标识 ID | 命令标识 ID 描述  |
|---------|-------------|
| 0x00    | 属性读取        |
| 0x01    | 属性读取应答      |
| 0x02    | 属性写入        |
| 0x03    | 属性写入无定义(备用) |

| 0x04 | 属性写入应答      |  |
|------|-------------|--|
| 0x05 | 属性写入无应答(备用) |  |
| 0x0A | 数据上报        |  |
| 0x0B | 默认应答        |  |
| 0x0E | 属性结构化读取     |  |

#### 3.2.1.7 校验和

除去帧头和校验和本身的 CheckSum 校验值

#### 3.2.1.8 其他说明

【说明一】:在示例中使用【】标注的代表是根据实际情况会变化的;没有用【】标注的是不可变的,在使用的时候必须保持和协议规定一致;

# 3.2.2 帧数据格式

### 3.2.2.1 属性读取格式

| 数据描述      | 数据长度 | 数据说明 |
|-----------|------|------|
| 读取的设备属性 1 | 2    |      |
| 读取的设备属性2  | 2    |      |
|           |      |      |
| 读取的设备属性n  | 2    |      |

# 3.2.2.2 属性读取应答格式

| 数据描述      | 数据长度 | 数据说明 |
|-----------|------|------|
| 读取设备属性1应答 | 可变   |      |
| 读取设备属性2应答 | 可变   |      |
|           |      |      |
| 读取设备属性n应答 | 可变   |      |

#### 单个设备属性应答格式

| 数据描述     | 数据长度      | 数据说明                |  |
|----------|-----------|---------------------|--|
| 设备属性     | 2         | 设备属性值               |  |
| 读取设备属性状态 | 1         | 读取的结果(参考 Status 定义) |  |
| 读取的数据长度  | [1]       | 读取数据的长度             |  |
| 读取的数据    | 【读取数据的长度】 | 读取的数据               |  |

【注一】如果读取设备属性的状态不成功,数据的长度和数据项都不存在

【注二】如果读取的数据长度为 0x00, 那么读取的数据项不存在

# 3.2.2.3 属性写入格式

| 数据描述     | 数据长度 | 数据说明 |
|----------|------|------|
| 写入设备属性1  | 可变   |      |
| 写入设备属性2  | 可变   |      |
|          |      |      |
| 写入设备属性 n | 可变   |      |

#### 单个写入属性格式

| 数据描述    | 数据长度      | 数据说明    |  |
|---------|-----------|---------|--|
| 设备属性    | 2         | 设备属性值   |  |
| 写入的数据长度 | 1         | 写入数据的长度 |  |
| 写入的数据   | 【写入数据的长度】 | 写入的数据   |  |

### 3.2.2.4 属性写入应答格式

| 数据描述      | 数据长度 | 数据说明 |
|-----------|------|------|
| 写入设备属性1应答 | 可变   |      |
| 写入设备属性2应答 | 可变   |      |
|           |      |      |
| 写入设备属性n应答 | 可变   |      |

#### 单个写入属性应答格式

| 数据描述     | 数据长度 | 数据说明                |
|----------|------|---------------------|
| 写入设备属性结果 | 1    | 写入的结果(参考 Status 定义) |
| 设备属性     | 2    | 设备属性值               |

# 3.2.2.5 数据上报格式

| 数据描述      | 数据长度 | 数据说明 |
|-----------|------|------|
| 设备数据上报属性1 | 可变   |      |
| 设备数据上报属性2 | 可变   |      |
|           |      |      |
| 设备数据上报属性n | 可变   |      |

#### 单个设备数据上报属性格式

| 数据描述    | 数据长度    | 数据说明    |  |
|---------|---------|---------|--|
| 设备属性    | 2       | 设备属性值   |  |
| 上报的数据长度 | 1       | 上报数据的长度 |  |
| 上报的数据   | 【上报的长度】 | 上报的数据   |  |

# 3.2.2.6 默认应答格式

| 数据描述  | 数据长度 | 数据说明         |  |
|-------|------|--------------|--|
| 应答状态码 | 1    | 参考 Status 定义 |  |

# 3.2.2.7 属性结构化读取格式

| 数据描述                 | 数据长度 | 数据说明              |
|----------------------|------|-------------------|
| 读取的设备属性1             | 2    |                   |
| 读取的设备属性1的<br>结构化参数   | [5]  | 数据长度可变,参数最多 16 字节 |
| 读取的设备属性2             | 2    |                   |
| 读取的设备属性 2 的<br>结构化参数 | [7]  | 数据长度可变,参数最多 16 字节 |
|                      |      |                   |
| 读取的设备属性n             | 2    |                   |
| 读取的设备属性 n 的 结构化参数    | [9]  | 数据长度可变,参数最多 16 字节 |

### 单个设备属性结构化参数格式

| 数据描述    | 数据长度      | 数据说明  |
|---------|-----------|-------|
| 结构化数据长度 | 1         | 最大 15 |
| 结构化数据   | 【结构化数据长度】 | 结构化数据 |

### 3.2.3 数据定义

### 3.2.3.1 设备端点

| 设备端点      | 端点说明       |  |
|-----------|------------|--|
| 0x01      | 默认使用的设备端点  |  |
| 0x02~0xFF | 设备多功能集合的端点 |  |

### 3.2.3.2 设备簇和属性

### 通用设备簇定义参考 ZigBee 的 ZCL 定义

| 设备簇说明 | 设备簇  | 设备属性说明           | 设备属性 |
|-------|------|------------------|------|
| 设备信息  | 0000 |                  |      |
|       |      | WiFi-Chip ID     | 00C1 |
|       |      | WiFi-MAC         | 00C2 |
|       |      | WiFi-SDK Version | 00C3 |
|       |      | WiFi-VCode       | 00C4 |
|       |      | WiFi-PCode       | 00C5 |
|       |      | WiFi-VID         | 0004 |
|       |      | WiFi-PID         | 0005 |
|       |      | WiFi-HW          | 00C6 |
|       |      | WiFi-SW          | 00C7 |
|       |      |                  |      |
|       |      | WiFi-Status      | 00D1 |
|       |      | WiFi-mode        | 00D2 |
|       |      | WiFi-SSID        | 00D3 |
|       |      | WiFi-PWD         | 00D4 |
|       |      | WiFi-Reset       | 00D5 |
|       |      | WiFi-Connect     | 00D6 |
|       |      |                  |      |
|       |      | WiFi-License     | 00E0 |
|       |      | WiFi-FlashR      | 00E1 |
|       |      | WiFi-FlashW      | 00E2 |

|      |      | Ping 检测 | 00F0 |
|------|------|---------|------|
|      |      | 心跳上报    | 00F1 |
|      | 0001 |         |      |
|      |      | 重启启动    | 00C1 |
| 情景模式 | 0005 | 灯的模式    | 00C1 |
|      |      | 窗帘模式    | 00C2 |
| 开关   | 0006 | 开关状态    | 0000 |
| 亮度   | 0008 | 过渡时间    | 0010 |
|      |      | 亮度      | 0011 |
| 窗帘   | 0100 | 开关状态    | 00C1 |
|      |      | 当前行程    | 00C2 |
|      |      | 目标行程    | 00C3 |
| 颜色   | 0300 | 位移      | 0000 |
|      |      | 速度      | 0002 |
|      |      | 色温      | 0007 |
|      |      | RGB     | 00C1 |
| 时间   | 000A | 标准时间    | 0006 |
|      |      | 延时时间    | 00C1 |
|      |      | 定时时间    | 00C2 |
| 模拟量  | 0400 | 电流      | 00C1 |
|      |      | 电压      | 00C2 |
|      |      | 功率      | 00C3 |

### 3.2.3.3 状态码定义

| 状态码定义         | 状态码   | 端点说明     |
|---------------|-------|----------|
| <b>从心</b> 均足又 | 1八心19 | <b>响</b> |

| SUCCESS  | 0x00 | 操作成功 |
|----------|------|------|
| FAILTURE | 0x01 | 操作失败 |