

Pengembangan Sistem Formulasi Ransum untuk Kebutuhan Nutrisi Ternak Ruminansia Menggunakan *Linier Programming*

ALIN NUR ALIFAH

(G64154068)

Pembimbing Irman Hermadi, Skom, MS, PhD Dr. Ir. Idat Galih Permana, MSc. Agr

LATAR BELAKANG

Produk Domestik Bruto (PDB)
Triwulan I Tahun 2005

LATAR BELAKANG

LATAR BELAKANG

sehingga

Formulasi Pakan

Memenuhi kebutuhan nutrisi

Menghasilkan formula dengan biaya termurah

Sehingga dibutuhkan metodologi yang:

PEMROGRAMAN LINIER

Penelitian Rahman (2017) berhasil mengembangkan sistem formulasi pakan yang menerapkan metode *linier programming* pada sistemnya

namun,

- jenis ternak terbatas pada ternak sapi potong
- tidak dapat memberi batasan jumlah pakan yang digunakan
- kebutuhan nutrien ternak tidak dinamis
- hasil tidak dapat di cetak
- penghitungan dan hasil berdasarkan bahan kering

Membuat sistem formula ransum yang optimal untuk semua jenis ternak ruminansia dan dinamis

Hasil yang didapatkan ransum dalam satuan bahan kering dan bahan segar

Mengimplementasikan metode *linier*programming dengan menerapkan batasan
nutrien dan jumlah pakan

80% MISSION

METODE PENELITIAN

Pengumpulan Kebutuhan

(communication)

Pendefinisian Kebutuhan

Pengumpulan data nutrisi

Data Kebutuhan Nutrisi Pakan Ternak dari Lab Pakan, Fakultas Peternakan IPB

Perencanaan dan Pemodelan

Fungsi tujuan:

$$Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

Dengan fungsi kendala:

$$a_{11}x_{11} + a_{21}x_{21} + \dots + a_{n1}x_{n1} \le b1$$

 $a_{12}x_{12} + a_{22}x_{22} + \dots + a_{n2}x_{n2} \le b2$

••

.

$$a_{1m1}x_{1m} + a_{2m}x_{2m} + \dots + a_{nm}x_{nm} \le bm$$

 $x_1, x_2, \dots, x_n \ge 0$

Dimana,

Z merupakan harga ransum yang diperoleh,

c adalah harga bahan makanan yang digunakan,

x adalah bahan makanan yang digunakan,

a adalah kandungan nutrisi bahan makanan,

b adalah standar kebutuhan nutrisi,

m, n merupakan iterasi.

Pembuatan *Prototype*

- ➤ Implementasi dari perancangan sebelumnya
- ➤ Harus berdasarkan hasil perencanaan dari tahap perancangan dan pemodelan
- ➤ Mampu menggambarkan sistem yang akan dikembangkan

ANALYSIS

Deployment Delivery dan Feedback

Dilakukan evaluasi

terhadap:

- o Pakar
- Program WinFeed

dengan perhitungan persentase kesalahan menggunakan:

MAPE =
$$\left(\frac{1}{n}\sum \frac{|Xt-Yt|}{Xt}\right)$$
 100%

dimana:

 X_t = hasil formulasi pada aplikasi X percobaan ke-t

 Y_t = hasil formulasi pada alikasi Y percobaan ke-t

n = jumlah percobaan

> Feedback

pengguna memberikan:

- Pendapat
- Tanggapan/respon

Jika sistem belum memenuhi kebutuhan pengguna maka dilakukan iterasi selanjutnya

Hasil dan Pembahasan

- ☐ Terdapat 2 iterasi
- ☐ Persentase kesalahan terhadap

POM QM

0% 0.81%

WinFeed

Kebutuhan	Keterangan
Melakukan formulasi	Pengguna dapat melakukan formulasi dengan dapat
ransum	mengatur nilai nutrisi kebutuhan ternak dan jumlah
	pakan yang akan digunakan untuk formulasi
Mengelola data pakan	Admin dapat mengelola data pakan yang bisa
	digunakan untuk formulasi serta kandungan nutrisi
	yang berada pada pakan
Mengelola data ternak	Admin dapat mengelola data ternak serta kebutuhan
	nutrisi pada ternak
Melihat informasi ternak	Pengguna dapat melihat informasi ternak dan
dan kebutuhan nutrisinya	kebutuhan nutrisinya
Melihat informasi pakan	Pengguna dapat melihat informasi pakan dan
dan kandungan nutrisinya	kandungan nutrisinya

Komunikasi /

Perencanaan

Bahan Pakan	ВК	TDN	Ca	P (%)	Harga BS
	(%)	(%)	(%)		(Rp)
Onggok	79.8	78.3	0.26	0.16	2200
Jagung	86.8	80.8	0.23	0.41	3000
Dedak padi halus	87.7	67.9	0.09	1.39	1800
Bungkil kelapa sawit	90.3	79	0.16	0.62	1400
Kapur	99	0	38	0	500

Kebutuhan	ВК	TDN	Ca	P
Nutrien	(Kg)	(%)	(%)	(%)
Minimum	86	70	0.6	0.7
Maksimum	100	100	1	1

$$Z = 2200x_1 + 3000x_2 + 1800x_3 + 1400x_4 + 500x_5$$

Dengan fungsi batasan sebagai berikut.

Objective		Note						
Maximize		Mu	Multiple optimal solutions exist					
Minimize								
(untitled) Solution								
,	80.8	67.9	79	0	X5		RHS	Dual
Maximize	2200	3000	1800	1400	500			
Constraint 1	79,8	86,8	87,7	90,3	99	>=	86	0
Constraint 2	78,3	80,8	67,9	79		>=	70	0
Constraint 3	0,26	0,23	0,09	0,16	38	>=	0,6	0
Constraint 4	0,26	0,23	0,09	0,16	38	<=	1	0
Constraint 5	0,16	0,41	1,39	0,62		>=	0,7	0
Constraint 6	0,16	0,41	1,39	0,62		<=	1	0
Constraint 7	1	1	1	1	1	=	1	-2200
Constraint 8	1					<=	0,4	0
Constraint 9		1				>=	0,1	-800
Constraint 10		1				<=	0,5	0
Constraint 11			1			<=	0,4	400
Constraint 12				1		<=	0,3	800
Constraint 13					1	<=	0,02	1700
Solution	0,18	0,1	0,4	0,3	0,02		1846	

Prototype

EXPERTS FORSUM▼

♣ Profil Alin Nur Alifah 🕶 Hasil Formulasi Pakan Harga Komposisi IDR 2200 / kg Onggok 18 % IDR 3000 / kg Jagung 10 % Dedak Padi Halus 40 % IDR 1800 / kg Bungkil Kelapa Sawit 30 % IDR 1400 / kg Кариг 2 % IDR 500 / kg IDR 1846 /kg Harga Terakhir Nutrisi Minimum Maksimum Hasil Formulasi 86 100 87.19 **Bahan Kering** 7.31 Abu 11.26 Protein Kasar 7.51 Lemak Kasar 16.52 Serat Kasar 57.33 BetaN 70 100 73.03 TDN

0.91

0.81

0.6

0.7

Kalsium

Pospor

Delivery

Feedback

Kekurangan:

- Hasil tidak dapat disimpan
- Hasil tidak dapat dicetak
- Sulitnya mengkonversi ke bahan segar
- Hasil dalam persen

Terpenuhi:

- Penerapan linier programming sudah benar
- Sistem sudah memberikan saran min dan max
- Hasil dalam persen
- Hasil nutriennya sesuai aktualnya

Kebutuhan	Keterangan
Menyimpan hasil	Pengguna dapat menyimpan hasil ransum
formulasi	untuk dapat diakses kembali dan dicetak
Perhitungan hasil	Hasil yang didapatkan dari linier merupakan
dengan bahan segar	komposisi bahan segar
Registrasi	Pengguna wajib melakukan login sebelum
	melakukan formulasi dan pengguna dapat
	membuat akun melalui registrasi

Perencanaan

Bahan Pakan	ВК	TDN	Ca	P (%)	Harga BS
	(%)	(%)	(%)		(Rp)
Onggok	79.8	78.3	0.26	0.16	2200
Jagung	86.8	80.8	0.23	0.41	3000
Dedak padi halus	87.7	67.9	0.09	1.39	1800
Bungkil kelapa sawit	90.3	79	0.16	0.62	1400
Kapur	99	0	38	0	500

Kebutuhan	ВК	TDN	Ca	Р
Nutrien	(Kg)	(%)	(%)	(%)
Minimum	86	70	0.6	0.7
Maksimum	100	100	1	1

$$Cn = \frac{100}{nilai_BK_n} \times harga_BS_n$$

 $Z = 2756.89x_1 + 3456.22x_2 + 2052.45x_3 + 2214.83x_4 + 505.05x_5$

Objective		Comme	Comment			Note		
Maximize Minimize			yada yada			Multiple optimal solutions exist		
1000 Solution								
	80.8	67.9	79	0	X5		RHS	Dual
Minimize	2756,89	3456,22	2052,45	2214,83	505,05			
Constraint 1	79,80	86,80	87,70	90,30	99,00	>=	86,00	0,00
Constraint 2	78,30	80,80	67,90	79,00		>=	70,00	0,00
Constraint 3	0,26	0,23	0,09	0,16	38,00	>=	0,60	0,00
Constraint 4	0,26	0,23	0,09	0,16	38,00	<=	1,00	0,00
Constraint 5	0,16	0,41	1,39	0,62		>=	0,70	0,00
Constraint 6	0,16	0,41	1,39	0,62		<=	1,00	0,00
Constraint 7	1,00	1,00	1,00	1,00	1,00	=	1,00	-2756,89
Constraint 8	1,00					<=	0,40	0,00
Constraint 9		1,00				>=	0,10	-699,33
Constraint 10		1,00				<=	0,50	0,00
Constraint 11			1,00			<=	0,40	704,44
Constraint 12				1,00		<=	0,30	542,06
Constraint 13					1,00	<=	0,02	2251,84
Solution	0,18	0,10	0,40	0,30	0,02		2337,39	

Prototype

Delivery

	Pengi	ujian 1	Pengu	jian 2
Hasil	DF	WF	DF	WF
Jagung (%)	33.17	14.63	10	10
Dedak padi halus (%)	20.85	15.95	30	30
Onggok (%)	10	10	2.14	1.9
Bungkil Sawit (%)	30	30	25	25
Kapur (%)	0.98	1	1	1
Dicalcium Phospat (%)	2	2	1.86	2.1
Bungkil Kelapa (%)	3	26.43	30	30
Harga BK (Rp/kg)	2497.8	2497.59	2741.83	2786.69

MAPE =
$$\frac{100\%}{2} \left(\left(\frac{|2497.8 - 2497.59|}{2497.8} \right) + \left(\frac{|2741.83 - 2786.69|}{2741.83} \right) \right)$$

= 0.81%

Feedback

Menurut Anda bagaimana tampilan FORSUM Online?

194 responses

Menurut Anda apakah penggunaan FORSUM Online cukup mudah?

194 responses

Menurut Anda apakah perhitungan formulasi ransum dengan FORSUM Online sesuai dengan software pada umumnya ?

194 responses

Menurut Anda apakah Bahan Pakan yang tersedia dalam FORSUM Online sudah cukup?

193 responses

Apakah anda pernah menemukan kesulitan dalam menggunakan FORSUM Online ?

194 responses

Apakah Anda akan menggunakan FORSUM Online lagi pada waktu mendatang?

192 responses

KESIMPULAN

Penelitian yang dilakukan telah berhasil mengembangkan formulasi ransum yang mampu mengatur batasan minimum dan maksimum pakan yang digunakan serta nutrisi yang dibutuhkan dengan mengoptimalkan harga ransum menggunakan metode linier programming. Metode pengembangan sistem pada penelitian menggunakan metode prototyping dan memiliki 2 iterasi. Hasil akhir penelitian menunjukkan bahwa sistem formulasi ini dapat menghasilkan harga dengan persentase kesalahan 0.81% jika dibandingkan dengan aplikasi WinFeed.

SARAN

Penelitian ini memiliki beberapa kekurangan yang dapat dikembangkan pada penelitian selanjutnya. Penelitian selanjutnya dapat memperbaiki hasil formulasi jika terjadi infeasible untuk dianalisis dan ditampilkan variabel yang terlalu dekat dan menyebabkan hasil infeasible. Penelitian selanjutnya juga dapat mengembangkan pada bagian pemilihan pakan untuk ditampilkan apakah pakan yang dipilih sudah memenuhi nutrien yang dibutuhkan sebelum dilakukan formulasi.

TERIMA KASIH

SARAN & PERTANYAAN?