FONCTIONS POLYNOMIALES DU SECOND DEGRÉ E02C

EXERCICE N°2 Ouelques tableaux de variations (Le corrigé)

Dressez le tableau de variations des fonctions suivantes :

1)
$$f_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 3x^2 + 2x - 7 \end{cases}$$

 $f_1(x)$ est de la forme $ax^2 + bx + c$ avec a=3 > 0; b=2 et c=-7

Posons
$$\alpha = \frac{-b}{2a} = \frac{-2}{2 \times 6} = -\frac{1}{3}$$

et
$$\beta = f_1(\alpha) = -\frac{22}{3}$$

On en déduit le tableau de variations :

x	$-\infty$ $-\frac{1}{3}$ $+\infty$
$f_1(x)$	$-\frac{22}{3}$

3)
$$f_3: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -2(x-3)^2 + 5 \end{cases}$$

 $f_3(x)$ est sous la forme canonique $a(x-\alpha)^2 + \beta$ avec a = -2 < 0; $\alpha = 3$ et $\beta = 5$

On en déduit le tableau de variations :

x	$-\infty$	3	+∞
$f_3(x)$		5	/

$$2) f_2: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -4x^2 + 5x - 3 \end{cases}$$

 $f_2(x)$ est de la forme $ax^2 + bx + c$ avec a = -4 < 0; b = 5 et c = -3

Posons
$$\alpha = \frac{-b}{2a} = \frac{-5}{2 \times (-4)} = \frac{5}{8}$$

et
$$\beta = f_2(\alpha) = -\frac{23}{16}$$

On en déduit le tableau de variations :

x	$-\infty$ $\frac{5}{8}$	+∞
$f_2(x)$	$-\frac{23}{16}$	•

4)
$$f_4: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 2(x+1)(x-2) \end{cases}$$

Pour tout $x \in \mathbb{R}$,

$$f_4(x) = 2(x^2-x-2) = 2x^2-2x-4$$

 $f_4(x)$ est de la forme ax^2+bx+c avec
 $a=2 > 0$; $b=-2$ et $c=-4$

Posons
$$\alpha = \frac{-b}{2a} = \frac{-(-2)}{2 \times 2} = \frac{1}{2}$$

et
$$\beta = f_1(\alpha) = -\frac{9}{2}$$

U	On en deduit le tableau de variations :						
	$oldsymbol{x}$	$-\infty$	$rac{1}{2}$	+∞			
	$f_2(x)$		$-\frac{9}{2}$	A			

EXERCICE N°3 Factoriser avec le discriminant (Le corrigé)

Factoriser les expressions suivantes à l'aide du discriminant :

$$A = 3x^2 - 3x - 60$$

Posons

$$\Delta = (-3)^2 - 4 \times 3 \times (-60)$$

$$\Delta = 729$$

$$\sqrt{\Delta} = \sqrt{729} = 27$$

$$x_1 = \frac{-(-3)-27}{2\times 3} = -4$$

$$x_1 = \frac{-(-3) + 27}{2 \times 3} = 5$$

On en déduit que :

$$A = 3(x+4)(x-5)$$

$$B = -2x^2 - 4x + 30$$

Posons

$$\Delta = (-4)^2 - 4 \times (-2) \times 30$$

$$\Delta = 256$$

$$\sqrt{\Delta} = \sqrt{256} = 16$$

$$x_1 = \frac{-(-4)-16}{2\times(-2)} = 3$$

$$x_1 = \frac{-(-4)+16}{2\times(-2)} = -5$$

On en déduit que :

$$B = -2(x+5)(x-3)$$

$$C = 2x^2 - 4x - 10.5$$

$$\Delta = (-4)^{2} - 4 \times 2 \times (-10,5)$$

$$\Delta = 100$$

$$\sqrt{\Delta} = \sqrt{100} = 10$$

$$x_1 = \frac{-(-4)-10}{2\times 2} = 3$$

$$x_1 = \frac{-(-4)+16}{2\times(-2)} = -5$$

On en déduit que :

$$B = -2(x+5)(x-3)$$