N741 - Data Wrangling - learning dplyr and more tidyverse packages

Melinda Higgins

2/1/2022

R Packages needed for this Rmarkdown and exercises for today

- rmarkdown
- knitr
- printr
- carData
- dplyr see note
- ullet tibble see note
- ggpubr
- rstatix
- OPTIONAL tidyverse see note

NOTE: The dplyr and tibble packages are all part of the "CORE Tidyverse", so you can also simply load the tidyverse package. So, when you load library(tidyverse), you simultaneously load ALL of these core packages:

- ggplot2
- tibble
- tidyr
- readr
- purrrdplyr
- stringr
- forcats

Load the Davis dataset from the carData package

```
# load the carData package
# we'll work with the Davis dataset
# which is a part of this package
library(carData)
data(Davis)
```

Take a quick look at the Davis dataset

Load the tibble package and use the glimpse() function to take a quick peek at the Davis dataset.

The Davis dataset has 200 rows and 5 columns. The subjects were men and women engaged in regular exercise. There are some missing data. The 5 variables are:

- sex
 - a factor variable with 2 levels for F, female and M, male
- weight
 - a numeric variable for **measured** weight in kg
- height
 - a numeric variable for **measured** height in cm
- repwt
 - a numeric variable for **self-reported** weight in kg
- repht
 - a numeric variable for **self-reported** height in cm

To learn more about this dataset run help(Davis, package = "carData").

```
library(tibble)
glimpse(Davis)
```

Compute BMI from measured height and weight

The equation for BMI is

$$BMI = \frac{weight(kg)}{[height(m)]^2}$$

To compute BMI we need to:

- 1. convert height in cm to m
- 2. then compute BMI

So, let's add 2 new variables to our dataset using the mutate() function from the dplyr package.

```
# load dplyr package
library(dplyr)

Davis2 <- Davis %>%
  mutate(height_m = height/100) %>%
  mutate(bmi = weight / ((height_m)^2))
```

BMI histograms by sex

Let's try out the ggpubr package and use the ggdensity() function.

Learn more at https://rpkgs.datanovia.com/ggpubr/.

NOTE: Try custom colors with hex colors, https://www.colorbook.io/hexcolors/view/00AFBB.

```
# try custom colors using hex codes
# see https://www.colorbook.io/hexcolors/view/00AFBB
library(ggpubr)
ggdensity(Davis2, x = "bmi",
   add = "mean", rug = TRUE,
   color = "sex", fill = "sex",
   palette = c("#D689E8", "#00AFBB"))
```


Well this looks odd. I'm guessing there is an outlier somewhere. We could open the data and look at it in a viewer, but let's try to do it with code.

The dplyr package also has an arrange() function. So, let's sort the data and see if we can spot which case has the really large BMI value.

The default is to arrange (or sort) the rows in ascending order. But we want to see the largest value, so we'll add desc() to get the descending sorted order.

```
Davis2 %>%
  arrange(desc(bmi)) %>%
  head()
```

	sex	weight	height	repwt	repht	height_m	bmi
12	F	166	57	56	163	0.57	510.92644
21	M	119	180	124	178	1.80	36.72840
30	Μ	101	183	100	180	1.83	30.15916
97	M	103	185	101	182	1.85	30.09496
54	M	102	185	107	185	1.85	29.80278
192	Μ	89	173	86	173	1.73	29.73704

If I had to guess, it looks like the measured height and weight were flipped for case 12. But for now let's filter this case out and remake our plot.

So, we'll use the filter() function also from dplyr package.

```
Davis3 <- Davis2 %>%
  filter(bmi < 50)

ggdensity(Davis3, x = "bmi",
  add = "mean", rug = TRUE,
  color = "sex", fill = "sex",
  palette = c("#D689E8", "#00AFBB")) +
  ggtitle("BMI from Measured Weight and Height")</pre>
```

BMI from Measured Weight and Height

Get summary statistics of weight, height and bmi

Let's get the mean for weight, height and bmi

weight	height	bmi
65.29648	170.5879	22.25761

Add group_by() to get the means by sex

sex	weight	height	bmi
F	56.89189	164.7027	20.95632
M	75.89773	178.0114	23.89901

This is easier with get_summary_stats() from rstatix package

Let's try this again and get more stats.

First use the select() function from dplyr and then get the summary stats.

```
library(rstatix)

Davis3 %>%
  select(weight, height, bmi) %>%
  get_summary_stats()
```

variable	n	min	max	median	q1	q3	iqr	mad	mean	sd	se	ci
bmi	199	15.822	36.728	21.799	20.223	23.936	3.713	2.552	22.258	3.009	0.213	0.421
height	199	148.000	197.000	170.000	164.000	177.500	13.500	10.378	170.588	8.949	0.634	1.251
weight	199	39.000	119.000	63.000	55.000	73.500	18.500	11.861	65.296	13.343	0.946	1.865

Let's just get mean and sd (standard deviation) and add group_by() to get the stats by sex. NOTE: Add sex to the select() step.

```
Davis3 %>%
  group_by(sex) %>%
  select(sex, weight, height, bmi) %>%
  get_summary_stats(type = "mean_sd")
```

sex	variable	n	mean	sd
F	bmi	111	20.956	2.176
\mathbf{F}	height	111	164.703	5.683
\mathbf{F}	weight	111	56.892	6.891
\mathbf{M}	$_{ m bmi}$	88	23.899	3.120
\mathbf{M}	height	88	178.011	6.441
M	weight	88	75.898	11.890

Compare measured vs self-report heights and weights by sex

I've often heard a saying that "women weigh less and men are taller on paper". But let's take a look at the discrepancies between the directly measures height and weight to the self-reports repwt and repht - overall and by sex.

```
Davis3 <- Davis3 %>%
  mutate(diff_wt_repwt = weight - repwt) %>%
  mutate(diff_ht_repht = height - repht)
```

Now that we've computed these differences, let's look at these differences by sex. Differences < 0 indicate that the self-reported repwt or repht were larger than the measured weight or height.

Let's keep using the ggpubr package and try the ggboxplot() function and add a reference line, a title and a subtitle using functions from ggplot2 package which is loaded with ggpubr. We'll also clean up the x-axis and y-axis labels.

Difference in Weights = weight - repwt diff > 0 when measured weight > reported weight

It looks like for females, their actual weights are larger than their self-reported weights.

Let's take a look at the differences in the heights.

Difference in Heights = height - repht diff > 0 when measured height > reported height

From this plot it looks like the measured heights are higher than the self-reported heights for both females and males.

Get summary stats of these differences by $\verb"sex"$.

```
Davis3 %>%
  group_by(sex) %>%
  select(sex, diff_wt_repwt, diff_ht_repht) %>%
  get_summary_stats(type = "mean_sd")
```

sex	variable	n	mean	sd
F	diff_ht_repht	100	2.330	2.000
F	$diff_wt_repwt$	100	0.480	2.062
\mathbf{M}	$diff_ht_repht$	82	1.756	2.146
\mathbf{M}	$diff_wt_repwt$	82	-0.585	2.489