ECUACIONES DIFERENCIALES ORDINARIAS

Sumario: Ecuaciones diferenciales exactas o en diferenciales totales. Ecuaciones diferenciales lineales de primer orden. Cambios de variable que conducen a los tipos de ecuaciones estudiadas. Algunos problemas de aplicación.

OBJETIVOS

- 1. Resolver ecuaciones diferenciales ordinarias de primer orden
- 2. Modelar y resolver problemas que conduzca a ecuaciones diferenciales ordinarias de primer orden.

Bibliografía

■ Zill. Sección 2.3 , 2.4, 2.5 y 2.6 (p. 50 a 67

Introducción

En la conferencia anterior estudiamos como resolver ecuaciones diferenciales de primer orden que fueran de variable separable hoy continuaremos estudiando otros métodos para resolver ecuaciones de primer orden.

Desarrollo

Definición 0.1 Una expresión diferencial M(x,y)dx + N(x,y)dy es un diferencial exacto en una región R del plano xy si corresponde al diferencial total de alguna función f(x,y), es decir, df(x,y)=M(x,y)dx+N(x,y)dy

TEOREMA 1 Sean M(x, y) y N(x, y) continuas y con derivadas parciales de primer orden continuas en una región R del plano xy. Entonces una condición necesaria y suficiente para que M(x, y)dx + N(x, y)dy sea un diferencial exacto es que:

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

DEFINICIÓN 0.2 Una ecuación M(x,y)dx + N(x,y)dy = 0 se dice que es exacta si la expresión del primer miembro es un diferencial exacto.

Ejemplo 0.1 Diga si las siguientes ecuaciones diferenciales son exactas.

1.
$$x^2y^3dx + x^3y^2dy = 0$$

Solución Como $M(x,y) = x^2y^3$ y $N(x,y) = x^3y^2$ son funciones continuas y con derivadas parciales de primer orden continuas en todo el plano y

$$\frac{\partial M}{\partial y} = 3x^2y^2 = \frac{\partial N}{\partial x} \qquad podemos \ afirmar \ que \ \ {\bf la} \ ecuación \ dada \ es \ exacta.$$

1

2.
$$2xydx + (x^2 - 1)dy = 0$$

Solución Como M(x, y) = 2xy y $N(x, y) = x^2 - 1$ son funciones continuas y con derivadas parciales de primer orden continuas en todo el plano y

$$\frac{\partial M}{\partial y} = 2x = \frac{\partial N}{\partial x} \qquad podemos \ a firmar \ que \ {\bf la} \ ecuación \ dada \ es \ exacta.$$

¿Como resolver una ecuación exacta?

Si tenemos una ecuación M(x,y)dx+N(x,y)dy=0 que es exacta entonces existe una función f(x,y) tal que:

$$\frac{\partial f(x,y)}{\partial x} = M(x,y)$$

Podemos determinar f si integramos M(x, y) con respecto a x.

$$\int \frac{\partial f(x,y)}{\partial x} dx = \int M(x,y) dx + g(y)$$
$$f(x,y) = \int M(x,y) dx + g(y)$$

Ahora derivemos f con respecto a y y utilicemos el hecho que $\frac{\partial f(x,y)}{\partial y} = N(x,y)$

$$\frac{\partial f(x,y)}{\partial y} = \frac{\partial}{\partial y} \int M(x,y) dx + g'(y) = N(x,y)$$

entonces

$$g'(y) = N(x,y) - \frac{\partial}{\partial y} \int M(x,y) dx$$
 se obtiene g(x), y se sustituye en f(x,y)

de donde tenemos que f(x, y) = c

Ejemplo 0.2 Halle la solución de las siguientes ecuaciones diferenciales.

$$1. \ x^2y^3dx + x^3y^2dy = 0$$

Solución

$$\frac{\partial f(x,y)}{\partial x} = x^2 y^3$$

integrando con respecto a x resulta

$$f(x,y) = \frac{x^3}{3}y^3 + g(y)$$

derivando con respecto a y e igualando a N(x,y) se obtiene

$$x^3y^2 = x^3y^2 + g'(y)$$
 despejando
 $\Rightarrow g'(y) = 0$

 $integrando\ con\ respecto\ a\ y\ {\it se\ obtiene}\ \ g(y)=C$

sustituyendo en f(x,y) y aplicando df(x,y)=0

se obtiene la solución
$$\frac{x^3}{3}y^3 = K$$

2. $2xydx + (x^2 - 1)dy = 0$

Soluci'on

$$\frac{\partial f(x,y)}{\partial y} = x^2 - 1$$

integrando con respecto a y resulta

$$f(x,y) = x^2y - y + g(x)$$

derivando con respecto a x se obtiene

$$2xy = 2xy + g'(x) \Rightarrow g'(x) = 0$$

y integrando con respecto a x resulta

$$g(x) = c$$

 $\label{eq:condense} \textit{de donde } la \; \textit{soluci\'on es} \quad x^2y - y = k$

Definición 0.3 Una ecuación diferencial de primer orden, de la forma

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

es una ecuación lineal.

Al dividir ambos lados de la ecuación, $a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$ por el primer coeficiente, $a_1(x)$ se obtiene una forma más útil, la forma estándar de una ecuación lineal:

$$\frac{dy}{dx} + \frac{a_0(x)}{a_1(x)}y = \frac{g(x)}{a_1(x)}$$

$$\frac{dy}{dx} + p(x)y = f(x)$$

Ahora debemos ocuparnos de encontrar la solución de este tipo de ecuación para ello analicemos primero la siguiente ecuación

$$\frac{dy}{dx} + p(x)y = 0$$

este tipo de ecuación se resuelve hallando un factor llamado integrante de la ecuación diferencial:

$$\mu(x) = e^{\int p(x)dx}$$

multiplicamos toda la ecuación por el factor integrante

$$e^{\int p(x)dx} \frac{dy}{dx} + p(x)ye^{\int p(x)dx} = f(x)e^{\int p(x)dx}$$

$$\frac{d}{dx} \left[ye^{\int p(x)dx} \right] = f(x)e^{\int p(x)dx}$$
Differenciales exactos
$$d \left[ye^{\int p(x)dx} \right] = f(x)e^{\int p(x)dx}$$

la primera parte de la ecuación es equivalente a lo mostrado

expresamos la ecuación en forma diferencial

solo nos queda integrar en ambos miembros

$$ye^{\int p(x)dx} = f(x)e^{\int p(x)dx}dx + c$$

Ejemplo 0.3 Resolver la ecuación $y' + 3x^2y = x^2$

Solución

$$p(x)=3x^{2} \qquad q(x)=x^{2}$$

$$\mu(x) = e^{\int 3x^{2}dx} = e^{x^{3}}$$

$$e^{x^{3}} \frac{dy}{dx} + 3x^{2}ye^{x^{3}} = x^{2}e^{x^{3}}$$

$$\frac{d}{dx} \left[ye^{x^{3}} \right] = x^{2}e^{x^{3}} \qquad expresando en forma diferencial e integrando$$

$$ye^{x^{3}} = \int x^{2}e^{x^{3}}dx + c$$

$$ye^{x^{3}} = \frac{1}{3}e^{x^{3}} + c \qquad dividiendo por \quad e^{x^{3}}$$

$$\Rightarrow y = \frac{1}{3} + c\bar{e}^{x^{3}}$$

Ejemplo $0.4 Resolver la ecuación xy' + y - e^x = 0$

Solución

$$xy' + y - e^x = 0 \Rightarrow y' + \frac{1}{x}y = \frac{e^x}{x}$$
 dividiendo por x y ordenando la ecuación

como
$$p(x) = \frac{1}{x} \Rightarrow e^{\int \frac{1}{x} dx} = e^{\ln(x)} = x$$
 aplicando propiedades de los logaritmos

multiplicando la ecuación por x resulta

$$xy' + y = e^x$$
$$\frac{d(xy)}{dx} = xe^x$$

integrando tenemos que

$$xy = \int xe^x dx + c = (x-1)e^x + c$$

dividiendo por x

$$y = e^x \left(1 - \frac{1}{x}\right) + \frac{c}{x}$$

Ejemplo 0.5 Resolver la ecuación $\frac{dy}{dx} - y = e^x y^2$

Solución

Como podemos observar la ecuación no es lineal pero haciendo el cambio de variable

 $w = y^{-1}$ la podemos transformar en lineal

$$w = y^{-1}$$
 \Rightarrow $y = \frac{1}{w}$ $\Rightarrow \frac{dy}{dx} = -\frac{1}{w^2} \frac{dw}{dx}$

sustituyendo en la ecuación diferencial

$$-\frac{1}{w^2}\frac{dw}{dx} - \frac{1}{w} = e^x \left(\frac{1}{w}\right)^2$$

multiplicando por -w²

$$\frac{dw}{dx} + w = -e^x$$
 que es una ecuación lineal con $p(x)=1$ y $q(x)=-e^x$

$$\mu(x) = e^{\int dx} = e^x$$

multiplicamos la ecuación por el factor integrante

$$e^{x} \frac{dw}{dx} + e^{x} w = -e^{2x}$$
$$\frac{de^{x} w}{dx} = -e^{2x}$$

expresando la ecuación en forma diferencial e integrando

$$de^{x}w = \int -e^{2x} dx$$

$$e^{x}w = -\frac{1}{2}e^{2x} + c$$

$$w = -\frac{1}{2}e^{x} + \frac{c}{e^{x}}$$

regresando a la variable original

$$\frac{1}{y} = -\frac{1}{2}e^x + \frac{c}{e^x}$$

Otro tipo de ecuación diferencial que estudiaremos son las llamadas ecuaciones diferenciales homogéneas, cuya solución se obtiene a partir de hacer la sustitución y=ux.

Al realizar esta sustitución en la ecuación, la convertimos en una ecuación de variables separables.

EJEMPLO 0.6

Resolver la ecuación diferencial (x-y)dx+xdy=0

Solución

Haciendo la sustitución y=ux y determinando el diferencial de la misma obtenemos que:

dy=udx+xdu

sustituyendo en la ecuación

(x-ux)dx+x(udx+xdu)=0

 $xdx-uxdx+uxdx+x^2du=0$ agrupando términos

 $xdx+x^2du=0$ dividiendo la ecuación por x^2

$$\frac{dx}{x} + du = 0$$
 es una ecuación de variables separadas por lo que integrando cada término obtenemos la solución

$$lnx+u=c$$

retornando a la variable inicial

$$lnx + \frac{y}{x} = c$$
 si multiplicamos por x
$$xlnx+y=cx$$

TRAYECTORIAS ORTOGONALES

Definición 0.4 Se dice que una familia es ortogonal a otra, cuando todas la curvas de una familia $G(x,y,C_1)$ cortan ortogonalmente a todas las curvas de otra familia $H(x,y,C_2)=0$

En otras palabras, una trayectoria ortogonal es una curva cualquiera que corta en ángulo recto a toda curva de otra familia. Dos curvas son ortogonales en un punto, si y solo si, sus tangentes son perpendiculares en el punto de intersección.

Ejemplo 0.7 Hallar la ecuación de las trayectorias ortogonales del sistema de curvas

$$y^2 = cx^3$$

Hallar también la ecuación de la trayectoria ortogonal que pasa por el punto (2,4)

Solución

1. Derivar la ecuación que representa la familia de curvas

Derivando con respecto a x

$$2y\frac{dy}{dx} = 3cx^2 \Rightarrow \frac{dy}{dx} = \frac{3cx^2}{2y}$$

2. Despejar c en la ecuación de la familia de curvas

$$c = \frac{y^2}{x^3}$$

3. Sustituir en la derivada obtenida en el punto 1

$$\frac{dy}{dx} = \frac{3y}{2x}$$

4. Obtener la ecuación diferencial de la familia ortogonal dada por $\frac{dy}{dx} = -\frac{1}{f(x,y)}$

$$\frac{dy}{dx} = -\frac{2x}{3y}$$

5. Resolver la ecuación diferencial para obtener las trayectorias ortogonales de la familia de curvas

$$3ydy = -2xdx$$
$$\frac{3y^2}{2} = -\frac{2x^2}{2} + c$$

$$3y^2 + 2x^2 = c$$

Para hallar la trayectoria ortogonal que pasa por el punto (2,4) tenemos que

$$48 + 8 = c \Rightarrow c = 56$$

y la curva será

$$3y^2 + 2x^2 = 56$$

ALGUNOS PROBLEMAS DE APLICACIÓN

Revisar los problemas de aplicación del libro de texto p.16-21, 81-90. Lo veremos en CP y Seminario

Conclusiones

- Resumir las ecuaciones exactas y su método de resolución.
- Ecuaciones lineales de primer orden.
- Cambios de variables se pueden reducir las ecuaciones a una conocidas.

Trabajo Independiente

Estudiar las secciones: 1.1, 2.1 y 2.2 (pp. 1-12, 31-44) Realizar los ejercicios de: 1.1, 2.1: 1-10, .