# Language Modeling

2/2565: FRA501 Introduction to Natural Language Processing with Deep learning
Week 04

Paisit Khanarsa, Ph.D.

Institute of Field Robotics (FIBO), King Mongkut's University of Technology Thonburi

#### Outlines

- Introduction
- N-grams
- Evaluation and Perplexity
- Smoothing
- Neural Language Model
- Demos

#### Introduction

- Language model's goal is
  - To assign probability to a sentence
  - To predict the next word
- Example: Which sentence is more likely to occur?
  - "Do you live in Bangkok?"
  - "Live in Bangkok do you?"





- How to compute this sentence probability?
  - *S* = "It was raining cat and dog yesterday"
  - What is P(S)

- How to compute this sentence probability?
  - *S* = "It was raining cat and dog yesterday"
  - What is P(S)
- Conditional probability
  - $P(B|A) = \frac{P(A,B)}{P(B)}$
  - P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)



- How to cor
  - S = "It wa
  - What is I
- Conditional
  - P(B|A) =
  - P(A, B, C,

#### **Example:**

What is the probability of P(It, was, raining, cats, and, dogs, yesterday)?



- How to cor
  - S ="It wa
  - What is I
- Conditional

#### **Example:**

What is the probability of P(It, was, raining, cats, and, dogs, yesterday)?

 $= P(it) \times P(was|it) \times P(raining|it was) \times$  $P(\text{cats}|\text{it was raning}) \times P(\text{and}|\text{It was raining cats}) \times$ •  $P(B|A) = P(\text{dogs}|\text{it was raining cats and}) \times P(B|A) = P(\text{dogs}|\text{it was raining cats and}) \times P(A,B,C,$ 



#### Problem with full estimation

- Language is creative.
- New sentence are created all the time.
- Can not count all them

#### Problem with full estimation (cont.)

- Language is creative.
- New sentence are created all the time.
- Can not count all them

#### Example

- Training:
  - <s> I am a student . </s>
  - <s>I live in Bangkok . </s>
  - <s>I like to read . </s>
- Test:
  - <s>I am a teacher . </s>
- What is the probability of  $P(\langle s \rangle \mid am \mid a \mid teacher \mid \langle /s \rangle)$ ?

•

### Problem with full estimation (cont.)

- Language is creative.
- New sentence are created all the time.
- Can not count all them

#### Example

- Training:
  - <s>I am a student . </s>
  - <s>I live in Bangkok . </s>
  - <s>I like to read . </s>
- Test:
  - <s>I am a teacher . </s>
- What is the probability of  $P(\langle s \rangle \mid am \mid a \mid teacher \mid \langle /s \rangle)$ ?
  - $P(\langle s \rangle) \times P(i|\langle s \rangle) \times P(am|\langle s \rangle I) \times P(a|\langle s \rangle I am) \times P(teacher|\langle s \rangle I am a) \times P(.|\langle s \rangle I am a teacher) \times P(\langle /s \rangle |\langle s \rangle I am a teacher.)$

### Problem with full estimation (cont.)

- Language is creative.
- New sentence are created all the time.
- Can not count all them

#### • Example

- Training:
  - <s>I am a student . </s>
  - <s>I live in Bangkok . </s>
  - <s>I like to read . </s>
- Test :
  - <s>I am a teacher . </s>
- What is the probability of  $P(\langle s \rangle \mid am \mid a \mid teacher . \langle /s \rangle)$ ?
  - $P(\langle s \rangle) \times P(i|\langle s \rangle) \times P(am|\langle s \rangle I) \times P(a|\langle s \rangle I am) \times P(teacher|\langle s \rangle I am a) \times P(.|\langle s \rangle I am a teacher) \times P(\langle /s \rangle |\langle s \rangle I am a teacher.)$

Probability = 0

- Markov Assumption
  - Predict the probability of the next word without looking too far into the past
  - Relation of #words: unigram, bigrams, trigrams or n-grams



- Markov Assumption
  - Predict the probability of the next word without looking too far into the past
  - Relation of #words: unigram, bigrams, trigrams or n-grams
  - Example: bigram
    - $P(F|A,B,C,D,E) \sim P(F|E)$
    - S = There are ten students in the class
    - *P*(class|There are ten students in the)
      - Unigrams  $\sim P(\text{class})$
      - Bigrams  $\sim P(\text{class}|\text{the})$
      - Trigrams  $\sim P(\text{class}|\text{in the})$

#### Full estimation

 $P(\text{It, was, raining, cats, and, dogs, yesterday}) = P(\text{it}) \times P(\text{was}|\text{it}) \times P(\text{raining}|\text{it was}) \times P(\text{cats}|\text{it was raining}) \times P(\text{and}|\text{It was raining cats}) \times P(\text{dog}|\text{it was raining cats and}) \times P(\text{yerterday}|\text{it was tainig cats and dogs})$ 

#### Trigrams(Markov assumption)

P(It, was, raining, cats, and, dogs, yesterday) =

#### Full estimation

 $P(\text{It, was, raining, cats, and, dogs, yesterday}) = P(\text{it}) \times P(\text{was}|\text{it}) \times P(\text{raining}|\text{it was}) \times P(\text{cats}|\text{it was raining}) \times P(\text{and}|\text{It was raining cats}) \times P(\text{dog}|\text{it was raining cats and}) \times P(\text{yerterday}|\text{it was tainig cats and dogs})$ 

#### Trigrams(Markov assumption)

 $P(\text{It, was, raining, cats, and, dogs, yesterday}) = P(\text{it}) \times P(\text{was}|\text{it}) \times P(\text{raining}|\text{it was}) \times P(\text{cats}|\text{was raning}) \times P(\text{and}|\text{raining cats}) \times P(\text{dogs}|\text{cats and}) \times P(\text{yerterday}|\text{and dogs})$ 

#### Full estimation

 $P(\text{It, was, raining, cats, and, dogs, yesterday}) = P(\text{it}) \times P(\text{was}|\text{it}) \times P(\text{raining}|\text{it was}) \times P(\text{cats}|\text{it was raining}) \times P(\text{and}|\text{It was raining cats}) \times P(\text{dog}|\text{it was raining cats and}) \times P(\text{yerterday}|\text{it was tainig cats and dogs})$ 

#### Trigrams(Markov assumption)

Add start (<s>) & stop(<\s>)

 $P(\langle s \rangle, It, was, raining, cats, and, dogs, yesterday, \langle s \rangle) = P(\langle s \rangle) \times P(it|\langle s \rangle) \times P(was|\langle s \rangle) \times P(raining|it was) \times P(cats|was raning) \times P(and|raining cats) \times P(dogs|cats and) \times P(yerterday|and dogs) \times P(\langle s \rangle|dog yesterday)$ 

#### N-grams: Example

- Estimate Bigrams Probability
  - <s> I am Sam </s>
  - <s> Sam I am </s>
  - <s> I am not Sam </s>

$$P(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

| Bigrams Unit | Bigrams Probability |
|--------------|---------------------|
|              |                     |
|              |                     |
|              |                     |
|              |                     |
|              |                     |
|              |                     |
|              |                     |
|              |                     |
|              |                     |

### N-grams: Example (cont.)

- Estimate Bigrams Probability
  - <s> I am Sam </s>
  - <s> Sam I am </s>
  - <s> I am not Sam </s>

$$P(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

| Bigrams Unit            | Bigrams Probability |
|-------------------------|---------------------|
| P(i  <s>)</s>           |                     |
| P(am i)                 |                     |
| P(sam am)               |                     |
| <i>P</i> ( sam)         |                     |
| <i>P</i> (sam  <s>)</s> |                     |
| P(i sam)                |                     |
| <i>P</i> ( am)          |                     |
| P(not am)               |                     |
| P(sam not)              |                     |

### N-grams: Example (cont.)

- Estimate Bigrams Probability
  - <s> I am Sam </s>
  - <s> Sam I am </s>
  - <s>I am not Sam </s>

$$P(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

| Bigrams Unit            | Bigrams Probability |
|-------------------------|---------------------|
| P(i  <s>)</s>           | 2/3 = 0.67          |
| P(am i)                 | 3/3 = 1             |
| P(sam am)               | 1/3 = 0.33          |
| <i>P</i> ( sam)         | 2/3 = 0.67          |
| <i>P</i> (sam  <s>)</s> | 1/3 = 0.33          |
| P(i sam)                | 1/3 = 0.33          |
| <i>P</i> ( am)          | 1/3 = 0.33          |
| P(not am)               | 1/3 = 0.33          |
| P(sam not)              | 1/1 = 1             |

### N-grams: Example (cont.

- Estimate Bigrams Probability
  - <s> I am Sam </s>
  - <s> Sam I am </s>
  - <s> I am not Sam </s>

$$P(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

| Bigrams Unit            | Bigrams Probability |
|-------------------------|---------------------|
| P(i  <s>)</s>           | 2/3 = 0.67          |
| P(am i)                 | 3/3 = 1             |
| P(sam am)               | 1/3 = 0.33          |
| <i>P</i> ( sam)         | 2/3 = 0.67          |
| <i>P</i> (sam  <s>)</s> | 1/3 = 0.33          |
| P(i sam)                | 1/3 = 0.33          |
| <i>P</i> ( am)          | 1/3 = 0.33          |
| P(not am)               | 1/3 = 0.33          |
| P(sam not)              | 1/1 = 1             |

| Sentence                  | Bigrams Probability |
|---------------------------|---------------------|
| P( <s> I am Sam </s> )    |                     |
| P( <s> Sam I am </s> )    |                     |
| P( <s>I am not Sam </s> ) |                     |

### N-grams: Example (cont.

- Estimate Bigrams Probability
  - <s> I am Sam </s>
  - <s> Sam I am </s>
  - <s>I am not Sam </s>

$$P(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

| Bigrams Unit            | Bigrams Probability |
|-------------------------|---------------------|
| P(i  <s>)</s>           | 2/3 = 0.67          |
| P(am i)                 | 3/3 = 1             |
| P(sam am)               | 1/3 = 0.33          |
| <i>P</i> ( sam)         | 2/3 = 0.67          |
| <i>P</i> (sam  <s>)</s> | 1/3 = 0.33          |
| P(i sam)                | 1/3 = 0.33          |
| <i>P</i> ( am)          | 1/3 = 0.33          |
| P(not am)               | 1/3 = 0.33          |
| P(sam not)              | 1/1 = 1             |

| Sentence                                                  | Bigrams Probability |
|-----------------------------------------------------------|---------------------|
| $P(\langle s \rangle \mid am \mid Sam \langle s \rangle)$ | 0.148137            |
| P( <s> Sam I am </s> )                                    | 0.035937            |
| P( <s>I am not Sam </s> )                                 | 0.148137            |

# N-grams: Bigrams probability table

- Estimate N-grams probability
  - Unigrams counting

| D(w   w) =         | $count(w_{i-1}, w_i)$       |
|--------------------|-----------------------------|
| $P(w_i w_{i-1}) =$ | $\overline{count(w_{i-1})}$ |

| i    | want | to   | eat | chinese | food | lunch | spend |
|------|------|------|-----|---------|------|-------|-------|
| 2533 | 927  | 2417 | 746 | 158     | 1093 | 341   | 278   |

### N-grams: Bigrams probability table (cont.)

- Estimate N-grams probability
  - Bigrams counting (Col given row)
    - "I want"  $\rightarrow count(\text{previous, current}) = c(w_{i-1}, w_i) = c(I, \text{want}) = 827$

#### **Current**

|         | ı  | want | to  | eat | chinese | tood | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 5  | 827  | 0   | 9   | 0       | 0    | 0     | 2     |
| want    | 2  | 0    | 608 | 1   | 6       | 6    | 5     | 1     |
| to      | 2  | 0    | 4   | 686 | 2       | 0    | 6     | 211   |
| eat     | 0  | 0    | 2   | 0   | 16      | 2    | 42    | 0     |
| chinese | 1  | 0    | 0   | 0   | 0       | 82   | 1     | 0     |
| food    | 15 | 0    | 15  | 0   | 1       | 4    | 0     | 0     |
| lunch   | 2  | 0    | 0   | 0   | 0       | 1    | 0     | 0     |
| spend   | 1  | 0    | 1   | 0   | 0       | 0    | 0     | 0     |

**Previous** 

 $P(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$ 

# $P(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$

# N-grams: Bigrams probability table

- Estimate N-grams probability
  - Bigrams counting divided by Unigrams counting

#### Current

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | i       | want | to     | eat    | chinese | food   | lunch  | spend   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------|--------|--------|---------|--------|--------|---------|
| Previous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i       | 0.002   | 0.33 | 0      | 0.0036 | 0       | 0      | 0      | 0.00079 |
| Unigrams counting  i want to eat chinese food lunch spend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | want    | 0.0022  | 0    | 0.66   | 0.0011 | 0.0065  | 0.0065 | 0.0054 | 0.0011  |
| 2533 927 2417 746 158 1093 341 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | to      | 0.00083 | 0    | 0.0017 | 0.28   | 0.00083 | 0      | 0.0025 | 0.087   |
| Bigrams counting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eat     | 0       | 0    | 0.0027 | 0      | 0.021   | 0.0027 | 0.056  | 0       |
| i want to eat chinese food lunch spend i 5 827 0 9 0 0 0 2 want 2 0 608 1 6 6 5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | chinese | 0.0063  | 0    | 0      | 0      | 0       | 0.52   | 0.0063 | 0       |
| to 2 0 4 686 2 0 6 211  eat 0 0 2 0 16 2 42 0  chinese 1 0 0 0 0 82 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | food    | 0.014   | 0    | 0.014  | 0      | 0.00092 | 0.0037 | 0      | 0       |
| Took      | lunch   | 0.0059  | 0    | 0      | 0      | 0       | 0.0029 | 0      | 0       |
| The state of the s | spend   | 0.0036  | 0    | 0.0036 | 0      | 0       | 0      | 0      | 0       |

# $P(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$

# N-grams: Bigrams probability table

- Estimate N-grams probability
  - Bigrams counting divided by Unigrams counting

$$P(\text{want}|i) = \frac{count(i,\text{want})}{count(i)} = \frac{827}{2533} = 0.33$$

#### Current

|                                                                                                                                                                                                                                               |         | i       | want | to     | eat    | chinese | food   | lunch  | spend   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------|--------|--------|---------|--------|--------|---------|
| Previous                                                                                                                                                                                                                                      | i       | 0.002   | 0.33 | 0      | 0.0036 | 0       | 0      | 0      | 0.00079 |
| Unigrams counting  i want to eat chinese food lunch spend                                                                                                                                                                                     | want    | 0.0022  | 0    | 0.66   | 0.0011 | 0.0065  | 0.0065 | 0.0054 | 0.0011  |
| 2533 927 2417 746 158 1093 341 278                                                                                                                                                                                                            | to      | 0.00083 | 0    | 0.0017 | 0.28   | 0.00083 | 0      | 0.0025 | 0.087   |
| Bigrams counting                                                                                                                                                                                                                              | eat     | 0       | 0    | 0.0027 | 0      | 0.021   | 0.0027 | 0.056  | 0       |
| i want to eat chinese food lunch spend i 5 827 0 9 0 0 0 2 want 2 0 608 1 6 6 5 1                                                                                                                                                             | chinese | 0.0063  | 0    | 0      | 0      | 0       | 0.52   | 0.0063 | 0       |
| to 2 0 4 686 2 0 6 211  eat 0 0 2 0 16 2 42 0  chinese 1 0 0 0 0 82 1 0                                                                                                                                                                       | food    | 0.014   | 0    | 0.014  | 0      | 0.00092 | 0.0037 | 0      | 0       |
| food         15         0         1         4         0         0           lunch         2         0         0         0         1         0         0           spend         1         0         1         0         0         0         0 | lunch   | 0.0059  | 0    | 0      | 0      | 0       | 0.0029 | 0      | 0       |
|                                                                                                                                                                                                                                               | spend   | 0.0036  | 0    | 0.0036 | 0      | 0       | 0      | 0      | 0       |

# $P(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$

# N-grams: Bigrams probability table

- Estimate N-grams probability
  - Bigrams counting divided by Unigrams counting

$$P(\text{want}|i) = \frac{count(i,\text{want})}{count(i)} = \frac{827}{2533} = 0.33$$

#### Current

|                                                           |         | i       | want | to     | eat    | chinese | food   | lunch  | spend   |
|-----------------------------------------------------------|---------|---------|------|--------|--------|---------|--------|--------|---------|
| Previous                                                  | i       | 0.002   | 0.33 | 0      | 0.0036 | 0       | 0      | 0      | 0.00079 |
| Unigrams counting  i want to eat chinese food lunch spend | want    | 0.0022  | 0    | 0.66   | 0.0011 | 0.0065  | 0.0065 | 0.0054 | 0.0011  |
| 2533 927 2417 746 158 1093 341 278                        | to      | 0.00083 | 0    | 0.0017 | 0.28   | 0.00083 | 0      | 0.0025 | 0.087   |
| Digrams sounting                                          | eat     | 0       | 0    | 0.0027 | 0      | 0.021   | 0.0027 | 0.056  | 0       |
| Assume $P(i ) = 1$ $ c     c     c $                      | chinese | 0.0063  | 0    | 0      | 0      | 0       | 0.52   | 0.0063 | 0       |
| P( food) = 0.5                                            | food    | 0.014   | 0    | 0.014  | 0      | 0.00092 | 0.0037 | 0      | 0       |
| P( lunch) = 0.5                                           | lunch   | 0.0059  | 0    | 0      | 0      | 0       | 0.0029 | 0      | 0       |
|                                                           | spend   | 0.0036  | 0    | 0.0036 | 0      | 0       | 0      | 0      | 0       |

 $P(\langle s \rangle | eat chinese food \langle s \rangle) =$ 

P(<s> | spend to | lunch </s>) =

# N-grams: Bigrams probability table

$$P(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

- Estimate N-grams probability
  - Bigrams counting divided by Unigrams counting

$$P(\text{want}|i) = \frac{count(i,\text{want})}{count(i)} = \frac{827}{2533} = 0.33$$

#### Current

|                                                           |         | i       | want | to     | eat    | chinese | food   | lunch  | spend   |
|-----------------------------------------------------------|---------|---------|------|--------|--------|---------|--------|--------|---------|
| Previous                                                  | i       | 0.002   | 0.33 | 0      | 0.0036 | 0       | 0      | 0      | 0.00079 |
| Unigrams counting  i want to eat chinese food lunch spend | want    | 0.0022  | 0    | 0.66   | 0.0011 | 0.0065  | 0.0065 | 0.0054 | 0.0011  |
| 2533 927 2417 746 158 1093 341 278                        | to      | 0.00083 | 0    | 0.0017 | 0.28   | 0.00083 | 0      | 0.0025 | 0.087   |
| Digrama counting                                          | eat     | 0       | 0    | 0.0027 | 0      | 0.021   | 0.0027 | 0.056  | 0       |
| Assume $P(i ) = 1$ $ c  = 1$                              | chinese | 0.0063  | 0    | 0      | 0      | 0       | 0.52   | 0.0063 | 0       |
| P( food) = 0.5                                            | food    | 0.014   | 0    | 0.014  | 0      | 0.00092 | 0.0037 | 0      | 0       |
| P( lunch) = 0.5                                           | lunch   | 0.0059  | 0    | 0      | 0      | 0       | 0.0029 | 0      | 0       |
|                                                           | spend   | 0.0036  | 0    | 0.0036 | 0      | 0       | 0      | 0      | 0       |

 $P(\langle s \rangle | \text{ eat chinese food } \langle /s \rangle) = 1 \times 0.0036 \times 0.021 \times 0.52 \times 0.5 = 1.9 \times 10^{-5}$  $P(\langle s \rangle | \text{ spend to lunch } \langle /s \rangle) = 1 \times 0.00079 \times 0.0036 \times 0.0025 \times 0.5 = 3.5 \times 10^{-9}$ 

### N-grams: Loglikelihood

- Do calculating in log space  $(\log P(S))$ 
  - Avoid underflow (number too small)
  - Adding is faster than multiplying

$$P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)$$



$$\log P(A, B, C, D) = \log P(A)P(B|A)P(C|A, B)P(D|A, B, C)$$

$$= \log P(A) + \log P(B|A) + \log P(C|A, B) + \log P(D|A, B, C)$$

# N-grams: Loglikelihood (cont.)



- Calculate log likelihood of the following sentence: "I eat chinese food"
  - P(<s>I eat chinese food </s>)

$$= 1 \times 0.0036 \times 0.021 \times 0.52 \times 0.5 = 1.9 \times 10^{-5}$$

• log *P*(<s> I eat chinese food </s>)

$$= \log 1 + \log(0.0036) + \log(0.021) + \log 0.52 + \log 0.5 = -10.84$$

#### Evaluation

- The model's performance is tested on unseen data
  - Test set
  - Validation set
- Extrinsic Evaluation
  - Measure the performance of a downstream task, e.g., spelling correction, machine translation, etc.
  - Cons: Time-consuming
- Intrinsic Evaluation
  - Evaluate the performance of LM on test set → Perplexity
  - Cons: dose not guarantee an improvement of a downstream task, but perplexity often correlates with such improvements

### Perplexity

- Perplexity is a quick evaluation metric for language model
- Perplexity can be seen a normalized version of the probability of the test set.
- Perplexity is the inverse probability, normalized by the number of words
- Lower perplexity is better!

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1, ..., w_{i-1})}}$$

### Perplexity (cont.)

- Perplexity is a quick evaluation metric for language model
- Perplexity can be seen a normalized version of the probability of the test set.
- Perplexity is the inverse probability, normalized by the number of words
- Lower perplexity is better!

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1, ..., w_{i-1})}}$$

**Logarithmic version** 

$$b^{-\frac{1}{N}\sum_{i=1}^{N}\log_b(P(w_i|w_1,...,w_{i-1}))}$$

# Perplexity (cont.)

- Perplexity as branching factor:
  - Number of possible next words that can follow any word
- Consider the task of recognizing a string of random digits of length N, given that each of the 10 digits (0-9) occurs with qual probability.

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1, ..., w_{i-1})}}$$
$$= \left(\prod_{i=1}^{N} \frac{1}{P(w_i)}\right)^{\frac{1}{N}} = \left(\prod_{i=1}^{N} \frac{1}{(1/10)}\right)^{\frac{1}{N}} = 10$$

# Perplexity (cont.)

• Example: PP(W) of "I eat chinese food"

• 
$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1,...,w_{i-1})}} \text{ or } e^{-\frac{1}{N}\sum_{i=1}^{N} \log_e(P(w_i|w_1,...,w_{i-1}))}$$

• PP(<s>I eat chinese food </s>) =  $e^{-\frac{1}{5}(\ln 1 + \ln 0.0036 + \ln 0.021 + \ln 0.52 + \ln 0.5)}$  = 8.74

|         | i       | want | to     | eat    | chinese | food   | lunch  | spend   |
|---------|---------|------|--------|--------|---------|--------|--------|---------|
| i       | 0.002   | 0.33 | 0      | 0.0036 | 0       | 0      | 0      | 0.00079 |
| want    | 0.0022  | 0    | 0.66   | 0.0011 | 0.0065  | 0.0065 | 0.0054 | 0.0011  |
| to      | 0.00083 | 0    | 0.0017 | 0.28   | 0.00083 | 0      | 0.0025 | 0.087   |
| eat     | 0       | 0    | 0.0027 | 0      | 0.021   | 0.0027 | 0.056  | 0       |
| chinese | 0.0063  | 0    | 0      | 0      | 0       | 0.52   | 0.0063 | 0       |
| food    | 0.014   | 0    | 0.014  | 0      | 0.00092 | 0.0037 | 0      | 0       |
| lunch   | 0.0059  | 0    | 0      | 0      | 0       | 0.0029 | 0      | 0       |
| spend   | 0.0036  | 0    | 0.0036 | 0      | 0       | 0      | 0      | 0       |

#### Zeros and Unknown words

#### Zeros

- Some probabilities do not occur in the training set but occur in the test set.
- It still in vocab list.

#### • Example

- Training:
  - <s>I am a student . </s>
  - <s>I live in Bangkok . </s>
  - <s> I like to read . </s>
- Test:
  - <s> I am a teacher . </s>
- What is the probability of  $P(\langle s \rangle \mid am \mid a \mid teacher . \langle /s \rangle)$ ?
  - $P(\langle s \rangle) \times P(i|\langle s \rangle) \times P(am|\langle s \rangle I) \times P(a|\langle s \rangle I am) \times P(teacher|\langle s \rangle I am a) \times P(.|\langle s \rangle I am a teacher) \times P(\langle /s \rangle |\langle s \rangle I am a teacher.)$

Probability = 0

### Zeros and Unknown words (cont.)

- Zeros
  - Some probabilities do not occur in tl
  - It still in vocab list.
  - Example
    - Training:
      - <s>I am a student . </s>
      - <s> I live in Bangkok . </s>
      - <s>I like to read . </s>
    - Test:
      - <s>I am a teacher . </s>
    - What is the probability of  $P(\langle s \rangle \mid am \mid a \mid teacher . \langle /s \rangle)$ ?
      - $P(\langle s \rangle) \times P(i|\langle s \rangle) \times P(am|\langle s \rangle I) \times P(a|\langle s \rangle I am) \times P(teacher|\langle s \rangle I am a) \times P(.|\langle s \rangle I am a teacher) \times P(\langle /s \rangle |\langle s \rangle I am a teacher.)$

- $\circ P(\text{teacher}|<s> \text{I am a}) = 0$
- N-grams with zero probability mean that we will assign 0 probability to the test set.
- We cannot compute perplexity (division by 0).

Probability = 0

#### Zeros and Unknown words (cont.)

- Unknown words (UNK) or Out of vocabulary (OOV)
  - 1. Assign it as a probability of normal word
    - Create a set of vocabulary with minimum frequency threshold
      - That is fixed in advanced
      - o Or form top n frequency
      - o Or words that have frequency more than 1,2,...,v

$$P(UNK) = \frac{wc(UNK_{freq=1})}{wc(total)} = \frac{200}{1000} = 0.2$$

- Convert any words in training and testing that is not in this predefined set
  - o to 'UNK' token.
  - Simply, deal with UNK word as a normal word
- 2. Or just define probability of UNK word with constant value

$$P(UNK) = \frac{1}{total\ vocab} = \frac{1}{100} = 0.01$$

### Zeros and Unknown words (cont.)

#### We still have zero problem

- Unknown words (UNK) o
  - 1. Assign it as a probability
    - Create a set of vocabulary
      - That is fixed in advance
      - Or form top n frequency
      - Or words that have freq
    - Convert any words in trair
      - o to 'UNK' token.

|     |       | i       | want | to     | eat    | chinese | food   | lunch  | spend   |
|-----|-------|---------|------|--------|--------|---------|--------|--------|---------|
|     | i     | 0.002   | 0.33 | 0      | 0.0036 | 0       | 0      | 0      | 0.00079 |
| W   | /ant  | 0.0022  | 0    | 0.66   | 0.0011 | 0.0065  | 0.0065 | 0.0054 | 0.0011  |
|     | to    | 0.00083 | 0    | 0.0017 | 0.28   | 0.00083 | 0      | 0.0025 | 0.087   |
| •   | eat   | 0       | 0    | 0.0027 | 0      | 0.021   | 0.0027 | 0.056  | 0       |
| chi | inese | 0.0063  | 0    | 0      | 0      | 0       | 0.52   | 0.0063 | 0       |
| fe  | ood   | 0.014   | 0    | 0.014  | 0      | 0.00092 | 0.0037 | 0      | 0       |
| lu  | ınch  | 0.0059  | 0    | 0      | 0      | 0       | 0.0029 | 0      | 0       |
| sp  | end   | 0.0036  | 0    | 0.0036 | 0      | 0       | 0      | 0      | 0       |

- Simply, deal with UNK word as a normal word
- 2. Or just define probability of UNK word with constant value

$$P(UNK) = \frac{1}{total\ vocab} = \frac{1}{100} = 0.01$$

### Smoothing

- Smoothing techniques
  - Add-one estimation
    - OK for text classification, not for LM
  - Back-off
    - For very large N-grams like the Web
  - Interpolation
    - The most commonly used method
  - Kneser-Ney Smoothing
    - The best method

#### We still have zero problem



Estimate probability

#### Smoothing: Add-one estimation

- Add to all the n-grams counts
- For bigram where V is the number of unique word in the corpus

$$P(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i) + 1}{count(w_{i-1}) + V}$$

|         | i            | want          | to            | eat           | chinese      | food        | lunch       | spend         |
|---------|--------------|---------------|---------------|---------------|--------------|-------------|-------------|---------------|
| i       | 5 +1         | 827 <b>+1</b> | 0 +1          | 9 +1          | 0 +1         | 0+1         | 0+1         | 2 +1          |
| want    | 2 +1         | 0 +1          | 608 <b>+1</b> | 1 +1          | 6 +1         | 6 <b>+1</b> | 5 +1        | 1 +1          |
| to      | 2 +1         | 0 +1          | 4 +1          | 686 <b>+1</b> | 2 +1         | 0+1         | 6 <b>+1</b> | 211 <b>+1</b> |
| eat     | 0+1          | 0 +1          | 2 +1          | 0 +1          | 16 <b>+1</b> | 2 +1        | 42 +1       | 0 +1          |
| chinese | 1+1          | 0 +1          | 0 +1          | 0 +1          | 0 +1         | 82 +1       | 1 +1        | 0 +1          |
| food    | 15 <b>+1</b> | 0 +1          | 15 <b>+1</b>  | 0 +1          | 1+1          | 4 +1        | 0+1         | 0 +1          |
| lunch   | 2 +1         | 0+1           | 0 +1          | 0 +1          | 0 +1         | 1+1         | 0+1         | 0 +1          |
| spend   | 1 +1         | 0 +1          | 1 +1          | 0 +1          | 0 +1         | 0 +1        | 0 +1        | 0 +1          |

### Smoothing: Add-one estimation (cont.)

- Add to all the n-grams counts
- For bigram where V is the number of unique word in the corpus

$$P(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i) + 1}{count(w_{i-1}) + V}$$

|         | i            | want          | to            | eat           | chinese      | foo   | • U  |
|---------|--------------|---------------|---------------|---------------|--------------|-------|------|
| i       | 5 +1         | 827 <b>+1</b> | 0 +1          | 9 +1          | 0 +1         | 0 +1  | C    |
| want    | 2 +1         | 0 +1          | 608 <b>+1</b> | 1 +1          | 6 <b>+1</b>  | 6 +1  | • T  |
| to      | 2 +1         | 0 +1          | 4 +1          | 686 <b>+1</b> | 2 +1         | 0 +1  | if   |
| eat     | 0 +1         | 0 +1          | 2 +1          | 0 +1          | 16 <b>+1</b> | 2 +1  | g    |
| chinese | 1+1          | 0 +1          | 0 +1          | 0 +1          | 0 +1         | 82 +1 | 1 +1 |
| food    | 15 <b>+1</b> | 0 +1          | 15 <b>+1</b>  | 0 +1          | 1 +1         | 4 +1  | 0 +1 |
| lunch   | 2 +1         | 0 +1          | 0 +1          | 0 +1          | 0 +1         | 1 +1  | 0 +1 |
| spend   | 1+1          | 0 +1          | 1+1           | 0 +1          | 0+1          | 0 +1  | 0+1  |

Pros: Easiest to implement

0 + 1

0 + 1

0 + 1

0 + 1

☐ Cons:

- Usually perform poorly compare to other techniques.
- The probabilities change a lot if there are too many zeros ngrams

#### Smoothing: Back off

- Use less context for contexts you don't know about
- Back off
  - Trigrams > Bigrams > Unigrams
  - Continue until we get some counts
  - Example:
    - $P(\text{teacher}|<\text{s}>\text{I am a})\sim P(\text{teacher}|\text{I am a})\sim P(\text{teacher}|\text{am a})\sim P(\text{teacher}|\text{a})\sim P(\text{teacher})\sim P(\text{UNK})$

#### Smoothing: Interpolation

• Mix unigram, bigram, trigram

$$\widehat{P}(w_i|w_{i-2},w_{i-1}) = \lambda_3 P(w_i|w_{i-2},w_{i-1}) + \lambda_2 P(w_i|w_{i-1}) + \lambda_1 P(w_i) + \lambda_0 C$$

- $\circ \lambda$  is chosen from testing on validating data set, and  $\sum_i \lambda = 1$
- $\circ C$  is (1/vocab) in corpus

### Smoothing: Interpolation (cont.)

Interpolation for bigrams

$$\hat{P}(w_i|w_{i-2}) = \lambda_2 P(w_i|w_{i-1}) + \lambda_1 P(w_i) + \lambda_0 C$$

| i      | want   | to     | eat    | chinese | food   | lunch  | spend  | Total |
|--------|--------|--------|--------|---------|--------|--------|--------|-------|
| 2533   | 927    | 2417   | 746    | 158     | 1093   | 341    | 278    | 8493  |
| 0.2989 | 0.1091 | 0.2846 | 0.0878 | 0.0186  | 0.1287 | 0.0402 | 0.0327 | 1     |

|         | i       | want | to     | eat    | chinese | food   | lunch  | spend   |
|---------|---------|------|--------|--------|---------|--------|--------|---------|
| i       | 0.002   | 0.33 | 0      | 0.0036 | 0       | 0      | 0      | 0.00079 |
| want    | 0.0022  | 0    | 0.66   | 0.0011 | 0.0065  | 0.0065 | 0.0054 | 0.0011  |
| to      | 0.00083 | 0    | 0.0017 | 0.28   | 0.00083 | 0      | 0.0025 | 0.087   |
| eat     | 0       | 0    | 0.0027 | 0      | 0.021   | 0.0027 | 0.056  | 0       |
| chinese | 0.0063  | 0    | 0      | 0      | 0       | 0.52   | 0.0063 | 0       |
| food    | 0.014   | 0    | 0.014  | 0      | 0.00092 | 0.0037 | 0      | 0       |
| lunch   | 0.0059  | 0    | 0      | 0      | 0       | 0.0029 | 0      | 0       |
| spend   | 0.0036  | 0    | 0.0036 | 0      | 0       | 0      | 0      | 0       |

#Vocab in corpus = 1446

P(eat spend) = P(spend|eat) = ?

### Smoothing: Interpolation (cont.)

#### Interpolation for bigrams

$$\hat{P}(w_i|w_{i-2}) = \lambda_2 P(w_i|w_{i-1}) + \lambda_1 P(w_i) + \lambda_0 C$$

| i      | want   | to     | eat    | chinese | food   | lunch  | spend  | Total |
|--------|--------|--------|--------|---------|--------|--------|--------|-------|
| 2533   | 927    | 2417   | 746    | 158     | 1093   | 341    | 278    | 8493  |
| 0.2989 | 0.1091 | 0.2846 | 0.0878 | 0.0186  | 0.1287 | 0.0402 | 0.0327 | 1     |

|         | i       | want | to     | eat    | chinese | food   | lunch  | spend   |
|---------|---------|------|--------|--------|---------|--------|--------|---------|
| i       | 0.002   | 0.33 | 0      | 0.0036 | 0       | 0      | 0      | 0.00079 |
| want    | 0.0022  | 0    | 0.66   | 0.0011 | 0.0065  | 0.0065 | 0.0054 | 0.0011  |
| to      | 0.00083 | 0    | 0.0017 | 0.28   | 0.00083 | 0      | 0.0025 | 0.087   |
| eat     | 0       | 0    | 0.0027 | 0      | 0.021   | 0.0027 | 0.056  | 0       |
| chinese | 0.0063  | 0    | 0      | 0      | 0       | 0.52   | 0.0063 | 0       |
| food    | 0.014   | 0    | 0.014  | 0      | 0.00092 | 0.0037 | 0      | 0       |
| lunch   | 0.0059  | 0    | 0      | 0      | 0       | 0.0029 | 0      | 0       |
| spend   | 0.0036  | 0    | 0.0036 | 0      | 0       | 0      | 0      | 0       |

#Vocab in corpus = 1446

$$P(\text{eat spend}) = P(\text{spend}|\text{eat})$$
  
=  $\lambda_2 P(\text{spend}|\text{eat}) + \lambda_1 P(\text{spend}) + \lambda_0 C$   
=  $0.7 \times 0 + 0.25 \times 0.0327 + 0.05 \times (1/1446)$   
=  $0.00820958$ 

### Smoothing: Kneser-Ney Smoothing

- Absolute discounting: save some probability mass for the zeros
  - Church and Gale (1991)
    - AP newswire dataset
    - 22 million words in training set
    - Next 22 million words in validation set
  - Suppose we want to subtract little form a count of 4 to save probability mass for the zeros
    - How much to subtract
  - On average, a bigram that occurred 4 times in the first 22 million words (training) occurred 3.23 times in the next 22 million words (validation)
    - The discrepancy between train and validate is 4 3.23 = 0.77
    - The averaging discrepancy of all words in about 0.75 (called discount, d)

| Bigram count in training | Bigram count in validating set |
|--------------------------|--------------------------------|
| 0                        | 0.0000270                      |
| 1                        | 0.448                          |
| 2                        | 1.25 (~-0.75)                  |
| 3                        | 2.24 (~-0.75)                  |
| 4                        | 3.23 (~-0.75)                  |
| 5                        | 4.21 (~-0.75)                  |
| 6                        | 5.23 (~-0.75)                  |
| 7                        | 6.21 (~-0.75)                  |
| 8                        | 7.21 (~-0.75)                  |
| 9                        | 8.26 (~-0.75)                  |

 Absolute discounting formalizers this intuition by subtracting a fixed (absolute) d = 0.75 from each count.

#### **Discount bigram**

**Unigram** 

$$P_{\text{absoluteDiscounting}}(w_i|w_{i-1}) = \frac{c(w_{i-1},w_i)-d}{c(w_{i-1})} + \lambda(w_{i-1})P(w_i)$$
Interpolation
weight

- But should we just use the regular unigram?
  - Solution: Kneser-Ney Smoothing

| Bigram count in training | Bigram count in validating set |
|--------------------------|--------------------------------|
| 0                        | 0.0000270                      |
| 1                        | 0.448                          |
| 2                        | 1.25 (~-0.75)                  |
| 3                        | 2.24 (~-0.75)                  |
| 4                        | 3.23 (~-0.75)                  |
| 5                        | 4.21 (~-0.75)                  |
| 6                        | 5.23 (~-0.75)                  |
| 7                        | 6.21 (~-0.75)                  |
| 8                        | 7.21 (~-0.75)                  |
| 9                        | 8.26 (~-0.75)                  |

Kneser-Ney smoothing for bigram

$$P(w_{i-1}, w_i) \approx$$



$$P_{KN}(w_i|w_{i-1}) = \frac{\max(count(w_{i-1}, w_i) - d, 0)}{count(w_{i-1})} + \lambda(w_{i-1})P_{continuation}(w_i)$$

$$P(w_i) \text{ continues from } P(w_{i-1})$$

$$P_{continuation}(w_i) = \frac{|\{w_{i-1}:count(w_{i-1},w)>0\}|}{\sum_{w'}|\{w'_{i-1}:count(w'_{i-1},w')>0\}|}$$
$$\lambda(w_{i-1}) = d\frac{|\{w:c(w_{i-1},w)>0\}|}{c(w_{i-1})}$$



- How to calculate  $P_{continuation}(w)$ 
  - Example:
  - If our corpus contain these bigrams
    - {San Francisco, San Francisco, San Francisco, Sun glasses, Reading glasses, Colored glasses}
  - P(Francisco) =
  - P(glasses) =
  - $P_{continuation}(Francisco) =$
  - $P_{continuation}(glasses) =$



 $P(w_i)$  continues from others



- How to calculate  $P_{continuation}(w)$ 
  - Example:
  - If our corpus contain these bigrams
    - {San Francisco, San Francisco, San Francisco, Sun glasses, Reading glasses, Colored glasses}
  - $P(Francisco) = \frac{3}{6}$   $P(glasses) = \frac{3}{6}$

  - $P_{continuation}(Francisco) =$
  - $P_{continuation}(glasses) =$

 $P_{continuation}(w) = \frac{|\{w_{i-1}: count(w_{i-1}, w) > 0\}|}{\sum_{w'} |\{w'_{i-1}: count(w'_{i-1}, w') > 0\}|}$ 

P(w) continues from others

#Distinct pattern = 4



- How to calculate  $P_{continuation}(w)$ 
  - Example:
  - If our corpus contain these bigrams
    - {San Francisco, San Francisco, San Francisco, Sun glasses, Reading glasses, Colored glasses}
  - $P(Francisco) = \frac{3}{6}$   $P(glasses) = \frac{3}{6}$

  - $P_{continuation}(Francisco) = \frac{1}{4}$   $P_{continuation}(glasses) = \frac{3}{4}$

 $P_{continuation}(w) = \frac{|\{w_{i-1}: count(w_{i-1}, w) > 0\}|}{\sum_{w'} |\{w'_{i-1}: count(w'_{i-1}, w') > 0\}|}$ 

P(w) continues from others

#Distinct pattern = 4



- $P_{KN}$  will continue recursively until it reaches unigram.
- Assume trigrams
  - $P_{KN}(\text{Trigram}) = \frac{\max(count(w_{i-2}, w_{i-1}, w_i) d, 0)}{count(w_{i-2}, w_{i-1})} + \lambda(w_{i-1}, w_{i-2})P_{KN}(\text{Bigrams})$   $P_{KN}(\text{Bigram}) = \frac{\max(count(w_{i-1}, w_i) d, 0)}{count(w_{i-1})} + \lambda(w_{i-1})P_{KN}(\text{Unigrams})$

  - $P_{KN}(\text{Unigram}) = \frac{\max(count(w_i) d, 0)}{count(w)} + \frac{1}{V}$ ;  $\frac{1}{V} = P(UNK)$

Example: We have the following training corpus.

```
<s> I am Sam </s>
<s> Sam I am </s>
<s> I am Sam </s>
<s> I like green eggs </s>
```

• Train a bigram Kneser-Ney model.

• Create a unigram counting table

| <s></s> | 1 | am | Sam | like | green | eggs |   |
|---------|---|----|-----|------|-------|------|---|
| 4       | 4 | 3  | 3   | 1    | 1     | 1    | 4 |

#### **Training corpus:**

<s>I am Sam </s>

<s> Sam I am </s>

<s>I am Sam </s>

<s> I like green eggs </s>

Create a unigram counting table

| <s></s> | ı | am | Sam | like | green | eggs |   |
|---------|---|----|-----|------|-------|------|---|
| 4       | 4 | 3  | 3   | 1    | 1     | 1    | 4 |

Create a bigram counting table

|         | <s></s> | 1 | am | Sam | like | green | eggs |   |
|---------|---------|---|----|-----|------|-------|------|---|
| <s></s> | 0       | 3 | 0  | 1   | 0    | 0     | 0    | 0 |
| 1       | 0       | 0 | 3  | 0   | 1    | 0     | 0    | 0 |
| Am      | 0       | 0 | 0  | 2   | 0    | 0     | 0    | 1 |
| Sam     | 0       | 1 | 0  | 0   | 0    | 0     | 0    | 2 |
| Like    | 0       | 0 | 0  | 0   | 0    | 1     | 0    | 0 |
| green   | 0       | 0 | 0  | 0   | 0    | 0     | 1    | 0 |
| Eggs    | 0       | 0 | 0  | 0   | 0    | 0     | 0    | 1 |
|         | 0       | 0 | 0  | 0   | 0    | 0     | 0    | 0 |

#### **Training corpus:**

<s>I am Sam </s>

<s> Sam I am </s>

<s> I am Sam </s>

<s> I like green eggs </s>

#### Create a unigram counting table

| <s></s> | ı | am | Sam | like | green | eggs |   |
|---------|---|----|-----|------|-------|------|---|
| 4       | 4 | 3  | 3   | 1    | 1     | 1    | 4 |

#### Create a bigram counting table

|         | <s></s> | 1 | am | Sam | like | green | eggs |   |
|---------|---------|---|----|-----|------|-------|------|---|
| <s></s> | 0       | 3 | 0  | 1   | 0    | 0     | 0    | 0 |
| 1       | 0       | 0 | 3  | 0   | 1    | 0     | 0    | 0 |
| Am      | 0       | 0 | 0  | 2   | 0    | 0     | 0    | 1 |
| Sam     | 0       | 1 | 0  | 0   | 0    | 0     | 0    | 2 |
| Like    | 0       | 0 | 0  | 0   | 0    | 1     | 0    | 0 |
| green   | 0       | 0 | 0  | 0   | 0    | 0     | 1    | 0 |
| Eggs    | 0       | 0 | 0  | 0   | 0    | 0     | 0    | 1 |
|         | 0       | 0 | 0  | 0   | 0    | 0     | 0    | 0 |

#### **Training corpus:**

<s> I am Sam </s>
<s> Sam I am </s>
<s> I am Sam </s>
<s> I like green eggs </s>

$$LL(P(\langle s \rangle \text{ am Sam } \langle s \rangle)) =$$
  
  $ln(P(\text{am}|\langle s \rangle)) + ln(P(\text{Sam}|\text{am})) + ln(P(\langle /s \rangle|\text{Sam}))$ 

#### Create a unigram counting table

| <s></s> | ı | am | Sam | like | green | eggs |   |
|---------|---|----|-----|------|-------|------|---|
| 4       | 4 | 3  | 3   | 1    | 1     | 1    | 4 |

#### Create a bigram counting table

|         | <s></s> | 1 | am | Sam | like | green | eggs |   |
|---------|---------|---|----|-----|------|-------|------|---|
| <s></s> | 0       | 3 | 0  | 1   | 0    | 0     | 0    | 0 |
| 1       | 0       | 0 | 3  | 0   | 1    | 0     | 0    | 0 |
| am      | 0       | 0 | 0  | 2   | 0    | 0     | 0    | 1 |
| Sam     | 0       | 1 | 0  | 0   | 0    | 0     | 0    | 2 |
| Like    | 0       | 0 | 0  | 0   | 0    | 1     | 0    | 0 |
| green   | 0       | 0 | 0  | 0   | 0    | 0     | 1    | 0 |
| Eggs    | 0       | 0 | 0  | 0   | 0    | 0     | 0    | 1 |
|         | 0       | 0 | 0  | 0   | 0    | 0     | 0    | 0 |

#### **Training corpus:**

<s>I am Sam </s>

<s> Sam I am </s>

<s>I am Sam </s>

<s> I like green eggs </s>

$$LL(P(\langle s \rangle \operatorname{am Sam} \langle s \rangle)) = \ln(P(\operatorname{am} \langle s \rangle)) + \ln(P(\operatorname{Sam} | \operatorname{am})) + \ln(P(\langle s \rangle | \operatorname{Sam}))$$

$$P(\text{Sam}|\text{am}) = P_{kn}(\text{Sam}|\text{am})$$
$$= \left(\frac{\max(2 - 0.75, 0)}{3}\right) + \left(0.75 \times \frac{2}{3}\right) \times \frac{2}{11} = \mathbf{0.5076}$$

#### Create a unigram counting table

| <s></s> | 1 | am | Sam | like | green | eggs |   |
|---------|---|----|-----|------|-------|------|---|
| 4       | 4 | 3  | 3   | 1    | 1     | 1    | 4 |

#### Create a bigram counting table

|         | <s></s> | 1 | am | Sam | like | green | eggs |   |
|---------|---------|---|----|-----|------|-------|------|---|
| <s></s> | 0       | 3 | 0  | 1   | 0    | 0     | 0    | 0 |
| 1       | 0       | 0 | 3  | 0   | 1    | 0     | 0    | 0 |
| am      | 0       | 0 | 0  | 2   | 0    | 0     | 0    | 1 |
| Sam     | 0       | 1 | 0  | 0   | 0    | 0     | 0    | 2 |
| Like    | 0       | 0 | 0  | 0   | 0    | 1     | 0    | 0 |
| green   | 0       | 0 | 0  | 0   | 0    | 0     | 1    | 0 |
| Eggs    | 0       | 0 | 0  | 0   | 0    | 0     | 0    | 1 |
|         | 0       | 0 | 0  | 0   | 0    | 0     | 0    | 0 |

#### **Training corpus:**

<s> I am Sam </s>

<s> Sam I am </s>

<s>I am Sam </s>

<s> I like green eggs </s>

$$LL(P(\langle s \rangle \operatorname{am Sam} \langle s \rangle)) = \ln(P(\operatorname{am} \langle s \rangle)) + \ln(P(\operatorname{Sam} | \operatorname{am})) + \ln(P(\langle s \rangle | \operatorname{Sam}))$$

$$P(\text{Sam}|\text{am}) = P_{kn}(\text{Sam}|\text{am})$$

$$= \left(\frac{\max(2 - 0.75, 0)}{3}\right) + \left(0.75 \times \frac{2}{3}\right) \times \frac{2}{11} = \mathbf{0}.5076$$

#### Create a unigram counting table

| <s></s> | ı | am | Sam | like | green | eggs |   |
|---------|---|----|-----|------|-------|------|---|
| 4       | 4 | 3  | 3   | 1    | 1     | 1    | 4 |

#### **Training corpus:**

<s>I am Sam </s>
<s> Sam I am </s>
<s> I am Sam </s>
<s> I like green eggs </s>



#### Create a bigram counting table

|         | <s></s> | 1 | am | Sam | like | green | eggs |   |
|---------|---------|---|----|-----|------|-------|------|---|
| <s></s> | 0       | 3 | 0  | 1   | 0    | 0     | 0    | 0 |
| 1       | 0       | 0 | 3  | 0   | 1    | 0     | 0    | 0 |
| am      | 0       | 0 | 0  | 2   | 0    | 0     | 0    | 1 |
| Sam     | 0       | 1 | 0  | 0   | 0    | 0     | 0    | 2 |
| Like    | 0       | 0 | 0  | 0   | 0    | 1     | 0    | 0 |
| green   | 0       | 0 | 0  | 0   | 0    | 0     | 1    | 0 |
| Eggs    | 0       | 0 | 0  | 0   | 0    | 0     | 0    | 1 |
|         | 0       | 0 | 0  | 0   | 0    | 0     | 0    | 0 |

Compute the log-likelihood of the sentence "<s> am Sam </s>" using Kneser-Ney Smoothing

$$LL(P(\langle s \rangle am Sam \langle s \rangle)) = \ln(P(am|\langle s \rangle)) + \ln(P(Sam|am)) + \ln(P(\langle s \rangle Sam))$$

$$P(\text{Sam}|\text{am}) = P_{kn}(\text{Sam}|\text{am})$$

$$= \left(\frac{\max(2 - 0.75, 0)}{3}\right) + \left(0.75 \times \frac{2}{3}\right) \times \frac{2}{11} = \mathbf{0}.5076$$

→ #Distinct pattern = #Filled box = 11<sub>60</sub>

#Distinct pattern of Sam = #Filled box of Sam = 2

#### Create a unigram counting table

| <s></s> | 1 | am | Sam | like | green | eggs |   |
|---------|---|----|-----|------|-------|------|---|
| 4       | 4 | 3  | 3   | 1    | 1     | 1    | 4 |

# Create a bigram counting table

|         | <s></s> | 1 | am | Sam | like | green | eggs |   |
|---------|---------|---|----|-----|------|-------|------|---|
| <s></s> | 0       | 3 | 0  | 1   | 0    | 0     | 0    | 0 |
| 1       | 0       | 0 | 3  | 0   | 1    | 0     | 0    | 0 |
| am      | 0       | 0 | 0  | 2   | 0    | 0     | 0    | 1 |
| Sam     | 0       | 1 | 0  | 0   | 0    | 0     | 0    | 2 |
| Like    | 0       | 0 | 0  | 0   | 0    | 1     | 0    | 0 |
| green   | 0       | 0 | 0  | 0   | φ    | 0     | 1    | 0 |
| Eggs    | 0       | 0 | 0  | 0   | d    | 0     | 0    | 1 |
|         | 0       | 0 | 0  | 0   | O    | 0     | 0    | 0 |

#### **Training corpus:**

<s>I am Sam </s> <s> Sam I am </s>

<s>I am Sam </s>

<s> I like green eggs </s>



$$LL(P(\langle s \rangle \operatorname{am Sam} \langle s \rangle)) = \ln(P(\operatorname{am} \langle s \rangle)) + \ln(P(\operatorname{Sam} | \operatorname{am})) + \ln(P(\langle s \rangle | \operatorname{Sam}))$$

$$P(\text{Sam}|\text{am}) = P_{kn}(\text{Sam}|\text{am})$$

$$= \left(\frac{\max(2 - 0.75, 0)}{3}\right) + \left(0.75 \times \frac{2}{3}\right) \times \frac{2}{11} = \mathbf{0}.5076$$





• Create a unigram counting table

| <s></s> | 1 | am | Sam | like | green | eggs |   |
|---------|---|----|-----|------|-------|------|---|
| 4       | 4 | 3  | 3   | 1    | 1     | 1    | 4 |

#### **Training corpus:**

<s> I am Sam </s>
<s> Sam I am </s>
<s> I am Sam </s>
<s> I like green eggs </s>



Create a bigram counting table

|         | <s></s> | 1 | am | Sam | like | green | eggs |   |
|---------|---------|---|----|-----|------|-------|------|---|
| <s></s> | 0       | 3 | 0  | 1   | 0    | 0     | 0    | 0 |
| 1       | 0       | 0 | 3  | 0   | 1    | 0     | 0    | 0 |
| am      | 0       | 0 | 0  | 2   | 0    | 0     | 0    | 1 |
| Sam     | 0       | 1 | 0  | 0   | 0    | 0     | 0    | 2 |
| Like    | 0       | 0 | 0  | 0   | 0    | 1     | 0    | 0 |
| green   | 0       | 0 | 0  | 0   | 0    | 0     | 1    | 0 |
| Eggs    | 0       | 0 | 0  | 0   | 0    | 0     | 0    | 1 |
|         | 0       | 0 | 0  | 0   | 0    | 0     | 0    | 0 |

$$LL(P(\langle s \rangle am Sam \langle s \rangle)) =$$
  
  $ln(P(am|\langle s \rangle)) + ln(P(Sam|am)) + ln(P(\langle s \rangle Sam))$ 

$$P(\text{am}|<\text{s>}) = P_{kn}(\text{am}|<\text{s>})$$

$$= \left(\frac{\text{max}(0 - 0.75,0)}{4}\right) + \left(0.75 \times \frac{2}{4}\right) \times \frac{1}{11} = \mathbf{0}.\mathbf{03409}$$

#### Create a unigram counting table

| <s></s> | 1 | am | Sam | like | green | eggs |   |
|---------|---|----|-----|------|-------|------|---|
| 4       | 4 | 3  | 3   | 1    | 1     | 1    | 4 |

#### Create a bigram counting table

|         | <s></s> | 1 | am | Sam | like | green | eggs |   |
|---------|---------|---|----|-----|------|-------|------|---|
| <s></s> | 0       | 3 | 0  | 1   | 0    | 0     | 0    | 0 |
| 1       | 0       | 0 | 3  | 0   | 1    | 0     | 0    | 0 |
| am      | 0       | 0 | 0  | 2   | 0    | 0     | 0    | 1 |
| Sam     | 0       | 1 | 0  | 0   | 0    | 0     | 0    | 2 |
| Like    | 0       | 0 | 0  | 0   | 0    | 1     | 0    | 0 |
| green   | 0       | 0 | 0  | 0   | 0    | 0     | 1    | 0 |
| Eggs    | 0       | 0 | 0  | 0   | 0    | 0     | 0    | 1 |
|         | 0       | 0 | 0  | 0   | 0    | 0     | 0    | 0 |

#### **Training corpus:**

<s>I am Sam </s>

<s> Sam I am </s>

<s>I am Sam </s>

<s> I like green eggs </s>

$$LL(P(\langle s \rangle \text{ am } \langle s \rangle)) =$$
  
  $\ln(P(\text{am}|\langle s \rangle)) + \ln(P(\text{Sam}|\text{am})) + \ln(P(\langle s \rangle|\text{Sam}))$ 

$$P(|Sam) = P_{kn}(|Sam)$$

$$= \left(\frac{\max(2 - 0.75, 0)}{3}\right) + \left(0.75 \times \frac{2}{3}\right) \times \frac{3}{11} = \mathbf{0}.5530$$

#### Create a unigram counting table

| <s></s> | ı | am | Sam | like | green | eggs |   |
|---------|---|----|-----|------|-------|------|---|
| 4       | 4 | 3  | 3   | 1    | 1     | 1    | 4 |

#### Create a bigram counting table

|         | <s></s> | 1 | am | Sam | like | green | eggs |   |
|---------|---------|---|----|-----|------|-------|------|---|
| <s></s> | 0       | 3 | 0  | 1   | 0    | 0     | 0    | 0 |
| 1       | 0       | 0 | 3  | 0   | 1    | 0     | 0    | 0 |
| Am      | 0       | 0 | 0  | 2   | 0    | 0     | 0    | 1 |
| Sam     | 0       | 1 | 0  | 0   | 0    | 0     | 0    | 2 |
| Like    | 0       | 0 | 0  | 0   | 0    | 1     | 0    | 0 |
| green   | 0       | 0 | 0  | 0   | 0    | 0     | 1    | 0 |
| Eggs    | 0       | 0 | 0  | 0   | 0    | 0     | 0    | 1 |
|         | 0       | 0 | 0  | 0   | 0    | 0     | 0    | 0 |

#### **Training corpus:**

<s> I am Sam </s>
<s> Sam I am </s>
<s> I am Sam </s>
<s> I like green eggs </s>

$$LL(P(\langle s \rangle \text{ am Sam } \langle s \rangle)) =$$
  
  $ln(P(\text{am}|\langle s \rangle)) + ln(P(\text{Sam}|\text{am})) + ln(P(\langle /s \rangle|\text{Sam}))$ 

$$= \ln(\mathbf{0.03409}) + \ln(\mathbf{0.5076}) + \ln(\mathbf{0.5530})$$

$$=-4.6492$$

#### Neural Language Model

- Traditional language model
  - Need a lot of memory to store all those n-grams

|         | i       | want | to     | eat    | chinese | food   | lunch  | spend   |
|---------|---------|------|--------|--------|---------|--------|--------|---------|
| i       | 0.002   | 0.33 | 0      | 0.0036 | 0       | 0      | 0      | 0.00079 |
| want    | 0.0022  | 0    | 0.66   | 0.0011 | 0.0065  | 0.0065 | 0.0054 | 0.0011  |
| to      | 0.00083 | 0    | 0.0017 | 0.28   | 0.00083 | 0      | 0.0025 | 0.087   |
| eat     | 0       | 0    | 0.0027 | 0      | 0.021   | 0.0027 | 0.056  | 0       |
| chinese | 0.0063  | 0    | 0      | 0      | 0       | 0.52   | 0.0063 | 0       |
| food    | 0.014   | 0    | 0.014  | 0      | 0.00092 | 0.0037 | 0      | 0       |
| lunch   | 0.0059  | 0    | 0      | 0      | 0       | 0.0029 | 0      | 0       |
| spend   | 0.0036  | 0    | 0.0036 | 0      | 0       | 0      | 0      | 0       |

- It lacks long-term dependency
  - Example: "Jane walked into the room. John waked in too. It was late in the day, and everyone was walking home after a long day work. Jane said hi to \_\_\_\_\_

- Recurrent Neural Network
  - Consider all previous words in the corpus
  - In LM
    - Input(x) is current word in vector form
    - Output(y) is the next word
  - Usually, RNN's performance is better than traditional language model

|         | i       | want | to     | eat    | chinese | food   | lunch  | spend   |
|---------|---------|------|--------|--------|---------|--------|--------|---------|
| i       | 0.002   | 0.33 | 0      | 0.0036 | 0       | 0      | 0      | 0.00079 |
| want    | 0.0022  | 0    | 0.66   | 0.0011 | 0.0065  | 0.0065 | 0.0054 | 0.0011  |
| to      | 0.00083 | 0    | 0.0017 | 0.28   | 0.00083 | 0      | 0.0025 | 0.087   |
| eat     | 0       | 0    | 0.0027 | 0      | 0.021   | 0.0027 | 0.056  | 0       |
| chinese | 0.0063  | 0    | 0      | 0      | 0       | 0.52   | 0.0063 | 0       |
| food    | 0.014   | 0    | 0.014  | 0      | 0.00092 | 0.0037 | 0      | 0       |
| lunch   | 0.0059  | 0    | 0      | 0      | 0       | 0.0029 | 0      | 0       |
| spend   | 0.0036  | 0    | 0.0036 | 0      | 0       | 0      | 0      | 0       |



Recurrent Neural Network

- > RNN suffer from vanishing gradient
- Long-Short Term Memory
- Gate Recurrent Unit
- About Bidirectional RNN
- Bidirectional RNN cannot apply here since we predict the next word and cannot use the future information (violating assumption)
- N-gram is still quite useful and often are incorporated to neural language models



Cost function

$$J = -\frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{|V|} y_{t,j} \log \hat{y}_{t,j}$$

- where
  - V = Number of unique words in corpus
  - T = Number of total word in corpus
  - y = Target next word
  - $\hat{y}$  = Distribution of predicted next word
- Perplexity =  $e^{J}$



Bengio, Y., Ducharme, R., & Vincent, P. (2000). A neural probabilistic language model. *Advances in neural information processing systems*, 13.

|                      | n | С    | h   | m  | direct | mix | train. | valid. | test. |
|----------------------|---|------|-----|----|--------|-----|--------|--------|-------|
| MLP1                 | 5 |      | 50  | 60 | yes    | no  | 182    | 284    | 268   |
| MLP2                 | 5 |      | 50  | 60 | yes    | yes |        | 275    | 257   |
| MLP3                 | 5 |      | 0   | 60 | yes    | no  | 201    | 327    | 310   |
| MLP4                 | 5 |      | 0   | 60 | yes    | yes |        | 286    | 272   |
| MLP5                 | 5 |      | 50  | 30 | yes    | no  | 209    | 296    | 279   |
| MLP6                 | 5 |      | 50  | 30 | yes    | yes |        | 273    | 259   |
| MLP7                 | 3 |      | 50  | 30 | yes    | no  | 210    | 309    | 293   |
| MLP8                 | 3 |      | 50  | 30 | yes    | yes |        | 284    | 270   |
| MLP9                 | 5 |      | 100 | 30 | no     | no  | 175    | 280    | 276   |
| MLP10                | 5 |      | 100 | 30 | no     | yes |        | 265    | 252   |
| Del. Int.            | 3 |      |     |    |        | ,   | 31     | 352    | 336   |
| Kneser-Ney back-off  | 3 |      |     |    |        |     |        | 334    | 323   |
| Kneser-Ney back-off  | 4 |      |     |    |        |     |        | 332    | 321   |
| Kneser-Ney back-off  | 5 |      |     |    |        |     |        | 332    | 321   |
| class-based back-off | 3 | 150  |     |    |        |     |        | 348    | 334   |
| class-based back-off | 3 | 200  |     |    |        |     |        | 354    | 340   |
| class-based back-off | 3 | 500  |     |    |        |     |        | 326    | 312   |
| class-based back-off | 3 | 1000 |     |    |        |     |        | 335    | 319   |
| class-based back-off | 3 | 2000 |     |    |        |     |        | 343    | 326   |
| class-based back-off | 4 | 500  |     |    |        |     |        | 327    | 312   |
| class-based back-off | 5 | 500  |     |    |        |     |        | 327    | 312   |

https://www.jmlr.org/papers/volume3/bengio 03a/bengio03a.pdf

#### PERPLEXITY RESULTS ON THE FRENCH DEVELOPMENT AND TEST DATA

| LM                           | Perplexity |       |  |  |
|------------------------------|------------|-------|--|--|
| Livi                         | Dev        | Test  |  |  |
| Count-based 4-gram (Reduced) | 123.9      | 144.6 |  |  |
| Count-based 4-gram (Full)    | 102.9      | 122.0 |  |  |
| LSTM                         | 98.6       | 114.9 |  |  |
| + Count-based 4-gram (Full)  | 79.9       | 94.4  |  |  |

Sundermeyer, M., Ney, H., & Schlüter, R. (2015). From feedforward to recurrent LSTM neural networks for language modeling. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 23(3), 517-529.



#### 1B Words / Google Billion Word benchmark

The One-Billion Word benchmark is a large dataset derived from a news-commentary site. The dataset consists of 829,250,940 tokens over a vocabulary of 793,471 words. Importantly, sentences in this model are shuffled and hence context is limited.

| Model                                                                             | Test<br>perplexity | Number of params | Paper / Source                                                             | Code     |
|-----------------------------------------------------------------------------------|--------------------|------------------|----------------------------------------------------------------------------|----------|
| Transformer-XL Large (Dai et al., 2018) <i>under</i> review                       | 21.8               | 0.8B             | Transformer-XL: Attentive Language Models<br>Beyond a Fixed-Length Context | Official |
| Transformer-XL Base (Dai et al., 2018) <i>under</i> review                        | 23.5               | 0.46B            | Transformer-XL: Attentive Language Models<br>Beyond a Fixed-Length Context | Official |
| Transformer with shared adaptive embeddings - Very large (Baevski and Auli, 2018) | 23.7               | 0.8B             | Adaptive Input Representations for Neural<br>Language Modeling             | Link     |
| 10 LSTM+CNN inputs + SNM10-SKIP (Jozefowicz et al., 2016) <i>ensemble</i>         | 23.7               | 43B?             | Exploring the Limits of Language Modeling                                  | Official |
| Transformer with shared adaptive embeddings (Baevski and Auli, 2018)              | 24.1               | 0.46B            | Adaptive Input Representations for Neural<br>Language Modeling             | Link     |
| Big LSTM+CNN inputs (Jozefowicz et al., 2016)                                     | 30.0               | 1.04B            | Exploring the Limits of Language Modeling                                  |          |
| Gated CNN-14Bottleneck (Dauphin et al., 2017)                                     | 31.9               | ?                | Language Modeling with Gated<br>Convolutional Networks                     |          |
| BIGLSTM baseline (Kuchaiev and Ginsburg, 2018)                                    | 35.1               | 0.151B           | Factorization tricks for LSTM networks                                     | Official |
| BIG F-LSTM F512 (Kuchaiev and Ginsburg, 2018)                                     | 36.3               | 0.052B           | Factorization tricks for LSTM networks                                     | Official |

https://github.com/sebastian ruder/NLPprogress/blob/master/englis h/language modeling.md

∃ README.md

#### thai2fit (formerly thai2vec)

ULMFit Language Modeling, Text Feature Extraction and Text Classification in Thai Language. Created as part of pyThaiNLP with ULMFit implementation from fast.ai

Models and word embeddings can also be downloaded via Dropbox.

We pretrained a language model with 60,005 embeddings on Thai Wikipedia Dump (perplexity of 28.71067) and text classification (micro-averaged F-1 score of 0.60322 on 5-label classification problem. Benchmarked to 0.5109 by fastText and 0.4976 by LinearSVC on Wongnai Challenge: Review Rating Prediction. The language model can also be used to extract text features for other downstream tasks.

https://github.com/cstorm125/thai2fit





VISTEC-depa Al Research Institute of Thailand

Jan 24, 2021 - 5 min read









WangchanBERTa โมเดลประมวลผลภาษาไทยที่ ใหญ่และก้าวหน้าที่สุดในขณะนี้

เปิดให้ทุกคนใช้ฟรีโดย AIResearch.in.th และ VISTEC ภายใต้สัญญาอนุญาต CC-BY-SA 4.0



Image by Phannisa Nirattiwongsakorn

เราใช้เวลากว่า 3 เดือนในการเทรนโมเดลให้ loss ลดลงมาในระดับที่ 2.592 (perplexity = 13.356) ณ step ที่ 360,000 จากทั้งหมด 500,000 steps ณ วันนี้โมเดลก็ ยังถูกเทรนอย่างต่อเนื่องในศูนย์วิจัยที่วังจันทร์ จึงเป็นไปได้ว่าเราจะได้โมเดลที่มี ประสิทธิภาพดียิ่งกว่ามาใช้ในอนาคต

โมเดลประมวลผลภาษาไทยประสิทธิภาพสูงที่สุดในโลก

คำถามที่สำคัญที่สุดคือ

แล้วมันดีกว่าโมเดลที่เรามีอยู่ปัจจุบัน หรือแม้แต่ strong baseline หลายๆอันจริง ไหม?

เพื่อตอบคำถามนี้ให้ได้โดยแท้จริง เราได้ลองเทียบผลการทดลองของ
WangchanBERTa (wangchanberta-base-att-spm-uncased) กับโมเดลพื้นฐานที่
ทำได้ดีในปัจจุบัน ได้แก่ <u>Naive Bayes Support Vector Machine (NBSVM)</u>,
<u>ULMFit (thai2fit)</u> และ <u>Conditional Random Fields (CRF)</u>

### Demo: LM

https://drive.google.com/file/d/1ArJvCcfP5bTqH6xzsbSHJaF wNPL3ouzz/view?usp=share\_link