```
In [1]: from Point import Point
    from Trips import Trips
    from Simulation import Simulation
    from Solver import Solver
    import time
    import matplotlib.pyplot as plt
```

Single simulation

Preparate Data

```
In [2]: n,m,ks,kr,kn,T_start,c=Simulation.get_simulation_number(0)
J,D=Simulation.initialize_map(n)
Simulation.plot_map(J,D,[],figsize=(5.5,7))
```


Solution of problem using Gurobi

```
In [3]: start_time = time.time()
    trips_problem=Solver.trptr_problem(n,m,J,D,Point(0,0),Point(0,0),time_lim
    execution_time_problem=time.time()-start_time
```

Set parameter Username Academic license - for non-commercial use only - expires 2023-10-29 Set parameter TimeLimit to value 300

Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (mac64[x86])

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 2827 rows, 312 columns and 12122 nonzeros

Model fingerprint: 0x75f780ef

Variable types: 42 continuous, 270 integer (270 binary)

Coefficient statistics:

Matrix range [8e-01, 1e+02]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 2e+02]

Found heuristic solution: objective 125.1364241

Presolve removed 6 rows and 6 columns

Presolve time: 0.02s

Presolved: 2821 rows, 306 columns, 12082 nonzeros

Variable types: 42 continuous, 264 integer (264 binary)

Root relaxation: objective 3.445103e+01, 44 iterations, 0.01 seconds (0.0 0 work units)

Nodes		es	Current Node			Objective Bounds			Work		
	Expl Ur	nexpl	Obj Dept	th Int	tInf	Incumbent	BestBd	Gap	It/Nod	е Т	
ir	ne										
_	0	0	34.45103	0	13	125.13642	34.45103	72.5%	-	0	
s H	0	0				93.8620563	34.45103	63.3%	-	0	
S	0	0	34.45103	0	15	93.86206	34.45103	63.3%	-	0	
S	0	0	34.45103	0	18	93.86206	34.45103	63.3%	_	0	
S	0	0	34.45103	0	20	93.86206	34.45103	63.3%	_	0	
S	0	0	34.45103	0	22	93.86206	34.45103	63.3%	_	0	
S	0	0	34.45103	0	20	93.86206	34.45103	63.3%	-	0	
S	0	0	34.45103	0	15	93.86206	34.45103	63.3%	-	0	
S	0	0	34.45103	0	14	93.86206	34.45103	63.3%	_	0	
S	0	0	34.45103	0	13	93.86206	34.45103	63.3%	-	0	
S	0	0	34.45103	0	13	93.86206	34.45103	63.3%	_	0	
S	0	2	34.45103	0	13	93.86206	34.45103	63.3%	_	0	
s H	527	459				93.3464688	34.45103	63.1%	7.7	0	
s H	706	484				91.0131355	34.45103	62.1%	6.9	0	
	1001	715				90.5131355	34.45103	61.9%	6.5	0	
	1132	690				88.5131355	36.91613	58.3%	6.0	2	
S	1161	709	59.50000	38	33	88.51314	40.33900	54.4%	5.9	5	

S									
2205	1048	infeasible	58		88.51314	42.21873	52.3%	14.6	10
s 13841	6322	cutoff	50		88.51314	44.28436	50.0%	10.3	15
s 25664	10713	71.40573	58	18	88.51314	46.36770	47.6%	10.2	20
s 30999	12697	74.06593	46	13	88.51314	46.53436	47.4%	9.9	25
s H31017	12073				88.5131355	46.53436	47.4%	9.9	29
s 31020	12075	55.33333	40	33	88.51314	46.53436	47.4%	9.9	30
s H31028	11475				86.0131355	46.53436	45.9%	9.9	32
s 31042	11485	86.01314	69	36	86.01314	46.53436		9.8	35
s		00.01011							
H31044	10911				86.0131352	46.53436	45.9%	9.8	35
H31051	10369				86.0131352	46.53436	45.9%	9.8	37
	10375	58.59817	62	52	86.01314	46.53436	45.9%	9.8	40
31080	10388	75.76881	54	35	86.01314	46.53436	45.9%	9.8	45
	10401	61.26996	64	37	86.01314	46.53436	45.9%	9.8	50
s 31116	10412	72.68480	72	38	86.01314	46.53436	45.9%	9.8	55
s 31134	10424	53.26438	83	34	86.01314	46.53436	45.9%	9.8	60
s H31171	9924				86.0131352	46.53436	45.9%	9.8	64
s 31184	9935	46.53436	34	31	86.01314	46.53436	45.9%	10.8	65
s 34634	10917	73.88248	64	14	86.01314	46.53436	45.9%	11.4	70
S									
43966 S	12/51	infeasible	60		86.01314	46.53436	45.9%	12.1	75
52002 s	13408	56.78436	63	17	86.01314	46.53436	45.9%	12.5	80
	16009	73.48906	83	10	86.01314	46.53436	45.9%	12.3	85
75151	21027	infeasible	75		86.01314	46.53436	45.9%	12.4	90
	29512	cutoff	91		86.01314	46.53436	45.9%	12.1	95
s 107990	34421	l infeasible	66		86.01314	46.53436	45.9%	12.2	10
0s 123899	9 39775	5 46.53436	69	20	86.01314	46.53436	45.9%	12.1	10
5s 142195	5 46014	4 63.68150	71	14	86.01314	46.53436	45.9%	11.8	11
0s 163113	3 52908	3 47.51552	49	19	86.01314	46.53436	45.9%	11.3	11
5s		7 49.18048	76	16		46.69933			12
0s									

198078	63474	49.51552	80	15	86.01314	47.03436	45.3%	11.0	12
5s 213091 0s	64983	cutoff	74		86.01314	47.85631	44.4%	11.1	13
230018	68332	infeasible	78		86.01314	48.61770	43.5%	11.1	13
5s 249845 0s	72145	51.41621	87	17	86.01314	49.28436	42.7%	10.9	14
269567	77310	infeasible	56		86.01314	49.75000	42.2%	10.8	14
5s 293893	83540	infeasible	75		86.01314	50.68816	41.1%	10.6	15
0s 313994	87389	84.59817	74	15	86.01314	51.74955	39.8%	10.5	15
5s 335912	91949	71.32239	94	6	86.01314	53.21399	38.1%	10.4	16
0s				Ü					
352406 5s	93840	cutoff	70		86.01314	54.19009	37.0%	10.4	16
373560	97120	75.59817	66	11	86.01314	55.25000	35.8%	10.3	17
0s 392249	100499	80.90573	52	11	86.01314	56.00000	34.9%	10.3	1
75s	104114		F 1		06 01214	56 75000	24 00	10.0	1
413070 80s	104114	cutoff	51		86.01314	56.75000	34.0%	10.2	1
430906	107526	infeasible	82		86.01314	56.78436	34.0%	10.2	1
85s 449158	110677	57.04732	87	6	86.01314	57.03436	33.7%	10.2	1
90s									_
469788 95s	112920	cutoff	98		86.01314	57.76552	32.8%	10.2	1
485110	112677	59.33562	68	17	86.01314	58.28436	32.2%	10.2	2
00s 502250	113671	infeasible	74		86.01314	58.93218	31.5%	10.3	2
05s					00.01314	30.73210	31.36	10.5	2
520438 10s	114850	infeasible	70		86.01314	59.03436	31.4%	10.3	2
	114100	infeasible	84		86.01314	59.33562	31.0%	10.3	2
Н545889	114142				86.0131352	59.51552	30.8%	10.4	2
18s 549962 20s	115584	67.93961	64	12	86.01314	59.61770	30.7%	10.4	2
571804	119083	59.91664	99	13	86.01314	59.91664	30.3%	10.3	2
25s 589122	118734	cutoff	91		86.01314	60.36770	29.8%	10.3	2
30s									
608498 35s	119936	infeasible	93		86.01314	60.60631	29.5%	10.3	2
626925	118961	60.88254	68	11	86.01314	60.88254	29.2%	10.2	2
40s 649696	119806	cutoff	98		86.01314	60.90430	29.2%	10.1	2
45s									
667846 50s	119981	74.76484	70	8	86.01314	61.34817	28.7%	10.1	2
	119025	61.62895	79	14	86.01314	61.59885	28.4%	10.1	2
701924	120571	cutoff	86		86.01314	61.75000	28.2%	10.1	2

60s										
72	0153	119193	infeasible	82		86.01314	62.26506	27.6%	10.1	2
65s										
73	6620	118751	infeasible	92		86.01314	62.68964	27.1%	10.1	2
70s										
75	1860	118127	infeasible	72		86.01314	62.85631	26.9%	10.2	2
75s										
769	9604	116792	63.36369	71	11	86.01314	63.36369	26.3%	10.2	2
80s										
	6833	115240	infeasible	67		86.01314	63.90573	25.7%	10.2	2
85s										
	4986	113898	cutoff	76		86.01314	64.11770	25.5%	10.2	2
90s										
	1857	112194	cutoff	87		86.01314	64.45448	25.1%	10.2	2
95s										
	9435	109982	70.01203	51	15	86.01314	65.10631	24.3%	10.2	3
00s										

Cutting planes:

Cover: 1 MIR: 2

Flow cover: 18
Relax-and-lift: 38

Explored 840250 nodes (8570561 simplex iterations) in 300.02 seconds (236 .45 work units)

Thread count was 8 (of 8 available processors)

Solution count 9: 86.0131 86.0131 86.0131 ... 125.136

Time limit reached

Best objective 8.601313519012e+01, best bound 6.511769793705e+01, gap 24. 2933%

In [4]: Simulation.plot_map(J,D,trips_problem,figsize=(5.5,7))

Solution of the problem using the heuristics

```
In [5]: start_time = time.time()
    trips=Solver.sa_approach(n, m, ks, kr, kn, T_start, c, J, D, Point(0,0),
    execution_sa=time.time()-start_time
```

In [6]: Simulation.plot_map(J,D,trips,figsize=(5.5,7))

Select-and-assign matheuristic (SAM)

```
In [7]: start_time = time.time()
    trips_sam=Solver.sam_matheuristic(n, m, J, D, trips,time_limit=60)
    execution_sam=time.time()-start_time
```

```
Set parameter TimeLimit to value 60
        Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (mac64[x86])
        Thread count: 4 physical cores, 8 logical processors, using up to 8 threa
        Optimize a model with 17 rows, 14 columns and 38 nonzeros
        Model fingerprint: 0xd6d544f5
        Variable types: 2 continuous, 12 integer (12 binary)
        Coefficient statistics:
                           [1e+00, 7e+01]
          Matrix range
          Objective range [1e+00, 6e+01]
          Bounds range
                           [1e+00, 1e+00]
                            [1e+00, 1e+00]
          RHS range
        Found heuristic solution: objective 184.7674177
        Presolve removed 17 rows and 14 columns
        Presolve time: 0.00s
        Presolve: All rows and columns removed
        Explored 0 nodes (0 simplex iterations) in 0.01 seconds (0.00 work units)
        Thread count was 1 (of 8 available processors)
        Solution count 2: 122.932 184.767
        Optimal solution found (tolerance 1.00e-04)
        Best objective 1.229315047962e+02, best bound 1.229315047962e+02, gap 0.0
        000%
        Solution
        Binary variables: 1, if relocation move j in J is executed on taxi trip i
        in I;0, otherwise
        realocation move 0 is executed on taxi trip 0
        realocation move 1 is executed on taxi trip 0
        realocation move 2 is executed on taxi trip 0
        realocation move 4 is executed on taxi trip 0
        realocation move 3 is executed on taxi trip 1
        Binary variables: 1, if taxi trip i in I is selected from the pool; 0,oth
        erwise
        taxi trip 0 is selected from the pool
        taxi trip 1 is selected from the pool
In [8]: Simulation.plot_map(J,D,trips_sam,figsize=(5.5,7))
```


SAM-Local search

```
In [9]: start_time = time.time()
    trips_sam_ls=Solver.local_search(n,m,J, D, 100000,trips_sam)
    execution_sam_ls=time.time()-start_time
```

```
In [10]: Simulation.plot_map(J,D,trips_sam_ls,figsize=(5.5,7))
```


Select matheuristic (SM)

```
In [11]: start_time = time.time()
    trips_sm=Solver.sm_matheuristic(J,D,trips)
    execution_sm=time.time()-start_time
```

```
Set parameter TimeLimit to value 60
         Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (mac64[x86])
         Thread count: 4 physical cores, 8 logical processors, using up to 8 threa
         Optimize a model with 5 rows, 2 columns and 5 nonzeros
         Model fingerprint: 0xe32e69ba
         Variable types: 0 continuous, 2 integer (2 binary)
         Coefficient statistics:
           Matrix range
                             [1e+00, 1e+00]
           Objective range [6e+01, 7e+01]
                            [1e+00, 1e+00]
           Bounds range
                             [1e+00, 1e+00]
           RHS range
         Found heuristic solution: objective 125.4880096
         Presolve removed 5 rows and 2 columns
         Presolve time: 0.00s
         Presolve: All rows and columns removed
         Explored 0 nodes (0 simplex iterations) in 0.01 seconds (0.00 work units)
         Thread count was 1 (of 8 available processors)
         Solution count 1: 125.488
         Optimal solution found (tolerance 1.00e-04)
         Best objective 1.254880095923e+02, best bound 1.254880095923e+02, gap 0.0
         000%
In [12]:
         Simulation.plot_map(J,D,trips_sm,figsize=(5.5,7))
```


SM -Local search

```
In [13]: start_time = time.time()
    trips_sm_ls=Solver.local_search(n,m,J, D, 100000,trips_sm)
    execution_sm_ls=time.time()-start_time
```

In [14]: Simulation.plot_map(J,D,trips_sm_ls,figsize=(5.5,7))

Comparison

comparison of travel times obtained

```
In [15]: travel_time_problem=Trips.get_total_duration(trips_problem)
    travel_time_sam=Trips.get_total_duration(trips_sam_ls)
    travel_time_sm=Trips.get_total_duration(trips_sm_ls)
    print(f"travel time problem ={travel_time_problem}")
    print(f"travel time sam ={travel_time_sam}")
    print(f"travel time sm ={travel_time_sm}")

travel time problem =81.0296762589928
    travel time sam =113.33723021582735
    travel time sm =116.85940870930014
```

Graphical comparison

Travel map of problem solved with gurobi

```
In [16]: Simulation.plot_map(J,D,trips_problem,figsize=(5.5,7))
```


Travel map of problem solved with SAM

```
In [17]: Simulation.plot_map(J,D,trips_sam_ls,figsize=(5.5,7))
```


Travel map of problem solved with SM

```
In [18]: Simulation.plot_map(J,D,trips_sm_ls,figsize=(5.5,7))
```


Running time comparison

```
total time sam=execution sa+execution sam+execution sam ls
         total time sm=execution sa+execution sm+execution sm ls
         print(f'running time problem solved with Gurobi ={execution time problem}
         print(f'running time problem using SMA heuristic ={total time sam}')
         print(f'running time problem using SM heuristic ={total time sm} \n')
         print("Time spent by heuristics SMA in phases:")
         print(f"tima SA={execution_sa} in percentage {execution_sa/total_time_sam
         print(f"tima SAM-MIP={execution_sam} in percentage {execution_sam/total_t
         print(f"tima LC={execution sam ls} in percentage {execution sam ls/total
         print("")
         print("Time spent by heuristics SM in phases:")
         print(f"tima SA={execution_sa} in percentage {execution_sa/total_time_sm*
         print(f"tima SM-MIP={execution sm} in percentage {execution sm/total time
         print(f"tima LC={execution sm ls} in percentage {execution sm ls/total ti
         running time problem solved with Gurobi =300.3434238433838
         running time problem using SMA heuristic =69.64339327812195
         running time problem using SM heuristic =72.0274703502655
         Time spent by heuristics SMA in phases:
         tima SA=30.29239511489868 in percentage 43.49643762176484%
         tima SAM-MIP=0.017016887664794922 in percentage 0.024434317260845866%
         tima LC=39.33398127555847 in percentage 56.47912806097432%
         Time spent by heuristics SM in phases:
         tima SA=30.29239511489868 in percentage 42.0567249794953%
         tima SM-MIP=0.01640915870666504 in percentage 0.02278180620097892%
         tima LC=41.718666076660156 in percentage 57.920493214303725%
In [20]: # Pie chart, where the slices will be ordered and plotted counter-clockwi
         labels = 'SA', 'SAM-MIP', 'LC'
         sizes = [execution sa/total time sam*100, execution sam/total time sam*10
         explode = (0.1, 0.1, 0.1)
         fig1, ax1 = plt.subplots()
         ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',
```

ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a ci

shadow=True, startangle=90)

plt.show()

In []: