

TEST REPORT

Product: WIFI+BT Module

Trade mark : GSD

Model/Type reference : WCT1BR2201D, WCT1BR2701T

Serial Number : N/A

Report Number : EED32K00249901

FCC ID : 2AC23-WCT1B

Date of Issue : Nov. 16, 2018

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Hui Zhou Gaoshengda Technology Co., LTD No. 75 Zhongkai Development Area Huizhou,Guangdong,China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Peter Kevin Lan

Approved by:

Tom chen

Nov. 16, 2018

Compiled by:

Report Seal

Nov. 16, 2018

Compiled by:

Revin Lan

Kevin Lan

Kevin Lan

Kevin yang

Check No.:3096372854

2 Version

Version No.	Date	(6)	Description	7
00	Nov. 16, 2018		Original	
		100	75	/05
((0,0)	(64,	(6%)

Report No. : EED32K00249901 Page 3 of 49

3 Test Summary

Test Summary				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Model No.: WCT1BR2201D, WCT1BR2701T

Only the model WCT1BR2701T was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being of the antenna connection.

Report No. : EED32K00249901 Page 4 of 49

4 Content

1 COVER F	PAGE		•••••				1
2 VERSION	١			•••••	•••••	•••••	2
3 TEST SU	MMARY	•••••	•••••	•••••	•••••	•••••	3
4 CONTEN	T			•••••		•••••	4
5 TEST RE	QUIREMENT	•••••		•••••		•••••	5
5.1 TEST	SETUP						5
	For Conducted test	•					
	For Radiated Emis						
	For Conducted Em ENVIRONMENT						
	CONDITION						
	L INFORMATION.						
	NT INFORMATION						
	ERAL DESCRIPTION (
	DUCT SPECIFICATION	-					
	CRIPTION OF SUPPOR						
	LOCATION						
	ORMALITIES FROM S						
	ER INFORMATION RESUREMENT UNCERTA						
				1000			
7 EQUIPME	ENT LIST	•••••	•••••				10
8 RADIO T	ECHNICAL REQU	IREMENTS S	PECIFICATIO	N			13
Apper	ndix A): 6dB Occup	ied Bandwidtl	n				14
	ndix B): Conducted						
	ndix C): Band-edge						
	ndix D): RF Conduc	•					
	ndix E): Power Spe						
	ndix F): Antenna Ro ndix G): AC Power						
	ndix H): Restricted						
	ndix I): Radiated Sp						
. (6)	APHS OF TEST S						38
	APHS OF EUT CO		NAL DETAILS	3			41
	215		215				20%

Report No. : EED32K00249901 Page 5 of 49

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:				
Temperature:	24°C			
Humidity:	56 % RH	1962		
Atmospheric Pressure:	1010mbar		103	

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx	RF Channel			
١	rest Mode	IX/KX	Low(L)	Middle(M)	High(H)	
1	05014	0.400.0411 0.400.0411	Channel 1	Channel 20	Channel 40	
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
	Transmitting mode:	The EUT transmitted the continuous signal at the specific channel(s).				

6 General Information

6.1 Client Information

Applicant:	Hui Zhou Gaoshengda Technology Co., LTD
Address of Applicant:	No. 75 Zhongkai Development Area Huizhou,Guangdong,China
Manufacturer:	Hui Zhou Gaoshengda Technology Co., LTD
Address of Manufacturer:	No. 75 Zhongkai Development Area Huizhou,Guangdong,China
Factory:	Hui Zhou Gaoshengda Technology Co., LTD
Address of Factory:	No. 75 Zhongkai Development Area Huizhou,Guangdong,China

6.2 General Description of EUT

Product Name:	WIFI+BT Module
Model No.(EUT):	WCT1BR2201D, WCT1BR2701T
Test Model No.:	WCT1BR2701T
Trade mark:	GSD
EUT Supports Radios application:	BT 4.2 Dual mode, 2402-2480MHz 2.4G WiFi, 802.11b/g/n(20MHz)/n(40MHz) ,2412-2462MHz 5G WiFi, 802.11a/n(HT20)/n(HT40)/ac(HT20)/ac(HT40)/ac(HT80) 5G WiFi, 5150-5250MHz; 5725-5850MHz
Power Supply:	DC 3.3V
Sample Received Date:	Sep. 12, 2018
Sample tested Date:	Sep. 12, 2018 to Nov. 14, 2018

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		13
Bluetooth Version:	4.2	(65)	(6,7)
Modulation Technique:	DSSS		
Modulation Type:	GFSK		
Number of Channel:	40	215	
Sample Type:	mobile production		4)
Test Power Grade:	N/A		/
Test Software of EUT:	Bluetooth RF Test Tool V2017.10.2	20(manufacturer declare)	
Firmware version of the sample:	V1.0(manufacturer declare)	(3)	
Hardware version of the sample:	V1.0(manufacturer declare)		(6,)
Antenna Type:	PIFA Antenna		
Antenna gain:	2.72dBi		
Test Voltage:	DC 3.3V		
10.0	10.4 / 10.4	7 16.6	. /

Report No. : EED32K00249901 Page 8 of 49

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

1	sociated ment name	Manufacture	model	serial number	Supplied by	Certification
AE1	Laptop	HP	430 G3	5CD6082JLC	СТІ	FCC
AE2	Mouse	L.Selectron	OP-308	G1103000147VJKJ	СТІ	FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

Report No. : EED32K00249901 Page 9 of 49

6.6 Abnormalities from Standard Conditions

None.

6.7 Other Information Requested by the Customer

None.

6.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
_1	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.46dB (30MHz-1GHz)
2	Tri power, conducted	0.55dB (1GHz-18GHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Madiated Spurious errission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32K00249901 Page 10 of 49

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002	(71)	01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019
PC-1	Lenovo	R4960d		03-13-2018	03-12-2019
BT&WI-FI Automatic control	R&S	OSP120	101374	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-2	15860006	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-1	15860004	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-4	158060007	03-13-2018	03-12-2019
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-13-2018	03-12-2019

Report No. : EED32K00249901 Page 11 of 49

	100		100		
	3M S	emi/full-anecho			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	10-28-2018	10-27-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-19-2018	01-18-2019
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEM S	SAS-574	6042	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEM S	PAP-1840-60	6041	06-05-2018	06-04-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Multi device Controller	maturo	NCD/070/107 11112		01-10-2018	01-09-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095 744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401 106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
Communication test set	R&S	CMW500	104466	02-05-2018	02-04-2019
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001	(6)	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-10-2018	01-09-2019

	Co	nducted distur	bance Test		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Temperature/ Humidity Indicator	Defu	TH128	1	07-02-2018	07-01-2019
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019
Communication test set	R&S	CMW500	152394	03-16-2018	03-15-2019
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019
LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018	05-29-2019
ISN	TESEQ	ISN T800	30297	02-06-2018	02-05-2019

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Appendix A): 6dB Occupied Bandwidth

Test Result

			N. W. J. J.		
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6428	1.0406	PASS	
BLE	MCH	0.6715	1.0467	PASS	Peak
BLE	нсн	0.6306	1.0465	PASS	detector

Test Graphs

Report No.: EED32K00249901

Appendix B): Conducted Peak Output Power

Test Result

5.300			
Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	6.196	PASS
BLE	MCH	6.354	PASS
BLE	HCH	6.737	PASS

Test Graphs

Report No. : EED32K00249901 Page 18 of 49

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
	BLE	LCH	5.401	-60.187	-14.6	PASS
3	BLE	нсн	6.065	-57.125	-13.94	PASS

Test Graphs

ST)

Report No. : EED32K00249901 Page 20 of 49

Appendix D): RF Conducted Spurious Emissions

Result Table

3, 3007				
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	5.307	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	5.232	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	5.716	<limit< td=""><td>PASS</td></limit<>	PASS

Report No.: EED32K00249901 Page 21 of 49

Test Graphs

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD[dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-8.341	8	PASS
BLE	MCH	-9.781	8	PASS
BLE	НСН	-8.044	8	PASS

Test Graphs

Report No.: EED32K00249901

Report No. : EED32K00249901 Page 25 of 49

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the Bluetooth antenna is 2.72dBi.

Report No. : EED32K00249901 Page 26 of 49

Appendix G): AC Power Line Conducted Emission

Test Procedure: Test frequency range :150KHz-30MHz

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

(AALL-)	Limit (c	ΙΒμV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 27 of 49

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	IV	leasuren (dBu∀)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1660	45.16	42.37	27.22	9.75	54.91	52.12	36.97	65.15	55.15	-13.03	-18.18	Р	
2	0.2340	42.23	39.25	27.02	9.73	51.96	48.98	36.75	62.30	52.30	-13.32	-15.55	Р	
3	0.3140	39.44	36.24	19.57	9.78	49.22	46.02	29.35	59.86	49.86	-13.84	-20.51	Р	
4	0.4180	33.64	30.12	16.74	9.74	43.38	39.86	26.48	57.49	47.49	-17.63	-21.01	Р	
5	3.9300	31.20	28.47	13.32	9.66	40.86	38.13	22.98	56.00	46.00	-17.87	-23.02	Р	
6	8.2100	40.34	37.98	28.45	9.69	50.03	47.67	38.14	60.00	50.00	-12.33	-11.86	Р	

Report No. : EED32K00249901 Page 28 of 49

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)	(6,	1600	/		10.0	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal	<
	AL 400	Peak	1MHz	3MHz	Peak	10
	Above 1GHz	Peak	1MHz	10Hz	Average	(63
est Procedure:	Below 1GHz test procedu	re as below:	16			16
	a. The EUT was placed o at a 3 meter semi-anec determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximur polarizations of the antenna was tuned was turned from 0 degree. The test-receiver syste	n the top of a ro hoic camber. Th of the highest ra ters away from to p of a variable-housed from one m value of the find enna are set to in hission, the EUT to heights from the sees to 360 degr	ne table wandiation. The interferoneight anter The meter to found to the make the make the make arran The meter to the meter to the make the make the make the make the make to find	ence-receinna tower. ur meters n. Both horneasurement ged to its value of the maxim	Wing antennations above the gradient and vent. Worst case a and the rotate and reading.	to a, wh counce /ertice nd the able
	Bandwidth with Maximu f. Place a marker at the e frequency to show com bands. Save the spectr for lowest and highest of	um Hold Mode. end of the restric pliance. Also mo um analyzer plo	easure any	emissions	s in the restri	
	f. Place a marker at the e frequency to show com bands. Save the spectr	um Hold Mode. and of the restrict pliance. Also may um analyzer plot channel are as below: are is the test site ber change form and table west channel, to ments are perford found the X ax	easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 met the Highest rmed in X, its positioni	emissions for each po com Semi- meter to 1 fer). channel Y, Z axis p ng which i	s in the restri ower and mo Anechoic Ch .5 meter(Ab positioning fo t is worse ca	dulat namb ove r
Limit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of the spectra for lowest and highest of the spectra for lowest and highest of lowest and highest of the spectra for lowest and highest of lowest and highest of fully Anechoic Chammand 18GHz the distance is h. Test the EUT in the lowest in the radiation measured fransmitting mode, and	um Hold Mode. and of the restrict pliance. Also may um analyzer plot channel are as below: are is the test site ber change form and table west channel, to ments are perford found the X ax	easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 met the Highest rmed in X, tis positioni uencies me	emissions for each posterior semi- meter to 1 ter). It channel Y, Z axis programming which it easured was a series of the control of the cont	s in the restri ower and mo Anechoic Ch .5 meter(Ab positioning fo t is worse ca	dulat namb ove r
imit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chamands 18GHz the distance is h. Test the EUT in the lowest interest in the radiation measured that the spectra for lowest lo	um Hold Mode. Ind of the restrict pliance. Also may um analyzer plothennel In as below: In it is the test site in the site of the test site in the test site in the test site in the site of the site	easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 met the Highest rmed in X, kis positioni uencies me	remissions for each portion Semi-meter to 1 ter). I channel Y, Z axis programming which it easured ware reached to the semi-meter to 2 terms of the semi-meter to 3 terms of the semi-meter to 3 terms of the semi-meter to 4 terms of the semi-meter to	Anechoic Ch.5 meter(Ab	dulat namb ove r
imit:	f. Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of lowest and highest of spectral for lowest and highest of the spectral for lowest and highest of the spectral for lowest and highest of lowest and lowest	um Hold Mode. Ind of the restrict pliance. Also mode and pliance with an analyzer plother as below: The as below: The is the test site is the	easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 met the Highest rmed in X, is positioni uencies me (m @3m)	emissions for each portion Semi-meter to 1 fer). Channel Y, Z axis ping which it easured was Rer Quasi-pe	Anechoic Cr.5 meter(Abecositioning for is worse cases complete.	dulat namb ove r
imit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chamand 18GHz the distance is h. Test the EUT in the lowest in the radiation measured that the spectra for lowest lowes	um Hold Mode. and of the restrict pliance. Also mum analyzer plothannel are as below: the is the test site ber change form 1 meter and table west channel, the ments are performed found the X axing until all frequency. Limit (dBµV/40.0)	easure any ot. Repeat for table 0.8 e is 1.5 met the Highest rmed in X, tis positioni uencies me	emissions or each portion Semi-meter to 1 ter). I channel Y, Z axis programming which it easured was red was red was red Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete.	dulat namb ove r
.imit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of lowest and highest of lowest and highest of the stance is the fully Anechoic Chamman 18GHz the distance is the fully Anechoic Chamman 18GHz the distance is the fully	um Hold Mode. Ind of the restrict pliance. Also mum analyzer plothannel In as below: It is the test site ber change forn 1 meter and table west channel , the ments are perford found the X axines until all frequency Limit (dBµV/40.0 43.5	easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 met the Highest rmed in X, ris positioni uencies me (m @3m)	rom Semi- meter to 1 ter). channel Y, Z axis p ng which in easured was Rer Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete. mark eak Value	dulat namb ove r
Limit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of the lowest of the low	um Hold Mode. and of the restrict pliance. Also mum analyzer plothannel are as below: the is the test site ber change form 1 meter and table west channel, the test site of the found the X axions are performed found the X axions until all frequency Limit (dBµV/40.043.546.0446.0443.5446.0446.0446.0446.0446.0446.0446.0446	easure any ot. Repeat for table 0.8 e is 1.5 met che Highest rmed in X, cis positioni uencies me	emissions or each por	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete. mark eak Value eak Value	dulat namb ove r

Report No.: EED32K00249901 Page 30 of 49

Test plot as follows:

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	45.14	54.14	74.00	19.86	Pass	Н	Peak
2	2402.1464	32.26	13.31	-36.60	87.72	96.69	74.00	-22.69	Pass	Н	Peak

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.67	43.67	54.00	10.33	Pass	Н	AV
2	2402.0275	32.26	13.31	-36.60	66.08	75.05	54.00	-21.05	Pass	Н	AV

Report No.: EED32K00249901 Page 31 of 49

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	45.60	54.60	74.00	19.40	Pass	V	Peak
2	2402.1464	32.26	13.31	-36.60	87.96	96.93	74.00	-22.93	Pass	V	Peak

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.67	43.67	54.00	10.33	Pass	V	AV
2	2402.0275	32.26	13.31	-36.60	66.08	75.05	54.00	-21.05	Pass	V	AV

Report No. : EED32K00249901 Page 32 of 49

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2479.8623	32.37	13.39	-36.77	87.44	96.43	74.00	-22.43	Pass	Н	Peak
2	2483.5000	32.38	13.38	-36.80	45.32	54.28	74.00	19.72	Pass	Н	Peak

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2480.0375	32.37	13.39	-36.77	67.23	76.22	54.00	-22.22	Pass	Н	AV
2	2483.5000	32.38	13.38	-36.80	33.01	41.97	54.00	12.03	Pass	Н	AV

Report No. : EED32K00249901 Page 33 of 49

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2479.8185	32.37	13.39	-36.77	87.72	96.71	74.00	-22.71	Pass	V	Peak
2	2483.5000	32.38	13.38	-36.80	45.40	54.36	74.00	19.64	Pass	V	Peak

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2480.0375	32.37	13.39	-36.77	67.38	76.37	54.00	-22.37	Pass	V	AV
2	2483.5000	32.38	13.38	-36.80	32.98	41.94	54.00	12.06	Pass	V	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
0.000	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4015	Peak	1MHz	3MHz	Peak	
(0,	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	п	n	าเ	t٠
ш	-1	ш	ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	705	30
1.705MHz-30MHz	30	-	(45)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Γ		Mode:	BLE GF	SK Transm	nitting	Channel:	2402		100	/	
Γ	R	emark:	QP								
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	57.5535	11.99	0.87	-32.06	32.58	13.38	40.00	26.62	Pass	Horizontal
	2	120.0340	9.19	1.30	-32.06	38.04	16.47	43.50	27.03	Pass	Horizontal
ſ	3	239.9500	11.94	1.84	-31.90	40.54	22.42	46.00	23.58	Pass	Horizontal
Γ	4	360.0600	14.52	2.27	-31.84	37.13	22.08	46.00	23.92	Pass	Horizontal
	5	479.9760	16.68	2.61	-31.90	32.95	20.34	46.00	25.66	Pass	Horizontal
	6	720.0020	20.02	3.22	-32.07	44.84	36.01	46.00	9.99	Pass	Horizontal

Mode:		BLE GFSK Transmitting			Channel:	2402					
Remark:		QP			(20)						
N O	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	
1	52.5085	12.80	0.82	-32.10	41.43	22.95	40.00	17.05	Pass	Vertical	
2	120.0340	9.19	1.30	-32.06	38.38	16.81	43.50	26.69	Pass	Vertical	
3	208.9038	11.13	1.71	-31.94	44.77	25.67	43.50	17.83	Pass	Vertical	
4	290.0120	13.00	2.03	-31.88	35.05	18.20	46.00	27.80	Pass	Vertical	
5	400.0320	15.40	2.38	-31.76	34.21	20.23	46.00	25.77	Pass	Vertical	
6	687.5975	19.70	3.14	-32.06	34.68	25.46	46.00	20.54	Pass	Vertical	
					100		200			7.0%	

Report No.: EED32K00249901 Page 36 of 49

Transmitter Emission above 1GHz

Mode	Mode:		BLE GFSK Transmitting					2402			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1797.3595	30.36	3.32	-36.81	52.17	49.04	74.00	24.96	Pass	Н	Peak
2	3464.1464	33.39	4.45	-36.58	44.43	45.69	74.00	28.31	Pass	Н	Peak
3	4804.0000	34.50	4.55	-36.15	40.83	43.73	74.00	30.27	Pass	Н	Peak
4	6485.9736	35.90	5.48	-36.23	44.03	49.18	74.00	24.82	Pass	Н	Peak
5	7206.0000	36.31	5.81	-36.43	41.17	46.86	74.00	27.14	Pass	Н	Peak
6	9608.0000	37.64	6.63	-36.79	43.19	50.67	74.00	23.33	Pass	Н	Peak
7	1592.9186	29.01	3.06	-36.99	52.14	47.22	74.00	26.78	Pass	V	Peak
8	3186.2436	33.27	4.63	-36.76	48.09	49.23	74.00	24.77	Pass	V	Peak
9	4804.0000	34.50	4.55	-36.15	40.31	43.21	74.00	30.79	Pass	V	Peak
10	6332.8833	35.87	5.46	-36.17	43.35	48.51	74.00	25.49	Pass	V	Peak
11	7206.0000	36.31	5.81	-36.43	40.53	46.22	74.00	27.78	Pass	V	Peak
12	9608.0000	37.64	6.63	-36.79	43.41	50.89	74.00	23.11	Pass	V	Peak

Mode:		BLE GFSK Transmitting			Channel:			2440			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1796.1592	30.35	3.31	-36.80	52.06	48.92	74.00	25.08	Pass	Н	Peak
2	3148.2148	33.26	4.58	-36.96	45.41	46.29	74.00	27.71	Pass	Н	Peak
3	4880.0000	34.50	4.80	-36.09	40.89	44.10	74.00	29.90	Pass	Н	Peak
4	5677.6178	35.28	5.00	-36.07	43.86	48.07	74.00	25.93	Pass	Н	Peak
5	7320.0000	36.42	5.85	-36.38	41.50	47.39	74.00	26.61	Pass	Н	Peak
6	9760.0000	37.70	6.73	-36.81	43.23	50.85	74.00	23.15	Pass	Н	Peak
7	1595.3191	29.03	3.07	-37.00	53.43	48.53	74.00	25.47	Pass	V	Peak
8	3122.8623	33.25	4.65	-36.88	46.65	47.67	74.00	26.33	Pass	V	Peak
9	4880.0000	34.50	4.80	-36.09	43.42	46.63	74.00	27.37	Pass	V	Peak
10	5989.6490	35.78	5.34	-36.29	43.95	48.78	74.00	25.22	Pass	V	Peak
11	7320.0000	36.42	5.85	-36.38	42.84	48.73	74.00	25.27	Pass	V	Peak
12	9760.0000	37.70	6.73	-36.81	43.38	51.00	74.00	23.00	Pass	V	Peak

	200	_0~			200			20%			
Mode:		BLE GFSK Transmitting			Channel:			2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1799.7600	30.38	3.32	-36.81	53.05	49.94	74.00	24.06	Pass	Н	Peak
2	3874.6625	33.70	4.35	-36.15	44.32	46.22	74.00	27.78	Pass	Н	Peak
3	4960.0000	34.50	4.82	-36.20	41.72	44.84	74.00	29.16	Pass	Н	Peak
4	6079.3579	35.82	5.24	-36.30	44.66	49.42	74.00	24.58	Pass	Н	Peak
5	7440.0000	36.54	5.85	-36.34	41.87	47.92	74.00	26.08	Pass	Н	Peak
6	9920.0000	37.77	6.79	-36.82	43.14	50.88	74.00	23.12	Pass	Н	Peak
7	1594.1188	29.02	3.07	-37.00	53.16	48.25	74.00	25.75	Pass	V	Peak
8	3190.1440	33.28	4.63	-36.74	45.59	46.76	74.00	27.24	Pass	V	Peak
9	4960.0000	34.50	4.82	-36.20	40.96	44.08	74.00	29.92	Pass	V	Peak
10	6334.8335	35.87	5.46	-36.16	43.63	48.80	74.00	25.20	Pass	V	Peak
11	7440.0000	36.54	5.85	-36.34	41.01	47.06	74.00	26.94	Pass	V	Peak
12	9920.0000	37.77	6.79	-36.82	43.20	50.94	74.00	23.06	Pass	V	Peak

Page 37 of 49

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

PHOTOGRAPHS OF TEST SETUP

Test model No.: WCT1BR2701T

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Radiated spurious emission Test Setup-3(Above 1GHz)

Radiated spurious emission Test Setup-4(Close-up)

Report No.: EED32K00249901 Page 41 of 49

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: WCT1BR2701T

View of Product-2

View of Product-3

View of Product-4

Report No.: EED32K00249901 Page 43 of 49

View of Product-5

View of Product-6

Report No.: EED32K00249901 Page 44 of 49

View of Product-7

View of Product-8

Report No.: EED32K00249901 Page 45 of 49

View of Product-9

View of Product-10

Report No.: EED32K00249901 Page 46 of 49

View of Product-11

View of Product-12

Report No.: EED32K00249901 Page 47 of 49

View of Product-13

View of Product-14

Report No. : EED32K00249901 Page 48 of 49

View of Product-15

View of Product-16

Report No. : EED32K00249901 Page 49 of 49

View of Product-17

View of Product-18

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com