Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's. (Interval scheduling)

Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound. (Interval Partitioning)

Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality. (Scheduling to Minimize Lateness)

1

Chapter 5

Divide and Conquer

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\frac{1}{2}$ n.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: n².
- Divide-and-conquer: n log n.

	n	$n \log_2 n$	n^2	
n = 10	< 1 sec	< 1 sec	< 1 sec	
n = 30	< 1 sec	< 1 sec	< 1 sec	
n = 50	< 1 sec	< 1 sec	< 1 sec	
n = 100	< 1 sec	< 1 sec	< 1 sec	
n = 1,000	< 1 sec	< 1 sec	1 sec	
n = 10,000	< 1 sec	< 1 sec	2 min	
n = 100,000	< 1 sec	2 sec	3 hours	
n = 1,000,000	1 sec	20 sec	12 days	

5.1 Mergesort

Sorting

Sorting. Given n elements, rearrange in ascending order.

Applications.

- Sort a list of names.
- Organize an MP3 library.
- Display Google PageRank results.
- List RSS news items in reverse chronological order.
- Find the median.
- Find the closest pair.
- Binary search in a database.
- Identify statistical outliers.
- Find duplicates in a mailing list.
- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management.
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

obvious applications

non-obvious applications

problems become easy once

items are in sorted order

• • •

Mergesort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

	A	L	G	0	R	I	T	Н	M	S			
A	L	G	0	R			I	T	Н	M	S	divide	O(1)
A	G	L	0	R			Н	I	М	s	T	sort	2T(n/2)
	A	G	Н	I	L	М	0	R	S	T		merge	O(n)

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

- Linear number of comparisons.
- Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

using only a constant amount of extra storage

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rfloor) + n & \text{otherwise} \end{cases}$$
solve left half solve right half merging

Solution. $T(n) = O(n \log_2 n)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with =.

Proof by Recursion Tree

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

Pf. For n > 1:

$$\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1$$

$$= \frac{T(n/2)}{n/2} + 1$$

$$= \frac{T(n/4)}{n/4} + 1 + 1$$

$$\vdots$$

$$= \frac{T(n/n)}{n/n} + \underbrace{1 + \dots + 1}_{\log_2 n}$$

$$= \log_2 n$$

Proof by Induction

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

Pf. (by induction on n)

- Base case: n = 1.
- Inductive hypothesis: $T(n) = n \log_2 n$.
- Goal: show that $T(2n) = 2n \log_2 (2n)$.

$$T(2n) = 2T(n) + 2n$$

= $2n \log_2 n + 2n$
= $2n(\log_2(2n)-1) + 2n$
= $2n \log_2(2n)$

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then $T(n) \le n \lceil \lg n \rceil$.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rfloor) + n & \text{otherwise} \end{cases}$$
solve left half solve right half merging

Pf. (by induction on n)

- Base case: n = 1.
- Define $n_1 = \lfloor n/2 \rfloor$, $n_2 = \lceil n/2 \rceil$.
- Induction step: assume true for 1, 2, ..., n-1.

$$T(n) \leq T(n_1) + T(n_2) + n$$

$$\leq n_1 \lceil \lg n_1 \rceil + n_2 \lceil \lg n_2 \rceil + n$$

$$\leq n_1 \lceil \lg n_2 \rceil + n_2 \lceil \lg n_2 \rceil + n$$

$$= n \lceil \lg n_2 \rceil + n$$

$$\leq n(\lceil \lg n \rceil - 1) + n$$

$$= n \lceil \lg n \rceil$$

$$n_{2} = \lceil n / 2 \rceil$$

$$\leq \lceil 2^{\lceil \lg n \rceil} / 2 \rceil$$

$$= 2^{\lceil \lg n \rceil} / 2$$

$$\Rightarrow \lg n_{2} \leq \lceil \lg n \rceil - 1$$

logon

5.3 Counting Inversions

Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: $a_1, a_2, ..., a_n$.
- Songs i and j inverted if i < j, but $a_i > a_j$.

	Songs							
	Α	В	C	D	Ε			
Me	1	2	3	4	5			
You	1	3	4	2	5			
<u> </u>								

Inversions 3-2, 4-2

Brute force: check all $\Theta(n^2)$ pairs i and j.

Applications

Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).

Divide-and-conquer.

1	2	3	4	5	6	7	8	9	10	11	12
1	5	4	8	10	2	6	9	12	11	3	7

Divide-and-conquer.

Divide: separate list into two pieces.

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

9 blue-green inversions 5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

T(n) = 2T(n/2) + ???

Combine: ???

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_i and a_j are in different halves.
- Merge two sorted halves into sorted whole.

to maintain sorted invariant

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Count: O(n)

10

11

14

16

17

18 19

23 25

Merge: O(n)

$$T(n) \le T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) \Rightarrow T(n) = O(n \log n)$$

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] Input: A and B are sorted. Post-condition. [Sort-and-Count] Output: L is sorted.

```
Sort-and-Count(L) {
   if list L has one element
      return 0 and the list L

Divide the list into two halves A and B
   (r<sub>A</sub>, A) ← Sort-and-Count(A)
   (r<sub>B</sub>, B) ← Sort-and-Count(B)
   (r , L) ← Merge-and-Count(A, B)

return r = r<sub>A</sub> + r<sub>B</sub> + r and the sorted list L
}
```

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

 fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have the same x coordinate.

to make presentation cleaner

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

Algorithm.

• Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side. O(nlogn)

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side. O(nlogn)
- Conquer: find closest pair in each side recursively. 2T(n/2)

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side. O(nlogn)
- Conquer: find closest pair in each side recursively. 2T(n/2)
- Combine: find closest pair with one point in each side. \leftarrow seems like $\Theta(n^2)$
- Return best of 3 solutions.

 $T(n) = 2T(n/2) + O(n^2)$

Find closest pair with one point in each side, assuming that distance $< \delta$.

Find closest pair with one point in each side, assuming that distance $< \delta$.

 ${\color{blue} { \cdot } }$ Observation: only need to consider points within δ of line L.

Find closest pair with one point in each side, assuming that distance $< \delta$.

- \blacksquare Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.

Find closest pair with one point in each side, assuming that distance $< \delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

Def. Let s_i be the point in the 2δ -strip, with the i^{th} smallest y-coordinate.

Claim. If |i - j| > 11, then the distance between s_i and s_j is at least δ .

Pf.

- No two points lie in same $\frac{1}{2}\delta$ -by- $\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$. ■

Fact. Still true if we replace 11 with 7.

What is the maximum number of points we can place in this 3 rows area that each pairs of 2 points in either left and right side has distance larger than δ because we know any 2 points in either left or right side has distance not

larger than δ

What is the maximum number of points we can place in this 3 rows area that each pairs of 2 points in either left and right side has distance larger than δ

What is the maximum number of points we can place in this 3 rows area that each pairs of 2 points in either left and right side has distance larger than δ

can not do better than this extreme case

Closest Pair Algorithm

```
Closest-Pair (p_1, ..., p_n) {
   Compute separation line L such that half the points
                                                                       O(n \log n)
   are on one side and half on the other side.
   \delta_1 = Closest-Pair(left half)
                                                                       2T(n / 2)
   \delta_2 = Closest-Pair(right half)
   \delta = \min(\delta_1, \delta_2)
   Delete all points further than \delta from separation line L
                                                                       O(n)
                                                                        O(n \log n)
   Sort remaining points sorted by y-coordinate.
   Scan points in y-order and compare distance between
                                                                        O(n)
   each point and next 11 neighbors. If any of these
   distances is less than \delta, update \delta.
   return \delta.
```

Closest Pair of Points: Analysis

Running time.

$$T(n) \le 2T(n/2) + O(n \log n) \Rightarrow T(n) = O(n \log^2 n)$$

- Q. Can we achieve O(n log n)?
- A. Yes. Don't sort points in strip from scratch each time.
 - Each recursive returns two lists: all points sorted by y coordinate,
 and all points sorted by x coordinate.
 - Sort by merging two pre-sorted lists.

$$T(n) \le 2T(n/2) + O(n) \implies T(n) = O(n \log n)$$

How to Multiply

integers, matrices, and polynomials

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Complex Multiplication

Complex multiplication. (a + bi) (c + di) = x + yi.

Grade-school.
$$x = ac - bd$$
, $y = bc + ad$.

4 multiplications, 2 additions

Q. Is it possible to do with fewer multiplications?

Complex Multiplication

Complex multiplication. (a + bi) (c + di) = x + yi.

Grade-school.
$$x = ac - bd$$
, $y = bc + ad$.

4 multiplications, 2 additions

Q. Is it possible to do with fewer multiplications?

A. Yes. [Gauss]
$$x = ac - bd$$
, $y = (a + b)(c + d) - ac - bd$.

3 multiplications, 5 additions

Remark. Improvement if no hardware multiply.

Divide into more than 2 subproblems

What happens if the divide-and-conquer algorithms that create recursive calls on q sub-problems of size n/2 each with q>2?

If T(n) obeys the following recurrence relation

$$T(n) \le qT(n/2) + cn$$

when n>2 and $T(2) \le c$.

 $T(\cdot)$ satisfying the above with q > 2 is bounded by $O(n^{\log_2 q})$.

When q=3, $O(n^{\log_2 q}) = O(n^{1.585})$

When q = 4, $O(n^{\log_2 q}) = O(n^2)$

For details, please read the Section 5.2 of the Textbook

5.5 Integer Multiplication

Integer Addition

Addition. Given two *n*-bit integers a and b, compute a+b. Grade-school. $\Theta(n)$ bit operations.

1	1	1	1	1	1	0	1	
	1	1	0	1	0	1	0	1
+	0	1	1	1	1	1	0	1
1	^	1	^	1	0	0	1	0

Remark. Grade-school addition algorithm is optimal.

Integer Multiplication

Multiplication. Given two *n*-bit integers a and b, compute $a \times b$. Grade-school. $\Theta(n^2)$ bit operations.

```
1 1 0 1 0 1 0 1
              \times 0 1 1 1 1 1 0 1
                1 1 0 1 0 1 0 1
              0 0 0 0 0 0 0 0
            1 1 0 1 0 1 0 1 0
         1 1 0 1 0 1 0 1 0
       1 1 0 1 0 1 0 1 0
     1 1 0 1 0 1 0 1 0
   1 1 0 1 0 1 0 1 0
  0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0 0 1
```

Q. Is grade-school multiplication algorithm optimal?

Divide-and-Conquer Multiplication: Warmup

To multiply two n-bit integers a and b:

- Multiply four $\frac{1}{2}n$ -bit integers, recursively.
- Add and shift to obtain result.

$$a = 2^{n/2} \cdot a_1 + a_0$$

$$b = 2^{n/2} \cdot b_1 + b_0$$

$$ab = \left(2^{n/2} \cdot a_1 + a_0\right) \left(2^{n/2} \cdot b_1 + b_0\right) = 2^n \cdot a_1 b_1 + 2^{n/2} \cdot \left(a_1 b_0 + a_0 b_1\right) + a_0 b_0$$

Ex.
$$a = 10001101$$
 $b = 11100001$

$$T(n) = \underbrace{4T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, shift}} \Rightarrow T(n) = \Theta(n^2)$$

Recursion Tree

$$T(n) = \begin{cases} 0 & \text{if } n = 0\\ 4T(n/2) + n & \text{otherwise} \end{cases}$$

$$T(n) = \sum_{k=0}^{\lg n} n \, 2^k = n \left(\frac{2^{1+\lg n} - 1}{2-1} \right) = 2n^2 - n$$

Karatsuba Multiplication

To multiply two n-bit integers a and b:

- Add two $\frac{1}{2}n$ bit integers.
- Multiply three $\frac{1}{2}n$ -bit integers, recursively.
- Add, subtract, and shift to obtain result.

$$a = 2^{n/2} \cdot a_1 + a_0$$

$$b = 2^{n/2} \cdot b_1 + b_0$$

$$ab = 2^n \cdot a_1 b_1 + 2^{n/2} \cdot (a_1 b_0 + a_0 b_1) + a_0 b_0$$

$$= 2^n \cdot a_1 b_1 + 2^{n/2} \cdot ((a_1 + a_0)(b_1 + b_0) - a_1 b_1 - a_0 b_0) + a_0 b_0$$
1
2
1
3
3

Karatsuba Multiplication

To multiply two n-bit integers a and b:

- Add two $\frac{1}{2}n$ bit integers.
- Multiply three $\frac{1}{2}n$ -bit integers, recursively.
- Add, subtract, and shift to obtain result.

$$a = 2^{n/2} \cdot a_1 + a_0$$

$$b = 2^{n/2} \cdot b_1 + b_0$$

$$ab = 2^n \cdot a_1 b_1 + 2^{n/2} \cdot (a_1 b_0 + a_0 b_1) + a_0 b_0$$

$$= 2^n \cdot a_1 b_1 + 2^{n/2} \cdot ((a_1 + a_0)(b_1 + b_0) - a_1 b_1 - a_0 b_0) + a_0 b_0$$
1
2
1
3
3

Theorem. [Karatsuba-Ofman 1962] Can multiply two n-bit integers in $O(n^{1.585})$ bit operations.

$$T(n) \leq \underbrace{T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + T(1+\lceil n/2 \rceil)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, subtract, shift}} \Rightarrow T(n) = O(n^{\lg 3}) = O(n^{1.585})$$

Karatsuba: Recursion Tree

$$T(n) = \begin{cases} 0 & \text{if } n = 0\\ 3T(n/2) + n & \text{otherwise} \end{cases}$$

$$T(n) = \sum_{k=0}^{\lg n} n \left(\frac{3}{2}\right)^k = n \left(\frac{\left(\frac{3}{2}\right)^{1+\lg n} - 1}{\frac{3}{2} - 1}\right) = 3n^{\lg 3} - 2n$$

5.6 Convolution and FFT

Fourier Analysis

Fourier theorem. [Fourier, Dirichlet, Riemann] Any periodic function can be expressed as the sum of a series of sinusoids.

Sawtooth:
$$y(t) = \frac{2}{\pi} \sum_{k=1}^{N} \frac{\sin kt}{k}$$
 $N = 100$

Euler's Identity

Sinusoids. Sum of sine and cosines.

$$e^{ix} = \cos x + i \sin x$$
$$e^{-ix} = \cos x - i \sin x$$

•
$$e^{-j\omega t} = \cos(\omega t) - j\sin(\omega t)$$

•
$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

Euler's identity

Sinusoids. Sum of complex exponentials.

$$\cos(\omega t) = \frac{1}{2} (e^{j\omega t} + e^{-j\omega t})$$
$$\sin(\omega t) = \frac{1}{2j} (e^{j\omega t} - e^{-j\omega t})$$

Signal. [touch tone button 1] $y(t) = \frac{1}{2}\sin(2\pi \cdot 697 t) + \frac{1}{2}\sin(2\pi \cdot 1209 t)$

Time domain.

Reference: Cleve Moler, Numerical Computing with MATLAB

Signal. [touch tone button 1] $y(t) = \frac{1}{2}\sin(2\pi \cdot 697 t) + \frac{1}{2}\sin(2\pi \cdot 1209 t)$

Signal. [recording, 8192 samples per second]

Magnitude of discrete Fourier transform.

Signal. [recording, 8192 samples per second]

Magnitude of discrete Fourier transform.

Fast Fourier Transform

FFT. Fast way to convert between time-domain and frequency-domain.

Alternate viewpoint. Fast way to multiply and evaluate polynomials.

we take this approach $\text{A(x)} = a_0 + a_1 x + a_2 x^2 + \dots + a_{m-1} x^{m-1}$ $\text{B(x)} = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}$ $\text{C(x)} = \text{A(x)B(x)} = c_0 + c_1 x + c_2 x^2 + \dots + c_k x^k + \dots + c_{n+m-2} x^{n+m-2}$ $c_k = \sum_{(i,j): i+j=k} a_i b_j$

If you speed up any nontrivial algorithm by a factor of a million or so the world will beat a path towards finding useful applications for it. -Numerical Recipes

Fast Fourier Transform: Applications

Applications.

- Optics, acoustics, quantum physics, telecommunications, radar, control systems, signal processing, speech recognition, data compression, image processing, seismology, mass spectrometry...
- Digital media. [DVD, JPEG, MP3, H.264]
- Medical diagnostics. [MRI, CT, PET scans, ultrasound]
- Numerical solutions to Poisson's equation.
- Shor's quantum factoring algorithm.

...

The FFT is one of the truly great computational developments of [the 20th] century. It has changed the face of science and engineering so much that it is not an exaggeration to say that life as we know it would be very different without the FFT. -Charles van Loan

Digital filtering

Ideal low-pass filter

$$h_{LP}[n] = \frac{\sin \omega_c n}{\pi n}, -\infty \le n \le \infty$$

impulse response

$$y(w) = X(w) H(w) \longrightarrow y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k] = \sum_{k=-\infty}^{\infty} x[n-k] h[k]$$

$$\downarrow convolution$$
Convolution

Digital filtering

$$y(w) = X(w) H(w) \longrightarrow y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k] = \sum_{k=-\infty}^{\infty} x[n-k] h[k]$$

$$\downarrow convolution$$
Convolution

impulse response

Digital filtering

Fast Fourier Transform: Brief History

Gauss (1805, 1866). Analyzed periodic motion of asteroid Ceres.

Runge-König (1924). Laid theoretical groundwork.

Danielson-Lanczos (1942). Efficient algorithm, x-ray crystallography.

Cooley-Tukey (1965). Monitoring nuclear tests in Soviet Union and tracking submarines. Rediscovered and popularized FFT.

Importance not fully realized until advent of digital computers.

Fourier's original work: A periodic function can be represented as a finite, weighted sum of sinusoids that are integer multiples of the fundamental frequency Ω_0 of the signal. These frequencies are said to be harmonically related, or simply harmonics.

Fourier's original work: A periodic function can be represented as a finite, weighted sum of sinusoids that are integer multiples of the fundamental frequency Ω_0 of the signal. These frequencies are said to be harmonically related, or simply harmonics.

Continuous Time Fourier Transform (CTFT)

 Extension of Fourier series to non-periodic functions: Any continuous aperiodic function can be represented as an infinite sum (integral) of sinusoids. The sinusoids are no longer integer multiples of a specific frequency.

Fourier's original work: A periodic function can be represented as a finite, weighted sum of sinusoids that are integer multiples of the fundamental frequency Ω_0 of the signal. These frequencies are said to be harmonically related, or simply harmonics.

Continuous Time Fourier Transform (CTFT)

 Extension of Fourier series to non-periodic functions: Any continuous aperiodic function can be represented as an infinite sum (integral) of sinusoids. The sinusoids are no longer integer multiples of a specific frequency.

Discrete Time Fourier Transform (DTFT)

 Extension of FT to discrete sequences. Any discrete function can also be represented as an infinite sum (integral) of sinusoids. While time domain is discretized, frequency domain is still continuous.

Fourier's original work: A periodic function can be represented as a finite, weighted sum of sinusoids that are integer multiples of the fundamental frequency Ω_0 of the signal. These frequencies are said to be harmonically related, or simply harmonics.

Continuous Time Fourier Transform (CTFT)

 Extension of Fourier series to non-periodic functions: Any continuous aperiodic function can be represented as an infinite sum (integral) of sinusoids. The sinusoids are no longer integer multiples of a specific frequency.

Discrete Time Fourier Transform (DTFT)

 Extension of FT to discrete sequences. Any discrete function can also be represented as an infinite sum (integral) of sinusoids. While time domain is discretized, frequency domain is still continuous.

Discrete Fourier Transform (DFT)

 Because DTFT is defined as an infinite sum, the frequency representation is not discrete. An extension to DTFT is DFT, where the frequency variable is also discretized.

Fourier's original work: A periodic function can be represented as a finite, weighted sum of sinusoids that are integer multiples of the fundamental frequency Ω_0 of the signal. These frequencies are said to be harmonically related, or simply harmonics.

Continuous Time Fourier Transform (CTFT)

 Extension of Fourier series to non-periodic functions: Any continuous aperiodic function can be represented as an infinite sum (integral) of sinusoids. The sinusoids are no longer integer multiples of a specific frequency.

Discrete Time Fourier Transform (DTFT)

 Extension of FT to discrete sequences. Any discrete function can also be represented as an infinite sum (integral) of sinusoids. While time domain is discretized, frequency domain is still continuous.

Discrete Fourier Transform (DFT)

 Because DTFT is defined as an infinite sum, the frequency representation is not discrete. An extension to DTFT is DFT, where the frequency variable is also discretized.

Fast Fourier Transform (FFT)

 Mathematically identical to DFT, however a significantly more efficient implementation. FFT is what signal processing made possible today!

Continuous vs Discrete

Fourier's original work: A periodic function can be represented as a finite, weighted sum of sinusoids that are integer multiples of the fundamental frequency Ω_0 of the signal. These frequencies are said to be harmonically related, or simply harmonics.

Continuous Time Fourier Transform (CTFT)

Continuous vs Continuous

Extension of Fourier series to non-periodic functions: Any continuous aperiodic function can be represented as an infinite sum (integral) of sinusoids. The sinusoids are no longer integer multiples of a specific frequency.
Discrete vs Continuous

Discrete Time Fourier Transform (DTFT)

Extension of FT to discrete sequences. Any discrete function can also be represented as an infinite sum (integral) of sinusoids. While time domain is discretized, frequency domain is still continuous.
Discrete vs Discrete

Discrete Fourier Transform (DFT)

 Because DTFT is defined as an infinite sum, the frequency representation is not discrete. An extension to DTFT is DFT, where the frequency variable is also discretized.

Fast Fourier Transform (FFT)

 Mathematically identical to DFT, however a significantly more efficient implementation. FFT is what signal processing made possible today!

Polynomials: Coefficient Representation

Polynomial. [coefficient representation]

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}$$

Add. O(n) arithmetic operations.

$$A(x) + B(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_{n-1} + b_{n-1})x^{n-1}$$

Evaluate. O(n) using Horner's method.

$$A(x) = a_0 + (x(a_1 + x(a_2 + \dots + x(a_{n-2} + x(a_{n-1}))\dots))$$

Multiply (convolve). $O(n^2)$ using brute force.

$$A(x) \times B(x) = \sum_{i=0}^{2n-2} c_i x^i$$
, where $c_i = \sum_{j=0}^{i} a_j b_{i-j}$

Polynomials: Point-Value Representation

Fundamental theorem of algebra. [Gauss, PhD thesis] A degree n polynomial with complex coefficients has exactly n complex roots.

Corollary. A degree n-1 polynomial A(x) is uniquely specified by its evaluation at n distinct values of x.

Polynomials: Point-Value Representation

Polynomial. [point-value representation]

$$A(x): (x_0, y_0), ..., (x_{n-1}, y_{n-1})$$

 $B(x): (x_0, z_0), ..., (x_{n-1}, z_{n-1})$

Add. O(n) arithmetic operations.

$$A(x)+B(x): (x_0, y_0+z_0), ..., (x_{n-1}, y_{n-1}+z_{n-1})$$

Multiply (convolve). O(n), but need 2n-1 points.

$$A(x) \times B(x)$$
: $(x_0, y_0 \times z_0), ..., (x_{2n-1}, y_{2n-1} \times z_{2n-1})$

Evaluate. $O(n^2)$ using Lagrange's formula.

$$A(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j \neq k} (x - x_j)}{\prod_{j \neq k} (x_k - x_j)}$$

Converting Between Two Polynomial Representations

Tradeoff. Fast evaluation or fast multiplication. We want both!

representation	multiply	evaluate
coefficient	$O(n^2)$	O(n)
point-value	O(n)	$O(n^2)$

Goal. Efficient conversion between two representations \Rightarrow all ops fast.

$$(x_0,y_0), \dots, (x_{n-1},y_{n-1})$$
 coefficient representation

Converting Between Two Representations: Brute Force

Coefficient \Rightarrow point-value. Given a polynomial $a_0 + a_1x + ... + a_{n-1}x^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

Running time. $O(n^2)$ for matrix-vector multiply (or n Horner's).

Converting Between Two Representations: Brute Force

Point-value \Rightarrow coefficient. Given n distinct points x_0, \ldots, x_{n-1} and values y_0, \ldots, y_{n-1} , find unique polynomial $a_0 + a_1x + \ldots + a_{n-1}x^{n-1}$, that has given values at given points.

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

Vandermonde matrix is invertible iff x_i distinct

Running time. $O(n^3)$ for Gaussian elimination.

or $O(n^{2.376})$ via fast matrix multiplication

Divide-and-Conquer

Decimation in frequency. Break up polynomial into low and high powers.

$$A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7.$$

$$A_{low}(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3.$$

$$A_{high}(x) = a_4 + a_5 x + a_6 x^2 + a_7 x^3.$$

•
$$A(x) = A_{low}(x) + x^4 A_{high}(x)$$
.

Decimation in time. Break polynomial up into even and odd powers.

$$A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7.$$

$$A_{even}(x) = a_0 + a_2x + a_4x^2 + a_6x^3.$$

$$A_{odd}(x) = a_1 + a_3x + a_5x^2 + a_7x^3.$$

•
$$A(x) = A_{even}(x^2) + x A_{odd}(x^2)$$
.

Coefficient to Point-Value Representation: Intuition

Coefficient \Rightarrow point-value. Given a polynomial $a_0 + a_1x + ... + a_{n-1}x^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

we get to choose which ones!

Divide. Break polynomial up into even and odd powers.

$$A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7.$$

$$A_{even}(x) = a_0 + a_2x + a_4x^2 + a_6x^3.$$

$$A_{odd}(x) = a_1 + a_3x + a_5x^2 + a_7x^3.$$

•
$$A(x) = A_{even}(x^2) + x A_{odd}(x^2)$$
.

•
$$A(-x) = A_{even}(x^2) - x A_{odd}(x^2)$$
.

Intuition. Choose two points to be ± 1 .

•
$$A(1) = A_{even}(1) + 1 A_{odd}(1)$$
.

•
$$A(-1) = A_{even}(1) - 1 A_{odd}(1)$$
.

Can evaluate polynomial of degree $\leq n$ at 2 points by evaluating two polynomials of degree $\leq \frac{1}{2}n$ at 1 point.

Coefficient to Point-Value Representation: Intuition

Coefficient \Rightarrow point-value. Given a polynomial $a_0 + a_1x + ... + a_{n-1}x^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

we get to choose which ones!

Divide. Break polynomial up into even and odd powers.

$$A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7.$$

$$A_{even}(x) = a_0 + a_2x + a_4x^2 + a_6x^3.$$

$$A_{odd}(x) = a_1 + a_3x + a_5x^2 + a_7x^3.$$

•
$$A(x) = A_{even}(x^2) + x A_{odd}(x^2)$$
.

•
$$A(-x) = A_{even}(x^2) - x A_{odd}(x^2)$$
.

Intuition. Choose four complex points to be ± 1 , $\pm i$.

•
$$A(1) = A_{even}(1) + I A_{odd}(1)$$
.

•
$$A(-1) = A_{even}(1) - I A_{odd}(1)$$
.

•
$$A(i) = A_{even}(-1) + i A_{odd}(-1)$$
.

•
$$A(-i) = A_{even}(-1) - i A_{odd}(-1)$$
.

Can evaluate polynomial of degree $\leq n$ at 4 points by evaluating two polynomials of degree $\leq \frac{1}{2}n$ at 2 points.

Discrete Fourier Transform

Coefficient \Rightarrow point-value. Given a polynomial $a_0 + a_1x + ... + a_{n-1}x^{n-1}$, evaluate it at n distinct points $x_0, ..., x_{n-1}$.

Key idea. Choose $x_k = \omega^k$ where ω is principal n^{th} root of unity.

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^1 & \omega^2 & \omega^3 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(n-1)} \\ 1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

$$\uparrow$$
Fourier matrix F_n

Roots of Unity

Def. An n^{th} root of unity is a complex number x such that $x^n = 1$.

Fact. The n^{th} roots of unity are: ω^0 , ω^1 , ..., ω^{n-1} where $\omega = e^{2\pi i/n}$. Pf. $(\omega^k)^n = (e^{2\pi i k/n})^n = (e^{\pi i})^{2k} = (-1)^{2k} = 1$.

Fact. The $\frac{1}{2}n^{th}$ roots of unity are: v^0 , v^1 , ..., $v^{n/2-1}$ where $v = \omega^2 = e^{4\pi i/n}$.

Fast Fourier Transform

Goal. Evaluate a degree n-1 polynomial $A(x) = a_0 + ... + a_{n-1} x^{n-1}$ at its n^{th} roots of unity: ω^0 , ω^1 , ..., ω^{n-1} .

Divide. Break up polynomial into even and odd powers.

$$A_{even}(x) = a_0 + a_2x + a_4x^2 + \dots + a_{n-2}x^{n/2-1}.$$

$$A_{odd}(x) = a_1 + a_3x + a_5x^2 + ... + a_{n-1}x^{n/2-1}.$$

•
$$A(x) = A_{even}(x^2) + x A_{odd}(x^2)$$
.

Conquer. Evaluate $A_{even}(x)$ and $A_{odd}(x)$ at the $\frac{1}{2}n^{th}$ roots of unity: v^0 , v^1 , ..., $v^{n/2-1}$.

2T(n/2)

Combine.
$$v^k = (\omega^k)^2$$

$$A(\omega^k) = A_{even}(v^k) + \omega^k A_{odd}(v^k), \quad 0 \le k < n/2$$

$$A(\omega^{k+\frac{1}{2}n}) = A_{even}(v^{k}) - \omega^{k} A_{odd}(v^{k}), \quad 0 \le k < n/2$$

$$v^{k} = (\omega^{k+\frac{1}{2}n})^{2} \qquad \omega^{k+\frac{1}{2}n} = -\omega^{k}$$

O(n)

FFT Algorithm

```
fft(n, a_0, a_1, ..., a_{n-1}) {
     if (n == 1) return a_0
     (e_0, e_1, ..., e_{n/2-1}) \leftarrow FFT(n/2, a_0, a_2, a_4, ..., a_{n-2})
     (d_0, d_1, ..., d_{n/2-1}) \leftarrow FFT(n/2, a_1, a_3, a_5, ..., a_{n-1})
     for k = 0 to n/2 - 1 {
          \omega^k \leftarrow e^{2\pi i k/n}
          y_k \leftarrow e_k + \omega^k d_k
         y_{k+n/2} \leftarrow e_k - \omega^k d_k
     }
     return (y_0, y_1, ..., y_{n-1})
}
```

FFT Summary

Theorem. FFT algorithm evaluates a degree n-1 polynomial at each of the nth roots of unity in $O(n \log n)$ steps.

assumes n is a power of 2

Running time.

$$T(n) = 2T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \log n)$$

The DFT

- Note: X[k] is a length-N sequence in the frequency domain
- The sequence X[k] is called the discrete Fourier transform (DFT) of the sequence x[n]
- Using the notation $W_N = e^{-j2\pi/N}$ the DFT is usually expressed as:

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \ 0 \le k \le N-1$$

Recursion Tree

Backtracking

Example of FFT

Swap data according to bit

Inverse Discrete Fourier Transform

Point-value \Rightarrow coefficient. Given n distinct points x_0, \ldots, x_{n-1} and values y_0, \ldots, y_{n-1} , find unique polynomial $a_0 + a_1x + \ldots + a_{n-1}x^{n-1}$, that has given values at given points.

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^1 & \omega^2 & \omega^3 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(n-1)} \\ 1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix}^{-1} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{bmatrix}$$
Inverse DFT
Fourier matrix inverse $(F_n)^{-1}$

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^1 & \omega^2 & \omega^3 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(n-1)} \\ 1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

Inverse DFT

Claim. Inverse of Fourier matrix F_n is given by following formula.

$$G_{n} = \frac{1}{n} \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \cdots & \omega^{-(n-1)} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & \cdots & \omega^{-2(n-1)} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-9} & \cdots & \omega^{-3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-(n-1)} & \omega^{-2(n-1)} & \omega^{-3(n-1)} & \cdots & \omega^{-(n-1)(n-1)} \end{bmatrix}$$

 $\frac{1}{\sqrt{n}}F_n$ is unitary

Consequence. To compute inverse FFT, apply same algorithm but use $\omega^{-1} = e^{-2\pi i/n}$ as principal n^{th} root of unity (and divide by n).

Inverse FFT: Proof of Correctness

Claim. F_n and G_n are inverses. Pf.

$$(F_n G_n)_{kk'} = \frac{1}{n} \sum_{j=0}^{n-1} \omega^{kj} \omega^{-jk'} = \frac{1}{n} \sum_{j=0}^{n-1} \omega^{(k-k')j} = \begin{cases} 1 & \text{if } k = k' \\ 0 & \text{otherwise} \end{cases}$$
summation lemma

Summation lemma. Let ω be a principal n^{th} root of unity. Then

$$\sum_{j=0}^{n-1} \omega^{kj} = \begin{cases} n & \text{if } k \equiv 0 \text{ mod } n \\ 0 & \text{otherwise} \end{cases}$$

Pf.

- If k is a multiple of n then $\omega^k = 1 \implies$ series sums to n.
- Each n^{th} root of unity ω^k is a root of $x^n 1 = (x 1) (1 + x + x^2 + ... + x^{n-1})$.
- if $\omega^k \neq 1$ we have: $1 + \omega^k + \omega^{k(2)} + \ldots + \omega^{k(n-1)} = 0 \implies$ series sums to 0.

Inverse FFT: Algorithm

```
ifft(n, a_0, a_1, ..., a_{n-1}) {
     if (n == 1) return a_0
     (e_0, e_1, ..., e_{n/2-1}) \leftarrow FFT(n/2, a_0, a_2, a_4, ..., a_{n-2})
     (d_0, d_1, ..., d_{n/2-1}) \leftarrow FFT(n/2, a_1, a_3, a_5, ..., a_{n-1})
     for k = 0 to n/2 - 1 {
          \omega^k \leftarrow e^{-2\pi i k/n}
         y_{k+n/2} \leftarrow (e_k + \omega^k d_k) / n
         y_{k+n/2} \leftarrow (e_k - \omega^k d_k) / n
     return (y_0, y_1, ..., y_{n-1})
```

Inverse FFT Summary

Theorem. Inverse FFT algorithm interpolates a degree n-1 polynomial given values at each of the nth roots of unity in $O(n \log n)$ steps.

assumes n is a power of 2

Polynomial Multiplication

Theorem. Can multiply two degree n-1 polynomials in $O(n \log n)$ steps.

pad with 0s to make n a power of 2

