UNIVERSIDAD CATÓLICA BOLIVIANA SAN PABLO SEDE TARIJA

DEPARTAMENTO DE CIENCIAS DE LA TECNOLOGÍA E INNOVACIÓN

CARRERA DE INGENIERÍA MECATRÓNICA

TÍTULO DEL CASO

ESTUDIANTES:

ESTUDIANTE 1

ESTUDIANTE 2

ESTUDIANTE 3

ESTUDIANTE 4

DOCENTE:

ING. KALEB IRAHOLA AZAD

ASIGNATURA: INSTRUMENTACIÓN INDUSTRIAL

TARIJA-BOLIVIA

2025

Índice general

1	Bases o	del Proyecto
	1.1	Problema
	1.2	Objetivos del proyecto
		1.2.1 Objetivo general
		1.2.2 Objetivos específicos
	1.3	Descripción del proceso
	1.4	Normativa
2	Mapa o	lel proceso
	2.1	Diagrama de Bloques
	2.2	Lista de Servicios
	2.3	Descripción de las Variables
	2.4	Identificación de Riesgos
3	P&ID	
	3.1	Diagrama
	3.2	Lista de tags ISA 5.1
4	Selecci	ón de instrumentación, actuadores y equipos
5	Contro	l y seguridad
	5.1	Lazos de control
	5.2	Matriz Causa–Efecto
6	Presup	uesto y fuentes
	6.1	Tabla de presupuesto
Bibli	ografía	

Índice de figuras

Figura 1	l. Título breve pero descripti	0																													9
----------	--------------------------------	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Índice de cuadros

Tabla	1:	Listado de Servicios del Proceso	2
Tabla	2:	Listado de Riesgos Identificados	2
Tabla	3:	Listado de Riesgos Identificados	2
Tabla	4:	Lazos de control (extracto)	(
Tabla	5:	Matriz Causa–Efecto (extracto)	,
Tabla	6:	Presupuesto de instrumentación y equipos	•
Tabla	7:	Ejemplo de tabla	10

1. Bases del Proyecto

1.1. Problema

Desarrollar del problema.

1.2. Objetivos del proyecto

1.2.1. Objetivo general

Objetivo general (formato SMART).

1.2.2. Objetivos específicos

«No deben de ser más de 5 objetivos específicos»

- 1. objetivo específico 1
- 2. objetivo específico 2
- 3. objetivo específico 3

1.3. Descripción del proceso

Describir el proceso de la forma más clara posible, pueden añadir *subsections*, *images* o *tables* según lo requieran, pero consideren mantener el formato del documento para que la indexación sea adecuada.

1.4. Normativa

Describir las normativas de referencia para cada proceso, tomar como referencia las mencionadas en el archivo de guía.

2. Mapa del proceso

2.1. Diagrama de Bloques

Representar el flujo general del proceso desde los *battery limits*, identificando operaciones unitarias, corrientes y utilidades.

La representación debe ser la de el **Nivel dos** de los niveles de diseño empleados en el desarrollo de proyectos de la carrera de Ingeniería Mecatrónica

2.2. Lista de Servicios

Completar la siguiente tabla para todas las utilidades del proceso.

Tabla 1Listado de Servicios del Proceso

Servicio	Fuente	Condiciones	Pico/Prom	Notas
Aire comprimido	Compresor	$10\mathrm{bar}$	$20\mathrm{bar}$	Calidad ISO 8573-1
Eléctrico	Tablero	374 V	$380\mathrm{V}$	Protecciones/arranques
Vapor	Caldera	110–130 °C 4 bar	$500 \mathrm{kg} \mathrm{h}^{-1}$	Reductora, trampa

Nota. Descripción de la tabla, o indicación de la fuente.

2.3. Descripción de las Variables

Consideren los siguientes aspectos al describir las variables:

- Identificación de la variable: nombre y símbolo (por ejemplo: temperatura de retención, presión de tanque, caudal de alimentación).
- **Ubicación en el proceso:** equipo, línea o nodo del proceso donde se mide o actúa la variable.
- Rango operativo y unidades: condiciones de diseño y operación normal (ejemplo: 60–95 °C).
- Requerimientos de exactitud y tiempo de respuesta: según la criticidad de la variable para la calidad, la seguridad o la eficiencia.
- Elemento primario y principio de medición: tipo de sensor o transductor más adecuado (ejemplo: RTD Pt100 para temperatura, transmisor diferencial para presión).

[«]Completar información en el campo de midrule»

- **Señal y comunicación:** forma de transmisión (4–20 mA, HART, Modbus, Profibus, etc.) y cualquier requerimiento de integración al sistema de control.
- Condiciones especiales: materiales en contacto, certificaciones (3-A/EHEDG, ATEX, IP/NEMA) o ambientes de instalación.

2.4. Identificación de Riesgos

Identificar los riesgos según el análisis del proceso y los equipos, señalarlos en la siguiente tabla:

Tabla 2
Listado de Riesgos Identificados

Unidad	Variable	riable Causa de falla Consecuencia S		Salvaguardas pasivas
VRU	Gas	%LEL alto (fuga)	Riesgo de explosión	ESD: paro de bombas y cierre de válvulas
Mangas	ΔP	Carga de polvo excesiva	Daño a mangas	Limpieza por pulsos, alarma de alta presión

Nota. La columna **Unidad** identifica el equipo o etapa del proceso; **Variable** corresponde a la magnitud física monitoreada; **Causa de falla** describe la desviación o anomalía posible; **Consecuencia** señala el impacto en seguridad, calidad o continuidad; y **Salvaguardas pasivas** son los dispositivos o diseños que mitigan el riesgo sin necesidad de intervención activa.

[«]Completar información en el campo de midrule»

3. P&ID

3.1. Diagrama

Presentar el diagrama P&ID con el formato de imagen correcto.

3.2. Lista de tags ISA 5.1

Completar la lista completa de los tags siguiendo la norma ISA 5.1 según el siguiente detalle:

Convención correcta de tags para la norma (ISA 5.1):

$$[PLANTA] - [UNIDAD] - [LAZO] [FuncLet] - [N^{\circ}]$$

Ej.: PIL-HTST-TIC-101; YPFB-LLN-PI-204; ARJ-FER-FT-302; ELP-DUST-DPIC-410.

Tabla 3 *Listado de Riesgos Identificados*

N°	Unidad	Variable	Función	Tag
1	HTST	Temperatura	Controlador de temperatura	PIL-HTST-TIC-101
2	HTST	Caudal leche	Controlador de caudal	PIL-HTST-FIC-102
3	HTST	ΔP placas	Controlador de presión diferencial	PIL-HTST-DPIC-103
4	Engarrafado	Presión manifold	Controlador de presión	YPFB-ENG-PIC-201
5	Engarrafado	Caudal mercaptano	Controlador de caudal	YPFB-ENG-FIC-202
6	Engarrafado	Gas (LEL)	Indicador/alarma de gas EX	YPFB-ENG-GAI-203
7	Fermentación	Temperatura mosto	Controlador de temperatura	ARJ-FER-TIC-301
8	Fermentación	Presión tanque	Controlador de presión	ARJ-FER-PIC-302
9	Fermentación	°Brix	Indicador de concentración	ARJ-FER-BXI-303
10	Áridos	ΔP mangas	Controlador de presión diferencial	ELP-DUST-DPIC-401
11	Áridos	Velocidad ventilador	Variador de velocidad	ELP-DUST-VSD-402
12	Áridos	Vibración molino	Indicador de vibración	ELP-DUST-VIBI-403

Nota. Descripción de la tabla, o indicación de la fuente.

[«]Completar información en el campo de midrule»

4. Selección de instrumentación, actuadores y equipos

Justificar técnicamente cada selección considerando, como mínimo:

- Rango operativo y exactitud: acorde al diseño del proceso y a la criticidad de la variable.
- Principio de medición: compatibilidad con el fluido/medio y con la dinámica requerida.
- Materiales y conexión: contacto de proceso (acero inoxidable sanitario, recubrimientos, brida/roscado/sanitario).
- Comunicación y señal: 4–20 mA, HART, Modbus, Profibus u otra requerida por el sistema de control.
- Ambiente/Clase de área: IP/NEMA, IEC 60079/ATEX (si aplica), higiene (3-A/EHEDG) y temperatura ambiente.
- Certificaciones y normativas: según el sector (lácteos, GLP, áridos/vino).
- Mantenimiento y ciclo de vida: repuestos, calibración y accesibilidad.

[«]Desarrollar una subsection por cada instrumento, actuador y equipo»

5. Control y seguridad

5.1. Lazos de control

Describa, por cada lazo, la **PV**, **MV**, setpoint, límites, modos (Auto/Manual/Cascada), estrategia (básico, cascada, feedforward, *split-range*), condiciones de arranque/parada y manejo de fallas (alarma, *latch*, reset). Completar la tabla con la información de cada columna:

Tabla 4

Lazos de control (extracto)

Lazo	PV	MV	Estrategia	SP	Interlocks
PIL-HTST-TIC-101	T retención	TV vapor	Cascada	$72^{\circ}\mathrm{C}$	Desvío si T <sp< td=""></sp<>
YPFB-ENG-FIC-202	F mercaptano	Válvula dosif.	Relación	seg. GLP	ESD por %LEL alto
ARJ-FER-TIC-301	T fermentador	Válvula glicol	Cascada	perfil T	Bloqueo trasiego por CO ₂
ELP-DUST-DPIC-410	ΔP mangas	Pulsos limpieza	Básico	objetivo DP	Alarma alta T gases

Nota. La narrativa debe detallar modos, límites, bumpless transfer, y criterios de sintonía (Kp, Ti, Td) por lazo.

La columna **Lazo** identifica el tag y número de control; **PV** es la variable de proceso medida por el sensor; **MV** es la variable manipulada por el actuador o elemento final de control; **Estrategia** indica el tipo de control implementado (básico, cascada, feedforward, *split-range*); **SP** es el valor de referencia o consigna; y **Interlocks** describen acciones de seguridad o lógicas asociadas al lazo.

5.2. Matriz Causa–Efecto

Listar disparadores (proceso y fallas), lógica (AND/OR/temporización), acción, set/reset y prioridad.

Tabla 5

Matriz Causa–Efecto (extracto)

Disparador	Lógica	Acción	Set/Reset	Prioridad
%LEL alto en patio	≥ umbral & persist.	ESD: parar bombas, cerrar válvulas	Manual	Crítica
T retención baja	< SP $(t > x s)$	FDV a desvío, alarma	Auto	Alta
ΔP mangas alta	> SP	Pulso limpieza, aviso mantenimiento	Auto	Media

Nota. Documente pruebas funcionales (frecuencia, método y aceptación) para cada Causa–Efecto. La columna **Disparador** define la condición anómala detectada; **Lógica** especifica cómo se evalúa la señal (umbral, AND/OR, temporización); **Acción** describe la respuesta automática o manual que se ejecuta; **Set/Reset** indica el modo de restablecimiento del sistema; y **Prioridad** clasifica la criticidad de la acción (crítica, alta, media, baja).

6. Presupuesto y fuentes

6.1. Tabla de presupuesto

Usar cotizaciones reales y, donde no sea posible, estimación por proximidad con fuente citada.

Tabla 6Presupuesto de instrumentación y equipos

Ítem	Tag/Descripción	Cant.	Unidad	P. unit. [BOB]	Subtotal [BOB]
1	PIL-HTST-TT-101 (RTD sanitaria)	1	un	180	180
2	YPFB-ENG-FT-202 (caudalímetro)	1	un	950	950
3	ELP-DUST-DP-410 (Tx DP)	2	un	320	640
				Total (extracto)	1770

Nota. Indique la **fuente** (cotización/catálogo) de cada precio en un archivo de Excel inscrito en la estructura documental. Incluya válvulas, accesorios, montaje, cableado y contingencias según aplique.

Bibliografía

- [1] P. Walstra, J. T. M. Wouters, and T. J. Geurts, *Dairy Science and Technology*, 2nd ed. CRC Press, 2006.
- [2] Tetra Pak, "Dairy processing handbook," https://dairyprocessinghandbook.tetrapak.com/, 2025, consultado en 2025.
- [3] A. B. Cecala et al., "Dust control handbook for industrial minerals mining and processing," 2019.
- [4] *IEC 60079: Explosive Atmospheres*, International Electrotechnical Commission Std., 2023, partes 0, 10, etc.
- [5] NFPA, "Nfpa 58: Liquefied petroleum gas code," 2024.
- [6] B. A. Wills and T. Napier-Munn, Wills' Mineral Processing Technology, 8th ed. Elsevier, 2015.
- [7] R. S. Jackson, Wine Science: Principles and Applications, 4th ed. Academic Press, 2014.
- [8] OIV, "International code of oenological practices," Organisation Internationale de la Vigne et du Vin, 2022.
- [9] P. A. Alsop, *The Cement Plant Operations Handbook*, 7th ed. Tradeship Publications, 2019.

Ejemplos de Figuras, Tablas y Citaciones

Aquí se muestran ejemplos de como insertar figuras y tablas en el documento.

Borrar este apartado para presentar el documento

Ejemplo de Figuras

Figura 1

Título breve pero descriptivo de la imagen

Nota: Se incluye la nota únicamente cuando es necesaria para aclarar información adicional.

Ejemplo de Tablas

Tabla 7 *Ejemplo de tabla*

Variable	Valor
Variable A	10
Variable B	20

Nota. Ejemplo de tabla en estilo APA 7. * p <.05. Los datos se obtuvieron de la base de datos interna.

Ejemplo de Citaciones

"El tratamiento térmico HTST se fundamenta en parámetros de letalidad validados por la literatura [1,2]."

"La clasificación de servicios y utilidades sigue la práctica recomendada en plantas de alimentos y en minería [3]."

"Para áreas con riesgo de explosión de gas, aplica IEC 60079 y NFPA 58 [4,5]." "En procesos con polvo combustible, se deben seguir guías NFPA 68/69/654 y manuales de control de polvo [3]."

"La convención de tags se definió de acuerdo a ISA 5.1 y al estándar recomendado en Perry's Chemical Engineers' Handbook [6]."

"Los equipos en contacto con producto lácteo deben cumplir guías EHEDG y 3-A [2]."

"La conducción de fermentación se ajusta a prácticas descritas por Jackson [7] y el código de la OIV [8]."

"Los principios de control de procesos y seguridad instrumentada siguen IEC 61511 y ejemplos de la industria cementera [9]."

"Los precios unitarios se basaron en catálogos industriales de referencia [2,9]."