

Minesweeper Al

Using Logic Inference, CSP and CNN Approaches

Problem Statement

Minesweeper Al

- Two perspectives
 - Deterministic: know where is a mine for sure—Inference
 - Non-deterministic: need to guess where is a mine—Probability
- NP-Complete problem
- Goal
 - Higher winning rate
 - Computational efficiency

Related Works

State of the Art Related Works

- Logic: SAT solver
 - Inference process is slow
- Search: CSP
- RL: Q Learning
 - Hard to define the state: too many states if use the whole map
 - Poor performance
- Neural Network: CNN

Pipeline Approach

- Logic Inference
 - Fast & Accurate
- CSP
 - Complex Inference
- · CNN
 - Global Probability

Stage 1: Logic Inference

- Goal: Fast and Accuracy check for deterministic case
- Define 4 rules
 - Flag
 - Revealing
 - Elimination
 - Confirmation

Stage 1: Logic Inference

- Goal: Fast and Accuracy check for deterministic case
- Define 4 rules
 - Flag
 - Revealing
 - Elimination
 - Confirmation

Stage 2: CSP Approach

- Goal: find hidden deterministic cells
- Method:

112

- Define variables and constraints
 - variables: for every cell, $v = \{0\}$ (safe) or $\{1\}$ (mine) or $\{0, 1\}$ (both possible)
 - constraints: for every number, number = SUM(neighboring true values)
- Basic solution: backtracking search
- All variables start from state {0, 1}, and any state changes means new deterministic information

Stage 3: CNN Approach

- Goal: handle non-deterministic case—Probability
- Inspiration:
 - 3x3 grid is of great importance in Minesweeper
 - Combining many convolutional layers with 3x3 kernels gives larger receptive field
 - We may find more global information using CNN

Stage 3: CNN Approach

Net Architecture:

- 5 convolutional layers with 3x3 kernels
- 3 fully connected layers

• Training:

- Input: game state map, Output: mine probability map
- Easy to train—not resource-consuming
- Loss: only focus on the 'edge'

Stage 3: CNN

Game State Map

Edge Map

Pipeline Approach

- Logic Inference
 - Fast & Accurate
- CSP
 - Complex Inference
- · CNN
 - Global Probability

Experiments and Results

Winning Rate Improvement

Experiments and Results

Approach	9x9 Map, 10 Mines	16x16 Map, 40 Mines
Random pick	0%	0%
Logic	70.7%	31.4%
CSP	45%	1%
Net	32.8%	0%
Logic + CSP	84.5%	48.7%
CSP + Net	77%	7%
Logic + CSP + Net	95%	66.1%

Conclusion

Conclusion

Minesweeper Al

Contribution:

- Combining deterministic (logic inference, CSP) and non-deterministic (CNN) models
- Good performance & Computational efficiency

Future Works:

- Do filtering optimization (Forward Checking, Arc Consistency) with CSP
- Expert mode (16x30, 100 mines) optimization