What?

where eta_0 is the intercept, eta_1 is the slope, and arepsilon is the error term

The simple linear regression model is given by

 $Y = \beta_0 + \beta_1 X + \varepsilon$

Given coefficient estimates we can predict the response using

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x \qquad \text{(simple)}$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$
 (multiple)

where \hat{y} indicates a prediction of Y given X = x.

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon$

The multiple linear regression model is given by

What?

• The simple linear regression model is given by

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

where eta_0 is the intercept, eta_1 is the slope, and arepsilon is the error term

The multiple linear regression model is given by

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon$$

Given coefficient estimates we can predict the response using

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x \qquad \text{(simple)}$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p \qquad \text{(multiple)}$$

where \hat{y} indicates a prediction of Y given X = x.

How?