

Ronda Final Olimpiada Hondureña de Física Nivel I

Código OHF22 -

Problema 1: Un barco de altura $H_b = 15 m$ partió desde Puerto Cortés hacia mar abierto, después de t = 156 s de partir, el barco aparenta tener la misma altura que un cartel de altura $h_c = 0.5 m$ que esta l = 10 m por delante de Juan, quien esta en el punto de partida del barco, se da cuenta que con estos datos puede calcular la velocidad(v) a la que se aleja el barco. Estime el valor de v.

Problema 2: En un partido del mundial Qatar 2022, Cristiano Ronaldo realiza un tiro libre (es decir el balón esta inicialmente en reposo) golpeando el balón de masa m=395.0~g a una distancia d=30.0~m paralela al suelo, respecto a uno de los postes verticales, con la intención de que el balón choque en dicho poste para marcar un gol. La pelota realiza una trayectoria parabólica y choca con un poste, si tarda $\Delta T=1.0~s$ en llegar y el impacto del pie del jugador con el balón dura $\Delta t=0.05~s$. ¿Cuál es la fuerza F_x horizontal con la que el jugador impacta a la pelota?

Tiempo: 4.5 horas Cada problema vale: 10 puntos **Problema 3:** Considere un tobogán sin fricción, desde el cual, las personas salen disparadas de este formando un ángulo $\theta=13^\circ$ respecto al suelo. Una piscina de longitud L=3.00~m en la dirección de movimiento está a una distancia D=5.00~m delante de la salida del tobogán. Si el nivel del agua está a la misma altura de la salida del tobogán ¿Para qué rango (intervalo) de alturas H (ver figura), las personas siempre caerán en la piscina?

Nota: desprecie el tamaño de las personas y los bordes de la piscina.

Problema 4: Dos partículas $\mathbf{1}$ y $\mathbf{2}$ se mueven a lo largo del eje \mathbf{x} . A continuación, se presenta el gráfico de posición (\mathbf{x}) vs tiempo (\mathbf{t}) para la partícula $\mathbf{1}$ y el gráfico de velocidad (\mathbf{v}) vs tiempo (\mathbf{t}) para la partícula $\mathbf{2}$.

Si llega un momento en el cual, ambas partículas chocan, determine:

- a) El instante t en que las dos partículas chocan.
- **b)** La posición *x* donde chocan.

Nota: $x_0 = ut_0$ y la partícula 2 estaba en el origen en t = 0 .

