Deep Roots

Introduction

- Knowing where a species came from helps anticipate where it goes next.
- Cakile edentula's invasion of Australia has been inferred through genetic structuring and Bayesian Inference phylogenetics. However, simulation-based methods can strengthen and refine these inferences.
- Identifying the source of invasion strengthens comparisons between native and invading populations grounding measures of evolutionary response.
- Establishing the events of a species' introduction helps characterise the genetic consequences of invasion.

Aims

- Determine the source and timing of Australian invasion.
- Estimate the presence, duration, and impact of bottlenecks during invasion.

Methods

- **Data:** 3877 SNPs from 90 non-hybrid *Cakile edentula* sampled from Eastern North America and Australia.
- Analysis: Random-forest approximate Bayesian computation on 25 scenario pooled by topology.
- Pool-winning scenarios directly competed to determine best-supported scenario.
- Parameter estimation conducted on best-supported scenario.

Results

Figure 1. Invading population source, divergence time and bottleneck duration scenario topology using random-forest approximate Bayesian computation. **a** Best-supported scenario (posterior probability = 0.637) of three scenario pools (**b**, **c**, **d**). Parameter values and confidence intervals for best-supported scenario are shown in Table 1. Best-supported scenarios within pools predominantly involved a Nova Scotian source population.

Table 1. Posterior parameter estimates and quantile distributions (0.05-0.95) for the introduction of a novel Australian population of *Cakile edentula* from its native Nova Scotian population (Fig.1), based on the scenario with the highest posterior probability (0.637).

Parameter	Prior	Median	Q(0.05)	Q(0.95)
Ne _{Ancestral}	1-10,000	596	59	1858
Ne GreatLakes	1-10,000	914	298	1903
Ne_{NovaScotia}	1-10,000	1273	500	3562
Ne Bottleneck	1-1,000	15	3	69
Ne_{Australia}	1-10,000	6780	2509	9789
$\mathbf{t}_{Ancestral}$	177-10,000	4730.23	1598	9229
t _{Australia}	156-176	166	157	175
t _{Bottleneck}	1-176	111	46	157

Conclusions

- Cakile edentula's invasion of Australia most likely
 originates from a single introduction from Nova Scotia.
 This is congruent with previous inferences on the source of the invasion.
- Cakile edentula endured a prolonged bottleneck. However, despite a bottleneck, present-day effective population has surged.
- This study highlights how simulation-based methods can be used to strengthen inferences on population source and demographic parameters.

Author & Acknowledgements

SAR Craig (Author)
Hodgins Lab (supervision)
WR MacAskill, Victorian Collections (imagery)