import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pickle

from google.colab import files
uploaded =files.upload()

Choose files indian_liver_patient.csv

• indian_liver_patient.csv(text/csv) - 23930 bytes, last modified: 21/09/2019 - 100% done Saving indian_liver_patient.csv to indian_liver_patient (1).csv

data = pd.read_csv('indian_liver_patient.csv')

data.head()

	Age	e Gend	ler	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotran
	0 6	5 Fem	ale	0.7	0.1	187	
	1 62	2 M	ale	10.9	5.5	699	
:	2 62	2 M	ale	7.3	4.1	490	
;	3 58	8 M	ale	1.0	0.4	182	
	4 72	2 M	ale	3.9	2.0	195	
	4. +						

data.tail()

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotr
578	60	Male	0.5	0.1	500	
579	40	Male	0.6	0.1	98	
580	52	Male	0.8	0.2	245	
581	31	Male	1.3	0.5	184	
582	38	Male	1.0	0.3	216	

data.describe()

	Age	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminot
count	583.000000	583.000000	583.000000	583.000000	
mean	44.746141	3.298799	1.486106	290.576329	
std	16.189833	6.209522	2.808498	242.937989	
min	4.000000	0.400000	0.100000	63.000000	
25%	33.000000	0.800000	0.200000	175.500000	
50%	45.000000	1.000000	0.300000	208.000000	
75%	58.000000	2.600000	1.300000	298.000000	
max	90.000000	75.000000	19.700000	2110.000000	2

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 583 entries, 0 to 582
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Age	583 non-null	int64
1	Gender	583 non-null	object
2	Total_Bilirubin	583 non-null	float64
3	Direct_Bilirubin	583 non-null	float64
4	Alkaline_Phosphotase	583 non-null	int64
5	Alamine_Aminotransferase	583 non-null	int64
6	Aspartate_Aminotransferase	583 non-null	int64
7	Total_Protiens	583 non-null	float64
8	Albumin	583 non-null	float64
9	Albumin_and_Globulin_Ratio	579 non-null	float64
10	Dataset	583 non-null	int64

dtypes: float64(5), int64(5), object(1)

memory usage: 50.2+ KB

data.isnull().any()

Age	False
Gender	False
Total_Bilirubin	False
Direct_Bilirubin	False
Alkaline_Phosphotase	False
Alamine_Aminotransferase	False
Aspartate_Aminotransferase	False
Total_Protiens	False
Albumin	False
Albumin_and_Globulin_Ratio	True
Dataset	False
dtype: bool	

data.isnull().sum()

Age	0
Gender	0
Total_Bilirubin	0
Direct_Bilirubin	0
Alkaline_Phosphotase	0
Alamine_Aminotransferase	0
Aspartate_Aminotransferase	0
Total_Protiens	0
Albumin	0
Albumin_and_Globulin_Ratio	4

Dataset dtype: int64

data[data['Dataset']==1]

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotr
0	65	Female	0.7	0.1	187	
1	62	Male	10.9	5.5	699	
2	62	Male	7.3	4.1	490	
3	58	Male	1.0	0.4	182	
4	72	Male	3.9	2.0	195	
576	32	Male	15.0	8.2	289	
577	32	Male	12.7	8.4	190	
579	40	Male	0.6	0.1	98	
580	52	Male	0.8	0.2	245	
581	31	Male	1.3	0.5	184	

416 rows × 11 columns


```
data['Dataset'].unique()
     array([1, 2])
data.isnull().sum()
     Age
                                    0
     Gender
                                    0
     Total_Bilirubin
                                    0
     Direct_Bilirubin
                                    0
     Alkaline_Phosphotase
                                    0
     Alamine_Aminotransferase
                                    0
     Aspartate_Aminotransferase
                                    0
     Total_Protiens
                                    0
     Albumin
                                    0
     Albumin_and_Globulin_Ratio
                                    4
     Dataset
                                    0
     dtype: int64
data_1 = data.dropna()
data_1.isnull().sum()
                                    0
     Age
     Gender
                                    0
     Total_Bilirubin
                                    0
     Direct_Bilirubin
                                    0
```

Alkaline_Phosphotase

```
Alamine_Aminotransferase 0
Aspartate_Aminotransferase 0
Total_Protiens 0
Albumin 0
Albumin_and_Globulin_Ratio 0
Dataset 0
dtype: int64
```

```
plt.figure(figsize=(15,10))
plt.subplot(3,3,1)
plt.scatter(data_1['Age'], data_1['Dataset'])
plt.ylabel('Dataset')
plt.xlabel('Age')
plt.subplot(3,3,2)
plt.scatter(data_1['Gender'], data_1['Dataset'],)
plt.ylabel('Dataset')
plt.xlabel('Gender')
plt.subplot(3,3,3)
plt.scatter(data_1['Total_Bilirubin'], data_1['Dataset'],)
plt.ylabel('Dataset')
plt.xlabel('Total_Bilirubin')
plt.subplot(3,3,4)
plt.scatter(data_1['Direct_Bilirubin'], data_1['Dataset'],)
plt.ylabel('Dataset')
plt.xlabel('Direct_Bilirubin')
plt.subplot(3,3,5)
plt.scatter(data_1['Alkaline_Phosphotase'], data_1['Dataset'],)
plt.ylabel('Dataset')
plt.xlabel('Alkaline_Phosphotase')
plt.subplot(3,3,6)
plt.scatter(data_1['Alamine_Aminotransferase'], data_1['Dataset'],)
plt.ylabel('Dataset')
plt.xlabel('Alamine_Aminotransferase')
plt.subplot(3,3,7)
plt.scatter(data_1['Aspartate_Aminotransferase'], data_1['Dataset'],)
plt.ylabel('Dataset')
plt.xlabel('Aspartate_Aminotransferase')
plt.subplot(3,3,8)
plt.scatter(data_1['Total_Protiens'], data_1['Dataset'],)
plt.ylabel('Dataset')
plt.xlabel('Total Protiens')
plt.subplot(3,3,9)
plt.scatter(data_1['Albumin_and_Globulin_Ratio'], data_1['Dataset'],)
plt.ylabel('Dataset')
plt.xlabel('Albumin_and_Globulin_Ratio')
```


sns.countplot(data=data_1, x = 'Dataset')
LD,NLD=data_1['Dataset'].value_counts()
print("liver disease patients:",LD)
print("Non-liver disease patients:",NLD)

liver disease patients: 414 Non-liver disease patients: 165


```
sns.countplot(data=data_1, x = 'Gender', label='Count')
m,f=data_1['Gender'].value_counts()
print("No of Males:",m)
print("No of Females:",f)
```

No of Males: 439 No of Females: 140


```
# Importing the LabelEncoder library from scikit.learn
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
# Converting Textual data into numeric data
data_1['Gender'] = le.fit_transform(data_1['Gender'])
data_1.head()
```

<ipython-input-28-fb2e0f8fb876>:5: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_gu data_1['Gender'] = le.fit_transform(data_1['Gender'])

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotran
0	65	0	0.7	0.1	187	
1	62	1	10.9	5.5	699	
2	62	1	7.3	4.1	490	
3	58	1	1.0	0.4	182	
4	72	1	3.9	2.0	195	


```
data['Gender'] = le.fit_transform(data['Gender'])
```

data_1.head()

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotran
0	65	0	0.7	0.1	187	
1	62	1	10.9	5.5	699	
2	62	1	7.3	4.1	490	
3	58	1	1.0	0.4	182	
4	72	1	3.9	2.0	195	
+~	,					

```
0+
x=data_1.iloc[:,0:-1]
y=data_1.iloc[:,-1]
x=data 1.iloc[:,0:1]
y=data_1.iloc[:,-1]
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3)
xtrain.shape
     (405, 1)
xtest.shape
     (174, 1)
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
svc=SVC()
RFmodel=RandomForestClassifier()
KNNmodel=KNeighborsClassifier()
from sklearn.svm import SVC
svm=SVC()
```

```
svc.fit(xtrain, ytrain)
```

```
13/04/2023, 11:00
```

- cur

SVCpred=svc.predict(xtest)

from sklearn.metrics import accuracy_score,confusion_matrix
checking for accuracy score from actual data and predicted data
SVCaccuracy=accuracy_score(SVCpred, ytest)
SVCaccuracy

0.6494252873563219

SVCcm=confusion_matrix(SVCpred, ytest)
SVCcm

from sklearn.ensemble import RandomForestClassifier RFmodel=RandomForestClassifier()

RFmodel.fit(xtrain, ytrain)

* RandomForestClassifier RandomForestClassifier()

RFpred=RFmodel.predict(xtest)

RFaccuracy=accuracy_score(RFpred, ytest)
RFaccuracy

RFcm=confusion_matrix(RFpred, ytest)
RFcm

from sklearn.neighbors import KNeighborsClassifier
KNN = KNeighborsClassifier()

KNN.fit(xtrain, ytrain)

* KNeighborsClassifier
KNeighborsClassifier()

```
Copy of Copy of Copy of Copy of Copy of Copy of A Review of liver patient analysis.jpynb - Colaboratory
KNNpred=KNN.predict(xtest)
KNNaccuracy=accuracy_score(KNNpred, ytest)
KNNaccuracy
     0.6609195402298851
KNNcm=confusion matrix(KNNpred, ytest)
     array([[101, 47],
            [ 12, 14]])
print("Support Vector Machine Algorithm accuracy score : {value:.2f} %".format(value=SVCaccuracy*100))
print("Random Forest Algorithm accuracy score : {value:.2f} %".format(value=RFaccuracy*100))
print("K=Nearest Neighbors Algorithm accuracy score : {value:.2f} %".format(value=KNNaccuracy*100))
     Support Vector Machine Algorithm accuracy score : 64.94 %
     Random Forest Algorithm accuracy score : 66.67 %
     K=Nearest Neighbors Algorithm accuracy score : 66.09 %
import pickle
pickle.dump(svm, open('liver_analysis_1.pkl', 'wb'))
```

!pip install nbconvert

```
Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/public/simple/</a>
Requirement already satisfied: nbconvert in /usr/local/lib/python3.9/dist-packages (6.5.4)
Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.9/dist-packages (from nbco
Requirement already satisfied: defusedxml in /usr/local/lib/python3.9/dist-packages (from nbconver
Requirement already satisfied: traitlets>=5.0 in /usr/local/lib/python3.9/dist-packages (from nbco
Requirement already satisfied: jupyter-core>=4.7 in /usr/local/lib/python3.9/dist-packages (from n
Requirement already satisfied: jupyterlab-pygments in /usr/local/lib/python3.9/dist-packages (from
Requirement already satisfied: packaging in /usr/local/lib/python3.9/dist-packages (from nbconvert
Requirement already satisfied: pygments>=2.4.1 in /usr/local/lib/python3.9/dist-packages (from nbc
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.9/dist-packages (from nbc
Requirement already satisfied: nbformat>=5.1 in /usr/local/lib/python3.9/dist-packages (from nbcon
Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.9/dist-packages (from
Requirement already satisfied: bleach in /usr/local/lib/python3.9/dist-packages (from nbconvert) (
Requirement already satisfied: nbclient>=0.5.0 in /usr/local/lib/python3.9/dist-packages (from nbc
Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.9/dist-packages (fro
Requirement already satisfied: tinycss2 in /usr/local/lib/python3.9/dist-packages (from nbconvert)
Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.9/dist-packages (from n
Requirement already satisfied: jinja2>=3.0 in /usr/local/lib/python3.9/dist-packages (from nbconve
Requirement already satisfied: lxml in /usr/local/lib/python3.9/dist-packages (from nbconvert) (4.
Requirement already satisfied: platformdirs>=2.5 in /usr/local/lib/python3.9/dist-packages (from i
Requirement already satisfied: jupyter-client>=6.1.12 in /usr/local/lib/python3.9/dist-packages (f
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.9/dist-packages (from nbfo
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.9/dist-packages (from nbf
Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.9/dist-packages (from beaut
Requirement already satisfied: webencodings in /usr/local/lib/python3.9/dist-packages (from bleach
Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.9/dist-packages (from bleach->
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.9/dist-packages (from jsons
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/pyt
Requirement already satisfied: tornado>=4.1 in /usr/local/lib/python3.9/dist-packages (from jupyte
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.9/dist-packages (fro
Requirement already satisfied: pyzmq>=13 in /usr/local/lib/python3.9/dist-packages (from jupyter-c
```

_ _ _ _ _ _ _

```
13/04/2023, 11:00
                               Copy of Copy of Copy of Copy of Copy of A Review of liver patient analysis.ipynb - Colaboratory
     !jupyter nbconvert --to html Review_of_liver_patient_analysis.ipynb
                         If a relative path is given, it must be a subdirectory of the
                         current directory (from which the server is run).
                         See the usage documentation
                         (<a href="https://nbconvert.readthedocs.io/en/latest/usage.html#reveal-js-html-slideshow">https://nbconvert.readthedocs.io/en/latest/usage.html#reveal-js-html-slideshow</a>)
                         for more details.
               Default: ''
               Equivalent to: [--SlidesExporter.reveal_url_prefix]
           --nbformat=<Enum>
               The nbformat version to write.
                         Use this to downgrade notebooks.
               Choices: any of [1, 2, 3, 4]
               Default: 4
               Equivalent to: [--NotebookExporter.nbformat_version]
           Examples
```

The simplest way to use nbconvert is

> jupyter nbconvert mynotebook.ipynb --to html

Options include ['asciidoc', 'custom', 'html', 'latex', 'markdown', 'notebook', 'pdf

> jupyter nbconvert --to latex mynotebook.ipynb

Both HTML and LaTeX support multiple output templates. LaTeX includes 'base', 'article' and 'report'. HTML includes 'basic', 'lab' and 'classic'. You can specify the flavor of the format used.

> jupyter nbconvert --to html --template lab mynotebook.ipynb

You can also pipe the output to stdout, rather than a file

> jupyter nbconvert mynotebook.ipynb --stdout

PDF is generated via latex

> jupyter nbconvert mynotebook.ipynb --to pdf

You can get (and serve) a Reveal.js-powered slideshow

> jupyter nbconvert myslides.ipynb --to slides --post serve

Multiple notebooks can be given at the command line in a couple of different ways:

```
> jupyter nbconvert notebook*.ipynb
```

> jupyter nbconvert notebook1.ipynb notebook2.ipynb

or you can specify the notebooks list in a config file, containing::

c.NbConvertApp.notebooks = ["my notebook.ipynb"]

> jupyter nbconvert --config mycfg.py

To see all available configurables, use `--help-all`.

!pip install flask-ngrok

```
Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/public/simple/</a>
Collecting flask-ngrok
```

```
Downloading flask_ngrok-0.0.25-py3-none-any.whl (3.1 kB)
```

Requirement already satisfied: Flask>=0.8 in /usr/local/lib/python3.9/dist-packages (from flask-ng Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from flask-ngro

```
Requirement already satisfied: Jinja2>=3.0 in /usr/local/lib/python3.9/dist-packages (from Flask>= Requirement already satisfied: itsdangerous>=2.0 in /usr/local/lib/python3.9/dist-packages (from F Requirement already satisfied: click>=8.0 in /usr/local/lib/python3.9/dist-packages (from Flask>=0 Requirement already satisfied: Werkzeug>=2.2.2 in /usr/local/lib/python3.9/dist-packages (from Fla Requirement already satisfied: importlib-metadata>=3.6.0 in /usr/local/lib/python3.9/dist-packages (from Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.9/dist-packages (from importlib Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.9/dist-packages (from Jin Installing collected packages: flask-ngrok Successfully installed flask-ngrok-0.0.25
```

```
from flask import Flask,render_template, request
import numpy as np
import pickle
app=Flask( name )
@app.route('/')
def home():
  return render_template('home.html')
  @app.route('/predict')
  def index() :
    return render template("index.html")
@app.route('/data predict', methods=['post'])
def predict():
  age = request.form['age']
  gender = request.form['gender']
  tb = request.form['tb']
  db = request.form['db']
  ap = request.form['ap']
  aa1 = request.form['aa1']
  aa2 = request.form['aa2']
  tp = request.form['tp']
  a = request.form['a']
  agr = request.form['agr']
  model = pickle.load(open('liver analysis 1.pkl', 'rb'))
  prediction= model.predict(data)[0]
  if (prediction == 1):
      return render template('noChance.html', prediction='you have a liver desease problem, you must and
  else:
      return render_template('chance.html', prediction='you dont have a liver desease problem')
if __name__ == '__main__':
  app.run()
      * Serving Flask app '__main__'
      * Debug mode: off
     INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use
      * Running on <a href="http://127.0.0.1:5000">http://127.0.0.1:5000</a>
     INFO:werkzeug:Press CTRL+C to quit
```

Executing (1m 19s) <cell line: 1> > run() > run_simple() > serve_forever() > serve_forever() > select()

... ×