Linearno programiranje s dvije varijable

Matematika za ekonomiste 1

Damir Horvat

FOI, Varaždin

Sadržaj

prvi zadatak

drugi zadatak

treći zadatak

prvi zadatak

Zadatak 1

Poduzeće se bavi prodajom igračaka. Na tržište želi plasirati dvije nove igračke A i B. Obje igračke trebaju proći završnu fazu montaže. U jednom satu napravi se 10 igrački A i 24 igrački B. Poduzeće ima na raspolaganju samo 45 radnih sati. Istraživanje tržišta je pokazalo da je potrebno najviše 400 komada igrački A, dok je igrački B potrebno napraviti u količini ne većoj od 960 komada. Prihod po igrački A je $20 \in$, a po igrački B $18 \in$. Odredite u kojem slučaju poduzeće ostvaruje maksimalni prihod uz navedena ograničenja.

Oznake

 $x \longrightarrow \text{broj komada igrački } A$

Oznake

 $x \longrightarrow \text{broj komada igrački } A$

 $y \longrightarrow \operatorname{broj}$ komada igrački B

Oznake

 $x \longrightarrow \text{broj komada igrački } A$

 $y \longrightarrow \text{broj komada igrački } B$

Funkcija prihoda

Oznake

 $x \longrightarrow \text{broj komada igrački } A$

 $y \longrightarrow \text{broj komada igrački } B$

Funkcija prihoda

$$P=20x+18y$$

Oznake

 $x \longrightarrow \operatorname{broj}$ komada igrački A

 $y \longrightarrow \text{broj komada igrački } B$

Funkcija prihoda

$$P=20x+18y$$

Ograničenja

Oznake

$$x \longrightarrow$$
broj komada igrački A

 $y \longrightarrow \text{broj komada igrački } B$

Funkcija prihoda

$$P=20x+18y$$

Ograničenja

ullet broj komada igrački je broj $\geqslant 0$

Oznake

$$x \longrightarrow \text{broj komada igrački } A$$

$$y \longrightarrow$$
broj komada igrački B

Funkcija prihoda

$$P=20x+18y$$

Ograničenja

broj komada igrački je broj ≥ 0

$$x \geqslant 0$$
, $y \geqslant 0$

Oznake

$$x \longrightarrow \operatorname{broj}$$
 komada igrački A

$$y \longrightarrow \text{broj komada igrački } B$$

Funkcija prihoda

$$P = 20x + 18y$$

Ograničenja

ullet broj komada igrački je broj $\geqslant 0$

$$x \geqslant 0, \quad y \geqslant 0$$

Oznake

$$x \longrightarrow \text{broj komada igrački } A$$
 $y \longrightarrow \text{broj komada igrački } B$

Funkcija prihoda

$$P = 20x + 18y$$

Ograničenja

ullet broj komada igrački je broj $\geqslant 0$

$$x \geqslant 0, \quad y \geqslant 0$$

potrebno je najviše 400 komada igrački A

Oznake

$$x \longrightarrow \text{broj komada igrački } A$$
 $y \longrightarrow \text{broj komada igrački } B$

Funkcija prihoda

$$P=20x+18y$$

Ograničenja

ullet broj komada igrački je broj $\geqslant 0$

$$x \geqslant 0, \quad y \geqslant 0$$

potrebno je najviše 400 komada igrački A

$$x \leqslant 400$$

Oznake

$$x \longrightarrow \text{broj komada igrački } A$$
 $y \longrightarrow \text{broj komada igrački } B$

Funkcija prihoda

$$P=20x+18y$$

Ograničenja

ullet broj komada igrački je broj $\geqslant 0$

$$x \geqslant 0, \quad y \geqslant 0$$

potrebno je najviše 400 komada igrački A

 $x \longrightarrow \text{broj komada igrački } A$

 $y \longrightarrow \text{broj komada igrački } B$

Funkcija prihoda

$$P = 20x + 18y$$

Ograničenja

broj komada igrački je broj ≥ 0

$$x \geqslant 0, \quad y \geqslant 0$$

potrebno je najviše 400 komada igrački A

 igrački B ne treba više od 960 komada

 $x \longrightarrow broj komada igrački A$

y → broj komada igrački B

Funkcija prihoda

$$P=20x+18y$$

Ograničenja

 broj komada igrački je broj ≥ 0 $x \geqslant 0$, $y \geqslant 0$

 potrebno je najviše 400 komada igrački A

• igrački B ne treba više od 960 komada

 $v \leq 960$

 $x \longrightarrow broj komada igrački A$

y → broj komada igrački B

Funkcija prihoda

$$P=20x+18y$$

Ograničenja

broj komada igrački je broj ≥ 0

 $x \geqslant 0$, $y \geqslant 0$

 potrebno je najviše 400 komada igrački A

• igrački B ne treba više od 960

komada

 $x \longrightarrow \text{broj komada igrački } A$

y → broj komada igrački B

Funkcija prihoda

$$P = 20x + 18y$$

Ograničenja

ullet broj komada igrački je broj $\geqslant 0$

$$x \geqslant 0, \quad y \geqslant 0$$

potrebno je najviše 400 komada igrački A

• igrački B ne treba više od 960 komada $y \leqslant 960$

 poduzeće ima na raspolaganju 45 sati

 $x \longrightarrow broj komada igrački A$

y → broj komada igrački B

Funkcija prihoda

$$P=20x+18y$$

Ograničenja

broj komada igrački je broj ≥ 0

$$x \geqslant 0, \quad y \geqslant 0$$

 potrebno je najviše 400 komada igrački A

• igrački B ne treba više od 960

komada $y \leqslant 960$

 poduzeće ima na raspolaganju 45 sati

1 sat ← 10 igrački A

 $x \longrightarrow broj komada igrački A$ y → broj komada igrački B

Funkcija prihoda

$$P=20x+18y$$

Ograničenja

 $x \geqslant 0$, $y \geqslant 0$

broj komada igrački je broj ≥ 0

 potrebno je najviše 400 komada igrački A

• igrački B ne treba više od 960 komada

 $y \le 960$

 poduzeće ima na raspolaganju 45 sati

1 sat ← 10 igrački A 1 sat ← 24 igrački B

 $x \longrightarrow broj komada igrački A$ y → broj komada igrački B

Funkcija prihoda

$$P=20x+18y$$

Ograničenja

 broj komada igrački je broj ≥ 0 $x \geqslant 0$, $y \geqslant 0$

 potrebno je najviše 400 komada igrački A

- igrački B ne treba više od 960
 - komada $y \leqslant 960$
- poduzeće ima na raspolaganju 45 sati
 - 1 sat ← 10 igrački A 1 sat ← 24 igrački B

 $x \longrightarrow broj komada igrački A$ y → broj komada igrački B

Funkcija prihoda

$$P=20x+18y$$

Ograničenja broj komada igrački je broj ≥ 0

- $x \geqslant 0$, $y \geqslant 0$
- potrebno je najviše 400 komada igrački A

- igrački B ne treba više od 960
 - komada $y \le 960$
- poduzeće ima na raspolaganju 45 sati
 - 1 sat ← 10 igrački A /: 10 1 sat ← 24 igrački B

 $x \longrightarrow broj komada igrački A$

y → broj komada igrački B

Funkcija prihoda

Ograničenja

$$P=20x+18y$$

broj komada igrački je broj ≥ 0

$$x \geqslant 0, \quad y \geqslant 0$$

 potrebno je najviše 400 komada igrački A

• igrački B ne treba više od 960

komada $y \leqslant 960$

 poduzeće ima na raspolaganju 45 sati

1 sat ← 10 igrački A /: 10 1 sat ← 24 igrački B

 $\frac{1}{10}$ sati \longleftrightarrow 1 igračka A

 $x \longrightarrow broj komada igrački A$ y → broj komada igrački B

Funkcija prihoda

Ograničenja

$$P=20x+18y$$

- broj komada igrački je broj ≥ 0
 - $x \geqslant 0$, $y \geqslant 0$
- potrebno je najviše 400 komada igrački A

• igrački B ne treba više od 960

komada $y \leqslant 960$

• poduzeće ima na raspolaganju 45 sati

1 sat ⟨w→ 10 igrački *A* /: 10 1 sat ← 24 igrački *B* /: 24 $\frac{1}{10}$ sati \longleftrightarrow 1 igračka A

2/13

 $x \longrightarrow broj komada igrački A$

y → broj komada igrački B

Funkcija prihoda

P = 20x + 18v

Ograničenja broj komada igrački je broj ≥ 0

 $x \geqslant 0$, $y \geqslant 0$

 potrebno je najviše 400 komada igrački A

• igrački B ne treba više od 960

45 sati

komada $y \leqslant 960$

• poduzeće ima na raspolaganju

1 sat ← 10 igrački A /: 10 1 sat ← 24 igrački *B* /: 24

 $\frac{1}{10}$ sati \longleftrightarrow 1 igračka A $\frac{1}{24}$ sati \longleftrightarrow 1 igračka B

2/13

 $x \longrightarrow broj komada igrački A$

y → broj komada igrački B

Funkcija prihoda

$$P=20x+18y$$

- Ograničenja broj komada igrački je broj ≥ 0
- $x \geqslant 0$, $y \geqslant 0$
- potrebno je najviše 400 komada igrački A

• igrački B ne treba više od 960

komada $y \leqslant 960$

• poduzeće ima na raspolaganju 45 sati

1 sat ← 10 igrački A /: 10 1 sat ← 24 igrački *B* /: 24 $\frac{1}{10}$ sati \longleftrightarrow 1 igračka A

 $\frac{1}{24}$ sati \longleftrightarrow 1 igračka B

 $x \longrightarrow broj komada igrački A$ y → broj komada igrački B

Funkcija prihoda

$$P=20x+18y$$

- Ograničenja broj komada igrački je broj ≥ 0
- $x \geqslant 0$, $y \geqslant 0$
- potrebno je najviše 400 komada igrački A

• igrački B ne treba više od 960

komada $y \leqslant 960$

• poduzeće ima na raspolaganju 45 sati

1 sat ← 10 igrački A /: 10 1 sat ← 24 igrački *B* /: 24 $\frac{1}{10}$ sati \longleftrightarrow 1 igračka $A/\cdot x$

 $\frac{1}{24}$ sati \longleftrightarrow 1 igračka B

 $x \longrightarrow broj komada igrački A$

y → broj komada igrački B

Funkcija prihoda

Ograničenja

$$P=20x+18y$$

- broj komada igrački je broj ≥ 0
- $x \geqslant 0$, $y \geqslant 0$
- potrebno je najviše 400 komada igrački A

• igrački B ne treba više od 960

komada $y \leqslant 960$

• poduzeće ima na raspolaganju 45 sati

1 sat ← 10 igrački A /: 10 1 sat ← 24 igrački *B* /: 24

 $\frac{1}{10}$ sati \longleftrightarrow 1 igračka $A/\cdot x$ $\frac{1}{24}$ sati \longleftrightarrow 1 igračka B

 $\frac{1}{10}x$ sati $\longleftrightarrow x$ igrački A

 $x \longrightarrow broj komada igrački A$

y → broj komada igrački B

Funkcija prihoda

Ograničenja

$$P=20x+18y$$

- broj komada igrački je broj ≥ 0
- $x \geqslant 0$, $y \geqslant 0$
- potrebno je najviše 400 komada igrački A

• igrački B ne treba više od 960

komada $y \leqslant 960$

• poduzeće ima na raspolaganju 45 sati

1 sat ← 10 igrački A /: 10 1 sat ← 24 igrački *B* /: 24

 $\frac{1}{10}$ sati \longleftrightarrow 1 igračka $A/\cdot x$ $\frac{1}{24}$ sati \longleftrightarrow 1 igračka $B/\cdot y$

 $\frac{1}{10}x$ sati $\longleftrightarrow x$ igrački A

 $x \longrightarrow broj komada igrački A$

y → broj komada igrački B

Funkcija prihoda P = 20x + 18v

Ograničenja

- broj komada igrački je broj ≥ 0 $x \geqslant 0$, $y \geqslant 0$
- potrebno je najviše 400 komada igrački A

• igrački B ne treba više od 960

komada y ≤ 960

• poduzeće ima na raspolaganju 45 sati

1 sat ← 10 igrački A /: 10 1 sat ← 24 igrački *B* /: 24

 $\frac{1}{10}$ sati \longleftrightarrow 1 igračka $A/\cdot x$ $\frac{1}{24}$ sati \longleftrightarrow 1 igračka $B/\cdot y$

 $\frac{1}{10}x$ sati $\longleftrightarrow x$ igrački A

 $\frac{1}{24}y$ sati \longleftrightarrow y igrački B

 $x \longrightarrow broj komada igrački A$

y → broj komada igrački B

Funkcija prihoda

$$P=20x+18y$$

Ograničenja

- broj komada igrački je broj ≥ 0
- $x \geqslant 0$, $y \geqslant 0$
- potrebno je najviše 400 komada igrački A

• igrački B ne treba više od 960

komada y ≤ 960

• poduzeće ima na raspolaganju 45 sati

1 sat ← 10 igrački A /: 10 1 sat ← 24 igrački *B* /: 24

 $\frac{1}{10}$ sati \longleftrightarrow 1 igračka $A/\cdot x$ $\frac{1}{24}$ sati \longleftrightarrow 1 igračka $B/\cdot y$ $\frac{1}{10}x$ sati $\longleftrightarrow x$ igrački A

 $\frac{1}{24}y$ sati \longleftrightarrow y igrački B

Oznake

Rješenje

 $x \longrightarrow broj komada igrački A$ y → broj komada igrački B

Funkcija prihoda

$$P = 20x + 18y$$

Ograničenja

- broj komada igrački je broj ≥ 0 $x \geqslant 0$, $y \geqslant 0$
- potrebno je najviše 400 komada igrački A

komada $y \leqslant 960$

• poduzeće ima na raspolaganju 45 sati

• igrački B ne treba više od 960

1 sat ⟨w→ 10 igrački A /: 10 1 sat ← 24 igrački *B* /: 24

 $\frac{1}{10}$ sati \longleftrightarrow 1 igračka $A/\cdot x$ $\frac{1}{24}$ sati \longleftrightarrow 1 igračka $B/\cdot y$

 $\frac{1}{10}x$ sati $\longleftrightarrow x$ igrački A $\frac{1}{24}y$ sati \longleftrightarrow y igrački B

 $\frac{1}{10}x + \frac{1}{24}y \leq 45$ 2/13

Oznake

Rješenje

 $x \longrightarrow broj komada igrački A$ y → broj komada igrački B

Funkcija prihoda

P = 20x + 18v

Ograničenja

- broj komada igrački je broj ≥ 0
- $x \geqslant 0$, $y \geqslant 0$
- potrebno je najviše 400 komada igrački A

komada y ≤ 960

• poduzeće ima na raspolaganju 45 sati

• igrački B ne treba više od 960

- 1 sat ⟨w→ 10 igrački A /: 10
 - 1 sat ← 24 igrački *B* /: 24 $\frac{1}{10}$ sati \longleftrightarrow 1 igračka $A/\cdot x$
 - $\frac{1}{24}$ sati \longleftrightarrow 1 igračka $B/\cdot y$ $\frac{1}{10}x$ sati $\longleftrightarrow x$ igrački A
 - $\frac{1}{24}y$ sati \longleftrightarrow y igrački B

 $\left| \frac{1}{10}x + \frac{1}{24}y \leqslant 45 \right|$

$$x = 0 \longrightarrow y = 1080$$

 $y = 0 \longrightarrow x = 450$

$$x = 0 \longrightarrow y = 1080$$

 $y = 0 \longrightarrow x = 450$

$$x = 0 \longrightarrow y = 1080$$

 $y = 0 \longrightarrow x = 450$

$$x = 0 \longrightarrow y = 1080$$

 $y = 0 \longrightarrow x = 450$

$$x = 0 \longrightarrow y = 1080$$

 $y = 0 \longrightarrow x = 450$

$$x = 0 \longrightarrow y = 1080$$

 $y = 0 \longrightarrow x = 450$

$$x = 0 \longrightarrow y = 1080$$

$$y = 0 \longrightarrow x = 450$$

$$x \ge 0$$

$$y \ge 0$$

$$x \le 400$$

$$y \le 960$$

$$\frac{1}{10}x + \frac{1}{24}y \le 45$$

$$\frac{1}{10}x + \frac{1}{24}y = 45$$

$$x = 0 \longrightarrow y = 1080$$

$$y = 0 \longrightarrow x = 450$$

P=20x+18y

Vršna rješenja

drugi zadatak

Zadatak 2

Vitamini A i B nalaze se u dvije vrste tableta P i Q. Tableta P ima jednu jedinicu vitamina A i četiri jedinice vitamina B. Tableta Q ima tri jedinice vitamina A i četiri jedinice vitamina B. Cijena jedne tablete P je 10 novčanih jedinica, a jedne tablete Q je 12 novčanih jedinica. Koliko tableta P i koliko tableta Q treba kupiti da bi se dobilo najmanje 10 jedinica vitamina A i najmanje 24 jedinice vitamina B tako da su troškovi nabave najmanji?

Oznake

 $p \longrightarrow \text{broj komada tableti } P$

Oznake

 $p \longrightarrow \text{broj komada tableti } P$

 $q \longrightarrow \operatorname{broj}$ komada tableti Q

Oznake

 $p \longrightarrow \text{broj komada tableti } P$

 $q \longrightarrow \mathsf{broj}$ komada tableti Q

Funkcija troškova

Oznake

 $p \longrightarrow \text{broj komada tableti } P$

 $q \longrightarrow \mathsf{broj}$ komada tableti Q

Funkcija troškova

$$T = 10p + 12q$$

Oznake

 $p \longrightarrow \text{broj komada tableti } P$

 $q \longrightarrow \mathsf{broj}$ komada tableti Q

Funkcija troškova

$$T = 10p + 12q$$

Ograničenja

Oznake

 $p \longrightarrow \text{broj komada tableti } P$

 $q \longrightarrow \mathsf{broj}$ komada tableti Q

Funkcija troškova

$$T = 10p + 12q$$

Ograničenja

• broj komada tableti je broj ≥ 0

Oznake

$$p \longrightarrow \text{broj komada tableti } P$$

$$q \longrightarrow \mathsf{broj}$$
 komada tableti Q

Funkcija troškova

$$T = 10p + 12q$$

Ograničenja

$$p\geqslant 0, \quad q\geqslant 0$$

Oznake

$$p \longrightarrow \text{broj komada tableti } P$$

$$q \longrightarrow \mathsf{broj}$$
 komada tableti Q

Funkcija troškova

$$T = 10p + 12q$$

Ograničenja

$$p\geqslant 0, \quad q\geqslant 0$$

Oznake

$$p \longrightarrow \text{broj komada tableti } P$$

$$q \longrightarrow \mathsf{broj}$$
 komada tableti Q

Funkcija troškova

$$T=10p+12q$$

Ograničenja

$$p\geqslant 0, \quad q\geqslant 0$$

	P	Q	Σ
A			
В			

Oznake

$$p \longrightarrow \text{broj komada tableti } P$$

$$q \longrightarrow \mathsf{broj}$$
 komada tableti Q

Funkcija troškova

$$T=10p+12q$$

Ograničenja

$$p\geqslant 0, \quad q\geqslant 0$$

	P	Q	Σ
Α	1		
В			

Oznake

$$p \longrightarrow \text{broj komada tableti } P$$

$$q \longrightarrow \mathsf{broj}$$
 komada tableti Q

Funkcija troškova

$$T=10p+12q$$

Ograničenja

$$p\geqslant 0, \quad q\geqslant 0$$

	P	Q	Σ
Α	1		
В	4		

Oznake

$$p \longrightarrow \text{broj komada tableti } P$$

$$q \longrightarrow \mathsf{broj}$$
 komada tableti Q

Funkcija troškova

$$T=10p+12q$$

Ograničenja

$$p\geqslant 0, \quad q\geqslant 0$$

	P	Q	Σ
Α	1	3	
В			

Oznake

$$p \longrightarrow \text{broj komada tableti } P$$

$$q \longrightarrow \mathsf{broj}$$
 komada tableti Q

Funkcija troškova

$$T=10p+12q$$

Ograničenja

$$p\geqslant 0, \quad q\geqslant 0$$

	P	Q	Σ
Α	1	3	
В	4	4	

Oznake

$$p \longrightarrow \text{broj komada tableti } P$$

$$q \longrightarrow \mathsf{broj}$$
 komada tableti Q

Funkcija troškova

$$T=10p+12q$$

Ograničenja

$$p\geqslant 0, \quad q\geqslant 0$$

	P	Q	Σ		
A	1	3			
A B	4	4			
	/· p				

Oznake

$$p \longrightarrow \text{broj komada tableti } P$$

$$q \longrightarrow \mathsf{broj}$$
 komada tableti Q

Funkcija troškova

$$T = 10p + 12q$$

Ograničenja

$$p\geqslant 0, \quad q\geqslant 0$$

	P	Q	Σ		
A	1	3			
A B	4	4			
	/·p /·q				

Oznake

$$p \longrightarrow \text{broj komada tableti } P$$

$$q \longrightarrow \mathsf{broj}$$
 komada tableti Q

Funkcija troškova

$$T = 10p + 12q$$

Ograničenja

ullet broj komada tableti je broj $\geqslant 0$

$$p\geqslant 0, \quad q\geqslant 0$$

$$\begin{array}{c|cccc}
 & P & Q & \Sigma \\
\hline
A & 1 & 3 & \geqslant 10 \\
B & 4 & 4 & \\
\hline
 & / \cdot p & / \cdot q
\end{array}$$

 potrebno je barem 10 jedinica vitamina A

Oznake

$$p \longrightarrow \text{broj komada tableti } P$$

$$q \longrightarrow \mathsf{broj}$$
 komada tableti Q

Funkcija troškova

$$T = 10p + 12q$$

Ograničenja

ullet broj komada tableti je broj $\geqslant 0$

$$p\geqslant 0, \quad q\geqslant 0$$

$$\begin{array}{c|cccc}
 & P & Q & \Sigma \\
\hline
A & 1 & 3 & \geqslant 10 \\
B & 4 & 4 & \\
\hline
 & / \cdot p & / \cdot q
\end{array}$$

 potrebno je barem 10 jedinica vitamina A

$$p + 3q \geqslant 10$$

Oznake

$$p \longrightarrow \text{broj komada tableti } P$$

$$q \longrightarrow \mathsf{broj}$$
 komada tableti Q

Funkcija troškova

$$T = 10p + 12q$$

Ograničenja

ullet broj komada tableti je broj $\geqslant 0$

$$p\geqslant 0, \quad q\geqslant 0$$

$$\begin{array}{c|cccc}
 & P & Q & \Sigma \\
\hline
A & 1 & 3 & \geqslant 10 \\
B & 4 & 4 & \\
\hline
 & / \cdot p & / \cdot q
\end{array}$$

 potrebno je barem 10 jedinica vitamina A

$$p+3q\geqslant 10$$

Oznake

$$p \longrightarrow \text{broj komada tableti } P$$

$$q \longrightarrow \mathsf{broj}$$
 komada tableti Q

Funkcija troškova

$$T=10p+12q$$

Ograničenja

ullet broj komada tableti je broj $\geqslant 0$

$$p\geqslant 0, \quad q\geqslant 0$$

$$\begin{array}{c|ccc} & P & Q & \Sigma \\ \hline A & 1 & 3 & \geqslant 10 \\ B & 4 & 4 & \geqslant 24 \\ \hline / \cdot p & / \cdot q & \end{array}$$

 potrebno je barem 10 jedinica vitamina A

$$p+3q\geqslant 10$$

 potrebno je barem 24 jedinica vitamina B

Oznake

$$p \longrightarrow \text{broj komada tableti } P$$

$$q \longrightarrow \mathsf{broj}$$
 komada tableti Q

Funkcija troškova

$$T = 10p + 12q$$

Ograničenja

• broj komada tableti je broj $\geqslant 0$

$$p\geqslant 0, \quad q\geqslant 0$$

$$\begin{array}{c|ccc} & P & Q & \Sigma \\ \hline A & 1 & 3 & \geqslant 10 \\ B & 4 & 4 & \geqslant 24 \\ \hline / \cdot p & / \cdot q & \end{array}$$

 potrebno je barem 10 jedinica vitamina A

$$p + 3q \geqslant 10$$

 potrebno je barem 24 jedinica vitamina B

$$4p + 4q \geqslant 24$$

Oznake

$$p \longrightarrow \text{broj komada tableti } P$$

$$q \longrightarrow \mathsf{broj}$$
 komada tableti Q

Funkcija troškova

$$T = 10p + 12q$$

Ograničenja

• broj komada tableti je broj $\geqslant 0$

$$p\geqslant 0, \quad q\geqslant 0$$

$$\begin{array}{c|ccc} & P & Q & \Sigma \\ \hline A & 1 & 3 & \geqslant 10 \\ B & 4 & 4 & \geqslant 24 \\ \hline / \cdot p & / \cdot q & \end{array}$$

 potrebno je barem 10 jedinica vitamina A

$$p+3q\geqslant 10$$

 potrebno je barem 24 jedinica vitamina B

$$4p + 4q \geqslant 24$$

 $p\geqslant 0$ $q\geqslant 0$ $p+3q\geqslant 10$ $4p+4q\geqslant 24$

 $p\geqslant 0$ $q\geqslant 0$ $p+3q\geqslant 10$ $4p+4q\geqslant 24$

7 / 13

7 / 13

7 / 13

Vršna rješenja

$$T(0,6) =$$

$$T(0,6) = 10 \cdot 0 + 12 \cdot 6$$

$$T(0,6) = 10 \cdot 0 + 12 \cdot 6 = 72$$

$$T(0,6) = 10 \cdot 0 + 12 \cdot 6 = 72$$

 $T(4,2) =$

$$T(0,6) = 10 \cdot 0 + 12 \cdot 6 = 72$$

 $T(4,2) = 10 \cdot 4 + 12 \cdot 2$

$$T(0,6) = 10 \cdot 0 + 12 \cdot 6 = 72$$

 $T(4,2) = 10 \cdot 4 + 12 \cdot 2 = 64$

$$T(0,6) = 10 \cdot 0 + 12 \cdot 6 = 72$$

 $T(4,2) = 10 \cdot 4 + 12 \cdot 2 = 64$
 $T(10,0) =$

$$T(0,6) = 10 \cdot 0 + 12 \cdot 6 = 72$$

 $T(4,2) = 10 \cdot 4 + 12 \cdot 2 = 64$
 $T(10,0) = 10 \cdot 10 + 12 \cdot 0$

$$T(0,6) = 10 \cdot 0 + 12 \cdot 6 = 72$$

 $T(4,2) = 10 \cdot 4 + 12 \cdot 2 = 64$
 $T(10,0) = 10 \cdot 10 + 12 \cdot 0 = 100$

$$T(0,6) = 10 \cdot 0 + 12 \cdot 6 = 72$$

 $T(4,2) = 10 \cdot 4 + 12 \cdot 2 = 64$ MINIMUM
 $T(10,0) = 10 \cdot 10 + 12 \cdot 0 = 100$

$$T = 10p + 12q$$

Vršna rješenja

T(p,q) = 10p + 12q

64 novčane jedinice ako se kupe četiri tablete P i dvije tablete Q.

$$T(0,6) = 10 \cdot 0 + 12 \cdot 6 = 72$$
 $T(4,2) = 10 \cdot 4 + 12 \cdot 2 = 64$ MINIMUM
$$T(10,0) = 10 \cdot 10 + 12 \cdot 0 = 100$$

T = 10p + 12q

Vršna rješenja

(0,6), (4,2), (10,0)

T(p,q)=10p+12q

Minimalni troškovi iznose 64 novčane jedinice ako se kupe četiri tablete *P* i dvije tablete *Q*.

$$T(4,2) = 10 \cdot 4 + 12 \cdot 2 = 64$$
 ***MINIMUM

 $T(10,0) = 10 \cdot 10 + 12 \cdot 0 = 100$

MAKSIMUM NE POSTOJI

treći zadatak

Zadatak 3

Novčani iznos od 12 000 € može se investirati u tri različita fonda. U prvom fondu godišnja zarada je 7%, u drugom fondu 8%, a u trećem visokorizičnom fondu 12%. Kako bi se smanjio rizik, u visokorizični fond uložit će se najviše 2000 €. Iz određenih ekonomskih razloga bolje je uložiti barem tri puta veći novčani iznos u prvi fond u odnosu na uloženi iznos u drugom fondu. Koje je optimalno ulaganje navedenog iznosa u spomenuta tri fonda kako bi se ostvarila maksimalna godišnja zarada? Koliko iznosi maksimalna godišnja zarada?

Rješenje Oznake

 $x \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 1. fond

Oznake

 $x \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 1. fond

 $y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 2. fond

Oznake

 $x \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 1. fond $y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 2. fond $12-x-y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 3. fond

Oznake

 $x \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 1. fond $y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 2. fond $12-x-y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 3. fond

Ograničenja

Oznake

 $x \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 1. fond $y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 2. fond $12-x-y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 3. fond

${\sf Ograni\check{c}enja}$

novčani iznosi su ≥ 0

Oznake

 $x \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 1. fond $y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 2. fond $12-x-y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 3. fond

Ograničenja

novčani iznosi su ≥ 0

$$x \geqslant 0$$
, $y \geqslant 0$, $12 - x - y \geqslant 0$

Oznake

 $x \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 1. fond $y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 2. fond $12-x-y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 3. fond

Ograničenja

novčani iznosi su ≥ 0

$$x \geqslant 0$$
, $y \geqslant 0$, $12 - x - y \geqslant 0$

U 3. fond je uloženo najviše 2000 €

Oznake

 $x \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 1. fond $y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 2. fond $12-x-y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 3. fond

Ograničenja

novčani iznosi su ≥ 0

$$x \geqslant 0$$
, $y \geqslant 0$, $12 - x - y \geqslant 0$

• U 3. fond je uloženo najviše 2000€

$$12 - x - y \leq 2$$

Oznake

 $x \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 1. fond $y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 2. fond $12-x-y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 3. fond

Ograničenja

novčani iznosi su ≥ 0

$$x \geqslant 0$$
, $y \geqslant 0$, $12 - x - y \geqslant 0$

• U 3. fond je uloženo najviše 2000€

$$12 - x - y \leqslant 2$$

• U 1. fond je uložen barem trostruko veći iznos u odnosu na 2. fond

Oznake

 $x \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 1. fond $y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 2. fond $12-x-y \longrightarrow$ novčani iznos u tisućama eura koji je uložen u 3. fond

Ograničenja

novčani iznosi su ≥ 0

$$x \geqslant 0$$
, $y \geqslant 0$, $12 - x - y \geqslant 0$

• U 3. fond je uloženo najviše 2000€

$$12 - x - y \leqslant 2$$

• U 1. fond je uložen barem trostruko veći iznos u odnosu na 2. fond

$$x \geqslant 3y$$

$$\left. \begin{array}{c}
 x \geqslant 0 \\
 y \geqslant 0 \\
 12 - x - y \geqslant 0 \\
 12 - x - y \leqslant 2 \\
 x \geqslant 3y
 \end{array} \right\} \xrightarrow{\text{\timeswwwwwww}} x + y \leqslant 12$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
12 - x - y \geqslant 0 \\
12 - x - y \leqslant 2 \\
x \geqslant 3y
\end{vmatrix}$$

$$-\text{www.ww.} \qquad x + y \leqslant 12 \\
x + y \geqslant 10 \\
x - 3y \geqslant 0$$

$$\begin{array}{c}
x \geqslant 0 \\
y \geqslant 0 \\
12 - x - y \geqslant 0 \\
12 - x - y \leqslant 2 \\
x \geqslant 3y
\end{array}$$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
12 - x - y \geqslant 0 \\
12 - x - y \leqslant 2 \\
x \geqslant 3y
\end{vmatrix}$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
x + y \leqslant 12 \\
x + y \geqslant 10 \\
x - 3y \geqslant 0
\end{vmatrix}$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
12 - x - y \geqslant 0 \\
12 - x - y \leqslant 2 \\
x \geqslant 3y
\end{vmatrix}$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
x + y \leqslant 12 \\
x + y \geqslant 10 \\
x - 3y \geqslant 0
\end{vmatrix}$$

$$K =$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
12 - x - y \geqslant 0 \\
12 - x - y \leqslant 2 \\
x \geqslant 3y
\end{vmatrix}$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
x + y \leqslant 12 \\
x + y \geqslant 10 \\
x - 3y \geqslant 0
\end{vmatrix}$$

$$K = 0.07x$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
12 - x - y \geqslant 0 \\
12 - x - y \leqslant 2 \\
x \geqslant 3y
\end{vmatrix}$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
x + y \leqslant 12 \\
x + y \geqslant 10 \\
x - 3y \geqslant 0
\end{vmatrix}$$

$$K = 0.07x +$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
12 - x - y \geqslant 0 \\
12 - x - y \leqslant 2 \\
x \geqslant 3y
\end{vmatrix}$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
x + y \leqslant 12 \\
x + y \geqslant 10 \\
x - 3y \geqslant 0
\end{vmatrix}$$

$$K=0.07x+0.08y$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
12 - x - y \geqslant 0 \\
12 - x - y \leqslant 2 \\
x \geqslant 3y
\end{vmatrix}$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
x + y \leqslant 12 \\
x + y \geqslant 10 \\
x - 3y \geqslant 0
\end{vmatrix}$$

$$K = 0.07x + 0.08y +$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
12 - x - y \geqslant 0 \\
12 - x - y \leqslant 2 \\
x \geqslant 3y
\end{vmatrix}
\xrightarrow{\text{www.}}
\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
x + y \leqslant 12 \\
x + y \geqslant 10 \\
x - 3y \geqslant 0
\end{vmatrix}$$

$$K = 0.07x + 0.08y + 0.12 \cdot (12 - x - y)$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
12 - x - y \geqslant 0 \\
12 - x - y \leqslant 2 \\
x \geqslant 3y
\end{vmatrix}
\xrightarrow{\text{www.}}
\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
x + y \leqslant 12 \\
x + y \geqslant 10 \\
x - 3y \geqslant 0
\end{vmatrix}$$

$$K = 0.07x + 0.08y + 0.12 \cdot (12 - x - y)$$
$$K =$$

$$K = 0.07x + 0.08y + 0.12 \cdot (12 - x - y)$$
$$K = 1.44$$

$$K = 0.07x + 0.08y + 0.12 \cdot (12 - x - y)$$
$$K = 1.44 - 0.05x$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
12 - x - y \geqslant 0 \\
12 - x - y \leqslant 2 \\
x \geqslant 3y
\end{vmatrix}$$
--www.www.ww.
$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
x + y \leqslant 12 \\
x + y \geqslant 10 \\
x - 3y \geqslant 0
\end{vmatrix}$$

$$K = 0.07x + 0.08y + 0.12 \cdot (12 - x - y)$$
$$K = 1.44 - 0.05x - 0.04y$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
12 - x - y \geqslant 0 \\
12 - x - y \leqslant 2 \\
x \geqslant 3y
\end{vmatrix}$$

$$\begin{vmatrix}
x \geqslant 0 \\
y \geqslant 0 \\
x + y \leqslant 12 \\
x + y \geqslant 10 \\
x - 3y \geqslant 0
\end{vmatrix}$$

$$K = 0.07x + 0.08y + 0.12 \cdot (12 - x - y)$$

$$K = 1.44 - 0.05x - 0.04y$$

$$x \ge 0$$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x \geqslant 0$$

$$y \geqslant 0$$

$$x + y \leqslant 12$$

$$x + y \geqslant 10$$

$$x - 3y \geqslant 0$$

$$x \ge 0$$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

$$x \ge 0$$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

$$x = 0 \longrightarrow y = 12$$

$$x \ge 0$$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

$$x = 0 \xrightarrow{} y = 12$$

$$y = 0 \xrightarrow{} x = 12$$

$$x + y = 10$$

x = 0

$$x \ge 0$$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

$$x = 0 \longrightarrow y = 12$$

$$y = 0 \longrightarrow x = 12$$

$$x + y = 10$$

 $x = 0 \longrightarrow y = 10$

$$x \ge 0$$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

$$x = 0 \longrightarrow y = 12$$

$$y = 0 \longrightarrow x = 12$$

$$x + y = 10$$

 $x = 0 \longrightarrow y = 10$

$$x \ge 0$$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

$$x + y = 12$$

$$x = 0 \xrightarrow{} y = 12$$

$$y = 0 \xrightarrow{} x = 12$$

$$x + y = 10$$

$$x = 0 \xrightarrow{} y = 10$$

$$y = 0 \xrightarrow{} x = 10$$

$$x - 3y = 0$$

$$x \geqslant 0$$

$$y \geqslant 0$$

$$x + y \leqslant 12$$

$$x + y \geqslant 10$$

$$x - 3y \geqslant 0$$

$$x + y = 12$$

$$x = 0 \xrightarrow{} y = 12$$

$$y = 0 \xrightarrow{} x = 12$$

$$x + y = 10$$

$$x = 0 \xrightarrow{} y = 10$$

$$y = 0 \xrightarrow{} x = 10$$

$$x - 3y = 0$$

$$x = 0$$

$$x \ge 0$$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

$$x = 0 \longrightarrow y = 12$$

$$y = 0 \xrightarrow{} x = 12$$

$$x + y = 10$$

$$x = 0 \xrightarrow{} y = 10$$

$$y = 0 \xrightarrow{} x = 10$$

$$x - 3y = 0$$

$$x = 0 \xrightarrow{} y = 0$$

$$x \ge 0$$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

$$y = 0 \longrightarrow x = 12$$

$$x + y = 10$$

$$x = 0 \longrightarrow y = 10$$

$$y = 0 \longrightarrow x = 10$$

$$x - 3y = 0$$

 $x = 0 \longrightarrow y = 0$

$$x \geqslant 0$$

$$y \geqslant 0$$

$$x + y \leqslant 12$$

$$x + y \geqslant 10$$

$$x - 3y \geqslant 0$$

$$x + y = 12$$

$$x = 0 \xrightarrow{} y = 12$$

$$y = 0 \xrightarrow{} x = 12$$

$$x + y = 10$$

$$x = 0 \xrightarrow{} y = 10$$

$$y = 0 \xrightarrow{} x = 10$$

$$x - 3y = 0$$

$$x = 0 \xrightarrow{} y = 0$$

$$y = 1$$

$$y \geqslant 0$$

$$x + y \leqslant 12$$

$$x + y \geqslant 10$$

$$x - 3y \geqslant 0$$

$$x + y = 12$$

$$x = 0 \longrightarrow y = 12$$

y = 0 - x = 12

 $y = 1 \rightarrow x = 3$

$$x + y = 10$$
$$x = 0 - w y = 10$$

 $y = 0 \xrightarrow{} x = 10$ x - 3y = 0 $x = 0 \xrightarrow{} y = 0$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

$$x = 0 \xrightarrow{} y = 12$$

 $y = 0 \xrightarrow{} x = 12$

$$y = 0 \xrightarrow{x} x = 12$$

$$x + y = 10$$

$$x = 0 \xrightarrow{x} y = 10$$

$$y = 0 \longrightarrow x = 10$$
$$x - 3y = 0$$
$$x = 0 \longrightarrow y = 0$$

$$y = 1 \rightarrow x = 3$$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

$$x = 0 \longrightarrow y = 12$$

 $y = 0 \longrightarrow x = 12$ x + y = 10

$$x = 0 \xrightarrow{} y = 10$$

$$y = 0 \xrightarrow{} x = 10$$

x - 3y = 0 $x = 0 \longrightarrow y = 0$ $y = 1 \longrightarrow x = 3$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

$$x = 0 \longrightarrow y = 12$$

 $y = 0 \longrightarrow x = 12$ x + y = 10 $x = 0 \longrightarrow y = 10$

$$y = 0 \longrightarrow x = 10$$

 $x - 3y = 0$
 $x = 0 \longrightarrow y = 0$
 $y = 1 \longrightarrow x = 3$

 $12 \, / \, 13$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

 $x = 0 \longrightarrow y = 12$

 $y = 0 \xrightarrow{} x = 12$ x + y = 10

 $y = 1 \rightarrow x = 3$

$$x = 0 \longrightarrow y = 10$$

$$y = 0 \longrightarrow x = 10$$

$$x - 3y = 0$$

$$x = 0 \longrightarrow y = 0$$

12 / 13

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

x + y = 12x = 0 - w y = 12

 $x \geqslant 0$

$$y = 0 \longrightarrow x = 12$$

 $x + y = 10$
 $x = 0 \longrightarrow y = 10$
 $y = 0 \longrightarrow x = 10$

x - 3y = 0 $x = 0 \longrightarrow y = 0$ $y = 1 \longrightarrow x = 3$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

x + y = 10 $x = 0 \xrightarrow{} y = 10$ $y = 0 \xrightarrow{} x = 10$ x - 3y = 0

 $x = 0 \longrightarrow y = 0$ $y = 1 \longrightarrow x = 3$

 $x = 0 \longrightarrow y = 12$ $y = 0 \longrightarrow x = 12$

12 / 13

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

$$x = 0 \longrightarrow y = 12$$

x + y = 10 $x = 0 \xrightarrow{} y = 10$ $y = 0 \xrightarrow{} x = 10$ x - 3y = 0

 $x = 0 \rightarrow y = 0$

 $y = 1 \rightarrow x = 3$

12 / 13

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

 $x = 0 \xrightarrow{} y = 10$ $y = 0 \xrightarrow{} x = 10$ x - 3y = 0 $x = 0 \xrightarrow{} y = 0$

 $y = 1 \rightarrow x = 3$

 $x = 0 \longrightarrow y = 12$ $y = 0 \longrightarrow x = 12$

x + y = 10

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

 $x = 0 \longrightarrow y = 10$ $y = 0 \longrightarrow x = 10$ x - 3y = 0

 $x = 0 \rightarrow y = 0$

 $y = 1 \rightarrow x = 3$

 $x = 0 \xrightarrow{} y = 12$ $y = 0 \xrightarrow{} x = 12$ x + y = 10

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

 $x = 0 \xrightarrow{} y = 10$ $y = 0 \xrightarrow{} x = 10$ x - 3y = 0 $x = 0 \xrightarrow{} y = 0$

 $y = 1 \rightarrow x = 3$

12/13

x + y = 10

 $x = 0 \longrightarrow y = 12$ $y = 0 \longrightarrow x = 12$

x + y = 10 $x = 0 \longrightarrow y = 10$ $y = 0 \longrightarrow x = 10$ x - 3y = 0

 $x = 0 \rightarrow y = 0$

 $y = 1 \rightarrow x = 3$

 $y = 0 \rightarrow x = 12$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

 $x = 0 \longrightarrow y = 10$ $y = 0 \longrightarrow x = 10$ x - 3y = 0 $x = 0 \longrightarrow y = 0$

 $y = 1 \rightarrow x = 3$

 $x = 0 \xrightarrow{} y = 12$ $y = 0 \xrightarrow{} x = 12$ x + y = 10

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

$$x = 0 \longrightarrow y = 12$$

x + y = 10 $x = 0 \xrightarrow{} y = 10$ $y = 0 \xrightarrow{} x = 10$ x - 3y = 0

 $x = 0 \longrightarrow y = 0$

 $y = 1 \rightarrow x = 3$

 $y = 0 \rightarrow x = 12$

 $y \ge 0$ $x + y \le 12$ $x + y \ge 10$ $x - 3y \ge 0$ x + y = 12 $x = 0 \longrightarrow y = 12$

 $x \geqslant 0$

x + y = 10 $x = 0 \xrightarrow{} y = 10$ $y = 0 \xrightarrow{} x = 10$ x - 3y = 0 $x = 0 \xrightarrow{} y = 0$

 $y = 1 \rightarrow x = 3$

 $y = 0 \rightarrow x = 12$

 $y \ge 0$ $x + y \le 12$ $x + y \ge 10$ $x - 3y \ge 0$ x + y = 12 $x = 0 \longrightarrow y = 12$

 $y = 0 \rightarrow x = 12$

 $x \geqslant 0$

x + y = 10 $x = 0 \longrightarrow y = 10$ $y = 0 \longrightarrow x = 10$

x - 3y = 0 $x = 0 \xrightarrow{} y = 0$ $y = 1 \xrightarrow{} x = 3$

 $y \ge 0$ $x + y \le 12$ $x + y \ge 10$ $x - 3y \ge 0$ x + y = 12 $x = 0 \longrightarrow y = 12$

 $x \geqslant 0$

x + y = 10 $x = 0 \xrightarrow{} y = 10$ $y = 0 \xrightarrow{} x = 10$ x - 3y = 0

 $x = 0 \longrightarrow y = 0$ $y = 1 \longrightarrow x = 3$

 $y = 0 \longrightarrow x = 12$

x+y=10

 $x = 0 \longrightarrow y = 0$

 $y = 1 \longrightarrow x = 3$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

$$x = 0 \longrightarrow y = 12$$

$$x + y = 10$$

$$x = 0 \xrightarrow{} y = 10$$

$$y = 0 \xrightarrow{} x = 10$$

$$x - 3y = 0$$

$$x = 0 \xrightarrow{} y = 0$$

 $y = 0 \rightarrow x = 12$

 $y = 1 - w \rightarrow x = 3$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

$$y \ge 0$$

$$x + y \le 12$$

$$x + y \ge 10$$

$$x - 3y \ge 0$$

$$x + y = 12$$

$$x = 0 \longrightarrow y = 12$$

Vršna rješenja

$$K(x,y) = 1.44 - 0.05x - 0.04y$$

$$K = 1.44 - 0.05x - 0.04y$$

$$K = 1.44 - 0.05x - 0.04y$$

$$K(x,y) = 1.44 - 0.05x - 0.04y$$

$$K = 1.44 - 0.05x - 0.04y$$

$$K(x,y) = 1.44 - 0.05x - 0.04y$$

$$K = 1.44 - 0.05x - 0.04y$$

$$K(x,y) = 1.44 - 0.05x - 0.04y$$

$$K = 1.44 - 0.05x - 0.04y$$

$$K = 1.44 - 0.05x - 0.04y$$

$$K = 1.44 - 0.05x - 0.04y$$

$$K = 1.44 - 0.05x - 0.04y$$

$$K = 1.44 - 0.05x - 0.04y$$

$$K = 1.44 - 0.05x - 0.04y$$

$$K = 1.44 - 0.05x - 0.04y$$

