Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

3 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 320.54

Figure 1: Outline of path 1

2.1.1 Aldehyde Formation

Substrates:

 $1.\ {
m cyclohex}\mbox{-1-enyl-acetic acid methyl ester}$

Products:

1. cyclohex-1-enyl-acetaldehyde

Typical conditions: DIBAL.solvent e.g. DCM

Protections: none

Reference: 10.1039/C39940000483 and 10.1039/C3CC47867J and

10.1021/jo00222a054 and 10.1021/ja9934908 and 10.1021/jo902426z

Retrosynthesis ID: 28551

2.1.2 Corey-Fuchs reaction

Substrates:

1. cyclohex-1-enyl-acetaldehyde

2. Tetrabromomethane - available at Sigma-Aldrich

Products:

1. 1-prop-2-ynyl-cyclohexene

Typical conditions: PPh3.BuLi.CBr4

Protections: none

Reference: 10.1002/ejoc.200601137 and 10.1016/S0040-4039(01)94157-7

${\bf 2.1.3}\quad {\bf Addtition\ of\ acetylides\ to\ Weinreb\ amides}$

Substrates:

1. N-Methoxy-N-methylbenzamide - available at Sigma-Aldrich

2. 1-prop-2-ynyl-cyclohexene

Products:

1. O=C(C#CCC1=CCCCC1)c1ccccc1

Typical conditions: nBuLi.THF

Protections: none

Reference: 10.1055/s-2007-992366 and 10.1002/ejoc.201200246 and

10.1021/ja9009265

Retrosynthesis ID: 31443

2.1.4 Shi epoxidation

1. O=C(C#CCC1=CCCCC1)c1ccccc1

Products:

1. O=C(C#CCC12CCCCC1O2)c1ccccc1

Typical conditions: sugar.based.catalyst.KHSO5.K2CO3.H2O.ACN.0C

Protections: none

Reference: 10.1055/s-0028-1083545 and 10.1021/ja972272g and

10.1021/ja003049d and 10.1021/jo972106r

Retrosynthesis ID: 7434

2.1.5 Metal-free multicomponent synthesis of triazoles

Substrates:

1. Tosyl azide solution - available at Sigma-Aldrich

 $2. \ O{=}C(C\#CCC12CCCCC1O2)c1ccccc1$

3. methyl-2-aminomethylbenzoat - available at Sigma-Aldrich

Products:

1. COC(=O)c1ccccc1Cn1nncc1CC12CCCCC1O2

Typical conditions: 1. toluene.80C 2. LiOtBu.RT

Protections: none

Reference: DOI: 10.1002/anie.201307499

2.1.6 Bromination of aromatic compounds

Substrates:

 $1. \ COC(=O)c1ccccc1Cn1nncc1CC12CCCCC1O2$

Products:

 $1. \ COC(=O)c1ccccc1Cn1nnc(Br)c1CC12CCCCC1O2 \\$

Typical conditions: Br2.Fe

 ${\bf Protections:}\ {\bf none}$

Reference: 10.1021/acs.accounts.6b00120

Retrosynthesis ID: 7777000

2.1.7 Synthesis of allyl alcohols from epoxides

Substrates:

 $1. \ COC(=O)c1ccccc1Cn1nnc(Br)c1CC12CCCCC1O2 \\$

Products:

1. COC(=O)c1ccccc1Cn1nnc(Br)c1CC1(O)C=CCCC1

Typical conditions: PhSeNa.then H2O2

Protections: none

Reference: 10.1016/j. tetlet.2005.02.058 and 10.1016/0040-4020(82)85157-0 and

10.1016/j.bmc.2008.05.034 and 10.1021/ja070022m

Retrosynthesis ID: 27837

2.1.8 Acid catalyzed transesterification

Substrates:

1. COC(=O)c1ccccc1Cn1nnc(Br)c1CC1(O)C=CCCC1

Products:

 $1. \ O{=}C1OC2(C{=}CCCC2)Cc2c(Br)nnn2Cc2cccc21$

Typical conditions: H+

Protections: none

Reference: 10.1021/cr00020a004

2.1.9 Reduction of lactones to ethers

Substrates:

 $1. \ O{=}C1OC2(C{=}CCCC2)Cc2c(Br)nnn2Cc2cccc21$

Products:

1. Brc1nnn2c1CC1(C=CCCC1)OCc1ccccc1C2

Typical conditions: LAH.THF.reflux

Protections: none

Reference: 10.1002/anie.200352705 and 10.1016/j.tet.2016.07.036 and 10.5012/bkcs.2013.34.8.2495 and 10.1080/10286020.2016.1232251

Retrosynthesis ID: 9999753

${\bf 2.1.10}\quad {\bf Synthesis~of~aryl silanes}$

Substrates:

- 1. TMSCl available at Sigma-Aldrich
- $2. \ Brc1nnn2c1CC1(C=CCCC1)OCc1ccccc1C2 \\$

Products:

 $1. \ C[Si](C)(C)c1nnn2c1CC1(C=CCCC1)OCc1ccccc1C2$

Typical conditions: 1.nBuLi.2.ClSnR3

Protections: none

Reference: 10.1071/CH9851147.

Retrosynthesis ID: 5370

2.2 Path 2

Score: 335.80

Figure 2: Outline of path 2

2.2.1 Luche Reduction

Substrates:

1. 2-(2-propynyl)-cyclohex-2-en-1-one

Products:

1. C#CCC1=CCCCC1O

 $\textbf{Typical conditions:} \ \text{CeCl3.NaBH4.MeOH}$

 ${\bf Protections:}\ {\rm none}$

Reference: 10.1002/9780470638859.conrr400

Retrosynthesis ID: 10180

2.2.2 Addition of acetylides to Weinreb amides

Substrates:

1. N-Methoxy-N-methylbenzamide - available at Sigma-Aldrich

 $2. \ C\#CCC1{=}CCCCC1O$

Products:

 $1. \ O{=}C(C\#CCC1{=}CCCCC1O)c1ccccc1$

Typical conditions: nBuLi.THF

Protections: none

Reference: 10.1055/s-2007-992366 and 10.1002/ejoc.201200246 and

10.1021/ja9009265

2.2.3 Appel Reaction

Substrates:

 $1. \ O{=}C(C\#CCC1{=}CCCCC1O)c1ccccc1$

Products:

 $1. \ O{=}C(C\#CCC1{=}CCCCC1Br)c1ccccc1$

Typical conditions: PPh3.CBr4

Protections: none

Reference: 10.1016/j.jfluchem.2015.03.009 and 10.1016/j.tet.2005.12.006 and

10.1021/jm00161a029 and 10.1055/s-1995-5215

Retrosynthesis ID: 9990042

2.2.4 Metal-free multicomponent synthesis of triazoles

Substrates:

1. Tosyl azide solution - available at Sigma-Aldrich

2. [2-(aminomethyl)phenyl]methanol - available at Sigma-Aldrich

3. O=C(C#CCC1=CCCCC1Br)c1ccccc1

Products:

1. OCc1ccccc1Cn1nncc1CC1=CCCCC1Br

Typical conditions: 1. toluene.80C 2. LiOtBu.RT

Protections: none

Reference: DOI: 10.1002/anie.201307499

Retrosynthesis ID: 6001

2.2.5 Synthesis of teriary ethers

Substrates:

1. OCc1ccccc1Cn1nncc1CC1=CCCCC1Br

Products:

1. BrC1CCCC12Cc1cnnn1Cc1ccccc1CO2

Typical conditions: H2SO4

Protections: none

Reference: 10.1016/j.tet.2009.10.055 and WO2009011551 (p.14 example 5) and 10.1002/chem.201304580 and 10.1021/jm9811209 and US2007/225280A1 p.58 and

WO2009/62285A1~p.50~and~CN106928032A~p.0040

2.2.6 Bromination of aromatic compounds

Substrates:

1. BrC1CCCCC12Cc1cnnn1Cc1ccccc1CO2

Products:

1. Brc1nnn2c1CC1(CCCCC1Br)OCc1ccccc1C2

Typical conditions: Br2.Fe

Protections: none

Reference: 10.1021/acs.accounts.6b00120

Retrosynthesis ID: 7777000

2.2.7 Elimination of bromide

Substrates:

 $1. \ Brc1nnn2c1CC1(CCCCC1Br)OCc1ccccc1C2$

Products:

 $1. \ Brc1nnn2c1CC1(C=CCCC1)OCc1ccccc1C2$

Typical conditions: K2CO3.DMF

Protections: none

Reference: 10.1016/j.j fluchem.2011.08.011 and 10.1039/P19920002971 and

10.1002/cber.19841170909 and 10.1021/ja01570a042

Retrosynthesis ID: 23585

2.2.8 Synthesis of arylsilanes

Substrates:

1. TMSCl - available at Sigma-Aldrich

2. Brc1nnn2c1CC1(C=CCCC1)OCc1ccccc1C2

Products:

 $1. \ C[Si](C)(C)c1nnn2c1CC1(C=CCCC1)OCc1ccccc1C2$

Typical conditions: 1.nBuLi.2.ClSnR3

Protections: none

Reference: 10.1071/CH9851147.

Retrosynthesis ID: 5370

2.3 Path 3

Score: 335.80

Figure 3: Outline of path 3

2.3.1 Luche Reduction

${\bf Substrates:}$

1. 2-iodocyclohex-2-en-1-one - available at Sigma-Aldrich

Products:

 $1. \ \, 2\text{-iodo-}2\text{-cyclohexen-}1\text{-ol}$

 $\textbf{Typical conditions:} \ \text{CeCl3.NaBH4.MeOH}$

Protections: none

Reference: 10.1002/9780470638859.conrr400

2.3.2 Synthesis Of Alkyl Iodides Via Appel Reaction

Substrates:

1. 4-hydroxybut-2-ynophenone

Products:

1. O=C(C#CCI)c1cccc1

 $\textbf{Typical conditions:} \ Imidazole. PPh 3. I 2$

Protections: none

Reference: 10.1002/1099-0690(200102)2001:3<493::AID-EJOC493>3.0.CO2-B

(compound 20) and 10.1016/j.tet.2014.09.030

Retrosynthesis ID: 9990040

2.3.3 Palladium catalysed alkylation of vinyl iodides

Substrates:

1. 2-iodo-2-cyclohexen-1-ol

2. O=C(C#CCI)c1cccc1

Products:

1. O=C(C#CCC1=CCCCC1O)c1ccccc1

Typical conditions: [Pd].catalyst

Protections: none

Reference: 10.1016/j.bmcl.2005.12.066 and 10.1021/ol052070m and 10.1021/ol5023195 and 10.1002/anie.200703134 and 10.1016/j.bmcl.2005.09.084 and 10.1021/ol0344873

Retrosynthesis ID: 25163

2.3.4 Appel Reaction

${\bf Substrates:}$

 $1. \ O{=}C(C\#CCC1{=}CCCCC1O)c1ccccc1$

Products:

 $1. \ O{=}C(C\#CCC1{=}CCCCC1Br)c1ccccc1$

Typical conditions: PPh3.CBr4

Protections: none

Reference: 10.1016/j.jfluchem.2015.03.009 and 10.1016/j.tet.2005.12.006 and

10.1021/jm00161a029 and 10.1055/s-1995-5215

Retrosynthesis ID: 9990042

2.3.5 Metal-free multicomponent synthesis of triazoles

Substrates:

1. Tosyl azide solution - available at Sigma-Aldrich

2. [2-(aminomethyl)phenyl|methanol - available at Sigma-Aldrich

3. O=C(C#CCC1=CCCCC1Br)c1ccccc1

Products:

 $1. \ \ OCc1ccccc1Cn1nncc1CC1 = CCCCC1Br$

Typical conditions: 1. toluene.80C 2. LiOtBu.RT

Protections: none

Reference: DOI: 10.1002/anie.201307499

2.3.6 Synthesis of teriary ethers

Substrates:

 $1. \ \ OCc1ccccc1Cn1nncc1CC1 = CCCCC1Br$

Products:

 $1. \ BrC1CCCC12Cc1cnnn1Cc1ccccc1CO2$

Typical conditions: H2SO4

Protections: none

Reference: 10.1016/j.tet.2009.10.055 and WO2009011551 (p.14 example 5) and 10.1002/chem.201304580 and 10.1021/jm9811209 and US2007/225280A1 p.58 and WO2009/62285A1 p.50 and CN106928032A p.0040

Retrosynthesis ID: 10001897

2.3.7 Bromination of aromatic compounds

Substrates:

1. BrC1CCCC12Cc1cnnn1Cc1ccccc1CO2

Products:

1. Brc1nnn2c1CC1(CCCCC1Br)OCc1ccccc1C2

Typical conditions: Br2.Fe

Protections: none

Reference: 10.1021/acs.accounts.6b00120

Retrosynthesis ID: 7777000

2.3.8 Elimination of bromide

Substrates:

1. Brc1nnn2c1CC1(CCCCC1Br)OCc1cccc1C2

Products:

1. Brc1nnn2c1CC1(C=CCCC1)OCc1ccccc1C2

Typical conditions: K2CO3.DMF

Protections: none

Reference: 10.1016/j.jfluchem.2011.08.011 and 10.1039/P19920002971 and

10.1002/cber.19841170909 and 10.1021/ja01570a042

2.3.9 Synthesis of arylsilanes

Substrates:

1. TMSCl - available at Sigma-Aldrich

 $2. \ \, Brc1nnn2c1CC1(C=CCCC1)OCc1ccccc1C2$

Products:

 $1. \ C[Si](C)(C)c1nnn2c1CC1(C=CCCC1)OCc1ccccc1C2$

 $\textbf{Typical conditions:}\ 1.nBuLi.2.ClSnR3$

Protections: none

Reference: 10.1071/CH9851147.