

Mark Scheme (Results)

January 2022

Pearson Edexcel International A Level In Mechanics M2 (WME02) Paper 01

| 1a        | Use of $\mathbf{I} = m\mathbf{v} - m\mathbf{u}$                                              | M1         | Condone subtraction in the wrong order.                                                                                                     |
|-----------|----------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|           | $ \binom{-4}{6} = \frac{1}{2} \binom{x-2}{y-4} $                                             | A1         | Correct unsimplified equation Any equivalent form. Allow with v                                                                             |
|           | $\mathbf{v} = -6\mathbf{i} + 16\mathbf{j} \left( \mathbf{m}  \mathbf{s}^{-1} \right)$        | A1         | Correct only. Seen or implied SR: Allow 3/3 if stop at $\mathbf{v} = 6\mathbf{i} - 16\mathbf{j} \left( \mathbf{m}  \mathbf{s}^{-1} \right)$ |
|           | $\left \mathbf{v}\right  = \sqrt{\left(-6\right)^2 + 16^2}$                                  | M1         | Correct use of Pythagoras with their v                                                                                                      |
|           | $=\sqrt{292}\left(=2\sqrt{73}\right)\left(\mathrm{ms^{-1}}\right)$                           | A1         | Correct simplified value. 17 or better (17.088) Allow 5/5 if working from the negative                                                      |
|           |                                                                                              | [5]        | of the velocity.                                                                                                                            |
|           |                                                                                              |            |                                                                                                                                             |
| 1b        | Correct use of trigonometry to find 2 relevant angles - as values or in inverse tangent form | M1         | For their v e.g. $\pm 69.44^{\circ}, 63.43^{\circ}$ or $\pm 1.212, 0.4636$                                                                  |
|           | $\theta = \left(180^{\circ} - \tan^{-1}\frac{16}{6}\right) - \tan^{-1}\frac{4}{2}$           | A1ft       | Correct unsimplified expression for $\theta$<br>Any equivalent form                                                                         |
|           | = 47°                                                                                        | A1         | 47° or better (47.121) 312.9°<br>Accept radians (0.8224)                                                                                    |
|           |                                                                                              | [3]        |                                                                                                                                             |
| 1b<br>alt | Use of scalar product with two relevant vectors                                              | M1         | For their <b>v</b>                                                                                                                          |
|           | $\theta = \cos^{-1}\left(\frac{-12 + 64}{\sqrt{20}\sqrt{292}}\right)$                        | A1ft       | Correct unsimplified expression for $\cos \theta$ or equivalent                                                                             |
|           | = 47°                                                                                        | A1         | 47° or better (47.121) 312.9°<br>Accept radians (0.8224)                                                                                    |
|           |                                                                                              | [3]<br>(8) |                                                                                                                                             |
|           |                                                                                              | (0)        |                                                                                                                                             |

|     | E ' C ' C 1' 'I                                                                     | 3.61 | N 1 11 / D' ' 11 /                                    |
|-----|-------------------------------------------------------------------------------------|------|-------------------------------------------------------|
| 2.a | Equation of motion for car and trailer                                              | M1   | Need all terms. Dimensionally correct.                |
|     |                                                                                     |      | Condone sin/cos confusion and sign                    |
|     |                                                                                     |      | errors.                                               |
|     | $E_{300-150} = 200g = 600g = 0$                                                     | A1   | Unsimplified equation in $P$ or $F$ with at           |
|     | $F - 300 - 130 - {20} - {20} = 0$                                                   |      | most one error                                        |
|     | $F - 300 - 150 - \frac{200g}{20} - \frac{600g}{20} = 0$ $(F - 842 = 0)$             | A1   | Correct unsimplified equation in <i>P</i> or <i>F</i> |
|     | $\left( F - 642 = 0 \right)$                                                        |      | Missing g is one accuracy error                       |
|     |                                                                                     |      |                                                       |
|     | 1000P ( 450, 08, 204, 0)                                                            | M1   | Use of $P = Fv$                                       |
|     | $\frac{1000P}{15} \left( -450 - 98 - 294 = 0 \right)$ $P = 12.6 \text{ or } P = 13$ |      | Allow with <i>P</i> or 1000 <i>P</i>                  |
|     | P = 12.6  or  P = 13                                                                | A1   | 3 s.f. or 2 s.f. only                                 |
|     |                                                                                     |      | A final answer of 12600 (13000) scores                |
|     |                                                                                     |      | 4/5                                                   |
|     |                                                                                     |      | Condone 12600=12.6 (correct thinking                  |
|     |                                                                                     |      | without stating the units)                            |
|     |                                                                                     | [5]  | , , , , , , , , , , , , , , , , , , ,                 |
|     |                                                                                     |      |                                                       |
| 2b  | KE lost = gain in GPE + WD against                                                  | M1   | Must be using work-energy principle                   |
|     | resistance                                                                          |      | for trailer only. Dimensionally correct.              |
|     |                                                                                     |      | Correct terms and no extras. Condone                  |
|     |                                                                                     |      | sign errors and sin / cos confusion.                  |
|     | 1 200 400 200 4 200 4 200 4                                                         | A1   | Correct unsimplified equation in one                  |
|     | $\frac{1}{2} \times 200 \times 400 = \frac{200}{20} gd + 300d (= 398d)$             |      | variable with at most one error                       |
|     | 20                                                                                  | A1   | Correct unsimplified equation in one                  |
|     |                                                                                     |      | variable.                                             |
|     | XY = d = 101 (100)  (m)                                                             | A1   | 3 s.f. or 2 s.f. only                                 |
|     |                                                                                     | [4]  |                                                       |
|     |                                                                                     | (9)  |                                                       |

| 3a | Use of $\mathbf{a} = \frac{d\mathbf{v}}{dt}$<br>$(\mathbf{a} = 18\cos 3t \mathbf{i} - 2\sin t \mathbf{j})$                                        | M1       | Differentiate to obtain $\mathbf{a} = \lambda \cos 3t  \mathbf{i} + \mu \sin t  \mathbf{j}$                                                                                                                             |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Use of $\mathbf{F} = m\mathbf{a} : \mathbf{F} = \frac{1}{4}\mathbf{a}$                                                                            | M1       | Must be working in vectors                                                                                                                                                                                              |
|    | $\mathbf{F} = \frac{9}{2}\cos 3t\mathbf{i} - \frac{1}{2}\sin t\mathbf{j}$                                                                         | A1       | Or equivalent. e.g. as a column vector                                                                                                                                                                                  |
|    |                                                                                                                                                   | [3]      |                                                                                                                                                                                                                         |
|    |                                                                                                                                                   |          |                                                                                                                                                                                                                         |
| 3b | $2\cos t + 1 = 0$                                                                                                                                 | M1       | Set <b>j</b> component of $\mathbf{v} = 0$ and solve for $t$                                                                                                                                                            |
|    | $\Rightarrow t = \frac{2\pi}{3}$                                                                                                                  | A1       | ISW if correct answer seen. Only answer 120° scores A0 here and the final A0                                                                                                                                            |
|    | Use of $\mathbf{v} = \frac{d\mathbf{r}}{dt}$ $(\mathbf{r} = -2\cos 3t \mathbf{i} + (t + 2\sin t) \mathbf{j}(+\mathbf{C}))$                        | M1       | Integrate <b>v</b> with respect to <i>t</i> to obtain $\mathbf{r} = p \cos 3t \mathbf{i} + (t + q \sin t) \mathbf{j}(+\mathbf{C})$ Condone if there is no constant of integration.                                      |
|    | $t = 0,  \mathbf{r} = (4\mathbf{i} - \sqrt{3}\mathbf{j})\mathbf{m}$ $\mathbf{r} = (-2\cos 3t + 6)\mathbf{i} + (t + 2\sin t - \sqrt{3})\mathbf{j}$ | M1       | Correct use of boundary condition to find their <b>C</b> . Could be part of a definite integral e.g. $4\mathbf{i} - \sqrt{3}\mathbf{j} + \int_0^t 6\sin 3t\mathbf{i} + (1 + 2\cos t)\mathbf{j}dt$ for their upper limit |
|    | $=4\mathbf{i}+\frac{2\pi}{3}\mathbf{j} (m)$                                                                                                       | A1<br>A1 | Accept 4 <b>i</b> + 2.1 <b>j</b> or better one component correct both components correct  ISW if they also offer 4 <b>i</b> + 120 <b>j</b> "correct" components after an M0 are fortuitous – A0                         |
|    |                                                                                                                                                   | [6]      |                                                                                                                                                                                                                         |
|    |                                                                                                                                                   | (9)      |                                                                                                                                                                                                                         |
|    |                                                                                                                                                   |          |                                                                                                                                                                                                                         |
|    |                                                                                                                                                   |          |                                                                                                                                                                                                                         |
|    |                                                                                                                                                   |          |                                                                                                                                                                                                                         |
|    |                                                                                                                                                   |          |                                                                                                                                                                                                                         |
|    |                                                                                                                                                   |          |                                                                                                                                                                                                                         |
|    |                                                                                                                                                   |          |                                                                                                                                                                                                                         |
|    |                                                                                                                                                   |          |                                                                                                                                                                                                                         |

| 4a | $2u \longrightarrow \qquad \longleftarrow \qquad u$         |     |                                                                                                                                                     |  |  |
|----|-------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|    | $A \atop 2m$                                                | B 3 | 3m                                                                                                                                                  |  |  |
|    | ν <                                                         |     | $\xrightarrow{w}$                                                                                                                                   |  |  |
|    | Use of CLM                                                  | M1  | Need all terms, dimensionally correct. Condone sign errors.                                                                                         |  |  |
|    | 4mu - 3mu = 3mw - 2mv $(u = 3w - 2v)$                       | A1  | Correct unsimplified equation                                                                                                                       |  |  |
|    | Use of impact law                                           | M1  | Used correctly. Condone sign errors                                                                                                                 |  |  |
|    | v + w = 3eu                                                 | A1  | Correct unsimplified equation. Signs consistent with their CLM equation                                                                             |  |  |
|    | $\begin{cases} u = 3w - 2v \\ 6eu = 2w + 2v \end{cases}$    | DM1 | Dependent on both preceding M marks. Solve to find speed of <i>B</i> .                                                                              |  |  |
|    | $\Rightarrow 5w = u + 6eu,  w = \frac{1}{5}u(1 + 6e)  *$    | A1* | Obtain <b>given answer</b> from correct working                                                                                                     |  |  |
|    |                                                             | [6] |                                                                                                                                                     |  |  |
| 4b | $v = 3eu - w = \frac{u}{5}(9e - 1)$                         | B1  | Check their diagram / directions and allow $v = \frac{u}{5}(1-9e)$ if correct for their working.  Any equivalent form.  Must be seen or used in (b) |  |  |
|    | $x = \frac{u}{7}(1 + 6e)$                                   | B1  | Seen or implied. Accept ±                                                                                                                           |  |  |
|    | Second collision if $\frac{u}{7}(1+6e) > \frac{u}{5}(9e-1)$ | M1  | Correct inequality to find the upper limit for <i>e</i> , using their <i>v</i> and <i>x</i>                                                         |  |  |
|    | $(0<)e<\frac{4}{11}$                                        | A1  | Final answer. Or equivalent Do not need to mention the lower limit, but if they do it must be stated correctly (strict inequality).                 |  |  |
|    |                                                             | [4] |                                                                                                                                                     |  |  |
|    |                                                             |     |                                                                                                                                                     |  |  |
|    |                                                             |     |                                                                                                                                                     |  |  |
|    |                                                             |     |                                                                                                                                                     |  |  |
|    |                                                             |     |                                                                                                                                                     |  |  |

| 5a         | k₩<br>^ B                                                                            |     |                                                                                                                                                               |
|------------|--------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | C 4a C                                                                               |     |                                                                                                                                                               |
|            | A $B$                                            |     |                                                                                                                                                               |
|            | Angle ACO is a right angle or                                                        | B1* | Or equivalent <b>explanation</b> of <b>given</b>                                                                                                              |
|            | State that $AB$ is a tangent hence triangle is $5a$ ,                                | DI. | <b>answer.</b> They need to say why it is a 5,                                                                                                                |
|            | 12 <i>a</i> , <u>13<i>a</i> *</u>                                                    |     | 12, 13 triangle. If they say nothing,                                                                                                                         |
|            |                                                                                      |     | check the diagram to see if there is a                                                                                                                        |
|            |                                                                                      | [1] | right angle marked.                                                                                                                                           |
|            |                                                                                      | L¹J |                                                                                                                                                               |
| 5b         | Moments about A:                                                                     | M1  | Dimensionally correct equation Condone sin / cos confusion                                                                                                    |
|            | $W \times 8a \cos \alpha = kW \times 12a$                                            |     |                                                                                                                                                               |
|            | $\left(W \times 8a \times \frac{12}{13} = kW \times 12a\right)$ $k = \frac{8}{13} *$ | A1  | Correct unsimplified equation                                                                                                                                 |
|            | k = 8 *                                                                              |     | Obtain given answer from correct                                                                                                                              |
|            | 13                                                                                   | A1* | working. Need to see correct substitution for $\cos \alpha$ and correct final                                                                                 |
|            |                                                                                      |     | substitution for $\cos \alpha$ and correct final statement.                                                                                                   |
|            |                                                                                      | [3] |                                                                                                                                                               |
|            |                                                                                      |     |                                                                                                                                                               |
| 5c         | $\leftrightarrow R_{H} = kW \sin \alpha$                                             | M1  | First equation e.g. resolve horizontally. Condone sin/cos confusion                                                                                           |
|            | $=\frac{8W}{13}\times\frac{5}{13}=\frac{40W}{169}$                                   | A1  | Correct unsimplified expression for $R_H$                                                                                                                     |
|            | $\updownarrow R_{V} + kW \cos \alpha = W$                                            | M1  | Second equation e.g. resolve vertically. Condone sin/cos confusion and sign errors.                                                                           |
|            | $R_V = W - \frac{8W}{13} \times \frac{12}{13} = \frac{73W}{169}$                     | A1  | Correct unsimplified expression for $R_V$                                                                                                                     |
|            | $\left R\right ^2 = \left(R_V\right)^2 + \left(R_H\right)^2$                         | DM1 | Dependent on the two preceding M marks. Method to obtain the magnitude, e.g. correct use of Pythagoras                                                        |
|            | $ R  = \frac{W}{169} \sqrt{40^2 + 73^2}$                                             |     | Accept 0.49W or better                                                                                                                                        |
|            | $= \frac{\sqrt{6929}}{169}W = \frac{\sqrt{41}}{13}W$                                 | A1  | Allow $\sqrt{\frac{41W^2}{169}}$ or correct unsimplified                                                                                                      |
|            | 169 13 "                                                                             |     | form. ISW                                                                                                                                                     |
|            | $\tan \theta^{\circ} = \frac{73}{40}  (=1.825)$                                      | DM1 | Dependent on the first 2 M marks.<br>Method to obtain the angle, e.g. correct use of trigonometry to find a relevant angle $(\theta \text{ or } 90 - \theta)$ |
|            | $\theta = 61  (61.3)$                                                                | A1  | 61 or better (61.2796)                                                                                                                                        |
|            | · · · · · · · · · · · · · · · · · · ·                                                | [8] |                                                                                                                                                               |
|            |                                                                                      |     |                                                                                                                                                               |
| <i>5</i> . | See overleaf for alternatives                                                        |     | Plant and the state of                                                                                                                                        |
| 5c<br>Alt  | $P = W \sin \alpha$                                                                  | M1  | First equation e.g. resolve parallel to the rod. Condone sin/cos confusion.                                                                                   |
|            | <u>L</u>                                                                             | 1   |                                                                                                                                                               |

|            | 5W                                                                                                                                        |          | Correct unsimplified expression for                                                               |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------|
|            | $=\frac{5W}{13}$                                                                                                                          | A1       | parallel component                                                                                |
|            | $Q + kW = W \cos \alpha$                                                                                                                  | M1       | Second equation e.g. resolve perpendicular to the rod. Condone sin/cos confusion and sign errors. |
|            | $Q = \frac{12}{13}W - \frac{8}{13}W = \frac{4W}{13}$ $ R  = \sqrt{P^2 + Q^2}$                                                             | A1       | Correct unsimplified expression for perpendicular component                                       |
|            | $ R  = \sqrt{P^2 + Q^2}$                                                                                                                  | DM1      | Dependent on the first 2 M marks.<br>Correct use of Pythagoras                                    |
|            | $ R  = \frac{W}{13} \sqrt{4^2 + 5^2} = \frac{\sqrt{41}}{13} W$ $\theta^{\circ} = \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{5}$          | A1       | Accept 0.49W or better Allow correct unsimplified form                                            |
|            | $\theta^{\circ} = \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{5}$                                                                         | DM1      | Dependent on the first 2 M marks.  Correct use of trig to find the required angle                 |
|            | $\theta = 61  (61.3)$                                                                                                                     | A1       | 61 or better (61.2796)                                                                            |
|            |                                                                                                                                           | [8]      |                                                                                                   |
| 5c<br>Alt2 | $R - \beta$ $W$ $a$                                                                                                                       | M1<br>A1 | Vector diagram showing the three forces acting Correctly configured                               |
|            | Use of Cosine Rule:                                                                                                                       | M1       | Correct use of cosine rule for their triangle                                                     |
|            | $R^2 = W^2 + (kW)^2 - 2W(kW)\cos\alpha$                                                                                                   | A1       | Correct unsimplified equation.                                                                    |
|            | $R^{2} = W^{2} + \frac{64}{169}W^{2} - \frac{16}{13} \times \frac{12}{13}W^{2} \left( = \frac{41}{169}W^{2} \right)$                      | DM1      | Solve for <i>R</i> . Dependent on the first 2 M marks                                             |
|            | $ R  = \frac{\sqrt{41}}{13}W$                                                                                                             | A1       | Accept 0.49W or better                                                                            |
|            | $\frac{R}{\sin \alpha} = \frac{kW}{\sin \beta}  \left( \sin \beta = \frac{8}{13} \times \frac{\sqrt{41}}{13} \times \frac{5}{13} \right)$ | DM1      | Dependent on the first M mark. Correct method to find a relevant angle e.g. by use of sine rule   |
|            | $\theta = 90 - 28.7 = 61.3$                                                                                                               | A1 [8]   | 61 or better (61.2796)                                                                            |
|            | <u> </u>                                                                                                                                  |          |                                                                                                   |
|            |                                                                                                                                           | (12)     |                                                                                                   |
|            |                                                                                                                                           |          |                                                                                                   |
|            |                                                                                                                                           |          |                                                                                                   |
| <u> </u>   |                                                                                                                                           | 1        |                                                                                                   |

| 6a | Mass ratio                                                                                   |                   |                                                                                                                                                                                         |
|----|----------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $24a:25a:7\pi a:7a(7+\pi)$                                                                   | B1                | Correct ratio seen or implied                                                                                                                                                           |
|    | Moments about AE                                                                             | M1                | Need all terms, with their masses and horizontal distances Allow use of a parallel axis.                                                                                                |
|    | $25a \times \frac{7}{2}a + 7\pi a \times \frac{14a}{\pi}$ $= 7a(7+\pi)d$                     | A1                | Correct unsimplified equation                                                                                                                                                           |
|    | $\frac{371}{2}a^2 = 7a(7+\pi)d$ $\Rightarrow d = \frac{53}{2(7+\pi)}a \qquad *$              | A1*               | Obtain <b>given answer</b> from correct working Condone if they call it $\overline{x}$                                                                                                  |
| 6b | Centre of mass of semicircle lies 7 <i>a</i> "vertically below" <i>A</i>                     | B1                | Seen or implied e.g. 17a above E                                                                                                                                                        |
|    | Moments about "horizontal" axis through A:                                                   | M1                | Or a parallel axis. Need all terms, with their masses and distances.                                                                                                                    |
|    | $24a \times 12a + 25a \times 12a + 7\pi a \times 7a$ $= 7a(7+\pi)y$                          | A1                | Correct unsimplified equation                                                                                                                                                           |
|    | $y = \frac{49a(12+\pi)}{7(7+\pi)} \left( = \frac{7a(12+\pi)}{7+\pi} \right)$                 | A1                | Any equivalent form.  Accept $\frac{84+17\pi}{7+\pi}a$ from $E$                                                                                                                         |
|    | NB: A candidate might have a vector equation in or the first 4 marks in (b).                 | (a) whicl         |                                                                                                                                                                                         |
|    | $\frac{1}{d}$                                                                                |                   |                                                                                                                                                                                         |
|    | $\theta^{\circ} = \tan^{-1} \frac{d}{y} = \tan^{-1} \frac{53}{14(12+\pi)} (=14.037^{\circ})$ | DM1               | Use trig to find relevant angle $(\theta \text{ or } 90 - \theta)$ in a triangle with $d$ and $A$ (must now be working with vertical distance of C of M from $A$ ) Dependent on first M |
|    | $\alpha^{\circ} = \tan^{-1} \frac{7}{24} - \theta^{\circ}$                                   | DM1               | Dependent on the previous M1. Complete method for the required angle                                                                                                                    |
|    | $\alpha = 2.2$                                                                               | A1<br>[7]<br>(11) | 2.2 or better (2.22)                                                                                                                                                                    |
|    |                                                                                              |                   |                                                                                                                                                                                         |

| 7a     | Horizontal distance                                                                                                                                                                                                           | M1   | Correct use of <i>suvat</i>                                                                                                                                               |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ,      | $x = u \cos \alpha t$                                                                                                                                                                                                         | A1   | Correct equation                                                                                                                                                          |
|        | Vertical distance                                                                                                                                                                                                             | M1   | Correct use of <i>suvat</i>                                                                                                                                               |
|        | $y = u \sin \alpha t - \frac{1}{2}gt^2$                                                                                                                                                                                       | A1   | Correct equation. Correct signs. Condone if not using "y"                                                                                                                 |
|        | $t = \frac{x}{u \cos \alpha} \Rightarrow$ $y = u \sin \alpha \cdot \frac{x}{u \cos \alpha} - \frac{g}{2} \left( \frac{x}{u \cos \alpha} \right)^{2}$ $\left( = x \tan \alpha - \frac{gx^{2}}{2u^{2}} \sec^{2} \alpha \right)$ | DM1  | Dependent on the first 2 M marks. Substitute for $t$ to obtain $y$ in terms of $x$ and $\alpha$                                                                           |
|        | $y = x \tan \alpha - \frac{gx^2}{2u^2} (1 + \tan^2 \alpha)  *$                                                                                                                                                                | A1*  | Obtain <b>given answer</b> from correct working (final step needs to be explained).  Allow if $\sec^2 \alpha$ seen.  Must be "y" here                                     |
|        |                                                                                                                                                                                                                               | [6]  |                                                                                                                                                                           |
| 7b     | $u = 20, x = 10, y > 2 \implies$ $2 = 10 \tan \theta - \frac{100g}{800} \left( 1 + \tan^2 \theta \right)$ $\left( \frac{g}{8} \tan^2 \theta - 10 \tan \theta + \left( 2 + \frac{g}{8} \right) = 0 \right)$                    | M1   | Use given values to form quadratic in $\tan \theta$ or equivalent equation in one trig function.<br>Allow working with =, < or > 2                                        |
|        | Critical values: $\theta^{\circ} = 18.6^{\circ}$ or $\theta^{\circ} = 82.7^{\circ}$                                                                                                                                           | A1   | One correct value to 2 sf or better                                                                                                                                       |
|        | Range: $18.6 < \theta < 82.7$                                                                                                                                                                                                 | A1   | Accept < or $\leq$ $(19 \leq \theta \leq 82 \text{ or } 83) \text{ max } 3 \text{ sf}$                                                                                    |
|        |                                                                                                                                                                                                                               | [3]  |                                                                                                                                                                           |
| 7c     | $y = 10 \tan 40^{\circ} - \frac{9.8 \times 100}{2 \times 400} (1 + \tan^2 40^{\circ})$                                                                                                                                        | M1   | Use given formula to find vertical height                                                                                                                                 |
|        | y = 6.3(03) (m)                                                                                                                                                                                                               | A1   | Can be implied by correctly substituted formula                                                                                                                           |
|        | Conservation of energy                                                                                                                                                                                                        | DM1  | Dependent on the first M1. Need all 3 terms. Dimensionally correct. Condone sign errors.                                                                                  |
|        | $\frac{1}{2}mv^{2} = \frac{1}{2}m \times 400 - mgy$ $v = 17  (16.6) (m s^{-1})$                                                                                                                                               | A1ft | Correct unsimplified equation in <i>y</i> or their <i>y</i>                                                                                                               |
|        | $v = 17  (16.6) (m s^{-1})$                                                                                                                                                                                                   | A1   | 2sf or 3sf only                                                                                                                                                           |
|        |                                                                                                                                                                                                                               | [5]  |                                                                                                                                                                           |
| 7c alt | $20\cos 40^{\circ} t = 10 , t = \frac{1}{2\cos 40^{\circ}} = 0.653$ $v_V = 20\sin 40^{\circ} - gt$                                                                                                                            | M1   | Complete method using <i>suvat</i> to vertical component of speed e.g. by finding time taken then use of $v = u - gt$ or finding vertical distance and using <i>suvat</i> |
|        | = 6.5 (6.459)                                                                                                                                                                                                                 | A1   | 6.5 or better (not final answer so allow > 3sf or a correct unsimplified expression)                                                                                      |
|        | $v^2 = \left(v_H\right)^2 + \left(v_V\right)^2$                                                                                                                                                                               | DM1  | Correct use of Pythagoras                                                                                                                                                 |

|            |                                                                                                |      | D 1                                     |
|------------|------------------------------------------------------------------------------------------------|------|-----------------------------------------|
|            |                                                                                                |      | Dependent on preceding M mark           |
|            | $\leftrightarrow v_H = 20\cos 40^\circ (=15.3)$                                                | A1   | Horizontal component of speed           |
|            | ( ) V <sub>H</sub> = 20 cos 10 (=13.3)                                                         | AI   | seen or implied                         |
|            | $v = 17  (16.6) (m s^{-1})$                                                                    | A1   | 2sf or 3sf only                         |
|            |                                                                                                | [5]  |                                         |
|            |                                                                                                |      |                                         |
| 7d         | $0 = x \tan 40^{\circ} - \frac{9.8x^{2}}{800} \left( 1 + \tan^{2} 40^{\circ} \right)$          | M1   | Complete method to solve for $x$ .      |
|            | x = 40 (40.2) (m)                                                                              | A1   | 2sf or 3sf only                         |
|            |                                                                                                | [2]  |                                         |
|            |                                                                                                |      |                                         |
| 7d<br>Alt1 | $y = 0 \Rightarrow t = \frac{40\sin 40^{\circ}}{g} (= 2.623)$ $x = 20\cos 40^{\circ} \times t$ | M1   | Complete method to solve for <i>x</i> . |
|            | x = 40 (40.2) (m)                                                                              | A1   | 2sf or 3sf only                         |
|            |                                                                                                | [2]  |                                         |
| 7d<br>Alt2 | Range = $\frac{20^2 \sin 80^\circ}{g}$<br>= $40 (40.2) (m)$                                    | M1   | Complete method to solve for <i>x</i> . |
|            | =40(40.2)(m)                                                                                   | A1   | 2sf or 3sf only                         |
|            |                                                                                                | [2]  |                                         |
|            |                                                                                                | (16) |                                         |
|            |                                                                                                |      |                                         |