General Notes

CS, ML and Stats Patrick Daly

Contents

1		_	Science 4
	1.1	0	thms $\dots \dots \dots$
	1.2		Sctructures
	1.3	Linux	
2	Mac	chine L	earning 7
	2.1	Superv	vised 7
		2.1.1	Ordinary Least Squares (OLS)
		2.1.2	Generalized Linear Model(GLM)
		2.1.3	Logistic Regression
		2.1.4	Linear Discriminant Analysis
		2.1.5	Support Vector Machines
		2.1.6	K-Nearest Neighbors
		2.1.7	Gaussian Process
		2.1.8	K-Nearest Neighbors
		2.1.9	Decision Trees
		2.1.10	Random Forest
		2.1.11	Gaussian Process
		2.1.12	Naive Bayes
			Kalman Filter? dunno where this should go yet
			maybe estimation section?
	2.2	Unsup	ervised
		2.2.1	Gaussan Mixture Models
		2.2.2	K-Means
		2.2.3	Density-Based Spatial Clustering of Applications with
			Noise (DBSCAN)
		2.2.4	Spectral Clustering
		2.2.5	Hierarchical Clustering
		2.2.6	Factor Analysis
		2.2.7	Independent Component Analysis
		2.2.8	Principal Component Analysis
		2.2.9	Non-Negative Matrix Factorization (NMF)
		2.2.10	Latent Dirichlet Allocation (LDA)
		2.2.11	Outliear Detection?
3	Dee	p Lear	rning 7
-	3.1	-	lutional Networks
			rent Networks 7

	3.3	Long Short-Term Memory (LSTM)					
	3.4	Autoencoders					
	3.5	Reinforcement Learning					
4	Line	near Algebra 7					
	4.1	Norms					
		4.1.1 Euclidean / Frobenius					
		4.1.2 Manhatten					
		4.1.3 Infinity					
		4.1.4 Nuclear					
		4.1.5 Spectral					
		4.1.6 Symmetric					
		4.1.7 Positive Definite					
		4.1.8 Positive Semi-Definite					
		4.1.9 Negative Definite					
		4.1.10 Negative Semi-Definite					
	4.2	Eigendecomposition					
	4.3	Singular Value Decomposition (SVD)					
	4.4	Principal Component Analysis (PCA)					
	4.5	Independent Component Analysis (ICA)					
	4.6	Canonical Component Analysis (CCA)					
	4.7	Factor Analysis					
5	Stat	tistics 7					
	5.1	Probability Theory					
	5.2	Distributions					
	5.3	Combinatorics					

1 Computer Science

1.1 Algorithms

```
DFS Time: O(n), Space: O(n)
      Solution exists far away.
      Recursive
   def dfs(node):
2
     if node:
3
       # do stuff if pre—order
4
       if node.left:
5
          dfs(node.left)
6
       # do stuff if in-order
7
       if node.right:
8
          dfs(node.right)
9
       # do stuff if post—order
      Iterative
   def dfs(node): # if bst, may need to swap search left/right
2
       visited = set()
3
       stack = [node]
4
       while stack:
5
            current = stack.pop(-1)
6
            print(current.val)
7
            if current not in visited:
8
                visited.add(current)
9
            if current.left and current.left not in visited:
10
                stack.append(current.left)
11
            if current.right and current.right not in visited:
12
                stack.append(current.right)
13
       return visited
   BFS Time: O(n), Space(n)
      Iterative
1 def bfs(node):
       stack = [node]
3
       while stack:
```

```
current = stack.pop(-1)
5
            if current.left:
6
                stack.append(current.left)
7
            if current.right:
8
                stack.append(current.right)
   Mergesort Time: O(nlogn), Space: O(n)
   def mergesort(array, start, end):
       if start < end:</pre>
3
            mid = (start+end) // 2
4
            mergesort(array, start, mid)
5
            mergesort(array, mid+1, end)
6
            merge(array, start, mid, end)
1
   def merge(array, start, mid, end):
2
       left = array[start: mid+1]
3
       right = array[mid+1: end+1]
4
       i, j, k = 0, 0, start
5
       while i < len(left) and j < len(right):
6
            if left[i] < right[j]:</pre>
7
                array[k] = left[i]
8
                i += 1
9
            else:
10
                array[k] = right[j]
11
                j += 1
12
            k += 1
       if j == len(right):
13
14
            array[k: end+1] = left[i:]
```

- 1.2 Data Sctructures
- 1.3 Linux
- 2 Machine Learning
- 2.1 Supervised
- 2.1.1 Ordinary Least Squares (OLS)
- 2.1.2 Generalized Linear Model(GLM)
- 2.1.3 Logistic Regression
- 2.1.4 Linear Discriminant Analysis
- 2.1.5 Support Vector Machines
- 2.1.6 K-Nearest Neighbors
- 2.1.7 Gaussian Process
- 2.1.8 K-Nearest Neighbors
- 2.1.9 Decision Trees
- 2.1.10 Random Forest
- 2.1.11 Gaussian Process
- 2.1.12 Naive Bayes
- 2.1.13 Kalman Filter? dunno where this should go yet... maybe estimation section?
- 2.2 Unsupervised
- 2.2.1 Gaussan Mixture Models
- 2.2.2 K-Means
- 2.2.3 Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
- 2.2.4 Spectral Clustering
- 2.2.5 Hierarchical Clustering
- 2.2.6 Factor Analysis
- 2.2.7 Independent Component Analysis
- 2.2.8 Principal Component Analysis
- 2.2.9 Non-Negative Matrix Factorization (NMF)
- 2.2.10 Latent Dirichlet Allocation (LDA)
- 2.2.11 Outliear Detection?
- 3 Deep Learning