Reg. No.									
	0.00	1							

B.Tech. DEGREE EXAMINATION, DECEMBER 2023 Fourth Semester

18MAB206T – NUMERICAL METHODS AND ANALYSIS

(For the candidates admitted from the academic year 2020-2021 to 2021-2022)

Th.T	- 4	_
174	വസ	۰

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.

(ii)	Part - B & Part - C sh	ould be answered in answ	ver booklet.				
Time: 3	hours			Max. N	/ark	s: 1	00
	PAR	$RT - A (20 \times 1 = 20 M)$	(arks)	Marks	BL	со	РО
		Answer ALL Question					
1.	Newton-Raphson met	•		1	1	1	2
	(A) Tangents		Secant				
	(C) Co-secant	(D)	Squares				
2.	The order of converge	ence of Newton's meth	od is	1	1	1	2
	(A) 2	(B)					
	(C) 4	(D)					
3.	One of the direct meth	nod to save system of s	imultaneous linear equation is	1	1	1	2
	(A) Gauss-Jacobi		Gauss-Elimination				
	(C) Gauss-Seidel	(D)	Newton's method				
4.		e Gauss-Seidel metho	d is roughlyas faster a	s 1	1	1	2
	in Jacobi's method.						
	(A) Three times	` '	Five times				
	(C) Ten times	(D)	Two times				
5.	The translation operate	or E is defined by		1	1	2	2
	(A) $Ef(x) = f(x+h)$) (B)	Ef(x) = f(x)				
	(C) $Ef(x+h) = f(x+h)$) (D)	Ef(x) = f(x-h)				
6	The relation between 1	Fand ∇ is		1	2	2	2.
0.	(A) $\nabla - E^{-1} = 1$		$1 + \nabla = E^{-1}$				
	(C) $\nabla = 1 - E^{-1}$		$\nabla = 1 + E^{-1}$				
	V = I - E	(2)	V = I + E				
7	The $(n+1)^{th}$ and high	er differences of a pol	ynomial of degree 'n' are	1	1	2	2
	(A) Quadratic	(B)	Parabolic				
	(C) Linear	(D)	Zeros				
8.	$\delta E^{1/2} =$			1	2	2	2
	(A) Δ	(B)	∇				
	(C) δ	(D)					

9.	The trapezoidal rule is (A) $h/2[\text{sum of the first and last ordinates} + 2(\text{sum of the first and last ordinates} + 2(\text{sum of the first and last ordinates})$	of remaining ordinates)]	1	3	2
	(C) $h/2$ [sum of y_0 and $y_{n-1} + 2$ (sum of remaining or (D) $h/2[y_0 + y_n + 2(y_2 + y_4 +) + 4(y_1 + y_3 +)]$				
10.	The error in Trapezoidal rule is (A) $ E < \frac{(b-a)h^2}{12}$ (B) $ E < \frac{(b}{b}$ (C) $ E < \frac{(b-a)h^3}{180}$ (D) $ E < \frac{(b}{b}$	$\frac{(-a)h^3}{12} + a)h^3$	1	3	2
	100	1	,	2	•
11.	Simpson's Three-eight rule can be applied only when (A) Odd (B) Even (C) Prime (D) Multiple		1	3	2
12.	Simpson's one-third rule is also called (A) Parabolic rule (B) Hyperbolic (C) Elliptic rule (D) Trapezo		1	3	2
13.	The improved Euler method is based on the averages (A) Points (B) Slopes (C) Curves (D) Both po	of 1 ints and slopes	1	4	2
14.	Which of the following is a better method? (A) Taylor series method (B) R-K method (C) Euler's method (D) Modifie	thod d Euler method	1	4	2
15.	The error term in Milne's corrector formula is $(A) \frac{-h}{90} \Delta^4 y_0'$ $(B) \frac{h}{90} \Delta^4 y_0'$		1	4	2
	(C) $\frac{-h}{90} \Delta^3 y_0$ (D) $\frac{h}{90} \Delta^4 y_0$				
16.	Which of the following is Modified E $\frac{dy}{dx} = f(x,y), y(x_0) = y_0$ (A) $y_1 = y_0 + h^2 f(x_0, y_0)$	Euler's formula for ¹	1	4	1
	(B) $y_1 = y_0 - h^2 f(x_0, y_0)$ (C) $y_1 = y_0 + hf\left(x_0 + \frac{1}{2}h, y_0 + \frac{1}{2}hf(x_0, y_0)\right)$				
	(D) $y_1 = y_0 + h$				
17.	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \text{ is called}$	1	1	5	2
Page 2 of 4	(A) Elliptic(B) Parabolic(C) Hyperbolic(D) Laplace	ic equation 05DF4-18M	AB206T		

18.	Bender-Schmidt recurrence equation is valid only if (A) $k = \frac{h^2}{2}$ (B) $k = \frac{ah^2}{2}$ (C) $k = \frac{2}{ah^2}$ (D) $k = \frac{2}{h^2}$	1	1	5	2
19.	The equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$ is also called	1	1	5	2
	 (A) Laplace equation (B) Poisson equation (C) One dimensional heat equation (D) Two dimensional heat equation 				
20.	Bender-Schmidt scheme converges for (A) $\lambda=1$ (B) $\lambda=1/2$ (C) $\lambda=3$ (D) $\lambda=3/2$	1	1	5	2
	$PART - B (5 \times 4 = 20 \text{ Marks})$				
	Answer ANY FIVE Questions	Marks	BL	co	PO
21.	Find the real positive roof of $3x - \cos x - 1 = 0$ by Newton's method correct to 4 decimal places.	4	3	1	2
22.	Find the 7 th term of the sequence 1, 4, 10, 20, 35, 56	4	3	2	2
23.	Evaluate $\int_{1}^{2} \frac{dx}{1+x^2}$ taking h=0.2 using trapezoidal rule.	4	3	3	2
24.	Solve $\frac{dy}{dx} = x + y$, $y(1) = 0$ to obtain y(1.1) by Taylor's method taking h=0.1.	4	3	4	2
25.	Using Euler's method, solve numerically the equation $y' = x + y$, $y(0) = 1$, for $x = 0.2$ and 0.4.	4	3	4	2
26.	Classify the partial differential equation $(x+1)u_{xx} - 2(x+2)u_{xy} + (x+3)u_{yy} = 0$.	4	3	5	2
27.	State modified Euler formula and improved Euler formula.	4	3	4	2
	$PART - C (5 \times 12 = 60 Marks)$				
	Answer ALL Questions	Marks	BL	CO	PO
28. a.	Solve the following system of equation of using Gauss-Seidel method correct to three decimal places $8x-3y+2z=20$	12	3	1	2
	4x + 11y - z = 33				
	6x + 3y + 12z = 35				
	(OR)				
b.	Solve the system of equations by Gauss-Jordan method. x+2y+z=3	12	3	1	2
	2x + 3y + 3z = 10				

Page 3 of 4

3x - y + 2z = 13

29. a.	The population	of a town	is as	follows.
--------	----------------	-----------	-------	----------

x	1941	1951	1961	1971	1981	1991
y	20	24	29	36	46	51

Estimate the population increase during the period 1946 to 1976.

(OR)

b. Use Lagrange's interpolation formula to fit a polynomial to the data.

	rmula				12	3	2	2
x	0	1	3	4				
y	-12	0	6	12				

3

12

2

2

And hence find the value of y when x=2.

30. a. Find the first two derivative of $(x)^{1/3}$ at x = 50 and x = 56 given the table

x	50	51	52	53	54	55
$y = x^{1/3}$	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030

(OR)

- b. Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ using trapezoidal and Simpson's $\frac{1}{3}$ and $\frac{3}{8}$ rules, taking h=1.
- 31. a. Using R-K method of fourth order compute y(0.1), y(0.2) given y(0.2)

(OR)

- b. Using modified Euler's method, find y(0.1) and y(0.2) for the differential 12 4 equation, $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1.
- 32. a. Find the Liebmann's method the values at the interior lattice points of the square region of the harmonic function u whose boundary values are as shows below.

(OR)

b. Solve
$$u_t = 4u_{xx}$$
, $u(0,t) = 0$, $u(8,t) = 0$ and $u(x,0) = 4x - \frac{1}{2}x^2$, taking h=1, $k=1/8$ using Bender-Schmidt formula upto t=5.

* * * * *