V 101

Das Trägheitsmoment

Felix Symma $felix.symma@tu-dortmund.de \qquad joel.koch@tu-dortmund.de$

Joel Koch

Durchführung: 30.11.2021

Abgabe: 07.12.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

Lit	Literatur	
5	Daten 5.1 Tabellen	3
4	Diskussion	3
3	Auswertung	3
2	Durchführung	3
1	Theorie	3

1 Theorie

[1]

2 Durchführung

3 Auswertung

Abbildung 1: Plot.

Siehe Abbildung 1!

4 Diskussion

5 Daten

5.1 Tabellen

 T_1 entspricht Der Stellung 1 unter Auslenkum um 90°. T_2 entspricht Der Stellung 1 unter Auslenkum um 120°. T_3 entspricht Der Stellung 2 unter Auslenkum um 90°. T_4 entspricht Der Stellung 2 unter Auslenkum um 120°.

Tabelle 1: Winkelrichtgröße ${\cal D}$

Auslenkwinkel φ / DEG°	F/N
70	0.20
80	0,24
90	$0,\!28$
100	0,33
110	$0,\!35$
120	$0,\!39$
130	0,41
140	0,47
150	0,49
160	0,52
170	0,55

Tabelle 2: Eigenträgheitsmoment ${\cal I}_D$

Schwingungsdauer T / s	Abstand a / mm
3,08	60
3,40	80
$4,\!32$	100
4,83	120
$4,\!32$	140
4,83	160
$5,\!37$	180
5,76	200
6,28	220
7,36	240

Tabelle 3: Trägheitsmomente der Körper

$T_{ m Zylinder}$ / s	$T_{ m Kugel}$ / s
0,876	1,706
0,856	1,724
0,828	1,708
0,848	1,692
0,843	1,691
0,847	1,699
0,804	1,684
0,822	1,677
0,862	1,697
0,828	1,687

 ${\bf Tabelle~4:~Durchmesser~K\"{o}rperteile}$

$D_{ m Arm}$ / cm	D_{Kopf} / cm	D_{Bein} / cm	D_{Torso} / cm
13,3	17,6	13,4	40,0
16,1	19,0	16,5	33,4
14,0	21,7	17,2	28,1
16,8	30,6	16,0	36,4
11,2	$32,\!2$	20,9	$36,\!5$

Tabelle 5: Schwingungsdauer

T_1 / s	T_2 / s	T_3 / s	T_4 / s
0,792	0,790	1,094	1,070
0,816	0,906	1,148	1,098
0,840	0,784	1,096	1,096
0,798	0,784	1,058	1,084
0,816	0,812	1,144	1,198

Literatur

[1] Versuch zum Literaturverzeichnis. TU Dortmund, Fakultät Physik. 2014.