

FIG. 1A**FIG. 1B****FIG. 1C**

2/52

FIG. 2

FIG. 3

FIG. 4A

FIG. 4B

FIG. 4C

FIG. 4D

FIG. 5A

6/52

FIG. 5B

FIG. 6

27.B1

FIG. 7

27.F7

FIG. 8

**Expression of 27.F7 and 27.B1 Antigen
on Different Human Cell Lines**

FIG. 9

**Detection of TIP2
in MCF-7 Cells
using Antibodies**

Indirect Immunostaining of Cancer Cells with 27.F7

10/52

polyclonal mouse
anti-TIP2 and
anti-mouse Ig-TRITC

27.81 and
anti-human k-FITC

27.F7 and
anti-human k-FITC

LNCaP

SK-BR-3

Size bars represent 20 μm

11/52

Normal Breast Tissue

Invasive Ductal Cancer

Size bars represent 20 μ m

FIG. 10

Indirect Immunostaining with 27.B1

12/52

benign prostate hyperplasia

prostate cancer

Size bars represent 20 μm

Indirect Immunostaining with 27.B1

FIG. 11

13/52

Normal Breast

Invasive Ductal Carcinoma

Size bars represent 20 μm

Indirect Immunostaining with 27.F7

FIG. 12

14/52

benign prostate hyperplasia prostate cancer

Size bars represent 20 μm

Indirect Immunostaining with 27.F7

FIG. 13

Antibody: 27.F7

Antibody: 27.B1

Distribution of the Antigen (Confocal Microscopy)

Size bars represent 20 μm

FIG. 14
Immunostaining of Breast Cancer Metastases
in Regional Lymph Nodes

FIG. 14

FIG. 15

Indir ct Immunostaining of Invasive Ductal Cancer with
27B1
27F7

16/52

Size bars represent 20 μm

frozen

fixed

frozen

fixed

17/52

27.F7

27.B1

Size bars represent 20 μm

Image magnification varies

FIG. 17

Indirect Immunostaining with 27.B1

FIG. 18

Regulation of G-protein Signalling System

FIG. 19 GIPC Proteins (GAIP Interacting Protein, C-terminus) - Regulators of Regulators?

GIPC Family Proteins

- TAX interacting protein 2 (TIP-2)
- Neuropophilin binding protein (NIP)
- M-Semaphorin F cytoplasmic domain associated protein (SEMCAP-1)

Other PDZ-“binders”

- NMDA
- TAX oncoprotein
- HPV E6
- AdD9 E4
- glycophorin C
- FAS
- APC
- LET-23
- CXCR2 (IL-8 RB)
- CXCR5 (coreceptor HTLV-1/HIV)

Other PDZ-“containers”

- PSD-95
- DlgA/DLG
- ZO-1
- p55
- LIN7
- PTPL1/FAP1
- RGS12
- PDZ-73 (NYCO38)

FIG. 20

**PRINCIPLE OF SEROLOGICAL RECOMBINANT EXPRESSION CLONING
(SEREX) TECHNOLOGY FOR IDENTIFICATION OF TUMOR ASSOCIATED
ANTIGENS**

FIG. 21

DEVELOPMENT OF MOUSE anti-TIP-2 ANTIBODIES USING HUMAN anti-TIP-2 ANTIBODY BOTH AS A CAPTURE AND A TAG

Immunoprecipitation

Humab 27.F7 (μ , κ)

SK-BR-3 cells / anti- μ -Agarose +

A high-contrast, black-and-white micrograph showing a dense, granular texture within a large, roughly elliptical frame. The interior contains numerous small, dark, irregular shapes of varying sizes, suggesting a microscopic view of biological material like microfossils or organic debris.

The diagram illustrates a process flow. On the left, the text "Cell lysate" is written vertically above a horizontal line. A large, downward-pointing arrow originates from this line and points to a cylindrical container. The container is depicted with a textured interior representing a porous column. An arrow points from the bottom right corner of the cylinder towards its base.

Cell lysate

Western blot

NC strip
implant (s.c.)

Western blot

73 —
47 —
— TIP-2

Detailed description: This is a horizontal immunoprecipitation gel. The lanes are labeled vertically on the right. The top row contains 'Mouse serum' and 'Human MAb'. The bottom row contains 'Control' and 'Immune'. Each lane shows a series of protein bands. In the 'Control' lanes, bands are visible at approximately 11,000, 12,000, 14,000, 15,000, 17,000, 19,000, and 21,000. In the 'Immune' lanes, additional bands are present at approximately 13,000, 16,000, and 18,000. A numerical value '27.47' is written below the 'Control' lane.

Lane	11,000	12,000	13,000	14,000	15,000	16,000	17,000	18,000	19,000	21,000
Control (Mouse Serum)	Weak	Strong		Strong	Strong	Strong	Strong		Strong	Strong
Immune (Mouse Serum)			Strong	Strong	Strong	Strong	Strong		Strong	Strong
Control (Human MAb)	Weak	Strong		Strong	Strong	Strong	Strong		Strong	Strong
Immune (Human MAb)			Strong	Strong	Strong	Strong	Strong		Strong	Strong

22/52

FIG. 22

SERUM IMMUNOREACTIVITY IN MOUSE IMMUNIZED WITH BREAST CANCER - ASSOCIATED ANTIGEN TIP-2

23/52

Distribution of the Antigen (Confocal Microscopy)

Invasive Ductal Cancer Tissue Stained Indirectly with:

27.F7

polyclonal mouse anti-TIP2

Controls

Size bars represent 20 μm

Normal Breast Tissue
Indirectly stained with
mouse anti-TIP2

Control Mouse Serum and
Second Antibody Control

Second Antibody Control

FIG. 23

FIG. 24

Analysis for Human anti-TIP-2 Antibody 27.F7 (μ , κ) on SK-BR-3 Cells

25/52

26/52

**FIG. 25 Expression of TIP-2 in Normal and
Cancer Breast Tissue Lysates**

FIG. 26

Coupling of anti-TIP-2 Antibody 27.F7 (μ , κ) to Liposomes

FIG. 27

Alcohol Fractionation of Human Serum Spiked
with SK-BR-3 Lysates (TIP-2 Containing)

FIG. 28

Release of TIP-2 into Culture Media from SK-BR-3 Cells Treated by Taxol

FIG. 29

Amino Acid Sequence of GLUT1CBP/GIPC Protein

30/52

10	20	30	40	50	60
MPLGLGRRKK	APPLVNEEA	EPGRGGIIGVG	EPGPIGGGS	GGPQMGGLPPP	PPAIRRPLVE
70	80	90	100	110	120
HTQLAHGSPT	GRIEGFTNVK	ELYGKIAEAF	RLPTAEVMFC	TINTTHKVDM	KLGGQIGLE
130	140	150	160	170	180
DIFIAHVKGQ	RKEVEVFKE	DALGLITIDN	GAGYAFIKRI	KEGSVIDHIIH	LISVGDMIEA
190	200	210	220	230	240
INGQOSILGCR	<u>HEVERALIKE</u>	LPRGRGTTLIK	LTEPRKAFDM	ISQRSAGGRP	GSGCPOLGTGR
250	260	270	280	290	300
GTLLRLRSRGF	ATVEDLPSAF	EKAKIEKVDD	LLESYMGIRD	TELAAATMVEL	GKDKRNPDEL
310	320	330			
AEALDERLGD	FAFPDEFVFD	WNGAIGDAKV	GRY		

TIP-2 sequence is shown in italic

HLA A*0201 binding peptides (111-119 and 185-194) are shown underlined

FIG. 30

31/52

1 cacggggagg cggaggcagc ggcggccgg gcggccgg cgccggccgc ggagcagatc
61 ttctgtgtac cccacttctc gtgtgtcatg ccgtctggac tggggccgg gaaaaggcg
121 ccccctctag tgaaaaatga ggaggctgag ccaggccgtg gagggtgg cggtggggag
181 ccagggcctt tggggcggagg tgggtcgggg ggcccca tgggttggc cccccctccc
241 ccagggcctgc ggcccccgcct tgtgttccac accaggctgg cccatggcag tcccactggc
301 cgcatcgagg ggttcaccaa cgtcaaggag ctgtatggc agattggca ggccttccgc
361 ctggcaactg ccgaggtgtat gttttgacc ctgaaacaccc acaaggta catggacaag
421 ctcctgggg gccaaatcg gctggaggac ttcatcttcg cccacgtgaa ggggcaggcg
481 aaggaggatgg agggtgttca gtcgaggat gcactcgcc tcacatcac ggacaacagg
541 gctggctacg ccttcata gcgcata gaggcagg tgcacatc catccacatc
601 atcaacgtgg gcgacatgtat cgaggcatt aacggcaga gcctgtgg ctggccgcac
661 tacgaaatgg cccggtgtat caaggaactg cccccggcc gtacccatc gtaccaagatc

Protein Antigens Identified by Natural Human Monoclonal Antibodies Developed from Breast and Prostate Cancer Patients' B-Cells

FIG. 31

32/52

Antibody	Antigen Name	Sequence	Molecular Weight (Calculated)	HLA A*0201-Specific MHC Binding Peptides	mRNA Expression in Tissues	Functions
13.42 μ,κ	Human mRNA for KIAA0338 gene, partial cds	See Fig. 32	103568 (~40kD by WB) by WB)	NLLEKDYFGL (184-193) VLFDLVCEHL (174-183) KLQHPDMLV (903-911)	Brain	Unknown
13.2C1 μ,κ	Human non-muscle alpha-actinin mRNA, complete cds - the second non muscle alpha-actinin isoform designated ACTN4 (actinin-4)	See Fig. 33	103217	KMLDAEADIV (238-246) KMTLGMWIWTI (139-148) FMPSEGKMKV (374-382) KLASDLLEWI (302-311) GLVTIQAFI (825-833) CQELEINFNSV (353-362)	Adipose, Adrenal gland, Aorta, Brain, Breast, CNS, Colon, Ear, Esophagus, Foreskin, Germ Cell, Heart, Kidney, Liver, Lung, Muscle, Ovary, Pancreas, Parathyroid, Placenta, Prostate, Small intestine, Stomach, Testis, Thyroid, Tonsil, Uterus, Whole embryo, breast, colon, genitourinary tract, head, neck, lung, cell line, ovary, stomach	Actin-binding protein important in organization of cytoskeleton and in cell adhesion. "An amino-terminal fragment of alpha-actinin can promote monocyte/macrophage maturation" [Exp. Hematol. 1999, 27(2):345-52].
				"...100kD alpha-actinin was found in the extracellular matrix of bone marrow stroma by Western blot and immunofluorescence microscopy" [Exp. Hematol. 1999, 27(2):345-52].		
13.2C1 μ,κ	Homo sapiens actinin, alpha 4 (ACTN4) mRNA	See Fig. 34	102260	KMMLDAEADIV (212-220) KMTLGMWIWTI (113-122) FMPSEGKMKV (345-353) KLASDLLEWI (273-282) GLVTIQAFI (797-805)	Adipose, Adrenal gland, Aorta, Brain, Breast, CNS, Colon, Ear, Esophagus, Foreskin, Germ Cell, Heart, Kidney, Liver, Lung, Muscle, Ovary, Pancreas, Parathyroid, Placenta, Prostate, Small intestine, Stomach, Testis, Thyroid, Tonsil, Uterus, Whole embryo, breast, colon, genitourinary tract, head, neck,	Actin-binding protein important in organization of cytoskeleton and in cell adhesion. "The cytoplasmic localization of actinin-4 was closely associated with an infiltrative histological phenotype and correlated significantly

				Jung, cell line, ovary, stomach	
22.8D11 μ, λ	Human clathrin coat assembly protein 50 (AP50) mRNA	See Fig. 35	49602	WIAAVTKQNV (64-73) ILPFRVIVPLV (284-293) SLLAQKIEV (314-322) KLNYSDHDV (410-418)	infant brain, brain, placenta, breast, ovary (tumor), fetal heart, fetal lung, multiple sclerosis lesions, pineal gland, lymph node
27.B1 μ, κ 27.F7 μ, κ	Homo sapiens GLUT1 C-terminal binding protein (GLUT1CBP) mRNA [GIPC/TIP-2]	See Fig. 36	36047	KLLGGQIQGL (111-119) SLLGCRHYEV (185-194)	Adipose, Aorta, Blood, Bone, Brain, Breast, CNS, Colon, Germ Cell, Heart, Kidney, Lung, Ovary, Pancreas, Placenta, Pooled, Stomach, Testis, Thymus, Uterus, Whole embryo, brain, breast, colon, connective tissue, lung, muscle
33.2H6 μ, λ	Homo sapiens gp130 associated protein GAM mRNA	See Fig. 37	21835	YLSQEHQQQV (94-103)	placenta, breast, infant brain, uterus (pregnant), B-Cell, ovary (tumor), fetal heart, fetal liver/spleen, fetal lung, T cells (Jurkat cell line)

34/52

33.2H6 μ, λ	Homo sapiens amino-terminal enhancer of split (AES) mRNA	See Fig. 38	21966	YLSQEHQQQV (95-104)	Adrenal gland, Aorta, Blood, Bone, Brain, Breast, CNS, Colon, Esophagus, Eye, Foreskin, Germ Cell, Head and neck, Heart, Kidney, Lung, Lymph, Muscle, Nose, Ovary, Pancreas, Parathyroid, Placenta, Pooled, Prostate, Spleen, Stomach, Synovial membrane, Testis, Thymus, Thyroid, Tonsil, Uterus, Whole embryo, brain, colon, head-neck, kidney, lung, ovary, placet	Amino-terminal enhancer of split is similar to the Drosophila enhancer of split groucho protein. The function of AES has not been determined but it has been proposed as a candidate tumor human cancer antigen.
33.2H6 μ, λ	Antiquitin 1 (antiquitin=26g turgor protein homolog), mRNA	See Fig. 39	55357	KVMDRPGNYV (372-381) ALIEQWNPV (149-157) ITAFNFPV (162-170)	fetal heart, infant brain, placenta, NT2 neuronal precursor, liver, HeLa (cell line), ovary, liver (HepG2 cell line), ovary (tumor), multiple sclerosis lesions	Unknown (30% identity to various eukaryotic and prokaryotic aldehyde dehydrogenases). Antiquitin has homology to a previously described protein from the green garden pea, the 26g pea turgor protein. Four human antiquitin-like sequences, possibly pseudogenes, have also been identified.
39.A7 μ, λ	ARP2/3 protein complex 41 KD subunit (P41-ARC), mRNA	See Fig. 40	40935	FEQENDWWV (125-133)	HeLa (cell line), fibroblast, fetal brain, infant brain, fetal liver/spleen, monocytes (stimulated), fetal heart, uterus (pregnant), olfactory epithelium, breast	Part of a complex implicated in the control of actin polymerization in cells belongs to a complex composed of ARP2, ARP3, P41-ARC, P34-ARC, P21-ARC, P20-ARC and P16-ARC.
50.1B3 μ, κ	H.sapiens seb4D mRNA H.sapiens seb4B mRNA	See Fig. 41a and 41b	seb4D-24617	for seb4D YLGAKPWCL(100-108) CLQTGFAIGV(107-116)	thymus, Blood, Brain, Breast, Colon, Germ Cell, Heart, Kidney, Lung, Lymph, Ovary, Parathyroid, Pooled, Prostate, Testis, Thymus, Tonsil, Uterus, brain, colon, lung, muscle, ovary,	Unknown

35/52

			seb4B- 25218	for seb4B YLGAKPWCL (101-109) CLQTGFALGV (108-117)	stomach, thymus, pooled, whole blood	
59.3G7 $\mu\lambda$	Homo sapiens lamin A/C (LMNA) mRNA	See Fig. 42	65133	KLLEGEEERL (378-387) KLVRSVTVV (542-550) RLADALQEL (240-248)	Adipose, Adrenal gland, Bone, Brain, Breast, Colon, Esophagus, Foreskin, Germ Cell, Heart, Kidney, Larynx, Liver, Lung, Lymph, Muscle, Ovary, Pancreas, Parathyroid, Placenta, Pooled, Prostate, Spleen, Stomach, Synovial membrane, Testis, Thymus, Thyroid, Uterus, Whole embryo, brain, breast, colon, dennis dash, head neck, lung, cell line, ovary, stomach	Intermediate filament proteins

FIG. 32

Human mRNA for KIAA0338 gene, partial cds

ORIGIN

1 catcagcggg cgggggtgtc gccgaacagg ctgctccgca gagccgcgg cgaccggcg
 61 ccggcccgcc ccgcggcctg cctgccagag gagccgaggg ggccgcgcct cgcccaacct
 121 gcccgcacatg gggAACCCG ggcccaggcg tgctggtcac catgacaaca gagacaggcc
 181 ccgactctga ggtgaagaaa gctcaggagg aggccccgca gcagcccgag gctgctggcg
 241 ctgtgaccac ccctgtgacc cctgcaggcc acggccaccc agaggccaac tccaatgaga
 301 agcatccatc ccagcaggac acgcggcctg ctgaacagag cctagacatg gaggagaagg
 361 actacagtga ggccgatggc cttcggaga ggaccacgcc cagcaaggcc cagaaatcgc
 421 cccagaagat tgccaagaaa tacaagagtg ccatactgccc ggtcactctg cttgatgcct
 481 cggagttatga gtgtgaggtg gagaaacatg gcccgggcca ggtgctgtt gacctggct
 541 gtgaacaccc taaccccta gagaaggact acttcggcct gaccttctgt gatgctgaca
 601 gccagaagaa ctggctggac ccctccaagg agatcaagaa gcagatccgg agtagccct
 661 ggaatttgc cttcacagtc aagttctacc cgcctgatcc tgcccagctg acagaagaca
 721 tcacaagata ctacctgtgc ctgcagctgc gggcagacat catcacggc cggctggcat
 781 gtcctttgt cacgcatgcc ctactgggt ctaacgcgt gcaggctgag ctgggtgact
 841 atgatgctga ggagcatgtg ggcaactatg tcagcgagct cgcctcgcc cctaaccaga
 901 cccgggagct ggaggagagg atcatggagc tgcataagac atataggggg atgaccggcg
 961 gagaagcaga aatccacttc tttagagaatg ccaagaagct ttccatgtac ggatgtgacc
 1021 tgcaccatgc caaggactct gagggcatcg acatcatgtt aggcggttgc gccaatggcc
 1081 tgctcatcta ccgggaccgg ctgagaatca accgccttgc ctggcccaag atcctcaaga
 1141 ttcctacaa gaggagtaac ttctatatca agatccggcc tggggagtt gagcaatttg
 1201 agagcacaat tggcttaag ctcccaaacc accggtcagc caagagactg tggaaaggct
 1261 gcatcgagca tcatacattc ttccggctgg tgccttgc gccccccaccc aagggttcc
 1321 tggtgatggg ctccaagttc cggtaatgtt ggaggaccca ggcacagact cgccaggcca
 1381 gcgcctcat tgaccggcct gcacccttct ttgagcggtc ttccagcaaa cggtaatcca
 1441 tgcctcgag cttgtatggc gcagagttt cccggccagc ctcggcagc gagaaccatg
 1501 atgcagggcc tgacgggtgac aagcgggatg aggtatggcga gtctgggggg caacggtcag
 1561 aggctgagga gggagaggc aggactccaa ccaagatcaa ggagctaaag ccggagcagg
 1621 aaaccacgccc gagacacaag caggatgtt tagacaagcc agaagatgtc ttgctgaagc
 1681 accaggccag catcaatgag ctcaaaagga ccctgaagga gcccacagc aaactcatcc

FIG. 32 (cont.)

1741 accgggatcg agactggaa cgggagcgca ggctgccctc ctccccgccc tccccctccc
 1801 ccaagggcac ccctgagaaa gccaatgaga gagcagggct gagggaggc tccgaggaga
 1861 aagtcaaacc accacgtccc cgggccccag agagtacac aggcgatgag gaccaggacc
 1921 aggagagggc cacgggtttc ctgaaggaca accacctggc cattgagcgc aagtgcctca
 1981 gcatcacggt cagctctacg tctagcctgg aggcgtggg ggacttcacg gtcattggtg
 2041 actaccatgg cagcgccctc gaagacttct cccgcagcct gcctgagctc gaccgggaca
 2101 aaagcgactc ggacactgag ggctgctgt tctcccgaa tctcaacaag ggggccccca
 2161 gccaggatga tgagtctggg ggcattgagg acagcccgaa tcgaggggcc tgctccaccc
 2221 cgatatgcc ccagtttag cccgtaaaaa cagaaaccat gactgtcagc agtctggcca
 2281 ttagaaagaa gattgagccg gaggccgtac tgcaagaccag agtctccgct atggataaca
 2341 cccagcagggt tgatgggagt gcctcagtgg ggagggagtt catagaacc accctccca
 2401 tcaccacgga gaccatatcg accaccatgg agaacagtct caagttcggg aagggggcag
 2461 ctgccatgat cccaggccca cagacgggtgg ccacggaaat ccttctctt tctccgatca
 2521 tcgggaaaga tgtcctcacc agcacctacg gcccactgc gggaaaccctc tcaaccctcca
 2581 ccaccaccca tgtcaccaaa actgtgaaag gagggtttc tgagacaagg atcgagaagc
 2641 gaatcatcat tactgggat gaagatgtcg atcaagacca gcccctggct ttggccatca
 2701 aggaggccaa actgcagcat cctgatatgc tgtaaccaa agctgtcgta tacagagaaa
 2761 cagaccatc cccagaggag agggacaaga agccacagga atcctgacct ctgtgaagag
 2821 atcctggcat ttctggtcca acccaagcca gagaaccatt aagaaggggc cttcattctg
 2881 gattctccga cgcaacactg acgtcccagc tgacgtgtc tgcactgt gagagactgg
 2941 gaagggaaaa gcatatatat atagatatat agagatatac atatatatac agggaaacacc
 3001 gcatccttgc actgctgctg gggctggcag agcagttggc tgacagcaac aaccgacatc
 3061 tgaacaccta cattccctt gcagacaaat tgaagaactg gtgggatttt tttcaagaaaa
 3121 aaaaattata taataactat aatcccttgc tcacccctt ccccccacaa ataagaaacg
 3181 caagccagac cacgatgatt gttagaagtcc ctcccgccct gttctgcac gttacagtt
 3241 gcagacgagc aattccattt gttcttctcc agcatctcta agggccactt gaatgcaaag
 3301 gaaaacactt gcacagcaaa gcaagagaag tcacagcagc aagacacgca cagtcaacca
 3361 tttccgaga aaaaagaaa attccctact tgaaaagaaa gaggaggaac actggattct
 3421 tacttctgg atcttgacac tggctgcaa aacctacctt cctctctccc gcctccctcc
 3481 accctcaact ctcaatgtct tgctgtcatt ttctgtctcg gctccctcct ccccttccc
 3541 cttccccca ccccacaccc ttccaccctt gtgtcctggc cttctgagg gccactgcag
 3601 atgactctcc tttgaaatga gaaaagaaa agaaagcaag aacagaaaac gaagccacag
 3661 gaagggaaatg agacattgtt tgcttatgtt ttctcattat gaaggtgcag cttgttaggag
 3721 gtttgcacgg atgtgcttt aagttatgtt tattacatatac aacagaaaa aatattaata
 3781 aacagtgcgt gtaagtatgtt agtgcacatt ctaaaattat aattatctgtt ctgtgattgt
 3841 tgtatccctga gttccttaga tctcaactgaa ctggcccgac taaggagacc tggactctgg
 3901 gtgtgggttg gctcacagta ggggctgacg gttcagtgt agtaataactg ttttgtgggtt

FIG. 32 (cont.)

3961 ttgtaatgg ttgattgggt gggagggggt gggggcccta atggagaggt gtgggtttgg
 4021 caagaaagaa gcaacacaga tgcgtcccc aaaatccag ttcaagacac cttctccctg
 4081 ccccccctggt agtaacagtc agggcctggt ctgtgctcg gtactgggtc ccagtctggg
 4141 actctgtgc tgaagttgcc acagtagagg tccctggctt agtccttatac tccctacggg
 4201 gcttgccttg gtttcagtc ttctctctt ttctctctt tttttttt tgccacatcc
 4261 tgcccttccc tgaccccatt gtaataacca actccatatac caaaggagg tggtgctctc
 4321 agccattgtt gaagatgggt gcttaaacct gactgtctaa aaattccca gtaaggcttt
 4381 tcctctactc ttttccttgt tctgaatcat ttcttctt caggccaaag tagccatgg
 4441 aaggaggctt catggggcag accctgaaag atcaaaaactg catttgc当地 gcccctcc
 4501 gtcccaggac aaagctgaga ctgacgggtg atgttgc当地 taggctccag ctctgc当地aa
 4561 gacctggct tggagacccctc cctctcagtc aacagctgaa ctctgagctt gtgcccagaa
 4621 attacccaa gaccacagga acccttcaag aagctccat cacaagcttgc当地 gcattgctct
 4681 ctgccacacg tgggcttccct caggcttgc当地 tgccacaca cacttctctg agctcagaaaa
 4741 gtgccccttg atgagggaaa atgtcccact gcactgc当地 ttctcagtt ccattttacc
 4801 tcccagtc当地 ccttctaaac cagttataaa attcattcca caagtattt当地 ctgattac
 4861 gcttgc当地 gggactattt tcaggctgaa gaagggtggg ggggaggggc当地 gaacctgagg
 4921 agccacactgaa gccagcttta tatttcaacc atggctggcc catctgagag catctccca
 4981 ctctcgccaa cctatcgcccc catagccca gatatggccca aggccggccca gtttagatgc
 5041 gtcccttgg cttgtcagtg atgacatatac ccttagctgc ttagcttgc当地 ctggcctgag
 5101 gcagggcagg aaatcagaat agcatttgc当地 tctctggca aatgggaagt tcagcggggc
 5161 agcagaatca gtggcattcc ccttggc当地 ggccgggtggg tccactccaa ctccccc当地
 5221 gtgttagcagc acactttcca tacaccagg tcttctaca atcctggtgg aaaagccaca
 5281 gaaccttccctt cctgcccttc ttgagagttt ccccttttcc tgggtcaaga gctggagtt
 5341 tggctccatc ctctctggc当地 cacttcggc当地 taggaactca tcttgc当地 caggagg
 5401 cctgagcaca ctgaacacac ctcagaggaa ggatccttgc当地 tgtggattt gcacctggct
 5461 ttggggcagg ggtgaagtgaa ccaggcttag cttgtggagttt ttagggccaa ccagggttt
 5521 gggaaatcac catcccgccg atgtgtgac ctcccttctaa cggagatgca ggcagtgccaa
 5581 cgagggagga ggggacctgc aaagctagaa tctaggccac tggggccaa ccattcttct
 5641 cttttagag aatagagacg tttgtcttgc当地 ctgtcttcaa cctacttttcc ttttctt
 5701 ttttgttctt catcctcttgc当地 gtgccacccctc tccacccagg aggccatgttgc当地
 5761 aaaagtccctt gagggcgggtt aggagttctg ggtgaccatc ctggctcagc ttcttactca
 5821 ccatgtgaca tcaggctatc cccattcccc ctcttggcc当地 tcagttccccc gacttgcaaa
 5881 ataagcagaa agaaccagat gcttccagg gtcttttctt actttgttat ctatgggtc
 5941 ttcattttctt cttatgggtt tttctcttgc当地 tctttccat ctgagggtaa aggaagtacc
 6001 aggacctgtt tcagtttttgc当地 aatcctgcaaa gcacattccaa agactggcc local
 6061 gagcaacatc actcgaaata attttttttt tcaaaagcac cttacaacc aattgc当地
 6121 ctgtccctgtt ctttttactt cacacccttc tctc- ttct cgtccccatg ctccccacc

FIG. 32 (cont.)

6181 tcagtgc tcc gtgctgtatg cgtgtgc tct ctgttctt atactcaata taagtgaaat
 6241 aaatgtttt gatgctgaac cat

Translation:

SAGGGVAEQAAPQSPPRPRAAPPRGLPARGAEGAAPRPTCPTWGTPPGVLTMTTET
 GPDSEVKKAQEEAPQQPEAAAATTPVT PAGHGHPEANSNEKHPQQDTRPAEQSLDM
 EEKDYSEADGLSERTPSKAQKSPQKIAKKYKSAICRVTLIDASEYECEVEKHGRGQV
 LFDLVCEHLNLLEKDYFGLTFCDADSQKNWLDPSKEIKKQIRSSPNFAFTVKFYPPD
 PAQLTEDITRYYLCLQLRADII TGRLPSCFVTHALLGSYAVQAEELGDYDAEEHVGNYV
 SELRFAPNQTRELEERIMELHKTYRGMT PGEAEIHFLENAKKLSMYGVDLHHAKDSEG
 IDIMLGVCANGLLIYRDRRLRINRFAWPKILKISYKRSNFYIKIRPGEYEQFESTIGFK
 LPNHRSAKRLWKVCIEHHTFFRLVSPEPPPCKFLVMGSKFRYSGRTQAQTRQASALID
 RPAPFFERSSSKRYTMSRSLDGAESRPARSVSENHDAGPDGDKRDEDEGESGGQRSEAE
 EGEVRTPTKIKELKPEQETTPRHKQEFLDKPEDVLLKHQASINELKRTLKEPNKLIH
 RDRDWERERRLPSSPASPSPKGTPKANERAGLREGSEEVKPPRPRAPESDTGDEDQ
 DQERDTVFLKDNHLAIERKCSSITVSSTSSLEAEVDFTVIGDYHGSAFEDFSRSLPEL
 DRDKSDSDTEGLLFSRDLNKGAPSQDDESGGIEDSPDRGACSTPDMPQFEPVKTETMT
 VSSLAIRKKIEPEAVLQTRVSAMDNTQQVDGSASVGREFIATTPSITTETISTMENS
 LKSGKGAAAMI PGQTVATEIRSLSPIIGKDVLSTYGATAETLSTTTHVTKTVKG
 GFSETRIEKRIIITGDEDVDQDQALALAIKEAKLQHPDMLVTKAVVYRETDPSPPEERD
 KKPQES

DRAFT - DO NOT CITE

FIG. 33

Human non-muscle alpha-actinin mRNA, complete cds -
the second non-muscle alpha-actinin isoform designated ACTN4 (actinin-4)

ORIGIN

1 ggcgcggcggc ggctcgccc gaggggcgaa agctgaggcg ggagcggaca ggctgggtgg
 61 cgagcgagag ggcggaaatg gtggactacc acgcggcgaa ccagtcgtac cagtaacggcc
 121 ccagcagcgc ggcaatggct tggcgccggg ggagcatggg cgactacatg gcccaggagg
 181 acgactggga ccgggacctg ctgctggacc cggcctggga gaagcagcag cgcaagacct
 241 tcacggcatg gagcaactcc cacctgcgga aggcaaggcac acagatcgag aacattgtat
 301 aggacttccg agacgggctc aagctcatgc tgctcctggaa ggtcatatca ggggagcgggt
 361 tacctaagcc ggagcggggg aagatgagag tgcacaaaat caacaatgtg aacaaagcgc
 421 tggactttat tgccagcaaa gggatcaagc tggacttcca tcgggcagaa gagattgtgg
 481 acggcaacgc aaagatgacc ctggaaatga tctggaccat catcctttagg ttgcctatcc
 541 aggacatctc cgtgaaagag acctcgccca aggaaggct ccttctctgg tgccagagaa
 601 agacagcccc atataagaac gtcaatgtgc agaacttcca catcagctgg aaggatggtc
 661 ttgccttcaa tgccctgatc caccggcaca gaccagagct gattgagtat gacaagctga
 721 ggaaggacga ccctgtcacc aacctgaaca atgccttcga atggctgag aaatacctcg
 781 acatccccaa gatgctggat gcagaggaca tcgtgaacac ggcccgccc gacgagaagg
 841 ccataatgac ctatgtgtcc agcttctacc atgcctttc aggagcgcag aagctgaaa
 901 ctgaaactgc cgccaaccgg atctgttaagg tgctggctgt caaccaagag aactgcagca
 961 cctcgatgga ggactacgag aagctggcc ggcacccct ggagtggatc cggcgccacca
 1021 tcccctggct ggaggaccgt gtcccccaaa agactatcca ggagatgcag cagaagctgg
 1081 aggacttccg cgactaccgg cgtgtcaca agccgccccaa ggtgcaggag aagtgccagc
 1141 tggagatcaa cttaaacagc gtgcagacca agctgcgcct cagcaaccgg cccgccttca
 1201 tgccctccga gggcaagatg gtctcgacca tcaacaatgg ctggcagcac ttggagcagg
 1261 ctgagaaggg ctacgaggag tggctgtga atgagattcg caggctggag cggctcgacc
 1321 acctggcaga gaagttccgg cagaaaggct ccattcacga ggcctggact gacgggaagg
 1381 aagccatgtc gaagcaccgg gactacgaga cggccacact atcggacatc aaagccctca
 1441 ttgcgaagca cgaggccctc gagagcgcacc tggctgcgc ccaggaccgc gtggagcaga
 1501 tcgcccgcctc cgcccaggag ctcaacgcgc tggattacta cgactcccac aatgtcaaca
 1561 cccggtgcca gaagatctgt gaccagtggg acgcctcgg ctctctgaca catagtcgc
 1621 gggaaaggccct ggaaaaaca gagaagcgc tggaggccat catcgaccatg ctgcacctgg
 1681 aatacgccaa gcccggcc cccttcaaca actggatgga gacgcgcattt gaggaccc
 1741 aggacatgtt catcgatccat accatcgagg agattgaggg cctgatctca gcccattgacc
 1801 agttcaagtc caccctggcg gacgcgcata gggagcgcga ggcacccctg catccacaag
 1861 gaggccagag gatcgctgag agcaaccaca tcaagctgtc gggcagcaac ccctacacca
 1921 cccgtcaccgg gcaaatcatc aactccaatgtt gggagaaggt gcagcgcgt gtgcggaaac
 1981 gggaccatgc cctcctggag gagcagagca agcagcgcata gtccaaacgag caccctgc
 2041 gcccgttcgc cagccaggcc aatgttgcgtt ggcctggat ccagaccaag atggaggaga
 2101 tcgcgtatc cattgagatg aacgggaccc tggaggacca gctgagccac ctgaaggcgt
 2161 atgaacgcgc catcgatggac tacaagccca acctggaccc tgcggagcag cagcacc
 2221 tcattccagga ggcctcatc ttgcaccaaca agcacaacaa ctataccatg gacacatcc
 2281 gcgtgggctg ggagcagctg ctcaccacca ttgcctgcac catcaacgcg gtggagaacc
 2341 agatccttac ccgcgcacgc aagggatca gccaggagca gatgcaggag ttccggcg
 2401 cccatcaacca cttcgacaaag gatcatggcg gggcgctgg ggcaggagtt caaggcctgc
 2461 ctcatcagcc tggctacga cgtggagaac gaccggcagg tgaggccgag ttcaaccgc
 2521 tcatgagcct ggtcgacccca aaccatagcg gccttggat cttccaagcc ttcatcgact
 2581 tcatgtcgcg ggagaccacc gacaccgaca cggctgacca gtaatcact tccttcaagg

FIG. 33 (cont.)

2641 tcctagcagg ggacaagaac ttcatcacag ctgaggagct gcggagagag ctgccccccg
 2701 accaggccga gtactgcata gcccgcattgg cgccatacca gggccctgac ggcgtgcgcg
 2761 gtgcctcgat ctacaagtcc ttctccacgg ctttgcattgg cgagagcgac ctgtgaggcc
 2821 ccagagaccc gaccaaacac cccgcacgcc tccaggagcc tggcagcccc acagtcccat
 2881 tcctccactc tgtatctatg caaagcactc tctctgcagt ctccgggtg gttgggtggg
 2941 cagggagggg ctggggcagg ctctctcctc tctctcttg tgggtggcc aggaggttc
 3001 cccgaccagg ttggggagac ttggggccag cgcttcttgt ctggtaata tgtatgtatg
 3061 gttgtcttt ttaaccaag gagggccag tggattccca cagcacaacc gttcccttcc
 3121 atgcctggg atgcctcacc acacccaggt ctcttcctt gctctgaggt cccttcaagg
 3181 cctcccaat ccaggccaaa gccccatgtg cttgtccag gaaactgcct gggccatgcg
 3241 agggggcagc agagggcgc accacctgac ggctgggacc caccagccc ctctccctc
 3301 tctgctccag actcaacttc cattgccagg agatggcccc aacaagcacc ccgctttgc
 3361 agcagaggag ctgagttggc agaccgggccc cccctgaacc gcaccccatc ccaccagccc
 3421 cggccttgct ttgtctggcc tcacgtgtct cagatttct aagaaccaaa aaaa

9
8
7
6
5
4
3
2
1
0

Translation:

MVDYHAANQSYQYGPSSAAMAWRGSMGDYMAQEDDWDRDLLLLPAWEKQQRKTFTAW
 SNSHLRKAGTQIENIDEDFRDGLKLMILLEVISGERLPKPERGKMRVHKINNVNKALD
 FIASKGIKLDFHRAEEIVDGNAKMTLGMWIITIILRFIAIQDISVEETSAKEGLLLWCQR
 KTAPYKNVNQNFHISWKDGLAFNALIHRHREPLIEYDKLRKDDPVTNLNNAFEVAEK
 YLDIPKMLDAEDIVNTARPDEKAINTYVSSFYHAFSGAQKAETETAANRICKVLAVNQ
 ENCSTSMDYEKLAIDLLEWIRRTIPWLEDRVPKTIQEMQQKLEDFRDYRRVHKPPK
 VQEKCQLEINFNSVQTKLRLSNRPAPMPSEGKMSDINNGWQHLEQAEKGYEEWLNE
 IRRRLDHDLAEKFROKASIHEAWTDGKEAMLKHDYETATLSDIKALIRKHEAFESD
 LAAHQDRVEQIAASAQELNELYDYYDSHNVNTRCQKICDQWDALGSILTHSRREALEKTE
 KQLEAIIDQLHLEYAKPAAPFNNWMESAMEDLQDMFIVHTIEEIEGLISAHDQFKSTL
 PDADREREAIRLHPQGGQRIAESNHIKLGSNSPYTTVPQIINSKWEKVQQLVPKRDA
 LLEEQSKQQSNEHRRQFASQANVVGWPWIQTKMEEIAISIEMNGTLEDQLSHLKQYE
 RSIVDYKPNLDLLEQQHQLIQLAEALIFDNKHTNYTMEHIRVGWEQLLTTIARTINEVEN
 QILTRDAKGISQEQMQUEFRASFNHFDKDGGALGRGVQGLPHQPGLRRGERPAGEAEF
 NRIMSLVDPNHSGLVTFOAFIDFMSRETTDTADQVITSFKVLAGDKNFIATEELRR
 ELPPDQAEYCIARMAPYQGPDPGVRGALDYKSFSTALYGESDL

FIG. 34

Homo sapiens actinin, alpha 4 (ACTN4) mRNA

ORIGIN

1 cgccggccgcg tcgaccctacc acgcggcgaa ccagtcgtac cagtacggcc ccagcagcgc
 61 gggcaatggc gctggccgcg ggggcagcat gggcgactac atggcccagg aggacgactg
 121 ggaccggac ctgctgctgg accccggctg ggagaaggcag cagcacaaga ccttcacggc
 181 atqgtcaac tcccacctgc ggaaggcagg cacacagatc gagaacattt atgaggactt
 241 ccgagacggg ctcaagctca tgctgctct ggaggtcata tcagggagc ggttaccaa
 301 gccggagcgg gggaaagatga gagtgcacaa aatcaacaat gtgaacaaag cgctggactt
 361 tattgccagc aaaggcgtca agctggtctc catcggggca gaagagattt tggacggcaa
 421 cgcaaagatg accctggaa tgatctggac catcatcctt aggttcgcca tccaggacat
 481 ctccgtggaa gagacctcg 5' ccaaggaagg gctccttctc tgggccaga gaaagacagc
 541 cccgtataag aacgtcaatg tgcaactt ccacatcagc tggaggatg gtctgcctt
 601 caatgccctg atccaccggc acagaccaga gctgatttag tatgacaagc tgaggaagga
 661 cgaccctgtc accaacctga acaatgcctt cgaagtggct gagaataacc tcgacatccc
 721 caagatgctg gatgcagagg acatcgtgaa cacggcccg cccgacgaga aggccataat
 781 gacctatgtg tccagcttct accatgcctt ttcaaggagcg cagaaggctg aaactgccgc
 841 caaccggatc tgtaagggtgc tggctgtcaa ccaagagaac gagcacctga tggaggacta
 901 cgagaagctg gccagcgacc tcctggagt gatccggcgc accatcccgt ggctggagga
 961 ccgtgtgccc caaaagacta tccaggagat gcagcagaag ctggaggact tccgcgacta
 1021 ccggcgtgtg cacaagccgc ccaaggtgca ggagaagtgc cagctggaga tcaactcaa
 1081 cacgctgcag accaagctgc gcctcagcaa ccggcccgcc ttcatgcctt ccgaggccaa
 1141 gatggctctg gacatcaaca atggctggca gcacttggag caggctgaga agggctacga
 1201 ggagtggctg ctgaatgaga tccgcaggct ggagcggctc gaccacctgg cagagaagtt
 1261 ccggcagaag gcctccatcc acgaggcctg gactgacggg aaggaagcca tgctgaagca
 1321 ccgggactac gagacgcca cactatcgga catcaaagcc ctcattcgca agcacgaggc
 1381 cttcgagagc gacctggctg cgcaccagga ccgcgtggag cagatcgccg ccattgcctt
 1441 ggagctcaac gagctggatt actacgactc ccacaatgtc aacacccgt gccagaagat
 1501 ctgtgaccag tgggacgccc tcggctctt gacacatgt cgcagggaa ccctggagaa
 1561 aacagagaag cagctggagg ccatcgacca gctgcacctg gaatacgcca agcgcgccc
 1621 cccctcaac aactggatgg agagcgcctt ggaggacctc caggacatgt tcattcgcca
 1681 taccatcgag gagattgagg gcctgatctc agcccatgac cagttcaagt ccaccctgcc
 1741 ggacgcccgtt agggagcgcg aggccatcct ggcacatccac aaggaggccc agaggatcgc
 1801 tgagagcaac cacatcaagc tgcggcag caaccctac accaccgtca ccccgcaaat

FIG. 34 (cont.)

1861 catcaactcc aagtgggaga aggtgcagca gctggtgcca aaacgggacc atgccctcct
 1921 ggaggaggcag agcaagcagc agtccaacga gcacctgcgc cgccagttcg ccagccaggc
 1981 caatgttgtg gggccctgga tccagaccaa gatggaggag atcgggcga tctccattga
 2041 gatgaacggg accctggagg accagctgag ccacctgaag cagtagaac gcagcatcgt
 2101 ggactacaag cccaaacctgg acctgctgga gcagcagcac cagtcatacc aggaggccct
 2161 catcttcgac aacaagcaca ccaactatac catggagcac atccgcgtgg gctgggagca
 2221 gctgctcacc accattgccc gcaccatcaa cgaggtggag aaccagatcc tcaccccgca
 2281 cgccaaaggc atcagccagg agcagatgca ggagttccgg gcgtccttca accacttcga
 2341 caaggatcat ggcggggcgc tggggccccga ggagttcaag gcctgcctca tcagcctggg
 2401 ctacgacgtg gagaacgacc ggcagggtga ggccagttc aaccgcatac tgagcctgg
 2461 cgaccccaac catagcggcc ttgtgacctt ccaagccttca atcgacttca tgtcgcggga
 2521 gaccaccgac acggacacgg ctgaccaggt catgccttcc ttcaaggtct tagcaggggga
 2581 caagaacttc atcacagctg aggagctgcg gagagagactg ccccccggacc aggccgagta
 2641 ctgcatacgcc cgcatggcgc cataccaggg ccctgacgcgc gtgccccgtg ccctcgacta
 2701 caagtccctt tccacggct tgtatggcga gagcagactg tgaggccccg gagacctgac
 2761 ccaacaccccc cgacggcctc caggaggggc ctggcagcc ccacagtccc attcctccac
 2821 tctgttatcta tgcaaagcac tctctgcagt cctccgggt gggtgggtgg gca

Translation:

MGODYMAQEDDWDRDILLLPAWEKQQRKTFTAWCNSHLRKAGTQIENIDEFRDGLKLMILL
 LEVISGERLPKPERGKMRVHKINNVNKALDFIASKGVKLVSIGAEEIVDGNAKMTLGMIW
 TIILRFAIQDISVEETSKEGLLWCQRKTAPYKNVNQNFHISWKDGLAFNALIHRHRRP
 ELIEYDKLRKDDPVTNLNNAFEVAEKYLDIPKMLDAEDIINTARPDEKAIMTYVSSFYHA
 FSGAQKAETAANRICKVLAVNQENEHIMEDYEKLASDLLEWIRRTIPWLEDRVPQKTIQE
 MQQKLEDFRDYRRVHKPPKVQEKCQLEINFNTLQTKLRLSNRPAPFMPSEGKMSDINNGW
 QHLEQAEGYEEWLNEIRRERLDHLAEKFRQKASIHEAWTDGKEAMLKHRDYETATLS
 DIKALIRKHEAFESDLAAHQRVEQIAIAQELNELDYYDSHNVNTRCQKICDQWDALGS
 LTHSRREALEKTEKQLEIDQLHEYAKRAAPFNNWMESAMEDLQDMFIVHTIEEIEGLI
 SAHDQFKSTLPDADREAREAILAIHKEAQRIAESNHIKLGSNSPYTTVTPQIINSKWEKVQ
 QLVPKRDHALLEEQSQQSNEHRRQFASQANVVGPIQTQMEEIGRISIEMNGTLEDQL
 SHLKQYERSIVDYKPNLDLLEQQHQLIQEALIFDNKHTNYTMEHIRVGWEQLTTIARTI
 NEVENQILTRDAKGISQEQMQEFRASFNHFDKDHGGALGPEEFKACLISLYDVENDRQG
 EAEFNRIMSLVDPNHSGLVTQAFIDFMSRETTDTADQVIASFVKLAGDKNFITAEEL
 RRELPPDQAEYCIARMAPYQGPDAVPGALDYKSFSTALYGESDL

FIG. 35

CLATHRIN COAT ASSEMBLY PROTEIN AP50

ORIGIN

1 caggtctgtt ctcagagcga tggccgcag agactgatct gccgccatga ttggaggc
 61 attcatcttat aatcacaagg gggaggtgct catctccga gtctaccgag atgacatcg
 121 gaggaacgca gtggatgcct ttcgggtcaa tggttatccat gcccggcagc aggtgcgcag
 181 ccccggtcacc aacattgctc gcaccagctt cttcacggtt aagcggtcca acatttgct
 241 ggcagcagtc accaaggcaga atgtcaacgc tgccatggtc ttcaattcc tctataagat
 301 gtgtgacgtg atggccgctt actttggcaa gatcagcag gaaaacatca agaacaattt
 361 tttgctcata tatgagctgc tggatgagat tctagacttt ggctacccac agaattccga
 421 gacaggcgcg ctgaaaacct tcatcacgca gcagggcattc aagagtcaagc atcagacaaa
 481 agaagagcag tcacagatca ccagccaggt aactggcag attggctggc ggcgagaggg
 541 catcaagtat cgtcgaaatg agctttccctt ggatgtctg gagagtgtga acctgctcat
 601 gtccccacaa gggcaggtgc ttagtgcctt tggatgtgc cgggtggta tgaagagcta
 661 cctgagtggc atgcctgaat gcaagtttg gatgaatgac aagattgtta ttgaaaagca
 721 gggcaaaggc acagctgatg aaacaagcaa gaggccaaag caatcaattt ccattgtatga
 781 ctgcacccctt caccagtgtg tgcgacttcg caagtttgc tctgaacgca gcatcagctt
 841 tatccgcctt gatggagagt tttagctt gaggatcgc acaaccaagg acatcatcct
 901 tcccttcgg gtgatccgc tagtgcgaga agtggacgc accaaactgg aggtcaaggt
 961 ggtcatcaag tccaaacttta aaccctcaact gctggctcag aagattgagg tgaggatccc
 1021 aaccctcaactg aacacaagcg ggtgcaggat gatctgcattt aagggaaagg ccaagtacaa
 1081 ggcagcggag aatgccttcg tggaaatgat caagcgcattt gcaggcatga aggaatcgca
 1141 gatcagcgcgca gagattgagc ttctgccttcc caacgacaag aagaatggg ctcgaccccc
 1201 cattccatg aactttgagg tgccattcgc gccctctggc ctcaagggtgc gctacttggaa
 1261 ggttgttggaa ccgaagctga actacagcga ccatgatgtc atcaaattttt tgctcatacat
 1321 tggccgcagt ggcattttt gaaactcgcgtt ctatgttca ctaggcagctt agcccaccc
 1381 cccagccacc ctcctccaca ggtccagggtt ccgcctccccc cccaccacca catcagtgtc
 1441 tcctccctcc tgctttgttgc cttccctt gcaccagccc gagttctaggt ctgggccaag
 1501 cacattacaa gtgggaccgg tggagcagcc cttggctcc ctggcaggg gagttctgag
 1561 gctccgtctc tcccatccac ctgtctgtcc tggcttaatg ccaggctctg agttctgtga
 1621 ccaaagccag gtgggttccc ttcccttccc acccctgtgg ccacagctct ggagtggag
 1681 ggttgttgc ccctcacctt agagctcccc caaaggccag taatggatcc ccggccctcag
 1741 tccctactt gctttggat agtgtgagct tcatttgttca cactgttgc ttctgtcc
 1801 tacaaaccca ataaactctg tagagtgg

Translation:

MIGGLFIYNHKGEVLIISRVYRDDIGRNAVDARVNVIHARQQRSPVTNIARTSFFHV
 KRSNIWAAVTKQNVNAAMVFEFLYKMCVDVMAAYFGKISEENIKNNFLLIYELLDEIL
 DFGYPQNSETGALKTFITQQGIKSQHQTKEEQSQITSQVTGQIGWRREGIKYRRNELF
 LDVLESVNLLMSPQGQVLSAHVSGRVMKSYLSGMPECKFGMNDKIVIEKQGKGT
 TSKSGKQSIADDCTFHQCVRSLSKFDERSISFIPPDGEFELMRYRTTKDIIILPFRVI
 PLVREVGRTKLEVKKVVIKSNFKPSLLAQKIEVRIPTPLNTSGVQVICMKGKAKYKASE
 NAIIVWKIKRMAGMKEQSIAEIELLPTNDKKKWARPPISMNFEVPFAPSGLKVRYLKV
 FEPKLNYSDDHVIKWVRYIGRSGIYETRC

FIG. 36

Homo sapiens GLUT1 C-terminal binding protein (GLUT1CBP) mRNA

ORIGIN

1 cacggggagg cggaggcagc ggcggcgccg gcggcggcgg cggcggcggc ggagcagatc
 61 ttctggtgac cccacttctc gctgctcatg ccgtggac tggggcgccg gaaaaaggcg
 121 cccccctctag tgaaaatga ggaggcttag ccaggccgtg gagggcttggg cgtggggag
 181 ccagggcctt tggcgagg tgggtcgccc ggcccccaaa tgggcttgc cccccctccc
 241 ccagccctgc ggccccgcct tggttccac acccagctgg cccatggcag tcccactggc
 301 cgcacatcgagg gttcaccaa cgtcaaggag ctgtatggca agattgccga ggccttcgc
 361 ctgccaactg ccgaggtgat gtttgcacc ctgaacaccc acaaagtgg a catggacaag
 421 ctcctgggg gccaaatcgg gctggaggac ttcatcttcg cccacgtgaa gggcagcgc
 481 aaggagggtgg aggtgttcaa gtcggaggat gcactcggc tcaccatcac ggacaacggg
 541 gctggctacg cttcatcaa gcgcatacg gagggcagcg tgatcgacca catccaccc
 601 atcagcgtgg gcgacatgat cgaggccatt aacgggcaga gcctgcttggg ctgcccggcac
 661 tacgaagtgg cccggctgct caaggaactg ccccgaggcc gtacccatcac gctgaagctc
 721 acggagcctc gcaaggcctt cgacatgatc agccagcggtt cagcgggtgg ccgccttggc
 781 tctggcccac aactgggcac tggccgaggg accctgcggc tccgatccc gggcccccgc
 841 acggtgagg atctgcctc tgccttggaa gagaaggcca ttgagaaggt ggatgacctg
 901 ctggagagtt acatgggtat cagggacacg gagctggcg ccaccatgtt ggagctgggaa
 961 aaggacaaaa ggaacccgga tgagctggcc gaggccctgg acgaacggct ggtgacttt
 1021 gccttcctg acgagttcgt cttgacgtc tggggcgcca ttggggacgc caaggtcggc
 1081 cgctactagg actgcccccg gaccctgcga tcatgaccgc ggcgcacactt ggtggggcc
 1141 cccagcaggg acactgacgt caggaccgcg gcctccaagc ctgagcctag ctcagcagcc
 1201 caaggacgat ggtgagggga ggtggggcca ggcgccttc cccgccttcaaa tcgttaccat
 1261 cccctccctg gttcccagtc tggccgggtt cccgcggcc cctgtccct gttccccacc
 1321 ctacctcagc tgggttcagg cacagggaa gggaggatc agccaaatgg gggcggccac
 1381 cccgcctcc accactttcc accatcagct gccaaactgg tccctctgtc tccctggggc
 1441 cttgggttct gttgggggtt catgaccttc ctatccctt gacgcaggaa atacagggga
 1501 gagggttgtc cttccccca gcaaattgca taatccctc accccctctg agaggagccc
 1561 cctccctgtg gagcctgtt cctccgcatt tgacacgagt tgctgtgaac cccgcacactt
 1621 cctccccacc tcccatctct cttccaggc ccattccctgg cccagagcag gagggaggga
 1681 gggacgatgg cgggtgggtt ttgtatctga atttgcgtc ttgaacataa agaatctatc
 1741 tgctgttaaa aaaaaaaaaaaa aaaaa

Translation:

MPLGLGRRKKAPPLVENEEAEPGRGGLGVGEPGPLGGGGSGGPQMGLPPPPPALARPRIL
 VFHTQLAHGSPTGRIEGFTNVKELYGKIAEAFLPTAEVMFCTLNTHKVDMKDLLGGQ
 IGLEDIFAHVKGQRKEVEVFKSEDALGLTITDNGAGYAFIKRIKEGSVIDHIHLISV
 GDMIEAINGQSLLGCRHYEVARLLKELPRGRFTLKLTEPRKAFCMDMISQRSAGGRPGS
 GPQLGTGRGTLRLRSRGPATVEDLPSAFEKAIKEVDDLLESYMGIRDTTELAAATMVEL
 GKDKRNPDELAELDERLGDFAFPDEFVFDVWGAIGDAKVGRY

FIG. 37

gp130 associated protein GAM

ORIGIN

1 ggccgcccgg cgcccccagc agnccgagcc ggggcgcaca gncggggngc agaccgcgcc
 61 ccccgcccg attgacatga ttttccaca aaggcaggcat tcgggctcct cgcacacct
 121 ccagcaactc aaattcacca cctcgactc ctgcgaccgc atcaaagacg aatttcagct
 181 actgc'aagct cagtaccaca gcctcaagct cgaatgtac aagttggcca gtgagaagtc
 241 agagatgcag cgtcaactatg tgatgtacta cgagatgtcc tacggcttga acatcgagat
 301 gcacaaaacag gctgagatcg tcaaaaggct gaacgggatt tttgcccagg tcctgcccta
 361 cctctccaa gaggcaccagc agcaggctt gggagccatt gagagggcca agcaggtcac
 421 cgctcccgag ctgaactcta tcataccgaca gcagctccaa gcccaccagc ttggccagct
 481 gcaggccctg gccctgcctc tgaccccact acccggtgggg ctgcagccgc cttcgctgcc
 541 ggcgggtcagc gcaggccaccg gcctcccttc gctgtccgcg ctgggttccc aggcccaccc
 601 ctccaaggaa gacaagaacg ggcacatgg tgacacccac caggaggatg atggcgagaa
 661 gtcggat tag cagggggccg ggacggggag gttgggaggg gggacagagg ggagacagag
 721 gcacggagag aaaggaatgt tttagcacaag acacacgcga gctcgggatg ggctaaactc
 781 ccatagtatt tatggtgccc gccggcgggg gccccagccc agcttgcagg ccacctctag
 841 ctttcttccc tacccttattc ccggcttccc tcctccccc tgcagccctt ttaggtggat
 901 acctgcctg acatgtgagg caagctaagg cctggagggc cagctggag accaggtccc
 961 aaggagcaa gacctcgca agcgcagcag acccgccct ttccccgtt taggcatgtg
 1021 taaccgacag tctgcctggg ccacagccct ctcaacctgg tactgcacgc acgcaatgt
 1081 agctgcccct ttcccgctt ggnaccccg agtctccccc gacccgggt cccaggtatg
 1141 ctcccacctc cacctgcccc actcaccacc tctgctagtt ccagacaccc ctacgcccac
 1201 ctggtcctct cctaccgcac aaaaaagggg gggAACGAGG gacgagctt gctgagctgg
 1261 gaggagcagg gtgagggtgg gcgaccagg attccccctc ccctcccaa ataaccc

Translation:

MFPQSRHSGSSHLPQQQLKFTTSDSCDRIKDEFQLLQAQYHSLKLECDKLASEKSEMQR
 HYVMMYYEMSYGLNIEMHKQAEIVKRLNGICAQVLPYLSQEHHQQQVLGAIERAKVTAP
 ELNSIIRQQLQAHQLSQLQALALPLTPLPVGLQPPSLPAVSAGTGLLISLSALGSQAH
 SKEDKNGHDGDTHQEDDGEKSD

FIG. 38

Homo sapiens amino-terminal enhancer of split (AES) mRNA

ORIGIN

1 ggccgcccgg cgcccccagc agnccgagcc ggggcgcaca gncggggcgc agcccgcc
 61 ccccgcccg attgacatga tgtttccaca aaggcaggcat tcgggctcct cgcacacctacc
 121 ccagcaactc aaattcacca cctcgactc ctgcgaccgc atcaaagacg aatttcagct
 181 actgcaagct cagtaccaca gcctcaagct cgaatgtgac aagttggcca gtgagaagtc
 241 agagatgcag cgtcaactatg tgatgtacta cgagatgtcc tacggcttga acatcgagat
 301 gcacaaacag gctgagatcg tcaaaaggct gaacgggatt tttgcccagg tcctgcccta
 361 cctctccaa gagcaccagc agcaggtctt gggagccatt gagagggcca agcaggtcac
 421 cgctcccgag ctgaactcta tcatccgaca gcagctccaa gccaccaggc ttgtccagct
 481 gcaggccctg gccctgcctt tgacccact acccggtggg ctgcagccgc cttcgctgcc
 541 ggcggtcagc gcaggcaccgc gcctctc gctgtcccg ctgggttccc aggcccaccc
 601 ctccaaaggaa gacaagaacg ggcacgtgg tgacacccac caggaggatg atggcgagaa
 661 gtcggattag cagggggccg ggacagggag gttgggaggg gggacagagg ggagacagag
 721 gcacggagag aaaggaatgt tttagcacaag acacagcgg gctcgggatt ggctaatctc
 781 ccatagtatt tatggtgccg cccggggcc cccagccag cttgcaggcc acctctagct
 841 ttcttcctac cccattccgg ctccctcct cctccctgc agcctggta ggtggataacc
 901 tgccctgaca tgtgaggcaa gctaaggct ggagggtcag atgggagacc agtcccaag
 961 ggagcaagac ctgcgaagcg cagcagcccc ggcccttccc ccgtttgaa catgtgtAAC
 1021 cgacagtctg ccctggccca cagcccttc accctggta tgcatgcacg caatgtctagc
 1081 tgcccttcc cctgcctggg caccggagt ctccccggac cccgggtccc agttatgctc
 1141 ccacctccac ctgccccact caccacctt gctagttcca gacacctcca cggccaccc
 1201 gtcctctccc atcgcccaca aaaggggggg cacgagggac gagcttagct gagctggag
 1261 gagcagggtg agggtggcg acccaggatt cccctcccc ttcccaaata aagatgaggg
 1321 tact

Translation:

MMFPQSRHSGSSHLPQQQLKFTTSDSCDRIKDEFQLLQAQYHSLKLECDKLASEKSEMQ
 RHYVMYEMSYGLNIEMHKQAEIVKRLNGICAQVLPYLSQEHQQQVILGAIERAKQVTA
 PELNSIIRQQLOAHQLSQLQALALPLTPVGLQPPSLPAVSAGTGILLSALGSQAH
 LSKEDKNGHDGDTHQEDDGEKSD

FIG. 39

Antiquitin 1 (antiquitin=26g turgor protein homolog), mRNA

ORIGIN

1 cctgctccaa ggtccagaga gctttctggc cttgcagca ggcctgccgc cttcatgtcc
61 actctcctca tcaatcagcc ccagtatgcg tggctgaaag agctgggct ccgcgaggaa
121 aacgagggcg tgtataatgg aagctggga ggccggggag aggttattac gacctattgc
181 cccgctaaca acgagccat agcaagagtc cgacaggcca gtgtggcaga ctatgaagaa
241 actgtaaaaga aagcaagaga agcatggaaa atctgggcag atattcctgc tccaaaacga
301 ggagaaatag taagacagat tggcgatgcc ttgcggaga agatccaagt actaggaagc
361 ttggtgtctt tggagatggg gaaaatctta gtggaggtg tgggtgaagt tcaggagtat
421 gtggatatct gtgactatgc tgggggtta tcaaggatga ttggaggacc tatcttgccc
481 tctgaaagat ctggccatgc actgatttag cagtggaaatc ccgtaggcct gtttggaaatc
541 atcacggcat tcaatttccc tgtggcagtg tatggttgga acaacgcatt cccatgatc
601 tggaaatg tctgcctctg gaaaggagct ccaaccactt ccctcattag tggtgtgtc
661 acaaagataa tagccaagg tctggaggac aacaagctgc ctggtcaat ttgttccttg
721 acttgtggtg gagcagat tggcacagca atggccaaag atgaacgagt gaacctgctg
781 tccttcactg ggagcactca ggtggaaaa caggtggcc tgatggcga ggagaggtt
841 gggagaagtc tggggaaact tggagggaaac aatgccatta ttgccttga agatgcagac
901 ctcagcttag ttgttccatc agctctctc gctgctgtgg gaacagctgg ccagagggtgt
961 accactgcga ggcgactgtt tatacatgaa agcatccatg atgagggtgt aaacagactt
1021 aaaaaggcct atgcacagat ccgagttggg aaccctatggg accctaattgt tctctatggg
1081 ccactccaca ccaaggcaggc agtgagcatg tttcttgag cagtggaga agcaaagaaa
1141 gaaggtggca cagtggctt tggggcaag gttatggatc gccctggaaa ttatgtagaa
1201 ccgacaaattt tgacaggctt tggccacatg gcttcattt cacacacaga gactttcgct
1261 ccgattctct atgtctttaa attcaagaat gaagaagagg tctttgcattt gaaataatgaa
1321 gtaaaacagg gactttcaag tagcatctt accaaagatc tggcagaat ctttcgtgg
1381 cttggaccta aaggatcaga ctgtggcatt gtaaatgtca acattccaaac aagtggggct
1441 gagattggag gtgcctttgg aggagaaaaag cacactggc gtggcaggga gtctggcagt
1501 gatgccttgg aacagtacat gagaaggctt acttgtacta tcaactacag taaagacatt
1561 cctctggccc aaggaatcaa gttcagttt aggtgtttt gatgaacatc ccttaatttg
1621 aggtgttcca gcagctgttt ttggagaaga caaagaagat taaagtttc cctgaataaaa
1681 tgcatttata tgactgtgac agtgactaat cccctatga ccccaaagcc ctgattaaat
1741 caagagattt cttttttaaa aatcaaaaata aaattgttac aacatagccca tagttactaa
1801 aaaaaaaaaa

Translation:

MSTLLINQPOQYAWLKEIQLRENEGVNGSWGGRGEVITTYCPANNEPIARVRQASVA
DYEETVKKAREAWKIWADI PAPKRGEIVRQI GDALREKIQVLGSLVSLEMGKILVEGV
GEVQEYVDICDYAVGLSRMIGGPILPSERSGHALIEQWNPVGLVGII TAFNFPVAVYG
WNNAIAMICGNVCLWKGAPTSLSISVAVTKIIAKVLEDNKLPGAICSLTCGGADIGTA
MAKDERVNLLSFTGSTQVGKQVGLMVQERFGRSLLELGNNAIIAFEDADLSLVVPSA
LFAAVGTAGQRCTTARRLFIHESIHDEVVNRLKKAYAQIRVGNPWPDPNVLYGPLHTKQ
AVSMFLGAVEEAKKEGGTVVYGGKVMDRPGNYVEPTIVTGLGHDAISIAHTETFAPILY
VFKFKNEEEVFAWNNEVKQGLSSIFTKDLGRIFRWLGPKGSDCGIVNVNIPTSGAEI
GGAFGGKEKHTGGGREGSDAWKQYMRRSTCTINYSKDLPLAQGIKFQ

FIG. 40

ARP2/3 protein COMPLEX 41 KD SUBUNIT (P41-ARC), mRNA

ORIGIN

1 ggcacgaggg agcccagagc cggttcggcg cgtcgactgc ccagagtccg cggccggggc
 61 gcgggaggag ccaagccgcc atggcctacc acagttcct ggtggagccc atcagctgcc
 121 acgcctggaa caaggaccgc acccagattt ccatctgccc caacaaccat gaggtgcata
 181 tctatgaaaa gagcggtgcc aaatggacca aggtgcacga gctcaaggag cacaacgggc
 241 aggtgacagg catcgactgg gccccccgaga gtaaccgtat tgtgacactgc ggcacagacc
 301 gcaacgccta cgtgtggacg ctgaagggcc gcacatggaa gcccacgctg gtcacatcctgc
 361 gnatcaaccg ggctgcccgc tgctgacgc gggcccccggaa cgagaacaag tttgctgtgg
 421 gcagcggctc tcgtgtgatc tccatctgtt atttcgagca ggagaatgac tggggggttt
 481 gcaagcacat caagaagccc atccgctcca ccgtcctcag cctggactgg caccggcaaca
 541 atgtgctgct ggctgcccgc tcctgtgact tcaagtgtcg gatctttca gcctacatca
 601 aggagggtgga ggaacggccg gcacccaccc cgtggggctc caagatgccc tttggggAAC
 661 tgatgttcga atccagcagt agctgcggct ggttacatgg cgtctgtttc tcagccagcg
 721 ggagccgcgt ggctgggta agccacgaca gcaccgtctg cctggctgat gcccacaaga
 781 agatggccgt cgcgactctg gcctctgaaa cactaccact gctggcgctg accttcatca
 841 cagacaacag cctgggtggca gcggggccacg actgcttccc ggtgctgttc acctatgacg
 901 ccgcccggg gatgctgagc ttccggggc ggctggacgt tcctaagcag agctcgacgc
 961 gtggcttgac ggcccgcgag cgcttccaga acctggacaa gaaggcgacg tccgagggtg
 1021 gcacggctgc gggcgccggc ctagactcgc tgccacaagaa cagcgtcgc cagatctcg
 1081 tgctcagcgg cggcaaggcc aagtgcgc agttctgcac cactggcatg gatggccggca
 1141 tgagtatctg ggatgtgaag agcttggagt cagccttgaa ggacctcaag atcaaatgac
 1201 ctgtgaggaa tatgttgct tcatacctaac tgctggggaa gcggggagag ggtcaaggaa
 1261 ggctaatttgt tgctttctg aatgtttctg ggttaccaat acgagttccc ataggggctg
 1321 ctccctcaaa aagggggggg acagatgggg agctttctt acctattcaa ggaatacgtg
 1381 ccttttctt aaatgcttcc atttattgaa aaaaaaaaaa aaaaaaaaaa

Translation:

MAYHSFLVEPISCHAWNKDRTQIAICPNNHEVHIYEKSGAKWTKVHELKEHNGQVTGI
 DWAPESNRIVTCGTDNRAYWTLKGRTWKPTLVLIRINRAARCVRWAPNENKFAGVGSG
 SRVISICYFEQENDWWVCKHIKKPIRSTVLSLDWHPNNVLLAAGSCDFKCRIFSYIK
 EVEERPAPTPWGSKMPFGELMFESSSSCGWVHGVCFSASGRVAWVSHDSTVCLADAD
 KKMAVATLASETLPLLALTFITDNSLVAAGHDCFVLFYDAAAGMLSFGGRLDVPKQ
 SSQRGLTARERFQNLDKKASSEGTTAAGAGLDSLHKNSVSQISVLSGGKAKCSQFCTT
 GMDGGMSIWDVKSLESALKDLKIK

FIG. 41a

H.sapiens seb4D mRNA

ORIGIN

1 gagcgcgggt ttctcgccgc ccctggccgc cccggcgct atgtacggct cgcagaagg
 61 caccacgttc accaagatct tcgtggcg cctgcccgtac cacactaccc acgcctcgct
 121 caggaagtac ttcgaggcg tccggcgacat cgaggaggcc gtggtcatca ccgaccgcca
 181 gacgggcaag tcccgccgc acggcttcgt gaccatggcc gaccggcg cagctgagag
 241 ggcttgcaaa gaccctaacc ccatcatcg a cggccgcaag gccaacgtga acctggcata
 301 tctgggcgcc aagccttggt gtctccagac gggcttgcc attggcgtgc agcagctgca
 361 ccccacctt atccagcgga cttaaggct gacccgcac tacatctacc caccagccat
 421 cgtgcagccc agcgtggta tcccaggccg ccctgtcccc tcgctgtcct cggccctacat
 481 ttagtacacg cggccagcc cggctacgc ccagtaccca cggccacact atgaccagta
 541 cccatacgcc gcctcgccctg ccacggctga cagcttcgtg ggctacagct accctggcgc
 601 cgtgcaccag gccctctcag ccgcagcacc cgcggcacc actttcgtgc agtaccagc
 661 gccgcagctg cagcctgaca ggatgcagtg agggcggtc ctgccccgag gactgtggca
 721 ttgtcacctt cacagcagac agagctgcca ggcctatgatg ggctggcgac agccggctg
 781 agttcagtg aggtgccacc agcaccctgt cctccaaaga ccgctgggc attccgcctg
 841 cggccctggga cagcggagag acggcttctc ttaatctag gtcccattgt gtcttgagg
 901 aggactttt agaatgactg agaactattt aaagacgcaa tcccaggttc ctgcacacc
 961 atggcagcct ctccctgcac ctctccacac tccaggtcc ctcaggctg
 1021 tgtccccact gctgcacatgt ggcgggggtg cacagaccct ctgcagcccc tggctgcct
 1081 ggactgtgca gagatgcctg actccaggaa aacctgaaag caagaagttt atggactgtt
 1141 tattgttaact tgatccccc gagctgtgag cgcagctga ggtctgagga cacggcctcc
 1201 tgttggagtc ccattttctc catcagggca cgtggcgcc ttcctcaagc ccggaggagc
 1261 tcccaggcgc acaggggccg ccgtaacag gggccggc ccaaaggccc cttccagtc
 1321 atagcactga agttgcaact ttttcttgt aattgtttt ctactaagat aatttcagaa
 1381 gttcagtcta tttttcagc ggatactgcc gcccaccaaga atccaaacctt aggaa

Translation:

SAGFSRPLAAPGVMYGSQKTTFTKIFVGLPYHTTDASLRKYFEGFGDIEAVVITD
 RQTGKSRGYGFVTMADRAAAERACKDPNPIIDGRKANVNLAYLGAKPWCLQTGFAIGV
 QQLHPTLIQRTYGLTPHYIYPPAIVQPSVVIAPAPVPSLSSPYIEYTPASPVYAQYPP
 ATYDQYPYAASPATADSFVGYSYPAAVHQALSAAAPAGTTFVQYQAPQLQPDRMQ

FIG. 41b

H.sapiens seb4B mRNA

ORIGIN

1 gccccggatg cagtacaacc ggccgtttgt caacgttgtg cccaccttg gcaagaagaa
 61 gggcaccacg ttccccaaga tcttcgtggg cggcctgccg taccacacta ccgacgcctc
 121 gctcaggaag tacttcgagg gcttcggcga catcgaggag gccgtggta tcaccgaccg
 181 ccagacgggc aagtcccgcg gctacggctt cgtgaccatg gccgaccggg cggcagctga
 241 gagggcttgc aaagacccta accccatcat cgacggccgc aaggccaacg tgaacctggc
 301 atatctggc gccaagcctt ggtgtctcca gacggctt gccattggcg tgcagcagct
 361 gcacccacc ttgatccagc ggacttacgg gctgaccccg cactacatct acccaccagc
 421 catcgtcag cccagcgtgg tgatcccagc cgccccgtc ccgtcgctgt cctcgcccta
 481 cattgagtagc acgcccggca gcccggctta cgccccgtac ccaccggcca cctatgacca
 541 gtacccatac gcccctcgc ctgcccacggc tgacagcttc gtgggctaca gctaccctgc
 601 cggcgtgcac caggccctct cagccgcagc acccggggc accactttcg tgcagtagcca
 661 ggcgcgcag ctgcagcctg acagatgca gtgagggcg ttcctgcccc gaggactgtg
 721 gcattgtcac ctccacagca gacagagctg ccaggccatg atgggctggc gacagccgg
 781 ctgagcttca gtgaggtgcc accagcaccc gtgcctccga agaccgctcg ggcattccgc
 841 ctgcgcctg ggacagcggaa gagacggctt ctcttaatc taggtcccat tgtgtcttga
 901 gggaggactt ttaagaatga ctgagaacta tttaaagacg caatcccagg ttccttgac
 961 accatggcag cctctcctt cacccctcc tgcctctcca cactccaggt tccctcaggc
 1021 ttgtgtcccc actgctgcatt cgtggcgaaaa tgcacagac cctctgcagc ccctggctgc
 1081 cctggactgt gcagagatgc ctgactccag ggaaacctga aagcaagaag ttaatggact
 1141 gtttatttta acttgatcct cccgagctgt gagcgcagtc tgaggctctga ggacacggcc
 1201 tcctgttggaa gtcccatttt ctccatcagg gcacgtggc ggcttcctca agcccgagg
 1261 agctccagg cgcacagggg cgcggtaa cagggggccgc cggccaaagg ccccttcca
 1321 gtcatagcac tgaagttca actttttct tgtaatttgtt tgctactaa gataattca
 1381 gaagttcagt ctatTTTTC agcgataact gcccacca agaatccaaa cctaggaa

Translation:

RRMQYNRRFVNVPPTFGKKKGTTFTKIFVGGLPYHTTDASLRKYFEGFGDIEEAVVIT
 DRQTGKSRGYGFVTMADRAAAERACKDPNPIIDGRKANVLAYLGAKPWCLQTGFAIG
 VQQLHPTLIQRTYGLTPHYIYPPAIVQPSVVIAPAVPSLSSPYIEYTPASPVYAQYP
 PATYDQYPYAASPATADSFGYSPAAVHQALSAAAPAGTTFVQYQAPQLQPDRMQ

FIG. 42

Homo sapiens lamin A/C (LMNA) mRNA

ORIGIN

1 actcagtgtt cgccggagcc gcacccatcac cagccaaaccc agatcccag gtcgcacagc
 61 gccccggccca gatccccacg cctgccagga gcaaggccag agccagccgg ccggcgcaact
 121 cccgactccga gcagtctctg tccttcgacc cgagccccgc gccctttccg ggacccctgc
 181 ccccgccggca gcgctgccaa cctgccggcc atggagaccc cgtcccagcg ggcgcacc
 241 cgcagcgggg cgccaggccag ctccactccg ctgtcgccca cccgcatacac ccggctgcag
 301 gagaaggagg acctgcagga gctcaatgat cgcttggcg tctacatcgta ccgtgtgcgc
 361 tcgctggaaa cggagaacgc agggctgcgc ttgcgatca ccgagtcgta agaggtggc
 421 agccgcgagg tgtccggcat caaggccgc tacgaggccg agctcggga tgcccgcaag
 481 acccttgact cagtagccaa ggagcgcgc cgcctgcagc tggagctgag caaatgtgcgt
 541 gaggagttt aggagctgaa agcgcgcaat accaagaagg agggtgacct gatagctgt
 601 caggctcgcc tgaaggaccc ggaggctctg ctgaactcca aggaggccgc actgagcact
 661 gctctcagt agaagcgcac gctggaggcc gagctgcatg atctgcgggg ccaggtggcc
 721 aagcttgagg cagccctagg tgaggccaa aagcaacttc aggatgagat gtcgcgggg
 781 gtggatgctg agaacaggct gcagaccatg aaggaggaac tggacttcca gaagaacatc
 841 tacagtgagg agctgcgtg gaccaagcgc cgtcatgaga cccgactggt ggagattgac
 901 aatggaaagc agcgtgagtt tgagagccg ctggcgatg cgctgcaggaa actgcgggccc
 961 cagcatgagg accagggtgg agcgtataag aaggagctgg agaagactta ttctgccaag
 1021 ctggacaatg ccaggcagtc tgctgagagg aacagcaacc tggggggc tgcccacgag
 1081 gagctgcagc agtgcgcac ccgcacatcgac agcctctcg cccagctcag ccagctccag
 1141 aagcagctgg cagccaaagg ggcgaagctt cgagacctgg aggactcaact ggccctgtgag
 1201 cgggacacca gccggcggt gctggcgaa aaggagccgg agatggccga gatgcgggca
 1261 aggtgcagc agcagctgg cgcgtaccag gagcttctgg acatcaagct ggccctggac
 1321 atggagatcc acgcctaccg caagctctt gaggcgagg aggagaggct acgcctgtcc
 1381 cccagcccta cctcgcagcg cagccgtggc cgtgcttcct ctcactcata ccagacacag
 1441 ggtggggca gcgtcaccaa aaagcgaaaa ctggagtcct ctgagagccg cagcagcttc
 1501 tcacagcagc cacgcactag cgggcgcgtg gccgtggagg aggtggatga ggagggcaag
 1561 tttgtccggc tgcgcaacaa gtccaatgag gaccagtcca tggcaattt gcagatcaag
 1621 cgccagaatg gagatgatcc ttgtctgact taccgttcc caccaaagtt caccctgaag
 1681 gctggcgagg tggtgacgt ctggctgca ggagctgggg ccacccacag ccccccattacc
 1741 gacctgggtt ggaaggcaca gaacacctgg ggctgcggga acagcctgcg tacggctctc
 1801 atcaactcca ctggggaaaga agtggccatg cgcaagctgg tgcgctcagt gactgtggg
 1861 gaggacgacg aggatgagga tggagatgac ctgctccatc accaccatgt gactgtggtagc
 1921 cgccgctgag gccgagcctg cactggggcc acccagccag gcctggggc agcctctccc
 1981 cagcctcccc gtgccaaaaa tctttcatt aaagaatgtt tggaaactt

Translation:

METPSQRATRSGAQASSTPLSPTRITRLQEKLQELNDRLAVYIDRVRSLETEENAG
 LRLRITEEVSREVSGIKAAYEAEILDARKTLDSVAKERARLQLELSKVREEFKEL
 KARNTKKEGDLIAAQARLKDLALLNSKEAALSTALSEKRITLEGELHDLRGQVAKLEA
 ALGEAKKQLQDEMLRRVDAENRLQTMKEELDFQKNIYSEELRETKRHETRLVEIDNG
 KQREFESRLADALQELRAQHEDQVEQYKKELEKTYSAKLDNARQSAERNNSNLVGAHE
 ELQOSRIRIDSLSAQIQLSQLQLAKEAKLRDLEDSLARERDTSRRLLAEKEREMAEM
 RARMQQQLDEYQELLDIKLALDMEIHAYRKLLGEEEERLRLSPSPSTSQRSGRASSHS
 SQTQGGGSVTKKRKLESTESRSSFSQHARTSGRAVEEVDEEGKFVRLRNKSNDQSM
 GNWQIKRQNQGDDPLLTYRFPPKFTLKAGQVVTIWAAGAGATHSPPTDLVWKQNTWGC
 GNSLRTALINSTGEEVAMRKLVRSVTVVEDDEDGDDLLLHHHVSGSRR