### **Using BarPlot to display Gender Comparision**



#### Pie Chart Depicting Ratio of Female and Male



### **Histogram to Show Count of Age Class**



### **Boxplot for Descriptive Analysis of Age**



### **Histogram for Annual Income**



### **Density Plot for Annual Income**



### **BoxPlot for Descriptive Analysis of Spending Score**



### **HistoGram for Spending Score**





# Silhouette plot of (x = k2\$cluster, dist = dist(customer\_data[, 3:5], " 2 clusters C<sub>i</sub> n = 400 $j:\ n_j \mid ave_{i \in Cj}\ s_i$ 1: 170 | 0.31 2: 230 | 0.29 0.0 0.2 0.4 0.6 8.0 1.0 Silhouette width si

# Silhouette plot of (x = k3\$cluster, dist = dist(customer\_data[, 3:5], " 3 clusters C<sub>i</sub> n = 400 $j: n_j \mid ave_{i \in C_j} s_i$ 1: 246 | 0.28 2: 76 | 0.50 3: 78 | 0.60 0.2 0.4 0.0 0.6 8.0 1.0

Silhouette width si

## Silhouette plot of (x = k4\$cluster, dist = dist(customer\_data[, 3:5], " 4 clusters C<sub>i</sub> n = 400 $j: n_j \mid ave_{i \in C_j} s_i$ 1: 56 | 0.52 2: 78 | 0.59 3: 190 | 0.29 4: 76 | 0.44 0.0 0.4 0.2 0.6 8.0 1.0 Silhouette width si



## Silhouette plot of (x = k6\$cluster, dist = dist(customer\_data[, 3:5], " 6 clusters C<sub>i</sub> n = 400 $j: n_j \mid ave_{i \in C_j} s_i$ 1: 78 | 0.51 2: 90 | 0.45 3: 42 | 0.44 4: 70 | 0.42 5: 44 | 0.59 6: 76 | 0.40 0.0 0.2 0.4 0.6 8.0 1.0 Silhouette width si







### Silhouette plot of $(x = k10\cluster, dist = dist(customer_data[, 3:5],$ 10 clusters C<sub>i</sub> n = 400 $j: n_j \mid ave_{i \in C_j} s_i$ 1: 56 | 0.51 2: 58 | 0.38 3: 26 | 0.31 4: 22 | 0.33 5: 54 | 0.32 6: 26 | 0.39 7: 44 | 0.57 8: 48 | 0.33 9: 44 | 0.40 10: 22 | 0.32 0.0 0.2 0.4 0.6 8.0 1.0

Silhouette width si





### Histogram of customer\_data\$Age



#### Histogram of customer\_data\$Annual.Income..k..



### density(x = customer\_data\$Annual.Income..k..)





### Histogram of customer\_data\$Spending.Score..1.100.



Elbow Method for Optimal Number of Clusters 1000 -Total Within-Cluster Sum of Squares 750 **-**500 -250 -5.0 7.5 10.0 2.5 Number of Clusters K