AiSD ćwiczenia lista 1

Oskar Bujacz

6 kwietnia 2020

1. Zadanie 6

Dany jest niemalejący ciąg n liczb całkowitych dodatnich $a_1 \leq a_2 \leq ... \leq a_n$. Wolno nam modyfikować ten ciąg za pomocą następującej operacji: wybieramy dwa elementy a_i , a_j spełniające $2a_i \leq a_j$ i wykreślamy je z ciągu. Ułóż algorytm obliczający, ile co najwyżej elementów możemy w ten sposób usunąć.

Rozwiązanie:

Pomysłem na rozwiązanie zadania jest następujący algorytm zachłanny:

```
\begin{array}{l} {\rm function} \, (A\,[\,1\,:\,n\,]\,)\,: \\ {\rm i}\,=\,1, \ j\,=\, {\rm int} \, (\,n/2\,)\,+\,1\,, \ {\rm counter}\,=\,0 \\ {\rm while} \ j\,<\,=\,n \ : \\ {\rm if} \ 2A\,[\,i\,]\,<\,=\,A\,[\,j\,]\,: \\ {\rm counter}\,+\,=\,1 \\ A\,[\,i\,]\,=\,-\,1, \ A\,[\,j\,]\,=\,-\,1 \\ {\rm i}\,+\,=\,1, \ j\,+\,=\,1 \\ {\rm else}\,: \\ {\rm j}\,+\,=\,1 \\ {\rm return} \ {\rm counter}\,\end{array}
```

Poprawność algorytmu:

Chcemy pokazać, że dowolne rozwiązanie optymalne możemy sprowadzić do rozwiązania otrzymanego przez powyższy algorytm. Załóżmy, że istnieje rozwiązanie optymalne. Weźmy dowolne z nich, usuńmy k par i rozważmy te k par (a_i, a_j) po usunięciu k par. Niech n to będzie liczba elementów ciągu. Podzielmy te liczby na 2 zbiory rozłączne L i R spełniające $a_i \in L$, $a_j \in R$ oraz $2a_i \leq a_j$ dla każdych i, j z usuniętych par. Pokażemy, że:

$$\forall_i a_i \leqslant \min(R) \tag{1}$$

$$L = \{a_1, a_2, a_3, ..., a_k\}$$
 (2)

$$R = \{a_{l1}, a_{l2}, a_{l3}, ..., a_{lk}\}, \qquad k+1 \leqslant li \leqslant n$$
(3)

Dowód (1)

Załóżmy, że istnieje element a_s , s > k, który został przydzielony do zbioru R. Niech będzie on sparowany z $a_t > a_s$. Rozważmy drugą parę (a_p, a_q) , taką, że $a_p < a_t$. Z tego warunku wiemy, że możemy połączyć w pary wyrazy (a_s, a_p) oraz (a_t, a_q) . Zatem uzyskujemy pożadaną własność (1).

Dowód (2)

Załóżmy, że $\exists a_i, i < k, a_i \notin L$. Weżmy najmniejszy taki, taki element $a_j, i < j < k$. Z monotoniczności ciągu $\{a_n\}$, nierówność $a_j \leqslant a_k$, gdzie a_k to element sparowany z a_j , będzie spełniona również dla a_i , zatem możemy dodać a_i do zbioru, a usunąć z niego a_j . Zachowujemy k elementów i warunki zadania. Jeśli wciąż istnieje element niespełniający (2), to ponownie wykonujemy ten sam algorytm.

Dowód (3)

Z (1) wiemy, że R, zawiera tylko elementy $\forall_{i,j}a_j \geqslant a_i$. Jeśli istnieje k elementów ze zbioru R, których indeksy $< \lfloor n/2 \rfloor + 1$, to możemy je wszystkie zamienić na elementy $a_s \geqslant a_{\lfloor n/2 \rfloor + 1}$, ponieważ jest ich co najwyżej $\lfloor n/2 \rfloor > k$.

Dowód optymalności

Teraz pokażemy dowód indukcyjny, który zapewni nas, że znalezione rozwiązanie jest optymalne.

Baza indukcji Do a_1 zostanie dobrane najmniejsze a_j , $2a_1 \le a_j$, takie, że $j \ge [n/2] + 1$, zatem baza jest spełniona.

Krok indukcyjny

Weźmy dowolne i < k i załóżmy, że algorytm znalazł i par liczb (a_p, a_q) spelniające warunki 1-3 oraz, że a_p zostało sparowane z najmniejszym mozliwym a_q . Przeprowadźmy kolejny krok algorytmu, dla a_{i+1} zostanie znaleziony najmniejszy a_r , $r \leq k$ spełniający nierówność z zadania. Na mocy zasady indukcji algorytm znajduje optymalne rozwiązanie.

Algorytm zachłanny znajduje maksymalną możliwą liczbę par spełniających $2a_i \leqslant a_j$.

Złożność czasowa i pamięciowa

Złożoność czasowa, to O(n), ponieważ w najgorszym przypadku wykonujemy n/2 razy pętlę while. Złożoność pamięciowa to również O(n), bo musimy zadbać o przechowywanie tablicy n elementowej.