Natural Deduction in SL

LOGIC I Benjamin Brast-McKie October 17, 2023

Motivation

Proof Trees: Proof trees provide an efficient way to evaluate validity.

- If an argument is valid, the tree will close.
- If an argument is invalid, the tree will give us an interpretation.

Unnatural: But proof trees do not provide a natural line of reasoning.

- Proof trees go by *reductio* which are not explanatory.
- Rules for proof trees are not entirely unnatural.
- But trees do not resemble natural reasoning.

Natural Deduction: How would we describe the patterns of natural deduction?

- Identify a range of intuitively compelling basic inferences in SL.
- Such inferences hold in virtue of the meanings of the connectives.
- Define a proof to be any composition of basic inferences.

Rules: Our system will include introduction and elimination rules.

• These rules will describe how to reason with the connectives.

Conditional

Elimination: A, $A \supset B$, $B \supset C \vdash C$.

- Premises justified by ':PR'.
- Easy to derive *C*.
- What if *A* was excluded from the premises?

Introduction: $A \supset B$, $B \supset C \vdash A \supset C$.

- Need something to work with.
- Want to conclude with a conditional claim.
- Assumption of *A* justified by ':AS'.

Subproofs: Lines in a closed subproof are dead and all else are live.

- ⊃E can only cite to live lines.
- \supset I can only cite an appropriate subproof.

Reiteration

Example: $A \vdash D \supset [C \supset (B \supset A)].$

Conjunction

Elimination: $A \supset (B \land C)$, $B \supset D \vdash A \supset D$.

Introduction: $A \wedge B$, $B \supset C \vdash A \wedge C$.

Disjunction

Introduction: $A \vdash B \lor ((A \lor C) \lor D)$.

Elimination: $A \lor (B \land C) \vdash (A \lor B) \land (A \lor C)$.

Biconditional

Elimination: $A \equiv (B \supset [(A \land C) \equiv D]) \vdash (A \land B) \supset (D \supset C).$

Introduction: $A \supset (B \land C)$, $C \supset (B \land A) \vdash A \equiv C$.

Negation

Elimination: $\neg \neg A \vdash A$.

Introduction: $A \supset (B \land C)$, $C \supset (B \land A) \vdash A \equiv C$.

Proof

Proof: A natural deduction PROOF (or DERIVATION) of a conclusion φ from a set of premises Γ in SD is any sequence of lines ending with φ on a live line where every line in the sequence is either:

- (1) a premise in Γ ;
- (2) a discharged assumption; or
- (3) follows from previous lines by the rules for SD.

Provable: An SL sentence φ is PROVABLE (or DERIVABLE) from Γ in SD *iff* there is a natural deduction proof (derivation) of φ from Γ in SD, i.e., $\Gamma \vdash \varphi$.

Equivalent: Two sentences φ and ψ are PROVABLY EQUIVALENT (or INTERDERIVABLE) if and only if both $\varphi \vdash \psi$ and $\psi \vdash \varphi$.

Inconsistent: A set of sentences Γ is PROVABLY INCONSISTENT if and only if $\Gamma \vdash \bot$ where \bot is our arbitrarily chosen contradiction, e.g., $A \land \neg A$.