Sinais e Sistemas

ET45A

Prof. Eduardo Vinicius Kuhn

kuhn@utfpr.edu.br Curso de Engenharia Eletrônica Universidade Tecnológica Federal do Paraná

Slides adaptados do material gentilmente cedido pelo <u>Prof. José C. M. Bermudez</u> do Departamento de Engenharia Elétrica da Universidade Federal de Santa Catarina.

Série de Fourier

Considerações iniciais

• A série de Fourier

- possibilita representar um sinal periódico como um somatório de exponenciais;
- permite sintetizar sinais "arbitrários" através da soma de diferentes exponenciais; e
- evidencia as diferentes harmônicas presentes em um sinal periódico.
- A partir dos coeficientes da série de Fourier, pode-se determinar a potência do sinal considerado.
- A transformada de Fourier (de sinais periódicos) pode ser obtida a partir dos coeficientes da série de Fourier.

Considerações iniciais

Objetivos:

- Introduzir a série de Fourier e apresentar as propriedades.
- Determinar o espectro de sinais periódicos e discutir o papel das harmônicas.
- Mostrar como sinais periódicos podem ser sintetizados (através da série de Fourier).
- Estudar/discutir o fenômeno de Gibbs.
- Estabelecer uma relação entre a transformada de Fourier e a série de Fourier.
- Aqui, refere-se como "série de Fourier" a "série de Fourier de tempo contínuo".

Definições matemáticas

Definições matemáticas

Considerando que $\underline{x(t)}$ é periódico e tem período fundamental T_0 , i.e.,

$$x(t) = x(t + T_0), \quad \forall t \quad e \quad T_0 > 0$$

a série de Fourier estabelece que

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}, \quad \forall k \in \mathbb{Z}$$

onde

$$c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$$

Portanto, qualquer sinal periódico x(t) pode ser representado por uma soma de exponenciais complexas de frequências múltiplas de ω_0 ponderadas pelos coeficientes c_k .

Definicões matemáticas

$$x(t) = \sum_{k = -\infty}^{\infty} c_k e^{jk\omega_0 t}, \quad \forall k \in \mathbb{Z} \qquad e \qquad \boxed{c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt}$$

Observações:

Quanto à notação, note que

$$\int_{a}^{a+T_0} x(t)d(t) = \int_{b}^{b+T_0} x(t)d(t)$$
$$= \int_{T_0} x(t)d(t).$$

• Em outras palavras, c_k é calculado levando em conta um período de x(t).

Definicões matemáticas

$$x(t) = \sum_{k = -\infty}^{\infty} c_k e^{jk\omega_0 t}, \quad \forall k \in \mathbb{Z} \qquad e \qquad \boxed{c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt}$$

$$c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$$

Observações:

- Quanto ao significado das componentes espectrais, é possível estabelecer que
 - c₀ caracteriza o valor médio do sinal (nível DC);
 - c_1 e c_{-1} definem a amplitude da componente em ω_0 (componente fundamental);
 - c_k e c_{-k} definem a amplitude da k-ésima harmônica; e
 - as harmônicas ocorrem em múltiplos inteiros de ω_0 .
- A soma das harmônicas (que, naturalmente, são funções periódicas) resulta em um sinal periódico.

Condições de existência

Condições de existência

A convergência da série de Fourier de um sinal é garantida se as seguintes condições são satisfeitas (condições de Dirichlet):

1) A função x(t) é absolutamente integrável , i.e.,

$$\frac{1}{T_0} \int_{T_0} |x(t)|^2 dt < \infty$$

- 2) A função x(t) tem um número finito de descontinuidades.
- 3) A função $\boldsymbol{x}(t)$ tem um número finito de máximos e mínimos.

A partir de tais condições, Dirichlet mostrou que

- $\bullet\,$ a convergência da série é garantida para os trechos em que x(t) é contínua; e
- a série converge para o valor médio (pela direita e pela esquerda) de x(t) entre os pontos de descontinuidade.

Espectro do sinal

Espectro do sinal

Tal como na transformada de Fourier, os coeficientes da série de Fourier do sinal x(t) podem também ser expressos como

$$c_k = |c_k| e^{j \angle c_k}$$

onde

$$|c_k| \Rightarrow \textit{Espectro de magnitude discreto}$$

$$\angle c_k \Rightarrow \textit{Espectro de fase discreto}$$

Espectro discreto uma vez que tanto a amplitude quanto a fase são definidas apenas para múltiplos de ω_0 .

Espectro do sinal

Para um sinal $x(t) \in \mathbb{R}$, os coeficientes da série de Fourier satisfazem

$$c_k = c_{-k}^*.$$

Como consequência,

$$|c_k| = |c_{-k}|$$

е

$$\angle c_k = -\angle c_{-k}$$

Portanto,

- o espectro de magnitude é uma função par/simétrica em k; e
- o espectro de fase é uma função ímpar/anti-simétrica em k.

A demonstração segue como na transformada de Fourier.

Analogamente, a série de Fourier pode ser expressa como

$$x(t) = a_0 + \sum_{k=1}^{\infty} [a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t)], \quad \forall k \in \mathbb{Z}$$

em que

$$a_0 = \frac{1}{T_0} \int_{T_0} x(t)dt$$
$$a_k = \frac{2}{T_0} \int_{T_0} x(t) \cos(k\omega_0 t)dt$$

е

$$b_k = \frac{2}{T_0} \int_{T_0} x(t) \operatorname{sen}(k\omega_0 t) dt$$

Na prática, a representação usando a série de Fourier exponencial é mais conveniente (do que a trigonométrica).

Para demonstrar a relação entre a representação da série de Fourier exponencial e trigonométrica, observe que

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

$$= \sum_{k=-\infty}^{\infty} c_k [\cos(k\omega_0 t) + j \operatorname{sen}(k\omega_0 t)]$$

$$= \sum_{k=-\infty}^{-1} c_k [\cos(k\omega_0 t) + j \operatorname{sen}(k\omega_0 t)] + c_0$$

$$+ \sum_{k=1}^{\infty} c_k [\cos(k\omega_0 t) + j \operatorname{sen}(k\omega_0 t)]$$

$$= c_0 + \sum_{k=1}^{\infty} [(c_k + c_{-k}) \cos(k\omega_0 t) + j (c_k - c_{-k}) \operatorname{sen}(k\omega_0 t)]$$

Logo,

$$c_0 = a_0$$

$$c_k + c_{-k} = \frac{1}{T_0} \int_{T_0} x(t)e^{-jk\omega_0 t} dt + \frac{1}{T_0} \int_{T_0} x(t)e^{+jk\omega_0 t} dt$$
$$= a_k$$

е

$$j(c_k - c_{-k}) = j \left[\frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt - \frac{1}{T_0} \int_{T_0} x(t) e^{+jk\omega_0 t} dt \right]$$
$$= b_k$$

Portanto,

$$a_k - jb_k = 2c_k$$

ou

$$a_k + jb_k = 2c_{-k}$$

Considerando que existe uma relação entre os coeficientes da série de Fourier exponencial $\{c_k\}$ e trigonométrica $\{a_k, b_k\}$, i.e.,

$$a_k - jb_k = 2c_k$$

verifica-se que

$$|c_k| = \frac{1}{2}\sqrt{a_k^2 + b_k^2}, \quad k \neq 0$$

е

$$\angle c_k = \tan^{-1}\left(\frac{-b_k}{a_k}\right), \quad \{a_k, b_k, k\} \neq 0$$

Casos particulares:

• Caso $a_k = 0 \ \forall k$,

$$c_k = -j\frac{b_k}{2} \longrightarrow \left[\angle c_k = \begin{cases} +\frac{\pi}{2}, & b_k > 0 \\ -\frac{\pi}{2}, & b_k < 0 \end{cases} \right]$$

• Caso $b_k = 0 \ \forall k$,

$$c_k = \frac{a_k}{2} \longrightarrow \left[\angle c_k = \begin{cases} -\pi, & a_k > 0 \\ +\pi, & a_k < 0 \end{cases} \right]$$

• Para $x(t) \in \mathbb{R}$, o espectro de fase é uma função ímpar.

Créditos: Emilly Zucunelli Krepkij (2019/1).

Exemplos Determinação dos coeficientes

1) Determine os coeficientes da série de Fourier de

1) Determine os coeficientes da série de Fourier de

Resposta: Primeiramente, observa-se que

$$T_0 = 2 \longrightarrow \omega_0 = \pi$$

Então, a partir da definição, tem-se que

$$c_k = \frac{1}{T_0} \int_{T_0} x(t)e^{-jk\omega_0 t} dt$$

$$= \frac{1}{2} \int_0^2 e^{-(2+jk\pi)t} dt \quad \Rightarrow \quad c_k = \frac{1-e^{-4}}{4+j2\pi k}, \quad \forall k$$

$$c_k = \frac{1 - e^{-4}}{4 + j2\pi k}, \quad \forall k$$

Logo, obtém-se o espectro de magnitude de x(t) como

$$|c_k| = \frac{1 - e^{-4}}{2\sqrt{4 + (\pi k)^2}}, \quad \forall k$$

e o espectro de fase como

$$\angle c_k = -\tan^{-1}\left(\frac{\pi k}{2}\right), \quad \forall k$$

Espectro de magnitude

Espectro de fase

Considerando a série de Fourier trigonométrica, tem-se

$$a_0 = \frac{1}{T_0} \int_{T_0} x(t)dt = \frac{-1}{4} e^{-2t} \Big|_0^2 \implies a_0 = \frac{1 - e^{-4}}{4}$$

$$a_k = \frac{2}{T_0} \int_{T_0} x(t) \cos(k\omega_0 t)dt = \int_0^2 e^{-2t} \cos(k\omega_0 t)dt$$

$$= \frac{e^{-2t} [-2\cos(k\pi t) + k\pi \sin(k\pi t)]}{(2)^2 + (k\pi)^2} \Big|_0^2 \implies a_k = \frac{2(1 - e^{-4})}{(2)^2 + (k\pi)^2}$$

е

$$b_k = \frac{2}{T_0} \int_{T_0} x(t) \operatorname{sen}(k\omega_0 t) dt = \int_0^2 e^{-2t} \operatorname{sen}(k\omega_0 t) dt$$
$$= \frac{e^{-2t} [-2 \operatorname{sen}(k\pi t) - k\pi \cos(k\pi t)]}{(2)^2 + (k\pi)^2} \Big|_0^2 \Rightarrow b_k = \frac{(k\pi)(1 - e^{-4})}{(2)^2 + (k\pi)^2}$$

Visando mostrar a equivalência na representação seja através de $\{c_k\}$ ou de $\{a_k,\ b_k\}$, observe que

$$c_k = \frac{1}{2}(a_k - jb_k)$$

$$= \frac{1}{2} \left\{ \frac{2(1 - e^{-4})}{(2)^2 + (k\pi)^2} - \frac{(k\pi)(1 - e^{-4})}{(2)^2 + (k\pi)^2} \right\}$$

$$= \frac{(1 - e^{-4})(2 - jk\pi)}{2[(2)^2 + (k\pi)^2]} \times \frac{(2 + jk\pi)}{(2 + jk\pi)}$$

$$= \frac{(1 - e^{-4})[(2)^2 + (k\pi)^2]}{2[(2)^2 + (k\pi)^2](2 + jk\pi)}$$

$$\Rightarrow c_k = \frac{(1 - e^{-4})}{(4 + j2\pi k)}$$

Consequentemente, os espectros de magnitude e fase podem ser obtidos equivalentemente de $\{a_k, b_k\}$.

2) Determine os coeficientes da série de Fourier de

$$x(t) = \sum_{l=-\infty}^{\infty} \delta(t - 4l)$$

2) Determine os coeficientes da série de Fourier de

$$x(t) = \sum_{l=-\infty}^{\infty} \delta(t - 4l)$$

Resposta: Primeiramente, observa-se que

$$T_0 = 4 \longrightarrow \omega_0 = \frac{\pi}{2}$$

o que implica em

$$c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$$
$$= \frac{1}{4} \int_{T_0} \delta(t) e^{-jk\frac{\pi}{2}t} dt$$
$$\Rightarrow \boxed{c_k = \frac{1}{4}, \quad \forall k}$$

3) Determine os coeficientes da série de Fourier de

$$x(t) = 3\cos\left(\frac{\pi}{2}t + \frac{\pi}{4}\right)$$

3) Determine os coeficientes da série de Fourier de

$$x(t) = 3\cos\left(\frac{\pi}{2}t + \frac{\pi}{4}\right)$$

Resposta: Primeiramente, observa-se que

$$\omega_0 = \frac{\pi}{2} \longrightarrow T_0 = 4$$

Então, dado que

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}, \quad \forall k \in \mathbb{Z}$$

verifica-se que

$$x(t) = \frac{3e^{j\frac{\pi}{4}}}{2}e^{j\frac{\pi}{2}t} + \frac{3e^{-j\frac{\pi}{4}}}{2}e^{-j\frac{\pi}{2}t} \quad \Rightarrow \boxed{c_1 = c_{-1}^* = \frac{3e^{j\frac{\pi}{4}}}{2}}$$

Para verificar o desenvolvimento anterior,

$$c_{k} = \frac{1}{T_{0}} \int_{T_{0}} x(t)e^{-jk\omega_{0}t}dt$$

$$= \frac{1}{4} \int_{-2}^{2} 3\cos\left(\frac{\pi}{2}t + \frac{\pi}{4}\right)e^{-jk\omega_{0}t}dt$$

$$= \frac{3}{8} \left[e^{+j\frac{\pi}{4}} \int_{-2}^{2} e^{+j\frac{\pi}{2}(1-k)t}dt + e^{-j\frac{\pi}{4}} \int_{-2}^{2} e^{-j\frac{\pi}{2}(1+k)t}dt\right]$$

$$= \frac{3}{2} \left\{\frac{e^{+j\frac{\pi}{4}}\operatorname{sen}[\pi(1-k)]}{\pi(1-k)} + \frac{e^{-j\frac{\pi}{4}}\operatorname{sen}[\pi(1+k)]}{\pi(1+k)}\right\}$$

$$\Rightarrow c_{k} = \frac{3}{2}e^{+j\frac{\pi}{4}}\operatorname{sinc}[\pi(1-k)] + \frac{3}{2}e^{-j\frac{\pi}{4}}\operatorname{sinc}[\pi(1+k)]$$

Portanto,

$$c_1 = c_{-1}^* = \frac{3}{2}e^{+j\frac{\pi}{4}}$$
 e $c_k = 0, |k| \neq 1$

Portanto,

$$|c_k| = \frac{3}{2}, \quad |k| = 1$$

е

$$\angle c_k = \begin{cases} -\frac{\pi}{4}, & k = -1\\ +\frac{\pi}{4}, & k = 1 \end{cases}$$

Espectro de magnitude

Espectro de fase

4) Determine os coeficientes da série de Fourier de

$$x(t) = 2\operatorname{sen}(2\pi t - 3) + \operatorname{sen}(6\pi t)$$

4) Determine os coeficientes da série de Fourier de

$$x(t) = 2\operatorname{sen}(2\pi t - 3) + \operatorname{sen}(6\pi t)$$

Resposta: Primeiramente, observa-se que

$$\omega_1 = 2\pi \longrightarrow T_1 = 1$$
 e $\omega_2 = 6\pi \longrightarrow T_2 = 1/3$

Logo, o período fundamental de x(t) é dado por

$$T_0 = 1 \longrightarrow \omega_0 = 2\pi$$

Então, verifica-se (por inspeção) que

$$c_k = \begin{cases} c_k = c_{-k}^* = -je^{-j3}, & |k| = 1\\ c_k = c_{-k}^* = -\frac{j}{2}, & |k| = 3\\ 0, & \text{caso contrário} \end{cases}$$

Agora, lembrando que

$$\pm j = e^{\pm j\frac{\pi}{2}}$$

é possível reescrever os coeficientes da série de Fourier como

$$c_k = \begin{cases} c_k = c_{-k}^* = e^{-j\left(3 + \frac{\pi}{2}\right)}, & |k| = 1\\ c_k = c_{-k}^* = \frac{e^{-j\frac{\pi}{2}}}{2}, & |k| = 3\\ 0, & \text{caso contrário} \end{cases}$$

Portanto.

$$|c_k| = \begin{cases} 1, & |k| = 1\\ \frac{1}{2}, & |k| = 3 \end{cases}$$

$$|c_k| = \begin{cases} 1, & |k| = 1 \\ \frac{1}{2}, & |k| = 3 \end{cases}$$
 e $\angle c_k = \begin{cases} \mp \left(3 + \frac{\pi}{2}\right), & |k| = 1 \\ \mp \frac{\pi}{2}, & |k| = 3 \end{cases}$

Distorção harmônica (ou distorção não linear)

Distorção harmônica

A distorção harmônica é relacionada a linearidade do sistema, i.e.,

- Sistema linear ⇒ não introduz distorção harmônica;
- Sistema não linear ⇒ introduz distorção harmônica.

Formalmente, a distorção introduzida na k-ésima harmônica é definida como

$$D_k = \frac{\text{Re}(c_k)}{\text{Re}(c_1)}, \quad k = 1, 2, 3, \dots$$

Por sua vez, a distorção harmônica total (THD) é dada por

$$\boxed{\text{THD} = \sqrt{\sum_{k=2}^{\infty} D_k^2}}$$

Portanto, sistemas "quase" lineares resultam em THD $\to 0$, i.e., menor a distorção harmônica introduzida no sinal.

Exemplo: Cálculo da distorção harmônica total

1) Aplicando

$$x(t) = \cos(\omega_0 t)$$

a entrada de um amplificador (não linear), obtém-se

$$y(t) = 20\cos(\omega_0 t) + 5\cos(2\omega_0 t) + 2\cos(3\omega_0 t) + \cos(4\omega_0 t)$$

Logo, determine a distorção harmônica total do sistema.

Exemplo: Cálculo da distorção harmônica total

1) Aplicando

$$x(t) = \cos(\omega_0 t)$$

a entrada de um amplificador (não linear), obtém-se

$$y(t) = 20\cos(\omega_0 t) + 5\cos(2\omega_0 t) + 2\cos(3\omega_0 t) + \cos(4\omega_0 t)$$

Logo, determine a distorção harmônica total do sistema.

Resposta:

$$\begin{aligned} \text{THD} &= \sqrt{\sum_{k=2}^{\infty} D_k^2} \\ &= \sqrt{\left(\frac{5}{20}\right)^2 + \left(\frac{1}{10}\right)^2 + \left(\frac{1}{20}\right)^2} \\ &= 0, 27 \quad \Rightarrow \boxed{\text{THD} = 27\%} \end{aligned}$$

1) Determine o sinal x(t) correspondente aos seguintes coeficientes da série de Fourier:

$$c_k = \left(\frac{1}{2}\right)^{|k|} e^{jk\frac{\pi}{20}}, \quad \forall k \qquad e \qquad T_0 = 2$$

Lembrete:

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}, \quad \forall k \in \mathbb{Z}$$

е

$$\sum_{k=m}^{n} r^k = \frac{r^m - r^{m+1}}{1 - r}, \quad r \neq 1$$

Resposta: A partir da definição, tem-se que

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}, \quad \forall k \in \mathbb{Z}$$

$$= \sum_{k=-\infty}^{\infty} \left(\frac{1}{2}\right)^{|k|} e^{jk\frac{\pi}{20}} e^{jk\pi t}$$

$$= \sum_{k=-\infty}^{-1} \left(\frac{1}{2}\right)^{-k} e^{jk(\pi t + \frac{\pi}{20})} + \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^{k} e^{jk(\pi t + \frac{\pi}{20})}$$

$$= \sum_{l=1}^{\infty} \left(\frac{1}{2}\right)^{l} e^{-jl(\pi t + \frac{\pi}{20})} + \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^{k} e^{jk(\pi t + \frac{\pi}{20})}$$

$$= \frac{1}{1 - \frac{1}{2}e^{j(\pi t + \frac{\pi}{20})}} + \frac{1}{1 - \frac{1}{2}e^{-j(\pi t + \frac{\pi}{20})}} - 1$$

$$\Rightarrow x(t) = \frac{3}{5 - 4\cos(\pi t + \frac{\pi}{20})}$$

Espectro de magnitude e de fase:

Representação do sinal no domínio do tempo:

$$x(t) = \frac{3}{5 - 4\cos(\pi t + \frac{\pi}{20})}$$

Alternativamente, o sinal pode ser representado no domínio do tempo por

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}, \quad \forall k \in \mathbb{Z}$$

$$= \sum_{k=-\infty}^{\infty} \left(\frac{1}{2}\right)^{|k|} e^{jk\frac{\pi}{20}} e^{jk\pi t}$$

$$= \sum_{l=1}^{\infty} \left(\frac{1}{2}\right)^l e^{-jl(\pi t + \frac{\pi}{20})} + \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k e^{jk(\pi t + \frac{\pi}{20})}$$

$$= 1 + \sum_{l=1}^{\infty} \left(\frac{1}{2}\right)^l e^{-jl(\pi t + \frac{\pi}{20})} + \sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^k e^{jk(\pi t + \frac{\pi}{20})}$$

$$\Rightarrow x(t) = 1 + 2\sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^k \cos\left(k\pi t + k\frac{\pi}{20}\right)$$

Contribuições individuais dos diferentes termos:

Com respeito a síntese/reconstrução de sinais,

- Variações lentas ⇒ Componentes de baixa frequência
- Variações rápidas ⇒ Componentes de alta frequência
- Taxa de decaimento dos coeficientes da série
 - Onda triangular $\to 1/k^2$
 - Onda quadrada $\rightarrow 1/k$

Aproximação por um número menor de termos:

2) Determine o sinal $\boldsymbol{x}(t)$ correspondente a partir de

$$c_k = 2\delta(k-3) - j\delta(k-2) + j\delta(k+2) + 2\delta(k+3), \quad \omega_0 = \pi$$

2) Determine o sinal $\boldsymbol{x}(t)$ correspondente a partir de

$$c_k = 2\delta(k-3) - j\delta(k-2) + j\delta(k+2) + 2\delta(k+3), \quad \omega_0 = \pi$$

Resposta: A partir da definição, tem-se que

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}, \quad \forall k \in \mathbb{Z}$$

$$= \sum_{k=-\infty}^{\infty} [2\delta(k-3) - j\delta(k-2) + j\delta(k+2) + 2\delta(k+3)]e^{jk\pi t}$$

$$= 2e^{j3\pi t} - je^{j2\pi t} + je^{-j2\pi t} + 2e^{-j3\pi t}$$

$$\Rightarrow x(t) = 2\sin(2\pi t) + 4\cos(3\pi t)$$

Representação do sinal no tempo:

$$x(t) = \underbrace{2\operatorname{sen}(2\pi t)}_{x_1(t)} + \underbrace{4\operatorname{cos}(3\pi t)}_{x_2(t)}$$

Individualmente, $x_1(t)$ e $x_2(t)$ contribuem da seguinte forma para a construção de x(t),

Com respeito a síntese de funções com descontinuidades,

- Gibbs (em 1899) demonstrou que existe um comportamento anômalo próximo aos pontos de descontinuidades.
- O problema é relacionado à convergência da série de Fourier.
- Foi mostrado que existe um sobressinal de $\pm 9\%$ em torno das descontinuidades (variações abruptas).
- Nas regiões continuas de x(t), a série converge para o valor exato do sinal a medida que $|N| \to \infty$.

Para entender o fenômeno de Gibbs, considere que

$$T_0 = 2\pi \longrightarrow \omega_0 = 1$$

A partir da definição de série de Fourier, tem-se

$$x(t) = \frac{1}{2} + \sum_{k=1}^{\infty} \operatorname{sinc}\left(\frac{k\pi}{2}\right) \cos(kt)$$

Portanto, o espectro de $\boldsymbol{x}(t)$ pode ser representado por

Síntese de sinais com descontinuidades (variações abruptas):

Síntese de sinais com descontinuidades (variações abruptas):

Nos **trechos contínuos**, a série de Fourier converge para o valor exato de x(t) conforme $N \to \infty...$

Nas **descontinuidades**, a série de Fourier converge para o valor médio (pela direita e pela esquerda)...

Portanto, existe um sobressinal de $\pm 9\%$ em $t = k \pi/2$.

Síntese de sinais com descontinuidades (variações abruptas):

O sobressinal e sub-sinal observado independe do número de termos considerados.

O período do sinal (em torno da descontinuidade) é igual a $1/Nf_0$.

1) Linearidade (superposição)

Considerando

$$x_1(t) \Longleftrightarrow d_k, \ \omega_0 \quad \text{e} \quad x_2(t) \Longleftrightarrow e_k, \ \omega_0$$

então

$$Ax_1(t) + Bx_2(t) \iff Ad_k + Be_k, \ \omega_0$$

sendo A e B constantes de valor arbitrário.

Demonstração: Para $y(t) = Ax_1(t) + Bx_2(t)$, tem-se que

$$c_{k} = \frac{1}{T_{0}} \int_{T_{0}} y(t)e^{-jk\omega_{0}t}dt$$

$$= \frac{1}{T_{0}} \int_{T_{0}} [Ax_{1}(t) + Bx_{2}(t)]e^{-jk\omega_{0}t}dt$$

$$= \frac{A}{T_{0}} \int_{T_{0}} x_{1}(t)e^{-jk\omega_{0}t}dt + \frac{B}{T_{0}} \int_{T_{0}} x_{2}(t)e^{-jk\omega_{0}t}dt$$

Então, como

$$x_1(t) \Longleftrightarrow d_k \quad e \quad x_2(t) \Longleftrightarrow e_k$$

verifica-se que

$$c_k = Ad_k + Be_k$$

Créditos: André Phillipe Milhomem A. Santana (2018/1).

2) Deslocamento no tempo

Considerando

$$x(t) \iff c_k$$

então (para $t_0 > 0$)

$$x(t-t_0) \iff c_k e^{-jkw_0t_0}$$

Demonstração: Para $y(t) = x(t - t_0)$, tem-se

$$d_k = \frac{1}{T_0} \int_{T_0} y(t)e^{-jk\omega_0 t} dt = \frac{1}{T_0} \int_{T_0} x(t - t_0)e^{-jk\omega_0 t} dt$$

Então, fazendo

$$t' = t - t_0 \longrightarrow \frac{dt'}{dt} = 1$$
 onde $t = \pm \frac{T_0}{2} \longrightarrow t' = \pm \frac{T_0}{2}$

observa-se que

$$= \frac{1}{T_0} \int_{T_0} x(t') e^{-jk\omega_0(t_0+t')} dt'$$

$$= \left[\frac{1}{T_0} \int_{T_0} x(t') e^{-jk\omega_0 t'} dt' \right] e^{-jk\omega_0 t_0}$$

$$= c_k e^{-jk\omega_0 t_0}$$

Créditos: André Phillipe Milhomem A. Santana (2018/1).

3) Escalamento no tempo

Considerando

$$x(t) \iff c_k$$

então

$$x(at) \iff c_k, \quad \omega_0' = \frac{\omega_0}{a}$$

Demonstração: Para y(t) = x(at), tem-se

$$d_{k} = \frac{1}{T_{0}} \int_{T_{0}} y(t)e^{-jk\omega_{0}t}dt = \frac{1}{T_{0}} \int_{T_{0}} x(at)e^{-jk\omega_{0}t}dt$$

Então, fazendo

$$t'=at\longrightarrow \frac{dt'}{dt}=a$$
 onde $t=\pm \frac{T_0}{2}\longrightarrow t'=\pm a\frac{T_0}{2}$

verifica-se que

$$\begin{split} d_k &= \frac{1}{aT_0} \int_{aT_0} x(t') e^{-jk(\frac{\omega_0}{a})t'} dt' \\ &= \frac{1}{T_0'} \int_{T_0'} x(t') e^{-jk\omega_0't'} dt' \\ &= c_k, \quad \omega_0' = \frac{\omega_0}{a} \quad \text{ou} \quad T_0' = aT_0 \end{split}$$

Créditos: André Phillipe Milhomem A. Santana (2018/1).

4) Deslocamento em frequência

Considerando

$$x(t) \iff c_k$$

então (para $M \in \mathbb{Z}$)

$$e^{jM\omega_0 t}x(t) \iff c_{k-M}$$

Demonstração: Para $y(t) = e^{+jM\omega_0 t}x(t)$, tem-se

$$\begin{split} d_k &= \frac{1}{T_0} \int_{T_0} y(t) e^{-jk\omega_0 t} dt \\ &= \frac{1}{T_0} \int_{T_0} e^{+jM\omega_0 t} x(t) e^{-jk\omega_0 t} dt \\ &= \frac{1}{T_0} \int_{T_0} x(t) e^{-j(k-M)\omega_0 t} dt \end{split}$$

Portanto, por inspeção, é possível verificar que

$$d_k = c_{k-M}.$$

Créditos: Gabriel Saatkamp Lazaretti (2018/1).

5) Conjugação

Considerando

$$x(t) \iff c_k$$

então

$$x^*(t) \iff c_{-k}^*$$

Demonstração: Tomando o complexo-conjugado de ambos os

lados de

$$c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$$

obtém-se

$$c_k^* = \left[\frac{1}{T_0} \int_{T_0} x(t)e^{-jk\omega_0 t} dt\right]^*$$
$$= \frac{1}{T_0} \int_{T_0} x^*(t)e^{jk\omega_0 t} dt$$

A partir disso, verifica-se que

$$c_{-k}^* = \frac{1}{T_0} \int_{T_0} x^*(t) e^{-jk\omega_0 t} dt.$$

Créditos: André Phillipe Milhomem A. Santana (2018/1).

6) Reflexão no tempo

Considerando

$$x(t) \iff c_k$$

então

$$x(-t) \iff c_{-k}$$

Demonstração: Para y(t) = x(-t),

$$d_k = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} y(t)e^{-jk\omega_0 t} dt = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(-t)e^{-jk\omega_0 t} dt$$

Então, considerando

$$t'=-t\longrightarrow rac{dt'}{dt}=-1$$
 onde $t=\pmrac{T_0}{2}\longrightarrow t'=\mprac{T_0}{2}$

verifica-se que

$$d_k = -\frac{1}{T_0} \int_{+\frac{T_0}{2}}^{-\frac{T_0}{2}} x(t') e^{+jk\omega_0 t'} dt'$$
$$= c_{-k}$$

Créditos: André Phillipe Milhomem A. Santana (2018/1).

7) Convolução periódica

Considerando

$$x(t) \Longleftrightarrow d_k \quad \mathbf{e} \quad y(t) \Longleftrightarrow e_k$$

então

$$\left| \int_{T_0} x(\tau)y(t-\tau)d\tau \right| \iff T_0 d_k e_k$$

Demonstração: Para z(t) = x(t) * y(t), tem-se

$$c_k = \frac{1}{T_0} \int_{T_0} z(t) e^{-jk\omega_0 t} dt = \frac{1}{T_0} \int_{T_0} \left[\int_{T_0} x(\tau) y(t-\tau) d\tau \right] e^{-jk\omega_0 t} dt$$

Logo, fazendo

$$\eta = t - au \longrightarrow rac{d\eta}{dt} = 1$$
 onde $t = \pm rac{T_0}{2} \longrightarrow \eta = \pm rac{T_0}{2}$

observa-se que

$$\begin{aligned} c_k &= \frac{1}{T_0} \int_{T_0} \int_{T_0} x(\tau) y(\eta) d\tau e^{-jk\omega_0(\eta + \tau)} d\eta \\ &= T_0 \left[\frac{1}{T_0} \int_{T_0} x(\tau) e^{-jk\omega_0 \tau} d\tau \right] \left[\frac{1}{T_0} \int_{T_0} y(\eta) e^{-jk\omega_0 \eta} d\eta \right] \\ &= T_0 d_k e_k \end{aligned}$$

Créditos: André Phillipe Milhomem A. Santana (2018/1).

8) Multiplicação no tempo

Considerando

$$x_1(t) \iff d_k, \ \omega_0 \quad \text{e} \quad x_2(t) \iff e_k, \ \omega_0$$

então

$$x_1(t)x_2(t) \iff \sum_{l=-\infty}^{\infty} d_l e_{k-l}, \ \omega_0$$

Demonstração: Considere que

$$y(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} \left[\sum_{l=-\infty}^{\infty} d_l e_{k-l} \right] e^{jk\omega_0 t}$$

Então, fazendo

$$m=k-l$$
 onde $k=\pm\infty\longrightarrow m=\pm\infty$

observa-se que

$$y(t) = \sum_{l=-\infty}^{\infty} d_l e^{jl\omega_0 t} \sum_{m=-\infty}^{\infty} e_m e^{jm\omega_0 t}$$
$$= x_1(t)x_2(t)$$

Créditos: André Phillipe Milhomem A. Santana (2018/1).

9) Diferenciação

Considerando

$$x(t) \iff c_k$$

então

$$\frac{d}{dt}x(t) \iff jk\omega_0 c_k$$

Demonstração: Dado que

$$y(t) = \sum_{k=-\infty}^{\infty} d_k e^{jk\omega_0 t} \quad \text{e} \quad x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

verifica-se que

$$y(t) = \frac{d}{dt}x(t) = \frac{d}{dt} \left[\sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \right]$$
$$= \sum_{k=-\infty}^{\infty} c_k \frac{d}{dt} e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} jk\omega_0 c_k e^{jk\omega_0 t}$$

Portanto, é possível concluir (por inspeção) que

$$d_k = jk\omega_0 c_k$$

Créditos: André Phillipe Milhomem A. Santana (2018/1).

10) Integração no domínio do tempo

Considerando

$$x(t) \iff c_k$$

então

$$\int_{-\infty}^{t} x(\tau)d\tau \iff \frac{1}{jk\omega_0}c_k$$

Demonstração: Dado que

$$y(t) = \sum_{k=-\infty}^{\infty} d_k e^{jk\omega_0 t}$$
 e $x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$

verifica-se que

$$y(t) = \int_{-\infty}^{t} x(\tau)d\tau = \int_{-\infty}^{t} \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0\tau} d\tau$$
$$= \sum_{k=-\infty}^{\infty} c_k \int_{-\infty}^{t} e^{jk\omega_0\tau} d\tau = \sum_{k=-\infty}^{\infty} \frac{c_k}{jk\omega_0} e^{jk\omega_0t}$$

Portanto, é possível concluir (por inspeção) que

$$d_k = \frac{c_k}{jk\omega_0}$$

Créditos: André Phillipe Milhomem A. Santana (2018/1).

11) Simetria do conjugado

Para $x(t) \in \mathbb{R}$,

$$x(t) \Longleftrightarrow c_k \quad \mathbf{e} \quad c_k = c_{-k}^*$$

então

$$\begin{cases} \operatorname{Re}(c_k) = \operatorname{Re}(c_{-k}) & \text{e} \operatorname{Im}(c_k) = -\operatorname{Im}(c_{-k}) \\ |c_k| = |c_{-k}| & \text{e} \ \angle c_k = -\angle c_{-k} \end{cases}$$

12) Decomposição par-ímpar

Para $x(t) \in \mathbb{R}$,

$$x(t) \iff c_k$$

então

$$\begin{aligned} & \operatorname{Par}\{x(t)\} & \iff & \operatorname{Re}(c_k) \\ & \operatorname{Impar}\{x(t)\} & \iff & j \operatorname{Im}(c_k) \end{aligned}$$

Demonstração: Para

$$x_{\mathrm{par}}(t) = \frac{x(t) + x(-t)}{2}$$
 e $x(t) \Longleftrightarrow c_k$

verifica-se que

$$c'_{k} = \frac{1}{T_{0}} \int_{T_{0}} x_{\text{par}}(t) e^{-jk\omega_{0}t} dt = \frac{1}{T_{0}} \int_{T_{0}} \frac{x(t) + x(-t)}{2} e^{-jk\omega_{0}t} dt$$

$$= \frac{1}{2} \left[\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-jk\omega_{0}t} dt \right] + \frac{1}{2} \left[\frac{1}{T_{0}} \int_{T_{0}} x(-t) e^{-jk\omega_{0}t} dt \right]$$

$$= \frac{c_{k} + c_{-k}}{2}$$

Portanto, visto que $x(t) \in \mathbb{R}$ implica $c_k = c_{-k}^*$, conclui-se

$$c'_k = \frac{c_k + c_k^*}{2} = \frac{[\operatorname{Re}(c_k) + j\operatorname{Im}(c_k)] + [\operatorname{Re}(c_k) - j\operatorname{Im}(c_k)]}{2} = \operatorname{Re}(c_k).$$

Créditos: Dyorgyo Pompermaier Valesan (2019/1).

Analogamente, para

$$x_{\text{impar}}(t) = \frac{x(t) - x(-t)}{2}$$
 e $x(t) \iff c_k$

verifica-se que

$$c'_{k} = \frac{1}{T_{0}} \int_{T_{0}} x_{\text{impar}}(t) e^{-jk\omega_{0}t} dt = \frac{1}{T_{0}} \int_{T_{0}} \frac{x(t) - x(-t)}{2} e^{-jk\omega_{0}t} dt$$

$$= \frac{1}{2} \left[\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-jk\omega_{0}t} dt \right] - \frac{1}{2} \left[\frac{1}{T_{0}} \int_{T_{0}} x(-t) e^{-jk\omega_{0}t} dt \right]$$

$$= \frac{c_{k} - c_{-k}}{2}$$

Portanto, visto que $x(t) \in \mathbb{R}$ implica $c_k = c_{-k}^*$, conclui-se

$$c_k = \frac{c_k - c_k^*}{2} = \frac{[\operatorname{Re}(c_k) + j\operatorname{Im}(c_k)] - [\operatorname{Re}(c_k) - j\operatorname{Im}(c_k)]}{2} = j\operatorname{Im}(c_k).$$

Créditos: Dyorgyo Pompermaier Valesan (2019/1).

Considerando que a potência de um sinal é dada por

$$P_x = \frac{1}{T_0} \int_{T_0} |x(t)|^2 dt$$

Então, levando em conta que sinais periódicos podem ser representados através da série de Fourier como

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

o teorema de Parseval estabelece que

$$P_x = \sum_{k=-\infty}^{\infty} |c_k|^2$$

onde c_k denota os coeficientes da série de Fourier de x(t).

Demonstração: Dado que

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

obtém-se

$$P_{x} = \frac{1}{T_{0}} \int_{T_{0}} \left| \sum_{k=-\infty}^{\infty} c_{k} e^{jk\omega_{0}t} \right|^{2} dt$$

$$= \frac{1}{T_{0}} \int_{T_{0}} \left[\sum_{k=-\infty}^{\infty} c_{k} e^{jk\omega_{0}t} \right] \left[\sum_{l=-\infty}^{\infty} c_{l} e^{jl\omega_{0}t} \right]^{*} dt$$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} c_{k} c_{l}^{*} \frac{1}{T_{0}} \int_{T_{0}} e^{jk\omega_{0}t} e^{-jl\omega_{0}t} dt$$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} c_{k} c_{l}^{*} \frac{1}{T_{0}} \int_{T_{0}} e^{j(k-l)\omega_{0}t} dt$$

Análise da integral

Em seguida, analisando a integral destacada, verifica-se que

$$\frac{1}{T_0} \int_{T_0} e^{j(k-l)\omega_0 t} dt = \frac{1}{T_0} \frac{e^{j(k-l)\omega_0 t}}{j(k-l)\omega_0} \Big|_{-T_0/2}^{T_0/2}$$

$$= \operatorname{sinc}[(k-l)\pi], \quad \forall \, k, l \in \mathbb{Z}$$

Finalmente, observando que

$$\frac{1}{T_0} \int_{T_0} e^{j(k-l)\omega_0 t} dt = \begin{cases} \operatorname{sinc}[(k-l)\pi] = 0, & k \neq l \\ \operatorname{sinc}[(k-l)\pi] = 1, & k = l \end{cases}$$

a expressão de P_x pode ser simplificada para

$$P_x = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} c_k c_l^* \frac{1}{T_0} \int_{T_0} e^{j(k-l)\omega_0 t} dt \quad \Rightarrow \quad \left| P_x = \sum_{k=-\infty}^{\infty} |c_k|^2 \right|$$

$$P_x = \sum_{k=-\infty}^{\infty} |c_k|^2$$

1) Determine a potência de $\boldsymbol{x}(t)$ a partir do espectro de magnitude e fase ilustrado a seguir.

1) Determine a potência de x(t) a partir do espectro de magnitude e fase ilustrado a seguir.

Resposta: Visto que

$$\begin{split} c_{-4}^* &= c_4 = e^{+j2\pi}, \ c_{-3}^* = c_3 = e^{+j3\pi/2}, \\ c_{-2}^* &= c_2 = e^{+j\pi}, \ c_{-1}^* = c_1 = e^{+j\pi/2}, \ c_0 = 1 \end{split}$$

obtém-se

$$P_x = \sum_{k=-\infty}^{\infty} |c_k|^2 = \sum_{k=-4}^{4} |c_k|^2 = |c_0|^2 + 2\sum_{k=1}^{4} |c_k|^2 \quad \Rightarrow \boxed{P_x = 9}$$

Relação entre a série de Fourier e a transformada de Fourier

Relação entre a série e a transformada de Fourier

Tomando a transformada de Fourier de ambos os lados de

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$
 onde $c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$

obtém-se

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} e^{-j\omega t}dt$$

$$= \sum_{k=-\infty}^{\infty} c_k \underbrace{\int_{-\infty}^{\infty} e^{-j(\omega - k\omega_0)t} dt}_{2\pi\delta(\omega - k\omega_0)}$$

$$\Rightarrow X(\omega) = 2\pi \sum_{k=-\infty}^{\infty} c_k \delta(\omega - k\omega_0)$$

Relação entre a série de Fourier e a transformada de Fourier

Diante do exposto, a seguinte relação entre a série de Fourier e a transformada de Fourier pode ser estabelecida:

$$\sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \iff 2\pi \sum_{k=-\infty}^{\infty} c_k \, \delta(\omega - k\omega_0)$$

Portanto, o espectro de um sinal periódico é

- discreto;
- não-nulo apenas em múltiplos inteiros de ω_0 ; e
- cada componente tem área igual a $2\pi c_k$.

1) Determine a transformada de Fourier de

$$x(t) = 1 + \cos[\omega_0 t + (\pi/4)]$$

a partir dos coeficientes da série de Fourier.

1) Determine a transformada de Fourier de

$$x(t) = 1 + \cos[\omega_0 t + (\pi/4)]$$

a partir dos coeficientes da série de Fourier.

Resposta: Por inspeção, verifica-se que

$$c_0 = 1$$
, $c_1 = c_{-1}^* = \frac{1}{2}e^{+j(\pi/4)}$.

Portanto,

$$X(\omega) = 2\pi \sum_{k=-\infty}^{\infty} c_k \, \delta(\omega - k\omega_0)$$

$$= 2\pi [c_0 \, \delta(\omega) + c_{-1} \, \delta(\omega + \omega_0) + c_1 \, \delta(\omega - \omega_0)]$$

$$= 2\pi \delta(\omega) + \pi [e^{-j(\pi/4)} \delta(\omega + \omega_0) + e^{+j(\pi/4)} \delta(\omega - \omega_0)].$$

2) Considerando a função de amostragem ideal, definida como

$$x(t) = \sum_{m = -\infty}^{\infty} \delta(t - mT_0) \qquad \int_{-3\tau_0}^{\bullet} \int_{-2\tau_0}^{\bullet} \int_{-\tau_0}^{\bullet} \int_{0}^{\bullet} \int_{\tau_0}^{\bullet} \int_{2\tau_0}^{\bullet} \int_{3\tau_0}^{\bullet} \int_{0}^{\bullet} \int_{0}^{\bullet}$$

determine a transformada de Fourier de x(t).

2) Considerando a função de amostragem ideal, definida como

$$x(t) = \sum_{m=-\infty}^{\infty} \delta(t - mT_0) \qquad \int_{-3T_0} \int_{-2T_0} \int_{-T_0} \int_{0} \int_{T_0} \int_{2T_0} \int_{3T_0} \int_{0}^{t} \int_{0}^{t}$$

determine a transformada de Fourier de x(t).

Resposta: Visto que

$$c_k = \frac{1}{T_0} \int_{T_0} \delta(t) e^{-jk\omega_0 t} dt \quad \Rightarrow \boxed{c_k = \frac{1}{T_0}}$$

obtém-se

$$X(\omega) = \frac{2\pi}{T_0} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_0)$$

Exemplo: Transformada de Fourier de um trem de impulsos

$$\sum_{m=-\infty}^{\infty} \delta(t - mT_0) \Longleftrightarrow \frac{2\pi}{T_0} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_0)$$

Domínio do tempo

Domínio da frequência

Resumo e discussão

Resumo e discussão

- Diferentes formulações são apresentadas na literatura,
 - Série exponencial complexa
 - Série trigonométrica
 - Série trigonométrica compacta
- A série de Fourier permite representar/sintetizar sinais periódicos através da soma de exponenciais complexas,
 - de frequência é múltipla de ω_0 ; e
 - ponderadas por coeficientes apropriadamente determinados.
- Sobre a convergência da série de Fourier:
 - Nos trechos contínuos, converge para o valor exato.
 - Nas descontinuidades, converge (pela direta e pela esquerda) para o valor médio.
 - Em torno das descontinuidades, a série de Fourier apresenta um sobressinal de $\pm 9\% \Rightarrow$ Fenômeno de Gibbs!

Resumo e discussão

- Com respeito ao número de termos necessários para representar/sintetizar um sinal,
 - Sinais com variações suaves ⇒ número pequeno de termos
 - Sinais com descontinuidades ⇒ número elevado de termos
- Através da série de Fourier, verifica-se que
 - Sinais periódicos possuem um espectro discreto.
 - O espectro é definido apenas em múltiplos de ω_0 .
 - A área $2\pi c_k$ caracteriza a magnitude da k-ésima componente no espectro do sinal $k\omega_0$.
- Foi mostrado que exponenciais compõem uma base ortogonal, i.e.,

$$\int_{T_0} e^{jk\omega_0 t} e^{jl\omega_0 t} dt = 0, \quad \mathbf{k} \neq \mathbf{l}.$$

Para a próxima aula

Para revisar e fixar os conceitos apresentados até então, recomenda-se a seguinte leitura:

B.P. Lathi, Sinais e Sistemas Lineares, $2^{\underline{a}}$ ed., Porto Alegre, RS: Bookman, $2008 \longrightarrow (pp. 584)$

Para a próxima aula, favor realizar a leitura do seguinte material:

B.P. Lathi, Sinais e Sistemas Lineares, $2^{\underline{a}}$ ed., Porto Alegre, RS: Bookman, 2008 \longrightarrow (Capítulo 8)

Até a próxima aula... =)