Nature Scientific reports 2020

EV-ESS 세미나 발표자료

Nature Scientificreports 2020

배터리의 노화 상태를 알 수 있는 SOH(State of Health) 추정 방식을 제안

목적

SOH를 원격으로 추정하기 위해서는 확인을 원하는 시점에서의 충방전 시험이 필요했으나 이번 논문을 통해 짧은 시간 동안의 충전 데이터를 통해 SOH를 정확하게 추정하는 방법을 개발했다.

배경 개념잡기

전제1) 배터리 성능의 저하는 이동할 수 있는 리튬이온 전하 수의 저하로 발생된다.

전제2) 리튬이온 전하 수 저하는 SEI(Solid Electrolyte Interphase) layer의 용해, 침전으로 일어난다.

→ SEI 층의 용해 침전으로 내부 임피던스(저항)가 증가함

*SEI 형성 및 성장 메커니즘은 복잡하며 현상 실험기술이 부족하여 완벽하게 이해되기 어려움(SEI 참고 영상) ▶

설계) 충방전시험을 통해 변화하는 전압값(SEI층에 걸리는 가변전압: V_{sei})을 통해 SOH 추정 모델을 개발함

Nature Scientificreports 2020

배터리의 노화 상태를 알 수 있는 SOH(State of Health) 추정 방식을 제안

Nature Scientificreports 2020

배터리의 노화 상태를 알 수 있는 SOH(State of Health) 추정 방식을 제안

핵심 내용(Novelty)

- · 10~20분의 실제 충전 데이터로도 SOH 추정이 가능하다.
- · 부분 충전 데이터만 사용하여 10개의 파생 전압 값(Vsei)을 수집하고, 이를 통해 SOH를 추정할 수 있다.
- ㆍ데이터 training 시, 초기 400 사이클의 데이터만으로 전체 SOH 범위에 대한 충전 전압 곡선을 추정할 수 있다.
- · Training과 test 배터리의 용량은 서로 다를 수 있다. 본 논문에서는 3Ah 배터리 데이터를 사용하여 3.5Ah 배터리에 대해 테스트함

Existing methods	Proposed method		
Large training data	Only initial 400 cycles (~45 days) needed for training		
Complete charging/discharging data	Partial charging data 10–20 min		
Special kinds of probing signals	Existing partial charge data		
Cycle numbers required	Differential voltage based feature vector		
Battery models with model parameters	One time training		
Offline estimation	Online on the device		

Table 1. Novelty of the proposed method.

배터리 충방전시험(가속화)

- 배터리 2종 사용: Type-1, Type-2

- Type-1 정격 용량: 3Ah 10EA

- Type-2 정격 용량: 3.5Ah 8EA

- 두 배터리 공칭 전압: 3.85~4.4V

- 45°C와 25°C의 서로 다른 온도에서 충방전시험

초기 training 데이터 (~100% 에서 ~ 96%)

같은 온도, 같은 CC rate test용 데이터 (~100% 에서 ~ 90%)

성능 test용 데이터 (<90%)

정격용량이 달라도 상관없다는 걸 보여주기 위한 성능 테스트용 데이터

Sl. No.	Battery Type	No. of battery used	CC Charging rate	Chamber Temp. (°C)	Used for		
1	Type-1	1	0.8C	45	Training		
2	Type-1	1	0.8C	25	Training]	
3	Type-1	3	0.8C	45	Testing	1	
4	Type-1	3	0.8C	25	Testing]	
5	Type-1	1	1.0C	45	Testing		최저 SOH 85%
6	Type-1	1	1.2C	45	Testing	결론: test CC rate가 t 과 달라도 정확도는 남	결론: test CC rate가 traini 과 달라도 정확도는 높다!
7	Type-2	4	0.8C	45	Testing		-1 E 1- 0 1- E 1.
8	Type-2	4	0.8C	25	Testing	1	

Table 3. Training and Testing Split.

Electrochemistry 동일함, 항상 테스트 대상 배터리의 최대 용량으로 표준화됨

부분 충전 데이터만 사용하여 10개의 파생 전압 값(vsei) 수집

$$\Delta Q_c = \sum i(k)T_s = 1.5\%$$
 of C_{max}

쿨롱 카운팅 전하량 = Σ (k번째 전류 X 시간) = 1.5 % X 최대 전하량 = vsei 두 지점 간의 Δ Qc

$$1)SOC(k) = SOC(k-1) + \frac{i(k)T_S}{c_{max}}$$

2) capacity(n) =
$$-T_S \sum_{k \in discharging} i_b(k)$$

$$3)SOH = \frac{capacity(n)}{c_{max}} \times 100$$

부분 충전 데이터만 사용하여 10개의 파생 전압 값(vsei) 수집

Nature Scientificreports 2020

파생 전압 값 (v_{sei}) 수집

$$V_{sei}(k) = V(k) - R_f i(k)$$

K번째 파생 전압 값(vsei) =

k번째 전압

고정저항 X k번째 측정 전류

1)
$$R_i = R_f + \Delta R_{sei}$$

전체저항 = 고정저항 + 가변저항

2)
$$R_f = R_i \ (n = 1)$$

고정저항 = 전체저항 (n = 1)

※ n = 사이클

3)
$$R_f = \frac{v(eod) - v(sor)}{i(eod)}$$

고정저항 = 방전의 끝점의 전압 - 휴지 시점의 전압

1) 파생 전압 값 (v_{sei}) 수집

1)
$$R_i = R_f + \Delta R_{sei}$$

2)
$$R_f = R_i (n = 1)$$

3)
$$V_{sei}(k) = V(k) - R_f i(k)$$

4)
$$SOC(k) = SOC(k-1) + \frac{i(k)T_S}{c_{max}}$$

5)
$$R_f = \frac{v(eod) - v(sor)}{i(eod)}$$

6) capacity(n) =
$$-T_S \sum_{k \in discharging} i_b(k)$$

7)
$$SOH = \frac{capacity(n)}{c_{max}}$$

$$a.$$
 $R_i = 전체 저항, R_f = 고정 저항, $\Delta R_{sei} =$ 가변 저항$

b.
$$n =$$
 싸이클, $k =$ 측정 수,

$$c.$$
 $i(k)$ = 측정 시 전류

$$d.$$
 C_{max} = 배터리 정격용량(최대 전하량)

$$e.$$
 $Q(전하량) = t(시간) * I(전류)$

Nature Scientificreports 2020

레퍼런스 충방전 그래프

Step	Protocol Description
1	Constant current (CC) charging at 0.8 C/1.0 C/1.2 C rate
2	Constant voltage (CV) charging at 4.4 V
3	Constant current discharge at 1.0 C/1.2 C rate
4	After each 50/125 cycles, probe cycle with CC-CV charge and CC discharge at 0.2 C rate

Table 2. Charging and Discharging Protocol.

CC(고정 전류): 셀 내에 일정한 전하의 흐름을 유도하는 방식 CV(고정 전압): 셀 내부의 전하가 음극에 삽입되어 들어갈 수 있도록 유도하는 방식 CC-CV(constant current constant voltage): 전압 full이 될 때까지 CC로 충전, 그 이후에는 CV로 충전

0.8C 데이터는 1분, 1.2C 데이터는 10초 간격으로 표본 추출