

PERGURUAN TINGGI FAKULTAS PROGRAM STUDI : UNIVERSITAS DIAN NUSWANTORO

: ILMU KOMPUTER

RAM STUDI : SARJANA TEKNIK INFORMATIKA

SEMARANG.							
RENCANA PEMBELAJARAN SEMESTER (RPS)							
Mata Kuliah	Kode	Rumpun Mata Kuliah	SKS	Semester	Tanggal Penyusunan		
Logika Informatika	A11.54406	Wajib Program Studi	3	4	24 September 2019		
	Dos	en Pengembang RPS	Koord	inator RMK	Ketua Program Studi		
Otorisasi		ttd n Sudibyo,S.Si., M.Kom.	Purw	ttd anto, P.hD	Dr. Muljono, S.Si, M.Kom		
	•	lajaran Program Studi					
	S9	Menunjukkan sikap bertanggungj		<u> </u>	mandiri.		
	S10	Menginternalisasi semangat kema		n kewirausahaan.			
	S11	Memiliki kemampuan menegaka					
	P1			· ·	a umum dan konsep teoritis bagian khusus		
					kan penyelesaian masalah prosedural.		
	KU1 Mampu menerapkan pemikirar		pemikiran logis, kritis, sistematis, dan inovatif dalam konteks pengembangan atau implementasi ilmu				
			g memperhatikan dan menerapkan nilai humaniora yang sesuai dengan bidang keahliannya.				
	KU2	. , , , ,	enunjukkan kinerja mandiri, bermutu, dan terukur.				
	KK1	Menguasai konsep dan mampu m	asai konsep dan mampu menerapkan teori dasar matematika yang digunakan untuk memodelkan dan menganalisis sistem				
		komputasi.					
Capaian Pembelajaran (CP)	Capaian Pembe	lajaran Mata Kuliah					
	M1	1. Mahasiswa mampu memahami		n kompetensi dasar			
		2. Mahasiswa mampu Memahami l					
		 Mahasiswa mengetahui sejarah Mahasiswa mampu Memahami a 		proposici			
	M2	Mahasiswa mampu memahami Mahasiswa mampu memahami			ienis-ienisnya		
	IVIZ	Mahasiswa bisa membuat Tabel					
	M3	1. Mahasiswa mampu memahami					
	2. Mahasiswa mampu memahami apa yang disebut Tautologi dan Kontradiksi serta dapat membuat Tabel Kebenaranya						
	M4 1. Mahasiswa mampu memahami inferensi logika serta dapat menarik kesimpulan						
		2. Mahasiswa mampu memahami					
	145	3. Mahasiswa mampu menentukar			adel		
	M5	1. Mahasiswa mampu memahami	kompetensi dasar pemb	anasan mengenai deduksi			

		2 Mehasiana manana manahasi kacaisana ang manailan kasimanda			
		2. Mahasiswa mampu memahami bagaimana cara penarikan kesimpulan			
		3. Mahasiswa mampu memahami suatu pernyataan merupakan logika entailment atau tidak			
	M6	1. Mahasiswa mampu memahami dan menggunakan Deduksi			
		2. Mahasiswa mampu memahami dan menggunakan standar axiom schemata dalam melakukan pembuktian			
		3. Mahasiswa mampu memahami dan menggunakan prinsip resolusi			
	M7	1. Mahasiswa mampu memahami Modus Ponens, modus Tollens, Equivalence Elimination, Silogisma Disjungtif, dan silogisma Hipotesis.			
		2. Mahasiswa mampu memahami dan menggunakan rule of inference dalam penarikan kesimpulan			
	M8 1. Mahasiswa mampu memahami kompetensi dasar tentang proposisional Resolusi 2. Mahasiswa mampu memahami cara membentuk sebuah proposisi ke dalam bentuk klausul				
	M9	1. Mahasiswa mampu memahami dan membuktikan sebuah pernyataan dalam bentuk klausul			
		2. Mahasiswa mampu memahami dan mengetahui komponen-komponen logika relasional			
	M10	1. Mahasiswa mampu memahami kompetensi dasar pembahasan First Order Logic			
		2. Mahasiswa mampu memahami dan menuliskan dalam sebuah logika predikat			
	M11	Mahasiswa mampu memahami dan menterjemahkan dalam bahasa FOL			
	M12	Mahasiswa mampu dan dapat menggunakan inference pada FOL untuk menarik sebuah kesimpulan			
Deskripsi Singkat		i membahas tentang proposisi atom, proposisi majemuk, validitas sebuah kesimpulan, logika entailment, prinsip resolusi, relasional			
Mata Kuliah		nan First Order Logic, Pembuktian dengan First Order Logic.			
	1. Pengant	ar Logika Informatika: Konsep Logika, Sejarah dan Perkembangan Logika, Kalimat, Pernyataan (Proposisi), dan Persoalan Logika vs			
	persoala	n Aljabar.			
	2. Logika Proposisi: Konsep Proposisi, dan Proposisi Majemuk (Negasi, Konjungsi, Disjungsi, Implikasi, Bi Implikasi, Tabel Kebenaran).				
	3. Tautologi dan Kontradiksi: Konvers, Invers, dan Kontraposisi.				
	4. Metode-metode Inferensi: Modus Ponens, Modus Tollens, Silogisma Disjungtif, Silogisma Hipotesis.				
	5. Kalimat Berkuantor: Kuantor Umum, Kuantor Khusus, dan Negasi berkuantor.				
Materi Pembelajaran/		ntailment: Deduksi, dan Logika Entailment (penjelasan, Metode Tabel Kebenaran).			
Pokok Bahasan	_				
POKOK Banasan	7. Rule of Inference: Modus Ponens, Modus Tollens, Equivalence Elimination, Double Negation, Silogisma Disjungtif, Silogisma Hipotesis.				
		Axiom Schemata: Rumus dasar.			
		Klausul: Definisi bentuk Klausul, dan Perubahan ke bentuk Klausul.			
	-	ional Resolusi: Prinsip Resolusi, Bentuk Umum Prinsip Resolusi, dan Inferensi dalam bentuk Klausul.			
	_	elasional: Definisi, Komponen Logika Relasional, Kalimat Relasional, dan Kuantor.			
	12. First Ord	der Logic: Pendahuluan, terjemahan FOL, aturan inferensi pada Propositional Logic, Modus Ponens, And Elimination, And			
	Introduc	tion, Or Introduction, Double Negation Elimination, Aturan Inferensi pada FOL, Tatabahasa FOL, dan Inferensi pada FOL.			
	Utama:				
		Genesereth, Eric Kao, Introduction to Logic, Morgan & Claypool Publisher 2012.			
	2. Mordechai Ben-Ari, Mathematical Logic for Computer Science, Springer-Verlag, London 2012.				
Pustaka	Melvin Fitting, First Order Logic and Automated Theorem Proving, Springer-Verlag London 1999				
	Pendukung:				
	1. Setiad	di Rachmat, Pengantar Logika Matematika, Informatika, Bandung 2004			
		yadi HS, Aljabar Logika dan Himpunan, Gunadarma, Jakarta 1991			
		jan 10j ngaba. Ingina ani minganang banadamaj banaha 1991			

	3. Suyanto, ST., MSc, Artificial Intelligence, Informatika, Bandung, 2007		
Madia Dombalaiaran	Perangkat Lunak :	Perangkat Keras :	
Media Pembelajaran	-	Laptop, Proyektor, White Board	
Tim Teaching	Tim Pengampu Mata Kuliah Logika Informatika		
Mata Kuliah Syarat	Matematika Diskrit		

14	Mata Kullan Syarat Matematika Diskrit						
Mggu	Sub CP MK (sebagai kemampuan akhir yang diharapkan)	Indikator	Kriteria & Bentuk Penilaian	Metode Pembelajaran [Estimasi Waktu] Pengalaman Belajar	Materi pembelajaran	Bobot Penilaian	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	
1	Setelah mempelajari materi ini mahasiswa diharapkan dapat memahami konsep logika, sejarah logika, kalimat, pernyataan (proposisi) dan hubunganya dengan mata kuliah lain	Menguasai konsep logika Menguasai sejarah logika Memahami arti sebuah kalimat dan proposisi	Kriteria: Ketepatan dan Penguasaan. Bentuk non Test: Penyelesaian soal di depan kelas dan tanya jawab secara terbuka	Kuliah & Diskusi [TM:3x50']	Pengantar Logika Informatika: a. Penjelasan secara umum tentang mata kuliah/kontrak belajar b. Penjelasan tentang silabus c. Penjelasan tentang cara penilaian d. Sekilas tentang konsep dan sejarah Logika e. Penjelasan tentang kalimat dan pernyataan (proposisi). f. Menjelaskan keterkaitan Logika Informatika dengan matakuliah lain.		
2	Setelah mempelajari materi ini mahasiswa diharapkan dapat mengetahui dan memahami tentang proposisi majemuk dan jenis-jenisnya, proposisi bersyarat, Tabel Kebenaran untuk masingmasing jenis proposisi majemuk.	 Ketepatan dalam memberikan contoh proposisi majemuk beserta jenis-jenisnya. Ketepatan dalam membuat tabel kebenaran untuk masing-masing jenis proposisi majemuk. 	Kriteria: Ketepatan dan penguasaan Bentuk non test: Penyelesaian soal di depan kelas dan tanya jawab secara terbuka.	Kuliah & Diskusi [TM:3x50']	Logika Proposisi: a. Konsep Proposisi b. Proposisi Majemuk b.1. Negasi b.2. Konjungsi b.3. Disjungsi b.4. Implikasi b.5. Bi Implikasi b.6. Tabel Kebenaran		
3	Setelah mempelajari materi ini mahasiswa diharapkan dapat mengetahui dan	Menguasai konvers, invers dan kontraposisi beserta Tabel Kebenaranya.	Kriteria: Ketepatan dan penguasaan Bentuk non test:	Kuliah & Diskusi[TM:3x50']Tugas-1:	Tautologi dan Kontradiksi a. Konvers b. Invers c. Kontraposisi		

	memahami tentang Tautologi dan Kontradiksi, Konvers, Invers, dan Kontraposisi.	Ketepatan menentukan sebuah pernyataan majemuk merupakan Tautologi atau Kontradiksi serta dapat membuat Tabel Kebenaranya	Penyelesaian soal di depan kelas dan tanya jawab secara terbuka.	1) Menyusun tabel kebenaran dari 5 buah pernyataan majemuk yang mengandung semua jenis kata hubung kalimat. 2) Membuktikan sebuah pernyataan merupakan Tautologi atau Kontradiksi. [BT+BM: (1+1)x(3x50')]		
4	Setelah mempelajari materi ini mahasiswa diharapkan dapat memahami dan membentuk proposisi dalam bentuk klausul, mengambil kesimpulan dalam bentuk klausul, menuliskan proposisi dalam bentuk relasional logic, dan memahami komponen dalam relasional logic	 Ketepatan dalam inferensi logika serta dapat menarik kesimpulan. Penguasaan tentang kalimat berkuantor. Dapat menentukan suatu fungsi yang mengandung lebih dari satu variabel 	Kriteria: Ketepatan dan penguasaan Bentuk non test: Penyelesaian soal di depan kelas dan tanya jawab secara terbuka.	Kuliah & Diskusi [TM:3x50']	Metode-Metode Inferensi: Modus Ponens Modus Tollens Silogisme Disjungtif Silogisme Hipotesis Kalimat Berkuantor: Kuantor Umum Kuantor Khusus negasi berkuantor	
5	Setelah mempelajari materi ini mahasiswa diharapkan dapat mengetahui dan memahami tentang deduksi, logika entailment. rule of inference, standard axiom schemata dan propositional resolusi	1. Menguasai kompetensi dasar pembahasan mengenai deduksi. 2. Ketepatan dalam melakukan penarikan kesimpulan dari beberapa pernyataan. 3. Ketepatan memilih suatu pernyataan merupakan logika entailment atau bukan.	Kriteria: Ketepatan dan penguasaan Bentuk non test: Penyelesaian soal di depan kelas dan tanya jawab secara terbuka.	 Kuliah & Diskusi [TM:3x50'] Tugas-2: Membuktikan validitas suatu argumen dengan metode inferensi dari beberapa pernyataan yang mengandung kuantor. Membuktikan sebuah pernyataan merupakan logika entailment atau bukan. [BT+BM: (1+1)x(3x50')] 	a. Deduksi b. Logika Entaiment b.1. Penjelasan b.2. Metode Tabel Kebenaran	

6	Setelah mempelajari materi ini mahasiswa diharapkan dapat mengetahui dan memahami tentang rule of inference, standard axiom schemata dan propositional resolusi.	 Ketepatan menggunakan rule of inference dalam penarikan kesimpulan. Ketepatan menggunakan standar axiom schemata dalam melakukan pembuktian. Ketepatan menggunakan prinsip resolusi 	Kriteria: Ketepatan dan penguasaan Bentuk non test: Penyelesaian soal di depan kelas dan tanya jawab secara terbuka.	Kuliah & Diskusi [TM:3x50']	Rule of Inference: a. Modus Ponen b. Modus Tolen c. Equivalence Elimination d. Double Negation e. Silogisme Disjungtif f. Silogisme Hipotesis Standar Axiom Schemata: a. Rumus Dasar
7	Setelah mempelajari materi ini mahasiswa diharapkan dapat mengetahui dan memahami tentang bentuk-bentuk klausul	Ketepatan dalam melakukan perubahan dari sebuah pernyataan majemuk ke bentuk klausul.	Kriteria: Ketepatan dan penguasaan Bentuk non test: Penyelesaian soal di depan kelas dan tanya jawab secara terbuka.	Kuliah & Diskusi [TM:3x50']	Bentuk Klausul : a. Definisi Bentuk Klausul b. Perubahan ke Bentuk Klausul
8			UJIAN TENG	SAH SEMESTER	
9	Setelah mempelajari materi ini mahasiswa diharapkan dapat memahami dan membentuk proposisi dalam bentuk klausul, mengambil kesimpulan dalam bentuk klausul, menuliskan proposisi dalam bentuk relasional logic, dan memahami komponen dalam relasional logic	menguasai kompetensi dasar tentang proposisional Resolusi. Ketepatan membentuk sebuah proposisi ke dalam bentuk klausul	Kriteria: Ketepatan dan penguasaan Bentuk non test: Penyelesaian soal di depan kelas dan tanya jawab secara terbuka.	Kuliah & Diskusi [TM:3x50']	Propositional Resolusi : a. Prinsip Resolusi b. Bentuk Umum Prinsip Resolusi c. Inferensi dalam bentuk Klausul
10	Setelah mempelajari materi ini mahasiswa diharapkan dapat memahami dan menguasai logika relasional, membuktikan pernyataan dalam bentuk	 Ketepatan dalam membuktikan sebuah pernyataan dalam bentuk klausul. memahami dan mengetahui komponen 	Kriteria: Ketepatan dan penguasaan Bentuk non test: Penyelesaian soal di depan kelas	 Kuliah & Diskusi [TM:3x50'] Tugas-3: mengubah pernyataan kedalam bentuk Klausul. 	Logika Relasional: a. Definisi b. Komponen Logika Relasional c. Kalimat Relasional d. Kuantor

	Klausul, dan memahami komponen dalam relasional logic	komponen logika relasional	dan tanya jawab secara terbuka.	 Membuktikan validitas argumen menggunakan prinsip resolusi. [BT+BM: (1+1)x(3x50')] 	
11	Setelah mempelajari materi ini mahasiswa diharapkan dapat memahami pengertian First Order Logic, logika predikat, dan fungsi Proposisi.	 menguasai kompetensi dasar pembahasan First Order Logic. ketepatan menuliskan dalam sebuah logika predikat dan fungsi proposisi. 	Kriteria: Ketepatan dan penguasaan Bentuk non test: Penyelesaian soal di depan kelas dan tanya jawab secara terbuka.	Kuliah & Diskusi [TM:3x50']	First Order Logic: a. Pendahuluan b. Terjemahan FOL c. Logika Predikat d. Fungsi Proposisi
12	Setelah mempelajari materi ini mahasiswa diharapkan dapat memahami terjemahan FOL, aturan iferensi FoL, dan tata bahasa pada FoL	Ketepatan dalam menggunakan aturan inferensi pada proposional logic. ketepatan menterjemah dalam bahasa FOL	Kriteria: Ketepatan dan penguasaan Bentuk non test: Penyelesaian soal di depan kelas dan tanya jawab secara terbuka.	Kuliah & Diskusi [TM:3x50']	First Order Logic: a. Aturan Inferensi pada Propositional Logic b. Modus Ponen c. And Elimination d. And Introduction e. Or Intoduction f. Double Negation Elimination
13	Setelah mempelajari materi ini mahasiswa diharapkan dapat memahami pengertian First Order Logic, predikat, terjemahan FOL, aturan iferensi FoL, tata bahasa pada FoL	Ketepatan menggunakan inference pada FOL untuk menarik sebuah kesimpulan	Kriteria: Ketepatan dan penguasaan Bentuk non test: Penyelesaian soal di depan kelas dan tanya jawab secara terbuka.	 Kuliah & Diskusi [TM:3x50'] Tugas-4: Menentukan FoL dan bentuk Klausul dari sebuah Pernyataan. Uji Validitas argumen yang mengandung kuantor menggunakan Prinsip Resolusi [BT+BM: (1+1)x(3x50')] 	First Order Logic: a. Aturan Inferensi pada FOL b. Tata Bahasa FOL c. Inferensi pada FOL
14	Setelah mempelajari materi ini mahasiswa diharapkan dapat memahami Argumen berkuantor dan membuktikan Uji	Ketepatan menggunakan logika relasional untuk membuktikan argumen berkuantor.	Kriteria: Ketepatan dan penguasaan Bentuk non test: Penyelesaian soal di depan kelas	Kuliah & Diskusi [TM:3x50']	Logika Relasional: 1. Argumen berkuantor. 2. Uji Validitas

	Validitas dari sebuah argumen berkuantor.		dan tanya jawab secara terbuka.			
15	Setelah mempelajari materi ini mahasiswa diharapkan dapat mempersiapkan diri menjelang Ujian Akhir Semester	Ketepatan dalam menjawab soal-soal responsi dengan baik dan benar	Kriteria: Ketepatan dan penguasaan Bentuk non test: Penyelesaian soal di depan kelas dan tanya jawab secara terbuka.	Kuliah & Diskusi [TM:3x50']	Review Materi Logika Informatika Responsi	
16	UJIAN AKHIR SEMESTER					

Catatan:

- [1]. TM: tatap Muka
- [2]. **[TM:2x50']**: Kuliah tatap muka 1 kali (minggu) x 3 sks x 50 menit=150 menit
- [3]. [BT+BM:(1+1)x(2x50')]: Belajar terstruktur 1 kali (minggu) dan belajar mandiri 1 kali (minggu) x 3 sks x 50 menit = 300 menit (5 jam)
- [4]. Penulisan daftar pustaka disarankan menggunakan salah satu standar/style penulisan pustaka internasional, dalam contoh ini menggunakan style APA
- [5]. RPS: Rencana Pembelajaran Semester, RMK: Rumpun Mata Kuliah, Prodi: Program Studi

PERGURUAN TINGGI FAKULTAS PROGRAM STUDI : UNIVERSITAS DIAN NUSWANTORO

: ILMU KOMPUTER

: TEKNIK INFORMATIKA - S1

TAKE				
RENCANA TUGAS MAHASISWA				
MATA KULIAH	: Logika Informatika			
KODE	: A11.54406			
SKS	: 3			
SEMESTER	: 4			
DOSEN	: Tim Pengampu Mata Kuliah Logika Informatika			
BENTUK TUGAS	: Tugas Mandiri			
	Tugas-1:			
JUDUL TUGAS	: 1. Menyusun tabel kebenaran dari pernyataan Majemuk			
	2. Membuktikan sebuah pernyataan merupakan Tautologi atau Kontradiksi			

SUB CAPAIAN PEMBELAJARAN MATA KULIAH

Mahasiswa dapat membuat tabel kebenaran dari beberapa pernyataan yang sederhana hingga pernyataan majemuk yang komplek serta dapat membuktikan pernyataan dalam bentuk tautologi maupun Kontradiksi.

DESKRIPSI TUGAS

- 1. Susunlah Tabel Kebenaran dari pernyataan-pernyataan berikut.
- 2. Buktikan bahwa pernyataan berikut merupakan Tautologi dan Kontradiksi

METODE PENGERJAAN TUGAS

Mahasiswa menyelesaikan soal-soal yang di berikan secara mandiri.

BENTUK DAN FORMAT LUARAN

- a. Objek garapan : Pernyataan dalam bentuk kalimat yang merupakan pernyataan majemuk
- b. Bentuk Luaran

Pengumpulan Lembar jawab yang ditulis dalam folio bergaris.

INDIKATOR, KRITERIA DAN BOBOT PENILAIAN

- a. Ketepatan dalam menyusun tabel kebenaran (70%)
- b. Ketepatan waktu pengumpulan tugas (30%)

JADWAL PELAKSANAAN

Pengumpulan tugas : Minggu ke 4

LAIN-LAIN

Tugas ditulis dalam lembar jawab atau Kirimkan email ke dosen pengampu masing-masing

- 1. Mike Genesereth, Eric Kao, Introduction to Logic, Morgan & Claypool Publisher 2012.
- 2. Mordechai Ben-Ari, Mathematical Logic for Computer Science, Springer-Verlag, London 2012.
- 3. Melvin Fitting, First Order Logic and Automated Theorem Proving, Springer-Verlag London 1999

PERGURUAN TINGGI : FAKULTAS :

PROGRAM STUDI : TEKNIK INFORMATIKA – S1

UNIVERSITAS DIAN NUSWANTORO

ILMU KOMPUTER

MAKO				
RENCANA TUGAS MAHASISWA				
MATA KULIAH	: Logika Informatika			
KODE	: A11.54406			
SKS	: 3			
SEMESTER	: 4			
DOSEN	: Tim Pengampu Mata Kuliah Dasar Pemrograman			
BENTUK TUGAS	: Tugas Mandiri			
	Tugas-2: 1. Membuktikan validitas suatu argumen dengan metode inferensi dari			
JUDUL TUGAS	 beberapa pernyataan yang mengandung kuantor. Membuktikan sebuah pernyataan merupakan logika entailment atau 			

SUB CAPAIAN PEMBELAJARAN MATA KULIAH

Mahasiswa dapat membuktikan validitas dari sebuah argumen yang mengandung kuantor dengan metode inferensi dan membuktikan sebuah pernyataan merupakan Logika Entailment.

DESKRIPSI TUGAS

- 1. Dengan menggunakan metode inferensi, buktikan validitas dari argumen berikut.
- 2. Apakah Pernyataan dibawah ini merupakan Logika Entailment.

bukan.

METODE PENGERJAAN TUGAS

Mahasiswa menyelesaikan soal-soal yang di berikan secara mandiri.

BENTUK DAN FORMAT LUARAN

a. Objek garapan:

5 buah Argumen dengan premis-premis dan konklusinya. 5 buah argumen dalam format logika Entailment.

b. Bentuk Luaran

Pengumpulan Lembar jawab yang ditulis dalam folio bergaris

INDIKATOR, KRITERIA DAN BOBOT PENILAIAN

- a. Ketepatan dalam menjawab pertanyaan (70%)
- b. Ketepatan waktu pengumpulan tugas (30%)

Kesesuaian waktu pengiriman tugas dengan jadwal yang sudah disepakati.

JADWAL PELAKSANAAN

Pengumpulan tugas : Minggu ke 7

LAIN-LAIN

Tugas ditulis dalam lembar jawab atau Kirimkan email ke dosen pengampu masing-masing

- 1. Mike Genesereth, Eric Kao, Introduction to Logic, Morgan & Claypool Publisher 2012.
- 2. Mordechai Ben-Ari, Mathematical Logic for Computer Science, Springer-Verlag, London 2012.
- 3. Melvin Fitting, First Order Logic and Automated Theorem Proving, Springer-Verlag London 1999

PERGURUAN TINGGI FAKULTAS PROGRAM STUDI **UNIVERSITAS DIAN NUSWANTORO**

: ILMU KOMPUTER

: TEKNIK INFORMATIKA - S1

RENCANA TUGAS MAHASISWA				
MATA KULIAH	: Logika Informatika			
KODE	: A11.54406			
SKS	: 3			
SEMESTER	: 4			
DOSEN	: Tim Pengampu Mata Kuliah Dasar Pemrograman			
BENTUK TUGAS	: Tugas Mandiri			
	Tugas-3:			
JUDUL TUGAS	: 1. Mengubah pernyataan kedalam bentuk Klausul.			
	2. Membuktikan validitas argumen menggunakan prinsip resolusi			

SUB CAPAIAN PEMBELAJARAN MATA KULIAH

Mahasiswa dapat mengubah berbagai jenis pernyataan kedalam bentuk Klausul, dan menggunakan prinsip Resolusi untuk membuktikan validitas sebuah Argumen.

DESKRIPSI TUGAS

Ubahlah pernyataan berikut ke dalam bentuk Klausul:

- 1. Pernyataan majemuk dalam bentuk symbolik yang mengandung And, Or, Negasi, Implikasi.
- 2. Pernyataan Majemuk dalam bentuk kalimat yang mengandung semua kata hubung kalimat.

Menggunakan Prinsip Resolusi, buktikan validitas argumen berikut.

METODE PENGERJAAN TUGAS

Mahasiswa menyelesaikan soal-soal yang di berikan secara mandiri.

BENTUK DAN FORMAT LUARAN

a. Objek garapan:

Bentuk Klausul dan Prinsip Resolusi.

b. Bentuk Luaran

Pengumpulan Lembar jawab yang ditulis dalam folio bergaris

INDIKATOR, KRITERIA DAN BOBOT PENILAIAN

- a. Ketepatan dalam menjawab pertanyaan (70%)
- b. Ketepatan waktu pengumpulan tugas (30%)

Kesesuaian waktu pengiriman tugas dengan jadwal yang sudah disepakati.

JADWAL PELAKSANAAN

Pengumpulan tugas : Minggu ke 12

LAIN-LAIN

Tugas ditulis dalam lembar jawab atau Kirimkan email ke dosen pengampu masing-masing

- 1. Mike Genesereth, Eric Kao, Introduction to Logic, Morgan & Claypool Publisher 2012.
- 2. Mordechai Ben-Ari, Mathematical Logic for Computer Science, Springer-Verlag, London 2012.
- 3. Melvin Fitting, First Order Logic and Automated Theorem Proving, Springer-Verlag London 1999

PERGURUAN TINGGI FAKULTAS PROGRAM STUDI : UNIVERSITAS DIAN NUSWANTORO

ILMU KOMPUTER

: TEKNIK INFORMATIKA - S1

MARAN					
RENCANA TUGAS MAHASISWA					
MATA KULIAH	: Logika Informatika				
KODE	: A11.54406				
SKS	: 3				
SEMESTER	: 4				
DOSEN	: Tim Pengampu Mata Kuliah Dasar Pemrograman				
BENTUK TUGAS	: Tugas Mandiri				
	Tugas-4:				
JUDUL TUGAS	a. Menentukan FoL dan bentuk Klausul dari sebuah Pernyataan.				
	b. Uji Validitas argumen yang mengandung kuantor menggunakan Prinsip				
	Resolusi				

SUB CAPAIAN PEMBELAJARAN MATA KULIAH

Mahasiswa dapat menentukan FOL dan bentuk Klausul dari sebuah pernyataan dan mengujinya menggunakan Prinsip Resolusi untuk membuktikan validitas sebuah Argumen.

DESKRIPSI TUGAS

Tentukan FOL dan bentuk Klausul berikut ini:

- 1. Pernyataan majemuk dalam bentuk symbolik yang mengandung And, Or, Negasi, Implikasi.
- 2. Pernyataan Majemuk dalam bentuk kalimat yang mengandung semua kata hubung kalimat.

Menggunakan Prinsip Resolusi, buktikan validitas argumen yang mengandung kuantor berikut.

METODE PENGERJAAN TUGAS

Mahasiswa menyelesaikan soal-soal yang di berikan secara mandiri.

BENTUK DAN FORMAT LUARAN

a. Objek garapan:

FOL, Bentuk Klausul dan Prinsip Resolusi.

b. Bentuk Luaran

Pengumpulan Lembar jawab yang ditulis dalam folio bergaris

INDIKATOR, KRITERIA DAN BOBOT PENILAIAN

- a. Ketepatan dalam menjawab pertanyaan (70%)
- b. Ketepatan waktu pengumpulan tugas (30%)

Kesesuaian waktu pengiriman tugas dengan jadwal yang sudah disepakati.

JADWAL PELAKSANAAN

Pengumpulan tugas : Minggu ke 14

LAIN-LAIN

Tugas ditulis dalam lembar jawab atau Kirimkan email ke dosen pengampu masing-masing

- 1. Mike Genesereth, Eric Kao, Introduction to Logic, Morgan & Claypool Publisher 2012.
- 2. Mordechai Ben-Ari, Mathematical Logic for Computer Science, Springer-Verlag, London 2012.
- 3. Melvin Fitting, First Order Logic and Automated Theorem Proving, Springer-Verlag London 1999