3 ЦИКЛІЧНИЙ ОБЧИСЛЮВАЛЬНИЙ ПРОЦЕС

Мета: навчитись використовувати циклічну обчислювальну структуру для розв'язку прикладних задач.

3.1 Короткі теоретичні відомості

Циклічна структура використовується для позначення багаторазово повторюємої дії — циклу. Зазвичай розрізняють три типу циклу: *цикл з модифікацією* (або з параметром), *цикл з передумовою* та *цикл з постумовою*.

Цикл з параметром — використовується у випадку заздалегідь відомої кількості повторень. При чому у деяких мовах програмування крок ітерації у циклу може дорівнювати лише одиниці або мінус одиниці.

Цикл з передумовою складається з умови входження до циклу й тіла циклу. Цикл буде повторюватись до тих пір, поки умова циклу задовільняється. *Цикл з постумовою* відрізняється тим, що умова перебування у циклі ставиться після проходження тіла циклу.

3.2 Завдання

Дослідити функцію (3.1) на відрізку $x \in [x_n, x_k]$ використовуючи цикл з передумовою (Завдання № 3.1). Для побудови графіку використати n=11 точок. Завдання вибирати згідно свого варіанту.

$$\beta = \ln^2 \frac{x + \cos x}{x - \sin x} - \frac{a}{3} \sqrt{(\sin^3 x + 1)^2 - \sqrt{e^{x - 1}}}$$
(3.1)

3.3 Хід роботи

3.3.1 Постановка задачі

Дано: $x_n, x_k, a \in \mathbb{R}$, $n \in \mathbb{N}$;

Додаткові дані: $A,B,C,\Delta x,x \in \mathbb{R}$, $i \in \mathbb{N}$

Визначити: β ∈ \mathbb{R} .

3.3.2 Математична модель інформаційного процесу

$$\beta = \ln^2 \frac{x + \cos x}{x - \sin x} - \frac{a}{3} \sqrt{(\sin^3 x + 1)^2 - \sqrt{e^{x - 1}}}$$

Скоригована математична модель:

$$\Delta x = \frac{x_k - x_n}{n - 1} \tag{3.2}$$

$$x = x_n, ..., x_i = x_{i-1} + \Delta x, x_k; i = 1, ..., n$$
 (3.3)

$$A = x - \sin x , A \neq 0 \tag{3.4}$$

$$B = \frac{x + \cos x}{A}, B > 0 \tag{3.5}$$

$$C = (\sin^3 x + 1)^2 - \sqrt{e^{x-1}}, C \ge 0$$
(3.6)

$$\beta = \ln^2 B - \frac{a}{3}\sqrt{C} \tag{3.7}$$

3.3.3 Метод реалізації інформаційного процесу

Безпосередні обчислення.

3.3.4 Алгоритм реалізації інформаційного процесу

Рисунок 3.1 — Алгоритм обчислення функції β

3.3.5 Програмування

Побудова таблиці ідентифікаторів.

Таблиця 3.1 — Таблиця ідентифікаторів

№ 3/Π	Змінна або константа	Ідентифікатор	№ 3/П	Змінна або константа	Ідентифікатор
1	\mathcal{X}_{n}	x_n	7	n	n
2	x_{k}	x_k	8	A	A
3	Δx	dx	9	В	В
4	x	X	10	C	С
5	i	i	11	β	beta
6	а	а			

Введення тексту програми:

```
#include <cstdlib>
#include <iostream>
#include <iomanip>
#include <math.h>
using namespace std;
int main()
{
double x_n, x_k, dx, x, a, A, B, C,beta;
int i, n;
cout << "Input x_n=";</pre>
cin >> x_n;
cout << "Input x k=";</pre>
cin >> x k;
cout << "Input a=";</pre>
cin >> a;
cout << "Input n=";</pre>
cin >> n;
x = x_n; i = 1;
dx = (x_k - x_n) / (n - 1);
while (x <= x k)
{
A = x - \sin(x);
if (A != 0)
     B = (x + \cos(x)) / A;
     if (B > 0)
           C = pow(pow(sin(x), 3) + 1, 2) - sqrt(exp(x - 1));
           if (C >= 0)
```

```
{
    beta = log(B)*log(B) - a / 3.0*sqrt(C);
    cout << i << ". x=" << x << " beta = " << beta << endl;
}
    else cout <<i << ". x=" << x << " beta not exist (C<0)" << endl;
}else cout << i << ". x=" << x << " beta not exist (B<=0)" << endl;
}
else cout << i << ". x=" << x << " beta not exist (A=0)" << endl;
i++; x += dx;
}
system("PAUSE");
return 0;
}</pre>
```

3.3.6 Тестування та виявлення помилок

Для виявлення алгоритмічних помилок та вирішення проблеми достовірності отриманих результатів можна виконати обчислення у електронній таблиці і порвняти отримані розв'язки.

Для цього у електронній книзі "Обчислення функцій" *Лист* 3 перейменовуємо на ЛР7 та виконуємо обчислення за формою:

	Α	В	С	D	E	F	
1	Побудова графіку функції						
2							
3	а	x_n	x_k	n	Δ		
4	1,5	-1	1	11	=(C4-B4)/(D4-1)		
5							
6	i	x	Α	В	С	beta	
7	1	=\$B\$4+(A7-1)*\$E\$4	=B7-SIN(B7)	=(B7+COS(B7))/C7	=(SIN(B7)^3+1)^2-SQRT(EXP(B7-1))	=LN(D7)^2-\$A\$4/3*SQRT(E7)	
8	2	=\$B\$4+(A8-1)*\$E\$4	=B8-SIN(B8)	=(B8+COS(B8))/C8	=(SIN(B8)^3+1)^2-SQRT(EXP(B8-1))	=LN(D8)^2-\$A\$4/3*SQRT(E8)	
9	3	=\$B\$4+(A9-1)*\$E\$4	=B9-SIN(B9)	=(B9+COS(B9))/C9	=(SIN(B9)^3+1)^2-SQRT(EXP(B9-1))	=LN(D9)^2-\$A\$4/3*SQRT(E9)	
10	4	=\$B\$4+(A10-1)*\$E\$4	=B10-SIN(B10)	=(B10+COS(B10))/C10	=(SIN(B10)^3+1)^2-SQRT(EXP(B10-1))	=LN(D10)^2-\$A\$4/3*SQRT(E10)	
11	5	=\$B\$4+(A11-1)*\$E\$4	=B11-SIN(B11)	=(B11+COS(B11))/C11	=(SIN(B11)^3+1)^2-SQRT(EXP(B11-1))	=LN(D11)^2-\$A\$4/3*SQRT(E11)	
12	6	=\$B\$4+(A12-1)*\$E\$4	=B12-SIN(B12)	=(B12+COS(B12))/C12	=(SIN(B12)^3+1)^2-SQRT(EXP(B12-1))	=LN(D12)^2-\$A\$4/3*SQRT(E12)	
13	7	=\$B\$4+(A13-1)*\$E\$4	=B13-SIN(B13)	=(B13+COS(B13))/C13	=(SIN(B13)^3+1)^2-SQRT(EXP(B13-1))	=LN(D13)^2-\$A\$4/3*SQRT(E13)	
14	8	=\$B\$4+(A14-1)*\$E\$4	=B14-SIN(B14)	=(B14+COS(B14))/C14	=(SIN(B14)^3+1)^2-SQRT(EXP(B14-1))	=LN(D14)^2-\$A\$4/3*SQRT(E14)	
15	9	=\$B\$4+(A15-1)*\$E\$4	=B15-SIN(B15)	=(B15+COS(B15))/C15	=(SIN(B15)^3+1)^2-SQRT(EXP(B15-1))	=LN(D15)^2-\$A\$4/3*SQRT(E15)	
16	10	=\$B\$4+(A16-1)*\$E\$4	=B16-SIN(B16)	=(B16+COS(B16))/C16	=(SIN(B16)^3+1)^2-SQRT(EXP(B16-1))	=LN(D16)^2-\$A\$4/3*SQRT(E16)	
17	11	=\$B\$4+(A17-1)*\$E\$4	=B17-SIN(B17)	=(B17+COS(B17))/C17	=(SIN(B17)^3+1)^2-SQRT(EXP(B17-1))	=LN(D17)^2-\$A\$4/3*SQRT(E17)	

Рисунок 3.2 — Обчислення функцій (7.2) — (7.7) у ET

3.3.7 Обчислення, обробка і аналіз результатів

У ході виконання даної роботи отримано наступні результати:

```
Input x_n=-1
Input x_k=1
Input a=1.5
Input n=11
1. x=-1 beta not exist (C(0)
2. x=-0.8 beta not exist (C(0)
3. x=-0.6 beta not exist (B(=0)
4. x=-0.4 beta not exist (B(=0)
5. x=-0.2 beta not exist (B(=0)
6. x=-5.55112e-017 beta not exist (A=0)
7. x=0.2 beta= 45.7782
8. x=0.4 beta= 22.9921
9. x=0.6 beta= 13.2865
10. x=0.8 beta= 7.89723
11. x=1 beta= 4.54833
Для продолжения нажмите любую клавишу . . . _
```

Рисунок 3.3 — Результат обчислень при x=0.25

Побудова графіку функції						
а	x_n	x_k	n	Δ		
1,5		1	11	0,2		
i	X	Α	В	С	beta	
1	-1,0000	-0,1585	2,8998	-0,2045	Ошибка:502	
2	-0,8000	-0,0826	1,2499	-0,0086	Ошибка:502	
3	-0,6000	-0,0354	-6,3731	0,2230	Ошибка:502	
4	-0,4000	-0,0106	-49,2419	0,3888	Ошибка:502	
5	-0,2000	-0,0013	-586,2213	0,4356	Ошибка:502	
6	0,0000	0,0000	#DIV/0!	0,3935	#DIV/0!	
7	0,2000	0,0013	886,8219	0,3454	45,7782	
8	0,4000	0,0106	124,8444	0,3808	22,9921	
9	0,6000	0,0354	40,3121	0,5737	13,2865	
10	0,8000	0,0826	18,1103	0,9697	7,8972	
11	1,0000	0,1585	9,7162	1,5467	4,5483	

Рисунок 3.4 — Результат обчислень у електронній таблиці

Рисунок 3.5 — Графік функції (7.1) на проміжку $x \in [-1;1]$

Порівнюючи результати, отримані трьома різними способами з високою вірогідністю можна стверджувати, що обчислення виконано правильно, так як отримані значення співпали.

3.4 Програми та обладнання.

У даному підрозділі студент описує обладнання, програмні продукти та складові, що були використані при опрацюванні даної лабораторної роботи.

3.5 Висновки.

У даному підрозділі студент робить висновки за опрацюванням даної лабораторної роботи з урахуванням поставленої мети.

Завдання № 3.1

<u>№</u> 3/π	Вираз	\mathcal{X}_n	x_k	a
1.	$\alpha = \ln(a^{-\sqrt{ x-1 }}) - \sin x + e^{x+a} + \sqrt{\frac{2\cos^2 x + 3}{5\sin^2 x}}$;	-5	5	4
2.	$\beta = \sqrt{\frac{a}{3}\sqrt{x} + \frac{1}{5}\sqrt{a}} - \log_3 \frac{2x^2 + 1}{\lg^2 x - \sin a} + e^{2x + 1} ;$	-0,5	4	180
3.	$\chi = \operatorname{tg}^{3} \left[\ln \left(e^{-\sqrt{x-1}} + a \right) - \left(\sin \left(x + a \right) + e^{x+a} \right) \right];$	0,9	2,7	6,5
4.	$\delta = (\cos x - \sin x) \ln \left[a^{-\sqrt{a-x}} + \frac{a}{3} \sqrt{\frac{x+1}{(x-1)^2}} \right] ;$	-1,1	1	2
5.	$\varphi = \ln\left(a^3 - x^a\right) \cdot \frac{\sin x + 2e^{x+a}}{\cos x + a} + \sqrt{\frac{3a}{e^{x+a}}}$	0	3	3
6.	$\gamma = \ln^2(a x + a) - \frac{a}{3} \left[a \left(\sin^3 x - a \right) + \sqrt{e^{ax+5}} \right] ;$	-2	3	3
7.	$ \eta = e^{x+a} + \ln(a^{\sqrt{x-1}} + \cos^2 x) - \left(\frac{2}{3}\sin^3 x + \sqrt{a}\right) $;	-2,5	10	1,2
8.	$\kappa = e^{x} \frac{\operatorname{tgx}}{\sqrt{ a^{2} - x }} \sqrt{ \sin x \cdot \ln a^{-\sqrt{ x - a }} } - \log_{2}(2x) ;$	0	4	2
9.	$\lambda = \ln \cos^3 x - \sin^2 x \cdot \left(\sin x + \frac{1}{\sqrt{x - a^{x - 1}}}\right) ;$	-0,5	4	1
10.	$\mu = 2^{-ax} + \frac{3}{5} a^{\sqrt{ x-a }} \cdot \left[\sqrt{3 \cdot \cos^4 x - \frac{3}{5} x^3} - e^{x+a} \right] ;$	-5	2	2
11.	$v = \sqrt{ \sin^2 x - 3\cos^3 x } + e^{x+a} \ln a^{\sqrt{x-1}} - a \sin x$;	0	5	2
12.	$\omega = \sqrt{e^{x+1} + \operatorname{tg} x} - \left[\ln a^{\sqrt{x-5}} + a \left(\sin x + e^{x+a} \right) \right] ;$	4,9	8,9	0,5
13.	$\theta = \frac{\lg x + e^{x+a} + \lg^2(x-a) - \cos x}{\sqrt{5} + 5\ln a - (\sqrt{x} + x \ln a)}; ;$	-1	8	2,3
14.	$\rho = \lg \left[2 - x - 2x^2 + x^3 \right] + \frac{\lg^3 x + \lg^2 x - 1}{e^{x - a}} ;$	-2	7	6,5
15.	$\sigma = \frac{4\cos x - 1}{3x} - \frac{a^2}{x^3} + \ln\left[\sqrt{\sin^6 x + \cos^2 a}\right];$	-4	5	0

16.	$\varsigma = \frac{x^2 a - a x + \sqrt{a} }{10^8 + \sqrt{\lg x}} + \frac{1}{3}\sin^3 x - \frac{1}{5}\cos^5 x ;$	-1,5	6,7	15
17.	$\tau = \frac{(x^2 + x - a)^4 - (x^2 - x + a)^2 + \sqrt{ x^2 + x + a }}{\ln(0.5x)} ;$	0,5	5	-3,5
18.	$v = \frac{a^{2}(x+1) - e^{x-a} + \ln(5 + e^{x+a})}{\sin^{2} x - (\sin x - 1)^{2} + 1} ;$	0	1	-4,5
19.	$\psi = \sqrt{25 x^7 + 10 a x^4 + 5x^3 - 2x^2 - 7} - \lg^2 x ;$	0	9	-15
20.	$\zeta = \frac{2}{x} + \frac{x^3}{\sqrt{2}} + \frac{a}{ x^3 - 1 } + \frac{x\sqrt{5}}{4} - \frac{\lg^2 x + \lg a}{e^{x + a}} ;$	-1	8	-1
21.	$\xi = \ln\left(a^{\sqrt{ x }}\right) \cdot \left[\cos(x+1) - \frac{e^x - e^a}{\cos x - \sin a}\right] ;$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{\pi}{4}$
22.	$\Omega = \ln (\sqrt{x} + a)x - \frac{2x^4}{3} + \arctan^2(x + a) - \sin x$;	-1	8	-1
23.	$\Psi = \ln\left((x+1)^2\right) - \frac{2}{7}e^{x+a} + 0.1x^2 + \sqrt{\sin^3 x} - \ln(x+1) ;$	$-\frac{\pi}{4}$	$\frac{\pi}{2}$	-15
24.	$\Lambda = \sqrt{\left 5\sin^3 x - \ln \left \frac{x^3 + a}{2x} \right \right - e^{x - a} + \ln^2(x^3 + a)} ;$	$-\frac{\pi}{2}$	$\frac{\pi}{4}$	3,1
25.	$\Theta = 5x + 2a\sin x - \sqrt{3\cos^2 x} - e^{-0.1x + a} - \frac{2x}{3}\ln^2 x$;	$-\frac{\pi}{6}$	π	-0,35
26.	$\Delta = \frac{\sqrt{12 x^2 \text{tgx}}}{e^{a+x}} - \sqrt{ 2x \cos^2 x + 1 } + \log_3 x + a ;$	$-\frac{\pi}{6}$	$\frac{4\pi}{6}$	-0,1
27.	$A = (1+2a)\sqrt{5(x+2a)} - \cos x - \frac{3\cos^3 x}{2x} - 2\sin x ;$	-3	6	0,1
28.	$B = \frac{\lg(x+2) - e^{x-a}}{\sqrt{7} + x^4 + a^2 - \ln x } - \sin^2 x + \cos x ;$	-π	$\frac{\pi}{2}$	0,1
29.	$Y = \sin^3 \frac{x}{5} \cos x^2 + e^{\sqrt{ax}} - \ln \left \frac{ax^3 - x + 1}{5 ax^4 + 3 ax^2 - x + a} \right ;$	-3,9	0,1	-0,25
30.	$Z = \frac{1}{x-1} + \sqrt{x+1} - 1,6 \cdot 10^{3} \frac{\sin^{2} x}{\sqrt{ax}} + \ln^{2} a-x .$	-1,09	0,01	-0,25