Your grade: 90%

Your latest: 90% • Your highest: 90% • To pass you need at least 80%. We keep your highest score.

Next item \rightarrow

1.	Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors could be 10000 dimensional, so as to capture the full range of variation and meaning in those words. True False			
	Correct The dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors range between 50 and 1000.			
2.	True/False: t-SNE is a linear transformation that allows us to solve analogies on word vectors.		1/1 point	
	True True			
	Correct tr-SNE is a non-linear dimensionality reduction technique.			
3.	Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.		1/1 point	
		(1 2)		
	x (input text)	y (happy?)		
	Having a great time! I'm sad it's raining.	0		
	I'm feeling awesome!	1		
	Even if the word "wonderful" does not appear in your small training set, what label might be reasonably expected for the input text "I feel wonderful!"? y=0 y=1			
	Correct Yes, word vectors empower your model with an incredible ability to generalize. The vector for "wonderful" would contain a negative/unhappy connotation which will probably make your model classify the sentence as a "1".			
4.	Which of these equations do you think should hold for a good word embedding? (Check all that apply) 1/1 point			
	$lacksquare$ $e_{man}-e_{woman}pprox e_{king}-e_{queen}$			
	○ Correct The order of words is correct in this analogy.			
	$egin{array}{l} & \epsilon_{man} - \epsilon_{king} pprox \epsilon_{queen} - \epsilon_{woman} \ & arphi & \epsilon_{man} - \epsilon_{king} pprox \epsilon_{woman} - \epsilon_{queen} \end{array}$			
	 			
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
5.	Let A be an embedding matrix, and let o_{4567} be a one-hot vector corr	responding to word 4567. Then to get the	1/1 point	

⊘ Correct

Yes, the element-wise multiplication will be extremely inefficient.

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

embedding of word 4567, why don't we call $A st o_{4567}$ in Python?

O The correct formula is $A^T * o_{4567}$.

It is computationally wasteful.

O This doesn't handle unknown words (<UNK>).

6.	When learning word embeddings, words are automatically generated along with the surrounding words.	1/1 point		
	TrueFalse			
	○ Correct We pick a given word and try to predict its surrounding words or vice versa.			
7.	True/False: In the word2vec algorithm, you estimate $P(t/c)$, where t is the target word and c is a context word. t and c are chosen from the training set to be nearby words.	1/1 point		
	 ✓ Correct Yes, t and c are chosen from the training set to be nearby words. 			
8.	Suppose you have a 10000 word vocabulary, and are learning 100-dimensional word embeddings. The word2vec model uses the following softmax function: $P(t\mid c) = \frac{e^{q_t^T c_c}}{\sum_{10000} e^{q_t^T c_c}}$	1/1 point		
	True/False: After training, we should expect θ_t to be very close to e_c when t and c are the same word. True False			
	⊙ Correct To review this concept watch the Word2Vec lecture.			
9.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:	0/1 point		
	$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j) - log X_{ij})^2$			
	True/False: θ_i and e_j should be initialized to 0 at the beginning of training. $lacktriangle$			
	○ False			
	\bigotimes Incorrect No, θ_i and e_j should be initialized randomly at the beginning of training.			
10.	You have trained word embeddings using a text dataset of t_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of t_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstances would you expect the word embeddings to be helpful?	1/1 point		
	$lacktriangledown$ When t_1 is larger than t_2 $lacktriangledown$ When t_1 is equal to t_2			
	$igcirc$ When t_1 is smaller than t_2			
	○ Correct Transfer embeddings to new tasks with smaller training sets.			