# Лекция 5. Доверительные интервалы

Курбацкий А. Н.

мшэ мгу

16 марта 2020

- Интервальное оценивание
- Доверительный интервал для среднего
  - Случай известной дисперсии
  - ullet Случай неизвестной дисперсии и объём выборки n>30
  - Случай малой выборки и неизвестной дисперсии
  - Минимальный объем выборки
- З Доверительный интервал для доли и дисперсии
  - Доверительный интервал для доли (асимптотический)
  - Доверительный интервал для дисперсии
- Более подробно

- Интервальное оценивание
- 2 Доверительный интервал для среднего
  - Случай известной дисперсии
  - ullet Случай неизвестной дисперсии и объём выборки n>30
  - Случай малой выборки и неизвестной дисперсии
  - Минимальный объем выборки
- ③ Доверительный интервал для доли и дисперсии
  - Доверительный интервал для доли (асимптотический)
  - Доверительный интервал для дисперсии
- 4 Более подробно

## Идея

#### Важно!

В этой теме мы научимся оценивать параметры не только одним числом, а сможем находить интервал, который накрывает его с заданной вероятностью.

## Пример

Пусть мы провели опрос, с целью оценить долю избирателей некоторого кандидата в президенты страны. Опросили 1000 человек и 275 его поддерживают, значит выборочная доля сторонников кандидата равна 27.5%. Это точечная оценка для доли его сторонников во всей стране. Но может так оказаться, что она малоинформативна.

Намного лучше знать не просто точечную оценку 27.5%, а интервал, в котором с большой вероятностью находится доля сторонников кандидата. Скажем, с 95% вероятностью доля сторонников лежит в пределах от 25% до 30%.

# Доверительный интервал

### Определение

Точечной оценкой называется число, которое используют для оценки параметра ГС.

Для того, чтобы делать содержательные выводы, стараются находить не точечные, а интервальные оценки.

## Определение

**Доверительный интервал** - это интервал, который с заданной вероятностью накрывает оцениваемый параметр ГС.

### Важно!

Имейте ввиду, что для разных выборок одной и той же ГС могут получаться разные доверительные интервалы!

# Уровни значимости и доверия

При работе с доверительными интервалами часто используют два термина.

- Уровень значимости  $\alpha$  это вероятность, с которой значение параметра не попадает в доверительный интервал.
- ullet Уровень доверия eta=1-lpha это вероятность того, что доверительный интервал накрывает значение параметра.

Обычно уровень значимости равен 0.01, 0.05, 0.1, что соответствует уровню доверия 0.99, 0.95, 0.9. Очень часто уровни значимости и доверия измеряются в процентах, то есть уровень доверия 0.99 и 99% - это одно и то же.

### Более точно

### Определение

Пусть задано малое число  $0<\alpha<1$ . Интервал со случайными концами

$$(\theta_1; \theta_2)$$

называется доверительным интервалом для параметра  $\theta$  с уровнем доверия  $1-\alpha$ , если для любого  $\theta\in\Theta$ 

$$P(\theta_1 < \theta < \theta_2) \ge 1 - \alpha$$

### Замечание

Если последнее неравенство выполняется при  $n \to \infty$ , то интервал называется асимптотическим.

Имеется в виду не один какой-то интервал, а последовательность интервалов, зависящих от n.

- Интервальное оценивание
- Доверительный интервал для среднего
  - Случай известной дисперсии
  - ullet Случай неизвестной дисперсии и объём выборки n>30
  - Случай малой выборки и неизвестной дисперсии
  - Минимальный объем выборки
- Доверительный интервал для доли и дисперсии
  - Доверительный интервал для доли (асимптотический)
  - Доверительный интервал для дисперсии
- 4 Более подробно

# Оттуда ноги растут

Важнейшей характеристикой генеральной совокупности является среднее значение. Что же необходимо сделать, чтобы построить для него доверительный интервал?

По ЦПТ среднее значение одинаково распределенных случайных величин стремится к нормальному распределению. Более того, верна

### Теорема

Если распределение генеральной совокупности имеет конечные математическое ожидание и дисперсию, то при  $n \to \infty$  основные выборочные характеристики (среднее, дисперсия, эмпирическая функция распределения) являются нормальными.

### Важно!

Далее мы часто будем предполагать, что генеральная совокупность имеет нормальный закон распределения.

# Доверительный интервал для среднего

Рассмотрим случайную выборку объема n, вычислим среднее значение  $\bar{x}$  по выборке и зададим уровень доверия  $\beta$ .

• Доверительный интервал для среднего имеет вид  $(\bar{x} - \Delta; \bar{x} + \Delta)$ , где  $\Delta$  - это точность интервальной оценки.

### Важно!

Правило для вычисление точности зависит от того, что мы знаем о генеральной совокупности и с какой выборкой мы имеем дело.

- Пусть нам известно стандартное отклонение  $\sigma$  генеральной совокупности.
- ullet Тогда  $\Delta=rac{\sigma}{\sqrt{n}}z_{lpha}$ , где  $z_{lpha}$  это квантиль нормального распределения уровня  $1-rac{lpha}{2}.$

### Теорема

Доверительный интервал для среднего с известной дисперсией имеет вид  $(\bar{x}-\frac{\sigma}{\sqrt{n}}z_{\alpha};\bar{x}+\frac{\sigma}{\sqrt{n}}z_{\alpha})$ 

## Пример

Дана выборка 9, 5, 7, 7, 4, 10, дисперсия  $\sigma^2=1$ . Постройте 99% доверительный интервал.

## Пример

Дана выборка 9, 5, 7, 7, 4, 10, дисперсия  $\sigma^2=1$ . Постройте 99% доверительный интервал.

### Решение

- Среднее значение равно  $\bar{x} = \frac{9+5+7+7+4+10}{6} = 7.$
- Доверительный интервал имеет вид  $(\bar{x}-\Delta;\bar{x}+\Delta)$ . По таблице нормального распределения находим  $1-\frac{\alpha}{2}=0.995$  и определяем квантиль  $z_{\alpha}=2.58$ . Теперь можем найти точность  $\Delta=\frac{\sigma}{\sqrt{n}}z_{\alpha}=\frac{1}{\sqrt{6}}2.58\approx 1.05$  (здесь мы воспользовались тем, что известна дисперсия генеральной совокупности).
- Искомый 99%-доверительный интервал имеет вид (7-1.05; 7+1.05) = (5.95; 8.05).

## Пример

Пусть для выборки объема n=25 вычислено среднее  $\bar{x}=130$ . Из предыдущих исследований известно стандартное отклонение  $\sigma=12$ . Постройте 98% доверительный интервал для среднего значения.

### Решение

- Доверительный интервал имеет вид  $(\bar{x}-\Delta;\bar{x}+\Delta)$ . Уровень доверия равен  $\beta=0.98$ , поэтому  $\alpha=0.02$ . По таблице нормального распределения находим  $1-\frac{\alpha}{2}=0.99$  и определяем квантиль  $z_{\alpha}=2.33$ . Теперь можем найти точность  $\Delta=\frac{\sigma}{\sqrt{n}}z_{\alpha}=\frac{12}{\sqrt{25}}2.33\approx 5.59$ .
- Искомый 98%-доверительный интервал имеет вид (130 – 5.59; 130 + 5.59) = (124.41; 135.59).

- Интервальное оценивание
- 2 Доверительный интервал для среднего
  - Случай известной дисперсии
  - ullet Случай неизвестной дисперсии и объём выборки n>30
  - Случай малой выборки и неизвестной дисперсии
  - Минимальный объем выборки
- Доверительный интервал для доли и дисперсии
  - Доверительный интервал для доли (асимптотический)
  - Доверительный интервал для дисперсии
- 4 Более подробно

# Доверительный интервал

Если выборка больше 30, но стандартное отклонение нам неизвестно, то вместо  $\sigma$  мы будем использовать выборочное стандартное

отклонение 
$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
.

### Теорема

Доверительный интервал для среднего при неизвестной дисперсии, но большой выборке (n > 30), имеет вид  $\left(\bar{x}-\frac{s}{\sqrt{n}}z_{\alpha};\bar{x}+\frac{s}{\sqrt{n}}z_{\alpha}\right)$ .

- Интервальное оценивание
- Доверительный интервал для среднего
  - Случай известной дисперсии
  - ullet Случай неизвестной дисперсии и объём выборки n>30
  - Случай малой выборки и неизвестной дисперсии
  - Минимальный объем выборки
- ③ Доверительный интервал для доли и дисперсии
  - Доверительный интервал для доли (асимптотический)
  - Доверительный интервал для дисперсии
- 4 Более подробно

## Сложный случай

Самый проблемный случай для любого исследователя, когда выборка маленькая и про её параметры ничего неизвестно. Если дисперсия неизвестна и объем выборки небольшой ( $n \leq 30$ ), тогда вместо нормального распределения теперь используется t-распределение.

## Теорема

Доверительный интервал в этом случае имеет вид  $(ar x-rac{s}{\sqrt n}t_lpha(n-1);ar x+rac{s}{\sqrt n}t_lpha(n-1))$ 

Здесь  $t_{\alpha}(n-1)$  - это квантиль распределения Стьюдента уровня  $1-\frac{\alpha}{2}$  с n-1 степенью свободы (мы ищем это число в таблице t-распределения).

#### Замечание

Распределение Стьюдента стремится к нормальному распределению при  $n \to \infty$ , поэтому при больших выборках доверительные интервалы для среднего, посчитанные по любой из наших формул, будут почти совпадать.

# Что за степени свободы и кто такой Стьюдент?

### Замечание

Число степеней свободы зависит от того, сколько имеется связей между наблюдениями. Так как мы знаем среднее, то наблюдения связаны одним равенством и степеней свободы становится на одну меньше. То, что других связей нет, надо доказывать, но их действительно нет. Честное слово.

### Замечание

Распределение Стьюдента было введено в 1908 году В.С.Госсетом, ирландским служащим пивоваренного завода, который участвовал в разработке новых технологий производства пива и никаким студентом не был. Придавать известности результаты исследований означало открыть корпоративную тайну, поэтому Госсет напечатал свои материалы под псевдонимом Стьюдент. Фишер ввёл для него обозначение t-распределение.

# Доверительный интервал

## Пример

Пусть объем выборки n=16, выборочное среднее  $\bar{x}=5$ , выборочная дисперсия  $s^2=4$ . Постройте 99% доверительный интервал.

#### Решение

- ullet Среднее значение равно  $ar{x}=5$ , а выборочная дисперсия  $s^2=4$ .
- Так как неизвестна дисперсия генеральной совокупности и n < 30, поэтому точность интервальной оценки  $\Delta = \frac{s}{\sqrt{n}} t_{\alpha}$ .
- По таблице распределения Стьюдента находим  $1-\frac{\alpha}{2}=0.995$  и, так как у нас n-1=16-1=15 степеней свободы, определяем квантиль  $t_{\alpha}=3.29$ . Теперь можем найти точность  $\Delta=\frac{s}{\sqrt{n}}t_{\alpha}=\frac{2}{\sqrt{16}}3.29\approx 1.645$ .
- Искомый 99%-доверительный интервал имеет вид (5 – 1.645; 5 + 1.645) = (3.355; 6.645).

# Минимальный объем выборки

Благодаря тому, что мы знаем формулу для доверительного интервала, можно решить интересную задачу: найти минимальный необходимый объем выборки для того, чтобы с заданной точностью и уровнем доверия найти среднее значение.

### Важно!

Для того чтобы найти минимальный необходимый объем выборки для построения доверительного интервала для среднего значения с заданной точностью  $\Delta$  и уровнем значимости  $\alpha$ , достаточно применить формулу

$$n = \left(\frac{z_{\alpha}\sigma}{\Delta}\right)^2$$

Теперь понятно, как определить объем выборки при проведении собственных исследований!

### Самостоятельно

### Пример

Найдите минимально необходимый объем выборки для построения интервальной оценки среднего с точностью  $\Delta=3$ , дисперсией  $\sigma^2=225$  и уровнем доверия  $\beta=0.95$ .

- П Интервальное оценивание
- 2 Доверительный интервал для среднего
  - Случай известной дисперсии
  - ullet Случай неизвестной дисперсии и объём выборки n>30
  - Случай малой выборки и неизвестной дисперсии
  - Минимальный объем выборки
- З Доверительный интервал для доли и дисперсии
  - Доверительный интервал для доли (асимптотический)
  - Доверительный интервал для дисперсии
- 4 Более подробно

# Доверительный интервал для доли

Следующим популярным параметром, который часто требует оценивания, является доля признака p в  $\Gamma$ C.

По выборке мы можем определить долю  $\hat{p}$  того или иного признака, просто посчитав число объектов m с этим признаком и поделив на объем выборки n, то есть  $\hat{p}=\frac{m}{n}$ . Долю объектов, не обладающих этим признаком, обозначают  $\hat{q}=1-\hat{p}$ .

### Теорема

Асимптотический доверительный интервал для доли имеет вид

$$\left(\hat{p}-\sqrt{\frac{\hat{p}\hat{q}}{n}}z_{\alpha};\hat{p}+\sqrt{\frac{\hat{p}\hat{q}}{n}}z_{\alpha}\right).$$

Обратите внимание, что для использования этой формулы требуют выполнения условий  $n\hat{p} \geq 5$  и  $n\hat{q} \geq 5$ .

# Доверительный интервал

### Пример

Объем выборки n=100, выборочная доля  $\hat{p}=0.2$ ,  $\alpha=0.05$ .

#### Решение

- Выборочная доля  $\hat{p}=0.2$ , поэтому  $\hat{q}=1-\hat{p}=0.8$ . Убеждаемся, что выполнены условия надёжности использования этих формул  $n\hat{p}=20\geq 5$  и  $n\hat{q}=80\geq 5$ .
- По таблице нормального распределения находим  $1-\frac{\alpha}{2}=0.975$  и определяем квантиль  $z_{\alpha}=1.96$ . Теперь можем найти точность  $\Delta=\sqrt{\frac{\hat{p}\hat{q}}{n}}z_{\alpha}=\sqrt{\frac{0.2\cdot0.8}{100}}1.96\approx0.078$ .
- Искомый 95%-доверительный интервал имеет вид (0.2-0.078; 0.2+0.078) = (0.122; 0.278).

## Минимальный объем выборки

Если мы хотим узнать минимально необходимый объем выборки для того, чтобы с заданными точностью и уровнем доверия оценить долю признака в ГС, то сделать это можно по формуле  $n=\hat{p}\cdot(1-\hat{p})\left(\frac{z_0}{\Delta}\right)^2$ .

#### Важно!

Имейте ввиду, что выборочная доля  $\hat{p}$  может быть неизвестна. В таких случаях её кладут равной 0.5, потому что при этом выражение  $\hat{p}\cdot \left(1-\hat{p}\right)\left(\frac{Z_{\Omega}}{\Delta}\right)^2$  принимает наибольшее значение.

При остальных значениях  $\hat{p}$  объём выборки был бы меньше, но если мы её не знаем, то берём крайний вариант.

# Доверительный интервал для дисперсии

Перейдём к следующему важнейшему параметру генеральной совокупности - к дисперсии.

### Важно!

Доверительный интервал для дисперсии имеет вид

$$\left(\frac{(n-1)s^2}{\chi_r^2(\alpha)};\frac{(n-1)s^2}{\chi_l^2(\alpha)}\right).$$

Здесь значения  $\chi^2_r(\alpha)$  и  $\chi^2_l(\alpha)$  находятся по таблицам  $\chi^2$ -распределения с n-1 степенью свободы, причем в таблице мы ищем  $\alpha/2$  и  $1-\frac{\alpha}{2}$ .

Построить 90% доверительный интервал для дисперсии по выборке объема n=20, если выборочная дисперсия  $s^2=196$ .

### Решение

- Выборочная дисперсия  $s^2 = 196$ .
- По таблице  $\chi^2$ -распределения находим  $\alpha/2=0.05$ ,  $1-\alpha/2=0.95$ , число степеней свободы n-1=20-1=19 и определяем критические точки  $\chi^2_I=10.12,~\chi^2_I=30.14$ .
- Искомый 90%-доверительный интервал имеет вид

$$\left(\frac{(20-1)196}{30.14}; \frac{(20-1)196}{10.16}\right) = (123.56; 366.54).$$

## Полезный факт

Часто для поиска дисперсии вручную удобнее использовать формулу

$$s^2 = \frac{1}{n-1} \left( \sum x_i^2 - n\bar{x}^2 \right).$$

### Замечание

Для доказательство формулы достаточно раскрыть скобки в исходном выражении для дисперсии. Для смещённой оценки дисперсии формула ещё более укорачивается  $s_{\text{смещ}}^2 = \bar{x^2} - \bar{x}^2$ .

## Пример

По данным выборки объема n=12 было найдено, что  $\sum x_i=216$ ,  $\sum x_i^2=4046$ . Постройте 90% доверительный интервал для теоретической дисперсии. В ответ укажите длину доверительного интервала, округлив до целого числа.

### Решение

- Выборочное среднее равно  $\bar{x} = \frac{216}{12} = 18$ , а выборочная дисперсия  $s^2 = \frac{1}{n-1} (\sum x_i^2 n\bar{x}^2) = \frac{1}{11} (4046 12 \cdot 18^2) \approx 14.36$ .
- По таблице  $\chi^2$ -распределения находим  $\alpha/2=0.05$ ,  $1-\alpha/2=0.95$ , число степеней свободы n-1=12-1=11 и определяем критические точки  $\chi^2_I=4.57$ ,  $\chi^2_r=19.675$ .
- Искомый 90%-доверительный интервал имеет вид  $\left(\frac{(12-1)14.36}{19.675}; \frac{(12-1)14.36}{4.57}\right) = (8; 34.56)$ . Длина интервала приблизительно равна 27.

### Внимание

### Причины неверных выводов:

- зависимость наблюдений;
- нарушение однородности данных (обычно при их большом количестве);
- систематическая ошибка измерений.

"... студенты должны понимать, что не следует вообще обрабатывать статистически получаемые в окончательном виде макроэкономические данные: применительно к любым макроэкономическим рядам, каждый из которых имеется в единственном экземпляре, вероятностно-статистический подход смысла не имеет 1. "

<sup>1</sup>Тутубалин В.Н. "Эконометрика: Образование, которого нам не нужно"

# Тутубалин В.Н.

- Что означает фраза "истинное значение того или иного параметра лежит в определенных пределах [...] с вероятностью 0.95"? А она означает следующее: если представить себе, что делается не одна серия наблюдений с целью уточнения параметров, а много таких серий (и все в одинаковых условиях), и результаты каждой серии обрабатываются одним методом, то для 95% серий получающийся доверительный интервал действительно содержит истинные значения параметра, а для 5% серий не содержит (т.е. доверительный интервал является ошибочным).
- Касательно расстояния от Земли до Солнца можно заметить, что каждое новое, более точное определение этой величины не укладывается в доверительный интервал, построенный по старым наблюдениям.

- Интервальное оценивание
- Доверительный интервал для среднего
  - Случай известной дисперсии
  - ullet Случай неизвестной дисперсии и объём выборки n>30
  - Случай малой выборки и неизвестной дисперсии
  - Минимальный объем выборки
- ③ Доверительный интервал для доли и дисперсии
  - Доверительный интервал для доли (асимптотический)
  - Доверительный интервал для дисперсии
- Ф Более подробно

## Где и что почитать?

Тема. Доверительные интервалы для математического ожидания нормального распределения при известной и неизвестной дисперсии. Доверительные интервалы для среднего нормального распределения при известной и неизвестной дисперсии. Доверительный интервал для доли признака. Доверительный интервал для дисперсии. ([И-М], §11; [Ф,Л], глава 14).



Ивашев-Мусатов О. С., Теория вероятностей и математическая статистика: учеб. пособие. - 2-е изд., перераб. и доп. - М.: ФИМА, 2003. - 224 с.