COMP4128 Week 07 Tutorial

Yifan He

z5173587@unsw.edu.au

https://github.com/hharryyf/COMP4128-23T3-tutoring

Contest 2 statistics

- Mean: 141
 - 9x 300
 - 10x 250
 - 13x 200
 - 7x 150
 - 15x 100
 - 13x 50
 - 11x 0
- Reminder: for those who got 0 or 50, you can email me if you have specific questions related to the course

Outline

- Shortest path revision
- Roads in Berland
- Weights Distributing
- PS5 Hints given by email

Shortest path revision

Algorithm	Big-O	Source	Requirement
BFS	O(E)	Single	edge weights are all equal
Dijkstra	Elog(E)	Single	edge weights non-negative
Bellman-ford	VE	Single	no negative cycle
(SPFA)			system of different constraints
Floyd	V^3	All-pair	no negative cycle

• Given a weighted undirected graph, each edge is represented as (u, v, w), is $e(u_i, v_i, w_i)$ on some shortest path between s and t?

Shortest path revision

Algorithm	Big-O	Source	Requirement
BFS	O(E)	Single	edge weights are all equal
Dijkstra	Elog(E)	Single	edge weights non-negative
Bellman-ford	VE	Single	no negative cycle
(SPFA)			system of different constraints
Floyd	V^3	All-pair	no negative cycle

- Given a weighted undirected graph, each edge is represented as (u, v, w), is $e(u_i, v_i, w_i)$ on some shortest path between s and t?
- $dist(s, u_i) + dist(v_i, t) + w_i = dist(s, t)$, or
- $dist(s, v_i) + dist(u_i, t) + w_i = dist(s, t)$

Roads in Berland ¹

Given a weighted complete graph with |V| ($|V| \le 300$) vertices. You need to process k ($k \le 300$) operations. Each operation is going to add a new road between two cities u and v with weight w. After each operation, return the sum of the shortest distance between all pairs of vertices.

https://codeforces.com/contest/25/problem/C

Naive Approach

- Run Floyd algorithm after each edge addition
- k runs, each runs takes $O(|V|^3)$
- Time complexity: $O(k \cdot |V|^3)$
- Too slow

Analysis

- Think how the edge e(u, v, w) affect the shortest path from a to b
- 2 cases:
 - dist(a,b) is not going to be affected
 - dist(a,b) is going to be affected
- In the second case, e(u, v, w) is on the shortest path between a and b in the new graph

$$dist(a,b) = min \begin{cases} dist(a,b) \\ dist(a,u) + w + dist(v,b) \\ dist(a,v) + w + dist(u,b) \end{cases}$$
(1)

- $O(|V|^2)$ per modification
- $O(k \cdot |V|^2)$ in total

Demo

Given an undirected graph with V ($|V| \le 2e5$) vertices and E ($|E| \le 2e5$) edges. Given a list of length |E| of positive integers $p_1 \dots p_{|E|}$. Assign the edges of the graph with weights from this list (1-1 mapping). What is the shortest distance from a to b and then from b to c?

Example

Figure: a=2,b=3,c=4,p=[1,2,3]

Simplified problem 1

- The graph is a line
- There are k_1 edges between a and b
- k₂ edges between b and c
- Suppose the array p is $[p_1, p_2, ..., p_{|E|}]$, $k_1 + k_2 \le |E|$
- How would you assign the edges?

Simplified problem 1

- The graph is a line
- There are k_1 edges between a and b
- k_2 edges between b and c
- Suppose the array p is $[p_1, p_2, ..., p_{|E|}]$, $k_1 + k_2 \le |E|$
- How would you assign the edges?

• Smallest $k_1 + k_2$ elements of p to the edges between a and c

Simplified problem 2

- There are k_1 edges between a and v
- k₂ edges between b and v
- k₃ edges between c and v
- How would you assign the edges?

Simplified problem 2

- There are k_1 edges between a and v
- k₂ edges between b and v
- k₃ edges between c and v
- How would you assign the edges?

• Smallest $k_1 + k_2 + k_3$ edges

Simplified problem 2

- There are k_1 edges between a and v
- k₂ edges between b and v
- k₃ edges between c and v
- How would you assign the edges?

- Smallest $k_1 + k_2 + k_3$ edges
- Also, smallest k_2 edges between b and v

General problem

We only need to consider a substructure as follows

- Sort the array p in non-decreasing order
- Iterate through 1 ... |V| and let it be vertex v
- $k_1 = dist(a, v), k_2 = dist(b, v), k_3 = dist(c, v)$

General problem

- For each $v \in V$
 - $k_1 = dist(a, v), k_2 = dist(b, v), k_3 = dist(c, v)$
 - Let *sum*(*i*) be sum of *p*[1...*i*]
 - Minimum: $sum(1, k_2) + sum(1, k_1 + k_2 + k_3)$
- We can precompute dist(a, v), dist(b, v), and dist(c, v) for all v with BFS

Demo