SDSC 3006: Fundamentals of Machine Learning I

Review of Probability and Statistics

Outline

> Probability

- Random variables and probability
- Discrete distributions
- Continuous distributions
- Joint probability of multiple random variables

> Statistics

- Sampling
- Statistical inference
- Estimation
- Hypothesis testing

Sample Space and Event

- > We run an experiment whose outcome is uncertain
 - e.g., Toss a coin
- > Sample space (Ω) : the set of all possible outcomes of an experiment
 - Experiment 1 Toss a coin: $\Omega = \{H, T\}$
 - Experiment 2 Toss a coin twice: $\Omega = \{HH, HT, TH, TT\}$
- Event (E): any collection (subset) of the outcomes of sample space
 - Experiment 2 (Toss a coin twice)
 - The 1st toss $H: E = \{HH, HT\}$
 - No tail: $E = \{HH\}$
 - At least one *H*: *E* = {*HH*, *HT*, *TH*}

Set Theory

- \succ Complement of an event A, (A'): the set of all outcomes in the sample space Ω , that are not contained in A
- \triangleright **Union** of A and B ($A \cup B$): the event consisting of all outcomes that are either in A or in B or in both events
- ▶ Intersection of A and B $(A \cap B)$: the event consisting of all outcomes that are in *both* A and B.
- Mutually exclusive
 - Ø denote the null event
 - $A \cap B = \emptyset$

Probability Axioms

- \triangleright For any event A, $P(A) \ge 0$
- $> P(\Omega) = 1$
- \triangleright If $A_1, A_2, A_3, ...$ is an infinite collection of disjoint events, then

$$P(A_1 \cup A_2 \cup A_3 \dots) = \sum_{i=1}^{\infty} P(A_i)$$

 $> P(\emptyset) = 0$

Probability Properties

- P(A) + P(A') = 1
- $> P(A) \le 1$
- For any two events A and B

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

> For any three events A, B and C

$$P(A \cup B \cup C)$$

$$= P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C)$$

$$+ P(A \cap B \cap C)$$

Random Variable (RV)

- A function or a code that maps simple events to a real number
- $> X: \Omega \rightarrow \mathbb{R}$

Many ways to code!

Sample Space (S)	Random Variable (X)
HH	0
HT	1
TH	2
TT	3

(www.rfortraders.com)

Example: Toss 3 Coins

Why study this?

- To get the probabilities of various events of interest
- Assess risk and your bet

> Let us code it in the following way:

- X = "The number of Heads"
- $X(S) = \{0, 1, 2, 3\}$

> Any problem here?

- Good for counting: Probability of heads
 - P(X=0) = 1/8; P(X=2) = 3/8;
 - P(X>1) = 1/2; P(X> or <2) = 5/8
- Not so for the order:
 - Probability that the first toss is a head

Types of Random Variables

> Discrete

- Integer coding (take finite or countable number of values)
- X maps to the integer line
- E.g., number of people waiting in the post office

> Continuous

- Real number coding
- X maps to real line
- E.g., height of students in the class

Univariate vs. Multivariate RV

- Scalar vs. vector coding
- Two tosses of a coin-
 - Univariate RV: X = # of heads
 - Multivariate (here, bivariate) RV: X=["Is 1^{st} toss H?", "Is 2^{nd} toss H?"]

Discrete Distributions

Discrete probability distribution

- Defined on discrete rv
- Probability mass function (PMF)

> Typical distributions

- Discrete uniform
- Bernoulli
- Binomial
- Geometric
- Poisson
- Negative binomial
- Hyper-geometric

Discrete Uniform Distribution

> Experiment

- One trial
- k possible outcomes
- All outcomes equally probable
- > Random variable: X outcome of the trial
- > Probability distribution:

$$p(x) = \begin{cases} \frac{1}{k} & x \in S \\ 0 & \text{otherwise} \end{cases}$$

- **Example**: toss a fair die (k = 6)
 - $S = \{1, 2, 3, ..., 6\}$
 - Expectation: $E(X) = \frac{1}{k} \sum_{i=1}^{k} x_i$
 - Variance: $V(X) = \frac{1}{k} \sum_{i=1}^{k} (x_i E(X))^2$

Bernoulli Distribution

- > Experiment
 - A single (n = 1) trial with two possible outcomes ("success" and "failure")
 - $P(\{\text{success}\}) = p$
- \triangleright Random variable: X outcome of the trial (1 or 0)
- > Probability distribution
 - Probability mass function (PMF): P(X = x) = p(x) p(1) = p, p(0) = 1 p
 - Cumulative distribution function (CDF)

$$F(x) = P(X \le x) = \sum_{z=-\infty}^{x} p(z)$$

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - p & x \in [0,1) \\ 1 & x \ge 1 \end{cases}$$

Expectation

$$\mu_X = E(X) = \sum_{x = -\infty}^{\infty} xp(x) = p$$

 $X \sim Bernoulli(p)$

Variance

$$\sigma_X^2 = V(X) = E[(X - \mu_X)^2] = p(1 - p)$$

> Example: toss a fair coin once

Binomial Distribution

- > Experiment
 - n repeated independent trials
 - Each trial has two possible outcomes ("success" and "failure")
 - $P(\{i^{th} \text{ trial is success}\}) = p \text{ for all } i$
- > Random variable: X number of successful trials
- \triangleright PMF P(X = x)

$$b(x; n, p) = \binom{n}{x} p^x (1-p)^{n-x}$$

 \triangleright CDF $P(X \le x)$

$$B(x; n, p) = \sum_{r=0}^{x} {n \choose r} p^{r} (1-p)^{n-r}$$

- \triangleright Expectation: E(X) = np
- > Variance: var(X) = np(1-p)

Geometric Distribution

> Experiment

- Indeterminate number of repeated trials
- Each trial has two possible outcomes ("success" and "failure")
- $P(\{the\ outcome\ of\ the\ i^{th}\ trial\ is\ success\}) = p\ for\ all\ i$
- Independent trials
- \triangleright Random variable: X number of trials until 1st success
- > Probability distribution (PMF): $P(x) = p(1-p)^{x-1}$
- Expectation & variance

$$E(X) = \frac{1}{p} \qquad \text{var}(X) = \frac{1-p}{p^2}$$

Example: repeated attempts to start an engine; play a lottery until you win

Negative Binomial Distribution

> Experiment

- Indeterminate number of repeated trials
- Each trial has two possible outcomes (success and failure)
- $P(\{the\ outcome\ of\ the\ i^{th}\ trial\ is\ success\})=p\ for\ all\ i$
- Independent trials
- Keep going until the rth success
- > Random variable: X #trials until r successes
- Probability distribution (PMF)

$$b^*(x; r, p) = {x - 1 \choose r - 1} p^r (1 - p)^{x - r}$$

> Expectation and variance

$$E(X) = \frac{r}{p}$$
 $\operatorname{var}(X) = \frac{r(1-p)}{p^2}$

Example: fabricating r defective computer chips

Hyper-geometric Distribution

> Experiment:

- A random sample of size n is selected from N items
- There are k items of one type (success) and N-k items of another type (failure)
- > Random variable: X number of success selected
- Probability distribution (PMF)

$$h(x; N, n, k) = \frac{\binom{k}{x} \binom{N-k}{n-x}}{\binom{N}{n}}$$

Expectation & variance

$$E(X) = \frac{nK}{N} \qquad \text{var}(X) = \frac{N - n}{N - 1} \frac{nK}{N} (1 - \frac{k}{N})$$

Example: select a random sample of 5 spark plugs from a batch of 40 of which 3 are defective

Poisson Distribution

- > Experiment: recurring trials in space or time
 - The events occur at a point in time or space
 - The number of events occurring in one region is independent of the number occurring in any disjoint region
 - Probability of n events in region/interval 1 = Probability of n events in region/interval 2, when the two regions/intervals have the same size
- Random variable: number of events occurring in the given time interval or region of space
- Probability distribution (PMF)

Poisson
$$(x; \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}$$
 (λ : average number of events in the region/interval)

- > Expectation & variance: $E(X) = \lambda$ $var(X) = \lambda$
- Example: number of emails arriving in a specified (1 hour) period; number of arrived jobs

Continuous Distributions

Continuous probability distribution

- Defined on continuous rv
- Probability density function (PDF)

> Typical distributions

- Continuous uniform
- Exponential
- Gamma
- Normal

Continuous Uniform Distribution

▶ **Definition:** A continuous RV X is said to have a uniform distribution on the interval [a, b] if the PDF of X is

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

Expectation & variance

$$E(X) = \frac{a+b}{2}$$
 $var(X) = \frac{(b-a)^2}{12}$

➤ **Example:** Spin the dial so that it comes to rest at a random position. Find the probability that the dial will land somewhere between 5 and 300.

Exponential Distribution

▶ **Definition:** Let λ be a positive real number, RV X is called an exponential RV ($X \sim \exp(\lambda)$) if

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Expectation & variance

$$E(X) = \frac{1}{\lambda}$$
 $var(X) = \frac{1}{\lambda^2}$

Example: often used to model life time of products, waiting time, time between random events.

Gamma Distribution

Definition: A continuous RV X is said to have a gamma distribution (X ~ gamma(α , β), α > 0, β > 0) if

$$f(x) = \begin{cases} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-\frac{x}{\beta}} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

- > Exponential distribution: $\alpha = 1$ and $\beta = \frac{1}{\lambda}$
- > Expectation & variance

$$E(X) = \alpha \beta$$
 $var(X) = \alpha \beta^2$

 \triangleright **Example:** time until event occurs for α times

Normal (Gaussian) Distribution

Definition: A continuous RV X is said to have a normal distribution $(X \sim N(\mu, \sigma^2))$ with parameter μ (−∞ < μ < ∞) and σ (σ > 0), if

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} (-\infty < x < \infty)$$

> Standard normal distribution/RV Z: $\mu = 0$ and $\sigma = 1$

$$f(z; 0,1) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} (-\infty < z < \infty)$$

> CDF of Z: $P(Z \le z) = \int_{-\infty}^{z} f(y; 0,1) dy$ (often denoted by $\Phi(z)$)

Joint Probability Mass Function

 If X and Y are two discrete rv's defined on S, the sample space for an experiment, their joint probability mass function is

$$p(x,y) = P(X = x \text{ and } Y = y)$$

ullet The marginal probability mass functions of X and Y are

$$p_x(x) = \sum_y p(x,y)$$
 and $p_y(y) = \sum_x p(x,y)$

Joint Probability Density Function

• If X and Y are two continuous rv's then f(x.y) is their joint density function if

$$P[(X,Y)\in A]=\int\int_A f(x,y)\,dx\,dy$$

ullet The marginal probability density functions of X and Y are

$$f_x(x) = \int_{-\infty}^{\infty} f(x,y) \, dy$$
 and $f_y(y) = \int_{-\infty}^{\infty} f(x,y) \, dx$

Example of joint probability density

Example 5.3 describes a joint probability distribution with density

$$f(x,y) = \begin{cases} \frac{6}{5} \left(x + y^2 \right) & 0 \le x \le 1, \ 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Conditional distributions

• For continuous random variables X and Y with joint pdf f(x,y) and marginal pdfs $f_X(x)$ and $f_Y(y)$, the conditional probability density of Y, given X=x is

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} - \infty \le y \le \infty$$

provided that $f_X(x) > 0$.

• For discrete random variables X and Y with joint pmf p(x,y) and marginal pmfs $p_X(x)$ and $p_Y(y)$ the conditional pmf of Y given X=x is

$$p_{Y|X}(y|x) = \frac{p(x,y)}{p_X(x)}$$

provided that $p_X(x) > 0$.

Independent Random Variables

ullet Discrete random variables X and Y are said to be independent if

$$p(x,y) = p_X(x) \cdot p_Y(y)$$

ullet Continuous random variables X and Y are said to be independent if

$$f(x,y) = f_X(x) \cdot f_Y(y)$$

ullet If these conditions don't hold then X and Y are said to be dependent.

Expected value

• The expected value of a function h(x,y), denoted E[h(X,Y)], is defined as

$$E[h(X,Y)] = \begin{cases} \sum_{x} \sum_{y} h(x,y) \cdot p(x,y) & \text{discrete} \\ \int_{-\infty}^{\infty} \int_{\infty}^{\infty} h(x,y) \cdot f(x,y) \, dx \, dy & \text{continuous} \end{cases}$$

• The covariance between X and Y is defined as $Cov(X,Y)=E[(X-\mu_X)(Y-\mu_Y)]$

$$= \begin{cases} \sum_x \sum_y (x - \mu_X)(y - \mu_Y) p(x,y) & \text{discrete} \\ \int_{-\infty}^\infty \int_{\infty}^\infty (x - \mu_X)(y - \mu_Y) f(x,y) \, dx \, dy & \text{continuous} \end{cases}$$

• Sometimes it is more convenient to evaluate $Cov(X,Y) = E[XY] - \mu_X \mu_Y$

Correlation

• The correlation coefficient of X and Y, denoted Corr(X,Y) or $\rho_{X,Y}$ or simply ρ , is defined as

$$ho_{X,Y} = rac{\mathsf{Cov}(X,Y)}{\sigma_X \cdot \sigma_Y}$$

- For any two rv's X and Y, $-1 \le \rho_{X,Y} \le 1$
- ullet If a and c are either both positive or both negative then

$$Corr(aX + b, cY + d) = Corr(X, Y)$$

- If X and Y are independent, then $\rho=0$. However, $\rho=0$ does not imply that X and Y are independent.
- ullet ho=-1 or ho=1 if and only if Y=aX+b for some numbers a and b.

Overview

> Probability

- Random variables and probability
- Discrete distributions
- Continuous distributions
- Joint probability of multiple random variables

> Statistics

- Sampling
- Statistical inference
- Estimation
- Hypothesis testing

Random samples

- Evaluating the distribution of a statistic calculated from a sample with an arbitrary joint distribution can be very difficult.
- Frequently we make the simplifying assumption that our data constitute a random sample X_1, X_2, \ldots, X_n from a distribution. This means that
 - The X_i 's are independent.
 - ② All the X_i s have the same probability distribution

Linear Combinations and their means

• Given a collection of n random variables X_1, X_2, \ldots, X_n and n numerical constants a_1, a_2, \ldots, a_n , the random variable

$$Y = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$

is called a linear combination of the X_i s.

Whether or not the X_is are independent,

$$E[a_1X_1 + a_2X_2 + \dots + a_nX_n]$$

$$= a_1E[X_1] + a_2E[X_2] + \dots + a_nE[X_n]$$

Variances of linear combinations

• If X_1, X_2, \ldots, X_n are independent with variances $\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2$ then

$$V(a_1X_1 + a_xX_2 + \dots + a_nX_n)$$

$$= a_1^2V(X_1) + a_2^2V(X_2) + \dots + a_n^2V(X_n)$$

$$= a_1^2\sigma_1^2 + a_2^2\sigma_2^2 + \dots + a_n^2\sigma_n^2$$

In general

$$V(a_1X_1 + a_xX_2 + \dots + a_nX_n) = \sum_{i=1}^n \sum_{j=1}^n a_ia_j \mathsf{Cov}(X_i, X_j)$$

The Case of Normal Random Variables

• When the X_i s are independent and normally distributed, any linear combination will also be normally distributed.

Statistical Inference

Statistical inference: Find truth on the population based on the data obtained from a sample of the population

- **Estimation:** Find estimates of the unknown parameters
 - Point estimation: $\hat{\mu} = 2.5$
 - Confidence interval (CI) estimation: the 95% CI of $\mu = (2.0, 3.0)$
- ► **Hypothesis testing:** Decisions based on specific hypotheses (e.g., $\mu \le 2 \ vs. \ \mu > 2$)

Point Estimation

- ➤ A point estimator is designed to estimate an unknown parameter with a single value
 - θ = unknown parameter
 - $\hat{\theta}$ = point estimator (a function of the data)
- **Example:** $\hat{\mu} = \bar{X}$ estimates μ
- > How do we identify a good point estimator?
 - An estimator $\hat{\theta}$ is **unbiased** iff $E(\hat{\theta}) = \theta$
 - If an estimator $\widehat{\theta}$ has the smallest variance, then it is the most efficient estimator of θ

Example Sampling Distribution of $\widehat{\boldsymbol{\theta}}$

 $\theta = \mu$

Red curve: Distribution of $\hat{\mu}$

Confidence Interval Estimation

- > Interval estimate: an entire interval of plausible values
 - More information about a population than does a point estimate
 - A confidence level for the estimate
- Confidence level: a measure of degree of reliability of the interval (95%, 99%, 90%)
- \triangleright Significance level (α): 1 confidence level
- Width of CI: given the confidence level, if the interval is narrow, our knowledge of the parameters is reasonably precise; a very wide CI indicates large amount of uncertainty.

CI of Normal Distribution

> A $100(1-\alpha)\%$ confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$\left(\bar{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$$

$$P(-z_{\alpha/2} < Z < z_{\alpha/2}) = 1 - \alpha$$

Example

- > University student height: given n=24, $\bar{x}=68.46$, $\sigma=2$
- > 95% confidence interval: $\left(\bar{x} 1.96 \frac{\sigma}{\sqrt{n}}, \ \bar{x} + 1.96 \frac{\sigma}{\sqrt{n}}\right)$
- $> \left(68.46 1.96 \frac{2}{\sqrt{24}}, 68.46 + 1.96 \frac{2}{\sqrt{24}}\right) = (67.66, 69.26)$

CI When Variance Unknown

- \triangleright **Assumption:** population is normal, and random samples are from a normal distribution with both μ and σ unknown.
- \triangleright Let \bar{x} and s be the sample mean and sample standard deviation from a normal population with mean μ . Then the $100(1-\alpha)\%$ confidence interval for μ is

$$\left(\bar{x}-t_{\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}},\bar{x}+t_{\frac{\alpha}{2},n-1}\frac{s}{\sqrt{n}}\right)$$

 \succ Critical value: Let $t_{\alpha,\nu}$ denote the number on the measurement axis for which the area under the t curve with ν DoF to the right of $t_{\alpha,\nu}$ is α ; $t_{\alpha,\nu}$ is called a t critical value.

Hypothesis Testing

- Hypothesis test: a method of making decisions using data, whether from a controlled experiment or an observation study (not controlled), that produces a conclusion about the population
 - Example: Is there a difference between the accuracy of two gauges based on sample data?
 - The problem conjecture is put in the form of statistical hypothesis
 - Rejection/non-rejection of the hypothesis is made using statistical inference procedure
- Statistical hypothesis: an assertion or conjecture concerning one or more populations.
- > Performance
 - Type I error (α): rejection of the null hypothesis when it is true
 - Type II error (β): non-rejection of the null hypothesis when it is false

Procedure

- 1. State the null hypothesis (H_0) "nothing" hypothesis, nothing has changed, of no difference, nothing special taking place, no systematic effect
- 2. State alternative hypothesis (H_a) Researcher's conjecture, paranoia, change, effect of treatment
- 3. Choose the test statistic (e.g., z vs. t for mean)
- 4. Determine the critical value and rejection region
- Calculate the test statistic value
- Reject H_0 if the test statistic is within the critical region or p-value $<\alpha$; otherwise, do not reject
- 7. Draw the conclusions/implications

Critical Value and Rejection Region

```
\begin{array}{lll} H_{\rm a}: \ \mu > \mu_0 & z \geq z_{\alpha} \quad \text{(upper-tailed test)} \\ H_{\rm a}: \ \mu < \mu_0 & z \leq -z_{\alpha} \quad \text{(lower-tailed test)} \\ H_{\rm a}: \ \mu \neq \mu_0 & \text{either} \quad z \geq z_{\alpha/2} \quad \text{or} \quad z \leq -z_{\alpha/2} \quad \text{(two-tailed test)} \end{array}
```

z curve (probability distribution of test statistic Z when H_0 is true)

Type I and Type II Errors

> Type I Error

• If we reject H_0 when in fact H_0 is true. This would be akin to convicting an innocent person for a crime(s) he did not commit.

> Type II Error

- If we fail to reject H_0 when in fact H_a is true. This is analogous to a guilty person escaping conviction.
- > Type I errors are usually considered worse, so we design our statistical procedures to control the probability of making such a mistake. We define the

significance level of the test = $P(Type\ I\ error) = \alpha$

Significance Level

- We want α to be small which conventionally means, say, $\alpha = 0.05$, $\alpha = 0.01$, $\alpha = 0.005$
- ightharpoonup Rejection region for a test is the set of sample values which would result in the rejection of H_0
 - For previous example, the rejection region would be all possible samples that result in a 95% confidence interval that does not cover $\mu = 70$.
- The above example with H_a : $\mu \neq 70$ is called a **two-sided test**. Sometimes we are interested in a one-sided test, which would look like H_a : $\mu < 70$ or H_a : $\mu > 70$.

P Value

P value: the lowest level (of significance) at which the observed value of the test statistic is significant

 \triangleright The plausibility of the null hypothesis H_0

Example

- A random sample of machines in a plant showed an average useful life of 71.8 months. Assuming a population standard deviation of 8.9 months, does this seem to indicate the mean useful life is greater than 70 months?
- > Solution
 - H_0 : $\mu = 70$
 - H_1 : $\mu > 70$
 - $\alpha = 0.05$, test statistic $Z = \frac{\bar{X} \mu}{\sigma/\sqrt{n}}$
 - Rejection region: z > 1.645
 - Test statistic: $z = \frac{\bar{x} \mu}{\sigma / \sqrt{n}} = \frac{71.8 70}{8.9 / \sqrt{100}} = 2.02 > 1.645$
 - Reject H_0 at $\alpha = 0.05$
 - Conclusion: there is significant evidence that the mean useful life is greater than 70 months.

P-value Solution

- p = P(z > 2.02) = 0.0217 < 0.05
- \triangleright As a result, the evidence in favor of H_1 is stronger than that suggested by a 0.05 level of significance. That means there is significant evidence that the mean useful life is greater than 70 months.

Popular Tests

- > One sample
 - For mean: z-test (large sample size or normal population with σ known), t-test (small sample of normal population with σ unknown)
 - For variance: χ^2 -test (normal population)
- > Two sample
 - For mean: *z*-test, *t*-test
 - For variance: F-test
- Multivariate (one sample):
 - For mean: T²-test