VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

VI SEMESTER

CS8491-COMPUTER ARCHITECTURE

Regulation – 2017

Academic Year 2018 – 19

Prepared by

Ms. G.Sangeetha, Assistant Professor/CSE Dr.L.Karthikeyan, Assistant Professor /CSE Ms.A.Lalitha, Assistant Professor /CSE

VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur-603203

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

SUBJECT : CS8491 COMPUTER ARCHITECTURE

SEM/YEAR:VI/III

UNIT I -OVERVIEW & INSTRUCTIONS

Functional Units -Basic Operational Concepts -Performance- Instructions- Language of the Computer Operations, OperandsInstruction representation -Logical operations -decision making -MIPS Addressing

	PART-A		
Q. No	Questions	BT Level	Competence
1	Express the equation for the dynamic power required per	BTL 2	Understand
	transistor.		
2	Identify general characteristics of Relative addressing mode with	BTL 4	Analyze
	an example.		
3	Define Computer Architecture.	BTL 1	Remember
4	Tabulatethe components of computer system.	BTL 1	Remember
5	Give the addressing modes in MIPS.	BTL 2	Understand
6	Interpret the instruction set Architecture.	BTL 2	Understand
7	Differentiate DRAM and SRAM.	BTL 4	Analyze
8	Give the difference between auto increment and auto decrement	BTL 2	Understand
	addressing mode.		
9	What are the functions of control unit?	BTL 1	Remember
10	Calculate throughput and response time.	BTL 3	Apply
11	Compose the CPU performance equation.	BTL 6	Create
12	Measure the performance of the computers:	BTL 5	Evaluate
	If computer A runs a program in 10 seconds, and computer B		
	runs the same program in 15 seconds, how much faster is A over		
	B?		

13	Formulate the equa	Formulate the equation of CPU execution time for a program.					
14	State the need for in	direct addressing n	node. Give an example.		BTL 1	Remember	
15	Show the formula for	Show the formula for CPU clock cycles required for a program.					
16	Define Stored Progra	Define Stored Program Concept.					
17	What are the variou	What are the various units in the computer?				Remember	
18	Compare multi-prod	cessor and uniproce	essor.		BTL 4	Analyze	
19	Classify the instructions based on the operations they perform					Apply	
	and give one example	le to each category.					
20	Consider the followi	ng performance me	easurements for a program		BTL 5	Evaluate	
	Measurement	Computer A	Computer B				
	Instruction	10 billion	8 billion				
	Count						
	Clock rate	4GHz	4GHz				
	CPI	1.0	1.1				
	Which computer has	s the higher MIPS 1	rating.				
	- L		PART B				
1	Evaluate the variou	us techniques to re	epresent instructions in a	(13)	BTL 5	Evaluate	
	computer system.	1	(5)	,			
2		omponents of com	puter system and explain	(8)	BTL 1	Remember	
	with neat diagram	1	1	` /			
	ii)List the classes of	applications of cor	mputers	(5)			
3	i). What is an addres			(4)	BTL 1	Remember	
	ii). Describe the MII	PS addressing mod	es with suitable examples	(0)			
	to each category	_	•	(9)			
4.	i). Identify the vario	ous operations in co	mputer system.	(6)	BTL 1	Remember	
	ii). Examine the ope	erands of computer	hardware.	(7)			
5	i). Discuss the logi	cal operations an	d control operations of		BTL 2	Understand	
	computer.			(7)			
	ii). Explain the cond	cept of Arithmetic of	operation with examples	(6)			
6	Consider three diffe	erent processors P1	, P2, and P3 executing the		BTL 4	Analyze	
	same instruction set. P1 has a 3 GHz clock rate and a CPI of 1.5.						
	P2 has a 2.5 GHz clock rate and a CPI of 1.0. P3 has a 4.0 GHz						
	clock rate and has a CPI of 2.2.						

	i). Which processor has the highest performance expressed in			
	instructions per second?	(3)		
	ii).If the processors each execute a program in 10 seconds, find	. - \		
	the number of cycles and the number of instructions?	(5)		
	iii).We are trying to reduce the execution time by 30% but this			
	leads to an increase of 20% in the CPI. What clock rate should			
	we have to get this time reduction?	(5)		
7	Assume a program requires the execution of 50×106 FP		BTL 3	Apply
	instructions, 110 \times 106 INT instructions, 80 \times 106 L/S			
	instructions, and 16×106 branch instructions The CPI for each			
	type of instruction is 1, 1, 4, and 2, respectively. Assume that the			
	processor has a 2 GHz clock rate.			
	i).By how much must we improve the CPI of FP instructions if			
	we want the program to run two times faster?	(4)		
	ii).By how much must we improve the CPI of L/S instructions?	(4)		
	iii).By how much is the execution time of the program improved	` '		
	if the CPI of INT and FP Instructions are reduced by 40% and			
	the CPI of L/S and Branch is reduced by 30%?	(5)		
8	Describethe branching operations in detail with suitable	(13)	BTL 2	Understand
	example.			
9	i). Formulate the performance of CPU.	(9)	BTL 6	Create
	ii).Compose the factors that affect performance.	(4)		
10	i). Illustrate the different types of instruction set architecture in	(7)	BTL 3	Apply
	detail			
	ii). Examine the basic instruction types with examples (6)			
11	Find the various techniques to represent instructions in a	(13)	BTL 1	Remember
	computer system and explain in detail.			
12	i). Compareuni-processors and multi- processors.	(8)	BTL 4	Analyze
	ii).Suppose we develop a new simpler processor that has 85% of			
	the capacitive load of the more complex older processor. Further	(5)		
	assume that it has adjustable voltage so that it can reduce voltage	(5)		
	15% compressed to processor B, which results in a 15%			
	compressed to processor B, which results in a 15% shrink in			

13	Analyze the various instruction formats and illustrate with an	(13)	BTL 4	Analyze
	example.			
14	Consider two different implementation of the same instruction	(13)	BTL 2	Understand
	set architecture, The instruction can be divided into four classes			
	according to their CPI (class A,B,C and D). P1 with clock rate			
	2.5 Ghz and CPI s of 1,2,3, and 3 respectively and P2 with clock			
	rate 3 Ghz and CPI s of 2,2,2and 2 respectively. Given a			
	program with a dynamic instruction count of 1.0*10 ⁶ instruction			
	divided into classes as follows: 10% class A, 20% class B, 50%			
	class C, and 20% class D, which implementation is faster? What			
	is the global CPI for each implementation? Find the clock cycles			
	required in both cases.			
	PART C		DTI 5	Т. 1
	Evaluate a MIPS assembly instruction in to a machine		BTL 5	Evaluate
	instruction, for the add \$to, \$s1,\$s2 MIPS instruction.	(15)	DEEX 6	G.
	Assume a two address format specified as source, destination.		BTL 6	Create
	Examine the following sequence of instructions and explain the			
	addressing modes used and the operation done in every			
	instruction	(15)		
	(1) MOVE (R5)+,R0			
	(2) ADD (R5)+, R0			
	(3) MOVE R0,(R5)			
	(4) MOVE 16(R5), R3			
	(5) ADD #40, R5			
3	Assume that the variables f anf g are assigned to register \$s0 and			
	\$s1 respectively. Assume that base address of the array A is in		BTL 6	Create
	register \$s2. Assume f is zero initially.			
	f - g - A[4]	(15)		
	A[5]=f+100			
	Translate the above C statement into MIPS code .how many			
	MIPS assembly instructions are needed to perform the C			
	statements and how many different registers are needed to carry			

	out the C stateme	nts ?					
4	execution time for The computer with given below and is	the following three in the following three in the following three is the following three in	owing instruction cor different 1GHZ	tion classes and CPI measurements as unts for each instruction class for the ent compilers are given. Assume that the	(15)	BTL 5	Analyze
	CPI Code from Compiler1 Compiler2	A 1 CPI 1 A 2 2	В				

UNIT II -ARITHMETIC FOR COMPUTERS

ALU – Addition and subtraction – Multiplication – Division – Floating Point Representation and operation -Sub word parallelism.

PART-A					
Questions	BT Level	Competence			
Calculate the following:	BTL 3	Apply			
Add 5_{10} to 6_{10} in binary and Subtract -6_{10} from 7_{10} in binary.					
Analyze overflow conditions for addition and subtraction.	BTL 4	Analyze			
Construct the Multiplication hardware diagram.	BTL 3	Apply			
x=0000 1011 1110 1111 and y= 1111 0010 1001 1101 Examine	BTL 1	Remember			
x-y					
What is fast multiplication?	BTL 1	Remember			
Subtract (11011) ₂ –(10011) ₂ using 1's complement and 2's	BTL 2	Understand			
complement method.					
Illustrate scientific notation and normalization with example.	BTL 3	Apply			
Analyze and Multiply 100011 * 100010	BTL 4	Analyze			
Give the representation of double precision floating point	BTL 2	Understand			
number.					
For the following C statement, Develop MIPS assembly code.	BTL 6	Create			
f = g + (h - 5).					
Name are the floating point instructions in MIPS.	BTL 1	Remember			
Formulate the steps of floating point addition.	BTL 6	Create			
Evaluate the sequence of floating point multiplication.	BTL 5	Evaluate			
Define guard bit. What are the ways to truncate the guard bits?	BTL 1	Remember			
	QuestionsCalculate the following:Add 5_{10} to 6_{10} in binary and Subtract -6_{10} from 7_{10} in binary.Analyze overflow conditions for addition and subtraction.Construct the Multiplication hardware diagram.x=0000 1011 1110 1111 and y= 1111 0010 1001 1101 Examinex-yWhat is fast multiplication?Subtract (11011)2-(10011)2 using 1's complement and 2'scomplement method.Illustrate scientific notation and normalization with example.Analyze and Multiply $100011 * 100010$ Give the representation of double precision floating point number.For the following C statement, Develop MIPS assembly code. $f = g + (h - 5)$.Name are the floating point instructions in MIPS.Formulate the steps of floating point addition.Evaluate the sequence of floating point multiplication.	QuestionsBT LevelCalculate the following: Add 5_{10} to 6_{10} in binary and Subtract -6_{10} from 7_{10} in binary.BTL 3Analyze overflow conditions for addition and subtraction.BTL 4Construct the Multiplication hardware diagram.BTL 3 $x=0000\ 1011\ 1110\ 1111\ $ and $y=1111\ 0010\ 1001\ 1101\ $ Examine $x-y$ BTL 1What is fast multiplication?BTL 1Subtract $(11011)_2-(10011)_2$ using 1's complement and 2's 			

15	Express the IEEE 754 floating point format.		BTL 2	Understand
	Represent (-0.75) ₁₀ in single precision			
16	State sub-word parallelism.		BTL 1	Remember
17	Interpret single precision floating point number representation with		BTL 2	Understand
	example.			
18	Calculate Divide 1001010 by 1000.		BTL 4	Analyze
19	Label the steps of division algorithm.		BTL 1	Remember
20	For the following MIPS assembly instructions above, what is a		BTL 5	Evaluate
	corresponding C statement?			
	add f, g, h			
	add f, i, f			
	PART-B	(=)	DEL 0	TT 1 . 1
1	i). Discuss the multiplication algorithm in detail with diagram.	(6)	BTL 2	Understand
	ii).Express the steps to Multiply 2*3.	(7)		
2	Illustrate the multiplication of signed 2's complement numbers?	(13)	BTL 3	Apply
	Give algorithm and example.			
3	Describe about basic concepts of ALU design.	(13)	BTL 1	Remember
4	Develop algorithm to implement A*B.Assume A and B for a pair		BTL 6	Create
	of signed 2's complement numbers with values: A=010111,	(13)		
	B=101100			
5	i) . State the integer division algorithm with diagram.	(6) (7)	BTL 1	Remember
	ii).Divide 00000111 by 0010.	(7)		
6	i). Express in detail about Carry look ahead Adder.	(6)	BTL 2	Understand
	ii).Divide(12) ₁₀ by (3) ₁₀	(7)		
7	Point out the division of A and B	(10)	BTL 4	Analyze
	A=1111 B= 0011	(13)		
8	i). Examine, how floating point addition is carried out in a	(8)	BTL 1	Remember
	computer system? ii).Give an example for a binary floating point addition.	(5)		
9	i)How floating point numbers are represented in IEEE 752.	(7)	BTL 1	Remember
	ii) Tabulate the IEEE 752 binary representation of the number -	(')		
	0.75_{10}	(3)		
	a. Single precision.			
	b. Double precision.	(3)		
	o. Double precision.			

10	i).Design an arithmetic element to perform the basic floating	BTL 2	Understand
	point operations. (7)		
	ii). Discuss sub word parallelism. (6)		
11	i). Explain floating point addition algorithm with diagram. (6)	BTL 5	Evaluate
	ii). Assess the result of the numbers (0.5)10 and (0.4375)10 using		
	binary Floating point Addition algorithm. (7)		
12	Calculate using single precision IEEE 754 representation.	BTL 4	Analyze
	i). 32.75 (6)		
	ii).18.125 (7)		
13	Arrange the given number 0.0625	BTL 4	Analyze
	i). Single precision. (6)		
	ii). Double precision formats. (7)		
14	Solve using Floating point multiplication algorithm	BTL 3	Apply
	i).A= $1.10_{10} \times 10^{10}$ B= 9.200×10^{-5} (7)		
	ii). 0.5 ₁₀ X 0.4375 ₁₀ (6)		
	PART C	DEL 6	
1	Multiply the following signed numbers using Booth algorithm A (24) (1011110) and B (22) (0010110) where B is (15)	BTL 6	Create
	$A=(-34)_{10} = (1011110)_2$ and $B=(22)_{10} = (0010110)_2$ where B is		
	multiplicand and A is multiplier	D	
	Evaluat e the sum of 2.6125 * 101 and 4.150390625 * 101 by (15)	BTL 5	Evaluate
2.	hand, assuming A and B are stored in the 16-bit half precision.		
	Assume 1 guard, 1 round bit and 1 sticky bit and round to the		
	nearest even. Show all the steps.		
3	Summarize 4 bit numbers to save space, which implement the (15)	BTL 5	Evaluate
	multiplication algorithm for 0010_2 , 0011_2 with hardware design.		
4	Design 4 bit version of the algorithm to save pages, for (15)	BTL 6	Create
	dividing 00000111 ₂ by 0010 ₂ with hardware design.		
Basic	UNIT III-PROCESSOR AND CONTROL UNIT MIPS implementation – Building datapath – Control Implementation scheme – Pipelining	– Pipeline	ed datanath and
	l – Handling Data hazards & Control hazards – Exceptions.	- iponin	umpum unu
Q.N	PART-A Questions	BT	Competence
0	Express the control signals required to perform arithmetic	Level BTL 2	Understand
1			Ondorstand
	operations.		

2	Define hazard Cive an example for data hazard	BTL 2	Understand
	Define hazard. Give an example for data hazard.		
3	Recall pipeline bubble.	BTL 1	Remember
4	List the state elements needed to store and access an instruction.	BTL 1	Remember
5	Draw the diagram of portion of data path used for fetching	BTL 2	Understand
	instruction.		
6	Distinguish Sign Extend and Vector interrupts.	BTL 2	Understand
7	Name the R-type instructions.	BTL 1	Remember
8	Evaluate branch taken and branch not taken in instruction	BTL 5	Evaluate
	execution.		
9	Statethe two steps that are common to implement any type of	BTL 1	Remember
	instruction.		
10	Design the instruction format for the jump instruction.	BTL 6	Create
11	Classify the different types of hazards with examples.	BTL 4	Analyze
12	Illustrate data forwarding method to avoid data hazards.	BTL 3	Apply
13	Assess the methods to reduce the pipeline stall.	BTL 5	Evaluate
14	Tabulate the use of branch prediction buffer.	BTL 1	Remember
15	Show the 5 stages pipeline.	BTL 3	Apply
16	Point out the concept of exceptions and interrupts.	BTL 4	Analyze
17	What is pipelining?	BTL 1	Remember
18	Illustrate the various phases in executing an instruction.	BTL 3	Apply
19	Classify the types of instruction classes and their instruction	BTL 4	Analyze
	formats.		
20	Generalize what is exception. Give one example for MIPS	BTL6	Create
	exception		
	PART-B		
1	Discuss the basic MIPS implementation of instruction set. (13)	BTL 2	Understand
2	State and draw asimpleeMIPS datapath with control unit and (13)	BTL 1	Remember
	explain the execution of ALU instruction.		
3	i).List the types of hazards. (3)	BTL 1	Remember
	ii). Describe the methods for dealing with the control hazards. (10)		
4	Design and develop an instruction pipeline working under (13)	BTL 6	Create
	various situations of pipeline stall.		
5	i). What is data hazard? How do you overcome it? (8)	BTL 1	Remember

	ii).What are its side effects?			
6	i).Summarize control implementation scheme.	(9)	BTL 2	Understand
	ii). Distinguish the data and control path methods in pipelining.	(4)		
7	i). Differentiate sequential execution and pipelining.	(7)	BTL 4	Analyze
	ii).Select the model for building a data path.	(6)		
8	Recommend the techniques for		BTL 5	Evaluate
	i).Dynamic branch prediction.	(7)		
	ii).Static branch prediction.	(6)		
9	Examine the approaches would you use to handle exceptions in	(13)	BTL 3	Apply
	MIPS.			
10	i). Analyze the hazards caused by unconditional branching	(7)	BTL 4	Analyze
	statements.			
	ii).Describe operand forwarding in a pipeline processor with a	(6)		
	diagram.			
11	Express the modified data path to accommodate pipelined	(13)	BTL 2	Understand
	executions with a diagram.			
12	i).Explain single cycle and pipelined performance with examples.	(7)	BTL 4	Analyze
	ii).Point out the advantages of pipeline over single cycle.	(6)		
13	i). Tabulate the ALU control with suitable truth table.	(8)	BTL 1	Remember
	ii).Differentiate R-type instruction and memory instruction.	(5)		
14	With a suitable set of sequence of instructions show what	(13)	BTL 3	Apply
	happens when the branch is taken, assuming the pipeline is			
	optimized for branches that are not taken and that we moved the			
	branch execution to the ID stage.			
1	PART C			
1	Assume the following sequence of instructions are executed on a			
	5 stage pipelined data path:			
	add r5,r2,r1			
	lw r3,4(r5)		BTL6	
	lw r2,0(r2)		חורט	Create
	or r3,r5,r3			
	sw r3,0(r5)			
	if there is no forwarding or hazard detection, insert NOPS to			
	ensure correct execution.			

	i).If the processor has forwarding, but we forgot to implement	_		
	the hazard detection unit, what if happens when this code			
	executes?	(5)		
	ii).If there is forwarding, for the first five cycles, compose which			
	signals are asserted in each cycle.	. - S		
	iii).If there is no forwarding, what if new inputs and output	(5)		
	signals do we need for the hazard detection unit.	(5)		
2	Explain in detail about the laundry process through which the	(15)	BTL 5	Evaluate
	pipelining techniques can be established.			
3	Consider the following loop:		BTL 5	Evaluate
	Loop: lw r1,0(r1)			
	and r1,r1,r2			
	lw r1,0(r1)	,		
	lw r1,0(r1)			
	beq r1,r0,loop			
	Assume that perfect branch prediction is used (no stalls) that			
	there are no delay slots, and that the pipeline has full forwarding			
	support. Also assume that many iterations of this loop are			
	executed before the loop exits.			
	i). Assess a pipeline execution diagram for the third iteration of	(8)		
	this loop.			
	ii). Show all instructions that are in the pipeline during these			
	cycles (for all iterations). (7)			
4	Plan the pipelining in MIPS architecture and generate the	(15)	BTL 6	Creating
	exceptions handled in MIPS.			
 			1	

UNIT IV-PARALLELISM

Instruction-level-parallelism – Parallel processing challenges – Flynn's classification – SISD, MIMD, SIMD, SPMD, Vector Architectures – Hardware multithreading – Multicore processorsShared Memory MultiprocessorsIntroduction to Graphics Processing UnitsClusters, Warehouse Scale Computers and otherMessage-Passing Multiprocessors

P	AR	T	-A

Q.N o	Questions	BT Level	Competence
1	Describe the main idea of ILP.	BTL 2	Understand

2	Illustrate the overall speedup if a webserver is to be enhanced		BTL 3	Apply
	with a new CPU which is 10 times faster on computation than			
	an old CPU .The original CPU spent 40% of its time processing			
	and 60% of its time waiting for I/O.			
3	List the three important properties of vector instructions.		BTL 1	Remember
4	Analyze the main characteristics of SMT processor.		BTL 4	Analyze
5	Quote the importance of loop unrolling technique.		BTL1	Remember
6	Define VLIW processor.		BTL1	Remember
7	Express anti-dependence. How is it removed?		BTL 2	Understand
8	State the efficiency of superscalar processor.		BTL 1	Remember
9	Differentiate between strong scaling and weak scaling.		BTL 2	Understand
10	Show the performance of cluster organization.		BTL 3	Apply
11	Compare SMT and hardware multithreading.	>	BTL 5	Evaluate
12	Define the Flynn classification.		BTL 1	Remember
13	Integrate the ideas of in-order execution and out-of-order		BTL 6	Create
	execution.			
14	Discriminate UMA and NUMA.		BTL 5	Evaluate
15	Quote fine grained multithreading.		BTL 1	Remember
16	Express the need for instruction level parallelism.		BTL 2	Understand
17	Formulate the various approaches to hardware multithreading.		BTL 6	Create
18	Categorize the various multithreading options.		BTL 4	Analyze
19	Differentiate fine grained multithreading and coarse grained multithreading.		BTL 4	Analyze
20	Classify shared memory multiprocessor based on the memory access latency		BTL 3	Apply
	PART-B			
1	i). Define parallelism and its types.	(4)	BTL 1	Remember
	ii).List the main characteristics of Instruction level parallelism.	(9)		
2	i).Give the concept of parallel processing.	(4)	BTL 2	Understand
	ii). Summarize the challenges faced by parallel processing.	(9)		
3	Express in detail about hardware multithreading.	(13)	BTL 2	Understand
4	Solve : suppose you want to achieve a speed up to 90 times faster	(13)	BTL 3	Apply
	with 100 processors. What percentage of the original			
	computation can be sequential?			
5	List the software and hardware techniques to achieve Instruction		BTL 1	Remember
		(13)		

processor? ii).Compare and contrast Fine grained and Coarse grained multithreading. 7 i) Evaluate the features of Multicore processors. ii) How message passing is implemented in Multiprocessors (7) 8 i).Classify the types of multithreading. (9) BTL 4 Analyze ii).Analyze the advantages in multithreading. (4) 9 Formulatethe ideas of Flynn's classification. (13) BTL 6 Create 10 Elaboratein detail about the following i).SISD. ii).MIMD (5) 11 Explain simultaneous Multithreading with example. (13) BTL 4 Analyze ii) Describe about Graphics Processing unit ii) Discuss about cluster and warehouse architecture (8) 13 Illustrate the following in detail i).Data Dependence (5) iii).Name Dependence iii).Name Dependence (4) iiii).Control dependence (4)		
ii).Compare and contrast Fine grained and Coarse grained multithreading. 7 i) Evaluate the features of Multicore processors. ii) How message passing is implemented in Multiprocessors (7) 8 i).Classify the types of multithreading. ii).Analyze the advantages in multithreading. 9 Formulatethe ideas of Flynn's classification. 10 Elaboratein detail about the following i).SISD. ii).MIMD (5) 11 Explain simultaneous Multithreading with example. 12 i)Describe about Graphics Processing unit ii) Discuss about cluster and warehouse architecture iii) Discuss about cluster and warehouse architecture iii).Data Dependence iii).Name Dependence iii).Name Dependence iii).Control dependence iii).Control dependence (4) BTL 2 Understan	i).Point out hov	L 4 Analyze
ii).Compare and contrast Fine grained and Coarse grained multithreading. 7 i) Evaluate the features of Multicore processors. ii) How message passing is implemented in Multiprocessors (7) 8 i).Classify the types of multithreading. ii).Analyze the advantages in multithreading. 9 Formulatethe ideas of Flynn's classification. (13) BTL 6 Create 10 Elaboratein detail about the following i).SISD. ii).MIMD (5) 11 Explain simultaneous Multithreading with example. (13) BTL 4 Analyze 12 i)Describe about Graphics Processing unit ii) Discuss about cluster and warehouse architecture (13) BTL 1 Remember (13) BTL 1 Remember (13) BTL 1 Remember (13) Discuss about cluster and warehouse architecture (14) ii).Name Dependence iii).Name Dependence iii).Control dependence iii).Control dependence (4) BTL 2 Understant	processor?	
7 i) Evaluate the features of Multicore processors. ii) How message passing is implemented in Multiprocessors (7) 8 i).Classify the types of multithreading. ii).Analyze the advantages in multithreading. 9 Formulatethe ideas of Flynn's classification. (13) BTL 6 Create 10 Elaboratein detail about the following i).SISD. ii).MIMD (5) 11 Explain simultaneous Multithreading with example. (13) BTL 4 Analyze 12 i)Describe about Graphics Processing unit ii) Discuss about cluster and warehouse architecture (13) BTL 1 Remember (13) Discuss about cluster and warehouse architecture (13) BTL 3 Apply ii).Data Dependence (13) BTL 3 Apply ii).Data Dependence (14) BTL 3 Apply iii).Control dependence (14) BTL 2 Understant	ii).Compare and	
ii) How message passing is implemented in Multiprocessors (7) 8 i).Classify the types of multithreading. (9) BTL 4 Analyze iii).Analyze the advantages in multithreading. (4) 9 Formulatethe ideas of Flynn's classification. (13) BTL 6 Create 10 Elaboratein detail about the following i).SISD. (8) BTL 1 Remember ii).MIMD (5) 11 Explain simultaneous Multithreading with example. (13) BTL 4 Analyze ii).Describe about Graphics Processing unit ii) Discuss about cluster and warehouse architecture (8) 13 Illustrate the following in detail i).Data Dependence (4) iii).Name Dependence (4) iii) Discuss the following in detail (7)	multithreading.	
i).Classify the types of multithreading. ii).Analyze the advantages in multithreading. Formulate the ideas of Flynn's classification. Elaborate in detail about the following i).SISD. ii).MIMD Explain simultaneous Multithreading with example. i)Describe about Graphics Processing unit ii) Discuss about cluster and warehouse architecture ii) Discuss about cluster and warehouse architecture ii).Data Dependence ii).Name Dependence iii).Name Dependence iii).Control dependence iii).Control dependence iii).Control dependence iii).Discuss the following in detail BTL 2 Understance Understance Understance I Discuss the following in detail III Discuss the following in detail	i) Evaluate the	Evaluate
ii).Analyze the advantages in multithreading. 9 Formulate the ideas of Flynn's classification. 10 Elaborate in detail about the following i).SISD. ii).MIMD 11 Explain simultaneous Multithreading with example. 12 i)Describe about Graphics Processing unit ii) Discuss about cluster and warehouse architecture 13 Illustrate the following in detail i).Data Dependence (5) ii).Name Dependence (4) iii).Control dependence (4) 14 Discuss the following in detail (7) BTL 2 Understand	ii) How messag	
Formulatethe ideas of Flynn's classification. Elaboratein detail about the following i).SISD. ii).MIMD Explain simultaneous Multithreading with example. (13) BTL 1 Remember 10 Remember 11 Remember 12 Remember 12 Remember 12 Remember 13 Remember 13 Remember 14 Discuss the following in detail ii) Data Dependence iii).Name Dependence iii).Control dependence (4) BTL 2 Understand 13 Understand 14 Discuss the following in detail (7) BTL 2 Understand 13 Understand 15 Unders	i).Classify the t	L 4 Analyze
10 Elaboratein detail about the following i).SISD. ii).MIMD (5) 11 Explain simultaneous Multithreading with example. (13) BTL 4 Analyze i)Describe about Graphics Processing unit ii) Discuss about cluster and warehouse architecture (8) 13 Illustrate the following in detail i).Data Dependence ii).Name Dependence iii).Name Dependence iii).Control dependence (4) 14 Discuss the following in detail BTL 2 Understant (7)	ii).Analyze the	
i).SISD. ii).MIMD (5) 11 Explain simultaneous Multithreading with example. (13) BTL 4 Analyze 12 i)Describe about Graphics Processing unit ii) Discuss about cluster and warehouse architecture (8) 13 Illustrate the following in detail i).Data Dependence ii).Name Dependence iii).Name Dependence iii).Control dependence (4) iii) Discuss the following in detail BTL 2 Understand	Formulatethe	Create
ii).SISD. iii).MIMD (5) 11 Explain simultaneous Multithreading with example. (13) BTL 4 Analyze 12 i)Describe about Graphics Processing unit ii) Discuss about cluster and warehouse architecture (8) 13 Illustrate the following in detail i).Data Dependence ii).Name Dependence iii).Name Dependence iii).Control dependence (4) 14 Discuss the following in detail BTL 2 Understand	Elaboratein de	1 Remember
11 Explain simultaneous Multithreading with example. (13) BTL 4 Analyze 12 i)Describe about Graphics Processing unit (5) BTL 1 Remember (8) 13 Illustrate the following in detail (8) 13 i).Data Dependence (5) ii).Name Dependence (4) iii).Control dependence (4) 14 Discuss the following in detail (7)	i).SISD.	Kememoer
12 i)Describe about Graphics Processing unit ii) Discuss about cluster and warehouse architecture 13 Illustrate the following in detail i).Data Dependence ii).Name Dependence iii).Control dependence 14 Discuss the following in detail BTL 2 Understance (7)	ii).MIMD	
ii) Discuss about cluster and warehouse architecture [8] Illustrate the following in detail i).Data Dependence ii).Name Dependence iii).Control dependence [4] Discuss the following in detail BTL 2 Understance [7]	Explain simult	Analyze
13 Illustrate the following in detail i).Data Dependence ii).Name Dependence iii).Control dependence 14 Discuss the following in detail (8) BTL 3 Apply (4) (4) (5) (4) (6) BTL 2 Understandard	i)Describe abo	L 1 Remember
13 Illustrate the following in detail i).Data Dependence ii).Name Dependence iii).Control dependence 14 Discuss the following in detail BTL 3 Apply (5) (4) (4) BTL 2 Understand	ii) Discuss abo	
14 Discuss the following in detail BTL 2 Understand	Illustrate the f	Apply
14 Discuss the following in detail BTL 2 Understand	i).Data Depend	
14 Discuss the following in detail BTL 2 Understand	ii).Name Deper	
(7)	iii).Control dep	
i). Vector processor. (7)	Discuss the fol	L2 Understand
	i). Vector proce	
ii).Superscalar processor. (6)	ii).Superscalar	
PART C		
Explain how would this loop be scheduled on a static two issue (15)	Explain how w	
pipeline for MIPS?	pipeline for MI	
Loop: lw \$t0,0(\$s1) #\$t0=array element	Loop: lw \$t0,0	
Addu \$t0,\$t0,\$s2 #add scalar in \$s2	Addu \$t0,\$t0,\$	
Sw \$t0, 0(\$s1) # store result BTL 6 Create	Sw \$t0, 0(\$s1)	Create
Addi; %s1,\$s1, -4#decrement pointer	Addi; %s1,\$s1	
Bne \$s1,\$zero,loop # branch \$s1!=0	Bne \$s1,\$zero,	
Decide and reorder the instruction to avoid as many pipeline	Decide and re	
stalls as possible. Assume branches are predicted, so that control	stalls as possib	

	hazards are handled by the hardware.			
2	A pipelined processor uses delayed branch technique.	(15)		
	Recommend any one of the following possibility for the design			
	of the processor. In the first possibility, the processor has a 4-			
	satge pipeline and one delay slot. In the second possibility, it has			
	a 6-stage pipeline and two delay slots. Compare the performance			
	of these two alternatives, taking only the branch penalty into		BTL 5	Evaluate
	account. Assume that 20% of the instructions are branch			
	instructions and that an optimizing compiler has an 80% success			
	rate in filling in the single delay slot. For the second alternative,			
	the compiler is able to fill the second slot 25% of the time.			
3	Consider the following portions of two different programs	-	BTL 6	Create
	running at the same time on four processors in a symmetric	,		
	multicore processor (SMP). Assume that before this code is run,			
	both x and y are 0?			
	Core 1: x=2;			
	Core 2: y=2;			
	Core 3: $w = x + y + 1$;			
	Core 4: $z = x + y$;			
	i. What if all the possible resulting values of w,x,y,z? For each			
	possible outcomes, explain how we might arrive at those values.	(8)		
	ii. Develop the execution more deterministic so that only one set	, ,		
	of values is possible?	(7)		
4	Suppose we want to perform 2 sums: one is a sum of 10 scalar		BTL 6	Create
	variables and one is a matrix sum of a pair of two dimensional			
	arrays, with dimensions 10 by 10. For now let's assume only the			
	matrix sum is parallelizable. What if the speed up do you get			
	with 10 versus 40 processors and next calculate the speed ups	(15)		
	assuming the matrices grow to 20 by 20.	(15)		
	UNIT V-MEMORY AND I/O SYSTEMS			

UNIT V-MEMORY AND I/O SYSTEMS

Memory hierarchy - Memory technologies - Cache basics - Measuring and improving cache performance - Virtual memory, TLBs - Input/output system, programmed I/O, DMA and interrupts, I/O processors.

PART-A				
Q.No	Questions	BT Level	Competence	
1	Distinguish the types of locality of references.	BTL 2	Understand	
2	Draw the structure of memory hierarchy.	BTL 1	Remember	
3	Give the definition of memory –mapped I/O.	BTL 2	Understand	
4	Compare and contrast SRAM and DRAM.	BTL 4	Analyze	
5	What is the need to implement memory as a hierarchy?	BTL 1	Remember	
6	Define Rotational Latency.	BTL 1	Remember	
7	Stateis direct-mapped cache.	BTL 1	Remember	
8	Evaluate the following instance wherein the cache size is 64	BTL 5	Evaluate	
	blocks and block size is 16 bytes. What block number does byte			
	address 1200 map?			
9	Formulate, how many total bits are required for a direct-	BTL 6	Create	
	mapped cache with 16 KB of data and 4-word blocks, assuming			
	a 32-bit address?			
10	Analyze the writing strategies in cache memory.	BTL 4	Analyze	
11	Integrate the functional steps required in an instruction cache	BTL 6	Create	
	miss.			
12	State hit rate and miss rate.	BTL 1	Remember	
13	Summarize the various block placement schemes in cache	BTL 2	Understand	
	memory.			
14	Quote the purpose of Dirty/Modified bit in Cache memory.	BTL 1	Remember	
15	Point out how DMA can improve I/O speed.	BTL 4	Analyze	
16	Show the role of TLB in virtual memory.	BTL 3	Apply	
17	Illustrate the advantages of virtual memory.	BTL 3	Apply	
18	Assess the relationship between physical address and logical	BTL 5	Evaluate	
	address.			
19	Differentiate Programmed I/O and Interrupt I/O.	BTL 2	Understand	
20	Demonstrate the sequence of events involved in handling an	BTL 3	Apply	
	interrupt request from a single device.			
	PART-B	<u> </u>		
).List the various memory technologies and examine its (8)	BTL 1	Remember	
1	relevance in architecture design.			

	ii). Identify the characteristics of memory system.	(5)		
2	Elaborate in detail the memory hierarchy with neat diagram.	(13)	BTL 1	Remember
3	i).Give the advantages of cache.	(4)	BTL 2	Understand
	ii). Identify the basic operations of cache in detail with diagram.	(9)		
4	Express the following various mapping schemes used in cache		BTL 2	Understand
	design.	(4)		
	i). Direct.	(4)		
	ii).Associative.	(4)		
	iii).Set associative.	(5)		
5	i). Analyze the given problem:		BTL 4	Analyze
	A byte addressable computer has a small data cache capable of		DIE I	Timaryze
	holding eight 32-bit words. Each cache block contains 132-bit			
	word. When a given program is executed, the processor reads			
	data from the following sequence of hex addresses - 200, 204,			
	208, 20C, 2F4, 2F0, 200,204,218, 21C, 24C, 2F4. The pattern is			
	repeated four times. Assuming that the cache is initially empty,			
	show the contents of the cache at the end of each pass, and			
	compute the hit rate for a direct mapped cache.	(8)		
	ii). What are the methods used to measure and improve the			
	performance of the cache.	(5)		
6	i). Define virtual memory and its importance.	(5)	BTL 1	Remember
	ii).Examine TLB with necessary diagram.	(8)		
7	i).Demonstrate the DMA controller.	(4)	BTL 3	Apply
	ii). Illustrate how DMA controller is used for direct data transfer	(9)		
	between memory and peripherals?			
8	i). Evaluate the advantages of interrupts.	(5)	BTL 5	Evaluate
	ii).Summarize the concept of interrupts with neat diagrams.	(8)		
9	Design standard input and output interfaces required to connect	(13)	BTL 6	Create
	the I/O device to the bus.			
10	Classify the bus arbitration techniques of DMA in detail.	(13)	BTL 4	Analyze
11	Point out the following in detail	(7)	BTL 4	Analyze
	i).Programmed I/O.	(7)		
	ii).Instructions executed by IOP.	(6)		

12	Describe in detail about the methods used to reduce cache	(13)	BTL 1	Remember
	misses.			
13	Discuss virtual memory address translation in detail with	(13)	BTL 2	Understand
	necessary diagram.			
14	Calculate the performance the processor:	(13)	BTL 3	Apply
	Assume the miss rate of an instruction cache is 2% and the miss			
	rate of the data cache is 4%. If a processor has a CPI of 2 without			
	any memory stalls and the miss penalty is 100 cycles for all			
	misses, estimate how much faster a processor would run with a			
	perfect cache that never missed. Assume the frequency of all			
	loads and stores is 36%.			
	PART C			
1	Mean Time Between Failures (MTBF), Mean Time To	,		
	Replacement (MTTR) and Mean Time To Failure (MTTF) are			
	useful metrics for evaluating the reliability and availability of a			
	storage resource. Explore these concepts by answering the			
	questions about devices with the following metrics:		BTL 6	Create
	MTTF: 3 years MTTR: 1 day		DILO	Create
	i). Develop and calculate the MTBF for each of the devices.	(3)		
	ii).Develop and calculate the availability for each of the devices.	(4)		
	iii). What if happens to availability as the MTTR approaches 0?	(4) (4)		
	iv). What if happens to availability as the MTTR gets very high?	(4)		
2	Design and explain parallel priority interrupt hardware for a	(15)	BTL 6	Evaluate
	system with eight interrupt sources.		DILU	Evaluate
3	For a direct mapped cache design with a 32 bit address, the	-	BTL 5	Evaluate
	following bits of the address are used to access the cache.			
	Tag: 31-10 Index: 9-5 Offset: 4-0	(5)		
	i). Judge what is the cache block size?	(5)		
	ii).Decide how many entries does the cache have?	(5)		
	iii). Assess what is the ratio between total bits required for such a			
	cache implementation over the data storage bits?	(5)		
4	Summarizeby considering web application. Assuming both client and servers are involved in the process of web browsing application, where can caches be placed to speed up the process. Design a memory hierarchy for the system. Show the typical size	(15)	BTL 5	Evaluate

and latency at various levels of the hierarchy. What is the	
relationship between the cache size and its access latency? What	
are the units of data transfers between hierarchies? What id the	
relationship between data location, data size and transfer	
latency?	

STUDENTS COM