

I TALLER CIENTÍFICO: Obtención, análisis y procesamiento de datos satelitales

Edgar Josymar Torrejón Magallanes

Luis Wencheng Lau Medrano

Giancarlo Helar Morón Correa

Enrique Manuel Ramos Vásquez

12, 14, 16 Abril 2021

¿Cómo interactuamos?

- Práctica: 100%
- Principal herramienta: R, RStudio.
- Interacción a través del GitHub.

Algunas sugerencias

- Vamos a iniciar siempre puntual.
- Si tienen preguntas, INTERRUMPAN. Es mejor hacerlas a través de voz (luego silenciar micrófono).
- ¡Estar muy despierto!: Manos a la obra.

¿Qué vamos a tratar?

• Día 01:

- Revisar la fuente WorldClim y Bio-Oracle.
- Descarga y lectura de -algunas- variables ambientales a distintas resoluciones.
- · Algunas operaciones simples con objetos raster.

• Día 02:

- Revisar la fuente ERDDAP y Copernicus Ocean Data
- · Descarga y procesamiento de -algunas- variables ambientales.

• Día 03:

· Construcción de mapas y match con coordeadas (lon, lat).

WorldClim

https://www.worldclim.org/

WorldClim: algunas características.

- https://www.worldclim.org/data/index.html
- <u>WorldClim</u> es una base de datos meteorológicos y climáticos a nivel mundial de alta resolución espacial (~ 1km²).
- Estos datos se pueden utilizar para mapeo y modelado espacial.
- El sistema de coordenadas es WGS 1984 EPSG:4326 (proyección).
- Hay varias resoluciones [30s, 2.5m, 5m, 10m].
- La resolución original es la de 30 segundos. Las demás resoluciones se derivan de esta.
 - 30 segundos: $0.93 \text{km} * 0.93 \text{km} = 0.86 \text{ km}^2$
 - 10 minutos: $18.6 \text{km} \times 18.6 \text{km} = 344 \text{ km}^2$

WorldClim: Datos históricos climáticos [1970 - 2000]

variable	10 minutes	5 minutes	2.5 minutes	30 seconds
minimum temperature (°C)	tmin 10m	tmin 5m	tmin 2.5m	tmin 30s
maximum temperature (°C)	tmax 10m	tmax 5m	tmax 2.5m	tmax 30s
average temperature (°C)	tavg 10m	tavg 5m	tavg 2.5m	tavg 30s
precipitation (mm)	prec 10m	prec 5m	prec 2.5m	prec 30s
solar radiation (kJ m ⁻² day ⁻¹)	srad 10m	srad 5m	srad 2.5m	srad 30s
wind speed (m s ⁻¹)	wind 10m	wind 5m	wind 2.5m	wind 30s
water vapor pressure (kPa)	vapr 10m	vapr 5m	vapr 2.5m	vapr 30s

Se obtiene un .zip que contiene 12[24] archivos. Cada archivo representa la el promedio de la variable ambiental en un mes particular en el horizonte de tiempo 1970 - 2000.

Código de variable	Descripción
tmean	Temperatura promedio mensual (°C x 10)
tmin	Temperatura mínima mensual (°C x 10)
tmax	Temperatura máxima mensual (°C x 10)
prec	Precipitación mensual promedio (mm)
bio	Variables bioclimaticas
alt	Elevación sobre el nivel del mar (m) [solo un file]

WorldClim: Datos históricos [1970

· Variables bioclimáticas.

variable	10	5	2.5	30
	minutes	minutes	minutes	seconds
Bioclimatic variables	bio 10m	bio 5m	bio 2.5m	bio 30s

Variables bioclimáticas derivadas de los valores mensuales de temperatura y precipitación. Representan tendencias anuales, estacionalidad y factores ambientales extremos.

BIO1 = Annual Mean Temperature

BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp))

BIO3 = Isothermality (BIO2/BIO7) (×100)

 $BIO4 = Temperature Seasonality (standard deviation <math>\times 100$)

BIO5 = Max Temperature of Warmest Month

BIO6 = Min Temperature of Coldest Month

BIO7 = Temperature Annual Range (BIO5-BIO6)

BIO8 = Mean Temperature of Wettest Quarter

BIO9 = Mean Temperature of Driest Quarter

BIO10 = Mean Temperature of Warmest Quarter

BIO11 = Mean Temperature of Coldest Quarter

BIO12 = Annual Precipitation

BIO13 = Precipitation of Wettest Month

BIO14 = Precipitation of Driest Month

BIO15 = Precipitation Seasonality (Coefficient of Variation)

BIO16 = Precipitation of Wettest Quarter

BIO17 = Precipitation of Driest Quarter

BIO18 = Precipitation of Warmest Quarter

BIO19 = Precipitation of Coldest Quarter

WorldClim: Datos climáticos históricos mensuales [1960 - 2018]

years	minimum temperature	maximum temperature	precipitation
1960-1969	tmin_1960-1969	tmax_1960-1969	prec_1960-1969
1970-1979	tmin_1970-1979	tmax_1970-1979	prec_1970-1979
1980-1989	tmin_1980-1989	tmax_1980-1989	prec_1980-1989
1990-1999	tmin_1990-1999	tmax_1990-1999	prec_1990-1999
2000-2009	tmin_2000-2009	tmax_2000-2009	prec_2000-2009
2010-2018	tmin_2010-2018	tmax_2010-2018	prec_2010-2018

Al descargar alguno de ellos se obtiene un .zip que contiene "120" archivos .tif.

Cada uno representa el promedio del mes en el periodo de tiempo solicitado (10 años).

WorldClim: Datos climáticos futuros basados en modelos

- Valores mensuales de temperatura mínima, temperatura máxima, precipitación y variables bioclimáticas, para nueve modelos climáticos globales: BCC-CSM2-MR, CNRM-CM6-1, CNRM-ESM2-1, CanESM5, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L, MIROC6, MRI-ESM2-0.
- · Cada modelo tiene 4 escenarios: SSPs 126, 245, 370 y 585.
- Las resoluciones disponibles estan a 10min, 5min, 2.5min.
- Los horizontes disponibles: 2021-2040, 2041-2060, 2061-2080, 2081-2100.

Lo ideal es descargar los archivos .tiff, ya que hasta el momento el proceso automatizado en R sigue descargando los valores de CMIP5 (Coupled Model Intercomparison Project).

Bio-ORACLE

https://www.bio-oracle.org/

The latest release of the Bio-Oracle dataset is version 2.1. Click here for more information.

Extensive surface and benthic dataset

Bio-ORACLE is a set of GIS rasters providing geophysical, biotic and environmental data for surface and benthic marine realms.

Uniform and worldwide

The data are available for global-scale applications at a spatial resolution of 5 arcmin (approximately 9.2 km at the equator).

Forecasting and transferability

The most recent Representative

Concentration Pathways are provided in order to model the ecological implications of future changes.