Plenum 13/5

5:1: Topologi i Rm

Mengden er verken åpen eller

byleket siden den inneholder

noen, men alle, av randpurktene
sine.

Mengden er lukket fordi den
inne holder alle randpunktene
sine.

e) $\{(x,y) \in \mathbb{R}^2 : x + 2y < 1\}$

$$x + 2y < 1$$

 $x - 1 < -2y$
 $-\frac{x - 1}{2} > y$

X

Mengden er åpen siden

den ikke inne holder hoen av vandpunktene sine.

4)
$$\vec{a}, \vec{b} \in \mathbb{R}^{n}$$
, $\vec{x}_{n} \rightarrow \vec{b}$

VIS: $\lim_{n \to \infty} |\vec{x}_{n} - \vec{a}| = |\vec{b} - \vec{a}|$
 $\lim_{n \to \infty} |\vec{x}_{n} - \vec{a}| = |\vec{b} - \vec{a}| \leq |\vec{x}_{n} - \vec{b}|$

Bevis hint: $|\vec{x}_{n} - \vec{a}| = |\vec{x}_{n} - \vec{b} + \vec{b} - \vec{a}| \leq |\vec{x}_{n} - \vec{b}| + |\vec{b} - \vec{a}|$
 $|\vec{x}_{n} - \vec{a}| - |\vec{b} - \vec{a}| \leq |\vec{x}_{n} - \vec{b}|$ (*)

Tilsvarende, ved å bytte om tollene $ti(\vec{x}_{n}, \vec{a}, \vec{b})$
 $|\vec{b} - \vec{a}| - |\vec{x}_{n} - \vec{a}| \leq |\vec{b} - \vec{x}_{n}| = |\vec{x}_{n} - \vec{b}|$
 $-(|\vec{x}_{n} - \vec{a}| - |\vec{b} - \vec{a}|) \leq |\vec{x}_{n} - \vec{b}|$ (****)

Fra. (*) og (****): $|\vec{x}_{n} - \vec{a}| = |\vec{b} - \vec{a}| \leq |\vec{x}_{n} - \vec{b}|$

Bevis oprg: $|\vec{x}_{n} - \vec{a}| = |\vec{b} - \vec{a}| \leq |\vec{x}_{n} - \vec{b}|$

Så: $\vec{a} \in > 0$ være gitt. Da kan vi finne $N \in \mathbb{N}$ s.a.

 $|\vec{x}_{n} - \vec{b}| < \varepsilon$ for alle $n > N$ (siden $\vec{x}_{n} \rightarrow \vec{b}$).

Men da er: $|\vec{x}_{n} - \vec{a}| = |\vec{b} - \vec{a}| \leq |\vec{x}_{n} - \vec{b}| < \varepsilon$ for alle $n > N$
 $\vec{a} \in [\vec{b} - \vec{a}]$
 $\vec{a} \in [\vec{b} - \vec{a}]$
 $\vec{a} = [\vec{b} - \vec{a}]$

Beris: At Z er et randpunlit for A betyr at enhver kule B(Z, r) om Z

inneholder både plet, fra A og plet. som ikke er med i A.

Definer $r_n = \frac{1}{n}$ for $n \in \mathbb{N}$, og se på $B(\vec{c}, r_n)$.

Derne kula inneholder i alle fall ett plet. i A og ett plet. i

Ac, Kall plot. i A for $\overrightarrow{X_n}$ oy plet. i Ac for $\overrightarrow{y_n}$.

Ved å gjóre dette for alle nEN får vi to fólger {Xn} = A

oy {y'n} \ \(\alpha^{\chi}\). Disse to fólgure konvergerer mot \(\tilde{c} \) fordi:

La E>0 være gitt, og la N være det førske naturlige tallet større enn $\frac{1}{E}$. Da er, for alle n > N:

$$|\vec{x}_{n} - \vec{c}| \leq |\vec{x}_{N} - \vec{c}| \leq |\vec{x}_{N} - \vec{c}| \leq |\vec{x}_{N} - \vec{c}| \leq |\vec{x}_{N} + |\vec{x}_{N}| \leq |\vec{x}_{N}| + |\vec$$

Dur. $X_n \xrightarrow{n-\infty} C$

Tilvarende: $|y_n - C| \le |y_n - C| \le r_N = \frac{1}{N} < \varepsilon$ Des. $y_n \xrightarrow{r \to \infty} C^*$

Oppsum: $\{X_n\} \subseteq A$, s.a. $X_n \longrightarrow C$ og $\{y_n\} \in A^c$ s.a. $y_n \longrightarrow C$.

5.2: Kompletchet av IR

4.) a) $VIS: \vec{X}$ opphopningsplit. $\iff \vec{X}_n \vec{S}$ har delfolge som konv. mot \vec{X} .

Bevis: \Rightarrow : Anta at \vec{x} ev et opphopningsplit for $\{\vec{x}_n\}$. La $n \in \mathbb{N}$. Da vil enhver kule $B(\vec{x}_n, \frac{1}{n})$ inneholde minst et plut, f. elss. \vec{x}_m , fra folgen. Definer en delfolge of $\vec{y}_n := \vec{x}_m$. Da vil delfolgen $\{\vec{y}_n\}$ konvergere mot \vec{x} siden $|\vec{y}_n - \vec{x}| \leq \frac{1}{n} - \frac{1}{n-n} 0$.

b) Bevis: Fra Bolzano-Weierstass teorem har enhver følge i A en lænvergent delfølge (siden A er begrenset). La x være plit. denne delfølgen konvergerer mot. Merle: X E A siden A er belæt. Fra a) er X et opphopningsplit. for {X^2}. Hen dermed har følgen et opphopningsplit. i A.

C) plet ilde i A?

Bevis: At A ileke ev lubbet betyr at clot fins et plet. X & A, men der hver kule

 $B(\vec{X}, \frac{1}{n})$, for $n \in \mathbb{N}$, inneholder plot. from A. F. Clis. kan vi kalle et slilet plot $X_n \in A$. Ved å gjóre dette for alle $n \in \mathbb{N}$ får vi en fólge $\{X_n^*\}$ som konvergerer mot X (siden kulene blir mindre og mindre). Denne fólgen ligger i A og har kun ett opphopningspunlet, nemlig X (siden $X_n^* - DX$). Men $X \notin A$, så dermed har vi furnet en fólge i A som ilde har voe opphopningsplot i A. \square

d) x_n^{\dagger} . Beris: Siden A ikke en begrenset fins det en følge $\{X_n^{\dagger}\}$ i A den $|\overline{X}_{n+1}^{\dagger}| > |\overline{X}_n^{\dagger}| + 1$: (*)

Det betyr at: $\begin{vmatrix}
-b \\
X_{n+k}
\end{vmatrix} > \begin{vmatrix}
-b \\
X_{n+k-1}
\end{vmatrix} + \begin{vmatrix}
-b \\
X_{n+k-2}
\end{vmatrix} + \begin{vmatrix}
+1 \\
X_{n+k-2$

Men: $\left| \begin{array}{c} \overline{X}_{n+k} \right| = \left| \begin{array}{c} \overline{X}_{n+k} - \overline{X}_{n} + \overline{X}_{n} \right| \leq \left| \begin{array}{c} \overline{X}_{n+k} - \overline{X}_{n} \right| + \left| \begin{array}{c} \overline{X}_{n} \right| \\ \overline{X}_{n+k} - \overline{X}_{n} \end{array} \right| + \left| \begin{array}{c} \overline{X}_{n} \right| = \left| \begin{array}{c} \overline{X}_{n} - \overline{X}_{n} \end{array} \right| + \left| \begin{array}{c} \overline{X}_{n} - \overline{X}_{n} \end{array} \right| + \left| \begin{array}{c} \overline{X}_{n} - \overline{X}_{n} - \overline{X}_{n} \end{array} \right| + \left| \begin{array}{c} \overline{X}_{n} - \overline{X}_{n} -$

 $\begin{aligned} & |X_{n+k}| - |X_n| \leq |X_{n+k} - |X_n| \\ & |X_{n+k}| - |X_n| \leq |X_{n+k}| - |X_n| \\ & |X_{n+k}| - |X_n| > |X_{n+k}| - |X_n| > k , \text{ for } k \in \mathbb{N} \end{aligned}$

Men dermed kan ikke {Xn} har noe opphopningspunket siden alle plet. i folgenhar aestand større enn minste slikek, des. 1.

5.4: Herasjon ou funksjoner

$$-\frac{f}{4} - \alpha(p+q)$$
6) a) Firma 1: max $|000e$

P

etterp.

pris

salgrindelit

Dette er malesimum siden funk må ha et malesimum og det kan ikke vær minimum siden dette oppnås for p=0.

Helt tilsvarende: Firma 2:

$$q^* = q = \frac{P}{1 + BP}$$

$$f(x) = x^{2} + x - 2$$

$$f(x) = x^{2} + x - 2$$

$$f(x) = x$$

$$f(x) =$$