1. After PC-1 the swapped bit is at position 8

a.	Round 1:	position 7	PC-2: position 20	S4
b.	Round 2:	position 6	PC-2: position 10	S2
C.	Round 3:	position 4	PC-2: position 16	S3
d.	Round 4:	position 2	PC-2: position 24	S4
e.	Round 5:	position 28	PC-2: position 8	S2
f.	Round 6:	position 26	PC-2: position 17	S3
g.	Round 7:	position 24	PC-2: position 4	S1
h.	Round 8:	position 22	PC-2: position unused	Snone
i.	Round 9:	position 21	PC-2: position 11	S2
j.	Round 10:	position 19	PC-2: position 14	S3
k.	Round 11:	position 17	PC-2: position 2	S1
I.	Round 12:	position 15	PC-2: position 9	S2
m.	Round 13:	position 13	PC-2: position 23	S4
n.	Round 14:	position 11	PC-2: position 3	S1
0.	Round 15:	position 9	PC-2: position unused	Snone
p.	Round 16:	position 8	PC-2: position 18	S3

- q. For decryption the order would be reversed, so decryption round1 would have S3 affected, round 2 none, round 3 S1 and so on.
- 2. Given that decryption uses the same key schedule except in reverse, and that L_0^d/R_0^d during decryption are equal to R_{16}/L_{16} : the final encryption creating $R_{16} = L_{15}$ * key16 and $L_{16} = R_{15}$ would clearly be the same as the first step in decryption, where key1^d = key16, so since the key is used in a reversible operation, $R_1^d = L_0^d$ * key1^d = R_{16} * key16 = L_{15} , and $L_1^d = R_0^d = R_{15}$

3.

a. Inverse of 25mod1033 is 124mod1033

i	q	r	s	t
0		1033	1	0
1	41	25	0	1
2	3	8	1	-41
3	8	1	-3	124
4		0	24	-1033

b. Inverse of 25mod1034 is 455mod1034

i	q	r	s	t
0		1034	1	0
1	41	25	0	1
2	2	9	1	-41
3	1	7	-2	83
4	3	2	3	-124
5		1	-11	455

c. 25mod1035 has no inverse

i	q	r	S	t
0		1035	1	0
1	41	25	0	1
2	2	10	1	-41
3	2	5	-2	83
4		0	5	-207

d. Inverse of 25mod1036 is 373mod1036

i	q	r	s	t
0		1036	1	0
1	41	25	0	1
2	2	11	1	-41
3	3	3	-2	83
4	1	2	7	-290
5		1	-9	373

4. Python code to use the EEA to find the multiplicative inverse of 123456 mod 7111111:

$$s = [1, 0]$$

t = [0, 1]

i = 1

r = [7111111, 123456]

q = [None]

while(True):

```
i+=1
r.append(r[i-2]%r[i-1])
q.append((r[i-2] - r[i])/r[i-1])
s.append(s[i-2] - q[i-1]*s[i-1])
t.append(t[i-2] - q[i-1]*t[i-1])
if(r[-1] is 0):
    if r[-2] is 1:
        print("multiplicative inverse of %s mod %s is %s"%(r[1], r[0], t[-2]))
    else:
        print("no multiplicative inverse exists for %s mod %s"%(r[1], r[0]))
    break
```