

8th Author Profiling task at PAN Profiling Fake News Spreaders on Twitter

PAN-AP-2020 CLEF 2020 Online, 22-25 September

Introduction

Author profiling aims at identifying personal traits such as age, gender, personality traits, native language, language variety... from writings?

This is crucial for:

- Marketing.
- Security.
- Forensics.

Task goal

Given a Twitter feed, determine whether its author is **keen to spread fake news or not**.

Two languages:

English Spanish

Corpus

Methodology

- 1. Selection of fake news from Politifact and Snopes related sites (+ manual review).
- 2. Collection of tweets responding to the previous news:
 - 2.1. Manual inspection to ensure that the tweet refers to the news.
 - 2.2. Manual annotation of those tweets supporting vs. rejecting the news.
- 3. Timeline collection
 - 3.1. Manual review of the tweets to label the fake ones.
 - 3.2. Users with one of more fake tweets are keen to spread them. Otherwise, they are not.
 - 3.3. Removal of tweets referring explicitly to the fake news (to avoid bias).

	(EN) English			(ES) Spanish		
	Keen to spread fake news	Not keen to spread fake news	Total	Keen to spread fake news	Not keen to spread fake news	Total
Training	150	150	300	150	150	300
Test	100	100	200	100	100	200
Total	250	250	500	250	250	500

Evaluation measures

The **accuracy** is calculated per language and averaged:

$$ranking = \frac{acc_{en} + acc_{es}}{2}$$

Baselines

RANDOM	A baseline that randomly generates the predictions among the different classes
LSTM	An Long Short-Term Memory neural network that uses FastTex embeddings to represent texts.
CHAR N-GRAMS	With values for \$n\$ from 2 to 6, with a SVM
WORD N-GRAMS	With values for \$n\$ from 1 to 3, with a Neural Network
EIN	The Emotionally-Infused Neural (EIN) network with word embedding and emotional features as the input of an LSTM
Symanto (LDSE)	This method represents documents on the basis of the probability distribution of occurrence of their words in the different classes. The key concept of LDSE is a weight, representing the probability of a term to belong to one of the different categories: fake news spreaders / non-spreader. The distribution of weights for a given document should be closer to the weights of its corresponding category. LDSE takes advantage of the whole vocabulary

Approaches

What kind of ...

Preprocessing

Features

Methods

... did the teams perform?

Approaches - Preprocessing Twitter elements (RT, VIA, Giglou; Hashemi; Pinnaparaju

Twitter elements (RT, VIA, FAV)	Giglou; Hashemi; Pinnaparaju
Emojis and other non-alphanumeric chars	Buda; Pinnaparaju; Vogel; Giglou; Espinosa; Majumder; Lichouri; Shashirekha
Lemmatisation	Giglou; Hashemi; Lichouri; Shashirekha
Tokenisation	Vogel; Labadie; Fernández; Espinosa; Lichouri; Shashirekha; Baruah
Punctuation signs	Vogel; Koloski; Giglou; Espinosa; Hashemi; Lichouri; Shashirekha
Numbers	Pizarro; Vogel; Giglou; Espinosa; Hashemi; Shashirekha
Lowercase	Buda; Pizarro; Vogel; Pinnaparaju
Stopwords	Vogel; Koloski; Giglou; Espinosa; Hashemi; Lichouri; Shashirekha
Character flooding	Vogel; Labadie
Infrequent terms	Ikade
Short texts	Vogel

Approaches - Features Stylistic features: Mann

Stylistic features: - Number of occurrences - Verbs, adjs, pronouns - Number of hashtags, mentions, URLs - Capital vs. lower letters - Punctuation marks	Manna; Buda; Lichouri; Justin; Niven; Russo; Hörtenhuemer; Cardaioli; Spezanno; Ogaltsov; Labadie; Hashemi; Moreno-Sandoval;		
N-gram models	Pizarro; Espinosa; Vogel; Koloski; López-Fernández; Vijayasaradhi; Buda; Lichouri; Justin; Hörtenhuemer; Spezanno; Aguirrezabal; Shashirekha; Babaei; Labadie; Hashemi;		
Emotional and personality features	Justin; Niven; Russo; Hörtenhuemer; Espinosa; Cardaioli; Spezanno; Moreno-Sandoval;		
Embeddings	Justin; Hörtenhuemer; Aguirrezabal; Ogaltsov; Shashirekha; Babaei; Labadie; Hashemi; Cilet; Majumder;		
BERT	Spezanno; Kaushik; Baruah; Chien;		

^{* 9} teams have used Symanto API to obtain psycholinguistic and/or emotional features

Approaches - Methods SVM Pizarro: Vogel

SVM	Pizarro; Vogel; Koloski; Espinosa; Fernández; Hashemi; Lichouri; Aguirrezabal; Fersini
Logistic regression	Buda; Vogel; Koloski; Hörtennhuemer; Pinnaparaju; Aguirrezabal; Manna
Random Forest	Cardaioli; Espinosa; Hashemi; Aguirrezabal; Sandoval; Manna
Ensembles	Ikade; Shrestha; Shashirekha; Niven
Multilayer Perceptron	Aguerrizabal
NN with Dense Layer	Baruah
Fully-Connected NN	Giglou
CNN	Chilet
LSTM	Majumder; Labadie
bi-LSTM	Saeed
Ensemble (GRU + CNN)	Bakhteev

Confusion matrices

ENGLISH

Best results at PAN'20

Conclusions

- Several approaches to tackle the task:
 - o n-Grams + SVM prevailing.
- Best results in English:
 - o Over 67% on average.
 - o Best (75%): Buda and Bolonyai n-Grams + Stylistic features + Logistic Regression ensemble
- Best results in Spanish:
 - Over 73% on average.
 - Best (82%): Pizarro char & word n-Grams + SVM.
- Error analysis:
 - o English:
 - False positives (real news spreaders as fake news spreaders): 35.50%
 - False negatives (fake news spreaders as real news spreaders): 30.03%
 - Spanish:
 - False positives (real news spreaders as fake news spreaders): 20.23%
 - False negatives (fake news spreaders as real news spreaders): 35.09%

Looking at the results, we can conclude:

- It is feasible to automatically identify Fake News Spreaders with high precision
 - ...even when only textual features are used.
- We have to bear in mind false positives since especially in English, they sum up to one-third of the total predictions, and misclassification might lead to ethical or legal implications.

Task Impact

Industry at PAN (Author Profiling)

Organisation

Sponsors

symanto psychology ai

This year, the winners of the task are (ex aequo):

- Jakab Buda and Flora Bolonyai, Eötvös Loránd University, Hungary
- Juan Pizarro, Chile

On behalf of the author profiling task organisers:

Thank you very much for participating and hope to see you next year!!