

Extraction de mots clés à partir d'articles scientifiques: comparaison entre modèles traditionnels et modèles de langue

Nacef Ben Mansour et Motasem Alrahabi Sorbonne Université

Colloque Ariane, Paris, 26 et 27 novembre 2024

Plan

- Etat de l'art
- Approches
- Evaluation
- Discussion

Open Science
Keywords Extraction
Scientific Papers
Expert Finding Systems
Large Language Models
HAL

Présentation

- Contexte général
 - Cette étude, initiée lors d'un stage à dans un projet plus vaste visant à des personnels et des laboratoires de SU.
 - → renforcer les partenariats, les
 à l'aide de la structuration des
 d'outils d'interrogation adaptés à la science ouverte.

Projet Expertise SU (prof. Stéphane Le Crom)

- L'extraction automatique des mots-clés est au cœur de ce projet en cours: elle permet de relier chaque expertise à une liste de mots-clés représentatifs et pertinents.
- Objectif du stage: <u>comparer</u> les performances des outils existants pour l'extraction des mots clés à partir de la base de données HAL.

Extraction des mots-clés: état de l'art

- L'extraction de mots-clés permet de sélectionner les termes les <u>plus importants</u> et représentatifs d'un document ou d'un corpus.
- Cette technique permet de condenser un texte, d'améliorer la recherche d'information et d'analyser les tendances émergentes.
- Distinguer entre méthodes <u>extractives</u> qui sélectionnent des mots-clés existants dans le texte, et les méthodes <u>génératives</u> qui créent ou reformulent des mots-clés.

Contexte et état de l'art

- Les approches classiques
 - Heuristiques: utilisation de mesures comme TF-IDF pour pondérer les mots selon leur fréquence.
 - Statistiques et probabilistes: comme les chaînes de Markov.
 - Règles linguistiques : analyse syntaxique et extraction basée sur des syntagmes nominaux ou des caractéristiques linguistiques (YAKE!).
 - Apprentissage supervisé et non supervisé : Modèles entraînés sur des données annotées ou techniques exploitant des graphes (TextRank, PositionRank).
- Bien qu'efficaces, ces approches manquent de nuance contextuelle.

Contexte et état de l'art

- Les approches modernes (basées sur les réseaux neuronaux et les LLMs)
 - Méthodes basées sur les motifs et la similarité contextuelle : des approches comme PatternRank et KeyBERT utilisent des embeddings contextuels et des motifs syntaxiques (PoS) pour évaluer la proximité des mots-clés avec le texte source.
 - Extraction Zero-shot, Few-shot et Fine-tuning : Ces modèles permettent une génération de mots-clés sans entraînement (zero-shot), avec peu d'exemples annotés (few-shot) ou via un fine-tuning sur des corpus spécifiques.
- Tendances émergentes: approches hybrides, adaptation linguistique et modélisation thématique (BERTopic), etc.

Méthodologie

- Extraction des résumés et des mots-clés d'auteurs depuis HAL.
 - Considérer que les mots clés d'auteurs comme référence
- Mise en œuvre d'approches classiques et modernes:
 - avec une utilisation zero-shot pour les LLMs.
 - avec deux configurations: résumés seuls ou résumés combinés aux titres.
- Évaluation de la pertinence et de la précision des mots-clés extraits (P, R, F1).
- Analyse des résultats via des statistiques descriptives et des analyses qualitatives.

Données

- Source des données : <u>Plateforme HAL</u>, une archive ouverte pour la diffusion des travaux de recherche scientifique (216k publications SU → échantillon SCAI, ≈ 12k)
- Normalisation : tous les titres, mots-clés et résumés ont été convertis en minuscules.

Evaluation

 Comparaison des mots-clés générés avec ceux fournis par les auteurs sur HAL.
 Métrique utilisée : F1-Score, moyenne harmonique entre la précision et le rappel:

$$F = 2 \cdot rac{ (ext{pr\'ecision} \cdot ext{rappel})}{ (ext{pr\'ecision} + ext{rappel})}$$

Résultats: approches classiques

• Ces résultats montrent une performance disparate, avec des écarts allant jusqu'à 60% entre les modèles les plus faibles (TextRank) et les plus performants (PositionRank, suivi de MultipartiteRank).

Graph	/ Stat	with	title

Modèle	Precision	Recall	F1 Score
kw_by_pos_rank	0.062	0.115	0.080
kw_by_mp_rank	0.062	0.113	0.079
kw_by_topic_rank	0.059	0.108	0.076
kw_by_single_rank	0.053	0.098	0.068
kw_by_yake	0.053	0.098	0.068
kw_by_text_rank	0.039	0.072	0.050

Graph / Stat Without title

Modèle	Precision	Recall	F1 Score
kw_by_pos_rank	0.056	0.103	0.072
kw_by_mp_rank	0.056	0.103	0.072
kw_by_topic_rank	0.053	0.096	0.068
kw_by_yake	0.052	0.096	0.067
kw_by_single_rank	0.045	0.083	0.058
kw_by_text_rank	0.036	0.066	0.046

Résultats: approches modernes (embeddings)

- Les résultats pour KeyBERT selon les variantes MMR et MSum sont très similaires, ce qui indique des performances quasiment équivalentes.
- L'inclusion du titre n'a pas d'effet significatif sur les résultats.

Keybert with title			
Modèle	Precision	Recall	F1 Score
kw_by_keybert	0.058	0.081	0.067
kw_by_keybert_mmr_msum	0.052	0.073	0.061

Résultats: approches modernes (LLMs)

I I M with title

• Les résultats montrent une variabilité importante, avec des performances allant du simple au triple. L'inclusion des titres améliore les performances d'environ 10 %.

I I M without title

LLIVI WITH TIT	ie			
	Modèle	Precision	Recall	F1 Score
lla	ma3-70b-8192	0.132	0.245	0.163
claude-3-h	aiku-20240307	0.130	0.218	0.154
11	lama3-8b-8192	0.147	0.181	0.151
	gpt4o	0.075	0.222	0.108
cla	ude-instant-1.2	0.073	0.183	0.097
kw.	_openai_gpt3.5	0.089	0.094	0.087
ope	en-mixtral-8x7b	0.057	0.188	0.083
o	pen-mistral-7b	0.050	0.199	0.077
	gemma-7b-it	0.051	0.079	0.059

Evaluation: Exact Matching vs Fuzzy Matching

• Exact Matching : Une correspondance stricte où les mots-clés extraits sont exactement identiques à ceux attendus. Example:

• Fuzzy Matching : Une correspondance flexible basé sur des différents algorithmes : Distance de Jaro-Winkler, <u>Distance de Levenshtein</u>, embeddings. Example :

avec la distance de Levenshtein

Résultats: approches classiques

Résultats: approches modernes (embeddings)

Résultats: approches modernes (LLMs)

LLMs et coût par token (Token Efficiency Score)

 On introduit une nouvelle métrique *TES* combinant les performances des LLMs et les coûts, tout en pénalisant les coûts.

$$ext{TES} = rac{(1+lpha) imes F_1 imes ext{Prix}}{lpha imes ext{Prix} + F_1}$$

avec α = 10 ici.

LLMs et coût par token

LLMs et coût par token (Token Efficiency Score)

Conclusion

Apports:

- Les LLMs surpassent les méthodes classiques en précision et pertinence, même en zero-shot.
- La TES montre que les modèles les moins coûteux offrent le meilleur compromis qualité/coût.
- L'intégration des titres améliore les scores F1 sans surcharger les tokens.
- Code disponible: https://github.com/obtic-sorbonne/keywords

Conclusion

• Limites:

- Fonctionnement des LLMs comme des "boîtes noires".
- La sensibilité aux prompts entraîne des résultats instables et des ajustements fréquents.
- Les prompts détaillés augmentent les coûts sans garantie d'amélioration significative.
- Consistance du corpus HAL :
 - De nombreux mots-clés fournis par les auteurs ne figurent pas dans les résumés ou titres.
 - Mots-clés absents...
 - Auto-promotion, mise à jour, validation humaine?

Conclusion

Perspectives:

- Analyser les textes complets pour extraire des mots-clés plus riches.
- Calibrer les prompts pour affiner les résultats sans alourdir les requêtes.
- Fine-tuner un LLM sur un nouveau "Gold standard".

Merci! des questions?