@Название@

@k.idcr

2025 г.

Содержание

1	@Название главы 1@		
	1.1	©Название подглавы 1@	2

1. @Название главы 1@

1.1. @Название подглавы 1@

Это небольшая демонстрация настроенных окружений для теорем, доказательств и прочего.

Теорема 1.1: Линейная зависимость двух векторов

Два вектора **u** и **v** линейно зависимы тогда и только тогда, когда:

$$\exists \lambda \in \mathbb{R} \colon \mathbf{u} = \lambda \mathbf{v}$$
 или $\mathbf{v} = \lambda \mathbf{u}$.

Доказательство 1.1

Необходимость: Если ${\bf u}$ и ${\bf v}$ линейно зависимы, то существуют коэффициенты $\alpha, \beta \in \mathbb{R}$, не равные нулю одновременно, такие что:

$$\alpha \mathbf{u} + \beta \mathbf{v} = \mathbf{0}.$$

Без ограничения общности, пусть $\alpha \neq 0$. Тогда:

$$\mathbf{u} = -\frac{\beta}{\alpha}\mathbf{v} = \lambda\mathbf{v}$$
, где $\lambda = -\frac{\beta}{\alpha}$.

Достаточность: Если $\mathbf{u} = \lambda \mathbf{v}$, то:

$$1 \cdot \mathbf{u} - \lambda \cdot \mathbf{v} = \mathbf{0},$$

что означает линейную зависимость \mathbf{u} и \mathbf{v} (коэффициенты 1 и $-\lambda$ не равны нулю одновременно).

Лемма 1.1: О линейной зависимости

Если в наборе векторов $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ один из векторов является линейной комбинацией остальных, то этот набор линейно зависим.

Определение 1.1: Собственные вектор и значение

Пусть A - квадратная матрица размера $n \times n$.

• Ненулевой вектор $\mathbf{v} \in \mathbb{R}^n$ называется **собственным вектором** матрицы A, если существует число $\lambda \in \mathbb{R}$ такое, что:

$$A\mathbf{v} = \lambda \mathbf{v}$$

• Число λ в этом случае называется **собственным значением** матрицы A, соответствующим вектору ${\bf v}$.

Эквивалентно, λ является собственным значением, если:

$$\det(A - \lambda I) = 0$$

где I - единичная матрица соответствующего размера.