TD 7 : Théorème d'arrêt et convergence des martingales Corrigé

Mercredi 24 Octobre

1 Théorème d'arrêt, vaisseaux spatiaux et chimpanzés

Exercice 1 (Marche aléatoire biaisée)

Soit $p > \frac{1}{2}$ et $(S_n)_{n \geq 0}$ une marche aléatoire biaisée sur \mathbb{Z} , i.e. $S_n = X_1 + \cdots + X_n$ avec X_i i.i.d. et $\mathbb{P}(X_i = 1) = p$ et $\mathbb{P}(X_i = -1) = 1 - p$.

- 1. Trouver α tel que α^{S_n} soit une martingale.
- 2. Soient $a, b \ge 1$ et soit $T = \min\{n \ge 0 | S_n = -a \text{ ou } S_n = b\}$. Calculer $\mathbb{P}(S_T = -a)$.
- 3. En déduire la loi de $\min\{S_n|n\geq 0\}$.

Solution de l'exercice 1

1. On a $\mathbb{E}[\alpha^{S_{n+1}}|\mathcal{F}_n] = \alpha^{S_n}\mathbb{E}[\alpha^{X_{n+1}}] = \alpha^{S_n}\left(p\alpha + (1-p)\alpha^{-1}\right)$. Le processus (α^{S_n}) est donc une martingale ssi

$$p\alpha + (1-p)\alpha^{-1} = 1,$$

ce qui est une équation de degré 2 en α . En la résolvant, on obtient $\alpha=1$ (ce qui n'est pas très intéressant) ou $\alpha=\frac{1-p}{p}$.

2. La loi forte des grands nombres nous garantit que

$$\frac{S_n}{n} \xrightarrow[n \to +\infty]{p.s.} \mathbb{E}[X_1]2p - 1 > 0.$$

En particulier, on a $S_n \to +\infty$ p.s., donc $T < +\infty$ p.s. (on pourrait aussi utiliser l'exercice 6 du TD 6). On se donne t > 0 et on applique le théorème d'arrêt au temps d'arrêt borné $t \wedge T$:

$$\mathbb{E}[S_{T \wedge t}] = \mathbb{E}[S_0] = \alpha^0 = 1.$$

Comme $S_{T \wedge t}$ est borné par α^{-a} , en faisant tendre t vers $+\infty$, on obtient $\mathbb{E}[S_T] = 1$ par convergence dominée, soit

$$1 = \alpha^{-a} \mathbb{P} \left(S_T = -a \right) + \alpha^b \left(1 - \mathbb{P} \left(S_T = -a \right) \right),$$

d'où

$$\mathbb{P}(S_T = -a) = \frac{\alpha^a - \alpha^{a+b}}{1 - \alpha^{a+b}}$$

avec $\alpha = \frac{1-p}{p}$.

3. Pour $a \ge 1$, notons T_{-a} le premier temps où la marche prend la valeur -a. Alors T_{-a} est un temps d'arrêt (peut-être infini). On a $\alpha < 1$ donc, en faisant tendre b vers $+\infty$, on obtient

$$\mathbb{P}\left(T_{-a} < +\infty\right) = \lim_{b \to +\infty} \mathbb{P}\left(T_{-a} < T_b\right) = \alpha^a = \left(\frac{1-p}{p}\right)^a$$

pour $a \ge 0$, où $T_{-a} = \min\{n \ge 0 | S_n = -a\}$. On en déduit que $-\min\{S_n | n \ge 0\}$ suit une loi géométrique de paramètre $\alpha = \frac{1-p}{p}$.

Exercice 2 (Vaisseau spatial perdu)

Le Millenium Falcon se trouve à une distance D_0 du Soleil mais ses commandes ne répondent plus : toutes les heures, Han Solo ne peut qu'entrer une distance R_n inférieure à la distance au Soleil dans l'ordinateur de bord, qui effectue alors un saut dans l'hyperespace de longueur R_n et de direction choisie uniformément dans la sphère S^2 . On note D_n la distance du vaisseau au Soleil après n sauts et \mathcal{F}_n la tribu engendrée par les n premiers sauts. Han Solo veut revenir dans le système solaire, c'est-à-dire à distance au plus d du Soleil.

- 1. En utilisant des souvenirs de physique de prépa (théorème de Gauss), montrer que $\left(\frac{1}{D_n}\right)$ est une martingale.
- 2. En déduire que la probabilité que Han Solo revienne un jour dans le système solaire est inférieure ou égale à $\frac{d}{D_0}$.
- 3. A la place du pilote, feriez-vous plutôt de grands ou de petits sauts?

Solution de l'exercice 2 Toutes les justifications des interversions seront laissées en exercice.

1. Soient X_n la variable aléatoire à valeurs dans S^2 qui indique la direction du n-ième saut, et S_n la position du vaisseau au temps n. Soit aussi $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. Notons qu'au moment où il choisit R_{n+1} , la seule information dont dispose le pilote est l'ensemble des sauts déjà effectués, donc \mathcal{F}_n , donc R_{n+1} est \mathcal{F}_n -mesurable. On veut montrer que $\mathbb{E}\left[\|S_n + R_{n+1}X_{n+1}\|^{-1} |\mathcal{F}_n\right] = \|S_n\|^{-1}$. Pour tout x dans $\mathbb{R}^3 \setminus \{0\}$, on pose $f(x) = \|x\|^{-1}$. On a

$$\mathbb{E}[f(S_n + R_{n+1}X_{n+1}) | \mathcal{F}_n] = \frac{1}{4\pi} \int_{S^2} f(S_n + R_{n+1}u) du.$$

On veut donc montrer que pour tous $x \in \mathbb{R}^3$ et r < ||x||:

$$\frac{1}{4\pi} \int_{S^2} f(x+ru) \, \mathrm{d}u = f(x).$$

Il suffit pour cela de vérifier que la dérivée par rapport à r du membre de gauche est nulle (par convergence dominée, il tend bien vers f(x) quand $r \to 0$). Notons que le membre de gauche a une discontinuité en $r = \|x\|$, c'est pourquoi on impose $r < \|x\|$. En intervertissant dérivée et intégrale puis en appliquant le théorème de Gauss, on obtient

$$\frac{\mathrm{d}}{\mathrm{d}r} \int_{S^2} f(x+ru) \, \mathrm{d}u = \int_{S^2} \nabla f(x+ru) \cdot u \, \mathrm{d}u$$

$$= \int_{B_1} \mathrm{div}(\nabla f(x+y)) \, \mathrm{d}y$$

$$= \int_{B_1} \Delta f,$$

où B_1 est la boule de rayon 1 autour de l'origine dans \mathbb{R}^3 . Un simple calcul (ou, à nouveau, des souvenirs de physique de prépa) montre que le Laplacien Δf est nul sur $\mathbb{R}^3 \setminus \{0\}$, donc $\frac{1}{D_n}$ est bien une martingale.

2. Soit $T = \inf\{n|D_n \leq d\}$. Le temps T est un temps d'arrêt (éventuellement infini), donc on peut appliquer le théorème d'arrêt à $T \wedge t$ et à la martingale $\frac{1}{D_n}$:

$$\mathbb{E}\left[\frac{1}{D_{T\wedge t}}\right] = \frac{1}{D_0}.$$

On en déduit,

$$\mathbb{P}(T \le t) = \mathbb{P}(D_{T \land t} \le d)
= \mathbb{P}\left(\frac{1}{D_{T \land t}} \ge \frac{1}{d}\right)
\le \left(\frac{1}{d}\right)^{-1} \mathbb{E}\left[\frac{1}{D_{T \land t}}\right]
= \frac{d}{D_0}$$

en utilisant à la fin l'inégalité de Markov. Ceci est valable pour tout t>0, donc $\mathbb{P}(T<+\infty)\leq \frac{d}{Da}$.

3. On veut que l'inégalité de la question précédente soit la plus serrée possible. Le seul endroit où on n'a pas égalité ci-dessus est dans l'inégalité de Markov (avant-dernière ligne du dernier calcul). Pour que l'inégalité de Markov soit serrée, il faut que $\frac{1}{D_{T \wedge t}}$ ne puisse pas être "beaucoup" plus grande que $\frac{1}{d}$. Il faut donc faire de petits sauts à l'approche du système solaire. On peut vérifier (exercice!) que pour tout $\varepsilon > 0$, si le saut à chaque étape n est inférieur ou égal à $D_n - d + \varepsilon$, alors on a $\mathbb{P}(T < +\infty) \geq \frac{d-\varepsilon}{D_0}$.

Remarque L'hypothèse "les sauts sont plus petits que la distance au Soleil" peut paraître arbitraire. En supprimant cette hypothèse, le processus $\left(\frac{1}{D_n}\right)_{n\geq 0}$ n'est plus forcément une martingale mais une surmartingale, c'est-à-dire que $E\left[\frac{1}{D_{n+1}}|\mathcal{F}_n\right] \leq \frac{1}{D_n}$. La raison est que, au sens des distributions, le Laplacien de $x \to ||x||^{-1}$ sur \mathbb{R}^3 est (à une constante) multiplicative près) $-\delta_0$, donc est négatif. Le théorème d'arrêt peut s'adapter aux surmartingales et donne

$$\mathbb{E}\left[\frac{1}{D_{T\wedge t}}\right] \leq \frac{1}{D_0}.$$

L'inégalité étant dans le bon sens, le résultat de la question 2 reste vrai. Cela montre que faire des sauts trop grands ne peut qu'aggraver la situation de notre vaisseau.

Exercice 3 (Le singe et la machine à écrire)

Un chimpanzé est assis devant une machine à écrire et commence à taper une lettre par seconde. Il tape à chaque fois une lettre choisie uniformément parmi les 26 lettres de l'alphabet, indépendamment des lettres précédentes. On note T le premier temps auquel les 11 dernières lettres écrites par le singe forment le mot "ABRACADABRA". Le but de l'exercice est de calculer $\mathbb{E}[T]$. Pour cela, on va définir une martingale. On suppose que le singe a juste à côté de lui un sac rempli de beaucoup (beaucoup, beaucoup) de bananes. On joue alors au jeu suivant : juste avant chaque seconde $n=1,2,3,\ldots$ un joueur arrive derrière le singe et parie 1 banane avec lui sur l'événement

{la n-ième lettre tapée par l'animal est un "A"}.

Si il perd, il part (et le singe met 1 banane dans son sac). Si il gagne, il reçoit 26 bananes du singe, qu'il remise immédiatement sur l'événement

{la n + 1-ième lettre tapée par l'animal est un "B"}.

Si il perd, il part. Si il gagne, il reçoit 26² bananes qu'il remise immédiatement sur l'événement

{la n + 2-ième lettre tapée par l'animal est un "R"}.

Et ainsi de suite jusqu'à ce que "ABRACADABRA" sorte de la machine. Notez qu'il peut y avoir jusqu'à trois joueurs en train de miser derrière le singe.

- 1. Montrer que le nombre de bananes dans le sac du chimpanzé au temps n est une martingale pour $(\mathcal{F}_n)_{n\geq 0}$, où \mathcal{F}_n est la tribu engendrée par les n premières lettres tapées par l'animal.
- 2. En déduire

$$\mathbb{E}[T] = 26^{11} + 26^4 + 26.$$

3. Refaire le même exercice en remplaçant "ABRACADABRA" par "ABCDEFGHIJK". Commenter.

Solution de l'exercice 3

- 1. Cela est dû au fait que les paris sont à chaque étape "équilibrés" : conditionnellement à \mathcal{F}_n , l'espérance de gain de chacun des parieurs est nulle donc l'espérance de gain du singe aussi.
- 2. Supposons d'abord qu'on puisse appliquer le théorème d'arrêt à T: alors la variation du nombre de bananes dans le sac du singe au temps T est d'espérance nulle, donc l'espérance de ses gains est égale à l'espérance de ses pertes. Les pertes du singe sont faciles à calculer: au moment où ABRACADABRA sort, il y a 3 parieurs derrière le singe: un qui est arrivé juste avant le premier "A" et qui repart avec 26^{11} bananes, un qui est arrivé juste avant le second "A" et qui repart avec 26^4 bananes, et un qui est arrivé juste avant le dernier "A" et qui repart avec 26 bananes. Les pertes du singe sont donc de $26^{11} + 26^4 + 26$ bananes. D'autre part, chacun des T parieurs qui est passé a donné une banane au singe (y compris les 3 parieurs qui gagnent à la fin), donc les gains du singe sont de T bananes.

Pour écrire cela proprement, on peut appliquer le théorème d'arrêt à $T \wedge t$. Les gains du singe au temps $T \wedge t$ valent alors $T \wedge t$ et on a $\mathbb{E}[T \wedge t] \to \mathbb{E}[T]$ par convergence monotone. Les pertes du singe sont majorées par $26^{11} + 26^{10} + \cdots + 1$ et tendent p.s. vers $26^{11} + 26^4 + 26$ quand t tend vers $+\infty$, donc leur espérance tend vers $26^{11} + 26^4 + 26$ bananes par convergence dominée.

3. On obtient $\mathbb{E}[T] = 26^{11}$, soit une espérance strictement inférieure à celle du temps d'apparition de ABRACADABRA. Si cela peut paraître contre-intuitif, la raison est que les sous-mots qui se répètent ("A" et "ABRA") introduisent des corrélations positives entre l'apparition de "ABRA-CADABRA" à deux rangs différents, ce qui augmente les chances que l'événement se produise très tard.

2 Convergence des martingales

Exercice 4 (Exemples et contre-exemples)

- 1. Trouver un exemple de martingale qui n'est pas bornée dans L^1 .
- 2. Trouver un exemple de martingale qui converge p.s. mais n'est pas bornée dans L^1 .
- 3. Trouver un exemple de martingale qui converge p.s. vers $+\infty$.
- 4. Trouver un exemple de martingale bornée dans L^1 mais qui ne converge pas dans L^1 .

Solution de l'exercice 4

- 1. La marche aléatoire simple sur \mathbb{Z} .
- 2. Soient $(X_n)_{n\geq 1}$ des variables indépendantes vérifiant

$$\mathbb{P}(X_n = 100^n) = \mathbb{P}(X_n = -100^n) = \frac{1}{10^n}, \text{ et } \mathbb{P}(X_n = 0) = 1 - \frac{2}{10^n},$$

et $M_n = \sum_{i=1}^n X_i$ pour tout $n \ge 0$. On vérifie facilement que $\mathbb{E}[X_n] = 0$ pour tout n, donc M est une martingale. On a de plus $\sum_{n\ge 1} \frac{2}{10^n} < +\infty$, donc par Borel-Cantelli, presque sûrement, $X_n = 0$ pour n assez grand et (M_n) converge p.s. Enfin, pour tout n, si $X_n = 100^n$ alors $M_n \ge \frac{100^n}{2}$ donc

$$\mathbb{E}\left[\left|M_n\right|\right] \geq \frac{100^n}{2} \mathbb{P}\left(M_n \geq \frac{100^n}{2}\right) = \frac{100^n}{2} \mathbb{P}\left(X_n = 100^n\right) = \frac{10^n}{2} \xrightarrow[n \to +\infty]{} +\infty.$$

3. Soient $(X_n)_{n\geq 1}$ des variables indépendantes vérifiant

$$\mathbb{P}(X_n = 1) = \frac{n^2}{n^2 + 1}$$
 et $\mathbb{P}(X_n = -n^2) = \frac{1}{n^2 + 1}$

et $M_n = \sum_{i=1}^n X_i$. On vérifie facilement que $\mathbb{E}[X_n] = 0$ pour tout n, donc M est une martingale. On a de plus $\sum_{n \geq 1} \frac{1}{n^2 + 1} < +\infty$, donc par Borel-Cantelli, presque sûrement, $X_n = 1$ pour n assez grand et $M_n \to +\infty$ p.s.

4. Soient $(X_i)_{i\geq 0}$ des variables i.i.d. avec $\mathbb{P}(X_i=0)=\mathbb{P}(X_i=2)=\frac{1}{2}$, et $M_n=\prod_{i=1}^n X_i$ pour tout $n\geq 0$. On a $\mathbb{E}[X_n]=1$ pour tout n donc M est bien une martingale. De plus, p.s. il existe i tel que $X_i=0$, donc $M_n=0$ pour n assez grand, donc M converge p.s. vers 0, et M ne peut pas converger dans L^1 car $\mathbb{E}[M_n]=\mathbb{E}[M_0]=1$ pour tout n. En revanche, on a $\mathbb{E}[|M_n|]=\mathbb{E}[M_n]=1$ pour tout n, donc M est bien bornée dans L^1 .

Exercice 5 (Urne de Polya)

À l'instant 0, une urne contient a boules blanches et $b = N_0 - a$ boules rouges. On tire une boule uniformément et on la remplace par deux boules de sa couleur, ce qui donne la composition de l'urne à l'instant 1. On répète ce procédé.

Pour $n \ge 1$, on note Y_n et $X_n = \frac{Y_n}{N_0 + n}$ respectivement le nombre et la proportion de boules blanches dans l'urne à l'instant n. Soit $\mathcal{F}_n = \sigma(Y_1, \dots, Y_n)$.

- 1. Donner $\mathbb{P}(Y_{n+1} = Y_n + 1 | \mathcal{F}_n)$ et $\mathbb{P}(Y_{n+1} = Y_n | \mathcal{F}_n)$.
- 2. Montrer que $(X_n)_{n\geq 0}$ est une martingale qui converge p.s. vers une variable aléatoire, que l'on note U, et montrer que pour tout $k\geq 1$, $\lim_{n\to\infty}\mathbb{E}[X_n^k]=\mathbb{E}[U^k]$.
- 3. $Cas\ a=b=1.$ Montrer que pour tout $n\geq 0,$ Y_n suit une loi uniforme sur $\{1,...,n+1\}.$ En déduire la loi de U.
- 4. Cas général. On fixe $k \ge 1$. On pose pour tout $n \ge 1$:

$$Z_n = \frac{Y_n(Y_n+1)\dots(Y_n+k-1)}{(N_0+n)(N_0+n+1)\dots(N_0+n+k-1)}.$$

Montrer que $(Z_n)_{n\geq 0}$ est une martingale pour la filtration $(\mathcal{F}_n)_{n\geq 0}$. En déduire la valeur de $\mathbb{E}[U^k]$.

5. Montrer que la fonction caractéristique d'une variable aléatoire réelle bornée se développe en série entière sur \mathbb{R} (on exhibera le développement en série entière). Expliquer pourquoi on a caractérisé la loi de U.

Solution de l'exercice 5 À chercher pour le 7 Novembre!

Exercice 6 (Théorème de Rademacher)

Le but de cet exercice est de montrer par une approche probabiliste que toute fonction lipschitzienne est primitive d'une fonction mesurable bornée. Soient X une variable aléatoire de loi uniforme sur [0,1] et $f:[0,1] \longrightarrow \mathbb{R}$ une fonction lipschitzienne de constante de Lipschitz L > 0. Pour tout $n \ge 0$, on pose

$$X_n = \lfloor 2^n X \rfloor 2^{-n}$$
 et $Z_n = 2^n \left(f \left(X_n + 2^{-n} \right) - f(X_n) \right)$.

1. Montrer les égalités de tribus suivantes :

$$\sigma(X_0, X_1, \dots, X_n) = \sigma(X_n)$$
 et $\bigcap_{n>0} \sigma(X_n, X_{n+1}, \dots) = \sigma(X)$.

- 2. Déterminer $\mathbb{E}[h(X_{n+1})|X_n]$ pour toute fonction $h:[0,1]\to\mathbb{R}$ mesurable continue. En déduire que $(Z_n)_{n\geq 0}$ est une \mathcal{F}_n -martingale bornée (où $\mathcal{F}_n=\sigma(X_0,X_1,\ldots,X_n)$ pour tout $n\geq 0$).
- 3. Montrer que (Z_n) converge p.s. et dans L^1 vers une variable aléatoire Z, puis qu'il existe une fonction $g:[0,1] \longrightarrow \mathbb{R}$ mesurable bornée telle que Z=g(X) p.s..

4. Calculer $\mathbb{E}[h(X)|X_n]$ pour toute fonction $h:[0,1]\to\mathbb{R}$ mesurable bornée. En déduire que p.s. :

$$Z_n = 2^n \int_{X_n}^{X_n + 2^{-n}} g(u) \mathrm{d}u.$$

5. Conclure que pour tout $x \in [0,1]$, $f(x) = f(0) + \int_0^x g(u) du$.

Solution de l'exercice 6

1. On remarque que, pour $0 \le k \le n$, $X_k = 2^{-k} \lfloor 2^k X_n \rfloor$. On peut l'écrire proprement, ou faire un dessin pour s'en convaincre... Ainsi, pour $0 \le k \le n$, X_k est $\sigma(X_n)$ -mesurable. On en déduit que $\sigma(X_0, X_1, \ldots, X_n) = \sigma(X_n)$.

De plus, pour tout $n \geq 0$, par définition de X_n , on sait que X_n est $\sigma(X)$ -mesurable. Ainsi, on a l'inclusion

$$\bigcap_{n>0} \sigma(X_n, X_{n+1}, \ldots) \subset \sigma(X).$$

Enfin, X_n converge p.s. vers X quand n tend vers l'infini, donc X est $\sigma(X_n, X_{n+1}, \ldots)$ -mesurable pour tout $n \geq 0$. Ainsi, on obtient l'inclusion réciproque

$$\sigma(X) \subset \bigcap_{n\geq 0} \sigma(X_n, X_{n+1}, \ldots).$$

2. Soit $h:[0,1] \longrightarrow \mathbb{R}$ une fonction mesurable continue. Alors h est bornée sur [0,1] donc $h(X_n)$ est intégrable pour tout n. On a, pour $n \ge 0$ et $0 \le k \le 2^n - 1$,

$$\mathbb{E}\left[h(X_{n+1})\mathbb{1}_{X_n=k/2^n}\right] = \mathbb{E}\left[h(X_{n+1})\mathbb{1}_{X\in[k/2^n,(2k+1)/2^{n+1}[}\right] + \mathbb{E}\left[h(X_{n+1})\mathbb{1}_{X\in[(2k+1)/2^{n+1},(k+1)/2^n[}\right] \\
= 2^{-(n+1)}\left(h\left(\frac{k}{2^n}\right) + h\left(\frac{2k+1}{2^{n+1}}\right)\right).$$

On en déduit

$$\mathbb{E}[h(X_{n+1}) \mid X_n] = \frac{h(X_n)}{2} + \frac{h(X_n + 2^{-(n+1)})}{2}.$$

Pour tout $n \geq 0$, la variable Z_n est \mathcal{F}_n -mesurable, et $|Z_n| \leq L$ donc Z_n est intégrable. De plus,

$$\mathbb{E}[Z_{n+1}|\mathcal{F}_n] = 2^{n+1}\mathbb{E}\left[f(X_{n+1} + 2^{-(n+1)}) - f(X_{n+1}) \mid \mathcal{F}_n\right]$$

$$= 2^{n+1}\mathbb{E}\left[f(X_{n+1} + 2^{-(n+1)}) - f(X_{n+1}) \mid X_n\right]$$

$$= 2^n\left(f(X_n + 2^{-(n+1)}) - f(X_n) + f(X_n + 2^{-n}) - f(X_n + 2^{-(n+1)})\right)$$

$$= Z_n.$$

en utilisant à la deuxième ligne la première égalité de tribus de la question 1. Donc $(Z_n)_{n\geq 0}$ est une (\mathcal{F}_n) -martingale bornée par L.

- 3. D'après la question 2, on sait que (Z_n) est une martingale bornée dans L^p pour tout p > 0, donc (Z_n) converge p.s. et dans L^1 . On note Z sa limite. Pour tout $n \geq 0$, Z_n est mesurable par rapport à la tribu $\sigma(X_n, X_{n+1}, \ldots)$ donc Z est mesurable par rapport à la tribu $\bigcap_{n\geq 0} \sigma(X_n, X_{n+1}, \ldots)$. D'après la question 1, Z est ainsi $\sigma(X)$ -mesurable. Il existe donc une fonction $g:[0,1] \longrightarrow \mathbb{R}$ borélienne telle que Z = g(X). De plus, Z étant bornée par L, on peut choisir g bornée (en prenant remplaçant g par $g \wedge L$ par exemple).
- 4. Soit $h:[0,1] \longrightarrow \mathbb{R}$ une fonction mesurable bornée. La variable h(X) est intégrable et on a, pour $n \ge 0$ et $0 \le k \le 2^n 1$,

$$\mathbb{E}\left[h(X)\mathbb{1}_{X_n=k2^{-n}}\right] = \mathbb{E}\left[h(X)\mathbb{1}_{X\in[k2^{-n},(k+1)2^{-n}[]}\right] = \int_{k2^{-n}}^{(k+1)2^{-n}} h(x)\mathrm{d}x.$$

On en déduit que

$$\mathbb{E}[h(X) \mid X_n] = 2^n \int_{X_n}^{X_n + 2^{-n}} h(x) \mathrm{d}x.$$

La (\mathcal{F}_n) -martingale $(Z_n)_{n\geq 0}$ converge p.s. et dans L^1 vers Z, donc $Z_n = \mathbb{E}[Z|\mathcal{F}_n]$ pour tout $n\geq 0$. On a donc p.s.

$$Z_n = \mathbb{E}[g(X)|X_n] = 2^n \int_{X_n}^{X_n+2^{-n}} g(u) du.$$

5. D'après la question 4., pour tout $n \geq 0$,

$$f(X_n + 2^{-n}) - f(X_n) = \int_{X_n}^{X_n + 2^{-n}} g(u) du$$
 p.s.

Donc, pour tout $n \ge 0$ et pour tout $0 \le k \le 2^n - 1$,

$$f((k+1)2^{-n}) - f(k2^{-n}) = \int_{k2^{-n}}^{(k+1)2^{-n}} g(u) du$$

puis, en sommant, pour tout $0 \le k \le 2^n$,

$$f(k2^{-n}) = f(0) + \int_0^{k2^{-n}} g(u) du.$$

Ainsi, pour tout $x \in [0, 1]$,

$$f\left(2^{-n}\lfloor 2^n x\rfloor\right) = f(0) + \int_0^{2^{-n}\lfloor 2^n x\rfloor} g(u) du$$

et en faisant tendre n vers l'infini, par continuité de f on obtient

$$f(x) = f(0) + \int_0^x g(u) du.$$

 ${\bf Exercice} \ {\bf 7} \ ({\bf Processus} \ {\bf de} \ {\bf Galton-Watson} \ {\bf surcritique})$

Soit μ une loi sur \mathbb{N} telle que $\sum_{i} i\mu(i) = m > 1$ et $\sum_{i} i^{2}\mu(i) < +\infty$. Soient $(Z_{n,i})_{n,i\in\mathbb{N}}$ des variables i.i.d. de loi μ . On définit le processus X par $X_{0} = 1$ et, pour tout $n \geq 0$,

$$X_{n+1} = \sum_{i=1}^{X_n} Z_{n,i}.$$

- 1. Que peut décrire le processus X?
- 2. On pose $p_n = \mathbb{P}(X_n = 0)$ et $p = \mathbb{P}(\exists n, X_n = 0)$. Montrer une formule de récurrence de la forme $p_{n+1} = f(p_n)$, et en déduire que p < 1.
- 3. On pose $M_n=m^{-n}X_n$. Montrer que M est une martingale. En déduire que M_n converge p.s. vers une variable M_∞ .
- 4. Trouver une relation de récurrence sur $\mathbb{E}[M_n^2]$, et en déduire que $M_n \to M_\infty$ dans L^2 .
- 5. On note $q = \mathbb{P}(M_{\infty} = 0)$. Donner une équation sur q. En déduire que q = p. Qu'est-ce-que cela signifie sur la croissance de X_n ?

Solution de l'exercice 7

1. Supposons qu'une population évolue de la manière suivante : à chaque génération n, les individus se reproduisent indépendamment des générations précédentes et les uns des autres, de telle manière que le nombre d'enfants d'un individu a pour loi μ . Alors le processus X décrit le nombre d'individus à la génération n.

2. Dire que $p_{n+1} = 0$ revient à dire qu'il existe i tel que le premier individu a eu i enfants (ce qui arrive avec proba $\mu(i)$), et chacun de ces i enfants n'a pas de descendant à la génération n (ce qui arrive avec proba p_n pour chaque enfant). Par conséquent, on a

$$p_{n+1} = \sum_{i} \mu(i) p_n^i = f(p_n),$$

avec $f(x) = \sum_i \mu(i) x^i$. On sait de plus que $p = \lim_{n \to +\infty} p_n$, donc p est un point fixe de f. De plus, f est croissante (les $\mu(i)$ sont positifs), donc si p' est un point fixe de f, on a par récurrence $p_n \leq p'$ pour tout n, donc $p \leq p'$. On en déduit que p est le plus petit point fixe de f, donc montrer que p < 1 revient à montrer que f admet un point fixe strictement inférieur à 1. Or, on a f(1) = 1 et f'(1) = m > 1, donc f(x) < x pour x assez proche de 1. Mais on a aussi $f(0) \geq 0$, donc par le théorème des valeurs intermédiaires f admet un point fixe dans [0,1[, donc p < 1.

3. Soit \mathcal{F}_n la tribu engendrée par les $Z_{k,i}$ pour $k \leq n-1$. Alors X_n ne dépend que des $Z_{k,i}$ avec $k \leq n-1$ et $i \in \mathbb{N}$, donc X est (\mathcal{F}_n) -adapté, donc M aussi. De plus, comme M est positif, on peut faire le calcul suivant sans savoir M_n et M_{n+1} sont intégrables :

$$\mathbb{E}[M_{n+1}|\mathcal{F}_n] = m^{-(n+1)}\mathbb{E}[X_{n+1}|\mathcal{F}_n]$$

$$= m^{-(n+1)}\mathbb{E}\left[\sum_{i=1}^{X_n} Z_{n,i} \middle| \mathcal{F}_n\right]$$

$$= m^{-(n+1)}\sum_{i=1}^{X_n} \mathbb{E}[Z_{n,i}|\mathcal{F}_n]$$

$$= m^{-(n+1)}\sum_{i=1}^{X_n} m$$

$$= m^{-(n+1)}mX_n$$

$$= M_n.$$

En particulier, on en déduit que $\mathbb{E}[M_n] = \mathbb{E}[M_0] < +\infty$ pour tout n, et M est une martingale positive, donc elle converge p.s..

4. Notons σ^2 la variance de la loi μ . Pour tout n, on a

$$\mathbb{E}\left[M_{n+1}^{2}|\mathcal{F}_{n}\right] = m^{-2(n+1)}\mathbb{E}\left[\left(\sum_{i=1}^{X_{n}}Z_{n,i}\right)^{2}\Big|\mathcal{F}_{n}\right]$$

$$= m^{-2(n+1)}\sum_{i,j=1}^{X_{n}}\mathbb{E}\left[Z_{n,i}Z_{n,j}\right]$$

$$= m^{-2(n+1)}\left(\sum_{i=1}^{X_{n}}\mathbb{E}\left[Z_{n,i}^{2}\right] + \sum_{i\neq j}\mathbb{E}\left[Z_{n,i}\right]\mathbb{E}\left[Z_{n,j}\right]\right)$$

$$= m^{-2(n+1)}\left((m^{2} + \sigma^{2})X_{n} + m^{2}X_{n}(X_{n} - 1)\right)$$

$$= M_{n}^{2} + \frac{\sigma^{2}}{m^{2(n+1)}}M_{n}.$$

En prenant l'espérance des deux côtés, on obtient

$$\mathbb{E}\left[M_{n+1}^2\right] = \mathbb{E}\left[M_n^2\right] + \frac{\sigma^2}{m^{2(n+1)}} \mathbb{E}\left[M_n\right] = \mathbb{E}\left[M_n^2\right] + \frac{\sigma^2}{m^{n+2}}.$$

Comme $\sum_n \frac{\sigma^2}{m^{n+2}} < +\infty$, on en déduit que $\mathbb{E}\left[M_n^2\right]$ est borné, donc M est bornée dans L^2 , donc elle converge dans L^2 .

5. On dit qu'un individu x est à descendance lente si le nombre de descendants de x après n générations est $o(m^n)$. En particulier, un individu dont la descendance s'éteint est à descendance lente, et q est la probabilité que l'individu de départ soit à descendance lente.

Dire que l'individu de départ a une descendance lente revient à dire qu'il existe i tel qu'il a i enfants, et chacun d'eux a une descendance lente. De même que dans la question 2, la probabilité que cela arrive vaut $\sum_i \mu(i)q^i = f(q)$, donc q = f(q). Or, μ est une série entière à coefficients positifs, et il y a au moins un $i \geq 2$ tel que $\mu(i) > 0$, donc f est strictement convexe, donc elle a au plus deux points fixes. Comme p et 1 sont deux points fixes de f, on a donc soit q = p, soit q = 1. Mais dans le second cas, on a $M_{\infty} = 0$ p.s.. C'est absurde car M_n converge vers M_{∞} dans L^2 , donc aussi dans L^1 , et $\mathbb{E}[M_n] = \mathbb{E}[M_0] = 1$ pour tout n. On a donc q = p. Cela signifie que presque sûrement, soit le processus K s'éteint, soit K_n est asymptotiquement équivalent à m^n fois une variable aléatoire strictement positive.

Remarque On a utilisé la convergence L^2 pour montrer une convergence L^1 . Il est naturel de se demander si la convergence L^1 de M reste vraie si μ n'est plus de carré intégrable. Le théorème de Kesten–Stigum affirme que M converge dans L^1 vers M_∞ si et seulement si

$$\sum_{i} i \log i \, \mu(i) < +\infty.$$

Pour une preuve du théorème de Kesten-Stigum, voir par exemple le chapitre 12.2 du monumental Probability on trees and networks, de Lyons et Peres.

3 Jolie image

Exercice 8

Que représente la jolie image ci-dessous?

Solution de l'exercice 8 Il s'agit d'un arbre de Galton-Watson surcritique. Chaque sommet représente un des individus considérés dans l'exercice 5, et on relie en plus chaque individu à son parent. Le processus X_n décrit alors le nombre de sommets à distance n de la racine dans l'arbre. Ici, on a pris $\mu(0) = \mu(3) = \frac{1}{8}$ et $\mu(1) = \mu(2) = \frac{3}{8}$, de sorte que $m = \frac{3}{2} > 1$, et on voit bien la croissance exponentielle. L'image vient de la page suivante, qui contient aussi des vidéos montrant comment l'arbre croît :

http://images.math.cnrs.fr/La-probabilite-d-extinction-d-une