Министерство образования и науки Российской Федерации «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ» (государственный университет)

ФАКУЛЬТЕТ АЭРОФИЗИКИ И КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ КАФЕДРА ПРИКЛАДНОЙ МЕХАНИКИ

На правах рукописи УДК 532.546-3:536.42

Новиков Алексей Викторович

Математическое моделирование термогидродинамических процессов в пласте для определения структуры околоскважинной зоны

Выпускная квалификационная работа магистра
Направление подготовки 010922
«Фундаментальная и прикладная геофизика»

Заведующий кафедрой	к.т.н Негодяев С.С.
Научный руководитель	Торопов К.В.
Студент-дипломник	Новиков А.В.

Содержание

Введен	ние	3
Обозна	ачения	4
Глава	1. Основы механики и термодинамики насыщенных пори-	
сты	х сред	5
1.1	Кофигурации. Градиент деформации. Подходы Эйлера и Лагран-	
	жа описания движения сплошной среды	5
1.2	Тезоры деформаций. Уравнение совместности скоростей и де-	
	формаций	7
1.3	Пористость. Эффективная и истинная плотности. Закон сохра-	
	нения масс.	8
1.4	Напряжения. Законы сохранения импульса и момента импульса.	9
1.5	Закон сохранения энергии	11
Списо	к использованных источников	12

Введение

Обозначения

Индексы:

- $A = \{F, G, S\}$ индекс континуума,
 - \mathbb{E}^3 трёхмерное евклидово пространство,
 - κ_A отсчётная конфигурация континуума A,
 - $\chi(t)$ текущая конфигурация системы,
 - ${m X}_A$ радиус-вектор материальной точки континуума A в отсчётной конфигурации,
 - $oldsymbol{x}$ радиус-вектор материальной точки в актуальной конфигурации,
 - ∇_{κ} градиент в переменных X,
 - ∇ градиент в переменных \boldsymbol{x} ,
 - ⊗ тензорное умножение,
 - ρ_A эффективная плотность массы континуума A,
 - ρ_a истинная плотность массы континуума a,
 - σ_A тензор эффективных (парциальных) напряжений Коши для континуума A,
 - σ_a тензор истинных напряжений Коши для континуума A,
 - $oldsymbol{arepsilon}$ абсолютный антисимметричный тензор 3-го ранга Леви-Чивита,

Глава 1

Основы механики и термодинамики насыщенных пористых сред

Насыщенная пористая среда — совокупность твёрдого деформируемого скелета и флюида, насыщающего этот скелет. Под флюидом понимается смесь жидкостей и газов, способная перемещаться внутри порового пространства скелета. Для описания совместного движения скелета и флюида используется гипотеза суперпозиции континуумов, которая предполагает что в каждой точке пространства находится и скелет, и флюид.

Флюид, в свою очередь, может быть многофазным и многокомпонентным. Здесь и далее будем отождествлять понятие компоненты с химическим веществом, входящим в состав флюида. Фазой будем называть термодинамически равновесное состояние вещества, качественно отличное от других равновесных состояний того же вещества.

Подробное изложение законов сохранения, построение определяющих соотношений для таких систем можно найти в [2,4–6]. Вопросы динамики многофазных сред описаны в [7].

Здесь и далее, для простоты, будем рассматривать флюид, состоящий из двух компонент, которые могут находится в двух фазах (жидкой и газообразной) – бинарную смесь. В данной главе будут представлены законы сохранения, основные определяющие соотношения такой системы. Как результат будут получены математические модели процессов массо- и теплопереноса в пористых средах.

1.1 Кофигурации. Градиент деформации. Подходы Эйлера и Лагранжа описания движения сплошной среды.

Материальная точка или элементарный объём – объём сплошной среды, пренебрежимо малый по сравнению с размерами рассматриваемой задачи, но, при том, достаточный для того чтобы можно было проводить по нему осреднение. Дальнейшее рассмотрение будет проводится именно для таких объёмов.

Обозначим $\kappa_A \in \mathbb{E}^3$ – область, которую занимают частицы скелета (A=S)

или флюида (A=F, G) в момент времени t=0. Область κ_A в дальнейшем будем называть *отсчётной (начальной) конфигурацией* скелета или флюида соответственно. Область $\chi(t) \in \mathbb{E}^3$, занятую в момент времени t>0 частицами скелета и флюида, назовём *актуальной* или *текущей конфигурацией*. Отображения $\kappa_A \to \chi(t)$ будем называть деформацией концинуума A.

Здесь и далее предполагается, что области κ_A , $\chi(t)$ – регулярны, отображения $\kappa_A \to \chi(t)$ – кусочно-гомеоморфны и дифференцируемы. Тогда существуют взаимнооднозначные дифференцируемые связи:

$$\boldsymbol{x} = \boldsymbol{x}(\boldsymbol{X}_A, t), \quad t > 0, \quad \boldsymbol{x} \in \chi(t), \quad \boldsymbol{X}_A \in \kappa_A,$$
 (1.1)

которые называются *законами движения* материальных точек скелета и флюида.

Возмём дифференциал от (1.1):

$$d\mathbf{x} = d\mathbf{X}_A \cdot (\nabla_{\kappa} \otimes \mathbf{x}) = d\mathbf{X} \cdot \mathbf{F}_A^T = \mathbf{F}_A \cdot d\mathbf{X},$$
$$\mathbf{F}_A(\mathbf{X}, t) = [\nabla_{\kappa} \otimes \mathbf{x}(\mathbf{X}_A, t)]^T, \tag{1.2}$$

где \mathbf{F}_A — тензор второго ранга, называемый градиентом деформации (дисторсией) континуума А.

Для градиента деформаций \mathbf{F}_A справедлива *теорема Коши о полярном* разложении, которая позволяет представить деформацию элемента $d\mathbf{X}_A$ как комбинацию растяжения (сжатия) и вращения как жесткого целого:

$$\boldsymbol{F}_A = \boldsymbol{R}_A \cdot \boldsymbol{U}_A = \boldsymbol{V}_A \cdot \boldsymbol{R}_A, \tag{1.3}$$

где \mathbf{R}_A – ортогональный тензор второго ранга, называемый *тензором поворо-* ma, \mathbf{U}_A , \mathbf{V}_A – симметричные положительной определённые тензоры второго ранга, называемые *правым и левым тензорами растяжения*. Разложение (1.19) единственно.

Частной производной закона движения (1.1) по времени является *вектор скорости материальной точки*:

$$\boldsymbol{v}_{A}(\boldsymbol{X}_{A},t) \equiv \dot{\boldsymbol{x}}(\boldsymbol{X}_{A},t) = \left. \frac{\partial \boldsymbol{x}(\boldsymbol{X},t)}{\partial t} \right|_{\boldsymbol{X}_{A}}.$$
 (1.4)

Здесь и далее точкой будем обозначать материальную производную по времени (при постоянном X_A).

Описание характристик материальной точки функциями от $oldsymbol{X}_A$ носит на-

звание материального или лагранжевого описания среды, а радиус-вектор \mathbf{X}_A носит название материальной или лагранжевой переменной. Если же характеристики представляются функциями \boldsymbol{x} , то такой подход называется пространственным или эйлеровым описанием среды, переменная \boldsymbol{x} – пространственной или эйлеровой переменной.

1.2 Тезоры деформаций. Уравнение совместности скоростей и деформаций.

Для того чтобы охарактеризовать деформации континуума вводятся специальные меры — mензоры конечных деформаций. Наиболее употребительными являются mensoph Коши-Грина E_A и Альманзи A_A :

$$\boldsymbol{E}_{A} = \frac{1}{2} \left(\boldsymbol{F}_{A}^{T} \cdot \boldsymbol{F}_{A} - \boldsymbol{I} \right) \tag{1.5}$$

$$\boldsymbol{A}_{A} = \frac{1}{2} \left(\boldsymbol{I} - \boldsymbol{F}_{A}^{-1T} \cdot \boldsymbol{F}_{A}^{-1} \right). \tag{1.6}$$

Представляя градиент деформаций (1.2) через вектор перемещений $\boldsymbol{u}_A = \boldsymbol{x}_A - \boldsymbol{X}_A$, подставляя в (1.5) и пренебрегая членами второго порядка малости, получим тензор малых деформаций \boldsymbol{e}_A :

$$\boldsymbol{e}_{A} = \frac{1}{2} \left((\nabla \otimes \boldsymbol{u}) + (\nabla \otimes \boldsymbol{u})^{T} \right), \tag{1.7}$$

где в принятых допущениях: $\nabla_{\kappa} \simeq \nabla$.

Величины $F_A(X_A,t)$ и $v_A(X_A,t)$ являются первыми производными отображения $\kappa_A \to \chi(t)$. Предполагая отображение (1.1) кусочно дважды непрерывнодифференцируемым, получим соотношение:

$$\dot{\boldsymbol{F}}_A = (\nabla_{\kappa} \otimes \boldsymbol{v}_A)^T, \tag{1.8}$$

называемое уравнением совместности скоростей и деформаций.

1.3 Пористость. Эффективная и истинная плотности. Закон сохранения масс.

Для описания доли пустот в твёрдом скелете используется скалярная величина $\phi(\boldsymbol{x},t)$ – nopucmocmb, определяемая выражением:

$$\phi(\boldsymbol{x},t) = \frac{1}{V(\boldsymbol{x},t)} \int_{V(\boldsymbol{x})} \tilde{\varphi}(\boldsymbol{z},t) dV, \qquad (1.9)$$

где интеграл берётся по элементарному объёму $V(\boldsymbol{x}),\, \tilde{\varphi}(\boldsymbol{z},t)$ – индикаторная функция скелета.

Наряду с пористостью введём понятия объёмных долей флюидов в объёме среды ϕ_F , ϕ_G . Для них справедливо соотношение: $\phi_F + \phi_G = \phi_S$, где $\phi_S \equiv \phi$. Насыщенностью пористой среды флюидом A называется величина:

$$S_A = \frac{\phi_A}{\phi}, \quad 0 \le S_A \le 1, \quad S_F + S_G = 1.$$
 (1.10)

Здесь и далее будем считать: $S \equiv S_F$, $1 - S = S_G$.

Масса пористого насыщенного тела β равна:

$$m(\beta) = \int_{\chi(\beta,t)} \rho(\boldsymbol{x},t)dV = \sum_{A=\{F,G,S\}} \int_{\chi(\beta,t)} \rho_A(\boldsymbol{x},t)dV, \qquad (1.11)$$

$$\rho_A(\boldsymbol{x},t) = \phi_A(\boldsymbol{x},t)\rho_a(\boldsymbol{x},t), \quad A = \{F,G,S\}, \tag{1.12}$$

где $\rho(\boldsymbol{x},t)$, $\rho_A(\boldsymbol{x},t)$ — $ocpe \partial h \ddot{e} h h b le$ (эффективные) плотности насыщенной пористой среды и континуума A, $\rho_a(\boldsymbol{x},t)$ — ucmuhh b le плотности континуума A.

В предположении, что обмен массой между континуумами отсутствует, запишем локальный закон сохранения массы континуума в форме Лагранжа:

$$\rho_{\kappa_A} = \rho_A \left| \det \mathbf{F}_A \right|, \quad A = \{F, G, S\}, \tag{1.13}$$

где ρ_{κ_A} , ρ_A — плотности массы континуума A в отсчётной и актуальной конфигурациях.

Взяв материальную производную от интегралов в (1.11), получим локальное уравнение баланса массы континуума A в форме Эйлера:

$$\dot{\rho}_A + \rho_A \nabla \cdot \boldsymbol{v}_A = 0, \quad A = \{F, G, S\}, \tag{1.14}$$

или в дивергентной форме:

$$\frac{\partial \rho_A}{\partial t}\Big|_{x} + \nabla \cdot (\rho_A \boldsymbol{v}_A) = 0, \quad A = \{F, G, S\}.$$
 (1.15)

Выражения (1.13), (1.14), (1.15) справедливы при отсутствии химических (фазовых) превращений. В противном случае необходимо писать в правой части соответствующие интенсивности переходов:

$$\frac{\partial \rho_A}{\partial t}\Big|_{\boldsymbol{x}} + \nabla \cdot (\rho_A \boldsymbol{v}_A) = q_A, \quad A = \{F, G, S\}.$$
 (1.16)

1.4 Напряжения. Законы сохранения импульса и момента импульса.

Cuny, действующую континуум A в объёме тела β , представим в виде суммы объёмных массовых сил, объёмных сил взаимодействия континуумов и контактных сил:

$$\boldsymbol{f}_{A} = \boldsymbol{f}_{A}^{b} + \boldsymbol{f}_{A}^{int} + \boldsymbol{f}_{A}^{c} = \int_{\chi(\beta,t)} \rho_{A} \boldsymbol{g}_{A} dV + \int_{\chi(\beta,t)} \boldsymbol{b}_{A}^{int} dV + \oint_{\partial \chi(\beta,t)} \boldsymbol{t}_{A} dS, \quad (1.17)$$

где $\boldsymbol{g}_A(\boldsymbol{x},t)$ – плотность внешней массовой силы, \boldsymbol{b}_A^{int} – плотность сил, действующих на континуум A со стороны остальных континуумов в элементарном объёме, \boldsymbol{t}_A – контактная сила, действующая на континуум A из вне области χ со стороны того же континуума.

Для объёмных сил взаимодействия предполагатся:

$$\boldsymbol{b}_F^{int} + \boldsymbol{b}_G^{int} + \boldsymbol{b}_S^{int} = 0. \tag{1.18}$$

Сила \mathbf{t}_A называется вектором парциальных напряжений континуума A, задаётся на поверхности и является функцией координат и ориентации поверхности(постулат Kowu): $\mathbf{t}_A = \mathbf{t}_A(\mathbf{x}, \mathbf{n})$. Для вектора \mathbf{t}_A справедлива фундаметальная теорема Kowu:

$$\boldsymbol{t}_A(\boldsymbol{x}, \boldsymbol{n}) = \boldsymbol{\sigma}_A(\boldsymbol{x}) \cdot \boldsymbol{n}, \tag{1.19}$$

где тензор σ_A называется тензором эффективных (парциальных) напряжений Коши для континуума A. Для тензора σ_A справедливо выражение:

$$\boldsymbol{\sigma}_A(\boldsymbol{x},t) = \phi_A(\boldsymbol{x},t)\boldsymbol{\sigma}_a(\boldsymbol{x},t), \qquad (1.20)$$

где $\sigma_a(x,t)$ – тензор истинных напряжений Коши для континуума A.

Используя (1.19) и теорему Гаусса-Остроградского запишем *законы со*хранения импульса и момента импульса для континуума A в виде:

$$\int_{\chi(\beta,t)} \left(\frac{\partial (\rho_A \boldsymbol{v}_A)}{\partial t} + \nabla \cdot \left(\boldsymbol{v}_A \otimes \rho_A \boldsymbol{v}_A - \boldsymbol{\sigma}_A^T \right) - \rho_A \boldsymbol{g}_A - \boldsymbol{b}_A^{int} \right) dV = 0, \tag{1.21}$$

$$\int_{\chi(\beta,t)} \left[\boldsymbol{r} \times \left(\frac{\partial (\rho_A \boldsymbol{v}_A)}{\partial t} + \nabla \cdot \left(\boldsymbol{v}_A \otimes \rho_A \boldsymbol{v}_A - \boldsymbol{\sigma}_A^T \right) - \rho_A \boldsymbol{g}_A - \boldsymbol{b}_A^{int} \right) + \boldsymbol{\varepsilon} : \boldsymbol{\sigma}_A \right] dV = 0,$$
(1.22)

где ε — тензор Леви-Чивита. Подставляя (1.21) в (1.22) получим:

$$\boldsymbol{\sigma}_A = \boldsymbol{\sigma}_A^T. \tag{1.23}$$

Для выполнения закона сохранения момента импульса (1.22) необходимо и достаточно выполнения (1.23).

Тогда, используя (1.16), запишем закон сохранения для континуума A в виде:

$$\rho_A \dot{\boldsymbol{v}}_A + q_A \boldsymbol{v}_A - \nabla \cdot \boldsymbol{\sigma}_A = \rho_A \boldsymbol{g}_A + \boldsymbol{b}_A^{int}. \tag{1.24}$$

Выражение (1.24) называется уравнением движения континуума А.

Силу взаимодействия флюидов с остальными континумами запишем в виде:

$$\boldsymbol{b}_A^{int} = \boldsymbol{b}_A^0 + \boldsymbol{b}_A^{dis}, \quad A = \{F, G\}, \tag{1.25}$$

где $\boldsymbol{b}_A^0 = \boldsymbol{\sigma}_a \cdot \nabla(S_A \phi)$ – равновесная сила взаимодействия, равная нулю в состоянии равновесия, \boldsymbol{b}_A^{dis} – диссипативная сила взаимодействия флюида A с остальными континуумами. Для нее необходимо сформулировать определяющие соотношения, из которые приводят к закону Дарси.

Суммируя (1.24) по всем континуумам $A = \{F, G, S\}$, получим:

$$\rho_A \dot{\boldsymbol{v}} + \nabla \cdot \left(\sum_A \left(\boldsymbol{w}_A \otimes \rho_A \boldsymbol{w}_A \right) - \boldsymbol{\sigma} \right) = \rho \boldsymbol{g}, \tag{1.26}$$

$$\rho = \sum_{A} \rho_{A}, \quad \rho \boldsymbol{v} = \sum_{A} \rho_{A} \boldsymbol{v}_{A}, \quad \rho \boldsymbol{g} = \sum_{A} \rho_{A} \boldsymbol{g}_{A}$$
 (1.27)

$$\boldsymbol{w}_A = \boldsymbol{v} - \boldsymbol{v}_A, \quad \sum_A \rho_A \boldsymbol{w}_A = 0, \quad \boldsymbol{\sigma} = \sum_A \boldsymbol{\sigma}_A,$$
 (1.28)

где ρ – плотность среды, $\rho \boldsymbol{v}$ – среднемассовая (барицентрическая) скорость,

 ${m w}_A$ — относительные (диффузионные) скорости континуума $A,\ {m \sigma}$ — тензор полных напряжений среды.

1.5 Закон сохранения энергии.

Список литературы

- [1] Чарный И.А. Подземная гидрогазодинамика. М.–Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2006. 436 стр.
- [2] Басниев К.С., Кочина И.Н., Максимов В.М. Подземная гидромеханика: Учебник для вузов. М.: Недра, 1993. 416 с.: ил
- [3] Розенберг М.Д., Кундин С.А. Многофазная многокомпонентная фильтрация при добыче нефти и газа. М., «Недра», 1976. 335 с.
- [4] Кондауров В.И., Фортов В.Е. Основы термомеханики конденсированной среды. М.: Издательство МФТИ, 2002. 336 с.
- [5] Кондауров В.И. Механика и термодинамика насыщенной пористой среды: Учебное пособие. М.: МФТИ, 2007. 310 с.
- [6] Чекалюк Э.Б. Термодинамика нефтяного пласта. М.: Недра, 1965. 238 с.
- [7] Нигматулин Р.И. Динамика многофазных сред. Ч. І. М.: Наука. Гл. ред. физ-мат. лит. 1987-464 с.
- [8] Петров И.Б., Лобанов А.И. Лекции по вычислительной математике: Учебное пособие М.: Интернет-Университет Информационных Технологий; БИНОМ.Лаборатория знаний, 2013.-523 с.: ил., табл. (Серия «Основы информационных технологий»)
- [9] Каневская Р.Д. Математическое моделирование гидродинамических процессов разработки месторождений углеводородов. Москва-Ижевск: Институт компьютерных исследований, 2003, 128 стр.
- [10] Chen Zhangxin, Guanren Huan, and Yuanle Ma. Computational Methods for Multiphase Flows in Porous Media. Philadelphia: Society for Industrial and Applied Mathematics, 2006.
- [11] LeVeque R.J. Finite volume methods for Hyperbolic problems. Cambridge University Press, 2002.

- [12] Марченко Н.А. [и др.] / Иерархия явно-неявных разностных схем для решения задачи многофазной фильтрации // Препринты ИПМ им. Келдыша. 2008. № 97. 17 с. URL: http://library.keldysh.ru/preprint.asp?id=2008-97
- [13] Рамазанов А.Ш. Теоретические основы термогидродинамических методов исследования нефтяных пластов. Автореф. дис. докт. техн. наук. Уфа, 2004.
- [14] Рамазанов А.Ш., Паршин А.В. Температурное поле в нефтеводонасыщенном пласте с учётом разгазирования нефти // Электронный научный журнал «Нефтегазовое дело». 2006. №1. URL: http://ogbus.ru/authors/Ramazanov/Ramazanov_1.pdf
- [15] Ramazanov A.Sh., Valiullin R.A., Sadretdinov A.A., Shako V.V., Pimenov V.P., Fedorov V.N., Belov K.V. Thermal Modeling for Characterization of Near Wellbore Zone and Zonal Allocation. SPE 136256, Moscow: SPE Russian Oil and Gas Conference and Exhibition, 2010.
- [16] Валиуллин Р.А., Рамазанов А.Ш., Хабиров Т.Р., Садретдинов А.А., Шако В.В., Сидорова М.В., Котляр Л.А., Федоров В.Н., Салимгареева Э.М. Интерпретация термогидродинамических исследований при испытании скважины на основе численного симулятора. SPE-176589-RU, Российская нефтегазовая техническая конференция SPE, 26-28 октября, 2015, Москва, Россия.
- [17] Оливье Узе, Дидье Витура, Оле Фьярэ. Анализ динамических потоков. КАППА выпуск v4.10.01 - Октябрь 2008.
- [18] Posvyanskii D.V., Gaidukov L.A., Tukhvatullina R.R. Estimating Bottom Hole Damage Zone Parameters Based on Mathematical Model of Thermohydrodynamic Processes // ECMOR XIV. 2014.