Solution to Homework Assignment 2

Solution to Problem 1: 程序代写代做 CS编程辅导

Solution to Problem 2:

(a) From the FT pair table, we get 程序代写代做 CS 编程辅导 $G(f) = \frac{1}{1 + (2\pi f)^2}$

$$G(f) = \frac{2}{1 + (2\pi f)^2}$$

Thus

$$|G(f)|^2 = \frac{4}{[1 + (2\pi f)^2]^2}.$$

 $f(f)e^{-j4\pi f}$ (time-shifting property). Since $\exp(-j4\pi f)$ has (b) $g_1(t) = g(t - 2)$ unit amplitude for a Field $=\Psi_g(f)$, meaning that the signal $g_1(t)$ has the same energy spectral density as

Solution to Problem 3: t = 0 $t < \pi$ t = 0 $t < \pi$

$$G(f) = \int_{0}^{\pi} \cos t e^{-j2\pi ft} dt = \frac{e^{-j2\pi ft}}{\text{ASSIgnment}} [-p^{2\pi f} \cos t + \sin t]^{\pi} = \frac{j2\pi f(1 + e^{-j2\pi^{2}f})}{\text{Am-Filp}}.$$

Notice that $T_0 = \pi$ and $f_0 = 1/\pi$. Thus

$$G_{T_0}(F_0) = \int_0^\infty \int_{n=-\infty}^\infty G(nf_0) G(r) dr = \int_0^\infty \int_{n=-\infty}^\infty \frac{634con}{\pi(1-4n^2)} dr - \frac{n}{\pi} dr = \int_0^\infty \int_{n=-\infty}^\infty \frac{634con}{\pi(1-4n^2)} dr - \frac{n}{\pi} dr = \int_0^\infty \int_0^\infty \int_{n=-\infty}^\infty \frac{634con}{\pi(1-4n^2)} dr - \frac{n}{\pi} dr = \int_0^\infty \int_0^\infty \int_0^\infty \int_0^\infty \frac{634con}{\pi(1-4n^2)} dr - \frac{n}{\pi} dr = \int_0^\infty \int_0^\infty \int_0^\infty \int_0^\infty \frac{634con}{\pi(1-4n^2)} dr - \frac{n}{\pi} dr = \int_0^\infty \int_0^\infty \int_0^\infty \int_0^\infty \int_0^\infty \frac{634con}{\pi(1-4n^2)} dr - \frac{n}{\pi} dr = \int_0^\infty \int_0^\infty$$

The frequency spectral plrawn as the 3:89476

