التطورات الرتيبة

الكتاب الأول

دراسة ظواهر كهربائية

الوحدة 03

GUEZOURI Aek – Lycée Maraval - Oran

حلول تمسارين الكتاب المدرسي

الجزء الثاني - ثنائي القطب RL

(المتحرّض) $u_L=Lrac{di}{dt}$ ، حيث نعتبر $u_b=ri+u_L$ ، وأحيانا نكتب $u_b=u_b$ ، وأحيانا نكتب $u_b=u_L=u_L$ ، حيث نعتبر $u_b=u_L=u_L$

التمرين 18

 $U_{\rm L} = r \; {
m I} = 6 imes 1,5 = 9 \; {
m V}$ التوتر بين طرفي الوشيعة في النظام الدائم -1

2 -. لما نقصر الدارة (قطع التيار) تنتقل شدة التيار من القيمة I إلى الصفر في مدّة قصيرة جدّا ، فتنشأ في الوشيعة قوة محركة

كهربائية قيمتها المتوسطة
$$e = -L \frac{\Delta I}{\Delta t} = -\frac{0-1.5}{2.5 \times 10^{-3}} = 600 \text{V} \approx U'_L$$
 كهربائية قيمتها المتوسطة كهربائية كهربائية

نلاحظ أن فرق الكمون بين طرفي الوشيعة في مدة قطع التيار يكون مرتفعا جدا ، أما استنتاجنا هو بإمكان هذا التوتر العالي أن يخرب أجهزة كهربائية تحتوي على وشائع عندما نقطع التيار ، لهذا يجب أن تُحفظ هذه الأجهزة بربط نواقل أومية أو صمامات تجعل على إخماد هذا التوتر العالى .

التمرين 19

$$r=rac{U}{I}=rac{6}{1.5}=4$$
 Ω (أو المقاومة الداخلية للوشيعة) مقاومة الوشيعة -1

$$u_{L}=ri+Lrac{di}{dt}$$
 : التوتر بين طرفي الوشيعة - 2 – التوتر بين ال

$$\frac{di}{dt} = -\frac{3}{1.5} = -2A.s^{-1}$$
 هو ميل المستقيم $i = f(t)$ حيث $\frac{di}{dt}$

$$i=2~\mathrm{A}$$
 يكون $t=0.5~\mathrm{s}$ في اللحظة

$$u_{\rm L} = 4 \times 2 - 0.1 \times 2 = 7.8 \; {
m V} \; : (1)$$
 بالتعويض في العلاقة

التمرين 20

$$\frac{di}{dt} = 10 \; A.s^{-1}$$
 التوتر بين طرفي الوشيعة : لدينا عبارة شدة التيار $i = 10 \; t - 3$ التوتر بين طرفي الوشيعة :

$$u_L = ri + L \frac{di}{dt} = 8(10t - 3) + 10L = 80t - 24 + 10L$$

$$L=1,2~{
m H}$$
 عند $t=0,15~{
m s}$ عند $t=0,15~{
m s}$ عند $t=0,15~{
m s}$

التمرين 21

 $(20 \text{ ms} \ \text{d})$. $(12 \text{ ms} \ \text{d})$

انن معادلة ، (0,0) ، ويمر بالنقطة
$$a = \frac{0.4}{10^{-2}} = 40~As^{-1}$$
 عبارة عن مستقيم ميله $i = f(t)$ ، $[0,10s]$ عبادلة $a = \frac{0.4}{10^{-2}} = 40~As^{-1}$

i = 40 t: تغير شدة التيار في هذا المجال هي

، (20 s , 0) ويمر بالنقطة
$$a' = -\frac{0.4}{10^{-2}} = -40~As^{-1}$$
 عبارة عن مستقيم ميله $i = f(t)$ ، $[10s, 20s]$.

 $b=0,8~{
m A}$ معادلته من الشكل b=0.40 imes 0 ، عند i=0 يكون i=0 يكون i=0 ، ومنه i=0.40 imes 0 ، وبالتالي $i=0.8~{
m A}$ معادلة تغير شدة التيار في هذا المجال هي : i=0.40 imes 0 بيكون i=0.80 imes 0 ، ومنه : i=0.80 imes 0 ، ومادلة تغير شدة التيار في هذا المجال هي : i=0.80 imes 0 بيكون i=0.80 imes 0 ، ومنه : i=0.80 imes 0 ، ومنه : i=0.80 imes 0 ، وبالتالي معادلة تغير شدة التيار في هذا المجال هي : i=0.80 imes 0 ، ومنه : i=0.80 imes 0 ، وبالتالي معادلة تغير شدة التيار في هذا المجال هي : i=0.80 imes 0

$$(t=10 \; {
m ms} \;$$
 وذلك عند $u_L=+0,4V$ (لأن $u_L=+0,4V$ وذلك عند : لدينا الوشيعة الدينا : $u_L=+0,4V$

$$L = 10 \text{ mH}$$
 ومنه، $u_L = L \times 40$. $u_L = L \frac{di}{dt}$

لتمرين 22

- 1

البيان (2) يمثّل التوتّر بين طرفي الوشيعة U_{BM} ، لأن $U_{BM} < 0$ (حيث U_{MB} هو الموجب) ، إذن الخط ينحرف إلى أسفل الشاشة . البيان (1) يمثّل التوتّر بين طرفي الناقل الأومي $U_{AM} > 0$ ، لأن $U_{AM} > 0$ ، إذن الخط ينحرف إلى أعلى الشاشة .

 $(rac{di}{dt}=0)$: نتصر ف الوشيعة كناقل أومي (نظام دائم - -2

$$I = \frac{U_L}{r} = \frac{3 \times 2}{12} = 0.5 \; A$$
 أو $I = \frac{U_R}{R} = \frac{3 \times 2}{12} = 0.5 \; A$ أو $I = \frac{3 \times 2}{12} = 0.5 \; A$

 ${
m E}=({
m R}+r)~{
m I}=24 imes0.5=12~{
m V}$: حسب قانون أوم ${
m E}=({
m R}+r)~{
m I}=24 imes0.5=12~{
m V}$ قيمة القوة المحركة الكهربائية للمولد

 $E=U_L+U_R=2\times 3+2\times 3=12V$: أو من البيانين

التمرين 23

القطعة الموجودة داخل الوشيعة عبارة عن نواة حديدية وظيفتها رفع قيمة ذاتية الوشيعة .

 $U_{
m N}=U_{
m L}={
m E}=12~{
m V}$ عندما نغلق القاطعة يمر تيار شدّته $I_{
m L}$ في الوشيعة وتيار آخر شدته $I_{
m N}$

من المفروض أن يمر في الوشيعة تيار شدته $I_L = \frac{U_L}{r} = \frac{E}{r} = \frac{12}{6} = 2$ ، وذلك في حالة مولّد مثالي .

I=1,5~A أما إذا كان المولد غير مثالي ، يمكن أن تكون شدّة التيار

للمزيد : التوتر بين طرفي المولد الحقيقي (و هو غير مستعمل في البرنامج) ، u=E-r'i ، حيث r' هي المقاومة الداخلية للمولد . في هذه الحالة يكون لدينا في الدارة : $E-r'i=u_L$ ، وبالتالي يكون $u_L < E$.

 $u_L=1,5 imes6=9V$ وهكذا يكون التوثر بين طرفي الوشيعة

2 - المصباح لا يشتعل لأن التوتر بين طرفيه أقل من V 220 . (سواء 9V أو 12V)

3 - عندما نغلق القاطعة يتوزع التيار الذي يُصدره المولد بين المصباح والوشيعة ، وتكون عادة شدّة التيار في المصباح أقل من شدّة التيار في الوشيعة ، وذلك حسب المقاومة الكبيرة للمصباح بالنسبة للوشيعة . وتكون القوّة المحركة الكهربائية (E) للمولد غير كافية لإشعال المصباح .

عندما نفتح القاطعة ينعدم التيار فجأة في المصباح ، لأن المصباح عبارة عن ناقل أومي ، ونعلم أن الناقل الأومي لا يبطئ انعدام التيار

(عدم استمر ارية التيار في ناقل أومي) . أما التيار في الوشيعة ينعدم بالتدرج حسب العلاقة $i_N = \frac{E}{r+R} \, e^{-\frac{t}{r}}$ عدم استمر ارية التيار في الوشيعة) .

. $t=5\, au$ وبالتالي يمر التيار هي i_L في الناقل الأومى . إن مدة حياة هذا التيار هي

.
$$\tau = \frac{t}{5} = \frac{0,0025}{5} = 5 \times 10^{-4} \, s$$
 وبالتالي

نحسب مقاومة المصباح التي نعتبرها ثابتة (لأن هناك مصابيح تتغير مقاومتها أثناء اشتغالها).

$$R=rac{L}{ au}-r=rac{0.4}{5 imes10^{-4}}-6=794\Omega$$
 دينا $au=rac{L}{R+r}$ ادينا

عند فتح القاطعة تبقى جهة التيار في الوشيعة كما كانت قبل فتح القاطعة (العكس في المكثفة) . إذن يمر في المصباح تيار شدته

 $u_b=-u_R$: ويكون عندها $u_b+u_R=0$ ، وبالتالي تكون أكبر قيمة للتوتر بين طرفي الوشيعة $u_b+u_R=0$

$$\left| u_{b} \right| = 1191V$$
 i, $u_{b} = -R \times I_{N} = -794 \times 1, 5 = -1191V$

التمرين 24

(الوشيعة صافية) ، $i=rac{E}{R}e^{-rac{R}{L}\,t}$: ألدار في الدارة التيار في الدارة : i=1

انظر للدرس كيف وجدنا هذه العلاقة عند قطع التيار.

 $u_{
m R}={
m R}~i$ التوتر بين طرفي الناقل الأومي) التوتر بين طرفي الناقل الأومي

$$u_R = R \frac{E}{R} e^{-\frac{R}{L}t} = E e^{-\frac{R}{L}t}$$

 $u_0=E$: أي ، t=0 هو التوتر بين طرفي الناقل الأومي في اللحظة u_0

(1)
$$u_R = 0.9 \ u_0 = u_0 e^{-\frac{R}{L} t_1} : t_1$$
 عند اللحظة

(2)
$$u_R' = 0.1 \ u_0 = u_0 e^{-\frac{R}{L} t_2} : t_2$$
 عند اللحظة

3

بتقسيم العلاقتين (1) و (2) طرفا لطرف نجد : $9 = e^{(t_2 - t_1)\frac{R}{L}}$: على طرفي هذه العلاقة ، نكتب :

ومنه
$$au=rac{L}{R}$$
 ، ولدينا ثابت الزمن $rac{R}{L}=rac{\ln \, 9}{t_2-t_1}$ ، ومنه n

$$\tau = \frac{t_2 - t_1}{\ln 9} = \frac{1,65 \times 10^{-3}}{2,2} = 0,75 \times 10^{-3} \text{ s}$$

. $L = \tau \times R = 0,75 \times 10^{-3} \times 1000 = 0,75 H$: ناتية الوشيعة ناتية الوشيعة

ملاحظة

الهدف من وضع الصمام في الدارة وتوجيهه بهذا الشكل هو منع حدوث الشرارة الكهربائية التي تظهر عند القاطعة عند فتحها . سبب وجود هذه الشرارة : لو لم يوجد الصمام أين تذهب الطاقة المغناطيسية التي كانت مخزنة في الوشيعة لحظة فتح القاطعة؟

إن فتح القاطعة يخلق مقاومة كبيرة جدا متكونة من حيّز من الهواء موجود بين فكّي القاطعة ، إذن تصوّر هذه المقاومة الكبيرة مضروبة في شدة التيار التي كانت تمر في الوشيعة قبل فتح القاطعة ، فإنها تعطي توترا كبيرا بين طرفي القاطعة ، بحيث تفرّغ طاقة الوشيعة على شكل طاقة كهرومغناطيسية (ضوء) وهذا الذي نشاهده ...

يمكن لهذه الطاقة أن تخرّب أجهزة أخرى مربوطة وراء القاطعة ، مثل بطاقة الحبكة المعلوماتية التي ترفق تركيب التجربة بجهاز الكمبيوتر .

الصمام يمرر التيار الكهربائي في نفس الدارة ويحمي الأجهزة الأخرى.

التمرين 25

 $u_{
m R}={
m R}~i$ هو التوتر بين طرفي الناقل الأومي ${
m Y}_{
m B}$ هو التوتر بين طرفي الناقل الأومي -1

 $I_0 = rac{3}{50} = 0.06~A$ ، $u_{
m R} = {
m R}~{
m I}_0$ ولدينا قانون أوم في ناقل أومي ، $u_{
m R} = 3~{
m V}$ (من البيان $u_{
m R} = 3~{
m V}$

$$E = (R+r)i + Lrac{di}{dt}$$
 ، أي $E = u_{
m R} + u_{
m L}$: حسب قانون جمع التوترات -3

$$r=rac{E}{I_0}-R=rac{3.8}{0.06}-50=13.3$$
 : ومنه $E=(R+r)$ النظام الدائم يكون يكون $E=(R+r)$ ومنه $E=(R+r)$

ملاحظة : السؤال 4 كان أكثر دقة في الطبعة القديمة ، وهذا هو نصه : احسب المقاومة الداخلية للوشيعة ومقاومتها . $u_R = f(t)$ يكون : $u_R = f(t)$ يكون :

 $. \tau \approx 17 \, ms$ يو افق $u_R = 0.63 \times 3 = 1.89 \, V$

. $L = R' \times \tau = (R + r) \times \tau = 63.3 \times 17 \times 10^{-3} \approx 1 \text{ H}$ ذاتية الوشيعة

التمرين 26

1 - المعادلة التفاضلية لشدة التيار عند تطوّره نحو قيمة ثابتة غير معدومة معناه المعادلة أثناء تطبيق التيار.

(rpprox 0 الوشيعة صافية ، أي $E=R\,i+Lrac{d\,i}{d\,t}$: نكتب ، RL حسب قانون جمع التوترات في ثنائي القطب

(1)
$$\frac{di}{dt} + \frac{R}{L}i = \frac{E}{L}$$
 : بتقسيم طرفي هذه المعادلة على ، نجد المعادلة التفاضلية المطلوبة

(2)
$$i(t) = a + be^{-\alpha t}$$
 : هو (1) هو المعادلة التفاضلية (2)

$$-\alpha b\,e^{-lpha t}+rac{R}{L}ig(a+b\,e^{-lpha t}ig)=rac{E}{L}$$
 : (1) نعوّض في المعادلة

$$\frac{R}{L}a + be^{-\alpha t} \left(\frac{R}{L} - \alpha\right) = \frac{E}{L}$$

.
$$\frac{R}{L}a=\frac{E}{L}\Rightarrow a=\frac{E}{R}$$
 و ، $\frac{R}{L}-\alpha=0\Rightarrow \alpha=\frac{R}{L}$: حتى تكون هذه المعادلة محققة ، يجب أن يكون يكون عند المعادلة محققة ، يجب أن يكون عند المعادلة بالمعادلة بال

$$0=a+b\,e^0=a+b \Rightarrow a=-b$$
 : (2) نعلم أنه عند $i=0$ يكون $i=0$. بالتعويض في المعادلة

$$a=-b=\frac{E}{L}$$
 : وبالتالي

$$I_0 = \frac{E}{R} = \frac{6}{12} = 0.5 \ A \ :$$
 الشدة العظمى للتيار - 3

ا مجهولة الخاب الزمن
$$au=rac{L}{R}$$
 : الكن -4

1 – عبارة التوتر في كل فرع:

$$u_1 = (r + R_1) i_1 : (1)$$
 الفرع

$$u_2 = (r + R_1)i_2 + L\frac{di_2}{dt}$$
 : (2) الفرع

2- في الفرع (1): بمجرد غلق القاطعة يشتعل المصباح L_1 ، لأن الناقل الأومي لا يعرقل تطبيق التيار (ذاتية الناقل الأومي معدومة) ، وبالتالي عدم استمر اربية شدة التيار .

في الفرع (2) : الوشيعة تقاوم تغيّر التيار ، حيث تنشأ قوة كهربائية متحرضة تمرّر تيارا في الوشيعة عكس جهة التيار i_1 مما يزيد في مدّة تطبيق i_2 ، وبالتالي المصباح i_2 يشتعل بعد المصباح i_3 .

. في النظام الدائم يصبح $i_1=i_2=1$ ، لأن مقاومتي الفر عين متساويتان . 3

 $: i_1 = i_2$ الوسيلة العملية التي تبيّن لنا أن -4

- إما مشاهدة قوة الإضاءة في المصباحين متماثلة (أقل دقة) .
- أو بكل بساطة ربط مقياس أمبير في كل فرع وقراءة شدة التيار عليهما .

التمرين 28

1- مخطط الدارة في الشكل المقابل.

(1)
$$I_0 = \frac{E}{R+r}$$
 في النظام الدائم -2

مخطط الدارة الكهربائية

 $I_0=0.06 imes4=0.24$ A في أنه أنه $I_0=rac{E}{R+r}$: في النظام الدائم لدينا من البيان $I_0=rac{E}{R+r}$

 $r = 50 - 35 = 15~\Omega$ ، ومنه $R + r = \frac{12}{0.24} = 50\Omega$: (1) بالتعویض في

 $t= au=20~{
m ms}$ هي $i={
m I}_0$ من البيان لدينا فاصلة نقطة تقاطع المماس للبيان في المبدأ مع المستقيم الأفقي $i={
m I}_0$

$$L = \tau \times (R + r) = 20 \times 10^{-3} \times 50 = 1H$$

 $L=a \, au$: أ) العبارة البيانية هي

. هو ميل المستقيم a

$$au=rac{L}{R+r}$$
 ب) ثابت الزمن من الدراسة النظرية هو

ج) من البيان نأخذ نقطة كيفية ، مثلا النقطة (D) ، حيث

: ونستنتج t=4~ms و L = 0,2 H

. R+r و هذه النتيجة تتفق مع المعطيات ، أي اننا وجدنا نفس قيمة ، $R+r=rac{L}{ au}=rac{0.2}{4 imes10^{-3}}=50$

التمرين 29

s ب t و A ب i حیث ، $i=1,2\left(1-e^{-2t}\right)$ و ب $i=1,2\left(1-e^{-2t}\right)$

 $E_{b}=rac{1}{2}Li^{2}$ عند t=0 يكون t=0 يكون t=0 . t=1 ,2 t=0 عند t=0

$$i = 1, 2 \left(1 - e^{-\frac{1}{\tau}t} \right)$$
 : يلي عبارة الشدة كما يلي - 2

.
$$i = 1, 2\left(1 - \frac{1}{e}\right) = 1, 2\left(1 - \frac{1}{2,71}\right) = 1, 2 \times 0, 63 = 0,75 A$$
 عند $t = \tau$ عند $t = \tau$

$$E_b = \frac{1}{2}Li^2 = 0.5 \times 1 \times (0.75)^2 = 0.28J$$
 : الطاقة المخزّنة

$$i = 1, 2(1 - e^{-\infty}) = 1, 2(1 - 0) = 1, 2A$$
 عندما $t \to \infty$ عندما

$$E_b = \frac{1}{2}Li^2 = 0.5 \times 1 \times (1.2)^2 = 0.72J$$
 : الطاقة المخزّنة

$$r=rac{L}{ au}=rac{1}{0.5}=2$$
 من عبارة شدّة التيار لدينا $2=2$ ، ومنه $au=0.5~{
m s}$ ، ومنه $au=0.5~{
m s}$

التمرين 30

تمثّل هذه الحالة قطع التيار عن الوشيعة .

$$(1)$$
 $\frac{di}{dt} + \frac{R}{L}i = 0$: الدينا المعادلة التفاضلية التي تخضع لها شدة التيار في الدارة -1

(2)
$$i=Ae^{lpha t}+B$$
 : هذه المعادلة التفاضلية لها حل من الشكل

$$rac{di}{dt} = Alpha e^{lpha t}$$
 و $i = Ae^{lpha t} + B$: (1) نعوض في المعادلة $lpha$ ، B نعوض في المعادلة

$$A\alpha e^{\alpha t} + \frac{R}{L} \left(A e^{\alpha t} + B \right) = 0$$

$$Ae^{\alpha t}\left(\alpha + \frac{R}{L}\right) + \frac{BR}{L} = 0$$

$$B=0$$
 و $lpha=-rac{R}{L}$ و و $lpha=0$

 $i=rac{E}{R}$ نستنتج A من المعادلة (2) ، حيث تكون عند اللحظة t=0 شدة التيار في الوشيعة

 $E_b\left(\mathrm{J}
ight)$ بالتعويض $E_b\left(\mathrm{J}
ight)$ ، $A=rac{E}{R}$ ، إذن $R=Ae^0+B$: بالتعويض $E_b\left(\mathrm{J}
ight)$ ، $E_b\left(\mathrm{J}
i$

2 - الطاقة المخرّنة في الوشيعة بدلالة الزمن:

$$E_b = \frac{1}{2}Li^2 = \frac{1}{2}L\left(I_0e^{-\frac{R}{L}t}\right)^2 = \frac{1}{2}LI_0^2e^{-\frac{2R}{L}t}$$

$$E_b = \frac{1}{2} L I_0^2 e^{-\frac{2}{\tau}t}$$

الطاقة المخرّنة في الوشيعة من الشكل:

$$E_{b0} = 0.2 \text{ J}$$
 حيث $E_b = E_{b0} e^{-\frac{2}{\tau}t}$

t=0 عند $\mathrm{E_{b}}\left(t
ight)$ عند $\mathrm{E_{b}}\left(t
ight)$ هو مشتق العلاقة عند $\mathrm{E_{b}}\left(t
ight)$ عند $\mathrm{E_{b}}\left(t
ight)$

$$tg\alpha = -\frac{OB}{OA} = -\frac{E_{b0}}{OA}$$
 : ميل المماس

$$\frac{dE_b}{dt} = -\frac{2E_{b0}}{\tau} e^{-\frac{2}{\tau}t}$$
 هو $E_b(t)$

$$rac{dE_b}{dt} = -rac{2E_{b0}}{ au} \ e^{-rac{2}{ au} \ 0} = -rac{2E_{b0}}{ au} \ :$$
 وعند $t=0$ يكون المشتق

 ${dE_b\over dt}/_0$ ميل هذا المماس هو نفسه

$$t=rac{ au}{2}$$
 : ومنه $A=rac{ au}{2}$ ، ومنه $A=rac{ au}{2}$ ، ومنه $A=rac{ au}{2}$ ، ومنه $A=rac{ au}{2}$

$$au=1$$
 ms ومنه، $\dfrac{ au}{2}=0,5$ لدينا -4

: مقاومة الدارة (الناقل الأومي والوشيعة) $m R=100~\Omega$ ، ونعلم أن ثابت الزمن هو علم أن ثابت الرمن هو

$$L = R \times \tau = 100 \times 10^{-3} = 0.1 H$$

5 – الزمن اللازم لتناقص الطاقة إلى النصف:

عند اللحظة t=0 كانت الطاقة المخزّنة في الوشيعة $E_b=rac{1}{2}LI_0^2$. نحسب اللحظة t=0 كانت الطاقة نصف هذه الكمية

: على طرفي المعادلة نجد ،
$$\frac{1}{2} = e^{-\frac{2}{\tau}t}$$
 ، أي أي أي $\frac{1}{2} = e^{-\frac{2}{\tau}t}$ ، وبادخال اللوغاريتم النبيري على طرفي المعادلة نجد ،

$$t = t_{1/2} = \frac{\tau}{2} \; ln \; 2 \; :$$
 وبالتالي ، $-ln \; 2 = -\frac{2}{\tau} t$