CMPT 732-G200 Practices for Visual Computing

Ali Mahdavi Amiri

Image Inpainting

• Restoring, manipulating, completing an image in an unnoticeable way.

Applications

• Image editing

• Nikolai Yezhov is removed.

Applications

• Image restoration.

Poisson and Laplace

Partial Derivatives

• Both Laplace and Poisson equations work based on partial derivatives.

Partial Derivatives

- f(x,y) samples a continuously differentiable function defined on the plane (Image)
 - Its partial derivatives are

$$f_x(x,y) = f(x+1,y) - f(x,y)$$
 $f_y(x,y) = f(x,y+1) - f(x,y)$

Partial Derivatives

- f(x,y) samples a continuously differentiable function defined on the plane (Image)
 - Its partial derivatives are

$$f_x(x,y) = f(x+1,y) - f(x,y)$$
 $f_y(x,y) = f(x,y+1) - f(x,y)$

• The vector consisting these derivatives is gradient $\nabla f(x,y)$

$$\nabla f(x,y) = [f_x(x,y), f_y(x,y)] = f_x(x,y)\vec{i} + f_y(x,y)\vec{j}$$

Review of Divergence

- A vector field is a function that assigns a vector to every point in space.
 - Example: external forces in active contour, or partial derivatives of an image.

Review of Divergence

- A vector field is a function that assigns a vector to every point in space.
 - Example: external forces in active contour, or partial derivatives of an image.
- The divergence of a vector field V = [u(x, y), v(x, y)] is defined as partial derivative of u(x, y) with respect to x plus partial derivative of v(x, y) with respect to y.

Review of Divergence

- A vector field is a function that assigns a vector to every point in space.
 - Example: external forces in active contour, or partial derivatives of an image.
- The divergence of a vector field V = [u(x,y), v(x,y)] is defined as partial derivative of u(x,y) with respect to x plus partial derivative of v(x,y) with respect to y.

$$divV = \frac{\partial u(x,y)}{\partial x} + \frac{\partial v(x,y)}{\partial y}$$

Example

• Compute the divergence of $V(x,y) = [x^3, xy] = x^3\vec{\imath} + xy\vec{\jmath}$.

$$divV = \frac{\partial u(x,y)}{\partial x} + \frac{\partial v(x,y)}{\partial y}$$

Example

• Compute the divergence of $V(x,y) = [x^3, xy] = x^3\vec{\imath} + xy\vec{\jmath}$.

$$divV = \frac{\partial u(x,y)}{\partial x} + \frac{\partial v(x,y)}{\partial y} \qquad u(x,y) = x^3 \qquad v(x,y) = xy$$

Example

• Compute the divergence of $V(x,y) = [x^3, xy] = x^3\vec{\imath} + xy\vec{\jmath}$.

$$divV = \frac{\partial u(x,y)}{\partial x} + \frac{\partial v(x,y)}{\partial y}$$
 $u(x,y) = x^3$ $v(x,y) = xy$

$$divV = 3x^2 + x$$

Poisson Equation

• Given $f_x(x,y) = u(x,y)$ and $f_y(x,y) = v(x,y)$, we are looking to reconstruct f(x,y) through Poisson equation.

u(x,y) $v(x,y)$	Poisson Equation	$ \frac{f_x(x, x, y)}{f_y(x, y)} $	y) y)	

Poisson Equation

• For each pixel (x,y), there are two constraints u(x,y) and v(x,y). Therefore there is no definite answer and it is overconstrained.

u(x,y) $v(x,y)$		Poisson Equation	f(x,y)	

• We need an optimization to find f whose gradients are close to u(x,y) and v(x,y).

$$\min_{f} \sum_{x,y} (f_x(x,y) - u(x,y))^2 + (f_y(x,y) - v(x,y))^2$$

• We need an optimization to find f whose gradients are close to u(x,y) and v(x,y).

$$\min_{f} \sum_{x,y} (f_x(x,y) - u(x,y))^2 + (f_y(x,y) - v(x,y))^2$$

• We need an optimization to find f whose gradients are close to u(x,y) and v(x,y).

$$\min_{f} \sum_{x,y} (f_x(x,y) - u(x,y))^2 + (f_y(x,y) - v(x,y))^2$$

$$f(x+1,y) - 2f(x,y) + f(x-1,y) + u(x-1,y) - u(x,y) +$$

$$f(x,y+1) - 2f(x,y) + f(x,y-1) + v(x,y-1) - v(x,y) = 0$$

• We need an optimization to find f whose gradients are close to u(x,y) and v(x,y).

$$\min_{f} \sum_{x,y} (f_x(x,y) - u(x,y))^2 + (f_y(x,y) - v(x,y))^2$$

$$f(x+1,y) - 2f(x,y) + f(x-1,y) + u(x-1,y) - u(x,y) +$$

$$f(x,y+1) - 2f(x,y) + f(x,y-1) + v(x,y-1) - v(x,y) = 0$$

• We need an optimization to find f whose gradients are close to u(x,y) and v(x,y).

$$\min_{f} \sum_{x,y} (f_x(x,y) - u(x,y))^2 + (f_y(x,y) - v(x,y))^2$$

$$f(x+1,y) - 2f(x,y) + f(x-1,y) + u(x-1,y) - u(x,y) + f(x,y+1) - 2f(x,y) + f(x,y-1) + v(x,y-1) - v(x,y) = 0$$

• We need an optimization to find f whose gradients are close to u(x,y) and v(x,y).

$$\min_{f} \sum_{x,y} (f_x(x,y) - u(x,y))^2 + (f_y(x,y) - v(x,y))^2$$

$$f(x+1,y) - 2f(x,y) + f(x-1,y) + u(x-1,y) - u(x,y) + f(x,y+1) - 2f(x,y) + f(x,y-1) + v(x,y-1) - v(x,y) = 0$$

• We need an optimization to find f whose gradients are close to u(x,y) and v(x,y).

$$\min_{f} \sum_{x,y} (f_x(x,y) - u(x,y))^2 + (f_y(x,y) - v(x,y))^2$$

$$f(x+1,y) - 2f(x,y) + f(x-1,y) + u(x-1,y) - u(x,y) + f(x,y+1) - 2f(x,y) + f(x,y-1) + v(x,y-1) - v(x,y) = 0$$

• We need an optimization to find f whose gradients are close to u(x,y) and v(x,y).

$$\min_{f} \sum_{x,y} (f_x(x,y) - u(x,y))^2 + (f_y(x,y) - v(x,y))^2$$

$$f(x+1,y) - 2f(x,y) + f(x-1,y) + u(x-1,y) - u(x,y) + f(x,y+1) - 2f(x,y) + f(x,y-1) + v(x,y-1) - v(x,y) = 0$$

• We need an optimization to find f whose gradients are close to u(x,y) and v(x,y).

$$\min_{f} \sum_{x,y} (f_x(x,y) - u(x,y))^2 + (f_y(x,y) - v(x,y))^2$$

$$f(x+1,y) - 2f(x,y) + f(x-1,y) + u(x-1,y) - u(x,y) + f(x,y+1) - 2f(x,y) + f(x,y-1) + v(x,y-1) - v(x,y) = 0$$

• We need an optimization to find f whose gradients are close to u(x,y) and v(x,y).

$$\min_{f} \sum_{x,y} (f_x(x,y) - u(x,y))^2 + (f_y(x,y) - v(x,y))^2$$

$$f(x+1,y) - 2f(x,y) + f(x-1,y) + u(x-1,y) - u(x,y) + f(x,y+1) - 2f(x,y) + f(x,y-1) + v(x,y-1) - v(x,y) = 0$$

• We need an optimization to find f whose gradients are close to u(x,y) and v(x,y).

$$\min_{f} \sum_{x,y} (f_x(x,y) - u(x,y))^2 + (f_y(x,y) - v(x,y))^2$$

$$f(x+1,y) - 2f(x,y) + f(x-1,y) + u(x-1,y) - u(x,y) + f(x,y+1) - 2f(x,y) + f(x,y-1) + v(x,y-1) - v(x,y) = 0$$

$$f(yy) - v_y$$

• We need an optimization to find f whose gradients are close to u(x,y) and v(x,y).

$$\min_{f} \sum_{x,y} (f_x(x,y) - u(x,y))^2 + (f_y(x,y) - v(x,y))^2$$

$$f(x+1,y) - 2f(x,y) + f(x-1,y) + u(x-1,y) - u(x,y) + f(x,y+1) - 2f(x,y) + f(x,y-1) + v(x,y-1) - v(x,y) = 0$$

$$f(x) + f(x) + f(x)$$

• We need an optimization to find f whose gradients are close to u(x,y) and v(x,y).

$$\min_{f} \sum_{x,y} (f_x(x,y) - u(x,y))^2 + (f_y(x,y) - v(x,y))^2$$

• We need an optimization to find f whose gradients are close to u(x,y) and v(x,y).

$$\min_{f} \sum_{x,y} (f_x(x,y) - u(x,y))^2 + (f_y(x,y) - v(x,y))^2$$

Least Square

• We need an optimization to find f whose gradients are close to u(x,y) and v(x,y).

$$\min_{f} \sum_{x,y} (f_x(x,y) - u(x,y))^2 + (f_y(x,y) - v(x,y))^2$$

• Differentiate and equal to zero

$$f(x+1,y) - 2f(x,y) + f(x-1,y) + u(x-1,y) - u(x,y) + f(x,y+1) - 2f(x,y) + f(x,y-1) + v(x,y-1) - v(x,y) = 0$$

$$\Delta f(x,y) - div[u(x,y), v(x,y)]$$

Poisson Equation

• We need an optimization to find f whose gradients are close to u(x,y) and v(x,y).

$$\min_{f} \sum_{x,y} (f_x(x,y) - u(x,y))^2 + (f_y(x,y) - v(x,y))^2$$

Differentiate and equal to zero

$$\Delta f(x,y) - div[u(x,y),v(x,y)] = 0$$

Poisson Equation

• We need an optimization to find f whose gradients are close to u(x,y) and v(x,y).

$$\min_{f} \sum_{x,y} (f_x(x,y) - u(x,y))^2 + (f_y(x,y) - v(x,y))^2$$

Differentiate and equal to zero

$$\Delta f(x,y) - div[u(x,y),v(x,y)] = 0$$

$$\Delta f(x,y) = div[u(x,y),v(x,y)]$$

Summary

- Poisson equation $\Delta f(x,y) = div[u(x,y),v(x,y)]$
 - Tries to find a function whose gradient is close to a vector field.

Summary

- Poisson equation $\Delta f(x,y) = div[u(x,y),v(x,y)]$
 - Tries to find a function whose gradient is close to a vector field.

- Laplace Equation $\Delta f(x,y) = 0$
 - Tries to find a function with minimal gradient field.

• We explain Laplace First as it is easier

$$\Delta f(x,y) = 0 \quad f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

We explain Laplace First as it is easier

$$\Delta f(x,y) = 0 \quad f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

 $\Delta f(x,y) = 0 \quad \text{if } x \neq 1,y,y \neq 1,$ • Convert image f(x,y) to vector $\begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix} \text{ in which } n = h \times w.$

0	1	2
3	4	5
6	7	8

_
3
1

• We explain Laplace First as it is easier

$$\Delta f(x,y) = 0 \quad f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

• Now we can convert $\Delta f(x,y) = 0$ into a matrix notation:

$$\begin{pmatrix} 1 & 1 & -4 & 1 & 1 & \cdots & \cdots & \cdots \\ & 1 & 1 & -4 & 1 & 1 & \cdots & \cdots \\ & & 1 & 1 & -4 & 1 & 1 & \cdots \\ & & & \vdots & & & & \\ & & 1 & 1 & -4 & 1 & 1 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_n \end{pmatrix} = 0$$

• Let's say, we don't have any known values for f_i , what is the answer?

$$\begin{pmatrix} 1 & 1 & -4 & 1 & 1 & \cdots & \cdots & \cdots \\ & 1 & 1 & -4 & 1 & 1 & \cdots & \cdots \\ & & 1 & 1 & -4 & 1 & 1 & \cdots & \\ & & & \vdots & & & & \\ & & 1 & 1 & -4 & 1 & 1 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_n \end{pmatrix} = 0$$

• Therefore, we need to have some known values or boundary

$$\begin{pmatrix} 1 & 1 & -4 & 1 & 1 & \cdots & \cdots & \cdots \\ & 1 & 1 & -4 & 1 & 1 & \cdots & \cdots \\ & & 1 & 1 & -4 & 1 & 1 & \cdots & \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_n \end{pmatrix} = 0$$

• We want our function f(x, y) interpolates known values g(x, y).

• Therefore, our equation is changed

$$\begin{pmatrix} 1 & 1 & -4 & 1 & 1 & \cdots & \cdots & \cdots \\ & 1 & 1 & -4 & 1 & 1 & \cdots & \cdots \\ & & 1 & 1 & -4 & 1 & 1 & \cdots & \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_n \end{pmatrix} = 0$$

• Therefore, our equation is changed

$$\begin{pmatrix} 1 & 1 & -4 & 1 & 1 & \cdots & \cdots & \cdots \\ & 1 & 1 & -4 & 1 & 1 & \cdots & \cdots \\ & & 1 & 1 & -4 & 1 & 1 & \cdots \\ & & & \vdots & & & & \\ & & 1 & 1 & -4 & 1 & 1 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_n \end{pmatrix} = 0$$

We need to interpolate values at the boundary

$$\begin{pmatrix} 1 & 1 & -4 & 1 & 1 & \cdots & \cdots & \cdots \\ & 1 & 1 & -4 & 1 & 1 & \cdots & \cdots \\ & & 1 & 1 & -4 & 1 & 1 & \cdots & \cdots \\ & & & \vdots & & & & & \\ & & 1 & 1 & -4 & 1 & 1 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_n \end{pmatrix} = 0$$

We need to interpolate values at the boundary

$$\begin{pmatrix} 1 & 1 & -4 & 1 & 1 & \cdots & \cdots & \cdots \\ & 1 & 1 & -4 & 1 & 1 & \cdots & \cdots \\ & & 1 & 1 & -4 & 1 & 1 & \cdots & \cdots \\ & & & \vdots & & & & \\ & & 1 & 1 & -4 & 1 & 1 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_n \end{pmatrix} = 0$$

We need to interpolate values at the boundary

$$\begin{pmatrix} 1 & 1 & -4 & 1 & 1 & \cdots & \cdots & \cdots \\ & 1 & 1 & -4 & 1 & 1 & \cdots & \cdots \\ & & 1 & 1 & -4 & 1 & 1 & \cdots & \cdots \\ & & & \vdots & & & & \\ & & 1 & 1 & -4 & 1 & 1 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_n \end{pmatrix} = 0$$

$$\begin{pmatrix} L \\ ---- \\ 0 \\ | I_{k \times k} \end{pmatrix} \begin{pmatrix} f_1 \\ \vdots \\ f_{n-k} \\ \vdots \\ f_n \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ --- \\ c_1 \\ \vdots \\ g(x,y) \end{pmatrix}$$

Assuming boundary values are k end values.

$$\begin{pmatrix} 1 & 1 & -4 & 1 & 1 & \cdots & \cdots & \cdots \\ & 1 & 1 & -4 & 1 & 1 & \cdots & \cdots \\ & & 1 & 1 & -4 & 1 & 1 & \cdots & \cdots \\ & & \vdots & & & & & \\ & & 1 & 1 & -4 & 1 & 1 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_n \end{pmatrix} = 0$$

$$\begin{pmatrix}
L \\
-----\\
0 & | I_{k\times k}
\end{pmatrix}
\begin{pmatrix}
f_1 \\
\vdots \\
f_{n-k} \\
\vdots \\
f_n
\end{pmatrix} = \begin{pmatrix}
0 \\
| \\
--- \\
c_1 \\
\vdots \\
g(x,y)
\end{pmatrix}$$

• Part of the image is missing, we want to fill the hole.

Unknown values we are looking for

$$\begin{pmatrix} ----- \\ 0 \\ | I_{k \times k} \end{pmatrix} \begin{pmatrix} f_1 \\ \vdots \\ f_{n-k} \\ \vdots \\ f_n \end{pmatrix} = \begin{pmatrix} 0 \\ | \\ ---- \\ c_1 \\ \vdots \\ c_k \end{pmatrix}$$

• Part of the image is missing, we want to fill the hole.

Unknown values we are looking for

$$\begin{pmatrix} ---- \\ 0 \\ | I_{k \times k} \end{pmatrix} \begin{pmatrix} \vdots \\ f_{l-k} \\ \vdots \\ c_{l-k} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ | ---- \\ c_{1} \\ \vdots \\ c_{l-k} \end{pmatrix}$$

• Part of the image is missing, we want to fill the hole.

Known values at the boundary

$$\begin{pmatrix} ----- \\ 0 \\ | I_{k \times k} \end{pmatrix} \begin{pmatrix} f_1 \\ \vdots \\ f_{n-k} \\ \vdots \\ f_n \end{pmatrix} = \begin{pmatrix} 0 \\ | \\ ---- \\ \vdots \\ \vdots \\ \vdots \end{pmatrix}$$

 Solving this equation results a smooth hole filling with respect to the values at the boundary.

Tries to smooth the hole

$$\begin{pmatrix} -\frac{L}{0} & c_1 \\ 0 & c_2 \\ 0 & k \end{pmatrix} \begin{pmatrix} f_1 \\ \vdots \\ f_{n-k} \\ \vdots \\ f_n \end{pmatrix} = \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix}$$
Tries to interpolate the boundary

• Solving this equation results a smooth hole filling with respect to the values at the boundary.

- Simple Example
 - We are looking for the value of f_4

f_0	f_1	f_2
f_3	f_4	f_5
f_6	f_7	f_8

f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	_	

f_0	f_1	f_2
f_3	f_4	f_5
f_6	f_7	f_8

 f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	
0	1	0	1	-4	1	0	1	0	0

f_0	f_1	f_2
f_3	f_4	f_5
f_6	f_7	f_8

f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	_	
0	1	0	1	-4	1	0	1	0		0
1	0	0	0	0	0	0	0	0		

f_0	f_1	f_2
f_3	f_4	f_5
f_6	f_7	f_8

f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	_	
0	1	0	1	-4	1	0	1	0		0
1	0	0	0	0	0	0	0	0		
0	1	0	0	0	0	0	0	0		

f_0	f_1	f_2
f_3	f_4	f_5
f_6	f_7	f_8

f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	
0	1	0	1	-4	1	0	1	0	0
1	0	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	0	

f_0	f_1	f_2
f_3	f_4	f_5
f_6	f_7	f_8

f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	
0	1	0	1	-4	1	0	1	0	0
1	0	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	0	
0	0	0	1	0	0	0	0	0	

f_0	f_1	f_2
f_3	f_4	f_5
f_6	f_7	f_8

f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	
0	1	0	1	-4	1	0	1	0	0
1	0	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	0	
0	0	0	1	0	0	0	0	0	
0	0	0	0	0	1	0	0	0	

f_0	f_1	f_2
f_3	f_4	f_5
f_6	f_7	f_8

f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	
0	1	0	1	-4	1	0	1	0	
1	0	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	0	
0	0	0	1	0	0	0	0	0	
0	0	0	0	0	1	0	0	0	
0	0	0	0	0	0	1	0	0	
0	0	0	0	0	0	0	1	0	
0	0	0	0	0	0	0	0	1	

f_0	f_1	f_2
f_3	f_4	f_5
f_6	f_7	f_8

Another type of boundary constraint exist

Another type of boundary constraint exist

Neuman

• We want to respect to the flow (direction) of the boundary and that's why we bring vector \vec{n} to the play.

$$<\nabla f(x,y), \vec{n}>=h(x,y)$$

Normal derivative along the boundary

Poisson Image Inpainting

 There are many important details, natural noises, etc that are smoothed out by Laplacian in Laplace inpainting

Poisson Image Inpainting

• The idea of Poisson is to borrow such details from a similar patch (given by search or interaction).

• In Poisson, details are respected by making sure that the reconstructed patch has similar derivative to a given patch source

patch.

• In Poisson, details are respected by making sure that the reconstructed patch $f_x(x,y)$ has similar derivative to a given patch source patch. $f_x(x,y) = u(x,y)$ and $f_v(x,y) = v(x,y)$.

 $\begin{array}{c|c} u(x,y) \\ v(x,y) \end{array}$

	f(x,y)			

source

Destination

• In Poisson, details are respected by making sure that the reconstructed patch $f_x(x,y)$ has similar derivative to a given patch source patch. $f_x(x,y) = u(x,y)$ and $f_y(x,y) = v(x,y)$.

Review: answer to Poisson equation is

$$\Delta f(x,y) = div[u(x,y),v(x,y)]$$

Review: answer to Poisson equation is

$$\Delta f(x,y) = div[u(x,y),v(x,y)]$$

Flatten it to a vector

$$\begin{pmatrix} 1 & 1 & -4 & 1 & 1 & \cdots & \cdots & \cdots \\ & 1 & 1 & -4 & 1 & 1 & \cdots & \cdots \\ & & 1 & 1 & -4 & 1 & 1 & \cdots & \cdots \\ & & & \vdots & & & & \\ & & 1 & 1 & -4 & 1 & 1 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_n \end{pmatrix} = \begin{pmatrix} \downarrow \\ div \ \boldsymbol{g} \\ \downarrow \end{pmatrix}$$

Similar to Laplace equation, we need boundary condition

$$\begin{pmatrix} - & L \\ - & - & - \\ 0 & | & I_{k \times k} \end{pmatrix} \begin{pmatrix} f_1 \\ \vdots \\ f_{n-k} \\ \vdots \\ f_n \end{pmatrix} = \begin{pmatrix} div \ \mathbf{g} \\ | \\ - & - \\ c_1 \\ \vdots \\ c_k \end{pmatrix}$$

Similar to Laplace equation, we need boundary condition

Similar to Laplace equation, we need boundary condition

What should be the value of g?

Poisson Image Blending

source

Healing Brush (photo shop)

Healing Brush (photo shop)

Panorama Stitching

$$\begin{pmatrix}
L \\
-----\\
0 \\
| I_{k \times k}
\end{pmatrix}
\begin{pmatrix}
f_1 \\
\vdots \\
f_{n-k} \\
\vdots \\
f_n
\end{pmatrix} = \begin{pmatrix}
1 \\
0 \\
| ---- \\
c_1 \\
\vdots \\
c_k
\end{pmatrix}$$

$$\begin{pmatrix}
-\frac{L}{0} & \frac{L}{l_{k \times k}} \\
0 & | l_{k \times k}
\end{pmatrix}
\begin{pmatrix}
f_1 \\
\vdots \\
f_{n-k} \\
\vdots \\
f_n
\end{pmatrix} = \begin{pmatrix}
1 \\
0 \\
-\frac{L}{--} \\
c_1 \\
\vdots \\
c_k
\end{pmatrix}$$

$$Af = b$$

$$Af = b$$
Normal equation
$$f = (A^T A)^{-1} A^T b$$

Assignment 2

Poisson Blending (Matlab)

