SDM120-Modbus(mV)

Single-Phase Multifunction DIN rail Meter

- Measures kWh, Kvarh, KW, Kvar, KVA, PF, Hz, dmd, V, A, etc.
- Di-directional measurement IMP & EXP
- Two pulse outputs
- RS485 Modbus
- Din rail mounting 17.5mm
- 0.1VAC direct connection
- Better than Class 1 accuracy

User Manual V1.1

2015

Application

The energy-meters "with a blue back-lighted LCD screen for prefect reading" are used to measure single-phase like residential, utility and Industrial application. The unit measures and displays various important electrical parameters, and provide a RS485 communication port for remote reading and monitoring. Bi-directional energy measurement makes the unit a good choice for solar PV energy metering. The compact design and din rail installation provides a easy and economical solution for your metering demand.

General Specifications

Voltage AC (Un) 230V

Voltage Range 176~276V AC

Base Current (Ib) 0.1VAC

Power consumption <2W/10VA

Frequency 50/60Hz(±10%)

AC voltage withstand 4KV for 1 minute

Impulse voltage withstand 6KV-1.2uS wavform

Overcurrent withstand 30Imax for 0.01s

1000imp/kWh (default) 100/10/1 imp/kWh/kVarh (configurable)

Display LCD with blue backlit

Max. Reading 99999.9kWh

Accuracy

Pulse output rate

Voltage 0.5% of range maximum

Current 0.5% of nominal

Frequency 0.2% of mid-frequency

Power factor 1% of Unity

Active power 1% of range maximum
Reactive power 1% of range maximum
Apparent power 1% of range maximum
Active energy Class 1 IEC62053-21

Class B EN50470-3

Reactive energy 1% of range maximum

Environment

Operating temperature $-25\,^{\circ}\mathrm{C}$ to $+55\,^{\circ}\mathrm{C}$ Storage and transportation temperature $-40\,^{\circ}\mathrm{C}$ to $+70\,^{\circ}\mathrm{C}$ Reference temperature $23\,^{\circ}\mathrm{C}\pm2\,^{\circ}\mathrm{C}$

Relative humidity 0 to 95%, non-condensing

Altitude up to 2500m

Warm up time 10s
Installation category CAT II
Mechanical Environment M1
Electromagnetic environment E2
Degree of pollution 2

Output

Pulse Output

The meter provides two pulse outputs. Both pulse outputs are passive type.

Pulse output 1 is configurable. The pulse output can be set to generate pulses to represent total / import/export kWh or kVarh.

The pulse constant can be set to generate 1 pulse per: 0.001(default) /0.01/0.1/1kWh/kVarh.

Pulse width: 200/100/60ms

Pulse output 2 is non-configurable. It is fixed up with total kWh. The constant is 1000imp/kWh.

RS485 output for Modbus RTU

The meter provides a RS485 port for remote communication. Modbus RTU is the protocol applied. For Modbus RTU, the following RS485 communication parameters can be configured from the Set-up menu.

Baud rate: 1200, 2400, 4800, 9600

Parity: NONE/EVEN/ODD

Stop bits: 1 or 2

Modbus Address: 1 to 247

Mechanics

Din rail dimensions 17.5x119x62 (WxHxD) DIN 43880

Mounting DIN rail 35mm Sealing IP51 (indoor)

Material self-extinguishing UL94V-0

Initialization Display

When it is powered on, the meter will initialize and do self-checking.

After the self-checking program, the meter display will show the total active energy (kWh)

Scroll Display by button

There is a button on the front of the meter. After initialization and self-checking program, the meter display the measured values. The default page is total kWh. If the user wants to check other information, he needs to press the scroll button on the front panel.

1	Total active energy (kWh) Display format: 0000.00→99999.99→10000.0→ 99999.9→0000.00
1-1	Import active energy (kWh) Display format: 0000.00→9999.9→10000.0→ 99999.9→0000.00
1-2	Export active energy (kwh) Display format: 0000.00→99999.9→10000.0→ 99999.9→0000.00

2		Voltage (V)
3		Current (A)
4		Active power (W)
5	F 5000	Frequency (F)
6	PF III	Power factor (PF)
7		Modbus Address (ID) Default: 001
8	6 2400 6 2400	Baud rate Default : 2400bps
9	Prey n	Parity None/even/odd are optional Default: none

To get into Set-up Mode, the user need keep pressing the button for 3 seconds, the meter LCD will shows "-SET-".

The user can program the meter parameters by sending correct command via RS485 port.

The protocol is Modbus RTU. For the details. Please look at the "Eastron SDM120-Modbus(mV) protocol".

1:111 2:112 3:N 4:L 5 / 6 / 7: PO 2+ / Com / PO 1+ 8 / 9 / 10: GND/RS485 B/A

Dimensions

Installation

sales, service and product support in cooperation with EASTRON about

B+G e-tech GmbH Franz - Mehring Str. 36 DE 01979 Lauchhammer

Tel.: +49 3574 467550 Fax: +49 3574 4675519 Mail: info@bg-etech.de

Eastron SDM120-Modbus(mV) Smart Meter Modbus Protocol Implementation V1.0

1 MODBUS Protocol Message Format

The MODBUS Protocol defines the format for the master's query and the slave's response.

The query contains the device (or broadcast) address, a function code defining the requested action, any data to be sent, and an error-checking field.

The response contains fields confirming the action taken, any data to be returned, and an error-checking field. If an error occurred in receipt of the message then the message is ignored, if the slave is unable to perform the requested action, then it will construct an error message and send it as its response. The MODBUS Protocol functions used by the Eastron Digital meters copy 16 bit register values between master and slaves. However, the data used by the Eastron Digital meter is in 32 bit IEEE 754 floating point format. Thus each instrument parameter is conceptually held in two adjacent MODBUS Protocol registers. Query

The following example illustrates a request for a single floating point parameter i.e. two 16-bit Modbus Protocol Registers.

First Byte Last Byte

Slave	Function	Start	Start	Number	Number	Number	Error	Error
Address	Code	Address	Address	of	of	of	Check	Check
		(Hi)	(Lo)	Points	Points	Points	(Lo)	(Hi)
				(Hi)	(Lo)	(Lo)		

Slave Address: 8-bit value representing the slave being addressed (1 to 247), 0 is reserved for the broadcast address. The Eastron Digital meters do not support the broadcast address.

Function Code: 8-bit value telling the addressed slave what action is to be performed. (3, 4, 8 or 16 are valid for Eastron Digital meter)

Start Address (Hi): The top (most significant) eight bits of a 16-bit number specifying the start address of the data being requested.

Start Address (Lo): The bottom (least significant) eight bits of a 16-bit number specifying the start address of the data being requested. As registers are used in pairs and start at zero, then this must be an even number.

Number of Points (Hi): The top (most significant) eight bits of a 16-bit number specifying the number of registers being requested.

Number of Points (Lo): The bottom (least significant) eight bits of a 16-bit number specifying the number of registers being requested. As registers are used in pairs, then this must be an even number.

Error Check (Lo): The bottom (least significant) eight bits of a 16-bit number representing the error check value.

Error Check (Hi): The top (most significant) eight bits of a 16-bit number representing the error check value.

Response

The example illustrates the normal response to a request for a single floating point parameter i.e. two 16-bit Modbus Protocol Registers.

First Byte Last Byte

Slave	Function	Byte	First	First	Second	Second	Error	Error
Address	Code	Count	Register	Register	Register	Register	Check	Check
			(Hi)	(Lo)	(Hi)	(Lo)	(Lo)	(Hi)

Slave Address: 8-bit value representing the address of slave that is responding.

Function Code: 8-bit value which, when a copy of the function code in the query, indicates that the slave recognised the query and has responded. (See also Exception Response).

Byte Count: 8-bit value indicating the number of data bytes contained within this response

First Register (Hi)*: The top (most significant) eight bits of a 16-bit number representing the first register requested in the query.

First Register (Lo)*: The bottom (least significant) eight bits of a 16-bit number representing the first register requested in the query.

Second Register (Hi)*: The top (most significant) eight bits of a 16-bit number representing the second register requested in the query.

Second Register (Lo)*: The bottom (least significant) eight bits of a 16-bit number representing the second register requested in the query.

Error Check (Lo): The bottom (least significant) eight bits of a 16-bit number representing the error check value.

Error Check (Hi): The top (most significant) eight bits of a 16-bit number representing the error check value.

Exception Response

If an error is detected in the content of the query (excluding parity errors and Error Check mismatch), then an error response (called an exception response), will be sent to the master. The exception response is identified by the function code being a copy of the query function code but with the most-significant bit set. The data contained in an exception response is a single byte error code.

First Byte Last Byte

Slave	Function	Error	Error	Error	
Address	Code	Code	Check	Check	
			(Lo)	(Hi)	

Slave Address: 8-bit value representing the address of slave that is responding.

Function Code: 8 bit value which is the function code in the query OR'ed with 80 hex, indicating that the slave either does not recognize the query or could not carry out the action requested.

Error Code: 8-bit value indicating the nature of the exception detected.

(See "Table Of Exception Codes" later).

SDM120-Modbus(mV) RTU Protocol

Error Check (Lo): The bottom (least significant) eight bits of a 16-bit number representing the error check value.

Error Check (Hi): The top (most significant) eight bits of a 16-bit number representing the error check value.

2 Read Input Registers

2.1 MODBUS Protocol code 04 reads the contents of the 3X registers.

Example

The following query will request 'Volts 1' from an instrument with node address 1:

Field Name	Example(Hex)
Slave Address	01
Function	04
Starting Address High	00
Starting Address Low	00
Number of Points High	00
Number of Points Low	02
Error Check Low	71
Error Check High	СВ

Note: Data must be requested in register pairs i.e. the "Starting Address" and the "Number of Points" must be even numbers to request a floating point variable. If the "Starting Address" or the "Number of points" is odd then the query will fall in the middle of a floating point variable the product will return an error message.

The following response returns the contents of Volts 1 as 230.2. But see also "Exception Response" later.

Field Name	Example (Hex)
Slave Address	01
Function	04
Byte Count	04
Data, High Reg, High Byte	43
Data, High Reg, Low Byte	66
Data, Low Reg, High Byte	33
Data, Low Reg, Low Byte	34
Error Check Low	1B
Error Check High	38

2.2 Read Holding Registers

MODBUS Protocol code 03 reads the contents of the 4X registers.

Example

The following query will request the prevailing 'Network Node':

Field Name	Example (Hex)
Slave Address	01
Function	03
Starting Address High	00
Starting Address Low	00
Number of Points High	00
Number of Points Low	14
Error Check Low	C4
Error Check High	0B

Note: Data must be requested in register pairs i.e. the "Starting Address" and the "Number of Points" must be even numbers to request a floating point variable. If the "Starting Address" or the "Number of points" is odd then the query will fall in the middle of a floating point variable the product will return an error message.

The following response returns the contents of Demand Time as 1, but see also "Exception Response" later.

Field Name	Example (Hex)
Slave Address	01
Function	03
Byte Count	04
Data, High Reg, High Byte	3F
Data, High Reg, Low Byte	80
Data, Low Reg, High Byte	00
Data, Low Reg, Low Byte	00
Error Check Low	F7
Error Check High	CF

2.3 Write Holding Registers

MODBUS Protocol code 10 (16 decimal) writes the contents of the 4X registers.

Example

The following query will set the Network Node to 60:

Field Name	Example (Hex)
Slave Address	01
Function	10
Starting Address High	00
Starting Address Low	14
Number of Registers High	00
Number of Registers Low	02
Byte Count	04

SDM120-Modbus(mV) RTU Protocol

Data, High Reg, High Byte	42
Data, High Reg, Low Byte	70
Data, Low Reg, High Byte	00
Data, Low Reg, Low Byte	00
Error Check Low	67
Error Check High	D5

Note: Data must be written in register pairs i.e. the "Starting Address" and the "Number of Points" must be even numbers to write a floating point variable. If the "Starting Address" or the "Number of points" is odd then the query will fall in the middle of a floating point variable the product will return an error message. In general only one floating point value can be written per query

The following response indicates that the write has been successful. But see also "Exception Response "later.

Field Name	Example (Hex)
Slave Address	01
Function	10
Starting Address High	00
Starting Address Low	14
Number of Registers High	00
Number of Registers Low	02
Error Check Low	E0
Error Check High	08

Register Map:

Function code 04 to read input parameters:

Addres s	Input Register Parameter			Modbus Start	Protocol
Regist		Address Hex			
er	Parameter	Units	Format	Hi byte	Lo byte
30001	Voltage	Volts	Float	00	00
30007	Current	Amps	Float	00	06
30013	Active power	Watts	Float	00	0C
30019	Apparent power	VA	Float	00	12
30025	Reactive power	VAr	Float	00	18
30031	Power factor	None	Float	00	1E
30071	Frequency	Hz	Float	00	46
30073	Import active energy	kWh	Float	00	48
30075	Export active energy	kWh	Float	00	4A
30077	Import reactive energy	kvarh	Float	00	4C
30079	Export reactive energy	kvarh	Float	00	4E
30085	Total system power	W	Float	00	54

	demand				
30087	Maximum total system	W	Float	00	56
	power demand				
30089	Import system power	W	Float	00	58
	demand				
30091	Maximum Import	W	Float	00	5A
	system power demand				
30093	Export system power	W	Float	00	5C
	demand				
30095	Maximum Export	W	Float	00	5E
	system power demand				
30259	current demand.	Amps	Float	01	02
30265	Maximum current	Amps	Float	01	08
	demand.				
30343	Total active energy	kWh	Float	01	56
30345	Total reactive energy	Kvarh	Float	01	58

Function code 10 to set holding parameter , function code 03 to read holding parameter

Address	Holding Register Parameter		Modbus Protocol		Description
Register			Start		
			Address Hex		
	Parameters	Format	Hi byte	Lo byte	
40013	Relay Pulse Width	Float	00	0C	Write relay on period in milliseconds: 60, 100 or 200, default 100ms.
40019	Network Parity Stop	Float	00	12	Write the network port parity/stop bits for MODBUS Protocol, where: 0 = One stop bit and no parity, default. 1 = One stop bit and even parity. 2 = One stop bit and odd parity.3 = Two stop bits and no parity. Requires a restart to become effective.
40021	Meter ID	Float	00	14	Ranges from 1 to 247, .Default ID is 1.
40029	Baud rate	Float	00	1C	0:2400bps(default) 1:4800bps 2:9600bps 5:1200bps
40051	CT Primary current	Float	00	32	CT Primary current Ranges from 1-2000, Default ID is 5
40087	Pulse 1 output mode	Hex	00	56	0001: Import active energy, 0002: Import + export active

SDM120-Modbus(mV) RTU Protocol

					energy, 0004: Export active energy, (default). 0005: Import reactive energy, 0006: Import + export reactive energy, 0008: Export reactive energy,	
463745	Time of scroll display	BCD	F9	00	0-30s Default 0:does not display in turns	
463761	Pulse 1 output	Hex	F9	10	0000:0.001kWh/imp(default) 0001:0.01kWh/imp 0002:0.1kWh/imp 0003:1kWh/imp	
463777	Measurement mode	Hex	F9	20	Data Format: Hex 0001:mode 1(total = import) 0002:mode 2 (total = import + export) (default) 0003:mode 3 (total = import - export)	