PROG 3

Intro

C++ offers many language features, such as

- Procedural programming
- Object-oriented programming
- Generic meta programming
- Functional programming

Large code bases can be handled, C++ allows easy access to C APIs, allows low level optimizations, and is a very powerful language.

Hello World

Standard libary elements are in the $\mathbf{namespace}$ "std" and can be accessed with the $\mathbf{\#include}$ keyword.

C++ compilers generate platform dependent binaries, f.e. Java is platform independent. C++ programs need to be compiled for each platform.

How to edit & compile

Edit a C++ file wit gedit helloworld.cpp and compile it with g++ -c helloworld.cpp .

Link the file and build an executable with g++ helloworld.o -o helloworld.exe .-> ./helloworld.exe

Declarations & Definitions

Declarations introduce the existence of structures, variables, functions, etc. -> declare a function:

```
int add(int, int);
```

Definitions are declarations, which contain all information about the declared thing. -> define a function:

```
int add(int a, int b) {
    return a + b;
}
```

ODR (One Definition Rule)

- Only one single definition of a function, variable, class, etc. is allowed.
- Every used thing must be defined somewhere.

Redeclaration of a function is allowed, if the definition is the same.

Modularization

Header files contain declarations, which can be included in other files.

```
// helloworld.h
#ifndef HELLOWORLD_H
#define HELLOWORLD_H
    int add(int, int);
#endif
// helloworld.cpp
#include "helloworld.h"
    int add(int a, int b) {
        return a + b;
    }
```

Libaries are collections of header files, which can be included in other files. They can be either static (.a/.LIB) or dynamic (.so/.DLL).

Namespaces

Namespaces are used to avoid name collisions.

```
namespace mynamespace {
    int add(int a, int b) {
        return a + b;
    }
}
int main() {
    int a = 1;
    int b = 2;
    int c = mynamespace::add(a, b);
    return 0;
}
```

Makefiles

Makefiles are used to automate the build process.

CMake is a Makefile generator, which can be used to generate Makefiles for different platforms.

First Steps

Functions

- Functions can be defined for different types. -> overloading
- Function calls with ambiguous types are not allowed. -> overloading resolution

Variables, Narrowing

- Variables are defined prior usage.
- Initialization a=2 is deprecated, use a{2} or a={2} instead.
- Narrowing: losing information during type conversion. -> int a = 2.5;
- Array variables are defined: TYPE arr[NUM].
- C++11 defined std::array std::array<TYPE, NUM> arr.
- Array sizes must be known at compile time.

Constants

- Constants are defined with const.
- const variables protect variables from modification.
- constexpr variables protect variables from modification and allow compile time evaluation.

Refrences & Pointers

Pointers Features:

- Pointer = address (where) + optional: type (what)
- Nullpointer = nullptr
- Pointer arithmetic: address modifications

Use cases:

-> *name=2;

- Data structures -> Lists
- Data referencing (passing pointers instead of values)
- Dynamic memory management

Pointer declaration TYPE* name {...};

Addresses of variables can be accessed with &name

Pointer arithmetic is possible -> &c2-&c1

To access the data to which a pointer is pointing use the dereference operator $\boldsymbol{\ast}$

```
void swap(int* a, int* b) {
    int tmp = *a;
    *a = *b;
    *b = tmp;
}
```

```
int main() {
    int x{2},y{3};
    int *xp = &x;
    swap(xp, &y);
    swap(&x, &y);
}
```

References

- Reference variable declaration: TYPE& name{...}; no reassignment possible
- References are aliases for variables
- Accessing a reference is the same as accessing the original value
- References can't be null

C-Strings

- C-Strings are arrays of characters,
- const TYPE* ptris a pointer to a const TYPE
- TYPE* const ptris a const pointer to a TYPE

Different function parameters Pass by value func (TYPE value) -> copy value (input, small TYPES)

```
Pass by reference:
```

```
func (TYPE &value) -> reference to original value (input, output) func
(const TYPE &value) -> reference to original value (input, large TYPES)
Pass by pointer:
```

```
func (TYPE *value) -> reference to original value (input, output)
func (const TYPE *value) -> reference to original value (input)
```

Dynamic Memory Management

```
Allocation TYPE* ptr = new TYPE{init};
Deallocation delete ptr;
Allocate N data element TYPE* ptr = new TYPE[N];
Access ptr[i]
```

Deallocate delete[] ptr; Dangling pointer is a pointer, which points to a deallocated memory location.

I/O

```
Open a file std::ifstream Read from a file std::getline(std::cin, line); Write to a file std::cout << "Hello World" << std::endl;
```