Leçon 158. Matrices symétriques réelles, matrices hermitiennes.

1. NOTATION. Dans cette leçon, on considère un entier $n\geqslant 1$ et le corps ${\bf K}$ des réels ou des complexes.

1. Matrices et endomorphismes symétriques

1.1. Matrices symétriques, antisymétrique et hermitiennes

- 2. DÉFINITION. La transposée d'une matrice $M := (m_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbf{K})$ est la matrice ${}^tM := (m_{j,i})_{1 \le i,j \le n}$ et sa transconjuguée la matrice $M^* := {}^t\overline{M}$.
- 3. DÉFINITION. Une matrice $M \in \mathscr{M}_n(\mathbf{R})$ est symétrique si ${}^tM = M$. Elle est antisymétrique si ${}^tM = -M$. Une matrice $M \in \mathscr{M}_n(\mathbf{C})$ est hermitienne si $M^* = M$. On notera respectivement $\mathscr{S}_n(\mathbf{R})$, $\mathscr{A}_n(\mathbf{R})$ et $\mathscr{H}_n(\mathbf{C})$ l'ensemble des matrices symétriques, antisymétrique et hermitienne.
- 4. EXEMPLE. La matrice réelle

$$\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$

est symétrique.

5. DÉFINITION. Soit E un espace euclidien ou hermitien. Un endomorphisme $u \in \mathcal{L}(E)$ est autoadjoint si

$$\forall x, y \in E, \qquad \langle u(x), y \rangle = \langle x, u(x) \rangle.$$

Lorsque K = R, on dira que l'endomorphisme u est symétrique.

- 6. PROPOSITION. Soit E un espace euclidien. Alors un endomorphisme $u \in \mathcal{L}(E)$ est symétrique si et seulement s'il existe une base \mathcal{B} de E dans laquelle sa matrice $\mathrm{Mat}_{\mathcal{B}}(u)$ est symétrique.
- 7. PROPOSITION. L'ensemble $\mathscr{S}_n(\mathbf{R})$ est un sous-espace vectoriel de $\mathscr{M}_n(\mathbf{R})$ de dimension n(n+1)/2. De plus, on peut écrire la décomposition $\mathscr{M}_n(\mathbf{R}) = \mathscr{S}_n(\mathbf{R}) \oplus \mathscr{A}_n(\mathbf{R})$.
- 8. Remarque. Une matrice $M \in \mathcal{M}_n(\mathbf{R})$ se décompose sous la forme

$$M = \frac{M + {}^{\mathsf{t}} M}{2} + \frac{M - {}^{\mathsf{t}} M}{2} \in \mathscr{S}_n(\mathbf{R}) \oplus \mathscr{A}_n(\mathbf{R}).$$

- 9. Proposition. Dans le cas complexe, on a $\mathcal{M}_n(\mathbf{R}) = \mathscr{S}_n(\mathbf{R}) \oplus i\mathscr{A}_n(\mathbf{R})$.
- 10. DÉFINITION. Une matrice symétrique $M \in \mathscr{S}_n(\mathbf{R})$ est positive (respectivement définie positive) si

$$\forall x \in \mathbf{R}^n$$
, $\langle Mx, x \rangle \geqslant 0$ (respectivement > 0 avec $x \neq 0$).

où la notation $\langle \; , \; \rangle$ le produit scalaire canonique sur \mathbf{R}^n . On note $\mathscr{S}_n^+(\mathbf{R})$ et $\mathscr{S}_n^{++}(\mathbf{R})$ l'ensemble des matrices symétriques réelles positives et définies positives. Ce sont des sous-espaces vectoriels.

11. PROPOSITION. Soit $M \in \mathscr{S}_n(\mathbf{R})$ une matrice symétrique. Alors elle est définie positive si et seulement si la forme bilinéaire symétrique $(x,y) \longmapsto {}^{t}xMy$ est un produit scalaire sur \mathbf{R}^n .

1.2. Lien avec les formes quadratiques

12. DÉFINITION. Soit E un \mathbf{K} -espace vectoriel de dimension finie. Une forme quadratique sur E est une application $q \colon E \longrightarrow \mathbf{K}$ de la forme

$$\forall x \in E, \qquad q(x) = b(x, x)$$

pour une forme bilinéaire symétrique b sur E.

13. DÉFINITION. Soit E un **K**-espace vectoriel de dimension finie et $\mathscr{B} := (e_1, \dots, e_n)$ une base de E. La matrice dans \mathscr{B} d'une forme quadratique q sur E est la matrice

$$\operatorname{Mat}_{\mathscr{B}}(q) := (b(e_i, e_j))_{1 \leqslant i, j \leqslant n}$$

où l'application b est la forme bilinéaire symétrique associée à la forme quadratique q. 14. PROPOSITION. On reprend les mêmes notations. Alors la matrice $\mathrm{Mat}_{\mathscr{B}}(q)$ est symétrique (ou hermitienne). Réciproquement, soit $M \in \mathscr{S}_n(\mathbf{R})$ une matrice symétrique. Alors l'application $x \longmapsto {}^t x M x$ est une forme quadratique sur \mathbf{R}^n .

15. EXEMPLE. La matrice de la forme quadratique $x^2 + 2xy - y^2$ sur \mathbf{R}^2 est

$$\begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \in \mathscr{S}_2(\mathbf{R}).$$

16. DÉFINITION. Deux matrices $M, M' \in \mathcal{M}_n(\mathbf{K})$ sont congruentes si elles représentent la même forme quadratique dans une base différente, c'est-à-dire s'il existe une matrice $P \in GL_n(\mathbf{K})$ telle que $M' = {}^{\mathrm{t}}\overline{P}MP$.

2. La réduction des matrices symétriques réelles et conséquences

2.1. Le théorème spectral et la réduction des endomorphismes normaux

- 17. Théorème (spectral). Soit $M \in \mathcal{M}_n(\mathbf{K})$ une matrice symétrique ou hermitienne. Alors il existe une base orthonormée de \mathbf{K}^n formées de vecteurs propres de la matrice M. De plus, ses valeurs propres sont réelles.
- 18. Contre-exemple. Le théorème ne fonctionne pas pour des matrices complexes symétriques : la matrice symétrique

$$\begin{pmatrix} 2 & i \\ i & 0 \end{pmatrix}$$

est symétrique, mais elle n'est pas diagonalisable.

- 19. COROLLAIRE. Soit $M \in \mathcal{M}_n(\mathbf{K})$ une matrice symétrique (respectivement hermitienne). Alors il existe une matrice orthogonal $P \in \mathcal{O}_n(\mathbf{R})$ (respectivement unitaire $P \in \mathcal{U}_n(\mathbf{C})$) telle que la matrice P^*MP soit diagonale réelle.
- 20. COROLLAIRE. Une matrice symétrique est positive (respectivement définie positive) si et seulement si ses valeurs propres sont positives (respectivement strictement positives).
- 21. COROLLAIRE. Soit q une forme quadratique sur un espace euclidien ou hermitien E. Alors il existe une base orthonormée de E dans laquelle la matrice de la forme q est diagonale réelle.
- 22. Remarque. On se passer du théorème spectral pour ce montrer ce dernier corollaire, on utilise la méthode de réduction de Gauss à la place.

$$P^*MP = I_n$$
 et $P^*NP = D$

où la matrice D est diagonale réelle.

24. Théorème. Soit $u \in \mathcal{L}(E)$ un endomorphisme normal d'un espace euclidien E. Alors il existe une base orthonormée \mathscr{B} de E dans laquelle la matrice de l'endomorphisme u est de la forme

$$\operatorname{Mat}_{\mathscr{B}}(u) = \operatorname{diag}(\lambda_1, \dots, \lambda_s, \tau_1, \dots, \tau_s)$$

où l'on a noté

$$\tau_i := \begin{pmatrix} a_i & -b_i \\ b_i & a_i \end{pmatrix} \in \mathscr{M}_2(\mathbf{R}), \qquad i \in [1, s].$$

2.2. La réduction des formes quadratiques réelles

25. DÉFINITION. Soit (E,q) un espace quadratique. Une base (e_1,\ldots,e_n) de E est qorthonormée si

$$\forall i \neq j, \qquad q(e_i, e_j) = \delta_{i,j}.$$

- 26. EXEMPLE. La base canonique, formée des matrices élémentaires, de $\mathcal{M}_n(\mathbf{K})$ est orthogonale pour la forme $A \longmapsto \operatorname{Tr}({}^{\operatorname{t}} A A)$.
- ${\tt 27.}$ Théorème. Tout espace quadratique de dimension finie possède une base orthogonale.
- 28. PROPOSITION. Soit (E,q) un espace quadratique réel de dimension n. Alors il existe une base \mathcal{B} de E et deux entiers $r,s\in \mathbf{N}$ avec $r+s\leqslant n$ tels que

$$\operatorname{Mat}_{\mathscr{B}}(q) = \operatorname{diag}(I_r, -I_s, 0).$$

- 29. DÉFINITION. De tels entiers r et s sont uniques. Le couple (r,s) est la signature de la forme.
- 30. EXEMPLE. Sur \mathbb{R}^3 , la forme quadratique

$$x^{2} + 2y^{2} + 15z^{2} - 4xy + 6xz - 8yz = (x - 2z + 3z)^{2} - 2(y - z)^{2} + 8z^{3}$$
 est de signature (2, 1).

- 31. COROLLAIRE. Deux formes quadratiques réelles de même dimension finie sont équivalentes si et seulement si elles ont la même signature.
- 32. COROLLAIRE. Deux matrices symétriques $M, N \in \mathscr{S}_n(\mathbf{R})$ sont congruentes si et seulement si elles ont la même signature, c'est-à-dire les formes bilinéaires $x \longmapsto x^t M x$ et $x \longmapsto x^t N x$ ont la même signature.

3. Les matrices symétriques en analyse

3.1. La matrice hessienne et son utilisation en optimisation

33. RAPPEL. Soient $\Omega \subset \mathbf{R}^n$ un ouvert, F un espace vectoriel normé et $f : \Omega \longrightarrow F$ une application deux fois différentiable en un point a. Sa différentielle seconde $d^2f(a)$ au point a peut être vue comme une forme bilinéaire associée, dans la base canonique,

à la matrice

$$\mathrm{H}f(a) := \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{1 \le i, j \le n} \in \mathscr{M}_n(\mathbf{R}),$$

appelée la matrice hessienne de l'application f au point a.

- 34. THÉORÈME (Schwartz). Avec les mêmes notations, la forme $d^2f(a)$ est symétrique et la matrice Hf(a) est symétrique.
- 35. PROPOSITION. Soient $f: \Omega \longrightarrow F$ une application deux fois différentiable en un certain point $x^* \in \Omega$.
 - Si le point x^* en est un minimum local de la fonction f, alors $df(x^*) = 0$ et sa hesienne $Hf(x^*)$ est positive.
 - Si $df(x^*) = 0$ et sa hessienne $Hf(x^*)$ est définie positive, alors le point x^* est un minimum local strict de la fonction f.
- 36. Contre-exemple. Les réciproques des deux points sont fausses. Pour le premier point, la fonction $(x,y) \in \mathbf{R}^2 \longmapsto x^2 y^2$ admet un unique point critique qui est l'origine et, en ce point, sa hessienne est positive, mais l'origine n'est pas un minimum local. On considère le contre-exemple $(x,y) \in \mathbf{R}^2 \longmapsto x^2 + y^2$ pour le second point.
- 37. THÉORÈME (lemme de Morse). Soient $\Omega \subset \mathbf{R}^n$ un ouvert contenant l'origine et $f : \Omega \longrightarrow \mathbf{R}$ une fonction de classe \mathscr{C}^3 . On suppose que
 - l'origine est un point critique, c'est-à-dire df(0) = 0;
 - la forme quadratique $d^2 f(0)$ n'est pas dégénérée;
 - elle est de signature (p, n-p).

Alors il existe des voisinages $U, V \subset \mathbf{R}^n$ de l'origine et un difféomorphisme $\varphi \colon U \longrightarrow V$ de classe \mathscr{C}^1 vérifiant

- $\varphi(0) = 0;$
- pour tout point $x \in U$, on a

$$f(x) - f(0) = \varphi_1(x)^2 + \dots + \varphi_p(x)^2 - \varphi_{p+1}(x)^2 - \dots - \varphi_n(x)^2$$

où les réels $\varphi_i(x)$ sont les coordonnées du vecteurs $\varphi(x)$.

3.2. Résultats de décomposition matricielle et valeurs propres

- 38. Théorème (décomposition LU). Soit $A := (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbf{R})$ une matrice telle que ses sous-matrices $(a_{i,j})_{1 \le i,j \le k}$ avec $k \le n$ soient inversibles. Alors il existe une matrice triangulaire inférieure L de diagonale 1 et une matrice triangulaire supérieure U telles que A = LU. De plus, cette factorisation est unique.
- 39. COROLLAIRE (Cholesky). Une matrice $A \in \mathcal{M}_n(\mathbf{R})$ est symétrique définie positive si et seulement s'il existe une matrice triangulaire supérieure $B \in \mathrm{GL}_n(\mathbf{R})$ telle que $A = {}^{\mathrm{t}}BB$. Dans ce cas, la matrice B est unique lorsqu'on impose que ses coefficients diagonaux soient positifs.
- 40. Remarque. Une fois la décomposition $A = {}^{t}BB$ obtenue, il est facile de résoudre un système linéaire Ax = b.
- 41. THÉORÈME. Soit $A \in \mathscr{S}_n^+(\mathbf{R})$ une matrice symétrique positive. Alors il existe une unique matrice $B \in \mathscr{S}_n^+(\mathbf{R})$ telle que $A = B^2$.
- 42. THÉORÈME (de décomposition polaire). Soit $A \in GL_n(\mathbf{R})$ une matrice inversible. Alors il existe un unique couple $(O, S) \in O_n(\mathbf{R}) \times \mathscr{S}_n^{++}(\mathbf{R})$ tel que A = OS. Plus

$$\begin{vmatrix} O_n(\mathbf{R}) \times \mathscr{S}_n^{++}(\mathbf{R}) \longrightarrow \mathrm{GL}_n(\mathbf{R}), \\ (O, S) \longmapsto OS \end{vmatrix}$$

est un homéomorphisme. De même, l'application

$$\begin{vmatrix} U_n(\mathbf{C}) \times \mathscr{H}_n^{++}(\mathbf{C}) \longrightarrow \mathrm{GL}_n(\mathbf{R}), \\ (U, H) \longmapsto UH \end{vmatrix}$$

est un homéomorphisme avec

$$\mathscr{H}_n^{++}(\mathbf{C}) := \{ M \in \mathscr{H}_n(\mathbf{C}) \mid \forall x \neq 0, \ \langle Mx, x \rangle > 0 \}.$$

43. COROLLAIRE. Soit $A \in \mathcal{M}_n(\mathbf{R})$ une matrice réelle. Alors il existe un unique couple $(O, S) \in \mathcal{O}_n(\mathbf{R}) \times \mathscr{S}_n^+(\mathbf{R})$ tel que A = OS.

44. COROLLAIRE. Pour toute matrice $A \in \mathrm{GL}_n(\mathbf{R})$, on a

$$|||A|||_2 = \sqrt{\rho({}^{\mathsf{t}}AA)}$$

où la notation $\rho(\cdot)$ désigne le rayon spectral.

45. COROLLAIRE. Tout sous-groupe compact du groupe linéaire $GL_n(\mathbf{R})$ contenant le groupe orthogonal $O_n(\mathbf{R})$ est égal à ce dernier.

46. DÉFINITION. Notons $\langle \ , \ \rangle$ le produit scalaire canonique sur \mathbf{C}^n . Le quotient de Rayleigh associée à une matrice $A \in \mathscr{M}_n(\mathbf{C})$ est l'application

$$R_A: \begin{vmatrix} \mathbf{C}^n \setminus \{0\} \longrightarrow \mathbf{R}, \\ x \longmapsto \langle Ax, x \rangle / \langle x, x \rangle. \end{vmatrix}$$

47. THÉORÈME. Soient $A \in \mathscr{H}_n(\mathbf{C})$ une matrice hermitienne et (e_1, \dots, e_n) une base orthonormée de \mathbf{C}^n composée de vecteurs propres e_i de la matrice A associé aux valeurs propres $\lambda_i \in \mathbf{C}$ avec $\lambda_1 \leqslant \dots \leqslant \lambda_n$. Alors pour tout indice $k \in [1, n]$, on a

$$\lambda_k = \sup\{R_A(x) \mid x \in \text{Vect}\{e_{k+1}, \dots, e_n\}^{\perp} \setminus \{0\}\}$$
$$= \inf\{R_A(x) \mid x \in \text{Vect}\{e_1, \dots, e_{k-1}\}^{\perp} \setminus \{0\}\}.$$

l] Vincent Beck, Jérôme Malick et Gabriel Peyré. Objectif Agrégation. 2e édition. H&K, 2005.

^[2] Philippe Caldero et Jérôme Germoni. Nouvelles histoires hédonistes de groupes et de géométries. T. Tome premier. Calvage & Mounet, 2017.

^[3] Philippe Ciarlet. Introduction à l'analyse numérique matricielle et à l'optimisation. 3° tirage. Masson, 1982.

^[4] Xavier Gourdon. Algèbre. 2e édition. Ellipses, 2009.

^[5] Jean-Étienne Rombaldi. Analyse matricielle. 2º édition. EDP Sciences, 2019.