Université de Paris Saclay M1 MF 2024-2025

FEUILLE TD 2 - EXERCICES ALGÈBRE - GROUPES II

► Cette feuille de TD nous occupera deux semaines.

Exercices fondamentaux de la semaine 1

EXERCICE 1 — QUELQUES ISOMORPHISMES CLASSIQUES. Soit k un corps.

- **1.** Montrer que si V est un k-espace vectoriel de dimension finie, alors $V \otimes_k k \cong V$.
- **2.** Soient V_1, V_2, V_3 trois k-espaces vectoriels de dimension finie. Montrer que $(V_1 \otimes_k V_2) \otimes_k V_3 = V_1 \otimes_k (V_2 \otimes_k V_3)$ et en préciser la dimension.
- 3. Soient I un ensemble, $(V_i)_{i \in I}$ une famille de k-espaces vectoriels de dimension finie ainsi que V un k-espace vectoriel de dimension finie. Montrer que

 $V \otimes_k \left(\bigoplus_{i \in I} V_i\right) \cong \bigoplus_{i \in I} V \otimes_k V_i.$

EXERCICE 2 — PRODUIT TENSORIEL ET APPLICATIONS LINÉAIRES. Soient k un corps et V, V', W, W' des k-espaces vectoriels de dimension finie.

- **1.** Construire une application linéaire $\varphi: \operatorname{Hom}_k(V,V') \otimes_k \operatorname{Hom}_k(W,W') \to \operatorname{Hom}_k(V \otimes_k W,V' \otimes_k W')$. Donner pour $f \in \operatorname{Hom}_k(V,V')$, $g \in \operatorname{Hom}_k(W,W')$, la matrice de l'application $\varphi(f \otimes g)$ dans une base adaptée.
- 2. Montrer que c'est un isomorphisme.
- 3. Montrer que, si l'on note V^* le dual de V, alors on a un isomorphisme entre $\theta_{V,W}:V^*\otimes_k W\longrightarrow \operatorname{Hom}_k(V,W)$. Montrer alors que $f\in \operatorname{Hom}_k(V,W)$ est de rang r si, et seulement si, r est le plus petit entier naturel tel que $\theta_{V,W}^{-1}(f)$ s'écrive comme une somme de d tenseurs élémentaires non nuls.
- **4.** Décrire un isomorphisme entre $V^* \otimes_k V^*$ et $(V \otimes_k V)^*$. Montrer qu'il s'agit d'un isomorphisme de G-modules si V est un G-module pour G un groupe fini.
- 5. Montrer que l'application

 $\left\{ \begin{array}{ccc} V \times V^* & \longrightarrow & k \\ (x,f) & \longmapsto & f(x) \end{array} \right.$

fournit une application $e:V\otimes_k V^*\longrightarrow k$. Que vaut $e\circ heta_{V,V}^{-1}$?

Exercice 3 — Le groupe \mathfrak{S}_3 .

- 1. On considère l'action de \mathfrak{S}_3 sur \mathbb{C}^3 par permutation des coordonnées. Vérifier que cela définit une structure de \mathfrak{S}_3 -module sur \mathbb{C}^3 . Préciser sa représentation matricielle dans la base canonique.
- **2.** Montrer que \mathbb{C}^3 admet deux sous- \mathfrak{S}_3 -modules non triviaux $\mathbb{C}(1,1,1)$ et $H=\{x_1+x_2+x_3=0\}$ et que chacun de ceux-ci sont simples.
- 3. Donner une représentation matricielle de la représentation H.

On note à présent $\sigma = (1\,2\,3)$, $\tau = (1\,2)$ et V une représentation de \mathfrak{S}_3 .

- **4.** Montrer que V se décompose en $V_1\oplus V_j\oplus V_{j^2}$ où V_lpha est le sous-espace propre de σ associé à la valeur propre lpha.
- **5.** Montrer que $\tau(V_{\alpha})=V_{\alpha^2}$ pour $\alpha\in\{1,j,j^2\}$. En déduire que V_1 et $V_j\oplus V_{j^2}$ sont deux sous- \mathfrak{S}_3 -modules de V.
- **6.** Que peut-on en déduire si V est irréductible?
- 7. On suppose que V est irréductible et que $V_1 \neq \{0\}$. Montrer que V est de dimension 1 et est soit la représentation triviale soit la signature.
- **8.** On suppose que V est irréductible et que $V_j \neq \{0\}$. Soit $v \in V_j \setminus \{0\}$. Montrer que l'espace vectoriel engendré par v et $\tau(v)$ est un plan \mathfrak{S}_3 -stable. En déduire que V est \mathfrak{S}_3 -isomorphe à H.
- 9. Généraliser cette méthode au groupe \mathbf{D}_4 .

Exercices complémentaires de la semaine 1

EXERCICE 4 — POUR MAÎTRISER LE VOCABULAIRE.

- **1.** À quoi correspond une représentation du groupe trivial? De \mathbb{Z} ? De $\mathbb{Z}/n\mathbb{Z}$ pour $n\in\mathbb{N}^*$?
- 2. Même question avec une sous-représentation.
- **3.** Quels sont les G-modules simples lorsque G est le groupe trivial?

Université de Paris Saclay M1 MF 2024-2025

4. Vérifier qu'une représentation irréductible de $G=\mathbb{Z}/2\mathbb{Z}$ est de dimension 1 soit donnée par le module trivial soit par le module D pour lequel l'action de l'élément non trivial sur la droite D se fait par multiplication par -1. Montrer que toute représentation est semi-simple.

- 5. Soit $n \in \mathbb{N}^*$. Vérifier qu'une représentation irréductible de $G = \mathbb{Z}/n\mathbb{Z}$ sur \mathbb{C} est de dimension 1. Combien existe-t-il de représentations irréductibles non isomorphes sur \mathbb{C} ? Montrer que toute représentation est semi-simple.
- **6.** Vérifier qu'une représentation irréductible de $G=\mathbb{Z}$ sur \mathbb{C} est de dimension 1. Combien existe-t-il de représentations irréductibles de dimension finie non isomorphes sur \mathbb{C} ? Que se passe-t-il si on change de corps? En considérant un bloc de Jordan, construire une représentation de dimension finie de \mathbb{Z} qui n'est pas somme directe de modules simples.

EXERCICE 5 — EXTENSION DES SCALAIRES.

- **1.** Soient $k\subseteq K$ deux corps et V un k-espace vectoriel. Munir $V_K:=V\otimes_k K$ d'une structure de K-espace vectoriel.
- **2.** Soit $\mathcal{B}=(e_i)_{i\in I}$ une k-base de V. Exhiber une K-base de V_K et comparer $\dim_k(V)$ et $\dim_K(V_K)$.
- 3. Soient W un k-espace vectoriel et $f:V\to W$ une application k-linéaire. Montrer que $f_K=f\otimes \operatorname{Id}_K:V_K\to W_K$ est une application K-linéaire. On fixe une base $\mathcal C$ de W. Comparer la matrice de f dans les bases $\mathcal B$ et $\mathcal C$ et celle de f_K dans les bases correspondantes de la question 2.
- **4.** On suppose que V est un G-module sur k avec G un groupe fini. Construire sur V_K une structure de G-module sur K ayant la même représentation matricielle que celle de V.

 Une représentation de G sur K qui est de la forme V_K pour une représentation V de G sur K est dite réalisable sur K.

EXERCICE 6 — UN MODULE NON SEMI-SIMPLE. Soient G un groupe fini, p un nombre premier qui divise le cardinal de G et $k = \mathbb{Z}/p\mathbb{Z}$.

- 1. Montrer que la droite de k[G] engendrée par $\sum_{g \in G} g$ est un sous-G-module de k[G] qui n'admet pas de supplémentaire.
- **2.** En déduire que k[G] n'est pas un G-module semi-simple.

EXERCICE 7 — **CENTRE ET LEMME DE SCHUR.** Soient G un groupe fini et V une représentation irréductible de G sur un corps algébriquement clos.

- **1.** Montrer que tout élément du centre de G agit sur V comme une homothétie.
- **2.** En déduire que si le centre de G n'est pas cyclique, la représentation de V n'est pas fidèle.

Exercices fondamentaux de la semaine 2

EXERCICE 8 — GROUPES D'ORDRE pq ET p^3 .

- 1. Soient p < q deux nombres premiers distincts. On considère G un groupe non abélien d'ordre pq. Montrer que D(G) est l'unique q-Sylow de G. Déterminer alors le groupe des caractères linéaires de G à valeurs dans \mathbb{C}^* et le nombre et les dimensions des représentations irréductibles de G sur \mathbb{C} .
- **2.** Soit p un nombre premier et G un groupe d'ordre p^3 non abélien. Montrer que D(G)=Z(G) est d'ordre p. Déterminer le nombre et les dimensions des représentations irréductibles de G sur $\mathbb C$.

EXERCICE 9 — IRRÉDUCTIBILITÉ. Soient G un groupe fini, k un corps de caractéristique nulle et χ un caractère de G sur k.

- **1.** On suppose k algébriquement clos. Montrer que si χ est irréductible, alors $\langle \chi, \chi \rangle_G = 1$.
- **2.** Montrer que $\langle \chi, \chi \rangle_G$ est une somme de carrés d'entiers.
- **3.** En déduire que si $\langle \chi, \chi \rangle_G = 1$, alors χ est irréductible.

EXERCICE 10 — TABLES DE CARACTÈRES.

- **1.** Déterminer la table de caractères de \mathfrak{S}_3 .
- 2. Soit G un groupe fini et V une représentation irréductible de G sur $\mathbb C$ et χ un caractère linéaire de G. Montrer que $\chi \otimes V$ est une représentation irréductible de G.
- **3.** Déterminer la table de caractères de \mathfrak{S}_4 .
- **4.** Déterminer la table de caractères de \mathbb{H}_8 .

EXERCICE 11 — DIMENSIONS DES REPRÉSENTATIONS IRRÉDUCTIBLES. Soit G un groupe fini. Le but de cet exercice est d'établir que les dimensions des représentations irréductibles sur $\mathbb C$ divise l'ordre de G/Z(G). Soit V une représentation irréductible.

- **1.** Soit $m \in \mathbb{N}^*$. Construire sur $V^{\otimes m}$ une structure de G^m -module. Montrer que la représentation associée est irréductible.
- **2.** Montrer que si $g \in Z(G)$, alors $\rho_V(g)$ est une homothétie. On notera $\lambda(g)$ son rapport.
- **3.** On note H le sous-groupe de G^m formé des éléments (g_1,\ldots,g_m) avec $g_i\in Z(G)$ et $g_1g_2\cdots g_m=1$. Montrer que H agit trivialement sur $V^{\otimes m}$. En déduire que $V^{\otimes m}$ fournit en fait une représentation de G^m/H irréductible.
- **4.** En déduire que $\dim(V) \mid \#G/Z(G)$.

Université de Paris Saclay M1 MF 2024-2025

Exercices complémentaires de la semaine 2

EXERCICE 12. Soit G un groupe.

- **1.** Calculer $\operatorname{End}_G(k[G])$.
- **2.** Montrer que $\mathbb{C}[\mathfrak{S}_3]$ est semi-simple et en déterminer les composantes isotypiques.
- **3.** En déduire que $\mathbb{C}[\mathfrak{S}_3]$ est isomorphe, en tant que \mathbb{C} -algèbre, à $\mathbb{C}^2 \times \mathcal{M}_2(\mathbb{C})$.

EXERCICE 13 — GROUPE DIÉDRAL. On pose $G=\mathbf{D}_4$.

- **1.** Déterminer D(G) et G^{ab} .
- **2.** Montrer que les représentations irréductibles de G sur $\mathbb C$ sont de dimension inférieure ou égale à 2.
- 3. Déterminer le nombre et les dimensions des représentations irréductibles de G sur \mathbb{C} . Déterminer une réalisation matricielle de chacune d'entres elles. Comparer avec \mathbb{H}_8 . Que peut-on en déduire?

EXERCICE 14 — REPRÉSENTATIONS RÉELLES D'UN GROUPE CYCLIQUE. Soit $n \in \mathbb{N}^*$. On s'intéresse dans cette exercice aux représentations de dimension finie de $G = \mathbb{Z}/n\mathbb{Z}$ sur le corps \mathbb{R} .

- **1.** Déterminer les représentations de dimension 1 de G.
- **2.** Soit P un diviseur irréductible de X^n-1 . Montrer que la multiplication par la classe de X dans $\mathbb{R}[X]/(P)$ définit un G-module simple, que l'on notera V_P .
- **3.** Soient P et Q deux diviseurs irréductibles unitaires de X^n-1 . Montrer que V_P est isomorphe à V_Q si, et seulement si, P=Q.

Soit V une représentation de dimension finie de G. On note $\rho:G\longrightarrow \mathrm{GL}(V)$ le morphisme de groupes associé et $f=\rho(\overline{1})$.

- 4. Soit P un diviseur irréductible de degré 1 de X^n-1 . Montrer que toute droite de $\mathrm{Ker}(P(f))$ est G-stable. En déduire que $\mathrm{Ker}(P(f))$ est semi-simple.
- 5. Soit P un diviseur irréductible de degré 2 de X^n-1 . Montrer que pour tout $x \in \text{Ker}(P(f))$, la famille (x, f(x)) engendre un G-module irréductible isomorphe à V_P . En déduire que Ker(P(f)) est semi-simple.
- **6.** Montrer que V est semi-simple et que ses sous-représentations irréductibles sont (à isomorphisme près) les V_P .
- **7.** Déterminer la composante V_P -isotypique de V pour tout P diviseur irréductible de X^n-1 .
- **8.** Déterminer le nombre de représentations irréductibles de G sur \mathbb{R} .