10 Marks (2 + 4 + 4)

1. Consider an HMM with an explicit absorber state w₀ and unique null visible symbol v₀ with the following transition probabilities a_{ii} and symbol probabilities bik (where the matrix indexes begin at 0):

1	0	0
0.2	0.3	0.5
0.4	0.5	0.1

aii MATRIX

1	0	0
0	0.7	0.3
0	0.4	0.6

bik MATRIX

- (a) Draw a graphical representation of a hidden Markov model
- (b) Suppose the initial hidden state at t = 0 is w_1 . Starting from t = 1, what is the probability it generates the particular sequence $V^3 = \{v_2, v_1, v_0\}$?
- (a) Given the above sequence V3, what is the most probable sequence of hidden states?

10 marks (5 + 5)

- 2. Given:
 - a. vocabulary $V = \{ w1, w2, w3 \}$
 - b. and the bigram probability distribution p on V X V given by:
 - i. P(w1,w1) = 0.25
 - ii. P(w2,w2) = 0.0
 - iii. P(w3,w3) = 0.25
 - iv. P(w2,w1) = 0.125
 - v. P(w1,w3) = 0.25
 - vi. P(w1, ?) = 0.5 (i.e. w1 as the first of a pair)
 - vii. P(?,w2) = 0.125 (i.e. w2 as the second of a pair)

Calculate P(w1,w2) and P(w2/w3)

5 marks (2 + 3)

- 3. We have a language model of vocabulary size 10000. In the training corpus we see donkey 10 times out of which it is followed by "clever" 5 times and "stupid" 5 times.
 - a. What is the Maximum Likelihood Estimate of P(clever\donkey)?
 - b. What is the Laplace estimate of P(clever\donkey)?