Overview of last class

TCP congestion control: additive increase multiplicative decrease

- approach: sender increases transmission rate (window size), probing for usable bandwidth, until loss occurs
 - additive increase: increase cwnd by I MSS every RTT until loss detected
 - multiplicative decrease: cut cwnd in half after loss

AIMD saw tooth behavior: probing for bandwidth

cwnd: TCP sender

TCP: switching from slow start to CA

Q: when should the exponential increase switch to linear?

A: when **cwnd** gets to 1/2 of its value before timeout.

- variable ssthresh
- on loss event, ssthresh is set to 1/2 of cwnd just before loss event

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Summary: TCP Congestion Control

TCP throughput

- W: window size (measured in bytes) where loss occurs
 - avg. window size (# in-flight bytes) is 3/4 W
 - avg. thruput is 3/4W per RTT

avg TCP thruput =
$$\frac{3}{4} \frac{W}{RTT}$$
 bytes/sec

TCP throughput =
$$\frac{1.22 \cdot MSS}{RTT \sqrt{L}}$$

TCP fairness

two competing sessions:

- additive increase gives slope of I, as throughout increases
- multiplicative decrease decreases throughput proportionally

Class Today

Chapter 4: The Network Layer: Data Plane

- 4.1 Overview of Network layer

 - data plane Formating
 control plane Noting
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6

- 4.4 Generalized Forward and SDN
 - match
 - action
 - OpenFlow examples of match-plus-action in action

Chapter 4: network layer

chapter goals:

- understand principles behind network layer services, focusing on data plane:
 - network layer service models
 - forwarding versus routing
 - how a router works
 - generalized forwarding
- instantiation, implementation in the Internet

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

Two key network-layer functions

network-layer functions:

- •forwarding: move packets from router's input to appropriate router output
- •routing: determine route taken by packets from source to destination
 - routing algorithms

analogy: taking a trip

- forwarding: process of getting through single interchange
- routing: process of planning trip from source to destination

Network layer: data plane, control plane

Data plane

- local, per-router function
- determines how datagram arriving on router input port is forwarded to router output port
- forwarding function
- Scheduling function

values in arriving packet header

Ronting Control plane

- network-wide logic
- determines how datagram is routed among routers along end-end path from source host to destination host
- two control-plane approaches:
 - traditional routing algorithms: implemented in routers
 - software-defined networking (SDN): implemented in (remote) servers

Per-router control plane

Individual routing algorithm components in each and every router interact in the control plane

Logically centralized control plane

A distinct (typically remote) controller interacts with local control agents (CAs)

Network service model

Q: What service model for "channel" transporting datagrams from sender to receiver?

example services for individual datagrams:

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

example services for a flow of datagrams:

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Network layer service models:

N	letwork	Service Model	Guarantees ?				Congestion
Archi	itecture		Bandwidth	Loss	Order	Timing	feedback
ı	nternet	best effort	none	no	no	no	no (inferred via loss)
	ATM	CBR	constant	yes	yes	yes	no
_			rate				congestion
	ATM	VBR	guaranteed	yes	yes	yes	no
_			rate				congestion
_	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	yes	no	no

Network Layer: Data Plane 4-16

CBR: Peak-rate allocation

Perk Late ((BR)

Perk Late ((BR)

Fetherive Binduiti (VBK)

NBR

Stochastic Qos

Prob (delay stoms)

Sto

Chapter 4: outline

- 4.1 Overview of Network layer
 - data plane
 - control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6

- 4.4 Generalized Forward and SDN
 - match
 - action
 - OpenFlow examples of match-plus-action in action

Router architecture overview

high-level view of generic router architecture:

Network Layer: Data Plane 4-19

Input port functions

data link layer:

e.g., Ethernet see chapter 6

decentralizéd switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- goal: complete input port processing at 'line speed'
- queuing: if datagrams arrive faster than forwarding rate into switch fabric

Input port functions

data link layer: e.g., Ethernet see chapter 5

decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- destination-based forwarding: forward based only on destination IP address (traditional)
- generalized forwarding: forward based on any set of header field values

Longest prefix matching

longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination Address Range	Link interface	
11001000 00010111 00010*** *****	0	
11001000 00010111 00011000 ******	1	
11001000 00010111 00011*** *****	2	
otherwise	3	

examples:

DA: 11001000 00010111 00010110 10100001

DA: 11001000 00010111 00011000 10101010

which interface? which interface?

Network Layer: Data Plane 4-22

Longest prefix matching

- we'll see why longest prefix matching is used shortly, when we study addressing
- longest prefix matching: often performed using ternary content addressable memories (TCAMs)
 - content addressable: present address to TCAM: retrieve address in one clock cycle, regardless of table size
 - Cisco Catalyst: can up ~IM routing table entries in TCAM

Switching fabrics

- transfer packet from input buffer to appropriate output buffer
- switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- three types of switching fabrics

Switching via memory

first generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system's memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

Switching via a bus

- datagram from input port memory to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers

bus

Switching via interconnection network

- overcome bus bandwidth limitations
- banyan networks, crossbar, other interconnection nets initially developed to connect processors in multiprocessor
- advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco I 2000: switches 60 Gbps through the interconnection network

Input port queuing

- fabric slower than input ports combined -> queueing may occur at input queues
 - queueing delay and loss due to input buffer overflow!
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

output port contention:
only one red datagram can be
transferred.
lower red packet is blocked

one packet time later:
green packet
experiences HOL
blocking

Output ports

- from fabric faster than the transmission

 rate Priority scheduling who gets best performance, network neutrality
- scheduling discipline chooses among queued datagrams for transmission

Output port queueing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

How much buffering?

- RFC 3439 rule of thumb: average buffering equal to "typical" RTT (say 250 msec) times link capacity C
 - e.g., C = 10 Gpbs link: 2.5 Gbit buffer
- recent recommendation: with N flows, buffering equal to

$$\frac{\mathsf{RTT} \cdot \mathsf{C}}{\sqrt{\mathsf{N}}}$$

Scheduling mechanisms

- scheduling: choose next packet to send on link
- FIFO (first in first out) scheduling: send in order of arrival to queue
 - real-world example?
 - discard policy: if packet arrives to full queue: who to discard?
 - tail drop: drop arriving packet
 - random: drop/remove randomly
 - priority: drop/remove on priority basis

Scheduling policies: priority

priority scheduling: send
 highest priority
 queued packet

- multiple classes, with different priorities
 - class may depend on marking or other header info, e.g. IP source/dest, port numbers, etc.
 - real world example?

Differentiated Senson

Scheduling policies: still more

Round Robin (RR) scheduling:

- multiple classes
- cyclically scan class queues, sending one complete packet from each class (if available)
- real world example?

Scheduling policies: still more

Weighted Fair Queuing (WFQ): $W_1 + W_2 + W_3 = 100\%$

- 50/3 30/3 20/3
- generalized Round Robin
- each class gets weighted amount of service in each cycle
- real-world example?

