

NCERT

CHAPTER WISE TOPIC WISE

LINE BY LINE QUESTIONS

BY SCHOOL OF EDUCATORS

IONIC/ELECTROVALENT

- . Strong electro Static force of altraction
- between Positive and negative ions.

1. Intermolecular: H-Bonding occur within one Single

end of one molecule altracts the +ve end of

- . Crystalline in nature . High M.P and B.P . Soluble in Polar Solvents. Eg: NaCl. MgCl, etc.
- motecute.
 2. Intermotecutar: H Bonding between two different motecutes of Same or diff. Compounds.

Bond formed when the -ve

CO-VALENT

HYDROGEN BOND

- Bond formed by mutual Sharing of e.. . Low M.P. and B.P. . Bad conductor of
- electricity Insoluble in Polar Solvents but Soluble in Non-Polar Ex: CH., H. CL.
- TYPE OF CO-VALENT

BOND

. Potal covalent bond E9: NH, CHCI, . Non-Potal covalent bond E9: C1, C0?

ELECTROVALENT BOND IONIC/

strong electro Static force of attraction between Positive and negative ions. Crystalline in nature High mp and BD. Souble in Polar Solents. Eg: NaCL MGCL, etc.

THEORIES OF CO-VALENT BOND

KOSSEL LEWIS APPROACH

KOSEL LEWIS APPROCH

Atoms can combine either by transfer of e- or by sharing of valence e- in order to have an octet in their valence shell.

octet Rule

A covalent bond is formed by the overlapping of two half filled atomic

Type of overlapping orbitals.

VALENCE BOND THEORY

LEWIS SYMBOLS H: Not: : CL : · O. . : N:

Valence e- are represented by dots around the element.

 $\widetilde{\bigcirc}$

S-S overlapping

Sidewise overlapping

Sidewise overlapping

The Shape of a molecule depends upon the numbers of valence shell e (B.p or i.p) surrounding in the central atom VSEPR THEORY

Concept of mixing atomic orbital to form new hybrid

MOLECULAR ORBITAL THEORY

. MOT are formed the combinate of atomic orbitals. . No. of molecular orbitals = No. of atomic orbital combined.

LECTRONIC CONFIGURATION

 $\begin{array}{l} (\sigma 18 < \sigma^* 18 < \sigma 28 < \sigma^* 28 < (\pi 2P_s = \pi 2P_y) < \sigma^2 P_t \\ < (\pi^* 2P_s = \pi^* 2P_y) < \sigma^* 2P_t \\ (for \; B_{g^*} \; C_{g^*} \; N_t) \end{array}$

(cls < cris < cris < cris < cris < re + r2P, (cut < cris < cris

PARAMETERS BOND

f.C. = r - L - 2 Bond length: Equilibrium distance between the nuclei of two bonded atom bond order bod length at 1 FORMAL

No. of Bond between the two atoms

BOND ORDER

angle between the orbitals containing bonding e- Pair around

central atom.

BOND ANGLE

Amount of enryy required to break one mole of bonds. BOND

600

Product of the magnitude of the charge and distance between centres of positive and negative charge. M = charge * Distance of Seperation

~

AB,E

-

v

ABE

Cation . Covalent nature ∞ Size of cation

Polarized anion

No compounds is 100% ionic or 100% . Covalent nature ∞ Size of anion

COVALENE

FAJAN'S RULE

MOLECULAR STRUCTURE

CHEMICAL BONDING

Polarization of anion by cation

No. of Arrangement Shape Bonding Pair Love Pair of e- Pair Shape Type of Molecule Be ABE 8

Example SO203

Atomic orbitals Molecular orbitals No. of No. of Nodal Plane Formation of Molecular Orbitals ¥, O.H XeF, XeF.

SF.

See Salw

AB,E

Bent

01

2

AB,E,

m

AB,E

CIF

e

AB,E,

DIPOLE

NCERT LINE BY LINE QUESTIONS

04. CHEMICAL BONDING AND MOLECULAR STRUCTURE

Which of the following statements is correct regarding strength of sigma and pi bond

(1.)

(a.)	Overlappi in small ex	ing in sigma bond takes plac :tent.	e (b.)	Overlapping in pi bond takes place in large extent.
(c.)	Overlappi in large ex	ing in sigma bond takes plac tent.	e (d.)	None of these
(2.)	Some staten	nents regarding dipole mom	ent are give	n below. Identify the correct statements.
	` '	noment is usually expressed i	in Debye ur	nit.
	` '	alar quantity. Product of the magnitude of	of the charo	e and the distance between the centres of
	• •	I negative charge.	or the entire	e and the distance between the centres of
(a.)	I and II		(b.)	II and III
(c.)	I and III		(d.)	I, II and III
(3.)	If the electr	ronic configuration of an o	element is	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² 4s ² , the four electrons
	involved in	chemical bond formation wi	ll be	
(a.)	$3p^6$		(b.)	$3p^6, 4s^2$
(c.)	$3p^6, 3d^2$		(d.)	$3d^2, 4s^2$
(4.)	Polarity in a	a molecule and hence the di	pole mome	nt depends primarily on electronegativity
			a molecule	. Which of the following has the highest
()	dipole mom	ient)	(1-)	111
(a.)	CO_2		(b.)	HI
(c.)	H_2O		(d.)	SO_2
(5.)		enon compound in column I	with its stru	acture in column II and assign the correct
	code.	1		
	4 >	Column II		
	(P)XeF ₄	(i) Pyramidal		
	(Q)XeF ₆	(ii) Square planar		
	(R)XeOF ₄	(iii) Distorted octahedral		
	(S)XeO ₃	(iv) Square pyramidal		
(a.)	P-(i), Q-(ii), R-(iii), S-(iv)	(b.)	P-(ii), Q- (iii), R- (iv), S-(i)
(c.)	P- (ii), O	(iii), R-(i), S- (iv)	(d.)	P- (iii), Q- (iv), R-(i), S- (ii)
(6.)	The sum of	lone pair of electrons presen	t in the mol	ecule of NH ₃ and NF ₃ is/are
(a.)	one		(b.)	two
(c.)	three		(d.)	zero.

(7.)	What is	s bond order of He_2 and O_2	respec	ctively.		
	(a.)	2 and 0		(b.)	2 and 2	
	(c.)	1 and 2		(d.)	0 and 2	
(8.)	Select t	he pair of molecules which	has tet	rahedral m	olecular geometry.	
(a.)		and SF ₆		(b.)	CH ₄ and NH ₄ ⁺	
(c.)	SP ₄ a	nd BrF ₅		(d.)	ClP ₃ and H ₂ O	
(9.)	The bo	nd angles of NH ₃ ,CH ₄ and	H ₂ O m	nolecules aı	re	
(a.)	109.5	°,107° and 104.5° respectively	y.	(b.)	107°,109.5° and 104.5° respectively.	
(c.)	104.5	°,107° and 109.5° respectively	7.	(d.)	109.5°,104.5° and 107° respectively.	
(II) Fo	rmal cha ormal ch Lewis s	orges do not indicate real charges help in the selection structures for a given specie	narge se of the es.	paration w lowest ene	ergy structure from a number of possible	
		omic ions, it is feasible to as	ssign a			
(a.)	I only I and			(b.)	II and III	
(c.)	1 and	111		(d.)	I, II and III	
(11.)	What is	s the factor responsible for	the zero	o overlap?		
(a.)		of phase due to different or: ion of approach.	ientatio	n (b.)	Out of phase due to same orientation direction of approach.	
(c.)	_	ase due to different orienta ion of approach.	ition	(d.)	In phase due to same orientation direction of approach.	
(12.)	Select t	he pair of molecule which	has the	same type	of hybridisation.	
(a.)	BCl_3	and C_2H_6		(b.)	C ₂ H ₂ and BeCl ₂	
(c.)	C_2H_4	and CH ₄		(d.)	NH_3 and C_2H_2	
(13.)	Which theory.	9	nts is n	ot correct	from the viewpoint of molecular orbital	
(a.)	Be_2 i	s not a stable molecule.	(b.)	He ₂ is no	t stable but He_2^+ is expected to exist.	
(c.)		strength of N_2 is	(d.)		r of energies of molecular orbitals in N_2	
	homo molec	num among the nuclear diatomic cules belonging to the d period.		molecules $\sigma 2s < \sigma^* 2$	s is $s < \sigma 2p_z < (\pi 2p_x = \pi 2p_y) < (\pi^* 2p_x = \pi^* 2p_y)$	< (
(14.)	-	y the molecule which has o idal shape.	ne lone	e pair of ele	ctrons, tetrahedral geometry and trigonal	
(a.)	SP_4			(b.)	$\mathrm{BrP}_{\!\scriptscriptstyle{5}}$	
(c.)	PCl ₅			(d.)	NH ₃	
						4

(15.)	Select the correct statement.		
(a.)	In NF_3 and CO_3^2 , nitrogen and fluorine are the central atoms whereas carbon and oxygen occupy the terminal positions.	(b.)	In NF ₃ and CO_3^2 , nitrogen and carbon are the central atoms whereas fluorine and oxygen occupy the terminal positions.
(c.)	In NP_3 and CO_3^2 , fluorine and oxygen are the central atoms whereas nitrogen and carbon occupy the terminal positions.	(d.)	In NF_3 and CO_3^2 , nitrogen and oxygen are the central atoms whereas fluorine and carbon occupy the terminal positions.
(16.)	The direction of the C-H bond cannot be asce	ertaine	d because
(a.)	the 2s orbital of carbon and the ls orbital of H are spherically symmetrical and they can overlap in any direction.	(b.)	the ls orbital of carbon and the 2s orbital of H are spherically symmetrical and the can overlap in any direction.
(c.)	the ls orbital of carbon and the ls orbital of H are spherically symmetrical and they can overlap in any direction.	(d.)	the 2s orbital of carbon and the 2s orbita of H are spherically symmetrical and the can overlap in any direction.
(17.)	Which of the following will be the strongest	bond?	
(a.)	О-Н	(b.)	N – H
(c.)	O-Cl	(d.)	F-0
(18.)	Some statements regarding octet theory are g (I) This theory does not account for the shape (II) It does not explain the relative stability o (III) This theory is totally silent about the ene	e of mo f the m	olecules.
(a.)	II only	(b.)	I and III
(c.)	II and III	(d.)	I, II and III
(19.)	In <i>sp</i> hybridisation		
(a.)	50% s-character and 50% %p-character	(b.)	25% s-character and 75% p-character
(c.)	75% s – character and 25% p – character	(d.)	40% s – character and 60% p – character
(20.)	Assertion: O ₂ molecule is paramagnetic white Reason: Bond order of O ₂ molecular is two versions.	_	<u> </u>
(a.)	Both A and R are true and R is the correct explanation of A.	(b.)	Both A and R are true but R is not the correct explanation of A.
(c.)	A is true but R is false.	(d.)	Both A and R are false.
(21.) How	Some molecules are given below: SO ₂ , NH ₃ , many of them have two lone pair of electrons'		P_4 , ClP_3 , BrP_5 , XeF_4
(a.)	Two	(b.)	Three
(c.)	Four	(d.)	Five
(22.)	As per VSEPR theory, the pairs of electrons t		
(a.)	minimise repulsion and thus maximise distance between them.	(b.)	maximise repulsion and thus maximise distance between them.

(c.)	minimise repulsion and thus minimise distance between them.	(d.)	maximise repulsion and thus minimise distance between them.
(23.)	The molecular orbitals are filled in accordan	nce with	the
(a.)	aufbau principle.	(b.)	Pauli's exclusion principle.
(c.)	Hund's rule.	(d.)	All of these.
(24.)	N _a and N _b denoted for number of electror present in bonding, then select correct optic		
(a.)	$N_b < N_a$	(b.)	$\mathbf{N}_{\mathrm{a}}=\mathbf{N}_{\mathrm{b}}$
(c.)	$N_a < N_b$	(d.)	None of these
(25.)	Assertion: In NH ₃ , N is sp ³ hybridised but b Reason: Shape of NH ₃ molecule is trigonal	_	
(a.)	Both A and R are true and R is the correct explanation of A.	(b.)	Both A and R are true but R is nor the correct explanation of A.
(c.)	A is true but R is false.	(d.)	Both A and R are false.
(26.)	What is the bond angle in the molecule of I	BeCl ₂	
(a.)	60°	(b.)	90°
(c.)	120°	(d.)	180°
(27.)	Overlapping of atomic orbitals depends up	on	
(a.)	the sign (phase) of orbital wave function in space.	(b.)	direction of orientation of amplitude of orbital wave function in space.
(c.)	both a and b.	(d.)	none of these.
(28.)	How many lone pairs of electrons are prese	nt in SF	molecule
(a.)	One	(b.)	Two
(c.)	Three	(d.)	Four
(29.)	Which of the following pairs of molecules h	as expa	nded octet)
(a.)	SP_6, H_2O	(b.)	H ₂ SO ₄ ,Li Cl
(c.)	PF ₅ and SF ₆	(d.)	CO ₂ and PF ₅
(30.)	Select the correct order of increasing bond l	ength o	f C=C, C-C, C-O and C-H.
(a.)	C-O < C-H < C-C < C=C	(b.)	C-C < C=C < C-O < C-H
(c.)	C-H < C=C, C-O < C-C	(d.)	C-H < C-O < C-C < C=C
(31.)	Net dipole moment (l) of water molecule (H	H_2O) is 1	1.85 D. Its values in Cm is equal to
(a.)	1.35×10^{-30} Cm	(b.)	8.33×10^{-30} Cm
(c.)	6.17×10^{-30} Cm	(d.)	5.21×10^{-30} Cm

(32.)	Which of the following molecules/ions is dia	amagne	tic in nature.
(a.)	O_2^2	(b.)	O_2
(c.)	O_2	(d.)	O_2^+
(33.)	Valence bond theory is based on the knowled (I) Atomic orbitals (II) Electronic configurations of elements (III) The overlapping criteria of atomic orbita (IV) Principles of variation and superposition Select the correct option.	als	he following:
(a.)	II and III are correct.	(b.)	III and IV are correct.
(c.)	I and III are correct.	(d.)	I, II, III and IV are correct.
(34.)	Nyholm and Gillespie refined the VSEPR mo	odel by	explaining that
(a.)	the lone pair electrons in a molecule occupy more space as compared to the bonding pairs of electrons.	(b.)	the lone pair of electrons in a molecule occupy less space as compared to the bonding pairs of electrons.
(c.)	the lone pair and bond pair in a molecule occupy the same space.	(d.)	None of these.
(35.)	Which of the following pairs of species has is	dentical	bond order?
(a.)	N_2 and O_2	(b.)	P_2 and N_2
(c.)	N ₂ and HCl	(d.)	N ₂ and CO
(36.)	Dipole moment defined as the		
(a.)	product of the magnitude of the charge and the distance between the centres of positive and positive charge.	(b.)	product of the magnitude of the charge and the distance between the centres of negative and negative charge.
(c.)	product of the magnitude of the charge and the distance between the centres of positive and negative charge.	(d.)	product of the magnitude of the resistance and the distance between the neutral nuclei.
(37.)	Assertion: Dipole moment of NH ₃ is greater	than th	at of NP ₃ .
	Reason: Nitrogen is more electronegative that	an fluor	rine.
(a.)	Both A and R are true and R is the correct explanation of A.	(b.)	Both A and R are true but R is not the correct explanation of A.
(c.)	A is true but R is false.	(d.)	Both A and R are false.
(38.)	Some statements regarding bond angle are g (I) Bond angle is the angle between the orbit central atom in a molecule/complex ion. (II) Bond angle is expressed in degrees spectroscopic methods.	als con	taining bonding electron pairs around the
	(III) Bond angle helps in determining the sha	pe of th	ne molecule/complex ion.

(IV) Bond angle gives some idea regarding the distribution of orbitals around the central atom in a molecule/complex ion.

(a.)	III only	(b.)	I, II and IV
(c.)	I, II, III and IV	(d.)	I and III
(39.)	The types of hybrid orbitals of nitrogen in N	O_2^+, NO_2^-	$_{3}$ and $\mathrm{NH_{4}^{+}}$ respectively are expected to be
(a.)	sp,sp ³ and sp ²	(b.)	sp,sp ² and sp ³
(c.)	sp^2 , sp and sp^3	(d.)	sp ² ,sp ³ and sp
(40.)	Two statements for polarity of bonds are giv (I) The existence of a 100% ionic or covalent I (II) In reality no bond or a compound is either the given statements I and II are true or false	bond re er comp	epresents an ideal situation.
(a.)	FF	(b.)	TT
(c.)	TF	(d.)	FT
(41.)	According to VSEPR Theory, the shape of a shell electron pairs	molec	ule depends upon the number of valence
(a.)	bonded electron pair only.	(b.)	non-bonded electron pair only.
(c.)	bonded or non-bonded electron pair.	(d.)	neither bonded nor non-bonded electro pair.
(42.)	Two statements regarding SP ₄ molecule are respect to more stable structure. (I) If lone pair of electrons present at axial position of the pair of electrons present at equato	sition t rial pos	then molecule is more stable. Sition then molecule is less stable.
(a.)	Only I Both I and II	(b.)	Only II Neither I nor II
(c.)	bout I and II	(d.)	Neither From 11
(43.)	What is the bond order of H_2 molecule		
(a.)	One	(b.)	Two
(c.)	Three	(d.)	Zero
(44.)	Ionic bonds will be formed more easily		
(a.)	between elements with comparatively low ionisation enthalpies and elements with comparatively high negative value of electron gain enthalpy.	(b.)	between elements with comparatively high ionisation enthalpies and elements with comparatively low negative value electron gain enthalpy.
(c.)	between two elements which consist of low ionisation enthalpy and electron gain enthalpy.	(d.)	between two elements which consist of high ionisation enthalpy and electron gain enthalpy.
(45.)	Assertion: SF ₄ molecule has see-saw shape. Reason: Two lone pair of electrons are present	nt in SI	F ₄ molecules.
(a.)	Both A and R are true and R is the correct explanation of A.	(b.)	Both A and R are true but R is nor the correct explanation of A.

(c.)	A is true but R is false.	(d.)	Both A and R are false.
(46.)	Which molecule/ion out of the follow	wing does not co	ontain unpaired electrons
(a.)	N_2^+	(b.)	O_2
(c.)	O_2^{2-}	(d.)	\mathbf{B}_2
(47.)	What is the hybridisation of a molecu	ule which has so	quare planar shape
(a.)	dsp^2	(b.)	sp ³ d
(c.)	$\mathrm{sp}^{3}\mathrm{d}^{2}$	(d.)	sp^3
(48.)	The dipole moment of HP may be remarked the second	presented as:	
	This arrow symbolises the direction	of the shift of	
(a.)	proton density in the molecule.	(b.)	electron density in the molecule.
(c.)	neutron density in the molecule.	(d.)	proton and neutron densities in the molecule.
(II) T (III) T Selec	Some conditions for the combination ne combining atomic orbitals must have the combining atomic orbitals must have the combining atomic orbitals must over the correct statement(s).	e the same or ne we the same sym werlap to the ma	early the same energy. nmetry about the molecular axis. ximum extent.
(a.)	Only I	(b.)	Only III
(c.)	I and III	(d.)	I, II and III
(50.)	Bond length is defined as the equilibin a molecule and it is measured by	orium distance	between the nuclei of two bonded atom
(a.)	spectroscopic technique.	(b.)	X-ray diffraction technique.
(c.)	electron-diffraction technique.	(d.)	all of these.
	TOPIC WISE PR	RACTICE	QUESTIONS
	TOPIC 1: Electrovalent,		
l.	Which of the following combination will: 1) P and Cl 2) NH ₃ and BF ₃	form an electrova 3) H and Ca	alent bond ? 4) H and S
2. R	Which has a giant covalent structure? 1) PbO ₂ 2) SiO ₂ Which one of the following contains a co-	3) NaCl	4) AlCl ₃
	1) H_2O 2) HCl	3) BaCl ₂	4) $N_2H_5^+$
1 .	The number of dative bonds in sulphuric a	, -	/ 25
	1) 0 2) 1	3) 2	4) 4
5.	Which of the following statements is not t	rue about covaler	nt compounds?

1) They may exhibit space isomerism

2) They have low melting and boiling points

	3) They show ionic reac	etions	4) The	y show molecular re	eactions
6.	Indicate the nature of bo	onding in CCl ₄ and	CaH_2		
	1) Covalent in CCl ₄ and	l electrovalent in Ca	$_{1}$ H $_{2}$	2) Electrovalent in	both CCl ₄ and CaH ₂
	3) Covalent in both CCl				CCl ₄ and covalent in CaH ₂
7.	Lattice energy of an ion		ds upon	,	
	1) charge on the ion and		1	2) packing of ions	only
	3) size of the ion only			4) charge on the io	· ·
8.	Among the following w	hich compound wil	l show th		•
0.) NaF	3) CsF	•	•
9.	The compound that has	,		,	
<i>)</i> .	-) BCl ₃	3) CCl		4) SiCl ₄
10.	Which combination of a				4) 51C14
10.) H and F	3) N a		4) No and E
11					4) Na and F
11.	Which of the following	-			4) NI 1 I
10) Mg and F	3) Li a		4) Na and F
12.					xactly 8 valence electrons?
	1) BF_4^- 2)) NCl ₃	3) PCl	+ 4	4) SF ₄
13.	Which of the following	does not apply to m	netallic b	ond?	
	1) Overlapping valence			oile valency electron	ns
	3) Delocalized electrons			nly directed bonds.	
14.	Which set contains only		, ,	•	
	1) BCl ₃ , SiCl ₄ , PCl ₃ 2	=			NaI 4) Al, O ₃ , As ₄
15.					est and the least ionic character,
10.	respectively are:		Compo	sinds with the ground	se and the least lond character,
	1) LiCl and RbCl 2	RhCl and ReCla	3) Mg(Tla and ReCla 4) Ri	oCl and MgClo
16.	In ionic solids how crys		_	ciz and beetz +) Re	oci and wiger
10.	1) By the energy release	_		Llattice	
	2) By achieving octet of		•		tata
				-	tate.
	3) By electron gain enth	aipy and the ioniza	tion entii	aipy.	
17	4) None of these		0		
17.	Which of the following		:?	0) F (0)	1 val E Cl
	1) FeCl ₂ is more covale				covalent than FeCl ₂ .
	3) Both FeCl ₂ and FeCl	3 are equally covale	ent. 4) Fe	eCl ₂ and FeCl ₃ do n	ot have any covalent character.
	TOPIC 2: Octet 1	Rule, Resonan	ice, Di	pole Moment	and Bond Polarity
18.					O_2 , N_2O_5 , SO_2 and O_3 are
	1) NO and ClO ₂	2) CO and SO		3) ClO ₂ and CO	
19.	Which of the following				, -
	(i) [BF ₄], (ii) [AlCl ₄],				
	1) (i), (ii), (iii), (iv)	2) (ii), (iii), (i	v)	3) (i), (iii), (iv)	4) (i), (ii), (iv)
20.	In the cyanide ion, the fe	/ (// (// (*	(1), (111), (11)	.) (-), (), ()
20.	1) C	2) N	50 15 OH	3) Both C and N 4	resonate between C and N
	1) &	2)11		5) Both & and IV I	resonate between e and iv
21.	Among the following, the	ne species having th	e smalle	et hand order is	
21.		•	ic silialic		4) NO
	1) NO ⁻	2) NO ⁺	0	3) O ₂	4) NO
22.	The bond length of $C =$	O bond in CO is 1.2	20 Å and	l in CO_2 it is 1.34 Å	C = O bond length in
	CO_3^{2-} will be				
	1) 1.50 Å	2) 1.34 Å	3) 1.29	Å	4) 0.95 Å
AND	MOLECULAR STRUCT	*	2) 1.2)		., 0., 0.
23.			iles will	have nermanent din	ole moments for both members '
_ J.	1) NO ₂ and CO ₂	$\frac{1}{2}$ NO ₂ and C		_	4) SiF_4 and NO_2
24.	Which of the following				
∠ + .	winch of the following	saucture represents	suuctul	c or og more accura	atory:

40.	Linear combination of two hybridized orbit	tals beloi	nging to two	atoms and	d each having one elect	tron
	leads to a	2)	12	1 (1 1	4) '1 1	
41.	1) sigma bond 2) double bond Which of the following statements is not co		ordinate coval sigma and p			rbon
	atoms?					
	1) Sigma-bond determines the direction bet	tween ca	rbon atoms b	ut a pi-bo	ond has no primary effe	ect in
	this regard					
	2) Sigma-bond is stronger than a pi-bond					_
	3) Bond energies of sigma- and pi-bonds ar					vely
40	4) Free rotation of atoms about a sigma-bou		owed but not i	in case of	a pi-bond	
42.	How many s and p bonds are present in tolumber $3\pi + 8\sigma$ 2) $3\pi + 10\sigma$		15-		1) 6-12-	
43.	1) $3\pi + 8\sigma$ 2) $3\pi + 10\sigma$ The number of lone pair and bond pair of e	3) 3π-		ır atom in	4) 6π+3σ	cule are
45.	respectively	accuons	on the sulphi	ii atom m	surphur dioxide molec	cuic arc
	1) 1 and 3 2) 4 and 1	3) 3 an	ıd 1		4) 1 and 2	
44.	How many sigma bonds are in a molecule of			OC_2H_2	.) 1 4114 2	
	1) 14 2) 12	3) 8		25	4) 16	
45.	Which of the following statements is not co	,			4) 10	
15.	1) Hybridisation is the mixing of atomic or		or to their co	mbining	into molecular orbitals	
	2) sp^2 hybrid orbitals are formed from two					
	3) d^2sp^3 hybrid orbitals are directed toward					
	4) dsp^3 hybrid orbitals are all at 90° to one					
46.	Which of the following species has a linear	shape?				
	1) SO_2 2) NO_2^+		3) CH ₄		4) NO_2^-	
47.	Using VSEPR theory, predict the species w			nidal sha _l		
	1) SnCl ₂ 2) CCl ₄	3) SO ₃			4) BrF ₅	
48.	Amongst the following, the molecule/ion the	nat is line				
	1) SO2 2) CO2		3) ClO ₂		4) NO_2^-	
49.	Which of the following structure is most sta	able ?				
	F F					
	Cl F F Cl Cl	F				
	O F F]				
	F U II II	T				
	Choose the correct option.	•				
	1) Only I 2) Only II	3) Onl	v III	4) All	three have same stabili	ity
50.	The true statements from the following are		,	,		3
	1. PH ₅ and BiCl ₅ do not exist		-dπ bond is j	present in	SO_2	
	3. Electrons travel with the speed of light	4. SeF	4 and CH ₄ ha	ve same	shape	
	5. I ₃ ⁺ has bent geometry				•	
	1) 1, 3	3) 1, 3	. 5	4) 1, 2	. 4	
51.	The hybrid state of S in SO_3 is similar to the		, •	., -, -	, .	
	1) C in C_2H_2 2) C in C_2H_4	3) C in	CH ₄	4) C ir	1 CO_2	
52.	Allyl cyanide molecule contains	ŕ	•	ŕ	_	
	1) 9 sigma bonds, 4 pi bonds and no lone pa	air	2) 9 sigma b	onds, 3 p	i bonds and one lone p	air
	3) 8 sigma bonds, 5 pi bonds and one lone j		4) 8 sigma b	onds, 3 p	i bonds and two lone p	oairs
53.	All bond angles are exactly equal to 109° 2					
~ .	1) methyl chloride 2) iodoform	3) chlo	proform 4) ca	rbon tetra	achloride	
54.	Which has the least bond angle	2) II (`	4) OII		
<i></i>	1) NH_3 2) BeF_2	3) H ₂ C)	4) CH	4	
55.	The shape of IF_6^- is:					

	 Trigonally distorte Octahedral 	ed octahedron	2) Pyramidal4) Square anti	inrism		
56.		ng statements is not co	· •	prism		
50.		orter than a single bond		ma bond is weak	er than a	n (ni) hond
	3) Double bond is str	onger than a single bor	2) Sig.	valent bond is str	conger th	an hydrogen bond
57.		wing pair both the spec			onger ui	an nyurogen bonu
37.					4) NF ₃ ,	DE.
58.	1) H ₂ S, BF ₃	2) SiF ₄ , BeH ₂	3) NF ₃ , H ₂ O		4) INF3,	D Г3
36.	which of the follows	ng represents zero over	map of atomic c	orditais.		
	(a) $-P_z$ + s +) →z				
	(b) + p ₂ - +) →z				
	(c) + + + P ₂	→ Z				
50	(d) All of these	abla ass some sound V	aE ia .			
59. 60.	1) square planar	noble gas compound Xooble gas compound Xooble 2) distorted teng pairs of species hav	etrahedral	3) tetrahedral	4) octahedral
		2) PCl ₅ and 1			CI_4^- 4	TeCl ₄ and XeO ₄
61.		$^{3-}, CO_3^{2-}, ClO_3^{-}, SO_3^{2-}$ ar	2			
	1) CO_3^{2-} , SO_3^{2-} , BO_3^{3-}	2) AsO_3^{3-}, ClO_3^{3-}	O_3^-, SO_3^{2-}	3) NO ₃ , CO ₃ ²⁻ ,	BO ₃ ³⁻ 4	$SO_3^{2-}, NO_3^-, BO_3^{3-}$
62.	What is the shape of	the IBr ₂ ion?				
	1) Linear	2	2) Ber	nt shape with bor	nd angle	of about 90°
		ond angle of about 109		nt shape with bor	_	
63.		theory, in which speci		-	_	
05.	1. CH ₃ ⁺	2. CH ₃	ies do air the at		me prame	· •
	3	5	0)1 (1.1 1	2	45 - 1.1	1 0
<i>-</i> 1	1) 1 only	2) 2 only	3) both 1 and		4) neithe	er 1 nor 2
64.		ned by a carbon atom				4) 4 1 1
<i>-</i> -	1) 4 π -bonds	2) 2 π -bonds and 2 α			5 -bonds	4) 4 σ-bonds
65.		ve the hybridisation at	sulphur atom re	espectively as:	4)3	12 12 3
~		2) sp^3 , sp^3 , sp^3d^2	_	sp^3d, sp^3d^2		oa, a sp
66.		s formed by $s-s$, $p-p$ a				
		2) p-p > s-s > s-p				s–p > p–p
		TOPIC 4: MOT	and Hydro	gen Bonain	ıg	
67.	The bond order in N	$\frac{1}{2}$ is				
	1) 1.5	2) 3.0	3) 2.5		4) 2.0	
68.	The molecular electron	onic configuration of I	H_2^+ ion is?			
	•	_	=	\1	1) (1)	.3
	1) $\left(\sigma ls\right)^2$	$2) \left(\sigma ls\right)^2 \left(\sigma^* ls\right)^2$	3) (σ ls) (σ l	s)	4) (σls)	
69.	In the change of NO	to NO, the electron is	s added to			
	1) σ - orbital	2) π – orbital	3) σ^* - orbita	al	4) π* -	orbital
70.	The correct statemen	t with regard to H2 ⁺ an	d H2 is			
		do not exist		e stable than H_2^+		
	•		_	_	lv ctoble	
71	3) H_2^+ is more stable	=	_	H_2^- are equal	-	
71.		of bonding orbitals of a	n atom and N_y	is the number of	antibon	ding orbitals, then
	the molecule/atom w		2) NI - NI		1) N	NT
	$1) N_x > N_y$	$2) N_x = N_y$	$3) N_x < N_y$		4) $N_x \leq$	INy

72. In an anti-bonding molecular orbital, electron density is minimum 1) around one atom of the molecule 2) between the two nuclei of the molecule 3) at the region away from the nuclei of the molecule 4) at no place 73. When two atomic orbitals combine, they form 1) one molecular orbital 2) two molecular orbital 3) three molecular orbital 4) four molecular orbital 74. Of the following hydrides which one has the lowest boiling point? 3) PH₃ 2) SbH₃ 4) NH₃ 75. Which one of the following is the correct order of interactions? 1) covalent < hydrogen bonding < van der Waals < dipoledipole 2) van der Waals < hydrogen bonding < dipole-dipole < covalent 3) van der Waals < dipole-dipole < hydrogen bonding < covalent 4) dipole-dipole < van der Waals < hydrogen bonding < covalent 76. An ether is more volatile than an alcohol having the same molecular formula. This is due to 2) intermolecular hydrogen bonding in ethers 1) alcohols having resonance structures 3) intermolecular hydrogen bonding in alcohols 4) dipolar character of ethers 77. Paramagnetism is exhibited by molecules 1) not attracted into a magnetic field 2) containing only paired electrons 3) carrying a positive charge 4) containing unpaired electrons 78. Hydrogen bonding is maximum in: 1) C₂H₅OH 2) CH₃OCH₃ 3) $(CH_3)_2 C = O$ 4) CH₃CHO 79. What is the dominant intermolecular force or bond that must be overcome in converting liquid CH₃OH to a gas? 1) Dipole-dipole interaction 2) Covalent bonds 3) London dispersion force 4) Hydrogen bonding In O_2^- , O_2^- and O_2^{-2} molecular species, the total number of antibonding electrons respectively are 80. 1) 7, 6, 8 2) 1, 0, 2 3) 6, 6, 6 4) 8, 6, 8

NCERT LINE BY LINE QUESTIONS – ANSWERS

(1.)	c	(2.)	c	(3.)	d	(4.)	c	(5.)	b
(6.)	b	(7.)	d	(8.)	b	(9.)	b	(10.)	d
(11.)	a	(12.)	b	(13.)	d	(14.)	d	(15.)	b
(16.)	a	(17.)	a	(18.)	d	(19.)	a	(20.)	b
(21.)	b	(22.)	a	(23.)	d	(24.)	c	(25.)	b
(26.)	d	(27.)	c	(28.)	a	(29.)	c	(30.)	С
(31.)	c	(32.)	a	(33.)	d	(34.)	a	(35.)	d
(36.)	c	(37.)	c	(38.)	c	(39.)	b	(40.)	b
(41.)	c	(42.)	d	(43.)	a	(44.)	a	(45.)	С
(46.)	c	(47.)	a	(48.)	b	(49.)	d	(50.)	d

TOPIC WISE PRACTICE QUESTIONS – ANSWERS

1) 3	2) 3	3) 4	4) 3	5) 3	6) 1	7) 1	8) 2	9) 4	10) 2
11)2	12) 4	13)4	14) 1	15) 2	16) 1	17) 2	18) 1	19)4	20) 2
21) 2	22)3	23) 2	24) 3	25) 1	26) 4	27) 3	28) 1	29) 4	30)3
31)1	32) 2	33)3	34) 1	35) 2	36) 3	37) 1	38) 2	39) 1	40) 1
41)3	42)3	43) 4	44) 1	45) 4	46) 2	47) 4	48) 2	49) 1	50) 2
51) 2	52) 2	53) 4	54) 3	55) 1	56) 2	57) 3	58) 3	59) 1	60) 3
61) 2	62) 1	63) 1	64) 3	65) 3	66) 4	67) 3	68) 3	69) 4	70) 3

NCERT LINE BY LINE QUESTIONS - SOLUTIONS

- (1.) (c) Basically the strength of a bond depends upon the extent of overlapping. In case of sigma bond, the overlapping of orbitals takes place to a larger extent. Hence, it is stronger as compared to the pi bond where the extent of overlapping occurs to a smaller extent.
- (2.) (c) Dipole moment is a vector quantity and by convention it is depicted by the small arrow with tail on the negative centre and head pointing towards the positive centre.
- (3.) (d) Electrons from outermost shells ns and (n-1)d take part in bond formation for transition elements. Assertion-Reason Type Questions
- (4.) (c) H₂O has highest dipole moment.
- **(5.)** (b) $XeP_4 sp^3d^2 l.p. = 2$, square planar

 $XeF_6 - sp^3d^3 - l.p. = 1$, distorted octahedral

 $XeOF_4 - sp^3d^2 - l.p. = 1$, square pyramidal

 $XeO_3 - sp^3 - l.p. = 1$, pyramidal

- (6.) (b) Both the molecules, NH₃ and NF₃, have pyramidal shape with a lone pair of electrons. Therefore, the sum of lone pair of electrons present in the molecule of NH₃ and NF₃ is two.
- (7.) (d) Electronic configuration of $\text{He}_2 : (\sigma \text{ls})^2 (\sigma^* \text{ls})^2$

Bond order of He_2 is $\frac{1}{2}(2-2)=0$

While bond order of O_2 is two.

- (8.) (b) CH_4 and NH_4^+ both have tetrahedral molecular geometry.
- (9.) (b) The bond angles of NH_3 , CH_4 and H_2O molecules are 107° , 109.5° and 104.5° respectively.
- (10.) (d) All the given statements regarding formal charge are correct.
- (11.) (a) Zero overlap due to the out of phase for different orientation direction of approach.
- (12.) (b) Molecule C_2H_2 and $BeCl_2$ both have sp hybridisarion.
- (13.) (d) The correct order of energies of molecular orbitals in N_2 molecule is

 $\sigma 2s < \sigma^* 2s < \left(\pi 2p_x = \pi 2p_y\right) < \sigma 2p_z < \left(\pi^* 2p_x = \pi^* 2p_y\right) < \sigma^* 2p_z$

- (14.) (d) Ammonia (NH3) has one lone pair of electrons, tetrahedral molecular geometry and trigonal pyramidal shape.
- (15.) (b) In general, the least electronegative atom occupies the central position in the molecule/ion. For example, in the NF₃ and CO_3^{2-} , nitrogen and carbon are the central atoms whereas fluorine and oxygen occupy the terminal positions.
- (16.) (a) The direction of the C H bond cannot be ascertained because the 2s orbital of carbon and the ls orbital of H are spherically symmetrical and they can overlap in any direction.
- (17.) (a) O-H will be the strongest bond.
- (18.) (d) All the given statements regarding octet theory are correct.
- (19.) (a) In sp hybridisation, 50 %s character and 50 % p-character.
- **(20.)** (b) Both assertion and reason are true statements.
- (21.) (b) Among the given molecules, H₂O,ClP₃, and XeF₄ have two lone pair of electrons. SO₂,NH₃,SF₄ and BrF₅ have one lone pair of electron.
- (22.) (a) As per postulates of VSEPR theory, the pairs of electrons tend to occupy such positions in space that minimise repulsion and thus maximise distance between them.

- (d) The molecular orbitals like atomic orbitals are filled in accordance with the aufbau principle obeying the Pauli's exclusion principle and the Hund's rule.
- (24.) (c) A positive bond order, *i.e.* $N_b > N_a$, means a stable molecule while a negative, i.e. $N_b < N_a$, or zero (i.e., $N_b = N_a$) bond order means an unstable molecule.
- (25.) (b) Both assertion and reason are true statement.
- (26.) (d) BeCl₂ has sp-hybridisarion, the two sp-hybrid orbitals are oriented in opposite direction forming an angle of 180°.
- (27.) (c) Overlapping of atomic orbitals depends upon the sign (phase) and direction of orientation of amplitude of orbital wave function in space.
- (28.) (a) One lone pair of electron is present in SF_4 molecule.

SF₄molecule

(29.) (c) PF_5 and SF_6 have expanded octet

- (30.) (c) Correct order of increasing bond length is C-H < C = C < C-O < C-C.
- (31.) (c) Given, net dipole moment, $\mu = 1.85D$ Net dipole moment, ; $\mu = 1.85 \times 3.33564 \times 10^{30} \text{ Cm} = 6.17 \times 10^{30} \text{ Cm}$.
- (32.) (a) O_2^{2-} ion, all the electrons are present in pair form, therefore they are diamagnetic in nature.
- (33.) (d) A discussion of the valence bond theory is based on the knowledge of atomic orbitals, electronic configurations of elements, the overlap criteria of atomic orbitals, the hybridisation of atomic orbitals and the principles of variation and superposition.
- (34.) (a) Nyholm and Gillespie refined the VSEPR model by explaining that the lone pairs are localised on the central atom, each bonded pair is shared between two atoms. As a result, the lone pair electrons in a molecule occupy more space as compared to the bonding pairs of electrons.
- (35.) (d) Isoelectronic molecules and ions have identical bond orders, for example, F_2 and O_2^{2-} have bond order 1. N_2 , CO and NO^+ have bond order 3.
- (36.) (c) As a result of polarisation, the molecule possesses the dipole moment which can be defined as the product of the magnitude of the charge and the distance between the centres of positive and negative charge. It is usually designated by a Greek letter μ'. Mathematically, it is expressed as follows:
 Dipole moment (μ) = Charge (Q) × Distance of separation (r).
- **(37.)** (c) Fluorine is more electronegative than nitrogen.
- (38.) (c) All the given statements regarding bond angle of molecule/complexion are correct.
- (39.) (b) NO_2^+ : sp hybridisation NO_3^- : sp² hybridisation NH_4^+ : sp³ hybridisation

- **(40.)** (b) Both the given statements regarding polarity of bonds are true.
- **(41.)** (c) The shape of a molecule depends upon the number of valence shell electron pairs (bonded or non-bonded) around the central atom.
- (42.) (d) In SF₄ molecule, of lone pair of electrons present at axial position then molecule is less stable and if lone pair of electrons present at equatorial position then molecule is more stable.
- (43.) (a) Electronic Configuration of H_2 : $(\sigma ls)^2$

The bond order of $\, {\rm H}_{2} \,$ molecule can be calculated as

Bond order
$$=\frac{N_b - N_a}{2} = \frac{2 - 0}{2} = 1$$

- **(44.)** (a) Ionic bonds will be formed more easily between elements with comparatively low ionisation enthalpies and elements with comparatively high negative value of electron gain enthalpy.
- **(45.)** (c) One lone pair of electron present in SF₄ molecule.
- (46.) (c) Among the given molecules/ions O_2^2 does not contain unpaired electrons.
- (47.) (a) The hybridisation of a molecule which has square planar shape is dsp^2 .
- (48.) (b) H F: This arrow symbolises the direction of the shift of electron density in the molecule.
- (49.) (d) All the given conditions are correct for the combination of atomic orbitals.
- (50.) (d) Bond lengths are measured by spectroscopic, X-ray diffraction and electron-diffraction techniques.

TOPIC WISE PRACTICE QUESTIONS - SOLUTIONS

- 1. (3) Higher the difference in electronegativity between the two atoms, more will be electrovalent character of the
 - bond. Among given choices, calcium and hydrogen have maximum difference in their electro negativities.
- 2. 3)
- 3. 4)

- 4. 3) 5. 3) 6. 1)
- 7. (1) The value of lattice energy depends on the charges present on the two ions and the distance between them.
- 8. (2) For compounds containing cations of same charge, lattice energy increases as the size of the cation decreases. Thus, NaF has highest lattice energy. The size of cations is in the order: $Na^+ < K^+ < Rb^+ < Cs^+$
- 9. (4) In SiCl4 difference between electronegativity of Si (1.8) and chlorine (3.0) is higher than in other given compounds.
- 10. (2) Hydrogen fluoride has a large value of dipole moment. This is due to very high electronegativity of the fluorine as a result it pulls electrons strongly.
- 11. (2) The stability of the ionic bond depends upon the lattice energy which is expected to be more between Mg and F due to +2 charge on Mg atom.
- 12. (4) In SF4 molecules central S-atom is surrounded by 10valence electrons and it is hypervalent compound.
- 13. (4) In metallic bonds, each ion is surrounded by equal number of oppositely charged electrons, hence have equal electrostatic attraction from all sides and hence do not have directional characteristics.
- 14. (1) The set of compounds BCl3, SiCl4, PCl3 are predominatly covalent compounds. NH4Br and NaI ionic compounds and Al contains metallic lattice.
- 15. (2) According to Fajan's rule smaller, highly charged cation has greatest covalent character while large cation with smaller charge has greatest ionic character.

- 16. (1) In ionic solids, the sum of the electron gain enthalpy and the ionization enthalpy may be positive but still the crystal structure gets stabilized due to the energy released in the formation of the crystal lattice.
- 17. (2) According to Fajan's rule, higher charge on the ions, more covalent is the compound.
- 18. (1)
- 19. 4)

- 20. 2) In CN⁻ ion, formal negative charge is on nitrogen atom due to lone pair of electrons.
- 21. 2)

$$NO^{-}(16) - B.O. = 2$$
 $O_{2}(16) - B.O. = 2$
 $NO^{+}(14) - B.O. = 3$ $NO(15) - B.O. = 2.5$

Higher the bond order lower is the bond length.

Hence NO+ will have smallest bond.

- 22. 3)In CO_3^{2-} , due to resonance, C = O bond length is in between triple and double bond, i.e. in between 1.2 and 1.34. Thus, answer is 1.29 Å.
- 23. (2) Both NO2 and O3 have angular shape and hence will have net dipole moment.
- 24. (3) I and II structure shown above constitute the cannonical structure. III structure represents the structure of O3 more accurately. This is also called resonance hybrid.
- 25. (1) According to Fajan's rule, as the charge on the cation increases, and size decreases, its tendency to polarise the anion increases. This brings more and more covalent nature to electrovalent compounds. Hence AlCl3 shows maximum covalent character.
- 26. (4)
- 27. (3) The dipole moment of symmetrical molecules is zero.

Triangular planar (symmetrical molecule)

- 28. (1) The dipole moment of two dipoles inclined at an angle
 - θ is given by the equation $\mu = \sqrt{X^2 + Y^2 + 2XY\cos\theta}$, $\cos 90^\circ = 0$. Since the angle increases from 90° to 180° , the value of $\cos \theta$ becomes more and more ve and hence resultant dipole moment decreases. Thus, dipole moment is maximum when $\theta = 90^\circ$.
- 29. (4) In case of anions having same charge, as the size of anion increases, polarisibility of anion also increases.
- 30. (3) If the structure of water is linear, then $\mu = 0$, hence it will be non-polar and thus the solubility of polar compound in water cannot be explained.
- 31. 1)

The overlap between s- and p-orbitals occurs along internuclear axis and hence the angle is 180°.

- 32. 2) Equilateral or triangular planar shape involves sp² hybridization.
- 33. (3) The bond length decreases in the order sp3 > sp2 > sp. Because of the triple bond, the carbon-carbon bond is shortest.
- 34. (1) The number of lone pairs of electrons on central atom in various given species are Species Number of lone pairs on central atom

Species	
IF ₇	nil
IF ₅	1
ClF ₃	2
XeF ₂	3

$$IF_7\!<\!IF_5\!<\!C1\!F_3\!<\!Xe\!F_2$$

Thus the correct increasing order is $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix}$

- 35. 2) BF₃ involves sp² -hybridization.
- 36. (3) In XeF2 and -

IF2 both XeF2 and IF2

- are sp3d hybridized

and have trigonal bipyramidal (linear) shape due to presence of 3 lp of electrons.

37. (1) The bond angle decreases on moving down the group due to decrease in bond pair-bond pair repulsion.

NH3 PH3 107° 94°

AsH3 SbH3 BiH3 92° 91° 90°

This can also be explained by the fact that as the size of central atom increases and its electronegativity decreases. Thus distance between bond pairs of electron increases and *bp-bp* repulsion decreases. As a result bond angle decreases from NH3 to BiH3.

- 38. (2) Hybridisation is *sp*3 and shape pyramidal.
- 39. (1) BF3 is *sp*2 hybridised. So, it is trigonal planar. NH3, and PCl3 have *sp*3 hybridisation, hence have trigonal pyramidal shape. IF3, has *sp*3*d* hydridisation and has T-shape.
- 40. (1) Linear combination of two hybridized orbitals leads to the formation of sigma bond.
- 41. (3) As sigma bond is stronger than the π (pi) bond, so it must be having higher bond energy than π (pi) bond.
- 42. (3) $15\sigma + 3\pi$
- 43. (4)

1p = 1

bp = 4

- 44. (1) Number of σ -bonds = 14
- 45. (4) 46. (2)
- 47. (4) BrF5 has square pyramidal geometry.
- 48. (2) Molecule or ion having *sp* hybridisation and no lone pair of electrons is linear. CO2 H = 1/2 (4 + 0 + 0 0) = 2 *sp* (linear shape)
- 49. (1)
- 50. (2) SeF4 has distorted tetrahedral geometry while CH4 has tetrahedral geometry.
- 51. 2)

Molecule	Hybridization
SO ₃	sp^2
C_2H_2	sp
C ₂ H ₄	sp^2
CH ₄	sp^3
CO ₂	sp

52. 2) Allyl cyanide is:

It contains 9 sigma bonds, 3 pi bonds and 1 lone pair of electrons.

53. (4) The bond angle will be exactly $109^{\circ}.28^{\circ}$ when the central atom is sp3 hybridised and all bonds have same atom. CCl4 has all identical bonds (C – Cl) and central carbon is sp3 hybridised. So, it has bond angle exactly $109^{\circ}.28^{\circ}$.

55. (1) The structure of IF6 – is distorted octahedral This is due to presence of a "weak" lone pair.

- 56. (2)
- 57. (3) Applying VSEPR theory, both NF3 and H2O are sp3 hybridized.

(3)

61.

- 58. (3)
- 62. 1)

60.

63. 1)

- 64. 3) By sp2-hybridisation. Hybridisation orbital = $3[3\sigma bonds]$ Unhybridised orbital = $1[1\pi bond]$
- 65. 3) Hybridisation:

1.
$$: SF_2 \Rightarrow \frac{1}{2}(6+2) = 4 = sp^3$$

2.
$$: SF_4 \Rightarrow \frac{1}{2}(6+4) = 5 = sp^3d$$

3.
$$SF_6 \Rightarrow \frac{1}{2}(6+6) = 6 = sp^3d^2$$

- 4) The strength of a bond depends upon the extent of overlapping. s-s and s-p overlapping results in the formation of σ bond but extent of overlapping along internuclear axis is more in case of s-s overlapping than in s-p. p-p overlapping may result in σ bond if overlapping takes place along internuclear axis or may result in π -bond if sideways overlapping takes place. In any case the extent of overlapping is lesser in p-p than that of the other two, s-s and s-p. Hence the correct order is s-s-s-p-p-p
- 67. 3) $N_2^+ = 7 + 7 1 = 13$ electrons Configuration is σls^2 , $\sigma^* ls^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma^* 2p_x^2 = \pi 2p_y^2$, $\sigma 2p_z^1$

Bond order =
$$\frac{nb-na}{2} = \frac{1}{2}(9-4) = \frac{1}{2} \times 5 = 2.5$$

68. 3) 69. 4)

M.O. configuration of NO+ is:

$$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2 (\pi 2p_x)^2 (\pi 2p_y)^2$$

and M.O. configuration of NO is:

$$(\sigma 1s)^2(\sigma * 1s)^2(\sigma 2s)^2(\sigma * 2s)^2(\sigma 2p_z)^2(\pi 2p_y)^2$$

$$(\pi 2p_v)^2 (\pi * 2p_x)^1$$
.

70. 3)
$$H_2^+: (\sigma ls^1); B.O = \frac{1}{2}(1-0) = \frac{1}{2}$$

$$H_2^-: (\sigma ls^2)(\sigma * ls^1); B.O = \frac{1}{2}(2-1) = \frac{1}{2}$$

Even though the bond order of H_2^+ and H_2^- are equal but H_2^+ is more stable than H_2^- as in the latter, an electron is present in the antibonding (σ^*1s) orbital of higher energy.

- 71. 1) 72. 2
- 73. 2) One bonding M.O. and one anti-bonding M.O.
- 74. 3) NH3 undergoes H-bonding and hence has the highest b.p. Among the remaining hydrides i.e. PH3, AsH3 and SbH3 as we move from PH3 to BiH3, the molecular mass increases. As a result the van der waal's forces of attraction increases and the boiling point increases regularly from PH3 to BiH3.
- 75. 3)
- 76. 3) In ether, there is no H-bonding while alcohols have intermolecular H-bonding.
- 77. 4) Molecules having unpaired electrons show paramagnetism.
- 78. 1) Hydrogen bonding is possible only in compounds having hydrogen attached with F, O or N.

$$\begin{array}{ccc} {\rm C_2H_5-OH} & {\rm CH_3-O-CH_3} \\ {\rm (H\text{-}bonding\ possible)} & {\rm (H\text{-}bonding\ not\ possible)} \end{array}$$

$$\begin{array}{ccc} & O & O \\ || & || \\ CH_3-C-CH_3 & CH_3-C-H \\ \text{(H-bonding not possible)} & \text{(H-bonding not possible)} \end{array}$$

- 79. (4) Due to intermolecular hydrogen bonding in methanol, it exist as associated molecule.
- 80. (1) Molecular orbital electronic configuration of these species are :

Hence number of antibonding electrons are 7, 6 and 8 respectively.

JOIN OUR WHATSAPP GROUPS

FOR FREE EDUCATIONAL RESOURCES

JOIN SCHOOL OF EDUCATORS WHATSAPP GROUPS FOR FREE EDUCATIONAL RESOURCES

We are thrilled to introduce the School of Educators WhatsApp Group, a platform designed exclusively for educators to enhance your teaching & Learning experience and learning outcomes. Here are some of the key benefits you can expect from joining our group:

BENEFITS OF SOE WHATSAPP GROUPS

- **Abundance of Content:** Members gain access to an extensive repository of educational materials tailored to their class level. This includes various formats such as PDFs, Word files, PowerPoint presentations, lesson plans, worksheets, practical tips, viva questions, reference books, smart content, curriculum details, syllabus, marking schemes, exam patterns, and blueprints. This rich assortment of resources enhances teaching and learning experiences.
- Immediate Doubt Resolution: The group facilitates quick clarification of doubts.
 Members can seek assistance by sending messages, and experts promptly respond
 to queries. This real-time interaction fosters a supportive learning environment
 where educators and students can exchange knowledge and address concerns
 effectively.
- Access to Previous Years' Question Papers and Topper Answers: The group provides access to previous years' question papers (PYQ) and exemplary answer scripts of toppers. This resource is invaluable for exam preparation, allowing individuals to familiarize themselves with the exam format, gain insights into scoring techniques, and enhance their performance in assessments.

- Free and Unlimited Resources: Members enjoy the benefit of accessing an array of educational resources without any cost restrictions. Whether its study materials, teaching aids, or assessment tools, the group offers an abundance of resources tailored to individual needs. This accessibility ensures that educators and students have ample support in their academic endeavors without financial constraints.
- **Instant Access to Educational Content:** SOE WhatsApp groups are a platform where teachers can access a wide range of educational content instantly. This includes study materials, notes, sample papers, reference materials, and relevant links shared by group members and moderators.
- **Timely Updates and Reminders:** SOE WhatsApp groups serve as a source of timely updates and reminders about important dates, exam schedules, syllabus changes, and academic events. Teachers can stay informed and well-prepared for upcoming assessments and activities.
- Interactive Learning Environment: Teachers can engage in discussions, ask questions, and seek clarifications within the group, creating an interactive learning environment. This fosters collaboration, peer learning, and knowledge sharing among group members, enhancing understanding and retention of concepts.
- Access to Expert Guidance: SOE WhatsApp groups are moderated by subject matter experts, teachers, or experienced educators can benefit from their guidance, expertise, and insights on various academic topics, exam strategies, and study techniques.

Join the School of Educators WhatsApp Group today and unlock a world of resources, support, and collaboration to take your teaching to new heights. To join, simply click on the group links provided below or send a message to +91-95208-77777 expressing your interest.

Together, let's empower ourselves & Our Students and inspire the next generation of learners.

Best Regards,
Team
School of Educators

Join School of Educators WhatsApp Groups

You will get Pre-Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here. Join Your Subject / Class WhatsApp Group.

Kindergarten to Class XII (For Teachers Only)

Kindergarten

Class 12 (Commerce)

Subject Wise Secondary and Senior Secondary Groups (IX & X For Teachers Only) Secondary Groups (IX & X)

Senior Secondary Groups (XI & XII For Teachers Only)

Other Important Groups (For Teachers & Principal's)

Principal's Group

Teachers Jobs

IIT/NEET

Join School of Educators WhatsApp Groups

You will get Pre-Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here. Join Your Subject / Class WhatsApp Group.

Kindergarten to Class XII (For Students Only)

Subject Wise Secondary and Senior Secondary Groups (IX & X For Students Only) Secondary Groups (IX & X)

Senior Secondary Groups (XI & XII For Students Only)

Groups Rules & Regulations:

To maximize the benefits of these WhatsApp groups, follow these guidelines:

- 1. Share your valuable resources with the group.
- 2. Help your fellow educators by answering their queries.
- 3. Watch and engage with shared videos in the group.
- 4. Distribute WhatsApp group resources among your students.
- 5. Encourage your colleagues to join these groups.

Additional notes:

- 1. Avoid posting messages between 9 PM and 7 AM.
- 2. After sharing resources with students, consider deleting outdated data if necessary.
- 3. It's a NO Nuisance groups, single nuisance and you will be removed.
 - No introductions.
 - No greetings or wish messages.
 - No personal chats or messages.
 - No spam. Or voice calls
 - Share and seek learning resources only.

Please only share and request learning resources. For assistance, contact the helpline via WhatsApp: +91-95208-77777.

Join Premium WhatsApp Groups Ultimate Educational Resources!!

Join our premium groups and just Rs. 1000 and gain access to all our exclusive materials for the entire academic year. Whether you're a student in Class IX, X, XI, or XII, or a teacher for these grades, Artham Resources provides the ultimate tools to enhance learning. Pay now to delve into a world of premium educational content!

Click here for more details

■ Don't Miss Out! Elevate your academic journey with top-notch study materials and secure your path to top scores! Revolutionize your study routine and reach your academic goals with our comprehensive resources. Join now and set yourself up for success!

Best Wishes,

Team
School of Educators & Artham Resources

SKILL MODULES BEING OFFERED IN MIDDLE SCHOOL

<u>Artificial Intelligence</u>

Beauty & Wellness

<u>Design Thinking &</u> Innovation

Financial Literacy

Handicrafts

Information Technology

Marketing/Commercial Application

<u>Mass Media - Being Media</u> <u>Literate</u>

Travel & Tourism

Coding

<u>Data Science (Class VIII</u> <u>only)</u>

<u>Augmented Reality /</u> <u>Virtual Reality</u>

Digital Citizenship

<u>Life Cycle of Medicine & Vaccine</u>

Things you should know about keeping Medicines at home

What to do when Doctor is not around

Humanity & Covid-19

CENTRAL BOARD OF MICHAEL PEDICATION

BOARD HIS SERVICE HIS SERVICE

Food Preservation

<u>Baking</u>

<u>Herbal Heritage</u>

<u>Khadi</u>

Mask Making

Mass Media

Making of a Graphic Novel

<u>Embroidery</u>

<u>Embroidery</u>

Rockets

Satellites

<u>Application of</u> <u>Satellites</u>

<u>Photography</u>

SKILL SUBJECTS AT SECONDARY LEVEL (CLASSES IX - X)

Retail

Information Technology

Security

<u>Automotive</u>

Introduction To Financial Markets

Introduction To Tourism

Beauty & Wellness

<u>Agricultur</u>e

Food Production

Front Office Operations

Banking & Insurance

Marketing & Sales

Health Care

<u>Apparel</u>

Multi Media

Multi Skill Foundation **Course**

Artificial Intelligence

Physical Activity Trainer

Data Science

Electronics & Hardware (NEW)

Foundation Skills For Sciences (Pharmaceutical & Biotechnology)(NEW)

Design Thinking & Innovation (NEW)

SKILL SUBJECTS AT SR. SEC. LEVEL (CLASSES XI - XII)

Retail

<u>InformationTechnology</u>

Web Application

Automotive

Financial Markets Management

Tourism

Beauty & Wellness

Agriculture

Food Production

Front Office Operations

Banking

Marketing

Insurance

Horticulture

Typography & Comp. **Application**

Geospatial Technology

Electrical Technology

Electronic Technology

Multi-Media

Taxation

Cost Accounting

Office Procedures & Practices

Shorthand (English)

Shorthand (Hindi)

<u>Air-Conditioning &</u> <u>Refrigeration</u>

<u>Medical Diagnostics</u>

Textile Design

<u>Design</u>

<u>Salesmanship</u>

<u>Business</u> Administration

Food Nutrition & Dietetics

Mass Media Studies

<u>Library & Information</u> <u>Science</u>

Fashion Studies

Applied Mathematics

Yoga

<u>Early Childhood Care &</u> <u>Education</u>

<u>Artificial Intelligence</u>

Data Science

Physical Activity
Trainer(new)

Land Transportation
Associate (NEW)

Electronics & Hardware (NEW)

<u>Design Thinking &</u> <u>Innovation (NEW)</u>

