$$Q_1$$
 X $\mu_1 = 2$ $\sigma_1^2 = 4$ $f = 1$ [Independent]
 Y $\mu_2 = 4$ $\sigma_2^2 = 6$ $f = 1$ [Independent]

$$Z = 3x - 2Y$$

 $E[Z] = F[3x - 2Y] = 3E[X] - 2E[Y]$
 $= 3 \cdot 1 - 2 \cdot 4$
 $\Rightarrow -5$

$$\begin{aligned} \text{Var}[Z] &= E[Z^2] - \mu^2 \\ &= \text{Var}[3x - 2Y] \\ &= 9 \cdot \text{Var}[X] + 4 \cdot \text{Var}[Y] \\ &= 9 \cdot 4 + 4 \cdot 6 . \end{aligned}$$

areli gupla T= Cov (X1, X2) Po, o2 = cor (X1, X2) = E[X, X2] - H, H2 = E[(X,-H1) (X2-HD)] = \int (x, \pi_2) \cdot \frac{1}{2} \cdot \frac{ = \[(\hat{x}_1 - \mu_1) (\hat{x}_2 - \mu_2) \int \text{x}_1 | \text{x}_2 \] \frac{(\pi_1) \text{x}_2 \dagger \frac{1}{2} \dag = \int (\times_1 + \frac{1}{12} \cdot \frac{1}{12} = \(\langle (\text{X}_2 - \mu_2) \cdot \frac{\gamma_1}{\chi_2} \cdot \frac{\gamma_2}{\chi_2} \cdot \frac{\gamma_2}{\gamma_2} = \[\begin{aligned} \begin{aligned} & \begin{al = (x2-42). b(x2-42). fx2(x2) dx2 =) b (X2-H2)2 fx(x2) dx2

 $= b \cdot \sigma_2^2$