Multiple-Gradient Descent Algorithm

Лемма 1. Пусть $x^0 -$ Парето-оптимальная точка для набора непрерывно-дифференцируемых функций $f_i(x) \in C^1(\Omega)$ $(1 \le i \le n)$, и пусть $u_i^0 = \nabla f_i(x^0)$ - вектора градиентов функций в точке x^0 . Тогда существует выпуклая комбинация этих векторов равная нулю:

$$\sum_{i=1}^{n} \alpha_i u_i^0 = 0, \alpha_i \ge 0 \ (\forall i = 1 \dots n), \sum_{i=1}^{n} \alpha_i = 1$$

Доказательство. Пусть r ранг набора векторов $\{u_i^0\}_{i=1}^n$

$$r = rank(\{u_i^0\}_{i=1}^n) = dimSp(\{u_i^0\}_{i=1}^n)$$

Рассмотрим различные допустимые значени ранга r

Если r = 0, тогда все вектора равны нулю и результат тривиален.

Если r = 1, тогда вектора коллинеарны:

$$u_i = \beta_i u \ (\forall i = 1 \dots n)$$

Тогда рассмотрим приращение аргумента $\delta x^0 = -\varepsilon u$. Оно вызовет приращение функции $\delta f_i = -\varepsilon \beta_i + O(\varepsilon^2)$. Если все коэффициенты одного знака, тогда новая точка $x^0 + \delta x^0$ будет парето-доминировать точку x^0 , что противоречит парето оптимальности точки x^0 . Следовательно среди коэффициентов можно выбрать два коэффициента, имеющие различные знаки. Рассмотрим β_1, β_2 : $\beta_1 \beta_2 < 0$. Взяв, $\alpha_1 = \frac{-\beta_2}{\beta_1 - \beta_2}, \alpha_2 = \frac{\beta_1}{\beta_1 - \beta_2}$ мы получим $\alpha_1 u_1 + \alpha_2 u_2 = 0$.

Рассмотрим случай, когда $2 \le r \le n-1$. Тогда:

$$u_1^0 + \sum_{k=2}^{r+1} \mu_k u_k^0 = 0$$

Покажем, что $\mu_k \geq 0$ $(k \geq 2)$. Предположим, что верно обратное высказывание и существует $\mu_j < 0$. Для определенности рассмотрим j=2. Рассмотрим линейную оболочку $V = Sp(\{u_i\}_{i=3}^n)$. Тогда размерность $dimV \leq r-1 \leq n-2 \leq N-2$ и, следовательно $dimV^{\perp} \geq 2$. Рассмотрим произвольный $\omega \in V^*$ и производные функций $f'_{i,\omega}(x)$ по направлению ω . Тогда с учетом равенства выпуклой комбинации нулю получим:

$$\forall \omega \in V^{\perp}, f'_{2,w} = \gamma f'_{1,w} (\gamma = \frac{-1}{\mu_2} > 0)$$

Если выполняется равенство $0 = \gamma \cdot 0 \ \forall w \in V^{\perp}$, то вектора u_1 и u_2 принадлежат V. Отсюда мы получаем противоречие, так как ранг $Sp\{u_i\}$ равен r, а размерность $dimV \leq r-1 < r$. Следовательно, для некоторого $\omega \in V^{\perp}$ $f'_{1,w} \neq 0$. Тогда вдоль направления $-\omega$, существует точка \tilde{x} , в которой $f_1(\tilde{x}) < f_1(x), f_2(\tilde{x}) < f_2(x)$, а остальные функции не меняются. Это противоречит тому, что x — парето оптимальная точка. По аналогии, можно показать что все $\mu_k \geq 0 (\forall k \geq 2)$. Принимая $\mu_1 = 1$ и, рассматривая $\alpha_i = \frac{\mu_i}{\sum_{k=1}^n \mu_k}$ получаем искомую выпуклую комбинацию:

$$\sum_{i=1}^{n} \alpha_i u_i = 0$$

Рассмотрим случай r=n. Определим $C_k=f_k(x^0)$. Тогда для некоторого индекса i, x^0 решение следующей задачи условной оптимизации:

$$\min_{x} f_i(x)$$
s.t. $g_k(x) := f_k(x) - C_k \le 0 \ (\forall k \ne i)$

Запишем условие ККТ для этой задачи

$$u_1 + \sum_{k=2}^{n} \lambda_k u_k = 0$$

Таким образом, мы получаем противоречие с тем, что ранг $\{u_i\}_{i=1}^n$ равен r. Следовательно, $r \le n-1$ и мы рассмотрели всевозможные случаи.

Лемма 2. Пусть H - гильбертово пространство конечной или бесконечной размерности N, и $\{u_i\}_{i=1} (1 \leq i \leq n \leq N)$ семейство из n векторов в H. Пусть U выпуклая оболочка этих векторов

$$U = \{ w \in H | w = \sum_{i=1}^{n} \alpha_i u_i; \alpha_i > 0(\forall i); \sum_{i=1}^{n} \alpha_1 = 1 \}$$

Тогда существует уникальный элемент $\omega \in U$, имеющий минимальную евклидову норму, u:

$$\forall u \in U : (u, \omega) \ge (\omega, \omega) = ||w||^2 = C_\omega$$

Доказательство. Предположим, что существует два элемента с минимальной нормой $\|\omega_1\| = \|\omega_2\|$. Так как U — выпуклое множество, то $\forall \varepsilon \in [0,1], \ u = (1-\varepsilon)\omega_1 + \varepsilon\omega_2 \in U$. Следовательно, $\|u\| \geqslant \|\omega_1\|$ и $(\omega_1 + \varepsilon\omega_{12}, \omega_1 + \varepsilon\omega_{12}) \geqslant (\omega_1, \omega_1)$, где $\omega_{12} = \omega_1 - \omega_2$. Вычитая из левой части, правую получим, что $2\varepsilon(\omega_1, \omega_{12}) + \varepsilon^2(\omega_{12}, \omega_{12}) \geqslant 0$. Рассматривая достаточно малый ε , получаем, что $(\omega_1, \omega_{12}) \geqslant 0$. Беря $\varepsilon = 1$, получаем строгое неравенство, если $\omega_{12} \neq 0$, но в этом случае $u = \omega_2$ и равенство должно выполняться. Поэтому существует единственный элемент с минимальной нормой

Пусть \bar{u} произвольный элемент в $U;\, r=u-\omega.$ Так как U выпукла, то:

$$\forall \varepsilon \in [0,1], \omega + \varepsilon r \in U$$

Так как ω элемент с минимальной нормой, то $\|\omega + \varepsilon r\| \ge \|\omega\|$

$$\|\omega + \varepsilon r\|^2 - \|\omega\|^2 = (w + \varepsilon r, \omega + \varepsilon r) - (\omega, \omega) = 2\varepsilon(r, \omega) + \varepsilon^2(r, r) \ge 0.$$

Так как ε может быть произвольно маленьким, то

$$(r,\omega) = (\bar{u} - \omega, \omega) \ge 0$$

Теорема 3. Пусть ω элемент выпуклой оболочки U c минимальной нормой. Тогда:

- 1. Либо $\omega=0$, и точка $x=x^0$ парето оптимальная.
- 2. Либо $\omega \neq 0$ and $-\omega$ и направление убывания для всех функиций и скалярное произведение $(u,\omega) = \|\omega\|^2$ ($\forall u \in U$).

Доказательство. Так как ω элемент U с минимальной нормой, то

$$w = u = \sum_{i=1}^{n} a_i u_i^0, \alpha = \arg\min j(u), j(u) = (u, u), \sum_{i=1}^{n} \alpha_i = 1$$

Выпишем функцию Лагранжа для задачи оптимизации и.

$$L(\alpha, \lambda) = j + \lambda (\sum_{i=1}^{n} \alpha_i - 1)$$

Запишем условие ККТ

$$\frac{\partial j}{\partial \alpha_i} + \lambda = 0$$

$$\frac{\partial j}{\partial \alpha_i} = 2(\frac{\partial u}{\partial \alpha_i}, u) = 2(u_i^0, w) = -\lambda.$$

Следовательно, производные по направлению ω для всех функций равны $-\lambda/2$. Наконец, для любого $u \in U, u = \sum_{i=1}^n \mu_i u_i$, где $\mu_i \geq 0 \ (\forall i=1\dots n), \sum_{i=1}^n \mu_i = 1$ выполнено

$$(u,\omega) = \sum_{i=1}^{n} \mu_i(u_i^0,\omega) = -\lambda/2 = ||\omega||^2.$$