Vorlesung Kommunikationstechnik

Übertragungstechnik

Harald Orlamünder

Inhalt

- Grundlagen Übertragungstechnik
- Übertragungsmedien Kabel und Glasfaser
- Frequenzmultiplex-Systeme (TF-Systeme)
- Leitungscodierung
- Plesiochrone Digitale Hierarchie (PDH)
- Synchrone Digitale Hierarchie (SDH)
- Wellenlängenmultipex (WDM)
- Optische Transport Hierarchie (OTH)

Übertragungstechnik - Traditionelle Trennung

Mehrfache Übertragung

Mehrfachausnutzung einer Leitung

Ziel: Mehrfachausnutzung einer Leitung

Inhalt

- Grundlagen Übertragungstechnik
- Übertragungsmedien Kabel und Glasfaser
- Frequenzmultiplex-Systeme (TF-Systeme)
- Leitungscodierung
- Plesiochrone Digitale Hierarchie (PDH)
- Synchrone Digitale Hierarchie (SDH)
- Wellenlängenmultipex (WDM)
- Optische Transport Hierarchie (OTH)

Übertragungsmedien

Elektrische Nachrichtenkabel - Allgemeines

- Den Anfang der Drahtgebundenen Kommunikation bildete die Freileitung.
- Erste Kabel wurden Mitte des 19. Jahrhunderts verlegt.
- Das erste transatlantische Kabel 1875.
- Nachrichtenkabel unterschieden sich von Kabeln zur Energieübertragung, denn das Nachrichtensignal hat eine geringe Energie.
- Wichtige Parameter sind:
 - Dämpfung
 - Wellenwiderstand
 - Elektrische Kopplung zwischen den Leitern

Elektrische Nachrichtenkabel - Aufbau

Die Seele enthält:

- die Leiter
- ihre Isolierung
- Werkstoffe zur Füllung der Hohlräume ("Zwickel")
- Bewicklungsfolien (optional)
- metallische Schirmungen (optional)
- Kennzeichnungsbänder oder –fäden (optional)

- mechanische Belastungen bei Verlegung und Installation
- Beständigkeit gegen äußere Einflüsse während des Betriebs.

Elektrische Nachrichtenkabel – Typen (1)

Elektrische Nachrichtenkabel – Typen (2)

Kabel mit Vierern und Schichtenmantel

Kabel mit verseilten Koaxialpaaren und einem Aluminium-Wellmantel

Kabel mit in mehreren Lagen verseilten Einzeladern

Seekabel

Bewehrung aus Stahldrähten

Dämpfung - Kabel

Beispiel für Kabeldämpfungen

 Kupferdoppelader mit verschiedenen Aderdurchmessern, jeweils bei 800Hz

Ø in mm	0,4	0,6	0,8	1,2
a in dB/km	1,31	0,87	0,65	0,46

Koaxialkabel

Angaben immer auf 100 m Leitungslänge bezogen. (Siehe Diagramm nächste Seite.)

Bei einer Glasfaser herrschen andere Verhältnisse, Ihre Dämpfung liegt bei ca. 0,1 0,5 dB/km.

Dämpfung - Koaxialkabel

Einkopplung von Licht in eine Glasfaser

- Ab einem Grenzwinkel Θ_G geht der Lichtstrahl in vollständige Reflexion über.
- Es gibt nur diskrete Winkel, unter denen das Licht weiter geleitet wird. Man nennt das "Moden". (Abhängig von λ, d, n₁/n₂)

Fasertypen (1)

Stufenindex-Faser

feste Brechungsindizes von Kern und Mantel

Gradientenindex-Faser

kontinuierlicher Verlauf des Brechungsindexes, im Kern

Fasertypen (2)

Fasertyp	Stufenindex- Faser	Monomode- Faser	Gradientenindex- Faser
Brechzahlprofil			
Grenzwinkel Θ_{G}	17°	6°	13°
Moden	2000	1	500
Ø Faser	125 µm	125 µm	125 µm
Ø Kern	100 µm	49 μm	50 μm
Modendispersion	50 ns/km	0	0,11 ns/km
Bemerkung		Geringer Brechzahl- unterschied und kleiner Kern: nur ein Mode	Strahl in der Mitte: kürzester Weg, aber hoher Brechnungsindex = geringste Geschwindigkeit.

Wellenlängen

- Nicht jede Wellenlänge ist geeignet.
- Durch Absorptionen bleiben drei "optische Fenster"

Nutzung der Wellenlängen

Quelle: Phönix-Kontakt

Probleme bei der Glasfaserübertragung

Dämpfung

abhängig von der Wellenlänge ergeben sich verschiedene Dämpfungswerte der Faser:

- 850 mn \rightarrow 2...3 dB/km
- 1300 nm \rightarrow 0,3...0,5 dB/km
- 1550 nm \rightarrow >0,2 dB/km
- Dazu kommen Dämpfungen für Steckverbinder (0,5...1 dB) und Spleiße (0,1...0,3 dB).

Dispersion

bezeichnet die Aufweitung eines Impulses, Gründe dafür:

- Modendispersion (unterschiedliche Moden kommen zu unterschiedlichen Zeiten beim Empfänger an);
- Chromatische Dispersion (die Brechzahl ist von der Wellenlänge abhängig);
- Wellenleiterdispersion.

Grundtypen der Glasfaserbündeladern

- Bündeladertechnik: bis zu 12 Fasern (bis 48 schon realisiert, möglich bis zu 144 Fasern)
- Für die Standardadern sind drei Basisadertypen eingeführt, üblicherweise für 2 bis 4, 6 bis 8 und 12 Fasern.
- Kabeldurchmesser in der Regel zwischen 10 und 25 mm, abhängig vom Faserinhalt und Kabelkonstruktion.

Grundtypen der Glasfaserkabel

Fasern jeweils als Einzelfasern oder als Faserbändchen

Sonderformen von der Glasfaserkabeln

Figure-8-Kabel (mit Tragseil)

armiertes Kabel

Kabel zur Verlegung in Leerrohren in Abwasserkanälen

Lichtquellen

Fasertyp	Ligh Emitting Diode (LED)	Laser	
Abstrahlwinkel	180°	3040°	
Eingekoppelte Leistung	4050 μW	45 mW (Multimode-Faser) 0,51 mW (Monomode-faser)	
Spektrale Breite	40 nm (bei 850 nm) 100 nm (bei 1300 nm)	4 nm (bei 850 nm und 1300 nm)	
Grenzfrequenz für Modulation	einige 100 MHz	>1 GHz	
Anmerkung	Die LED ist ein "spontaner Strahler" (Kantenemitter)	Der Laser arbeitet unter einem Schwellstrom wie eine LED, darüber mit nur einer oder wenigen Spektrallinien	

Laser

BH-Laser:

Buried Heterostructure, normaler Laser, erzeugt ca. 5 Moden.

DFB-Laser:

Distributed Feedback Buried Heterostructrue

Durch ein optisches Gitter im Rückkopplungsweg ergibt sich eine eindeutige Rückkopplung, dadurch wird nur ein Mode erzeugt.

Empfänger

Zwei Typen von Empfängern sind in Gebrauch:

- normale Photodioden
- Avalanche-Photodioden

letztere sind besser, schneller, aber auch teurer

- Geometrie:
 - Die lichtempfindliche Fläche einer Photodiode liegt bei ca. 100 µm.
 Das passt mit der Geometrie der Glasfaser zusammen.
- Probleme sind:
 - Rauschen,
 - Sperrschichtkapazität.

Faseroptischer Verstärker - Prinzip

Faseroptischer Verstärker - Energiebetrachtung

 Energie-Niveau-Schema und elektronische Übergänge im Er³⁺-Ion

 Signal-Verstärkung durch stimulierte
 Emission eines zusätzlichen Photons

Inhalt

- Grundlagen Übertragungstechnik
- Übertragungsmedien Kabel und Glasfaser
- Frequenzmultiplex-Systeme (TF-Systeme)
- Leitungscodierung
- Plesiochrone Digitale Hierarchie (PDH)
- Synchrone Digitale Hierarchie (SDH)
- Wellenlängenmultipex (WDM)
- Optische Transport Hierarchie (OTH)

Frequenzbereiche

<u>Frequenz</u> Wellenlänge

Frequenzmultiplex-Übertragung

- Ziel: Viele Sprachkanäle über eine Leitung übertragen.
- Lösung: Verschieben des Sprachbandes in eine höherfrequente Lage und ...

 ... aneinanderreihen mehrere Sprachkanäle, die jeweils um einen anderen Betrag verschoben wurden.

 Die Technik dazu: Amplitudenmodulation (genauer: Einseitenbandmodulation)

Amplitudenmodulation

Amplitudenmodulation

Frequenzmultiplex (1)

Kanalumsetzung mit Vormodulation

Primärgruppenumsetzung

Sekundärgruppenumsetzung

Tertiärgruppenumsetzung

Quartärgruppenumsetzung

Kanalzahlen der TF-Systeme

	Quartärgr.	Tertiärgr.	Sekundärgr.	Primärgr.	Vorguppe	Kanäle
Vorgruppe	1	1	1	1	•	3
Primärgruppe	-	-	-	-	4	12
Sekundärgruppe	-	-	-	5	20	60
Tertiärgruppe	1	ı	5	25	100	300
Quartärgruppe	-	3	15	75	300	900
Quintärgruppe	4	12	60	300	1200	3600
V 10 800	-	-	-	-	_	10800

Inhalt

- Grundlagen Übertragungstechnik
- Übertragungsmedien Kabel und Glasfaser
- Frequenzmultiplex-Systeme (TF-Systeme)
- Leitungscodierung
- Plesiochrone Digitale Hierarchie (PDH)
- Synchrone Digitale Hierarchie (SDH)
- Wellenlängenmultipex (WDM)
- Optische Transport Hierarchie (OTH)

Kanal- bzw. Leitungscodierung

Die Auswahl des geeigneten Leitungscodes wird durch verschiedene Faktoren bestimmt, hierzu gehören:

- Einfache Taktrückgewinnung
- Gleichstromfreiheit (das Spektrum soll bei 0 keine oder nur kleine Anteile haben)
- Das Spektrum soll bei tiefen Frequenzen wenig Anteile haben, um dort Überwachungs- und sonstige Signale unterzubringen.
- Reduktion der Schrittgeschwindigkeit (Verminderung der Symbolrate durch einen mehrstufigen Code)
- Robustheit gegen Störungen
- Redundanz
- Hardware-Realisierbarkeit (Stand der Technik)

Leitungscodes (Auswahl)

AMI Alternate Mark Inversion; RZ Return-to-Zero; NRZ Non Return-to-Zero

Blockcodes

- Bei einem Blockcode werden m binäre Symbole werden auf n binäre Symbole abgebildet.
- Geschrieben wird das als nBmB, z.B. 5B6B.
- Die redundanten Gruppen können benutzt, um
 - den Gleichspannungsanteil auszugleichen,
 - Redundanz einzufügen, oder
 - zusätzliche Informationen einzufügen (z.B. für Maintenance oder Management).

Scrambler

Eine Alternative zur Leitungscodierung bietet der Scrambler.

 Der Scrambler erzeugt eine Pseudo-Zufallsfolge. Dazu wird das Originalsignal über ein rückgekoppeltes Schieberegister mit dem Ausgang verknüpft.

- Zwei Scrambler-Typen können unterschieden werden:
 - Selbst-synchronisierender Scrambler (hat den Nachteil, dass Bitfehler vervielfacht werden.
 - Reset-Scramber (wird mit einem externen Signal, z.B. der Rahmenkennung, synchronisiert)

Inhalt

- Grundlagen Übertragungstechnik
- Übertragungsmedien Kabel und Glasfaser
- Frequenzmultiplex-Systeme (TF-Systeme)
- Leitungscodierung
- Plesiochrone Digitale Hierarchie (PDH)
- Synchrone Digitale Hierarchie (SDH)
- Wellenlängenmultipex (WDM)
- Optische Transport Hierarchie (OTH)

Zeitmultiplex (1)

- Multiplexer und Demultiplexer arbeit im Prinzip wie umlaufende Schalter. Jeder Kanal erhält eine "Zeitscheibe" (time slot).
- n Digitalsignale am Eingang ergeben 1 Digitalsignal mit n-facher Übertragungsgeschwindigkeit am Ausgang

Zeitmultiplex (2)

- Synchronisation zwischen Multiplexer und Demultiplexer durch Einfügung Synchronisationssignal und Auswertung beim Demultiplexer
- Dadurch ein Kanal weniger

PCM-30-Rahmen

Bildung eines Über-Rahmens bei PCM-30

Overhead-Bits des PCM-30-Rahmens

Bits	Bedeutung
C ₁ C ₄	Fehlererkennung (CRC-4)
Е	Error Indication (zum CRC-4 gehörend)
Α	Alarmierung (Remote Alarm Indication, aktiv = "1")
S _x	 freie Bits, können benutzt werden für z.B.: Steuerung von Transcodern Status der Synchronisation nationale Benutzung

CRC Cyclic Redundancy Check (Prüfsumme zur Fehlererkennung)

Plesiochrone Digitale Hierarchie (PDH)

Multiplexen in PDH (Europa)

PDH Rahmenstruktur bei 34 Mbit/s

Dargestellt ist **EIN** Rahmen

Overhead-Bits 34 MBit/s

Bits	Bedeutung
Α	Alarmierung
N	Reserviert für nationale Benutzung
C _n	Stopfkennung (zeigt ein eventuelles Stopfen in den J _n -Bits an), dabei wird aus den jeweils 3 Bits mit gleichem n ein Mehrheitsentscheid gefällt.
J _n	Stopfbit für das 8-Mbit/s-System der Nummer n

PDH Rahmenstruktur bei 140 Mbit/s

Inverses Multiplexen

 Sollte die zu übertragende Kapazität weit unterhalb der nächsten Hierarchiestufe liegen, dann bietet sich inverses Multiplexen an.

 Da auf der Empfangsseite der Bitstrom wieder hergestellt werden muss, ist eine auf Bitebene wirkende Steuerung notwendig.

Taktversorgung

Codirectional interface

Jeder Empfänger synchronisiert sich auf das empfangene Signal.

Contradirectional Interface

Ein Gerät ("controlling equipment") liefert den Takt für beide Richtungen

Ein zentraler Taktgenerator versorgt alle Geräte

Synchronisation mit Puffer

Fehlerbehandlung

- Übertragungstechnische Geräte müssen verschiedenen Fehler erkennen und geeignet reagieren.
- Beispiel für einen 34-Mbit/s-Multiplexer/Demultipexer:

Fehler	Alarm zum Management- System	AIS-Generierung (Multiplexer)	AIS-Generierung (Demultiplexer)
Fehler in der Stromversorgung	ja	ja	ja
"Loss of Signal" (LOS)	ja	ja	ja
"Loss of Frame" (LOF)	ja	nein	ja
AIS empfangen	nein	nein	nein

AIS Alarm Indication Signal

Qualitätsparameter

EB Errored Block

ES Errored Second

SES Severely Errored Second

Telecommunication Management Network (TMN)

Schnittstellen eines PDH-Systems

LE Leitungsendgerät VSt Vermittlungsstelle

Nachteile der PDH

- Nicht standardisiert für hohe Bitraten (≥ 565 MBit/s).
- Basiert auf drei regional unterschiedlichen Standards (USA, Europa, Japan).
- Benötigt immer Multiplexer/Demultiplxer-Ketten.
- Hat nur beschränkte Möglichkeiten für ein Netzmanagement.
- Keine standardisierte Leitungsschnittstelle (nur Geräteschnittstelle).

Inhalt

- Grundlagen Übertragungstechnik
- Übertragungsmedien Kabel und Glasfaser
- Frequenzmultiplex-Systeme (TF-Systeme)
- Leitungscodierung
- Plesiochrone Digitale Hierarchie (PDH)
- Synchrone Digitale Hierarchie (SDH)
- Wellenlängenmultipex (WDM)
- Optische Transport Hierarchie (OTH)

Übertragungstechnik - Entwicklung

Seitherige Systeme:

```
Plesiochrone Hierachie (G.703, G.704, G.751, ....)
```

1985 wurde im amerikanischen Gremium ANSI T1X1 mit der Standardisierung von

SONET (Synchronous Optical Network) begonnen

1986 Das CCITT (heute: ITU-T) begann auf der Basis von SONET die

SDH (Synchronous Digital Hierarchy)

zu standardisieren, was

zur Herausgabe der ersten Empfehlungen für SDH führte (G.707, G.708, G.709, heute in G.707 zusammengefasst).

ab 1990 Weitere Empfehlungen im Zusammenhang mit SDH wurden erarbeitet (G.781 ... G.784, G.803, G.957, G.958, ...)

SDH Rahmen STM-1

SDH - Pointer-Operation - "Floating Payload"

SDH - Mapping eines 140 Mbit/s Signals in STM-1

"ETSI-Spinne"

Begriffe der "ETSI-Spinne"

AU Administrative Unit

AUG Administrative Unit Group

C Container

POH Path Overhead

PTR Pointer

SOH Section Overhead

sSTM sub-STM

STM Synchronous Transport Module

TU Tributary Unit

TUG Tributary Unit Group

VC Virtual Container

Bezeichnung der Container

Hierarchie- stufe	Europäische PDH-Bitrate	Container in SDH	Amerik. PDH-Bitrate	Container in SDH
1	2 048 kbit/s	C12	1 544 kbit/s	C11
2	8 448 kbit/s	-	6 312 kbit/s	C2
3	34 368 kbit/s	C3	44 736 kbit/s	C3
4	139 264 kbit/s	C4	-	-

Beispiel flexibler Füllung

STM-4

SOH Section Overhead

POH Path Overhead

STM-4-4c

STM-4-4c - Verschnitt bei STM-4

Sections und Path in SDH

MS Multiplex Section

RS Regenerator Section

HO High Order

LO Low Order

TM Terminal Multiplexer

ADM Add and drop Multiplexer

REG Regenerator

Section-Overhead beim STM-1

Medienabhängige Oktetts

Oktetts für nationale Anwendung

A1, A2	framing bytes
B1, B2	bit interleaved parity for bit error monitoring
J0	section trace
D1-D12	data communication channels (management)
E1, E2	order wire

Oktetts des Section Overheads (1)

Ok- tett	Bezeich- nung	Bedeutung	
A1	Framing	Rahmenkennwort, dient der Rahmensynchronisation	F6 _{Hex}
A2		(nicht verscrambled)	28 _{Hex}
B1	BIP-8	Bit Interleaved Parity des vorherigen STM-1-Rahmens nach	dem Scrambling
B2	BIP-24	Bit Interleaved Parity des vorherigen STM-1-Rahmens vor dem Scrambling und ohne den RSOH (die ersten drei Zeilen des Overheads)	
D1- D3	DCC	Datenkommunikationskanal von 192 kbit/s für die Übermittlung von. Überwachungs- und Steuerdaten aus den Regenerator-Abschnitten zum Netzmanagement	
D4- D12	DCC	Datenkommunikationskanal von 576 kbit/s für die Übermittlung von Überwachungs- und Steuerdaten zum aus der Multilex-Section zum Netzmanagement	
E1	Orderwire	Sprachverbindung für den Netzbetreiber in der Regenerator-Section. Auf sie kann in jedem SDH-Gerät zugegriffen werden (auch in Regeneratoren).	
E2	Orderwire	Sprachverbindung für den Netzbetreiber in der Multiplex-Section. Auf sie kann in SDH-Multiplexern zugegriffen werden.	

Oktetts des Section Overheads (2)

Ok- tett	Bezeichnung	Bedeutung
F1	User Channel	dient dem Benutzer zum Testen und Übermitteln von Informationen, z.B. für Maintenance-Zwecke
H1 H3	AU-4- Pointer	Zeiger auf den Beginn des VC-4
J0	Regenerator - Section Trace	Prüft den Regenerator-Abschnitt auf korrekte Verkabelung, aus 16 J0- Oktetts wird dazu ein Überrahmen gebildet (nicht verscrambled)
K1	APS	Bits 1 bis 5: Steuert die automatische Ersatzschaltung (Automatic Protoction Switching - APS) Bits 6 bis 8 von K2 transportieren die Multipex-
K2	APS & MS-RDI	Section RDI (Remote Defect Indication) und Multiplex-Section AIS (Alarm Indication Signal).
M1	MS-REI	Multiplex Section Remote Error Indicator (REI), Summe der in B2 erkannten Fehler
S1	Sync. Status	Bits 5 bis 8: Qualität des Taktes und Status der Synchronisierung

Oktetts des Path Overheads (high order)

high order POH bei: VC-3 VC-4

> J1 В3

C2 G1 F2 H4 F3 K3 N1

Okt ett	Bezeichnung	Bedeutung
B3	BIP-8	Bit Interleaved Parity des vorherigen Virtuellen Containers vor dem Scrambling, in G1 werden die fehlerhaften Blöcke der Gegenrichtung zurückgemeldet.
C2	Signal Label	gibt an, welcher Inhalt in dem Container übertragen wird.
F2	User Channel	Kommunikation des Anwenders auf Pfad-Ebene
F3	User Channel	
G1	Path-Status	Information über den Verbindungszustand, enthält Remote Error Indication (REI) und Remote Defect Indication (RDI)
H4	Frame Indicator	Überrahmen-Indikator für low order Signale, zeigt an, ob ein Überrahmen benutzt wird und wo er beginnt.
J1	Path Trace	Pfadkennzeichnung zur Pfad-Überwachung, es ist das erste Oktett des Virtual Containers, der AU-4-Pointer zeigt auf dieses Oktett
K3	APS	Automatic Protoction Switching, Steuert die automatische Ersatzschaltung auf der Pfad-Ebene
N1	TCM	Tandem Connection Monitoring, dient der Überwachung eines Pfad-Abschnitts

Oktetts des Path Overheads (low order)

Okt ett	Bezeichnung	Bedeutung
J2	Path Trace	Pfadkennzeichnung zur Pfad-Überwachung
K4	APS	Automatic Protoction Switching, Steuert die automatische Ersatzschaltung auf der Pfad-Ebene
N2	TCM	Tandem Connection Monitoring, dient der Überwachung eines Pfad- Abschnitts
V5	Verschiedene	Durch den kleineren POH bei VC-1 und VC-2 müssen die Werte aus B3, C2 und G1 (Fehlerprüfung, Signal Label und Path-Status) zusammengefasst werden. Es ist das erste Oktett des Virtual Containers, der TU-Pointer zeigt auf dieses Oktett.

Signal Label (C2-Oktett)

C2-Okt.	Bedeutung
00Hex	nicht belegt
01Hex	belegt, aber nicht näher spezifiziert
02Hex	Struktur mit TUGs
03Hex	Struktur mit TUGs, im "locked mode"
04Hex	34/45 Mbit/s PDH-Signal, async.in C3
05Hex	Experimentell (nur bei Neuent- wicklungen benutzt, solange kein spezifischer Code zugewiesen ist.)
12Hex	140 Mbit/s PDH-Signal, asynch.in C4
13Hex	ATM-Zellen
14Hex	DQDB-Slots
15Hex	FDDI-Rahmen
16Hex	HDLC/PPP-Rahmen
17Hex	reserviert
18Hex	HDLC/LAPS-Rahmen

C2-Okt.	Bedeutung		
19Hex	reserviert (nicht mehr gebräuchlich, war ursprünglich für SDL-Rahmen nach [RFC2823] mit "Self-synchronized Scrambler" reserviert)		
1AHex	10-Gbit/s-	Ethernet-Rahmen	
1BHex	GFP-Rahı	men	
1CHex	10-Gbit/s-Fiber-Channel-Rahmen		
20Hex	ODU (Optical Channel Data Unit)		
CFHex	reserviert (nicht mehr gebräuchlich, war ursprünglich für HDLC-Rahmen nach [RFC1619] reserviert)		
D0Hex	exDFHex reserviert		
E1Hex	FCHex	reserviert	
FEHex	Test		
FFHex	VC-AIS (Alarm Indication Signal)		

SDH - Management Fähigkeiten im Vergleich

Management Area	Function	SDH	PDH
Configuration	Trail Trace Identifier Signal Label Embedded Control Channels (ECCs) Threshold Configuration User Channels (n x 64 kbit/s)	X X X	
Alarm	Near-End Defects Far-End Defects High Block Error Ratios Synchronisation Status Messages	X X X	X - X -
Performance	Near-End Block Errors Far-End Block Errors 15 min & 24 Hours counter ES and SES Calculation	X X X	X - X X

sSTM-Rahmen

MSOH Multiplex Section Overhead

RSOH Regenerator Section Overhead

TU Tributary Unit POH Path Overhead

alle Zahlenangaben in Oktett

Struktur von sSTM-Systemen

zu transpor- tierende TUs	Spalten des Payload- Bereiches	Overhead- Spalten (SOH)	Zeilen	Übertragungs- Geschwindigkeit (brutto)
1 x TU-12	4	1	9	2,880 Mbit/s
2 x TU-12	8	1	9	5,148 Mbit/s
4 x TU-12	16	1	9	9,792 Mbit/s
8 x TU-12	32	1	9	19,008 Mbit/s
16 x TU-12	64	1	9	34,770 Mbit/s
1 x TU-2	12	1	9	7,488 Mbit/s
2 x TU-2	24	1	9	14,400 Mbit/s
4 x TU-2	48	1	9	28,224 Mbit/s

Was ist hier "synchron"?

Pointer-Operation

Ersatzschaltung (1)

Ersatzschaltung (2)

Schnittstellen eines SDH-Systems

Im Gegensatz zu PDH sind auch die Leitungsschnittstellen standardisiert.

Das erlaubt das freizügige Zusammenschalten von Geräten unterschiedlicher Hersteller.

LE Leitungsendgerät VSt Vermittlungsstelle

Geräte: Regenerator

MUX Multiplexer/Demultiplexer

REG Regenerator

Geräte: Multiplexer/Demultiplexer

SMT Synchronous Multiplex Terminal

Geräte: Add-and-Drop-Multiplexer

Vorteil des Add-and-Drop-Multiplexers

Ring mit ADMs

Geräte: Cross-Connect

Einsatz des Cross-Connect im vermaschten Netz

DXC Digital Cross Connect

Vorteile der SDH

- standardisiert f
 ür hohe Bitraten,
- weltweiter Standard erlaubt Interoperabilität,
- transportiert "Container" in denen wiederum PDH-Signale, SDH-Signale IP-Pakete usw. transportiert werden können,
- verbesserte Ausnutzung der Netzkapazität durch Grooming (Zusammenfassen von Containern),
- einfaches Entnehmen und Einfügen von Teilsignalen,
- ausgeprägte Operations- und Maintenance-Funktionen (OAM),
- höhere Flexibilität,
- verbesserte Verfügbarkeit durch Ersatzschaltung,
- Reduktion der Wartungskosten durch Verkehrslenkung (Re-Routing),
- Kostenreduktion durch Durchschaltung nach Bedarf
- Qualitätsgarantie durch Ende-zu-Ende Bitfehlerüberwachung

Inhalt

- Grundlagen Übertragungstechnik
- Übertragungsmedien Kabel und Glasfaser
- Frequenzmultiplex-Systeme (TF-Systeme)
- Leitungscodierung
- Plesiochrone Digitale Hierarchie (PDH)
- Synchrone Digitale Hierarchie (SDH)
- Wellenlängenmultipex (WDM)
- Optische Transport Hierarchie (OTH)

Nutzung mehrerer Glasfasern

Nutzung mehrerer Wellenlängen auf einer Faser

Optische Parameter bei CWDM und DWDM

Parameter	bei CWDM (Coarse WDM)	bei DWDM (Dense WDM)
Kanalzahl	typisch 8 oder 16	je nach Kanalabstand bis zu 160
Wellenlängen- bereich	1270 1610 nm	1528 1602 nm
Kanalabstände	>1000 GHz (8 nm) Standardisiert: 20 nm	<1000 GHz (8 nm) Standardisiert: - 200 GHz - 100 GHz - 50 GHz - 25 GHz - 12,5 GHz
zulässige Abweichung	6 7 nm	±0,16 nm (= ca. ±20 GHz)
Reichweite	ca. 50 km	drei Bereiche mit 80 km, 120 km und 160 km

Optische Schnittstellen

Туре	Bezeichnung	Reichweite	
		bei 1310 nm	bei 1550 nm
I	Intra-Office	2 km	25 km
S	Inter-Office, short-haul	20 km	40 km
L	Inter-Office, long-haul	40 km	80 km
V	Inter-Office, very long-haul	60 km	120 km
Н	Inter-Office, ultra long-haul	-	160 km

WDM-Systeme als Erweiterung

Inhalt

- Grundlagen Übertragungstechnik
- Übertragungsmedien Kabel und Glasfaser
- Frequenzmultiplex-Systeme (TF-Systeme)
- Leitungscodierung
- Plesiochrone Digitale Hierarchie (PDH)
- Synchrone Digitale Hierarchie (SDH)
- Wellenlängenmultipex (WDM)
- Optische Transport Hierarchie (OTH)

Optical Channel und Optical Sections in OTH

Sections und Pathes in SDH und OTH

SDH	OTH
Virtual Container (VC)	Optical Channel (OCh)
Multiplex Section (MS)	Optical Multiplex Section (OMS)
Regenerator Section (RS)	Optical Transmission Section (OTS)

Optical Channel Transport Unit

Elektrischer Teil der Optischen Transport Hierarchie

Overheadstruktur

Zuordnung: OTU-OH
OPU-OH
OPU-OH

OTH-Hierachiestufen

Stufe	Rahmendauer (gerundet auf 3 Kommastellen)	Übertragungsgeschwindigkeit der Payload
1	48,971 μs	2 488, 320 000 Mbit/s
2	12,191 μs	9 995, 276 962 Mbit/s
3	3,035 μs	40 150, 519 322 Mbit/s

PDH -> Jeder Rahmen hat eine andere Rahmendauer.

SDH -> Jeder Rahmen hat eine Dauer von 125 µs.

OTH -> Jeder Rahmen hat wieder eine andere Rahmendauer.

Nachträglich wurden zwei weitere Hierarchiestufen eingeführt:

0	1 Gbit/s
4	100 Gbit/s

Optischer Teil der Optischen Transport Hierarchie

Mapping von SDH in die OPUs

Vielen Dank für Ihre Aufmerksamkeit!

Dipl.-Ing. Harald Orlamünder harald.orlamuender@t-online.de