Principes de fonctionnement des machines binaires

2020-2021

Matthieu Picantin

- numération et arithmétique
- numération et arithmétique en machine
- codes, codages, compression,
- contrôle d'erreur (détection, correction)
- logique et calcul propositionnel
- circuits numériques

4 / 15

- système logique dans lequel on considère

Amphi#06 picantin@irif.fr 05 107/10/2020 5 / 15

- système logique dans lequel on considère
 - un ensemble de variables propositionnelles
 - des formules logiques construites à partir de ces variables avec des connecteurs logiques
- système paraissant simpliste, mais très utile et utilisé

Problèmes de décision

- problème de validité
 - ▶ telle formule est-elle toujours vraie, peu importent les valeurs des variables?

- système logique dans lequel on considère
 - un ensemble de variables propositionnelles
 - des formules logiques construites à partir de ces variables avec des connecteurs logiques
- système paraissant simpliste, mais très utile et utilisé

Problèmes de décision

- problème de validité
 - ▶ telle formule est-elle touiours vraie, peu importent les valeurs des variables?

- système logique dans lequel on considère
 - un ensemble de variables propositionnelles
 - des formules logiques construites à partir de ces variables avec des connecteurs logiques
- système paraissant simpliste, mais très utile et utilisé

Amphi#06 05 107/10/2020 picantin@irif.fr 5/15

- système logique dans lequel on considère
 - un ensemble de variables propositionnelles
 - des formules logiques construites à partir de ces variables avec des connecteurs logiques
- système paraissant simpliste, mais très utile et utilisé

Problèmes de décision

- problème de validité
 - ▶ telle formule est-elle toujours vraie, peu importent les valeurs des variables?
- problème de satisfiabilité
 - existe-t-il des valeurs des variables pour lesquelles telle formule est vraie?
- deux problèmes décidables, mais de complexité élevée

- système logique dans lequel on considère
 - un ensemble de variables propositionnelles
 - des formules logiques construites à partir de ces variables avec des connecteurs logiques
- système paraissant simpliste, mais très utile et utilisé

Problèmes de décision

- problème de validité
 - telle formule est-elle toujours vraie, peu importent les valeurs des variables?
- problème de satisfiabilité
 - existe-t-il des valeurs des variables pour lesquelles telle formule est vraie?

- système logique dans lequel on considère
 - un ensemble de variables propositionnelles
 - des formules logiques construites à partir de ces variables avec des connecteurs logiques
- système paraissant simpliste, mais très utile et utilisé

Problèmes de décision

- problème de validité
 - telle formule est-elle toujours vraie, peu importent les valeurs des variables?
- problème de satisfiabilité
 - existe-t-il des valeurs des variables pour lesquelles telle formule est vraie?
- deux problèmes décidables, mais de complexité élevée

- système logique dans lequel on considère
 - un ensemble de variables propositionnelles
 - des formules logiques construites à partir de ces variables avec des connecteurs logiques
- système paraissant simpliste, mais très utile et utilisé

Syntaxe

- définition formelle des énoncés:
 - appelés généralement formules
 - exprimés dans un langage symbolique
 - dont la structure peut être analysée par un parseur
- donnée par une définition inductive ou une grammaire

Sémantique

- association d'une valeur de vérité (⊤ ou ⊥) à chaque formule
- définie par récurrence sur la syntaxe

- système logique dans lequel on considère
 - un ensemble de variables propositionnelles
 - des formules logiques construites à partir de ces variables avec des connecteurs logiques
- système paraissant simpliste, mais très utile et utilisé

Syntaxe

- définition formelle des énoncés:
 - appelés généralement formules
 - exprimés dans un langage symbolique
 - dont la structure peut être analysée par un parseur
- donnée par une définition inductive ou une grammaire

Sémantique

- association d'une valeur de vérité (⊤ ou ⊥) à chaque formule
- définie par récurrence sur la syntaxe

- système logique dans lequel on considère
 - un ensemble de variables propositionnelles
 - des formules logiques construites à partir de ces variables avec des connecteurs logiques
- système paraissant simpliste, mais très utile et utilisé

Syntaxe

- définition formelle des énoncés:
 - appelés généralement formules
 - exprimés dans un langage symbolique
 - dont la structure peut être analysée par un parseur
- donnée par une définition inductive ou une grammaire

- ◆ association d'une valeur de vérité (⊤ ou ⊥) à chaque formule
- définie par récurrence sur la syntaxe

- système logique dans lequel on considère
 - un ensemble de variables propositionnelles
 - des formules logiques construites à partir de ces variables avec des connecteurs logiques
- système paraissant simpliste, mais très utile et utilisé

Syntaxe

- définition formelle des énoncés:
 - appelés généralement formules
 - exprimés dans un langage symbolique
 - dont la structure peut être analysée par un parseur
- donnée par une définition inductive ou une grammaire

- ◆ association d'une valeur de vérité (⊤ ou ⊥) à chaque formule
- définie par récurrence sur la syntaxe

- système logique dans lequel on considère
 - un ensemble de variables propositionnelles
 - des formules logiques construites à partir de ces variables avec des connecteurs logiques
- système paraissant simpliste, mais très utile et utilisé

Syntaxe

- définition formelle des énoncés:
 - appelés généralement formules
 - exprimés dans un langage symbolique
 - dont la structure peut être analysée par un parseur
- donnée par une définition inductive ou une grammaire

- ◆ association d'une valeur de vérité (⊤ ou ⊥) à chaque formule
- définie par récurrence sur la syntaxe

- système logique dans lequel on considère
 - un ensemble de variables propositionnelles
 - des formules logiques construites à partir de ces variables avec des connecteurs logiques
- système paraissant simpliste, mais très utile et utilisé

Syntaxe

- définition formelle des énoncés:
 - appelés généralement formules
 - exprimés dans un langage symbolique
 - dont la structure peut être analysée par un parseur
- donnée par une définition inductive ou une grammaire

- ◆ association d'une valeur de vérité (⊤ ou ⊥) à chaque formule
- définie par récurrence sur la syntaxe

- système logique dans lequel on considère
 - un ensemble de variables propositionnelles
 - des formules logiques construites à partir de ces variables avec des connecteurs logiques
- système paraissant simpliste, mais très utile et utilisé

Syntaxe

- définition formelle des énoncés:
 - appelés généralement formules
 - exprimés dans un langage symbolique
 - dont la structure peut être analysée par un parseur
- donnée par une définition inductive ou une grammaire

Sémantique

- association d'une valeur de vérité (⊤ ou ⊥) à chaque formule
- définie par récurrence sur la syntaxe

- système logique dans lequel on considère
 - un ensemble de variables propositionnelles
 - des formules logiques construites à partir de ces variables avec des connecteurs logiques
- système paraissant simpliste, mais très utile et utilisé

Syntaxe

- définition formelle des énoncés:
 - appelés généralement formules
 - exprimés dans un langage symbolique
 - dont la structure peut être analysée par un parseur
- donnée par une définition inductive ou une grammaire

Sémantique

- ◆ association d'une valeur de vérité (⊤ ou ⊥) à chaque formule
- définie par récurrence sur la syntaxe

- système logique dans lequel on considère
 - un ensemble de variables propositionnelles
 - des formules logiques construites à partir de ces variables avec des connecteurs logiques
- système paraissant simpliste, mais très utile et utilisé

Syntaxe

- définition formelle des énoncés:
 - appelés généralement formules
 - exprimés dans un langage symbolique
 - dont la structure peut être analysée par un parseur
 - donnée par une définition inductive ou une grammaire

Sémantique

- association d'une valeur de vérité (⊤ ou ⊥) à chaque formule
- définie par récurrence sur la syntaxe

- calcul des propositions dont le domaine

 B est celui des booléens
 - ▶ B peut être {FAUX, VRAI}, {false, true}, {⊥, ⊤}, ou {0, 1}
 - ces deux éléments sont appelés valeurs de vérité
- ensemble

 B à deux éléments muni d'un opérateur unaire ¬ (négation) et de deux opérateurs binaires ∨ (disjonction) et ∧ (conjonction)

- calcul des propositions dont le domaine

 B est celui des booléens
 - ▶ B peut être {FAUX, VRAI}, {false, true}, {⊥, ⊤}, ou {0, 1}
 - ces deux éléments sont appelés valeurs de vérité
- ensemble
 B à deux éléments muni d'un opérateur unaire ¬ (négation)
 et de deux opérateurs binaires ∨ (disjonction) et ∧ (conjonction)

7/15

- calcul des propositions dont le domaine

 B est celui des booléens
 - ▶ B peut être {FAUX, VRAI}, {false, true}, {⊥, ⊤}, ou {0, 1}
 - ces deux éléments sont appelés valeurs de vérité
- ensemble $\mathbb B$ à deux éléments muni d'un opérateur unaire \neg (négation) et de deux opérateurs binaires \lor (disjonction) et \land (conjonction)

7/15

- - ▶ B peut être {FAUX, VRAI}, {false, true}, {⊥, ⊤}, ou {0, 1}
 - ces deux éléments sont appelés valeurs de vérité
- ensemble $\mathbb B$ à deux éléments muni d'un opérateur unaire \neg (négation) et de deux opérateurs binaires \lor (disjonction) et \land (conjonction)

- ensemble $\mathbb{B} = \{0, 1\}$ muni d'un opérateur unaire \neg (négation) et de deux opérateurs binaires \lor (disjonction) et \land (conjonction)
- vérifiant, pour toutes variables booléennes x, y, z de \mathbb{B} , les axiomes suivants :

$$\begin{array}{lll} \text{associativit\'e} & x \vee (y \vee z) = (x \vee y) \vee z & x \wedge (y \wedge z) = (x \wedge y) \wedge z \\ \text{commutativit\'e} & x \vee y = y \vee x & x \wedge y = y \wedge x \\ \text{absorption} & x \vee (x \wedge y) = x & x \wedge (x \vee y) = x \\ \text{distributivit\'e} & x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z) & x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) \\ \text{compl\'ementation} & x \vee \neg x = 1 & x \wedge \neg x = 0 \end{array}$$

• ayant, pour toutes variables booléennes x, y de \mathbb{B} , les propriétés suivantes

interprétation des valeurs :

- ensemble $\mathbb{B} = \{0, 1\}$ muni d'un opérateur unaire \neg (négation) et de deux opérateurs binaires \lor (disjonction) et \land (conjonction)
- vérifiant, pour toutes variables booléennes x, y, z de \mathbb{B} , les axiomes suivants :

associativité
$$x \lor (y \lor z) = (x \lor y) \lor z$$
 $x \land (y \land z) = (x \land y) \land z$ commutativité $x \lor y = y \lor x$ $x \land y = y \land x$ absorption $x \lor (x \land y) = x$ $x \land (x \lor y) = x$ distributivité $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ $x \land (y \lor z) = (x \land y) \lor (x \land z)$ complémentation $x \lor \neg x = 1$ $x \land \neg x = 0$

• ayant, pour toutes variables booléennes x, y de \mathbb{B} , les propriétés suivantes :

interprétation des valeurs :

0 ← false et 1 ← true

- ensemble B = {0,1} muni d'un opérateur unaire ¬ (négation) et de deux opérateurs binaires ∨ (disjonction) et ∧ (conjonction)
- vérifiant, pour toutes variables booléennes x, y, z de \mathbb{B} , les axiomes suivants :

associativité
$$x \lor (y \lor z) = (x \lor y) \lor z$$
 $x \land (y \land z) = (x \land y) \land z$ commutativité $x \lor y = y \lor x$ $x \land y = y \land x$ absorption $x \lor (x \land y) = x$ $x \land (x \lor y) = x$ distributivité $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ $x \land (y \lor z) = (x \land y) \lor (x \land z)$ complémentation $x \lor \neg x = 1$ $x \land \neg x = 0$

ayant, pour toutes variables booléennes x, y de B, les propriétés suivantes :

idempotence
$$x \lor x = x$$
 $x \land x = x$ neutres $x \lor 0 = x$ $x \land 1 = x$ involution $\neg \neg x = x$
De Morgan $\neg (x \lor y) = \neg x \land \neg y$ $\neg (x \land y) = \neg x \lor \neg y$

interprétation des valeurs :

0 ← false et 1 ← true

picantin@irif.fr Amphi#06 05 07/10/2020 8 / 15

Une fonction booléenne est une fonction $f: \mathbb{B}^k \to \mathbb{B}$ où k est l'arité de f

```
Les quatre opérateurs booléens unaires (k=1) f(0) \quad f(1)
```

Il existe exactement 2^{2^k} fonctions booléennes d'arité k

Une fonction booléenne est une fonction $f: \mathbb{B}^k \to \mathbb{B}$ où k est l'arité de f

Les quatre opérateurs booléens unaires (k = 1)

$$f(0)$$
 $f(1)$

picantin@irif.fr Amphi#06 05 107/10/2020 9/15

Une fonction booléenne est une fonction $f: \mathbb{B}^k \to \mathbb{B}$ où k est l'arité de f

Les quatre opérateurs booléens unaires (
$$k=1$$
)
$$f(0) \quad f(1) \\ 0 \quad 0 \quad \text{contradiction}$$

picantin@irif.fr Amphi#06 05 07/10/2020 9/15

Une fonction booléenne est une fonction $f: \mathbb{B}^k \to \mathbb{B}$ où k est l'arité de f

Les quatre opérateurs booléens unaires
$$(k = 1)$$

$$f(0) \quad f(1)$$

$$0 \quad 0 \quad \text{contradiction}$$

$$0 \quad 1 \quad \text{affirmation}$$

picantin@irif.fr Amphi#06 05 107/10/2020 9/15

Une fonction booléenne est une fonction $f: \mathbb{B}^k \to \mathbb{B}$ où k est l'arité de f

Les quatre opérateurs booléens unaires
$$(k = 1)$$

$$f(0) \quad f(1)$$

$$0 \quad 0 \quad \text{contradiction}$$

$$0 \quad 1 \quad \text{affirmation}$$

$$1 \quad 0 \quad \text{négation}$$

picantin@irif.fr Amphi#06 05 107/10/2020 9/15

Une fonction booléenne est une fonction $f: \mathbb{B}^k \to \mathbb{B}$ où k est l'arité de f

Les quatre opérateurs booléens unaires ($k = 1$)				
f(0)	<i>f</i> (1)			
0	0	contradiction		
0	1	affirmation		
1	0	négation		
1	1	tautologie		

picantin@irif.fr Amphi#06 05 07/10/2020 9/15

Une fonction booléenne est une fonction $f: \mathbb{B}^k \to \mathbb{B}$ où k est l'arité de f

Les quatre opérateurs booléens unaires
$$(k = 1)$$

$$f(0) \quad f(1)$$

$$0 \quad 0 \quad \text{contradiction}$$

$$0 \quad 1 \quad \text{affirmation}$$

$$1 \quad 0 \quad \text{négation NOT}$$

$$1 \quad 1 \quad \text{tautologie}$$

Il existe exactement 2^{2^k} fonctions booléennes d'arité k

Une fonction booléenne est une fonction $f: \mathbb{B}^k \to \mathbb{B}$ où k est l'arité de f

Les quatre opérateurs booléens unaires ($k = 1$)				
f(0) $f(1)$	f(0)			
0 0 contradiction	0			
0 1 affirmation	0			
1 0 négation NOT	1			
1 1 tautologie	1	0		

picantin@irif.fr Amphi#06 05 07/10/2020 9/15

Une fonction booléenne est une fonction $f: \mathbb{B}^k \to \mathbb{B}$ où k est l'arité de f

Il existe exactement 2^{2^k} fonctions booléennes d'arité k

Amphi#06 05 107/10/2020 9/15 picantin@irif.fr

Une fonction booléenne est une fonction $f: \mathbb{B}^k \to \mathbb{B}$ où k est l'arité de f

$$f(0,0)$$
 $f(0,1)$ $f(1,0)$ $f(1,1)$

Une fonction booléenne est une fonction $f : \mathbb{B}^k \to \mathbb{B}$ où k est l'arité de f

Les seize opérateurs booléens binaires (k = 2)

$$f(0,0)$$
 $f(0,1)$ $f(1,0)$ $f(1,1)$

Une fonction booléenne est une fonction $f : \mathbb{B}^k \to \mathbb{B}$ où k est l'arité de f

naires ($k=2$)	
1,0) f(1,1)	
0 contradiction	
0 1 conjonction AND	
1 0 négation de l'implication ⊅	
1 1 affirmation de <i>x</i>	
0 négation de l'implication inver	erse ⊄
0 1 affirmation de <i>y</i>	
1 0 ou eXclusif XOR	
1 1 disjonction OR	
0 négation connexe de Peirce N	NOR
0 1 équivalence NXOR	
1 0 négation de <i>y</i>	
1 1 implication inverse ⊂	
0 négation de x	
0 1 implication ⊃	
1 0 incompatibilité de Shaffer NAI	AND
1 1 tautologie	

picantin@irif.fr PF1 Amphi#06 05⊔07/10/2020 10 / 15

Une fonction booléenne est une fonction $f : \mathbb{B}^k \to \mathbb{B}$ où k est l'arité de f

Les seize	opérateurs	booléen	s binaires	(k=2)	
	f(0,0)	<i>f</i> (0, 1)	<i>f</i> (1,0)	<i>f</i> (1, 1)	
	0	0	0	0	contradiction
	0	0	0	1	conjonction AND
	0	0	1	0	négation de l'implication ⊅
	0	0	1	1	affirmation de x
	0	1	0	0	négation de l'implication inverse ⊄
	0	1	0	1	affirmation de y
	0	1	1	0	ou eXclusif XOR
	0	1	1	1	disjonction OR
	1	0	0	0	négation connexe de Peirce NOR
	1	0	0	1	équivalence NXOR
	1	0	1	0	négation de y
	1	0	1	1	implication inverse ⊂
	1	1	0	0	négation de x
	1	1	0	1	implication >
	1	1	1	0	incompatibilité de Shaffer NAND
	1	1	1	1	tautologie

picantin@irif.fr PF1 Amphi#06 05⊔07/10/2020 10 / 15

Une fonction booléenne est une fonction $f: \mathbb{B}^k \to \mathbb{B}$ où k est l'arité de f

Les seize	opérateurs	booléen	s binaires	(k=2)	
	f(0,0)	<i>f</i> (0, 1)	<i>f</i> (1,0)	<i>f</i> (1, 1)	
\bigcirc	0	0	0	0	contradiction
0	0	0	0	1	conjonction AND
O	0	0	1	0	négation de l'implication ⊅
(0	0	1	1	affirmation de x
(3)	0	1	0	0	négation de l'implication inverse ⊄
<u></u>	0	1	0	1	affirmation de <i>y</i>
(1)	0	1	1	0	ou eXclusif XOR
(0)	0	1	1	1	disjonction OR
(0)	1	0	0	0	négation connexe de Peirce NOR
•	1	0	0	1	équivalence NXOR
O	1	0	1	0	négation de <i>y</i>
O	1	0	1	1	implication inverse \subset
	1	1	0	0	négation de x
	1	1	0	1	implication \supset
0	1	1	1	0	incompatibilité de Shaffer NAND
0	1	1	1	1	tautologie

picantin@irif.fr PF1 Amphi#06 05□07/10/2020 10 / 15

Négation

Χ	$\neg \chi$
0	1
1	0

Disjonction

X	У	$x \vee y$
0	0	0
0	1	1
1	0	1
1	1	1

Conjonction

X	У	$x \wedge y$
0	0	0
0	1	0
1	0	0
1	1	1

Ou exclusif

X	У	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Connecteur de Peirce

Incompatibilté de Sheffei

Négation

Disjonction

X	У	$x \vee y$
0	0	0
0	1	1
1	0	1
1	1	1

Conjonction

X	У	$x \wedge y$
0	0	0
0	1	0
1	0	0
1	1	1

Ou exclusif

X	У	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Connecteur de Peirce

X	У	$x \downarrow y$
0	0	1
0	1	0
1	0	0
1	1	0

Incompatibilté de Sheffer

Négation

X	$\neg \chi$
0	1
1	0

Disjonction

	Χ	У	$x \vee y$
Γ	0	0	0
	0	1	1
	1	0	1
İ	1	1	1

Conjonction

X	У	$x \wedge y$
0	0	0
0	1	0
1	0	0
1	1	1

Ou exclusif

X	У	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Connecteur de Peirce

X	У	$x \downarrow y$
0	0	1
0	1	0
1	0	0
1	1	0

Incompatibilté de Sheffer

X	У	$x \uparrow y$
0	0	1
0	1	1
1	0	1
1	1	0

- les équivalences entre formules montrent qu'une même propriété peut s'exprimer de plusieurs manières différentes

Amphi#06 05 107/10/2020 12 / 15 picantin@irif.fr

- les équivalences entre formules montrent qu'une même propriété peut s'exprimer de plusieurs manières différentes
- cette redondance est intéressante pour l'expressivité
 - expression claire des notions via un vocabulaire riche
- mais elle peut aussi être un frein au traitement informatique
 - comparaisons, cas multiples à considérer, ...

05 107/10/2020 picantin@irif.fr Amphi#06 12 / 15

- les équivalences entre formules montrent qu'une même propriété peut s'exprimer de plusieurs manières différentes
- cette redondance est intéressante pour l'expressivité
 - expression claire des notions via un vocabulaire riche
- mais elle peut aussi être un frein au traitement informatique
 - comparaisons, cas multiples à considérer, ...
- on recherche des formes canoniques pour les formules propositionnelles

picantin@irif.fr Amphi#06 05 07/10/2020 12 / 15

- les équivalences entre formules montrent qu'une même propriété peut s'exprimer de plusieurs manières différentes
- cette redondance est intéressante pour l'expressivité
 - expression claire des notions via un vocabulaire riche
- mais elle peut aussi être un frein au traitement informatique
 - comparaisons, cas multiples à considérer, ...
- on recherche des formes canoniques pour les formules propositionnelles

Forme normale de négation

- les lois de de Morgan permettent de propager vers les variables
- un littéral est une formule qui est soit une variable, soit sa négation

- les équivalences entre formules montrent qu'une même propriété peut s'exprimer de plusieurs manières différentes
- cette redondance est intéressante pour l'expressivité
 - expression claire des notions via un vocabulaire riche
- mais elle peut aussi être un frein au traitement informatique
 - comparaisons, cas multiples à considérer, ...
- on recherche des formes canoniques pour les formules propositionnelles

Forme normale de négation

- les lois de de Morgan permettent de propager vers les variables
- un littéral est une formule qui est soit une variable, soit sa négation
- toute formule propositionnelle est équivalente à une formule propositionnelle sans connecteur - (sauf dans un littéral) et seulement des conjonctions et disjonctions

05 107/10/2020 picantin@irif.fr Amphi#06 12 / 15

- les équivalences entre formules montrent qu'une même propriété peut s'exprimer de plusieurs manières différentes
- cette redondance est intéressante pour l'expressivité
 - expression claire des notions via un vocabulaire riche
- mais elle peut aussi être un frein au traitement informatique
 - comparaisons, cas multiples à considérer, ...
- on recherche des formes canoniques pour les formules propositionnelles

Forme normale disjonctive

- un littéral est une formule qui est soit une variable, soit sa négation

- les équivalences entre formules montrent qu'une même propriété peut s'exprimer de plusieurs manières différentes
- cette redondance est intéressante pour l'expressivité
 - expression claire des notions via un vocabulaire riche
- mais elle peut aussi être un frein au traitement informatique
 - comparaisons, cas multiples à considérer, ...
- on recherche des formes canoniques pour les formules propositionnelles

Forme normale disjonctive

- un littéral est une formule qui est soit une variable, soit sa négation
- une clause conjonctive est soit la constante ⊤, soit un littéral, soit une conjonction d'au moins deux littéraux

- les équivalences entre formules montrent qu'une même propriété peut s'exprimer de plusieurs manières différentes
- cette redondance est intéressante pour l'expressivité
 - expression claire des notions via un vocabulaire riche
- mais elle peut aussi être un frein au traitement informatique
 - comparaisons, cas multiples à considérer, ...
- on recherche des formes canoniques pour les formules propositionnelles

Forme normale disjonctive

- un littéral est une formule qui est soit une variable, soit sa négation
- une clause conjonctive est soit la constante ⊤, soit un littéral, soit une conjonction d'au moins deux littéraux
- toute formule propositionnelle est équivalente à une formule qui est soit la constante \(\perp \), soit une clause conjonctive, soit une disjonction d'au moins deux clauses conjonctives

- tous les connecteurs peuvent se déduire d'un nombre limité des autres
- différents choix sont possibles pour ces connecteurs primitifs et la simplicité des expressions dépend beaucoup de ce choix

Amphi#06 05 107/10/2020 picantin@irif.fr 14 / 15

- tous les connecteurs peuvent se déduire d'un nombre limité des autres
- différents choix sont possibles pour ces connecteurs primitifs et la simplicité des expressions dépend beaucoup de ce choix
 - dans les langages de programmation, on dispose généralement de

```
* la négation ¬ (en Java : !),
* la conjonction ∧ (en Java : &&),
* la disjonction ∨ (en Java : | | ),
* et parfois le ou exclusif ⊕ (comme en C ou Java : ^)
```

chacun des connecteurs NAND et NOR est universel

Circuit combinatoire

un circuit combinatoire est une mise en œuvre matérielle d'une fonction combinatoire.

picantin@irif.fr PF1 Amphi#06 05⊔07/10/2020 14 / 15

- tous les connecteurs peuvent se déduire d'un nombre limité des autres
- différents choix sont possibles pour ces connecteurs primitifs et la simplicité des expressions dépend beaucoup de ce choix
 - dans les langages de programmation, on dispose généralement de

```
* la négation ¬ (en Java : !),
* la conjonction ∧ (en Java : &&),
* la disjonction ∨ (en Java : || ).
```

- ★ et parfois le ou exclusif ⊕ (comme en C ou Java : ^)
- chacun des connecteurs NAND et NOR est universel

Circuit combinatoire

 un circuit combinatoire est une mise en œuvre matérielle d'une fonction combinatoire

picantin@irif.fr PF1 Amphi#06 05□07/10/2020 14 / 15

- tous les connecteurs peuvent se déduire d'un nombre limité des autres
- différents choix sont possibles pour ces connecteurs primitifs et la simplicité des expressions dépend beaucoup de ce choix
 - dans les langages de programmation, on dispose généralement de

```
* la négation ¬ (en Java : !),
* la conjonction ∧ (en Java : &&),
* la disjonction ∨ (en Java : || ),
```

- ★ et parfois le ou exclusif ⊕ (comme en C ou Java : ^)
- chacun des connecteurs NAND et NOR est universel

Circuit combinatoire

- un circuit combinatoire est une mise en œuvre matérielle d'une fonction combinatoire
- un système logique est dit combinatoire si l'état de sa sortie ne dépend que de l'état de son entrée

picantin@irif.fr PF1 Amphi#06 05□07/10/2020 14 / 15

- tous les connecteurs peuvent se déduire d'un nombre limité des autres
- différents choix sont possibles pour ces connecteurs primitifs et la simplicité des expressions dépend beaucoup de ce choix
 - dans les langages de programmation, on dispose généralement de

```
* la négation ¬ (en Java : !),
* la conjonction ∧ (en Java : & &),
* la disjonction ∨ (en Java : | | ),
```

- ★ et parfois le ou exclusif ⊕ (comme en C ou Java : ^)
- chacun des connecteurs NAND et NOR est universel

Circuit combinatoire

- un circuit combinatoire est une mise en œuvre matérielle d'une fonction combinatoire (une parmi une infinité de possibilités)
- un système logique est dit combinatoire si l'état de sa sortie ne dépend que de l'état de son entrée

picantin@irif.fr PF1 Amphi#06 05□07/10/2020 14 / 15

- tous les connecteurs peuvent se déduire d'un nombre limité des autres
- différents choix sont possibles pour ces connecteurs primitifs et la simplicité des expressions dépend beaucoup de ce choix
 - dans les langages de programmation, on dispose généralement de

```
* la négation ¬ (en Java : !),
* la conjonction ∧ (en Java : & &),
* la disjonction ∨ (en Java : | | ),
```

- ★ et parfois le ou exclusif ⊕ (comme en C ou Java : ^)
- chacun des connecteurs NAND et NOR est universel

Circuit combinatoire

- un circuit combinatoire est une mise en œuvre matérielle d'une fonction combinatoire (une parmi une infinité de possibilités)
- un système logique est dit *combinatoire* si l'état de sa sortie ne dépend que de l'état de son entrée

- tous les connecteurs peuvent se déduire d'un nombre limité des autres
- différents choix sont possibles pour ces connecteurs primitifs et la simplicité des expressions dépend beaucoup de ce choix
 - dans les langages de programmation, on dispose généralement de

```
* la négation ¬ (en Java : !),
* la conjonction ∧ (en Java : & &),
* la disjonction ∨ (en Java : | | ),
```

- ★ et parfois le ou exclusif ⊕ (comme en C ou Java : ^)
- chacun des connecteurs NAND et NOR est universel

Circuit combinatoire

- un circuit combinatoire est une mise en œuvre matérielle d'une fonction combinatoire (une parmi une infinité de possibilités)
- un système logique est dit combinatoire si l'état de sa sortie ne dépend que de l'état de son entrée (pas de l'histoire du système)

- tous les connecteurs peuvent se déduire d'un nombre limité des autres
- différents choix sont possibles pour ces connecteurs primitifs et la simplicité des expressions dépend beaucoup de ce choix
 - dans les langages de programmation, on dispose généralement de

```
★ la négation ¬ (en Java : !),
★ la conjonction ∧ (en Java : & &),
★ la disjonction ∨ (en Java : | | ),
```

- ★ et parfois le ou exclusif ⊕ (comme en C ou Java : ^)
- chacun des connecteurs NAND et NOR est universel

Circuit combinatoire

- un circuit combinatoire est une mise en œuvre matérielle d'une fonction. combinatoire (une parmi une infinité de possibilités)
- un système logique est dit combinatoire si l'état de sa sortie ne dépend que de l'état de son entrée (pas de l'histoire du système)

https://sourceforge.net/projects/circuit/ https://github.com/reds-heig/logisim-evolution https://logisim.altervista.org/

OR

Négation

NOT

X	$\neg \chi$
0	1
1	0

Disjonction

X	У	$x \vee y$
0	0	0
0	1	1
1	0	1
1	1	1

$$x \rightarrow x \lor y$$

Conjonction

X	У	$x \wedge y$
0	0	0
0	1	0
1	0	0
1	1	1

AND

$$x \rightarrow x \land y$$

Ou exclusif

XOR

X	у	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

$$x \rightarrow x \oplus y$$

Conn. de Peirce

nn. de Peirce NOR

X	У	$x \downarrow y$
0	0	1
0	1	0
1	0	0
1	1	0

$$x \rightarrow x \downarrow y$$

Conn. de Sheffer NAND

X	У	$x \uparrow y$
0	0	1
0	1	1
1	0	1
1	1	0

$$x \rightarrow x \uparrow y$$