Team Brogram: Stackelberg Plan

Freddy Kelly, Danyal Prout & Sam Bell

April 16, 2013

0.1 Design

0.1.1 Overview

- 1. On game initialisation, parse CSV and perform batch regression to find follower's reaction function, $R_F(x)$.
- 2. For the first day, find global maxima of $J_L[\]$ to obtain price to submit.
- 3. On proceeding to a new day, take previous follower's price and perform recursive regression to efficiently update approximation of R(x).
- 4. Again, find maxima of updated R(x) and submit price. Repeat for each new day.

0.2 Schedule

This section describes each task in more detail.

0.2.1 Tasks

We have broken development down into the following key deliverables:

- 1. Learning the reaction function (Sam & Danyal)
 - Currently assuming the follower's reaction function is linear, so simply representing the function as two variables, a and b, from R(x) = a + bx.
 - We then parse CSV data files to obtain historical data on follower responses
 - After, we perform linear regression via least-squares on this data to to find values for *a* and *b*.
 - Regression performed using formula from Xiao-Jun's fourth lecture, slide
 20
 - Our next task is to find the global maxima of the function.
- 2. Online Learning (Sam & Danyal)
 - Weight least square w/ a forgetting factor to produce an updated estimator.
 - Use recursive least square approach to find coefficients.
- 3. Finding the global maxima (*Freddy*)
 - Having estimated the follower's reaction function, R(x), we will then calculate our optimal strategy by maximising the (leader's) payoff function, $J_L[]$.

0.2.2 Gantt Chart

The Gantt chart below shows how the development will progress over the coming weeks.

Milestones/deliverables are marked by a red diamond.

0.3 Regression Equations

$$\hat{a}^* = \frac{\sum_{t=1}^{T} x^2(t) \sum_{t=1}^{T} y(t) - \sum_{t=1}^{T} x(t) \sum_{t=1}^{T} x(t) y(t)}{T \sum_{t=1}^{T} x^2(t) - \left(\sum_{t=1}^{T} x(t)\right)^2}$$

$$\hat{b}^* = \frac{T \sum_{t=1}^{T} x(t) y(t) - \sum_{t=1}^{T} x(t) \sum_{t=1}^{T} y(t)}{T \sum_{t=1}^{T} x^2(t) - \left(\sum_{t=1}^{T} x(t)\right)^2}$$