

Unit: Algebra

Written by

Mrs. A.S.Patil

C.W.I.T., Pune

Name of Topic: Matrices

12 July 2020

UO1.3_ Solve the given system of linear equations using matrix inversion method

What we will learn today

- 1. Adjoint of a matrix
- 2. Inverse of a matrix
- 3. Solution of simultaneous equation by matrix method

Key takeaways

Inverse of a matrix.

Solution of simultaneous equation by matrix method

Anantmati Patil
Lecturer in Mathematics,

Page 6 Maharashtra State Board of Technical Education 14 August 2020

Concept Explanation

Adjoint of a matrix:

Adjoint of a matrix is the <u>transpose</u> of co-factor matrix

$$\therefore Adj A = \left[c_{ij}\right]^t$$

Co-factor matrix is a matrix of co-factors= $[c_{ij}]$

where
$$c_{ij} = (-1)^{i+j} \times M_{ij}$$
 where

Minor M_{ij} = determinant of matrix obtained by deleting ith row & jth column of given matrix.

Word Problem/ Problem

If
$$A = \begin{bmatrix} -1 & 1 & 1 \\ 2 & 4 & 2 \\ 3 & 2 & 1 \end{bmatrix}$$
, find Adj A

Solution.: Given
$$A = \begin{bmatrix} -1 & 1 & 1 \\ 2 & 4 & 2 \\ 3 & 2 & 1 \end{bmatrix}$$

$$c_{11} = (-1)^{1+1} \times \begin{vmatrix} 4 & 2 \\ 2 & 1 \end{vmatrix} = +(4-4) = 0$$

$$c_{12} = (-1)^{1+2} \times \begin{vmatrix} 2 & 2 \\ 3 & 1 \end{vmatrix} = -(2-6) = 4$$

$$c_{13} = (-1)^{1+3} \times \begin{vmatrix} 2 & 4 \\ 3 & 2 \end{vmatrix} = +(4-12) = -8$$

$$c_{21} = (-1)^{2+1} \times \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = -(1-2) = 1$$

$$c_{22} = (-1)^{2+2} \times \begin{vmatrix} -1 & 1 \\ 3 & 1 \end{vmatrix} = +(-1-3) = -4$$

$$c_{23} = (-1)^{2+3} \times \begin{vmatrix} -1 & 1 \\ 3 & 2 \end{vmatrix} = -(-2-3) = 5$$

$$c_{31} = (-1)^{3+1} \times \begin{vmatrix} 1 & 1 \\ 4 & 2 \end{vmatrix} = +(2-4) = -2$$

$$c_{32} = (-1)^{3+2} \times \begin{vmatrix} -1 & 1 \\ 2 & 2 \end{vmatrix} = -(-2-2) = 4$$

$$c_{33} = (-1)^{3+3} \times \begin{vmatrix} -1 & 1 \\ 2 & 4 \end{vmatrix} = +(-4-2) = -6$$

$$\therefore Matrix \ of \ cofactors = C = \begin{bmatrix} 0 & 4 & -8 \\ 1 & -4 & 5 \\ -2 & 4 & -6 \end{bmatrix}$$

$$\therefore Adj \ A = C^t = \begin{bmatrix} 0 & 1 & -2 \\ 4 & -4 & 4 \\ -8 & 5 & -6 \end{bmatrix}$$

Inverse of a Matrix

► Singular matrix

A square matrix A is called singular matrix if det (A) or |A| = 0.

► Non-Singular matrix

A square matrix A is called non-singular, if det (A) or $|A| \neq 0$.

► Inverse of a matrix:

Given a <u>non-singular</u> matrix 'A', if there exists a matrix 'B' such that $A \times B = B \times A = I$ then matrix B is the inverse of matrix A.

Notation: Inverse of A = A^{-1}

Formula:
$$A^{-1} = \frac{1}{\det A} \times Adj A$$

Problem/ Question Explanation and step by step Solution

2. Find the inverse of the matrix
$$A = \begin{bmatrix} 3 & 1 & 2 \\ 4 & 1 & 1 \\ 2 & -1 & 3 \end{bmatrix}$$

Solution : Given
$$A = \begin{bmatrix} 3 & 1 & 2 \\ 4 & 1 & 1 \\ 2 & -1 & 3 \end{bmatrix}$$

$$|A| = 3(3+1) - 1(12-2) + 2(-4-2)$$

$$= 12 - 10 - 12 = -10 \neq 0$$

$$\therefore A^{-1} \text{ exists}$$

$$c_{11} = (-1)^{1+1} \times \begin{vmatrix} 1 & 1 \\ -1 & 3 \end{vmatrix} = +(3+1) = 4$$

$$c_{12} = (-1)^{1+2} \times \begin{vmatrix} 4 & 1 \\ 2 & 3 \end{vmatrix} = -(12-2) = -10$$

$$c_{13} = (-1)^{1+3} \times \begin{vmatrix} 4 & 1 \\ 2 & -1 \end{vmatrix} = +(-4-2) = -6$$

Problem/ Question Explanation and step by step Solution

$$c_{21} = (-1)^{2+1} \times \begin{vmatrix} 1 & 2 \\ -1 & 3 \end{vmatrix} = -(3+2) = -5$$

$$c_{22} = (-1)^{2+2} \times \begin{vmatrix} 3 & 2 \\ 2 & 3 \end{vmatrix} = +(9-4) = 5$$

$$c_{23} = (-1)^{2+3} \times \begin{vmatrix} 3 & 1 \\ 2 & -1 \end{vmatrix} = -(-3-2) = 5$$

$$c_{31} = (-1)^{3+1} \times \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = +(1-2) = -1$$

$$c_{32} = (-1)^{3+2} \times \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix} = -(3-8) = 5$$

$$c_{33} = (-1)^{3+3} \times \begin{vmatrix} 3 & 1 \\ 4 & 1 \end{vmatrix} = +(3-4) = -1$$

$$\therefore C = \begin{bmatrix} 4 & -10 & -6 \\ -5 & 5 & 5 \\ -1 & 5 & -1 \end{bmatrix} \qquad \therefore Adj A = C^t = \begin{bmatrix} 4 & -5 & -1 \\ -10 & 5 & 5 \\ -6 & 5 & -1 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{-10} \times \begin{bmatrix} 4 & -5 & -1 \\ -10 & 5 & 5 \\ -6 & 5 & -1 \end{bmatrix}$$

Course Content

Solution of simultaneous equations:

Suppose
$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

are the given simultaneous equations.

These equations can be represented in matrix form as follows:

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} \text{ i.e. } A \times X = B \text{ where}$$

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}; \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}; B = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

The solution of the system of equations is given by $\mathbf{X} = \mathbf{A}^{-1} \times \mathbf{B}$ where $A^{-1} = \frac{1}{\det A} \times Adj A$

Solve the equations using matrix method:

1.
$$x + y + z = 3$$
; $x + 2y + 3z = 4$; $x + 4y + 9z = 6$
Solution: $x + y + z = 3$; $x + 2y + 3z$; $x + 4y + 9z = 6$
Matrix Equation: $A \times X = B$
Where $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$; $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$; $B = \begin{bmatrix} 3 \\ 4 \\ 6 \end{bmatrix}$
 $\therefore |A| = 1(18 - 12) - 1(9 - 3) + 1(4 - 2) = 6 - 6 + 2 = 2 \neq 0$
 $\therefore A^{-1}$ exists

$$c_{11} = (-1)^{1+1} \times \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix} = +(18 - 12) = 6$$

$$c_{12} = (-1)^{1+2} \times \begin{vmatrix} 1 & 3 \\ 1 & 9 \end{vmatrix} = -(9 - 3) = -6$$

$$c_{13} = (-1)^{1+3} \times \begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix} = +(4 - 2) = 2$$

$$c_{21} = (-1)^{2+1} \times \begin{vmatrix} 1 & 1 \\ 4 & 9 \end{vmatrix} = -(9 - 4) = -5$$

$$c_{22} = (-1)^{2+2} \times \begin{vmatrix} 1 & 1 \\ 1 & 9 \end{vmatrix} = +(9 - 1) = 8$$

$$c_{23} = (-1)^{2+3} \times \begin{vmatrix} 1 & 1 \\ 1 & 4 \end{vmatrix} = -(4-1) = -3$$

$$c_{31} = (-1)^{3+1} \times \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = +(3-2) = 1$$

$$c_{32} = (-1)^{3+2} \times \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} = -(3-1) = -2$$

$$c_{33} = (-1)^{3+3} \times \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = +(2-1) = 1$$

$$\therefore C = \begin{bmatrix} 6 & -6 & 2 \\ -5 & 8 & -3 \\ 1 & -2 & 1 \end{bmatrix}$$

$$\therefore Adj A = C^t = \begin{bmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{\det A} \times Adj A = \frac{1}{2} \times \begin{bmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{bmatrix}$$

$$\therefore X = A^{-1} \times B = \frac{1}{2} \times \begin{bmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 4 \\ 6 \end{bmatrix} = \frac{1}{2} \times \begin{bmatrix} 18 - 20 + 6 \\ -18 + 32 - 12 \\ 6 - 12 + 6 \end{bmatrix} = \frac{1}{2} \times \begin{bmatrix} 4 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

The solution is x = 2; y = 1; z = 0

Question No 1	Question No 2	Question No 3
State the formula of A ⁻¹	Find inverse of A= $\begin{bmatrix} -1 & 1 & 1 \\ -2 & 2 & 2 \\ 3 & 2 & 1 \end{bmatrix}$	The solution X of the matrix equation $A\times X=B \text{ is given by }$
Recall/ Remembering	Understanding	Application
a) $A^{-1} = \frac{1}{\det A} \times \operatorname{Adj} A$	a) $A^{-1} = \begin{bmatrix} -2 & -1 & 0 \\ -8 & -4 & 0 \\ -10 & -5 & 0 \end{bmatrix}$	a) $X = A^{-1} \times B$
$b) A^{-1} = \frac{-1}{ A } \times Adj A$	b) $A^{-1} = \begin{bmatrix} -2 & -8 & -10 \\ -1 & -4 & -5 \\ 0 & -5 & 0 \end{bmatrix}$	$b) X = B \times A^{-1}$
c) $A^{-1} = [c_{ij}]^t$	c) $A^{-1} = \begin{bmatrix} -2 & 1 & 0 \\ 8 & -4 & 0 \\ -10 & 5 & 0 \end{bmatrix}$	c) $X = A \times B$
d) All of above	d) Inverse does not exist.	$d) X = B \times A$

Ans: <a> Ans: <d></d>	Ans: <a>
---------------------------	--------------