- 8.1 In 1,000 tosses of a coin, 560 heads and 440 tails appear. Is it reasonable to assume that the coin is fair? Justify your answer.
- 8.3 Here, the LRT alluded to in Example 8.2.9 will be derived. Suppose that we observe m iid Bernoulli(θ) random variables, denoted by Y_1, \ldots, Y_m . Show that the LRT of $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ will reject H_0 if $\sum_{i=1}^m Y_i > b$.
- **8.5** A random sample, X_1, \ldots, X_n , is drawn from a Pareto population with pdf

$$f(x|\theta,\nu) = \frac{\theta \nu^{\theta}}{x^{\theta+1}} I_{[\nu,\infty)}(x), \quad \theta > 0, \quad \nu > 0.$$

- (a) Find the MLEs of θ and ν .
- (b) Show that the LRT of

 $H_0: \theta = 1, \nu \text{ unknown}, \text{ versus } H_1: \theta \neq 1, \nu \text{ unknown},$

has critical region of the form $\{x: T(x) \le c_1 \text{ or } T(x) \ge c_2\}$, where $0 < c_1 < c_2$ and

$$T = \log \left[\frac{\prod\limits_{i=1}^n X_i}{(\min\limits_i X_i)^n} \right].$$

- (c) Show that, under H_0 , 2T has a chi squared distribution, and find the number of degrees of freedom. (*Hint*: Obtain the joint distribution of the n-1 nontrivial terms $X_i/(\min_i X_i)$ conditional on $\min_i X_i$. Put these n-1 terms together, and notice that the distribution of T given $\min_i X_i$ does not depend on $\min_i X_i$, so it is the unconditional distribution of T.)
- **8.7** We have already seen the usefulness of the LRT in dealing with problems with nuisance parameters. We now look at some other nuisance parameter problems.
 - (a) Find the LRT of

$$H_0: \theta \leq 0$$
 versus $H_1: \theta > 0$

based on a sample X_1, \ldots, X_n from a population with probability density function $f(x|\theta,\lambda) = \frac{1}{\lambda}e^{-(x-\theta)/\lambda}I_{[\theta,\infty)}(x)$, where both θ and λ are unknown.

(b) We have previously seen that the exponential pdf is a special case of a gamma pdf. Generalizing in another way, the exponential pdf can be considered as a special case of the Weibull(γ , β). The Weibull pdf, which reduces to the exponential if $\gamma = 1$, is very important in modeling reliability of systems. Suppose that X_1, \ldots, X_n is a random sample from a Weibull population with both γ and β unknown. Find the LRT of $H_0: \gamma = 1$ versus $H_1: \gamma \neq 1$.

- 8.9 Stefanski (1996) establishes the arithmetic-geometric-harmonic mean inequality (see Example 4.7.8 and Miscellanea 4.9.2) using a proof based on likelihood ratio tests. Suppose that Y_1, \ldots, Y_n are independent with pdfs $\lambda_i e^{-\lambda_i y_i}$, and we want to test $H_0: \lambda_1 = \cdots = \lambda_n$ vs. $H_1: \lambda_i$ are not all equal.
 - (a) Show that the LRT statistic is given by $(\bar{Y})^{-n}/(\prod_i Y_i)^{-1}$ and hence deduce the arithmetic-geometric mean inequality.
 - (b) Make the transformation $X_i = 1/Y_i$, and show that the LRT statistic based on X_1, \ldots, X_n is given by $[n/\sum_i (1/X_i)]^n/\prod_i X_i$ and hence deduce the geometric-harmonic mean inequality.
- **8.13** Let X_1, X_2 be iid uniform $(\theta, \theta + 1)$. For testing $H_0: \theta = 0$ versus $H_1: \theta > 0$, we have two competing tests:

$$\phi_1(X_1)$$
: Reject H_0 if $X_1 > .95$, $\phi_2(X_1, X_2)$: Reject H_0 if $X_1 + X_2 > C$.

- (a) Find the value of C so that ϕ_2 has the same size as ϕ_1 .
- (b) Calculate the power function of each test. Draw a well-labeled graph of each power function.
- (c) Prove or disprove: ϕ_2 is a more powerful test than ϕ_1 .
- (d) Show how to get a test that has the same size but is more powerful than ϕ_2 .
- **8.15** Show that for a random sample X_1, \ldots, X_n from a $n(0, \sigma^2)$ population, the most powerful test of $H_0: \sigma = \sigma_0$ versus $H_1: \sigma = \sigma_1$, where $\sigma_0 < \sigma_1$, is given by

$$\phi(\Sigma X_i^2) = \begin{cases} 1 & \text{if } \Sigma X_i^2 > c \\ 0 & \text{if } \Sigma X_i^2 \le c. \end{cases}$$

For a given value of α , the size of the Type I Error, show how the value of c is explicitly determined.

- **8.17** Suppose that X_1, \ldots, X_n are iid with a beta $(\mu, 1)$ pdf and Y_1, \ldots, Y_m are iid with a beta $(\theta, 1)$ pdf. Also assume that the X_n are independent of the Y_n .
 - (a) Find an LRT of $H_0: \theta = \mu$ versus $H_1: \theta \neq \mu$.
 - (b) Show that the test in part (a) can be based on the statistic

$$T = \frac{\sum \log X_i}{\sum \log X_i + \sum \log Y_i}.$$

- (c) Find the distribution of T when H_0 is true, and then show how to get a test of size $\alpha = .10$.
- **8.19** The random variable X has pdf $f(x) = e^{-x}, x > 0$. One observation is obtained on the random variable $Y = X^{\theta}$, and a test of $H_0: \theta = 1$ versus $H_1: \theta = 2$ needs to be constructed. Find the UMP level $\alpha = .10$ test and compute the Type II Error probability.

- **8.23** Suppose X is one observation from a population with beta $(\theta, 1)$ pdf.
 - (a) For testing $H_0: \theta \leq 1$ versus $H_1: \theta > 1$, find the size and sketch the power function of the test that rejects H_0 if $X > \frac{1}{2}$.
 - (b) Find the most powerful level α test of $H_0: \theta = 1$ versus $H_1: \theta = 2$.
 - (c) Is there a UMP test of $H_0: \theta \leq 1$ versus $H_1: \theta > 1$? If so, find it. If not, prove so.
- 8.25 Show that each of the following families has an MLR.
 - (a) $n(\theta, \sigma^2)$ family with σ^2 known
 - (b) Poisson(θ) family
 - (c) binomial (n, θ) family with n known
- 8.27 Suppose $g(t|\theta) = h(t)c(\theta)e^{w(\theta)t}$ is a one-parameter exponential family for the random variable T. Show that this family has an MLR if $w(\theta)$ is an increasing function of θ . Give three examples of such a family.
- **8.29** Let X be one observation from a Cauchy(θ) distribution.
 - (a) Show that this family does not have an MLR.
 - (b) Show that the test

$$\phi(x) = \begin{cases} 1 & \text{if } 1 < x < 3 \\ 0 & \text{otherwise} \end{cases}$$

is most powerful of its size for testing H_0 : $\theta = 0$ versus H_1 : $\theta = 1$. Calculate the Type I and Type II Error probabilities.

(c) Prove or disprove: The test in part (b) is UMP for testing $H_0: \theta \leq 0$ versus $H_1: \theta > 0$. What can be said about UMP tests in general for the Cauchy location family?