



<u>Lecture 21: Introduction to</u> <u>Generalized Linear Models;</u>

<u>Course</u> > <u>Unit 7 Generalized Linear Models</u> > <u>Exponential Families</u>

> 14. Review Exercises

### 14. Review Exercises

## Transformations of Random Variables

2/2 points (graded)

Consider a random variable Y with distribution  $p_{\theta}(y)$  for some  $\theta$ , coming from a canonical exponential family.

Let Z=Y+a, where a is a constant. Denote by  $q_{\theta}\left(z\right)$  the density of Z, which is parametrized by  $\theta$ .

Is  $q_{ heta}$  also a member of some canonical exponential family?







Now instead suppose  $Z=\lambda Y$  , where  $\lambda \neq 0$  is constant. This again determines some density  $ilde{q}_{\, heta}\left(z
ight)$  of Z.

Is  $\tilde{q}_{\, \theta}$  also a member of some canonical exponential family?

Yes





#### **Solution:**

For the first part: we have  $q_{ heta}\left(z
ight)=p_{ heta}\left(z-a
ight)$ . In particular,

$$q_{ heta}\left(z
ight)=\exp\left(rac{\left(z-a
ight) heta-b\left( heta
ight)}{\phi}+c\left(z-a,\phi
ight)
ight)=\exp\left(rac{z heta-\left(b\left( heta
ight)+a heta
ight)}{\phi}+c\left(z-a,\phi
ight)
ight)$$

Let  $\tilde{b}(\theta) = b(\theta) + a\theta$  and  $\tilde{c}(z,\phi) = c(z-a,\phi)$  which demonstrates that this is indeed contained in a canonical exponential family.

A similar argument (exercise) shows the same answer for the second part, where we instead use  $ilde{q}_{\, heta}(z)=p_{ heta}(z/\lambda)$ .

Submit

You have used 1 of 1 attempt

• Answers are displayed within the problem

# (Ungraded) Re-parametrization

0 points possible (ungraded)

**Ungrading note:** The third part of this problem is unclear and need to be reworked. For now, we have ungraded this problem.

Let  $\mathbf{x}=(X_1,X_2)$  where  $X_1,X_2$  are positive random variables, and suppose  $\mu\left(x_1,x_2
ight)=\mathbb{E}\left[Y|X=(x_1,x_2)
ight]$  is given by

$$\mathbb{E}\left[Y|X=(x_1,x_2)
ight]=1000\exp\left(x_1^2-x_2^2
ight).$$

Answer the following questions.

• True or False:  $\ln \mu \left( \mathbf{x} \right)$  is linear in  $\mathbf{x}$ .







• True or False: There is an invertible reparametrization  $\widetilde{\mathbf{x}}$  of  $\mathbf{x}$  for which  $Y|\widetilde{\mathbf{x}}$  is a generalized linear model.







• If there were a reparametrization  $\tilde{\mathbf{x}}$ , would Jeffreys prior change? That is, would Jeffreys prior be computed using a different formula?

( Yes





### **Solution:**

- No. Note that  $\ln \mu\left(\mathbf{x}\right) = \ln \delta + \alpha x_1^2 \beta x_2^2$ . In particular, it is quadratic in  $\mathbf{x}$ .
- Yes. Since  $x_1, x_2$  are positive, so we can equivalently use a reparametrization,  $\widetilde{\mathbf{x}} = (x_1^2, x_2^2)$ . From here,  $\ln \mu \left( \mathbf{x} \right)$  is linear.
- No. This is a consequence of the fact that Jeffreys prior is parametrization-invariant.

Submit

You have used 1 of 1 attempt

| Discussion                                                                                                                                        | Hide Discussion      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <b>Topic:</b> Unit 7 Generalized Linear Models:Lecture 21: Introduction to Generalized Linear Models; Exponential Families / 14. Review Exercises | Tilde Discussion     |
|                                                                                                                                                   | Add a Post           |
| Show all posts ▼                                                                                                                                  | by recent activity ▼ |
| here are no posts in this topic yet.                                                                                                              |                      |
|                                                                                                                                                   |                      |

© All Rights Reserved