Housing Price Prediction Project Report

Author: Usman Turajo

Date: October 17, 2025

Location: Rivers State, Nigeria

1. Objective

The goal of this project was to build a predictive model for housing prices using a dataset containing various features of residential properties. The model aims to assist buyers, sellers, and real estate professionals in estimating property values based on structural and locational attributes.

2. Dataset Overview

The dataset included 545 entries with the following features:

- Numerical: price, area, bedrooms, bathrooms, stories
- **Binary Categorical**: mainroad, guestroom, basement, hotwaterheating, airconditioning, prefarea
- Multiclass Categorical: furnishingstatus

3. Data Cleaning

- Converted binary categorical variables (yes/no) to 0/1.
- One-hot encoded furnishingstatus.
- No missing values were found.
- Scaled numerical features using StandardScaler.

4. Exploratory Data Analysis (EDA)

- Price Distribution: Right-skewed, indicating a few high-priced outliers.
- Area vs Price: Strong positive correlation.
- **Correlation Matrix**: area, bathrooms, airconditioning, and prefarea showed strong relationships with price.
- **Boxplots**: Features like mainroad, guestroom, and basement positively influenced price.

5. Feature Engineering

- Final feature set included both scaled numerical and encoded categorical variables.
- No multicollinearity issues were observed.

6. Model Building

Four models were trained and evaluated:

- Linear Regression
- Decision Tree Regressor
- Random Forest Regressor
- Gradient Boosting Regressor

7. Model Evaluation

Model	MAE (₦)	MSE (₩²)	R ² Score
Linear Regression	970,043.40	1.75×10^{12}	0.65
Decision Tree	1,195,266.06	2.64×10^{12}	0.48
Random Forest	1,018,481.11	1.96×10^{12}	0.61
Gradient Boosting	960,513.57	1.69×10^{12}	0.67

Best Model: Gradient Boosting Regressor

8. Insights & Recommendations

- Area is the most influential feature in determining price.
- Homes with amenities like air conditioning, basement, and guestroom tend to be priced higher.
- Gradient Boosting offers the best predictive performance and should be used for deployment.

9. Deployment

The final model was deployed as a RESTful API using **Flask** and hosted on **Render**, a cloud platform for web applications. This deployment enables real-time housing price predictions through HTTP requests, making the model accessible to users and developers.

Deployment Process

- The trained Gradient Boosting model and preprocessing scaler were serialized using joblib
- A Flask application was created to expose a /predict route that accepts JSON input and returns predicted prices
- A Procfile was added to specify the web process using Gunicorn
- All dependencies were listed in requirements.txt
- The project was pushed to GitHub and connected to Render for automatic deployment.