1 实验目的

• 学习使用串行数模转换芯片 TLC5620 产生所需模拟电压波形。

2 实验内容

- a. 调节 B7 区的电位器 W3,使输出为 2.5V,作为 REF 电压。通过单片机 IO 口输入 10 组数据,测量 DA 的转换结果,并分析其精度。
- b. 使 DAC 的通道 1 产生梯形波、通道 2 产生方波,周期幅度均相同。

3 实验原理

3.1 TLC5620 8 位串行 D/A

TLC5620 是美国德州仪器(TI)公司生产的 8 位带有高阻抗缓冲输入的 4 通道 D/A 转换芯片。可产生单调的、1 到 2 倍于基准电压和接地电压差值的输出。通常情况下 TLC5620 的供电电压为 5V,器件内部集成上电复位功能。通用微处理器通过 CLK、DATA、LOAD 和 LDAC 四根控制线可实现对该芯片的控制。

3.1.1 器件引脚和内部结构

表 1: 实验结果

针脚号 针脚功能简介 1 GND 输入工作电压地端 2~5 REFA~REFD 4 个参考电压输入端 其限定了模拟输出电压的最大值 串口界面的数字数据输入端 进行转化的数字信号时串行输入到寄存器						
2~5 REFA~REFD 4 个参考电压输入端 其限定了模拟输出电压的最大值 串口界面的数字数据输入端 进行转化的数字信号时串行输入到寄存器						
2~5 REFA~REFD 其限定了模拟输出电压的最大值 串口界面的数字数据输入端 6 DATA 进行转化的数字信号时串行输入到寄存器						
其限定了模拟输出电压的最大值 串口界面的数字数据输入端 6 DATA 进行转化的数字信号时串行输入到寄存器						
6 DATA 进行转化的数字信号时串行输入到寄存器						
	串口界面的数字数据输入端					
	进行转化的数字信号时串行输入到寄存器					
且每一位数据时在时钟信号的下降沿被读入的	Í					
7 CLK 串行时钟信号输入端,用于控制串行数据的输	入					
串行界面数据装在控制端	串行界面数据装在控制端					
8 LOAD 当 LDAC 是低电平的时候,在 LOAD 信号的下	降沿					
将输入的数字数据锁入输出门,并立即产生模拟	电压					
9~12 DACD~DACA 4 个模拟电压输出端						
13 LDAC 转载 DAC 控制端						
14 V _{DD} 输入工作电压正端						

3.1.2 工作时序

Figure 1. LOAD-Controlled Update (LDAC = Low)

当 LOAD 为高电平、LDAC 为低电平时,串行数据在 CLK 每一个下降沿由时钟同步送入 DATA 端口。一旦 8 位数据位都送入,LOAD 变为低脉冲电平,以便把数据锁存至串行数据寄存器中。由于 LDAC 为低电平,锁存在串行数据寄存器中的数据自动锁存至所选择的 DAC 中,更新 DAC 输出。

Figure 2. LDAC-Controlled Update

当 LOAD 为高电平、LDAC 为高电平时,串行数据在 CLK 每一个下降沿由时钟同步送入 DATA 端口。一旦 8 位数据位都送入,LOAD 变为低脉冲电平,以便把数据锁存至串行数据寄存器中。接着 LDAC 变为低脉冲电平,锁存在串行数据寄存器中的数据锁存至所选择的 DAC 中,更新 DAC 输出。

Figure 3. Load-Controlled Update Using 8-Bit Serial Word (LDAC = Low)

工作时序三与工作时序一类似,只是 11 位数据分成两次输入,分别输入 3 位控制位和 8 位数据位。 中间这段时间要保持 CLK 为低电平。

Figure 4. LDAC-Controlled Update Using 8-Bit Serial Word

工作时序四与工作时序二类似,只是 11 位数据分成两次输入,分别输入 3 位控制位和 8 位数据位。 中间这段时间要保持 CLK 为低电平。

电原理图 C1 PØ.Ø/ADØ PØ.1/AD1 100n PØ.2/AD2 18 X1 CRYST XTAL2 PØ.3/AD3 ٦Ĺ **C5** PØ.4/AD4 PØ.5/AD5 PØ.6/AD6 PØ.7/AD7 9 RST 1000 P2.Ø/A8 P2.1/A9 2.2/A1Ø **PSEN** P2.3/A11 P2.4/A12 P2.5/A13 P2.6/A14 P2.7/A15 T2 P3.Ø/RXD T2E**%**3.1<u>/TXD</u> P3.2/<u>INTØ</u> P3.3/INT1 P3.4/TØ P1.Ø/T2 P1.1/T2 P1.2 P1.3 P1.4 P3.5/<u>T1</u> P3.6/<u>WR</u> P1.5 8ØC52 PROGRAM=ex10.HEX **U2** CLK DACA DATA DACB RV1 LOAD DACC DACD DAC DACE ① **1 286** DACF DACG REF2 DACH TLC5628 10k

5 程序流程图

6 程序代码

调节 B7 区的电位器 W3, 使输出为 2.5V, 作为 REF 电压。通过单片机 IO 口输入 10 组数据,测量 DA 的转换结果,并分析其精度

SCLA BIT P1.6

1

```
SDAA BIT P1.7
2
            LOAD BIT P3.5
            LDAC BIT P3.4
4
            VOUTA DATA 30H
            VOUTB DATA 31H
            ORG 0000H
            AJMP MAIN
            ORG 0100H
10
11
   \operatorname{MAIN} :
12
            MOV SP, #60H
13
            NOP
            CLR SCLA
15
            CLR SDAA
16
            SETB LOAD
17
            SETB LDAC
18
            MOV R3,#0A2H
19
            MOV R4,#00H
20
            MOV VOUTA,#00H
21
            MOV R5,#0A2H
22
            MOV R6,#00H
23
            MOV VOUTB,#00H
24
25
   DACHANG:
26
            MOV R1,#01H
27
            MOV R2, VOUTA
28
            LCALL DAC5620
            DJNZ R3, CONTINUEA
30
            MOV R3,#0A2H
31
            MOV A, R4
32
            CPL A
33
            MOV R4, A
34
   CONTINUEA:
35
            CJNE R4,#0FFH,CONTINUEB
36
            DEC R2
37
            SJMP CONTINUEC
   CONTINUEB:
39
            INC R2
   CONTINUEC:
41
            MOV VOUTA, R2
42
            MOV R1,#03H
43
            MOV R2, VOUTB
44
            LCALL DAC5620
45
            DJNZ R5, CONTINUED
46
            MOV R5,#0A2H
47
            MOV A, R6
48
```

```
CPL A
49
            MOV R6, A
   CONTINUED:
51
            CJNE R6,#0FFH,CONTINUEE
52
            MOV R2,#0A2H
53
            SJMP CONTINUEF
54
   CONTINUEE:
55
            MOV R2, #00H
56
   CONTINUEF:
57
            MOV VOUTB, R2
58
            LJMP DACHANG
60
   DAC5620:
            MOV A, R1
62
            CLR SCLA
            MOV R7, #08H
64
            LCALL SENDBYTE
65
            MOV A, R2
66
            CLR SCLA
67
            MOV R7, #08H
68
            LCALL SENDBYTE
69
            CLR LOAD
70
            SETB LOAD
71
            CLR LDAC
72
            SETB LDAC
73
            RET
   SENDBYTE:
75
            SETB SCLA
            RLC A
77
            MOV SDAA, C
78
            CLR SCLA
79
            DJNZ R7, SENDBYTE
80
            RET
81
82
            END
83
```

使 DAC 的通道 1 产生梯形波、通道 2 产生方波,周期幅度均相同。

```
SCLA BIT P1.6
SDAA BIT P1.7
LOAD BIT P3.5
LDAC BIT P3.4
VOUTA DATA 30H
VOUTB DATA 31H

ORG 0000H
AJMP MAIN
```

```
ORG 000BH
10
   MAIN:
12
            MOV SP, #60H
13
            NOP
14
            CLR SCLA
15
            CLR SDAA
16
            SETB LOAD
17
            SETB LDAC
18
19
   LOOP:
20
            MOV VOUTA,#0B0H
21
            MOV VOUTB,#00H
            MOV R4,#10H
23
   L\_CYCLE1:
            LCALL VOUT
25
            MOV A, VOUTB
26
            ADD A, #0BH
27
            MOV VOUTB, A
28
            DJNZ R4,L_CYCLE1
29
            MOV VOUTB,#0B0H
30
            MOV R4,#10H
31
   L_CYCLE2:
32
            LCALL VOUT
33
            DJNZ R4,L_CYCLE2
34
            MOV VOUTA,#00H
            MOV R4,#10H
36
   L\_CYCLE3:
37
            LCALL VOUT
38
            MOV A, VOUTB
39
            \operatorname{CLR}\ \operatorname{C}
40
            SUBB A,#0BH
41
            MOV VOUTB, A
42
            DJNZ R4,L_CYCLE3
43
            MOV R4,#10H
44
   L CYCLE4:
45
            LCALL VOUT
46
            DJNZ R4,L_CYCLE4
47
            LJMP LOOP
49
   VOUT:
            MOV R2, VOUTA
51
            MOV R1,#01H
52
            LCALL DAC5620
53
            MOV R2, VOUTB
54
            MOV R1,#03H
55
            LCALL DAC5620
56
```

```
RET
57
   DAC5620:
59
             MOV A, R1
60
             CLR SCLA
61
             MOV R7, #08H
62
             LCALL SENDBYTE
63
             MOV A, R2
64
             CLR SCLA
65
             MOV R7,#08H
66
             LCALL SENDBYTE
             CLR LOAD
68
             SETB LOAD
             CLR LDAC
70
             SETB LDAC
             RET
72
   SENDBYTE:
73
             SETB SCLA
74
             \operatorname{RLC}\ A
75
             MOV SDAA, C
76
             CLR SCLA
77
             DJNZ R7, SENDBYTE
             RET
79
80
             END
81
```

7 实验结果

实验中的基准电压为 2.5 伏特, $1LSB=\frac{2.5}{256}V=0.0087890625V$ 。改变滑动电阻,即改变输入的数字电压值,经过 D/A 转换后,可在 PC 机上获得转换得到的模拟值。从而获取十组数据值,记录如下:

表 2: D/A 转换结果

数字值 (H)	BD	AD	9A	88	79	64	5A	51	4D	42
转换后数字值 (V)	3.68	3.36	2.99	2.64	2.35	1.94	1.75	1.57	1.50	1.28
采样值 (V)	3.82	3.48	3.07	2.67	2.34	1.9	1.68	1.48	1.38	1.15
误差 (LSB)	16.3	13.0	8.44	2.77	1.57	5.15	8.05	10.89	13.41	15.23

编程后实现要求波形,结果如下图所示:

