Model Selection: Introduction

金融投资学

Instructor: Haoran LEI

Hunan University

What we have covered:

• Linear (and additive) models:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

• Least squares (i.e., minimizing the MSE on the training dataset)

Roadmap

- Ch6: discuss some ways in which the linear model can be improved
 - The model is still linear, but we replace least squares with alternative fitting procedures
- Ch7: generalize the linear model in order to accommodate non-linear, but still additive, relationships.
- Ch8: more general non-linear models.
 - For example: trees, boosting

Beyond Least Squares

Ch6 sticks to linear model: Despite its simplicity, the linear model has advantages in terms of **interpretability** and often shows **good predictive performance**.

We want to improve on the Least Squares by

- 1. selecting features: improve on interpretability
- 2. shrinking the coefficients of features: improve on **predictive performance**

Why consider alternatives to least squares?

- Prediction Accuracy: especially when p>n, to control the variance.
- Model Interpretability: By removing irrelevant features that is, by setting the corresponding coefficient estimates to zero we can obtain a model that is more easily interpreted.
 - We will present some approaches for automatical feature selection.

Three *classes* of methods

- 1. **Subset Selection.** First, identify a subset of the predictors that are related to the response, then fit a model using LS.
 - Method of exhaustion, forward and backward stepwise methods

Three *classes* of methods

- 2. **Shrinkage.** Fit a model involving all p predictors, but the estimated coefficients are shrunken towards zero relative to the least squares estimates.
 - This shrinkage (also known as regularization) has the effect of reducing variance and can also perform variable selection.
 - We do not select the features explicitly, but rather penalize the model for the number of coefficients or the size of coefficients in various ways.
 - Lasso and Ridge Regression are two popular shrinkage methods.

3. Dimension Reduction.

- \circ Project the p predictors into a M-dimensional subspace, where M < p. This is achieved by computing M different linear combinations, or projections, of the variables.
- \circ Then these M projections are used as predictors to fit a linear regression model by least squares.

Final Remarks:

• These three classes of methods (or *ideas*) also apply to other models, while we focus on linear models here.

1. Subset Selection

Very simple idea:

- Our data contains p predictors, but we have a simpler model that involves only a subset of those predictors.
- The natural way is to consider every possible subset of p predictors (2^p in total), and then select the "best subset".

1. Subset Selection

Step 1. For k = 1, 2, ..., p:

- 1. Fit all $\binom{p}{k}$ models that contain exactly k predictors.
- 2. Pick the "best" (i.e., having the smallest RSS/MSE) among these models. Call it M_k .

Step 2. Select a single "best" model from the p candidates, M_1 , ..., M_p , based on:

ullet adjusted R^2 , C_p (AIC), BIC, or cross-validated prediction error.

Example: Credit data set

Ten predictors (p=10), including credit limit, credit range, # of cards, and so on. The response variable Y is card balance.

Stepwise Selection

When p is **not** (very) small, **best subset selection** method fails for two reasons:

- 1. the computational cost
- 2. overfitting

For both of these reasons, **stepwise methods**, which explore a far more restricted set of models, are attractive alternatives to best subset selection

• Forward Stepwise Selection and Backward Stepwise Selection

Choosing the best Model

- The model containing all of the predictors will always have the smallest RSS and the largest \mathbb{R}^2 , since these quantities are related to the training error.
- We wish to choose a model with low **test error**, not a model with low **training error**. Recall that training error is usually a poor estimate of test error.
- Therefore, RSS and R^2 are not suitable for selecting the best model among a collection of models with different numbers of predictors.

Estimating test error: two approaches

- We choose the best model based on the **test error**, not the training error.
- We can indirectly estimate **test error** by making an adjustment to the training error to account for the bias due to overfitting.
- We can directly estimate the **test error**, using either a validation set approach or a cross-validation approach.
 - Also known as data-driven model selection.
- We illustrate both approaches next.

C_p , AIC, BIC, and Adjusted R^2

- These techniques can be viewed as indirect estimates of test error.
 - They adjust the training error for the model size, and can be used to select among a set of models with different numbers of variables.
- The next figure displays C_p , BIC, and Adjusted \mathbb{R}^2 for the best model of each size produced by best subset selection on the credit dataset.

Credit data example

Details of these criterion: C_p and AIC

• Mallow's C_p defined as below, where d is the total # of parameters used and $\hat{\sigma}$ is an estimate of the variance of ϵ .

$$C_p = rac{1}{n}(ext{RSS} + 2d\hat{\sigma}^2),$$

• The **AIC criterion** is defined for a large class of models fit by maximum likelihood:

$$AIC = -2\log L + 2d$$

ullet where L is the maximized value of the likelihood function.

Details of these criterion: C_p and AIC

• In the case of the linear model with Gaussian errors, maximum likelihood and least squares are the same thing, and C_p and AIC are equivalent.

Details of these criterion: BIC

$$ext{BIC} = rac{1}{n}(ext{RSS} + \log(n)d\hat{\sigma}^2)$$

- We select the model that has the lowest BIC value. Like Mallow's C_p , the BIC will penalize a model for having too many predictors (ie, a higher d).
- ullet Compared to C_p , BIC replaces the $2d\hat{\sigma}^2$ in C_p by $\log(n)d\hat{\sigma}^2$.
- Since $\log n>2$ for any n>7, BIC generally places a heavier penalty on models with many variables. So the selected "best model" is smaller than C_p . (See the credit example above)

Details of these criterion: adjusted ${\cal R}^2$

Adjusted
$$R^2=1-rac{RSS/(n-d-1)}{TSS/(n-1)}$$
.

- ullet Unlike C_p , AIC and BIC, a better model tends to have a higher adjusted $R^2.$
- ullet Maximizing adjusted R^2 is equivalent to minimizing $rac{RSS}{n-d-1}.$
- An advantage of adjusted R^2 over C_p /AIC/BIC is that it does not require computing an estimate of σ^2 .

From selection by criteria to data-driven selection

- The first three criteria (C_p , AIC and BIC) are developed by statisticians, each having its own strength in different setups.
 - Read this article if you are interested in the statistical theories behind these criteria.
- ullet Adjusted R^2 has the advantages of being easier to compute and "understand."

With the rapid growth of the machine learning literature, more researchers start to adopt the *data-driven selection* methods: validation and cross-validation.