Kähler Geometry

Ritwik Chakraborty

Indian Institute of Technology, Kanpur ritwikc@iitk.ac.in

December 12, 2019

Overview

- Complex Manifolds
- 2 Goal
- 3 Algebraic Dimension
 - Meromorphic functions
 - Moishezon Manifolds
- 4 Vector Bundles, Connection and Curvature
 - Vector Bundles and Almost Complex Structures
 - Hermitian Structures and Connections
- Kähler Manifolds
 - Answers to Some Questions
 - Calabi Conjecture and Uniformization Theorem
- 6 Some more Questions

Complex Manifolds

How does one endow a manifold with complex structure?

Complex Manifolds

How does one endow a manifold with complex structure?

A complex manifold X of dimension n is a Hausdorff, second countable space

Complex Manifolds

How does one endow a manifold with complex structure?

A complex manifold X of dimension n is a Hausdorff, second countable space equipped with a subsheaf of the sheaf of continuous functions on X, denoted \mathcal{O}_X ,

How does one endow a manifold with complex structure?

A complex manifold X of dimension n is a Hausdorff, second countable space equipped with a subsheaf of the sheaf of continuous functions on X, denoted \mathcal{O}_X , such that every point $x \in X$ has a neighbourhood U and a homeomorphism φ of U with an open subset V of \mathbb{C}^n

How does one endow a manifold with complex structure?

A complex manifold X of dimension n is a Hausdorff, second countable space equipped with a subsheaf of the sheaf of continuous functions on X, denoted \mathcal{O}_X , such that every point $x \in X$ has a neighbourhood U and a homeomorphism φ of U with an open subset V of \mathbb{C}^n and

$$\mathcal{O}_X\big|_U = \varphi^*(\mathcal{O}_{\mathbb{C}^n}\big|_V)$$

where $\mathcal{O}_{\mathbb{C}^n}$ is the sheaf of holomorphic functions on \mathbb{C}^n .

This is equivalent to equipping a topological 2n-manifold X with a **holomorphic atlas** $\{U_i, \varphi_i : U_i \to \varphi_i(U_i) \subset \mathbb{C}^n\}$ such that the transition maps $\varphi_{ij} := \varphi_i \circ \varphi_j \Big|_{\varphi_j(U_i \cap U_j)}^{-1} : \varphi_j(U_i \cap U_j) \to \varphi_i(U_i \cap U_j)$ are holomorphic for all i, j.

This is equivalent to equipping a topological 2n-manifold X with a **holomorphic atlas** $\{U_i, \varphi_i : U_i \to \varphi_i(U_i) \subset \mathbb{C}^n\}$ such that the transition maps $\varphi_{ij} := \varphi_i \circ \varphi_j \Big|_{\varphi_j(U_i \cap U_j)}^{-1} : \varphi_j(U_i \cap U_j) \to \varphi_i(U_i \cap U_j)$ are holomorphic for all i, j.

Examples: \mathbb{CP}^n (Projective space), \mathbb{C}^n/Γ (Complex torii), Quotients of the form X/G (properly discontinuous action)

Goal

- Doing geometry on complex manifolds
- Realize that Kähler manifolds are natural sites for seeking relationships between topological, complex and geometric structures on a space.
- 3 Actually see instances of 2

A General theme

Real manifolds versus complex manifolds

Meromorphic functions

Theorem

For any compact, connected complex manifold X, $\Gamma(X, \mathcal{O}_X) = \mathbb{C}$.

Meromorphic functions

Theorem

For any compact, connected complex manifold X, $\Gamma(X, \mathcal{O}_X) = \mathbb{C}$.

Partitions of unity on real manifolds make things much simpler there.

Meromorphic functions

Theorem

For any compact, connected complex manifold X, $\Gamma(X, \mathcal{O}_X) = \mathbb{C}$.

Partitions of unity on real manifolds make things much simpler there.

A meromorphic function on $U \subset_{open} X$ is a map

$$f:U\to\coprod_{x\in U}Q(\mathcal{O}_{X,x})$$

Sheaf of meromorphic functions: \mathcal{K}_X

Space of global sections: K(X)

X is connected ⇒ K(X) is a field
 We call this the function field of X.

- X is connected ⇒ K(X) is a field
 We call this the function field of X.
- $\mathcal{O}_X \subset \mathcal{K}_X$

- X is connected ⇒ K(X) is a field
 We call this the function field of X.
- $\mathcal{O}_X \subset \mathcal{K}_X$
- Algebraic dimension of X, $a(X) = \operatorname{trdeg}_{\mathbb{C}}(K(X))$

- X is connected ⇒ K(X) is a field
 We call this the function field of X.
- $\mathcal{O}_X \subset \mathcal{K}_X$
- Algebraic dimension of X, $a(X) = \operatorname{trdeg}_{\mathbb{C}}(K(X))$

Question: Is a(X) finite? When is it equal to the complex dimension of X and how "often"?

- X is connected ⇒ K(X) is a field
 We call this the function field of X.
- $\mathcal{O}_X \subset \mathcal{K}_X$
- Algebraic dimension of X, $a(X) = \operatorname{trdeg}_{\mathbb{C}}(K(X))$

Question: Is a(X) finite? When is it equal to the complex dimension of X and how "often"?

Theorem

(Siegel) Let X be a compact, connected complex n-manifold. Then,

$$a(X) \leq n$$

Moishezon Manifolds

Moishezon Manifolds

Moishezon Manifolds

A connected, compact complex manifold X is said to be Moishezon if $a(X) = \dim_{\mathbb{C}}(X)$

Example: Any projective manifold is Moishezon.

Moishezon Manifolds

Moishezon Manifolds

A connected, compact complex manifold X is said to be Moishezon if $a(X) = \dim_{\mathbb{C}}(X)$

Example: Any projective manifold is Moishezon.

Question: Is the converse true?

A complex (holomorphic) vector bundle of rank r:

$$(E, X, \pi : E \rightarrow X)$$
 such that

A complex (holomorphic) vector bundle of rank r:

 $(E, X, \pi : E \rightarrow X)$ such that:

• $\forall x \in X, \pi^{-1}(x)$ is a \mathbb{C} -vector space of dimension r

A complex (holomorphic) vector bundle of rank r:

 $(E, X, \pi : E \rightarrow X)$ such that:

- $\forall x \in X, \pi^{-1}(x)$ is a \mathbb{C} -vector space of dimension r
- $X = \bigcup U_i$ and there are diffeomorphisms (biholomorphic maps) $\psi_i : \pi^{-1}(U_i) \cong U_i \times \mathbb{C}^r$ such that

A complex (holomorphic) vector bundle of rank r:

 $(E, X, \pi : E \rightarrow X)$ such that:

- $\forall x \in X, \pi^{-1}(x)$ is a \mathbb{C} -vector space of dimension r
- $X = \bigcup U_i$ and there are diffeomorphisms (biholomorphic maps) $\psi_i : \pi^{-1}(U_i) \cong U_i \times \mathbb{C}^r$ such that:

$$U \times \mathbb{C}^r \xrightarrow{\psi_i^{-1}} \pi^{-1}(U)$$

and the induced map $\pi^{-1}(x) \cong \mathbb{C}^r$ is \mathbb{C} -linear.

A key observation:

A key observation:

{Holomorphic rank r vector bundle $\pi: E \to X$ } \longleftrightarrow {holomorphic cocycle $\{(U_i, \psi_{ij}: U_i \cap U_j \to Gl(r, \mathbb{C}))\}$ }

A key observation:

{Holomorphic rank r vector bundle $\pi: E \to X$ } \longleftrightarrow {holomorphic cocycle $\{(U_i, \psi_{ij}: U_i \cap U_j \to Gl(r, \mathbb{C}))\}$ }

 Natural operations on vector bundles E, F on a complex manifold X:

$$E \oplus F$$
, $E \otimes F$, E^* , $\bigwedge^i E$, $\det(E) \cdots$

A key observation:

{Holomorphic rank r vector bundle $\pi: E \to X$ } \longleftrightarrow {holomorphic cocycle $\{(U_i, \psi_{ij}: U_i \cap U_j \to Gl(r, \mathbb{C}))\}$ }

 Natural operations on vector bundles E, F on a complex manifold X:

$$E \oplus F$$
, $E \otimes F$, E^* , $\bigwedge^i E$, $det(E) \cdots$

• {{Isomorphism classes of line bundles}, \otimes , $(-)^*$, $\mathcal{O}(0)$ } is an abelian group, called the **Picard group**, Pic(X)

A key observation:

{Holomorphic rank r vector bundle $\pi: E \to X$ } \longleftrightarrow {holomorphic cocycle $\{(U_i, \psi_{ij}: U_i \cap U_j \to Gl(r, \mathbb{C}))\}$ }

 Natural operations on vector bundles E, F on a complex manifold X:

$$E \oplus F$$
, $E \otimes F$, E^* , $\bigwedge^i E$, $\det(E) \cdots$

- {{Isomorphism classes of line bundles}, \otimes ,(-)*, $\mathcal{O}(0)$ } is an abelian group, called the **Picard group**, Pic(X)
- $\operatorname{Pic}(X) \cong H^1(X, \mathcal{O}_X^*)$

A key observation:

{Holomorphic rank r vector bundle $\pi: E \to X$ } \longleftrightarrow {holomorphic cocycle $\{(U_i, \psi_{ij}: U_i \cap U_j \to Gl(r, \mathbb{C}))\}$ }

 Natural operations on vector bundles E, F on a complex manifold X:

$$E \oplus F$$
, $E \otimes F$, E^* , $\bigwedge^i E$, $\det(E) \cdots$

- {{Isomorphism classes of line bundles}, \otimes ,(-)*, $\mathcal{O}(0)$ } is an abelian group, called the **Picard group**, Pic(X)
- $Pic(X) \cong H^1(X, \mathcal{O}_X^*)$ Follows from two natural isomorphisms:

$${\sf Pic}(X)\cong \check{H}^1(X,\mathcal{O}_X^*)$$
 and $\check{H}^1(X,\mathcal{O}_X^*)\cong H^1(X,\mathcal{O}_X^*)$

Almost Complex Structures

Almost Complex Structures

Almost complex manifold: a smooth manifold X equipped with a vector bundle endomorphism $I: TX \to TX$ such that $I \circ I = -id$. I is called an almost complex structure on X.

Almost Complex Structures

Almost complex manifold: a smooth manifold X equipped with a vector bundle endomorphism $I: TX \to TX$ such that $I \circ I = -id$. I is called an almost complex structure on X.

• Any complex manifold admits a natural almost complex structure:

$$I: T_x U \to T_x U \ \partial/\partial x_i \mapsto \partial/\partial y_i \ \partial/\partial y_i \mapsto -\partial/\partial y_i$$

Almost Complex Structures

Almost complex manifold: a smooth manifold X equipped with a vector bundle endomorphism $I: TX \to TX$ such that $I \circ I = -id$. I is called an almost complex structure on X.

• Any complex manifold admits a natural almost complex structure:

$$I: T_x U \to T_x U \ \partial/\partial x_i \mapsto \partial/\partial y_i \ \partial/\partial y_i \mapsto -\partial/\partial y_i$$

2
$$T_{\mathbb{C}}X = T^{1,0}X \oplus T^{0,1}X$$

Almost Complex Structures

Almost complex manifold: a smooth manifold X equipped with a vector bundle endomorphism $I: TX \to TX$ such that $I \circ I = -id$. I is called an almost complex structure on X.

• Any complex manifold admits a natural almost complex structure:

$$I: T_x U \to T_x U \ \partial/\partial x_i \mapsto \partial/\partial y_i \ \partial/\partial y_i \mapsto -\partial/\partial y_i$$

2
$$T_{\mathbb{C}}X = T^{1,0}X \oplus T^{0,1}X$$

Almost Complex Structures

Almost complex manifold: a smooth manifold X equipped with a vector bundle endomorphism $I: TX \to TX$ such that $I \circ I = -id$. I is called an almost complex structure on X.

• Any complex manifold admits a natural almost complex structure:

$$I: T_x U \to T_x U \partial/\partial x_i \mapsto \partial/\partial y_i \partial/\partial y_i \mapsto -\partial/\partial y_i$$

$$I \Big|_{T^{1,0}X} \stackrel{\xi}{\cong} i \cdot id \text{ and } I \Big|_{T^{0,1}X} \stackrel{\eta}{\cong} -i \cdot id$$

$$\bullet$$
 $\mathcal{A}_{X}^{p,q}(E)$, the sheaf $U \mapsto \mathcal{A}_{X}^{p,q}(E)(U) := \Gamma(U, \bigwedge^{p,q} X \otimes E)$

Is the converse to 1 true?

Hermitian Structures and Hermitan Vector Bundles

A Riemannian metric g on (X,I) is an **hermitian structure** on X if for any point $x \in X$ the scalar product g_X on T_XX is compatible with the almost complex structure I_X . The induced real (1,1) form $\omega := g(I(-),(-))$ is called the **fundamental form**. Locally,

$$\omega = (i/2) \sum_{i,j=1}^{n} h_{ij} dz^{i} \wedge d\bar{z}^{j}$$

Hermitian Structures and Hermitan Vector Bundles

A Riemannian metric g on (X,I) is an **hermitian structure** on X if for any point $x \in X$ the scalar product g_X on T_XX is compatible with the almost complex structure I_X . The induced real (1,1) form $\omega := g(I(-),(-))$ is called the **fundamental form**. Locally,

$$\omega = (i/2) \sum_{i,j=1}^{n} h_{ij} dz^{i} \wedge d\bar{z}^{j}$$

Suitably generalizing this from TX to arbitrary complex vector bundles:

Hermitian vector bundle (E, h): A complex vector bundle E on a smooth manifold M, E_x is endowed with a a hermitian inner product h_x , smooth in x.

Connections and Curvature

A **connection** on a complex vector bundle E is a \mathbb{C} -linear sheaf homomorphism $\nabla: \mathcal{A}^0(E) \to \mathcal{A}^1(E)$ which satisifies the Leibniz rule:

$$\nabla(f\cdot s)=d(f)\otimes s+f\cdot\nabla(s)$$

Connections and Curvature

A **connection** on a complex vector bundle E is a \mathbb{C} -linear sheaf homomorphism $\nabla: \mathcal{A}^0(E) \to \mathcal{A}^1(E)$ which satisifies the Leibniz rule:

$$\nabla(f\cdot s)=d(f)\otimes s+f\cdot\nabla(s)$$

This naturally extends to another Leibniz map $\nabla: \mathcal{A}^k(E) \to \mathcal{A}^{k+1}(E)$ as:

$$\nabla(\alpha \otimes s) = d(\alpha) \otimes s + (-1)^k \alpha \wedge \nabla(s)$$

Connections and Curvature

A **connection** on a complex vector bundle E is a \mathbb{C} -linear sheaf homomorphism $\nabla: \mathcal{A}^0(E) \to \mathcal{A}^1(E)$ which satisifies the Leibniz rule:

$$\nabla(f\cdot s)=d(f)\otimes s+f\cdot\nabla(s)$$

This naturally extends to another Leibniz map $\nabla : \mathcal{A}^k(E) \to \mathcal{A}^{k+1}(E)$ as:

$$\nabla(\alpha \otimes s) = d(\alpha) \otimes s + (-1)^k \alpha \wedge \nabla(s)$$

The **curvature** F_{∇} of a connection ∇ on a vector bundle E is defined as the composition:

$$F_{\nabla} := \nabla \circ \nabla : \mathcal{A}^0(E) \to \mathcal{A}^1(E) \to \mathcal{A}^2(E)$$

What happens when E is equipped with a Hermitian structure h?

What happens when E is equipped with a Hermitian structure h?

A connection ∇ on E is said to be a **hermitian connection** with respect to h if:

$$d(h(s_1, s_2)) = h(\nabla(s_1), s_2) + h(s_1, \nabla s_2).$$

What happens when E is equipped with a Hermitian structure h?

A connection ∇ on E is said to be a **hermitian connection** with respect to h if:

$$d(h(s_1, s_2)) = h(\nabla(s_1), s_2) + h(s_1, \nabla s_2).$$

Another upgrade: What if E is a holomorphic vector bundle?

What happens when E is equipped with a Hermitian structure h?

A connection ∇ on E is said to be a **hermitian connection** with respect to h if:

$$d(h(s_1, s_2)) = h(\nabla(s_1), s_2) + h(s_1, \nabla s_2).$$

Another upgrade: **What if** *E* **is a holomorphic vector bundle?** There is a canonical choice!

What happens when E is equipped with a Hermitian structure h?

A connection ∇ on E is said to be a **hermitian connection** with respect to h if:

$$d(h(s_1, s_2)) = h(\nabla(s_1), s_2) + h(s_1, \nabla s_2).$$

Another upgrade: **What if** *E* **is a holomorphic vector bundle?** There is a canonical choice!

Theorem

Let (E,h) be a holomorphic vector bundle. Then there exists a unique hermitian connection ∇ that is compatible with the holomorphic structure, i.e $\nabla^{1,0} = \bar{\partial}$. This connection is called the Chern connection on (E,h).

nswers to Some Questions Calabi Conjecture and Uniformization Theorem

Riemannian vs Complex Geometry

A **Kähler structure** is a hermitian structure g for which the fundamental form ω is closed, i.e. $d\omega=0$. In this case, ω is called a Kähler form on X.

Examples: $\mathbb{C}P^n$ with the Fubini-Study metric, (in the standard

chart
$$U_i$$
) $\omega_{FS} = \frac{i}{2\pi} \partial \bar{\partial} log(\sum_{l=0}^{n} |\frac{z_l}{z_i}|^2)$, Complex torii, \mathbb{C}^n ,

Riemannian vs Complex Geometry

A **Kähler structure** is a hermitian structure g for which the fundamental form ω is closed, i.e. $d\omega=0$. In this case, ω is called a Kähler form on X.

Examples: $\mathbb{C}\mathbf{P}^n$ with the Fubini-Study metric, (in the standard chart U_i) $\omega_{FS} = \frac{i}{2\pi} \partial \bar{\partial} log(\sum_{l=0}^{n} |\frac{z_l}{z_i}|^2)$, Complex torii, \mathbb{C}^n ,

Theorem

Let (X,g) be a Kähler manifold. Then under the isomorphism $\xi: TX \cong T^{1,0}X$, the Chern connnection ∇ on the holomorphic tangent space $T^{1,0}X$ corresponds to the Levi-Civita connection D.

Answers to Some Questions Calabi Conjecture and Uniformization Theorem

Answers to Some Questions Raised so Far

Theorem

[Moishe] A Moishezon space is a projective algebraic variety if and only if it admits a Kähler metric.

Theorem

[Siu], [Demailly] Let X be a compact manifold carrying an almost positive line bundle. Then X is a Moishezon space.

Answers to Some Questions Raised so Far

Theorem

[Moishe] A Moishezon space is a projective algebraic variety if and only if it admits a Kähler metric.

Theorem

[Siu], [Demailly] Let X be a compact manifold carrying an almost positive line bundle. Then X is a Moishezon space.

A real (1,1)-form α is called (semi)-positive if for all non-zero holomorphic tangent vector $v \in T^{1,0}X$, one has $-i\alpha(v, \bar{v}) > 0$ (resp. ≥ 0).

• The pair (I, ω) on X gives us a natural Riemannian metric g on X, defined as $g(u, v) = \omega(u, I(v))$.

- The pair (I, ω) on X gives us a natural Riemannian metric g on X, defined as $g(u, v) = \omega(u, I(v))$.
- The Riemannian Ricci curvature is then given by $Rc_g(u,v)=\mathrm{Ric}(\omega)(u,I(v))$, where $Ric(\omega)=-i\partial\bar\partial log(\omega^n)$ is the Ricci form.

- The pair (I, ω) on X gives us a natural Riemannian metric g on X, defined as $g(u, v) = \omega(u, I(v))$.
- The Riemannian Ricci curvature is then given by $Rc_g(u,v)=\mathrm{Ric}(\omega)(u,I(v))$, where $Ric(\omega)=-i\partial\bar\partial log(\omega^n)$ is the Ricci form.
- The first Chern class $c_1(L)$ of a holomorphic line bundle $L \in Pic(X)$ is its image under the boundary map:

$$c_1: H^1(X, \mathcal{O}_X^*) \to H^2(X, \mathbb{Z})$$

- The pair (I, ω) on X gives us a natural Riemannian metric g on X, defined as $g(u, v) = \omega(u, I(v))$.
- The Riemannian Ricci curvature is then given by $Rc_g(u,v)=\mathrm{Ric}(\omega)(u,I(v))$, where $Ric(\omega)=-i\partial\bar\partial\log(\omega^n)$ is the Ricci form.
- The first Chern class $c_1(L)$ of a holomorphic line bundle $L \in Pic(X)$ is its image under the boundary map:

$$c_1: H^1(X, \mathcal{O}_X^*) \to H^2(X, \mathbb{Z})$$

Conjecture Calabi

Every real (1,1)-form in $c_1(X)$ is the Ricci for some Kähler form.

Theorem

Uniformization theorem Given any compact, oriented Riemannian surface (S,g) there exists a metric \tilde{g} in the conformal class $[g] = \{e^f g | f \in C^{\infty}(S,\mathbb{R})\}$ having constant curvature $sgn(\chi(S))$

Theorem

Uniformization theorem Given any compact, oriented Riemannian surface (S,g) there exists a metric \tilde{g} in the conformal class $[g] = \{e^f g | f \in C^{\infty}(S,\mathbb{R})\}$ having constant curvature $sgn(\chi(S))$

• Equivalent to the equation $Ric(\omega_g) = sgn(\chi(S)) \cdot \omega_g$

Theorem

Uniformization theorem Given any compact, oriented Riemannian surface (S,g) there exists a metric \tilde{g} in the conformal class $[g] = \{e^f g | f \in C^{\infty}(S,\mathbb{R})\}$ having constant curvature $sgn(\chi(S))$

- Equivalent to the equation $Ric(\omega_g) = sgn(\chi(S)) \cdot \omega_g$
- Generalizing to Kähler manifolds, a Kähler metric ω on X is said to be **Kähler-Einstein** is $Ric(\omega) = \lambda \omega$.

Theorem

(**Aubin**, **Yau**) If $c_1(X) = 0$ (resp. < 0) then for any $\alpha \in C_X$, there exists an $\omega \in \alpha$ such that $Ric(\omega) = 0$ (resp. < 0).

Some More Questions

- Using the homomorphism $Aut(X) \rightarrow Aut(Pic(X))$ to study action of elements of Aut(X) on geometric objects on X.
- Deformation of vector bundles and limiting geometries

Complex Manifolds Goal Algebraic Dimension Vector Bundles, Connection and Curvature Kähler Manifolds Some more Questions

The End