

10/531479
JC13 Rec'd PCT/PTO 15 APR 2005

WO 2004/048579

SEQUENCE LISTING

PCT/EP2003/050731

<110> VIB VZW

<120> A role in lignification and growth for plant phenylcoumaran benzylic ether reductase

<130> WBO/PCBER/v130

<150> EP 02079407.9

<151> 2002-10-18

<160> 2

<170> PatentIn version 3.1

<210> 1

<211> 1199

<212> DNA

<213> *Populus balsamifera* subsp. *trichocarpa*

<220>

<221> CDS

<222> (51)..(977)

223

```

<400> 1
gcacgagggtt aaacttcctt gttttcttc atcaagaaaa attatctaca atg gct      56
                                         Met Ala
                                         1

gat aaa agc aaa atc ttg atc att gga ggt act ggt tac ata gga aaa    104
Asp Lys Ser Lys Ile Leu Ile Ile Gly Gly Thr Gly Tyr Ile Gly Lys
5          10          15

ttc atc gtg gag gca agc gcc aag gcc ggt cac ccc act ttc gcc ttg   152
Phe Ile Val Glu Ala Ser Ala Lys Ala Gly His Pro Thr Phe Ala Leu
20         25         30

gtt aga gag agt aca gtc tct gat cct gtc aaa cga gaa ctt gtc gag   200
Val Arg Glu Ser Thr Val Ser Asp Pro Val Lys Arg Glu Leu Val Glu
35         40         45         50

aaa ttc aag aac tta ggc gtc act ttg atc cat gga gat gtc gac ggc   248
Lys Phe Lys Asn Leu Gly Val Thr Leu Ile His Gly Asp Val Asp Gly
55          60          65

cat gac aat ttg gtg aag gca atc aag cgg gtg gat gtg gtg ata tca   296
His Asp Asn Leu Val Lys Ala Ile Lys Arg Val Asp Val Val Ile Ser
70          75          80

gcg att ggg agc atg caa ata gca gat caa acc aag atc att gcc gcc   344

```

Ala Ile Gly Ser Met Gln Ile A[REDACTED] Asp Gln Thr Lys Ile Ile Ala Ala
85 90 95

att aaa gaa gct ggc aat gtc aag aga ttc ttc cct tca gaa ttt gga 392
Ile Lys Glu Ala Gly Asn Val Lys Arg Phe Phe Pro Ser Glu Phe Gly
100 105 110

atg gat gtg gat cat gtc aat gct gtt gag cct gca aaa act gca ttt 440
Met Asp Val Asp His Val Asn Ala Val Glu Pro Ala Lys Thr Ala Phe
115 120 125 130

gca atg aag gct cag att cga cgt gcc atc gag gct gca ggg att ccc 488
Ala Met Lys Ala Gln Ile Arg Arg Ala Ile Glu Ala Ala Gly Ile Pro
135 140 145

tac act tat gtg cct tcc aac ttc ttt gct gca tat tat ctc ccc aca 536
Tyr Thr Tyr Val Pro Ser Asn Phe Phe Ala Ala Tyr Tyr Leu Pro Thr
150 155 160

ttg gca cag ttt gga ctt act gct cct ccg aga gac aag atc acc atc 584
Leu Ala Gln Phe Gly Leu Thr Ala Pro Pro Arg Asp Lys Ile Thr Ile
165 170 175

ctc gga gat ggc aat gcc aag ttg gtt ttc aat aag gaa gat gac att 632
Leu Gly Asp Gly Asn Ala Lys Leu Val Phe Asn Lys Glu Asp Asp Ile
180 185 190

gga acc tac acc atc aaa gct gtg gat gat gca aga acc ttg aac aag 680
Gly Thr Tyr Thr Ile Lys Ala Val Asp Asp Ala Arg Thr Leu Asn Lys
195 200 205 210

act gtc cta atc aag cct cct aaa aac acc tac tca ttc aat gag ctt 728
Thr Val Leu Ile Lys Pro Pro Lys Asn Thr Tyr Ser Phe Asn Glu Leu
215 220 225

att gat cta tgg gag aaa aag att ggc aaa acc ctc gaa aaa acc ttt 776
Ile Asp Leu Trp Glu Lys Lys Ile Gly Lys Thr Leu Glu Lys Thr Phe
230 235 240

gtt cct gaa gag aaa ctt ctg aag gac atc caa gag tct ccg att ccg 824
Val Pro Glu Glu Lys Leu Lys Asp Ile Gln Glu Ser Pro Ile Pro
245 250 255

att aat att gtt ctg tca atc aac cac tca gcc ctc gtt aat ggt gac 872
Ile Asn Ile Val Leu Ser Ile Asn His Ser Ala Leu Val Asn Gly Asp
260 265 270

atg acc aac ttt gag att gac cca tca tgg ggc ctt gag gcc tct gag 920
Met Thr Asn Phe Glu Ile Asp Pro Ser Trp Gly Leu Glu Ala Ser Glu
275 280 285 290

cta tat cca gat gtc aaa tat acc acc gtg gaa gag tac ctt gat cag 968
Leu Tyr Pro Asp Val Lys Tyr Thr Thr Val Glu Glu Tyr Leu Asp Gln
295 300 305

ttt gtc tga ggactggca tctcctgctc tccagttatt aatgaaacaa 1017
Phe Val

acagccaat agttggaaat ttgggtgttt cttatagacg agtgtttgtc caagtcaagg 1077

aggctcttt cttataaac cttgtgaaat gatgttctgc tcttagttaat tgccatggtt 1137

tgtatctatt gctgaaagag atgttctggg tgagaataat gtaattgagt tatgatgaat 1197

aa 1199

<210> 2

<211> 308

<212> PRT

<213> Populus balsamifera subsp. trichocarpa

<400> 2

Met Ala Asp Lys Ser Lys Ile Leu Ile Ile Gly Gly Thr Gly Tyr Ile
1 5 10 15

Gly Lys Phe Ile Val Glu Ala Ser Ala Lys Ala Gly His Pro Thr Phe
20 25 30

Ala Leu Val Arg Glu Ser Thr Val Ser Asp Pro Val Lys Arg Glu Leu
35 40 45

Val Glu Lys Phe Lys Asn Leu Gly Val Thr Leu Ile His Gly Asp Val
50 55 60

Asp Gly His Asp Asn Leu Val Lys Ala Ile Lys Arg Val Asp Val Val
65 70 75 80

Ile Ser Ala Ile Gly Ser Met Gln Ile Ala Asp Gln Thr Lys Ile Ile
85 90 95

Ala Ala Ile Lys Glu Ala Gly Asn Val Lys Arg Phe Phe Pro Ser Glu
100 105 110

Phe Gly Met Asp Val Asp His Val Asn Ala Val Glu Pro Ala Lys Thr
115 120 125

Ala Phe Ala Met Lys Ala Gln Ile Arg Arg Ala Ile Glu Ala Ala Gly
130 135 140

Ile Pro Tyr Thr Tyr Val Pro Ser Asn Phe Phe Ala Ala Tyr Tyr Leu
145 150 155 160

Pro Thr Leu Ala Gln Phe Gly Leu Thr Ala Pro Pro Arg Asp Lys Ile
165 170 175

Thr Ile Leu Gly Asp Gly Asn Ala Lys Leu Val Phe Asn Lys Glu Asp
180 185 190

Asp Ile Gly Thr Tyr Thr Ile Lys Ala Val Asp Asp Ala Arg Thr Leu
195 200 205

Asn Lys Thr Val Leu Ile Lys Pro Pro Lys Asn Thr Tyr Ser Phe Asn
210 215 220

Glu Leu Ile Asp Leu Trp Glu Lys Lys Ile Gly Lys Thr Leu Glu Lys
225 230 235 240

Thr Phe Val Pro Glu Glu Lys Leu Leu Lys Asp Ile Gln Glu Ser Pro
245 250 255

Ile Pro Ile Asn Ile Val Leu Ser Ile Asn His Ser Ala Leu Val Asn
260 265 270

Gly Asp Met Thr Asn Phe Glu Ile Asp Pro Ser Trp Gly Leu Glu Ala
275 280 285

Ser Glu Leu Tyr Pro Asp Val L [] Tyr Thr Thr Val Glu Glu Tyr Leu
290 295 300

Asp Gln Phe val
305