科目代码: 896	科目名称: 数据结构
★所有答案必须做在答题纸上,做在试题纸上 为	元效
一、单项选择题(20分,每题2分)	
下列每个题目中有四个选项,其中只有一个是正确的。	试根据题目的陈述,选择正确的答案。
1. 下面是有关抽象数据类型概念的论述,其中正	确的说法是 ()。
A. 抽象数据类型与存储结构有关 B. 抽象数据类型与数据结构是同义词 C. 抽象数据类型是指一个数学模型以及定义 D. 抽象数据类型是指描述客观事物且由计算。 2. 下面是有关算法时间复杂度的论述,其中正确 A. 算法的时间复杂度与数据规模无关 B. 算法的时间复杂度与算法的语句频度无关 C. 算法的时间复杂度与算法采用的解决问题	见处理的数值、字符等符号的总称 的说法是 ()。
D. 算法的时间复杂度与选择的程序设计语言 3. 将一个递归算法转换为非递归算法,通常需要	
A. 栈 B. 队列 C. 线性表 D. 广义表	
4. 假设包含 t 个非零元素的稀疏矩阵 A 含有 m ?	了n列,并采用三元组顺序表压缩存储,其快速
转置算法的时间复杂度为 ()。	X
A. O (m+t) B. O (n+ C. O (m+n) D. O (m* 5. 下面是有关赫夫曼 (huffman) 树的论述,其	n)
A. 赫夫曼树一定是一棵完全二叉树 B. 赫夫曼树与二叉排序树是同义词 C. 在赫夫曼树中,结点的度数只可能为 0、 D. 在赫夫曼树中,结点的度数可能为 0、1、	

第1页共8页1

科目代码	§:896	科目名称:	数据结构
6. 倨	设一棵完全二叉树含有 456 个结点,则度为	0、1、2的结点个数	分别为 ()。
	. 227, 1, 228 B. 228, 1, . 228, 0, 228 D. 不确定	227	(1) 1일 전에 공장을 보고 (1) 10 10 10 10 10 10 10 10 10 10 10 10 10
7. T	面是有关生成树的论述,其中正确的说法是	: ().	
В	生成树中没有回路任意给定的无向图只对应一棵生成树一棵生成树内的顶点之间不一定连通		
ľ	- 包含 n 个顶点的无向连通图所对应的生成	树不一定包含 n 个顶	点····································
-).	
	. 邻接矩阵 B. 邻接表 D. 邻接多1	重表	
9. 堆	排序使用的基本排序手段是 ())	
А	. 插入		
C	. 交换 D. 归并		
10:	在下列 4 种排序算法中,具有稳定特性 的排	茅算法是 ().
А	. 堆排序 B. 快速排戶		
С	- 归并排序 D. 简单选择	¥排序	
二、填	空题(20分,每题2分)	TEX	
1. 4	算法的可行性是指	0 %	
2. ;	如果线性表经常需要进行插入和删除元素的拉 	操作,建议选择链式存	P储结构,主要原因是 。
3	二维数组含有m行n列且采用以行为主序的顺	序存储方式表示。如	果己知二维数组的第1个
元素	的存放地址为LOC(0,0),并且每个元素占用	L个存储单元,则LO	C(i,j)的存放地址为
4. 7	 生求解迷宫的算法中,使用栈保存已经走过的	为路径,主要原因是 __	<u> </u>

第 2 页 共 8 页 ~

科目代码:896	科目名称:	数据结构	MINN IN
5. 假设一棵二叉树的先序遍历序列为ABI	DGHJKECFIM,中序遍历	万序列为GDJHKR	FACEMI.
该棵二叉树对应的森林所包含的树的棵数			0.2011,110
6. 如果在AOV网(用顶点表示活动的网)			
点V ₁ 和顶点V ₂ 的排列关系是			1.70.1.4 4次
7. 如果字符串采用定长顺序存储表示法表			甲方可能
产生截断,主要原因是			
8. 对哈希表进行查找时,不可避免地也要			
9. 通常,堆采用顺序存储结构表示,主要	8		٥
			•
10. 在采用快速排序算法对任意一组数列设			
操作,即打乱原始数列的排列顺序,这样的	双的王要目的是		0
三、解答题(50分,每题10分)			
2			
1. 图书目录可以使用广义表描述。	The second second		
例如,某本《数据结构》教材的目录为	7 8	/软件工程专业	,
第1章 绪论 1.1 什么是数据结构			-
1.2 基本概念与术语	ਬ ੍ਰ	个学校的	
1.3 算法与算法分析	考研真题/\$	夏试资料/考研	经验
第2章 线性表	考研资讯	/报录比/分数	线
2.1 线性表的定义	4	色费分享	
2.2 线性表的存储结构		CM717-	
2.3 线性表基本操作的实现		微信 扫一	-扫
第3章 栈与队列	CS.SE	关注微信公	쇼무
3.1 栈的基本概念	12.54251		
3.2 栈的应用举例	一直是美物。	计算机与软件	F考研
3.3 队列的基本概念			
3.4 队列的应用举例			
// 鉴于篇幅的原因,省略后续到	五节		

第3页共8页。

北京工业大学 2013 年硕士研究生入学考试试题

科目代码:

896

科目名称:

数据结构

可以使用广义表描述为:

(第1章(1.1, 1.2, 1.3), 第2章(2.1, 2.2, 2.3), 第3章(3.1, 3.2, 3.3, 3.4),)

回答下列问题:

- (1) 广义表的长度、深度分别描述了目录中的什么信息?
- (2) 说明广义表中的子表和原子分别对应目录中的哪类信息?
- (3) 为广义表设计存储结构,写出相应的类型定义。
- 2. 树与二叉树是两种关系密切的数据结构,回答下面有关这两种数据结构关系的问题。
- (1) 在处理树形结构时、经常将其转换成二叉树。简述主要原因。
- (2) 对于树中给定的结点,其子孙结点如何在二叉树中体现? 举例说明。
- (3) 对于树中给定的结点、其兄弟结点如何在二叉树中体现?举例说明。
- 3. 已知图 G 含有 7 个顶点,它们之间的邻接关系用图 1 所示的邻接矩阵 Adi 表示。

图1 图G的邻接矩阵

回答下列问题:

- (1) 画出图 G。
- (2) 在图 G 中,从顶点①到顶点⑦有多条路径,写出其中的任意三条路径的顶点序列和路径长度。
- (3) 如果采用 Dijkstra (迪杰斯特拉) 算法思想求解从顶点①到顶点⑦的最短路径,写出这条最短路径上的顶点序列和路径长度。

第4页共8页。

科目代码:	89	6		科	目名称	K:	数	対据结	勾		
		·				***************************************	······································				
4. 给定关键等	字序列 (26,	10, 17,	12, 38	60,	19, 48	3, 7,	40, 39	9),完	成下歹	操作:	
(1) 按照此	关键字的排列》	顺序构建-	一棵二叉:	排序树,	画出	所构建	的这棵	!二叉排	序树。	,	
(2) 按照此	关键字的排列//	顺序构建-	一棵平衡.	二叉树,	画出	所构建	的这棵	平衡二	叉树。	·	
(3)分别求!	出在等概率情况	兄下,构建	建的二叉:	排序树和	口平衡.	二叉树	的平均	查找长	:度 AS	SL.	
5. 假设某个哈	合希表的地址范	围为 0~	10, 哈希	函数为	: H (k	() = K	MOD	11,解	决冲突	き的方法	らち
线性探测法。根据	居关键字的输入	\序列构i	造的哈希	表为:							
哈希地址	0 1	2	3 4	5	6	7	8	9	10		
关键码	21 30/	35 2	52	·		51	41	42	32		
	7	110	- House de la constant de la constan				2			1	
回答下列问题		711									
(1) 下面是构	造这个哈希表	的关键字	输入序列	」,试将	缺少的	三个乡	注键字 均	真写完	整。		
42, 32,2	21, 35, 51, 2	25,		X	,						
(2) 依次写出	查找关键字 30) 时需要比	七 较的每~	个关键:							
]		7.11					
需要比较	的关键字	***************************************			X	7-4.					
(3)如果查找	每个关键字的	概率相等	,计算这	个哈希	表查找	成功的	平均到	5找长月	芰。		
								alitet N			
ASL =	• · · · · · · · · · · · · · · · · · · ·					-	40%	er si			
										4.	

第5页共8页。

```
四、算法阅读题(15分,每题5分)
阅读下列算法。
 Status Algorithm(BiTree T, LinkList &H)
    H = (LinkList)malloc(sizeof(LNode));
    if (H = NULL) return ERROR;
    H->next = NULL;
    if (T) {
       InitStack(S)
       p = T;
       do {
                p = p - > lchild
             if (!StackEmpty(S))
                Pop(S,p);
                q = (LinkList)malloc(sizeof(LNode));
                if (q == NULL) return ERROR;
                                            q->data = p->data;
                q->next = H->next;
                H->next=q;
                p = p-> rchild;
        } while (p || !StackEmpty(S));
     return OK;
}
 算法中涉及的类型定义为:
 二叉树的类型定义为:
 typedef struct BiTNode {
    int data;
    struct BiTNode *lchild, *rchild;
 }BiTNode,*BiTree:
```

第6页共8页。

科目代码:

896

科目名称:

数据结构

单链表的类型定义为:

typedef struct LNode{

int data;

struct LNode *next;

}LNode,*LinkList;

回答下列三个问题:

(1) 根据给定的二叉树 T,如图 2 所示,画出执行算法 Algorithm (T,H)后的单链表 H。

- (2) 单链表 H 中每个结点的链接顺序与二叉树遍历有何关系?
- (3) 如果所给二叉树是二叉排序树,单链表耳中结点数据的排列有何特点?

五、算法设计(45分,每题15分)

1. (算法设计) 计数排序算法的基本思想是: 首先,对于给定整数序列中的每一个数据 x,确定在该序列中存在多少个小于 x 的数据,然后,根据这个信息,可以将 x 直接放到排序后的最终位置上。例如,如果整数序列中有 17 个小于 x 的数值,则就应该将 x 直接放到第 18 个位置上。

假设, 待排序的整数序列中每个数据互不相同。

- (1) 设计并编写计数排序的算法。要求: 待排序整数序列存储在线性表 A 中, 排序后的结果存放在线性表 B 中。
 - (2) 分析算法的时间复杂度和空间复杂度。

存储线性表的类型定义为:

typedef struct {

int data[MAXLEN]; //存放线性表中的元素

int size; //线性表中当前元素个数

}SqList;

算法原型为: void countSort(SqList A, SqList& B)

第7页共8页。

科目代码:

896

科目名称:

数据结构

2. (算法设计)设计并编写算法,对于给定的赫夫曼树,计算最长的赫夫曼编码长度。赫夫曼树的顺序存储类型定义为:

typedef struct {

unsigned int weight;

unsigned int parent, lchild, rchild; // 双亲、左、右孩子

}HTNode, *HuffmanTree:

如果赫夫曼树包含 n 个叶子结点,总的结点个数应该为 2n-1,则存储赫夫曼树的 HT 为: HT = (HuffmanTree) malloc((2n)*sizeof(HTNode)); // 从下标 <math>1 的单元开始使用例如,图 3 是一棵赫夫曼树及存储结构,这棵赫夫曼树最长的赫夫曼编码长度为 4。

				-	
	weight	parent	lchild	rchild	
	5	9	0	0	
	29	14	0	0	
	7	. 10	0	0	
	8	10	0	0	
	14	12	0	0	
	23	13	0	0	
	3	9	0	0	
	11	11	0	0	
7	8	11	1	7	
	15	12	3	4	
	19	13	8	9	
	29	14	5	10	
	42	15	6	11	
	58	15	2	12	
	100	10	13	14	

图 3 赫夫曼树及存储结构

13 14 15

算法原型为: int MaxLenHuffmanCode(HuffmanTree HT, int n) //n 代表 HT 中叶子结点个数

3. (数据结构设计) 某城市 n 个居民小区之间需要铺设煤气管道,将 n 个小区的管道连通。设任意两个小区间都有条件铺设,但由于地理环境不同,所需资金各不相同。需要为施工单位设计铺设管道的最优施工方案,使得总投资尽可能少。

首先,进行问题分析,然后回答下列问题:

- (1) 解决此问题需要已知哪些数据? (文字描述即可)
- (2) 这些数据采用什么数据结构组织? (文字描述即可)
- (3) 写出主要数据结构的抽象数据类型定义。

第8页共8页。