Der belastete Spannungsteiler

Die Aufgaben bitte auf einem extra Blatt lösen!

Aufgabe 1) Gegeben ist folgende Schaltung:

- a) Wie groß sind U_3 und I_3 bei dem belasteten Spannungsteiler?
- b) Welchen Wert nimmt U_3 an, wenn R_2 aus der Schaltung entfernt wird?

Aufgabe 2) Ermitteln Sie den Wert von U_2 wenn die gegebene Schaltung

als unbelasteter und belasteter Spannungsteiler betrieben wird.

Aufgabe 3) Gegeben ist ein belasteter Spannungsteiler.

a) Welche Werte nimmt U_2 an, wenn sich die Umgebungstemperatur des Heißleiters von 20°C bis 80°C andert? (Tragen Sie die Werte in die Tabelle ein)

Temp.	20°C	30°C	40°C	50°C	60°C	70°C	80°C
R_t							
U_2							

b) Ergänzen Sie das Diagramm um den Verlauf von U_2 . (andere Farbe)

Der belastete Spannungsteiler

Die Aufgaben bitte auf einem extra Blatt lösen!

Aufgabe 1) Gegeben ist folgende Schaltung:

- a) Wie groß sind U_3 und I_3 bei dem belasteten Spannungsteiler?
- b) Welchen Wert nimmt U_3 an, wenn R_2

aus der Schaltung entfernt wird?
a.)
$$U_3 = 133 V$$
 $J_3 = 16 m A$
b.) $U_7 = 181 V$

Aufgabe 2) Ermitteln Sie den Wert von U_2 wenn die gegebene Schaltung

als unbelasteter und belasteter Spannungsteiler betrieben wird.

Aufgabe 3) Gegeben ist ein belasteter Spannungsteiler.

a) Welche Werte nimmt U_2 an, wenn sich die Umgebungstemperatur des Heißleiters von 20°C bis 80°C andert? (Tragen Sie die Werte in die Tabelle ein)

Temp.	20°C	30°C	40°C	50°C	60°C	70°C	80°C
R_{I}	5,625	3,222	2252	1,180	0,682	0,322	0,15/2
U_2	2,75	2,5	1,76	1,1	26	0,3	0.16
R2L gv	<u> </u>	$R_1 = 8.2 \mathrm{k}\Omega$ $R_2 = 10 \mathrm{k}\Omega$	L	V 10	2	2	
L= U	RZL RA+R	2L	1	V 5 1 0 2	540	60 80	∂ in °C

b) Ergänzen Sie das Diagramm um den Verlauf von U_2 . (andere Farbe)