# Convolutional Neural Network

## **Before CNN**

### Computers See Image



### Think about MNIST Dataset



The above model requires the digit should be in the center of the image and it had to be the only thing in the image.

### Intro to CNN



https://www.youtube.com/watch?v=FwFduRA\_L6Q

### Convolutional Neural Network



Extracting useful features of data

Perform a ML task (like classification based on the vectorized data)

### Filter Operation



Filter (3 by 3)

Filter Size

### Filter Operation



The intent of convolution is to encode source data matrix (entire image) in terms of a filter or kernel. More specifically, we are trying to encode the pixels in the **neighborhood** of **anchor/source** pixels

https://datascience.stackexchange.com/questions/23183/why-convolutions-always-use-odd-numbers-as-filter-size

### **Convolutional Operation**

- Apply the same filter for every pixel in the original image
- Filter Size is the shape of the filter matrix (yellow one)

| 1,    | 1,0 | 1,  | 0 | 0          |    |     |                                           |                |
|-------|-----|-----|---|------------|----|-----|-------------------------------------------|----------------|
| 0,0   | 1,  | 1,0 | 1 | 0          | 4  |     | 2 5                                       |                |
| 0,1   | 0,0 | 1,  | 1 | 1          |    | 3 S | 20 X2 | Feature<br>Map |
| 0     | 0   | 1   | 1 | 0          |    |     |                                           |                |
| 0     | 1   | 1   | 0 | 0          | 8, |     |                                           |                |
| Image |     |     |   | Con<br>Fea |    |     |                                           |                |

Stanford UFLDL

### Stride Size

- Controls how the filter move around the image
- It is the amount by which the filter shifts





### Padding Size

- Pads the image with zeros around the border
- Make the input image and feature map have the same spatial dimensions

| 0 | 0   | 0   | 0   | 0   | 0   | 0 |
|---|-----|-----|-----|-----|-----|---|
| 0 | 60  | 113 | 56  | 139 | 85  | 0 |
| 0 | 73  | 121 | 54  | 84  | 128 | 0 |
| 0 | 131 | 99  | 70  | 129 | 127 | 0 |
| 0 | 80  | 57  | 115 | 69  | 134 | 0 |
| 0 | 104 | 126 | 123 | 95  | 130 | 0 |
| 0 | 0   | 0   | 0   | 0   | 0   | 0 |





Stride: 1 Size of zero padding: (k-1)/2

https://stackoverflow.com/questions/52067833/ how-to-plot-an-animated-matrix-in-matplotlib

### **Convolutional Operation**

• Filter Size: K

• Stride Size: S

Padding Size: P

| 1,  | 1,0 | 1,  | 0 | 0 |
|-----|-----|-----|---|---|
| 0,0 | 1,  | 1,0 | 1 | 0 |
| 0,1 | 0,0 | 1,  | 1 | 1 |
| 0   | 0   | 1   | 1 | 0 |
| 0   | 1   | 1   | 0 | 0 |

4

**Image** 

Convolved Feature

Stanford UFLDL



#### Multi-Channel CNN

network

- A color image is a 3-D tensor
- 400 (height) 630 (width) 3 (R,G,B channels)



from matplotlib.image import imread import numpy as np img = imread('pikka\_3.jpg')

print(img.shape)

(400, 630, 3)

plt.imshow(img, interpolation='nearest')

<matplotlib.image.AxesImage at 0x11b404278>

0
0
100
100
200
300
300
400
500
600

#### From Keras Layers Conv2D

Input shape

4D tensor with shape: (batch, rows, cols, channels) if data\_format is "channels\_first" or 4D tensor with shape: (batch, rows, cols, channels) if data\_format is "channels\_last".

#### Output shape

4D tensor with shape: (batch, filters, new\_rows, new\_cols) if data\_format is "channels\_first" or 4D tensor with shape: (batch, new\_rows, new\_cols, filters) if data\_format is "channels\_last". rows and cols values might have changed due to padding.

### Filter comes from "Image Processing"



print(kernel)

[[-1 -1 -1]
 [-1 8 -1]
 [-1 -1 -1]



**Image** 

**Edge Detection** 

Convolved Features

### Filter comes from "Image Processing"







**Image** 

Sharpen

**Convolved Features** 

### Filter comes from "Image Processing"







**Image** 

**Identity** 

**Convolved Features** 

### Where are these filters from?

- Filters, in nature, are model parameters, which can be **learned** by Gradient Descent Algorithms .
- These filters weights are firstly randomly initialized, and then updated during training process.
- End-to-End optimization: Gradients computed by backpropagation.
- More details:

https://towardsdatascience.com/training-a-convolutional-neural-network-from-scratch-2235c2a25754

### Non-linear Activation

- Filter operation is dot product (linear computation).
- In deep learning, we need to have non-linear transformations.
- Add non-linear activation



**Image** 

### **Locally Connected**



https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

### **Pooling Operation**

- Pooling Size: the box size. Here is 2 \* 2
- Stride Size: how much pixel the window move



### Filter then Pool



- The size is one quarter the original size
- 2. The **vertical line** features are **enhanced**.

### Conv-Pool



### CNN Can be Deep

- Convolution-Pooling can be followed by another Convolution-Pooling
- At the end, after flatten operation, fully connected layers are used to map the outputs.



# Why CNN is Suitable for Images

### **Local Features Matter**

- Discriminative patterns are much smaller than the whole image
- A neuron does not have to see the whole image
- Less parameters required



### **Location Insensitive**

- The same patterns appear in different regions
- A neuron should be location insensitive.





### **Subsampling Works**

- Subsampling the pixels will not change the object
- We can subsample the pixels to make images smaller -> less parameters required

#### Crocodile



### **Applications**

- Image Recognition
- Object Detection
- Image Denoising



https://blog.keras.io/building-autoencoders-in-keras.html
https://www.kaggle.com/michalbrezk/denoise-images-using-autoencoders-tf-keras

# **Limitations of CNN**

### CNN is different human vision

- CNN can handle translations. But they can not cope with the effects of changing viewpoints such as rotation and scaling
- Human is able to generalize knowledge.



From: objectnet.dev

### CNN is different human vision

 CNN may get confused by seeing this bizarre teapot, since they can not understand images in terms of objects and their parts.





### CNN is different human vision



Adversarial examples can cause neural networks to misclassify images while appearing unchanged to the human eye

### **CNN for Structured Data**

#### Default of Credit Card Clients Dataset

- Static Features
- Dynamic Features

**Task**: Predict the probability of credit default based on credit card owner's payment status, balance and payment history (for the past 6 months from the predicted period)



https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset

### Feature Engineering

- Extract as much information as possible from the available datasets, especially dynamic features.
- Given the past 6 months bill payments (a sequence of 6 numbers):
  - The averaged bill payment
  - The difference between two consecutive payments
  - 0 .....

#### Content There are 25 variables: . ID: ID of each client LIMIT\_BAL: Amount of given credit in NT dollars (includes individual and family/supplementary credit EDUCATION: (1=graduate school, 2=university, 3=high school, 4=others, 5=unknown, 6=unknown) MARRIAGE: Marital status (1=married, 2=single, 3=others) PAY\_0: Repayment status in September, 2005 (-1=pay duly, 1=payment delay for one month, 2=payment delay for two months, ... 8=payment delay for eigh months. 9=payment delay for nine months and above PAY\_2: Repayment status in August, 2005 (scale same as above) PAY\_3: Repayment status in July, 2005 (scale same as above) PAY\_4: Repayment status in June, 2005 (scale same as above) PAY\_5: Repayment status in May, 2005 (scale same as above) PAY\_6: Repayment status in April, 2005 (scale same as above) BILL\_AMT1: Amount of bill statement in September, 2005 (NT dollar) BILL\_AMT2: Amount of bill statement in August, 2005 (NT dollar) BILL\_AMT3: Amount of bill statement in July, 2005 (NT dollar) BILL\_AMT4: Amount of bill statement in June, 2005 (NT dollar)

default.payment.next.month: Default payment (1=yes, 0=no)

BILL\_AMT5: Amount of bill statement in May, 2005 (NT dollar)
BILL\_AMT6: Amount of bill statement in April, 2005 (NT dollar)
PAY\_AMT1: Amount of previous payment in September, 2005 (NT dollar)
PAY\_AMT2: Amount of previous payment in August, 2005 (NT dollar)
PAY\_AMT3: Amount of previous payment in July, 2005 (NT dollar)
PAY\_AMT4: Amount of previous payment in June, 2005 (NT dollar)
PAY\_AMT6: Amount of previous payment in May, 2005 (NT dollar)
PAY\_AMT6: Amount of previous payment in April, 2005 (NT dollar)

Design of those hand-crafted features is challenging, time-consuming, requires domain knowledge.

### Representation of data in CNN format



PAY\_AMT5 PAY AMT6

Shape: 1 by 6 by 3

CNN can be easily applied to extract local patterns

### **Convolution Operation**





Which structure is better?

### Multiple Channels

- In computer vision, CNN is applied on R-G-B channels
- In this application, different types of credit cards or mortgage of a certain customer can be regarded as different channels



For each customer, the data shape: 1 by 6 by 3 by 3

### Incorporating Static Features

- Multi-input deep learning is able to combine static and dynamic features for prediction.
- This architecture connects parts of the inputs directly to the output layer.



# Can CNN classify digimon and pokemon?

### Case Study





https://medium.com/@DataStevenson/teaching-a-computer-to-classify-anime-8c77bc89b881

### **Task Definition**





### **Build CNN Model**

```
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(150, 150, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid', name='preds'))
model.compile(loss='binary_crossentropy',
           optimizer='rmsprop'.
           metrics=['accuracy'])
                                  Epoch 1/3
                                  loss: 0.0834 - val_accuracy: 0.9922
                                  Epoch 2/3
                                  loss: 0.0692 - val accuracy: 0.9961
                                  Epoch 3/3
                                  loss: 0.0684 - val accuracy: 0.9961
```

Only after three epochs, the testing/val accuracy was easily over 99%. Amazing!