AgentVSC for ANAC SCML2023 Standard/Collusion Track

Ryoga Miyajima
Tokyo University of Agriculture and Technology
Katsuhide Fujita Lab.

Contents

- 1. Background & Concept
- 2. Production Strategy
- 3. Trading Strategy
 - Price Control
 - Signing Contracts
- 4. Negotiation Control Strategy
 - Negotiation Choice
 - Utility Function
- 5. Strategies in Collusion Track

Background & Concept

Background

- In SCML World, it is hard to make a large profit.
 - In SCML2022 Standard Track, all agents had negative scores.

Concept

- Committing to reduce the loss
 - Inventory control by adjusting the pricing conditions
 - Selling strategy based on finalized buying contracts

Production Strategy

- Produce at the same step when input products are arrived
 - → Easier inventory control

Trading Strategy: Price Control(1/2)

Determine the unit price at the maximum concession in negotiations

- The highest unit price for buying $(p_t^{max_for_buying})$
 - Initial value is the catalog price of the input product(cp^{input_product})
 - More **bullish**($\times 0.8$) when the expected inventory at the final step (I_t) increases

Trading Strategy: Price Control(2/2)

- The lowest unit price for selling $(p_t^{min_for_selling})$
 - For the first half, the reasonable price based on the trading price of the output product and the average price of my finalized selling contracts
 - For the other half, the price just barely profitable

Trading Strategy: Singing Contracts(1/3)

- Singing Contracts for buying
 - Signing it unless the production limit per step is exceeded
 - Prioritize the contracts with the lower unit price

Trading Strategy: Singing Contracts(2/3)

- Singing Contracts for selling
 - Signing a combination of contracts expected to increase sales effectively
 - for each $t(current_step \le t < n_steps)$,
 - 1. Get the target quantity q^{targ} , which is the difference following quantities:
 - total quantity of input products that is finalized contracts executed by step t-1
 - total quantity of output products that is finalized contracts
 - 2. Select a combination of selling contracts according to following conditions
 - All execution dates are step t and the sum of quantities equals q^{targ}
 - Selecting the one that maximizes the evaluation value (eval(C)) shown in the next page

Trading Strategy: Singing Contracts(3/3)

$$eval(C) = \sum_{c \in C} w \frac{p_c}{p_c^{max}} + (1 - w) pr_{partner_c},$$

$$w = 0.5 - 0.5 \sin((\frac{current_steps}{n_steps - 1} - 0.5) \pi)$$

- *C*: a combination of selling contracts
- p_c: unit price of contract c
- $pr_{partner_c}$: singing rate of the partner of contract c
- **3** 0.5

- Using this evaluation value,
 - unit price being more important at the beginning
 - the opponent signing rate being more important as the steps progress step in signing selling contracts

Negotiation Control Strategy: Neg Choice (1/2)

Request negotiations

- Buyer
 - TIME : [current_step + 1, min(current_step + 3, n_steps)]
 - QUANTITY : [1, n_lines]
 - UNIT_PRICE : $[0, p_{current_step}^{max_for_buying}]$
- Seller
 - TIME : [*t*, *t*]
 - t means the first step that $q_t > 0$ ($t > current_step$)
 - q_t is calculated in the same way as q^{targ} on the previous 2 pages
 - QUANTITY : $[q_t/n_consumers, q_t]$
 - UNIT_PRICE : $[p_{current_step}^{min_for_selling}, 4p_{current_step}^{min_for_selling}]$

Negotiation Control Strategy: Neg Choice (2/2)

- Respond the negotiation requests
 - TIME
 - The maximum value is more than current_step
 - The minimum value is less than *n_steps*
 - UNIT_PRICE
 - Buyer
 - The minimum value is less than or equals to $p_{current_step}^{max_for_buying}$
 - Seller
 - The maximum value is more than or equals to $p_{current\ step}^{min_for_selling}$

Negotiation Control Strategy: Utility Function

Utility Function for buyer

$$U(q,t,p) = \begin{cases} -1000 & \text{if } t < 0 \text{ or } n_steps \le t \\ \text{or } p > p_{current_step}^{max_for_buying} \\ LinearUtilityFunction(0,-0.25,-1) \text{ otherwise} \end{cases}$$

Utility Function for seller

$$U(q,t,p) = \begin{cases} -1000 & \text{if } t < 0 \text{ or } n_steps \leq t \\ & \text{or } p < p_{current_step}^{min_for_buying} \end{cases}$$

$$LinearUtilityFunction\left(\frac{current_step}{n_steps-1},0,1\right) \text{ otherwise}$$

Strategy in Collusion Track

Prioritize signing of contracts with AgentVSC

Lower buying prices for factories with the high production costs

