HEC 2016

EXERCICE

Soit n et p deux entiers supérieurs ou égaux à 1. Si M est une matrice de $\mathcal{M}_{n,p}(\mathbb{R})$, la matrice tM de $\mathcal{M}_{p,n}(\mathbb{R})$ désigne la transposée de M.

On identifie les ensembles $\mathcal{M}_{1,1}(\mathbb{R})$ et \mathbb{R} en assimilant une matrice de $\mathcal{M}_{1,1}(\mathbb{R})$ à son unique coefficient. On note \mathcal{B}_n la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$ et \mathcal{B}_p la base canonique de $\mathcal{M}_{p,1}(\mathbb{R})$. Si $M \in \mathcal{M}_{n,p}(\mathbb{R})$ et $N \in \mathcal{M}_{p,q}(\mathbb{R})$ $(q \in \mathbb{N}^*)$, on admet que ${}^t(MN) = {}^tN^tM$.

- 1. Soit X une matrice colonne non nulle de $\mathcal{M}_{n,1}(\mathbb{R})$ de composantes $x_1, x_2, ..., x_n$ dans la base \mathcal{B}_n . On pose : $A = X^t X$ et $\alpha = {}^t X X$.
 - a) Exprimer A et α en fonction de $x_1, x_2, ..., x_n$. Justifier que la matrice A est diagonalisable.
 - b) Soit f l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{R})$ de matrice A dans la base \mathcal{B}_n . Déterminer Im(f) et Ker(f); donner une base de Im(f) et préciser la dimension de Ker(f).
 - c) Calculer la matrice AX.
 Déterminer les valeurs propres de A ainsi que les sous-espaces propres associés.
- 2. On suppose que n et p vérifient $1 \leq p \leq n$. Soit $(V_1, V_2, ..., V_p)$ une famille libre de p vecteurs de $\mathcal{M}_{n,1}(\mathbb{R})$. On note V la matrice de $\mathcal{M}_{n,p}(\mathbb{R})$ dont les colonnes sont, dans cet ordre, $V_1, V_2, ..., V_p$. Soit g l'application linéaire de $\mathcal{M}_{p,1}(\mathbb{R})$ dans $\mathcal{M}_{n,1}(\mathbb{R})$ de matrice V dans les bases \mathcal{B}_p et \mathcal{B}_n . a) Justifier que le rang de V est égal à p. Déterminer $\mathrm{Ker}(g)$.
 - b) Soit Y une matrice colonne de $\mathcal{M}_{p,1}(\mathbb{R})$.

Montrer que l'on a VY = 0 si et seulement si l'on a ${}^{t}VVY = 0$.

c) En déduire que la matrice ${}^{t}VV$ est inversible.

PROBLEME

On s'intéresse dans ce problème à quelques aspects mathématiques de la fonction de production d'une entreprise qui produit un certain bien à une époque donnée, à partir de deux facteurs de production travail et capital.

Dans tout le problème :

- On note respectivement x et y les quantités de travail et de capital requises pour produire une certaine quantité de ce bien.
- On suppose que x > 0 et y > 0. On pose $\mathcal{D} = (\mathbb{R}_+^*)^2$ et pour tout $(x, y) \in \mathcal{D}, z = \frac{x}{y}$.

La partie III est indépendante des parties I et II.

Partie I: Fonction de production CES (Constant Elasticity of Substitution).

Dans toute cette partie, on note c un réel vérifiant 0 < c < 1 et θ un réel vérifiant $\theta < 1$ avec $\theta \neq 0$. Soit f la fonction définie sur \mathcal{D} , à valeurs dans \mathbb{R}_+^* , telle que :

$$\forall (x,y) \in \mathcal{D}, \quad f(x,y) = \left(c \, x^{\theta} + (1-c) \, y^{\theta}\right)^{\frac{1}{\theta}} \quad (fonction \ de \ production \ CES)$$

- 1. Exemple. Dans cette question uniquement, on prend $\theta = -1$ et $c = \frac{1}{2}$.
 - a) Montrer que pour tout $(x,y) \in \mathcal{D}$, on a : $f(x,y) = \frac{2xy}{x+y}$. Justifier que f est de classe \mathcal{C}^2 sur \mathcal{D} et calculer pour tout $(x,y) \in \mathcal{D}$, les dérivées partielles $\partial_1(f)(x,y)$ et $\partial_2(f)(x,y)$.
 - **b)** Soit w et U les fonctions définies sur \mathbb{R}_+^* par : $\forall t > 0$, $w(t) = \frac{2t}{1+t}$ et U(t) = w(t) t w'(t). Dresser le tableau de variation de la fonction U sur \mathbb{R}_+^* et étudier la convexité de U sur \mathbb{R}_+^* .
 - c) On rappelle que $z = \frac{x}{y}$. Montrer que pour tout $(x,y) \in \mathcal{D}$, on a f(x,y) = y w(z).
 - d) Vérifier pour tout $(x,y) \in \mathcal{D}$, les relations : $\partial_1(f)(x,y) = w'(z)$ et $\partial_2(f)(x,y) = U(z)$.
- 2. a) Montrer que pour tout $(x,y) \in \mathcal{D}$ et pour tout réel $\lambda > 0$, on a : $f(\lambda x, \lambda y) = \lambda f(x,y)$.
 - b) Justifier que f est de classe \mathcal{C}^2 sur \mathcal{D} et, pour tout $(x,y) \in \mathcal{D}$, calculer $\partial_1(f)(x,y)$ et $\partial_2(f)(x,y)$.
 - c) Déterminer pour tout y > 0 fixé, le signe et la monotonie de la fonction $x \mapsto \partial_1(f)(x,y)$. Déterminer pour tout x > 0 fixé, le signe et la monotonie de la fonction $y \mapsto \partial_2(f)(x,y)$.
- 3. Soit G la fonction définie sur \mathcal{D} par $G(x,y) = \frac{\partial_1(f)(x,y)}{\partial_2(f)(x,y)}$ (taux marginal de substitution technique) et g la fonction définie sur \mathbb{R}_+^* par : $\forall t > 0$, $g(t) = \frac{c}{1-c}t^{-1+\theta}$.
 - a) Pour tout $(x,y) \in \mathcal{D}$, exprimer G(x,y) en fonction de g(z).
 - **b)** Pour tout t > 0, on pose $s(t) = -\frac{g(t)}{t g'(t)}$. Calculer s(z) (élasticité de substitution). Conclusion.
- **4.** Soit w et U les fonctions définies sur \mathbb{R}_+^* par : $\forall t > 0$, w(t) = f(t, 1) et U(t) = w(t) t w'(t).
 - a) Montrer que pour tout $(x,y) \in \mathcal{D}$, on a : f(x,y) = y w(z).
 - b) En distinguant les deux cas $0 < \theta < 1$ et $\theta < 0$, dresser le tableau de variation de U sur \mathbb{R}_+^* . Préciser $\lim_{t\to 0^+} U(t)$, $\lim_{t\to +\infty} U(t)$ ainsi que la convexité de U sur \mathbb{R}_+^* .

Partie II : Caractérisation des fonctions de production à élasticité de substitution constante.

Dans toute cette partie, on note Ψ une fonction définie et de classe \mathcal{C}^2 sur \mathcal{D} , à valeurs dans \mathbb{R}_+^* , vérifiant la condition $\Psi(1,1)=1$ et pour tout réel $\lambda>0$, la relation : $\Psi(\lambda x,\lambda y)=\lambda\,\Psi(x,y)$. De plus, on suppose que pour tout y>0 fixé, la fonction $x\mapsto\partial_1(\Psi)(x,y)$ est strictement positive et strictement décroissante et que pour tout x>0 fixé, la fonction $y\mapsto\partial_2(\Psi)(x,y)$ est également strictement positive et strictement décroissante.

- **5.** Soit v la fonction définie sur \mathbb{R}_+^* par : $\forall t > 0, v(t) = \Psi(t, 1)$.
 - a) Justifier que la fonction v est de classe \mathcal{C}^2 , strictement croissante et concave sur \mathbb{R}_+^* .
 - b) Soit φ la fonction définie sur \mathbb{R}_+^* par : $\forall t > 0$, $\varphi(t) = v(t) t \, v'(t)$. On suppose l'existence de la limite de $\varphi(t)$ lorsque t tend vers 0 par valeurs supérieures et que $\lim_{t \to 0^+} \varphi(t) = \mu$, avec $\mu \geqslant 0$. Déterminer pour tout t > 0, le signe de $\varphi(t)$ et montrer que $\mu \leqslant 1$.
 - c) Montrer que : $\forall (x,y) \in \mathcal{D}, \ \Psi(x,y) = y v(z).$
- 6. a) Pour tout t>0, on pose : $h(t)=\frac{v'(t)}{\varphi(t)}$.

 Montrer que pour tout $(x,y)\in\mathcal{D},$ on a : $\frac{\partial_1(\Psi)(x,y)}{\partial_2(\Psi)(x,u)}=h(z).$
 - **b)** Pour tout t > 0, on pose : $\sigma(t) = -\frac{h(t)}{t h'(t)}$. Déterminer pour tout t > 0, le signe de $\sigma(t)$.
- 7. Les fonctions σ et h sont celles qui ont été définies dans la question $\boldsymbol{6}$. On suppose que la fonction σ est constante sur \mathbb{R}_+^* ; on note σ_0 cette constante et on suppose $\sigma_0 \neq 1$. On pose : $r = 1 \frac{1}{\sigma_0}$.
 - a) Pour tout t > 0, on pose $\ell(t) = t^{1-r}h(t)$. Calculer $\ell'(t)$ et en déduire que : $\forall t > 0, h(t) = h(1)t^{r-1}$.
 - b) Par une méthode analogue à celle de la question 7a, établir la relation :

$$\forall t > 0, \ v(t) = \left(\frac{1 + h(1)t^r}{1 + h(1)}\right)^{\frac{1}{r}}$$

- c) En déduire l'existence d'une constante $a \in]0,1[$ telle que : $\forall (x,y) \in \mathcal{D}, \Psi(x,y) = (ax^r + (1-a)y^r)^{\frac{1}{r}}$.
- d) Quelle conclusion peut-on tirer des résultats des questions 3.b) et 7.c)?
- 8. Soit $a \in]0,1[$. Pour tout t>0, soit S_t la fonction définie sur $]-\infty,1[\setminus\{0\} \text{ par}:S_t(r)=(at^r+1-a))^{\frac{1}{r}}$.
 - a) On pose $H_t(r) = \ln S_t(r)$. Calculer la limite de $S_t(r)$ lorsque r tend vers 0.
 - **b)** Pour tout couple $(x,y) \in \mathcal{D}$ fixé, on pose : $N_{(x,y)}(r) = y S_z(r)$ et $F(x,y) = \lim_{r \to 0} N_{(x,y)}(r)$. Montrer que pour tout $(x,y) \in \mathcal{D}$, on a $F(x,y) = x^a y^{1-a}$ (fonction de production de Cobb-Douglas).

Partie III : Estimation des paramètres d'une fonction de production de Cobb-Douglas.

Soit a un réel vérifiant 0 < a < 1 et B un réel strictement positif.

On suppose que la production totale Q présente une composante déterministe et une composante aléatoire.

• La composante déterministe est une fonction de production de type Cobb-Douglas, c'est-à-dire telle que :

$$\forall (x,y) \in \mathcal{D}, \quad f(x,y) = Bx^a y^{1-a}$$

- La composante aléatoire est une variable aléatoire de la forme $\exp(R)$ où R est une variable aléatoire suivant la loi normale centrée, de variance $\sigma^2 > 0$.
- La production totale Q est une variable aléatoire à valeurs strictement positives telle que :

$$Q = Bx^a y^{1-a} \exp(R)$$

On suppose que les variables aléatoires Q et R sont définies sur le même espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$.

On pose : $b = \ln(B)$, $u = \ln(x) - \ln(y)$ et $T = \ln(Q) - \ln(y)$. On a donc : T = au + b + R.

On sélectionne n entreprises $(n \ge 1)$ qui produisent le bien considéré à l'époque donnée.

On mesure pour chaque entreprise i $(i \in [1, n])$ la quantité de travail x_i et la quantité de capital y_i utilisées ainsi que la quantité produite Q_i^* . On suppose que pour tout $i \in [1, n]$, on a $x_i > 0$, $y_i > 0$ et $Q_i^* > 0$.

Pour tout $i \in [1, n]$, la production totale de l'entreprise i est alors une variable aléatoire Q_i telle que $Q_i = B x_i^a y_i^{1-a} \exp(R_i)$, où R_1, R_2, \ldots, R_n sont des variables aléatoires supposées indépendantes et de même loi que R et le réel strictement positif Q_i^* est une réalisation de la variable aléatoire Q_i .

On pose pour tout $i \in [1, n]$: $u_i = \ln(x_i) - \ln(y_i)$, $T_i = \ln(Q_i) - \ln(y_i)$ et $t_i = \ln(Q_i^*) - \ln(y_i)$.

Ainsi, pour chaque entreprise $i \in [1, n]$, on a $T_i = au_i + b + R_i$ et le réel t_i est une réalisation de la variable aléatoire T_i .

On rappelle les définitions et résultats suivants :

- Si $(v_i)_{1 \le i \le n}$ est une série statistique, la moyenne et la variance empiriques, notées respectivement \overline{v} et s_v^2 , sont données par : $\overline{v} = \frac{1}{n} \sum_{i=1}^n v_i$ et $s_v^2 = \frac{1}{n} \sum_{i=1}^n (v_i \overline{v})^2 = \frac{1}{n} \sum_{i=1}^n v_i^2 \overline{v}^2$.
- Si $(v_i)_{1 \leq i \leq n}$ et $(w_i)_{1 \leq i \leq n}$ sont deux séries statistiques, la covariance empirique de la série double $(v_i, w_i)_{1 \leq i \leq n}$, notée cov(v, w), est donnée par :

$$cov(v, w) = \frac{1}{n} \sum_{i=1}^{n} (v_i - \overline{v})(w_i - \overline{w}) = \frac{1}{n} \sum_{i=1}^{n} v_i w_i - \overline{v}\overline{w} = \frac{1}{n} \sum_{i=1}^{n} (v_i - \overline{v})w_i$$

- **9.** a) Montrer que pour tout $i \in [1, n]$, la variable aléatoire T_i suit la loi normale $\mathcal{N}(au_i + b, \sigma^2)$.
 - b) Les variables aléatoires $T_1, T_2, ..., T_n$ sont-elles indépendantes?

Pour tout $i \in [1, n]$, soit φ_i la densité continue sur \mathbb{R} de T_i :

$$\forall d \in \mathbb{R}, \ \varphi_i(d) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2}(d - (au_i + b))^2\right)$$

Soit \mathcal{F} l'ouvert défini par $\mathcal{F} = [0, 1] \times \mathbb{R}$ et M la fonction de \mathcal{F} dans \mathbb{R} définie par :

$$M(a,b) = \ln \left(\prod_{i=1}^{n} \varphi_i(t_i) \right)$$

On suppose que : $0 < cov(u, t) < s_u^2$.

- 10. a) Calculer le gradient $\nabla(M)(a,b)$ de M en tout point $(a,b) \in \mathcal{F}$.
 - b) En déduire que M admet sur \mathcal{F} un unique point critique, noté (\hat{a}, \hat{b}) .
 - c) Exprimer \hat{a} et \hat{b} en fonction de cov(u,t), s_u^2 , \bar{t} et \bar{u} . (\hat{a} et \hat{b} sont les estimations de a et b par la méthode dite du maximum de vraisemblance)
- 11. a) Soit $\nabla^2(M)(a,b)$ la matrice hessienne de M en $(a,b) \in \mathcal{F}$. Montrer que $\nabla^2(M)(a,b) = -\frac{n}{\sigma^2} \begin{pmatrix} s_u^2 + \overline{u}^2 & \overline{u} \\ \overline{u} & 1 \end{pmatrix}$
 - b) En déduire que M admet en (\hat{a}, \hat{b}) un maximum local.
- 12. Soit (h,k) un couple de réels non nuls. Calculer $M(\hat{a}+h,\hat{b}+k)-M(\hat{a},\hat{b})$. En déduire que M admet en (\hat{a},\hat{b}) un maximum global.
- 13. On rappelle qu'en Scilab, les commandes variance et corr permettent de calculer respectivement la variance d'une série statistique et la covariance d'une série statistique double. Si $(v_i)_{1 \le i \le n}$ et $(w_i)_{1 \le i \le n}$ sont deux séries statistiques, alors la variance de $(v_i)_{1 \le i \le n}$ est calculable par variance (v) et la covariance de $(v_i, w_i)_{1 \le i \le n}$ est calculable par corr(v, w, 1).

On a relevé pour n=16 entreprises qui produisent le bien considéré à l'époque donnée, les deux séries statistiques $(u_i)_{1\leqslant i\leqslant n}$ et $(t_i)_{1\leqslant i\leqslant n}$ reproduites dans les lignes $\underline{1}$ à $\underline{4}$ du code **Scilab** suivant dont la ligne $\underline{9}$ est incomplète :

Le code précédent complété par la ligne 9 donne alors la figure suivante :

a) Compléter la ligne 9 du code permettant d'obtenir la figure précédente (on reportera sur sa copie, uniquement la ligne 9 complétée).

- b) Interpréter le point d'intersection des deux droites de régression.
- c) Estimer graphiquement les moyennes empiriques \overline{u} et \overline{t} .
- d) Le coefficient de corrélation empirique de la série statistique double $(u_i, t_i)_{1 \le i \le 16}$ est-il plus proche de -1, de 1 ou de 0?
- e) On reprend les lignes $\underline{1}$ à $\underline{4}$ du code précédent que l'on complète par les instructions $\underline{11}$ à $\underline{17}$ qui suivent et on obtient le graphique ci-dessous :

```
11  a0 = corr(u,t,1)/variance(u)
12  b0 = mean(t) - corr(u,t,1)/variance(u)*mean(u)
13  t0 = a0 * u + b0
14  e = t0 - t
15  p = 1:16
16  plot2d(p,e,-1)
17  // -1 signifie que les points sont représentés par des symboles d'addition.
```


Que représente ce graphique? Quelle valeur peut-on conjecturer pour la moyenne des ordonnées des 16 points obtenus sur le graphique?

Déterminer mathématiquement la valeur de cette moyenne.

14. Pour tout entier $n \ge 1$, on pose $A_n = \frac{1}{n s_u^2} \sum_{i=1}^n (u_i - \overline{u}) T_i$.

On suppose que le paramètre σ^2 est connu.

- a) Calculer l'espérance $\mathbb{E}(A_n)$ et la variance $\mathbb{V}(A_n)$ de la variable aléatoire A_n . Préciser la loi de A_n .
- b) On suppose que a est un paramètre inconnu. Soit α un réel donné vérifiant $0 < \alpha < 1$. On note Φ la fonction de répartition de la loi normale centrée réduite et d_{α} le réel tel que $\Phi(d_{\alpha}) = 1 - \frac{\alpha}{2}$.

Déterminer un intervalle de confiance du paramètre a au niveau de confiance $1-\alpha$.