Теория чисел

ДЗ 9

Гольдберг Дмитрий Максимович

Группа БПМИ248

Найдите все первообразные корни по модулю 22 на промежутке от -11 до 11.

Решение:

Заметим, что 3 является первообразным корнем, так как

$$3^{\frac{\varphi(22)}{11}}\not\equiv 1\ (\mathrm{mod}\ 22)$$

$$3^{\frac{\varphi(22)}{2}}\not\equiv 1\ (\mathrm{mod}\, 22)$$

Тогда $5 \equiv 3^3$ — первообразный корень, $9 \equiv 3^7 \pmod{22}$ — первообразный корень, $-7 \equiv 15 \equiv 3^9 \pmod{22}$ — первообразный корень. Всего корней $\varphi(\varphi(22)) = 4$. Мы их нашли.

Ответ:

-7,3,5,9

Найдите какой-нибудь первообразный корень по модулю 242.

Решение:

2 является первообразным корнем по модулю 11. Пусть h=2+11t

$$t\not\equiv\frac{2^{11}-2}{11}\ (\mathrm{mod}\ 11)\Rightarrow t\not\equiv10\ (\mathrm{mod}\ 11)$$

Значит как h можно взять $h=2+11\cdot 11=123$ — первообразный корень по модулю 11^2 . Чтобы найти первообразный корень по модулю $242=2\cdot 11^2$, берём нечётное из чисел $123,\ 123+121$. Значит 123 первообразный корень по модулю 242.

Ответ:

123

Найти все целые числа g, лежащие в промежутке от 1 до 25, удовлетворяющие двум условиям:

- а) g является первообразным корнем по модулю 5;
- б) g не является первообразным корнем по модулю 25.

Решение:

Числа 2 и 3 являются первообразными корнями по модулю 5. Тогда из искомого промежутка под первое условие подходят числа 2,3,7,12,17,22,8,13,18,23. Они будут подходить под второе условие, если выполняется сравнение

$$g \equiv g^5 \pmod{25}$$

Из выше описанного набора подходят только числа 7, 18.

Ответ:

7, 18

Найдите количество решений сравнения $x^{21} \equiv 1 \pmod{29}$.

Решение:

Это сравнение разрешимо(есть корень 1), значит по обобщенному критерию Эйлера оно имеет ровно $(21, \varphi(29)) = 7$ решений.

Ответ:

7

Пусть $n \in \mathbb{N}$. Докажите, что для того, чтобы число Ферма $f_n = 2^{2^n} + 1$ было простым, достаточно выполнения сравнения

$$3^{\frac{f_n-1}{2}} \equiv -1 \pmod{f_n}.$$

Решение:

Возведём обе части сравнения в квадрат. Получаем сравнение

$$3^{f_n-1} \equiv 1 \pmod{f_n}$$

Порядок должен делить $f_n-1=2^{2^n}$, но при этом он не делит $\frac{f_n-1}{2}=2^{2^n-1}\Rightarrow$ порядок равен f_n-1 . Порядок числа всегда делит $\varphi(f_n)$, то есть $f_n-1\mid \varphi(f_n)$. Такое возможно, только если $\varphi(f_n)=f_n-1$. Значит f_n является простым.

Ответ:

ч.т.д