Well Ours

3. Schularbeit 4AHELT 8. 4. 2013

Gruppe: B

1) Ermittle die Fourier-Reihe folgender Funktion:

8

A0=0,5

2) Ermittle die allgemeine Lösung:

7

$$y' \cdot \sqrt{2x} - 2y = 1$$

3) Sei y'' + p y' + y = 2x + 1 die DG einer ged. Schwingung! Welchen Wert muss p haben, dass der aperiodische Grenzfall eintritt? Bestimme die spezielle Lösung für y(0)=0 und y'(0)=2!

9

4) Löse folgende Anfangswertaufgabe:

$$y' + \frac{2y}{x} = \cos(x) \qquad y(\pi) = 1$$

8

HTBL u. VA. ST. PÖLTEN

Schuljahr: 2012/43	Vor- und Zuname: Co	Klasse: <u>GAHE</u> T KatNr. <u>4</u> 19
aus_Norkengsik	am8, 5. / 6	13
Aufgabe:		
7) $b_{11} = 0$ $0_{11} = \frac{2}{4}$ 0 0 0 0 0 0 0 0 0 0	x + 1) & cos (nux) olx x · cos (nux) olx	
- 26 8 · · · · · · · · · · · · · · · · · ·	$u = -\frac{2}{2}x^{4}$ $u' = -\frac{2}{2}$ $v' = -\cos(n c x)$	
-> 1-7 × +1). 20-6	1 - Flat Manuel 2 - London dx	
$= \left(\frac{1}{2} \times 1\right) \frac{2in}{n} \left(\frac{n}{n}\right)$	$\frac{x}{2} = \frac{2}{2} \left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \right)$	

on = ((1/2 + 1)). 24 (nwx) - (on (nwx)) / (1/2 / 1/2) $= \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{4}\right) \cdot \frac{2\omega}{\omega} \left(\frac{1}{2}, \frac{1}{2}\right) \cdot \frac{2\omega}{\omega} \left(\frac{1}{2}, \frac{1}{2$ $= \frac{\cos(n\pi)}{2n^2\omega^2} + \frac{1}{2n^2\omega^2} + \frac{1}{2$ 04 = 3 81x $\int (2x)^{-\frac{1}{2}} dx = 2 \cdot (2x)^{-\frac{1}{2}} = \frac{1}{2}$ $= \sqrt{2} \times \frac{1}{2}$ $\int \frac{dy}{y} = \int \frac{2}{\sqrt{2x}} dx$ $y = e^{1/2} + e^{1/2} +$

=) y = 01 24 ((x x) + 6. cox x 62mx + 202mx + 2650x = er conx cos 26 --6-20 6 = - 201 26/32 $a(1-\frac{4}{2})=$ a=1 1 2 1 2 1Tortaky of Detal

Col Chan 3) = + py xy = 2 t + 7 1+ p2 - 1 = 0 $+\frac{p^2}{4}=1$ $+P^2 = 4 = p = 2$ (um positive Danyfugsgrad) " + 2 y + y = 2 t + 1 2 + 2 2 + 1 = 0 $y_h = e^{-t} \left(c_1 + c_2 \right)$ y= e (c1+c2+)+e+c2 0= = = 2= (1+(2)=)()=2 y = 0 + b y = 01 y = 0 201 + or \$ 1 b = 2\$ + 7 $0 = 2 \qquad 20 + 6 = 1$ 6 = -3 y = yn + yp = e + (c n + cz +) + 2 * - 3 y = -e + (c1+c2+)+e+.c2+2

3)
$$y(0)=0$$
 $y(0)=2$

$$0=c_1-3=0$$

$$2=-c_1+c_2+2=0$$

$$c_7=3$$

$$\Rightarrow y=e^{-t}(3+3t)+2t-3$$

$$y=\frac{x^2}{x^2}$$

$$y=\frac{x^2}{x^2-4}$$

$$y=$$