Introduction to homotopy type theory: exam

DAT235/DIT577/PhD reading course

2024, January 12

• Grade scale:

Fraction of points	≥ 0	$\geq 2/5$	$\geq 3/5$	$\geq 4/5$
Grade	U	3	4	5

• Time: 4 hours

• No aids allowed.

- You may use familiar facts from the course book or our discussions without justification, provided they do not already include the statement to be proven or depend on it.
- The axioms of function extensionality and univalence may only be used where stated.

1. [4 points] Fix a type A. The equality type of A has an induction principle involving

$$\operatorname{ind-eq}_{a,P}:P(a,\operatorname{refl}_a)\to \prod_{x:A}\prod_{p:a=x}P(x,p)$$

for a:A and a family of types P(x,p) indexed by x:A and p:a=x.

Construct the following elements. Explicitly state the parameter P when you use ind-eq.

(a)
$$f: \prod_{x,y:A} x = y \rightarrow y = x$$
,

(b)
$$g: \prod_{x,y:A} \prod_{p:x=y} f(y,x,f(x,y,p)) = p.$$

- 2. [4 points] Given a type A, define what it means:
 - (a) for A to be contractible,
 - (b) for A to have truncation level n where $n : \mathbb{Z}_{\geq -2}$.
- 3. [4 points] The type of fixpoints of a function $u: X \to X$ is defined as

$$\mathsf{fix}(u) := \sum_{x:X} u(x) = x.$$

Given $f: A \to B$ and $g: B \to A$, show that $fix(g \circ f) \simeq fix(f \circ g)$.

- 4. [4 points] Given a type A, show that the following are logically equivalent for x, y : A:
 - (1) the propositional truncation ||x = y||,
 - (2) $Q(x) \simeq Q(y)$ for all families Q of propositions indexed by A.
- 5. [4 points] Let \mathcal{U} be a univalent universe with $I:\mathcal{U}$. We have a function

$$h: \mathcal{U}^I \to \sum_{X:\mathcal{U}} I^X$$

sending $Y: I \to U$ to $(\sum_{i:I} Y(i), \mathsf{pr}_1)$. Define a function k in the opposite direction with $k \circ h \sim \mathsf{id}$. You may use function extensionality.

6. [4 points] Consider $f: S^1 \to S^1$ with $H: f \circ f \sim f$. Show that

$$is-equiv(f) + ||is-constant(f)||.$$

You may use function extensionality and univalence.