

Evaluation for Data Scientist - Focus on Python

Competence framework for evaluating the final project (qualitative evaluation)

ranic

Step		Minimum standard	Optimal standard Date	
Preparation	Load data	creates DataFrames from csv_file	uses optional function parameters to minimize work steps	
EDA	Understand your data	uses mean value, median, minimum, maximum and standard deviation when appropriate	also carries out data exploration on appropriate subse of the entire data set. (grouping)	ets
	Visualize Distributions	applies at least one of the following diagram types to all numeric columns: Box plot, histogram, distribution plot, scatter plot Applies at least one of the following diagram types to all	visualizes at least 2 subsets of the entire data set in the same figure to compare the distribution of the subsets with one another uses dimensionality reduction methods to visualize	
		numeric columns: <i>Bar chart, Pie chart</i>	high-dimensional data	
	Detect Outliers	Identifies outliers visually	Identifies outliers using machine learning methods (e.g. DBSCAN, RANSAC)	
	Check Correlations	explores correlations between features	visualizes correlations	
Split	Training/test split	performs a training/test split as early as possible	The test data set is only used once to the evaluate the quality.	e model
Data Cleaning	Transforming data types	converts <i>int, float, str, datetime</i> into other formats depend- ing on the situation	uses string manipulation methods defines own data cleaning functions and applies them	۱.
	Data Imputation	Decides according to the situation whether to delete, replace or mark missing values Applies data imputation with ' <i>mean</i> ' or ' <i>mode</i> '	uses external sources, robust metrics or modelling me for data imputation.	ethods
	Dealing with Outliers	Decides according to the situation whether to delete, replace or mark missing values		
		Only removes outliers from the training set		

Step

Over/Undersample uses the *class_weights* parameter for Implements explicit over/undersampling methods depending Resampling unbalanced target categories to the situation Feature Polynomials & Creates new features by combining uses polynomials and interaction terms to Interactions **Engineering** existing features generate features Integrates data from external sources to enrich the data set Encoding applies ONE-hot encoding to nominal features implements a way to deal with unknown categories outside the training set applies label encoding according to the situation **Data Scaling** uses data transformation methods (standardization, MinMax scaling) appropriately interprets the composition of the principal components Dimensionality uses dimensionality reduction methods to create new Reduction features depending on the situation Feature Selection uses model-immanent feature importance methods uses model agnostic methods to assess the feature importance if necessary

Optimal standard

Minimum standard

Step		Minimum standard	Optimal standard
		makes qualitative statements about the quality of the implemented model and justifies this based on the evaluation metric(s)	
	Hyperparameter Tuning	manually tests several value combinations for hyperparameters	uses cross-validation in model evaluation uses GridSearch to automate hyperparameter tuning uses pipelines to modify the data (e.g. scaling, PCA) as well as to optimize the model
	Model Selection	explicitly determines which of the tested models is the final model	evaluates model performance against a baseline model or dummy model
Model Interpretation	Model Interpretation	explains in the consultation the influence of a hyperparameter on how a ML model functions	explains the influence of a model parameter on the prediction result
	Sanity checks	a prediction is made for each data point in the test set ('aim-set'). The original of the data set provided is not modified. the process presented minimizes data leakage	the data pipeline is able to generate a prediction for a single data point with partially missing data. Data leakage does not occur.
	Visualizing Features Importances & Predictions	Uses suitable diagram types for the visualization all visualizations contain at least one meaningful title and axis labels	creates an interactive visualization visualizations of the results follow the principles of data storytelling

Step		Minimum standard	Optimal standard
Clean Up	Create Functions	the prediction is generated with a single function call.	
	Refractor Code	structures the project submission using headings and comments. uses meaningful names for variables,	Code mainly follows the PEP 8 standard
		functions and classes	
Storytelling	Presenting your Find- ings	Leads the way through the functioning code in the project consultation Explains important modelling decisions (e.g. dealing with outliers, choice of metrics, feature selection) answers questions technically	Delivers an introductory summary: