Network: Global Internet Routing, Policy Routing Analysis

Qiao Xiang

https://qiaoxiang.me/courses/cnnsxmuf22/index.shtml

11/29/2022

Outline

- Admin and recap
- Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Basic routing computation protocols
 - Global Internet routing
 - Basic architecture
 - ➤ BGP (Border Gateway Protocol): The de facto Inter-domain routing standard
 - Basic operations
 - BGP as a policy routing framework (control interdomain routes)
 - Policy/interdomain routing analysis
 - ➤ Global preference aggregation and Arrow's Theorem
 - Local preference aggregation

Admin

- □ Lab 4 due on Dec. 8
 - Time to say goodbye to procrastination ©
 - When submitting your code, make sure it at least can compile
- □ Lab 5 to be posted this week
- Class project teams and topics finalized
 - You have until Jan. 5 to finish your project
 - Code, report, slides and pre-recorded presentation (10-15 minutes)
- Guest lecture on Dec. 1

Recap: Routing Computation using Distance Vector/Bellman-Ford Routing

Distributed computation: At node i, computes

$$d_i = \min_{j \in N(i)} (d_{ij} + d_j)$$

□ One way to understand BFA is to consider it as a dynamic programming alg, propagating from dest to other nodes

Recap: Fixing DV/BFA

- □ Property of BFA
 - Bad news may propagate slowly due to loops
- Techniques
 - Reverse poison
 - Avoid two-node loops
 - DSDV
 - Using destination seq to partition into epochs
 - A good example of analysis using global invariants
 - Diffusive Update Alg (DUAL)
 - Utilize backup routes

Recap: Link State Routing

- Basic idea: instead of distributed computing of routes, only distributed state distribution (synchronization)
- Link state distribution can still have much complexity, e.g.,
 - out of order delivery
 - partition and reconnect
 - scalability

Recap: Internet Routing Architecture

- Interdomain routing uses a path vector protocol based on AS topology
 - o improves scalability, privacy, autonomy
- Only a small # of routers (gateways) from each AS in the interdomain level
 - improves scalability
- Autonomous systems have flexibility to choose their own intradomain routing protocols
 - allows autonomy

Routing with Autonomous Systems

Summary: Internet Routing Architecture

- Autonomous systems have flexibility to choose their own intradomain routing protocols
 - allows autonomy
- Only a small # of routers (gateways) from each AS in the interdomain level
 - improves scalability
- Interdomain routing using AS topology instead of detailed topology
 - improves scalability/privacy

Outline

- Admin and recap
- Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Basic routing computation protocols
 - Global Internet routing
 - Basic architecture
 - ➤ BGP (Border Gateway Protocol): The de facto Interdomain routing standard

BGP Basic Operations

- □ BGP is a Path Vector protocol
 - similar to Distance Vector protocol
 - a border gateway sends to a neighbor entire path (i.e., a sequence of ASNs) to a destination, e.g.,
 - · gateway X sends to neighbor N its path to dest. Z:

path
$$(X,Z) = X,Y1,Y2,Y3,...,Z$$

if N selects path(X, Z) advertised by X, then:
 path (N,Z) = N, path (X,Z)

BGP Basic Operations

BGP Messages

- □ Four types of messages
 - OPEN: opens TCP connection to peer and authenticates sender
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg;
 also used to close connection

Outline

- Admin and recap
- Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Basic routing computation protocols
 - Global Internet routing
 - Basic architecture
 - > BGP (Border Gateway Protocol): The de facto Inter-domain routing standard
 - Basic operations
 - ➤ BGP as a policy routing framework (control interdomain routes)

BGP Policy Routing Framework: Label Route Information Sources

BGP Policy Routing Framework: Decision Components

Observing BGP Paths

■ Using one of the looking glass servers: http://www.bgp4.as/looking-glasses https://www.gin.ntt.net/looking-glass/

Outline

- Admin and recap
- Network control plane
 - Routing
 - Link weights assignment
 - Routing computation
 - Basic routing computation protocols
 - Global Internet routing
 - Basic architecture
 - ➤ BGP (Border Gateway Protocol): The de facto Inter-domain routing standard
 - Basic operations
 - BGP as a policy routing framework (control interdomain routes)
 - Policy/interdomain routing analysis

Motivation: Policy Routing Stability

A policy routing system can be considered as a system to aggregate local preferences, but aggregation may not be always successful.

Policy (preferences) aggregation fails: routing instability!

General Framework of Preference Aggregation

Also called Social Choice

- Given individual preferences, define a framework to aggregate individual preferences:
 - · A set of choices: a, b, c, ...
 - A set of voters 1, 2, ...
 - Each voter has a preference (ranking) of all choices, e.g.,

```
\rightarrow voter 1: a > b > c
```

- \Rightarrow voter 2: a > c > b
- \Rightarrow voter 3: a > c > b
- A well-specified aggregation rule (protocol) computes an aggregation of ranking, e.g.,
 - Society (network): a > b > c

Example: Aggregation of Global Preference

- Choices (for S->D route): SAD, SBD, SABD, SBAD
- □ Voters S, A, B, D
- □ Each voter has a preference, e.g.,
 - S: SAD > SBD > SABD > SBAD

0 ...

Arrow's Aggregation Framework

■ Axioms:

- Transitivity
 - if a > b & b > c, then a > c
- Unanimity:
 - If all participants prefer a over b (a > b) => a > b
- Independence of irrelevant alternatives (IIA)
 - Social ranking of a and b depends only on the relative ranking of a and b among all participants

□ Result:

 Arrow's Theorem: Any constitution that respects transitivity, unanimity and IIA is a dictatorship.