

Coarse-to-Fine 3D Shape Refinement

Kristiyan Sakalyan, Stephan Schmiedmayer, Lei Li

Improve point cloud models

Input: Sparse and noisy point cloud of a predefined shape.

Output: Upsampled point cloud with refined surface.

Spectral clustering for patch creation during inference ensures geometrically coherent patches of similar size.

The runtime tradeoff is too significant for training.

- We contribute a new shape refinement architecture by combining PointTransformer, Feature Expansion (based on PU-Net) and PVCNN
- MaxPool preserves the spatial dimensions of the input.
- Upsampling layer replicates the learned features and adds one-hot encoding to enable Conv2d to differentiate the replicated features.

Quantitative results

- Refinement of the PVD output for airplane and chair shapes.
- A score closer to 50% indicates better performance.

	Airplane		Chair	
Networks	1-NNA-CD	1-NNA-EMD	1-NNA-CD	1-NNA-EMD
PVD PVD + Ours	75.49% $79.87%$	68.51% $73.37%$	58.37% $56.49%$	$egin{smallmatrix} {\bf 56.01}\% \ {\bf 58.87}\% \end{matrix}$

Limitations

The sparsity and irregularity of some PVD outputs, along with insufficient detail to discern features, can make refinement difficult.

