Eco 4306 Economic and Business Forecasting Chapter 6: Forecasting with Moving Average (MA) Processes

Outline

- we now start building time series models
- first, we introduce white noise process, characterized by absence of linear time dependence
- after that we will develop a moving average model for processes which do exhibit some linear time dependence

- ▶ a stationary stochastic process $\{\varepsilon_t\}$ is called **white noise process** if $\rho_k=0$ for $k\geq 1$, and $r_k=0$ for $k\geq 1$, that is if autocorrelation and partial autocorrelation functions are zero
- no linear dependence, autocorrelations are zero no link between past and present observations, no link between present and future observations
- ightharpoonup no dependence to exploit so we cannot predict future realizations of the process ε_t is unpredictable shock, residual in our time series models

- consider stochastic process $Y_t = 1 + \varepsilon_t$ where $\varepsilon_t \sim N(0,4)$
- ▶ theoretical unconditional mean and variance of $\{Y_t\}$ are $E(Y_t) = E(1 + \varepsilon_t) = 1$ and $var(Y_t) = var(1 + \varepsilon_t) = 4$
- ▶ first two population moments are thus time invariant

Sample: 1 1000 Included observation	ns: 1000		
Autocorrelation	Partial Correlation	AC PA	(
	1 4	1 -0.020 -0.0)2
- (1)	4	2 -0.013 -0.0)1
	0	3 -0.066 -0.0)6
- 10		4 -0.027 -0.0)3
	4	5 -0.004 -0.0	
- (1)	4	6 -0.004 -0.0)٠
- 1	1 1	7 0.056 0.0	
	4	8 -0.001 0.0	
- 1)	1 1	9 0.026 0.0	
- 10	1 1	10 0.018 0.0	
		11 -0.030 -0.0	
	1 1	12 -0.013 -0.0	
- 1	1 1	13 0.001 0.0	
	1 19	14 0.040 0.0	
· t	1 12	15 0.001 0.0	
- 0	1 1	16 0.043 0.0)4

Series, Trioise				
Sample 1 1000				
Observations 1000				
Mean	0.957014			
Median	0.941058			
Maximum	7.235267			
Minimum	-5.443433			
Std. Dev.	2.034487			
Skewness	-0.029960			
Kurtosis	2.784223			
Jarque-Bera	2.089597			
Probability	0.351763			

- \blacktriangleright time series $\{y_t\}$ looks very ragged
- \blacktriangleright histogram for $\{y_t\}$ its has the expected bell shape corresponding to a normal distribution
- ightharpoonup skewness is approximately zero, kurtosis approximately 3, Jarque-Bera test indicates that normality is not rejected (p=0.351)
- first two sample moments are very close to the population moments sample mean is 0.96, sample standard deviation is 2.03
- time series plot shows that realizations bounce around a mean value of 1 and volatility does not appear to change significantly
- AC function and PAC function at all lags are not significantly different from 0 at 5% level
- ightharpoonup time series $\{y_t\}$ is thus a white noise process

- in business and economics some data behave very similarly to a white noise process
- ▶ white noise processes are especially common among financial series
- this is the reason why these data are so difficult to predict they do not exhibit any temporal linear dependence that could be consistently exploited
- for example: returns for individual stocks and for stock market indices have correlograms that resemble a white noise process

- ► returns, Microsoft and DJ Index, 1986M4-2004M7, Figure06_02_MSFT_DJ.xls
- ▶ all lags of AC and PAC functions are not significantly different from 0 at 5% level

Sample: 1986:03 20 Included observation		
Autocorrelation	Partial Correlation	AC PAC
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 -0.081 -0.081 2 -0.094 -0.101 3 0.132 0.117 4 -0.017 -0.006 5 0.008 0.030 6 -0.013 -0.029 7 0.106 0.113 8 0.015 0.023 9 -0.006 0.024 10 0.131 0.112 11 0.013 0.035 12 -0.016 0.005
		13 -0.020 -0.045 14 0.030 0.013 15 -0.075 -0.091 16 0.064 0.068 17 0.085 0.051 18 -0.094 -0.064 19 -0.049 -0.079 20 0.046 0.005

Sample: 1986:03 200 Included observation		
Autocorrelation	Partial Correlation	AC PAC
1 1 1 1 1 1 1 1 1 1		1 -0.021 -0.021 2 -0.044 -0.044 3 -0.056 -0.058 4 -0.126 -0.031 5 -0.048 -0.031 5 -0.048 -0.037 7 -0.092 -0.081 8 -0.044 -0.037 9 -0.043 -0.030 10 -0.043 -0.030 12 -0.015 -0.006 12 -0.015 -0.006 13 -0.033 -0.033 14 -0.034 -0.034 15 -0.059 -0.068
		17 0.031 0.012 18 0.079 0.076 19 -0.026 -0.028 20 -0.016 0.005

6.3 Forecasting with Moving Average Models

ightharpoonup a moving average process of order q, referred to as MA(q), has the form

$$Y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \ldots + \theta_q \varepsilon_{t-q}$$

where ε_t is a zero-mean white noise process

- order of the model is given by the largest lag, not by the number of lag variables in the right-hand side
- for instance

$$Y_t = \mu + \varepsilon_t + \theta_3 \varepsilon_{t-3}$$

is an MA(3) because the largest lag is 3 although there is only one lagged variable

6.3 Forecasting with Moving Average Models

- we will next look at the statistical properties of MA models
- our ultimate objective is constructing the optimal forecast
- ightharpoonup we will analyze the lowest order process, MA(1), generalization to MA(q) is straightforward
- three questions we want to answer
 - 1. What does a time series of an MA process look like?
 - 2. How do the AC and PAC functions for MA process look like?
 - 3. What is the optimal forecast for an MA process?

- ▶ consider MA(1) process $Y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}$
- four simulations, each 200 observations of MA(1), with different values of $\theta \in \{0.05, 0.5, 0.95, 2.0\}$, but with same $\mu = 2$, and $\varepsilon_t \sim N(0, 0.25)$

- ▶ four time series seem to be weakly stationary
- unconditional population mean is time invariant

$$E(Y_t) = E(\mu + \varepsilon_t + \theta \varepsilon_{t-1}) = \mu$$

unconditional variance is also time invariant

$$var(Y_t) = E(Y_t - E(Y_t))^2 = E(\varepsilon_t + \theta \varepsilon_{t-1})^2 = E(\varepsilon_t^2 + 2\theta \varepsilon_t \varepsilon_{t-1} + \theta^2 \varepsilon_{t-1}^2) = (1 + \theta^2)\sigma_{\varepsilon}^2$$

and it is increasing with heta

we still need to verify that the autocorrelation function does not depend on time to claim that the process is covariance stationary

- only $\hat{\rho}_1$ in the sample AC function is significantly different from zero
- $\hat{\rho}_1$ is proportional to θ for $|\theta| < 1$ and its sign is the same as the sign of θ

population autocovariance of order 1

$$\gamma_1 = E[(Y_t - \mu)(Y_{t-1} - \mu)] = E[(\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-1} + \theta \varepsilon_{t-2})] = \theta \sigma_{\varepsilon}^2$$

population autocorrelation of order 1

$$\rho_1 = \frac{\gamma_1}{\gamma_0} = \frac{\theta \sigma_{\varepsilon}^2}{(1 + \theta^2)\sigma_{\varepsilon}^2} = \frac{\theta}{1 + \theta^2}$$

population autocovariance of order k > 1

$$\gamma_k = E[(Y_t - \mu)(Y_{t-k} - \mu)] = E[(\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-k} + \theta \varepsilon_{t-k-1})] = 0$$

thus for population autocorrelation of order k > 1 we have

$$\rho_k = \frac{\gamma_k}{\gamma_0} = 0$$

so autocorrelation function really does not depend on time, and thus MA(1) is covariance stationary process

- \blacktriangleright note that AC function and PAC function for the MA(1) processes with $\theta=0.5$ and $\theta=2$ are identical
- lacktriangle this is due to the fact that for the MA(1) with parameter $\hat{ heta}=rac{1}{ heta}$ we get

$$\rho_1 = \frac{\hat{\theta}}{1 + \hat{\theta}^2} = \frac{\frac{1}{\hat{\theta}}}{1 + \frac{1}{\hat{\theta}^2}} = \frac{\theta}{\theta^2 + 1} = \frac{\theta}{1 + \theta^2}$$

- ▶ an MA(1) process is called **invertible** if $|\theta| < 1$
- if an MA process is invertible, we can always find an autoregressive representation in which the present Y_t is a function of the past $Y_{t-1}, Y_{t-2}, Y_{t-3}, \dots$

- we will next analyze and forecast the percentage change in 5-Year Constant Maturity Yield on Treasury Securities, using April 1953 to April 2008 sample
- data available at FRED https://fred.stlouisfed.org/graph/?g=mXGl and Figure06_05_Table6_1_treasury.xls
- ▶ U.S. Treasury securities are considered to be the least risky assets
- they constitute an asset of reference to monitor the level of risk of other fixed-income securities such as grade bonds and certificates of deposit
- risk spread difference between the yield of the fixed-income security and the yield of a corresponding Treasury security with the same maturity

- ► AC function and PAC function similar to those for MA(1)
- AC function has only one positive spike at $\hat{\rho}_1$, remaining autocorrelations are not significantly different from zero
- ▶ PAC function alternating signs, decreasing toward zero

Date: 02/07/18 Time: 22:03 Sample: 1953M05 2008M04 Included observations: 660

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		3 4 5 6 7	-0.053 0.002 0.022 -0.042 -0.060 -0.070	-0.183 0.097 -0.027 -0.042 -0.029 -0.058	72.915 74.786 74.789 75.108 76.278 78.664 81.958	0.000 0.000 0.000 0.000 0.000 0.000 0.000
		8 9 10 11 12	0.025 0.080 0.036 0.029 -0.044	0.075 0.038 0.005 0.033 -0.089	82.362 86.667 87.563 88.126 89.448	0.000 0.000 0.000 0.000 0.000

- recall: under quadratic loss function the optimal point forecast is conditional mean, $f_{t,h} = \mu_{t+h}|_{t} = E(Y_{t+h}|I_{t})$
- \blacktriangleright we next analyze this optimal forecast under quadratic loss function for $h=1,2,\ldots$
- ightharpoonup we will see that forecasting with an MA(1) is rather limited by the very short memory of the process for h>1 the optimal forecast is identical to the unconditional mean of the process

- for MA(1) model and forecasting horizon h=1 we have
- i. optimal point forecast

$$f_{t,1} = \mu_{t+1|t} = E(Y_{t+1}|I_t) = E(\mu + \varepsilon_{t+1} + \theta\varepsilon_t) = \mu + \theta\varepsilon_t$$

ii. 1-period-ahead forecast error

$$e_{t,1} = Y_{t+1} - f_{t,1} = \mu + \varepsilon_{t+1} + \theta \varepsilon_t - \mu - \theta \varepsilon_t = \varepsilon_{t+1}$$

iii. uncertainty associated with the forecast is summarized by the variance of the forecast error

$$\sigma_{t+1|t}^2 = var(e_{t+1}) = \sigma_{\varepsilon}^2$$

iv. density forecast is the conditional probability density function of the process at the future date; assuming ε_t is normally distributed we have

$$f(Y_{t+1}|I_t) \sim N(\mu + \theta\varepsilon_t, \sigma_{\varepsilon}^2)$$

v. using the density forecast we can construct interval forecasts - since for $Z\sim N(0,1)$ we have $P(-1.96\leq Z\leq 1.96)=0.95$, the 95% interval forecast for Y_{t+1} is

$$\mu_{t+1|t} \pm 1.96\sigma_{t+1|t} = (\mu_{t+1|t} - 1.96\sigma_{t+1|t}, \mu_{t+1|t} + 1.96\sigma_{t+1|t})$$

- for MA(1) model and forecasting horizon h=2 we have
- i. optimal point forecast

$$f_{t,2} = \mu_{t+2|t} = E(Y_{t+2}|I_t) = E(\mu + \varepsilon_{t+2} + \theta \varepsilon_{t+1}) = \mu$$

ii. 2-period-ahead forecast error

$$e_{t,2} = Y_{t+2} - f_{t,2} = \mu + \varepsilon_{t+2} + \theta \varepsilon_{t+1} - \mu = \varepsilon_{t+2} + \theta \varepsilon_{t+1}$$

iii. uncertainty associated with the forecast is summarized by the variance of the forecast error

$$\sigma_{t+2|t}^2 = var(e_{t+2}) = (1 + \theta^2)\sigma_{\varepsilon}^2$$

iv. density forecast is the conditional probability density function of the process at the future date; assuming ε_t is normally distributed we have

$$f(Y_{t+2}|I_t) \sim N(\mu, (1+\theta^2)\sigma_{\varepsilon}^2)$$

- for MA(1) model and forecasting horizon h = s we have
- i. optimal point forecast

$$f_{t,s} = \mu_{t+s|t} = E(Y_{t+s}|I_t) = \mu$$

ii. s-period-ahead forecast error

$$e_{t,s} = Y_{t+s} - f_{t,s} = \mu + \varepsilon_{t+s} + \theta \varepsilon_{t+s-1} - \mu = \varepsilon_{t+s} + \theta \varepsilon_{t+s-1}$$

iii. uncertainty associated with the forecast is summarized by the variance of the forecast error

$$\sigma_{t+s|t}^2 = var(e_{t+s}) = (1+\theta^2)\sigma_{\varepsilon}^2$$

iv. density forecast is the conditional probability density function of the process at the future date; assuming ε_t is normally distributed we have

$$f(Y_{t+s}|I_t) \sim N(\mu, (1+\theta^2)\sigma_{\varepsilon}^2)$$

Forecasting 5-year Constant Maturity Yield on Treasury Securities:

- ► AC and PAC suggest that the Percentage Change in 5-year Constant Maturity Yield on Treasury Securities follows an MA(1) process
- we will use 1953M5-2007M11 as estimation sample and 2007M12-2008M4 as prediction sample
- $lackbox{\ }$ we will thus construct forecast for $h=1,2,\ldots,5$ so 1-step to 5-step ahead forecasts
- ▶ to estimate θ in EViews choose **Object** \rightarrow **New Object** \rightarrow **Equation**, in equation specification write **dy c MA(1)**, and in sample 1953M5-2007M11
- afterwards to create a multistep forecast in EViews open the equation and choose $\operatorname{Proc} \to \operatorname{Forecast}$, enter name dyf_se for standard deviation $\sigma_{t+h|t}$ into "S.E. (optional)", change forecast sample to 2007M12-2008M4, and select "Dynamic forecast" method in the forecast window
- ▶ to construct the lower and the upper bounds of the 95% confidence interval $(\mu_{t+h|t}-1.96\sigma_{t+h|t},\mu_{t+h|t}+1.96\sigma_{t+h|t})$ choose <code>Object</code> \rightarrow <code>Generate</code> series set sample to 2007M12-2008M4 and enter first <code>dyf_lb</code> = <code>dyf</code> <code>1.96</code> <code>dyf_se</code> and then the second time <code>dyf_ub</code> = <code>dyf</code> + <code>1.96</code> <code>dyf_se</code>

Forecasting 5-year Constant Maturity Yield on Treasury Securities:

- rightharpoonup consider now an MA(2) process $Y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$
- two simulations, each 200 observations of MA(2), with $\theta_1=1.70, \theta_2=0.72$ and with $\theta_1=-1, \theta_2=0.25$, in addition to $\mu=2$ and $\varepsilon_t\sim N(0,0.25)$

unconditional population mean is time invariant

$$E(Y_t) = E(\mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}) = \mu$$

unconditional variance is also time invariant

$$var(Y_t) = E(Y_t - E(Y_t))^2 = E(\varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2})^2 = (1 + \theta_1^2 + \theta_2^2)\sigma_{\varepsilon}^2$$

- ▶ first two components in sample AC function are different from zero $\hat{\rho}_1 \neq 0$, $\hat{\rho}_2 \neq 0$, remaining autocorrelations are equal to zero, $\hat{\rho}_k = 0$ for k > 2
- sample PAC function decreases toward zero

population autocovariance of order 1

$$\gamma_1 = E[(Y_t - \mu)(Y_{t-1} - \mu)] = (\theta_1 + \theta_1 \theta_2)\sigma_{\varepsilon}^2$$

thus for population autocorrelation of order 1 we have

$$\rho_1 = \frac{\gamma_1}{\gamma_0} = \frac{\theta_1 + \theta_1 \theta_2}{1 + \theta_1^2 + \theta_2^2}$$

ightharpoonup population autocovariance of order k=2

$$\gamma_2 = E[(Y_t - \mu)(Y_{t-2} - \mu)] = \theta_2 \sigma_{\varepsilon}^2$$

thus for population autocorrelation of order $\boldsymbol{k}=2$ we have

$$\rho_2 = \frac{\gamma_2}{\gamma_0} = \frac{\theta_2}{1 + \theta_1^2 + \theta_2^2}$$

autocorrelations of higher order are all equal to zero

$$\gamma_k = E[(Y_t - \mu)(Y_{t-k} - \mu)] = 0$$

thus for population autocorrelation of order $\ensuremath{k} > 2$ we have

$$\rho_k = \frac{\gamma_k}{\gamma_0} = 0$$

since autocorrelation function does not depend on time, MA(2) is covariance stationary process

- for MA(2) model and forecasting horizon h=1 we have
- i. optimal point forecast

$$f_{t,1} = \mu_{t+1|t} = E(Y_{t+1}|I_t) = E(\mu + \varepsilon_{t+1} + \theta_1\varepsilon_t + \theta_2\varepsilon_{t-1}) = \mu + \theta_1\varepsilon_t + \theta_2\varepsilon_{t-1}$$

ii. 1-period-ahead forecast error

$$e_{t,1} = Y_{t+1} - f_{t,1} = \mu + \varepsilon_{t+1} + \theta_1 \varepsilon_t + \theta_2 \varepsilon_{t-1} - \mu - \theta_1 \varepsilon_t - \theta_2 \varepsilon_{t-1} = \varepsilon_{t+1}$$

iii. uncertainty associated with the forecast is summarized by the variance of the forecast error

$$\sigma_{t+1|t}^2 = var(e_{t+1}) = \sigma_{\varepsilon}^2$$

iv. density forecast is the conditional probability density function of the process at the future date; assuming ε_t is normally distributed we have

$$f(Y_{t+1}|I_t) \sim N(\mu + \theta_1 \varepsilon_t + \theta_2 \varepsilon_{t-1}, \sigma_{\varepsilon}^2)$$

v. using the density forecast we can construct interval forecasts - since for $Z\sim N(0,1)$ we have $P(-1.96\leq Z\leq 1.96)=0.95$, the 95% interval forecast for Y_{t+1} is

$$\mu_{t+1|t} \pm 1.96\sigma_{t+1|t} = (\mu_{t+1|t} - 1.96\sigma_{t+1|t}, \mu_{t+1|t} + 1.96\sigma_{t+1|t})$$

- for MA(2) model and forecasting horizon h=2 we have
- i. optimal point forecast

$$f_{t,2} = \mu_{t+2|t} = E(Y_{t+2}|I_t) = E(\mu + \varepsilon_{t+2} + \theta_1 \varepsilon_{t+1} + \theta_2 \varepsilon_t) = \mu + \theta_2 \varepsilon_t$$

ii. 2-period-ahead forecast error

$$e_{t,2} = Y_{t+2} - f_{t,2} = \mu + \varepsilon_{t+2} + \theta_1 \varepsilon_{t+1} + \theta_2 \varepsilon_t - \mu - \theta_2 \varepsilon_t = \varepsilon_{t+2} + \theta_1 \varepsilon_{t+1}$$

 uncertainty associated with the forecast is summarized by the variance of the forecast error

$$\sigma_{t+2|t}^2 = var(e_{t+2}) = (1 + \theta_1^2)\sigma_{\varepsilon}^2$$

iv. density forecast is the conditional probability density function of the process at the future date; assuming ε_t is normally distributed we have

$$f(Y_{t+2}|I_t) \sim N(\mu + \theta_2 \varepsilon_t, (1 + \theta_1^2)\sigma_{\varepsilon}^2)$$

- for MA(2) model and forecasting horizon h = s with s > 2 we have
- i. optimal point forecast

$$f_{t,s} = \mu_{t+s|t} = E(Y_{t+s}|I_t) = \mu$$

ii. s-period-ahead forecast error

$$e_{t,s} = Y_{t+s} - f_{t,s} = \mu + \varepsilon_{t+s} + \theta \varepsilon_{t+s-1} - \mu = \varepsilon_{t+s} + \theta_1 \varepsilon_{t+s-1} + \theta_2 \varepsilon_{t+s-2}$$

iii. uncertainty associated with the forecast is summarized by the variance of the forecast error

$$\sigma_{t+s|t}^2 = var(e_{t+s}) = (1 + \theta_1^2 + \theta_2^2)\sigma_{\varepsilon}^2$$

iv. density forecast is the conditional probability density function of the process at the future date; assuming ε_t is normally distributed we have

$$f(Y_{t+s}|I_t) \sim N(\mu, (1+\theta_1^2+\theta_2^2)\sigma_{\varepsilon}^2)$$

• forecasting with an MA(2) is thus limited by the short memory - for h>2 the optimal forecast is identical to the unconditional mean of the process

6.3.2 MA(q) Process

- for MA(q) the AC and PAC functions satisfy similar properties as those for MA(2) process
- first q components in sample AC function are different from zero $\hat{\rho}_k \neq 0$ for $k=1,2,\ldots,q$
- remaining autocorrelations are equal to zero $\hat{\rho}_k = 0$ for k > q
- ▶ sample PAC function decreases toward zero (in exponential or in oscillating pattern)
- forecasting with an MA(q) is quite limited for h>q the optimal forecast is identical to the unconditional mean of the process

6.3.2 MA(q) Process

Forecasting Growth of Employment in Nonfarm Business Sector

- download PRS85006013_Q.xls obtained from fred.stlouisfed.org/series/PRS85006013, import it into EViews as time series emp
- generate time series gemp as percentage change of emp
- ▶ AC and PAC suggest that MA(3) process $y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \theta_3 \varepsilon_{t-3}$ can be used to model gemp
- we will use 1947Q2-2014Q4 as estimation sample and 2015Q1-2016Q4 as prediction sample
- ightharpoonup we will thus construct forecast for $h=1,2,\ldots,8$ so 1-step to 8-step ahead forecasts

6.3.2 MA(q) Process

• first, to estimate parameters $\mu, \theta_1, \theta_2, \theta_3$ of the MA(3) process

$$y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \theta_3 \varepsilon_{t-3}$$

in EViews choose Object \rightarrow New Object \rightarrow Equation, in equation specification write gemp c MA(1) MA(2) MA(3), and in sample write 1947Q2-2014Q4

- ▶ afterwards to create a multistep forecast in EViews open the equation and choose $\mathbf{Proc} \to \mathbf{Forecast}$, enter name gempf_se for standard deviation $\sigma_{t+h|t}$ into "S.E. (optional)", change forecast sample to 2015Q1-2016Q4, and select "Dynamic forecast" method in the forecast window
- ▶ to construct the lower and the upper bounds of the 95% confidence interval $(\mu_{t+h|t}-1.96\sigma_{t+h|t},\mu_{t+h|t}+1.96\sigma_{t+h|t})$ choose <code>Object</code> \rightarrow <code>Generate series</code> set sample to 2015Q1-2016Q4 and enter first <code>gempf_lb</code> = <code>gempf</code> 1.96 <code>gempf_se</code> and then the second time <code>gempf_ub</code> = <code>gempf</code> + 1.96 <code>gempf_se</code>
- ▶ to construct time series with unconditional mean of gemp choose Object \rightarrow Generate Series and enter gemp_mean = @mean(gemp)