

Pertemuan 3

ARRAY DIMENSI BANYAK

ARRAY DIMENSI TIGA (Three Dimensional Array)

Digunakan untuk mengelola data dalam bentuk 3 dimensi atau tiga sisi.

Deklarasi:

Nama_Array[index1]

[ndex2]

[index3];

Misal : A [3][4][2];

Penggambaran secara Logika:

Menentukan jumlah elemen dalam Array dimensi 3:

n
$$\pi$$
 (index array) $i=1$

 π = Perkalian dari statemen sebelumnya

Contoh:

Suatu Array X dideklarasikan sbb:

A [3][4][2]; maka jumlah elemen Array dimensi tiga tersebut adalah :

PEMETAAN (MAPPING) ARRAY DIMENSI TIGA KE STORAGE

Rumus:

```
@M[m][n][p] = M[0][0][0] + {((m-1) *(jum.elemen2 * jum.elemen3)) + ((n-1)*(jum.elemen 3)) + ((p-1)}* L
```

Contoh:

Suatu Array A dideklarasikan sebagai berikut : int A [2][4][3], dengan alamat awal index A[0][0][0] berada di $0011_{(H)}$ dan ukuran type data int = 2 Tentukan berapa alamat array di A[2][3][2] ?

Contoh Pemetaan:

Penyelesaian:

1.Tentukan jumlah elemen array A [2][4][3] = (2) * (4) * (3) = 24

2.@M[m][n][p] = M[0][0][0] +
$$\{((m-1) * (jum.elemen2 * jum.elemen3)) + ((n-1)* (jum.elemen 3)) + ((p-1)}* L$$

A[2][3][2] =
$$0011_{(H)}$$
 + {((2-1) * 4 * 3) + ((3-1) * 3) + (2-1)} * 2
= $0011_{(H)}$ + {12 + 6 + 1} * 2
= $0011_{(H)}$ + 38 _(D) 26 _(H)
= $0011_{(H)}$ + 26 _(H)

Contoh Program Array Dimensi 3

```
Arr ([[[3, 2, 1], [6, 4, 5]], [[3, 2, 1], [6, 4, 5]]) print(arr)
```

Diperoleh output sebagai berikut:

```
[[[3 2 1]
```

[6 4 5]]

[[3 2 1]

[6 4 5]]]

Buatlah program array multi dimensi dengan Python

TRINGULAR ARRAY (ARRAY SEGITIGA)

Tringular Array dapat merupakan Upper Tringular (seluruh elemen di bawah diagonal utama = 0), ataupun Lower Tringular (seluruh elemen di atas diagonal utama = 0).

Dalam Array Lower Tringular dengan N baris, jumlah maksimum elemen <> 0 pada baris ke-I adalah = I, karenanya total elemen <> 0, tidak lebih dari

$$\begin{array}{ll} N \\ \Sigma & I = N(N+1) / 2 \\ I=1 \end{array}$$

Contoh Tringular Array

	_ X	X	X	X	X	X		X	0	0	0	0	0	
	0	X	X	X	X	X		X	X	0	0	0	0	
	0	0	X	X	X	X		X	X	X	0	0	0	
	0	0	0	X	X	X		X	X	X	X	0	0	
	0	0	0	0	X	X		X	X	X	X	X	0	
	0	0	0	0	0	X		X	X	X	X	X	X	
						_	_							
(a)							(b)						_	

Gambar

- (a) Upper Triangular Array
- (b) Lower Triangular Array

Tringular Array (Lanjutan)

Contoh:

Diketahui suatu array segitiga atas memiliki 3 baris dan kolom, tentukan berapakah jumlah elemen yang bukan nol pada array tersebut.

$$I = N(N+1) / 2$$

$$I = 3 (3+1) / 2$$

$$= 12 / 2$$

$$= 6$$

Contoh bentuk array nya adalah seperti dibawah ini :

	15	10	5	30	20	10	
Dan lain-lain	25	20	0	50	40	0	
	30	0	0	60	0	0	

Tringular Array (Lanjutan)

Suatu Array Upper Tringular dan Array Lower Tringular dapat dengan order yang sama, dapat disimpan sebagai suatu array dengan order yang berbeda, Contohnya:

dapat disimpan sebagai Array C berorder (3 X 4)

7	1	2	3
8	9	4	5
11	12	13	6

SPARSE ARRAY (ARRAY JARANG)

Suatu Array yang sangat banyak elemen nol-nya, contohnya adalah Array A pada Gambar berikut :

0	0	0	0	1	0	0	2
0	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	4	0	0	0	0
0	0	0	0	0	0	0	2