4724

1	(Quotient =) $x^2 + 2x + 2$	B1	For correct leading term x2 in quotient
		M1	For evidence of division/identity
			process
		A1	For correct quotient
	(Remainder =) $0x - 3$	A14	For correct remainder. The '0x' need
	,		not be written but must be clearly
	Allow without working	i	derived. 4
ļ			
ì			
2 -		M1	For attempt at parts going correct way
"			$(u = x, dv = \cos x \text{ and } f(x) +/-\int g(x) (dx)$
	$x \sin x - i \sin x dx$	A1	For both terms correct
	$\{=x\sin x + \cos x\}$	B1	Indic anywhere that $\int \sin x dx = -\cos x$
	(M1	For correct method of limits
	Answer = ½ π – 1	A1 5	For correct exact answer ISW 5
	7113467 7211	, , , ,	To contour exact another
3	(i)	M1	For (either point) + t(diff betw vectors)
١	$\mathbf{r} = (2\mathbf{i} - 3\mathbf{j} + \mathbf{k} \text{ or } -\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}) + \mathbf{t}(3\mathbf{i} - \mathbf{j} + 5\mathbf{k})$	A1 2	Completely correct including r =. AEF
	(ii) $L(2)$ (r) = 3i+2j-9k+s(4i - 4j + 5k)	M1	For point + (s or t) direction vector
	L(1)&L(2) must be of form $r = a + tb$	1411	l or point : (3 or t) direction vector
	2+3t=3+4s, -3-t=2-4s,1+5t= -9+5s	M1	For 2/3 egns with 2 different parameters
	or suitable equivalences	IVI	1 or 210 equis with 2 different parameters
	(t,s) = (+/-3,2) or (-/+1,1) or (-/+9,-7)	M1	For solving any relevant pair of egns
]	or $(+/-4.2)$ or (0.1) or $(-/+87)$	A1	For both parameters correct
1	Basic check other eqn & interp √	B1 5	7
	basic check other equilibrium terp v	121 3	·
4	(i) $dx = \sec^2\theta d\theta$ AEF	M1	Attempt to connect $dx_id\theta$ (not $dx = d\theta$)
4	(i) dx = Sec-8 d8 AEF	A1	For $dx = \sec^2\theta d\theta$ or equiv correctly
	Indefinite integral = ∫ cos²θ dθ	A1 3	used
	(ii) = $kJ + l - 1 + l - \cos 2\theta d\theta$	M1	With at least one intermed step AG
	1/2[0 + 1/2 sin 20]	A1	"Satis" attempt to change to double
	Limits = ½π(accept 45) and 0	M1	angle
	(π + 2)/8 AEF	A1 4	Correct attempt + correct integration
	(11 · 2)/d	7	New limits for θ or resubstituting
			Ignore decimals after correct answer
			7
			Single 'parts' + sin²θ=1–cos²θ
1			acceptable
5	(i)OD=OA+AD or OB+BC+CD AEF	M1	Connect OD & 2/3/4 vectors in their diag
1	AD = BC or CD = BA	A1	Or similar, from their diag
1	$(\mathbf{a} + \mathbf{c} - \mathbf{b}) = 2\mathbf{j} + \mathbf{k}$	A1 3	(i e if diag mislabelled, M1A1A0
1	(a · O · D) · · · · · · · · · · · · · · · · ·	' ' ' '	possible]
i	(ii) AB.CB = AB CB cos θ	M1	p445.516]
į	Scalar product of any 2 vectors	M1	Or AB,BC i e scalar prod for correct
!	Magnitude of any vector	M1	pair
	94°(94.386) or 1.65 (1.647)	A1 4	$2+3-6=\cdot 1$ is expected
	0-1 (04.300) Of 1.00 (1 047)	7, 7	√19 or 3 expected
		!	Accept 86°(85.614) or 1.49(424)
			7
6	(i) For d/dx (y^2) = $2y dy/dx$	B1	· · · · · · · · · · · · · · · · · · ·
10		M1	
	Using $d(uv) = u dv + v du$	A1	
	$2xy dy/dx + y^2 = 2 + 3 dy/dx$	M1	Solving an equation, with at least 2 dy/dx
		i ivi i	terms, for dy/dx; dy/dx on one side, non
			dy/dx on other.
	duldu = 12	A 1 E	
l	$dy/dx = (2 - y^2)/(2xy - 3)$	A1 5	AG

	(ii) Stating/using $2xy - 3 = 0$ Attempt to eliminate x or y $8x^2 = -9$ or $y^2 = -2$	B1 M1 A1 3	No use of $2 - y^2$ in this part. Between $2xy - 3 = 0$ & eqn of curve Together with suitable finish 8
7	(i)dy / dx = (dy/dt) / (dx/dt) = $(-1/t^2) / 2t$ as unsimplified expression = $-1 / 2t^3$ as simplified expression	M1 A1 A1 3	(S.R. Award M1 for attempt to change to cartesian eqn & differentiate + A1 for dy/dx or dx/dy in terms of x or y) Not 1/–2t². Not in terms of x &/or y.
	(ii) $(4,-1/2) \rightarrow t = -2$ only Satis attempt to find equation of tgt x - 16y = 12 only	M1 A1 3	Using $t = -2$ or 2 AG
	(iii) $t^3 - 12t - 16 = 0$ or $16y^3 + 12y^2 - 1 = 0$	M1 A1	For substituting (t 3,1/t) into tgt eqn or solving simult tgt & their cartes eqns For simplified equiv non-fract cubic
	$\frac{1}{2} \frac{1}{2} \frac{1}$	B2 4	S.R. Award B1 for "4 or -2". S.R. If B0, award M1 for clear indic of method of soln of correct eqn. 10
8	(i) $3x+4 \equiv A(2+x)^2+B(2+x)(1+x) + C(1+x)$ A = 1 C = 2 A+B = 0 or $4A+3B+C=3$ or $4A+2B+C=4$	M1 A/B1 A/B1 A1 A1 5	Accept ≡ or ≈ If identity used, award 'A' mark, if cover-up rule used, award 'B' mark Any correct eqn for B from identity
	B = -1 (ii) 1 - x + x ² 1 - ½ x + ½ x ² 1 - x 1 + ½ x + ½ x ²	B1 B1 B1 B1 B1 5	Expansion of $(1 + x)^{-1}$ Expansion of $(1 + \frac{1}{2}x)^{-1}$ First 2 terms of $(1 + \frac{1}{2}x)^{-2}$ Third term of $(1 + \frac{1}{2}x)^{-2}$ Complete correct expansion
	1 - 5/4 x + 5/4 x ²		If partial fractions not used Award B1 for expansion of $(1+x)^{-1}$ B1+B1 for expansion of $(1+x)^{-1}$ and B1 for 1-5/4x & B1 for+5/4x² Or if denom expanded to give $a+bx+cx^2$ with $a=4$.b=8,c=5, award B1 Expansion of $[1+(b/a)x+(c/a)x^2]^{-1} = 1-(b/a)x+(-c/a+b^2/a^2)x^2$ B1+B1 Final ans = $(1-5/4x+5/4x^2)$ B1+B1
	(iii) – 1 < x < 1 AEF	B1 1	Other inequalities to be discarded. 11
9	k = const of proportionality – = falling, dθ/dt = rate of change θ – 20 = diff betw obj & surround	B2 2	All 4 items (first two may be linked) S R. Award B1 for any 2 items
	temp (ii) $\int 1/(\theta - 20) d\theta = -k \int dt$ $\ln(\theta - 20) = -kt + c$ Subst $(\theta, t) = (100, 0)$ or $(68, 5)$	M1 A1A1 M1 A1	For separating variables For integ each side (c not essential) Dep on 'c' being involved [or_M2 for limits (100,0) (68,5) + A1 for

c = ln 80	Ä1	[k]
k = 1/5 ln 5/3	M1	
113	A1 8	AG
$\theta = 20 + 80e^{-\frac{1(\ln x)}{x}}$		
	M1	Substanto AEF of given eqn & solve
(iii) Substitute $\theta = 68 - 32$	A1	Accept 15 7 or 15.8
t = 15.75	B1 3	fit only if θ = their (68 – 32) or 32 13
Extra time = 10.75, Vtheir 15.75 5		<u> </u>

Mark Scheme 4725 June 2005