Министерство науки и высшего образования Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)»

Кафедра систем автоматизированного проектирования и управления

ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ И ЗАДАЧИ

по дисциплине

«Базы данных»

Части 1 – 4

Зав. кафедрой проф. Т.Б. Чистякова

Лектор доц. В.Ю. Плонский

Санкт-Петербург 2021

1 (Теоретический вопрос)

- **1.01**) Многоуровневая архитектура БД. Внешняя, концептуальная и внутренняя модели данных. Словарь данных.
- **1.02**) Инфологическое проектирование. Модель сущность-связь. ЕR-диаграмма. Модель Питера Чена.
- **1.03**) Даталогическое проектирование. Модель сущность-связь. ER-диаграмма. Модель Crow's Foot.
- **1.04)** Функциональный и предметный принцип проектирования информационной структуры. Диаграммы потоков данных.
- 1.05) Потенциальные и внешние ключи. Виды связей, обязательность связей.
- 1.06) Идентифицирующие и неидентифицирующие связи. Мощность связи.
- 1.07) Дополнительные типы связей: многие-ко-многим. Реализация в РСУБД.
- 1.08) Дополнительные типы связей: рекурсивные связи. Реализация в РСУБД.
- 1.09) Композитный и суррогатный ключи. Примеры их использования.
- **1.10**) Расширенная модель сущность-связь. Супертипы и подтипы. Пересекающиеся и непересекающиеся подтипы.
- **1.11**) Расширенная модель сущность-связь. Супертипы и подтипы. Частичная и абсолютная полнота.
- 1.12) Дополнительные типы связей: связи высокого порядка. Реализация в РСУБД.
- **1.13**) Реляционная модель данных. Определения домена, отношения, атрибута, кортежа. Фундаментальные свойства отношений.
- **1.14**) Нормализация данных. Функциональные зависимости. Аномалии обновления. Первая и вторая НФ.
- 1.15) Нормализация данных. Транзитивные зависимости. Третья НФ и БКНФ.
- 1.16) Реляционная модель данных. Потенциальные и внешние ключи.
- 1.17) Реляционная алгебра. Операции выборки и проекция. Их соответствие SQL.
- **1.18**) Реляционная алгебра. Операции объединения и разности. Их соответствие SQL.

- **1.19**) Реляционная алгебра. Операции декартова произведения и переименования. Их соответствие SQL.
- **1.20**) Реляционная алгебра. Пересечение и естественное соединение. Их соответствие SQL.
- **1.21**) Реляционная алгебра. Операции выборки и проекция. Их соответствие SQL.
- 1.22) Реляционная алгебра. Операции присваивания и деления. Их соответствие SQL.
- **1.23**) Реляционная алгебра. Операции тета-соединения и внешнего соединения. Их соответствие SQL.
- **1.24**) Реляционная алгебра. Операции естественного и тета-соединения. Их соответствие SQL.
- **1.25**) Реляционная алгебра. Операции внешнего соединения, их разновидности. Их соответствие SQL.
- **1.26**) Реляционная алгебра. Операции обобщенной проекции, агрегации и группировки. Их соответствие SQL.
- **1.27**) Полусоединения и антисоединения. Коррелирующие и некоррелирующие подзапросы.
- 1.28) Дерево запроса. Оптимизатор запросов. План выполнения запроса.
- **1.29**) Декларативная поддержка целостности БД. Правило целостности сущностей. Создание / удаление первичного ключа таблицы: операторы CRETE TABLE и ALTER TABLE.
- **1.30**) Декларативная поддержка целостности БД. Правило ссылочной целостности. Стратегии поддержки ссылочной целостности. Создание / удаление внешнего ключа: Операторы CRETE TABLE и ALTER TABLE.
- 1.31) Процедурная поддержка целостности БД. Хранимые процедуры и функции.
- 1.32) Процедурная поддержка целостности БД. Триггеры.
- **1.33**) Определение транзакции. Свойства транзакций. Проблемы одновременного доступа. Уровни изолированности транзакций. Синтаксис работы с транзакциями.
- **1.34**) Блокирование данных. Протокол двухфазной блокировки и его разновидности. Эскалация блокировок.

2 (Практический вопрос – SQL)

Замечание: типовой пример задач на составление SQL-запроса (схема БД не будет меняться, но формулировки запросов могут отличаться на экзамене при сохранении уровня сложности).

В схему БД добавлены три таблицы:

```
-- Поставщики
create table vendor(
   v_code int primary key,
   v_name varchar (30),
   v_status tinyint not null -- статус
);
```

```
-- Продукты (товары)

create table product(

p_code int primary key,

p_name varchar (30),

p_price decimal (10,2), -- отпускная цена

p_stock decimal (10,3)-- количество на складе
);
```

```
-- Цены поставщиков

create table vendor_price(

vp_code int auto_increment primary key,

v_code int, -- код поставщика

p_code int, -- код продукта (товара, материала, сырья)

vp_data datetime, -- дата установки новой закупочной цены

vp_price decimal (10, 2) not null, -- закупочная цена

constraint foreign key (v_code) references vendor (v_code),

constraint foreign key (p_code) references product (p_code)

);
```

Сначала заполняются таблицы поставщиков и продуктов:

```
insert into vendor values
(1, 'альфа', 5),
(2, 'гамма', 7),
(3, 'дельта', 9),
(4, 'сигма', 2),
(5, 'омега', 3);
```

```
insert into product values
( 1, 'яблоко', 55, 1000),
( 2, 'груша', 77, 1500),
( 3, 'капуста', 20, 1700),
( 4, 'картофель', 35, 1400),
( 5, 'киви', 90, 800),
( 6, 'свёкла', 33, 2900),
( 7, 'морковь', 28, 2400),
( 8, 'бананы', 62, 700),
( 9, 'апельсин', 88, 900),
( 10, 'мандарин', 79, 1100);
```

Таблица **vendor_price** содержит *историю* изменения цен на продукцию от разных поставщиков. Актуальной ценой продукта считается цена, ближайшая к данному моменту времени (возможно, в разрезе поставщика).

Для начального заполнения таблицы **vendor_price** можно использовать хранимую процедуру. Пример хранимой процедуры **price_init**, реализующей заполнение таблицы, показан ниже. В параметре процедуры указывается количество вставляемых записей в таблицу. Процедура формирует тестовые данные для таблицы (случайные сочетания поставщика, продукта, закупочной цены и даты):

```
create procedure price init(in cycle int)
proq: begin
  declare a int default 0; -- счетчик
   declare max_vend int;
  declare max prod int;
   set max vend = (select max(v code) from vendor);
   set max_prod = (select max(p_code) from product);
   if max vend = 0 or max prod = 0 then
       leave prog;
  end if;
   while a < cycle do
       insert into vendor price (v code, p code, vp price, vp data)
       values (FLOOR ( 1 + RAND() * max vend),
               FLOOR (1 + RAND() * max_prod),
               FLOOR (10 + RAND() * 100),
               DATE SUB(now(), INTERVAL FLOOR (1+RAND()*31) DAY));
       set a = a + 1;
   end while;
```

```
mysql> call price_init(20);
Query OK, 1 row affected (0.05 sec)
```

Замечание: Вы можете модифицировать текст процедуры, чтобы заполнять данные не только за последний месяц.

mysql> sele	ect * from	n vendor_	price order by 2,3,4;	.
vp_code	v_code	p_code	vp_data +	vp_price
16	1	4	2021-11-17 12:59:13	69.00
2	1	4	2021-12-03 12:59:13	41.00
6	1	6	2021-12-06 12:59:13	48.00
17	1	8	2021-12-15 12:59:13	35.00
9	2	1	2021-12-14 12:59:13	36.00
3	2	2	2021-12-01 12:59:13	11.00
15	2	6	2021-11-29 12:59:13	74.00
1	2	7	2021-12-01 12:59:13	57.00
13	2	8	2021-12-04 12:59:13	24.00
8	3	1	2021-11-29 12:59:13	62.00
20	3	3	2021-12-01 12:59:13	18.00
11	3	4	2021-11-21 12:59:13	26.00
5	3	4	2021-11-28 12:59:13	43.00
4	3	4	2021-12-07 12:59:13	19.00
19	3	4	2021-12-17 12:59:13	29.00
12	4	1	2021-11-24 12:59:13	29.00
18	4	1	2021-12-07 12:59:13	17.00
7	4	4	2021-11-22 12:59:13	66.00
10	5	8	2021-12-16 12:59:13	35.00
14	5	9	2021-12-05 12:59:13	67.00
+			+	++

Замечание: **актуальная цена** – цена, наиболее близкая к текущему моменту времени. Так, актуальная цена на продукцию №4 от поставщика №1 – 41 руб. (установлена 03.12.2021, $vp_code = 2$). Актуальная цена на продукцию №4 безотносительно поставщиков – 29 руб. (установлена 17.12.2021, $vp_code = 19$).

Подготовьте тексты запросов:

- **2.01**) Получите количество видов товаров, которые когда-либо поставляли поставщики с нечетным статусом (1, 3, 5, ...) до определенного момента времени включительно. Момент задается параметром.
- **2.02**) Измените статус поставщиков, придерживаясь правила: если поставщик поставляет более 3 видов товаров, то его статус должен стать равным количеству видов поставляемых товаров.
- **2.03**) Получите названия пяти товаров, отсортировав их по разности отпускной цены и актуальной закупочной цены (5 самых «выгодных» товаров).
- **2.04**) В результате ошибок ввода в таблице product появились дубликаты (отличаются только значением первичного ключа, остальные значения полей совпадают). Удалите дубликаты (остаются записи с наименьшим значением первичного ключа).

- 2.05) Получите наименования поставщиков, которые поставляют все виды товаров.
- **2.06**) Получите наименования поставщиков, которые поставляют на данный момент времени все свои товары, дороже чем другие поставщики (самые «жадные» поставщики).
- 2.07) Получите наименования товаров, которые не поставляются ни одним поставщиком.
- **2.08**) Получите наименования товаров, запасы которых менее 1000 с указанием минимальной актуальной закупочной цены (подбор наиболее «выгодных» цен).
- **2.09**) Получите наименования продуктов, информация о ценах закупки которых не обновлялась, начиная с определенной даты, задаваемой параметром («устаревшие цены»).
- 2.10) Получите наименования поставщиков, которые поставляют хоты бы один товар дешевле, чем поставщик с определенным кодом, который задается параметром.
- **2.11**) Получите наименования поставщиков и наименования наиболее выгодных для покупки у них товаров.
- 2.12) Получите наименование товаров, которые наиболее выгодно заказать у определенного поставщика, основываясь на актуальных ценах. Код поставщика задаётся параметром.
- **2.13**) Получите наименования продуктов, закупочная цена на которые выросла более, чем в 1.5 раза за определенный период времени. Период задаётся параметрами.
- **2.14**) Получите для каждого наименования продукта значение прибыли (разность суммы продажи по отпускной цене и актуальной цены закупки безотносительно поставщиков) при условии полной ликвидации запасов.
- **2.15**) Получите 3 самых дорогих для закупки продукта на данный момент, запасы которых между 100 и 1000 (основываясь на минимальных актуальных закупочных ценах).
- **2.16**) Обновите данные поставщиков, добавив к текущему статусу 3 позиции, если они поставляют хотя бы один продукт, дешевле чем другие поставщики, основываясь на актуальных ценах закупки.
- 2.17) Обновите отпускные цены, установив их на уровне в 1.5 выше, чем максимальная актуальная цена их закупки по всем поставщикам.
- **2.18**) Обновите отпускные цены, уменьшив их в 2 раза для тех продуктов, запасы которых больше 1000, и есть больше трех поставщиков, которые поставляют данный продукт.
- **2.19**) Напишите хранимую, которая для поставщиков с определенным статусом удаляет все записи из таблицы vendor_price кроме записей с актуальными ценами. Значение статуса передаётся в качестве аргумента.
- **2.20**) Напишите хранимую процедуру, которая на определенный % изменяет все отпускные цены на товары, запасы которых больше определенного уровня. Значения % и уровня запасов передаются в качестве аргумента.

3 (Практический вопрос – Нормализация)

Замечание: Типовой пример исходной таблицы может отличаться на экзамене.

Исходные данные

В учебном заведении для планирования учебного процесса периодически подготавливается отчет, в котором содержится информация, представленная следующей таблицей:

Фамилия	Номер	Должность	Оклад	Дисциплина	Занятие	Группа	Семестр	Кол_студ
Иванов	121212	Ст. преп.	10000	БД, ОС	Практ.	111, 333	3	20, 27
Иванов	212121	Ст. преп.	10000	Информатика	Лабор.	111	3, 4	20
Петров	131313	Доцент	20000	Информатика	Лекция, Практ.	333	1	27
Петров	131313	Доцент	20000	Робототехника	Лекция	444	5, 6	18
Федоров	313131	Проф.	40000	OC	Лекция	111	3	20
Федоров	313131	Проф.	40000	ТАУ	Лекция, Лабор.	222	5	14
Федоров	313131	Проф.	40000	ТАУ	Курс. Проект	444	6	18
Яковлев	141414	Ст. преп.	10000	Информатика	Лабор.	222	2	14
Яковлев	141414	Ст. преп.	10000	Робототехника	Лабор.	444, 555	6	18, 21

Замечание: в исходной таблице указано, что, например:

Петров читает лекции и проводит практику для группы 333 в первом семестре, количество студентов в этой группе -27; также Петров читает лекции по дисциплине «Робототехника» для группы 444 в пятом и шестом семестрах, количество студентов в этой группе -18.

Иванов (с табельным номером 121212) проводит практические занятия по дисциплинам «БД» и «ОС» для групп 111 и 333 в третьем семестре; количество студентов в группах 333 и 444 — соответственно 20 и 27.

Задача

Пошагово приведите эту таблицу к схеме БД, для которой выполняются требования БКНФ (исходная таблица $\Rightarrow 1$ НФ $\Rightarrow 2$ НФ $\Rightarrow 3$ НФ $\Rightarrow Б$ КНФ). Обоснуйте каждый шаг, **указав** функциональные зависимости в получаемых отношениях.

4 (Tect)

4.1) Дано отношение Book:

Id	Title	Author	Publisher	Year

Выберите выражение реляционной алгебры, позволяющее получить перечень авторов, чьи книги издавались во всех издательствах, упомянутых в этом отношении:

- 1. R = (Book[Author, Publisher]) / (Book[Author])
- 2. R = (Book[Author, Publisher]) / (Book[Publisher])
- 3. R = Book (Book[Author])
- 4. R = Book[Author]

4.2) Дано отношение Book:

Id	Title	Author	Publisher	Year

Что получится в результате применения выражения реляционной алгебры (отношение R):

R = (Book[Publisher] <> 'Азбука' AND Year <> 2000]) [Title]

- 1. Перечень названий книг, за исключением изданнных в 2000 году или в издательстве «Азбука».
- 2. Полная инфомация о всех книгах, за исключением изданных в 2000 году или в издательстве «Азбука».
- 3. Перечень названий книг, за исключением изданнных в 2000 году в издательстве «Азбука».
- 4. Полная инфомация о всех книгах, за исключением изданных в 2000 году в издательстве «Азбука».

4.3) Дано отношение Book:

Id	Title	Author	Publisher	Year
1	Война и мир	Толстой Л.Н.	Мысль	1981
2	Война и мир	Толстой Л.Н.	Мысль	1981

Выполняются запросы:

- (1) SELECT * FROM Book;
- (2) SELECT DISTINCT * FROM Book;
- (3) SELECT Title, Author, Publisher, Year FROM Book;
- (4) SELECT DISTINCT Title, Author, Publisher, Year FROM Book;

Выберите правильное утверждение:

- 1. Все запросы вернут одинаковое число записей.
- 2. Запросы (1) и (3) вернут равное число записей, запросы (2) и (4) вернут также равное число записей, но меньшее чем у первой пары.
- 3. Запросы (1) и (2) вернут равное число записей, запросы (3) и (4) вернут также равное число записей, но меньшее чем у первой пары.
- 4. Запросы (1), (2), (3) вернут равное число записей, запрос (4) вернет меньшее число записей.

4.4) Дано отношение Book:

Id	Title	Author	Publisher	Year

Выберите запросы, возвращающие информацию о книгах, изданных в издательстве «Азбука» или «Политехника».

- 1. SELECT * FROM Book WHERE Publisher = 'Политехника', Publisher = 'Азбука';
- 2. SELECT * FROM Book WHERE Publisher IN ('Политехника', 'Азбука');
- 3. SELECT * FROM Book WHERE Publisher = 'Политехника' OR Publisher = 'Азбука';
- 4. SELECT * FROM Book WHERE Publisher = 'Политехника'

UNION

SELECT * FROM Book WHERE Publisher = 'Азбука';

4.5) Дано отношение Book:

Id	Title	Author	Publisher	Year

Выполняется запрос:

SELECT * FROM Book WHERE Publisher = 'Политехника'

UNION

SELECT Title, Author, Publisher FROM Book;

Выберите правильное утверждение о результате запроса:

- 1. Синтаксическая ошибка.
- 2. Результат, аналогичный запросу SELECT * FROM Book;
- 3. Результат, аналогичный запросу SELECT * FROM Book where publisher = 'Азбука';
- 4. Результат, аналогичный запросу SELECT Title, Author, Publisher FROM Book;

4.6) Дано отношение Book:

Id	Title	Author	Publisher	Year

Выберите выражение реляционной алгебры, позволяющее найти всех авторов, ни одной книги которых не было выпущено в издательстве «Азбука»:

- 1. (Book[Publisher <> 'Азбука'])[Author]
- 2. (Book[Author]) ((Book[Publisher = 'Азбука'])[Author])
- 3. Book[Publisher <> 'Азбука']
- 4. Ни один из предложенных вариантов

4.7) Даны отношения Student и Result:

Id	Name
123	Иванов
124	Петров

Id	Subject	Mark
123	Математика	5
124	Математика	3
123	БД	5

Выберите все правильные варианты, которые позволяют отобрать ФИО студентов, сдавших хотя бы один экзамен на оценку 5:

- 1. SELECT DISTINCT Name FROM Student, Result WHERE Student.Id = Result.Id AND Mark=5;
- 2. SELECT DISTINCT Name FROM Student LEFT JOIN Result ON Student.Id = Result.Id AND Mark=5:
- 3. SELECT DISTINCT Name FROM Student INNER JOIN Result ON Student.Id = Result.Id AND Mark=5;
- 4. SELECT DISTINCT Name FROM Student WHERE Id NOT IN (SELECT Id FROM Result WHERE Mark <> 5);

4.8) Даны отношения:

Даны отношения Student и Result:

Id	Name
123	Иванов
124	Петров

Id	Subject	Mark
123	Математика	5
124	Математика	3
123	БД	5

Выберите все запросы, которые для приведенных данных вернут пустое множество:

- 1. SELECT * FROM Student;
- 2. SELECT * FROM Student LEFT JOIN Result ON 1<>1;
- 3. SELECT COUNT(*) FROM Student GROUP BY Name;
- 4. SELECT * FROM Student INNER JOIN Result ON 1<>1;
- 5. SELECT COUNT(*) FROM Student GROUP BY Name HAVING COUNT(*) > 1;

4.9) Дано отношение Book:

Id	Title	Author	Publisher	Year

Выбрать запрос, возвращающий сведения о тех авторах, чьи книги переиздавались:

- 1. SELECT DISTINCT Author FROM Book GROUP BY Author, Title HAVING COUNT(Id)>1;
- 2. SELECT DISTINCT Author FROM Book WHERE COUNT(Id)>1;
- 3. SELECT DISTINCT Author FROM Book GROUP BY Author HAVING COUNT(Id)>1;
- **4.10**) Даны отношения Book и Book_in_Lib. Подготовлены запросы (1) и (2), которые должны выбрать книги, имеющиеся в Book, но отсутствующие в Book_in_Lib:

Id	Title	Author	Publisher	Year
1	Химия	Ахметов	Политехника	1996
2	Базы данных	Гончаров	BHV	2000
•••	•••	•••	•••	•••

LibId	Id	Status
10	1	хранится
11	1	выдана
		•••

- (1) SELECT * FROM Book WHERE Id NOT IN (SELECT Id FROM Book_in_Lib);
- (2) SELECT * FROM Book WHERE NOT EXISTS (SELECT * FROM Book_in_Lib WHERE Book.Id = Book_in_Lib.Id);

Выберите правильно утверждение:

- 1. Запрос (1) даст неправильный результат.
- 2. Запрос (2) даст неправильный результат.
- 3. Оба запроса дадут правильный результат, но производительность запроса (2) выше.
- 4. Оба запроса дадут правильный результат, но производительность запроса (1) выше.

4.11) Даны отношения Student и Result:

Id	Name
123	Иванов
124	Петров

Id	Subject	Mark
123	Математика	5
124	Математика	3
123	БД	5

Выберите все запросы, которые приведут к ошибкам:

- 1. SELECT S.Id FROM Student S;
- 2. SELECT * FROM Student WHERE Mark > 5;
- 3. SELECT * FROM Student WHERE NOT EXISTS (SELECT * FROM Result WHERE Id =2);
- 4. SELECT * FROM Student GROUP BY Name;

4.12) Дано отношение:

Id	Title	Author	Publisher	Year

Необходимо увеличить на 1 год издания всех книг, выпущенных в издательстве «Политехника». Выберите правильные варианты запроса для решения этой задачи:

- 1. UPDATE Book SET Year++ WHERE Publisher = 'Политехника';
- 2. UPDATE Book SET Year=Year + 1 WHERE Publisher = 'Политехника';
- 3. UPDATE Year FROM Book SET Year=Year + 1 WHERE Publisher = 'Политехника';
- 4. UPDATE Book SET Year=Year++ WHERE Publisher IN ('Политехника');
- 5. UPDATE Book SET Year=Year + 1 WHERE Publisher NOT IN ('Политехника');

4.13) Дано отношение Book:

Id	Title	Author	Publisher	Year
1	Война и мир	Толстой Л.Н.	Мысль	1981
2	Война и мир	Толстой Л.Н.	Мысль	1981

Выберите запрос, который вернёт перечень авторов и названий книг без повторений:

- 1. SELECT * FROM Author, Title;
- 2. SELECT DISTINCT * FROM Book;

- 3. SELECT DISTINCT * FROM Author, Title;
- 4. SELECT DISTINCT Author, Title FROM Book;
- 5. SELECT Author, Title FROM Book;

4.14) Дано отношение:

Id	Title	Author	Publisher	Year

Была создана таблица Book_Old с аналогичной структурой. Необходимо поместить в неё информацию о всех книгах, которые были изданы до 2000 года. Выберите правильный вариант запроса:

- 1. INSERT INTO Book_Old SELECT * FROM Book WHERE Year < 2000;
- 2. INSERT INTO Book_Old VALUES (SELECT * FROM Book WHERE Year < 2000);
- 3. SELECT * FROM Book WHERE Year < 2000 TO Book_Old;
- 4. COPY * FROM Book WHERE Year < 2000 TO Book_Old;
- 5. SELECT * FROM Book WHERE Year LESS THEN 2000 TO Book_Old;

4.15) Даны отношения Book и Result:

Id	Title	Author	Publisher	Year
1	Война и мир	Толстой Л.Н.	Мысль	1981
2	Война и мир	Толстой Л.Н.	Мысль	1981

Id	Subject	Mark
123	Математика	5
124	Математика	3
123	БД	5

Отношение R равно декартову произведению Book и Result. Выберите правильный вариант, описывающий степень и кардинальное число отношения R:

- 1. Степень R = 3; кардинальное число R = 2;
- 2. Степень R = 3; кардинальное число R = не определено;
- 3. Степень R = 8; кардинальное число R = не определено;
- 4. Степень R = 8; кардинальное число R = 6;
- 5. Степень R = 2; кардинальное число R = 6;
- 6. Степень R = 2; кардинальное число R = 5;