PROBABILITY THEORY CLASS 2

- · Agenda for today
 - Take home Q V
 - Independence
 - Conditional probability
 - conditional Independence
 - simpson's paradox
 - Bayes Rule
- · Independence

Two events A, B are independent iff.

$$\int \xi \cdot P(AB) = P(A \cap B) = P(A) \cdot P(B)$$

Proving ? Assumption: 2 coin tosses

independence] (, Desived: PLAB) = P(A). P(B)

Ex:
$$D = \{1,2,3,4,5,6\}$$
 $A = \{1,2,3,4\}$, $P(A) = \frac{4}{6} = \frac{2}{3}$
 $\{B = \{2,4,6\}\}$, $P(B) = \frac{3}{6} = \frac{1}{2}$
 $AB = \{2,4\}$, $P(AB) = \frac{2}{6} = \frac{1}{3}$

clearly $P(AB) = \frac{1}{3} = P(A) \cdot P(B)$

Occurance of B has no effect on A

Say B has happened, then

 $\frac{2 \cdot A}{2 \cdot 4}$, $\frac{4 \cdot 4}{2 \cdot 4}$, $\frac{6 \cdot 4}{4}$
 $\Rightarrow P(A|B) = \frac{2}{3}$ (same as above)

Ex:
$$-\Omega = \{1,2,3,4,5,6\}$$

Dependent $A = \{2,4,6\}, P(A) = \frac{1}{2}$
 $B = \{4,5,6\}, P(B) = \frac{1}{2}$
 $AB = \{4,6\}, P(AB) = \frac{1}{3}$

- Disjoint: { H/T, Odd/even}

VS Independence: {à tosses, of stock set}

· Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \xi$$

MANBIN

nB/N

P(B) >0

Normalize

$$P(A|B) = \frac{P(AB)}{P(B)}$$

$$P(B|A) = \frac{P(AB)^{\frac{3}{2}}}{P(A)}$$

$$P(A|B) = P(B|A) \cdot \frac{\widetilde{P(A)}}{P(B)}$$
 Bayes Rule

· Law of total Prob.

$$P(B) = P(BA_1) + P(BA_2) + P(BA_3)$$

$$P(B|A_1) = P(BA_1)$$

$$P(A) = P(A|B) \cdot P(B) + P(A|B^{c}) \cdot P(B^{c})$$
car
alarm

Maloc

NUCE

(b)
$$P(A|B) \neq 1 - P(A|B^c)$$

(c)
$$P(A|B) = I - P(A^c|B)$$

(d)
$$P(A|B) = P(B|A) \cdot P(A)$$
 Prior $P(B)$?

Posterior Likelihood

· Conditional Independence

A and B are conditionally independent given C iff

Ex: Unconditional independence + conditional Independence

P(AB/c) = 2/6 = 5

[condidep]
$$P(AB|c)$$
 (f) $P(A|c) \cdot P(B|c)$
[Uncondic] $P(AB) = P(A) \cdot P(B)$
Indep

Two events that are unconditionally independent but conditionally dependent

Ex: Two events that are dependent but conditionally independent

AC =
$$\{2,4\}$$
, $P(A|c) = \frac{700}{900} = \frac{1}{416} = \frac{1}{2}$
BC = $\{4,5\}$ = $P(B|c) = \frac{P(Bc)}{P(c)} = \frac{246}{416} = \frac{1}{2}$
ABn C = $\{4\}$, $P(AnB|c) = \frac{P(ABnc)}{P(c)} = \frac{116}{416}$
 $P(AB|c) = \frac{1}{4} = P(A|c) \cdot P(B|c) = \frac{1}{2} \times \frac{1}{2}$

· Simpson's Paradox

Dr. Dave (Good)

Dr. Nick (Bad)

	my	/mm	_
	Heart	Banda	H
Success	70	(b)	80
Fail	೩೦ \	0	do
·	70 =	K., 10 :	1001.

- confounding vasiables

· Bayes Theorem

P(cas Alasm) = 0.207 $P(Theft | Cas Alasm) = P(CA|T) \times \frac{P(T)}{P(CA)}$

$$=$$
 $(0.9) \times (0.01) = (0.043)$

$$P(H, | Data) = P(D|H) \cdot \frac{P(H)}{P(D)}$$
 $H_2 \mid D$