

The Hashemite University Faculty of Engineering

Control system

Control's project

Name:	Major:	ID	
Osama Ziad Abu-	Computer	1632968	
Jweed	Engineering		
Osama Yehya	Computer	1632971	
Johar	Engineering		
Mu'men Fayez	Mechatronics	1636716	
Abu-Zeneh	Engineering		
Israa Ahmad	Computer	1632972	
Fedda	Engineering		
Bothaina Anwar	Biomedical	1632876	
Zakarneh	Engineering		
Sameeha	Biomedical	1636920	
Almobiadeen	Engineering		
Bahaa Tayseer Al-	Biomedical	1632879	
Khader	Engineering		

Introduction:

We suggested a suspension system as system that we modeled and simulated it:

PURPOSE OF SUSPENSION SYSTEM

- Supports the weight.
- Provides a smooth ride.
- Allows rapid cornering without extreme body roll.
- Keeps tires in firm contact with the road.
- Allows front wheels to turn side-to-side for steering.

Isolate passenger and cargo from vibration and shock

Suspension System Basic Parts: Control Arm:- movable lever that fastens the steering knuckle to the vehicle's body or frame. Steering Knuckle:— provides a spindle or bearing support for the wheel hub, bearings and wheel assembly.

Suspension System

Basic Parts:

Ball Joints:— swivel joints that allow control arm and steering knuckle to move up and down and side to side.

Springs:– supports the weight of the vehicle; permits the control arm and Wheel to move up and down.

Today's complex import suspension syste

Suspension System

Basic Parts:

Shock absorbers or dampeners:- keeps the suspension from continuing to bounce after spring compression and extension.

Control arm bushing:sleeves that allows the control arm to swing up and down on the frame.

Modeling analysis:

$$F(t) \\ \sum f = My \cdot \cdot \cdot$$

$$F(t) - ky - by = My$$

$$My + by + ky = f(t)$$

Take a lapalcian to find transfer function :

 $Ms^2y(s)+bsy(s)+ky(s)=f(s)$

We supposed that : input=y(s), output=f(s)

 $G(s)=y(s)/f(s)=1/ms^2+bs+k$

And we supposed M=3, b=1.5, k=1

We have a unit feedback signal H(s)=1

Simulation part:

after we enter the transfer function to MatLab to get response step of the transfer function , we have got the next response :

on the work space:

• We can see that the response is not stable as good as we hope so we should find a control to make much more stable.

Selected controller:

-So the control will be (K/s)

gain K =0.0175

-We found gain(K) by using root locus on MatLab , by search about the values that they have the lowest overshoot .

Let us watch the next graph:

Now we have got the new response:

Discussion:

- We can see that in the first paragraph the response was not stable enough.
- So we used a control to help us to have a much more stable response.
- The control was (gain (K)/s).
- Gain K was found by using locus root.
- K = 0.0175
- After we enter the controller to the system, we have got a much more stable response.
- We can see that before we entered the control , the time is taking to reach to the steady state value is shorter than after entered the control .
- When we entered the control (K/s) when K = 1, there was no stable response (worst response stability), so we used root locus to find a better gain K which it has the lowest overshoot.

Simulink part:

After we enter the transfer function to MatLab to get response step of the transfer function , we have got the next response :

on the work space:

The scope 1 after 550:

We can see that the response is not stable so we should find a control to make much more stable.

After selected controller:

The scope 2 after 550:

So we must control the system need some value from root locus as

We use sisotool in MatLab to show value we need as show the value we read it's: 1.8759e-7 we take this value and put that in PID in Integral:

PID Controller								
	xternal r	eset, and signal to	discrete-time PID co racking. You can tun					
controller: PID			Form:	Parallel				
Time domain:								
Continuous	-time							
O Discrete-tin	ne							
Main PID A	dvanced	l Data Types	State Attributes					
Controller par	ameters	3						
Source:	: internal					-	⊡ Compe	nsator formula
Proportional (P):	.05204165						
Integral (I):		1.8759e-07					1	- N
Derivative (D):		.05204165	$P + I \frac{1}{s} + D \frac{N}{1 + N \frac{1}{s}}$					
Filter coefficie	ent (N):	100						s
						Tune		
Initial conditio	ns							
Source: ir	nternal							•
Integrator: 0								
Filter: 0								
External reset:								
Ignore reset Z Enable zero-		2						
Chaple Zero-	crossing	detection						
								>
2					OK	Cancel	Help	Apply

The system shape will be:

The scope 3 after 550:

