Álgebra Linear I - Lista 2

Coordenadas e vetores

Respostas

1) Sendo A(1, -1, 3) e B(3, 1, 5), até que ponto se deve prolongar o segmento AB, no sentido de A para B, para que seu comprimento quadruplique de valor?

Resposta: Temos que

$$AB = (2, 2, 2)$$

O novo segmento:

$$AB' = t(AB)$$

tal que

$$||t(AB)|| = 4||AB||$$

Assim temos que:

$$|t| = 4$$

Como queremos no sentido de A para B temos que t=4

$$AB' = (8, 8, 8)$$

$$B' - A = (8, 8, 8)$$

$$B' = (8, 8, 8) + (1, -1, 3) = (9, 7, 11)$$

2) Encontre as coordenadas dos vértices A e B e do centro P do retângulo e dos vértices C, D, E e F do paralelepípedo (Observamos que os lados e as arestas das figuras são paralelos aos eixos coordenados).

Resposta:

- Paralelogramo: A = (-3, 2), B = (0, -1), e P = (-3/2, 1/2).
- Paralelepipedo: Observe que o ponto F está nos planos z=5, y=7 e x=5. Portanto, F=(5,7,5). Raciocinando de forma análoga temos C=(3,7,5), D=(5,4,5) e E=(5,4,7).
- 3) Encontre as coordenadas dos vértices do quadrado inscrito na circunferência de raio dois centrada na origem, cujos lados são paralelos aos eixos coordenados X e Y. Estes vértices determinam vetores u_1 , u_2 , u_3 e u_4 . Determine as coordenadas de $u_1 + u_1$, $u_1 + u_2$, $u_1 + u_3$ e $u_1 + u_4$. Os extremos destes novos vetores determinam um quadrado?

Resposta: Os vértices são $\sqrt{2}(1,1)$, $\sqrt{2}(1,-1)$, $\sqrt{2}(-1,1)$ e $\sqrt{2}(-1,-1)$. Os vetores são: $\sqrt{2}(2,2)$, $\sqrt{2}(2,0)$, $\sqrt{2}(0,2)$ e (0,0). Sim, os extremos destes vetores formam um quadrado. Vemos isto fazendo produtos escalares: os lados são paralelos aos vetores (0,1) e (1,0) (verifique este fato). Certamente, o produto escalar destes dois vetores é zero.

- 4) Determine as coordenadas:
- Do ponto de interseção das diagonais de um paralelogramo em função dos seus vértices. Faça o mesmo para um paralepípedo.
- Dos vértices de um tetraedro regular disposto no espaço do jeito que você quiser. Faça o mesmo para um cubo.

Resposta: Veremos primeiro o caso do paralelogramo. Suponha que os vértices são A, B, C e D e que Sejam u = AB e v = AC são vetores paralelos aos lados do paralelogramo. Em primeiro lugar faremos com A = (0,0). Temos que os pontos de uma diagonal são da forma $x(u+v), x \in [0,1]$ (faça uma figura para verificar). Os da outra diagonal são $v - y(v - u), y \in [0,1]$. A interseção portanto deverá verificar

$$x(u+v) = v + y(u-v), \quad (x-y)u = v(1-x-y).$$

Como u e v não são paralelos teremos x - y = 0 e 1 - x - y = 0. A solução é x = 1/2 = y. Portanto, o ponto de interseção é o de coordenadas (u + v)/2.

No caso geral, considerando que $u=(b_1-a_1,b_2-a_2)$ e que $v=(c_1-a-1,c_2-a_2)$ temos que o ponto é $A+(u+v)/2=((b_1+c_1)/2,(b_2+c_2)/2$. Isto é, o ponto médio do segmento BC.

Raciocine de forma análoga no caso do paralelepípedo.

Para determinar as coordenadas dos vértices de um tetraedro determinaremos a base, deixando v. completar a construção. Tomaremos os dois primeiros vértices no eixo X, os pontos A=(0,0,0) e B=(1,0,0). Tomaremos um terceiro vértice C no plano z=0. Este novo vértice equidista de A e B, logo é da forma (1/2,y,0). Determinaremos y observando que as distâncias de A a C e de B a C são iguais a 1. Temos duas opções: $C=(1/2,\sqrt{3}/2,0)$ e $C=(1/2,-\sqrt{3}/2,0)$. Escolhendo a primeira complete a construção.

5) Prove que os pontos médios de dois lados de um triangulo são ligados por um segmento então este lado é paralelo ao terceiro lado do triângulo e tem a metade de comprimento.

Resposta: Temos que se os vértices do triângulo são $A,\ B$ e C então os pontos médios são

$$P = (A+B)/2$$
, $Q = (A+C)/2$, e $R = (B+C)/2$.

(Faça a figura. Agora a afirmação é óbvia: $P \in R$ determinam o vetor de coordenadas (C-A)/2 que é paralelo ao vetor \overline{AC} . Nos outros casos o raciocínio é análogo. A afirmação sobre o comprimento também segue do argumento anterior.