HOMEWORK 4 – MATH 392 February 1, 2018

ALEX THIES athies@uoregon.edu

1. Book Problems

Problem 8.49. Let $b(x) = -\frac{1}{6} - \frac{4}{6}x - \frac{8}{3}x^2 - \frac{3}{2}x^3 + 5x^4$ in $\mathbb{Q}[x]$. Find an associate of b(x) in $\mathbb{Z}[x]$ then determine the possible roots for b(x) in \mathbb{Q} .

Proof. We compute the following:

$$b(x) = -\frac{1}{6} - \frac{4}{6}x - \frac{8}{3}x^2 - \frac{3}{2}x^3 + 5x^4,$$

$$= \frac{-1 - 4x - 16x^2 - 9x^3 + 30x^4}{6},$$

$$= \frac{1}{6} \left(-1 - 4x - 16x^2 - 9x^3 + 30x^4 \right),$$

$$= \frac{1}{6} \tilde{b}(x).$$

Thus we have found $\tilde{b}(x) \in \mathbb{Z}[x]$, which is an associate of b(x).

Problem 8.56. For the possible roots of $q(x) = -\frac{3}{49} - \frac{2}{7}x + x^2 - \frac{3}{49}x^3 - \frac{2}{7}x^4 + x^5$ found in the previous problem determine which actually are roots.

Proof. First, we do Problem 8.55:

$$q(x) = -\frac{3}{49} - \frac{2}{7}x + x^2 - \frac{3}{49}x^3 - \frac{2}{7}x^4 + x^5,$$

$$= \frac{-3 - 14x + 49x^2 - 3x^3 - 14x^4 + 49x^5}{49},$$

$$= \frac{1}{49} \left(-3 - 14x + 49x^2 - 3x^3 - 14x^4 + 49x^5 \right),$$

$$= \frac{1}{49} \tilde{q}(x).$$

We now find the rational roots of $\tilde{q}(x)$, which will also be rational roots of q(x). Since $a_0 = -3$ and $a_n = 49$, the set R of all potential rational roots of q(x) is $R = \{\pm 1, \pm 1/7, \pm 1/49, \pm 3, \pm 3/7, \pm 3/49\}$. Let R^* be

the set of actual rational roots of q(x). I used SageMath to determine which elements of R are also elements of R^* ,

$$R^* = \{-1, -1/7, 3/7\}.$$

Problem 8.59. Use Eisenstein's Criterion to show that the polynomial $a(x) = \frac{2}{5} + \frac{8}{15}x + \frac{2}{3}x^2 + \frac{4}{5}x^3 + \frac{2}{15}x^4 + \frac{4}{15}x^5 + \frac{1}{3}x^6$ is irreducible over \mathbb{Q} .

Proof. First we find an integral associate of a(x). By utilizing the same methods as the previous problems, we find an integral associate $\tilde{a}(x) = 6 + 8x + 10x^2 + 12x^3 + 2x^4 + 4x^5 + 5x^6$. If we can use Eisenstein's Criterion to show that $\tilde{a}(x)$ is irreducible over \mathbb{Q} , then we also know that a(x) is irreducible over \mathbb{Q} as well.

Notice that the prime p=2 satisfies the conditions necessary to invoke Eisenstein's Criterion, since $2|a_i$, $0 \le i \le n-1$, and $2 \nmid 5$, and $2^2 \nmid 6$. Hence, by applying Eisenstein's Criterion to an integral associate of a(x), we have shown that a(x) is irreducible over \mathbb{Q} , as instructed.

We can approach the remaining three problems from the text with one basic framework. First, we find an integral associate, $\tilde{a}(x)$, of a(x). Second, we utilize the rational roots theorem to generate a set R of all potential rational roots of $\tilde{a}(x)$, and then use a computer to whittle that list down to the set R^* of all actual rational roots of $\tilde{a}(x)$. Next, we write $\tilde{a}(x)$ as a product of its linear factors and some other integral factor b(x), that we find by polynomial long division. Finally, we determine if b(x) is irreducible over \mathbb{Q} by one of the various methods we have learned in Section 8.3. That leaves us with the ability to write a(x) in terms its completely factored integral associate, as desired.

Problem 8.69. Factor $a(x) = -\frac{1}{12} + 0x + \frac{13}{12}x^2 + \frac{11}{12}x^3 + \frac{1}{12}x^4 + x^5$ into a product of irreducible polynomials in $\mathbb{Q}[x]$. Be sure to verify that the factors are irreducible over $\mathbb{Q}[x]$.

Proof. We find the integral associate $\tilde{a}(x) = -1 + 13x^2 + 11x^3 + x^4 + 12x^5$, and the set of all actual rational roots $R^* = \{-1/3, 1/4\}$. Thus, we can write $\tilde{a}(x) = (x + 1/3)(x - 1/4)b(x)$ for some $b(x) \in \mathbb{Z}[x]$. Using polynomial long division we find that $b(x) = x^3 + x + 1$. One can easily invoke the rational roots theorem on b(x) to see that its only potential rational roots are ± 1 , which upon inspection we find are not actual

roots of b(x), thus b(x) is irreducible over \mathbb{Q} . Therefore, we can write a(x) as a product of its factors that are irreducible over \mathbb{Q} , i.e.,

$$a(x) = \frac{1}{12}(x+1/3)(x-1/4)(x^3+x+1).$$

Problem 8.70. Factor $a(x) = -\frac{40}{3} - \frac{50}{3}x - \frac{25}{3}x^2 - \frac{50}{3}x^3 + \frac{7}{3}x^4 - \frac{10}{3}x^5 + x^6$ into a product of irreducible polynomials in $\mathbb{Q}[x]$. Be sure to verify that the factors are irreducible over $\mathbb{Q}[x]$.

Proof. We find the integral associate $\tilde{a}(x) = -40 - 50x - 25x^2 - 50x^3 + 7x^4 - 10x^5 + 3x^6$, and set of actual rational roots $R^* = \{-2/3, 4\}$. Thus, we can write $\tilde{a}(x) = (x + 2/3)(x - 4)b(x)$ for some $b(x) \in \mathbb{Z}[x]$. Using polynomial long division we find that $b(x) = x^4 + 5x^2 + 5$. This time instead of rational roots, we'll use Eisenstein's Criterion to show that b(x) is irreducible over \mathbb{Q} . Notice that p = 5 satisfies all of the necessary conditions under which we can invoke Eisenstein's Criterion, thus b(x) is irreducible over \mathbb{Q} . Therefore, we can write a(x) as a product of its factors that are irreducible over \mathbb{Q} , i.e.,

$$a(x) = \frac{1}{3}(x+2/3)(x-4)(x^4+5x^2+5).$$

Problem 8.71. Factor $a(x) = \frac{1}{6} + \frac{5}{2}x + 11x^2 + 13x^3 + \frac{13}{2}x^4 + 3x^5$ into a product of irreducible polynomials in $\mathbb{Q}[x]$. Be sure to verify that the factors are irreducible over $\mathbb{Q}[x]$.

Proof. We find the integral associate $\tilde{a}(x) = 1 + 15x + 66x^2 + 78x^3 + 39x^4 + 18x^5$, and set of actual rational roots $R^* = \{-1/6\}$. Thus, we can write $\tilde{a}(x) = (x+1/6)b(x)$ for some $b(x) \in \mathbb{Z}[x]$. Using polynomial long division we find that $b(x) = 3x^4 + 6x^3 + 12x^2 + 9x - 1$. We'll use rational roots for b(x) this time, obtaining the set of all potential rational roots $R_b = \{\pm 1, \pm 1/3\}$, and using a computer we find that none of these are actually roots of b(x), therefore b(x) is irreducible over \mathbb{Q} . Hence, we can write a(x) as a product of its factors that are irreducible over \mathbb{Q} , i.e.,

$$a(x) = \frac{1}{6}(x+1/6)(3x^4+6x^3+12x^2+9x-1).$$

4

2. Extra Problems

Determine if the following are reducible or irreducible over the rationals:

1)
$$a(x) = x^4 + x^3 - x - 1$$
.

1)
$$a(x) = x^4 + x^3 - x - 1$$
.
2) $b(x) = \frac{1}{28}x^7 + \frac{1}{4}x^6 + \frac{9}{4}x^5 + \frac{7}{4}x^4 + \frac{1}{4}x^4 + \frac{1}{2}x^2 + \frac{3}{4}x + \frac{1}{4}$.
3) $c(x) = x^4 + x^3 + 2x^2 + x + 1$.

3)
$$c(x) = x^4 + x^3 + 2x^2 + x + 1$$
.

4)
$$d(x) = x^4 + 8x + 15$$
.

Proof.

- 1) Upon inspection we see that a(x) has roots ± 1 , thus it has linear factors $(x \pm 1)$, and is reducible over \mathbb{Q} .
- 2) We find the integral associate $\tilde{b}(x) = 7 + 21x + 14x^2 + 7x^3 + 49x^4 + 7x^4 + 12x^2 +$ $63x^5 + 7x^6 + x^7$. Notice that for $\tilde{b}(x)$, we can use p = 7 to invoke Eisenstein's Criterion, hence $\tilde{b}(x)$ and b(x) are irreducible over \mathbb{Q} .
- 3) Here we can utilize the rational root theorem to see that the only potential roots are ± 1 , and upon inspection we see that neither are actually roots, thus c(x) is irreducible over \mathbb{Q} .
- 4) Again we use the rational root theorem and obtain the set of all potential rational roots $R_d = \{\pm 1, \pm 3, \pm 5, \pm 15\}$. Using a computer we find that none of these are actually roots of d(x), hence d(x) is irreducible over \mathbb{Q} .