FDEM PCB

By Martis James-Ravenell and Lizzie Bruce

SPECIAL THANKS TO GAVIN WILSON

GOAL

- LEARN HOW TO USE THE VOLTERA V1
 - TO HELP FUTURE GEOPHYSICS STUDENTS AT MINES
- PRINT CIRCUIT FROM GAVINS FREQUENCY DOMAIN ELECTROMAGNETIC INSTRUMENT
 - TO DECREASE THE COST AND COMPLEXITY AS A STEP TOWARDS MASS PRODUCING THE INSTRUMENT

FREQUENCY DOMAIN EM

DESIGN

OUR GOAL WAS TO PRINT THE RC OSCILLATOR COMPONENT OF THE SCHEMATIC

EAGLE

PROS

- GENERATES CAM DATA
- FREE VERSION

CONS

- ADDING PARTS IS COMPLICATED
- LIBRARY FOR PARTS IS NOT PREDICTIVE
- Very awkward user experience

EAGLE SCHEMATIC

Eagle Board

Latest Community Posts

2 2 2

Why no milling? Replacement parts

Ground plane alternative

WORK FLOW

- LOAD DRILLING FILE AND CIRCUIT FILE FROM EAGLE CAM DATA
- CHECK CIRCUIT DIMENSION ON BOARD
- DRILL HOLES
 - PLACE SACRIFICIAL BOARD
 - USE KB SURROGATE BOARD
- PRINT CONDUCTIVE INK
- BAKE CIRCUIT
- LOAD BOTTOM OF CIRCUIT

- PRINT CONDUCTIVE INK
- BAKE CIRCUIT
- RIVET
- PLACE PARTS
- SOLDER

ISSUES

- SOLDERING
 - 356 °F (180 °C)- 400 °F (205 °C)
 - SOLDERING IRON 392 °F (200 °C)
 - SILVER SCAVENGING
- ELECTRICAL COMPONENTS
- TIME
- PRINTING BOTTOM
- RIVETING
- DRILLING DEPTH
- VOLTERA COMMUNITY

TEST CIRCUITS

- Understanding V one
- Testing soldering methods
- METHODS
 - SOLDERING
 - SOLDERING PASTE

RESULTS

RESULTS/FUTURE WORK

- SUCCESSFUL USE OF VOLTERA V-ONE
 - PRINTING
 - DRILLING
 - SOLDERING
- TESTING
 - PCB design with power amplifier and transmitter coil
- ARDUINO IMPLEMENTATION