MATH 644

Chapter 5

SECTION 5.1: CAUCHY'S THEOREM

Contents

Integration of Rational Functions	2
Cauchy's Theorem	3
Cauchy's Integral Formula	4

Created by: Pierre-Olivier Parisé Spring 2023

PROPOSITION 1. If r is a rational function with poles $p_1, p_2, ..., p_N$ and if γ is a closed curve for which $p_k \not\in \gamma$, for any k = 1, 2, ..., N, then

$$\int_{\gamma} r(\zeta) d\zeta = \sum_{k=1}^{N} c_{k,1} \int_{\gamma} \frac{1}{\zeta - p_k} d\zeta,$$

where $c_{k,1} \in \mathbb{C}$, for $k = 1, 2, \dots, N$.

Proof.

$$r(z) = \sum_{k=1}^{N} \frac{h_k}{\sum_{j=1}^{n} \frac{(z-p_k)^j}{(z-p_k)^j}} + q(z)$$

From Thm. 4 from sec. 4.4 & from

Cauchy's Therem

$$\int_{\mathcal{Y}} q(z) dz = 0.$$

$$\int_{\gamma} \frac{1}{(z-pk)^{j}} dz = 0 , j = 7, 3, ..., nk$$

 \Box

So, integrating

$$\Rightarrow \int_{\gamma} F(z) dz = \sum_{k=1}^{N} C_{k,1} \int_{\gamma} \frac{1}{z - p_{k}} dz.$$

CAUCHY'S THEOREM

THEOREM 2. Suppose γ is a cycle contained in a region Ω , and suppose

$$\int_{\gamma} \frac{d\zeta}{\zeta - a} = 0 \quad (\forall a \notin \Omega).$$

If f is analytic on Ω , then

$$\int_{\gamma} f(\zeta) \, d\zeta = 0.$$

Proof.

By Kunge's Theorem, we can find a sequence (rn) of rational functions with poles in C/JZ s.t.

rn -> functionally on y.

By thm. of in \$4.4, we may choose of to be precevise cont. cliff. I of finite length.

Threfre:

 $\int_{\gamma} f(z) dz = \lim_{N \to \infty} \int_{\gamma} r_{N}(z) dz$ $= \lim_{N \to \infty} \frac{H_{N}}{\sum_{k=1}^{N} c_{k,1}^{N}} \int_{\gamma} \frac{1}{3 - p_{k}^{N}} dz$ = 0.

Cauchy's Integral Formula

THEOREM 3. Suppose γ is a cycle contained in a region Ω , and suppose

$$\int_{\gamma} \frac{d\zeta}{\zeta - a} = 0 \quad (\forall a \notin \Omega).$$

If f is analytic on Ω and $z \in \mathbb{C} \setminus \gamma$, then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = f(z) \cdot \frac{1}{2\pi i} \int_{\gamma} \frac{1}{\zeta - z} d\zeta.$$

Proof.
Note that the function, for a fixed
$$Z \in \mathbb{R}$$
,
$$g(3) = \begin{cases} \frac{1}{3} - \frac{1}{2} \\ \frac{1}{2} \end{cases} \quad (3 \in \mathbb{R} \ \ 3 \neq 2)$$

By Cauchy's Therem (Thm.z),
$$\int_{\gamma} g(3) d3 = 0.$$

$$\Rightarrow \frac{1}{2\pi i} \int_{y} \frac{1}{3-z} d3 - \frac{1}{2\pi i} \int_{y} \frac{1}{3-z} = 0$$

$$\Rightarrow \frac{1}{3\pi i} \int_{y} \frac{f(3)}{3-2} d3 = \frac{f(2)}{3\pi i} \int_{y} \frac{d3}{3-2} (.2 \in \mathbb{Z}).$$

When
$$Z \notin JZ$$
, then $\int_{\gamma} \frac{1}{3-2} d3 = 0$

So,

$$0 = \frac{1}{2\pi i} \int_{y} \frac{f(3)}{3-2} d3$$

$$= \frac{f(2)}{2\pi i} \int_{y} \frac{d3}{3-2} d3$$
because =0.

EXAMPLE 4. Let $\gamma = \gamma_1 + \gamma_2$ be the cycle formed by $\gamma_1(t) = z_0 + re^{it}$ (clockwise direction) and $\gamma_2(t) = z_0 + Re^{it}$ (counter-clockwise direction), where $0 \le t \le 2\pi$ and r < R. Let Ω be the region bounded by γ . If f is analytic on the closure of Ω , then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \begin{cases} 0 & \text{if } |z - z_0| < r, \\ f(z) & \text{if } r < |z - z_0| < R, \\ 0 & \text{if } |z - z_0| > R. \end{cases}$$

1) Suppose 12-20/25

Fran Cauchy's integral finula,

$$\beta_{u1}$$
,
$$\int_{y} \frac{1}{3-z} d3 = \int_{y_{2}} \frac{1}{3-z} d3 + \int_{y_{1}} \frac{1}{3-z} d3$$

$$= 2\pi i - 2\pi i = 0$$

So,
$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(3)}{3-2} d3 = 0$$
.

2 r < 12-2012R.

From (x),

$$\frac{1}{3\pi i} \int_{y} \frac{f(3)}{3-2} d3 = \frac{f(2)}{3\pi i} \int_{y} \frac{1}{3-2} d3$$

$$= \frac{f(2)}{3\pi i} \int_{y} \frac{1}{3-2} d3 + \int_{y^{2}} \frac{1}{3-2} d3$$

$$= 0 \quad \text{Zef int}(y_{1})$$

$$= \frac{1}{2}(2)$$

$$= \frac{1}{2}(2)$$

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(s)}{3-2} d3 = \frac{f(z)}{2\pi i} \left(\int_{\gamma_1} \frac{1}{3-2} d3 + \int_{\gamma_2} \frac{1}{3-2} d3 \right)$$

 \Box