Boosting and Adaboost

CS 584 Data Mining (Spring 2022)

Prof. Sanmay Das George Mason University

Slides are adapted from the available book slides developed by Tan, Steinbach, Karpatne, and Kumar

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of each boosting round
- Originally arose as a solution to a theoretical puzzle:
 - Given a weak base learner (one that can only do a little better than chance on the training data), can we boost it into a strong learner?

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4
			•	•					•	

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

AdaBoost

- Base classifiers: C₁, C₂, ..., C_T
- Error rate:

$$\varepsilon_i = \frac{1}{N} \sum_{j=1}^N w_j \delta \left(C_i(x_j) \neq y_j \right)$$

• Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

AdaBoost Algorithm

• Weight update:

$$w_j^{(i+1)} = \frac{w_j^{(i)}}{Z_i} \begin{cases} \exp^{-\alpha_i} & \text{if } C_i(x_j) = y_j \\ \exp^{\alpha_i} & \text{if } C_i(x_j) \neq y_j \end{cases}$$
where Z_i is the normalization factor

- If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to 1/n and the resampling procedure is repeated
- Classification:

$$C^*(x) = \underset{y}{\operatorname{argmax}} \sum_{i=1}^{I} \alpha_i \delta(C_i(x) = y)$$

AdaBoost Algorithm

Algorithm 5.7 AdaBoost Algorithm

```
1: \mathbf{w} = \{w_j = 1/n \mid j = 1, 2, \dots, n\}. {Initialize the weights for all n instances.}

    Let k be the number of boosting rounds.

 3: for i = 1 to k do
       Create training set D_i by sampling (with replacement) from D according to w.
      Train a base classifier C_i on D_i.
      Apply C_i to all instances in the original training set, D.
     \epsilon_i = \frac{1}{n} \left[ \sum_j w_j \, \delta(C_i(x_j) \neq y_j) \right] {Calculate the weighted error}
     if \epsilon_i > 0.5 then
         \mathbf{w} = \{w_j = 1/n \mid j = 1, 2, \dots, n\}. {Reset the weights for all n instances.}
       Go back to Step 4.
10:
11:
     end if
     \alpha_i = \frac{1}{2} \ln \frac{1 - \epsilon_i}{\epsilon_i}.
      Update the weight of each instance according to equation (5.88).
14: end for
15: C^*(\mathbf{x}) = \arg \max_y \sum_{j=1}^T \alpha_j \delta(C_j(\mathbf{x}) = y).
```

AdaBoost Example

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
У	1	1	1	-1	-1	-1	-1	1	1	1

- Classifier is a decision stump
 - Decision rule: $x \le k$ versus x > k
 - Split point k is chosen based on entropy

AdaBoost Example

• Training sets for the first 3 boosting rounds:

Boostii	Boosting Round 1:											
X	0.1	0.4	0.5	0.6	0.6	0.7	0.7	0.7	8.0	1		
У	1	-1	-1	-1	-1	-1	-1	-1	1	1		
Boostii	ng Rour	าd 2:										
X	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3		
У	1	1	1	1	1	1	1	1	1	1		
Boostii	ng Rour	าd 3:										
X	0.2	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7		
У	1	1	-1	-1	-1	-1	-1	-1	-1	-1		

• Summary:

Round	Split Point	Left Class	Right Class	alpha
1	0.75	-1	1	1.738
2	0.05	1	1	2.7784
3	0.3	1	-1	4.1195

AdaBoost Example

• Weights

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.029	0.029	0.029	0.228	0.228	0.228	0.228	0.009	0.009	0.009

Classification

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	-1	-1	-1	-1	-1	-1	-1	1	1	1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
Sum	5.16	5.16	5.16	-3.08	-3.08	-3.08	-3.08	0.397	0.397	0.397
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Recent Developments

- State of the art is gradient boosting, which is motivated in the same way (adding weak models together), but can also be thought of as an additive model
- Gradient boosting and random forests are the two off-the-shelf classifiers to try first on almost anything!