Interpretable Machine Learning

Partial Dependence (PD) plot

Learning goals

- PD plots and relation to ICE plots
- Interpretation of PDP

PARTIAL DEPENDENCE (PD) Friedman (2001)

Definition: PD function is expectation of $\hat{f}(\mathbf{x}_S, \mathbf{x}_{-S})$ w.r.t. marginal distribution of features \mathbf{x}_{-S} :

$$\begin{split} f_{S,PD}(\mathbf{x}_S) &= \mathbb{E}_{\mathbf{x}_{-S}} \left(\hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}) \right) \\ &= \int_{-\infty}^{\infty} \hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}) \, d\mathbb{P}(\mathbf{x}_{-S}) \end{split}$$

Estimation: For a grid value \mathbf{x}_{S}^{*} , average ICE curves point-wise at \mathbf{x}_{s}^{*} over all observed $\mathbf{x}_{-s}^{(i)}$:

$$\hat{f}_{S,PD}(\mathbf{x}_S^*) = \frac{1}{n} \sum_{i=1}^n \hat{f}(\mathbf{x}_S^*, \mathbf{x}_{-S}^{(i)})$$
$$= \frac{1}{n} \sum_{i=1}^n \hat{f}_{S,ICE}^{(i)}(\mathbf{x}_S^*)$$

PARTIAL DEPENDENCE

Estimate PD function by **point-wise** average of ICE curves at grid value

$$\mathbf{x}_{S}^{*} = x_{1}^{*} = 1$$
:

$$\hat{f}_{1,PD}(x_1^*) = \frac{1}{n} \sum_{i=1}^n \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)})$$

PARTIAL DEPENDENCE

i	xs	X ₂	X ₃	\hat{f}
1	1	4	7	0.4
2	1	5	8	0.6
3	1	6	9	0.1
i	X.	X.	X.	Î

Estimate PD function by **point-wise** average of ICE curves at grid value

$$\mathbf{x}_{S}^{*}=x_{1}^{*}=2$$
:

$$\hat{f}_{1,PD}(x_1^*) = \frac{1}{n} \sum_{i=1}^n \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)})$$

PARTIAL DEPENDENCE

Estimate PD function by **point-wise** average of ICE curves at grid value

$$\mathbf{x}_{S}^{*} = x_{1}^{*} = 3$$
:

$$\hat{f}_{1,PD}(x_1^*) = \frac{1}{n} \sum_{i=1}^n \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)})$$

EXAMPLE: PD FOR LINEAR MODEL

Assume a linear regression model with two features:

$$\hat{f}(\mathbf{x}) = \hat{f}(\mathbf{x}_1, \mathbf{x}_2) = \hat{\theta}_1 \mathbf{x}_1 + \hat{\theta}_2 \mathbf{x}_2 + \hat{\theta}_0$$

PD function for feature of interest $\mathcal{S}=\{1\}$ (with $-\mathcal{S}=\{2\}$) is:

$$f_{1,PD}(\mathbf{x}_1) = \mathbb{E}_{\mathbf{x}_2} \left(\hat{f}(\mathbf{x}_1, \mathbf{x}_2) \right) = \int_{-\infty}^{\infty} \left(\hat{\theta}_1 \mathbf{x}_1 + \hat{\theta}_2 \mathbf{x}_2 + \hat{\theta}_0 \right) d\mathbb{P}(\mathbf{x}_2)$$

$$= \hat{\theta}_1 \mathbf{x}_1 + \hat{\theta}_2 \cdot \int_{-\infty}^{\infty} \mathbf{x}_2 d\mathbb{P}(\mathbf{x}_2) + \hat{\theta}_0$$

$$= \hat{\theta}_1 \mathbf{x}_1 + \underbrace{\hat{\theta}_2 \cdot \mathbb{E}_{\mathbf{x}_2}(\mathbf{x}_2) + \hat{\theta}_0}_{:=const}$$

 \Rightarrow PD plot visualizes the function $f_{1,PD}(\mathbf{x}_1) = \hat{\theta}_1 \mathbf{x}_1 + const$ ($\hat{=}$ feature effect of \mathbf{x}_1).

INTERPRETATION: PD AND ICE

If feature varies:

- ICE: How does prediction of individual observation change?
 - \Rightarrow **local** interpretation
- PD: How does average effect / expected prediction change?
 - $\Rightarrow \textbf{global} \text{ interpretation}$

INTERPRETATION: PD AND ICE

If feature varies:

- ICE: How does prediction of individual observation change?
 - \Rightarrow **local** interpretation
- PD: How does average effect / expected prediction change?
 - \Rightarrow **global** interpretation

Insights from bike sharing data:

- Parallel ICE curves = homogeneous effect across obs.
- Warmer ⇒ more rented bikes
- Too hot ⇒ slightly less bikes
- Steepest increase in rentals occurs as temperature rises from 10 °C to 15 °C.

INTERPRETATION: CATEGORICAL FEATURES

- PDP with boxplots and ICE with parallel coordinates plots
- NB: Categories can be unordered, if so, rather compare pairwise