REINFORCEMENT LEARNING

Introduction
Basic principles

Diego Klabjan
Professor, Industrial Engineering and Management Sciences

Northwestern ENGINEERING

Credit

- Several slides adaption of the lecture material from
 - Sergey Levine from Berkeley
 - http://rail.eecs.berkeley.edu/deeprlcourse-fa17/index.html
 - David Silver from University College London
 - http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
- A few examples taken from Lex Fridman, MIT
 - https://selfdrivingcars.mit.edu
- Tremendous acknowledgment to Hindeke Tewodros
 - Prepared all of the slides
 - Former undergraduate student at Northwestern

BASIC CONCEPTS

Supervised, Unsupervised

- Data consisting of feature vector and optional labels
- Unsupervised
 - No labels
 - Customer segmentation
 - Any clustering
- Supervised
 - Predict labels to unseen data
 - Pricing for logistic services
 - Predict demand for bikes
 - Bike-sharing program
- No feedback loop
 - Email spam filter counterattacked my spammers

Reinforcement Learning

- Algorithm that learns on its own
- Spam filter
 - New hack
 - Algorithm learns it
 - Automatically adjust strategy
- Supervision/labels replaced by reward
 - Make adjustment and model reward
 - Adjustment
 - Purchase extra 10 units of stock due to cold weather
 - Reward is revenue for these units procurement cost

One-off Decision Making

- When system making a single isolated decision
 - Classification, regression
- When that decision does not affect future decisions

http://rocknrollnerd.github.io/ml/2015/05/27/leopard-sofa.htm

https://plav.google.com/store/apps/details?id=com.gi ogle.android.apps.translate&hl=en

Sequential Decision Making

- Limited supervision
 - You know what you want, but not how to get it
- Actions have consequences
 - Future reward unknown

Notorious applications

robotics

social-services-be-changed-by-artifician intelligence-and-robotics/

autonomous driving

language & dialogue (structured prediction)

Caveat: Which ones have been operationalized?

operations management

finance

Setting and Model

- State
- Action
- Get reward

Reward

https://steemit.com/science/@coinbizpro/who-are-vou-a-predator-or-a-victim

Imitation Learning

From Input to Output

Sensory inputs

https://www.123rf.com/photo_26573894_stock-vector-a-cartoon-illustration-depicting-the-5-senses-

DNN to encode state

Output: complex actions

https://www.dreamstime.com/stock-illustration-motor-nerves-leg-to-motor-cortex-originating-muscles-

DNN model actions

Limitations Today

- Humans can learn incredibly quickly
 - Deep RL methods are usually slow
- Humans can reuse past knowledge
 - Transfer learning in deep RL is an open problem
 - AlphaGo cannot play Atari
 - Even less optimize inventory
- Reward challenging
 - Read Super Intelligence by Nick Bolstrom

Inventory Management

- Retail store with SKU's
 - Brick-and-mortal or e-commerce
- Have 10 pairs of Nike Air Jordan
- Should we order additional boxes?
 - Forecast to sell 5 tomorrow
 - Options
 - Do not order
 - Order 5 units
 - Order 50 units

Setting and Model

- State
- Action
- Get reward
- Environment makes changes

- Inventory level
- How much to order
- Reward of revenue cost
- Random demand (adversary)

Inventory Management

- State = inventory units at 8 am
- Action = how many to order of each SKU
- Reward = selling price of units cost of procurement
- Environment = stochastic demand

$$S_{t+1} = S_t + a_t - D_t$$

$$R(S_t, a_t) = p_t E[D_t] - c_t a_t - U_t 1_{a_t > 0}$$

- What if demand exceeds inventory plus order?
- What if orders have lead time?

APPLICATIONS

Portfolio Management

- Cash and list of securities to invest
 - Can change position every morning
- State
 - Number of positions in each security and cash
- Action
 - How much to buy/sell of each security
- Reward
 - Profit and loss
 - Reality much more complex

reward = utility(wealth)

- Environment
 - Interest rates on cash
 - Liquidity of securities

Tic-tac-toe

- State = positions on board
- Action = next move
- Reward
 - Zero if not end
 - 1 if win
 - -1 if we lose
- Environment
 - Move of opponent

	Х	
X	0	
	0	

Playing Video Games

https://www.wired.com/2010/03/red-steel-2-review/

The control of the co

video game Al pipeline

extract relevant features

state machine for behavior

planner

low-level bot control

controls

ttps://medium.com/@Douglv/closures-with-swift-58b274d849ad

https://www.theverge.com/2014/12/16/7382735/the-best-video-games-of-201

https://selfdrivingcars.mit.edu/deeptraffic/

- Discrete time (1 second)
- State
 - Location of all cars
 - Deep learning encoding
 - Object recognition
 - Your own location
- Action
 - Position of your car next second
 - In cars translate to control
- Reward
 - Cost of crash, maintain speed, etc
- Environment
 - Obstacles on road, pedestrians, etc

Autonomous Cars

Airline Revenue Management

- Two classes: Basic economy and refundable ticket
 - Limited number of seats on aircraft
- Passenger places a booking request
- Action
 - Accept the request or reject
 - Why not always accept?
- State
 - Available seats in aircraft
- Reward
 - Price of itinerary

- Environment
 - Do not know future booking requests
- Dilemma
 - Economy request
 - If accept, a refundable booking request might be coming
 - If reject, seat might be left unfilled

Use Cases

- Production planning
 - Current state of a plant
 - Schedule production for next hour
 - Reward
 - Machines go down, electricity rates spike
- Chess (games in general)
 - State of the board
 - Next move
 - Leads to a win
 - Opponent makes the move
- Shortest path
- AlphaGo

Contextual Bandit

- User with profile access a web page
- Action
 - Ads to display
- Reward
 - Click on ad
 - Caveat: revealed only after action made
- State
 - Features of user and candidate ads
- Next state?

- Not reinforcement learning
 - Next state independent of action and current state
 - No notion of future reward based on current action

Single Agent vs Multi Agent

- Single agent
 - Single decision maker
 - In games other players captured in environment
 - Reasonable when many participants
 - Individual behaviors neutralize
- Multi agent
 - Explicitly model competing agents
 - Use when powerful dominant competing agents
 - Large trading firm
 - Texas Hold'em
 - Imperfect information game

- Multi agent modeling
 - State captures all agents
 - Action for each individual agent
 - Reward for each agent
 - Next state depends on state and actions of each agent
- Agents can compete or collaborate

Summary

- Reinforcement learning: state, action, reward, environment
- Imitation learning
 - Reward not explicitly given, episodes are given
- Contextual bandit
 - State, action, reward revealed after action
 - No notion of next state
- Single agent vs multi agent