⊀ Cohere For AI

Exploring the unknown, together

<u>Geometric Deep Learning</u> <u>Cohort</u>

ML Theory resources (+recordings)

https://sites.google.com/cohere.com/c4ai-community/community-programs/ml-theory

What's ML Theory?

- 1. Making Machine Learning a rigorous science.
- 2. Understanding reasons behind a particular architecture.
- 3. Discovering and explaining the behaviour of models.
- 4. Designing the best (with guarantees) algorithm for training the network.

Statistical Physics Mechanistic Interpretability Modern Geometry Abstract Algebra Complexity Theory

ML Theory Leads

Martina Vilas

Anier Velasco

The need for unification

Zoo of geometries (XIX century)

Zoo of geometries (XIX century)

Unifying geometries through
symmetries

Formalized through **group** theory

Zoo of DL architectures (late 2010s)

Convolutional Neural Network

Graph Neural Network

Underlying domain: grid

Graph Neural Network

Underlying domain: graph

Symmetry: Translation

Graph Neural Network

Symmetry: Permutation

Symmetry: Translation

Graph Neural Network

Symmetry: Permutation

Convolution: translation equivariant

Graph Neural Network

Message passing: permutation equivariant

Convolution: translation equivariant

Graph Neural Network

Message passing: permutation equivariant

Geometric Deep Learning Blueprint

Example: Convolutional Neural Networks

Example: Graph Neural Networks

Graph G = (V, E)

functions $\mathcal{F}(\mathbf{X}(\Omega))$

Permutation group Σ_n

Permutation matrix P

$$\mathbf{PX} = \left(x_{\pi^{-1}(i),j}\right)$$

$$F(PX, PAP^{T}) = PF(X, A)$$

Example: Equivariant Graph NN

functions $\mathcal{F}(\mathbf{X}(\Omega))$ Graph G = (V, E)Node features X(G)50(d) Permutation matrix P Equivariant message passing Permutation group Σ_n $F(PXR, PAP^{T}) = PF(X, A)R$ Rotation R

Geometric Deep Learning Blueprint

Scale Separation

The "5G" of Geometric Deep Learning

The "5G" of Geometric Deep Learning

<u>Schedule (weekly Sept.26th-Nov.28th)</u>

1 Intro

Scale separation. GDL blueprint.

High dimensional
learning

Graphs and Sets. (GNNs).

Invariance. Equivariance.

Pract

Practice on GNNs.

<u>Schedule</u>

96 Grids. (CNNs).

8 Manifolds.

Groups. (Group Equivariant NNs).

Applications. SOTA. Critiques.

Practice on Group Equivariant NNs.

10 Closing

Resources

www.geometricdeeplearning.com

Resources

https://maurice-weiler.gitlab.io/cnn_book/EquivariantAndCoordinateIndependent CNNs.pdf

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf

<u>Acknowledgements</u>

Michael Bronstein Oxford / Twitter

Joan Bruna NYU

Taco Cohen Qualcomm

Petar Veličković DeepMind

<u>Prerequisites</u>

- Fundamentals of Deep Learning
- Fundamentals of 1st year university math
 - Linear Algebra
 - Calculus
 - o Maybe some statistics?
- Some DL framework (Pytorch, Jax)
- Basic abstract algebra and geometry is a plus.

Questions?