Lab14: COVID-19 vaccination rate mini project

Rachel Kraft

2022-03-03

read data set for vaccination rates

```
vax <- read.csv("covid19vaccinesbyzipcode_test.csv")
head(vax)</pre>
```

```
as_of_date zip_code_tabulation_area local_health_jurisdiction
                                                                              county
## 1 2021-01-05
                                    92549
                                                           Riverside
                                                                           Riverside
## 2 2021-01-05
                                    92130
                                                           San Diego
                                                                           San Diego
## 3 2021-01-05
                                    92397
                                                      San Bernardino San Bernardino
## 4 2021-01-05
                                                        Contra Costa
                                    94563
                                                                        Contra Costa
## 5 2021-01-05
                                    94519
                                                        Contra Costa
                                                                        Contra Costa
## 6 2021-01-05
                                    91042
                                                         Los Angeles
                                                                         Los Angeles
     vaccine_equity_metric_quartile
                                                      vem_source
## 1
                                   3 Healthy Places Index Score
## 2
                                   4 Healthy Places Index Score
## 3
                                   3 Healthy Places Index Score
## 4
                                   4 Healthy Places Index Score
## 5
                                   3 Healthy Places Index Score
## 6
                                   2 Healthy Places Index Score
     age12_plus_population age5_plus_population persons_fully_vaccinated
## 1
                    2348.4
                                             2461
## 2
                    46300.3
                                            53102
                                                                         61
## 3
                    3695.6
                                             4225
                                                                         NA
## 4
                    17216.1
                                            18896
                                                                         NA
## 5
                    16861.2
                                            18678
                                                                         NA
## 6
                    23962.2
                                            25741
     persons_partially_vaccinated percent_of_population_fully_vaccinated
## 1
                                NA
                                                                   0.001149
## 2
                                27
## 3
                                NA
                                                                         NA
## 4
                                NA
                                                                         NA
## 5
                                NA
                                                                         NA
## 6
                                                                         NA
     percent_of_population_partially_vaccinated
## 2
                                        0.000508
## 3
                                               NA
## 4
                                               NA
## 5
                                               NA
## 6
     percent_of_population_with_1_plus_dose booster_recip_count
```

```
## 1
                                          NA
                                                              NA
                                   0.001657
## 2
                                                              NΑ
## 3
                                          NA
                                                              NA
## 4
                                          NA
                                                              NA
## 5
                                          NA
                                                              NA
## 6
                                          NA
                                                              NA
                                                                   redacted
## 1 Information redacted in accordance with CA state privacy requirements
## 2 Information redacted in accordance with CA state privacy requirements
## 3 Information redacted in accordance with CA state privacy requirements
## 4 Information redacted in accordance with CA state privacy requirements
## 5 Information redacted in accordance with CA state privacy requirements
## 6 Information redacted in accordance with CA state privacy requirements
```

Q1. What column details the total number of people fully vaccinated?

persons_fully_vaccinated

Q2. What column details the Zip code tabulation area?

zip_code_tabulation_area

Q3. What is the earliest date in this dataset?

2021-01-05

Q4. What is the latest date in this dataset?

```
vax$as_of_date[nrow(vax)]
```

[1] "2022-03-01"

2022 - 03 - 01

call the skim() function from the skimr package to get a quick overview of this dataset

```
#install.packages("skimr")
library(skimr)
```

skim(vax)

Table 1: Data summary

Name	vax
Number of rows	107604
Number of columns	15
	
Column type frequency:	
character	5

Table 1: Data summary

numeric	10
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
as_of_date	0	1	10	10	0	61	0
local_health_jurisdiction	0	1	0	15	305	62	0
county	0	1	0	15	305	59	0
vem_source	0	1	15	26	0	3	0
redacted	0	1	2	69	0	2	0

Variable type: numeric

skim_variable	n_missing	pmplete_	r ate an	sd	p0	p25	p50	p75	p100	hist
zip_code_tabulation_area	0	1.00	93665.1	11817.39	90001	92257.7	593658.5	5095380.5	097635.0)
vaccine_equity_metric_qua	art 513 07	0.95	2.44	1.11	1	1.00	2.00	3.00	4.0	
$age12_plus_population$	0	1.00	18895.0	418993.91	1 0	1346.95	13685.1	.031756.1	288556.7	,
$age5_plus_population$	0	1.00	20875.2	421106.02	2 0	1460.50	15364.0	034877.0	0101902	.0
persons_fully_vaccinated	18338	0.83	12155.6	113063.88	3 11	1066.25	7374.50	20005.0	077744.0)
persons_partially_vaccinat	ed8338	0.83	831.74	1348.68	11	76.00	372.00	1076.00	34219.0)
percent_of_population_ful	ly <u>18</u> 338cina	ted0.83	0.51	0.26	0	0.33	0.54	0.70	1.0	
percent_of_population_pa	rt 18B3 8_vac	cin 0t83	0.05	0.09	0	0.01	0.03	0.05	1.0	
percent_of_population_wi	th <u>18338</u> plus	_d 0\$& 3	0.54	0.28	0	0.36	0.58	0.75	1.0	
booster_recip_count	64317	0.40	4100.55	5900.21	11	176.00	1136.00	6154.50	50602.0)

Q5. How many numeric columns are in this dataset?

9

Q6. Note that there are "missing values" in the dataset. How many NA values there in the persons_fully_vaccinated column?

18338

Q7. What percent of persons_fully_vaccinated values are missing (to 2 significant figures)?

round((18338/107604*100),2)

[1] 17.04

Working with Dates

we can use the lubridate package to more easily work with dates

```
#install.packages("lubridate")
library(lubridate)
age <- today() - ymd("2000-07-18")
age
## Time difference of 7898 days
time_length(age, "year")
## [1] 21.62355
convert our date data into a lubridate format
vax$as_of_date <- ymd(vax$as_of_date)</pre>
how many days since the first vaccination reported in the data set?
today() - vax$as_of_date[1]
## Time difference of 422 days
     Q9. How many days have passed since the last update of the dataset?
today() - vax$as_of_date[nrow(vax)]
## Time difference of 2 days
     Q10. How many unique dates are in the dataset?
length(unique(vax$as_of_date))
## [1] 61
     Working with zip codes
use the zipcodeR package
#install.packages("zipcodeR")
library(zipcodeR)
locate la jolla
geocode_zip('92037')
## # A tibble: 1 x 3
     zipcode
                lat
                      lng
              <dbl> <dbl>
     <chr>>
## 1 92037
               32.8 -117.
```

calculate the distance between two zipcodes

```
zip_distance('92037','91362')
##
     zipcode_a zipcode_b distance
## 1
                    91362
         92037
                             134.38
use reverse_zipcode() to pull census data
     Focus on San Diego Area
restrict to vax$county == "San Diego" entries
using r
# Subset to San Diego county only areas
sd \leftarrow vax[2,]
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
sd <- filter(vax, county == "San Diego")</pre>
nrow(sd)
## [1] 6527
     Q11. How many distinct zip codes are listed for San Diego County?
length(unique(sd$zip_code_tabulation_area))
## [1] 107
     Q12. What San Diego County Zip code area has the largest 12 + Population in this dataset?
pop <- which.max(sd$age12_plus_population)</pre>
sd$zip_code_tabulation_area[pop]
## [1] 92154
Using dplyr select all San Diego "county" entries on "as_of_date" "2022-02-22"
```

```
feb <- filter(sd, as_of_date=="2022-02-22")</pre>
```

Q13. What is the overall average "Percent of Population Fully Vaccinated" value for all San Diego "County" as of "2022-02-22"?

sd\$as_of_date[nrow(sd)]

[1] "2022-03-01"

let's work with the most recent data

```
latest <- filter(sd, as_of_date=="2022-03-01")
mean(latest$percent_of_population_fully_vaccinated, na.rm=TRUE)</pre>
```

[1] 0.7052904

Q14. Using either ggplot or base R graphics make a summary figure that shows the distribution of Percent of Population Fully Vaccinated values as of "2022-03-01"?

library(ggplot2)

ggplot(latest)+aes(percent_of_population_fully_vaccinated)+geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 1 rows containing non-finite values (stat_bin).

Focus on UCSD/La Jolla

```
ucsd <- filter(sd, zip_code_tabulation_area=="92037")
ucsd[1,]$age5_plus_population</pre>
```

[1] 36144

Q15. Using ggplot make a graph of the vaccination rate time course for the 92037 ZIP code area

Vaccination rate for La Jolla 92037

Comparing to similar sized areas

#head(vax.36)

Q16. Calculate the mean "Percent of Population Fully Vaccinated" for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2022-03-01". Add this as a straight horizontal line to your plot from above with the geom_hline() function?

```
ave.36 <- mean(vax.36$percent_of_population_fully_vaccinated, na.rm=TRUE)
ave.36</pre>
```

[1] 0.7353974

baseplot+geom_hline(yintercept=ave.36)

Vaccination rate for La Jolla 92037

Q17. What is the 6 number summary (Min, 1st Qu., Median, Mean, 3rd Qu., and Max) of the "Percent of Population Fully Vaccinated" values for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2022-03-01"?

summary(vax.36\$percent_of_population_fully_vaccinated)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.3890 0.6554 0.7350 0.7354 0.8044 1.0000
```

Q18. Using ggplot generate a histogram of this data.

```
ggplot(vax.36) +
  aes(percent_of_population_fully_vaccinated) +
  geom_histogram() +
  xlim(c(0,1))
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 2 rows containing missing values (geom_bar).

Q19. Is the 92109 and 92040 ZIP code areas above or below the average value you calculated for all these above?

```
vax %>% filter(as_of_date == "2022-03-01") %>%
filter(zip_code_tabulation_area=="92040") %>%
select(percent_of_population_fully_vaccinated)
```

```
## percent_of_population_fully_vaccinated
## 1 0.551981
```

```
vax %>% filter(as_of_date == "2022-03-01") %>%
filter(zip_code_tabulation_area=="92109") %>%
select(percent_of_population_fully_vaccinated)
```

```
## percent_of_population_fully_vaccinated
## 1 0.723778
```

both areas have a lower fully vaccinated average

Q20. Finally make a time course plot of vaccination progress for all areas in the full dataset with a $age5_plus_population > 36144$

```
vax.36.all <- filter(vax, age5_plus_population > 36144)

ggplot(vax.36.all) +
   aes(as_of_date,
        percent_of_population_fully_vaccinated,
        group=zip_code_tabulation_area) +
   geom_line(alpha=0.2, color="blue") +
   ylim(c(0,1)) +
   labs(x="Date", y="Percent Vaccinated",
        title="Vaccination rate across California",
        subtitle="Only areas with a population above 36K are shown") +
   geom_hline(yintercept = ave.36, linetype=2)
```

Warning: Removed 311 row(s) containing missing values (geom_path).

Vaccination rate across California

Only areas with a population above 36K are shown

> 21. How do you feel about traveling for Spring Break and meeting for in-person class afterwards?

I think it is okay as long as everyone is testing after they come back, but I doubt that most people would do that so it makes me question if we should go back in person immediately. However, I don't think classes should be online anymore, that if everyone is wearing masks inside it should be fine.