Министерство образования и науки Украины
Национальный технический университет
«Харьковский политехнический институт»

Кафедра компьютерной математики и анализа данных

ЛАБОРАТОРНАЯ РАБОТА №3

КРИТЕРИИ ВЫБОРА ПАРАМЕТРА ДЛИНЫ ШАГА ЛИНЕЙНОГО ПОИСКА

ст. гр. КН-118

Тепляков А. Д.

<u>**Цель:**</u> Реализовать градиентный метод поиска экстремума функции многих переменных, определяя параметр шага линейного поиска на основании правил Армихо, Голдшейна и Вульфа.

Задачи

1. Изучить и реализовать правила Армихо, Голдштейна и Вульфа выбора коэффициента длины шага.

Правило Армихо.

$$f(x_{k+1}) \le f(x_k) + c_1 \alpha(\nabla f(x_k), d_k); c_1 \in [0,1].$$

Правило Голдитейна.

$$c_1 < \frac{f(x_{k-1}) - f(x_k)}{\alpha(\nabla f(x_k), d_k)} < c_2; 0 < c_1 < c_2 < 1.$$

Правило Вульфа.

$$\begin{cases} f(x_{k+1}) \le f(x_k) + c_1 \alpha(\nabla f(x_k), d_k) \\ (\nabla f(x_{k+1}), d_k) \ge c_1(\nabla f(x_k), d_k) \end{cases}$$

$$0 < c_1 < c_3 < 1$$

2. Реализовать градиентный метод поиска экстремума функции переменных:

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k),$$

где α_k определяется по одному из правил выбора параметра шага, представленных выше (градиентный метод реализовать для каждого правила).

- 3. Найти с помощью градиентного метода (для каждого правила выбора коэффициента длины шага) экстремум функций:
- а) Функция Химмельблау

$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + 100(x_1 + x_2^2 - 7)^2$$

b) Функция Розенброка

$$f(x_1, x_2) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$$

4. Найти оптимальные значения параметров линейного поиска (для которых градиентный метод имеет наибольшую скорость сходимости) для каждого правила.

Результаты работы программы

Результаты нахождения минимума для функции Химмельблау из точки $(x_1; x_2) = (0; 0)$ с использованием правила Армихо:

Рис.1 – правило Армихо для функции Химмельблау

Iteration	Lambda	X1	X2	F_x
	Himmelblau			
0		0	0	170
1	0,15669	2,19366	3,44718	57,5911276
2	0,00657331	2,25870305	2,841795145	20,4608888
3	0,01426536	2,55749935	2,388285625	5,87982321
4	0,01159401	2,77387372	2,296593446	2,11689886
5	0,01909029	2,9475814	2,151292785	0,35711474
6	0,01778305	2,96075371	2,068911785	0,08538665
7	0,01512166	2,98301435	2,043724865	0,02889672
8	0,01464611	2,98845129	2,026284902	0,01072723
9	0,02766522	2,99741326	2,007516287	0,00082213
10	0,02300103	2,99835209	2,002798496	0,00014149
11	0,0174791	2,99950362	2,001708399	4,18E-05
12	0,02025275	2,99955532	2,000731707	9,91E-06
13	0,0161937	2,9998511	2,000472666	3,21E-06
14	0,01491122	2,99987443	2,000277362	1,19E-06
15	0,02999729	2,99998676	2,000069764	7,08E-08
16	0,01499757	2,99998053	2,000038161	2,39E-08
	Extremum	2,99998053	2,000038161	2,39E-08

Таблица 1 – правило Армихо для функции Химмельблау.

С использованием правила Гольдштейна:

Рис.2 – правило Гольдштейна для функции Химмельблау

Iteration	Lambda	X1	X2	F_x
	Himmelblau			
0		0	0	170
1	0,18003398	2,520475699	3,960747527	126,0904095
2	0,00782561	2,399216087	2,581911646	11,35167168
3	0,04009091	3,257740822	1,940140987	2,412338557
4	0,01018313	3,051215997	1,906782123	0,144907082
5	0,03479156	2,980976127	1,974751931	0,033580445
6	0,01572501	3,010799086	1,993952668	0,003643268
7	0,01474266	3,000741627	1,993787237	0,000582511
8	0,02270891	3,002315271	1,998226678	0,000169783
9	0,0116024	3,000736805	1,998388158	4,05E-05
10	0,04384388	2,999758792	2,000142257	1,81E-06
11	0,01106424	2,99992478	2,000142113	3,39E-07
12	0,03557835	3,000021688	2,000023712	3,72E-08
13	0,01321385	2,999994214	2,000007327	1,30E-09
	Extremum	2,999994214	2,000007327	1,30E-09

Таблица 2 – правило Гольдштейна для функции Химмельблау

С использованием правила Вульфа:

Рис.3 – правило Вульфа для функции Химмельблау

Iteration	Lambda	X1	X2	F_x
	Himmelblau			
0		0	0	170
1	0,17224381	2,411413375	3,789363875	97,41446018
2	0,00396143	2,387332912	3,213739453	37,02157698
3	0,00567789	2,43558139	2,820272588	16,54086171
4	0,01282126	2,629419662	2,387655945	4,654642506
5	0,01244859	2,818683036	2,271779489	1,573218686
6	0,02026884	2,957961662	2,123090538	0,232890759
7	0,01444486	2,966283328	2,069670017	0,079699149
8	0,01652396	2,983807811	2,039841439	0,024210367
9	0,02851269	2,994967029	2,009416743	0,001501575
10	0,02583793	2,999700688	2,003693578	0,000213522
11	0,01259883	2,999048717	2,002182741	7,30E-05
12	0,02154907	2,999624214	2,000991176	1,45E-05
13	0,0174725	2,999763629	2,000533281	4,38E-06
14	0,01655738	2,999876613	2,000311237	1,44E-06
15	0,0173894	2,999927135	2,000170096	4,40E-07
16	0,02805023	2,999982952	2,000048734	3,45E-08
17	0,01884185	2,999988357	2,000023937	9,18E-09
	Extremum	2,999988357	2,000023937	9,18E-09

Таблица 3 – правило Вульфа для функции Химмельблау

Далее рассмотрим результаты нахождения минимума для функции Розенброка из точки $(x_1; x_2) = (-2; 2)$ с использованием правила Армихо:

Рис.4 – правило Армихо для функции Розенброка

Iteration	Lambda	X1	X2	F_x
	Rosenbrok			
0		-2	2	409
1	0,000175043	-1,7188804	2,070017336	85,63208114
2	0,000257821	-1,56068132	2,115627579	16,80340082
3	0,000302502	-1,49868347	2,134993682	7,476817075
4	0,000288222	-1,47805425	2,141395588	6,327798684
5	0,000206752	-1,471743	2,143183941	6,161696121
6	0,000235606	-1,46740987	2,144260356	6,096268069
7	0,000343491	-1,46389393	2,144880796	6,07113254
8	0,000493503	-1,46200976	2,144693723	6,066706612
9	1,105966565	-0,68667362	0,547418201	3,420911617
10	0,000915244	-0,70266603	0,533525246	3,057361751
123	0,000552332	0,894996159	0,801688819	0,01107079
124	0,000572323	0,895253771	0,801612048	0,010973534
125	0,000638427	0,895417862	0,8015951	0,010940594
126	0,001158742	0,895586336	0,801636362	0,010921443
127	0,425324831	0,917589901	0,838939234	0,007710722
128	0,000552479	0,917066134	0,839274256	0,007179409
129	0,000678186	0,916746737	0,839509727	0,007014801
130	0,000594925	0,916646214	0,839618581	0,006986505
131	0,00074891	0,916600347	0,839711701	0,00697526
132	0,004195798	0,916616414	0,840084704	0,006953841
133	0,000760869	0,916715141	0,840100065	0,006943474
	Extremum	0,916715141	0,840100065	0,006943474
		-	-	-

Таблица 4 – правило Армихо для функции Розенброка Результаты с использованием правило Гольдштейна:

Рис.5 – правило Гольдштейна для функции Розенброка

Iteration	Lambda	X1	X2	F_x
	Rosenbrok			
0		-2	2	409
1	0,000252941	-1,593777278	2,10117627	25,99536815
2	0,000512778	-1,447623902	2,146193009	6,24667665
3	0,000721169	-1,465214629	2,138897941	6,083612915
4	0,000608996	-1,45937234	2,139866972	6,058711983
5	0,001390224	-1,460730223	2,137058902	6,056299536
6	0,000634284	-1,458841302	2,136636961	6,052988533
7	0,006017742	-1,458811944	2,126504266	6,046021224
8	0,000582795	-1,455392327	2,126694027	6,036222796
9	0,004766267	-1,45564677	2,118565445	6,030212759
10	0,000676104	-1,452191563	2,1186117	6,022752373
295	0,001938464	0,928873886	0,862661287	0,005061038
296	0,001555766	0,92909937	0,862735614	0,005050912
297	0,002138109	0,929013179	0,862945159	0,005040577
298	0,001667064	0,929175316	0,862985278	0,005030689
299	0,004496292	0,92917469	0,863328337	0,005016363
300	0,001519603	0,929368894	0,863339663	0,005003721
301	0,005944061	0,929353685	0,863799589	0,004991928
302	0,001129439	0,929555805	0,863776702	0,004971223
303	2,00106075	0,990284728	0,982756813	0,000532439
304	0,001060596	0,991184628	0,982312853	7,95E-05
305	0,000919907	0,991151933	0,982337528	7,85E-05
	Extremum	0,991151933	0,982337528	7,85E-05

Таблица 5 – правило Гольдштейна для функции Розенброка

С использованием правила Вульфа:

Рис.6 – правило Вульфа для функции Розенброка

Iteration	Lambda	X1	X2	F_x
	Rosenbrok			
0		-2	2	409
1	0,000134816	-1,783484999	2,05392653	134,7364
2	0,00015016	-1,66193276	2,08776934	52,54735
3	0,000216255	-1,563850701	2,11693139	17,37754
4	0,000277846	-1,505297123	2,13519684	7,985353
5	0,000371157	-1,474223473	2,14490055	6,202633
6	0,000379957	-1,465972394	2,14706131	6,081425
7	0,000336977	-1,463912524	2,14719703	6,072593
8	0,000444812	-1,462803366	2,1468272	6,070347
9	0,007440039	-1,456775824	2,13636128	6,055814
10	0,000279294	-1,457708893	2,13557001	6,051685
135	0,000782047	0,815612866	0,66386565	0,034183
136	0,001311755	0,815515149	0,66422211	0,034106
137	1,083504	0,917393298	0,84686862	0,009589
138	0,000567437	0,918581927	0,84627189	0,007244
139	0,000606415	0,919233065	0,84597121	0,00662
140	0,000586922	0,919539749	0,84585596	0,006483
141	0,000866072	0,919775517	0,84580355	0,006439
142	0,001353066	0,91990129	0,84585319	0,006429
143	0,026056996	0,920574119	0,84775635	0,006317
144	0,000678828	0,920756852	0,84771567	0,00628
145	0,000740803	0,920853111	0,84772715	0,00627
	Extremum	0,920853111	0,84772715	0,00627

Таблица 6 – правило Вульфа для функции Розенброка

Рассматривая приведенные результаты, следует учесть, что они могут несколько отличаться в зависимости от выбора начальной точки. Тем не менее, правило Гольдштейна находит экстремум с большей точностью.

Примечание. На всех рисунках цена деления на осях -0.5.

Исследование скорости сходимости

Рассмотрим количество итераций, необходимых для поиска минимума функции Химмельблау с использованием правила Армихо:

Рис.8 — изменение итераций в зависимости от c_1 функции Химмельблау

Можно увидеть, что при $c_1>0.8$ количество необходимых итераций стремительно возрастает. Для случая $c_1=1$ алгоритм не находит минимум.

Результаты для функции Розенброка несколько отличаются:

Рис.8 – изменение итераций в зависимости от c₁ функции Химмельблау

Большое количество итераций при малых c_1 обусловлено особенностями функции.

Если сравнивать данные методы с МНС, то можно сделать вывод, что скорость сходимости сильно зависит от исследуемой функции. Так, для функции Химмельблау правило Армихо находит минимум за 20 (медианное значение) итераций, что сопоставимо с таковым (14) для МНС. Тем не менее, для функции Розенброка МНС находит минимум за 1500 – 2500 итераций, когда как правилу Армихо на это требуется около 180 итераций.

Выводы

В данной лабораторной были рассмотрены такие методы выбора шага в методах спуска, как правило Армихо, правило Гольдштейна и правило Вульфа. С точки зрения результатов, правило Гольдштейна обеспечивает наибольшую точность результата.

Так же было проведено сравнение правила Армихо с МНС, из которого следует, что выбор и скорость сходимости того или иного метода сильно обусловлена выбором исследуемой функции: для Химмельблау результаты еквивалентны, когда для Розенброка правило Армихо дает значительно лучшие результаты.