

FIG. 1

F16. 2

FIG. 3a-1

FIG. 3a-2

FIG. 3a-3

FIG. 3a

FIG. 3b

Battery Performance Theory with 6 cells and 3 Internal Resistance

FIG. 4

FIG. 56

Software VFC Levels

Level 1 - 2.4V If OFF Load Test Above, with Warning
 Level 2 - 1.5V If ON Sleep Above
 Level 3 - 1.2V If ON Warning Below
 Level 4 - 1.1V If ON Stop Below

Hardware Trip from Sleep is Between L2-L3

FIG. 6

Software VFC Levels

Level 1 - 2.4V If OFF Load Test Above, with Warning
 Level 2 - 1.5V If ON Sleep Above
 Level 3 - 1.2V If ON Warning Below
 Level 4 - 1.1V If ON Stop Below

Hardware Trip from Sleep is Between L2-L3

FIG. 7a

; Code file for Stepup boost converter

.include "tnlSde5.inc"; supplies all std port and pin references for tiny15

.include "constdef.inc"; supplies init values

; registers Definitions

.DEF	LOADOK	= r14	flag for load ok = 1
.DEF	TEMPF	= r15	Temp for flag
.DEF	VCCLOW	= r16	Voltage VCC
.DEF	VCCHIGH	= r17	
.DEF	VFCALLOW	= r18	Voltage FC under load
.DEF	VFCALHIGH	= r19	
.DEF	VFCBALLOW	= r20	Voltage FC main
.DEF	VFCBAHIGH	= r21	
.DEF	VFCDFLOW	= r23	Load difference
.DEF	VFCDFHIGH	= r24	
.DEF	FLASHLOW	= r25	Flash Count for total stop
.DEF	FLASHHIGH	= r26	
.DEF	TICB	= r27	tic count A
.DEF	TICA	= r28	tic count B
.DEF	TEMP	= r29	For I/O transfer

; Port B Pins definitions

.EQU	ONNOT	= 0	Digital out port
.EQU	LED	= 2	Digital out port
.EQU	LOAD	= 4	Digital out port
.EQU	SVCC	= 0	ADC Channel
.EQU	SVFC	= 2	ADC Channel
.EQU	Comp	= 1	Port (Comparator)
.EQU	VCCLOWN	= 16	Reg pointer assignments
.EQU	VFCLAN	= 18	Reg pointer assignments
.EQU	VFCBAN	= 20	Reg pointer assignments
.EQU	FLASHDEL	= 50	5 sec flash start delay
.EQU	TICFLASH	= 10	ticks per cycle
.EQU	LOADDEL	= 150	15 sec to first load test
.EQU	TICLOAD	= 100	ticks per load test
.EQU	STOPED	= 1	flasher stopped

.CSEG

; TSR Vectors

sec tic	rjmp	RESET	Reset Handler
	reti	;	External Interrupt, Not used
	reti	;	Pin Change Handler, Not used
	rjmp	TIM1_CMP	; Timer 1 compare match, used for 0.1
short sub tic time	reti;TIM1_OVF	;	Timer 1 overflow handler, Not used
	reti;TIM0_OVF	;	Timer 0 overflow handler, used for
1.5 Fuel cell volts	reti;EE_RDY	;	EEPROM Ready handler
	reti;ANA_COMP	;	Analog Comparator Handler for Level

FIC. 76

	reti	; ADC	; ADC Conversion handler	
MAIN:		; Main Program start		
	ldi	ZH,SVCC	set channel	
	ldi	ZL,VCCLOW	data store pointer	
	rcall	ADCRUN	call ACD Converter	
	ldi	ZH,SVFC	set channel	
	ldi	ZL,VFCBAN	data store pointer	
	rcall	ADCRUN	call ACD Converter	
	ldi	VFCBAHIGH,\$03	;*** test for VFC	
	ldi	VFCBALOW,\$5e		
	ldi	VFCLAHIGH,\$02	;*** test for VFC	
	ldi	VFCCLALOW,\$ff		
	cbi	ddrB,ONNOT		
MAIN010:		; test OFF/ON		
	sbic	PINB,ONNOT	; read ON pin	
	rjmp	MAIN100		
MAIN020:		; test vfc for level 3		
	cpi	VFCBALOW,low(LEVEL3)		
	ldi	TEMP,high(LEVEL3)		
	cpc	VFCBAHIGH,TEMP		
	brsh	MAIN060	; the value is equ or high	
MAIN030:		rcall	FLASH	; do flash
MAIN040:		ldi	VFCBALOW,low(LEVEL4)	; test vfc for level 4
	cpi	TEMP,high(LEVEL4)		
	cpc	VFCBAHIGH,TEMP		
	brsh	MAIN	; the value is equ or high, loop to	
main		rjmp	MAIN050	; the value is low fall or jump
MAIN050:		sbi	PORTB,ONNOT	; Stop the converter
	rjmp	MAIN	; Stop Converter and test led	
				; loop to main
MAIN060:		ldi	VFCBALOW,low(LEVEL2)	; test vfc for level 2
	cpi	TEMP,high(LEVEL2)		
	cpc	VFCBAHIGH,TEMP		
	brsh	MAIN200	; the value is equ or high	
	rjmp	MAIN	; the value is low fall or jump	
MAIN100:		ldi	VFCBALOW,low(LEVEL3)	; do flashe
	cpi	TEMP,high(LEVEL3)		
	rcall	FLASH	; do flash	
MAIN110:		ldi	VFCBALOW,low(LEVEL1)	; test vfc for level 1
	cpi	TEMP,high(LEVEL1)		
	cpc	VFCBAHIGH,TEMP		
	brsh	MAIN140	; the value is equ or high	
	rjmp	MAIN120	; the value is low fall or jump	
MAIN120:		ldi	VFCBALOW,low(LEVEL3)	; test vfc for level 3
	cpi	TEMP,high(LEVEL3)		
	cpc	VFCBAHIGH,TEMP		

FIG. 7c

	brsh ; rjmp	MAIN MAIN130	; the value is equ or high ; the value is low fall or jump
MAIN130:	; test Flasher for stoped cpi FLASHHIGH, STOPED breq MAIN200 rjmp MAIN		; we need to sleep ; keep looping
MAIN140:	; do load test rcall LOADTEST		; test the load
MAIN150:	; Test for load OK tst LOADOK breq MAIN		; go to main
MAIN160:	; start the converter cbi PORTB, ONNOT clr FLASHLOW clr FLASHHIGH rjmp MAIN		; Start Converter ; Stop Flashing ; keep looping
MAIN200:	; enter sleep mode cbi ADCSR, ADEN clr TICA clr TICB ldi TEMP, 0 out TIMSK, TEMP		; Power down the ADC ; stop timer int
	ldi TEMP, MCUCRSET out MCUCR, TEMP		; set for idle
	; may have to stop timers adc intrrupts ;sbi ddrb, led sleep ; wate COMPARE ;cbi ddrb, led		;***** *****
MAIN210:	; nop ;nop ; rjmp	MAIN210	; we will wate hear for a low level 2
transet	ldi TEMP, TIMSKSET out TIMSK, TEMP		; Enable timer int
	sbi ADCSR, ADEN rjmp MAIN		; Power up the ADC ; back to looping
Place init code here			
RESET:	; Clear Requesters clr r0 ldi z1,29 st z,r0		; Clear a master ; Point to req r29 ; Clear
RESET01:	dec z1 brne RESET01		; set for next ; loop
	; Setup the ADC ldi TEMP, ADCSRSET out ADCSR, TEMP sbi ADCSR, ADEN		; Power up the ADC
	; Setup the comparitor ldi TEMP, ACSRSET out ACSR, TEMP		
	; Setup timer 0 for div 64 ldi TEMP, TCCR0SET		

FIG. 7d

```

        out      TCCR0, TEMP
; Setup Timer 1 for 1.ms int
ldi      TRMP, TCCR1SET
out      TCCR1, TEMP
ldi      TEMP, OCR1ASET
out      OCR1A, TEMP

; Setup Port B
ldi      TEMP, DDRBSET      ; Data direction
out     DDRB, TEMP
ldi      TEMP, PORTBSET
out     PORTB, TEMP

; ldi      ticb, 100

; Enable Interrupts
ldi      TEMP, TIMSKSET      ; Enable timer int
out     TIMSK, TEMP
ldi      TEMP, GIMSKSET      ; Set the mask
out     GIMSK, TEMP
ldi      TEMP, SREGSET      ; Enable
out     SREG, TEMP

; Setup sleep
ldi      TEMP, MCUCRSET
out     MCUCR, TEMP

; setup start delays
ldi      TICA, FLASHDEL      ; flash start delay
ldi      TICB, LOADDEL      ; load start delay

RESETEND: rjmp    MAIN

; This ISR will dec the Time regesters tica and ticb to 0
TIM1_CMP:
        in      TEMPF, SREG      ; save status
        tst     tica
        breq   tic01
        dec     tica
        tst     ticb
        breq   tic02
        dec     ticb
        out     SREG, TEMPF      ; Restor status
        reti

; This ISR will handal end of time 0 overflows
TIM0_OVF:      ; we ret at vector
        reti

; This ISR will handal changes in FC Volts it will return to last place
ANA_COMP:      ; we may want to fix timer for fast service in main
        reti

ADC:          reti

EE_RDY:      later      ; This ISR may be used

TIM1_OVF:      ; we ret at vector
disabled      ; This ISR will be
        reti

```

FIG. 7e

Rutine to manage low fuel flasher
 The two byte flash count also acts as a run flag as follows:
 Low byte not 0, the counter is active and flashing
 Low byte equ 0, the high byte has meaning as follows:
 0 = clear to start flashing
 1 = flash time complet
 any other go to sleep

```

FLASH:      ; Start Flasher
            tst      TICA          ; test for time to run
            brne   FLASHEND       ; must be zero th run
            ldi     TICA, TICFLASH ; reset the timer
            tst      FLASHLOW        ; test for need
            brne   FLASH10         ; go to flashing
            tst      FLASHHIGH       ; test for stoped
            brne   FLASHEND         ; the flasher is stoped
            ; Start the flasher
            ldi     FLASHLOW, LOW(FLASHSET) ; 
            ldi     FLASHHIGH, HIGH(FLASHSET)
FLASH10:   ; flash the LED
            cbi     PORTB, LED      ; LED lamp on
            ; time the flash
            ldi     TEMP, TIME40m    ; load time value
            rcall  WATE           ; wate for time
            ;out   TCNT0, TEMP
            ldi     TEMP, MCUCRSET  ; set for idle
            ;out   MCUCR, TEMP
            ;sleep
            ; stop the flash
            sbj     PORTB, LED      ; LED lamp off
            ; count the flashes
            inc     FLASHLOW        ; Adjust Count
            brne   FLASHEND        ; Can not be zero
            inc     FLASHLOW        ; Adjust high byte
            inc     FLASHHIGH       ; Flash time is over stop flash
            brne   FLASHEND
            clr     FLASHLOW
            inc     FLASHHIGH       ; Set stoped
FLASHEND:  ret
ADCRUN:    ; rutine for ADC
            ldi     TEMP, ADMUXSET  ; Set adc chanel
            add     TEMP, ZH
            out    ADMUX, TEMP
            sbi    ADCSR, ADSC
            ;ldi   TEMP, MCUCRADC
            ;out   MCUCR, TEMP
            ;sleep
            sbis   ADCSR, ADIF
            rjmp  ADCRUN01
            in    TEMP, ADCL
            st    Z, TEMP
            inc    ZL
            in    TEMP, ADCH
            st    Z, TEMP
ADCRUN01:  ; Start the ADC Conversion
            ; set for ADC
            ; wate for adc end
            ; Test for end of conversion
            ; Loop till end
            ; Get the resulats
            ; Get the resulats

```

FIG. 7f

```

        ret

LOADTEST:    clr      LOADOK           ; make load not OK
             ; work load test
             tst     TICB
             brne   LOADTESTEND      ; test for time to run
             ldi     TICB, TICLOAD   ; must be zero th run
                                         ; reset the timer

             sbi     DDRB, LOAD       ; start Load by seting output
             ; time the load
             ldi     TEMP, TIME20m    ; load timer to start
             rcall
             ;out
             ;ldi
             ;out
             ;sleep
             ; read adc ch for SVFC
             ldi     TCNT0, TEMP
             ldi     TEMP, MCUCRSET   ; set for idel
             rcall
             ;out
             ;ldi
             ;out
             ;sleep
             ; find load dif
             ldi     ZH, SVFC          ; set chanell
             ldi     ZL, VFCLAN         ; data store pointer
             rcall
             cbi     DDRB, LOAD       ; stop Load by try stating

             mov     VFCDIFLOW, VFCBALOW
             mov     VFCDIFHIGH, VFCBAHIGH
             sub
             sbc     VFCDIFLOW, VFCLALOW
             sbc     VFCDIFHIGH, VFCLAGHIGH

             ; test dif
             cpi
             ldi     VFCDIFLOW, low(loaddelta)
             ldi     TEMP, high(loaddelta)
             cpc
             brsh   LOADTESTEND

LOAD10:      doc     LOADOK           ; set load OK $FF

LOADTESTEND: ret

; rutine to use timer 0 for wating, Temp time

WATE:        ;
             out    TCNT0, TEMP
             ldi    TEMP, MCUCRSET   ; set for idel
             out
             sleep
             ret   ; wate for time

Trace:       ; A lamp blinb rutine for testing
             sbic  PINb, led
             rjmp Tracel
             sbi   PORTb, led
             cbi   PORTb, onnot
             rjmp Traceend
             cbi   PORTb, led
             sbi   PORTb, onnot
             ret

Tracel:
Traceend:

EXIT

```

FIG. 7g

FIG. 8a

FIG. 86

FIG. 8c

Fuel Cell Service

FIG. 8d

FIG. 12

FIG. 10

FIG. 9

400

758

RECOVERED LIQUID H₂O (RECOVERS OR EXHAUST)

FIG. 17

FIG. 18

FIG. 19

FIG. 20

FIG. 21

Laptop Simple System

Macroscopic Control Diagram

F16. 23

FIG. 24

FIG. 25

904

FIG. 29