Calc Project Overview

Design Specs

Overview of Calc designs

- Two designs are provided
 - Calc1
 - Calc2

- Calc1 is a simple 4-port calculator.
- Each port can send in 1 command at a time.
- The commands consist of add, subtract, shift left, and shift right.
- The operand data accompanies the commands.
- Since there are 4 ports, there can be up to 4 outstanding commands at once.

• The input/Output timing on a single port is as follows:

• The lightning bolt represents "some number of cycles passing."

• A second request from the same port is prohibited until the response from the first command is received.

• Internally, there are two ALUs: one that processes all add commands, and the second for all shift commands. Priority logic dispatches the individual commands to the ALUs.

Copyright Wile, Roesner, Goss

- □ Calculator has 4 functions:
 - Add
 - Subtract
 - Shift left
 - Shift right
- □ Calculator can handle 4 requests in parallel
 - All 4 requestors use separate input signals
 - All requestors have equal priority
 - Each port must wait for its response prior to sending the next command

☑ I/O Description

- Input commands:
 - 0 No-op
 - 1 Add operand1 and operand2
 - 2 Subtract operand2 from operand1
 - 5 Shift left operand1 by operand2 places
 - 6 Shift right operand1 by operand2 places
- Input Data
 - Operand1 data arrives with command
 - Operand2 data arrives on the following cycle

Outputs

- Response line definition
 - 0 no response
 - 1 successful operation completion
 - 2 invalid command or overflow/underflow error
 - 3 Internal error
- Data
 - Valid result data on output lines accompanies response (same cycle)

☑ Input/Output timing

Each port must wait for its response prior to sending the next command!

■ Other information

- Clocking
 - When using a cycle simulator, the clock should be held high (c_clk in the calculator model)
 - The clock should be toggled when using an event simulator
- Calculator priority logic
 - -Priority logic works on first come first serve algorithm
 - -Priority logic allows for 1 add or subtract at a time and one shift operation at a time

- Other information (con't)
 - Resets
 - Hold reset(1:7) to '11111111'b at start of testcase for seven cycles.
 - During the reset period, outputs of the calculator should be ignored
 - Shift operation
 - Only the low order 5 bits of the second operand are used
 - Arithmetic operations are unsigned

• The second design, Calc2, is much like the first, except that each port may now have up to 4 outstanding commands at a time.

• Each command from a port is sent in serially (one at a time), but the calc log may respond "out of order," depending upon the internal state of the queues.

• As a result, each command is now accompanied by a 2-bit tag, which identifies the command when the response is received.

• A possible timing diagram:

• The lightning bolt represents "some number of cycles passing." The data accompanies a successful response signal.

• A timing diagram of back-to-back commands might look like:

Copyright Wile, Roesner, Goss

• The lightning bolt represents "some number of cycles passing."

Copyright Wile, Roesner, Goss

• The data accompanies a successful response signal. Responses may or may not be in order, but the tags will identify which command the response is for.

Copyright Wile, Roesner, Goss

- There may be up to 16 commands outstanding at once (4 ports, 4 commands each).
- As in Calc1, the commands are add, subtract, shift left, and shift right.

Functional Verification

- Test Plan
- Use SystemVerilog to build your verification environment for Calc1, Calc2.
- Your environment should be class based.
- You should use:
 - Interface
 - Clocking blocks that is sensitive to the falling edge of the clock, and all I/O that are synchronous to the clock
 - A modport for the testbench called master, and modport for the DUT called slave

Functional Verification

- Random verification
- Functional Coverage
- You need to report all the bugs founds in Calc1, Calc2.

Functional verification

- Submit:
 - Report for all students
 - All SV code