A 2×2 example of wavelet multiplication

Daniel Beatty

February 17, 2004

Given Function

$$(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} \end{array})$$

Desired result

$$\left(\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} \end{array}\right)^2 = \begin{array}{ccc} \frac{1}{4} & \frac{1}{2} \\ 0 & \frac{1}{4} \end{array}$$

Hypothesis:

$$\psi^{-1}((\psi A)^2) = A^2$$

$$\psi_c(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} \end{array}) = \begin{array}{cc} \frac{1}{\sqrt{2}} \left(\frac{1}{2} + \frac{1}{2} \right) & \frac{1}{\sqrt{2}} \left(\frac{1}{2} - \frac{1}{2} \right) \\ \frac{1}{\sqrt{2}} (0 + \frac{1}{2}) & \frac{1}{\sqrt{2}} (0 - \frac{1}{2}) \end{array} = \begin{array}{cc} \frac{1}{2} \sqrt{2} & 0 \\ \frac{1}{4} \sqrt{2} & -\frac{1}{4} \sqrt{2} \end{array}$$

$$\psi_r(\begin{array}{ccc} \frac{1}{2}\sqrt{2} & 0 \\ \frac{1}{4}\sqrt{2} & -\frac{1}{4}\sqrt{2} \end{array}) = \begin{array}{ccc} \frac{1}{\sqrt{2}}(\frac{1}{2}\sqrt{2} + (\frac{1}{4}\sqrt{2})) & \frac{1}{\sqrt{2}}(0 + (-\frac{1}{4}\sqrt{2})) \\ \frac{1}{\sqrt{2}}(\frac{1}{2}\sqrt{2} - (\frac{1}{4}\sqrt{2})) & \frac{1}{\sqrt{2}}(0 - (-\frac{1}{4}\sqrt{2})) \end{array} = \begin{array}{ccc} \frac{3}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{array}$$

$$\psi_r(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} \end{array}) = (\begin{array}{cc} \frac{1}{2\sqrt{2}} & \frac{2}{2\sqrt{2}} \\ \frac{1}{2\sqrt{2}} & 0 \end{array}) = \begin{array}{cc} \frac{1}{4}\sqrt{2} & \frac{1}{2}\sqrt{2} \\ \frac{1}{4}\sqrt{2} & 0 \end{array}$$

$$\psi_c(\begin{array}{cc} \frac{1}{4}\sqrt{2} & \frac{1}{2}\sqrt{2} \\ \frac{1}{4}\sqrt{2} & 0 \end{array}) = (\begin{array}{cc} \frac{1}{\sqrt{2}}(\frac{1}{4}\sqrt{2} + \frac{1}{2}\sqrt{2}) & \frac{1}{\sqrt{2}}(\frac{1}{4}\sqrt{2} - \frac{1}{2}\sqrt{2}) \\ \frac{1}{\sqrt{2}}(\frac{1}{4}\sqrt{2} - 0) & \frac{1}{\sqrt{2}}(\frac{1}{4}\sqrt{2} - 0) \end{array}) = \begin{array}{cc} \frac{3}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{array}$$

$$\psi(\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} \end{array}) = \begin{array}{ccc} \frac{3}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{array}$$

$$\left(\begin{array}{cc} \frac{3}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{array}\right)^2 = \begin{array}{cc} \frac{1}{2} & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{array}$$

$$\psi_c^{-1}(\begin{array}{ccc} \frac{1}{2} & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{array}) = \begin{array}{ccc} (\frac{1}{\sqrt{2}})((\frac{1}{2}) - (-\frac{1}{4})) & (\frac{1}{\sqrt{2}})((\frac{1}{2}) + (-\frac{1}{4})) \\ (\frac{1}{\sqrt{2}})(\frac{1}{4} - (0)) & (\frac{1}{\sqrt{2}})(\frac{1}{4} - (0)) \end{array} = \begin{array}{ccc} \frac{3}{8}\sqrt{2} & \frac{1}{8}\sqrt{2} \\ \frac{1}{8}\sqrt{2} & \frac{1}{8}\sqrt{2} \end{array}$$

$$\psi_r^{-1}(\begin{array}{ccc} \frac{3}{8}\sqrt{2} & \frac{1}{8}\sqrt{2} \\ \frac{1}{8}\sqrt{2} & \frac{1}{8}\sqrt{2} \end{array}) = \begin{array}{ccc} (\frac{1}{\sqrt{2}})(\frac{3}{8}\sqrt{2} - (\frac{1}{8}\sqrt{2})) & (\frac{1}{\sqrt{2}})(\frac{1}{8}\sqrt{2} - (\frac{1}{8}\sqrt{2})) \\ (\frac{1}{\sqrt{2}})(\frac{3}{8}\sqrt{2} + (\frac{1}{8}\sqrt{2})) & (\frac{1}{\sqrt{2}})(\frac{1}{8}\sqrt{2} + (\frac{1}{8}\sqrt{2})) \end{array} = \begin{array}{ccc} \frac{1}{4} & 0 \\ \frac{1}{2} & \frac{1}{4} & 0 \end{array}$$

$$\psi^{-1}(\begin{array}{cc} \frac{1}{2} & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{array}) = \begin{array}{cc} \frac{1}{4} & 0 \\ \frac{1}{2} & \frac{1}{4} \end{array}$$

Symbolic Form

Hypothesis:

$$\psi^{-1}((\psi A)^2) = A^2$$

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)^2 = \begin{array}{cc} a^2 + bc & ab + bd \\ ca + dc & bc + d^2 \end{array}$$

$$\psi_r(\begin{array}{cc} a & b \\ c & d \end{array}) = \begin{array}{cc} \frac{1}{\sqrt{2}}(a+b) & \frac{1}{\sqrt{2}}(a-b) \\ \frac{1}{\sqrt{2}}(c-d) & \frac{1}{\sqrt{2}}(c+d) \end{array} = \begin{array}{cc} \frac{1}{2}\sqrt{2}\left(a+b\right) & \frac{1}{2}\sqrt{2}\left(a-b\right) \\ \frac{1}{2}\sqrt{2}\left(c-d\right) & \frac{1}{2}\sqrt{2}\left(c+d\right) \end{array}$$

$$\psi_c(\begin{array}{ccc} \frac{1}{2}\sqrt{2}\,(a+b) & \frac{1}{2}\sqrt{2}\,(a-b) \\ \frac{1}{2}\sqrt{2}\,(c-d) & \frac{1}{2}\sqrt{2}\,(c+d) \end{array}) = \begin{array}{ccc} (\frac{1}{2}\sqrt{2})(\frac{1}{2}\sqrt{2}\,(a+b) - \frac{1}{2}\sqrt{2}\,(c-d)) & (\frac{1}{2}\sqrt{2})(\frac{1}{2}\sqrt{2}\,(a-b) - (\frac{1}{2}\sqrt{2}\,(c+d))) \\ (\frac{1}{2}\sqrt{2})(\frac{1}{2}\sqrt{2}\,(a+b) + \frac{1}{2}\sqrt{2}\,(c-d)) & (\frac{1}{2}\sqrt{2})(\frac{1}{2}\sqrt{2}\,(a-b) + (\frac{1}{2}\sqrt{2}\,(c+d))) \end{array}$$

$$\psi_c^{-1}(\begin{array}{cccc} \frac{1}{2}a^2 + \frac{1}{2}ab - \frac{1}{2}ca - bc + \frac{1}{2}bd - \frac{1}{2}dc + \frac{1}{2}d^2 & \frac{1}{2}a^2 - \frac{1}{2}ca - \frac{1}{2}bd - \frac{1}{2}d^2 - \frac{1}{2}ab - \frac{1}{2}dc \\ \frac{1}{2}a^2 + \frac{1}{2}ab + \frac{1}{2}dc - \frac{1}{2}d^2 + \frac{1}{2}ca + \frac{1}{2}bd & \frac{1}{2}a^2 - bc + \frac{1}{2}d^2 - \frac{1}{2}ab + \frac{1}{2}ca - \frac{1}{2}bd + \frac{1}{2}dc \end{array}) = 0$$

$$\begin{array}{l} (\frac{1}{\sqrt{2}})((\frac{1}{2}a^2+\frac{1}{2}ab-\frac{1}{2}ca-bc+\frac{1}{2}bd-\frac{1}{2}dc+\frac{1}{2}d^2)-(\frac{1}{2}a^2+\frac{1}{2}ab+\frac{1}{2}dc-\frac{1}{2}d^2+\frac{1}{2}ca+\frac{1}{2}bd)) & (\sqrt{\frac{1}{2}})((\frac{1}{2}a^2-\frac{1}{2}ca-\frac{1}{2$$

$$\psi_r^{-1}(\begin{array}{cc} -\frac{1}{2}\sqrt{2}\left(ca+bc+dc-d^2\right) & -\frac{1}{2}\sqrt{2}\left(ca+d^2+dc-bc\right) \\ \frac{1}{2}\sqrt{2}\left(a^2+ab-bc+bd\right) & \frac{1}{2}\sqrt{2}\left(a^2-bd-ab-bc\right) \end{array}) =$$

$$(\sqrt{\frac{1}{2}})(-\frac{1}{2}\sqrt{2}\left(ca+bc+dc-d^2\right)-(-\frac{1}{2}\sqrt{2}\left(ca+d^2+dc-bc\right))) \quad (\sqrt{\frac{1}{2}})(-\frac{1}{2}\sqrt{2}\left(ca+bc+dc-d^2\right)+(-\frac{1}{2}\sqrt{2}\left(ca+d^2+dc-bc\right))) \\ (\sqrt{\frac{1}{2}})(\frac{1}{2}\sqrt{2}\left(a^2+ab-bc+bd\right)-(\frac{1}{2}\sqrt{2}\left(a^2-bd-ab-bc\right))) \quad (\sqrt{\frac{1}{2}})(\frac{1}{2}\sqrt{2}\left(a^2+ab-bc+bd\right)-(\frac{1}{2}\sqrt{2}\left(a^2-bd-ab-bc\right))) \\ = \frac{-bc+d^2}{b\left(a+d\right)} \frac{-c\left(a+d\right)}{b\left(a+d\right)}$$

$$\begin{array}{ccc} -bc+d^2 & -c\left(a+d\right) \\ b\left(a+d\right) & b\left(a+d\right) \end{array} \neq \begin{array}{c} a^2+bc & ab+bd \\ ca+dc & bc+d^2 \end{array}$$

1 Empirical Results

Each empirical result is from either a series of multiplications preconditioned either with wavelet packets or wavelet pyramids type wavelet transforms.

Sample One: Sandra 512×512 by wavelet transform packet

Number of Res	solution Original Energy $E(O)$	Estimate Energy $E(\widetilde{O})$	$(E(O) - E(\widetilde{O}))$	Fidelity $\sqrt{E((O)-(\widetilde{O}))}$
1	40043.8	40043.8	$-9.08501 \cdot 10^{-16}$	$2.1623\overset{Y}{1} \cdot 10^{-13}$
2	40043.8	40043.8	$3.7666 \cdot 10 - 9$	0.0231922
3	40043.8	40043.8	$2.12923 \cdot 10^{-8}$	0.0331245
4	40043.8	40043.7	$1.15056 \cdot 10^{-7}$	0.046215
5	40043.8	40043.8	$-4.45904 \cdot 10^{-8}$	0.0563862
6	40043.8	40043.8	$4.85688 \cdot 10^{-8}$	0.0629457
7	40043.8	40043.8	$7.51241 \cdot 10^{-8}$	0.0666921

Sample Two: Sandra 512×512 by wavelet transform pyramid

Number of Resolution	Original Energy $E(O)$	Estimate Energy $E(\widetilde{O})$	$(E(O) - E(\widetilde{O}))$	Fidelity $\sqrt{E((O)-(\widetilde{O}))}$
1	40043.8	40043.8	$-9.08501 \cdot 10^{-16}$	$2.16231 \cdot 10^{-13}$
2	40043.8	40039.8	$9.93622\ cdot 10^{-5}$	2.27862
3	40043.8	40039.2	0.000113292	4.04497
4	40043.8	40045.9	-5.33258e - 05	6.7722
5	40043.8	40051.3	-0.000187741	11.1503

Sample Three: Molly Holly 256×256 by wavelet transform pyramid

Number of Resolution	Original Energy $E(O)$	Estimate Energy $E(\widetilde{O})$	$(E(O) - E(\widetilde{O}))$	Fidelity $\sqrt{E((O)-(\widetilde{O}))}$
1	582.864	582.864	$-9.75244 \cdot 10^{-16}$	$2.0396 \cdot 10^{-14}$
2	582.864	583.05	-0.000319839	1.19806
3	582.864	582.613	0.000430391	2.18712
4	582.864	579.473	0.00581664	3.19317
5	582.864	576.72	0.0105413	4.82652

Sample Four: Waterfall 512×512 by wavelet transform pyramid

Number of Resolution	Original Energy $E(O)$	Estimate Energy $E(\widetilde{O})$	$(E(O) - E(\widetilde{O}))$	Fidelity $\sqrt{E((O)-(\widetilde{O}))}$
1	6630.76	6630.76	-9.60141e - 16	9.37836e - 14
2	6630.76	6629.92	0.000127083	1.20049
3	6630.76	6626.6	0.000627646	2.37529
4	6630.76	6619.14	0.00175173	3.9194
5	6630.76	6595.14	0.00537249	6.63615
6	6630.76	6579.62	0.00771315	9.48774
7	6630.76	6567.17	0.00959077	12.1211

2 Issue of which MRE works and why

Theorem: $\psi(A) \cdot \psi(B) = \psi(A \cdot B)$

Fact: $\psi_{WPx}(A) \neq \psi^x(A)$ such that $\psi_{WPx}(A)$ is the x resolution of wavelet transform packets except for x = 1.

Fact: $\psi_{Wx}(A) \neq \psi^x(A)$ such that $\psi_{Wx}(A)$ is the x resolution of wavelet transform pyramids except for x = 1.

Proposed Hypothesis:

- 1. $\psi(\psi(A)) \cdot \psi(\psi(B)) = \psi(\psi(A \cdot B))$
- 2. $M: \psi(\psi(A)) \to \psi_{WP2}(A)$ such that ψ_{WP2} is a wavelet transform packet of 2 resolutions for all A capable of MRE or 2 resolutions.
- 3. $M_W: \psi_{WP2}(A) \to \psi(\psi(A))$ such that ψ_{WP2} is a wavelet transform packet of 2 resolutions for all A capable of MRE or 2 resolutions.