CS834 - Introduction to Information Retrieval Presentation #4

Hussam Aldeen Hallak

The Two Papers:

A semantic approach to contextual advertising

SIGIR '07 Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval Pages 559-566

 How much can behavioral targeting help online advertising?

WWW '09 Proceedings of the 18th international conference on World wide web

Pages 261-270

The First Paper:

A semantic approach to contextual advertising

SIGIR '07 Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval Pages 559-566

http://clair.si.umich.edu/~radev/767w10/papers/Week12/ca/semantic.pdf

1st Type of Advertising: Sponsored Search (SS)

Placing ads on the result pages from a search engine

2nd Type of Advertising: Context Match (CM)

Commercial ads within the content of a web page.

Why ads and page content should be related?

Improve user experience → increase clicks → increase revenue

Matching ads with pages

Syntactic Approach:

Match words found in the page with words in ads.

Problems: Leads to irrelevant ads

A page about the golfer "John Maytag" might trigger an ad for "Maytag dishwashers"

Solution:

Combining Semantic (topical) and syntactic matching

The semantic phase:

- 1. Classify the page and the ads into a taxonomy of topics
- 2. Use the proximity of the ad and page classes as a factor in the ad ranking formula

7 / 46

Advantages of Using a hierarchical taxonomy

Classes → Set of applicable ads keywords → Narrow down the search.

Taxonomy Choice

Built by a large web search engine in the US

100 queries for each node

Contains 6000 nodes

Used for classifying both pages and ads

Categories per level

Figure 1: Taxonomy statistics: categories per level

Number of children per node

Figure 1: Taxonomy statistics: fanout for non-leaf nodes

Queries per node

Figure 1: Taxonomy statistics: queries per node

Training data

Pages: Select top 10 results of Web search index for each class in the taxonomy

Ads: Select ads with a bid-phrase assigned to the class

Classifiers:

- SVM and log-regression classifiers were slow!
- Rocchio's (nearest-neighbor) gave best performance!
- Each taxonomy node: a single meta-document (concatenation of all the example queries), represented as a centroid for the class.
- A centroid is the sum of the TF.IDF values of each term.

$$\vec{c_j} = \frac{1}{|C_j|} \sum_{\vec{q} \in C_j} \frac{\vec{q}}{\|\vec{q}\|}$$
 where $\vec{c_j}$ is the centroid for class C_j q iterates over the queries in a particular class.

 Classification is based on the cosine of the angle between the document and the centroid.

14 / 46

Semantic-Syntactic Matching

Process the content of the page

Extract features

Search the ad space to find the best matching ads.

Relevance score

 Convex combination of the keyword (syntactic) and classification (semantic) score:

$$Score(p_i, a_i) = \alpha \cdot TaxScore(Tax(p_i), Tax(a_i))$$

$$+(1-\alpha)\cdot KeywordScore(p_i,a_i)$$

- α determines the relative weight of the taxonomy score and the keyword score.
- α = TaxScore / KeywordScore

KeywordScore (syntactic relevance score)

- Uses Vector Space Model
- Pages and ads are vectors in n-dimensional space (one dimension for each distinct term)
- KeywordScore is the cosine of the angle between the page and the ad vectors

TaxonomyScore (semantic relevance score) (page-ad topical match score)

• Purpose:

- 1. Match ads and pages based on the topic
- 2. Generalization within a taxonomy
- 3. Efficient search of the ad space (user is waiting)

• Ideally:

The match is stronger when both the ad and the page are classified into the same node and weaker when the distance between the nodes in the taxonomy gets larger.

Generalization Challenge

Generalization Advantage

Figure 2: Two generalization paths

Generalization cost

 Density: The probability of an ad belonging to the parent topic being suitable for the child topic.

$$idist(c,p) = \frac{n_c}{n_p}$$

Where:

c is the child node.

p is the parent node.

 n_c is the number of document classified into the subtree rooted at c.

 $n_{_{\scriptscriptstyle D}}$ is the number of document classified into the subtree rooted at p.

0 ≤ idist ≤ 1
idist = 1 (the page and ad belong to the same class/node)
idist = 0 (the least common ancestor of page and ad is the root)

Searching the ad space

- Using inverted index
- The ads are parsed into terms
- Each term has a weight based on a section where it appears

- Challenge: Preserving class information in the index
- Solution: Annotate ads with a unique meta-term for each class
- Cons: Generalization is lost!

- Instead: Also annotate each ad with one meta-term for each ancestor of the assigned class; utilize weights!
- Weights of the meta-terms: the value of idist() function

Example:

Data and Methodology

- Data: 105 pages randomly selected from 20 million pages with contextual advertising
- Tens of millions of ads from advertising network in the US
- Human judges for each page-ad pair on a 1 to 3 scale:

1. Relevant

Page: The National Football League

Ad: Tickets for NFL games

2. Somewhat Relevant

Page: The National Football League

Ad: NFL branded products

3. Irrelevant:

Page: The National Football League

Ad: NFL player "John Maytag" triggers "Maytag" dishwasher ads on

NFL page.

Results

Figure 4: Impact of α on precision for different levels of recall

pages	105
words per page	868
judgments	2946
judg. inter-editor agreement	84%
unique ads	2680
unique ads per page	25.5
page classification precision	70%
ad classification precision	86%

In most cases, precision grows or is flat when Alpha is increased.

25 / 46

What to take away?

- Syntactic (keyword) matching between pages and ads leads to irrelevant ads.
- Semantic (topical) matching relies on the matching between pages and ads in topic
- Semantic matching complemented with syntactic matching leads to better results.

The Second Paper:

 How much can behavioral targeting help online advertising?

WWW '09 Proceedings of the 18th international conference on World wide web

Pages 261-270

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.215.1473&rep=rep1&type=pdf

What is Behavioral Targeting BT Ads?

- The delivery of ads to targeted users based on their web search and browsing history.
- How much can BT help online advertising?
- Strategies to represent the users' behavior:
 - 1. Web browsing history
 - 2. Search queries
- Which BT strategy is better for user segmentation?
- The performance of online advertising is measured by ads Click-Through Rate (CTR)
- Calculate & compare ads click entropy, precision, recall, and F-measure for different BT strategies.
- Short window (1 day) vs long window (7 days)

Modeling User Browsing History

Users are represented by a matrix U_{gxl}
g: number of users

I: number of urls

TF.IDF:
 Users are the documents
 URLs are the terms

	Lnk ₁	Lnk ₂	 Lnk
usr ₁			
usr ₂			
usr _g			

Each entry in the matrix is given the value:

$$u_{ij} = \log[count(clicks\ on\ URL_j\ by\ User_i) + 1] \times \log[\frac{l}{count(users\ who\ have\ clicked\ on\ URL_i)}]$$

Modeling User Search History

 Query history uses Bag-of-Words (BOW) model to populate TF.IDF matrix.

Stop words are removed and Porter stemming is used

Terms that only appear once are removed.

Number of terms is reduced from 765k to 294k

Examined BT Strategies:

- Two BT strategies (pages visited, queries searched)
- Two window sizes (long term: 7 days, short term: 1 day)
- Lead to four possible BT strategies to assess:
 - 1. Long term behavior based on page views (LP)
 - 2. Long term behavior based on query terms (LQ)
 - 3. Short term behavior based on page views (SP)
 - 4. Short term behavior based on query terms (SQ)

Raw Data Clean-Up!

- Source: A commercial search engine (Bing?)
- log data tracked:
 - 1. Web page clicking
 - 2. Ad clicking
- Period: 7 days' click-through log data ranging from June 1st to 7th 2008
- Users removed if they clicked on more than 100 ads in one day (robots)
- Ads removed if they have fewer than 30 clicks over seven days (cannot be used to draw a reliable statistical conclusions)
- Only English queries are considered!

Click-Through Log Format

Table 1. Format of click-through log used in our study.

	T.T.D.020.400.450.T.	A user ID for each	
UserID	UID030608473X	unique user.	
0	1	The detailed query text	
QueryText	xbox	used by the user	
Ouem Time	09 06 02 21:15:47	The time when the	
QueryTime	08-06-03 21:15:47	query was issued	
		The time when the click	
ClickTime	08-06-03 21:16:02	occurred after the query	
		was issued	
ClickURL	http://www.xbox365.c	The URL which has	
CHCKUKL	om	been clicked by the user	
		A Boolean value to	
IsAd	0	show the clicked URL	
		is an ad or not	
		The number of ads	
NumberAd	3	displayed in the search	
		results	
	http://video-	The URL list of all the	
DisplayAd	games.half.ebay.com/	ads that displayed by	
	http://accessories.us.d	the query. (To save	
	ell.com/	space, we only reserve	
	http://www.gamefly.c	top domain of the ad	
	om	URL in this example.)	

Definitions:

- $A = \{a_1, a_2, ..., a_n\}$ is the set of ads
- $Q_i = \{q_{i1}, q_{i2}, ..., q_{imi}\}$ queries which have displayed or clicked a_i
- $U_i = \{U_{i1}, U_{i2}, ..., U_{imi}\}$ users who have displayed or clicked a_i
- $\delta(u_{ij})$ is used to show whether the user u_{ij} has clicked the ad a_i

$$\delta(u_{ij}) = \begin{cases} 1 & \text{if } u_{ij} \text{clicked } a_i \\ 0 & \text{otherwise} \end{cases}$$

$$l_i = \sum_j \delta(u_{ij})$$
: the number of users clicked ad a_i

 K-means and and CLUTO (a clustering software package) cluster users into groups: g_k(U_i) is all users in U_i

$$G(U_i) = \{g_1(U_i), g_2(U_i), ..., g_K(U_i)\}, i=1,2,...n$$

34 / 46

Calculating Similarity Between Users

Cosine similarity is used:

$$Sim(u_{ij}, u_{st}) = \frac{\langle u_{ij}, u_{st} \rangle}{||u_{ij}|| ||u_{st}||}$$

Within-ad similarity: Users who clicked the same ad

$$S_w(a_i) = \frac{2}{l_i(l_i - 1)} \sum_{\delta(u_{ij}) = 1} \sum_{\substack{\delta(u_{it}) = 1 \\ t \neq j}} Sim(u_{ij}, u_{it})$$

Between-ad similarity: Users who clicked different ads

$$S_b(a_i, a_s) = \frac{1}{l_i l_s} \sum_{\delta(u_{ij})=1} \sum_{\delta(u_{st})=1} Sim(u_{ij}, u_{st})$$

Similarity Ratio

Ratio between within-ad and between-ad similarity

$$R(a_i, a_s) = \frac{S_w(a_i) + S_w(a_s)}{2S_b(a_i, a_s)}$$

 The larger the ratio, the more confident we are on the basic assumption of BT for a pair of ads a_i and a_s

Ad Click-Through Rate (CTR)

 The CTR of ad a_i is defined as the number of users who clicked it over the number of users who either clicked it or only displayed it.

$$CTR(a_i) = \frac{1}{m_i} \sum_{j=1}^{m_i} \delta(u_{ij})$$

F-measure

- CTR can be used to calculate precision and recall
- Positive instance: Users displayed and clicked a_i
- Negative instance: Users displayed a but didn't click it
- Precision: CTR of segment

$$Pre(a_i|g_k) = CTR(a_i|g_k)$$

- Recall: clicks of segment/total clicks $Rec(a_i|g_k) = \frac{\sum_{u_{ij} \in g_k(U_i)} \delta(u_{ij})}{\sum_{j=1}^{m_i} \delta(u_{ij})}$
- F-measure:

$$F(a_i|g_k) = \frac{2Pre(a_i|g_k)Rec(a_i|g_k)}{Pre(a_i|g_k) + Rec(a_i|g_k)}$$

 The larger the F measure is, the better the achieved performance is by user segmentation for BT

Ads-Click Entropy

• For ad a_i , the probability of users in segment g_k , who will click this ad, is estimated by:

$$P(g_k|a_i) = \frac{1}{m_i} \sum_{u_{ij} \in g_k(U_i)} \delta(u_{ij})$$

Ads-Click Entropy (mathematically):

$$Enp(a_i) = -\sum_{k=1}^{K} P(g_k|a_i)logP(g_k|a_i)$$

Smaller Entropy => Better user segmentation

Within- and between- ads user similarity

Table 2. Within- and between- ads user similarity.

	$\longrightarrow S_w$	\sim s_b	R	
LP	0.1417	0.0252	28.9217	
LQ	0.2239	0.0196	44.2908	_
SP	0.1532	0.0281	24.5086	
SQ	0.2594	0.0161	91.1890	-

Scores are average across all ads or query terms

- Users who clicked the same ad are up to 91 times more similar
- Search queries are more effective than pages clicked in BT

User segmentation improves CTR by 670%:

(b) User clustering by CLUTO

Figure 1. CTR improvements by user segmentation for BT.

CTR was improved by up to 670% off of the non segmented CTR

41 / 46

(b) Cluster by CLUTO

(a) Cluster by k-means

Figure 2. Ads click Entropy of user segmentation for BT.

Overall Performance by different methods:

Table 5. F measure of different BT strategi

		LP	LQ	SP	SQ
K-means (20 segments)	Pre	8.67%	8.60%	13.35%	17.08%
	Rec	10.20%	22.34%	7.63%	25.58%
	F	0.08	0.10	0.08	0.16
CLUTO (20 segments)	Pre	8.62%	8.56%	14.61%	19.13%
	Rec	10.01%	20.51%	7.86%	21.43%
	F	0.08	0.10	0.07	0.15
K-means (40 segments)	Pre	8.84%	9.23%	19.76%	20.53%
	Rec	9.48%	18.20%	4.83%	20.75%
	F	0.08	0.10	0.06	0.16
CLUTO (40 segments)	Pre	8.76%	9.14%	19.38%	22.80%
	Rec	8.44%	17.88%	4.52%	17.78%
	F	0.08	0.10	0.06	0.14
•-	Pre	9.02%	9.63%	23.47%	23.49%
K-means (80 segments)	Rec	8.93%	17.62%	4.06%	19.35%
	F	0.08	0.10	0.06	0.16
	Pre	8.85%	9.51%	23.09%	27.00%
CLUTO (80 segments)	Rec	7.82%	16.65%	4.00%	15.55%
(ou segments)	F	0.07	0.10	0.06	0.15
	Pre	9.09%	9.93%	25.68%	25.81%
K-means (160 segments)	Rec	8.54%	17.98%	3.92%	19.78%
	F	0.074	0.10	0.06	0.17
CLUTO (160 segments)	Pre	8.87%	9.84%	25.43%	31.02%
	Rec	7.24%	15.58%	3.78%	14.52%
	F	0.07	0.10	0.06	0.15

42 / 46

Precision vs Recall for 160 user segments

Figure 3. Scatter plot of Precision and Recall over all the ads (CLUTO-160 user segments).

Take away message:

- Behavioral targeting can help online advertisement
- Users who click the same ads have similar behavior and they are 91 times more similar than those who don't
- User segmentation based on search queries gives better results than pages visited
- It is better to use short window to segment users
- Increasing the number of segments provides better targeting.
- CTR can be improved by 670% using user segmentation

Referrences:

A semantic approach to contextual advertising

SIGIR '07 Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval Pages 559-566

http://clair.si.umich.edu/~radev/767w10/papers/Week12/ca/semantic.pdf

How much can behavioral targeting help online advertising?

WWW '09 Proceedings of the 18th international conference on World wide web

Pages 261-270

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.215.1473&rep=rep1&type=pdf

Why did the 2nd paper cite the 1st paper?

 Both papers introduce methods to deliver ads related to users' interests

