

Generating Families of Permutation Trinomials

Christian A. Rodríguez; Alex D. Santos Department of Computer Science, University of Puerto Rico, Rio Piedras Campus

RESUMEN

Dado un trinomio de la forma $f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$ sobre un cuerpo finito \mathbb{F}_q con un conjunto de valores de tamaño s, construímos d otros trinomios en \mathbb{F}_q con el mismo tamaño de conjunto de valores, donde $d = mcm(d_1, d_2)$. En particular, dado un polinomio de permutación de la forma $f_{a,b}$, construímos d otros polinomios de permutación en \mathbb{F}_q . También generamos secuencias $P_q m_1$, $P_q m_2$, \cdots , donde $P_q m_i$ es un polinomio de permutación en $\mathbb{F}_q m_i$.

PRELIMINARES

Definición. Una permutación de un conjunto A es un ordenamiento de los elementos de A. Una función $f:A\to A$ nos da una permutación de A si y solo si f es uno a uno y sobre.

Definición. Un cuerpo finito \mathbb{F}_q , $q=p^r$, p primo, es un conjunto con $q=p^r$ elementos.

Definición. Una raíz primitiva $\alpha \in \mathbb{F}_q$ es un generador del grupo multiplicativo \mathbb{F}_q^* .

Ejemplo. Considere el cuerpo finito \mathbb{F}_7 . Tenemos que: $3^1 = 3$, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1$, entonces 3 es una raíz primitiva de \mathbb{F}_7 .

Definición. Sea f(x) un polinomio definido sobre \mathbb{F}_q . El **conjunto de valores** de f esta definido por $V_f = \{f(a) \mid a \in \mathbb{F}_q\}$.

Note que un polinomio f(x) definido en \mathbb{F}_q es un polinomio de permutación si y solo si $V_f = \mathbb{F}_q$.

APLICACIONES

- El operador de encripción de algunos sistemas de encripción es una permutación de un cuerpo finito \mathbb{F}_q y necesita ser computado eficientemente. Si expresamos ese operador en términos de un polinomio, computarlo es simple y eficiente.
- Polinomios con conjuntos de valores mínimos están relaciónados a curvas con un número grande de puntos racionales.

RESULTADOS - CONJUNTOS DE VALORES

Definimos una relación para construir clases de equivalencia de polinomios con conjuntos de valores de la misma cardinalidad.

Definición 1. Sean $a = \alpha^i$, $b = \alpha^j$, donde α es una raíz primitiva en \mathbb{F}_q , $y \sim$ una relación en $\mathbb{F}_q^* \times \mathbb{F}_q^*$ definida por: $(a,b) \sim (a',b')$

$$\iff$$
 $a'=\alpha^{i+h(\frac{q-1}{d_1}-\frac{q-1}{d_2})}, b'=\alpha^{j+h(\frac{q-1}{d_1})}, donde\ h\in\mathbb{Z}.$

Ejemplo. Sean $q = 13, d_1 = 2, d_2 = 3$, entonces tenemos $\alpha = 2$ y $a = 2^2 = 4, b = 2^3 = 8$. Ahora $(a, b) \sim (a', b')$ si y solo si $a' = \alpha^{2+2h}, b' = \alpha^{3+6h}$. Por ejemplo $(2^2, 2^3) \sim (2^{2+2}, 2^{3+6})$.

Lema 1. La relación \sim en Def 1 es una relación de equivalencia en $\mathbb{F}_q^* \times \mathbb{F}_q^*$.

El Lema 1 induce una relación de equivalencia en el conjunto de polinomios de la forma $F_{a,b}(X) = X(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$ con clases de equivalencia $[F_{a,b}] = [F_{\alpha i,\alpha j}] = \left\{ F_{a',b'}|a' = \alpha^{i+h(\frac{q-1}{d_1} - \frac{q-1}{d_2})}, b' = \alpha^{j+h(\frac{q-1}{d_1})} \right\}.$

Esto provee una construcción para polinomios con conjuntos de valores de la misma cardinalidad.

Teorema 2. Suponer que $F_{a,b} \sim F_{a',b'}$ donde \sim es la relación de equivalencia en el Lema 1. Entonces $|V(F_{a,b})| = |V(F_{a',b'})|$.

PROBLEMA

Estudiar el conjunto de valores de polinomios de la forma

$$F_{a,b}(X) = X(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

sobre cuerpos finitos \mathbb{F}_q y determinar condiciones en a,b tal que el polinomio es un polinomio de permutación.

RESULTADOS - PERMUTACIÓN

Proposición 1. $|[F_{a,b}]| = mcm(d_1, d_2).$

Dado un polinomio podemos construir otros $mcm(d_1,d_2)$ polinomios con conjunto de valores de la misma cardinalidad:

$$(\alpha^2, \alpha^{26}), (\alpha^8, \alpha^8), (\alpha^{14}, \alpha^{26}), (\alpha^{20}, \alpha^8), (\alpha^{26}, \alpha^{26}), (\alpha^{32}, \alpha^8)$$

Teorema 1. El número de polinomios de la forma $F_{a,b}(X)$ con $|V_{a,b}| = n$ es un múltiplo de $mcm(d_1, d_2)$.

Un resultado directo del Teorema 1 es el caso particular cuando $|V_{a,b}|=q$, esto implica que tenemos polinomios de permutación. La construcción establecida anteriormente nos provee una manera de construir familias de polinomios de permutación.

Corolario 1. El número de polinomios de permutación de la forma $F_{a,b}(X)$ es un múltiplo de $mcm(d_1, d_2)$.

Número de Polinomios de Permutación

TRABAJO FUTURO

- Encontrar condiciones suficientes y necesarias tal que $V_{a,b} = \mathbb{F}_q$ y $V_{a,b}$ sea de cardinalidad mínima.
- Generalizar los resultados a polinomios con más términos y con exponentes no divisores de q-1: $f_{a,b}(X)=X^r(X^{d_1}+aX^{d_2}+b)$.

REFERENCIAS

- [1] Panario, D., Mullen, G., Handbook of Finite Fields. CRC Press (2013).
- [2] Wan, D., Lidl, R. Permutation Polynomials of the Form $x^r f(x^{\frac{q-1}{d}})$ and Their Group Structure. Mh. Math. 112, 149-163 (1991).
- [3] Borges, H., Conceicao R. *On the characterization of minimal conjunto de valores polynomial*. Journal of Number Theory 133 (2013) 2021-2035.