Question	Scheme	Marks
number		
5. (a)	$12^{2} = 2BA^{2} - 2 \times BA \times BC \times \cos 120 \Rightarrow 144 = 3AB^{2} \Rightarrow AB = \sqrt{48} = (4\sqrt{3})$ ALT	M1A1
	$AB = \frac{12\sin 30}{\sin 120} = 4\sqrt{3} \tag{6.9282}$	(M1A1)
		(2)
(b)	$\frac{\sin D}{12} = \frac{\sin(35)}{8} \Rightarrow D = \sin^{-1}\left(\frac{12\sin(35)}{8}\right) = 59.357$	M1A1
	$D = 180 - 59.3755 = 120.64245 \approx 120.6$	A1ft
		(3)
(c)	ACD= 24.3541°	B1
	Area of $ABC = \frac{1}{2} \times (\sqrt{48})^2 \times \sin 120 = 12\sqrt{3} (= 20.78)$	M1A1
	Area of $ADC = \frac{1}{2} \times 12 \times 8 \times \sin(24.3576) = 19.7966$	M1A1
	Area of $ABCD = 40.5812 = 40.6 \text{ cm}^2 \text{ (3sf)}$	A1
	ALT	(6)
	$AD = \frac{8\sin('24.3576')}{\sin(35)} = 5.7524$	(B1)
	Area of $ABC = \frac{1}{2} \times \left(\sqrt{48}\right)^2 \times \sin 120 = 12\sqrt{3}$	(M1A1)
	Area $ADC = \frac{1}{2} \times 5.752 \times 8 \times \sin(120.6424) = 19.7966$	(M1A1)
	Area of $ABCD = 40.5812 = 40.6 \text{ cm}^2 \text{ (3sf)}$	(A1) (6)
		(11)

Notes					
(a)	M1	Uses a correct cosine rule to find length AB			
	A1	For $AB = 4\sqrt{3}$			
ALT	<u>آ</u> 1				
(a)	M1	For using a correct sine rule to find length AB			
	A1	For $AB = 4\sqrt{3}$			
ALT	ALT 2				
(a)	M1	Divides triangle ABC into two congruent right angle triangles.			
		$AB = \frac{6}{\sin 60^{\circ}}$			
	A1	For $AB = 4\sqrt{3}$			
(b)	M1	For using a correct sine rule to find $\angle ADC$			
	A1	For the acute angle resulting from their sine rule = 59.357° (accept minimum			
		accuracy of 59.4°)			
	A1	For the correct obtuse angle $\angle ADC = 120.6^{\circ}$			
	The general principle of marking part (c) is; First M1A1 for triangle ABC, second				
		triangle ADC			
(c)	B1	$\angle ACD = 24.3576^{\circ}$ (accept minimum accuracy of 24.4°)			
	M1	Area of $\triangle ABC$ using correct formula for area of a triangle using 120° and their			
	A1	length AB or BC (but their $AB = BC$)			
		Area $\triangle ABC = 12\sqrt{3}$ (oe., accept minimum accuracy of 20.8)			
	M1	Area of $\triangle ADC$ using correct formula and their $\angle ADC$ and the given lengths 12			
	A 1	cm and 8 cm. Area $\triangle ADC = 19.79662$ (accept minimum 19.8)			
	A1 A1	Area $\triangle ADC = 19.79662$ (accept minimum 19.8) Area of quadrilateral $ABCD = 40.6$ (cm ²)			
AIJ	ALT 1 Area of quadrilateral $ABCD = 40.6$ (cm ⁻)				
(c)	B1	For finding length $AD = 5.7524$ (accept minimum accuracy of 5.7)			
	M1	Area of $\triangle ABC$ using correct formula for area of a triangle using 120° and their			
		length AB or BC (but their $AB = BC$)			
	A1	For substitution of correct values.			
		[Area $\triangle ABC = 12\sqrt{3}$ (oe., accept minimum accuracy of 20.8)]			
	M1	Area of using correct formula and their AD and the given length 12 cm and			
		angle 35°.			
	A1	For substitution of correct values.			
		[Area $\triangle ADC = 19.79662$ (accept minimum 19.8)]			
	A1	Area of quadrilateral $ABCD = 40.6 \text{ (cm}^2\text{)}$			
ALT					
(c)	B1	Divides triangle ABC into two congruent right angle triangles. (midpoint of AB is M)			
		$BM = \frac{6}{\tan 60^{\circ}} = 2\sqrt{3}$ accept 3.46			
	M1	Area of $\triangle ABC$ using 2 × correct formula for area of a triangle			
		1			
		$2 \times \frac{1}{2} \times 6 \times 2\sqrt{3} = 12\sqrt{3}$			
	A1	Area $\triangle ABC = 12\sqrt{3}$ (oe., accept minimum accuracy of 20.8)			
Area	s of A	$\triangle ADC$ and quadrilateral $ABCD$ as above.			
L	.				

Useful Sketch

Area
$$ABC = 12\sqrt{3}$$
 or 20.78... cm²

Area of $ADC = 19.79... \text{ cm}^2$

Total area = 40.6 cm^2

Penalise rounding only once. If they their answer to (b) as awrt120.6 (e.g.120.64) deduct the A mark. If they then give their answer to (c) as 40.61 do not penalise.