This Response is being filed to the Office Action dated April 22, 2002. Claims 1-10, 19-35 and 39 are pending.

The Examiner has objected to Figures 1-5, citing a lack of uniformity of the lines present in these drawings and the illegibility of the numbers, letters and reference characters. The Examiner has also objected to the specification, noting that the "faint lettering" could result in printing problems.

The Examiner has noted that the application contains sequence disclosures that fail to fully comply with the requirements of 37 C.F.R. §§ 1.821 through 1.825.

The Examiner has objected to Claims 1-10, 19-35 and 39 as containing a variety of informalities, including missing or extraneous articles.

Claims 1-10, 32 and 35 are rejected under 35 U.S.C. § 101 as being directed to non-statutory subject matter.

Claims 1-10, 19-35 and 39 are rejected under the first paragraph of 35 U.S.C. § 112 as containing subject matter that was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventors had possession of the claimed invention at the time the application was filed. Specifically, the Examiner maintains that the claims are broadly drawn to a multitude of DNA molecules that encode androctonine, defined as any peptide produced by *Androctonus australis*, while the specification only describes one such coding sequence (SEQ ID NO.:1).

Claims 1-10, 19-35 and 39 are rejected under the first paragraph of 35 U.S.C. § 112 because the specification, while enabling for a nucleic acid encoding the androctonine of SEQ ID NO.:1, a NY02:403617.2

chimeric gene, vector, transformed bacterium and plants comprising this nucleic acid, and a method of transformation of tobacco with the nucleic acid, does not reasonably provide enablement for nucleic acids encoding androctonine when broadly defined as any peptide produced by *Androctonus australis*. The Examiner also maintains that the specification does not provide guidance for transformation of yeast, fungus or baculovirus, for producing fungal-resistant plants, or for expression of the peptide encoded by SEQ ID NO.:1 in the absence of a signal peptide sequence.

Claims 1-10, 19-35 and 39 are rejected under the second paragraph of 35 U.S.C. § 112 as being indefinite for failing to particularly point out and distinctly claim the subject matter that Applicants regard as the invention. Specifically, the Examiner contends that the claims fail to conform with US practice and are replete with grammatical and/or idiomatic errors. Most notable among these was the inclusion within the same claim of broad and narrow language.

Claims 1-10, 19-25, 28-29 and 39 are rejected under 35 U.S.C. § 102(b) as being anticipated by Maeda *et al.* (Virology 1991;184:777-780), by Ely (WO 95/11305), and by Barton *et al.* (U.S. Patent No. 5,177,308). The Examiner contends that these references teach a chimeric gene encoding the scorpion toxin AaIT (referred to in Ely as "AaHIT"), which she notes is an androctonine according to the definition presently contained in the specification. The Examiner further states that amino acids 10-27 of the AaIT or AaHIT proteins of Maeda *et al.* or Ely, respectively, or amino acids 11-28 of the AaIT of Barton *et al.* "essentially comprise" the amino acids indicated in Claims 7-8 of the instant specification.

Claims 1-10, 19-25, 28-29 and 39 are rejected under 35 U.S.C. § 103(a) as being obvious in light of Barton *et al.* (*supra*) in combination with Sutton *et al.* (Transgenic Research 1992;1:228-236) and/or Ely (*supra*) in combination with Gordon-Kamm *et al.* (Plant Cell 1990;2:603-618). The Examiner notes that Barton *et al.* do not disclose methods of isolating androctonine from host NY02:403617.2

organisms transformed with a nucleic acid encoding that protein, and that the teachings of Ely do not disclose maize plants transformed with the chimeric gene or seeds from those plants. However, the Examiner maintains that it would have been obvious to one of ordinary skill in the arts to isolate the proteins from the transgenic plants described in Barton *et al.* using the methods as described in Sutton *et al.*, the motivation being that analysis of protein expression levels is a standard procedure when expressing proteins in plants. The Examiner further maintains that it would have been obvious to one of ordinary skill in the arts to obtain the instant invention by modifying the method of producing androctonine-expressing plants taught by Ely according to the teachings of transformation of maize and production of seeds from the transgenic plants as taught by Gordon-Kamm *et al.*

Applicants respectfully traverse the Examiner's rejections of the aforementioned claims for the reasons set forth below. The specification and Claims 1-10, 19-35 and 39 have been amended in response to the Examiner's comments and to bring increased clarity to the claims. New claims 40-42 have been added. Support for these new claims may be found in paragraphs 32 and 47 of the substitute specification. No new matter has been added by the amendments to the specification or the claims.

In accordance with 37 C.F.R. § 121, Applicants have provided (1) accurate instructions to amend the specification, the drawings, and the claims, (2) a substitute specification and replacement claims in clear form herein, and (3) a version of the specification and claims marked up to show all the changes relative to the previous version of the claims, which appears on the attached pages. In addition, Applicants have included within the substitute specification an abstract, which is attached to the substitute specification as a separate page. Reconsideration of this application in view of the technical amendments and remarks made herein is respectfully requested.

I. Objections to the Drawings, the Specification and the Claims

The Examiner has objected to Figures 1-5, citing a lack of uniformity of the lines present in these drawings and the illegibility of the numbers, letters and reference characters. The Examiner has also objected to the specification, noting that the "faint lettering" could result in printing problems. The Examiner has objected to Claims 1-10, 19-35 and 39 as containing a variety of informalities, including missing or extraneous articles.

In response and pursuant to 37 C.F.R. § 1.125, Applicants include herewith a substitute specification, including Figures 1-5. This substitute specification contains no new matter apart from the insertion of paragraph numbering, appropriate headings, cross referencing to related applications, brief descriptions of the figures, an abstract of the disclosure, and those changes described below to comply with the requirements of 37 C.F.R. §§ 1.821 through 1.825. Substitute Figures 1-5 have been revised to provide uniformity of the lines, and legible numbers, letters and reference characters. Applicants also include herewith a set of claims amended to remove all grammatical/linguistic errors and to conform with U.S. patent practice. A marked up version of the substitute specification and the amended claims showing all of the changes is provided. Applicants maintain that the filing of this substitute specification, revised figures and these amended claims are sufficient to overcome the issued objections.

II. The Application Complies with 37 C.F.R. §§ 1.821-1.825

The Examiner has noted that the application contains sequence disclosures that fail to fully comply with the requirements of 37 C.F.R. §§ 1.821 through 1.825. In response, Applicants submit herein paper and computer-readable copies of the Sequence Listing for the above-captioned application. Applicants hereby state that the content of the paper and computer readable copies of

the Sequence Listing submitted in accordance with 37 C.F.R. § 1.821(c) and (e), respectively, are the same. Applicants hereby state that the content of the paper and computer readable copies of the Sequence Listing, submitted herewith in accordance with 37 C.F.R. § 1.82(f), does not include new matter. Applicants submit that the application now complies with 37 C.F.R. §§ 1.821-1.825.

III. The Claims are Directed Toward Statutory Subject Matter

Claims 1-10, 32 and 35 are rejected under 35 U.S.C. § 101 as being directed to non-statutory subject matter. Specifically, the Examiner notes that claims 1-10 are drawn to nucleic acid fragments, and that these claims could be broadly read on DNA fragments naturally occurring in the genomes of various species and thus encompass non-patentable subject matter. The Examiner further notes that Claims 32 and 35 are drawn to progeny plants or seeds, which she maintains have the same characteristics and utility as those found in nature and are thus not patentable.

In response, Applicants have amended Claims 1 and 9 to recite "...isolated nucleic acid fragments..." and have amended Claims 30 and 34 to recite "A plant comprising the chimeric gene of any one of Claims 19 to 21..." or "Seeds comprising the chimeric gene of any one of Claims 19 to 21...", respectively. Applicants assert that these amendments remove the basis for the rejection of these claims under 35 U.S.C. § 101, and respectfully request withdrawal of the rejection.

IV. The Claims Satisfy the Written Description Requirement of 35 U.S.C. § 112, first paragraph

Claims 1-10, 19-35 and 39 are rejected under the first paragraph of 35 U.S.C. § 112 as containing subject matter that was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventors had possession of the claimed invention at the time the application was filed. Specifically, the Examiner maintains that the claims are broadly drawn to a multitude of DNA molecules that encode androctonine, defined as any peptide produced NY02:403617.2

Attorney Docket No.: A33002-PCT-USA-072667.0124

PATENT

by Androctonus australis, while the specification only describes one such coding sequence (SEQ ID

NO.:1).

In response, Applicants have amended the claims to remove all references to "androctonine"

as broadly defined in the specification, and have limited the pending amended claims toward either

nucleic acids encoding polypeptides of the general formula I set forth in Claim 4 and in SEQ ID

NO.:15 or their homologues, or the specific nucleic acid sequence of SEQ ID NO.:1, its homologues

and complements. Please note that the specification defines the basis of protein homology and DNA

homology on p. 5, lines 5-21 and p. 8, line 21 bridging to p. 9, line 14, respectively. The definition

of protein homology includes the limitation that biological function (antifungal or antibacterial

activity) is to be preserved in the peptide homologues.

IV. The Claims Satisfy the Enablement Requirement of 35 U.S.C. § 112, first paragraph

The Examiner has rejected Claims 1-10, 19-35 and 39 under the first paragraph of 35 U.S.C.

§ 112, alleging that the specification, while enabling for a nucleic acid encoding the androctonine

of SEQ ID NO.:1, a chimeric gene, vector, transformed bacterium and plants comprising this nucleic

acid, and a method of transformation of tobacco with the nucleic acid, does not reasonably provide

enablement for nucleic acids encoding androctonine when broadly defined as any peptide produced

by Androctonus australis.

In response, Applicants have amended Claims 1-10, 19-35 and 39. Applicants assert that

these amendments, which are described above, obviate the basis for the rejections of these claims

on the grounds that the specification is not enabling for all androctonines as broadly defined in the

specification, but rather only to those defined by the general formula (I) of Claim 4, SEQ ID NO::15

or their homologues, or the specific nucleic acid sequence of SEQ ID NO.:1, its homologues and

NY02:403617.2

39

complements.

The Examiner also rejects Claims 1-10, 19-35 and 39 under the first paragraph of 35 U.S.C. § 112, alleging that the specification does not provide guidance for transformation of yeast, fungus or baculovirus. Regarding the Examiner's contention that the specification is not enabling for transformation of a yeast or a fungus, Applicants maintain that such methods are in fact enabled by the specification, as they are well-known to those of ordinary skill in the art to which the invention pertains. A cursory review of the recent scientific literature reveals many references which evince such methods. *See e.g.* Thompson *et al.*, Yeast 1998;14:565-571 for a recent example of yeast transformation protocols. *See e.g.* Lorito *et al.* Curr Genet 1993;24:349-356 and Robinson and Sharon, Curr Genet 1999;36:98-104 for recent examples of fungal transformation protocols. Copies of these references are attached as Exhibits A-C. In light of these amendments and the level of skill of one of ordinary skill in the art, Applicants request that the rejections of these claims on the grounds that the specification is not enabling for transformation of yeast or fungus be withdrawn.

As for the Examiner's contention that the specification is not enabling for transformation of a baculovirus, Applicants respond by deleting all reference to baculovirus "transformation" from the pending claims. However, Applicants have added claims drawn to a recombinant baculovirus comprising the chimeric gene of Claim 19. The use of recombinant baculoviruses as expression vectors is well established in the field, and the teaching of the instant application would enable the ordinary artisan to create and use such vectors.

The Examiner has also rejected Claims 1-10, 19-35 and 39 under the first paragraph of 35 U.S.C. § 112, alleging that the specification does not provide guidance for producing fungal-resistant plants. In response, Applicants first note that, of these claims, only Claims 4-10, 19-35 and 39 are pending following the cancellation of Claims 1-3. Of these pending claims, Claims 4-10 have been NY02:403617.2

amended so that they are directed toward an isolated nucleic acid fragment encoding a polypeptide comprising the polypeptide sequence of general formula (I). Claims 19-22 are directed toward chimeric genes comprising the nucleic acid sequences of Claims 4-10 or vectors containing same, while Claims 23-35 are directed toward methods of transformation of various host organisms with these chimeric genes and the plants and seeds derived therefrom. Claim 39 is directed toward a method for preparing the product of the chimeric gene of Claims 19 to 28 from the transgenic plant of Claim 28. Of these claims, only Claim 34 makes any reference to antifungal activity. Thus, the alleged lack of enablement of the specification for producing fungal-resistant plants are obviated at least for Claims 4-10, 19-33, 35 and 39, and Applicants therefore request that the rejections of these claims on the grounds that the specification is not enabling for producing fungal-resistant plants be withdrawn.

Regarding Claim 34, Applicants respectfully submit that the teachings of the instant specification would permit one of ordinary skill in the art to create fungus-resistant plants. In support of this position, Applicants direct the Examiner's attention toward Oldach *et al.* (Mol Plant Microbe Interact 2001;14:832-838; attached as Exhibit D), Gao *et al.* (Nat Biotechnol 2000;18:1307-1310; attached as Exhibit E) and Mitsuhara *et al.* (Mol Plant Microbe Interact 2000;13:860-868; attached as Exhibit F), as evidence of the level of skill in the art at the approximate time of the instant invention relative to the creation of fungus-resistant plants through the introduction of a heterologous transgene. Applicants therefore maintain that no undue experimentation would be necessary for one of ordinary skill in the art to employ the teachings of the specification to create fungus-resistant transgenic plants, and respectfully request that the rejection of Claim 34 for lack of enablement be withdrawn.

The Examiner also alleges that the specification does not provide guidance for expression of the peptide encoded by SEQ ID NO.:1 in the absence of a signal peptide sequence. Applicants again note that Claims 4-10 are presently directed toward an isolated nucleic acid fragment encoding a polypeptide comprising the polypeptide sequence of general formula (I), Claims 19-22 are directed toward chimeric genes comprising the nucleic acid sequences of Claims 4-10 or vectors containing same, Claims 23-35 are directed toward methods of transformation of various host organisms with these chimeric genes and the plants and seeds derived therefrom, and Claim 39 is directed toward a method for preparing the product of the chimeric gene of Claims 19 to 28 from the transgenic plant of Claim 28. None of these claims, in their presently amended form, are directed toward the expression product of the nucleic acid fragment or the chimeric gene and thus the presence or absence of an initiating methionine residue is irrelevant to their validity. Nevertheless, Applicants assert that one of ordinary skill in the art would easily be able to employ the nucleic acid sequences of Claims 4-10 and the chimeric gene of Claims 19-21, which includes the isolated nucleic acid sequence of any one of Claims 4-10 operably linked to heterologous regulatory elements, to express biologically-active proteins. An example of this approach would include the use of signal peptides, such as the one employed in Example 1, or those described in Claims 12-17, which were cancelled in response to the previously issued Restriction Requirement. Applicants therefore respectfully request that the rejections of these claims on the grounds that the specification is not enabling for expression of the peptide encoded by SEQ ID NO.:1 in the absence of a signal peptide sequence be withdrawn.

V. The Claims Satisfy the Requirements of 35 U.S.C. § 112, second paragraph

Claims 1-10, 19-35 and 39 are rejected under the second paragraph of 35 U.S.C. § 112 as

being indefinite for failing to particularly point out and distinctly claim the subject matter that Applicants regard as the invention. Specifically, the Examiner contends that the claims fail to conform with U.S. practice and are replete with grammatical and/or idiomatic errors. Most notable among these was the inclusion within the same claim of broad and narrow language.

In response, Applicants have amended the pending claims to bring greater clarity and to ensure their compliance with U.S. patent practice. Applicants believe all grammatical and idiomatic errors have been removed, all instances of the inclusion of both broad and narrow language within the same claim have been corrected, and improper Markush format language has been remedied. Applicants assert that the claims as presently amended obviate the rejections made under the second paragraph of 35 U.S.C. § 112.

VI. The Claims are not Anticipated

Claims 1-10, 19-25, 28-29 and 39 are rejected under 35 U.S.C. § 102(b) as being anticipated by Maeda *et al.* (Virology 1991;184:777-780), by Ely (WO 95/11305), and by Barton *et al.* (U.S. Patent No. 5,177,308). The Examiner contends that these references teach a chimeric gene encoding the scorpion toxin AaIT (referred to in Ely as "AaHIT'), which she notes is an androctonine according to the definition presently contained in the specification. The Examiner further states that amino acids 10-27 if the AaIT or AaHIT proteins of Maeda *et al.* or Ely, respectively, or amino acids 11-28 of the AaIT of Barton *et al.* "essentially comprise" the amino acids indicated in Claims 7-8 of the instant specification.

In response, Applicants disagree with the Examiner's analysis of the teachings of these references, especially in light of the amendments made herein. A comparison of the general formula (I) recited in Claim 4 with the peptide sequences disclosed in these cited documents reveals clear

differences. For example, residue 11 of the AaIT and AaHIT proteins of Maeda *et al.* or Ely, respectively, or residue 12 of the AaIT protein of Barton *et al.*, which are each a glycine, must be a cysteine in order to read on the general formula (I) recited in Claim 4 as presently amended. Moreover, all of these proteins fail to contain the amino acid residues at the positions specified in Claims 7 and 8. Thus, because they do not teach the protein or nucleic acid sequences recited in the claims as presently amended, none of these references can anticipate the pending claims of the instant application. Applicants therefore respectfully request that the rejections of Claims 1-10, 19-25, 28-29 and 25 on the basis of 35 U.S.C. §102 (b) be withdrawn.

VII. The Claims are not Obvious

Claims 1-10, 19-25, 28-29 and 39 are rejected under 35 U.S.C. § 103(a) as being obvious in light of Barton *et al.* (*supra*) in combination with Sutton *et al.* (Transgenic Research 1992;1:228-236) and/or Ely (*supra*) in combination with Gordon-Kamm *et al.* (Plant Cell 1990;2:603-618). The Examiner notes that Barton *et al.* do not disclose methods of isolating androctonine from host organisms transformed with a nucleic acid encoding that protein, and that the teachings of Ely do not disclose maize plants transformed with the chimeric gene or seeds from those plants. However, the Examiner alleges that it would have been obvious to one of ordinary skill in the arts to isolate the proteins from the transgenic plants described in Barton *et al.* using the methods as described in Sutton *et al.*, the motivation being that analysis of protein expression levels is a standard procedure when expressing proteins in plants. The Examiner further alleges that it would have been obvious to one of ordinary skill in the arts to obtain the instant invention by modifying the method of producing androctonine-expressing plants taught by Ely according to the teachings of transformation of maize and production of seed from the transgenic plants as taught by Gordon-Kamm *et al.*

Attorney Docket No.: A33002-PCT-USA-072667.0124

PATENT

As discussed immediately above for the rejections of these same claims made under 35

U.S.C. § 102(b), neither Barton et al. nor Ely teach the peptide or nucleic acid sequences of the

instant invention. Therefore, these references, either alone or in combination, cannot render obvious

Claims 1-10, 19-25, 28-29 and 39, nor can they render the claims obvious when combined with

Sutton et al. or Gordon-Kamm et al. Therefore, Applicants respectfully request that the rejections

of these claims under 35 U.S.C. § 103(a) be withdrawn.

CONCLUSION

Based on the foregoing remarks and in light of the amendments, Applicants submit that the

present application is in condition for allowance. A Notice of Allowance is therefore respectfully

requested.

Applicants believe a fee of \$400.00 is due with this response for a two-month extension of

time as required under 37 C.F.R. §1.17(a)(2). Should any additional fees be required in connection

with this response, the Commissioner is hereby authorized to charge Deposit Account Number 02-

4377. A duplicate copy of this communication is enclosed.

A Version With Marking To Show Changes Made is enclosed with this response pursuant

to 37 C.F.R. § 1.121. Should any discrepancy exist between the claims as set forth within the text

of this response and the Version With Marking To Show Changes Made, the claims as set forth in

this response shall control and should be deemed to represent Applicant's actual amendment.

NY02:403617.2

45

If a telephone interview would be of assistance in advancing the prosecution of the subject application, Applicant's undersigned attorney invites the Examiner to telephone at the number provided below.

Respectfully submitted,

Louis S. Sorell

Patent Office Reg. No. 32,439

Alicia A. Russo

Patent Office Reg. No. 46,192

Attorneys for Applicants

(212) 408-2500

MARKED UP VERSION OF TECHNICAL AMENDMENTS

BAKER BOTTS L.L.P.

30 ROCKEFELLER PLAZA

NEW YORK, NEW YORK 10112

TO ALL WHOM IT MAY CONCERN:

Be it known that WE, GEORGES FREYSSINET, RICHARD DEROSE, and JULES HOFFMANN, citizens of France, the United States, and France, respectively, all residing in France and whose post office addresses are 21, rue de Nervieux, F-69450 Saint Cyr au Mont d'Or, France, 216, rue de Saint Cyr, F-69009 Lyon, France, and 5, rue Closener, F-67000 Strasbourg, France, respectively, have invented an improvement in

GENE CODING FOR ANDROCTONINE, VECTOR CONTAINING IT AND DISEASE-RESISTANT TRANSFORMED PLANTS OBTAINED

of which the following is a

SPECIFICATION

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a national stage of International Patent Application Serial Number PCT/FR98/01814, filed August 18, 1998, which claims priority from French Patent Application Serial Number FR 97/10632, filed August 20, 1997, the contents of which are incorporated herein by reference in their entireties.

INTRODUCTION

[0002] The present invention relates to a DNA sequence coding for androctonine, to a vector containing it for the transformation of a host organism and to the process for transforming the [said] organism.

[0003] The invention relates more particularly to the transformation of plant cells and plants and to the androctonine produced by the transformed plants, giving them resistance to diseases, in particular diseases of fungal origin.

[0004] There is today an increasing need to make plants resistant to diseases, in particular fungal diseases, in order to reduce, or even avoid altogether, the need for treatments with antifungal protection products, in order to protect the environment. One means of increasing this disease-resistance consists in transforming the plants so that they produce substances capable of defending themselves against these diseases.

[0005] Various substances of natural origin are known, in particular peptides, which have bactericidal or fungicidal properties, especially against the fungi responsible for plant diseases. However, the problem consists in finding such substances which not only can be produced by transformed plants, but also can conserve their bactericidal or fungicidal properties and confer these properties to the [said] plants. For the purposes of the present invention, the terms bactericidal and fungicidal are understood to refer both to the actual bactericidal or fungicidal properties and to the bacteriostatic or fungistatic properties.

[0006] Androctonines are peptides produced by scorpions, in particular from the species Androctonus australis. An androctonine and its preparation by chemical synthesis are described by Ehret-Sabatier et al., along with its in vitro antifungal and antibacterial properties.

[0007] The androctonine genes have now been identified, and it has also been found that they can be inserted into a host organism, in particular a plant, in order to express an androctonine, both for NY02:403617.2

the preparation and isolation of this androctonine and to give the [said] host organism properties of resistance to fungal diseases and to diseases of bacterial origin, thereby providing a particularly advantageous solution to the problem outlined above.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIGURE 1 shows the schematic structure of plasmid pRTL-2 GUS.

[0009] FIGURE 2 shows the schematic structure of expression cassette created through the replacement of the *Ncol/Bam*HI fragment from pRTL-2 GUS by a similar fragment encoding the PR-1a-androctonine fusion protein.

[0010] FIGURE 3 shows the schematic structure of the multiple cloning sites contained within the Agrobacterium tumefaciens vector plasmid.

[0011] FIGURE 4 shows the schematic structure of The schematic structure of pRPA-RD-174.

[0012] FIGURE 5 shows the schematic structure of the plasmid pRPA-RD-184.

DETAILED DESCRIPTION OF THE INVENTION

[0013] The subject of the invention is thus, firstly, a nucleic acid fragment coding for an androctonine, a chimeric gene comprising the [said] fragment coding for an androctonine and heterologous regulation elements in positions 5' and 3' which can function in a host organism, in particular in plants, and a vector for transforming host organisms containing this chimeric gene, and the host organism transformed. The invention also relates to a transformed plant cell containing at least one nucleic acid fragment coding for an androctonine, and to a disease-resistant plant containing the [said] cell, in particular a plant regenerated from this cell. Lastly, the invention relates to a process for cultivating transformed plants according to the invention.

[0014] According to the invention, the term androctonine is understood to refer to any peptide which

PATENT

can be produced by and isolated from scorpions, in particular from the species *Androctonus* australis, these peptides comprising at least 20 amino acids, preferably at least 25, and 4 cysteine residues which form disulf[ph]ide bridges between themselves. Advantageously, the androctonine essentially comprises the peptide sequence of general formula (I) below:

(I)

in which Xaa represents a peptide residue comprising at least 1 amino acid, Xab represents a peptide residue of 5 amino acids, Xac represents a peptide residue of 5 amino acids, Xad represents a peptide residue of 3 amino acids, and Xae represents a peptide residue comprising at least 1 amino acid.

[0015] Advantageously, Xab and/or Xad and/or Xae comprise at least one basic amino acid, preferably 1. According to the invention, the term basic amino acids is understood to refer to amino acids chosen from lysine, asparagine and homoasparagine.

[0016] Preferably, Xaa represents the peptide sequence Xaa'-Val, in which Xaa' represents NH₂ or a peptide residue comprising at least 1 amino acid, and/or Xab represents the peptide sequence -Arg-Xab'-Ile, in which Xab' represents a peptide residue of 3 amino acids, and/or Xac represents the peptide sequence -Arg-Xac'-Gly-, in which Xac' represents a peptide residue of 3 amino acids, and/or Xad represents the peptide sequence -Tyr-Xad'-Lys, in which Xad' represents a peptide residue of 1 amino acid, and/or Xae represents the peptide sequence -Thr-Xae', in which Xae' represents COOH or a peptide residue comprising at least 1 amino acid.

[0017] Preferably, Xaa' represents the peptide sequence Arg-Ser-, and/or Xab' represents the peptide sequence -Gln-Ile-Lys-, and/or Xac' represents the peptide sequence -Arg-Arg-Gly-, and/or Xad' represents the peptide residue -Tyr-, and/or Xae' represents the peptide sequence -Asn-Arg-Pro-Tyr.

<u>[0018]</u> According to a preferred embodiment of the invention, androctonine is represented by the peptide sequence of 25 amino acids described by [the sequence identifier No. 1 (]SEQ ID NO.:1[)] and the homologous peptide sequences.

[0019] The term homologous peptide sequence[s] is understood to refer to any equivalent sequence comprising at least 65% homology with the sequence represented by SEQ ID NO.:2[the sequence identifier No. 1], it being understood that the 4 cysteine residues and the number of amino acids separating them remain identical, certain amino acids being replaced with different but equivalent amino acids on sites which do not induce a substantial change in the antifungal or antibacterial activity of the [said] homologous sequence. Preferably, the homologous sequences comprise at least 75% homology, more preferably at least 85% homology and even more preferably 90% homology. [0020] The NH₂-terminal residue of androctonine can exhibit a post-translational modification, for example an acetylation, while the C-terminal residue can exhibit a post-translational modification, for example an amidation.

[0021] The expression peptide sequence essentially comprising the peptide sequence of general formula (I) is understood to refer not only to the sequences defined above, but also to such sequences comprising, at one or other of their ends or at both ends, peptide residues required for their expression and targeting in a host organism, in particular a plant cell or plant.

[0022] This in particular concerns a "peptide-androctonine" or "androctonine-peptide", advantageously "peptide-androctonine", fusion peptide whose cleavage by the enzymatic systems of the plant cells allows the release of the androctonine defined above. The peptide fused to androctonine can be a signal peptide or a transit peptide which allows the production of androctonine to be controlled and oriented specifically in one part of the host organism, in particular of the plant

cell or plant, such as, for example, the cytoplasm or the cell membrane, or in the case of plants, in a specific type of cell or tissue compartment or in the extracelluar matrix.

[0023] According to one embodiment, the transit peptide can be a chloroplast-addressing signal or a mitochondrion-addressing signal, which is then cleaved off in the chloroplasts or the mitochondria. [0024] According to another embodiment of the invention, the signal peptide can be an N-terminal signal or "prepeptide", optionally in combination with a signal responsible for retaining the protein in the endoplasmic reticulum, or a vacuole-addressing peptide or "propeptide". The endoplasmic reticulum is the site at which maturation operations on the protein produced, such as, for example, cleavage of the signal peptide, are undertaken by the "cell machinery".

[0025] The transit peptides can be single or double, and, in this case, optionally separated by an intermediate sequence, *i.e.* one comprising, in the direction of transcription, a sequence coding for a transit peptide of a plant gene which codes for a plastid localization enzyme, a portion of sequence of the N-terminal mature portion of a plant gene coding for a plastid localization enzyme, and then a sequence coding for a second transit peptide of a plant gene coding for a plastid localization enzyme, as described in patent application EP 0,508,909.

<u>10026</u>] As transit peptide which is useful according to the invention, mention may be made in particular of the signal peptide of the tobacco PR-1α gene (WO 95/19443), represented with its coding sequence by [the sequence identifier No. 2 (] SEQ ID NO.<u>:</u>2[)] and fused to androctonine [by the sequence identifier No. 3](SEQ ID NO.<u>:</u>3), in particular corresponding to the fusion protein corresponding to bases 12 to 176 of this sequence, in particular when the androctonine is produced by plant cells or plants, or the precursor of Mat α1 factor when the androctonine is produced in yeasts.

[0027] The present invention thus relates, firstly, to a nucleic acid fragment, in particular a DNA fragment, coding for the androctonine defined above. According to the invention, this can be a fragment isolated from *Androctonus australis*, or alternatively a derived fragment, adapted for the expression of androctonine in the host organism in which the peptide will be expressed. The nucleic acid fragment can be obtained according to the standard methods for isolation and purification, or alternatively by synthesis according to the usual techniques of successive hybridizations of synthetic oligonucleotides. These techniques are described in particular by Ausubel *et al.*

[0028] According to the present invention, the expression "nucleic acid fragment" is understood to refer to a nucleotide sequence which can be of DNA or RNA type, preferably of DNA type, in particular cDNA, especially of double-stranded type.

[0029] According to one embodiment of the invention, the nucleic acid fragment coding for androctonine is the DNA sequence described by [the sequence identifier No. 1 (]SEQ ID NO.:1[)], a homologous sequence or a sequence complementary to the [said] sequence, more particularly the coding portion of [this]SEQ ID NO.:1, corresponding to bases 1 to 75.

[0030] According to the invention, the term "homologous" is understood to refer to a nucleic acid fragment having one or more sequence modifications when compared with the nucleotide sequence described by SEQ ID NO.:1[the sequence identifier No. 1]coding for androctonine. These modifications can be obtained according to the usual mutation techniques, or alternatively by selecting the synthetic oligonucleotides used in the preparation of the [said] sequence by hybridization. With regard to multiple combinations of nucleic acids which can lead to the expression of the same amino acid, the differences between the reference sequence described by SEQ ID NO.:1[the sequence identifier No. 1] and the homologous sequence can be considerable, and all the more so when it concerns a DNA fragment less than 100 nucleic acids in size, which can be NY02:403617.2

produced by synthesis. Advantageously, the degree of homology will be at least 70% relative to the reference sequence, preferably at least 80% and more preferably at least 90%. These modifications are generally neutral, *i.e.* they do not affect the primary sequence of the resulting androctonine.

[0031] The present invention also relates to a chimeric gene (or expression cassette) comprising a coding sequence and heterologous regulation elements in positions 5' and 3' which can function in a host organism, in particular plant cells or plants, these elements being functionally linked to the [said] coding sequence, the [said] coding sequence comprising at least one DNA fragment coding for androctonine as defined above (including the "peptide-androctonine" or "androctonine-peptide" fusion peptide).

[0032] The term host organism is understood to refer to any lower-order or higher-order monocellular or multicellular organism into which the chimeric gene according to the invention can be introduced[,] for the production of androctonine. Such organisms are, in particular, bacteria, for example *E. coli*, yeasts, in particular yeasts of the genera *Saccharomyces* or *Kluyveromyces*, *Pichia*, fungi, in particular *Aspergillus*, a baculovirus, or, preferably, plant cells and plants.

[0033] According to the invention, the term "plant cell" is understood to refer to any plant-derived cell which can constitute undifferentiated tissues such as calli, differentiated tissues such as embryos, plant portions, plants or seeds.

[0034] According to the invention, the term "plant" is understood to refer to any differentiated multicellular organism capable of photosynthesis, in particular monocotyledons or dicotyledons, more particularly crop plants which may or may not be intended for human or animal consumption, such as corn, wheat, rapeseed, soybean, rice, sugar cane, beetroot, tobacco, cotton, etc.

[0035] The regulation elements required for the expression of the DNA fragment coding for androctonine are well known to those skilled in the art as a function of the host organism. They NY02:403617.2

PATENT

comprise in particular promoter sequences, transcription activators, transit peptides and termination sequences, including start and stop codons. The means and methods for identifying and selecting the regulation elements are well known to those skilled in the art.

[0036] For the transformation of microorganisms such as yeasts or bacteria, the regulation elements are well known to those skilled in the art and comprise, in particular, promoter sequences, transcription activators, transit peptides, termination sequences and start and stop codons.

[0037] In order to direct the expression and secretion of the peptide in the yeast culture medium, a DNA fragment coding for heliomycin is incorporated into a shuttle vector which comprises the following elements:

- markers which allow the transformants to be selected,
- a nucleic acid sequence which allows replication (origin of replication) of the plasmid in the yeast,
- a nucleic acid sequence which allows replication (origin of replication) of the plasmid in *E. coli*,
- an expression cassette consisting of
 - (1) a promoter regulation sequence,
- (2) a sequence coding for a signal peptide (or prepeptide) combined with an addressing peptide (or propeptide),
 - (3) a polyadenylation or terminator regulation sequence.

These elements have been described in several publications, including Reichhart *et al.*, 1992, Invert. Reprod. Dev., 21, pp. 15-24 and Michaut *et al.*, 1996, FEBS Letters, 395, pp. 6-10.

[0038] Preferably, yeasts from the species S. cerevisiae are transformed with the expression plasmid by the lithium acetate method (Ito et al., 1993, J. Bacteriol, 153, pp. 163-168).

[0039] The invention relates more particularly to the transformation of plants. As promoter regulation sequence in plants, it is possible to use any promoter sequence of a gene which is naturally expressed in plants, in particular a promoter of bacterial, viral or plant origin such as, for example, that of a gene for the small subunit of ribulose biscarboxylase/oxygenase (RuBisCO) or of a plant virus gene such as, for example, that of cauliflower mosaic virus (CAMV 19S or 35S), or a promoter which can be induced by pathogens such as tobacco PR-1a, it being possible to use any suitable known promoter. Preferably, use is made of a promoter regulation sequence which favours the overexpression of the coding sequence in a constitutive manner or induced by the attack of a pathogen, such as, for example, that comprising at least one histone promoter as described in patent application EP 0,507,698.

<u>[10040]</u> According to the invention, it is also possible to use, in combination with the promoter regulation sequence, other regulation sequences which are located between the promoter and the coding sequence, such as transcription activators ("enhancers"), such as, for example, the tobacco mosaic virus (TMV) translation activator described in <u>International P[p]atent A[a]pplication WO 87/07644</u>, or the tobacco etch virus (TEV) translation activator described by Carrington & Freed (1990).

[0041] As polyadenylation or terminator regulation sequence, it is possible to use any corresponding sequence of bacterial origin, such as, for example, the nos terminator of *Agrobacterium tumefaciens*, or alternatively of plant origin, such as, for example, a histone terminator as described in patent application EP 0,633,317.

[0042] According to the present invention, the chimeric gene can also be combined with a selection marker adapted to the transformed host organism. Such selection markers are well known to those

skilled in the art. Such a marker may be an antibiotic-resistance gene or alternatively a herbicide-tolerance gene for plants.

[0043] The present invention also relates to a cloning or expression vector for the transformation of a host organism containing at least one chimeric gene as defined above. Besides the above chimeric gene, this vector comprises at least one origin of replication and, where appropriate, a suitable selection marker. This vector can consist of a plasmid, a cosmid, a bacteriophage or a virus, which are transformed by introducing the chimeric gene according to the invention. Depending on the host organism to be transformed, such transformation vectors are well known to those skilled in the art and are widely described in the literature.

[0044] For the transformation of plant cells or plants, such a vector is, in particular, a virus which can be used for the transformation of the plants developed and also containing its own replication and expression elements. Preferably, the vector for transforming the plant cells or plants according to the invention is a plasmid.

<u>10045</u>] The subject of the invention is also a process for transforming host organisms, in particular plant cells, by incorporating at least one nucleic acid fragment or one chimeric gene as defined above, it being possible for this transformation to be obtained by any suitable known means, which is amply described in the specialized literature, and in particular the references cited in the present application, more particularly by means of the vector according to the invention.

[0046] One series of methods consists in bombarding cells, protoplasts or tissues with particles to which the DNA sequences are attached. Another series of methods consists in using, as a means of transfer into the plant, a chimeric gene inserted into a Ti plasmid of Agrobacterium tumefaciens or an Ri plasmid of Agrobacterium rhizogenes.

[0047] Other methods can be used, such as microinjection or electroporation, or alternatively direct precipitation using PEG.

[0048] A person skilled in the art will select the appropriate method as a function of the nature of the host organism, in particular the plant cell or plant.

[0049] The subject of the present invention is also transformed host organisms, in particular plant cells or plants, containing an effective amount of a chimeric gene comprising a sequence coding for the androctonine defined above.

[0050] The subject of the present invention is also plants containing transformed cells, in particular plants regenerated from the transformed cells. The regeneration is obtained by any suitable process which depends on the nature of the species, as described, for example, in the above references.

[0051] For the processes for transforming plant cells and for regenerating plants, mention will be made in particular of the following patents and patent applications: US 4,459,355, US 4,536,475, US 5,464,763, US 5,177,010, US 5,187,073, EP 267,159, EP 604 662, EP 672 752, US 4,945,050, US 5,036,006, US 5,100,792, US 5,371,014, US 5,478,744, US 5,179,022, US 5,565,346, US 5,484,956, US 5,508,468, US 5,538,877, US 5,554,798, US 5,489,520, US 5,510,318, US 5,204,253, US 5,405,765, EP 442 174, EP 486 233, EP 486 234, EP 539 563, EP 674 725, WO 91/02071 and WO 95/06128.

[0052] The subject of the present invention is also the transformed plants obtained from the cultivating and/or crossing of the above regenerated plants, as well as the seeds of transformed plants.

[0053] The plants thus transformed are resistant to certain diseases, in particular to certain fungal or bacterial diseases. Consequently, the DNA sequence coding for androctonine can be inserted with the main aim of producing plants that are resistant to the [said] diseases, since androctonine is NY02:403617.2

effective against fungal diseases such as those caused by *Cercospora*, in particular *Cercospora* beticola, *Cladosporium*, in particular *Cladosporium herbarum*, *Fusarium*, in particular *Fusarium* culmorum or *Fusarium graminearum*, or by *Phytophthora*, in particular *Phytophthora cinnamomi*.

[0054] The chimeric gene may also advantageously be combined with at least one selection marker,

such as one or more herbicide-tolerance genes.

[0055] The DNA sequence coding for androctonine can also be inserted as a selection marker during the transformation of plants with other sequences coding for other peptides or proteins of interest, such as, for example, herbicide-tolerance genes.

[0056] Such herbicide-tolerance genes are well known to those skilled in the art and are described in particular in patent applications EP 115,673, WO 87/04181, EP 337,899, WO 96/38567 or WO 97/04103.

[0057] Needless to say, the transformed cells and plants according to the invention can also comprise the sequence coding for androctonine, other heterologous sequences coding for proteins of interest, such as other complementary peptides capable of giving the plant resistance to other diseases of bacterial or fungal origin, and/or other sequences coding for herbicide-tolerance proteins, in particular defined above and/or other sequences coding for insect-resistance proteins, such as the *Bt* proteins in particular.

[0058] The other sequences can be inserted using the same vector comprising the chimeric gene according to the invention, which comprises a sequence coding for androctonine, and comprising at least one other gene comprising another sequence coding for another peptide or protein of interest.

[0059] They can also be inserted using another vector comprising at least the [said] other sequence, according to the usual techniques defined above.

[0060] The plants according to the invention can also be obtained by crossing parents, one carrying the gene according to the invention coding for androctonine, the other carrying a gene coding for at least one other peptide or protein of interest.

[0061] Among the sequences coding for other antifungal peptides, mention may be made of the one coding for drosomycin, described in patent application Fr 2,725,992 and by Fehlbaum *et al.*, (1994), and in the unpublished patent application FR 97/09115 filed on 24 July 1997.

[0062] Lastly, the present invention relates to a process for cultivating transformed plants according to the invention, the process consisting in planting the seeds of the [said] transformed plants in an area of a cultivation environment, in particular a field, which is suitable for cultivating the [said] plants, in applying an agrochemical composition to the [said] area, without substantially affecting the [said] transformed seeds or plants, and then in harvesting the plants cultivated when they reach the desired maturity, and optionally in separating the seeds from the harvested plants.

[0063] According to the invention, the term agrochemical composition is understood to refer to any agrochemical composition comprising at least one active product having either herbicidal, fungicidal, bactericidal, virucidal or insecticidal activity.

[0064] According to a preferred embodiment of the cultivation process according to the invention, the agrochemical composition comprises at least one active product having at least a fungicidal and/or bactericidal activity, more preferably having an activity complementary to that of the androctonine produced by the transformed plants according to the invention.

[0065] According to the invention, the expression product having activity complementary to that of androctonine is understood to refer to a product having a complementary spectrum of activity, i.e. a product which will be active against attacks by androctonine-insensitive contaminants (fungi, bacteria or viruses), or alternatively a product whose spectrum of activity totally or partially covers NY02:403617.2

that of androctonine, and whose dose of application will be substantially reduced on account of the

presence of the androctonine produced by the transformed plant.

[0066] Lastly, cultivation of the transformed host organisms allows the large-scale production of

androctonine. The subject of the present invention is thus also a process for preparing androctonine,

comprising the steps of cultivating the transformed host organism comprising a gene coding for

androctonine as defined above in an appropriate cultivation environment, followed by the extraction

and total or partial purification of the androctonine obtained.

[0067] The examples below make it possible to illustrate the invention, the preparation of the

sequence coding for androctonine, the chimeric gene, the integration vector and the transformed

plants. The attached Figures 1 to 5 describe schematic structures of certain plasmids prepared for the

construction of the chimeric genes. In these figures, the various restriction sites are marked in *italics*.

EXAMPLES

Example 1: Construction of the chimeric genes

[0068] All the techniques used below are standard laboratory techniques. The detailed

procedures for these techniques are described in particular in Ausubel et al.

[0002] pRPA-MD-P: Creation of a plasmid containing the signal peptide for the tobacco

PR-1a gene.

[0069] The two complementary synthetic oligonucleotides Oligo 1 and Oligo 2 below are hybridized

at 65°C for 5 minutes and then by slowly decreasing the temperature to 30°C over 30 min.

NY02:403617.2

61

[0070] After hybridization between Oligo 1 and Oligo 2, the remaining single-stranded DNA serves as a matrix for the Klenow fragment of *E. coli* polymerase 1 (under the standard conditions recommended by the manufacturer (New England Biolabs)) for the creation of the double-stranded oligonucleotide starting from the 3' end of each oligo. The double-stranded oligonucleotide obtained is then digested with the restriction enzymes *SacII* and *NaeI* and cloned in the plasmid pBS II SK(-) (Stratagene) digested with the same restriction enzymes. A clone comprising the region coding for the signal peptide of the tobacco PR-1a gene (SEQ ID NOS::[2]3 and 4) is thus obtained.

pRPA-PS-PR1a-andro: Creation of a sequence coding for androctonine fused to the PR-1a signal peptide without an untranscribed 3' region.

[0071] The two complementary synthetic oligonucleotide sequences Oligo 3 and Oligo 4 are hybridized according to the operating conditions described for pRPA-MD-P.

Oligo 3: 5'-AGGTCCGTGTGCAGGCAGATCAAGATCTGCAGGAGGAGGGGTGG-3' (SEQ ID NO.:9)

Oligo 4: 5'-CCGGATCCGTCGACACGTTCGCCTCGCCGAGCTCAGTATGGCCTGTTAGTGCA CTTGTAGTAGCAACCACCCCTCCTCCTGCAGATCTTGATCTGCC-3' (SEQ ID NO.:10)

[0072] After hybridization between Oligo 3 and Oligo 4, the remaining single-stranded DNA serves as a matrix for the Klenow fragment of *E. coli* polymerase 1 (under the standard conditions recommended by the manufacturer (New England Biolabs)) for the creation of the double-stranded

oligonucleotide starting from the 3' end of each oligo. This double-stranded oligonucleotide containing the portion coding for androctonine (SEQ ID NO. 1) is then cloned directly in the plasmid pRPA-MD-P, which was digested with the restriction enzyme *NaeI*. The correct orientation of the clone obtained is verified by sequencing. A clone comprising the region coding for the PR-1a-androctonine fusion protein, located between the *NcoI* restriction site at the N-terminal end and the *ScaI*, *SacII* and *BamHI* restriction sites at the C-terminal end (SEQ ID NO.: [3]5 and 6), is thus obtained.

<u>pRPA-RD-238</u>: Creation of an expression vector in plants comprising the sequence coding for the PR-1a androctonine fusion protein.

[0073] The plasmid pRTL-2 GUS, derived from the plasmid pUC-19, was obtained from Dr. Jim Carrington (Texas A&M University, not described). This plasmid, whose schematic structure is represented in Figure 1, contains the duplicated CaMV 35S promoter isolated from cauliflower mosaic virus (CaMV 2x35S promoter; Odell *et al.*, 1985) which directs the expression of an RNA containing a 5' untranslated sequence of tobacco etch virus (TEV 5' UTR; Carrington and Freed, 1990), the *E. coli* β-glucuronidase gene (GUS; Jefferson *et al.*, 1987) followed by the CaMV RNA 35S polyadenylation site (CaMV polyA; Odell *et al.*, 1985).

[0074] The plasmid pRTL-2 GUS is digested with the restriction enzymes *NcoI* and *BamHI* and the main DNA fragment is purified. The plasmid pRPA-PS-PR1a-andro is digested with the restriction enzymes *NcoI* and *BamHI* and the small DNA fragment containing the region coding for the PR-1a-androctonine fusion protein is purified. The two purified DNA fragments are then linked together in an expression cassette in the plants which synthesizes a PR-1a-androctonine fusion protein. The schematic structure of this expression cassette is represented in Figure 2. "PR-1a-androctonine" represents the region coding for the PR-1a-androctonine fusion protein of pRPA-RD-230. The NY02:403617.2

PATENT

androctonine is transported to the plant's extracelluar matrix by the action of the PR-1a peptide signal.

pRPA-RD-195: Creation of a plasmid containing a modified multiple cloning site.

[0075] The plasmid pRPA-RD-195 is a plasmid derived from pUC-19 which contains a modified multiple cloning site. The complementary synthetic oligonucleotides Oligo 5 and Oligo 6 below are

hybridized and made double-stranded according to the procedure described for pRPA-MD-P.

Oligo 5: 5'-AGGGCCCCTAGGGTTTAAACGGCCAGTCAGGCCGAATTCGAGCTCGGTACC
CGGGGATCCTCTAGAGTCGACCTGCAGGCATGC-3' (SEQ ID NO.:11)

Oligo 6: 5'CCCTGAACCAGGCTCGAGGGCGCGCCTTAATTAAAAGCTTGCATGCCTGCAGG
TCGACTCTAGAGG-3' (SEQ ID NO.:12)

[0076] The double-stranded oligonucleotide obtained is then inserted into pUC-19, which was predigested with the restriction enzymes *EcoRI* and *HindIII* and made blunt at the ends using the Klenow fragment of *E. coli* DNA polymerase 1. A vector containing multiple cloning sites to facilitate the introduction of the expression cassettes into an *Agrobacterium tumefaciens* vector plasmid is obtained. The schematic structure of this multiple cloning site is represented in Figure 3.

pRPA-RD-233: Introduction of the PR-1a-androctonine expression cassette from pRPA-RD-230 into pRPA-RD-195.

[0077] The plasmid pRPA-RD-230 is digested with the restriction enzyme *HindIII*. The DNA fragment containing the PR-1a-androctonine expression cassette is purified. The purified fragment is then inserted into pRPA-RP-195, which was predigested with the restriction enzyme *HindIII* and dephosphorylated with calf intestinal phosphatase.

pRPA-RD-174: Plasmid derived from pRPA-BL-150A (EP 0,508,909) containing the

bromoxynil-tolerance gene from pRPA-BL-237 (EP 0,508,909).

[0078] The bromoxynil-tolerance gene is isolated from pRPA-BL-237 by means of a PCR gene

amplification. The fragment obtained has blunt ends, and is cloned in the pRPA-BL-150A EcoRI

site, the ends of which were made blunt by the action of Klenow polymerase under standard

conditions. An Agrobacterium tumefaciens vector which contains the bromoxynil-tolerance gene

close to its right-hand end, a kanamycin-tolerance gene close to its left-hand end and a multiple

cloning site between these two genes is obtained.

[0079] The schematic structure of pRPA-RD-174 is represented in Figure 4. In this figure, "nos"

represents the polyadenylation site of Agrobacterium tumefaciens nopaline synthase (Bevan et al.,

1983), "NOS pro" represents the Agrobacterium tumefaciens nopaline synthase promoter (Bevan et

al., 1983), "NPT II" represents the neomycin phosphotransferase gene of the Tn5 transposon of E.

coli (Rothstein et al., 1981), "35S pro" represents the 35S promoter isolated from cauliflower mosaic

virus (Odell et al., 1985), "BRX" represents the nitrilase gene isolated from K. ozaenae (Stalker et

al., 1988), "RB" and "LB" represent, respectively, the right-hand and left-hand ends of the sequence

of an Agrobacterium tumefaciens Ti plasmid.

pRPA-RD-184: Addition of a new, unique restriction site into pRPA-RD-174.

[0080] The complementary synthetic oligonucleotides Oligo 7 and Oligo 8 below are hybridized and

made double-stranded according to the procedure described for pRPA-MD-P.

NY02:403617.2

65

Oligo 7: 5'CCGGCCAGTCAGGCCACACTTAATTAAGTTTAAACGCGGCCCCGGCGCCCCTAGGTGTGTGCTCGAGGGCCCAACCTCAGTACCTGGTTCAGG-3' (SEQ ID NO.:13)
Oligo 8: 5'CCGGCCTGAACCAGGTACTGAGGTTGGGCCCTCGAGCACACACCTAGGCG
CGCCGGGGCCGCGTTTAAACTTAATTAAGTGTGGCCTGACTGG-3' (SEQ ID NO.:14)

[0081] The hybridized double-stranded oligonucleotide (96 base pairs) is purified after separation on agarose gel (3% Nusieve, FMC). The plasmid pRPA-RD-174 is digested with the restriction enzyme *Xmal* and the main DNA fragment is purified. The two DNA fragments obtained are then

[0082] A plasmid derived from pRPA-RD-174 is obtained, comprising other restriction sites between the bromoxynil-tolerance gene and the selection marker kanamycin gene.

[0083] The schematic structure of the plasmid pRPA-RD-184 is represented in Figure 5, in which the terms "nos", "NPT II", "NOS pro", "35S pro", "BRX gene", "RB" and "LB" have the same meanings as in Figure 4.

<u>pRPA-RD-236</u>: Creation of an *Agrobacterium tumefaciens* vector containing the gene construct coding for androctonine directed towards the extracellular matrix.

[0084] The plasmid pRPA-RD-233 is digested with the restriction enzymes *PmeI* and *AscI* and the DNA fragment containing the PR-1a-androctonine gene is purified. The plasmid pRPA-RD-184 is digested with the same restriction enzymes. The DNA fragment containing the PR-1a-androctonine expression cassette is then inserted into pRPA-RD-184. An *Agrobacterium tumefaciens* vector containing the sequence coding for the PR-1a-androctonine fusion protein is thus obtained, which leads to the expression of androctonine in the plant's extracellular matrix.

linked together.

Attorney Docket No.: A33002-PCT-USA-072667.0124

PATENT

Example 2: Tolerance to herbicides of transformed tobacco plants.

2.1 - Transformation

[0085] The vector pRPA-RD-236 is introduced into the Agrobacterium tumefaciens strain EHA101

(Hood et al., 1987) carrying the cosmid pTVK291 (Komari et al., 1986). The transformation

technique is based on the procedure by Horsh et al. (1985).

2.2- Regeneration

[0086] Regeneration of the tobacco plant PBD6 (obtained from SEITA France) from foliar explants

is carried out on Murashige-Skoog (MS) base medium comprising 30 g/l of sucrose and 200 µg/ml

of kanamycin. The foliar explants are taken from plants cultivated in a greenhouse or in vitro and

regenerated according to the foliar disc technique (Horsh et al., 1985) in three successive steps: the

first step comprises induction of the shoots on a medium supplemented with 30 g/l of sucrose

containing 0.05 mg/l of naphthylacetic acid (NAA) and 2 mg/l of benzylaminopurine (BAP) for 2

weeks. The shoots formed during this step are then grown for 10 days by cultivating on MS medium

supplemented with 30 g/l of sucrose but containing no hormone. Next, the shoots which have grown

are taken and cultivated on an MS rooting medium with half the content of salts, vitamins and sugar

and containing no hormone. After about 2 weeks, the rooted shoots are placed in a greenhouse.

2.3- Tolerance to bromoxynil

[0087] Twenty transformed plants were regenerated and placed in a greenhouse for the construction

of pRPA-RD-236. These plants were treated in the greenhouse, at the 5-leaf stage, with aqueous

Pardner suspension corresponding to 0.2 kg of bromoxynil active material per hectare.

NY02:403617.2

67

[0088] All the plants showing complete tolerance to bromoxynil are then used in various experiments which show that the expression of androctonine by the transformed plants makes them resistant to fungal attack.

REFERENCES

Ausubel, F.A. et al., (eds. Greene). Current Protocols in Molecular Biology. Publ. Wiley & Sons.

Bevan, M. et al., (1983). Nuc. Acids Res. 11:369-385.

Carrington and Freed (1990). J. Virol. 64:1590-1597.

Ehret-Sabatier et al., (1996). The Journal of Biological Chemistry, 271, 47, 29537-29544.

Horsch et al., (1985). Science 227:1229-1231.

Jefferson et al., (1987). EMBO J. 6:3901-3907.

Komari et al., (1986). J. Bacteriol. 166:88-94.

Rothstein et al., (1981). Cold Spring Harb. Symp. Quant. Biol. 45:99-105.

Stalker et al., (1988). J. Biol. Chem. 263:6310-6314.

Odell, J.T. et al., (1985). Nature **313**:810-812.

WHAT IS CLAIMED:

- Nucleic acid fragment, characterized in that it comprises a nucleic acid sequence coding for an androctonine.
- 2. Nucleic acid fragment according to claim 1, characterized in that it is a sequence of DNA.
- 3. (Amended) Nucleic acid fragment according to claim 1, characterized in that the androctonine consists of a peptide which can be produced by and isolated from scorpions, in particular the species *Androctonus australis*, the said peptide comprising at least 20 amino acids, preferably at least 25 amino acids, and 4 cysteine residues which form disulphide bridges between themselves.
- 4. (Amended) Nucleic acid fragment according to claim 1, characterized in that the androctonine essentially comprises the peptide_sequence of general formula (I) below:

(I)

in which Xaa represents a peptide residue comprising at least 1 amino acid,
Xab represents a peptide residue comprising at least 5 amino acids,
Xac represents a peptide residue comprising at least 5 amino acids,
Xad represents a peptide residue comprising at least 3 amino acids, and
Xae represents a peptide residue comprising at least 1 amino acid.

5. Nucleic acid fragment according to claim 4, characterized in that Xab and/or Xad and/or Xae comprise at least one basic amino acid.

- 6. Nucleic acid fragment according to claim 5, characterized in that the basic amino acids are chosen from lysine, asparagine and homoasparagine.
- 7. (Amended) Nucleic acid fragment according to claim 4, characterized in that Xaa represents the peptide sequence Xaa'-Val, in which Xaa' represents NH₂ or a peptide residue comprising at least 1 amino acid, and/or

Xab represents the peptide sequence -Arg-Xab'-Ile, in which Xab' represents a peptide residue of 3 amino acid, and/or

Xac represents the peptide sequence -Arg-Xac'-Gly, in which Xac' represents a peptide residue of 3 amino acid, and/or

Xad represents the peptide sequence –Tyr-Xad'-Lys, in which Xad' represents a peptide residue of 1 amino acid, and/or

Xae represents the peptide sequence –Thr-Xae', in which Xae' represents COOH or a peptide residue comprising at least 1 amino acid.

- 8. Nucleic acid fragment according to claim 7, characterized in that Xaa' represents the peptide sequence –Arg-Ser-, and/or Xab' represents the peptide sequence –Gln-Ile-Lys-, and/or Xac' represents the peptide sequence –Arg-Arg-Gly-, and/or Xad' represents the peptide residue –Tyr-, and/or Xae' represents the peptide sequence –Asn-Arg-Pro-Tyr.
- 9. (Amended) Nucleic acid fragment according to one of claims 1 to 8, characterized in that the androctonine is represented by the peptide sequence of 25 amino acids described by the sequence identifier No. 1 (SEQ ID NO. 1) and the homologous peptide sequences.
- 10. Nucleic acid fragment according to claim 9, characterized in that it is represented by the sequence identifier No. 1 (SEQ ID NO. 1), a homologous sequence or a sequence complementary to the said sequence.

- 19. (Amended) Chimeric gene comprising a coding sequence and heterologous regulation elements in positions 5' and 3' which can function in a host organism, in particular plant cells or plants, these elements being functionally linked to the said coding sequence, characterized in that the said coding sequence comprises at least one DNA fragment coding for androctonine as defined according to claim 1.
- 20. Chimeric gene according to claim 19, characterized in that the host organism is chosen from bacteria, for example E. coli, yeasts, in particular yeasts of the genera Saccharomyces or Kluyveromyces, Pichia, fungi, in particular Aspergillus, a baculovirus, and plant cells and plants.
- 21. (Amended) Chimeric gene according to claim 19, characterized in that it is combined with a selection marker adapted to the transformed host organism.
- 22. (Amended) Cloning or expression vector for the transformation of a host organism, characterized in that it comprises at least one chimeric gene as defined according to claim 19.
- 23. (Amended) Process for transforming host organisms by incorporating at least one nucleic acid fragment or one chimeric gene as defined in claim 19.
- 24. (Amended) Process according to claim 23, characterized in that the chimeric gene is incorporated by means of a vector.
- 25. (Amended) Process according to claim 23, characterized in that the host organism is chosen from bacteria, for example *E. coli*, yeasts, in particular yeasts of the genera *Saccharomyce* or *Kluyveromyces*, *Pichia*, fungi, in particular *Aspergillus*, a baculovirus, and plant cells and plants
- 26. Process according to claim 25, characterized in that the host organism is a plant cell.

- 27. Process according to claim 26, characterized in that plants are regenerated from the plant cell.
- 28. (Amended) Transformed host organism, in particular plant cell or plant, characterized in that it comprises a chimeric gene defined according to claim 19.
- 29. Host organism according to claim 28, characterized in that it is chosen from bacteria, for example *E. coli*, yeasts, in particular yeasts of the genera *Saccharomyce* or *Kluyveromyces*, *Pichia*, fungi, in particular *Aspergillus*, a baculovirus, and plant cells and plants.
- 30. Plants, characterized in that they comprise transformed plant cells according to claim 29.
- 31. Plant according to claim 30, characterized in that it is regenerated from the transformed plant cell.
- 32. Plant, characterized in that it is obtained from the cultivating and/or crossing of the regenerated plants according to claim 31.
- 33. (Amended) Plant according to claim 30, characterized in that it is chosen from corn, wheat, rapeseed, soybean, rice, sugar cane, beetroot, tobacco, and cotton.
- 34. (Amended) Plant according to claim 30, characterized in that it is resistant to fungal diseases such as those caused by *Cercospora*, in particular *Cercospora beticola*, *Cladisporium*, in particular *Cladisporium herbarum*, *Fusarium*, in particular *Fusarium culmorum* or *Fusarium graminearum*, or by *Phytophthora*, in particular *Phyophthora cinnamoni*.
- 35. (Amended) Plant seeds according to claim 30.
- 39. (Amended) Process for preparing the androctonine, comprising the steps of cultivating the transformed host organism defined according to claim 28 in an appropriate cultivation environment, followed by the extraction and total or partial purification of the androctonine obtained.

Abstract of the Disclosure

The invention concerns a DNA sequence coding for androctonine, a vector containing same for transforming a host organism and the transformation method. More particularly the invention concerns the transformation of plant cells and plants, the droxomycine produced by the transformed plants providing them with resistance to diseases, in particular those of fungal origin.--

PATENT

Please <u>replace</u> the paper copy of the Sequence Listing previously filed with the paper copy

of the Sequence Listing enclosed herewith, inserting the Sequence Listing into the specification after

the Abstract of the Disclosure.

IN THE DRAWINGS:

Please replace the five figures contained on the two sheets of drawings with the substitute

figures contained on the five sheets of drawings enclosed herein.

IN THE CLAIMS:

Please cancel Claims 1-3.

Please amend Claims 4-10, 19-35 and 39 as follows:

4. (Twice Amended) An isolated n[N]ucleic acid fragment [according to claim 1, characterized

in that the androctonine essentially comprises the peptide encoding a polypeptide

comprising the polypeptide sequence of general formula (I) below:

Xaa-Cys-Xab-Cys-Xac-Cys-Xad-Cys-Xae (SEQ ID NO.:15)

(I)

wherein [in which] Xaa represents a peptide residue comprising at least one [1] amino acid,

Xab represents a peptide residue comprising at least five [5] amino acids,

Xac represents a peptide residue comprising at least five [5] amino acids,

Xad represents a peptide residue comprising at least three [3] amino acids, and

Xae represents a peptide residue comprising at least one [1] amino acid.

NY02:403617.2

74

- 5. (Amended) The n[N]ucleic acid fragment of [according to] C[c]laim 4, wherein [characterized in that] Xab and/or Xad and/or Xae comprise at least one basic amino acid.
- 6. (Amended) The n[N]ucleic acid fragment according to C[c]laim 5, wherein [characterized in that] the basic amino acids are selected from the group consisting of [chosen from] lysine, asparagine and homoasparagine.
- 7. (Twice Amended) The n[N]ucleic acid fragment of [according to] C[c]laim 4, wherein: [characterized in that] Xaa represents the peptide sequence Xaa'-Val, wherein [in which] Xaa' represents NH2 or a peptide residue comprising at least one [1] amino acid, and/or Xab represents the peptide sequence –Arg-Xab'-Ile, wherein [in which] Xab' represents a peptide residue of three [3] amino acid, and/or Xac represents the peptide sequence –Arg-Xac'-Gly, wherein [in which] Xac' represents a peptide residue of three [3] amino acid, and/or Xad represents the peptide sequence –Tyr-Xad'-Lys, wherein [in which] Xad' represents a peptide residue of one [1] amino acid, and/or
 - Xae represents the peptide sequence –Thr-Xae', wherein [in which] Xae' represents COOH or a peptide residue comprising at least one [1] amino acid.
- 8. (Amended) The n[N]ucleic acid fragment of [according to] C[c]laim 7, wherein [characterized in that] Xaa' represents the peptide sequence –Arg-Ser-, and/or Xab' represents the peptide sequence –Gln-Ile-Lys-, and/or Xac' represents the peptide sequence –Arg-Arg-Gly-, and/or Xad' represents the peptide residue –Tyr-, and/or Xae' represents the peptide sequence –Asn-Arg-Pro-Tyr.

PATENT

9. (Twice Amended) The isolated n[N]ucleic acid fragment [according to one of claims 1 to 8,

characterized in that the androctonine is represented by the peptide sequence of 25 amino

acids described by the sequence identifier No. 1 (SEQ ID NO. 1)] comprising the nucleic

acids encoding the peptide sequence of SEQ ID NO.:2 or [and the]homologous peptide

sequences.

10. (Amended) The n[N]ucleic acid fragment of [according to] C[c] laim 9, [characterized in that

it is represented by the sequence identifier No. 1 (SEQ ID NO. 1)] comprising the nucleic

acid sequence of SEQ ID NO.:1, a nucleic acid sequence homologous to SEQ ID NO.:1

[sequence], or a <u>nucleic acid</u> sequence complementary to [the said sequence] <u>SEQ ID NO.:1</u>.

19. (Twice Amended) A c[C]himeric gene comprising a [coding sequence and heterologous

regulation elements in positions 5' and 3' which can function in a host organism, in particular

plant cells or plants, these elements being functionally linked to the said coding sequence,

characterized in that the said coding sequence comprises at least one DNA fragment coding

for androctonine as defined according to claim 1.] nucleic acid sequence according to any

one of Claims 4 to 10 operably linked to heterologous regulatory elements that are functional

in a host organism.

20. (Amended) The c[C]himeric gene of [according to] C[c]laim 19, [characterized in that]

wherein the host organism is selected from the group consisting of [chosen from bacteria, for

example E. coli, yeasts, in particular yeasts of the genera Saccharomyces or Kluvveromyces,

Pichia, fungi, in particular *Aspergillus*, a baculovirus, and plant cells and plants] a bacterium,

an E. coli bacterium, a yeast, a yeast of the genera Saccharomyces, a yeast of the genera

NY02:403617.2

76

PATENT

Kluyveromyces, a yeast of the genera Pichia, a fungus, an Aspergillus fungus, a plant cell, and a plant.

- 21. (Twice Amended) The c[C]himeric gene of [according to] C[c]laim 19[, characterized in that it is combined with a selection marker adapted to the transformed host organism.] further comprising a gene encoding a selectable marker adapted for the transformation of said host organism.
- 22. (Twice Amended) A [Cloning or expression] vector [for the transformation of a host organism, characterized in that it comprises at least one chimeric gene as defined according to claim 19.] comprising the chimeric gene of Claim 19.
- 23. (Twice Amended) A method [Process] for transforming a host organism[s] comprising incorporating[by incorporating at least one nucleic acid fragment or one] the chimeric gene [as defined in] of C[c] laim 19 into the genome of said host organism.
- 24. (Twice Amended) The method [Process] of [according to] C[c]laim 23, [characterized in that] wherein the chimeric gene is incorporated into the genome of the host organism by means of a vector.
- 25. (Twice Amended) The method [Process according to] C[c]laim 23, [characterized in that] wherein the host organism [is chosen from bacteria, for example E. coli, yeasts, in particular yeasts of the genera Saccharomyce or Kluyveromyces, Pichia, fungi, in particular Aspergillus, a baculovirus, and plant cells and plants] is selected from the group consisting of a bacterium, an E. coli bacterium, a yeast, a yeast of the genera Saccharomyces, a yeast

PATENT

of the genera *Kluyveromyces*, a yeast of the genera *Pichia*, a fungus, an *Aspergillus* fungus, a plant cell, and a plant.

- 26. (Amended) The method[Process] of [according to] C[c]laim 25, [characterized in that] wherein the host organism is a plant cell.
- 27. (Amended) The method[Process] of [according to] C[c]laim 26, [characterized in that] wherein a plant[s] is [are] regenerated from the plant cell.
- 28. (Twice Amended) A [Transformed] host organism[, in particular plant cell or plant, characterized in that it comprises] comprising the [a] chimeric gene [defined according to] of C[c]laim 19.
- 29. (Amended) The h[H]ost organism [according to] of C[c]laim 28, [characterized in that it is chosen from bacteria, for example *E. coli*, yeasts, in particular yeasts of the genera *Saccharomyce* or *Kluyveromyces*, *Pichia*, fungi, in particular *Aspergillus*, a baculovirus, and plant cells and plants] wherein the host organism is selected from the group consisting of a bacterium, an *E.* coli bacterium, a yeast, a yeast of the genera *Saccharomyces*, a yeast of the genera *Kluyveromyces*, a yeast of the genera *Pichia*, a fungus, an *Aspergillus* fungus, a plant cell, and a plant.
- 30. (Amended) The host organism [Plants, characterized in that they comprise transformed plant cells according to] of C[c]laim 29, wherein the host organism is a plant.

Attorney Docket No.: A33002-PCT-USA-072667.0124
PATENT

- 31. (Amended) The host organism [Plant according to] of C[c] laim 30, [characterized in that it is] wherein said host organism is regenerated from a [transformed] plant cell comprising the chimeric gene of Claim 19.
- 32. (Amended) A p[P]lant[, characterized in that it is] comprising the chimeric gene of Claim

 19 obtained from the cultivating and/or crossing of the [regenerated plants according to]
 host organism of C[c]laim 31.
- 33. (Twice Amended) The p[P]lant [according to] of C[c]laim 32 [30], [characterized in that it is chosen from] wherein the plant is selected from the group consisting of a corn plant, a wheat plant, a rapeseed plant, a soybean plant, a rice plant, a sugar cane plant, a beetroot plant, a tobacco plant and a cotton plant.
- 34. (Twice Amended) The p[P]lant [according to] of C[c]laim 33 [30], [characterized in that it is] wherein the plant is resistant to fungal diseases selected from the group consisting of those diseases caused by Cercospora, [in particular] Cercospora beticola, Cladisporium, [in particular] Cladisporium herbarum, Fusarium, [in particular] Fusarium culmorum, [or] Fusarium graminearum, [or by] Phytophthora, and [in particular] Phyophthora cinnamoni.
- 35. (Twice Amended) [Plant s]Seeds from the plants of [according to] C[c]laim 32, wherein the seeds comprise the chimeric gene of Claim 19.
- 39. (Twice Amended) A method [process] for preparing the product of the chimeric gene of Claim 19[androctonine,] comprising the steps of cultivating the [transformed] host organism [defined according to] of C[c] laim 28 in an appropriate cultivation environment, [followed NY02:403617.2]

by the extraction and total or partial purification of the androctonine obtained] extracting the product of said chimeric gene, and partially or totally purifying the product of said chimeric gene.

Please add the following new claims:

- 40. (New) Seeds from the plants of Claim 33, wherein the seeds comprise the chimeric gene of Claim 19.
- 41. (New) The vector of Claim 22, wherein the vector is selected from the group consisting of a plasmid, a cosmid, a bacteriophage or a virus.
- 42. (New) The vector of Claim 41, wherein the virus is a baculovirus.

APPROVED	O.G. FiG.		
BY	CLASS	SUBCLASS	
DRAFTSMAN			

Fig. 1

APPROVED	O.G. FIG.		
BY	CLASS	SUBCLASS	
DRAFTSMAN			

Fig. 2

APPROVED	O.G. F.G.		
. BY	CLASS	SUBCLASS	
DRAFTSMAN			

Fig. 3

APPROVED O.G. FIG.
BY CLASS SUBCLASS
DRAFTSMAN

Fig. 4

APPROVED	O.G. FIG.	
BY`	CLASS	SUBCLASS
DRAFTSMAN		

Fig. 5