ARTHUR AMORIM

Arthur.Amorim@ucf.edu | https://art-amorim.github.io
arthur-amorim1 | Art-Amorim | Arthur Amorim
Orlando, FL 32828, United States

PROFESSIONAL SUMMARY

PhD Computer Science candidate specializing in formal methods and provable security for critical infrastructure systems. My research lies at the intersection of formal methods, cyber-physical system security, and type theory, with a focus on making safety-critical systems resilient to stealthy and protocol-level attacks.

EDUCATION

University of Central Florida

2023 - Present

Ph.D. Computer Science (Expected 2026)

Orlando, FL

• Advisor: Dr. Gary T. Leavens

Research Focus: Formal methods for cyber-physical system security, runtime verification, type theory

University of Central Florida

2023 - 2025

M.S. Computer Science

Orlando, FL

• GPA: 3.93/4.00

2012 202

• Tusculum University

2018 - 2022

B.S. Mathematics, Minor Computer Science • GPA: 3.81/4.00, Magna Cum Laude

Tusculum, TN

RESEARCH EXPERIENCE

• Idaho National Laboratory, DOE [

2022 - Present

PhD Intern: National & Homeland Security

Idaho Falls, ID

- Developed DATUM (Dynamically Assured Typed Universal Messaging), a novel protocol verification framework combining static verification with runtime monitoring using refined multiparty session types
- Designed runtime enforcement mechanisms for cyber-physical systems, targeting UAV autopilot systems and industrial control protocols
- \circ Applied formal methods and theorem proving in F* to provide mathematical guarantees for system safety properties under adversarial conditions
- Validated approach on MAVLink protocol used in ArduPilot and PX4 systems, demonstrating practical applicability to critical infrastructure

• CyManII Cybersecurity Manufacturing Innovation Institute [**)

PhD Intern

2025 - Present

- PhD Intern

 Joint Appointment

 Joint Appointment

 Joint Appointment with INL addressing U.S. cybersecurity challenges against evolving threats in manufacturing systems
- · Focus on making DATUM practical and deployable in widely-used industrial protocols, including Modbus
- Collaborate with industry partners to retrofit legacy manufacturing systems with provable security mechanisms

• ORISE Omni Alliance, DOE [�]

STEM Intern

2022 - 2024 Idaho Falls, ID

• Performed modeling and translation from functional specifications to executable low-level code

• Bridged theoretical formal methods research with practical implementation requirements for critical infrastructure applications

PUBLICATIONS & PRESENTATIONS

C=CONFERENCE, I=INVITED TALK

- [C.1] Arthur Amorim, Max Taylor, Trevor Kann, Gary T. Leavens, William L. Harrison, Lance Joneckis (2025). UAV Resilience Against Stealthy Attacks . In *International Conference on Unmanned Aircraft Systems (ICUAS 2025)*.
- [C.2] Arthur Amorim, Max Taylor, Trevor Kann, William L. Harrison, Gary T. Leavens, Lance Joneckis (2025).
 Enforcing MAVLink Safety & Security Properties via Refined Multiparty Session Types. In 2025 NASA Formal Methods Symposium (NFM 2025).
- [C.3] Arthur Amorim, Trevor Kann, Max Taylor, Lance Joneckis (2024). Towards Provable Security in Industrial Control Systems via Dynamic Protocol Attestation. In *IEEE Workshop on Industrial Control System Security* (ICSS 2024), co-located with ACSAC.
- [C.4] Max Taylor, Arthur Amorim (2025). Enhancing Cyber-Physical System Dependability via Synthesis: Challenges and Future Directions. In International Conference on Dependable Systems and Networks Workshops, co-located with DSN.
- [I.1] Max Taylor, Arthur Amorim (2025). **Dynamically checking protocols with DATUM**. Invited talk at *Digital Innovation Center of Excellence (DICE)* 2025.
- [I.2] Max Taylor, Arthur Amorim (2025). **Automated Reasoning for UAV Safety & Security: The DATUM Protocol Stack**. Invited talk at *High Confidence Software and Systems Conference* 2025.

SKILLS

- Programming & Verification Languages: F*, OCaml, Python
- Formal Methods: Theorem proving, Runtime verification, Static analysis, Protocol verification, Session types
- Security Frameworks: seL4 microkernel, Software isolation, Protocol attestation
- Cyber-Physical Systems: UAV autopilots (ArduPilot, PX4), Industrial control systems, Embedded systems
- Communication Protocols: MAVLink, Modbus, Protocol verification and enforcement
- Research & Development: Interactive theorem provers, Verification frameworks, Type theory
- Mathematical & Analytical Tools: Mathematical logic, Static analysis, Runtime monitoring, Formal specification

HONORS AND AWARDS

Recognition for academic excellence in collegiate athletics

Outstanding Calculus Student Award	
Labry College of Science, Math and Business, Tusculum University	2019
Division 2 Athletics Director Association Academic Achievement Award	

2019