

06 T CGS 04 01 Durée : 6 heures Toutes séries réunies

SESSION 2006

CLASSES TERMINALES

MATHEMATIQUES

Les calculatrices électroniques <u>non imprimantes</u> avec entrée unique par clavier sont autorisées. Les calculatrices permettant d'afficher des formulaire ou des tracés de courbe sont interdites. Leur utilisation sera considérée comme une fraude. (Cf. Circulaire n° 5990/OB/DIR. du 12.08.1988). Il sera tenu compte pour l'appréciation des copies de la présentation, de la clarté et de la précision de l'argumentation.

PROBLEME 1

Fest un plan euclidien.

Si Γ est un cercle de ce plan de centre Ω et de rayon R, on notera J (Γ) , le disque ouvert de centre Ω et de rayon R.

$$J(\Gamma) = \{ M \in \mathscr{P} / \Omega M < R \}.$$

 $\mathscr{E}(\Gamma)$, est l'extérieur du cercle Γ .

PARTIE 1 Puissance d'un cercle par apport à un point. (04 points)

Soit Γ un cercle de centre Ω et de rayon R.

1) Soit M un point de \mathscr{G} , et soit \mathscr{D} une droite passant par M et coupant Γ en deux points T_1 et T_2 . On pose : $P_{(\mathscr{D},\Gamma)}(M) = \overline{MT_1} \bullet \overline{MT_2}$.

Montrer que $P_{(\mathcal{D}, \Gamma)}(M)$ ne dépend pas de la droite \mathcal{D} passant par M et sécante au cercle Γ . (0,5 pt)

Dans la suite, on pose : $P_{\Gamma}(M) = P_{(\mathcal{D}, \Gamma)}(M)$; (Cette quantité est la puissance du point M par rapport à Γ).

- 2) a) Etudier le signe de la puissance d'un point M en fonction de sa position dans le plan. (0,5 pt)
 - b) Quelle est la puissance du centre d'un cercle par rapport à ce cercle ? (0,5 pt)
- 3) Soit Γ un cercle et \mathscr{D}_o une droite passant par M et tangente au cercle Γ en un point T. Quelle est la position du point M par rapport au cercle si une telle droite existe ? \mathscr{D}_o est-elle unique ?

Montrer que $P_{\Gamma}(M) = MT^2$. (0,5 pt)

- 4) Soient Γ_1 et Γ_2 deux cercles sécants en deux points A et B. Montrer que la droite (AB) est l'ensemble des points M tels que P_{Γ_1} (M) = P_{Γ_2} (M). (01 pt)
- 5) Déterminer la nature de l'ensemble des points qui ont la même puissance par rapport à deux cercles lorsque ceux-ci ne sont pas forcément sécants.

Quelle est la situation si les deux cercles sont tangents ?

(0,5 pt)

6) P est rapporté à un repère orthonormal (O, i, j).
 Soit Γ un cercle dont l'équation cartésienne dans ce repère est : x² + y² + ax + by + c = 0.
 Déterminer la puissance de O par rapport à Γ.
 (0,5 pt)

CLASSES DE TERMINALES

PARTIE 2 Construction d'une Π – droite (07,5 points)

Dans cette partie, \mathscr{C} est un cercle de centre O et de rayon R, et Π est un disque ouvert limité par \mathscr{C} , A et B deux points distincts de Π .

- 1) On suppose que A et B sont situés sur un même diamètre de \mathscr{C} . Montrer que dans ce cas, aucun cercle Γ passant par A et B ne rencontre \mathscr{C} en deux points diamétralement opposés. (01 pt)
- 2) On suppose que A et B ne sont pas situés sur un même diamètre de & et que OA = OB. Montrer l'existence et l'unicité d'un cercle Γ qui passe par A et B et qui rencontre & en deux points diamétralement opposés.
 (0,5 pt)

Proposer un programme de construction de Γ .

(0.5 pt)

- 3) On suppose que OA ≠ OB et que A et B ne sont pas situés sur un même diamètre de ℰ. On suppose qu'il existe un cercle Γ de centre Ω qui rencontre ℰ en deux points diamétralement opposés T₁ et T₂.
 - a) Montrer que (A B) rencontre (T_1, T_2) en un point unique S.

(0,5 pt)

b) Comparer $P_{\mathscr{C}}(S)$ et $P_{\Gamma}(S)$.

(0.5 pt)

- c) Soit Γ ' un cercle quelconque passant par A et B et rencontrant $\mathscr C$ en deux points U_1 et U_2 distincts.
 - Comparer la puissance de S par rapport aux cercles \mathscr{C} , Γ et Γ '; en déduire que $S \in (U_1 U_2)$. (0,5 + 0,5 pt)
- d) Lorsqu'on ne connaît pas Γ , déduire de ce qui précède une construction géométrique du point S, puis de Γ . (01,5 pt)
- e) Justifier que Γ passe par T_2 .

(0,5 pt)

4) Autre démonstration de l'existence de Γ

On suppose que \mathscr{S} est rapporté à un repère (O, i, j), et \mathscr{E} est un cercle de centre O et de rayon R = 1.

- a) Montrer qu' un cercle Γ (distinct de $\mathscr C$) rencontre $\mathscr C$ en deux points diamétralement opposés si et seulement si $P_{\Gamma}(O) = -1$. (01 pt)
- b) En déduire une méthode analytique pour montrer l'existence et l'unicité de Γ en déterminant une équation cartésienne, puis son centre. (0,25 pt)

Comment dans cette méthode reconnaît – on que les coordonnés de A et B sont telles que on est dans le cas particulier étudié à la question 1) ? (0,25 pt)

PARTIE 3 Un lieu géométrique (02,5 points)

Soit $\mathscr E$ un cercle de centre O, de rayon R, et A un point distinct de O situé dans le disque ouvert Π limité par $\mathscr E$.

- 1) Soit [To; T'o] le diamètre de \mathscr{C} perpendiculaire à (O A). Soit Γ_0 le cercle circonscrit au triangle To T'o A, et Ω o son centre. Soit Ω un point de la perpendiculaire Δ à (O A) qui passe par Ω o. Soit [T1, T2] le diamètre de \mathscr{C} perpendiculaire à (Ω O).
 - a) Montrer que Ω Ti = Ω A, pour i = 1, 2.

(0.5 pt)

b) Soit \mathcal{L} le lieu géométrique des centres des cercles qui passent par A et qui coupent \mathscr{C} selon deux points diamétralement opposés. Montrer que $\Delta \subset \mathscr{L}$ (01 pt)

CLASSES DE TERMINALES

2) Montrer que $\mathcal{L} \subset \Delta$. (0,5 pt)

3) En déduire une nouvelle construction géométrique du cercle Γ qui passe par deux points A et B (non situés sur un même diamètre du disque Π et qui coupe & en deux points diamétralement opposés). (0,5 pt)

PROBLEME N°2

L'objet de ce problème est d'étudier la suite U définie par $\text{Un} = \sum\limits_{k=1}^n \frac{1}{k^2}$ et de déterminer sa limite

(05 points)

 $U = \sum_{k=1}^{+\infty} \frac{1}{k^2}$ si elle existe. On rappelle que si x est un réel, $e^{ix} = \cos x + i \sin x$.

1) On considère la fonction fn définie par :

$$\forall x \in [0, \frac{\pi}{2}] \qquad \text{fn } (x) = \sum_{k=1}^{n} \cos 2kx.$$

Déterminer fn (0), puis déterminer l'expression fn (x) en fonction de sinx et sin (2n + 1)x, pour tout

x tel que :
$$0 < x \le \frac{\pi}{2}$$
. (0,25 + 0,75 pt)

2) α et β étant deux réels, on considère la fonction h définie sur $[0, \frac{\pi}{2}]$ par :

$$\left\{ \begin{array}{ll} h(x) = \dfrac{\alpha x + \beta x^2}{\sin x} & \text{si} & x \neq 0 \\ h(o) = \alpha. & \end{array} \right.$$

Montrer que h est dérivable sur $[0, \frac{\pi}{2}]$ et que h' est continue sur $[0, \frac{\pi}{2}]$. (0,5 + 0,5 pt)

3) Pour tout $n \in \mathbb{N}^*$, on définit $H(n) = \int_0^{\frac{\pi}{2}} h(x) \sin nx \, dx$

Montrer qu'il existe un réel K, ne dépendant pas de n tel que, pour tout $n \in \mathbb{N}^* \mid H(n) \mid \leq \frac{K}{n}$ (01 pt)

4) Soit J (k, α, β) = $\int_{0}^{\frac{\pi}{2}} (\alpha x + \beta x^{2}) \cos 2kx \, dx.$

Déterminer un couple de réels
$$(\alpha^*, \beta^*)$$
 tel que : $J(k, \alpha^*, \beta^*) = \frac{1}{4 k^2}$. (0,5 pt)

On suppose que : $\alpha = \alpha^*$ et $\beta = \beta^*$ pour toute la suite.

5) a) Montrer que
$$U_n = 4 \int_0^2 (-x + \frac{x^2}{\pi})$$
 fn (x) dx. (0.5 pt)

b) En déduire que Un est convergente et déterminer U. (01 pt)

<u>Présentation clarté et précision</u>: (01 point)