\mathbf{Dist}	PDF	Mean	Var	MGF
Normal	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right), -\infty < x < \infty$	μ	σ^2	$\exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$
Gamma	$\frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-x/\beta}, x > 0$	$\alpha\beta$	$\alpha \beta^2$	$(1-\beta t)^{-\alpha}$
Chi-square	$\frac{\frac{1}{2^{\nu/2}\Gamma(\nu/2)}x^{(\nu-2)/2}e^{-x/2}}{x^{(\nu-2)/2}e^{-x/2}}, x > 0$	ν	2ν	$(1-2t)^{-\nu/2}$
Exponential	$\frac{1}{\lambda}e^{-x/\lambda}, x > 0$	λ	λ^2	$(1-\lambda t)^{-1}$
Uniform	$\frac{1}{\beta - \alpha}, \alpha < x < \beta$	$\frac{\alpha+\beta}{2}$	$\frac{(\beta - \alpha)^2}{12}$	$\frac{e^{\beta t} - e^{\alpha t}}{t(\beta - \alpha)}$
Bernoulli	$p^x(1-p)^{1-x}, x = 0, 1$	p	p(1 - p)	$(1-p) + pe^t$
Geometric	$p(1-p)^{x-1}, x = 1, 2, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{p}{1 - (1 - p)e^t}$
Binomial	$\binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, 2, \dots, n$	np	np(1-p)	$(1+p(e^t-1))^n$
Poisson	$\frac{\lambda^x e^{-\lambda}}{x!}, x = 0, 1, 2, \dots$	λ	λ	$e^{\lambda(e^t-1)}$
t-distribution	$rac{\Gamma\left(rac{ u+1}{2} ight)}{\sqrt{\pi u}\Gamma\left(rac{ u}{2} ight)}\left(1+rac{t^2}{ u} ight)^{-rac{ u+1}{2}}$	0	$\frac{\nu}{\nu-2}$	$t \in R$
f-distribution	$g(f) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}} f^{\frac{\nu_1}{2} - 1} \left(1 + \frac{\nu_1}{\nu_2} f\right)^{-\frac{1}{2}(\nu_1 + \nu_2)}$	f > 0		

Gamma function: $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$, $\Gamma(n) = (n-1)!$ and $\Gamma(n) = (n-1)\Gamma(n-1)$ Variance Indentity: $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$ and $Var(aX - bY + c) = a^2 Var(X) + b^2 Var(Y) + 2abCov(X, Y)$ Sum of Squares Identity: $\sum_{i=1}^n (X_i - \bar{X})^2 = \sum_{i=1}^n (X_i - \mu)^2 + n(\bar{X} - \mu)^2$ Chebyshev's: $\mathbb{P}(|X - \mu| < k) \ge 1 - \frac{\sigma^2}{k^2}$ and $\mathbb{P}(|X - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}$

Weak Law of large numbers: $P(|\bar{X} - \mu_{pop}| < k) \ge 1 - \frac{\sigma_{pop}^2}{nk^2}$

Central Limit Theorem: if $X_i...X_n$ are iid from any pop $w/(\mu, \sigma^2)$ $Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$ as $n \to \infty$ Sum of Normal Squared: If $X_1, X_2...X_n$ are iid N(0, 1), then $\sum_{i=1}^n X_i^2 \sim \chi_n^2$

Order Statistics: $X_{(1)} < X_{(2)} < ... < X_{(n)}$. It is the rth item of a sample of n. $f_{X_{(r)}}(x) = \frac{n!}{(r-1)!(n-r)!} F(x)^{r-1} (1 - F(x))^{n-r} f(x)$

$$f_{X_{(r)}}(x) = \frac{n!}{(r-1)!(n-r)!} F(x)^{r-1} (1-F(x))^{n-r} f(x)$$

In general, if you repeat experiment N times then $\theta \in \approx (1-\alpha)\%$

 μ w/ known σ : $\mu \in \left(\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$

 μ w/ unknown σ : $\mu \in \left(\bar{x} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}, \bar{x} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}\right)$

$$\mu_1 - \mu_2$$
, w/known σ_1^2 and σ_2^2 : $\mu_1 - \mu_2 \in \left(\bar{x}_1 - \bar{x}_2 - z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \bar{x}_1 - \bar{x}_2 + z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$

 $\mu_1 - \mu_2$, w/unknown $\sigma_1^2 = \sigma_2^2 = \sigma^2$:

$$\mu_1 - \mu_2 \in \left(\bar{x}_1 - \bar{x}_2 - t_{\alpha/2, n_1 + n_2 - 2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \bar{x}_1 - \bar{x}_2 + t_{\alpha/2, n_1 + n_2 - 2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)$$

$$\mu_{1} - \mu_{2}, \text{ w/ dirkhown } \sigma_{1} = \sigma_{2} = \sigma_{2}.$$

$$\mu_{1} - \mu_{2} \in \left(\bar{x}_{1} - \bar{x}_{2} - t_{\alpha/2, n_{1} + n_{2} - 2} s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}, \bar{x}_{1} - \bar{x}_{2} + t_{\alpha/2, n_{1} + n_{2} - 2} s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}\right)$$

$$Z = \frac{(\bar{x}_{1} - \bar{x}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0, 1) \text{ Comes from MGF, Add Variance}$$

$$S_{p} = \sqrt{\frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}} \text{ aka Weighted average of } S_{1} \text{ and } S_{2}. \frac{(n_{1} + n_{2} - 2)S_{p}}{\sigma^{2}} \sim \chi_{n_{1} + n_{2} - 2}$$

$$T = \frac{Z}{\sqrt{Y/(\nu_{1} + \nu_{2} - 2)}} \sim t_{\alpha/2, \nu_{1} + \nu_{2} - 2}, \text{ where } Z = \sim N(0, 1) \text{ and } Y \sim \chi_{\nu_{1} + \nu_{2} - 2}$$

$$\sigma^2$$
: $\sigma^2 \in \left(\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}\right)$

$$\frac{\sigma_1^2}{\sigma_2^2} \colon \frac{\sigma_1^2}{\sigma_2^2} \in \left(\frac{s_1^2}{s_2^2} \frac{1}{F_{\alpha/2,n_1-1,n_2-1}}, \frac{s_1^2}{s_2^2} F_{\alpha/2,n_1-1,n_2-1}\right) \text{ Remember that } F_{1-\alpha/2,n_1,n_2} = \frac{1}{F_{\alpha/2,n_2,n_1}}$$

$$F = \frac{U/\nu_1}{V/\nu_2} \sim F_{\nu_1,\nu_2}$$
, where $U \sim \chi^2_{\nu_1}$ and $V \sim \chi^2_{\nu_2}$

Type I Error: Rejecting H_0 when it is true. $\alpha = P(\text{Type I Error})$: $\alpha = P(\text{Reject } H_0 | H_0 \text{ is true})$ False Positive **Type II Error**: Failing to reject H_0 when it is false. $\beta = P(\text{Type II Error})$: $\beta = P(\text{Fail to Reject } H_0|H_0 \text{ is false})$

```
False Negative
```

Critical Region: The set of values of the test statistic that leads to rejection of H_0 .

We find the Critical Region by making a plot of $\{x_i\}$ and use our test (usually X>c) and plot the critical region.

Power: $1 - \beta = P(\text{Reject } H_0 | H_0 \text{ is false})$ This is the probability of correctly rejecting H_0 aka how many hits

Transformation of 1 var to 1 var: $Y = u(X), X = u^{-1}(Y) = w(Y), g(y) = f(w(y)) | \frac{d}{dy} w(y) |$

Transformation of 2 var to 1 var: $Y = u(X_1, X_2), X_1 = w(Y, X_2), g(y) = \int_R f(w(y, x_2)) |\frac{\partial}{\partial y} w(y, x_2)| dx_2$

Method of Moments: $m'_k = \frac{\sum_{i=1}^n x_i^k}{n} = E[X^k]$ is the kth sample moment and by setting $\mu'_k = E[X^k]$ and solving for μ'_k , we get the kth population moment.

Max Likelihood: $\hat{\theta}$ is max of $L(\theta) = \prod_{i=1}^n f(x_i|\theta)$ or $l(\theta) = \sum_{i=1}^n \log f(x_i|\theta)$

Bias: $B(\hat{\theta}) = \mathbb{E}[\hat{\theta}] - \theta$. We say something is unbasied if $B(\hat{\theta}) = 0$ and asymptotically unbiased if $\lim_{n \to \infty} B(\hat{\theta}) = 0$

Cramer-Rao: $Var(\hat{\theta}) \ge \frac{1}{nI(\theta)}$ where $I(\theta) = -\mathbb{E}\left[\frac{\partial^2}{\partial \theta^2}\log f(x|\theta)\right]$ or $I(\theta) = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta}\log f(x|\theta)\right)^2\right]$

Neyman-Pearson Lemma: $\frac{L_0}{L_1} \le k, \forall C$ of size α is the most powerful test. Convert to nice form for test Likelihood Ratio Test: $\Lambda = \frac{L_{\omega}}{L_{\Omega}}$ and solve similarly for nice form. large $n, -2ln(\Lambda) \sim \chi_1^2$

Steps of a Test: 1. State Hypothesis 2. Choose Test Statistic 3. Find Critical Region 4. Make Decision **REMEMBER CLT for** n > 30

 $\boldsymbol{\mu} \mathbf{w} / \boldsymbol{\sigma}$; or $n \geq 30$: $Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$

 $H_0: \mu = \mu_0 \quad H_1: \mu \neq \mu_0, H_1: \mu < \mu_0, H_1: \mu > \mu_0$

for $|z| \ge z_{\alpha/2}$, $z \ge z_{\alpha}$, $z \le -z_{\alpha}$

 $\pmb{\mu}$ w/ unknown $\pmb{\sigma}; n < 30: \ T = \frac{\bar{X} - \mu}{s/\sqrt{n}} \sim t_{n-1} \quad H_0: \mu = \mu_0$

 $H_1: \mu \neq \mu_0, H_1: \mu < \mu_0, H_1: \mu > \mu_0$

for $|t| \ge t_{\alpha/2,n-1}, t \ge t_{\alpha,n-1}, t \le -t_{\alpha,n-1}$

 $\mu_1 - \mu_2, \text{ w/known } \sigma_1^2 \text{ and } \sigma_2^2: \ Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$ $H_0: \mu_1 - \mu_2 = \delta \quad H_1: \mu_1 - \mu_2 \neq \delta, H_1: \mu_1 - \mu_2 < \delta, H_1: \mu_1 - \mu_2 > \delta$

for $|z| \ge z_{\alpha/2}$, $z \ge z_{\alpha}$, $z \le -z_{\alpha}$

 $\mu_1 - \mu_2$, w/unknown $\sigma_1^2 = \sigma_2^2 = \sigma^2$: $T = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$ $H_0: \mu_1 - \mu_2 = \delta$ $H_1: \mu_1 - \mu_2 \neq \delta, H_1: \mu_1 - \mu_2 < \delta, H_1: \mu_1 - \mu_2 > \delta$

for $|t| \ge t_{\alpha/2, n_1 + n_2 - 2}, t \ge t_{\alpha, n_1 + n_2 - 2}, t \le -t_{\alpha, n_1 + n_2 - 2}$

 $\sigma^{2}: \chi^{2} = \frac{(n-1)s^{2}}{\sigma^{2}} \sim \chi^{2}_{n-1}$ $H_{0}: \sigma^{2} = \sigma^{2}_{0} \quad H_{1}: \sigma^{2} \neq \sigma^{2}_{0}, H_{1}: \sigma^{2} < \sigma^{2}_{0}, H_{1}: \sigma^{2} > \sigma^{2}_{0}$ for $\chi^{2} \geq \chi^{2}_{\alpha/2, n-1}, \quad \chi^{2} \geq \chi^{2}_{1-\alpha/2, n-1}, \quad \chi^{2} \leq \chi^{2}_{\alpha/2, n-1}, \quad \chi^{2} \leq \chi^{2}_{1-\alpha/2, n-1}$

 $\frac{\sigma_1^2}{\sigma_2^2}$: $F = \frac{s_1^2}{s_2^2} \sim F_{n_1-1,n_2-1}$

 $H_0: \frac{\sigma_1^2}{\sigma_2^2} = 1$ $H_1: \frac{\sigma_1^2}{\sigma_2^2} \neq 1, H_1: \frac{\sigma_1^2}{\sigma_2^2} < 1, H_1: \frac{\sigma_1^2}{\sigma_2^2} > 1$

for $F \geq F_{\alpha/2, n_1 - 1, n_2 - 1}$, $F \geq F_{1 - \alpha/2, n_1 - 1, n_2 - 1}$

Note that is like like if statistic $\theta \notin \text{Confidence Interval}$, reject H_0

Expectation: $\int_{-\infty}^{\infty} x f(x) dx$. Is linear!

Variance: $Var(X) = \mathbb{E}[(X - E[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

 $Var(aX + bY + c) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$

Covariance: $Cov(X,Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$ and $Cov(X,Y) = \int_R \int_S (x - \mu_X)(y - \mu_Y) f(x,y) dx dy$

MGF $M_X(t) = \mathbb{E}[e^{tX}]$. $M_{aX+bY+c}(t) = e^{ct}M_X(at)M_Y(bt)$ if X,Y are independent.

 $\frac{d^r}{dt^r}M_X(t=0)=\mu_r'$ rth moment of X