

CS261 – Data Structures

Graphs

Goals

- Introduction and Motivation
- Representations

Why do we care about graphs?

Many Applications

- Social Networks Facebook
- Video Games Motion Graphs
- Machine Learning/Al
- Delivery Networks/Scheduling UPS?
- Computer Vision Image Segmentation

•

Graphs

- Graphs represent relationships or connections
- Superset of trees (i.e., a tree is a restricted form of a graph):
 - A graph represents general relationships:
 - Each node may have many predecessors
 - There may be multiple paths (or no path) from one node to another
 - Can have cycles or loops
 - Examples: airline flight connections, friends, algorithmic flow, etc.
 - A tree has more restrictive relationships and topology:
 - Each node has a single predecessor—its parent
 - There is a single, unique path from the root to any node
 - No cycles
 - Example: less than or greater than in a binary search tree

Graphs: Vertices and Edges

- A graph is composed of vertices and edges
- Vertices (also called *nodes*):
 - Represent objects, states (i.e., conditions or configurations), positions, or simply just place holders
 - Set $\{v_1, v_2, ..., v_n\}$: each vertex is unique → no two vertices represent the same object/state
- Edges (also called arcs):
 - An edge (v_i, v_j) between two vertices indicates that they are directly related, connected, etc.
 - Can be either directed or undirected
 - Can be either weighted (or labeled) or unweighted
 - If there is an edge from v_i to v_j , then v_j is a *neighbor* of v_i (if the edge is undirected then v_i and v_j are neighbors or each other)

Graphs: Directed and Undirected

Example: friends – Steve and Alicia are friends

Example: like – George admires Mary

Graphs: Directed and Undirected (cont.)

Graphs: Types of Edges

Graphs: What kinds of questions can we ask?

- Is A reachable from B?
- What nodes are reachable from A?
- What's the shortest path from A to B?
- Is A in the graph?
- etc...

Graphs: Example

Graphs: Representations (unweighted)

	eton	acold	ria	enix	rre	urgh	eton	blo
City	0	1	2	3	4	5	6	7
0: Pendleton	?	0	0	1	0	0	0	1
1: Pensacola	0	?	0	1	0	0	0	0
2: Peoria	0	0	?	0	0	1	0	1
3: Phoenix	0	0	1	?	0	1	0	1
4: Pierre	1	0	0	0	? •	0	0	0
5: Pittsburgh	0	1	0	0	0	?	0	0
6: Princeton	0	0	0	0	0	1	?	0
7: Pueblo	0	0	0	0	1	0	0	?

Stores only the edges \rightarrow more space efficient for sparse graph: O(V + E)

where sparse means relatively few edges

Edge List O(v+e) space

Adjacency Matrix O(v²) space

By convention, a vertex is usually connected to itself (though, this is not always the case)

```
Pendleton: {Pueblo, Phoenix}
Pensacola: {Phoenix}
Peoria: {Pueblo, Pittsburgh}
Phoenix: {Pueblo, Peoria, Pittsburgh}
Pierre: {Pendleton}
Pittsburgh: {Pensacola}
Princeton: {Pittsburgh}
Pueblo: {Pierre}
```


Graphs: Representations (weighted)

City	0	1	2	3	4	5	6	7
0: Pendleton	?	0	0	13	0	0	0	22
1: Pensacola	0	?	0	1	0	0	0	0
2: Peoria	0	0	?	0	0	8	0	13
3: Phoenix	0	0	43	?	0	16	0	90
4: Pierre	7	0	0	0	?	0	0	0
5: Pittsburgh	0	10	0	0	0	?	0	0
6: Princeton	0	0	0	0	0	5	?	0
7: Pueblo	0	0	0	0	22	0	0	?

Adjacency Matrix O(v²) space

```
Edge List O(v+e) space
```

```
Pendleton:
             {(Pueblo,22), (Phoenix,13}
Pensacola:
             {(Phoenix,1)}
Peoria:
             {(Pueblo,13), (Pittsburgh,8)}
Phoenix:
             {(Pueblo,90), (Peoria,43),
             (Pittsburgh, 16)}
             {(Pendleton,7)}
Pierre:
Pittsburgh:
             {(Pensacola,10)}
Princeton:
             {(Pittsburgh,5)}
Pueblo:
             {(Pierre, 22)}
```


Your Turn

 Complete Worksheet #40 Graph Representations