Math 131A Homework 1

Jiaping Zeng

8/3/2020

1.1 Prove $1^2 + 2^2 + ... + n^2 = \frac{1}{6}n(n+1)(2n+1)$ for all positive integers n.

Answer: By induction.

Base case (n = 1): $1 = \frac{1}{6}(1+1)(2+1) \implies 1 = 1$ which is true.

Inductive step: Assume $1^2+2^2+\ldots+n^2=\frac{1}{6}n(n+1)(2n+1)$ is true, we want to show that $1^2+2^2+\ldots+n^2+(n+1)^2=\frac{1}{6}(n+1)(n+2)(2n+3)$ is true. We can do so by adding $(n+1)^2$ to both sides of the equation as follows:

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{1}{6}n(n+1)(2n+1) + (n+1)^{2}$$

Expanding the right hand side results in the following:

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{1}{3}n^{3} + \frac{3}{2}n^{2} + \frac{13}{6}n + 1$$

Which indeed factors into

$$\implies 1^2 + 2^2 + \dots + n^2 + (n+1)^2 = \frac{1}{6}(n+1)(n+2)(2n+3).$$

Therefore $1^2+2^2+...+n^2=\frac{1}{6}n(n+1)(2n+1)$ for all positive integers n by mathematical induction.

1.9 (a) Decide for which integers the inequality $2^n > n^2$ is true.

Answer: $2^n > n^2, n \in \mathbb{Z}$ is true for n = 0, 1 and n > 4.

(b) Prove your claim in (a) by mathematical induction.

Answer: We will first show n = 0 and n = 1 case-by-case, then n > 4 by induction.

1

n=0: $2^n > n^2 \implies 1 > 0$ which is true

 $n=1: 2^n > n^2 \implies 2 > 1$ which is true

n > 4: By induction as follows.

Base case: $(n = 5) 2^n > n^2 \implies 32 > 25$ which is true

Indcutive step: Assume $2^n > n^2$ is true, we want to show that $2^{n+1} > (n+1)^2$ is also true. We can start by multiplying 2 to both sides of the inequality: $2*2^n > 2*n^2 \implies 2^{n+1} > 2n^2$. Then, if we could show that $2n^2 > (n+1)^2$ for $n \ge 5$, $2^{n+1} > (n+1)^2$ would be also true. We will do so using another proof by induction:

Base case: (n = 5): $2n^2 > (n + 1)^2 \implies 50 > 36$ which is true

Inductive step: Assume $2n^2 > (n+1)^2$ is true, we want to show that $2(n+1)^2 > (n+2)^2$. By expanding the right hand side of the assumption, we have $2n^2 > n^2 + 2n + 1 \implies n^2 > 2n + 1$. $2(n+1)^2 = 2n^2 + 4n + 2, (n+2)^2 = n^2 + 4n + 4$

- 1.11 For each $n \in \mathbb{N}$, let P_n denote the assertion " $n^2 + 5n + 1$ is an even integer."
 - (a) Prove P_{n+1} is true whenever P_n is true.

Answer: Using the definition of P_n , P_{n+1} corresponds to the expression $(n+1)^2 + 5(n+1) + 1$. To show that it is even, we can first expand it into $(n+1)^2 + 5(n+1) + 1 = n^2 + 7n + 7$. Then, $P_{n+1} - P_n = n^2 + 7n + 7 - n^2 - 5n - 1 = 2n + 6$ which is always even for $n \in \mathbb{N}$. Therefore, if P_n is even, then $P_n + (P_{n+1} - P_n) = P_{n+1}$ must also be even.

(b) For which n is P_n actually true? What is the moral of this exercise?

Answer: For $n^2 + 5n + 1$ to be even, $n^2 + 5n = n(n+5)$ must be odd. However, this is not possible for $n \in \mathbb{N}$. On one hand, if n is even, n(n+5) would have a factor of 2 from n and would therefore be even; on the other hand, if n is odd, then (n+5) would be even and n(n+5) as well. The moral of this exercise is that finding a true base case is important in mathematical induction.

3.1 (a) Which of the properties A1-A4, M1-M4, DL, O1-O5 fail for N?

Answer: A4 fails since there are no negative numbers in N; M4 fails since there are no fractions.

(b) Which of these properties fail for \mathbb{Z} ?

Answer: M4 fails since there are no fractions in \mathbb{Z} .

3.6 (a) Prove $|a+b+c| \le |a|+|b|+|c|$ for all $a,b,c \in \mathbb{R}$.

Answer: Let m = a + b, then since $|a + b| \le |a| + |b|$ (triangle inequality), $|m| \le |a| + |b|$. Then we can add |c| to both sides of the inequality, resulting in $|m| + |c| \le |a| + |b| + |c|$. Since $|m + c| \le |m| + |c|$, we have $|m + c| \le |m| + |c| \le |a| + |b| + |c| \implies |m + c| \le |a| + |b| + |c|$. Then by substituting m = a + b we have $|a + b + c| \le |a| + |b| + |c|$.

(b) Use induction to prove

$$|a_1 + a_2 + \ldots + a_n| \le |a_1| + |a_2| + \ldots + |a_n|$$

for n numbers $a_1, a_2, ..., a_n$.

Answer:

Base case: (n = 1): $|a_1| \le |a_1|$ which is true.

Inductive step: Assume the statement holds for n numbers a_1, a_2, \ldots, a_n . Let $m = a_1 + a_2 + \ldots + a_n$, then we have $|m| \leq |a_1| + |a_2| + \ldots + |a_n|$. Adding $|a_{n+1}|$ to both sides of the inequality gives us $|m| + |a_{n+1}| \leq |a_1| + |a_2| + \ldots + |a_n| + |a_{n+1}|$. Then using $|m + a_{n+1}| \leq |m| + |a_{n+1}|$ (similar to previous part), we have $|m + a_{n+1}| \leq |a_1| + |a_2| + \ldots + |a_n| + |a_{n+1}|$. Then by substitution, $|a_1 + a_2 + \ldots + a_n + a_{n+1}| \leq |a_1| + |a_2| + \ldots + |a_n| + |a_{n+1}|$.

Therefore $|a_1 + a_2 + \ldots + a_n| \le |a_1| + |a_2| + \ldots + |a_n|$ by mathematical induction.

3.7 (a) Show |b| < a if and only if -a < b < a.

Answer:

 \Rightarrow : By cases.

Case 1 $(b \ge 0)$: we have |b| = b by definition of aboslute value. Then, $|b| < a \implies b < a$.

Case 2 $(b \le 0)$: |b| = -b, then $|b| < a \implies -b < a \implies b > -a$.

Therefore -a < b < a.

←: Also by cases.

Case 1 $(b \ge 0)$: b = |b| by definition; then -a < |b| < a.

Case 2 $(b \le 0)$: $-a < b < a \implies a > -b > -a$ (multiply by -1). Since -b = |b|, $a > -b > -a \implies a > |b| > -a \implies -a < |b| < a$.

Therefore |b| < a.

- (b) Show |a-b| < c if and only if b-c < a < b+c.
- (c) Show $|a-b| \le c$ if and only if $b-c \le a \le b+c$.

3.8 Let $a, b \in \mathbb{R}$. Show if $a \leq b_1$ for every $b_1 > b$, then $a \leq b$.

- 4.6
- 4.7
- 4.8
- 4.14
- 4.15
- 4.16

P1 Write down the converse and the contrapositive of the following statement regarding a real number x:

If
$$x > 0$$
, then $x^2 - x > 0$.

Then determine which (if any) of the three statements are true for all real numbers x.

Answer: Converse: if $x^2 - x > 0$, then x > 0, which is false by counterexample x = -1. Contrapositive: if $x^2 - x \le 0$, then $x \le 0$, which is false by counterexample x = 1.

P2 Prove that $\sqrt{3}$ is not rational.

Answer: By contradiction. Suppose $\sqrt{3}$ is rational, then by definition of rational numbers, there must exist $p,q\in\mathbb{Z}$ such that $\frac{p}{q}=\sqrt{3}$, where p,q have no common factors upon simplying. Then, we also have $\frac{p^2}{q^2}=3\implies p^2=3q^2$. Since $p,q\in\mathbb{Z}$ and by extension $p^2,q^2\in\mathbb{Z}$, $p^2\mid 3$. Additionally, $p\mid 3$ because $\sqrt{3}\notin\mathbb{Z}$. Then, $p^2\mid 9$. By substituting $p^2=3q^2$, we now have $3q^2\mid 9\implies q^2\mid 3$, implying $q\mid 3$ by previous logic. Then p,q have common factor 3 which contradicts with our initial assumption. Therefore $\sqrt{3}$ is not rational.