PRINCIPIOS FISICOS DE LA INFORMÁTICA

GRADO DE INGENIERÍA EN INFORMÁTICA

TEMA 3. Resolución de circuitos de corriente continua.

- 1- En el circuito de la figura determinar:
 - a) Intensidad de la corriente.
 - b) Potencia liberada o absorbida por cada fem.
 - c) La producción de calor en cada resistencia.

Datos:
$$R_1 = 2 \Omega$$
, $R_2 = 4 \Omega$, $\epsilon_1 = 12 V$, $\epsilon_2 = 6 V$

Sol: a) 1 A, b) 12 W para ϵ_1 y 6 W para ϵ_2 , c) 2 W para R_1 y 4W para R_2

- 2- En el circuito de la figura, las baterías tienen una resistencia interna despreciable. Hallar
 - a) La corriente en cada resistencia
 - b) La diferencia de potencial entre los puntos a y b
 - c) La potencia suministrada por cada batería

Datos:
$$R_1 = 4 \Omega$$
, $R_2 = 3 \Omega$, $R_3 = 6 \Omega$, $\epsilon_1 = 12 v$, $\epsilon_2 = 12 V$

Sol: a) $I_1=2/3$ A, $I_2=8/9$ A, $I_3=14/9$ A; b) $V_a-V_b=28/3$ V; c) 8 W y 32/3 W

- 3- En el circuito de la figura determinar:
 - a) La corriente en cada resistencia
 - b) La potencia suministrada por cada fem
 - c) La potencia disipada en cada resistencia.
 - d) Datos: $R_1 = 1 \Omega$, $R_2 = 2 \Omega$, $R_3 = 2 \Omega$, $R_4 = 6 \Omega$, $\epsilon_1 = 8 V$, $\epsilon_2 = 4 V$, $\epsilon_3 = 4 V$

Sol: a) $I_1=2$ A, $I_2=2$ A, $I_3=1$ A, $I_4=1$ A; b) ϵ_1 , ϵ_3 16 W, 8 W y ϵ_3 absorbe 4 W; c) 4 W, 8 W, 2 W y 6 W.

- **4-** Se dispone de dos baterías una con $\varepsilon_1 = 9$ V y $r_1 = 0.8$ Ω y la otra con $\varepsilon_2 = 3$ V y $r_2 = 0.4$ Ω .
 - a) ¿ Como deberán conectarse para dar la máxima corriente a través de una resistencia R?. Determinar la corriente para:
 - b) $R = 0.2 \Omega$, c) $R = 0.6 \Omega$.

Sol: b) 10.7 A, c) 6.67 A

5- Determinar la corriente en cada parte del circuito de la figura. Utilizar los resultados para asignar un potencial en cada punto indicado, suponiendo que el potencial en el punto *a* es cero.

Datos:
$$R_1 = 6 \Omega$$
, $R_2 = 2 \Omega$, $R_3 = 8 \Omega$, $R_4 = 4 \Omega$, $R_5 = 12 \Omega$, $R_6 = 1 \Omega$, $R_7 = 3 \Omega$, $\epsilon_1 = 34 V$

 $Sol: I_1 = 3 \text{ A}, I_2 = 2 \text{ A}, I_3 = 1 \text{ A}, I_4 = 1 \text{ A}, I_5 = 1 \text{ A}, I_6 = I_7 = 2 \text{ A}; V_a = V_g = 0, V_b = 34 \text{ V}, V_c = V_d = 16 \text{ V}, V_e = 8 \text{ V}, V_f = 6 \text{V}, V_h = 12 \text{ V}$

6- Determinar la corriente en cada parte del circuito de la figura. Utilizar los resultados para asignar un potencial en cada punto indicado, suponiendo que el potencial en el punto *a* es cero.

$$Datos: \ R_1 = 2 \ \Omega, \ R_2 = 24 \ \Omega, \ R_3 = 3 \ \Omega, \ R_4 = 8 \ \Omega, \ R_5 = 4 \ \Omega, \ R_6 = 10 \ \Omega, \ \epsilon_1 = 24 \ V, \ \epsilon_2 = 6 \ V, \ \epsilon_3 = 8 \ V$$

 $Sol: I_1 = 3/2 \text{ A}, I_2 = 1/2 \text{ A}, I_3 = 1 \text{ A}, I_4 = 3/2 \text{ A}, I_5 = I_6 = 1/2 \text{ A}; V_a = V_g = 0, V_b = 24 \text{ V}, V_c = 21 \text{ V}, V_d = 15 \text{ V}, V_e = 15 \text{ V}, V_f = 5 \text{ V}, V_h = 12 \text{ V}$

7- Utilizar el concepto de simetría para determinar la resistencia equivalente de la red de la figura. ξ Cuál es la intensidad de la corriente en cada resistencia si R= 10 Ω y una diferencia de potencial de 80 V se aplica entre a y b?

Sol: $R_{eq} = R$, $I_R = 4 A$, $I_{1/2R} = I_{1/4R} = 0 A$

- 8- Nueve resistencias de $10~\Omega$ cada una se conectan como indica la figura, y se aplica una diferencia de potencial de 20~V entre los puntos a y b.
 - a) ¿Cuál es la resistencia equivalente de esta red?
 - b) Determinar la intensidad de la corriente en cada una de las nueve resistencias

Sol: I_1 =, I_4 =0.4 A, I_3 = I_2 = 0.8 A, I_5 = 0.4 A; R_{eq} = 16.7 Ω