Activation & Loss functions

Functions to be used in case of classification problem

Regression Problem

Neuron Mathematical Functions

Neuron Mathematical Functions

Activation function is an Identity Function

Neuron Mathematical Functions

Activation function is an Identity Function

Neural Network with Softmax

Neural Network with Softmax

Neural Network with Softmax

$$Z_N^{-1} = W_N X_N + b_N$$

$$\frac{Z_N^2}{V_N} = W_N X_N + b_N$$

$$Z_N^3 = W_N X_N + b_N$$

 Z_N^{-1}

 Z_N^2

 Z_N^3

 Z_N^1

 Z_N^2

 Z_N^3

The class having highest probability is selected

For classification the loss function we use is called cross entropy loss

Cross entropy is a metric that signifies how different two probability distributions are

1.000.000.00

CE(O, P) = -
$$\sum_{i=0}^{n} O_i \log P_i$$

CE(O, P) = -
$$\sum_{i=0}^{n} O_i \log P_i$$

In PyTorch examples we will mostly use LogSoftmax activation function along with NLLLoss

LogSoftmax is Log of Softmax

Softmax + Cross Entropy \Leftrightarrow LogSoftmax + NLLLoss

