

Πανεπιστήμιο Δυτικής Αττικής Σχολή Μηχανικών

Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών

Ασκήσεις εργαστηρίου θεωρίας κυκλωμάτων 3^H ΕΡΓΑΣΤΗΡΙΑΚΉ ΆΣΚΗΣΗ

Λάζαρος Κηρυκόπουλος, 2° εξάμηνο, 21390087, Τμήμα ΘΚ09 Νικόλαος Θωμάς, 2° εξάμηνο, 21390068, Τμήμα ΘΚ09 Χρήστος Βρέκος, 2° εξάμηνο, 21390027, Τμήμα ΘΚ09

Ημερομηνία Διεξαγωγής : 20/5/2022

Ημερομηνία Παράδοσης : 3/6/2022

1. RC, RL σε σειρά

Υπολογίσαμε το Χc για τον πυκνωτή μέσω του τύπου $Xc = -j\frac{1}{2\pi fc}$ καθώς και το XL για το πηνίο μέσω του τύπου $XL = j2\pi fL$.

F(Hz)	Χ _c θεωρητικό (Ω)	Ic (A)	V _C (V)	Χ _c Υπολογιζόμενο (Ω)
1	338.779,3	0,109u	0,999	-9.162.937,61
10	33.877,9	7,593u	1,450	-188.765,36
100	3.387,7	0.248m	1,185	-2.578,22
1k	338,7	0.449m	0,214	1.173,39
10k	33,8	0.454m	0,027	2.140,53
100k	3,3	0.454m	0,002	2.195,60

Συγκρίνοντας κανείς τις θεωρητικές με τις υπολογιζόμενες τιμές του Χς μπορεί να συμπεράνει πως κάτι πήγε πολύ στραβά με τις μετρήσεις .Επίσης υπολογίσαμε την εμπέδηση Ζς του πυκνωτή:

F(Hz)	Χιθεωρητικό (Ω)	I _L (A)	V _L (V)	Χ _L Υπολογιζόμενο (Ω)
1	0,02	-		
10	0,2	-		
100	2	0,455m	1,332u	0,0029
1k	20	9.428u	13.324u	1.4131
10k	200	0.095m	134.676u	1.4952
100k	2.000	0.955m	1.333m	1.3958

Επίσης υπολογίσαμε την εμπέδηση ZL του πηνίου :

Να σημειωθεί πως δεν υπάρχουν μετρήσεις για συχνότητες 1 και 10 Hz καθώς στο πείραμα δεν υπήρχε ρεύμα για αυτές τις τιμές, επομένως δεν μπορούσαμε να υπολογίσουμε την εμπέδηση.

2. RL και RC παράλληλα

F(Hz)	Χ _c Θεωρητικό (Ω)	Ic(A)	V _C (V)	Χ _c Υπολογιζόμενο (Ω)
1	338.779,3	0.111u	1.4	2.199
10	33.877,9	8.544m	1.41	2.199
100	3.387,7	0.258m	1.39	2.199
1k	338,7	0.450m	1.41	2.199
10k	33,8	0.455m	1.40	2.199
100k	3,3	0.455m	1.41	2.199

Έπειτα υπολογίσαμε κ την εμπέδεση του πυκνωτη:

Ερωτήσεις:

Η αντίσταση Χς ενός πυκνωτή είναι αντιστρόφως ανάλογη της συχνότητας του ρεύματος που τον διαρρέει. Επομένως όταν αυξάνεται η συχνότητα τότε μειώνεται το Χς, άρα και η σύνθετη αντίσταση Ζ λόγω του τύπου Z = R – j Xc.

- 2) Εφόσον εμπέδηση = 50 Ω, τότε 50 = $\frac{1}{2\pi fc}$ => $f = \frac{1}{2*3,14*50Ω*47F*10^{(-9)}}$ = 67,72 Hz
- 3) **Ισχύει :** $XL = 2\pi f L. \Rightarrow L = \frac{540 \,\Omega * 10^{\circ}(-9)}{2 * 3,14*400 \,Hz} \Rightarrow L = 2,1496 \,H$
- 4) Ισχύει $\frac{100}{200000} = \frac{Vp}{Vs}$ (1). Εμείς έχουμε Vp->p = 4,2 V, άρα Vp = Vp->p/2 => Vp = 2,1 V. Κάνοντας χιαστί στη σχέση 1 παίρνουμε : Vs = 0,00105 V. Μπορούμε να θεωρήσουμε τον μετασχηματιστή σαν μονάδα ισχύος μόνο όταν ο λόγος Vp/Vs είναι μεγαλύτερος της μονάδας.