Design and Analysis of Algorithms

L44: Branch and Bound Job Assignment Problem TSP Problem

Dr. Ram P Rustagi
Sem IV (2019-H1)
Dept of CSE, KSIT/KSSEM
rprustagi@ksit.edu.in

Resources

- Text book 1: Levitin
 - -Sec 12.1, <u>12.2</u>
- Text book 2: Horowitz
 - -Sec 8.2
 - R1: Introduction to Algorithms
 - Cormen et al.

Example use cases

- Job Assignment problem
- Traveling Salesperson Problem
- 0−1 Knapsack problem

Exact Solution Strategies

- Exhaustive search (brute force)
 - Search for all possible combinations (exponential time)
 - e.g. $O(k^n)$, O(n!), $O(n^n)$
 - Useful only for small instances
- Dynamic programming
 - Applicable to some problems
 - Where problem can be recursively mapped to smaller other problems
- Backtracking
 - Build a state space tree
 - Eliminates unnecessary cases from consideration
 - Solutions may still take exponential time
- Branch-and-bound
 - Further refines backtracking for optimization problems

Branch and Bound

- Additional mechanisms in addition to backtracking
 - Provide a bound on the best value of objective function for every node of the state-space tree
 - The value of best solution so far
 - at the current node of state space tree
- Approach
 - Compare the node's bound value with the value of best solution seen so far.
 - If the bound is not better, terminate the search (prune the solution)
 - not smaller than the best solⁿ in a minimization problem
 - not greater than the best solⁿ in a maximization problem

Branch and Bound

- Termination criteria of the search path in state space tree using branch-n-bound algo:
 - The value of node's bound is worse than the value of best solution seen so far
 - The node represents no feasible solution because of the constraints of the problem are already violated
 - The subset of feasible solutions represented by the node consists of a single point
 - i.e. reached the end of solution and no more choices
 - Compare the value of objective function with that the best solution seen so far
 - -Update the latter if former is better than latter.

- Consider a problem of assigning n jobs to n people so that cost is minimised.
 - The cost of each job done by each person is given
 - Represented in a matrix.
- Consider an example below for job assignment costs of 4 persons

	J_1	J_2	J ₃	J_4
Pa	9	2	7	8
P_{b}	6	4	3	7
P_c	5	8	1	8
P_{d}	7	6	9	4

- Problem can be stated as follows
 - Select one element in each row

	J_1	J_2	Jз	J ₄
Pa	9	2	7	8
Pb	6	4	<u>ო</u>	7
P_{c}	15)	8	1	8
$P_{\rm d}$	7	6	9	4

- such that no two selected elements are in same column
- and, their sum is smallest possible.
- Solution with branch and bound
 - Consider the lowest possible sum
 - Take the lowest element in each row.
 - This may not be optimal but can act as lower bound
 - Two elements may belong to same column
 - Smallest possible values for above example

•
$$P_a(J_2) = 2 + P_b(J_3) = 3 + P_c(J_3) = 1 + P_d(J_4) = 4$$

$$\bullet = 2 + 3 + 1 + 4 = 10$$

- It is not legitimate though
 - $-(P_b \text{ and } P_c \text{ assgined same job } J_3)$

- Backtracking:
 - Generate a child of last promising node
 - i.e. last active node (called E-node)
- Branch and Bound approach
 - Generate the child of most promising node
 - among non-terminated live leaves in current tree
 - Achieved by comparing lower bounds of all live nodes
 - Intuitively, it is better to consider a node with best bound as most promising
 - It may not lead to optimal solution
 - It may lie in other branch of the tree.

	J ₁	J_2	Jз	J ₄
Pa	9	2	7	8
Pb	6	4	ന	7
P_{c}	15)	8	1	8
P_{d}	7	6	9	4

- Start at root
 - no elements selected from matrix
 - Lower bound lb=10
- It (root) has 4 live nodes for P_a $J_1=9$, $J_2=2$, $J_3=7$, $J_4=8$,

-Lower bounds for each of these are

• LB for
$$P_a(J_1=9) = 9+3+1+4=17$$

 $P_a(J_1=9) + P_b(J_3=3) + P_c(J_3=1) + P_d(J_4=4)$

- LB for P_a ($J_2=2$) = 2+3+1+4=10
- LB for $P_a (J_3=7) = 7+4+5+4=20$
- LB for $P_a (J_4=8) = 8+3+1+6=18$
- Most promising node for P_a is 2.
 - Explore this node further.

	J_1	J_2	J_3	J_4
Pa	9	2	7	8
Pb	6	4	\circ	7
P_{c}	5	∞	1	8
P_{d}	7	6	9	4

Start

$$1b=2+3+1+4=10$$

DAA/Backtracking, Branch&Bound, NP-Complete

RPR/

Traveling Salesperson Problem

- BB approach: define a lower bound
- Simple approach:
 - Take the lowest edge cost
 - Multiply it by number of nodes

- More informative but less obvious
 - Does not require much computation too
 - For each node, find two nearest nodes
 - Find the average of two
 - Sum this average (ceiling) for all nodes

$$\mathtt{LB} = ((1+3) + (3+6) + (1+2) + (3+4) + (2+3)) / 2 = 14$$

- When any tour includes a particular edge,
 - Update the lower bound accordingly
 - Using the included edge

Traveling Salesperson Problem

- · When any tour includes a particular edge,
 - compute the lower bound using that edge.
- Example: Consider (a, d) is included.

LB=
$$\lceil ((5+1)+(3+6)+(1+2)+(5+3)+(2+3))/2 \rceil = \lceil 31/2 \rceil = 16$$

- We can consider that tour starts at node a, and
- Since graph is undirected, impose the restriction
 - Generate tours in which b appears before c.
- After visiting n-1 (=4) nodes,
 - Tour has to visit the last unvisited node, and
 - Return to the starting node.

Traveling Salesperson Problem

DAA/Backtracking, Branch&Bound, NP-Complete

RPR/

Branch and Bound

- Finding a good bound function is a challenging task
 - May not be always easy to find one
- Bounding function should be easy to compute
- It should not be too simple
 - It may fail to prune the many branches of state space tree as soon as possible
- Finding the balance between two requirements (easy to compute, and not too simplistic)
 - may require intensive experimentation
 - with a wide variety of problem in question

Summary

- Assignment problem
- Traveling Salesperson Problem