Linear Algebra

September 16, 2025

1 Ma trận

Đặt $\mathbb{K}=\mathbb{Q}, \mathbb{R}, \mathbb{C}$ và $\mathbb{N}=\{1,\ldots\}$ với $m,n\in\mathbb{N}$ Ma trận $m\times n$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Trong đó $a_{ij} \in \mathbb{K}$

1.1 Loại ma trận

- Ma trận hàng.
- Ma trận cột.
- Ma trận 0.
- Ma trận vuông \Leftarrow đường chéo.
- Ma trận bằng nhau.
- $\bullet \ M(m\times n,\mathbb{K})=M_{m\times n}(\mathbb{K})=M_{\mathbb{K}}(m\times n)=\{A=(a_{ij})_{m\times n}|a_{ij}\in \mathbb{K}\}.$
- Ma trận tam giác trên và Ma trận tam giác dưới, gọi chung là Ma trận tam giác.
- Ma trận đường chéo (vừa là mt tam giác trên và dưới).
- Ma trận đơn vị.

1.2 Phép toán

1.2.1 Cộng

$$A+B=(a_j+b_j)_{m\times n}$$

1.2.2 Nhân

1 số với ma trận

2 ma trận

$$A = (a_{ik})_{m \times n}, B = (b_{kj})_{n \times p}$$

$$AB = C = (c_{ij})_{m \times p}$$

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj}$$

Thuật toán

- Check cột A = hàng B:
 - Nếu không \rightarrow không giải được.
 - Nếu có \to Ma trận đầu ra là ma trận (hàng $A)\times (\text{cột }B)\to \text{Tính }c_{ij}=\text{giao hàng }A$ và cột B.

Note

$$AB = AC$$
 và $A \neq 0 \not\rightarrow B = C$.

Ma trận chuyển vị

$$A=(a_{ij})_{m\times n}$$

$$A^T = (a_{ji})_{n \times m}$$

$1.3\,\,$ Ma trận bậc thang & ma trận rút gọn

1.3.1 Ma trận bậc thang

- Hàng không (nếu có).
- Hàng khác không
 - Phần tử chính (PTC) \rightarrow PTC bên dưới luôn nằm bên phải PTC bên trên.

1.3.2 Ma trận rút gọn

- PTC = 1
- Cột chứa PTC \rightarrow PTC là phần tử $\neq 0$ duy nhất.

1.4 Phép biến đổi

- Phép biến đổi sơ cấp, phép biến đổi hàng
 - Đổi hàng $h_i \leftrightarrow h_j$
 - Thay thế tỷ lệ $h_i \leftarrow \alpha h_i$
 - Thay thế hàng $h_i \leftarrow h_i + k h_j \quad (j \neq i)$
- Tương đương hàng
 - $-A \rightarrow ... \rightarrow B, B \sim A$
 - $-A \sim A$
 - $-A \sim B \rightarrow B \sim A$
 - $-A \sim B, B \sim C \rightarrow A \sim C$

1.4.1 Thuật toán cho số phép toán thực hiện nhỏ nhất

1.5 Hạng

$$r(A) = rank(A)$$
 với $A = (a_{ij})_{m \times n}$

Số hàng $\neq 0$ trong **dạng rút gọn** (hoặc **dạng bậc thang**) của A ($A \sim \text{Dạng rút gọn (bậc thang)})$

$$0 \le rank(A) \le \min\{m, n\}$$

1.6 Ma trận khả nghịch

$$AB = BA = I_n$$

- Trong đó, A là ma trận vuông cấp n
- A là ma trận khả nghịch.
- B là ma trận nghịch đảo của A.
- $B = A^{-1}$.
- Nếu tồn tai B, B là duy nhất.

Định lý

- $(A^{-1})^{-1} = A$.
- αA khả nghịch và $(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}$.
- AB khả nghịch và $(AB)^{-1} = B^{-1}A^{-1}$.
- A^T khả nghịch và $(A^T)^{-1} = (A^{-1})^T$.

Note

• $A^k = A.A...A$ $-A^k$ khả nghịch. $-A^{-k} = (A^k)^{-1}$.

1.6.1 Ma trận sơ cấp

Ta thực hiện 1 phép biến đổi sơ cấp trên ${\cal I}_n$

$$I_n \stackrel{e}{\to} E$$

- E đ
gl ma trận sơ cấp
- Tồn tại 3 loại ma trận sơ cấp E tương ứng với 3 loại phép biến đổi sơ cấp.

$$EA = \stackrel{e}{\leftarrow} A$$

• Trong đó $\stackrel{e}{\leftarrow} A$ là ma trận A sau khi đã thực hiện phép biến đổi sơ cấp e.

$$A \overset{e_1}{\rightarrow} A_1 \overset{e_2}{\rightarrow} A_2 \dots \overset{e_k}{\rightarrow} D$$

Ta được

$$A_1 = E_1 A$$

$$A_2=E_2A_1=E_2E_1A$$

$$\vdots$$

$$D=(E_k\dots E_1)A$$

Mà A KN $\Leftrightarrow~A\sim I_n$ Do đó,

$$A \xrightarrow{e_1} \xrightarrow{e_2} \dots \xrightarrow{e_k} I_n$$

Vây

$$I_n \overset{e_k}{\rightarrow} \overset{e_{k-1}}{\rightarrow} \dots \overset{e_1}{\rightarrow} A^{-1}$$

Hay

$$I_n = (E_1 \dots E_k) A$$

$$A^{-1}=(E_1\dots E_k)I_n$$

1.6.2 Thuật toán tìm ma trận khả nghịch

Cho $A_{n \times n}$

- B1. Thiết lập $(A|{\cal I}_n)$
- B2. $(A|I_n) \overset{\text{Biến đổi thành ma trận rút gọn}}{\to} (D|B)$
 - Nếu $D=I_n\to A$ khả nghịch và $A^{-1}=B.$
 - Nếu $D \neq I_n \rightarrow A$ không khả nghịch.

1.6.3 Tính chất

- $A \in M(n \times n, \mathbb{K})$
- A khả nghịch.
- r(A) = n.
- A là tích hữu hạn các ma trận sơ cấp

$$-\ I_n = (E_1 \dots E_k) A$$

$$-\ A = E_k^{-1} \dots E_1^{-1}$$

- AX = B có nghiệm duy nhất $\forall B \in M(n \times p, \mathbb{K})$.
- $\exists B$ ma trận vuông cấp n sao cho $AB = I_n$.
- $\, \exists C$ ma trận vuông cấp nsao cho $CA = I_n$
- A^T khả nghịch.

2 Định thức

2.1 Phép thế

- Cho $X = \{1, 2, \dots, n\}$
- Song ánh $\sigma:X\to X$ đ
g
l phép thế bậc n.

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

• Tập hợp các phép thế bậc n k/h $|S_n| = n!$.

$$S_n = \{ \sigma : X \to X | \sigma \text{ là song ánh} \}$$

- Phép thể đơn vị
- Phép thế sơ cấp
- Cấu trúc
 - Mỗi phép thế đều phân tích được thành tích của các tích độc lập
 - Tích phép thế sơ cấp.

2.1.1 Dấu

$$sgn(\sigma) = \underset{1 \leq i < j \leq n}{\pi} \frac{\sigma(i) - \sigma(j)}{i - j} \quad \in \{\pm 1\}$$

Nghịch thế

- Là số lượng $\sigma(i) - \sigma(j)$ ngược với i-jhay số lượng

$$\frac{\sigma(i)-\sigma(j)}{i-j}<0$$

- Nếu số lượng nghịch thế
 - Chẳn $\rightarrow sgn(\sigma) = 1$.
 - Lė $\rightarrow sgn(\sigma) = -1$.