Introduction à Python : Contrôle du flux d'instructions

Ahmed Ammar*

Mercredi, 14 novembre 2018

Table des matières

Exercice 1 : Comparer deux entiers

Écrivez un programme qui vous demande de saisir 2 nombres entiers et affiche la plus petite de ces valeurs.

```
# %load solution/ex1
valeur1= int(input("Valeur 1 : "))
valeur2= int(input("Valeur 2 : "))
if (valeur1 < valeur2 ) :
    print("Valeur la plus petite : ", valeur1)
else:
    print("Valeur la plus petite : ", valeur2)</pre>
```

Solution.

Exercice 2 : Comparer deux chaînes

Écrivez un programme qui demande d'entrer 2 chaînes et qui affiche la plus grande des 2 chaînes (celle qui contient le plus de caractères).

^{*}Email: ahmed.ammar@fst.utm.tn. Université de Tunis El Manar.

```
# %load solution/ex2
chaine1= input("Chaîne 1 : ")
chaine2= input("Chaîne 2 : ")

if len(chaine2) > len(chaine1) :
    print ("Chaîne la plus grande : " , chaine2 )
else:
    print ("Chaîne la plus grande : " , chaine1 )
```

Solution.

Exercice 3 : Convertir Euro contre Dinar Tunisien | EUR TND

Écrivez un programme qui convertit l'euro (EUR) en dinar tunisien (TND) :

- Le programme commence par demander à l'utilisateur d'indiquer par une chaîne de caractères 'EUR' ou 'TND' la devise du montant qu'il entrera.
- Ensuite, le programme exécute une action conditionnelle de la forme :

```
if devise == 'EUR' :
    # Expression 1
elif devise == 'TND' :
    # Expression 2
else :
    # affichage d'un message d'erreur
```

```
# %load solution/ex3
devise = input("Devise : ")
montant = int(input ("Montant : "))
# 1 EUR = 3.30 TND
facteur_euro_dinar = 3.30
if devise == 'EUR' :
    print ("{} TND".format(montant * facteur_euro_dinar))
elif devise == 'TND' :
    print ("{} Euros".format(montant / facteur_euro_dinar))
else :
    print ("Je n'ai rien compris") # affichage d'un message d'erreur
```

Solution.

Exercice 4 : Résolution d'une équation du second degré

Soit l'équation du second degré $ax^2 + bx + c = 0$ où a, b et c sont des coefficients réels.

a) Écrivez un programme qui qui demande d'entrer les coefficients et affiche les solutions de l'équation.

Indications. Solutions analytiques

Des solutions sont recherchées dans le cas général, compte tenu du discriminant $\Delta = b^2 - 4ac$, l'équation admet comme solutions analytiques :

$$\begin{cases} \Delta > 0 & deux \ solutions \ r\'{e}elles: \ x_1 = \frac{-b - \sqrt{\Delta}}{2a}; \quad x_2 = \frac{-b + \sqrt{\Delta}}{2a} \\ \Delta = 0 & une \ solution \ double: \ x_0 = \frac{-b}{2a} \\ \Delta < 0 & deux \ solutions \ complexes: \ z_1 = \frac{-b - i\sqrt{-\Delta}}{2a}; \quad z_2 = \frac{-b + i\sqrt{-\Delta}}{2a} \end{cases}$$

Algorithme

Définition

Ensemble de règles opératoires dont l'application permet de résoudre un problème énoncé au moyen d'un nombre fini d'opérations. Un algorithme peut être traduit, grâce à un langage de programmation, en un programme exécutable par un ordinateur. Source: LAROUSSE

Pseudo-code de l'algorithme

Présentons tout d'abord un pseudo-code de l'algorithme, c'est-à-dire le détail des opérations à effectuer sans syntaxe propre du langage.

```
# Calcul des racines de l'équation du second degré a, b et c \leftarrow \dots # Assignation des variables a, b et c (variables de type réel) en utilisant la fonction input() \Delta \leftarrow b^2 - 4ac si \Delta est positive: x_1 \leftarrow \frac{-b - \sqrt{\lambda}}{2a} x_2 \leftarrow \frac{-b + \sqrt{\lambda}}{2a} x_3 \leftarrow \frac{-b + \sqrt{\lambda}}{2a} x_4 \leftarrow \frac{-b + \sqrt{\lambda}}{2a} x_5 \leftarrow \frac{-b + \sqrt{\lambda}}{2a} x_6 \leftarrow \frac{-b + \sqrt{\lambda}}{
```

```
# %load solution/ex4
"""

Calcul des racines de l'equation du second degré:
a x^2 + b x + c = 0
"""

from math import sqrt

a = float(input("Valeur de a:"))
b = float(input("Valeur de b:"))
c = float(input("Valeur de c:"))
```

```
print("L'équation a resoudre est: {} x^2 + {} x + {}".format(a,b,c))
delta = b**2 - 4*a*c #Calcul du discriminant:
#Resultats des racines suivant la valeur de delta:
if delta > 0:
    x1 = (-b - sqrt(delta))/(2*a)
x2 = (-b + sqrt(delta))/(2*a)
     # Affichage des solutions trouvées
     print("Les solutions sont réelles: ")
     print("La premiere racine est x1= ",x1)
print("La seconde racines est x2= ",x2)
elif delta == 0:
     x0 = -b/(2*a)
     # Affichage de la solution trouvée
     print("Il y a une seule solution: ")
     print("La solution est", x0)
elif delta<0:</pre>
     z1 = (-b - 1j*sqrt(-delta))/(2*a)
z2 = (-b + 1j*sqrt(-delta))/(2*a)
     # Affichage des solutions trouvées
    print("Les solutions sont complexes: ")
print("La premiere racine est z1 = ", z1)
print("La seconde racine est z2 = ", z2)
```

Solution.

b) Soit la fonction $f(x) = 0.83x^2 + 3.8x + 2.48$. En utilisant le programme précédent, trouvez les solutions pour f(x) = 0.

Solution. Les solutions des f(x) = 0 sont réelles : $x_1 =$ et $x_2 =$

c) La représentation graphique de f(x) est indiquée ci-dessous :

Nous allons utiliser une fonction EqSecondDegree(a,b,c) dans TP3 pour reproduire cette figure en utilisant les bibliothèques numpy et matplotlib.

- Ecrivez la fonction EqSecondDegree(a,b,c) qui renvoie les solutions de l'équation $ax^2 + bx + c = 0$.
- Enregistrez la fonction EqSecondDegree(a,b,c) dans un script Python racines.py puis l'exécuter dans la cellule de code suivante :

```
# %load racines.py
def EqSecondDegree(a,b,c):
    Calcul des racines de l'equation du second degré:
    a x^2 + b x + c = 0
    from math import sqrt
    print("L'équation a resoudre est: \{\}\ x^2 + \{\}\ x + \{\}\}".format(a,b,c))
    delta = b**2 - 4*a*c #Calcul du discriminant:
    #Resultats des racines suivant la valeur de delta:
    if delta > 0:
        x1 = (-b - sqrt(delta))/(2*a)
        x2 = (-b + sqrt(delta))/(2*a)
        # Affichage des solutions trouvées
        print("Les solutions sont réelles: ")
print("La premiere racine est x1= ",x1)
        print("La seconde racines est x2= ",x2)
        return x1, x2
    elif delta == 0:
        x0 = -b/(2*a)
```

```
# Affichage de la solution trouvée
print("Il y a une seule solution: ")
print("La solution est", x0)
return x0

elif delta<0:
    z1 = (-b - 1j*sqrt(-delta))/(2*a)
    z2 = (-b + 1j*sqrt(-delta))/(2*a)
# Affichage des solutions trouvées
print("Les solutions sont complexes: ")
print("La premiere racine est z1 = ", z1)
print("La seconde racine est z2 = ", z2)
return z1, z2</pre>
```

Solution.

```
# Exécutez le scripte racines.py
EqSecondDegree(a=0.83,b=3.8,c=2.48)
```

4) En utilisant la fonction EqSecondDegree(a,b,c), trouvez les solutions de f(x) = 0.

```
from racines import EqSecondDegree
x1, x2 = EqSecondDegree(0.83,3.8,2.48)
print("x1 = {:.3f} et x2 = {:.3f}".format(x1, x2))
```

Exercice 5: programmez une boucle while

Définir une séquence de nombres :

$$x_n = n^2 + 1$$

pour les entiers n = 0,1,2,..., N. Ecrivez un programme qui affiche x_n pour n = 0,1,..., 20 en utilisant une boucle while.

```
# %load solution/ex5
n = 0
while n <= 20:
    x_n = n**2 + 1
    print('x{} = {}'.format(n, x_n))
    n = n + 1</pre>
```

Exercice 6 : Créer une liste avec une boucle while

Stockez toutes les valeurs x_n calculées dans "l'exercice 5 : programmez une boucle while" dans une liste (à l'aide d'une boucle while). Afficher la liste complète (en un seul objet).

```
# %load solution/ex6
n = 0
x = [] # the x_n values
while n <= 20:
    x.append(n**2 + 1)
    n = n + 1
print(x)</pre>
```

Exercice 7: Programmer une boucle for

Faites "l'exercice 6 : Créez une liste avec une boucle while", mais utilisez une boucle for.

```
# %load solution/ex7
x = []
for n in range(21):
    x.append(n**2 + 1)
print(x)
```

On peut aussi raccourcir le code en utilisant une liste de compréhension :

```
print([n**2 +1 for n in range(21)])
```

Exercice 8: Ecrire une fonction Python

Ecrivez une fonction x(n) pour calculer un élément dans la séquence $x_n=n^2+1$. Appelez la fonction pour n=4 et écrivez le résultat.

```
def x(n):
    return n**2 +1
print(x(1))
```

Exercice 9: Renvoyer trois valeurs d'une fonction Python

Écrivez une fonction Python qui évalue les fonctions mathématiques f(x) = cos(2x), f'(x) = -2sin(2x) et f''(x) = -4cos(2x). Retourner ces trois valeurs. Écrivez les résultats de ces valeurs pour $x = \pi$.

```
# %load solution/ex9
from math import sin, cos, pi

def deriv2(x):
    return cos(2*x), -2*sin(2*x), -4*cos(2*x)

f, df, d2f = deriv2(x=pi)
print("f(pi) = {}; df(pi) = {}; d2f(pi) = {} ".format(f, df, d2f))
```