MEXANIK TEBRANISHLAR VA TO`LQINLAR

Masalalar

51-masala. Moddiy nuqtaning tebranishi $x = 0.25\sin\left(\pi t + \frac{\pi}{2}\right)m$ qonun bo`yicha bajariladi. Tebranish amplitudasi A, davri T, siklik chastotasi ω , boshlang`ich fazasi φ_0 maksimal tezligi υ_{\max} va maksimal tezlanishi a_{\max} topilsin.

Berilgan:
$$x = 0.25 \sin\left(\pi t + \frac{\pi}{2}\right) m$$

$$A \sim ? T \sim ? \omega \sim ? \varphi_0 \sim ? \upsilon_{\text{max}} \sim ? a_{\text{max}} \sim ?$$

Echish. Topilishi kerak bo`lgan kattaliklarni aniqlash uchun tebranishning tenglamasini garmonik tebranishning umumiy ko`rinishidagi tenglamasi bilan solishtiramiz:

$$x = 0.25 \sin\left(\pi t + \frac{\pi}{2}\right) m$$
$$x = A \sin\left(\frac{2\pi}{T}t + \varphi_0\right) m$$

Bu ikki tenglama taqqoslanishidan quyidagi kelib chiqadi: tebranishning amplitudasi A=0,25m; davri $\frac{2\pi}{T}t=\pi t$, bundan T=2s,; siklik chastotasi $\omega=\frac{2\pi}{T}=\frac{2\pi}{2}=3,14rad/s$; boshlang`ich fazasi $\varphi_0=\frac{\pi}{2}$:

Tebranishning tezligi v va tezlanishi a mos ravishda siljish funksiyasining birinchi va ikkinchi tartibli hosilasidan iborat boʻlgani uchun:

$$\upsilon = \frac{dx}{dt} = 0.25\pi \cos\left(\pi t + \frac{\pi}{2}\right) \text{ bo`lib, } \upsilon_{\text{max}} = 0.25\pi m/s = 0.785m/s. \text{ SHunday qilib,}$$

$$\upsilon_{\text{max}} = 0.785m/s, \quad a = \frac{d^2x}{dt^2} = \frac{d\upsilon}{dt} = -0.25\pi^2 \sin\left(\pi t + \frac{\pi}{2}\right) \text{ bo`lib, } \quad a = -0.25\pi^2 m/s^2$$

$$a = -0.25 \cdot 3.14^2 m/s^2 = -2.46m/s^2. \text{ SHunday qilib } a = -2.46m/s^2.$$

52-masala. m=5 g massali moddiy nuqta v=0.5Hz chastota bilan garmonik tebranadi. Tebranish amplitudasi A=3sm. 1) nuqtaning siljishi x=1.5 sm bo`lgan vaqtdagi tezligiv; 2) nuqtaga ta'sir etuvchi maksimal kuch $F_{\rm max}$; 3) tebranayotgan nuqtaning to`liq energiyasi W aniqlansin.

Berilgan:
$$v = 0.5Hz$$
, $m = 5g = 5 \cdot 10^{-3} kg$, $A = 3 \text{sm } 3 \cdot 10^{-2} m$
 $\frac{x = 1.5sm = 1.510^{-2} m}{v \sim ?, F_{\text{max}} \sim ?, W \sim ?}$

Echish. 1) garmonik tebranish tenglamasi quyidagi ko`rinishga ega

$$x = A\cos(\omega t + \varphi) \tag{1}$$

Tezlik formulasini esa siljishidan vaqt bo`yicha birinchi tartibli hosila olib topamiz:

$$\upsilon = \frac{dx}{dt} = -A\omega\sin(\omega t + \varphi) \tag{2}$$

Tezlikni siljish orqali ifodalash uchun (1) va (2) tenglamalardan vaqtni yoʻqotish kerak. Buning uchun har ikkala tenglamani kvadratga koʻtarib, birinchisini A ga, ikkinchisini $A^2\omega^2$ ga boʻlamiz va ularni qoʻshamiz:

$$\frac{x^2}{A^2} + \frac{v^2}{A^2 \omega^2} = 1 \quad yoki \quad \frac{x^2}{A^2} + \frac{v^2}{4\pi^2 v^2 A^2} = 1$$

Oxirgi tenglamani v ga nisbatan yechib, quyidagini topamiz:

$$\upsilon = \pm 2\pi v \sqrt{A^2 - x^2}$$

SHu formula bo`yicha hisoblashni bajarsak

$$\upsilon = \pm 8.2 sm/s$$

2) nuqtaga ta'sir etuvchi kuchni Nyutonning ikkinchi qonuniga binoan topamiz

$$F = ma (3)$$

Bunda a – nuqtaning tezligidan vaqt boʻyicha hosila olib topiladigan tezlanishi

$$a = \frac{dv}{dt} = -A\omega\cos(\omega t + \varphi) \qquad yoki \qquad a = -4\pi^2 v^2 A\cos(\omega t + \varphi)$$

tezlanishning ifodasini (3) formulaga qo`ysak:

$$F = -4\pi^2 v^2 mA \cos(\omega t + \varphi)$$

Bundan kuchni maksimal qiymati.

$$F_{\text{max}} = 4\pi^2 v^2 mA$$

Bu tenglamaga π, v, m va A kattaliklarning qiymatlarini qo`ysak,

$$F_{\text{max}} = 1,49 \text{mN}$$

3) tebranayotgan nuqtaning to`liq energiyasi istalgan vaqt oralig`i uchun kinetik va potensial energiyalarning yig`indisiga tengdir.

To`liq energiyani hisoblashning eng sodda yo`li uni kinetik energiya potensial energiya maksimal qiymatga erishganda hisoblashdir. Bu vaqtda potensial energiya nolga teng bo`ladi (yoki kinetik energiya). SHuning uchun ham tebranayotgan nuqtaning to`liq energiyasi W maksimal kinetik energiya W_{kmax} ga teng bo`ladi:

$$W = W_{k \max} = \frac{1}{2} m \upsilon_{\max}^2 \tag{4}$$

Maksimal tezlik (2) formulaga asosan $sin(\omega t + \varphi) = -1$ qo'yib

$$v_{\text{max}} = 2\pi v A$$

Tezlikning ifodasini (4) formulaga qo`ysak

$$W = 2\pi^2 m v^2 A^2$$

Kattaliklarning qiymatlarini bu formulaga qo`yib hisoblaymiz:

$$W = 2 \cdot (3,14)^2 \cdot 5 \cdot 10^{-3} \cdot (0,5)^2 \cdot (3 \cdot 10^{-2})^2 J = 22,1 \cdot 10^{-6} J = 22,1 mkJ$$

53-masala. $x_1 = A_1 \cos \omega (t + \tau_1); x_2 = A_2 \cos \omega (t + \tau_2)$ tenglamalar bilan ifodalanadigan, bir xil yo`nalishli ikkita tebranish qo`shiladi. Bunda A_1 =1 sm, A_2 =2sm

$$\tau_1 = \frac{1}{6}s, \ \tau_2 = \frac{1}{2}s, \ \omega = \pi s^{-1}$$

1) qo`shiluvchi tebarnishlarning boshlang`ich fazalari φ_1 va φ_2 lar aniqlansin; 2) natijaviy tebranishning amplitudasi A va boshlang`ich fazasi φ topilsin. Natijaviy tebranishning tenglamasi yozilsin.

Berilgan:
$$A_1=1 \text{ sm} = 1 \cdot 10^{-2} m, A_2=2 \text{ sm} = 2 \cdot 10^{-2} m,$$

$$\frac{\tau_1 = \frac{1}{6} s, \ \tau_2 = \frac{1}{2} s, \ \omega = \pi s^{-1}}{\varphi_1 \sim ?, \ \varphi_2 \sim ? \ \varphi \sim ? \ A \sim ?}$$

Echish. 1. Garmonik tebranishning tenglamasi

$$x = A\cos(\omega t + \varphi) \tag{1}$$

ko`rinishga ega. Masala shartida berilgan tenglamalarni (1) ko`rinishga keltiramiz

$$x_1 = A_1 \cos \omega (t + \tau_1); x_2 = A_2 \cos \omega (t + \tau_2)$$
 (2)

(2)ifodadan (1) tenglik bilan solishtirishdan birinchi va ikkinchi tebranishlarning boshlang`ich fazalarini topamiz:

$$\varphi_1 = \omega \tau_1 = \frac{\pi}{6} rad$$
 va $\varphi_2 \omega = \tau_2 = \frac{\pi}{2} rad$

2) natijaviy tebranishning amplitudasi A ni aniqlash uchun kosinuslar teoremasidan foydalanamiz (14,4- \S)

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\varphi}$$
 (3)

bu yerda $\Delta \varphi$ -qo`shiluvchi tebranishlarning fazalar farqi $\Delta \varphi = \varphi_2 - \varphi_1$ bo`lganligidan, $\varphi_2 \ va \ \varphi_1$ larning topilgan qiymatlarini o`rniga qo`ysak,

$$\Delta \varphi = \frac{\pi}{3} rad$$

 A_1, A_2 va φ_1, φ_2 larning qiymatlarini (3) formulaga qo`yib hisoblasak

$$A = 2.65 \text{ sm}$$

Natijaviy tebranishning boshlang`ich fazasi tangensini (14,4-§) dagi 14,7 rasmdan aniqlaymiz

 $tg\varphi = \frac{\bar{A_1}\sin\varphi_1 + A_2\sin\varphi_2}{A_1\cos\varphi_1 + A_2\cos\varphi_2}$ bundan boshlang`ich faza

$$\varphi = arctg \frac{A_1 \sin \varphi_1 + A_2 \sin \varphi_2}{A_1 \cos \varphi_1 + A_2 \cos \varphi_2}$$

 A_1,A_2 , $\varphi_{\!\scriptscriptstyle 1}$ va $\varphi_{\!\scriptscriptstyle 2}$ larning qiymatlarini qo`yamiz va hisoblaymiz:

$$\varphi = arctg\left(\frac{5}{\sqrt{3}}\right) = 70.9 = 0.394\pi rad$$

54-masala. Moddiy nuqta bir paytning o`zida tenglamalari

$$x = A_1 \cos \omega t \tag{1}$$

$$y = A_2 \cos \frac{\omega}{2} t \tag{2}$$

ko`rinishda bo`lgan ikkita o`zaro tik garmonik tebranishda ishtirok etadi. Bunda $A_1=1$ sm, $A_2=2$ sm, $\omega=\pi s^{-1}$. Nuqta traektoriyasining tenglamasi topilsin.

Berilgan: $\underline{A_1 = 1sm = 1 \cdot 10^{-2} m, \ A_2 = 2sm = 2 \cdot 10^{-2} m, \ \omega = \pi s^{-1}}$ Traektoriya tenglamasi ~?

Echish. Nuqta traektoriyasining tenglamasini topish uchun, berilgan (1) va (2) tenglamalaridan t vaqtni yoʻqotamiz. Bu maqsadda $\cos\left(\frac{\alpha}{2}\right) = \sqrt{\frac{1}{2}(1+\cos\alpha)}$ formulasidan foydalanamiz. U holda $\alpha = \omega t$, shuning uchun

$$y = A_2 \cos \frac{\omega}{2} t = A_2 \sqrt{\frac{1}{2} (1 + \cos \omega t)}$$

(1) formulaga binoan $\cos \omega t = \frac{x}{A_1}$ ekanligidan, traektori tenglamasi

$$y = A_2 \sqrt{\frac{1}{2} (1 + \frac{x}{A_1})} \tag{3}$$

hosil bo`lgan ifoda o`qi OX o`qi bilan mos keluvchi parabola tenglamasidir.

Mustaqil yechish uchun masalalar

157.Amplitudasi A=0,1m, davri T=4 s va boshlang`ich fazasi nolga teng bo`lgan garmonik tebranma harakat tenglamasini yozing. (x=0,1Sin0,5 π t m).

158.Garmonik tebranish amplitudasi A=5sm, davri T=4 s ga teng. Tebranayotgan nuqtaning maksimal tezligi va uning maksimal tezlanishini toping. (v_{max} =7,85·10⁻²m/s; a_{max} =12,3·10⁻²m/s²).

159.Garmonik tebranishning boshlang`ich fazasi nolga teng. Nuqta muvozanat vaziyatidan x_1 =2,4 sm siljiganda nuqtaning tezligi v_1 =3sm/s bo`ladi, x_2 =2,8 sm siljiganda esa nuqtaning tezligi v_2 =2sm/s bo`ladi. SHu tebranishning amplitudasi va davri topilsin. (A=3,1·10⁻²m; T=4,1s).

160.Garmonik tebranma harakat qilayotgan jismning to`la energiyasi W= $3\cdot10^{-5}$ J, jismga ta'sir etuvchi maksimal kuch F= $1,5\cdot10^{-3}$ N ga teng. Tebranish davri T=2 s va boshlang`ich faza ϕ = 60° bo`lsa, bu jismning harakat tenglamasini

yozing.
$$\left[x = 0.04Sin\left(\pi t + \frac{\pi}{3}\right)m\right].$$

161. Prujinaga R=98,1N yuk osilgan. Prujina F=9,8 N kuch ta'sirida Δx =1,5sm cho`zilishi ma'lum bo`lsa, yukning vertikal tebranish davrini aniqlang. (T=0,78s).

162.Nuqta garmonik tebranmoqda. Nuqtaning eng katta siljishi $x_{\text{max}}=10\text{sm}$, eng katta tezligi $v_{\text{max}}=20$ sm/s ga teng. Tebranishning doimo

takrorlanib turuvchi sikl chastotasi ω va maksimal tezlanishi topilsin. (ω =2s⁻¹; a=40sm/s²).

163.Ikkita kamerton bir vaqtda ovoz chiqarmoqda. Ularning tebranish chastotalari v_1 va v_2 mos ravishda 440 va 440,5 Hnga teng. Tepkili tebranish davri T aniqlansin. (T=2s).

164.Moddiy nuqta bir vaqtning oʻzida $x=A_1\cos\omega t$ va $u=A_2\cos 2\omega t$ tenglamalar bilan ifodalanuvchi ikkita oʻzaro tik tebranishlarda ishtirok etadi, bunda $A_1=2$ sm, $A_2=1$ sm. Traektoriya tenglamasi topilsin. ($u=-2(A_2/A_1)\cdot x^2+A_2$; $y=-\frac{1}{2}x^2+1$).

165.Prujinaga osilgan m=250g massali yuk T=1s davr bilan tik yo`nalishda tebranadi. Prujinaning bikrligi K aniqlansin. (K=9,87N/m).

166.Agar qurilmaning xususiy tebranishlar davri T=1s va tebranishning logariflik dekrementi λ =0,628 bo`lsa, so`nuvchi tebranishlarning davri T topilsin. (T=1,005s).

167. Tebranish tizimi v=1000 Hn chastotali so`nuvchi tebranishlarni bajarmoqda. Agar rezonans chastota v_{rez} =998 Hn bo`lsa, xususiy tebranishlar chastotasi v_0 aniqlansin. (v_0 =1002Hz).

 $168.v_1$ =400Hn va v_2 =600Hn chastotalarda majburiy garmonik tebranishlar amplitudasi bir-biriga teng. Rezonans chastota v_{rez} aniqlansin. So`nish hisobga olinmasin. (v_{rez} =510Hz).

169.R=30sm radiusli bir jinsli disk uning silindrik sirtining tashkil etuvchilaridan biri orqali o`tuvchi gorizontal o`q atrofida tebranmoqda. Uning $\sqrt{3R}$

tebranish davri T qanday. $\left(T = 2\pi \sqrt{\frac{3R}{(2g)}} = 1,35s\right)$.