Complement: Finite Mixture Model Diagnostics Using Resampling Methods

Bettina Grün

Friedrich Leisch

Johannes Kepler Universität Linz Ludwig-Maximilians-Universität München

Abstract

This paper illustrates the application of resampling methods for model diagnostics of fitted finite mixture models. Convenience functions to perform these methods are available in package **flexmix**. The results of the application to an artificial example and the **seizure** data set as described in Grün and Leisch (2010) are reproduced.

Keywords: R, finite mixture models, resampling, bootstrap.

1. Artificial data set

In the following a finite mixture model is used as the underlying data generating process which is theoretically not identifiable. We are assuming a finite mixture of linear regression models with two components of equal size where the coverage condition is not fulfilled (Hennig 2000). Hence, intra-component label switching (Grün and Leisch 2010) is possible, i.e., there exist two parameterizations implying the same mixture distribution which differ how the components between the covariate points are combined.

We assume that one measurement per object and a single categorical regressor with two levels are given. The usual design matrix for a model with intercept uses the two covariate points $\mathbf{x}_1 = (1,0)'$ and $\mathbf{x}_2 = (1,1)'$. The mixture distribution is given by

$$H(y|\mathbf{x},\Theta) = \frac{1}{2}N(\mu_1, 0.1) + \frac{1}{2}N(\mu_2, 0.1),$$

where $\mu_k(\mathbf{x}) = \mathbf{x}' \boldsymbol{\alpha}_k$ and $N(\mu, \sigma^2)$ is the normal distribution.

Now let $\mu_1(\mathbf{x}_1) = 1$, $\mu_2(\mathbf{x}_1) = 2$, $\mu_1(\mathbf{x}_2) = -1$ and $\mu_2(\mathbf{x}_2) = 4$. As Gaussian mixture distributions are generically identifiable the means, variances and component weights are uniquely determined in each covariate point given the mixture distribution. However, as the coverage condition is not fulfilled, the two possible solutions for α are:

Solution 1:
$$\alpha_1^{(1)} = (2, 2)', \alpha_2^{(1)} = (1, -2)',$$

Solution 2:
$$\alpha_1^{(2)} = (2, -3)', \ \alpha_2^{(2)} = (1, 3)'.$$

We specify this artificial mixture distribution using FLXdist(). FLXdist() returns an unfitted finite mixture of class "FLXdist". The class of fitted finite mixture models "flexmix" extends class "FLXdist". Each component follows a normal distribution. The parameters specified

in a named list therefore consist of the regression coefficients and the standard deviation. Function FLXdist() has an argument formula for specifying the regression in each of the components, an argument k for the component weights and components for the parameters of each of the components.

We draw a balanced sample with 50 observations in each covariate point from the mixture model using rflexmix() after defining the data points for the covariates. rflexmix() can either have an unfitted or a fitted finite mixture as input. For unfitted mixtures data has to be provided using the newdata argument. For already fitted mixtures data can be optionally provided, otherwise the data used for fitting the mixture is used.

```
> ArtEx.data <- data.frame(x = rep(0:1, each = 100/2))
> set.seed(123)
> ArtEx.sim <- rflexmix(ArtEx.mix, newdata = ArtEx.data)
> ArtEx.data$y <- ArtEx.sim$y[[1]]
> ArtEx.data$class <- ArtEx.sim$class</pre>
```

In Figure 1 the sample is plotted together with the two solutions for combining x_1 and x_2 , i.e., this illustrates intra-component label switching.

We fit a finite mixture to the sample using stepFlexmix().

AIC: 179.0483 BIC: 197.2845

```
> set.seed(123)
> ArtEx.fit <- stepFlexmix(y ~ x, data = ArtEx.data, k = 2, nrep = 5,
                         control = list(iter = 1000, tol = 1e-8, verbose = 0))
2:****
The fitted mixture can be inspected using summary() and parameters().
> summary(ArtEx.fit)
Call:
stepFlexmix(y ~ x, data = ArtEx.data, control = list(iter = 1000,
    tol = 1e-08, verbose = 0), k = 2, nrep = 5)
       prior size post>0 ratio
Comp.1 0.56
               55
                      77 0.714
                      65 0.692
Comp.2 0.44
               45
'log Lik.' -82.52413 (df=7)
```


Figure 1: Balanced sample from the artificial example with the two theoretical solutions.

> parameters(ArtEx.fit)

```
Comp.1 Comp.2 coef.(Intercept) 1.9130903 0.9269647 coef.x 2.1270909 -2.0597489 sigma 0.3167696 0.2738558
```

Obviously the fitted mixture parameters correspond to the parameterization we used to specify the mixture distribution. Using standard asymptotic theory to analyze the fitted mixture model gives the following estimates for the standard deviations.

```
> ArtEx.refit <- refit(ArtEx.fit)</pre>
> summary(ArtEx.refit)
$Comp.1
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.914496
                       0.072060
                                  26.568 < 2.2e-16 ***
            2.125685
                                 22.807 < 2.2e-16 ***
X
                       0.093203
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
$Comp.2
             Estimate Std. Error z value Pr(>|z|)
             0.927075
(Intercept)
                        0.068756 13.484 < 2.2e-16 ***
```

```
x -2.059859 0.089780 -22.943 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The fitted mixture can also be analyzed using resampling techniques. For analyzing the stability of the parameter estimates where the possibility of identifiability problems is also taken into account the parametric bootstrap is used with random initialization. Function boot() can be used for empirical or parametric bootstrap (specified by the argument sim). The logical argument initialize_solution specifies if the initialization is in the original solution or random. By default random initialization is made. The number of bootstrap samples is set by the argument R. Please note that the arguments are chosen to correspond to those for function boot in package boot (Davison and Hinkley 1997).

Only a few number of bootstrap samples are drawn to keep the amount of time needed to run the vignette within reasonable limits. However, for a sensible application of the bootstrap methods at least R equal to 100 should be used. If the output for this setting has been saved, it is loaded and used in the further analysis. Please see the appendix for the code for generating the saved R output.

```
> set.seed(123)
> ArtEx.bs <- boot(ArtEx.fit, R = 15, sim = "parametric")
> if ("boot-output.rda" %in% list.files()) load("boot-output.rda")
> ArtEx.bs

Call:
boot(ArtEx.fit, R = 15, sim = "parametric")
```

Function boot() returns an object of class "FLXboot". The default plot compares the bootstrap parameter estimates to the confidence intervals derived using standard asymptotic theory in a parallel coordinate plot (see Figure~2). Clearly two groups of parameter estimates can be distinguished which are about of equal size. One subset of the parameter estimates stays within the confidence intervals induced by standard asymptotic theory, while the second group corresponds to the second solution and clusters around these parameter values.

In the following the DIP-test is applied to check if the parameter estimates follow a unimodal distribution. This is done for the aggregated parameter esimates where unimodality implies that this parameter is not suitable for imposing an ordering constraint which induces a unique labelling. For the separate component analysis which is made after imposing an ordering constraint on the coefficient of x rejection the null hypothesis of unimodality implies that identifiability problems are present, e.g. \hat{a} due to intra-component label switching.

> print(plot(ArtEx.bs, ordering = "coef.x", col = Colors))

Figure 2: Diagnostic plot of the bootstrap results for the artificial example.

```
dimnames=list(colnames(parameters),
                               c("Aggregated", "Comp 1", "Comp 2")))
> dip.values.art[,"Aggregated"] <- apply(parameters, 2, dip)</pre>
> dip.values.art[,"Comp 1"] <- apply(Comp1, 2, dip)</pre>
> dip.values.art[,"Comp 2"] <- apply(Comp2, 2, dip)</pre>
> dip.values.art
                  Aggregated
                                 Comp 1
                                           Comp 2
coef.(Intercept) 0.18549534 0.1691587 0.1700720
coef.x
                  0.19083739 0.1536419 0.1604434
log(sigma)
                  0.05440133 0.0724579 0.0876057
prior
                  0.07764922 0.0762874 0.0762874
```

The critical value for column Aggregated is 0.088 and for the columns of the separate components 0.119. The component sizes as well as the standard deviations follow a unimodal distribution for the aggregated data as well as for each of the components. The regression coefficients are multimodal for the aggregate data as well as for each of the components. While from the aggregated case it might be concluded that imposing an ordering constraint on the intercept or the coefficient of x is suitable, the component-specific analyses reveal that a unique labelling was not achieved.

2. Seizure

In Wang, Puterman, Cockburn, and Le (1996) a Poisson mixture regression is fitted to data from a clinical trial where the effect of intravenous gammaglobulin on suppression of epileptic seizures is investigated. The data used were 140 observations from one treated patient, where treatment started on the 28th day. In the regression model three independent variables were included: treatment, trend and interaction treatment-trend. Treatment is a dummy variable indicating if the treatment period has already started. Furthermore, the number of parental observation hours per day were available and it is assumed that the number of epileptic seizures per observation hour follows a Poisson mixture distribution. The number of epileptic seizures per parental observation hour for each day are plotted in Figure 3. The fitted mixture distribution consists of two components which can be interpreted as representing 'good' and 'bad' days of the patients.

The mixture model can be formulated by

$$H(y|\mathbf{x},\Theta) = \pi_1 P(\lambda_1) + \pi_2 P(\lambda_2),$$

where $\lambda_k = e^{\mathbf{x}'\alpha_k}$ for k = 1, 2 and $P(\lambda)$ is the Poisson distribution.

The data is loaded and the mixture fitted with two components.

The fitted regression lines for each of the two components are shown in Figure 3.

The parameteric bootstrap with random initialization is used to investigate identifiability problems and parameter stability. The diagnostic plot is given in Figure 2. The coloring is according to an ordering constraint on the intercept. Clearly the parameter estimates corresponding to the solution where the bad days from the base period are combined with the good days from the treatement period and vice versa for the good days of the base period can be distinguished and indicate the slight identifiability problems of the fitted mixture.

For applying the DIP test also an ordering constraint on the intercept is used. The critical value for column Aggregated is 0.088 and for the columns of the separate components 0.119.

```
> par(mar = c(5, 4, 2, 0) + 0.1)
> plot(Seizures/Hours~Day, data=seizure, pch = as.integer(seizure$Treatment))
> abline(v=27.5, lty=2, col="grey")
> matplot(seizure$Day, fitted(seizMix)/seizure$Hours, type="l",
+ add=TRUE, col=1, lty = 1, lwd = 2)
```


Figure 3: Seizure data with the fitted values for the Wang *et~al.* model. The plotting character for the observed values in the base period is a circle and for those in the treatment period a triangle.

```
> dip.values.art <- matrix(nrow = ncol(parameters), ncol = 3,</pre>
                            dimnames=list(colnames(parameters),
                               c("Aggregated", "Comp 1", "Comp 2")))
+
> dip.values.art[,"Aggregated"] <- apply(parameters, 2, dip)</pre>
> dip.values.art[,"Comp 1"] <- apply(Comp1, 2, dip)</pre>
> dip.values.art[,"Comp 2"] <- apply(Comp2, 2, dip)</pre>
> dip.values.art
                            Aggregated
                                            Comp 1
                                                        Comp 2
coef.(Intercept)
                            0.11424627 0.08251065 0.06239055
coef.TreatmentYes
                            0.14724776 0.11290550 0.08763688
coef.log(Day)
                            0.08771107 0.07954399 0.04785066
coef.TreatmentYes:log(Day) 0.16430740 0.08548046 0.08940126
                            0.15660112 0.08275558 0.08275558
prior
```

For the aggregate results the hypothesis of unimodality cannot be rejected for the trend. For the component-specific analyses unimodality cannot be rejected only for the intercept

```
> set.seed(123)
> seizMix.bs <- boot(seizMix, R = 15, sim = "parametric")
> if ("boot-output.rda" %in% list.files()) load("boot-output.rda")
> print(plot(seizMix.bs, ordering = "coef.(Intercept)", col = Colors))
```


Figure 4: Diagnostic plot of the bootstrap results for the seizure data.

(where the ordering condition was imposed on) and again the trend. For all other parameter estimates unimodality is rejected which indicates that the ordering constraint was able to impose a unique labelling only for the own parameter and not for the other parameters. This suggests identifiability problems.

A. Generation of saved R output

```
> set.seed(123)
> ArtEx.bs <- boot(ArtEx.fit, R = 200, sim = "parametric")
> set.seed(123)
> seizMix.bs <- boot(seizMix, R = 200, sim = "parametric")
> save(ArtEx.bs, seizMix.bs, file = "boot-output.rda")
```

References

Davison AC, Hinkley DV (1997). Bootstrap methods and their application. Cambridge series

on statistical and probabilistic mathematics. Cambridge University Press, Cambridge, UK. ISBN 0-521-57391-2 (hardcover), 0-521-57471-4 (paperback).

Grün B, Leisch F (2010). "Finite Mixture Model Diagnostics Using Resampling Methods." Unpublished manuscript.

Hennig C (2000). "Identifiability of Models for Clusterwise Linear Regression." *Journal of Classification*, **17**(2), 273–296.

Wang P, Puterman ML, Cockburn IM, Le ND (1996). "Mixed Poisson Regression Models with Covariate Dependent Rates." *Biometrics*, **52**, 381–400.

Affiliation:

Bettina Grün Institut für Angewandte Statistik Johannes Kepler Universität Linz Altenbergerstraße 69 4040 Linz, Austria

E-mail: Bettina.Gruen@jku.at

Friedrich Leisch Institut für Statistik Ludwig-Maximilians-Universität München Ludwigstraße 33 D-80539 München, Germany

E-mail: Friedrich.Leisch@stat.uni-muenchen.de URL: http://www.stat.uni-muenchen.de/~leisch/