东南大学学生会 Students' Union of Southeast University

01-02-2高数AB期末试卷

一、填空题

1. 若当 $x\to 0$ 时,无穷小量 $f(x) = \int_0^{\sin x} (e^{t^2} - 1) dt$ 与 $g(x) = \ln(1 - \alpha x^3)$ 等价, 则 α = _____。

2. 设曲线 C: $\begin{cases} x=3t^2+2t+3\\ y=e^y\sin t+1 \end{cases}$,则 C 在 t=0 所对应点处的法线方程

3. 设 y=y(x) 由方程 y=f(x+y) 确定,其中 f 三阶可导,且 $f'\neq 1$,

则 $\frac{d^2y}{d^2z} =$ _____。

4. 若 $y = \frac{x}{2-x}$,则 $y^{(10)}(0) = \underline{\hspace{1cm}}$

5. 若某二阶线性常系数齐次方程 的一个特解为 $y=-3e^x\cos 2x$,

则该方程为__

二、单项选择题

1. 设 y=f(x) 是 x 的三次多项式,其图象关于原点对称,当 $x=\frac{1}{2}$ 时, f(x) 有 极小值-1,则(

(A) $f(x) = -4x^3 - x$; (B) $f(x) = 4x^3 - 3x$;

(C) $f(x)=5x^3-\frac{13}{4}x$; (D) $f(x)=-5x^3-\frac{3}{4}x$.

2. 设 $f(x) = \lim_{t \to +\infty} \frac{x^2 e^{t(x-2)} + ax - 1}{e^{t(x-2)} + 1}$, 若 f(x) 在 $(-\infty, +\infty)$ 连续,则常数 $a = (-\infty, +\infty)$

(A) 5; (B) 4; (C) $\frac{7}{2}$; (D) $\frac{5}{2}$.

3. 曲线 $y = x \ln(e + \frac{1}{r})$ 的渐近线()

(A) 不存在; (B) 有一条; (C) 有两条; (D) 有三条。

东南大学学生会

Students' Union of Southeast University

4. 曲线 $y=4(x-1)^2(x+2)^2$ 的拐点个数是 ()

- (A) 3:
- (B) 2;
- (C) 1; (D) 0_{\circ}

三、计算题

- 1. $\lim_{x \to 0} \frac{\int_0^x (x-t)\ln(3+t^2)dt}{\sin^2 x}$; 2. $\int x^2 \ln(1-x)dx$

- 3. $\int \frac{x^3}{1+\sqrt{x^2+1}} dx$; 4. $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1+\sin x} dx$;
- 5. $\int_0^{+\infty} \frac{xe^x}{(1+e^x)^2} dx$

四、1. 求方程 $(x^3+y^3)dx-3xy^2dy=0$ 满足条件 $y|_{x=1}=1$ 的特解。

2. 求方程 $y'' - 6y' + 8y = x - 4xe^{2x}$ 的通解。

五、1. 设f(x)可导,其反函数为g(x),若f(x)、g(x)满足关系式

$$\int_0^{f(x)} g(t)dt = \int_0^x \frac{tdt}{e^t + e^{-t}}, \quad \text{If } f(0) = \frac{\pi}{4}, \quad \vec{x} f(1) \circ$$

2. 试在曲线 L: $y=e^x$ 位于第二象限的部分上求一点 P(x,y), 使过该点 的切线与曲线 L、y 轴以及直线 x=a (a 为切线与 x 轴交点的横坐标)所围成 的面积最小。

六、 设 f(x)、 g(x) 在 [-a,a] 上连续, f(x) 满足条件 f(x)+f(-x)=A (A 为常 数), g(x) 为偶函数,

- 1、证明 $\int_{-a}^{a} f(x)g(x)dx = A \int_{0}^{a} g(x)dx$;
- 2、计算 $\int_{-a}^{a} |f(x)| \arctan e^{x} dx$ 。

七、(6分) 设 f(x) 在 $[1,+\infty)$ 上连续,且满足关系式 $f(x)=1+\int_1^x \frac{dt}{t^2+t^4(t)}$