MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZADAŃ

Zgodnie z harmonogramem termin ogłoszenia wyników w szkole mija **20 października 2023 r.** Do **30 października 2023 r.** należy bezwzględnie wprowadzić wyniki **wszystkich uczniów** ma Platformę Konkursów Przedmiotowych. Zgłoszenie uczestników po wyznaczonym terminie nie będzie przyjęte i **skutkuje ich dyskwalifikacją**.

13 listopada 2023 r. należy zapoznać się z listą uczniów zakwalifikowanych do etapu rejonowego oraz przekazać informację o ewentualnym zakwalifikowaniu się do kolejnego etapu konkursu uczniom i ich rodzicom/opiekunom prawnym.

Nr zadania	1	2	3	4	5	6	7	8	9	10	11
Poprawna odpowiedź	В	С	С	В	D	В	A	D	C	D	A
Liczba pkt.	1	1	1	1	1	1	1	1	1	1	1

Zadanie 12. (0 - 3 pkt.)

1 pkt – zauważenie, że zadanie najprościej jest rozwiązywać w układzie odniesienia (względem) pociągu towarowego. W tym układzie odniesienia pociąg towarowy spoczywa, pociąg pospieszny ma względem niego prędkość V = 21 m/s, odległość pociągów oraz przyspieszenie pociągu pospiesznego pozostają takie jak względem Ziemi.

1 pkt – obliczenie czasu, po którym pociąg pospieszny osiągnie, w układzie odniesienia pociągu towarowego prędkość zerową (o ile nie dojdzie do zderzenia!) $t = V/a = (21 \text{ m/s})/(1,2 \text{ m/s}^2) = 17,5 \text{ s}.$

1 pkt – obliczenie drogi przebytej przez pociąg pospieszny względem towarowego w czasie t = 17.5 s.

d' = Vt/2 = (21 m/s) (17,5 s)/2 = 183,75 m > 180 m = d oraz wyciągnięcie wniosku, że do zderzenia niestety dojdzie.

Zadanie 13. (0-3 pkt.)

1 pkt – zauważenie, że z warunku pływania kawałka lodu na powierzchni cieczy $mg = d_x V_1 g$, gdzie d_x to poszukiwana gęstość cieczy a V_1 to objętość cieczy wypieranej przez lód, wynika, że $V_1 = m/d_x$.

1 pkt – zauważenie, że woda powstała po pełnym roztopieniu się lodu zajmie objętość $V_2 = m/d_0$, a różnica objętości $V_1 - V_2 = \Delta h S$.

1 pkt – zapisanie zależności z poprzedniego punktu w postaci równania pierwszego stopnia z jedną niewiadomą $m/d_x - m/d_0 = \Delta h S$ i otrzymanie poszukiwanej wartości gęstości nieznanej cieczy $d_x = md_0 / (m + \Delta h S d_0) = (3.8 \times 10^3 \text{ g}) (1.0 \text{ g/cm}^3) / (3.8 \times 10^3 \text{ g} + 2.0 \text{ cm} \times 100 \text{ cm}^2 \times 1.0 \text{ g/cm}^3) = 0.95 \text{ g/cm}^3$.

Zadanie 14. (0 - 3 pkt.)

1 pkt – zauważenie, że biorąc pod uwagę (bez procentów!) $\varepsilon = 0,001$ i oznaczając wysokość początkową klocka jako h a końcową jako h_l mamy $(h - h_l)/h = \varepsilon$. Stąd $h_l = h$ $(1 - \varepsilon)$.

1 pkt – zauważenie, że jeżeli dwa pozostałe rozmiary klocka oznaczymy jako l i s, to dla nich zachodzą analogiczne zależności $l_1 = l$ $(1 - \varepsilon)$ i $s_1 = s$ $(1 - \varepsilon)$. Stąd, oznaczając odpowiednio objętości klocka przed schłodzeniem i po schłodzeniu jako V_1 i V_2 , otrzymujemy $V_1 = h_1 l_1 s_1 = hls$ $(1 - \varepsilon)^3 = V$ $(1 - \varepsilon)^3$, a gęstości metalu odpowiednio d = m/V i $d_1 = m/V_1 = m(1 - \varepsilon)^{-3}/V = d$ $(1 - \varepsilon)^{-3}$ (m - masa klocka, która przy jego schładzaniu nie ulega zmianie).

1 pkt – zauważenie, na podstawie wyników poprzedniego punktu, że procentowy przyrost gęstości metalu $\delta = 100\%$ $(d_1 - d) / d = 100\%$ $(d_1 / d - 1) = 100\%$ $[(1 - \epsilon)^{-3} - 1] = 100\%$ $(0,999^{-3} - 1) = 100\%$ $[(1/0,999^3) - 1] = 0,3\%$.

ZASADY OCENIANIA PRAC KONKURSOWYCH

Maksymalna liczba punktów za ten arkusz jest równa 20.

- Za każde poprawne i pełne rozwiązanie zadania otwartego nie ujęte w modelu odpowiedzi, uczeń otrzymuje maksymalną liczbę punktów.
- Treść i zakres odpowiedzi ucznia powinny wynikać z polecenia i być poprawne pod względem merytorycznym.
- Do zredagowania odpowiedzi uczeń używa poprawnej i powszechnie stosowanej terminologii naukowej.
- Jeżeli w jakiejkolwiek części uczeń przedstawi więcej niż jedno rozwiązanie i chociaż jedno będzie błędne, nie można uznać tej części rozwiązania za prawidłowe.
- Za odpowiedzi w zadaniach przyznaje się wyłącznie punkty całkowite. Nie stosuje się punktów ułamkowych.
- Wykonywanie obliczeń na wielkościach fizycznych powinno odbywać się z zastosowaniem rachunku jednostek.