Abstract Algebra Judson, Thomas J.

Notes by: Clay Curry

2	The	Integers
_	i ne	IIILEgers

2.1 Induction

Definition: First Principle of Mathematical Induction

Let S(n) be a statement about integers for $n \in \mathbb{N}$ and suppose $S(n_0)$ is true for some integer n_0 . If for all integers k with $k \geq n_0$, S(k) implies that S(k+1) is true, then S(n) is true for all integers n greater than or equal to n_0 .

Definition: Second Principle of Mathematical Induction

Let S(n) be a statement about integers for $n \in \mathbb{N}$ and suppose $S(n_0)$ is true for some integer n_0 . If $S(n_0), S(n_0 + 1), \ldots, S(k)$ imply that S(k + 1) for $k \ge n_0$, then the statement S(n) is true for all integers $n \ge n_0$.

Definition: Principle of Well-Ordering

Every non-empty subset of the natural numbers contains a least element.

Theorem:

The Principle of Mathematical Induction implies that 1 is the least natural number

Proof: \Box

Theorem:

The Principle of Mathematical Induction implies the Principle of Well-Ordering. That is, every nonempty subset of \mathbb{N} contains a least element.

Proof:

2.2 The Division Algorithm

An application of the Principle of Well-Ordering that is often-used is the division algorithm.

Theorem: Division Algorithm

Let a and b be integers, with $b \ge 0$. Then there exists unique integers q and r such that

$$a = bq + r$$

where $0 \le r < b$.

Proof: existence of q and r. Consider the set,

$$R = \{a - bx : x \in \mathbb{Z} \land a - bx \ge 0\}$$

If $0 \in R$, then b|a, and we can let q = a/b and r = 0. If $0 \notin R$, then the WOP guarentees the existence of a smallest element in a set R iff $R \subseteq \mathbb{N}$ and $R \neq \emptyset$. Since each element $x \in R$ satisfies $x \in \mathbb{Z}$ and $x \geq 0$ and $0 \notin R$, the first condition of the WOP is satisfied, $R \subseteq \mathbb{N}$. To show that $R \neq \emptyset$, consider the two cases:

Case 1: $a \ge 0$. Then it is clear that $a \in R$, by letting x = 0.

Case 2: a < 0. Then if x = 2a, a - bx = a - b(2a) = a(1 - 2b), we have the product of a negative integer a and a negative integer (1 - 2b) when $b \ge 1$, therefore $a - bx \ge 0$.