- 1. 已知矩阵的下列不变因子组,写出 Jordan 标准型.
- (1) $1, \dots, 1, \lambda, \lambda(\lambda-1)^2, \lambda(\lambda-1)^2(\lambda-4);$
- (2) $1, \dots, 1, \lambda^3(\lambda 1)^2(\lambda 7)^3$;
- (3) $1, \dots, 1, \lambda^2 + 1, \lambda(\lambda^2 + 1), \lambda(\lambda^2 + 1).$
- 2. 求过渡矩阵 P, 使得 $P^{-1}AP$ 为 Jordan 标准型.

3. (1) 设

$$\mathbf{A} = \left(\begin{array}{ccc} 2 & 0 & 0 \\ a & 2 & 0 \\ b & c & -1 \end{array}\right).$$

- (i) 求出 A 的一切可能的若尔当标准型;
- (ii) 给出 A 可对角化的一个充要条件.
- (2) 求出

$$\boldsymbol{A} = \left(\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & a & 2 \end{array}\right)$$

的一切可能的若尔当标准型.

- 4. 设 V 为 n 阶复方阵全体构成的线性空间,V 上的线性变换 φ 定义为 $\varphi(X) = AX XA'$, 其中 $A \in V$. 证明: φ 可对角化的充要条件是 A 可对角化.
- 5. 证明实对称阵的特征值都是实数. 进一步, 利用 Jordan 标准型理论和反证法证明实对称阵都可实对角化.
 - 6. 设 n 阶复矩阵 \boldsymbol{A} 满足: 对任意的正整数 k, $\operatorname{tr}(\boldsymbol{A}^k) = \operatorname{r}(\boldsymbol{A})$. 求 \boldsymbol{A} 的 Jordan 标准型.
 - 7. 设 n(n > 2) 阶复方阵 \boldsymbol{A} 的秩等于 2, 试求 \boldsymbol{A} 的 Jordan 标准型.
- 8. 设 n(n > 2) 阶方阵 \boldsymbol{A} 的极小多项式为 $\lambda^3 \lambda^2$, 试求 \boldsymbol{A} 可能的互不相似的 Jordan 标准型的总个数.
- 9. 设 $A, B \in n(n \ge 2)$ 阶方阵, 已知 AB 的 Jordan 标准型为 $J_n(0)$, 试求 BA 的 Jordan 标准型, 并举例说明存在性.
- 10. 设 V 为 n 阶复方阵全体构成的线性空间,V 上的线性变换 φ 定义为 $\varphi(\mathbf{X}) = \mathbf{J}\mathbf{X}\mathbf{J}$,其中 $\mathbf{J} = \mathbf{J}_n(0)$ 是特征值为 0 的 n 阶 Jordan 块. 试求 φ 的 Jordan 标准型.