

Procesamiento de Lenguaje Natural

Introducció

Clasificación en el PLN

Procesamiento de Lenguaje Natural Clasificación

Mauricio Toledo-Acosta mauricio.toledo@unison.mx

Departamento de Matemáticas Universidad de Sonora

Procesamiento de Lenguaje Natural

Introducción

Referencias

Procesamiento de Lenguaje Natural

Introducció

- Chapter I.2, I.4. Eisenstein, J. (2018). Natural language processing. Jacob Eisenstein.
- Chapter 4. Jurafsky, D., Martin, J. H. (2019). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition.

Clasificación

Procesamiento de Lenguaje Natural

Introducción

Clasificación en el PLN

Clasificación

La clasificación consiste en asignar categorias a objetos. En el ML supervisado un modelo intenta predecir la etiqueta correcta de datos de entrada.

Tipos de Clasificación

Procesamiento de Lenguaje Natural

Introducció

- Clasificación Binaria. Cada dato tiene sólo una de dos posibles etiquetas.
- Clasificación MultiClase. Cada dato tiene sólo una de varias posibles etiquetas.
- Clasificación MultiEtiqueta. Cada dato tiene una o más de varias posibles etiquetas.

Tipos de Clasificación: ejemplos

Procesamiento de Lenguaje Natural

Introducción

Clasificaciór en el PLN

Source

Tipos de Clasificación: ejemplos

Procesamiento de Lenguaje Natural

Introducción

Tipos de Clasificación: ejemplos

Procesamiento de Lenguaje Natural

Introducción

Clasificació: en el PLN

Source

Ejemplos de clasificación

Procesamiento de Lenguaje Natural

Introducció

- Clasificación de imágenes (identificar objetos en fotos).
- Diagnóstico médico (clasificar si un tumor es benigno o maligno). Esto puede ser por medio de imágenes, mediciones, etc.
- Reconocimiento de voz (identificar palabras habladas).
- Detección de fraude (identificar transacciones fraudulentas).
- Análisis de sentimientos (Identificar el sentimiento detrás de un texto).

¿Cómo hacemos la clasificación?

Procesamiento de Lenguaje Natural

Introducció

- Métodos basados en reglas. Las reglas suelen generarse por expertos en el dominio.
- Métodos de aprendizaje automático. La lógica para inferir la clase de un objeto se aprende a partir de ejemplos etiquetados correctos previamente.

Algoritmos de Clasificación

Procesamiento de Lenguaje Natural

Introducció

en el PLN

- Clasificación Lineal
 - SVM
 - Regresión Logística
 - Perceptrón
 - Clasificador de Mínimos Cuadrados
- Clasificación No lineal
 - Árboles de Decisión
 - Clasificadores de Ensamble
 - K-NN
 - Redes Neuronales
 - Naive Bayes

Procesamiento de Lenguaje Natural

Introducción

Evaluación de la tarea de clasificación

Procesamiento de Lenguaje Natural

Introducción

Clasificació en el PLN

¿Cómo evaluamos que tan *bueno* es el desempeño de nuesto modelo de clasificación?

Matriz de Confusión Binaria

Procesamiento de Lenguaje Natural

Introducción

		Predicted condition			
	Total population = P + N	Positive (PP)	Negative (PN)		
Actual condition	Positive (P)	True positive (TP)	False negative (FN)		
	Negative (N)	False positive (FP)	True negative (TN)		

Métricas de desempeño

Procesamiento de Lenguaje Natural

Introducción

en el PLN

Accuracy: De todos la población, ¿cuántos predije correctamente?

$$A = \frac{TP + TN}{\mathsf{Total}}.$$

 Recall: De todos la población positiva, ¿cuántos predije correctamente como positivos?

$$R = \frac{TP}{TP + FN} = TPR.$$

 Precision: De todos los que predije como positivos, ¿cuántos son realmente positivos?

$$P = \frac{TP}{TP + FP}.$$

• F1 score: Media armónica de la precisión y el recall:

$$2\frac{P\cdot R}{P+R}$$

Ejemplo: Una sola métrica no es suficiente

Procesamiento de Lenguaje Natural

Introducció

Clasificació en el PLN Tenemos la siguiente población $\{++---\}$:

• Si nuestro clasificador predice todo como —:

real	+	+	-	-	-	-
predicho	-	-	-	-	-	-

Accuracy: 0.66, Recall: 0, Precision: 0.

• Si nuestro clasificador predice todo como +:

real	+	+	-	-	-	-
predicho	+	+	+	+	+	+

Accuracy: 0.33, Recall: 1, Precision: 0.33.

Procesamiento de Lenguaje Natural

Introducció

Clasificació en el PLN

Un accuracy alto no pinta el panorama completo.

El precision y recall, a diferencia del accuracy, hacen hincapié en los verdaderos positivos: encontrar las cosas que se supone que estamos buscando.

ROC-AUC Score

Procesamiento de Lenguaje Natural

Introducció

Clasificación en el PLN

ROC-AUC Score

La curva paramétrica ROC (Receiver Operating Characteristic) muestra los valores FPR y TPR en varios valores de umbral de probabilidad. El **score AUC** es el area bajo la curva ROC, es una medida de rendimiento para los problemas de clasificación que representa el grado o medida de separabilidad. Indica la capacidad del modelo para distinguir entre clases.

ROC-AUC Score

Procesamiento de Lenguaje Natural

Introducción

Clasificación en el PLN

ROC-AUC Score

La curva paramétrica ROC (Receiver Operating Characteristic) muestra los valores FPR y TPR en varios valores de umbral de probabilidad. El **score AUC** es el area bajo la curva ROC, es una medida de rendimiento para los problemas de clasificación que representa el grado o medida de separabilidad. Indica la capacidad del modelo para distinguir entre clases.

$$FPR = \frac{FP}{TN + FF}$$

$$TPR = \frac{TP}{TP + FN}$$

ROC-AUC Score

Procesamiento de Lenguaje Natural

Introducció

Clasificación en el PLN

ROC-AUC Score

La curva paramétrica ROC (Receiver Operating Characteristic) muestra los valores FPR y TPR en varios valores de umbral de probabilidad. El **score AUC** es el area bajo la curva ROC, es una medida de rendimiento para los problemas de clasificación que representa el grado o medida de separabilidad. Indica la capacidad del modelo para distinguir entre clases.

$$FPR = \frac{FP}{TN + FP}$$

$$TPR = \frac{TP}{TP + FN} \leftarrow \text{Recall}$$

Procesamiento de Lenguaje Natural

Introducción

en el PLN

El valor ROC-AUC es un número $0 \le s \le 1$. Entre más grande es s, el clasificador es mejor.

- Si s = 1, el clasificador es perfecto.
- Si $s = \frac{1}{2}$, el clasificador es aleatorio.
- Si s = 0, el calsificador predice perfectamente las clases al revés.

Procesamiento de Lenguaje Natural

Introducció

en el PLN

Umbral: 0.5

$y_{-}test$	y_pred	probabilidades
0	0	0.048
0	0	0.145
1	1	0.905
0	0	0.24
1	0	0.215
0	0	0.231
0	0	0.116
1	1	0.551
1	0	0.172
1	1	0.803

$$\begin{pmatrix} 5 & 0 \\ 2 & 3 \end{pmatrix}$$
, $TPR = 0.6$, $FPR = 0$

Procesamiento de Lenguaje Natural

Introducció

en el PLN

Umbral: 0.2

y_test	y_pred	probabilidades
0	0	0.048
0	0	0.145
1	1	0.905
0	1	0.24
1	1	0.215
0	1	0.231
0	0	0.116
1	1	0.551
1	0	0.172
1	1	0.803

$$\begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$$
, $TPR = 0.8$, $FPR = 0.4$

Procesamiento de Lenguaje Natural

Introducció

Clasificación en el PLN Umbral: 0.75

y_test	y_pred	probabilidades
0	0	0.048
0	0	0.145
1	1	0.905
0	0	0.24
1	0	0.215
0	0	0.231
0	0	0.116
1	0	0.551
1	0	0.172
1	1	0.803

$$\begin{pmatrix} 5 & 0 \\ 3 & 2 \end{pmatrix}$$
, $TPR = 0.4$, $FPR = 0$

Procesamiento de Lenguaje Natural

Introducción

en el PLN

El área bajo la curva es 0.84.

Procesamiento de Lenguaje Natural

Introducción

Clasificaciór en el PLN

Section 2

Clasificación en PLN

Procesamiento de Lenguaje Natural

Introducció

Clasificación en el PLN Consideremos la tarea de clasificación en PLN, es decir, asignar categorías a textos.

 Análisis de sentimientos: La extracción del sentimiento, es decir, la orientación positiva o negativa que el escritor expresa hacia algún objeto.

Reseña de una película, un libro o un producto	\leftrightarrow	El sentimiento del au- tor hacia el producto
Editorial o un texto político	\leftrightarrow	El sentimiento hacia un candidato o una acción política.
Textos en redes so- ciales	\leftrightarrow	El estado de animo.

Clasificación en PLN

Procesamiento de Lenguaje Natural

Introducció

- Detección de SPAM
- Identificación de idioma
- Atribución de autoría
- Detección de tópicos o temática
- Predicción de la siguiente palabra

¿Cómo hacemos la clasificación?

Procesamiento de Lenguaje Natural

Introducció

- Métodos basados en reglas. Las reglas suelen generarse por expertos en el dominio y pueden incluir coincidencias de palabras o secuencias específicas, patrones sintácticos, patrones léxicos (longitud de palabras, frecuencias).
 - Las reglas suelen ser frágiles.
 - Las reglas pueden cambiar con el tiempo.
 - + Eficientes y no requieren muchos datos.
 - + Transparentes y explicables.
- Métodos de aprendizaje automático.
- Métodos Híbridos: Lexicon-based, ...

Lexicon-based Sentiment Analysis

Procesamiento de Lenguaje Natural

Introducció

Clasificaciór en el PLN Algunas palabras tienen una polaridad globalmente reconocida, por ejemplo *bueno*, *malo*, *perfecto*, *feo*. La simple presencia de una de estas palabras en un texto puede ser una pista importante sobre el sentimiento expresado.

"A good tool that works perfectly"

"I had an <mark>horrible</mark> experience"

En la clasificación Lexicon-based¹, se crea una lista de palabras para cada etiqueta y se clasifica cada documento en función de cuántas palabras de cada lista están presentes.

¹Taboada, M., J. Brooke, M. Tofiloski, K. Voll, and M. Stede (2011). Lexicon-based methods for sentiment analysis. Computational linguistics 37(2), 267–307.

Diccionarios

Procesamiento de Lenguaje Natural

Introducció

Clasificaciór en el PLN Existen diccionarios ya recopilados que asocian sentimientos a palabras:

- MPQA
- The General Inquirer lexicon
- SentiWordNet
- Appraisal lexicon

Clasificación en el Machine Learning

Procesamiento de Lenguaje Natural

Introducció

Ciasificación en el PLN

¿Quienes son las features en el NLP?

- Métodos clásicos: BOW, TF-IDF, ...
- Embeddings: Redes Neuronales, LLMs.

Retomando el clasificador vigente

Procesamiento de Lenguaje Natural

Introducció

- Features
- Raw Data
- Evaluación
- Rule-based / Lexicon-based / Machine Learning