SPOSL	
	PAGE No.
	Assignment C2
g.1)	What is Barker's Algorithm?
\rightarrow	Bankers Algorithm, also called detection algorithm,
ale land	is a resource allocation and deadlock
	new access is created it must specify maximum
	new process is created, it must specify maximum instances of each resource type that it needs to
	execute. It is named as bankers because
	it is used in banking system to determine
- paralei	whether a loan can be granted or not.
(2)	Who is the Inventor of Banker's Algorithm!
->	Who is the Inventor of Bankeris Algorithm? - Bankers Algorithm was developed by Edeger Dijkstra.
Tri Just	Dijkstra
Turks	Still and will all the first traditions
10	Explain Safe & Unsafe State
-5.]	CAPIDATE
→i)	Safe State -> The state that regularly leads to a
	single party is a safe state as it is generally
	assumed that one candidate has base of support.
	A state is safe it system can allocate all resources
	A state is safe if system can allocate all resources requested by all processes without entering
The state of	deadlock state.
\	the Co Co to to
ţi)	Unsafe State
	> If a safe sequence does not exist then
	system is in unsafe state which may lead to deadlock

9) Define Deadlock.

A deadlock is a situation in which 2 computer process showing the same resource, are effectively preventing each other from accessing the resources

Eg: If Process P1 needs resource R1 to complete execution & P2 needs again to complete its execution then this situation is in deadlock state.

0] Define deadlock prevention, detection & avoidance

- Deadlock prevention: > Preventing deadlock
 by constraining how requests for resources can
 be made in system & how they are handled in
 system design. The goal is to ensure that
 atleast one of the necessary conditions for
 deadlock can never hold.
 - 2) Deadlock Detection: It is the process of determining that a deadlock exists and identifying process & resources involved in the deadlock
 - 3) Deadlock Avoidance: It merely works to avoid deadlock, does not prevent it completely. Basic idea is to allocate resources only if resulting global state is a safe state.

	PAGE No. DATE
Q)	Write advantages & disadvantages of Banker's Algorithm.
->	Advantages of Banker's Algorithm i) It is used to avoid deadlock. 2) It is less restrictive than deadlock prevention.
	Disadvantages of Banker's Algorithm:
	i) It only works for fixed no. of resources.
	2) It is not suitable for multi-acress systems.
	3) Needs advance knowledge of maximum needs.