

Carl Rizk, David de la Hera, Noam Benitah

Sommaire

1. Détection de communautés linguistiques:

Twitch

- a) Objectifs
- b) Description du graph
- c) Algorithme utilisé
- d) Méthode
- e) Analyse et résultats
- f) Conclusion

2. Étude de l'influence des utilisateurs: Twitter

- a) Objectifs
- b) Description du graph
- c) Étude des centralités
- d) Independant cascade
- e) Linear treshold
- f) Influence Maximization problem
- g) Conclusion

A) Objectifs

1. Retrouver les communautés linguistiques

2. Identifier les métriques plus remarquables

3. Comparer les résultats

B) Description du graph

Nature du graphe

- Type de graphe : non orienté
- Domaine d'application : service de streaming (Twitch)

Structure du graphe

- Nœuds : Utilisateurs de Twitch
- Arêtes : Following mutuelle
- Labels: 21 langues différentes

Taille originale

- 168 114 Nœuds
- 6 797 557 Arêtes

B) Description du graph

Graph finale

- 41 265 Nœuds (~24.5%)
- 657 892 Arêtes (~9.7%)
- 19 langues
- Diamètre de 10 nœuds
- Rayon de 5 nœuds

C) Algorithme utilisé

Initialise chaque nœud avec un label unique Pour n itérations:

Pour chaque nœud x:

label(x) = label le plus courant* dans le voisinage de x

*Possibilité d'ajouter des poids aux arêtes

- √ Complexité O(|E|)
- ✓ Paramétrable
- × Algorithme probabiliste
- × Problématique si les clases ne sont pas équilibrées

D) Méthode

- Générer les communautés grâce a l'algorithme de Label Propagation
- Associer les communautés calculés aux communautés réelles:

Pour chaque com des min(m,n) plus grandes communautés calculées:

Trouver la communauté réelle ayant la plus grande intersection avec com

(Une communauté réelle ne peut être associé qu'à une seule communauté calculée)

D) Méthode

- Générer les communautés grâce a l'algorithme de Label Propagation
- Associer les communautés calculés aux communautés réelles
- Calculer la précision des associations:

$$Score_{association} = \frac{|CC \cap CR|}{|CC \cup CR|}$$

$$Score = \frac{\sum |CC \cap CR|}{nbre_noeuds}$$

Premier Test: Exécuter l'algorithme avec des poids égale a 1

Doido	Score (5 exécutions)					
Poids	Moyenne STD Min Max					
1	91.73%	3.2%	87.46%	94.72%		

Comment Améliorer

Poids	Score (500 exécutions)					
Polus	Moyenne STD Min Ma					
1	97.91%	1.65%	80.14%	99.10%		

Doido	Score (500 exécutions)				
Poids	Moyenne	STD	Min	Max	
1	97.91%	1.65%	80.14%	99.10%	
Min degré	99.39%	0.83%	81.04%	99.85%	

Poids	Score (500 exécutions)				
	Moyenne	STD	Min	Max	
1	97.91%	1.65%	80.14%	99.10%	
Min degré	99.39%	0.83%	81.04%	99.85%	
Min Betweeness Centrality	99.76%	1.7%	61.20%	99.85%	

■ DE	■ FR	ES
RU	■ ZH	PT
JA	■ IT	■ KO
■ PL	SV	TR
■ NL	= TH	■ FI
CS	DA	HU
■ NO		

Poids	Score (5 exécutions)			
Polus	Moyenne	STD	Min	Max
1	91.73%	3.2%	87.46%	94.72%
Min degré	90.51%	3.77%	86.17%	96.09%
Min Betweeness Centrality	Trop long a calculé			

Daida	Score (5 exécutions)					
Poids	Moyenne	STD	Min	Max		
1	91.73%	3.2%	87.46%	94.72%		
Min degré	90.51%	3.77%	86.17%	96.09%		
Min Betweeness Centrality	Trop long a calculé					
Min Degree Centrality	91.15%	91.15% 4.17% 86.41% 97.56%				

F) Conclusion

Application Réelle

1. Retrouver les communautés linguistiques

2. Identifier les métriques plus remarquables (Problème de complexité)

twitter

A) Objectifs

1. Identifier les utilisateurs influents

2. Comparer les modèles de diffusion

3. Optimiser les stratégies de diffusion

B) Description du graph de twitter

Nature du graphe

- Type de graphe : orienté non pondéré
- Domaine d'application : réseaux sociaux (Twitter)

Structure du graphe

- Nœuds : Utilisateurs de Twitter
- Arêtes : Relations entre les utilisateurs (abonnements et abonnés)

Taille originale

- 81 306 Nœuds
- 1 768 149 Arêtes

B) Description du graph de twitter

Structure du sous-graph

- Type de graphe : orienté non pondéré
- Reduction du graphe a partir du nœud avec la plus grande centralité (dégrée). BFS jusqu'à 3000.
- 3 000 Nœuds (~3,69%)
- 75 413 Arêtes (~4,27%)

C) Étude centralité

D) Independant cascade - algorithm

.

Modèle de diffusion pour observer quels utilisateurs sont les plus influents

<u>Étapes</u>

- Choisir K utilisateurs (influents) à activer au départ
 - On utilisera les utilisateurs avec les meilleures mesures de centralités
- Chaque nœud actif u peut activer un de ses voisins v qui n'est pas activé avec une probabilité 1/dv

Nous allons comparer les diffusions en fonction de l'ensemble de départ des nœuds activés

D.2) Independant cascade - Résultats

On étudie le nombre de voisin actif à l'issu de l'algorithme en modifiant certains paramètres :

- La méthode de centralité utilisés pour sélectionner les nœuds de départ activés
- Le nombre de nœuds activés au départ (entre 5 et 40)

Les tests ont été effectués sur un sous graph de 3000 nœuds pour être réalisable en un temps raisonnable

	degree_centrality	betweenness_centrality	closeness_centrality	pagerank
5	853.1	933.2	704.9	703.7
10	857.0	1062.8	717.5	691.3
20	935.8	1106.9	803.2	809.4
40	1216.9	1212.4	897.0	881.5

E) Linear treshold - algorithm

<u>Différences avec Independant cascade</u>

Un nœud est activé si la proportion de ses voisins actifs dépasse son seuil d'activation

Le seuil est généré aléatoirement pour chaque nœud et à chaque étape de la simulation.

Chaque nœud a un seuil d'activation aléatoire qui détermine s'il s'active

Chaque nœud a une probabilité de transmission sur chaque arête.

E.2) Linear tresholds- Résultats

Nous avons effectué la même étude que sur Independant Cascade afin de les comparer

	degree_centrality	betweenness_centrality	closeness_centrality	pagerank
5	2118.1	2055.2	2140.8	2165.9
10	2126.5	2052.2	2177.6	2168.9
20	2172.8	2133.5	2193.2	2225.2
40	2195.9	2149.4	2266.0	2259.1

F) Influence maximization problem - Algorithm

Améliorer les résultats d'influence en choisissant de meilleurs nœuds

Recherche des nœuds de départ à activer les plus performants

<u>Étapes</u>

- Commencer avec un ensemble de nœuds de départ vide
- Ajouter le nœud qui maximisera le nombre de nœuds activés si on le place dans l'ensemble de départ
- Itérer jusqu'à obtenir le nombre de nœuds souhaités dans l'ensemble de départ

F.2) Influence maximization problem – Independant Cascade

Les tests ont été effectués sur un sous graph de 1000 nœuds pour être réalisable en un temps raisonnable

	degree_centrality	betweenness_centrality	closeness_centrality	pagerank	influence_maximization
5	632.5	627.3	630.6	628.0	627.0
10	656.7	637.3	627.2	640.6	None
20	661.6	663.3	669.0	652.0	None
40	680.6	684.7	679.0	680.6	None

F.2) Influence maximization problem – Linear treshold

Les tests ont été effectués sur un sous graph de 1000 nœuds pour être réalisable en un temps raisonnable

	degree_centrality	betweenness_centrality	closeness_centrality	pagerank	influence_maximization
5	410.2	413.7	447.7	444.5	401.5
10	447.8	433.9	456.2	464.6	None
20	465.2	468.5	485.8	484.0	None
40	516.4	507.4	517.8	515.7	None

G) Conclusion

Application Réelle

Retrouver les meilleurs « influencer »

Diffuser les campagnes publicitaires à travers des personnes qui ont une plus grand diffusion

MERCI!

Lien du Git : https://github.com/carlrizk/CS-GRAPH

