Trabajo Práctico No. 8: Superficies y sólidos de revolución

- 1. Considere las siguientes superficies de revolución, determine el eje de rotación y dos curvas generatrices \mathcal{C} contenidas en planos coordenados distintos. Grafique.
 - a) $S: z = \sqrt{x^2 + y^2} 1$.
 - b) $S: e^{-(x^2+z^2)} = y.$
 - c) $S: \ln(y) + x^2 + z^2 = 0$.
 - d) $S : \cos(\sqrt{x^2 + y^2}) = z$.
- 2. Encuentre las ecuaciones de las superficies de revolución generadas por la rotación de las siguientes curvas alrededor de los ejes indicados. Luego determine el volumen del sólido correspondiente.
 - a) $C: f(x) = \sqrt{1+x}$, entre $0 \le x \le 4$, alrededor del eje x.
 - b) $C: f(x) = x^2$, entre $0 \le x \le 4$, alrededor del eje x.
 - c) $C: f(y) = e^y$, entre $-10 \le y \le 10$, alrededor del eje y.
 - d) $C: f(y) = 4 y^2$, entre $0 \le y \le 2$, alrededor del eje y.
 - e) $C: z = y^3$, entre $0 \le z \le 1$, alrededor del eje z.
 - f) $\mathcal{C}: z=y^3$, entre $0 \le z \le 1$, alrededor del eje y.
- 3. Considere la siguiente la superficie de revolución $S: x^2 + y^2(y^2 1) + z^2 = 0$.
 - a) Determinar el eje de rotación y una curva generatriz \mathcal{C} .
 - b) Determinar el volumen del sólido limitado por S.
 - c) Graficar la superficie y la curva \mathcal{C} .
- 4. Sea la superficie de revolución $S: x^2 + e^{(y-2)} + z^2 1 = 0$.
 - a) Determinar el eje de rotación y una curva generatriz $\mathcal{C}.$
 - b) Determinar el volumen del sólido limitado por S, que se encuentre contenido en la región $y \ge 0$.
 - c) Graficar la superficie, el sólido y la curva $\mathcal{C}.$
- 5. Halle las fórmulas del volumen del cilindro y del cono, de radio R y altura h.