Find the standard matrix for the transformation defined by the equations

a)
$$\begin{cases} w_1 = 2x_1 - 3x_2 + 4x_4 \\ w_2 = 3x_1 + 5x_2 - x_4 \end{cases}$$

$$b) \begin{cases} w_1 = 7x_1 + 2x_2 - 8x_3 \\ w_2 = -x_2 + 5x_3 \\ w_3 = 4x_1 + 7x_2 - x_3 \end{cases}$$

c)
$$\begin{cases} w_1 = x_1 \\ w_2 = x_1 + x_2 \\ w_3 = x_1 + x_2 + x_3 \\ w_4 = x_1 + x_2 + x_3 + x_4 \end{cases}$$

Solution

a)
$$\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 0 & 4 \\ 3 & 5 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

The standard matrix is $\begin{bmatrix} 2 & -3 & 0 & 4 \\ 3 & 5 & 0 & -1 \end{bmatrix}$

b)
$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 7 & 2 & -8 \\ 0 & -1 & 5 \\ 4 & 7 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

The standard matrix is $\begin{bmatrix} 7 & 2 & -8 \\ 0 & -1 & 5 \\ 4 & 7 & -1 \end{bmatrix}$

$$c) \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

The standard matrix is
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Find the standard matrix for the operator T defined by the formula

$$T(x_1, x_2) = (2x_1 - x_2, x_1 + x_2)$$

Solution

$$T(x_1, x_2) = \begin{bmatrix} 2x_1 - x_2 \\ x_1 + x_2 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

The standard matrix is $\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$

Exercise

Find the standard matrix for the operator T defined by the formula

$$T(x_1, x_2, x_3) = (x_1 + 2x_2 + x_3, x_1 + 5x_2, x_3)$$

Solution

$$T(x_1, x_2, x_3) = \begin{bmatrix} x_1 + 2x_2 + x_3 \\ x_1 + 5x_2 \\ x_3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 1 \\ 1 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

The standard matrix is $\begin{bmatrix} 1 & 2 & 1 \\ 1 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Find the standard matrix for the operator T defined by the formula

$$T(x_1, x_2, x_3) = (4x_1, 7x_2, -8x_3)$$

Solution

$$T(x_1, x_2, x_3) = \begin{pmatrix} 4x_1 \\ 7x_2 \\ -8x_3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

The standard matrix is $\begin{pmatrix} 4 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -8 \end{pmatrix}$

Exercise

Find the standard matrix for the operator T defined by the formula

$$T(x_1, x_2) = (x_2, -x_1, x_1 + 3x_2, x_1 - x_2)$$

$$T(x_{1}, x_{2}) = \begin{pmatrix} x_{2} \\ -x_{1} \\ x_{1} + 3x_{2} \\ x_{1} - x_{2} \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

The matrix is
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 3 \\ 1 & -1 \end{pmatrix}$$

Find the standard matrix for the operator T defined by the formula

$$T(x_1, x_2, x_3) = (0, 0, 0, 0, 0)$$

Solution

$$T(x_1,x_2,x_3) = (0, 0, 0, 0, 0)$$

Exercise

Find the standard matrix for the operator T defined by the formula

$$T(x_1, x_2, x_3, x_4) = (x_4, x_1, x_3, x_2, x_1 - x_3)$$

$$T(x_1, x_2, x_3, x_4) = (x_4, x_1, x_3, x_2, x_1 - x_3)$$

$$T(x_{1}, x_{2}, x_{3}, x_{4}) = \begin{pmatrix} x_{4} \\ x_{1} \\ x_{3} \\ x_{2} \\ x_{1} - x_{3} \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

The matrix is
$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \end{pmatrix}$$

Find the standard matrix for the operator T defined by the formula

$$T(x_1, x_2, x_3, x_4) = (7x_1 + 2x_2 - x_3 + x_4, x_2 + x_3, -x_1)$$

Solution

$$T(x_1, x_2, x_3, x_4) = \begin{pmatrix} 7x_1 + 2x_2 - x_3 + x_4 \\ x_2 + x_3 \\ -x_1 \end{pmatrix}$$
$$= \begin{pmatrix} 7 & 2 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

The matrix is $\begin{pmatrix} 7 & 2 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$

Exercise

Plot $\vec{u} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ and their images under the given transformation T

$$T(\vec{x}) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Solution

$$T(\vec{u}) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} -5 \\ -2 \end{pmatrix}$$

$$T(\vec{v}) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$
$$= \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$

 \therefore Reflection through the origin (180°)

Plot $\vec{u} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ and their images under the given transformation T

$$T(\vec{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Solution

$$T(\vec{u}) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} 10 \\ 4 \end{pmatrix}$$

$$T(\vec{v}) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$
$$= \begin{pmatrix} -4 \\ 8 \end{pmatrix}$$

$$\binom{10}{4} = 2 \binom{5}{2}$$

$$T(\vec{u}) = \vec{u}$$

 \therefore *Dilation* with factor (k=2) on \mathbb{R}^2

Exercise

Plot $\vec{u} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ and their images under the given transformation T

$$T(\vec{x}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$T(\vec{u}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$T(\vec{v}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$

$$=\begin{pmatrix} 4 \\ -2 \end{pmatrix}$$

$$\vec{z} = \vec{z}$$

$$\vec{x}_1 = \vec{x}_2$$

 \therefore reflection about the line $\vec{x}_1 = \vec{x}_2$

Exercise

Plot $\vec{u} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ and their images under the given transformation T

$$T(\vec{x}) = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Solution

$$T(\vec{u}) = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 4 \end{pmatrix}$$

$$T(\vec{v}) = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 8 \end{pmatrix}$$

$$T(\vec{u})$$
 \vec{u}

$$\binom{0}{8} = 2 \binom{*}{4}$$

$$T(\vec{v})$$
 \vec{v}

 \therefore Orthogonal projection on the y-axis and with *Dilation* with factor (k=2)

Plot $\vec{u} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ and their images under the given transformation T

$$T(\vec{x}) = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$T(\vec{u}) = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$

$$T(\vec{v}) = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$
$$= \begin{pmatrix} -2 \\ -6 \end{pmatrix}$$

$$\binom{5}{3} = \binom{5}{2}$$

$$T(\vec{u})$$
 \vec{u}

$$\begin{pmatrix} -2 \\ -6 \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$

$$T(\vec{v})$$
 \bar{v}

- : Expansion of \vec{u} in the y-direction with factor $k = \frac{3}{2}$
- : Expansion of \vec{v} in the y-direction with factor $k = \frac{3}{2}$ and reflection about x-axis.