EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Pere Gilabert February 2021

Index

- 1. How to scale
- 2. Architecture
- 3. Results

1. Add new layers

1. Add new layers

2. Increase height and width

1. Add new layers

2. Increase height and width

3. Increase the number of channels

1. Add new layers (d=2)

3. Increase the number of channels (w=2)

2. Increase height and width (r=2)

1. Add new layers (d=2)

 $\max_{d,w,r} Accuracy(Network(d,w,r))$

s.t. Hardware requiered < Hardware capabilities $d \ge 1, w \ge 1, r \ge 1$

2. Increase height and width (r=2)

3. Increase the number of channels (w=2)

 $\max_{d,w,r} Accuracy(Network(d,w,r))$

s.t. Hardware requiered < Hardware capabilities $d \ge 1, w \ge 1, r \ge 1$

3. Increase the number of channels (w=2)

Hypothesis: Scale d, r, w evenly. We can define α , β , γ s.t. $w=\beta^{\phi}$ $r=\gamma^{\phi}$

```
\max_{d,w,r} \ Accuracy(Network(d,w,r)) \qquad \qquad \max_{d,w,r} \ Accuracy(Network(\alpha,\beta,\gamma)) s.t. \ Hardware\ requiered < Hardware\ capabilities s.t. \ Hardware\ requiered < Hardware\ capabilities d \geq 1, w \geq 1, r \geq 1 \alpha \geq 1, \beta \geq 1, \gamma \geq 1
```

We can find the best parameters α , β , γ using grid search

 $FLOPS(Network(d, w, r)) \propto d \cdot FLOPS(Network(1, 1, 1))$

 $FLOPS(Network(d, w, r)) \propto d \cdot FLOPS(Network(1, 1, 1))$

 $FLOPS(Network(d, w, r)) \propto r^2 \cdot FLOPS(Network(1, 1, 1))$

 $FLOPS(Network(d, w, r)) \propto d \cdot FLOPS(Network(1, 1, 1))$

 $FLOPS(Network(d, w, r)) \propto r^2 \cdot FLOPS(Network(1, 1, 1))$

 $FLOPS(Network(d, w, r)) \propto w^2 \cdot FLOPS(Network(1, 1, 1))$

 $FLOPS(Network(d, w, r)) \propto dw^2r^2 \cdot FLOPS(Network(1, 1, 1))$

$$FLOPS(Network(d, w, r)) \propto dw^{2}r^{2} \cdot FLOPS(Network(1, 1, 1))$$

$$FLOPS(Network(d, w, r)) = \alpha \beta^{2\phi} \gamma^{2\phi} \cdot FLOPS(Network(1, 1, 1))$$

$$\frac{FLOPS(Network(d, w, r))}{FLOPS(Network(1, 1, 1))} = (\alpha \beta^{2} \gamma^{2})^{\phi} = 2^{\phi}$$

$$FLOPS(Network(d, w, r)) \propto dw^{2}r^{2} \cdot FLOPS(Network(1, 1, 1))$$

$$FLOPS(Network(d, w, r)) = \alpha \beta^{2\phi} \gamma^{2\phi} \cdot FLOPS(Network(1, 1, 1))$$

$$\frac{FLOPS(Network(d, w, r))}{FLOPS(Network(1, 1, 1))} = (\alpha \beta^{2} \gamma^{2})^{\phi} = 2^{\phi}$$

$$\max_{d, w, r} Accuracy(Network(\alpha, \beta, \gamma))$$

$$\alpha \beta^{2} \gamma^{2} \approx 2$$

$$\alpha \geq 1, \beta \geq 1, \gamma \geq 1$$

Given a network, ϕ is used to define EfficientNet B0 (ϕ =1), ..., B7 (ϕ =8)

Module 2

Module 5

Sub-block 1

Sub-block 2

Sub-block 3

Conv1x1 & Pooling & FC

 7×7

1280

MBConv: mobile inverted bottleneck (https://arxiv.org/abs/1801.04381v4)

3. Results

Model	Top-1 Acc.	Top-5 Acc.	#Params	Ratio-to-EfficientNet	#FLOPs	Ratio-to-EfficientNet
EfficientNet-B0	77.1%	93.3%	5.3M	1x	0.39B	1x
ResNet-50 (He et al., 2016)	76.0%	93.0%	26M	4.9x	4.1B	11x
DenseNet-169 (Huang et al., 2017)	76.2%	93.2%	14M	2.6x	3.5B	8.9x
EfficientNet-B1	79.1%	94.4%	7.8M	1x	0.70B	1x
ResNet-152 (He et al., 2016)	77.8%	93.8%	60M	7.6x	11B	16x
DenseNet-264 (Huang et al., 2017)	77.9%	93.9%	34M	4.3x	6.0B	8.6x
Inception-v3 (Szegedy et al., 2016)	78.8%	94.4%	24M	3.0x	5.7B	8.1x
Xception (Chollet, 2017)	79.0%	94.5%	23M	3.0x	8.4B	12x
EfficientNet-B2	80.1%	94.9%	9.2M	1x	1.0B	1x
Inception-v4 (Szegedy et al., 2017)	80.0%	95.0%	48M	5.2x	13B	13x
Inception-resnet-v2 (Szegedy et al., 2017)	80.1%	95.1%	56M	6.1x	13B	13x
EfficientNet-B3	81.6%	95.7%	12M	1x	1.8B	1x
ResNeXt-101 (Xie et al., 2017)	80.9%	95.6%	84M	7.0x	32B	18x
PolyNet (Zhang et al., 2017)	81.3%	95.8%	92M	7.7x	35B	19x
EfficientNet-B4	82.9%	96.4%	19M	1x	4.2B	1x
SENet (Hu et al., 2018)	82.7%	96.2%	146M	7.7x	42B	10x
NASNet-A (Zoph et al., 2018)	82.7%	96.2%	89M	4.7x	24B	5.7x
AmoebaNet-A (Real et al., 2019)	82.8%	96.1%	87M	4.6x	23B	5.5x
PNASNet (Liu et al., 2018)	82.9%	96.2%	86M	4.5x	23B	6.0x
EfficientNet-B5	83.6%	96.7%	30M	1x	9.9B	1x
AmoebaNet-C (Cubuk et al., 2019)	83.5%	96.5%	155M	5.2x	41B	4.1x
EfficientNet-B6	84.0%	96.8%	43M	1x	19B	1x
EfficientNet-B7	84.3%	97.0%	66M	1x	37B	1x
GPipe (Huang et al., 2018)	84.3%	97.0%	557M	8.4x	-	-

3. Results

Thanks!

