Package 'MFASTR'

October 29, 2018

Title The Multiple Filter Automatic Shear Wave Splitting Technique in R
Version 1.6
Date 2018-08-10
Description This is a port of the MFAST codes into R. The main functions do_station_simple and do_station_complex replicate MFAST's usability. Other functions in this package are documented to give advanced users more fexability. In contrast to MFAST, MFASTR (by default) uses zerophase filters and does not downsample.
<pre>URL http://mfast-package.geo.vuw.ac.nz/</pre>
<pre>BugReports https://github.com/shearwavesplitter/MFASTR/issues</pre>
Depends R (>= 3.0.0), TauP.R, circular, signal
Imports parallel
Suggests RSEIS
SystemRequirements GNU make, Linux
License
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1.9000
R topics documented:
ak135_alp ak135_taupo all6plot all6_station anginc butfilt checkcomp checkspick createini cut_simple

2 ak135_alp

ak135	5_alp	The ak135_alp velocity model	
ndex			33
	write_sample		
			. 32
			31
	writesac_filt		. 30
	summ.null		30
	summ.cz		. 29
	summ.ab		. 29
	stde.weighted		. 28
	snr		. 27
	run_mfast		. 27
	rms		. 26
	RK_NM_SWS_det		. 26
			. 26
	reanginc		. 25
	readtvel		. 24
	readtriplet		. 23
	readmfast		. 23
	plotrose		. 22
	perani		21
	pathclus		. 20
	C-1		20
	•		. 19
	moving_dt		. 19
	meanaxial		18
	_		17
	C		
			16
	getevents		15
	filter_spread		14
	fast.weighted		13
	_		. 12
	-	·	. 11
	do_all_simple		10
	do_all_complex		. 9
	V I		

Description

The ak135_alp velocity model

ak135_taupo 3

Usage

```
ak135_alp
```

Format

A TauP.R compatible velocity model

ak135_taupo

The ak135_taupo velocity model

Description

The ak135_taupo velocity model

Usage

```
ak135_taupo
```

Format

A TauP.R compatible velocity model

all6plot

Create all6 plot

Description

Create an all6 plot for a specific event

Usage

```
all6plot(path, cuspid, filter = 1, zerophase = TRUE, E = ".e", N = ".n", Z = ".z", auto = FALSE, biglong = FALSE, Iendian = 1)
```

path	Path to folder containing raw events and output folder
filter	Which filter to plot (e.g. 1 for fb1)
zerophase	Were the filters applied zero phase?
E	Vector signal of the east component
N	Vector signal of the north component
Z	Vector signal of the vertical component
auto	Select the first event if multiple are available?
biglong	logical, TRUE=long=8 bytes
Iendian	Endian-ness of the original data: 1,2,3: "little", "big", "swap". Default = 1 (little)

4 anginc

all6_station

Plot all6

Description

A wrapper for the all6plot function to plot all events from a station

Usage

```
all6_station(path, filter = c(1, 2, 3), zerophase = TRUE, E = ".e",
 N = ".n", Z = ".z")
```

Arguments

path	Path to folder containing raw events and output folder
filter	Which filter to plot (e.g. c(1,2,3) for fb1, fb2 & fb3)
zerophase	Were the filters applied zero phase?
Е	Vector signal of the east component
N	Vector signal of the north component
Z	Vector signal of the vertical component

2	n۶	۲٦.	n	

Angle of incidence

Description

Determines the angle of incidence for an event

Usage

```
anginc(tvel, trip)
```

Arguments

tvel	Veloctity model read in by readtvel or a stored model (ak135_alp, ak135_taupo)
trip	Seismogram triplet (output of readtriplet)

Value

The angle of incidence at the surface (degrees) and the ray parameter

butfilt 5

Examples

```
# Determine the angle of incidence for event 2002.054.09.47.lhor2
pathto <- "~/mfast/sample_data/raw_data"
write_sample(pathto)
event <- "2002.054.09.47.lhor2"
triplet <- readtriplet(event,path=pathto)
a <- anginc(ak135_alp,triplet)</pre>
```

butfilt

export

Description

export

Usage

```
butfilt(a, fl = 0, fh = 0.5, deltat = 1, type = "BP", proto = "BU",
    npoles = 5, zp = TRUE, chebstop = 30, trbndw = 0.3, RM = FALSE)
```

 ${\it checkcomp}$

Check components

Description

Checks a folder to make sure all three components are present and moves those with missing components to a subdirectory

Usage

```
checkcomp(path, E = ".e", N = ".n", Z = ".z")
```

path	Path to folder
E	Suffix of the east component
N	Suffix of the north component
Z	Suffix of the vertical component

6 createini

Check S-wave picks

Description

Checks a folder to make sure all events have S-wave picks and moves those with missing picks to a subdirectory

Usage

```
checkspick(path, suffix = "E", header = "t0", E = ".e", N = ".n",
    Z = ".z")
```

Arguments

path	Path to folder
suffix	Which component to look for the S-pick in (E, N, or Z)
header	Header name of where the S-pick is stored
Е	Suffix of the east component
N	Suffix of the north component
Z	Suffix of the vertical component

createini

Create .ini

Description

Creates an MFAST .ini (paramter) file

Usage

```
createini(path, trip, filts, name, number = 3, E = ".e", N = ".n",
  Z = ".z", nwbeg = 5, fdmin = 0.3, fdmax = 8, t_win_freq = 3,
  tlagmax = 1, Ncmin = 5, Mmax = 15, zerophase = TRUE)
```

path	Path to folder
trip	Seismogram triplet (output of readtriplet)
name	Event name (without suffix)
number	Number of best filters to use
nwbeg	number of start times tested
fdmin	Minimum allowed dominant frequency

cut_simple 7

fdmax Maximum allowed dominant frequency Window to calculate the dominant frequency t_win_freq tlagmax Maximum allowed time delay (s) Minimum number of points in an acceptable cluster Ncmin maximum number ofclusters Mmax dataframe of the best filters (output of filter_spread) suffe Suffix of east component suffn Suffix of north component suffz Suffix of vertical component Minimum snr allowed for a good filter snrmax Window for SNR (s) t_win_snr Modification to t_win_snr to account for error in S-pick (s) t_err

Value

A vector of dominant frequency in the S-wave (maxfreq) for each filter

Examples

```
# Create .ini file for event 2002.054.09.47.lhor2
pathto <- "~/mfast/sample_data/raw_data"
write_sample(pathto)
event <- "2002.054.09.47.lhor2"
triplet <- readtriplet(event,path=pathto)
bestfilt <- filter_spread(triplet)
maxfreq <- createini(pathto,triplet,bestfilt,event)</pre>
```

cut_simple Simple cut

Description

A simple routine to cuts out portion of a vector signal

Usage

```
cut\_simple(x, dt, t1, t2, b = 0)
```

Χ	vector signal
dt	sample interval
t1	Begin cut time
t2	End cut time

8 det.type

Value

A cut vector signal

det.type	Classify events	
----------	-----------------	--

Description

Determines which type an event can be classified as

Usage

```
det.type(summ, cutoff = 15, cutoff2 = 35, minper = 0.9,
  depthcutoff = 0.17, sww = 45, tvel = ak135_taupo, plot = TRUE)
```

Arguments

summ	A summary file (usually from a single station)
cutoff	Maximum propgation angle allowed for a Type 1 event
cutoff2	Maximum propgation angle allowed for a Type 2 event
minper	Percentage of the path that must be below the maximum to be classified into that type
depthcutoff	What percentage of the straight line path must be below cutoff2 to be classified as Type 2
SWW	The shear wave window cutoff
tvel	The velocity model to be used (this must be the same as the one used to determine the ray parameters)
plot	Should the result be plotted?

Details

This function takes the events in a summary file and classifies each of them (based on their propogation angles) as Type 1 or Type 3 (full delay time and correct polarisation), Type 2 (correct polarisation) or Type NULL (low delay time and incorrect polarisation)

Value

A dataframe containing the summary file with the type for each event

do_all_complex 9

Description

Run shear wave splitting measurements on multiple folders/stations

Usage

```
do_all_complex(path, sheader = "t0", nwbeg = 5, fdmin = 0.3, fdmax = 8,
    t_win_freq = 3, tlagmax = 1, Ncmin = 5, Mmax = 15, snrmax = 3,
    t_win_snr = 3, t_err = 0.02, filtnum = 3, type = "normal",
    filter = NULL, tvelpath = NULL, tvel = ak135_alp, suffe = ".e",
    suffn = ".n", suffz = ".z", zerophase = TRUE, no_threads = NULL,
    biglong = FALSE, Iendian = 1)
```

path	Path to folder containing folders with events
sheader	SAC header the S-wave pick is stored in
nwbeg	number of start times tested
fdmin	Minimum allowed dominant frequency
fdmax	Maximum allowed dominant frequency
t_win_freq	Window to calculate the dominant frequency (s)
tlagmax	Maximum allowed time delay (s)
Ncmin	Minimum number of points in an acceptable cluster
Mmax	maximum number of clusters
snrmax	Minimum snr allowed for a good filter
t_win_snr	Window for SNR (s)
t_err	Modification to t_win_snr to account for error in S-pick (s)
filtnum	Number of filters to test
type	Which of the MFAST default settings and filters to use. If a P-wave pick is present, type="verylocal" uses it to set t_win_snr
filter	User defined set of filters (this overrides the filter selected with type).
tvelpath	Path to a .tvel file containing the velocity model (overrides tvel)
tvel	A tvel file read with readtvel (ak135_alp and ak135_taupo are already loaded)
suffe	Suffix of east component
suffn	Suffix of north component
suffz	Suffix of vertical component
no_threads	Number of threads to run measurements on. Set to 1 for verbose mode. Defaults to the number of cores
biglong	logical, TRUE=long=8 bytes
Iendian	Endian-ness of the data: 1,2,3: "little", "big", "swap". Default = 1 (little)

do_all_simple

Value

A dataframe containing a summary of all the stations

Examples

```
# Run on measurements three folders of the normal sample data
write_sample("~/mfast/sample_data/raw_data")
write_sample("~/mfast/sample_data/raw_data2")
write_sample("~/mfast/sample_data/raw_data3")
do_all_complex(path="~/mfast/sample_data")
```

do_all_simple

Run MFAST on multiple folders

Description

Run shear wave splitting measurements on more than one folder/station

Usage

```
do_all_simple(path, sheader = "t0", type = "normal", filtnum = 3,
  tvelpath = NULL, tvel = ak135_alp, zerophase = TRUE,
  no_threads = NULL, biglong = FALSE, Iendian = 1)
```

Arguments

path	Path to folder containing folders with events
sheader	SAC header the S-wave pick is stored in

type Which of the MFAST default settings and filters to use

filtnum Number of filters to test

tvelpath Path to a .tvel file containing the velocity model (overrides tvel)

tvel A tvel file read with readtvel (ak135_alp and ak135_taupo are already loaded)

no_threads Number of threads to run measurements on. Set to 1 for verbose mode. Defaults

to automatic selection

biglong logical, TRUE=long=8 bytes

Iendian Endian-ness of the data: 1,2,3: "little", "big", "swap". Default = 1 (little)

Details

Component suffixes are determined automatically

Value

A dataframe containing a summary of all the stations

do_station_complex 11

Examples

```
# Run on measurements three folders of the normal sample data
write_sample("~/mfast/sample_data/raw_data")
write_sample("~/mfast/sample_data/raw_data2")
write_sample("~/mfast/sample_data/raw_data3")
do_all_simple(path="~/mfast/sample_data")
```

do_station_complex

Run MFAST with more options

Description

Run shear wave splitting measurements on a folder of events with more options

Usage

```
do_station_complex(path, sheader = "t0", nwbeg = 5, fdmin = 0.3,
  fdmax = 8, t_win_freq = 3, tlagmax = 1, Ncmin = 5, Mmax = 15,
  snrmax = 3, t_win_snr = 3, t_err = 0.02, filtnum = 3,
  type = "normal", filter = NULL, tvelpath = NULL, tvel = ak135_alp,
  suffe = ".e", suffn = ".n", suffz = ".z", zerophase = TRUE,
  no_threads = NULL, mc.preschedule = TRUE, downsample = FALSE,
  biglong = FALSE, Iendian = 1)
```

	D.4. C.11
path	Path to folder
sheader	SAC header the S-wave pick is stored in
nwbeg	number of start times tested
fdmin	Minimum allowed dominant frequency
fdmax	Maximum allowed dominant frequency
t_win_freq	Window to calculate the dominant frequency (s)
tlagmax	Maximum allowed time delay (s)
Ncmin	Minimum number of points in an acceptable cluster
Mmax	maximum number of clusters
snrmax	Minimum snr allowed for a good filter
t_win_snr	Window for SNR (s)
t_err	Modification to t_win_snr to account for error in S-pick (s)
filtnum	Number of filters to test
type	Which of the MFAST default settings and filters to use. If a P-wave pick is present, type="verylocal" uses it to set t_win_snr
filter	User defined set of filters (this overrides the filter selected with type).

do_station_simple

tvelpath	Path to a .tvel file containing the velocity model (overrides tvel)
tvel	A tvel file read with readtvel (ak135_alp and ak135_taupo are already loaded)
suffe	Suffix of east component
suffn	Suffix of north component
suffz	Suffix of vertical component
no_threads	Number of threads to run measurements on. Set to 1 for verbose mode. Defaults to the number of cores
downsample	Downsample if sampling rate is less than 0.01s (Defaults to FALSE, originally used to decrease computational loads)
biglong	logical, TRUE=long=8 bytes
Iendian	Endian-ness of the data: 1,2,3: "little", "big", "swap". Default = 1 (little)

Value

A dataframe containing the summary file

Examples

```
# Run on measurements the normal sample data with defaults
write_sample("~/mfast/sample_data/raw_data")
do_station_complex(path="~/mfast/sample_data/raw_data")

# Run measurements with your own defined filters
filt_low <- c(0.1,0.2,0.5)
filt_high <- c(1,2,3)
filts <- cbind(filt_low,filt_high)
write_sample("~/mfast/sample_data/raw_data")
do_station_complex(path="~/mfast/sample_data/raw_data",filter=filts)</pre>
```

do_station_simple Run MFAST

Description

Run shear wave splitting measurements on a folder of events

```
do_station_simple(path, sheader = "t0", type = "normal", filtnum = 3,
   tvelpath = NULL, tvel = ak135_alp, zerophase = TRUE,
   no_threads = NULL, mc.preschedule = TRUE, downsample = FALSE,
   biglong = FALSE, Iendian = 1)
```

dt.weighted 13

Arguments

path Path to folder

sheader SAC header the S-wave pick is stored in

type Which of the MFAST default settings and filters to use

filtnum Number of filters to test

tvelpath Path to a .tvel file containing the velocity model (overrides tvel)

A tvel file read with readtvel (ak135_alp and ak135_taupo are already loaded)

to the number of cores

downsample Downsample if sampling rate is less than 0.01s (Defaults to FALSE, originally

used to decrease computational loads)

biglong logical, TRUE=long=8 bytes

Iendian Endian-ness of the data: 1,2,3: "little", "big", "swap". Default = 1 (little)

Details

Component suffixes are determined automatically

Value

A dataframe containing the summary file

Examples

```
# Run on measurements the normal sample data
write_sample("~/mfast/sample_data/raw_data")
do_station_simple(path="~/mfast/sample_data/raw_data")

# Run on measurements the verylocal sample data where the S-pick is stored in the t5 header
write_sample("~/mfast/sample_data/raw_data", type="verylocal")
do_station_simple(path="~/mfast/sample_data/raw_data", type="verylocal", sheader="t5")
```

dt.weighted Mean delay time

Description

Determine the mean weighted delay time

```
dt.weighted(summ, weights = c(1, 2, 3))
```

14 filter_spread

Arguments

summ Dataframe containing Castelazzi graded events (CZ_*.summ)

weights A vector containing the weights with length equal to the number of filters used

(usually 3) in order with the first corresponding to F1

Value

A list containing the weighted mean delay time, and mean delay time per kilometre (straightline) path length as well as their respective standard deviations and standard errors.

fast.weighted

Mean fast polarisation

Description

Determine the mean weighted fast polarisation

Usage

```
fast.weighted(summ, weights = c(1, 2, 3))
```

Arguments

summ Dataframe containing Castelazzi graded events (CZ_*.summ)

weights A vector containing the weights with length equal to the number of filters used

(usually 3) in order with the first corresponding to F1 or a weight for each mea-

surement

Value

A list containing the weighted mean polarisation, its pythagorean length, and the (weighted) p-value from the Rayleigh test

filter_spread

Find best filters

Description

Determines the best filters for an event

```
filter_spread(trip, type = "normal", filter = NULL, t_win_snr = 3,
    t_err = 0.05, snrmax = 3, zerophase = TRUE)
```

getevents 15

Arguments

trip	Seismogram triplet (output of readtriplet)
type	Which of the default filters to use. If a P-wave pick is present, type="verylocal" uses it to set t_win_snr
filter	User defined filters. Overrides filters selected by type (for "verylocal" the P-pick is still used)
t_win_snr	Window for SNR
t_err	Modification to t_win_snr to account for error in S-pick
snrmax	Minimum snr allowed for a good filter

Value

A dataframe of the filters sorted by SNR*bandwidth

Examples

```
# Define your own set of filters
filt_low <- c(0.1,0.2,0.5)
filt_high <- c(1,2,3)
filts <- cbind(filt_low,filt_high)
write_sample("~/mfast/sample_data/raw_data")
triplet <- readtriplet("2002.054.09.47.lhor2",path="~/mfast/sample_data/raw_data")
bestfilt <- filter_spread(triplet,filter=filts)</pre>
```

getevents	Get events	

Description

A handy function to retrieve specific events from a summary dataframe

Usage

```
getevents(summ, events, station = NULL)
```

summ	Dataframe containing the summary file
events	A vector containing the rquired event names
station	Defaults to events on all stations

logfiles

grade

Grade .summ file

Description

Grades a .summ file (do_station automatically grades)

Usage

```
grade(path, minsnr = 3, tlagmax = 1, minl = 0, mfast = FALSE)
```

Arguments

path Path to .summ file to be graded

minsnr Minimum SNR allowed for an AB+ grade

tlagmax Maximum time delay allowed for an AB+ grade
minl Minimum lambdamax allowed for a AB+ grade

mfast Set to TRUE to grade a .summ file produced by the original MFAST

Examples

```
# (Re)grade LHOR2.75.summ
write_sample("~/mfast/sample_data/raw_data")
do_station_simple(path="~/mfast/sample_data/raw_data")
pathto <- "~/mfast/sample_data/raw_data/LHOR2.summ_files/LHOR2.75.summ"
grade(pathto)</pre>
```

logfiles

Parse results

Description

Parses output of shear wave splitting measurement for a set of filters (used to build .summ files)

```
logfiles(path, name, trip, filtlist, maxfreqv, comment = "MFASTR", anginc)
```

mclapply2

Arguments

path	Path to folder
name	Name of event
trip	Seismogram triplet (output of readtriplet)
filtlist	Dataframe of the best filters to be used (output of writesac_filt)
maxfreqv	Vector of dominant frequency in the S-wave (maxfreq) for each filter(output of create_ini)
comment	Optional comment
anginc	Angle of indidence (output of anginc)

Value

A dataframe containing the results for that event

Examples

```
# Run shear wave splitting measurement on event 2002.054.09.47.lhor2 and parse the results
pathto <- "~/mfast/sample_data/raw_data"
write_sample(pathto)
event <- "2002.054.09.47.lhor2"
triplet <- readtriplet(event,path=pathto)
a <- anginc(ak135_alp,triplet)
bestfilt <- filter_spread(triplet)
maxfreq <- createini(pathto,triplet,bestfilt,event)
f <- writesac_filt(pathto,triplet,event,bestfilt)
run_mfast(pathto,event,f)
res <- logfiles(pathto,event,triplet,f,maxfreq,anginc=a)</pre>
```

mclapply2

Wrapper around mclapply to track progress

Description

Based on http://stackoverflow.com/questions/10984556

```
mclapply2(X, FUN, ..., mc.preschedule = TRUE, mc.set.seed = TRUE,
    mc.silent = FALSE, mc.cores = getOption("mc.cores", 2L),
    mc.cleanup = TRUE, mc.allow.recursive = TRUE, mc.progress = TRUE,
    mc.style = 3)
```

18 meanaxial

Arguments

X a vector (atomic or list) or an expressions vector. Other objects (including

classed objects) will be coerced by 'as.list'

FUN the function to be applied to ... optional arguments to 'FUN'

mc.preschedule see mclapply
mc.set.seed see mclapply
mc.silent see mclapply
mc.cores see mclapply

mc.cleanup see mclapply

mc.allow.recursive

see mclapply mc.progress track progress?

mc.style style of progress bar (see txtProgressBar)

Examples

```
x \leftarrow mclapply2(1:1000, function(i, y) Sys.sleep(0.01))
 x \leftarrow mclapply2(1:3, function(i, y) Sys.sleep(1), mc.cores=1)
```

meanaxial

Weighted axial mean

Description

The mean of a weighted axial variable

Usage

```
meanaxial(vec, weights = NULL)
```

Arguments

vec A vector of axis (degrees)

weights A vector of weights of the same length as vec

Value

The mean axis (degrees) and the Pythagorean length

moving_dt 19

Description

A moving average of delay time

Usage

```
moving_dt(summfile, windowlength, windowspeed, norm = FALSE)
```

Arguments

summfile A dataframe containing a summary file (i.e. from readmfast)

windowlength Size of the averaging window (in days)

windowspeed Speed of advancing window (days per sample)
norm Normalise by straight line path distance?

Value

A dataframe containing the end days of each window along with its mean, standard deviation (of the mean), median, upper and lower 95

moving_phi	Fast polarisation moving average

Description

A moving average of fast polarisation

Usage

```
moving_phi(summfile, windowlength, windowspeed, reps = 9999)
```

Arguments

summfile A dataframe containing a summary file (i.e. from readmfast)

windowlength Size of the averaging window (in days)

windowspeed Speed of advancing window (days per sample)

reps Number of interations for the bootstrap

Value

A dataframe containing the end days of each window along with its mean, median fast polarisation, and 95

20 pathclus

moving_vpvs	vP/vS moving average	
-------------	----------------------	--

Description

A moving average of vP/Vs

Usage

```
moving_vpvs(vpvs, year, doy_det, windowlength, windowspeed)
```

Arguments

vpvs A vector of vP/vS ratios

year A vector of years for each vP/vS

doy_det A vector of julian days for each vP/vS windowlength Size of the averaging window (in days)

windowspeed Speed of advancing window (days per sample)

Value

A dataframe containing the end days of each window along with its mean, standard deviation (of the mean), median, upper and lower 95

|--|

Description

Clusters measurements by their station to event paths

Usage

```
pathclus(summ, savepath, hvec = NULL, kmax = 7, runs = 20,
  minsample = 55, seed = NULL, plot = TRUE, rot = 180, palette = NULL)
```

summ	An MFASTR summary file
savepath	Path to save plots and files
hvec	A vector of station elevations
kmax	Maximum number of clusters
runs	Number of runs for the clustering

perani 21

seed	Random number seed

plot Create plots?

rot Degrees to rotate 3D lower hemisphere plot

palette Vector of user defined colours for plotting if the number of clusters is greater

than 12

minsamples Minimum number of measurements for that station

Details

Uses the movMF package to fit mixtures of von Mises Fisher distributions to the station to event paths projected onto a unit hemisphere below each station.

Value

Creates folders containing the cuspids of events in each cluster along with the p-value of the Rayleigh test for polarisations in that cluster.

Examples

```
# Run for all stations and save to clustest folder
cz <- summ.cz("~/summfiles")
pathclus(cz,savepath="~/clustest",plot=TRUE)</pre>
```

perani

Weighted percentage anisotropy

Description

Determine the weighted percentage anisotropy and shear wave anisotropy for each stations in a summary file

Usage

```
perani(summ, weights = NULL)
```

Arguments

summ Dataframe containing MFAST summary file weights A vector containing the desired weights

Value

A dataframe containing each station and their corresponding percentage anistropy and shear wave anisotropy. As well as average values for all stations

22 plotrose

Description

Plots a rose diagram of data from a .summ file

Usage

```
plotrose(path, summ, name = "rose.eps", bins = 16, kd = FALSE, sym = 16,
  prop = 1.3, bincol = "darkgrey", antibincol = "lightgrey",
  cols = "blue", antipodal = "lightblue", axes = TRUE, arrow = "mean",
  arwcol = "red", arwlty = 1, arwlwd = 2, arwscale = NA)
```

path	Path to folder to save plots
name	Name of plot
bins	Number of bins
kd	Kernal density?
sym	Symbol for outer points (select a blank symbol for no outer points)
prop	Scale length of rose diagram bins
bincol	Colour of bins
cols	Colour of points
antipodal	Colour of antipodal points
axes	Plot axes?
arrow	Options; "mean", "median", "mean&median", or anything else for no arrow
arwcol	Arrow colour
arwlty	Arrow line type (lty)
arwlwd	Arrow line thickness (lwd)
bincol	Colour of antipodal bins
arwlwd	Arrow line thickness (lwd)
arwlwd	Arrow length scale (0-1). Defaults to mean resultant length

readmfast 23

		_	
read	lm:	t a	c+

Read MFAST .summ file

Description

Reads a .summ output from the original MFAST codes

Usage

```
readmfast(path, recuspid = FALSE, header = TRUE)
```

Arguments

path The path the summary file

recuspid Regenerate unique cuspids from event names? (Useful if they have been trun-

cated in MFAST)

header Does the summary file have a one line header?

Details

This function is used with grade() to grade .summ files produced using the original MFAST codes (by setting mfast=TRUE).

Value

A dataframe containing the summary file

	_	:	1	
read	τ	rı	pΤ	еτ

Read a SAC format siesmogram triplet

Description

Reads, cuts, and loads S-wave pick into the t5 header using RSEIS/JSAC.seis as a workhorse

```
readtriplet(event, path = ".", E = ".e", N = ".n", Z = ".z",
header = "t0", pheader = "a", downsample = FALSE, biglong = FALSE,
Iendian = 1)
```

24 readtvel

Arguments

event	Event name
path	Path to folder

E Suffix of east component
 N Suffix of north component
 Z Suffix of vertical component

header Name of header containing the S-wave pick
pheader Name of header containing the P-wave pick

downsample Downsample if sampling rate is less than 0.01s (Defaults to FALSE, originally

used to decrease computational loads)

biglong logical, TRUE=long=8 bytes

Iendian Endian-ness of the data: 1,2,3: "little", "big", "swap". Default = 1 (little)

Details

The S-wave pick must be stored on at least the east component and the P-wave pick (if present) must be stored on the vertical component

Value

A list containing dataframes for each of the three components with signal and header information

Examples

```
# Read in 2002.054.09.47.lhor2
pathto <- "~/mfast/sample_data/raw_data"
write_sample(pathto)
event <- "2002.054.09.47.lhor2"
triplet <- readtriplet(event,path=pathto)</pre>
```

readtvel

Read .tvel

Description

Reads a .tvel file and saves it in an RSEIS compatible format

Usage

```
readtvel(name)
```

Arguments

name

Name and path of .tvel file

reanginc 25

Value

RSEIS compatible dataframe containing the velocity model

Examples

```
path <- "~/mfast/velocity/ak135_taupo.tvel"
model <- readtvel(path)
write_sample("~/mfast/sample_data/raw_data")
do_station_simple(path="~/mfast/sample_data/raw_data",tvel=model)</pre>
```

reanginc

Redetermine incidence angles

Description

Redetermine incidence angles for events in summary file

Usage

```
reanginc(summpath, tvel = ak135_taupo, overwrite = FALSE, mfast = FALSE,
    mc.cores = NULL)
```

Arguments

summpath	Path to the .summ file
tvel	Veloctity model read in by readtvel or a stored model (ak135_alp, ak135_taupo)
overwrite	Should the original summfile be overwritten?
mfast	Is the summfile from the original MFAST?
mc.cores	Number of cores to run the calculations on (defaults to maximum)

Value

A summary file with redetermined incidence angles and ray parameters

Examples

```
# Redetermine the angle of incidences for a summary file
pathto <- "~/mfast/sample_data/summ_files/WPRZ.127.CZ.summ"
nsumm <- reanginc(pathto,tvel=ak135_alp)</pre>
```

26 rms

RK_NM_SWS

 $RK_NM_SWS.summ$

Description

RK_NM_SWS.summ

Usage

RK_NM_SWS

Format

A dataframe containing MFAST the summary file for all Rotokawa and Ngatamariki template events

 $RK_NM_SWS_det$

RK_NM_SWS_det.summ

Description

RK_NM_SWS_det.summ

Usage

RK_NM_SWS_det

Format

A dataframe containing the summary file for all Rotokawa and Ngatamariki matchfilter detected events

rms

Root mean square

Description

Simple routine to determine root mean square value of a signal

Usage

rms(x)

Arguments

Х

Vector signal

run_mfast 27

Value

RMS value

run_mfast

Run splitting measurement

Description

Runs shearwave splitting measurements on a set of filtered SAC files

Usage

```
run_mfast(path, name, filtlist)
```

Arguments

path Path to folder name Name of event

filtlist A dataframe of the best filters to be used (output of writesac_filt)

Examples

```
# Run shear wave splitting measurements on event 2002.054.09.47.lhor2
pathto <- "~/mfast/sample_data/raw_data"
write_sample(pathto)
event <- "2002.054.09.47.lhor2"
triplet <- readtriplet(event,path=pathto)
bestfilt <- filter_spread(triplet)
maxfreq <- createini(pathto,triplet,bestfilt,event)
f <- writesac_filt(pathto,triplet,event,bestfilt)
run_mfast(pathto,event,f)</pre>
```

snr

S-wave SNR

Description

Determine the signal to noise ratio around the S-wave pick (workhorse of filter_spread)

```
snr(E, N, s, p = -12345, dt, t_win_snr = 3, t_err = 0.05, b = 0, type = "normal")
```

28 stde.weighted

Arguments

E	vector signal of the east component
N	Vector signal of the north component
S	S-wave pick time

p P-wave pick time
dt Sample interval
t_win_snr Window for SNR (s)

t_err Modification to t_win_snr to account for error in S-pick (s)

type If type is set to "verylocal" then the P-wave pick (if present) is used to set

t_win_snr

Value

Signal to noise ratio around the S-wave pick

stde.weig	nted We	ighted standard error	

Description

A bootstrapped weighted standard error for fast polarisations

Usage

```
stde.weighted(summ, weights = c(1, 2, 3), seed = NULL, iter = 9999)
```

Arguments

summ	Dataframe	containing	Castelazzi	graded	events (CZ	*.summ)
Juliili	Dutuiluille	Commining	Custoluzzz	Siuaca	CVCIICS		·Duillill

weights A vector containing the weights with length equal to the number of filters used

(usually 3) in order with the first corresponding to F1

seed A random number seed iter Number of iterations

Details

This function can also be run with a custom weight for each measurement by setting them with weights. Or, for the unweighted version, set weights=rep(1,length(summ\$fast)).

Value

The circular standard error in degrees

summ.ab 29

summ.ab

Read AB

Description

Reads in multiple AB graded .summ files

Usage

```
summ.ab(path)
```

Arguments

path

The path to the folder containing the .summ files

Value

A dataframe containing all the .summ files

summ.cz

Read cz

Description

Reads in multiple CZ graded .summ files

Usage

```
summ.cz(path)
```

Arguments

path

The path to the folder containing the .summ files

Value

A dataframe containing all the .summ files

30 writesac_filt

summ.null	Read null
Sullill. Hull	кеиа пин

Description

Reads in multiple null graded .summ files

Usage

```
summ.null(path)
```

Arguments

path

The path to the folder containing the .summ files

Value

A dataframe containing all the .summ files

writesac_filt Write filtered SAC files

Description

Writes out filtered waveforms ready to have shear wave splitting measured

Usage

```
writesac_filt(path, trip, name, filtlist, number = 3, E = ".e", N = ".n",
    Z = ".z", zerophase = TRUE)
```

path	Path to folder
trip	Event triplet (output of readtriplet)
name	Name of the event
filtlist	Dataframe of the best filters (output of filter_spread)
number	Number of best filters to use
E	Suffix of the east component
N	Suffix of the north component
Z	Suffix of the vertical component #return A dataframe of the filters that have been written

writesac_filtsmp 31

Examples

```
# Write out three best filters for event 2002.054.09.47.lhor2
pathto <- "~/mfast/sample_data/raw_data"
event <- "2002.054.09.47.lhor2"
write_sample(pathto)
triplet <- readtriplet(event)
bestfilt <- filter_spread(triplet)
f <- writesac_filt(pathto,triplet,event,bestfilt)</pre>
```

writesac_filtsmp

Simple write

Description

Write out an event with a chosen filter

Usage

```
writesac_filtsmp(path, trip, name, low, high, E = ".e", N = ".n", Z = ".z", n = 1, zerophase = TRUE)
```

path	Path to folder
trip	Event triplet (output of readtriplet)
name	Name of the event
low	Low frequency cut-off
high	High frequency cut-off
Е	Suffix of the east component
N	Suffix of the north component
Z	Suffix of the vertical component
n	Number for suffix .fbn (e.g .fb2)

32 write_sample

writetessa

Write TESSA .summ file

Description

Writes out a .summ file in the format required for TESSA

Usage

```
writetessa(summ, name)
```

Arguments

summ Dataframe containing the summary file of measurements to be run in TESSA

name Name of the file including path and .summ suffix (defaults to current working

directory)

Examples

```
# Create a .summ file for TESSA from all F1, F2 and F3 graded measurements
cz <- summ.cz("~/path/to/summfiles")
writetessa(cz,"~/TESSA/summfiles/cz.summ")</pre>
```

write_sample

Sample data

Description

Writes out MFAST sample data

Usage

```
write_sample(path, type = "normal")
```

Arguments

path Path to folder

type "normal" or "verylocal" sample data

Examples

```
# Write out MFAST sample events
write_sample("~/mfast/sample_data/raw_data")

# Write out MFAST verylocal sample events
write_sample("~/mfast/sample_data/raw_data",type="verylocal")
```

Index

*Topic datasets	perani, 21
ak135_alp, 2	plotrose, 22
ak135_taupo, 3	
RK_NM_SWS, 26	readmfast, 23
RK_NM_SWS_det, 26	readtriplet, 23
	readtvel, 24
ak135_alp, 2	reanginc, 25
ak135_taupo, 3	RK_NM_SWS, 26
all6_station, 4	RK_NM_SWS_det, 26
all6plot, 3	rms, 26
anginc, 4	run_mfast, 27
butfilt, 5	snr, 27
	stde.weighted, 28
checkcomp, 5	summ.ab, 29
checkspick, 6	summ.cz, 29
createini, 6	summ.null,30
<pre>cut_simple, 7</pre>	
	write_sample, 32
det.type, 8	writesac_filt,30
do_all_complex, 9	writesac_filtsmp, 31
do_all_simple, 10	writetessa, 32
do_station_complex, 11	
do_station_simple, 12	
dt.weighted, 13	
fast.weighted, 14	
filter_spread, 14	
getevents, 15	
grade, 16	
logfiles, 16	
mclapply2, 17	
meanaxial, 18	
moving_dt, 19	
moving_phi, 19	
moving_vpvs, 20	
natholus 20	