Grupa: 423B Numele: Frunză Vladimir

FIȘĂ REZULTATE LUCRARE L5 TEC-J_SOFT-HARD

1. Caracteristica de transfer

5p. Tabelul 3.1 (fig.3.10a)

V _{GS} [V]	0	-0,5	-1	-2	-2,2	-2,5	-2,7	-3	-3,01	-3,1
$ m V_{DD} V$	15	15	15	15	15	15	15	15	15	15
$ m V_{DS}~V$	2.11	4.75	8.21	13.1	13.72	8.86	12.23	14.82	14.86	15
$R_D=R_{12}[K\Omega]$	1k	1k	1k	1k	1k	11k	11k	11k	11k	11k
I _D [mA]	12.89	10.25	6.79	1.9	1.28	0.55	0.2518	0.0163	0.0127	0

Curentul $I_D = (V_{DD} - V_{DS}) / R_D$

T1-2p. Inserați graficul caracteristicii de transfer $I_D = f(V_{GS})$ a tranzistorului TEC-J.

T2-2p. Determinați pe simulări tensiunea de prag la 10μA a tranzistorului TEC-J.

Vom lua RD = 11kohm (tensiune mare).

Pt ID =
$$10 \mu A$$
, avem: VDS = VDD - RD * ID = $15 - 11k*10\mu = 14.89 V$

Din simulare observam: Valoarea lui VGS pentru care VDS = 14.89 V este VGS = 3.02

Din moment ce am lucrat in modul: VGS = -3.02 V tensiune de prag.

Se poate observa ca simularea functioneaza cum trebuie iar caracteristica este in parametri teoretici.

2. Caracteristica de ieșire

6p. Tabelul 3.2	(Fig.3.10b)								
V	V _{DS} [V]	0	0.5	0.6	0.8	1	1.5	2	4
	$V_{DS,măs} = V_{DS} [V]$	0	0.5	0.6	0.8	1	1.5	2	4
X 7	V _{DD} [V]	0	4,71	5.57	7.2	8.72	12	14.55	18.51
$V_{GS} = 0[V]$	\mathbf{R}_{12} + $\mathbf{R}_{\mathbf{J}22}$ [$\mathbf{K}\Omega$]	1k	1k	1k	1k	1k	1k	1k	1k
	$I_D=[mA]$	0	4.21	4.97	6.4	7.72	10.5	12.55	14.51
	$V_{DS,măs} = V_{DS} [V]$	0	0.5	0.6	0.8	1	1.5	2	4
X7 0 51X71	V _{DD} [V]	0	3.99	4.7	6.03	7.25	9.79	11.59	14.22
V_{GS} = -0,5[V]	$\mathbf{R}_{12}+\mathbf{R}_{\mathbf{J}22}\left[\mathbf{K}\Omega\right]$	1k	1k	1k	1k	1k	1k	1k	1k
	$I_D = [mA]$	0	3.49	4.1	5.23	6.25	8.29	9.59	10.22
	$V_{DS,mas} = V_{DS} [V]$	0	0.5	0.6	0.8	1	1.5	2	4
X 7 1 [X 7]	$V_{DD}[V]$	0	3.25	3.82	4.85	5.78	7.57	8.61	10.68
V_{GS} = - 1[V]	$\mathbf{R}_{12}+\mathbf{R}_{\mathbf{J}22}\left[\mathbf{K}\Omega\right]$	1k	1k	1k	1k	1k	1k	1k	1k
	$I_D = [mA]$	0	2.75	3.22	4.05	4.78	6.07	6.61	6.68
	$V_{DS,măs} = V_{DS} [V]$	0	0.5	0.6	0.8	1	1.5	2	4
47 2547	V _{DD} [V]	0	1.77	2.04	2.48	2.8	3.32	3.83	5.84
V_{GS} = - 2[V]	$\mathbf{R}_{12}+\mathbf{R}_{\mathbf{J}22}\left[\mathbf{K}\Omega\right]$	1k	1k	1k	1k	1k	1k	1k	1k
	$I_D = [mA]$	0	1.27	1.44	1.68	1.8	1.82	1.83	1.84

	$V_{DS,mas} = V_{DS} [V]$	0	0.5	0.6	0.8	1	1.5	2	4
V 2 20VI	$V_{DD}[V]$	0	11.22	12.48	14.02	14.41	14.93	15.46	17.56
V_{GS} = -2,2[V]	\mathbf{R}_{12} + $\mathbf{R}_{\mathbf{J}22}$ [$\mathbf{K}\Omega$]	11k	11k	11k	11k	11k	11k	11k	11k
	$I_D = [mA]$	0	0.974	1.08	1.201	1.219	1.22	1.223	1.232
	$V_{DS,m\check{a}\check{s}} = V_{DS} [V]$	0	0.5	0.6	0.8	1	1.5	2	4
V 2 5 [X]	$V_{DD}[V]$	0	6.28	6.53	6.76	6.97	7.48	7.99	10.04
V_{GS} = -2,5[V]	\mathbf{R}_{12} + $\mathbf{R}_{\mathbf{J}22}$ [$\mathbf{K}\Omega$]	11k	11k	11k	11k	11k	11k	11k	11k
	$I_D = [mA]$	0	0.525	0.539	0.541	0.542	0.543	0.544	0.545
	$V_{DS,m\check{a}\check{s}} = V_{DS} [V]$	0	0.5	0.6	0.8	1	1.5	2	4
V _{GS} = - 3[V]	$V_{DD}[V]$	0	0.66	0.76	0.96	1.17	1.67	2.17	4.17
V GS= - 3[V]	\mathbf{R}_{12} + $\mathbf{R}_{\mathbf{J}22}$ [$\mathbf{K}\Omega$]	11k	11k	11k	11k	11k	11k	11k	11k
	$I_D = [mA]$	0	0.0152	0.0152	0.0153	0.0155	0.0155	0.0155	0.0155

 $R_{12}+R_{J22}$ este RD din circuit, iar in tabel $V_{DS,măs} = V_{DS}$; $I_{D} = (V_{DD} - V_{DS}) / R_{D}$

T3-4p. Inserați graficul caracteristicii de ieșire $I_D = f(V_{DS}, V_{GS})$; V_{GS} - parametru.

3. TEC-J ca generator de curent

6p. Tabelul 3.4 (Fig.3.13)

(= -8:=:==)							
$R_{S}\left[\Omega ight]$	10	100	300	500	700	900	1k
$V_{D}[V]$	14,91	14,98	15.13	15.28	15.42	15.69	16.23
$\mathbf{V_{S}}\left[\mathbf{V} ight]$	0,151	1,5	4.46	7.36	10.2	12.88	13.77
V _{DD} [V]	30	30	30	30	30	30	30
V _{DS} [V]	14,76	13,48	10.67	7.92	5.22	2.81	2.46
V _{GS} [V]	0	0	0	0	0	0	0
I _D [mA]	15,09	15,02	14.87	14.72	14.58	14.31	13.77

$$I_D = (V_{DD} - V_D) / R_D$$
 si $V_{DS} = V_D - V_S$

T4-2p. Inserați graficul variației lui I_D funcție de V_{DS} ($I_D = f(V_{DS})$ - caracteristica curenttensiune).

4.1 Măsurători in regim dinamic

6p Tabelul 3.6 (Fig. 3.14) condiția de cc: $V_{DS} = 5V$ (Vout in circuitul din figura)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,	2,	_			, ,
V _{GS} [V]	0	-0.5	-1	-1.5	-2	-2.5
I _D [mA]	14.57	10.26	6.71	3.9	1.85	0.55
V _{out} [mV]	88,73	75.73	62.1	47.91	33.27	18,28
$V_{gs}[mV]$	10	10	10	10	10	10
I _d [μA]	88,73	75.73	62.1	47.91	33.27	18.28
A_{V}	8.873	7.573	6.21	4.791	3.327	1.828
g_{ms} [mA/V]	-8.873	-7.573	-6.21	-4.791	-3.327	-1.828

$$\mathbf{A}_{\mathbf{V}} = \frac{\mathbf{v}_o}{\mathbf{v}_i} = -\mathbf{g}_{ms} \cdot \mathbf{R}_D \text{ (in c.a. } \mathbf{v}_o = \mathbf{V}_{\text{out iar}} \mathbf{v}_i = \mathbf{V}_{\text{gs}}); Vgs\text{-semnal sinusoidal, } A = 10mV, f = 1kHz$$

T5-2p. Inserați simularea amplificatorului sursă comună pentru o valoare V_{GS} aleasa din tabelul 3.6, $V_{gS}=10$ mV și $V_{DS}=5$ V și calculați amplificarea si g_{ms} , apoi înserați graficele: $A_V=f(V_{GS})$ si $A_V=f(I_D)$.

Pasul 1: Gasirea lui VDD astfel incat Vout = 5V in CC

Pasul 2: Aflarea lui ID (CC)

Pasul 3: Aflarea lui Vout si Id (CA)

$$gms = - \ vo \ / \ (vi*RD) = - \ Vout \ / \ (Vgs*RD) = \ - \ 62.1 \ *10^{-3} \ / \ (10 \ * \ 10^{-3}) \ * \ 10^{-3}) = -6.21 \ (mA/V)$$

Graficele:

4.2 Măsurători rezistenta dinamica in saturație $r_{d,sat}$ (Atenție!! Cond. in cc: $V_{DS} = V_{OU} = V_{DS} = V_{DS$

5p Tabel 3.5 (Fig.3.14)

RD	11k	22k				
I _D [mA]	1.85	1.85				
$V_{ds} = V_{out}[mV]$	342,61	640.26				
$V_{gs}[mV]$	<mark>10</mark>	10				
$r_{d,sat}$	156.647241 kΩ					

Avem formula:
$$r_{d,sat} = \frac{1}{g_{d,sat}} = \frac{R_{D2} - R_{D1}}{\frac{R_{D2} \times V_{ds1}}{R_{D1} \times V_{ds2}} - 1}$$

4. AMPLIFICATORUL DE TENSIUNE

Desenați circuitul din figura următoare:

In continuare determin ce valoare are VS1 astfel încât V_{R10} sa ia valorile din Tabelul 4.1, cu ajutorul caracteristicii de transfer in DC (V_{R10} este tensiunea ce cade pe R1 in schema de mai sus). Se modifica apoi in schema VS1 cu valoarea corespunzătoare, apoi se determina mărimile de c.a. din tabel prin analiza *Table of AC results*, pentru $V_g=V_g=V_g=10mV$, f=1kHz si $V_g=V_g=15V$, completând restul mărimilor din tabel (V_o este tensiunea de ieșire măsurată in punctul VCE, iar V_{in} este tensiunea de intrare in baza lui T1 măsurată in punctul de joncțiune al lui C2 cu baza lui T1, ambele valori fiind in c.a).

T	al	he	hıl	4.1	_	4r)

$V_{R10}(V)$	0,1	0,2	0,3	0,4	0,5	0,6
Ic (mA)	1	2	3	4	5	<u>6</u>
$V_{g}(mV)$	10	10	10	10	10	10
V _{in} (mV)	3,23	2,29	1.82	1.54	1.35	1,21
$V_0(mV)$	12,9	17.82	20.75	22.67	23.99	24.89
Av	3.99	7.78	11.4	14.72	17.77	20.57
g _m (mA/V)	309.59	873.35	1648.34	2597.4	3703.7	4958.67
β_0	78.88	99.50	111.52	120.01	126.07	130.9
$R_{in}(k\Omega)$	0.254	0.114	0.068	0.046	0.034	0.026

Ultimele 4 mărimi se calculează cu următoarele formule:

- $A_{V} = V_0 / V_{in}$ (amplificare in tensiune in c.a)
- $g_m = I_c / V_{in}$ (panta tranzistorului sau conductanța de transfer)
- $\beta o = I_c / I_b$ (factorul de amplificare in c.a. in conexiune emitor comun)
- $Ri = V_{in} / I_b$ (rezistenta echivalenta la intrare, formula aproximativa, simplificata)

5. REZISTENTA DE IESIRE

Desenați circuitul din figura următoare:

Se modifica amplitudinea generatorului de semnal sinusoidal VG1=Vg=1V, f=1kHz.

In regimul de CC se pune problema la ce tensiune setez VS1 astfel încât la punctul de măsura VF1 (V_{CE} in tabelul 4.2) sa obțin valorile V_{CE} si I_{C} din Tabelul 4.2; acest lucru îl realizez cu analiza inCC prin comanda **DC Analysis** (menu Analysis).

Apoi se determina in CA tot in punctul de măsura VF1 mărimea V_o , (menu Analysis \rightarrow AC Analysis \rightarrow Table of AC results) se notează in Tabelul 4.2.

Tabelul 4.2 – 2p		
$\mathbf{V}_{\mathbf{CE}}(\mathbf{V})$	13	2
$I_{C}(mA)$	1	2
$V_{o}(V)$	0,486	0.443
$V_{g}(V)$	1	1
r _{ce} (kΩ)	0.486	0.2215
$r_0 = r_{ce}/R_2$	0.04418	0.02013

Rezistența de ieșire a tranzistorului bipolar care lucrează în RAN prin definiție este: :

 $r_{ce} = V_0 / I_C (k\Omega),$

T4 – 1p $\mathbf{r_0}$ **ce a fost calculat in tabel** are formula: $r_0 = r_{ce}/R2$.