Package 'earlywarnings'

February 13, 2013

Type Package	
Title Early Warning Signals Toolbox for Detecting Critical Transitions in Timeseries	
Version 1.0.3	
Date 2013-02-13	
Author Vasilis Dakos <pre>vasilis.dakos@gmail.com></pre> , with contributions from S.R. Carpenter, T. Cline, L. Lahti	
Maintainer Vasilis Dakos <vasilis.dakos@gmail.com></vasilis.dakos@gmail.com>	
Description The Early-Warning-Signals Toolbox provides methods for estimating statistical changes in timeseries that can be used for identifying nearby critical transitions. Based on Dakos et al (2012) Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data. PLoS ONE 7(7):e41010	
Depend R (>+ 2.14.0), lmtest, nortest, stats, som, Kendall,KernSmooth, moments, fields, spam, tseries, quadprog, fractal,akima, ggplot2	
LazyLoad yes	
<pre>URL http://www.early-warning-signals.org, http://www.vasilisdakos</pre>	.net
License GPL (>= 2)	
Collate 'BDSboot.R' 'bdstest_ews.R' 'ch_ews.R' 'ddjnonparam_ews.R' 'earlywarnings-internal.R' 'generic_ews.R' 'sensitivity_ews.R' 'surrogates_ews.R' 'potential_ews.R'	
R topics documented:	
bdstest_ews ch_ews circulation ddjnonparam_ews foldbif generic_ews livpotential_ews movpotential_ews	. 3 . 5 . 5 . 7 . 8 . 10

bdstest_ews

sensitivity_ews		 	 12
surrogates_ews		 	 14
YD2PB_graysca	ale	 	 16

bdstest_ews

Description: BDS test Early Warning Signals

Description

 $\verb|bdstest_ews| is used to estimate the BDS statistic to detect nonlinearity in the residuals of a timeseries after first-difference detrending, fitting an ARMA(p,q) model, and fitting a GARCH(0,1) model. The function is making use of bds.test.$

Usage

```
bdstest_ews(timeseries, ARMAoptim = TRUE,
   ARMAorder = c(1, 0), GARCHorder = c(0, 1), embdim = 3,
   epsilon = c(0.5, 0.75, 1), boots = 1000,
   logtransform = FALSE, interpolate = FALSE)
```

Arguments

timeseries	a numeric vector of the observed univariate timeseries values or a numeric matrix where the first column represents the time index and the second the observed timeseries values. Use vectors/matrices with headings.
ARMAoptim	is the order of the ARMA (p, q) model to be fitted on the original timeseries. If TRUE the best ARMA model based on AIC is applied. If FALSE the ARMA order is used.
ARMAorder	is the order of the AR (p) and MA (q) process to be fitted on the original time-series. Default is p=1 q=0.
GARCHorder	fits a GARCH model on the original timeseries where GARCHorder[1] is the GARCH part and GARCHorder[2] is the ARCH part.
embdim	is the embedding dimension (2, 3, embdim) up to which the BDS test will be estimated (must be numeric). Default value is 3.
epsilon	is a numeric vector that is used to scale the standard deviation of the timeseries. The BDS test is computed for each element of epsilon. Default is 0.5, 0.75 and 1.
boots	is the number of bootstraps performed to estimate significance p values for the BDS test. Default is 1000.
logtransform	logical. If TRUE data are logtransformed prior to analysis as $log(X+1)$. Default is FALSE.
interpolate	logical. If TRUE linear interpolation is applied to produce a timeseries of equal length as the original. Default is FALSE (assumes there are no gaps in the timeseries).

ch_ews 3

Details

See also bds.test{tseries} for more details. The function requires the installation of packages tseries and quadprog that are not available under Linux and need to be manually installed under Windows.

Example to run after installing the mentioned packages:

data(foldbif) bdstest_ews(foldbif,ARMAoptim=FALSE,ARMAorder=c(1,0),embdim=3,epsilon=0.5, boots=200,logtransform=FALSE,interpolate=FALSE)

Value

bdstest_ews returns output on the R console that summarizes the BDS test statistic for all embedding dimensions and epsilon values used, and for first-differenced data, ARMA(p.q) residuals, and GARCH(0,1) residuals). Also the significance p values are returned estimated both by comparing to a standard normal distribution and by bootstrapping.

In addition, $bdstest_{ews}$ returns a plot with the original timeseries, the residuals after first-differencing, and fitting the ARMA(p,q) and GARCH(0,1) models. Also the autocorrelation acf and partial autocorrelation pacf functions are estimated serving as guides for the choice of lags of the linear models fitted to the data.

Author(s)

S. R. Carpenter, modified by V. Dakos

References

J. B. Cromwell, W. C. Labys and M. Terraza (1994): Univariate Tests for Time Series Models, Sage, Thousand Oaks, CA, pages 32-36.

Dakos, V., et al (2012). "Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data." *PLoS ONE* 7(7): e41010. doi:10.1371/journal.pone.0041010

See Also

```
generic_ews; ddjnonparam_ews; bdstest_ews; sensitivity_ews; surrogates_ews;
ch_ews; movpotential_ews; livpotential_ews
```

ch_ews

Description: Conditional Heteroskedasticity

Description

ch_ews is used to estimate changes in conditional heteroskedasticity within rolling windows along a timeseries

Usage

```
ch_ews(timeseries, winsize = 10, alpha = 0.1,
  optim = TRUE, lags = 4, logtransform = FALSE,
  interpolate = FALSE)
```

4 ch_ews

Arguments

a numeric vector of the observed timeseries values or a numeric matrix where timeseries the first column represents the time index and the second the observed timeseries values. Use vectors/matrices with headings. is length of the rolling window expressed as percentage of the timeseries length winsize (must be numeric between 0 and 100). Default is 10%. alpha is the significance threshold (must be numeric). Default is 0.1. logical. If TRUE an autoregressive model is fit to the data within the rolling optim window using AIC optimization. Otherwise an autoregressive model of specific order lags is selected. is a parameter that determines the specific order of an autoregressive model to lags fit the data. Default is 4. logical. If TRUE data are logical prior to analysis as log(X+1). Default is FALSE. logical. If TRUE linear interpolation is applied to produce a timeseries of equal interpolate length as the original. Default is FALSE (assumes there are no gaps in the

Details

see ref below

Value

ch_ews returns a matrix that contains:

timeseries).

time the time index.

r.squared the R2 values of the regressed residuals.

critical.value

the chi-square critical value based on the desired alpha level for 1 degree of freedom divided by the number of residuals used in the regression.

test.result logical. It indicates whether conditional heteroskedasticity was significant.

ar.fit.order the order of the specified autoregressive model- only informative if optim FALSE was selected.

In addition, ch_ews plots the original timeseries and the R2 where the level of significance is also indicated.

Author(s)

T. Cline, modified by V. Dakos

References

Seekell, D. A., et al (2011). "Conditional heteroscedasticity as a leading indicator of ecological regime shifts." *American Naturalist* 178(4): 442-451

Dakos, V., et al (2012). "Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data." *PLoS ONE* 7(7): e41010. doi:10.1371/journal.pone.0041010

circulation 5

See Also

```
generic_ews; ddjnonparam_ews; bdstest_ews; sensitivity_ews; surrogates_ews;
ch_ews; movpotential_ews; livpotential_ews
```

Examples

```
data(foldbif)
out=ch_ews(foldbif, winsize=50, alpha=0.05, optim=TRUE, lags)
```

circulation

Overturning of thermolhaline circulation

Description

Simulated timeseries of salinity from an ocean circulation model

Usage

```
data(circulation)
```

Format

A data frame with 783 observations on the following 2 variables.

```
time a numeric vector x a numeric vector
```

Details

Simulated timeseries of salinity from an ocean circulation model as used in Dakos et al (2008), see source below. At the end of the timeseries a critical transition occurs that simulates the overturning of the thermohalien circulation.

Source

Dakos et al (2008), Slowing down as an early warning signal for abrup climate change, PNAS 105(38), 14308-14312.

6 ddjnonparam_ews

ddjnonparam_ews	Description: Signals	Drift Diffusion .	Jump Nonparametrics	Early Warning
-----------------	-------------------------	-------------------	---------------------	---------------

Description

ddjnonparam_ews is used to compute nonparametrically conditional variance, drift, diffusion and jump intensity in a timeseries. It also interpolates to obtain the evolution of the nonparametric statistics in time.

Usage

```
ddjnonparam_ews(timeseries, bandwidth = 0.6, na = 500,
    logtransform = TRUE, interpolate = FALSE)
```

Arguments

a numeric vector of the observed univariate timeseries values or a numeric matrix where the first column represents the time index and the second the observed timeseries values. Use vectors/matrices with headings.

bandwidth is the bandwidth of the kernel regressor (must be numeric). Default is 0.6.

na is the number of points for computing the kernel (must be numeric). Default is 500.

logtransform logical. If TRUE data are logtransformed prior to analysis as log(X+1). Default is FALSE.

interpolate logical. If TRUE linear interpolation is applied to produce a timeseries of equal length as the original. Default is FALSE (assumes there are no gaps in the timeseries).

Details

The approach is based on estimating terms of a drift-diffusion-jump model as a surrogate for the unknown true data generating process: [1] $dx = f(x,\theta)dt + g(x,\theta)dW + dJ$ Here x is the state variable, f() and g() are nonlinear functions, dW is a Wiener process and dJ is a jump process. Jumps are large, one-step, positive or negative shocks that are uncorrelated in time.

Value

S2.t

ddjnonparam_ews returns an object with elements:

avec is the mesh for which values of the nonparametric statistics are estimated.

S2.vec is the conditional variance of the timeseries x over avec.

TotVar.dx.vec is the total variance of dx over avec.

Diff2.vec is the diffusion estimated as total variance - jumping intensity vs avec.

LamdaZ.vec is the jump intensity over avec.

Tvec1 is the timeindex.

is the conditional variance of the timeseries x data over Tvec1.

foldbif 7

TotVar.t is the total variance of dx over Tvec1.

Diff2.t is the diffusion over Tvec1.

Lamda.t is the jump intensity over Tvec1.

In addition, ddjnonparam_ews returns a first plot with the original timeseries and the residuals after first-differencing. A second plot shows the nonparametric conditional variance, total variance, diffusion and jump intensity over the data, and a third plot the same nonparametric statistics over time.

Author(s)

S. R. Carpenter, modified by V. Dakos

References

Carpenter, S. R. and W. A. Brock (2011). "Early warnings of unknown nonlinear shifts: a nonparametric approach." *Ecology* 92(12): 2196-2201

Dakos, V., et al (2012). "Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data." *PLoS ONE* 7(7): e41010. doi:10.1371/journal.pone.0041010

See Also

```
generic_ews; ddjnonparam_ews; bdstest_ews; sensitivity_ews; surrogates_ews;
ch_ews; movpotential_ews; livpotential_ews
```

Examples

```
data(foldbif)
output<-ddjnonparam_ews(foldbif,bandwidth=0.6,na=500,
logtransform=TRUE,interpolate=FALSE)</pre>
```

foldbif

Simulated fold bifurcation time series

Description

Simulated time series of a transition to an alternative state.

Usage

```
data(foldbif)
```

Format

A data frame with 970 observations on the following variable.

```
x a numeric vector
```

Details

Simulated time series of a transition to an alternative state derived from a simple overharvesting model as used in Dakos et al (2012), see source below.

generic_ews

Source

Dakos et al (2012) Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data. PLoS ONE 7(7):e41010

generic_ews

Description: Generic Early Warning Signals

Description

generic_ews is used to estimate statistical moments within rolling windows along a timeserie

Usage

```
generic_ews(timeseries, winsize = 50,
  detrending = c("no", "gaussian", "linear", "first-diff"),
  bandwidth = NULL, logtransform = FALSE,
  interpolate = FALSE, AR_n = FALSE,
  powerspectrum = FALSE)
```

Arguments

	timeseries	a numeric vector of the observed univariate timeseries values or a numeric matrix where the first column represents the time index and the second the observed timeseries values. Use vectors/matrices with headings. If the powerspectrum is to be plotted as well, the timeseries length should be even number.
	winsize	is the size of the rolling window expressed as percentage of the timeseries length (must be numeric between 0 and 100). Default is 50% .
	bandwidth	is the bandwidth used for the Gaussian kernel when gaussian filtering is applied. It is expressed as percentage of the timeseries length (must be numeric between 0 and 100). Alternatively it can be given by the bandwidth selector ${\tt bw.nrd0}$ (Default).
	detrending	the timeseries can be detrended/filtered prior to analysis. There are four options: gaussian filtering, linear detrending and first-differencing. Default is no detrending.
	logtransform	logical. If TRUE data are logtransformed prior to analysis as $log(X+1)$. Default is FALSE.
	interpolate	logical. If TRUE linear interpolation is applied to produce a timeseries of equal length as the original. Default is FALSE (assumes there are no gaps in the timeseries).
	AR_n	logical. If TRUE the best fitted $AR(n)$ model is fitted to the data. Default is FALSE.
powerspectrum		
		logical. If TRUE the power spectrum within each rolling window is plotted.

Details

see ref below

Default is FALSE.

generic_ews 9

Value

generic_ews returns a matrix that contains:

tim	the time index.
ar1	the autoregressive coefficient ar(1) of a first order AR model fitted on the data within the rolling window.
sd	the ${\tt standard}$ deviation of the data estimated within each rolling window.
sk	the skewness of the data estimated within each rolling window.
kurt	the kurtosis of the data estimated within each rolling window.
CV	the coefficient of variation of the data estimated within each rolling window.
returnrate	the return rate of the data estimated as $1-ar(1)$ cofficient within each rolling window.
densratio	the density ratio of the power spectrum of the data estimated as the ratio of low frequencies over high frequencies within each rolling window.
acf1	the autocorrelation at first lag of the data estimated within each rolling window.

In addition, <code>generic_ews</code> returns three plots. The first plot contains the original data, the detrending/filtering applied and the residuals (if selected), and all the moment statistics. For each statistic trends are estimated by the nonparametric Kendall tau correlation. The second plot, if asked, quantifies resilience indicators fitting AR(n) selected by the Akaike Information Criterion. The third plot, if asked, is the power spectrum estimated by <code>spec.ar</code> for all frequencies within each rolling window.

Author(s)

Vasilis Dakos <vasilis.dakos@gmail.com>

References

Ives, A. R. (1995). "Measuring resilience in stochastic systems." *Ecological Monographs* 65: 217-233

Dakos, V., et al (2008). "Slowing down as an early warning signal for abrupt climate change." *Proceedings of the National Academy of Sciences* 105(38): 14308-14312

Dakos, V., et al (2012). "Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data." *PLoS ONE* 7(7): e41010. doi:10.1371/journal.pone.0041010

See Also

```
generic_ews; ddjnonparam_ews; bdstest_ews; sensitivity_ews; surrogates_ews;
ch_ews; movpotential_ews; livpotential_ews
```

Examples

```
data(foldbif)
  out=generic_ews(foldbif,winsize=50,detrending="gaussian",
  bandwidth=5,logtransform=FALSE,interpolate=FALSE)
```

10 livpotential_ews

Description

livpotential_ews performs one-dimensional potential estimation derived from a uni-variate timeseries

Usage

```
livpotential_ews(x, std = 1, bw = -1, xi = NULL,
  weights = c(), grid.size = 200)
```

Arguments

Х	data vector
std	the standard deviation of the noise (defaults to 1, so then you use scaled potentials
bw	bandwidth for kernel estimation
xi	x values at which the potential is estimated
weights	optional weights in ksdensity (used by movpotentials).
grid.size	grid size

Details

see ref below

Value

livpotential returns a list with the following elements:

xi the grid of points on which the potential is estimated

pot the actual value of the potential

minima the grid points at which the potential has minimum values
maxima the grid points at which the potential has maximum values

bw bandwidth of kernel used

Author(s)

Based on Matlab code from Egbert van Nes modified by Leo Lahti. Implemented in early warnings package by V. Dakos.

References

Livina, VN, F Kwasniok, and TM Lenton, 2010. Potential analysis reveals changing number of climate states during the last 60 kyr. *Climate of the Past*, 6, 77-82.

Dakos, V., et al (2012). "Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data." *PLoS ONE* 7(7): e41010. doi:10.1371/journal.pone.0041010

movpotential_ews 11

See Also

generic_ews; ddjnonparam_ews; bdstest_ews; sensitivity_ews; surrogates_ews;
ch_ews; movpotential_ews

Examples

```
data(foldbif)
res <- livpotential_ews(foldbif)
plot(res$xi, res$pot)</pre>
```

movpotential ews

Description: Moving Average Potential

Description

movpotential_ews reconstructs a potential derived from data along a gradient of a given parameter the movpotential_ews calculates the potential for values that correspond to a particular parameter. see ref below

Usage

```
movpotential_ews(X, param, sdwindow = NULL, bw = -1,
  minparam = NULL, maxparam = NULL, npoints = 50,
  thres = 0.002, std = 1, grid.size = 200, cutoff = 0.5)
```

Arguments

X	a vector of the X observations of the state variable of interest
param	parameter values that correspond to the X observations
sdwindow	window for smoothing kernels (over the param axis)
bw	bandwidth used for smoothing kernels
minparam	minimum value of parameter on which to estimate potential
maxparam	maximum value of parameter on which to estimate potential
npoints	number of potentials
thres	threshold for local minima to be discarded
std	std
grid.size	number of evaluation points

the cuttof value to estimate minima and maxima in the potential

Value

cutoff

A list with the following elements:

Returns:

pars	values of the covariate parameter as matrix
xis	values of the x as matrix
pots	smoothed potentials
mins	minima in the densities (-potentials; neglecting local optima)
maxs	maxima in densities (-potentials; neglecting local optima)
plot	an object that displays the potential estimated in 2D

12 sensitivity_ews

Author(s)

Based on Matlab code from Egbert van Nes modified by Leo Lahti. Implemented in early warnings package by V. Dakos.

References

Hirota, M., Holmgren, M., van Nes, E.H. & Scheffer, M. (2011). Global resilience of tropical forest and savanna to critical transitions. *Science*, 334, 232-235.

See Also

```
generic_ews; ddjnonparam_ews; bdstest_ews; sensitivity_ews; surrogates_ews;
ch_ews; livpotential_ews
```

Examples

```
X = c(rnorm(1000, mean = 0), rnorm(1000, mean = -2), rnorm(1000, mean = 2))
param = seq(0,5,length=3000)
res <- movpotential_ews(X, param, npoints = 100, thres = 0.003)
```

sensitivity_ews

Description: Sensitivity Early Warning Signals

Description

sensitivity_ews is used to estimate trends in statistical moments for different sizes of rolling windows along a timeseries. The trends are estimated by the nonparametric Kendall tau correlation coefficient.

Usage

```
sensitivity_ews(timeseries,
  indicator = c("ar1", "sd", "acf1", "sk", "kurt", "cv", "returnrate", "densra
  winsizerange = c(25, 75), incrwinsize = 25,
  detrending = c("no", "gaussian", "linear", "first-diff"),
  bandwidthrange = c(5, 100), incrbandwidth = 20,
  logtransform = FALSE, interpolate = FALSE)
```

Arguments

timeseries a numeric vector of the observed univariate timeseries values or a numeric matrix where the first column represents the time index and the second the observed

timeseries values. Use vectors/matrices with headings.

indicator is the statistic (leading indicator) selected for which the sensitivity analysis

is perfomed. Currently, the indicators supported are: ar1 autoregressive coefficient of a first order AR model, sd standard deviation, acf1 autocorrelation at first lag, sk skewness, kurt kurtosis, cv coeffcient of variation, returnrate, and densratio density ratio of the power spectrum at low

frequencies over high frequencies.

winsizerange is the range of the rolling window sizes expressed as percentage of the timeseries

length (must be numeric between 0 and 100). Default is 25% - 75%.

sensitivity_ews 13

incrwinsize increments the rolling window size (must be numeric between 0 and 100). Default is 25.

detrending the timeseries can be detrended/filtered. There are three options: gaussian filtering, linear detrending and first-differencing. Default is no

detrending.

bandwidthrange

is the range of the bandwidth used for the Gaussian kernel when gaussian filtering is selected. It is expressed as percentage of the timeseries length (must be numeric between 0 and 100). Default is 5% - 100%.

incrbandwidth

is the size to increment the bandwidth used for the Gaussian kernel when gaussian filtering is applied. It is expressed as percentage of the timeseries length (must be numeric between 0 and 100). Default is 20.

 $logtransform\ logical.$ If TRUE data are logtransformed prior to analysis as log(X+1). Default is FALSE.

interpolate logical. If TRUE linear interpolation is applied to produce a timeseries of equal length as the original. Default is FALSE (assumes there are no gaps in the timeseries).

Details

see ref below

Value

sensitivity_ews returns a matrix that contains the Kendall tau rank correlation estimates for the rolling window sizes (rows) and bandwidths (columns), if gaussian filtering is selected.

In addition, sensitivity_ews returns a plot with the Kendall tau estimates and their p-values for the range of rolling window sizes used, together with a histogram of the distributions of the statistic and its significance. When gaussian filtering is chosen, a contour plot is produced for the Kendall tau estimates and their p-values for the range of both rolling window sizes and bandwidth used. A reverse triangle indicates the combination of the two parameters for which the Kendall tau was the highest

Author(s)

Vasilis Dakos <vasilis.dakos@gmail.com>

References

Dakos, V., et al (2008). "Slowing down as an early warning signal for abrupt climate change." *Proceedings of the National Academy of Sciences* 105(38): 14308-14312

Dakos, V., et al (2012). "Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data." *PLoS ONE* 7(7): e41010. doi:10.1371/journal.pone.0041010

See Also

generic_ews; ddjnonparam_ews; bdstest_ews; sensitivity_ews; surrogates_ews;
ch_ews; movpotential_ews; livpotential_ews

14 surrogates_ews

Examples

```
data(foldbif)
output=sensitivity_ews(foldbif,indicator="sd",detrending="gaussian",
incrwinsize=25,incrbandwidth=20)
```

surrogates_ews

Description: Surrogates Early Warning Signals

Description

surrogates_ews is used to estimate distributions of trends in statistical moments from different surrogate timeseries generated after fitting an ARMA(p,q) model on the data. The trends are estimated by the nonparametric Kendall tau correlation coefficient and can be compared to the trends estimated in the original timeseries to produce probabilities of false positives.

Usage

```
surrogates_ews(timeseries,
  indicator = c("ar1", "sd", "acf1", "sk", "kurt", "cv", "returnrate", "densra
  winsize = 50,
  detrending = c("no", "gaussian", "linear", "first-diff"),
  bandwidth = NULL, boots = 100, logtransform = FALSE,
  interpolate = FALSE)
```

Arguments

timeseries	a numeric vector of the observed univariate timeseries values or a numeric matrix where the first column represents the time index and the second the observed timeseries values. Use vectors/matrices with headings.
indicator	is the statistic (leading indicator) selected for which the surrogate timeseries are produced. Currently, the indicators supported are: arl autoregressive coefficient of a first order AR model, sd standard deviation, acfl autocorrelation at first lag, sk skewness, kurt kurtosis, cv coeffcient of variation, returnrate, and densratio density ratio of the power spectrum at low frequencies over high frequencies.
winsize	is the size of the rolling window expressed as percentage of the timeseries length (must be numeric between 0 and 100). Default valuise 50%.
detrending	the timeseries can be detrended/filtered prior to analysis. There are three options: gaussian filtering, linear detrending and first-differencing. Default is no detrending.
bandwidth	is the bandwidth used for the Gaussian kernel when gaussian filtering is selected. It is expressed as percentage of the timeseries length (must be numeric between 0 and 100). Alternatively it can be given by the bandwidth selector bw.nrd0 (Default).
boots	the number of surrogate data. Default is 100.
logtransform	logical. If TRUE data are logtransformed prior to analysis as log(X+1). Default is FALSE.
interpolate	logical. If TRUE linear interpolation is applied to produce a timeseries of equal length as the original. Default is FALSE (assumes there are no gaps in the timeseries).

surrogates_ews 15

Details

see ref below

Value

```
Kendall tau estimate original the trends of the original timeseries.

Kendall tau p-value original the p-values of the trends of the original timeseries.

Kendall tau estimate surrogates
the trends of the surrogate timeseries.

Kendall tau p-value surrogates
the trends of the surrogate timeseries.

Kendall tau p-value surrogates
the associated p-values of the trends of the surrogate timeseries.

significance p
the p-value for the original Kendall tau rank correlation estimate compared to the surrogates.
```

In addition, surrogates_ews returns a plot with the distribution of the surrogate Kendall tau estimates and the Kendall tau estimate of the original series. Vertical lines indicate the 5% and 95% significance levels.

Author(s)

Vasilis Dakos <vasilis.dakos@gmail.com>

References

Dakos, V., et al (2008). "Slowing down as an early warning signal for abrupt climate change." *Proceedings of the National Academy of Sciences* 105(38): 14308-14312

Dakos, V., et al (2012). "Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data." *PLoS ONE* 7(7): e41010. doi:10.1371/journal.pone.0041010

See Also

```
generic_ews; ddjnonparam_ews; bdstest_ews; sensitivity_ews; surrogates_ews;
ch_ews; movpotential_ews; livpotential_ews
```

Examples

```
data(foldbif);
output=surrogates_ews(foldbif,indicator="sd",winsize=50,detrending="gaussian",
bandwidth=10,boots=200,logtransform=FALSE,interpolate=FALSE)
```

16 YD2PB_grayscale

YD2PB_grayscale

Younger Dryas to PreBoreal transition

Description

Grayscale paleodata of the exit from the Younger Dryas

Usage

```
data(YD2PB_grayscale)
```

Format

A data frame with 2111 observations on the following 2 variables.

time a numeric vector

x a numeric vector

Details

Grayscale paleodata as proxy of exit from Younger Dryas as used in Dakos et al (2008), see source below.

Source

Dakos et al (2008), Slowing down as an early warning signal for abrup climate change, PNAS 105(38), 14308-14312.