Summary of Formulae

Sample mean and variance

Mean:
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 Variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$

Probability Rules

$$Pr(A \text{ or } B) = Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

$$Pr(A \text{ and } B) = Pr(A \cap B) = Pr(A) Pr(B|A)$$

$$= Pr(B) Pr(A|B)$$

Random Variables If X and Y are independent random variables, then W = aX + bY + c has:

Mean:
$$\mu_W = a \,\mu_X + b \,\mu_Y + c$$
 Variance: $\sigma_W^2 = a^2 \,\sigma_X^2 + b^2 \,\sigma_Y^2$

Discrete Distributions

Mean:
$$\mu_X = \sum_{i=1}^k x_i \Pr(X = x_i)$$
 Variance: $\sigma_X^2 = \sum_{i=1}^k (x_i - \mu_X)^2 \Pr(X = x_i)$

Binomial Distribution

$$\mu_X = n\pi \qquad \sigma_X^2 = n\pi(1-\pi) \qquad \Pr\left(X = x\right) = \binom{n}{x} \pi^x \left(1-\pi\right)^{n-x} \qquad \binom{n}{x} = \frac{n!}{x! \left(n-x\right)!}$$

If $n\pi \pm 3\sqrt{n\pi(1-\pi)}$ are between 0 and n, then X is approximately normally distributed with mean μ_X and variance σ_X^2 .

Normal Distribution A standard normal random variable, Z, has $\mu_Z = 0$ and $\sigma_Z^2 = 1$. To transform a normal random variable X into a standard normal (and vice versa):

$$Z = \frac{X - \mu_X}{\sigma_X} \qquad \qquad X = Z\sigma_X + \mu_X$$

Distributions of Statistics

- The mean \bar{X} of a random sample of size n has mean $\mu_{\bar{X}} = \mu_X$ and standard error $\sigma_{\bar{X}} = \frac{\sigma_X}{\sqrt{n}}$.
- The sample proportion P computed from a binomial distribution with parameters n and π has a mean of $\mu_P = \pi$ and standard error $\sigma_P = \sqrt{\frac{\pi(1-\pi)}{n}}$. If $n\pi \pm 3\sqrt{n\pi(1-\pi)}$ are between 0 and n, then P will be approximately normally distributed.
- The distribution of the difference between two sample means $\bar{X}_1 \bar{X}_2$ has a mean of $\mu_{\bar{X}_1 \bar{X}_2} = \mu_1 \mu_2$ and a standard error of $\sigma_{\bar{X}_1 \bar{X}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$.

1

Contingency Tables

	Fact	or 2	
Factor 1	Level 1	Level 2	Total
Level 1	a	b	$r_1 = a + b$
Level 2	c	d	$ r_1 = a + b $ $ r_2 = c + d $
	$c_1 = a + c$	$c_2 = b + d$	n = a + b + c + d

$$\chi^2 = \sum_{i=1}^R \sum_{j=1}^C \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

- ullet R and C are the number of rows and columns respectively
- $e_{ij} = \frac{r_i c_j}{n}$, where r_i is the *i*th row total and c_j is the *j*th column total
- o_{ij} is the observed value in row i column j

Odds ratio: OR = (a/b)/(c/d) = ad/bc

Relative risk: $RR = \left(a/r_1\right)/\left(c/r_2\right)$

Attributable risk: $AR = a/r_1 - c/r_2$

Confidence Intervals and Hypothesis Tests

All of the $100(1-\alpha)\%$ confidence intervals calculated in this course are of the form:

Estimate \pm multiplier \times standard error

In the table \bar{x} , p etc are the values calculated from the samples.

	Estimate	$\mathrm{df}\left(u ight)$	Multiplier	Standard Error	
Population mean					
• Random sample, σ_X known	$ar{x}$	NA	$z_{(1-\alpha/2)}$	$\frac{\sigma_X}{\sqrt{n}}$	
• Normal population, σ_X unknown	$ar{x}$	n-1	$t_{(1-\alpha/2,\nu)}$ $t_{(1-\alpha/2,\nu)}$	$\frac{s}{\sqrt{n}}$	
• Large random sample $(n \ge 20)$, σ_X unknown	\bar{x}	n-1	$t_{(1-\alpha/2,\nu)}$	$\frac{\frac{\sigma_X}{\sqrt{n}}}{\frac{s}{\sqrt{n}}}$ $\frac{\frac{s}{\sqrt{n}}}{\frac{s}{\sqrt{n}}}$	
Difference between population means					
• Large random samples (both ≥ 20)	$\bar{x}_1 - \bar{x}_2$	Will be provided	$t_{(1-\alpha/2,\nu)}$	$\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$	
• Paired difference in random samples from a normal population	$ar{d}$	n-1	$t_{(1-\alpha/2,\nu)}$	$\frac{s_d}{\sqrt{n}}$	
Population proportions					
• Population proportion	p	NA	$z_{(1-\alpha/2)}$	$\sqrt{\frac{p(1-p)}{n}} \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$	
• Difference between 2 population proportions	$p_1 - p_2$	NA	$z_{(1-\alpha/2)}$	$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$	
• Difference between 2 population proportions (hypothesis test)	$p_1 - p_2$	NA	$z_{(1-\alpha/2)}$	$\sqrt{\frac{p^*(1-p^*)}{n_1} + \frac{p^*(1-p^*)}{n_2}}$	
, , , , , , , , , , , , , , , , , , , ,	(Use $p^* =$	$\frac{x_1+x_2}{n_1+n_2}$ for hypothes	sis test)		

Odds ratio, relative risk, attributable risk (see contingency table on previous page for a, b, c and d)

 \bullet Log odds ratio

$$\ln(OR)$$

$$\sqrt{\frac{1}{a} + \frac{1}{b}}$$

• Log relative risk

$$z_{(1-\alpha/2)}$$

$$\sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$$

$$\sqrt{\frac{1}{a} - \frac{1}{r_1} + \frac{1}{c} - \frac{1}{r_2}}$$

• Attributable risk – as for the difference between two population proportions with $p_1=a/r_1$ and $p_2=c/r_2$

After ANOVA and Regression

• Estimate, multiplier and standard error determined from output

Regression

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$
 where $\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$ and $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$.

Standard error of the slope is
$$s_{\hat{\beta}_1} = \frac{s_e}{\sqrt{\sum (x_i - \bar{x})^2}}$$
 where $s_e = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n - 2}} = \sqrt{\frac{\text{RSS}}{n - 2}}$

Standard error of a prediction at
$$X = x_0$$
 is $PE(\hat{y}_0) = s_e \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$

ANOVA

$$y_{ij} = \mu_i + e_{ij} \qquad \qquad \hat{\mu}_i = \bar{y}_i.$$

$$TSS = GSS + RSS$$

2

Total sum Group sum Residual sum of squares of squares of squares