TheNumbersBook.com 2010

Dummit & Foote (3.2) 16, 18, 19, 22

3.2.16 Use Lagrange's Theorem in the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ to prove *Fermat's Little Theorem*: if p is a prime then $a^p \equiv a \mod p$ for all $a \in \mathbb{Z}$.

Let $G = \mathbb{Z}/p\mathbb{Z}^{\times}$. For any $a \in \mathbb{Z}$, we have a = np + g for some $g \in G$ (where we view elements of G as elements of \mathbb{Z}). Now note that:

$$a^{p} = (np+g)^{p}$$

$$= (np)^{p} + {p \choose 1} (np)^{p-1} g + \dots + {p \choose p-1} npg^{p-1} + g^{p}$$

$$\equiv g^{p}$$

so it's sufficient to focus on $g \in G$.

First note that if $a \in G$, then $\gcd(a,p) = 1$ for otherwise $a^k \mod p \equiv 0$ (for some $k \in \mathbb{Z}^+$), contradicting the fact that G is a group. Thus, every element is relatively prime to p. Furthermore, $|(\mathbb{Z}/p\mathbb{Z})^\times| = \phi(p) = p - 1$. It is well-known that $g^{|G|} = 1$. Thus, for any $g \in G$

$$g^{p-1} = 1 \Rightarrow g^p = g$$

which equivalently says that $g^p \equiv g \mod p$, as desired.

3.2.18 Let *G* be a finite group, let *H* be a subgroup of *G* and let $N \subseteq G$. Prove that if |H| and |G:N| are relatively prime then $H \subseteq N$.

Let $h \in H$ and |h| = p. Now consider the coset of h, that is $hN \in G/N$, and suppose that it has order k. Since the order of any element divides the order of the group, k||G:N|. Now note that $(hN)^p = h^pN = 1N = N$ so k|p and so k||H|. Since |H| and |G:N| are relatively prime, it must be that k = 1. Thus, $(hN)^1 = N$ and so $h \in N$. Thus, $H \le N$.

3.2.19 Prove that if N is a normal subgroup of the finite group G and (|N|, |G:N|) = 1 then N is the unique subgroup of G of order |N|.

Suppose that there is some other normal subgroup H that has order |N| and (|H|, |G:H|) = 1. Since |H| = |N|, (|H|, |G:N|) = 1 and by Exercise 3.2.18, $H \le N$. Alternatively, since |N| = |H|, (|N|, |G:H|) = 1 and by Exercise 3.2.18, $N \le H$. Thus, H = N and so N is the unique subgroup of G of order |N|.

3.2.22 Use Lagrange's Theorem in the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ to prove *Euler's Theorem*: $a^{\varphi(n)} \equiv 1 \mod n$ for every integer a relatively prime to n, where φ denotes Euler's φ -function.

Let $G = (\mathbb{Z}/n\mathbb{Z})^{\times}$. First note that if $a \in G$, then $\gcd(a,n) = 1$ for otherwise $a^k \mod n \equiv 0$ (for some $k \in \mathbb{Z}^+$), contradicting the fact that G is a group. Thus, every element is relatively prime to n. Furthermore, $|(\mathbb{Z}/n\mathbb{Z})^{\times}| = \phi(n)$. As discussed in 3.2.16, it is sufficient to focus on $g \in G$. Thus, we have $g^{\phi(n)} = 1$ so $g^{\phi(n)} \equiv 1 \mod n$, as desired.