实验 1 全加器实验

1.1 实验目的

- 1) 熟悉多思计算机组成原理网络虚拟实验系统的使用方法。
- 2) 掌握全加器的逻辑结构和电路实现方法。

1.2 实验要求

- 1) 做好实验预习,复习全加器的原理,掌握实验元器件的功能特性。
- 2) 按照实验内容与步骤的要求,独立思考,认真仔细地完成实验。
- 3) 写出实验报告。

1.3 实验电路

本实验使用的主要元器件有:与非门、异或门、开关、指示灯。

图 1.1 一位全加器实验电路

- 一位全加器的逻辑结构如图 1.1 所示,图中涉及的控制信号和数据信号如下:
- 1) A_i、B_i: 两个二进制数字输入。
- 2) Ci: 进位输入。
- 3) Si: 和输出。
- 4) C_{i+1}: 进位输出。

1.4 实验原理

1 位二进制加法器有三个输入量:两个二进制数字 A_i 、 B_i 和一个低位的进位信号 C_i ,这三个值相加产生一个和输出 S_i 以及一个向高位的进位输出 C_{i+1} ,这种加法单元称为全加器,其逻辑方程如下:

$$\begin{split} S_{i} &= A_{i} \oplus B_{i} \oplus C_{i} \\ C_{i+1} &= A_{i} B_{i} + B_{i} C_{i} + C_{i} A_{i} \end{split} \tag{1.1}$$

1.5 实验内容与步骤

1. 运行虚拟实验系统,从左边的实验设备列表选取所需组件拖到工作区中,按照图 1.1 所示搭建实验电路,得到如图 1.2 所示的实验电路。

图 1.2 一位全加器虚拟实验电路

2. 打开电源开关,按表 1-1 中的输入信号设置数据开关,根据显示在指示灯上的运算结果填写表 1-1 中的输出值。

输入			输出		
Ai	Bi	Ci	Si	Ci+1	
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			

表 1-1 一位全加器真值表

1	0	1	
1	1	0	
1	1	1	

3. 关闭电源开关,增加元器件,实现一个 2 位串行进位并行加法器。用此加法器进行运算,根据运算结果填写好表 1-2。

表 1-2 2 位串行进位并行加法器真值表

输入				输出			
A_2	\mathbf{A}_1	B ₂	B ₁	C ₁	S ₂	S ₁	C ₃
0	1	0	1	0			
0	1	0	1	1			
1	0	0	1	0			
1	0	0	1	1			
1	0	1	1	0			
1	1	1	1	1			

1.6 思考与分析

- 1. 串行进位并行加法器的主要缺点是什么?有改进的方法吗?
- 2. 能使用全加器构造出补码加法/减法器吗?