SNO	LITERATURE		MERITS	DEMERITS
1	Prediction of weather induced airline delays based on machine learning algorithms	Experimented predicting delay using supervised machine learning algorithms. Uses SMOTE for weaker class sampling	Found weather causes to be amounting to a significant percent of delay.	Not taken spatial dependencies into account. Amount of delay could have been found.
2	Flight delay prediction from spatial and temporal perspective	ST-Random Forest for flight delay prediction using spatial features of aviation network and temporal correlation of weather condition and airport crowdedness on flight delays.	A real-time, highly accurate prediction system that guaranties the influence of the air traffic network in the prediction.	Overfitting might occur due to LSTM.
3	Study of Flight Departure Delay and Causal Factor Using Spatial Analysis	Assuming delay as a spatially dependent variable, finds delay distribution pattern to predict delay.	Considers spatial factors, people, day types and time ranges of a day to contribute to the prediction	Some of the attributes considered cannot be obtained on large scale in real time
4	Predicting flight delay based on multiple linear regression	A multiple linear regression algorithm to predict delay	Both airline and weather features are taken into consideration. The methodology used in this gives better results compared to NaiveBayes and C4.5 approach	Predicts only the flights which are delayed above 30 minutes
5	Flight Delay Prediction System	Supervised Machine Learning algorithm using Naive Bayes	Considers independence among the predictors making the system scalable. Good for	Does not take into account the impact of unprecedented reasons such as major

			real time	calamities in
			prediction	flight delays
	Flight delay	LSTM network	Direct and	Air interaction
	forecasting and	with attention	indirect causing	of flights not
6	analysis of direct and	mechanism to	factors are	taken into
	indirect factors	remember	weighed	account
		spatial	differently.	
		dependencies		
	A deep learning	A deep RNN and	Predicting two	Air
	approach to flight	LSTM approach	sections namely	traffic/flight
	delay prediction	to prediction;	day prediction	interaction
		uses limited	and flight	doesnt play
_		data attributes	prediction seems	great roles.
7			more reasonable	Biased towards
			and can give	weather
			more insights for	attributes.
			the airport	
			managers to	
			make necessary	
	Predicting flight delay	A multiple linear	arrangements Both airline and	Predicts only
	based on multiple	regression	weather features	the flights
	linear regression	algorithm to	are taken into	which are
	inical regression	predict delay	consideration.The	delayed above
8		predict delay	methodology	30 minutes
			used in this gives	30 minutes
			better results	
			compared to	
			NaiveBayes and	
			C4.5 approach	
	Flight delay prediction	Comparison of	Use of ADS-B can	Deployment of
	based on aviation big	LSTM and	be seen	ADS-B is
	data and machine	Random forest;	promising.	hectic. More
9	learning	Uses ADS-B data	Showed that	data handing
		for improved	LSTM suffers	takes place.3
		accuracy	from overfitting	
			on test set.	