WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT DER UNIVERSITÄT ZÜRICH PROFESSUR FÜR MATHEMATIK DER WIRTSCHAFTSWISSENSCHAFTEN ÜBUNGEN ZUR VORLESUNG MATHEMATIK II

Serie 13 ab 20.05.2019 FS 2019

Es werden die Aufgaben 1, 3, 4 und 8 in den Tutorien besprochen.

Aufgabe 1 (Optimierungsproblem unter Nebenbedingung I)

Betrachten Sie das folgende Optimierungsproblem unter Nebenbedingungen:

$$\min_{\mathbf{x} \in (0, +\infty) \times \mathbb{R}} x_1 x_2^2 - 3e^{x_2}$$
u.d.N. $x_2 - \ln(x_1) = 0$.

- (a) Bestimmen Sie mit Hilfe der Lagrange-Funktion
 - (i) alle Stellen, an denen eine optimale Lösung des Optimierungsproblems unter Nebenbedingungen vorliegen kann;
 - (ii) den Zielfunktionswert aller in (i) ermittelten Stellen.
- (b) Bestimmen Sie mit Hilfe des Verfahrens der Substitution die optimale Lösung des Optimierungsproblems unter Nebenbedingungen.

Aufgabe 2 (Optimierungsproblem unter Nebenbedingung II)

Betrachten Sie das folgende Optimierungsproblem unter Nebenbedingungen:

$$\max_{\mathbf{x} \in (0,\infty)^2} x_1 + x_2 + 2\sqrt{x_1 x_2}$$

u.d.N. $x_1 + x_2 = 20$.

- (a) Bestimmen Sie mit Hilfe der Lagrange-Funktion
 - (i) alle Stellen, an denen eine optimale Lösung des Optimierungsproblems unter Nebenbedingungen vorliegen kann;
 - (ii) den Zielfunktionswert aller in (i) ermittelten Stellen.
- (b) Bestimmen Sie mit Hilfe des Verfahrens der Substitution die optimale Lösung des Optimierungsproblems unter Nebenbedingungen.

Aufgabe 3 (Kostenminimierung)

Gegeben ist die Produktionsfunktion

$$f: \mathbb{R}^2 \to \mathbb{R} \text{ mit } f(x_1, x_2) = x_1 + 2x_2$$

eines Unternehmens mit den beiden unabhängigen Inputs x_1 und x_2 , d.h. $(x_1,x_2)^T$ führt zu $y=f(x_1,x_2)$ Einheiten des Endprodukts. Die Kostenfunktion $c(x_1,x_2)$ des Unternehmens sei

$$c: \mathbb{R}^2 \to \mathbb{R} \text{ mit } c(x_1, x_2) = x_1^2 + 6x_2^2 + k,$$

wobei $k \in \mathbb{R}$ Fixkosten darstellen.

(a) Wann sind die Kosten minimal, wenn keine Produktionsrestriktionen vorliegen? Beantworten Sie die Frage einmal intuitiv und einmal rechnerisch.

(b) Das Unternehmen hat den Auftrag genau $y_0 > 0$ Einheiten zu minimalen Kosten zu produzieren. Berechnen Sie den einzigen Kandidaten $(x_1^*, x_2^*)^T$, welcher die Kosten minimieren könnte.

(c) Verwenden Sie ohne Beweis, dass der ermittelte Kandidat $(x_1^*, x_2^*)^T$ aus Teilaufgabe (b) tatsächlich die Kosten minimiert, falls genau y_0 Einheiten produziert werden sollen. Wie verändern sich die Kosten bei einer kleinen Änderung der produzierten Einheiten y_0 und in welchem Zusammenhang steht dies mit λ aus der Lagrange-Funktion?

Aufgabe 4 (Lineare Optimierung mit 2 Variablen)

Sie sind verantwortlich für die Produktion von zwei Typen von Whirlpools: Aqua-Spa und Hydro-Lux. Insgesamt können nur 200 Whirlpools produziert werden. Die Fertigung eines Aqua-Spas benötigt 9 Stunden Arbeit und die Fertigung eines Hydro-Luxs 6 Stunden. Insgesamt stehen Ihnen nur 1566 Arbeitsstunden zur Verfügung. Beide Typen werden aus einem Rohr hergestellt, von dem insgesamt 2880m zur Verfügung stehen. Ein Aqua-Spa benötigt dabei 12m des Rohrs und ein Hydro-Lux 16m. Der Verkauf eines Whirpools des Typs Aqua-Spa bringt einen Erlös von 350 CHF ein, wohingegen ein Whirpool des Typs Hydro-Lux beim Verkauf 300 CHF einbringt.

- (a) Würden ausschliesslich die Whirlpools mit dem höchsten Erlös produziert werden, wie viele könnten hergestellt werden? Wie hoch wäre der resultierende Erlös?
- (b) Beschreiben Sie das Problem durch ein lineares Optimierungsproblem in Standardform mit zwei Variablen x_1 und x_2 .
- (c) Stellen Sie den zulässigen Bereich in einem zweidimensionalen Koordinatensystem mit einer x_1 und einer x_2 -Achse dar.
- (d) Zeichnen Sie im Koordinatensystem aus Teilaufgabe (c) zusätzlich Höhenlinien der Zielfunktion zu den Niveaus $y_1 = 35000$ und $y_2 = 52500$ ein.
- (e) Zählen Sie alle Eckpunkte des zulässigen Bereichs auf und bestimmen Sie den Eckpunkt mit dem grössten Zielfunktionswert.
- (f) Welche Aussage trifft der Hauptsatz der linearen Optimierung über den in (e) gefundenen Eckpunkt mit dem grössten Zielfunktionswert?
- (g) Lösen Sie das lineare Optimierungsproblem mit Hilfe Ihrer angefertigten Grafik aus Teilaufgabe (d).

Aufgabe 5 (Lineare Optimierung mit 3 Variablen)

Anlässlich und zur Finanzierung einer Examensfeier soll ein neues Mixgetränk "Leichte Abschlussprüfung" (LAP) kreiert werden. Zum Mischen stehen drei Basisflüssigkeiten in ausreichendem Masse zur Verfügung:

Basisflüssigkeit	Alkohol (%)	Kosten (CHF/Liter)
Klarer	40	12
Kräuterlikör	20	18
Orangensaft	0	2

Folgende Anforderungen werden an das Mixgetränk LAP gestellt:

- LAP soll einen Alkoholgehalt von mindestens 6% haben.
- Um Verwechslung mit bekannten Mixgetränken (Wodka-Orange etc.) zu vermeiden, soll LAP mindestens zu 10% Kräuterlikör enthalten.

- Der Orangensaftanteil soll höchstens 75% betragen.
- LAP soll möglichst geringe Kosten pro Liter verursachen.
- (a) Beschreiben Sie das Problem durch ein lineares Optimierungsproblem mit drei Variablen x_1 , x_2 und x_3 .
- (b) Bestimmen Sie ein lineares Optimierungsproblem in Standardform mit zwei Variablen x_2 und x_3 , das äquivalent zu dem linearen Optimierungsproblem mit drei Variablen aus Teilaufgabe (a) ist.
- (c) Stellen Sie den zulässigen Bereich des linearen Optimierungsproblems aus Teilaufgabe (b) in einem zweidimensionalen Koordinatensystem mit einer x_2 und einer x_3 -Achse dar.
- (d) Zeichnen Sie im Koordinatensystem aus Teilaufgabe (c) zusätzlich Höhenlinien der Zielfunktion zu den Niveaus $y_1 = -1, y_2 = 1$ und $y_3 = 3$ ein.
- (e) Zählen Sie alle Eckpunkte auf und bestimmen Sie den Eckpunkt mit dem grössten Zielfunktionswert.
- (f) Welche Aussage trifft der Hauptsatz der linearen Optimierung über den in (e) gefundenen Eckpunkt mit dem grössten Zielfunktionswert?
- (g) Lösen Sie das lineare Optimierungsproblem mit Hilfe Ihrer angefertigten Grafik.

Aufgabe 6 (Lineare Optimierung Verständnis)

Welche der folgenden Aussagen sind wahr und welche falsch?

(1) Jedes lineare Optimierungsproblem mit $B \neq \{\}$ hat eine optimale Lösung.	□ wahr	☐ falsch
(2) Der zulässige Bereich eines linearen Optimierungsproblems hat höchstens endlich viele Eckpunkte.	□ wahr	☐ falsch
(3) Der zulässige Bereich eines linearen Optimierungsproblems in Standardform mit n Variablen kann $B = (0,1)^n$ sein.	□ wahr	□ falsch
(4) Sind $\mathbf{x}_1^* = (2,2,2)^T$ und $\mathbf{x}_2^* = (4,2,4)^T$ optimale Eckpunkte eines linearen Optimierungsproblems, dann ist auch $(3,2,3)^T$ optimal.	□ wahr	□ falsch

Aufgabe 7 (Basislösungen I)

Ein Bauunternehmer beabsichtigt zwei Typen von Eigenheimen zu bauen. Er rechnet mit einer Bauzeit von 2 Jahren und damit, dass sich sofort Käufer für fertiggestellte Eigenheime finden. Folgende Daten wurden in Tausend CHF ermittelt:

pro Eigenheim	Тур А	Тур В
Baukosten 1. Jahr	200	200
Baukosten 2. Jahr	120	200
Verkaufserlöse	330	420

Im 1. Jahr stehen 1'600'000 CHF und im 2. Jahr 1'200'000 CHF zur Verfügung. Ziel ist die Ermittlung eines gewinnmaximalen Bauprogrammes bestehend aus Typ A und/oder Typ B. Wir nehmen

an, dass der Bauunternehmer auch nicht-ganzzahlige Häuser bauen kann. Er kann beispielsweise auch halbe Häuser bauen.

- (a) Würden ausschliesslich die Eigenheime mit den höchsten Verkaufserlösen produziert werden, wie viele könnten gebaut werden? Wie hoch wäre der resultierende Verkaufserlös?
- (b) Formulieren Sie das zugehörige lineare Optimierungsproblem in Standardform und bestimmen Sie die dazugehörige Matrix *A* und die Vektoren **b** und **c**.
- (c) Zählen Sie alle Basislösungen des LGS Ax + Iy = b auf.
- (d) Welche der in Teilaufgabe (c) gefundenen Basislösungen sind zulässige Basislösungen des LGS $A\mathbf{x} + I\mathbf{y} = \mathbf{b}$?
- (e) Sei $B = \{ \mathbf{x} \in \mathbb{R}^2 \mid A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$. Zählen Sie alle Eckpunkte von B auf und bestimmen Sie den Eckpunkt mit dem grössten Zielfunktionswert.
- (f) Welche Aussage trifft der Hauptsatz der linearen Optimierung über den in (e) gefundenen Eckpunkt mit dem grössten Zielfunktionswert?
- (g) (#) Lösen Sie obiges lineares Optimierungsproblem mit Hilfe des Simplexalgorithmus.

Aufgabe 8 (Grippaler Infekt)

Zur Verhütung eines grippalen Infekts während der Klausurvorbereitung will eine Studentin täglich mindestens 600 mg Vitamin C und mindestens 400 mg Kalzium in Form von Tabletten zu sich nehmen. In einer Apotheke sind 2 verschiedene Vitamin C/Kalzium-Tabletten erhältlich, deren Zusammensetzung der nachfolgenden Tabelle entnommen werden kann:

Tablettensorte		2
Vitamin C-Gehalt (in mg) Kalzium-Gehalt (in mg)		30
		50

Eine Tablette der Sorte 1 kostet 0.05 CHF und eine Tablette der Sorte 2 kostet 0.07 CHF. Die Studentin will die täglichen Beschaffungskosten minimieren. Wir nehmen an, dass die Studentin auch nicht-ganzzahlige Tabletten kaufen kann. Sie kann beispielsweise auch eine halbe Tablette kaufen.

- (a) Formulieren Sie das Problem als lineares Optimierungsproblem in Standardform und bestimmen Sie die dazugehörige Matrix *A* und die Vektoren **b** und **c**.
- (b) Stellen Sie den zulässigen Bereich $B = \{ \mathbf{x} \in \mathbb{R}^2 \mid A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$ des linearen Optimierungsproblems aus Teilaufgabe (a) in einem zweidimensionalen Koordinatensystem mit einer x_1 und einer x_2 -Achse dar.
- (c) Zählen Sie mit Hilfe Ihrer angefertigten Grafik aus Teilaufgabe (b) alle Eckpunkte des zulässigen Bereichs auf.
- (d) Zeichnen Sie im Koordinatensystem aus Teilaufgabe (b) zusätzlich Höhenlinien der Zielfunktion zu den Niveaus $y_1 = -70$ und $y_2 = -90$ ein.
- (e) Lösen Sie das lineare Optimierungsproblem mit Hilfe Ihrer angefertigten Grafik aus Teilaufgabe
- (f) Zählen Sie alle Basislösungen des LGS $A\mathbf{x} + I\mathbf{y} = \mathbf{b}$ auf.
- (g) Zählen Sie mit Hilfe der in Teilaufgabe (f) gefundenen Basislösungen alle Eckpunkte des zulässigen Bereichs auf und bestimmen Sie den Eckpunkt mit dem grössten Zielfunktionswert.
- (h) Welche Aussage trifft der Hauptsatz der linearen Optimierung über den in Teilaufgabe (g) gefundenen Eckpunkt mit dem grössten Zielfunktionswert?

Aufgabe 9 (Basislösungen II)

Betrachten Sie das lineare Optimierungsproblem

$$\max \mathbf{c}^T \mathbf{x}$$

u.d.N. $A\mathbf{x} \le \mathbf{b}$
$$\mathbf{x} \ge \mathbf{0}$$

mit
$$A = \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 10 \\ 20 \end{pmatrix}$ und $\mathbf{c} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$.

- (a) Liegt das obige lineare Optimierungsproblem in Standardform vor?
- (b) Zählen Sie alle Basislösungen des LGS $A\mathbf{x} + I\mathbf{y} = \mathbf{b}$ auf.
- (c) Welche der in Teilaufgabe (b) gefundenen Basislösungen sind zulässige Basislösungen des LGS $A\mathbf{x} + I\mathbf{y} = \mathbf{b}$?
- (d) Sei $B = \{ \mathbf{x} \in \mathbb{R}^2 \mid A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$. Zählen Sie alle Eckpunkte von B auf und bestimmen Sie den Eckpunkt mit dem grössten Zielfunktionswert.
- (e) Welche Aussage trifft der Hauptsatz der linearen Optimierung über den in (d) gefundenen Eckpunkt mit dem grössten Zielfunktionswert?