

Pédale Multi-Effets Numérique

Camille LANFREDI
Luca CROSETTO
Jolan THOMASSET

Sommaire

- Introduction (3)
- Présentation du projet (4-5)
- État de l'art (6)
- Cahier des charges (7)
- Spécifications techniques (8-12)

Introduction

• Pourquoi ce projet ?

20/03/2024

Présentation du projet 1/2

• Clients: Les adeptes de la musique (M. Fiack, M. Papazoglou) & les guitaristes

Contexte – Contraintes

3 étudiants (2 élec-info / 1 signal-élec)

Une pédale à réaliser avec divers effets numériques (Octaver, Saturation, Granulaire...)

Sur une période de ~ 100h encadrées dans l'établissement + ∞ h à la maison

Choix des composants, création de notre propre PCB, choix des effets et implémentations.

Présentation du projet 2/2

• Enjeux:

Tout à gagner (compétences), MAIS on s'ouvre à perdre la confiance d'un prof qui a cru en nous.

Objectifs:

Partie Electronique : choix des composants / PCB / Assemblage

Partie informatique : Implémenter des transformations de signal sonore

• Coûts:

Budget alloué par l'établissement, ~60-100€ par personne

Etat de l'art

- Première pédale d'effet inventé en 1962 (La Maestro Fuzz Tone).
- A partir des années 80, apparitions des pédales numériques.
- Année 90, création des pédales multi-effets.
- Année 2000, création des plugins.

Cahier des charges

Fil Conducteur

Fabrication d'une pédale multi-effet.

• Spécifications techniques :

Représentation du système

Utilisation d'un codec audio.

Utilisation d'un microprocesseur lié à une RAM externe.

Interprétation physique d'effet audio

Implémentation d'un effet audio numériquement

Réussir à implémenter un effet "Granulaire"

Spécifications techniques - Représentation du système

Spécifications techniques- Le codec STGL5000

Features

Analog Inputs

- · Stereo LINEIN Support for external analog input
- · Stereo LINEIN Codec bypass for low power
- · MIC bias provided
- · Programmable MIC gain
- ADC 85 dB SNR (-60 dB input) and -73 dB THD+N (VDDA = 1.8 V)

Analog Outputs

- · HP Output Capless design
- HP Output 62.5 mW max, 1.02 kHz sine into 16 Ω load at 3.3 V
- HP Output 100 dB SNR (-60 dB input) and -80 dB THD+N (V_{DDA} = 1.8 V, 16 Ω load, DAC to headphone)
- LINEOUT 100 dB SNR (-60 dB input) and -85 dB THD+N (V_{DDIO} = 3.3 V)

Digital I/O

- I²S port to allow routing to Application Processor
- Tension d'alimentation allant de 1,62 volts à 3,6 volts
- Tension VDDA = 1,8 V

Note: SPI is not supported in the 3.0 mm x 3.0 mm 20-pin QFN package

Figure 1. SGTL5000 Simplified Application Diagram

Table 4. Input/Output Electrical Characteristics

Test Conditions unless otherwise noted: V_{DDIO} = 3.3 V, V_{DDA} = 3.3 V, T_A = 25 °C, Slave mode, f_S = 48 kHz, MCLK = 256 f_S , 24 bit input, 1.02 kHz sine.

	Characteristic	Symbol	Min	Тур	Max	Unit
	LINEIN Input Level (3.3 V VDDA)		-	-	2.83	V _{PP}
	LINEIN Input Level (1.8 V VDDA)		-	-	1.60	V _{PP}
r	Camilie Luca Joian			•		9

Spécifications techniques-Pré - Ampli

Tension d'entrée émis par la guitare

V_max = 820 mV V càc = 1,53 V

AOP non inverseur

$Vs = Ve\left(1 + \frac{R2}{R2 + R1}\right)$

Tension d'entrée du codec

Note: SPI is not suppor

Figure 1. SC

Ve_max = 1,6 ou 2,8V

Spécifications techniques - LE Microprocesseur

STM32f446ZCT6

<u>Alimentation</u>: Vdd et Vss = 3,3V

Mémoire :

- 512 Ko à 180 MHz
- 128 Ko RAM

Horloge: 4 à 26 MHz

114 entrées/sorties :

Interfaces de communication :

SPI, I2C, UART, I2S

Inter-integrated sound (I2S):

- Disponibles sur SP1, SP2 et SP3
- Fréquence d'échantillonnage : 8 kHz à 192 kHz
- Résolution de 16/32 bits

20/03/2024 Camille Luca Jolan 11

Spécifications techniques - La mémoire

PIN CONFIGURATIONS 54 pin TSOP - Type II

Taille: 64 Mo, 4M x 16

PIN DESCRIPTIONS

A0-A11	Row Address Input
A0-A7	Column Address Input
BA0, BA1	Bank Select Address
DQ0 to DQ15	Data I/O
CLK	System Clock Input
CKE	Clock Enable
CS	Chip Select
RAS	Row Address Strobe Command
CAS	Column Address Strobe Command

WE	Write Enable
LDQM	x16 Lower Byte, Input/Output Mask
UDQM	x16 Upper Byte, Input/Output Mask
VDD	Power
GND	Ground
VDDQ	Power Supply for I/O Pin
GNDa	Ground for I/O Pin
NC	No Connection
	·

Spécifications techniques Implémentation

Quel langage? C, C++, Python

 Codage en amont : Librairie Portaudio (C++) permet d'obtenir une Input/Output son temps réel.

 Documentation sur la Physique de la modulation de notre signal sonore et l'effet qui correspond à cette modulation

Code sur VCS & Suivi Github

Spécifications techniques L'Effet Granulaire

• Etude de l'effet à l'aide de Logiciel (durée d'un grain = typiquement de 1 à 100 ms).

La synthèse granulaire est une technique de traitement du son qui divise un signal sonore en petits grains (fragments) Ensuite les grains peuvent être manipulés de différentes manières pour créer un effet souhaité.

- Pitch : Contrôle la hauteur ou la fréquence du son granulaire généré
- Density : Contrôle la fréquence à laquelle de nouveaux grains sont générés.
- Shape: Permet d'influencer la façon dont les grains sont lus (passage enveloppe linéaire à exponentielle)
- **Feedback**: Le potard feedback détermine la quantité de signal granulaire qui est renvoyée. Plus on augmente le feedback, plus une partie du signal granulaire peut être renvoyée dans le processus, créant une boucle de rétroaction.
- Reverb: en augmentant la reverb, on crée une ambiance spatiale plus grande autour du son granulaire, donnant l'impression que le son se propage dans un espace plus grand

