TATA24 Linjär Algebra, Fö 16 Jan Snellman

Linjära isometrie

Symmetriska linjär avbildningar

TATA24 Linjär Algebra, Fö 16

Isometriska och symmetriska linjära avbildningar

Jan Snellman¹

¹Matematiska Institutionen Linköpings Universitet

Linköping, HT 2022

Detta dokument återfinns på kurshemsidan http://courses.mai.liu.se/GU/TATA24/

Linjära isometrie

Symmetriska linjär avbildningar

Linjära isometrier Avståndsbevarande, normbevarande, inreprodukt-bevarande ON-matriser Determinant av isometri Isometrier i planet
Isometrier i rummet

2 Symmetriska linjära avbildningar Symmetrisk avbildningsmatris Symmetrisk och antisymmetrisk de Jan Snellman

TEKNISKA HÖGSKOLAN
LINKÖRINGE UNIVERSITET

Linjära isometrie

Symmetriska linjär avbildningar

Linjära isometrier
 Avståndsbevarande, normbevarande, inreprodukt-bevarande
 ON-matriser
 Determinant av isometri

Isometrier i planet Isometrier i rummet

Symmetriska linjära avbildningar Symmetrisk avbildningsmatris Symmetrisk och antisymmetrisk del

Jan Snellman

TEKNISKA MÖGSKOLAN
LINKÖPINGS UNIVERSITET

Linjära isometrie

Avståndsbevarande, normbevarande, inreprodukt-bevarande

ON-matriser
Determinant av isometri
Isometrier i planet

Isometrier i rummet

Symmetriska linjär avbildningar

Definition

Låt E vara ett euklidiskt rum med inre produkt $(\cdot|\cdot)$. Vi definierar, som tidigare, *normen* av $\overline{u}\in E$ som $\|\overline{u}\|=\sqrt{(\overline{u}|\overline{u})}$. Vi definierar *avståndet* mellan \overline{u} och \overline{v} som $d(\overline{u},\overline{v})=\|\overline{u}-\overline{v}\|$. Låt $F:E\to E$ vara liniär.

- **1** F bevarar inreprodukt om $(\overline{\mathbf{u}}|\overline{\mathbf{v}}) = (F(\overline{\mathbf{u}})|F(\overline{\mathbf{v}}))$ för alla $\overline{\mathbf{u}}, \overline{\mathbf{v}} \in \mathbf{E}$.
- $\textbf{ 9} \ \textit{F} \ \text{\"{a}r} \ \text{avståndsbevarande om} \ \textit{d}(\overline{\mathrm{u}}, \overline{\mathrm{v}}) = \textit{d}(\textit{F}(\overline{\mathrm{u}}), \textit{F}(\overline{\mathrm{v}})) \ \text{f\"{o}r} \ \text{alla} \ \overline{\mathrm{u}}, \overline{\mathrm{v}} \in \mathrm{E}.$
- $\textbf{ § } \textit{F} \textit{ \"{a}r normbevarande om } \|\overline{\mathbf{u}}\| = \|\textit{F}(\overline{\mathbf{u}})\| \textit{ \'{a}r alla } \overline{\mathbf{u}} \in E.$

TATA24 Liniär Algebra, Fö 16 Jan Snellman LINKÖPINGS UNIVERSITET

Avståndsbevarande. normhevarande inreprodukt-bevarande

Determinant av isometri Isometrier i planet

Isometrier i rummet

Sats

Följande är likvärdiga:

- F bevarar inre produkt.
- F är avståndsbevarande
- 6 F är normbevarande.

Bevis.

(3) medför (2):

$$d(F(\overline{\mathbf{u}}), F(\overline{\mathbf{v}})) = ||F(\overline{\mathbf{u}}) - F(\overline{\mathbf{v}})|| = ||F(\overline{\mathbf{u}} - \overline{\mathbf{v}})|| = ||\overline{\mathbf{u}} - \overline{\mathbf{v}}|| = d(\overline{\mathbf{u}}, \overline{\mathbf{v}}).$$

$$\|\overline{\mathbf{u}}\| = d(\overline{\mathbf{u}}, \overline{\mathbf{0}}) = d(F(\overline{\mathbf{u}}), F(\overline{\mathbf{0}})) = d(F(\overline{\mathbf{u}}), \overline{\mathbf{0}}) = \|F(\overline{\mathbf{u}})\|$$

$$\|\overline{u}\|^2 = (\overline{u}\|\overline{u}) = (F(\overline{u})|F(\overline{u})) = \|F(\overline{u})\|^2$$

$$2(\overline{u}|\overline{v}) = \|\overline{u} + \overline{v}\|^2 - \|\overline{u}\|^2 - \|\overline{v}\|^2 = \|F(\overline{u} + \overline{v})\|^2 - \|F(\overline{u})\|^2 - \|F(\overline{v})\|^2 = \|F(\overline{u} + \overline{v})\|^2 + \|F(\overline{u})\|^2 + \|F(\overline{v})\|^2 = \|F(\overline{u} + \overline{v})\|^2 + \|F(\overline{u})\|^2 + \|F(\overline{u})\|^2 + \|F(\overline{u} + \overline{v})\|^2 + \|F(\overline{u} + \overline{v})$$

$$\| r(u + v) \| \| r(u) \| \| r(v) \| =$$

$$||F(\overline{\mathbf{u}}) + F(\overline{\mathbf{v}})||^2 - ||F(\overline{\mathbf{u}})||^2 - ||F(\overline{\mathbf{v}})||^2 = 2(F(\overline{\mathbf{u}})|F(\overline{\mathbf{v}}))$$

Jan Snellman

TEKNISKA HÖGSKOLAN

Linjära isometrie

ON-matriser

Avståndsbevarande, normbevarande, inreprodukt-bevarande

Determinant av isometri Isometrier i planet

Isometrier i rummet

Definition

En linjär avbildning som uppfyller de tre ekvivalenta villkoren att bevara inre produkt, avstånd, norm, kallas för en (linjär) *isometri*.

Exempel

En vridning i planet är en isometri.

Linjära isometrie

Avståndsbevarande, normbevarande, inreprodukt-bevarande

ON-matriser

Determinant av isometri Isometrier i planet Isometrier i rummet

Symmetriska linjär avbildningar

Sats

Låt E vara ett euklidiskt rum av ändlig dimension n, och låt $\underline{e} = (\overline{e}_1 \quad \cdots \quad \overline{e}_n)$ vara en (ordnad) ON-bas för E. Antag att

$$F: E \to E$$

är linjär och har avbilningsmatris A m.a.p. e.

 $D\mathring{a}$ är F en isometri omm A är en ortonormal matris, dvs om kolonnerna i A bildar en ON-bas, alternativt och ekvivalent om $A^tA = I$.

Bevis.

Eftersom en isometri bevarar inre produkt så är $(F(\overline{e}_1) \cdots F(\overline{e}_n))$ en ON-bas i E, så motsvarande koefficientmatriser bildar en ON-bas för \mathbb{R}^n . Men dessa koefficientmatriser är precis kolonnerna i avbildningsmatrisen.

Omvänt, om A är en ortonormal matris, så uppfyller F att

$$\|F(\underline{e}X)\|^2 = \|\underline{e}AX\|^2 = (AX)^t(AX) = X^tA^tAX = X^tIX = X^tX = \|\underline{e}X\|^2.$$

6 / 30

Jan Snellman

Linjära isometrie

Avståndsbevarande, normbevarande, inreprodukt-bevarande

ON-matriser

Determinant av isometri Isometrier i planet Isometrier i rummet

Symmetriska linjär

Exempel (Vridning)

Vridning med α radianer moturs har avbildningsmatris

$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} = \begin{bmatrix} \overline{\mathbf{u}} & | & \overline{\mathbf{u}}^{\perp} \end{bmatrix}, \quad a^2 + b^2 = 1, \ \overline{\mathbf{u}} = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \cos(\alpha) \\ \sin(\alpha) \end{bmatrix}, \ \overline{\mathbf{u}}^{\perp} = \begin{bmatrix} -b \\ a \end{bmatrix}$$

Avståndsbevarande, normbevarande, inreprodukt-bevarande

ON-matriser

Determinant av isometri Isometrier i planet Isometrier i rummet

Symmetriska linjära

Exempel (Spegling)

Spegling i linjen genom origo, med normerad normalvektor $\overline{\mathbf{n}} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}$ har avbildningsmatris

$$\begin{pmatrix} 1-2a^2 & -2ab \\ -2ab & 1-2b^2 \end{pmatrix} \text{ som har determinant } \\ (1-2a^2)(1-2b^2)-4a^2b^2=1-2b^2-2a^2=1-2=-1.$$

TEKNISKA HÖGSKOLAN

Linjära isometrie

Avståndsbevarande, normbevarande, inreprodukt-bevarande

ON-matriser

Determinant av isometri Isometrier i planet Isometrier i rummet

Symmetriska linjär

Exempel

Hadamardmatrisen H_m definieras rekursivt av $H_0 = (1)$ och

$$H_{m} = rac{1}{\sqrt{2}} egin{pmatrix} H_{m-1} & H_{m-1} \ H_{m-1} & -H_{m-1} \end{pmatrix}$$

så

osv. Vi har att H_m är en ortonormalmatris, ty

$$\begin{split} H_m^t H_m &= \frac{1}{2} \begin{pmatrix} H_{m-1} & H_{m-1} \\ H_{m-1} & -H_{m-1} \end{pmatrix}^t \begin{pmatrix} H_{m-1} & H_{m-1} \\ H_{m-1} & -H_{m-1} \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} H_{m-1}^t & H_{m-1}^t \\ H_{m-1}^t & -H_{m-1}^t \end{pmatrix} \begin{pmatrix} H_{m-1} & H_{m-1} \\ H_{m-1} & -H_{m-1} \end{pmatrix} \\ &= \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} \end{split}$$

Jan Snellman

TEKNISKA HÖGSKOLAN

Liniära isometrie

Avståndsbevarande, normbevarande, inreprodukt-bevarande

ON-matriser

Determinant av isometri Isometrier i planet Isometrier i rummet

Symmetriska linjära avbildningar

Exempel (forts)

Tag vektorn
$$\overline{\mathrm{u}}=\begin{bmatrix}1\\2\\-1\\2\end{bmatrix}\in\mathbb{R}^4.$$
 Den har längd $\sqrt{10}$, och dess Hadamardtransform är

som också har längd $\sqrt{10}$.

Jan Snellman

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

Linjära isometrie

Avståndsbevarande, normbevarande, inreprodukt-bevarande ON-matriser

Determinant av isometri Isometrier i planet

Isometrier i rummet

Symmetriska linjära avbildningar

Sats

Låt F vara en isometri på ett ändligt dimensionellt euklidiskt rum, och låt avbildningsmatrisen m.a.p. någon ordnad ON-bas vara M. Då är $\det(M)=1$ eller $\det(M)=-1$.

Bevis.

Eftersom $M^t M = I$ så är

$$1 = \det(I) = \det(M^t M) = \det(M^t) \det(M) = \det(M) \det(M) = \det(M)^2$$

Definition

Om det(M) = +1 så säger vi att F är ordningsbevarande, annars att den är ordningsreverserande. Detta beror inte på val av ON-bas.

TEKNISKA HÖGSKOLAN

Linjära isometrie

Avståndsbevarande, normbevarande, inreprodukt-bevarande

Determinant av isometri

Isometrier i planet

Symmetriska linjär

Sats

En isometri i planet är antingen en vridning (om avbildningsmatrisen har determinant 1) eller en spegling (om avbildningsmatrisen ha determinant -1).

Bevis.

Låt $\underline{\mathbf{e}}$ vara en ordnad ON-bas för planet. En isometri tar en ON-bas till en ON-bas, så $\left(F(\overline{\mathbf{e}}_1) \quad F(\overline{\mathbf{e}}_2)\right)$ är en ON-bas. Låt $F(\overline{\mathbf{e}}_1) = \underline{\mathbf{e}} \begin{bmatrix} a \\ b \end{bmatrix}$ med $a^2 + b^2 = 1$. Då är antingen

- $F(\bar{e}_2) = \underline{e} \begin{bmatrix} -b \\ a \end{bmatrix}$ och avbildningsmatrisen är $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ dvs ortogonal med determinant 1, och vi kan välja θ så att $a = \cos(\theta)$, $b = \sin(\theta)$ och skriva avbildningsmatrisen som $\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$
- $egin{align*} \mathbf{e} & F(\overline{\mathbf{e}}_2) = \underline{\mathbf{e}} \begin{bmatrix} b \\ -a \end{bmatrix} \text{ och avbildningsmatrisen \"{ar}} \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \text{ dvs ortogonal med determinant -1.} \\ & \text{S\"{att}} & a = 1 2c^2, b = -2cd \text{ s\'{a}} \text{ blir detta} \begin{pmatrix} 1 2c^2 & -2cd \\ -2cd & 2c^2 1 \end{pmatrix} \text{ vilket \"{ar} matris f\"{or} spegling} \\ & \text{om } 2c^2 1 = 1 2d^2 \text{ dvs om } 2c^2 + 2d^2 = 2, \text{ dvs } \underline{\mathbf{e}} \begin{bmatrix} c \\ d \end{bmatrix} \text{ \"{ar} en vektor av l\"{a}ngd 1 som \"{ar}} \\ & \text{normalvektor till den linje genom origo vi speglar i.} \end{aligned}$

Jan Snellman

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

Linjära isometrie

Avståndsbevarande, normbevarande, inreprodukt-bevarande

ON-matriser

Determinant av isometri Isometrier i planet

Isometrier i rummet

Symmetriska linjära avbildningar

Jan Snellman

TEKNISKA HÖGSKOLAN

Linjära isometrie

Avståndsbevarande, normbevarande, inreprodukt-bevarande

Determinant av isometri

Isometrier i planet

Isometrier i rummet

Symmetriska linjäravbildningar

Exempel

Vad för slags avbildning har avbildningsmatris

$$M = \begin{pmatrix} -1 & -2 \\ 2 & -1 \end{pmatrix}?$$

 $oldsymbol{0}$ Kolonnerna är ortogonala, har längd $\sqrt{5}$

$$\mathbf{0} \ \ \mathbf{N} = \frac{1}{\sqrt{5}} \mathbf{M} = \begin{pmatrix} \frac{-1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \end{pmatrix} \ \text{\"ar alltså ON}$$

- **3** Så vriding med α radianer, där $\cos(\alpha) = \frac{-1}{\sqrt{5}}$, $\sin(\alpha) = \frac{2}{\sqrt{5}}$. Andra kvadranten, så $\alpha = \arccos(\frac{-1}{\sqrt{5}})$.
- **6** $M = \sqrt{5}N = (\sqrt{5}I)N$ dvs matrisen för vridningen, följt av likformig skalning med en faktor $\sqrt{5}$.

TEKNISKA HÖGSKOLAN

Linjära isometrie

Avståndsbevarande, normbevarande, inreprodukt-bevarande

Determinant av isometri Isometrier i planet

Isometrier i rummet

Isometrier i rumme

Symmetriska linjära avbildningar

Exempel

Vad för slags avbildning har avbildningsmatris

$$M = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}?$$

 $oldsymbol{0}$ Kolonnerna är ortogonala, har längd $\sqrt{5}$

- **3** $\det(N) = -1$
- Så spegling i linjen genom origo med riktningsvektor

$$\frac{1}{2} \digamma(\overline{\mathrm{e}}_1) + \frac{1}{2} \digamma(\overline{\mathrm{e}}_2) = \frac{1}{2\sqrt{5}} \underline{\mathrm{e}} \left(\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ -1 \end{bmatrix} \right) = \frac{1}{2\sqrt{5}} \underline{\mathrm{e}} \left(\begin{bmatrix} 3 \\ 1 \end{bmatrix} \right)$$

 Θ $M = \sqrt{5}N = (\sqrt{5}I)N$ dvs matrisen för speglingen, följt av likformig skalning med en faktor $\sqrt{5}$.

Jan Snellman

Linjära isometrie

Avståndsbevarande, normbevarande, inreprodukt-bevarande

ON-matriser

Determinant av isometri Isometrier i planet

Isometrier i rummet

Symmetriska linjäravbildningar

Sats

Låt F vara en linjär isometri i rummet, och låt M vara dess avbildningsmatris m.a.p. den ordnade ON-basen \underline{e} .

- **0** Om $\det(M) = 1$ så finns en unik linje genom origo ℓ så att $F(\overline{v}) = \overline{v}$ omm $\overline{v} \in \ell$. Avbildningen F är vridning runt axeln ℓ .
- **9** Om $\det(M) = -1$ så finns en unik linje genom origo ℓ så att $F(\overline{v}) = -\overline{v}$ omm $\overline{v} \in \ell$. Låt Π vara planet genom origo med ℓ som normallinje. Då gäller att $F(\Pi) = \Pi$, så vi kan studera restriktionen av F till Π , vilket i detta plan blir en vridning.
 - Om denna vridning är trivial, dvs vi vrider med noll radianer, allt i planet ligger fixt, så är F en ren spegling i Π.
 - ② Om vridningen i planet är vridning med θ radianer moturs (sett från "ovansidan" av planet med avsende på den valda normalvektorn) så är F en "vridspegling", dvs en sammansättning av en vridning runt l följt av en spegling i Π.

TEKNISKA HÖGSKOLAN

Linjära isometrie

Avståndsbevarande, normbevarande, inreprodukt-bevarande

Determinant av isometri Isometrier i planet

Isometrier i rummet

Symmetriska linjära avbildningar

Antag att $F: \mathbb{R}^3 \to \mathbb{R}^3$ är isometrisk. Låt $A_{\underline{\mathbf{c}}}$ vara F:s avbildningsmatris i standardbasen. Precis som i det 2-dimensionella fallet är $A_{\underline{\mathbf{c}}}$ ortonormal och det $A_{\underline{\mathbf{c}}} = 1$ eller -1. Vi börjar med fallet det $A_{\underline{\mathbf{c}}} = -1$ och vi skall visa att det då finns vektorer $\mathbf{u} \in \mathbb{R}^3$ sådana att $F(\mathbf{u}) = -\mathbf{u}$. För ett sådant $\mathbf{u} = \mathbf{c} X$ eäller

$$F(\mathbf{u}) = \mathbf{e} A_0 X = -\mathbf{e} X \iff A_0 X + X = (A_0 + I)X = 0$$

d v s vi skall visa att detta homogena kvadratiska system har en icke-trivial lösning. Sats 4.7.1 ger att detta är ekvivalent med att det $(A_0 + I) = 0$. Då A_0 är ortonormal gäller att

$$A_{\mathbf{e}}^{t}(A_{\mathbf{e}}+I) = A_{\mathbf{e}}^{t}A_{\mathbf{e}} + A_{\mathbf{e}}^{t} = I + A_{\mathbf{e}}^{t} = A_{\mathbf{e}}^{t} + I = (A_{\mathbf{e}}+I)^{t}.$$

Beräkning av determinanten för ytterleden ovan ger

$$\begin{split} \det\left(A_{\underline{e}}{}^t(A_{\underline{e}}+I)\right) &= \det A_{\underline{e}}{}^t \cdot \det\left(A_{\underline{e}}+I\right) = -\det\left(A_{\underline{e}}+I\right) \\ &= \det\left(\left(A_{\underline{e}}+I\right)^t\right) = \det\left(A_{\underline{e}}+I\right) \\ &= \det\left(A_{\underline{e}}+I\right) + \det\left(A_{\underline{e}}+I\right) +$$

Följaktligen finns \mathbf{u} så att $F(\mathbf{u}) = -\mathbf{u}$. Sätt $\mathbf{f}_1 = \hat{\mathbf{u}}$ och fyll ut till en höger ON-bas för \mathbb{R}^3 .

Eftersom $\mathbf{f}_1 \perp \mathbf{f}_2$, \mathbf{f}_3 , skalärprodukter bevaras enligt sats 7.7.2 och då koordinater i ON-bas är skalärprodukter så följer det att $F(\mathbf{f}_2)$ och $F(\mathbf{f}_3)$ har \mathbf{f}_1 -komponent =0. Vi skall nu skriva upp F:s avbildningsmatris i basen \mathbf{f} . Då \mathbf{f} är en ON-bas är också $A_{\mathbf{f}}$ ortonormal och dess kolonner därmed ett ON-system. Vi har hittills visat att

$$F(\mathbf{f}_1) = -\mathbf{f}_1 = \mathbf{f} \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, \quad F(\mathbf{f}_2) = \mathbf{f} \begin{pmatrix} 0 \\ a \\ b \end{pmatrix} \perp F(\mathbf{f}_3) = \mathbf{f} \begin{pmatrix} 0 \\ \pm b \\ \mp a \end{pmatrix} \Longrightarrow A_{\mathbf{f}} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & a & \pm b \\ 0 & b & \mp a \end{pmatrix}.$$

Eftersom F är isometrisk är också $F(f_2)$ och $F(f_3)$ enhetsvektorer. Därmed är $a^2+b^2=1$. Då finns θ så att $a=\cos\theta$ och $b=\sin\theta$. För att kunna avgöra tecknen i sista kolonnen beräknar vi determinanten som in skall vara -1. Vi fär

$$\det A_{\underline{f}} = \begin{vmatrix} -1 & 0 & 0 \\ 0 & \cos \theta & \pm \sin \theta \\ 0 & \sin \theta & \mp \cos \theta \end{vmatrix} = -\begin{vmatrix} \cos \theta & \pm \sin \theta \\ \sin \theta & \mp \cos \theta \end{vmatrix} = -(\mp(\cos^2\theta + \sin^2\theta)) = -1 \Longrightarrow$$

Linjära isometrie

Avståndsbevarande, normbevarande, inreprodukt-bevarande ON-matriser Determinant av isometri

Isometrier i planet

Isometrier i rummet

Symmetriska linjära avbildningar

$$\Longrightarrow A_{\underline{\mathbf{f}}} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos\theta - \sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta - \sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}.$$

Låt G och H vara de linjära avbildningar som har $B_{\underline{\mathbf{f}}}$ resp $C_{\underline{\mathbf{f}}}$ som avbildningsmatriser i basen $\underline{\mathbf{f}}$. Enligt exempel 7.3.7 är H en vridning. Vi skall visa att G är en spegling i \mathbf{f}_1 :s normalplan. Vi avläser i matrisen att

$$G(\mathbf{f}_1) = -\mathbf{f}_1$$
, $G(\mathbf{f}_2) = \mathbf{f}_2$ och $G(\mathbf{f}_3) = \mathbf{f}_3$.

Av detta följer det att om $\mathbf{u} \parallel \mathbf{f}_1$ så är $G(\mathbf{u}) = -\mathbf{u}$ och om $\mathbf{u} \in [\mathbf{f}_2, \mathbf{f}_3]$ så är $G(\mathbf{u}) = \mathbf{u}$. Delar vi upp \mathbf{u} i komponenter $\mathbf{u} = \mathbf{u}_{\parallel \mathbf{f}_1} + \mathbf{u}_{\parallel [\mathbf{f}_2, \mathbf{f}_3]}$ kan vi illustrera verkan av G enligt figur 7.6. Insättning i G ger

$$\begin{split} G\left(\mathbf{u}\right) &= G\left(\mathbf{u}_{\parallel\mathbf{f}_1} + \mathbf{u}_{\parallel\left[\mathbf{f}_2,\mathbf{f}_3\right]}\right) = G\left(\mathbf{u}_{\parallel\mathbf{f}_1}\right) + G\left(\mathbf{u}_{\parallel\left[\mathbf{f}_2,\mathbf{f}_3\right]}\right) = -\mathbf{u}_{\parallel\mathbf{f}_1} + \mathbf{u}_{\parallel\left[\mathbf{f}_2,\mathbf{f}_3\right]} = \\ &= \left(-\mathbf{u}_{\parallel\mathbf{f}_1} + \mathbf{u}_{\parallel\left[\mathbf{f}_2,\mathbf{f}_3\right]}\right) + \mathbf{u}_{\parallel\mathbf{f}_1} - \mathbf{u}_{\parallel\mathbf{f}_1} = \left(\mathbf{u}_{\parallel\mathbf{f}_1} + \mathbf{u}_{\parallel\left[\mathbf{f}_2,\mathbf{f}_3\right]}\right) - 2\mathbf{u}_{\parallel\mathbf{f}_1} = \\ &= \mathbf{u} - 2\mathbf{u}_{\parallel\mathbf{f}_1}, \end{split}$$

 $\operatorname{dvs} G$ är en spegling i planet med \mathbf{f}_1 som normal (se exempel 7.2.4).

Linjära isometrie

Avståndsbevarande, normbevarande, inreprodukt-bevarande ON-matriser

Determinant av isometri Isometrier i planet

Isometrier i rummet

Symmetriska linjära

Figur 7.6: Spegling i normalplanet till \mathbf{f}_1 .

Den sammansatta avbildningen $F = G \circ H$ kan illustreras med nedanstående figur.

Liniära isometrie

Avståndsbevarande, normbevarande, inreprodukt-bevarande ON-matriser

Determinant av isometri Isometrier i planet

Isometrier i rummet

Symmetriska linjär avbildningar

Antag att det $A_{\underline{\mathbf{e}}} = 1$. Då gäller att det $(-A_{\underline{\mathbf{e}}}) = (-1)^3$ det $A_{\underline{\mathbf{e}}} = -1$, d v s $-A_{\underline{\mathbf{e}}}$ är matris för en vridspegling. Byte till höger ON-bas $\underline{\mathbf{f}}$ med \mathbf{f}_1 parallell med vridningsaxeln ger då enligt ovan att

$$-A_{\underline{\mathbf{f}}} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \theta - \sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \iff$$

$$\iff A_{\underline{\mathbf{f}}} = -\begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \theta - \sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 - \cos \theta & \sin \theta \\ 0 - \sin \theta - \cos \theta \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos (\theta + \pi) - \sin (\theta + \pi) \\ 0 & \sin (\theta + \pi) & \cos (\theta + \pi) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha - \sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$

vilket enligt tidigare resonemang är matrisen för en vridning vinkeln α moturs kring \mathbf{f}_1 .

Jan Snellman

TEKNISKA HÖGSKOLAN

Linjära isometrie

Avståndsbevarande, normbevarande, inreprodukt-bevarande ON-matriser

Determinant av isometri Isometrier i planet

Isometrier i rummet

Symmetriska linjära avbildningar

Exempel

Vad är det för avbildning som (map någon ON-bas) har avbildningsmatris

$$M = \frac{1}{3} \begin{pmatrix} 1 & 2 & -2 \\ 2 & -2 & -1 \\ 2 & 1 & 2 \end{pmatrix} ?$$

- $\mathbf{0} M^t M = I$, så isometri
- $\mathbf{O} \det(M) = -1$ så vridspegling eller spegling

$$MX = -X \text{ kan skrivas } (M+I)X = 0, \text{ nollrumm till } \frac{1}{3} \begin{pmatrix} 4 & 2 & -2 \\ 2 & 1 & -1 \\ 2 & 1 & 5 \end{pmatrix} \text{ är span } \left(\begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} \right)$$

Jan Snellman

TEKNISKA HÖGSKOLAN

Linjära isometrie

Avståndsbevarande, normbevarande, inreprodukt-bevarande ON-matriser

Determinant av isometri Isometrier i planet

Isometrier i rummet

Symmetriska linjära

Exempel (forts)

- ${\bf 0}$ Ta vektor av längd ett i planet, tex $\overline{u}=\underline{e}\begin{bmatrix}0\\0\\1\end{bmatrix}$
- $\begin{array}{l} \textbf{0} \quad F(\overline{\mathbf{u}}) = \underline{\mathbf{e}} M \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix} = \underline{\mathbf{e}} \begin{bmatrix} -2/3 \\ -1/3 \\ 2/3 \end{bmatrix} = \overline{\mathbf{v}} \text{ har också längd ett, så vi mäter vinkeln mellan } \overline{\mathbf{u}} \text{ och } \overline{\mathbf{v}} \\ \\ \text{genom } \cos(\alpha) = \overline{\mathbf{u}} \cdot \overline{\mathbf{v}} = 2/3 \\ \end{array}$
- ${\bf 0}$ Så avbildningen är en vridning med $\arccos(2/3)$ runt ℓ , följt av en spegling i Π .
- 0

$$\overline{\mathbf{u}} \times F(\overline{\mathbf{u}}) = \underline{\mathbf{e}} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times \underline{\mathbf{e}} \begin{bmatrix} -2/3 \\ -1/3 \\ 2/3 \end{bmatrix} = \underline{\mathbf{e}} \begin{bmatrix} 1/3 \\ -2/3 \\ 0 \end{bmatrix}$$

så vridningen sker *moturs* sett från spetsen av $\begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$

Avståndsbevarande, normbevarande, inreprodukt-bevarande

ON-matriser

Determinant av isometri Isometrier i planet

Isometrier i rummet

Symmetriska linjära avbildningar

Symmetriska linjära avbildningar

Symmetrisk avbildningsmatris Symmetrisk och antisymmetrisk del

Definition

Låt E vara ett euklidiskt rum, och $F: E \to E$ vara en linjär avbildning som uppfyller att

$$(F(\overline{\mathbf{u}})|\overline{\mathbf{v}}) = (\overline{\mathbf{u}}|F(\overline{\mathbf{v}}))$$
 för alla $\overline{\mathbf{u}}, \overline{\mathbf{v}} \in \mathbf{E}$.

Då sägs F vara en symmetrisk avbildning.

Exempel

Ortogonala projektioner är symmetriska: låt $\underline{e}=\begin{pmatrix} \overline{e}_1 & \cdots & \overline{e}_n \end{pmatrix}$ vara en ON-bas för E och låt U vara delrummet spännt av de m första basvektorerna. Låt P vara ortogonal projektion på U, då är

$$\left(P(\sum_{j=1}^{n} c_j \overline{e}_j) \middle| \sum_{k=1}^{n} d_k \overline{e}_k\right) = \left(\sum_{j=1}^{m} c_j \overline{e}_j \middle| \sum_{k=1}^{n} d_k \overline{e}_k\right) = \sum_{j=1}^{m} c_j d_j = \left(\sum_{j=1}^{n} c_j \overline{e}_j \middle| \sum_{k=1}^{m} d_k \overline{e}_k\right) = \left(\sum_{j=1}^{n} c_j \overline{e}_j \middle| P(\sum_{k=1}^{n} d_k \overline{e}_k)\right)$$

Symmetriska linjära avbildningar

Symmetrisk avbildningsmatris

Symmetrisk och antisymmetrisk del

Sats

Låt \to vara ett euklidiskt rum, och $F: \to \to E$ vara en linjär avbildning med avbildningsmatris A m.a.p. ON-basen \underline{e} . Då är F symmetrisk omm $A = A^t$.

Bevis.

Om $A^t = A$ så är

$$(F(\overline{\mathbf{u}})|\overline{\mathbf{v}}) = (\underline{\mathbf{e}} A X | \underline{\mathbf{e}} Y) = (A X)^t Y = X^t A^t Y = X^t A Y = (\underline{\mathbf{e}} X | \underline{\mathbf{e}} A Y) = (\overline{\mathbf{u}} | F(\overline{\mathbf{v}}))$$

Omvänt, om $(F(\overline{\mathbf{u}})|\overline{\mathbf{v}})=(\overline{\mathbf{u}}|F(\overline{\mathbf{v}}))$ gäller för alla $\overline{\mathbf{u}},\overline{\mathbf{v}}$ så gäller också $X^tA^tY=X^tAY$ för alla X,Y; genom att välja X,Y som olika basvektorer till \mathbb{R}^n fås att $A^t=A$.

Symmetriska linjära avbildningar

Symmetrisk avbildningsmatris

avbildningsmatri

Symmetrisk och antisymmetrisk del

Exempel

Vridning 180 grader runt origo har matris

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

och avbildningen är alltså symmetrisk.

En godtycklig vridning har matris

$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

med transponat

$$\begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

De är lika omm $\sin(\alpha) = 0$, dvs om $\alpha \in \{ n\pi | n \in \mathbb{Z} \}$.

Linjära isometrie

Symmetriska linjära

Symmetrisk avbildningsmatris

Symmetrisk och antisymmetrisk del

Exempel

Speglingen

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

är symmetrisk.

Sats

Varje spegling är symmetrisk.

Bevis.

Spegling i delrummet U definieras som

$$S(\overline{\mathbf{u}}) = \overline{\mathbf{u}} - 2P(\overline{\mathbf{u}}),$$

där P är ortogonalprojektion på U^{\perp} . Då blir

$$(S(\overline{\mathbf{u}})|\overline{\mathbf{v}}) = (\overline{\mathbf{u}} - 2P(\overline{\mathbf{u}})|\overline{\mathbf{v}}) = (\overline{\mathbf{u}}|\overline{\mathbf{v}}) - 2(P(\overline{\mathbf{u}})|\overline{\mathbf{v}}) = (\overline{\mathbf{u}}|\overline{\mathbf{v}}) - 2(\overline{\mathbf{u}}|P(\overline{\mathbf{v}})) = (\overline{\mathbf{u}}|\overline{\mathbf{v}} - 2P(\overline{\mathbf{v}}) = (\overline{\mathbf{u}}|S(\overline{\mathbf{v}}))$$

eftersom *P* är symmetrisk.

Symmetriska linjära avbildningar Symmetrisk

avbildningsmatris
Symmetrisk och

Symmetrisk och antisymmetrisk del

Definition

En kvadratisk matris A är antisymmetrisk om $A^t=-A$, dvs $A=(a_{ij})$ är antisymmetrisk omm $a_{ij}=-a_{ji}$ för alla i,j.

Exempel

Matrisen

$$\begin{pmatrix} 0 & 2 & 3 \\ -2 & 0 & 4 \\ -3 & -4 & 0 \end{pmatrix}$$

Sats

Bara nollmatrisen är både symmetrisk och antisymmetrisk.

Bevis.

$$a_{ij}=a_{ji}=-a_{ji}.$$

Symmetriska linjära avbildningar Symmetrisk

avbildningsmatris

Symmetrisk och antisymmetrisk del

Sats

Varje kvadratisk matris M kan unikt skrivas

$$M = S + A$$

med S symmetrisk, A antisymmetrisk.

Bevis.

Existens: sätt $S = (M + M^{T})/2$, $A = (M - M^{t})/2$.

Unikhet: om

$$M = S_1 + A_1 = S_2 + A_2$$

så har vi att

$$S_1 - S_2 = A_2 - A_1$$

vilket är både symmetriskt och antisymmetriskt, alltså nollmatrisen.

Jan Snellman

TEKNISKA MÖGSKOLAN
LINKÖPINOS UNIVERSITET

Linjära isometrie

Symmetriska linjära avbildningar

Symmetrisk avbildningsmatris

Symmetrisk och antisymmetrisk del

Exempel

Vi delar upp matrisen

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} + \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} \end{pmatrix} +$$

$$\frac{1}{2} \begin{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} - \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 4 & 6 & 9 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 & 3 & 5 \\ 3 & 5 & 7 \\ 5 & 7 & 9 \end{pmatrix} + \begin{pmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{pmatrix}$$