## CHAPTER 5. JACOBIANS: VELOCITIES AND STATIC FORCES

Part I: Velocities – linear and angular (Sections  $5.1 \sim 5.6$ )

Part II: Jacobians – differential kinematics (Sections  $5.7 \sim 5.8$ )

Part III: Robot statics (Sections  $5.9 \sim 5.11$ )

Attach a coordinate system (frame) to a body

→ Motion of rigid bodies: motion of **frames** relative to one another

# Differentiation of Position Vector (of a Point)

- Derivative of a vector **Q** relative to frame  $\{B\}$ :  ${}^{B}\mathbf{V}_{Q} = \frac{d}{dt} {}^{B}\mathbf{Q} = \lim_{\Delta t \to 0} \frac{{}^{B}\mathbf{Q}(t + \Delta t) {}^{B}\mathbf{Q}(t)}{\Delta t} = {}^{B}({}^{B}\mathbf{V}_{Q})$ (Indicate the frame in which the vector is differentiated.)
- A velocity vector is described in terms of a reference frame which is noted with a leading superscript.
  - → When expressed in terms of frame {A}:  ${}^{A}({}^{B}\mathbf{V}_{Q}) = \frac{{}^{A}d}{{}^{J_{A}}}{}^{B}\mathbf{Q}$
- Note: Numerical values describing a (linear or translational) velocity vector depend on **two** frames Frame (of observer) with respect to which the differentiation is done ( $\{B\}$ )  $\rightarrow$  vector construction Frame (of writer) in which the resulting velocity vector is expressed ( $\{A\}$ )  $\rightarrow$  vector components
- Dual-superscript notation: **Two** reference frames for description of kinematic vectors (linear position/velocity/acceleration of a point and angular velocity/acceleration of a frame)
  - **Defined** as viewed by an observer fixed in a reference frame: "relative to" or "with respect to" *observer*'s frame → Geometric vector
  - Resolved into components with respect to a reference frame: "referred to," "expressed in," or "written in" writer's frame → Algebraic representation of the geometric vector



- ${}^{B}({}^{B}\mathbf{V}_{Q}) = {}^{B}\mathbf{V}_{Q}$   ${}^{A}({}^{B}\mathbf{V}_{Q}) = {}^{A}R_{B}{}^{B}({}^{B}\mathbf{V}_{Q}) = {}^{A}R_{B}{}^{B}\mathbf{V}_{Q}$  (use rotation matrix to change the reference frame)
- Velocity of origin of a frame  $\{C\}$  relative to a universe reference frame  $\{U\}$ :  $\mathbf{v}_C = {}^U\mathbf{V}_{CORG}$
- Example 5.1 (Craig's 4<sup>th</sup> Ed.): (Do it yourself)

## Angular Velocity Vector (of a Body)

- Always attach a frame to each rigid body → angular velocity describes rotational motion of a frame
- ${}^{A}\Omega_{B}$ : rotation of frame  $\{B\}$  relative to  $\{A\}$ Direction: instantaneous axis of rotation Magnitude: rotation speed

- ${}^{C}({}^{A}\Omega_{R})$ : angular velocity of frame  $\{B\}$  relative to  $\{A\}$  expressed in terms of frame  $\{C\}$
- Angular velocity of a frame  $\{C\}$  relative to a universe reference frame  $\{U\}$ :  $\mathbf{\omega}_C = {}^U \mathbf{\Omega}_C$



# Linear Velocity of Rigid Bodies

- Frame  $\{B\}$  attached to a rigid body, and  $\{A\}$  is fixed.
- Motion of point Q relative to  $\{A\}$ : due to  ${}^{A}\mathbf{P}_{BORG}$  and  ${}^{B}\mathbf{Q}$
- Assume relative orientation of  $\{B\}$  and  $\{A\}$  is constant.
- Linear velocity (assume constant  ${}^{A}R_{R}$ ) of point Q in terms of  $\{A\}$ :  ${}^{A}({}^{A}\mathbf{V}_{O}) = {}^{A}({}^{A}\mathbf{V}_{BORG}) + {}^{A}R_{B}{}^{B}({}^{B}\mathbf{V}_{O})$  or equivalently,  ${}^{A}\mathbf{V}_{O} = {}^{A}\mathbf{V}_{BORG} + {}^{A}R_{B}{}^{B}\mathbf{V}_{O}$

## Rotational Velocity of Rigid Bodies

- Frames  $\{B\}$  and  $\{A\}$  with coincident origins  $({}^{A}\mathbf{P}_{BORG} = \mathbf{0})$
- Generally, vector  $\mathbf{Q}$  also changes with respect to frame  $\{B\}$ .
- ${}^{A}\mathbf{V}_{Q} = \underbrace{{}^{A}({}^{B}\mathbf{V}_{Q})}_{wrt \{B\}} + \underbrace{{}^{A}\mathbf{\Omega}_{B} \times {}^{A}\mathbf{Q}}_{rotation}$  (from undergraduate dynamics)
  - $\Rightarrow$   ${}^{A}\mathbf{V}_{Q} = {}^{A}R_{B}{}^{B}\mathbf{V}_{Q} + {}^{A}\mathbf{\Omega}_{B} \times {}^{A}R_{B}{}^{B}\mathbf{Q}$

(Note: here and in the textbook,  ${}^{A}\mathbf{Q}$  indicates  ${}^{A}({}^{B}\mathbf{Q})$ , and  ${}^{B}\mathbf{Q}$  indicates  ${}^{B}({}^{B}\mathbf{Q})$ .)

## General Linear and Rotational Velocity of Rigid Bodies

- Origins are not coincident

• General velocity of a vector in frame 
$$\{B\}$$
 as seen from  $\{A\}$ :
$$\begin{bmatrix} {}^{A}\mathbf{V}_{Q} = {}^{A}\mathbf{V}_{BORG} + {}^{A}R_{B}{}^{B}\mathbf{V}_{Q} + {}^{A}\mathbf{\Omega}_{B} \times {}^{A}R_{B}{}^{B}\mathbf{Q} \end{bmatrix}$$

## <u>Rotation Matrix</u> ( = proper orthonormal matrix)

- $RR^T = I_3 \implies \dot{R}R^T + R\dot{R}^T = 0_3 \implies \dot{R}R^T + (\dot{R}R^T)^T = 0_3$
- Angular velocity matrix:  $S = \dot{R}R^T = \dot{R}R^{-1}$   $\rightarrow S + S^T = 0_3$  (matrix)

#### Rotating Reference Frame

- Fixed vector with respect to frame  $\{B\}$ :  ${}^{B}\mathbf{P} \rightarrow \mathbf{W}$  ith respect to  $\{A\}$ :  ${}^{A}\mathbf{P} = {}^{A}R_{B}{}^{B}\mathbf{P}$
- If frame  $\{B\}$  rotates  $\rightarrow$   ${}^{A}\mathbf{V}_{P} = {}^{A}\dot{\mathbf{P}} = {}^{A}\dot{R}_{B}{}^{B}\mathbf{P} = \underbrace{{}^{A}\dot{R}_{B}{}^{A}R_{B}^{-1}}_{A}{}^{A}\mathbf{P} \Longrightarrow {}^{A}\mathbf{V}_{P} = {}^{A}S_{B}{}^{A}\mathbf{P}$

■ Let 
$$S = \begin{bmatrix} 0 & -\Omega_z & \Omega_y \\ \Omega_z & 0 & -\Omega_x \\ -\Omega_y & \Omega_x & 0 \end{bmatrix}$$

■ Angular velocity vector: 
$$\Omega = \begin{bmatrix} \Omega_x \\ \Omega_y \\ \Omega_z \end{bmatrix}$$
 → describes motion of frame  $\{B\}$  with respect to  $\{A\}$ 

$$\Rightarrow$$
  $SP = \Omega \times P$  for any vector  $P \Rightarrow : {}^{A}V_{p} = {}^{A}\Omega_{R} \times {}^{A}P$ 

• 
$$\dot{R} = \lim_{\Delta t \to 0} \frac{R(t + \Delta t) - R(t)}{\Delta t}$$
 and let  $R(t + \Delta t) = R_K(\Delta \theta)R(t)$  (why?)  $\Rightarrow \dot{R} = \left(\lim_{\Delta t \to 0} \frac{R_K(\Delta \theta) - I_3}{\Delta t}\right)R(t)$ 

■ Recall: for 
$${}^{A}\hat{\mathbf{K}} = \begin{bmatrix} k_{x} \\ k_{y} \\ k_{z} \end{bmatrix}$$
  $\Rightarrow R_{K}(\theta) = \begin{bmatrix} k_{x}k_{x}v\theta + c\theta & k_{x}k_{y}v\theta - k_{z}s\theta & k_{x}k_{z}v\theta + k_{y}s\theta \\ k_{y}k_{x}v\theta + k_{z}s\theta & k_{y}k_{y}v\theta + c\theta & k_{y}k_{z}v\theta - k_{x}s\theta \\ k_{z}k_{x}v\theta - k_{y}s\theta & k_{z}k_{y}v\theta + k_{x}s\theta & k_{z}k_{z}v\theta + c\theta \end{bmatrix}$ 
For  $\Delta\theta <<1$   $\Rightarrow R_{K}(\Delta\theta) = \begin{bmatrix} 1 & -k_{z}\Delta\theta & k_{y}\Delta\theta \\ k_{z}\Delta\theta & 1 & -k_{x}\Delta\theta \\ -k_{y}\Delta\theta & k_{x}\Delta\theta & 1 \end{bmatrix}$ 

For 
$$\Delta\theta \ll 1 \Rightarrow R_K(\Delta\theta) = \begin{bmatrix} 1 & -k_z \Delta\theta & k_y \Delta\theta \\ k_z \Delta\theta & 1 & -k_x \Delta\theta \\ -k_y \Delta\theta & k_x \Delta\theta & 1 \end{bmatrix}$$

$$= > \dot{R} = \left(\lim_{\Delta t \to 0} \begin{bmatrix} 0 & -k_z \Delta \theta & k_y \Delta \theta \\ k_z \Delta \theta & 0 & -k_x \Delta \theta \\ -k_y \Delta \theta & k_x \Delta \theta & 0 \end{bmatrix}\right) \cdot R(t) = \begin{bmatrix} 0 & -k_z \dot{\theta} & k_y \dot{\theta} \\ k_z \dot{\theta} & 0 & -k_x \dot{\theta} \\ -k_y \dot{\theta} & k_x \dot{\theta} & 0 \end{bmatrix} R(t)$$

$$\therefore \ \dot{R}R^{-1} = \begin{bmatrix} 0 & -\Omega_z & \Omega_y \\ \Omega_z & 0 & -\Omega_x \\ -\Omega_y & \Omega_x & 0 \end{bmatrix}$$

$$\therefore \dot{R}R^{-1} = \begin{bmatrix} 0 & -\Omega_z & \Omega_y \\ \Omega_z & 0 & -\Omega_x \\ -\Omega_y & \Omega_x & 0 \end{bmatrix}$$

$$\blacksquare \mathbf{\Omega} = \begin{bmatrix} \Omega_x \\ \Omega_y \\ \Omega_z \end{bmatrix} = \begin{bmatrix} k_x \dot{\theta} \\ k_y \dot{\theta} \\ k_z \dot{\theta} \end{bmatrix} = \dot{\theta} \hat{\mathbf{K}} \quad (\leftarrow \text{ Definition of angular velocity vector})$$

: At any instant the change in orientation of rotating frame is a rotation about instantaneous axis of **rotation**  $\hat{\mathbf{K}}$  (unit vector). Speed of rotation  $(\hat{\theta})$  is the angular velocity vector's magnitude.

#### **Euler Angle Rates**

■ Rates of *Z-Y-Z* Euler angles: 
$$\dot{\Theta}_{Z'Y'Z'} = \begin{bmatrix} \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \end{bmatrix}$$

$$\begin{array}{c} \bullet \text{ Recall } S = \dot{R}R^T = \begin{bmatrix} 0 & -\Omega_z & \Omega_y \\ \Omega_z & 0 & -\Omega_x \\ -\Omega_y & \Omega_x & 0 \end{bmatrix} \\ \end{array} \Rightarrow \begin{cases} \Omega_x = \dot{r}_{31}r_{21} + \dot{r}_{32}r_{22} + \dot{r}_{33}r_{23} \\ \Omega_y = \dot{r}_{11}r_{31} + \dot{r}_{12}r_{32} + \dot{r}_{13}r_{33} \\ \Omega_z = \dot{r}_{21}r_{11} + \dot{r}_{22}r_{12} + \dot{r}_{23}r_{13} \end{cases}$$

where entries  $r_{ij}$  (i, j = 1, 2, 3) are functions of Euler angles, i.e.,  $r_{ii} = r_{ii}(\alpha, \beta, \gamma)$ 

$$\Rightarrow \dot{r}_{ij} = \frac{d}{dt}r_{ij}(\alpha, \beta, \gamma) = \dot{\alpha}\frac{\partial r_{ij}}{\partial \alpha} + \dot{\beta}\frac{\partial r_{ij}}{\partial \beta} + \dot{\gamma}\frac{\partial r_{ij}}{\partial \gamma} \quad \therefore \quad \Omega_x, \Omega_y, \Omega_z \text{ are } \dots \text{ of } \dot{\alpha}, \dot{\beta}, \dot{\gamma}$$

 $\bullet \quad \mathbf{\Omega} = E_{Z'Y'Z'}(\mathbf{\Theta}_{Z'Y'Z'})\dot{\mathbf{\Theta}}_{Z'Y'Z'}$ 

 $E_{Z'Y'Z'}(\Theta_{Z'Y'Z'})$ : Jacobian matrix relating Euler angle rate vector and angular velocity vector

■ Example 5.2 (Craig's 4<sup>th</sup> Ed.): 
$$E_{Z'Y'Z'} = \begin{bmatrix} 0 & -s\alpha & c\alpha s\beta \\ 0 & c\alpha & s\alpha s\beta \\ 1 & 0 & c\beta \end{bmatrix}$$
 (use  $R_{Z'Y'Z'}$  for derivation)

## Notation Convention Review

• Generally, three scripts, including two reference frames for dual-superscript notation, are required to describe a kinematic vector A: linear position/velocity/acceleration (the subscript indicates a point) or angular velocity/acceleration (the subscript indicates a frame).

[expressed in writer's frame] ([with respect to observer's frame] 
$$\mathbf{A}_{\text{[describe point or frame of interest]}}$$

(Note: The frame of expression for rotation matrix [with respect to which frame]  $R_{\text{[describe frame of interest]}}$  is identical to that of the observer.)

• Note:  ${}^{0}R_{i}{}^{i}\mathbf{P}_{i+1} \neq {}^{0}\mathbf{P}_{i+1}$  : Even for position vector, all three scripts are required.



## Velocities (absolute) of Links

Reference (or global) frame - link Frame {0}

 $v_i$ : linear velocity of origin of link Frame  $\{i\}$  with respect to (or observer is at) the global frame

 $\omega_i$ : angular velocity of link Frame  $\{i\}$  with respect to (or observer is at) the global frame



- Each link as a rigid body  $\rightarrow$  linear and angular velocity vectors written in its own link frame (rather than the global frame); note the notations here that  ${}^{i}v_{i} = {}^{i}({}^{0}v_{i})$  and  ${}^{i}\omega_{i} = {}^{i}({}^{0}\omega_{i})$
- [Link i+1 velocity] = [Link i velocity] + [relative velocity added by Joint i+1]
- Compute the velocities of each link starting from the base (**outward**) → Apply successively from link 0 to link  $n \rightarrow {}^{n}\omega_{n}$  and  ${}^{n}\upsilon_{n}$ .
- Multiply by  ${}^{0}R_{n} \rightarrow \text{expressed in global frame}$

| Joint \ Velocity | Linear | Angular |
|------------------|--------|---------|
| Revolute         | ✓      | ✓       |
| Prismatic        | ✓      | ✓       |

# Link Velocities for Revolute Joint *i*+1

$$\bullet \ \dot{\theta}_{i+1}^{\ i} \hat{Z}_i = \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{i+1} \end{bmatrix}$$

- Angular velocity of Link i+1with respect to Frame  $\{i\}$ :  ${}^{i}\omega_{i+1} = {}^{i}\omega_{i} + \dot{\theta}_{i+1} {}^{i}\hat{Z}_{i}$ with respect to Frame  $\{i+1\}$ :  ${}^{i+1}\omega_{i+1} = {}^{i+1}R_{i}({}^{i}\omega_{i} + \dot{\theta}_{i+1} {}^{i}\hat{Z}_{i})$
- Proofs

1) 
$${}^{k}({}^{k}\omega_{i+1}) = {}^{k}({}^{k}\omega_{i}) + \dot{\theta}_{i+1} {}^{k}\hat{Z}_{i} \implies {}^{i}R_{k} \times [{}^{k}({}^{k}\omega_{i+1}) = {}^{k}({}^{k}\omega_{i}) + \dot{\theta}_{i+1} {}^{k}\hat{Z}_{i}]$$

$$= {}^{i}({}^{k}\omega_{i+1}) = {}^{i}({}^{k}\omega_{i}) + \dot{\theta}_{i+1} {}^{i}\hat{Z}_{i} \quad \therefore {}^{i}\omega_{i+1} = {}^{i}\omega_{i} + \dot{\theta}_{i+1} {}^{i}\hat{Z}_{i}$$
2)  ${}^{i+1}R_{i} \times [{}^{i}({}^{k}\omega_{i+1}) = {}^{i}({}^{k}\omega_{i}) + \dot{\theta}_{i+1} {}^{i}\hat{Z}_{i}] \implies {}^{i+1}({}^{k}\omega_{i+1}) = {}^{i+1}R_{i}[{}^{i}({}^{k}\omega_{i}) + \dot{\theta}_{i+1} {}^{i}\hat{Z}_{i}]$ 

$$\therefore {}^{i+1}\omega_{i+1} = {}^{i+1}R_{i}({}^{i}\omega_{i} + \dot{\theta}_{i+1} {}^{i}\hat{Z}_{i})$$

Linear velocity of origin of Frame  $\{i+1\}$ with respect to Frame  $\{i\}$ :  ${}^{i}\upsilon_{i+1} = {}^{i}\upsilon_{i} + {}^{i}\omega_{i+1} \times {}^{i}P_{i+1}$ with respect to Frame  $\{i+1\}$ :  ${}^{i+1}\upsilon_{i+1} = {}^{i+1}R_{i}({}^{i}\upsilon_{i} + {}^{i}\omega_{i+1} \times {}^{i}P_{i+1})$ 



Proofs

1) In 
$${}^{A}\mathbf{V}_{Q} = {}^{A}\mathbf{V}_{BORG} + {}^{A}R_{B}{}^{B}\mathbf{V}_{Q} + {}^{A}\mathbf{\Omega}_{B} \times {}^{A}R_{B}{}^{B}\mathbf{Q}$$
 (textbook equation (5.13)), let  $\{A\} = \{K\}$ ,  $\{B\} = \{i+1\}$ ,  $\mathbf{Q} = \text{origin of } \{i\}$ ,  ${}^{A}P_{BORG} = {}^{K}P_{i+1}$ , and  ${}^{B}Q = {}^{i+1}P_{i}$ .

$${}^{K}({}^{K}v_{i}) = {}^{K}({}^{K}v_{i+1}) + {}^{K}R_{i+1} \xrightarrow{i+1} ({}^{i+1}\mathbf{V}_{i}) + {}^{K}({}^{K}\omega_{i+1}) \times {}^{K}R_{i+1} \xrightarrow{i+1} P_{i}$$

$${}^{i}R_{K} \times [{}^{K}({}^{K}v_{i}) = {}^{K}({}^{K}v_{i+1}) + {}^{K}({}^{K}\omega_{i+1}) \times {}^{K}R_{i+1} \xrightarrow{i+1} P_{i}] \Rightarrow {}^{i}({}^{K}v_{i+1}) = {}^{i}({}^{K}v_{i}) + {}^{i}({}^{K}\omega_{i+1}) \times \underbrace{\left(-{}^{i}R_{i+1} \xrightarrow{i+1} P_{i}\right)}_{={}^{i}P_{i+1} \text{ from (2.44)}}$$

$$\therefore {}^{i}V_{i+1} = {}^{i}V_{i} + {}^{i}\omega_{i+1} \times {}^{i}P_{i+1}$$
2)  ${}^{i+1}R_{i} \times [{}^{i}({}^{K}v_{i+1}) = {}^{i}({}^{K}v_{i}) + {}^{i}({}^{K}\omega_{i+1}) \times {}^{i}P_{i+1}] \Rightarrow \therefore {}^{i+1}V_{i+1} = {}^{i+1}R_{i} \times {}^{i}V_{i} + {}^{i+1}\omega_{i+1} \times {}^{i+1}R_{i} \times {}^{i}P_{i+1}$ 

## Link Velocities for Prismatic Joint *i*+1

- Angular velocity of Link i+1 with respect to Frame {i+1}: \$\begin{align\*} & i+1 \\ i+1 \\ \overline{\chi\_{i+1}} = & i+1 \\ \overline{\chi\_{i+1}} \\ \overline{\chi\_{i+1
- $\int_{i+1}^{i+1} \nu_{i+1} = \int_{i+1}^{i+1} R_i (i \nu_i + i \omega_{i+1} \times i P_{i+1} + \dot{d}_{i+1} i \hat{Z}_i)$

Link Velocities for Joint *i* (Unified Form)

• In general, if Joint *i* is:

revolute 
$$\theta_i = \tilde{\theta}_i + q_i \Rightarrow \dot{\theta}_i = \dot{q}_i$$
 and  $\dot{d}_i = 0$   
prismatic  $d_i = \tilde{d}_i + q_i \Rightarrow \dot{d}_i = \dot{q}_i$  and  $\dot{\theta}_i = 0$ 

Therefore, regardless of the joint type (revolute or prismatic),

angular velocity of Link i:  $\omega_i = \omega_{i-1} + \dot{\theta}_i \hat{Z}_{i-1}$ linear velocity of origin of Frame  $\{i\}$ :  $\upsilon_i = \upsilon_{i-1} + \omega_i \times {}^{i-1}P_i + \dot{d}_i \hat{Z}_{i-1}$ 

(For simplicity, the frames of expression are omitted in the notations.)

## Example 5.3 (with standard DH convention)

A two-link manipulator with rotational joints is shown in the figure below. Calculate the (absolute linear) velocity of the tip (i.e., the origin of Frame {2}) of the arm as a function of joint rates (i.e., joint velocities). Give the answer in two forms—in terms of (i.e., written in) Frame {2} and Frame {0}.



Solution) Two different methods—with and without using the iterative formulas—are available.

Method 1 (using the iterative formulas):

$${}^{0}T_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \quad {}^{1}T_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & a_{2}c_{2} \\ s_{2} & c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \quad {}^{0}T_{2} = \begin{bmatrix} c_{12} & -s_{12} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12} & c_{12} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Use  ${}^{i+1}\omega_{i+1} = {}^{i+1}R_i({}^i\omega_i + \dot{\theta}_{i+1}{}^i\hat{Z}_i)$  and  ${}^{i+1}\upsilon_{i+1} = {}^{i+1}R_i({}^i\upsilon_i + {}^i\omega_{i+1} \times {}^iP_{i+1})$  sequentially from link to link to compute the velocity of the origin of each frame, starting from the base frame  $\{0\}$ , which has zero velocity:

$${}^{0}\omega_{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \ {}^{1}\omega_{1} = \begin{bmatrix} c_{1} & s_{1} & 0 \\ -s_{1} & c_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix}, \ {}^{2}\omega_{2} = \begin{bmatrix} c_{2} & s_{2} & 0 \\ -s_{2} & c_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} + \dot{\theta}_{2} \end{bmatrix}$$

$${}^{0}v_{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \text{ and since } {}^{0}\omega_{1} = {}^{0}R_{1}{}^{1}\omega_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 \\ s_{1} & c_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix} = \begin{bmatrix} a_{1}c_{1} \\ a_{1}s_{1} \\ 0 \end{bmatrix},$$

$${}^{1}v_{1} = \begin{bmatrix} c_{1} & s_{1} & 0 \\ -s_{1} & c_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix} \times \begin{bmatrix} a_{1}c_{1} \\ a_{1}s_{1} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ a_{1}\dot{\theta}_{1} \\ 0 \end{bmatrix}.$$

$$\text{Likewise, since } {}^{1}\omega_{2} = {}^{1}R_{2}{}^{2}\omega_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 \\ s_{2} & c_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} + \dot{\theta}_{2} \end{bmatrix} = \begin{bmatrix} a_{1}\dot{\theta}_{1} \\ 0 \\ \dot{\theta}_{1} + \dot{\theta}_{2} \end{bmatrix},$$

$$\begin{bmatrix} c_{2} & s_{2} & 0 \end{bmatrix} (\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ s_{2}c_{2} \end{bmatrix}) \begin{bmatrix} a_{1}\dot{\theta}_{1}s_{2} \end{bmatrix}$$

$${}^{2}v_{2} = \begin{bmatrix} c_{2} & s_{2} & 0 \\ -s_{2} & c_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ a_{1}\dot{\theta}_{1} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} + \dot{\theta}_{2} \end{bmatrix} \times \begin{bmatrix} a_{2}c_{2} \\ a_{2}s_{2} \\ 0 \end{bmatrix} = \begin{bmatrix} a_{1}\dot{\theta}_{1}s_{2} \\ a_{1}\dot{\theta}_{1}c_{2} + a_{2}(\dot{\theta}_{1} + \dot{\theta}_{2}) \\ 0 \end{bmatrix}. \text{ (Ans.)}$$

To find these velocities with respect to the nonmoving base frame, we rotate them with the rotation matrix as follows:

$${}^{0}v_{2} = {}^{0}R_{2} {}^{2}v_{2} = \begin{bmatrix} c_{12} & -s_{12} & 0 \\ s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{1}\dot{\theta}_{1}s_{2} \\ a_{1}\dot{\theta}_{1}c_{2} + a_{2}(\dot{\theta}_{1} + \dot{\theta}_{2}) \\ 0 \end{bmatrix} = \begin{bmatrix} -a_{1}\dot{\theta}_{1}s_{1} - a_{2}(\dot{\theta}_{1} + \dot{\theta}_{2})s_{12} \\ a_{1}\dot{\theta}_{1}c_{1} + a_{2}(\dot{\theta}_{1} + \dot{\theta}_{2})c_{12} \\ 0 \end{bmatrix}$$
 (Ans.)

Method 2 (without using the iterative formulas):

$${}^{0}P_{2} = \begin{bmatrix} a_{1}c_{1} + a_{2}c_{12} \\ a_{1}s_{1} + a_{2}s_{12} \\ 0 \end{bmatrix} \Rightarrow {}^{0}v_{2} = {}^{0}\dot{P}_{2} = \begin{bmatrix} -a_{1}\dot{\theta}_{1}s_{1} - a_{2}(\dot{\theta}_{1} + \dot{\theta}_{2})s_{12} \\ a_{1}\dot{\theta}_{1}c_{1} + a_{2}(\dot{\theta}_{1} + \dot{\theta}_{2})c_{12} \\ 0 \end{bmatrix}$$
(Ans.)
$${}^{2}v_{2} = {}^{2}R_{0}{}^{0}v_{2} = \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -a_{1}\dot{\theta}_{1}s_{1} - a_{2}(\dot{\theta}_{1} + \dot{\theta}_{2})s_{12} \\ a_{1}\dot{\theta}_{1}c_{1} + a_{2}(\dot{\theta}_{1} + \dot{\theta}_{2})c_{12} \\ 0 \end{bmatrix} = \begin{bmatrix} a_{1}\dot{\theta}_{1}s_{2} \\ a_{1}\dot{\theta}_{1}c_{2} + a_{2}(\dot{\theta}_{1} + \dot{\theta}_{2}) \\ 0 \end{bmatrix}$$
(Ans.)

#### **End-Effector Velocities**

Angular velocity of end-effector:  $\omega_n = \sum_{i=1}^n \dot{\theta}_i \hat{Z}_{i-1}$ 

Linear velocity of end-effector frame's origin:  $v_n = \sum_{i=1}^n \dot{\theta}_i \hat{Z}_{i-1} \times (P_n - P_{i-1}) + \dot{d}_i \hat{Z}_{i-1}$ 

## Proofs

Angular velocity. Sum up  $\omega_i - \omega_{i-1} = \dot{\theta}_i \hat{Z}_{i-1}$  where  $\omega_0 = 0$ :

$$\begin{aligned} \omega_{k} - \omega_{0} &= \dot{\theta}_{1} \hat{Z}_{0} \\ \omega_{k} - \omega_{k} &= \dot{\theta}_{2} \hat{Z}_{1} \\ \vdots \\ \omega_{n-1} - \omega_{n-2} &= \dot{\theta}_{n-1} \hat{Z}_{n-2} \\ +) \omega_{n} - \omega_{n-1} &= \dot{\theta}_{n} \hat{Z}_{n-1} \\ & \downarrow \\ \vdots \\ \omega_{n} &= \sum_{i=1}^{n} \dot{\theta}_{i} \hat{Z}_{i-1} \end{aligned}$$

<u>Linear velocity</u>. Sum up  $v_i - v_{i-1} = \omega_i \times {}^{i-1}P_i + \dot{d}_i\hat{Z}_{i-1}$  where  $v_0 = 0$ :

$$\begin{aligned}
\dot{\partial}_{\lambda} - \upsilon_{0} &= \omega_{1} \times {}^{0}P_{1} + \dot{d}_{1}\hat{Z}_{0} \\
\dot{\partial}_{\lambda} - \dot{\partial}_{\lambda} &= \omega_{2} \times {}^{1}P_{2} + \dot{d}_{2}\hat{Z}_{1} \\
\vdots \\
\dot{\partial}_{n-\lambda} - \dot{\partial}_{i-\lambda} &= \omega_{n-1} \times {}^{n-2}P_{n-1} + \dot{d}_{n-1}\hat{Z}_{n-2} \\
+) \upsilon_{n} - \dot{\partial}_{n-\lambda} &= \omega_{n} \times {}^{n-1}P_{n} + \dot{d}_{n}\hat{Z}_{n-1} \\
\downarrow & \qquad \qquad \qquad \downarrow \\
\upsilon_{n} &= \sum_{n=1}^{\infty} \left( \omega_{i} \times {}^{i-1}P_{i} + \dot{d}_{i}\hat{Z}_{i-1} \right)
\end{aligned}$$

From  $\omega_i = \sum_{j=1}^i \dot{\theta}_j \hat{Z}_{j-1}$ , and a double summation identity  $\sum_{i=1}^n \sum_{j=1}^i a_{i,j} = \sum_{j=1}^n \sum_{i=j}^n a_{i,j}$ , the first term is:

$$\begin{split} \sum_{i=1}^{n} \omega_{i} \times^{i-1} P_{i} &= \sum_{i=1}^{n} \left[ \sum_{j=1}^{i} (\dot{\theta}_{j} \hat{Z}_{j-1}) \times^{i-1} P_{i} \right] = \sum_{i=1}^{n} \sum_{j=1}^{i} \left[ \dot{\theta}_{j} \hat{Z}_{j-1} \times^{i-1} P_{i} \right] \\ &= \sum_{j=1}^{n} \sum_{i=j}^{n} \left[ \dot{\theta}_{j} \hat{Z}_{j-1} \times^{i-1} P_{i} \right] = \sum_{j=1}^{n} \left[ \dot{\theta}_{j} \hat{Z}_{j-1} \times \sum_{i=j}^{n} \sum_{j=1}^{i-1} P_{i} \right] = \sum_{j=1}^{n} \dot{\theta}_{j} \hat{Z}_{j-1} \times (P_{n} - P_{j-1}) \end{split}$$

$$\therefore \ \upsilon_{n} = \sum_{i=1}^{n} \dot{\theta}_{i} \hat{Z}_{i-1} \times (P_{n} - P_{i-1}) + \dot{d}_{i} \hat{Z}_{i-1}$$

## Jacobian (in general; analytical method)

**Derivative** in multidimensional (vector) space (vs. derivative with respect to scalar variable(s)) Mapping (linear) in tangential (velocity) space

• Given *m* functions with *n* independent variables

$$y_1 = f_1(x_1, ..., x_n),$$
  
 $y_2 = f_2(x_1, ..., x_n),$   
 $\vdots$   
 $y_m = f_m(x_1, ..., x_n).$  or,  $\mathbf{Y} = \mathbf{F}(\mathbf{X})$ 

• Differentials of  $v_i$  with respect to  $x_i$  (linear combinations)

$$\delta y_{1} = \frac{\partial f_{1}}{\partial x_{1}} \delta x_{1} + \frac{\partial f_{1}}{\partial x_{2}} \delta x_{2} + \dots + \frac{\partial f_{1}}{\partial x_{n}} \delta x_{n},$$

$$\delta y_{2} = \frac{\partial f_{2}}{\partial x_{1}} \delta x_{1} + \frac{\partial f_{2}}{\partial x_{2}} \delta x_{2} + \dots + \frac{\partial f_{2}}{\partial x_{n}} \delta x_{n},$$

$$\vdots \qquad \text{or, } \delta \mathbf{Y} = \frac{\partial \mathbf{F}}{\partial \mathbf{X}} \delta \mathbf{X} = J(\mathbf{X}) \delta \mathbf{X}$$

$$\delta y_{m} = \frac{\partial f_{m}}{\partial x_{1}} \delta x_{1} + \frac{\partial f_{m}}{\partial x_{2}} \delta x_{2} + \dots + \frac{\partial f_{m}}{\partial x_{n}} \delta x_{n}.$$

■  $J(\mathbf{X}) = \frac{\partial \mathbf{F}}{\partial \mathbf{X}}$ :  $m \times n$  Jacobian matrix; time-varying linear transformation

$$J(\mathbf{X}) = \frac{\partial \mathbf{F}_{(m \times 1)}}{\partial \mathbf{X}_{(n \times 1)}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}_{(m \times n)}$$
 (derivative of a vector with respect to another vector)

- Det(*J*): Jacobian
- In kinematics,  $\delta \mathbf{Y} = J(\mathbf{X})\delta \mathbf{X}$ : infinitesimal (or differential) motion
- In kinematics, \(\bar{Y} = J(X)\bar{X}\): mapping velocities in X to Y
   Note: Jacobian for angular velocity cannot be derived directly from analytical method.

## Jacobian (in robotics; geometric method)

Directly mapping joint velocities to Cartesian (angular, as well as linear) velocities of end-effector

- Let **q**: *n*-DOF joint variables vector;  ${}^{0}\mathbf{V} = \begin{bmatrix} {}^{0}\mathbf{v}_{(3\times 1)} \\ {}^{0}\mathbf{\omega}_{(3\times 1)} \end{bmatrix}_{(C\times 1)}$ : Cartesian linear and angular velocity vector  ${}^{0}\mathbf{V}_{(6\times 1)} = {}^{0}J(\mathbf{q})_{(6\times n)}\dot{\mathbf{q}}_{(n\times 1)}$  (differential kinematics)
- Changing Jacobian's frame of reference from  $\{B\}$  to  $\{A\}$

Given 
$$\begin{bmatrix} {}^{B}\mathbf{v} \\ {}^{B}\mathbf{\omega} \end{bmatrix} = {}^{B}\mathbf{V} = {}^{B}J(\mathbf{q})\dot{\mathbf{q}}$$
; use  $\begin{bmatrix} {}^{A}\mathbf{v} \\ {}^{A}\mathbf{\omega} \end{bmatrix} = \begin{bmatrix} {}^{A}R_{B} & 0 \\ 0 & {}^{A}R_{B} \end{bmatrix} \begin{bmatrix} {}^{B}\mathbf{v} \\ {}^{B}\mathbf{\omega} \end{bmatrix}$   
 $\therefore {}^{A}J(\mathbf{q}) = \begin{bmatrix} {}^{A}R_{B} & 0 \\ 0 & {}^{A}R_{B} \end{bmatrix} {}^{B}J(\mathbf{q})$ 

■ Example: 2-link arm linear Jacobian  ${}^{0}J(\mathbf{q}) = \begin{bmatrix} -l_{1}s_{1} - l_{2}s_{12} & -l_{2}s_{12} \\ l_{1}c_{1} + l_{2}c_{12} & l_{2}c_{12} \end{bmatrix}, {}^{2}J(\mathbf{q}) = \begin{bmatrix} l_{1}s_{2} & 0 \\ l_{1}c_{2} + l_{2} & l_{2} \end{bmatrix}$ 

## Jacobian Matrix Computation using Geometric Method

- Partition into 3x1 column vectors:  $J_{P,i}(\mathbf{q})$  for position and  $J_{O,i}(\mathbf{q})$  for orientation

$$J(\mathbf{q})_{(6\times n)} = [J_{1}(\mathbf{q})_{(6\times 1)} \mid \dots \mid J_{i}(\mathbf{q})_{(6\times 1)} \mid \dots \mid J_{n}(\mathbf{q})_{(6\times 1)}] = \begin{bmatrix} J_{P,1}(\mathbf{q})_{(3\times 1)} \\ J_{O,1}(\mathbf{q})_{(3\times 1)} \end{bmatrix} \dots \begin{vmatrix} J_{P,i}(\mathbf{q})_{(3\times 1)} \\ J_{O,i}(\mathbf{q})_{(3\times 1)} \end{vmatrix} \dots \begin{vmatrix} J_{P,n}(\mathbf{q})_{(3\times 1)} \\ J_{O,n}(\mathbf{q})_{(3\times 1)} \end{bmatrix}$$

$$\mathbf{V}_{(6\times 1)} = J(\mathbf{q})_{(6\times n)} \dot{\mathbf{q}}_{(n\times 1)} \implies \upsilon_{n} = \sum_{i=1}^{n} \dot{q}_{i} J_{P,i}(\mathbf{q}) & \& \omega_{n} = \sum_{i=1}^{n} \dot{q}_{i} J_{O,i}(\mathbf{q})$$

 $\dot{q}_i J_{P,i}(\mathbf{q})$ : contribution of single Joint *i* velocity to the end-effector frame origin's linear velocity  $\dot{q}_i J_{O,i}(\mathbf{q})$ : contribution of single Joint *i* velocity to the end-effector frame's angular velocity

$$J_{i}(\mathbf{q})_{(6\times 1)} = \begin{bmatrix} J_{P,i}(\mathbf{q})_{(3\times 1)} \\ J_{O,i}(\mathbf{q})_{(3\times 1)} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \hat{Z}_{i-1} \\ \mathbf{0} \end{bmatrix} & \leftarrow \text{ Prismatic joint } i \\ \begin{bmatrix} \hat{Z}_{i-1} \times (P_{n} - P_{i-1}) \\ \hat{Z}_{i-1} \end{bmatrix} & \leftarrow \text{ Revolute joint } i \end{bmatrix}$$

The vectors  $\hat{Z}_{i-1}$ ,  $P_n$ , and  $P_{i-1}$  are all functions of the joint variables. If written in Frame  $\{0\}$ :  $\hat{Z}_{i-1}$ : obtained from the third column of  ${}^{0}R_{i-1}(q_1,...,q_{i-1})$  or  ${}^{0}T_{i-1}(q_1,...,q_{i-1})$ .

$$\Rightarrow \hat{Z}_{i-1} = {}^{0}R_{i-1}[0 \quad 0 \quad 1]^{T} \text{ OR } \left[\frac{\hat{Z}_{i-1}}{0}\right] = {}^{0}T_{i-1}[0 \quad 0 \quad 1 \quad 0]^{T}$$

 $P_n$ : obtained from the fourth column of  ${}^0T_n(q_1,...,q_n)$ .  $\Rightarrow \begin{bmatrix} \frac{P_n}{1} \end{bmatrix} = {}^0T_n[0 \quad 0 \quad 0 \quad 1]^T$ 

 $P_{i-1}$ : obtained from the fourth column of  ${}^{0}T_{i-1}(q_1,...,q_{i-1})$ .  $\rightarrow \begin{bmatrix} P_{i-1} \\ 1 \end{bmatrix} = {}^{0}T_{i-1}[0 \quad 0 \quad 0 \quad 1]^T$ 

Proofs

(a) 
$$J_{O,i}(\mathbf{q})$$
: Since  $\omega_n = \sum_{i=1}^n \dot{\theta}_i \hat{Z}_{i-1}$  and  $\omega_n = \sum_{i=1}^n \dot{q}_i J_{O,i}(\mathbf{q})$ ,  $\sum_{i=1}^n \dot{q}_i J_{O,i}(\mathbf{q}) = \sum_{i=1}^n \dot{\theta}_i \hat{Z}_{i-1}$ .

 $\therefore J_{O,i}(\mathbf{q}) = \hat{Z}_{i-1}$  for revolute joint and  $J_{O,i}(\mathbf{q}) = \mathbf{0}$  for prismatic joint.

(b) 
$$J_{P,i}(\mathbf{q})$$
: Since  $\upsilon_n = \sum_{i=1}^n \dot{\theta}_i \hat{Z}_{i-1} \times (P_n - P_{i-1}) + \sum_{i=1}^n \dot{d}_i \hat{Z}_{i-1}$  and  $\upsilon_n = \sum_{i=1}^n \dot{q}_i J_{P,i}(\mathbf{q})$ ,

$$\sum_{i=1}^{n} \dot{q}_{i} J_{P,i}(\mathbf{q}) = \sum_{i=1}^{n} \dot{\theta}_{i} \hat{Z}_{i-1} \times (P_{n} - P_{i-1}) + \sum_{i=1}^{n} \dot{d}_{i} \hat{Z}_{i-1}.$$

 $\therefore \ J_{P,i}(\mathbf{q}) = \hat{Z}_{i-1} \times (P_n - P_{i-1}) \ \text{ for revolute joint and } J_{P,i}(\mathbf{q}) = \hat{Z}_{i-1} \ \text{ for prismatic joint.}$ 

- Kinematic interpretations
  - Assume that all joints, other than Joint *i*, are instantaneously fixed, and thus all the links from Link *i* to the end-effector can be regarded as a single rigid body.

The contribution of <u>prismatic</u> (allows pure translation) joint velocity to the end-effector frame's angular velocity: None. : A rigid body in translation has zero angular velocity. linear velocity (of origin): Vector addition of the prismatic joint velocity. : All points in the rigid body have same linear velocities (translation).

The contribution of revolute (allows pure rotation) joint velocity to the end-effector frame's angular velocity: Vector addition of the revolute joint velocity. An angular velocity vector (free vector) due to the revolute joint's rotation can be transported to the end-effector frame. linear velocity (of origin): Rotation of the position vector of the end-effector frame's origin relative to the origin of Joint *i* axis frame. Note that, unlike the other three cases, this is the only quantity that depends on the end-effector's (relative) position.



Three-link planar arm



Anthropomorphic arm

#### Example: Three-link Planar Arm

• The position vectors and the joint axes' unit vectors, all written in Frame {0}, are:

$$P_{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \ P_{1} = \begin{bmatrix} a_{1}c_{1} \\ a_{1}s_{1} \\ 0 \end{bmatrix}, \ P_{2} = \begin{bmatrix} a_{1}c_{1} + a_{2}c_{12} \\ a_{1}s_{1} + a_{2}s_{12} \\ 0 \end{bmatrix}, \ P_{3} = \begin{bmatrix} a_{1}c_{1} + a_{2}c_{12} + a_{3}c_{123} \\ a_{1}s_{1} + a_{2}s_{12} + a_{3}s_{123} \\ 0 \end{bmatrix}, \text{ and } \hat{Z}_{0} = \hat{Z}_{1} = \hat{Z}_{2} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

where  $c_{12} = \cos(\theta_1 + \theta_2)$ ,  $c_{123} = \cos(\theta_1 + \theta_2 + \theta_3)$ ,  $s_{12} = \sin(\theta_1 + \theta_2)$ ,  $s_{123} = \sin(\theta_1 + \theta_2 + \theta_3)$ , etc.

Example: Anthropomorphic Arm (shown in its home configuration)

| i | • | $\theta_i$                  | $d_i$ | $a_i$ | $\alpha_{i}$ | Variable |
|---|---|-----------------------------|-------|-------|--------------|----------|
| 1 |   | $\theta_1 = 90^\circ + q_1$ | 0     | 0     | 90°          | $q_1$    |
| 2 | 2 | $\theta_2 = 0 + q_2$        | 0     | $L_2$ | 0            | $q_2$    |
| 3 | 3 | $\theta_3 = 0 + q_3$        | 0     | $L_3$ | 0            | $q_3$    |

$${}^{0}T_{1} = \begin{bmatrix} \cos\theta_{1} & 0 & \sin\theta_{1} & 0 \\ \sin\theta_{1} & 0 & -\cos\theta_{1} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, {}^{1}T_{2} = \begin{bmatrix} \cos\theta_{2} & -\sin\theta_{2} & 0 & L_{2}\cos\theta_{2} \\ \sin\theta_{2} & \cos\theta_{2} & 0 & L_{2}\sin\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \text{ and }$$

$${}^{2}T_{3} = \begin{bmatrix} \cos\theta_{3} & -\sin\theta_{3} & 0 & L_{3}\cos\theta_{3} \\ \sin\theta_{3} & \cos\theta_{3} & 0 & L_{3}\sin\theta_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos\theta_{1} & \cos\theta_{2} & -\sin\theta_{2} & 0 & L_{2}\sin\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\therefore {}^{0}T_{2} = {}^{0}T_{1}{}^{1}T_{2} = \begin{bmatrix} c_{1}c_{2} & -c_{1}s_{2} & s_{1} & L_{2}c_{1}c_{2} \\ s_{1}c_{2} & -s_{1}s_{2} & -c_{1} & L_{2}s_{1}c_{2} \\ s_{2} & c_{2} & 0 & L_{2}s_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}, {}^{0}T_{3} = {}^{0}T_{2}{}^{2}T_{3} = \begin{bmatrix} c_{1}c_{23} & -c_{1}s_{23} & s_{1} & c_{1}(L_{2}c_{2} + L_{3}c_{23}) \\ s_{1}c_{23} & -s_{1}s_{23} & -c_{1} & s_{1}(L_{2}c_{2} + L_{3}c_{23}) \\ s_{23} & c_{23} & 0 & L_{2}s_{2} + L_{3}s_{23} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

■ The position vectors and the joint axes' unit vectors, all written in Frame 
$$\{0\}$$
, are:
$$P_0 = P_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, P_2 = \begin{bmatrix} L_2 c_1 c_2 \\ L_2 s_1 c_2 \\ L_2 s_2 \end{bmatrix}, \text{ and } P_3 = \begin{bmatrix} c_1 (L_2 c_2 + L_3 c_{23}) \\ s_1 (L_2 c_2 + L_3 c_{23}) \\ L_2 s_2 + L_3 s_{23} \end{bmatrix}; \hat{Z}_0 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ and } \hat{Z}_1 = \hat{Z}_2 = \begin{bmatrix} s_1 \\ -c_1 \\ 0 \end{bmatrix}.$$

$$\therefore J = \begin{bmatrix} \hat{Z}_0 \times (P_3 - P_0) & \hat{Z}_1 \times (P_3 - P_1) & \hat{Z}_2 \times (P_3 - P_2) \\ \hat{Z}_0 & \hat{Z}_1 & \hat{Z}_2 \end{bmatrix} = \begin{bmatrix} -s_1(L_2c_2 + L_3c_{23}) & -c_1(L_2s_2 + L_3s_{23}) & -L_3c_1s_{23} \\ c_1(L_2c_2 + L_3c_{23}) & -s_1(L_2s_2 + L_3s_{23}) & -L_3s_1s_{23} \\ 0 & L_2c_2 + L_3c_{23} & L_3c_{23} \\ 0 & s_1 & s_1 \\ 0 & -c_1 & -c_1 \\ 1 & 0 & 0 \end{bmatrix} .$$

(Note: If the global origin is on the ground, the solution will be different and will include  $L_1$ .)

# **Singularities**

Determinant = 0

In robotics:  $Det(J) = 0 \rightarrow J$  loses full rank

■ If *J* is nonsingular, i.e.,  $Det(J) \neq 0 \Rightarrow \dot{\mathbf{q}} = J^{-1}(\mathbf{q})\mathbf{V}$  (differential kinematics  $\Rightarrow$  inverse kinematics)

■ If J is singular  $\rightarrow$  manipulator loses one or more DOFs in Cartesian space (from implicit function theorem and/or differential geometry theory); it cannot move along some direction(s).

- Joint rates approach infinity (why?)

Workspace singularities

Workspace boundary singularities: links are fully stretched out or folded back

Workspace interior singularities: when two or more joint axes are aligned

→ Use to construct workspaces

■ Example: 2-link arm

$$Det[{}^{0}J(\mathbf{q})] = \begin{vmatrix} -l_{1}s_{1} - l_{2}s_{12} & -l_{2}s_{12} \\ l_{1}c_{1} + l_{2}c_{12} & l_{2}c_{12} \end{vmatrix} = l_{1}l_{2}s_{2} = 0$$

 $\rightarrow$  singular when  $\theta_2 = 0$ , 180° (stretched out or folded back)  $\rightarrow$  workspace boundary singularities

• Example 5.5 (Craig's 4<sup>th</sup> Ed.): Consider a two-link robot moving its end-effector along the  $\hat{X}$  axis at 1.0 m/s. Show that as a singularity is approached at  $\theta_2 = 0$ , joint rates tend to infinity.



Sol) The inverse of the Jacobian written in Frame  $\{0\}$  is  ${}^{0}J^{-1}(\mathbf{q}) = \frac{1}{l_{1}l_{2}s_{2}}\begin{bmatrix} l_{2}c_{12} & l_{2}s_{12} \\ -l_{1}c_{1} - l_{2}c_{12} & -l_{1}s_{1} - l_{2}s_{12} \end{bmatrix}$ .

Then using  $\dot{\mathbf{q}} = J^{-1}(\mathbf{q})\mathbf{V}$  with  $\mathbf{V} = [1, 0]^T$ , the joint rates as a function of manipulator configuration is:

$$\dot{\theta}_1 = \frac{c_{12}}{l_1 s_2}$$
 and  $\dot{\theta}_2 = -\frac{c_1}{l_2 s_2} - \frac{c_{12}}{l_1 s_2}$   $\therefore$  As  $\theta_2 \to 0$  (arm stretches out),  $\dot{\theta}_1 \to \infty$  and  $\dot{\theta}_2 \to \infty$ .

## Robot Workspace

The (continuum) set of points in space that can be reached by a point on end-effector.

• Example: workspace of a 2-link arm



| Joint | $\theta$  | d | а | α |
|-------|-----------|---|---|---|
| 1     | $0 + q_1$ | 0 | 6 | 0 |
| 2     | $0 + q_2$ | 0 | 3 | 0 |

$${}^{0}T_{n} \rightarrow x = 6\cos q_{1} + 3\cos(q_{1} + q_{2}), y = 6\sin q_{1} + 3\sin(q_{1} + q_{2})$$

$$\text{Jacobian } J = \begin{bmatrix} \frac{\partial x}{\partial q_{1}} & \frac{\partial x}{\partial q_{2}} \\ \frac{\partial y}{\partial q_{1}} & \frac{\partial y}{\partial q_{2}} \end{bmatrix}; Det(J) = 18\sin q_{2} = 0 \Rightarrow q_{2} = 0, \pi$$
Find set(s) of **a**, that make *I* singular:

Find set(s) of  $\mathbf{q}$  that make J singular:

Find set(s) of **q** that make J singular:
$$P_{singular}(q_1, q_2 = 0) = \begin{bmatrix} 6\cos q_1 + 3\cos(q_1 + 0) \\ 6\sin q_1 + 3\sin(q_1 + 0) \end{bmatrix} = \begin{bmatrix} 9\cos q_1 \\ 9\sin q_1 \end{bmatrix} \Rightarrow \text{ circle of radius 9 and center at the origin}$$

$$P_{singular}(q_1, q_2 = \pi) = \begin{bmatrix} 6\cos q_1 + 3\cos(q_1 + \pi) \\ 6\sin q_1 + 3\sin(q_1 + \pi) \end{bmatrix} = \begin{bmatrix} 3\cos q_1 \\ 3\sin q_1 \end{bmatrix} \Rightarrow \text{ circle of radius 3 and center at the origin}$$

(a) Workspace with no joint limits:



(b) Workspace with joint limits  $0 < q_1 < 135$  and  $0 < q_2 < 120$ :



## Static Forces

$$f_i$$
 = force exerted Link  $i$  Link  $i$ -1  $n_i$  = moment exerted Link  $i$  Link  $i$ -1

• Note: In general, a FBD should include all forces/moments exerted "on" the system of interest "by" the environment.



■ Static equilibrium

Force: 
$$\sum f = 0 \implies {}^{i}f_{i} - {}^{i}f_{i+1} = 0 \implies {}^{i}f_{i} = {}^{i}f_{i+1}$$

Moment **about** origin of Frame  $\{i\}$ :  $\sum n = 0 \implies {}^{i}n_{i} - {}^{i}n_{i+1} + {}^{i}P_{i-1} \times {}^{i}f_{i} = 0 \implies {}^{i}n_{i} = {}^{i}n_{i+1} - {}^{i}P_{i-1} \times {}^{i}f_{i}$ 

- Start with a description of the forces and moments applied at the end-effector (Link n)
   → calculate from Link n to Link 0 (inward)
- Static force/moment propagation from link to link expressed in each link frame:  $f_i = {}^i R_{i+1} {}^{i+1} f_{i+1}$ ,  ${}^i n_i = {}^i R_{i+1} {}^{i+1} n_{i+1} {}^i P_{i-1} \times {}^i f_i$
- All components of the force and moment vectors are resisted by the reaction from the structure of the mechanism itself, except for the force/moment component (actuation) along the joint axis.
- Actuation required to maintain static equilibrium

  Joint actuator torque (revolute joint *i*):  $\tau_i = {}^i n_i^{T} {}^i \hat{Z}_{i-1}$ Joint actuator force (prismatic joint *i*):  $\tau_i = {}^i f_i^{T} {}^i \hat{Z}_{i-1}$

## Jacobians in the Force Domain

■ Let

F: 6x1 Cartesian force-moment vector applied on the end-effector  $\delta X$ : 6x1 infinitesimal Cartesian displacement of the end-effector  $\tau$ : nx1 joint actuator torque vector  $\delta q$ : nx1 infinitesimal joint variables vector

• Principle of virtual work (static equilibrium)

$$\mathbf{F} \bullet \delta \mathbf{X} - \mathbf{\tau} \bullet \delta \mathbf{q} = 0 \implies \mathbf{F}^T \delta \mathbf{X} = \mathbf{\tau}^T \delta \mathbf{q}$$

→ [work done in Cartesian terms] = [work done in joint space terms]

: Work is the same measured in any set of generalized coordinates

■ Recall: Jacobian  $\delta \mathbf{X} = J\delta \mathbf{q} \rightarrow \mathbf{F}^T J\delta \mathbf{q} = \mathbf{\tau}^T \delta \mathbf{q} \ (\forall \delta \mathbf{q})$ ∴  $\boxed{\mathbf{\tau} = J^T \mathbf{F}}$ 

: Jacobian transpose maps Cartesian forces/moments into equivalent joint torques

(Note: In the above equation,  $\tau$  are the joint torques producing effects that are "equivalent" to those of F; on the other hand, the joint torques that are in static "equilibrium" with F is  $\tau = -J^T F$ .)

- Kineto-statics duality:  $\delta \mathbf{X} = J \delta \mathbf{q}$  vs.  $\mathbf{\tau} = J^T \mathbf{F}$
- If J is singular (i.e., loses full rank) or near singular: F can be increased or decreased in null-space basis directions without changes in  $\tau$ .
  - $\rightarrow$  mechanical advantage goes infinity; small  $\tau$  required to generate large forces at the end-effector
- Singular configuration → singularity in both position and force domains

## Cartesian Transformation of Velocities and Static Forces

- 6x1 general velocity of a body:  $\mathbf{V} = \begin{bmatrix} \mathbf{v}_{(3 \times 1)} \\ \mathbf{\omega}_{(3 \times 1)} \end{bmatrix}$
- 6x1 general force vector:  $\mathbf{F} = \begin{bmatrix} f_{(3\times 1)} \\ n_{(3\times 1)} \end{bmatrix}$  (f: 3x1 force vector; n: 3x1 moment vector)
- 6x6 transformations to map from Frame  $\{A\}$  to  $\{B\}$  at each time instant
- Velocity transformation

Recall: 
$${}^{i+1}\omega_{i+1} = {}^{i+1}R_i({}^i\omega_i + \dot{\theta}_{i+1}{}^i\hat{Z}_i)$$
 and  ${}^{i+1}\upsilon_{i+1} = {}^{i+1}R_i({}^i\upsilon_i + {}^i\omega_{i+1} \times {}^iP_{i+1})$  with  $\dot{\theta}_{i+1} = 0$  (: the two frames are rigidly connected) and  $\{i\} = \{A\}, \{i+1\} = \{B\}$ 

$$\Rightarrow \text{ matrix form: } \begin{bmatrix} {}^{B}\mathbf{v}_{B} \\ {}^{B}\mathbf{\omega}_{B} \end{bmatrix} = \begin{bmatrix} {}^{B}R_{A} & {}^{-B}R_{A} & {}^{A}P_{BORG} \times \\ \hline 0 & {}^{B}R_{A} \end{bmatrix} \begin{bmatrix} {}^{A}\mathbf{v}_{A} \\ {}^{A}\mathbf{\omega}_{A} \end{bmatrix} \text{ or } {}^{B}\mathbf{V}_{B} = {}^{B}T_{vA}{}^{A}\mathbf{V}_{A} \text{ (6x6 operator)}$$

where 
$$P \times = \begin{bmatrix} 0 & -p_z & p_y \\ p_z & 0 & -p_x \\ -p_y & p_y & 0 \end{bmatrix}$$
 (Note: recall similar formula for angular velocity matrix!)

■ Inversion: 
$$\begin{bmatrix} {}^{A}\mathbf{v}_{A} \\ {}^{A}\mathbf{\omega}_{A} \end{bmatrix} = \begin{bmatrix} {}^{A}R_{B} & ({}^{A}P_{BORG}\times) \cdot {}^{A}R_{B} \\ 0 & {}^{A}R_{B} \end{bmatrix} \begin{bmatrix} {}^{B}\mathbf{v}_{B} \\ {}^{B}\mathbf{\omega}_{B} \end{bmatrix} \text{ or } {}^{A}\mathbf{V}_{A} = {}^{A}T_{vB}{}^{B}\mathbf{V}_{B}$$

Force-moment transformation

Recall: 
$$f_i = {}^{i}R_{i+1}{}^{i+1}f_{i+1}$$
 and  ${}^{i}n_i = {}^{i}R_{i+1}{}^{i+1}n_{i+1} - {}^{i}P_{i-1} \times {}^{i}f_i$ 

Recall: 
$${}^{i}f_{i} = {}^{i}R_{i+1}{}^{i+1}f_{i+1}$$
 and  ${}^{i}n_{i} = {}^{i}R_{i+1}{}^{i+1}n_{i+1} - {}^{i}P_{i-1} \times {}^{i}f_{i}$ 

$$\Rightarrow \text{ matrix form: } \begin{bmatrix} {}^{A}f_{A} \\ {}^{A}n_{A} \end{bmatrix} = \begin{bmatrix} {}^{A}R_{B} & 0 \\ -({}^{A}P_{\text{joint}A} \times) \cdot {}^{A}R_{B} & {}^{A}R_{B} \end{bmatrix} \begin{bmatrix} {}^{B}f_{B} \\ {}^{B}n_{B} \end{bmatrix} \text{ or } {}^{A}\mathbf{F}_{A} = {}^{A}\mathbf{T}_{fB}{}^{B}\mathbf{F}_{B}$$

- $^{A}T_{rB} = {}^{A}T_{vB}^{T}$
- Example 5.8 (Craig's 4<sup>th</sup> Ed.): (Do it yourself)

## Redundancy Resolution

- Given m function equations with n-DOF joint variables  $\rightarrow$  J: mxn Jacobian matrix
- If m < n (i.e., redundant), infinite solutions of  $\dot{\mathbf{q}}$  exist for  $\mathbf{V}_{(m \times 1)} = J(\mathbf{q})_{(m \times n)} \dot{\mathbf{q}}_{(n \times 1)}$

Solution methods: Formulate as a constrained optimization problem.
 Jacobian pseudo-inverse
 Numerical trajectory optimization (e.g., collocation method, single/multiple shooting methods, etc.)

#### Jacobian Pseudo-Inverse

- Let the end-effector velocity is **V**, Jacobian J (for given **q**) has full rank, and W is a suitable  $(n \times n)$  symmetric positive definite weight matrix. Then the optimal solution  $\dot{\mathbf{q}}^*$  that satisfies  $\mathbf{V} = J\dot{\mathbf{q}}$  and minimizes the quadratic cost functional  $g(\dot{\mathbf{q}}) = \frac{1}{2}\dot{\mathbf{q}}^T W \dot{\mathbf{q}}$  is  $\dot{\mathbf{q}}^* = J^+ \mathbf{V}$ , where  $J^+ = W^{-1}J^T (JW^{-1}J^T)^{-1}$  is the weighted right pseudo-inverse of J, i.e.,  $JJ^+ = I_n$ .
- Proof (Use Method of Lagrange multipliers)

  Minimize  $g(\dot{\mathbf{q}}, \lambda) = \frac{1}{2}\dot{\mathbf{q}}^T W \dot{\mathbf{q}} + \lambda^T (\mathbf{V} J \dot{\mathbf{q}})$ , where  $\lambda$  is a  $(m \times 1)$  vector of unknown Lagrange multipliers. Since  $\frac{\partial^2 g}{\partial x^2} = W$  is positive definite, the necessary conditions for minimum are:

$$\frac{\partial g}{\partial \dot{\mathbf{q}}} = \mathbf{0}^{T} \rightarrow \dot{\mathbf{q}} = W^{-1}J^{T}\lambda \text{ (where } W^{-1} \text{ exists); and } \frac{\partial g}{\partial \lambda} = \mathbf{0}^{T} \rightarrow \mathbf{V} = J\dot{\mathbf{q}}$$

$$\Rightarrow \mathbf{V} = JW^{-1}J^{T}\lambda \rightarrow \lambda = (JW^{-1}J^{T})^{-1}\mathbf{V} \text{ (} :: JW^{-1}J^{T}: (mxm) \text{ square matrix of rank } m \text{ and invertible)}$$

$$\Rightarrow \dot{\mathbf{q}}^{*} = W^{-1}J^{T}(JW^{-1}J^{T})^{-1}\mathbf{V}$$

- If  $W = I_n \rightarrow J^+ = J^T (JJ^T)^{-1}$ : right pseudo-inverse of  $J \rightarrow$  minimizes  $\|\dot{\mathbf{q}}\|$
- If the cost functional is  $g'(\dot{\mathbf{q}}) = \frac{1}{2}(\dot{\mathbf{q}} \dot{\mathbf{q}}_0)^T(\dot{\mathbf{q}} \dot{\mathbf{q}}_0)$ , where  $\dot{\mathbf{q}}_0$  is a vector of arbitrary joint velocities  $\Rightarrow \dot{\mathbf{q}}^* = J^+\mathbf{V} + (I_n J^+J)\dot{\mathbf{q}}_0$  (from the Method of Lagrange multipliers)  $\begin{vmatrix} J^+\mathbf{V} : \text{minimizes } || \dot{\mathbf{q}} || \\ (I_n J^+J)\dot{\mathbf{q}}_0 : \text{homogeneous solution; attempts to satisfy additional constraints to specify via } \dot{\mathbf{q}}_0 .$ Remark:  $J(I_n J^+J)\dot{\mathbf{q}}_0 = \mathbf{0}$ , i.e.,  $I_n J^+J$  projects  $\dot{\mathbf{q}}_0$  in the <u>null space</u> of J, and  $\dot{\mathbf{q}}_0$  generates internal motions of  $(I_n J^+J)\dot{\mathbf{q}}_0$  without violating the end-effector's  $\mathbf{V} = J\dot{\mathbf{q}}$ .
- Remark: If m > n (i.e., over-constrained), no solution of  $\dot{\mathbf{q}}$  exists for  $\mathbf{V}_{(m \times 1)} = J(\mathbf{q})_{(m \times n)} \dot{\mathbf{q}}_{(n \times 1)}$ .  $\rightarrow$  (weighted) left pseudo-inverse of  $J(J^{\dagger}J = I_n)$   $\rightarrow$  approximate solution to minimize  $\|\mathbf{V} J\dot{\mathbf{q}}\|$

## **CHAPTER 1. INTRODUCTION**

#### Background

- Definition from Robot Institute of America (RIA)
  - "A *Robot* is a <u>reprogrammable</u>, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for the <u>performance of a variety of tasks</u>."
    - Advantage: reduces human labor, increases accuracy, productivity, and flexibility
- The term "robota (= labor)" is originated from Czech play "Rossum's Universal Robots."
- History of robots
  - 1954: one degree-of-freedom robot patented in U.S. by G.C. Devol.
  - 1961: first practical industrial robot developed by Unimation.
  - 1968: first Japanese industrial robot from Kawasaki.
  - 1970s: specialized industrial robots.
  - 1980s and 1990s: **↓**
  - 21C and future: various applications service, medical, military, etc.
- Robotics as a multidisciplinary field

Statics

Kinematics and dynamics

Machine/mechanism design

Control

Sensing

Vision

Artificial intelligence

Mechatronics

Computer algorithm and programming



#### Terminologies and Overview

- Position and orientation
  - Step 1: Attach a coordinate system ("local frame") rigidly to each single rigid body.
  - Step 2: Describe the position and orientation of each local frame with respect to a reference coordinate system ("global frame" or "base frame").
- Mechanical manipulator (or manipulator): rigid links connected with joints → allows relative motion of neighboring links
  - → Joint displacement or joint variable relative (position sensor)
    - Revolute joint (model) joint angle
    - Prismatic joint (model) translation or joint offset

(vs. physical joint)

- Degrees of freedom (DOFs): number of independent coordinates required to describe the configuration of a system
  - Particle unconstrained in 3D  $\rightarrow$  3 DOF (3 translations)
  - Rigid body unconstrained in 3D  $\rightarrow$  6 DOF (3 translations + 3 rotations)
- End-effector: free end of the chain of links which make up the manipulator

- Forward kinematics: given a set of joint variables, compute the position and orientation of the end-effector's local frame (i.e., tool frame) relative to the global frame
  - → Description mapping: joint space → Cartesian space (= operational space, task space)
- Inverse kinematics: given the position and orientation of the end-effector, calculate the joint variables
- Workspace → existence/nonexistence of a kinematic solution
- Jacobian matrix → mapping from joint space velocities to Cartesian space velocities
  - Singularity point → mapping is not invertible
- Joint actuator; actuator torques → manipulator statics (equilibrium) and dynamics (equations of motion)
- Trajectory generation

Trajectory: spatial and temporal (function of time)

Path: spatial, but not temporal



- Position control system: automatically compensate for errors in knowledge of the parameters of a system, and suppress disturbances which tend to perturb the system from the desired trajectory
  - Position/velocity sensors → control algorithm → actuator torque computation
- Nonlinear position control: nonlinear dynamics of the manipulator
- Force control: addresses the interaction (e.g., contact force) with the environment (e.g., parts, tools, surfaces, etc.)
  - Complementary to position control → hybrid position/force control

## Steps of Solving Mechanics Problems

- Step 1: Identify and isolate system of interest.
- Step 2: Draw free-body diagram (FBD) of the system of interest, its interactions (i.e., external forces and moments) with the environment, and coordinate frame(s).
- Step 3: Formulate governing equations.
- Note: In general, a FBD should include all forces/moments exerted "on" the <u>system of interest</u> "by" the environment.

#### CHAPTER 2. SPATIAL DESCRIPTIONS AND TRANSFORMATIONS

■ Global (= universe = inertial = Newtonian = world) coordinate system

# Position (of a point)

■ 3x1 position vector (e.g.,  ${}^{A}\mathbf{P}$ )  $\rightarrow$  identify the coordinate system {A} of description

$${}^{A}\mathbf{P} = \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \end{bmatrix}$$

- Components of  ${}^{A}\mathbf{P}$ : distances along axes of  $\{A\}$ 



# Orientation (of a rigid body)

Attach a coordinate system to a body  $\Rightarrow$  describe this frame relative to the reference frame  $\{B\}$  relative to  $\{A\} \Rightarrow$  orientation of the body

Write unit vectors of principal axes of  $\{B\}$  in terms of  $\{A\}$ .

- Dual-superscript notation: Two reference frames for description of kinematic vectors (linear position/velocity/acceleration of a point and angular velocity/acceleration of a frame)
  - **Defined** as viewed by an observer fixed in a reference frame: "relative to" or "with respect to" observer's frame → Geometric vector
  - **Resolved** into components with respect to a reference frame: "referred to," "expressed in," or "written in" *writer*'s frame → Algebraic representation of the geometric vector

 $\rightarrow$  Columns of 3x3 rotation matrix (= direction cosine matrix) of  $\{B\}$  relative to  $\{A\}$ :  ${}_{B}^{A}R$  or  ${}^{A}R_{B}$ 

■ Note

Position of a point→ vector (position vector) Orientation of a body > matrix (rotation matrix)

■ Note

|         | Configuration | Motion |
|---------|---------------|--------|
| Linear  |               |        |
| Angular |               |        |

$$\blacksquare AR_{B} = \begin{bmatrix} {}^{A}\hat{\mathbf{X}}_{B} & {}^{A}\hat{\mathbf{Y}}_{B} & {}^{A}\hat{\mathbf{Z}}_{B} \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{X}}_{B} \cdot \hat{\mathbf{X}}_{A} & \hat{\mathbf{Y}}_{B} \cdot \hat{\mathbf{X}}_{A} & \hat{\mathbf{Z}}_{B} \cdot \hat{\mathbf{X}}_{A} \\ \hat{\mathbf{X}}_{B} \cdot \hat{\mathbf{Y}}_{A} & \hat{\mathbf{Y}}_{B} \cdot \hat{\mathbf{Y}}_{A} & \hat{\mathbf{Z}}_{B} \cdot \hat{\mathbf{Y}}_{A} \\ \hat{\mathbf{X}}_{B} \cdot \hat{\mathbf{Z}}_{A} & \hat{\mathbf{Y}}_{B} \cdot \hat{\mathbf{Z}}_{A} & \hat{\mathbf{Z}}_{B} \cdot \hat{\mathbf{Z}}_{A} \end{bmatrix}$$
(arbitrary choice of frame for description)

Elements are the **direction cosines**.

$$A\hat{\mathbf{Y}}_{B} = A\hat{\mathbf{Y}}_{A} + A\hat{\mathbf{Y}}_{A} + A\hat{\mathbf{Y}}_{A} + A\hat{\mathbf{Y}}_{B} + A\hat{\mathbf{Y}_$$

 $, {}^{A}\hat{\mathbf{Z}}_{B}$ : unit orthogonal vectors

- Note: rotation matrix [with respect to which frame] R[describe frame of interest] does not require the frame of expression
- Rows are unit vectors of {A} expressed in {B}:  ${}^{A}R_{B} = [{}^{A}\hat{\mathbf{X}}_{B} \mid {}^{A}\hat{\mathbf{Y}}_{B} \mid {}^{A}\hat{\mathbf{Z}}_{B}] = \begin{bmatrix} \frac{\mathbf{A}_{A}}{B}\hat{\mathbf{Y}}_{A}^{T} \\ \frac{B}{B}\hat{\mathbf{Z}}_{A}^{T} \end{bmatrix}$

$$→ {}^{A}R_{B} = {}^{B}R_{A}^{T} \text{ and } {}^{A}R_{B} = {}^{B}R_{A}^{-1}$$

$$∴ {}^{A}R_{B} = {}^{B}R_{A}^{-1} = {}^{B}R_{A}^{T} → \text{Rotation matrix is}$$
 matrix (i.e.,  $RR^{T} = I_{3}$ ).

Example

$${}^{A}R_{B} = \begin{bmatrix} \hat{\mathbf{X}}_{B} \cdot \hat{\mathbf{X}}_{A} & \hat{\mathbf{Y}}_{B} \cdot \hat{\mathbf{X}}_{A} & \hat{\mathbf{Z}}_{B} \cdot \hat{\mathbf{X}}_{A} \\ \hat{\mathbf{X}}_{B} \cdot \hat{\mathbf{Y}}_{A} & \hat{\mathbf{Y}}_{B} \cdot \hat{\mathbf{Y}}_{A} & \hat{\mathbf{Z}}_{B} \cdot \hat{\mathbf{Y}}_{A} \\ \hat{\mathbf{X}}_{B} \cdot \hat{\mathbf{Z}}_{A} & \hat{\mathbf{Y}}_{B} \cdot \hat{\mathbf{Z}}_{A} & \hat{\mathbf{Z}}_{B} \cdot \hat{\mathbf{Z}}_{A} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$



#### Frame

Describes one coordinate system with respect to another.

Represents both position and orientation.

A set of four vectors – position vector and rotation matrix

• Position description – in general, choose the origin of the body-attached (= local) frame

$$\bullet \{B\} = \{{}^{A}R_{B}, {}^{A}\mathbf{P}_{BORG}\}$$

**Mapping** 

Changing **descriptions** (only!) from frame to frame

Original vector is not changed in space

Computes new description of the vector relative to another frame

- Mapping of translation (same orientations):  ${}^{A}\mathbf{P} = {}^{B}\mathbf{P} + {}^{A}\mathbf{P}_{BORG}$  (Note: vector additions in terms of different frames can be calculated only when their orientations are equivalent!)
- Mapping of rotation (same origins)

$$\Rightarrow \text{ Components of } {}^{A}\mathbf{P} : \begin{cases} {}^{A}p_{x} = {}^{B}\hat{\mathbf{X}}_{A} \bullet {}^{B}\mathbf{P} = {}^{B}\hat{\mathbf{X}}_{A}^{T} {}^{B}\mathbf{P} \\ {}^{A}p_{y} = {}^{B}\hat{\mathbf{Y}}_{A} \bullet {}^{B}\mathbf{P} = {}^{B}\hat{\mathbf{Y}}_{A}^{T} {}^{B}\mathbf{P} \end{cases} \Rightarrow {}^{A}\mathbf{P} = \begin{bmatrix} {}^{B}\hat{\mathbf{X}}_{A}^{T} \\ {}^{B}\hat{\mathbf{Y}}_{A}^{T} \end{bmatrix} {}^{B}\mathbf{P}$$

 $\therefore$   ${}^{A}\mathbf{P} = {}^{A}R_{B}{}^{B}\mathbf{P}$ : mapping of a same vector's description from  $\{B\}$  to  $\{A\}$ .



Example

$${}^{A}R_{B} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; {}^{B}\mathbf{r} = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}^{T}; {}^{A}\mathbf{r} = {}^{A}R_{B}{}^{B}\mathbf{r} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix}$$



• Construct a 4x4 "augmented" matrix operator T using 4x1 "augmented" position vectors

$$\begin{bmatrix} \frac{A}{\mathbf{P}} \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{A}{R_B} & \frac{A}{\mathbf{P}_{BORG}} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{B}{\mathbf{P}} \\ 1 \end{bmatrix} \Longrightarrow {}^{A}\mathbf{P} = {}^{A}T_B \, {}^{B}\mathbf{P}$$

$${}^{A}T_B = \begin{bmatrix} \frac{A}{R_B} & A^{\mathbf{P}_{BORG}} \\ \mathbf{0}^T & 1 \end{bmatrix} \colon \mathbf{Homogeneous transform} - \text{describes } \{B\} \text{ relative to } \{A\}; \text{ mapping } \mathbf{P} \mapsto {}^{A}\mathbf{P}$$

■ Example

## **Operators**

- → Transform points and/or vectors in a given frame (only one coordinate system is involved)
  - Use the mapping transform
- Translational operators: moves a point in space by a vector

⇒ 
$${}^{A}\mathbf{P}_{1}$$
 translated by  ${}^{A}\mathbf{Q} = \begin{bmatrix} q_{x} \\ q_{y} \\ q_{z} \end{bmatrix}$ :  ${}^{A}\mathbf{P}_{2} = {}^{A}\mathbf{P}_{1} + {}^{A}\mathbf{Q}$ 

→ Matrix operator: 
$${}^{A}\mathbf{P}_{2} = D_{Q}(q) {}^{A}\mathbf{P}_{1} (q = \|\hat{Q}\| = \sqrt{q_{x}^{2} + q_{y}^{2} + q_{z}^{2}})$$

$$D_{\mathcal{Q}}(q) = \begin{bmatrix} I_3 & \hat{\mathcal{Q}} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & q_x \\ 0 & 1 & 0 & q_y \\ 0 & 0 & 1 & q_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Rotational operators: rotates  ${}^{A}\mathbf{P}_{1}$  to become  ${}^{A}\mathbf{P}_{2}$  by means of R

$$\rightarrow$$
  ${}^{A}\mathbf{P}_{2} = R {}^{A}\mathbf{P}_{1}$  or  ${}^{A}\mathbf{P}_{2} = R_{K}(\theta) {}^{A}\mathbf{P}_{1}$  ( $\hat{K}$ : axis direction,  $\theta$ : angle)

Example: 
$$R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$
 (3x3 or 4x4)

• General transformation operator: Frame

 $\rightarrow$   ${}^{A}\mathbf{P}_{2} = T^{A}\mathbf{P}_{1}$ : T operates on (i.e., rotates and translates)  ${}^{A}\mathbf{P}_{1}$  to compute  ${}^{A}\mathbf{P}_{2}$ 

#### Transformation Arithmetic

■ Compound: 
$${}^{A}T_{C} = {}^{A}T_{B} {}^{B}T_{C} \Longrightarrow {}^{A}T_{C} = \begin{bmatrix} {}^{A}R_{B} {}^{B}R_{C} & {}^{A}R_{B} {}^{B}\mathbf{P}_{CORG} + {}^{A}\mathbf{P}_{BORG} \\ \hline 0 \ 0 \ 0 & 1 \end{bmatrix}$$

■ Inversion:  ${}^{B}\mathbf{P}_{BORG} = {}^{B}R_{A} {}^{A}\mathbf{P}_{BORG} + {}^{B}\mathbf{P}_{AORG} = \mathbf{0}$  (Note: The point of interest is  $\mathbf{P}_{BORG}$ . Thus the notation  ${}^{B}({}^{A}\mathbf{P}_{BORG})$  in the textbook is not proper.)

$$=> {}^{B}\mathbf{P}_{AORG} = -{}^{B}R_{A} {}^{A}\mathbf{P}_{BORG} = -{}^{A}R_{B}^{T} {}^{A}\mathbf{P}_{BORG} => {}^{A}T_{B}^{-1} = {}^{B}T_{A} = \begin{bmatrix} {}^{A}R_{B}^{T} & -{}^{A}R_{B}^{T} {}^{A}\mathbf{P}_{BORG} \\ 0 & 0 & 1 \end{bmatrix}$$

- Alternative derivation:  ${}^{A}\mathbf{P} = {}^{A}R_{B} {}^{B}\mathbf{P} + {}^{A}\mathbf{P}_{BORG}$   $=> {}^{A}R_{B} {}^{T}{}^{A}\mathbf{P} = {}^{A}R_{B} {}^{T}{}^{A}R_{B} {}^{B}\mathbf{P} + {}^{A}R_{B} {}^{T}{}^{A}\mathbf{P}_{BORG} = {}^{B}\mathbf{P} + {}^{A}R_{B} {}^{T}{}^{A}\mathbf{P}_{BORG} \Rightarrow {}^{B}\mathbf{P} = {}^{A}R_{B} {}^{T}{}^{A}\mathbf{P} {}^{A}R_{B} {}^{T}{}^{A}\mathbf{P}_{BORG}$   $=> \left[\frac{{}^{B}\mathbf{P}}{1}\right] = \left[\frac{{}^{A}R_{B} {}^{T} {}^{A}R_{B} {}^{T}{}^{A}\mathbf{P}_{BORG}}{\mathbf{0}^{T}}\right] \left[\frac{{}^{A}\mathbf{P}}{1}\right]$
- Transform equation:  ${}^{U}T_{A}{}^{A}T_{D} = {}^{U}T_{B}{}^{B}T_{C}{}^{C}T_{D}$



# Orientation

- Rotation matrix R = [ ]  $\rightarrow Det(R) = 1$  (i.e., Proper orthonormal matrix)

  Recall:  ${}^{A}R_{B}{}^{B}R_{C} \neq {}^{B}R_{C}{}^{A}R_{B}$  (not commutative)
- Cayley's formula:  $R = (I_3 S)^{-1} (I_3 + S)$  (where S is a skew-symmetric matrix;
- $S = \begin{bmatrix} 0 & -s_z & s_y \\ s_z & 0 & -s_x \\ -s_y & s_x & 0 \end{bmatrix}$   $\rightarrow$   $\therefore$  R: 3 independent parameters
- $\|\hat{\mathbf{X}}\| = \|\hat{\mathbf{Y}}\| = \|\hat{\mathbf{Z}}\| = 1$  and  $\hat{\mathbf{X}} \cdot \hat{\mathbf{Y}} = \hat{\mathbf{X}} \cdot \hat{\mathbf{Z}} = \hat{\mathbf{Y}} \cdot \hat{\mathbf{Z}} = 0 \rightarrow 9$  elements and 6 equations  $\rightarrow \dots$  unknowns

#### Rotation of Frames

Fixed angle rotation (absolute transform)

Moving (i.e., current) frame rotation (relative transform)

# Fixed Angle Rotation

Rotations are specified about the fixed frame.

Each of three rotations takes place about an axis in the fixed frame (e.g.,  $\{A\}$ ).

■ X-Y-Z fixed angles (roll-pitch-yaw): initially  $\{B\}$  coincides with  $\{A\}$  $\rightarrow$  (1) rotate  $\{B\}$  about  $\hat{\mathbf{X}}_A$  by  $\gamma \rightarrow$  (2) rotate  $\{B\}$  about  $\hat{Y}_A$  by  $\beta \rightarrow$  (3) rotate  $\{B\}$  about  $\hat{Z}_A$  by  $\alpha$ 



$$\begin{bmatrix} {}^{A}R_{BXYZ}(\gamma,\beta,\alpha) = R_{Z}(\alpha)R_{Y}(\beta)R_{X}(\gamma) \\ \\ = \begin{bmatrix} c\alpha & -s\alpha & 0 \\ s\alpha & c\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\beta & 0 & s\beta \\ 0 & 1 & 0 \\ -s\beta & 0 & c\beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\gamma & -s\gamma \\ 0 & s\gamma & c\gamma \end{bmatrix} = \begin{bmatrix} c\alpha c\beta & c\alpha s\beta s\gamma - s\alpha c\gamma & c\alpha s\beta c\gamma + s\alpha s\gamma \\ s\alpha c\beta & s\alpha s\beta s\gamma + c\alpha c\gamma & s\alpha s\beta c\gamma - c\alpha s\gamma \\ -s\beta & c\beta s\gamma & c\beta c\gamma \end{bmatrix}$$

• "Multiply rotation matrices from right to left; premultiplying" (rotations as operators)

■ Let 
$${}^{A}R_{BXYZ}(\gamma, \beta, \alpha) = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$
. If  $c\beta \neq 0$ , then 
$$\begin{cases} \beta = \operatorname{Atan2}(-r_{31}, \sqrt{r_{11}^{2} + r_{21}^{2}}) \\ \alpha = \operatorname{Atan2}(r_{21} / c\beta, r_{11} / c\beta) \\ \gamma = \operatorname{Atan2}(r_{32} / c\beta, r_{33} / c\beta) \end{cases}$$
.

(Atan2(y, x)): two-argument arc tangent function or four-quadrant arc tangent)

$$\theta = \text{Atan2}(y, x) = \begin{cases} 0 \le \theta \le 90 & +x + y \\ 90 \le \theta \le 180 & -x + y \\ -180 \le \theta \le -90 & -x - y \\ -90 \le \theta \le 0 & +x - y \end{cases}$$

- For one-to-one function, assume  $-90.0^{\circ} \le \beta \le 90.0^{\circ}$ .
- If  $\beta = \pm 90.0^{\circ}$  (i.e.,  $\cos \beta = 0$ ): singular  $\rightarrow$  only sum or difference of  $\alpha$  and  $\gamma$  available. Choose arbitrary  $\alpha$  or  $\gamma$  (e.g.,  $\alpha = 0.0$ ). (Read textbook for further development.)

## **Moving Frame Rotation**

Each rotation is performed about an axis of the moving system (e.g.,  $\{B\}$ ). Euler angles

■ Z-Y-X Euler angles: initially  $\{B\}$  coincides with  $\{A\}$  $\Rightarrow$  (1) rotate  $\{B\}$  about  $\hat{Z}_B$  by  $\alpha \Rightarrow$  (2) rotate  $\{B\}$  about  $\hat{Y}_B$  by  $\beta \Rightarrow$  (3) rotate  $\{B\}$  about  $\hat{X}_B$  by  $\gamma$ 



•  ${}^{A}R_{B} = {}^{A}R_{B'} {}^{B'}R_{B''} {}^{B''}R_{B}$  (: for a given vector **P**,  ${}^{A}\mathbf{P} = {}^{A}R_{B'} {}^{B'}\mathbf{P}$ ,  ${}^{B'}\mathbf{P} = {}^{B'}R_{B''} {}^{B''}\mathbf{P}$ , and  ${}^{B''}\mathbf{P} = {}^{B''}R_{B} {}^{B}\mathbf{P}$ )

$$= \begin{bmatrix} c\alpha & -s\alpha & 0 \\ s\alpha & c\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\beta & 0 & s\beta \\ 0 & 1 & 0 \\ -s\beta & 0 & c\beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\gamma & -s\gamma \\ 0 & s\gamma & c\gamma \end{bmatrix} = \begin{bmatrix} c\alpha c\beta & c\alpha s\beta s\gamma - s\alpha c\gamma & c\alpha s\beta c\gamma + s\alpha s\gamma \\ s\alpha c\beta & s\alpha s\beta s\gamma + c\alpha c\gamma & s\alpha s\beta c\gamma - c\alpha s\gamma \\ -s\beta & c\beta s\gamma & c\beta c\gamma \end{bmatrix}$$

- "Multiply rotation matrices **from left to right**; postmultiplying" (rotations as mapping)
- Note: Same final orientation as the fixed axes rotation in **opposite** order.
- *Z-Y-Z* Euler angles: (Read textbook)
- 24 Angle set conventions (12 fixed angles + 12 Euler angles)

## Equivalent Angle-Axis

If the axis is a general direction, any orientation may be obtained through proper axis and angle selection.

- Euler's theorem on rotation: initially  $\{B\}$  coincides with  $\{A\}$ 
  - $\rightarrow$  rotate  $\{B\}$  about  ${}^{A}\hat{K}$  by  $\theta$  (according to right hand rule)

 ${}^{4}\hat{K}$ : Equivalent axis of finite rotation; unit vector

 $K = \theta \cdot {}^{4}\hat{K} : 3x1$  orientation vector



• Equivalent rotation matrix for  ${}^{A}\hat{K} = [k_x \ k_y \ k_z]^T$ 

$$R_{K}(\theta) = {}^{A}R_{B}(\hat{K}, \theta) = \begin{bmatrix} k_{x}k_{x}v\theta + c\theta & k_{x}k_{y}v\theta - k_{z}s\theta & k_{x}k_{z}v\theta + k_{y}s\theta \\ k_{y}k_{x}v\theta + k_{z}s\theta & k_{y}k_{y}v\theta + c\theta & k_{y}k_{z}v\theta - k_{x}s\theta \\ k_{z}k_{x}v\theta - k_{y}s\theta & k_{z}k_{y}v\theta + k_{x}s\theta & k_{z}k_{z}v\theta + c\theta \end{bmatrix}$$

(versed sine: versine( $\theta$ ) = vers( $\theta$ ) =  $v\theta$  = 1 –  $c\theta$ )

Examples: 
$$R_X(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$
,  $R_Y(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$ ,  $R_Z(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 

- Rotate a vector Q about a vector  $\hat{K}$  by  $\theta \rightarrow$  a new vector Q'Rodriques' formula:  $Q' = R_K(\theta)Q = Q\cos\theta + \sin\theta \Big(\hat{K} \times Q\Big) + \Big(1 - \cos\theta\Big)\Big(\hat{K} \cdot Q\Big)\hat{K}$
- Let  ${}^{A}R_{BK}(\theta) = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = > \theta = A\cos\left(\frac{r_{11} + r_{22} + r_{33} 1}{2}\right); \hat{K} = \frac{1}{2\sin\theta} \begin{bmatrix} r_{32} r_{23} \\ r_{13} r_{31} \\ r_{21} r_{12} \end{bmatrix} (0^{\circ} < \theta < 180^{\circ})$
- $(^{A}\hat{K},\theta) \equiv (-^{A}\hat{K},-\theta)$
- Small angular rotation:  $\theta \to 0 =$ ill-defined rotation axis ( $\theta = 0$  or  $\theta = \pi$ )
- Two special cases
  - i)  $\theta = 0$ : No rotation; R is identity; any nonzero  $\hat{K}$  is suitable
  - ii)  $\theta = \pi$ : Half turn; sense of axis vector is arbitrary;  $R(\hat{K}, \pi) = R(-\hat{K}, \pi)$

To find  $\hat{K}$ , set  $\sin \theta = 0$ ,  $\cos \theta = -1$ , and  $v\theta = 1 - \cos \theta = 2$ , and use the first row of  $R = 2K_x^2 - 1 = r_{11}$ ,  $2K_xK_y = r_{12}$ ,  $2K_yK_z = r_{13}$ 

$$\implies \therefore K_x = \sqrt{(1+r_{11})/2}, K_y = \frac{r_{12}}{2K_x} = \frac{r_{12}+r_{21}}{4K_x}, K_z = \frac{r_{13}+r_{31}}{4K_x}$$

- Rotation about  $\hat{K}$  which does not pass through the origin : [position change] + [same final orientation as if  $\hat{K}$  had passed through the origin]
- Example: Rotate about *Z*-axis

$$K = [0 \ 0 \ 1]^T; \ \phi = 90^o; \ \mathbf{r} = [2 \ 0 \ 0]^T$$
  
=>  $\mathbf{r}' = [0 \ 2 \ 0]^T$ 



- Example 2.9 (Craig's 4<sup>th</sup> Ed.): A frame  $\{B\}$  is described as initially coincident with  $\{A\}$ . We then rotate  $\{B\}$  about the vector  ${}^A\hat{K} = \begin{bmatrix} 0.707 & 0.707 & 0.0 \end{bmatrix}^T$  (passing through point  ${}^AP = \begin{bmatrix} 1.0 & 2.0 & 3.0 \end{bmatrix}$ ) by an amount  $\theta = 30$  degrees. Give the frame description of  $\{B\}$ . (Do it yourself)
- Exercise 2.14 (Craig's 4th Ed.): (Do it yourself)

<u>Euler Parameters</u> (= Unit Quaternion) (Skip)

# Transformation of Free Vectors

Equal vectors: same magnitude and direction

Equivalent vectors: produce same effect in a certain capacity

# Vector quantities

Free vector: may be positioned anywhere in space (e.g., couple vector on a rigid body, translational velocity of a nonrotating body)

Sliding (or line) vector: effects depend on specified line of action (e.g., force applied on a rigid body)

Bound (or fixed) vector: effects depend on point of application (e.g., force applied on a deformable body, force applied on a particle)

## **CHAPTER 3. MANIPULATOR KINEMATICS**

• Kinematics: Science of motion without regard to the forces and moments that cause it

## Link Description

Definitions

Manipulator: A set of bodies (links) connected in a **chain** by joints

Links: Bodies of a manipulator or a chain. Mathematical concept relating two neighboring joint axes

Joints: Connection between a neighboring pair of links

In robotics, for modeling, each joint has one DOF. → One link – one joint – one DOF revolute joint vs. prismatic (or sliding) joint



- Note: A (physical) joint with *n* DOF can be modeled as *n* joints (revolute and prismatic combined) of one DOF connected with *n*-1 links of zero and/or non-zero lengths.
- Numbering of links

Link 0: immobile base of manipulator (e.g., inertial frame, reference frame, ground, etc.)

Link 1: first moving body Link *i*: *i*th moving body

Link *n*: free end of manipulator

- Joint axis i: vector direction about which link i rotates relative to link i-1
- Recall: Distance between any two axes in 3D is that of the common normal which is perpendicular to both axes.

(Existence and uniqueness except for parallel axes; parallel axes have infinite number of mutual perpendiculars of equal length.)

#### Denavit-Hartenberg (DH) Convention

(References: [1] Sciavicco and Siciliano, *Modeling and Control of Robot Manipulators*, McGraw Hill, 1996; [2] Spong, M.W., Hutchinson, S., and Vidyasagar, M., *Robot Modeling and Control*, Wiley, 2006)

Overall steps for standard DH Convention

**[DH STEP I]** Attach a local frame to each link. Frame  $\{i\}$  is attached rigidly to link i.

[DH STEP II] Assign DH parameters and construct DH table.

[DH STEP III] Compute homogeneous transformation matrices and forward kinematics.



## [DH STEP I] Attach a local frame to each link

- Define and attach link Frame {*i*}:
  - **Step I-1)** Let Joint Axis i denote the axis of the joint connecting Link i-1 to Link i.
  - **Step I-2)** Choose axis  $z_i$  along the axis of Joint i+1.
  - **Step I-3)** Locate the origin  $O_i$  at the intersection of axis  $z_i$  with the common normal to axes  $z_{i-1}$  and  $z_i$ . Also, locate  $O_{i'}$  at the intersection of the common normal with axis  $z_{i-1}$ .
  - **Step I-4)** Choose axis  $x_i$  along the common normal to axes  $z_{i-1}$  and  $z_i$  with direction from Joint i to Joint i+1.  $(x_i \perp z_{i-1} \text{ and points away from } z_{i-1})$
  - **Step I-5)** Choose axis  $y_i$  so as to complete the right-handed frame.
- The DH convention gives a nonunique definition of link frames in the following cases:
  - Case 1) For Frame  $\{0\}$ , only direction of axis  $z_0$  is specified; then  $O_0$  and  $x_0$  can be arbitrarily chosen.
  - Case 2) For Frame  $\{n\}$ , since there is no Joint n+1,  $z_n$  is not uniquely defined while  $x_n$  has to be normal to  $z_{n-1}$ . Typically, Joint n is revolute, and thus  $z_n$  is to be aligned with  $z_{n-1}$ .
  - Case 3) When two consecutive axes are parallel, the common normal between them is not uniquely defined.
  - Case 4) When two consecutive axes  $z_{i-1}$  and  $z_i$  intersect,  $x_i$  is chosen normal to the plane formed by  $z_{i-1}$  and  $z_i$ . The positive direction of  $x_i$  is arbitrary. The most natural choice for the origin  $O_i$  in this case is at the point of intersection of  $z_{i-1}$  and  $z_i$ . Note that, in this case,  $a_i = 0$ . (In general, the line that is normal to the plane formed by two intersecting axes can be viewed as a converging case of the common normal of two non-intersecting axes as they approach to each other and eventually intersect.)
  - Case 5) When Joint i is prismatic, the direction sense of  $z_{i-1}$  is arbitrary.

In general, 6 parameters are required for the transformation between two frames. However, the DH convention imposes the following 2 conditions, reducing the required number of parameters to 4:

**DH1)** 
$$x_i \perp z_{i-1}$$
.  
**DH2)**  $x_i$  and  $z_{i-1}$  axes intersect.  $\}$   $\Rightarrow$   $x_i$  along the common normal to axes  $z_{i-1}$  and  $z_i$ 

# [DH STEP II] Assign DH parameters and construct DH table

- Once the link frames have been established, the position and orientation of Frame {i} with respect to Frame  $\{i-1\}$  are completely specified by the following DH parameters.
  - $\theta_i$ : Angle between axes  $x_{i-1}$  and  $x_i$  about axis  $z_{i-1}$  to be taken positive with counter-clockwise
  - $d_i$ : Coordinate (+/-) of  $O_{i'}$  along  $z_{i-1}$
  - $a_i$ : Distance between  $O_i$  and  $O_{i'}$  (Note:  $x_i$  "with direction from Joint i to Joint i+1" or "points away from  $z_{i-1}$ " ensures that  $a_i$  is positive, thus distance, not coordinate.)
  - $\alpha_i$ : Angle between axes  $z_{i-1}$  and  $z_i$  about axis  $x_i$  to be taken positive with counter-clockwise
- Reference configuration (= home configuration = zero configuration) of a robot manipulator
  - : configuration with respect to which the joint displacements of the manipulator are measured
    - The configuration of a manipulator when all joint variables are equal to zero
    - The location of the end-effector and the locations of the joint axes are known.
    - Can be chosen arbitrarily; usually chosen at the location where the coordinates of all joint axes can be easily identified
    - DH parameters do not represent the angle of rotation or the distance of translation about a joint axis.
- Target configuration (= desired configuration)
  - Manipulator displaced from the reference configuration to the target configuration by a series of joint displacements about all joint axes.
  - To obtain actual joint displacements, subtract joint variables associated with the reference configuration from that of a target configuration.
- Link parameters (design) and joint variables (control) (where  $\tilde{\theta}_i$  and  $\tilde{d}_i$  are reference configurations)

If joint is revolute 
$$\theta_i = \tilde{\theta}_i + q_i \rightarrow \text{ joint variable: } q_i$$
 link parameters:  $d_i$ ,  $a_i$ ,  $\alpha_i$  link parameters:  $d_i$ ,  $a_i$ ,  $\alpha_i$  link parameters:  $\theta_i$ ,  $\theta_i$ ,  $\theta_i$  link parameters:  $\theta_i$ ,  $\theta_i$ ,  $\theta_i$ ,  $\theta_i$  link parameters:  $\theta_i$ ,  $\theta_i$ ,  $\theta_i$  link par

→ Joint variable vector: 
$$\mathbf{q} = \begin{bmatrix} q_1 \\ \vdots \\ q_n \end{bmatrix}$$
 (for *n*-DOF manipulator)

DH parameter table

For two types Joint *i*: revolute and prismatic

| Joint i   | $\theta_{\scriptscriptstyle i}$     | $d_i$                     | $a_i$ | $\alpha_{i}$ | Joint variable q |
|-----------|-------------------------------------|---------------------------|-------|--------------|------------------|
| Revolute  | $\theta_i = \tilde{\theta}_i + q_i$ | $d_i$                     | $a_i$ | $\alpha_{i}$ | $q_i$            |
| Prismatic | $	heta_i$                           | $d_i = \tilde{d}_i + q_i$ | $a_i$ | $\alpha_{i}$ | $q_i$            |

For an *n*-DOF manipulator

| Tot all W Bot manipalator |                                        |                           |       |                                 |                  |  |
|---------------------------|----------------------------------------|---------------------------|-------|---------------------------------|------------------|--|
| Joint #                   | $	heta_{\scriptscriptstyle i}$         | $d_i$                     | $a_i$ | $\alpha_{i}$                    | Joint variable q |  |
| 1 (if revolute)           | $\theta_1 = \tilde{\theta}_1 + q_1$    | $d_1$                     | $a_1$ | $\alpha_{\scriptscriptstyle 1}$ | $q_1$            |  |
| 2 (if prismatic)          | $	heta_2$                              | $d_2 = \tilde{d}_2 + q_2$ | $a_2$ | $\alpha_2$                      | $q_2$            |  |
| :                         | :                                      | :                         | :     | :                               | :                |  |
| <i>n</i> (if revolute)    | $\theta_n = \overline{\theta}_n + q_n$ | $d_n$                     | $a_n$ | $\alpha_{n}$                    | $q_n$            |  |

 Note: "DH parameter = home configuration + joint variable" in DH parameters table Clarifies which DH parameter corresponds to joint degree of freedom (revolute or prismatic) Identifies the home configuration parameter value of the corresponding joint

# [DH STEP III] Compute homogeneous transformation matrices and forward kinematics

- Derivation of link transformation  $^{i-1}T_i$ : define Frame  $\{i\}$  relative to Frame  $\{i-1\}$ 
  - → Four transformations (sub-problems) each of four transformations will be a function of one DH parameter only

$$Rot(z,\theta_i)\colon T_{z,\theta} => Trans(0,0,d_i)\colon T_{z,d} => Trans(a_i,0,0)\colon T_{x,a} => Rot(x,\alpha_i)\colon T_{x,\alpha}$$

(Note: the rotations in this case are moving frame rotations; Euler angles; product)

$$\begin{split} & = \begin{bmatrix} \cos\theta_i & -\sin\theta_i & 0 & 0 \\ \sin\theta_i & \cos\theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & \alpha_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & \alpha_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\alpha_i & -\sin\alpha_i & 0 \\ 0 & \sin\alpha_i & \cos\alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{split}$$

$$\therefore \begin{bmatrix} \cos \theta_i & -\cos \alpha_i \sin \theta_i & \sin \alpha_i \sin \theta_i & a_i \cos \theta_i \\ \sin \theta_i & \cos \alpha_i \cos \theta_i & -\sin \alpha_i \cos \theta_i & a_i \sin \theta_i \\ 0 & \sin \alpha_i & \cos \alpha_i & d_i \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

- ${}^{i-1}T_i = {}^{i-1}T_i(q_i)$ : function of only **one** variable  $q_i$  where  $\begin{cases} \theta_i = \tilde{\theta}_i + q_i \text{ for revolute joint} \\ d_i = \tilde{d}_i + q_i \text{ for prismatic joint} \end{cases}$
- $Screw_{Q}(r,\phi)$ : translation by distance r along, and rotation by angle  $\phi$  about axis  $\hat{Q}$ Examples:  $Screw_z(d,\theta) = T_{z,\theta}T_{z,d}$  and  $Screw_x(a,\alpha) = T_{x,a}T_{x,\alpha}$
- Forward kinematics concatenating link transformations

$${}^{0}T_{n} = {}^{0}T_{1}(q_{1}){}^{1}T_{2}(q_{2})...{}^{i-1}T_{i}(q_{i})...{}^{n-1}T_{n}(q_{n})$$
 (for *n*-DOF manipulator)  ${}^{0}T_{i} = {}^{0}T_{i}(q_{1},q_{2},...,q_{i})$ : function of the first *i* joint variables

→ computes Cartesian position and orientation of the *i*th link

 ${}^{0}T_{n} = {}^{0}T_{n}(q_{1},q_{2},...,q_{n})$ : function of all *n* joint variables

 $\rightarrow$  computes Cartesian position and orientation of the last (*n*th) link

## DH Convention Procedure Summary

- 1) Find and number consecutively the joint axes; set the directions of axes  $z_0, ..., z_{n-1}$ .
- 2) Choose Frame  $\{0\}$  by locating the origin on axis  $z_0$ ; axes  $x_0$  and  $y_0$  are chosen according to right-hand rule. If feasible, it is worth choosing Frame  $\{0\}$  to coincide with the base frame.

## Execute steps 3 to 5 for i = 1, ..., n-1:

- 3) Locate the origin  $O_i$  at the intersection of  $z_i$  with the common normal to axes  $z_{i-1}$  and  $z_i$ . If axes  $z_{i-1}$  and  $z_i$  are parallel and Joint i is revolute, then locate  $O_i$  so that  $d_i = 0$ ; if Joint i is prismatic, locate  $O_i$  at a reference position for the joint range, e.g., a mechanical limit.
- 4) Choose axis  $x_i$  along the common normal to axes  $z_{i-1}$  and  $z_i$  with direction from Joint i to Joint i+1.
- 5) Choose axis  $y_i$  according to right-hand rule.

#### To complete:

- 6) Choose Frame  $\{n\}$ ; if Joint n is revolute, then align  $z_n$  and  $z_{n-1}$ ; otherwise, if Joint n is prismatic, then choose  $z_n$  arbitrarily. Axis  $x_n$  is set according to step 4.
- 7) For i = 1, ..., n, construct the table of DH parameters  $\theta_i$ ,  $d_i$ ,  $a_i$ ,  $\alpha_i$ .
- 8) On the basis of the DH parameters in 7, compute the homogenous transformation matrices  ${}^{i-1}T_i(q_i)$  for  $i=1,\ldots,n$ .
- 9) Compute the homogenous transformation  ${}^{0}T_{n}(\mathbf{q}) = {}^{0}T_{1}...{}^{n-1}T_{n}$  that yields the position and orientation of Frame  $\{n\}$  with respect to Frame  $\{0\}$ .
- 10) Given  ${}^bT_0$  (from base to Frame  $\{0\}$ ) and  ${}^nT_e$  (from Frame  $\{n\}$  to end-effector), compute the direct kinematic function as  ${}^bT_e(\mathbf{q}) = {}^bT_0{}^0T_n{}^nT_e$  that yields the position and orientation of the end-effector frame with respect to the base frame.

## **DH Parameters (Quick Summary)**

- $\theta_i$  (joint angle): joint angle from  $x_{i-1}$  to  $x_i$  about  $z_{i-1}$  (revolute joint variable)
- $d_i$  (link offset): shortest distance between  $x_{i-1}$  to  $x_i$  axis (prismatic joint variable)
- $a_i$  (link length): shortest distance between  $z_{i-1}$  and  $z_i$  axis
- $\alpha_i$  (link twist): angle from  $z_{i-1}$  to  $z_i$  about  $x_i$  axis

(Note: shortest distance between axes = length of the common normal)

#### Actuator Space, Joint Space, and Cartesian Space

- nx1 joint vector  $\mathbf{q}$ : set of n joint variables (generalized coordinates) that specifies the position and orientation of all the links of an n-DOF manipulator
- Joint space: vector space of all joint vectors
- Cartesian space = task-oriented space = operational space
- Actuator vector: actuator positions (determine joint vector) → actuator space
  - Examples: two actuators for a single joint, four-bar linkage (linear → revolute), muscles, etc.
- Mappings between 3 different space representations of manipulator's position and orientation



## Example: 2-Link 2R Planar Manipulator

DH parameters table

| i | $\theta$                     | d | а     | α | Joint variable $q_i$ |
|---|------------------------------|---|-------|---|----------------------|
| 1 | $\theta_1 = 0^{\circ} + q_1$ | 0 | $a_1$ | 0 | $q_1$                |
| 2 | $\theta_2 = 0^\circ + q_2$   | 0 | $a_2$ | 0 | $q_2$                |

Homogeneous transformation matrix in joint space

$${}^{0}T_{2} = {}^{0}T_{1}{}^{1}T_{2} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{2} & -s_{2} & 0 & a_{2}c_{2} \\ s_{2} & c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{1}c_{2} - s_{1}s_{2} & -c_{1}s_{2} - s_{1}c_{2} & 0 & a_{1}c_{1} + a_{2}c_{1}c_{2} - a_{2}s_{1}s_{2} \\ c_{1}s_{2} + s_{1}c_{2} & c_{1}c_{2} - s_{1}s_{2} & 0 & a_{1}s_{1} + a_{2}s_{1}c_{2} + a_{2}c_{1}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\cos(\theta_1 + \theta_2) = \cos\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2 \Rightarrow c_{12} = c_1c_2 - s_1s_2$  $\sin(\theta_1 + \theta_2) = \sin\theta_1\cos\theta_2 + \cos\theta_1\sin\theta_2 \Rightarrow s_{12} = s_1c_2 + c_1s_2$ 



**SCARA Robot** 

# Example: SCARA Robot

- Local frame: since all joint axes are parallel, the locations of the origins are not unique. In this case, the origins are located at each joint.
- DH parameters table

| i | $\theta_{i}$         | $d_i$ | $a_i$ | $\alpha_{i}$ | Joint variable $q_i$ |
|---|----------------------|-------|-------|--------------|----------------------|
| 1 | $\theta_1 = 0 + q_1$ | 0     | $a_1$ | 0            | $q_1$                |

| 2 | $\theta_2 = 0 + q_2$ | 0               | $a_2$ | 0     | $q_2$ |
|---|----------------------|-----------------|-------|-------|-------|
| 3 | 0                    | $d_3 = 0 + q_3$ | 0     | $\pi$ | $q_3$ |
| 4 | $\theta_4 = 0 + q_4$ | $d_4$           | 0     | 0     | $q_4$ |

Homogeneous transformation matrices

$${}^{0}T_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ {}^{1}T_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & a_{2}c_{2} \\ s_{2} & c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ {}^{2}T_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ {}^{3}T_{4} = \begin{bmatrix} c_{4} & -s_{4} & 0 & 0 \\ s_{4} & c_{4} & 0 & 0 \\ 0 & 0 & 1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward kinematics equation

$${}^{0}T_{4} = {}^{0}T_{1} {}^{1}T_{2} {}^{2}T_{3} {}^{3}T_{4} = \begin{bmatrix} c_{12}c_{4} + s_{12}s_{4} & -c_{12}s_{4} + s_{12}c_{4} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12}c_{4} - c_{12}s_{4} & -s_{12}s_{4} - c_{12}c_{4} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & -1 & d_{3} - d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

## Example: Spherical Manipulator

- Three orthogonal revolute joints, shown in its home configuration in the figures.
- The positive directions for the rotations of Joints 1, 2, and 3 are given as upward, out of the plane, and to the right, respectively, in the figures.
- Indeterminacies on: the global frame's origin  $O_0$  and its  $x_0$  axis; the local frame {3}; and the positive directions of  $x_1$  and  $x_2$  along their lines of axes (since  $z_0$ ,  $z_1$ , and  $z_2$  intersect). Here, they are given as in the figures, with two options for  $O_0$  and  $x_0$ .



## Option 1

DH parameters table

| i | $	heta_i$                   | $d_i$       | $a_i$ | $\alpha_{_i}$ | Joint variable $q_i$ |
|---|-----------------------------|-------------|-------|---------------|----------------------|
| 1 | $\theta_1 = -\pi / 2 + q_1$ | 0           | 0     | $-\pi/2$      | $q_1$                |
| 2 | $\theta_2 = -\pi / 2 + q_2$ | 0           | 0     | $\pi/2$       | $q_2$                |
| 3 | $\theta_3 = \pi / 2 + q_3$  | $L_2 + L_3$ | 0     | 0             | $q_3$                |

■ Homogeneous transformation matrices ( $c_1 = \cos \theta_1$ ,  $s_1 = \sin \theta_1$ , etc.)

$${}^{0}T_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ {}^{1}T_{2} = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ {}^{2}T_{3} = \begin{bmatrix} c_{3} & -s_{3} & 0 & 0 \\ s_{3} & c_{3} & 0 & 0 \\ 0 & 0 & 1 & L_{2} + L_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward kinematics equation

$${}^{0}T_{3} = \begin{bmatrix} c_{1}c_{2}c_{3} - s_{1}s_{3} & -c_{1}c_{2}s_{3} - s_{1}c_{3} & c_{1}s_{2} & (L_{2} + L_{3})c_{1}s_{2} \\ s_{1}c_{2}c_{3} + c_{1}s_{3} & -s_{1}c_{2}s_{3} + c_{1}c_{3} & s_{1}s_{2} & (L_{2} + L_{3})s_{1}s_{2} \\ -s_{2}c_{3} & s_{2}s_{3} & c_{2} & (L_{2} + L_{3})c_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

## Option 2

DH parameters table

|   | i | $	heta_{i}$                 | $d_i$       | $a_i$ | $\alpha_{_i}$ | Joint variable $q_i$ |
|---|---|-----------------------------|-------------|-------|---------------|----------------------|
| Ī | 1 | $\theta_1 = -\pi / 2 + q_1$ | $L_1$       | 0     | $-\pi/2$      | $q_1$                |
|   | 2 | $\theta_2 = -\pi / 2 + q_2$ | 0           | 0     | $\pi/2$       | $q_2$                |
| Į | 3 | $\theta_3 = \pi / 2 + q_3$  | $L_2 + L_3$ | 0     | 0             | $q_3$                |

Homogeneous transformation matrices

$${}^{0}T_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & L_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ {}^{1}T_{2} = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ {}^{2}T_{3} = \begin{bmatrix} c_{3} & -s_{3} & 0 & 0 \\ s_{3} & c_{3} & 0 & 0 \\ 0 & 0 & 1 & L_{2} + L_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward kinematics equation

$${}^{0}T_{3} = \begin{bmatrix} c_{1}c_{2}c_{3} - s_{1}s_{3} & -c_{1}c_{2}s_{3} - s_{1}c_{3} & c_{1}s_{2} & (L_{2} + L_{3})c_{1}s_{2} \\ s_{1}c_{2}c_{3} + c_{1}s_{3} & -s_{1}c_{2}s_{3} + c_{1}c_{3} & s_{1}s_{2} & (L_{2} + L_{3})s_{1}s_{2} \\ -s_{2}c_{3} & s_{2}s_{3} & c_{2} & (L_{2} + L_{3})c_{2} + L_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

## Remarks

- If  $L_1 = L_2 = 0$ , the first three frame origins intersect at a single point for both options in the figures, representing a spherical manipulator.
- As a consequence of the choice made for the coordinate frames, the block matrix  ${}^{0}R_{3}$  that can be extracted from  ${}^{0}T_{3}$  coincides with the rotation matrix of ZYZ Euler angles for  $\theta_{1}, \theta_{2}, \theta_{3}$  with respect to the reference frame  $O_{0}$ - $x_{0}y_{0}z_{0}$ .

#### **CHAPTER 4. INVERSE MANIPULATOR KINEMATICS**

Inverse kinematics vs. direct (or forward) kinematics

| Problem \ Space    | Joint Space |               | Cartesian Space                          |
|--------------------|-------------|---------------|------------------------------------------|
| Forward Kinematics | q (known)   | $\rightarrow$ | ${}^{\theta}T_{n}(\mathbf{q})$ (unknown) |
| Inverse Kinematics | q (unknown) | <b>←</b>      | ${}^{0}T_{n}(\mathbf{q})$ (known)        |

#### Solvability

■ Given  ${}^{0}T_{n}$  → find  $q_{1}, q_{2}, ..., q_{n}$  (Cartesian space → joint space)

Nonlinear transcendental equations

# Existence and Uniqueness

• Workspace: volume of space which the manipulator's end-effector can reach

Dexterous workspace: end-effector can reach with all orientations. At each point, end-effector can be arbitrarily oriented.

Reachable workspace: end-effector can reach in at least one orientation.

- {dexterous workspace} ⊂ {reachable workspace}



• Number of solutions depends on link parameters, joint limits, and number of joints.

If [DOF or number of unknowns] = [number of equations] → unique or <u>finite</u> number of solutions If [DOF or number of unknowns] < [number of equations] → solution may not exist; manipulator cannot attain general goal positions and orientations in 3D space.

If [DOF or number of unknowns] > [number of equations]  $\rightarrow$  infinite solutions may exist; kinematically redundant (flexible, dexterous, controllable); optimization is required.

(Note: For complete position and orientation of the end-effector, the number of equations is 6. However, in general, the number of equations depends on a given task as well as the manipulator.)

# Methods of Solution

Solvable: all the sets of joint variables can be determined for a given position and orientation.
 Closed form solutions – analytic expressions or polynomial of degree 4 or less
 Numerical solutions (e.g., Bisection method, Newton-Raphson method, Secant method, Muller's method, Brent's algorithm, etc.)

- Closed form solution methods of kinematic equations
  - 1) Algebraic solution: specify end-effector frame relative to base frame  $\rightarrow$  manipulate given equations
  - 2) Geometric solution: decompose spatial geometry of the manipulator into several plane geometry 
    → use plane geometry to solve for joint angles

(Note: Frequently, the mix of algebraic and geometric approaches is used.)

- A sufficient condition that a manipulator with 6 revolute joints will have a closed form solution is that three neighboring joint axes intersect at a point.
- Recall: Two-argument arctangent function  $\phi = \operatorname{atan2}(y,x)$ Defined on all four quadrants  $(-\pi \le \phi < \pi)$

| Case         | Quadrants | $\phi = \operatorname{atan2}(y, x)$                            |
|--------------|-----------|----------------------------------------------------------------|
| x > 0        | 1, 4      | $\phi = \arctan(y/x)$                                          |
| x = 0        | 1, 4      | $\phi = \underbrace{\operatorname{sgn}(y)}_{=\pm 1} (\pi / 2)$ |
| <i>x</i> < 0 | 2, 3      | $\phi = \arctan(y/x) + \operatorname{sgn}(y) \cdot \pi$        |

# Algebraic Solution by Reduction to Polynomial

- Let  $u = \tan \frac{\theta}{2}$  and substitute  $\cos \theta = \frac{1 u^2}{1 + u^2}$ ,  $\sin \theta = \frac{2u}{1 + u^2}$  (Weierstrass Substitution)
  - $\Rightarrow$  Transcendental (e.g., trigonometric) equations in  $\theta \Rightarrow$  polynomial equations in u (Note: polynomials up to degree 4 have closed form solutions.)
- Closed form solvable manipulators: Manipulators which are sufficiently simple to be solved by algebraic equations of up to degree 4.

## Repeatability and Accuracy

- Taught point: point that the manipulator is moved to physically, and then the joint position sensors are read, and the joint angles are stored; teach and playback
- Repeatability of manipulator: specification of how precisely a manipulator can return to a taught point
- Computed point: point in a manipulator's workspace which was never taught; if a goal position and orientation are specified in Cartesian space, required joint variables must be solved for by computing inverse kinematics.
- Accuracy: Precision with which a computed point can be attained. Accuracy of a manipulator is bounded by the repeatability.

## Example: 2R Planar Manipulator

Determine  $\theta_1$  and  $\theta_2$  in terms of  $p_x$  and  $p_y$ .



## Kinematic equations

Homogeneous transformation between links: 
$${}^{0}T_{2} = {}^{0}T_{1}{}^{1}T_{2} = \begin{bmatrix} c_{12} & -s_{12} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12} & c_{12} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

End-effector's position and orientation:  ${}^{R}T_{H} = \begin{vmatrix} \cos\phi & -\sin\phi & 0 & p_{x} \\ \sin\phi & \cos\phi & 0 & p_{y} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$ 

# 1) Calculation of $\theta_2$

$$p_x = a_1 \cos \theta_1 + a_2 \cos(\theta_1 + \theta_2) = a_1 c_1 + a_2 c_{12}$$
 and  $p_y = a_1 \sin \theta_1 + a_2 \sin(\theta_1 + \theta_2) = a_1 s_1 + a_2 s_{12}$ 

$$\Rightarrow p_x^2 + p_y^2 = a_1^2 + a_2^2 + 2a_1a_2(c_1c_{12} + s_1s_{12}) = a_1^2 + a_2^2 + 2a_1a_2c_2 \text{ (also from law of cosines)}$$

$$\Rightarrow c_2 = \cos \theta_2 = \frac{p_x^2 + p_y^2 - a_1^2 - a_2^2}{2a_1 a_2} \Rightarrow \text{ The solution exists only if } -1 \le \frac{p_x^2 + p_y^2 - a_1^2 - a_2^2}{2a_1 a_2} \le 1. \text{ If not, the}$$

target point is outside of the reachable workspace.

$$s_2 = \sin \theta_2 = \pm \sqrt{1 - c_2^2}$$
;  $\theta_2 = \tan 2(s_2, c_2)$   $\rightarrow$  redundancy – elbow-up vs. elbow-down

## 2) Calculation of $\theta_1$

$$p_x = a_1 \cos \theta_1 + a_2 \cos(\theta_1 + \theta_2) = a_1 c_1 + a_2 c_{12} = a_1 c_1 + a_2 (c_1 c_2 - s_1 s_2) = (a_1 + a_2 c_2) c_1 - a_2 s_2 s_1$$

$$p_y = a_1 \sin \theta_1 + a_2 \sin(\theta_1 + \theta_2) = a_1 s_1 + a_2 s_{12} = a_1 c_1 + a_2 (c_1 s_2 + s_1 c_2) = (a_1 + a_2 c_2) s_1 + a_2 s_2 c_1$$

#### Method 1 for $\theta_1$ :

$$(a_1 + a_2c_2)c_1 - (a_2s_2)s_1 = p_x$$
 and  $(a_2s_2)c_1 + (a_1 + a_2c_2)s_1 = p_y$ 

$$(a_1 + a_2c_2)c_1 - (a_2s_2)s_1 = p_x \text{ and } (a_2s_2)c_1 + (a_1 + a_2c_2)s_1 = p_y$$
Cramer's formula  $\Rightarrow c_1 = \frac{(a_1 + a_2c_2)p_x + a_2s_2p_y}{(a_1 + a_2c_2)^2 + (a_2s_2)^2} \text{ and } s_1 = \frac{-a_2s_2p_x + (a_1 + a_2c_2)p_y}{(a_1 + a_2c_2)^2 + (a_2s_2)^2}$ 

$$\theta_1 = \operatorname{atan2}(s_1, c_1) = \operatorname{atan2}(-a_2 s_2 p_x + (a_1 + a_2 c_2) p_y, (a_1 + a_2 c_2) p_x + a_2 s_2 p_y)$$

## Method 2 for $\theta_1$ :

$$\frac{p_{y}}{p_{x}} = \frac{(a_{1} + a_{2}c_{2})s_{1} + a_{2}s_{2}c_{1}}{(a_{1} + a_{2}c_{2})c_{1} - a_{2}s_{2}s_{1}} = \frac{\frac{s_{1}}{c_{1}} + \frac{a_{2}s_{2}}{a_{1} + a_{2}c_{2}}}{1 - \frac{s_{1}}{c_{1}} \frac{a_{2}s_{2}}{a_{1} + a_{2}c_{2}}}$$
Let  $\tan \gamma = \frac{a_{2}s_{2}}{a_{1} + a_{2}c_{2}}$  or  $\gamma = \operatorname{atan2}(a_{2}s_{2}, a_{1} + a_{2}c_{2})$ 

$$\frac{p_{y}}{p_{x}} = \frac{\tan \theta_{1} + \tan \gamma}{1 - \tan \theta_{1} \tan \gamma} = \tan(\theta_{1} + \gamma) \implies \theta_{1} = \operatorname{atan2}(p_{y}, p_{x}) - \gamma$$

$$\implies \theta_{1} = \operatorname{atan2}(p_{y}, p_{x}) - \operatorname{atan2}(a_{2}s_{2}, a_{1} + a_{2}c_{2})$$