

Range Queries: Segment Tree

PROTIVA - 2023

Pedro Henrique Paiola Arissa Yoshida Luis Henrique Morelli Nicolas Barbosa Gomes

Operações em intervalos

- Diversos problemas exigem operações em intervalos, em especial, consultas em intervalos (*range queries*)
- Por força bruta, estas consultas normalmente terão complexidade O(n)
- Exemplos:
 - Range Minimum/Maximum Query (RMQ)
 - Range Sum Query (RSQ)

Operações em intervalos

máx.: 9

mín.: -7

soma: 9

máx.: 9

mín.: 1

soma: 20

Range Minimum Query

- Tomando como exemplo o problema RMQ.
- Vamos supor que temos um vetor de N elementos, em que podemos realizar uma das seguintes operações:
 - o update(i, a): atualizar a posição i com o valor a
 - o query(i, j): consultar o menor valor entre as posições i e j
- De forma ingênua, podemos realizar estas operações com as seguintes complexidades:
 - \circ update: O(1)
 - query: O(n)

- A Segment Tree (Árvore de Segmentos) é uma estrutura que permite fazer ambas as operações em $O(\log N)$.
- Uma SegTree é bastante versátil, e pode ser utilizada para resolver uma gama enorme de problemas envolvendo *range queries* usando-se a mesma estrutura básica.
- Porém, para cada caso teremos que fazer algumas alterações na sua implementação, por isso é importante entender como ela funciona.

- Árvore binária de consulta
- Cada nó representa um segmento de um vetor
- Os filhos de um nó que representa o segmento [i,j] serão os nós que representam os segmentos $\left[i,\left|\frac{i+j}{2}\right|\right]$ e $\left[\left|\frac{i+j}{2}\right|+1,j\right]$

 Podemos rotular cada um dos nós. Começamos rotulando a raiz como 1, e seguimos nível a nível, numerando da esquerda pra direita.

• Percebe-se que os filhos de um nó x são os nós 2x e 2x + 1

- Funções básicas
 - build()
 - update()
 - o query()
- Uma árvore de segmentos é bastante versátil, podemos alterar o seu uso com pequenas e intuitivas mudanças no código

Representação

- ullet Vamos considerar que temos um vetor de tamanho n chamado, criativamente, de vetor
- Para a nossa árvore de segmentos, vamos também considerar um vetor, onde cada uma posição i representa o nó i. Esse deve ter $2*2^{\lceil \log_2 n \rceil} 1$ posições

```
vector<int> vetor;
vector<int> st;
int size;
```


Operação

- Como já dissemos, a SegTree é uma estrutura bastante versátil. Para tentarmos generalizar um pouco, vamos definir uma função f que define a informação que queremos saber a respeito dos elementos do vetor.
- Nesse caso, vamos supor uma SegTree que queira saber o mínimo de intervalos, mas poderia ser soma, máximo, produto, xor, gcd, mmc, or, and,

```
int f(int a, int b){
    return min(a,b); 
}
```


Elemento neutro

- O elemento neutro depende da operação. Como queremos saber os mínimos, o elemento neutro dessa operação seria um número muito grande.
- f(el_neutro, x) = x para todo x

```
int el neutro = INT MAX;
```


- Atualizando uma posição do vetor
 - Alterando o valor de uma posição do vetor, temos que atualizar a árvore de segmentos.
 - Começaremos da raiz e iremos descendo ao longo da árvore, atualizando os vértices conforme for necessário

8 - 0:0

9 - 1:1

6 - 3:3

8 - 0:0

19

6 - 3:3

8 - 0:0

9 - 1:1

19

6 - 3:3

17

4 - 0:1

17

9 - 1:1

18

8 - 0:0

13

5 - 2:2

19

6 - 3:3

8 - 0:0

19

6 - 3:3

18

8 - 0:0

17

8 - 0:0

19

6 - 3:3

8 - 0:0

19

6 - 3:3

8 - 0:0

19

6 - 3:3


```
void update(int no, int i, int j, int pos, int new_v)
    if(i == j) //Se estamos em uma folha (i == j == pos)
       vetor[pos] = new v;
        st[no] = new v;
        return;
    if(i > pos || j < pos)
        return; //O intervalo não contém o índice pos
```



```
//O intervalo contém o índice, mas temos que chegar no nó
//específico, e voltar recursivamente atualizando os filhos
int mid = (i + j)/2;

//Percorrendo e atualizando os filhos
update(no*2, i, mid, pos, new_v);
update(no*2 + 1, mid + 1, j, pos, new_v);
//Com os filhos atualizados, atualizar o próprio nó
st[no] = f(st[no*2], st[no*2 + 1]);
```

Chamada:

update(1, 0, size-1, pos, new_v)

- Consultando o menor valor entre A e B
 - Para retornar a posição com o menor valor entre A e B, iniciaremos a busca a partir do nó 1, com intervalo [0, N-1], e seguiremos o seguinte procedimento:

```
Se [i,j] estiver contido entre [A,B] (A \le i \le j \le B) retorna st[no]
Se [i,j] e [A,B] forem disjuntos (A > j \ ou \ i > B) retorna elemento neutro
Senão chamamos a função recursivamente para os filhos
```


8 - 0:0

8 - 0:0

[i,j] e [A,B] são disjuntos

3. Tem intersecção

8 - 0:0

7 - 4:4

[i,j] e [A,B] são disjuntos

3. Tem intersecção

2. [i,j] e [A,B] são disjuntos

3. Tem intersecção

- 1. [i,j] está em em [A,B]
- 2. [i,j] e [A,B] são disjuntos
- 3. Tem intersecção

13

5 - 2:2

- 2. [i,j] e [A,B] são disjuntos
- 3. Tem intersecção

8 - 0:0

10

8 - 0:0

12

10

8 - 0:0

12

7 - 4:4

6 - 3:3

- [i,j] e [A,B] são disjuntos
- 3. Tem intersecção

10

8 - 0:0

4: 12

Consulta

- [i,j] está em em [A,B]
- [i,j] e [A,B] são disjuntos
- 3. Tem intersecção

8 - 0:0

12

- 2. [i,j] e [A,B] são disjuntos
- 3. Tem intersecção

13

5 - 2:2

7 - 4:4

- [i,j] está em em [A,B]
- [i,j] e [A,B] são disjuntos
- Tem intersecção

8 - 0:0

10

8 - 0:0

[i,j] e [A,B] são disjuntos

2. [i,j] e [A,B] são disjuntos

3. Tem intersecção

2: 12

13

5 - 2:2

7 - 4:4

- 2. [i,j] e [A,B] são disjuntos
- 3. Tem intersecção

10

8 - 0:0

12

10

1 - 0:4

19

6 - 3:3

2. [i,j] e [A,B] são disjuntos

3. Tem intersecção

19

6 - 3:3

- [i,j] e [A,B] são disjuntos
- 3. Tem intersecção

10

8 - 0:0

- 1. [i,j] está em em [A,B]
- 2. [i,j] e [A,B] são disjuntos
- 3. Tem intersecção

8 - 0:0


```
void query(int no, int i, int j, int A, int B)
    if(i >= A && j <= B) //Caso 1: [i,j] está incluindo em [A,B]
        return st[no];
    if(j < A | B < i) //Caso 2: intervalos disjuntos</pre>
        return el neutro;
    //Caso 3: intersecção entre os intervalos
    int mid = (i + j)/2;
    return f(query(no*2, i, mid, A, B),
             query(no*2 + 1, mid + 1, j, A, B));
```


Atualizações em intervalos

- Em certas situações, temos que atualizar todas as posições de um intervalo [A,B].
 - Por exemplo, somar o valor 2 em todos os elementos entre as posições 1 e 4 do vetor:

i=	0	1	2	3	4	5
v[i]=	12	4	6	71	2	7

i=	0	1	2	3	4	5
v[i]=	12	6	8	73	4	7

Atualizações em intervalos

- Em certas situações, temos que atualizar todas as posições de um intervalo [A,B].
 - A partir das funções que já temos, teríamos que chamar a função update() para cada posição desse intervalo.
 - Nesse caso, a Segment Tree não é muito eficiente, com complexidade O(n.logn) para atualizações em intervalo.

 Nessa situação, a solução seria usar a técnica de Lazy Propagation, que não será abordada nesta oficina.

Segment Tree

Para demais detalhes da implementação, consulte:

https://github.com/UnBalloon/programacaocompetitiva/tree/master/Segment%20Trees%20(%C3%81rvores%20de%20seg mento)

Range Queries

- A Segment Tree também possuem variações ou são aplicadas juntamente com outras técnicas para resolver uma gama maior de problemas:
 - Segment Tree com Lazy Propagation: para casos em que há atualizações em intervalos
 - Segment Tree Dinâmica
 - Persistent Segment Tree
 - 2D Segment Tree

Range Queries

- Material da <u>Summer School 2022</u> para quem queira se aprofundar sobre "Segment Tree":
 - Slides: 1 e 2
 - Vídeos: 1, 2, 3, 4, 5, 6, 7
 - Contests: 1 e 2

Range Queries

Mas a Segment Tree não é a única Estrutura de Dados própria para trabalhar com range queries. Exemplos de outras estruturas:

Prefix Sum Array

- BIT (Árvore de Fenwick)

 Sparse Table 0(1)
- Square root decomposition
- Heavy-light decomposition (para árvores)

Referências

https://www.geeksforgeeks.org/segment-tree-set-1-range-minimum-query/

https://www.geeksforgeeks.org/segment-tree-set-1-sum-of-given-range/

http://www.codcad.com/lesson/53

http://www.codcad.com/lesson/60

https://github.com/UnBalloon/programacao-

competitiva/tree/master/Segment%20Trees%20(%C3%81rvores%20de%20segmento)

https://github.com/icmcgema/gema/blob/master/11-Arvore_de_Segmentos.md

https://cp-algorithms.com/data_structures/segment_tree.html

https://linux.ime.usp.br/~matheusmso/mac0499/poster.pdf

https://neps.academy/lesson/266