Amendments to the Claims

The claims are amended per the list of claims hereinbelow, which list supercedes any prior listing of claims in this application.

List of claims

1. (original) An oligopeptide represented by Formula (I) shown below:

$$A_1$$
-Leu-Asp-Gln- A_2 -(X)_n (I)

where A_1 represents a hydrophobic amino acid residue having a side chain with a cyclic group; A_2 represents a hydrophobic amino acid residue having an aliphatic hydrocarbon group or an aromatic hydrocarbon group; n is zero or one; and X represents an amino acid residue.

- 2. (original) A linearly-linked peptide formed by linking two or more oligopeptides represented by Formula (I) as a repeating unit via a spacer, if necessary.
- 3. (original) An oligopeptide complex formed by using a linker to the C-terminal of the oligopeptide according to Claim 1.
- 4. (original) An oligopeptide according to Claim 1, wherein A_1 is represented by Formula (II) shown below:

$$R^1$$
 CH_2
 Z
 HN
 CH
 CO
 (II)

where R¹ represents a cyclic group; and Z represents a hydrogen atom, an alkyl group or an acyl group.

- 5. (original) An oligopeptide according to Claim 1, wherein A_1 is phenylalanine, 1-naphthylalanine, or cyclohexylalanine.
- 6. (original) An oligopeptide according to Claim 1, wherein A₂ is represented by Formula (III) shown below:

$$-NH$$
— CH — CO — (III)

where R² is an alkyl or aryl group.

- 7. (original) An oligopeptide according to Claim 1, wherein A₂ is valine, norvaline, leucine, or phenylglycine.
- 8. (original) An oligopeptide according to Claim 1, comprising Phe-Leu-Asp-Gln-Ile.
- 9. (original) An oligopeptide according to Claim 1, comprising Phe-Leu-Asp-Gln-Val.
- 10. (original) An oligopeptide according to Claim 1, comprising Phe-Leu-Asp-Gln-Phg, where Phg represents a phenylglycine residue.
- 11. (currently amended) Use of A process for detecting or quantifying dioxin in a sample wherein the oligopeptide, linearly-linked peptide and oligopeptide complex according to any one of Claims 1 to 10 claim 1 is used for detecting or quantifying dioxin in said sample.

- 12. (currently amended) A peptide immobilizing support formed by linking
- (a) the oligopeptide according to claim 1, (b) a linearly-linked peptide formed by linking two or more oligopeptides according to claim1 or (c) an and oligopeptide complex formed by using a linker to the C-terminal of the oligopeptide according to any one of Claims 1 to 10 claim 1

to (d) a support.

- 13. (original) A peptide immobilizing support according to Claim 12, wherein the support is a bead.
- 14. (currently amended) A method of detecting or quantifying dioxin is selected from the group consisting of
 - (A) the method comprising the steps of:
- (1) bringing the peptide immobilizing support according to Claim 12 into contact with a labeled dummy and a test sample which may contain dioxin; and
- (2) detecting or quantifying dioxin based on the amount of the labeled dummy bound to the support which is determined in Step (1); and
 - (B) the method comprising the steps of:
- (1) bringing the peptide immobilizing support according to Claim 12 into contact with a test sample containing dioxin to bind the dioxin to the support; and
- (2) separating the dioxin bound to the support obtained in Step (1) using a solvent.
- 15. (currently amended) A method according to Claim 14, wherein <u>in (A)</u> the labeled dummy is NBD-labeled 3,4-dichlorophenol.

7

Preliminary Amendment U.S. Application No. 10/574,910

- 16. (currently amended) A method of extracting dioxin according to claim 14, wherein said method is (A).comprising the steps of:
- (1) bringing the peptide immobilizing support according to Claim 12 into contact with a test sample containing dioxin to bind the dioxin to the support; and
- (2) separating the dioxin bound to the support obtained in Step (1) using a solvent.
- 17. (new) A method of extracting dioxin according to claim 14, wherein said method is (B).