Strong normalization y medidas decrecientes: demostraciones sintácticas de terminación en λ -cálculo tipado

Cristian Sottile

CONICET & Universidad de Buenos Aires

XXII Jornadas de Ciencias de la Computación DCC, FCEIA, Universidad Nacional de Rosario

Outline

Preliminares

- ightharpoonup (Brevísima) Introducción a Proyección de λ -cálculo tipado
- ► La propiedad de *Strong normalization*
- La técnica de reducibilidad
- Medidas decrecientes
- ightharpoonup El koan #26

Novedades

- Propuesta
- Observación de Turing: grados de redexes y weak normalization
- Cálculo auxiliar λ^m
- ightharpoonup Medida \mathcal{W} : contando argumentos
- ► Medida T^m: contando (ciertos) términos alcanzables
- ▶ Medida W_{\cap} : extensión a tipos intersección (idempotentes)

Estructura inductiva de los programas

$$t ::= x \mid \lambda x.t \mid tt$$

Reglas de cómputo

$$(\lambda x.t)s \rightarrow_{\beta} t[s/x]$$

Estructura inductiva de los programas

$$t ::= x \mid \lambda x.t \mid tt$$

Reglas de cómputo

$$(\lambda x.t)s \rightarrow_{\beta} t[s/x]$$

Estructura inductiva de los programas

$$t ::= x \mid \lambda x.t \mid tt$$

Reglas de cómputo

$$(\lambda x.t)s \rightarrow_{\beta} t[s/x]$$

Cadenas de reducción

Estructura inductiva de los programas

$$t ::= x \mid \lambda x.t \mid tt$$

Reglas de cómputo

$$(\lambda x.t)s \rightarrow_{\beta} t[s/x]$$

Cadenas de reducción

Pueden ser infinitas

Motivación Lenguaje más seguro

Motivación Lenguaje más seguro Admitimos solo términos que tengan "sentido"

Motivación Lenguaje más seguro Admitimos solo términos que tengan "sentido"

e.g. f x

Motivación Lenguaje más seguro Admitimos solo términos que tengan "sentido" Tipos

e.g. f x

$$A \ ::= \ \tau \mid A \to A$$

Motivación Lenguaje más seguro Admitimos solo términos que tengan "sentido" Tipos

e.g. f x

$$A ::= \tau \mid A \to A$$

Definición

$$\not\exists t \rightarrow_{\beta} t_1 \rightarrow_{\beta} t_2 \rightarrow_{\beta} \cdots$$

Definición

$$\not\exists t \rightarrow_{\beta} t_1 \rightarrow_{\beta} t_2 \rightarrow_{\beta} \cdots$$

Definición

$$\not\exists t \to_{\beta} t_1 \to_{\beta} t_2 \to_{\beta} \cdots$$

Definición

$$\not\exists t \rightarrow_{\beta} t_1 \rightarrow_{\beta} t_2 \rightarrow_{\beta} \cdots$$

Motivación

- ► Obtener un resultado del cómputo
- ► Equivale a la simplificación de pruebas (vía Curry-Howard)
- Desarrollo de técnicas (e.g. tipos intersección, logical relations)
- Es interesante

Definición

$$\not\exists t \rightarrow_{\beta} t_1 \rightarrow_{\beta} t_2 \rightarrow_{\beta} \cdots$$

Motivación

- ► Obtener un resultado del cómputo
- Equivale a la simplificación de pruebas (vía Curry-Howard)
- Desarrollo de técnicas (e.g. tipos intersección, logical relations)
- Es interesante

Reducibilidad [Tait'67, Girard'72]: la técnica más usada

- Concisa
- Extensible a sistemas más complejos (e.g. System F, CoC)

Primer intento

Inducción en t

Primer intento

Inducción en t

Primer intento

Inducción en t

Primer intento

Inducción en t

Caso aplicación ts

► HI: *t* y *s* SN

Primer intento

Inducción en t

- ► HI: *t* y *s* SN
- no alcanza para ver SN si $t = \lambda x.t'$

Primer intento

Inducción en t

- ► HI: *t* y *s* SN
- **no alcanza** para ver SN si $t = \lambda x.t'$

Primer intento

Inducción en t

- ► HI: *t* y *s* SN
- **no alcanza** para ver SN si $t = \lambda x t'$

Primer intento

Inducción en t

Caso aplicación ts

- ► HI: *t* y *s* SN
- **no alcanza** para ver SN si $t = \lambda x t'$

Solución

Primer intento

Inducción en t

Caso aplicación ts

- ► HI: *t* y *s* SN
- **no alcanza** para ver SN si $t = \lambda x t'$

Solución

 observar qué deben cumplir los términos para ser SN

Primer intento

Inducción en t

Caso aplicación ts

- ightharpoonup HI: $t ext{ y } s ext{ SN}$
- **no alcanza** para ver SN si $t = \lambda x t'$

Solución

- observar qué deben cumplir los términos para ser SN
- ¿qué necesito de la HI?

Primer intento

Inducción en t

Caso aplicación ts

- ► HI: *t* y *s* SN
- **no alcanza** para ver SN si $t = \lambda x.t'$

Solución

- observar qué deben cumplir los términos para ser SN
- ¿qué necesito de la HI?

Primer intento

Inducción en t

Caso aplicación ts

- ightharpoonup HI: $t ext{ y } s ext{ SN}$
- **no alcanza** para ver SN si $t = \lambda x.t'$

Solución

- observar qué deben cumplir los términos para ser SN
- ¿qué necesito de la HI?

Dado un término t, debe cumplir:

1. ser SN "solo"

Primer intento

Inducción en t

Caso aplicación ts

- ightharpoonup HI: $t ext{ y } s ext{ SN}$
- **no alcanza** para ver SN si $t = \lambda x t'$

Solución

- observar qué deben cumplir los términos para ser SN
- ¿qué necesito de la HI?

- 1. ser SN "solo"
- 2. ser SN al "combinarse" (aplicarse)

Primer intento

Solución

- observar qué deben cumplir los términos para ser SN
- ¿qué necesito de la HI?

Candidatos de reducibilidad

- 1. ser SN "solo"
- 2. ser SN al "combinarse" (aplicarse)

Primer intento

Solución

- observar qué deben cumplir los términos para ser SN
- ¿qué necesito de la HI?

Candidatos de reducibilidad

Los tipos indican cómo puede combinarse un término

- 1. ser SN "solo"
- 2. ser SN al "combinarse" (aplicarse)

Primer intento

Solución

- observar qué deben cumplir los términos para ser SN
- ¿qué necesito de la HI?

Dado un término t, debe cumplir:

- 1. ser SN "solo"
- 2. ser SN al "combinarse" (aplicarse)

Candidatos de reducibilidad

- Los tipos indican cómo puede combinarse un término
- Por inducción en el tipo, definimos los conjuntos de términos que cumplen: los reducibles

$$\begin{aligned} \textit{RED}_{\tau} &= SN \\ \textit{RED}_{A \rightarrow B} &= \{ \ t \mid \forall s \in \textit{RED}_A. \ ts \in \textit{RED}_B \ \} \end{aligned}$$

Primer intento

Solución

- observar qué deben cumplir los términos para ser SN
- ¿qué necesito de la HI?

Dado un término t, debe cumplir:

- 1. ser SN "solo"
- 2. ser SN al "combinarse" (aplicarse)

Candidatos de reducibilidad

- Los tipos indican cómo puede combinarse un término
- Por inducción en el tipo, definimos los conjuntos de términos que cumplen: los reducibles

$$\begin{aligned} \textit{RED}_{\tau} &= SN \\ \textit{RED}_{A \rightarrow B} &= \{ \ t \mid \forall s \in \textit{RED}_A. \ ts \in \textit{RED}_B \ \} \end{aligned}$$

- Propiedades de RED:
 - cerrado por reducción
 - """cerrado por antireducción"""

Primer intento

Solución

- observar qué deben cumplir los términos para ser SN
- ¿qué necesito de la HI?

Dado un término t, debe cumplir:

- 1. ser SN "solo"
- 2. ser SN al "combinarse" (aplicarse)

Candidatos de reducibilidad

- Los tipos indican cómo puede combinarse un término
- Por inducción en el tipo, definimos los conjuntos de términos que cumplen: los reducibles

$$\begin{aligned} \textit{RED}_{\tau} &= SN \\ \textit{RED}_{A \rightarrow B} &= \{ \ t \mid \forall s \in \textit{RED}_A. \ ts \in \textit{RED}_B \ \} \end{aligned}$$

- Propiedades de RED:
 - cerrado por reducción
 - """cerrado por antireducción"""
- Vemos que todos los términos son reducibles: $t:A \implies RED_A(t)$

Segundo Intento

Segundo Intento

Quería ver que todos los términos son SN

Quiero ver que todos los términos son RED

Segundo Intento

Quería ver que todos los términos son SN

Quiero ver que todos los términos son *RED*

Segundo Intento

Quería ver que todos los términos son SN

Quiero ver que todos los términos son *RED*

Inducción en t

Segundo Intento

Quería ver que todos los términos son SN

Quiero ver que todos los términos son RED

Inducción en t

Caso aplicación ts HI: $t ext{ y } s ext{ RED}$ (SN solos y combinados)

Segundo Intento

Quería ver que todos los términos son SN

Quiero ver que todos los términos son RED

Inducción en t

- **Caso aplicación** ts HI: $t ext{ y } s ext{ RED}$ (SN solos y combinados)
- **Caso abstracción** $\lambda x.t$ tengo que probar que es *RED* al aplicarse

7 / 29

Segundo Intento

Quería ver que todos los términos son SN

Quiero ver que todos los términos son RED

Inducción en t

- **Caso aplicación** ts HI: $t ext{ y } s ext{ RED } (SN ext{ solos y combinados})$
- **Caso abstracción** $\lambda x.t$ tengo que probar que es *RED* al aplicarse
 - ► HI t RED
 - necesito t[s/x] RED

Segundo Intento

Quería ver que todos los términos son SN

Quiero ver que todos los términos son *RED*

Inducción en t

- **Caso aplicación** ts HI: t y s RED (SN solos y combinados)
- **Caso abstracción** $\lambda x.t$ tengo que probar que es *RED* al aplicarse
 - ► HI t RED
 - necesito t[s/x] RED

Solución

- fortalezco HI
- ightharpoonup pruebo lema más general: todo **cierre reducible** θ de t es RED

$$t:A \Longrightarrow RED_A(\theta t)$$

Quería ver que todos los términos son SN

Quería ver que todos los términos son RED

Quiero ver que todos los cierres reducibles de términos son RED

Quería ver que todos los términos son SN

Quería ver que todos los términos son RED

Quiero ver que todos los cierres reducibles de términos son RED

Inducción en t

Caso aplicación ts HI: θt y θs RED

Caso abstracción $\lambda x.t$ tengo que probar que es *RED* al aplicarse

Quería ver que todos los términos son SN

Quería ver que todos los términos son RED

Quiero ver que todos los cierres reducibles de términos son RED

Inducción en t

- **Caso aplicación** ts HI: θt y θs RED
- **Caso abstracción** $\lambda x.t$ tengo que probar que es *RED* al aplicarse

- ightharpoonup HI θt RED
- ▶ por inducción en $|\theta t| + |s|$, todos los reductos en un paso son *RED*

Quería ver que todos los términos son SN

Quería ver que todos los términos son RED

Quiero ver que todos los cierres reducibles de términos son RED

Inducción en t

- **Caso aplicación** ts HI: θt y θs RED
- **Caso abstracción** $\lambda x.t$ tengo que probar que es *RED* al aplicarse

- HI θt RED
- ▶ por inducción en $|\theta t| + |s|$, todos los reductos en un paso son *RED*

Teorema $t:A \implies t \in SN$

Demostración El cierre identidad es reducible, $\therefore t: A \implies t \in SN$

Profundizando en la técnica de reducibilidad

Gallier (en Proving properties of typed λ -terms using realizability, covers, and sheaves)

This paper provides some answers to the above questions. But before explaining our results, we would like to explain our motivations and our point of view a little more. Reducibility proofs are seductive and thrilling, but also elusive. Following these proofs step-by-step, we see that they "work" (when they are not wrong!), but I claim that most of us would still admit that they are not sure why these proofs work! The situation is somewhat comparable to driving a Ferrari (I suppose): the feeling of power is tremendous, but what exactly is under the hood? What kind of carburator, what kind of valve mechanism, gives such power and flexibility?

Profundizando en la técnica de reducibilidad

Gallier (en Proving properties of typed λ -terms using realizability, covers, and sheaves)

This paper provides some answers to the above questions. But before explaining our results, we would like to explain our motivations and our point of view a little more. Reducibility proofs are seductive and thrilling, but also elusive. Following these proofs step-by-step, we see that they "work" (when they are not wrong!), but I claim that most of us would still admit that they are not sure why these proofs work! The situation is somewhat comparable to driving a Ferrari (I suppose): the feeling of power is tremendous, but what exactly is under the hood? What kind of carburator, what kind of valve mechanism, gives such power and flexibility?

van de Pol (en Two different strong normalization proofs?)

In the literature, these two methods are often put in contrast ([Gan80, § 6.3] and [Gir87, annex 2.C.1]). The proof using functionals seems to be more transparent and economizes on proof theoretical complexity. On the other hand, seeing the two proofs one gets the feeling that "somehow, the same thing is going on". Indeed De Vrijer [dV87, § 0.1] remarks that a proof using strong computability can be seen as abstracting from concrete information in the functionals that is not strictly needed in a termination proof, but which provides for an estimate of reduction lengths.

Definición

Asignación

tal que

$$\#:\Lambda o \mathit{WFO}$$

$$\#: \Lambda \to \textit{WFO} \qquad \quad M \ \to_{\beta} \ N \implies \#(M) > \#(N)$$

Definición

Asignación

tal que

 $\#: \Lambda \to WFO$ $M \to_{\beta} N \Longrightarrow \#(M) > \#(N)$

Corolario

$$\not\exists M_1 \rightarrow_{\beta} M_2 \rightarrow_{\beta} \cdots$$

Definición

Asignación

tal que

$$\#: \Lambda \to \textit{WFO} \qquad \quad M \ \to_{\beta} \ N \implies \#(M) > \#(N)$$

Medidas de Gandy y de Vrijer

Corolario

$$\not\exists M_1 \rightarrow_{\beta} M_2 \rightarrow_{\beta} \cdots$$

Definición

Asignación

 $\#: \Lambda \to WFO$ $M \to_{\beta} N \Longrightarrow \#(M) > \#(N)$

tal que

Corolario

$$\not\exists M_1 \rightarrow_{\beta} M_2 \rightarrow_{\beta} \cdots$$

Medidas de Gandy y de Vrijer

Basadas en interpretaciones de λ \rightarrow a increasing functionals

Definición

Asignación

tal que

Corolario

 $\not\exists M_1 \rightarrow_{\beta} M_2 \rightarrow_{\beta} \cdots$

$$\#:\Lambda\to WFC$$

$$\#: \Lambda \to \textit{WFO} \qquad \quad M \ \to_{\beta} \ N \implies \#(M) > \#(N)$$

Medidas de Gandy y de Vrijer

Basadas en interpretaciones de λ^{\rightarrow} a increasing functionals

1. Definen el conjunto de los IF increasing functionals (funciones de alto orden sobre naturales crecientes punto a punto)

Definición

Corolario

Asignación

tal que

 $\not\exists M_1 \rightarrow_{\beta} M_2 \rightarrow_{\beta} \cdots$

$$\#: \Lambda \to \textit{WFO} \qquad \quad M \ \to_{\beta} \ N \implies \#(M) > \#(N)$$

Medidas de Gandy y de Vrijer

Basadas en interpretaciones de λ^{\rightarrow} a increasing functionals

- 1. Definen el conjunto de los IF increasing functionals (funciones de alto orden sobre naturales crecientes punto a punto)
- 2. Definen operaciones sobre los IF

Definición

Corolario

Asignación

tal que

 $\not\exists M_1 \rightarrow_{\beta} M_2 \rightarrow_{\beta} \cdots$

$$\#: \Lambda \to \textit{WFO} \qquad \quad M \ \to_{\beta} \ N \implies \#(M) > \#(N)$$

Medidas de Gandy y de Vrijer

Basadas en interpretaciones de λ^{\rightarrow} a increasing functionals

- 1. Definen el conjunto de los IF increasing functionals (funciones de alto orden sobre naturales crecientes punto a punto)
- 2. Definen operaciones sobre los IF
- 3. Definen una provección de IF a \mathbb{N}

Definición

Corolario

Asignación

tal que

 $\not\exists M_1 \rightarrow_{\beta} M_2 \rightarrow_{\beta} \cdots$

$$\#: \Lambda \to \textit{WFO} \qquad \qquad M \ \to_{\beta} \ N \implies \#(M) > \#(N)$$

Medidas de Gandy y de Vrijer

Basadas en interpretaciones de λ^{\rightarrow} a increasing functionals

- 1. Definen el conjunto de los IF increasing functionals (funciones de alto orden sobre naturales crecientes punto a punto)
- 2. Definen operaciones sobre los IF
- 3. Definen una provección de IF a \mathbb{N}
- 4. Definen la asignación de términos en IF

Definición

Corolario

Asignación

tal que

$$\not\exists M_1 \rightarrow_{\beta} M_2 \rightarrow_{\beta} \cdots$$

$$\#: \Lambda \to \textit{WFO} \qquad \quad M \ \to_{\beta} \ N \implies \#(M) > \#(N)$$

Medidas de Gandy y de Vrijer

Basadas en interpretaciones de

$$\lambda^{
ightarrow}$$
 a increasing functionals

- 1. Definen el conjunto de los IF increasing functionals (funciones de alto orden sobre naturales crecientes punto a punto)
- 2. Definen operaciones sobre los IF
- 3. Definen una provección de IF a \mathbb{N}
- 4. Definen la asignación de términos en IF
- 5. Prueban que la proyección de la asignación decrece con cada reducción

Definición

Asignación

tal que

Corolario

$$\not\exists M_1 \rightarrow_{\beta} M_2 \rightarrow_{\beta} \cdots$$

$$\#: \Lambda \to \textit{WFO} \qquad \quad M \ \to_{\beta} \ N \implies \#(M) > \#(N)$$

Medidas de Gandy y de Vrijer

Basadas en interpretaciones de λ^{\rightarrow} a increasing functionals

- 1. Definen el conjunto de los IF increasing functionals (funciones de alto orden sobre naturales crecientes punto a punto)
- 2. Definen operaciones sobre los IF
- 3. Definen una provección de IF a \mathbb{N}
- 4. Definen la asignación de términos en IF
- 5. Prueban que la proyección de la asignación decrece con cada reducción

Reducción de SN a WN [Nederpelt'73, Klop'80]

Reducción mediante λI + Prueba de WN

Why?

Why decreasing measures?

- insight
- intuition
- metrics

Why?

Why decreasing measures?

- insight
- intuition
- metrics

The koan #26

- Posed by Gödel
- Submitted by Barendregt
- ▶ Find an "easy" mapping from λ^{\rightarrow} to ordinals

Why?

Why decreasing measures?

- insight
- intuition
- metrics

The koan #26

- Posed by Gödel
- Submitted by Barendregt
- ▶ Find an "easy" mapping from λ^{\rightarrow} to ordinals

Why "syntactic"

- sort of convention
- soft classification of SN proofs
- maybe abstract vs concrete would be better?
- external vs internal ?
- we stick to the convention

syntactic = "internal" analysis over the structure of terms or the rewriting relation

semantic

reducibility (RC)

syntactic

decreasing measures (DM) reduction of SN to WN (NK)

Our work

[Barenbaum & Sottile FSCD'23]

- An auxiliar calculus λ^m to manipulate (non-)erasure through memories
- ightharpoonup A simple measure $\mathcal W$ based on counting memories
- ▶ A complex measure \mathcal{T}^{m} generalizing Turing's WN one

Our work

[Barenbaum & Sottile FSCD'23]

- An auxiliar calculus λ^{m} to manipulate (non-)erasure through memories
- lacktriangle A simple measure ${\cal W}$ based on counting memories
- A complex measure \mathcal{T}^{m} generalizing Turing's WN one

[Barenbaum, Ronchi della Rocca, Sottile]

- ► A presentation of idempotent intersection types a la Church
- lacktriangle An adaptation of ${\mathcal W}$ to idempotent intersection types, ${\overline {\mathcal W}_\cap}$

Our work

[Barenbaum & Sottile FSCD'23]

- An auxiliar calculus λ^m to manipulate (non-)erasure through memories
- lacktriangleright A simple measure ${\cal W}$ based on counting memories
- A complex measure \mathcal{T}^{m} generalizing Turing's WN one

[Barenbaum, Ronchi della Rocca, Sottile]

- A presentation of idempotent intersection types a la Church
- lacktriangle An adaptation of ${\mathcal W}$ to idempotent intersection types, $\overline{{\mathcal W}_{\cap}}$

The auxiliar non-erasing λ^{m} -calculus

Turing's measure: preliminary definitions

Height of a type

Length of longest path as tree

au o au

Turing's measure: preliminary definitions

Height of a type

Length of longest path as tree

Examples

Degree of a redex

Height of its lambda

Examples

 $(\lambda x^{\tau}.x)s$

Turing's measure: Weak Normalization

Map terms \mapsto multiset of the redex degrees

 $\mathcal{T}(M) = [\ d \mid R \text{ is a redex of degree } d \text{ in } M \]$

Turing's measure: Weak Normalization

Map terms \mapsto multiset of the redex degrees

 $\mathcal{T}(M) = [\ d \mid R \text{ is a redex of degree } d \text{ in } M \]$

Example

$$\mathcal{T}((\lambda x^{\tau}.\lambda y^{\tau}.x)\underbrace{(\lambda x^{\tau}.x)s}_{1}) = [2,1]$$

Two crucial observations [Turing, 1940s]

- a redex cannot create redexes of greater or equal degree
- 2. a redex can copy redexes of any degree

Turing's measure: Weak Normalization

Map terms \mapsto multiset of the redex degrees

 $\mathcal{T}(M) = [d \mid R \text{ is a redex of degree } d \text{ in } M]$

Example

$$\mathcal{T}(\underbrace{(\lambda x^{\tau}.\lambda y^{\tau}.x)\underbrace{(\lambda x^{\tau}.x)s}_{1}}) = [2,1]$$

WN: choosing the redex to contract

has the greatest degree

Two crucial observations [Turing, 1940s]

- 1. a redex cannot create redexes of greater or equal degree
- 2. a redex can copy redexes of any degree

rightmost occurrence of that degree

Contracting rightmost greatest Q_D

- cannot create redexes > D
- cannot copy redexes $\geq D$

Hence

one less D redex

15 / 29

The auxiliar non-erasing λ^m —calculus

Definition

$$t ::= x \mid \lambda x.t \mid tt \mid \boxed{t\{t\}} \qquad (\lambda x.t)s \to_m t[s/x] \boxed{\{s\}}$$

The auxiliar non-erasing λ^m —calculus

Definition

$$t ::= x \mid \lambda x.t \mid tt \mid \underbrace{t\{t\}} \quad (\lambda x.t)s \to_m t[s/x] \{s\}$$

Properties

► WCR ► WN ► SR

The auxiliar non-erasing λ^m -calculus

Definition

$$t ::= x \mid \lambda x.t \mid tt \mid \boxed{t\{t\}} \qquad (\lambda x.t)s \to_m t[s/x] \boxed{\{s\}}$$

Properties

► WCR ► WN ► SR

Why not to erase?

Nederpelt-Klop's: INC WCR WN ⇒ DEC

The auxiliar non-erasing λ^m —calculus

Definition

$$t ::= x \mid \lambda x.t \mid tt \mid \boxed{t\{t\}} \qquad (\lambda x.t)s \to_m t[s/x] \boxed{\{s\}}$$

Properties

► WCR ► WN ► SR

Why not to erase?

- Nederpelt-Klop's: INC WCR WN ⇒ DEC
- Retain information

The auxiliar non-erasing λ^{m} —calculus

Definition

$$t ::= x \mid \lambda x.t \mid tt \mid \boxed{t\{t\}} \qquad (\lambda x.t)s \to_m t[s/x] \boxed{\{s\}}$$

Properties

WCR > WN > SR

Why not to erase?

- Nederpelt-Klop's: $INC\ WCR\ WN\ \Rightarrow\ DFC$
- Retain information

Operations

- weight of a term:
 - w(t) = amount of memoriese.g. $w(x\{y\{z\}\}\}\{w\}) = 3$
- **simplification** of a term:
 - $S_D(t) =$ "bottom-up" contraction of all D redexes $S_*(t) = S_1(\ldots S_{\mathsf{maxdeg}}(t) \ldots)$

The auxiliar non-erasing λ^m -calculus

Definition

$$t ::= x \mid \lambda x.t \mid tt \mid \frac{t\{t\}}{} \qquad (\lambda x.t)s \to_m t[s/x] \{s\}$$

Properties

► WCR ► WN ► SR

Why not to erase?

- Nederpelt-Klop's: INC WCR WN ⇒ DEC
- Retain information

Operations

- weight of a term:
 - w(t) = amount of memoriese.g. $w(x\{y\{z\}\}\{w\}) = 3$
- simplification of a term:

$$S_D(t)$$
 = "bottom-up" contraction of all D redexes $S_*(t) = S_1(\dots S_{\mathsf{maxdeg}}(t)\dots)$

Properties

- ▶ Reduction arrives at simplification $t \to_m^* S_*(t)$
- lacksquare Simplification is normal form $S_*(t) = \mathtt{nf}(t)$

${\mathcal W}$: counting memories

Recall
$$(\lambda x.t)s \to_m t[s/x]\{s\}$$

w(t) = amount of memories

Measure \mathcal{W}

Recall
$$(\lambda x.t)s \to_m t[s/x]\{s\}$$

w(t) = amount of memories

$$t \to s$$

$$t \to s \implies$$

nf(t) has more memories than nf(s)

Measure W

Recall
$$(\lambda x.t)s \to_m t[s/x]\{s\}$$

w(t) = amount of memories

Idea

$$t \rightarrow s \implies$$

 ${\tt nf}(t)$ has more memories than ${\tt nf}(s)$

Definition

$$\mathcal{W}(M) = \mathsf{w}(\mathsf{S}_*(M))$$

Measure W

Recall
$$(\lambda x.t)s \to_m t[s/x]\{s\}$$

w(t) = amount of memories

Idea

$$t \to s \implies$$

 ${\tt nf}(t)$ has more memories than ${\tt nf}(s)$

Definition

$$\mathcal{W}(M) = \mathsf{w}(\mathsf{S}_*(M))$$

$$\begin{array}{c}
R \\
M \longrightarrow N \\
W(S_{*}(M)) > W(S_{*}(N))
\end{array}$$

Theorem

$$M \rightarrow_{\beta} N$$

$$\Longrightarrow$$

$$\mathcal{W}(M) > \mathcal{W}(N)$$

$\mathcal{T}^{\mathtt{m}}$: generalizing Turing's WN measure

Proposal generalize the measure so that it decreases by contracting any redex

Proposal generalize the measure so that it decreases by contracting any redex

Problems

- (>) A redex copies redexes of greater degree
- (=) A redex copies redexes of same degree

Proposal generalize the measure so that it decreases by contracting any redex

Problems

- (>) A redex copies redexes of greater degree
- (=) A redex copies redexes of same degree

Proposal generalize the measure so that it decreases by contracting any redex

Problems

- (>) A redex copies redexes of greater degree
- (=) A redex copies redexes of same degree

For instance

Idea

i) generalize ${\mathcal T}$ to a **family of measures** ${\mathcal T}'_D$ **indexed by a degree** $D\in {\mathbb N}$

$$\mathcal{T}_2'(M) = [2, 1]$$

and

$$\mathcal{T}_1'(M) = [1]$$

Proposal generalize the measure so that it decreases by contracting any redex

Problems

- (>) A redex copies redexes of greater degree
- (=) A redex copies redexes of same degree

For instance

Idea

generalize \mathcal{T} to a family of measures \mathcal{T}'_D indexed by a degree $D \in \mathbb{N}$

$$\mathcal{T}_2'(M) = [2, 1]$$
 and $\mathcal{T}_1'(M) = [1]$

$$\mathcal{T}_1'(M) = [1]$$

associate extra information among with redex degrees

e.g. consider smaller redexes' info (through the same measure)

$$\mathcal{T}'_2(M) = [\ (2, \mathcal{T}'_1(M)),\ (1, [])\]$$
 $\mathcal{T}'_1(M) = [\ (1, [])\]$

$$\mathcal{T}'_1(M) = [\ (1, [])$$

More information...

$$\mathcal{T}_2'(M) = [\ (2, ?), \ (1, ?)\]$$

More information...

$$\mathcal{T}_2'(M) = [(2, ?), (1, ?)]$$

ldea

Development of degree D

reduction involving only redexes D

More information...

$$\mathcal{T}_2'(M) = [(2, ?), (1, ?)]$$

Idea

Development of degree D

reduction involving only redexes D

All developments of degree D

paths of the complete D-reduction graph from t

More information...

$$\mathcal{T}_2'(M) = [(2, ?), (1, ?)]$$

Idea

Development of degree D

reduction involving only redexes D

All developments of degree D

paths of the complete $\emph{D} ext{-reduction}$ graph from \emph{t}

More information...

$$\mathcal{T}_2'(M) = [(2, ?), (1, ?)]$$

Idea

Development of degree D

reduction involving only redexes D

All developments of degree D

paths of the complete $\emph{D} ext{-reduction}$ graph from \emph{t}

More information...

$$\mathcal{T}_2'(M) = [(2, ?), (1, ?)]$$

Idea

Development of degree D

reduction involving only redexes D

All developments of degree D

paths of the complete $D ext{-reduction}$ graph from t

More information...

$$\mathcal{T}_2'(M) = [\ (2, ?), \ (1, ?)\]$$

ldea

Development of degree D

reduction involving only redexes D

All developments of degree D

paths of the complete $D ext{-reduction}$ graph from t

Extra information

Multiset [$\mathcal{T}_{D-1}^m(t') \mid t'$ is D-reachable from t]

$$[\mathcal{T}_{D-1}^m(t), \mathcal{T}_{D-1}^m(t_1), \ldots, \mathcal{T}_{D-1}^m(t_n)]$$

More information...

$$\mathcal{T}_2'(M) = [\ (2, ?), \ (1, ?)\]$$

ldea

Development of degree D

reduction involving only redexes D

All developments of degree D

paths of the complete D-reduction graph from t

Extra information

Multiset $[\mathcal{T}_{D-1}^m(t') \mid t']$ is D-reachable from t

$$[\mathcal{T}_{D-1}^m(t), \mathcal{T}_{D-1}^m(t_1), \ldots, \mathcal{T}_{D-1}^m(t_n)]$$

Definition

$$\mathcal{T}_D^m(t) = [\ (i, \mathcal{V}_i^m(t)) \mid R \text{ is a redex of degree } i \leq D \text{ in } t \]$$

$$\mathcal{V}_{D}^{m}(t) = [\mathcal{T}_{D-1}^{m}(t') \mid \rho : t \xrightarrow{D}_{m}^{*} t']$$

More information...

$$\mathcal{T}_2'(M) = [\ (2, ?), \ (1, ?)\]$$

ldea

Development of degree D

reduction involving only redexes D

All developments of degree D

paths of the complete D-reduction graph from t

Extra information

Multiset [$\mathcal{T}_{D-1}^m(t') \mid t'$ is D-reachable from t]

$$[\mathcal{T}_{D-1}^m(t), \mathcal{T}_{D-1}^m(t_1), \ldots, \mathcal{T}_{D-1}^m(t_n)]$$

Definition

$$\mathcal{T}_D^m(t) = [\ (i,\mathcal{V}_i^m(t)) \mid R \text{ is a redex of degree } i \leq D \text{ in } t \]$$

$$\mathcal{V}_{D}^{m}(t) = [\mathcal{T}_{D-1}^{m}(t') \mid \rho : t \xrightarrow{D}_{m}^{*} t']$$

Theorem

$$M \to_{\beta} N \Longrightarrow$$
 $\mathcal{T}^m(M) > \mathcal{T}^m(N)$

extending ${\mathcal W}$ to Idempotent Intersection Types

 \mathcal{W}_{\cap} :

Existing decreasing measures

Existing decreasing measures

[Kfoury & Wells'95]

- **Domain of DM:** multiset of numbers
- ► **Methodology:** WN ⇒ SN + DM proving WN (indirect)
- Auxiliary calculus: a la Curry

Existing decreasing measures

[Kfoury & Wells'95]

- Domain of DM: multiset of numbers
- ► **Methodology:** WN ⇒ SN + DM proving WN (indirect)
- Auxiliary calculus: a la Curry

[Boudol'03]

- **Domain of DM:** pair of numbers
- ► **Methodology:** WN ⇒ SN + DM proving WN (indirect)
- Auxiliary calculus: a la Church, ad hoc

Existing decreasing measures

[Kfoury & Wells'95]

- Domain of DM: multiset of numbers
- ► **Methodology:** WN ⇒ SN + DM proving WN (indirect)
- Auxiliary calculus: a la Curry

[Boudol'03]

- **Domain of DM:** pair of numbers
- ► Methodology: WN ⇒ SN + DM proving WN (indirect)
- Auxiliary calculus: a la Church, ad hoc

Our proposal Barenbaum, Ronchi della Rocca & Sottile (WIP)

- Domain of DM: number
- Methodology: DM proving SN (direct)
- Auxiliary calculus: a la Church, correspondent of a la Curry calculus

Key idea

- Variables can have multiple types
- ► Hence a term can have truly different (non-unifiable) types

Very powerful at charaterizing properties

e.g.
$$x: \{\tau, \tau \to \tau\} \vdash x: \tau$$

Key idea

Variables can have multiple types

- e.g. $x: \{\tau, \tau \to \tau\} \vdash x: \tau$
- ► Hence a term can have truly different (non-unifiable) types

Very powerful at charaterizing properties

The typing rule

$$\frac{(\Gamma \vdash N : A_i)_{i \in 1..n} \quad A_i \neq A_j}{\Gamma \vdash N : \{A_1, \dots, A_n\}} \ e - multi$$

Key idea

Variables can have multiple types

- e.g. $x: \{\tau, \tau \to \tau\} \vdash x: \tau$
- ► Hence a term can have truly different (non-unifiable) types

Very powerful at charaterizing properties

The typing rule

$$\frac{(\Gamma \vdash N : A_i)_{i \in 1..n} \quad A_i \neq A_j}{\Gamma \Vdash N : \{A_1, \dots, A_n\}} \ e - multi$$

Example

Let

$$A = \tau \rightarrow \tau$$

Key idea

Variables can have multiple types

- e.g. $x: \{\tau, \tau \to \tau\} \vdash x: \tau$
- ► Hence a term can have truly different (non-unifiable) types

Very powerful at charaterizing properties

The typing rule

$$\frac{(\Gamma \vdash N : A_i)_{i \in 1..n} \quad A_i \neq A_j}{\Gamma \Vdash N : \{A_1, \dots, A_n\}} \ e - multi$$

Example

Let

$$A = \tau \to \tau$$
 $x : \{ A \to A, A \} \vdash xx : A$

Idempotent Intersection Types (a la Curry)

Key idea

Variables can have multiple types

- e.g. $x: \{\tau, \tau \to \tau\} \vdash x: \tau$
- ▶ Hence a term can have truly different (non-unifiable) types

Very powerful at charaterizing properties

The typing rule

$$\frac{(\Gamma \vdash N : A_i)_{i \in 1..n} \quad A_i \neq A_j}{\Gamma \Vdash N : \{A_1, \dots, A_n\}} \ e - multi$$

Example

Let

$$A = \tau \to \tau$$
 $x : \{A \to A, A\} \vdash xx : A \vdash \lambda x.x : \{A \to A, A\}$

Idempotent Intersection Types (a la Curry)

Key idea

Variables can have multiple types

- e.g. $x: \{\tau, \tau \to \tau\} \vdash x: \tau$
- ► Hence a term can have truly different (non-unifiable) types

Very powerful at charaterizing properties

The typing rule

$$\frac{(\Gamma \vdash N : A_i)_{i \in 1..n} \quad A_i \neq A_j}{\Gamma \Vdash N : \{A_1, \dots, A_n\}} \ e - multi$$

Example

Let

$$A = \tau \to \tau$$
 $x : \{A \to A, A\} \vdash xx : A$ $\vdash \lambda x.x : \{A \to A, A\}$

Then

$$\vdash (\lambda x. \mathbf{xx})(\lambda x. x) : A$$

Idempotent Intersection Types (a la Curry)

Key idea

Variables can have multiple types

- e.g. $x: \{\tau, \tau \to \tau\} \vdash x: \tau$
- ► Hence a term can have truly different (non-unifiable) types

Very powerful at charaterizing properties

The typing rule

$$\frac{(\Gamma \vdash N : A_i)_{i \in 1..n} \quad A_i \neq A_j}{\Gamma \Vdash N : \{A_1, \dots, A_n\}} \ e - multi$$

Example

Let

$$A = \tau \to \tau$$
 $x : \{A \to A, A\} \vdash xx : A \vdash \lambda x.x : \{A \to A, A\}$

Then

$$\vdash (\lambda x. xx)(\lambda x. x) : A \qquad (\lambda x. xx)(\lambda x. x) \rightarrow_{\beta} (\lambda x. x)(\lambda x. x)$$

Idempotent Intersection Types a la Church

Key idea

- ► Variables can have multiple types defined a priori
- e.g. $x: \{\tau, \tau \to \tau\} \vdash x^{\tau}: \tau$
- ► Hence a term **modulo erasure** can have truly different (non-unifiable) types

Idempotent Intersection Types a la Church

Key idea

- Variables can have multiple types defined a priori
- e.g. $x: \{\tau, \tau \to \tau\} \vdash x^{\tau}: \tau$
- ► Hence a term **modulo erasure** can have truly different (non-unifiable) types

Motivation

- $\triangleright \lambda^{m}$ is a la Church (easier syntactic analysis)
- abscence of standard correspondent Church version of Curry system

Type unicity

 $ightharpoonup \Lambda_{\circ}^{\rm e}$ assigns multiple types to each term $ightharpoonup \Lambda_{\circ}^{\rm i}$ assigns one type to each term

$$\frac{(\Gamma \vdash N : A_i)_{i \in 1..n} \quad A_i \neq A_j}{\Gamma \Vdash N : \{A_1, \dots, A_n\}} \ e \qquad \Longrightarrow \qquad \frac{(\Gamma \vdash \mathbf{s_i} : \mathbf{A_i})_{i \in 1..n} \quad A_i \neq A_j}{\Gamma \Vdash \{\mathbf{s_1}, \dots, \mathbf{s_n}\} : \{A_1, \dots, A_n\}} \ i$$

$$\frac{(\Gamma \vdash s_i : A_i)_{i \in 1..n} \quad A_i \neq A_j}{\Gamma \vdash \{s_1, \dots, s_n\}} : \{A_1, \dots, A_n\}$$

Type unicity

 $ightharpoonup \Lambda_{\cap}^{e}$ assigns multiple types to each term $ightharpoonup \Lambda_{\cap}^{i}$ assigns one type to each term

$$\frac{(\Gamma \vdash N : A_i)_{i \in 1..n} \quad A_i \neq A_j}{\Gamma \Vdash N : \{A_1, \dots, A_n\}} \ e \Longrightarrow$$

$$\implies \frac{(\Gamma \vdash s_i : A_i)_{i \in 1..n} \quad A_i \neq A_j}{\Gamma \vdash \{s_1, \dots, s_n\} : \{A_1, \dots, A_n\}} i$$

Reduction refinement

 $ightharpoonup \Lambda_{\cap}^{e}$ agnostic substitution

 $ightharpoonup \Lambda_{\cap}^{i}$ depending (on types) substitution

Recall
$$\Lambda_{\cap}^{e}$$

$$\vdash \lambda x.x : \{ A \rightarrow A, A \}$$

Now

Then

Type unicity

 $ightharpoonup \Lambda_{\cap}^{e}$ assigns multiple types to each term $ightharpoonup \Lambda_{\cap}^{i}$ assigns one type to each term

$$\frac{(\Gamma \vdash N : A_i)_{i \in 1...n} \quad A_i \neq A_j}{\Gamma \Vdash N : \{A_1, \dots, A_n\}} \ e \Longrightarrow$$

$$\implies \frac{(\Gamma \vdash \mathbf{s_i} : \mathbf{A_i})_{i \in 1..n} \quad A_i \neq A_j}{\Gamma \vdash \mathbf{s_1}, \dots, \mathbf{s_n}} : \{A_1, \dots, A_n\} \quad i$$

Reduction refinement

 $ightharpoonup \Lambda_{\cap}^{e}$ agnostic substitution

$$\vdash \lambda x.x : \{ A \rightarrow A, A \}$$

 $ightharpoonup \Lambda_{\cap}^{i}$ depending (on types) substitution

$$(\lambda x. xx)(\lambda x. x) \rightarrow_{\beta} (\lambda x. x)(\lambda x. x)$$

Now

Recall Λ_{\cap}^{e}

Then

Type unicity

 $ightharpoonup \Lambda_{\cap}^{e}$ assigns multiple types to each term $ightharpoonup \Lambda_{\cap}^{i}$ assigns one type to each term

$$\frac{(\Gamma \vdash N : A_i)_{i \in 1...n} \quad A_i \neq A_j}{\Gamma \Vdash N : \{A_1, \dots, A_n\}} \ e \Longrightarrow$$

$$\Rightarrow \frac{(\Gamma \vdash \mathbf{s}_i : \mathbf{A}_i)_{i \in 1..n} \quad A_i \neq A_j}{\Gamma \Vdash \{s_1, \dots, s_n\} : \{A_1, \dots, A_n\}} i$$

Reduction refinement

 $ightharpoonup \Lambda_{\cap}^{e}$ agnostic substitution

 $ightharpoonup \Lambda_{\cap}^{\mathbf{i}}$ depending (on types) substitution

Recall
$$\Lambda_{\cap}^{e}$$

$$\vdash \lambda x.x : \{ A \rightarrow A, A \}$$

$$(\lambda x. xx)(\lambda x. x) \rightarrow_{\beta} (\lambda x. x)(\lambda x. x)$$

$$x: \{A \to A, A\} \vdash x^{A \to A} x^A : A$$

Then

Type unicity

 $ightharpoonup \Lambda_{\circ}^{\rm e}$ assigns multiple types to each term $ightharpoonup \Lambda_{\circ}^{\rm i}$ assigns one type to each term

$$\frac{(\Gamma \vdash N : A_i)_{i \in 1...n} \quad A_i \neq A_j}{\Gamma \Vdash N : \{A_1, \dots, A_n\}} \ e \Longrightarrow$$

$$\implies \frac{(\Gamma \vdash \mathbf{s}_i : \mathbf{A}_i)_{i \in 1..n} \quad A_i \neq A_j}{\Gamma \Vdash \{\mathbf{s}_1, \dots, \mathbf{s}_n\} : \{A_1, \dots, A_n\}} i$$

Reduction refinement

 $ightharpoonup \Lambda_{\cap}^{e}$ agnostic substitution

 $ightharpoonup \Lambda_{\cap}^{i}$ depending (on types) substitution

Recall
$$\Lambda_{\cap}^{e}$$

$$\vdash \lambda x.x : \{ A \rightarrow A, A \}$$

$$(\lambda x.xx)(\lambda x.x) \rightarrow_{\beta} (\lambda x.x)(\lambda x.x)$$

Now

$$x: \{A \to A, A\} \vdash x^{A \to A} x^A : A \vdash \lambda x^A . x : A \to A \vdash \lambda x^\tau . x : A$$

$$\vdash \lambda x^A.x: A \rightarrow A$$

$$-\lambda x^{ au}.x:oldsymbol{A}$$

Then

Type unicity

 $ightharpoonup \Lambda_{\circ}^{\rm e}$ assigns multiple types to each term $ightharpoonup \Lambda_{\circ}^{\rm i}$ assigns one type to each term

$$\frac{(\Gamma \vdash N : A_i)_{i \in 1...n} \quad A_i \neq A_j}{\Gamma \Vdash N : \{A_1, \dots, A_n\}} \ e \Longrightarrow$$

$$\implies \frac{(\Gamma \vdash \mathbf{s}_i : \mathbf{A}_i)_{i \in 1..n} \quad A_i \neq A_j}{\Gamma \Vdash \{s_1, \dots, s_n\}} : \{A_1, \dots, A_n\} \quad i$$

Reduction refinement

 $ightharpoonup \Lambda_{\cap}^{e}$ agnostic substitution

 $ightharpoonup \Lambda_{\cap}^{i}$ depending (on types) substitution

Recall
$$\Lambda_{\bigcirc}^{\mathrm{e}}$$

$$\vdash \lambda x.x : \{ A \rightarrow A, A \}$$

$$(\lambda x.xx)(\lambda x.x) \rightarrow_{\beta} (\lambda x.x)(\lambda x.x)$$

Now

$$x: \{A \to A, A\} \vdash x^{A \to A} x^{A} : A \qquad \vdash \lambda x^{A} . x : A \to A \qquad \vdash \lambda x^{\tau} . x : A$$

$$-\lambda x^A.x: \mathbf{A} \to \mathbf{A}$$

$$-\lambda x^{ au}.x:oldsymbol{A}$$

Then

$$(\lambda x^{\{A \to A, A\}}.x^{A \to A}x^{A})\{\lambda x^{A}.x, \lambda x^{\tau}.x\}$$

Type unicity

 $ightharpoonup \Lambda_{\circ}^{\rm e}$ assigns multiple types to each term $ightharpoonup \Lambda_{\circ}^{\rm i}$ assigns one type to each term

$$\frac{(\Gamma \vdash N : A_i)_{i \in 1...n} \quad A_i \neq A_j}{\Gamma \Vdash N : \{A_1, \dots, A_n\}} \ e \Longrightarrow$$

$$\implies \frac{(\Gamma \vdash \mathbf{s}_i : A_i)_{i \in 1..n} \quad A_i \neq A_j}{\Gamma \vdash \{s_1, \dots, s_n\}} : \{A_1, \dots, A_n\} \quad i$$

Reduction refinement

 $ightharpoonup \Lambda_{\cap}^{e}$ agnostic substitution

 $ightharpoonup \Lambda_{\cap}^{i}$ depending (on types) substitution

Recall
$$\Lambda_{\bigcirc}^{\mathrm{e}}$$

$$\vdash \lambda x.x : \{ A \rightarrow A, A \}$$

$$(\lambda x. xx)(\lambda x. x) \rightarrow_{\beta} (\lambda x. x)(\lambda x. x)$$

Now

$$x: \{A \to A, A\} \vdash x^{A \to A} x^{A} : A \vdash \lambda x^{A} x : A \to A \vdash \lambda x^{\tau} x : A$$

$$-\lambda x^A.x: \mathbf{A} \to \mathbf{A}$$

$$-\lambda x^{ au}.x:oldsymbol{A}$$

Then

$$(\lambda x^{\{A \to A, A\}} . x^{A \to A} x^{A}) \{\lambda x^{A} . x, \lambda x^{\tau} . x\} \qquad \rightarrow_{\beta} \qquad (\lambda x^{A} . x) (\lambda x^{\tau} . x)$$

Type unicity

 $ightharpoonup \Lambda_{\circ}^{\rm e}$ assigns multiple types to each term $ightharpoonup \Lambda_{\circ}^{\rm i}$ assigns one type to each term

$$\frac{(\Gamma \vdash N : A_i)_{i \in 1..n} \quad A_i \neq A_j}{\Gamma \Vdash N : \{A_1, \dots, A_n\}} \ e \Longrightarrow$$

$$\implies \frac{(\Gamma \vdash s_i : A_i)_{i \in 1...n} \quad A_i \neq A_j}{\Gamma \vdash \{s_1, \dots, s_n\} : \{A_1, \dots, A_n\}}$$

Reduction refinement

 $ightharpoonup \Lambda_{\cap}^{e}$ agnostic substitution

 $ightharpoonup \Lambda_{\cap}^{i}$ depending (on types) substitution

Recall
$$\Lambda_{\bigcirc}^{\mathrm{e}}$$

$$\vdash \lambda x.x : \{ A \rightarrow A, A \}$$

$$(\lambda x. xx)(\lambda x. x) \rightarrow_{\beta} (\lambda x. x)(\lambda x. x)$$

Now

$$x: \{A \to A, A\} \vdash x^{A \to A} x^{A} : A \qquad \vdash \lambda x^{A} . x : A \to A \qquad \vdash \lambda x^{\tau} . x : A$$

$$-\lambda x^A.x: \mathbf{A} \to \mathbf{A}$$

$$-\lambda x^{\tau}.x: \mathbf{A}$$

Then

$$(\lambda x^{\{\boldsymbol{A} \to \boldsymbol{A}, \boldsymbol{A}\}}.x^{\boldsymbol{A} \to \boldsymbol{A}}x^{\boldsymbol{A}})\{\lambda x^{\boldsymbol{A}}.x, \lambda x^{\tau}.x\} \qquad \rightarrow_{\beta} \qquad (\lambda x^{\boldsymbol{A}}.x)(\lambda x^{\tau}.x)$$

$$(\lambda x.t)s \rightarrow_{\beta} t[s/x]$$

Type unicity

 $ightharpoonup \Lambda_{\circ}^{\rm e}$ assigns multiple types to each term $ightharpoonup \Lambda_{\circ}^{\rm i}$ assigns one type to each term

$$\frac{(\Gamma \vdash N : A_i)_{i \in 1...n} \quad A_i \neq A_j}{\Gamma \Vdash N : \{A_1, \dots, A_n\}} \ e \qquad \Longrightarrow \qquad \frac{(\Gamma \vdash \mathbf{s_i} : A_i)_{i \in 1...n} \quad A_i \neq A_j}{\Gamma \Vdash \{s_1, \dots, s_n\} : \{A_1, \dots, A_n\}} \ e$$

Reduction refinement

 $ightharpoonup \Lambda_{\cap}^{e}$ agnostic substitution

 $ightharpoonup \Lambda_{\cap}^{i}$ depending (on types) substitution

Recall
$$\Lambda_{\cap}^{e}$$
 $\vdash \lambda x.x : \{ A \rightarrow A, A \}$

$$(\lambda x. xx)(\lambda x. x) \rightarrow_{\beta} (\lambda x. x)(\lambda x. x)$$

Now

$$x: \{A \to A, A\} \vdash x^{A \to A} x^{A} : A \qquad \vdash \lambda x^{A} . x : A \to A \qquad \vdash \lambda x^{\tau} . x : A$$

$$(\lambda x^{\{A \to A, A\}}. x^{A \to A} x^{A}) \{\lambda x^{A}. x, \lambda x^{\tau}. x\} \qquad \to_{\beta} \qquad (\lambda x^{A}. x) (\lambda x^{\tau}. x)$$

$$(\lambda x.t)s \rightarrow_{\beta} t[s/x] \implies (\lambda x^{\vec{A}}.t)\vec{s} \rightarrow_{\beta} t[s_1/x^{A_1}]...[s_n/x^{A_n}]$$

$$(\lambda x^{\vec{A}}.t)\vec{s} \rightarrow_{\beta} t [s_1/x^{A_1}]...$$

Problem Reducing the argument of an application

 $\Lambda_{\Omega}^{\mathbf{e}}$ no problem

$$ts \rightarrow_{\beta} ts'$$

$$t\{s_1, s_2, \dots, s_n\} \longrightarrow_{\beta} t\{s'_1, s_2, \dots, s_n\}$$

$$\rightarrow_{\beta} t\{s'_1, s'_2, \dots, s_n\}$$

$$\rightarrow_{\beta} \dots$$

$$\rightarrow_{\beta} t\{s'_1, s'_2, \dots, s'_n\}$$

Problem Reducing the argument of an application

 $\Lambda_{\Omega}^{\mathsf{e}}$ no problem

$$ts \rightarrow_{\beta} ts'$$

$$t\{s_1, s_2, \dots, s_n\}$$

$$t\{s_1, s_2, \dots, s_n\} \longrightarrow_{\beta} t\{s'_1, s_2, \dots, s_n\}$$

$$\longrightarrow_{\beta} t\{s'_1, s'_2, \dots, s_n\}$$

$$\longrightarrow_{\beta} \dots$$

$$\begin{array}{ll} \rightarrow_{\beta} & \dots \\ \rightarrow_{\beta} & t\{s'_1, s'_2, \dots, s'_n\} \end{array}$$

e.g.
$$\{\lambda x^{\tau}.x, \lambda x^{A}.x\}$$

Uniformity \vec{s} uniform if all s_i are equal modulo erasure

Refinement
$$\vec{s}$$
 refines (noted \Box) $t \in \Lambda_{\Box}^{e}$ if uniform and $t = s_i$

$$\Box$$
 $\lambda x.x$

Problem Reducing the argument of an application

 $\Lambda_{\Omega}^{\mathsf{e}}$ no problem

$$ts \rightarrow_{\beta} ts'$$

$$t\{s_1, s_2, \dots, s_n\}$$

$$t\{s_1, s_2, \dots, s_n\} \longrightarrow_{\beta} t\{s'_1, s_2, \dots, s_n\}$$
$$\longrightarrow_{\beta} t\{s'_1, s'_2, \dots, s_n\}$$
$$\longrightarrow_{\beta} \dots$$

$$ightarrow_{eta} \quad \ldots \\
ightarrow_{eta} \quad t \{ s'_{\cdot} \}$$

$$\begin{array}{ll} \rightarrow_{\beta} & \dots \\ \rightarrow_{\beta} & t\{s'_1, s'_2, \dots, s'_n\} \end{array}$$

e.g.
$$\{\lambda x^{\tau}.x, \lambda x^{A}.x\}$$

Uniformity \vec{s} uniform if all s_i are equal modulo erasure

Refinement \vec{s} refines (noted \Box) $t \in \Lambda_{\bigcirc}^{e}$ if uniform and $t = s_{i}$

$$\Box$$
 $\lambda x.x$

Properties

Correspondence

Problem Reducing the argument of an application

 $\Lambda_{\Omega}^{\mathsf{e}}$ no problem

$$ts \rightarrow_{\beta} ts'$$

$$t\{s_1, s_2, \dots, s_n\} \longrightarrow_{\beta} t\{s'_1, s_2, \dots, s_n\}$$
$$\longrightarrow_{\beta} t\{s'_1, s'_2, \dots, s_n\}$$
$$\longrightarrow_{\beta} \dots$$

$$\begin{array}{ll}
\rightarrow_{\beta} & \dots \\
\rightarrow_{\beta} & t\{s'_1, s'_2, \dots, s'_n\}
\end{array}$$

Uniformity \vec{s} uniform if all s_i are equal modulo erasure

e.g. $\{\lambda x^{\tau}.x, \lambda x^{A}.x\}$

Refinement \vec{s} refines (noted \Box) $t \in \Lambda_{\bigcirc}^{e}$ if uniform and $t = s_{i}$

 $\vdash \lambda x.x$

Properties

Correspondence

Simulation

Introducing memories in $\Lambda_\cap^{\mathtt{i}}$

Extension to $\lambda_{\cap}^{\text{m}}$

- lacktriangle Addition of memories to the terms in $\Lambda^{\mathtt{i}}_{\cap}$
- ightharpoonup Adaptation of definitions, properties and proofs of λ^m to multi-terms and multi-types

Introducing memories in $\Lambda_\cap^{\mathtt{i}}$

Extension to λ_{\cap}^{m}

- lacktriangle Addition of memories to the terms in $\Lambda^{\mathtt{i}}_{\cap}$
- \blacktriangleright Adaptation of definitions, properties and proofs of λ^m to multi-terms and multi-types

Measure \mathcal{W}_{\cap}

Definition

$$\mathcal{W}(M) = \mathsf{w}(\mathsf{S}_*(M))$$

$$M \longrightarrow S_*(M) \longmapsto \mathsf{w}(\mathsf{S}_*(M))$$

$$\downarrow \qquad \qquad \downarrow$$

$$N \longrightarrow S_*(N) \longmapsto \mathsf{w}(\mathsf{S}_*(N))$$

Introducing memories in $\Lambda_{\cap}^{\mathtt{i}}$

Extension to λ_{\cap}^{m}

- ▶ Addition of memories to the terms in Λ_{\cap}^{i}
- \triangleright Adaptation of definitions, properties and proofs of λ^m to multi-terms and multi-types

Measure \mathcal{W}_{\cap}

Definition

$$\mathcal{W}(M) = \mathsf{w}(\mathsf{S}_*(M))$$

Strong Normalization of Λ_{\square}^{e}

- ightharpoonup SN of $\Lambda_{\cap}^{\mathtt{i}}$
- Correspondence
- Simulation

Conclusions and future work

Conclusions

- Overview of techniques for proving Strong Normalization
- Decreasing measures
- Auxiliar non-erasing λ^m calculus, which allowed us to:
 - define W: DM based on counting accumulated memories in λ^m
 - \blacktriangleright extend \mathcal{W} to Λ_{\cap} , obtaining a simpler measure than existing ones
 - ightharpoonup generalize Turing's WN measure to SN by adding smaller measures of D-reachable terms

Conclusions and future work

Conclusions

- Overview of techniques for proving Strong Normalization
- Decreasing measures
- Auxiliar non-erasing λ^m calculus, which allowed us to:
 - define W: DM based on counting accumulated memories in λ^m
 - ightharpoonup extend $\mathcal W$ to Λ_\cap , obtaining a simpler measure than existing ones
 - ightharpoonup generalize Turing's WN measure to SN by adding smaller measures of D-reachable terms

Future work

- Build a decreasing measure to System F
- Formalize them in a proof assistant
- lacktriangle Adapt ${\mathcal W}$ to idempotent intersection types characterizing head normal forms
- ► Further compare our measures with those by Gandy and de Vrijer

Why "syntactic"

sort of convention semantic syntactic soft classification of SN proofs reducibility (RC) decreasing measures (DM) reduction of SN to WN (NK) but... denotational operational denotational syntactic operational RC. de Vriier RC. DM. NK Gandy, NK RC. DM NK maybe abstract vs concrete would be better? external vs internal? we stick to the soft convention syntactic = "internal" analysis over the structure of terms or the rewriting relation

The auxiliar λ^m -calculus

Motivation

 β is erasing

 $(\lambda x.y)_{\mathbf{t}} \rightarrow_{\beta} y$

A motivation not to erase

The auxiliar λ^m —calculus

Motivation

 β is erasing

$$(\lambda x.y)t \rightarrow_{\beta} y$$

A motivation not to erase

▶ Klop-Nederpelt lemma $INC \land WCR \land WN \implies SN \land CR$

The auxiliar λ^m -calculus

Motivation

$$\beta$$
 is erasing

$$(\lambda x.y)t \rightarrow_{\beta} y$$

A motivation not to erase

- ightharpoonup Klop-Nederpelt lemma $INC \land WCR \land WN \implies SN \land CR$
- ightharpoonup We can obtain a decreasing measure from $INC \wedge WCR \wedge WN$
 - ightharpoonup by WN there is a normal form v for any t
 - by WCR it is the same for every reduct s of t
 - ▶ by INC inc(t) < inc(s) < inc(v)
 - ightharpoonup dec(t) = inc(v) inc(t)

Intuitive definition of ${\mathcal W}$

Turing's measure "failing" example

Example: copying a redex of greater degree

$$I_{1} = \lambda x^{\tau}.x \qquad \qquad \delta(I_{1} x) = \mathsf{h}(\tau \to \tau) \qquad = 1$$

$$I_{2} = \lambda x^{\tau \to \tau}.x \qquad \qquad \delta(I_{2} I_{1}) = \mathsf{h}((\tau \to \tau) \to (\tau \to \tau)) = 2$$

$$K = \lambda x^{\tau}.\lambda y^{\tau}.x \qquad \qquad \delta(K_{_}) = \mathsf{h}(\tau \to \tau \to \tau) \qquad = 2$$

$$S_{KI} = \lambda x^{\tau}.K x (I_{1} x) \qquad \qquad \delta(S_{KI_}) = \mathsf{h}(\tau \to \tau) \qquad = 1$$

$$\mathcal{T}(S_{\underbrace{K}}_{\underbrace{I}}_{\underbrace{S_{2}}} \underbrace{(I_{2} I_{1}}_{\underbrace{U_{2}}} x)) = \{2, 2, 1, 1\}$$

$$\underbrace{S_{1}}_{\underbrace{S_{2}}}_{\underbrace{S_{2}}} \underbrace{(I_{2} I_{1}}_{\underbrace{U_{2}}} x) = \{2, 2, 1, 1\}$$

$$\underbrace{S_{2}}_{\underbrace{S_{2}}}_{\underbrace{S_{2}}} \underbrace{(I_{2} I_{1}}_{\underbrace{U_{2}}} x) = \{2, 2, 1, 1\}$$

A first attempt: \mathcal{T}' measure

Problems

- (>) A redex copies redexes of greater degree
- (=) A redex copies redexes of same degree

$$\mathcal{T}(M) = [2,1] \longrightarrow \mathcal{T}(N) = [2,2]$$

$$\mathcal{T}(M) = [1,1] \longrightarrow \mathcal{T}(N) = [1,1]$$

Idea

i) generalize \mathcal{T} to a family of measures \mathcal{T}'_D indexed by a degree $D \in \mathbb{N}$, so e.g.

$$\mathcal{T}_2'(M) = [\underbrace{2}_{\mathsf{S}}, \underbrace{1}_{\mathsf{R}}] \qquad \qquad \text{and} \qquad \qquad \mathcal{T}_1'(M) = [\underbrace{1}_{\mathsf{R}}]$$

ii) instead of counting redex degrees in an isolated way, consider also the information about remaining smaller redexes, so e.g.

$$\mathcal{T}_2'(M) = [\ (\frac{2}{5}, \mathcal{T}_1'(M)),\ (\frac{1}{8}, [])\] \qquad \qquad \mathcal{T}_1'(M) = [\ (\frac{1}{8}, [])\]$$

Definition

- $ightharpoonup \mathcal{T}'_D(M) = [(i,\mathcal{T}'_{i-1}(M)) \mid R \text{ is a redex of degree } i \leq D \text{ in } M]$
- $ightharpoonup \mathcal{T}'(M) = \mathcal{T}'_D(M)$ where D is the maximum degree of M

A first attempt: T' measure

A working? example (>)

Definition

- $ightharpoonup \mathcal{T}'_D(M) = [(d, \mathcal{T}'_{d-1}(M)) \mid R \text{ is a redex of degree } d \leq D \text{ in } M]$
- $ightharpoonup \mathcal{T}'(M) = \mathcal{T}'_D(M)$ where D is the maximum degree of M

Example

$$M = \underbrace{S_{K} \underbrace{I}_{\text{S2}} \left(\underbrace{I_2 I_1}_{\text{U2}} x \right)}_{\text{R1}} \qquad \longrightarrow_{\beta} \qquad \underbrace{K \left(\underbrace{I_2 I_1}_{\text{U'2}} x \right) \left(I_1 \left(\underbrace{I_2 I_1}_{\text{U''2}} x \right) \right)}_{\text{S2}} = N$$

$$\begin{split} \mathcal{T}_2'(M) &= [\ (\underset{\S}{2}, \mathcal{T}_1'(M)), \ (\underset{\S}{2}, \mathcal{T}_1'(M)), \ (\underset{\S}{1}, []), \ (\underset{T}{1}, []) \] \\ \\ \mathcal{T}_2'(N) &= [\ (\underset{\S}{2}, \mathcal{T}_1'(M)), \ (\underset{\S}{2}, \mathcal{T}_1'(M)), \ (\underset{\S}{2}, \mathcal{T}_1'(M)), \ (\underset{T}{1}, []) \] \\ \end{split} \qquad \qquad \mathcal{T}_1'(M) = [\ (\underset{\S}{1}, []), \ (\underset{T}{1}, []) \] \\ \\ \mathcal{T}_1'(N) &= [\ (\underset{T}{1}, []) \] \\ \end{split}$$

$$(2, [(1, []), (1, [])]) > (2, [(1, [])])$$

A first attempt: T' measure

A failing example (=)

Definition

- $ightharpoonup \mathcal{T}'_D(M) = [(d, \mathcal{T}'_{d-1}(M)) \mid R \text{ is a redex of degree } d \leq D \text{ in } M]$
- $ightharpoonup \mathcal{T}'(M) = \mathcal{T}'_D(M)$ where D is the maximum degree of M

Example Example

$$M = \underbrace{S_K \underbrace{I}_{\text{S2}} \underbrace{\left(\underbrace{I_1} x\right)}_{\text{R1}}}_{\text{R1}} \qquad \longrightarrow_{\beta} \qquad \underbrace{K \underbrace{\left(\underbrace{I_1} x\right)}_{\text{U'1}} \underbrace{\left(\underbrace{\left(\underbrace{I_1} x\right)}_{\text{U''1}}\right)}_{\text{T2}} = N$$

$$\mathcal{T}_{2}'(M) = [\ (\frac{2}{\mathsf{S}}, \mathcal{T}_{1}'(M)), \ (\frac{1}{\mathsf{T}}, []), \ (\frac{1}{\mathsf{T}}, []), \ (\frac{1}{\mathsf{U}}, []), \]$$

$$\mathcal{T}_{1}'(M) = [\ (\frac{1}{\mathsf{R}}, []), \ (\frac{1}{\mathsf{T}}, []), \ (\frac{1}{\mathsf{U}}, []), \]$$

$$\mathcal{T}_{2}'(N) = [\ (\frac{2}{\mathsf{S}}, \mathcal{T}_{1}'(M)), \ (\frac{1}{\mathsf{T}}, []), \ (\frac{1}{\mathsf{U}'}, []), \ (\frac{1}{\mathsf{U}'}, []) \]$$

$$\mathcal{T}_{1}'(N) = [\ (\frac{1}{\mathsf{T}}, []), \ (\frac{1}{\mathsf{U}'}, []), \ (\frac{1}{\mathsf{U}''}, []) \]$$

$$(2, [(1, []), (1, []), (1, [])]) = (2, [(1, []), (1, []), (1, [])])$$

Definition (**development** of a set of redexes)

reduction sequence where each step corresponds to a residual of a redex in the set

- ▶ a **residual** is a copy of a redex left after contracting another
- ▶ notation: $\rho: m \xrightarrow{D}_{\beta}^{*} m'$

ldea

- i) generalize $\mathcal T$ to a family of measures $\mathcal T_D^{eta}$ indexed by a degree $D\in\mathbb N$
- ii) instead of isolatedly counting redexes degrees, consider:
 - ightharpoonup from set of redexes of degree D
 - ▶ target M' from every development $\rho: M \xrightarrow{D}_{\beta}^{*} M'$
 - ightharpoonup multiset of those $\mathcal{T}_{D-1}^{\beta}(M')$

Definition

$$\mathcal{T}_D^{\beta}(M) = [\ (i, \mathcal{V}_i^{\beta}(M)) \mid R \text{ is a redex of degree } i \leq D \text{ in } M \]$$

$$\mathcal{V}_D^{\beta}(M) = [\ \mathcal{T}_D^{\beta}, (M') \mid \rho : M \xrightarrow{D}_{\beta}^* M' \]$$

Problem: our technique to prove it decreases does not work because of erasing

Definition (**development** of a set of redexes)

reduction sequence where each step corresponds to a residual of a redex in the set

- ▶ a **residual** is a copy of a redex left after contracting another
- ▶ notation: $\rho: m \xrightarrow{D}_{\beta}^{*} m'$

Idea

- i) generalize $\mathcal T$ to a family of measures $\mathcal T_D^{eta}$ indexed by a degree $D\in\mathbb N$
- ii) instead of isolatedly counting redexes degrees, consider:
 - ightharpoonup from set of redexes of degree D
 - ▶ target M' from every development $\rho: M \xrightarrow{D}_{\beta}^{*} M'$
 - ightharpoonup multiset of those $\mathcal{T}_{D-1}^{\beta}(M')$

Definition

$$\mathcal{T}_D^{\beta}(M) = [\ (i, \mathcal{V}_i^{\beta}(M)) \mid R \text{ is a redex of degree } i \leq D \text{ in } M \]$$

$$\mathcal{V}_D^{\beta}(M) = [\ \mathcal{T}_{D-1}^{\beta}(M') \mid \rho : M \xrightarrow{D}_{\beta}^* M' \]$$

Problem: our technique to prove it decreases does not work because of erasing

Definition

$$\begin{split} \mathcal{T}_D^\beta(M) &= [\ (i,\mathcal{V}_i^\beta(M)) \mid R \text{ is a redex of degree } i \leq D \text{ in } M \] \\ \mathcal{V}_D^\beta(M) &= [\ \mathcal{T}_{D-1}^\beta(M') \mid \rho : M \stackrel{D}{\longrightarrow}_\beta^* M' \] \end{split}$$

Reasoning about the auxiliar measure \mathcal{V}_D^{eta}

Consider

$$M \underset{R}{\rightarrow_{\beta}} N \qquad \mathcal{T}_{D}^{\beta}(M) > \mathcal{T}_{D}^{\beta}(N) \qquad \mathcal{V}_{D}^{\beta}(M) > \mathcal{V}_{D}^{\beta}(N)$$

- 1. Copying a redex of same degree (=)
 - lacktriangle injective mapping from devs of $\mathcal{V}_D^m(N)$ to devs of $\mathcal{V}_D^m(M)$ $R\rho: M \to_{eta} N \to_{eta} {}^*N'$

$$\mathcal{V}_D^{\beta}(M) > \mathcal{V}_D^{\beta}(N)$$
 $\mathcal{T}_D^{\beta}(M) > \mathcal{T}_D^{\beta}(N)$

- 2. Copying a redex of higher degree (>)
 - ightharpoonup not clear the same can be done: a ho may erase R

$$\mathcal{V}_D^{\beta}(M') = \mathcal{V}_D^{\beta}(N')$$
 $\mathcal{T}_D^{\beta}(M') = \mathcal{T}_D^{\beta}(N')$

Definition

$$\mathcal{T}_D^{\beta}(M) = [\ (i, \mathcal{V}_i^{\beta}(M)) \mid R \text{ is a redex of degree } i \leq D \text{ in } M \]$$

$$\mathcal{V}_D^{\beta}(M) = [\ \mathcal{T}_{D-1}^{\beta}(M') \mid \rho : M \xrightarrow{D}_{\beta}^* M' \]$$

Reasoning about the auxiliar measure \mathcal{V}_D^{eta}

Consider

$$M \to_{\beta} N \qquad \mathcal{T}_D^{\beta}(M) > \mathcal{T}_D^{\beta}(N) \qquad \mathcal{V}_D^{\beta}(M) > \mathcal{V}_D^{\beta}(N)$$

- 1. Copying a redex of same degree (=)
 - ▶ injective mapping from devs of $\mathcal{V}_D^m(N)$ to devs of $\mathcal{V}_D^m(M)$ $R\rho: M \to_\beta N \to_\beta {}^*N'$

$$\mathcal{V}_D^{\beta}(M) > \mathcal{V}_D^{\beta}(N)$$
 $\mathcal{T}_D^{\beta}(M) > \mathcal{T}_D^{\beta}(N)$

- 2. Copying a redex of higher degree (>)
 - ightharpoonup not clear the same can be done: a ho may erase R

$$\mathcal{V}_D^{\beta}(M') = \mathcal{V}_D^{\beta}(N')$$
 $\mathcal{T}_D^{\beta}(M') = \mathcal{T}_D^{\beta}(N')$

\mathcal{T}^m measure

Idea

- i) generalize \mathcal{T} to a family of measures \mathcal{T}_D^m indexed by a degree $D \in \mathbb{N}$
- ii) instead of isolatedly counting redexes degrees, consider the multiset of the measures \mathcal{T}_{D-1}^m of every target of a development of degree D

Definition

$$\begin{split} \mathcal{T}_D^m(t) &= [\ (i,\mathcal{V}_i^m(t)) \mid R \text{ is a redex of degree } i \leq D \text{ in } t \] \\ \mathcal{V}_D^m(t) &= [\ \mathcal{T}_{D-1}^m(t') \mid \rho : t \xrightarrow{D}_m^* t' \] \end{split}$$

Lemmas

- ▶ Forget/decrease: forgetful reduction \triangleright decreases \mathcal{T}^m
- ▶ **High/increase**: contracting a redex of degree D > i increases (non-strictly) \mathcal{T}_i^m only $\leq i$, no D, in \mathcal{T}_i^m no erasing of any $\leq i$ maybe copies of $\leq i$
- **Low/decrease**: contracting a redex of degree i < D decreases (strictly) \mathcal{T}_D^m injective mappings from devs of $\mathcal{V}_D^m(N)$ to devs of $\mathcal{V}_D^m(M)$

Theorem

$$M \to_{\beta} N \Longrightarrow \mathcal{T}^m(M) > \mathcal{T}^m(N)$$

\mathcal{T}^m measure

Idea

- i) generalize \mathcal{T} to a family of measures \mathcal{T}_D^m indexed by a degree $D \in \mathbb{N}$
- ii) instead of isolatedly counting redexes degrees, consider the multiset of the measures \mathcal{T}_{D-1}^m of every target of a development of degree D

Definition

$$\mathcal{T}_{D}^{m}(t) = [\ (i, \mathcal{V}_{i}^{m}(t)) \mid R \text{ is a redex of degree } i \leq D \text{ in } t \]$$

$$\mathcal{V}_{D}^{m}(t) = [\ \mathcal{T}_{D-1}^{m}(t') \mid \rho : t \xrightarrow{D}_{m}^{*} t' \]$$

Lemmas

- ▶ **Forget/decrease**: forgetful reduction \triangleright decreases \mathcal{T}^m
- ► **High/increase**: contracting a redex of degree D > i increases (non-strictly) \mathcal{T}_i^m only $\leq i$, no D, in \mathcal{T}_i^m no erasing of any $\leq i$ maybe copies of $\leq i$
- ▶ Low/decrease: contracting a redex of degree i < D decreases (strictly) \mathcal{T}_D^m injective mappings from devs of $\mathcal{V}_D^m(N)$ to devs of $\mathcal{V}_D^m(M)$

Theorem

$$M \to_{\beta} N \Longrightarrow \mathcal{T}^m(M) > \mathcal{T}^m(N)$$