V407

Fresnelsche Formeln

Fritz Agildere fritz.agildere@udo.edu Amelie Strathmann amelie.strathmann@udo.edu

Durchführung: 2. Mai 2023 Abgabe:

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung					
2	Theorie	2				
3	Durchführung Auswertung 4.1 Senkrechte Polarisation					
4						
5	Diskussion	12				
Lit	teratur	12				
Anhang						

1 Zielsetzung

Ziel des Versuches ist es, die Intensität von einfallender Strahlung und an der SI-Oberfläche reflektierter Strahlung in Abhängigkeit des Einfallswinkels zu messen. Anschließend werden die experimentel bestimmten Werte mit den theorethischen Werten verglichen.

2 Theorie

Als Grundlage des Versuches dient die elektromagnetische Wellentheorie, wobei die Ausbreitung von Licht mit Hilfe der Maxwellschen Gleichungen

$$\nabla \times \vec{H} = \vec{j} + \varepsilon \varepsilon_0 \partial_t \vec{E} \quad \text{und} \tag{1}$$

$$\nabla \times \vec{E} = -\mu \mu_0 \partial_t \vec{H} \tag{2}$$

beschrieben wird. Im folgenden werden nicht-ferromagnetische und nicht elektrisch leitende Materialien betrachtet, somit gilt $\mu \approx 1$ und $\vec{j} = 0$. Die elektrische und magnetische Arbeit

$$\begin{split} W_{\text{elektrisch}} &\coloneqq \frac{1}{2} \varepsilon \varepsilon_0 \vec{E}^2 \quad \text{und} \\ W_{\text{magnetisch}} &\coloneqq \frac{1}{2} \mu_0 \vec{H}^2 \end{split}$$

stellen den Zusammenhang zwischen Energie pro Volumeneinheit eines elektrischen beziehungsweise magnetischen Feldes dar. Der Poynting Vektor

$$\vec{S} = \vec{E} \times \vec{H} \quad \text{und} \tag{3}$$

$$|\vec{S}| = v\varepsilon\varepsilon_0 \vec{E}^2 \tag{4}$$

besitzt die Dimension Leistung/Fläche und stellt die Strahlungsleistung pro Flächeneinheit eines elektromagnetischen Feldes dar. Beim Einfallen einer Welle aus dem Vakuum auf eine Grenzfläche unter einem Winkel α , wird ein Bruchteil dieser refelktiert und der andere dringt in das Medium ein. Der Lichtstrahl, welcher in das Medium eindringt erfährt eine Richtungsänderung und wird so gebrochen, dass der Beugungswinkel $\beta < \alpha$ ist. Es werden nur nicht absorbierende Medien verwendet und es gilt somit

$$\begin{aligned} \mathbf{S}_e \mathbf{F}_e &= \mathbf{S}_r \mathbf{F}_e + \mathbf{S}_d \mathbf{F}_d & \text{oder} \\ \mathbf{S}_e \cos \alpha &= \mathbf{S}_r \cos \alpha + \mathbf{S}_d \cos \beta. \end{aligned}$$

Diese Gleichung kann umgeschrieben werden zu

$$c\varepsilon_0 \vec{E}_e^2 \cos \alpha = c\varepsilon_0 \vec{E}_r^2 \cos \alpha + v\varepsilon\varepsilon_0 \vec{E}_d^2 \cos \beta. \tag{5}$$

Für den Brechnungsindex ergibt sich das Verhältnis

$$n = -\frac{c}{v}. (6)$$

Aus den Maxwellschen Gelichungen (2) ergibt sich die Maxwellsche Relation

$$n = \varepsilon^2. (7)$$

Aus der Mexwellschen Relation (7) und der Gleichung 5 ergibt sich

$$\left(\vec{E}_e^2 - \vec{E}_r^2\right) \cos \alpha = n\vec{E}_d^2 \cos \beta. \tag{8}$$

Die Polarisationsrichtung der einfallenden Welle \vec{E}_e relativ zur Einfallsebene ist entweder senkrecht polarisiert oder parallel polarisiert, sodass

$$\vec{E}_e = \vec{E}_{\perp} + \vec{E}_{\parallel} \tag{9}$$

gegeben ist. Zunächst wird die Polarisation senkrecht zur Einfallsebene betrachtet. Für den parallel polarisierten Teil \vec{E}_{\parallel} geht hervor, dass dieser tangential zur Grenzfläche schwingt. In der Abbildung 1 wird die Reflexion eines Lichtstrathls an einer Grenzfläche dargestellt.

Abbildung 1: Reflexion und Brechung des senkrecht polarisierten Lichtstrahls. [1]

Da die Beträge der \vec{E}_{\perp} gleich ihren Tangentialkomponenten sind und keine Normalkomponente vorhanden ist kann aus den Stetigkeitsbedingungen die Beziehung

$$\vec{E}_{e\perp} + \vec{E}_{r\perp} = \vec{E}_{d\perp}$$

aufgestellt werden. Zusammen mit dem Snellius Brechungsgesetz

$$n = \frac{\sin \alpha}{\sin \beta} \tag{10}$$

ergeben sich die Fresnel Formeln

$$\begin{split} \vec{E}_{\mathbf{r}_{\perp}} &= -\vec{E}_{\mathbf{e}_{\perp}} \frac{\sin(\alpha - \beta)}{\sin(\alpha + \beta)} \quad \text{und} \\ \vec{E}_{\mathbf{r}_{\perp}} &= -\vec{E}_{\mathbf{e}_{\perp}} \frac{\left(\sqrt{\mathbf{n}^2 - \sin^2 \alpha} - \cos \alpha\right)^2}{\mathbf{n}^2 - 1}. \end{split} \tag{11}$$

Für den streifenden Einfall $\alpha = \frac{\pi}{2}$ gilt

$$\vec{E}_{r\perp}(\frac{\pi}{2}) = -\vec{E}_{r\perp}.$$

Wenn der Lichtstrahl senkrecht einfäält, also bei $\alpha = 0$ gilt

$$\vec{E}_{r\perp}(0) = -\vec{E}_{r\perp}\frac{n-1}{n+1}.$$

Die Reflexion und Brechung des parallel zur Einfallsebene einfallende Strahl ist in Abbildung 2 dargestellt.

Abbildung 2: Reflexion und Brechung des parallel polarisierten Lichtstrahls. [1]

Die parallel polarisierte Komponente \vec{E}_{\parallel} setzt sich zusammen aus einer tangentialen Komponente $\vec{E}_{\parallel tg}$ und eine Komponente, welche normal zu Grenzfläche ist.

Aus den Stetigkeitsbedingungen und den Tangentialkomponenten der Vektoren $\vec{E}_{e\parallel},\,\vec{E}_{r\parallel}$ und $\vec{E}_{d\parallel}$ ergibt sich die Gleichung

$$\vec{E}_{r\parallel} = \vec{E}_{e\parallel} \frac{n\cos\alpha - \cos\beta}{n\cos\alpha + \cos\beta}.$$
 (12)

Für das parallel polarisierte Licht lassen sich ebenfalls die Fresnelschen Gleichungen aufstellen

$$\vec{E}_{r\parallel} = \vec{E}_e \| \frac{\tan(\alpha - \beta)}{\tan(\alpha + \beta)} \quad \text{und}$$

$$\vec{E}_{r\parallel}(\alpha) = \vec{E}_e \| \frac{n^2 \cos \alpha - \sqrt{n^2 - \sin^2 \alpha}}{n^2 \cos \alpha + \sqrt{n^2 - \sin^2 \alpha}}.$$
(13)

Für den senkrechten Einfall $\alpha = 0$ gilt

$$\vec{E}_{r\parallel}(0) = \vec{E}_{e\parallel} \frac{n-1}{n+1}$$

und für den streifenden Fall $\alpha = \frac{\pi}{2}$ gilt

$$\vec{E}_{r\parallel}(\frac{\pi}{2}) = -\vec{E}_{e\parallel}.$$

Fällt Licht unter einem Winkel α_p , dem sogenannten Brwesterschen Winkel, auf die GHrenzfläche auf, so wird dieser nicht mehr reflektiert sondern dringt ganz ind das brechende Medium ein.

3 Durchführung

Zur Versuchsdurchführung wurde der Aufabu aus Abbildung 3 verwendet.

Abbildung 3: Schematische Darstellung der verwendeten Messapperatur. [1]

Der lasertstrah des He-Ne-Lasers wird mithilfe des Polarisationsfilter polarisiert. Mit Hilfe des Goniometers lässt sich der Spiegel einstellen. Gemmessen wird mit einem schwenkbaren Photoelement.

In der Abbildung 4 ist das Goniometer mit aufgesetztem Probenhalter dargestellt.

Abbildung 4: Schematische Darstellung des Goniometers mit aufgesetztem Probenhalter. [1]

Der Spiegel ist mit einer Stellschraube befsetigt. Unterhalb des Probehalters ist die Haltung des Detektors befestigt

Bevor die Messung beginnt, werden der Dunkelstrom und den Photostrom des diskreten Lasers aufgenommen. Daraufhin muss die Apperatur zunächst justiert werden. Der Probehalter wird aus den Strahlengang entfernt und der Detektor wird so eingestellt, dass der Laserstrahl direkt auf diesen trifft. Es wird der Polarisationsfilter in den Strahlengang des Lasers eingebaut. Als erstes wird die Messung für s-polarisiertes Licht durchgeführt, dementsprechend wird der Winkel des Polarisationsfilters auf 0 gestellt. Der Drehteller mit der Winkelskala wird auf 0° eingestellt. Die Skala des Drehtellers wird variiert. Die Messung startet bei 6°, in 2°-Schritten wird der Winkel größer, dabei werden die Messwerte für die Stromstärke der Intensität aufgenommen. Der Vorgang endet bei 86°. Analog verläuft der Mess-Vorgang für den Polarisationswinkel $\frac{\pi}{2}$.

4 Auswertung

4.1 Senkrechte Polarisation

Abbildung 5

Tabelle 1

$\alpha / ^{\circ}$	Ι / μΑ	I/I_0	n	α / $^{\circ}$	$I/\mu A$	I/I_0	n
6	70 ± 2	0.143 ± 0.007	$2,206 \pm 0,048$	44	100 ± 20	$0,204 \pm 0,042$	$2,027 \pm 0,207$
8	70 ± 2	0.143 ± 0.007	$2,198 \pm 0,048$	46	100 ± 20	$0,204 \pm 0,042$	$1,975 \pm 0,198$
10	71 ± 2	0.145 ± 0.007	$2,202 \pm 0,048$	48	100 ± 20	$0,204 \pm 0,042$	$1,921 \pm 0,189$
12	72 ± 2	0.147 ± 0.007	$2,\!204 \pm 0,\!048$	50	110 ± 20	$0,\!224 \pm 0,\!042$	$1,957 \pm 0,189$
14	72 ± 2	0.147 ± 0.007	$2,190 \pm 0,048$	52	110 ± 20	$0,224 \pm 0,042$	$1,\!896 \pm 0,\!179$
16	76 ± 2	$0,155 \pm 0,008$	$2,227 \pm 0,050$	54	110 ± 20	$0,224 \pm 0,042$	$1,\!834 \pm 0,\!168$
18	77 ± 2	0.157 ± 0.008	$2,222 \pm 0,050$	56	120 ± 20	$0,245 \pm 0,042$	$1,851 \pm 0,166$
20	78 ± 2	$0,159 \pm 0,008$	$2,214 \pm 0,049$	58	110 ± 20	$0,224 \pm 0,042$	$1,709 \pm 0,147$
22	80 ± 2	$0,163 \pm 0,008$	$2,\!216 \pm 0,\!050$	60	120 ± 20	$0,245 \pm 0,042$	$1,714 \pm 0,144$
24	81 ± 2	$0,165 \pm 0,008$	$2,203 \pm 0,049$	62	120 ± 20	$0,245 \pm 0,042$	$1,\!646 \pm 0,\!132$
26	83 ± 2	$0,169 \pm 0,008$	$2,200 \pm 0,050$	64	140 ± 20	$0,\!286 \pm 0,\!042$	$1,702 \pm 0,136$
28	84 ± 2	$0,171 \pm 0,008$	$2,\!182 \pm 0,\!049$	66	130 ± 20	$0,265 \pm 0,042$	$1,\!565 \pm 0,\!115$
30	85 ± 2	$0,173 \pm 0,008$	$2,161 \pm 0,049$	68	140 ± 20	$0,\!286 \pm 0,\!042$	$1,544 \pm 0,110$
32	89 ± 2	0.182 ± 0.008	$2,\!173 \pm 0,\!050$	70	150 ± 20	$0,\!306 \pm 0,\!043$	$1,\!516 \pm 0,\!104$
34	90 ± 2	$0,\!184 \pm 0,\!009$	$2,147 \pm 0,049$	72	160 ± 20	$0,327 \pm 0,043$	$1,479 \pm 0,097$
36	92 ± 2	$0{,}188 \pm 0{,}009$	$2,129 \pm 0,049$	74	160 ± 20	$0,327 \pm 0,043$	$1,\!395 \pm 0,\!082$
38	96 ± 2	$0,\!196 \pm 0,\!009$	$2,130 \pm 0,049$	76	170 ± 20	0.347 ± 0.043	$1,348 \pm 0,073$
40	96 ± 2	$0,\!196 \pm 0,\!009$	$2,084 \pm 0,048$	78	180 ± 20	$0,367 \pm 0,043$	$1,\!294 \pm 0,\!063$
42	98 ± 2	$0,200 \pm 0,009$	$2,\!057 \pm 0,\!047$	80	180 ± 20	$0,\!367 \pm 0,\!043$	$1,\!213 \pm 0,\!047$
				82	190 ± 20	$0,\!388 \pm 0,\!044$	$1{,}157 \pm 0{,}036$
				84	190 ± 20	$0,\!388 \pm 0,\!044$	$1{,}091 \pm 0{,}021$
				86	200 ± 20	$0,\!408 \pm 0,\!044$	$1,\!047 \pm 0,\!011$

 $n = 1{,}523 \pm 0{,}022$

Abbildung 6

$$n = 3,\!642 \pm 0,\!071~s = 0,\!457 \pm 0,\!009$$

$$n = 2{,}134 \pm 0{,}041$$

4.2 Parallele Polarisation

Abbildung 7

Tabelle 2

$\alpha / ^{\circ}$	Ι / μΑ	I/I_0	n	α/°	Ι / μΑ	I/I_0	n
6	$54,0 \pm 2,0$	$0,1102 \pm 0,0061$	$2,002 \pm 0,041$	48	$32,0 \pm 2,0$	$0,0653 \pm 0,0049$	$2,\!396 \pm 0,\!055$
8	$54{,}0\pm2{,}0$	$0,1102 \pm 0,0061$	$2,\!009 \pm 0,\!042$	50	$30,0 \pm 2,0$	$0,0612 \pm 0,0048$	$2,\!449 \pm 0,\!057$
10	$52,0\pm2,0$	$0,\!1061 \pm 0,\!0060$	$1,989 \pm 0,041$	52	$28{,}0\pm2{,}0$	$0,\!0571 \pm 0,\!0047$	$2,\!511 \pm 0,\!059$
12	$60,0\pm2,0$	$0,\!1224 \pm 0,\!0065$	$2{,}113 \pm 0{,}045$	54	$24{,}0\pm2{,}0$	$0,\!0490 \pm 0,\!0045$	$2{,}528 \pm 0{,}062$
14	$60,0 \pm 2,0$	$0,1224 \pm 0,0065$	$2,\!126 \pm 0,\!045$	56	$22{,}0\pm2{,}0$	$0,0449 \pm 0,0045$	$2,\!607 \pm 0,\!065$
16	$60,0 \pm 2,0$	$0,1224 \pm 0,0065$	$2,142 \pm 0,046$	58	$18{,}0\pm2{,}0$	$0,0367 \pm 0,0043$	$2,634 \pm 0,070$
18	$58,0\pm2,0$	$0,1184 \pm 0,0063$	$2{,}132 \pm 0{,}045$	60	$16{,}0\pm2{,}0$	$0,0326 \pm 0,0043$	$2,734 \pm 0,076$
20	$59{,}0\pm2{,}0$	$0,1204 \pm 0,0064$	$2,\!168 \pm 0,\!047$	62	$14{,}0\pm2{,}0$	$0,0286 \pm 0,0042$	$2,\!849 \pm 0,\!082$
22	$50,0 \pm 2,0$	$0,\!1020 \pm 0,\!0058$	$2,056 \pm 0,043$	64	$8,0 \pm 2,0$	$0,0163 \pm 0,0041$	$2,792 \pm 0,104$
24	$51,0 \pm 2,0$	$0,\!1041 \pm 0,\!0059$	$2,097 \pm 0,044$	66	$7{,}0\pm2{,}0$	$0,0143 \pm 0,0041$	$2,\!975 \pm 0,\!116$
26	$50,0 \pm 2,0$	$0,\!1020 \pm 0,\!0058$	$2{,}110 \pm 0{,}045$	68	$6{,}3\pm0{,}2$	$0,0128 \pm 0,0007$	$3,\!209 \pm 0,\!021$
28	$50,0 \pm 2,0$	$0,\!1020 \pm 0,\!0058$	$2,142 \pm 0,046$	70	$4{,}0\pm0{,}2$	$0,0082 \pm 0,0005$	$3,365 \pm 0,022$
30	$50,0 \pm 2,0$	$0,\!1020 \pm 0,\!0058$	$2,\!179 \pm 0,\!047$	72	$2,\!0\pm0,\!2$	$0,0041 \pm 0,0004$	$3,\!542 \pm 0,\!027$
32	$48,0\pm2,0$	$0,\!0979 \pm 0,\!0057$	$2,\!186 \pm 0,\!047$	74	0.8 ± 0.2	$0,0016 \pm 0,0004$	$3,\!805 \pm 0,\!042$
34	$46,0\pm2,0$	$0,0939 \pm 0,0056$	$2,\!197 \pm 0,\!048$	76	0.5 ± 0.02	$0,0010 \pm 0,0001$	$4,\!291 \pm 0,\!008$
36	$44{,}0\pm2{,}0$	$0,0898 \pm 0,0055$	$2,211 \pm 0,048$	78	$1{,}2\pm0{,}2$	$0,0024 \pm 0,0004$	$5,\!215 \pm 0,\!046$
38	$44{,}0\pm2{,}0$	$0,0898 \pm 0,0055$	$2,\!266 \pm 0,\!050$	80	$3,8 \pm 0,2$	$0,0077 \pm 0,0005$	$6,798 \pm 0,041$
40	$44{,}0\pm2{,}0$	$0,0898 \pm 0,0055$	$2,\!328 \pm 0,\!051$	82	$8{,}0\pm0{,}2$	$0,0163 \pm 0,0008$	$9,\!236 \pm 0,\!058$
42	$38{,}0\pm2{,}0$	$0,\!0775 \pm 0,\!0052$	$2,\!279 \pm 0,\!051$	84	$18{,}0\pm0{,}2$	$0,\!0367 \pm 0,\!0016$	$14,\!067 \pm 0,\!119$
44	$38,5 \pm 2,0$	$0,\!0786 \pm 0,\!0052$	$2,364 \pm 0,052$	86	$38,0 \pm 0,2$	$0,\!0775 \pm 0,\!0032$	$25{,}381 \pm 0{,}316$
46	$34,0 \pm 2,0$	$0,0694 \pm 0,0050$	$2,\!351 \pm 0,\!053$				

 $n = 3{,}527 \pm 0{,}018$

Abbildung 8

$$n = 4,265 \pm 0,053$$
 $s = 0,282 \pm 0,010$

$$n = 3{,}798 \pm 0{,}156$$

$$n = 2{,}794 \pm 0{,}016$$

5 Diskussion

Literatur

[1] Anleitung zu Versuch 407, Fresnelsche Formeln. TU Dortmund, Fakultät Physik. 2023.

Anhang