(2)

Marchine Learning- Wee M. 7 - Support Vector Machines

Note we remove the form both terms, and rewrote the equallon from the form $A + \lambda B$ to CA + B (if $C = \frac{1}{\lambda}$, poull get the same result)

12-Kerrels

Non-linear Decision Boundary

Predict y=1 if $O_0 + O_1 \times_1 + O_2 \times_2 + O_3 \times_1 \times_2 + O_4 \times_1^2 + ... > 0$ $O_0 + O_1 \times_1 + O_2 \times_2 + O_3 \times_1 \times_2 + O_4 \times_1^2 + ... > 0$ $O_0 + O_1 \times_1 + O_2 \times_2 + O_3 \times_1 \times_2 + O_4 \times_1^2 + ... > 0$ $O_0 + O_1 \times_1 + O_2 \times_2 + O_3 \times_1 \times_2 + O_4 \times_1^2 + ... > 0$ $O_0 + O_1 \times_1 + O_2 \times_2 + O_3 \times_1 \times_2 + O_4 \times_1^2 + ... > 0$ $O_0 + O_1 \times_1 + O_2 \times_2 + O_3 \times_1 \times_2 + O_4 \times_1^2 + ... > 0$ $O_0 + O_1 \times_1 + O_2 \times_2 + O_3 \times_1 \times_2 + O_4 \times_1^2 + ... > 0$ $O_0 + O_1 \times_1 + O_2 \times_2 + O_3 \times_1 \times_2 + O_4 \times_1^2 + ... > 0$ $O_0 + O_1 \times_1 + O_2 \times_2 + O_3 \times_1 \times_2 + O_4 \times_1^2 + ... > 0$ $O_0 + O_1 \times_1 + O_2 \times_2 + O_3 \times_1 \times_2 + O_4 \times_1^2 + ... > 0$ $O_0 + O_1 \times_1 + O_2 \times_2 + O_3 \times_1 \times_2 + O_4 \times_1^2 + ... > 0$

Is then a different/Bether choice of the features for fights.

Kernel

(Liun X, corpule non Feder Jeperding

(Liun X, corpule non Fed

 $= exp\left(\frac{||x-\ell^{(1)}||^2}{2\sigma^2}\right) + gaustan ||emi|$ $= exp\left(-\frac{||x-\ell^{(2)}||^2}{2\sigma^2}\right) + Somethires with$

Somethies written as K(x, l(i))

$$f_3 = sin | lanty(x, l^{(s)})$$

= $exp(-\frac{||x-p|||^2}{2\sigma^2})$

L3-Merry 11

Choosing the landmar 115.

Given
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)}), \dots$$

Choose $\ell^{(1)} = x^{(1)}, \ell^{(2)} = x^{(2)}, \dots, \ell^{(m)} = x^{(m)}$

Given example
$$x$$
:

$$\begin{cases}
F_i = Similarly(x, \ell^{(i)}) \\
F_2 = Similarly(x, \ell^{(i)})
\end{cases}$$

$$\begin{cases}
F_i = f_i \\
F_j = f_j
\end{cases}$$

$$\begin{cases}
F_i = f_j
\end{cases}$$

$$\begin{cases}$$

For twing example
$$(x^{(i)}, y^{(i)})$$

 (i) $f_i^{(i)} = \sin(x^{(i)}, y^{(i)})$
 (i) $f_i^{(i)} = \sin(x^{(i)}, y^{(i)})$
 $f_i^{(i)} = \sin(x^{(i)}, y^{(i)})$
 $f_i^{(i)} = \sin(x^{(i)}, y^{(i)})$
 $f_i^{(i)} = \sin(x^{(i)}, y^{(i)})$

$$A_{i} \times A_{i} = \begin{cases} A_{i} \\ A_{i} \\ A_{i} \end{cases} = \begin{cases} A_{i} \\ A_{i} \\ A_{i} \end{cases}$$

SVM Polonelis
C(= \$). Lorge C: Lower bias, high vorlance. (companés to small)
Small c: Higher bias, low variance (corresponds to large 1)
-
Thomps of: Features f; very more smoothly. If f:
History blas lover variance
Small of the first local and he
Lover bins, bigher variones.
lever 5 7, 55 ft - Ver
T3-SUMS A Practice
LI-Using an SVM
Use SVM softner pochage to solve for perarches O.
New to specify:
Chille Do Coule C
- Choice of Kernel (similarly forchan: eg. No Hernel ("linear Hernel") In large, on small xER" Preside "y=1" if @1x > 0 }
ea. No Henre I ("linear Herul") In large on small x ER"
Pusct "y=1" if @ 1 > 0 5
eg. Gaussion Menel:
eg. Gaussion Ment!: $f:=\exp\left(-\frac{ x-y ^2}{2\sigma^2}\right)$, when $g(i)=g(i)$ $X\in\mathbb{R}^n$, n small, and/or m long. Need to choose σ^2
Need to choose o?
Merrel (similarly) functions:
further P = Merel (x, xz)
further $f' = Mercl(x_1, x_2)$ $f = exp(-\frac{ x_1 - x_2 ^2}{2\sigma^2})$
return
Note: Do perform feature scaling before using the Gassen Kernet
Other choices of Neval
Note: Notall sinday furellers similarly (x, l) make valid Kernels. (Need to south fy technical
Note: Notall similarly furctions similarity (x, l) make valid Kernels. (Need to south for technical condition called "New's Theorem" to make sur SVM prockages optimizations for
copedy, and do not druggly

Many off-the-Shelf Merrels analluste
-Polynomial Merrel: K(x,l)= (x l + constant)
-More esoteric: String Merrel, chi-square Merrel, histogram interaction herrel...

Multiclass classification

-Mary SVM packages already have built-ing milti-classification functionality.

-Otherwise, use one-vs.-all method

> Train K SVMs, one to distinguish y=; from the nst, for i=1.1 K

> Get B(1), G(2),..., B(K)

> Pich class i with largest (B(1)) Tx

Logistic Regression us. SVMs A= number of Features (+ @ R^+1) m= number of training examples.

If n is large (relative tom): (eg nzm, n=10000, m=10...1000) Use logistic regression, or SVM without a Merel ("Ilrear Kernel")

If n is small , m is interestate: (n=1-1000, m=10-10000)
Use SVM with Gauster Merrel

If n issmall, m is large: [n=1-1000, m = 50 000 +)

Create/add more features, then use logistic regression or sum without a Merril

Nevral Network Whely to work will for most of these settings but may be slover to train.