Cryptography

Introduction

Menu

- Symmetric cryptography
- Asymmetric cryptography
- Hashing
- Signature
- PKI

and along the lines talk about the goals of cryptography, key management, cryptographic protocols

Old example

Who

I'VE DISCOVERED A WAY TO GET COMPUTER SCIENTISTS TO LISTEN TO ANY BORING STORY.

What

Data

- At rest
- In transit

Security Properties

- Confidentiality
- Integrity
- Authenticity
- Non-Repudiation

Use case: secret pasta recipe

Real World Example: TLS & ciphersuites

TLSv1.3:

- 0x13,0x01 TLS_AES_128_GCM_SHA256
- 0x13,0x02 TLS_AES_256_GCM_SHA384
- 0x13,0x03 TLS_CHACHA20_POLY1305_SHA256

TLSv1.2:

- 0xC0,0x2B ECDHE-ECDSA-AES128-GCM-SHA256
- 0xC0,0x2F ECDHE-RSA-AES128-GCM-SHA256
- 0xC0,0x2C ECDHE-ECDSA-AES256-GCM-SHA384
- 0xC0,0x30 ECDHE-RSA-AES256-GCM-SHA384
- 0xCC,0xA9 ECDHE-ECDSA-CHACHA20-POLY1305
- 0xCC,0xA8 ECDHE-RSA-CHACHA20-POLY1305
- 0x00.0x9E DHE-RSA-AES128-GCM-SHA256

Certificate Viewer: *.google.com General Details Certificate Hierarchy GTS Root R1 GTS CA 1C3 *.google.com Certificate Fields Subject ▶ Subject Public Key Info Extensions Certificate Signature Algorithm Certificate Signature Value Fingerprints SHA-256 fingerprint SHA-1 Fingerprint Field Value PKCS #1 SHA-256 With RSA Encryption Export...

×

Cryptographic primitives

- One-way hash function, sometimes also called as one-way compression function—compute a reduced hash value for a message (e.g., SHA-256)
- Symmetric key cryptography—compute a ciphertext decodable with the same key used to encode (e.g., AES)
- Public-key cryptography—compute a ciphertext decodable with a different key used to encode (e.g., RSA)
- Digital signatures—confirm the author of a message
- Mix network—pool communications from many users to anonymize what came from whom
- Private information retrieval—get database information without server knowing which item was requested
- Commitment scheme—allows one to commit to a chosen value while keeping it hidden to others, with the ability to reveal
 it later
- Cryptographically secure pseudorandom number generator

Cryptography principles

- 1. Kerckhoffs's principle: The secrecy of your message should always depend on the secrecy of the key, and not on the secrecy of the encryption system.
- 2. Don't roll your own crypto

What are we up against?

TAB	LE 2. Mir	nimum Key	Lengths for Sym	metric Ciph	iers.	
Type of Attacker	Budget	Tool	Time and Per Key Re	Key Length Needed For Protection		
		***********	40 bits	56 bits	In Late-1995	
Pedestrian Hacker	Tiny	Scavenged computer time	1 week	Infeasible	45	
	\$400	FPGA	5 hours (\$0.08)	38 years (\$5,000)	50	
Small Business	\$10,000	FPGA	12 minutes (\$0.08)	18 months (\$5,000)	55	
Comporate Department	\$200T	FPGA	24 seconds (\$0.08)	19 days (\$5,000)	60	
Corporate Department	\$300K	ASIC	0.18 seconds (\$0.001)	3 hours (\$38)	60	
Dia Company	\$10M	FPGA	7 seconds (\$0.08)	13 hours (\$5,000)	70	
Big Company	\$10M	ASIC	0.005 seconds (\$0.001)	6 minutes (\$38)	70	
Intelligence Agency	\$300M	ASIC	0.0002 seconds (\$0.001)	12 seconds (\$38)	75	

Evolution of cryptographic algorithms

Schemes	Strength	Direction		
RC4, MD2, MD5, SHA-1	Broken	Shall be forbidden		
< 2048-bit RSA, FFDH	< 112	Shall be forbidden		
< 255-bit ECC	< 128	Shall be forbidden		
Block ciphers with < 128-bit block length (3DES, Blowfish, etc.)	< 112	Shall be forbidden		
SSLv3, TLS 1.0, TLS 1.1, DTLS 1.0	Broken	Shall be forbidden		
Key exchange without PFS (psk_ke, etc.)	Weak	Shall be phased out		
IND-CPA encryption (encryption without integrity)	Broken	Shall be phased out		
CBC-mode, RSAES-PKCS1-v1_5	Broken	Shall be phased out		
HMAC-MD5	Nearly Broken	Shall be phased out		
DSA, Binary ECC curves	Deprecated	Shall be phased out		
SHA-224, SHA3-224	112	Shall be phased out		
HMAC-SHA1 for MAC and PRF	Legacy	Shall be phased out		
RSASSA-PKCS-v1_5	Legacy	Avoid in new systems		
2048-bit RSA, FFDH	Legacy	Avoid in new systems		
TLS 1.2	Obsolete	Avoid in new systems		

Figure 3: Broken and legacy cryptographic algorithms and security protocols

Evolution of cryptographic algorithms

Algorithm	Generate key poir	Sign	Verify	Encapsulate	Decopsulate	Public key size	Signature/ciphertext size
LMS/XMSS/HSS/MXSS^MT (hash-based PQC)	43 - 165000 ms	0.51 - 6.0 ms	8.896 - 5.3 ms			50 - 100 B	700 - 8000 B
Picnic picnic3-L1 (symmetric primitives)	0.001 ms	7.272 ms	5.508 ms			35 B	12492B
Rainbow Ia (multivariate PQC)	401.505 ms	0.020 ms	9.914 ms			152097 B	64 B
Dilithium-1824x768-AES (lattice-based POC)	0.018 ms	0.898 ms	8.825 ms			11848	2044 B
EdDSA Ed25519	0.018 ms	0.019 ms	8.866 ms			64 B	64 B
ECDSA P-256	0.641 ms	0.053 ms	0.113 ms			64B	64 B
RSA-3872	232.704ms	3.542 ms	9.933 ms	0.038 ms	3.530 ms	384 B	384 B
NIST P-256	0.094 ms			8.231 ms	0.231 ms	32 B	32 B
Curve25519	0.050 ms			8.854 ms	9.954 ms	32 B	32 B
Kyber-512-90s (lattice-based PQC)	0.006 ms			8.818 ms	9.998 ms	888 B	736 B
Classic McEliece 348864 (code-based PQC)	18.494 ms			0.015 ms	0.048 ms	261120 B	128 B
SIKE p503 (Isogeny-based PQC)	4.292 ms			7.841 ms	7.511 ms	378 B	402 B

Figure 4: Some candidates (post-quantum security level 1) in the third and final round of NIST PQC Standardization. The performance measurements are single-core on Skylake 2.5 GHz https://bench.cr.yp.to/ebats.html (lower is better)

Minimal key sizes for PCI-PTS

	Algorithm								
	TDES	IFC (RSA)	ECC (ECDSA, EdDSA, ECDH, ECMQV)	FFC (DSA, DH, MQV)	AES				
Minimum key size in number of bits:	112	2048	224	2048/224	128				

Equivalent key sizes

	Algorithm								
	TDES	IFC (RSA)	ECC (ECDSA, EdDSA, ECDH, ECMQV)	FFC (DSA, DH, MQV)	AES				
	112	1024	160	1024/160	-				
Key size in number of bits:	2048	224	2048/224	1-					
	-	3072	256	3072/256	128				
	-	7680	384	7680/384	192				
	_	15360	512	15360/512	256				

Strength in usage vs Computing power

Also Speed of execution

Operation	1024		2048			3072			4096			
sw	sw	HW	Speed up	sw	HW	Speed up	sw	HW	Speed up	sw	HW	Speed up
RSA_ES_PKCS1_V1_5 (E)	31 ms	1 ms	x31	33 ms	4 ms	х8	30 ms	7 ms	х4	28 ms	11 ms	x2.5
RSA_ES_PKCS1_V1_5 (D)	1 s 58 ms	13 ms	x81	1 s 977 ms	92 ms	x21	2 s 919 ms	304 ms	х9	3 s 848 ms	704 ms	x5.5
RSAES_PKCS1_OAEP_M GF1_SHA1 (E)	31 ms	1 ms	x31	33 ms	4 ms	х8	30 ms	7 ms	х4	28 ms	11 ms	x2.5
RSAES_PKCS1_OAEP_M GF1_SHA1 (D)	1 s 196	13 ms	x92	2 s 21 ms	92 ms	x22	2 s 877 ms	304 ms	х9	3 s 894 ms	704 ms	x5.5
RSA_NOPAD (E)	31 ms	1ms	x31	33 ms	4 ms	х8	30 ms	7 ms	х4	27 ms	11 ms	x2.5
RSA_NOPAD (D)	1 s 59 ms	13 ms	x81	1 s 976 ms	92 ms	x21	2 s 906 ms		х9	3 s 819 ms	704 ms	x5.5
RSASSA_PKCS1_V1_5_S HA1 (S)	1 s 64 ms	13 ms	x82	2 s 29 ms	92 ms	x22	2 s 884 ms	304 ms	х9	3 s 852 ms	704 ms	x5.5
RSASSA_PKCS1_V1_5_S HA1 (V)	31 ms	1 ms	x31	33 ms	4 ms	х8	30 ms	7 ms	х4	27 ms	11 ms	x2.5
RSASSA_PKCS1_PSS_S HA1 (S)	1 s 62 ms	13 ms	x82	2 s 190 ms	92 ms	x23	2 s 956 ms	304 ms	х9	3 s 909 ms	704 ms	x5.5
RSASSA_PKCS1_PSS_S HA1 (V)	31 ms	1 ms	x31	33 ms	4 ms	x8	30 ms	7 ms	х4	27 ms	11 ms	x2.5

Cryptography algorithms jungle overview

Cryptography algorithms overview

Symmetric Cryptography

Symmetric Cryptography

Introducing XOR!

Introducing XOR!


```
# xor in
M = 00000111110111111100
K = 11010101010101010101
C = 11010010100010101001
# xor out
C = 11010010100010101001
```


What moves & what stays still?

```
# xor in
M = 000001111101111111100
K = 11010101010101010101
C = 11010010100010101001
# xor out
C = 110100101010101010101
K = 1101010101010101010101
D = 000001111110111111100
```


What can an attacker control?

```
# xor in
M = 000001111101111111100
K = 11010101010101010101
C = 11010010100010101001
# xor out
C = 110100101010101010101
K = 1101010101010101010101
D = 000001111110111111100
```


Where is my Non-Linearity?

Confusion and Diffusion

3DES

112 bits key64 bits blocs

16 rounds

Cryptography algorithms overview

Slice and Dice

to account for message size

Encryption Modes

The bitmap image encrypted using <u>DES</u> and the same secret key. The ECB mode was used for the middle image and the more complicated CBC mode was used for the bottom image.

AES

10 rounds for 128-bit keys,

12 rounds for 192-bit keys,

14 rounds for 256-bit keys.

128 bits block size

Where is my Non-Linearity?

Confusion and Diffusion

AES

4 - AddRoundKey

Principles behind symmetric cryptography

Non-Linearity / Confusion and Diffusion

Feistel cipher

Substitution-Permutation network

Guarantees the Confidentiality security property

DES

AES

I can use a secret to hide information

What next?

Cryptography algorithms overview

Asymmetric cryptography

Into the real of public key cryptography ...

Public key cryptography

Sign

Public key cryptography – introducing *Eve*

Public key cryptography – with *Eve*

Public key cryptography – with *Eve*

Public key cryptography – with *Eve*

Diffie-Hellman

- 1. Alice and Bob agree to use a prime number p = 23 and base g = 5.
- 2. Alice chooses a secret integer a = 6, then sends Bob $A = g^a \mod p$
- $A = 5^6 \mod 23$

3. Bob chooses a secret integer b = 15, then sends Alice $B = g^b \mod p$

- A = 8

- A = 15,625 mod 23

B = 30,517,578,125 mod 23

• $B = 5^{15} \mod 23$

• $s = 19^6 \mod 23$

4. Alice computes $s = B^a \mod p$

• s = 47,045,881 mod 23

• s = 35,184,372,088,832 mod 23

6. Alice and Bob now share a secret (the number 2).

5. Bob computes $s = A^b \mod p$

• B = 19

· s = 2

· s = 2

Diffie Hellman problem

Given q^a and q^b produce q^{ab}

RSA

RSA

RSA

RSA Signature Processes

Discrete root problem / prime factorisation

$$x \mapsto q^x \pmod{p}$$

is easy, but given q^x finding x is hard

Little Hash digression

- One way function
- Used for Integrity

Hash properties

- Determinism
- Pre-Image Resistance
- Collision Resistance
- Avalanche Effect
- Hash Speed

Recipe

Hard problems

Trust

How do I transmit my first root secret?

Usage

- Asymmetric to exchange symmetric secret
- Solution to the chicken and egg problem

Base for Public Key Infrastructure system

Authenticity of Alice

Confidentiality of message

Confidentiality of session key

Certificates and PKI

- Certificate is a Public Key signed by a Trusted party
- Public Key Infrastructure
 - o Provides a key hierarchy
 - Manages certificates

Certificate Viewer: *.google.com General Details Certificate Hierarchy GTS Root R1 GTS CA 1C3 *.google.com Certificate Fields Subject ▶ Subject Public Key Info Extensions Certificate Signature Algorithm Certificate Signature Value Fingerprints SHA-256 fingerprint SHA-1 Fingerprint Field Value PKCS #1 SHA-256 With RSA Encryption Export...

×

We have reached TLS level!

Conclusion

- Security guarantees
- Hard problem to Trust to security property
- Secrecy of the key, not of the Algorithm
- Chicken and egg symmetry

Resources

- Introduction to Modern Cryptography
- BSI recommendations and glossary
- Boneh-Shoup cryptobook

Also see slides comments throughout the presentation

Math & Learn by doing

CONTENTS	
CATEGORY	CHALLENGE
General - Mathematics	Greatest Common Divisor
General - Mathematics	Extended GCD
General - Mathematics	Modular Arithmetic 1
General - Mathematics	Modular Arithmetic 2
General - Mathematics	Modular Inverting
Mathematics - Modular Math	Quadratic Residues
Mathematics - Modular Math	Legendre Symbol
Mathematics - Modular Math	Modular Square Root
Mathematics - Modular Math	Chinese Remainder Theorem

Questions?