Brice Allen

107-45-2188

CSCI 4220-E01

Programming Assignment 01 June 15, 2022

Contents

1	Questions	1
2	Code	2
3	Output	3

1 Questions

Question 1.

At the end of the tutorial, please do the following:

- 1. Install Python.
- 2. Install Python tools
 - NumPy
 - SciPy
 - Matplotlib
 - Networkx
- 3. Download the data-set 'cambridge_net.txt'
- 4. Find the number of nodes and edges, the average degree, and the number of connected components (Slides 29 and 30 in the tutorial.)
- 5. Submit the Python code and a screenshot of your result. Please submit a zipped file.

2 Code

Code available here

```
## version 2.4 library for studying graphs
o import networks as nx
     and networks
2 infile = open('dataset/cambridge_net.txt', "r+b")
4 cam_net = nx.read_adjlist(infile, create_using=nx.DiGraph(),
     nodetype=int)
6 thisdict = dict(cam_net.adj)
s infile.close()
_{10} N = cam_net.order()
12 K = cam_net.number_of_edges()
avg_deg = float(K)/N
16 print ("Nodes:", N)
18 print ("Edges:", K)
print("Average_degree:", round(avg_deg, 5)) ## rounded for
     aesthetic
print("SCC:", nx.number_strongly_connected_components(cam_net))
print("WCC:", nx.number_weakly_connected_components(cam_net))
```

3 Output

