# Zaawansowana analityka z SAS Enterprise Miner

Edycja 6 - 2019/2020 Laboratorium

# Metodologia SEMMA

- Próbkowanie (Sample)
- Eksploracja (Explore)
- Modyfikacja (Modify)
- Modelowanie (Model)
- Ocenianie (Assess)
- Użytkowe (Utility)
- Thigh Performance Data Mining (HPDM) Sample Explore Modify Model Assess



# Przykład diagramu analizy danych



# Rozpoczęcie pracy w SAS EM

Budowa interfejsu użytkownika





### **SAMPLE**









# Próbkowanie

| KLIENT A | 0 |
|----------|---|
| KLIENT B | 1 |
| KLIENT C | 1 |
| KLIENT D | 0 |
|          | 0 |
|          | 0 |
|          | 0 |
|          | 0 |
|          | 0 |
|          | 1 |
|          | 0 |
|          | 0 |
|          | 0 |
|          | 1 |
|          | 1 |
|          | 0 |
| KLIENT Z | 1 |

# Identyfikacja wartości odstających

| KLIENT | В |   |  | 1  |   | 1 |
|--------|---|---|--|----|---|---|
| KLIENT | c |   |  | 2  |   | 1 |
| KLIENT | F |   |  | 3  | 旦 | 0 |
| KLIENT | Н |   |  | 2  | 旦 | 0 |
|        |   |   |  | 5  | 旦 | 0 |
|        |   | 旦 |  | 8  | 旦 | 0 |
|        |   |   |  | 50 |   | 0 |
|        |   |   |  | 82 |   | 0 |
|        |   |   |  | 8  | 旦 | 0 |
|        |   |   |  | 1  | 旦 | 1 |
|        |   |   |  | 2  | 旦 | 0 |
|        |   |   |  | 4  | 旦 | 0 |
|        |   |   |  | 6  |   | 0 |
|        |   |   |  | 0  | 旦 | 1 |
|        |   |   |  | 7  |   | 1 |
|        |   |   |  | 1  |   | 0 |
| KLIENT | W | 口 |  | 3  | Д | 0 |

### SAMPLE SCHEMATY PRÓBKOWANIA

- N-krotne losowanie bez zwracania
  - Każdy element wylosowany do próbki, nie jest już brany pod uwagę w następnym losowaniu.
- Losowanie systematyczne
  - Do próbki brany jest co n-ty element począwszy od pewnego losowo lub nielosowo określonego elementu.
- Wzięcie do próbki N-pierwszych obserwacji.
- Losowanie grupowe/warstwowe.
- Losowanie warstwowe proporcjonalne



Aby próba była reprezentatywna dla całego zbioru, rozmiar próbki w każdej warstwie powinien być proporcjonalny do jej liczności.

# SAMPLE - NADRÓBKOWANIE/PRZEPRÓBKOWANIE

 Czasem stosuje się tzw. przepróbkowanie (oversampling) – losując tak samo dużą próbkę z każdej warstwy, niezależnie od jej rozmiaru.



### SAMPLE - KIEDY STOSOWAĆ PRZEPRÓBKOWANIE?

• Kiedy warstwy interesujące nas pod kątem danego zjawiska (np. zbiór niewypłacalnych klientów) są małe w porównaniu z pozostałymi.



 Taka sytuacja zachodzi często przy analizach typu credit scoring lub przy badaniu zjawiska churn. Przepróbkowanie daje wtedy często lepsze wyniki niż zwykłe metody próbkowania.

# **SAMPLE - WARTOŚCI ODSTAJĄCE**





### **EXPLORE**









# Rozkład zmiennych

| Target Level | Variable                  | Mean     | Std.<br>Deviation | Non Missing | Missing ▼ | Minimum | Median   | Maximum  |
|--------------|---------------------------|----------|-------------------|-------------|-----------|---------|----------|----------|
|              | APP_LAST_ACCPT_ALL_DY_V0  | 58.07618 | 26.17831          | 6800        | 36        |         | 67       | 102      |
|              | APP_LAST_ACCPT_ALL_DY_V0  | 48.43695 | 27.26472          | 6836        | 16        | 1 (     | 67       | 102      |
| )            | CARDCR_ALL_INT_PEN_AMT_V0 | 1.324134 | 5.136291          | 7000        | 1         | ) (     | 0        | 277.24   |
|              | CARDCR_ALL_INT_PEN_AMT_V0 | 0.045557 | 0.360619          | 7000        |           | ) (     | 0        | 17.73    |
| )            | CARDCR_ALL_INT_DUE_GOT    | 42.90347 | 180.1206          | 7000        | 1         | ) (     | 0        | 5097.027 |
|              | CARDCR_ALL_INT_DUE_GOT    | 1.731586 | 9.50785           | 7000        | 1         | ) (     | 0        | 349.7633 |
|              | PROD_TRN_ALL_AMT_ZM26     | 9.24349  | 495.233           | 7000        | 1         | ) (     | 0        | 58576.11 |
|              | PROD_TRN_ALL_AMT_ZM26     | 1.640902 | 18.4742           | 7000        | 1         | ) (     | 0.400307 | 1422.769 |
|              | PROD_TRN_ALL_CNT_ZM26     | 9.24349  | 495.233           | 7000        |           | ) (     | 0        | 58576.11 |
| 1            | PROD_TRN_ALL_CNT_ZM26     | 1.640902 | 18.4742           | 7000        | 1         | ) (     | 0.400307 | 1422.769 |
|              | PROD_TRN_OBC_UZN_DF_AM    | 107.0252 | 3869.878          | 7000        | 1         | -110003 | 3 0      | 92551.17 |
|              | PROD_TRN_OBC_UZN_DF_AM    | 348.442  | 4984.869          | 7000        | 1         | -98235  | 0        | 304182.4 |
|              | PROD_TRN_OBC_AMT_ZM26     | 4.288364 | 203.553           | 7000        |           | ) (     | 0        | 24061.47 |
|              | PROD_TRN_OBC_AMT_ZM26     | 1.458968 | 12.05099          | 7000        | 1         | ) (     | 0.402031 | 893.5385 |
|              | PROD_TRN_OBC_AMT_MIN3     | 388.4454 | 7023.667          | 7000        |           | ) (     | 0        | 475147.3 |
|              | PROD_TRN_OBC_AMT_MIN3     | 910.19   | 7906.646          | 7000        | 1         | ) (     | 0        | 476042.8 |
| )            | PROD_TRN_OBC_AMT_V0       | 714.5435 | 9865.953          | 7000        |           | ) (     | 0        | 475147.3 |
|              | PROD_TRN_OBC_AMT_V0       | 1630.507 | 11909.09          | 7000        | 1         | ) (     | 68.01    | 505820.9 |
|              | CARDCR_ALL_USE_LMT_AVG    | 0.013057 | 0.071832          | 7000        |           | ) (     | 0        | 1        |
|              | CARDCR_ALL_USE_LMT_AVG    | 0.029303 | 0.085025          | 7000        | - 1       | ) (     | 0        | 1.88078  |
|              | CARDOR TRN LUK ALL WD     | 2.007286 | 8.950371          | 7000        | 1         | ) (     | 0        | 99       |



# Wybór zmiennych





### **EXPLORE**









### **MODIFY**





# Uzupełnienie wartości brakujących





# Przekształcenie zmiennych



### **MODEL**





# Analiza regresji

# Estimated Probability 1.0 0.8 0.6 0.4 0.2 0.0 0 2 4 6 8 10 y

```
Logit(SCORE) =
a0
+ a1 * M_Var3
+ a2 * M_Var7
+ a3 * M_Var10;
```

# Drzewa decyzyjne



```
if 0 <= Var1 < 0.5 and Var2 > 10
and VAR8 = . then
    SCORE = 0.8;
else if Var1 < 0 and Var6 > 3 then
    SCORE = 0.1;
else ...
```

### **ASSESS**





### Porównanie modeli



# Generacja kodu scoringowego



### **ASSESS**





# **WĘZŁY DODATKOWE**





# Dokumentacja ścieżki przetwarzania



# Własny kod użytkownika



# Tworzenie nowego projektu EM

Praca w SAS Enterprise Miner jest zorganizowana w postaci **Projektów.** 

Użytkownik po zalogowaniu ma dostęp do istniejących projektów oraz ma możliwość tworzenia nowych projektów.

W przypadku instalacji serwerowej użytkownik może mieś dostęp do projektów innych użytkowników

Rozpoczęcie procesu tworzenia projektu



### Tworzenie nowego projektu EM

Wskazanie fizycznej lokalizacji i nazwy projektu

Jeżeli użytkownik poda ścieżkę i nazwę już istniejącego projektu – pojawi się stosowny komunikat i zależnie od decyzji użytkownika może on zostać nadpisany.

Wskazanie lokalizacji metadanowej projektu





### Tworzenie nowego projektu EM

Podsumowanie procesu tworzenia projektu



Nowy projekt



W SAS Enterprise miner dostępne są gotowe przykładowe źródła danych





Standardowo użytkownik definiuje źródło danych na podstawie własnego zbioru.

Jest to możliwe na kilka sposobów



Użytkownik określa, czy źródło danych jest już zarejestrowane w metadanych, czy jest dostępne w jednej z bibliotek



Określenie szczegółowej lokalizacji zbioru danych, tj. biblioteki i nazwy tabeli



Podsumowanie podstawowych metadanych źródła



Inicjalizacja kreatora poziomów i ról zmiennych

W przypadku kreatora zaawansowanego, role i poziomy zmiennych inicjalizowane są na podstawie analizy wartości zmiennych





02.05.2019

Dla każdej zmiennej można określić jej poziom i rolę

Zadanie może zostać zrealizowane również za pomocą kodu użytkownika



Dla każdej zmiennej można wygenerować statystyki, które ułatwią określenie roli i poziomu zmiennych.

Przy dużych zbiorach danych zadanie to może być czasochłonne



Najpopularniejsze role zmiennych:

- Input zmienna wejściowa
- ID identyfikator
- Target zmienna celu



Podczas tworzenia zbioru użytkownik może wykonać próbkowanie (losowanie proste bez zwracania)



Określenie roli zbioru danych:

- Raw najczęstsza rola
- Train zbiór treningowy
- Validate zbiór walidacyjny
- Test zbiór testowy
- Score zbiór do skorowania
- Transaction zbiór o strukturze transakcyjnej (wiele wierszy opisujących obiekt modelowania, np. klienta)



Podsumowanie procesu tworzenia źródła danych



Jeżeli źródło danych nie znajduje się w bibliotece dostępnej w środowisku, użytkownik powinien zdefiniować bibliotekę w kodzie startowym projektu.

Po zdefiniowaniu kodu, należy go uruchomić.

Od tego momentu nowa biblioteka będzie widoczna dla SAS Enterprise Miner.





# Tworzenie diagramu

W ramach projektu użytkownik tworzy diagramy w których konstruuje logikę modelowania.

Istnieje kilka możliwości utworzenia diagramu.



# Praca z diagramem

Na diagram przerzuca się poszczególne elementy:

- Źródła danych dodane wcześniej do projektu
- Węzły dostępne w zakładkach SAS EM

Połączenia między węzłami wykonuje się poprzez najechanie na końcówkę jednego węzła (wówczas pojawia się ikona ołówka) i przeciągnięcie powstającej strzałki na początek kolejnego węzła



# Praca z diagramem

Każdy węzeł ma dedykowane opcje parametryzujące go, które użytkownik może zmieniać.





# Uruchomienie diagramu lub jego fragmentu

Po kliknięciu prawym przyciskiem myszy na na wybrany węzeł pojawia się menu, które umożliwia uruchomienie diagramu do zaznaczonego węzła włącznie.





Ćwiczenie 1

02.05.2019 www.ii.pw.edu.pl 37

# Opis zbioru danych - HMEQ

# Zbiór zawiera informacje o osobach wnioskujących o kredyty hipoteczne

| Nazwa zmiennej | Etykieta                          | Opis                                                                                                    |
|----------------|-----------------------------------|---------------------------------------------------------------------------------------------------------|
| BAD            | Loan Default Status               | Status Default Kredytu (1- klient nie spłacił kredytu w terminie, 0 – klient spłacił kredyt w terminie) |
| LOAN           | Amount of this Loan               | Wartość kredytu z wniosku                                                                               |
| MORTDUE        | Amount Due on First Mortgage      | Wartość pozostała do spłaty z tytułu kredytu hipotecznego                                               |
| VALUE          | Property Value                    | Wartość nieruchomości                                                                                   |
| REASON         | Reason for this Loan              | Powód kredytu (DebtCon – konsolidacja, HomeImp – remont)                                                |
| JOB            | Job Category                      | Typ zatrudnienia                                                                                        |
| YOJ            | Years at Current Job              | Liczba lat zatrudnienia u aktualnego pracodawcy                                                         |
| DEROG          | Number of Derogatory Reports      | Liczba odnotowanych naruszeń prawa                                                                      |
| DELINQ         | Number of Delinquent Trade Lines  | Liczba linii kredytowych, których nie spłacono                                                          |
| CLAGE          | Age of Oldest Trade Line (months) | Liczba miesięcy od otwarcia pierwszej linii kredytowej                                                  |
| NINQ           | Number of Recent Credit Inquiries | Liczba zapytań kredytowych w ostatnim okresie czasu                                                     |
| CLNO           | Number of Trade Lines             | Liczba linii kredytowych                                                                                |
| DEBTINC        | Debt to Income Ratio              | Stosunek długu do przychodu                                                                             |

#### **Ćwiczenie 1**

- Projekt
  - Enterprise\_Miner\_projekt\_lab\_n azwisko
- Zbiór źródłowy
  - Home Equity
    - Zmienna celu: BAD
- Diagram
  - Home Equity diag1
- Model
  - Drzewo decyzyjne

- a) Przeanalizować modelowany poziom (BAD = 1) dla zmiennej celu
- b) Wykonać partycjonowanie i zbudować model drzewa decyzyjnego z domyślnymi parametrami
- c) Dokonać modyfikacji parametrów drzewa
- d) Zbudować drzewo CHAID

02.05.2019 www.ii.pw.edu.pl 39

- Projekt
  - Enterprise\_Miner\_projekt\_lab\_n azwisko
- Zbiór źródłowy
  - Home Equity
    - Zmienna celu: BAD
- Diagram
  - Home Equity diag1
- Model
  - Drzewo decyzyjne

- Utworzyć projekt i diagram
- Dodać zbiór z listy przykładowych zbiorów EM do projektu
- Określić poziom zmiennej celu
- Zweryfikować poziom modelowanego zjawiska w zbiorze źródłowym
  - Wykres słupkowy
- Dla zmiennej Job, zweryfikować poziomy zmiennej celu
  - Wykres kołowy nakładany

02.05.2019 www.ii.pw.edu.pl 40

Ustawienie roli i poziomu dla zmiennej celu BAD



Zweryfikować poziom modelowanego zjawiska w zbiorze źródłowym

 Otworzenie Eksploratora (Explore...) z poziomu zbioru w drzewie projektu

- Zmiana ustawienia próbkownia z Top na Random
- 3. Aplikacja zmienionych ustawień
- 4. Przejście do polecenia *Plot...*





Zweryfikować poziom modelowanego zjawiska w zbiorze źródłowym

1. Wybór wykresu słupkowego: Bar

- Określenie roli Category dla zmiennej celu Bad
- 3. Wybór statystyki *Percent*

Pytanie kontrolne:

Dlaczego wybrano statystykę Percent zamiast Frequency?





Zweryfikować poziom modelowanego zjawiska w zbiorze źródłowym

Pytanie kontrolne: jaki jest poziom modelowanego zjawiska?



Dla zmiennej **Job**, zweryfikować poziomy zmiennej celu

1. Wybór wykresu kołowego: Pie



- Określenie roli:
  - 1. Category dla zmiennej celu Bad
  - 2. Group dla zmiennej Job



Dla zmiennej **Job**, zweryfikować poziomy zmiennej celu

Pytanie kontrolne: dla jakiego zawodu poziom modelowanego zjawiska jest najmniejszy, a dla którego największy?



- Projekt
  - Enterprise\_Miner\_projekt\_lab\_n azwisko
- Zbiór źródłowy
  - Home Equity
    - Zmienna celu: good\_bad
- Diagram
  - Home Equity diag1
- Model
  - Drzewo decyzyjne

- Wykonać partycjonowanie
  - 70% część treningowa
  - 30% część walidacyjna
- Uruchomić algorytm drzewa decyzyjnego z domyślnymi ustawieniami
- Zinterpretować wyniki
  - Podjąć decyzję o ewentualnej zmianie parametrów drzewa

02.05.2019 www.ii.pw.edu.pl 47

Wykonać partycjonowanie

- Na diagramie umieścić dane wejściowe
- Dołączyć do nich węzeł Data Partition z zakładki Input
- 3. Zmodyfikować ustawienia węzła

#### Pytanie kontrolne:

Jaka metoda podziału zbioru została użyta?

- 1. Zweryfikować wyniki węzła:
- Jaki poziom modelowanego zjawiska występuje w zbiorze treningowym, a jaki w zbiorze walidacyjnym?



| 🗿 Outp | out        |               |           |           |         |       |
|--------|------------|---------------|-----------|-----------|---------|-------|
| 48     | Data=DATA  |               |           |           |         |       |
| 49     |            |               |           |           |         | 7     |
| 50     |            | Numeric       | Formatted | Frequency |         |       |
| 51     | Variable   | Value         | Value     | Count     | Percent | Label |
| 52     |            |               |           |           |         |       |
| 53     | BAD        | 0             | 0         | 4771      | 80.0503 |       |
| 54     | BAD        | 1             | 1         | 1189      | 19.9497 |       |
| 57     | Data=TRAIN | ī             |           |           |         |       |
| 58     |            |               |           |           |         |       |
| 59     |            | Numeric       | Formatted | Frequency |         |       |
| 60     | Variable   | Value         | Value     | Count     | Percent | Label |
| 61     |            |               |           |           |         |       |
| 62     | BAD        | 0             | 0         | 3339      | 80.0719 |       |
| 63     | BAD        | 1             | 1         | 831       | 19.9281 |       |
| 66     | Data=VALID | Data=VALIDATE |           |           |         |       |
| 67     |            |               |           |           |         |       |
| 68     |            | Numeric       | Formatted | Frequency |         |       |
| 69     | Variable   | Value         | Value     | Count     | Percent | Label |
| 70     |            |               |           |           |         |       |
| 71     | BAD        | 0             | 0         | 1432      | 80      |       |
| 72     | BAD        | 1             | 1         | 358       | 20      |       |
| _      |            | _             | -         |           |         |       |

02.05.2019

www.ii.d

48

Uruchomić algorytm drzewa decyzyjnego z domyślnymi ustawieniami

- Do węzła Data Partition dołączyć węzeł Decision Tree z zakładki Model
- 2. Uruchomić diagram

#### Pytania kontrolne:

- 1. Jaka reguła prowadzi do liścia 1?
- Ile obserwacji znajduje się w części walidacyjnej i testowej liścia?
- 3. Czy model jest stabilny?





- Projekt
  - Enterprise\_Miner\_projekt\_lab\_n azwisko
- Zbiór źródłowy
  - Home Equity
    - Zmienna celu: good\_bad
- Diagram
  - Home Equity diag1
- Model
  - Drzewo decyzyjne

- Zwiększyć rozmiar liścia do 15
- Zinterpretować wyniki

Zwiększyć rozmiar liścia do 15

- Do węzła Data Partition dołączyć kolejny węzeł Decision Tree z zakładki Model
- Zmienić ustawienia węzła dla opcji Leaf Size na 15

#### Pytania kontrolne:

- Jaka jest liczba liści?
- 2. Czy model jest stabilny?
- 3. Która zmienna jest najbardziej istotna w modelu?





Zwiększyć rozmiar liścia do 15

Która zmienna jest najbardziej istotna w modelu?



- Projekt
  - Enterprise\_Miner\_projekt\_lab\_n azwisko
- Zbiór źródłowy
  - Home Equity
    - Zmienna celu: good\_bad
- Diagram
  - Home Equity diag1
- Model
  - Drzewo decyzyjne

Zbudować drzewo CHAID

# CHAID w SAS Enterprise Miner

| Opcja                                  | Ustawienie | Komentarz                                                           |
|----------------------------------------|------------|---------------------------------------------------------------------|
| Nominal Targets -> Nominal Criterion   | PROBCHISQ  |                                                                     |
| Interval Targets -> Interval Criterion | PROBF      |                                                                     |
| Method                                 | Largest    | Uniknięcie automatycznego przycinania                               |
| Significance Level                     | Np. 0.05   | Ustawienie poziomu istotności testu F<br>lub Chi2                   |
| Maximum Branch                         | Np. 25     | Wartość równa maksymalnej liczbie kategorii w zmiennych nominalnych |
| Number of Surrogate Rules              | 0          | Brak reguł zastępczych                                              |
| Exhaustive                             | 0          | Wyszukiwanie heurystyczne                                           |
| Leaf Size                              | 1          |                                                                     |
| Split Size                             | 2          |                                                                     |
| Bonferroni Adjustment                  | Yes        |                                                                     |
| Time of Bonferroni Adjustment          | After      |                                                                     |

Zbudować drzewo CHAID

Ustawić opcje wg tabeli na poprzednim slajdzie



Zbudować drzewo CHAID

Zweryfikować maksymalną liczbę poziomów zmiennych wejściowych: nominalnych/porządkowych

- Zastosować węzeł DMDB po węźle danych źródłowych
- Zweryfikować statystyki zmiennych klasyfikujących
- 3. Jaka jest maksymalna liczba poziomów dla zmiennych objaśniających klasyfikujących?







02.05.2019 www

#### Zbudować drzewo CHAID







Ćwiczenie 2

02.05.2019 www.ii.pw.edu.pl 58

# Opis zbioru danych - PMAD\_PVA

Zbiór zawiera informacje opisujące potencjalnych darczyńców oraz zmienną celu – flagę przekazania darowizny.

| Nazwa zmiennej | Etykieta                           | Opis                                          |
|----------------|------------------------------------|-----------------------------------------------|
| ID             | Control Number                     |                                               |
| TargetB        | Target Gift Flag                   | Zmienna celu – flaga przekazania<br>darowizny |
| TargetD        | Target Gift Amount                 | Zmienna celu – kwota darowizny                |
| GiftCnt36      | Gift Count 36 Months               |                                               |
| GiftCntAll     | Gift Count All Months              |                                               |
| GiftCntCard36  | Gift Count Card 36 Months          |                                               |
| GiftCntCardAll | Gift Count Card All Months         |                                               |
| GiftAvgLast    | Gift Amount Last                   | Cechy opisujące historię przekazywania        |
| GiftAvg36      | Gift Amount Average 36 Months      | darowizn                                      |
| GiftAvgAll     | Gift Amount Average All Months     |                                               |
| GiftAvgCard36  | Gift Amount Average Card 36 Months |                                               |
| GiftTimeLast   | Time Since Last Gift               |                                               |
| GiftTimeFirst  | Time Since First Gift              |                                               |

# Opis zbioru danych - PMAD\_PVA

| Nazwa zmiennej   | Etykieta                        | Opis                                    |  |
|------------------|---------------------------------|-----------------------------------------|--|
| PromCnt12        | Promotion Count 12 Months       |                                         |  |
| PromCnt36        | Promotion Count 36 Months       |                                         |  |
| PromCntAll       | Promotion Count All Months      | Cechy opisujące fakt otrzymywania       |  |
| PromCntCard12    | Promotion Count Card 12 Months  | materiałów promocyjnych przez darczyńcę |  |
| PromCntCard36    | Promotion Count Card 36 Months  |                                         |  |
| PromCntCardAll   | Promotion Count Card All Months |                                         |  |
| StatusCat96NK    | Status Category 96NK            |                                         |  |
| StatusCatStarAll | Status Category Star All Months | Opis statusu darczyńcy                  |  |
| DemCluster       | Demographic Cluster             |                                         |  |
| DemAge           | Age                             |                                         |  |
| DemGender        | Gender                          |                                         |  |
| DemHomeOwner     | Home Owner                      | Cechy demograficzne                     |  |
| DemMedHomeValue  | Median Home Value Region        |                                         |  |
| DemPctVeterans   | Percent Veterans Region         |                                         |  |
| DemMedIncome     | Median Income Region            |                                         |  |

#### **Ćwiczenie 2**

- Projekt
  - Enterprise\_Miner\_projekt\_lab\_n azwisko
- Zbiór źródłowy
  - PMAD\_PVA
    - Zmienna celu: TargetB
- Diagram
  - Donation Analysis 1
- Modele
  - Drzewo decyzyjne
  - Regresja logistyczna
  - Sieć neuronowa

- a) Zbudować drzewo decyzyjne
- b) Zbudować model regresji logistycznej
- c) Zbudować model sieci neuronowej

#### Dodanie źródła danych

Jeżeli źródło danych nie znajduje się w bibliotece dostępnej w środowisku, użytkownik powinien zdefiniować bibliotekę w kodzie startowym projektu.

Po zdefiniowaniu kodu, należy go uruchomić.

Od tego momentu nowa biblioteka będzie widoczna dla SAS Enterprise Miner.





#### Dodanie źródła danych

Jeżeli źródło danych nie znajduje się w bibliotece dostępnej w środowisku, użytkownik powinien zdefiniować bibliotekę w kodzie startowym projektu.

Po zdefiniowaniu kodu, należy go uruchomić.

Od tego momentu nowa biblioteka będzie widoczna dla SAS Enterprise Miner.



#### Dodanie źródła danych

Wybór źródła danych z biblioteki



2









#### **Ćwiczenie 2a**

- Projekt
  - Enterprise\_Miner\_projekt\_lab\_n azwisko
- Zbiór źródłowy
  - PMAD PVA
    - Zmienna celu: TargetB
- Diagram
  - **Donation Analysis**
- Model
  - Drzewo decyzyjne

# Budowa drzewa decyzyjnego:

- Dodać do projektu zbiór PMAD\_PVA
  - TargetB rola TARGET, poziom Binary
  - TargetD rola REJECTED
- Dokonać podziału zbioru na część treningową i walidacyjną (w proporcji 70/30)
- Zbudować model drzewa decyzyjnego z domyślnymi parametrami
- Zmienić metodę wyboru najlepszego drzewa z domyślnej na Assessment

#### **Ćwiczenie 2a**

- Pytania kontrolne:
  - Jak drzewa decyzyjne radzą sobie z brakami danych?
  - Czy drzewa decyzyjne wymagają przekształceń zmiennych?
  - Czy drzewa decyzyjne wymagają wstępnej selekcji zmiennych?
  - Jaką metodę wyboru najlepszego drzewa należy zastosować?
  - Jaka jest liczba liści w wybranym modelu?
  - Jaka jest minimalna liczebność liścia?
  - Która zmienna jest najbardziej istotna?

# Budowa drzewa decyzyjnego:



| ■Subtree              |                      |          |
|-----------------------|----------------------|----------|
| Method                | Assessment           | <b>—</b> |
| Number of Leaves      | 1                    |          |
| Assessment Measure    | Average Square Error | <b>—</b> |
| L-Assessment Fraction | 0.25                 |          |

#### **Ćwiczenie 2a**



#### **Ćwiczenie 2b**

- Projekt
  - Enterprise\_Miner\_projekt\_lab\_n azwisko
- Zbiór źródłowy
  - PMAD PVA
    - Zmienna celu: TargetB
- Diagram
  - Donation Analysis
- Model
  - Regresja logistyczna

# Budowa modelu regresji logistycznej:

- Dokonać podziału zbioru PMAD\_PVA na część treningową i walidacyjną (w proporcji 70/30)
- Uzupełnić braki danych dla zmiennych objaśniających
- Zbudować 3 modele regresji logistycznej z metodą doboru zmiennych Stepwise, Forward oraz Backward
- Zmienić poziom istotności dla wejścia oraz pozostania zmiennych w modelu

#### **Ćwiczenie 2b**

- Pytania kontrolne:
  - Jak regresja logistyczna radzi sobie z brakami danych?
  - Czy regresja logistyczna wymaga przekształceń zmiennych?
  - Czy regresja logistyczna wymaga wstępnej selekcji zmiennych?
  - Jaka jest liczba zmiennych objaśniających w każdym modelu?
  - Które zmienne powtarzają się w więcej niż jednym modelu? Jaka jest ich istotność?
  - Czy zmiana poziomu istotności dla wejścia/pozostania zmiennej w modelu spowodowała poprawę jakości modelu?

Budowa modelu regresji logistycznej:





#### **Ćwiczenie 2c**

- Projekt
  - Enterprise\_Miner\_projekt\_lab\_n azwisko
- Zbiór źródłowy
  - PMAD PVA
    - Zmienna celu: TargetB
- Diagram
  - Donation Analysis
- Model
  - Sieć neuronowa

# Budowa modelu sieci neuronowej:

- Dokonać podziału zbioru PMAD\_PVA na część treningową i walidacyjną (w proporcji 70/30)
- Uzupełnić braki danych dla zmiennych objaśniających
- Zbudować model sieci neuronowej z domyślnymi parametrami
- Zmienić metodę wyboru najlepszego modelu na Average Error

#### **Ćwiczenie 2c**

- Pytania kontrolne:
  - Jak sieci neuronowe radzą sobie z brakami danych?
  - Czy sieci neuronowe wymagają przekształceń zmiennych?
  - Czy sieci neuronowe wymagają wstępnej selekcji zmiennych?
  - Jaka jest liczba parametrów w modelu?
  - Jaką wartość błędu średniokwadratowego ma najlepszy model?
  - Z ilu warstw składa się wybrana sieć?

# Budowa modelu sieci neuronowej:







# DODATKOWE WĘZŁY WYKORZYSTYWANE W PROCESIE MODELOWANIA



Ćwiczenie 3

#### **Ćwiczenie 3**

- Projekt
  - Enterprise\_Miner\_projekt\_lab\_n azwisko
- Zbiór źródłowy
  - PMAD PVA
    - Zmienna celu: TargetB
- Diagram
  - Donation Analysis 2
- Modele
  - Drzewo decyzyjne
  - Regresja logistyczna
  - Las losowy

# W poprzednim procesie dodać nowe węzły EM

- a) Zbudować model drzewa decyzyjnego
- b) Zbudować model regresji
- c) Zbudować model lasu losowego
- d) Porównać zbudowane modele
- e) Wygenerować kod scoringowy
- f) Utworzyć pakiet modelu
- g) Zarejestrować model w metadanych

Zbudować model drzewa decyzyjnego

#### Pytania kontrolne

- Zdecydować jakie kroki (węzły EM) są wymagane do zbudowania drzewa decyzyjnego
- Jaka maksymalna liczba gałęzi została zastosowana w drzewie? Która zmienna została użyta do tego podziału?
- Ile zmiennych okazało się istotnych w drzewie?
- Jaka jest liczba liści w drzewie?
- Która ze zmiennych jest najbardziej istotna?
- Czy model jest stabilny?
- Jaka jest wartość statystyki ASE dla zbioru walidacyjnego?

- Do zbioru wejściowego podłączyć węzeł Data Partition
  - Zastosować proporcję 60:40 (zbiór treningowy: zbiór walidacyjny)
- Jeśli jest to wymagane, zastosować dodatkowe węzły
- Zastosować model drzewa decyzyjnego
  - Maksymalna liczba gałęzi: 6
  - Maksymalna głębokość drzewa:
    10
  - Rozmiar liścia: 10



Zbudować model regresji

#### Pytania kontrolne

 Czy regresja wymaga dodatkowych kroków przygotowujących dane do modelowania? Czy należy zastosować dodatkowe węzły EM? Jeśli jest to wymagane, zastosować dodatkowe węzły

- Jeśli jest to wymagane, zastosować dodatkowe węzły
- Wybrać typ regresji (liniowa/logistyczna)

Zbudować model regresji

- Zweryfikować, czy w zbiorze występują braki danych wykorzystując węzeł DMDB
- Podłączyć węzeł bezpośrednio po zbiorze wejściowym



| Interval V    | ariables      |         | _ |      |         |         |          |                       |          |          |
|---------------|---------------|---------|---|------|---------|---------|----------|-----------------------|----------|----------|
| Variable      | Label         | Missing | ٨ |      | Minimum | Maximum | Mean     | Standard<br>Deviation | Skewness | Kurtosis |
| DemAge        | Age           | 2407    |   | 7279 | 0       | 87      | 59.15084 | 16.5164               | -0.38791 | -0.47761 |
| DemMedH       | Median Ho     | 0       |   | 9686 | 0       | 600000  | 110986.3 | 98670.86              | 2.378211 | 6.451365 |
| DemMedin      | Median Inc    | 2357    |   | 7329 | 2499    | 200001  | 53513.46 | 19805.17              | 1.739964 | 5.240484 |
| DemPctVet     | Percent Vet   | 0       |   | 9686 | 0       | 85      | 30.60427 | 11.39499              | -0.20706 | 1.27441  |
| GiftAvg36     | Gift Amount   | 0       |   | 9686 | 0       | 260     | 14.8762  | 10.05701              | 5.627792 | 77.09997 |
| GiftAvgAll    | Gift Amount   | 0       |   | 9686 | 1.5     | 450     | 12.48932 | 9.209297              | 14.48649 | 561.7552 |
| GiftAvgCard   | . Gift Amount | 1780    |   | 7906 | 1.33    | 260     | 14.22443 | 10.02271              | 6.051455 | 87.12627 |
| GiftAvgLast   | Gift Amount   | 0       |   | 9686 | 0       | 450     | 16.01774 | 12.0418               | 9.918893 | 246.0504 |
| GiftCnt36     | Gift Count 3  | 0       |   | 9686 | 0       | 16      | 3.205451 | 2.133421              | 1.288353 | 2.047415 |
| GiftCntAll    | Gift Count A  | 0       |   | 9686 | 1       | 91      | 10.50764 | 8.993401              | 1.863109 | 6.047766 |
| GiftCntCard   | . Gift Count  | 0       |   | 9686 | 0       | 9       | 1.856597 | 1.595419              | 1.172452 | 1.494867 |
| ← GiftCntCard | . Gift Count  | 0       |   | 9686 | 0       | 41      | 5.58249  | 4.736894              | 1.331353 | 2.024864 |
| GiftTimeFirst | Time Since    | 0       |   | 9686 | 15      | 260     | 71.10035 | 37.69198              | 0.195399 | -1.24787 |
| GiftTimeLast  | Time Since    | 0       |   | 9686 |         | 27      | 18.00217 | 4.073549              | -0.77805 | 2.469076 |
| PromCnt12     | Promotion     | 0       |   | 9686 | 2       | 59      | 12.98885 | 4.823458              | 2.873723 | 11.99538 |
| PromCnt36     | Promotion     | 0       |   | 9686 |         | 78      | 29.34823 | 7.809743              | 0.261958 | 2.174341 |
| PromCntAll    | Promotion     | 0       |   | 9686 | 5       | 174     | 48.48348 | 23.06148              | 0.460765 | 0.216596 |
| PromCntCa     | .Promotion    | 0       |   | 9686 |         | 17      | 5.392009 | 1.323648              | 0.684994 | 5.798685 |
| PromCntCa     | .Promotion    | 0       |   | 9686 | 2       | 28      | 11.95468 | 4.571568              | -0.4266  | -0.98685 |
| PromCntCa     | .Promotion    | 0       |   | 9686 | 2       | 56      | 19.00712 | 8.562193              | 0.142856 | -0.78032 |
| StatusCatSt   | .Status Cate  | 0       |   | 9686 | 0       | 1       | 0.540574 | 0.498377              | -0.16286 | -1.97388 |



Zbudować model regresji

#### Pytania kontrolne:

- Jaką wartością zostały uzupełnione braki danych dla zmiennej DemAge
- Jak dużo zmiennych zostało wybranych przez węzeł Variable selection

- Uzupełnić braki danych
  - W węźle Impute:
    - dla zmiennych ciągłych zastosować metodę średniej
- Wykonać grupowanie wartości zmiennych nominalnych
  - W węźle Variable Selection wybrać:
    - Target Model: R-Square
    - Use group Variables: Yes

Rezultaty węzła Impute



| Imputation Summary □ □ X |               |                   |              |        |                   |                         |                                |
|--------------------------|---------------|-------------------|--------------|--------|-------------------|-------------------------|--------------------------------|
| Variable Name            | Impute Method | Imputed Variable  | Impute Value | Role   | Measurement Level | Label                   | Number of Missing for<br>TRAIN |
| DemAge                   | MEAN          | IMP_DemAge        | 59,30309     | INPUT  | INTERVAL          | Age                     | 1435                           |
| DemMedIncome             | MEAN          | IMP_DemMedIncome  | 53580.18     | RINPUT | INTERVAL          | Median Income Region    | 1427                           |
| GiftAvgCard36            | MEAN          | IMP_GiftAvgCard36 | 14.28659     | INPUT  | INTERVAL          | Gift Amount Average Car | . 1096                         |

Ustawienia węzła Variable Selection

| Train                    |          |  |  |  |
|--------------------------|----------|--|--|--|
| Variables                |          |  |  |  |
| Max Class Level          | 100      |  |  |  |
| Max Missing Percentage   | 50       |  |  |  |
| Target Model             | R-Square |  |  |  |
| Manual Selector          |          |  |  |  |
| Rejects Unused Input     | Yes      |  |  |  |
| Bypass Options           |          |  |  |  |
| -Variable                | None     |  |  |  |
| <sup>L</sup> -Role       | Input    |  |  |  |
| ☐Chi-Square Options      |          |  |  |  |
| -Number of Bins          | 50       |  |  |  |
| -Maximum Pass Number     | 6        |  |  |  |
| L-Minimum Chi-Square     | 3.84     |  |  |  |
| ■R-Square Options        |          |  |  |  |
| -Maximum Variable Number | 3000     |  |  |  |
| -Minimum R-Square        | 0.005    |  |  |  |
| -Stop R-Square           | 5.0E-4   |  |  |  |
| -Use AOV16 Variables     | No       |  |  |  |
| -Use Group Variables     | Yes      |  |  |  |
| Use Interactions         | No       |  |  |  |
| Use SPD Engine Library   | Yes      |  |  |  |
| Print Option             | Default  |  |  |  |

02.05.2019 Print Option Default 81

Zbudować model regresji

#### Pytania kontrolne:

- Ile zmiennych zostało wybranych w finalnym modelu regresji?
- Czy w finalnym modelu została użyta zmienna nominalna?
- Jaka jest wartość statystyki lift skumulowany na 5% listy?
- Które ze zmiennych wpływają na obniżenie prawdopodobieństwa przekazania darowizny?

- Określić parametry węzła Regression:
  - Typ: Logistic Regression
  - Model selekcji: W tył
  - Kryterium selekcji: Kryterium informacyjne Akaike



Zbudować model lasu losowego

#### Pytania kontrolne:

- Jak dużo z utworzonych drzew ma 10 lub 11 liści?
- Która ze zmiennych była najczęściej wykorzystywana w podziałach drzew?

- Zdecydować, w którym miejscu diagramu umieścić model lasu losowego
  - Nie zmieniać parametrów węzła Forest



Porównać zbudowane modele

#### Pytania kontrolne:

- Który z modeli jest najlepszy wg zdefiniowanego kryterium?
- Jakie inne 2 statystyki wskazują, że model jest najlepszy?

- Zastosować węzeł Model Comparison
- Podłączyć do niego wszystkie 3 utworzone modele
  - Określić kryterium wyboru modelu:
    - Lift skumulowany na 10% listy zbioru walidacyjnego



Wygenerować kod scoringowy

 Zastosować węzeł Score dla najlepszego modelu zidentyfikowanego w poprzednim węźle



Utworzyć pakiet modelu

- Pakiet modeli pozwala na zachowanie ścieżki modelowania
- Zabezpiecza przed przypadkową zmianą parametrów lub ponownym przeliczeniem
- Tak przygotowany pakiet może być przenoszony między środowiskami



Zarejestrować model w metadanych

 Rejestracja w metadanych pozwala na współdzielenie modelu między różnymi aplikacjami SAS





#### **Ćwiczenie 3**

## Diagram wynikowy

