IMP

iohex

September 2021

1 IMP

IMP is a small lanuage of while programs, which called "imperative" lanuage. In the *programming paradigms*, *imperative lanuage* means program execution involves carrying out series of explicit commands to change state.

syntactic sets

Firstly, we give the syntactic sets associated with IMP:

- numbers **N**: the set of signed decimal numerals.
- \bullet truth value ${f T}$
- location **Loc:** non-empty strings of letters or such strings follwed by digits.
- arithmetic expressions **Aexp**
- boolean expressions **Bexp**
- commands Com

We define the formation rules for Aexp by:

$$a := n|X|a_0 + a_1|a_0 - a_1|a_0 \times a_1.$$

The symbol "::=" should be read as "can be" (p.s. BNF isn't it?) And for **Bexp**:

$$b ::= \mathbf{true}|\mathbf{false}|a_0 = a_1|a_0 \le a_1|\neg b|b_0 \land b_1|b_0 \lor b_1$$

we define the syntactic of commands:

$$c := \mathbf{skip}|X := a|c_0; c_1|\mathbf{if}\ b\ \mathbf{then}\ c_0\ \mathbf{else}\ c_1|\mathbf{while}\ b\ \mathbf{do}\ c$$

From a *set-theory* point of view, this notaion provides an *inductive defi*nition of the syntactic set of **IMP**

For the moment, this notation should be viewed as simply telling us how to construct elements of the syntactic sets.

We need some notation to express when two elements e_0 , e_1 . We use $e_0 \equiv e_1$ to mean e_0 is identical to e_1 . The set of states Σ consists of functions $\sigma : \mathbf{Loc} \to \mathbf{N}$. Thuse $\sigma(X)$ is the value, or contents, of location \mathbf{X} in state σ .

Consider the evaluation of an arithmetic expression a in a state σ . We can represent the situation of expression a waiting to be evaluated in state σ by the pair $< a, \sigma >$ We shall **define** an evaluation relation between such pairs and numbers:

$$\langle a, \sigma \rangle \rightarrow n$$

This is meaning: expression a in state σ evaluates to n. Call pairs $< a, \sigma >$, where a is an arithmetic expression and σ is a state.

Evaluation of numbers:

$$\langle n, \sigma \rangle \rightarrow n$$

Evaluation of subtractions:

$$\langle x, \sigma \rangle \rightarrow \sigma(X)$$

Evaluation of sums

$$\frac{< a_0, \sigma > \rightarrow n_0 < a_1, \sigma > \rightarrow n_1}{< a_0 * a_1, \sigma > \rightarrow n}$$