Tutorial 7

Computer Language Processing and Compiler Design (COMP 4901U)

November 1, 2021

Exercise (1): Simple Typing

Consider the following typing rules:

Lit n is an integer literal		$A_{ m DD} \ t_1: {\sf Int}$	$t_2:Int$	$egin{aligned} \mathrm{MUL} \ t_1 : Int \end{aligned}$	$t_2:Int$
n:Int		$t_1 + t_2 : Int$		$t_1 * t_2 : Int$	
True	t:Bool	EqInt $t_1: Int$	$t_2:Int$	EqBool t_1 : Bool	t_2 : Bool
true : Bool	$\overline{!t:Bool}$	$t_1 == t_2 : Bool$		$t_1 == t_2 : Bool$	

Question 1

Write down a typing derivations for

$$3 + (5*6)$$
: Int

and for

$$(2 == 3) == !true : Bool$$

Question 2

We say that a term t is **well-typed** if there exists a type T and a typing derivation which concludes t:T. Note that the derivations you provided above are indeed constructive proofs that 3+(5*6) and (2==3)==!true are well-typed.

In this question, your goal is to formally prove that:

- 1 ==true is *not* well-typed. That is, prove that there exist *no* T such that there exists a derivation of 1 ==true : T.
- Every subterm of a well-typed term is well-typed.
- Any given term t can only be assigned a unique type T such that t:T holds (i.e., is derivable).

Question 3

Provide the rules of operational semantics for the language, using the standard interpretation of +, *, !, and ==. We assume that the values expressions evaluate to are integer literals n, the true literal **true**, and its negation !**true**.

We give two example rule below, and you have to come up with the others:

E-ADD1

$$\frac{value(n_3) = value(n_1) + value(n_2)}{n_1 + n_2 \rightsquigarrow n_3}$$
E-ADD2

$$\frac{t_1 \rightsquigarrow t'_1}{t_1 + t_2 \rightsquigarrow t'_1 + t_2} \qquad \dots$$

Make sure that your rules are **deterministic** — that is, for any given term t, there is at most one t' such that $t \rightsquigarrow t'$ can be derived and there is at most one derivation of $t \rightsquigarrow t'$.

Question 4

Prove that no well-typed term "gets stuck". That is, prove that if t is well-typed, then either t is an integer literal n, or t is **true** or !**true**, or there exists a t' such that $t \leadsto t'$. This property is known as "**progress**".

Then, prove that if t is well-typed and $t \rightsquigarrow t'$ for some t', then t' is also well-typed. This property is known as "**preservation**".

Question 5

We want to extend this simple language and its type system to support expressions containing nested **val** bindings and lambda expressions, like in Scala. For instance, given term $t = (\mathbf{val} \ x : \mathsf{Int} = 4; \ \mathbf{val} \ y : \mathsf{Int} = x + x; \ x * y)$, we should be able to derive $t : \mathsf{Int}$. Similarly, we should type check the lambda expression $((x : \mathsf{Int}) \Rightarrow x + 1)$ as of type $(\mathsf{Int}) \Rightarrow \mathsf{Int}$.

To do this, we have to *generalize* our typing rules by adding a *typing* context Γ to them, whose syntax is as follows:

$$\Gamma ::= \varepsilon \mid \Gamma \cdot (x:T)$$

We define the operation written $(x, T) \in \Gamma$ for retrieving a binding (x, T) in a context Γ as follows:

GAMMA1
$$\frac{x \neq y \quad (x, T) \in \Gamma}{(x, T) \in \Gamma \cdot (x, T)}$$

For example, we can show that we have $(x, T) \in \varepsilon \cdot (y, S) \cdot (x, T) \cdot (z, U)$ and that we have $(x, T) \notin \varepsilon$.

Note: this definition implements *shadowing* semantics for bindings; indeed, we have $(x, T) \in \varepsilon \cdot (x, S) \cdot (x, T)$, where we can see that the second binding of x *shadows* the first one.

Using these definitions, write the new typing rules of our language extended with the "**val** $x = t_1$; t_2 " and " $(x_1 : T_1, ..., x_n : T_n) \Rightarrow t$ " syntax forms. By convention, your typing rules should use the syntax $\Gamma \vdash t : T$.

Question 6

In this extended system, are there terms that can be given more than one type? If so, give at least two examples of this.

Exercise (2): Call-By-Need

Consider a simple programming language with integer arithmetic, boolean expressions and user-defined functions.

$$T ::= \operatorname{Int} | \operatorname{Bool} | (T, ..., T) \Rightarrow T$$

$$t ::= \operatorname{true} | \operatorname{false} | c | t == t | t + t | t & t & t$$

$$| \operatorname{if} t \operatorname{then} t \operatorname{else} t | f(t, ..., t) | x$$

Where c represents integer literals, == represents equality (between integers, as well as between booleans), + represents the usual integer addition and && represents conjunction. The meta-variable f refers to names of user-defined function and x refers to the names of variables.

Assume you have a fixed environment e which contains information about user-defined functions (i.e. the function parameters, their types, the function body and the result type).

$$e = \{ f_1 \mapsto ([x_1, \ldots, x_n], [T_1, \ldots, T_n], t_{\mathsf{body}}, T_{\mathsf{result}}); f_2 \mapsto (\ldots); \ldots \}$$

Notation: $e(f_1)$ denotes the information associated with f_1 , i.e., in the example above, $([x_1, \ldots, x_n], [T_1, \ldots, T_n], t_{\mathsf{body}}, T_{\mathsf{result}})$.

Question 1

Write down the natural typing rules for this language.

Question 2

Inductively define (i.e., using inference rules) the **substitution** operation for your terms, which replaces every free occurrence of a variable in an expression by an expression without free variables.

Notation: we will write $t_1[x := t_2] \to t_3$ to denote that the substitution, in t_1 , of every occurrence of x by t_2 results in term t_3 .

Question 3

Prove that substitution preserves the type of an expression, given that the variable and the expression have the same type.

Question 4

Write the operational semantics rules for the language, assuming *call-by-name* semantics for function calls.

In call-by-name semantics, the arguments of a function are not evaluated before the call. In your operational semantics, parameters in the function body are to merely be substituted by the corresponding unevaluated argument expression.

Question 5

Can the soundness proofs seen in the lecture be easily adapted to this new semantics? What changes do we need to make?