Семинар #1: Основы. Домашнее задание.

Задача 1. Условие:

Напишите программу, которая будет считывать число и проверять, является ли число чётным и принадлежащим следующему множеству $[0,20] \cup (100,200)$ и печатать Yes или No. Используйте один оператор if.

вход	выход
4	Yes
5	No
20	Yes
22	No
100	No
102	Yes
202	No

Задача 2. Три числа:

На вход программе подаются три числа: a, b и с. Нужно проверить следующие условия:

- 1. Если числа a, b и с являются последовательными, то нужно напечатать Consecutive.
- 2. Если последовательность a, b, c является возрастающей, то нужно напечатать Increasing.
- 3. Если последовательность a, b, c является убывающей, то нужно напечатать Decreasing.
- 4. Если все три числа равны, то нужно напечатать Equal.
- 5. В ином случае нужно напечатать None.

вход	выход
1 2 3	Consecutive Increasing
1 2 4	Increasing
1 1 2	None
1 2 1	None
1 5 9	Increasing
1 0 -1	Consecutive Decreasing
1 5 4	None
7 7 7	Equal
20 15 5	Decreasing

Задача 3. Число, квадрат и куб:

Напишите программу, которая будет печатать само число, его квадрат и его куб от 1 до n, разделённые стрелочкой. Число n считывается с помощью scanf. Например, при n = 5, программа должна напечатать следующее:

```
1 -> 1 -> 1
2 -> 4 -> 8
3 -> 9 -> 27
4 -> 16 -> 64
5 -> 25 -> 125
```

Для того чтобы все числа печатались выровнено, можно использовать спецификатор %3 за место % в printf. В этом случае, если число имеет в записи меньше 3-х цифр, то printf напечатает необходимое число пробелов перед числом.

Задача 4. Последовательность:

Пример программы, которая считывает число п. Затем считывает п чисел и находит среди них максимум.

```
#include <stdio.h>
#include <limits.h>
int main()
{
    int n;
    scanf("%i", &n);
    int max = INT_MIN;
    for (int i = 0; i < n; ++i)
    {
        int a;
        scanf("%i", &a);
        if (a > max)
            max = a;
    }
    printf("Max = %i\n", max);
}
```

В этой программе используется константа INT_MIN из библиотеки limits.h. Эта константа равна минимальному возможному значению чисел типа int, то есть INT_MIN = -2147483648.

Подзадачи:

Измените программу выше так чтобы:

- 1. Программа находила минимум, а не максимум. Может понадобиться константа INT_MAX = 2147483647.
- 2. Программа находила минимальное чётное число и максимальное нечётное. Если чётных или нечётных чисел нет, то программа должна печатать None за место числа.

вход	выход
3 4 5 6	4 5
3 7 7 7	None 7
10 1 8 2 4 8 8 1 5 2 8	2 5
4 10 8 6 8	6 None

3. Программа находила максимум и количество элементов, равных этому максимуму.

вход	выход
3 1 2 3	3 1
3 7 7 7	7 3
10 1 8 2 4 8 8 1 5 2 8	8 4

4. Программа печатала Increasing если последовательность чисел строго возрастает, Decreasing, если последовательность чисел строго убывает и Equal, если все члены последовательности равны. В любом ином случае программа должна печатать None.

вход	выход
3 1 2 3	Increasing
3 7 7 7	Equal
5 20 15 10 7 5	Decreasing
4 1 1 4 5	None

Задача 5. Числа-градины I:

Пусть нам на вход поступает число ${\bf n}$. Мы преобразуем это число следующим образом n=f(n), где

$$f(n) = \begin{cases} 3n+1, & \text{если } n-\text{нечётное} \\ n/2, & \text{если } n-\text{чётное} \end{cases}$$

Затем повторяем этот алгоритм до тех пор пока число не достигнет единицы. Получится некоторая последовательность. Например, если изначально n = 7, то последовательность будет выглядеть следующим образом:

Ваша задача заключается в том, чтобы напечатать эту последовательность, её длину и максимальный элемент этой последовательность по изначальному числу n.

вход	выход
3	3 10 5 16 8 4 2 1
	Length = 8, Max = 16
256	256 128 64 32 16 8 4 2 1
	Length = 9, Max = 256
7	7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
	Length = 17, Max = 52

Задача 6. Числа-градины II:

На вход поступает 2 числа a и b. Нужно найти такое число n ($a \le n \le b$), для которого последовательность чисел-градин будет самой длинной. Нужно напечатать число n, а также длину последовательности, которая начинается c n.

вход	выход
1 5	3 8
1 8	7 17
1 10	9 20
10 15	14 18
1 100	97 119
1 500	327 144
400 500	487 142
1 1000	871 179
1 10000	6171 261
1 100000	77031 351

Задача 7. Сумма:

На вход программе подаются два целых числа n и m. Нужно посчитать следующую сумму:

$$S_{n,m} = \sum_{i=1}^{n} \sum_{j=1}^{m} (-1)^{i+j} i \cdot j$$

Например, если n = 3, a m = 4, то сумма будет равна:

$$S_{3,4} = 1 - 2 + 3 - 4 - 2 + 4 - 6 + 8 + 3 - 6 + 9 - 12 = -4$$

вход	выход
1 1	1
2 2	1
3 3	4
3 4	-4
5 7	12
10 10	25
77 107	2106

Задача 8. Печать всех делимых:

На вход программе подаются числа a, b, c. Программа должна напечатать все числа, делящиеся на c на отрезке [a, b] через пробел.

вход	выход
1 20 4	4 8 12 16 20
1 20 7	7 14
1 10000 9500	9500
1 1000000000 500000000	50000000 100000000
1 1000000000 123456789	123456789 246913578 370370367 493827156
	617283945 740740734 864197523 987654312

Задача 9. Пифагоровы тройки:

На вход приходит целое число n. Нужно напечатать все возможные пифагоровы тройки a, b и c, такие что $a \le n$, $b \le n$ и $c \le n$. Пифагорова тройка – это тройка натуральных чисел, для которых верно:

$$a^2 + b^2 = c^2$$

Пифагоровы тройки, получаемые из некоторой пифагоровой тройки путём обмена местами чисел a и b считаются дублирующими. Пифагоровы тройки, получаемые из некоторой пифагоровой тройки путём умножения всех чисел на некоторое натуральное число, также считаются дублирующими. Печатать дублирующие тройки не нужно.

 $\Pi o d c \kappa a s \kappa a$: Просто переберите все возможные значения a, b и c.

вход	выход
15	3 4 5
	5 12 13
50	3 4 5
	5 12 13
	8 15 17
	7 24 25
	20 21 29
	12 35 37
	9 40 41