15 Simulation

Generating Uniformly-Distributed Random Numbers

- Generate a sequence of (pseudo) random numbers by the following recurrence relation:

```
X_{n+1} := (aX_n + c) \text{ modulo } m, n \ge 0
```

generates random integers in the range [0, m-1], under some conditions.

- $-X_0 = seed$
- Hull-Dobell Theorem: Conditions for a full period for any arbitrary seed value: (1) c, m are relatively prime. (2) a-1 divisible by all prime factors of m. (3) a-1 is a multiple of 4, if m is a multiple of 4.
- Choose, $m\gg 1$ to be very large and take X_n/m as an approximation to a uniform real-valued random variable on (0,1)
- Drawback: Resulting sequence will pass formal tests for uniformity of distribution only for a specific choice of parameters (result sensitive to parameters).
- Current state of the art (since 1997): Mersenne twister algorithm.

Generating a Random Integer

- How to generate a random integer in the set $1, 2, \dots, k$?
- 1) Generate a random number u uniformly distributed over (0,1)
- 2) Multiply u by k to give $x = ku \in (0, k)$
- 3) Take [x] + 1 = [ku] + 1, where as the $[\cdot]$ is the integer part of x =largest integer $\leq x$

Note: Do NOT reuse algorithm for generating uniform random number with m = k + 1

Generating a Random Permutation

- Consider any arbitrary permutation. Let X(i) denote the element at index i, where $i = 1, \dots, n$.
- Algorithm:
- 1) Set m=n.
- 2) Generate a random variable a_m that is equally likely to take any value from $1, \dots, m$
- 3) Interchange values of $X(a_m)$ and X(m)
- 4) Set $m \leftarrow m-1$. Repeat last 2 steps, until m=1.

CDF Transform

- Let X = continuous RV with CDF $F(\cdot)$ that is **strictly increasing**. Thus, $F(\cdot)$ has an inverse function.
- Define U := F(X) as a transformed random variable
- Then, U is a RV with a uniform PDF over [0,1]
- Proof:

Range of values that U can take = range of values CDF $F(\cdot)$ can take = [0,1]. The CDF of U evaluated at u is, by definition, $P(U \le u) = P(F(X) \le u) = P(X \le F^{-1}(u)) = F(F^{-1}(u)) = u$ Thus, PDF of U is the constant 1 over the interval [0,1] Q.E.D.

Another way to look at it: Start with a RV U having a uniform PDF over [0,1]

Define $X := G^{-1}(U)$, where G(Z) is a strictly increasing function (CDF) from $[0,1] \to [0,1]$. Let Q(Z) (PDF) be the derivative of G(Z)

Then, what is the CDF of X?

Answer: $P(U \le u) = u = G(G^{-1}(u)) = Q(X \le G^{-1}(u)) = Q(X \le x)$

Thus, sampling from P(U) and applying the transformation $G^{-1}(U)$ gives us a RV whose PDF is Q(X)

Thus, we can simulate a RV X with a strictly-increasing CDF $F(\cdot)$ by simulating a uniform random variate U on [0,1] and then applying the transformation $F^{-1}(u)$

Example: Let X be uniform on the interval [a,b]. Then, $u:=\frac{x-a}{b-a}$ is uniform on the interval [0,1].

Proof: The CDF OF X, i.e., $F(x) = \frac{x-a}{b-a}$. Thus, the defined u is the CDF transform of x.

Example: Let X be an exponential random variable. Then its CDF $F(x) = 1 - \exp(-\lambda x)$ for $x \ge 0$.

Thus, the transform $g(\cdot)$ that matches (mass conservation) the CDF T to the CDF of U (uniform random variable over [0,1]) is such that $1-\exp(-\lambda x)=u$, where x=g(u).

Thus, $x = -(1/\lambda)\log(1-u)$ is the relationship, and the transform, that maps U to X. Note that 1-U is also a uniform random variable on [0,1].

Example: A Pareto distribution has the PDF $P(x) = \beta \alpha^{\beta}/x^{\beta+1}$, for $x > \alpha$, and P(x) = 0 otherwise. This has the CDF $F(x) = 1 - (\alpha/x)^{\beta}$ for $x \ge \alpha$. Thus, the required transformation to simulate a Pareto RV is $x = \alpha/(1-u)^{1/\beta}$.