2023 春季学期-计算机组成原理-作业五

(要求: 独立完成, 6 月 16 日上课时上交)

- 1. (8 points) (课本 P268 页第 3 题) 某计算机主存最大寻址空间为 4GB, 按字节编址, 假定用 64M×8 位的具有 8 个位平面的 DRAM 芯片组成容量为 512MB、传输宽度为 64 位的内存条(主存模块)。回答下列问题:
 - (1) 每个内存条需要多少个 DRAM 芯片?
 - (2) 构建容量为 2GB 的主存时,需要几个内存条?
 - (3) 主存地址有多少位? 其中哪几位用于 DRAM 芯片内地址? 哪几位为 DRAM 芯片内的行地址、哪几位为列地址? 哪几位用于选择芯片?

参考答案:

- (1) 每个内存条传输宽度要求 64 位,因此总容量 $512MB=64M\times64$ 。因此,需要的 DRAM 芯片数为 $64M\times64/64M\times8=8$ 。
- (2) 每个内存条容量为 512MB, 因此构建 2GB 主存时需要 4 根内存条。
- (3) 主存寻址空间为 $4GB = 2^{32}B$,因此需要 32 位地址。每个 DRAM 芯片可容纳 64M 字节,即 $8K \times 8K$ 字节,因此,行地址、列地址各需 13 位。剩余 6 位作为片选地址。
- 2. (8 points)(课本 P268 页第 6 题)某计算机中已配有 0000-7FFFH 的 ROM 区域,现在再用 $8K\times 4$ 位的 RAM 芯片形成 $32K\times 8$ 位的存储区域,CPU 地址线为 A0-A15,数据线为 D0-D7,控制信号为 R/\overline{W} (读/写)、 \overline{MREQ} (访存)。要求说明地址译码方案,并画出 ROM 芯片、RAM 芯片与 CPU 之间的连接图。假定上述其他条件不变,只是 CPU 地址线改为 24 根,地址范围 000000H-007FFFH 为 ROM 区,剩下的所有地址空间都用 $8K\times 4$ 位的 RAM 芯片配置,则需要多少个这样的 RAM 芯片?

参考答案:

CPU 总共有 16 根地址线,所以,可以访问的主存空间为 0000H-FFFFH。由于 0000H-7FFFH 已经分配给 ROM,因此所需的 32KB RAM 区域的地址分配在 8000H-FFFFH 区间。

访问 8000H-FFFFH 区间需要的地址位数为 15,因此,CPU 地址线第 16 位 A_{15} 可作为选择 ROM 与 RAM 区域的选择信号。

RAM 芯片的大小为 $8K \times 4$,所以形成 $32K \times 8$ 的存储区域需要 8 片 RAM 芯片。每两片一组作为位扩展,四组芯片形成字扩展。

每片 $8K \times 4RAM$ 芯片需要的片内地址线为 13 位。可用 CPU 地址线 $A_0 - A_{12}$ 作为片内地址。 其余两位 A_{13} 和 A_{14} 作为片选信号,选择四组芯片中的某一组。

当 CPU 地址线增加至 24 位时,总的寻址空间为 2^{24} ,其中 ROM 占用了 2^{15} 个地址,因此,RAM 的空间大小为 $2^{24}-2^{15}=(2^9-1)\times 2^{15}$ 。

每个 $32K\times 8$ 的存储器占用 32K 个存储空间,因此,需要 $32K\times 8$ 的存储器数量为 $(2^9-1)\times 2^{15}/32K=2^9-1=511$ 。

每个 $32K \times 8$ 的存储器又由 8 个 $8K \times 4$ 芯片组成,因此总共需要 4088 个 $8K \times 4$ 的 RAM 芯片。

3. (8 points) 假定某计算机的总线采用奇校验,每 8 位数据有一位校验位,若在 32 位数据线上传输的信息是 8F3CAB96H,则对应的 4 个校验位应为什么?若接收方收到的数据信息和校验位分别为873CAB96H 和 0101B,则说明发生了什么情况,并给出验证过程。

参考答案:

奇校验的表达式为 $P_{odd} = b(n-1) \oplus b(n-2) \cdots \oplus b(0) \oplus 1$ 。

信息序列中有奇数个 1 时, $P_{odd} = 0$,否则 $P_{odd} = 1$ 。

对于传输信息 8F 3C AB 96H, 其对应的二进制校验位为:

 $8F \longrightarrow 1000_{1111} \longrightarrow P_{odd} = 0$

 $3C \longrightarrow 0011_1100 \longrightarrow P_odd = 1$

 $AB \longrightarrow 1010_{1011} \longrightarrow P_{odd} = 0$

96 --> 1001_0110 ---> P_odd = 1

对于接收信息 87 3C AB 96H, 其对应的二进制校验位为:

87 --> 1000_0111 ---> P_odd' = 1

 $3C \longrightarrow 0011_1100 \longrightarrow P_odd' = 1$

 $AB \longrightarrow 1010_{1011} \longrightarrow P_{odd'} = 0$

96 --> 1001_0110 ---> P_odd' = 1

校验: $P_{odd} \oplus P'_{odd} = 1000$, 说明第一组传输错误。

4. (8 points) 假定一个 8 位数据 $M_7 M_6 M_5 M_4 M_3 M_2 M_1 M_0$ 为 01010100,要求写出其 SEC 码,并说 明 SEC 码如何检测数据位 M_5 的错误。

参考答案:

对于 8 位数据, 其 SEC 码需要 4 位校验位。参考课本或课件中的计算规则,校验位和数据位所处的位置为:

 $M_7M_6M_5M_4P_3M_3M_2M_1P_2M_0P_1P_0$

采用任意方法,计算出校验位与数据位的关系如下:

 $P_3 = M_4 \oplus M_5 \oplus M_6 \oplus M_7$

 $P_2 = M_1 \oplus M_2 \oplus M_3 \oplus M_7$

 $P_1 = M_0 \oplus M_2 \oplus M_3 \oplus M_5 \oplus M_6$

 $P_0 = M_0 \oplus M_1 \oplus M_3 \oplus M_4 \oplus M_6$

因此, 所给数据的 SEC 码为 010100101000。

数据位 M_5 位于码字第 10 位。在接收端,使用相同的算法求出接收信息的校验位,从而计算故障码,若故障码为 1010,即代表码字第 10 位 (即 M_5) 出现错误。

5. (8 points) 假设要传送的数据信息为 100011,若约定的生成多项式为 $G(x) = x^3 + 1$,则发送的包含校验码的信息有多少位?请说明如何在接收端检测接收数据的正确性?

参考答案:

数据信息为 100011, 其多项式形式为 $M(x) = x^5 + x + 1$.

生成多项式 $G(x) = x^3 + 1$, 为 4 位, 因此, 校验位为 3 位。所以发送信息总共 9 位。

将接收到的数据与校验码结合,然后对 G(x) 进行模 2 除法,余数为 0,则说明数据无错误,否则数据有错误。

- 6. (8 points) (课本 P268 页第 11 题) 假定某计算机主存地址空间大小为 1GB, 按字节编址, cache 的数据区 (即不包括标记、有效位等存储区) 有 64KB, 块大小为 128 字节, 采用直接映射和直写 (write through) 方式。请问:
 - (1) 主存地址如何划分?要求说明每个字段的含义、位数和在主存地址中的位置。
 - (2) cache 的总容量为多少位?

参考答案:

(1) 主存空间大小为 1GB, 因此, 主存地址总位数为 30 位。

块大小位 128 字节, 因此, 块内地址为 7 位。

Cache 采用直接映射,数据区总共 64KB,每块 128 字节,所以 cache 总共有 64K/128 = 512 行。因此,行索引需要 9 位。

剩余 14 位全部为标记 tag。

综上, 主存地址高 14 位为标记, 中间 9 位为行索引, 低 7 位为块内地址。

- (2) 由于采用直写的方式,不需要增加额外的标记位。cache 每行的内容为有效位、标记和数据。所以,cache 的总容量为 $512 \times (1 + 14 + 128 \times 8) = 531968$ 位。
- 7. (8 points) (课本 P268 页第 12 题) 假定某计算机的 cache 共 16 行,开始为空,块大小为 1 个字,采用 直接映射方式,按字编址。CPU 执行某程序时,依次访问以下地址序列:2,3,11,16,21,13,64,48,19,11,3,22,4,27,6 和 11。
 - (1) 说明每次访问是命中还是缺失, 试计算访问上述地址序列的命中率。
 - (2) 若 cache 数据区容量不变,而块大小改为 4 个字,则上述地址序列的命中情况又如何?

参考答案:

(1) cache 采用直接映射,总共能存 16 个字,由于数据块的大小为 1 个字,因此 cache 总共有 16 行。

由于机器采用按字编址,因此,每个主存块包含一个存储单元,所以,主存地址 = 主存块号。 所以,数据映射到 cache 的行号 = 主存地址 $\mod 16$ 。

程序开始执行时,cache 为空,所以每个地址单元的第一次访问总是缺失。针对题目中给出的地址序列,CPU 的访问过程如下(每个数字对,x-y,表示主存地址–cache 行号,hit 表示命中,miss 表示缺失,miss/replace 表示缺失并替换。):

2-2: miss; 3-3: miss; 11-11: miss; 16-0: miss; 21-5: miss; 13-13: miss; 64-0: miss/replace; 48-0: miss/replace; 19-3: miss/replace; 11-11: hit; 3-3: miss/replace; 22-6: miss; 4-4: miss; 27-11: miss/replace; 6-6: miss/replace; 11-11: miss/replace.

整个过程只有一次命中,因此命中率为 $1 \div 16 = 6.25\%$ 。

(2) cache 块大小改为 4 个字后, cache 总行数减少为 4 行。

数据块大小为 4 个字,因此,每个主存块包含 4 个主存单元。所以,主存块号 =[主存地址/4]。数据映射到 cache 的行号 = 主存块号 $\mod 4$ 。

CPU 的访问过程如下(数字对 x-y-z 表示主存地址-主存块号-cache 行号):

2-0-0: miss; 3-0-0: hit; 11-2-2: miss; 16-4-0: miss/replace; 21-5-1: miss; 13-3-3: miss; 64-16-0: miss/replace; 48-12-0: miss/replace; 19-4-0: miss/replace; 11-2-2: hit; 3-0-0: miss/replace; 22-5-1: hit; 4-1-1: miss/replace; 27-6-2: miss/replace; 6-1-1: hit; 11-2-2: miss/replace.

整个过程中有 4 次命中,因此命中率为 $4 \div 16 = 25\%$ 。数据块变大后,命中率也获得提高,其原因在于块变大后空间局部性得到更大发挥。

- 8. (8 points) (课本 P271 页第 19 题)假定某处理器可以通过软件对高速缓存设置不同的写策略,那么,在下列两种情况下,应分别设置成什么写策略?为什么?
 - (1) 处理器主要运行包含大量存储器写操作的数据访问密集型应用。
 - (2)处理器运行程序的性质与(1)相同,但安全性要求很高,不允许有任何数据不一致的情况发生。

参考答案:

- (1) 处理器主要运行数据访问密集型应用时,对主存带宽要求较高,因此,采用占用主存带宽 更小的回写法 (write back)。
- (2) 由于不允许任何数据不一致情况的发生,因此采用全写法(write through)保证 cache 与 主存的同步更新。
- 9. (8 points) (课本 P271 页第 22 题) 假定有 3 个处理器, 分别带有以下不同的 cache:
 - cache 1: 采用直接映射方式, 块大小为 1 个字, 指令和数据的缺失率分别为 4% 和 6%。
 - cache 2: 采用直接映射方式, 块大小为 4 个字, 指令和数据的缺失率分别为 2% 和 4%。
 - cache 3: 采用 2 路组相联映射方式,块大小为 4 个字,指令和数据的缺失率分别为 2% 和 3%。

在这些处理器上运行同一个程序,其中有一半是访存指令,在 3 个处理器上测得该程序的 CPI 都为 2.0。已知处理器 1 和 2 的时钟周期都为 420ps,处理器 3 的时钟周期为 450ps。若缺失损失为 (块大小 +6) 个时钟周期,请问:哪个处理器因 cache 缺失而引起的额外开销最大?哪个处理器执行速度最快?

参考答案:

假设程序总共执行 N 条指令。

对于处理器 1,额外开销为 $N \times (4\% + 6\% \times 50\%) \times (1+6) = 0.49N$ 个时钟周期,因此,执行程序所需的时间为 $(N \times 2.0 + 0.49N) \times 420 = 1045.8Nps$ 。

对于处理器 2,额外开销为 $N \times (2\% + 4\% \times 50\%) \times (4+6) = 0.4N$ 个时钟周期,因此,执行程序所需的时间为 $(N \times 2.0 + 0.4N) \times 420 = 1008Nps$ 。

对于处理器 3,额外开销为 $N \times (2\% + 3\% \times 50\%) \times (4+6) = 0.35N$ 个时钟周期,因此,执行程序所需的时间为 $(N \times 2.0 + 0.35N) \times 450 = 1057.5Nps$ 。

因此,处理器 1 因 cache 缺失造成的额外开销最大,处理器 2 的执行速度最快。

10. (8 points) (课本 P271 页第 25 题) 假定一个计算机系统中有一个 TLB 和一个 L1 数据 cache。该系统按字节编址,虚拟地址 16 位,物理地址 12 位,页大小为 128B; TLB 采用 4 路组相联方式,共有 16 个页表项; L1 数据 cache 采用直接映射方式,块大小为 4B,共 16 行。在系统运行到某一时刻时,TLB、页表和 L1 数据 cache 中的部分内容如下:

请问(假定图中数据都为16进制形式):

- (1) 虚拟地址中哪几位表示虚拟页号?哪几位表示页内偏移量?虚拟页号中哪几位表示 TLB 标记?哪几位表示 TLB 索引?
- (2) 物理地址中哪几位表示物理页号? 哪几位表示页内偏移量?
- (3) 主存物理地址如何划分成标记字段、行索引字段和块内地址字段?
- (4) CPU 从地址 067AH 中取出的值为多少?说明 CPU 读取地址 067AH 中内容的过程。

参考答案:

- (1) 页大小为 128B,因此,页内偏移量为 7 位。所以,虚拟地址中,低 7 位为页内偏移量,剩余的高 9 位为虚拟页号。TLB 采用 4 路组相联,所以,TLB 索引为 2 位,其余的高 7 位为 TLB 标记。
- (2) 物理地址共 12 位,其中,低 7 位与虚拟地址相同,表示页内偏移量,高 5 位表示物理页号。
- (3) L1 数据 cache 块大小为 4 字节,所以块内地址字段为 2 位。采用直接映射方式,且总共有 16 行,因此行索引字段为 4 位。其余的 6 位作为标记字段。因此,物理地址高 6 位为标记字段,中间 4 位为行索引字段,低 2 位为块内地址字段。

 $(4)\ 067AH = 0000_0110_0111_1010B$ 。因此,虚拟地址高 9 位为 000001100。按照 TLB 的地址格式,低两位为索引,高七位为标记,可知,TLB 组号为 0。查找第 0 组中标记为 0000011 = 3H 的标记,虽然 TLB 中存在该项,但是有效位为 0,因此 TLB 缺失,需要访问页表。

查找页表时,虚拟地址高 9 位为 000001100 = 0CH,查表可知,对应行有效位为 1,由此可得物理页号为 19H。结合虚拟地址低 7 位页内偏移,可得物理地址为 $11001_1111010$ 。

按照物理地址查找 cache。按照 cache 的地址格式 110011_1110_10 ,行索引为 1110=EH,标记为 110011=33H,与 cache 中的标记相匹配,因此数据存在于 cache 中。最后按照块内地址 10B,得到数据为 4AH。

组号	标记	页框号	有效位									
0	03	-	0	09	OD	1	00	-	0	07	02	1
1	13	2D	1	02	-	0	04	-	0	OA	-	0
2	02	-	0	08	-	0	06	-	0	03	-	0
3	07	-	0	03	OD.	1	OA	34	1	72	-	0

TLB(4路组相联): 4组、16个页表项

虚页号	页框号	有效位
から フ	火化・フ	日从巴

00	08	1
01	03	1
02	14	1
03	02	1
04	1	0
05	16	1
06	-	0
07	07	1
08	13	1
09	17	1
OA	09	1
0B	1	0
OC	19	1
OD	-	0
OE	11	1
0F	OD	1

部分页表(前16项)

行索引 标记 有效位 字节3 字节2 字节1 字节0

11 31/ 21	-1/J - 1/L	11/1/12	1 40	1 14 5	1 la.r	1 140
0	19	1	12	56	С9	AC
1	-	0	1	1	1	-
2	1B	1	03	45	12	CD
3	ı	0	1	1	1	ı
4	32	1	23	34	C2	2A
5	OD	1	46	67	23	3D
6	-	0	1	1	1	1
7	16	1	12	54	65	DC
8	24	1	23	62	12	3A
9	1	0	1	1	1	1
A	2D	1	43	62	23	C3
В	1	0	1	1	1	1
С	12	1	76	83	21	35
D	16	1	А3	F4	23	11
Е	33	1	2D	4A	45	55
F		0	_	_	_	-

L1数据cache: 直接映射、16行、块大小4B