Transformer Modeling

The equivalent circuit

Transformer Modeling

The equivalent circuit

Referred to primary

Referred to secondary

Magnetizing current

Recall the Hysteresis curve B versus H

At a sufficiently high *H* the core saturates and *B* is essentially constant.

The usual design principle is to have $B = B_{sat}$ at the voltage peaks in the primary. (This minimizes the amount of iron needed in the core)

Magnetizing current

$$v_{_{1,\max}} = -\frac{d\Phi_{_{1,\max}}}{dt}$$

$$V_{1,peak} = \omega B_{sat} A$$

$$i_1 = \frac{Hl_{core}}{N_1}$$

If v_I goes beyond this range, however, H is above H_{sat} , and the effective inductance seen at the primary becomes small. The flux is also not well-confined to the core. Because of the reduced inductance, the current in the primary becomes large in these peak parts of the cycle.

Magnetizing current

Excitation current

Total excitation current

$$i_{ex} = i_m + i_{h+e}$$

Transformer Modeling

Approximate equivalent circuits

1-D.C. test

- This test is carried out to measure the resistance of each winding
- The resistance of each winding is obtained from the Ohms Law $\,\mathbf{R} = \,\mathbf{E}/\mathbf{I}\,$

2- Open Circuit Test

- The secondary winding is left open
- ■The primary winding is connected to a full-rated voltage
- ■Measure V, I, P
- ■Want to find R_C and X_M

2- Open Circuit Test

Conductance of the core-loss resistor

$$G_C = 1/R_C$$

Susceptance of the magnetizing inductor

$$B_M = 1/X_M$$

Total admittance

$$Y_E = G_C - jB_M = \frac{1}{R_C} - j\frac{1}{X_M} \qquad \begin{cases} \mathbf{v}_P & \\ \\ \mathbf{v}_P & \\ \end{cases}_{jX_M}$$

The admittance magnitude

$$Y_E = \frac{I_{OC}}{V_{OC}}$$

2- Open Circuit Test

- The angle
 - □ First we find power factor $PF = \cos\theta = \frac{P_{OC}}{V_{OC}I_{OC}}$ □ Then the power-factor angle is given by

$$\theta = \cos^{-1} \left(\frac{P_{OC}}{V_{OC} I_{OC}} \right)$$

In a real transformer, the PF is always lagging

$$Y_E = \frac{I_{OC}}{V_{OC}} \angle - \theta = \frac{I_{OC}}{V_{OC}} \angle - \cos^{-1} PF$$

The values of R_C and X_M can be determined

3- Short Circuit Test

- The secondary terminals are shorted
- The input voltage is adjusted until the current is equal to its rated value
- ■Measure V, I, P
- Want to find R_{eq} and X_{eq}

3- Short Circuit Test

Series impedance referred to primary

$$\left| Z_{SE} \right| = \frac{V_{SC}}{I_{SC}}$$

Power factor

$$PF = \cos\theta = \frac{P_{SC}}{V_{SC}I_{SC}}$$

The impedance angle

$$Z_{SE} = \frac{V_{SC} \angle 0^{\circ}}{I_{SC} \angle -\theta^{\circ}} = \frac{V_{SC}}{I_{SC}} \angle \theta^{\circ}$$

and

$$Z_{SE} = R_{eq} + jX_{eq}$$

Approximate equivalent circuits

Example

 A 20 kVA, 8000/240 V, 60 Hz transformer has been tested with the following data

Open-circuit test	Short-circuit test
(on primary)	(on primary)
Voc = 8000 V	Vsc = 489 V
loc = 0.214 A	Isc = 2.5 A
Poc = 400 W	Psc = 240 W

 Find the equivalent circuit referred to the primary side

Example

- Open-circuit test
 - Power factor

$$PF = \cos\theta = \frac{P_{OC}}{V_{OC}I_{OC}} = \frac{400\text{W}}{(8000\text{V})(0.214\text{A})} = 0.234 \text{ lagging}$$

Excitation admittance

$$Y_E = \frac{I_{OC}}{V_{OC}} \angle - \cos^{-1} PF = \frac{0.214}{8000} \angle - \cos^{-1} 0.234$$
$$= 0.00000063 - j0.0000261 = \frac{1}{R_C} - j\frac{1}{X_M}$$

□ Therefore $R_C = 159 \text{ k}\Omega$ $X_M = 38.4 \text{ k}\Omega$

Example

- Short-circuit test
 - Power factor

$$PF = \cos\theta = \frac{P_{SC}}{V_{SC}I_{SC}} = \frac{240\text{W}}{(489\text{V})(2.5\text{A})} = 0.196 \text{ lagging}$$

Series impedance

$$Z_{SE} = \frac{V_{SC}}{I_{SC}} \angle \cos^{-1} PF = \frac{489}{2.5} \angle 78.7$$
$$= 38.4 + j192$$

Therefore

$$R_{eq} = 38.4 \Omega$$
$$X_{eq} = 192 \Omega$$

Example

The equivalent circuit

