Digitale technieken – Deel 4

Les 6: COMBINATORISCHE SCHAKELINGEN

4.1. Codeomvormers, multiplexers en demultiplexers

Combinatorische schakelingen:

- De codeomvormer transformeert gecodeerde informatie naar een andere code (zie oefensessie 3).
- De decoder transformeert gecodeerde informatie naar nietgecodeerde informatie.
- De encoder maakt van niet gecodeerde informatie gecodeerde informatie.
- Een multiplexer werkt als een keuze schakelaar en verbindt meerdere ingangsklemmen met één uitgangsklem.
- Een demultiplexer doet het omgekeerde van een multiplexer en verbindt één ingang met één van de uitgangsklemmen.

Decoder

- De decoder transformeert gecodeerde informatie naar niet-gecodeerde informatie
- Niet-gecodeerde informatie = begrijpbaar voor de mens.
- Toepassingen:
 - → 7-segment decoder (zie ook vorige les bij technische codes)
 - → 1 uit 4 decoder = uitcodeerschakeling

7 – segment

$CA = \underline{c}ommon \underline{a}node$

$CC = \underline{c}ommon \underline{c}athode$

					GANG	UIT			1	NGEN	INGA	
a		g	f	e	d	С	ь	а	Α	В	С	D .
1	1	1	0	0	0	0	0	0	0	0	0	0
	f	1	1	1	1	0	0	1	1	0	0	0
i		0	1	0 1	0	1	0	0	0	1	0	0
	١.	0	1	1	0	0	0	0	1	1	0	0
1		0	0	.1	1	0	0	1	0	0	1	0
	e	0	0	1	0	0	1	0	1	0	1	0
i		0	0	0	0	0	1	1	0	1	1	0
'	١.	1	1	1	1	0	0	0	1	1	1	0
d		0	0	0	0	0	0	0	0	0	0	1
	_	0	0	1	1	0	0	0	1	0	0	1

Welk symbool wordt hier weergegeven?

Bemerk:

- Weergave van cijfer 6: geen bovenste streepje
- Weergave van cijfer 9: geen onderste streepje
- Extra symbolen van 10 t.e.m. 15

Symbool aan uitgangen: open collector uitgang → heeft invloed op aansluiten LED!

			ING	ANGE	N			UITGANGEN						
Dec	LT	RBI	D	С	В	Α	BI / RBO	a	b	c	ď	e	Ī	g
0	1	1	0	0	0	0	1	0	0	0	0	0	0	1
3 4	1	X	0	0 1	0	0	1	0 1	0	0	0 1	1	0	0
5	1	X	0	1	0	1	1	0	1	0	0	1	0	0
7	1	X	0	1 1	1 1	0 1	1 1	0	1 0	0	0 1	0 1	0 1	0 1
8	1	X	1	0	0	0	1	0	0	0	0	0	0	0
9	1	X	1	0	0	1	1	0	0	0	0	1	0	0
10 11	1	X	1	0	1	0	1	1	1	1	0	0	1	0
12	1	X	1 1	0	0	1 0	1 1	1	1 0	0 1	0 1	1	1 0	0
13	1	X	1	1	0	1	1	0	1	1	0	1	0	0
14	1	X	1	1	1	0	1	1	1	1	0	0	0	0
15	1	X	1	1	1	1	1	1	1	1	1	1	1	1
BI	X	X	X	X	X	X	0	1	1	1	1	1	1	1
RBI	1	0	0	0	0	0	0	1	1	1	1	1	1	1
LT	0	X	X	X	X	X	1	0	0	0	0	0	0	0

LT = Lamp Test BI = Blanking Input

			ING	SANGE	N					UIT	GANG	EN		
Dec	LT	RBI	D	С	В	Α	BI / RBO	a	b	ċ	d	ē	Ī	g
0	1	1	0	0	0	0	1	0	0	0	0	0	0	1
1	1	X	0	0	0	1	1	1	0	0	1	1	1	1
2	1	X	0	0	1	0	1	0	0	1	0	0	1	0
3 4	1 1	X	0	0	1 0	0	1 1	0 1	0	0	0 1	1 1	0	0
5	1	x	0	1	0	1	1	0	1	0	0	1	0	0
6	1	X	0	1	1	0	1	0	1	0	0	0	0	0
7	1	X	0	1	1	1	1	0	0	0	1	1	1	1
8	1	X	1	0	0	0	1	0	0	0	0	0	0	0
9	1	X	1	0	0	1	1	0	0	0	0	1	0	0
10	1	X	1	0	1	0	1	1	1	1	0	0	1	0
11 12	1	X	1 1	0	1 0	1 0	1	1 1	1 0	0 1	0 1	1 1	0	0
13	1	x	1	1	0	1	1	0	1	1	0	1	0	0
14	1	X	1	1	1	0	1	1	1	1	0	0	0	0
15	1	х	1	1	1	1	1	1	1	1	1	1	1	1
BI	X	X	X	X	X	X	0	1	1	1	1	1	1	1
BI	1	0	0	0	0	0	0	1	1	1	1	1	1	1
LT	0	X	X	X	X	X	1	0	0	0	0	0	0	0

Begrip "duty-cycle δ"

- 2 signalen met zelfde periode, dus zelfde frequentie, maar toch verschillende aantijd T_{on} en uittijd T_{off}!
- $T = T_{on} + T_{off}$
- δ = duty-cycle (δ uitspreken als 'delta') = gedeelte van de periode dat het signaal hoog is (in %)

•
$$\delta = \frac{T_{on}}{T} = \frac{T_{on}}{T_{on} + T_{off}}$$

IC 74LS47 (in labo): knipperen en/of intensiteitsregeling

<u>BI</u> = <u>B</u>lanking <u>Input</u> = alle segmenten doven <u>BI</u> actief laag \rightarrow 'blanken' (= doven) als signaal laag is

δ klein → donkerder display → Ugem laag δ groot → lichter display → Ugem hoog Knipperen bij lage frequentie (tot 30 à 50 Hz) Intensiteitsregeling bij hogere frequentie (boven 50 Hz)

IC 74LS47: RBI = Ripple Blanking Input

			ING	ANGE	N					UIT	GANG	iEN		
Dec	LT	RBI	D	С	В	Α	BI / RBO	a	b	c	d	ē	Ē	g
0	1	1	0	0	0	0	1	0	0	0	0	0	0	1
1	1	X	0	0	0	1	1	1	0	0	1	1	1	1
2	1	X	0	0	1	0	1	0	0	1	0	0	1	0
3	1	X	0	0	1	1	1	0	0	0	0	1	1	0
4	1	X	0	1	0	0	1	1	0	0	1	1	0	0
5	1	X	0	1	0	1	1	0	1	0	0	1	0	0
6	1	X	0	1	1	0	1	0	1	0	0	0	0	0
7	1	X	0	1	1	1	1	0	0	0	1	1	1	1
8	1	X	1	0	0	0	1	0	0	0	0	0	0	0
9	1	X	1	0	0	1	1	0	0	0	0	1	0	0
10	1	X	1	0	1	0	1	1	1	1	0	0	1	0
11	1	X	1	0	1	1	1	1	1	0	0	1	1	0
12	1	X	1	1	0	0	1	1	0	1	1	1	0	0
13	1	X	1	1	0	1	1	0	1	1	0	1	0	0
14	1	X	1	1	1	0	1	1	1	1	0	0	0	0
15	1	X	1	1	1	1	1	1	1	1	1	1	1	1
ы							0	1	1	1	1	1	1	1
RBI	1	0	0	0	0	0	→ 0	1	1	1	1	1	1	1
	v	^	^			^	1	0	0	0	0	0	0	0

Als voorwaarden in rode kader voldaan zijn, dan zal BI/RBO werken als RBO output (ipv BI input); m.a.w. dan wordt RBO laag

IC 74LS47: RBI = Ripple Blanking Input

Doel van deze schakeling? Onderdrukking van leidende nullen! (kunnen uitleggen aan de hand van de WT) Als $\overline{RBI} = 0$ en A, B, C en D=0 (m.a.w. getalwaarde o) dan worden alle uitgangen 1 en doven de segmenten. Daarbij wordt ook \overline{RBO} een uitgang en o \rightarrow doorgeven aan volgende IC!!

1 vit 4 decoder = "1 vit 2" decoder" met n = aantal ingangen 1 vit 4 decoder = vitcodeerschakeling = slechts 1

1 uit 4 decoder = uitcodeerschakeling = slechts 1
uitgang hoog maken!

1 uit 4 decoder

В	А	0	1	2	3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Toepassing: BCD/DEC decoder

Reden dubbele invertor?

Toepassing: BCD/DEC decoder

No		INP	UTS						OUT	PUTS				
	D	С	В	Α	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
1	L	L	L	Н	Η	L	Н	Н	Н	Н	Н	Н	Н	Н
2	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н
3	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н
4	L	Н	L	L	Ξ	Η	Н	Н	L	Н	Н	Н	Н	Н
5	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
6	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н
7	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н
8	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
9	Н	L	L	Н	Ξ	Н	Н	Н	Н	Н	Н	Н	Н	L
	Н	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	Н	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
INVALID	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
=	Н	Н	Н	L	Η	Н	Н	Н	Н	Н	Н	Н	Н	Н
	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н

Bij de BCD-code worden slechts de waarden o...9 gebruikt! (In een eigen Karnaugh kaart zou je hier 'x' = don't cares mogen zetten.

Toepassing BCD/DEC decoder

Type ingang?
Type uitgang?

Encoder (↔ Decoder)

De encoder maakt van niet gecodeerde informatie gecodeerde informatie.

Encoder = incodeerschakeling = omgekeerde van hiervoor

Encoder: Toetsenbordencoder

-:: f		BCD-	code	•
cijfers	۵	С	В	Α
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Encoder: Toetsenbordencoder

-:: f		BCD-	code	•
cijfers	۵	С	В	Α
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

$$A = 1 + 3 + 5 + 7 + 9$$
 $\overline{A} = \overline{1.3.5.7.9}$
 $B = 2 + 3 + 6 + 7$ $\overline{B} = \overline{2.3.6.7}$
 $C = 4 + 5 + 6 + 7$ $\overline{C} = \overline{4.5.6.7}$
 $D = 8 + 9$ $\overline{D} = \overline{8.9}$

omzetten via?

Encoder

Multiplexer ↔ Demultiplexer

Principiële voorstelling: meerkeuzeschakelaar (dit is geen IEC-symbool!)

Multiplexer

Demultiplexer

Multiplexer (met 2 ingangen A en B en dus 1 selectielijn S)

S	Α	В	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1 1 0 0	1	1 0
1	0	0	0
1		1	1
1	1 1	0	0
1	1	1	1

	A:	=0	A:	=1
S=0	0	0	1	1
S=1	0	1	1	0
B=	0	B=	=1	B=0

Formule:

$$Y = \overline{S}A + SB$$

Formule: $Y = \overline{S}A + SB$

Zelfde schakeling met enkel NAND poorten:

Formule:

$$Y = \overline{S}A + SB$$

Voordeel t.o.v. vorige schakeling?

Multiplexer met 4 ingangen (2 selectielijnen)

IEC-symbool

Met afhankelijkheidsnotatie G!!! (betekenis goed kennen)
Functie van EN-klem (enable)?

EN	S ₁	S ₀	Х	
1	X	X	0	disable
0	0	0	I_0	
0	0	1	I_1	enable
0	1	0	l ₂	
0	1	1	l ₃	

Vereenvoudigde (of verkorte) tabel door don't cares!

EN	S ₁	S ₀	Х	
1	X	X	0	disable
0	0	0	I ₀	
0	0	1	l ₁	enable
0	1	0	l ₂	
0	1	1	l ₃	

$$X = I_0.\overline{S}_1.\overline{S}_0 + I_1.\overline{S}_1.S_0 + I_2.S_1.\overline{S}_0 + I_3.S_1.S_0$$

Poortschema

ANSI-symbool

Multiplexer

Demultiplexer

74HC/HCT153 in lab (8 ingangen, slechts 2 selectielijnen!?)

Cascadeschakeling: '= soort achtereenschakeling' (geen serie- of parallelschakeling)

Cascadeschakeling

Cascadeschakeling

Selectie van 1e of 2e mux is MSB!

U	В	Α	ENa	EN _b	U	٧	X
0	0	0	1	0	D_{0a}	0	D_{0a}
0	0	1	1	0	D_{1a}	0	D _{1a}
0	1	0	1	0	D_{2a}	0	D_{2a}
0	1	1	1	0	D_{3a}	0	D_{3a}
1	0	0	0	1	0	D _{0b}	D_{0b}
1	0	1	0	1	0	D _{1b}	D _{1b}
1	1	0	0	1	0	D_{2b}	D_{2b}
1	1	1	0	1	0	D _{3b}	D_{3b}

Toepassing: logische functies met multiplexers 3 variabelen → Mux met 3 selectielijnen

#					
	С	В	Α	Х	
	0	0	0	1	
	0	0	1	0	
	0	1	0	0	
	0	1	1	0	
	1	0	0	1	
	1	0	1	1	
	1	1	0	0	
	1	1	1	1	

Te kennen voor oefensessie 4!!!

Demultiplexers: principiële voorstelling

Demultiplexers: met 2 uitgangen en 1 selectielijn

S	Α	Y ₀	Υ ₁	
0	0	0	0	
0	1 0	1 0	0 0	
1	0		0	
1	1	0	1	

$$Y_0 = \overline{S}.A$$

$$Y_1 = S.A$$

Demultiplexers: met 2 uitgangen en 1 selectielijn

$$Y_0 = \overline{S}.A$$

$$Y_1 = S.A$$

Poortschema:

Demultiplexers: met 4 uitgangen en 2 selectielijnen

DX of DMUX in IEC-symbool

Hoe moet je de EN-klem verbinden om de DMUX te laten werken?

Demultiplexers: met 4 uitgangen en 2 selectielijnen

EN	S ₁	S ₀	Y ₀	Y ₁	Y ₂	Υ ₃	
1	X	X	0	0	0	0	disable
0	0	0	I	0	0	0	
0	0	1	0	I	0	0	enable
0	1	0	0	0	I	0	
0	1	1	0	0	0	I	

$$Y_0 = I.\overline{S}_1.\overline{S}_0$$

$$Y_1 = I.\overline{S}_1.S_0$$

$$Y_0 = I.\overline{S}_1.\overline{S}_0$$
 $Y_1 = I.\overline{S}_1.S_0$ $Y_2 = I.S_1.\overline{S}_0$ $Y_3 = I.S_1.S_0$

$$Y_3 = I.S_1.S_0$$

Demultiplexers: met 4 uitgangen en 2 selectielijnen

Strikt slechts 1 inverter nodig per selectie-ingang! Doel?

Decoder demultiplexer

Decodeerschakelingen zijn een bijzonder type demultiplexers omdat ze uit een aantal ingangssignalen (dus niet 1 zoals bij een demultiplexer) meerdere uitgangssignalen afleiden.

Men spreekt van een 1 naar 4 lijn demultiplexer (1 to 4 line demultiplexer) omdat er 1 ingang is en 4 uitgangen, maar ook van een 2 naar 4 lijn decoder (2 to 4 line decoder) waarbij de 2 selectielijnen nu als ingangen gebruikt worden bij dezelfde 4 uitgangen.

De gebruikte IC is dus dezelfde, maar de toepassing ervan is verschillend.

<u>In lab</u>:

In de datasheet van de 74HC155 'Dual 2 to 4 line decoder/demultiplexer' staat bij de Features dat de volgende toepassingen mogelijk zijn (controleer dit):

- Dual 2 to 4 line decoder
- Dual 1 to 4 line demultiplexer
- 3 to 8 line decoder
- 1 to 8 line demultiplexer

in cascadeopstelling