PMAL: Open Set Recognition via Robust Prototype Mining

Jing Lu^{1*}, Yunlu Xu^{1*}, Hao Li¹, Zhanzhan Cheng^{1,2†}, Yi Niu¹

¹ Hikvision Research Institution, Hangzhou, China ² Zhejiang University, Hangzhou, China {lujing6, xuyunlu, lihao50, chengzhanzhan, niuyi}@hikvision.com

Idea • Explicit Prototype Mining Prototype Multifarious Apperance Filter quality sample (a) Mine High-quality (b) Filter with diversity Candidates

Contribution

- Instead of implicitly learn prototypes, we mine prototypes with two explicit criterias for OSR task, namely the *high-quality* and *diversity*.
- ◆ We propose a framework by prototype mining and learning orderly. In prototype mining, two key attributes are considered. In prototype learning, with the chosen prototypes as fixed anchors, a better embedding space is learned.
- ◆ PMAL shows more stable and superior performance especially in complicated large-scale tasks.

Performance

('C'/'IN' is short for 'CIFAR'/'ImageNet')

Methods	Close set ACC					Open set AUROC							
Wethous	MNIST	SVHN	C10	C+10	C+50	TINY	MNIST	SVHN	C10	C+10	C+50	TINY	
SoftMax	99.5	94.7	80.1	-	-	-	97.8	88.6	67.7	81.6	80.5	57.7	
CPN (Yang et al.)	99.7	96.7	92.9	94.8*	95.0*	81.4*	99.0	92.6	82.8	88.1	87.9	63.9	
PROSER (Zhou, Ye, and Zhan)	-	96.5	92.8	-	-	52.1	94.3	-	89.1	96.0	95.3	69.3	 Comparisons on
CGDL (Sun et al.)	99.6	94.2	91.2	-	-	-	99.4	93.5	90.3	95.9	95.0	76.2	· · · · · · · · · · · · · · · · · · ·
OpenHybrid (Zhang et al.)	94.7	92.9	86.8	-	-	-	99.5	94.7	95.0	96.2	95.5	79.3	mainstream small
RPL-OSCRI (Chen et al.)	99.5*	95.3*	94.3*	94.6*	94.7*	81.3*	99.3	95.1	86.1	85.6	85.0	70.2	
ARPL (Chen et al.)	99.5	94.3	87.9	94.7	92.9	65.9	99.7	96.7	91.0	97.1	95.1	78.2	benchmarks
RPL-WRN (Chen et al.)	99.6*	95.8*	95.1*	95.5*	95.9*	81.7*	99.6	96.8	90.1	97.6	96.8	80.9	
PMAL-OSCRI	99.6	96.5	96.3	96.4	96.9	84.4	99.5	96.3	94.6	96.0	94.3	81.8	
PMAL-WRN	99.8	97.1	97.5	97.8	98.1	84.7	99.7	97.0	95.1	97.8	96.9	83.1	

Method	C	lose Set A	CC	Ope	en Set AUI	ROC	Additional Params			
	IN-LT	IN-100	IN-200	IN-LT	IN-100	IN-200	IN-LT	IN-100	IN-200	
Softmax	37.8	81.7	79.7	53.3	79.7	78.4	0	0	0	
CPN	37.1	86.1	82.1	54.5	82.3	79.5	2M	0.2M	0.4M	
RPL	39.0	81.8*	80.7*	55.1	81.2*	80.2*	2M	0.2M	0.4M	
RPL++	39.7	-	-	55.2	-	-	4M	-	-	
PMAL	42.9	86.2	84.1	71.7	94.9	93.9	0	0	0	

Comparisons on complex large benchmarks