Magnitudes Angulares

Alejandro A. Torassa

Licencia Creative Commons Atribución 3.0 (2013) Buenos Aires, Argentina atorassa@gmail.com

Resumen

En mecánica clásica, este trabajo presenta definiciones alternativas de magnitudes angulares.

Magnitudes Angulares

Las magnitudes angulares para una partícula A de masa m_a se definen con respecto a un vector posición \mathbf{r} que es constante en magnitud y dirección.

Momento Masa $\mathbf{K}_a = m_a (\mathbf{r} \times \mathbf{r}_a)$

Momento Angular $\mathbf{L}_a = m_a (\mathbf{r} \times \mathbf{v}_a)$

Momento Dinámico $\mathbf{M}_a = m_a (\mathbf{r} \times \mathbf{a}_a)$

Trabajo Angular $W_a = \int \mathbf{M}_a \cdot d(\mathbf{r} \times \mathbf{r}_a)$

Teorema $W_a = \Delta \frac{1}{2} m_a (\mathbf{r} \times \mathbf{v}_a)^2$

Donde \mathbf{r}_a , \mathbf{v}_a y \mathbf{a}_a son la posición, la velocidad y la aceleración de la partícula A.

Las magnitudes angulares para un sistema de partículas se definen también con respecto a un vector posición **r** que es constante en magnitud y dirección.