Large Language Models for Cyber Security: A Systematic Literature Review

HANXIANG XU, Huazhong University of Science and Technology, China SHENAO WANG, Huazhong University of Science and Technology, China NINGKE LI, Huazhong University of Science and Technology, China KAILONG WANG*, Huazhong University of Science and Technology, China YANJIE ZHAO, Huazhong University of Science and Technology, China KAI CHEN*, Huazhong University of Science and Technology, China TING YU, Hamad Bin Khalifa University, The State of Qatar YANG LIU, Nanyang Technological University, Singapore HAOYU WANG*, Huazhong University of Science and Technology, China

Outline

- Introduction
- What LLMs have been employed to support security tasks?
- What types of security tasks have been facilitated by LLM-based approaches?
- What domain specification technique are used to adapt LLMs to security tasks?
- What is the difference in data collection and pre-processing when applying LLMS to security tasks?
- Challenges and Opportunities

Introduction

This review conduct a systematic and extensive survey of the literature. By comprehensively collecting 38,112 relevant papers and systematically analyzing 127 papers from top

security and software engineering venues.

Collecting38,112 relevant papers

Publication Year

Research

- RQ1: What LLMs have been employed to support security tasks?
- RQ2: What types of security tasks have been facilitated by LLM-based approaches?
- RQ3: What domain specification techniques are used to adapt LLMs to security tasks?
- RQ4: What is the difference in data collection and pre-processing when applying LLMs to security tasks?

Search Strategy

Option for twelve of the top conferences and journals

Security: S&P, NDSS, USENIX, CCS, TDSC,

and TIFS

Software: ICSE, ESEC/FSE, ISSTA, ASE,

TOSEM, and TSE

arXiv papers of LLMs

Manual operations

ACM Digital Library, IEEE Xplore, Science Direct, Web of Science, Springer, Wiley, and arXiv.

Automated operations

Fig. 2. Paper Search and Selection Process.

Select Strategy

Fig. 1. Systematic Literature Review Methodology for LLM4Security.

What LLMs have been employed to support security tasks?

Classification

Encoder-Only

Encoder-only models comprise solely an encoder network, such as BERT and its variants, aim to predict a class label for input text.

Encoder-Decoder

Encoder-Decoder models consist of the encoder and decoder, such as transformer, BART, T5, etc. aim to process sequence-to-sequence generation tasks

Decoder-Only

The capability of the models to generate the target output text depends on the model's capacity to comprehend and forecast the structure, syntax, and context of language

	Model	Release Time	Open Source
Encoder-Only	BERT (8)	2018.10	Yes
	RoBERTa (12)	2019.07	Yes
	DistilBERT (3)	2019.10	Yes
	CodeBERT (8)	2020.02	Yes
	DeBERTa (1)	2020.06	Yes
	GraphCodeBERT (1)	2020.09	Yes
	CharBERT (1)	2020.11	Yes
	SecureBERT (1)	2022.04	Yes
Encoder-Decoder	T5 (4)	2019.10	Yes
	BART (1)	2019.10	Yes
	PLBART (3)	2021.03	Yes
	CodeT5 (5)	2021.09	Yes
	UniXcoder (1)	2022.03	Yes
	Flan-T5 (1)	2022.10	Yes
Decoder-Only	GPT-2 (9)	2019.02	Yes
	GPT-3 (4)	2020.04	Yes
	GPT-Neo (1)	2021.03	Yes
	CodeX (9)	2021.07	No
	CodeGen (5)	2022.03	Yes
	InCoder (1)	2022.04	Yes
	PaLM (3)	2022.04	No
	Jurassic-1 (1)	2022.04	No
	GPT-3.5 (52)	2022.11	No
	LLaMa (4)	2023.02	Yes
	GPT-4 (38)	2023.03	No
	Bard (8)	2023.03	No
	Claude (3)	2023.03	No
	StarCoder (3)	2023.05	Yes
	Falcon (2)	2023.06	Yes
	CodeLLaMa (4)	2023.08	Yes

Trend Analysis

Dominance of the decoder-only architecture in 2023 and 2024. 2023 and 2024 signaled a strong shift towards decoder-only LLMs, decoder-only LLMs have begun to take a leading role in the application of LLMs to solve security issues.

What types of security tasks have been facilitated by LLM-based approaches?

Classification

Security Domains	Security Tasks	Total
 	Web fuzzing (3)	22
	Traffic and intrusion detection (10)	
Network Security	Cyber threat analysis (5)	
	Penetration test (4)	
	Vulnerability detection (17)	76
	Vulnerability repair (10)	
	Bug detection (8)	
0.0	Bug repair (20)	
Software and System Security	Program fuzzing (6)	
	Reverse engineering and binary analysis (7)	
	Malware detection (2)	
	System log analysis (6)	
	Phishing and scam detection (8)	18
Information and Contant Security	Harmful contents detection (6)	
Information and Content Security	Steganography (2)	
	Access control (1)	
	Forensics (1)	
Handroone Consuites	Hardware vulnerability detection (2)	6
Hardware Security	Hardware vulnerability repair (4)	
Plastahain Committy	Smart contract security (4)	5
Blockchain Security	Transaction anomaly detection (1)	

Fig. 5. Distribution of LLM usages in security domains.

Application of LLMs in Network Security

Web fuzzing & Traffic and intrusion detection

Using GPT-Fuzzer to generate fuzzy test cases.

Wfuzz: The Web fuzzer

Wfuzz provides a framework to automate web applications security assessments and could help you to secure your web applications by finding and exploiting web application vulnerabilities.

WFuzz is a web application security fuzzer tool and library for Python.

See Wfuzz in action

Wfuzz cli:

Cyber threat analysis

LLM can generate reports for potential network security threats and predict their impact.

Penetration test

- Information gathering
- Utilizing LLMs to gather information for penetration testing, including the IP address, domain information, vendor technologies, SSL/TLS credentials, and other details of the target website.
- Payload construction
 LLM generates malicious payloads for penetration testing
- Vulnerability exploitation
 Developing an automated Linux privilege escalation guidance tool using LLMs.

Application of LLMs in Software and System Security

Vulnerability detection & repair

Using LLM for static vulnerability detection in code

- Automated vulnerability repair tool
- Utilizing LLMs to repair side-channel vulnerabilities in programs

Bug detection & repair

LLMs can be utilized to generate code lines and compare them with the original code to flag potential bugs within code snippets.

Utilizing LLMs produces patches for various types of errors and defects

Program fuzzing

LLM Generating Fuzzy Program Test Cases

Malware detection & System log analysis

Building malware variants

Utilizing the language understanding capabilities of LLMs to identify and analyze anomalies in log data.

Application of LLMs in Information and Content Security

Phishing and scam detection

Access control

- LLMs produce phishing emails
- LLMs detect phishing emails in spam emails

PassGPT, a password generation model leveraging LLMs, introduces guided password generation, wherein PassGPT's sampling process generates passwords adhering to user-defined constraints.

Harmful contents detection

- Detection of extreme political stances
- Tracking of criminal activity discourse identification of social media bots

Forensics

- File identification
- Evidence retrieval
- Incident response

What domain specification technique are used to adapt LLMs to security tasks?

Fine-tuning LLMs for Security Tasks

Full fine-tuning

Full fine-tuning involves adjusting all parameters of the LLMs, including every layer of the model.

Partial fine-tuning

Partial fine-tuning involves updating only the top layers or a few layers of the model during the fine-tuning process.

Fine-tuning technique	Security task	Reference
	Bug detection (1)	[56]
	Access control (1) The most popular way	
	Steganography (1)	[206]
	Reverse engineering and binary analysis (1)	[192]
	Traffic and intrusion detection (1)	[61]
Full fine-tuning	Phishing and scam detection (2)	[171] [89]
	Harmful contents detection (2)	[72] [134]
	System log analysis (2)	[96] [71]
	Vulnerability repair (3)	[217] [64] [239]
	Bug repair (4)	[233] [156] [87] [208]
	Vulnerability detection (5)	[37] [60] [198] [245] [97]
	Traffic and intrusion detection (1)	[9]
	Harmful contens detection (1)	[82]
Partial fine-tuning	Program fuzzing (1)	[46]
	Bug repair (2)	[91] [187]
	Bug detection (2)	[105] [226]
	Vulnerability detection (2)	[35] [97]

Prompting LLMs for Security Tasks

These prompts direct the large language models towards generating specific outputs while also serving as an interface for tapping into the vast knowledge encapsulated within these models.

External Augmentation

These external augmentation techniques facilitate improved interaction with LLMs, bridging gaps in their knowledge base, and maximizing their capability to produce dependable outputs based on their existing knowledge.

Augmentation technique	Description	Examples	Reference
	Incorporating task-relevant fea-	Adding bug descriptions, bug lo-	[91] [236]
Features augmentation	tures implicitly present in the	cations, code context or resam-	[219] [89]
reatures augmentation	dataset into prompts.	pling for imbalanced traffic.	[9] [241]
1			[120]
	Retrieving task-relevant informa-	An external structured corpus	[53] [208]
External retrieval	tion available in external knowl-	of network threat intelligence,a	[161]
Externar retrievar	edge bases as input.	hybrid patch retriever for fix	
·		pattern mining.	
External tools	Analysis results from specialized	Static code analysis tools, pene-	[73] [11]
External tools	tools serving as auxiliary inputs.	tration testing tools.	[14]
	Different training strategies from	Contrastive learning, transfer	[56] [105]
Task-adaptive training	pre-training to enhance the model's	learning, reinforcement learn-	[239] [159]
rask-adaptive training	adaptability to the task.	ing, distillation.	[71] [114]
			[196] [26]
	Introducing multiple models (which	Multiple LLMs feedback collab-	[26] [227]
Inter-model interaction	can be LLMs or other models) to	oration, graph neural networks	[196]
	collaborate and interact.		
· .	Applicable to multi-step tasks,	Difficulty-based patch example	[225] [233]
Rebroadcasting	broad-casting the output results of	replay, variables' name propa-	
Retrioaucasting	each step iteratively as part of the	gation	
	prompt for the next step.		
	Customizing special processing	Post-processing based on Lev-	[35] [199]
Post-process	strategies for LLMs' outputs to	enshtein distance to mitigate	
1 ost process	better match task requirements.	hallucinations, formal verifica-	
٠ <u>ــــــــــــــــــــــــــــــــــــ</u>		tion for generated code	

What is the difference in data collection and pre-processing when applying LLMS to security tasks?

Types of Datasets

Data Collection

Table 8. Data types of datasets involved in prior studies.

Category	Data type	Studies	Total	References
	Vulnerable code	17		[37] [60] [35] [39]
				[123] [198] [237] [245]
				[97] [202] [120] [217]
				[29] [11] [6] [31] [203]
	Source code	15		[16] [84] [45] [227]
Code-based datasets			71	[225] [192] [14] [159]
				[190] [120] [193] [41]
				[86] [65] [85]
	Bug-fix pairs	14		[91] [113] [243] [233]
				[156] [146] [221] [87]
				[240] [223] [222] [208]
				[241] [187]
	Bugs	7		[110] [105] [189] [156]
				[87] [46] [7]
	Traffic packages	4		[137] [61] [130] [10]
	Patches	3		[97] [104] [196]
	Code changes	3		[226] [53] [213]
	Vulnerability-fix pairs	2		[239] [64]
	Bug fixing commits	2		[243] [208]
	Web attack payloads	2		[119] [114]
	Subject protocol programs	1		[132]
	Vulnerable programs	1		[157]
	Prompts	17		[9] [139] [44] [197]
				[30] [73] [55] [200]
				[236] [158] [22] [76]
				[175] [131] [181] [178]
	I ag managa	6		[115]
	Log messages	6		[118] [38] [96] [165]
	Social media contents	5		[71] [184] [72] [82] [26] [134]
Text-based datasets	Social media contents	3	49	[206]
	Spam messages	4		[101] [138] [27] [89]
	Bug reports	3		[56] [105] [53]
	Attack descriptions	2		[23] [57]
	CVE reports	2		[2] [3]
	Cyber threat intelligence data	2		[171] [99]
	Top-level domains	1		[122]
	Security reports	1		[4]
	Threat reports	1		[188]
	Structured threat information	1		[161]
	Program documentations	1		[219]
	Antivirus scan reports	1		[92]
	Passwords	1		[172]
	Hardware documentations	1		[133]
Combined datasets	Vulnerable code and vulnerability descriptions	2	2	[123] [35]
	, 1			

Data Pre-processing

Code-Based

- Data extraction
- Duplicated instance deletion
- Unqualified data deletion
- Code representation
- Data segmentation

Preprocessing techniques	Description	Examples	References	
	Retrieve pertinent code segments	Token-level, statement-level,	[192] [28]	
Data extraction	from code-based datasets tailored	class-level, traffic flow.	[137]	
Data extraction	to specific security tasks, accommo-			
	dating various levels of granularity			
	and specific task demands.			
	Eliminate duplicate instances from	Removal of duplicate code, an-	[198] [237]	
Duplicated instance deletion	the dataset to maintain data in-	notations, and obvious vulner-	[241]	
Duplicated instance deletion	tegrity and avoid repetition during	ability indicators in function		
	the training phase.	names.		
	Remove unfit data by implement-	Remove or anonymize con-	[60] [97]	
	ing filtering criteria to preserve suit-	ments and information that	[233] [156]	
Unqualified data deletion	able samples, ensuring the dataset's	may provide obvious hints		
Unqualified data deletion	quality and suitability for diverse	about the vulnerability (pack-		
	security tasks.	age, variable names, and		
		strings,etc.).		
Code representation	Represented as tokens.	Tokenize source or binary code	[245] [221]	
Code representation		as tokens.	[87]	
	Divide the dataset into training,	Partition the dataset based on	[226] [190]	
Data commentation	validation, and testing subsets for	specific criteria, which may in-		
Data segmentation	model training, parameter tuning,	clude division into training, val-		
	and performance evaluation.	idation, or testing subsets.		

Preprocessing techniques	Description	Examples	References
	Retrieve appropriate text from doc-	Attack description, bug reports,	[57] [2]
Data extraction	umentation based on various soft-	social media content, hardware	[219] [72]
	ware engineering tasks.	documentation, etc.	[133]
Initial data segmentation	Categorize data into distinct groups	Split data into sentences or	[101] [134]
mitiai data segmentation	as needed.	words.	[3]
Unqualified data deletion	Delete invalid text data according	Remove certain symbols and	[56] [26]
	to the specified rules.	words (rare words, stop words,	[4]
		etc.), or convert all content to	
		lowercase.	
Text representation	Token-based text representation.	Tokenize the texts, sentences, or	[3] [133]
Text representation		words into tokens.	
Data segmentation	Divide the dataset into training,	Partition the dataset based on	[172] [206]
	validation, and testing subsets for	specific criteria, which may in-	[122]
	model training, parameter tuning,	clude division into training, val-	
	and performance evaluation.	idation, or testing subsets.	

Text-Based

- Data extraction
- Duplicated instance deletion
- Unqualified data deletion
- Text representation
- Data segmentation

Challenges and Opportunities

Challenges

- Data scarcity
- Challenges in LLM Generalization Ability
- Challenges in LLM Interpretability

Opportunities

- Improvement of LLM4Security
- Enhancing LLM's Performance in Existing Security Tasks
- Expanding LLM's Capabilities in More Security Domains.