4. Аксіоми віддільності

Аналізуючи властивості різних топологічних просторів ми бачили, що їх структура може бути настільки "неприродною", що будь-яка послідовність збігається до будь-яких точок (тривіальний простір), існують точки дотику множин, які не є границями послідовностей їх елементів (простір Зариського) тощо. В математичному аналізі ми не зустрічаємо таких "патологій": там всі послідовності мають лише одну границю, кожна точка дотику є границею тощо. Отже, виникає потреба в інструментах, які дозволили ли б виділити серед топологічних просторів "природні" простори. Такими інструментами є аксіоми віддільності, які разом з аксіомами можливість повністю зліченності дають властивості топологічних просторів.

Аксіоми віддільності в топологічному просторі (X, τ) формулюються наступним чином.

 T_0 (Колмогоров, 1935). Для двох довільних різних точок x і y, що належать множині X, існує множина із топологічної структури τ , яка містить рівно одну з цих точок.

$$\forall x,y \in X: x \neq y \, \exists V_x \in \tau \colon x \in V_x, y \not \in V_x \vee \exists V_y \in \tau \colon y \in V_y, x \not \in V_y.$$

 T_1 (Picc, 1907). Для двох довільних різних точок x і y, що належать множині X, існують множина V_x із топологічної структури τ , яка містить точку x і не містить точки y, і множина V_y із топологічної структури τ , яка містить точку y і не містить точки x.

$$\forall x, y \in X : x \neq y \,\exists V_x, V_y \in \tau : x \in V_x, y \in V_y, x \notin V_y, y \notin V_x$$

 T_2 (Хаусдорф, 1914). Для двох довільних різних точок x і y, що належать множині X, існують множина V_x із топологічної структури τ , яка містить точку x, і множина V_y із топологічної структури τ , яка містить точку y, такі що не перетинаються.

$$\forall x, y \in X : x \neq y \exists V_x, V_y \in \tau : x \in V_x, y \in V_y, V_x \cap V_y = \emptyset$$

 T_3 (В'єторіс, 1921). Для довільної точки x і довільної замкненої множини F, що не містить цієї точки, існують дві відкриті множини V_x і V, що не перетинаються, такі що $x \in V_x$, а $F \subset V$.

$$\forall x \in X, \overline{F} \subset X: x \notin \overline{F} \ \exists V_x, V \in \tau: x \in V_x, F \subset V, V_x \cap V = \varnothing$$
.
 $T_{\frac{31}{2}}$ (Урисон, 1925). Для довільної точки x і довільної

замкненої множини \overline{F} , що не містить цієї точки, існує неперервна числова функція f, задана на просторі X, така що $0 \le f(t) \le 1$, до того ж f(x) = 0 і f(t) = 1, якщо $x \in \overline{F}$.

$$\forall x \in X, \overline{F} \subset X : x \notin \overline{F} \exists f : X \to R^1 :$$

 $0 \le f(t) \le 1, f(x) = 0, f(t) = 1, \text{ seign } t \in \overline{F}.$

 T_4 (B'єторіс, 1921). Для двох довільних замкнених множин $\overline{F_1}$ і $\overline{F_2}$, що не перетинаються, існують відкриті множини G_1 і G_2 , що не перетинаються, такі що $\overline{F_1} \subset G_1$, $\overline{F_2} \subset G_2$.

$$\begin{split} &\forall \overline{F_1}, \overline{F_2} \subset X : \overline{F_1} \cap \overline{F_2} = \varnothing \ \exists G_1, G_2 \in \tau : \\ &\overline{F_1} \subset G_1, \overline{F_2} \subset G_2, G_1 \cap G_2 = \varnothing \ . \end{split}$$

- **Озн. 4.1** (Колмогоров, 1935). Топологічні простори, що задовольняють аксіому T_0 , називаються T_0 -просторами, або колмогоровськими.
- **Озн. 4.2 (Рісс, 1907).** Топологічні простори, що задовольняють аксіому T_1 , називаються T_1 -просторами, або досяжними.
- **Озн. 4.3** (Хаусдорф, 1914). Топологічні простори, що задовольняють аксіому T_2 , називаються хаусдорфовими, або віддільними.
- **Озн. 4.4** (**B'єторіс, 1921**). Топологічні простори, що задовольняють аксіоми T_1 і T_3 , називаються **регулярними**.
- **Озн. 4.5** (**Тихонов, 1930**). Топологічні простори, що задовольняють аксіоми T_1 і $T_{\frac{3}{2}}$, називаються **цілком**

регулярними, або тихоновськими.

Озн. 4.6 (**Тітце** (1923), **Александров** і **Урисон** (1929)). Топологічні простори, що задовольняють аксіоми T_1 і T_4 , називаються **нормальними**.

Розглянемо наслідки, які випливають із аксіом віддільності.

Теорема 4.1 (критерій досяжності). Для того щоб топологічний простір (X,τ) був T_1 -простором необхідно і достатньо, щоб будь-яка одноточкова множина $\{x\} \subset X$ була замкненою.

Доведення. *Необхідність*. Припустимо, що виконується перша аксіома віддільності: якщо $x \neq y$, то існує окіл $V_y \in \tau : x \notin V_y$. Тоді $\forall y \neq x \ y \notin \overline{\{x\}}$, тобто $\overline{\{x\}} = \{x\}$.

Достатність. Припустимо, що $\overline{\{x\}} = \{x\}$. Тоді $\forall y \neq x \,\exists V_y \in \tau : x \notin V_y$. Отже виконується перша аксіома віддільності.

Наслідок. В просторі T_1 будь-яка скінченна множина ϵ замкненою.

Теорема 4.2. Для того щоб точка x була граничною точкою множини M в T_1 -просторі необхідно і достатньо, щоб довільний окіл U цієї точки містив нескінченну кількість точок множини M.

Доведення. $Heoбxi\partial hicmb$. Якщо точка $x \in \Gamma$ раничною точкою множини M , то

$$\forall O(x) \in \tau \ O(x) \cap M \setminus \{x\} \neq \emptyset.$$

Припустимо, що існує такий окіл U точки x, що містить лише скінченну кількість точок $x_1, x_2, ..., x_n \in M$. Оскільки простір (X, τ) є T_1 -простором, то існує окіл U_i точки x, що

не містить точку
$$x_i$$
. Введемо в розгляд множину $V = \bigcap_{i=1}^n U_i$.

Ця множина ϵ околом точки x, що не містить точок множини M, за винятком, можливо, самої точки x. Отже, точка x не ϵ граничною точкою множини M, що суперечить припущенню.

Достатність. Якщо довільний окіл U точки x містить нескінченну кількість точок множини M, то вона ϵ граничною за означенням.

Приклад 4.1. Зв'язна двокрапка ϵ колмогоровским, але недосяжним простором.

Приклад 4.2. Простір Зариського ϵ досяжним, але не хаусдорфовим.

Теорема 4.3 (критерій хаусдорфовості). Для того щоб простір (X,τ) був хаусдорфовим необхідно і достатньо, щоб для кожної пари різних точок x_1 і x_2 в X існувало неперервне ін'єктивне відображення f простору X в хаусдорфів простір Y.

Доведення. *Необхідність*. Нехай простір (X, τ) є хаусдорфовим. Тоді можна покласти Y = X і f = I — тотожне відображення.

Достатність. Нехай (X,τ) — топологічний простір і $\forall x_1 \neq x_2 \exists f: X \to Y, f(x_1) \neq f(x_2)$, де Y — хаусдорфів, а f — неперервне відображення. Оскільки простір Y є хаусдорфовим, то

$$\exists O(f(x_1)) \in \tau_Y, O(f(x_2)) \in \tau_Y : O(f(x_2)) \cap O(f(x_2)) = \emptyset.$$
 Оскільки відображення f є неперервним, то $\exists O(x_1) \in \tau_X, O(x_2) \in \tau_Y : f(O(x_1)) \subset O(f(x_1)),$ $f(O(x_2)) \subset O(f(x_2)).$ Тоді околи $V(x_1) = f^{-1}f(O(x_1))$ і $V(x_2) = f^{-1}f(O(x_2))$ не перетинаються.

Озн. 4.7. Замкнена множина, що містить точку x разом з деяким її околом, називається **замкненим околом** точки x.

Теорема 4.4 (критерій регулярності). Для того щоб T_1 -простір (X,τ) був регулярним необхідно і достатньо, щоб довільний окіл U довільної точки x містив її замкнений окіл.

Доведення. *Необхідність*. Нехай простір (X,τ) є регулярним, x — його довільна точка, а U — її довільний окіл. Покладемо $F = X \setminus U$. Тоді внаслідок регулярності

простору (X,τ) існує окіл V точки x і окіл W множини F , такі що $V\cap W=\varnothing$. Звідси випливає, що $V\subset X\setminus W$, отже, $\overline{V}\subset \overline{X\setminus W}=X\setminus W\subset X\setminus F=U$.

Достатність. Нехай довільний окіл довільної точки x містить замкнений окіл цієї точки, а F — довільна замкнена множина, що не містить точку x. Покладемо $G = X \setminus F \in \tau$. Нехай V — замкнений окіл точки x, що міститься в множині G. Тоді $W = X \setminus V$ ϵ околом множини F, який не перетинається з множиною V. ■

Приклад 4.4. Розглянемо множину $X = \mathbb{R}$ і введемо топологію так: замкненими будемо вважати всі множини, що є замкненими у природній топології числової прямой, а також множину $A = \left\{\frac{1}{n}, n = 1, 2,\right\}$. Точка нуль їй не належить, але будь-які околи точки нуль і довільні околи множини A перетинаються. Це означає, що побудований простір не є регулярним, але є хаусдорфовим.

Озн. 4.8. Система $\gamma = \{A_i, i \in I\}$ замкнених підмножин простору X називається його *замкненою базою*, якщо будьяку замкнену в X множину можна подати у вигляді перетину множин із системи γ . Система $\delta = \{B_j\}$ замкнених підмножин B_j називається *замкненою передбазою*, якщо будь-яку замкнену в X множину можна подати у вигляді перетину скінченних об'єднань множин із системи δ .

Озн. 4.9. Підмножини A і B простору X називаються функціонально віддільними, якщо існує дійсна неперервна функція $f: X \to [0,1]$ така, що $f(x) = \begin{cases} 0, \text{ якщо } x \in A, \\ 1, \text{ якщо } x \in B. \end{cases}$

Оскільки замкнені бази і передбази ϵ двоїстими до відкритих, мають місце наступні твердження.

Лема 4.1. Для того щоб система $\gamma = \{A_i, i \in I\}$ замкнених множин із X була замкненою базою ϵ X, необхідно і достатньо, щоб для кожної точки $x_0 \in X$ і для кожної замкненої множини F_0 , що не містить точку x_0 , існувала множина $A_{j_0} \in \gamma$ така, що $x_0 \notin A_{j_0} \supset F_0$.

Лема 4.2. Для того щоб система $\delta = \left\{ B_j, j \in J \right\}$ замкнених множин із X була замкненою передбазою в X, необхідно і достатньо, щоб для кожної точки $x_0 \in X$ і для кожної замкненої множини F_0 , що не містить точку x_0 , існував скінченний набір елементів $B_{j_1}, B_{j_2}, ..., B_{j_n}$ такий, що

$$x_0 \notin \bigcup_{k=1}^n B_{j_k} \supset F_0.$$

Теорема 4.5 (критерій цілковитої регулярності). Для того щоб (X,τ) був цілком регулярним (тихоновським) необхідно і достатньо, щоб кожна його точка x_0 була функціонально віддільною від усіх множин із деякої замкненої передбази $\mathcal{S} = \{F_i, i \in I\}$, що її не містять.

Доведення. *Необхідність*. Якщо простір (X,τ) є цілком регулярним (тихоновським), то точка x_0 є функціонально віддільною від *усіх* замкнених множин, що її не містять, а значить, і від усіх множин із деякої замкненої передбази $\delta = \{F_i, i \in I\}$, що її не містять.

 \mathcal{L} остатність. Нехай F_0 — довільна замкнена в X множина, що не містить точку x_0 , і нехай $F_{i_1},...,F_{i_n}$ —

скінченний набір елементів із δ такий, що $x_0 \notin \overline{F} = \bigcup_{k=1}^n F_{i_k} \supset F_0$ (за лемою 4.2). За припущенням, існує неперервна функція $f_k: X \to [0,1]$, яка здійснює функціональну віддільність точки x_0 і замкненої множини F_{i_k} . Покладемо $f\left(x\right) = \sup_k f_k\left(x\right)$ і покажемо, що функція f здійснює функціональну віддільність точки x_0 і множини F , а тим більше, точки x_0 і множини $F_0 \subset F$.

Дійсно, $f\left(x_{0}\right)=\sup_{k}f_{k}\left(x_{0}\right)=0.$ Далі, оскільки $\forall k=1,...,n$ $f_{k}\left(x\right)\leq1$, із $x\in F$ випливає, що $f\left(x\right)=\sup_{k}f_{k}\left(x\right)=1.$ Крім того, із того що $x\in F=\bigcup_{k=1}^{n}F_{i_{k}}$ випливає, що $x\in F_{i_{m}}$, $1\leq m\leq n$, тобто $f_{m}\left(x\right)=1.$

Залишилося показати неперервність побудованої функції. Для цього треба довести, що $\forall x' \in X$ і $\forall \varepsilon > 0$ $\exists U \in \tau : x' \in U : \forall x \in U \ \big| f(x) - f(x') \big| < \varepsilon$. Оскільки f_k — неперервна функція, то існує окіл U_k точки x', такий що

 $\forall x \in U_k \mid f_k(x) - f_k(x') \mid < \varepsilon$. Покладемо $U = \bigcap_{k=1}^n U_k$. Тоді для

кожного $x \in U$ і $\forall k = 1,...,n$ виконуються нерівності

$$f_k(x') - \varepsilon < f_k(x) \le \sup_k f_k(x) = f(x),$$

$$f_k(x) < f_k(x') + \varepsilon \le \sup_k f_k(x') + \varepsilon = f(x') + \varepsilon.$$

Звідси випливає, що $f(x') - \varepsilon < f(x) < f(x') + \varepsilon$.

Зауваження. Побудова регулярних просторів, які не ϵ тихоновськими ϵ нетривіальною задачею.

Мала лема Урисона (критерій нормальності). Досяжний простір X ϵ нормальним тоді і лише тоді, коли для кожної замкненої підмножини $F \subset X$ і відкритої множини U, що її містить, існує такий відкритий окіл V множини F, що $\overline{V} \subset U$, тобто коли кожна замкнена підмножина має замкнену локальну базу.

Доведення. *Необхідність*. Нехай простір X є нормальним. Розглянемо замкнену множину F та її окіл U. Покладемо $F' = X \setminus U$. Оскільки $F \cap F' = \emptyset$, то існує відкритий окіл V множини F і відкритий окіл V' множини F', такі що $V \cap V' = \emptyset$. Отже, $V \subset X \setminus V'$. З цього випливає, що $\overline{V} \subset \overline{X \setminus V'} = X \setminus V' \subset X \setminus F' = U$.

Достатність. Нехай умови леми виконані, а F і F' — довільні диз'юнктні замкнені підмножини простору X. Покладемо $U = X \setminus F'$. Тоді, оскільки множина U є відкритим околом множини F, то за умовою леми, існує окіл V множини F, такий що $\overline{V} \subset U$. Покладаючи $V' = X \setminus \overline{V}$ безпосередньо переконуємося, що множини V і V' не перетинаються і є околами множини F і F'.

Велика лема Урисона. *Будь-які непорожні диз'юнктні замкнені підмножини нормального простору є функціонально віддільними*. (Без доведення.)

Література

- 1. Александрян Р.А., Мирзаханян Э.А. Общая топология. М.: Высшая школа, 1979 (стр. 191–206).
- 2. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1981 (стр. 94–97).
- 3. Энгелькинг Р. Общая топология. М.: Мир, 1986 (стр. 69–85).