1 Sebastian's math test

The default math mode font is *Math Italic*. This should not be confused with ordinary *Text Italic* – notice the different spacing! \mathbf produces bold roman letters: **abcABC**. If you wish to embolden complete formulas, use the \boldmath command *before* going into math mode. This changes the default math fonts to bold.

normal $x = 2\pi \Rightarrow x \simeq 6.28$ mathbf $x = 2\pi \Rightarrow x \simeq 6.28$ boldmath $x = 2\pi \Rightarrow x \simeq 6.28$

Greek is available in upper and lower case: $\alpha, \beta \dots \Omega$, and there are special symbols such as \hbar (compare to h). Digits in formulas 1, 2, 3... may differ from those in text: 4, 5, 6...

There is Sans Serif alphabet abcdeABCD selected by \mathsf and Typewriter math abcdeABCD selected by \mathst.

There is a calligraphic alphabet \mathcal for upper case letters $\mathcal{ABCDE}...$, and there are letters for number sets: $\mathbb{A}...\mathbb{Z}$, which are produced using \mathbb. There are Fraktur letters $\mathfrak{abcdeMBEDE}$ produced using \mathfrak

$$\sigma(t) = \frac{1}{\sqrt{2\pi}} \int_0^t e^{-x^2/2} dx \tag{1}$$

$$\prod_{j\geq 0} \left(\sum_{k\geq 0} a_{jk} z^k \right) = \sum_{k\geq 0} z^n \left(\sum_{\substack{k_0, k_1, \dots \geq 0 \\ k_0 + k_1 + \dots = n}} a_0 k_0 a_{1k_1} \dots \right)$$
 (2)

$$\pi(n) = \sum_{m=2}^{n} \left[\left(\sum_{k=1}^{m-1} \lfloor (m/k) / \lceil m/k \rceil \rfloor \right)^{-1} \right]$$
 (3)

$$\{\underbrace{a,\ldots,a}_{k+l \text{ elements}},\underbrace{b,\ldots,b}_{l \text{ b's}}\}$$
(4)

$$W^{+} \xrightarrow{\mu^{+} + \nu_{\mu}}$$

$$\rightarrow \pi^{+} + \pi^{0}$$

$$\rightarrow \kappa^{+} + \pi^{0}$$

$$\rightarrow e^{+} + \nu_{e}$$

$$\frac{\pm \begin{vmatrix} x_1 - x_2 & y_1 - y_2 & z_1 - z_2 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix}}{\sqrt{\begin{vmatrix} l_1 & m_1 \\ l_2 & m_2 \end{vmatrix}^2 + \begin{vmatrix} m_1 & n_1 \\ n_1 & l_1 \end{vmatrix}^2 + \begin{vmatrix} m_2 & n_2 \\ n_2 & l_2 \end{vmatrix}^2}}$$

2 Math Tests

Math test are taken from[1].

2.1 Math Alphabets

Math Italic (\mathnormal)

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, i, J, $A, B, \Gamma, \Delta, E, Z, H, \Theta, I, K, \Lambda, M, N, \Xi, O, \Pi, P, \Sigma, T, \Upsilon, \Phi, X, \Psi, \Omega,$ $\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, v, \xi, o, \pi, \rho, \sigma, \tau, v, \phi, \chi, \psi, \omega, \varepsilon, \vartheta, \varpi, \varrho, \varsigma, \varphi, \ell, \wp,$

Math Roman (\mathrm)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,

a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, ι, J,

A, B, Γ , Δ , E, Z, H, Θ , I, K, Λ , M, N, Ξ , O, Π , P, Σ , T, Υ , Φ , X, Ψ , Ω ,

 $\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, v, \phi, \chi, \psi, \omega, \varepsilon, \vartheta, \varpi, \varrho, \varsigma, \varphi, \ell, \wp,$

Math Bold (\mathbf)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,

a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, t, j,

Math Sans Serif (\mathsf)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,

a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, i, j,

Caligraphic (\mathcal)

 $A, B, C, D, \mathcal{E}, \mathcal{F}, \mathcal{G}, \mathcal{H}, \mathcal{I}, \mathcal{J}, \mathcal{K}, \mathcal{L}, \mathcal{M}, \mathcal{N}, \mathcal{O}, \mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V}, \mathcal{W}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{M}, \mathcal{N}, \mathcal{O}, \mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V}, \mathcal{W}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{M}, \mathcal{N}, \mathcal{O}, \mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V}, \mathcal{W}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{V}, \mathcal{V}$

Fraktur (\mathfrak)

 \mathfrak{A} , \mathfrak{B} , \mathfrak{C} , \mathfrak{D} , \mathfrak{E} , \mathfrak{F} , \mathfrak{G} , \mathfrak{H} , \mathfrak{I} , \mathfrak{I} , \mathfrak{K} , \mathfrak{L} , \mathfrak{M} , \mathfrak{N} , \mathfrak{D} , \mathfrak{P} , \mathfrak{Q} , \mathfrak{R} , \mathfrak{E} , \mathfrak{I} , \mathfrak{U} , \mathfrak{W} , \mathfrak{X} , \mathfrak{Y} , \mathfrak{J} , \mathfrak{a} , \mathfrak{b} , \mathfrak{c} , \mathfrak{d} , \mathfrak{e} , \mathfrak{f} , \mathfrak{g} , \mathfrak{h} , \mathfrak{i} , \mathfrak{j} , \mathfrak{k} , \mathfrak{l} , \mathfrak{m} , \mathfrak{m} , \mathfrak{n} , \mathfrak{n} , \mathfrak{g}

Blackboard Bold (\mathbb)

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,

2.2 Character Sidebearings

```
\begin{split} |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + \\ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + \\ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |l| + |m| + \\ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + |i| + |j| + \\ |A| + |B| + |\Gamma| + |\Delta| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |\Delta| + |M| + \\ |N| + |\Xi| + |O| + |\Pi| + |P| + |\Sigma| + |T| + |\Upsilon| + |\Phi| + |X| + |\Psi| + |\Omega| + \\ |a| + |\beta| + |\gamma| + |\delta| + |\epsilon| + |\zeta| + |\eta| + |\theta| + |i| + |\kappa| + |\lambda| + |\mu| + \\ |v| + |\xi| + |o| + |\pi| + |\rho| + |\sigma| + |\tau| + |v| + |\phi| + |\chi| + |\psi| + |\omega| + \\ |\varepsilon| + |\vartheta| + |\varpi| + |\varrho| + |\varsigma| + |\varphi| + |\ell| + |\wp| + \end{split}
```

$$\begin{split} |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + \\ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + \\ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |I| + |m| + \\ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + |i| + |j| + \\ |A| + |B| + |\Gamma| + |\Delta| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |\Delta| + |M| + \\ |N| + |\Xi| + |O| + |\Pi| + |P| + |\Sigma| + |T| + |\Upsilon| + |\Phi| + |X| + |\Psi| + |\Omega| + \\ \end{split}$$

$$\begin{aligned} |\mathcal{A}| + |\mathcal{B}| + |\mathcal{C}| + |\mathcal{D}| + |\mathcal{E}| + |\mathcal{F}| + |\mathcal{G}| + |\mathcal{H}| + |\mathcal{I}| + |\mathcal{I}| + |\mathcal{K}| + |\mathcal{L}| + |\mathcal{M}| + |\mathcal{N}| + |\mathcal{O}| + |\mathcal{P}| + |\mathcal{Q}| + |\mathcal{R}| + |\mathcal{S}| + |\mathcal{T}| + |\mathcal{U}| + |\mathcal{V}| + |\mathcal{W}| + |\mathcal{X}| + |\mathcal{Y}| + |\mathcal{I}| +$$

2.3 Superscript positioning

$$\begin{split} A^2 + B^2 + C^2 + D^2 + E^2 + F^2 + G^2 + H^2 + I^2 + J^2 + K^2 + L^2 + M^2 + N^2 + O^2 + P^2 + Q^2 + R^2 + S^2 + T^2 + U^2 + V^2 + W^2 + X^2 + Y^2 + Z^2 + a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + g^2 + h^2 + i^2 + j^2 + k^2 + l^2 + m^2 + n^2 + o^2 + p^2 + q^2 + r^2 + s^2 + t^2 + u^2 + v^2 + w^2 + x^2 + y^2 + z^2 + t^2 + J^2 + A^2 + B^2 + \Gamma^2 + \Delta^2 + E^2 + Z^2 + H^2 + \Theta^2 + I^2 + K^2 + \Delta^2 + M^2 + N^2 + \Xi^2 + O^2 + \Pi^2 + P^2 + \Sigma^2 + T^2 + \Upsilon^2 + \Phi^2 + X^2 + \Psi^2 + \Omega^2 + \alpha^2 + \beta^2 + \gamma^2 + \delta^2 + \epsilon^2 + \zeta^2 + \eta^2 + \theta^2 + t^2 + \kappa^2 + \lambda^2 + \mu^2 + v^2 + \xi^2 + o^2 + \pi^2 + \rho^2 + \sigma^2 + \tau^2 + v^2 + \phi^2 + \chi^2 + \psi^2 + \omega^2 + \varepsilon^2 + \theta^2 + \sigma^2 + \xi^2 + \phi^2 + \xi^2 + \theta^2 + \xi^2 + \xi^2 + \theta^2 + \xi^2 + \xi^2 + \theta^2 + \xi^2 + \xi^$$

$$\begin{split} A^2 + B^2 + C^2 + D^2 + E^2 + F^2 + G^2 + H^2 + I^2 + J^2 + K^2 + L^2 + M^2 + \\ N^2 + O^2 + P^2 + Q^2 + R^2 + S^2 + T^2 + U^2 + V^2 + W^2 + X^2 + Y^2 + Z^2 + \\ a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + g^2 + h^2 + i^2 + j^2 + k^2 + I^2 + m^2 + \\ n^2 + o^2 + p^2 + q^2 + r^2 + s^2 + t^2 + u^2 + v^2 + w^2 + x^2 + y^2 + z^2 + t^2 + f^2 + \\ A^2 + B^2 + \Gamma^2 + \Delta^2 + E^2 + Z^2 + H^2 + \Theta^2 + I^2 + K^2 + \Lambda^2 + M^2 + \\ N^2 + \Xi^2 + O^2 + \Pi^2 + P^2 + \Sigma^2 + T^2 + \Upsilon^2 + \Phi^2 + X^2 + \Psi^2 + \Omega^2 + \Phi^2 + X^2 + \Psi^2 + \Omega^2 + \Phi^2 + \Omega^2 + \Omega^2$$

$$\mathcal{A}^{2} + \mathcal{B}^{2} + \mathcal{C}^{2} + \mathcal{D}^{2} + \mathcal{E}^{2} + \mathcal{F}^{2} + \mathcal{G}^{2} + \mathcal{H}^{2} + \mathcal{I}^{2} + \mathcal{J}^{2} + \mathcal{K}^{2} + \mathcal{L}^{2} + \mathcal{M}^{2} + \mathcal{N}^{2} + \mathcal{O}^{2} + \mathcal{P}^{2} + \mathcal{Q}^{2} + \mathcal{R}^{2} + \mathcal{S}^{2} + \mathcal{T}^{2} + \mathcal{U}^{2} + \mathcal{V}^{2} + \mathcal{W}^{2} + \mathcal{X}^{2} + \mathcal{Y}^{2} + \mathcal{Y}^{2} + \mathcal{Z}^{2} + \mathcal{Z}^{2}$$

2.4 Subscript positioning

$$\begin{split} A_i + B_i + C_i + D_i + E_i + F_i + G_i + H_i + I_i + J_i + K_i + L_i + M_i + \\ N_i + O_i + P_i + Q_i + R_i + S_i + T_i + U_i + V_i + W_i + X_i + Y_i + Z_i + \\ a_i + b_i + c_i + d_i + e_i + f_i + g_i + h_i + i_i + j_i + k_i + l_i + m_i + \\ n_i + o_i + p_i + q_i + r_i + s_i + t_i + u_i + v_i + w_i + x_i + y_i + z_i + \iota_i + J_i + \\ A_i + B_i + \Gamma_i + \Delta_i + E_i + Z_i + H_i + \Theta_i + I_i + K_i + A_i + M_i + \\ N_i + \Xi_i + O_i + \Pi_i + P_i + \Sigma_i + T_i + \Upsilon_i + \Phi_i + X_i + \Psi_i + Q_i + \\ \alpha_i + \beta_i + \gamma_i + \delta_i + \epsilon_i + \zeta_i + \eta_i + \theta_i + \iota_i + \kappa_i + \lambda_i + \mu_i + \\ v_i + \xi_i + o_i + \pi_i + \rho_i + \sigma_i + \tau_i + v_i + \phi_i + \chi_i + \psi_i + \omega_i + \\ \varepsilon_i + \vartheta_i + \varpi_i + \varrho_i + \varepsilon_i + \varphi_i + \ell_i + \varphi_i + \end{split}$$

$$\begin{aligned} &A_{i}+B_{i}+C_{i}+D_{i}+E_{i}+F_{i}+G_{i}+H_{i}+I_{i}+J_{i}+K_{i}+L_{i}+M_{i}+\\ &N_{i}+O_{i}+P_{i}+Q_{i}+R_{i}+S_{i}+T_{i}+U_{i}+V_{i}+W_{i}+X_{i}+Y_{i}+Z_{i}+\\ &a_{i}+b_{i}+c_{i}+d_{i}+e_{i}+f_{i}+g_{i}+h_{i}+i_{i}+j_{i}+k_{i}+l_{i}+m_{i}+\\ &n_{i}+o_{i}+p_{i}+q_{i}+r_{i}+s_{i}+t_{i}+u_{i}+v_{i}+w_{i}+x_{i}+y_{i}+z_{i}+t_{i}+J_{i}+\\ &A_{i}+B_{i}+\Gamma_{i}+\Delta_{i}+E_{i}+Z_{i}+H_{i}+\Theta_{i}+I_{i}+K_{i}+\Lambda_{i}+M_{i}+\\ &N_{i}+\Xi_{i}+O_{i}+\Pi_{i}+P_{i}+\Sigma_{i}+T_{i}+\Upsilon_{i}+\Phi_{i}+X_{i}+\Psi_{i}+\Omega_{i}+\end{aligned}$$

$$\mathcal{A}_{i} + \mathcal{B}_{i} + \mathcal{C}_{i} + \mathcal{D}_{i} + \mathcal{E}_{i} + \mathcal{F}_{i} + \mathcal{G}_{i} + \mathcal{H}_{i} + \mathcal{I}_{i} + \mathcal{J}_{i} + \mathcal{K}_{i} + \mathcal{L}_{i} + \mathcal{M}_{i} + \mathcal{N}_{i} + \mathcal{O}_{i} + \mathcal{P}_{i} + \mathcal{Q}_{i} + \mathcal{R}_{i} + \mathcal{S}_{i} + \mathcal{T}_{i} + \mathcal{U}_{i} + \mathcal{V}_{i} + \mathcal{W}_{i} + \mathcal{X}_{i} + \mathcal{Y}_{i} + \mathcal{Z}_{i} + \mathcal{Z}_{i}$$

2.5 Accent positioning

$$\begin{split} \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{l} + \hat{m} + \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \hat{i} + \hat{j} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{\Theta} + \hat{I} + \hat{K} + \hat{\Lambda} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{\Upsilon} + \hat{\Phi} + \hat{X} + \hat{\Psi} + \hat{\Omega} + \\ \hat{a} + \hat{\beta} + \hat{\gamma} + \hat{\delta} + \hat{\epsilon} + \hat{\zeta} + \hat{\eta} + \hat{\theta} + \hat{i} + \hat{\kappa} + \hat{\lambda} + \hat{\mu} + \\ \hat{v} + \hat{\xi} + \hat{o} + \hat{\pi} + \hat{\rho} + \hat{\sigma} + \hat{\tau} + \hat{v} + \hat{\phi} + \hat{\chi} + \hat{\psi} + \hat{\omega} + \\ \hat{\epsilon} + \hat{\vartheta} + \hat{\varpi} + \hat{\varrho} + \hat{\varsigma} + \hat{\varphi} + \hat{\ell} + \hat{\varphi} + \\ \hat{\epsilon} + \hat{\vartheta} + \hat{\varpi} + \hat{\varrho} + \hat{\varsigma} + \hat{\varphi} + \hat{\ell} + \hat{\varphi} + \end{aligned}$$

$$\begin{split} \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{I} + \hat{m} + \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \hat{t} + \hat{j} + \end{split}$$

$$\hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{J} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{K} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \hat{M} +$$

2.6 Differentials

```
da + db + dc + dd + de + df + dg + dh + di + dj + dk + dl + dm +
dA + dB + d\Gamma + d\Delta + dE + dZ + dH + d\Theta + dI + dK + d\Lambda + dM +
dN + d\Xi + dO + d\Pi + dP + d\Sigma + dT + d\Upsilon + d\Phi + dX + d\Psi + d\Omega +
d\alpha + d\beta + d\gamma + d\delta + d\epsilon + d\zeta + d\eta + d\theta + d\iota + d\kappa + d\lambda + d\mu +
dv + d\xi + do + d\pi + d\rho + d\sigma + d\tau + dv + d\phi + d\chi + d\psi + d\omega +
d\varepsilon + d\vartheta + d\varpi + d\rho + d\zeta + d\varphi + d\ell + d\wp +
dA + dB + d\Gamma + d\Delta + dE + dZ + dH + d\Theta + dI + dK + d\Lambda + dM +
dN + d\Xi + dO + d\Pi + dP + d\Sigma + dT + d\Upsilon + d\Phi + dX + d\Psi + d\Omega +
dA + dB + dC + dD + dE + dF + dG + dH + dI + dJ + dK + dL + dM +
dN + dO + dP + dQ + dR + dS + dT + dU + dV + dW + dX + dY + dZ +
da + db + dc + dd + de + df + dg + dh + di + dj + dk + dl + dm +
dA + dB + d\Gamma + d\Delta + dE + dZ + dH + d\Theta + dI + dK + d\Lambda + dM +
dN + d\Xi + dO + d\Pi + dP + d\Sigma + dT + d\Upsilon + d\Phi + dX + d\Psi + d\Omega +
d\alpha + d\beta + d\gamma + d\delta + d\epsilon + d\zeta + d\eta + d\theta + d\iota + d\kappa + d\lambda + d\mu +
dv + d\xi + do + d\pi + d\rho + d\sigma + d\tau + dv + d\phi + d\chi + d\psi + d\omega +
d\varepsilon + d\vartheta + d\varpi + d\varrho + d\varsigma + d\varphi + d\ell + d\wp +
dA + dB + d\Gamma + d\Delta + dE + dZ + dH + d\Theta + dI + dK + d\Lambda + dM +
dN + d\Xi + dO + d\Pi + dP + d\Sigma + dT + d\Upsilon + d\Phi + dX + d\Psi + d\Omega +
            \partial A + \partial B + \partial C + \partial D + \partial E + \partial F + \partial G + \partial H + \partial I + \partial J + \partial K + \partial L + \partial M + \partial C 
            \partial N + \partial O + \partial P + \partial Q + \partial R + \partial S + \partial T + \partial U + \partial V + \partial W + \partial X + \partial Y + \partial Z + \partial C 
            \partial a + \partial b + \partial c + \partial d + \partial e + \partial f + \partial g + \partial h + \partial i + \partial j + \partial k + \partial l + \partial m + \partial h 
               \partial n + \partial o + \partial p + \partial q + \partial r + \partial s + \partial t + \partial u + \partial v + \partial w + \partial x + \partial y + \partial z + \partial t 
               \partial A + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial Z + \partial H + \partial \Theta + \partial I + \partial K + \partial \Lambda + \partial M + \partial A 
               \partial N + \partial \Xi + \partial O + \partial \Pi + \partial P + \partial \Sigma + \partial T + \partial \Upsilon + \partial \Phi + \partial X + \partial \Psi + \partial \Omega +
               \partial \alpha + \partial \beta + \partial \gamma + \partial \delta + \partial \epsilon + \partial \zeta + \partial \eta + \partial \theta + \partial \iota + \partial \kappa + \partial \lambda + \partial \mu + \partial \alpha + \partial \beta + \partial \gamma 
            \partial v + \partial \xi + \partial o + \partial \pi + \partial \rho + \partial \sigma + \partial \tau + \partial v + \partial \phi + \partial \chi + \partial \psi + \partial \omega +
               \partial \varepsilon + \partial \vartheta + \partial \varpi + \partial \varrho + \partial \varsigma + \partial \varphi + \partial \ell + \partial \wp +
               \partial A + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial Z + \partial H + \partial \Theta + \partial I + \partial K + \partial \Lambda + \partial M + \partial A + \partial A
```

 $\partial N + \partial \Xi + \partial O + \partial \Pi + \partial P + \partial \Sigma + \partial T + \partial \Upsilon + \partial \Phi + \partial X + \partial \Psi + \partial \Omega +$

2.7 Slash kerning

```
\begin{array}{l} A/2 + B/2 + C/2 + D/2 + E/2 + F/2 + G/2 + H/2 + I/2 + J/2 + K/2 + L/2 + M/2 + N/2 + O/2 + P/2 + Q/2 + R/2 + S/2 + T/2 + U/2 + V/2 + W/2 + X/2 + Y/2 + Z/2 + a/2 + b/2 + c/2 + d/2 + e/2 + f/2 + g/2 + h/2 + i/2 + j/2 + k/2 + l/2 + m/2 + n/2 + o/2 + p/2 + q/2 + r/2 + s/2 + t/2 + u/2 + v/2 + w/2 + x/2 + y/2 + z/2 + i/2 + J/2 + A/2 + B/2 + \Gamma/2 + \Omega/2 + E/2 + Z/2 + H/2 + \Omega/2 + I/2 + K/2 + \Omega/2 + W/2 + Z/2 + U/2 + W/2 + X/2 + W/2 + W/2
```

2.8 Big operators

$$\sum_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n} \int_{i=1}^{n} x^{n} \oint_{i=1}^{n} x^{n}$$

$$\bigotimes_{i=1}^{n} x^{n} \bigoplus_{i=1}^{n} x^{n} \bigcap_{i=1}^{n} x^{n} \bigvee_{i=1}^{n} x^{n} \bigcup_{i=1}^{n} x^{n} \bigcup_{i=1}^{n} x^{n} \bigcap_{i=1}^{n} x^{n}$$

$$\lim_{i \to \infty} x^{n} \prod_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n}$$

2.9 Radicals

$$\sqrt{x+y} \qquad \sqrt{x^2+y^2} \qquad \sqrt{x_i^2+y_j^2} \qquad \sqrt{\left(\frac{\cos x}{2}\right)} \qquad \sqrt{\left(\frac{\sin x}{2}\right)}$$

$$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x+y}}}}}}$$

2.10 Over- and underbraces

$$\widehat{x}$$
 $\widehat{x+y}$ $\widehat{x^2+y^2}$ $\widehat{x_i^2+y_j^2}$ \underbrace{x} $\underbrace{x+y}$ $\underbrace{x_i+y_j}$ $\underbrace{x_i^2+y_j^2}$

2.11 Normal and wide accents

$$\dot{x}$$
 \ddot{x} \ddot{x}

2.12 Long arrows

$$\leftarrow - \rightarrow \ \leftrightarrow \ \longleftarrow \ \longrightarrow \ \Longleftrightarrow \ \Longleftrightarrow \ \Longleftrightarrow \ \Longleftrightarrow$$

2.13 Left and right delimters

$$-(f) - -\lceil f \rceil - - \lfloor f \rfloor - - \lceil f \rceil - - \langle f \rangle - - \{ f \} -$$

$$-(f) - - \lceil f \rceil - - \lfloor f \rfloor - - \lceil f \rceil - - \langle f \rangle - - \{ f \} -$$

$$-)f(--)f[--/f/-- \backslash f \backslash - - /f \backslash - - \backslash f / -$$

2.14 Big-g-g delimters

2.15 Symbols

This is from [2]

Symbol	Control Sequence	mathcode	Family	Hex Position
∂	partial	"0140	1	40
b	flat	"015B	1	5B
þ	natural	"015C	1	5C
#	sharp	"015D	1	5D
ℓ	ell	"0160	1	60
ı	imath	"017B	1	7B
J	jmath	"017C	1	7C
Ø	wp	"017D	1	7D
/	prime	"0230	2	30
∞	infty	"0231	2	31
\triangle	triangle	"0234	2	34
\forall	forall	"0238	2	38
3	exists	"0239	2	39
\neg	neg	"023A	2	3A
Ø	emptyset	"023B	2	3B
\Re	Re	"023C	2	3C
\Im	Im	"023D	2	3D

Т	top	"023E	2	3E
上	bot	"023F	2	3F
×	aleph	"0240	2	40
∇	nabla	"0272	2	72
*	clubsuit	"027C	2	7C
\Diamond	diamondsuit	"027D	2	7D
\Diamond	heartsuit	"027E	2	7E
♦	spadesuit	"027F	2	7F
<i>J J</i>	smallint	"1273	2	73
	bigsqcup	"1346	3	46
∮∮	ointop	"1348	3	48
$\odot \odot$	bigodot	"134A	3	4A
$\oplus \bigoplus$	bigoplus	"134C	3	4C
$\otimes \otimes$	bigotimes	"134E	3	4E
$\sum \sum$	sum	"1350	3	50
$\prod_{i=1}^{n}$	prod	"1351	3	51
$\int \int$	intop	"1352	3	52
υŬ	bigcup	"1353	3	53
$\cap \bar{\bigcap}$	bigcap	"1354	3	54
$\forall +$	biguplus	"1355	3	55
$\wedge \wedge$	bigwedge	"1356	3	56
$\vee\bigvee$	bigvee	"1357	3	57
$\Pi \Pi$	coprod	"1360	3	60
	triangleright	"212E	1	2E
◁	triangleleft	"212F	1	2F
*	star	"213F	1	3F
·	cdot	"2201	2	01
×	times	"2202	2 2 2 2 2	02
*	ast	"2203	2	03
÷	div	"2204 "2205	2	04
	diamond	"2205 "2206	2	05
± -	pm	"2206 "2207		06 07
干	mp oplus	"2208	2	08
\oplus \ominus	ominus	"2209	2	09
\otimes	otimes	"220A	2	0A
0	oslash	"220B	$\overline{2}$	0B
\odot	odot	"220C	2	0C
⊗ ⊘ ⊙	bigcirc	"220D	2 2 2 2 2 2 2 2 2	0D
0	circ	"220E	2	0E

•	bullet	"220F	2	0F
\triangle	bigtriangleup	"2234	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	34
\triangle	bigtriangledown	"2235	2	35
Ù	cup	"225B	2	5B
\cap	cap	"225C	2	5C
+ J	uplus	"225D	2	5D
٨	wedge	"225E	2	5E
V	vee	"225F	2	5F
\	setminus	"226E	2	6E
ζ	wr	"226F	2	6F
П	amalg	"2271	2	71
Ш	sqcup	"2274	2	74
П	sqcap	"2275	2	75
	dagger	"2279	2	79
<u> </u>	ddagger	"227A	2	7A
т 	leftharpoonup	"3128	1	28
_	leftharpoondown	"3129	1	29
	rightharpoonup	"312A	1	2A
\rightarrow	rightharpoondown	"312B	1	2B
,	smile	"315E	1	5E
+ ++ √ 1 1 1 1) () (frown	"315F	1	5F
$\overline{\mathcal{L}}$	asymp	"3210	2	10
=	equiv	"3211	2	11
_	subseteq	"3212	2	12
\subseteq	supseteq	"3213	2	13
≥	leq	"3214	2	14
<u>`</u>	geq	"3215	2	15
<u>_</u>	preceq	"3216	2	16
<u>_</u>	succeq	"3217	2	17
~	sim	"3218	2	18
~	approx	"3219	2	19
~	subset	"321A	2	1A
		"321B	2	1B
	supset 11	"321C	$\frac{2}{2}$	1C
"		"321D	2	1D
//	gg prec	"321E	2	1E
	prec succ	"321E	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1F
_	leftarrow	"3220	2	20
\leftarrow		"3221	2	21
→	rightarrow leftrightarrow	"3224	2	24
₩ 7	nearrow	"3225	2	25
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		"3225 "3226	2	26
ע ~	searrow	"3227	2	27
_	simeq Leftarrow	"3228	2	28
\leftarrow		3228 "3229	2	28 29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Rightarrow		2 2 2 2 2 2 2 2 2	
\Leftrightarrow	Leftrightarrow	"322C	2	2C

Γ_	nwarrow	"322D	2	2D
\checkmark	swarrow	"322E	2	2E
\propto	propto	"322F	2	2F
€	in	"3232	2	32
∋	ni	"3233	2	33
/	not	"3236	2	36
ł	mapstochar	"3237	2	37
\perp	perp	"323F	2	3F
\vdash	vdash	"3260	2	60
\dashv	dashv	"3261	2	61
	mid	"326A	2	6A
	parallel	"326B	2	6B
	sqsubseteq	"3276	2	76
⊒	sqsupseteq	"3277	2	77

2.16 Miscellanneous formulae

Taken from [3]

$$\hbar v = E, \qquad \hbar \neq \pi, \qquad \partial j, \qquad x^j, \qquad x^l$$

Some other other equations: $\sum^{J} a'$, r^a and D^k .

Let $\mathbf{A} = (a_{ij})$ be the adjacency matrix of graph G. The corresponding Kirchhoff matrix $\mathbf{K} = (k_{ij})$ is obtained from \mathbf{A} by replacing in $-\mathbf{A}$ each diagonal entry by the degree of its corresponding vertex; i.e., the *i*th diagonal entry is identified with the degree of the *i*th vertex. It is well known that

$$\det \mathbf{K}(i|i) = \text{the number of spanning trees of } G, \quad i = 1, \dots, n$$
 (5)

where $\mathbf{K}(i|i)$ is the *i*th principal submatrix of \mathbf{K} .

Let $C_{i(j)}$ be the set of graphs obtained from G by attaching edge (v_iv_j) to each spanning tree of G. Denote by $C_i = \bigcup_j C_{i(j)}$. It is obvious that the collection of Hamiltonian cycles is a subset of C_i . Note that the cardinality of C_i is $k_{ii} \det \mathbf{K}(i|i)$. Let $\widehat{X} = \{\widehat{x}_1, \dots, \widehat{x}_n\}$. Define multiplication for the elements of \widehat{X} by

$$\hat{x}_i \hat{x}_j = \hat{x}_j \hat{x}_i, \quad \hat{x}_i^2 = 0, \quad i, j = 1, \dots, n.$$
 (6)

Let $\hat{k}_{ij} = k_{ij}\hat{x}_j$ and $\hat{k}_{ij} = -\sum_{j\neq i}\hat{k}_{ij}$. Then the number of Hamiltonian cycles H_c is given by the relation

$$\left(\prod_{j=1}^{n} \hat{x}_{j}\right) H_{c} = \frac{1}{2} \hat{k}_{ij} \det \widehat{\mathbf{K}}(i|i), \qquad i = 1, \dots, n.$$
 (7)

The task here is to express (7) in a form free of any \hat{x}_i , i = 1, ..., n. The result also leads to the resolution of enumeration of Hamiltonian paths in a graph. It is well known that the enumeration of Hamiltonian cycles and paths in a complete graph K_n and in a complete bipartite graph $K_{n_1n_2}$ can only be found from

first combinatorial principles. One wonders if there exists a formula which can be used very efficiently to produce K_n and $K_{n_1n_2}$. Recently, using Lagrangian methods, Goulden and Jackson have shown that H_c can be expressed in terms of the determinant and permanent of the adjacency matrix. However, the formula of Goulden and Jackson determines neither K_n nor $K_{n_1n_2}$ effectively. In this paper, using an algebraic method, we parametrize the adjacency matrix. The resulting formula also involves the determinant and permanent, but it can easily be applied to K_n and $K_{n_1n_2}$. In addition, we eliminate the permanent from H_c and show that H_c can be represented by a determinantal function of multivariables, each variable with domain $\{0,1\}$. Furthermore, we show that H_c can be written by number of spanning trees of subgraphs. Finally, we apply the formulas to a complete multigraph $K_{n_1...n_n}$.

The conditions $a_{ij} = a_{ji}$, i, j = 1, ..., n, are not required in this paper. All formulas can be extended to a digraph simply by multiplying H_c by 2. The boundedness, property of Φ_0 , then yields

$$\int_{\mathcal{D}} \left| \overline{\partial} u \right|^2 e^{\alpha |z|^2} \ge c_6 \alpha \int_{\mathcal{D}} |u|^2 e^{\alpha |z|^2} + c_7 \delta^{-2} \int_A |u|^2 e^{\alpha |z|^2}.$$

Let B(X) be the set of blocks of Λ_X and let b(X) = |B(X)|. If $\phi \in Q_X$ then ϕ is constant on the blocks of Λ_X .

$$P_X = \{ \phi \in M \mid \Lambda_\phi = \Lambda_X \}, \qquad Q_X = \{ \phi \in M \mid \Lambda_\phi \ge \Lambda_X \}. \tag{8}$$

If $\Lambda_{\phi} \geq \Lambda_X$ then $\Lambda_{\phi} = \Lambda_Y$ for some $Y \geq X$ so that

$$Q_X = \bigcup_{Y>X} P_Y.$$

Thus by Möbius inversion

$$|P_Y| = \sum_{X>Y} \mu(Y,X) |Q_X|.$$

Thus there is a bijection from Q_X to $W^{B(X)}$. In particular $|Q_X| = w^{b(X)}$.

$$W(\Phi) = \begin{vmatrix} \frac{\varphi}{(\varphi_1, \varepsilon_1)} & 0 & \dots & 0 \\ \frac{\varphi k_{n2}}{(\varphi_2, \varepsilon_1)} & \frac{\varphi}{(\varphi_2, \varepsilon_2)} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\varphi k_{n1}}{(\varphi_n, \varepsilon_1)} & \frac{\varphi k_{n2}}{(\varphi_n, \varepsilon_2)} & \dots & \frac{\varphi k_{nn-1}}{(\varphi_n, \varepsilon_{n-1})} & \frac{\varphi}{(\varphi_n, \varepsilon_n)} \end{vmatrix}$$

References

- [1] Walter Schmidt. Using Common PostScript Fonts With LTEX. PSNFSS Version 9.2, September 2004. http://ctan.tug.org/tex-archive/macros/latex/required/psnfss.
- [2] Victor Eijkhout. *T_EX by Topic*. Lulu, 2007. http://eijkhout.net/texbytopic/texbytopic.html.
- [3] Michael Downes and Barbara Beeton. *The amsart, amsproc, and amsbook document classes*. American Mathematical Society, August 2004. http://www.ctan.org/tex-archive/macros/latex/required/amslatex/classes.