Artificial Intelligence

Taro Sekiyama

National Institute of Informatics (NII) sekiyama@nii.ac.jp

Agenda

- 1. Decision trees
- 2. Random forests

Decision trees

- Making decision by answering yes/no questions
- The process is drawn by *trees*
- Ex: classification of animals: Rabbit, Tiger, Swallow, and Carp

Decision on features

Decision on real-valued features is made by answering:

"feature X is less than real value R?"

Decision on features

Decision on real-valued features is made by answering:

"feature X is less than real value R?"

Prediction

- Estimate an output using the data points in the leaf node found by answering questions
- Classification
 - The most frequent label among the data points
- Regression
 - The average of the outputs of the data points
 - □ Linear regression with the outputs

Pros and cons

- Interpretable
 - Easy to understand why and how the output is predicted
- Inaccurate prediction (compared with other approaches)

Problem with "perfect" model

- The model is usually overfitted
 - Sensitive to individual training data points
 - Not accurate for unknown data points

If this data point is an outlier, the model missclassifies all the unknown data points of features $X_1 < R_{11}$ and $X_2 < R_{22}$

Overfitting

- Common problem in ML
- Related to the complexity of ML models
 - Complex models are more likely to be overfitted
 - Simple models are more likely to be underfitted
 - Not expressive enough to capture the characteristics of data points

Complexity of decision trees

- Idea: Adjust the # of data points in a leaf node
- If the # is small, the model tends to be sensitive to individual data points
 - Extreme case: each leaf node has a single data point
- If the # is large, the model tends to respect the majority
 - Extreme case: a single leaf node to which all the data points belong

Complexity metrics

- Multiple metrics to control the complexity
 - □ Tree depth
 - □ The # of leave nodes
 - The minimum # of data points belonging to a leaf node

Learning

- Finding feature X and threshold R to construct a question "X is less than R?"
- Criterion: Better to distinguish as many differently labeled data points as possible
 - Less questions make a simpler model
 - Simpler models tend not to be overfitted

Learning

The simplest tree has a single question that asks about X_1 with $R \in [0.55, 0.85]$

Need a quantitative means to measure how many data points are distinguished to choose best (X, R)

Metric for classification

Entropy

- A general metric to measure uncertainty
- In our setting, uncertainty means how many data points are **NOT** distinguished

$$E(P) = -\sum_{p_i \in P} p_i \log p_i$$

P: a set of fractions p_i of data points with labels i

Two-labels entropy

- Highest when differently labeled data points are mixed up $(p_1 = 0.5)$
- Lowest when they are distinguished perfectly $(p_1 \in \{1.0, 0.0\})$

Learning by example

- Finding $(X, R) \in \{(X_i, R_{ij}) \mid i \in \{1,2\}, j \in \{1,2,3\}\}$ that minimizes the entropy
 - \square R_{ij} is the mean of X_i -values of data points j & j+1

Problem with entropy

- Entropy is a numerical representation of uncertainty of a subset of a training dataset
- It misses the fraction of the subset
- We need a means to weight the entropies of subsets according to their fractions

Conditional entropy

$$CE(S, P) = -\frac{S}{T}E(P)$$

T: a training dataset

S: a subset of T

P: a set of fractions p_i of data points with labels i in S

Goal of learning: finding (X, R) that minimizes

$$CE(S_y, P_y) + CE(S_f, P_f)$$

 $S_{\!y}$, $S_{\!f}$: subsets of data points that answer yes/no to the question

 P_y, P_f : sets of fractions for S_y and S_f

Metric for regression

Variance reduction

$$V(S_{y}, S_{n}) = \sum_{x \in S_{y}} \sum_{y \in S_{y}} (x - y)^{2} + \sum_{x \in S_{n}} \sum_{y \in S_{n}} (x - y)^{2}$$

 S_y , S_n are the sets of the outputs of data points that answer yes and no for a question

- Measures the degrees of "scatter" of the regions that are the splitting results by the question
- The goal of learning is to find (X, R) that minimizes the variance reduction

Metric by example

The split by R_2 makes the variance reduction smaller than, e.g., R_1

Agenda

- 1. Decision trees
- 2. Random forests

Random forests

- Constructing a single ML model from a collection of decision trees
 - An ensemble learning algorithm
 - Improving the performance of a single decision tree

- Remark: other ensemble algorithms
 - Boosting, cascading, etc.

Prediction

- Classification
 - By voting
- Regression
 - ☐ The mean of the outputs of decision trees

Trees in a forest

- Decision trees in a random forest should be
 - □ Similar
 - A tree should produce a similar prediction to many of the other trees
 - □ (Slightly) different
 - A tree should produce a different prediction from some of the other trees
- The variation of trees are introduced by randomness

Randomness

- Two kinds of randomness in training
 - A dataset used to train each tree is sampled at random from a given entire dataset
 - □ For each question, asked feature candidates are selected at random
- Similar but slightly different trees are built by this randomness

Pros and cons

- Accurate prediction
- Scalability

Interpretation of the model is more difficult than that of decision trees