

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ FACULTY OF INFORMATION TECHNOLOGY

PROJEKT1 MĚŘENÍ TEPLOTY ZA POUŽITÍ RŮZNÝCH SENZORŮ

DOKUMENTACE K PROJEKTU Z PŘEDMĚTU: SENZORY A MĚŘENÍ

AUTOR PRÁCE

JIŘÍ VÁCLAVIČ

BRNO 2023

Obsah

1	Popis zapojení senzorů	2
2	Popis jednotlivých měření a shrnutí výsledků	4
3	Celkové shrnutí dosažených výsledků měření	6

Kapitola 1

Popis zapojení senzorů

Obrázek 1.1: Schéma zapojení obvodu

Schéma bylo vytvořeno za pomocí aplikace Fritzing. Původně byly všechny senzory připojené ke stejnému zdroji napětí na jednom pinu, ale z pozorování jsem zjistil, že hodnoty naměřených teplot byly nestabilní a často fluktuovalo až o 5 stupňů v rámci 20 sekund vzdálených měření. Jelikož největším konzumentem napětí byl senzor DHT11, tak jsem jej přepojil na separátní pin a výsledkem byla stabilizace hodnot měření všech senzorů.

Ze obvodu a ze zadání je patrné, že jsou k Arduinu připojeny dva analogové senzory, ale zařízení obsahuje pouze jeden A/D převodník. Tento problém jsem vyřešel vložením krátkého 10 ms zpoždění mezi měření obou senzorů a také zdvojení měření jednotlivých senzorů v jedné iteraci, kdy první naměřená data nevyužívám a zapisuje na výstup až druhé měření.

Pro sběr dat ze tří senzorů využívám předprogramované knihovny (oficiální, uživatelské), hodnoty senzoru LM35 konvertuji přímo v kódu na ekvivalentní napětí a poté teplotu ve stupních Celsia (°C).

Použité knihovny:

DHT11: https://github.com/dhrubasaha08/DHT11

SMT172-92: https://forum.arduino.cc/t/smartec-smt172-temperature-sensor-library/

359391/15

Termistor NTC MF5B 100k: https://github.com/miguel5612/ThermistorLibrary

Kapitola 2

Popis jednotlivých měření a shrnutí výsledků

Teplota byla měřena ve třech časových intervalech: 5 minut s 20 sekundovými rozestupy, 1 hodina s 60 sekundovými rozestupy a 4 hodiny s 240 sekundovými časovými rozestupy. Následujicí hodnoty v tabulce 2.1 jsou vypočítány z naměřených hodnot za stálých teplotních podmínek. Senzory se nacházeli v obytné místnosti, která se po dobu měření nevětrala. V místnosti bylo po dobu měření spuštěn jeden radiátor, které běžel asi na polovinu výkonu.

Název souboru	Průměr	Odchylka vůči celkovému průměru	Přesnost v %
$sensor1_5min.txt$	20.00	-0.62	96.99
sensor1_1hour.txt	20.00	-0.62	99.37
sensor1_4hours.txt	20.49	-0.13	96.99
sensor2_5min.txt	21.16	0.54	97.19
sensor2_1hours.txt	21.20	0.58	95.97
sensor2_4hours.txt	21.45	0.83	97.38
sensor3_5min.txt	20.50	-0.12	99.61
sensor3_1hour.txt	20.54	-0.08	99.13
sensor3_4hours.txt	20.80	0.18	99.42
sensor4_5min.txt	20.36	-0.26	98.59
sensor4_1hour.txt	20.33	-0.29	99.81
sensor4_4hours.txt	20.58	-0.04	98.74
Celkový soubor dat	20.62	0.44	

Tabulka 2.1: Průměry naměřených hodnot a jejich odchylky za stálých podmínek

Popis senzorů:

sensor1 - DHT11 (digitální senzor teploty a vlhkosti)

sensor2 - SMT172-92 (senzor teploty)

senzor3 - LM35DZ (analogový senzor)

senzor4 - Termistor NTC MF5B 100k (analogový senzor)

Následující hodnoty v tabulce 2.2 jsou vypočítány z naměřených hodnot za proměnných teplotních podmínek. Senzory se nacházeli v koupelně, kde bylo po dobu měření otevřené okno a venkovní teplota byla 4 °C.

Název souboru	Průměr	Odchylka vůči celkovému průměru	Přesnost v %
sensor1_1hour.txt	19.28	-0.45	97.72
sensor2_1hour.txt	20.84	1.11	94.37
sensor3_1hour.txt	19.60	-0.13	99.34
sensor4_1hour.txt	19.19	-0.54	97.26
Celkový soubor dat	19.73	0.66	

Tabulka 2.2: Průměry naměřených hodnot a jejich odchylky za proměnných podmínek

Pro mě zajímavým zjištěním bylo, že v obytné místnosti za stálých podmínek byla naměřena vlhkost 55~% a zároveň v koupelně za proměnných podmínek, kdy bylo otevřené okno, byla naměřena vlhkost okolo 50~%. Z toho vyplývá, že větrání znatelně snižuje vlhkost v místnosti.

Kapitola 3

Celkové shrnutí dosažených výsledků měření

Z celkového měření je patrné, že největší směrodatnou odchylku má za stálých podmínek digitální senzor SMT172-92, kde byla celková odchylka vůčí ostatním senzorům v 4-hodinovém měření rovna 0.83. Za proměnných podmínek byla největší odchylka pak naměřena také u senzoru SMT172-92 (1.11).

Z obou typů měření však vyplývá, že nejpřesnějším senzorem je analogový senzor LM35DZ, který dosahuje přesnosti alespoň 99 %. Na druhou stranu naopak nejméně přesný je senzor SMT172-92, který dosahuje maximální přesnosti 97 % a minimální 94 %.

Pokud budeme brát v úvahu statistické pravidlo 3-Sigma, které říká, že v normálním rozdělení by se přibližně 99.7 % všech hodnot mělo nacházet v pásu vzdáleném maximálně tři směrodatné odchylky od průměru, tak všechny hodnota za tímto pásem můžeme považovat za odlehlé, nepřesné či dokonce chybné.

Pro mnou konkrétně naměřené hodnoty je interval 3-sigma za stálých podmínek následující:

```
Interval = Prumer \pm (Odchylka)

Interval = 20.62 \pm (3 \cdot 0.44)

Interval = 20.62 \pm 1.32
```

Pro naměřené hodnoty za proměnných podmínek je interval 3-sigma následující:

```
Interval = Prumer \pm (Odchylka)

Interval = 19.73 \pm (3 \cdot 0.66)

Interval = 19.73 \pm 1.98
```

Interval je tedy <19.3,21.94> pro stálé teplotní podmínky a <17.75,21.71> pro proměnné teplotní podmínky, z toho plyne, že všechny hodnoty do něj spadají. Na základě tohoto údaje se dá říct, že odchylka a přesnost všech použitých senzorů je pro minimálně domácí využití přijatelná.