

ESTIMATIVA DA CARGA CRÍTICA NA FLAMBAGEM DE EIXOS ESCALONADOS PELO MÉTODO DOS ELEMENTOS FINITOS

Rafael NUNES DE ALMEIDA PRADO (1); Alessandro V. P. ROLIM DE ARAÚJO (2); Júlio ALVES HERMÍNIO (3)

(1) CEFET - RN, Oficina de Matemática Industrial - DATIN - CEFET - RN

Av. Senador Salgado Filho, 1559, Tirol, fone/fax: (84)9138-9029 Natal-RN, CEP 59015-000 e-mail: rnaprado@yahoo.com.br

(2) CEFET – RN, e-mail: alessandrorolim@bol.com.br
(3) CEFET-RN, e-mail: julioherminio@globo.com

RESUMO

O presente trabalho trata da determinação da carga crítica de flambagem de um eixo escalonado engastadoapoiado submetido a uma carga axial. O estudo consistiu no desenvolvimento de um programa
computacional em linguagem pascal (e ambientado em delphi) que, a partir das matrizes inerentes ao estudo
da flambagem e baseando-se no método dos elementos finitos, conduz a um problema de valor próprio que
resolvido, fornece os valores das cargas críticas, em ordem crescente. Apesar da discretização do eixo ter
sido feita em dois elementos apenas, o resultado mostrou-se compatível quando comparado com outro
estudo feito pelo método das diferenças finitas, tendo este o inconveniente da manipulação da mudança de
seção com relação ao momento de inércia, o que não acontece com o método dos elementos finitos.
Evidentemente, o programa pode ser aperfeiçoado, permitindo a análise de eixos com outros tipos de apoio e
uma discretização em mais elementos. O programa implementado pode ser usado tanto industrial como
educacionalmente.

Palavras-Chave: carga crítica, flambagem, elementos finitos, estruturas

1. INTRODUÇÃO

Um dos problemas mais frequentes enfrentados por analistas de projetos de engenharia é o da flambagem, tendo como consequência, a necessidade de calcular a carga crítica de elementos estruturais esbeltos ou da estrutura como um todo.

Uma alternativa bastante econômica usada na indústria moderna é, substituir o estudo de um fenômeno através de protótipos, pelo desenvolvimento ou utilização de programas computacionais capazes de, a partir de uma modelagem matemática, simularem o fenômeno com precisão.

No dimensionamento de estruturas deve-se analisar o comportamento de fenômenos a que as mesmas estão expostas, e entre eles é o estudo da flambagem, que consiste em, uma vez uma peça ou estrutura estando exposta a um carregamento P, determinar-se um coeficiente λ tal que, multiplicado por P, resulte na carga critica a ser considerada no projeto (HERMÍNIO, 1996).

Este trabalho visa a construir um programa que, a partir das matrizes inerentes ao estudo de flambagem e baseando-se no método dos elementos finitos, (HERMÍNIO E MELO, 1997), seja capaz de determinar a carga crítica de flambagem de um eixo escalonado submetido a uma carga axial.

2. METODOLOGIA

Existem inúmeros métodos capazes de determinar a carga crítica à qual são submetidos elementos estruturais. Os métodos analíticos são capazes de calcular valores exatos (TIMOSHENKO E GERE, 1963), porém são limitados a casos simples. O presente trabalho baseia-se no método dos elementos finitos tendo em vista sua comodidade em tratar problemas complexos que em geral não teriam uma solução exata (HERMÍNIO, 1996).

2.1. O Método dos Elementos Finitos

É bastante conhecido que na determinação da carga crítica no regime elástico pelo Método dos Elementos Finitos é preciso que se estabeleçam duas matrizes, chamadas habitualmente de matriz de rigidez e matriz geométrica do sistema.

2.1.1. Matriz de Rigidez Elementar

Sua determinação pode ser feita baseando-se no princípio da variação primeira da energia nula (HERMÍNIO E MELO, 1997). Isto é:

$$\delta U = \delta T$$

 δU : Variação do trabalho das cargas externas.

 δT : Variação da energia de deformação.

$$\delta U = \int_{V} P \cdot \delta u \cdot dV$$

$$\delta T = \int_{V} \boldsymbol{\sigma} \cdot \delta \boldsymbol{\varepsilon} \cdot dV$$

Para cargas concentradas apenas nos nós da estrutura, tem-se:

$$\delta U = \{\delta u\}^T \cdot \{P\} = \{P\}^T \cdot \{\delta u\}$$

Uma vez:

$$\delta T = \int_{V} \{\sigma\}^{T} \cdot \{\delta\varepsilon\} \cdot dV$$

Onde:
$$\{\sigma\} = [D]\{\varepsilon\}$$
 e $[D] = matriz\ de\ elasticidade$

Portanto:
$$\{\sigma\}^T = \{\varepsilon\}^T [D]^T$$
 mas, $[D]^T = [D]$

Tem-se portanto $\{\sigma\}^T = \{\varepsilon\}^T [D]$, substituindo,

$$\delta T = \int_{V} \{\varepsilon\}^{T} \cdot [D] \cdot \{\delta\varepsilon\} \cdot dV$$
mas,
$$\{\varepsilon\} = [B]\{u\} , \quad \{\varepsilon^{T}\} = \{u\}^{T} \cdot [B]^{T} \quad e \quad \{\delta\varepsilon\} = [B]\{\delta u\}$$

$$\delta T = \int_{V} \{u\}^{T} \cdot [B]^{T} \cdot [D] \cdot [B] \cdot \{\delta u\} \cdot dV$$

$$\delta T = \{u\}^{T} \cdot \left(\int_{V} [B]^{T} \cdot [D] \cdot [B] \cdot \{\delta u\} \cdot dV\right) \cdot \{\delta u\}$$

$$\delta T = \{u\}^{T} \cdot [K] \cdot \{\delta u\} \quad \text{onde:} \quad [K] = \left(\int_{V} [B]^{T} \cdot [D] \cdot [B] \cdot dV\right)$$

$$\delta T = \delta U \quad \therefore \quad \{u\}^{T} \cdot [K] \cdot \{\delta u\} = \{P\}^{T} \cdot \{\delta u\}$$

$$\{u\}^{T} \cdot [K] = \{P\}^{T} \quad \therefore \quad [K]^{T} \cdot \{u\} = \{P\}$$
por simetria
$$[K] = [K]^{T} \quad \therefore \quad [K] \cdot \{u\} = \{P\}$$

[K] = matriz de rigidez; $\{u\}$ = vetor dos deslocamentos nodais; $\{P\}$ = vetor de cargas nodais

Para o estabelecimento dos termos da matriz [K] do presente estudo, é preciso se escolher um campo de deslocamento que satisfaça a equação da linha elástica da viga para cargas concentradas nos nós. Isto é:

$$\frac{d^4v}{dx^4} = 0$$

Considerando um campo de deslocamento da forma:

$$v(x) = \alpha_1 + \alpha_2 \cdot x + \alpha_3 \cdot x^2 + \alpha_4 \cdot x^3$$
, tem-se:

$$v(x) = [N] \begin{cases} \alpha_i \\ \alpha_{i+1} \\ \alpha_{i+2} \\ \alpha_{i+3} \end{cases}$$

$$v(x) = \begin{bmatrix} 1 & x & x^2 & x^3 \end{bmatrix} \begin{cases} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{cases}$$

Sendo *l* o comprimento do eixo, tem-se:

$$v(0) = \alpha_1 = v_1$$

$$v(l) = \alpha_1 + \alpha_2 \cdot l + \alpha_3 \cdot l^2 + \alpha_4 \cdot l^3 = v_2$$

$$\theta(x) = \frac{dv}{dx} = \alpha_2 + 2\alpha_3 \cdot x + 3\alpha_4 \cdot x^2$$

$$\theta(0) = \alpha_2 = \theta_1$$

$$\theta(l) = \frac{dv}{dx} = \alpha_2 + 2\alpha_3 \cdot l + 3\alpha_4 \cdot l^2 = \theta_2$$

$$\begin{cases} v_1 \\ \theta_1 \\ v_2 \\ \theta_2 \end{cases} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & l & l^2 & l^3 \\ 0 & 1 & 2l & 3l^2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{cases}$$

ou;

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{bmatrix} = \frac{1}{l^3} \begin{bmatrix} l^3 & 0 & 0 & 0 \\ 0 & l^3 & 0 & 0 \\ -3l & -2l & 3l & -l^2 \\ 2 & l & -2 & l \end{bmatrix} \begin{bmatrix} v_1 \\ \theta_1 \\ v_2 \\ \theta_2 \end{bmatrix}$$

$$v(x) = \begin{bmatrix} 1 & x & x^2 & x^3 \end{bmatrix} \frac{1}{l^3} \begin{bmatrix} l^3 & 0 & 0 & 0 \\ 0 & l^3 & 0 & 0 \\ -3l & -2l & 3l & -l^2 \\ 2 & l & -2 & l \end{bmatrix} \begin{bmatrix} v_1 \\ \theta_1 \\ v_2 \\ \theta_2 \end{bmatrix}$$

$$v(x) = \left[\left(1 - \frac{3x^2}{l^2} + \frac{2x^3}{l^3} \right) \left(x - \frac{2x^2}{l} + \frac{x^3}{l^2} \right) \left(\frac{3x^2}{l^2} - \frac{2x^3}{l^3} \right) \left(-\frac{x^2}{l} + \frac{x^3}{l^2} \right) \right] \begin{cases} v_1 \\ \theta_2 \\ v_3 \\ \theta_4 \end{cases}$$
 [Eq. 02]

Considerando a deformação da viga dada por

$$\varepsilon = -y \frac{d^2 v}{dx^2}$$

A equação [Eq. 01] torna-se

$$\varepsilon = -y \cdot \left[\left(-\frac{6}{l^2} + \frac{12x}{l^3} \right) \left(-\frac{4}{l} + \frac{6x}{l^2} \right) \left(\frac{6}{l^2} - \frac{12x}{l^3} \right) \left(-\frac{2}{l} + \frac{6x}{l^2} \right) \right] \begin{cases} v_1 \\ \theta_2 \\ v_3 \\ \theta_4 \end{cases}$$

$$\varepsilon = [B]\{u\} \text{ onde: } [B] = -y \cdot \left[\left(-\frac{6}{l^2} + \frac{12x}{l^3} \right) \left(-\frac{4}{l} + \frac{6x}{l^2} \right) \left(\frac{6}{l^2} - \frac{12x}{l^3} \right) \left(-\frac{2}{l} + \frac{6x}{l^2} \right) \right]$$

$$[B] = -y \cdot [B^*]$$

ou:

Conforme [Eq. 02]

$$[K] = \int_{V} [B]^{T} [D] [B] dV$$

Fazendo-se:
$$dV = dAdx$$
, $\int_A y^2 dA = I$, e $[D] = E$

Tem-se finalmente:

$$[K] = EI \int_{0}^{l} [B^{*}]^{T} [B^{*}] dx$$

$$[K] = \frac{EI}{l} \begin{bmatrix} \frac{12}{l^{2}} & \frac{6}{l} & \frac{-12}{l^{2}} & \frac{6}{l} \\ \frac{6}{l} & 4 & \frac{-6}{l} & 2 \\ \frac{-12}{l^{2}} & \frac{-6}{l} & \frac{12}{l^{2}} & \frac{-6}{l} \\ \frac{6}{l} & 2 & -\frac{6}{l} & 4 \end{bmatrix}$$

2.1.2. Matriz Geométrica.

Sua determinação é feita baseando-se no princípio da variação segunda da energia nula (COOK, R. D. e outros, 1989).

$$\delta^2 U = \delta^2 T$$

Desenvolvendo-se esta equação, como no caso da matriz de rigidez, chega-se à expressão:

$$[K^g] = P \int_0^l [G]^T [G] dx$$

$$[K^g] = P \int_0^l \left[\frac{dv}{dx} \right]^T \left[\frac{dv}{dx} \right] dx$$
[Eq. 03]

Conforme [Eq. 02]

$$\frac{dv}{dx} = \left[\left(\frac{-6x}{l^2} + \frac{6x^2}{l^3} \right) \left(1 - \frac{4x}{l} + \frac{3x^2}{l^2} \right) \left(\frac{6x}{l^2} - \frac{6x^2}{l^3} \right) \left(-\frac{2x}{l} + \frac{3x^2}{l^2} \right) \right] \begin{cases} v_1 \\ \theta_2 \\ v_3 \\ \theta_4 \end{cases}$$

Todos os cálculos feitos, a equação [Eq. 03] torna-se:

$$[K^g] = \frac{P}{30l} \begin{bmatrix} 36 & 3l & -36 & 3l \\ 3l & 4l^2 & -3l & -l^2 \\ -36 & -3l & 36 & -3l \\ 3l & -l^2 & -3l & 4l^2 \end{bmatrix}$$

Como a carga crítica acontece para $\{P\}=\{0\}$, a sua determinação se resume em resolver o sistema:

$$\det[K] - \lambda[K^g] = 0$$

Cujas soluções conduzem aos valores das cargas críticas conforme o número de graus de liberdade da estrutura. O menor valor dessa carga é utilizado no dimensionamento.

3. PROGRAMA COMPUTACIONAL

O programa foi construído e implementado em linguagem pascal (ambientado em Delphi) para montagem das duas matrizes elementares, tanto de rigidez quanto geométrica, introdução das condições limites para se

obter o sistema reduzido o qual é resolvido com o auxílio do Matlab cujas saídas serão as cargas críticas. O algoritmo no qual se baseia o programa possui a seguinte estrutura em linguagem natural:

• Dados de entrada:

Momento de inércia, módulo de elasticidade, comprimento de cada elemento;

Condições de contorno;

Desenvolvimento:

Montagem das matrizes de rigidez e geométrica da estrutura;

Montagem das matrizes com todos os elementos;

Redução do sistema introduzindo as condições de contorno do problema;

Solução da equação.

• Dados de saída:

Valor aproximado das cargas críticas de flambagem da estrutura.

3.1. Interface Gráfica do Programa Computacioinal

Figura 1 – Interface do programa computacional

4. RESULTADOS

O programa foi testado para o caso de um eixo escalonado discretizado em dois elementos cujos dados e condições de apoio são apresentadas na figura 2:

Figura 2 – Eixo escalonado (dados geométricos, físicos e condições limites)

A tabela 1 mostra os resultados do presente estudo comparados com o método das diferenças finitas (SILVA E MANIÇOBA, 2007).

Tabela 1 – Resultados

Carga Crítica usando M.E.F. (presente estudo)	Carga Crítica usando M MANIÇOBA)	I.D.F. (SILVA E
Pcr = 26,32	Per = 26,62	

5. CONCLUSÃO

Neste trabalho foi implementado um programa computacional que calcula a carga crítica na flambagem de um eixo escalonado engastado-apoiado carregado na extremidade, baseado no método dos elementos finitos, que pode ser utilizado tanto industrial como educacionalmente.

Apesar da discretização ter sido em dois elementos apenas, o resultado mostra-se eficaz quando comparado com o resultado obtido por diferenças finitas.

Evidentemente, o programa pode ser aperfeiçoado, permitindo a análise de eixos com outros tipos de apoio e uma discretização em mais elementos.

REFERÊNCIAS BIBLIOGRÁFICAS

COOK, R. D., MALKUS, D. S. PLESHA, M. E. Concepts and Applications of Finite Element Analysis. Wiley, New York, 1989, 530p.

HERMÍNIO, J. A. Sobre a Flambagem de Barras e Placas. Publicação interna, PPGEM-UFRN, 1996, 11p.

HERMÍNIO, J. A. & MELO, J. D. D. Estática Aplicada, Publicação interna, DEM-UFRN, 1996, 69p.

SILVA, P.L.B., MANIÇOBA, G.G.C. & HERMÍNIO, J.A. Calculo da Carga Crítica de um Eixo Escalonado pelo Método das Diferenças Finitas. Trabalho de Iniciação Científica, O.M.I. DATIN CEFET-RN, 2007, 6p.

TIMOSHENKO, S. P. & GERE, J. M. Theory of Elastic Stability. McGraw-Hill, New York, 1963, 540 p.