Introduction to Bayesian Estimation

Wouter J. Den Haan London School of Economics

© 2011 by Wouter J. Den Haan

August 29, 2011

Overview Kalman Filter Estimation problem Maximum likelihood Bayesian estimation MCMC Other

Overview

- A very useful tool: Kalman filter
- Maximum Likelihood
 - Singularity when #shocks ≤ number of observables
- Bayesian estimation
- Tools:
 - Metropolis Hastings
- Remaining issues

Rudolph E. Kalman

Overview

born in Budapest, Hungary, on May 19, 1930

Kalman filter

- Linear projection
- Linear projection with orthogonal regressors
- Kalman filter

The slides for the Kalman filter is based on Ljungqvist and Sargent's textbook

• y: $n_y \times 1$ vector of random variables

- $x: n_x \times 1$ vector of random variables
- First and second moments exist

$$\begin{array}{lll} \mathsf{E} y = \mu_y & \tilde{y} = y - \mu_y & \mathsf{E} \tilde{x} \tilde{x}' = \Sigma_{xx} \\ \mathsf{E} x = \mu_x & \tilde{x} = x - \mu_x & \mathsf{E} \tilde{y} \tilde{y}' = \Sigma_{yy} \\ & \mathsf{E} \tilde{y} \tilde{x}' = \Sigma_{yx} \end{array}$$

The *linear projection* of y on x is the function

$$\widehat{\mathsf{E}}\left[y|x\right] = a + Bx,$$

a and B are chosen to minimize

E trace
$$\{(y-a+Bx)(y-a+Bx)'\}$$

Formula for linear projection

The *linear projection* of y on x is given by

$$\widehat{\mathsf{E}}\left[y|x\right] = \mu_{y} + \Sigma_{yx} \Sigma_{xx}^{-1} (x - \mu_{x})$$

Overview

True model:

$$y = \bar{B}x + \bar{D}z + \varepsilon,$$

 $Ex = Ez = E\varepsilon = 0, E[\varepsilon|x, z] = 0, E[z|x] \neq 0$

B: measures the effect of x on y keeping all else—also z and €—constant.

• Particular regression model:

$$y = \bar{B}x + u$$

Difference with linear regression problem

Comments:

- ullet Least-squares estimate $eq ar{B}$
- Projection:

$$\widehat{\mathsf{E}}\left[y|x\right] = Bx = \bar{B}x + \bar{D}\widehat{\mathsf{E}}\left[z|x\right]$$

 Projection well defined linear projection can include more than the direct effect:

Message:

- You can always define the linear projection
- you don't have to worry about the properties of the error term.

Linear Projection with orthogonal regressors

- $x = [x_1, x_2]$ and suppose that $\Sigma_{x_1x_2} = 0$
- x_1 and x_2 could be vectors

$$\begin{split} \widehat{\mathsf{E}} \left[y | x \right] &= \mu_y + \Sigma_{yx} \Sigma_{xx}^{-1} (x - \mu_x) \\ &= \mu_y + \left[\Sigma_{yx_1} \; \Sigma_{yx_2} \right] \left[\begin{array}{cc} \Sigma_{x_1 x_1}^{-1} & 0 \\ 0 \; \; \Sigma_{x_2 x_2}^{-1} \end{array} \right] (x - \mu_x) \\ &= \mu_y + \Sigma_{yx_1} \Sigma_{x_1 x_1}^{-1} (x_1 - \mu_{x_1}) + \Sigma_{yx_2} \Sigma_{x_2 x_2}^{-1} (x_2 - \mu_{x_2}) \end{split}$$

Thus

$$\widehat{\mathsf{E}}\left[y|x\right] = \widehat{\mathsf{E}}\left[y|x_1\right] + \widehat{\mathsf{E}}\left[y|x_2\right] - \mu_{y} \tag{1}$$

Overview

Time Series Model

$$x_{t+1} = Ax_t + Gw_{1,t+1}$$
 $y_t = Cx_t + w_{2,t}$
 $Ew_{1,t} = Ew_{2,t} = 0$

$$\mathsf{E} \left[\begin{array}{c} w_{1,t+1} \\ w_{2,t} \end{array} \right] \left[\begin{array}{c} w_{1,t+1} \\ w_{2,t} \end{array} \right]' = \left[\begin{array}{c} V_1 & V_3 \\ V_3' & V_2 \end{array} \right]$$

Time Series Model

Overview

- y_t is observed, but x_t is not
- the coefficients are known (could even be time-varying)
- Initial condition:
 - x_1 is a random variable (mean μ_{x_1} & covariance matrix Σ_1)
- ullet $w_{1,t+1}$ and $w_{2,t}$ are serially uncorrelated and orthogonal to x_1

Objective

The objective is to calculate

$$\widehat{\mathsf{E}}_{t}x_{t+1} \equiv \widehat{\mathsf{E}}\left[x_{t+1}|y_{t},y_{t-1},\cdots,y_{1},\tilde{x}_{1}\right] = \widehat{\mathsf{E}}\left[x_{t+1}|Y^{t},\tilde{x}_{1}\right]$$

where \tilde{x}_1 is an initial estimate of x_1 (Typically μ_{x_1})

Trick: get a recursive formulation

Orthogonalization of the information set

- Let
 - $\hat{y}_t = y_t \hat{\mathsf{E}}[y_t | \hat{y}_{t-1}, \hat{y}_{t-2}, \cdots, \hat{y}_1, \tilde{x}_1]$
 - $\bullet \ \hat{\mathbf{Y}}^t = \{\hat{y}_t, \hat{y}_{t-1}, \cdots, \hat{y}_1\}$
- space spanned by $\{\tilde{x}_1, \hat{Y}^t\}$ = space spanned by $\{\tilde{x}_1, Y_t\}$
 - That is, anything that can be expressed as a linear combination with elements in $\{\tilde{x}_1, \hat{Y}^t\}$ can be expressed as a linear combination of elements in $\{\tilde{x}_1, Y_t\}$.

Orthogonalization of the information set

• Then

$$\widehat{\mathsf{E}}\left[y_{t+1}|Y^t, \tilde{x}_1\right] = \widehat{\mathsf{E}}\left[y_{t+1}|\hat{Y}^t, \tilde{x}_1\right] = C\widehat{\mathsf{E}}\left[x_{t+1}|\hat{Y}^t, \tilde{x}_1\right] \tag{2}$$

Overview

Derivation of the Kalman filter

From (1) we get

$$\widehat{\mathsf{E}}\left[x_{t+1}|\widehat{Y}^t,\widetilde{x}_1\right] = \widehat{\mathsf{E}}\left[x_{t+1}|\widehat{y}_t\right] + \widehat{\mathsf{E}}\left[x_{t+1}|\widehat{Y}^{t-1},\widetilde{x}_1\right] - \mathsf{E}x_{t+1} \tag{3}$$

The first term in (3) is a standard linear projection:

$$\widehat{\mathsf{E}} [x_{t+1} | \hat{y}_t] = \mathsf{E} x_{t+1} + \mathsf{cov}(x_{t+1}, \hat{y}_t) [\mathsf{cov}(\hat{y}_t, \hat{y}_t)]^{-1} (\hat{y}_t - \mathsf{E} \hat{y}_t)
= \mathsf{E} x_{t+1} + \mathsf{cov}(x_{t+1}, \hat{y}_t) [\mathsf{cov}(\hat{y}_t, \hat{y}_t)]^{-1} \hat{y}_t$$

Some algebra

• Similar to the definition of \hat{y}_t , let

$$\hat{x}_{t+1} = x_{t+1} - \widehat{E}[x_{t+1}|\hat{y}_t, \hat{y}_{t-1}, \cdots, \hat{y}_1, \tilde{x}_1]
= x_{t+1} - \widehat{E}_t x_{t+1}$$

• Let $\Sigma_{\hat{x}_t} = \mathsf{E}\hat{x}_t\hat{x}_t'$

$$cov(x_{t+1}, \hat{y}_t) = A\Sigma_{\hat{x}_t}C' + GV_3$$
$$cov(\hat{y}_t, \hat{y}_t) = C\Sigma_{\hat{x}_t}C' + V_2$$

Overview

MCMC

$$\widehat{\mathsf{E}}\left[x_{t+1}|\hat{y}_{t}\right]$$

$$= \mathsf{E} x_{t+1} + \mathsf{cov}(x_{t+1}, \hat{y}_t) \left[\mathsf{cov}(\hat{y}_t, \hat{y}_t) \right]^{-1} \hat{y}_t$$

$$= \mathsf{E} x_{t+1} + \left(A \Sigma_{\hat{x}_t} C' + G V_3 \right) \left(C \Sigma_{\hat{x}_t} C' + V_2 \right)^{-1} \hat{y}_t \tag{4}$$

Derivation Kalman filter

- Now get an expression for the second term in (3).
- From $x_{t+1} = Ax_t + Gw_{1,t+1}$, we get

$$\widehat{\mathsf{E}}\left[x_{t+1}|\widehat{Y}^{t-1},\widetilde{x}_1\right] = A\widehat{\mathsf{E}}\left[x_t|\widehat{Y}^{t-1},\widetilde{x}_1\right] = A\widehat{\mathsf{E}}_{t-1}x_t \tag{5}$$

Using (4) and (5) in (3) gives the recursive expression

$$\widehat{\mathsf{E}}_t x_{t+1} = A \widehat{\mathsf{E}}_{t-1} x_t + K_t \hat{y}_t$$

where

$$K_t = \left(A\Sigma_{\hat{x}_t}C' + GV_3\right)\left(C\Sigma_{\hat{x}_t}C' + V_2\right)^{-1}$$

Prediction for observable

From

$$y_{t+1} = Cx_{t+1} + w_{2,t+1}$$

we get

$$\widehat{\mathsf{E}}\left[y_{t+1}|Y_t,\widetilde{x}_1\right] = C\widehat{\mathsf{E}}_t x_{t+1}$$

Thus

$$\hat{y}_{t+1} = y_{t+1} - C\widehat{\mathsf{E}}_t x_{t+1}$$

• We still need an equation to update $\Sigma_{\hat{x}_t}$. This is actually not that hard. The result is

$$\Sigma_{\hat{x}_{t+1}} = A\Sigma_{\hat{x}_t}A' + GV_1G' - K_t(A\Sigma_{\hat{x}_t}C' + GV_3)'$$

 Expression is deterministic and does not depend particular realizations. That is, precision only depends on the coefficients of the time series model

Applications Kalman filter

- signal extraction problems
 - GPS, computer vision applications, missiles
- prediction

Overview

- simple alternative to calculating inverse policy functions
 - (see below)

Estimating DSGE models

- Forget the Kalman filter for now, we will not use it for a while
- What is next?

Overview

- Specify the neoclassical model that will be used as an example
- Specify the linearized version
- Specify the estimation problem
- Maximum Likelihood estimation
- Explain why Kalman filter is useful
- Bayesian estimation
- MCMC, a necessary tool to do Bayesian estimation

Neoclassical growth model

First-order conditions

$$c_t^{-\nu} = \mathsf{E}_t \left[\beta c_{t+1}^{-\nu} (\alpha z_{t+1} k_t^{\alpha - 1} + 1 - \delta) \right]$$

$$c_t + k_t = z_t k_{t-1}^{\alpha} + (1 - \delta) k_{t-1}$$

$$z_t = (1 - \rho) + \rho z_{t-1} + \varepsilon_t$$

$$\varepsilon_t \sim N(0, \sigma^2)$$

$$k_t = \bar{k} + a_{k,k}(k_{t-1} - \bar{k}) + a_{k,z}(z_t - \bar{z})$$
 $z_t = (1 - \rho) + \rho z_{t-1} + \varepsilon_t$
 $\varepsilon_t \sim N(0, \sigma^2)$
 $z_0 \sim N(1, \sigma^2/(1 - \rho^2))$
 k_0 is given

- $a_{k,k}$, $a_{k,z}$, and \bar{k} are *known* functions of the structural parameters \implies better notation would be $a_{k,k}(\Psi)$, $a_{k,z}(\Psi)$, and $\bar{k}(\Psi)$
- Consumption has been substituted out
- ullet Approximation error is ignored. Linearized model is treated as the true model with Ψ as the parameters

Estimation problem

Given data for capital, $\{k_t\}_0^T$, estimate the set of coefficients, Ψ

$$\Psi = [\alpha, \beta, \nu, \delta, \rho, \sigma, z_0]$$

- No data on productivity, z_t.
 - If you had data on $z_t \Longrightarrow \mathsf{Likelihood} = 0$ for sure
 - More on this below.

Formulation of the Likelihood

• Let Y^T be the complete sample

$$L(Y^T|\Psi) = p(z_0) \prod_{t=1}^{T} p(z_t|z_{t-1})$$

 $p(z_t|z_{t-1})$ corresponds with probability of a particular value for ε_t

Basic idea:

- Given a value for Ψ and give the data set, Y^T , you can calculate the implied values for ε_t
- We know the distribution of $\varepsilon_t \Longrightarrow$
- ullet We can calculate the probability (likelihood) of $\{arepsilon_1,\cdots,arepsilon_T\}$

Overview

MCMC

$$k_t = \bar{k} + a_{k,k}(k_{t-1} - \bar{k}) + a_{k,z}(z_t - \bar{z})$$

$$\Longrightarrow$$

$$z_{t} = \frac{a_{k,z}\bar{z} - \bar{k} + a_{k,k}\bar{k}}{a_{k,z}} - \frac{a_{k,k}}{a_{k,z}}k_{t-1} + \frac{1}{a_{k,z}}k_{t}$$

$$z_t = b_0 + b_1 k_{t-1} + b_2 k_t$$

$$\varepsilon_t = z_t - (1 - \rho) - \rho z_{t-1}$$

Formulation of the Likelihood

- For larger systems, this inversion is not as easy to implement.
 - Below, we show an alternative

• ε_t is obtained by **inverting** the policy function

Overview

MCMC

A bit more explicit

- Take a value for Ψ
- Given k_0 and k_1 you can calculate z_1
- Given z_0 you can calculate ε_1
- Continuing, you can calculate $\varepsilon_t \ \forall t$
- To make explicit the dependence of ε_t on Ψ , write $\varepsilon_t(\Psi)$
- The Likelihood can thus be written as

$$\prod_{t=1}^{T} \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{\frac{-\left(\varepsilon_{t}(\Psi)\right)^{2}}{2\sigma^{2}}\right\}$$

Too few unobservables & singularities

- Above we assumed that there was no data on z_t
- Suppose you had data on z_t
- There are two cases to consider
 - Data not exactly generated by this model (most likely case)
 - \implies Likelihood = 0 for any value of Ψ
 - Data is exactly generated by this model
 - \implies Likelihood = 1 for true value of Ψ and
 - \implies Likelihood = 0 for any other value for Ψ

Too few unobservables & singularities

$$k_t = \bar{k} + a_{k,k}(k_{t-1} - \bar{k}) + a_{k,z}(z_t - \bar{z})$$

Using the values for 4 periods, you can pin down \bar{k} , \bar{z} , $a_{k,k}$, and $a_{k,z}$.

- What about values for additional periods?
 - Data generated by model (unlikely of course)
 additional observations will fit this equation too
 - Data not generated by model
 ⇒ additional observations will not fit this equation
 ⇒ Likelihood = zero

Too few unobservables & singularities

Can't I simply add an error term?

$$k_t = \bar{k} + a_{k,k}(k_{t-1} - \bar{k}) + a_{k,z}(z_t - \bar{z}) + u_t$$

- Answer: NO not in general
- Why not? It is ok in standard regression

Overview

MCMC

Why is the answer NO in general?

- **1** u_t represents other shocks such as preference shocks \implies it's presence is likely to affect k, $a_{k,k}$, and $a_{k,z}$
- **2** u_t represents measurement error > you are fine from an econometric stand point ⇒ but is residual only measurement error?

Overview

What if you also observe consumption?

Suppose you observe k_t , c_t , but not z_t ?

$$k_t = \bar{k} + a_{k,k}(k_{t-1} - \bar{k}) + a_{k,z}(z_t - \bar{z})$$

$$c_t = \bar{c} + a_{c,k}(k_{t-1} - \bar{k}) + a_{c,z}(z_t - \bar{z})$$

- Recall that the coefficients are functions of Ψ
- Given value of Ψ you can solve for z_t from top equation
- Given value of Ψ you can solve for z_t from bottom equation
- With real world data you will get inconsistent answers.

Unobservables and avoiding singularities

General rule:

- For every observable you need at least one unobservable shock
- Letting them be measurement errors is hard to defend
- The last statement does not mean that you cannot also add measurement errors

Using the Kalman filter

$$x_{t+1} = Ax_t + Gw_{1,t+1} (6)$$

$$y_t = Cx_t + w_{2,t} \tag{7}$$

- (6) describes the equations of the model;
 - x_t consists of the "true" values of state variables like capital and productivity.
- (7) relates the observables, y_t , to the "true" values

Example

- consumption and capital are observed with error
 - $c_t^* = c_t + u_{c,t}$
 - $k_t^* = k_t + u_{kt}$
- z_t is unobservable
- $x'_{t} = [k_{t-1} \bar{k}, z_{t-1} \bar{z}]$
- $w_{1,t+1} = \varepsilon_t$
- $y'_t = [k^*_{t-1} \bar{k}, c^*_t \bar{c}]$

Example

• (6) gives policy function for k_t and law of motion for z_t

$$\begin{bmatrix} k_t - \bar{k} \\ c_t - \bar{c} \\ z_{t+1} - \bar{z} \end{bmatrix} = \begin{bmatrix} a_{k,k} & a_{k,z} \\ a_{c,k} & a_{c,z} \\ 0 & \rho \end{bmatrix} \begin{bmatrix} k_{t-1} - \bar{k} \\ z_t - \bar{z} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \varepsilon_{t+1} \end{bmatrix}$$

Equation (7) is equal to

$$\begin{bmatrix} k_{t-1}^* - \bar{k} \\ c_t^* - \bar{c} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a_{c,k} & a_{c,z} \end{bmatrix} \begin{bmatrix} k_{t-1} - \bar{k} \\ z_t - \bar{z} \end{bmatrix} + \begin{bmatrix} u_{k,t} \\ u_{c,t} \end{bmatrix}$$

Overview

Back to the Likelihood

- y_t consists of k_t^* and c_t^* and the model is given by (6) and (7).
- ullet From the Kalman filter we get \hat{y}_t and $\Sigma_{\hat{y}_t}$

$$\widehat{\mathbb{E}}\left[x_{t}|Y^{t-1}, \widetilde{x}_{1}\right] = A\widehat{\mathbb{E}}\left[x_{t-1}|Y^{t-2}, \widetilde{x}_{1}\right] + K_{t-1}\widehat{y}_{t-1}$$

$$\widehat{\mathbb{E}}\left[y_{t}|Y^{t-1}, \widetilde{x}_{1}\right] = C\widehat{\mathbb{E}}\left[x_{t}|Y^{t-1}, \widetilde{x}_{1}\right]$$

$$\widehat{y}_{t} = y_{t} - \widehat{\mathbb{E}}\left[y_{t}|Y^{t-1}, \widetilde{x}_{1}\right]$$

$$\Sigma_{\widehat{x}_{t+1}} = A\Sigma_{\widehat{x}_{t}}A' + GV_{1}G' - K_{t}(A\Sigma_{\widehat{x}_{t}}C + GV_{3})'$$

$$\Sigma_{\widehat{y}_{t}} = C\Sigma_{\widehat{x}_{t}}C' + V_{2}$$

- ullet \hat{y}_{t+1} is normally distributed because
- this is a linear model and underlying shocks are linear
- ullet Kalman filter generates \hat{y}_{t+1} and $\Sigma_{\hat{y}_t}$
 - (given Ψ and observables, Y^T)
- Given normality calculate likelihood of $\{\hat{y}_{t+1}\}$

Kalman Filter versus inversion

with measurement error

have to use Kalman filter

withour measurement error

- could back out shocks using inverse of policy function
- but could also use Kalman filter
 - Dynare always uses the Kalman filter
 - hardest part of the Kalman filter is calculating the inverse of $C\Sigma_{\hat{x}_t}C'+V_2$ and this is typically not a difficult inversion.

Log-Likelihood

$$\ln(\mathbf{Y}^{T}|\mathbf{\Psi}) = -\left(\frac{1}{2}\right) \left(n_{x} \ln(2\pi) + \ln(|\Sigma_{\widehat{x}_{0}}|) + \widehat{x}_{0}' \Sigma_{\widehat{x}_{0}}^{-1} \widehat{x}_{0}\right) \\
-\left(\frac{1}{2}\right) \left(Tn_{y} \ln(2\pi) + \sum_{t=1}^{T} \left[\ln(|\Sigma_{\widehat{y}_{t}}|) + \widehat{y}_{t}' \Sigma_{\widehat{y}_{t}}^{-1} \widehat{y}_{t}\right]\right)$$

 n_{ν} : dimension of \hat{y}_t

Overview

For the neo-classical growth model

- Start with $x_1 = [k_0, z_0], y_1 = k_0^*, \text{ and } \Sigma_1$
- Calculate

$$\hat{y}_1 = y_1 - \widehat{E}[y_1|x_1]
= y_1 - Cx_1$$

• Calculate $\widehat{E}[x_2|y_1,x_1]$ using

$$\widehat{\mathsf{E}}_t x_{t+1} = A \widehat{\mathsf{E}}_{t-1} x_t + K_t \widehat{y}_t$$

where

$$K_t = \left(A\Sigma_{\hat{x}_t}C' + GV_3\right)\left(C\Sigma_{\hat{x}_t}C' + V_2\right)^{-1}$$

For the neo-classical growth model

Calculate

$$\hat{y}_2 = y_2 - \hat{E}[y_2|y_1, x_1]$$

= $y_2 - C\hat{E}[x_2|y_1, x_1]$

etc.

Bayesian Estimation

Overview

- Conceptually, things are not that different
- Bayesian econometrics combines
 - the likelihood, i.e., the data, with
 - the prior
- You can think of the prior as additional data

The joint density of parameters and data is equal to

$$P(Y^T, \Psi) = L(Y^T | \Psi) P(\Psi)$$
 or $P(Y^T, \Psi) = P(\Psi | Y^T) P(Y^T)$

Posterior

From this we can get Bayes rule: $P(\Psi|Y^T) = \frac{L(Y^T|\Psi)P(\Psi)}{P(Y^T)}$

Reverend Thomas Bayes (1702-1761)

- For the distribution of Ψ , $P(Y^T)$ is just a constant.
- Therefore we focus on

$$L(Y^T|\Psi)P(\Psi) \propto \frac{L(Y^T|\Psi)p(\Psi)}{P(Y^T)} = P(\Psi|Y^T)$$

• One can always make $L(Y^T|\Psi)P(\Psi)$ a proper density by scaling it so that it integrates to 1

Overview

Evaluating the posterior

- Calculating posterior for given value of Ψ not problematic.
- But we are interested in objects of the following form

$$\mathsf{E}\left[g(\Psi)\right] = \frac{\int g(\Psi)P(\Psi|Y^T)d\Psi}{\int P(\Psi|Y^T)d\Psi}$$

- Examples
 - to calculate the mean of Ψ , let $g(\Psi) = 1$
 - ullet to calculate the probability that $\Psi \in \Psi^*$,
 - let $g(\Psi) = 1$ if $\Psi \in \Psi^*$ and
 - let $g(\Psi) = 0$ otherwise
 - to calculate the posterior for j^{th} element of Ψ
 - $g(\Psi) = \Psi_i$

Evaluating the posterior

- Even Likelihood can typically only be evaluated numerically
- Numerical techniques also needed to evaluate the posterior

Evaluating the posterior

- Standard Monte Carlo integration techniques cannot be used
 - ullet Reason: cannot draw random numbers directly from $P(\Psi|Y^T)$
 - being able to calculate $P(\Psi|Y^T)$ not enough to create a random number generator with that distribution
- Standard tool: Markov Chain Monte Carlo (MCMC)

Metropolis & Metropolis-Hasting

 Metropolis & Metropolis-Hasting are particular versions of the MCMC algorithm

- Idea:
 - ullet travel through the state space of Ψ
 - weigh the outcomes appropriately

Other

Metropolis & Metropolis-Hasting

ullet Start with an initial value, Ψ_0

Overview

• discard the beginning of the sample, the burn-in phase, to ensure choice of Ψ_0 does not matter

Metropolis & Metropolis-Hasting

Subsequent values, Ψ_{i+1} , are obtained as follows

- Draw Ψ^* using the "stand in" density $f(\Psi^*|\Psi_i,\theta_f)$
 - θ_f contains the parameters of $f(\cdot)$
- Ψ^* is a candidate for Ψ_{i+1}
 - $\Psi_{i+1} = \Psi^*$ with probability $q(\Psi_{i+1}|\Psi_i)$
 - $\Psi_{i+1} = \Psi_i$ with probability $1 q(\Psi_{i+1}|\Psi_i)$

Metropolis & Metropolis-Hasting

properties of $f(\cdot)$

- $f(\cdot)$ should have fat tails relative to the posterior
 - that is, $f(\cdot)$ should "cover" $P(\Psi|Y^T)$

$$q(\Psi_{i+1}|\Psi_i) = \min\left[1, \frac{P(\Psi^*|Y^T)}{P(\Psi_i|Y^T)}\right]$$

- $P(\Psi^*|Y^T) \ge P(\Psi_i|Y^T) \Longrightarrow$
 - always include candidate as new element
- $P(\Psi^*|Y^T) < P(\Psi_i|Y^T) \Longrightarrow$
 - Ψ^* not always included; the lower $P(\Psi^*|Y^T)$ the lower the chance it is included

$$q(\Psi_{i+1}|\Psi_i) = \min \left[1, \frac{P(\Psi^*|Y^T)/f(\Psi^*|\Psi_i, \theta_f)}{P(\Psi_i|Y^T)/f(\Psi_i|\Psi_i, \theta_f)} \right]$$

- $P(\Psi_i|Y^T)/f(\Psi_i|\Psi_i,\theta_f)$ low \Longrightarrow
 - ullet you should move away from this Ψ value $\Longrightarrow q$ should be high
- $P(\Psi^*|Y^T)/f(\Psi^*|\Psi_i,\theta_f)$ high:
 - probability of Ψ^* high & should be included with high prob.

Choices for f(.)

Random walk MH:

$$\Psi^* = \Psi_i + \varepsilon$$
 with $\mathsf{E}\left[arepsilon
ight] = 0$

and, for example,

$$\varepsilon \sim N(0, \theta_f^2)$$

• Independence sampler:

$$f(\Psi^*|\Psi_i,\theta_f) = f(\Psi^*|\theta_f)$$

Couple more points

- Is the singularity issue different with Bayesian statistics?
- Choosing prior
- Gibbs sampler

The singularity problem again

What happens in practice?

- lots of observations are available
- ullet practioners don't want to exclude data \Longrightarrow
- add "structural" shocks

The singularity problem again

Problem with adding additional shocks

- measurement error shocks
 - not credible that this is reason for gap between model and data
- structural shocks
 - good reason, but wrong structural shocks ⇒ misspecified model

Possible solution to singularity problem?

Today's posterior is tomorrow's prior

Possible solution to singularity problem?

Suppose you want the following:

- use 2 observables and
- only 1 structural shock

Possible solution to singularity problem?

- **1** Start with first prior: $P_1(\Psi)$
- 2 Use first observable Y_1^T to form first posterior

$$F_1(\Psi) = L(Y_1^T | \Psi) P_1(\Psi)$$

- **3** Let second prior be first posterior: $P_2(\Psi) = F_1(\psi)$
- 4 Use second observable Y_2^T to form second posterior

$$F_2(\Psi) = L(Y_2^T | \Psi) P_2(\Psi)$$

Overview

MCMC

$$F_2(\Psi) = L(Y_2^T | \Psi) P_2(\Psi)$$

= $L(Y_2^T | \Psi) L(Y_1^T | \Psi) P_1(\Psi)$

Obviously:

$$F_2(\Psi) = L(Y_2^T | \Psi) L(Y_1^T | \Psi) P_1(\Psi)$$

= $L(Y_1^T | \Psi) L(Y_2^T | \Psi) P_1(\Psi)$

Thus, it does not matter which variable you use first

Properties of final posterior

- Final posterior could very well have multiple modes
 - indicates where different variables prefer parameters to be
- This is only informative, not a disadvantage

Have we solved the singularity problem?

Problems of approach:

- Procedure avoids singularity problem by not considering joint implications of two observables
- Procdure misses some structural shock/misspecification

Key question:

• Is this worse than adding bogus shocks?

Have we solved the singularity problem?

Problems of approach:

- Procedure avoids singularity problem by not considering joint implications of two observables
- Procdure misses some structural shock/misspecification

Key question:

• Is this worse than adding bogus shocks?

Other

How to choose prior

- Without analyzing data, sit down and think problem in macro: we keep on using the same data so is this science or data mining?
- 2 Don't change prior depending on results

• $P(\Psi) = 1 \ \forall \Psi \in \mathbb{R} \Longrightarrow \mathsf{posterior} = \mathsf{likelihood}$

- $P(\Psi) = 1/(b-a)$ if $\Psi \in [a,b]$ is not **un**informative
- Which one is the least informative prior?

$$P(\Psi) = 1/(b-a) \text{ if } \Psi \in [a,b]$$

$$P(\ln \Psi) = 1/(\ln b - \ln a) \text{ if } \Psi \in [\ln a, \ln b]$$

• $P(\Psi) = 1 \ \forall \Psi \in \mathbb{R} \Longrightarrow \mathsf{posterior} = \mathsf{likelihood}$

- $P(\Psi) = 1/(b-a)$ if $\Psi \in [a,b]$ is not **un**informative
- Which one is the least informative prior?

$$P(\Psi) = 1/(b-a) \text{ if } \Psi \in [a,b]$$

$$P(\ln \Psi) = 1/(\ln b - \ln a) \text{ if } \Psi \in [\ln a, \ln b]$$

Uninformative prior

- $P(\Psi) = 1 \ \forall \Psi \in \mathbb{R} \Longrightarrow \mathsf{posterior} = \mathsf{likelihood}$
- $P(\Psi) = 1/(b-a)$ if $\Psi \in [a,b]$ is not **un**informative
- Which one is the least informative prior?

$$P(\Psi) = 1/(b-a) \text{ if } \Psi \in [a,b]$$

$$P(\ln \Psi) = 1/(\ln b - \ln a) \text{ if } \Psi \in [\ln a, \ln b]$$

The objective of Jeffrey's prior is to ensure that the prior is invariant to such reparameterizations

How to choose (not so) informative priors

Let the prior inherit invariance structure of the problem:

- location parameter: If X is distributed as $f(x \psi)$, then $Y = X + \phi$ have the same distribution but a different location. If the prior has to inherit this property, then it should be uniform.
- **2 scale parameter:** If X is distributed as $(1/\sigma)f(x/\sigma)$, then $Y = \phi X$ has the same distribution as X except for a different scale parameter. If the prior has to inherit this property, then it should be of the form

$$P(\psi) = 1/\psi$$

Both are improper priors.

That is, they do not integrate to a finite number.

Not so informative priors

Let the prior be consistent with "total confusion"

3 probability parameter: If ψ is a probability $\in [0,1]$, then the prior distribution

$$P(\psi) = 1/\left(\psi\left(1 - \psi\right)\right)$$

represents total confusion. The idea is that the elements of the prior correspond to different beliefs and everybody is given a new piece of info that the cross-section of beliefs would not change.

See notes by Smith

Gibbs sampler

Objective: Obtain T observations from $p(x_1, \dots, x_I)$. Procedure:

- **1** Start with initial observation $X^{(0)}$
- **2** Draw period t observation, $X^{(t)}$, using the following iterative scheme:
 - draw $x_i^{(t)}$ from the conditional distribution:

$$p\left(x_{j}|x_{1}^{(t)},\cdots,x_{j-1}^{(t)},x_{j+1}^{(t-1)},\cdots,x_{J}^{(t-1)}\right)$$

Gibbs sampler versus MCMC

Overview

- Gibbs sampler does not require stand-in distribution
- Gibbs sampler still requires the ability to draw from conditional
 not useful for estimation DSGE models

Overview Kalman Filter Estimation problem Maximum likelihood Bayesian estimation MCMC **Other**

References

- Chib, S. and Greenberg, E., 1995, Understanding the Metropolis-Hastings Algorithm,
 The American Statistician.
- describes the basics
- Ljungqvist, L. and T.J. Sargent, 2004, Recursive Macroeconomic Theory
 - source for the description of the Kalman filter
- Roberts, G.O., and J.S. Rosenthal, 2004, General state space Markov chains and MCMC algorithms, Probability Surveys.
 - more advanced articles describing formal properties

Bayesian estimation

References

- Smith, G.P., Expressing Prior Ignorance of a Probability Parameter, notes, University of Missouri
 - http://www.stats.org.uk/priors/noninformative/Smith.pdf on informative priors

Estimation problem

Syversveen, A.R, 1998, Noninformative Bayesian priors. Interpretation and problems with construction and applications http://www.stats.org.uk/priors/noninformative/Syversveen1998.pdf on informative priors