M3M6: Methods of Mathematical Physics (2018)

Problem Sheet 4

Problem 1.1 Solve the logarithmic singular integral equation:

$$\int_{-1}^{1} \log|x - t| u(t) \, \mathrm{d}t = \frac{1}{x^2 + 1}.$$

You may express your solution in terms of the constant

$$C = \int_{-1}^{1} \log|t| u(t) \,\mathrm{d}t.$$

Problem 1.2 Calculate

$$\int_{-1}^{1} \log|x - z| x \, \mathrm{d}x.$$

Consider the problem of the potential field generated by a metal sheet on [-1,1] with a point source with positive unit charge located at (x,y) = (0,1), or in complex coordinates z = x + iy, at z = i.

Problem 2.1 Express the problem as a solution v(x, y) to Laplace's equation off [-1, 1]. You can assume that the metal sheet has no net charge, so that the field at infinity is given by $v(x, y) = \log|z - \mathbf{i}| + o(1)$ where $z = x + \mathbf{i}y$.

Problem 2.2 Reduce the Laplace's equation to a singular integral equation of the form:

$$\int_{-1}^{1} u(t) \log |x - t| \, \mathrm{d}t = f(t)$$

where u is a new unknown. What is f(t) and what is the relationship between v and $\int_{-1}^{1} u(x) \log |z - x| dx$?

Problem 2.3 Solve the singular integral equation for u.

Problem 2.4 What is v(x, y)?

This set of problems investigates the analyticity properties of the half-Fourier transform. Recall the definitions

$$u_{\mathbf{R}}(x) = \begin{cases} u(x) & x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

$$u_{\rm L}(x) = \begin{cases} u(x) & x < 0\\ 0 & \text{otherwise} \end{cases}$$

The Fourier transform

$$\hat{u}(s) = \int_{-\infty}^{\infty} u(x) e^{-ixs} dx,$$

and the inverse Fourier transform

$$u(x) = \frac{1}{2\pi} \int_{-\infty + i\gamma}^{\infty + i\gamma} \hat{u}(s) e^{isx} ds$$

where the choice of γ is dictated by the analyticity of $\hat{u}(z)$.

Problem 3.1 Consider f(x) = x. Without computing it, in what strip, if any, is $\hat{f}(z)$ analytic? For what choice of γ , if any, does the inverse Fourier transform recover x?

Problem 3.2 Consider $f(x) = \frac{1}{1+e^x}$. Without computing it, in what strip, if any, is $\hat{f}(z)$ analytic? For what choice of γ , if any, does the inverse Fourier transform recover x?

Problem 3.3 Consider $f(x) = e^{2x}$. Without computing it, in what strip, if any, is $\widehat{f}_{R}(z)$ analytic? For what choice of γ , if any, does the inverse Fourier transform recover x?

Problem 3.4 Consider f(x) = x. Without computing it, in what strip, if any, is $\widehat{f_L}(z)$ analytic? For what choice of γ , if any, does the inverse Fourier transform recover x?

Problem 3.5 Calculate the Fourier transforms in the above problems and confirm your statements.

Problem 3.6 What is the Fourier transform of $\delta(x)$, i.e., the Dirac delta function satisfying

$$\int_{-\infty}^{\infty} \delta(x)g(x) \, \mathrm{d}x = g(0)$$

for smooth test functions g. Where is it analytic?

This set of problems considers extensions of the Wiener-Hopf method to functions that do not decay, degenerate integral equations, and to integro-differential equations. Please be precise on which contour the Riemann-Hilbert problem is solved on and the inverse Fourier transforms taken.

Problem 4.1 The function u(x) is bounded by a polynomial for all $x \geq 0$, including as $x \to \infty$, and satisfies the integral equation for $x \geq 0$,

$$u(x) + \frac{3}{2} \int_0^\infty e^{-|x-t|} u(t) dt = 1 + \alpha x$$

where α is a positive constant. Find u(x) for $x \geq 0$. Hint: set up a Riemann-Hilbert problem on the contour $\mathbb{R} + i\gamma$ where $-1 < \gamma < 0$ is arbitrary.

Problem 4.2 The function u(x) is bounded by a polynomial for all $x \ge 0$, including as $x \to \infty$, and satisfies the integral equation for $x \ge 0$,

$$\int_0^\infty e^{-\alpha|x-t|} u(t) dt = 1 + \alpha x$$

where α is a positive constant. Find u(x) for $x \geq 0$. Hint: If you proceed naïvely, we arrive at a Riemann–Hilbert problem of the form

$$\Phi_{+}(s) - g(s)\Phi_{-}(s) = f(s)$$
 and $\lim_{s \to \infty} (\infty) = 0$

but where $g(\infty)=0$ instead of $g(\infty)=1$. This is not in canonical form, but maybe this example is special. Try writing $\Phi(z)=\kappa(z)Y(z)$ as before but allowing different asymptotic behaviour in κ and Y in the different half planes in a way that they cancel out so that $\lim_{z\to\infty}\Phi(z)=0$:

$$\kappa(z) = \left\{ \begin{matrix} O(z^{-1}) & \operatorname{Im}\,z > 0 \\ O(z) & \operatorname{Im}\,z < 0 \end{matrix} \right.$$

$$Y(z) = \left\{ \begin{matrix} O(1) & \operatorname{Im} z > 0 \\ O(z^{-2}) & \operatorname{Im} z < 0 \end{matrix} \right. \, .$$

Problem 4.3 Consider the integral equation

$$u(t) - \lambda \int_0^\infty e^{-|x-t|} u(t) dt = x$$

where $0 < \lambda < \frac{1}{2}$. Show that, for $x \ge 0$,

$$u(x) = A(\sinh \gamma x + \gamma \cosh \gamma x) + \frac{1}{\gamma^2} \left[x + \left(\gamma - \frac{1}{\gamma} \right) \sinh \gamma x \right]$$

where $\gamma^2 = 1 - 2\lambda$ and A is an arbitrary constant.

Problem 4.4 A bounded, smooth, function u(x) satisfies the integro-differential equation

$$u''(x) - \frac{72}{5} \int_0^\infty e^{-5|x-t|} u(t) dt = 1$$
 for $x \ge 0$

with u(0) = 0.

1) Rewrite the integral equation on the half line in the form:

$$u_{\rm R}''(x) - \frac{72}{5} \int_{-\infty}^{\infty} e^{-5|x-t|} u(t) dt = 1_{\rm R}(x) + \alpha \delta(x) + p_{\rm L}(x)$$

for $\alpha = u'(0)$ and a to-be-specified p(x). Here δ is the Dirac delta function, that is,

$$\int_{-\infty}^{\infty} f(x)\delta(x) \, \mathrm{d}x = f(0).$$

2) Use integration by parts to determine that

$$\widehat{u_{\rm R}''}(s) = -u'(0) - s^2 \hat{u}_{\rm R}(s).$$

What is $\hat{\delta}(s)$? Use these to translate the equation to Fourier space on a contour $s \in \mathbb{R} + i\gamma$. What choices of γ are suitable?

3) Define $\Phi(z)$ in terms of $\widehat{p_{\rm L}}(z)$ and $\widehat{u_{\rm R}}(z)$ so that it satisfies the following (non-standard) RH problem

$$\Phi_{+}(s) - \frac{(s^{2} + 9)(s^{2} + 16)}{s^{2} + 25} \Phi_{-}(s) = \alpha + \frac{1}{is}$$

$$\lim_{\substack{z \to \infty \\ \text{Im } z > \gamma}} \Phi(z) = \alpha$$

$$\lim_{\substack{z \to \infty \\ \text{Im } z < \gamma}} \Phi(z) = 0.$$

4) Solve the Riemann-Hilbert problem for Φ . Hint: write $\Phi(z) = \kappa(z)Y(z)$ where

$$\kappa(z) = \begin{cases} O(z) & \text{Im } z > \gamma \\ O(z^{-1}) & \text{Im } z < \gamma \end{cases},$$

$$Y(z) = O(z^{-1}).$$

3

Hint: Y(z) does not depend on α in the lower-half plane.

5) Recover u(x) by taking the inverse Fourier transform of $\Phi_{-}(s)$.