Perceptron

MGTF 495

Class Outline

- Generative vs Discriminative Models
- Discriminative Models
 - Logistic Regression
 - SVM
 - Perceptron
- Kernels
- Richer Output Spaces

The decision boundary

Decision boundary in R^p is a **hyperplane**.

- How is this boundary parametrized?
- How can we learn a hyperplane from training data?

Hyperplanes

Hyperplane $\{x : w \cdot x = b\}$

- orientation $w \in \mathbb{R}^p$
- offset $b \in \mathbb{R}$

Hyperplanes

Hyperplane $\{x : w \cdot x = b\}$

- orientation $w \in \mathbb{R}^p$
- offset $b \in \mathbb{R}$

Can always normalize w to unit length:

$$(w,b) \longleftrightarrow \left(\widehat{w} = \frac{w}{\|w\|}, \frac{b}{\|w\|}\right)$$

$$w \cdot x = b \longleftrightarrow \widehat{w} \cdot x = \frac{b}{\|w\|}$$

Equivalently: all points whose projection onto \widehat{w} is $b/\|w\|$.

Homogeneous linear separators

Hyperplanes that pass through the origin have no offset, b = 0.

Reduce to this case by adding an extra feature to x:

$$\widetilde{x} = (x, 1) \in \mathbb{R}^{p+1}$$

Then $\{x: w \cdot x = b\} \equiv \{x: \widetilde{w} \cdot \widetilde{x} = 0\}$ where $\widetilde{w} = (w, -b)$.

The learning problem: separable case

Input: training data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \{-1, +1\}$

Output: linear classifier $w \in \mathbb{R}^p$ such that

$$y^{(i)}(w \cdot x^{(i)}) > 0$$
 for $i = 1, 2, ..., n$

This is linear programming:

- Each data point is a linear constraint on w
- Want to find w that satisfies all these constraints

But we won't use generic linear programming methods, such as simplex.

A simple alternative: Perceptron algorithm (Rosenblatt, 1958)

- w = 0
- while some (x, y) is misclassified:
 - w = w + yx

- w = 0
- while some (x, y) is misclassified:
 - W = W + yx

Separator: w = 0

- w = 0
- while some (x, y) is misclassified:
 - W = W + yx

- w = 0
- while some (x, y) is misclassified:
 - w = w + yx

Points 2-5 are correct

- w = 0
- while some (x, y) is misclassified:
 - W = W + yx

Six is misclassified

-> Add vector in direction of 6

- w = 0
- while some (x, y) is misclassified:
 - W = W + yx

Six is misclassified

-> Add vector in direction of 6

- w = 0
- while some (x, y) is misclassified:
 - W = W + yx

Separator: $w = 0w = -x^{(1)}w = -x^{(1)} + x^{(6)}$

Perceptron: convergence

Theorem: Let $R = \max ||x^{(i)}||$. Suppose there is a unit vector w^* and some (margin) $\gamma > 0$ such that

$$y^{(i)}(w^* \cdot x^{(i)}) \ge \gamma$$
 for all i .

Then the Perceptron algorithm converges after at most R^2/γ^2 updates.

Proof idea. Let w_t be the classifier after t updates.

Track angle between w_t and w^* :

$$\cos(\angle(w_t, w^*)) = \frac{w_t \cdot w^*}{\|w\|}.$$

On each mistake, when w_t is updated to w_{t+1} ,

- w_t · w* grows significantly.
- ||w_t|| does not grow much.

Perceptron convergence, cont'd

Perceptron update: if $y(w_t \cdot x) < 0$ (misclassified) then $w_{t+1} = w_t + yx$. Target vector w^* has unit length, and margin condition $y(w^* \cdot x) \ge \gamma$.

- 1 Initial vector $w_0 = 0$.
- **2** When updating w_t to w_{t+1} :

$$w_{t+1} \cdot w^* = (w_t + yx) \cdot w^* = w_t \cdot w^* + y(w^* \cdot x) \ge w_t \cdot w^* + \gamma$$
$$\|w_{t+1}\|^2 = \|w_t + yx\|^2 = \|w_t\|^2 + \|x\|^2 + 2y(w_t \cdot x) \le \|w_t\|^2 + R^2$$

3 After T updates, we have

$$||w_T \cdot w^*| \ge T\gamma$$
$$||w_T||^2 \le TR^2$$

① The angle between w_T and w^* is given by

$$\cos(\angle(w_T, w^*)) = \frac{w_T \cdot w^*}{\|w\|} \ge \frac{T\gamma}{R\sqrt{T}}.$$

This is at most 1, so $T \leq R^2/\gamma^2$.