جداسازی کور منابع گزاش کار تمرین کامپیوتری دهم

استاد اخوان

فاطمه جليلي

شماره دانشجويي : 810199398

رسم منابع و مشاهدات نویزی و غیرنویزی:

بخش اول (Gradient Projection):

رسم منابع تخمین زده شده و منابع اصلی باهم:

حاصل ضرب ماتریس جداکننده و مخلوط کننده:

permutation1 ×				
☐ 3x3 double				
	1	2	3	
1	0.9897	0.0681	-0.0742	
2	-0.0125	1.0200	-0.0565	
3	0.0429	-0.5383	1.1377	
4				

تقریبا به ماتریس permutation نزدیک است و در هر سطر و ستون یک مقدار تفاوت زیادی با بقیه دارد .

خطا نهایی :

شرط توقف برای تخمین هر سطر B را اینکه ضرب سطر تخمین زده شده در این iteration در ترنزپوز سطر تخمین زده شده در این iteration قبلی به مقدار کافی نزدیک 1 شود در نظر گرفته شد (به عبارتی اینکه دیگر سطر جدید تغییر خاصی نسبت به iteration قبل نکرده باشد) ، لذا همین شرط را برای سطر های مختلف رسم شده است و مشاهده می شود که در حدود iteration مقدار توضیح داده شده به 1 می رسد.

بخش دوم (Fixed Point) :

رسم منابع تخمین زده شده و منابع اصلی باهم :

حاصل ضرب ماتریس جداکننده و مخلوط کننده:

permutation2 ×				
3x3 double				
	1	2	3	
1	-0.9897	-0.0697	0.0750	
2	0.0137	-1.0204	0.0574	
3	0.0435	-0.5373	1.1376	
4				

تقریبا به ماتریس permutation نزدیک است و در هر سطر و ستون یک مقدار تفاوت زیادی با بقیه دارد .

خطا نهایی:

Error2

0.1151

شرط توقف برای تخمین هر سطر B را اینکه ضرب سطر تخمین زده شده در این iteration در ترنزپوز سطر تخمین زده شده در iteration قبلی به مقدار کافی نزدیک 1 شود در نظر گرفته شد (به عبارتی اینکه دیگر سطر جدید تغییر خاصی نسبت به iteration قبل نکرده باشد) ، لذا همین شرط را برای سطر های مختلف رسم شده است و مشاهده می شود که در حدود iteration مقدار توضیح داده شده به 1 می رسد.

بخش سوم (GP not sensitive to outlier):

رسم منابع تخمین زده شده و منابع اصلی باهم:

حاصل ضرب ماتریس جداکننده و مخلوط کننده:

	permutation3 ×				
\blacksquare	3x3 double				
	1	2	3		
1	0.9901	0.0597	-0.0648		
2	-0.0087	1.0232	-0.0630		
3	0.0349	-0.5332	1.1379		
4					

تقریبا به ماتریس permutation نزدیک است و در هر سطر و ستون یک مقدار تفاوت زیادی با بقیه دارد .

خطا نهایی :

Error3 0.1137

شرط توقف برای تخمین هر سطر B را اینکه ضرب سطر تخمین زده شده در این iteration در ترنزپوز سطر تخمین زده شده در iteration قبلی به مقدار کافی نزدیک 1 شود در نظر گرفته شد (به عبارتی اینکه دیگر سطر جدید تغییر خاصی نسبت به iteration قبل نکرده باشد) ، لذا همین شرط را برای سطر های مختلف رسم شده است و مشاهده می شود که در حدود iteration مقدار توضیح داده شده به 1 می رسد.

بخش چهارم (Fixed Point not sensitive to outlier):

رسم منابع تخمین زده شده و منابع اصلی باهم:

حاصل ضرب ماتریس جداکننده و مخلوط کننده:

permutation4 ×				
3x3 double				
	1	2	3	
1	0.9900	0.0641	-0.0669	
2	-0.0121	1.0244	-0.0657	
3	0.0365	-0.5305	1.1376	

تقریبا به ماتریس permutation نزدیک است و در هر سطر و ستون یک مقدار تفاوت زیادی با بقیه دارد .

خطا نهایی :

شرط توقف برای تخمین هر سطر B را اینکه ضرب سطر تخمین زده شده در این iteration در ترنزپوز سطر تخمین زده شده در iteration قبلی به مقدار کافی نزدیک 1 شود در نظر گرفته شد (به عبارتی اینکه دیگر سطر جدید تغییر خاصی نسبت به iteration قبل نکرده باشد) ، لذا همین شرط را برای سطر های مختلف رسم شده است و مشاهده می شود که در حدود iteration مقدار توضیح داده شده به 1 می رسد.

بخش پنجم (مقایسه):

 $b*bPast^T < 1-10^{-10}$ سده است وش ها مقدار شرط همگرایی برای هر چهار روش یکسان در نظر گرفته شده است و initialization همگی روش ها هم یکسان است ، در دو روشی که نیاز به mu دارند ، mu هر دو روش هم یکسان در نظر گرفته شده است.

مقایسه خطای 4 روش:

	-
Error1	0.1152
Error2	0.1151
Error3	0.1137
Error4	0.1132

مقایسه تعداد iteration برای همگرایی 4 روش:

			Gradient Projection	Fixed point (not
method	Gradient	Fixed point	(not sensitive to	sensitive to outlier)
	Projection		outlier)	final fast ICA
Number of	800	120	1800	106
iterations				

همانطور که دیده می شود کلا روش Fixed Point سرعت بهتری نسبت به GP دارد و روش هایی که به outlier حساس نیستند هم دقت بهتری دارند .

در کل روش fast ICA نهایی هم از لحاظ سرعت و هم از لحاظ دقت وضعیت بهتری نسبت به بقیه روش ها دارد.