A high-NIR sensitivity SOI-gate lock-in pixel with improved modulation contrast

2023/09/28

Tatsuya Kobayashi¹, Keita Yasutomi^{1,2}, Naoki Takada¹, Keiichiro Kagawa^{1,2}, Shoji Kawahito^{1,2}

¹Graduate School of Integrated Science and Technology,
Shizuoka University, Hamamatsu, 432-8011, Japan
²Research Institute of Electronics, Shizuoka University, Hamamatsu, 432-8011, Japan

- Background
 - Overview
 - Issues with previous Pixel
- Proposed Pixel Structure
- Simulation Results
 - Potential distribution
 - Parasitic light sensitivity (PLS) and modulation contrast (M.C.)
 - Range resolution
- Summary

- Background
 - Overview
 - Issues with previous Pixel
- Proposed Pixel Structure
- Simulation Results
 - Potential distribution
 - Parasitic light sensitivity (PLS) and modulation contrast (M.C.)
 - Range resolution
- Summary

Overview

Time-of-Flight: TOF

Measure the distance to the object from T_{tof}

Outdoor long-range measurements

- Strong sunlight
- ⇒Near-infrared region (NIR) light source
- Long-range measurement
- ⇒High sensitivity

c:velocity of light T_{tof}:time of flight

<u>Advantages</u>

- High-speed measurements
- No baseline required

Application for outdoor

- Automotive
- Drone

High NIR sensitivity sensors are required

The SOI-based lock-in pixel: Ideal QE@940nm: 96%

The SOI-based lock-in pixel[1]

GND V_{BB2}-BOX NS p_1 p_2 n_1 P+ Light DR FD_{4} FD₂ Pixel size: GC GD DR DR $18 \mu \text{ m} \times 18 \mu \text{ m}$ FD₁ FD_2 DR

[1]. S. Lee, K. Yasutomi, et al. Sensors, 20(1).

Features:

Substrate

- •Thick substrates (=150μm) fully depleted by applying a high reverse bias voltage (>100V)
- High fill factor due to back-side illumination
- ⇒High QE@940nm

SOI layer

- SOI-gate
- ⇒High-speed charge modulation
- Multi-tap structure
- ⇒Long-range measurement and high range resolution

The SOI-based lock-in pixel

 p_1

Potential at Z-Z'

Potential near surface

 V_{BB2} G_{C} G_2 n_1 Light

 n_1 : form buried channel prevent a punch-though current

 n_2 : assist in charge transfer

 p_1 : fixed surface potential hole accumulation

 p_2 : reduce the parasitic sensitivity

GND

The issue with previous Pixel

Issue: High parasitic light sensitivity (PLS >10%)

Previous pixel layout

Voltage condition

G1:-4V

GC,GD,G2~G4:-7V

High n_2 concentration is required to connect buried channel and FD

The connection still exists when the modulation gate is off.

- ⇒High PLS
- ⇒Degradation of range resolution and internal QE

- Background
 - Overview
 - Issues with previous Pixel
- Proposed Pixel Structure
- Simulation Results
 - Potential distribution
 - Parasitic light sensitivity (PLS) and modulation contrast (M.C.)
 - Range resolution
- Summary

- (1) The shallow channel $(n_1 \Rightarrow n_3) \Rightarrow$ improvement of potential controllability
- ②The additional gates⇒Enhance the lateral electric field

- 1) The shallow channel $(n_1 \Rightarrow n_3) \Rightarrow$ improvement of potential controllability
- 2The additional gates⇒Enhance the lateral electric field

- ullet Deeply buried channel by n_1
- •Insufficient potential barrier by p_2 due to high n_2 concentration

- Shallower buried channel by n_3
- Reduction of n_2 concentration (1/3 of previous structure)
- ⇒Form sufficient barrier to prevent PLS

- 1) The shallow channel $(n_1 \Rightarrow n_3) \Rightarrow$ improvement of potential controllability
- 2The additional gates⇒Enhance the lateral electric field

Improvement points:

- 1) The shallow channel $(n_1 \Rightarrow n_3) \Rightarrow$ improvement of potential controllability
- ②The additional gates⇒Enhance the lateral electric field

previous pixel

Proposed pixel

 G_1 G_C G_4

 V_{BB2}

$$G_1 = -4V$$
 $G_1 = -4V$
 $G_C = -6V$ $G_{C1}, G_C = -6V$
 $G_2 \sim G_4, DR = -8V$ $G_{C2} \sim G_{C4}, G_2 \sim G_4, DR = -8V$
 $FD = 3V$ $FD = 3V$
 $V_{BB2} = -3V$ $V_{BB2} = -3V$

-4.0

-3.5

-3.0

- -0.5

0.0

- 1) The shallow channel $(n_1 \Rightarrow n_3) \Rightarrow$ improvement of potential controllability
- ②The additional gates⇒Enhance the lateral electric field

- Background
 - Overview
 - Issues with previous Pixel
- Proposed Pixel Structure
- Simulation Results
 - Parasitic light sensitivity (PLS) and modulation contrast (M.C.)
 - Range resolution
- Summary

Parasitic light sensitivity (PLS) modulation contrast (MC)

✓ Simulation conditions

Light

- •Light wavelength **λ**: **940nm**
- Light power density P_i : 271E-6[W/cm²]
- Light pulse width: 25ns
- •A constant light with normal incidence was irradiated to the whole area of the backside. Voltage
- •Only G_1 turned on and G_2 - G_4 (GC_2 - GC_4) and GD turned off.

Previous : G_1 =-4V, G_2 - G_4 =GC=-7V

Proposed : G_1 =-4V, GC_1 =GC=-6V, GC_2 - GC_4 = G_2 - G_4 =-8V

✓ Definitions

PLS[%] =
$$100 \times \frac{I_{FD}OFF}{\sum I_{FD1} \sim I_{FD4}}$$

$$MC[\%] = 100 \times \frac{I_{FD}ON}{\sum I_{FD1} \sim I_{FD4}}$$

	Previous	Proposed
PLS[%]	13.3	0.03
MC[%]	59.7	99.9

- PLS is reduced to less than 1/400 of previous pixel (≒0%)
- MC improves to almost 100%.

Estimated improvement of range resolution

Summary

- We proposed a high-NIR sensitivity SOI-gate lock-in pixel with improved modulation contrast.
 - Reduction of parasitic light sensitivity (13.7%⇒0.13%)
 - Improvements of modulation contrast (58.7%⇒99.6%) and range resolution (28cm⇒15cm@28m)

- Future outlook on research
 - Evaluation of protype chip in July 2023