

Famous Last Question

Wie könnte man eine Sequenz von Filmbildern besonders gut verlustfrei komprimieren?

Bild 1

Bild 41

Bild 81

Bildverbesserung

• Verbesserung von Bildeigenschaften zur besseren Wahrnehmbarkeit oder zur Vorbereitung von

Analyseschritten.

- Bildeigenschaften:
 - Signal-Rausch-Verhältnis
 - Kontrast
 - Informationsgehalt
- Punktbasierte Methoden
- Flächenbasierte Methoden

Welches Bild ist besser?
Warum?
Wie ist das messbar?

Pixelbasierte Bildverbesserung

- Abbildung der Grau-/Farbwerte unabhängig von ihrem Ort oder ihrer Zuordnung
 - innerhalb der Grau- bzw. Farbwerte:

$$g_{neu} = f(g) \ oder \ [r_{neu}, g_{neu}, b_{neu}] = [f(r), f(g), f(b)]$$

• von Grauwerten in Farbwerte (Falschfarbdarstellung):

$$[r_{neu}, g_{neu}, b_{neu}] = [f_{rot}(g), f_{grün}(g), f_{blau}(g)]$$

- Figure of Merit (Qualitätsmerkmal): globaler/lokaler Kontrast, Entropie
- Methoden
 - Monotone Abbildung der Grauwerte
 - Nicht monotone Grauwertabbildung
 - Falschfarbdarstellung

Nutzung des Grauwertspektrums

Unter-/Überbelichtung

Kontrast

• Globaler Kontrast: Größter Grauwertunterschied im Bild

$$c_{global}(f) = \frac{\left[\max_{m,n}(f(m,n)) - \min_{m,n}(f(m,n))\right]}{g_{range}},$$
 mit
$$g_{range} - \text{Grauwertbereich}$$

• Lokaler Kontrast: z.B. durchschnittlicher Grauwertunterschied zwischen benachbarten Pixeln

$$c_{local}(f) = 1/MN \sum_{m} \sum_{n} |f(m,n) - f_{nb}(m,n)|,$$

mit $f_{nb}(m, n)$ – durchschnittlicher Grauwert in der Umgebung von (m, n).

Globaler / Lokaler Kontrast

Maximierung des globalen Kontrasts

• Kontrastumfang g_{min} bis g_{max} im Verhältnis zum maximalen Wertebereich w_{min} bis w_{max} (z.B. 0...255) ist der Skalierungsfaktor.

• Transferfunktion:
$$g'(g) = (g - g_{\min}) \cdot \frac{w_{\max} - w_{\min}}{g_{\max} - g_{\min}}$$

Maximierung des globalen Kontrasts

Verbesserung des lokalen Kontrasts

- Bild ist zu hell (zu dunkel), aber Grauwertbereich ist nahezu ausgenutzt.
- Nichtlineare, monotone Transferfunktion, z.B. Gammakorrektur:

$$g'(g) = w_{\text{max}} \cdot \left(\frac{g}{w_{\text{max}}}\right)^{\gamma}$$

Verbesserung des lokalen Kontrasts

Maximierung des Informationsgehalts

- Gibt es eine "optimale" Korrektur?
- Optimal = maximaler Informationsgehalt

Maximaler Informationsgehalt

Entropie ist maximal, falls $P(g_i) = const$ für i = 0, N-1

gesucht: Histogrammtransformation g'(g) zur

Maximierung der Entropie

Annahme:

H(g) ist normiert und kontinuierlich, d.h., $\int H(g) = 1$. Dann existiert die folgende Transferfunktion g':

$$g'(g) = \int_0^g H(w) dw$$

Beispiel

Aber: was ist, falls $g'(g) \cdot (N-1)$ keine ganze Zahl ist?

Histogrammlinearisierung

• Transferfunktion für ein diskretes Histogramm:

$$E[H(g)] = N_g \sum_{w=0,g-1} H(w) - 1$$
, mit: N_g - Anzahl der Grauwerte.

• Beispiel:

Grauwert	0	1	2	3	4	5	6	7
Häufigkeit	50	150	350	250	100	60	30	10
H(g)	0.05	0.15	0.35	0.25	0.10	0.06	0.03	0.01
kumulativ	0.05	0.20	0.55	0.80	0.90	0.96	0.99	1.00
Grauwert	0.4	1.6	4.4	6.4	7.2	7.68	7.92	8.00
aufgerundet	1	2	5	7	8	8	8	8
│	0	1	4	6	7	7	7	7

• Keine *Linearisierung*, sondern von der Häufigkeit abhängige *Spreizung*.

Beispiel

• Warum wurde die Entropie **kleiner**? ► FLQ

Beispiel

- Das geht auch in Farbe:
 - Farbkanäle werden unabhängig voneinander behandelt.
 - (Ist das eine gute Idee? Was wäre eine bessere?)

Histogrammlinearisierung

Histogrammlinearisierung

Problem

Problem

Histogrammlinearisierung: Varianten

- Adaptive Histogram Equalisation (AHE)
 - Histogramm wird für jeden Punkt für eine vorgegebene Umgebung erstellt.
 - Linearisierung nach diesem Histogramm
 - Nur der Grauwert des betreffenden Punkts wird modifiziert
- Contrast Limited Adaptive Histogram Equalisation (CLAHE):
 - wie AHE, aber Kontrastverstärkung nur bis zu einem gewissen Maximum.
 - verhindert die bei AHE vorkommende Kontrastverstärkung im Bildhintergrund.

Adaptive Histogrammlinearisierung

Kontrastlimitiertes AHE

Nichtmonotone Grauwertabbildung

- Erzeugt künstliche Kanten.
- Grenzen von Maxima der Transferfunktion nicht immer erkennbar.

Zwei Grauwertfenster in einem Bild.

Beispiel

Farbe zur Kontrastverstärkung

- Es können wesentlich mehr Farb- als Grauwerte unterschieden werden.
- Kontrastverstärkung durch drei nicht-lineare, nicht-monotone Abbildungsfunktionen der Grauwerte: $f_{rot}(g)$, $f_{gr\ddot{\mathbf{u}}n}(g)$ $f_{blau}(g)$

Beispiel

Achtung: Nichtlineare Transformationen erzeugen *künstliche Kanten*.

Beispiel

Was sollten Sie heute gelernt haben?

- Punktbasierte Verfahren werden über eine Transferfunktion zwischen Grauwerten (Farbwerten) definiert.
- Grauwerttransformationen
 - monoton: linear, γ -Korrektur, Histogrammlinearisierung
 - Nicht monoton: Stufentransformation, Falschfarbdarstellung.
- Erfolg kann an kontrastbasierten Maßzahlen ermittelt werden.
- Objektabhängige Bildverbesserung erfordert Zusatzwissen.

Famous Last Question

Warum wird bei der Histogrammlinearisierung die Entropie kleiner?

Hat das damit zu tun, das einfache HE das Rauschen verstärkt?

Und wieso sieht das Bild trotz schlechterer Entropie besser aus?

