

Embracing the Chaos

Sensitivity Analysis on Chaotic Dynamical Systems by NILSS

Uriel A. Aceves R.

uriel.aceves@rwth-aachen.de

June 20, 2018

Supervisor: Johannes Lotz (LuFG Informatik 12: STCE, RWTH Aachen)

Outline

Introduction

Chaos as a way of living

Predictability in chaos?

So what about butterflies?
I have seen this before

Oh no... Nevermind Should we give up?

Non-Intrusive Least Squares Shadowing

In average I'm not that sensitive

two

four

Wrap-up

References

- 1 Introduction
 - Chaos as a way of living
- 2 Predictability in chaos?
 - So what about butterflies?
 - I have seen this before
 - Oh no... Nevermind
 - Should we give up?
- 3 Non-Intrusive Least Squares Shadowing
 - In average I'm not that sensitive
 - two
 - three
 - four
- 4 Wrap-up
- 5 References

Should the world behave nicely?

Introduction

Chaos as a way of living

Predictability in chaos?

So what about butterflies?

I have seen this before Oh no... Nevermind Should we give up?

Non-Intrusive Least Squares

Shadowing
In average I'm not that

sensitive

IWO

Wrap-up

References

"Chaos was the law of nature; Order was the dream of man."

— Henry Adams

Source https://pbs.twimg.com/media/C75sWjvW0AA8Mfc.jpg

Getting Closer

Introduction

Chaos as a way of living

Predictability in chaos?

So what about butterflies?

I have seen this before

Oh no... Nevermind Should we give up?

Non-Intrusive Least Squares Shadowing

In average I'm not that

sensitive

three

Wrap-up

References

Uriel A. Aceves R.

Embracing the Chaos

Source http://www.mrlovenstein.com/comic/50

Let's Focus

Introduction

Chaos as a way of living

Predictability in chaos?

So what about butterflies?
I have seen this before

Oh no... Nevermind Should we give up?

Non-Intrusive

Least Squares Shadowing

In average I'm not that sensitive

t....

three

Wrap-up

References

Three highlighted zones zones

Uriel A. Aceves R. Embracing the Chaos 7/13

There is hope after all

Introduction

Chaos as a way of living

Predictability in chaos?

So what about butterflies?
I have seen this before
Oh no... Nevermind

Should we give up?

Non-Intrusive Least Squares Shadowing

In average I'm not that

sensitive

three

Wrap-up

References

Time spent on average around this zones

Source https://www.onlinecollegecourses.com/2012/06/21/why-optimism-matters-for-student-success-now-and-after-graduation-2/

Dynamical systems and sensitivities

Introduction

Chaos as a way of living

Predictability in chaos?

So what about butterflies?
I have seen this before

Oh no... Nevermind Should we give up?

Non-Intrusive Least Squares

Shadowing In average I'm not that

sensitive

three

Wrap-up

References

The governing equation of a dynamical system is

$$\frac{du}{dt}=f(u,s),\quad u(t=0)=u_0,$$

We want to analyze the changes of a long-time averaged quantity represented by J(u, s).

$$\langle J \rangle_{\infty} := \lim_{t \to \infty} \frac{1}{T} \int_{0}^{T} J(u, s) dt.$$
 (2)

It doesn't look that hard

Introduction

Chaos as a way of living

Predictability in chaos?

So what about butterflies?

I have seen this before Oh no... Nevermind

Should we give up?

Non-Intrusive Least Squares Shadowing

In average I'm not that sensitive

buo

thre

Wrap-up

References

RWITHAACHEN UNIVERSITY We want to calculate $\frac{d}{ds}\langle J\rangle_{\infty}$ the problem is...

It doesn't look that hard

Introduction

Chaos as a way of living

Predictability in chaos?

So what about butterflies?

I have seen this before

Oh no... Nevermind Should we give up?

Non-Intrusive **Least Squares**

Shadowing In average I'm not that

concitivo

Wrap-up

References

We want to calculate $\frac{d}{ds}\langle J\rangle_{\infty}$ the problem is...

$$\frac{d}{ds}\langle J\rangle_{\infty} \neq \lim_{T \to \infty} \frac{\partial}{\partial s} \langle J\rangle_{T}(s, \phi, T). \tag{3}$$

It doesn't look that hard

Introduction

Chaos as a way of living

Predictability in chaos?

So what about butterflies?

I have seen this before

Oh no... Nevermind

Should we give up?

Non-Intrusive Least Squares Shadowing

In average I'm not that

sensitive

IWO

four

Wrap-up

References

We want to calculate $\frac{d}{ds}\langle J\rangle_{\infty}$ the problem is...

$$\frac{d}{ds}\langle J\rangle_{\infty} \neq \lim_{T \to \infty} \frac{\partial}{\partial s} \langle J\rangle_{T}(s, \phi, T). \tag{3}$$

The usual methods diverge most of the time, e.g. the transient method.

More to know

Introduction

Chaos as a way of living

Predictability in chaos?

So what about butterflies?
I have seen this before
Oh no... Nevermind
Should we give up?

Non-Intrusive Least Squares Shadowing

In average I'm not that sensitive

two three

Wrap-up

References

- 1 Ni A., Wang Q., (2017), Sensitivity analysis on chaotic dynamical systems by Non-Intrusive Least Squares Shadowing (NILSS), Journal of Computational Physics, **347**, 56-77.
- 2 Ni, A., Wang, Q., Fernandez, P., and Talnikar, C., Sensitivity analysis on chaotic dynamical systems by Finite Difference Non-Intrusive Least Squares Shadowing (FD-NILSS), arXiv:1711.06633
- Safiran N., Lotz J., Naumann U., (2016), Algorithmic Differentiation of Numerical Methods: Tangent and Adjoint Solvers for Parameterized Systems of Nonlinear Equations, Procedia Computer Science, 80, 2231-2235.
- 4 Strogatz, Steven H., (2015). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Boulder, CO: Westview Press.
- Gleick, J. (1988). *Chaos: Making a new science*. New York, N.Y., U.S.A: Penguin.
- 6 Alvarez A., Ghys É., and Leys J., Chaos a Mathematical Adventure, http://www.chaos-math.org/en

