Compito di Architetture degli Elaboratori

Appello del 2 Luglio 2014 Traccia A

Tempo a disposizione: 3 ore

Esercizio 1

Si realizzi una rete sequenziale sincrona R con una linea di ingresso x ed una linea di uscita z. Ad ogni colpo di clock t, R riceve in ingresso un bit di seguito denotato come b(t). Ogni sei colpi di clock, R restituisce 1 sulla linea z se il numero di uni contenuti nelle due stringhe b(t-5)b(t-4)b(t-3) e b(t-2)b(t-1)b(t) è uguale al numero binario b(t-3)b(t-2), restituisce 0 altrimenti. Successivamente la rete riprende il suo funzionamento dal principio. Segue un esempio di funzionamento.

t	1	2	3	4	5	6	7	8	9	10	11	12
\boldsymbol{x}	0	1	0	1	1	0	1	0	1	0	1	1
z	0	0	0	0	0	0	0	0	0	0	0	1

Esempio Durante i primi sei colpi di clock, le due stringhe 010 e 110 contengono uno e due uni rispettivamente, ma il numero binario b(t-3)b(t-2)=01 ovvero il numero uno in base dieci, quindi la rete restituisce zero. Nei successivi sei colpi di clock, b(t-3)b(t-2)=10 ed entrambe le due stringhe 101 e 011 contengono esattamente due uni, quindi la rete restituisce uno.

Esercizio 2

Estendere il set di istruzioni della macchina a registri con l'operazione FINDSUM R_i , R_j , R_k , X. In particolare, si considerino i due vettori V_1 e V_2 , entrambi di dimensione pari al valore contenuto in R_k e tali che V_1 sia memorizzato in RAM a partire dall'indirizzo X, mentre V_2 a partire dall'indirizzo X+6. L'operazione restituirà in R_i il numero coppie di elementi $V_1[i]$ e $V_2[i]$ che si trovano nella stessa posizione e tali che la loro somma $V_1[i]+V_2[i]$ sia minore del valore contenuto in R_j .

Esempio: Supponiamo che R_j contenga il valore 6, R_k contenga il valore 4 e che i due vettori siano $V_1 = [5, 2, 5, 3]$ e $V_2 = [1, 4, 3, 7]$. Allora le somme degli elementi nelle stesse posizioni saranno: 5 + 1 = 6, 2 + 4 = 6, 5 + 3 = 8, 3 + 7 = 10. Quindi in R_i verrà memorizzato il valore 2.

Esercizio 3

Scrivere una programma in Assembly che, dati due interi h e k (a 32 bit) e una matrice quadrata M di interi a 32 bit, stampi su video "Vero" se il numero h compare almeno k volte sulle diagonali principale e secondaria di M, e stampi "Falso" altrimenti. Segue un esempio.

Esempio: Siano h = 2 e k = 3 e si consideri la matrice in figura.

	2	5	3	2
<i>M</i> =	4	3	2	11
1VI —	32	2	5	56
	4	11	14	3

Il programma stamperà su video "Vero" poichè la diagonale principale e quella secondaria di M contengono complessivamente 4 occorrenze di h.