

SWINBURNE
UNIVERSITY OF
TECHNOLOGY

TNE20002 / TNE70003

PPP and CHAP V1.1

SWINBURNE UNIVERSITY OF TECHNOLOGY

PPP – Point to Point Protocol

HDLC Encapsulation 1979

- In 1979, the ISO agreed on HDLC as a standard bit-oriented data link layer protocol that encapsulates data on synchronous serial data links.
- Since 1981, ITU-T has developed a series of HDLC derivative protocols.
- The following examples of derivative protocols are called link access protocols:
 - ☐ Link Access Procedure, Balanced (LAPB) for X.25
 - ☐ Link Access Procedure on the D channel (LAPD) for ISDN
 - □ Link Access Procedure for Modems (LAPM) and PPP for modems < ------</p>
 - ☐ Link Access Procedure for Frame Relay (LAPF) for Frame Relay

HDLC and PPP Encapsulation

HDLC ISO frame					
Flag	Address	Control	Data (Payload)	FCS	Flag
1 byte	1 byte	1 or 2 bytes	1500 bytes	2 (or 4) bytes	1 byte

PPP fr	ame					
Flag	Address	Control	Protocol	Data (Payload)	FCS	Flag
1 byte	1 byte	1 byte	1 or 2 bytes	Up to 1500 bytes	2 (or 4) bytes	1 byte

- HDLC is the default Layer 2 protocol for Cisco router serial interfaces
- HDLC does not have a way to indicate which layer 3 protocol is being carried.
- PPP frame has a Protocol field that indicates it is carrying either a layer 3 IPV4 packet or IPV6 packet

Configuring HDLC

Router(config-if) #encapsulation hdlc

■ The default encapsulation method used by Cisco devices on synchronous serial lines is Cisco HDLC.

```
Router#show interfaces s0/0
Serial 0 is up, line protocol is up
Hardware is MCI Serial
Internet address is 131.108.156.98, subnet mask is
255.255.255.240
MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec, rely
255/255, load 1/255
Encapsulation HDLC, loopback not set, keepalive set
(10 sec)
```


PPP layered architecture

■ PPP contains two sub-protocols:

Network Control Protocol

- ☐ Encapsulate and negotiate options for multiple network layer protocols
- ☐ Responsible for configuring, enabling and disabling the network layer protocol

Link Control Protocol

- ☐ Negotiate and setup control options on the WAN data link.
- ☐ The LCP sits on top of the physical layer and is used to establish, configure, and test the data link connection.

PPP Session Establishment – 3 Phases

PPP Session Establishment

- Link Establishment Phase
- Authentication/Link Quality Phase
- Network Layer Protocol Phase

TNE20002\TNE70003 Slide 7

Phase 1 – Link establishment

- In this phase each PPP device sends LCP frames to configure and test the data link.
- LCP frames contain a configuration option field that allows devices to negotiate the use of options such as:
 - □ the maximum transmission unit (MTU),
 - □ **compression** of certain PPP fields,
 - □ the **link-authentication** protocol.
- Before any network layer packets can be exchanged, LCP must first **open the connection** and negotiate the configuration parameters.
- This phase is complete when a configuration ACK frame has been sent and received.

Phase 2 - Authentication | Link Quality

- After the link has been established and the CHAP authentication protocol decided on, the peer will be authenticated.
- Authentication, if used, takes place before the network layer protocol phase is entered.
- As part of this phase, LCP also allows for an optional link quality determination test.
 - ☐ The link is tested to determine whether the link quality is good enough to bring up network layer protocols

Phase 3 - Network Layer Protocol

	IP	IPX	Layer 3	Protocols	
PPP	IPCP IPXCP Many others			Network Layer	
PPP	Network Control Protocol				Data Link
	Authentication, other options Link Control Protocol			Layer	
	Synchronous or Asynchronous Physical Media			Physical Layer	

- In this phase the PPP devices send NCP frames to choose either the IPv4 or IPv6 network layer protocol.
- When the network layer protocol has been configured, packets can be sent over the link.
- The **show interfaces** command reveals the LCP and NCP states under PPP configuration.
- The PPP link remains configured for communications until LCP or NCP frames close the link or until an inactivity timer expires or a user intervenes.

SWINBURNE UNIVERSITY OF TECHNOLOGY

CHAP

Challenge
Handshake
Authentication
Protocol

Challenge Handshake Authentication Protocol - CHAP

- CHAP is used at the startup of a link and periodically verifies the identity of the remote Host using a three-way handshake.
- After the PPP link establishment phase is complete, the local router sends a "challenge" message to the remote Host.
- The remote Host responds with a value calculated using a one-way hash function, which is typically Message Digest 5 (MD5).
- This response is based on the password and challenge message.
- The local Host checks the response against its own calculation of the expected hash value.
- If the values match, the authentication is acknowledged, otherwise the connection is immediately terminated.

Challenge Handshake Authentication Protocol (CHAP)

- CHAP provides protection against playback (relay) attack through the use of a variable challenge value that is unique and unpredictable.
 - □ Playback attack:
 A breach of security in which information is stored without authorization and then retransmitted to trick the receiver into unauthorized operations such as false identification or authentication or a duplicate transaction.

■ Since the challenge is unique and random, the resulting hash value will also be unique and random.

■ The local host or a third-party authentication server is in control of the frequency and timing of the challenges.

1. PPP Authentication – SantaCruz calls HQ

- SantaCruz calls HQ to establish a PPP link.
- HQ router sends a CHAP challenge packet with the following details:
 - \square 01 = challenge packet type identifier.
 - □ ID = sequential number that identifies the challenge.
 - random = a random value generated by the HQ router.
 - \square HQ = the authentication name of the challenger.

2. HQ CHAP Challenge sent to SantaCruz

The challenge packet is sent to the calling (SantaCruz) router.

The ID and random values are kept in a table on the HQ router.

A list of outstanding challenges is maintained in table on HQ router.

TNE20002\TNE70003 Slide 15

3. SantaCruz receives CHAP Challenge

Receive CHAP Challenge

Table of User/Password

- The name HQ is used to look up the password.
- The ID value, the random value and the password are fed into the MD5 hash generator.
- The result is the one-way MD5-hashed CHAP challenge that will be sent back in the CHAP response.

4. Santa Cruz sends CHAP Response

- The response packet is assembled and sent.
 - □ 02 = CHAP response packet type identifier.
 - □ ID = copied from the challenge packet.
 - \square hash = the output from the MD5 hash generator.
 - ☐ SantaCruz = the hostname of the responding device.

5. HQ receives CHAP Response

- The ID is used to find the original challenge packet in table.
- The name is used to look up the password from a configured name or a security server.
- The original ID, the original random value and the password are fed into the MD5 hash generator.

6. HQ Compares

Receive CHAP Response

- The hash value received in the response packet from SantaCruz is then compared with the MD5 hash value calculated by HQ.
- CHAP authentication succeeds if the calculated and the received hash values are equal.

CHAP Challenge

Success OR Failure

- If authentication is successful, a CHAP success packet is built from the following components:
 - \square 03 = CHAP success message type.
 - \square ID = copied from the response packet.
 - "Welcome In" is simply a text message providing a user-readable explanation.

CHAP Challenge

Success OR Failure

- If authentication fails, a CHAP failure packet is built from the following components:
 - \square 04 = CHAP failure message type.
 - \square ID = copied from the response packet.
 - "Authentication failure" or other text message, providing a user-readable explanation.

Configuring CHAP


```
username HQ password cisco
interface Serial0
ip address 172.25.3.2 255.255.255.0
encapsulation ppp
ppp authentication chap
```

```
username SantaCruz password cisco
interface Serial0
ip address 172.25.3.1 255.255.255.0
encapsulation ppp
ppp authentication chap
```

Verifying PPP


```
Router#show interfaces serial0/0
Serial 0/0 is up, line protocol is up
  Hardware is HD64570
  Internet address is 10.140.1.2/24
  MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec,
rely 255/255, load 1/255
 Encapsulation PPP, loopback not set, keepalive
set (10 sec)
                         LCP
 LCP Open
                         NCP
 Open: IPCP, CDPCP
  Last input 00:00:05, output 00:00:05, output
hang never
 Last clearing of "show interface" counters never
  Queueing strategy: fifo
  Output queue 0/40, 0 drops; input queue 0/75, 0
drops
  5 minute input rate 0 bits/sec, 0 packets/sec
```


debug ppp negotiation

Router#debug ppp negotiation
PPP protocol negotiation
debugging is on

BR0:1 LCP: State is Open

. . .

PPP: Phase is AUTHENTICATING

. .

BR0:1 IPCP: State is Open

• •

Phase	Description			
DOWN	In this phase, PPP is down. This message is seen after the link and PPP are completely brought down: *Mar 3 23:32:50.296: BRO:1 PPP: Phase is DOWN			
ESTABLISHING	PPP transitions to this phase when it receives an indication that the physical layer is up and ready to be used. LCP ¹ negotiation occurs in this phase. *Mar 3 23:32:06.884: BRO:1 PPP: Phase is ESTABLISHING			
AUTHENTICATING	If PPP authentication (CHAP ² or PAP ³) is desired on the link, then PPP transitions to this phase. Keep in mind that PPP authentication is optional. *Mar 3 23:32:06.952: BR0:1 PPP: Phase is AUTHENTICATING			
UP	Once authentication is complete, PPP transitions to the UP phase. NCP ⁴ negotiation occurs in this phase. *Mar 3 23:42:53.412: BR0:1 PPP: Phase is UP			
TERMINATING	In this phase, PPP is shutting down. *Mar 3 23:43:23.256: BRO:1 PPP: Phase is TERMINATING			

- The debug ppp negotiation command enables you to view the PPP negotiation transactions, identify the problem or stage when the error occurs, and develop a resolution.
- During PPP negotiation, the link goes through several phases, as shown above.
- The end result is that PPP is either up or down.

debug ppp authentication

Output	Description
Se0/0 PPP: Phase is AUTHENTICATING, by both	Two way authentication
Se0/0 PAP O AUTH-REQ id 4 len 18 from "left"	Outgoing authentication request
Se0/0 PAP: I AUTH-REQ id 1 len 18 from "right"	Incoming authentication request
Se0/0 PAP: Authenticating peer right	Authenticating incoming
Se0/0 PAP: O AUTH-ACK id 1 len 5	Outgoing acknowledgement
Se0/0 PAP: AUTH-ACK id 4 len 5	Incoming acknowledgement

- The debug ppp authentication command displays the authentication exchange sequence.
- With two-way authentication configured, each router authenticates the other.
- Messages appear for both the authenticating process and the process of being authenticated.

The End

PAP, CHAP, and MS-CHAP - CompTIA Security+ SY0-501 - 4.2 - YouTube

1. Intro to the Point to Point Protocol PPP - YouTube

TNE20002\TNE70003 Slide 26