# **Company Overview**

October 2010



### **Mission**

#### **MEMS Product Development**



We turn your ideas into silicon.

## Fully integrated services: concept to foundry



- Complete design and project management
- Feasibility and cost analysis
- Design optimization using simulation
- Process development on 100 mm or 150 mm wafers
  - Prototype fabrication with own staff engineers at UC Berkeley's Microlab
- Test system development
- Packaging, system integration
- Technology transfer to foundries for production



## **Primary value to clients**

- Risk reduction during all phases of technology development
  - Idea evaluation without major funding or staffing commitment
  - Fast prototyping cycles enable accelerated development
  - Critical system design and manufacturability issues addressed early
  - Streamlined transition from R&D to foundry production
- On-demand, expert engineering team
  - Use as needed to bridge gaps
  - Real-world MEMS knowledge: all staff have at least three years of hands-on fab experience



### Our diverse customer base



## **Detailed Technical Capabilities**

## MEMS design and process expertise

### **Technologies we have developed:**

- Piezoresistive devices
- Piezoelectric (AlN and ZnO) devices
- Electrostatic structures
- Solar cells
- Passive microfluidics
- Electrophoretic pumps
- Mold masters
- Gratings, phase shift lenses etc.
- PDMS, SU-8 structures
- Mechanical dummies for package reliability testing
- Custom test systems

#### Over 70 clients served

### Application areas:

- Chemical sensing
- Materials characterization
- Medical implant
- Medical diagnostics
- Pressure sensing
- Filtration products
- Laser/ Infrared/ Visible optics
- Chip cooling
- Cell culture
- Radiation sensing
- Microphones
- Gas flow metering
- Multi-chip modules
- Solar



## Product development gallery: some examples

Customized micro-cantilevers



Pyramidal crystal planes left by KOH etch





Infrared imaging pixels: MEMS over CMOS



Silicon acoustic lenses

## Product development gallery: some examples

Fluxion
Biosciences:
Microchannels for
cell patch
clamping





Mold masters for microtexturing polymers



Wave80 Biosciences: Microfluidic chip for rapid HIV analysis



MIT/Bhatia Lab: cell culture platforms



## Modeling and design optimization

- ANSYS Multiphysics R12
- Matlab
- Proprietary fracture prediction
- Intelligent use of simulation to minimize risk and reduce fab cycles
  - Management of uncertainty in MEMS material properties
- Design exploration and performance optimization



Package-induced stresses



Magnetic field of inductor coils



## **Modeling expertise**

- Basic and coupled physics interactions
- Static, harmonic, transient analyses
- Residual stress effects
- Non-linear material behavior
- Squeeze film damping
- Contact analysis
- Parameter variational analyses ("sixsigma")
- Design for cost, performance, quality
- Multiple criteria optimization
- Development for custom pre- and postprocessors

#### **Example: Process variations in** RF switch



Resonant frequency vs. height, width, thickness, material property variations

Scatter Plot













## **Device reliability simulation**

- Identifies where and when a device is most likely to break
- Informed design
- Reduction of time to market: fewer design, fab, test cycles required
- Process IP stays secure: fabrication and fracture of test samples is all that's needed

#### **Industry-leading fracture prediction**







## **Custom test systems**

Micro-positioning stage with electrostatic chuck and stereomicroscope





Dynamic pressure test chamber







## **Technology strategy**

- Device feasibility
- Manufacturing cost models
- Technology readiness
- Patent landscapes
- Development roadmaps
- Due diligence

# Customized workshops on MEMS





## **Client engagements**

- Initial meeting to assess fit and to discuss scope of work
- Detailed cost proposal provided, time and materials
- Project performed in discrete Phases to minimize risk
  - Phase 1: Design exploration
  - Phase 2: Prototype fabrication
- Client owns all work product and intellectual property
  - Including masks and runsheets, which can be transferred to foundries



### **Public client list**

## Startups and Small-Medium Businesses:

**Advanced Diamond Technologies** 

Bay Materials LLC

Cantimer, Inc.

Edge Embossing LLC

Endotronix

Fluxion Biosciences

Hepregen

Microfabrica

Micralyne

NeuroPro Technologies

Nevada Nanotech Systems

NovaSpectra

Owens Technology

SemQuest

Silicon Light Machines

Silicon Microstructures

Solus Biosystems

**SVTC Technologies** 

Trident Metrology

Wave 80 Biosciences

#### **Public Companies:**

Agilent Technologies

**Applied Materials** 

Caliper LifeSciences

Cypress Semiconductor

Panasonic ACOM-TC

**Ricoh Innovations** 

Sun Microsystems

#### **Research Institutions:**

DARPA

**MIT** 

Stanford University

Stowers Institute

UCSF, Opthalmology

University of Nevada, Reno



## **Company summary**

#### Founded 2003

700 Airport Blvd. Suite 210 Burlingame, CA 94010, USA

Phone: +1 (650) 347 MEMS

Fax: +1 (650) 347 6366

E-Mail: info@amfitzgerald.com

#### **MEMS** Development

Dr. Alissa Fitzgerald Dr. Carolyn White Brent Huigens Dawn Hilken

#### **Modeling and Optimization**

Dr. Alissa Fitzgerald

Dr. C.T. Kao

Dr. David Pierce

#### **Strategy**

Dr. Alissa Fitzgerald

Dr. Carolyn White

Dr. C.T. Kao



