

Programação Linear - método simplex: situações particulares

Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

21 de outubro de 2020

Prog. Linear - método simplex: situações particulares

antes

 O método Simplex foi aplicado para resolver um problema de programação linear.

Guião

- Há situações particulares em que é necessário detalhar as regras e estabelecer decisões e operações suplementares:
 - quando o domínio é ilimitado;
 - quando não existe um vértice inicial admissível.
 - quando há vértices degenerados;

depois

• Analisaremos a implementação do método simplex usando matrizes.

Situações particulares do método simplex:

- Selecção de um vértice admissível inicial
 - Se não existir, problema é impossível.
- Repetir
 - Selecção da coluna pivô:
 - Coeficiente mais negativo na linha da função objectivo
 - (em caso de empate, escolha arbitrária)
 - Se não existir coef.<0, solução óptima.
 - Selecção da linha pivô:
 - Menor razão (lado direito/coluna pivô) positiva (i.e., coef.col.>0)
 - (em caso de empate, o próximo vértice é degenerado)
 - Se não existir coef.col.>0, solução óptima é ilimitada.
 - Fazer eliminação de Gauss
- Enquanto (solução não for óptima)

Teorema (Fundamental de Programação Linear)

Dado um problema de programação linear, se não existir uma solução óptima com valor finito, então ou o problema é impossível ou a solução óptima é ilimitada.

Conteúdo

- Domínios ilimitados e soluções óptimas ilimitadas
- Obtenção de um vértice inicial admissível
- Vértices degenerados
- Finitude e complexidade do algoritmo simplex
- Apêndices
 - Referência ao método do Grande M
 - Degenerescência e restrições redundantes

1. Domínio ilimitado (aberto)

Definição:

• O domínio de um problema de programação linear é um poliedro ilimitado (aberto) se contiver um raio (≡ semi-recta).

Um raio é caracterizado por um ponto e uma direcção:

- O raio R é o conjunto de pontos:
 - com início no ponto $v \in \mathbb{R}^n$ e
 - ao longo da direcção $d \in \mathbb{R}^n$ (um vector não-nulo), i.e.,
- $R = \{ x : x = v + \theta . d, \theta \ge 0 \}.$

O domínio de um problema de programação linear é um poliedro fechado se e só se não contiver nenhum raio, podendo então ser representado como uma combinacão convexa dos seus vértices.

Exemplo

Domínio ilimitado: como identificar no quadro simplex?

Quadro simplex: como identificar um raio?

- Há uma coluna de uma variável não-básica em que os coeficientes das restrições são todos ≤ 0 (no exemplo, os elementos a vermelho).
- Exemplo:

Ao longo de um raio, todos os pontos são admissíveis, porque:

- há uma única variável não-básica que aumenta de valor,
- todas as vars básicas aumentam (quando o coef.<0) ou mantêm o valor (quando o coef.=0),
- sendo portanto todas as suas coordenadas ≥ 0 .

Domínio ilimitado: solução óptima ilimitada

 A solução óptima de um problema é ilimitada quando, ao longo de um raio, o valor da função objectivo melhora.

Quadro simplex: como identificar uma solução óptima ilimitada?

- há um raio e
- o respectivo coeficiente na linha da função objectivo é:
 - < 0 (em problemas de maximização), ou
 - > 0 (em problemas de minimização).
- Exemplo (problema de maximização):

$$\begin{cases} s_1 = 0 + 1x_1 & -1x_2 \\ s_2 = 2 & -1x_2 \\ z = 0 + 1x_1 & +1x_2 \end{cases}$$

			<i>x</i> ₂			
s_1	0	-1	1	1	0	0
<i>s</i> ₂			1 1		1	2
Z	1	-1	-1	0	0	0

O corpo central do quadro simplex (as restrições) dá informação sobre o domínio. A linha da função objectivo do quadro simplex dá informação sobre o valor da solução óptima, que pode ser finito ou ilimitado.

Exemplo: domínio ilimitado e solução óptima ilimitada

	z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	
<i>s</i> ₁	0	-1	1	1	0	0
<i>s</i> ₂	0				1	2
Z	1	-1	-1	0	0	0

Ao longo do raio (*i.e.*, quando a variável não-básica x_1 aumenta e x_2 se mantém = 0), a variável básica s_2 mantém-se = 2, a variável básica s_1 aumenta e o valor da função objectivo também aumenta.

2. Vértice admissível inicial

- E se n\u00e3o estiver imediatamente dispon\u00edvel um v\u00e9rtice admiss\u00edvel (quadro simplex) inicial?
- Para ilustrar essa situação, vamos usar um exemplo em que há restrições de ≥.
- É necessário usar o Método das 2 Fases
 - Fase I: obter um vértice admissível inicial
 - Fase II: aplicar algoritmo simplex

Um problema com restrições de ≥ e de minimização

 No seguinte problema, não é possível identificar imediatamente um vértice admissível inicial:

Transformação na forma canónica

$$\min z = cx$$
 $\min z = cx$
 $Ax \ge b \rightarrow Ax - u = b$
 $x \ge 0$ $x, u \ge 0$

sendo $u \in \mathbb{R}_+^{m \times 1}$ um vector de variáveis de folga da mesma dimensão que $b \in \mathbb{R}^{m \times 1}$.

Transformação Inequações → Equações

- Qualquer inequação do tipo ≥ pode ser transformada numa equação (equivalente), introduzindo uma variável adicional, designada por variável de folga, com valor não-negativo.
- Exemplo:

$$\begin{cases} 3x_1 + 2x_2 & \ge 120 \\ x_1, x_2 & \ge 0 \end{cases} \Rightarrow \begin{cases} 3x_1 + 2x_2 - 1u_1 \\ x_1, x_2, u_1 & \ge 0 \end{cases}$$

- O número de unidades produzidas numa solução $(x_1, x_2)^{\top}$ é igual ao valor da função linear: $3x_1 + 2x_2$.
- u_1 (variável de folga) é o número de unidades produzidas em excesso relativamente às necessárias (no exemplo, 120).
- Há autores que designam estas variáveis por variáveis de excesso.

Exemplo: transformação na forma canónica

Modelo original

• Variáveis de decisão: *y*₃, *y*₄, *y*₅.

$$\min z = 120y_3 + 80y_4 + 30y_5$$

$$3y_3 + 1y_4 + 1y_5 \ge 12$$

$$2y_3 + 2y_4 \ge 10$$

$$y_3, y_4, y_5 \ge 0$$

Modelo na forma canónica (equivalente ao modelo original)

- Variáveis de decisão: y₃, y₄, y₅.
- Variáveis de excesso: y_1, y_2 .

Não há um vértice admissível inicial, porque ...

o lado direito é positivo e não há uma matriz identidade no quadro:

Z	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
0	-1	0	3	1	1	12 10
0	0	-1	2	2	0	10

Lembrete: antes havia um vértice admissível inicial, porque:

- as restrições eram todas de \leq (havia uma matriz identidade $I_{m \times m}$), e
- os coeficientes do lado direito eram todos ≥ 0 .
- Quando não há um vértice admissível inicial, usa-se o:

Método das 2 Fases:

- na Fase I, resolve-se um problema auxiliar para tentar encontrar um vértice admissível inicial.
- Se se conseguir, na Fase II, aplica-se o algoritmo simplex; caso contrário, o problema é impossível.

Método das 2 fases: estratégia

Fase I: adicionar variáveis artificiais e minimizar a sua soma

• resolver problema auxiliar (1a é a soma das variáveis artificiais):

$$\min z_a = \mathbf{1}a$$

$$Ax - u + a = b$$

$$x, u, a \ge 0$$

sendo $a \in \mathbb{R}^{m \times 1}_+$, $\mathbf{1} = [1, 1, ..., 1]$ um vector linha com m elementos.

- Se $(\min z_a = 1 = 0) \Rightarrow a = 0$ (todas as variáveis artificiais = 0) \Rightarrow há um vértice admissível que obedece às restrições originais;
- caso contrário (min z_a > 0), não é possível obter uma solução que obedeça a todas as restrições originais ⇒ problema é impossível.

Fase II: optimizar problema original

- Existe um vértice admissível inicial para o algoritmo simplex;
- optimiza-se a função objectivo (original) do problema.

Fase I: adicionar vars artificiais a_1 e a_2 , e min z_a

- Função objectivo da Fase I: $\min z_a = 1a_1 + 1a_2$.
- Equação da linha da função objectivo: $z_a 1a_1 1a_2 = 0$

minimizer a									
sua soma	z_a	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
verietrats at all	0	-1	0	3	1	1	1	0	12
arkista L a2	0	0	0 -1	2	2	0	0	1	10
$\overline{z_a}$	1	0	0	0		0	- 1	- 1	0
distinct a and	014	2=0),	1	

- O quadro não é válido: os coeficientes da linha da função objectivo debaixo da matriz identidade devem ser nulos.
- ullet O quadro seguinte é válido; vamos ullet minimizar a função auxiliar z_a :

	z _a	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	<i>a</i> ₂	
a_1	0	-1	0	3	1	1	1	0	12 2 neste metado, como estámos e minimizar
a_2	0	0	-1	2	2	0	0	1	10 Ja escolha de columna disprente
Za	1	-1	-1	15	3	1	0_	0	22 y scother o
I has oftimo									3 velido mais positivo

Fase I: iterações

	z _a	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a ₂	
\mathbf{a}_1	0	-1	0	3	1	1	1	0	12
a_2	0	0	-1	2	2	0	0	1	10
Za	1	-1	-1	5	3	1	0	0	22
	Za	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
<i>y</i> ₃	0	-1/3	0	1	1/3	1/3	1/3	0	4
a_2	0	2/3	-1	0	4/3	-2/3	-2/3	1	2
Za	1	2/3	-1	0	4/3	-2/3	-5/3	0	2
	Za	<i>y</i> ₁	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
<i>y</i> ₃	0	-1/2	1/4	1	0	1/2	1/2	-1/4	7/2
<i>y</i> 4	0	1/2	-3/4	0	1	-1/2	-1/2	3/4	3/2

0

- Solução óptima: $\min z_a = 0$.
- Foi encontrado um vértice admissível.

0

-1

Fase I: conclusão

- O vértice admissível é $(y_1, y_2, y_3, y_4, y_5)^{\top} = (0, 0, 7/2, 3/2, 0)^{\top}$.
- Variáveis artificiais (a_1, a_2) e função objectivo auxiliar (z_a) não são necessárias na Fase II, e podem ser eliminadas.

	У1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> 3	-1/2 1/2	1/4	1	0	1/2 -1/2	7/2
<i>y</i> 4	1/2	-3/4	0	1	-1/2	3/2

• Na Fase II, iremos optimizar a função objectivo original (z), partindo do vértice admissível encontrado na Fase I.

Fase II: função objectivo original

- Função objectivo da Fase II: min $z = 120y_3 + 80y_4 + 30y_5$.
- Equação da linha da função objectivo: $z 120y_3 80y_4 30y_5 = 0$

			<i>y</i> 2		<i>y</i> 4	<i>y</i> 5	
<i>y</i> 3	0	-1/2	1/4	1	0	1/2 -1/2	7/2
<i>y</i> 4	0	1/2	1/4 -3/4	0	1	-1/2	3/2
			0		-80	-30	0
		'					'

- O quadro não é válido: os coeficientes da linha da função objectivo debaixo da matriz identidade devem ser nulos.
- O quadro seguinte é válido; vamos optimizar a função original z:

	Z		<i>y</i> ₂				
<i>y</i> 3	0	-1/2	1/4	1	0	1/2	7/2
<i>y</i> 4	0	-1/2 1/2	-3/4	0	1	-1/2	3/2
Z	1	-20	-30	0	0	-10	540

- O primeiro vértice admissível encontrado é a solução óptima
- (problema de minimização e nenhum coeficiente na linha da função objectivo é positivo).
- Isto nem sempre acontece!

3. Vértices degenerados

- O que é um vértice degenerado?
- Como identificar a degenerescência no quadro simplex?

Vértice degenerado: caracterização

• Vimos vértices determinados pela intersecção de (n-m) hiperplanos.

Vértice degenerado: número maior de hiperplanos

- Um vértice degenerado pertence a mais do que (n-m) hiperplanos.
- Lembrete: uma solução básica resulta de resolver o sistema de m equações em ordem a m variáveis básicas, associadas a um conjunto de m vectores linearmente independentes, que formam a base.

Vértice degenerado: várias bases, a mesma solução básica (≡ vértice)

• Um vértice é *degenerado* se várias bases (cada uma correspondendo a um quadro simplex diferente) fornecerem a mesma solução básica.

Exemplo: 3 hiperplanos no espaço a 2 dimensões

Exemplo: 3 bases diferentes, a mesma solução básica

	z	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	
s_1	0	0	2	1	0	-3	0
<i>s</i> ₂	0	0	2	0	1	-1	40
s ₁ s ₂ x ₁	0	1	0	0	0	1	40
Z	1	0	-10	0	0	12	480

	z	x_1	<i>x</i> ₂		<i>s</i> ₂	<i>s</i> ₃	
-X2	0	0	1	0.5	0	-1.5	0
<i>s</i> ₂	0 0 0	0	0	-1 0	1	2	40 40
x_1	0	1	0	0	0	1	40
Z	1	0	0	5	0	-3	480

z *X*1 *X*2 s_1 **S**3 0 4/3 -1/3 40 **S**2 -2/3 -1/3 *5*3 2/3 1/3 40 x_1 0 -2 4 0 480 Um quadro simplex corresponde a um vértice degenerado se houver uma ou mais variáveis básicas com valor 0.

Solução básica (\equiv vértice) é sempre $(x_1, x_2, s_1, s_2, s_3)^{\top} = (40, 0, 0, 40, 0)^{\top}$.

Escolha da linha pivô quando há empate

	Z	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃		
<i>s</i> ₁	0	3	2	1	0	0	120	120/3 = 40
<i>s</i> ₂	0	1	2	0	1	0	80	80/1 = 80
<i>5</i> 3	0	1	0	0	0	1	40	40/1 = 40
Z	1	-12	-10	0	0	0	0	

• Há empate na menor razão positiva = 40 (linhas de s_1 e de s_3).

Desempate usando a técnica de perturbação:

- ullet perturbar o lado direito, adicionando ϵ , e
- calcular novamente a menor razão positiva.
- Exemplo:
 - Linha de $s_1: (120+\epsilon)/3 = 40+\epsilon/3$
 - Linha de s_3 : $(40 + \epsilon)/1 = 40 + \epsilon$
- Linha pivô correcta: a de s_1 (menor razão positiva após perturbação)

Esta escolha tipicamente reduz o número de iterações.

Exemplo: resolução em que um vértice é degenerado

	Z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>5</i> 3	
s_1	0	3	2	1	0	0	120
s ₂ s ₃	0	1	2	0	1	0	80
s 3	0	1	0	0	0	1	40
Z	1	-12	-10	0	0	0	0

	Z	x_1	<i>x</i> ₂	s_1	s ₂	5 3	
-x ₁	0	1	2/3	1/3	0	0	40
<i>s</i> ₂	0	0	4/3		1	0	40
<i>s</i> ₃	0	0	-2/3	-1/3	0	1	0
Z	1	0	-2	4	0	0	480

		Z	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	s 3	
	<i>x</i> ₁	0	1	0	0.5	-0.5	0	20
	<i>x</i> ₁ <i>x</i> ₂ <i>s</i> ₃	0	0	1	-0.25	0.75	0	30
	<i>s</i> ₃	0	0	0	-0.5	0.5	1	20
-	Z	1	0	0	3.5	1.5	0	540

Solução óptima $(x_1, x_2, s_1, s_2, s_3)^{\top} = (20, 30, 0, 0, 20)^{\top}$.

4. O algoritmo termina num número finito de passos?

Quando não há degenerescência, o algoritmo simplex converge para

• a solução óptima (finita) num número finito de pivôs, porque

4. O algoritmo termina num número finito de passos?

Quando não há degenerescência, o algoritmo simplex converge para

 a solução óptima (finita) num número finito de pivôs, porque o resultado da soma de um número infinito de melhorias do valor da função objectivo em cada pivô não pode ser um valor finito.

Quando há degenerescência, o algoritmo simplex pode entrar em ciclo,

 percorrendo ciclicamente as bases correspondentes ao mesmo vértice, quando se selecciona para coluna pivô a coluna com o coeficiente mais negativo na linha da função objectivo (prob. max.).

4. O algoritmo termina num número finito de passos?

Quando não há degenerescência, o algoritmo simplex converge para

 a solução óptima (finita) num número finito de pivôs, porque o resultado da soma de um número infinito de melhorias do valor da função objectivo em cada pivô não pode ser um valor finito.

Quando há degenerescência, o algoritmo simplex pode entrar em ciclo,

 percorrendo ciclicamente as bases correspondentes ao mesmo vértice, quando se selecciona para coluna pivô a coluna com o coeficiente mais negativo na linha da função objectivo (prob. max.).

No entanto, a finitude do algoritmo simplex é assegurada

 se se seleccionar para coluna pivô a coluna com coeficiente negativo e menor índice.

ver Bland, R. "New finite pivoting rules for the simplex method". Mathematics of Operations Research 2 (2): 103 - 107, 1977. doi:10.1287/moor.2.2.103

Complexidade do algoritmo simplex

- Há um exemplo especialmente construído (um hipercubo deformado no espaço a n-dimensões), em que o algoritmo simplex percorre todos os vértices.
- No espaço a 3 dimensões, percorre os $2^3 = 8$ vértices do cubo.
- No pior caso, o algoritmo simplex é exponencial.
- Em termos de comportamento médio, há estudos computacionais de implementações do algoritmo simplex em que o número de iterações se aproxima bem de (m+n)/2.

ver Klee V. Minty GJ (1972) How good is the simplex algorithm? In: Shisha O. (ed.) Inequalities: III. Academic Press. New York

Vanderbei, Linear Programming: Foundations and Extensions, International Series in Operations Research & Management Science, 2014

Conclusão

- A regra de Bland assegura a convergência do algoritmo simplex num número finito de passos.
- Há outros algoritmos para resolver problemas de programação linear, como os métodos de pontos interiores (que são polinomiais).
- O algoritmo simplex permanece competitivo, embora tenham sido identificados exemplos em que os métodos de pontos interiores têm melhor desempenho.

Apêndices

A.1. Método do Grande M: estratégia

associar uma penalidade muito grande às vars artificiais, para forçar que tenham um valor nulo

• resolver problema auxiliar:

$$\min z_M = cx + \mathbf{M}a$$

$$Ax - u + a = b$$

$$x, u, a \ge 0$$

sendo $a \in \mathbb{R}^{m \times 1}_+$, $\mathbf{M} = [M, M, ..., M]$ um vector linha com m elementos.

- Se M for suficientemente grande, qualquer ponto admissível é melhor do que um ponto em que uma variável artificial seja positiva.
- Se $(a = \widetilde{0})$ (todas as variáveis artificiais = 0) \Rightarrow min $z_M = cx^*$ e x^* é o vértice admissível óptimo, que obedece às restrições originais.
- caso contrário (∃a_i > 0), não é possível obter uma solução que obedeça a todas as restrições originais ⇒ problema é impossível.

A.1. Método do Grande M: desvantagens

Se o valor de M for muito grande,

- pode haver perda de informação, resultante da representação dos números em computador.
- Os coeficientes de custo são representados por reais de dupla precisão com um número finito de casas decimais.
- Exemplo:

```
c_1 = 3,1415926535897932e + 00

M = 1,0000000000000000e + 40

M + c_1 = 1,0000000000000000e + 40
```

Se o valor de M for muito pequeno,

• pode não ser suficientemente grande para conduzir todas as variáveis artificiais a 0.

A.2. Degenerescência e restrições redundantes

- Num vértice degenerado, pode haver uma restrição redundante, i.e., uma restrição que pode ser removida sem alterar o domínio.
- Isso n\u00e3o acontece na generalidade. H\u00e1 casos em que nenhuma restri\u00e7\u00e3o pode ser removida.
- Exemplo: as restrições que definem o vértice $d: x_1 + x_2 \le 1$, $x_2 + x_3 \le 1$ e $x_1, x_2, x_3 \ge 0$ são todas necessárias:

A.2. Degenescência e bases óptimas

	z'	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	
s_1	0	0	2	1	0	-3	0
<i>s</i> ₂	0	0	2	0	1	-1	40
x_1	0	1	0	0	0	1	40
z'	1	0	-1	0	0	3	120
							'
	z'	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	
<i>x</i> ₂	0	0	1	0.5	0	-1.5	0
<i>s</i> ₂	0	0	0	-1	1	2	40
x_1	0	1	0	0	0	1	40
\overline{z}'	1	0	0	1/2	0	3/2	120
	z'	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	
-s ₂	0	0	4/3	-1/3	1	0	40
5 3	0	0	-2/3	-1/3	0	1	0
x_1	0	1	2/3	1/3	0	0	40
\overline{z}'	1	0	1	1	0	0	120

Se $z' = 3x_1 + 1x_2$, uma das três bases da solução básica óptima não é óptima.

O quadro 1 é uma base que não é óptima: é necessário fazer um pivô degenerado para se comprovar que a solução básica (que não se altera quando se faz o pivô) é uma solução óptima.

Algoritmo simplex de minimização

Lembrete: no algoritmo simplex de minimização:

- a coluna pivô é a coluna com o coeficiente mais positivo na linha da função objectivo,
- a solução é óptima se não existir nenhum coeficiente positivo na linha da função objectivo.

NOTA: Em alternativa a usar um algoritmo de minimização, podemos usar um algoritmo simplex de maximização para maximizar a função simétrica da função objectivo. Ver diapositivos sobre Transformações básicas.

√ Voltar

I - Obter quadro válido: folha de rascunho

	Za	<i>y</i> ₁	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	<i>a</i> ₂	
a_1	0	-1	0	3	1	1	1	0	12
								0 1	
Za	1	0	0	0	0	0	- 1	- 1	0

• Exprimir a função objectivo z_a em função das variáveis não-básicas y_1, y_2, y_3, y_4 e y_5 usando eliminação de Gauss: somar à linha de z_a as linhas de a_1 e a_2 .

	z_a	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
$(+1)$ *linha de z_a	1	0	0	0	0	0	-1	-1	0
$(+1)$ *linha de a_1	0	-1	0	3	1	1	1	0	12
$(+1)$ *linha de a_2									10
Z_a	1	-1	-1	5	3	1	0	0	22

• O quadro seguinte é válido:

√ Voltar

	Za	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
a_1	0	-1	0	3	1	1	1	0	12
a_2	0	0	-1	2	2	0	1 0	1	10
Za	1	-1	-1	5	3	1	0	0	22

II - Obter quadro válido: folha de rascunho

	z	<i>y</i> ₁	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₃	0	-1/2	1/4	1	0	1/2	7/2
<i>y</i> 4	0	1/2	-3/4	0	1	1/2 -1/2	3/2
						-30	

Exprimir a função objectivo z em função das variáveis não-básicas
 y₁, y₂ e y₅ usando eliminação de Gauss: somar à linha de z as linhas de y₃ e y₄ multiplicadas por constantes adequadas.

	Z	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
(+1)*linha de z	1	0	0	-120	-80	-30	0
$(+120)$ *linha de y_3	0	-60	30	120	0	60	420
$(+80)$ *linha de y_4	0	40	-60	0	80	-40	120
Z	1	-20	-30	0	0	-10	540

• O quadro seguinte é válido:

√ Voltar

		y_1		<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> 3	0	-1/2	1/4	1	0	1/2	7/2
<i>y</i> 4	0	-1/2 1/2	-3/4	0	1	-1/2	3/2
Z	1	-20	-30	0	0	-10	540

Fim