Birla Institute of Technology & Science, Pilani Work-Integrated Learning Programmes Division First Semester 2019-2020 Comprehensive Examination (Regular)

Course No. : PCAM* ZC311
Course Title : CLASSIFICATION

Nature of Exam : Closed Book

Weightage : 40% Duration : 3 Hours

Date of Exam : 03/11/2019 (FN)

No. of Pages = 2No. of Questions = 4

Q1.

A. Explain the advantages of probabilistic generative models over probabilistic discriminatory models with examples

B. Calculate TPR, FPR, Precision, Recall and F1 for the confusion matrix given below

Predicted class

		<i>C1</i>	C2	<i>C3</i>	Total
Correct class	C1	15	2	3	20
	<i>C</i> 2	7	15	8	30
	<i>C3</i>	2	3	45	50
	Total	24	20	56	100

Q2.

A. Discuss the performance and interpretability of Naïve Bayes classifier

B. A bag has 3 balls (red or blue). If 5 random pick and replacement events result in the following results – blue, red, blue, red; what is the n umber of blue balls that gives max probability for the observed data

Q3.

A. Using relevant metrics, determine the best attribute to split the below data at root level

Name	Body	Skin	Gives	Aquatic	Aerial	Has	Hiber-	Class
	Temperature	Cover	Birth	Creature	Creature	Legs	nates	Label
human	warm-blooded	hair	yes	no	no	yes	no	mammal
python	cold-blooded	scales	no	no	no	no	yes	reptile
salmon	cold-blooded	scales	no	yes	no	no	no	fish
whale	warm-blooded	hair	yes	yes	no	no	no	mammal
frog	cold-blooded	none	no	semi	no	yes	yes	amphibian
komodo	cold-blooded	scales	no	no	no	yes	no	reptile
dragon				J				
bat	warm-blooded	hair	yes	no	yes	yes	yes	mammal
pigeon	warm-blooded	feathers	no	no	yes	yes	no	bird
cat	warm-blooded	fur	yes	no	no	yes	no	mammal
leopard	cold-blooded	scales	yes	yes	no	no	no	fish
shark								
turtle	cold-blooded	scales	no	semi	no	yes	no	reptile
penguin	warm-blooded	feathers	no	semi	no	yes	no	bird
porcupine	warm-blooded	quills	yes	no	no	yes	yes	mammal
eel	cold-blooded	scales	no	yes	no	no	no	fish
salamander	cold-blooded	none	no	semi	no	yes	yes	amphibian

B. Solve the following optimization problem using Lagrange multiplier and KKT conditions (with intermediate steps)

$$egin{array}{lll} {
m Min}: \ f(ar x) &=& x_1^2-x_2, \\ {
m st}: \ x_1+x_2 &=& 6, \\ x_1 &\geq& 1, \\ x_1^2+x_2^2 &\leq& 26. \end{array}$$

Q4.

- **A.** Derive the maximum margin classifier (in terms of input and output values) using optimization techniques and dual functions to maximize the margin 'd'
- B. Compare and contrast Bagging and Boosting with examples