Some distance functions for machine learning

DSE 220

Useful families of distance functions

- $\mathbf{0}$ ℓ_p norms
- 2 Metric spaces

Measuring distance in \mathbb{R}^m

Usual choice: **Euclidean distance**:

$$||x-z||_2 = \sqrt{\sum_{i=1}^m (x_i-z_i)^2}.$$

For $p \ge 1$, here is ℓ_p **distance**:

$$||x - z||_p = \left(\sum_{i=1}^m |x_i - z_i|^p\right)^{1/p}$$

- p = 2: Euclidean distance
- ℓ_1 distance: $||x z||_1 = \sum_{i=1}^m |x_i z_i|$
- ℓ_{∞} distance: $||x z||_{\infty} = \max_{i} |x_{i} z_{i}|$

Example 1

Consider the all-ones vector (1, 1, ..., 1) in \mathbb{R}^d . What are its ℓ_2 , ℓ_1 , and ℓ_∞ length?

Example 2

In \mathbb{R}^2 , draw all points with:

- $\mathbf{1}$ ℓ_2 length 1
- $2 \ell_1$ length 1
- 3 ℓ_{∞} length 1

Metric spaces

Let ${\mathcal X}$ be the space in which data lie.

A distance function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a **metric** if it satisfies these properties:

- $d(x,y) \ge 0$ (nonnegativity)
- d(x,y) = 0 if and only if x = y
- d(x, y) = d(y, x) (symmetry)
- $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality)

Example 1

 $\mathcal{X} = \mathbb{R}^m$ and $d(x,y) = ||x - y||_p$

Check:

- $d(x, y) \ge 0$ (nonnegativity)
- d(x, y) = 0 if and only if x = y
- d(x, y) = d(y, x) (symmetry)
- $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality)

Example 2

 $\mathcal{X} = \{ \mathsf{strings} \ \mathsf{over} \ \mathsf{some} \ \mathsf{alphabet} \} \ \mathsf{and} \ d = \mathsf{edit} \ \mathsf{distance}$

Check:

- $d(x, y) \ge 0$ (nonnegativity)
- d(x, y) = 0 if and only if x = y
- d(x, y) = d(y, x) (symmetry)
- $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality)

A non-metric distance function

Let p, q be probability distributions on some set \mathcal{X} .

The Kullback-Leibler divergence or relative entropy between p, q is:

$$d(p,q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}.$$