Discrete Probability Distribution of Penguin Weights

I created a discrete probability distribution (Figure 1) and histogram (Figure 2) for the weights of penguins in the PalmerPenguins dataset. The mean weight in the data is approximately equal to 4202 grams, with P(4202) approximately equal to 3.5%. The probabilities and weights are not normally distributed.

A tibb	le: 94 × 2	3650	0.0175	
weights	probabilities	3675	0.0058	
<dbl></dbl>	<dbl></dbl>	3700	0.0322	
2700	0.0029	:	:	
2850	0.0058	4775	0.0029	
2900	0.0117	4800	0.0088	
2925	0.0029	4850	0.0117	
2975	0.0029	4875	0.0088	
3000	0.0058	4900	0.0058	
3050	0.0117	4925	0.0058	
3075	0.0029	4950	0.0058	
3100	0.0029	4975	0.0029	
3150	0.0117	5000	0.0175	
3175	0.0058	5050	0.0088	
3200	0.0146	5100	0.0088	
3250	0.0146	5150	0.0058	
3275	0.0029	5200	0.0117	
3300	0.0175	5250	0.0088	
3325	0.0146	5300	0.0117	
3350	0.0146	5350	0.0088	
3400	0.0234	5400	0.0146	
3425	0.0058	5450	0.0029	
3450	0.0234	5500	0.0146	
3475	0.0088	5550	0.0175	
3500	0.0205	5600	0.0058	
3525	0.0058	5650	0.0088	5950
3550	0.0263	5700	0.0146	6000
3575	0.0029	5750	0.0029	
3600	0.0205	5800	0.0058	6050
3625	0.0029	5850	0.0088	6300

Figure 1

Figure 2

Since this initial visualization is a little challenging to interpret, I also created a density plot of weight (body_mass_g) across the dataset (Figure 3).

Figure 3

Binomial Probability Distribution and Histogram

I made a binomial probability distribution (and histogram) for the species Adelie in the PalmerPenguins dataset. See Figure 4. This shows the probabilities of the first 1-10 penguins selected being the species Adelie.

Figure 4

Table:

- The first column, labeled "x," represents the number of successes in the binomial distribution. In this context, "success" could be defined as a particular characteristic or outcome being observed in a penguin.
- The second column, labeled "binomial_probabilities," shows the probability of observing exactly x number of successes. For example, the probability of observing exactly 1 success (one penguin with the characteristic) is 0.0323, and the probability of observing 2 successes is 0.0827, and so on.

Visualization:

- The histogram visualizes the data from the table, with the x-axis representing
 the number of successes and the y-axis representing the probability of that
 number of successes.
- Each bar's height corresponds to the probability of that number of successes occurring. For instance, the tallest bar at x=4 corresponds to the highest probability (about 0.2420) among the probabilities listed in the table, meaning that observing exactly 4 successes is the most probable outcome within this dataset.
- This visualization is particularly useful in showing the distribution of probabilities across different numbers of successes. It provides a quick way to see which outcomes are most and least likely and how the probabilities are distributed (e.g., if they are skewed towards lower or higher numbers of successes).

Combined Interpretation:

- Together, the table and histogram provide a comprehensive view of the binomial probability distribution for the specified characteristic within the Adelie species. They illustrate not only the individual probabilities for each number of successes but also the overall shape of the distribution.
- This kind of analysis is valuable for understanding variability and the likelihood of different outcomes within a population. For researchers, it can inform predictions about the Adelie species and contribute to broader ecological and biological studies.