gtsummary

Daniel D. Sjoberg, Karissa Whiting, Margaret Hannum, Emily C. Zabor, Michael Curry

Introduction

Data Summaries

The most common summary needed for research projects are simple summaries of data sets. To show use of gtsummary functions, we will use a simulated clinical trial data set containing baseline characteristics of 200 patients who received Drug A or Drug B as well as the outcome of tumor response to the treatment. The data set has label attributes (using the labelled package) for column names.

Table 1: Example data frame, tria	Table	1:	Example	data	frame,	tria
-----------------------------------	-------	----	---------	------	--------	------

colname	label	class	values
trt age marker stage grade response death ttdeath	Chemotherapy Treatment Age Marker Level (ng/mL) T Stage Grade Tumor Response Patient Died Months to Death/Censor	character numeric numeric factor factor integer integer numeric	Drug A, Drug B 6, 9, 10, 17, 0.003, 0.005, 0.013, 0.015, T1, T2, T3, T4 I, II, III 0, 1 0, 1 3.53, 5.33, 6.32, 7.27,

tbl_summary()

The tbl_summary() function can be used to easily create a basic summary statistic table. This is often the first table of clinical manuscripts and describes characteristics of the cohort under study. A simple example is shown below with some basic customizations using the function's main arguments. Notably, by specifying the "by" argument, you can divide your summary statistic into comparator groups. In this case, we will split the table by treatment arms.

```
tbl_summary_1 <-
  trial %>%
select(age, grade, response, trt) %>%
tbl_summary(by = trt)
```

1 is basic

Figure 1: Basic 'tbl_summary()' example

Characteristic	Drug A , N = 98 ⁷	Drug B , N = 102^{7}
Age	46 (37, 59)	48 (39, 56)
Unknown	7	4
Grade		
I	35 (36%)	33 (32%)
II	32 (33%)	36 (35%)
Ш	31 (32%)	33 (32%)
Tumor Response	28 (29%)	33 (34%)
Unknown	3	4
¹ Median (IQR); n (%)	

tbl_svysummary()

tbl_cross()

tbl_survfit()

Customization

Model Summaries

tbl_regression()

tbl_uvregression()

In-line Reporting

Merging and Stacking

Themes

Print Engines