線形代数学・同演習 B

11 月 1 日分 演習問題*1

- 1. 略.
- 2. (1) 次元は3, 基底は例えば a_1, a_2, a_4 . (2) 次元は2, 基底は例えば b_1, b_3 .
- 3^{\dagger} (1)次元は 2 , 基底は例えば $f_1(x)$ と $f_2(x)$ (2)次元は 3 , 基底は例えば $g_1(x)$, $g_2(x)$ と $g_4(x)$ (3)次元は 4(よって問題 7 より $\mathbb{R}[x]_3$ と一致する),基底は例えば $H_0(x),\ldots,H_3(x)$,あるいは $1,x,x^2,x^3$ でもよい.

多項式の標準基底 $[1,x,x^2,x^3]$ (あるいは $[x^3,x^2,x,1]$) に関してベクトル表示をして,そのベクトルの組に対して問題 2 と同様の計算を行う.基底も主成分に対応する列を持ってくればよいが,考えている空間が多項式の空間なので,基底も多項式に戻すことを忘れずに.

- 4^{\dagger} (1) 次元は 1 , 基底は例えば $\begin{pmatrix} -4 \\ -1 \\ 1 \end{pmatrix}$. (2) 次元は 2 , 基底は例えば $\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 3 \\ 1 \end{pmatrix}$.
- 5. (1) $\begin{pmatrix} 56 & -17 \\ -23 & 7 \end{pmatrix}$ (2) $\begin{pmatrix} 76 & -29 \\ -55 & 21 \end{pmatrix}$ (3) $\begin{pmatrix} 13 & -4 & 16 \\ 6 & -1 & 8 \\ 2 & 0 & 3 \end{pmatrix}$; 行列として $(\boldsymbol{u})^{-1}(\widetilde{\boldsymbol{u}})$ を計算すればよい.
- 6.~U の二つの基底をそれぞれ $[m{u}_1,\ldots,m{u}_n]$ と $[\widetilde{m{u}}_1,\ldots,\widetilde{m{u}}_n]$ とし,基底の変換行列を $P=(m{p}_1,\ldots,m{p}_n)$ とおく.このとき $[\widetilde{m{u}}_1,\ldots,\widetilde{m{u}}_n]=[m{u}_1,\ldots,m{u}_n]P$ である.さて, $m{p}_1,\ldots,m{p}_n$ の線形独立性を調べるので, $a_1m{p}_1+\cdots+a_nm{p}_n=m{0}$ とおく.このとき,

$$\mathbf{0} = [\boldsymbol{u}] \sum_{i=1}^{n} a_i \boldsymbol{p}_i = [\boldsymbol{u}_1, \dots, \boldsymbol{u}_n] P \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = [\widetilde{\boldsymbol{u}}_1, \dots, \widetilde{\boldsymbol{u}}_n] \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = a_1 \widetilde{\boldsymbol{u}}_1 + \dots + a_n \widetilde{\boldsymbol{u}}_n.$$

ここで $\widetilde{u}_1,\dots,\widetilde{u}_n$ は線形独立なので , $a_1=\dots=a_n=0$ でなければならない . よって , p_1,\dots,p_n は線形独立となる .

- 7. † (1) $m=\dim W$ とおき, $m{v}_1,\dots,m{v}_m$ をその基底とする.すると,これらは V においても線形独立である. $\dim V$ は V から取り出せる線形独立なベクトルの最大個数だったので, $\dim V>m=\dim W$ となる.
 - $(2) \Leftarrow$ は明らかなので, \Rightarrow を示す.まず明らかに $W \subset V$ である.(1) と同様に v_1,\dots,v_m を W の基底とする. $\dim V = m$ であるので,V の元は m 個の線形独立なベクトルの線形結合で表すことができるが,そのベクトルとして v_1,\dots,v_m を選べば,V の任意の元は W の元 v_1,\dots,v_m の線形結合で書けることになる.つまり $V \subset W$ となるので,W = V である.
- 8.* (1) $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty} \in V$ のとき,

$$a_{k+3} + b_{k+3} = (7a_{k+1} + 6a_k) + (7b_{k+1} + 6b_k) = 7(a_{k+1} + b_{k+1}) + 6(a_k + b_k)$$

などより , ベクトル空間となる.また , 次元は 3 となる (自由に動けるパラメータは x_0,x_1,x_2 の 3 つだけなので).(2) (1) より ,条件となっている漸化式を満たすものを 3 つ持ってくればよいが ,この漸化式の特性方程式 $x^3=7x+6x$ の解である $\lambda=3,-1,-2$ は $\lambda^{k+3}=7\lambda^{k+1}+6\lambda^k$ を満たすので , $\{3^n\}_{n=0}^\infty$, $\{(-1)^n\}_{n=0}^\infty$, $\{(-2)^n\}_{n=0}^\infty$ はこのベクトル空間の基底となる .*2

^{*1} 凡例:無印は基本問題, † は特に解いてほしい問題, * は応用問題.

 $^{^{*2}}$ 特に一般項が $x_n=3^na+(-1)^nb+(-2)^nc$ の形なので, x_0,x_1,x_2 が与えられれば,簡単な連立一次方程式を解い

1. コラムの問題の解答.

$$q_{1}(x) = \frac{1}{720}(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)$$

$$q_{2}(x) = -\frac{1}{120}(x-1)(x-3)(x-4)(x-5)(x-6)(x-7)$$

$$q_{3}(x) = \frac{1}{48}(x-1)(x-2)(x-4)(x-5)(x-6)(x-7)$$

$$q_{4}(x) = -\frac{1}{36}(x-1)(x-2)(x-3)(x-5)(x-6)(x-7)$$

$$q_{5}(x) = \frac{1}{48}(x-1)(x-2)(x-3)(x-4)(x-6)(x-7)$$

$$q_{6}(x) = -\frac{1}{120}(x-1)(x-2)(x-3)(x-4)(x-5)(x-7)$$

$$q_{7}(x) = \frac{1}{720}(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)$$

$$\alpha + \frac{105 - 49\alpha}{20}n - \frac{2881 - 812\alpha}{360}n^{2} + \frac{242 - 49\alpha}{48}n^{3} - \frac{214 - 35\alpha}{144}n^{4} + \frac{50 - 7\alpha}{240}n^{5} - \frac{8 - \alpha}{720}n^{6}.$$