Semester Project

Map Fusion for Collaborative **UAV SLAM**

> Andreas Ziegler

Semester Project

Map Fusion for Collaborative UAV SLAM

Contents

Map Fusion for Collaborative UAV SLAM

Andreas

Ziegler

Acronym

Introduction

....

Map merging

Results

Culling Results

Optimization Results

Conclusion

Outlool

- Introduction
- 2 Motivation
- Map merging
- 4 Culling
- 6 Optimization
- **6** Conclusion
- Outlook

Acronyms

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronyms

Introduction

Motivation

Map merging Approaches

Culling

Optimization Results

Conclusion

Outloo

SLAM Simultaneous Localisation and Mapping.

UAV Unmanned Aerial Vehicle.

KF KeyFrame.

KFM KeyFrame Match.

BA Bundle Adjustment.

PGO Pose Graph Optimization.

LM Levenberg-Marquardt.

DL Powell's dog leg.

Map Fusion for

Collaborative UAV SLAM

Andreas Ziegler

Acronym

Introduction

Map merging

Approaches Results

Culling

Optimization Results

Conclusion

Outlook

1 Introduction

- 2 Motivation
- Map merging
- 4 Culling
- 6 Optimization
- **6** Conclusion
- Outlook

Introduction

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Map mergin

Results

Optimization

Conclusion

Introduction

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Matination

Map mergin Approaches

Culling

Optimizatio

C----

Introduction

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronyms

Introduction

Motivation

Map merging
Approaches

Culling

Optimization

Conclusion

Introduction

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronyms

Introduction

Map merging

Approaches Results

Culling

Optimization

Conclusion

Introduction - What is a KeyFrame Match (KFM)?

Map Fusion for Collaborative UAV SLAM

Andrea Ziegler

Acronym

Introduction

Matination

Map mergin Approaches

Culling

Optimization

Conclusion

Dutloo

KeyFrames (KFs): The most "representative" poses

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

..... oddotio

Map merging

Results

Optimization

Conclusion

Outloo

KeyFrames (KFs): The most "representative" poses

Two clients each with own landmarks and KeyFrames (KFs)

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Matination

Map merging
Approaches

Culling

Optimization Results

Conclusion

Outloo

KeyFrames (KFs): The most "representative" poses

KeyFrame Match (KFM): Two KeyFrames (KFs) observing the same location

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Map merging

Culling

Optimization Results

Conclusion

Outloo

KeyFrames (KFs): The most "representative" poses

KeyFrame Match (KFM): Two KeyFrames (KFs) observing the same location \rightarrow Can obtain transformation

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Motivation

Map merging
Approaches
Results

Culling Results

Optimization Results

Conclusion

Outloo

KeyFrames (KFs): The most "representative" poses

KeyFrame Match (KFM): Two KeyFrames (KFs) observing the same location

With the transformation \rightarrow maps can be aligned

Introduction - What is a KeyFrame Match (KFM)?

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Map mergin

Approaches Results

Results

Optimization Results

Conclusion

Outlool

KeyFrames (KFs): The most "representative" poses

A KeyFrame Match (KFM) contains:

- Two KeyFrames (KFs) (One per map)
- The transformation $(T \in Sim(3))$ between them

Map Fusion for

Collaborative UAV SLAM

Andreas Ziegler

Acronym

Introduction

Motivation

Map mergin

Approaches
Results

Culling

Optimization Results

Conclusion

Outlook

1 Introduction

- 2 Motivation
- Map merging
- Culling
- 6 Optimization
- Conclusion
- Outlook

Motivation

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Motivation

Map mergin

Culling

Optimization Results

Conclusion

Outloo

 A multi agent SLAM system based on ORB-SLAM2 should be extended

Motivation

Map Fusion for Collaborative UAV SLAM

Andreas Ziegler

Acronym

Introduction

Motivation

Map merging

Culling Results

Optimization Results

Conclusion

Outloo

- A multi agent SLAM system based on ORB-SLAM2 should be extended
- So far, as soon as a KeyFrame Match (KFM) was detected, maps were merged

Motivation

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronyme

Introduction

Motivation

Map merging

Culling Results

Optimization Results

Conclusion

Outloo

- A multi agent SLAM system based on ORB-SLAM2 should be extended
- So far, as soon as a KeyFrame Match (KFM) was detected, maps were merged
- Using multiple KFMs to guarantee no false map merging

Motivation

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronyms

Introduction

Motivation

Map merging

Culling Results

Optimization Results

Conclusion

Outloo

- A multi agent SLAM system based on ORB-SLAM2 should be extended
- So far, as soon as a KeyFrame Match (KFM) was detected, maps were merged
- Using multiple KFMs to guarantee no false map merging
- Using multiple KFMs to obtain an optimal map alignment

Map Fusion for

Collaborative UAV SLAM

Andreas Ziegler

Acronym

Introduction

.

Wiotivation

Map merging Approaches

Results

Culling

Optimization

Conclusion

Outlook

1 Introduction

2 Motivation

Map merging

4 Culling

6 Optimization

6 Conclusion

Map merging - Old approach

Map Fusion for Collaborative UAV SLAM

Andrea: Ziegler

Acronym

Introduction

IIILIOGUCLIO

Map mergin

Approaches Results

Culling Results

Optimization

Conclusion

Outlool

Old approach:

• As soon as a KFM was detected, maps were merged

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Motivation

Map mergin
Approaches

Results

Culling Results

Optimization Results

Conclusion

Outlool

Find n(=3) KeyFrame Matches (KFMs)

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Motivation

Map mergin

Results

Results

Optimization Results

Conclusion

Outlook

Find n(=3) KeyFrame Matches (KFMs), Skip m(=5) KeyFrames (KFs)

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

.....

Map merging

Approaches Results

Culling Results

Optimization Results

Conclusion

Jutlook

Find n(=3) KeyFrame Matches (KFMs), Skip m(=5) KeyFrames (KFs)

Map merging - New approach

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Map merging

Culling

Optimization

Conclusion

Dutlool

Find n(=3) KeyFrame Matches (KFMs), Skip m(=5) KeyFrames (KFs)

Map Fusion for Collaborative **UAV SLAM**

Approaches

Map Fusion for Collaborative **UAV SLAM**

Approaches

Map merging - New approach

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

.

Map mergin

Approaches Results

Results

Optimization Results

Conclusion

Outlool

Map merging - Results - skipping of KeyFrame (KF)

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

miroduction

Map merging

Approaches Results

Culling Results

Optimization Results

Conclusion

Outloo

Co-visibility graph

Connections/Edges between KeyFrames (KFs) which observe the same map points (landmarks)

Map merging - Results - skipping of KF

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Map merging
Approaches
Results

Culling Results

Optimization Results

Conclusion

Outlool

green: Covisibility graph of first map yellow: Covisibility graph of second map

red: Covisibility between the KFMs

(a) 1 KF skipped after a KFM was found

(b) 10 KF skipped after a KFM was found

Map merging - Results - Reduction of drift

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Map merging
Approaches
Results

Culling Results

Optimization Results

Conclusion

Uutloo

Reduction of the error from rmse = 0.13m to rmse = 0.10m

Map merging - Results

Map Fusion for Collaborative UAV SLAM

> Andrea: Ziegler

Acronym

Introduction

Motivation

Map merging
Approaches
Results

Culling

Optimization

Conclusion

Dutlook

# KFMs	# KFs skip	rmse
1	0	0.1311
5	20	0.0912
10	5	0.1236
10	10	0.0961

Table: Error (rmse) of different settings (KFMs and KF skipps).

Map Fusion for

Collaborative **UAV SLAM**

Culling

Introduction

Motivation

Map merging

4 Culling

Optimization

Conclusion

Culling - Remove redundant KF

Map Fusion for Collaborative UAV SLAM

Andreas Ziegler

Acronym

Introduction

Map merging

Approaches Results

Culling Results

Results

Conclusion

Outlool

Motivation

Perform KeyFrame (KF) culling to remove redundant information as bundle adjustment complexity grows with the number of KFs

[Mur-Artal et al., 2015]

Culling - Remove redundant KF

Map Fusion for Collaborative UAV SLAM

> Andrea: Ziegler

Acronym

Introduction

.....

Map merging

Culling

Optimization

Conclusion

Outlook

Remove redundant KFs before map merging

Culling - Remove redundant KF

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

.

Map merging

Culling

Optimizatio

Conclusion

- Remove redundant KFs before map merging
- Performs culling for every KFM separately

Culling - Remove redundant KF

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Map merging Approaches

Culling

Optimization Results

Conclusion

Outlook

- Remove redundant KFs before map merging
- Performs culling for every KFM separately

Culling - Remove redundant KF

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronyms

Introduction

Motivatio

Map merging
Approaches

Culling

Optimization

Conclusion

Outlool

- Remove redundant KFs before map merging
- Performs culling for every KFM separately

Culling - Remove redundant KF

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Motivation

Map merging
Approaches

Culling

Optimization

Conclusion

Outloo

- Remove redundant KFs before map merging
- Performs culling for every KFM separately

Culling - Results

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym:

Introduction

Map mergin

Culling Results

Optimization Results

Conclusio

Outlook

Pose Graph Optimization (PGO) Bundle Adjustment (BA)

v / e: numbers of verteces / edges of the graph to optimize

Culling	# KFMs	# KFs skip	PGO v / e	BA v / e
No	1	0	59 / 754	2308 / 22193
Yes	1	0	36 / 283	1893 / 13222
No	10	10	150 / 1949	4806 / 49765
Yes	10	10	93 / 657	4165 / 30453

Table: Time measurements of Pose Graph Optimization (PGO) and Bundle Adjustment (BA) without and with culling.

Culling - Results

Map Fusion for Collaborative UAV SLAM

Andrea: Ziegler

Acronym

Introduction

Mativation

Map mergin Approaches

Culling Results

Optimization Results

Conclusion

Outloo

Culling removes $\approx 13\%$ of the KeyFrames (KFs)

Culling - Results

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Map merging

Culling Results

Optimization Results

Conclusion

Outloo

Culling removes $\approx 13\%$ of the KeyFrames (KFs)

Culling	# KFMs	# KFs skipped	PGO [ms]	BA [ms]
No	10	10	532.28	3659.48
Yes	10	10	178.83	1098.37

Table: Time measurements of PGO and BA without and with culling.

Culling - Results

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

.

Map merging
Approaches

Culling Results

Optimization Results

Conclusion

Outloo

Culling removes $\approx 13\%$ of the KeyFrames (KFs)

Culling	# KFMs	# KFs skipped	PGO [ms]	BA [ms]
No	10	10	532.28	3659.48
Yes	10	10	178.83	1098.37

Table: Time measurements of PGO and BA without and with culling.

Performance increases significantly when culling is enabled

Culling - Results

Map Fusion for Collaborative UAV SLAM

Andreas Ziegler

Acronym

Introduction

Map merging
Approaches

Culling Results

Results

Conclusion

Outloo

Culling	# KFMs	# KFs skipped	rmse [m]
No	1	0	0.1311
Yes	1	0	0.2187
No	10	10	0.0961
Yes	10	10	0.0965

Table: rmse without and with culling.

Culling - Results

Map Fusion for Collaborative UAV SLAM

Andreas Ziegler

Acronym

Introduction

Map merging Approaches

Culling Results

Optimization Results

Conclusion

Outlool

Culling	# KFMs	# KFs skipped	rmse [m]
No	1	0	0.1311
Yes	1	0	0.2187
No	10	10	0.0961
Yes	10	10	0.0965

Table: rmse without and with culling.

Accuracy gets worse if not enough information is available. No problem with multiple KeyFrame Matches (KFMs).

ETH zürich

Map Fusion for

Collaborative UAV SLAM

Andreas Ziegler

Acronyms

Introduction

..... oddocio.

Man morgin

Approaches
Results

Culling

Results

Optimization Results

Conclusion

Outlook

- Introduction
- 2 Motivation
- Map merging
- 4 Culling
- Optimization
- **6** Conclusion
- Outlook

Optimization - Idea

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Map merging

Culling

Optimization Results

Conclusion

Outloc

Considerable computational benefits can be gained by substituting the Levenberg-Marquardt (LM) algorithm in the implementation of Bundle Adjustment (BA) with a variant of Powell's dog leg (DL) non-linear least squares technique [Lourakis and Argyros, 2005]

Optimization - Idea

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

....

Map mergin

Results

Culling

Optimization

Conclusion

Outloc

Considerable computational benefits can be gained by substituting the Levenberg-Marquardt (LM) algorithm in the implementation of Bundle Adjustment (BA) with a variant of Powell's dog leg (DL) non-linear least squares technique [Lourakis and Argyros, 2005]

DL optimizer handles trust region differently

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

..... oddocio.

Map merging

Culling

Optimization

Conclusion

Outlook

The Levenberg-Marquardt (LM) solves iteratively

$$(\mathbf{J}^T\mathbf{J} + \lambda \mathbf{I})\delta = \mathbf{J}^T\boldsymbol{\epsilon}$$
, where $\boldsymbol{\epsilon} = [\mathbf{y} - \mathbf{f}(\boldsymbol{\beta})]$

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Motivation

Map merging
Approaches

Culling

Optimization

Conclusion

Outlool

The LM solves iteratively

$$(\mathbf{J}^T\mathbf{J} + \lambda \mathbf{I})\delta = \mathbf{J}^T\boldsymbol{\epsilon}$$
, where $\boldsymbol{\epsilon} = [\mathbf{y} - \mathbf{f}(\boldsymbol{\beta})]$

ullet With a small λ LM becomes a Gauss-Newton method

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronyms

Introduction

Map merging

Culling

Optimization

Conclusion

Outloo

The LM solves iteratively

$$(\mathbf{J}^T\mathbf{J} + \lambda \mathbf{I})\delta = \mathbf{J}^T\epsilon$$
, where $\epsilon = [\mathbf{y} - \mathbf{f}(\boldsymbol{\beta})]$

- ullet With a small λ LM becomes a Gauss-Newton method
- ullet With a big λ LM behaves like a Gradient-descent method

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Map merging

Culling Results

Optimization Results

Conclusion

Outloo

The LM solves iteratively

$$(\mathbf{J}^T\mathbf{J} + \lambda \mathbf{I})\delta = \mathbf{J}^T\boldsymbol{\epsilon}$$
, where $\boldsymbol{\epsilon} = [\mathbf{y} - \mathbf{f}(\boldsymbol{\beta})]$

- ullet With a small λ LM becomes a Gauss-Newton method
- ullet With a big λ LM behaves like a Gradient-descent method
- If an update doesn't reduce the error, λ will be increased and the equation must be solved again

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Map merging

Culling

Optimization

Conclusion

Outloo

The Powell's dog leg (DL) solves iteratively

$$\min_{\delta} 2(\frac{1}{2}\boldsymbol{\epsilon}^T\boldsymbol{\epsilon} - (\mathbf{J}\boldsymbol{\epsilon})^T\delta + \frac{1}{2}\delta^T\mathbf{J}^T\mathbf{J}\delta) \text{, subjected to } ||\delta|| \leq \Delta$$

For $\kappa \in [0,2]$, the dog leg trajectory is defined as

$$\delta(\kappa) = \begin{cases} \kappa \delta_{gd} & 0 \le \kappa \le 1\\ \delta_{gd} + (\kappa - 1)(\delta_{gn} - \delta_{gd}) & 1 \le \kappa \le 2 \end{cases}$$

TIH zürich

Optimization - DL

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

.

Map merging
Approaches

Culling Results

Optimization

Conclusion

Dutlool

With

$$\delta_{gd} = \frac{\mathbf{g}^T \mathbf{g}}{\mathbf{g}^T \mathbf{J}^T \mathbf{J} \mathbf{g}} \mathbf{g}$$

and δ_{gn} the solution of

$$\mathbf{J}^T\mathbf{J}\delta_{gn}=\mathbf{g}$$

the dog leg trajectory looks like

Optimization - DL

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

.....

Map mergin Approaches

Culling

Optimization

Conclusion

Dutlook

• Once the Gauss-Newton step has been determined, the DL algorithm can solve the subproblem for various Δ without resolving an equation

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronyms

Introduction

Map merging

Culling

Optimization

Conclusion

Outloo

- Once the Gauss-Newton step has been determined, the DL algorithm can solve the subproblem for various Δ without resolving an equation
- Reducing the number of times the Gauss-Newton step has to be determined is crucial for the overall performance of the minimization process

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

madaction

Map merging
Approaches

Culling Results

Optimization Results

Conclusion

Outloo

- Once the Gauss-Newton step has been determined, the DL algorithm can solve the subproblem for various Δ without resolving an equation
- Reducing the number of times the Gauss-Newton step has to be determined is crucial for the overall performance of the minimization process
- For the mentioned reasons the DL algorithm requires less computational effort compared to the LM algorithm

Optimization - Approach

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

.

Map mergin

Results

Optimization

Conclusion

Outlook

 Tried Pose Graph Optimization (PGO) and Bundle Adjustment (BA) with the Powell's dog leg (DL) optimizer.

Optimization - Approach

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

......

Map merging

Culling

Optimization

Conclusion

Outloo

- Tried Pose Graph Optimization (PGO) and Bundle Adjustment (BA) with the Powell's dog leg (DL) optimizer.
- PGO: Slightly worse timing using the DL optimizer

Optimization - Approach

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

......

Map merging

Culling

Optimization

Conclusion

Outloo

- Tried Pose Graph Optimization (PGO) and Bundle Adjustment (BA) with the Powell's dog leg (DL) optimizer.
- PGO: Slightly worse timing using the DL optimizer
- BA: Better timing using the DL optimizer

Optimization - Approach

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Map merging

Culling Results

Optimization Results

Conclusion

Outloc

- Tried Pose Graph Optimization (PGO) and Bundle Adjustment (BA) with the Powell's dog leg (DL) optimizer.
- PGO: Slightly worse timing using the DL optimizer
- BA: Better timing using the DL optimizer

Conclusion

LM optimizer for PGO and DL optimizer for BA

Optimization - Results

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

Map merging

Results

Optimization

Results

Conclusion

Dutloo

Opt.	# KFMs	# KFs skipped	PGO [ms]	BA [ms]
LM/LM	10	10	178.83	1098.37
LM/DL	10	10	178.70	383.54

Table: Time measurements of LM and DL optimizer.

Optimization - Results

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

.....

Map merging

Culling

Optimization Results

Conclusion

Outloo

Opt.	# KFMs	# KFs skipped	PGO [ms]	BA [ms]
LM/LM	10	10	178.83	1098.37
LM/DL	10	10	178.70	383.54

Table: Time measurements of LM and DL optimizer.

Accuracy stays the same while the performance is increased

Map Fusion for

Collaborative UAV SLAM

Andreas Ziegler

Acronyme

Introduction

......

iviotivation

Approaches

Culling

Optimization

Conclusion

Outlook

• Introduction

- 2 Motivation
- Map merging
- Culling
- Optimization
- **6** Conclusion
- Outlook

Map Fusion for Collaborative UAV SLAM

> Andrea: Ziegler

Acronyms

Introduction

......

Map merging

Culling

Optimization

Conclusion

Dutlook

Multiple KFMs approach increases accuracy

Map Fusion for Collaborative UAV SLAM

> Andrea Ziegler

Acronym

Introduction

......

Map merging

Culling

Optimization

Conclusion

Jutlaak

- Multiple KFMs approach increases accuracy
- Skipping of KFs spreads KFMs over a bigger area

Map Fusion for Collaborative UAV SLAM

> Andrea: Ziegler

Acronym

Introduction

.....

Map merging

Results

Optimization

Conclusion

Outlook

Higher accuracy

The use of KFMs from a bigger area serves PGO and BA with more information \rightarrow higher accuracy

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

IIILIOGUCLIOI

Map merging
Approaches

Culling

Optimization

Conclusion

Outlook

Higher accuracy

The use of KFMs from a bigger area serves PGO and BA with more information \rightarrow higher accuracy

• Culling removes redundant KFs \rightarrow improved timing

ETH zürich

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

..... oaactioi

Map merging

Culling Results

Optimization Results

Conclusion

Outlook

Higher accuracy

The use of KFMs from a bigger area serves PGO and BA with more information \rightarrow higher accuracy

- Culling removes redundant KFs → improved timing
- Using DL optimizer for the BA also improves timing

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

IIILIOGUCLIOI

Map merging

Culling

Optimization

Conclusion

Outlook

Higher accuracy

The use of KFMs from a bigger area serves PGO and BA with more information \rightarrow higher accuracy

Better timing

Culling and the use of the DL optimizer improves timing

Map Fusion for

Collaborative UAV SLAM

> Andreas Ziegler

Acronyms

Introduction

miliodaction

NA-Alice Alecc

Map mergin

Culling

Optimization Results

Conclusion

Outlook

• Introduction

2 Motivation

Map merging

Culling

6 Optimization

Conclusion

Outlook

Outlook & Limitation

Map Fusion for Collaborative UAV SLAM

Andrea Ziegler

Acronym

Introduction

.

Map mergin

Approaches Results

Culling Results

Optimization Results

Conclusion

Outlook

Outlook:

- Heuristic for best map alignment
- Extend area for KF culling

Limitation:

Outlook & Limitation

Map Fusion for Collaborative UAV SLAM

> Andrea: Ziegler

Acronym

Introduction

.

Map mergin

Approaches Results

Culling Results

Optimization

Conclusion

Outlook

Outlook:

- Heuristic for best map alignment
- Extend area for KF culling

Limitation:

Outlook & Limitation

Map Fusion for Collaborative UAV SLAM

> Andrea: Ziegler

Acronym

Introduction

.....

Map merging

Approaches Results

Results

Optimization Results

Conclusion

Outlook

Outlook:

- Heuristic for best map alignment
- Extend area for KF culling

Limitation:

ETH zürich

Outlook & Limitation

Map Fusion for Collaborative UAV SLAM

Andrea Ziegler

Acronym

Introduction

......

Map merging

Approaches Results

Results

Results

Conclusion

Outlook

Outlook:

- Heuristic for best map alignment
- Extend area for KF culling

Limitation:

Outlook & Limitation

Map Fusion for Collaborative UAV SLAM

Andrea Ziegler

Acronym

Introduction

......

Map merging

Approaches Results

Results

Optimization Results

Conclusion

Outlook

Outlook:

- Heuristic for best map alignment
- Extend area for KF culling

Limitation:

Outlook & Limitation

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

......

Map merging

Results

Results

Results

Conclusion

Outlook

Outlook:

- Heuristic for best map alignment
- Extend area for KF culling

Limitation:

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronyms

Introduction

B.A. attended

Map merging

Results

Results

Results

Conclusion

Outlook

References

Map Fusion for Collaborative UAV SLAM

> Andreas Ziegler

Acronym

Introduction

.

Map merging

Culling Results

Optimization Results

Conclusion

Outlook

Lourakis, M. I. A. and Argyros, A. A. (2005). Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment? In *Proceedings of the IEEE International Conference on Computer Vision*, volume II, pages 1526–1531.

Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015).

ORB-SLAM: A Versatile and Accurate Monocular SLAM System.

IEEE Transactions on Robotics, 31(5):1147–1163.

