Harvard University Computer Science 20 Problem Set 1

PROBLEM 1

Prove by truth table the first of the two distributive laws:

PA(qvr)=(paq)v(par)

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

The toth tables are equivalent if the following 2 nows maken; they do match.

1 Problem 1 24 / 24

- 3 pts Incorrect/blank row for TTT
- 3 pts Incorrect/blank row for TTF
- 3 pts Incorrect/blank row for TFT
- 3 pts Incorrect/blank row for TFF
- 3 pts Incorrect/blank row for FTT
- 3 pts Incorrect/blank row for FTF
- ${\bf 3}~{\bf pts}$ Incorrect/blank row for FFT
- ${\bf 3}~{\bf pts}$ Incorrect/blank row for FFF
- 1 pts Wrong intermediate column
- 1 pts Wrong intermediate column for FTF
- 1 pts T = 1 and F = 0 in your chart
- **5 pts** Missing explanation

A half dozen different operators may appear in propositional formulas, but just \land , \lor , and \neg are enough to express every proposition. That is because each of the operators is equivalent to a simple formula using only these three operators. For example, $A \to B$ is equivalent to $\neg A \lor B$. So all occurrences of \to in a formula can be replaced using just \neg and \lor .

- (A) Write a proposition using only \land , \lor , \neg that is equivalent to $A \oplus B$. Prove your answer.
- (B) Write a proposition using only \land , \lor , \neg that is equivalent to $A \iff B$. Prove your answer.
- (C) Prove that we don't even need \wedge , that is, write a proposition using **only** \vee and \neg that is equivalent to $A \wedge B$. Prove your answer.
- (D) Prove that we can get by with the single operator NAND, written \uparrow , where $A \uparrow B$ is equivalent by definition to $\neg (A \land B)$. To do so, write propositions using **only** \uparrow that are equivalent to 1) $\neg A$ and 2) $A \lor B$. Prove your answer. Because NAND is sufficient and easy to build in a digital circuit, in practice it is often actually the case that NAND is the only operator.

· · ·		1.00	(0 /)
A	B	ABB	(AVB) AT (AMB)
T	T	F	TFFT
T	F	T	TTTF
F	T	T	TTTF
F	F	F	FFFF

the c	omy operator.	
(B)	A<⇒> B	(-AVB) A (-BVA)
	Т	FTTTFTT
	E	
		FFFFTTT
	F	TITFFF
	T	TTTTTF

A	B	ANB	(7AV7B)	
T	T	T	T	
T	F	F	F	
	T	F	F	
F	F	F	Ë	
L.	1	The state of the s		

$\neg (A \lor B) \equiv \neg A \land \neg B$
7 (7AV7B)=77A177B
=
AVB

2.1 A 6 / 8

- 0 pts Correct
- 2 pts missing parentheses
- √ 2 pts truth table is unclear

A half dozen different operators may appear in propositional formulas, but just \land , \lor , and \neg are enough to express every proposition. That is because each of the operators is equivalent to a simple formula using only these three operators. For example, $A \to B$ is equivalent to $\neg A \lor B$. So all occurrences of \to in a formula can be replaced using just \neg and \lor .

- (A) Write a proposition using only \land , \lor , \neg that is equivalent to $A \oplus B$. Prove your answer.
- (B) Write a proposition using only \land , \lor , \neg that is equivalent to $A \iff B$. Prove your answer.
- (C) Prove that we don't even need \wedge , that is, write a proposition using **only** \vee and \neg that is equivalent to $A \wedge B$. Prove your answer.
- (D) Prove that we can get by with the single operator NAND, written \uparrow , where $A \uparrow B$ is equivalent by definition to $\neg (A \land B)$. To do so, write propositions using **only** \uparrow that are equivalent to 1) $\neg A$ and 2) $A \lor B$. Prove your answer. Because NAND is sufficient and easy to build in a digital circuit, in practice it is often actually the case that NAND is the only operator.

· · ·		1.00	(0 /)
A	B	ABB	(AVB) AT (AMB)
T	T	F	TFFT
T	F	T	TTTF
F	T	T	TTTF
F	F	F	FFFF

the c	omy operator.	
(B)	A<⇒> B	(-AVB) A (-BVA)
	Т	FTTTFTT
	E	
		FFFFTTT
	F	TITFFF
	T	TTTTTF

A	B	ANB	(7AV7B)	
T	T	T	T	
T	F	F	F	
	T	F	F	
F	F	F	Ë	
L.	1	The state of the s		

$\neg (A \lor B) \equiv \neg A \land \neg B$
7 (7AV7B)=77A177B
=
AVB

2.2 B 4/8

- 0 pts Correct
- 4 pts Missing explanation. May be correct, but not a proof.
- 4 pts Proposition is not correct, or is not limited to the operators as instructed.
- $\sqrt{-2}$ pts Insufficient proof -- a proof should guide a reader to your conclusion like an essay.
- √ 2 pts Truth tables are inaccurate, or not totally clear
 - 1 pts Inaccurate / inconsistent symbols, but logic is clear

A half dozen different operators may appear in propositional formulas, but just \land , \lor , and \neg are enough to express every proposition. That is because each of the operators is equivalent to a simple formula using only these three operators. For example, $A \to B$ is equivalent to $\neg A \lor B$. So all occurrences of \to in a formula can be replaced using just \neg and \lor .

- (A) Write a proposition using only \land , \lor , \neg that is equivalent to $A \oplus B$. Prove your answer.
- (B) Write a proposition using only \land , \lor , \neg that is equivalent to $A \iff B$. Prove your answer.
- (C) Prove that we don't even need \wedge , that is, write a proposition using **only** \vee and \neg that is equivalent to $A \wedge B$. Prove your answer.
- (D) Prove that we can get by with the single operator NAND, written \uparrow , where $A \uparrow B$ is equivalent by definition to $\neg (A \land B)$. To do so, write propositions using **only** \uparrow that are equivalent to 1) $\neg A$ and 2) $A \lor B$. Prove your answer. Because NAND is sufficient and easy to build in a digital circuit, in practice it is often actually the case that NAND is the only operator.

· · ·		1.00	(0 /)
A	B	ABB	(AVB) AT (AMB)
T	T	F	TFFT
T	F	T	TTTF
F	T	T	TTTF
F	F	F	FFFF

the c	omy operator.	
(B)	A<⇒> B	(-AVB) A (-BVA)
	Т	FTTTFTT
	E	
		FFFFTTT
	F	TITFFF
	T	TTTTTF

A	B	ANB	(7AV7B)	
T	T	T	T	
T	F	F	F	
	T	F	F	
F	F	F	Ë	
L.	1	The state of the s		

$\neg (A \lor B) \equiv \neg A \land \neg B$
7 (7AV7B)=77A177B
=
AVB

2.3 C 6/8

- 0 pts Correct
- $\sqrt{-2}$ pts Insufficient proof. You should bring your reader along like an essay.
 - 4 pts Incorrect proposition or not restricted to the symbols as instructed.
 - 4 pts Unclear, incomplete, or missing proof
 - 1 pts Unclear explanation, though the proper pieces are all there

A half dozen different operators may appear in propositional formulas, but just \land , \lor , and \neg are enough to express every proposition. That is because each of the operators is equivalent to a simple formula using only these three operators. For example, $A \to B$ is equivalent to $\neg A \lor B$. So all occurrences of \to in a formula can be replaced using just \neg and \lor .

- (A) Write a proposition using only \land , \lor , \neg that is equivalent to $A \oplus B$. Prove your answer.
- (B) Write a proposition using only \land , \lor , \neg that is equivalent to $A \iff B$. Prove your answer.
- (C) Prove that we don't even need \wedge , that is, write a proposition using **only** \vee and \neg that is equivalent to $A \wedge B$. Prove your answer.
- (D) Prove that we can get by with the single operator NAND, written \uparrow , where $A \uparrow B$ is equivalent by definition to $\neg (A \land B)$. To do so, write propositions using **only** \uparrow that are equivalent to 1) $\neg A$ and 2) $A \lor B$. Prove your answer. Because NAND is sufficient and easy to build in a digital circuit, in practice it is often actually the case that NAND is the only operator.

· ·		1.00	(0 /)
A	B	ABB	(AVB) AT (AMB)
T	T	F	TFFT
T	F	T	TTTF
F	T	T	TTTF
F	F	F	FFFF

the c	omy operator.	
(B)	A<⇒> B	(-AVB) A (-BVA)
	Т	FTTTFTT
	E	
		FFFFTTT
	F	TITFFF
	T	TTTTTF

A	B	ANB	(7AV7B)	
T	T	T	T	
T	F	F	F	
	T	F	F	
F	F	F	Ë	
L.	1	The state of the s		

$\neg (A \lor B) \equiv \neg A \land \neg B$
7 (7AV7B)=77A177B
=
ANB

2.4 D 16 / 16

- 1 pts Part 1) Correct explanation but never stated (A NAND A) only (A NAND B)
- 6 pts Part 1) Incorrect or missing proposition, but some explanation made
- 4 pts Part 1) Correct proposition, but no explanation
- 1 pts Part 1) Slightly wrong explanation
- 8 pts Part 1) Incorrect or missing proposition
- 1 pts Part 1) Technically correct, but it can be simplified
- 8 pts Part 2) Incorrect or missing proposition
- 6 pts Part 2) Incorrect or missing proposition, but some explanation made
- 1 pts Part 2) Technically correct, but it can be simplified
- 4 pts Part 2) Correct proposition, but no explanation
- 2 pts Part 2) Correct proposition, but incomplete explanation
- 2 pts Part 2) Missing parens

For each of the following propositions:

(A)
$$\forall x \exists y.2x - y = 0$$

(B)
$$\forall x \exists y. x - 2y = 0$$

(B)
$$\forall x \exists y.x - 2y = 0$$

(C) $\forall x.x < 10 \rightarrow (\forall y.y < x \rightarrow y < 9)$

(D)
$$\forall x \exists y . [y > x \land \exists z . y + z = 100]$$

- 1. the nonnegative integers (i.e., the natural numbers, N)
- 2. the integers (\mathbb{Z})
- 3. the real numbers (\mathbb{R})

If the <u>proposition</u> is true in a domain, make an <u>argument</u> for its validity. If it is false, provide a counterexample.			
(A) I. True If x=3, then pick=61	True Name as Part-I.	True. Aame an Part-I.	
(B) False Because if x=1, then there is no y such that 1-2y=0.		$\frac{2}{2} = y$	
For any number.	2. True Dome as Part-I	3- FaJAC Pick $x = 9.9$ $y = 9.8$	
(D) FWAC X = 100	Pick any number.	Deme on Part-I	

3.1 A 3 / 9

- 3 pts Incorrect for nonnegative integers. Let y = 2x and the claim is always true.
- 3 pts Incorrect for integers. Let y = 2x and the claim is always true.
- 3 pts Incorrect for real numbers. Let y = 2x and the claim is always true.
- 1 pts One domain is not addressed in explanation
- 2 pts Explanation is incorrect/insufficient for one domain
- 4 pts Explanation is incorrect/insufficient for two domains
- \checkmark 6 pts Explanation is incorrect/insufficient for three domains
- 1 Giving an example is not sufficient to argue that the proposition is valid

For each of the following propositions:

(A)
$$\forall x \exists y.2x - y = 0$$

(B)
$$\forall x \exists y. x - 2y = 0$$

(B)
$$\forall x \exists y.x - 2y = 0$$

(C) $\forall x.x < 10 \rightarrow (\forall y.y < x \rightarrow y < 9)$

(D)
$$\forall x \exists y . [y > x \land \exists z . y + z = 100]$$

- 1. the nonnegative integers (i.e., the natural numbers, N)
- 2. the integers (\mathbb{Z})
- 3. the real numbers (\mathbb{R})

If the <u>proposition</u> is true in a domain, make an <u>argument</u> for its validity. If it is false, provide a counterexample.			
(A) I. True If x=3, then pick=61	True Name as Part-I.	True. Aame an Part-I.	
(B) False Because if x=1, then there is no y such that 1-2y=0.		$\frac{2}{2} = y$	
For any number.	2. True Dome as Part-I	3- FaJAC Pick $x = 9.9$ $y = 9.8$	
(D) FWAC X = 100	Pick any number.	Deme on Part-I	

3.2 B 9 / 9

- 3 pts Incorrect for nonnegative integers. Consider an odd number x. y = x/2 is not an integer.
- 3 pts Incorrect for integers. Consider an odd number x. y = x/2 is not an integer.
- 3 pts Incorrect for real numbers
- 1 pts One domain is not addressed in explanation
- **2 pts** Explanation is incorrect/insufficient for one domain
- 4 pts Explanation is incorrect/insufficient for two domains
- 6 pts Explanation is incorrect/insufficient for three domains

For each of the following propositions:

(A)
$$\forall x \exists y.2x - y = 0$$

(B)
$$\forall x \exists y. x - 2y = 0$$

(B)
$$\forall x \exists y.x - 2y = 0$$

(C) $\forall x.x < 10 \rightarrow (\forall y.y < x \rightarrow y < 9)$

(D)
$$\forall x \exists y . [y > x \land \exists z . y + z = 100]$$

- 1. the nonnegative integers (i.e., the natural numbers, N)
- 2. the integers (\mathbb{Z})
- 3. the real numbers (\mathbb{R})

If the <u>proposition</u> is true in a domain, make an <u>argument</u> for its validity. If it is false, provide a counterexample.			
(A) I. True If x=3, then pick=61	True Name as Part-I.	True. Aame an Part-I.	
(B) False Because if x=1, then there is no y such that 1-2y=0.		$\frac{2}{2} = y$	
For any number.	2. True Dome as Part-I	3- FaJAC Pick $x = 9.9$ $y = 9.8$	
(D) FWAC X = 100	Pick any number.	Deme on Part-I	

3.3 C 5 / 9

- **0 pts** Correct
- 3 pts Incorrect/missing for nonnegative integers
- 3 pts Incorrect/missing for integers
- 3 pts Incorrect/missing for real numbers. Consider x = 9.9, y = 9.5. y > 9, so the proposition is false.
- 2 pts Explanation is incorrect/insufficient for one domain

√ - 4 pts Explanation is incorrect/insufficient for two domains

- 1 pts Reasoning about implication not included or reasoning about cases of antedecent being true or false.
- 1 pts Reasoning is partially incorrect/unclear
- 2 pts missing/incorrect counter example

For each of the following propositions:

(A)
$$\forall x \exists y.2x - y = 0$$

(B)
$$\forall x \exists y. x - 2y = 0$$

(B)
$$\forall x \exists y.x - 2y = 0$$

(C) $\forall x.x < 10 \rightarrow (\forall y.y < x \rightarrow y < 9)$

(D)
$$\forall x \exists y . [y > x \land \exists z . y + z = 100]$$

- 1. the nonnegative integers (i.e., the natural numbers, N)
- 2. the integers (\mathbb{Z})
- 3. the real numbers (\mathbb{R})

If the <u>proposition</u> is true in a domain, make an <u>argument</u> for its validity. If it is false, provide a counterexample.			
(A) I. True If x=3, then pick=61	True Name as Part-I.	True. Aame an Part-I.	
(B) False Because if x=1, then there is no y such that 1-2y=0.		$\frac{2}{2} = y$	
For any number.	2. True Dome as Part-I	3- FaJAC Pick $x = 9.9$ $y = 9.8$	
(D) FWAC X = 100	Pick any number.	Deme on Part-I	

3.4 D 5/9

- **0 pts** Correct
- 3 pts 1) The claim is actually false for the Natural numbers. Consider x = 101. Then y>101 and z = 100 y, but z = 100 y.
 - 3 pts The claim is actually true for the integers. Let y = x+1. Then z = 100 y.
 - 3 pts The claim is actually true for the reals. Let y = x+1. Then z = 100 y.
 - 6 pts Lacks justification for all three cases

√ - 4 pts lacks justification for 2 cases

- 2 pts \sqrt(-1) is not a real number. The proposition is actually true for the reals
- 3 pts (A). The claim is actually false.
- 2 pts Correct reasoning for the integers and the reals. However, when you want to show that a universal (for all) claim is true, it is not sufficient to provide an example. You need to make an argument for why the claim is true for every x.
 - 2 pts The claim is invalid for natural numbers but 2 is not greater than 2 so y is not greater than x.