Lecture 3: Union-ization (Post-Labor Day Weekend)

Michael Engling

Department of Computer Science Stevens Institute of Technology

CS 334 Automata and Computation Fall 2015

OUTLINE: Putting DFAs Together

DFA A_1

DFA A_2

Definition of Computation

Regular Languages

DFA $A_1 \cup A_2$

Union-zation

$$A_1$$

$$A_1 = (Q, \Sigma, \delta, q_0, F)$$

What is the language recognized by A_1 ?

$$A_1 = (Q, \Sigma, \delta, q_0, F)$$

What is the language recognized by A_1 ? $L_1 = 0(00)^* = (00)^*0$ L_1 is the language of strings consisting only of an odd number of 0s.

$$A_2 = (Q, \Sigma, \delta, q_0, F)$$

What is the language recognized by A_2 ?

$$A_2 = (Q, \Sigma, \delta, q_0, F)$$

What is the language recognized by A_2 ? $L_2 = \Sigma^* 11$ L_2 is the language of strings with 11 as suffix.

Definition of Computation with DFAs Regular Languages

We can formalize our notion of *computation* much the way we formalized our notion of an automaton:

If $M=(Q, \Sigma, \delta, q_0, F)$ is a finite autoton, and $w=w_1w_2...w_n$ is a string with $w_i \in \Sigma \forall i \in \{1, 2, ...n\}$, then M accepts w if a sequence of states $r_0r_1...r_n$ exists in Q such that:

- 1. $r_0 = q_0$ (We start in the start state.),
- 2. $\delta(r_i, w_{i+1}) = r_{i+1} \ \forall i \in \{0, 1, ..., n-1\}$, and
- 3. $r_n \in F$ (We end in a final (accepting) state.)

Definition: A language is a called a regular language if some finite automaton recognizes it.

Can we put these together somehow to create a DFA that recognizes $A_1 \cup A_2$? That is, is $L_1 \cup L_2$ a regular language?

Union-ization

Given $A_1 = (Q_1, \Sigma, \delta_1, q_0^{A_1}, F_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, q_0^{A_2}, F_2)$ We can form " $A_1 \cup A_2$ " recognizing $L_1 \cup L_2$: $A_1 \cup A_2 =$ (as a 5-tuple) $(Q = Q_1 \times Q_2, \Sigma = \Sigma^1, \delta = \delta((s_1, s_2), a) = (\delta_1(s_1, a), \delta_2(s_2, a))$ with $a \in \Sigma$ $q_0 = (q_0^{A_1}, q_0^{A_2}), F = \{(s_1, s_2) | s_1 \in F_1 \text{ or } s_2 \in F_2\})$

Thus $L_1 \cup L_2$ is a regular language.

Note that if we take $F = F_1 \times F_2$ we get $L_1 \cap L_2$ is a regular language.

We have thus given constructions showing that the regular languages are closed under union and also under intersection.

¹Here we assume the alphabets of both automata are the same. If they differ, we take their union: $\Sigma = \Sigma_{A_1} \cup \Sigma_{A_2}$