Circumbinary Accretion

From Supermassive Binary BHs to Circumbinary Planets

Dong Lai

Cornell University

Berkeley/Miller Institute

T.D. Lee Institute

Galaxy merger → SMBH binary in gas disk/torus

A key question:	Does the binary	lose or gain angu	ılar momentum?

A key question: Does the binary lose or gain angular momentum?

In addition to these stellar dynamical effects, infall of gas onto the binary can also lead to some orbital evolution. Gas may be flung out of the system, acquiring energy (and angular momentum) at the expense of the binary; alternatively, gas may accrete onto the larger hole, causing orbital contraction as the product Mr is adiabatically invariant. In either case, the evolution time scale is

$$t_{\rm gas} \sim 10^8 M_8 (\dot{M}/1M_{\odot} \,{\rm yr}^{-1})^{-1} \,{\rm yr}$$
 (5)

Begelman, Blandford & Rees 1980 Nature

Disks around proto-stellar Binaries

HD 142527

A. Isella/ALMA

GG Tau

Outer disk: >100 AU Gap (cavity): 10-100 AU

Inner binary: ~20 AU

Binary: ~60 AU

Planets Around Binaries

~12 systems found by transit method

Observed circumbinary planets (orbits normalized to the instability region)

Artymowicz & Lubow 1996; Günther & Kley 2002; MacFadyen & Milosavljević 2008; Cuadra et al.09; Hanawa et al. 2010; de Val-Borro et al. 2011; Roedig et al. 2012; Noble et al.2012; Shi et al. 2012; D'Orazio et al. 2013; Pelupessy & Portegies-Zwart 2013; Farris et al. 2014; Shi & Krolik 2015; Lines et al. 2015; O'Ozario et al. 2016; Ragusa et al. 2016, Munoz & Lai 2016; Miranda, Munoz & Lai 2017; Tang et al. 2017; Bowen et al.2017,19; Munoz, Miranda, Lai 2019; Moody, Shi & Stone 2019; Munoz, Lai et al.2020; Duffell et al.2020;...

A Challenging Problem...

Artymowicz & Lubow 1996; Günther & Kley 2002; MacFadyen & Milosavljević 2008; Cuadra et al.09; Hanawa et al. 2010; de Val-Borro et al. 2011; Roedig et al. 2012; Noble et al.2012; Shi et al. 2012; D'Orazio et al. 2013; Pelupessy & Portegies-Zwart 2013; Farris et al. 2014; Shi & Krolik 2015; Lines et al. 2015; O'Ozario et al. 2016; Ragusa et al. 2016, Munoz & Lai 2016; Miranda, Munoz & Lai 2017; Tang et al. 2017; Bowen et al.2017,19; Munoz, Miranda, Lai 2019; Moody, Shi & Stone 2019; Munoz, Lai et al.2020; Duffell et al.2020;...

A Challenging Problem...

Many simulations excised the inner "cavity"

Some cover the whole domain: Circumbinary disk \rightarrow stream \rightarrow circumsingle disks:

Using finite-volume moving mesh codes:

DISCO: Farris, Duffell, MacFadyen, Haiman 2014,15; Tang, MacFadyen, Haiman 2017

AREPO: resolve accretion onto individual body to 0.02a_b

(Munoz & Lai 2016; Munoz, Miranda & Lai 2019; Munoz, Lai et al 2020)

ATHENA++ (Moody, Shi & Stone 2019)

Artymowicz & Lubow (1996) – SPH

Günther & Kley (2002) – Hybrid grid

also: de Val-borro et al. (2011) – cartesian grid Hanawa et al. (2010) - Nested cartesian

Finite-volume moving mesh code

What we do:

Munoz & DL 2016, ApJ Miranda, Munoz & DL 2017, MNRAS Munoz, Miranda & DL 2019 Munoz, DL et al 2020

Diego Munoz (Harvard PhD'13->Cornell -> Northwestern)

Ryan Miranda (Cornell PhD'17->IAS)

Goals:

- -- Accretion onto circular/eccentric binaries: circumbinary->circumstellar disks resolve accretion onto individual body to 0.02a_b
- -- Short-term & long-term accretion variabilities
- -- Disk structure and dynamics (eccentricity, precession)
- -- Angular momentum transfer between binary and disk

Method:

- -- Solve viscous hydrodynamic equations in 2D
- -- alpha viscosity, (locally) isothermal sound speed

AREPO (Springel, 2010)

Quasi-Lagrangian, moving-mesh code

Main features

- Shock-capturing, finite-volume method
- Unstructured moving grid
- · Equations solved in the moving-frame
- Quasi-Lagrangian, adaptive resolution

Applied to disks by Muñoz et al 2013,2014,2015 (see also Pakmor et al. 2015)

Summary of Key Results

- Short-term variabilities
- Long-term variabilities
- Angular momentum transfer and binary evolution

Binary mass ratio $q \sim 1$ Disk $H/r \sim 0.1$, $\alpha = 0.05 - 0.1$ (down to 0.01)

Short-term (~P_b) Accretion Variabilities

For $e_b \lesssim 0.05$: $\dot{M} (= \dot{M}_1 + \dot{M}_2)$ varies at $\sim 5 P_b$ (Kepler period at r_{in} ~ 3a_b)

Short-term (~P_b) Accretion Variabilities

For $e_b \gtrsim 0.05$: $\dot{M} = \dot{M}_1 + \dot{M}_2$ varies at $\simeq P_b$

-2

0

2

2

-2

2

-2

2

Short-term (~P_b) Accretion Variabilities

For $e_b \lesssim 0.05$: $\dot{M} (= \dot{M}_1 + \dot{M}_2)$ varies at $\sim 5P_b$

For $e_b \gtrsim 0.05$: $\dot{M} = \dot{M}_1 + \dot{M}_2$ varies at $\simeq P_b$

Power spectrum

Compared to Observations: Pulsed Accretion onto DQ Tau (P_b =15.8 d, e_b =0.56)

U-band photometry of DQ Tau for >10 orbital periods

red: simulation (D. Munoz) blue: observations

→ Can resolve the effective size of stars

Tofflemire, Mathieu et al. 2017

Long-Term Variability:

Long-Term Variability: Symmetry Breaking

Single AGN with binary BHs?

Apsidal precession of eccentric disk around the binary

$$\begin{split} \dot{\omega}_{\rm d} &\simeq \frac{3\Omega_{\rm b}}{4} \frac{q_{\rm b}}{(1+q_{\rm b})^2} \bigg(1+\frac{3}{2}e_{\rm b}^2\bigg) \bigg(\frac{a_{\rm b}}{R}\bigg)^{7/2} \\ &\sim \ 0.006 \ \Omega_{\rm b} \bigg(\frac{3a_{\rm b}}{R}\bigg)^{7/2}, \end{split}$$

Precession period 200-300 P_b

Angular Momentum Transfer to Binary and Long-term Orbital Evolution

 $\dot{M}(r,t), \dot{M}_1, \dot{M}_2$ are highly variable

Quasi-Steady State: $\langle \dot{M}(r,t) \rangle = \langle \dot{M}_1 \rangle + \langle \dot{M}_2 \rangle = \dot{M}_0$

Direct computation of torque on the binary

Gravitational torque from all gas

+ Accretion torque (due momentum of accreting gas onto each star)

$$\dot{J}_b = (\dot{L}_b)_{\text{grav}} + (\dot{L}_b)_{\text{acc}} + (\dot{S}_1)_{\text{acc}} + (\dot{S}_2)_{\text{acc}}$$

Figure 2. The five different contributions to angular momentum change and its combined effect j_b . From top to bottom \dot{M}_b , \dot{q}_b , $\dot{l}_{b,grav}$, $\dot{l}_{b,acc}$ and \dot{S}_b (see Section 2.2.1); and their combined effect j_b (bottom panel). In steady state, $\langle \dot{M}_b \rangle \approx \dot{M}_0$ and $\langle J_b \rangle \approx 0.676 \dot{M}_0 \Omega_b a_b^2$. Each time series is approximately stationary, and only ~ 30 binary orbits are needed to capture their behavior. The time sampling interval in each panel is $\approx 0.02 P_b$. The accretion eigenvalue in this case is $l_0 \equiv \langle \dot{M}_b \rangle / \langle \dot{J}_b \rangle \approx 0.67 \Omega_b a_b^2$.

Direct computation of torque on the binary

Gravitational torque from all gas

+ Accretion torque (due momentum of accreting gas onto each star)

$$\dot{J}_b = (\dot{L}_b)_{\text{grav}} + (\dot{L}_b)_{\text{acc}} + (\dot{S}_1)_{\text{acc}} + (\dot{S}_2)_{\text{acc}}$$

Angular momentum transfer to the binary per unit accreted mass

Angular Momentum Current (Transfer Rate) in CBD

$$\dot{J}(r,t) = \dot{J}_{\text{adv}} - \dot{J}_{\text{visc}} - T_{\text{grav}}^{>r}
\dot{J}_{\text{adv}} = -\oint r^2 \Sigma u_r u_\phi d\phi
\dot{J}_{\text{visc}} = -\oint r^3 \nu \Sigma \left[\frac{\partial}{\partial r} \left(\frac{u_\phi}{r} \right) + \frac{1}{r^2} \frac{\partial u_r}{\partial \phi} \right] d\phi
T_{\text{grav}}^{>r} = \int_r^{r_{\text{out}}} \frac{dT_{\text{grav}}}{dr} dr, \qquad \frac{dT_{\text{grav}}}{dr} = -\oint r \Sigma \frac{\partial \Phi}{\partial \phi} d\phi$$

Angular Momentum Current (Transfer Rate) in CBD

$$\dot{J}(r,t) = \dot{J}_{\text{adv}} - \dot{J}_{\text{visc}} - T_{\text{grav}}^{>r}$$

Recap: Although the accretion flow is highly dynamical, the system reaches quasi-steady state:

$$\langle \dot{M}(r,t) \rangle = \langle \dot{M}_1 \rangle + \langle \dot{M}_2 \rangle = \dot{M}_0$$

 $\langle \dot{J}_b \rangle \simeq \langle \dot{J}_{\rm disk}(r,t) \rangle = {\rm const}$

Angular momentum transferred to the binary per unit accreted mass:

$$l_0 \equiv \frac{\langle \dot{J}_b \rangle}{\langle \dot{M}_b \rangle} = 0.68 a_b^2 \Omega_b$$

Implication of $\dot{J}_B > 0$:

For
$$q = 1$$
, $e_B = 0$ binary:
 $\dot{J}_B = \dot{M}_B l_0$ $l_0 \simeq 0.68 l_B$ where $l_B = a_B^2 \Omega_B$
 $\Rightarrow \frac{\dot{a}_B}{a_B} = 8 \left(\frac{l_0}{l_B} - \frac{3}{8} \right) \frac{\dot{M}_B}{M_B}$

Binaries can expand due to circumbinary accretion!

For e_B=0:
$$\frac{\dot{a}_B}{a_B} \simeq 2.68 \frac{\dot{M}_B}{M_B}$$

Implication of $\dot{J}_B > 0$:

For
$$q = 1$$
, $e_B = 0$ binary:

$$\dot{J}_B = \dot{M}_B l_0$$
 $l_0 \simeq 0.68 l_B$ where $l_B = a_B^2 \Omega_B$

$$\Rightarrow \frac{\dot{a}_{\mathrm{B}}}{a_{\mathrm{B}}} = 8\left(\frac{l_{0}}{l_{\mathrm{B}}} - \frac{3}{8}\right) \frac{\dot{M}_{\mathrm{B}}}{M_{\mathrm{B}}}$$

Binaries can expand due to circumbinary accretion!

For e_B=0:
$$\frac{\dot{a}_B}{a_B} \simeq 2.68 \frac{\dot{M}_B}{M_B}$$

For
$$e_B=0.6$$
: directly compute $\langle \dot{E}_B \rangle$ and $\langle \dot{J}_B \rangle$ from simulation

$$\frac{\dot{a}_B}{a_B} \simeq 0.38 \frac{\dot{M}_B}{M_B} \qquad \dot{e}_B \simeq -2.34 \frac{\dot{M}_B}{M_B}$$

$$q=M_2/M_1<1$$
 $e_b=0$ Munoz, DL +2020

$$q=M_2/M_1<1$$
 $e_b=0$ Munoz, DL +2020

-- Low-mass component accretes more

See also Bate+2000; Farris+2014

$$q=M_2/M_1<1$$
 $e_b=0$ Munoz, DL +2020

-- Dominant variability frequency

$$q=M_2/M_1<1$$
 $e_b=0$ Munoz, DL +2020

-- Angular momentum transfer

$$\frac{\dot{L}_{b}}{L_{b}} = \frac{\dot{M}_{1}}{M_{1}} + \frac{\dot{M}_{2}}{M_{2}} - \frac{1}{2} \frac{\dot{M}_{b}}{M_{b}} + \frac{1}{2} \frac{\dot{a}_{b}}{a_{b}}$$

Previous claims of binary decay due to cicumbinary disk?

-- Numerical simulations:

Mass conservation ? (e.g., the claim of mass pile-up) Transient vs quasi-steady state?

Binary accretion from a finite disk/torus

Binary accretion from a finite disk/torus

Angular momentum transfer per unit (accreted) mass

Orbital expansion rate

Is binary decay possible?

- e.g. Supermassive BH Binaries, final pc problem
- e.g. Formation of close (AU) stellar binaries?

Is binary decay possible?

- e.g. Supermassive BH Binaries, final pc problem
- e.g. Formation of close (AU) stellar binaries?

Yes...

e.g. ${\rm M_1/M_2>1}$, large (locally) massive disk: $\Sigma\pi a_b^2\gtrsim M_2$

e.g. Gas gets ejected in outflow...

Implications for Planet Formation Around Binaries

Many observed circumbinary planets are close to instability limit

Observed circumbinary planets (orbits normalized to the instability region)

Implications for Planet Formation Around Binaries

-- Planetesimal growth is likely suppressed

```
At r \sim3-4 a<sub>b</sub>, disk e \sim 0.05-0.2 \rightarrow relative velocity of planetesimals \sim eV<sub>k</sub> \sim 5 km/s (at 0.2AU) >> v<sub>esc</sub> \sim10 m/s (10 km body)
```

-- Planet migration is strongly affected by disk structure (e.g. mean-motion resonance with binary, disk truncation)

Planet Migration in Truncated Disks

So far: Co-planar disks

What about misaligned disks?

Misaligned Disks are "Naturally" Expected

Star Formation in Turbulent Molecular Clouds

- -- Supersonic turbulence --> clumps --> stars
- -- Clumps can accrete gas with different rotation axes at different times

Observations

Circumstellar disks within wider binaries are generally misaligned

Observations

Misaligned circumbinary disks

IRS 43

ALMA $a_b \sim 74$ au, three disks

Brinch et al. 2016

Consider (circular) Binary + Inclined (initially) Disk

Questions: What is the shape of the disk?

How does the mutual inclination evolve?

Torque from binary on disk => disk (ring) nodal precession

$$\Omega_p(r) \simeq \frac{3\mu}{4M_t} \left(\frac{a}{r}\right)^2 \Omega(r)$$

Differential precession + internal fluid stress ==> warped/twisted disk

For protoplanetary disks, warp/twist smoothed by bending waves, which propagate at $c_s/2$ (Lubow & Ogilvie 2000).

Since $r/c_s <<$ precession period \rightarrow disk is close to flat

However, small warp exists.

Warp + Viscosity → Dissipation → Align L_h and L_d

$$\begin{split} \frac{\partial \hat{\mathbf{l}}}{\partial \ln r} \sim \frac{\alpha}{c_{\rm s}^2} \mathbf{T}_{\rm ext} & |\mathbf{T}_{\rm ext}| \sim r^2 \Omega \, \omega_{\rm ext}, \quad \omega_{\rm ext} = \Omega_{\rm prec} \\ \left| \frac{\mathrm{d} \hat{\mathbf{l}}}{\mathrm{d} t} \right|_{\rm visc} \sim \left\langle \left(\frac{\alpha}{c_{\rm s}^2} \right) \frac{\mathbf{T}_{\rm ext}^2}{r^2 \Omega} \right\rangle \sim \left\langle \frac{\alpha}{c_{\rm s}^2} (r^2 \Omega) \omega_{\rm ext}^2 \right\rangle \end{split}$$

Typical alignment time ~ precession period

Foucart & DL 2014 Zanazzi & DL 2018

Surprise: Disk around eccentric binary may evolve toward polar alignment

Surprise: Disk around eccentric binary may evolve toward polar alignment

Martin & Lubow (2017): viscous hydro simulation using SPH

Initial disk-binary inclination $I(0) = 60^{\circ}$ Binary eccentricity $e_b = 0.5$.

Theoretical Understanding: Inclination Evolution of Disks Around Eccentric Binaries

With J.J. Zanazzi (Cornell Ph.D.18→CITA)

Test particle (in circular orbit) around an eccentric binary

(see also Farago & Laskar 2010; Li, Zhou + 2014)

Test particle has two "masters" (by symmetry)

If \hat{l} initially close to \hat{l}_b : \hat{l} precesses around \hat{l}_b

If \hat{l} initially close to \hat{e}_b : \hat{l} precesses around \hat{e}_b

$$\Lambda = (1 - e_{\mathrm{b}}^2)(\hat{\boldsymbol{l}} \cdot \hat{\boldsymbol{l}}_{\mathrm{b}})^2 - 5(\hat{\boldsymbol{l}} \cdot \boldsymbol{e}_{\mathrm{b}})^2$$

$$\Lambda = (1 - e_{\rm b}^2)(\hat{\boldsymbol{l}} \cdot \hat{\boldsymbol{l}}_{\rm b})^2 - 5(\hat{\boldsymbol{l}} \cdot \boldsymbol{e}_{\rm b})^2$$

For \hat{l} to precess around \hat{e}_b , require $\sin I > \sin I_{\text{crib}}$

$$I_{\text{crit}} = \cos^{-1} \sqrt{\frac{5e_{\text{b}}^2}{1 + 4e_{\text{b}}^2}}$$

Zanazzi & DL 2018

Warped viscous disk around eccentric binary

Evolve towards either align (anti-align) or polar align with the binary

Corrected: Publisher Correction

A circumbinary protoplanetary disk in a polar configuration

Grant M. Kennedy 1.2*, Luca Matrà³, Stefano Facchini 4.5, Julien Milli⁶, Olja Panić⁷, Daniel Price 8.9, David J. Wilner 3, Mark C. Wyatt¹⁰ and Ben M. Yelverton 4.

The Degree of Alignment between Circumbinary Disks and Their Binary Hosts

Ian Czekala^{1,8}, Eugene Chiang^{1,2}, Sean M. Andrews³, Eric L. N. Jensen⁴, Guillermo Torres³, David J. Wilner³, Keivan G. Stassun^{5,6}, and Bruce Macintosh⁷

Are there misaligned circumbinary planets?

~12 transiting circumbinary planets

3 non-transiting planets (candidates) around eclipsing binaries (detected using eclipse timing variation) (Bill Welsh, 2018)

Take-Home Messages

Understanding circumbinary accretion is

Important: connect to SMBH binaries, protoplanetary disks and planets

Challenging: long-term secular effect in the presence of highly dynamical flows

♦ Key Recent Results:

- -- short-term variabilities: $\sim 5 P_b$ (for $e_b \sim 0$) vs P_b (finite e_{b_a} or q<0.4)
- -- Small-mass accretes more; symmetry breaking in accretion (q=1, $e_b>0$)
- -- Inner disk is eccentric: precess coherently...
- -- Binary can gain angular momentum and can expand

Misaligned disks

- -- In PPDs, hydro effects efficient -> Quasi-rigid precession with small warp
- -- Dissipation leads to either alignment or polar alignment with binary

$\dot{M}(r,t)$ is highly variable (in r and t)

$$\dot{M}(r,t) = -\oint r\Sigma u_r d\phi$$

Consider the specific angular momentum $\mathbf{l}_b = \mathbf{r}_b \times \dot{\mathbf{r}}_b$ and specific energy $\mathcal{E}_b = \frac{1}{2}\dot{\mathbf{r}}_b^2 - \mathcal{G}M_b/r_b$ of the binary. The changes in \mathbf{l}_b and \mathcal{E}_b due to an external force $\mathbf{f}_{\rm ext}$ (other than the mutual Keplerian force) are

$$\frac{d\mathbf{l}_{b}}{dt} = \mathbf{r}_{b} \times \mathbf{f}_{ext} \tag{32}$$

and

$$\frac{d\mathcal{E}_{b}}{dt} = -\frac{\mathcal{G}\dot{M}_{b}}{r_{b}} + \frac{\mathcal{G}\dot{M}_{b}}{r_{b}^{3}}\mathbf{r}_{b} \cdot \dot{\mathbf{r}}_{b} + \dot{\mathbf{r}}_{b} \cdot \frac{d\dot{\mathbf{r}}_{b}}{dt}$$

$$= -\frac{\mathcal{G}\dot{M}_{b}}{r_{b}} + \dot{\mathbf{r}}_{b} \cdot \mathbf{f}_{ext} , \qquad (33)$$

where, $d\dot{\mathbf{r}}_b/dt = -(\mathcal{G}\dot{M}_b/r_b^3)\mathbf{r}_b + \mathbf{f}_{\rm ext}$ and $\mathbf{f}_{\rm ext}$ is a general (reduced) external force per unit mass affecting both members of the binary: $\mathbf{f}_{\rm ext} \equiv \mathbf{f}_{\rm ext,1} - \mathbf{f}_{\rm ext,2}$. In this case, $\mathbf{f}_{\rm ext,i} = \mathbf{f}_{\rm grav,i} + \mathbf{f}_{\rm acc,i}$ (defined in Section 2.2.1 above). Since $e_b^2 = 1 + 2l_b^2 \mathcal{E}_b/(\mathcal{G}M_b)^2$

Direct computation of torque on the binary

Gravitational torque from all gas

+ Accretion torque (due momentum of accreting gas onto each star)

$$\langle T \rangle \simeq 0.7 \, \dot{M}_0 \, a_B^2 \Omega_B \ \simeq \langle \dot{J} \rangle$$
 (for a

(for q=1, $e_B=1$ binary)

HD 142527: a well-known gapped disk system

inner disk plane

outer disk plane

outer disk plane

Inner (circumstellar) and outer (circumbinary) disks misaligned by 70 degrees (Marino et al. 15)

Outer disk: >100 AU

Gap (cavity): 10-100 AU

Binary: ~20 AU (2 Sun + M dwarf)

see Owen & DL 2017

Circumstellar Disk within Binary

Disk is warped at outer region

→ Smaller warp

Typical alignment time >> precession period

→ Misalignment can persist

Observations

Circumbinary disks around binaries ??

Misaligned circumbinary debris disk systems:

KH 15D (Winn+04; Capelo+12)
99 Herculis (Kennedy+12)

99 Herculis: host to a circumbinary polar-ring debris disc

G. M. Kennedy, ^{1*} M. C. Wyatt, ¹ B. Sibthorpe, ² G. Duchêne, ^{3,4} P. Kalas, ³ B. C. Matthews, ^{5,6} J. S. Greaves, ⁷ K. Y. L. Su⁸ and M. P. Fitzgerald ^{9,10}

³Department of Astronomy, University of California, B-20 Hearst Field Annex, Berkeley, CA 94720-3411, USA

$$e_{b}$$
=0.77, P_{b} =56 yrs

¹Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA

²UK Astronomy Technology Center, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ

Numerical Tools

- -- Solve viscous hydrodynamic equations in 2D
- -- alpha viscosity, (locally) isothermal sound speed

-- Numerical codes:

PLUTO: finite-volume, polar grid (Mignone et al. 07)

domain: $a_{b}(1+e_{b}) < r < 70a_{b}$

AREPO: finite-volume, moving mesh (Springel 2010)

resolve accretion onto individual body to 0.02a_b

Pulsed Accretion Observed in T Tauri Binaries

