NN week 3

Lisa Tostrams s4386167

2 Maart 2015

1 Math exercises

1.1

 $\frac{\partial f}{\partial a}$ with $f(a)=\frac{1}{1+exp(-a)}.$ f(a) is composed of two functions:

$$f(h) = \frac{1}{h}$$
 with derivative $\frac{\partial f}{\partial h} = -\frac{1}{h^2}$ and

$$h(a) = 1 + exp(-a)$$
 with derivative $\frac{\partial h}{\partial a} = exp(-a)$

With the chain rule $\frac{\partial f}{\partial a} = \frac{\partial f}{\partial h} * \frac{\partial h}{\partial a}$ we get

$$\frac{\partial f}{\partial a} = -\frac{1}{(1 + exp(-a))^2} * exp(-a) = \frac{exp(-a)}{(1 + exp(-a))^2}$$

The given function f(a)(1 - f(a)) can be rewritten as:

$$\frac{1}{1+exp(-a)}*\left(\frac{1+exp(-a)}{1+exp(-a)}-\frac{1}{1+exp(-a)}\right)$$

and then

$$\frac{1}{1 + exp(-a)} * \left(\frac{exp(-a)}{1 + exp(-a)}\right) = \frac{exp(-a)}{(1 + exp(-a))^2}$$

Which was the function that was derived from $\frac{\partial f}{\partial a}$.

1.2

We have the function

$$\delta_j = \frac{\partial E^n}{\partial y_j} * \frac{\partial y_j}{\partial a_j}$$

With $f(a_j) = y_j$ and $E^n(w) = \frac{1}{2} * (y_j - t_j)^2$ that is equivalent to

$$\delta_j = \frac{\partial \frac{1}{2} * (y_j - t_j)^2}{\partial y_j} * \frac{\partial f(a_j)}{\partial a_j}$$

The first part derives to

$$\frac{\partial \frac{1}{2} * (y_j - t_j)^2}{\partial y_j} = (y_j - t_j)$$

With the proof from exercise 1.1, the second part derives to

$$\frac{\partial f(a_j)}{\partial a_j} = f(a_j) * (1 - f(a_j))$$

 $\frac{\partial f(a_j)}{\partial a_j} = f(a_j) * (1 - f(a_j))$ Which, when we use $f(a_j) = y_j$, reduces to

$$f(a_j) * (1 - f(a_j)) = y_j * (1 - y_j)$$

So, finally:

$$\delta_j = \frac{\partial \frac{1}{2} * (y_j - t_j)^2}{\partial y_j} * \frac{\partial f(a_j)}{\partial a_j} = (y_j - t_j) * y_j * (1 - y_j)$$

1.3

With a linear activation function f(a) = a, the output for a data point

$$y^n = f(W^2 * f(W^1 * x^n))$$

can be rewritten as

$$y^n = W^2 * W^1 * x^n$$

Because W^2 and W^1 are both matrices, their multiplication evaluates to another matrix W.

$$y^n = W * x_n$$

Which is the same output function as the output function for a single layer network.

1.4

Same as 1.2.

1.5

$\mathbf{2}$ Matlab exercises