Poisson regression

Exercises

The table below presents dose-response data concerning the relationship between smoking and lung cancer taken from a publication by Doll. The data in the table were put in the data file DOLL.DAT.

[Man-years at risk, number of cases of lung cancer (in parentheses)]

Cigarettes/day0		1-9	10-14	15-19	20-24	25-34	35 +	total
(mean)	(Non- smokers)	(5.2)	(11.2)	(15.9)	(20.4)	(27.4)	(40.8)	
Yrs of smoking	,							
15-19	10366 (1)	3121	3577	4317	5683	3042	670	30776 (1)
20-24	8162	2937	3286(1)	4214	6385(1)	4050(1)	1166	30200 (3)
25-29	5969	2288	2546(1)	3185	5483 (1)	4290(4)	1482	25243 (6)
30-34	4496	2015	2219(2)	2560(4)	4687 (6)	4268(9)	1580	$2182\hat{5}$
			` ,	. ,	. ,	. ,	(4)	(25)
35-39	3512	1648(1)	1826	1893	3646(5)	3529(9)	1336	17390
		· /			· /	· /	(6)	(21)
40-44	2201	1310(2)	1386 (1)	1334(2)	2411(12)	2424(11)	924(10)	11990
		()	· /	()	,	· /	()	(38)
45-49	1421	927	988 (2)	849 (2)	1567(9)	1409(10)	556 (7)	7717 (30)
50-54	1121	710 (3)	684(4)	470(2)	857 (7)	663 (5)	255(4)	4760 (25)
55-59	826 (2)	606	449 (3)	280(5)	416(7)	284 (3)	104 (1)	2965 (21)
total	38074 (3)	15562 (6)	$169\hat{6}1^{'}$	19102	$31135^{'}$	$239\overset{\circ}{59}$	8073	152866
	()	()	(14)	(15)	(48)	(52)	(32)	(170)

Question 1

Confirm that the number of person years and the number of events in the data set doll. For this we need to weight the data.

```
w1 <- rep((1:NROW(doll)),doll$prsyears)
with(doll[w1,], table(___, ___))
w2 <-
with(____)</pre>
```

Question 2

Estimate a poisson model using only an intercept. Call the model glm1 What is the meaning of the estimated coefficient? Also estimate the coefficient by hand using the table.

```
doll$logpy <- log(___)
glm1<-glm(___~1+offset(____), family=poisson, data=doll)
summary(___)</pre>
```

Question 3

Now fit the model with age category. Call the model glm2. Verify that you can calculate these coefficients also by hand. What can you say about the goodness of fit.

```
glm1 <- glm(death~1+offset(logpy), family=poisson, data=doll)</pre>
```

Question 4

Now add the variable smoke. Call the model glm3. What can you say about the goodness of fit.

Question 5

Now we check if the effect of age can be better modlled by a linear trend. Use 'as.numeric' to convert the factor to a numeric value. Call the model glm4. Does this model do better than the previous model (use a likelihood ratio test)?

Question 6

Now use log(as.numeric(age)) to moel the effect of age. What about the goodness-of-fit? Does this do better than the previous model?