Lecture #4: Higher-Order Functions

Announcements:

- Theta Tau rush events, starting 1/31. See Piazza post.
- CSUA Unix/Emacs help sessions: Thursday 1/26, Tuesday 1/31, Thursday 2/2 in 310 Soda, 6-8PM.

A Simple Recursion

The Fibonacci sequence is defined

$$F_k = \begin{cases} k, & \text{for } k = 0, 1 \\ F_{k-2} + F_{k-1}, & \text{for } k > 1 \end{cases}$$

• ... which translates easily into Python:

```
def fib(n):
    """The Nth Fibonacci number, N>=0."""
    assert n \ge 0
    if n <= 1:
        return n
    else:
        return fib(n-2) + fib(n-1)
```

This definition works, but why is it so slow?

Redundant Calculation

- Consider the computation of fib(10).
- This calls fib(9) and fib(8), but then fib(9) calls fib(8) again and both fib(9) and the two calls to fib(8) call fib(7), so that fib(7) is called 3 times
- Likewise, fib(6) is called 5 times, fib(7) is called 8 times, and so forth in increasing Fibonacci sequence, interestingly enough.
- Therefore, the time required (proportional to the number of calls) grows exponentially:
- ullet As it turns out, fib(N) requires time roughly proportional to Φ^N , where the golden ratio $\Phi = (1 + \sqrt{5})/2$.

Avoiding Recalculation

- To compute the next Fibonacci number, we need the preceding two.
- ullet Let's generalize and consider what it takes to compute N more:

```
def fib2(fk1, fk, k, n):
    """Assuming FK1 and FK F[K-1] and F[K] in the Fibonacci
    sequence numbers and N>=K, return F[N]."""
    if n == k:
        return fk
    else:
        return
def fib(n):
    if n <= 1:
        return n
    else:
        return fib2(0, 1, 1, n)</pre>
```

Avoiding Recalculation

- To compute the next Fibonacci number, we need the preceding two.
- ullet Let's generalize and consider what it takes to compute N more:

```
def fib2(fk1, fk, k, n):
    """Assuming FK1 and FK F[K-1] and F[K] in the Fibonacci
    sequence numbers and N>=K, return F[N]."""
    if n == k:
        return fk
    else:
        return fib2(fk, fk1+fk, k+1, n)

def fib(n):
    if n <= 1:
        return n
    else:
        return fib2(0, 1, 1, n)</pre>
```

Tail Recursion and Repetition

- In this last version, whenever fib2 is called recursively, the value of that call is immediately returned.
- This property is called *tail recursion*.

```
def fib2(fk1, fk, k, n):
    if n == k: return fk
    else:         return fib2(fk, fk1+fk, k+1, n)
def fib(n):
    if n <= 1: return n
    else:         return fib2(0, 1, 1, n)</pre>
```

- It is this sort of process that is easily expressed as a repetition.
- Parameters become variables; initial call on fib2 inside fib initializes them; each tail-recursive call updates them. Iterative equivalent:

```
def fib3(n):
    if n <= 1: return n
    fk1, fk, k = 0, 1, 1
    while n != k:
        fk1, fk, k = fk, fk1+fk, k+1
    return fk</pre>
```

Nested Functions

- In the last recursive version, fib2 function is an auxiliary function, used only by fib.
- It makes sense to tuck it away inside fib, like this:

```
def fib(n):
    def fib2(fk1, fk, k):
        if n == k: return fk
                   return fib2(fk, fk1+fk, k+1)
        else:
    if n <= 1: return n
    else: return fib2(0, 1, 1)
```

- I've taken the liberty here of removing the parameter n from fib2: it's always the same as the outer n and never changes.
- But to explain how this works, we'll have to extend the environment model just a bit.

Nested Functions and Environments

Defining Environments

- Each function value is attached to the environment frame in which the **def** statement that created it was evaluated.
- Since the **def** for fib was evaluated in the global frame, the resulting function value bound to fib is attached to the global frame.
- Since the def for fib2 was evaluated in the local frame of an execution of fib, the resulting function value is attached to that local frame.
- When a user-defined function value is called, the local frame that is created for that call is attached to the defining frame of the function.

Do You Understand the Machinery? (I)

```
What is printed (0, 1, or error) and why?
def f():
    return 0
def g():
    print(f())
def h():
    def f():
        return 1
    g()
h()
```

Answer (I)

The program prints 0. At the point that f is called, we are in the situation shown below:

So we evaluate f in an environment (B) where it is bound to a function that returns 0.

Do You Understand the Machinery? (II)

```
What is printed (0, 1, or error) and why?
def f():
    return 0

g = f

def f():
    return 1
print(g())
```

Answer (II)

The program prints 0 again:

At the time we evaluate f to assign it to g, it has the value indicated by the crossed-out dotted line, so that is the value g gets. The fact that we change f's value later is irrelevant, just as x = 3; y = x; x = 4; print(y) prints 3 evan though x changes: y doesn't remember where its value came from.

Do You Understand the Machinery? (III)

```
What is printed (0, 1, or error) and why?
def f():
    return 0

def g():
    print(f())

def f():
    return 1
```

Answer (III)

This time, the program prints 1. When g is executed, it evaluates the name 'f'. At the time that happens, f's value has been changed (by the third def), and that new value is therefore the one the program uses.

Functions As Templates

- If we think of a function body as a template for a computation, parameters are "blanks" in that template.
- For example:

```
def sum_squares(N):
    k, sum = 0, 0
    while k \le N:
        sum, k = sum + k**2, k+1
    return sum
```

is a template for an infinite set of computations that add squares of numbers up to $0, 1, 2, 3, \ldots$, in place of the \mathbb{N} .

Functions on Functions

 Likewise, function parameters allow us to have templates with slots for computations:

```
def summation(N, f):
    k, sum = 1, 0
    while k \le N:
        sum, k = sum + f(k), k+1
    return sum
```

• Generalizes sum_squares. We can write sum_squares(5) as:

```
def square(x): return x*x
summation(5, square)
```

• or (if we don't really need a "square" function elsewhere), we can create the function argument anonymously on the fly:

```
summation(5, lambda x: x*x)
```

Lambda

- In Python, lambda is just an abbreviation.
- Writing lambda PARAMS: EXPRESSION is the same as writing NAME, where NAME is a name that appears nowhere else in the program and is defined by

```
def NAME(PARAMS):
    return EXPRESSION
```

evaluated in the same environment in which the original lambda was.

Now we can write any number of summations succinctly:

```
summation(10, lambda x: x**3)  # Sum of cubes
summation(10, lambda x: 1 / x) # Harmonic series
summation(10, lambda k: x**(k-1) / factorial(k-1))
                                 # Approximate e**x
```

Functions that Produce Functions

- Functions are first-class values, meaning that we can assign them to variables, pass them to functions, and return them from functions.
- Example:

```
def add_func(f, g):
    """Return function that returns f(x)+g(x) for argument x."""
    def adder(x):
        return f(x) + g(x) # or return lambda x: f(x) + g(x)
    return adder
h = add_func(abs, lambda x: -x)
>>> print(h(-5))
10
```

• Generalize the example:

```
def combine_funcs(op, f, g):
    return lambda x: op(f(x), g(x))
# Now add_func =
```

What do the environments look like here?

Functions that Produce Functions

- Functions are *first-class values*, meaning that we can assign them to variables, pass them to functions, and return them from functions.
- Example:

```
def add_func(f, g):
    """Return function that returns f(x)+g(x) for argument x."""
    def adder(x):  #
        return f(x) + g(x) # or return lambda x: f(x) + g(x)
    return adder #

h = add_func(abs, lambda x: -x)
>>> print(h(-5))
10
```

• Generalize the example:

```
def combine_funcs(op, f, g):
    return lambda x: op(f(x), g(x))
# Now add_func = lambda f, g: combine_funcs(sum, f, g)
```

What do the environments look like here?