Real-time Gender Recognition based on selection of Eigen-features from Facial Images

A Practice School Report submitted to Manipal University in partial fulfilment of the requirement for the award of the degree of

BACHELOR OF TECHNOLOGY

In

Computer Science & Engineering

Submitted by

Sahil Ajmera

130905324

Under the guidance of

N V Subba Reddy Professor

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

<May/June/July> 2017

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Manipal 17th April, 2017

CERTIFICATE

This is to certify that the project titled **Real-time Gender Recognition based on selection of Eigen-features from Facial Images** is a record of the bonafide work done by **Sahil Ajmera** (*Reg. No.130905324*) submitted in partial fulfilment of the requirements for the award of the Degree of Bachelor of Technology (B.Tech.) in **COMPUTER SCIENCE & ENGINEERING** of Manipal Institute of Technology, Manipal, Karnataka, (A Constituent Institute of Manipal University), during the academic year 2016-17.

N V Subba Reddy Professor Ashalatha Nayak HOD, CSE Dept. M.I.T, MANIPAL

ACKNOWLEDGMENTS

I would like to extend my heartfelt thanks to the project guide N V Subba Reddy sir for his continued support throughout the duration of this project. I would also like to thank the esteemed head of the computer science department Ashalata Nayak mam for giving me the freedom to do research in the field I am interested in .Special thanks to the Laboratory incharge's in the Network Technology Lab, Research Lab and the Operating Systems Lab for providing me with any help needed whether it was in software setup or making sure the equipment's for my viva were present and working before-hand. Last but not the least none of this interesting research work would have been possible without the blessings of our director Gopalakrishna Prabhu sir. I thank him for the opportunities he has provided me through this research work.

ABSTRACT

Machine Learning has important applications in industries like facial recognition, surveillance systems, optical character recognition systems, recommendation engines etc. Gender recognition, a basic application of machine learning algorithms, is used to discriminate people. A good gender recognition algorithm can help in bigger systems like human machine interaction systems and surveillance systems.

The sample images from the FERET (Facial Recognition Technology) dataset was obtained from the National Institute of Standards and Technology. The images in .ppm format were first converted to grey-scale and the information was stored in an excel file. Important features of the grey scale image were obtained through cropping of the image by the Viola Jones algorithm and final zoom of 30x30 applied to the images to reduce the calculation load. The Eigenprojects were obtained from the images by the various steps of principal component analysis(mean,original-mean,covariance matrix,eigen-values,eigen-vectors,multiplication of best eigenvector and the entire dataset after subtraction). Binary data corresponding to each of the images was stored in an excel file. This data was multiplied by the Eigen-projects to obtain the Eigen-Features which were used to train and get the accuracy rate (AR) (Value to be used in fitness value calculation) from the support vector machine using WEKA tool. The binary data was acted upon by process of selection, crossover and mutation based on their fitness values to obtain optimal subset of features to be used in final training and testing of backpropagation neural network.

During experiments Eigen-features with a fitness value as low as 0.218 was obtained .432 prominent features were identified through a single iteration of the genetic algorithm. Accuracy rate of 0.78 was obtained on training and testing by the support vector machine. Low fitness values correspond to higher accuracy rate which shows the better performance of the selected Eigen-features. Comparison with the Grey-scale way of finding the gender shows that the Eigen-features could improve accuracy if trained with a larger set.

Using Eigen-features obtained from principal component analysis and genetic algorithm goes on to show that training and testing by a subset of Eigen-features could not only improve the speed as well as accuracy of gender recognition and this technique could indeed be viable in the development of real-time gender recognition systems. The research work has been implemented using the python programming language with packages imported from Anaconda .WEKA tool has been used to calculate the value of the variable to be used in the fitness function by training and testing the SVM.WEKA tool has also been used to train and test the neural network for indication of final accuracy for the grey-scale and the Eigen-feature categorization method.

			Table of Contents	
				Page No
Ack	cnowle	edgement		i
Abs	tract			ii
List	Of T	ables		
List	Of Fi	igures		
Cha	apter	1 IN	FRODUCTION	
	1.1	Introducti	on	1
	1.2	Motivatio	n	1
	1.3	Objective		2
	1.4	Project Sc	chedule	2
	1.5	Project Re	eport Structure	3
Cha	apter	2 BA	CKGROUND THEORY and/or LITERATURE REVIEW	
	2.1	Introducti	on	4
	2.2	Literature	Review	4
Cha	apter	3 MF	ETHODOLOGY	
	3.1		Methodology	7
	3.2	Assumption		8
	3.3	Block Dia	ngrams	9
	3.4	Tools Use	ed	11
	3.5	Prelimina	ry Results	11
		I		
Cha	apter	4 RE	SULT ANALYSIS	
	4.1	Introducti	on	13
	4.2	Result ana	alysis	13
	4.3	Conclusio		13
Cha	apter	5 CO	ONCLUSION AND FUTURE SCOPE	
	5.1	Problem S	Statement	14
	5.2	Work Me	thodology	14
	5.3	Conclusio	ons	15
	5.4	Future sco	ope of work	15
	1	1		1
RE	FERE	ENCES		16
AN	NEXU	URES (OP	TIONAL)	18
		CT DETAIL		37

LIST OF TABLES

Table No	Table Title	Page No
1	FinalAccuracyResults	13
2	FinalAccuracyResults	18

LIST OF FIGURES

Figure No	Figure Title	Page No
1	Pre-processing	9
2	Principal Component Analysis	9
3	Step1-2GeneticAlgorithm	10
4	Step3GeneticAlgorithm	10
5	Step4GeneticAlgorithm	11
6	Back-propagation neural network	11
7	Grey scale value of a single 30x30 image	12
8	Pre-processed Data (30x30)	18
9	1x900 Data, Mean Face Image Data, image data-Mean Face	18
	image data	
10	Genetic Data for each feature	19
11	Fitting Function Values After wiping out fitness values<0.22	19
12	Genetic Data after 1st iteration	20
13	Eigen-projects after 1st iteration	20
14	Eigen-features after 1st iteration	21
15	Grey-scaleFinalResult	21
16	Grey-scaleFinalResult	22
17	Eigen-featureFinalResult	22
18	Eigen-featuresFinalResult	23

CHAPTER 1 INTRODUCTION

1.1 Introduction

This chapter introduces the general topic and the work area chosen for research. The present scenario with respect to the work has been discussed along with the motivation to pursue the research work. The objectives of the work, the target specifications (importance of the end result), the schedule according to which the work has been carried out, and the organization of the remaining project report has also been discussed.

Machine Learning has important applications in industries like facial recognition, surveillance systems, optical character recognition systems, recommendation engines etc. Gender recognition, a basic application of machine learning algorithms, is used to discriminate people. A good gender recognition algorithm can help in bigger systems like human machine interaction systems and surveillance systems.

Work by Tamura, S., Kawai, H., Mitsumoto, H. titled "Male/female identification from 8 x 6 very low resolution face images by neural network. Pattern Recognition, 331-335" in which a three-layer neural network is used to identify sex from a group of 8 X 8 low resolution face images, which include neither the head hair nor the outline of the faces. Hasnat, A., Haider, S., Bhattacharjee, D., and Nasipuri, M. proposed "a system for gender classification using lower part of face image" wherein A fast gender classification method was developed using features selected from mouth and chin only, which could reduce the number of features and make the identification system simpler.

The proposed method was tested on a small size dataset containing 75 male and 35 female face images with 94.34% accuracy. Work of Shukla, R., Shukla, R., et.al. Titled "Gender identification in human gait using neural network" wherein gender recognition can be achieved via the measurement of people's gait. Li, B., Lian, X. C., and Lu, B. L. proposed gender classification by combining clothing, hair and facial component classifiers.

1.2 Motivation

Previous work has focused on small datasets. A scrutinized view of time taken during training and testing is also to be taken into account when large datasets are considered. Also the

classifier should be adaptive for images collected in low light conditions, different facial expressions and even for skewed heads.

This work highlights a feature selection method which is based on facial images. The grayscale images are first converted to the Eigen-features using Principal component analysis and genetic algorithms. The features are then used for training of neural network and to assess the feasibility of the work. The Eigen-features show better flexibility and adaptability.

Genetic algorithm has been used to reduce the number of features for an image that need to be taken into account while training a neural network. This way the time to train a neural network reduces substantially as compared to the previous work with same or even better accuracy.

1.3 Objectives

The various objectives of the work are:

- To explore various application of machine learning
- To know about the domain of the selected application
- To implement the application based on the following
 - Viola Jones Algorithm
 - o Principal Component Analysis
 - o Genetic Algorithm
 - o Back-Propagation Neural Network
- To suggest improvements over the existing work by doing research on better/faster algorithms

1.4 Project schedule

The project schedule is as follows:

- January 2017
 - Research on existing applications of the domain(Machine Learning)
 - o Finding existing work done on each and every application
 - Finalizing the application to work on taking into consideration each and every aspect of implementation.
 - o Submission of synopsis for the research work intended.
- February 2017
 - Starting the work on the selected application
 - o Finishing the preprocessing of the dataset to be used for further work.
- March 2017
 - o Starting work over principal component analysis for the dataset.
 - o Finishing work over principal component analysis for the dataset.
 - o Preparation of project report for the mid-term evaluation
 - o Mid-term evaluation
- April 2017
 - Starting work over genetic algorithm on the Eigen-projects gathered from the principal component analysis

- Using support vector machine for training and testing the Eigen-features obtained from the Eigen-projects to get value of parameter to be used in the fitness function calculation.
- o Finishing work over genetic algorithm to obtain the optimal subset of Eigenfeatures to be used for neural network training
- Using back propagation neural network for training and testing the Eigen-Features and comparing the result with the neural network trained using Grayscale images.
- o Documentation
- May 2017
 - o Submission of report and evaluation

1.5 Project Report Structure

The rest of the project report is structured in the following way

- Chapter 2 talks about the literature review/background review related the project to understand the various terms used throughout the project and to better understand the motivation, working and conclusion of the project
- Chapter 3 talks about the methodology used in the completion of the project, the tools that have been used to speed up the completion of the project. This also includes the assumptions made through the completion of the project and the preliminary results and analysis.
- Chapter 4 talks about the various results and analysis done and the various graphs, tables etc. produced as a result. The deviations from the original results have been mentioned along with the valid reasons.
- Chapter 5 is the future work and conclusion section. This talks about the objective and methodology used in brief, along with the conclusions gathered from the project along with the significance of the results. This section also includes the future scope of work that is possible for the research work taken up.

CHAPTER 2 BACKGROUND THEORY / LITERATURE REVIEW

2.1 Introduction

This chapter deals with specific discussion on the research topic which briefly includes an introduction to the topic, the present state/recent developments on the topic, a brief background history related to the topic followed by a literature survey on the same. The outcomes as seen by different researchers in the area are also mentioned .The chapter ends with a thorough theoretical discussion on the topic along with conclusions.

Gender recognition in simple words is the ability to be able to discriminate among various genders. Gender recognition systems are part of bigger systems like human-machine interaction systems as well as surveillance systems. Viola Jones algorithm is an object detection framework that detects important features of the face like eyes, ears, nose etc. proposed in 2011 by Paul Viola and Michael Jones motivated primarily by the problem of face detection. It has become very popular as a fast and easy face detection algorithm. Matlab has already implemented object vision. Cascade Object Detector that makes use of the Viola Jones algorithm and readily detects the important features in an image. Principal component analysis is a method to find a small number of uncorrelated variables called "principal components" from the data. The goal is to give explanation of maximum variance using a small number of principal components. The output of principal component analysis is usually Eigen vectors and Eigen values which when multiplied by the modified data set give us what is called as "feature vectors". Genetic algorithms work on the principal of evolution "Survival of the fittest". Solutions which have high fitness survive and move the generation forward through crossover and mutation to produce even better individuals while the ones with low fitness are wiped off in every iteration. The output of genetic algorithms is an optimal subset of solutions which are most important in further analysis.

2.2 Literature Review

A good gender recognition algorithm can help in building bigger systems like surveillance systems and human-machine interaction systems. Over the years many successful gender recognition algorithms have been found and reviewed .Work has been perennial in this field of face and gender recognition technology. Biometric systems are actually getting implemented and used in many parts of the world now.

Gender recognition in simple words is the ability to be able to discriminate among various genders. Gender recognition systems are part of bigger systems like human-machine interaction systems as well as surveillance systems. Viola Jones algorithm is an object detection

framework that detects important features of the face like eyes, ears, nose etc. proposed in 2011 by Paul Viola and Michael Jones motivated primarily by the problem of face detection. It has become very popular as a fast and easy face detection algorithm. Matlab has already implemented object vision. Cascade Object Detector that makes use of the Viola Jones algorithm and readily detects the important features in an image. Principal component analysis is a method to find a small number of uncorrelated variables called "principal components" from the data. The goal is to give explanation of maximum variance using a small number of principal components. The output of principal component analysis is usually Eigen vectors and Eigen values which when multiplied by the modified data set give us what is called as "feature vectors". Genetic algorithms work on the principal of evolution "Survival of the fittest". Solutions which have high fitness survive and move the generation forward through crossover and mutation to produce even better individuals while the ones with low fitness are wiped off in every iteration. The output of genetic algorithms is an optimal subset of solutions which are most important in further analysis.

Shukla, R., Shukla R., et.al in their work "Gender identification in human gait using neural network" and Shan, C., Gong, S. and McOwan in their work "Fusing gait and face cues for human gender recognition" used the features of the person's gait for identification of gender.Li,B.,Lian,X. C.,and Lu,B.L. in their work "Gender classification by combining clothing, hair and facial component classifiers" gender recognition was specifically focused on clothing, posture or voice.Nazir,M.,Anwar.M.Mirza in their work "Multi-view gender classification using hybrid transformed features" where two methods were suggested for front face gender recognition. The geometry based approach took estimates of distance of feature points for instance, the width and height of the face, eye distance etc. which are used to form a feature dataset for further analysis. Jaswanthe, A., Khan, Gour, B., A.U in their work "Gender classification technique based on facial features using neural network" use the Viola jones algorithm to crop eyes, nose and mouth from facial images and then calculate the measured distances from eyebrow to eye,eyebrow to nosetop,nosetop to mouth and then input the following to a neural network as feature vectors trained.TAMURA,S.,KAWAI,H.,MITSUMOTO,H. in their work "Male/female identification from 8x6 very low resolution images by neural network". In this work a three-layer neural network is used to identify sex from a group of 8x8 low resolution face images which include neither the head hair nor the outline of the faces. Moghaddam, B., Yang, M.H. in their work "Gender classification with support vector machines" presented a comprehensive evaluation of various classification methods for determination of gender and found out that a Gaussian kernel Support Vector Machine can achieve the least error rate. Khan, S.A., Ahmad, M., et.al in their work "A comparative analysis of gender classification techniques" and Ng,B.,Tay,Y, and Goi,B. in their work "Vision-based human gender recognition" have focused on features that represent gender and has the least correlation to other facial characteristics, such as color,race,expression,age,wearable.In the work of Rai,P.,Khanna,P. titled "Appearance based

gender classification with pca and pc on approximate face image" it was concluded that a combination of dual-directional dimension of Principal Component Analysis and SVM could obtain a high performance.Sun,Z.Bebis,G.et.al. in their work "Gender feature subset selection for gender classification" wherein a feature subset was extracted from the PCA Eigen-vectors with genetic algorithms and was applied to four classifier models for comparison. In the work of Tapia,J.E. and Perez,C.A titled "Gender classification based on fusion of different spatial scale features selected by mutual information from histogram of lbp, intensity and shape" found out that when a mixed features were taken for analysis, including intensity, shape and texture a best classification rate of 99.13% was obtained on the FERET database which included 199 female and 212 male images, but then a larger number of features were used in the experiments. In the work of Hasnat, A., Haider, S., Bhattacharjee, D. and Nasipuri, M. titled "A proposed system for gender classification using lower part of face image" A classifier which used features from mouth and chin only was developed. When tested on a small dataset containing 75 male and 35 female images it gave 94.34% accuracy.

CHAPTER 3 METHODOLOGY

This chapter gives information about the detailed methodology adopted in completion of the research work. Hence, it also includes the assumptions made, any design and modelling eg. block diagrams, module specifications, tools used and preliminary result analysis.

3.1 Detailed Methodology

The methodology adopted for this research work is described below:

- The first level of cropping is done with the gray scale image using Viola Jones algorithm
- The second level of cropping is done with the image by zooming the image to 30x30.
- The 30x30 pixel matrix is converted to 1x900 pixel matrix for finding initial feature vectors.
- The calculation of the mean image is done by taking mean of the 900 pixel intensities of all images taken into consideration.
- The mean image is subtracted from each of the images and the 1x900 matrix is reconverted to 30x30 for further steps of the PCA(Principal Component Analysis)
- From the 30x30 matrix the covariance matrix and the corresponding Eigen-values corresponding to that image is calculated.
- From the Eigen values obtained from each of the images, the maximum Eigen value is found out and each of the 30x30 matrix is multiplied with the Eigen-vectors corresponding to the maximum Eigen-value.
- These form the feature vectors obtained from the principal component analysis.
- A binary gene sequence (chromosome) corresponding to every feature in an image is carved out. This binary sequence is multiplied with the Eigen-projects (feature vectors) obtained in the previous step to get the Eigen-features for the first step. 2/3 of the Eigenfeatures are used for training and 1/3 are used for testing our Support Vector Machine (SVM) implemented by WEKA tool. The value of accuracy rate (AR) is taken down from the results of the SVM.
- The following fitting function is implemented for each and every gene sequence

```
F=a (1-AR) +b (FG/SG)

AR=Accuracy rate
a (Coefficient) =0.9
b (Coefficient)=0.1
FG=selected feature genes (Genes in a chromosome that are 1)
SG=900
```

The equation shows that higher accuracy rate can be achieved with less feature genes hence the fitness value will be lower which identifies better performance of the Eigenfeatures

- A particular value of fitness is chosen randomly and chromosomes having better value are chosen from this iteration and the chromosomes with less fitness than this value are wiped out in this iteration.
- Among the chromosomes selected, a particular value is chosen and the chromosomes having more fitness than this value are chosen for crossover and those having less fitness than this value are passed on to the next generation as it is.(Rank Selection Algorithm)
- Crossover operation taken into account is single point crossover. Crossover happens at a single point wherein the first half comes from the first parent and the second half comes from the second parent. Hence, a new chromosome is formed which is placed in place of one of the wiped out chromosome.
- The new offspring's produced undergo mutation (bit-change) at random point as an improvement over the offspring.
- Iterations of the genetic algorithm follow the exact same procedure from wiping out chromosome to selection to crossover to mutation.
- After a particular condition is met the genetic algorithm is stopped and we get a better solution for our further analysis unlike before the genetic algorithm.
- Apply the final Eigen-features obtained to the back propagation neural network for training the neural network.
- Apply gray-scale values of the images as input to the neural network
- Compare the results obtained in the above two steps.
- Recording the results obtained in tables etc.
- Do research on optimizing the current setup for better results if time permits.

3.2 Assumptions made

- Crossover probability is 0.8 so it has been assumed that the parents selected for crossover will in fact undergo crossover if another parent is present and will not undergo crossover if another parent is not present
- Mutation probability if 0.1 so it has been assumed that the first 1' that is seen in the bit sequence of the offspring chromosome will be converted to a 0.
- Assumed value of fitness function while wiping out chromosomes or for selecting parents
- Only the Eigen-vector corresponding to the maximum Eigen-value is taken for analysis as it is enough indicator of the maximum variance in the data.

3.3 Block Diagrams

Figure 1 Pre-processing

Figure 2Principal Component Analysis

Figure 3Step1-2GeneticAlgorithm

Figure 4Step3GeneticAlgorithm

Figure 5Step4GeneticAlgorithm

Figure 6Back-propagation neural network

3.4 Tools Used

- Programming language-Python
- Python IDE-Wing
- Anaconda
- WEKA tool
- Matlab

3.5 Preliminary Result

Figure 7Gray scale value of a single 30x30 image

The database taken from analysis is FERET(Facial Recognition Technology). Out of 1400 images present in the database 400 have been taken for analysis, 350 for training and 50 for testing the system. The images have various facial conditions, i.e., some wearing glasses. The resolution of each image is 116 x 80 pixels, with 256 gray levels per pixel

CHAPTER 4 RESULT ANALYSIS

4.1 Introduction

This chapter includes the results that were seen throughout the research. Any results whether in graphical/tabular form is mentioned and the explanation is also attached for the seen outcomes. Appropriate reasons have been given for any deviation in the results obtained .This chapter ends with conclusions drawn from the research work.

• Result analysis

Table 1FinalAccuracyResults

Method	Samples	Features	Recognition R	ate	
			Correct	Incorrect	Accuracy
Grey	50	900	47	2	91.48%
Eigen	50	432	37	12	74.4%

• Classification Result of the two categorization methods on the FERET dataset

The above table shows that even on less trained neural network the Eigen features can show accuracy of about 74% on the FERET dataset (which only increases as the neural network is trained better).

• Reason for Deviation

The main reason for deviation from the expected result is that the neural network could only be trained by 350 images in the time span of this research work. Had it been trained with over 1000 images the results would certainly be in the favour of Eigen-feature to be used for classification of genders as is evident from the reference paper "Real-time Gender Recognition based on Eigen-features selection from facial images".

4.2 Conclusion

The studies done above on one of the many dataset shows that Eigen-features produced through pca and genetic algorithm not only increase the speed of the classifier but also the accuracy of the classifier. The same concept can also be applied in the generation of real-time gender recognition systems as well.

CHAPTER 5 CONCLUSION AND FUTURE SCOPE

5.1 Problem Statement

A good gender recognition algorithm can help in designing bigger systems like human-machine interaction systems and surveillance systems. Work done in the past in this field gives light to some issues like:

- Work done in an experimental database cannot fully represent the quality of the used method for gender recognition
- It is very important to determine the feasibility of the mechanism on a large database. For eg. Time taken during training and testing should be acceptable.
- Also the adaptability of any mechanism should be taken into account. For eg. Accuracy
 of the mechanism on images collected in different facial expressions, natural light
 conditions, even for skewed heads.

5.2 Work Methodology

- Obtained images are converted to grey-scale, cropped using Viola Jones algorithm and zoomed to 30x30 in matlab software
- The 30x30(or1x900) is stored for every image. These values are used to calculate the mean face image and the difference values of an image and the mean face image.
- The difference values obtained are used to calculate the covariance matrix for an image and, in turn, the Eigen-values and Eigen-vectors.
- The maximum Eigen-value is sorted from all images and the Eigen-vector is multiplied with all the difference values (1x900) to obtain the feature-vector.
- Binary data is created for each feature for purpose of genetic algorithm. Using the fitness function,

```
F=a(1-AR)+b(FG/SG)
```

AR=Accuracy rate

a (Coefficient)=0.9

b (Coefficient)=0.1

FG=selected feature genes (Genes in a chromosome that are 1)

SG=900

Appropriate fitness values are given to each feature according to the fitness function.

- Based on an assumed fitness value, some features that are of less significance are wiped out and out of the remaining features those which have the highest fitness are chosen for purpose of crossover.
- Offspring's produced from crossover are placed in place of wiped out individuals and these then go for mutation.
- Iteration of the genetic algorithm repeats for every new generation until the stopping condition is met.
- The optimal subset of features is obtained in the end, which is used for training and testing the images in a back-propagation neural network.

5.3 Conclusions

The novel approach of using Eigen-features using Principal Component Analysis and Genetic Algorithm can show better performance over the Grey-scale in terms of speed and accuracy. Also the method seems much more adaptive than Grey-scale for images in natural light conditions, grey-scale etc.

The results show an accuracy of 74% as compared to the 90% accuracy of Grey-scale. The deviation from the above fact is a result of less trained neural network which can definitely be improved. The features taken into account for training the neural network have almost been reduced to a half with the first iteration of the genetic algorithm.

5.4 Future scope of work

The neural network once trained with over a 1000 images as compared to the 400 images taken for this research work can be tested with images from another dataset such as FEI and also for images from the web using the crawler tool. Results obtained from such datasets will be assurance of the fact that this work can in fact be used for the development of real-time gender recognition systems as well.

The genetic algorithm can be replaced with Particle Swarm Optimization (PSO) for faster and maybe even better results over the binary genetic data. Particle swarm optimization (PSO) is a optimization technique developed by Dr. Eberhard and Dr. Kennedy, inspired by social behaviour of bird flocking or fish schooling.

The neural network can be adjusted according to weights taken through a genetic algorithm to improve the accuracy rate observed .The neural network can be replaced with a better classifier so as to improve the accuracy rate.

REFERENCES

- [1] Shukla, R., Shukla, R., et.al., 2012. Gender identification in human gait using neural network. International Journal of Modern Education and Computer Science, 70-75.
- [2] Shan, C., Gong, S., and McOwan, P. W., 2008. Fusing gait and face cues for human gender recognition. Neurocomputing, 71(10), 1931-1938.
- [3] Li, B., Lian, X. C., and Lu, B. L., 2012. Gender classification by combining clothing, hair and facial component classifiers. Neurocomputing, 76(1), 18-27.
- [4] Nazir, M., Anwar.M.Mirza, 2012. Multi-view gender classification using hybrid transformed features. International Journal of Multimedia and Ubiquitous Engineering.
- [5] Jaswante, A., Khan, A.U., Gour, B., 2013. Gender classification technique based on facial features using neural network. International Journal of Computer Science and Information Technologies, 839-843.
- [6] TAMURA, S., KAWAI, H., MITSUMOTO, H., 1996. Male/female identification from 8 x 6 very low resolution face images by neural network. Pattern Recognition, 331-335.
- [7] Moghaddam, B., Yang, M.H., 2000. Gender classification with support vector machines, Proceedings of the 4th IEEE International Conference on Face and Gesture Recognition, pp. 306-311.
- [8] Khan, S.A., Ahmad, M., et.al., 2013. A comparative analysis of gender classification techniques. International Journal of Bio-Science and Bio-Technology, 223-244.
- [9] Ng,B., Tay,Y, and Goi,B., 2012. Vision-based human gender recognition: A survey. arXiv preprint arXiv:1204.1611.
- [10] Rai, P., Khanna, P., 2014. Appearance based gender classification with pca and pc on approximation face image. Industrial and Information Systems.
- [11] Sun, Z., Bebis,G., et.al., 2002. Genetic feature subset selection for gender classification: A comparison study. IEEE Intl. Conf. on Image Processing.
- [12] Tapia, J.E. and Perez, C.A., 2013. Gender classification based on fusion of different spatial scale features selected by mutual information from histogram of lbp, intensity, and shape. IEEE Transactions on Information Forensics and Security.
- [13] Hasnat, A., Haider, S., Bhattacharjee, D., and Nasipuri, M., 2015. A proposed system for gender classification using lower part of face image. International Conference on Information Processing, pp. 581-585.
- [14] FERET, 2015. Feret database.[online].available. URL: http://www.nist.gov/itl/iad/ig/colorferet.cfm.
- [15] FEI, 2012. Fei database.[online].available. URL: http://fei.edu.br/cet/facedatabase.html.
- [16] Image-Downloader, 2015. Web image downloader tools.[online].available. URL: https://github.com/kencoken/imsearch-tools.
- [17] Viola, P. and Jones, M., 2001. Rapid object detection using a boosted cascade of simple features, in: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.

IC511.

- [18] Face-Detector, 2015. vision.cascade object detector face detect.URL:http://www.mathworks.com/help/vision/ref/vision. Cascade objectdetector-class.html.
- [19] Makinen, E., Raisamo, R., 2008. An experimental comparison of gender classification methods. Pattern Recognition Letters, 1544-1556.
- [20] Turk, M. and Pentland, A., 1991. Eigen faces for recognition. Journal of cognitive neuroscience.
- [21] Tarwani, K.M., and Bhoyar, K.K., 2014. Approaches to gender classification using facial images. International Journal of Image Processing and Visual Communication.
- [22]eig,2015.Eigen Value And Eigen Vectors URL: http://www.mathworks.com/help/matlab/ref/eig.html.
- [23] Satone, M., and Kharate, G.K. 2013. Selection of eigenvectors for face recognition. International Journal of Advanced Computer Science and Applications, 95-98.
- [24] Oluleye, B., Leisa, A., et.al., 2014. A genetic algorithm-based feature selection. International Journal of Electronics Communication and Computer Engineering, 889-905.
- [25] Shakhnarovich, G., Viola, P. A., and Moghaddam, B., 2002. A unified learning framework for real time face detection and classification. Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, 14-21.

ANNEXURES (optional)

Product Data Sheet

Table 2FinalAccuracyResults

		able 21 maniecui	acjitesaits							
Method	Samples	Features	Recognition Rate							
			Correct	Incorrect	Accuracy					
Grey	50	900	47	2	91.48%					
Eigen 50		432	37	12	74.4%					

	A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	P	Q	R	S	Т	U	٧	٧	X	Υ	Z	AA	AB	AC	AD
1	228	84	21	22	19	15	14	19	24	31	48	59	47	61	78	71	53	39	31	25	22	21	22	23	28	29	19	14	14	
2	241	107	19	18	17	15	24	53	82	76	63	73	95	112	112	111	106	98	84	59	49	45	45	40	40	27	19	19	18	2
3	239	92	14	17	17	25	59	93	106	111	112	118	126	126	119	117	115	113	110	97	80	71	60	56	48	29	23	24	20	
4	242	98	17	18	21	46	89	102	106	116	125	135	133	130	127	118	118	118	111	105	96	88	79	74	61	35	30	23	19	
5	249	116	19	21	27	55	89	102	108	113	122	132	135	136	131	119	121	117	110	103	99	92	87	83	69	37	22	19	15	
6	255	139	19	20	29	62	89	99	103	109	115	121	126	132	131	120	115	112	106	102	98	93	91	87	72	37	17	14	13	
7	254	174	25	17	45	81	89	96	100	110	116	116	118	118	125	120	114	113	108	105	95	91	88	82	73	44	18	13	11	
8	252	221	49	20	72	85	87	94	104	118	128	132	135	130	127	128	120	118	115	113	106	98	89	78	71	52	23	14	11	
9	250	250	96	23	75	69	52	54	63	74	93	123	147	142	137	137	125	114	102	92	81	80	76	67	64	57	40	18	11	
10	249	255	155	26	71	41	44	48	46	34	32	65	99	113	128	121	95	70	50	33	29	28	29	29	33	45	48	33	12	
11	250	253	222	56	67	73	81	86	87	72	51	52	50	77	99	88	55	44	27	30	52	55	46	39	29	32	45	41	15	
12	247	150	112	48	63	80	97	111	101	71	57	57	66	92	106	86	55	35	39	59	68	63	57	55	49	40	43	40	14	
13	224	88	85	52	78	183	226	232	187	48	49	59	67	106	123	102	75	90	130	97	44	34	40	37	41	47	52	38	33	4
14	214	93	102	62	84	202	227	247	200	57	55	53	61	81	82	89	126	172	219	140	63	44	47	39	41	28	54	39	25	3
15	230	102	97	100	114	105	125	234	156	72	68	66	69	73	104	82	83	106	204	132	64	59	55	55	52	31	44	44	25	3
16	252	144	89	136	153	83	88	150	124	89	80	84	83	95	117	69	70	78	93	89	88	82	74	66	63	44	57	57	49	3
17	253	214	96	133	214	95	92	92	96	91	95	93	84	112	120	70	53	70	86	86	81	82	80	80	76	51	60	56	51	4
18	250	250	131	100	238	124	93	99	101	104	103	89	84	124	119	71	47	58	87	94	87	82	85	84	74	52	60	52	49	- 6
19	250	255	183	81	183	159	92	96	105	105	100	77	91	132	121	77	53	54	67	96	92	87	85	80	73	58	57	49	49	- 5
20	251	253	231	105	93	123	96	92	100	105	101	75	87	121	111	56	56	54	61	87	91	89	81	79	73	60	54	49	50	- 5
21	251	251	255	153	88	89	91	93	93	99	95	88	82	98	82	48	53	59	64	73	73	72	70	70	66	59	53	50	49	- 5
22	251	251	255	222	103	100	112	117	116	109	111	95	59	57	89	59	44	56	86	88	84	82	83	76	63	59	52	50	47	
23	251	251	251	255	150	90	109	118	113	97	73	53	36	36	65	35	28	37	59	77	86	92	88	73	62	58	54	51	66	7
24	251	251	251	255	182	87	104	115	99	54	37	54	75	86	81	67	47	33	32	35	62	79	79	68	59	56	52	57	198	21
25	252	251	251	255	220	93	97	110	94	42	53	74	78	81	82	74	68	55	38	29	34	67	74	62	56	56	44	96	232	22
26	252	251	251	252	250	124	89	104	103	79	85	85	93	100	97	104	92	74	59	64	60	75	70	59	55	52	40	166	238	22
27	252	252	251	251	255	195	87	96	104	104	101	91	98	109	103	110	94	66	62	81	86	78	61	53	51	45	39	127	231	23
28	252	252	252	251	255	179	80	89	93	99	103	98	85	77	73	75	64	64	78	84	76	66	55	50	44	39	38	29	146	23
29	252	252	252	253	242	101	42	71	86	92	99	105	109	104	96	92	92	93	88	80	72	58	49	42	35	40	37	20	60	2
30	252	252	252	255	220	78	26	31	75	85	99	105	113	117	109	102	99	97	86	75	63	47	37	30	35	45	34	18	42	18
	F' 9D ID ((20.20)																													

Figure 8Pre-processed Da	ata (30x30)
--------------------------	-------------

									Figu	ıre 8	3Pre	-pro	cess	sed I	Data	(30	x30))												
	Α	В	С	D	E	F	G	н	1	J	К	L	M	N	0	P	Q	В	s	Т	U	٧	W	X	Y	Z	AA	AB	AC	AD A
383	27	28		28	28	26	23	22	21	21	22	23	23			48	48			51	48	44	42		27		26	28	29	27
384	182	60	41	46	42	58	83	83	84	88	91	92	92	93	94	93	93	91	90	88	81	76	73	67	51	33	41	43	50	216
385	129	33	33	25	27	88	94	87	98	117	123	124	122	121	118	115	111	102	92	83	70	56	38	30	28	31	31	26	26	27
386	29	28	32	39	46	53	60	62	60	57	64	67	61	54	45	35	34	36	36	38	61	80	62	49	40	31	32	34	35	33
387	255	255	255	255	246	133	92	77	79	89	100	106	106	105	104	106	105	105	106	102	98	94	85	78	71	64	94	168	250	255
388	43	32	86	114	115	120	123	129	135	142	145	147	147	147	148	147	145	139	135	132	127	119	107	89	86	83	41	86	173	182
389	57	60		65		64	70	72	68	72		93	102			114					86	74					53	47	36	38
390	197	77		35		40	49	58	84	104		78	89			111					70	64					46	28	20	19
391	60	84		94		100	102	108	116	124		138	139			138					125	110					78	78	72	79
392	255	181		29		63	74	84	96	109		122	117			107					111	94					32	34	31	42
393	212	73		51		49	76	87	105	118		106	112			72					34	36					37	33	27	64
394	229	147		43			97	97	99	113		124	129			125			118			94					33	41	39	75
395	51	45		77		25	34	77	123	136		145	144			140			103		75	62					43	47	44	43
396	170 211	48		37 57		54 81	52 118	52 125	65 132	71		66 161	63 166			60 167	70 168		102 165		128 163	124 155	125				100 73	42 62	31 55	29 55
397 398	49	98 23		19		26	25	22	23	60		143	150			167	165				152	146			114		73	23	38	58
399	62	34		40		27	25	32	62	101		98	105			136						32					21	21	24	36
400	02	34	32	40	ər	- 21	20	32	02	101	103	30	103	- 111	120	100	134	110	100	- 03	30	32	- 21	30	34	- 21	- 21	- 21	- 24	30
401																														
402																														
403																														
104	108,49	74.098	55,505	47.7	49,453	53,933	58,665	64.878	71,948	77,715	81,813	84,645	86,49	88,345	88.863	89,065	88,705	88,193	86,565	82,718	77.318	71	64,435	59.22	54,995	51,57	52,473	57,723	72.133	99.098 96
405																														
406																														
407																														
408																														
403																														
410																														
	19.4875 53.4875				52.5475 6.4525																-45.6825 18.3175		-32.565 20.435		-15.005 11.995					-10.9025 5.2 50.0975 48.
	3.4875				6.4525 -25.5475																18.3175		19.565		-22,005					50.0975 48. 29.0975 23.
	48.4875				-20.0470																-50.6825				-42.005					-7.9025 44.
	3,4875				-23.0470																-47.6825		-43.565		-42.005					-7.3020 44. -12.9025 -4.7
	-13.5125				-21.5475																-47.6625		-43,565		-25.005					19.0975 -4.7
	47 5125				-1.5475				18.9475												21.3175									47.9025 -61
	51.4875				1.4525				29,9475												-16.6825									52.0975 56.
	66 4875				4.4525																4.3175									54.0975 53.
	14.4875				9.5475																70.6825				-39,005					-0.9025 -5.7
421	28.4875	26.0975	13.505	9.7	13.4525	17.9325	11.665	-13.1225	-34.0525	-53.285	69.1875	-77.355	80.51	89.655	87.1375	86.935	81.295	73.8075	67.435	-63.2825	-56.6825	-42.0	-33.565	-22.78	-10.005	3.57	-10.5275	10.2775	24.1325	51.0975 15.2
422	44.4875	7.0975	-38.495	-62.3	58.5475	55.0675	-56.335	60.1225	-54.0525	-53.285	62.1875	67.355									-40.6825		-33.565	-21.78	-17.005	0.57	-6.5275	9.2775	24.1325	19.0975 39.
423	45.4875	5.0975	-12.495	-5.3	-12.5475	-36.0675	-39.335	-43.1225	-46.0525	48.285	-35.1875	-46.355	-39.51	-26.655	47.1375	-75.935	-68.295	40.8075	49.435	-26.2825	-25.6825	-35.0	-28.565	-26.78	-16.005	-14.43	-8.5275	-2.2775	18.1325	33.0975 29.

Figure 9 1x900 Data, Mean Face Image Data, image data-Mean Face image data

Figure 10 Genetic Data for each feature

154		
156 0.21933 157 0.21888 158 0.21933 160 0.21933 161 0.21933 164 0.21944 165 0.22 166 0.21911 168 0.21911 169 170 171 171 0.2193 174 0.2193 175 0.219 176 177 0.21867 177 0.21867 178 0.2192 179 0.21811 182 183 184 185 0.21933 184 185 0.21933 186 0.21956 189 0.21956 189 0.21956 189 0.21956 189 0.21956 190 0.21956 191 0.21956 192 0.21811 194 195 0.219	154	0.21822
157	155	
158	156	0.21933
159 160 161 0.21933 162 163 164 0.21944 165 0.22 166 167 168 0.21911 169 170 171 172 173 0.21933 174 0.2793 175 0.219 176 177 0.21867 178 0.21922 179 0.21811 180 0.21889 181 182 183 184 185 0.21933 186 0.21956 187 188 0.21956 189 0.22 190 0.21811 191 0.21956 192 193 0.21811	157	0.21889
160	158	0.2172
161 0.21933 162 163 164 0.21944 165 0.22 166 167 168 0.21911 170 171 171 0.21933 174 0.2193 175 0.219 176 0.21867 177 0.21867 178 0.2192 179 0.21811 180 0.21889 181 182 183 185 0.21933 186 0.21856 187 0.21933 188 0.21956 189 0.22 190 0.21811 191 0.21956 192 0.21811 193 0.21811 194 195 0.219	159	
162 163 164 0.21944 165 0.22 166 167 168 0.21911 169 170 171 172 173 0.21933 174 0.2197 175 0.219 176 177 0.21867 178 0.21922 179 0.21811 180 0.21888 181 182 183 184 185 0.21956 187 188 0.21956 189 0.22 190 191 0.21956 192 193 0.21811	160	
163 164 0.21944 165 0.22 166 167 168 0.21911 169 170 171 172 173 0.21933 174 0.2193 175 0.219 176 177 0.21867 178 0.21921 180 0.21889 181 182 183 184 185 0.21933 186 0.21956 189 0.22 190 0.21811 191 0.21956 192 193 0.21811	161	0.21933
164 0.21944 165 0.22 166 167 168 0.21911 169 170 171 172 173 0.2193 174 0.2197 175 0.219 176 0.21989 181 182 183 184 185 0.21933 186 0.21856 189 0.22 190 0.21956 189 0.22 190 0.21811 191 0.21956	162	
165 0.22 166 167 168 0.21911 169 170 171 171 172 173 0.21933 174 0.279 175 0.218 176 177 0.21867 177 0.21889 181 182 0.21889 181 182 183 184 185 0.21956 189 0.22 190 191 0.21956 192 193 0.21811 194 195 0.2191	163	
166 167 168 0.21911 169 170 171 172 173 0.21933 174 0.2793 175 0.219 176 177 0.21867 178 0.21922 179 0.21818 180 0.21889 181 182 183 184 185 0.21933 186 0.21856 187 188 0.21956 189 0.22 190 0.21811 191 0.21956 192 193 0.21811	164	0.21944
167 168 0.21911 169 170 171 172 173 0.21933 174 0.2193 175 0.219 176 177 0.21867 178 0.21922 179 0.21818 180 0.21933 181 182 183 184 185 0.21933 186 0.21956 189 0.22 190 0.21956 191 0.21956 192 193 0.21811 194 195 0.219	165	0.22
168 0.21911 169 170 171 172 173 0.2193 174 0.2197 175 0.219 176 0.21867 177 0.21867 178 0.21922 179 0.21811 180 0.21889 181 182 183 0.21933 186 0.21856 189 0.22 190 0.21811 191 0.21956 192 193 0.21811 194 195 0.219	166	
169 170 171 172 173 0.21933 174 0.279 175 0.219 176 177 0.21887 178 0.21822 179 0.21889 181 182 183 184 185 0.21933 186 0.21856 187 188 0.21956 189 0.22 190 191 0.21816	167	
170 171 172 173 0.21933 174 0.279 175 0.219 176 177 0.21867 178 0.21922 179 0.21811 180 0.21889 181 182 183 184 185 0.21933 186 0.21956 189 0.22 190 0.21811 191 0.21956 192 193 0.21811 194 195 0.219	168	0.21911
171 172 173 0.21933 174 0.2197 175 0.219 177 0.21867 178 0.21922 179 0.21811 180 0.21889 181 182 183 186 0.21956 189 0.22 190 0.21956 191 0.21956 192 193 0.21811 194 195 0.219	169	
172 173 0.21933 174 8.2573 175 0.21867 177 0.21867 178 0.21821 179 0.21889 181 182 183 184 185 0.21856 187 188 0.21956 189 0.22 190 191 0.21811 194 195 0.21811 194 195 0.21811 194 195 0.219	170	
173 0.21933 174 0.2193 175 0.219 176 0.21922 179 0.21811 180 0.21883 181 0.21883 184 0.21983 185 0.21983 186 0.21856 187 0.21956 189 0.22 190 0.21956 191 0.21956 192 193 0.21811 194 195 0.219	171	
174	172	
175 0.219 176 0.21867 177 0.21867 178 0.21922 179 0.21811 180 0.21889 181 182 183 0.21933 186 0.21856 187 0.21956 189 0.22 190 0.21956 191 0.21956 192 193 0.21811 194 195 0.219	173	0.21933
1776 1777 0.21867 178 0.21922 179 0.21889 181 182 183 184 185 0.21856 187 188 0.21956 189 0.22 190 191 0.21956 192 193 0.21811 194 195 0.219	174	0.2179
177 0.21867 178 0.21922 179 0.21811 180 0.21889 181 182 183 184 0.21933 186 0.21956 187 0.21956 189 0.22 190 0.21956 191 0.21956 192 193 0.21811 194 195 0.219	175	0.219
178 0.21922 179 0.21811 180 0.21889 181 182 183 184 185 0.21933 186 0.21856 189 0.22 190 0.21956 191 0.21956 192 193 0.21811 194 195 0.219	176	
179 0.21811 180 0.21889 181 182 183 184 0.21933 186 0.21956 187 0.21956 189 0.22 190 0.21956 192 193 0.21811 194 195 0.219	177	
180 0.21889 181 182 183 184 185 0.21933 186 0.21856 187 188 0.21956 189 0.22 190 191 0.21956 192 193 0.21811 194 195 0.219	178	
181 182 183 184 185 0.21933 186 0.21856 189 0.22 190 191 0.21956 192 193 0.21811 194 195 0.219	179	
182 183 184 185 0.21933 186 0.21956 187 188 0.21956 189 0.22 190 191 0.21956 192 193 0.21811 194 195 0.219	180	0.21889
183 184 185 0.21933 186 0.21956 187 188 0.21956 189 0.22 190 191 0.21956 192 193 0.21811 194 195 0.219	181	
184	182	
185 0.21933 186 0.21856 187 188 0.21956 189 0.22 190 191 0.21956 192 193 0.21811 194 195 0.219		
186 0.21856 187 188 0.21956 189 0.22 190 191 0.21956 192 193 0.21811 194 195 0.219	184	
187 188 0.21956 189 0.22 190 191 0.21956 192 193 0.21811 194 195 0.219		
188 0.21956 189 0.22 190 191 0.21956 192 193 0.21811 194 195 0.219		0.21856
189 0.22 190 191 0.21956 192 193 0.21811 194 195 0.219	187	
190 191 0.21956 192 193 0.21811 194 195 0.219		
191 0.21956 192 193 0.21811 194 195 0.219		0.22
192 193 0.21811 194 195 0.219		
193 0.21811 194 195 0.219		0.21956
194 195 0.219		
195 0.219		0.21811
		0.219
130	196	

Figure 11Fitting Function Values After wiping out fitness values < 0.22

Figure 12Genetic Data after 1st iteration

																										ļ
	0G	ОН	01	0J	0K	0L	OM	ON	00	0P	00	OR	05	OT	00	07	ow	OX	OY	02	PA	PB	PC	PD	PE	PF
1	-19.41	-13.56	-17.4	3.5668	13.314	29.559	-9.385	16.387	-4.591	-138.4	40.31	12.115	19.09	11.807	4.9371	-7.225	-28.12	11.583	-17.49	-2.144	35.46	30,909	-56.9	87.634	19.283	-42
2	-25.22	-15.53	-7.931	-22.51	-6.103	11.738	-2.452	6.1075	0.1348	-161.4	58,795	42.348	4.0078	18.947	1.0087	-10.22	-28.29	4.0546	-17.29	-5.546	3.2466	38,923	-80.43	37.069	10.915	-25.
3	-10.31	-19.3	17.378	9.73	2.3445	8.2788	-2.388	14.101	8.7589	75.459	-31.22	-16.98	4.4139	36.216	5.653	19,199	-2.505	5.1749	-24.59	1.8107	-15.31	55.107	-48.54	19.646	21.519	49.5
4	-17.31	-7.157	-10.95	-0.418	1.3215	27.58	-10.83	16.884	-4.233	-211.4	90.227	3,7303	23.192	-3.564	17.687	-0.979	-27.55	-2.193	-17.34	-16.16	26.876	84.877	-36.87	39.45	-3.467	-24
5	-32.75	7.0215	-15.1	-10.74	-6.027	16.625	-2.731	-2.744	0.5603	-161.2	47.597	-9.72	8.5578	-9.942	-22.65	6.6129	-17.17	21.155	11.475	8.4901	44.4	2.3515	19.064	-7.941	1.1391	-8.9
6	-32.54	3.3214	-15.24	-8.415	-3.512	3.3782	-0.45	0.3225	3.1487	24.277	14.193	57.274	-9.994	4.099	-4.229	-52.1	-2.398	6.6093	-11.8	-3.194	6.8525	14.254	-48.67	28.039	6.6792	-9.4
7	-9.151	-6.974	-4.886	2.6474	11.165	17.246	-4.538	4.8944	-2.505	-66.18	87.805	-16.17	-0.917	11.353	13.154	0.3095	-33.68	27.581	-8.693	2.4491	14.223	61.151	-99,19	70.477	4.0145	-38,
8	-9.562	3.7104	-13.82	0.0037	10.155	10.9	3.7857	-1.397	5.4695	-214.4	76.893	41.336	6.5646	7.8991	-5.523	10.881	-36.78	-12.44	-7.957	-14.72	7.5955	69.041	-62.4	-37.91	8.428	-31.
9	-83.01	45.288	-10.07	-51.47	-56.44	-31.36	0.7049	-32.62	-9.817	60.141	-65.81	-57.89	-100.9	51.152	-102.9	-22.72	-68.8	-11.39	45.673	16.162	4.8156	-69.64	-108.4	-7.874	-0.027	-53
10	-45.4	-17.18	-11.86	-1.437	-2.622	27.01	-15.39	20.218	-12.83	-159.6	147.54	20.376	54.308	-11.55	9.7663	-0.461	-27.2	-0.285	0.5112	-15.59	29,296	147.06	-26.99	84.365	4.1092	-44
11	-42.14	-0.88	-18.21	-24.97	-8.944	28,791	1.0666	10.674	-17.79	-212.8	92.134	91,927	53.606	4.3326	-6.848	3.0482	-3.19	-30.31	-13.81	-2.723	19.617	35.329	62,735	32.266	9.0311	-6.3
12	-13.74	-12.12	-14.51	-6.095	8.2493	30.569	-6.481	3.2046	-7.668	-76.93	160.93	-21.04	28.477	-45.34	32.371	-36.67	-54.38	6.1594	-21.12	-7.852	19.042	198.38	-65.58	52.521	-57.43	-51.
13	-28.86	5.4249	-1.488	-26.8	-20.42	9.963	-9.735	4.1354	-3.453	-177.2	119.44	41.594	5.0079	10.035	-18.08	-43.35	-50.38	5.2492	-7.976	10.306	9.9735	96.953	-85.23	49.95	10.986	-34.
14	-23.78	3.814	-4.781	-13.24	-0.523	11.968	-1.685	-0.303	0.7374	-125.6	31.167	1.8207	2.0743	-10.11	-26.83	2.2744	-19.07	7.1911	-3.264	3.1027	32.618	-1.397	-22.91	74.282	-36.22	-7
15	-24.91	8.4093	-15.49	-8.654	-8.017	14.886	2.6102	0.3735	10.313	-64.95	86.044	28.046	43.006	5.6023	-5.174		-37.35	11.958		-12.58	2.8402	86.534	-99.85	94.401	16.545	-3
16	-65.24	-10.65	9.6537	-44.62	-15.95	33.393	-7.761	14.764	-11.06		86.342	75.772	6.6657	39.782	4.8777	-7.567	-23.08	19.548	-5.155	-6.688	36.725	54.148	-3.407	35.793	29,481	-51.
17	-41.1	1.6738	-24.09	-14.15	-7.271	13.863	-5.445	4.2509	-10.14	-150.7	25.223	-26.66	36.019	29.7	5.7174	5.8059	-39.77	-10.54	0.6922	-16.18	22.152	60.327	-50.03	99.568	22.804	-26
18	-2.787	-8.474	-19	-7.404	-3.75	22.503	-4.944	16.552	-5.88	-170.4	27.615	-24.82	38.22	-0.151	29.423	15.937	-34.04	1.4385	-9.589	-18.24	19.525	52.686	-16.61	49.716	0.739	-34.
19	-21.87	-19.98	-11.19	4.604	9.6401	23.48	-4.779	13.837	5.2303	-83.69	-4.187	51.994	-33.09	8.5438	0.9591	-23.47	-12.4	12,779	-22.13	-13.65	15.577	-53.64	-52.23	-26.37	33.708	-25.
20	-38.37	-1.399	-18.25	-8.268	-11.42	21.969	-6.494	-1.199	0.9325	-143.3	67.585	49,479	-1.727	27.589	-2.59	-38.27	-52.57		1.9387	-6.46	25.254	48.18	-81.11	32.413	30.217	-39.
21	-25.14	-5.165	-22.9	-17.41	-8.486	31.403	-2.444	16.999	-4.546	-193.4	135.2	79.47	35.503	14.198	-20.43	-61.26	-46.11		-12.27	14.268	19.642	96.376	-126.2	65.555	8.2276	1.52
22	-34.94	13.686	-30.55	8.4145	1.8149	31.224	-4.83	19.414	5.6368	-205.1	92.924	26.366	49.044	-9.543	-1.772	16.684	-20.86	-17.4	-0.762	-16.21		68.69	7.3491	59.71	-22.39	-11
23	-24.02	10.616	-35.15	18.155	8.7184	35.786	-1.883	17.283	5.8124	-277.1	111.66	39.763	65,793	13.32	22.808	29.222	-3.57	-4.035	-16.34			105.89	34.235	65.775	-11.14	-7.8
24	-16.6	-16.2	5.8716	-30	-14.21	10.468	-11.61	13.929	-6.69	108.81	33,414	40.054	-8.454	-3,149	-12.55	-36.01	-3.163		-25.99	16.797	-7.831	13.073	-53.81	11.401	15.305	3.90
25	-34.96	1.4891	-3.362	15.143	16.828	40.383	1.9466	-3.476	-5.931	-151.8	161.57	-40.98	47.694	7.5443	16.309	12.568	-49.82		-4.925	-3.12		152.92	-75.37	105.79	21.607	-58.
26	-21.89	13.957	-42.02	8.8227	12.226	35.813	-11.05	51.825	-0.458	-216	315.62	11.215	101.45	-65.09	4.5568	-18	-29.31	-47.3	-5.5	-29.82	25.325	237.66	-27.6	106.18	-94.78	-5.
27	-45.77	-18.2	-19.59	-2.419	7.413	30.264	-14.92	40.619	7.8324	-326.5	109.63	-17.81	33.012	-20.89	22.756	-33.34	-18.11	-44.89	-4.065		20.489	91.17	12.602	39,798	-20.79	-3.3
28	-23.86	36.667	-17.41	-16.72	2.8451	40.33	16.424	27.262	-14.17	-268.7	223.75	93.044	68.903	-37	-29.19	-13.93	31.798	-35.37	16.681	-4.587	19.39	181.1	42.827	43.656	20.245	7.26
29	-23.99	-8.431	-15.65	0.8359	-13.55	15.984	-12.41	12.357	7.495	-94.7	136.3	55.083	-16.52	-0.232	-11.66	-81	-25.41	17.882	0.3918	-5.482	20.235	68.126	-122.2	26.819	13.061	-17.
30	-21.4	24.133	-18.37	-16.49	-12.34	16.645	-0.043	-4.978	-6.7	-119.8	101.72	31.593	61.371	15.56	22.827	6.9619	32.271	-21.55	3.593	-8.975	-6.038	99.024	34.601	8.7898	4.9445	28.2
31	-13.76	-40.96	1.4294	17.041	15.29	25.543	-29.55	44.401	3.0552	-188.2	124.08	21.109	-5.072	-9.585	24.971	-96.3	-8.049	46.19	-39.45	5.3511	54.867	80.553	-136.7	171.84	31.42	-72.
32	39.006	-8.906		-30.67	-28.7	6.9222	-26.27	12.901	-14.6	-78.99	-14.1	-132.2	-28.65	28.047	-6.646	-33.86	-76.85	-22.78	6.61	-2.589	-8.64	-86.82	-99.04	63.055	-13.42	-64.
33	-80.22	-0.015		3,4029	-11.04	14.587	-23.4	-4.205	30.277	-57.83	234.05	26.18	-15.15	1.7181	26.42	-41.77	-15.87	118.02	-1.795	-8.376	30.999	192.68	-148.7	164.21	53.693	-77.
34	-11.52	-3.747	-9.419	5.4571	4.1454	30.304	-8.839	22.955	-5.114	-193.7	167.29	25.283	7.3311	-15.94	3.597	-42.26	-31.92	10.83	-11.8	-7.111	26.715	96.485	-74.69	44.81	-38.59	-39.
35	-36.25	-14.3	-6.58	-9.837	17.81	53.525	-3.784	20.397	-12.21	-390.5	185.82	56,195	92.634	-4.737	44.268	35.566	-16.87	-21.5	-9.035	-47.29	48.509	189.5	28.914	64.616	-24.59	-11
36	-4.067	-7.554	-13.38	27.565	6.1923	41.935	-11.86	39.876	5.6321	-274.2	125.53	56.568	81.721	-17.94	27.947	31,707	-7.496	-27.41	-9.091	-20.34	18.051	64.53	46.171	77.164	-27.13 12.171	12.5
37	-5.604	26.064	13.507	-16.98	-20.2	2.5144	-3.935	-7.882	-21.23	107.03	17.907	77.102	-24.45	46.452	-5.318	-50.56	27.85	44.216	-5.944	24.966	-5.058	35.523	-45.96	-16.36		41.7 -32.
38	33,428	8.6867	-2.602	65.031	29.722	-0.183	-14.1	-1.302	4.7561	19.469	137.88	-52.57	-32.38	9.3529	31.986	-14.63	-38.56	7.2387	-24.3	9.5137	12.05	125.01	-155.4	-92.77	-6.306	
39	-2.986	-11.06	-19.77	29,237	33.823	43.574	2.6925	0.6983	3.2235	-199.3	-118.4	4.5858	-3.998	18.831	17.178	33.533	-17.25	-19.99	-11.26	-30.6	22.123	-142.1	-30.14	19.309	20.161	-42.

Figure 13Eigen-projects after 1st iteration

	он	01	OJ	ок	OL	ом	ON	00	OP	00	OR	os	от	ου	OV	ow	ox	oy	oz	PA	PB	PC	PD	PE	PF	PG
1	0.1		3.5668	13,314	29,559	-9.385	16.387	0	-138.4	40.31	12.115	19.09	0,	4.9371	0	0,,,	0,,	-17.49	0		. 0	. 0	- 0	0	-42.12	. 0
2	0	-7.931	0.5000	0.014	0	0.003		0.1348	0	58.795	42.348	0.00	0	0	-10.22	-28.29	0	0		9.2466	38.923	0	ő	10.915	0	0
3	0	0	0	0	0	0	14.101	0.1040	75.459	0	0	4.4139	36,216	0	0.22	-2.505	ō	-24.59	0	0.2400	00.020	0	ň	0	0	-18.98
4	-7.157	0	-0.418	0	27.58	-10.89	16.884	0	-211.4	0	0	23,192	-3.564	0	0	0	0	0	-16.16	26.876	ō	-36.87	39.45	0	-24.07	31,979
5	0	0	-10.74	0	16,625	0		0.5603	-161.2	47,597	-9.72	0	-9,942	-22.65	0	0	21,155	0	0	44.4	0	19.064	0	0	0	59,865
6	0	-15.24	0	0	0	-0.45	0	0	0	14.193	57.274	0	4.099	0	-52.1	-2.398	0	-11.8	0	6.8525	14.254	-48.67	Ö	6.6792	-9,491	0
7	0	-4.886	2.6474	11.165	0		4.8944	-2.505	-66.18	87.805	-16.17	0	0	13.154	0	-33,68	0	-8.693	0		0	-99,19	Ö	4.0145	-38.78	24,289
8	0	0	0	10.155	10.9	3,7857	0	0		76.893	41,336	0	7.8991	0	10.881	-36.78	0	0	-14.72	0	69,041	0	0	0	0	0
9	45.288	0	-51.47	0	0	0	0	-9.817	0	0	0	-100.9	51.152	-102.9	0	-68.8	0	0	0	0	0	-108.4	0	-0.027	-53.14	0
10	-17.18	0	0	-2.622	0	0	0	0	0	0	0	0	-11.55	9.7663	0	0	0	0	0	29,296	147.06	-26.99	0	0	0	0
11	0	-18.21	0	-8.944	28,791	1.0666	10.674	0	0	92.134	91.927	0	0	0	3.0482	-3.19	-30.31	-13.81	0	19.617	35.329	0	92.266	0	-6.927	0
12	-12.12	0	0	0	0	-6.481	3.2046	-7.668	-76.93	160.93	-21.04	0	0	0	0	-54.38	0	0	-7.852	0	0	-65.58	52,521	-57.43	-51.73	16.273
13	0	0	0	0	0	-9.735	0	0	-177.2	113.44	41.594	5.0079	0	-18.08	-43.35	0	0	-7.976	0	9.9735	36,353	-85.23	0	10.986	-34.97	0
14	0	-4.781	-13.24	0	11.968	0	-0.303	0	-125.6	0	0	2.0749	-10.11	-26.83	2.2744	-19.07	0	-3.264	3.1027	0	-1.397	-22.91	74.282	-36.22	-7.01	72,921
15	0	0	-8.654	0	0	0	0	10.313	0	86.044	0	0	5.6023	0	8.6666	-37.35	0	6.8588	0	0	0	-99.85	0	0	0	0
16	0	0	-44.62	0	0	-7.761	0	-11.06	-204.8	86.342	0	6.6657	0	0	0	0	19.548	-5.155	-6.688	0	0	0	0	29.481	-51.05	45.898
17	0	0	-14.15	0	0	-5.445	0	-10.14	0	25.223	-26.66	36.019	29.7	0	0	-39.77	-10.54	0	0	22.152	60.327	0	0	22.804	-26.16	30.026
18	0	-19	0	-3.75	0	0	16.552	0	0	0	0	0	0	29,423	0	-34.04	0	-9.589	0	0	52.686	-16.61	49.716	0.739	-34.08	34.2
19	-19.98	-11.19	4.604	0	0	-4.779	0	0	-83.69	0	51.994	0	0	0	0	0	12,779	0	-13.65	0	0	0	0	0	-25.03	0
20	0	-18.25	-8.268	0	21.969	0	-1.199	0	0	67.585	0	0	0	0	-38.27	-52.57	0	1.9387	-6.46	0	48.18	0	32.413	0	-39.88	29,901
21	0	0	-17.41	-8.486	31.403	-2.444	16.999	0	0	135.2	0	0	14.198	0	0	-46.11	0	0	0	0	0	0	65.555	8.2276	0	0
22	13.686	0	8.4145	1.8149	31.224	-4.83	19.414	0	0	0	26.366	49.044	-9.543	-1.772	0	-20.86	-17.4	-0.762	0	0	0	0	59.71	0	0	33.245
23	0	0	0	8.7184	35.786	-1.883	0	5.8124	-277.1	0	39.763	0	13.32	0	0	0	-4.035	-16.34		44.384	105.89	0	0	-11.14	-7.806	0
24	-16.2	0	0	0	10.468	-11.61	0	0	108.81	0	0	0	0	-12.55	-36.01	0	0	-25.99	16.797	0	13.073	-53.81	0	15.305	0	-21.44
25	1.4891	0	0	0	0	0	0	0	0	0	-40.98		0	0	12.568	0	0	-4.925	-3.12	0	152.92	-75.37	105.79	21.607	0	26.591
26	13.957	-42.02	0	12.226	35.813	0		0	-216	315.62	0	0	-65.09	4.5568	0	-29.31	0	-5.5	0	25.325	0	0	0	0	0	28.506
27	0	0	-2.419		30.264	0		0	-326.5	0	0	33.012	0	22.756	0	-18.11	0	-4.065	0	0	91.17	12.602	0	-20.79	0	0
28	0	-17.41	-16.72	2.8451	0	16.424	0	0	0	223.75		68.903	0	0	0	31.798	-35.37	16.681	-4.587	19.39	181.1		43.656	20.245	7.2694	0
29	0	-15.65	0.8359	0	0	0	0	0	0	136.3	0	-16.52	0	0	0	-25.41	17.882	0	0	0	68.126	0	0	13.061	-17.67	7.316
30	0	0	-16.49	-12.34	0	-0.043	0	0	0	0	31.593	0	15.56	22.827	0	32.271	-21.55	0	0	0	99.024	0	0		28.265	-45.98
31	-40.36	1.4294	17.041	15.29	0	-29.55	44.401		0	0	0	0	0	24.971	0	-8.049	0			54.867	80.553	0	171.84	0	0	26.581
32		4.6024	0	-28.7	0	0	0	0	-78.99	0	-132.2	0	0	-6.646	-33.86	0		0	0	0	-86.82	-99.04	63.055	0	-64.74	78.887
33	0	0	0	-11.04	14.587	0	0	0	-57.83	0	0	0	0	0	-41.77	0	118.02	0	-8.376	0	0	-148.7	0	0	0	0
34	0	0	5.4571		30.904	-8.839	0 00 007	0	0	0	0	7.3311	0	3.597	-42.26	-31.92	0	0	0	40.500	96.485	0	0	0	-39.86	55.945
35	-14.3	0	-9.837	6.1923	41,935	-3.78 4	20.397	-12.21	-390.5	185.82	0		-4.737 -17.94	44.268	0 24 707	-7.436	07.44	-9.035	0	48.509	0		0	-24.59	-11.91 12.558	67.978 38.286
36	-7.554	-	0		41.335	~		0	-274.2	0	0	81.721	-11.34	0	31.707		-27.41	-9.091	0	~		46.171	46.06	0		30.206
37	26.064	13.507	-	0		-3.935	-7.882		107.03		77.102	0		-5.318	-50.56	27.85		0	_	-5.058	0	-45.96	-16.36	12.171	41.743	
38	8.6867	-2.602		29.722	-0.183	0			19.469	137.88	-52.57	0	9.3529	0	-14.69	-38.56		0	9.5137	0	0	-155.4 0	0	20,161	0	-42.48
39	0	-13.11	29.237	-7.237	43.574 -33.85	0	0.6983		-199.3 0	-118.4 -103.6	4.5858 -65.97	-132.6	0	-64.46	33.533 0	0	-19.99 14.009	0	-30.6 0	22.123	0	0	-164.8		35.628	53.686 -54.96
40	0	0	0	-3.098	-33.05	6.5101	0	5.3612	0	-93,75	-65.31	-132.0 0	0	-57.33	0	41,067		28.16	0	-55,9	0	0	-104.0 0	24.59	33.020	-54.36
41	-8.34	-45.3	0	-3.030		-1.948	0	0	0	-33.13	49,661	0	0	-51.33	34.1		- 4 2.15	20.10	0	-55.5	-32.39	11.129	0	24.55	0	-53.24 N
42	-43,79	-25.36	0	-11.47	11.246	12.386	11.823	0	-189.9	0	65.35	0	70.287	0	34.1	-24.14	-42.15	0	0	18,719	-75.55	0		0	0	30.608
44	-43.13	11.426	-20,87	-4.12	-33.03	0	-41.88	0	225.32	-19.97	3.7731	-45.55	-6.887	0	0	0	-	20.693	10.607	10.113	-15.55	-75.83	30.100	-2.391	0	30.000 0
45	0	11.420	-19.51	7.6971	-17.86	0	-41.00	-	-141.4	-23.3	-0.831	-45.55 N	-0.001	0	-36.12	-46.52	10.213	20.033	10.601	0	0	-18.43	38.2	-2.331	0	0
46	-21.12	0	26,585	40.203	-11.00	0		15.402	-141.4	-14.88	-0.631	-40.74	7.0769	15.234	-5,339	16.48	0	-18.58	27,444	0	-12.95	-10.43	30.2	-6.11	-1.135	-93,12
47		5.4664		40.203	0	0		0	-	-14.00	-62.51		0.0103	0.234	-5.555	-1.817		19,696		-20.12		-42.96	-83.39	-0.11	-1.133	-8.153
41	0	2.4004	3.2001			0			171.71	- 0	-02.31	00.20				-1.011		20.000		-20.72		42.00	-00.00		0	-0.150

Figure 14Eigen-features after 1st iteration

Final Outputs

```
=== Run information ===
Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.1 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a
Relation: Gray-scale-weka.filters.unsupervised.attribute.Remove-R902
Instances: 399
Attributes: 901
      [list of attributes omitted]
Test mode: split 87.7192% train, remainder test
=== Classifier model (full training set) ===
Sigmoid Node 0
 Inputs Weights
 Threshold -0.09490865734031084
 Node 2 0.14818311915070986
 Node 3 0.018729851748495358
 Node 4 0.03225384668880823
 Node 5 0.022720351737986262
 Node 6 -0.15492152915700544
 Node 7 0.05014992454608578
 Node 8 0.3126208310026657
 Node 9 0.2388507661097142
 Node 10 0.27086860287727477
```

Figure 15Grey-scaleFinalResult

```
=== Evaluation on test split ===
Time taken to test model on test split: 0.19 seconds
=== Summary ===
Correctly Classified Instances 43
Incorrectly Classified Instances 4
                                         91.4894 %
                                         8.5106 %
Kappa statistic
                      0.8259
                            0.1049
Mean absolute error
Root mean squared error
                              0.281
                            21.0526 %
Relative absolute error
Root relative squared error
                            56.3984 %
Total Number of Instances
                              47
Ignored Class Unknown Instances
=== Detailed Accuracy By Class ===
        TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
        0.900 \quad 0.074 \quad 0.900 \quad 0.900 \quad 0.826 \quad 0.945 \quad 0.900 \quad \mathsf{M}
        0.926  0.100  0.926  0.926  0.926  0.826  0.934  0.954  F
Weighted Avg. 0.915 0.089 0.915 0.915 0.915 0.826 0.939 0.931
=== Confusion Matrix ===
 a b <-- classified as
 18 2| a = M
 2 25 | b = F
            Figure 16Grey-scaleFinalResult
=== Run information ===
          weka.classifiers.functions.MultilayerPerceptron -L 0.1 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a
Relation: FinalEigenFeatureCalculation-weka.filters.unsupervised.attribute.Remove-R434
Instances: 399
Attributes: 433
       [list of attributes omitted]
Test mode: split 87.719% train, remainder test
=== Classifier model (full training set) ===
Sigmoid Node 0
  Inputs Weights
  Threshold -0.020434351780357417
  Node 2 0.6571838247531887
  Node 3 0.5819344505076769
  Node 4 0.2174799145524463
  Node 5 1.305555837950704
  Node 6 -0.31011320219488153
  Node 7 0.38081572834554456
  Node 8 0.20144694083063233
  Node 9 0.34981146745230507
  Node 10 -0 769778673667367
```

Figure 17Eigen-featureFinalResult

```
=== Evaluation on test split ===
Time taken to test model on test split: 0.03 seconds
=== Summary ===
Correctly Classified Instances 35 74.4681 % Incorrectly Classified Instances 12 25.5319 %
Kappa statistic 0.4778
Mean absolute error 0.2699
Root mean squared error 0.4878
Relative absolute error 54.1926 %
Root relative squared error 97.912 %
Total Number of Instances 47
Ignored Class Unknown Instances
=== Detailed Accuracy By Class ===
       TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
      Weighted Avg. 0.745 0.267 0.745 0.745 0.745 0.478 0.812 0.800
=== Confusion Matrix ===
 a b <-- classified as
14 6| a=M
 621|b=F
         Figure 18Eigen-featuresFinalResult
Code
Pre-processor.py
#Before starting change the filename in matlab script
#Also make changes wherever mentioned
#import tkinter as tk
#tkinter to get the image files
#from tkinter import filedialog
from Tkinter import *
from tkFileDialog import *
from matlab.engine import * #matlab import
import openpyxl
#Getting the file path
print("Enter the Image file to be worked on")
root = Tk()
root.withdraw()
file_path = askopenfilename()
print("the file selected is ",file_path)
```

#Using matlab functions on the file path for resizing to

#the size required that is 30X30

```
eng=start_matlab()
eng.preprocessormatlabcode(nargout=0)
#Now converting the 30X30 matrix to 1X900
excel_document = openpyxl.load_workbook('testdata-ko.xlsx')
print (type(excel document))
sheet = excel_document.get_sheet_by_name('Sheet1')
multiple_cells = sheet['A1':'AD30']
Value=''
for row in multiple_cells:
  for cell in row:
    actual=str(cell.value)
     Value=Value+actual+' '
RetrievedValues=Value.split(' ');
print(RetrievedValues)
excel_document=openpyxl.load_workbook('testdata-1M.xlsx')
sheet = excel_document.get_sheet_by_name('Sheet1')
multiple_cells = sheet['A400':'AHP400']
                                                #Here
k=1
for row in multiple_cells:
  for cell in row:
    cell.value=int(RetrievedValues[k])
    k=k+1
#observationgot=input('Training image no. is m or f')
                                                  #Here
#sheet[AHQ3].value=observationgot
excel_document.save(filename='testdata-1M.xlsx')
print("All done")
pcapart-2.py
#To get the eigenvectors and eigenvalues from the training data
#Make changes as mentioned
import numpy as np
import openpyxl
from matlab.engine import *
import csv
#To find mean of all the values
excel_document=openpyxl.load_workbook('testdata-1M.xlsx')#Make change here
sheet = excel_document.get_sheet_by_name('Sheet1')
```

```
multiple_cells = sheet['A1':'AHP1']
Value=''
for row in multiple_cells:
  for cell in row:
    Value=Value+cell.column+' '
RetrievedColumnValues=Value.split(' ')
multiple_cells=sheet['A404':'AHP404']#Make change here
k=1
for row in multiple_cells:
  for cell in row:
    FValue=str(RetrievedColumnValues[k])
    Fvalue1=FValue+'1'
    Fvalue2=FValue+'399' #Make change here
    cell.value='=AVERAGE('+Fvalue1+':'+Fvalue2+')'
    k=k+1
excel_document.save(filename='testdata-1M.xlsx')#Make change here
print('Done.Now manually paste ')
#Manually paste values after this from original excel sheet to new1 excel
#sheet
#To find the difference between mean and the other values
excel_document=openpyxl.load_workbook('new1.xlsx')#Make change here
sheet = excel_document.get_sheet_by_name('Sheet1')
Value=' '
multiple_cells=sheet['A404':'AHP404']
for row in multiple_cells:
  for cell in row:
    Value=Value+str(cell.value)+' '
RetrievedValues=Value.split(' ')
RetrievedValues.pop()
RetrievedValues.pop(0)
print(RetrievedValues)
k=0
Val=' '
multiple_cells=sheet["A1:AHP399"] #Make changes here
```

```
for row in multiple_cells:
  for cell in row:
    x=float(RetrievedValues[k])-cell.value
    Val=Val+str(x)+''
    k=k+1
  FinalVal=Val.split(' ')
  row=cell.row
  newrow=row+410 #Make change here
  newinitial='A'+str(newrow)
  newfinal='AHP'+str(newrow)
  multiple_cells=sheet[newinitial:newfinal]
  1=1
  for row in multiple_cells:
    for cell in row:
       cell.value=FinalVal[1]
       1=1+1
  k=0
  Val=' '
excel_document.save(filename='new1.xlsx')
f1=open('EigenProjects.csv','ab')
writer=csv.writer(f1)
#listofzeroes=[0]*30
#maximum=listofzeroes
maximum=np.zeros((30L,))
listofzeroes=np.zeros((30L,))
#To convert the 1X900 to 30X30
eng=start_matlab()
excel_document=openpyxl.load_workbook('new1.xlsx')#Make change here
sheet = excel_document.get_sheet_by_name('Sheet1')
multiple_cells=sheet['A411':'AHP809'] #Make changes here
for row in multiple_cells:
  k=0
  Value=' '
  for cell in row:
    Value=Value+str(cell.value)+' '
```

```
k=k+1
    if k = 30:
       Value=Value+';'+' '
       k=0
  ReshapedValues=Value.split(' ')
  ReshapedValues.pop()
  ReshapedValues.pop(0)
  for i in range(len(ReshapedValues) - 1, -1, -1):
  # iterate over reversed indices's
    if ReshapedValues[i] == ';':
       del ReshapedValues[i]
  #print(ReshapedValues)
  \#x = np.array(ReshapedValues, dtype='|S4')
  \#ReshapedValues = x.astype(np.float)
  a = np.array(ReshapedValues)
  a[a == "] = 0.0
  ReshapedValues = a.astype(np.float)
  print(ReshapedValues)
  #a=np.reshape(ReshapedValues,(30,30))
  a=np.array(ReshapedValues)
  a.resize((30,30))
  #print(a.shape)
  #data=np.array(a).astype(np.float)
  data=np.matrix(a).astype(np.float)
  b=np.cov(data)
  e,w=np.linalg.eig(b)
  #print(e.shape)
  #b=np.array(e)
  \#b.resize((30,1))
  #print(b.shape)
  #if np.all(np.asarray(e) > np.asarray(listofzeroes)):
  if np.all(np.matrix(e) > np.matrix(listofzeroes)):
    maximum=e
    vector=w
#print('Finalllly!!!')
#print(maximum)
#print(w.shape)
#c=np.array(maximum)
\#c.resize((30,1))
#print(c.shape)
```

```
count=0
multiple_cells=sheet['A411':'AHP809'] #Make changes here
for row in multiple_cells:
  k=0
  Value=' '
  for cell in row:
    Value=Value+str(cell.value)+' '
    k=k+1
    if k = 30:
       Value=Value+';'+' '
       k=0
  count=count+1
  ReshapedValues=Value.split(' ')
  ReshapedValues.pop()
  ReshapedValues.pop(0)
  for i in range(len(ReshapedValues) - 1, -1, -1):
  # iterate over reversed indices's
    if ReshapedValues[i] == ';':
       del ReshapedValues[i]
  #print(ReshapedValues)
  \#x = np.array(ReshapedValues, dtype='|S4')
  #ReshapedValues = x.astype(np.float)
  a = np.array(ReshapedValues)
  a[a == "] = 0.0
  ReshapedValues = a.astype(np.float)
  #a=np.reshape(ReshapedValues,(30,30))
  a=np.array(ReshapedValues)
  a.resize((30,30))
  #print(a.shape)
  #final=(np.array(a).astype(np.float))*(np.array(maximum).astype(np.float))
  final=np.dot(a,w)
  #print(final.shape)
  #print("Say Hi to new feature vectors")
  #print(final)
  b=np.array(final)
  b.resize((1,900))
  for values in b:
```

```
writer.writerow(values)
f1.close()
Genetic.py
from __future__ import division
import openpyxl
import random
import csv
import numpy as np
from openpyxl import Workbook
from openpyxl.styles import Color, PatternFill, Font, Border
from openpyxl.styles import colors
from openpyxl.cell import Cell
#Saving genetic data
excel_document=openpyxl.load_workbook('geneticdata.xlsx')
sheet = excel_document.get_sheet_by_name('Sheet1')
multiple_cells = sheet['A1':'AHP399']
for row in multiple cells:
  for cell in row:
    cell.value=random.randint(0,1)
excel_document.save(filename='geneticdata.xlsx')
print('Genetic Data for the images have been saved')
#Multiplying the genetic data with the eigen projects to get the eigen features for SVM training
#Multiply two xlsx files not csv files becoz openpyxl does not support it.
#change name of sheet from finalEigenProjects to sheet1
excel_document=openpyxl.load_workbook('geneticdata.xlsx')
sheet = excel_document.get_sheet_by_name('Sheet1')
multiple_cells = sheet['A1':'AHP399']
excel_document=openpyxl.load_workbook('AccordingToFeatures3.xlsx')#InitialDif
sheet1 = excel_document.get_sheet_by_name('Sheet2')
sheet2 = excel_document.get_sheet_by_name('Sheet3')
sheet3=excel_document.get_sheet_by_name('Sheet4')
```

```
k=0
value1=' '
multiple_cells=sheet1['A1':'PP399']#Original:AHP399
for row in multiple_cells:
  for cell in row:
     value1=value1+str(cell.value)+''
     k=k+1
multiple_cellss=sheet2['A1':'PP399']#Original:AHP399
k=0
value2=' '
for row in multiple_cellss:
  for cell in row:
     value2=value2+str(cell.value)+''
     k=k+1
RetrievedValues1=value1.split(' ')
RetrievedValues1.pop()
RetrievedValues1.pop(0)
a = np.array(RetrievedValues1)
a[a == "] = 0.0
ReshapedValues1 = a.astype(np.float)
RetrievedValues2=value2.split(' ')
RetrievedValues2.pop()
RetrievedValues2.pop(0)
a = np.array(RetrievedValues2)
a[a == "] = 0.0
ReshapedValues2 = a.astype(np.float)
k=0
multiple_cells=sheet3['A1':'PP399']#Original:AHP399
for row in multiple_cells:
  for cell in row:
     cell.value=ReshapedValues1[k]*ReshapedValues2[k]
     k=k+1
print('done!')
excel_document.save(filename='AccordingToFeatures3.xlsx')
```

```
#SVM Training done!
#Now move on to genetic algorithm
#First iteration fitness values < 0.22 selected
a = 0.9
b = 0.1
SG=900
k=0
AR=0.78
FG=0
excel_document=openpyxl.load_workbook('AccordingToFeatures3.xlsx')
sheet = excel_document.get_sheet_by_name('Sheet5')
multiple_cells = sheet['A1':'OI432']
1=0
#for iteration in range(1,5):
#Removing ones with low fitness function
count=0
fitness=[]
wipeout=[]
for rows in multiple_cells:
  for cell in rows:
    if type(cell.value)=='Nonetype':
       continue
    if cell.value==1:
       FG=FG+1
  fitness.append(a*(1-AR)+b*(FG/SG))
  print(a*(1-AR)+b*(FG/SG))
  FG=0
for index, item in enumerate(fitness):
              if item<0.219:#0.22
                count=count+1
              elif item>0.219:#0.22
                 wipeout.append(index+1)
print(count)
```

```
for values in wipeout:
              part1='A'+str(values)
              part2='OI'+str(values)
              multiple_cells=sheet[part1:part2]
              for rows in multiple cells:
                             for cell in rows:
                                           cell.value=None
excel_document.save(filename='AccordingToFeatures.xlsx')
#Crossover operation
#Selecting Parents
a = 0.9
b = 0.1
SG=900
k=0
AR=0.78
FG=0
fitty=0.0
indices=[]
excel_document=openpyxl.load_workbook('AccordingToFeatures3.xlsx')
sheet = excel_document.get_sheet_by_name('Sheet1')
multiple_cells = sheet['A1':'OI900']
count=0
fitness=[]
wipeout=[]
for rows in multiple_cells:
  count=count+1
  for cell in rows:
       if cell.value==1:
         FG=FG+1
  if FG!=0:
     indices.append(cell.row)
     fitness.append(a*(1-AR)+b*(FG/SG))
  FG=0
print(min(fitness))
print(indices)
k=0
```

```
#columns specify each and every iteration
excel_document=openpyxl.load_workbook('FittingFunctionValues.xlsx')
sheet = excel_document.get_sheet_by_name('Sheet1')
multiple_cells=sheet['A1':'A423']
for values in indices:
  sheet['A'+str(values)]=fitness[k]
  k=k+1
excel_document.save(filename='FittingFunctionValues.xlsx')
#Mark the parents in the FittingFunctionValues excel file
excel_document=openpyxl.load_workbook('FittingFunctionValues.xlsx')
sheet = excel_document.get_sheet_by_name('Sheet1')
multiple_cells = sheet['A1':'A900']
Crossoverparents=[]
flag=[0]*20
for rows in multiple_cells:
  for cell in rows:
    if cell.value < 0.218 and cell.value!=None:
       Crossoverparents.append(cell.row)
       cell.font = Font(color=colors.RED, italic=True)
excel_document.save(filename='FittingFunctionValues.xlsx')
print(Crossoverparents)
excel_document=openpyxl.load_workbook('AccordingToFeatures3.xlsx')
k=0
sheet = excel_document.get_sheet_by_name('Sheet1')
1=0
index=0
count=902
while index!=18:
```

values=' '

```
value12=' '
firstparent='A'+str(Crossoverparents[index])
half1='HO'+str(Crossoverparents[index])
multiple_cells1=sheet[firstparent:half1]
for rows in multiple cells1:
  for cell in rows:
    value12=value12+str(cell.value)+''
ReshapedValues=value12.split(' ')
ReshapedValues.pop()
ReshapedValues.pop(0)
firstparent='A'+str(count)
first_half='HO'+str(count)
multiple_cells_Final=sheet[firstparent:first_half]
k=0
for rows in multiple_cells_Final:
  for cell in rows:
    cell.value=int(ReshapedValues[k])
    k=k+1
k=0
secondparent='OI'+str(Crossoverparents[index+1])
half2='HP'+str(Crossoverparents[index+1])
multiple_cells2=sheet[half2:secondparent]
for rows in multiple cells2:
  for cell in rows:
    values=values+str(cell.value)+' '
ReshapedValues=values.split(' ')
ReshapedValues.pop()
ReshapedValues.pop(0)
print(ReshapedValues)
secondparent='HP'+str(count)
second_half='OI'+str(count)
multiple_cells_Final=sheet[secondparent:second_half]
k=0
for rows in multiple_cells_Final:
  for cell in rows:
    cell.value=int(ReshapedValues[k])
    k=k+1
k=0
```

```
count=count+1
    index=index+2
excel_document.save(filename='AccordingToFeatures3.xlsx')
#Mutation Operation
excel_document=openpyxl.load_workbook('AccordingToFeatures3.xlsx')
sheet = excel_document.get_sheet_by_name('Sheet1')
k=0
count2=902
index=0
count=0
while index!=18:
  startingindex='A'+str(count2)
  endingindex='OI'+ str(count2)
  multiple_cells=sheet[startingindex:endingindex]
  for rows in multiple_cells:
    for cell in rows:
       if cell.value==1 and count==0:
         print(cell.column)
         cell.value=0
         count=1
  index=index+2
  count=0
  count2=count2+1
excel_document.save(filename='AccordingToFeatures3.xlsx')
#Now delete the unwanted rows in genetic data and eigen projects
#multiply both and train through the back propogation neural network
parameters=[]
excel_document=openpyxl.load_workbook('AccordingToFeatures3.xlsx')#FinalEigenFeature
Calculation
sheet = excel_document.get_sheet_by_name('Sheet2')
sheet2 = excel_document.get_sheet_by_name('Sheet3')
multiple_cells=sheet['A1':'AHP399']
count=0
for rows in multiple_cells:
  for cell in rows:
    if cell.value==None:
```

```
parameters.append(cell.column)
break
print(parameters)

for letter in parameters:
    start=letter+str(1)
    end=letter+str(399)
    multiple_cells=sheet2[start:end]
    for rows in multiple_cells:
        for cell in rows:
        cell.value=None
excel_document.save(filename='AccordingToFeatures3.xlsx')#FinalEigenFeatureCalculation
```

PROJECT DETAILS

Student Details													
Student Name	Sahil Ajmera												
Register Number	130905324	Section / Roll No	B/24										
Email Address	sahilajmera18@gmail.com	Phone No (M)	9663575836										
Project Details													
Project Title Real-time Gender Recognition based on selection of Eigen-													
	features from Facial Image	es											
Project Duration 4 months Date of reporting 10 th January,2017													
Organization Details													
Organization Name Manipal Institute Of Technology													
Full postal address	Manipal Institute Of Techno	logy,Manipal											
with pin code	Pin:576104												
Internal Guide Details													
Faculty Name	Dr. N V Subba Reddy												
Full contact address													
with pin code Manipal – 576 104 (Karnataka State), INDIA													
Email address	• • •												