

Modèle scalaire des ondes lumineuses

«It appears, from all that precedes, reasonably certain that if there be any relative motion between the earth and the luminiferous ether, it must be small; quite small enough entirely to refute Fresnel's explanation of aberration.»

ALBERT ABRAHAM MICHELSON (1853-1931)

Plan du cours

I	Pro	opagation de la lumière dans l'approximation de l'optique géométrique	3
	I.1	Formulation des ondes lumineuses - surface d'onde	3
		a - Rappels essentiels : ondes 1D - terme de retard	3
		b - La lumière est une onde électromagnétique!!! - Une des expériences de Wiener	4
		c - Onde électromagnétique progressive harmonique - surface d'onde $\ \ldots \ \ldots \ \ldots$	5
		d - Abandon du caractère vectoriel de la lumière : le modèle scalaire de la lumière -	
		condition de validité	8
	I.2	Approximation de l'optique géométrique - rayons lumineux	10
		a - Condition de validité à partir de l'optique ondulatoire : le problème de la diffraction	10
		b - Condition de validité à partir de la théorie quantique	11
		${\bf c}$ - Rayons lumineux- synthèse des visions géométrique et ondulatoire de la lumière $$	11
II	Pro	ppagation et chemin optique	12
	II.1	Chemin optique : définition et signification physique	12
	II.2	Ecriture des ondes avec le chemin optique	14
		a - Cas d'une onde de forme quel conque en milieu non homogène $(n \neq Cste)$	14
		b - Cas d'une onde sphérique en milieu d'indice homogène $(n=Cste)$	14
		c - Retour sur la surface d'onde \hdots	14
	II.3	Théorème de Malus-Dupin	15
		a - Enoncá	15

		b - Exemple de la lentille convergente - stationnarité du chemin optique entre deux	
		points conjugués	15
		c - Exemple de la réflexion et de la réfraction	16
	II.4	L'onde sphérique à grande distance : vers l'onde plane \hdots	16
ш	Mod	lèles de sources lumineuses - propriétés	19
	III.1	Rappel : domaine spectral du rayonnement visible	19
	III.2	Sources thermiques : la lampe à incandescence	19
	III.3	Sources de raies : lampes spectrales	20
	III.4	Source quasi-monochromatique : le L.A.S.E.R.	22
	III.5	Relation "temps-fréquence" : lien avec la largeur spectrale en longueur d'onde	23
	III.6	Bilan : modélisation finale d'un train d'onde loin de la source	24
IV	Déte	ection de l'intensité lumineuse	24
	IV.1	Définition de l'intensité lumineuse	24
	IV.2	Détection et valeurs moyennes d'intensité - problème du temps de réponse	25
	IV.3	Retour sur la notation complexe - utilité	27

Loi de Planck : Densité volumique spectrale du rayonnement $u_{\lambda} = \frac{du_{em}}{d\lambda}$

