概率论与数理统计频率与概率

主讲人: 曾华琳

信息科学与技术学院

研究随机现象,不仅关心 试验中会出现哪些事件,更重 要的是想知道事件出现的可能 性大小,也就是事件的概率。

- 概率是随机事件发生可能性 大小的度量。
- · 事件发生的可能性越大,概率就越大!

一、频率的定义

島 频率

设在 n 次重复试验中,事件A出现了 n_A 次,则称 n_A 为事件 A 在 n 次试验中出现的频数,比值为 n_A/n 事件 A 在 n 次试验中出现的频率,记为 $f_n(A)$,即

$$f_n(A) = \frac{\mu}{n}$$

Q

频率所具有的三个性质

- (1) $0 \le f(a) \le 1$;
- (2) f(s)=1;
- (3) 设 $A_1, A_2, ..., A_k$ 是两两互斥事件, 则 $f(A_1 + A_2 + ... + A_k) = f(A_1) + f(A_2) + ... + f(A_k)$

抛掷钱币试验记录

试验者	抛币次数n	"正面向上"次数	频率f _n (A)
De Morgan	2084	1064	0.518
Bufen	4040	2048	0.5069
Pearson	12000	6019	0.5016
Pearson	24000	12012	0.5005

从上表中可以看出,出现{正面向上} $f_n(A)$ 的频率虽然随n的不同而变动,但是总的趋势是随着试验次数的增加而逐渐稳定在0.5这个数值上。

一、频率的定义

概率的统计定义

在不变的一组条件下进行大量的重复试验,随机事件A出现的频率 $\frac{\mu}{n}$ 会稳定地在某个固定的数值 p 的附近摆动,我们称这个稳定值为随机事件A的概率,即P(A) = p。

概率的公理化定义

设 E 是随机试验, S 是它的样本空间, 对于 E 的每一个事件 A 赋予一个实数 P(A), 称之为事件A的概率, 如果它满足下列三个条件

- (1) P(A) ≥ 0; (非负性)
- (2) P(S) = 1; (规范性)
- (3) 对于两两互斥事件 $A_1, A_2, ...$,有

$$P(A_1+A_2+...) = P(A_1)+P(A_2)+...;$$

(可列可加性)

由概率的公理化定义可推得概率的下列性质

1 性质1 $P(\varnothing)=0$.

证 因为 Ø=Ø+Ø+…+Ø+…

设由于上式右端可列个事件两两互斥,故由概率公理化定义的可列可加性,有

$$P(\varnothing) = P(\varnothing + \varnothing + \cdots + \varnothing + \cdots) = P(\varnothing) + P(\varnothing) + \cdots + P(\varnothing) + \cdots$$

再由概率的非负性可得,

$$P(\varnothing)=0$$
.

性质2 设有限个事件 $A_1, A_2, ..., A_n$ 两两互斥,则 $P(A_1 + A_2 + \cdots + A_n) = P(A_1) + P(A_2) + \cdots + P(A_n).$

证 因为 $A_1 + A_2 + \dots + A_n = A_1 + A_2 + \dots + A_n + \emptyset + \emptyset + \dots$

所以由可列可加及性质1,有

$$P(A_1 + A_2 + \dots + A_n) = P(A_1 + A_2 + \dots + A_n + \varnothing + \varnothing + \dots)$$

$$= P(A_1) + P(A_2) + \dots + P(A_n) + P(\varnothing) + P(\varnothing) + \dots$$

$$= P(A_1) + P(A_2) + \dots + P(A_n) + 0 + 0 + \dots$$

$$= P(A_1) + P(A_2) + \dots + P(A_n).$$

性质 3 对于任何事件 A ,有 $P(\bar{A})=1-P(A)$.

证 因为
$$A \cup \overline{A} = S$$
, 且 $A\overline{A} = \emptyset$.

所以
$$P(A \cup \overline{A}) = P(S) = 1$$
.

并且
$$P(A \cup \overline{A}) = P(A) + P(\overline{A})$$

由以上两式可得,
$$P(A)+P(\overline{A})=1$$

即
$$P(\overline{A}) = 1 - P(A)$$
.

4 性质 4

设A、B 为两事件,且 $A \supset B$,则 P(A-B) = P(A) - P(B)

并且 $P(A) \ge P(B)$.

证 如图,因为 $A \supset B$,

所以
$$A = B + (A - B)$$

并且
$$B(A-B)=\emptyset$$

 $A \supset B$

4 性质 4

于是由性质 2,可得
$$P(A)=P(B)+P(A-B)$$
 也即 $P(A-B)=P(A)-P(B)$,

又由概率的非负性,有
$$P(A-B)=P(A)-P(B) \ge 0$$

$$\mathbb{P}(A) \geq P(B).$$

5 性质 5 对于任一事件 A ,都有 $P(A) \le 1$.

证 因为对于任一事件 A,都有 $A \subset \Omega$ 故由性质 4,可得

$$P(A) \leq P(\Omega) = 1$$
.

6 性质 6 设 A, B 为任意两个事件,则 P(A∪B)=P(A)+P(B)-P(AB)

证 如图所示,

$$A \cup B = A + (B - AB)$$

而且 $A(B-AB)=\emptyset$

所以
$$P(A \cup B) = P(A) + P(B - AB) = P(A) + P(B) - P(AB)$$
.

由此性质还可推得

$$P(A \cup B) \leq P(A) + P(B)$$
.

推广:

$P(A \cup B \cup C)$

$$= P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)$$

$$P(A \cup B \cup C \cup D) = P(A) + P(B) + P(C) + P(D)$$

$$-P(AB)-P(AC)-P(AD)-P(BC)-P(BD)-P(CD)$$

$$+P(ABC)+P(ABD)+P(BCD)+P(ACD)-P(ABCD)$$

推广:

$$P\left(igcup\limits_{i=1}^{n}A_{i}
ight)$$

$$= \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i, j \le n} P(A_i A_j)$$

$$+\sum_{1\leq i,j,k\leq n}P(A_iA_jA_k)$$

$$-\ldots+\left(-1\right)^{n-1}P(A_1A_2\ldots A_n)$$

例1 设A、B为两个随机事件,且已知 $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{2}$,就下列三种情况求概率 $P(B\overline{A})$.

(1)
$$A = B = \mathbb{R}$$
; (2) $A \subset B$; (3) $P(AB) = \frac{1}{9}$.

解 (1) 由于 A、 B 互斥 ,所以 $B \subset \overline{A}$

于是
$$B\overline{A} = B$$

所以
$$P(B\overline{A}) = P(B) = \frac{1}{2}$$
.

A、B 互斥

(2) 因为 $A \subset B$,所以

$$P(B\overline{A}) = P(B - A) = P(B) - P(A)$$
$$= \frac{1}{2} - \frac{1}{4} = \frac{1}{4}.$$

(3)
$$P(B\overline{A}) = P(B - AB)$$

= $P(B) - P(AB) = \frac{1}{2} - \frac{1}{9} = \frac{7}{18}$.

$$= P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)$$

$$=3\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+0 = \frac{5}{8}.$$

$$= P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)$$

1	1	1		1	0	0
4	$\frac{1}{4}$	$\frac{\overline{4}}{4}$	U	8	0	U

例2 设 A、 B、 C 是三事件,且 $P(A) = P(B) = P(C) = \frac{1}{4}$, $P(AB) = P(BC) = 0, \ P(AC) = \frac{1}{8} . 求 A . B . C 至少有一个发生的 概率。$

$$\begin{aligned}
&\text{fill} \quad P(A \cup B \cup C) \\
&= P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC) \\
&= 3 \cdot \frac{1}{4} - 0 - \frac{1}{8} - 0 + 0 = \frac{5}{8} .
\end{aligned}$$

谢 谢 大家