УДК 662.7: 662.6/.9

INFLUENCE OF TEMPERATURE OF LIQUID HYDROCARBONS ON CHANGING PRESSURE IN THE HEAT EXCHANGER TUBE

Исмаилов Ойбек Юлибоевич

доктор философии (PhD) по техническим наукам, старший научный сотрудник, Институт общей и неорганической химии Академии наук Республики Узбекистан ismoilovnmpi@mail.ru

Аннотация. В статье приведены результаты исследование влияние температуры нагревания нефти, газового конденсата и их смесей на перепад давления в горизонтальной трубе. При низких температурах сырья величина ΔP трубы имеет максимальное значение. Дальнейшее повышение температуры приводит к снижению вязкости сырья, соответственно, и падению ΔP в горизонтальной трубе до минимума.

Ключевые слова: нефть, газовый конденсат, температура, вязкость, скорость потока, трубопровод, перепад давления.

Ismailov Oybek Yuliboyevich

Doctor of Philosophy (PhD)
in Technical Sciences,
Senior Research fellow,
Institute of General and inorganic chemistry
of the Academy of Sciences of Uzbekistan
ismoilovnmpi@mail.ru

Annotation. The article presents the results of the study of the influence of the heating temperature of oil, gas condensate and their mixtures on the pressure drop in a horizontal pipe. At low raw material temperatures, the value of the ΔP pipe has the maximum value. Further increase in temperature leads to a decrease in the viscosity of the raw material, respectively, and a drop in the ΔP in the horizontal pipe to a minimum.

Keywords: oil, gas condensate, temperature, viscosity, flow rate, pipeline, pressure drop.

Вижение жидкости по трубопроводам зависит от многих факторов, в том числе плотности и вязкости. Эти параметры напрямую связаны с температурой жидкости [1]. При перекачке нефти насосами скорость ее течения по трубопроводам и трубкам теплообменников определяется главным образом вязкостью. С повышением температуры плотность и вязкость углеводородного сырья уменьшается, что приводит к понижению ΔP_n трубопровода. По этой причине, для выбора энергетически рациональных гидродинамических режимов движения сырья в трубах необходимо всестороннее изучение влияния температуры перекачиваемой нефти, газового конденсата и их смесей на величину ΔP_n горизонтальной трубы [2]. Это позволит в дальнейшем повысить достоверность расчетов процессов и аппаратов для тепловой обработки сырья углеводородными теплоносителями.

Исходя из указанной выше цели, нами собрано экспериментальная установка для изучения влияния температуры нефти, газового конденсата и их смесей на перепад давления ΔP_n (Па) в горизонтальной трубе при 20, 50, 100, 150, 200 и 250 °C и при скорости сырья 0,5 ÷ 1,6 м/с [3].

Исследование выполнено для сравнительного анализа значений потери напора (перепада давления) ΔP_n в горизонтальной трубе при движении по ней потока углеводородного сырья, определяемые путем расчета по известной методике [4].

Как отмечено выше, при движении реальной жидкости в трубопроводе происходит потеря напора ΔP_n , которая складывается из сопротивления трения ее о стенки трубы и местных сопротивлений, возникающих при изменении направления или скорости потока. С изменением скорости течения жидкости в трубопроводах также изменяется и ее давление.

Потери напора в горизонтальной трубе ΔP_n складывается из потерь напора на трение (сопротивления движению) $\Delta P_{\tau D}$ на ее прямой участок и на преодоление местных сопротивлений ΔP_{MC} [5]:

$$\Delta P_{\Pi} = \lambda \left(v^2 \rho / 2 \right) \cdot \left(L_{OGUL} / d_9 \right) + \sum_{i=1}^{n} \xi_i \rho v^2 / 2 , \qquad (1)$$

где λ — коэффициент внутреннего трения; υ — средняя скорость потока сырья, м/с; ρ — плотность сырья, кг/м³; $L_{\text{общ}}$ — общая длина трубы; d_{3} — эквивалентный (внутренний) диаметр трубы, м. Численные значения местных сопротивлений ξ_{i} , по тракту движения нефтегазоконденсатных смесей в горизонтальной трубе имеют место следующие сопротивления— вход в трубу с острыми краями (ξ_{1} = 0,5), выход из трубы с острыми краями (ξ_{2} = 1,0) и шероховатость трубы с незначительной коррозией (ξ_{3} = 0,2).

На рисунках 1 и 2 изображены кривые изменения ΔP_n по длине опытной трубы в зависимости от температуры нефти, газового конденсата и их смесей (80 %H + 20 %ГK, 60 %H + 40 %ГK, 40 %H + 60 %ГK и 20 %H + 80 %ГK), протекающих со скоростью 0,53, и 1,59 м/с.

Рисунок 1 – Влияние температуры нефти, газового конденсата и их смесей на перепад давления в горизонтальной трубе при скорости потока 0,531 м/с

Рисунок 2 – Влияние температуры нефти, газового конденсата и их смесей на перепад давления в горизонтальной трубе при скорости потока 1,59 м/с

Характер распределения кривых $\Delta P_n = f(t)$ на рисунках 1 и 2 позволяет сделать следующие обобщенные выводы. При постоянной скорости потока сырья величина перепада давления в трубе зависит от его температуры. При низких температурах сырья величина ΔP трубы имеет максимальное значение. Дальнейшее повышение температуры приводит к снижению вязкости сырья, соответственно, и падению ΔP в горизонтальной трубе до минимума. При этом взаимное расположения кривых ΔP определяется величиной вязкости углеводородного сырья. Для перекачки нефти, имеющую высокую вязкость, потребуется повышенный перепад давления ΔP в концевых участках трубы и поэтому соответствующая ей кривая $\Delta P = f(t)$ расположена на самой верхней части рисунка. Вязкость газового конденсата намного меньше, чем вязкость нефти. Поэтому кривая зависимости $\Delta P = f(t)$, относящаяся к газовому конденсату, располагается на самой нижней части рисунка.

Таким образом, величина перепада давления при движении нефти по внутренней поверхности горизонтальной трубы теплообменных аппаратов с повышением температуры сырья от 20 до 250 °C уменьшается 1,35 раза, а для газового конденсата в 1,28 раза, за счёт снижения вязкости сырья с по-

вышением скорости. При этом уменьшается термическое сопротивление во внутренних поверхностях труб теплообменных аппаратов, повысить эффективность теплообмена и увеличить коэффициент полезного действия теплообменного аппарата.

Литература:

- 1. Технология переработки нефти. Часть первая. Первичная переработка нефти / О.Ф. Глаголева [и др.]; Под ред. О.Ф. Глаголевой и В.М. Капустина. М.: Химия, КолосС, 2006. С. 314–319.
- 2. Исмаилов О.Ю. Определение эффективности процесса нагревания нефти в трубчатом теплообменнике // Научно-практическая конференция «Нефтегазопереработка – 2012». 21 мая 2012 г. – УФА. – С. 298–299.
- 3. Исмаилов О.Ю. Расчет гидравлического сопротивлений в горизонтальной трубе // Узбекский химический журнал. Ташкент, 2013. № 6. С. 73–75.
- 4. Химия нефти. Руководство к лабораторным занятиям : учебное пособие для вузов / И.Н. Дияров [и др.]. Л. : Химия, 1990. 240 с.
- 5. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии : учебное пособие для вузов / Под ред. П.Г. Романкова. 10-е изд., перераб. и доп. Л. : Химия, 1987. 578 с.

References:

- 1. Technology of oil processing. Part one. Primary oil processing / O.F. Glagoleva [et al.]; Under edition of O.F. Glagoleva and V.M. Kapustin. M.: Chemistry, KolosS, 2006. P. 314–319.
- 2. Ismailov O.Yu. Definition of efficiency of process of heating of oil in the tubular heat exchanger // Scientific and practical conference «Oil and gas processing 2012». May 21, 2012. UFA. P. 298–299.
- 3. Ismailov O.Yu. Calculation of hydraulic resistance in a horizontal pipe // Uzbek Chemical Journal. Tashkent, 2013. № 6. P. 73–75.
- 4. Chemistry of oil. Guidebook for the laboratory lessons : a textbook for higher education institutions / I.N. Di-yarov [et al.]. L. : Chemistry, 1990. 240 p.
- 5. Pavlov K.F., Romankov P.G., Noskov A.A. Examples and problems on the course of processes and apparatuses of chemical technology: a textbook for universities / Edited by P.G. Romankov. 10th ed., transcript and additional. L.: Chemistry, 1987. 578 p.