

## What is Machine Learning?

Learning = Improving with experience at some task

- Improve at task T
- With respect to performance measure P
- Based on experience E



### Why is it cool now?

- Tons of data with advent of internet
- Increased computational power
- Progress in algorithms and related theory
- Support and interest from industries



# **Types of Learning**

**Unsupervised Learning:** K-means clustering example





# **Types of Learning**

**Supervised Learning:** Decision Trees (Decision to play tennis)





### **Types of Machine Learning Tasks**

- Regression: predict a real value.
- Classification: predict a class a data point belongs to.



# **Linear Regression (Supervised)**

- Predict height (y-axis) given age (x-axis)
- $(1/n)\sum(y y')^2$  Mean Square Error.
  - y is actual value (label)
  - o y' is value predicted by model
- $y' = w_0 + w_{age}^* age$ 
  - o w<sub>0</sub>,w<sub>age</sub> are the **weights**
  - age is the only feature
- We minimize MSE to get the weights (**model**)





# **Linear Regression (Examples & Instances)**

Training Examples

| Age | Weight |
|-----|--------|
| 2   | 8      |
| 1   | 5      |
| 7   | 23     |
| 5   | 17     |

**Testing Examples** 

| Age | Weight |
|-----|--------|
| 3   | 12     |
| 8   | 25     |

**Prediction Instances** 

| Age | Weight |
|-----|--------|
| 4   | ?      |
| 6   | ?      |



#### **Mean Square Error**

- Two approaches to minimizing mean square error:
  - Analytically: set derivatives with respect to the weights to zero and solve the resulting equations
  - Gradient Descent:
    - Gradient is direction of steepest increase of a function
    - By going in opposite direction we reach the minima
    - Global minima requires function to be convex; MSE is convex



## Loss(/Objective/Cost) Function And Maximum Likelihood

- MSE is a loss function we are trying to minimize
- Sometimes also referred to as the objective or cost function
- Likelihood:
  - Conditional probability: P(A|B) probability of A given B
  - As per Bayes' theorem:
    - P(model|data) **P(data|model)** \* P (model)
  - Likelihood: what model maximizes the probability of the data seen?
- Maximum Likelihood Estimation: When minimizing MSE, we maximizing likelihood corresponding to likelihood.
- In general:
  - Likelihood e-k(Loss)



# **Overfitting vs Underfitting**





### Regularization

#### Dimension Reduction of Feature Space with LASSO

Linear Regression Cost function



- Each contour here is a curve of constant error value (eg: MSE value).
- The shaded area is the constraint on the weights.
- The error can't be too small otherwise the constraint is not met.
- L1 (Lasso) causes some weights to drop off.
- L2 (Ridge) causes the weights to become smaller in general.



## Logistic Regression (Supervised, Classification)



- Logistic function gives values between 0 and 1. Can interpret as probability.
- Labels for training are 0 and 1, but the predictions are real values between 0 and
  1.
- We use it so that we can do gradient descent on a continuous and differentiable function for a classification task.



# **Logistic Regression (Contd.)**

- Pretend we are trying to predict whether a child is malnourished.
- Logistic function:  $y = 1/(1 + e^{-J})$  where  $J = w_0 + w_{age}^*$  age  $+ w_{weight}^*$  weight
- Training Data:

| Age | Weight | Malnourished (Label) |
|-----|--------|----------------------|
| 1   | 5      | 0                    |
| 1   | 2      | 1                    |
| 2   | 10     | 0                    |
| 2   | 4      | 1                    |

