2. Problem Statement

In this assignment, students will be using the K-nearest neighbors algorithm to predict how many points NBA players scored in the 2013-2014 season.

A look at the data

Before we dive into the algorithm, let's take a look at our data. Each row in the data contains information on how a player performed in the 2013-2014 NBA season.

Download 'nba_2013.csv' file from this link: https://www.dropbox.com/s/b3nv38jjo5dxcl6/nba_2013.csv?dl=0 (https://www.dropbox.com/s/b3nv38jjo5dxcl6/nba_2013.csv?dl=0)

Here are some selected columns from the data:

- player name of the player
- · pos the position of the player
- g number of games the player was in
- · gs number of games the player started
- · pts total points the player scored

There are many more columns in the data, mostly containing information about average player game performance over the course of the season. See this site for an explanation of the rest of them. We can read our dataset in and figure out which columns are present:

Importing and reading the dataset

```
In [1]: import pandas as pd

#data = pd.read_csv('nba_2013.csv')

#data
nba =''

with open("nba_2013.csv", 'r') as csvfile:
    nba = pd.read_csv(csvfile)
```

In [2]: nba

Out[2]:

	player	pos	age	bref_team_id	g	gs	mp	fg	fga	fg.	 drb	trb	ast	stl	blk	tov
0	Quincy Acy	SF	23	тот	63	0	847	66	141	0.468	 144	216	28	23	26	30
1	Steven Adams	С	20	OKC	81	20	1197	93	185	0.503	 190	332	43	40	57	71
2	Jeff Adrien	PF	27	ТОТ	53	12	961	143	275	0.520	 204	306	38	24	36	39
3	Arron Afflalo	SG	28	ORL	73	73	2552	464	1011	0.459	 230	262	248	35	3	146
4	Alexis Ajinca	С	25	NOP	56	30	951	136	249	0.546	 183	277	40	23	46	63
5	Cole Aldrich	С	25	NYK	46	2	330	33	61	0.541	 92	129	14	8	30	18
6	LaMarcus Aldridge	PF	28	POR	69	69	2498	652	1423	0.458	 599	765	178	63	68	123
7	Lavoy Allen	PF	24	тот	65	2	1072	134	300	0.447	 192	311	71	24	33	44
8	Ray Allen	SG	38	MIA	73	9	1936	240	543	0.442	 182	205	143	54	8	84
9	Tony Allen	SG	32	MEM	55	28	1278	204	413	0.494	 129	208	94	90	19	90
10	Al-Farouq Aminu	SF	23	NOP	80	65	2045	234	494	0.474	 367	496	114	82	38	88
11	Louis Amundson	PF	31	тот	19	0	185	16	32	0.500	 27	55	6	9	11	14
12	Chris Andersen	С	35	MIA	72	0	1396	177	275	0.644	 250	379	19	32	97	53
13	Alan Anderson	SF	31	BRK	78	26	1773	194	485	0.400	 135	175	81	48	11	62
14	James Anderson	SG	24	PHI	80	62	2309	309	717	0.431	 241	300	149	74	28	106
15	Ryan Anderson	PF	25	NOP	22	14	795	155	354	0.438	 76	142	17	10	7	20
16	Giannis Antetokounmpo	SF	19	MIL	77	23	1897	173	418	0.414	 261	339	150	60	61	122
17	Carmelo Anthony	PF	29	NYK	77	77	2982	743	1643	0.452	 477	622	242	95	51	198
18	Joel Anthony	С	31	тот	33	0	186	12	32	0.375	 23	38	2	3	12	3
19	Pero Antic	PF	31	ATL	50	26	925	123	294	0.418	 152	209	58	19	12	55
20	Trevor Ariza	SF	28	WAS	77	77	2723	389	853	0.456	 376	475	191	126	20	132
21	Hilton Armstrong	С	29	GSW	15	1	97	9	19	0.474	 28	47	5	4	4	6
22	Darrell Arthur	SF	25	DEN	68	1	1161	162	410	0.395	 158	210	61	39	47	58
23	Omer Asik	С	27	HOU	48	19	968	101	190	0.532	 277	378	25	14	37	59
24	D.J. Augustin	PG	26	ТОТ	71	9	1939	298	718	0.415	 115	130	313	53	3	125

	player	pos	age	bref_team_id	g	gs	mp	fg	fga	fg.	 drb	trb	ast	stl	blk	tov
25	Gustavo Ayon	С	28	ATL	26	14	429	52	102	0.510	 83	125	28	25	10	29
26	Jeff Ayres	PF	26	SAS	73	10	952	101	174	0.580	 169	258	60	13	25	63
27	Chris Babb	SG	23	BOS	14	0	132	8	30	0.267	 13	17	3	6	0	3
28	Luke Babbitt	PF	24	NOP	27	2	473	60	154	0.390	 70	88	29	7	11	15
29	Leandro Barbosa	PG	31	РНО	20	0	368	56	131	0.427	 32	37	32	7	4	19
451	John Wall	PG	23	WAS	82	82	2980	579	1337	0.433	 295	333	721	149	40	295
452	Gerald Wallace	SF	31	BOS	58	16	1416	116	230	0.504	 176	212	143	73	14	97
453	Casper Ware	PG	24	PHI	9	0	116	18	42	0.429	 9	9	10	8	0	5
454	C.J. Watson	PG	29	IND	63	5	1193	146	334	0.437	 82	101	107	60	8	60
455	Earl Watson	PG	34	POR	24	0	161	3	11	0.273	 10	15	28	5	1	17
456	Maalik Wayns	PG	22	LAC	2	0	9	1	2	0.500	 2	2	2	2	0	0
457	Martell Webster	SF	27	WAS	78	13	2157	254	587	0.433	 184	222	97	41	15	58
458	David West	PF	33	IND	80	80	2472	458	939	0.488	 422	542	223	61	74	133
459	Russell Westbrook	PG	25	OKC	46	46	1412	346	791	0.437	 208	263	319	88	7	177
460	D.J. White	PF	27	CHA	2	0	10	0	1	0.000	 2	2	0	1	0	0
461	Royce White	PF	22	SAC	3	0	9	0	1	0.000	 0	0	0	0	0	0
462	Deron Williams	PG	29	BRK	64	58	2059	322	716	0.450	 153	168	392	93	13	143
463	Derrick Williams	SF	22	тот	78	15	1820	206	482	0.427	 252	323	56	48	20	76
464	Elliot Williams	SG	24	PHI	67	2	1157	140	337	0.415	 100	130	72	35	3	68
465	Louis Williams	PG	27	ATL	60	7	1445	197	493	0.400	 114	124	210	45	4	92
466	Marvin Williams	PF	27	UTA	66	50	1674	231	526	0.439	 252	334	78	54	31	53
467	Mo Williams	PG	31	POR	74	0	1834	280	672	0.417	 111	153	321	55	10	149
468	Reggie Williams	SF	27	OKC	3	0	17	5	9	0.556	 0	0	1	1	0	2
469	Shawne Williams	PF	27	LAL	36	13	751	73	192	0.380	 142	167	30	19	30	21
470	Jeff Withey	С	23	NOP	58	4	684	69	129	0.535	 101	150	26	15	50	20

	player	pos	age	bref_team_id	g	gs	mp	fg	fga	fg.	 drb	trb	ast	stl	blk	tov
471	Nate Wolters	PG	22	MIL	58	31	1309	170	389	0.437	 116	149	187	35	15	57
472	Metta World Peace	SF	34	NYK	29	1	388	56	141	0.397	 41	59	17	24	8	19
473	Brandan Wright	С	26	DAL	58	0	1077	224	331	0.677	 142	244	31	32	55	35
474	Chris Wright	SF	25	MIL	8	0	126	21	35	0.600	 10	20	5	7	5	5
475	Dorell Wright	SF	28	POR	68	13	984	111	297	0.374	 162	191	64	23	16	39
476	Tony Wroten	SG	20	PHI	72	16	1765	345	808	0.427	 159	228	217	78	16	204
477	Nick Young	SG	28	LAL	64	9	1810	387	889	0.435	 137	166	95	46	12	95
478	Thaddeus Young	PF	25	PHI	79	78	2718	582	1283	0.454	 310	476	182	167	36	165
479	Cody Zeller	С	21	СНА	82	3	1416	172	404	0.426	 235	353	92	40	41	87
480	Tyler Zeller	С	24	CLE	70	9	1049	156	290	0.538	 179	282	36	18	38	60

481 rows × 31 columns

```
In [3]: # The names of all the columns in the data.
print(nba.columns.values)
```

```
['player' 'pos' 'age' 'bref_team_id' 'g' 'gs' 'mp' 'fg' 'fga' 'fg.' 'x3p'
'x3pa' 'x3p.' 'x2p' 'x2pa' 'x2p.' 'efg.' 'ft' 'fta' 'ft.' 'orb' 'drb'
'trb' 'ast' 'stl' 'blk' 'tov' 'pf' 'pts' 'season' 'season_end']
```

Euclidean distance

We can use the principle of euclidean distance to find the most similar NBA players to Lebron James.

gs 77 mр 2902 767 fg 1353 fga 0.567 fg. 116 х3р 306 х3ра 0.379085 х3р. 651 x2p 1047 x2pa 0.621777 x2p. efg. 0.61 ft 439 fta 585 0.75 ft. orb 81 452 drb trb 533 ast 488 stl 121 blk 26 tov 270 рf 126 2089 pts 2013-2014 season 2013 season_end Name: 225, dtype: object

```
In [5]: import math
        def euclidean_distance(row):
            A simple euclidean distance function
            inner_value = 0
            for k in distance_columns:
                 inner_value += (row[k] - selected_player[k]) ** 2
             return math.sqrt(inner_value)
        # Find the distance from each player in the dataset to lebron.
        lebron_distance = nba.apply(euclidean_distance, axis=1)
        lebron_distance
Out[5]: 0
               3475.792868
        1
                        NaN
        2
                        NaN
        3
               1189.554979
        4
               3216.773098
        5
                        NaN
        6
                960.443178
        7
               3131.071083
        8
               2326.129199
        9
               2806.955657
        10
               2277.933945
        11
                        NaN
        12
               2819.058890
        13
               2534.074598
        14
               1970.085795
        15
               3262.065464
        16
               2451.378405
```

485.856006

3246.515831 1539.172839

2969.043638

2023.603985

3754.041967

3835.882699

716.243023

2996.450583

4135.156714

3023.456473

4138.570811

2206.524879

1347.758158

2136.309449

1922.713718

2364.771676 3033.755934

2625.998112

2495.296784 2232.354830

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

17 18

19

20 21

22 23 24

25

26

27

28

29

451

452

453

454

455

456

457 458

459

460

461

462 463

464 465

466

467

```
468
               NaN
469
       3525.434026
470
       3574.911070
471
       2873.509019
472
       3831.629171
473
               NaN
474
       4124.384593
475
       3230.143973
476
       1948.158130
477
       1851.909840
478
       949.668916
479
       2699.963932
       3075.753429
480
Length: 481, dtype: float64
```

Normalizing columns

Once you have multiple columns, one column may have larger impact than that of others columns becoz of its value, and thus dwarf the impact of racing_stripes values in the euclidean distance calculations.

This can be bad, because a variable having larger values doesn't necessarily make it better at predicting what rows are similar.

A simple way to deal with this is to normalize all the columns to have a mean of 0, and a standard deviation of 1. This will ensure that no single column has a dominant impact on the euclidean distance calculations.

To set the mean to 0, we have to find the mean of a column, then subtract the mean from every value in the column. To set the standard deviation to 1, we divide every value in the column by the standard deviation. The formula is $\frac{x-\frac{x-\mu}{s}}{1}$

```
In [6]:
    # Select only the numeric columns from the NBA dataset
    nba_numeric = nba[distance_columns]

# Normalize all of the numeric columns
    nba_normalized = (nba_numeric - nba_numeric.mean()) / nba_numeric.std()
```

Finding the nearest neighbor

We now know enough to find the nearest neighbor of a given row in the NBA dataset. We can use the distance.euclidean function from scipy.spatial, a much faster way to calculate euclidean distance.

```
In [7]: from scipy.spatial import distance
        # Fill in NA values in nba_normalized
        nba_normalized.fillna(0, inplace=True)
        # Find the normalized vector for lebron james.
        lebron_normalized = nba_normalized[nba["player"] == "LeBron James"]
        # Find the distance between lebron james and everyone else.
        euclidean_distances = nba_normalized.apply(lambda row: distance.euclidean(row, lebron_normal
        # Create a new dataframe with distances.
        distance_frame = pd.DataFrame(data={"dist": euclidean_distances, "idx": euclidean_distances.
        distance_frame.sort_values("dist", inplace=True)
        print(distance_frame)
        # Find the most similar player to lebron (the lowest distance to lebron is lebron, the secon
        second_smallest = distance_frame.iloc[1]["idx"]
        most_similar_to_lebron = nba.loc[int(second_smallest)]["player"]
        print(most_similar_to_lebron)
                 dist idx
             0.000000 225
        225
        17
             4.171854
                       17
        136
             4.206786 136
        128 4.382582 128
             4.489928 185
        185
             4.619280 133
        133
             4.673849 123
        123
        162
             4.844802 162
        332
             4.893563 332
        451 4.937466 451
        160
             4.938801 160
             5.084443 179
        179
        423
              5.305866 423
        218
             5.476262 218
        197
             5.542109 197
        307
             5.546064 307
        416
             5.604720 416
             5.628071 277
        277
        110
             5.724909 110
        272
             5.927671 272
        85
              6.012417
                       85
        450
             6.094992 450
        278
             6.104387 278
        99
              6.171672
                       99
        253
             6.221577 253
        478
             6.254191 478
        347
             6.309149 347
             6.313540 177
        177
             6.362956 345
        345
              6.473960
        3
                         3
        . .
                       . . .
        263 15.560209 263
        455 15.610856 455
        308 15.658503 308
        108 15.667851 108
        356 15.715293 356
        134 15.735660 134
        53
            15.736456
                       53
        425 15.750488 425
        404 15.850572 404
```

```
431 15.889840 431
222 15.959102 222
327 16.065221 327
321 16.201575 321
324 16.223200 324
424 16.397847 424
224 16.410734 224
339 16.562235 339
271 16.594910 271
63
   16.700647 63
226 16.815931 226
46 16.861441 46
109 16.893370 109
460 18.235339 460
190 18.269501 190
461 18.306939 461
219 18.398069 219
388 18.421438 388
210 18.474774 210
351 18.846871 351
240 18.971483 240
[481 rows x 2 columns]
Carmelo Anthony
```

Generating training and testing sets

Now that we know how to find the nearest neighbors, we can make predictions on a test set. We'll try to predict how many points a player scored using the 5 closest neighbors. We'll find neighbors by using all the numeric columns in the dataset to generate similarity scores.

First, we have to generate test and train sets. In order to do this, we'll use random sampling. We'll randomly shuffle the index of the nba dataframe, and then pick rows using the randomly shuffled values.

If we didn't do this, we'd end up predicting and training on the same data set, which would overfit. We could do cross validation also, which would be slightly better, but slightly more complex.

```
In [8]: import random
    from numpy.random import permutation

# Randomly shuffle the index of nba.
    random_indices = permutation(nba.index)

# Set a cutoff for how many items we want in the test set (in this case 1/3 of the items)
    test_cutoff = math.floor(len(nba)/3)

# Generate the test set by taking the first 1/3 of the randomly shuffled indices.
    test = nba.loc[random_indices[1:test_cutoff]]

# Generate the train set with the rest of the data.
    train = nba.loc[random_indices[test_cutoff:]]
```

Using sklearn for k nearest neighbors

Sklearn performs the normalization and distance finding automatically, and lets us specify how many neighbors we want to look at.

```
final_columnns = ['age', 'g', 'gs', 'mp', 'fg', 'fga', 'fg.', 'x3p', 'x3pa', 'x3p.', 'x2p',
         # The columns that we will be making predictions with.
         x_columns = ['age', 'g', 'gs', 'mp', 'fg', 'fga', 'fg.', 'x3p', 'x3pa', 'x3p.', 'x2p', 'x2pa
         # The column that we want to predict.
         y column = ["pts"]
In [10]: | final_train = train[final_columnns]
         #final_train
         final_test = test[final_columnns]
In [11]: | # Finding the persent of rows having atleast onw NaN value - Data Preprocessing
         print('Training Data === ', final_train[final_columnns].isnull().T.any().T.sum()*100/final_t
         print('Test Data === ', final test[final columnns].isnull().T.any().T.sum()*100/final test[f
         Training Data === 14.330218068535826 %
         Test Data === 20.12578616352201 %
In [12]: # Deleting NaN Rows from the dataset - Data Preprocessing
         final train.dropna( axis=0, inplace = True)
         final_test.dropna( axis=0, inplace = True)
         C:\Users\prashant_gupta1\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykernel_lau
         ncher.py:2: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexin
         g.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.htm
         l#indexing-view-versus-copy)
         C:\Users\prashant gupta1\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykernel lau
         ncher.py:3: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexin
         g.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.htm
         l#indexing-view-versus-copy)
           This is separate from the ipykernel package so we can avoid doing imports until
In [13]: # Reconfirming on NaN
         print('Training Data === ', final_train[final_columnns].isnull().T.any().T.sum()*100/final_t
         print('Test Data === ', final_test[final_columnns].isnull().T.any().T.sum()*100/final_test[f
         Training Data === 0.0 %
         Test Data === 0.0 %
In [14]: | print(final train[x columns].shape)
         print(final train[y column].shape)
         (275, 25)
         (275, 1)
```

In [9]: # Taking only the relevant columns

Out[15]: 127

Computing error

Now that we know our point predictions, we can compute the error involved with our predictions. We can compute mean squared error.

In [16]:	<pre># Get the actual values for the test set. actual = final_test[y_column]</pre>
	<pre># Compute the mean squared error of our predictions. mse = (((predictions - actual) ** 2).sum()) / len(predictions)</pre>
In [17]:	mse
Out[17]:	pts 11371.621417 dtype: float64
In []:	