Practical Cryptographic Systems

Symmetric Cryptography II & Asymmetric Cryptography

Instructor: Matthew Green

Housekeeping

- A2 (part 1) due tonight
- A2 (part 2) out now
- New reading: attacks on RSA paper
 - Dan Boneh
- Late day policy update (A2 and beyond):
 - 3 total late days to be used at discretion
 - Please note these on your assignment!
 - 25% per day late after that

Housekeeping

- Projects
 - I will put up a tentative list on Github and we'll talk Weds about this

News

Review

- Last time:
 - Padding oracles
 - Introduction to algebraic groups
 - Diffie-Hellman (MITM)

Hash Functions

Asymmetric Crypto

- So far we've discussed <u>symmetric</u> crypto
 - Requires both parties to share a key
 - Key distribution is a hard problem!

Key Agreement

Establish a shared key in the presence of a passive adversary

D-H Protocol

Malcolm Williamson in 72

Diffie-Hellman in 76

Man in the Middle

Assume an <u>active</u> adversary:

Man in the Middle

- Caused by lack of <u>authentication</u>
 - D-H lets us establish a shared key with anyone...
 but that's the problem...
- Solution: Authenticate the remote party

Preventing MITM

- Verify key via separate channel
- Password-based authentication
- Authentication via PKI

Public Key Encryption

- What if our recipient is offline?
 - Key agreement protocols are interac
 - e.g., want to send an email

Ellis in 72, Cocks a few months later

Public Key Encryption

RSA Cryptosystem

Key Generation

Choose large primes: p, q

$$N = p \cdot q$$

$$\phi(N) = (p-1)(q-1)$$

Choose:

$$e : gcd(e, \phi(N)) = 1$$

 $d: ed \ mod \ \phi(N) = 1$

Output:

$$pk = (e, N)$$
$$sk = d$$

Encryption

$$c = m^e \mod N$$

Decryption

$$m = c^d \mod N$$

"Textbook RSA"

- In practice, we don't use Textbook RSA
 - Fully deterministic (not semantically secure)
 - Malleable

$$c' = c \cdot x^e \mod N$$
$$c'^d = (m^e \cdot x^e)^d = m \cdot x \mod N$$

- Might be partially invertible
- -Coppersmith's attack: recover part of plaintext (when m and e are small)

RSA Padding

- Early solution (RSA PKCS #1 v1.5):
 - Add "padding" to the message before encryption
 - Includes randomness
 - Defined structure to mitigate malleability
 - PKCS #1 v1.5 badly broken (Bleichenbacher)

At least 8 bytes

0x00 0x02

Random Padding

0x00

Message

~ 1024 bits (128 bytes)

RSA Padding

- Better solution (RSA-OAEP):
 - G and H are hash functions

Efficiency

	Cycles/Byte		
AES (128 bit key)	18		
DES (56 bit key)	51		
RSA (1024 bit key) <u>Encryption</u>	1,016		
RSA (1024 bit key) <u>Decryption</u>	21,719		

 $m^e \mod N$ e = 65, 537 $m^d \mod N$

Benchmarks from: http://www.cryptopp.com/benchmarks.html
Microsoft Visual C++, Windows XP, Intel Core 2 1.83Mhz in 32-bit mode

Hybrid Encryption

- Mixed Approach
 - Use PK encryption to encrypt a symmetric key
 - Use (fast) symmetric encryption on data

$$k \leftarrow \{0,1\}^k$$

$$C_k \leftarrow RSA.Encrypt_{pk}(k)$$

$$C_m \leftarrow AES.Encrypt_k(message)$$

Key Strength

ı	Level	Protection	Symmetric	Asymmetric	Discrete Logarithm	CAULVE	Hash
					Key Group		
	1	Attacks in "real-time" by individuals Only acceptable for authentication tag size	32	-		-	-
	2	Very short-term protection against small organizations Should not be used for confidentiality in new systems	64	816	128 816	128	128
	3	Short-term protection against medium organizations, medium-term protection against small organizations	72	1008	144 1008	144	144
	4	Very short-term protection against agencies, long-term protection against small organizations Smallest general-purpose level, Use of 2-key 3DES restricted to 240 plaintext/ciphertexts, protection from 2009 to 2011	80	1248	160 1248	160	160
	5	Legacy standard level Use of 2-key 3DES restricted to 10 ⁶ plaintext/ciphertexts, protection from 2009 to 2018	96	1776	192 1776	192	192
	6	Medium-term protection Use of 3-key 3DES, protection from 2009 to 2028	112	2432	224 2432	224	224
	7	Long-term protection Generic application-independent recommendation, protection from 2009 to 2038	128	3248	256 3248	256	256
	8	"Foreseeable future" Good protection against quantum computers	256	15424	512 15424	512	512

Digital Signatures

- Similar to MACs, with public keys
 - Secret key used to sign data
 - Public key can verify signature
 - Advantages over MACs?

Preventing MitM

Assume an <u>active</u> adversary:

PKI & Certificates

- How do I know to trust your public key?
 - Put it into a file with some other info, and get someone else to sign it!

Next Time

- Protocols & Implementation
- Reading!
- A2 coming up this week