Find effective set and minimize combination variance Find best sharpe (Revenue-Risk Balance Point) Find least risk combination

In [49]:

```
import os
import pandas as pd
import numpy as np
import statsmodels.api as sm
import scipy.stats as scs
import matplotlib.pyplot as plt
```

In [50]:

In [51]:

```
# Retrieve Stock Data and show some
path = r'Stock'

stock = get_stock(path) #['0066.HK', '0168.HK', '0857.HK']
data = get_price(stock, path)
data.pop("Date")
data.head()
```

Out[51]:

	0003.HK	0857.HK	1398.HK	0941.HK	0066.HK	1093.HK	2319.HK	0914.HK	19
2015- 01-02	11.0276	8.69	5.77	91.400002	31.900000	6.68	16.025000	29.299999	37.7
2015- 01-05	10.9034	8.74	5.80	90.099998	31.799999	6.64	15.825000	29.100000	37.2
2015- 01-06	10.7916	8.53	5.71	88.750000	31.500000	6.68	15.800000	28.700001	35.9
2015- 01-07	10.8289	8.57	5.75	91.750000	31.700001	6.78	16.075001	28.450001	37.0
2015- 01-08	11.0151	8.78	5.72	93.599998	32.250000	6.65	16.400000	28.900000	37.

In [74]:

```
(data/data.iloc[0]*100).plot(figsize = (15,6))
plt.legend(loc="best")
plt.show()
```


In [53]:

```
#252 Transaction days, find annualized return
returns = np.log(data / data.shift(1))
returns.mean()*252
```

Out[53]:

```
0003.HK
           0.073939
0857.HK
          -0.147476
1398.HK
          -0.008100
0941.HK
          -0.049353
0066.HK
           0.065385
1093.HK
           0.134354
2319.HK
           0.107453
0914.HK
           0.066450
1928.HK
          -0.024156
0168.HK
          -0.129502
0386.HK
          -0.029747
0753.HK
           0.021490
0270.HK
           0.105492
2202.HK
           0.084119
1929.HK
          -0.124777
          -0.154745
0151.HK
0700.HK
           0.261655
2318.HK
           0.130187
0175.HK
           0.442833
1128.HK
          -0.053414
dtype: float64
```

In [54]:

```
# The pandas built-in method was used to produce covariance matrix.
returns.cov()*252
```

Out[54]:

	0003.HK	0857.HK	1398.HK	0941.HK	0066.HK	1093.HK	2319.HK	0914.HK	19
0003.HK	0.019415	0.017116	0.015154	0.012105	0.011385	0.009075	0.014628	0.016774	0.0
0857.HK	0.017116	0.089435	0.040225	0.029142	0.017801	0.032332	0.033477	0.047736	0.0
1398.HK	0.015154	0.040225	0.059317	0.025538	0.015556	0.028855	0.031927	0.045126	0.0
0941.HK	0.012105	0.029142	0.025538	0.047088	0.014122	0.019612	0.020039	0.028875	0.0
0066.HK	0.011385	0.017801	0.015556	0.014122	0.031273	0.012482	0.017253	0.018127	0.0
1093.HK	0.009075	0.032332	0.028855	0.019612	0.012482	0.133557	0.044666	0.041707	0.0
2319.HK	0.014628	0.033477	0.031927	0.020039	0.017253	0.044666	0.123800	0.041932	0.0
0914.HK	0.016774	0.047736	0.045126	0.028875	0.018127	0.041707	0.041932	0.135082	0.0
1928.HK	0.017709	0.043038	0.036131	0.025802	0.017559	0.034523	0.045251	0.050477	0.1
0168.HK	0.011251	0.030711	0.028002	0.018826	0.011907	0.041708	0.042455	0.037999	0.0
0386.HK	0.017308	0.067765	0.040032	0.027177	0.017559	0.029584	0.034153	0.048153	0.0
0753.HK	0.014990	0.035319	0.044612	0.025217	0.020698	0.042078	0.043562	0.064953	0.0
0270.HK	0.011602	0.017727	0.017627	0.016303	0.009956	0.017136	0.017263	0.021529	0.0
2202.HK	0.014437	0.041326	0.044026	0.025904	0.015480	0.038544	0.037656	0.062191	0.0
1929.HK	0.009793	0.024592	0.021275	0.014818	0.011219	0.018856	0.027453	0.028336	0.0
0151.HK	0.012339	0.026981	0.022868	0.019035	0.011162	0.026535	0.046447	0.033804	0.0
0700.HK	0.015309	0.039834	0.041999	0.026451	0.018673	0.043803	0.039612	0.046736	0.0
2318.HK	0.014934	0.044501	0.048216	0.029736	0.016784	0.044640	0.038221	0.055252	0.0
0175.HK	0.021279	0.046670	0.050272	0.026162	0.024358	0.063226	0.065041	0.070360	0.0
1128.HK	0.020180	0.045166	0.040467	0.026783	0.020567	0.044003	0.055423	0.057028	0.1

In [55]:

```
#Randomly assign initial weights to different assets
noa = len(stock)
weights = np.random.random(noa)
weights /= np.sum(weights)
weights
```

Out[55]:

```
array([0.06173103, 0.06506785, 0.0407079 , 0.07734746, 0.00800729, 0.05550668, 0.01932473, 0.05843662, 0.09101404, 0.04489076, 0.07341048, 0.03271596, 0.05817184, 0.00363653, 0.07761747, 0.02086835, 0.01047466, 0.05741701, 0.06712808, 0.07652523])
```

```
In [56]:
```

```
#Annualized return on portfolio
np.sum(returns.mean()*weights)*252
```

Out[56]:

0.024652507548896727

In [57]:

```
# combination variance
np.dot(weights.T, np.dot(returns.cov()*252,weights))
```

Out[57]:

0.0395664559842615

In [58]:

```
# Combined standard deviation
np.sqrt(np.dot(weights.T, np.dot(returns.cov()* 252,weights)))
```

Out[58]:

0.19891318705470862

In [59]:

```
# Through a Monte Carlo simulation, a large number of random weight vectors are
 generated and the expected returns and variances of random combinations are rec
orded.
port returns = []
port variance = []
for p in range(4000):
    weights = np.random.random(noa)
    weights /=np.sum(weights)
    port returns.append(np.sum(returns.mean()*252*weights))
    port_variance.append(np.sqrt(np.dot(weights.T, np.dot(returns.cov()*252, wei
ghts))))
port_returns = np.array(port_returns)
port variance = np.array(port variance)
#The risk-free rate was set at 4%
risk free = 0.04
plt.figure(figsize = (8,4))
plt.scatter(port variance, port returns, c=(port returns-risk free)/port variance
e, marker = 'o')
plt.grid(True)
plt.xlabel('excepted volatility')
plt.ylabel('expected return')
plt.colorbar(label = 'Sharpe ratio')
plt.show()
```


In [60]:

```
# Portfolio Optimization 1 -- SHARPE maximizes
# Create statistics function to record important portfolio statistics (returns,
variance and # Sharpe ratio)
# By solving the constrained optimal problem, the optimal solution is obtained.
 Where the constraint is that the sum of the weights is 1.
def statistics(weights):
   weights = np.array(weights)
   port returns = np.sum(returns.mean()*weights)*252
   port variance = np.sqrt(np.dot(weights.T, np.dot(returns.cov()*252, weights
)))
   return np.array([port returns, port variance, port returns/port variance])
#The derivation of portfolio optimization is a constrained optimization problem
import scipy.optimize as sco
#Minimize the negative of the Sharpe index
def min_sharpe(weights):
   return -statistics(weights)[2]
#The constraint is that the sum of all the parameters (weights) is 1. This can b
e expressed in the terms minimize function
cons = (\{'type':'eq', 'fun':lambda x: np.sum(x)-1\})
#We also limit the parameter values (weights) to between 0 and 1. These values a
re provided to the minimization function in the form of a tuple consisting of se
veral tuples
bnds = tuple((0,1) for x in range(noa))
#The only input ignored in the optimization function call is the start argument
list (the initial guess at the weight). Let's just use the average distributio
opts = sco.minimize(min sharpe, noa*[1./noa,], method = 'SLSQP', bounds = bnds,
constraints = cons)
opts
```

```
Out[601:
```

```
fun: -1.0631670185036584
     jac: array([ 1.59442425e-06, 1.17442892e+00, 6.51948810e-01,
5.71961418e-01,
        4.54854220e-02, 1.49405390e-01, 2.53327101e-01,
                                                         5.0414769
4e-01,
       8.09799790e-01, 1.03651714e+00,
                                        7.15328440e-01,
                                                          6.9401106
2e-01,
       2.40698457e-04, 4.50056776e-01, 8.95425335e-01,
                                                          1.0839755
1e+00,
      -1.01193786e-04, 2.48458147e-01, 7.20918179e-05, 1.1229428
4e+001)
message: 'Optimization terminated successfully'
   nfev: 254
    nit: 12
   niev: 12
  status: 0
 success: True
      x: array([1.89105075e-01, 5.26488575e-16, 3.91125934e-16, 5.1
5538133e-17,
       6.36968776e-17, 0.00000000e+00, 0.0000000e+00, 0.00000000e+0
0,
      2.37399675e-16, 0.00000000e+00, 0.00000000e+00, 1.10968092e-1
6,
      8.19225611e-02, 0.00000000e+00, 3.97360096e-17, 4.29073010e-1
6,
       4.18725214e-01, 0.00000000e+00, 3.10247150e-01, 1.30917412e-1
6])
In [61]:
# The optimal combination weight vector obtained is:
opts['x'].round(3)
Out[61]:
array([0.189, 0. , 0.
                         , 0. , 0. , 0. , 0.
                                                    , 0. , 0.
       0. , 0. , 0. , 0.082, 0. , 0. , 0. , 0.419, 0.
       0.31 , 0. ])
In [62]:
# The three statistics of the largest combination of SHARpe are:
#Expected return, expected volatility, optimal Sharpe index
statistics(opts['x']).round(3)
Out[62]:
```

array([0.27 , 0.254, 1.063])

```
In [63]:
```

```
# Portfolio optimization 2 -- Minimum variance
# The optimal portfolio is selected by means of the minimum variance.
# But let's define a function that minimizes the variance
def min variance(weights):
    return statistics(weights)[1]
optv = sco.minimize(min variance, noa*[1./noa,],method = 'SLSQP', bounds = bnds,
constraints = cons)
optv
Out[63]:
     fun: 0.125399509868879
     jac: array([0.12539308, 0.15437329, 0.13697726, 0.12539728, 0.1
2541872,
       0.12534392, 0.14620494, 0.16079454, 0.1586436 , 0.12544857,
       0.15410297, 0.15560894, 0.12561048, 0.14048347, 0.12528692,
       0.12497845, 0.15167208, 0.14577114, 0.20072477, 0.18414867)
message: 'Optimization terminated successfully'
    nfev: 273
     nit: 13
    njev: 13
  status: 0
 success: True
       x: array([5.47684825e-01, 0.00000000e+00, 6.07153217e-18, 6.6
7679210e-02,
       2.11856714e-01, 2.51979798e-02, 0.00000000e+00, 0.00000000e+0
0,
       2.91379334e-18, 2.60677862e-02, 1.60597447e-17, 1.32814766e-1
8,
       5.83105257e-02, 0.00000000e+00, 4.67399342e-02, 1.73743143e-0
2,
       0.00000000e+00, 4.24194100e-18, 2.77420231e-17, 0.00000000e+0
0])
In [64]:
# The optimal combination weight vector with the minimum variance and the statis
tical data of the combination are respectively:
optv['x'].round(3)
Out[64]:
array([0.548, 0. , 0. , 0.067, 0.212, 0.025, 0. , 0.
                                                             , 0.
       0.026, 0. , 0. , 0.058, 0. , 0.047, 0.017, 0.
                                                             , 0.
       0. , 0. ])
In [65]:
# The expected yield, volatility and Sharpe index are obtained
statistics(optv['x']).round(3)
Out[65]:
array([0.049, 0.125, 0.388])
```

In [66]:

```
# The effective frontier has the portfolio composition with the minimum variance
under the given target rate of return.
# Two constraints are used in optimization, 1. Given target return rate, 2. Port
folio weight sum is 1.
def min variance(weights):
   return statistics(weights)[1]
# One of the minimized constraints changes with the different target return leve
ls (TARGEt returns) loop.
target returns = np.linspace(0.0,0.5,50)
target_variance = []
for tar in target returns:
   cons = ({'type':'eq','fun':lambda x:statistics(x)[0]-tar},{'type':'eq','fun'
:lambda x:np.sum(x)-1)
   res = sco.minimize(min variance, noa*[1./noa,],method = 'SLSQP', bounds = bn
ds, constraints = cons)
   target variance.append(res['fun'])
target variance = np.array(target variance)
```

The following is a demonstration of the optimal results: Cross: The formed curve is the effective frontier (the optimal portfolio under the target yield rate)

Red Star: Sharpe's largest portfolio

Yellow Star: The portfolio with the least variance

In [67]:

```
plt.figure(figsize = (8,4))
#Circle: A combination of randomly generated distributions in Monte Carlo
plt.scatter(port variance, port returns, c = port returns/port variance, marker =
'o')
#Cross: Effective leading edge
plt.scatter(target variance, target returns, c = target returns/target variance,
marker = 'x')
#Red star: Marked with the highest SHARPE combination
plt.plot(statistics(opts['x'])[1], statistics(opts['x'])[0], 'r*', markersize =
15.0)
#Yellow star: Marks the minimum variance combination
plt.plot(statistics(optv['x'])[1], statistics(optv['x'])[0], 'y*', markersize =
15.0)
plt.grid(True)
plt.xlabel('expected volatility')
plt.ylabel('expected return')
plt.colorbar(label = 'Sharpe ratio')
plt.show()
```


In []: