AFOSR 70-2389TR

AF 61 (052) - 905 SR 11 Technion Research & Development Foundation, Haifa, Israel

20000

SCIENTIFIC REPORT No. 11

RECENT EXPERIMENTAL STUDIES ON THE BUCKLING OF STRINGER-STIFFENED CYLINDRICAL SHELLS

TANCHUM WELLER
JOSEF SINGER
HACHMANI SHIMON

Technion — Israel Institute of Technology
Department of Aeronautical Engineering
Haifa, Israel

TAE REPORT No. 100

'ਹ 'ਨਰ.

SCIENTIFIC REPORT No. 11

RECENT EXPERIMENTAL STUDIES ON THE BUCKLING OF INTEGRALLY STRINGER-STIFFENED CYLINDRICAL SHELLS

by

TANCHUM WELLER JOSEF SINGER SHIMON NACHMANI

Technion - Israel Institute of Technology Department of Aeronautical Engineering, Haifa, Israel.

TAE REPORT No.100

This document has been approved for public release and sale; its distribution is unlimited.

The research reported in this document has been sponsored by the <u>Air Force Office of Scientific Research</u>, through the European Office of Aerospace Research, United States Air Force under Contract AF 61 (052) - 905 and Contract F 61052-69-C-0040.

ABSTRACT

An experimental study of the buckling of closely spaced integrally stringer-stiffened cylindrical shells under axial compression was carried out to determine the influence of stiffener and shell geometry on the applicability of linear theory. 86 shells of different geometries were tested. Agreement between linear theory and experiments was found to be governed primarily by the stringer area parameter (A_1/bh) . Good correlation was obtained in the range $(A_1/bh) > 0.4$. No significant effect of other stiffener and shell parameters on the applicability of linear theory could be discerned for the specimens tested. In addition to the area parameter (A_1/bh) , the inelastic behavior of the shell material was found to have a considerable effect on the "linearity" (ratio of experimental buckling load to the predicted one).

By a conservative structural efficiency criterion all the tested stringerstiffened shells were found to be more efficient than equivalent weight isotropic shells.

A modified "Southwell Slope" method was applied to the test data but did not yield reliable results.

TABLE OF CONTENTS

	Page No.
Abstract	I
Table of Contents	II
List of Symbols	III ~ IV
List of Figures	V = v 1
1. Introduction	1 - 3
2. Theoretical Considerations	4 - 5
3. Structural Efficiency	6 ~ 7
4. Test Set-Up and Procedure	8 - 10
5. Test Specimens	11 - 14
6. Experimental Results and Discussion	15 - 21
References	22 - 27
Tables	28 - 29
Figures	

LIST OF SYMBOLS

b distance between stringers for a cylindrical shell (see Fig. 1).

A₁ cross sectional area of stringers.

c, d the width and height of stringers (see Fig. 1).

D $Eh^3/12(1 - v^2)$.

e₁ eccentricity of stringers (see Fig. 1).

E modulus of elasticity.

G shear modulus.

h thickness of shell.

 $\hat{h}_{e\alpha}$ thickness of equivalent weight shell.

I moment of inertia of stringer cross-section about its centroidal axis.

I torsion constant of stiffener cross section.

K, n material constants.

L length of shell between bulkheads.

 M_{χ} moment resultant acting on element.

 $N_{\chi},\ N_{\chi\dot\varphi}$ — membrane force resultants acting on element.

n number of half axial waves in cylindrical shell.

P_{cl} classical buckling load for isotropic cylinder for "classical" simple supports (S.S.3).

P_{cr} linear theory general instability for stiffened cylinder with "smeared" stiffeners and "Classical" simple supports (S.S.3).

```
P<sub>exp</sub>
            experimental buckling load
            critical buckling load computed by "Southwell Slope" method.
PSouth
            empirical buckling load for isotropic cylindrical shell
PR
            radius of cylindrical shell, (see Fig. 1)
R
            number of circumferential waves
            experimental number of circumferential waves
texp
            non-dimensional displacements,
u, v, w
            u = (u^*/R), v = (v^*/R), w = (w^*/R) (See Fig. 1).
x, z, \phi axial coordinate along a generator, radial and circumferential
            coordinates (see Fig. 1).
            = (1 - v^2)^{1/2} (L/R)^2 (R/h) Batdorf shell parameter.
Z.
           middle surface strains
       1 + (A<sub>1</sub>/bh)
          G<sub>1</sub>I<sub>t1</sub>/bD
n<sub>t.1</sub>
            efficiency defined by Eq. (4).
           =[12(1 - v^2)]^{1/4}[b/2\pi(Rh)^{1/2}] Koiter's measure of total
            curvature.
          = (PR/mD) axial compression parameter for cylindrical shell
λ
            Poisson's ratio
σy 0.1% stress at 0.1% of strain
o<sub>cr</sub>
           critical stress for a stiffened shell = P_{cr}/2\pi Rh[1 + (A_1/bh)]
(o<sub>cr</sub>)<sub>n.p.</sub> critical stress for a narrow panel Ref:[23]
(ocr)c.c. critical stress for a complete unstiffened cylinder
```

LIST OF FIGURES

FIGURE NO.	
1	NOTATION
2	TEST SET UP FOR SHELLS OF LARGE DIAMETER (14")
3	TEST SET UP FOR SHELLS OF SMALL DIAMETER (10")
4	DETAILS OF SPECIMEN SUPPORTS AND END CONDITIONS
5	"LINEARITY" AS A FUNCTION OF STRINGER-AREA PARAMETER. (A ₁ /bh)
6	"LINEARITY" AS A FUNCTION OF STRINGERS SPACING (b/h)
7	"LINEARITY" OF STRINGER-STIFFENED SHELLS AS A FUNCTION OF
	$\left[\frac{(b/h)}{1+(A_1/bh)}\right]$
8	STRESS STRAIN CURVES OF MATERIAL FOR LARGE-DIAMETER AND SMALL-DIAMETER SPECIMENS
9	"LINEARITY" AS A FUNCTION OF STRINGER-AGEA PARAMETER (A ₁ /bh) FOR SHELLS WITH LARGE DIAMETER (14")
10	STRUCTURAL EFFICIENCY OF STRINGER-STIFFENED SHELLS
11	"LINEARITY" OF STRINGER-STIFFENED SHELLS AS A FUNCTION OF BATDORF PARAMETER Z.
12	CORRELATION STUDY OF IMPERFECTION SENSITIVITY DEPENDENCE ON SHELL GEOMETRY PARAMETER Z
13	CIRCUMFERENTIAL AND LONGITUDINAL VARIATION OF SKIN THICKNESS AND STIFFENER HEIGHT.
14	TYPICAL CIRCUMFERENTIAL DISTRIBUTION OF AXIAL STRAIN-INDICATING CIRCUMFERENTIAL LOAD DISTRIBUTION (SHELL 41-L)
15	CRITICAL LOADS FOR SHELLS 12-M-2 AND 15-L OBTAINED BY THE MODIFIED "SOUTHWELL SLOPE METHOD"

LIST OF FIGURES (CONT'D).

FIGURE No.	
16	TYPICAL POST BUCKLING PATTERNS OF SHORT SHELLS (19-S & 22-S)
17	TYPICAL POST BUCKLING PATTERN OF MEDIUM LENGTH SHELLS (35-M1)
18	TYPICAL POST BUCKLING PATTERN OF "LONG" SHELLS (SZ-3 & 17-L)
19	POST BUCKLING PATTERNS OF "TWIN" SHELLS (36-L & 36-S)
20	POST BUCKLING PATTERNS OF "TWIN" SHELLS (40-M & 40-S)

I. INTRODUCTION

In [1] to [9] the stability of stiffened cylindrical and conical shells was studied with a linear theory in which the stiffeners were "smeared" over the entire length of the shell while their eccentricity was accounted for. The adequacy of this linear theory for prediction of the buckling loads was investigated experimentally in [9] for ring-stiffened conical shells under hydrostatic pressure, in [10] and [11] for ring stiffened cylindrical and conical shells under axial compression. A "fair correlation with theory was observed even for relatively light stiffening of the shells. In the tests of [10] and [11] the agreement with linear theory was found to be mainly affected by the stiffener area parameter (A_2/a_0h) , where A_2 is the area of cross section of stiffener, a_0 the distance between stiffeners and h the skin thickness of the shell. In [10] the applicability of linear theory was also studied for experimental results of other investigators [12] to [19].

The present tests of stringer-stiffened shells are a continuation of the earlier work. Since theoretical studies, [16], [20], [21] and [22], indicated that the eccentricity of the applied load may have a significant effect on the buckling loads of stiffened shells, the stringer-stiffened specimens were designed for loading directly through the skin, as was done for the ring-stiffened ones in [10].

In the design of stringer-stiffened cylinders, the local buckling behavior of the panels is as important as that of the sub-shells in the case of ring-stiffened shells [16]. Now for axially compressed cylindrical panels Koiter [23] defined a total curvature parameter $\theta = [12(1-v^2)]^{1/4}[(b/2\pi)(Rh)^{-1/2}]$, which determines whether stable or unstable initial postbuckling behavior is predicted for the panel. A stable postbuckling behavior of the panels should yield higher values of "linearity" - ρ for the stiffened cylinder and hence the applicability of linear theory may depend primarily upon the spacing of stiffeners. Koiter showed that $\theta < 0.64$ is needed for stable postbuckling behavior, but since in [23] only the radial restraint of the stringers was taken into account this value of θ may be considered conservative. One of the aims of the present test program was therefore to study the influence of θ on the "linearity" of the stiffened shell.

The general instability of the stiffened shells was calculated with the "smeared" stiffener theory of [4], which does not consider the discreteness of the stiffeners. This effect was, however, found to be negligible for axially compressed ring and stringer-stiffened cylindrical shells with closely spaced stiffeners (See [24], [25] and [26]).

Since the "linearity" of the shells depends on the influence of the initial imperfections, correlation with the predictions of imperfections sensitivity analysis is of interest. Such studies [27] and [28], predict for stringer-stiffened cylindrical shells increased imperfection sensitivity

for certain geometries. According to these predictions lower values of linearity should be observed in shells with external stringers for small values of Batdorf's geometry parameter $Z = (1 - v^2)^{1/2} (L/R)^2 (R/h)$. The present test program undertook to examine also this prediction by testing specimens with small Z.

Hence the primary purpose of the present test program is a study of the effect of the combined interaction of shell and stiffeners geometry on the adequacy of linear theory in predicting the critical loads. Results of other experimental studies [12] to [15], [17] and [19] are aslo correlated with the present ones. The test results indicate that as for ring-stiffened shells [10] and [11], the dominating stiffener parameter is the area parameter (A_1/bh) . However, the present tests yielded larger scatter in the correlation between theory and experiment than in the ring-stiffened cylinders. For values of $(A_1/bh) > 0.4$ buckling loads of 60 percent and above those predicted by classical linear theory were achieved. Beyond this value of the area parameter a clear trend of "fair" agreement with linear theory was observed and hence, adequacy of linear theory might be justified for shells of such geometries.

No meaningful conclusions could yet be deduced from the study of the influence of the other stiffeners-and shell-parameters. Further studies continue on the effects of variation of shell dimensions, due to systematical errors in the manufacturing process, on inelastic effects (stresses close to the yield strength of the material), as well as on extended shell and stiffener geometries.

2. THEORETICAL CONSIDERATIONS

Stringer-stiffened cylinders may fail under axial compression either in local buckling of the panel between the stringers or by general instability of the stiffened shell as a whole. Axisymmetric buckling modes may occur in general instability, but only for short shells. Hence, this mode of failure has to be considered only for short stringer-stiffened shells or for shells stiffened also with strong rings. Here the "Iongitudinal" - n = 1 asymmetric mode pointed out in [19] is mostly dominant.

The stringers will appreciably affect the local buckling by their restraints and there may be interaction between local and general instability. In an elementary analysis, however, local buckling and general instability are considered separately.

Koiter in [23] studied the buckling and initial post buckling behavior of cylindrical panels for stringers imposing only rotational restraint on the panel. The influence of stiffening of the panel due to narrowness was shown in [10] to be

$$\frac{(\sigma_{cr})_{narrow panel}}{(\sigma_{cr})_{complete unstiffened cylinder}} = (1/2)[(1/0^2) + 0^2]$$
 (1)

where o is defined by

$$\Theta = (1/2 \pi) [12(1 - v^2)]^{1/4} [b/(Rh)^{1/2}]$$

From Koiter's study of the initial post buckling behavior of narrow panels it appears that θ is a suitable parameter for estimation of the expected "linear" behavior of the panels in a stringer-stiffened shell and hence of the stiffened shell. He found that transition from "stable plate type" behavior to "unstable cylindrical shell type" would occur at $\theta \approx 0.64$ for perfect panels. This value, is however, conservative as the torsional constraint was assumed zero. A more precise analysis, which is an extension of [24], is now being carried out at the Technicn.

A linear theory analysis for general instability of stiffened cylindrical shells under axial compression is given in [4]. In the analysis the stiffeners are "smeared" over the entire length of the shell in a manner that accounts for their eccentricity (e/h). In the solution the "classical" simply supported - S.S.3 boundary conditions: $w = M_X = N_X = v = 0$ are solved by a closed form solution and the "classical" clamped R.F.2 boundary conditions: $w = w_{,X} = u = N_{X\phi} = 0$ are solved by first solving the first two stability equations of [1] by the assumed displacements and then solving the third one by the Galerkin method. An improved analysis which considers all possible combinations of the in-plane boundary conditions is now being developed at the Technion.

3. STRUCTURAL EFFICIENCY.

Earlier studies by other investigators and the present one show that shells with closely spaced stiffeners buckle at axial loads very "close" to those predicted by linear theory. From a design point of view, the structural efficiency of a stiffened shell is evaluated by comparison with an unstiffened shell of equal weight, the equivalent unstiffened shell.

Since there are no reliable theoretical estimates for unstiffened cylindrical shells under axial compression, one has to rely on empirical formulae, which show the primary dependence of the buckling coefficient on (R/h) as standards of comparison. A simple formula has been proposed by Pfluger [31] for (R/h) > 200

$$(P_B/P_{ct}) = [1 + \frac{1}{100} (R/h)]^{-1/2}$$
 (2)

where P_{ct} is the "classical" critical axial load given by

$$P_{c1} = [3(1 - v^2)]^{-1/2} 2\pi h^2 E$$
 for $Z > 2.85$

This formula also has the merit of being unconservative for most existing test data as has been shown in [10]. Therefore P_B obtained by (2) is a suitable standard for comparison. Since for the purpose of comparison, the use of Pfluger's formula (2) is conservative, the obtained efficiency is almost noticeably smaller than the actual efficiency of the stiffened shell.

The general instability critical load parameter - λ is computed from Eq. 6 of [4] and the critical general instability load is given by

$$P_{cr} = \lambda \left[\frac{\pi E h^3}{12(1 - v^2)R} \right]$$
 (3)

If the equivalent thickness is given by

$$h_{eq} = h \left[1 + \left(\frac{A_1}{bh}\right)\right]$$

the efficiency - n of the stiffened shell is

$$\eta = \frac{\rho^{P} cr}{(P_{B}) eq} = \frac{\rho \lambda}{8[3(1 - v^{2})]^{1/2}} \frac{\left[\Delta_{S} + \frac{1}{100}(R/h)\right]^{1/2}}{(R/h) (\Delta_{S})^{2.5}}$$
(4)

whei.

$$\Delta_s = 1 + (A_1/bh)$$

4. TEST SET-UP AND PROCEDURE

In the present test program shells with two different radii were examined. One type with a large radius of 7" and the other type with a smaller radius of 5". Therefore two different set-ups were used, as shown in Figs. 2 and 3.

For the shells with the larger radius (7") the load frame of [11] was modified to accommodate the cylindrical shells. The load is applied by a 50000 lbs. hydraulic jack, controlled from an Amsler universal testing machine. The load is transferred to a central shaft with a trust bearing on which the lower supporting disc fits. The upper supporting disc is reacted against a B.L.H. calibrated axial load cell, which is introduced between the disc and the upper part of the frame(different load cells were used, depending upon the predicted buckling load; one of capacity 20000 lbs and the other of 50000 lbs). The load cell records the actual load applied to the specimen and reacts against the center of the upper disc. The guide pin and mating sleeve, used in [11] to ensure concentricity of relative axial motion, were discarded here for the cylindrical shells, since in the present loading setup possible "load sharing" by guide pin (which would increase the apparent buckling load of the shell) was suspected. The only means for axial alignment and proservation of concentricity of the discs is therefore the stiffened shell itself, which however introduces all the axial alignment errors accumulated in the manufacturing process of the specimens.

The specimens of small radius (5") are mounted between the compressing discs and then on the moving table of the "Amsler" universal testing machine. The actual applied load is here directly recorded by the testing machine and hence no load cell is used.

The specimens are not clamped to the supporting discs (Fig. 4). They are just located on the lower disc, which has a very low central location platform with a clearance of about (2h) in its diameter, and the similar top disc is put on top of the specimens. To avoid end moments discussed in [21], [23] and [24], the stringers are cut away at both ends of the specimen (Fig. 4) and the load is introduced into the shell approximately at its midsurface. The present test boundary conditions are therefore between the S.S.3 and S.S.4 boundary conditions (simply supported-

$$w = M_{X} = 0$$

S.S.3: $v = N_{X} = 0$
S.S.4: $u = v = 0$,

probably nearer to S.S.4. The restraint to rotation is very small.

Strain gages were bonded to each specimen. Their number varied from 24 to 48, depending upon the length of the shell. Half of the gages were directed axially and the other half circumferentially. The axial ones served to assure elastic behavior up to buckling and an even distribution of the applied load,

while the circumferential ones were used to detect local bendings. All the gages assisted in detection of incipient buckling. An attempt was also made to obtain Southwell plots from their readings recorded on the B & F multichannel strain plotter, as was done in [10], [11] and [33] to [35]. The circumferential gages proved more useful for this purpose, since they were more "sensitive" to bending strains, while the axial gages exhibited nearly linear behavior up to buckling.

The dimensions of the specimens were carefully measured at many hundreds of points for each shell, prior to each test. In these measurements the emphasis was on the skin rather than on the stiffeners, because the manufacturing process of the shells yielded less precision in the dimensions of the skin than in the stiffeners.

The second and the se

5. TEST SPECIMENS

86 integrally stringer-stiffened shells were investigated in the present test program. The geometry of the shells is defined in Fig. 1 and the dimensions are given in Table 1. The specimens were designed to ensure domination of general instability and elastic buckling.

The specimens were machined from two different shells. The larger shells (14") were made from 25CD-4F steel alloy drawn tubes with mechanical properties similar to AISI 4130. The smaller diameter specimens (10") were made from another alloy steel in a softer condition. The mechanical properties were obtained from measurements on many specimens cut from the shells. In the case of the 14" diameter shells, 8 specimens were cut from the tubes before machining (4 longitudinally and 4 circumferentially) and 16 from the shells after failure. The average measured properties are:

E =
$$2.00 \times 10^4 (kg/mm^2)$$
 (or 29×10^6 psi)
Yield Stress $\sigma_{y_0.1\%}$ = $56 (kg/mm^2)$ or $(78 \times 10^3 \text{ psi})$

In the case of the 10" diameter shells, 12 specimens were cut from the shells after failure. The average measured properties are:

E = 2.00 x
$$10^4 (kg/mm^2)$$
 (or 29 x 10^6 psi)
Yield Stress $\sigma_{y_{0.1\%}}$ = 43 (kg/mm²) or (60 x 10^3 psi)

The machining process of the specimens was divided into stages. In the first stage the internal and external surfaces of the tubes were roughly machined. Then the internal surface was precisely turned to the dimension of the "cooled mandrel", on which it was mounted later for machining of the stiffeners. The dimension of the inside diamter was chosen to give a medium

press fit between the "cooled mandrel" and the mounted blank. The blank was then mounted on the special "cooled mandrel" (see Fig. 5b of [10]).

The mandrel was set between the centers of a lathe and the external surface was turned to the designed outside diameter of the specimen (the difference between the radii of the internal and external surfaces being equal to the height of stringer, (h+d) ±0.010mm. of Fig. 1 measured with reference to the surface of the mandrel). Then the tube was ready for milling of the stringers.

The mandrel was centered on a milling machine in a manner which assured that the ovality: of the mandrel together with the eccentricity of the centers did not exceed 0.005 mm. Milling was only started after such precise centering was achieved. "Special Form Cutters" with a curved cutting profile that fits the space between the stringers were ordered for the milling process. Two types of cutters were used, one of 5 mm. width and the other of 10 mm. width. These two spacings between stringers were one of the manufacturing parameters for obtaining different values of θ. One of the centers on which the mandrel was mounted was fitted into a division head. Using different division discs, different stringer distributions were obtained with the same cutters yielding different θ. Variation of stringer distribution and cutters also changed the area parameters of the shell (A₁/bh).

During machining it was found that the most precise and even distribution of stiffeners is obtained if opposite spaces were cut one after another. Cutting of adjucent spaces was also tried and then avoided, since it caused uneven stringer

distribution as well as variations in skin thickness of the shell. This was the result of local "relief" of the blank from the mandrel due to high local stresses which influenced the fit between the blank and mandrel and hence caused a deeper cut of the cutter. The best results were obtained when the stiffeners were cut in as symmetric a manner as possible.

The depth of cutting, or rather the skin thickness, was carefully controlled during the cutting process by a dial gage with a (1/1000) mm. division, which followed the cutter and measured the thickness relative to the mandrel surface. In spite of this careful control, the precision of skin thickness was not as good as expected, and thickness variations up to 10% of the smaller value were obtained. These variations resulted from accumulating errors of manufacturing such as local "relief" of blank from mandrel under the cutter during the cut and deformation of the frame of the milling machine (which was observed to be of the same magnitude as the allowed tolerances of skin thickness, 3% of nominal).

The aim of the present test program was to study the effect of shell and stiffener geometry on the "linearity". Hence, the shell parameters (R/h), (L/R) and Z as well as the stiffener parameters (e_1/h) , (A_{11}/bh) , (I_{11}/bh^3) and θ had to be varied. Many shell configurations were calculated prior to manufacturing a specimen, checking also the expected stress levels. To assure elastic buckling of the specimens, care was taken that at buckling, stresses should not exceed half the yield strength of the material.

To study the length effect on imperfection sensitivity predicted in [27] and [28], short shells were manufactured. These shells were machined simultaneously with corresponding long shells from one blank. Hence the imperfection sensitivity could be studied by comparison of the "linearity" obtained for the short shell with that obtained for its "twin" long shell of practically identical dimensions and very similar manufacturing imperfections.

6. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental buckling loads are given in Table 2. These loads are compared with the general instability loads for the S.S.3 boundary conditions (also given in Table 2) to obtain the linearity $\rho = (P_{\rm exp}/P_{\rm cr})$. The correlation with linear theory is presented in Fig. 5 versus the area parameter (A₁/bh), in Fig. 6 versus the stringer distribution parameter (b/h) and in Fig. 7 versus a linear combination of these geometrical parameters $[(b/h)/1 + (A_1/bh)]$.

In Fig. 5 considerable experimental scatter can be observed in the low range of $(A_1/bh) < 0.4$. Beyond this value of the area parameter, however, there is a clear trend toward; $\rho = 1$. The large scatter in the range $(A_1/bh) < 0.4$ may be partly due to the difference in the mechanical properties of the material used in the two batches of specimens. It is apparent that the small radius shells (R = 5") yielded lower "linearity" than those with the larger radius (R = 7"), though one would usually expect the influence of imperfections to be more pronounced in the shells with larger (R/h) values (the R = 7" specimens). Hence, attention is drawn to differences in the mechanical properties of the steel tubes, from which the specimens were made. As can be seen in Fig. 8 the stress strain curves of the two steels differ noticeably. Both materials have no well defined yield point, but the proportionality limit of the 10" diameter tubes is much lower than that of the 14" diameter ones and the nonlinearity of the curve of the smaller diameter

tubes is more pronounced. If one represents the two stress-strain curves by the Ramberz-Osgood three parameters representation [36]

$$\varepsilon = (\sigma/E) + K(\sigma/E)^n$$

and computes the material constants K and n from the curves the different material behavior is typified by the exponent n and the constant K. For the 10" diameter tubes n = 4.30 and K = 3.46 \times 10⁸ whereas for the 14" diameter n = 5.80 and $K = 5.52 \times 10^{11}$. As was pointed out recently by Wesenberg and Mayers [37], considerable reduction in load carrying capability due to inelastic behavior may occur in shells made of materials with a low exponent n. Hence the inelastic effects are likely to be significantly larger in the 10" diameter shells than in the 14" diameter ones. Furthermore, since a meaningful correlation with a purely elastic theory requires failure in the proportional range, the low proprtional limit of the small diameter shalls (R = 5") disqualifies many of them (having buckling stresses close to the proportional limit) for the comparison with linear classical elastic instability theory attempted here. Correlation with a maximum strength analysis that includes the inelastic effects, such as [37], should be more fruitful and is planned. It may be noted that when only the results for the larger diameter shells (R = 7") are represented, Fig. 9, the scatter is smaller and the trend of ρ with (A_1/bh) is noticeably clearer.

In Fig. 5 the results were also compared with those obtained by other investigators, [12] to [15], [17] and [19]. It appears that the present results have a slightly higher ρ and similar scatter, except when compared with the results

of [19]. These results, [19], however, should have been correlated with clamped boundary conditions rather than to simply supported ones.

No clear effect of the parameters studied on the linearity can be deduced from Fig. 6 and Fig. 7. However, if the small size specimens, R = 5", are ignored, some trend of ρ with increase of the combined parameters $[(b/h)/1 + [A_1/bh)]$ can be discerned.

In Fig. 10 the structural efficiency n computed with Eq. (4) is given for the test specimens. Except for two specimens the stiffened shells were more efficient than "equivalent weight" isotropic shells (and also the two exceptions had efficiencies very close to 1). If one remembers that these results are obtained by a criterion that favors isotropic shells, since Eq. (2) of [31] represents an upper bound of failure for unstiffened shells, one can conclude that in the range of stiffeners of the present study there is no doubt about the superiority of stiffened shells.

In Fig. 11 the "linearity" ρ of all the speciments is plotted versus the Batdorf parameter Z in order to investigate the range of prominent imperfection sensitivity discussed in [27] and [28]. Fig. 11 does not show a clear Z dependence of the imperfection sensitivity as predicted. Another attempt to verify the prediction of [27] is shown in Fig. 12. Here shells of different length but with similar manufacturing imperfections (specimens cut into various lengths from a longer specimen as discussed in Section 5) are presented as identified groups and are with the Z dependence of imperfection

sensitivity reproduced from Fig. 39 of [27]. The predicted localized increase in imperfection sensitivity is not borne out by the test results.

Figure 13 is a plot of the circumferential and longitudinal variation in skin thickness and stiffener height, measured at many stations, for a typical specimen. The theoretical loads of Table 2 were calculated for the mean values of skin thickness and stringer height. The calculations also predict a number of circumferential waves (t) at the critical load. If the shell is divided circumferentially into 2t panels it can be seen that there exist four panels, located symmetrically along the circumference, which have mean values of skin thickness and stringer height which are considerably smaller than the mean values for the whole shell. This type of thickness variation was observed for all the specimens and hence can be attributed to a systematic error in the manufacturing process (See Section 5). In an attempt to reduce the scatter of the results, it was then tentatively assumed that the shells might fail at critical loads corresponding to the weakest panels rather than at loads corresponding to the mean measured values of the whole shell. The critical loads were then computed for these panels and correlated with the experimental loads. These results were also compared with the results based on the mean values for 20 random shells from the whole population of 86 tested specimens but no significant reduction in scatter of the results was achieved. A further similar study that will include all the tested shells is in progress.

A typical circumferential distribution of the axial applied load for various stages of loading is given in Fig. 14 for a long specimen, shell 41-L. The same gages that yield this distribution are used in the initial alignment of the shells. In spite of great care taken to align the shell slight load asymmetry is apparent and the maximum load non-uniformity is about * 10%. It should be noted however that some of this non-uniformity may be attributed to local thickness variations.

A typical application of the modified Southwell method [33] is shown in Fig. 15. There the critical loads were found by the "slope method" of [33]. The loads obtained by this method for all the specimens to which it could be adopted are given in Table 2 as P_{South}. The critical loads obtained by this method were in most cases below the theoretical ones and in many shells very close to the experimental loads. The values of P_{South}. given in Table 2 are all based on the circumferential strain $\epsilon_{_{\Delta}}$. Similar critical loads were also computed for the longitudinal strain . ϵ_{ν} whenever possible. The axial strains are much less amenable to the Southwell plot and usually yielded higher values of PSouth. Therefore the critical values based on $\epsilon_{\mathbf{r}}$ are not presented in the table. The possibility of actual buckling load prediction with this method based on data from the early loading stages only was studied. However, since data from loading stages near the buckling load appears essential for meaningful calculations and since P_{South}. varies between the experimentally found buckling loads and those predicted for perfect shells, the method in its present form does not qualify as a promising nondestructive test method.

Ì

In Figs. 15 to 20 some typical post-buckling patterns are shown for shells of various lengths. In the case of short shells either diamond shape patterns (shells 22-S and 40-S) or axisymmetric patterns (shells 19-S and 36-S)were obtained. For short shells of the same Z the preferred post-buckling pattern should depend primarily on (R/h) and on the stringer geometry, but no direct correlation could be discerned. For example for the twin shells 36-S and 36-Sl one yielded an axisymmetrical post buckling pattern and one a one-tier diamond pattern. Medium length shells (shells 35-Ml and 36-L) buckled into diamond shape patterns with one tier and the long ones (shells SZ-3, 17-L and 40M) buckled into a diamond pattern with two tiers like shell S7-3 or into rectangular shape patterns with two tiers like shells 17L and 40M.

In Table 2 the calculated critical stresses are also given. For some of the shells these stresses were high compared to yield stress ($\sigma_{0.1}$) of the material. Actually those shells were designed to yield lower stresses, but because of manufacturing errors the dimensions of the skin thickness had to be reduced to obtain a more even thickness distribution. In Table 2 it can be seen that high stresses were not obtained experimentally because failure occurred earlier. Relatively higher stresses were obtained for the smaller diameter shells (R = 5") and the highest stress achieved exceeded 70% of yield for shell 38-S. The actual strain gage readings (taking up to onset of buckling) did not indicate yielding at any of the gages at any of the shell tested.

The effect of stiffening due to narrowness of the panel, Eq. (1), discussed in Section 2 above was calculated for each specimen and given in Table 2. For some shells this effect is weaker than stiffening of the shell (these cases are underlined) and therefore one could conclude that local buckling of the shell between stiffeners should have occurred. No local buckling was, however, observed in any of the tests and the "linearity" obtained for these apparently "locally weak" shells does not deviate from the scatter band of the other shells. The rotational restraint provided by the stringers to the panels, which is not taken into account in the simplified analysis of Eq. (1), partially explains the absence of local buckling.

ACKNOWLEDGEMENT

The authors would like to thank Mrs. A. Harari and Messrs. L. Kuvalsky and P. Tal for assistance with the computations and Messrs. A. Klausner, A. Greenwald, L. Kuvalsky and P. Tal for their assistance during the course of the tests.

REFERENCES

- Baruch, M. and Singer, J., "Effect of Eccentricity of Stiffeners on the General Instability of Stiffened Cylindrical Shells under Hydrostatic Pressure", Journal of Mechanical Engineering Science, Vol. 5, No. 1, pp. 23-27, March 1963.
- 2. Singer, J., Baruch, M. and Harari, O., "Inversion of the Eccentricity Effect in Stiffened Cylindrical Shells under External Pressure", Journal of Mechanical Engineering Sciences, Vol. 8, No. 4, pp.363-373, September 1966. Also TAE Report No. 42 (Revised), Technion Research and Development Foundation, Haifa, Israel, August, 1965.
- 3. Baruch, M., Singer, J. and Weller, T., "Effect of Eccentricity of Stiffeners on the General Instability of Stiffened Cylindrical Shells Under Torsion", Proceedings of the 8th Israel Annual Conference on Aviation and Astronautics, Israel Journal of Technology, Vol. 4, No. 1, pp.141-154, February 1966.
- 4. Singer, J., Baruch, M. and Harari, O., "On the Stability of Eccentrically Stiffened Cylindrical Shells under Axial Compression. International Journal of Solids and Structures, Vol. 3, No. 4, pp. 445-470, July 1967. Also TAE Report No. 44, Technion Research and Development Foundation, Haifa, Israel, December 1965.
- 5. Singer, J. and Baruch, M., "Recent studies on Optimization for Elastic Stability of Cylindrical and Conical Shells", presented at the Royal Aeronautical Society Centenary Congress, London, September 12-16, 1966.

- 6. Baruch, M. and Singer, J., "General Instability of Stiffened Circular Conical Shells under Hydrostatic Pressure, The Aeronautical Quarterly, Vol. 26, Part 2, May 1965, p. 187. Also TAE Report 28, Technion Research and Development Foundation, Haifa, Israel, June 1963.
- 7. Baruch, M., Singer, J. and Harari, O., "General Instability of Conical Shells with non-Uniformly Spaced Stiffeners under Hydrostatic Pressure", Proceedings of the 7th Israel Annual Conference on Aviation and Astronautics, Israel Journal of Technology, Vol. 3, No. 1, pp. 62-71, February 1965.
- 8. Singer, J., Berkovits, A., Weller, T., Ishai, O., Baruch, M. and Harari, O.,
 "Experimental and Theoretical Studies on Buckling of Conical and
 Cylindrical Shells under Combined Loading" TAL Report 48, Technion
 Research and Development Foundation, Haifa, Israel, June 1966.
- 9. Singer, J., Eckstein, A., Fersht-Scher, R., and Berkevits, A., "Buckling of Isotropic, Orthotropic and Ring-Stiffened Conical Shells", TAE

 Report No. 30, Section 1, Technion Research and Development Foundation,

 Haifa, Israel, September 1963.
- 10. Singer, J., "The influence of Stiffened Geometry and Spacing on the Buckling of Axially Compressed Cylindrical and Conical Shells", TAE Report No. 68, Technion Research and Development Foundation, Haifa, Israel, October 1967.
- 11. Weller, T. and Singer, J., "Further Experimental Studies on Buckling of Ring-Stiffened Conical Shells under Axial Compression", TAE Report 70, Technion Research and Development Foundation, Haifa, Israel, October 1967.

- 12. Card, M.F. and Jones, R.M., "Experimental and Theoretical Results for Buckling of Eccentrically Stiffened Cylinders", NASA TND-3639, October, 1966.
- 13. Card, M.F., "Preliminary Results of Compression Tests on Cylinders with Eccentric Longitudinal Stiffeners", NASA TMX-104, September, 1964.
- 14. Peterson, J.P. and Dow, M.B., "Compression Tests on Circular Cylinders Stiffened Longitudinally by Closely Spaced Z-Section Stringers", NASA MEMO 2-12-59L, 1959.
- 15. Katz, L., "Compression Tests on Integrally Stiffened Cylinders" NASA
 TMX-55315, August 1965.
- 16. Almroth, B.O., "Influence of Imperfections and Edge Restraint on the Buckling of Axially Compressed Cylinders", presented at the AIAA/ASME 7th. Structures and Materials Conference, pp. 12-22, Cocoa Beach, Florida, April 18-20, 1966.
- 17. Len'ko O.N., "The Stability of Orthotropic Cylindrical Shells" Raschet
 Prostranstvennykh Konstruktsii, Issue IV, pp.499-524, Moscow 1958,
 Translation NASA TT F-9826, July 1963.

- 18. Midgley, W.R. and Johnson, A.E., "Experimental Buckling of Internal Integral Ring-Stiffened Cylinders", Experimental Mechanics, Vol. 7, No. 4, pp.145-153- April 1967.
- 19. Milligan, R., Gerard, G., Lakshmikantham, C., and Becker, H., "General Instability of Orthotropic Stiffened Cylinders, under Axial Compression"

 AIAA Journal, Vol. 4, No. 11, pp. 1906-1913, November 1966, Also Report AFFDL
 TR-65-161, Air Force Flight Dynamics Laboratory, USAF, Wright Patterson

 Air Force Base, Ohio, July 1965.

- 20. Seggelke, P., and Geier, B., "Das Beulverhalten Versteifter Zylinder-schalen", Zeitschrift für Flugwissenschaften Vol. 15, No. 12, pp. 477-490, December 1967.
- 21.De Luzio, A., Stuhlman, C.E., and Almroth, B.O., "Influence of Stiffener Eccentricity and End Moment on Stability of Cylinders in Compression", AIAA Journal, Vol. 4, No. 5, pp. 872-877, May 1966.
- 22.Block, D.L., "Influence of Prebuckling Deformations, Ring Stiffeners and Load Eccentricity on the Buckling of Stiffened Cylinders", presented at the AIAA/ASME 8th Structures, Structural Dynamics and Materials Conference, Palm Springs, California, March 29-31, 1967.
- 23.Koiter, W.T., "Buckling and Post Buckling Behavior of a Cylindrical Panel under Axial Compression" Report 5, 476, National Luchtvaartlaboratorium,

 Amsterdam, Reports and Transactions, Vol. 20, 1956.
- 24. Singer, J. and Haftka, R. "Buckling of Discretely Ring-Stiffened Cylindrical Shells", TAE Report 67, Technion Research and Development Foundation, Haifa, Israel, August 1967.
- 25.Block, D., "Influence of Discrete Ring Stiffeners and Prebuckling Deformations on the Buckling of Eccentrically Stiffened Orthotropic Cylinder", NASA

 TN D-4283, January 1968.
- 26.Singer, J. and Haftka, R., "Buckling of Discretely Stringer-Stiffened
 Cylindrical Shells and Elastically Restrained Panels and Sub-Shells.

 TAE Report 91, Technion Research and Development Foundation, Haifa,
 Israel, (To be published).

- 27. Hutchinson, J.W. and Amazigo, J.C., "Imperfection-Sensitivity of Eccentrically Stiffened Cylindrical Shells", AIAA Journla, Vol. 5, No. 3, pp.392-401, March 1967.
- 28. Hutchinson, J.W., and Frauenthal, J.C., "Elastic Postbuckling Behavior of Stiffened and Barreled Cylindrical Shells", Report SM-27, Harvard University, Cambridge, Massachusetts, August 1968.
- 29. Lundquist, E.E. and Stowell, E.Z., "Compressive Stress for Flat Rectangular Plates Supported Along all Edges and Elstically Restrained Against Rotation Along the Unloaded Edges", NACA Report 733, 1942.
- 30. Leggett, D.M., "The Buckling of a Long Curved Panel under Axial Compression",
 Reports and Memorandum No. 1899, MInistry of Aviation, ARC 1942.
- 31. Pfluger, A., "Zur praktishen Berechnung der Axial gedruckten Kreizylinderschale" Der Stahlbau, Vol. 32, No. 6, pp.161-165, June 1963.
- 32. Weingarten, V.I., Morgan, E.J., and Seide, P., "Elastic Stability of Thin Walled Cylindrical and Conical Shells under Axial Compression", AIAA Journal, Vol. 3, No. 3, pp.500-505, March 1965.
- 33. Galletly, G.D. and Reynolds, T.E., "A Simple Extension of Southwell's Method for Determining the Elastic General Instability Pressure for Ring-Stiffened Cylinders Subject to External Hydrostatic Pressure, Proceedings of the Society for Experimental Stress Analysis, Vol. 13, No. 2, pp.141-152, 1956.

- 34. Horton, W.H. and Cundari, F.L., "On the Applicability of the Southwell Plot to the Interpretation of Test Data Obtained from Instability Studies of Shell Bodies" SUDAAR No. 290, Department of Aeronautics and Astronautics, Stanford University, August 1966.
- 35. Tenerelli, D.J., and Horton, W.H., "An Experimental Study of the Local Buckling of Ring Stiffened Cylinders Subject to Axial Compression", Proceedings of the 11th Israel Annual Conference on Aviation and Astronautics, Israel Journal of Technology, Vol. 7, No. 1-2, pp.181-194, March 1969.
- 36. Ramberg, W., and Osgood, W.R., "Description of Stress-Strain Curves by three Parameters"-NACA Technical Note No. 902, 1943.
- 37. Wesenberg, D.L., and Mayers, J., "Failure Analysis of Initially Imperfect, Axially Compressed, Orthotropic, Sandwich and Eccentrically Stiffened Cylindrical Shells" U.S. Army Aviation Material Laboratories, Technical Report 69-86, December 1969.

TABLE 1.
STRINGER - STIFFENED CYLINDRICAL SHELLS - DIMENSIONS

SHELL	Î	Î	1	ж Ж	L/R	2	q(mag)	C (NM)	b (man)	e, h	√ 1/pµ	I11/bh	re 1	0	h/h
	137	.238	127.6	536	1.07	290	.364	1.66	90.9	-1.27	.267	.0521		.318	25.5
SZ-2S	41.5	.264	127.7	484	.325	48.7	.244	1.06	6.06	962	.162	.0115	.193	.302	23.0
	41.5	304	127.7	420	.325	42.3	.303	1.06	90.9	8 66	.174	.0144		.281	19.9
	137	305	127.7	419	1,07	460	,303	1.06	90′9	766.	.174	.0143		.281	19.9
	200	.362	175.6	485	1.14	009	.946	1.88	88.9	-1.81	7.14	9		067.	5.5
	90	.247	127.6	517	.705	245	.267	1.06	90.9	-1.04	189	10.		215.	24.5
	09	.238	127.6	536	.470	113	.269	1.96	90.9	-1.07	. 198	.0210		.318	25.5
	30	.227	127.6	295	.235	29.6	.275	1.06	\$.06	-1.11	.212	.0259		.326	7 4 7
	90	.229	127.6	557	.705	264	.242	1.06	90.9	-1.03	.185	.0172		.324	36.5
	09	.238	127.6	536	.470	113	.238	1.06	90.9	-1.00	.175	.0146		.318	25.5
	30	.242	127.6	527	.235	27.8	.254	1.0c	6.06	-1,03	.184	.0169		.316	25.0
	45.5	.300	127.7	426	1.14	527	.297	1.00	6.06	995		.0141		.283	20.7
	40	307	127.7	416	.313	38.9	.320	1.06	90.9	-1.02		.0165		.280	19.7
	145.5	.286	127.7	447	1.14	555	.323	1.06	90.9	-1.07		.0210		.290	21.2
	2	885	127.7	443	.313	41.5	.349	1.06	90.9	1.11		.0259		.239	21.0
	52	. 268	127.7	477	.196	17.4	.586	30.	90.9	-1.59		.0153		.300	22.0
	3	.270	127.3	473	.470	99.6	.587	1.06	0.00	-1.59		.0150		.239	22.4
	09	.227	127.6	205	.470	911	.275	1.06	6.00	-1.11		.0259		.326	26.70
	90	172.	127.7	471	.706	223	.585	1.06	90.0	-1.58		. 147		. 258	22.4
	3	.251	127.7	506	.470	107	.361	1.06	6.06	-1.22		.0433		.310	24.1
	09	.243	127.7	5.26	.470	=======================================	.370	1.06	0.00	-1.26		.0515		.315	24.9
	76	.236	127.6	541	.204	21.4	.375	1.06	90.9	-1.29		.0585		.320	25.7
	30	.238	127.6	535	.204	21.2	.374	1.06	90.9	-1.29		. 0565		.318	25.5
	87	.272	127.6	470	.681	208	.582	1.06	90.9	-1.57		.0143		.298	22.3
	62	.260	127.6	491	.486	110	.587	1.06	6.06	-1.63		.0168		304	23.3
	33	.247	127.7	517	.258	32.9	168.	1.06	0.00	-1.29		.0578		.312	24.5
	5.80	292.	175.6	60,	.390	87.3	.417	1.92	6.92	-1.21		.0673		.280	23.7
	3,80	.292	175.6	601	.390	87.3		1.92	6.92	-1.20		.0636		.282	23.7
12 - 5	07	.230	175.6	500	.228	30.0	.414	1.92	6.92	-1.21		.0673		.281	23.9
13 - L	178	.291	175.6	603	1.01	592		1.92	6.92	-1.20		.0528		.280	23.8
1 - 1	180	162.	175.6	603	1 03	605		1.92	6.92	-1.19		.0605		.280	23.5
15 . 1	140	167.	175.6	603	797.	366	-	1.92	6.92	-1.22		.0691		.280	23.8
5 - SI	9	. 288	175.5	603	. 228	30.2	.423	1.92	6.32	-1.23		.0733		.282	24 0
16 - S	41	.267	175.5	657	.234	34.2	-	4.22	9.22	-1.36		.197		.390	34.5
, 9	140	.270	175.5	650	.798	395	•	4.22	9.22	-1.34		.179		.388	34.2
17 - S	7	.282	175.5	622	. 234	32.4	.429	4.22	9.22	-1.26		.134		.379	32.7
17 - 1	740	.283	175.5	620	798	377	-	4.22	7	-1.24		.122		.379	32.0
18 - 41	××	.266	175.5	099	.501	158	-	2.04	12.04	-1.88		.294		.510	45.3
18 - 342	30 30	. 209	175.5	652	.501	157	•	2.04	12.04	-1.86	-	.281		.507	44.8
19 - 41	20	278	175.5	631	.399	95.8	.762	2.04	12.04	-1.87	-	167.		.499	43.3
19 - 12	70	278	175.5	631	399	95.8		2.01	12.04	-1.90	-	308		.498	43,3
. s - 61	7	.271	175.5	6.48	.228	32.1	•	2.07	12.04	-1.95	167	.343		. 505	7.77
20 .	0,2	2	175.5	669	995.	106	•	2.03	12,03	-1.83	_	.206		.524	47.9
1	:	•		i	-	:		, ,,2	13 01	יו מז		3,5		216	40 0

23.3	45.3	7.77	1.7	:6:	4.7.7	52.1	8.73	42.1	13.5	o. 33	1.0	7.7	4.		· •	?	: -;	7.	7.2.7	? .•	47.1	o. o.	3	J. ci	47.7	62.5	32.9	56.5	45.3	46.1	49.0	49.0	52.7	9'67	43.C	54.0	45.8	42.7	45.4	42.3	:0:	11.5	38.5	43.1
	4.7	ine.		535	.34	747	40	167	105.	.113	4:1	. 180	goç.	?	*7 !: *7	. io.	10.	. 16.	3.	. 15.	715	463	7	454.	323	.575	. 478	.549	.522	.526	542	543	.575	858.	.553	.582	.597	.570	765.	.573	.561	.588	37.7	.579
4:38	5.13	.3	·,	17.17	5.62	, ; ,		313.	÷:	ive.	157	<u> </u>	5	3	کدد.	·	ί.:	-	3.00	[: 	ć, js	 	3.29	302.	6. le	13.1	1.72	8.26	5.07	5,37	6.93	7.57	2.55	5.02	2.00	2.90	1.30	5.71	1.37	. 939	.947	1.11	2. 5	3.80
E.	d/10.	.34.	50.	9.5.	£5¢.	555.	\$0°5.		1520	.0331		. 16.1	. 31	···	37.	9. T .	· 15.	: 46		? !	رېږد.	155	. 1 ¹⁹ c	.0124	. 263	.778	.102	764	30.	.332	7.	151	.152	.122	en.	.173	.292	127	.0813	.0589	.0564	.0859	.143	.226
737	7.7.		· .	147.	.485	17.	3. 1.	. 150	ě.	777	172	127	?	871.		.117	.113	=	- .	1887	350	.0.	282.	111.	408	7	,52b	879.	.535	.552	595	619	.473	.440	.436	205.	433	398	.283	. 254	.231	.288	.349	045.
																																											-1.03	
12.04	# :: H	12.04	12.63	12.03	12.03	12.43	11.03	12.03	123	12.02	12.03	12,03	12. 3	11.40	11.00	11. 6	11.00	11.00	11.67	11	11.07	11.08	11.05	11.06	12.03	11.07	12.34	12.58	12,59	12.59	12.58	12.58	13.17	13.18	13.18	13.17	11.81	11.82	11.80	11.80	11.81	11.80	11.63	11.81
2.04	. o.		2.03	٠.٠.	• • • • • • • • • • • • • • • • • • • •	35	2.03	50.5	5.03	· · · ·	50.7	 	·:	 5	90.1	1.04	9. .		10.1	2.03	1.03	3/.	1.05	1.06	2.03	1.07	 	2.55	2.39	2.59	3.5	2.58	3.17	3.18	3.18	3.17	1.81	1.82	1.80	1.80	1.51	1.50	1.33	1.81
.762	:::	385	٠ غ.	, t.3.7	31.4.	679.	(repr.	.31.	.524	.538	303	. 53.4	6	% 90%	2.5	150.	. 523	oge.		. 76.	. oo.	7.	.754	155.	313	-18	1.8.	.766	.723	.733	.742	.750	. 491	.485	.401.	900.	.732	.713	.477	.465	.475	.501	.693	11.
																																											39.1	
.399		?	:::	· ·	.;	?	.4.	ž	:	211	507	, Oc.	170.	4	1.7		6,5,	. 5.1.	620.	.382	.217	4.	34.03	. 57.5	.875	.7.4c	10.6	464.	. 199	.672	.430	.439	.202	.202	.590	.663	1.17	.236	1.21	.231	.325	1.12	.315	1.11
631	163	3	:	3	:	į,	7	773	650	66.1	58.	200	900	999	Ç	6.45	633		720	96:0	2.12	6.15	7	611	909	200	585	202	u;1	6-13	683	969	202	000	6.13	713	493	159	195	456	î.c.i	480	7 7	707
																																											127.2	
.278	,; ;	::	***	T: ::	3	15.	75.	36.	<u>;</u>	7.	€0¢.		3.	907	, . C.	::	;;	3	= :	3	.25.	273	3	36.	2.4	. 177	.302	1.23.	ξ.	. 273	.257	.252	.250	200	Ξ.	7.	857	:72	.337	.279	9	.265	.307	17.
ę,			,	,	35	5. 50		•-	,'	r;	-			.?	<i>;</i>	;	3	::	. 99	60	35	31.	36.	:	13.	151	150.5	.bl	şş	118	75.5	7.	,,;5	55.5	105.5	2.015	1.15	ეი	134	31	41.5	::	?	22.
; :			: 2	,	•	:: ::	· :	f*	;: ::	- -:			1 - 17	.;	•	~· · ;;	;; ;;	· ·	≓ !.,	12		33 11	;2 ;3		- 3	31 - 15	3 L	35 - 1	5.4 . 5.	31 - 1:	35 - 11	35 - 72	36 . 5	30 . 41	30 - 1	•	38 . 1.	38 . 5	39 - 1	30 . 5	\$. 5	1 - 01	11 - 5	7 - 1:

CLACA CRACA CRACAA CRACA <	1						(d)/	•	(
1,142,7 (142,7) <t< th=""><th>1 .</th><th></th><th>,</th><th></th><th></th><th></th><th>exp, , ufto</th><th>, , , , ,</th><th>er'e.e.</th><th>3</th><th>(4)</th><th>E. (1)</th></t<>	1 .		,				exp, , ufto	, , , , ,	er'e.e.	3	(4)	E. (1)
5000 510 11 4200 11 400 11.0 400 11.0 400 11.0 400 11.0 400 11.0 400 11.0	-		(X)		(Kg.)			(Kg/mm)	Eq. (1)		(v.)	Eq.(•)
9160 6252 17 4200 - 672 25.4 5.53 11.18 - 92470 9246 15 4200 - 672 25.4 5.53 11.21 4850 7840 13 600 - 7.13 20.7 6.34 1.12 4850 550 1300 13 737 22.0 8.06 1.73 4.06 550 5100 10 3400 13 737 22.0 4.06 1.73 4.06 550 5100 10 3400 13 737 22.0 4.09 1.20 4.00 550 520 10 3400 13 737 22.0 4.09 1.20 4.00 550 520 10 350 12 350 12 4.09 1.20 4.00 1.20 4.00 550 520 10 350 12 4.02 1.20 1.12 4.00 <	•		5210	=	4200	=	.806	21.6	4.99	1.21		1.39
8477) 8546, 16 4600 - 539 29,6 6,35 11,21 4820 1320 1390 13 20 20 20 11,21 380 5370 5340 1 130 1 130 2 20 20 11,21 380 5070 5350 1 3140 1 3130 1 3130 1 3130 1 3140 1 3150 1 3150 1 3150 1 3150 1 3150 1 3150 1 3150 1 3150 1 3150 1 3150 1 3150 1 3150 1 3150 1 3150 1 3150 1 3150	-		6250	17	4200		.672	25.4	5.53	1.18		1.34
7940 110 5550 11 672 27.7 6.38 11.12 5860 1570 1780 1780 17.3 27.7 6.38 11.12 5860 1570 1580 11 20.0 1.73 22.7 5.18 1.13 5.2 5520 5180 16 3400 1.73 22.7 4.79 1.73 2.2 4570 5180 16 3400 1.7 27.2 1.70 1.73 2.2 4570 5180 16 2000 1.7 27.2 1.71 1.20 1.73 1.20 4570 5180 16 2000 1.7 27.2 1.75 1.20 1.73 2.0 4570 520 1.7 4.0 1.7 4.7 1.12 4.20 1.2 4.7 1.1 4.7 1.1 4.7 1.1 4.7 1.1 4.7 1.1 4.7 1.1 4.7 1.1 4.7			8540	97	4600		.539	29.8	6.35	1.21	4830	1.02
113200 11800 11 20100 - 1,13 20.0 8.06 1.78 5270 5240 13 340 - 1,13 20.0 1.13 4.0 - 1,13 4.0 - 1,13 4.0 1.13 4.0	Ī		7940	2	5350	=	.672	27.7	6.38	1.12	5860	1.17
5270 5540 13 3840 - 719 22.7 5,18 1,13 4310 5650 5180 16 3800 13 737 22.0 4,19 1,13 4310 4530 4530 4530 13 3350 12 3000 22.2 4,19 1,13 4300 4530 4530 13 3350 1 3350 1 32 4,19 1,13 4300 4540 5010 10 4300 - - 573 22.4 4,19 1,13 4300 4640 700 10 4300 -			17800	=	20100		1.13	26.0	3.06	1.78	,	1.34
5050 5180 18 380 13 7.77 2.2. 4.99 1.20 430 5070 5250 40 13.3 7.77 2.2.4 4.99 1.20 430 4940 5070 13 350 2 373 2.1.4 4.99 1.20 4.99 1.20 4.99 1.20 4.99 1.20 4.99 1.20 4.99 1.20 4.99 1.20 4.99 1.20 4.99 1.20 4.99 1.20 4.99 1.20 4.99 1.20 4.99 1.20 4.99 1.20 4.99 1.20 4.99 1.20 4.99 1.20 4.99 1.20 4.99 1.20 4.90 1.20 4.90 1.20 4.90 1.20 4.90 1.20 4.90 1.20 4.90 1.20 4.90 1.20 4.90 1.20 4.90 1.20 4.90 1.20 4.90 1.20 4.90 1.20 4.90 1.20 4.90 <			5340	13	3840		.719	22.7	5.18	1.15	4310	1.35
5070 5230 523 523 523 523 524 523 124 520 523 523 124 520 124 520 124 520 124 520 124 520 124 520 124 520 124 520 127 </td <td></td> <td>So</td> <td>5100</td> <td>9</td> <td>3800</td> <td>11</td> <td>757.</td> <td>22.6</td> <td>4.99</td> <td>1.20</td> <td>4300</td> <td>1.44</td>		So	5100	9	3800	11	757.	22.6	4.99	1.20	4300	1.44
4520 4580 13 3350 12 733 21.0 4.81 1.15 4030 4940 550 - -378 22.4 4.99 1.15 4030 3560 5660 10 300 - -378 22.4 4.99 1.15 - 3560 750 10 300 1 - - - - - - 3660 730 1 300 1 - <td></td> <td>92</td> <td>5250</td> <td>20</td> <td>3150</td> <td>12</td> <td>009.</td> <td>23.8</td> <td>4.76</td> <td>1.34</td> <td>3800</td> <td>1.30</td>		92	5250	20	3150	12	009.	23.8	4.76	1.34	3800	1.30
4940 5010 16 200 - .578 22.4 4.99 1.06 - 55200 7.540 19 2.07 .1.27 - .278 .2.4 4.99 1.0 5520 5560 19 4300 - .615 24.7 1.27 - 560 11 4300 11 .699 2.40 30.3 .1.15 .601 .1.24 .500 7930 12 4300 11 .699 .240 .5.98 1.15 .600 .600 7930 12 4300 11 .699 .240 .5.98 1.15 .600 .600 4500 12 4300 13 .639 .240 .5.98 1.15 .600 .600 5507 5200 12 4300 13 .612 .779 .600 .720 .820 .820 .820 .820 .820 .820 .820 .820 .820		2	4580	13	3350	12	. 732	21.0	4.81	1.15	4030	1.43
55.00 56.00 19 55.00 - -61.9 24.4 5.07 11.27 - 66.00 887.0 1 4300 - -61.9 27.1 6.27 11.2 - 738.0 887.0 1 4300 - -689 27.1 6.27 1.12 - 739.0 128.0 1 400 1 699 26.0 5.98 1.15 600 116-40 128.0 1 400 1 699 26.0 5.98 1.15 600 464.0 470 1 400 2 541 47.7 5.88 1.15 600 590 420 1 699 24.0 2.38 1.15 6.00 1.15 6.00 1.15 6.00 1.15 6.00 1.15 6.00 1.15 6.00 1.15 6.00 1.15 6.00 1.15 6.00 1.15 6.00 1.15 6.00 1.15	-M	9	5010	16	2900	1	.578	22.4	4.99	1.06	•	1.15
1560 7640 10 4300 563 27.1 6.27 1.12 9860 3860 3870 17 4300 13 561 30.5 6.02 1.24 5000 7030 320 11 699 26.0 5.98 1.15 6010 933 8200 17 4030 18 564 26.0 5.98 1.15 6010 4600 1288 120 16 7020 1 6020 1.13 6010 557 4500 16 7020 1 262 1.24 6010 557 4500 16 7020 1 202 1.13 6010 5580 4520 16 7020 1 27.7 5.68 1.49 1.24 5590 4520 17 4100 13 5.82 1.40 1.24 6010 550 12 4200 13 5.82 27.1	-s ss	50	2660	19	3500		519.	24.¢	5.07	1.27	•	1.51
8460 8870 17 4900 13 .561 30.5 6.42 1.24 5000 7936 1160 10 5000 11 .699 26.0 5.98 1.15 6010 7930 8200 16 5000 11 .699 26.0 5.98 1.15 6010 8200 15 7010 2 .541 43.7 5.61 1.30 - 8200 15 7010 1 .549 .541 43.7 5.61 1.30 - 850 15 700 1 .540 - .541 2.73 5.66 1.49 6830 557 150 15 2400 1 .541 2.74 .570 1.49 6850 557 15 4200 1 .542 .541 .570 1.49 6850 567 15 4200 1 .543 .541 .542 .542 .546	-1 75	0.5	7640	9	4300		.563	27.1	6.27	1.12	•	.982
7186 7186 <th< td=""><td>-S 86</td><td>9</td><td>8870</td><td>17</td><td>4900</td><td>13</td><td>.561</td><td>30.5</td><td>6.42</td><td>1.24</td><td>2000</td><td>1.06</td></th<>	-S 86	9	8870	17	4900	13	.561	30.5	6.42	1.24	2000	1.06
1350 8200 17 4030 16 492 29.3 6.02 1.30 11640 1290 16 702 9 541 43.7 5.61 1.38 46.00 15 26.01 - 541 43.7 5.61 1.38 46.00 15 26.01 - 541 27.7 5.26 1.49 6830 5596 6220 15 360 14 675 24.7 5.26 1.49 6830 5596 15 360 15 360 14 27.7 5.26 1.49 6830 550 15 360 15 26.4 1.49 1.49 1.49 550 15 360 15 26.2 1.40 1.49 1.40	-L 70	9	7160	01	2000	Ξ	669.	26.0	86.8	1.15	6010	1.22
11240 12980 16 7020 9 .541 43.7 5.61 2.38 6200 9200 15 5°40 - .619 90.8 5.65 1.06 6830 5400 4700 16 .640 - .553 21.0 4.77 1.21 - 5960 6200 15 .240 - .654 .24.7 5.66 1.99 .6850 6550 16 .380 13 .641 .24.7 5.66 1.99 .6560 650 19 .410 .34 .24.7 5.66 1.99 .656 650 19 .410 .34 .24.7 .5.66 1.99 .69 650 19 .410 .35 .24.7 .5.96 1.99 .410 .71 .71 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72	-S 79	30	8200	17	4030	91	.492	29.3	6.02	1.30	•	.939
4500 9200 15 57uh - .619 50.8 5.65 1.66 e830 4640 4760 16 2640 - .555 21.6 4.77 1.21 - 5590 6820 15 4600 16 3820 13 .610 17 .77 5.68 1.49 .6850 6550 15 4800 15 .880 13 .641 .77 .5.68 1.49 .6850 650 16 .860 13 .585 .29.0 .4.95 1.64 - 7650 8400 13 .586 .29.0 .4.95 1.64 - 6690 7170 .99 .29.0 .4.95 1.64 - .4.95 .1.4 .4.95 .1.4 .6.80 6690 7170 .9 .29.0 .2.90 .4.95 .1.64 .1.7 .1.1 .1.7 .1.1 .1.4 .1.7 .1.1 .1.1 <td>-S 116</td> <td></td> <td>12980</td> <td>16</td> <td>7020</td> <td>91</td> <td>.541</td> <td>43.7</td> <td>5.61</td> <td>2.38</td> <td>•</td> <td>1.42</td>	-S 116		12980	16	7020	91	.541	43.7	5.61	2.38	•	1.42
4460 4760 16 2640 - 555 21.6 4.77 1.21 - 757C 8370 13 6160 10 .741 27.7 5.68 1.49 6850 5980 6220 15 4200 14 .641 24.1 5.06 1.30 - 650 7010 19 4300 13 .635 29.0 4.95 1.66 - 6610 706 19 4300 13 .536 29.0 4.95 1.66 - 7620 8380 13 6300 13 .536 29.0 4.99 1.66 - 7650 8400 13 .536 12 .779 29.0 1.49 .741 - 7650 8400 13 .536 12 .779 29.0 1.49 .741 - 8910 15 .200 13 .596 14.95 1.49 .7410			9200	15	57.00		619.	50.8	5.55	1.66	6830	1.14
7576 8370 13 6160 10 741 27.7 5.66 1.49 6850 5596 6220 15 4200 14 641 24.7 5.26 1.30 - 6450 7596 15 4200 14 641 13 641 1.30 - 6450 706 16 3820 13 6530 12 779 28.0 4.95 1.46 - 7650 8380 13 6530 12 779 28.0 5.09 1.49 7410 7660 8660 15 5200 12 700 29.8 5.45 1.49 7410 7660 8660 15 6500 13 650 12 700 29.8 5.45 1.49 750 8910 9620 15 800 20 20 20.2 1.49 750 1003 10 10 10 10 10 <td></td> <td>9</td> <td>1760</td> <td>9</td> <td>2640</td> <td></td> <td>.555</td> <td>21.6</td> <td>4.77</td> <td>1.21</td> <td></td> <td>1.09</td>		9	1760	9	2640		.555	21.6	4.77	1.21		1.09
5980 6220 15 4200 14 641 24.1 5.16 1.30 6577 5960 16 3820 13 641 24.1 5.10 1.33 6450 7010 19 4100 13 585 29.0 4.99 1.64 7650 8380 13 6320 12 .738 29.0 4.99 1.64 7650 8660 15 5200 12 .800 29.8 5.45 1.09 5570 7660 8660 15 650 12 .800 29.3 5.45 1.09 740 8940 7770 89 19.0 6.44 1.48 7720 8910 8570 11 .965 11.2 .401 .813 .441 .750 8920 177 8820 15 .802 11.3 .441 .148 .750 8020 175<		2	8370	13	6160	01	.741	27.7	5.68	1.49	6850	1.22
6577 5960 16 3820 13 641 24.11 5.10 1.33 - 6550 7010 19 4100 13 538 29.0 4.95 1.66 - 6610 706 19 3800 13 538 29.0 4.99 1.64 - 7660 8860 13 6520 12 779 28.3 5.45 1.69 - 6690 1770 18 6520 12 .500 29.8 5.45 1.69 - 8910 9770 17 6650 16 .695 21.2 6.44 1.46 9770 8910 9770 17 .650 15 .829 21.2 6.44 1.46 8770 8910 9770 17 .650 15 .802 21.3 6.44 1.46 8770 8010 18 18 .829 21.2 .41 1.46 8770		980	6220	15	4200	"	.675	24.7	5.26	1.30		1.26
6550 7010 19 4100 13 .585 29.0 4.95 1.64 7650 8380 13 .536 .29.0 4.99 1.64 7650 8380 13 .536 .779 .28.0 5.69 1.49 .7410 7660 8660 15 .520 12 .780 .29.8 5.45 1.64 8990 9770 17 7850 15 .829 .21.2 6.44 1.46 .8750 8910 9470 17 7850 15 .829 .21.2 6.44 1.46 .8750 8020 9470 17 7850 15 .829 .21.2 6.44 1.46 .8750 8010 820 17 7850 18 .802 .24.1 1.28 .8750 8020 12 785 11 .865 11 .985 11.90 .41 .12 .880). (2)	2960	91	3820	çı	.641	24.1	5.10	1.33		1.20
6610 706A 18 3800 13 .538 29.0 4.99 1.64 7650 8830 13 6530 12 .779 28.0 5.45 1.69 570 660 8660 15 5200 12 .800 29.8 5.45 1.69 557 8940 9570 17 6650 16 .695 21.3 6.44 1.46 8070 8910 9470 17 6550 15 .829 21.2 6.44 1.46 8070 10030 10780 16 .805 15 .802 21.1 6.39 1.69 8570 10030 10 15 7460 - .908 19.0 6.41 1.46 8070 8010 13 7750 - .908 19.0 6.41 1.35 8470 8100 13 7750 - .908 19.0 6.41 1.35		6550	2010	19	4100	13	.585	29.0	4.95	1.66		1.36
7650 8380 13 6530 12 779 28.0 5.45 1.49 7410 7660 8660 15 5200 12 .800 29.8 5.45 1.09 5570 8980 7170 19 6500 13 .907 28.3 5.18 1.54 6750 8910 9470 17 7850 16 .665 21.2 6.44 1.46 8770 8010 9470 17 7850 15 .882 21.2 6.41 1.28 7780 8010 9470 17 7850 15 .882 21.2 6.41 1.46 8770 8010 8270 18 .802 18 .802 19.0 6.41 1.28 7580 8020 18 .802 19 .802 19.0 .804 19.0 6.41 1.28 8750 11060 10 .802 1 .804 .24.3		6610	706n	61	3800	13	.538	29.0	4.99	1.64		1.24
7660 8660 15 5200 12 .800 29.8 5.45 1.69 5570 6690 7170 19 6500 13 .907 28.3 5.18 1.54 6750 8910 9570 17 6550 16 .695 21.2 6.44 1.46 8770 10030 10780 17 7850 15 .829 21.2 6.44 1.46 8770 8020 17 7850 15 .802 24.1 6.39 1.69 8580 8020 17 7850 1 .902 1.1 .903 1.2 .903 1.2 .903		7650	8380	13	6530	12	677.	28.0	5.69	1.49	7410	1.29
6690 7170 19 6500 13 .907 28.3 5.18 1.54 5750 8940 9570 17 6650 16 .695 21.3 6.44 1.46 8770 8910 9470 17 7850 15 .829 21.2 6.44 1.46 8070 10030 10780 20 8650 15 .802 24.1 6.39 1.69 8880 8020 8270 12 7450 - .901 18.6 6.41 1.28 7720 8020 12 7450 - .902 10.0 .814 24.3 6.41 1.28 7870 8120 1350 13 7750 - .903 19.0 6.41 1.28 8770 1120 1366 13 .736 .134 24.3 3.41 1.46 8770 1120 1300 .814 .824 .24.3 .24.3 .24.3 <td></td> <td>2660</td> <td>8660</td> <td>15</td> <td>5200</td> <td>12</td> <td>. 800</td> <td>29.8</td> <td>5.45</td> <td>1.69</td> <td>55.70</td> <td>1.11</td>		2660	8660	15	5200	12	. 800	29.8	5.45	1.69	55.70	1.11
8940 9570 17 6650 16 .695 21.3 6.44 1.46 7720 8910 9470 17 7850 15 .829 21.2 6.44 1.46 8070 10030 10780 20 15 .802 24.1 6.39 1.69 8580 8020 8270 11 .965 11 .965 11 .28 7980 8010 8240 12 .750 - .908 19.0 6.41 1.28 7980 11260 12 7950 11 .965 11 .91 1.28 8470 11260 12 7950 1 .968 19.0 6.41 1.33 8350 11260 12950 11 .997 17.3 3.37 2.39 1.420 8320 12 842 24.3 3.41 1.46 8070 11260 12 1000 842 24.3		0699	7170	61	6500	13	.907	28.3	5.18	1.54	6750	1.93
8910 9470 17 7850 15 .829 21.2 6.44 1.46 8070 10030 10780 20 8650 15 .802 24.1 6.39 1.69 8580 8020 8270 12 7450 - .901 18.6 6.41 1.28 8580 8010 8240 12 7950 11 .965 16.6 6.41 1.28 7980 8120 8530 13 7750 - .908 19.0 6.41 1.33 8550 11260 10860 20 9050 - .844 24.3 6.45 1.72 9870 11260 12860 14 9050 11 .997 17.3 3.41 1.64 - <t< td=""><td></td><td></td><td>9570</td><td>17</td><td>6650</td><td>16</td><td>569.</td><td>21.3</td><td>6.44</td><td>1.48</td><td>7720</td><td>1.21</td></t<>			9570	17	6650	16	569.	21.3	6.44	1.48	7720	1.21
10030 10780 20 8650 15 .802 24.1 6.39 1.69 8580 8020 8270 12 7450 - .901 18.6 6.41 1.28 7980 8010 8240 12 7950 1 .965 10.6 6.41 1.33 8580 10050 13 7750 - .908 19.0 6.41 1.33 8470 11260 10860 2 .934 24.3 6.35 1.72 9870 11260 12950 19 1090 24.3 6.35 1.72 9870 11260 12950 11 .997 17.3 3.37 2.39 .1420 11470 12820 11 .997 17.3 3.41 1.04 - 11470 1200 11 1.03 24.3 3.56 1.53 3.1420 11470 1200 1 1.03 13.4 4.02 1.			9470	17	7850	15	.829	21.2	6.44	1.46	8070	1.45
8020 8270 12 7450 - 901 18.6 6.41 1.28 7980 8010 8240 12 7950 11 .965 16.6 6.41 1.38 8470 8220 8530 13 7750 - .908 19.0 6.41 1.33 8470 11260 10860 20 905 - .834 24.3 6.55 1.72 9870 11260 10860 19 10500 0 .842 24.5 3.37 2.39 .1420 11260 12950 11 .997 17.3 3.41 1.64 - 11470 12820 13 9550 11 1.03 1.78 3.56 1.12 1.40 14470 12820 13 9550 11 1.03 1.78 3.56 1.83 9570 10140 10 10 1.03 1.78 3.56 1.83 9570	_		10780	20	8650	15	. 802	24.1	6.39	1.69	8580	1.63
8010 8240 12 7950 11 .965 16.6 6.41 1.38 8470 8220 8530 13 7750 - .908 19.0 6.41 1.33 8350 10650 10860 20 9050 - .834 24.3 6.35 1.72 9870 11260 12950 19 1080 0 .842 24.5 5.37 2.39 1.420 8320 19 1090 0 .842 24.6 3.57 2.39 1.420 8140 12820 11 .997 17.3 3.41 1.04 - 8440 10100 16 8650 15 .799 23.4 4.02 1.87 9160 8590 12100 - .894 23.5 6.14 1.85 9210 10440 1230 - .894 23.5 6.14 1.33 9320 8540 12 .780			8270	1.2	7450		106.	18.6	5.41	1.28	7980	1.39
8220 8530 13 7750 - .908 19.0 6.41 1.33 8350 10650 10860 20 9620 - .834 24.3 6.35 1.72 9870 11260 12950 19 10900 0 .842 24.6 3.37 2.39 1.420 8320 9080 14 9050 11 .997 17.3 3.41 1.64 - 11470 12820 19 10500 0 .819 24.3 3.54 1.64 - 8470 10100 16 8650 15 .799 23.4 4.02 1.87 9160 8590 12100 1 9100 - .777 27.0 8.48 2.05 1020 990 12100 1 9650 12 .777 27.0 8.48 2.01 1020 13240 16100 1 9650 12 .780 27.4		8010	8240	71	7950	11	.965	10.6	6.41	1.28	8470	1.50
10850 10860 20 9050 - .834 24.3 6.35 1.72 9870 11260 12950 19 1090 .842 24.6 3.37 2.39 .1420 8320 9080 14 9050 11 .997 17.3 3.41 1.64 - 11470 12820 19 10500 0 .819 24.3 3.56 1.12 - 8470 10100 16 8650 11 1.03 17.8 3.56 1.53 - - 8460 10100 16 8650 15 .799 23.4 4.02 1.87 9100 9990 12100 17 9600 - .777 27.0 8.48 2.06 10200 10140 12400 1 .780 .774 8.48 2.11 11300 13240 16100 1 .711 36.2 2.09 2.88 11300			8530	1.3	7750		806.	19.0	6.41	1.33	8350	1.42
11260 12950 19 10900 842 24.6 3.37 2.39 :1420 8320 9080 14 9050 11 .997 17.3 3.41 1.64 - 11470 12820 19 .819 24.3 3.56 1.12 - 8470 9320 13 9550 11 1.03 17.8 3.56 1.53 - 8460 10100 16 8650 15 .799 23.4 4.02 1.87 9160 9990 12100 16 9100 - .894 23.5 6.14 1.85 9270 10140 12400 17 9400 - .777 27.0 8.48 2.06 10200 13240 16100 18 11450 - .777 27.0 8.48 2.11 11300 13240 16100 18 11450 - .711 36.2 2.09 2.88 11300 </td <td></td> <td></td> <td>10860</td> <td>20</td> <td>9050</td> <td></td> <td>.834</td> <td>24.3</td> <td>6.35</td> <td>1.72</td> <td>9870</td> <td>1.67</td>			10860	20	9050		.834	24.3	6.35	1.72	9870	1.67
8320 9080 14 9050 11 .997 17.3 5.41 1.64 - 1470 12820 19 .819 24.3 3.56 1.53 - 8770 9320 13 9550 11 1.03 17.8 3.56 1.53 - 8460 10100 16 8650 15 .799 23.4 4.02 1.87 9160 9990 12100 16 9100 - .894 23.5 6.14 1.85 9270 10140 12400 17 9400 - .777 27.0 8.48 2.01 10200 13240 16100 17 9400 - .711 36.2 2.09 2.88 11300 13240 16100 18 11450 - .711 36.2 2.09 2.88 11300 7850 9370 18 8000 15 864 23.3 1.96 2.08			12950	61	10900	0	.842	24.6	3.37	2.39	.1420	1.36
4170 12820 19 10500 0 .819 24.3 3.5 2.12 - 8470 9320 13 9550 11 1.03 17.8 3.56 1.53 - 8460 10100 16 8650 15 .799 23.4 4.02 1.87 9160 9990 12100 17 9400 - .777 27.0 8.48 2.06 1020 13240 16100 17 9650 12 .780 27.4 8.48 2.11 11300 13240 16100 17 9650 12 .780 27.4 8.48 2.11 11300 13240 16100 18 11450 0 .711 36.2 2.09 2.88 11300 7850 9370 18 8000 15 .854 23.3 1.96 1.95 860 7529 9210 18 7750 18 20.8 1.96			0806	7	9050	11	766.	17.3	3,41	1.04		1.13
8770 9320 13 9550 11 1,03 17,8 3,56 1,53 - 8460 10100 16 8650 15 ,799 23.4 4,02 1,87 9160 8590 12100 16 9100 - ,894 23.5 6,14 1,85 9270 10140 12400 17 9400 - ,777 27.0 8,48 2.06 10200 13240 16100 17 9650 12 ,780 27.4 8,48 2.11 11300 13240 16100 18 11450 0 ,711 36.2 2.09 2.88 11300 7850 9370 18 8000 15 ,884 23.3 1,96 1,95 860 7529 9210 18 7750 14 ,842 23.4 1,89 2.08 9380 10800 19 10000 0 ,76 36.9 1,99			12820	61	10500	0	.819	24.3	3 75	2.12	•	1.30
8460 10100 16 8650 15 799 23.4 4.02 1.87 9160 8590 12102 16 9100 - .894 23.5 6.14 1.85 9270 990 12102 17 9400 - .777 27.0 8.48 2.06 10200 10140 12400 17 9650 12 .780 27.4 8.48 2.11 11300 13240 16100 18 11450 0 .711 36.2 2.09 2.88 11300 7850 9210 18 8000 15 .854 23.3 1.96 1.95 8660 10800 13000 16 .768 .768 .768 1.99 2.92 10400 6520 7920 16 .786 .786 1.86 1.86 - 6600 77 786 .766 1.86 1.86 - -			9320	13	9550	11	1.03	17.8	3,56	1.53		1.21
859U 1020U 16 9100 - .894 23.5 6.14 1.85 9270 990Q 12103 17 9400 - .777 27.0 8.48 2.06 10200 10140 12400 17 9650 12 .780 27.4 8.48 2.11 11300 13240 16100 18 11450 0 .711 36.2 2.09 2.88 11300 7850 9210 18 8750 14 .842 23.4 1.96 1.95 8660 10800 13000 0 .708 .708 .32.9 1.90 2.08 9380 6520 7920 16 .695 20.8 1.86 1.95 - 6660 7950 17 .786 .20.8 1.86 - -			10100	91	8050	15	. 799	23.4	4.02	1.87	9160	1.63
9990 12100 17 9400 - .777 27.0 8.48 2.06 10200 10140 12400 17 9650 12 .780 27.4 8.48 2.11 11300 13240 16100 18 11450 0 .711 36.2 2.09 2.88 11300 7850 9370 18 8000 15 .854 23.3 1.96 1.95 8660 10800 13000 16 .708 .708 .708 1.99 2.08 9380 6520 7920 17 5500 16 .695 20.8 1.86 1.95 - 6660 7950 17 6250 16 .786 20.7 1.86 1.86 -			10200	92	9100		.894	23.5	6.14	1.85	9270	1.82
10140 12400 17 9650 12 .780 27.4 8.48 2.11 11300 13240 16100 18 11450 0 .711 36.2 2.09 2.88 11300 7520 9370 18 8750 14 .842 23.3 1.96 1.95 8660 10800 13000 19 10000 0 .708 32.9 1.90 2.92 10400 6520 7920 17 6550 16 .695 20.8 1.86 1.86 - 6660 7950 17 6250 16 .786 20.7 1.86 1.86 -			12100	17	9400	ı	777.	27.0	8.48	2.06	10200	1.72
13240 16100 18 11450 0 .711 36.2 2.09 2.88 11300 7850 9370 18 8000 15 .884 23.3 1.96 1.95 8660 10800 13000 18 7750 14 .842 23.4 1.89 2.08 9380 6520 7920 19 10000 0 .708 32.9 1.90 2.92 10400 6660 7920 17 6520 16 .695 20.8 1.86 1.86 -			12400	17	9650	2	.780	27.4	8.48	2.11	11300	1.74
7850 9370 18 8000 15 .854 23.3 1.96 1.95 8660 7529 9210 18 7750 14 .842 23.4 1.89 2.08 9380 10800 13000 19 10000 0 .708 32.9 1.90 2.92 10400 6520 7920 17 5500 16 .695 20.8 1.85 1.95 - 6660 7950 17 6250 16 .786 20.7 1.86 1.86 -			16100	8	11450	0	117.	36.2	2.09	2.88	11300	2.13
75.29 9213 18 7750 14 .842 23.4 1.89 2.08 9380 10800 13000 19 10000 0 .768 35.9 1.90 2.92 10400 6520 7920 17 5500 16 .695 20.8 1.85 1.95 6660 7950 17 6250 16 .786 20.7 1.86 1.86			9370	3.8	8000	15	.854	23.3	1.96	1.95	8060	1.92
10800 13000 19 10000 0 .708 32.9 1.90 2.92 10400 1 6520 7920 17 5500 16 .695 20.8 1.82 1.95 -			9210	18	7750	7.	.842	23.4	1.89	2.08	9380	1.95
6520 7920 17 5500 16 .695 20.8 1.82 1.95			13000	61	10000	9	.708	32.9	.9	2.92	10400	2.47
- 1.86 1.86 1.86 1.86 - 1.86 1.86 -			7920	17	2500	92	569.	20.8	1.82	1.95	•	1.50
		0499	7950	17	6250	9	.786	20.7	1.86	1.86		1.66

- 20 -

1,1

20-M1	7850	9370	=	8000		.854	23.3	1.96	1.95	2991	1.92
¥	7520	9210		7750		. 842	23.4	.83	2.08	9380	1.55
· · · · ·	10800	13000	51	10000		. 768	32.9	1.90	2.93	10400	r. 8 . 4
21.61	05.20	24.5	17	5500		\$69.	20.8	3.5	1.95	•	1.50
21-17	0999	7950	11	0250		.786	24.7	1.86	1.86	•	1.06
3-77	7280	7410	17	5450		.735	19.8	2.19	1.19	6240	1.55
28-22	0830	2000	81	5000		.714	19.2	21.2	?:	1	1.51
\$3.5	0689	7180	: ;	5500		.706	20.4	2.03	1.37	,	1.81
23-11	7960	80%0	ដ	0250		.774	3.0.	2.31	1.16	•	1.59
23-1.2	7830	7950	2	5750		227.	20.4	2.29	1.16	0650	1.48
74·F	03.50	0879	2	4750		.756	17.5	2.00	1.13	•	1.48
15.41	0100	6160	13	4050		.658	18.6	2.59	1.14		1.55
25-42	5810	5930	13	4050		.683	18.3	4.08	1.15	٠	1.62
20-41	9376	0410	2	4450		. 688	19.2	2.45	1.14		1.64
26.42	0770	6510	*	4140		.636	19.3	2.40	1.13		1.51
26-5	6300	6470	77	4740		.733	19.6	2.38	1.23	,	1.84
1K-72	6970	N 4 40	2	0010		.783	24.2	2.18	1.91	•	2.21
27-42	73.20	4630	81	5650	7	.654	24.0	2.27	1.79	•	1.77
27-5	2180	11250	0.	7360	14	.654	32.6	4-1	2.08	8980	2.55
12-87	7679	9610	೭	6230	91	.723	27.7	2.44	1.52	•	1 70
28-42	0.117	8200	2.	6 050	<u> </u>	.738	22.2	2.34	1.58	•	
3-62	67.20	67.70	ដ	1830		.713	19.3	2.55	1.09		1.61
30-L	6930	8010	13	0777	2	976.	19.5	3.30	1.56		0.1
31-15	3600	4720	2	2900	13	.613	10.6	1.68	1.98		1.64
32-L	8700	91,0	2	8440	,	.923	20.7	2.33	1.32	•	9.00
33-4	8000	00101	13	7730	=	607.	22.4	<u>8</u> :	2.12	•	1.41
34-5	14800	17400	1	13550		.780	36.8	1.97	7.36	15370	2.21
34-L	9680	10200	1	9520	11	.930	21.9	1.94	18.1	•	1.58
35-M1	9110	11500	11	8700	11	.759	25.4	1.85	2.28	10520	1.57
35-M2	8870	11300	11	8040	77	.712	25.2	7.87	2.34	•	1.48
36-8	9160	10400	77	9670	77	.933	25.5	1.68	2.18	•	2.25
36-51	9870	11000	ટ્ર	0 \$	0	.859	26.0	1. ₈	2.05		2.00
36-L	7670	8260	18	3570	11	.674	19.2	1.79	1.48		1.13
37-L	0340	6970	13	2900	20	.847	17.3	1 65	1.54	•	1.41
38-L	ი069	7710	10	0169	10	\$68.	26.1	1.58	1.59	0659	1.39
38-5	12700	14800	2	9420	၁	.637	47.8	1.67	2.53		1.71
39 · L	2020	6230	2	2010	•	.803	23.7	1.58	1.24		1.33
39-5	N780	9410	18	0999	7	.707	33.7	1.69	1.59		1.54
40-S	8870	9490	16	6380	13	.672	32.5	1.75	1.46	,	1.33
40-L	e 530	0044	2	5920	11	.870	24.9	1.62	1.27	,	1.45
41-5	12200	13900	4	8320	11	865,	42.0	1.82	1.94	•	1.29
41+1:	7620	8330	02	7250		.870	27.2	1.66	1.46	•	1.35

(cr), o 2 2 | (cr), o , (d/ln) |

** $(a_{cr}^{\dagger})_{n,0}$. $(a_{cr}^{\dagger})_{narrow panel}$ * $(1/2)(1/0^2)(1+0^4)$ $(a_{cr}^{\dagger})_{c.c.}$

Underlined Values $\frac{(\sigma_{cr})_{n.p.}}{(\sigma_{cr})_{c.c.}}$ Pcr $_{n_{t}} \neq 0/P_{ct}$

FIG. 1 NOTATION

FIG. 2 TEST SET UP FOR SPECIMENS OF LARGE DIAMETER (14")

FIG. 3 TEST SET UP FOR SPECIMENS OF SMALL DIAMETER (10")

FIG.4 DETAILS OF SPECIMEN SUPPORTS AND END CONDITIONS

FIG. 8 STRESS STRAIN CURVES OF MATERIAL FOR LARGE - DIAMETER AND SMALL--DIAMETER SPECIMENS

FIG.9 "LINEARITY" AS A FUNCTION OF STRINGER-AREA PARAMETER (A1/bh) FOR SHELLS WITH LARGE PYMETER (14")

OF BATDORF PARAMETER Z

FIG. 12 CORRELATION STUDY OF IMPERFECTION SENSITIVITY DEPENDENCE ON SHELL

GEOMETRY PARAMETER Z

FIG.13 CIRCUMFERENTIAL AND LONGITUDINAL VARIATION OF SKIN THICKNESS AND STIFFENER HEIGHT

FIG. 14 TYPICAL CIRCUMFERENTIAL DISTRIBUTION OF AXIAL STRAIN — INDICATING CIRCUMFERENTIAL LOCAL DISTRIBUTION (SHELL 41-L)

FIG 16 TYPICAL POST BUCKLING PATTERNS OF SHORT SHEELS (19-S & 22-S)

FIG. 17 TYPICAL POST BUCKLING PATTERN OF MEDIUM LENGTH SHELLS (35-M1)

FIG 18 TYP1CAL POST BUCKLING PATTERNS OF "LONG" SHELLS (SZ-3 & 17-L)

FIG. 19 POST BUCKLING PATTERNS OF "TWIN' SHELLS (36-L & 36-S)

FIG. 20 POST BUCKLING PATTERNS OF "TWIN" SHELLS (40-M & 40-S)

Security Classification

	NTROL GATA - RS		agenti mant in territori	
(Sucurity classification of title, body of instruct and indexit 1. GSIGNATING ACTIVITY (Corporate author)	ng nanofation must i e s		SCCURITY CLASSIFICATION	
TECHNION RESEATCH AND DEVELOPMENT FOUR	NOATION.	1	Unclassified	
HAIFA, ISRAEL.	•	26 GROUP		
1 REPORT TITL.				
RECENT EXPERIMENTAL STUDIES ON THE BUCK	KLING OF INTES	RALLY STR	INGER-STIFFENED	
CYLINDRICAL SHELLS.				
4 DESCRIPTIVE HOTES (Type of report and inclusive dates)				
	INTERIM			
5 AUTHOR(5) (Last name tiest name initial) Weller	Function TANC.	40 m		
Singer .		,		
Nachman	i Shimon			
6 ASPORT DATE	TE TOTAL NO OF	PAGES	76 NO OF REFS	
APRIL 1970	29 + 70	1	37	
BA CONTRACT OR GRANT NO	9 ONIGINATOR'S			
AE 61 (0E2) 00E			ì	
AF_61_(052) - 905	TAE	REPORT 1	00	
9782 - 01	<u> </u>			
61102F	this report)	NO(3) (A NY 0	ther numbers that may be seel med	
681307				
18 AV TIL ABILITY/LIMITATION NOTICES				
This document has been approved for pul	blic release a	nd sale;	its distribution is	
unlimited.			1	
11 SUPPLEMENTARY NOTES	12 SPONSORING MIL	ITARY ACTIV	ITY	
11 JOFF CEMENTANT NOTES	•		CIENTIFIC RESEARCH	
	I .		LVD. ARLINGTON, VA.	
	22209.			
13 ABSTRACT				
An experimental study of the buckling	of closely spa	ced integ	rally stringer-	
stiffened cylindrical shells under axi	al compression	was carr	ied out to determine	
the influence of stiffener and shell g	eometry on the	applicab	ility of linear theory	
_	•	• •	• •	
86 shells of different grometries were				
experiments was found to be governed p	rimarily by th	e stringe	r area parameter	
(Λ_1/bh) . Good correlation was obtained	d in the range	(Λ, bh)	> 0.4. No significant	
effect of other stiffener and shell pa		4		
			i	
could be discerned for the specimens t	ested. In add	ition to	the area parameter	
(A_1/bh) , the inelastic behavior of the	shell materia	l was fou	nd to have a considera	le
effect on the "linearity"(ratio of exp			1	
		116 1000	to the progresses they	
By a conservative structural efficienc	y criterion al	l the tes	ted stringer stiffened	
shellswere found to be more efficient				,
THE THE TO THE WOLL OF THE THE	THE CHAIT WALL	C WATER	Lockopie suckes,	i
A modified "Southwell Slope" method wa	s applied to t	he test d	lata but did not yield	
reliable results.			·	
·				1

DD 5994, 1473

Unclassified
Security Classification

14	LIN	K A	LIN	< 8	LIN	K C
KCY WORDS	ROLL	w 1	HOLE.	wt	POLE	WT
	ļ		1			
1. Stiffened Cylindrical Shells						
2. Experimental Study of Buckling						
3. Correlation with Linear Theory			1			
						ļ
	ļ					
			ll			

'NSTRUCTIONS

- !. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, gr ntee, Department of Defense activity or other organization (comporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate seculy regulations.
- 2h. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S). Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE. Enter the dute of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 78 TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Filter the total number of references cited in the report.
- 8a CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b. 8c. & 8d. PROIDT RUMBER. Enter the appropriate military department identification, such as project number, subproject number, sy tem numbers, task number, etc.
- 9. ORIGINATOR'S REPORT NUMBER(S). Enter the official report number by which the document will be identified and controlled by the origin sting activity. This number must be unique to this report.
- 96 OTHER REPOFT NUMBER(S). If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
- 10. AVAILABILITY/L IMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known

- 11. SUPPLEMENTARY NOTES: Use for additional explunatory notes
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military accurity classification of the information in the paragraph, represented as (TS), (S), (C), or (U)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.