

Optimizing the genomic-enzymatic model of Yarrowia lipolytica for biofuel production: a constraint-based reconstruction analysis approach

Presented by:

Supervised by:

Jeremy GUERRERO

Paul CARDENAS Martin GUTIERREZ Sabine PERES

Introduction

Per capita CO₂ emissions, 2021

Source: Our World in Data based on the Global Carbon Project (2023)

The world's largest per capita CO2 emitters are the major oil producing countries

Energy use in industry and transport fuel accounts for 48.2%

Urgent need to find new ways of producing highly valuable compounds in a sustainable manner

Alternative industry bioproduction

Cons:

- Low Productivity
- Difficulty in Scale-Up
- Harvesting and Processing

Cons:

- Metabolic Burden
- Endotoxins
- Protein Folding

Yeast: S. s. cerevisiae

Cons:

- Metabolic Burden
- Endotoxins
- Protein Folding

Novel alternative

Main Problem: Development of Phenotypes

- Hard to predict the outcome of gene deletion with only bibliography
- Time consuming process
- Resource intensive

Solution Through Simulation

Antecedentes

Figure 2a: Calibrating dFBA model with experiemental flux rates allowed predictions close to experimental résultats, except for isocitrate wich is not predicted by the model.

Theoretical Framework

Reconstruction of GEM Model

Gene-Protein-Reaction in GEM

Linear Programming

FBA Base Equations

dFBA Base Equations

Objectives

16

Main Objective

Objectives

Optimize a refined phenotype of Y. lipolytica, yielding an enhanced production of Odd Chain Fatty Acids (OCFAs), particularly C15 and C17, facilitated by the manipulation of the enzymatic pathways within our model organism.

Update the iYali v4.1.2 metabolic model of Y. lipolytica to include any missing reactions, specially focusing on the propionate consumption and Fatty Acid synthesis pathway.

Specific Objectives

Using COBRApy and FBA tools simulate different genetic modifications into the new Y. lipolytica model like overexpression and knockout of genes. In order to improve the production of OCFA without impacting the biomass production.

Validate simulated results of the updated model of iYali through the contrast with in-vitro laboratory data.

Evaluate the capacity for production of biomass and OCFA through the use of alternative carbon sources of Y. lipolytica.

Evaluate the enhanced capacity of the modified new iYali model for the production of highly valuable compounds without compromising the biomass production of the organism.

Methodology

Methodology Workflow

19

Parameter	Description	S. cerevisiae value	Refs.
Vg _{max} (mmol/g/hr)	max. uptake rate of glucose	22.4	[105]
<i>K</i> _g (g/L)	Saturation constant of glucose	8.0	[105]
Vo _{max} (mmol/g/hr)	max. uptake rate of oxygen	2.5	[105]
<i>K_o</i> (g/L)	Saturation constant of oxygen]	0.003	[105]
V x _{max} (mmol/g/hr)	max. uptake rate of xylose	0.6	[105]
<i>K_x</i> (g/L)	Saturation constant of xylose]	0.0165	[106]
<i>K_{t,g}</i> (g/L)	Inhibition constant of glucose	0.5	[106]
$K_{l,e}$ (g/L)	Inhibition constant of ethanol	10	[106]
X _g (g/L)	Molecular weight of glucose	180.1559	[106]
X _x (g/L)	Molecular weight of xylose	150.13	[106]
X ₀ (g/L)	Molecular weight of oxygen	16.0	[106]
X _e (g/L)	Molecular weight of ethanol	46.0	[106]

TABLA 3.6: List of used kinetics for dFBA

Jeremy Guerrero

Contrasting Laboratory Data vs Modelled Data

Laboratory Biologie Intégrative du Métabolisme Lipidique (BIMLip)

- 2020 and 2021
- · Unpublished Status

Modelled Performance Indicators

R-Squared

$$R^{2} = \sum_{t=1}^{t} (Y_{real} - Y_{modelled})^{2}$$

Mean Absolute Error

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

Root Mean Squared Error

$$MSE = \frac{\left|\sum_{i=1}^{N} (Predicted_i - Actual_i)^2\right|}{N}$$

Independent and Dependent Variables

Independent Variables

Gene Network and Gene Manipulation Dependent Variables

Final Production of Metabolites

Results

24

Rx ID	Description	Formula	Lower Bound	Upper Bound
y300090	Propionate Transporter [e] - [c]	s_3717 → s_3718	0.0	1000.0
y300089	Propionate to Propionyl-CoA propanoyl-CoA:electron-transfer	$s_3718 \rightarrow s_3719$	0.0	1000.0
y300088	flavoprotein 2,3-oxidoreductase electron transfer flavoprotein	$s_3719 \rightarrow s_1382$	0.0	1000.0
y300087	2,3-oxidoredcutase	$s_1275 + s_3719 \rightarrow s_0837 + s_3721$	0.0	1000.0
y300086	3-hydroxy propionyl-CoA hydroly as e	s_3721 → s_0803 + s_3722 s_0423 + s_0633 + s_3722 →	0.0	1000.0
y300085	3-hydroxypropionate:CoA ligase (AMP-forming) 3-hydroxypropanoate:	$s_0434 + s_0529 + s_3723$ $s_0434 + s_0529 + s_3723 \rightarrow$	0.0	1000.0
y300084	NAD+ oxidoreductase 3-Oxopropanoate:NAD+	$s_0794 + s_1203 + s_3724$ $s_0529 + s_1198 + s_3724 \rightarrow$	0.0	1000.0
y300083	oxidoreductase (decarboxylating, CoA-acetylating)	s_0373 + s_0456 + s_0794 + s_1203	0.0	1000.0

TABLA 3.2: List of Propionate Pathway Reactions Added into the iYali model

25

Rx ID	Description	Formula	Lower Bound	Upper Bound
	fatty-acyl-CoA	s_0373 + 24.0 s_0794 + 16.0 s_1212 + 8.0 s_3719 →		
y300099	synthase (n-C17:0CoA) margaric-CoA transport,	8.0 s_0456 + 8.0 s_0529 + 8.0 s_0803 + 16.0 s_1207 + s_3728	0.0	1000.0
y300100	cytoplasm-lipid particle	s_3728 ↔ s_3729	-1000.0	1000.0
	margaric-CoA transport,	$s_0635 + s_2842 + s_3729 \leftrightarrow$		
y300102	cytoplasm-lipid particle	s_0531 + s_2840 + s_3730	-1000.0	1000.0
	fatty-acyl-CoA	$s_0373 + 21.0 s_0794 + 14.0 s_1212 + 7.0 s_3719 \rightarrow$		
y300104	synthase (n-C15:0CoA)	$7.0 \text{ s}_0456 + 7.0 \text{ s}_0529 + 7.0 \text{ s}_0803 + 14.0 \text{ s}_1207 + \text{s}_3731$	0.0	1000.0
	Pentadecylic-CoA transport,			
y300105	cytoplasm-lipid particle	$s_3731 \leftrightarrow s_3732$	-1000.0	1000.0
	Pentadecylic-CoA transport,	$s_0635 + s_2842 + s_3732 \leftrightarrow$		
y300106	cytoplasm-lipid particle	s_0531 + s_2840 + s_3733	-1000.0	1000.0

TABLA 3.3: List of OCFA Pathway Reactions Added into the iYali model

Jeremy Guerrero

new Y. lipolytica Model

26

Characteristics	iYali4	new iYali
No. Genes	901	937
No. Metabolites	1,683	1,751
No. Reactions	1,985	2021

Anexos

28

FIGURA 4.3: Graphic that illustrates the different growth rates in the model given each one gene knockout.

30

Looking for key pathways on the optimization of C15 and C17 production

FIGURA 4.5: Flux density of the new iYali model and the enhanced iYali model in 2 different scenarios. (a) Production optimizations of C15. (b) Production optimizations of C17.

Real vs model Data Biomass Growth in Propanoate and Glucose Medium

FIGURA 4.7: Laboratory data vs Predicted results of the biomass growth of *Y. lipolytica* in glucose plus propionate gel medium.

32

Error distribution in Model of Biomass Growth in Propionate and Glucose medium

Variable	R2	RMSE	MAE
Biomass	0.919380972537853	0.908563069231937	0.665272162044825
Glucose	0.918379765591381	0.815935996969968	0.700499272430421
Propanoate	0.109170166979195	0.304422757370607	0.210529400938935

TABLA 4.2: List of Performance Indicators of a Predictive Model

Jeremy Guerrero

FIGURA 4.9: Laboratory data vs Predicted results of the biomass growth of *Y. lipolytica* in acetate plus propionate gel medium.

34

Error distribution in Model of Biomass Growth in Propionate and Acetate medium

Variable	\mathbb{R}^2	RMSE	MAE
Biomass	0.873965765643247	3.7067526145362	2.83569032395332
Acetate	0.64963517576278	1.68735889524694	1.04679040712518
Propanoate	0.910887929965844	0.60641998690826	0.389761221138856

TABLA 4.3: List of Performance Indicators of a Predictive Model

Jeremy Guerrero

Variable	R2	RMSE	MAE
Biomass	0.919380972537853	0.908563069231937	0.665272162044825
Glucose	0.918379765591381	0.815935996969968	0.700499272430421
Propanoate	0.109170166979195	0.304422757370607	0.210529400938935

Variable	\mathbb{R}^2	RMSE	MAE
Biomass	0.873965765643247	3.7067526145362	2.83569032395332
Acetate	0.64963517576278	1.68735889524694	1.04679040712518
Propanoate	0.910887929965844	0.60641998690826	0.389761221138856

TABLA 4.2: List of Performance Indicators of a Predictive Model

TABLA 4.3: List of Performance Indicators of a Predictive Model

Modelled ECFA Production in different carbon sources

Modelled ECFA Production in different carbon sources

Modelled ECFA Production in different carbon sources

Conclusion

Conclusions

Completion of the iYali4 model, a comprehensive representation that incorporates 68 metabolites and 36 reactions pivotal to propionate metabolism and OCFA production.

This refined model presents a valuable tool for simulating the biosynthesis of highly sought-after compounds, thus making a meaningful contribution to the bioprocess industry.

Utilizing the COBRApy toolkit, alongside FBA and dFBA methodologies, we successfully simulated a variety of genetic modifications within the new iYali model. The enhancements centred on the overexpression of key enzymes facilitating propionate metabolism towards acetate and OCFA production.

Our model demonstrated a commendable ability to simulate the organism's metabolic responses with a tolerable degree of precision

Our findings suggest that the genetic modifications yielded a 20 % increased in OCFA production, specially in C17

Recommendations

Genetic Algorithm

Final Algorithm

Gro Production Simulation

gro

Visualize the OCFA and Biomass Production in Real Time

