EPC2057 – Enhancement Mode Power Transistor

 V_{DS} , 50 V $R_{DS(on)} \,, \, \, 8.5 \; m\Omega \; max \\ I_D \,, \, \, 9.6 \; A$

Revised August 26, 2024

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Application Notes:

- Easy-to-use and reliable gate, Gate Drive ON = 5 V typical, OFF = 0 V (negative voltage not needed)
- · Top of FET is electrically connected to source

Questions:
Ask a GaN
Expert

	Maximum Ratings		
	PARAMETER	VALUE	UNIT
M	Drain-to-Source Voltage (Continuous)	50	_ v
V_{DS}	Drain-to-Source Voltage (Repetitive Transient)(1)	60	v
	Continuous (T _A = 25°C)	9.6	
I _D	Pulsed (25°C, T _{PULSE} = 300 μs)	66	A
VGS	Gate-to-Source Voltage	6	V
VGS	Gate-to-Source Voltage	-4	v
Tر	T _J Operating Temperature		°C
T _{STG}	Storage Temperature	-40 to 150	°C

⁽¹⁾ Pulsed repetitively, duty cycle factor (DC_{Factor}) \leq 1%; See Figure 13.

Thermal Characteristics				
	PARAMETER	TYP	UNIT	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	2.3		
$R_{\theta JB}$	Thermal Resistance, Junction-to-Board	7		
$R_{\theta JA}$	72.5	°C/W		
R _{OJA_JEDEC} Thermal Resistance, Junction-to-Ambient (using JEDEC 51-2 PCB) 82				
R _{OJA_EVB}	Thermal Resistance, Junction-to-Ambient (using EPC90155 EVB ⁽³⁾)	68.5		

⁽²⁾ R_{0,1A} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

 $[\]ensuremath{^{\mathrm{(3)}}}$ Determined with devices mounted on EVB in half-bridge configuration

	Static Characteristics ($T_J = 25^{\circ}$ C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BV_DSS	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V}, I_D = 0.031 \text{mA}$	50			٧
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 40 \text{ V}$		0.004	0.031	
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.004	0.8	A
I _{GSS}	Gate-to-Source Forward Leakage#	$V_{GS} = 5 \text{ V, T}_J = 125^{\circ}\text{C}$		0.04	1.7	mA
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		0.004	0.026	
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 2 \text{ mA}$	0.7	1.1	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_D = 6 \text{ A}$		6	8.5	mΩ
V _{SD}	Source-Drain Forward Voltage#	$V_{GS} = 0 \text{ V, } I_S = 0.5 \text{ A}$		1.4		V

Defined by design. Not subject to production test.

Die Size: 1.5 x 1.2 mm

EPC2057 eGaN® FETs are supplied only in passivated die form with solder bars.

Applications

- DC-DC converters
- Isolated DC-DC converters
- USB-C battery chargers
- · LED lighting
- 12 V-24 V input motor drives

Benefits

- Ultra high efficiency
- No reverse recovery
- Ultra low Q_G
- · Small footprint

Scan QR code or click link below for more information including reliability reports, device models, demo boards!

https://l.ead.me/EPC2057

EPC2057 eGaN® FET DATASHEET

	Dynamic Characteristics $^{\#}$ (T _J = 25 $^{\circ}$ C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{ISS}	Input Capacitance			383	444	
C_{RSS}	Reverse Transfer Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}$		3		
Coss	Output Capacitance			172	218	рF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 1)	$V_{DS} = 0 \text{ to } 25 \text{ V, } V_{GS} = 0 \text{ V}$		220		
$C_{OSS(TR)}$	Effective Output Capacitance, Time Related (Note 2)	VDS = 0 to 25 V, VGS = 0 V		265		
R_{G}	Gate Resistance			0.8		Ω
Q_{G}	Total Gate Charge	$V_{DS} = 25 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 6 \text{ A}$		3.0	3.5	
Q _{GS}	Gate-to-Source Charge			1.2		
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 25 \text{ V}, I_D = 6 \text{ A}$		0.5		
Q _{G(TH)}	Gate Charge at Threshold	0.8			nC	
Qoss	Output Charge	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}$		7.9	10	
Q _{RR}	Source-Drain Recovery Charge			0		

[#] Defined by design. Not subject to production test.

Figure 1: Typical Output Characteristics at 25°C

Figure 3: Typical $R_{DS(on)}$ vs. V_{GS} for Various Drain Currents $R_{DS(on)}$ – Drain-to-Source Resistance (m Ω) $I_D = 3 A$ $I_D = 6 A$ $I_D=9\,A$ 20 $I_D=12\,A$ 2.0 2.5 4.5 5.0 **V**_{GS} – Gate-to-Source Voltage (V)

Figure 2: Typical Transfer Characteristics

Figure 4: Typical $R_{DS(on)}$ vs. V_{GS} for Various Temperatures **25°C** $R_{\text{DS(on)}}-$ Drain-to-Source Resistance (m $\Omega)$ 125°C $I_D = 6 A$ 20 15 2.5 2.0 V_{GS} – Gate-to-Source Voltage (V)

All measurements were done with substrate connected to source.

Note 1: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS} . Note 2: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS} .

Figure 6: Typical Output Charge and $\mathrm{C}_{\mathrm{OSS}}$ Stored Energy

Figure 7: Typical Gate Charge

Figure 8: Typical Reverse Drain-Source Characteristics

Note: Negative gate drive voltage increases the reverse drain-source voltage. EPC recommends 0 V for OFF.

Figure 10: Typical Normalized Threshold Voltage vs. Temp. 1.5 1.4 $I_D = 2 \text{ mA}$ 1.3 **Normalized Threshold Voltage** 1.2 1.1 1.0 0.9 0.7 0.6 0.5 100 25 75 125 150 T_J – Junction Temperature (°C)

Figure 11: Safe Operating Area

100

Limited by R_{DS(on)}

Pulse Width

1 10

1 10

V_{DS} - Drain-Source Voltage (V)

Figure 12: Typical Transient Thermal Response Curves

Figure 13: Duty Cycle Factor (DC_{Factor}) Illustration for Repetitive Overvoltage Specification

 $T_J = Max Rated$, $T_C = +25$ °C, Single Pulse

1% is the ratio between T_{O} (overvoltage duration) and T_{S} (one switching period).

LAYOUT CONSIDERATIONS

GaN transistors generally behave like power MOSFETs, but at much higher switching speeds and power densities, therefore layout considerations are very important, and care must be taken to minimize layout parasitic inductances. The recommended design utilizes the first inner layer as a power loop return path. This return path is located directly beneath the top layer's power loop allowing for the smallest physical loop size. This method is also commonly referred to as flux cancellation. Variations of this concept can be implemented by placing the bus capacitors either next to the high side device, next to the low side device, or between the low and high side devices, but in all cases the loop is closed using the first inner layer right beneath the devices.

A similar concept is also used for the gate loop, with the first inner layer used as a reference for the gate loop under the gate resistors and the relative pins of the gate driver: ground for the bottom FET and switch node for the top FET.

Furthermore, to minimize the common source inductance between power and gate loops, the power and gate loops are laid out perpendicular to each other, and a via next to the source pad closest to the gate pad is used as Kelvin connection for the gate driver return path.

The EPC90155 40 V Half-bridge with Gate Drive using EPC2057 implements our recommended vertical inner layout.

Figure 13: Inner Vertical Layout for Power and Gate Loops

Detailed recommendations on layout can be found on EPC's website: Optimizing PCB Layout with eGaN FETs.pdf

TYPICAL SWITCHING BEHAVIOR

The following typical switching waveforms are captured in these conditions:

- EPC90155 40 V Half-bridge with Gate Drive using EPC2057
- Gate driver: uP1966E with 0.4 $\Omega/0.7~\Omega$ pull-down/pull-up resistance
- External $R_G(ON) = 4.7 \Omega$, $R_G(OFF) = 1 \Omega$
- $V_{IN} = 40 \text{ V}, I_L = 7 \text{ A}$

10 V/div 5 ns/div

Figure 14: Typical half-bridge voltage switching waveforms

See the EPC90155 40 V Half-bridge with Gate Drive using EPC2057 Quick Start Guide for more information.

TYPICAL THERMAL CONCEPT

The EPC2057 can take advantage of dual sided cooling to maximize its heat dissipation capabilities in high power density designs. Note that the top of EPC FETs are connected to source potential, so for half-bridge topologies the Thermal Interface Material (TIM) needs to provide electrical isolation to the heatsink.

Recommended best practice thermal solutions are covered in detail in How2AppNote012 - How to Get More Power Out of an eGaN Converter.pdf.

Figure 15: Exploded view of heatsink assembly using screws

Figure 16: A cross-section image of dual sided thermal solution

Note: Connecting the heatsink to ground is recommended and can significantly improve radiated EMI

The thermal design can be optimized by using the **GaN FET Thermal Calculator** on EPC's website.

TAPE AND REEL CONFIGURATION

4 mm pitch, 8 mm wide tape on 7" reel

Die is placed into pocket
solder bar side down
(face side down)

	Dimension (mm)			
EPC2057 (Note 1)	Target	MIN	MAX	
a	8.00	7.90	8.30	
b	1.75	1.65	1.85	
c (Note 2)	3.50	3.45	3.55	
d	4.00	3.90	4.10	
е	4.00	3.90	4.10	
f (Note 2)	2.00	1.95	2.05	
g	1.50	1.50	1.60	
h	0.50	0.45	0.55	

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/ JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

Deut		Laser Markings	
Part Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3
EPC2057	2057	YYYY	7777

DIE OUTLINE

Solder Bump View

	Micrometers		
DIM	MIN	Nominal	MAX
Α	1390	1500	1450
В	1090	1200	1150
c		1050	
d		875	
e		500	
f		250	
g		300	
h		525	
i		250	
j	·	637.5	,
k		225	

Pad 1 is Gate;

Pads 2 and 4 are Source;

Pad 3 is Drain

RECOMMENDED LAND PATTERN

(units in µm)

Land pattern is solder mask defined.

DIM	Micrometers	
A	1500	
В	1200	
c1	1030	
d1	855	
e	500	
f1	230	
g1	280	
h1	505	
i	250	
j	637.5	
k	225	

Pad 1 is Gate; Pads 2 and 4 are Source; Pad 3 is Drain

RECOMMENDED STENCIL DRAWING

(units in μ m)

DIM	Micrometers
A	1500
В	1200
c 1	1030
d1	855
e	500
f1	230
g1	280
h1	505
i	250
j	637.5
k	225

Recommended stencil should be 4 mil (100 μ m) thick, must be laser cut, openings per drawing.

The corner has a radius of R60.

Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

Split stencil design can be provided upon request, but EPC has tested this stencil design and not found any scooping issues.

Additional assembly resources available at https://epc-co.com/epc/design-support/assemblybasics

ADDITIONAL RESOURCES AVAILABLE

Solder mask defined pads are recommended for best reliability.

Figure 17: Solder mask defined versus non-solder mask defined pad

Figure 18: Effect of solder mask design on the solder ball symmetry

- Assembly resources https://epc-co.com/epc/Portals/0/epc/documents/product-training/Appnote_GaNassembly.pdf
- Library of Altium footprints for production FETs and ICs https://epc-co.com/epc/documents/altium-files/EPC%20Altium%20Library.zip (for preliminary device Altium footprints, contact EPC)

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: https://epc-co.com/epc/about-epc/patents

Information subject to change without notice.