Decision Trees: Conclusion

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

Decision Trees

- Decision trees are the single most popular data mining tool:
 - Easy to understand
 - Easy to implement
 - Easy to use
 - Computationally cheap
 - It's possible to get in trouble with overfitting
 - They do classification as well as regression!

Learning Ensembles

- Learn multiple trees and combine their predictions
 - Gives better performance in practice
- Bagging:
 - Learns multiple trees over independent samples of the training data
 - Predictions from each tree are averaged to compute the final model prediction

Bagged Decision Trees

Model construction for bagging in PLANET

- When tree induction begins at the root, nodes of all trees in the bagged model are pushed onto the MRQ queue
- Controller does tree induction over dataset samples
 - Queues will contain nodes belonging to many different trees instead of a single tree
- How to create random samples of D*?
 - Compute a hash of a training record's id and tree id
 - Use records that hash into a particular range to learn a tree
 - This way the same sample is used for all nodes in a tree
 - Note: This is sampling D* without replacement
 (but samples of D* should be created with replacement)

SVM vs. DT

SVM

- Classification
 - Usually only 2 classes
- Real valued features (no categorical ones)
- Tens/hundreds of thousands of features
- Very sparse features
- Simple decision boundary
 - No issues with overfitting
- Example applications
 - Text classification
 - Spam detection
 - Computer vision

Decision trees

- Classification & Regression
 - Multiple (~10) classes
- Real valued and categorical features
- Few (hundreds) of features
- Usually dense features
- Complicated decision boundaries
 - Overfitting! Early stopping
- Example applications
 - User profile classification
 - Landing page bounce prediction