

Contents

01 공모배경

05 데이터 전처리(2)

02| 활용 데이터

06 2차 모델링 및 결과

03 데이터 전처리(1)

07| 활용방안&기대효과

04 1차 모델링

01 공모 배경 문제 정의

닻 끌림이란?

해저의 닻이 끌리면서 선박의 위치가 고정되지 않고 이동하는 현상

닻 끌림 연관 기사

경북일보

영일만항 침몰 청루-15호 사망자 유족들 시신 6구 찾아가

○ 배형욱기자 | ② 승인 2013년 11월 24일 22시 07분 | ② 지면게재일 2013년 11월 25일 월요일 | ☞ 5면 | ◎ 댓글 0

한편 청루-15호는 지난 15일 오후 5시46분께 영일만항 북방파제 인근 19번 묘박지에 피항 하던 중 기상악화에 따른 주묘 (닻끌림) 현상으로 북방파제와 수차례 충돌한 뒤 침몰했다.

이 사고로 선원 19명 중 10명이 사망, 1명은 실종된 상태다.

부산일보 지난해부산최악해양오염'오션탱크호좌초'꼽혀

부산해양경비안전서는 2016년 부산 해양오염 사고 분석 결과 지난해 오션탱크호(3424t급) 좌초로 인한 해양오염 물질 유출량이 전체의 84%에 달했다고 9일 밝혔다. 오션탱크호는 지난해 4월 16일 강한 바람과 조류에 휩쓸려 영도구 영선동에서 좌초했다 이

국제신문

남외항 묘박지 '떠다니는 폭탄' 선박사고 속수무책

8년 동안 좌초·주묘 15건 발생

|건태 기자 fastmkt@kookje.co.kr | 입력 : 2014-01-07 20:56:16 | 본지 7면

부산 남외항에서는 2007년부터 지난해까지 좌초 사고 8건, 묘박(배가 닻을 내리고 머무름) 중인 배가 파도나 바람에 떠 밀려 가는 '주묘' 사고 7건 등 15건의 크고 작은 사고가 발생

경북매일

포항항 잦은 선박사고 원인 캔다

☆ 김기태기자 │ ② 등록일 2014.01.06 02:01 │ ② 게재일 2014.01.07 │ □ 4면 │ 同 댓글 0

정박지 닻끌림 현상 등 대형사고 위험 상존 해양청 `실태조사·개선방안 연구용역` 발주

닻 끌림은 충돌·좌초·해양오염 등 해양사고를 유발하는 주요 원인

구조작업시 난항이 예상되어 조기탐지·신속한 초동조치 필요

0 1 공모 배경 문제 정의 & 목표 선정

문제 정의

해양사고의 원인이 되는 닻 끌림 발생을 사전에 예측하는 모델 개발

목표 선정

닻 끌림 예측에 필요한 유의미한 변수 도출

데이터 불균형 문제 해소

닻 끌림 발생 여부에 따라

발생 → 1 미발생 → 0

으로 판단하는 효율적인 모델 개발

02 ^{활용 데이터} 데이터 소개

선박데이터

테이블 명	내용	비고
AREA	발생장소	울산항 또는 부산항 중 닻 끌림이 발생한 장소 (정박지 부근으로 한정)
YEAR	년도	닻 끌림이 인지한 년도
NUM	선박번호	닻 끌림 발생 선박에 임의로 붙인 번호
MON	월	닻 끌림을 인지한 월
DAY	일	닻 끌림을 인지한 일
HOUR	시간	닻 끌림이 인지한 시간
MIN	분	닻 끌림이 인지한 시간 중 분단위
LAT	닻 끌림 위도	닻 끌림이 인지한 위도 위치
LON	닻 끌림 경도	닻 끌림이 인지한 경도 위치
	AREA YEAR NUM MON DAY HOUR MIN LAT	AREA 발생장소 YEAR 년도 NUM 선박번호 MON 월 DAY 일 HOUR 시간 MIN 분 LAT 닻 끌림 위도

ulsan_answer

busan_answer

선박데이터 항구별 시각화 정박 busan_anchor_train_final 부산항 busan_drag_train_final ulsan_anchor_train_final 울산항 ulsan_drag_train_final

데이터 전처리(1)

03 데이터 전처리(1) 데이터 병합

total_data

	anchor_drag	num	time	latitude	longitude	sog	cog	hdg
0	0	1001	2021-01-03 11:08:37	35.461190	129.438732	0.6	102.9	343.0
1	0	1001	2021-01-03 11:11:36	35.461160	129.439545	0.9	70.6	299.0
2	0	1001	2021-01-03 11:14:38	35.461472	129.439878	0.4	9.6	273.0
3	0	1001	2021-01-03 11:17:33	35.461688	129.439792	0.2	328.0	267.0
4	0	1001	2021-01-03 11:20:37	35.461708	129.439733	0.2	260.1	265.0
682471	1	4087	2022-05-07 20:25:00	35.053083	129.061333	1.3	26.0	97.0
682472	1	4087	2022-05-07 20:25:00	35.053083	129.061333	1.3	29.0	99.0
682473	1	4087	2022-05-07 20:26:00	35.053117	129.061400	1.2	48.0	106.0
682474	1	4087	2022-05-07 20:26:00	35.053117	129.061417	1.2	52.0	108.0
682475	1	4087	2022-05-07 20:26:00	35.053133	129.061500	1.2	80.0	116.0

Rang	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 682476 entries, 0 to 682475 Data columns (total 8 columns):</class></pre>									
#	Column	Non-Null Count	Dtype							
0	num	682476 non-null	int64							
1	time	682476 non-null	object							
2	latitude	682476 non-null	float64							
3	longitude	682476 non-null	float64							
4	sog	682476 non-null	float64							
5	cog	682476 non-null	float64							
6	hdg	682476 non-null	float64							
7 anchor_drag 682476 non-null int64										
dtypes: float64(5), int64(2), object(1)										

ulsan_anchor: num 1001~ busan_anchor: num 2001~ ulsan_anchor&drag: num 3001~busan_anchor&drag: num 4001~

데이터 병합 시, num이 중복되므로 데이터의 num마다 넘버링을 구분한 후 병합

03 데이터 전처리(1) 결측치 처리

결측값: cog = -99.9 hdg = -99 or -99.9

total 데이터에 총 19,065개의 결측값 존재

Interpolation

cog와 hdg의 결측값을 'NaN'값으로 변경 후, Interpolation(보간법) 함수를 통해 결측치 처리

	anchor_drag	num	time	latitude	longitude	sog	cog	hdg
172459	0	2005	2021-01-01 21:18:00	35.048407	129.058325	0.2	-99.9	-99.9
172460	0	2005	2021-01-01 21:21:00	35.048490	129.058353	0.2	-99.9	-99.9
172461	0	2005	2021-01-01 21:30:00	35.048442	129.058350	0.2	-99.9	-99.9
172462	0	2005	2021-01-01 21:30:00	35.048442	129.058350	0.2	-99.9	-99.9
172463	0	2005	2021-01-01 21:33:00	35.048345	129.058333	0.8	-99.9	-99.9
599964	0	4056	2021-11-30 07:51:00	35.061480	129.044173	0.2	-99.9	-99.0
599965	0	4056	2021-11-30 07:54:00	35.061497	129.044053	0.2	-99.9	-99.0
599966	0	4056	2021-11-30 08:00:00	35.061493	129.043880	0.1	-99.9	-99.0
599967	0	4056	2021-11-30 08:03:00	35.061483	129.043840	0.0	-99.9	-99.0
599968	0	4056	2021-11-30 08:06:00	35.061513	129.043880	0.0	-99.9	-99.0

	anchor_drag	num	time	latitude	longitude	sog	cog	hdg
172459	0	2005	2021-01-01 21:18:00	35.048407	129.058325	0.2	587.877919	267.336967
172460	0	2005	2021-01-01 21:21:00	35.048490	129.058353	0.2	676.533934	259.254297
172461	0	2005	2021-01-01 21:30:00	35.048442	129.058350	0.2	610.868045	248.346042
172462	0	2005	2021-01-01 21:30:00	35.048442	129.058350	0.2	478.798146	242.663315
172463	0	2005	2021-01-01 21:33:00	35.048345	129.058333	0.8	368.242131	243.547968
599964	0	4056	2021-11-30 07:51:00	35.061480	129.044173	0.2	2553.934760	359.037812
599965	0	4056	2021-11-30 07:54:00	35.061497	129.044053	0.2	2482.757321	354.129250
599966	0	4056	2021-11-30 08:00:00	35.061493	129.043880	0.1	2410.883850	349.171188
599967	0	4056	2021-11-30 08:03:00	35.061483	129.043840	0.0	2338.314346	344.163626
599968	0	4056	2021-11-30 08:06:00	35.061513	129.043880	0.0	2265.048811	339.106563

04 ^{1차 모델링} 모델 선택

모델 선택

	Accuracy	F1-Score	CSI-Score
RandomForest	0.9941	0.8458	0.7329
XGBoost	0.9944	0.8591	0.7531
LightGBM	0.9908	0.7617	0.6152
CatBoost	0.9914	0.7710	0.6273

가장 좋은 성능을 보여주는 XGBoost로 채택

05 데이터 전처리(2) 파생변수 생성

<정박 상태 plot>

<닻 끌림 발생 plot>

05 데이터 전처리(2) 파생변수 생성

배들의 움직임을 Vector Field로 시각화해보면 정박 상태와 닻 끌림이 발생했을 때의 행동 패턴이 다르다는 것을 알 수 있음

파생변수 생성

d_lati, d_long

위도, 경도의 변화율(1차 차분)

: 배가 얼마나 움직이는지 표현, 배의 속도

d_d_lati, d_d_long

위도, 경도의 변화율의 변화율(2차 차분)

- : 배의 움직임이 얼마나 크게 변화하는지 표현,
- 배의 가속도

d_km/s, dd_km/s

속력, 가속력

- : 지구는 구면 좌표계라서 위도, 경도만의 변화율
- 로 하면 오차가 생길 수도 있다고 판단.
- 따라서 실제 거리와 시간 차이를 이용하여 계산

05 데이터 전처리(2) 파생변수 생성

이전 데이터와의 변화율을 구하므로 선박별로 이전 데이터가 존재하지 않는 1, 2번째 데이터 삭제

		anchor_drag	num	time	latitude	longitude	sog	cog	hdg	d_lati	d_long	d_d_lati	d_d_long	time_gap	km/s	km/s_2
	0	0	1001	2021-01- 03 11:08:37		129.438732	0.6	102.9	343.0	NaN	NaN	NaN	NaN	0.000000	NaN	NaN
	1	0	1001	2021-01- 03 11:11:36		129.439545	0.9	70.6	299.0	-0.000030	0.000813	NaN	NaN	179.000000	0.073708	NaN
	2	0	1001	2021-01- 03 11:14:38	35.461472	129.439878	0.4	9.6	273.0	0.000312	0.000333	0.000342	0.000342	182.000000	0.045969	-0.000152
	3	0	1001	2021-01- 03 11:17:33	35.461688	129.439792	0.2	328.0	267.0	0.000216	-0.000086	-0.000096	-0.000096	175.000000	0.025250	-0.000118
	4	0	1001	2021-01- 03 11:20:37	35.461708	129.439733	0.2	260.1	265.0	0.000020	-0.000059	-0.000196	-0.000196	184.000000	0.005788	-0.000106
682	471	1	4087	2022-05- 07 20:25:00		129.061333	1.3	26.0	97.0	0.000033	0.000016	-0.000017	-0.000017	0.142857	0.003948	-0.016907
682	472	1	4087	2022-05- 07 20:25:00		129.061333	1.3	29.0	99.0	0.000000	0.000000	-0.000033	-0.000033	0.142857	0.000000	-0.027635
682	473	1	4087	2022-05- 07 20:26:00	35.053117	129.061400	1.2	48.0	106.0	0.000034	0.000067	0.000034	0.000034	0.333333	0.007176	0.021527
682	474	1	4087	2022-05- 07 20:26:00	35.053117	129.061417	1.2	52.0	108.0	0.000000	0.000017	-0.000034	-0.000034	0.333333	0.001547	-0.016884
682	475	1	4087	2022-05-		129.061500	1.2	80.0	116.0	0.000016	0.000083	0.000016	0.000016	0.333333	0.007762	0.018643

	anchor_dra	g	num	time	latitude	longitude	sog	cog	hdg	d_lati	d_long	d_d_lati	d_d_long	time_gap	km/s	km/s_2
2		0	1001	2021-01- 03 11:14:38	35.461472	129.439878	0.4	9.6	273.0	0.000312	0.000333	0.000342	0.000342	182.000000	0.045969	-0.000152
3		0	1001	2021-01- 03 11:17:33	35.461688	129.439792	0.2	328.0	267.0	0.000216	-0.000086	-0.000096	-0.000096	175.000000	0.025250	-0.000118
4		0	1001	2021-01- 03 11:20:37	35.461708	129.439733	0.2	260.1	265.0	0.000020	-0.000059	-0.000196	-0.000196	184.000000	0.005788	-0.000106
5	i	0	1001	2021-01- 03 11:23:37	35.461720	129.439708	0.1	262.8	270.0	0.000012	-0.000025	-0.000008	-0.000008	180.000000	0.002628	-0.000018
6		0	1001	2021-01- 03 11:26:38	35.461733	129.439717	0.3	277.6	273.0	0.000013	0.000009	0.000001	0.000001	181.000000	0.001660	-0.000005
682471		1	4087	2022-05- 07 20:25:00	35.053083	129.061333	1.3	26.0	97.0	0.000033	0.000016	-0.000017	-0.000017	0.142857	0.003948	-0.016907
682472		1	4087	2022-05- 07 20:25:00	35.053083	129.061333	1.3	29.0	99.0	0.000000	0.000000	-0.000033	-0.000033	0.142857	0.000000	-0.027635
682473		1	4087	2022-05- 07 20:26:00	35.053117	129.061400	1.2	48.0	106.0	0.000034	0.000067	0.000034	0.000034	0.333333	0.007176	0.021527
682474		1	4087	2022-05- 07 20:26:00	35.053117	129.061417	1.2	52.0	108.0	0.000000	0.000017	-0.000034	-0.000034	0.333333	0.001547	-0.016884
682475	i	1	4087	2022-05- 07 20:26:00	35.053133	129.061500	1.2	80.0	116.0	0.000016	0.000083	0.000016	0.000016	0.333333	0.007762	0.018643

05 데이터 전처리(2) 파생변수 생성

생성한 파생변수 plot

닻 끌림 인지 시점인 <mark>빨간 점선</mark>과 변화율 그래프의 급격한 변화가 발생하는 시점이 거의 일치한다는 것을 알 수 있음

05 데이터 전처리(2) 파생변수 생성

닻 끌림 인지 시점을 제외한 그 이후 시점 데이터들을 삭제

	anchor_drag	num	time	latitude	longitude	sog	cog	hdg	time_gap	d_km/s	dd_km/s	d_lati	d_long	d_d_lati	d_d_long
0	0	1001	2021-01-03 11:14:38	35.461472	129.439878	0.4	9.6	273.0	182.000000	0.045969	-0.000152	0.000312	0.000333	0.000342	0.000342
1	0	1001	2021-01-03 11:17:33	35.461688	129.439792	0.2	328.0	267.0	175.000000	0.025250	-0.000118	0.000216	-0.000086	-0.000096	-0.000096
2	0	1001	2021-01-03 11:20:37	35.461708	129.439733	0.2	260.1	265.0	184.000000	0.005788	-0.000106	0.000020	-0.000059	-0.000196	-0.000196
3	0	1001	2021-01-03 11:23:37	35.461720	129.439708	0.1	262.8	270.0	180.000000	0.002628	-0.000018	0.000012	-0.000025	-0.000008	-0.000008
4	0	1001	2021-01-03 11:26:38	35.461733	129.439717	0.3	277.6	273.0	181.000000	0.001660	-0.000005	0.000013	0.000009	0.000001	0.000001

681435	1	4087	2022-05-07 20:25:00	35.053083	129.061333	1.3	26.0	97.0	0.142857	0.003948	-0.016907	0.000033	0.000016	-0.000017	-0.000017
681436	1	4087	2022-05-07 20:25:00	35.053083	129.061333	1.3	29.0	99.0	0.142857	0.000000	-0.027635	0.000000	0.000000	-0.000033	-0.000033
681437	1	4087	2022-05-07 20:26:00	35.053117	129.061400	1.2	48.0	106.0	0.333333	0.007176	0.021527	0.000034	0.000067	0.000034	0.000034
681438	1	4087	2022-05-07 20:26:00	35.053117	129.061417	1.2	52.0	108.0	0.333333	0.001547	-0.016884	0.000000	0.000017	-0.000034	-0.000034
681439	1	4087	2022-05-07 20:26:00	35.053133	129.061500	1.2	80.0	116.0	0.333333	0.007762	0.018643	0.000016	0.000083	0.000016	0.000016
681440	rows × 15 col	umns													

	anchor_drag	num	time	latitude	longitude	sog	cog	hdg	time_gap	d_km/s	dd_km/s	d_lati	d_long	d_d_lati	d_d_long
0	0	1001	2021-01-03 11:14:38	35.461472	129.439878	0.4	9.6	273.0	182.0	0.045969	-0.000152	0.000312	0.000333	0.000342	0.000342
1	0	1001	2021-01-03 11:17:33	35.461688	129.439792	0.2	328.0	267.0	175.0	0.025250	-0.000118	0.000216	-0.000086	-0.000096	-0.000096
2	0	1001	2021-01-03 11:20:37	35.461708	129.439733	0.2	260.1	265.0	184.0	0.005788	-0.000106	0.000020	-0.000059	-0.000196	-0.000196
3	0	1001	2021-01-03 11:23:37	35.461720	129.439708	0.1	262.8	270.0	180.0	0.002628	-0.000018	0.000012	-0.000025	-0.000008	-0.000008
4	0	1001	2021-01-03 11:26:38	35.461733	129.439717	0.3	277.6	273.0	181.0	0.001660	-0.000005	0.000013	0.000009	0.000001	0.000001
667112	0	4087	2022-05-07 20:20:00	35.052933	129.060633	0.9	141.0	99.0	0.2	0.006319	0.007453	-0.000050	0.000033	-0.000016	-0.000016
667113	0	4087	2022-05-07 20:20:00	35.052900	129.060667	1.0	145.0	98.0	0.2	0.004800	-0.007595	-0.000033	0.000034	0.000017	0.000017
667114	0	4087	2022-05-07 20:20:00	35.052850	129.060700	1.1	148.0	97.0	0.2	0.006319	0.007595	-0.000050	0.000033	-0.000017	-0.000017
667115	0	4087	2022-05-07 20:20:00	35.052750	129.060767	1.2	152.0	94.0	0.2	0.012682	0.031814	-0.000100	0.000067	-0.000050	-0.000050
667116	1	4087	2022-05-07 20:21:00	35.052700	129.060800	1.2	153.0	92.0	60.0	0.006319	-0.000106	-0.000050	0.000033	0.000050	0.000050
667117 r	ows × 15 col	umns													

06 2차 모델링 및 결과 오버샘플링

데이터 불균형 문제

전체 데이터 또는 3~4000번대 선박에 대한 데이터(429,525개)에 비해 닻 끌림 발생 데이터의 클래스(1)가 250개이므로 <mark>데이터 불균형 문제</mark> 발생

Oversampling 으로 해결 시도

Oversampling을 이용해 데이터 불균형 문제를 해소함으로써 더 좋은 학습 효과를 불러올 것이라 기대

Python의 imblearn 모듈의 내장함수들을 사용하여 여러 기법의 Oversampling 진행 및 XGBoost를 이용한 모델링

Oversampling 전

0.022

전체데이터 Oversampling							
Random Over Sampling	0.068						
ADASYN	0.091						
SMOTE	0.083						

06 모델링 및 결과 모델링

< CSI 평가표 >

	전체 데이터 Oversampling	닻 끌림 발생 데이터만 Oversampling
Random Over Sampling	0.068	0.109
ADASYN	0.091	0.107
SMOTE	0.083	0.128

CSI 지표가 가장 높은 SMOTE 기법을 이용해 닻 끌림 발생 데이터만 Oversampling 하는 방법 채택

최종 모델: SMOTE + XGBoost

- 메모리의 효율과 훈련 속도를 최적화하기 위해 Dmatrix 데이터 객체를 이용
- 성능 개선을 위해 하이퍼 파라미터 튜닝을 실시한 결과,
 우측 표의 값들로 하이퍼 파라미터 선정

변수명	값
Objective (목적 함수)	Binary : logistic
Eval_metric (성능 평가 지표)	Logloss
Num_rounds (총 학습 라운드 수)	100

06 모델링 및 결과 Feature Importance

모델 해석

Feature Importance를 보았을 때, 앞서 생성한 파생변수 중 변화율 관련 변수인 'd_lati', 'd_long' 와, 속도 관련 변수인 'd_km/s', 'dd_km/s' 이 높은 점수의 F score를 나타내고 있음.

➡ 예측에 유의미한 변수였음을 확인함.

참가번호 230100 의 CSI는 0.128 입니다.

현재 1등 입니다.

0 7 활용방안 및 기대효과 활용방안

활용방안 1

1 정박 선박의 위치 데이터 수집

선박의 실시간 위치 데이터 및 기타 분석에 필요한 데이터를 수집

2 기상 현상에 따른 선박 움직임 예측

수집한 데이터를 활용하여 전처리한 뒤, "모델"을 활용하여 닻 끌림 발생 여부를 판단

3 닻 끌림 발생 선박에 경보 알림 전송

닻 끌림 발생 예측 시 해당 선박의 선원들이 인지 가능하도록 시각 또는 청각적 수단을 활용하여 경보 알림 전송

4 해당 선박 이동 조치

해당 선박의 선원들은 선박을 닻 끌림 발생 가능성이 낮은 위치로 이동

0 7 활용방안 및 기대효과 활용방안

활용방안 2

1 기상 현상 예측

기상청 및 유관기관의 기상현상 예측 및 일기 예보

2 기상 현상에 따른 선박 움직임 예측

수집한 기상현상 예측 데이터를 활용하여 일정시간 이후의 파생변수 및 선박의 위치 예측

3 "모델"을 활용하여 닻 끌림 판단

"모델"을 활용하여 예측된 선박의 닻 끌림 발생 여부 판단

4 해당 지점에 정박 금지 및 이동조치

닻 끌림 예측 시 해당 선박에 이동조치 실시 후, 정박 금지 구역 설정

07 활용방안 및 기대효과 기대효과

기대효과

위험 및 충돌 방지

선박 표류로 인한 충돌 또는 좌초의 위험을 방지하여 선박, 선원 및 주변 해양 환경의 안전 보장

해양 오염 및 해양 생태계 파괴 방지

선박의 닻 끌림 발생으로 인한 해양 사고로 파괴된 선박의 잔해, 유출된 석유 등으로 인한 해양 오염 및 해양 생태계 파괴를 방지

수중 구조물 보호

닻 끌림으로 인한 광케이블 및 연료 파이프와 같은 중요 수중 구조물의 손상 방지. 비용과 시간이 많이 드는 수리 및 서비스 중단을 방지

지속적인 모델 개선 가능

지속적으로 선박 데이터를 수집함으로써 모델의 정확도와 안정성을 개선 및 향상 가능

최적화된 연료 효율성 및 비용 절감

불필요한 연료 소비를 방지하기 위한 효과적인 조치를 취하여 연료 효율이 절감되며 선박의 수익에 긍정적인 영향

참고문헌

참고문헌

- * Jerrold E. Marsden (2012), Vector Calculus, Sixth Edition, Freeman and Company
- * Aurélien Géron(2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, O'Reilly Media, Inc.
- * David Mertz(2021), Cleaning Data for Effective Data Science, Packt
- * 민일홍, 김준우, 손윤준(2021), 구조임무를 수행하는 수상함의 주묘현상 개선 연구,국방기술품질원 함정센터, Journal of the Korea Academia-Industrial cooperation Society Vol. 22, No. 12 pp. 193-199, 2021
- * 박성호(2006), 부산항 VTS의 효율적인 운영방안에 관한 연구, 한국해양대학교 대학원 운항 시스템공학과
- * 이윤석, 정연철, 김세원, 윤종휘, 배석한, 구엔풍(2005), 묘박 중인 선박의 주표 한계에 관한 연구(I), 한국해양항만학회 제29권 제1호 춘계학술대회 논문집 pp. 165~171, 2005.4

참고기사

- * 민건태, "남외항 묘박지 '떠다니는 폭탄' 선박사고 손수무책", 「국제신문」, 2014.01.17
- * 김기태, "포항항 잦은 선박사고 원인 캔다", 「 경북매일 」, 2014.01.07
- * 배형욱, "영일만항 침몰 청루-15호 사망자 유족들 시신 6구 찾아가", 「경북일보」, 2013.11.24
- * 이승훈, "지난해 부산 최악 해양오염 '오션탱크호 좌초' 꼽혀", 「부산일보」, 2017.01.11

감사합니다