Homework 9

Daniel Frank

 $June\ 27,\ 2017$

The states in my task are numbered as like

	\int_{0}^{∞}	1	2	3	4	5	6	7	8	9	10	11	12
	13	14	15	16	17	18	19	20	21	22	23	24	25
	26	27	28	29	30	31	32	33	34	35	36	37	38
	39	40	41	42	43	44	45	46	47	48	49	50	51
	52	53	54	55	56	57	58	59	60	61	62	63	64
	65	66	67	68	69	70	71	72	73	74	75	76	77
$\mathbb{S} =$	78	79	80	81	82	83	84	85	86	87	88	89	90
	91	92	93	94	95	96	97	98	99	100	101	102	103
	104	105	106	107	108	109	110	111	112	113	114	115	116
	117	118	119	120	121	122	123	124	125	126	127	128	129
	130	131	132	133	134	135	136	137	138	139	140	141	142
	143	144	145	146	147	148	149	150	151	152	153	154	155
	$\sqrt{156}$	157	158	159	160	161	162	163	164	165	166	167	168.
	•	'						1				,	(1)

The hallways are in state h = (45, 80, 100, 136).

	different hallways	value function				
	V_1 room(1) to state(45)	$\begin{pmatrix} 2.42 \\ 2.66 \\ 2.87 \\ 2.66 \\ 2.42 \end{pmatrix}$	2.79 3.11 3.41 3.11 2.79	3.26 3.71 4.18 3.71 3.26	3.8 4.42 5.15 4.42 3.8	4.42 5.26 6.42 5.26 4.42
	V_1 room(1) to state(80)	$\begin{pmatrix} 2.88 \\ 3.35 \\ 3.95 \\ 4.66 \\ 5.46 \end{pmatrix}$	2.95 3.5 4.27 5.24 6.51	2.67 3.13 3.74 4.47 5.32	2.32 2.68 3.17 3.76 4.37	2.07 2.37 2.76 3.22 3.68
	V_2 room(2) to state(136)	$\begin{pmatrix} 2.07 \\ 2.32 \\ 2.67 \\ 2.95 \\ 2.88 \end{pmatrix}$	2.37 2.68 3.13 3.5 3.35	2.76 3.17 3.74 4.27 3.95	3.22 3.76 4.47 5.24 4.66	3.68 4.37 5.32 6.51 5.46
	V_2 room(2) to state(80)	5.46 4.66 3.95 3.35 2.88	6.51 5.24 4.27 3.5 2.95	5.32 4.47 3.74 3.13 2.67	4.37 3.76 3.17 2.68 2.32	3.68 3.22 2.76 2.37 2.07
	$V_3 \operatorname{room}(3) \operatorname{to} \operatorname{state}(45)$	$\begin{pmatrix} 4.42 \\ 5.25 \\ 6.41 \\ 5.24 \\ 4.31 \\ 3.63 \end{pmatrix}$	3.8 4.42 5.14 4.39 3.7 3.17	3.25 3.7 4.16 3.67 3.12 2.72	2.78 3.1 3.4 3.07 2.64 2.33	2.42 2.66 2.85 2.62 2.28 2.03
	V_3 room(3) to state(100)	$ \begin{pmatrix} 2.06 \\ 2.37 \\ 2.78 \\ 3.26 \\ 3.8 \\ 4.42 \end{pmatrix} $	2.23 2.6 3.1 3.71 4.42 5.26	2.36 2.8 3.41 4.17 5.15 6.42	2.23 2.6 3.1 3.71 4.42 5.26	2.06 2.37 2.78 3.26 3.8 4.42
	$V_4 \operatorname{room}(4) \operatorname{to} \operatorname{state}(136)$	$ \begin{pmatrix} 4.49 \\ 5.34 \\ 6.52 \\ 5.47 \end{pmatrix} $	3.86 4.5 5.26 4.67	3.31 3.77 4.28 3.96	2.83 3.17 3.52 3.35	2.46 2.72 2.97 2.89
	V_4 room(4) to state(100)	$\begin{pmatrix} 4.42 \\ 3.81 \\ 3.27 \\ 2.85 \end{pmatrix}$	5.26 4.43 3.72 3.19	6.42 5.16 4.19 3.5	5.26 4.43 3.72 3.19	4.42 3.81 3.27 2.85