

Partial Derivatives

Why

We want to talk about how a function of multiple real-valued arguments changes with respect to changes in its arguments.

Definition

Consider a real-valued function on d-dimensional space. For $i=1,\ldots,d$, Fix a point x. consider the limit of a sequence of quotients of the difference of the result of that function at a point the consider the limit of a sequence of quotients of the value changed at component The partial derivative of the function with respect to the ith the function which maps d-dimensional vectors of real numbers to the limit of a seq of all of the quotient between the point to argument is the limit of the rate with a The partial derivative of a

Let
$$f: \mathbf{R}^d \to \mathbf{R}$$
 For $i = 1, ..., d$, define Let $g_i: \mathbf{R}^d \to \mathbf{R}$ by
$$g_i(x) = \lim_{h \to 0} \frac{f(x + he_i) - f(x)}{h}$$

for each x

Notation

Gradient

The *gradient* of a multivariate function is the vector-valued function whose *i*th component is the partial derivative of the function with respect to its *i*th argument.

Notation

Let $f: \mathbb{R}^n \to \mathbb{R}$. The gradient of f is frequently denoted ∇f . It is understood that $(\nabla f) \in \mathbb{R}^d \to \mathbb{R}^d$. An alternative notation is to use that similar for single derivatives and to denote the gradient (sometimes called derivative) of f by f' (assuming it exists). It is important to here note that although when $g: \mathbb{R} \to \mathbb{R}$, $g' \in (\mathbb{R} \to \mathbb{R})$, (and so is another function from and to reals) when $f: \mathbb{R}^d \to \mathbb{R}$, $f' \in \mathbb{R}^d \to \mathbb{R}^d$, and so is a vector-valued (not a real-valued) function.

There is (unfortunately) much notation for the individual partial derivatives; most of which we shall not (fortunately) have occasion to use in these sheets. One popular usage is the use of the ∂ symbol, read aloud as "partial." For example, if $f: \mathbb{R}^2 \to \mathbb{R}$ is a function of two arguments, each being referred to as x and y, then $\partial_x f$ denotes the partial derivative of f with respect to x and $\partial_y f$ denotes the partial derivative of f with respect to y. It is understood that $(\partial_x f) \in \mathbb{R}^d \to \mathbb{R}$. and likewise for $\partial_y f$. Another popular usage is $\partial f/\partial x$ for $\partial_x f$ and $\partial f/\partial y$ for $\partial_y f$. We will almost exclusively prefer the gradient notation.

