SPSS Syntax for Time Series

Step 1: Is the trend stationary? Plot it & find out!
tsplot variables= Dependent Variable
/id= Time (IV)
/nolog
/format nofill NOREFERENCE.
Step 2: If not, difference the DV & plot again!
 Transform – Create TS – DV that needs differencing. Plot it & see if stationary!
tsplot variables= differenced DV
/id= time (IV)
/nolog
/FORMAT NOFILL NOREFERENCE.
(Repeat this step if still not stationary)
Step 3: Is there a lot of variance?? If so, log transform the variable!
compute lgqual_1=lg10(quality_1 + 12).
i.e. compute "new variable name" = $lg10$ (dependent variable (most differenced) + lowest value of differenced variable & add 1)
execute.
Step 4: Plot the transformed variable!
TSPLOT VARIABLES ="new variable name from step 3"
/id= Time (IV)

/pacf.

If steps 6&7 fail, try again with a different model. Then look at the output \rightarrow "parameter estimates" & report estimates, t, and significance. This is the end unless intervention, in which case steps 1-7 are for the baseline.

If the data is for an intervention...

Step 8: Plot the forecast with only baseline data.

Analyze – forecasting – create model

Non-differenced DV → DV

Time (IV) → IV

Method - ARIMA - Criteria

Enter your model, ok!

Output: "model statistics" - Ljung-Box Q. If NON-significant, it's a good model!!!

Step 9: Plug in the entire TS data (including intervention) to the baseline diagnosed ARIMA

*ARIMA.

TSET PRINT=DEFAULT cin=95 newvar=all.

predict thru end.

Arima DV (non differenced or transformed) With intervention

/model= (0 0 0) NOCONSTANT

/MXITER 10

/PAREPS .001

/SSQPCT .001

/forecast EXACT.

Does the intervention have an effect? Look at "parameter estimates" & report estimates, t, & sig. for the intervention!

Step 10: Make sure the error residuals fall within the confidence intervals!

acf
variables = err_1
/nolog
/MXAUTO 10
/SERROR = ma
/pacf.
If they do, we have a good model. The model accounted for everything!!! YAY!