- 1. Prove that bounded f(x) is Riemann Integrable on [a,b] if and only if for all $\epsilon>0$, there exists a partition P_{ϵ} of [a,b] such that $U(f,P_{\epsilon})-L(f,P_{\epsilon})<\epsilon.$
- 2. Prove that if f(x) is continuous on [a, b], then f(x) is Riemann Integrable.

Proof:

1. Let $\epsilon > 0$.

Assume there exists a partition P of [a,b] such that $U(f,P)-L(f,P)<\epsilon$.

For any partition $P, U(f) \leq U(f, P)$ and $L(f, P) \leq L(f)$,

 $U(f) - L(f) \le U(f, P) - L(f, P) < \epsilon$, so U(f) = L(f), so f is Riemann Integrable.

Assume f is Riemann Integrable, so U(f)=L(f). From the definition of inf, there exists a partition P_1 such that $U(f,P_1)-U(f)<\frac{\epsilon}{2}$. Similarly, there exists a partition P_2 such that $L(f)-L(f,P_2)<\frac{\epsilon}{2}$.

Let $P = P_1 \cup P_2$, so P is a refinement of both P_1 and P_2 . Then

$$U(f,P) - U(f) < U(f,P_1) - U(f) < \frac{\epsilon}{2}$$
 and

$$L(f) - L(f, P) < L(f) - L(f, P_2) < \frac{\epsilon}{2}.$$

Finally, we have that $\epsilon > U(f,P) - U(f) + L(f) - L(f,P)$

or
$$\epsilon > U(f, P) - L(f, P)$$
. \square

2. Let $\epsilon > 0$.

f is continuous over a bounded interval, so f is uniformly continuous over [a,b], then there exists $\delta>0$ such that for any $x,y\in[a,b],$

$$|a-b| < \delta$$
 implies $|f(x) - f(y)| < \frac{\epsilon}{b-a}$.

Let P_n be a partition that for any $k \in [1, n], x_k - x_{k-1} < \delta$. Then

$$U(f, P_n) - L(f, P_n) = \sum_{k=1}^n M_k (x_k - x_{k-1}) - \sum_{k=1}^n m_k (x_k - x_{k-1})$$

$$= \sum_{k=1}^n (M_k - m_k) (x_k - x_{k-1})$$

$$< \frac{\epsilon}{b-a} \sum_{k=1}^n (x_k - x_{k-1})$$

$$< \frac{\epsilon}{b-a} (b-a)$$

$$< \epsilon$$

So from Part 1, f is Riemann Integrable. \Box