

2025 年全国大学生电子设计竞赛试题

参赛注意事项

- (1) 7月30日8:00竞赛正式开始。本科组参赛队只能在【本科组】题目中任选一题;高职高专组参赛队在【高职高专组】题目中任选一题,也可以选择【本科组】题目。
- (2) 参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。
- (3)参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份的有效证件(如学生证)随时备查。
- (4) 每队严格限制 3 人, 开赛后不得中途更换队员。
- (5) 竞赛期间,可使用各种图书资料和网络资源,但不得在学校指定竞赛场地外进行设计制作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。
- (6) 8月2日20:00 竞赛结束,上交设计报告、制作实物及《登记表》,由专人封存。

单相有源电力滤波实验装置(B题)

【本科组】

一、任务

设计并制作如图 1 所示单相有源电力滤波实验装置(简称装置),检测并显示非线性负载电流 i_L 及其谐波成分与含量,控制有源电力滤波器(APF)产生补偿电流 i_F ,降低网侧电流 i_S 中谐波含量。非线性负载电路如图 2 所示,开关 K_D 用以切换半波、桥式整流,开关 K_C 用以切换有、无电容滤波,测试时电容可在 $1000\sim10000\mu F$ (电容额定电压不低于 100V)范围内设置。

图 1 单相有源电力滤波实验装置结构框图

图 2 非线性负载电路原理图

二、要求

1. 基本要求

基本要求各项测试时, K_{F1} 、 K_{F2} 断开, K_{LF} 闭合,APF 不接入。基本要求(2)、(3)项测试时调整 I_0 =2A。

- (1) 设计并制作如图 2 所示非线性负载电路,要求 K_D 、 K_C 不同状态下的输出直流电流 I_O 的最大值均不小于 2A。
- (2)装置能够检测变压器副边电压 u_s 及 K_D 、 K_C 不同状态下的负载电流 i_L ,并同步显示 u_s 和 i_L 的波形。装置能够测量并显示 i_L 的有效值 I_{LRMS} ,测量相对误差的绝对值不大于5%。
- (3) 装置能够测量 K_D 、 K_C 不同状态下的负载电流 i_L 中谐波含有率 H_i (i 为谐波次数),显示 H_2 ~ H_5 (保留小数点后一位),其中含量最高的谐波含有率(记为 H_{mL})测量误差的绝对值不大于 3%。

2. 发挥部分

发挥部分各项测试时调整 $I_0=2A$ 。

- (1)APF 上电, K_{F1} 、 K_{F2} 保持断开, K_{LF} 闭合。要求在 K_D 、 K_C 不同状态下, i_F 的有效值 I_{FRMS} 均不小于 0.1A; 要求 i_F 的频率 f_E 与 i_L 中含量最高的谐波的频率 f_m 偏差的绝对值不大于 1Hz,即 $|f_E f_m| \le 1Hz$ 。
- (2) 合上 K_{F1} 、 K_{F2} ,断开 K_{LF} ,接入 APF。在 K_D 、 K_C 断开条件下,要求 i_S 中对应 i_L 含量最高的谐波的含有率(H_{mS})下降至不高于 5%。
- (3) 合上 K_{F1} 、 K_{F2} ,断开 K_{LF} ,接入 APF。在 K_D 、 K_C 闭合条件下,要求 i_S 中对应 i_L 含量最高的谐波的含有率(H_{mS})下降至不高于 5%。
- (4) 合上 K_{F1} 、 K_{F2} ,断开 K_{LF} ,接入 APF。在 K_D 、 K_C 闭合条件下,要求 i_S 的总谐波畸变率 THD 不高于 5%。
 - (5) 其他。

三、说明

- (1) 在调试过程中务必注意安全, 谨防触电和烫伤, 不要触及电烙铁、负载电阻等。
- (2) 为简化设计,使用 48V、额定输出电流不小于 3A 的成品直流电源为装置供电(如图 1 所示),测试时该电源现场提供。除此以外,检测与显示模块、APF 不准再使用其他电源。
- (3)制作非线性负载电路时,需设置两个滤波电容端口(图 $2 + C_1 \times C_2$ 所示),方便测试时更换、并接不同容值的电容。
- (4) 选择合适尺寸的显示器和适当的显示方式,保证装置至少清晰显示 2 个周期的波形及各项测量结果,可以通过按键切换两个页面显示。
- (5) 本题中 i 次谐波电流含有率 $H_i = \frac{I_{iRMS}}{I_{IRMS}} \times 100\%$,其中, I_{iRMS} 为 i 次谐波电流有效值, I_{IRMS} 为基波电流有效值。
- (6)测试时,基本要求(2)中用 $5\frac{1}{2}$ 位或更高精度的万用表测量 I_{LRMS} 作为真实值;基本要求(3)以电能质量分析仪的读数作为 H_{mL} 的真实值计算装置的测量误差,电流测量应使用电流钳;发挥部分各项电流及其谐波也都使用电能质量分析仪测量。
- (7)本题要求采用 APF,不允许采用投入电感、电容的方法抑制谐波。发挥部分(1)要求 APF 有输出 i_F ,且 i_F 中最大分量的频率 f_F (本题定义为 i_F 的频率)与 i_L 中含量最高的谐波的频率 f_m 一致。例如, i_L 中含量最高的为 3 次谐波,频率为 150Hz,则 i_F 的频率 f_F 也应为 150Hz。考虑到测控误差等因素,本项允许偏差 1Hz。如果 i_F 不满足要求,发挥部分(2)~(4)项将不予测试。
- (8) K_D 、 K_C 、 K_{F1} 、 K_{F2} 、 K_{LF} 均为手动开关,可采用便于操作的跳线等方式。各项测试设置完成后,一键启动装置进行测试,期间不允许人工干预,每项测试时间不超过 10s。

四、评分标准

	项目	主要内容	满分
设计报告	方案论证	方案比较与选择	3
		方案描述	
	理论分析与计算	谐波电流检测方法	6
		APF及其控制电路参数计算	
	电路与程序设计	APF 主回路与器件选择	6
		电压、电流检测电路设计	
		控制算法及程序设计	
	测试方案与测试结果	测试方案及测试条件	
		测试结果及其完整性	3
		测试结果分析	
	设计报告结构及规范性	摘要	
		设计报告正文的结构	2
		图表的规范性	
	合计		20
基本要求	完成第(1)项		8
	完成第(2)项		22
	完成第(3)项		20
	合计		50
发挥部分	完成第(1)项		10
	完成第(2)项		10
	完成第(3)项		10
	完成第(4)项		16
	其他		4
	合计		50
总分			120