Beta function reveal with global differential manifold.

Masaaki Yamaguchi

Global differential manifold exclude with constant of value of imaginary and real to Euler law equation, and this equation equal with beta function.

$$\frac{d}{df}F(x,y) = \frac{d}{df} \int \int \frac{1}{\left(x \log x\right)^2} dx_m + \frac{d}{df} \int \int \frac{1}{\left(y \log y\right)^{\frac{1}{2}}} dy_m$$

This equation is hyper circle function. And Jones manifold.

$$= \frac{1}{2}i \times 1 \times \sin(90^{\circ}) + \frac{1}{2} \times 1 \times 1 \times \sin(90^{\circ}) = \int \frac{1}{\sin x} dx_m$$
$$= \log(\sin x) = e^{x \log x} + e^{-x \log x} \ge e^{x \log x} - e^{-x \log x} = \cosh^{-1}(h) + \sinh^{-1}(h)$$

This equation equal with beta function.

$$=\beta(p,q)$$

Beta function escourt with gravity and anti-gravity equation.

And, this equation system call function to deprivate of global manifold. Moreover, this system also recreate with integral manifold of global topology.

This equation of global deprivate and integral manifold are computed being back explain to improve equation system with being existed from a accident of being nutral pond.

$$\int \frac{1}{\sin x} dx_m = \cos x \log(\sin x) = \log(\sin x)^{\sin x'} = \frac{d}{df} F(x) = F^{f'}$$

this result equation is non-certain system concerned with particle, electric particle and atoms in open set group with possiblity of surface values, and have abled to proof in this group of system. Universe and the other dimension of concerned of relationship values.

$$\frac{d}{df}F = \frac{d}{df} \int \int \frac{1}{(x \log x)^2} dx_m + \frac{d}{df} \int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m = \Gamma(x, y)$$

$$\frac{d}{d\gamma} \Gamma = (e^{-x} x^{1-t})^{\gamma'} \to \frac{d}{d\gamma} \Gamma = \Gamma^{(\gamma)'}$$

$$\Gamma(s) = \int e^{-x} x^{s-1} dx, \Gamma'(s) = \int e^{-x} x^{s-1} \log x dx$$

$$x^{s-1} = e^{(s-1)\log x}$$

$$\frac{\partial}{\partial s} x^{s-1} = \frac{\partial}{\partial s} e^{-x} \cdot (e^{s-1\log x}) = e^{-x} \cdot \log x \cdot e^{(s-1)\log x}$$

$$= e^{-x} \cdot \log x \cdot x^{s-1}$$

$$\frac{d}{d\gamma} \Gamma = \Gamma^{(\gamma)'}$$

$$\frac{d}{d\gamma} \Gamma(s) = \left(\int_0^\infty e^{-x} x^{s-1} dx \right)^{\left(\int_0^\infty e^{-x} x^{s-1} \log x dx \right)'}$$

$$= \Gamma^{(\Gamma \int \log x dx)'}$$

$$= e^{-x \log x}$$

$$\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx$$

$$\Gamma'(s) = \int_0^\infty e^{-x} x^{s-1} \log x dx$$

$$\frac{d}{df} F = \int x^{s-1} dx$$

$$\int F dx_m = \int e^{-x} dx$$

$$\frac{d}{df} F = F^{(f)'}, \int F dx_m = F^{(f)}$$

Global differential manifold and global integrate manifold are reached with begin estimate of gamma and beta function leaded solved, Global differential manifold is emerged with gamma function of themselves of first value of global differential manifold of gamma function, this equation of quota in newton and dalarnverles of equation is also of same results equations. Zeta function also resulted with quantum group reach with quanto algebra equation. Included of diverse of gravity of influent in quantum physics, also quantum physics doesn't exist Gauss surface of theorem,

$$\begin{split} H\Psi &= \bigoplus (i\hbar^{\nabla})^{\oplus L} \\ &= \bigoplus \frac{H\Psi}{\nabla L} \\ &= e^{x\log x} = x^{(x)'} \end{split}$$

however,

$$\frac{d}{df}F = m(x)$$

and gravity equation in being abled to existed with quantum physics, and this physics is also represented with quantum level of differential geometry.

$$\frac{d}{dt}\psi(t) = \hbar$$
$$= \frac{1}{2}ie^{i\hat{H}}$$

$$(i\hbar)' = (-e^{i\hat{H}})'$$

$$= -ie^{i\hat{H}}$$

$$\psi(x) = e^{-i\hat{H}t}, \bigoplus (i\hbar^{\nabla})^{\oplus L} = \frac{1}{2}e^{i\hat{H}}^{(-ie^{i\hat{H}})}$$

$$= (\frac{1}{2}f)^{-if}$$

$$= (\frac{1}{2})^{-if} \cdot e^{-x\log x} \cdot (f)^{i}$$

$$= \int e^{-x}x^{t-1}dx, \frac{d}{d\gamma}\Gamma = e^{-x\log x}$$

$$f = x, i = t, \frac{1}{2} = a, \bigoplus a^{-tx}x^{t}[I_{m}] \cong \int e^{-x}x^{t-1}dx$$

Quantum level of differential geometry is also resulted with Gamma function of global differential manifold of values, Heisenberg equation is also resulted with global integrate manifold and this quantum level of differential geometry is manifold of deprive of formula.

$$\begin{split} |\psi(t)\rangle_s &= e^{-i\hat{H}t}|\Psi\rangle_H, \hat{A}_s = \hat{A}_H(0) \\ |\Psi(t)\rangle_s &\to \frac{d}{dt} \\ i\frac{d}{dt}|\psi(t)\rangle_s &= \hat{H}|\psi(t)\rangle_s \\ \langle \hat{A}(t)\rangle &= \langle \Psi(t)|\hat{A}(0)|\Psi(t)\rangle \\ \frac{d}{dt}\hat{A} &= \frac{1}{i}[\hat{A},H] \\ \hat{A}(t) &= e^{i\hat{H}t}\hat{A}(0)e^{-i\hat{H}t} \\ \lim_{\theta \to 0} \begin{pmatrix} \sin\theta \\ \cos\theta \end{pmatrix} \begin{pmatrix} \theta & 1 \\ 1 & \theta \end{pmatrix} \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ f^{-1}(x)xf(x) &= I_m', I_m' = [1,0] \times [0,1] \\ x + y &\geq \sqrt{xy} \\ \frac{x^{\frac{1}{2}+iy}}{e^{x\log x}} &= 1 \\ \mathcal{O}(x) &= \nabla_i \nabla_j \int e^{\frac{2}{m}\sin\theta\cos\theta} \times \frac{N \text{mod}(e^{x\log x})}{O(x)(x+\Delta|f|^2)^{\frac{1}{2}}} \\ x\Gamma(x) &= 2\int |\sin 2\theta|^2 d\theta, \mathcal{O}(x) = m(x)[D^2\psi] \\ i^2 &= (0,1) \cdot (0,1), |a||b|\cos\theta = -1 \end{split}$$

$$E = \text{div}(E, E_1)$$

$$\left(\frac{\{f, g\}}{[f, g]}\right) = i^2, E = mc^2, I^{'} = i^2$$

Gamma function of global differential equation is first of differential function deprivate with ordinary differential equations, more also universe and other dimensiion of Higgs field emerge with zeta function, more spectrum focus is three dimension of manifold of singularity or pair theorem, and universe and other dimension of each value equals. This reverse of circle function of manifolds is also Higgs fields of dense of entropy and result equation. And differential structure of quantum level in gravity is poled with zeta function and quantum group in high result values. Zeta function and quantum group is Global differential manifold of result in values.

$$\frac{d}{d\gamma}\Gamma = m(x)$$

$$= e^{-x \log x}$$

$$\sin ix = \frac{e^{-x} + e^x}{2i}$$

$$\frac{d}{df}F = m(x) = e^f + e^{-f}$$

$$= 2i \sin(ix \log x)$$

Hyper circle function is constructed with sheap of manifold in Beta function of reverse system emerged from Gamma function and reverse of circle function of entropy value, and this reverse of hyper circle function of beta system is universe and the other dimension of zeta function, more over spectrum focus is this beta function of reverse in circle function is quantum level of differential structure oneselves, and this quantum level is also gamma function themselves. This gamma function is more also D-brane and anti-D-brane built with supplicant values. Higgs fileds is more also pair of universe and other dimension each other value elements.

My son in a casicrecord demonstrate with being have with quantum level of differential structure equation. I have with same equation already from being on my father and my doctors of professors give me hints with this qlds equation explanade with global differential manifold.

$$H\Psi = \bigoplus (i\hbar^{\nabla})^{\oplus L}(1)$$

$$= i\hbar\psi$$

$$\frac{d}{df}F = m(x)(2)$$

$$= \frac{d}{df} \int \int \frac{1}{(x\log x)^2} dx_m + \frac{d}{df} \int \int \frac{1}{(y\log y)^{\frac{1}{2}}} dy_m(3)$$

$$\bigoplus (i\hbar^{\nabla})^{\oplus L} = \int e^{-x} x^{1-t} dx_m(4)$$

$$= \frac{d}{d\gamma} \Gamma = \int \Gamma(\gamma)' dx_m(5)$$

$$= e^f + e^{-f}(6)$$
$$\frac{d}{d\gamma}\Gamma^{-1} = e^f - e^{-f}(7)$$

(1) is my son in a casicrecord with his idea, (2),(3) are myself equation. (4),(5) are my son and me with tagge of ideas equation. (6),(7) are Takashima Aya and me, and my son in a casicrecode with tolio equations. These references from Grisha professor and Takeuchi Kaoru. I read with this references being hint from these professors.

$$\log x|_{g_{ij}}^{\nabla L} = f^{f'}, F^{f}|_{g_{ij}}^{\nabla L}| : x \to y, x^{p} \to y$$
$$f(x) = \log x = p \log x, f(y) = p \log x$$

大域的偏微分方程式と大域的多重積分は、それぞれ次のように成り立っている。

$$\frac{d^2}{df^2}F = F^{f'} \cdot f^{f''},$$

$$\int \int F dx_m = F^f \cdot F^{(f)'}$$

$$\frac{d}{df dg}(f, g) = (f \cdot g)^{f' + g'}$$

大域的部分積分も、次のように成り立っている。

$$(F^f \cdot G^g) = \int (f \cdot g)^{f' + g'}$$

$$\int \int F \cdot G dx_m = [F^f \cdot G^g] - \int (f \cdot g)^{f' + g'}$$

大域的部分積分の計算は、

$$\int \frac{d}{dfdg} FG = \int F^{f'} G + \int FG^{g'}$$

$$\int F^{f'} G dx_m = [F^f G^g] - \int FG^{g'} dx_m$$

大域的商代数の計算は、

$$\left(\frac{F(x)}{G(x)}\right)^{(fg)'} = \frac{F^{f'}G - FG^{g'}}{G^g}$$

大域的偏微分方程式は、縮約記号を使うと、

$$\frac{d}{dfdg}FG = \frac{d}{df_m}FG$$

$$\frac{\partial}{\partial f_m}FG = F^{f^{\mu\nu}}\cdot G + F\cdot G^{g^{\mu\nu}}, \int Fdx_m = F^f$$

多様体による大域的微分と大域的積分が、エントロピー式で統一的に表せられる。