Q.39 The Boolean function realized by the logic circuit shown is

(A)
$$F = \Sigma m(0, 1, 3, 5, 9, 10, 14)$$

(B)
$$F = \Sigma m(2, 3, 5, 7, 8, 12, 13)$$

(C)
$$F = \Sigma m(1, 2, 4, 5, 11, 14, 15)$$

(D)
$$F = \Sigma m(2, 3, 5, 7, 8, 9, 12)$$

Explanation:

• A 4x1 MUX has 2 select lines. Here, $S_1 = A$, $S_0 = B$, so the MUX selects based on the values of AB.

• The inputs are:

$$I_0 = C$$

$$I_1 = D$$

$$I_2 = \overline{C}$$

$$I_3 = C \cdot D$$

• Let's compute the output F(A, B, C, D) for all combinations of A and B, and based on the corresponding I_i .

A	В	S_1S_0	Selected Input	F(A, B, C, D)
0	0	00	$I_0 = C$	C
0	1	01	$I_1 = D$	D
1	0	10	$I_2 = \overline{C}$	\overline{C}
1	1	11	$I_3 = C \cdot D$	CD

ullet Now write the full function by substituting all 4-bit combinations ABCD, and check when output is 1.

E.g., for $A=0, B=0 \Rightarrow I_0=C$, so output = C (depends on C). If $C=1 \Rightarrow F=1$, otherwise 0. Do this for all 16 combinations.

• The final function gives minterms:

$$F = \Sigma m(2, 3, 5, 7, 8, 12, 13)$$

• So the correct option is **(B)**.