Dual attention network for Scene Segmentation

Jun Fu ^{1,3} Jing Liu ¹ Haijie Tian ¹ Yong Li ² Yongjun Bao ² Zhiwei Fang ^{1,3} Hanqing Lu ¹

¹National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences

²Business Growth BU, JD.com ³ University of Chinese Academy of Sciences

{jun.fu, jliu, zhiwei.fang, luhq}@nlpr.ia.ac.cn, hjtian_bit@163.com, {liyong5, baoyongjun}@jd.com

Abstract

文章建立在自注意力机制上,提出了Dual Attention Network去集成局部特征和全局依赖。分别为空间和通道模块,并且都是扩展在FCN的上。在Cityscapes, PASCAL Context and COCO Stuff 上达到新的sota,其中在Cityscapes上达到81.5%的 IoU分数

Contribution

- We propose a novel Dual Attention Network (DANet) with self-attention mechanism to enhance the discriminant ability of feature representations for scene segmentation.
- A position attention module is proposed to learn the spatial interdependencies of features and a channel attention module is designed to model channel interdependencies. It significantly improves the segmentation results by modeling rich contextual dependencies over local features.
- We achieve new state-of-the-art results on three popular benchmarks including Cityscapes dataset, PASCAL Context dataset and COCO Stuff dataset.

Related Work

Semantic Segmentation

FCN Deeplabv2 Deeplabv3 PSPNet DAG-RNN PSANet EncNet

Self-attention Modules

Attention is all you need(nisp2017) 第一次提出了self-attention的注意力机制 non-local neural network(cvpr2018) 将self-attention运用到cv领域

Model Architecture

提出了Transformer描绘输入和输出之间的全局依赖

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position—wise fully connected feed-forward network

Encoder—

Attention

Scaled Dot-Product Attention

Input: Q,K是dk维, V是dv维

Output:

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Attention

在多个通道上使用Scaled Dot-Product Attention然后进行Concat

$$\begin{split} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_{\text{h}}) W^O \\ \text{where head}_{\text{i}} &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{split}$$

Non-local Neural Network将Self-Attention的机制运用到cv领域

文章提出了关于f选择的四个版本 Gaussian、Embedded Gaussian、 Dot product、Concatenation

Dot product

$$f(\mathbf{x}_i, \mathbf{x}_j) = \theta(\mathbf{x}_i)^T \phi(\mathbf{x}_j).$$

A spacetime non-local block

Non-local Block

$$\mathbf{z}_i = W_z \mathbf{y}_i + \mathbf{x}_i,$$

DANet

DANet

Why? Spatial dependcies between any two positions regardless of distance

- The first step is to generate a spatial atten- tion matrix which models the spatial relationship between any two pixels of the features
- Next, we perform a matrix multiplication between the attention matrix and the original features.
- Third, we perform an element-wise sum operation on the above multiplied resulting matrix and original features to obtain the final representations reflecting long- range contexts.

A. Position attention module

- ① 特征图A通过1x1卷积得到B、C、D,通道数变成原来的1/8
- ② B(CXHXW)通过转置reshape操作变成(NXC)然后和reshape后的C(CXN)点乘在通过softmax激活得到S(NXN),Dreshape(CXN)点乘S在reshape成(CXHXW)
- ③ 引入尺度系数α(初始值为0, 通过训练学习乘得到的特征图, 再加上A得到最后的输出E

DANet

Why?

Each channel map of high level features can be regarded as a class-specific response, and different semantic responses are associated with each other

- ① 对A做reshape(CxN)和reshape与transpose(NxC)
- ② 将得到的两个特征图相乘,再通过softmax得到 channel attention map X(C×C)
- ③ 接着把X的转置(CxC)与reshape的A(CxN)做矩阵乘法,再乘以尺度系数 β ,再reshape为原来形状,最后与A相加得到最后的输出E
- ④ 其中β初始化为O, 并逐渐的学习得到更大的权重

Results on Cityscapes Dataset

Method	BaseNet	PAM	CAM	Mean IoU%
Dilated FCN	Res50			70.03
DANet	Res50	V		75.74
DANet	Res50		✓	74.28
DANet	Res50	1	1	76.34
Dilated FCN	Res101			72.54
DANet	Res101	V		77.03
DANet	Res101		✓	76.55
DANet	Res101	1	✓	77.57

Table 1: Ablation study on Cityscapes val set. *PAM* represents Position Attention Module, *CAM* represents Channel Attention Module.

Results on Cityscapes Dataset

Image Sub-attention map #1 Sub-attention map #2

Results on Cityscapes Dataset

Results on PASCAL VOC 2012 Dataset

Method	BaseNet	PAM	CAM	Mean IoU%
Dilated FCN	Res50			75.7
DANet	Res50	1	1	79.0
DANet	Res101	1	1	80.4

Table 4: Ablation study on PASCAL VOC 2012 val set. PAM represents Position Attention Module, CAM represents Channel Attention Module.

Method	Mean IoU%	
FCN [13]	62.2	
DeepLab-v2(Res101-COCO) [3]	71.6	
Piecewise [11]	75.3	
ResNet38 [10]	82.5	
PSPNet(Res101) [29]	82.6	
EncNet (Res101) [27]	82.9	
DANet(Res101)	82.6	

Table 5: Segmentation results on PASCAL VOC 2012 testing set.

Results on Other Dataset

Method	Mean IoU%	
FCN-8s [13]	37.8	
Piecewise [11]	43.3	
DeepLab-v2 (Res101-COCO) [3]	45.7	
RefineNet (Res152) [10]	47.3	
PSPNet (Res101) [29]	47.8	
Ding et al.(Res101) [6]	51.6	
EncNet (Res101) [27]	51.7	
Dilated FCN(Res50)	44.3	
DANet (Res50)	50.1	
DANet (Res101)	52.6	

Table 6: Segmentation results on PASCAL Context testing set.

Method	Mean IoU%	
FCN-8s [13]	22.7	
DeepLab-v2(Res101) [3]	26.9	
DAG-RNN [18]	31.2	
RefineNet (Res101) [10]	33.6	
Ding et al.(Res101) [6]	35.7	
Dilated FCN (Res50)	31.9	
DANet (Res50)	37.2	
DANet (Res101)	39.7	

Table 7: Segmentation results on COCO Stuff testing set.

Thoughts

- ① 结合特征金字塔的思想,从不同尺度选取特征图进行position attention
- ② A采用更深的卷积得到B,C,D类似增加残差深度