- **1.1.** Пусть X нормированное пространство. Докажите, что операции сложения $X \times X \to X$ и умножения на число $\mathbb{K} \times X \to X$ непрерывны.
- **1.2.** Пусть X нормированное пространство и $X_0 \subseteq X$ векторное подпространство. Докажите, что его замыкание $\overline{X_0}$ тоже векторное подпространство в X.
- **1.3.** Пусть $p, q \in (1, +\infty)$, и пусть $\frac{1}{p} + \frac{1}{q} = 1$.
- 1) Докажите неравенство Юнга:

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q} \qquad (a, b \geqslant 0).$$

2) Из неравенства Юнга выведите неравенство Гёльдера:

$$\sum_{i=1}^{n} |x_i y_i| \leqslant ||x||_p ||y||_q \qquad (x, y \in \mathbb{K}^n).$$

3) Из неравенства Гёльдера выведите неравенство Минковского:

$$||x + y||_p \le ||x||_p + ||y||_p \qquad (x, y \in \mathbb{K}^n).$$

- **1.4.** Нарисуйте единичный шар на плоскости \mathbb{R}^2 , снабженной нормой $\|\cdot\|_p$, для различных $p \in [1, +\infty]$. Обратите внимание на случаи $p = 1, p = 2, p = \infty$. Что происходит с единичным шаром с ростом p?
- **1.5.** Пусть $1 \leqslant p \leqslant q \leqslant +\infty$.
- 1) Докажите, что $\|\cdot\|_q \leqslant \|\cdot\|_p$ на \mathbb{K}^n .
- 2) Докажите, что существует такая константа $C = C_{n,p,q} > 0$, что $\|\cdot\|_p \leqslant C \|\cdot\|_q$ на пространстве \mathbb{K}^n .
- 3) Можно ли эту константу выбрать не зависящей от n?
- 4) Найдите наименьшую константу $C_{n,p,q}$ с указанным свойством. Интерпретируйте ответ как норму некоторого оператора.
- **1.6.** Пусть c_{00} пространство всех финитных последовательностей (т.е. числовых последовательностей $x=(x_n)$, для каждой из которых существует такое $N\in\mathbb{N}$, что $x_n=0$ для всех n>N). Эквивалентны ли нормы $\|\cdot\|_p$ и $\|\cdot\|_q$ на c_{00} при $p\neq q$?
- **1.7.** Докажите, что последовательность $(x^{(k)})$ в пространстве \mathbb{K}^n сходится к вектору $x \in \mathbb{K}^n$ по норме $\|\cdot\|_p$ (где $1 \leq p \leq +\infty$) тогда и только тогда, когда она сходится к x покоординатно.
- **1.8.** Докажите, что c_0 замкнуто в ℓ^{∞} . Чему равно замыкание ℓ^p в ℓ^{∞} ?
- **1.9.** Пусть $1\leqslant p\leqslant q\leqslant \infty$. Докажите, что $\ell^p\subset \ell^q$, но $\ell^p\neq \ell^q$ при $p\neq q$. Чему равна норма оператора вложения ℓ^p в ℓ^q ?
- **1.10.** Пусть X множество. Докажите, что последовательность (f_n) в $\ell^{\infty}(X)$ сходится к $f \in \ell^{\infty}(X)$ по норме $\|\cdot\|_{\infty}$ тогда и только тогда, когда она сходится к f равномерно.
- **1.11.** Пусть X полунормированное пространство, и пусть $N = \{x \in X : \|x\| = 0\}$. Покажите, что формула

$$||x + N||^{\wedge} = ||x|| \qquad (x \in X)$$

корректно определяет норму на X/N. (Корректность в данном случае означает, что правая часть этой формулы зависит лишь от класса $x+N\in X/N$, а не от самого элемента $x\in X$).

- **1.12.** Пусть (X, μ) пространство с мерой, и пусть $p, q \in (1, +\infty)$ таковы, что $\frac{1}{p} + \frac{1}{q} = 1$.
 - 1) Докажите, что если $f \in \mathscr{L}^p(X,\mu)$ и $g \in \mathscr{L}^q(X,\mu)$, то функция fg интегрируема и справедливо неравенство Γ ёльдера

$$\int_X |fg| \, d\mu \leqslant ||f||_p ||g||_q.$$

2) Из неравенства Гёльдера выведите, что $\mathcal{L}^p(X,\mu)$ — векторное пространство, и что справедливо неравенство Минковского

$$||f + g||_p \le ||f||_p + ||g||_p$$
 $(f, g \in \mathcal{L}^p(X, \mu)).$

- **1.13.** Пусть $1 \leqslant p \leqslant q \leqslant +\infty$.
- 1) Докажите, что существует такая константа $C = C_{a,b,p,q} > 0$, что $\|\cdot\|_p \leqslant C \|\cdot\|_q$ на пространстве C[a,b].
- 2) Найдите наименьшую константу $C_{a,b,p,q}$ с указанным свойством. Интерпретируйте ответ как норму некоторого оператора.
- 3) Эквивалентны ли нормы $\|\cdot\|_p$ и $\|\cdot\|_q$ на C[a,b] при $p\neq q?$
- **1.14.** Проверьте, что измеримая функция существенно ограничена тогда и только тогда, когда она эквивалентна некоторой измеримой ограниченной функции.
- **1.15.** Пусть (X, μ) пространство с мерой, и пусть f неотрицательная существенно ограниченная функция на X. Напомним (см. лекцию), что ее существенная верхняя грань определяется формулой

$$\operatorname{ess\,sup} f = \inf \big\{ \sup_{x \in E} f(x) : E \subset X, \ \mu(X \setminus E) = 0 \big\}.$$

Докажите, что inf в этой формуле достигается. Как следствие, $\operatorname{ess\,sup} f = 0$ тогда и только тогда, когда f = 0 п.в.

- **1.16.** Пусть $f \in C[a,b]$. Докажите, что ess sup $|f| = \sup_{x \in [a,b]} |f(x)|$.
- **1.17.** Докажите, что $\mathscr{L}^{\infty}(X,\mu)$ векторное пространство, и что формула

$$||f|| = \operatorname{ess\,sup}|f|$$

задает полунорму на $\mathscr{L}^{\infty}(X,\mu)$.

- **1.18.** Пусть $\mu(X) < \infty$. Докажите, что $L^q(X,\mu) \subset L^p(X,\mu)$ при $1 \leqslant p \leqslant q \leqslant \infty$. Чему равна норма оператора вложения $L^q(X,\mu)$ в $L^p(X,\mu)$?
- **1.19.** Докажите, что $L^p[a,b] \neq L^q[a,b]$ при $p \neq q$.
- **1.20.** Пусть $X = \mathbb{N}$, и пусть μ «считающая» мера на σ -алгебре всех подмножеств \mathbb{N} , заданная формулой $\mu(A) = |A|$ (число элементов в A). Убедитесь, что $L^p(\mathbb{N}, \mu) = \ell^p$ для всех $1 \leqslant p \leqslant \infty$. Сопоставьте это наблюдение с результатом задачи 1.9 и убедитесь, что результат задачи 1.18 не переносится на случай, когда $\mu(X) = \infty$.
- **1.21.** Покажите, что $L^p(\mathbb{R}) \not\subset L^q(\mathbb{R})$ при $p \neq q$. Полезно сравнить результат этой задачами 1.9 и 1.18.