I. ¿ Qué es us grajo y para qué Sirre?

Def: Un grapo dingido q paeja (V(4), E(9))

dónde

V(4) = conjunto prinito llamado" vértices"

de q.

E(4) \(\subseteq \text{V(4)} \times \text{V(4)}

conjunto de paejas ordinadas

llamado las "aristas" de q

Ejemplo:
(1) (2)
$$(9) = \{1, 1, 3, 4\}$$

(3,4), (4,1), (1,1)
(3,4), (4,1), (1,1)

Note: A veces nos restrigimos a grafos

no dirigidos ({u,v} es arista (=> (u,v) y (v,u))

sur loops (no permitimos (u,u) e E(4))

Las signientes nociones basicas van a ser importate, para nosatos: Camino camino simple, ciclo, districa entre vertices, grapo conexo, grapo frerhenete conexo.

Sea 9 m grafo y sean u,v E V(4). Def: Un camino dude a haste v es ma Suce non u=Wo, W, Wz, WK = V Con wie V(q) y + i∈ 30,...k-13 (wi, wi+1) ∈ E(q). La longitul de este amino es k. El camino es simple si ningún révitie se repite. Un ciclo en q es un camino wo, w, ., we con k > 2 Wo = WK y todos los demás vérties distintos. (i) (1,2,3,2,3) es un camino de 4 1 a 3 [No simple]

de longitud 4.

(ii) (2,3,4,5) es maido Det: Un gapo No Dirigioo es conexo si pon todo par de vértices u, v existe un camino de u a v. Un grapo Dirigido es frentemente corexo si pro todo u,v & V(q) existe un camino de u a v y un camno de v a u. Obs: En este gapo dirigido hoy un camino de 1 a

3 3 pero no de 3 a 1. Def: La distancia desde u hasta v d(u,v):= mínima longitud de un camino desde u hasta V.

(se define d(v, v) = 00 si NO hay camino, des de

u haste V).

for que son importates los grafos? Porque sirven para modelar relaciones biharias entre objetos y estas relaciones son Muy comunes como Lomester los siguientes ejemplos: Ejemplo1: Redus físicas : T: V(T) = "Civdades del mundo" (C1,C2) E E(T) (=> "hay al menos un vuelo de C1 a C2 codo día" Ejemploz: Grapos de conocimiento A V(A) = "Actores de cine" (a, az) ∈ E(A) (=> "a, y az action en al menos una película World Wide Web W V(w) = "paginas neb" (p,q) ∈ E(W) <=> "hay un link de p a q" Ejemplos: Grapo, de planeación: R V(R) = "Posibles conpagnaciones de un cobo de robile" (P,,Pz) E E(R) (=> es ponble pour de a a b medite un movimiento basico. Qui podemos aprender de organita la información mediate gasos? Mucho... www.oro.cle of bacan.org / 1 VI = 200 x 10 6 millones Cómo imaginar el INTERNET? |E| = 1.5 × 10 9 billones GIANT

[Memoria requida par reports us greeps]
Lema: (i) Una matir de adyacencia requiene O(n2)
Una lista de adjuancia requiere O(m+n)
Dem: (ii) out (v) = # de aistus que sah de v
$\sum_{\text{out(v)}} = E = m$
NO WILL
lvego la rep. en lista de adjucernia requier n + m entros.
Par eso la represibilión como lista de adjacencia
es hipiannt preferida.
II. Breadth-First-Search (BFS) busqueda par amplihd:
Sea quingajo y sea s e V(q) fijo. En el
algoritmo BFS recorremos los vertius de 9
iniciando en 5 y recomiendo que diante "capas"
sucusivas cada vez más lejos de S, denotadas Lj
U
Concretamente defininos Lo:={5}
y pan > 1
Li= 2 u ∈ V(4) alcantables des de Lj-1 en
Un paso } () [
t < j-1
Queeno, dejar solo los vertres, no
visto, en capas arteriones.
BFS calcula las distingas
Teorema: [Qué es BFS?] mais contas entre S y todos
$L_{j} = \{ v \in V(q) : d(s, v) = j \}$

MPLEMENTACIÓN:

vertias_vistos = {5}

i = 0

(*)

L[o] = [s]

while L[i] not empty:

L[i+i]=[]

for v in L[i]:

du los vecinos Out(v)

for u in Out(v):

y

""

""

if u not in vertices-vistos:

vertices-notes < retras-notes U {u}} L[i+1].apped (u)

i = i + 1.

Lema: El algoritmo de arriba requiere tiempo
$$O(m)$$

Dem: El ciclo principal (*) recorre a lo más

todos los vértices (los Lj son una patición) MUY MUY

y poa cada vértice v recorre su conjunto rápido,

de vecinos $Out(v)$ de tamaño dy casi tanto

i como leer

realizado $O(1)$ operaciones.

Los datos

de extrada

Veloop

Veloop

Veloop

Veloop

Veloop

Veloop

Los datos

Los datos

Los datos

Olos: En el algantmo antion solo LCi7 y LCi+17
son importatio en cada institu (la información.
relivante de L[t], t \le i-1 esta en
vertius_vistos). Esto permite limita el
espacio (nemoria total utilizada) a múximo z capas
así
[L(i+)] L(i]
FIFO-Queve Salen.
En cada tumo:
(1) Sacumos un vértice de adelante u
(2) Buscamos $Out(u) = \{v,, v_j\}$
(3) Pan cada V; E Out(u)
ya visto No visto
Vi entra a la fila
Vsando BFS iniciando en S podemos calculor
napidamente los númeos d(sv). Cómo encontro
un camino de sa v de longitud d(s,v)?
(camino más corto).
Det: Un árbol es un grapo no dirigido corexo sir ciclos. Def: Un árbol 8FS T para quinimado en s
Def: Un árbol 8fs paa y iniciando en S
se construye así:
se construye así:
se construye as i : $V(T) = \bigcup_{j \ge 0} L_j$
se construye as i : $V(T) = \bigcup_{j \ge 0} L_j$
se construye as i : $V(T) = \bigcup_{j \ge 0} L_j$
se construye así:

Lema: Todo par de vértices en un árbol T prede conectise mediante un único camiño simple. Dem: Sean u, v E V(T) y supanga que hay dos caminos simples distritos

Evenue [Caminos optimos desde S]

Sea G un grafo y sea T un árbol BFS

iniciando en S e V(9). Paa todo u e V(T)

el camino (único) que une a S y u en T

es un camino de longitud mínima de S

hosta u en G.

Dem: Mostarmos prano que T es un árbol.

Por inducción en el índice L; es facil

probo que todo vértire del árbol admite
un camino en T de longitud «j

désde sasique Tes conexo. Si
hubiea maicho el eleneto mais lejano
a s habria sido descubiento dos
Mces. (imposible) lugo Tes airbol.
E(T) C E(q) así que
$d_{T}(s,v) \geq d_{q}(s,v)$
luego par ve L; conclumos
$d_{\pm}(s,v) = d_{g}(s,v)$
demostrdo et Teorema.
Damosmao el 1600 entre.