Evolutionary Algorithms: Constrained Optimization, Parallel EAs

May 07, 2013 Prof. Chang Wook Ahn

Sungkyunkwan Evolutionary Algorithms Lab.
School of Info. & Comm. Eng.
Sungkyunkwan University

Constrained Evolutionary Optimization

Constrained Optimization (1)

* What is the Constrained Optimization Problems (COPs)?

- > A class of Optimization Problems that have Constraint Conditions
 - ✓ The aim is to find the best solution(s) while satisfying the Constraint Conditions

Unconstrained Optimization

The task is to find $x^* = \arg \max_{x \in \Omega} f$

Here, x is a vector of decision variables, and f is the objective function

Constrained Optimization

The task is to find $x^* = \arg \max_{x \in \Omega} f$

subject to $g_i(x) \le 0$, $i = 1, \dots, m$

Inequality $h_i(x) = 0, \ j = 1, \dots, p$

Equality Constraints

Constrained Optimization (2)

* Regarding the Search Space

- > Feasible search space of COPs is a key issue!
 - \checkmark It is relatively very narrow! \Rightarrow Thus, hard to discover the optimal solution!

Constrained Optimization (3)

Example

- > Find the optimal solutions w.r.t the maximization of $f(x) = -x^2 \{1 + (x 5)^6\}$
 - ✓ If there is no constraint, then x=0 is the optimum!
 - ✓ If a constraint is $u(x-2) \ge 0$, then x=5 is the optimum!

Constrained Optimization (4)

* How Difficult the Constraints are?

- > Constraints significantly reduce the amount of feasible search space.
 - ✓ In real-world cases, the feasible spaces are very narrow! (e.g., less than 0.001%)
 - ✓ To make matters worse, it is very hard to handle the constraints mathematically!

Case I. Number of Constraints is 2

Case II. Number of Constraints is 3

Constrained Evolutionary Opt. (1)

* How to Handle the Constraints in terms of GAs?

- > The Simplistic Method: Not consider the infeasible solutions!
 - ✓ EAs solve the optimization problems by referring to the fitness values
 - ✓ In the minimization case, the infinity value is assigned to the infeasible solutions

Constrained Evolutionary Opt. (2)

❖ More Efficient Method?

- > The Penalty Method: Participate the infeasible solutions as well in evolution!
 - ✓ Transform a COP into an unconstrained one by adding/subtracting a certain value.
 - ✓ In the minimization case, the value is based on the amount of constraint violation.

Constrained Evolutionary Opt. (3)

Example: Knapsack Problem

- \triangleright A set of *n* items is available to packed into a knapsack with capacity C units.
- \succ Item i has a value w_i (e.g., \$) and uses up c_i units (e.g., kg) of capacity
- > The aim is to maximize the amount of values while keeping the overall capacity

Parallel Evolutionary Algorithms

Parallel EAs (1/3)

- > Evolution itself is a highly parallel process
- > EAs are easy to parallelize (i.e., inherent parallelism)
- > PEAs can solve difficult problems (i.e., vast search space)
- > Parallel mechanism reduces considerably the processing the
- > There are tremendous computing resources (i.e., grid computing)

Parallel EAs (2/3)

 $F_3 =$

 $fitness(x_i)$

 $F_2 =$

 $fitness(x_i)$

 $fitness(x_i)$

 $F_k =$

 $fitness(x_i)$

Multiple-population PEAs

Parallel EAs (3/3)

Summary

Constrained Evolutionary Algorithms

- Constraints make optimization problems difficult to be solved
- > Feasible space significantly reduces as the number of constraints increase
- Penalty value is imposed on the objective value by the constraint violation
- → The design of penalty function is a key issue in COPs!

Parallel Evolutionary Algorithms (PEAs)

- > It is natural to make EAs parallel due to their Inherent Parallelism
- Generally, parallel EAs outperform sequential EAs
- → The topology and the migration of PEAs are important topics in PEAs!