CSC165 Mathematical Expression and Reasoning for Computer Science

Module 6

Notes

© Abdallah Farraj, University of Toronto

Domain

- Changing the domain or universe of the implication statement could change the True/False outcome of the statement
- Keep an eye on the domain

 \mathbb{R} : Set of real numbers

 \mathbb{R}^+ : Set of positive reals

 \mathbb{R}^- : Set of negative reals

© Abdallah Farraj, University of Toronto

-

Predicates

- If $\exists x \in D: P(x)$ is true:
 - Some element in the domain has the property P
- If $\forall x \in D: P(x)$ is true:
 - All elements of the domain D have the property P
- If $\exists x \in D: \neg P(x)$ is true:
 - Some element in the domain does not have the property P
- If $\forall x \in D: \neg P(x)$ is true:
 - All elements of the domain D do not have the property P

© Abdallah Farraj, University of Toronto

Implication

- $P(x) \rightarrow Q(x)$:
- If x has the property P, then x has the property Q
- If x does not have the property P:
 - $P(x) \rightarrow Q(x)$ does not indicate whether x has the property Q or not
- $P(x) \rightarrow Q(x)$ is false when P(x) is true and Q(x) is false
- Otherwise, $P(x) \rightarrow Q(x)$ is true

© Abdallah Farraj, University of Toronto

Implication Example

- E(x): x is enrolled in CSC165
- T(x): x is a student
- $E(x) \rightarrow T(x)$
 - If x has the property of being enrolled in CSC165, then x has the property of being a student
 - If x is enrolled in CSC165, then x is a student
 - This is an open sentence, we cannot verify it unless we know x
- $\forall x \in D : E(x) \to T(x)$
 - For all x in domain D: if x has the property of being enrolled in CSC165, then x has the property of being a student
 - · This is a statement, it can be verified

© Abdallah Farraj, University of Toronto

Converse, Contrapositive...

S: $\forall x \in \mathbb{R}$: if P(x) then Q(x)

• Write the contrapositive of S

 $\forall x \in \mathbb{R}$: if $\neg Q(x)$ then $\neg P(x)$

Write the converse of S

 $\forall x \in \mathbb{R}$: if Q(x) then P(x)

• Write the contrapositive of the converse of S

 $\forall x \in \mathbb{R}$: if $\neg P(x)$ then $\neg Q(x)$

© Abdallah Farraj, University of Toronto

.

Converse, Contrapositive...

- S: All Java programs passed test 1
- Write the contrapositive of S

(All) Programs that did not pass test 1 are not written in Java... or

(All) Programs that failed test 1 are not written in Java

Write the converse of S

(All) Programs that passed test 1 are written in Java

• Write the contrapositive of the converse of S

(All) Programs that are not written in Java did not pass test 1

© Abdallah Farraj, University of Toronto

Converse, Contrapositive...

S: $\forall x \in \mathbb{R}$: if x > 10 then x > 5

• Contrapositive of S

 $\forall x \in \mathbb{R}$: if $x \ge 5$ then $x \ge 10$... or

 $\forall x \in \mathbb{R}$: if $x \le 5$ then $x \le 10$

• Converse of S

 $\forall x \in \mathbb{R}$: if x > 5 then x > 10

• Contrapositive of the converse of S

 $\forall x \in \mathbb{R}$: if $x \ge 10$ then $x \ge 5$ $\forall x \in \mathbb{R}$: if $x \le 10$ then $x \le 5$

© Abdallah Farraj, University of Toronto

.

Bounding

© Abdallah Farraj, University of Toronto

- When we express time or memory use properties of code (in CSC108/148/..., and later in this course), it will often be simpler and more useful to express bounds that ignore "small inputs"
- Why?
- Because larger inputs will usually be where the time or memory use can become significant enough to matter
- Explore the following claims using our standard approaches:

© Abdallah Farraj, University of Toronto

11

Bounding

```
1. \forall x \in \mathbb{R}: if x > 10 then x > 5

Let x \in \mathbb{R}.

Assume x > 10.

Then x > 5 + 5.

Then x > 5.

Then if x > 10 then x > 5.

Therefore, \forall x \in \mathbb{R}: if x > 10 then x > 5.
```

© Abdallah Farraj, University of Toronto

```
2. \forall x \in \mathbb{R}: if x > 10 then x^2 > 10x

Let x \in \mathbb{R}.

Assume x > 10.

Then x \cdot x > 10(x). # by multiplying both sides by positive value x.

Then if x > 10 then x^2 > 10x.

Therefore, \forall x \in \mathbb{R}: if x > 10 then x^2 > 10x.
```

© Abdallah Farraj, University of Toronto

13

Bounding

```
3. \forall x \in \mathbb{R}: if x > 10 then x^2 > 100

Let x \in \mathbb{R}.

Assume x > 10.

Then x^2 > 10x.

Then x^2 > 10(10) = 100.

Then if x > 10 then x^2 > 100.

Therefore, \forall x \in \mathbb{R}: if x > 10 then x^2 > 100.
```

© Abdallah Farraj, University of Toronto

4. $\forall x \in \mathbb{R}$: if x > 10 then $x^2 > 60$

Let $x \in \mathbb{R}$.

Assume x > 10.

Then $x^2 > 100 = 60 + 40$.

Then $x^2 > 60$.

Then if x > 10 then $x^2 > 60$.

Therefore, $\forall x \in \mathbb{R}$: if x > 10 then $x^2 > 60$.

© Abdallah Farraj, University of Toronto

Bounding

5. $\forall x \in \mathbb{R}$: if x > 10 then $\frac{1}{x} < \frac{1}{10}$

Let $x \in \mathbb{R}$.

Assume x > 10.

By dividing both sides by positive value x

Assume x > 10.

Then $\frac{x}{x} > \frac{10}{x}$.

Then $1 > \frac{10}{x}$.

Then $\frac{1}{10} > \frac{1}{x}$.

Then $\frac{1}{x} < \frac{1}{10}$.

Then if x > 10 then $\frac{1}{x} < \frac{1}{10}$.

Therefore, $\forall x \in \mathbb{R}$: if x > 10 then $\frac{1}{x} < \frac{1}{10}$.

© Abdallah Farraj, University of Toronto

6. $\forall x \in \mathbb{R}$: if x > 10 then $\frac{1}{x} < 1$

Let $x \in \mathbb{R}$.

Assume x > 10.

Then
$$\frac{1}{x} < \frac{1}{10}$$
.

Then
$$\frac{1}{x} < \frac{1}{10} + \frac{9}{10} = \frac{10}{10} = 1$$
.

Then if x > 10 then $\frac{1}{x} < 1$.

Therefore, $\forall x \in \mathbb{R}$: if x > 10 then $\frac{1}{x} < 1$.

© Abdallah Farraj, University of Toronto

Bounding

- 7. $\forall x \in \mathbb{R}$: if x > 10 then $x^2 > x$
 - If x > 10 then $x^2 > 10$ x = x + 9x
 - Then $x^2 > x$
- 8. $\forall x \in \mathbb{R}$: if x > 10 then -x < -5
 - If x > 10 then -x < -10
 - Then -x < -5
- 9. $\forall x \in \mathbb{R}$: if x > 10 then $x^2 5x < 3x^2 2x$
 - If x > 10 then 5x > 2x
 - Then -5x < -2x

 - Then $x^2 5x < x^2 2x$ Then $x^2 5x < x^2 2x + 2x^2$
 - Then $x^2 5x < 3x^2 2x$

© Abdallah Farraj, University of Toronto

Bounding Example

© Abdallah Farraj, University of Toronto

19

Bounding Example

• Consider:

(S1)
$$\forall x \in \mathbb{R}$$
: if $x \ge 10$ then $\frac{5}{x^2 - 7x + 1} < \frac{1}{6}$

- What is S1 about?
 - S1 makes a direct claim for all numbers that are larger than or equal 10
 - Example: since 165 \geq 10: S1 claims that $\frac{5}{165^2 7(165) + 1} < \frac{1}{6}$
- Is it true?

© Abdallah Farraj, University of Toronto

Bounding Example

- (S1): $\forall x \in R$: if $x \ge 10$ then $\frac{5}{x^2 7x + 1} < \frac{1}{6}$
- Exploration:
 - The numerator is positive
 - The denominator looks positive
 - So the larger the denominator is, the smaller the ratio is
 - So try underestimating the denominator with something simpler:

$$165^{2} - 7(165) + 1 > 100^{2} - 7(165) + 1$$
$$> 100^{2} - 10(200) + 1$$
$$> 100^{2} - 10(200) = 10000 - 2000 = 8000$$

• So: $165^2 - 7(165) + 1 > 8000$

© Abdallah Farraj, University of Toronto

Bounding Example

• Then
$$\frac{5}{165^2 - 7(165) + 1} < \frac{5}{8000}$$

 $< \frac{5}{5000} = \frac{1}{1000}$
 $< \frac{1}{6}$

• Try to make that less dependent on the particulars of 165:

$$165^{2} - 7(165) + 1 = 165(165 - 7) + 1$$

> $165(165 - 7)$
> $100(100) = 10000$

• Try using just the fact that $165 \ge 10$:

$$165^{2} - 7(165) + 1 > 165(10) - 7(165) + 1 = 10(165) - 7(165) + 1$$
$$= 3(165) + 1$$
$$> 3(10) + 1 = 31$$

© Abdallah Farraj, University of Toronto

Bounding Example

• (S1):
$$\forall x \in \mathbb{R}$$
: if $x \ge 10$ then $\frac{5}{x^2 - 7x + 1} < \frac{1}{6}$ Let $x \in \mathbb{R}$.

Assume $x \ge 10$.

Then
$$x^2 - 7x + 1 \ge 10x - 7x + 1$$

= $3x + 1$
 $\ge 30 + 1 = 31$.

Then
$$\frac{5}{x^2 - 7x + 1} \le \frac{5}{31}$$

 $< \frac{5}{30} = \frac{1}{6}$.

Therefore, $\forall x \in \mathbb{R}$: if $x \ge 10$ then $\frac{5}{x^2 - 7x + 1} < \frac{1}{6}$.

© Abdallah Farraj, University of Toronto

23

Another Way to Prove $\forall x \in \mathbb{R}$: if $x \ge 10$ then $\frac{5}{x^2 - 7x + 1} < \frac{1}{6}$

Let $x \in \mathbb{R}$.

Assume $x \ge 10$.

Then
$$x^2 - 7x + 1 > x^2 - 7x$$

 $= x(x - 7)$
 $\geq x(10 - 7)$
 $= 3x$
 $\geq 3(10)$
 $= 5(6)$.
Then $\frac{1}{x^2 - 7x + 1} < \frac{1}{5(6)}$.
Then $\frac{5}{x^2 - 7x + 1} < \frac{5}{5(6)}$
 $= \frac{1}{6}$.

Then if $x \ge 10$ then $\frac{5}{x^2 - 7x + 1} < \frac{1}{6}$.

Therefore, $\forall x \in \mathbb{R}$: if $x \ge 10$ then $\frac{5}{x^2 - 7x + 1} < \frac{1}{6}$

© Abdallah Farraj, University of Toronto