NEURONALE NETZE

ChatGPT und Co.

Jasper Gude

2.1 Modellierung des Problems

2.2 Modellierung des Problems

2.3 Modellierung des Problems

Überführung auf eine Netzstruktur

Öberführung auf eine Netzstruktur

Überführung auf eine Netzstruktur

Öberführung auf eine Netzstruktur

4 Aufbau eines Perzeptrons

Inputvektor \vec{x}

Linearkombination

$$net = x_0w_0 + x_1w_1 + x_2w_2 + \ldots + x_nw_n$$
 oder

$$net = \sum_{i=0}^{n} x_i w_i$$

Inputvektor \vec{x}

Sigmoidfunktion $\varphi(x) = \frac{1}{1 + e^{-x}}$ 0.5

7 Fehlerfunktion

Dataset

$$X = \left\{ (\vec{x_0}, y_0); (\vec{x_1}, y_1); (\vec{x_2}, y_2); (\dots, \dots); (\vec{x_n}, y_n) \right\}$$

Mean Squared Error

$$E = \frac{1}{2} \sum_{i=0}^{n} (y_i - o_i)^2$$

$$X = \left\{ (\vec{x_0}, y_0); (\vec{x_1}, y_1); (\vec{x_2}, y_2); (\dots, \dots); (\vec{x_n}, y_n) \right\}$$

Ableitung der Sigmoidfunktion

$$\varphi'(x) = \frac{1}{1 + e^{-x}} \cdot \left(1 + \frac{1}{1 + e^{-x}}\right)$$
 oder

$$\varphi'(x) = \varphi(x) \cdot (1 + \varphi(x))$$

10 Einschichtiges feedforward-Netz

Ausgabeschicht

11 Mehrschichtiges feedforward-Netz

12 Rekurrentes Netz

Ausgabeschicht

Jasper Gude

Hockenheim, 26. November 2023