

Study of N₂O Flux over Central Amazon

N₂O Sources and Sinks

- N₂O is the 3rd most important anthropogenic greenhouse gas. Life time: 120 years
- Main sources:
 - Nitrification and denitrification in soils: 9-31 TgN₂Oyr⁻¹
 - Ocean: 9-19 TgN₂Oyr⁻¹
 - Agricultural soil: 19.5 TgN₂Oyr⁻¹ (77% of anthropogenic contribution)
- Main sinks
 - Decomposition in stratosphere by photodissociation (90%)
 - Reactions with excited oxygen (10%).

Measurement Sites

Flux Calculation

Miller et al., 2007 method

"A Very Large Flux Chamber"

Trajectories Study (Hysplit model)

$$F_{N_2O} = \frac{\int_{z=0}^{4km} ([N_2O]_{site} - [N_2O]_{bg}) dz}{time}$$

Back trajectories

- Used to calculate time air has been over land at 8 altitudes.
- Typically quite similar as a function of altitude.

Calculating the background

Step 1. Chose SF₆ like a tracer transport

Calculating the background

Integration of profiles

N2O mixing ratio (ppb)

Normalized

$$F_{N_2O} = \sum \frac{\{([N_2O_{i+1}]_{site} - [N_2O_{i+1}]_{bg}) + ([N_2O_i]_{site} - [N_2O_i]_{bg})\}/2 \bullet \Delta z}{time_z}$$

"Santarém" Fluxes

2005 Wet season enhancement – probably related to agriculture

"Manaus" Fluxes

Summary and Comparison with other estimates

Years/Site	SAN		MAN	
	Wet	Dry	Wet	Dry
2001-2003	0.0 ± 1.2	-1.65 ± 2.2		
2004-2006	2.1 ± 1.6	0.8 ± 0.6	1.9 ± 0.8	1.1 ± 0.7

- •Comparison (mg N₂O/m-2yr-1)
 - 1.9 Primary Forest, Rondônia, Brazil (Garcia-Montiel, et al., 2004)
 - 0.38 Primary Forest, Manaus, Brazil (Coolman, 1994)
 - 0.44 Young Pasture, Manaus, Brazil (Coolman, 1994)

Conclusions

- The normalized profiles show a clear enhancement during wet season.
- SAN fluxes were enhanced until 2005.
 In 2006 political programs decreased the N-fertilizer used in Para.
- MAN fluxes are lower in 2006 for the same reason.
- Fluxes calculated are similar other studies over near regions.