Numerical Optimization

Unconstrained Optimization (II)

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Unconstrained Optimization

Let $f: \mathbb{R} \to \mathbb{R}$

Unconstrained problem

$$\min_{x \in \mathbb{R}} f(x)$$

- What are *necessary and sufficient conditions* for a local minimum?
 - Necessary conditions: Conditions satisfied by every local minimum
 - Sufficient conditions: Conditions which guarantee a local minimum
- Easy to characterize a local minimum if f is *sufficiently* smooth

Stationary Points

Let $f : \mathbb{R} \to \mathbb{R}, f \in \mathcal{C}^1$. Consider the problem, $\min_{x \in \mathbb{R}} f(x)$.

Definition

 x^* is called a *stationary point* if $f'(x^*) = 0$.

Necessity of an Algorithm

• Consider the problem

$$\min_{x\in\mathbb{R}} (x-2)^2$$

• We first find the stationary points (which satisfy f'(x) = 0).

$$f'(x) = 0 \Rightarrow 2(x - 2) = 0 \Rightarrow x^* = 2.$$

- $f''(2) = 2 > 0 \Rightarrow x^*$ is a strict local minimum.
- Stationary points are found by solving a nonlinear equation,

$$g(x) \equiv f'(x) = 0.$$

- Finding the real roots of g(x) may not be always easy.
 - Consider the problem to minimize $f(x) = x^2 + e^x$.
 - $g(x) = 2x + e^x$
 - Need an algorithm to find x which satisfies g(x) = 0.

One Dimensional Optimization

- Derivative-free methods (Search methods)
- Derivative-based methods (Approximation methods)
- Inexact methods

Unimodal Functions

- Let $\phi: \mathbb{R} \to \mathbb{R}$
- Consider the problem,

$$\min_{x\in\mathbb{R}} \ \phi(x)$$

• Let x^* be the minimum point of $\phi(x)$ and $x^* \in [a, b]$

Definition

The function ϕ is said to be *unimodal* on [a, b] if for $a \le x_1 < x_2 \le b$,

$$x_2 < x^* \Rightarrow \phi(x_1) > \phi(x_2),$$

$$x_1 > x^* \Rightarrow \phi(x_2) > \phi(x_1).$$

Unimodal Functions

Unimodal functions

Derivative-free Methods

Let $f: \mathbb{R} \to \mathbb{R}$

Unconstrained problem

$$\min_{x \in \mathbb{R}} f(x)$$

- Dichotomous search
- Fibonacci search
- Golden-section search

Require,

- Interval of uncertainty, [a, b], which contains the minimum of f
- f to be unimodal in [a, b].

Function values at three points not enough to reduce the interval of uncertainty

Function values at four points enough to reduce the interval of uncertainty

Dichotomous Search

• Place λ and μ symmetrically, each at a distance ϵ from the mid-point of [a,b]

Dichotomous Search: Algorithm

- **1 Input**: Initial interval of uncertainty, [a, b],
- 2 Initialization:

$$k = 0, a^k = a, b^k = b, \epsilon (> 0), l$$
 (final length of uncertainty interval)

- **o** while $(b^k a^k) > l$
- $if f(\lambda^k) \ge f(\mu^k)$
- $a^{k+1} = \lambda^k, b^{k+1} = b^k$
- else
- $b^{k+1} = \mu^k, a^{k+1} = a^k$
- endif
- 0 k := k + 1
- endwhile
- **Output:** $x^* = \frac{a^k + b^k}{2}$

Dichotomous Search: An Example

Consider,
$$\min_{x} (1/4)x^4 - (5/3)x^3 - 6x^2 + 19x - 7$$

k	a^k	b^k	$b^k - a^k$
0	-4	0	4
1	-4	-1.98	2.02
2	-3.0001	-1.98	1.0201
3	-3.0001	-2.4849	.5152
	i	i i	:
10	-2.5669	-2.5626	.0043
:	÷	÷	:
20	-2.5652	-2.5652	4.65e-6
:	:	:	:
23	-2.5652	-2.5652	5.99e-7

$$x^* = -2.5652, f(x^*) = -56.2626$$

Need one function evaluation at every iteration k = 2, 3, ...

We have $I_1 = I_2 + I_3$. Generalizing further, we get

$$I_1 = I_2 + I_3$$
 $I_2 = I_3 + I_4$
 \vdots
 $I_n = I_{n+1} + I_{n+2}$

Assumption: The interval for iteration n + 2 vanishes $(I_{n+2} = 0)$.

$$I_{n+1} = I_n - I_{n+2} = 1I_n$$
 $I_n = I_{n+1} + I_{n+2} = 1I_n$
 $I_{n-1} = I_n + I_{n+1} = 2I_n$
 $I_{n-2} = I_{n-1} + I_n = 3I_n$
 $I_{n-3} = I_{n-2} + I_{n-1} = 5I_n$
 $I_{n-4} = I_{n-3} + I_{n-2} = 8I_n$
 \vdots
 \vdots
 \vdots
 $I_1 = I_2 + I_3 = ?I_n$
Fibonacci Sequence: $\{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots\}$
 $F_k = F_{k-1} + F_{k-2}, k = 2, 3, \ldots$
 $F_0 = 1, F_1 = 1$

Note: After *n* iterations,

$$I_n = \frac{I_1}{F_n}$$

• After *n* iterations,

$$I_n = \frac{I_1}{F_n}$$

For example, after 10 iterations, $I_n = \frac{I_1}{89}$

• *n* should be known beforehand

How to determine μ^{k+1} knowing a^{k+1} , b^{k+1} , λ^{k+1} and I_{k+1} ?

Note: Easy to find μ^{k+1} if I_{k+2} is known.

Recall,

$$I_k = F_{n-k+1}I_n.$$

Therefore,

$$I_{k+2} = F_{n-k-1}I_n$$

and

$$I_{k+1} = F_{n-k}I_n.$$

This gives,

$$I_{k+2} = \frac{F_{n-k-1}}{F_{n-k}} I_{k+1}.$$

Only one function evaluation per iteration (after the first iteration)

The Fibonacci Search

- Consider, $\min_x (1/4)x^4 (5/3)x^3 6x^2 + 19x 7$
- Initial interval of uncertainty : [-4, 0]
- Required length of interval of uncertainty: 0.2
- Set *n* such that $F_n > \frac{4}{0.2} = 20, n = 7$

k	a^k	b^k	$b^k - a^k$
0	-4	0	4
1	-4	-1.52	2.48
2	-3.05	-1.52	1.53
3	-3.05	-2.11	0.94
4	-2.70	-2.11	0.59
5	-2.70	-2.34	0.36
6	-2.70	-2.47	0.23
7	-2.61	-2.47	0.14

- Fibonacci Search requires the number of iterations as input
- Golden section search: Ratio of two adjacent intervals is constant

$$\frac{I_k}{I_{k+1}} = \frac{I_{k+1}}{I_{k+2}} = \frac{I_{k+2}}{I_{k+3}} = \dots = r$$

Therefore,

$$\frac{I_k}{I_{k+2}} = r^2$$

and

$$\frac{I_k}{I_{k+3}}=r^3.$$

Suppose, $I_k = I_{k+1} + I_{k+2}$. That is,

$$\frac{I_k}{I_{k+2}} = \frac{I_{k+1}}{I_{k+2}} + 1$$

This gives

$$r^2 = r + 1 \Rightarrow r = \frac{1 + \sqrt{5}}{2} = 1.618034$$
 (negative r is irrelevant)

 $Golden\ Ratio = 1.618034$

• Every iteration is independent of *n*

$$\frac{I_k}{I_{k+1}} = \frac{I_{k+1}}{I_{k+2}} = \frac{I_{k+2}}{I_{k+3}} = \dots = r$$

Lengths of generated intervals,

$$\{I_1, I_1/r, I_1/r^2, \ldots\}$$

• After *n* function evaluations, $I_n^{GS} = I_1/r^{n-1}$

- For Golden Section search, $I_n^{GS} = I_1/r^{n-1}$
- For Fibonacci search, $I_n^F = I_1/F_n$
- When n is large,

•

$$F_n \equiv \frac{r^{n+1}}{\sqrt{5}}$$

Therefore, $I_n^F \equiv \frac{\sqrt{5}}{r^{n+1}} I_1$

$$\frac{I_n^G}{I_n^F} = \frac{r^2}{\sqrt{5}} \approx 1.17$$

• If the number of iterations is same, I_n^{GS} is larger than I_n^F by about 17%

Derivative-based Methods

Let $f: \mathbb{R} \to \mathbb{R}$

Unconstrained problem

$$\min_{x \in \mathbb{R}} f(x)$$

- Bisection method
 - Assumes $f \in \mathcal{C}^1$.
 - Interval of uncertainty, [a, b], which contains the minimum of f needs to be provided.
 - Assumes that f is unimodal in [a, b].
- Newton method
 - Assumes $f \in \mathcal{C}^2$.
 - ullet Based on using the quadratic approximation of f at every iteration

Bisection Method

Assumption:

- $f \in \mathcal{C}^1$
- \bullet f is unimodal in the initial interval of uncertainty, [a, b].

Idea: Compute f'(c) where c is the midpoint of [a, b]

- If f'(c) = 0, then c is a minimum point.
- $f'(c) < 0 \Rightarrow [c, b]$ is the new interval of uncertainty

Bisection Method: Algorithm

- **Initialization**: Initial interval of uncertainty $[a^1, b^1]$, k = 1. Let l be the allowable final level of uncertainty, choose smallest possible n > 0 such that $(\frac{1}{2})^n \le \frac{l}{b^1 a^1}$.
- **2** while k < n
- $c^k = \frac{a^k + b^k}{2}$
- If $f'(c^k) = 0$, stop with c^k as an optimal solution.
- If $f'(c^k) > 0$ $a^{k+1} = a^k$ and $b^{k+1} = c^k$ else $a^{k+1} = c^k$ and $b^{k+1} = b^k$ endif
- endwhile
- § If k = n + 1, the solution is at the midpoint of $[a^n, b^n]$.

Bisection Method

Bisection method

- requires initial interval of uncertainty
- converges to a minimum point within any degree of desired accuracy

Newton Method

- An iterative technique to find a root of a function
- Problem: Find an approximate root of the function,

$$f(x) = x^2 - 2.$$

• An iteration of Newton's method on $f(x) = x^2 - 2$.

Newton Method

- Consider the problem to minimize f(x), $x \in \mathbb{R}$
- Assumption: $f \in C^2$.
- Idea:
 - At any iteration k, construct a quadratic model q(x) which agrees with f at x^k up to second derivative,

$$q(x) = f(x^k) + f'(x^k)(x - x^k) + \frac{1}{2}f''(x^k)(x - x^k)^2$$

- Estimate x^{k+1} by minimizing q(x).
- $q'(x^{k+1}) = 0 \Rightarrow f'(x^k) + f''(x^k)(x^{k+1} x^k) = 0$
- $x^{k+1} = x^k \frac{f'(x^k)}{f''(x^k)}$
- Repeat this process at x^{k+1} .

Newton Method: Algorithm

Consider the problem to minimize f(x), $f \in C^2$ Need to find the roots of g(x)(=f'(x)).

- **1 Initialization:** Choose initial point x^0 , ϵ and set k := 0
- $x^{k+1} = x^k \frac{g(x^k)}{g'(x^k)}$
- k := k + 1
- endwhile
- **Output**: x^k

Remarks

- Starting with an arbitrary initial point, Newton method does not converge to a stationary point
- If the starting point is *sufficiently close* to a stationary point, then Newton method converges.
- Useful when $g'(x^k) > 0$

Consider the problem,

$$\min_{x \in \mathbb{R}} \quad (1/4)x^4 - (5/3)x^3 - 6x^2 + 19x - 7$$

•
$$f(x) = (1/4)x^4 - (5/3)x^3 - 6x^2 + 19x - 7$$

•
$$g(x) = x^3 - 5x^2 - 12x + 19$$

Consider the problem,

$$\min_{x \in \mathbb{R}} \quad (1/4)x^4 - (5/3)x^3 - 6x^2 + 19x - 7$$

•
$$f(x) = (1/4)x^4 - (5/3)x^3 - 6x^2 + 19x - 7$$

•
$$g(x) = x^3 - 5x^2 - 12x + 19$$

Consider the problem,

$$\min_{x \in \mathbb{R}} \quad \log(e^x + e^{-x})$$

•
$$f(x) = \log(e^x + e^{-x})$$

• $g(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

$$g(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Consider the problem,

$$\min_{x \in \mathbb{R}} \quad \log(e^x + e^{-x})$$

$$f(x) = \log(e^x + e^{-x})$$

$$g(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Newton method does not converge with this initialization of x^1