Презентация по лабораторной работе №2

Задача о Погоне

Нзита Диатезилуа Катенди

Информация

Докладчик

- Нзита Диатезилуа Катенди
- студент группы НКНбд-01-21
- Российский университет дружбы народов
- https:

//github.com/NzitaKatendi/Math_modeling

Цели и задачи работы

Цель лабораторной работы

Рассмотрим задачу преследования браконьеров береговой охраной. На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии k км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Необходимо определить по какой траектории необходимо двигаться катеру, чтоб нагнать лодку.

Задание к лабораторной работе

- 1. Запишите уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Постройте траекторию движения катера и лодки для двух случаев.
- 3. Найдите точку пересечения траектории катера и лодки

Процесс выполнения лабораторной работы

Принимаем за $t_0=0, X_0=0$ - место нахождения лодки браконьеров в момент обнаружения, $X_0=k$ - место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.

Введем полярные координаты. Считаем, что полюс - это точка обнаружения лодки браконьеров $x_0=0(\theta=x_0=0)$, а полярная ось г проходит через точку нахождения катера береговой охраны.

Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер x-k (или x+k, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как $\frac{x}{x}$ или $\frac{x+k}{n}$ (для второго случая $\frac{x-k}{n}$). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние можно найти из следующего уравнения: $\frac{x}{v} = \frac{x+k}{v}$ - в первом случае, $\frac{x}{v} = \frac{x-k}{v}$ во втором случае.

Отсюда мы найдем два значения x_1 и x_2 , задачу будем решать для двух случаев.

$$x_1=rac{k}{n+1}$$
 ,при $heta=0$

$$x_2=rac{k}{n-1}$$
 ,при $heta=-\pi$

После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r радиальная скорость и v_{t} - тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса $v_r = \frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $v=\frac{dr}{dt}$. Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $\frac{d\theta}{dt}$ на радиус r, $vr = r \frac{d\theta}{dt}$

Найдем тангенциальную скорость для нашей задачи $v_t=r\frac{d\theta}{dt}$. Вектора образуют прямоугольный треугольник, откуда по теореме Пифагора можно найти тангенциальную скорость $v_t=\sqrt{n^2v_r^2-v^2}$. Поскольку, радиальная скорость равна v, то тангенциальную скорость находим из уравнения $v_t=\sqrt{n^2v^2-v^2}$. Следовательно, $v_{ au}=v\sqrt{n^2-1}$.

Тогда получаем
$$r rac{d heta}{dt} = \upsilon \sqrt{n^2 - 1}$$

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений

$$\begin{cases} \frac{dr}{dt} = v \\ r\frac{d\theta}{dt} = v\sqrt{n^2 - 1} \end{cases}$$

с начальными условиями

$$\begin{cases} \theta_0 = 0 \\ r_0 = \frac{k}{n+1} \end{cases}$$

Или

$$\begin{cases} \theta_0 = -\pi \\ r_0 = \frac{k}{n-1} \end{cases}$$

Исключая из полученной системы производную по t, можно перейти к следующему уравнению: $\frac{dr}{d\theta}=\frac{r}{\sqrt{n^2-1}}$

Начальные условия остаются прежними. Решив это уравнение, мы получим траекторию движения катера в полярных координатах. Теперь, когда нам известно все, что нам нужно, построим траекторию движения катера и лодки для двух случаев.

Figure 1: траектории для случая 1 (Julia)

Figure 2: траектории для случая 2 (Julia)

Точка пересечения графиков является точкой пересечения катера и лодки.

Наблюдаем, что при погоне «по часовой стрелке» для достижения цели потребуется пройти меньшее расстояние.

Выводы по проделанной работе

Вывод

Рассмотрели задачу о погоне. Провели анализ и вывод дифференциальных уравнений. Смоделировали ситуацию.