INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4002Dual 4-input NOR gate

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT4002

FEATURES

· Output capability: standard

I_{CC} category: SSI

GENERAL DESCRIPTION

The 74HC/HCT4002 are high-speed Si-gate CMOS devices and are pin compatible with "4002" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4002 provide the 4-input NOR function.

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYF	PICAL	UNIT	
SYMBOL	PARAIVIETER	CONDITIONS	НС	нст	UNII	
t _{PHL} / t _{PLH}	propagation delay nA, nB, nC, nD to nY	C _L = 15 pF; V _{CC} = 5 V	9	11	ns	
C _I	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per gate	notes 1 and 2	16	22	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o) \text{ where:}$$

 f_i = input frequency in MHz

 f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

 C_L = output load capacitance in pF

 V_{CC} = supply voltage in V

2. For HC the condition is $V_1 = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT4002

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 13	1Y, 2Y	data outputs
2, 9	1A, 2A	data inputs
3, 10	1B, 2B	data inputs
4, 11	1C, 2C	data inputs
5, 12	1D, 2D	data inputs
6, 8	n.c.	not connected
7	GND	ground (0 V)
14	V _{CC}	positive supply voltage

74HC/HCT4002

FUNCTION TABLE

	OUTPUT			
nA	nB	nY		
L	L	L	L	Н
Н	X	Х	Х	L
X	H	Х	Х	L
X	X	Н	Х	L
X	X	Х	Н	L

Notes

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care

Philips Semiconductors Product specification

Dual 4-input NOR gate

74HC/HCT4002

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Out put capability: standard

I_{CC} category: SSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HC							UNIT		WAVEFORMS
STWIBOL		+25			-40 to +85		-40 to +125		UNII	V _{CC} (V)	VVAVEFORIVIS
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{PHL} / t _{PLH}	propagation delay		30	100		125		150	ns	2.0	Fig.7
	nA, nB, nC, nD to nY		11	20		25		30		4.5	
			9	17		21		26		6.0	
t _{THL} / t _{TLH}	output transition time		19	75		95		110	ns	2.0	Fig.7
			7	15		19		22		4.5	
			6	13		16		19		6.0	

74HC/HCT4002

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: SSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
nA, nB, nC, nD	0.45

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 \text{ V}; t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pF}$

SYMBOL	PARAMETER	T _{amb} (°C)							LIMIT	TEST CONDITIONS	
		74HCT									WAVEFORMS
		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORWIS	
		min.	typ.	max.	min.	max.	min.	max.		(' '	
t _{PHL} / t _{PLH}	propagation delay nA, nB, nC, nD to nY		13	22		28		33	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.7

AC WAVEFORMS

Fig.7 Waveforms showing the input (nA, nB, nC, nD) to output (nY) propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".