- dynamics of multiple and highly-charged ions

S. Fritzsche 6th February 2013

dynamics of multiple and highly-charged ions

Ionization & recombination in strong Coulomb fields correlated photon and/or electron emission

- Ionization & recombination in strong Coulomb fields correlated photon and/or electron emission
- Coupling of deeply-bound electrons to the continuum correlation-induced autoionization & capture

→ ...

Properties of many-electron & (super-) heavy elements correlated (ab-initio) many-body techniques

3_{H6}e

 $5f^{12}7s^2$, $J^{p}=6^{+}$

Dye Laser λ=398 nm

GS

- dynamics of multiple and highly-charged ions

Properties of many-electron & (super-) heavy elements correlated (ab-initio) many-body techniques

Multi-photon & electron dynamics in intense FEL radiation

- dynamics of multiple and highly-charged ions

Properties of many-electron & (super-) heavy elements correlated (ab-initio) many-body techniques

Multi-photon & electron dynamics in intense FEL radiation

dynamics of multiple and highly-charged ions

lonization & recombination in strong Coulomb fields correlated photon and/or electron emission

- Coupling of deeply-bound electrons to the continuum correlation induced autoionization & capture
- Properties of many-electron & (super-) heavy elements correlated (ab-initio) many-body techniques
 - Multi-photon & electron dynamics in intense FEL radiation correlated many-electron dynamics

Ionization & recombination in strong Coulomb fields

exploring the light-matter interactions

total cross sections

angular distributions

$$\frac{d\sigma}{d\Omega}(\theta) \sim \sum_{polarization} |M|^2$$

photoionization recombination

Ionization & recombination in strong Coulomb fields

exploring the light-matter interactions

$$\sigma \sim \sum_{polarization} \int d\Omega |M|^2$$

total cross sections

Final state $(t \rightarrow +\infty)$ $\hat{\rho}_f$

 \hat{S} - scattering operator

$$\hat{\rho}_f = \hat{S} \, \hat{\rho}_i \, \hat{S}^+$$

$$\rho$$
 = (μ_s , J, J'; E; I, μ_l ... density matrix)

Ionization & recombination in strong Coulomb fields

exploring the light-matter interactions

total cross sections

Capture into the 2p_{3/2} excited states of initially bare ions

Th. Stöhlker et al., PRL 79 (1997) 3270.

J. Eichler et al., PRA 58 (1998) 2128.

E1-M2 multipole mixing: Alignment of the 2p_{3/2} state

Dynamical alignment studies enables one to explore magnetic interactions in the bound-bound transitions in H-like ions!

Effective anisotropy parameter: Multipole contributions

effective anisotropy parameter

$$\beta_{\it eff} = \frac{1}{2} \frac{\sigma\left(\pm 3/2\right) - \sigma\left(\pm 1/2\right)}{\sigma\left(\pm 3/2\right) + \sigma\left(\pm 1/2\right)} * f\left(\underbrace{E1,M2}\right)$$
 alignment parameter structure function (capture process) (ion)

$$f(E1,M2) \propto 1 + 2\sqrt{3} \frac{\langle |M2| \rangle}{\langle |E1| \rangle}$$

In contrast, contributions to decay rates appear additive:

$$\frac{\Gamma_{M2}}{\Gamma_{tot}} \propto \frac{|\langle |M2| \rangle|^2}{|\langle |E1| \rangle|^2} \propto 0.008$$
even for U⁹¹⁺

Elementary processes in strong Coulomb fields

- How can one directly `measure" multipole fields?

Lyman- α_1 (2p_{3/2} --> 1s_{1/2}) for H-like U⁹¹⁺ ions:

Angular distribution

$$W(\theta) \propto 1 + \beta_{20}^{\text{eff}} \left(1 - \frac{3}{2} \sin^2 \theta \right)$$

Linear polarization

$$P(\theta) = \frac{-\frac{3}{2}\gamma_{20}^{\text{eff}}\sin^{2}\theta}{1 + \beta_{20}^{\text{eff}}(1 - \frac{3}{2}\sin^{2}\theta)}$$

Elementary processes in strong Coulomb fields

– How can one directly ``measure' multipole fields ?

Lyman- α_1 (2p_{3/2} --> 1s_{1/2}) for H-like U⁹¹⁺ ions:

Angular distribution

Linear polarization

$$W(\theta) \propto 1 + \beta_{20}^{\text{eff}} \left(-\frac{3}{2} \sin^2 \theta \right)$$

$$f(A_2, a_{M2}/a_{E1})$$

$P(\theta) =$	$-\frac{3}{2}\gamma_{20}^{\text{eff}}\sin^2\theta$
	$\frac{1+\beta_{20}^{\text{el.}}(1-\frac{3}{2}\sin^2\theta)}$

Alignment parameter A_2		Amplitude ratio a_{M2}/a_{E1}	
Experiment	Theory	Experiment	Theory
-0.451 ± 0.017	-0.457	0.083 ± 0.014	0.0844

Model-independent and precise determination of the alignment and amplitude ratio.

Details matter: Adding one electron

-- Lyman- α vs. K- α emission from high-Z ions

Ly- α_1 is strongly anisotropic

 $K-\alpha_1$ is isotropic

Details matter: Adding one electron

-- Lyman- α vs. K- α emission from high-Z ions

Ly- α_1 is strongly anisotropic

(initially) bare ion

E1:
$$W(\theta)_{E1} \sim 1 + \frac{1}{\sqrt{2}} A_2(J=1) P_2(\cos \theta)$$

M2:
$$W(\theta)_{M2} \sim 1 - \sqrt{\frac{5}{14}} A_2(J=2) P_2(\cos \theta)$$

 $K-\alpha_1$ is isotropic

$K-\alpha$ decay of highly-charged ions

-- angular distribution as "observed" in experiments

$$\begin{split} W\left(\theta\right)_{\!K\,\alpha_{\!\scriptscriptstyle 1}} &\sim N_{\,J=1}W_{\,E\!1}(\theta) + N_{\,J=2}W_{\,M\!2}(\theta) \\ &= 1 + (N_{\,J=1}\frac{1}{\sqrt{2}}\,A_2(\,J=1) - N_{\,J=2}\sqrt{\frac{5}{14}}\,A_2(\,J=2))\,P_2(\cos\theta) \end{split}$$

$$N_{J=1}$$
, $N_{J=2}$ relative populations of J=1, 2 states

Calculations have been done for L-REC of U^{91+} with $T_n = 100 \text{ MeV/u}$

$K-\alpha$ decay of highly-charged ions

-- for 220 MeV/u U⁹⁰⁺ ions following REC

$$W(\theta)_{K\alpha_1} \sim N_{J=1} W_{E1}(\theta) + N_{J=2} W_{M2}(\theta)$$

$$=1+(N_{J=1}\frac{1}{\sqrt{2}}A_2(J=1)-N_{J=2}\sqrt{\frac{5}{14}}A_2(J=2))P_2(\cos\theta)$$

Relative populations of the J = 1, 2 levels following REC (IPM model):

$$\frac{N_{J=1}}{N_{J=2}} = \frac{3}{5}$$

By taking into account ³P₂ -> ³S₁ channel:

$$\frac{N_{J=1}}{N_{J=2}} = \frac{6}{7}$$
 initial `capture' populations + branching fractions
$$\left(\frac{N_{J=1} - N_{J=2}}{N_{J=1} + N_{J=2}}\right) \approx -0.08$$

A. Surzhykov et al., PRA 73 (2006) 032716.

- dynamics of multiple and highly-charged ions
- Ionization & recombination in strong Coulomb fields correlated photon and/or electron emission
- Coupling of deeply-bound electrons to the continuum correlation-induced autoionization & capture
- Properties of many-electron & (super-) heavy elements correlated (ab-initio) many-body techniques
- Multi-photon & electron dynamics in intense FEL radiation correlated many-electron dynamics

Wentzel's ansatz: Autoionization is caused by electron-electron interactions which cannot be considered in an one-particle picture.

$$\sum_{i < j} \frac{1}{r_{ij}} - \sum_{i} u(r_i)$$

Ideal tool for a better understanding of electronic correlations!

$$H_{DCB} = \sum_{i} h_{D}(i) + \sum_{i < j} \frac{1}{r_{ij}} + \sum_{i < j} \frac{1}{2r_{ij}} \left[\alpha_{i} \alpha_{j} + \frac{(\alpha_{i} r_{i})(\alpha_{j} r_{j})}{r_{ij}^{2}} \right]$$

Wentzel's ansatz: Autoionization is caused by electron-electron interactions which cannot be considered in an one-particle picture.

$$\sum_{i < j} \frac{1}{r_{ij}} + b(i,j) - \sum_{i} u(r_{i})$$

Coupling of deeply-bound electrons to the continuum

correlation-induced autoionization and capture

Quantum evolution of the density operator:

3p

3s

spontaneous

emission

 $2p_{3/2}$

$$\rho_{kq}(J,J';t) = \rho_{kq}(J,J';t_1) \exp[(i\omega_{JJ'} - \Gamma_{JJ'})(t-t_1)]$$

For short pulses, the excitation occurs coherently:

 $0.097 \text{ eV} \sim 6.8 \text{ fs}$

Coupling of deeply-bound electrons to the continuum

correlation-induced autoionization and capture

Quantum evolution of the density operator:

Intense optical and VUV laser

peels off the electrons layer by layer

intense FEL radiation

- dynamics of multiple and highly-charged ions
- Ionization & recombination in strong Coulomb fields correlated photon and/or electron emission
- Coupling of deeply-bound electrons to the continuum correlation-induced autoionization & capture
- Properties of many-electron & (super-) heavy elements correlated (ab-initio) many-body techniques
- Multi-photon & electron dynamics in intense FEL radiation correlated many-electron dynamics

Properties of many-electron & (super-) heavy elements

- there is a great need for accurate atomic amplitudes

- Analysis and interpretation of optical and x-ray spectra (astro physics)
- Diagnostics of astro physical and laboratory plasmas
- Development of UV/EUV light sources and lithography
- Frequency standards and atomic clocks
- Spectroscopy on heavy and superheavy elements (actinides, transactinides)
- Isotope shifts and hyperfine structures
- Nonradiative (inner-shell) transitions and autoionization
- Ion recombination and photon emission
- Multi-photon processes
- \varTheta ...
- , . . .
- "Complete experiments"
- Parity nonconservation (PNC)
- Search for electric dipole moments

Different 'systematic' ab-initio approaches exist

to describe the electronic structure of atoms and ions

<u>Multiconfiguration expansions</u>

$$\psi_{\alpha}(PJM) = \sum_{r}^{n_{c}} c_{r}(\alpha) \gamma_{r} PJM >$$

Construct a `physically motivated' basis in the N-electron Hilbert space.

Many-particle character "electronic correlations"

Relativistic effects

Shell structure static vs. dynamic correlations

Direct vs. indirect effects

QED corrections

Generalization of the knowledge about (Dirac's) one- or few-electron atoms in such a way to enable the "computation" of heavy atoms and ions.

Fine-structure of open-shell atoms and ions

Fine-structure of open-shell atoms and ions

Fine-structure of open-shell atoms and ions

Computational requirements depend very critically on the shell structure of the atoms and ions!

Fine-structure of open-shell atoms and ions

Different 'systematic' ab-initio approaches exist

to describe the electronic structure of atoms and ions

Multiconfiguration expansions

$$\psi_{\alpha}(PJM) = \sum_{r}^{n_c} c_r(\alpha) \gamma_r PJM >$$

Construct a `physically motivated' basis in the N-electron Hilbert space.

Many-particle character "electronic correlations"

Shell structure static vs. dynamic correlations

Generalization of the knowledge in such a way to enable the "cc

Energies & Wave functions

- Cowan / CIV3
- MCHF
- GRASP(-92) / RATIP
- "Desclaux"
- Coupled-Cluster

RATIP

Relativistic Atomic Transition, Ionization and Recombination Properties

AUGER: Auger rates, relative intensities, angular distribution & spin polarization parameters. REC: Radiative recombination & electron capture rates, angular parameters.

CESD: Determinant representation of atomic and configuration state functions.

RELCI: Relativistic configuration interaction wave functions & QED estimates.

Many-electron basis (wave function expansions)

- Construction and classification of N-particle Hilbert spaces
- Shell model: Systematically enlarged CSF basis
- Interactions
 - Dirac-Coulomb Hamiltonian
 - Breit interactions + QED
 - Electron continuum; scattering phases
- Coherence transfer and Rydberg dynamics

REOS: Relaxed-orbital Einstein A and B coefficients, transition probabilities and lifetimes.

TOOLBOX: Level energies and notations; manipuations of file interfaces, miscelaneous.

COULOMB: Exitation amplitudes, (M_J-dependent) cross sections, alignment parameters.

RATIP

Relativistic Atomic Transition, Ionization and Recombination Properties

AUGER: Auger rates, relative intensities, angular distribution & spin polarization parameters. REC: Radiative recombination & electron capture rates, angular parameters.

CESD: Determinant representation of atomic and configuration state functions.

RELCI: Relativistic configuration interaction wave functions & QED estimates.

EINSTEIN: Einstein A and B coefficients, transition probabilities & radiative lifetimes.

REOS: Relaxed-orbital Einstein A and B coefficients, transition probabilities and lifetimes.

PHOTO: Ionization cross sections, angular & spin-polarization, alignment of photoions.

TOOLBOX: Level energies and notations; manipuations of file interfaces, miscelaneous.

ANCO: Angular coefficients for scalar and non-scalar operators.

COULOMB: Exitation amplitudes, (M_J-dependent) cross sections, alignment parameters.

Experimental proposal: Optical spectroscopy of nobelium (Z=102)

-- on-line production of target atoms

Ground-state configuration:

[Rn] 5f¹⁴ 7s²

Quadrupole Triplet Low-lying excitations: Dipole 254No Beam Magnets Quadrupole Triplet [Rn] 5f¹⁴ 7s 7p Target Wheel 5f¹³ 6d 7s² Beam Dump 5f14 6d 7s Condenser Plates 2 ... 5 eV for Electric Field 5f14 7s 8s 5f¹³ 7s² 7p 6d shell Configuration No interaction open 5f shell 7p shell

Model I

2.34

3.49

Excitation energy (eV)

Model II

2.60

3.36

2S+1 L 1

 $^{2}P_{1}$

 $^{1}P_{1}$

Level

No

 $5f^{14}7s7p$

5f147s7p

Gas Cell

Calculation of low-lying levels for (super-)heavy elements

-- for lutetium (Z=71) and lawrencium (Z=103)

TABLE I. The transition energies in cm⁻¹ of nd $^2D_{3/2} - (n+1)p$ $^2P_{1/2,3/2}^o$ and the size of CSF expansions for Lu (n=5) and Lr (n=6).

Expansion	$^{2}D_{3/2}-^{2}P_{1/2}^{o}$	$^{2}D_{3/2} - ^{2}P_{3/2}^{o}$	CSF $({}^{2}D_{3/2}/{}^{2}P_{1/2}^{o}/{}^{2}P_{3/2}^{o})$
	Lu		
$VV + CV(4f^{14})$	3989	7276	4354/2071/3813
$VV + CV(5p^64f^{14})$	8004	11 483	5600/2764/5073
$VV + [(CV + CC)(5p^64f^{14})]$	3857	7130	128 763/36 974/100 277
$VV + [(CV + CC)(4d^{10}5s^25p^64f^{14})]$	4186	7462	305 717/87 241/236 554
RCC [7]	3828	7140	
DFT [10]	3862		
Exp.	4136	7476	
DHF Breit Correction	87	53	
DHF Breit & QED Correction	76	43	
	Lr		
$VV + CV(5f^{14})$	-1298	9137	3659/1842/3338
$VV + CV(6p^{6}5f^{14})$	1339	12 761	4708/2495/4495
$VV + [(CV + CC)(6p^65f^{14})]$	-1953	6469	125 325/37 333/97 500
$VV + [(CV + CC)(5d^{10}6s^26p^65f^{14})]$	-1127	7807	330 252/95 969/246 376
RCC	-1388	6960	
RCC with Breit	-1263	7010	
DHF Breit Correction	97	4	
DHF Breit & QED Correction	59	-26	

RCC: Eliav et al.., Phys. Rev. A52 (1995) 291; DFT: Vosko & Chevary, J. Phys. B26 (1993) 873

Calculation of low-lying levels for (super-)heavy elements

-- oscillator strengths in different gauges

TABLE II. The oscillator strengths of $nd^2D_{3/2} - (n+1)p^2P_{1/2,3/2}^o$ for Lu (n=5) and Lr (n=6).

		$^{2}D_{3/2} - ^{2}P_{1/}^{o}$	2		$^{2}D_{3/2} - ^{2}P$	o 3/2
Expansion	gf_L	gf_V	Scaled gf_L	gf_L	gf_V	Scaled gf_L
		Lu				
$VV + CV(4f^{14})$	0.0304	0.0582	0.0315	0.0111	0.0219	0.0114
$VV + CV(5p^64f^{14})$	0.0511	0.1552	0.0264	0.0144	0.0467	0.0094
$VV + [(CV + CC)(5p^64f^{14})]$	0.0908	0.3835	0.0974	0.0322	0.0856	0.0337
$VV + [(CV + CC) (4d^{10}5s^25p^64f^{14})]$	0.1043	0.3345	0.1031	0.0354	0.0742	0.0355
		Lr				
$VV + CV(5f^{14})$	-0.0162	-0.0076		0.0210	0.0313	
$VV + CV(6p^65f^{14})$	0.0144	0.2359		0.0227	0.0839	
$VV + [(CV + CC)(6p^65f^{14})]$	-0.0624	-0.0002		0.0414	0.0867	
$VV + [(CV + CC) (5d^{10}6s^26p^65f^{14})]$	-0.0378	-0.0024		0.0519	0.0685	

Calculation of low-lying levels for (super-)heavy elements

-- oscillator strengths in different gauges

TABLE II. The oscillator strengths of $nd^2D_{3/2} - (n+1)p^2P_{1/2,3/2}^o$ for Lu (n=5) and Lr (n=6).

		$^{2}D_{3/2} - ^{2}P_{1/}^{o}$	2		$^{2}D_{3/2} - ^{2}P$	o 3/2
Expansion	gf_L	gf_V	Scaled gf_L	gf_L	gf_V	Scaled gf_L
		Lu				
$VV + CV(4f^{14})$	0.0304	0.0582	0.0315	0.0111	0.0219	0.0114
$VV + CV(5p^64f^{14})$	0.0511	0.1552	0.0264	0.0144	0.0467	0.0094
$VV + [(CV + CC)(5p^64f^{14})]$	0.0908	0.3835	0.0974	0.0322	0.0856	0.0337
$VV + [(CV + CC) (4d^{10}5s^25p^64f^{14})]$	0.1043	0.3345	0.1031	0.0354	0.0742	0.0355
		Lr				
$VV + CV(5f^{14})$	-0.0162	-0.0076		0.0210	0.0313	
$VV + CV(6p^65f^{14})$	0.0144	0.2359		0.0227	0.0839	
$VV + [(CV + CC)(6p^65f^{14})]$	-0.0624	-0.0002		0.0414	0.0867	
$VV + [(CV + CC) (5d^{10}6s^26p^65f^{14})]$	-0.0378	-0.0024		0.0519	0.0685	

Good accuracy of the (atomic) energies is a necessary, but not a sufficient criterion!

Po⁺ (Z=84): Heavy ions with complex spectra

-- the challenge of excited states and half-filled shells

Transition [nm]	F [GHz/fm ²]	M _{SMS} [GHz · amu]
255.8	28.363	51
843.38	-12.786	-311

Further isotopic chains

-- current requests from laser spectroscopy

Ion (Z)		Transition	λ [nm]	M [GHz·amu]	F [MHz/ fm 2]	Method & Ref.	
Sc ⁺	(21)	$3d4s\ ^3D_2\ -\ 3d4p\ ^3F_3$	363.1	580 (10%)	-355 (15%)	MCDF (Avgoulea et al. 2011)	
Mn^+	(25)	$3d^54s$ 5S_2 $ 3d^54p$ 5P_3	295	-572 (15%)	852 (10%)	MCDF (Charlwood et al. 2010)	
Cu^+	(29)	$3d^{10}4s\ ^2S_{1/2}\ -\ 3d^{10}4p\ ^2P_{3/2}$	325	(15%)	-680 (15%)	MCDF	
Ga^+	(31)	$4p^{-2}P_{3/2} - 5s^{-2}S_{1/2}$	417	-534 (15%)	392 (10%)	MCDF	
Y^+	(39)	$5s^2 {}^1S_0 - 4d5p {}^1P_1$	363	1789^{a}	-3181^a	semi-emp.	
				1318 (15%)	-3210 (10%)	MCDF, this w.	
		$4d5s^{-3}D_2 - 4d5p^{-3}P_1$	321	124 (10%)	-1132 (10%)	MCDF, this w.	
Os-	(76)	$5d^76s^2 \ ^4F_{9/2} - 5d^66s^26p \ ^6D_{9/2}$	1162.7	$2,500 \pm 12,600$ 4,000 (40%)	$16,200 \pm 9,900$ $12,300 \ (25\%)$	(Kellerbauer et al. 2011) ^b MCDF	
Po ⁺	(84)	$6p^37s$ $^5S_{1/2}$ $ 6p^37p$ 5P_2	843.4	-311 (15%)	-12,786 (15%)	MCDF	

Conclusions:

- Use transitions between low-lying levels with stable electronic structure (filled shells)
- → If possible, use some charge state "near to" closed-shell (ground-state) structures

Semi-empirical estimates by using radii from several neighbored elements; see text for discussion.

Experiments have been performed for two stable isotopes ¹⁸⁷Os⁻ and ¹⁸⁹Os⁻ by Kellerbauer et al. (2011).

Correlated quantum systems in intense fields

- dynamics of multiple and highly-charged ions
- Ionization & recombination in strong Coulomb fields correlated photon and/or electron emission
- Coupling of deeply-bound electrons to the continuum correlation-induced autoionization & capture
- Properties of many-electron & (super-) heavy elements correlated (ab-initio) many-body techniques
- Multi-photon & electron dynamics in intense FEL radiation correlated many-electron dynamics

Multi-photon & electron dynamics in intense FEL radiation

correlated many-electron dynamics

Multi-photon & electron dynamics in intense FEL radiation

coupling to the Auger continuum

Explicitly time-dependent density operator:

$$\dot{\rho} = \frac{i}{\hbar} [H, \rho] + L \rho$$

Based on Liouville's equation

Frequently applied in quantum optics:

- N (non-degenerate) bound levels
- long pulses with linear polarization
- electric-dipole & RWA approximation
- influence of coupling fields

(EIT, slow light, ...)

Coherent time evolution of inner-shell excited systems

in short-pulse or pump-probe experiments

Explicitly time-dependent density operator including spatial degrees of freedom:

$$\dot{\rho} = \frac{i}{\hbar} [H, \rho] + L \rho$$

Based Liouville's equation

$$i\frac{d\rho_{kq}\left(\alpha,\beta\right)}{dt} = \sum_{\kappa'q'}\sum_{\gamma}\left\{F_{\kappa q}^{\kappa'q'}\left(\alpha,\beta,\gamma,\begin{array}{c} \text{pulses} \\ \text{geometry} \end{array};t\right)\rho_{k'q'}\left(\gamma,\beta\right) \right\}$$
 direct coupling

Atomic (transition & ionization) amplitudes from many-body theory (RATIP)

S. Fritzsche, CPC 183 (2012) 1525

$$-G_{\kappa q}^{\kappa'q'}\left(\alpha,\beta,\gamma,\begin{array}{c} \mathrm{pulses} \\ \mathrm{geometry} \end{array};t\right) \begin{subarray}{c} \rho_{k'q'}\left(\alpha,\gamma
ight) \end{array}$$
 exchange

$$-i\Gamma_{\kappa q}^{\kappa'q'}(\alpha,\beta,\gamma;t)\rho_{k'q'}(\gamma,\beta)$$

ionization & loss processes

Coherent time evolution of inner-shell excited systems

in short-pulse or pump-probe experiments

Explicitly time-dependent density operator including spatial degrees of freedom:

$$\dot{\rho} \; = \; \frac{i}{\hbar} \; [H, \; \rho] \; + \; \frac{L \; \rho}{}$$

Initial state

Final state $(t \rightarrow +\infty)$

Dood Liouvillolo oquatio

The "hope": Compared with time-dependent SE

control of approximations: RWA, dipole, ... based on "physical insight"

explicit electron dynamics

(including angular-and spin-dependent emission)

- pulses with given shape and polarization
- higher multipole contributions
- (rather) simple control upon effects of level and pulse structures
- feasibe for many-electron systems in 3D

Atomic (

amplitu

S. Fritzsch

Collaboran

Quantum dynamics of correlated systems

- (time-) evolution "through" the density matrix

Density matrix

$$\rho = \rho(r,t; r',t')$$
= $\rho(\mu_s, J, J'; E; I, \mu_{I;} t)$

Ensemble of (collision) systems: requires statistical description

Can be used easily to accompany the system through several time-independent (or time-dependent) interactions, including the capture or emission of photons, electrons, etc. !

Summary: combination of quite different (many-particle) techniques

Schrödinger equation

Dirac equation

Quantum electrodynamics

Group theory

Density matrix theory

Combination of different concepts

Use of systematic approximations to describe the behaviour of quantum systems:

- → Density matrix techniques and spherical tensors
- Racah's algebra
- Multiconfigurational expansions (CI, MCDF)
- Many-body perturbation theory (MBPT, CC)
- Green's functions