Lecture 19: Optimization Programming

Hao Helen Zhang

Outline

- Unconstrained Optimization
- Constrained Optimization
 - Equality-constrained Optimization
 - Inequality-constrained Optimization
 - Mixture-constrained Optimization
- Special Mathematical Programming
 - Quadratic Programming (QP), Linear Programming (LP)

Unconstrained Optimization

Consider the minimization problem

$$\min_{\mathbf{x}} f(\mathbf{x}),$$

where $\mathbf{x} \in R^d$, and f is continuously differentiable.

- Necessary condition for local minimums
 - If \mathbf{x}^* is a local minimum of $f(\mathbf{x})$, then

$$\nabla f(\mathbf{x}^*) = 0.$$

- A point satisfying the necessary condition is called a stationary point, which can be a local minimum, local maximum, or saddle point.
- Sufficient conditions for **x*** be a local minimum are:

$$\nabla f(\mathbf{x}^*) = 0,$$

 $\nabla^2 f(\mathbf{x}^*)$ is positive definite.

Constrained Optimization

Consider the minimization problem

$$egin{array}{ll} \min & f(\mathbf{x}) \ & ext{subject} & ext{to} & g_i(\mathbf{x}) \geq 0, \quad i=1,\cdots,m. \ & h_j(\mathbf{x}) = 0, \quad j=1,\cdots,k. \end{array}$$

- Assume $\mathbf{x} \in \mathbb{R}^d$.
- $f: \mathbb{R}^d \longrightarrow \mathbb{R}$ is called the *objective function*
- $g_i: R^d \longrightarrow R, i = 1, \cdots, m$ are inequality constraints
- $h_j: R^d \longrightarrow R, \ j=1,\cdots,k$ are equality constraints.
- Assume f, g_i 's, h_j 's are all continuously differentiable.

Single Equality Constraint

Consider the minimization problem

$$\min_{\mathbf{x}} f(\mathbf{x}) \tag{1}$$

subject to
$$h(\mathbf{x}) = 0$$
. (2)

Introduce the Lagrange function:

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda h(\mathbf{x})$$

Lagrange extreme value theory:

• If \mathbf{x}^* is a local minimum under the constraint, then there exist some λ^* such that

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda^*) = 0,$$

$$\nabla_{\lambda} L(\mathbf{x}^*, \lambda^*) = 0.$$

Interpretations

- Above conditions imply that $(\mathbf{x}^*, \lambda^*)$ is a stationary point of L.
- The above equations are equivalent to

$$abla_{\mathbf{x}} f(\mathbf{x}^*) + \lambda^* \nabla_{\mathbf{x}} h(\mathbf{x}^*) = 0, \\ h(\mathbf{x}^*) = 0.$$

• Note the first condition gives d equations.

Multiple Equality Constraints

Consider the minimization problem

$$\min_{\mathbf{x}} \qquad f(\mathbf{x}) \tag{3}$$

subject to
$$h_j(\mathbf{x}) = 0, \quad j = 1, \dots, k.$$
 (4)

Introduce multiple Lagrange multipliers: $\lambda = (\lambda_1, \dots, \lambda_k)$

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{j=1}^{k} \lambda_j h_j(\mathbf{x})$$

Lagrange extreme theory:

• If \mathbf{x}^* is a local minimum under the constraint, then there exist some $\lambda^* = (\lambda_1^*, \cdots, \lambda_k^*)$ such that

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0, \quad \nabla_{\boldsymbol{\lambda}} L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0.$$

In other words, $(\mathbf{x}^*, \boldsymbol{\lambda}^*)$ is a stationary point of L.

Example: Entropy Maximization Problem

Consider the minimization problem

$$\min_{p_1, \dots, p_n} \sum_{i=1}^n p_i \log(p_i),$$
 subject to $\sum_{i=1}^n p_i = 1.$

The Lagrange function is

$$L(\mathbf{p},\lambda) = \sum_{i=1}^{n} p_i \log(p_i) + \lambda (\sum_{i=1}^{n} p_i - 1).$$

$$\frac{\partial L}{\partial p_i} = \log(p_i) + 1 + \lambda = 0, \quad \log(p_i) = -1 - \lambda, \quad i = 1, \dots, n.$$

Together with $\sum_{i=1}^{n} p_i = 1$, we have

$$p_1^*=\cdots=p_n^*=\frac{1}{n}.$$

This problem is known as "maximizing information entropy"

Generalized Lagrange Methods

Consider the minimization problem

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 subject to $g_i(\mathbf{x}) \geq 0, \quad i = 1, \cdots, m.$

Introduce multiple non-negative Lagrange multipliers:

$$\mu_1 \geq 0, \cdots, \mu_m \geq 0.$$

$$L(\mathbf{x}, \boldsymbol{\mu}) = f(\mathbf{x}) - \sum_{i=1}^m \mu_i g_i(\mathbf{x}).$$

- μ_i 's are also called *dual variables* or *slack variables*. Correspondingly, we call **x** as *primal variables*.
- We would like to minimize L with respect to x and maximize L with respect to μ.

KKT Necessary Optimality Conditions

If \mathbf{x}^* is a local minimum under the above inequality constraints, then there exist some $\boldsymbol{\mu}^* = (\mu_1^*, \cdots, \mu_m^*)$ such that

• Stationarity: $\nabla_{\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\mu}^*) = 0$, i.e.,

$$\nabla_{\mathbf{x}} f(\mathbf{x}^*) - \sum_{i=1}^m \mu_k^* \nabla_{\mathbf{x}} g_i(\mathbf{x}^*) = 0.$$

- Primal feasibility: $g_i(\mathbf{x}^*) \geq 0$ for $i = 1, \dots, m$.
- Dual feasibility: $\mu_i \geq 0$ for $i = 1, \dots, m$.
- Complementary slackness:

$$\mu_i^* g_i(\mathbf{x}^*) = 0, \quad i = 1, \cdots, m.$$

KKT = Karush-Kuhn-Tucker

Sufficient Optimality Conditions

The above necessary conditions are also sufficient for optimality, if

- f, g_i's are continuously differentiable
- f and g_i 's are convex functions.

Under this case,

- There exists a solution x* satisfying the KKT condition,
- x* is actually a global optimum.

Examples: SVM problems

Alternative Constraints

Consider the minimization problem

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 subject to $g_i(\mathbf{x}) \leq 0, \quad i = 1, \cdots, m.$

Introduce multiple non-negative Lagrange multipliers:

$$\mu_1 \geq 0, \cdots, \mu_m \geq 0.$$

$$L(\mathbf{x}, \boldsymbol{\mu}) = f(\mathbf{x}) + \sum_{i=1}^m \mu_i g_i(\mathbf{x}).$$

- μ_i 's are also called *dual variables* or *slack variables*. Correspondingly, we call **x** as *primal variables*.
- We would like to minimize L with respect to x and maximize L with respect to μ.

KKT Necessary Optimality Conditions

If \mathbf{x}^* is a local minimum under the above inequality constraints, then there exist some $\boldsymbol{\mu}^* = (\mu_1^*, \cdots, \mu_m^*)$ such that

• Stationarity: $\nabla_{\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\mu}^*) = 0$, i.e.,

$$\nabla_{\mathbf{x}} f(\mathbf{x}^*) + \sum_{i=1}^m \mu_k^* \nabla_{\mathbf{x}} g_i(\mathbf{x}^*) = 0.$$

- Primal feasibility: $g_i(\mathbf{x}^*) \leq 0$ for $i = 1, \dots, m$.
- Dual feasibility: $\mu_i \geq 0$ for $i = 1, \dots, m$.
- Complementary slackness:

$$\mu_i^* g_i(\mathbf{x}^*) = 0, \quad i = 1, \dots, m.$$

Generalized Lagrange Methods

Consider the minimization problem

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 subject to $g_i(\mathbf{x}) \geq 0, \quad i = 1, \cdots, m.$ $h_j(\mathbf{x}) = 0, \quad j = 1, \cdots, k.$

Introduce two sets of Lagrange multipliers:

$$\mu_1 \geq 0, \cdots, \mu_m \geq 0, \lambda_1, \cdots, \lambda_k.$$

Define the Lagrange function:

$$L(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i=1}^{m} \mu_i g_i(\mathbf{x}) + \sum_{j=1}^{k} \lambda_j h_j(\mathbf{x})$$

• μ_i 's and λ_j 's are dual variables or slack variables.

KKT Necessary Optimality Conditions

If \mathbf{x}^* is a local minimum under the above inequality constraints, then there exist some (μ^*, λ^*) such that

• Stationarity: $\nabla_{\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\mu}^*, \boldsymbol{\lambda}^*) = 0$, i.e.,

$$\nabla_{\mathbf{x}} f(\mathbf{x}^*) - \sum_{i=1}^m \mu_i^* \nabla_{\mathbf{x}} g_i(\mathbf{x}^*) + \sum_{j=1}^k \lambda_j^* \nabla_{\mathbf{x}} h_j(\mathbf{x}^*) = 0.$$

Primal feasibility:

$$g_i(\mathbf{x}^*) \geq 0, \quad i = 1, \dots, m;$$

 $h_j(\mathbf{x}^*) = 0, \quad j = 1, \dots, k.$

- Dual feasibility: $\mu_i \geq 0$ for $i = 1, \dots, m$.
- Complementary slackness:

$$\mu_i^* g_i(\mathbf{x}^*) = 0, \quad i = 1, \cdots, m.$$

Sufficient Optimality Conditions

The above necessary conditions are also sufficient for optimality, if

- f, g_i's are continuously differentiable.
- f and g_i's are convex functions,
- h_j's are linear constraints.

Under this case,

- There exists a solution x* satisfying the KKT condition,
- x* is actually a global optimum.

Quadratic Programming (QP)

- The objective function is quadratic in x
- The constraints are linear in x.

Consider the minimization problem

min
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T Q \mathbf{x} + \mathbf{c}^T \mathbf{x}$$
, subject to $A\mathbf{x} \leq \mathbf{b}$, $E\mathbf{x} = \mathbf{d}$.

where Q is a symmetric matrix of $d \times d$, A is a matrix of $m \times d$, E is a matrix of $k \times d$, $\mathbf{c} \in R^d$, $\mathbf{b} \in R^m$, and $\mathbf{d} \in R^k$. Example: SVM

Properties of QP

- If Q is a non-negative definite matrix, then $f(\mathbf{x})$ is convex.
- If Q is a non-negative definite, the above QP has a global minimizer if there exists at least one \mathbf{x} satisfying the constraints and $f(\mathbf{x})$ is bounded below in the feasible region.
- If Q is a positive definite, the above QP has a unique global minimizer.
- If Q = 0, the problem becomes a linear programming (LP).

From optimization theory,

 If Q is non-negative definite, the necessary and sufficient condition for a point x to be a global minimizer is for it to satisfy the KKT condition.

Solving QP

- If there are only equality constraints, then the QP can be solved by a linear system.
- In general, a variety of methods for solving the QP are commonly used, including
 - Methods: ellipsoid, interior point, active set, conjugate gradient, etc
 - Software packages: Matlab, CPLEX, AMPL, GAMS, etc.
- For positive definite Q, the ellipsoid method solves the problem in polynomial time. In other words, the running time is upper bounded by a polynomial in the size of the input for the algorithm, i.e., $T = O(d^k)$ for some k.

Dual Problem for QP

Consider the minimization problem

$$\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T Q \mathbf{x},$$

subject to $A\mathbf{x} \leq \mathbf{b}$.

The Lagrange function.

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \boldsymbol{\lambda}^T (A\mathbf{x} - \mathbf{b}).$$

We need to minimize L with respect to \mathbf{x} and maximize L with respect to λ . The *dual* function is defined as a function of dual variables only by solving \mathbf{x} first with any fixed λ :

$$G(\lambda) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda).$$

Dual Problem Derivation for QP

With fixed λ , we solve the equation $\nabla L_{\mathbf{x}}(\mathbf{x}, \lambda) = 0$ and obtain

$$\mathbf{x}^* = -Q^{-1}A^T\boldsymbol{\lambda}.$$

Plug this into L, we get the dual function

$$G(\lambda) = -\frac{1}{2}\lambda^T A Q^{-1} A^T - \mathbf{b}^T \lambda.$$

The dual problem of the QP is

$$\max_{\boldsymbol{\lambda}} \qquad G(\boldsymbol{\lambda}) = -\frac{1}{2}\boldsymbol{\lambda}^TAQ^{-1}A^T - \mathbf{b}^T\boldsymbol{\lambda},$$
 subject to $\boldsymbol{\lambda} \geq 0$.

ullet We first find $oldsymbol{\lambda}^* = \operatorname{arg\,max}_{oldsymbol{\lambda}} G(oldsymbol{\lambda})$, and then compute

$$\mathbf{x}^* = -Q^{-1}A^T \boldsymbol{\lambda}^*.$$

The idea is similar to the profile method.