Taller MMAF

Pontificia Universidad Javeriana - Cali

Taller MMAF

Instrucciones

A continuación, encontrarás varios ejercicios relacionados con identidades y funciones trigonométricas, fuerzas en el plano y análisis de sucesiones.

- 1. Simplifica cada una de las siguientes expresiones usando identidades trigonométricas de ángulos dobles y suma de ángulos.
 - $sin(2\theta) + cos(2\theta)$
 - $tan(2\alpha)$
 - $cos(45^{\circ} + 30^{\circ})$
 - $sin(60^{\circ} 30^{\circ})$
- 2. Encuentra el valor exacto de las siguientes expresiones utilizando funciones trigonométricas inversas.

Función	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
\sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undefined

- $arcsin(sin(3\pi/4))$
- $arctan(tan(-\pi/3))$
- $arccos(cos(\pi))$
- tan(arctan(3) + arctan(2))
- 3. Determina si las siguientes ecuaciones son identidades trigonométricas.
 - $sin^2(x) + cos^2(x) = 1$
 - $1 + tan^2(x) = sec^2(x)$
 - sin(x + y) = sin(x)cos(y) + cos(x)sin(y)
 - cos(x+y) = cos(x)cos(y) sin(x)sin(y)
- 4. Encuentra el valor exacto de las siguientes expresiones si $sin\theta=3/5$ y θ está en el segundo cuadrante.
 - $cos(2\theta)$

TALLER MMAF Instrucciones

- $sin(2\theta)$
- $tan(2\theta)$
- $cot(2\theta)$
- 5. Dos fuerzas actúan sobre un objeto en un punto de origen. La fuerza $F_1=80\,\mathrm{N}$ actúa en dirección de 30° respecto al eje horizontal, y la fuerza $F_2=60\,\mathrm{N}$ actúa en dirección de 120° respecto al mismo eje.
 - Descompón las fuerzas F_1 y F_2 en sus componentes horizontales y verticales.
 - Calcula la fuerza resultante ${\cal F}_R$ sumando las componentes horizontales y verticales de ${\cal F}_1$
 - Encuentra el ángulo θ que forma la fuerza resultante con el eje horizontal.
 - Verifica usando identidades de ángulo doble que el ángulo resultante θ puede expresarse mediante la combinación de las direcciones de F_1 y F_2 .
- 6. Problemas con los teoremas del seno y coseno
 - (Encuentra un lado desconocido) En un triángulo $\triangle ABC$, los lados a, b, y c miden respectivamente 7 cm, 5 cm, y el ángulo opuesto a $c, \angle C$, es de 60°. Calcula la longitud del lado c.
 - (Encuentra un ángulo desconocido) En un triángulo $\triangle ABC$, los lados a, b, y c miden 8 cm, 6 cm y 10 cm respectivamente. Calcula el valor del ángulo $\angle A$ usando el teorema del coseno.
 - (Encuentra un lado desconocido) En un triángulo $\triangle ABC$, conocemos el ángulo $\angle A = 40^{\circ}$, el ángulo $\angle B = 75^{\circ}$ y el lado a = 10 cm. Calcula la longitud del lado b.
 - (Encuentra un ángulo desconocido) En un triángulo $\triangle ABC$, los lados a y b miden respectivamente 12 cm y 15 cm, y el ángulo opuesto a $a, \angle A$, es de 35°. Calcula el valor del ángulo $\angle B$.
- 7. Modifique el código usado en el cuaderno 8 en Colab y visualice las siguientes sucesiones. Determine a partir de la gráfica, si la sucesión converge o diverge.
 - $a_n = \frac{1}{n^2}$
 - $\bullet \quad a_n = (-1)^n \frac{1}{n}$ $\bullet \quad a_n = \sin\left(\frac{1}{n}\right)$ $\bullet \quad a_n = \cos(n^2)$
- 8. Determine la convergencia o divergencia de las siguientes sucesiones.
 - $\left(\frac{2n^2 + 3n + 1}{6n^2 + 1}\right)^3$ $\sqrt{\frac{n^2 + 3n^3}{n^3 + 1}}$ $\frac{(3n 1)(n + 2)}{(n + 3)(n 5)}$

Instrucciones TALLER MMAF

9. Suponga que se define una sucesión de forma recurrente de la forma $a_{n+1}=\frac{a_n}{2}+\frac{1}{2}$ con $a_1=0$. Calcule según esta recurrencia a_2,a_3,a_4,a_5 . Suponga que $\lim_{n\to\infty}a_n=L$. ¿Cuál es el valor de L?

- 10. Realice las siguientes operaciones entre numéros complejos.
 - (3+2i)(1-4i)
 - $\frac{1+7}{1}$
 - $(2+3i)^2$
 - $\frac{1}{1+i}$
- 11. Encuentre el valor de $r = a^2 + b^2$ y $\theta = \arctan\left(\frac{b}{a}\right)$, es decir su representación polar, para los siguientes números complejos.
 - z = 3 + 4i
 - z = -2 3i
 - z = 1 + i
 - z = -1 + i
- 11. Sea los números complejos en su representación polar, escribe loe su forma cartesiana
- $z = 3 \angle -\frac{\pi}{3} rad$
- $z = 2 \angle \frac{\pi}{4} rad$
- $z = 5 \angle \frac{3\pi}{2} rad$