

RAPPORT DE STAGE

Fracturation de floes de glace par percussion dans un modèle granulaire

Superviseur Stéphane Labbé

ÉtudiantRoussel Desmond Nzoyem

Enseignant référent Christophe Prud'homme

Stage effectué au Laboratoire Jacques-Louis Lions; du 03 février 2021, au 31 juillet 2021; pour l'obtention du master 2 CSMI.

Année académique 2020 - 2021

Remerciements

Table des matières

Re	emerciements	ii
1	Introduction1.1Contexte1.2Problématique1.3Environnement1.4Objectifs1.5Résumé de l'introduction en Anglais	1 1 1 1 1
2	État de l'art2.1 Position du problème2.2 Résumé de thèse de M. Rabatel2.3 Résumé de thèse de D. Balasoiu2.4 Résumé de l'Etat de l'art	2 2 2 2 2
3	Problème ID et étude de la fracture 3.1 Modélisation du déplacement d'un floe isolé 3.2 Modélisation de la percussion 3.2.1 Collision parfaitement inélastique avec un floe encastré à l'instant initial 3.2.2 Collision parfaitement inélastique sans présence du mur 3.2.3 Premier modèle pour la collision avec séparation des masses 3.2.4 Deuxième modèle pour la collision avec séparation des masses 3.2.5 Troisième modèle pour la collision avec séparation des masses 3.3 Modélisation de la fracture 3.4 Algorithme de calcul ID 3.5 Visualisation et validation des résultats 3.6 Résumé des résultats obtenus	
4	Problème 2D et percussion des floes de glace 4.1 Présentation des travaux antérieurs	15 15 15 15 15
5	Déroulement et apports du stage5.1Journal de bord5.2Bilan et future travail5.3Les apports du stage	
6	Conclusion	17

A	Rappels sur les EDO	18
В	Le schéma Symplectique	19
Bil	bliographie	20

Introduction

- 1.1 Contexte
- 1.2 Problématique
- 1.3 Environnement
- 1.4 Objectifs
- 1.5 Résumé de l'introduction en Anglais

État de l'art

- 2.1 Position du problème
- 2.2 Résumé de thèse de M. Rabatel
- 2.3 Résumé de thèse de D. Balasoiu
- 2.4 Résumé de l'Etat de l'art

Problème 1D et étude de la fracture

3.1 Modélisation du déplacement d'un floe isolé

Avant d'entamer la question de la percussion avec séparation des masses (voir section 3.2.3), étudions le comportement d'un floe de glace ID isolé et modélisé par un réseau de ressorts (1 ressort, 1 dispositif visqueu, et 2 noeuds) (voir figure 3.1).

Figure 3.1 – Floe de glace ID modélisé par un réseau de ressorts. Le floe est isolé de toutes forces extérieurs. Les varaibles x_1 et x_2 traduisent les déplacemnts des noeuds de gauche et de droite respectifs. À l'instant initial, les masses sont soumises aux vitesses v_0 et v_0' indiquées.

(a) Sur la masse m de gauche.

(b) Sur la masse m de droite.

Figure 3.2 – Bilan des forces appliquée sur les noeuds du système. Les valeurs indiquées sont les intensitées (positives) des forces (par exemple juste après l'instant initial, on a $x_1 > 0$, et $x_2 < 0$ d'où $k(x_1 - x_2) > 0$).

Un bilan des forces effectué sur les deux noeuds du floe (voir figure 3.2) permet d'obtenir les équations suivantes :

$$\begin{cases} m\ddot{x}_1 = -k(x_1 - x_2) - \mu(\dot{x}_1 - \dot{x}_2), \\ m\ddot{x}_2 = k(x_1 - x_2) + \mu(\dot{x}_1 - \dot{x}_2). \end{cases}$$
(3.1)

En remarquant que $m \neq 0$, on passe à la forme matricielle qui s'écrit :

$$\begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{pmatrix} = \underbrace{\frac{k}{m} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{B} + \underbrace{\frac{\mu}{m} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix}}_{C}. \tag{3.2}$$

On pose ensuite la matrice par blocs :

$$E = \begin{pmatrix} 0 & I_2 \\ B & C \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{k}{m} & \frac{k}{m} & -\frac{\mu}{m} & \frac{\mu}{m} \\ \frac{k}{m} & -\frac{k}{m} & \frac{\mu}{m} & -\frac{\mu}{m} \end{pmatrix} \in \mathbb{R}^{4 \times 4}, \quad \text{où} \quad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}.$$

On pose maintenant $Y = (x_1, x_2, \dot{x}_1, \dot{x}_2) \in \mathbb{R}^4$, et on reprend la condition initiale pour obtenir le système de Cauchy :

$$\begin{cases} \dot{Y}(t) = EY(t), \\ Y_0 = Y(t_0) = (0, 0, v_0, -v_0')^T. \end{cases}$$
(3.3)

La solution numérique est présentée dans à la figure 3.3 (voir fichier code/simu1D/Deplacement1D-1.ipynb pour plus de détails). La plus grosse remarque à faire du point de vue numérique est que lorsque $v_0 \neq v_0'$, les vitesses convergent vers 0, mais les déplacements diverge.

Figure 3.3 - Simulation du déplacement 1D d'un floe avec $m=1, k=18, \mu=1.3, t_f=5$. En règle générale, on observe le ralentissement du système et une convergence des déplacements vers l'état d'équilibre $Y_{eq}=(0,0,0,0)$ lorsque $v_0=v_0'$.

Avec $t_0 = 0$, la solution analytique de ce système d'EDO du premier ordre à coefficients constants est unique et est donnée par.

$$Y(t) = \exp(tE)Y_0. (3.4)$$

Nous obtenons le théorème suivant :

Theorème 3.1.1 (Convergence du modèle 1D isolé). Les déplacements x_1 et x_2 des noeuds du floe 1D convergent si et seulement si leurs vitesses initiales sont des vecteurs opposés.

Démonstration. Le calcul des solution analytique est plus délicat. Il faudrait calculer l'exponentielle de la matrice E. Pour celà, nous devons diagonaliser (ou du moins trogonaliser) la matrice E. Son polynome

caractéristique est donné par :

$$\det(E - \lambda I_4) = \begin{vmatrix} -\lambda & 0 & 1 & 0 \\ 0 & -\lambda & 0 & 1 \\ -\frac{k}{m} & \frac{k}{m} & -\frac{\mu}{m} - \lambda & \frac{\mu}{m} \\ \frac{k}{m} & -\frac{k}{m} & \frac{\mu}{m} & -\frac{\mu}{m} - \lambda \end{vmatrix},$$

$$= \frac{\lambda^2}{m} \left(m\lambda^2 + 2\mu\lambda + 2k \right).$$

Posons $\Delta = 4\mu^2 - 8km$. On distingue deux cas :

- Si
$$\Delta \geq 0$$
: on pose $\lambda_1 = \frac{-\mu - \sqrt{\mu^2 - 2km}}{m}$ et $\lambda_2 = \frac{-\mu + \sqrt{\mu^2 - 2km}}{m}$;

- Si $\Delta < 0$: on pose $\lambda_1 = \frac{-\mu - i\sqrt{2km - \mu^2}}{m}$ et $\lambda_2 = \frac{-\mu + i\sqrt{2km - \mu^2}}{m}$.

Nous avons donc exhiber les trois valeurs propres de notre matrice : $\lambda_0 = 0$, λ_1 , et λ_2 . Avec λ désignant

Nous avons donc exhiber les trois valeurs propres de notre matrice : $\lambda_0 = 0$, λ_1 , et λ_2 . Avec λ désignant l'une des valeurs propres, on recherche les vecteurs $x = (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4$ appartenant aux sous espaces propres E_{λ} . On a :

$$Ex = \lambda x \Longrightarrow \begin{cases} x_3 = \lambda x_1 \\ x_4 = \lambda x_2 \\ -(k + \mu \lambda + m \lambda^2) x_1 + (k + \mu \lambda) x_2 = 0 \\ (k + \mu \lambda) x_1 - (k + \mu \lambda + m \lambda^2) x_2 = 0 \end{cases}$$
(3.5)

— Pour $\lambda = 0$, l'équation (3.5) revient à :

$$\begin{cases} x_3 = 0 \\ x_4 = 0 \\ x_1 - x_2 = 0 \end{cases}$$

On en déduit $E_0 = \text{vect}\{e_1\}$, avec $e_1 = (1, 1, 0, 0)^T$.

— Pour $\lambda = \lambda_1, \lambda_2$, on remarque que $k + \mu \lambda + m \lambda^2 = -(k + \mu \lambda)$. l'équation (3.5) revient donc à :

$$\begin{cases} x_3 = \lambda x_1 \\ x_4 = \lambda x_2 \\ x_1 + x_2 = 0 \end{cases}$$

On en déduit donc $E_{\lambda_1} = \text{vect}\{e_3\}$, avec $e_3 = (1, -1, \lambda_1, -\lambda_1)^T$; et $E_{\lambda_2} = \text{vect}\{e_4\}$ avec $e_4 = (1, -1, \lambda_2, -\lambda_2)^T$.

La meutilisicté arithmetique de $\lambda=0$ est differente de sa multiplicité géometrique. La matrice E n'est donc pas diagonalisable. Son polynome caractéristique étant scindé, nous alons la trigonaliser. On pose donc une base $\mathcal{B}'=(v_1,v_2,v_3,v_4)$ dans laquelle la matrice E s'exprime par :

$$P^{-1}EP = \begin{pmatrix} 0 & a & b & c \\ 0 & 0 & d & e \\ 0 & 0 & \lambda_1 & f \\ 0 & 0 & 0 & \lambda_2 \end{pmatrix},$$

où P est la matrice de passage de la base canonique de \mathbb{R}^4 (notée \mathcal{B}) à \mathcal{B}' . On a :

— Dans \mathcal{B}' , le vecteur v_1 s'écrit $v_1 = (1,0,0,0)^T$ et on a $P^{-1}EPv_1 = 0$. v_1 est donc le vecteur propre associé à 0 et on prend $v_1 = e_1 = (1,1,0,0)^T$ dans \mathcal{B} ;

— Dans \mathcal{B}' , le vecteur v_2 s'écrit $v_2 = (0, 1, 0, 0)^T$ et on a $P^{-1}EPv_2 = av_1$. On retourne dans \mathcal{B} en posant $v_2 = (x_1, x_2, x_3, x_4)^T$ pour obtenir le système :

$$Ev_2 = av_1 \Longrightarrow \begin{cases} x_3 = a \\ x_4 = a \\ x_1 - x_2 = 0 \end{cases}.$$

Avec a = 1, on écrit $v_2 = e_2 = (1, 1, 1, 1)^T$.

- Dans \mathcal{B}' , le vecteur v_3 s'écrit $v_1 = (0,0,1,0)^T$ et on a $P^{-1}EPv_1 = \lambda_1v_1 + bv_1 + dv_2$. En posant b = d = 0, v_1 devient un vecteur propre associé à λ_1 et on prend $v_3 = e_3 = (1,-1,\lambda_1,-\lambda_1)^T$ dans \mathcal{B} ;
- De facon similaire, on obtient $v_4 = e_4 = (1, -1, \lambda_2, -\lambda_2)^T$ en posant c = e = f = 0.

Nous avons donc trigonaliser la matrice *E*, et on écrit :

$$P^{-1}EP = A, \text{avec} A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 \\ 0 & 0 & 0 & \lambda_2 \end{pmatrix}, \quad P = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 0 & 1 & \lambda_1 & \lambda_2 \\ 0 & 1 & -\lambda_1 & -\lambda_2 \end{pmatrix}, \quad \text{et } P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 \\ \frac{\lambda_2}{\lambda_2 - \lambda_1} & -\frac{\lambda_2}{\lambda_2 - \lambda_1} & -\frac{1}{\lambda_2 - \lambda_1} & \frac{1}{\lambda_2 - \lambda_1} \\ -\frac{\lambda_1}{\lambda_2 - \lambda_1} & \frac{\lambda_1}{\lambda_2 - \lambda_1} & \frac{\lambda_1}{\lambda_2 - \lambda_1} & \frac{1}{\lambda_2 - \lambda_1} & -\frac{1}{\lambda_2 - \lambda_1} \end{pmatrix}.$$

La matrice A se décompose en somme d'une matrice diagonale et d'une matrice nilpotente A = D + N avec :

En posant $E = P(D + N)P^{-1}$, nous pouvons facilemtn calculer $\forall t \in \mathbb{R}$, $\exp(tE) = P \exp(tD) \exp(tN)P^{-1}$. Ce calcul délicat donne (à l'aide du logiciel de calcul symbolique Symbolab) :

$$\exp(tE) = \frac{1}{2(\lambda_2 - \lambda_1)} \begin{pmatrix} \lambda_2 e^{t\lambda_1} + \lambda_2 - \lambda_1 - \lambda_1 e^{t\lambda_2} & -\lambda_2 e^{t\lambda_1} + \lambda_2 - \lambda_1 + \lambda_1 e^{t\lambda_2} & t(\lambda_2 - \lambda_1) - e^{t\lambda_1} + e^{t\lambda_2} & t(\lambda_2 - \lambda_1) + e^{t\lambda_1} - e^{t\lambda_2} \\ -\lambda_2 e^{t\lambda_1} + \lambda_2 - \lambda_1 + \lambda_1 e^{t\lambda_2} & \lambda_2 e^{t\lambda_1} + \lambda_2 - \lambda_1 - \lambda_1 e^{t\lambda_2} & t(\lambda_2 - \lambda_1) + e^{t\lambda_1} - e^{t\lambda_2} & t(\lambda_2 - \lambda_1) + e^{t\lambda_1} - e^{t\lambda_2} \\ \lambda_1 \lambda_2 (e^{t\lambda_1} - e^{t\lambda_2}) & \lambda_1 \lambda_2 (e^{t\lambda_2} - e^{t\lambda_1}) & -\lambda_1 e^{t\lambda_1} + \lambda_2 - \lambda_1 + \lambda_2 e^{t\lambda_2} & \lambda_1 e^{t\lambda_1} + \lambda_2 - \lambda_1 - \lambda_2 e^{t\lambda_2} \\ \lambda_1 \lambda_2 (e^{t\lambda_2} - e^{t\lambda_1}) & \lambda_1 \lambda_2 (e^{t\lambda_1} - e^{t\lambda_2}) & \lambda_1 e^{t\lambda_1} + \lambda_2 - \lambda_1 - \lambda_2 e^{t\lambda_2} & -\lambda_1 e^{t\lambda_1} + \lambda_2 - \lambda_1 + \lambda_2 e^{t\lambda_2} \end{pmatrix}.$$

Rappelons nous que la solution du problème de Cauchy équation (3.3) est donnée par $Y(t) = \exp(tE)Y_0$, avec $Y_0 = (0, 0, v_0, -v'_0)$. Le calcul du déplacement x_1 donne :

$$x_1(t) = \frac{t}{2} \left(\upsilon_0 - \upsilon_0' \right) - \frac{e^{t\lambda_1} - e^{t\lambda_2}}{2(\lambda_2 - \lambda_1)} \left(\upsilon_0 + \upsilon_0' \right). \tag{3.6}$$

Le cas où $\Delta < 0$ (à étudier dans \mathbb{C}) peut se ramener au cas réel (dans \mathbb{R}) en posant $\lambda_1 = \alpha + i\beta$ et $\lambda_2 = \alpha - i\beta = \bar{\lambda}_1$ (avec $\alpha = -\frac{\mu}{m}$ et $\beta = -\frac{\sqrt{2km-\mu^2}}{m}$). En remarquant que $\sin(\beta t) = \frac{e^{i\beta t} - e^{-i\beta t}}{2i}$, on obtient :

$$x_1(t) = \frac{t}{2} \left(v_0 - v_0' \right) + \frac{e^{\alpha t} \sin(\beta t)}{2\beta} \left(v_0 + v_0' \right). \tag{3.7}$$

Les équations (3.6) et (3.8) permettent d'observer que le déplacement x_1 ne converge pas lorsque $t \to +\infty$, à moins que $v_0 = v_0'$, ce qui est observé à la figure 3.3. Pour le déplacement du deuxième noeud, on a :

$$x_2(t) = \frac{t}{2} \left(v_0 - v_0' \right) - \frac{e^{\alpha t} \sin(\beta t)}{2\beta} \left(v_0 + v_0' \right); \tag{3.8}$$

On tire les mêmes conclusions en effectuant un raisonnement similaire.

3.2 Modélisation de la percussion

3.2.1 Collision parfaitement inélastique avec un floe encastré à l'instant initial

Nous effectuons ici une modélisation ID de notre problème. Un floe est modélisé par un système masseressort de deux nuds. Le floe 1 est immobilisé face au mur, et le floe 2 approche à la vitesse \mathbf{v}_0 . On identifie les nuds q_0 et p_0 de la section précédente à leur masses respectives m et m' (voir figure 3.4).

Figure 3.4 - Contact 1D parfaitement inélastique entre deux floes. Le floe percuté étant immobile et coincé au mur avant le choc.

On suppose que durant la dynamique non régulière, les masses m et m' en contact forment une seule masse m+m' dont le déplacement est donné par la variable $x_1(t)$. Le déplacement de la masse m' à l'autre bout du floe percuteur est nommé $x_2(t)$. La masse m qui est fixée au mur ne sera pas étudiée ici. Nous faisons à présent le bilan des forces qui s'exercent ces deux masses.

Figure 3.5 – Bilan des forces appliquée sur les noeuds du système. Les valeurs indiquées sont les intensitées (positives) des forces durant une phase imaginée de compression des ressorts ($\mathbf{v}_0 < 0$ et donc $x_1 < 0$). Pour obtenir l'intesité de la force de rappel du ressort k', on peut imaginer x_1 imobile (on aura $x_2 < 0$, d'où $x_1 - x_2 > 0$) (voir [Hol0]).

En orientant convenablement le système (voir figure 3.4), on applique la loi de Newton-Euler linéaire pour obtenir le système suivant et ses conditions initiales ² :

$$\begin{cases} (m+m')\ddot{x}_1 = -kx_1 - \mu\dot{x}_1 + k'(x_2 - x_1) + \mu'(\dot{x}_2 - \dot{x}_1) \\ m'\ddot{x}_2 = -k'(x_2 - x_1) - \mu'(\dot{x}_2 - \dot{x}_1) \end{cases}$$
(3.9)

À l'instant initial t_0 , on a le système suivant

$$\begin{cases} (x_1(t_0), x_2(t_0)) = (0, 0) \\ (\dot{x}_1(t_0), \dot{x}_2(t_0)) = (0, -v_0) \end{cases}$$
(3.10)

^{1.} Cette simplification a pour principal avantage de supprimer le traitement de la force de contact entre les deux masses.

^{2.} J'ai des doutes sur cette condition initiale. La vitesse initiale de x_1 est-elle vraiment nulle?

En posant $X = (x_1, x_2)^T \in \mathbb{R}^2$, l' équation (3.10) devient

$$\underbrace{\begin{pmatrix} m+m' & 0 \\ 0 & m' \end{pmatrix} \begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} -\mu-\mu' & \mu' \\ \mu' & -\mu' \end{pmatrix} \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix}}_{B} + \underbrace{\begin{pmatrix} -k-k' & k' \\ k' & -k' \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{C}.$$
(3.11)

Puisque $m, m' \neq 0$, la matrice A est inversible et on obtient au final le problème de Cauchy suivant :

$$\begin{cases} \ddot{X}(t) = B'\dot{X}(t) + C'X(t), \\ (X(t_0), \dot{X}(t_0)) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -v_0 \end{pmatrix} \end{pmatrix}, \end{cases}$$
(3.12)

avec $B' = A^{-1}B$ et $C' = A^{-1}C$.

Il s'agit la d'un système d'EDO du deuxième ordre à coefficients constants. Transformons le en un système du premier ordre pour une résolution plus aisée. On pose donc $Y = (X, \dot{X})^T = (x_1, x_2, \dot{x}_1, \dot{x}_2)^T \in \mathbb{R}^4$ et le système 3.12 devient

$$\begin{cases} \dot{Y}(t) = EY(t) \\ Y_0 = Y(t_0) = (0, 0, 0, -v_0)^T \end{cases}$$
(3.13)

avec la matrice par blocs

$$E = \begin{pmatrix} 0 & I_2 \\ C' & B' \end{pmatrix} ,$$

où I_2 désigne la matrice identité de $\mathbb{R}^{2\times 2}$.

Avec $t_0 = 0$, la solution de ce système d'EDO du premier ordre à coefficients constants est unique et est donnée par

$$Y(t) = \exp(tE)Y_0 \tag{3.14}$$

La résolution analytique du système passe par le calcul de l'exponentielle de la matrice $E \in \mathbb{R}^4$, ce qui s'avère difficile du à la taille de ladite matrice. Nous optons donc pour une solution numérique (voir figure figure 3.6 issue du notebook code/simu1D/Percussion1D-1.ipynb)...

Figure 3.6 – Simulation de la percussion ID entre deux floes avec m=1, m'=1, k=16, k'=5, $\mu=6$, $\mu'=2$, $v_0=-1.0$, $t_f=32$. On observe effectivement le ralentissement du système et une convergence vers l'état d'équilibre $Y_{eq}=(0,0,0,0)$.

Pour certaines valeurs (specifiquement de μ et μ'), on constate que le système converge vers son état d'équilibre attendu $Y_{eq} = (0, 0, 0, 0)$. Il nous reste dans cette section :

- 1. Calculer analytiquement et numériquement tous les état d'équilibres $Y_{eq} \in \ker(E)$; distinguer les états stables des autres.
- 2. Calculer analytiquement l'exponentielle de la matrice *E*, et donner l'expression de la solution; déduire la condition sur les parametres pour que le système converge vers l'état d'équilibre voulu.

3.2.2 Collision parfaitement inélastique sans présence du mur

Contrairement au cas étudié dans la section précédente, le mur est supprimé dans cette section. On obtient donc une troisième variable x_3 décrivant le comportement du noeud qui était rattaché au mur. La schéma régissant ce système est donnée à la figure 3.7. Le bilan des forces appliquées aux noeuds est présenté à la figure 3.8.

Figure 3.7 – Contact ID parfaitement inélastique entre deux floes. Le floe percuté étant non immobile (et non coincé au mur) avant le choc. On représnte également les variables x_1 , x_2 , et x_3 décrivant les movements de chaque noeud.

Figure 3.8 - Bilan des forces appliquée sur les noeuds du système. On procède de facon similaire à figure 3.5 pour obtenir les sens et les intensités de ces forces.

Comme précédement, nous appliqons les lois de Newton pour obtenir :

$$\begin{cases}
m\ddot{x}_{1} = -k(x_{1} - x_{2}) - \mu(\dot{x}_{1} - \dot{x}_{2}), \\
(m + m')\ddot{x}_{2} = k(x_{1} - x_{2}) + \mu(\dot{x}_{1} - \dot{x}_{2}) - k'(x_{2} - x_{3}) - \mu'(\dot{x}_{2} - \dot{x}_{3}), \\
m'\ddot{x}_{3} = k'(x_{2} - x_{3}) + \mu'(\dot{x}_{2} - \dot{x}_{3}).
\end{cases} (3.15)$$

Sous forme matricielle, on a

$$\begin{pmatrix}
m & 0 & 0 \\
0 & m + m' & 0 \\
0 & 0 & m'
\end{pmatrix} \begin{pmatrix}
\ddot{x}_1 \\
\ddot{x}_2 \\
\ddot{x}_3
\end{pmatrix} = \begin{pmatrix}
-k & k & 0 \\
k & -k - k' & k \\
0 & k' & -k'
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} + \begin{pmatrix}
-\mu & \mu & 0 \\
\mu & -\mu - \mu' & \mu' \\
0 & \mu' & -\mu'
\end{pmatrix} \begin{pmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3
\end{pmatrix}.$$
(3.16)

Puisque $m, m' \neq 0$, la matrice A est inversible. En posant $X = (x_1, x_2, x_3)^T \in \mathbb{R}^3$, le système d'EDO revient à l' équation (3.17) suivante :

$$\ddot{X}(t) = B'X(t) + C'\dot{X}(t),$$
 (3.17)

où $B' = A^{-1}B$ et $C' = A^{-1}C$. On pose ensuite $Y = (X, \dot{X})^T \in \mathbb{R}^6$ et le système équation (3.17) devient

$$\dot{Y}(t) = EY(t) \tag{3.18}$$

avec

$$E = \begin{pmatrix} 0 & I_3 \\ B' & C' \end{pmatrix} .$$

Remarquons qu'en enlevant le mur à gauche du domaine (voir figure 3.4), le système est devenu isolé. Nous pouvons donc appliquer la conservation de la quantité de mouvement pour identifier la vitesse de l'ensemble m+m' après collision et fixation de la masse m' (à vitesse \mathbf{v}_0) sur la masse m (de vitesse \mathbf{v}_0'). Pour simplifier les calculs, nous considérons les floes comme des solides rigides. La vitesse de l'ensemble juste après collision est notée v_f , et les quantités de mouvement avant et après choc sont notées $P_{\rm avant}$ et $P_{\rm après}$. On a :

$$P_{\text{avant}} = P_{\text{après}}$$

$$\Rightarrow 2m\mathbf{v}_0 + 2m'\mathbf{v'}_0 = (2m + 2m')\mathbf{v}_f$$

$$\Rightarrow \mathbf{v}_f = \frac{m\mathbf{v}_0 + m'\mathbf{v'}_0}{m + m'}$$

On introduit ces conditions initiales dans l'équation (3.18) pour obtenir le système de Cauchy ci-bas. Le résulat de la simulation est présenté à la figure figure 3.9 (issue du notebook code/simu1D/Percussion1D-2.ipynb).

$$\begin{cases} \dot{Y}(t) = EY(t), \\ Y(t_0) = Y_0 = -v_f(0, 0, 0, 1, 1, 1). \end{cases}$$
(3.19)

Figure 3.9 - Simulation de la percussion 1D entre deux floes (sans présence du mur) avec m=1, m'=1, k'=22, $\mu=6$, $\mu'=2$, $v_0=-1.8$, $t_f=5$. Sous certaines conditions (forte dissipation, raideur du floe percuté élevée, etc.), on observe le ralentissement du système et une convergence vers l'état d'équilibre $Y_{eq}=(0,0,0,0,0,0)$.

La figure 3.9 permet d'observer la nuance avec le problème de contact parfaitement inélastique. Il est difficile de distinguer les cas qui aboutissent à une convergences des déplacements de ceux qui divergent. Observons donc à présent un problème de contact inélastique avec séparation des masses.

3.2.3 Premier modèle pour la collision avec séparation des masses

Reprennons le cas du contact 1D et étudions ce qui se passe durant l'intervale de temps $\delta t^* = [t^-, t^+]$ de la collision. Cette fois, pour étudier la dynamique non régulière, nous décidons de séparer les masses m et m' en contact (et ce même durant le contact). Le système résultant est très similaire aux deux cas traités précédemment (figures 3.4 et 3.7), et nous le présentons à la figure 3.10 ci-bas, et son bilan de forces à la figure 3.11.

^{3.} Le vecteur \mathbf{v}'_0 n'est pas marqué à la figure 3.7 (i.e. $\mathbf{v}'_0 = 0$). L'introduction de ce vecteur permet de généraliser le problème.

Figure 3.10 - Contact 1D inélastique entre deux floes. Durant le choc, les nuds m et m' en contact sont étudiés séparement. On représnte les variables x_1 , x_2 , x_3 , et x_4 décrivant les movements de chaque noeud.

Figure 3.11 - Bilan des forces appliquée sur les 4 noeuds du système. On procède de facon similaire aux figures 3.5 et 3.8 pour obtenir les sens et les intensités de ces forces. Fc représente la force de contact dont l'intensité est inconnue.

Comme précédement, nous appliqons les lois de Newton pour obtenir :

$$\begin{cases}
m\ddot{x}_{1} = -k(x_{1} - x_{2}) - \mu(\dot{x}_{1} - \dot{x}_{2}), \\
m\ddot{x}_{2} = k(x_{1} - x_{2}) + \mu(\dot{x}_{1} - \dot{x}_{2}) - F_{c}, \\
m'\ddot{x}_{3} = -k'(x_{3} - x_{4}) - \mu'(\dot{x}_{3} - \dot{x}_{4}) + F_{c}, \\
m'\ddot{x}_{4} = k'(x_{3} - x_{4}) + \mu'(\dot{x}_{3} - \dot{x}_{4}).
\end{cases}$$
(3.20)

On additionne membre à membre les équations régissant les mouvements de x_2 et x_3 pour éliminer la force de contact F_c et obtenir le système :

$$\begin{cases}
 m\ddot{x}_{1} = -k(x_{1} - x_{2}) - \mu(\dot{x}_{1} - \dot{x}_{2}), \\
 m\ddot{x}_{2} + m'\ddot{x}_{3} = k(x_{1} - x_{2}) + \mu(\dot{x}_{1} - \dot{x}_{2}) - k'(x_{3} - x_{4}) - \mu'(\dot{x}_{3} - \dot{x}_{4}), \\
 m'\ddot{x}_{4} = k'(x_{3} - x_{4}) + \mu'(\dot{x}_{3} - \dot{x}_{4}).
\end{cases} (3.21a)$$
(3.21b)

$$m\ddot{x}_2 + m'\ddot{x}_3 = k(x_1 - x_2) + \mu(\dot{x}_1 - \dot{x}_2) - k'(x_3 - x_4) - \mu'(\dot{x}_3 - \dot{x}_4),$$
 (3.21b)

$$m'\ddot{x}_4 = k'(x_3 - x_4) + \mu'(\dot{x}_3 - \dot{x}_4).$$
 (3.21c)

Remarquons que ce système reviens au même système étudié dans la partie précédente en posant $x_2(t)$ = $x_3(t)$ p.p. En effet, durant la phase de contact, les massess m et m' peuvent etrs étudiées comme une unique masse m + m'. La grosse diffculté qui ressort de cette modélisation est la définitions de la vitesse initiale de l'ensemble m + m'. Celà dit, nous cherchons à trouver les vitesses $\dot{x}_1(t^+)$, $\dot{x}_2(t^+)$, $\dot{x}_3(t^+)$ et $\dot{x}_4(t^+)$ immédiatemetn après la collision. De par la ressemblance de ce modèle avec celui de la section précédente (voir équation (3.18)), nous réutilisons les quantités \dot{x}_1 et \dot{x}_4 données par ce système (l'équation (3.18) dans lequel x_2 et x_3 sont confondus). On peut se permertre une telle approximation car x_1 et x_4 n'interviennent pas directemet dans la collision. De plus, la quantité $k(x_1 - x_2) + \mu(\dot{x}_1 - \dot{x}_2) - k'(x_3 - x_4) - \mu'(\dot{x}_3 - \dot{x}_4)$ est aussi calculé suivant le modèle équation (3.18) (voir l'article [Tom+20] pour une modélisation similaire). Il ne nous

reste véritablement que 2 inconnue dans notre dynamique irrégulière.

Intégrons l'équation (3.21b) entre les instants t^- et t^+ . On obtient :

$$\int_{t^{-}}^{t^{+}} m\ddot{x}_{2} + m'\ddot{x}_{3} dt = \underbrace{\int_{t^{-}}^{t^{+}} k(x_{1} - x_{2}) + \mu(\dot{x}_{1} - \dot{x}_{2}) - k'(x_{3} - x_{4}) - \mu'(\dot{x}_{3} - \dot{x}_{4}) dt}_{I}.$$
(3.22)

Afin d'éviter toute confusion, nous notons $v_0 = \dot{x}_2(t^-)$ et $v_0' = \dot{x}_3(t^-)$ les vitesses des noeuds en contact avant collision, et $V_0 = \dot{x}_2(t^+)$ et $V_0' = \dot{x}_3(t^+)$ les vitesses après contact. L'équation équation (3.22) devient donc :

$$mV_0 + m'V_0' = I + mv_0 + m'v_0'. (3.23)$$

À présent, nous pouvons étudier l'énergie cinétique du système à travers le coefficient de restitution ε^4 . On suppose (algébriquement) que les noeuds prennent des directions indiquées à la figure 3.12.

Figure 3.12 - Situation après contact 1D.

On obtient l'équation (3.24) :

$$-V_0 + V_0' = \varepsilon(\upsilon_0 - \upsilon_0'). \tag{3.24}$$

Le système de Cramer qui découle des équations (3.23) et (3.24) permet d'obtenir les expressions :

$$V_0 = \frac{I + (m - \varepsilon m')\upsilon_0 + (1 + \varepsilon)m'\upsilon_0'}{m + m'}, \quad V_0' = \frac{I + (1 + \varepsilon)m\upsilon_0 + (m' - \varepsilon m)\upsilon_0'}{m + m'}.$$
 (3.25)

Une fois leur vitesses "initiales" ⁵ obtenues, on calcule donc les déplacements des différents noeuds des réseaux, et les fractures éventuelles qui s'en suivent. Plus précisément, on a par exmple pour le premier floe :

- son noeud de gauche x_1 a pour vitesse v_0 avant et le choc et conserve cette vitesse après le choc;
- son noeud de droite x_2 a pour vitesse v_0 avant le choc, mais passe de facon discontinue à V_0 apres le choc.

Il en est de même pous le deuxième floe.

3.2.4 Deuxième modèle pour la collision avec séparation des masses

Dans cette section, nous généralisons le modèle 1D présenté dans les deux sections précédentes (voir sections 3.1 et 3.2.3). Les floes sont cette fois représntés par une multitude de noeuds, de ressorts et de dispositifs visqueux.

Déplacement d'un floe. Considérons la FIGURE CI-BAS où n le nombre de noeuds du floe, k la constante de raideur uniforme de tous ses ressorts, et μ le coefficient de dissipation pour tous les dispositifs visqueux.

FIGURE MODÈLE 1D AVEC PLUSIEURS NOEUDS (NE PAS OUBLIÉ DE REPRÉSENTER LE REPÈRE ABSOLU).

^{4.} Le coefficient de restitution est le même que celui utilisé dans la thèse [Rab15].

^{5.} Ces vitesses sont les vitesses de départ pour le deuxième phase de la percussion.

Contrairement à l'approche par déplacement que nous avons adopté à la section 3.1, nous considérons ici une approche par position des noeuds dans le repère absolu (de la figure précédente).

RECOPIER LES PAGES 30 ET 31 DU BROUILLON EN RÉSUMANT TANT QUE POSSIBLE

Etude de la percussion. Observons que les équations équations (3.22) à (3.25) de la section 3.2.3 restent valident du moment que seuls 2 floes sont en contact. Soit n_1 et n_2 les nombres de floes respectifs pour les floes de gauche et de droite (voir FIGURE CI-DESSOUS)

FIGURE DE LA PERCUSSION 1D AVEC PLUSIEURS NOEUDS

La figure ci-dessus montre que la quantité I présenté à équation (3.22) s'écrit :

Et les vitesses après choc sont données par équation (3.25)⁶.

3.2.5 Troisième modèle pour la collision avec séparation des masses

3.3 Modélisation de la fracture

3.4 Algorithme de calcul 1D

DIAGRAMME UML ET README DU REPOSITORY

Algorithme de percussion ID. Par définition, la percussion implique de nombreuses collisions entres les floes. Nous présentons donc l'algorithme ci-bas pour déterminer les vitesses et positions des noeuds des floes après la percussion.

- 1. Creer deux floes ⁷ tous deux animés de mouvemtn uniforme rectilignes ⁸
- 2. Créer le problème de percussion et y ajouter le deux floes et les paramètres phyisiques
- 3. Tant que non collision : calculer les trajectoire des floes doubler le temps de simulation avant choc
- 4. Tant que (collision) ou (temps simu atteint) ou (max recussion profondeur) : identifier le moment de collision - calculer les vitesses des noeuds en contact après choc - calculer les trajectoires après choc

diagramme UML du code. Le code de calcul est conservé dans le FICHIER-REPOSITORY...(INDIQUER COMMENT LACER LE CODE). Le diagramme UML définissant les différentes classes et fonctions de notre implémentation est le suivant :

DIAGRAMME UML DU CODE 1D

3.5 Visualisation et validation des résultats

Visualisation des résultats. PRÉSENTER 5 A 10 TIME STEPS D'UNE SIMULATION AVEC PLUSIEURS FLOES

Validation du modèle. Le moyen principal de validation de notre modèle 1D fut l'étude énergétique. AU MOINS LES QUANTITTÉS DE MOUVEMENT ET LES ÉNERGIES TOTALES JUSTE AVANT ET APRÈS CHAQUE CHOCS SONT LES MÊMES.

PLOT DES QUANTITÉS DE MOUVEMENT ET ENERGIE TOTALES

^{6.} Notons que les tous les noeuds qui ne sont pas en contact conservent leurs vitesss pendant le choc.

^{7.} Le floe de gauche sera identifié par floel et le celui de droite floe2.

^{8.} Tous les noeuds de chacun des floes ont la même vitesse.

3.6 Résumé des résultats obtenus

Problème 2D et percussion des floes de glace

- 4.1 Présentation des travaux antérieurs
- 4.2 Dévelopement d'un modèle de percussion
- 4.3 Algorithme de calcul 1D
- 4.4 Résumé des résultats obtenus

Déroulement et apports du stage

5.1 Journal de bord

5.2 Bilan et future travail

RÉSUMÉ DÉTAILLE DES TRAVAUX DE STAGE, ET TRAVAIL RESTANT

5.3 Les apports du stage

LES OUTILES ET LES RESSOURCES UTILISÉS ENTRENT ICI.

- L' utilisation de TIKZ
- La maitrise de Flask
- Optimiser mes codes (1D et 2D) avec Cpython

Conclusion

Annexe A

Rappels sur les EDO

Annexe B

Le schéma Symplectique

EXPLICATION DU MODULE SCIPY INTEGRATE

Bibliographie

- $[Ho10] \qquad \mbox{Nhut Ho. $\mbox{$\mbox{$\mbox{$W$}}$} Modeling Mechanical Systems $\mbox{$\mbox{$\mbox{$w$}$}.$ In: (2010). $\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$W$}}$}$} : \mbox{$$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{\mbo
- [Rab15] Matthias Rabatel. « Modélisation dynamique d'un assemblage de floes rigides ». Theses. Université Grenoble Alpes, nov. 2015. url : https://tel.archives-ouvertes.fr/tel-01293341.
- [Tom+20] Domenico Tommasino et al. « Effect of End-Effector Compliance on Collisions in Robotic Teleoperation ». In: *Applied Sciences* 10.24 (2020), p. 9077.