Phase 5

Topic: Air Quality Analysis in Tamil Nadu

Team Members:

Sangamithra T - au2021103573

Sreenithi A - au2021103051

Shrivarshini Kp - au2021103048

Shri Sakitha D - au2021103047

```
# importing libraries
import pandas as pd
import scipy
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import seaborn as sns
import matplotlib.pyplot as pit
Step 2: Load the dataset
from google.colab import drive
drive.mount('/content/gdrive')
     Mounted at /content/gdrive
# Load the dataset
df = pd.read_csv('/content/gdrive/MyDrive/ADS_PHASE 3.csv')
print(df.head())
         Benzene Eth-Benzene MP-Xylene
                                                   BP 0 Xylene
                                                                     PM10 PM2.5
                                                                                        RH \
                                        0.00 754.05
0.00 754.28
                                                            2.50 140.23 90.62 42.51
1.74 124.91 61.11 28.34
            1.38
                           0.27
                                        0.06 754.49
                                                             2.39 114.27 70.89 36.48
            1.97
                           0.47
                                        0.12 754.28
                                                             3.51 128.15 78.52 43.68
                           0.75
                                        0.20 754.00
                                                            4.00 122.36 70.48 51.57
            1.80
     SR Temp WD WS CO NH3 NO NO2 NC 0 125.03 17.90 119.19 0.97 0.51 20.53 4.29 22.95 27.24 44.36
                                                                           NOx Ozone
                                                                                           S<sub>02</sub>
                                                                                          4.97
                           71.50 1.21 0.53 17.37
                                                          2.80 25.59 28.38 53.04
     1 148.95 20.04
                                                                                          5.59
     2 131.87 18.31 147.10 1.00 0.78 18.45
                                                          6.85 30.91 37.75 41.94 10.22
     3 129.32 18.56 182.79 1.06 0.81 22.52
                                                          7.36 29.05 36.41 44.15 30.99
     4 145.73 18.81 183.47 0.91 0.96 19.14 13.15 28.60 41.74 37.13 15.78
df.info()
     <c1ass ' pandas . core. frame . DataF rame
      '> Rangelndex: 298 entries, 0 to
     297 Data columns (total 19
     columns):
      #
        Column
                          Non-Null Count Dtype
                                            float64
float64
float64
float64
float64
      012345678910112
11213145167
                                            float64
float64
                                             float64
float64
                                             float64
                                             float64
float64
                                            float64
float64
float64
float64
                                             float64
           Ozone
                          298 uou-null
      18
              S02
                          298 uou-null
     float64 dtypes: float64(19)
memory usage: 44.4 KB
```

Benzene Eth- NP-

df.head()

	E HZEHE	Eth - Benzene	MP- Xy1ene	BF	Xylen e	ra	PM∠.3	KH	Яб	лешр	WU	WS	CU	NH3	INU	N∪∠	NUX
293	1.31	0.22	0.08	757.14	2.57	178.71	81.02	29.44	207.84	28.43	210.70	1.01	1.01	23.42	6.62	32.33	38.13
294	0.64	0.01	0.00	756.64	2.24	158.81	76.39	32.40	214.16	28.21	132.54	1.20	0.62	21.50	8.26	25.42	33.68
295	0.71	0.07	0.03	756.01	2.03	138.19	63.19	30.18	202.04	28.75	172.23	1.18	0.72	19.76	8.66	27.63	36.29
296	0.89	0.10	0.04	755.72	2.51	144.54	58.81	29.82	206.48	29.82	214.90	1.36	0.83	19.35	9.01	27.79	36.80
297	1.10	0.20	0.08	756.84	2.82	152.39	62.50	34.85	167.95	28.89	169.89	0.97	0.91	17.60	8.92	33.32	42.24

STEP 3: check the null values

df.isnull().sum()

0

1

2

3

4

Benzene 0 Eth-Benzene 0 MP-Xylene 0

	Benzene	Xy1ene	DF	т	rn≢e	F04.3	ПП	лс	ו בוווף	Wυ	СМ	CU	СПИ	INO	IV∪∠	INUX	
1.08	0.04	0.00	754.05	2.50	140.23	90.62	42.51	125.03	17.90	119.19	0.97	0.51	20.53	4.29	22.95	27.24	
0.83	0.03	0.00	754.28	1.74	124.91	61.11	28.34	148.95	20.04	71.50	1.21	0.53	17.37	2.80	25.59	28.38	
1.38	0.27	0.06	754.49	2.39	114.27	70.89	36.48	131.87	18.31	147.10	1.00	0.78	18.45	6.85	30.91	37.75	
1.97	0.47	0.12	754.28	3.51	128.15	78.52	43.68	129.32	18.56	182.79	1.06	0.81	22.52	7.36	29.05	36.41	
1.80	0.75	0.20	754.00	4.00	122.36	70.48	51.57	145.73	18.81	183.47	0.91	0.96	19.14	13.15	28.60	41.74	

0 Xylene PM10 0 PM2.5 0 0 RH SR Temp WD 0 0 NS 0 CO 0 NH 0 0 3 NO 0 N0 0 0 NOx Ozon 0 е SO2 dtype: Int64

df . desc r 1be()

	Temp	SR
2	298.00000	298.000000
1	30.42802	208.083020
	5.45345	50.891946
	16.67000	69.960000
1	28.14250	168.785000
2	30.86500	210.255000
2	34.15250	249.402500
2	40.07000	309.610000

Step 5: Check the outliers

```
# Box Plots
fig, axs = plt.subplots(9,1,dpi=95,
figsize=(7,17)) i = 0
for col in dfcolumns:
    axs[i].boxplot(df[col], vert=False)
```

```
axs[i].set label(col)
1+=1
p1t.show()
```



```
import matplotlib.pyplot
as plt import pandas as pd
# Sample data (replace this with your actual SO2 dataset)
data = {
    'Date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05'],
    'SO2_Level' : [15, 18, 12, 14, 16] # Replace with your SO2 data
# Create a DataFrame from the data
df = pd.DataFrame(data)
df['Date'] = pd.to_datetime(df['Date']) # Convert Date column to datetime format
# Plot the S02 levels
plt.figure(figsize=(10, 6))
plt.plot(df['Date'], df['S02_Level'], marker='o', linestyle='-',
color='b') plt.title('S02 Levels Over Time')
p1t.x1abe1('Date')
plt.ylabel('SO2 Level')
plt.gnid(Tnue)
# Format the x-axis to display dates nicely
plt.xticks(rotation=45)
# Show the
plot
plt.tight_la
yout()
plt.show()
```


STEP 2: create visualization for NO2

```
import matplotlib.pyp1ot
as plt import paudas as
pd

# Sample data (replace this with your actual NO2
dataset) data = {
    'Date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05'],
    'NO2_Level' : [2B, 22, 18, 24, 19] # Replace with your NO2 data
```

```
# Create a DataFrame from the
data df = pd.DataFrame(data)
df['Date'] = pd.to_datetime(df['Date']) # Convert Date column to datetime format
plt guhe(N02sieeels0, 6))
plt.plot(df['Date'], df['N02 Level'], marker='o',
liuestyle='-', color='g') plt.title('NO2 Levels Over Time')
plt.xlabel('Date')
plt.ylabel('N02
Level') plt.grid(True)
# Format the x-axis to display dates nicely
plt.xticks(rotation=45)
# Show the
plot
plt.tight_la
yout()
plt.show()
```


STEP 3: create visualization for RSPM/PM10

```
import matplotlib.pyplot as plt
# Sample data (replace this with your actual RSPM/PM10
dataset) categories = ['City A', 'City B', 'City C', 'City
D']
rspm_pm10_levels = [45, 38, 52, 29] # Replace with your RSPM/PM10 data
# Create a bar chart to visualize RSPM/PM10 levels
plt.figure(figsize=(10, 6))
plt.bar(categories, rspm_pm10_levels,
color='skyblue') plt.title('RSPM/PM10 Levels by
City/Area') plt.xlabel('City/Area')
plt.ylabel('RSPM/PM10 Level (pg/m°)')
fo
       e e be'en me ete rhpb pm10_levels):
    plt.text(i, level + 1, str(level), ha='center', va='bottom')
# Show the
plot
plt.tight 1
ayout()
```



```
from google.colab impont
dnive
drive.mount('/content/dri
ve')
```

Mounted at /content/drive

STEP 4: grouping data

import pandas as pd

Load your data iuto a Pandas DataFrame (replace 'data.csv' with your data file)
df = pd.read_csv('/content/drive/MyDrive/Excel_4.csv')

Group the data by the desired column (e.g., 'City' or 'Monitoring
Station') grouped_data = df.groupby('CITIES')

STEP 5: calculating average

```
# Calculate the average S02, N02, and RSPM/PM10 levels fon
each group averages = grouped_data[['S02', 'N02',
'RSPM/PM10']].mean()
```

It DI sp1ay the ca1culated averages print(averages)

	502	NO2	KSPM/PMI0
CITIES			
Chennai	9.433333	23.036667	145.640000
Dindigul	22.880000	23.753333	129.780000
Erode	18.900000	27.065B00	165.580000
Kauniyakumari	27.790000	34.330000	148.680000
Kodaikanal	12.130000	38.050000	171.910000
Madunai	13.897500	26.727500	156.572500
Salem	11.100000	30.060000	160.976667
Thanjavur	3.650000	30.790000	145.180000
Vellore	16.726667	23.116667	141.240000
madurai	10.220000	30.910000	114.270000
salem	30.990000	29.050800	128.150000

Calculate the average S02, N02, and RSPM/PM10 levels for each
group averages = grouped_data[['RSPM/PM10']].mean()

Display the calculated averages print(averages)

	RSPM/PM10
CITIES	
Chenna1	145. 640000
D1nd1gu1	129.780666
Erode	165.580000
Kann1ya kumart	148. 680000
Koda1kana1	171. 910000
Madura1	156.572500
Salem	160. 976667
Thanjavur	145.180000
Vellore	141.240000
madurai	114.270000
sa lem	128.150000