INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Computer Science and Engineering

Switching Circuits and Logic Design (CS21002, Spring)

Class Test – II (part-2)

Name:		Roll number:	
Date: Wed, Feb 10, 2021	Marks: 22	<i>Time:</i> 8:10-9am (F	-N)
Answer ALL the questi	ions using xournal or similar softw	are to edit the PDF	
Q1: Consider a Boolean lattice for two	Boolean variables a and b , \overline{a} and \overline{b} a	re their respective complemennts	s.
(a) Sketch this Boolean lattice indicating all possible functions of a and b at the lattice nodes			8
(b) Wrt to that lattice determine: $(a \oplus b) + (\overline{a} + b)$			2
(c) Wrt to that lattice determine: $(a \oplus b) \cdot (\overline{a} + b)$			2

Q2: Let B be a Boolean algebra. For $a,b\in B,$ let $\overline{a},\overline{b}$ be their respective complements.

(a) Prove that a=b if and only if $(a\wedge \overline{b})\vee (\overline{a}\wedge b)=0$ for all $a,b\in B$.

1+4

(b) Prove that a=0 if and only if $(a\wedge \overline{b})\vee (\overline{a}\wedge b)=b$ for all $b\in B$.

1+4