midterm1WIP

Section 1.1

Exercise 3. Consider the linear regression model from exercise 1. Suppose, that the target of estimation is $h^{\dagger}\theta$ for some determinate non-zero vector $h \in R^p$. Find expression for the LSE of $h^{\dagger}\theta$. Is this estimate optimal in sense of Gauss-Markov theorem, i.e. does it have the smallest variance among all linear unbiased estimators?

—Start with this —By Gauss Markov, we know that a BLUE estimator has $Var(\theta_{OLS}) = \sigma^2(XX^{\dagger})^{-1}$). However in the case of heterscedastic noise, we have $Var(\theta) = (XX^{\dagger})^{-1}XDX^{\dagger}(XX^{\dagger})^{-1}$, which must be greater than $\sigma^2(XX^{\dagger})^{-1}$). An so, in this case, our estimator is not BLUE. Study the same issue for the target $\eta = H^{\dagger}\theta$, where $H \in \mathbb{R}^{q \times p}$ is some non-zero matrix with $q \leq p$.

Section 1.3

Exercise 6. Let L1, L2 be some subspaces in \mathbb{R}^n , and L2 \subseteq L1 \subseteq \mathbb{R}^n . Let PL1, PL2 denote orthogonal projections on these subspaces. Prove the following properties:

- (a) PL2 PL1 is an orthogonal projection,
- (b) $|PL2| \leq |PL1| \ \forall x \in \mathbb{R}^n$,
- (c) $PL2 \cdot PL1 = PL2$

Section 2.1

Exercise 7. (a) Using the notation from section 2.1, consider $X \sim N(\mu, I_n)$ for some $\mu \in \mathbb{R}^n$. Find E(Q(X)) and Var(Q(X))

For $Q(X) = \sum_{i} \sum_{j} a_{ij} X_i X_j = X^{\intercal} A X_i X_j \sim N(\mu, I_n)$, we have, using the property of trace operator:

$$E(Q(X)) = tr(E(Q(X)) = E(tr(Q(X))) = E(tr(X^{\mathsf{T}}AX)) = E(tr(AXX^{\mathsf{T}})) = tr(AE(XX^{\mathsf{T}}))$$

Since $E(XX^{\intercal}) = I_n + \mu \mu^{\intercal}$, we have,

$$tr(AE(XX^{\mathsf{T}})) = tr(A(I_n + \mu\mu^{\mathsf{T}})) = trA + tr(A\mu\mu^{\mathsf{T}}) = trA + \mu^{\mathsf{T}}A\mu$$

Var(Q(X)) =

(b) Generalize the results from part (a) to the case $X \sim N(\mu, \Sigma)$ for some positive-definite covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$. For $X \sim N(\mu, \Sigma)$ we have,

$$E(Q(X)) = tr(AE(XX^\intercal)) = tr(A(\Sigma + \mu\mu^\intercal)) = tr(A\Sigma) + tr(A\mu\mu^\intercal) = tr(A\Sigma) + \mu^\intercal A\mu$$

Var(Q(X)) =

Exercise 8. Let $X \sim N(0, I_n)$, $Q = X^{\mathsf{T}}X$. Suppose that Q is decomposed into the sum of two quadratic forms: Q = Q1 + Q2, where $Qi = X^{\mathsf{T}}A_iX$, i = 1, 2 for some symmetric matrices A1, A2 with rank(A1) = n1 and rank(A2) = n2. Show that if n1 + n2 = n, then Q1 and Q2 are independent and $Q_i \sim \chi^2(n_i)$ for i = 1, 2.

First $X^{\intercal}X \sim \chi^2(n)$, since $X^{\intercal}X = \sum_{i=1}^n x_i^2$, which is the sum of squared normal random variables with variance 1.

Since A1 and A2 are symmetric matrices, we can diagonalize them, $A_1 = U^{\intercal}\Lambda U$ and $A_2 = V^{\intercal}\mu V$, where $\Lambda = diag\{\Lambda_1,...,\Lambda_{n_1}\}, \mu = diag\{\mu_1,...,\mu_{n_2}\}, rank(A_1) = n_1$, and $rank(A_2) = n_2$, and $n_1 + n_2 = n$.

With decomposition above we have, $A_1 = \sum_{i=1}^{n_1} \Lambda_i u_i u_i^{\mathsf{T}}$ and $A_2 = \sum_{j=1}^{n_2} \mu_j v_j v_j^{\mathsf{T}}$ and $A_1 A_2 = \sum_{j=1}^{n_2} \sum_{i=1}^{n_1} \Lambda_i \mu_j u_i (u_i^{\mathsf{T}} v_j) v_j^{\mathsf{T}} = 0$, since $(u_i^{\mathsf{T}} v_j) = 0 \ \forall i, j$.

Further $Q_1 = X^{\intercal}A_1X = X^{\intercal}U^{\intercal}\Lambda UX = \sum_{i=1}^{n_1} \Lambda_i(x_i^{\intercal}u_i)^2$ and $Q_2 = X^{\intercal}A_2X = X^{\intercal}V^{\intercal}\mu VX = \sum_{j=1}^{n_2} \mu_j(X^{\intercal}v_j)^2$.

Each term in Q1 and Q2, $X^{\intercal}u_i$ and $X^{\intercal}v_j$ has an expectation of zero. I.e. $E[X^{\intercal}u_i] = 0$ and $E[X^{\intercal}v_j] = 0$, since $X \sim N(0, I_n)$.

The covariance of these terms

Section 2.2

Exercise 9. In the Gaussian linear regression model 3, consider the target of estimation $\eta = H^{\dagger}\theta^*$, where $H \in R^{q \times p}$ is some non-zero matrix with $q \leq p$. Find an analogue of the quadratic form S2 (from (4)) for the new target η^* , and prove for the new quadratic form statements similar to (e) from Theorem 2.1, and Corollary 2.1.2.

Exercise 10. (a) Consider model (3) for $p = 2, X_i = (1, x_i)^{\mathsf{T}}, \theta^* = (\theta_1^*, \theta_2^*)^{\mathsf{T}}$ (similarly to section 1.5). Write explicit expressions for the confidence sets for $\theta^*, \theta_1^*, \theta_2^*$.

(b) Find a confidence interval for the expected response $E[Y_i]$ in the model in part (a).

Exercise 11. Find an elliptical confidence set for the expected response E[Y] in model (3).

Exercise 12. Construct simultaneous confidence intervals (e.g., as in Corollary 2.2.1) for the expected responses $E[Y_1], ..., E[Y_n]$ in model (3).