JP2000187467 A

CONTROL DEVICE FOR LIGHTING ORGANIC EL ELEMENT AND ITS METHOD STANLEY ELECTRIC CO LTD

Abstract:

PROBLEM TO BE SOLVED: To enable a display device using organic EL elements formed in a matrix to correct variations in brightness due to dispersion and deterioration of the elements, and always control the gradation excellently. SOLUTION: This device controls a cathode driving circuit 2 and an anode driving circuit 3 according to display information inputted to a control device 5, and displays a picture on an EL panel by driving organic EL elements 1. In this case, the currents flowing through the organic EL elements 1 when being lighted are detected by current detectors 4, and the next lighting time is controlled according to the detected current value.

Inventor(s):

FURUTA SATOSHI

Application No. 10367318 JP10367318 JP, Filed 19981224, A1 Published 20000704

Int'l Class: G09G00330

G09G00320 H05B03314

Patents Citing This One (2):

→ US6880156 B1 20050412 Hewlett-Packard Development Company. L.P.

Demand responsive method and apparatus to automatically activate spare servers

→ WO2004064030 A1 20040729 TOSHIBA MATSUSHITA DISPLAY
TECHNOLOGY CO., LTD.
DISPLAY DEVICE AND CONTROL METHOD
THEREOF

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-187467 (P2000-187467A)

(43)公開日 平成12年7月4日(2000.7.4)

(51) Int.Cl. ⁷		識別記号	, F I ,	テーマコード(参考)
G 0 9 G	3/30		C 0 9 G 3/30	K 3K007
	3/20	641	3/20	641A 5C080.
		6 4 2		6 4 2 P
H05B	33/14		H 0 5 B 33/14	Λ

審査請求 未請求 請求項の数4 OL (全 7 頁)

(21)出顧番号	特願平10-367318	(71)出願人 000002303
		スタンレー電気株式会社
(22)出顧日	平成10年12月24日 (1998. 12. 24)	東京都目黒区中目黒2 「目9番13号
		(72)発明者 古田 敏
		神奈川県横浜市青葉区住田西1-3-1
,		スタンレー電気株式会社技術研究所内
•	• •	(74)代理人 100066061
	•	弁理士 丹羽 宏之 (外1名)
•		Fターム(参考) 3K007 AB02 AB17 BA06 DA01 DB03
		EB00 GA02 GA04
		5C080 AA06 BB05 DD04 EE29 FF12
		1102 1103 1104 1105

(54) 【発明の名称】 有機EL素子の点灯制御装置及び点灯制御方法

(57)【要約】

【課題】 マトリックス構成の有機EL素子を用いた表示装置において、素子のばらつきや劣化による輝度変化を補正でき、常に良好な階調制御ができるようにする。 【解決手段】 制御装置5に入力された表示情報に従って陰極駆動回路2及び陽極駆動回路3を制御し、有機EL素子1を駆動してELパネルに画像を表示する。その際、電流検出回路4により点灯中の有機EL素子1に流れる電流を検出し、その検出した電流値に応じて次回の点灯時間を制御する。

【特許請求の範囲】

【請求項1】 マトリックス構成された有機EL素子の 点灯制御装置において、点灯中の有機EL素子の各画素 に流れる電流を検出する電流検出手段と、検出した電流 に応じて該電流を検出した画素の点灯時間を制御する制 御手段とを備えたことを特徴とする有機EL素子の点灯 制御装置。

【請求項2】 マトリックス構成された有機EL素子の 点灯制御装置において、点灯中の有機EL素子の各画素 に流れる電流を検出する電流検出手段と、検出した電流 に応じて該電流を検出した画素の点灯電流を制御する制 御手段とを備えたことを特徴とする有機EL素子の点灯 制御装置。

【請求項3】 マトリックス構成された有機EL素子の 点灯制御方法において、点灯中の有機EL素子の各画素 に流れる電流を検出し、その検出電流に応じて該画素の 次回の点灯時間を制御するようにしたことを特徴とする 有機EL素子の点灯制御方法。

【請求項4】 マトリックス構成された有機EL素子の 点灯制御方法において、点灯中の有機EL素子の各画素 に流れる電流を検出し、その検出電流に応じて該画素の 次回の点灯電流を制御するようにしたことを特徴とする 有機EL素子の点灯制御方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、表示装置に使用される有機EL素子の点灯制御装置及び点灯制御方法に関するものである。

[0002]

【従来の技術】有機EL(Electro Luminescence)素子は、自発光で低電圧駆動が可能なことから、高精細で薄型の表示装置に広く利用されている。また、表示装置で多くの情報を表示するためには、LCDやPDPなどを利用した表示装置でも採用されているマトリックス駆動方式を用いるのが好ましく、更に限られた表示面積内により多くの情報を表示する場合には、階調表示をすることが一般的である。

【0003】上記の有機EL素子の階調表示は、有機E L素子に流れる電流と輝度の関係、あるいは点灯時間と 輝度の関係から有機EL素子の階調制御を行うことによ り実現されるものである。

[0004]

【発明が解決しようとする課題】しかしながら、従来の有機EL素子の点灯制御においては、素子のばらつきや劣化により輝度が変化し、良好な階調制御ができないという問題点があった。

【0005】本発明は、上記のような問題点に着目してなされたもので、素子にばらつきや劣化があってもそれによる輝度変化を検出でき、常に良好な階調制御を行うことができる有機EL素子の点灯制御装置及び点灯制御

方法を提供することを目的としている。

[0006]

【課題を解決するための手段】本発明に係る有機EL素子の点灯制御装置及び点灯制御方法は、次のように構成したものである。

【0007】(1)マトリックス構成された有機EL素子の点灯制御装置において、点灯中の有機EL素子の各画素に流れる電流を検出する電流検出手段と、検出した電流に応じて該電流を検出した画素の点灯時間を制御する制御手段とを備えた。

【0008】(2)マトリックス構成された有機EL素子の点灯制御装置において、点灯中の有機EL素子の各画素に流れる電流を検出する電流検出手段と、検出した電流に応じて該電流を検出した画素の点灯電流を制御する制御手段とを備えた。

【0009】(3)マトリックス構成された有機EL素子の点灯制御方法において、点灯中の有機EL素子の各画素に流れる電流を検出し、その検出電流に応じて該画素の次回の点灯時間を制御するようにした。

【0010】(4)マトリックス構成された有機EL素子の点灯制御方法において、点灯中の有機EL素子の各画素に流れる電流を検出し、その検出電流に応じて該画素の次回の点灯電流を制御するようにした。

[0011]

【発明の実施の形態】図1は本発明の実施例の構成を示す図であり、有機EL素子を用いたマトリックス型表示装置の要部を示している。

【0012】図1において、1はマトリックス構成された有機E L素子で、図では陰極(C o \sim C n)と陽極(S o \sim S m)の各電極及び各画素毎の駆動トランジスタから成る等価回路を示している。2 は陰極側のタイミング信号を発生する陰極駆動回路、3 は陽極のパルス信号を発生する陽極駆動回路で、各極毎のパルス発生回路(PG_1 , PG_2 , ……, PG_n) から構成されている。

【0013】また図1中、4は点灯中の有機EL素子1の各画素に流れる電流を検出する電流検出回路(電流検出手段)で、陽極の各極毎の検出回路(IS。,ISュ,……,IS。)から構成されている。5は検出した電流に応じて該電流を検出した画素の点灯時間あるいは点灯電流を制御する制御装置(制御手段)で、入力された表示情報に従って上記の各部を制御する。

【0014】上記構成の回路においては、陰極駆動回路 2及び陽極駆動回路3に駆動電圧Vdが供給され、制御 装置5からの命令により各駆動回路2,3が制御されて 有機EL素子1が駆動される。これにより、有機EL素 子1を用いたELパネルに画像がマトリックス表示され る。

【0015】このとき、本実施例では点灯中の有機EL 素子1に流れる電流を検出しており、その検出結果から 有機E L素子1の劣化による輝度の変化を検出し、その情報を輝度(階調)情報とともに駆動回路2、3に送っている。このため、前述の階調制御が可能になると同時に、素子のばらつきや経年変化等による劣化に対して適切な制御を行うことができ、常に良好な階調制御による表示画像を得ることができる。

【0016】すなわち、陰極駆動回路2は、点灯させるべきラインを選択して、決められた時間グランド(G)電位に接続する。電流検出回路4は、各々の陽極線に流れる電流を測定して信号化し、その信号を制御装置5へ送る。また陽極駆動回路3の各パルス発生回路は、点灯時間情報と輝度情報から陽極のオン(ON)時間を決めて、陽極へ駆動電圧Vdのパルスを加える。

【0017】一方、制御装置5は、外部から与えられた表示情報よりマトリックスの各列の点灯、輝度情報を得る。そして、表示タイミングに従って各駆動回路2,3に信号を送り、各列を点灯する。また、点灯中に電流検出回路4からの電流情報を受け、電流値が設定値より大きい場合は次回の点灯時間を短く設定し、逆に小さい場合は、点灯時間を長く設定する。あるいはまた、電流値が設定値より大きい場合は次回の点灯電流を小さく設定し、小さい場合は点灯電流を大きく設定する。

【0018】また、輝度を所定値以下にする場合には、 点灯時間を設定値以下にすることで平均輝度を下げる。 なお、これらの各設定値は、テーブルとして制御装置5 等のメモリに格納しておくことができる。

【0019】図2は上記有機EL素子1の駆動パルスを示す図であり、点灯時間(t)と電圧(v),電流

(i)の関係を示している。同図の(a)は点灯時間(Ta)が長く輝度が大きいとき、(b)は点灯時間(Tb)が短く輝度が小さいときである。

【0020】図3は上述の階調制御の原理を示したもので、(a)は電流(Ia, Ib)と輝度(La, Lb)の関係、(b)は点灯時間(Ta, Tb)と平均輝度の関係を示している。図示のように、異なる電流値であっても点灯時間により同一の輝度を得ることができる。

【0021】また、図4は電流検出回路4により検出された電流とパルス発生回路からの駆動パルスとの関係を示す図で、(a)は検出電流(Ia)が小さい時、

(b)は検出電流(Ib)が大きいときを示している。 図5に各ラインの電流の流れの様子を示す。

【0022】図6は陰極駆動回路2の内部構成を示す図である。この回路は、タイミング信号とクロック(CLOCK)が入力されるシフトレジスタ11と、その出力を反転するインバータ12と、その反転出力がゲートに入力される二つの直列接続されたFETQ1、Q2から成り、FETQ1、Q2の出力が有機EL素子1の陰極側に入力される。

【0023】図7は電流検出回路4の構成を示す図である。この回路は、駆動バルスが印加される電流検出用の

抵抗R1を有し、その両端電圧をA/Dコンバータ13 に取り込んで信号化し、その信号を検出値として制御装置5に出力するものである。

【0024】また、図8は陽極駆動回路3の各パルス発生回路の構成を示す図である。この回路は、シフトレジスタ14と、その出力を減算する減算カウンタ15と、アンド(AND)ゲート16と、フリップフロップ(F/F)17と、直列接続された二つのFETQ3、Q4から構成されている。そして、シフトレジスタ14、減算カウンタ15及びフリップフロップ17にはクロックが入力され、減算カウンタ15にはロード(LOAD)信号も入力され、下ETQ3、Q4の出力は電流検出回路4に入力される。

【0025】図9は上記パルス発生回路の動作タイムチャートを示す図であり、ここでは減算カウンタ15の値(カウンタ値)、シフトレジスタ14の出力値(レジスタ値)、FETQ3、Q4の出力、ロード信号及びクロックを示している。

【0026】図9は本実施例の動作を示すフローチャートであり、コモン側Nラインの駆動回路の制御の流れを示している。なお、この制御は制御装置5によって実行されるものである。

【0027】まず、入力情報から表示データを展開した後(S1)、n=0と設定し(S2)、nラインデータセグメントに設定する(S3)。そして、nラインの補正値を設定し(S4)、コモン側のnラインをグランドレベルの電位にする(S5)。

【0028】次に前述の電流検出を行い(S6)、所定のオン時間が経過したら(S7)、コモン側のnラインに駆動電圧を与え(S8)、n=n+1とする(S9)。そして、n>Nとなったら(S10)、始めの制御に戻る。

[0029]

【発明の効果】以上のように、本発明によれば、素子に ばらつきや劣化があってもそれによる輝度変化を検出し て補正をすることができ、常に良好な階調制御を行うこ とができ、良好な表示画像が得られるという効果があ る。

【図面の簡単な説明】

- 【図1】 本発明の実施例を示す構成図
- 【図2】 有機EL素子の駆動パルスを示す図
- 【図3】 階調制御の原理を示す図
- 【図4】 検出電流と駆動パルス幅の関係を示す図
- 【図5】 各ラインの電流の流れの様子を示す回路図
- 【図6】 陰極駆動回路の構成図
- 【図7】 電流検出回路の構成図
- 【図8】 陽極駆動回路の各パルス発生回路の構成図
- 【図9】 パルス発生回路の動作を示すタイムチャート
- 【図10】 実施例の動作を示すフローチャート 【符号の説明】

- 1 有機EL素子
- 陰極駆動回路
- 陽極駆動回路

電流検出回路(電流検出手段)

制御装置(制御手段)

【図1】

本発明の実施例の構成 制御装置 3:隔極枢動回路

【図5】

【図7】

電流検出回路の構成

【図2】

有機EL素子の駆動パルス

【図3】

【図4】

検出電流と駆動パルス幅の関係

【図6】

陰極駆動回路の構成

【図8】

陽極駆動回路の各パルス発生回路の構成

【図10】

実施例の動作

