CS110 sp25 HW5

Due: TBD

Complete this homework either by writing neatly by hand or using typst. You can find the .typ file on Piazza.

1 TRUE OR FALSE

Fill in your answer (T or F) in the table below.

- 1. When the same address is accessed multiple times using a cache, it primarily benefits from spatial locality.
- 2. If a cache system changes from direct-mapped to N-way set-associative (N > 1), the number of index bits in the address breakdown increases.
- 3. Higher cache associativity decreases hit time, miss rate, and miss penalty simultaneously.
- 4. Assume a direct-mapped cache with 8-byte blocks, 2 sets, using LRU replacement, and initially empty. Given 8-bit addresses, accessing addresses from 0x00 to 0xFF sequentially will result in no cache hits.

1	2	3	4

2 Set-Associative Caches

Assume a 12-bit address space. All cache lines are shown in the table below.

Set index	Tag 1	Tag 2
0		
1		
2		
3		

1. Assume loading a 16-byte struct at address <code>0x00F</code> requires only 1 cache lookup, but loading one at <code>0x011</code> requires 2 lookups. Fill in the cache system parameters in the table below.

Cache block size	
Total Capacity	
Level of set associativity	
# of cache blocks	
# of sets	
Address Breakdown (Tag Index Offset)	

2. For the sequence of addresses below, indicate whether each access results in a hit, miss, or replacement. Assume the cache is initially empty.

Address	Cache Access Result (Hit/Miss/Replacement)
0x3A8	
0x1A6	
0x04C	
0x5AD	
0x3B9	
0x44F	
0x1B3	
0x055	
0x241	
0x45E	
0x1A1	
0x1A5	
0x642	
0x444	

3. Calculate the cache hit rate for the sequence of memory accesses above. How can you improve the cache hit rate without increasing the cache **capacity**?

3 AMAT

Consider a 3-level cache system with the following parameters, where the CPU runs at 4GHz:

Cache Level	Hit Time	Local Miss Rate
L1	2 cycles	8%
L2	12 cycles	35%
L3	44 cycles	10%
Memory	80ns	-

1. Calculate the global miss rate for the 3-level cache.

2. Calculate the average memory access time (AMAT) for the CPU.

3. Now, suppose the L1 cache is changed from 2-way set-associative to fully associative. This change reduces the L1 local miss rate to 6% but increases the L1 hit time by 60%. Calculate the new AMAT.

4 Code analysis

Consider the following code:

```
struct body {
    float x, y, z, r;
};
struct body bodies[64];
// check whether two physics bodies overlap in 3D space
bool is_collide(struct body a, struct body b);
int check_collision() {
    int count = 0;
    for (int i = 0; i < 64; i++) {
        for (int j = i + 1; j < 64; j++) {
            if (is_collide(bodies[i], bodies[j])) {
                count++;
        }
    }
    return count;
}
```

Note:

- Assume the cache parameters are: 128 bytes capacity, 32 bytes per block, 2-way set associative.
- Elements in the bodies array are aligned to the cache lines.
- sizeof(float) == 4
- You can ignore what is_collide exactly does and assume each body structure is loaded only once within the inner loop iteration (i.e., bodies[i] and bodies[j] are loaded into registers).
- The variables i, j and count are stored in registers.
- Instruction cache is not considered.
- Assume the cache is initially empty.
- 1. Calculate the hit rate for the above code.

2. How can the hit rate be improved by modifying only the code (without changing the cache configuration)? Briefly explain your solution.