电力系统短期负荷预测

2017011048 电 75 牛腾腾

目录

1.	. 数据预处理	2
	1.1. 对气象数据的处理	2
	1.1.1. 处理缺失值	2
	1.1.2. 处理异常值	3
	1.2. 对负荷数据的处理	3
	1.2.1. 处理缺失值	3
	1.2.2. 处理异常数据	3
	1.3. 对时间类型数据的处理	4
	1.4. 数据归一化	4
	1.5. 最终结果	4
2.	. 模型搭建	4
	2.1. 输入输出构造	4
	2.2. 模型搭建	5
3.	. 训练与验证	5
	3.1. 验证集划分	5
	3.2. 超参数选择	5
	3.3. 训练结果	5
4.	. 结果分析	8
	4.1. 低精度数据分析	8
	4.2. 改进空间	9
5	总结	10

1. 数据预处理

1.1. 对气象数据的处理

1.1.1. 处理缺失值

首先查看气象数据各字段的缺失情况

可以看到,天气类型、风向、风速、降雨量四个字段数据缺失严重,直接剔除掉剔除之后各字段数据缺失情况如下:

经过更加细致的检查,这四个字段数据缺失情况如下表所示:

字段名	数据缺失数
平均温度	249
最高温度	249
最低温度	249

湿度	411

查看数据发现,这些缺失值大多连片存在,比如 2003. 5. 10-2003. 12. 31 时间段内,这四个字段数据值全部缺失。因此这里对缺失值的处理方法是:使用相邻年份相同日期的数据填充缺失数据,比如用 2004. 5. 10-2004. 12. 31 的数据值填充 2003. 5. 10-2003. 12. 31 的缺失值。

1.1.2. 处理异常值

这里使用箱线图观察气象数据的异常情况:

可以看到,最低气温、平均气温、湿度三个字段有明显的异常数据,这里使用各字段的中位数替换异常数据

1.2. 对负荷数据的处理

1.2.1. 处理缺失值

经过检查,符合数据仅有局部零星几个缺失数据,由于负荷数据在相邻的几 天内,固定时间段的波动较小,这里处理缺失值的方法是:使用前一个非缺失值 来填充缺失值。

1.2.2. 处理异常数据

查看负荷数据的箱线图

可以看到前4个字段出现0异常值,使用中位数进行填充

1.3. 对时间类型数据的处理

原始数据时间数据的格式为 yyyy/mm/dd, 我们需要从中提取出每一天的星期类型、是否节假日, 并进行 one-hot 编码。

1.4. 数据归一化

这里使用过 min-max 归一化,0-1 归一化,但在之后的训练测试过程中,发现模型的鲁棒性很差。经过多次测试后,使用原始数据 / 基值的方法进行归一化。具体而言,各字段的基值为:

字段	基值
负荷数据	7000MW
气温数据	20℃
湿度数据	100RH%

1.5. 最终结果

经过上述的数据处理过程后,最终得到了一张 1982 * 109 的表,1982 指天数,109 指特征数,具体而言:

特征类型	特征数目
第 T 天的负荷数据	96
第 T 天的天气数据	4
第 T 天的星期类型(one-hot 编码)	7
第 T 天是否节假日 (one-hot 编码)	2

2. 模型搭建

2.1. 输入输出构造

使用预处理后的数据构造输入输出,使用前七天的负荷与当天的气象、时间数据预测当天的负荷,每一条数据的格式如下:

输入	输出
历史负荷数据	第 T 天的 96 点负荷数
第 T-7、T-6、T-5 ··· T-1 天的负	据
荷数据	(96 * 1)

(96 * 7)
第 T 天的气象数据
(4 * 1)
第 T 天的星期类型
(7 * 1)
第 T 天是否节假日
(2 * 1)

2.2. 模型搭建

搭建如下的 MLP 模型

输入层: 685 隐藏层: 520 输出层: 96

3. 训练与验证

3.1. 验证集划分

数据集中总共有 1982 条数据,这里选择 2008. 1. 1-2008. 6. 4 的数据作为验证集(即后 155 条数据)

3.2. 超参数选择

经过不断的训练&验证,最终的超参数选择如下:

optimizer	Adam
learning_rate	1e-3
batch_size	32

3.3. 训练结果

训练集和验证集的 mse 曲线

训练集和验证集的精度曲线

在第942次迭代中,获得了最优模型,模型效果如下:

	验证集
mse	0.000865
折合为负荷 mse	205.9296MW
平均精度	97.66%

验证集精度最高的一天:

验证集预测精度箱线图与散点图

4. 结果分析

4.1. 低精度数据分析

从上面的精度散点图可以观察到有一些精度明显小于整体水平的点,这里把精度小于95%的点单独列出来进行分析,分析结果如下:

日期	精度	原因	预测值-真实值曲线
2008-01-03	91.1%	异常数据	10000 real pred 9000 9000 9000 9000 9000 9000 9000 90
2008-02-04	94.7%	春节	9000 real pred 8500 8000 6500 6000 0 20 40 60 80 time
2008-02-05	93. 5%	春节	7500 6500 6000 20 40 60 80 80 80 80 80 80 80 80 80 80 80 80 80
2008-02-06	94.3%	春节	7500 real pred 7500 6500 6500 6500 6500 time
2008-02-07	94.0%	春节	7500 real pred 7000 6500 6500 fime

可以看出,模型对节假日以及其他负荷水平突然变化的情况,预测精度不够高。

4.2. 改进空间

根据上面的低精度天数据的分析,提出下面两点改进空间

- 1. 对节假日单独建模,单独预测
- 2. 使用其他更适合于时间序列分析的模型比如 LSTM、GRU 等

5. 总结

本次实验搭建了一个 MLP 模型, 其输入为前七天的负荷数据与待预测日的气象、时间特征数据,输出为待预测日的负荷数据。经过训练,模型在验证集共 155 条数据的平均预测精度为 97.66%, 其中有 10 条数据预测精度低于 95%, 原因主要是节假日负荷水平突变。