ACT-2007 : Mathématiques actuarielles vie II

Radu Mitric

E-mail: ilie-radu.mitric@act.ulaval.ca

Hiver 2021 cours : mardi 9h30-12h20 en ligne sur Zoom atelier : mardi 8h30-9h20, en ligne

Sujets abordés

- Calcul de réserves (provisions)
- Modèles à plusieurs états. Chaînes de Markov.
 - Modèles à plusieurs décroissances
 - Modèles sur plusieurs vies
- Modèles qui tiennent compte des flux monétaires des frais
- Produits de vie universelle (si le temps permet)

Évaluation

- Examen I, en présentiel, 45% : mardi le 16 mars, de 9h30 à 12h20.
- Examen II, en présentiel, 45% : LUNDI le 26 avril, de 9h30 à 12h20.
- Deux travaux pratiques (5% chacun) : 23 février et 20 avril.

- Calculatrices : consulter le portail du cours.
- Une feuille des formules sera fournie l'examen

Chapitre I : Calcul de réserves (provisions)

- La réserve au temps t pour un contrat donné (avec prime nivelée ou non) représente l'espérance du montant que l'assureur devrait payer à l'assuré au temps t pour s'acquitter de ses obligations envers l'assuré.
 - L'argent mis de côté par l'assureur pour être capable de payer (la moyenne de) ses obligations futures.
- Puisque le taux d'intérêt peut changer, la valeur moyenne des paiements futurs est également variable.
- Les actuaires devraient vérifier si les actifs de l'entreprise sont suffisants pour payer les prestations futures.

■ En pratique, l'assureur évalue la réserve de chacun de ses contrats à la fin de chaque année, puis enregistre la réserve totale comme un « passif » (en anglais « liablity ») dans ces états financiers.

- Comme dans le cas du solde d'une dette nous allons étudier deux méthodes pour le calcul des réserves :
 - -méthode prospective;
 - -méthode rétrospective brièvement (et ne pas requise à l'examen).

La perte prospective ${}_{t}L$ (ou ${}_{t}L^{n}$), ${}_{t}L^{g}$

- Soit L_t (ou $_tL$), la «perte prospective» de l'assureur au temps t:
- Toujours, par $_tL$ on comprends $\{_tL|T_x>t\}$!
 - pour les contrats sans frais

$$_{t}L = \mathit{VP}_{@t}(\mathsf{prestation\ future\ \grave{a}\ payer}) - \mathit{VP}_{@t}(\mathsf{primes\ futures\ \grave{a}\ recevoir});$$

pour les contrats avec des frais

$$_tL^g=VP_{@t}({
m prestation\ future\ a\ payer})+VP_{@t}({
m frais\ futures\ a\ payer}) \ -VP_{@t}({
m primes\ futures\ a\ recevoir}).$$

■ La perte au temps t est définie seulement pour les contrats en vigueur au temps t. Pour simplifier la notation, on va utiliser t à place de $\{tL|T>t\}$.

Les réserves (en utilisant la méthode prospective)

■ La réserve au temps t est notée tV et se définit par :

$$_{t}V = \mathbb{E}(_{t}L|T_{x} \geq t).$$

■ En utilisant la méthode prospective on obtient

$$_tV = \mathbb{E}[VP_{@_t}(\text{prestation à payer})] + \mathbb{E}[VP_{@_t}(\text{frais à payer})] - \mathbb{E}[VP_{@_t}(\text{primes à recevoir})].$$

Remarque : <u>Si</u> les primes nivelées sont établies selon le principe d'équivalence, alors $_0V=0$.

Cas particulier 1 : Contrat d'assurance-vie entière discret On considère un contrat d'assurance vie entière avec la prestation M\$ à payer à la fin de l'année du décès et primes nivelées π à payer au début de chaque année tant que l'assuré est en vie. Alors.

$$tL = Mv^{K_{x+t}+1} - \pi \ddot{a}_{K_{x+t}+1};$$

$$tV = \mathbb{E}(tL) = M A_{x+t} - \pi \ddot{a}_{x+t};$$

$$Var(tL) = \left(M + \frac{\pi}{d}\right)^{2} [^{2}A_{x+t} - A_{x+t}^{2}].$$

Cas particulier 2 : Contrat d'assurance-vie temporaire (discret)
On considère un contrat d'assurance vie temporaire n années avec le montant M\$ à payer à la fin de l'année du décès et primes nivelées à payer au début de chaque année tant que l'assuré est en vie.

- a) Calculer les primes nivelées en utilisant le principe d'équivalence.
- b) Calculer les réserves aux temps t, où t < n.
- c) Écrire l'expression de la perte au temps t.

Exemple 1.1

On considère un contrat d'assurance-vie entière avec prestation de M\$ à payer à la fin de l'année du décès. Les primes nivelées π à payer au début de chaque année (tant que l'assuré est en vie) sont temporaire n années.

- a) Trouver l'expression de la prime π en utilisant le principe d'équivalence.
- b) Trouver la réserve au temps h.

Exemple 1.2

(E. Marceau) On considère un contrat d'assurance discrète temporaire 30 ans émise à (30). La prestation de décès est de 30 000\$. La prime P est payable sur une période de 20 années. La force d'intérêt est égale à 6%.

On dispose de l'information suivante :

$$A_{30:\overline{30}|}^1 = 0.200142, \ A_{40:\overline{20}|}^1 = 0.282768, \ A_{55:\overline{5}|}^1 = 0.231549,$$

 $\ddot{a}_{30:\overline{20}|} = 35.281344, \ \ddot{a}_{40:\overline{10}|} = 22.787631.$

- a) Calculer la prime P selon le principe d'équivalence;
- b) Définir les variables aléatoires $_{10}L$ et $_{25}L$ (les pertes aux temps 10 et 25). Le contrat est en vigueur à la durée j (j=10 puis 25). Calculer la valeur que prend $_{10}L$ si le temps du décès est $T_{30}=14.6$ et celle que prend $_{25}L$ si le temps du décès est $T_{30}=28.2$;
- c) Calculer les réserves ${}_{10}V = E[{}_{10}L|T > 10]$ et ${}_{25}V = E[{}_{25}L|T > 25]$.

Réserves pour primes non-nivelées

- On considère le cas plus général : primes non-nivelées.
 - Exemple : On considère un contrat d'assurance vie avec le montant b_{K_x+1} \$ à payer au temps K_x+1 (à la fin de l'année du décès), si le décès se produit dans l'année K_x+1 . L'assuré paie les primes π_{j-1} (pour l'année j, avec $j=1,2,\ldots,K_x+1$) au début de chaque année tant qu'il est en vie.
 - La perte prospective au temps h est

$$_{h}L = b_{K_{x}+1}v^{K_{x}+1-h} - \sum_{i=h}^{K_{x}}\pi_{j}v^{i-h}, \text{ pour } K_{x} = h, h+1, \dots$$

■ Donc, la réserve au temps h est

$$\begin{array}{lcl} {}_hV & = & \mathbb{E}[L_h|K_x \geq h] \\ \\ & = & \sum_{j=0}^\infty b_{h+j+1} v^{j+1} ({}_j p_{x+h} q_{x+h+j}) - \sum_{j=0}^\infty \pi_{h+j} v^j_{j} p_{x+h} \\ \\ & = & VPA_{@h}(\text{prestation à payer}) - VPA_{@h}(\text{primes à recevoir}). \end{array}$$

Exemple 1.3

On considère un contrat d'assurance vie pour une personne âgée de 50 ans avec prestation de 50 000\$ à payer à la fin de l'année du décès si l'assuré décède d'ici 15 ans; après 15 ans, la prestation devient 10 000\$.

Les primes à payer au début de chaque année (tant que l'assuré est en vie) sont 5P\$ pour les 15 premières années; après 15 ans les primes sont réduites à P\$.

La mortalité suit la « Illustrative Life Table » et i = 6%.

- a) Calculer P.
- b) Calculer la réserve au temps 10.
- c) Calculer la réserve au temps 20.

La réserve au temps h + 1 vérifie la relation

$$_{h+1}V = \frac{(_hV + \pi_h)(1+i) - b_{h+1}q_{x+h}}{p_{x+h}}.$$

- Intuitivement :
 - réserve antérieure, auquelle on ajour la nouvelle prime avec intérêt;
 - soustraire la prestation de décès payable à h+1 multipliée par la probabilité de décéder au cours de l'année h + 1; et
 - diviser par la probabilité que l'assuré d'âge x+h survive à la prochaine année.

■ Équivalent avec

$$(1+i)({}_{h}V + \pi_{h}) = b_{h+1}q_{x+h} + ({}_{h+1}V)p_{x+h},$$

ou

$$_{h}V + \pi_{h} = vb_{h+1}q_{x+h} + v(_{h+1}V)p_{x+h}.$$

Exemple 1.4

On considère un contrat d'assurance vie avec le montant M=1~000\$ à payer à la fin de l'année du décès et primes nivelées (établies selon le principe d'équivalence) $\pi=13.10\$$ à payer au début de chaque année tant que l'assuré est en vie. Étant donné que $q_x=0.005, q_{x+1}=0.010$ et i=0.06, trouver la réserve à la fin de la deuxième année $_2V$.

Exemple 1.5

On considère un contrat d'assurance-vie entière émise à (30). La prestation de décès de montant 100~000\$ est payée à la fin de l'année du décès. Les primes nivelées à payer au début de chaque année d'ici 10 ans tant que l'assuré est en vie (les primes sont payées seulement sur une période de 10 ans tant que l'assuré est en vie) sont de montant 4~156\$. Le taux d'intérêt effectif est égale à 5%. La réserve au temps 9 est 9V=65~070.

Extraits de la table de mortalité de la compagnie d'assurance : $q_{39}=0.011, q_{40}=0.012, q_{41}=0.014.$ Trouver A_{41} .

Les réserves (en utilisant la méthode rétrospective)

■ La réserve au temps h est notée hV et se définit par :

$$_{h}V = \mathbb{E}(_{h}L|T_{x} \geq h).$$

■ En utilisant la méthode rétrospective on obtient :

$$_{h}V=rac{_{0}V}{_{h}E_{x}}+ \\ +rac{[\mathit{VPA}_{@f 0}(\mathsf{primes\ reçues\ avant\ }h)]-[\mathit{VPA}_{@f 0}(\mathsf{prest\ \grave{a}\ payer\ avant\ }h)]}{_{h}E_{x}}$$

■ Sous le principe d'équivalence, $_{0}V=0$ et $_{h}V$ devient ...

Contrat d'assurance-vie mixte n années

Un contrat d'assurance-vie mixte prévoit le paiement de 1\$ à la fin de l'année du décès de (x) si l'assuré décède dans les n années suivant l'émission du contrat ou à t=n si celui-ci survit au moins n années. La prime P est payable en début d'année pour la durée du contrat.

- (i) Trouver ${}_hV$ avec la formule rétro sous le principe d'équivalence.
- (ii) Trouver ${}_{\hbar}V$ avec la formule prospective sous le principe d'équivalence.
- (iii) Trouver la variance de la perte prospective au temps h.

D'autres formules pour le contrat d'assurance vie entière et avec prime d'équivalence

On considère un contrat d'assurance vie avec le montant M\$ à payer à la fin de l'année du décès et primes nivelées π à payer au début de chaque année tant que l'assuré est en vie.

$$_{h}L=Mv^{K_{x+h}+1}-\pi \ddot{a}_{\overline{K_{x+h}+1}}$$

Donc,

$$hV = \mathbb{E}(hL) = M A_{x+h} - \pi \ddot{a}_{x+h}$$
$$= M \left(1 - \frac{\ddot{a}_{x+h}}{\ddot{a}_x}\right)$$
$$= M \left(\frac{A_{x+h} - A_x}{1 - A_x}\right).$$

Chapitre I : Calcul de réserves (provisions)

Relations récursives (pour les réserves discrètes sans frais)

Exemple 1.6

On considère un contrat d'assurance vie entière pour 40 (i.e., pour une personne âgée de 40 ans) avec un montant de 10~000\$ à payer à la fin de l'année du décès et primes nivelées π (trouvées sous le principe d'équivalence) à payer au début de chaque année tant que l'assuré est en vie. La mortalité suit le «Standard Ultimate Survival Model» avec i=5%. (On a besoin seulement de $\ddot{a}_{40}=18.4578, \ddot{a}_{50}=17.0245$). Trouver $_{10}V$.

■ La réserve au temps h + 1 vérifie la relation suivante :

$$_{h+1}V = \frac{(_hV + G_h - e_h)(1 + i_h) - (b_{h+1} + E_{h+1})q_{x+h}}{p_{x+h}},$$

ou e_h représente les frais au temps h associés aux primes et E_h représente les frais associés à la prestation à payer à la fin de l'année du décès.

- Intuitivement :
 - réserve antérieure ${}_hV$, plus nouvelle prime G_h (moins des frais e_h), avec intérêt;
 - soustraire b_{h+1} des prestations à payer à la fin de l'année du décès (plus les frais E_{h+1}); et
 - diviser par la probabilité de survivre à l'année h+1 (être en vie au temps h+1).

■ Équivalent avec

$$({}_{h}V + G_{h} - e_{h})(1 + i_{h}) = (b_{h+1} + E_{h+1})q_{x+h} + ({}_{h+1}V)p_{x+h},$$

ou

$$({}_{h}V + G_{h} - e_{h})(1 + i_{h}) = {}_{h+1}V + (b_{h+1} + E_{h+1} - {}_{h+1}V)q_{x+h}.$$

■ Le terme $b_{h+1} + E_{h+1} -_{h+1} V$ est appelé «le montant net au risque (en anglais «net amount at risk» ou « death strain at risk (DSAR) », ou « sum at risk »). Il est une mesure de risque importante.

Exemple 1.7

On considère un contrat d'assurance vie entière pour 40 avec le montant $10\ 000\$$ à payer à la fin de l'année du décès et primes nivelées G, trouvées sous le principe d'équivalence, à payer au début de chaque année tant que l'assuré est en vie. Supposons que les frais annuels sont (a) 5\$ par $1\ 000\$$ de prestation au décès pendant la première année et (b) 2\$ par $1\ 000\$$ de prestation au décès au cours des années suivantes.

La mortalité suit le « Standard Ultimate Survival Model » avec i=5% ($\ddot{a}_{40}=18.4578,1~000q_{40}=0.52722,1~000q_{41}=0.56531$). Trouver $_2V$.

Réserves à des durées fractionnaires - Approximation classique

- Jusqu'à présent, on a étudié le calcul de réserves à des durées entières de contrat.
- En général, l'évaluation du passif (somme des réserves de tous les contrats) d'une compagnie d'assurance est faite à une date fixe. Cependant, les contrats sont émis à des dates différentes au cours de l'année.
- Cela implique que les réserves doivent être évaluées à des durées fractionnaires.
- Traditionnellement, les actuaires évaluent les réserves pour chaque contrat à des durées entières et utilisent l'approximation classique pour évaluer les réserves à des durées fractionnaires.

■ L'approximation classique pour évaluer $_{h+s}V$, avec 0 < s < 1, est l'interpolation linéaire entre $_hV$ et $_{h+1}V$ à laquelle on ajoute la réserve pour prime non-gagnée (moins les frais) :

$$_{h+s}V \approx (_{h}V + \pi_{h} - e_{h})(1-s) + (_{h+1}V)(s).$$

Exemple 1.8

On considère un contrat d'assurance vie entière pour (65) avec montant de 1\$ à payer à la fin de l'année du décès et primes nivelées π , trouvées sous le principe d'équivalence, à payer au début de chaque année tant que l'assuré est en vie. La mortalité suit la «Illustrative life table» avec i=6%. Estimer 0.25V.

Contrats d'assurance-vie continus

Contrat d'assurance-vie entière continu

On considère un contrat d'assurance vie avec le montant M\$ à payer au moment du décès et primes nivelées π à payer continûment chaque année tant que l'assuré est en vie.

Donc,

$$hL = Mv^{T_{x+h}} - \pi \bar{a}_{\overline{T_{x+h}}};$$

$$hV = \mathbb{E}(hL) = M \bar{A}_{x+h} - \pi \bar{a}_{x+h};$$

$$Var(hL) = \left(M + \frac{\pi}{\delta}\right)^2 [^2 \bar{A}_{x+h} - \bar{A}_{x+h}^2].$$

Chapitre I : Calcul de réserves (provisions)

Contrats d'assurance-vie continus

D'autres formules pour le contrat d'assurance-vie entière continu et prime d'équivalente

$$hV = M \left(1 - \frac{\bar{a}_{x+h}}{\bar{a}_x} \right)$$
$$= M \left(\frac{\bar{A}_{x+h} - \bar{A}_x}{1 - \bar{A}_x} \right).$$

Exemple 1.9

Considère un contrat d'assurance vie continue temporaire 20 ans émise à (50). La prestation de décès est de 10~000\$. La prime est payable continûment sur une période de 10 ans, avec le taux de prime π . La force d'intérêt est égale à 5%. On suppose que $\mu_{50+t} = 0.04$.

- a) Calculer la prime π selon le principe d'équivalence.
- b) Tracer grossièrement les courbes de $_5L$ et de $_{15}L$.
- c) Calculer la valeur de $_5L$ si (i) $T_{50} = 14.1$; (ii) $T_{55} = 3.2$
- d) Calculer les réserves $_5V$ et $_{15}V$.
- e) Sachant que le contrat est en vigueur à la durée 5 calculer la probabilité que la perte prospective $_5L$ soit inférieure à 3~000\$.

Exemple 1.10

(Prestation au décès variable)

On considère un contrat spécial d'assurance-vie entière continu pour (65) avec le montant $b_t=1~000~e^{0.04t},~t>0$ à payer au temps de décès t et primes nivelées π à payer continûment chaque année tant que l'assuré est en vie. La force de mortalité est $\mu_{65+t}=0.02,~t>0$, et la force d'intérêt $\delta=0.04$. Trouver $_2V$.

Contrats d'assurance-vie semi-continus

Contrat d'assurance-vie entière semi-continu

On considère un contrat d'assurance vie avec le montant M\$ à payer au temps du décès et primes nivelées π à payer au début de chaque année tant que l'assuré est en vie.

Donc,

$$_{h}L = Mv^{T_{x+h}} - \pi \ddot{a}_{\overline{K_{x+h}+1}|};$$

 $_{h}V = \mathbb{E}(_{h}L) = M \bar{A}_{x+h} - \pi \ddot{a}_{x+h}.$

Exemple 1.11

Soit un contrat d'assurance vie entière pour ([40]). La prestation de 100\$ est payée au temps du décès (c.a.d., jusque après le décès). La prime nivelée π est payée au début de chaque année tant que l'assuré est en vie. La mortalité suit la « Standard Select Survival Model » et le taux d'intérêt effectif est i=5%. On assume que la mortalité est « D.U.D. » - distribution uniforme de décès entre les âges entières (c.a.d., $q_{x+h}=h\times q_x$, pour x entier et 0< h<1) . Trouver la réserve ${}_5V$.

Le profit annuel

- Considérons une période (k, k + 1) et un groupe de N_k contrats d'assurance-vie identiques en vigueur au temps k.
- Soit $_kV$ et $_{k+1}V$ les réserves au temps k et k+1. Donc, la réserve totale prévue pour ce groupe de contrats au temps k+1 est

$$_{k+1}V^{E}=N_{k\ k+1}V.$$

■ En utilisant les équations récursives on obtient

$$_{k+1}V^E = (N_{k} _kV + N_kG - N_ke_k) (1+i) - (b_{k+1} + E_{k+1} - {}_{k+1}V) N_k q_{x+k},$$
 ou $N_k q_{x+k}$ est le nombre de personne décédées au cours de l'année $k+1$ (entre les temps k et $k+1$).

■ Si i, e_k , E_k ou q_{x+k} changent, alors la réserve totale change aussi et l'assureur obtient un profit ou une perte.

■ Soit i', e_k', E_k', q_{x+k}' les valeurs modifiées du taux d'intérêt, des frais et du taux de mortalité et

$$_{k+1}V^{A}=N_{k}\left(_{k}V+G-e_{k}^{\prime }\right) \left(1+i^{\prime }\right) -\left(b_{k+1}+E_{k+1}^{\prime }-{}_{k+1}V\right) N_{k}\;q_{x+k}^{\prime }.$$

■ Donc, le profit d'assureur pour l'année k+1 sur l'intérêt, les frais et le taux de mortalité devient

$$= N_k (_k V + G - e'_k) (1 + i') - (b_{k+1} + E'_{k+1} - _{k+1}V) N_k q'_{x+k} - [N_k (_k V + G - e_k) (1 + i) - (b_{k+1} + E_{k+1} - _{k+1}V) N_k q_{x+k}].$$

 Si seulement l'intérêt change, alors le profit (perte) de l'assureur sur l'intérêt devient

Profit sur int._k =
$$N_k (_k V + G - e_k) (i' - i)$$
.

■ Si seulement les frais e_k ou E_k changent, alors

Profit sur frais_k =
$$N_k (e_k - e'_k) (1 + i) + (E_{k+1} - E'_{k+1}) N_k q_{x+k}$$
.

Si seulement la force de mortalité change, alors

Profit sur
$$mort_k = (b_{k+1} + E_{k+1} - {}_{k+1}V) (N_k \ q_{x+k} - N_k \ q'_{x+k}).$$

Pour partager le profit total sur chaque élément (à faire en classe)...

Le profit annuel

Exemple 1.12

Exemple 7.8-livre de Dickson et al.

An insurer issued a large number of policies identical to the policy in Example 7.3 (voir le livre de Dickson et al.) to women aged 60. Five years after they were issued, a total of 100 of these policies were still in force. In the following year,

- -expenses of 6% of each premium paid were incurred;
- interest was earned at 6.5% on all assets;
- -one policyholder died
- -expenses of \$250 were incurred on the payment of the sum insured for the policyholder who died.
- a) Calculate the profit or loss on this group of policies for this year.
- b) Determine how much of this profit/loss is attributable to profit/loss from mortality, from interest and from expenses.

Équations différentielles pour réserves des contrats d'assurance continus

Équations différentielles de Thiele pour réserves des contrats d'assurance continus

- Soit un contrat d'assurance continu avec la prestation au décès b_t variable et le taux de prime G_t variable.
- Soit $_tV$ la valeur de la réserve au temps t, δ_t la force d'intérêt, e_t la valeur du taux de frais par rapport a la prime et E_t la valeur du frais par rapport a la prestation au décès au temps t.
- L'équation différentielle de Thiele pour la réserve à tout instant t est

$$\frac{d}{dt}(_tV) = \delta_{t} _tV + G_t - e_t - (b_t + E_t - _tV)\mu_{[x]+t}$$

 La démonstration et les interprétations peuvent être trouvées dans le livre de Dickson (p. 209-212).

- L'équation de Thiele est une équation différentielle linéaire d'ordre 1, avec des coefficients variables. Pour unicité, on a besoin d'une condition initiale ou à la frontière.
 - Théoriquement, on peut trouver sa solution.
 - Cependant, il y a des situations où les expressions de δ_t ou de $\mu_{[x]+t}$ sont compliqués (comme pour la distribution de Gompertz ou de Makeham) et les intégrations nécessaires sont difficiles ou impossible à les trouvées.
 - Pour ces cas, on peut utiliser des approximations numériques.
- Il y a des méthodes très précises, mais beaucoup de travail est nécessaire.
- Pour ce cours, on utilise une méthode très simple, appelée la méthode d'Euler. Cette méthode nous permet d'obtenir toutes les valeurs : ${}_hV, {}_{2h}V, \ldots, {}_nV.$

La méthode d'Euler

- L'idée est d'utiliser l'approximation $\frac{d}{dt}(tV) \approx \frac{t+hV-tV}{h}$ pour h petite.
- L'équation de Thiele devient

$$_{t+h}V -_{t}V = h[\delta_{t} _{t}V + G_{t} - e_{t} - (b_{t} + E_{t} -_{t}V)\mu_{[x]+t}].$$

Pour t = n - h, on obtient

$$_{n}V-_{n-h}V=h[\delta_{n-h}, k-h-e_{n-h}-(b_{n-h}+E_{n-h}, k-h-h)\mu_{[x]+n-h}].$$

- La condition à la frontière est ${}_{n}V=0$ pour un contrat temporaire ou ${}_{n}V=S$ pour un contrat mixte, où S est le montant à payer au temps n si l'assuré survit n ans.
- Donc, si on sait la valeur de ${}_{n}V$ on peut trouver ${}_{n-h}V$. Puis, en utilisant ${}_{n-h}V$ on peut trouver ${}_{n-2h}V$, etc.

ACT-2007 : Mathématiques actuarielles vie II

Chapitre I : Calcul de réserves (provisions)

Solutions numériques pour l'équation différentielle de Thiele

Exemple 1.13

Exemple 7.12 - livre de Dickson et al.

Réserves pour contrats d'assurance discrets avec primes payables en *m* versements. Récursions.

Exemple 1.14

Exemple 7.10, livre de Dickson et al.

- contrat temporaire 10 ans pour ([50]);
- **prestation** de b = 500 000\$ à la fin du mois de décès;
- prime nivelée de P=460\$ au début de chaque <u>3 mois</u>, pour une période de 5 années;
- la mortalité suit « Standard select survival model » ;
- i = 5%;
- les frais associés à la prime sont de e = 0.10P.
- Trouvez : a) $_{2.75}V$; $_{3}V$; $_{6.5}V$.

Approximation pour évaluer la réserve entre les temps de primes Exemple 1.15

Exemple 7.11, livre de Dickson

- Pour le contrat définie en Exemple 7.10 dans le livre de Dickson, trouvez les réserves au temps :
 - 2 ans et 10 mois;
 - 2 ans et 9.5 mois .

Frais d'acquisition reportés

- en anglais « deferred acquisition cost (DAC) »
- Habituellement, il y a un plus grand (extra-) frais au temps d'acquisition.
- Ce frais extra est réparti sur la durée du contrat.
- La différence entre ${}_tV^g$, la réserve pour un contrat avec primes brutes (avec des frais), et ${}_tV^n$, la réserve pour un contrat avec primes pures (sans frais), est dénommée « frais d'acquisition reportés » (en anglais « deferred acquisition cost (DAC) »)

$$DAC_t = {}_tV^g - {}_tV^n = {}_tV^e.$$

 C'est une réserve (négative si le premier frais est plus élevé) pour les frais. ■ Soit P^e le chargement pour les frais

$$P^e = P^g - P^n$$

(= G - P en notation utilisée auparavant) ou P^g est la prime nivelée pour un contrat avec des frais et P^n la prime nivelée pour un contrat sans frais et avec la même prestation au décès.

Alors, on obtient

$$DAC_t = {}_tV^e = \dots =$$

= $VPA_{@t}(frais\ futurs) - VPA_{@t}(chargements\ pour\ frais\ futurs).$

Exemple 1.16

Exemple 7.17, livre de Dickson et al.

- contrat entière discret pour ([50]);
- prestation de b = 100 000\$ à la fin de l'année de décès ;
- \blacksquare prime nivelée $P^g(P^n)$ en début de chaque année de vie ;
- la mortalité suit « Standard select survival model »;
- I = 4%;
- les frais associées au prime sont de $e_0 = 0.50P^g + 250$, $e_k = 0.03P^g + 25$.
- Trouvez : a) P^n et P^g ; b) ${}_{10}V^e$; ${}_{10}V^n$; ${}_{10}V^g$.

Provision mathématique selon une prime nivelée depuis la deuxième année d'assurance

- en anglais «The Full Preliminary Term (FPT) method »
- Il est plus facile à trouver la réserve pour les primes sans frais ${}_tV^n$ que pour les primes brutes ${}_tV^g$.
- Cependant, en raison de frais d'acquisition reportés (DAC), la réserve pour les primes nettes est plus grande que la réserve pour les primes brutes ${}_{t}V^{g}$. Donc, l'assureur n'a pas besoin de tenir le montant ${}_{t}V^{n}$.
- On peut utiliser la réserve pour les primes brutes, mais cela est plus difficile à calculer.
- L'assureur utilise souvent la méthode FPT (primes nettes pour un contrat modifié) :
 - Pour un contrat d'assurance vie entière (ou temporaire ou mixte) discret pour ([x]) on modifie la première prime nette et après on utilise des primes nettes nivelées modifiées.

■ Pour un contrat d'assurance vie entière pour ([x]) avec prestation à payer à la fin de l'année du décès de 1\$, on utilise la première prime de $\pi_0 = \nu q_{[x]}$ (valeur minimale pour éviter des réserves négatives en première année), après la prime nivelée pour un contrat d'assurance vie entière pour ([x]+1). Donc,

$$P_{[x]} \ddot{a}_{[x]} = vq_{[x]} + P_{[x]+1} a_{[x]}.$$

Remarque : il est équivalent avec la somme d'un contrat temporaire 1 année et d'un contrat d'assurance-vie entière pour la même personne après une année si ce dernier survit.

Exemple 1.17

(Exemple 7.18 dans le livre de Dickson et al.)

Pour le contrat défini en Exemple 7.17 dans le livre de Dickson et al., trouvez :

- les primes FTP au temps 0 et k, k = 1, 2, ...
- Comparez $_tV^n$, $_tV^g$ et $_tV^{FTP}$, au temps $t \in \{0, 1, 2, 10\}$.