

Applications of Machine Learning in Chemical Engineering

Tutorial 3: Hybrid Modeling

Eng/ Samer Hany

HYBRID MODELING

- Introduction to Hybrid Modeling
- Common architectures of hybrid models:
 - Physics Informed Neural Networks (PINNs)
 - Direct hybrid models (series, parallel, combined)

Introduction to Hybrid Modeling

TYPES OF MODELS

Introduction to Hybrid Modeling

TYPES OF MODELS

Area \ Model	Data-driven	Knowledge-based	Hybrid
Methods	Machine learningStatistics	First principlesEmpirical relations	Machine learning & first principles
Dataset size	High	Low	Average
Interpretability	Low	High	High
Generalization	Low	High	High
Prediction accuracy	Higher	Lower	High
Know as	Black-box models	White-box models	Grey-boxPhysics-informedScience Guided Machine Learning (SGML)

CLASSIFICATION OF HYBRID MODELS

Source: Sharma, N., & Liu, Y. A. (2022). A hybrid science-guided machine learning approach for modeling chemical processes: A review. AIChE Journal, 68(5)

Spring 24

SCIENCE GUIDED LEARNING

- Scientific principles are used to improve the scientific consistency of data-based models by modifying the machine learning model.
- This is done by incorporating physical relations into any of the following:
 - Loss function
 - Optimization constraints
 - Parameter initialization

PHYSICS INFORMED NEURAL NETWORKS (PINN)

 One of the most common models used for this is the Physics Informed Neural Network (PINN) with science guided loss.

Input

data

 Loss function is modified to ensure the predictions are consistent with scientific knowledge:

$$L_{total} = L_{data} + L_{physics}$$

$$L_{total} = \frac{1}{n} \sum (y_i - y_{pred(i)})^2 + \frac{1}{n} \sum f(x)^2$$

Scientific Knowledge

Source: Sharma, N., & Liu, Y. A. (2022). A hybrid science-guided machine learning approach for modeling chemical processes: A review. AIChE Journal, 68(5).

REFERENCES

• Sharma, N., & Liu, Y. A. (2022). A hybrid science-guided machine learning approach for modeling chemical processes: A review. AIChE Journal, 68(5).

PHYSICS INFORMED NEURAL NETWORKS (PINN)

• Time to dive into the code:

https://github.com/SamerHany/CHES307-Applications-of-Machine-Learning-in-Chemical-Engineering/tree/main/Week%203

Thank you

- Eng/ Samer Hany samer.hany@eng.cu.edu.eg
- Eng/ Nada Ashraf bakrynada8@eng.cu.edu.eg