

Doc. 1-1 on ss 2 from WPIL using MAX

©Derwent Information

New polyol poly:hydroxy-stearate cpds. - useful as emulsifiers in cosmetic and pharmaceutical prepns. with improved stability, esp. to heat.

Patent Number: DE4420516

International patents classification: C07C-051/00 C07C-069/675 C08G-063/664 A01N-025/00 A61K-007/00 A61K-007/06 A61K-007/48 A61K-007/50 A61K-047/14 B01F-017/52 C07C-067/08 C07C-067/24 C07C-069/708 C08G-063/20

· Abstract :

DE4420516 A Polyol polyhydroxystearates (I) obtainable by esterifying polyhydroxystearic acid (II) having a specific degree of condensation of 2-20 with a polyol (III) are claimed.

USE - (I) are water/oil emulsifiers useful in the mfr. of cosmetic and pharmaceutical prepns., e.g. skin creams, body lotions and sunscreen agents. They may suitably be present in such prepns. in a concn. of 1-20 wt.%, pref. 2-10 wt.%. (1) may also be admixed with a polyol polyricinoleate, pref. polyglycerol polyricinoleate, in order to improve the emulsification properties of the latter. Although small amts. of (I), pref. polyglycerol polyhydroxystearate, achieve this effect, mixts. can contain the esters in a wt. ratio of 99:1-1:99.

ADVANTAGE - (I) are better emulsifiers than known prods. based on polyricinoleic acid (see EP559013, EP440203 and WO8504346). In partic. they form emulsions which are more stable on storage, esp. to heat, and which can contain a wider range of oils, esp. strongly polar vegetable oils. Further, prods. (I) produced from 12-hydroxystearic acid (II) (solid; m.pt. 75deg.C) are liq. and can thus be converted into emulsions using an energy-sparing

• Publication data :

Patent Family: DE4420516 A1 19951214 DW1996-04 C08G-063/664 8p * AP: 1994DE-4420516 19940613

WO9534528 A1 19951221 DW1996-05 C07C-069/675 Ger 28p AP: 1995WO-EP02146 19950606 DSNW: JP US DSRW: AT BE CH DE DK ES FR GB GR IE IT LUMC NL PT SE EP-766661 A1 19970409 DW1997-19 C07C-069/675 Ger FD: Based on WO9534528 AP: 1995EP-0922507 19950606; 1995WO-EP02146 19950606 DSR: AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

JP10501252 W 19980203 DW1998-15 C07C-069/675 20p FD: Based on WO9534528 AP: 1995WO-EP02146 19950606; 1996JP-0501577 19950606

DE4420516 C2 19981022 DW1998-46 C08G-063/664 AP: 1994DE-4420516 19940613

US5840943 A 19981124 DW1999-03 C07C-051/00 FD: Based on WO9534528 AP: 1995WO-EP02146 19950606; 1996US-0750762 19961213

EP-766661 B1 19990825 DW1999-39 C07C-069/675 Ger FD: Based on WO9534528 AP: 1995EP-0922507 19950606; 1995WO-EP02146 19950606 DSR: AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

DE59506693 G 19990930 DW1999-46 C07C-069/675 FD: Based on EP-766661; Based on WO9534528 AP: 1995DE-5006693 19950606; 1995EP-0922507 19950606; 1995WO-EP02146

ES2137522 T3 19991216 DW2000-06 C07C-069/675 FD: Based on EP-766661 AP: 1995EP-0922507 19950606

Priority nº: 1994DE-4420516 19940613

Covered countries: 19 Publications count: 9

Cited patents: GB1524782; JP04178316 2.Jnl.Ref

· Accession codes : Accession No : 1996-031257 [04] Sec. Acc. nº CPI: C1996-010761

· Derwent codes : Manual code: CPI: A05-E02 A10-E07 A12-V01 A12-V04 B04-C03C B12-M03 B14-R01 B14-R05 D08-B09A Derwent Classes: A25 A96 B07 D21

· Patentee & Inventor(s): Patent assignee: (HENK) HENKEL KGAA Inventor(s): ANSMANN A; KAWA R; STRAUSS G; VON KRIES R

• <u>Update codes</u> :

Basic update code: 1996-04 Equiv. update code:1996-05; 1997-19: 1998-15; 1998-46; 1999-03; 1999-39; 1999-46; 2000-06

	,	• •	•
			b ·

WELTORGANISATION FUR GEISTIGES EIGENTUM

Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE

INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07C 69/675, A61K 7/50, 7/48, 7/06, 47/14, C07C 67/08

(11) Internationale Veröffentlichungsnummer:

WO 95/34528

A1

(43) Internationales Veröffentlichungsdatum:

21. December 1995 (21.12.95)

(21) Internationales Aktenzeichen:

PCT/EP95/02146

DE

(81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE,

CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(22) Internationales Anmeldedatum:

6. Juni 1995 (06.06.95)

Veröffentlicht

Mit internationalem Recherchenbericht.

(30) Prioritätsdaten:

G 44 20 516.3 U

13. Juni 1994 (13.06.94)

(71) Anmelder (für alle Bestimmungsstaaten ausser US): HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN [DE/DE]: D-40191 Düsseldorf (DE).

(72) Erfinder; und

(]

(75) Erfinder/Anmelder (nur für US): ANSMANN, Achim [DE/DE]; Kirchberg 25, D-40699 Erkrath (DE). KAWA, Rolf [DE/DE]; Fontanestrasse 28, D-40789 Monheim (DE). VON KRIES, Rainer [DE/DE]; Rilkestrasse 2, D-89257 Illertissen (DE). STRAUSS, Gabriele [DE/DE]; Wiedfeld 2, D-40589 Düsseldorf (DE).

(54) Title: POLYOLPOLYHYDROXYSTEARATES

(54) Bezeichnung: POLYOLPOLYHYDROXYSTEARATE

(57) Abstract

The invention concerns novel polyolpolyhydroxystearates as water-in-oil emulsifiers obtained by esterifying polyhydroxystearic acid having an inherent condensing degree ranging from 2 to 20 with polyols, preferably polyglycerol, in a manner known per se. The substances have improved emulsifying ability.

(57) Zusammenfassung

Es werden neue Polyolpolyhydroxystearate als W/O-Emulgatoren vorgeschlagen, die man erhält, indem man Polyhydroxystearinsäure mit einem Eigenkondensationsgrad im Bereich von 2 bis 20 mit Polyolen, vorzugsweise Polyglycerin in an sich bekannter Weise verestert. Die Stoffe verfügen über ein verbessertes Emulgiervermögen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT Österreich AU Australien BB Barbados BE Belgien BF Burkina Faso BG Bulgarien BJ Benin BR Brasilien BY Belarus CA Kanada CF Zentrale Afrikanische Republik CG Kongo CH Schweiz CI Côte d'Ivoire CM Kamerun CN China CS Tschechoslowakei CZ Tschechische Republik DE Deutschland DK Dänemark ES Spanien FI Finnland FR Frankreich	GA GB GE GN GR HU IE IT JP KE KG KP KR LI LK LU LV MC MD MG ML MN	Gabon Vereinigtes Königreich Georgien Guinea Griechenland Ungarn Irland Italien Japan Kenya Kirgisistan Demokratische Volksrepublik Korea Republik Korea Rasachstan Liechtenstein Sri Lanka Luxemburg Lettland Monaco Republik Moldau Madagaskar Mali Mongolei	MR MW NE NL NO NZ PL PT RO RU SD SE SI SK SN TD TG TJ TT UA US UZ VN	Mauretanien Malawi Niger Nieger Niederlande Norwegen Neuseeland Polen Portugal Rumanien Russische Föderation Sudan Schweden Slowenien Slowakei Senegal Tschad Togo Tadschikistan Trinidad und Tobago Ukraine Vereinte Staaten von Amerika Usbekistan Vietnam
--	--	--	--	--

WO 95/34528 PCT/EP95/02146

Polyolpolyhydroxystearate

Gebiet der Erfindung

()

Die Erfindung betrifft neue Polyolpolyhydroxystearate, erhältlich durch Veresterung von Polyhydroxystearinsäure mit Polyolen, vorzugsweise technischem Polyglycerin einer definierten Zusamensetzung, ein Verfahren zu ihrer Herstellung, Mittel, die diese Stoffe enthalten sowie die Verwendung der neuen Polyolpolyhydroxystearate als W/O-Emulgatoren.

Stand der Technik

Polyglycerinpolyricinoleate sind seit langem als W/O-Emulgatoren bekannt und können zur Formulierung von niedrigviskosen W/O-Emulsionen eingesetzt werden [vgl. EP-Al 0559013 (Th. Goldschmidt), EP-Al 0440203 (Lotte Co.) und WO 85/04346 (Meiji Milk Prods.)]. Es zeigt sich jedoch, daß Polyglycerinpolyrinoleate des Marktes nicht mit allen in der Kosmetik üblicherweise eingesetzten Öle Emulsionen bilden, sondern nur mit solchen eines bestimmten Polaritätsbereiches; zudem sind diese Emulsionen nur eingeschränkt lagerstabil. Ein wesentlicher Nachteil besteht vor allem darin, daß die handelsüblichen Produkte nicht in der Lage sind, Emulsionen mit stark polaren

Ölen wie beispielsweise Pflanzenölen ausreichend zu stabilisieren. Im Hinblick auf die besondere ökotoxikologische Verträglichkeit derartiger Emulsionen wird jedoch gerade dies im Markt gewünscht.

Die Aufgabe der Erfindung hat nun darin bestanden, neue W/O-Emulgatoren zur Verfügung zu stellen, die mit einem breiten Spektrum von Ölkörpern lagerstabile Emulsionen ergeben.

Beschreibung der Erfindung

Gegenstand der Erfindung sind Polyolpolyhydroxystearate, die man erhält, indem man Polyhydroxystearinsäure mit einem Eigenkondensationsgrad im Bereich von 2 bis 20, vorzugsweise 2 bis 10, mit Polyolen in an sich bekannter Weise verestert.

Überraschenderweise hat sich gezeigt, daß Kondensationsprodukte von Polyolen, vorzugsweise technischem Polyglycerin, mit Polyhydroxystearinsäure deutlich bessere Emulgiereigenschaften aufweisen als vergleichbare bekannte Produkte auf Basis von Polyricinolsäure. Insbesondere können auch stark polare Pflanzenöle in stabile Emulsionen eingebracht werden. Die Erfindung schließt ferner die Erkenntnis ein, daß bereits die Zugabe geringer Mengen der erfindungsgemäßen Polyolpolyhydroxystearate zu Polyolpolyricinoleaten deren Emulgiereigenschaften nachhaltig verbessert. Ferner wurde überraschenderweise festgestellt, daß die Kondensationsprodukte auf Basis der 12-Hydroxystearinsäure flüssig sind, obwohl die eingesetzte Säure einen Schmelzpunkt im Bereich von 75°C aufweist. Somit ist neben der klassischen "Heiß-Heiß-Herstel-

lung auch eine energiesparende "Kalt-Kalt"-Herstellung der Emulsionen problemlos möglich.

In einer bevorzugten Ausführungsform betrifft die Erfindung Polyglycerinpolyhydroxystearate, die man erhält, indem man Polyhydroxystearinsäure mit einem Eigenkondensationsgrad im Bereich von 2 bis 20, vorzugsweise 2 bis 10, mit einem Polyglyceringemisch der Zusammensetzung (GC-Methode)

Glycerin : 5 bis 35 (15 bis 30) Gew.-% Diglycerine : 15 bis 40 (20 bis 32) Gew.-% Triglycerine : 10 bis 35 (15 bis 25) Gew.-% Tetraglycerine : 5 bis 20 (8 bis 15) Gew.-% Pentaglycerine : 2 bis 10 (3 bis 8) Gew.-% Oligoglycerine : ad 100 Gew.-%

in an sich bekannter Weise verestert; in Klammern angegeben sind die bevorzugten Bereiche.

Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zur Herstellung von Polyolpolyhydroxystearaten, bei dem man Polyhydroxystearinsäure mit einem Eigenkondensationsgrad im Bereich von 2 bis 20, vorzugsweise 2 bis 10, mit Polyolen in an sich bekannter Weise verestert.

<u>Polyole</u>

Unter dem Begriff Polyole sind Stoffe zu verstehen, die über mindestens zwei, vorzugsweise 3 bis 12 und insbesondere 3 bis

8 Hydroxylgruppen und 2 bis 12 Kohlenstoffatome verfügen. Typische Beispiele sind:

- *** Glycerin,
- *** Alkylenglycole wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol;
- *** Polyglycerin;
- *** Methyolverbindungen, wie insbesondere Trimethylolethan,
 Trimethylolpropan, Trimethylolbutan, Pentaerythrit und
 Dipentaerythrit;
- *** Alkylglucoside mit 1 bis 22, vorzugsweise 1 bis 8 und insbesondere 1 bis 4 Kohlenstoffen im Alkylrest wie beispielsweise Methyl- und Butylglucosid;
- *** Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen wie beispielsweise Sorbit oder Mannit,
- *** Zucker mit 5 bis 12 Kohlenstoffatomen wie beispielsweise Glucose oder Saccharose;
- *** Aminozucker wie beispielweise Glucamin.

Polyglycerin

Unter den neuen Emulgatoren kommt Umsetzungsprodukten auf Basis von Polyglycerin wegen ihrer ausgezeichneten anwendungstechnischen Eigenschaften eine besondere Bedeutung zu. Als besonders vorteilhaft hat sich die Verwendung von ausgewählten Polyglycerinen erwiesen, die die folgende Homologenverteilung aufweisen (in Klammern angegeben sind die bevorzugten Bereiche):

()

5

Glycerin : 5 bis 35 (15 bis 30) Gew.-%
Diglycerine : 15 bis 40 (20 bis 32) Gew.-%
Triglycerine : 10 bis 35 (15 bis 25) Gew.-%
Tetraglycerine : 5 bis 20 (8 bis 15) Gew.-%
Pentaglycerine : 2 bis 10 (3 bis 8) Gew.-%
Oligoglycerine : ad 100 Gew.-%

Herstellung der Polyolpolyhydroxystearate

Die Herstellung der Polyolpolyhydroxystearate kann in an sich bekannter Weise erfolgen. Im Fall der Polyglycerinpolyhydroxystearate wird dabei vorzugsweise zunächst das Polyglycerin und dann die Polyhydroxystearinsäure hergestellt und schließlich beide verestert.

Die Herstellung eines Polyglycerins der oben genannten Zusammensetzung kann durch Eigenkondensation von Glycerin in Gegenwart von geeigneten Katalysatoren wie beispielsweise Kaliumcarbonat, Silicaten gemäß DE-Al 4029323 (Henkel) oder Boraten gemäß DE-Al 4117033 (Henkel) bei Temperaturen im Bereich von 200 bis 260°C durchgeführt werden.

Die Herstellung der Polyhydroxystearinsäure erfolgt beispielsweise durch alkalisch katalysierte Polykondensation von
Hydroxystearinsäure, vorzugsweise 12-Hydroxystearinsäure, die
durch Härtung von Ricinolsäure bzw. technischer Ricinusölfettsäure gewonnen wird. Vorzugsweise werden dabei lineare
Veresterungsprodukte mit 2 bis 10 und insbesondere 2 bis 8
Fettsäureeinheiten gebildet. Typischerweise wird die folgende
Verteilung (GPC-Methode) erreicht:

: 1 bis 10 Gew.-% Monomere : 5 bis 15 Gew.-% Dimere : 5 bis 15 Gew.-% Trimere : 5 bis 15 Gew.-% Tetramere : 5 bis 15 Gew.-% Pentamere : 5 bis 15 Gew.-% Hexamere : 5 bis 15 Gew.-% Heptamere Octamere : 1 bis 10 Gew.-% Gew.-% : ad 100 Oligomere

In einer besonderen Ausführungsform der Erfindung werden Gemische von Hydroxystearinsäure und Ricinolsäure bzw. technischer Ricinusölfettsäure, die zu etwa 90 Gew.-% aus Ricinolsäure besteht, im Gewichtsverhältnis 99 : 1 bis 1 : 99 und vorzugsweise 75 : 25 bis 10 : 90 eingesetzt. In gleicher Weise ist es möglich, die Säuren einzeln zu kondensieren und anschließend die Kondensate abzumischen.

Bei der nachfolgenden Kondensation der Polyolkomponente, beispielsweise des Polyglycerins mit der Polyhydroxystearinsäure bzw. den Gemischen mit Polyricinolsäure, wird eine komplexe Mischung homologer Polyester gebildet. Die Anteile an Mono-, Di-, Tri- und Oligoestern in den erfindungsgemäßen Polyolpolyhydroxystearaten und vorzugsweise Polyglycerinpolyhydroxystearaten richtet sich nach den Einsatzverhältnissen der Ausgangsverbindungen. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird ein Polyolpolyhydroxystearat mit besonders vorteilhaften anwendungstechnischen Eigenschaften erhalten, indem man etwa 1000 kg 12-Hydroxystearin säure solange einer Eigenkondensation unterwirft, bis ein Produkt mit einer Säurezahl im Bereich von 50 bis 55 re-

 (\cdot)

sultiert und dieses dann mit etwa 150 kg Polyglycerin der oben angegebenen Zusammensetzung weiter verestert, bis die Säurezahl bis auf einen Wert kleiner 2 abgenommen hat.

Kondensationsprodukte auf Basis von Polyglycerin und Polyhydroxystearinsäure/Polyricinolsäure können über ihre Iodzahl charakterisiert werden.
Typische Beispiele sind Polyester mit einer Iodzahl < 10
(Basis 100 % 12-Hydroxystearinsäure) bzw 65 bis 80 (Basis 90 % 12-Hydroxystearinsäure, 10 % Ricinolsäure).

Kosmetische und pharmazeutische Zubereitungen

Ein weiterer Gegenstand der Erfindung betrifft kosmetische und/oder pharmazeutische Mittel mit einem Gehalt der neuen Polyolpolyhydroxystearate und insbesondere der Polyglycerinpolyhydroxystearate.

In einer weiteren bevorzugten Ausführungsform der Erfindung werden kosmetische und/oder pharmazeutische Zubereitungen beansprucht, die Polyolpolyhydroxystearate, insbesondere Polyglycerinpolyhydroxystearate und Polyolpolyricinoleate, insbesondere Polyglycerinpolyricinoleate im Gewichtsverhältnis 99: 1 bis 1:99, vorzugsweise 75:25 bis 10:90 enthalten.

Als Hilfs- und Zusatzstoffe kommen ferner Ölkörper, Co-Emulgatoren, Fette und Wachse, Stabilisatoren, Verdickungsmittel, biogene Wirkstoffe, Filmbildner, Duftstoffe, Farbstoffe, Perlglanzmittel, Konservierungsmittel, UV-Filter, Pigmente, Elektrolyte (z.B. Magnesiumsulfat) und pH-Regulatoren in Frage.

Ölkörper

Ölkörper kommen beispielsweise aliphatische und/oder naphthenische Kohlenwasserstoffe, Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C20-Fettsäuren mit linearen C_6 - C_{20} -Fettalkoholen, Ester von verzweigten C_6 - C_{13} -Carbonsäuren mit linearen C6-C18-Fettalkoholen, Ester von linearen C6-C18-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen und/oder Guerbetalkoholen, Triglyceride auf Basis C_6-C_{10} -Fettsäuren, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, Guerbetcarbonate und/oder Dialkylether in Betracht. Von besonderer Bedeutung ist hierbei, daß sich die erfindungsgemäßen Polyglycerinpolyricinoleate zur Bildung von Emulsionen unter Verwendung sowohl von polaren, als auch mittel- oder unpolaren Ölkörpern mit Dipolmomenten in einem Bereich von kleiner 1 bis größer 2,5 Debye eignen.

Co-Emulgatoren

Als Co-Emulgatoren können nichtionogene, ampholytische und/ oder zwitterionische grenzflächenaktive Verbindungen verwendet werden, die sich durch eine lipophile, bevorzugt lineare, Alkyl- oder Alkenylgruppe und mindestens eine hydrophile Gruppe auszeichnen. Diese hydrophile Gruppe kann sowohl eine ionogene als auch eine nichtionogene Gruppe sein.

Nichtionogene Emulgatoren enthalten als hydrophile Gruppe z. B. eine Polyolgruppe, eine Polyalkylenglycolethergruppe oder eine Kombination aus Polyol- und Polyglycolethergruppe. Bevorzugt sind solche Mittel, die als O/W-Emulgatoren nichtionogene Tenside aus der Gruppe der

- *** Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/
 oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole
 mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 CAtomen und an Alkylphenole mit 8 bis 15 C-Atomen in der
 Alkylgruppe,
- *** C12-C18-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin,
- *** Glycerinmono- und -diester und Sorbitanmono- und -diester von gesättigten und ungesättigten C8-C18-Fettsäuren und deren Ethylenoxidanlagerungsprodukte,
- *** C8-C18-Alkylmono- und -oligoglycoside und deren ethoxylierte Analoga und
- *** Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl,

enthalten. Ebenfalls geeignet sind Mischungen von Verbindungen aus mehreren dieser Substanzklassen.

Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole, Glycerinmono- und -diester sowie Sorbitanmono- und -diester von Fettsäuren oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht.

C₁₂-C₁₈-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE-PS 2024051 als Rückfettungsmittel für kosmetische Zubereitungen bekannt. Cg-C18-Alkylmono- und oligoglycoside, ihre Herstellung und ihre Verwendung als oberflächenaktive Stoffe sind beispielsweise aus US 3839318, US 3707535, US 3547828, DE-OS 1943689, DE-OS 2036472 und DE-Al 3001064 sowie EP-A 0077167 bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 C-Atomen. Bezüglich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.

Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül

()

mindestens eine quartäre Ammoniumgruppe und mindestens eine -Coo(-)- oder $-So_3(-)$ -Gruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N, N-dimethylammonium-glycinate, beispielsweise Kokosalkyl-dimethylammonium-glycinat, N-Acyl-aminopropyl-N, N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyl-dimethylammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglydinat. Besonders vorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.

Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8-C18-Alkyloder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C12-18-Acylsarcosin.

Als W/O-Emulgatoren kommen in Betracht:

- *** Anlagerungsprodukte von 2 bis 15 Mol Ethylenoxid and Ricinusöl und/oder gehärtetes Ricinusöl;
- *** Partialester auf Basis linearer, verzweigter, ungesättigter bzw. gesättigter C₁₂-C₂₂-Fettsäuren, Ricinolsäure sowie 12-Hydroxystearinsäure und Glycerin, Polyglycerin, Pentaerythrit, Dipentaerythrit, Zuckeralkohole (z.B. Sorbit) sowie Polyglucoside (z.B. Cellulose);
 - *** Trialkylphosphate;
 - *** Wollwachsalkohole;
 - *** Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
 - *** Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE-PS 1165574 sowie
 - *** Polyalkylenglycole.

Weitere Zusatzstoffe

Typische Beispiele für Fette sind Glyceride, als Wachse kommen u.a. Bienenwachs, Paraffinwachs oder Mikrowachse gegebenenfalls in Kombination mit hydrophilen Wachsen wie beispielsweise Fettalkohole, Monoglyceride und Fettsäuren in Frage.

Als Stabilisatoren können Metallsalze von Fettsäuren wie z.B. Magnesium-, Aluminium und/oder Zinkstearat eingesetzt werden.

Geeignete Verdickungsmittel sind beispielsweise vernetzte Polyacryl-säuren und deren Derivate, Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethylcellulose, Polyacrylate, Polyvinylalkohol und Polyvinylpyrrolidon.

Unter biogenen Wirkstoffen sind beispielsweise Pflanzenextrakte, Eiweißhydrolysate und Vitaminkomplexe zu verstehen. Gebräuchliche Filmbildner sind beispielsweise Hydrocolloide wie Chitosan, mikrokristallines Chitosan oder quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate und ähnliche Verbindungen.

Als Konservierungsmittel eignen sich beispielsweise Formaldehydlösung, p-Hydroxybenzoat oder Sorbinsäure.

Als Perlglanzmittel kommen beispielsweise Glycoldistearinsäureester wie Ethylenglycoldistearat, aber auch Fettsäuren und Fettsäuremonoglycolester in Betracht.

Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, veröffentlicht im Verlag Chemie, Weinheim, 1984, zusammengestellt sind. Diese Farbstoffe werden üblicherweise in

Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.

Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 0,01 bis 80, vorzugsweise 0,05 bis 40 Gew.-% und der nicht wäßrige Anteil ("Aktivsubstanz") 20 bis 80, vorzugsweise 30 bis 70 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann in an sich bekannter Weise, d.h. beispielsweise durch Heiß-, Kalt-, Heiß-Heiß/Kalt- bzw. PIT-Emulgierung erfolgen. Hierbei handelt es sich um ein rein mechanisches Verfahren, eine chemische Reaktion findet nicht statt.

Gewerbliche Anwendbarkeit

Die erfindungsgemäßen Polyolpolyhydroxystearate zeichnen sich durch ein verbessertes Emulgiervermögen aus. Die resultierenden Emulsionen besitzen eine gegenüber den Produkten des Stands der Technik höhere Lager- und insbesondere Wärmestabilität.

Ein weiterer Gegenstand der Erfindung betrifft daher die Verwendung der erfindungsgemäßen Polyolpolyhydroxystearate im allgemeinen und der Polyglycerinpolyhydroxystearate im besonderen, gegebenenfalls in Abmischung mit Polyglycerinpolyricinoleaten, als W/O-Emulgatoren für kosmetische und/oder pharmazeutische Zubereitungen wie z.B. Hautcremes, Körperlotionen, Sonnenschutzmittel und dergleichen, in denen sie in Konzentrationen von 1 bis 20, vorzugsweise 2 bis 10 Gew.-% - bezogen auf die Mittel - enthalten sein können.

 $(\)$

<u>Beispiele</u>

I. <u>Eingesetzte Polyolpolyhydroxystearate</u>

- A) Polyglycerinpolyricinoleat, IZ = 85 (zum Vergleich)
- B) Polyglycerinpolyester auf Basis eines Ausgangsfettsäuregemisches aus 9 Gewichtsteilen Ricinolsäure und 1 Teil 12-Hydroxystearinsäure; IZ = 75
- C) Polyglycerinpolyester bestehend aus 9 Gewichtsteilen Polyglycerinpolyricinoleat und 1 Gewichtsteil Polyglycerinpolyhydroxystearat; IZ = 75
- D) Polyglycerinpolyhydroxystearat; IZ < 10</p>

Die Zusammensetzung der Polyglycerinkomponenten betrug 20 Gew.-% Glycerin, 30 Gew.-% Diglycerine, 20 Gew.-% Triglycerine, 15 Gew.-% Tetraglycerine, 5 Gew.-% Pentaglycerine und 10 Gew.-% Oligoglycerine.

Die Zusammensetzung der Polyhydroxyfettsäure betrug 5 Gew.-% Monomere, jeweils 10 Gew.-% Dimere bis Heptamere, 6 Gew.-% Octamere und ad 100 Gew.-% Oligomere.

Die Produkte B, C und D sind erfindungsgemäß, Produkt A dient zum Vergleich.

II. Anwendungstechnische Untersuchungen

Die Eigenschaften der erfindungsgemäßen Emulgatoren B, C und D sowie des Vergleichsemulgators A wurden in verschiedenen W/O-Emulsionen gemäß Tabelle 1 getestet. Die Rezepturen Rl bis R3 sind erfindungsgemäß, Rezeptur R4 dient zum Vergleich. Die Viskosität der Produkte wurde nach Lagerung (1 Tag, 1 Woche bzw. 4 Wochen) nach Brookfield, RVF, 23°C, Spindel 5, 10 UpM bestimmt. Die Ergebnisse sind in Tabelle 2 zusammenestellt.

Tabelle 1

Eingesetzte Rezepturen

	<u>R1</u>	<u>R2</u>	<u>R3</u>	<u>R4</u>
	%	%	%	%
Emulgator A Emulgator B Emulgator C Emulgator D	- 7,0 - -	- - 7,0 -	- - 7,0	7,0 - - -
Mandelöl	20,0	20,0	20,0	20,0
Glycerin, 86 Gew%ig	5,0	5,0	5,0	5,0
MgSO ₄ * 7H ₂ O	0,5	0,5	0,5	0,5
Formaldehyd	0,1	0,1	0,1	0,1
Wasser	ad 100 %			

Tabelle 2
Anwendungstechnische Ergebnisse

Rezeptur	Viskosität [mPa*s]			Stabilität		
	1d	1w	4w	lw	4w	
R1	20000	19600	20000	stabil	stabil	
R2	20800	20800	20000	stabil	stabil	
R3	15200	14000	14000	stabil	stabil	
R4	_	-	-	emulgiert nicht		

III. <u>Pormulierungsbeispiele</u>

I) Kosmetische Hautlotion

Produkt D	3	Gew%
Monomuls(R) 90-0 18	1	Gew%
Bienenwachs	1	Gew%
Cetiol(R) OE	5	Gew%
Cetiol(R) LC	6	Gew%
Jojoba Öl	12	Gew%
Glycerin	5	Gew%
MgSO ₄ * 7H ₂ O	1	Gew%
Formalin	0,15	Gew%
Wasser ad	100	Gew%

Viskosität 8000 mPa*s

. . .

II) Kosmetische Nährcreme

Produkt D	4	Gew%
Lameform(R) TGI	4	Gew%
Bienenwachs	3	Gew%
Mandelöl	20	Gew%
Glycerin	5	Gew%
MgSO ₄ * 7H ₂ O	1	Gew%
Formalin	0,15	Gew%
Wasser	ad 100	Gew%
Viskosität	700000 ml	?a*s

Die Viskositäten der beiden Produkte wurden mit einem Brookfield RVF-Viskosimeter bei 23°C bestimmt. Für das Produkt I wurde Spindel 5 (10 UpM) und für Produkt II Spindel E (4 UpM, mit Helipath) verwendet.

Die Produktbezeichnungen Monomuls (R) 90-0 18, Cetiol (R) OE, Cetiol (R) LC und Lameform (R) TGI stehen für Ölsäuremonoglycerid, Di-n-octylether, C8/10-Fettsäure-C12/18-kokosalkylester und Triglycerintriisostearat der Henkel KGaA, Düsseldorf/FRG.

<u>Patentansprüche</u>

- 1. Polyolpolyhydroxystearate, dadurch erhältlich, daß man Polyhydroxystearinsäure mit einem Eigenkondensationsgrad im Bereich von 2 bis 20 mit Polyolen in an sich bekannter Weise verestert.
- Polyglycerinpolyhydroxystearate, dadurch erhältlich, daß man Polyhydroxystearinsäure mit einem Eigenkondensationsgrad im Bereich von 2 bis 10 mit einem Polyglyceringemisch der Zusammensetzung

Glycerin : 5 bis 30 Gew.-%
Diglycerine : 15 bis 40 Gew.-%
Triglycerine : 10 bis 30 Gew.-%
Tetraglycerine : 5 bis 20 Gew.-%
Pentaglycerine : 2 bis 10 Gew.-%
Oligoglycerine : ad 100 Gew.-%

in an sich bekannter Weise verestert.

- 3. Verfahren zur Herstellung von Polyolpolyhydroxystearaten, bei dem man Polyhydroxystearinsäure mit einem Eigenkondensationsgrad im Bereich von 2 bis 20 mit Polyolen in an sich bekannter Weise verestert.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man Polyole einsetzt, ausgewählt aus der Gruppe, die gebildet wird von Glycerin, Alkylenglycolen, Polyglycerin, Methylolverbindungen, Niedrigalkylglucosiden, Zukkeralkoholen, Zuckern und Aminozuckern.

- 5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man Abmischungen von Polyhydroxystearinsäure und Polyricinolsäure im Gewichtsverhältnis 99 : 1 bis 1 : 99 einsetzt.
- 6. Kosmetische und/oder pharmazeutische Zubereitungen, enthaltend Polyolpolyhydroxystearate nach Anspruch 1.
- 7. Kosmetische und/oder pharmazeutische Zubereitungen, enthaltend Polyolpolyhydroxystearate nach Anspruch 1 und Polyolpolyricinoleate im Gewichtsverhältnis 99: 1 bis 1 : 99.
- 8. Kosmetische und/oder pharmazeutische Zubereitungen, enthaltend Polyglycerinpolyhydroxystearate nach Anspruch 1 und Polyglycerinpolyricinoleate im Gewichtsverhältnis 99 : 1 bis 1 : 99.
- 9. Verwendung von Polyolpolyhydroxystearaten nach Anspruch 1 als W/O-Emulgatoren für kosmetische und/oder pharmazeutische Zubereitungen.
- 10. Verwendung von Polyglycerinpolyhydroxystearaten, gegebenenfalls in Abmischung mit Polyglycerinpolyricinoleaten als W/O-Emulgatoren für kosmetische und/oder pharmazeutische Zubereitungen.

INTERNATIONAL SEARCH KEPUKI

onal Application No

PCT/EP 95/02146 CLASSIFICATION OF SUBJECT MATTER 6 C07C69/675 A61K7/ A. CLAS A61K7/50 A61K7/48 A61K7/06 A61K47/14 C07C67/08 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 CO7C A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X GB,A,1 524 782 (THE INDIAN SPACE RESEARCH 1,3,4 ORGANISATION) 13 September 1978 see page 2, line 11 - line 35 see page 3 - page 5; examples 1-5 see page 5 - page 6; claims X DATABASE WPI 1-10 Week 9233 Derwent Publications Ltd., London, GB; AN 92-272108 & JP,A,04 178 316 (KAO CORP) , 25 June 1992 see abstract Further documents are listed in the continuation of box C. Patent family members are listed in annex. lx Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the 'A' document defining the general state of the art which is not considered to be of particular relevance invention carlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the "O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 5.10.95 26 September 1995 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 IIV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

1

Kinzinger, J

INTERNATIONAL SEARCH REPORT

Int onal Application No
PCT/EP 95/02146

C.(Continual	ion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	PATENT ABSTRACTS OF JAPAN vol. 16 no. 485 (C-0993) ,8 October 1992 & JP,A,04 178316 (KAO CORP) 25 June 1992, see abstract	1-10

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int onal Application No
PCT/EP 95/02146

Patent document ited in search report	Publication date	Patent family member(s)	Publication date
GB-A-1524782	13-09-78	NONE	- L
•			
			•
			•

INTERNATIONALER RECHERCHENBERICHT

Inte males Aktenzeichen
PCT/EP 95/02146 "

KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES K 6 C07C69/675 A61K7/50 A61 A61K47/14 A61K7/06 A61K7/48 a. Ki.as IPK 6 C07C67/08 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 CO7C A61K Recherchierte aber nicht zum Mindestprüsstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evil. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Betr. Anspruch Nr. Bezeichnung der Veröffenllichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Kategoric* 1,3,4 GB,A,1 524 782 (THE INDIAN SPACE RESEARCH X ORGANISATION) 13.September 1978 siehe Seite 2, Zeile 11 - Zeile 35 siehe Seite 3 - Seite 5; Beispiele 1-5 siehe Seite 5 - Seite 6; Ansprüche 1-10 DATABASE WPI X Week 9233 Derwent Publications Ltd., London, GB; AN 92-272108 & JP,A,O4 178 316 (KAO CORP) , 25.Juni 1992 siehe Zusammenfassung Siehe Anhang Patentfamilie Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu X Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Kieffedung mit deligenden Bringing oder des ihr zugrundeligenden X cotochmen * Besondere Kategorien von angegehenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzuschen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Täugkeit beruhend betrachtet werden älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweiselhast erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden stell oder die die einem anderen besonderen Grund angeben der Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie veröffentlichung, die sich auf eine mündliche Offenbarung, veröffentlichung, die sich auf eine mindliche Offenbarung, veröffentlichung, die sich auf eine mündliche Offenbarung, veröffentlichung, die sich auf eine mündliche Offenbarung, veröffentlichung dieser Kategorie in Verbindung gebradiese Verbindung für einen Fachmann naheliegend ist veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche 1 5.10.95 26.September 1995 Bevollmächtigter Bediensteter Name und Postanschrift der Internationale Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NI, - 2280 HV Rijswijk Td. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Kinzinger, J

INTERNATIONALER RECHERCHENBERICHT

onales Aktenzeichen PCT/EP 95/02146

Categorie*	ng) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
(PATENT ABSTRACTS OF JAPAN vol. 16 no. 485 (C-0993) ,8.0ktober 1992 & JP,A,04 178316 (KAO CORP) 25.Juni	1-10
	1992,	
	siehe Zusammenfassung	
ł		
İ		
	·	

1

INTERNATIONALER RECHERCHENBERICHT

onales Aktenzeichen Inte

Angaben zu Veröffentlichungen, die zur selben Patentsamilie gehören PCT/EP 95/02146 Datum der Veröffentlichung Mitglied(er) der Patentfamilie Datum der Veröffentlichung Im Recherchenbericht angeführtes Patentdokument KEINE 13-09-78 GB-A-1524782

Formblatt PCT/ISA/210 (Anbang Patentfamilie)(Juli 1992)

WO 95/34528

PCT/EP95/02146

Polyolpolyhydroxystearates

Field of the Invention

This invention relates to new polyolpolyhydroxystearates obtainable by esterification of polyhydroxystearic acid with polyols, preferably technical polyglycerol of defined composition, to a process for their production, to formulations containing these substances and to the use of the new polyolpolyhydroxystearates as w/o emulsifiers.

Prior Art

Polyglycerol polyricinoleates have long been known as w/o emulsifiers and may be used for the formulation of low-viscosity w/o emulsions [cf. EP-A1 0559013 (Th. Goldschmidt), EP-A1 0440203 (Lotte Co.) and WO 85/04346 (Meiji Milk Prods.)]. However, it has been found that commercial polyglycerol polyricinoleates do not form emulsions with all the oils typically used in the cosmetics field, but only with those oils which fall within a certain polarity range. In addition, these emulsions are limited in their storage life. A major disadvantage is above all the fact that the commercial products are incapable of sufficiently stabilizing emulsions containing highly polar oils, for example vegetable oils. However, this is commercially desirable in view of the particular ecotoxicological compatibility of such emulsions.

Now, the problem addressed by the present invention was to provide new w/o emulsifiers which would form storable emulsions with a broad range of oils.

Description of the Invention

The present invention relates to polyolpolyhydroxystearates which are obtained by esterifying polyhydroxystearic acid with a degree of self-

5

15

10

20

25

5

10

15

20

25

30

condensation of 2 to 20 and preferably 2 to 10 with polyols in known manner.

It has surprisingly been found that condensation products of polyols, preferably technical polyglycerol, with polyhydroxystearic acid have distinctly better emulsifying properties than comparable known products based on polyricinoleic acid. In particular, it is even possible to introduce highly polar vegetable oils into stable emulsions. The present invention also includes the observation that even the addition of small quantities of the polyolpolyhydroxystearates according to the invention to polyolpolyricinoleates produces a lasting improvement in their emulsifying properties. It has also surprisingly been found that the condensation products based on 12-hydroxystearic acid are liquid although the acid used has a melting point of 75°C. Thus, the emulsions may readily be produced not only by the conventional "hot/hot" method, but also by the energy-saving "cold/cold" method.

In one preferred embodiment, the invention relates to polyglycerol polyhydroxystearates which are obtained by esterifying polyhydroxystearic acid having a degree of self-condensation of 2 to 20 and preferably 2 to 10 with a polyglycerol mixture of the following composition (GC method):

Glycerol : 5 to 35 (15 to 30)% by weight

Diglycerols : 15 to 40 (20 to 32)% by weight

Triglycerols : 10 to 35 (15 to 25)% by weight

Tetraglycerols : 5 to 20 (8 to 15)% by weight

Pentaglycerols : 2 to 10 (3 to 8)% by weight

Oligoglycerols : to 100 % by weight

in known manner (the preferred ranges are shown in brackets).

The present invention also relates to a process for the production of polyolpolyhydroxystearates in which polyhydroxystearic acid with a degree of self-condensation of 2 to 20 and preferably 2 to 10 is esterified with polyols in known manner.

<u>Polyols</u>

Polyols in the context of the invention are substances which contain at least 2, preferably 3 to 12 and more preferably 3 to 8 hydroxyl groups and 2 to 12 carbon atoms. Typical examples are:

5

- *** glycerol,
- *** alkylene glycols, for example ethylene glycol, diethylene glycol, propylene glycol;
- *** polyglycerol;
- methylol compounds, more particularly trimethylol ethane, trimethylol propane, trimethylol butane, pentaerythritol and dipentaerythritol;
 - alkyl glucosides containing 1 to 22, preferably 1 to 8 and more preferably 1 to 4 carbon atoms in the alkyl group, for example methyl and butyl glucoside;
- sugar alcohols containing 5 to 12 carbon atoms, for example sorbitol or mannitol,
 - sugars containing 5 to 12 carbon atoms, for example glucose or sucrose;
 - *** aminosugars, for example glucamine.

20

25

Polyglycerol

Among the new emulsifiers, particular significance is attributed to reaction products based on polyglycerol by virtue of their excellent performance properties. It has proved to be of particular advantage to use selected polyglycerols which have the following homolog distribution (the preferred ranges are shown in brackets);

Glycerol

5 to 35 (15 to 30)% by weight

Diglycerols

15 to 40 (20 to 32)% by weight

30 Triglycerols

10 to 35 (15 to 25)% by weight

WO 95/34528 4 PCT/EP95/02146

Tetraglycerols : 5 to 20 (8 to 15)% by weight

Pentaglycerols : 2 to 10 (3 to 8)% by weight

Oligoglycerols : to 100 % by weight

5 Production of the polyolpolyhydroxystearates

The polyolpolyhydroxystearates may be produced in known manner. In the case of polyglycerol polyhydroxystearates, the polyglycerol is preferably prepared first followed by the polyhydroxystearic acid and, finally, the two are esterified.

10

The production of a polyglycerol with the composition shown above may be carried out by the self-condensation of glycerol in the presence of suitable catalysts, for example potassium carbonate, silicates according to **DE-A1 4029323** (Henkel) or borates according to **DE-A1 4117033** (Henkel), at temperatures in the range from 200 to 260°C.

15

20

The polyhydroxystearic acid is prepared, for example, by alkalicatalyzed polycondensation of hydroxystearic acid, preferably 12-hydroxystearic acid obtained by hydrogenation of ricinoleic acid or technical castor oil fatty acid. Linear esterification products containing 2 to 10 and, more particularly, 2 to 8 fatty acid units are preferably formed. The following distribution (GPC method) is typically achieved:

Monomers : 1 to 10% by weight

Dimers : 5 to 15% by weight

Trimers : 5 to 15% by weight

25 Tetramers : 5 to 15% by weight

Pentamers : 5 to 15% by weight

Hexamers : 5 to 15% by weight

Heptamers : 5 to 15% by weight

Octamers : 1 to 10% by weight

30 Oligomers : to 100 % by weight

In one preferred embodiment of the invention, mixtures of hydroxy-stearic acid and ricinoleic acid or technical castor oil fatty acid, of which about 90% by weight consists of ricinoleic acid, in a ratio by weight of 99:1 to 1:99 and preferably 75:25 to 10:90 are used. Similarly, the acids may be individually condensed and the condensates subsequently mixed.

In the subsequent condensation of the polyol component, for example the polyglycerol, with the polyhydroxystearic acid or the mixtures with polyricinoleic acid, a complex mixture of homologous polyesters is formed. The percentage contents of mono-, di-, tri- and oligoesters in the polyolpolyhydroxystearates and, preferably, polyglycerol polyhydroxystearates according to the invention are determined by the ratios in which the starting compounds are used. In one preferred embodiment of the process according to the invention, a polyolpolyhydroxystearate with particularly advantageous performance properties is obtained by subjecting around 1000 kg of 12-hydroxystearic acid to self-condensation until a product with an acid value of 50 to 55 is obtained and then esterifying this product with around 150 kg of polyglycerol with the composition shown above until the acid value has fallen to below 2.

Condensation products based on polyglycerol and polyhydroxystearic acid or polyhydroxystearic acid/polyricinoleic acid may be characterized by their iodine value. Typical examples are polyesters having an iodine value of < 10 (basis: 100% 12-hydroxystearic acid) or 65 to 80 (basis: 90% 12-hydroxystearic acid, 10% ricinoleic acid).

25 <u>Cosmetic and pharmaceutical formulations</u>

5

10

15

20

30

The present invention also relates to cosmetic and/or pharmaceutical formulations containing the new polyolpolyhydroxystearates and, in particular, the polyglycerol polyhydroxystearates.

Another preferred embodiment of the invention relates to cosmetic and/or pharmaceutical formulations containing polyolpolyhydroxystearates,

- 15 -

more particularly polyglycerol polyhydroxystearates, and polyolpolyricinoleates, more particularly polyglycerol polyricinoleates, in a ratio by weight of 99:1 to 1:99 and preferably in a ratio by weight of 75:25 to 10:90.

Suitable auxiliaries and additives are oils, co-emulsifiers, fats and waxes, stabilizers, thickeners, biogenic agents, film formers, fragrances, dyes, pearlescers, preservatives, UV filters, pigments, electrolytes (for example magnesium sulfate) and pH regulators.

<u>Oils</u>

10

15

5

Suitable oils are, for example, aliphatic and/or naphthenic hydrocarbons, Guerbet alcohols based on fatty alcohols containing 6 to 18 and preferably 8 to 10 carbon atoms, esters of linear C_{6-20} fatty acids with linear C_{6-20} fatty alcohols, esters of branched C_{6-13} carboxylic acids with linear C_{6-18} fatty alcohols, esters of linear C_{6-18} fatty acids with branched alcohols, more particularly 2-ethyl hexanol, esters of linear and/or branched fatty acids with polyhydric alcohols and/or Guerbet alcohols, triglycerides based on C_{6-10} fatty acids, vegetable oils, branched primary alcohols, substituted cyclohexanes, Guerbet carbonates and/or dialkyl ethers. A factor of particular significance in this regard is that the polyglycerol polyricinoleates according to the invention are suitable for the formation of emulsions using both polar oils and also oils of medium polarity and non-polar oils with dipole moments in the range from less than 1 to more than 2.5 Debye.

Co-emulsifiers

25

20

Nonionic, ampholytic and/or zwitterionic interfacially active compounds distinguished by a lipophilic, preferably linear, alkyl or alkenyl group and at least one hydrophilic group may be used as co-emulsifiers. This hydrophilic group may be both an anionic group and a nonionic group.

Nonionic emulsifiers contain, for example, a polyol group, a polyalkylene glycol ether group or a combination of polyol and polyglycol ether groups as their hydrophilic group. Preferred formulations are those which contain as **o/w emulsifiers** nonionic surfactants from the group of

adducts of 2 to 30 moles of ethylene oxide and/or 0 to 5 moles of propylene oxide with linear fatty alcohols containing 8 to 22 carbon atoms, with fatty acids containing 12 to 22 carbon atoms and with alkylphenols containing 8 to 15 carbon atoms in the alkyl group,

5

20

25

30

- C₁₂₋₁₈ fatty acid monoesters and diesters of adducts of 1 to 30 moles of ethylene oxide with glycerol,
- Glycerol monoesters and diesters and sorbitan monoesters and diesters of saturated and unsaturated C₈₋₁₈ fatty acids and ethylene oxide adducts thereof,
 - *** C₈₋₁₈ alkyl monoglycosides and oligoglycosides and ethoxylated analogs thereof and
- 15 *** adducts of 15 to 60 moles of ethylene oxide with castor oil and/or hydrogenated castor oil.

Mixtures of compounds from several of these classes are also suitable.

The adducts of ethylene oxide and/or propylene oxide with fatty alcohols, fatty acids, alkylphenols, glycerol monoesters and diesters and sorbitan monoesters and diesters of fatty acids or with castor oil are known commercially available products. They are mixtures of homologs of which the average degree of alkoxylation corresponds to the ratios between the quantities of ethylene oxide and/or propylene oxide and substrate with which the addition reaction is carried out.

 C_{12-18} fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known from DE-PS 2024051 as refatting agents for cosmetic formulations. C_{8-18} alkyl monoglycosides and oligoglycosides, their production and their use as surface-active agents are known, for example, from US 3,839,318, US 3,707,535, US 3,547,828, DE-OS 1943689, DE-OS 2036472

and **DE-A1 3001064** and from **EP-A 0077167**. They are produced in particular by reaction of glucose or oligosaccharides with primary alcohols containing 8 to 18 carbon atoms. So far as the glycoside unit is concerned, both monoglycosides in which a cyclic sugar unit is attached to the fatty alcohol by a glycoside bond and oligomeric glycosides with a degree of oligomerization of preferably up to about 8 are suitable. The degree of oligomerization is a statistical mean value on which the homolog distribution typical of such technical products is based.

Zwitterionic surfactants may also be used as emulsifiers. Zwitterionic surfactants are surface-active compounds which contain at least one quaternary ammonium group and at least one -COO⁽⁻⁾- or -SO₃⁽⁻⁾ group in the molecule. Particularly suitable zwitterionic surfactants are the so-called betaines, such as N-alkyl-N,N-dimethyl ammonium glycinates, for example cocoalkyl dimethyl ammonium glycinate, N-acyl aminopropyl-N,N-dimethyl ammonium glycinates, for example cocoacyl aminopropyl dimethyl ammonium glycinate, and 2-alkyl-3-carboxymethyl-3-hydroxyethyl imidazolines containing 8 to 18 carbon atoms in the alkyl or acyl group and cocoacyl aminoethyl hydroxyethyl carboxymethyl glycinate. The fatty acid amide derivative known under the CTFA name of Cocamidopropyl Betaine is particularly preferred.

20

5

10

15

Ampholytic surfactants are also suitable emulsifiers. Ampholytic surfactants are surface-active compounds which, in addition to a C₈₋₁₈ alkyl or acyl group, contain at least one free amino group and at least one -COOH or -SO₃H group in the molecule and which are capable of forming inner salts. Examples of suitable ampholytic surfactants are N-alkyl glycines, N-alkyl propionic acids, N-alkyl aminobutyric acids, N-alkyl iminodipropionic acids, N-hydroxyethyl-N-alkyl amidopropyl glycines, N-alkyl taurines, N-alkyl sarcosines, 2-alkyl aminopropionic acids and alkyl aminoacetic acids containing around 8 to 18 carbon atoms in the alkyl group. Particularly preferred ampholytic surfactants are N-cocoalkyl aminopropionate, cocoacyl aminoethyl aminopropionate and C₁₂₋₁₈ acyl sarcosine.

25

Suitable w/o emulsifiers are:

- adducts of 2 to 15 moles of ethylene oxide and castor oil and/or hydrogenated castor oil;
- partial esters based on linear, branched, unsaturated or saturated C₁₂₋₂₂ fatty acids, ricinoleic acid and 12-hydroxystearic acid and glycerol, polyglycerol, pentaerythritol, dipentaerythritol, sugar alcohols, (for example sorbitol) and polyglucosides (for example cellulose);
 - *** trialkyl phosphates;
- 10 *** wool wax alcohols;
 - polysiloxane/polyalkyl polyether copolymers and corresponding derivatives;
 - *** mixed esters of pentaerythritol, fatty acids, citric acid and fatty alcohol according to **DE-PS 1165574** and
- 15 *** polyalkylene glycols.

Other additives

20

25

30

Typical examples of **fats** are glycerides while suitable **waxes** are inter alia beeswax, paraffin wax or microwaxes, optionally in combination with hydrophilic waxes, for example fatty alcohols, monoglycerides and fatty acids.

Suitable **stabilizers** are metal salts of fatty acids, for example magnesium, aluminium and/or zinc stearate.

Suitable **thickeners** are, for example, crosslinked polyacrylic acids and derivatives thereof, polysaccharides, more particularly xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl cellulose, polyacrylates, polyvinyl alcohol and polyvinyl pyrrolidone.

Biogenic acids in the context of the invention are, for example, plant extracts, protein hydrolyzates and vitamin complexes. Typical film formers are, for example, hydrocolloids, such as chitosan, microcrystalline chitosan

5

10

15

20

25

30

or quaternized chitosan, polyvinyl pyrrolidone, vinyl pyrrolidone/vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives and similar compounds.

Suitable **preservatives** are, for example, formaldehyde solution, p-hydroxybenzoate or sorbic acid.

Suitable **pearlescers** are, for example, glycol distearic acid esters, such as ethylene glycol distearate, and fatty acids and fatty acid monoglycol esters.

Suitable dyes are any of the substances suitable and permitted for cosmetic purposes as listed, for example, in the publication entitled "Kosmetische Färbemittel" of the Farbstoffkommission der Deutschen Forschungsgemeinschaft, published by Verlag Chemie, Weinheim, 1984. These dyes are normally used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.

The percentage content of auxiliaries and additives may be from 0.01 to 80% by weight and is preferably from 0.05 to 40% by weight while the non-aqueous component ("active substance") makes up from 20 to 80% by weight and preferably from 30 to 70% by weight of the particular formulation. The formulations may be prepared by known methods, i.e. for example by hot, cold, hot-hot/cold or PIT emulsification. These are purely mechanical processes which do not involve a chemical reaction.

Commercial Applications

The polyolpolyhydroxystearates according to the invention are distinguished by improved emulsifying power. The resulting emulsions have higher stability in storage and, in particular, higher heat resistance than known products.

Accordingly, the present invention also relates to the use of the polyolpolyhydroxystearates according to the invention in general and the polyglycerol polyhydroxystearates in particular, optionally in admixture with

polyglycerol polyricinoleates, as w/o emulsifiers for cosmetic and/or pharmaceutical formulations such as, for example, skin cremes, body lotions, sunscreens and the like, in which they may be present in concentrations of 1 to 20% by weight and preferably 2 to 10% by weight, based on the particular product.

Examples

I. Polyolpolyhydroxystearates used

5

25

- 10 A) Polyglycerol polyricinoleate, I.V. = 85 (comparison)
 - B) Polyglycerol polyester based on a starting fatty acid mixture of 9 parts by weight of ricinoleic acid and 1 part of 12-hydroxystearic acid; I.V. = 75
- C) Polyglycerol polyester consisting of 9 parts by weight of polyglycerol polyricinoleate and 1 part by weight of polyglycerol polyhydroxy-stearate; I.V. = 75
 - D) Polyglycerol polyhydroxystearate; I.V. < 10

The composition of the polyglycerol components was 20% by weight glycerol, 30% by weight diglycerols, 20% by weight triglycerols, 15% by weight tetraglycerols, 5% by weight pentaglycerols and 10% by weight oligoglycerols.

The composition of the polyhydroxyfatty acid was 5% by weight monomers, 10% by weight dimers up to heptamers, 6% by weight octamers and ad 100% by weight oligomers.

Products B, C and D correspond to the invention while product A is intended for comparison.

II. Performance tests

The properties of emulsifiers B, C and D according to the invention and

comparison emulsifier A were tested in various w/o emulsions according to Table 1. Formulations F1 to F3 correspond to the invention while formulation F4 is intended for comparison. The viscosity of the products was determined after storage (1 day, 1 week and 4 weeks) at 23°C using a Brookfield RVF viscosimeter, spindle 5, 10 r.p.m. The results are set out in Table 2.

<u>Table 1</u>
Formulations Used

,						
10		<u>F1</u>	<u>F2</u>	<u>F3</u>	<u>F4</u>	
		%	%	%	%	
15	Emulsifier A	-	_	-	7.0	
	Emulsifier B	7.0	-	_	-	
	Emulsifier C	-	7.0	-	-	
	Emulsifier D	<u>-</u>	<u>-</u>	7.0	-	
	Almond oil	20.0	20.0	20.0	20.0	
	Glycerol, 86% by weight	5.0	5.0	5.0	5.0	
	MgSO ₄ 7H ₂ O	0.5	0.5	0.5	0.5	
	Formaldehyde	0.1	0.1	0.1	0.1	
	Water	To 100%				

<u>Table 2</u>
Results of Performance Tests

Formulation	Viscosity [mPa·s]			Stability		
	1d	1w	4w	1w	4w	
F1	20000	19600	20000	Stable	Stable	
F2	20800	20800	20000	Stable	Stable	
F3	15200	14000	14000	Stable	Stable	
F4	-	-	-	Does not emulsify		

20

5

25

	WO	95/34528	13	PCT/EP95/02146		
	III.	Formulation Examples				
	I)	Cosmetic skin lotion				
		Product D	•••••	3%	by weight	
		Monomuls® 90-0 18		1%	by weight	
5		Beeswax			by weight	
		Cetiol® OE		5%	by weight	
		Cetiol® LC	••••••	6%	by weight	
		Jojoba oil		12%	by weight	
		Glycerol			by weight	
10		MgSO ₄ · 7H ₂ O			by weight	
		Formalin			15% by weight	
		Water		ad 100	% by weight	
15		Viscosity		8,000 mPa⋅s		
	II)	Cosmetic nourishing creme				
		Product D			by weight	
20		Beeswax			by weight	
		Almond oil			by weight	
		Glycerol			by weight	
		MgSO ₄ · 7H ₂ O			by weight	
		Formalin			by weight 5% by weight	
25		Water			% by weight	
		Viscosity		700,000	mPa⋅s	

The viscosities of the two products were determined with a Brookfield RVF viscosimeter at 23°C. Spindle 5, (10 r.p.m.) was used for product I while

30

WO 95/34528 14 PCT/EP95/02146

spindle E (4 r.p.m., with Helipath) was used for product II.

5

The product names Monomuls® 90-0 18, Cetiol® OE, Cetiol® LC and Lameform® TGI stand respectively for oleic acid monoglyceride, di-n-octyl ether, $C_{8/10}$ -fatty acid- $C_{12/18}$ -cocoalkyl ester and triglycerol triisostearate, all produced by Henkel KGaA of Düsseldorf FRG.

CLAIMS

- 1. Polyolpolyhydroxystearates obtainable by esterification of polyhydroxystearic acid having a degree of self-condensation of 2 to 20 with polyols in known manner.
- 5 Polyglycerol polyhydroxystearates obtainable by esterifying polyhy-2. droxystearic acid having a degree of self-condensation of 2 to 10 with a polyglycerol mixture of the following composition:

Glycerol

5 to 30% by weight

10 Diglycerols

15 to 40% by weight

Triglycerols

10 to 30% by weight

Tetraglycerols:

5 to 20% by weight

Pentaglycerols:

2 to 10% by weight

Oligoglycerols: to 100 % by weight

15

in known manner.

- A process for the production of polyolpolyhydroxystearates, in which 3. polyhydroxystearic acid having a degree of self-condensation of 2 to 20 is esterified with polyols in known manner.
- 20 A process as claimed in claim 3, characterized in that polyols selected 4. from the group consisting of glycerol, alkylene glycols, polyglycerol, methylol compounds, lower alkyl glucosides, sugar alcohols, sugars and aminosugars are used.
- A process as claimed in claim 3, characterized in that mixtures of 5. polyhydroxystearic acid and polyricinoleic acid in a ratio by weight of 99:1 to 25 1:99 are used.
 - Cosmetic and/or pharmaceutical formulations containing the polyol-6. polyhydroxystearates claimed in claim 1.
- Cosmetic and/or pharmaceutical formulations containing the polyol 7. polyhydroxystearates claimed in claim 1 and polyolpolyricinoleates in a ratio 30

by weight of 99:1 to 1:99.

- 8. Cosmetic and/or pharmaceutical formulations containing the polyglycerol polyhydroxystearates claimed in claim 1 and polyglycerol polyricinoleates in a ratio by weight of 99:1 to 1:99.
- 5 9. The use of the polyolpolyhydroxystearates claimed in claim 1 as w/o emulsifiers for cosmetic and/or pharmaceutical formulations.
 - 10. The use of polyglycerol polyhydroxystearates, optionally in admixture with polyglycerol polyricinoleates, as w/o emulsifiers for cosmetic and/or pharmaceutical formulations.

New claims 1 to 3

1. Polyglycerol polyhydroxystearates obtainable by esterifying polyhydroxystearic acid having a degree of self-condensation of 2 to 20 with polyglycerols of the following composition:

5

Glycerol

5 to 30% by weight

Diglycerols

15 to 40% by weight

Triglycerols

10 to 30% by weight

Tetraglycerols

5 to 20% by weight

10 Pentaglycerols :

2 to 10% by weight

Oligoglycerols:

to 100 % by weight

in known manner.

A process for the production of polyglycerol polyhydroxystearates, in
 which polyhydroxystearic acid having a degree of self-condensation of 2 to
 is esterified with polyglycerol of the following composition:

Glycerol

5 to 30% by weight

Diglycerols

15 to 40% by weight

20 Triglycerols

10 to 30% by weight

Tetraglycerols :

5 to 20% by weight

Pentaglycerols:

2 to 10% by weight

Oligoglycerols :

to 100 % by weight

25 in known manner.

3. The use of the polyglycerol polyhydroxystearates claimed in claim 1 as w/o emulsifiers for cosmetic and/or pharmaceutical formulations.

		,	k .
			•.