Spanning tree

Spanning tree grafu G=(V,E) je podgraf $T\subseteq G$ takový, že V(T)=V(G) a T je strom

Alg: Jarnik, Borůvka,...

Minimum spanning tree

MST grafu G je spanning tree M takový, že w(M) ≤ w(T) pro všechny spanning trees T grafu G

Alg: Jarnik, Borůvka,...

Blue/ Red rule

Blue rule - pro zadaný řez s žádnými modrými hranami, vyber minimální neobarvenou crossing hranu a obarvi ji modře (CUT property)

Red rule - pro zadaný cyklus neobsahující žádnou červenou hranu, vyber maximální neobarvenou maximální hranu a obarvi ji červeně. (Cycle property)

Alg: Jarnik, Borůvka,...

Dense graph / Sparse graph

Dense graph je graf takový, kde počet hran se blíží maximálnímu počtu hran **Sparse graph** je graf s pouze pár hranami

Kontext: grafy

Subforest / F-light a F-heavy edges

Subforest F grafy G = (V, E) je podgraf grafu G který je forest

F-light and heavy edges

Nechť F je subforest grafu G = (V, E) a $e \in E$.

- $W_F(e)$ váha **nejtěžší hrany** na unikátní path v F mezi dvěma endpointy e• $w_F = \infty$ pokud e spojuje dvě různé komponenty z F
- $e \in E$ je **F-heavy** právě pokud $w(e) > w_E(e)$ a **F-light** v ostatních případech

Kontext: Minimum spanning tree Alg: Karger-Klein-Tarjan algorithm

Arborescence

Pro directed graf D = (V, E) a root $r \in V$ je arborescence (s kořenem v r) podgraf takové T = (V, F), že:

- *T* je spanning tree (pokud nebereme v potaz orientaci hran)
- Existuje directed cesta z r do všech ostatních vrcholů

Kontext: Min-cost arborescence Alg: Edmonds' branching algorithm

Reduced weight function

Funkce redukované váhy w' pro directed graf D a funkci váhy w je definována pro každou hranu $e = (u, v) \in E$ jako $w'(e) = w(e) - w(e_v)$

• kde e_v je nejlehčí hrana směřující do v

Kontext: Min-cost arborescence Alg: Edmonds' branching algorithm

Flow

Flow f je funkce $f: E \rightarrow R^+$ uspokojující

capacity constraints

 $\forall e \in E : 0 \le f(e) \le c(e)$ kde c(e) je funkce kapacity

conservation constraints

$$\forall v \in V \setminus \{s,t\} : \sum_{(u,v) \in E} f(u,v) = \sum_{(v,w) \in E} f(v,w)$$
 kde s je source, a t je sink

hodnota flow
$$f$$
 je $|f| = \sum_{(s,v) \in E} f(s,v) = \sum_{(w,t) \in E} f(w,t)$

Kontext: Max. flow

Alg: Dinic, Ford-Fulkerson,...

S-T cut

S-t cut ve flow network (*G*, *c*, *s*, *t*) je birartition vrcholů $S \cup T = V$ taková, že $s \in S$ a $t \in T$.

Kapacita řezu
$$S,T$$
 je $cap(S,T) = \sum_{(u,v) \in E, u \in S, v \in T} c(u,v)$

Kontext: Max flow (= minimum cut)

Alg: ??

Residual graph / network

Residual network pro flow f je dána jako

- Reziduální graf $G_f = (V, E_f)$, kde E_f obsahuje pro každou hranu $e = (u, v) \in E$
 - o hranu $e = (u, v) \operatorname{pokud} f(e) < c(e)$
 - o hranu $e^R = (v, u)$ pokud f(e) > 0
- Reziduální kapacita c_f

$$c(e) - f(e) \;\; \text{pokud} \;\; e \in E_f$$

$$c_f(e) \;\; = \; \{$$

$$f(e) \;\;\; \text{pokud} \;\; e^R \in E_f$$

Kontext: Max flow

Alg: Dinic, Ford-Fulkerson

Augmenting path / bottleneck capacity

Augmenting path je cesta P z s do t v G_f

Bottleneck capacity δ augmentační cesty P je minimální kapacita mezi hranami z P

Kontext: Max flow

Alg: Dinic,...

Level graph

Level graph $L_G = (V, E_G)$ je podgraf G takový, že:

$$E_G = \{(u,v) \in E \mid \exists i \in N.u \in L_i \land v \in L_{i+1}\}$$
 kde $L_i = \{v \in V \mid \mathit{dist}(s,v) = i\}$

Kontext: Výpočet blocking flow

Alg: Dinic,...

Blocking flow

Flow f je **blocking** právě když každá s-t cesta v G obsahuje minimálně jednu saturovanou hranu.

Alg: Dinic

Vertex capacity

Dává maximální flow skrze zadaný vrchol

$$c(v) = min(\sum_{(u,v) \in E} c(u,v), \sum_{(v,w) \in E} c(v,w))$$

Kontext: Max flow

Alg: MPM

Matching (maximum/perfect)

Matching M grafu G is podmnožina hran taková, že žádné dvě hrany v M nesdílí vrchol. **Maximum matching** je matching o maximální velikosti **Perfect matching** je matching který pokrývá všechny vrcholy

Kontext: Matching Alg: PerfectBiparte,

Unit/Simple capacity network

Network je unit capacity network (type 1 network) právě když každá hrana má kapacitu 1 Network je unit capacity simple network (type 2 network) pokud:

- každá hrana má kapacitu 1
- každý vrchol $v \in V \setminus \{s, t\}$ má:
 - o jednu příchozí hranu
 - o jednu odchozí hranu

Kontext: Matching na unit networks

Alg: ??

Gomory hu tree

Pro network G = (V, E) s kapacitami c je **Gomory hu tree strom** T = (V, F) s kapacitami w takovými, že $\forall s, t \in V(G)$:

- $f_G(s,t) = f_T(s,t)$ aka T je ekvivalent flow grafu
- minimální s-t cut v T je zároveň minimální s-t cut v G

Kontext: Min cut Alg: Gomory hu

Minimum (global) cut

Pro daný connected, undirected graf G = (V, E) a funkce kapacity $c : E \to R^+$, nalezněme množinu $A \subseteq E$ takovou, že $A = \delta(S)$, $\varnothing \subset S \subset V$ a c(A) je minimalizováno.

Kde:

- $c(A) = \sum_{a \in A} c(a)$
- $\delta(X)$ je minimální v w cut

Kontext: Min cut Alg: Stoer-Wagner

M-exposed/covered vertice/edge

Matching M covers vrchol $v \in V$ pokud nějaká hrana z M je ve vztahu k v (jinak je vrchol exposed)

M-exposed hrana e je taková hrana, která pro M z grafu G $e \in G \land e \not = M$

Kontext: Matching Alg: Edmods bloosom

M-alternating/M-augmenting path

Pro zadaná matching M pro G, cesta P je **M-alternating** pokud hrany střídavě jsou v M a nejsou v M.

Pokud oba konce cesty P jsou rozdílné a M-exposed, řekneme že cesta je M-augmenting

M-alternating tree

Nechť M je matching. Řekneme, že rooted tree T (s root r) je **M-alternating** pokud T je podgraf G a následující platí:

- každý **vrchol** z T **jiný než** r je covered hranou z $M \cap E(T)$
- pro každý vrchol z $v \in V(T)$ je cesta z r do v M-alternating

Kontext: Matching Alg: Edmonds bloosom

Frustrated tree

M-alternating tree T je **frustrated** pokud každá hrana má jeden konec v B(T) a druhý v A(T)

Vysvětlivky:

- A(T) vrcholy v liché vzdálenosti od r
- B(T) vrcholy v sudé vzdálenosti or r

Kontext: Matching, Max Mathing

Alg: Edmonds bloosom, Edmonds bloosom pro maximum matching

Circular arc colouring depth

Maximální počet cest sdílející jednu hranu

Kontext: Corcular arc colouring

Tree decomposition

Tree decomposition grafu G je dvojice $(T, \{X_t \mid t \in T\})$, kde T je (rooted) tree a X_t , pro každé $t \in T$, je množina vrcholů z G uspokojující následující vlastnosti:

 $\bullet \quad \bigcup_{t \in T} X_t = V(G)$

(aka node coverage)

- pro každou hranu $uv \in E(G)$ existuje node $t \in T$ takové, že $\{u,v\} \subseteq X_t$ (aka edge coverage)
- pro každý vrchol $v \in V(G)$, je podgraf z T vytvořený z nodů t takových, že $v \in X_t$, je neprázdný a connected (aka tree property)

Tree width

Width of a tree decomposition $(T, \{X_t\})$ grafu G je definováno jako $width(T, \{X_t\}) = max|X_t| - 1$

Tree width grafu G, tw(G), je minimální šířka jakéhokoliv tree decomposition z G

Nice tree decomposition

Tree decomposition $(T, \{X_t\})$ je **nice** pokud každý node z $t \in T$ je jeden z následujících typů:

- **Leaf**: žádní potomci, $|X_t| = 1$
- **Introduce**: jeden potomek t', $X_t = X_t \cup \{v\}$ pro nějaké $v \not \in X_t$
- Forget: jeden potomek t', $X_t = X_{t'} \setminus \{v\}$ pro nějaké $v \in X_{t'}$
- **Join**: dva potomci $t_1, t_2, X_t = X_{t_1} = X_{t_2}$

Isomorphism

Isomorfusmus dvou grafů G a H je bijektivní zobrazení $f:V(G)\to V(H)$ takové, že: $\forall u,v\in V(G):\{u,v\}\in E(G)\Leftrightarrow \{f(u),f(v)\}\in E(H)$

Rooted tree

Rooted tree je dvojice (T, r), kde:

- T je strom
- $r \in V(T)$ je vybraný root
- level vzdálenost od root

Rooted tree isomorphism - root grafu G musí být namapovaný na root H

Ordinary trees

Eccentricity vrcholu v v grafu G, značeno jako ecc(V), je vzdálenost z v do nejvzdálenějšího vrcholu od v

Central vertex grafu G je vrchol minimální eccentricity

Centre grafu G je podgraf vytvořen centrálními vrcholy