

Norwegian University of Science and Technology

TMT4320 Nanomaterials October 18th, 2016

Nanoscience – Chapter 8
 Fullerenes and carbon nanotubes

Fullerenes and carbon nanotubes

- 8.1 Introduction
- 8.2 Nanotubes and the crystalline forms of carbon
- 8.3 Fullerenes
 - Structure, synthesis, and properties
- 8.4 Carbon nanotubes
 - Structure, synthesis, properties, and applications
- 8.5 Conclusion

Carbon crystal structures

The relation of graphene to graphite.

www.ntnu.no Wikipedia

Carbon

Natural state

- Graphite
 - Crumbly black mineral
 - Pencil lead
 - Greek: "graphein" = to write
 - Layered structure of parallel graphene sheets
 - sp^2
 - Atoms are only weakly connected to atoms in neighbouring planes
- Diamond
 - Transparent mineral
 - Extremely hard
 - Tetrahedral symmetry
 - sp³

Graphene – the new hype

Keeping glass free from ice with graphene nanoribbons

http://crayonano.com/

Discovery of fullerenes

- 1985: H.W. Kroto, R.F. Curl and R.E. Smalley found carbon molecules with a cage structure using mass spectrometry.
- The hexagons in the C₆₀ molecule are the same as those in graphite
- Difficult to synthesize in macroscopic quantities
- Buckminsterfullerene
 - C_{60}
 - The most commonly produced and studied
 - Many other types of fullerenes exist (C_n)

Discovery of carbon nanotubes

- 1991: S. lijima found carbon nanotubes as a byproduct when trying to synthesize C₆₀
- Tubular objects with nanometric diameter and micrometric length, closed at the ends and made of perfectly graphitic carbon
- Possibly previous discoveries
- lijima first to realized their importance

LETTERS TO NATURE

Helical microtubules of graphitic carbon

Sumio lijima

NEC Corporation, Fundamental Research Laboratories, 34 Miyukigaoka, Tsukuba, Ibaraki 305, Japan

FIG. 1 Electron micrographs of microtubules of graphitic carbon. Parallel dark lines correspond to the (002) lattice images of graphite. A cross-section of each tubule is illustrated. *a*, Tube consisting of five graphitic sheets, diameter 6.7 nm. *b*, Two-sheet tube, diameter 5.5 nm. *c*, Seven-sheet tube, diameter 6.5 nm, which has the smallest hollow diameter (2.2 nm).

Fullerenes - structure

- Fullerenes are molecules with a cage structure containing 2(10 + n) carbon atoms which form 12 pentagons and n hexagons
- The smallest fullerene that can be imagined theoretically is C_{20} (n = 0)
 - Dodecahedron (12 pentagons)

- Above C₂₀, any cluster made up of an even number of carbon atoms can form at least one fullerene-type structure
- The number of isomers increases with increasing n, from one for n = 0 to more than 20 000 for n = 29

Buckminsterfullerene, C₆₀

- The smallest stable fullerene
- Truncated icosahedron
- The exact replica of a football
- 12 pentagons and 20 hexagons
- Each pentagon is surrounded by 5 hexagons
- C₆₀ is a highly symmetrical molecule in which all the carbon atoms are equivalent

Structure of C₆₀.

C₆₀

- Two types of carbon–carbon bonds
 - 6–6 bonds and 5–6 bonds
- Why this unusual localization of the π electrons?
 - The spherical structure prevents full orbital overlap, which leads to pyramidalization of the sp^2 carbon atoms

C₆₀ is not an aromatic molecule

Isolated pentagon rule

- The fullerene-type structures in which all pentagons are separated from one another by hexagons are more stable than those in which there are two adjacent pentagons
- Two adjacent pentagons have bond angles far from 120°
 → large tension in the carbon ring
- Only the fullerenes C_x respecting the isolated pentagon rule are stable → magic numbers
 - -x = 60, 70, 72, 76, 78, 84, etc

C_{70}

- Respects the isolated pentagon rule and has an oval profile (like a rugby ball)
- Ends (or poles) have a structure similar to C₆₀.
- Main difference from C₆₀ is an equatorial belt made up of a chain of hexagons

Structure of C₇₀.

Structure of the icosahedral fullerene C_{540} .

Production of fullerenes

- Vaporization of carbon in a helium atmosphere
- Two graphite rods connected to copper electrodes
- Ohmic heating due to electric current
- 2 500-3 000 °C
- Graphite is vaporized as a plasma and cools on contact with helium

Experimental setup for fullerene production.

Properties of C₆₀

- Solubility in organic solvents
 - Insoluble in polar solvents (i.e. acetone, alcohols, tetrahydrofuran, etc)
 - Weakly soluble in hydrocarbons (i.e. pentane, hexane or cyclohexane)
 - The best solvents for C₆₀ are the aromatic solvents
 - Benzene (1.7 mg/mL)
 - Toluene (2.8 mg/mL)
 - 1-chloronaphthalene (51 mg/mL)

From left to right: C60, C70, C76/C78, C84 in solution.

Photophysical properties of C₆₀

- Nonlinear absorption effect
 - Weak absorption of low intensity light
 - The transition S₀ → S₁ is forbidden for symmetry reasons and the associated absorption is therefore low
 - Certain transitions from the state S₁ to the states S_n are allowed in the visible range of the spectrum

Five-level model explaining the photophysical properties of C_{60} .

Electrochemical properties of C₆₀

- Electron acceptor
- Can accept up to 6 electrons to form a hexa-anion C₆₀⁶⁻
- Easy to reduce, difficult to oxidize

Table 8.1. Reduction potentials obtained at -10 °C in a CH₃/toluene mixture. Values are obtained in volts (vs. Fc+/Fc) for a scan rate of 100 mV s⁻¹.

Single-electron pair	Reduction potential [V]
C_{60}/C_{60}^{-}	-0.98
C_{60}^{-}/C_{60}^{2-}	-1.37
C_{60}^{2-}/C_{60}^{3-}	-1.87
C_{60}^{3-}/C_{60}^{4-}	-2.35
C_{60}^{4-}/C_{60}^{5-}	-2.85
C_{60}^{5-}/C_{60}^{6-}	-3.26

Chemical properties of C₆₀

 Grafting of groups of molecules onto the surface of C₆₀ → molecules with novel properties

 A large number of derivatives of C₆₀ tetrahedra have been produced

 Chemical modification of C₆₀ is done mainly to increase its solubility → corresponding derivatives become much easier to manipulate

 C₆₀ is a good electrophilic reagent and can host nucleophilic addition reactions

cleanhilic addition of an arganolithic or arganomagnesis

Nucleophilic addition of an organolithic or organomagnesium compound to C_{60} followed by acid hydrolysis.

Different cycloaddition reactions involving C₆₀.

Next time

• 8.4 Carbon nanotubes

CNT-related research at NTNU and SINTEF