

NP-C: Coloreo de grafos

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Función de coloreo

Sea

G=(V,E) grafo no dirigido

F: $v \rightarrow \{1,2,...,k\}$ función que asigna un color a cada vértice

Tal que

Para todo $e=(u,v) \in E$, $f(u) \neq f(v)$

Número y polinomio cromático

Definimos al número cromático χ(G)

como el menor numero de colores necesario para colorear un grafo

Definimos polinomio cromático

Al la ecuación que permite contar el número de maneras en las cueles puede ser coloreado un grafo usando no mas de k colores

χ(G)=3 y puedo colorear de 12 maneras con 3 colores o menos

Clase de color y conjunto k-partito

Llamaremos clase de color

Al subconjunto de vértices coloreados con el mismo color

Una k-coloración

Equivale a una partición de nodos en k conjuntos independientes.

Si un grafo es k-coloreables entonces es k-partito

 $X=\{a,d,f\}$

Y={c,e}

 $Z=\{b\}$

Problema de decisión coloreo de grafos

Sea

G=(V,E) grafo no dirigido

K valor numérico.

¿Es posible

Definir una función de coloreo que utilice k o menos colores?

Se puede colorear G con menos de:

Casos especiales: Grafo completo

Sea G=(V,E)

Grafo simple y completo (todos los vértices están comunicados entre si)

Entonces

Se requieren |V| colores para colorear el grafo

Podemos determinar rápidamente si G es completo

Si tiene |V|(|V|-1)/2 ejes

Casos especiales: Grafo bipartito

Mediante un algoritmo de coloreo

derivado de BFS podemos etiquetar cada nodo y determinar si el grafo es bipartito en tiempo polinomial

¿Coloreo de grados ∈ "NP"?

Dado

G=(V,E) grafo

K colores

T certificado: para todo vector que asigna a cada vértice un color

Puedo verificar (en tiempo polinomial)

⇒ COLOREO DE GRAFOS ∈ NP

Todos los nodos en V están en T

Las cantidad de colores usados en T son menores o iguales a k

No existen en G dos vértices adyacentes que en T tengan el mismo color

¿Coloreo de grados ∈ "NP-Hard"?

Probamos que

Dada una

instancia I de 3SAT con k clausulas y n variables

Crearemos

Diferentes gadgets que seran subgrafos para colorear

- 1 gadget para las variables
- 1 gadget por clausula

Definimos

los nodos v_i y v_i correspondientes a cada variable x_i y su negada x_i

los nodos especiales T (true), F (false) y B (base)

Generar los siguientes ejes

Cada v_i y v_i entre ellas y con B

T, F y B entre ellas

(la variable tendrá el valor true si tiene el mismo color que T)

Crearemos 1 gadget para cada clausula

la clausula $c_i = (a,b,c)$ con $a,b,c \in \{x_1,x_1,\ldots,x_n,x_n\}$

las variables de la clausula corresponden a los nodos creados para las variables

(si $a=x_1$, el gadget en ci,1 se conecta a v_1)

Definimos

K = 3 (cantidad de colores)

Si

El grafo resultante se puede pintar con 3 colores, entonces la expresion I se puede satisfacer

Los nodos correspondientes a las variables con igual color a T, deben estar en true.

Con al menos 1 variable en True de la clausula i

el subgrafo correspondiente al gadget de la clausula i se puede colorear con 3 colores

Se se requiere que 1 variable este negada y sin negar

No se puede colorear el grafo

Con a,b,c en "false" no se puede colorear el gadget

Ejemplos de activación de la clausula

Si tengo la expresión

Si tengo la expresión

Si tengo la expresión

$$x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 0$$

COLOREO-GRAFO ∈ "NP-C"

Como

COLOREO-GRAFOS ∈ NP

Y 3SAT ≤_p COLOREO-GRAFOS

Entonces

COLOREO-GRAFOS ∈ NP-C

Presentación realizada en Junio de 2020