

# **Art of Problem Solving** 2015 Romania Team Selection Tests

| _ | Day 1                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Let $ABC$ be a triangle, let $O$ be its circumcenter, let $A'$ be the orthogonal projection of $A$ on the line $BC$ , and let $X$ be a point on the open ray $AA'$ emanating from $A$ . The internal bisectrix of the angle $BAC$ meets the circumcircle of $ABC$ again at $D$ . Let $M$ be the midpoint of the segment $DX$ . The line through $O$ and parallel to the line $AD$ meets the line $DX$ at $N$ . Prove that the angles $BAM$ and $CAN$ are equal. |
| 2 | Let $ABC$ be a triangle, and let $r$ denote its inradius. Let $R_A$ denote the radius of the circle internally tangent at $A$ to the circle $ABC$ and tangent to the line $BC$ ; the radii $R_B$ and $R_C$ are defined similarly. Show that $\frac{1}{R_A} + \frac{1}{R_B} + \frac{1}{R_C} \leq \frac{2}{r}$ .                                                                                                                                                  |
| 3 | A Pythagorean triple is a solution of the equation $x^2 + y^2 = z^2$ in positive integers such that $x < y$ . Given any non-negative integer $n$ , show that some positive integer appears in precisely $n$ distinct Pythagorean triples.                                                                                                                                                                                                                       |
| 4 | Let $k$ be a positive integer congruent to 1 modulo 4 which is not a perfect square and let $a = \frac{1+\sqrt{k}}{2}$ .<br>Show that $\{\lfloor a^2n \rfloor - \lfloor a\lfloor an \rfloor \rfloor : n \in \mathbb{N}_{>0}\} = \{1, 2, \dots, \lfloor a \rfloor\}$ .                                                                                                                                                                                           |
| 5 | Given an integer $N \ge 4$ , determine the largest value the sum $\sum_{i=1}^{\left\lfloor \frac{k}{2} \right\rfloor + 1} \left( \left\lfloor \frac{n_i}{2} \right\rfloor + 1 \right)$                                                                                                                                                                                                                                                                          |
|   | may achieve, where $k, n_1, \ldots, n_k$ run through the integers subject to $k \geq 3$ , $n_1 \geq \ldots \geq n_k \geq 1$ and $n_1 + \ldots + n_k = N$ .                                                                                                                                                                                                                                                                                                      |
| _ | Day 2                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 | Let $a$ be an integer and $n$ a positive integer . Show that the sum : $\sum_{k=1}^n a^{(k,n)}$                                                                                                                                                                                                                                                                                                                                                                 |
|   | is divisible by $n$ , where $(x,y)$ is the greatest common divisor of the numbers $x$ and $y$ .                                                                                                                                                                                                                                                                                                                                                                 |



# **Art of Problem Solving** 2015 Romania Team Selection Tests

| 2 | Let $ABC$ be a triangle . Let $A'$ be the center of the circle through the midpoint of the side $BC$ and the orthogonal projections of $B$ and $C$ on the lines of support of the internal bisectrices of the angles $ACB$ and $ABC$ , respectively; the points $B'$ and $C'$ are defined similarly . Prove that the nine-point circle of the triangle $ABC$ and the circumcircle of $A'B'C'$ are concentric.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | Given a positive real number $t$ , determine the sets $A$ of real numbers containing $t$ , for which there exists a set $B$ of real numbers depending on $A$ , $ B  \geq 4$ , such that the elements of the set $AB = \{ab \mid a \in A, b \in B\}$ form a finite arithmetic progression .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4 | Consider the integral lattice $\mathbb{Z}^n$ , $n \geq 2$ , in the Euclidean $n$ -space. Define a line in $\mathbb{Z}^n$ to be a set of the form $a_1 \times \cdots \times a_{k-1} \times \mathbb{Z} \times a_{k+1} \times \cdots \times a_n$ where $k$ is an integer in the range $1, 2, \ldots, n$ , and the $a_i$ are arbitrary integers. A subset $A$ of $\mathbb{Z}^n$ is called $admissible$ if it is non-empty, finite, and every $line$ in $\mathbb{Z}^n$ which intersects $A$ contains at least two points from $A$ . A subset $N$ of $\mathbb{Z}^n$ is called $null$ if it is non-empty, and every $line$ in $\mathbb{Z}^n$ intersects $N$ in an even number of points (possibly zero).  (a) Prove that every $admissible$ set in $\mathbb{Z}^2$ contains a $null$ set.  (b) Exhibit an $admissible$ set in $\mathbb{Z}^3$ no subset of which is a $null$ set. |
| _ | Day 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 | Two circles $\gamma$ and $\gamma'$ cross one another at points $A$ and $B$ . The tangent to $\gamma'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | at $A$ meets $\gamma$ again at $C$ , the tangent to $\gamma$ at $A$ meets $\gamma'$ again at $C'$ , and the line $CC'$ separates the points $A$ and $B$ . Let $\Gamma$ be the circle externally tangent to $\gamma$ , externally tangent to $\gamma'$ , tangent to the line $CC'$ , and lying on the same side of $CC'$ as $B$ . Show that the circles $\gamma$ and $\gamma'$ intercept equal segments on one of the tangents to $\Gamma$ through $A$ .                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2 | line $CC'$ separates the points $A$ and $B$ . Let $\Gamma$ be the circle externally tangent to $\gamma$ , externally tangent to $\gamma'$ , tangent to the line $CC'$ , and lying on the same side of $CC'$ as $B$ . Show that the circles $\gamma$ and $\gamma'$ intercept equal segments on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

www.artofproblemsolving.com/community/c89390



# **Art of Problem Solving** 2015 Romania Team Selection Tests

| 4 | Given two integers $h \ge 1$ and $p \ge 2$ , determine the minimum number of pairs of opponents an $hp$ -member parliament may have, if in every partition of the parliament into $h$ houses of $p$ member each, some house contains at least one pair of opponents.                                                                                                                                                                                                                                                                                                                    |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _ | Day 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 | Let $ABC$ and $ABD$ be coplanar triangles with equal perimeters. The lines of support of the internal bisectrices of the angles $CAD$ and $CBD$ meet at $P$ . Show that the angles $APC$ and $BPD$ are congruent.                                                                                                                                                                                                                                                                                                                                                                       |
| 2 | Given an integer $k \geq 2$ , determine the largest number of divisors the binomial coefficient $\binom{n}{k}$ may have in the range $n-k+1,\ldots,n$ , as $n$ runs through the integers greater than or equal to $k$ .                                                                                                                                                                                                                                                                                                                                                                 |
| 3 | Let $n$ be a positive integer . If $\sigma$ is a permutation of the first $n$ positive integers , let $S(\sigma)$ be the set of all distinct sums of the form $\sum_{i=k}^{l} \sigma(i)$ where $1 \leq k \leq l \leq n$ . (a) Exhibit a permutation $\sigma$ of the first $n$ positive integers such that $ S(\sigma)  \geq \left\lfloor \frac{(n+1)^2}{4} \right\rfloor$ . (b) Show that $ S(\sigma)  > \frac{n\sqrt{n}}{4\sqrt{2}}$ for all permutations $\sigma$ of the first $n$ positive integers .                                                                                |
| _ | Day 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 | Let $ABC$ be a triangle. Let $P_1$ and $P_2$ be points on the side $AB$ such that $P_2$ lies on the segment $BP_1$ and $AP_1 = BP_2$ ; similarly, let $Q_1$ and $Q_2$ be points on the side $BC$ such that $Q_2$ lies on the segment $BQ_1$ and $BQ_1 = CQ_2$ . The segments $P_1Q_2$ and $P_2Q_1$ meet at $R$ , and the circles $P_1P_2R$ and $Q_1Q_2R$ meet again at $S$ , situated inside triangle $P_1Q_1R$ . Finally, let $M$ be the midpoint of the side $AC$ . Prove that the angles $P_1RS$ and $Q_1RM$ are equal.                                                              |
| 2 | Let $n$ be an integer greater than 1, and let $p$ be a prime divisor of $n$ . A confederation consists of $p$ states, each of which has exactly $n$ airports. There are $p$ air companies operating interstate flights only such that every two airports in different states are joined by a direct (two-way) flight operated by one of these companies. Determine the maximal integer $N$ satisfying the following condition: In every such confederation it is possible to choose one of the $p$ air companies and $N$ of the $np$ airports such that one may travel (not necessarily |



### **Art of Problem Solving**

### 2015 Romania Team Selection Tests

directly) from any one of the N chosen airports to any other such only by flights operated by the chosen air company.

3

Define a sequence of integers by  $a_0=1$ , and  $a_n=\sum_{k=0}^{n-1}\binom{n}{k}a_k$ ,  $n\geq 1$ . Let m be a positive integer, let p be a prime, and let q and r be non-negative integers. Prove that:

$$a_{p^mq+r} \equiv a_{p^{m-1}q+r} \pmod{p^m}$$