1. Consider two-tiers of base-stations (BSs): tier 1 and tier 2. The locations of the BSs of tier 1 and tier 2 are modeled as points of independent Poisson point processes of and of other parameters are as follows:

Parameter	Tier 1	Tier 2
Locations	4,	4 2
Intensity	λ_1	λ ₂
Tx- power	P1	P2
Path-loss const.	K	K
Path-loss expon	a_1	d_2

- 05 Mark (a) From the perspective of the typical user, what is the distance distribution to the nearest point of ϕ_1 and ϕ_2 ?
- 2.5 Mark(b) Assuming RSSI based association, what is the probability that the typical user convects to a BS of tier 1?
- 1 Mark (c) For the special case of $P_1 = P_2 = P$ and $d_1 = d_2 = \alpha$, write the expression of (b) above.
- 1 Mark (d) Plot the probability derived in step(b) as a function of λ_1 . Assume $\lambda_2 = 1e-5$, $P_1 = 0$ dB, $P_2 = 10$ dB, $P_3 = 10$ dB, $P_4 = 10$ dB, $P_4 = 10$ dB, $P_5 = 10$ dB, $P_6 = 10$ dB,
 - (e) [Bonus 2 Marks] Verify the above (step(d)) with simulations.