A Book of Abstract Algebra (2nd Edition)

Chapter 32, Problem 3EC

Bookmark

Show all steps: (

ON

Problem

Explain why $x^2 + 3$ is irreducible over $\mathbb{Q}(\sqrt[3]{2})$, then show that

$$[\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}): \mathbb{Q}(\sqrt[3]{2})] = 2$$
. Conclude that $[\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}): \mathbb{Q}] = 6$.

Step-by-step solution

Step 1 of 2

The objective is to explain why $x^2 + 3$ is irreducible over $\mathbb{Q}(\sqrt[3]{2})$, show that

$$\left[\mathbb{Q}\left(\sqrt[3]{2},i\sqrt{3}\right):\mathbb{Q}\left(\sqrt[3]{2}\right)\right]=2 \text{ and then to conclude that } \left[\mathbb{Q}\left(\sqrt[3]{2},i\sqrt{3}\right):\mathbb{Q}\right]=6.$$

Comment

Step 2 of 2

Because $\mathbb{Q}(\sqrt[3]{2})$ is a subfield of the reals and so $i\sqrt{3} \notin \mathbb{Q}(\sqrt[3]{2})$.

Hence, $x^2 + 3$ is irreducible over $\mathbb{Q}(\sqrt[3]{2})$.

So
$$\cdot \left[\mathbb{Q}\left(\sqrt[3]{2}, i\sqrt{3}\right) : \mathbb{Q}\left(\sqrt[3]{2}\right) \right]$$
 is at least 2 .

But $i\sqrt{3}$ is a root of $x^2+3\in\mathbb{Q}\left(\sqrt[3]{2}\right)[X]$, so the degree of $\mathbb{Q}\left(\sqrt[3]{2},i\sqrt{3}\right)$ over $\mathbb{Q}\left(\sqrt[3]{2}\right)$ is at most 2, and therefore, is exactly 2.

Hence
$$, \lceil \mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) : \mathbb{Q}(\sqrt[3]{2}) \rceil = 2.$$

Thus,
$$\left[\mathbb{Q}\left(\sqrt[3]{2},i\sqrt{3}\right):\mathbb{Q}\right] = \left[\mathbb{Q}\left(\sqrt[3]{2},i\sqrt{3}\right):\mathbb{Q}\left(\sqrt[3]{2}\right)\right]\left[\mathbb{Q}\left(\sqrt[3]{2}\right):\mathbb{Q}\right]$$

$$= 2 \cdot 3$$

$$= 6.$$

Comment	