Outline

- Some Hard Problems
- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- MP-Complete Problems
- 5 Dealing with NP-Hard Problems
- **6** Summary
- Summary of Studies 2024 Fall

- Introduction:
 - Asymptotic analysis: O, Ω , Θ , compare the orders

- Introduction:
 - Asymptotic analysis: O, Ω , Θ , compare the orders
 - Polynomial time (efficient algorithm), exponential time

- Introduction:
 - Asymptotic analysis: O, Ω, Θ , compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:

- Introduction:
 - Asymptotic analysis: O, Ω, Θ , compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph

- Introduction:
 - Asymptotic analysis: O, Ω , Θ , compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph
 - Two representations: adjacency matrix, linked lists

- Introduction:
 - Asymptotic analysis: O, Ω , Θ , compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph
 - Two representations: adjacency matrix, linked lists
 - Path, cycle, tree, directed acyclic graph, bipartite graph

- Introduction:
 - Asymptotic analysis: O, Ω , Θ , compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph
 - Two representations: adjacency matrix, linked lists
 - Path, cycle, tree, directed acyclic graph, bipartite graph
 - Connectivity problem: BFS and DFS algorithm

- Introduction:
 - Asymptotic analysis: O, Ω , Θ , compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph
 - Two representations: adjacency matrix, linked lists
 - Path, cycle, tree, directed acyclic graph, bipartite graph
 - Connectivity problem: BFS and DFS algorithm
 - Testing Bipartiteness problem: test-bipartiteness-BFS or test-bipartiteness-DFS algorithm

- Introduction:
 - Asymptotic analysis: O, Ω , Θ , compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph
 - Two representations: adjacency matrix, linked lists
 - Path, cycle, tree, directed acyclic graph, bipartite graph
 - Connectivity problem: BFS and DFS algorithm
 - Testing Bipartiteness problem: test-bipartiteness-BFS or test-bipartiteness-DFS algorithm
 - Topological Ordering problem: topological-sort algorithm

- Introduction:
 - Asymptotic analysis: O, Ω , Θ , compare the orders
 - Polynomial time (efficient algorithm), exponential time
- Graph Basics:
 - Undirected graph, directed graph
 - Two representations: adjacency matrix, linked lists
 - Path, cycle, tree, directed acyclic graph, bipartite graph
 - Connectivity problem: BFS and DFS algorithm
 - Testing Bipartiteness problem: test-bipartiteness-BFS or test-bipartiteness-DFS algorithm
 - Topological Ordering problem: topological-sort algorithm
- HW 1, Quiz 2-4, P1

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem
 - Interval Scheduling problem

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem
 - Interval Scheduling problem
 - Interval Partitioning problem

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem
 - Interval Scheduling problem
 - Interval Partitioning problem
 - Offline Caching problem

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem
 - Interval Scheduling problem
 - Interval Partitioning problem
 - Offline Caching problem
 - Priority Queue: heap

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem
 - Interval Scheduling problem
 - Interval Partitioning problem
 - Offline Caching problem
 - Priority Queue: heap
 - Huffman Code problem

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem
 - Interval Scheduling problem
 - Interval Partitioning problem
 - Offline Caching problem
 - Priority Queue: heap
 - Huffman Code problem
- HW 2, Quiz 4-6, P1, Mid Exam I

- Greedy algorithms: safety strategy+self reduce
 - Box Packing problem
 - Interval Scheduling problem
 - Interval Partitioning problem
 - Offline Caching problem
 - Priority Queue: heap
 - Huffman Code problem
- HW 2, Quiz 4-6, P1, Mid Exam I
- Quiz 6: Job scheduling with deadline, clustering problem,
 Weighted scheduling problem

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
 - Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
 - Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
 - Counting inversions problem

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
 - Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
 - Counting inversions problem
 - Selection problem

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
 - Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
 - Counting inversions problem
 - Selection problem
 - Polynomial Multiplication problem

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
 - Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
 - Counting inversions problem
 - Selection problem
 - Polynomial Multiplication problem
 - Recurrences: recursive-tree method and Master Theorem

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
 - Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
 - Counting inversions problem
 - Selection problem
 - Polynomial Multiplication problem
 - Recurrences: recursive-tree method and Master Theorem
 - Fibonacci number problem

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
 - Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
 - Counting inversions problem
 - Selection problem
 - Polynomial Multiplication problem
 - Recurrences: recursive-tree method and Master Theorem
 - Fibonacci number problem
- HW 3, Quiz 7-8 (in-class quiz), P1-2

- Divide-and-Conquer algorithms: Divide+Conquer+Combine
 - Sorting problem: merge-sort algorithm, quick-sort algorithm (and In-Place sorting algorithm)
 - Counting inversions problem
 - Selection problem
 - Polynomial Multiplication problem
 - Recurrences: recursive-tree method and Master Theorem
 - Fibonacci number problem
- HW 3, Quiz 7-8 (in-class quiz), P1-2
- Quiz 8: Modular Exponentiation Problem, Matrix Multiplication, Closest Pair, Convex Hull

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem
 - Subset Sum problem

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem
 - Subset Sum problem
 - Knapsack problem

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem
 - Subset Sum problem
 - Knapsack problem
 - Longest common subsequence problem (LCS)

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem
 - Subset Sum problem
 - Knapsack problem
 - Longest common subsequence problem (LCS)
 - Edit distance with insertions and deletions problem

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem
 - Subset Sum problem
 - Knapsack problem
 - Longest common subsequence problem (LCS)
 - Edit distance with insertions and deletions problem
 - Edit distance with insertions, deletions and replacing problem

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem
 - Subset Sum problem
 - Knapsack problem
 - Longest common subsequence problem (LCS)
 - Edit distance with insertions and deletions problem
 - Edit distance with insertions, deletions and replacing problem
 - Shortest Path in Directed Acyclic Graph (DAG)

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem
 - Subset Sum problem
 - Knapsack problem
 - Longest common subsequence problem (LCS)
 - Edit distance with insertions and deletions problem
 - Edit distance with insertions, deletions and replacing problem
 - Shortest Path in Directed Acyclic Graph (DAG)
 - Matrix Chain Multiplication problem

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem
 - Subset Sum problem
 - Knapsack problem
 - Longest common subsequence problem (LCS)
 - Edit distance with insertions and deletions problem
 - Edit distance with insertions, deletions and replacing problem
 - Shortest Path in Directed Acyclic Graph (DAG)
 - Matrix Chain Multiplication problem
 - Optimum Binary Search Tree Problem

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem
 - Subset Sum problem
 - Knapsack problem
 - Longest common subsequence problem (LCS)
 - Edit distance with insertions and deletions problem
 - Edit distance with insertions, deletions and replacing problem
 - Shortest Path in Directed Acyclic Graph (DAG)
 - Matrix Chain Multiplication problem
 - Optimum Binary Search Tree Problem
- HW 3-4, Quiz 9-10 (in-class quiz), P2, Mid Exam II

- Dynamic Programming algorithms: subproblem+recurrence relation+calculate from base case
 - Weighted interval scheduling problem
 - Subset Sum problem
 - Knapsack problem
 - Longest common subsequence problem (LCS)
 - Edit distance with insertions and deletions problem
 - Edit distance with insertions, deletions and replacing problem
 - Shortest Path in Directed Acyclic Graph (DAG)
 - Matrix Chain Multiplication problem
 - Optimum Binary Search Tree Problem
- HW 3-4, Quiz 9-10 (in-class quiz), P2, Mid Exam II
- Quiz 10: Longest Increasing Subsequence, Maximum Total Weight Independent Set, Shortest Path With Even Number of Vertices, Counting number of inverted 5-tuples

- Minimum spanning tree problem
 - Kruskal alg

- Minimum spanning tree problem
 - Kruskal alg
 - Reverse Kruskal

- Minimum spanning tree problem
 - Kruskal alg
 - Reverse Kruskal
 - Prim's alg

- Minimum spanning tree problem
 - Kruskal alg
 - Reverse Kruskal
 - Prim's alg
- Minimum spanning forest problem

- Minimum spanning tree problem
 - Kruskal alg
 - Reverse Kruskal
 - Prim's alg
- Minimum spanning forest problem
- Shortest path problem

- Minimum spanning tree problem
 - Kruskal alg
 - Reverse Kruskal
 - Prim's alg
- Minimum spanning forest problem
- Shortest path problem
 - Dijkstra alg

- Minimum spanning tree problem
 - Kruskal alg
 - Reverse Kruskal
 - Prim's alg
- Minimum spanning forest problem
- Shortest path problem
 - Dijkstra alg
 - Bellman-Ford alg

- Minimum spanning tree problem
 - Kruskal alg
 - Reverse Kruskal
 - Prim's alg
- Minimum spanning forest problem
- Shortest path problem
 - Dijkstra alg
 - Bellman-Ford alg
 - Floyd-Warshall alg

- Minimum spanning tree problem
 - Kruskal alg
 - Reverse Kruskal
 - Prim's alg
- Minimum spanning forest problem
- Shortest path problem
 - Dijkstra alg
 - Bellman-Ford alg
 - Floyd-Warshall alg
- HW 4, Quiz 11, P2

- Complexity Classes
 - P, NP, Co-NP

- Complexity Classes
 - P, NP, Co-NP
 - NP-complete, NP hard

- Complexity Classes
 - P, NP, Co-NP
 - NP-complete, NP hard
- Polynomial Reduction

- Complexity Classes
 - P, NP, Co-NP
 - NP-complete, NP hard
- Polynomial Reduction
 - HC \leq_P HP and HP \leq_P HC

- Complexity Classes
 - P, NP, Co-NP
 - NP-complete, NP hard
- Polynomial Reduction
 - HC \leq_P HP and HP \leq_P HC
 - Circuit SAT \leq_P 3-SAT

- Complexity Classes
 - P, NP, Co-NP
 - NP-complete, NP hard
- Polynomial Reduction
 - HC \leq_P HP and HP \leq_P HC
 - Circuit SAT \leq_P 3-SAT
 - 3-SAT \leq_P IS

- Complexity Classes
 - P, NP, Co-NP
 - NP-complete, NP hard
- Polynomial Reduction
 - HC \leq_P HP and HP \leq_P HC
 - Circuit SAT \leq_P 3-SAT
 - 3-SAT \leq_P IS
 - IS $=_P$ Clique

- Complexity Classes
 - P, NP, Co-NP
 - NP-complete, NP hard
- Polynomial Reduction
 - HC \leq_P HP and HP \leq_P HC
 - Circuit SAT \leq_P 3-SAT
 - 3-SAT $<_P$ IS
 - IS $=_P$ Clique
 - IS $=_P$ Vertex Cover

- Complexity Classes
 - P, NP, Co-NP
 - NP-complete, NP hard
- Polynomial Reduction
 - HC \leq_P HP and HP \leq_P HC
 - Circuit SAT \leq_P 3-SAT
 - 3-SAT $<_P$ IS
 - IS $=_P$ Clique
 - IS $=_P$ Vertex Cover
 - 3-SAT \leq_P 3 Coloring

- Complexity Classes
 - P, NP, Co-NP
 - NP-complete, NP hard
- Polynomial Reduction
 - HC $<_P$ HP and HP $<_P$ HC
 - Circuit SAT <_P 3-SAT
 - 3-SAT $<_P$ IS
 - IS $=_P$ Clique
 - IS $=_P$ Vertex Cover
 - 3-SAT \leq_P 3 Coloring
- HW 4, Quiz 12-13