Pixelweise Klassifikation mit tiefen Neuronalen Netzwerken

Marvin Teichmann

Machine-Learning Karlsruhe

16. Juli 2015

Problemstellung & Anwendungen

Autonomes Fahren

Medizininformatik

Bildsegmentierung

Bildweise Klassifikation

MNIST

0.21% Test Error

ImageNET

6.65% Test Error

Sliding-Window Ansatz

Klassifikation Netz

Input: Ein $n \times n$ Pixel

großer Bildauschnitt.

Output: 1, falls der mittlere

Pixel Straße ist.

Output: 1 x 1

Sliding-Window im Netz

verborgene Schicht

Ausgabeschicht

Deconvolution Netzwerke

Heatmap erzeugt durch Deconvolution Funktionsweise eines Deconvolution Layers Netz

Deconvolution network

Aufbau eines Deconvolution Netzwerkes

Ziel

Verstehen von aktuellen Forschungsergebnissen im Bereich ML

Ziel

Verstehen von aktuellen Forschungsergebnissen im Bereich ML

Ablauf (Moderiert durch einen Experten)

- Strukturiertes durchgehen des Papers und klären offener Fragen
- Offene Diskussion
- Open Planung der nächsten Sitzung

Ziel

Verstehen von aktuellen Forschungsergebnissen im Bereich ML

Ablauf (Moderiert durch einen Experten)

- Strukturiertes durchgehen des Papers und klären offener Fragen
- Offene Diskussion
- Planung der nächsten Sitzung
- Vorkenntnisse Deep Learning & CNNs

Ziel

Verstehen von aktuellen Forschungsergebnissen im Bereich ML

Ablauf (Moderiert durch einen Experten)

- Strukturiertes durchgehen des Papers und klären offener Fragen
- Offene Diskussion
- Planung der nächsten Sitzung
- Vorkenntnisse Deep Learning & CNNs
- Vorbereitung Paper im Vorfeld durcharbeiten
- Zeitaufwand 5-6 Stunden pro Sitzung
- Zyklus alle 2-3 Wochen

Ziel

Verstehen von aktuellen Forschungsergebnissen im Bereich ML

Ablauf (Moderiert durch einen Experten)

- Strukturiertes durchgehen des Papers und klären offener Fragen
- Offene Diskussion
- Open Planung der nächsten Sitzung

Vorkenntnisse Deep Learning & CNNs

Vorbereitung Paper im Vorfeld durcharbeiten

Zeitaufwand 5-6 Stunden pro Sitzung

Zyklus alle 2-3 Wochen

Ideale Größe: 3-6 Teilnehmer

Scope relativ offen

Los gehts

erste Treffen

Datum Mittwoch. 11. November

• Zeit: 17:30 - 19:00 Uhr

Thema: Hongsheng et. al [7] (Sliding Window im Netz)

Fragen?

marxxx.teichmxxx@gmail.com

weitere Informationen

http://machine-learning.rocks/papers-scissors

Veröffentlichungen

- Fully Convolutional Networks for Semantic Segmentation; Jon Long, Evan Shelhamer (CVPR 2015)
- Efficient Convolutional Neural Networks for Pixelwise Classification on Heterogeneous Hardware Systems; Fabian Tschopp (ETH 2015)
- Oeep Deconvolutional Networks for Scene Parsing; R. Mohan (arXiv 2014)
- Pixel-wise Segmentation of Street with Neural Networks; Martin Thoma, Marvin Teichmann, et. al (KIT 2015)
- Learning Deconvolution Network for Semantic Segmentation; Hyeonwoo Noh, Seunghoon Hong, Bohyung Han (arXiv 2015)
- Highly Efficient Forward and Backward Propagation of Convolutional Neural Networks for Pixelwise Classification; Hongsheng Li, Rui Zhao, Xiaogang Wang (arXiv 2014)

Bildquellen

 Learning Deconvolution Network for Semantic Segmentation, Noh, Hong, Han

Thanks for Your Attention!

