PRELIMINARY

IRF7314

HEXFET® Power MOSFET

Generation V Technology

- Ultra Low On-Resistance
- Dual P-Channel MOSFET
- Surface Mount
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques.

Absolute Maximum Ratings (T_A = 25°C Unless Otherwise Noted)

		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	-20	v	
Gate-Source Voltage		V_{GS}	± 12		
Continuous Drain Current®	$T_A = 25$ °C		-5.3		
Continuous Diain Current	$T_A = 70$ °C	I_D	-4.3	Α	
Pulsed Drain Current		I _{DM}	-21		
Continuous Source Current (Diode Conduction)		ls	-2.5		
Maximum Power Dissipation ⑤	$T_A = 25$ °C	D	2.0	10/	
	$T_A = 70$ °C	- P _D	1.3	W	
Single Pulse Avalanche Energy		E _{AS}	150	mJ	
Avalanche Current		I _{AR}	-2.9	А	
Repetitive Avalanche Energy		E _{AR}	0.20	mJ	
Peak Diode Recovery dv/dt3		dv/dt	-5.0	V/ ns	
Junction and Storage Temperature Range		$T_{J,}T_{STG}$	-55 to + 150	℃	

Thermal Resistance Ratings

Parameter	Symbol	Limit	Units
Maximum Junction-to-Ambient®	R _{eJA}	62.5	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-20			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.031		V/°C	Reference to 25°C, I _D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.049	0.058	. 0	V _{GS} = -4.5V, I _D = -2.9A ④
			0.082	0.098		$V_{GS} = -2.7V, I_D = -1.5A$ ④
V _{GS(th)}	Gate Threshold Voltage	-0.70			V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$
g _{fs}	Forward Transconductance		5.9		S	$V_{DS} = -10V, I_{D} = -1.5A$
lane	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -16V$, $V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			-25	μA	$V_{DS} = -16V, V_{GS} = 0V, T_{J} = 55^{\circ}C$
loss	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = -12V$
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	$V_{GS} = 12V$
Qg	Total Gate Charge		19	29		I _D = -2.9A
Q _{gs}	Gate-to-Source Charge		4.0	6.1	nC	$V_{DS} = -16V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		7.7	12	Ī	V_{GS} = -4.5V, See Fig. 10 \oplus
t _{d(on)}	Turn-On Delay Time		15	22		$V_{DD} = -10V$
t _r	RiseTime		40	60	ns	$I_D = -2.9A$
t _{d(off)}	Turn-Off Delay Time		42	63	115	$R_G = 6.0\Omega$
t _f	FallTime		49	73		$R_D = 3.4\Omega$ ④
C _{iss}	Input Capacitance		780			$V_{GS} = 0V$
Coss	Output Capacitance	l	470		рF	$V_{DS} = -15V$
C _{rss}	Reverse Transfer Capacitance		240			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			0.5		MOSFET symbol
	(Body Diode)		-2.5	_	showing the	
I _{SM}	Pulsed Source Current			24	A	integral reverse G
	(Body Diode) ①			-21		p-n junction diode.
V _{SD}	Diode Forward Voltage		-0.78	-1.0	V	$T_J = 25$ °C, $I_S = -2.9$ A, $V_{GS} = 0$ V ③
t _{rr}	Reverse Recovery Time		47	71	ns	$T_J = 25^{\circ}C, I_F = -2.9A$
Q _{rr}	Reverse RecoveryCharge		49	73	nC	di/dt = 100A/μs ③

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting $T_J = 25$ °C, L = 35mH $R_G = 25\Omega$, $I_{AS} = -2.9$ A.
- $\label{eq:loss_def} \begin{tabular}{ll} $ \end{tabular} $$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Typical Source-Drain Diode Forward Voltage

Fig 5. Normalized On-Resistance Vs. Temperature

Fig 6. Typical On-Resistance Vs. Drain Current

Fig 7. Typical On-Resistance Vs. Gate Voltage

Fig 8. Maximum Avalanche Energy Vs. Drain Current

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Package Outline

SO8 Outline

Part Marking Information

SO8

Tape & Reel Information

SO8

Dimensions are shown in millimeters (inches)

International Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

http://www.irf.com/ Data and specifications subject to change without notice. 11/97