Optimising Replay for Partially Observable Domains Georgy, lab meeting 09/03/22

talk outline

- planning
- DYNA, prioritised sweeping
- o explore-exploit
- o normative theory of hippocampal replay
- o replay in Bayesian bandits
- o replay in BAMDPs
- limitations and future directions

planning

- o generally speaking, planning refers to the process of computing a policy i.e., coming up with an action to execute
- in value-based planning, this is achieved by estimating values associated with the available actions
- o planning typically requires a model of the environment
- o several aproaches exist: dynamic programming (DP), sample/simulation-based

planning → dynamic programming

Bellman optimality equation

$$V^*(s) = \max_{a} \sum_{s'} \mathcal{P}^{a}_{ss'} [\mathcal{R}^{a}_{ss'} + \gamma V^*(s')]$$

o value iteration is one example value-based planning algorithm

$$V_k(s) \leftarrow \max_{a} \sum_{s'} \mathcal{P}_{ss'}^a [\mathcal{R}_{ss'}^a + \gamma V_{k-1}(s')]$$

- \circ assumes a known model of the environment $\mathcal{P}_{ss'}^{a}$
- o performs synchronous sweeps over all states; computationally expensive; time-consuming

planning \rightarrow MCTS

- MCTS is a simulation-based planning algorithm
- Tree and rollout policies
- Difficult to balance exploration and exploitation

DYNA

Sutton (1990)

- DYNA is an integrated architecture
- o combines a reactive MF policy and a deliberate MB system
- o MB system is used offline to provide additional training to MF values

$\mathsf{DYNA} \to \mathsf{example}$

WITH PLANNING ($n=50$)								
	-	-	+	\	-	\		G
			¥	+	¥	\		†
S			-	\	-	\		A
			-	-	-	-	-	A
			-	A		-	-	
		_	A	-	_	A	A	-

- o agent discovers online prediction erros (e.g., a goal)
- $\circ\,$ model inversion to additionally train MF values

$$Q^{MF}(s,a) \leftarrow Q^{MF}(s,a) + \alpha [R^{MB}(s') + \gamma \max_{a'} Q^{MB}(s',a') - Q^{MF}(s,a)]$$

asynchronous DP

prioritised sweeping

- o asynchronous DP updates can be optimised
- o online discovery of a prediction error results in high offline prediction errors for the immediately preceeding states
- the idea of prioritised sweeping (Moore et al., 1993) is to execute the individual updates according to a priority queue, for instance:

$$p(s, a) = |Q^{MF}(s, a) + \alpha[R(s') + \gamma \max_{a'} Q^{MF}(s', a') - Q^{MF}(s, a)]|$$

prioritised sweeping \rightarrow example

explore-exploit

- Optimal behaviour necessitates optimal balance of exploration and exploitation
- o Multiple heuristics have been devised to encourage exploration
- One prominent heuristic is called an exploration bonus
- Sutton (1991) proposed to add an exploration bonus to the values of state-action pairs which have not been visited recently:

$$Q^{MB}(s,a) \leftarrow Q^{MB}(s,a) + \kappa \sqrt{\epsilon_{(s,a)}}$$

where $\epsilon_{(s,a)}$ grows with the number of time steps elapsed since the state-action pair (s,a) was last tried, and κ controls the rate of exploration

explore-exploit \rightarrow DYNA-Q+

- note that this exploration bonus is myopic
- \circ propagates from distal locations due to the Q-learning rule
- however, it is blind towards what could be the consequences of exploration

hippocampal replay

Drieu et al. (2019)

- reinstatement of behaviourally-relevant neural activity during periods of quiet wakefullness and sleep (offline periods)
- o the order of the replayed experiences is highly specific
- o can proceed in forward and reverse directions
- o forward replay seems to be predictive of the subsequent animal choices; reverse replay is highly sensitive to reward

hippocampal replay ightarrow normative theory

- Mattar & Daw (2018) realised that hippocampal replay might be a candidate mechanism for offline generative planning – acting in accordance with the DYNA system by supplying MB information to the animal's MF policy
- each replay experience, according to Mattar & Daw, corresponds to an update of an MF value for a state-action pair
- each replay update therefore changes the animal's policy at the state where that update is executed
- the fact that the order in which replay experiences proceed is highly specific suggests some sort of prioritisation (prioritised sweeping)

hippocampal replay \rightarrow normative theory

o by the repeated unrolling of $v_{\pi_{\text{new}}}(s) - v_{\pi_{\text{old}}}(s)$, where s is the animal's current location, M&D showed that the value of computation (i.e., replay update) performed at state s_k for action a_k can be decomposed into two terms

$$\mathsf{EVB}(s_k, a_k) = \sum_{s' \in \mathcal{S}} \underbrace{\sum_{i=0}^{\infty} \gamma^i P(s \to s', i, \pi_{\mathsf{old}})}_{\mathsf{Need}} \times \underbrace{\sum_{a} [\pi_{\mathsf{new}}(a \mid s') - \pi_{\mathsf{old}}(a \mid s')] q_{\pi_{\mathsf{new}}}(s', a)}_{\mathsf{Gain}}$$

- \circ Need is the expected discounted future occupancy of state s' under the animal's policy prior to the update, $\pi_{\rm old}$
- Gain quantifies the local policy improvement at the state where the potential replay update is considered

hippocampal replay \rightarrow normative theory

hippocampal replay ightarrow normative theory

$$\mathsf{EVB}(s_k, a_k) = \sum_{s' \in \mathcal{S}} \underbrace{\sum_{i=0}^{\infty} \gamma^i P(s \to s', i, \pi_{\mathsf{old}})}_{\mathsf{Need}} \times \underbrace{\sum_{a} [\pi_{\mathsf{new}}(a \mid s') - \pi_{\mathsf{old}}(a \mid s')] q_{\pi_{\mathsf{new}}}(s', a)}_{\mathsf{Gain}}$$

Assumptions of the M&D model:

- \circ policy updates are local, and thus M&D get rid of the first sum over ${\cal S}$
- Note this means that the benefit of policy change at a distal state is only considered at the animal's current state
- \circ Gain is expressed in terms of the *true Q*-values implied by the new policy, $q_{\pi_{ ext{new}}}$
- the transition model P is known

hippocampal replay \rightarrow exploration?

hippocampal replay \rightarrow exploration?

- o turns out the model of M&D doesn't explore well
- weird because the original intention of DYNA was to encourage exploration
- Need acts as a regulariser once a policy is learnt it biases the selection of replay updates towards those states which the current policy already expects to visit (pure exploitation!)
- Gain (in fact, Need as well) doesn't account for the potential information which can be learnt and utilised in the future

hippocampal replay \rightarrow exploration?

explore-exploit revisited

- \circ in Bayesian RL, one often assumes some prior belief b over the unknown parameters
- o in Bayes-adaptive MDPs [BAMDPs; Duff (1995)], the prior is over the unknown transition model parameters:

$$P(s' \mid s, a) = \int_{\Theta} P(s' \mid s, a, \theta) b(\theta) d\theta$$

- o once integrated out, the model becomes known; moreover, it incorporates the agent's epistemic uncertainty i.e., the 'known unknowns'
- the resulting policies are known as Bayes-adaptive policies, since they optimally trade-off exploration and exploitation

 planning in bandits can be visualised as belief trees

Guez (2015)

 o optimal solution is known as the Gittins indices (Gittins, 1979), which correspond to the DP solution in the belief space

replay in Bayesian bandits

• we can do the same decomposition as in M&D but for belief states:

$$\mathsf{EVB}(b_k, a_k) = \gamma^h P(b_\rho \to b_k, h, \pi_\mathsf{old}) \times \sum_{a} [\pi_\mathsf{new}(a \mid b_k) - \pi_\mathsf{old}(a \mid b_k)] q_{\pi_\mathsf{new}}(a, b_k)$$

- o where b_{ρ} is the prior belief at the root, and h is the horizon of belief b_k
- note that Need here is not cumulative; this is because each belief state can be visited at most once due to continual learning

- o each rectangle is a belief state
- ∘ colour intensity corresponds to Need, $\gamma^h P(b_\rho \to b_k, h, \pi_{\text{old}})$
- o each arrow is an action
- blue numbers are Q-values
- in this tree example, the root belief is $(\alpha_0 = 5, \beta_0 = 1, \alpha_1 = 2, \beta_1 = 4)$
- \circ the tree policy is a softmax with $\beta=4$

dill

digi

replay in Bayesian bandits

• the effects of each consequitive update on the root value, $V(b_{\rho})$, as well as the value of the new (updated) policy evaluated in the tree, V^{π}

ı'n

dill

replay in Bayesian bandits

- o one more example
- \circ this time for the prior ($\alpha_0 = 14, \beta_0 = 10, \alpha_1 = 4, \beta_1 = 3$)

dill

digi

dill

digi

dill

digi

0.60 0.58 0.62 0.56 0.56 0.56

ı'n

Hill

replay in Bayesian bandits

- o planning in belief space can be optimised
- o free generalisation for subsequent beliefs
- note the use of a softmax policy
- we are ultimately interested in exploration in DYNA-like systems which have an MF policy; MB system needs to convince the MF policy that something is worth exploring
- o otherwise, the Need term $\gamma^h P(b_\rho \to b_k, h, \pi_{\text{old}})$ would be zero for those beliefs which the current MF policy doesn't expect to visit
- o similar issues in MCTS e.g., UCB

replay in BAMPDs

- o in BAMDPs, we transition through belief states as well as physical states. Jointly, these are referred to as information states $z = \langle s, b \rangle$
- o the prioritisation in BAMDPs thus takes the following form:

$$\mathsf{EVB}(z_k, a_k) = \sum_{z' \in \mathcal{Z}} \sum_{i=0}^{\infty} \gamma^i P(z \to z', i, \pi_{\mathsf{old}}) \times \sum_{a} [\pi_{\mathsf{new}}(a \mid z') - \pi_{\mathsf{old}}(a \mid z')] q_{\pi_{\mathsf{new}}}(z', a)$$

- o note that each $z = \langle s, b \rangle$ can still be visited at most once
- we know, however, that although the belief changes continuosly, the agent should still expect to visit the same physical state over and over again
- \circ moreover, the summation over $\mathcal Z$ allows us to account for generalisation that is, how updates at single information states (revealing a piece of information) affect policy at other beliefs (not quite there yet)