FY116G Problem 3.2 - Uncertainty Analysis

Get["UCAnalysis.m", Path → {NotebookDirectory[]}]

```
Рa
```

```
atm := 101 325; (*Pa*)
```

```
V_2/V_1 = 2.67847581653 \pm 0.0832781
       \in [2.595198; 2.761754]; NormalD
       \simeq (2.678 ± 0.084) × 10<sup>0</sup> = 2.678(84)
```

QAnalysisEnvironment

$$\mathbf{y} = \frac{\mathbf{x}_1 \ \mathbf{x}_4}{\mathbf{x}_2 \ \mathbf{x}_3}$$

Quantity		Estimate ± Uncertainty	Distribution	$ \partial f / \partial x_i $
x ₁	p_1	$(2.5331250 \pm 0.0506625) \times 10^{5}$	Uniform	1.05738×10^{-5}
x ₂	T ₁	$(2.8015 \pm 0.0005) \times 10^{2}$	Uniform	9.56086×10^{-3}
x ₃	\mathbf{p}_2	$(1.0132500 \pm 0.0506625) \times 10^{5}$	Uniform	2.64345×10^{-5}
X4	T ₂	$(3.0015 \pm 0.0005) \times 10^{2}$	Uniform	8.92379×10^{-3}

У	2.67847581652686061038729252186	
Ymin Ymax	2.4990482988342 2.8768297036773	= y - 0.179428 = y + 0.198354
$\varepsilon_{ exttt{max}}$	0.18841753985659947539003878146 (2.68±0.19) × 10°	= 7.03% = 2.68(19)
$y \pm \varepsilon_{max}$ u_c	0.0832780532104224335411338059188	= 2.88(19)
y ± u _c	(2.678 ± 0.084) × 10°	= 2.678 (84)

PMonteCarlo [10 6] // PUC

```
2.680748 ± 0.0834035
∈ [2.597344; 2.764151]
\simeq (2.681 ± 0.084) \times 10<sup>0</sup> = 2.681(84)
```

Sanity Check

QDumpRelationship

$$V_2/V_1 = \frac{p_1 T_2}{p_2 T_1}$$

QDumpQuantities

```
V_2/V_1 = 2.678476 \pm 0.0832781
        \in [2.595198; 2.761754]; NormalD
        \simeq (2.678 ± 0.084) × 10<sup>0</sup> = 2.678(84)
p_1 = (253312.5 \pm 5066.25) Pa
    € [248246.2; 258378.8] Pa; UniformD
    \simeq (2.533 ± 0.051) x 10<sup>5</sup> Pa = 2.533(51) x 10<sup>5</sup> Pa
T_1 = (280.15 \pm 0.05) \text{ K}
    € [280.1; 280.2] K; UniformD
    \simeq (2.8015 ± 0.0005) × 10<sup>2</sup> K = 2.8015 (5) × 10<sup>2</sup> K
p_2 = (101325 \pm 5066.25) Pa
    € [96258.75; 106391.2] Pa; UniformD
    \simeq (1.013 ± 0.051) × 10<sup>5</sup> Pa = 1.013(51) × 10<sup>5</sup> Pa
T_2 = (300.15 \pm 0.05) \text{ K}
    € [300.1; 300.2] K; UniformD
    \simeq (3.0015 ± 0.0005) × 10<sup>2</sup> K = 3.0015 (5) × 10<sup>2</sup> K
```