

Compiler Design

Parse Table Construction

Amey Karkare
Department of Computer Science and Engineering
IIT Kanpur

karkare@iitk.ac.in

Constructing parse table

Augment the grammar

- G is a grammar with start symbol S
- The augmented grammar G' for G has a new start symbol S' and an additional production S' → S
- When the parser reduces by this rule it will stop with accept

Production to Use for Reduction

- How do we know which production to apply in a given configuration
- We can guess!
 - May require backtracking
- Keep track of "ALL" possible rules that can apply at a given point in the input string
 - But in general, there is no upper bound on the length of the input string
 - Is there a bound on the number of applicable rules?

Some hands on!

- 1. $E' \rightarrow E$
- 2. $E \rightarrow E + T$
- 3. $E \rightarrow T$
- 4. $T \rightarrow T * F$
- 5. $T \rightarrow F$
- 6. $F \rightarrow (E)$
- 7. $F \rightarrow id$

Strings to Parse

- id + id + id + id
- id * id * id * id
- id * id + id * id
- id * (id + id) * id

Parser states

- Goal is to know the valid reductions at any given point
- Summarize all possible stack prefixes α as a parser state
- Parser state is defined by a DFA state that reads in the stack α
- Accept states of DFA are unique reductions

Viable prefixes

- α is a viable prefix of the grammar if
 - ∃w such that αw is a right sentential form
 - $-<\alpha,w>$ is a configuration of the parser
- As long as the parser has viable prefixes on the stack no parser error has been seen
- The set of viable prefixes is a regular language
- We can construct an automaton that accepts viable prefixes

LR(0) items

- An LR(0) item of a grammar G is a production of G with a special symbol "." at some position of the right side
- Thus production A→XYZ gives four LR(0) items

 $A \rightarrow .XYZ$

 $A \rightarrow X.YZ$

 $A \rightarrow XY.Z$

 $A \rightarrow XYZ$.

LR(0) items

- An item indicates how much of a production has been seen at a point in the process of parsing
 - Symbols on the left of "." are already on the stacks
 - Symbols on the right of "." are expected in the input

Start state

- Start state of DFA is an empty stack corresponding to S'→.S item
- This means no input has been seen
- The parser expects to see a string derived from S

Closure of a state

- Closure of a state adds items for all productions whose LHS occurs in an item in the state, just after
 - Set of possible productions to be reduced next
 - Added items have "." located at the beginning
 - No symbol of these items is on the stack as yet

Example

For the grammar

If I is
$$\{ E' \rightarrow E \}$$
 then closure(I) is

$$E' \rightarrow E$$
 $E \rightarrow E + T \mid T$
 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

$$E' \rightarrow .E$$
 $E \rightarrow .E + T$
 $E \rightarrow .T$
 $T \rightarrow .T * F$
 $T \rightarrow .F$
 $F \rightarrow .id$
 $F \rightarrow .(E)$

Closure operation

- Let I be a set of items for a grammar G
- closure(I) is a set constructed as follows:
 - Every item in I is in closure (I)
 - If A \rightarrow α.Bβ is in closure(I) and B \rightarrow γ is a production then B \rightarrow .γ is in closure(I)
- Intuitively A $\rightarrow \alpha$.B β indicates that we expect a string derivable from B β in input
- If B \rightarrow γ is a production then we might see a string derivable from γ at this point

Goto operation

- Goto(I,X), where I is a set of items and X is a grammar symbol,
 - −is closure of set of item A \rightarrow αX.β
 - -such that A $\rightarrow \alpha$.X β is in I

 Intuitively if I is a set of items for some valid prefix α then goto(I,X) is set of valid items for prefix αX

Goto operation

If I is $\{E' \rightarrow E, E \rightarrow E, +T\}$ then goto(I,+) is

$$E \rightarrow E + .T$$
 $T \rightarrow .T * F$
 $T \rightarrow .F$
 $F \rightarrow .(E)$
 $F \rightarrow .id$

Sets of items

```
C: Collection of sets of LR(0) items for
  grammar G'
C = \{ closure ( \{ S' \rightarrow .S \} ) \}
repeat
  for each set of items I in C
    for each grammar symbol X
       if goto (I,X) is not empty and not in C
         ADD goto(I,X) to C
until no more additions to C
```

Example

```
Grammar:

E' \rightarrow E

E \rightarrow E+T | T

T \rightarrow T*F | F

F \rightarrow (E) | id

I<sub>0</sub>: closure(E'\rightarrow.E)
```

I₀: closure(E'
$$\rightarrow$$
.E)
E' \rightarrow .E
E \rightarrow .E+T
E \rightarrow .T
T \rightarrow .T*F
T \rightarrow .F
F \rightarrow .(E)
F \rightarrow .id

$$I_1$$
: goto(I_0 , E)
 $E' \rightarrow E$.
 $E \rightarrow E$. + T

$$I_2$$
: goto(I_0 ,T)
 $E \rightarrow T$.
 $T \rightarrow T$. *F
 I_3 : goto(I_0 ,F)
 $T \rightarrow F$.

$$I_4$$
: goto(I_0 ,()
F \rightarrow (.E)

$$E \rightarrow .E + T$$
 $E \rightarrow .T$
 $T \rightarrow .T * F$
 $T \rightarrow .F$
 $F \rightarrow .(E)$

$$I_5$$
: goto(I_0 ,id)
 $F \rightarrow id$.

 $F \rightarrow .id$

I_6 : goto(I_1 ,+) $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$ $F \rightarrow .id$	
I_7 : goto(I_2 ,*) $T \rightarrow T$ * .F $F \rightarrow .(E)$ $F \rightarrow .id$	
I ₈ : goto(I ₄ ,E) F → (E.) E → E. + T	
goto(I_4 ,T) is I_2 goto(I_4 ,F) is I_3 goto(I_4 ,() is I_4	

 $goto(I_4,id)$ is I_5

$$I_{9}: goto(I_{6},T)$$

$$E \rightarrow E + T.$$

$$T \rightarrow T. * F$$

$$goto(I_{6},F) \text{ is } I_{3}$$

$$goto(I_{6},G) \text{ is } I_{4}$$

$$goto(I_{6},G) \text{ is } I_{5}$$

$$I_{10}: goto(I_{7},F)$$

$$T \rightarrow T * F.$$

$$goto(I_{7},G) \text{ is } I_{4}$$

$$goto(I_{7},G) \text{ is } I_{5}$$

$$I_{11}: goto(I_{8},F)$$

$$F \rightarrow (E).$$

$$goto(I_{8},F) \text{ is } I_{6}$$

$$goto(I_{9},F) \text{ is } I_{7}$$

LR(0) Parse Table (?)

 The information is still not sufficient to help us resolve shift-reduce conflict.
 For example, the state has potential conflict:

$$I_1: E' \rightarrow E.$$
 $E \rightarrow E. + T$

 We need some more information to take decisions.

Constructing parse table

- First(α) for a string of terminals and non terminals α is
 - Set of symbols that might begin the fully expanded (made of only tokens) version of α
- Follow(X) for a non terminal X is
 - set of symbols that might follow the derivation of X in the input stream

Compute first sets

- If X is a terminal symbol then first(X) = {X}
- If $X \rightarrow E$ is a production then E is in first(X)
- If X is a non terminal and $X \rightarrow Y_1Y_2 \dots Y_k$ is a production, then

```
if for some i, a is in first(Y<sub>i</sub>)
and ∈ is in all of first(Y<sub>j</sub>) (such that j<i)
then a is in first(X)
```

- If ∈ is in first (Y₁) ... first(Y_k) then ∈ is in first(X)
- Now generalize to a string α of terminals and non-terminals

Example

• For the expression grammar

$$E \rightarrow TE' \qquad E' \rightarrow +TE' \mid E$$

$$T \rightarrow FT' \qquad T' \rightarrow *FT' \mid E$$

$$F \rightarrow (E) \mid id$$

$$First(E) = First(T) = First(F)$$

$$= \{ (, id \} \}$$

$$First(E')$$

$$= \{ +, E \}$$

$$First(T')$$

Compute follow sets

- 1. Place \$ in follow(\$) // \$ is the start symbol
- 2. If there is a production $A \rightarrow \alpha B\beta$ then everything in first(β) (except ϵ) is in follow(B)
- 3. If there is a production $A \rightarrow \alpha B\beta$ and first(β) contains ϵ then everything in follow(A) is in follow(B)
- 4. If there is a production $A \rightarrow \alpha B$ then everything in follow(A) is in follow(B)
- Last two steps have to be repeated until the follow sets converge.

Example

For the expression grammar

```
E \rightarrow T E'
E' \rightarrow + T E' \mid E
T \rightarrow F T'
T' \rightarrow * F T' \mid E
F \rightarrow (E) \mid id
```

```
follow(E) = follow(E') = ?
follow(T) = follow(T') = ?
follow(F) = ?
```

Construct SLR parse table

- Construct C={I₀, ..., I_n} the collection of sets of LR(0) items
- If A → α.aβ is in I_i and goto(I_{i,}a) = I_j
 then action[i,a] = shift j
- If $A \rightarrow \alpha$. is in I_i then action[i,a] = reduce $A \rightarrow \alpha$ for all a in follow(A)
- If $S' \rightarrow S$. is in I_i then action[i,\$] = accept
- If goto(I_i,A) = I_j
 then goto[i,A]=j for all non terminals A
- All entries not defined are errors

Practice Assignment

Construct SLR parse table for following grammar

$$E \rightarrow E + E \mid E - E \mid E * E \mid E / E \mid (E) \mid digit$$

Show steps in parsing of string 9*5+(2+3*7)

- Steps to be followed
 - Augment the grammar
 - Construct set of LR(0) items
 - Construct the parse table
 - Show states of parser as the given string is parsed

Notes

- This method of parsing is called SLR (Simple LR)
- LR parsers accept LR(k) languages
 - L stands for left to right scan of input
 - R stands for rightmost derivation
 - k stands for number of lookahead token
- SLR is the simplest of the LR parsing methods.
 SLR is too weak to handle most languages!
- If an SLR parse table for a grammar does not have multiple entries in any cell then the grammar is unambiguous
- All SLR grammars are unambiguous
- Are all unambiguous grammars in SLR?

Does Conflict => Ambiguity?

Example

Consider following grammar and its SLR parse table:

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow *R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

$$I_0: S' \rightarrow .S$$

$$S \rightarrow .L=R$$

$$S \rightarrow .R$$

$$L \rightarrow .*R$$

$$L \rightarrow .id$$

$$R \rightarrow .L$$

$$I_1$$
: goto(I_0 , S)
S' \rightarrow S.

$$I_2$$
: goto(I_0 , L)
S \rightarrow L.=R

$$R \rightarrow L$$
.

Assignment (not to be submitted): Construct rest of the items and the parse table.

SLR parse table for the grammar

	=	*	id	\$	S	L	R
0		s 4	s5		1	2	3
1				acc			
2	s6,r6			r6			
3				r3			
4		s 4	s5			8	7
5	r5			r5			
6		s 4	s5			8	9
7	r4			r4			
8	r6			r6			
9				r2			

The table has multiple entries in action[2,=]

- There is both a shift and a reduce entry in action[2,=]. Therefore state 2 has a shiftreduce conflict on symbol "=", However, the grammar is not ambiguous.
- Parse id=id assuming reduce action is taken in [2,=]

Stack	input	action
0	id=id	shift 5
0 id 5	=id	reduce by L→id
0 L 2	=id	reduce by R→L
0 R 3	=id	error

• if shift action is taken in [2,=]

Stack	input	action
0	id=id\$	shift 5
0 id 5	=id\$	reduce by L \rightarrow id
0 L 2	=id\$	shift 6
0 L 2 = 6	id\$	shift 5
0 L 2 = 6 id 5	\$	reduce by L→id
0L2 = 6L8	\$	reduce by R→L
0 L 2 = 6 R 9	\$	reduce by $S \rightarrow L=R$
0 S 1	\$	ACCEPT

Another look at the grammar

$$S' \rightarrow S$$
 $S \rightarrow L = R$
 $S \rightarrow R$
 $L \rightarrow *R$
 $L \rightarrow id$
 $R \rightarrow L$

- No sentential form of this grammar can start with R=...
- However, the reduce action in action[2,=] generates a sentential form starting with R=
- Therefore, the reduce action is incorrect

Problems in SLR parsing

- In SLR parsing method state i calls for reduction on symbol "a", by rule $A \rightarrow \alpha$ if I_i contains $[A \rightarrow \alpha.]$ and "a" is in follow(A)
- However, when state I appears on the top of the stack, the viable prefix $\beta\alpha$ on the stack may be such that βA can not be followed by symbol "a" in any right sentential form
- Thus, the reduction by the rule A → α on symbol "a" is invalid
- SLR parsers cannot remember the left context