Phase estimation quantum circuit $|u\rangle$ is the eigenvector of U, which is know. $e^{2\pi i\varphi}$ is the eigenvalue of U, with the phase φ unknown. $|j\rangle$ Register1: t qubits $U|u\rangle = e^{2\pi i\varphi}|u\rangle$ Step 4. Measurement Register2: n qubits **Step 3**. Use inverse quantum Fourier Step 1. Use trasnform to move the phase Hadamad gate to information from the probability create superposition amplitude to the quantum bases **Step 2**. Use Controlled-U gate to move

the eigenvalue from register2 to register1

Reference & picture: Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.

Step 1. Use Hadamad gate to create superposition

Step 2. Use Controlled-U gate to move the eigenvalue from register2 to register1

- : We move the eigenvalue $e^{2\pi i\varphi}$ from the $|u\rangle$ space to the $|1\rangle$ space.
- U^{2^n} denotes by the controlled-U gate, which can be implemented by:

PS. The gate on the right-hand side is the controlled phase gate, which is defined in **Step.3**.

Step 3. Use inverse quantum Fourier trasnform to move the phase information from the probability amplitude to the quantum bases

Quantum Fourier transform circuit

PS. For quantum Fourier transform $(|j\rangle \to \frac{1}{\frac{n}{2^2}} \sum_{k=0}^{2^n-1} e^{2\pi i jk/2^n} |k\rangle)$, the gate R_k denotes the controlled phase gate $R_k \equiv \begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{2\pi i}{k}} \end{bmatrix}$; For inverse quantum Fourier transform $(|j\rangle \to \frac{1}{2^{\frac{n}{2}}} \sum_{k=0}^{2^n-1} e^{-2\pi i jk/2^n} |k\rangle)$, the gate R_k denotes the controlled phase gate $R_k \equiv \begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{2\pi i}{k}} \end{bmatrix}$.

Step 4. Measurement

If U is an exact binary fraction, we can measure its phase with probability 1; Otherwise, we can measure it with a very high probability close to 1.

After divide the measuring result of register $(\psi_1\psi_2\cdots\psi_t)$ by 2^t , we can get the phase $0.\psi_1\psi_2\cdots\psi_t$. e.g. Our result for measuring the register 1 is 0001 (t=4). After divided by 2^4 , we get the answer 0.0001, which in decimal is 1/16. Thus the phase is 1/16.