

Homework 3: Introduction to

课程 🗆 Unit 2 Foundation of Inference 🗆 Hypothesis Testing

□ 8. A Union-Intersection Test

8. A Union-Intersection Test

Let X_1,\ldots,X_n be i.i.d. Bernoulli random variables with unknown parameter $p\in(0,1)$. Suppose we want to test

$$H_0: p \in [0.48, 0.51] \quad ext{vs} \quad H_1: p \notin [0.48, 0.51]$$

We want to construct an asymptotic test ψ for these hypotheses using \overline{X}_n . For this problem, we specifically consider the family of tests ψ_{c_1,c_2} where we reject the null hypothesis if either $\overline{X}_n < c_1 \le 0.48$ or $\overline{X}_n > c_2 \ge 0.51$ for some c_1 and c_2 that may depend on n, i.e.

$$\psi_{c_1,c_2} = \mathbf{1}\left((\overline{X}_n < c_1) \, \cup \, (\overline{X}_n > c_2)
ight) \qquad ext{where $c_1 < 0.48 < 0.51 < c_2$.}$$

Throughout this problem, we will discuss possible choices for constants c_1 and c_2 , and their impact to both the asymptotic and non-asymptotic level of the test.

(a)

1/1 point (graded)

Which expression represents the (smallest asymptotic) level α of this test? Recall the (smallest asymptotic) level equals the maximum Type 1 error rate.

$$egin{aligned} oldsymbol{lpha} & lpha & = \max_{p \in [0.48, 0.51]} \left(\mathbf{P}_p \left(\overline{X}_n < c_1
ight) + \mathbf{P}_p \left(\overline{X}_n > c_2
ight)
ight) \ \Box \end{aligned}$$

$$lpha = \max_{p \in [0.48, 0.51]} \left(\max \left(\mathbf{P}_p \left(\overline{X}_n < c_1
ight), \mathbf{P}_p \left(\overline{X}_n > c_2
ight)
ight)
ight)$$

$$lpha = \max_{p \in [0.48, 0.51]} \mathbf{P}_p \left(\overline{X}_n < c_1
ight)$$

$$egin{aligned} & lpha &= \max_{p \in [0.48, 0.51]} \mathbf{P}_p\left(\overline{X}_n > c_2
ight) \end{aligned}$$

$$egin{aligned} & lpha &= \max_{p \in [0.48, 0.51]} \left(\mathbf{P}_p \left(\overline{X}_n < c_1
ight) \cdot \mathbf{P}_p \left(\overline{X}_n > c_2
ight)
ight) \end{aligned}$$

Solution:

A Type I error occurs when $\psi=1$ but H_0 is true; hence the type 1 error rate is

$$lpha_{\psi}\left(p
ight) \ = \ \mathbf{P}_{p}\left(\left(\overline{X}_{n} < c_{1}
ight) \, \cup \, \left(\overline{X}_{n} > c_{2}
ight)
ight)$$

Since $c_1 < 0.48 < 0.51 < c_2$, we have

$$\mathbf{P}_p\left((\overline{X}_n < c_1) \, \cup \, (\overline{X}_n > c_2)
ight) \ = \ \mathbf{P}_p\left(\overline{X}_n < c_1
ight) + \mathbf{P}_p\left(\overline{X}_n > c_2)
ight).$$

Maximizing over this over $p \in [0.48, 0.51]$, we get that the maximum Type 1 error rate of this test, i.e. the smallest level, is

$$oxed{lpha = \max_{p \in [0.48, 0.51]} \left(\mathbf{P}_p\left(\overline{X}_n < c_1
ight) + \mathbf{P}_p\left(\overline{X}_n > c_2
ight)
ight)}.$$

提交

你已经尝试了2次(总共可以尝试2次)

☐ Answers are displayed within the problem

(b)

4.0/4 points (graded)

Use the central limit theorem and the approximation $\sqrt{p\left(1-p\right)} pprox rac{1}{2}$ for $p \in [0.48, 0.51]$ to approximate $\mathbf{P}_p\left(\overline{X}_n < c_1\right)$ and $\mathbf{P}_p\left(\overline{X}_n > c_2\right)$ for large n. Express your answers as a formula in terms of c_1 , c_2 , n and p.

(Write **Phi** for the cdf of a Normal distribution, **c_1** for c_1 , and **c_2** for c_2 .)

$$\mathbf{P}_p\left(\overline{X}_n < c_1
ight) pprox \qquad ext{Phi(sqrt(n)*(c_1-p)*2)} \qquad ext{\square Answer: Phi(2*(c_1 - p)*sqrt(n))}$$

For what value of $\,p \in [0.48, 0.51]\,$ is the expression above for $\,{f P}_p\left(\overline{X}_n < c_1
ight)\,$ maximized?

$$\mathbf{P}_p\left(\overline{X}_n < c_1
ight) ext{ is max at } p = egin{bmatrix} ext{0.48} \ ext{ } \end{bmatrix}$$

$$\mathbf{P}_p\left(\overline{X}_n>c_2
ight)pprox$$
 1 - Phi(sqrt(n)*(c_2-p)*2) \square Answer: 1 - Phi(2*(c_2 - p)*sqrt(n))

For what value of $\,p\in[0.48,0.51]\,$ is the expression above for $\,{f P}_p\left(\overline{X}_n>c_2
ight)\,$ maximized?

$$\mathbf{P}_p\left(\overline{X}_n>c_2
ight)$$
 is max at $p=igg(0.51$

Solution:

Consider a specific $p \in [0.48, 0.51]$. Then,

$$\mathbf{P}_{p}\left(\overline{X}_{n} < c_{1}
ight) = \mathbf{P}_{p}\left(rac{\overline{X}_{n} - p}{\sqrt{p\left(1 - p
ight)}}\sqrt{n} < rac{c_{1} - p}{\sqrt{p\left(1 - p
ight)}}\sqrt{n}
ight).$$

By the Central Limit Theorem and noting that the variance of X_1 is $\sqrt{p(1-p)}$, we see that $\frac{\overline{X}_n-p}{\sqrt{p(1-p)}}\sqrt{n}$ has a standard Gaussian distribution, so

$$\mathbf{P}_{p}\left(\overline{X}_{n} < c_{1}
ight) = \Phi\left(rac{c_{1} - p}{\sqrt{p\left(1 - p
ight)}}\sqrt{n}
ight)
ight) pprox \Phi\left(2\left(c_{1} - p
ight)\sqrt{n}
ight).$$

As $\Phi\left(x\right)$ is an increasing function, $\Phi\left(2\left(c_{1}-p\right)\sqrt{n}\right)$ is maximized at the minimum possible p in the range, which is p=0.48. Hence, $\max_{p\in\left[0.48,0.51\right]}\mathbf{P}_{p}\left(\overline{X}_{n}< c_{1}\right)=\Phi\left(2\left(c_{1}-0.48\right)\sqrt{n}\right)$.

Similarly for a specific $p \in [0.48, 0.51]$,

$$\mathbf{P}_{p}\left(\overline{X}_{n}>c_{2}
ight)=\mathbf{P}_{p}\left(rac{\overline{X}_{n}-p}{\sqrt{p\left(1-p
ight)}}\sqrt{n}>rac{c_{2}-p}{\sqrt{p\left(1-p
ight)}}\sqrt{n}
ight)$$

Applying the Central Limit Theorem as in the previous part and then the approximation $\sqrt{p\left(1-p
ight)}pproxrac{1}{2}$ gives

$$\mathbf{P}_n\left(\overline{X}_n>c_2
ight)pprox 1-\Phi\left(2\left(c_2-p
ight)\sqrt{n}
ight).$$

As $\Phi\left(x\right)$ is an increasing function, $1-\Phi\left(2\left(c_{2}-p\right)\sqrt{n}\right)$ is maximized at the maximum possible p in the range, which is p=0.51. Hence,

$$\max_{p \in \left[0.48,0.51
ight]} \mathbf{P}_p\left(\overline{X}_n > c_1
ight) = 1 - \Phi\left(2\left(c_2 - 0.51
ight)\sqrt{n}
ight)$$

提交

你已经尝试了2次(总共可以尝试4次)

☐ Answers are displayed within the problem

(c)

1.0/1 point (graded)

Next, we combine the results from parts (a) and (b).

Apply the inequality $\max_{x} (f(x) + g(x)) \le \max_{x} f(x) + \max_{x} g(x)$ to the expression for the (asymptotic) level α obtained in part (a) and use the results from part (b) to give an upper bound on α .

Express your answer as a formula in terms of c_1 , c_2 , and n. (Write **Phi** for the cdf of a Normal distribution, **c_1** for c_1 , and **c_2** for c_2 .)

$$\alpha \leq \boxed{ \text{Phi(sqrt(n)*(c_1-0.48)*2)} + 1 - \text{Phi(sqrt(n)*(c_2-0.51)*2)} } \ \Box \ \text{Answer: 1+Phi(2*(c_1-0.48)*sqrt(n))-Phi(2*(c_2-0.51)*sqrt(n))}$$

(Food for thought: Is this upper bound tight? A bound is tight if equality may be achieved.)

Solution:

Recall that the (smallest) asymptotic level α of a test is equal to the maximum Type 1 error rate. Recalling from part (a) the expression for (smallest) asymptotic level α , applying the given inequality $\max_x (f(x) + g(x)) \le \max_x f(x) + \max_x g(x)$, and using all the results from part (b), we have

$$egin{aligned} \max_{p \in [0.48,0.51]} \left(\mathbf{P}_p\left(\overline{X}_n < c_1
ight) + \mathbf{P}\left(\overline{X}_n > c_2
ight)
ight) & \leq & \max_{p \in [0.48,0.51]} \mathbf{P}\left(\overline{X}_n < c_1
ight) + \max_{p \in [0.48,0.51]} \mathbf{P}\left(\overline{X}_n > c_2
ight) \ & pprox & \left[\Phi\left(2\left(c_1 - 0.48
ight)\sqrt{n}
ight) + 1 - \Phi\left(2\left(c_2 - 0.51
ight)\sqrt{n}
ight)
ight]. \end{aligned}$$

(This bound is not tight because the the maxima for the two summands are not obtained at the same p.)

提交

你已经尝试了1次(总共可以尝试4次)

☐ Answers are displayed within the problem

(d)

2.0/2 points (graded)

Suppose that we wish to have a level $\alpha=0.05$. What c_1 and c_2 will achieve $\alpha=0.05$? Choose c_1 and c_2 by setting the expressions you obtained above for $\max_{p\in[0.48,0.51]}\mathbf{P}_p\left(\overline{X}_n< c_1\right)$ and $\max_{p\in[0.48,0.51]}\mathbf{P}_p\left(\overline{X}_n> c_2\right)$ to both be 0.025.

(If applicable, enter **q(alpha)** for q_{α} , the $1-\alpha$ -quantile of a standard normal distribution, e.g. enter **q(0.01)** for $q_{0.01}$.)

Solution:

To have a test of level 0.05 and equal left and right tails, according to the description above, we want to set

$$\Phi\left(2*(c_1-0.48)*\sqrt{n}
ight)=0.025$$

and

$$\Phi\left(2*(c_2-0.51)*\sqrt{n}
ight)=0.975.$$

Taking the inverse Phi function to both equations gives

$$2*(c_1-0.48)*\sqrt{n}=-1.96$$

and

$$2*(c_2-0.51)*\sqrt{n}=1.96,$$

respectively. Solving the two equations (independently) gives

$$c_1 = \boxed{-\frac{0.98}{\sqrt{n}} + 0.48}$$

$$c_2=\boxed{\frac{0.98}{\sqrt{n}}+0.51}$$

提交

你已经尝试了2次(总共可以尝试3次)

□ Answers are displayed within the problem

(e)

2/2 points (graded)

We will now show that the values we just derived for c_1 and c_2 are in fact too conservative.

Recall the expression from part (b) for $\mathbf{P}_p\left(\overline{X}_n < c_1\right)$ for large n. For p>0.48 (note the strict inequality), find $\lim_{n \to \infty} \mathbf{P}_p\left(\overline{X}_n < c_1\right)$.

$$\lim_{n o \infty} \mathbf{P}_{p > 0.48} \left(\overline{X}_n < c_1
ight) = igg[0 \ igg]$$
 \Box Answer: 0

Similarly, for p < 0.51 (note the strict inequality), find $\lim_{n \to \infty} \mathbf{P}_p\left(\overline{X}_n > c_2\right)$. Use the expression you found in part (b) for $\mathbf{P}_p\left(\overline{X}_n > c_2\right)$.

$$\lim_{n o\infty}\mathbf{P}_{p<0.51}\left(\overline{X}_n>c_2
ight)= egin{array}{c} 0 \end{array}$$
 \Box Answer: 0

Solution:

Recall from part (b)

$$\mathbf{P}\left(\overline{X}_{n} < c_{1}
ight) = \Phi\left(rac{c_{1} - p}{\sqrt{p\left(1 - p
ight)}}\sqrt{n}
ight)
ight) pprox \left[\Phi\left(2\left(c_{1} - p
ight)\sqrt{n}
ight)
ight].$$

If p>0.48, then

$$\Phi\left(2\left(c_{1}-p
ight)\sqrt{n}
ight)<\Phi\left(2\left(0.48-p
ight)\sqrt{n}
ight).$$

This argument in Φ on the right is a negative constant times \sqrt{n} , so the argument tends to negative infinity as $n \to \infty$ and thus

$$\Phi\left(2\left(c_{1}-p
ight)\sqrt{n}
ight)
ightarrow\ \overline{0}.$$

For the other side, c_2 , we obtained in part (b) that

$$\mathbf{P}\left(\overline{X}_{n}>c_{2}
ight)pprox\left[1-\Phi\left(2\left(c_{2}-p
ight)\sqrt{n}
ight)
ight].$$

If p < 0.51, then

$$1 - \Phi \left(2 \left(c_2 - p \right) \sqrt{n} \right) < 1 - \Phi \left(2 \left(c_2 - 0.51 \right) \sqrt{n} \right).$$

Taking $n o \infty$, as $c_2 > 0.51$,

$$2\left(c_{2}-0.51
ight)\sqrt{n}
ightarrow+\infty;$$

SO

$$1-\Phi\left(2\left(c_{2}-0.51
ight)\sqrt{n}
ight)
ightarrow0$$

and thus

$$1-\Phi\left(2\left(c_{2}-p
ight)\sqrt{n}
ight)
ightarrow\ \overline{0}.$$

提交

你已经尝试了2次(总共可以尝试3次)

☐ Answers are displayed within the problem

(f)

2.0/2 points (graded)

Note: This part of the problem will contain multiple steps but you would only enter answers to the final step. Also refer to the last video in recitation 3 for related ideas.

Next, we analyze the asymptotic test given different possible values of p, in order to choose suitable and sufficiently-tight c_1 and c_2 . Looking more closely at part (d), we may note that the asymptotic behavior of the expressions for the errors are different depending on whether p=0.48, 0.48 , or <math>p=0.51.

Based on your answers and work from the previous part, evaluate the asymptotic Type 1 error

$$\mathbf{P}\left(\overline{X}_{n} < c_{1}
ight) + \mathbf{P}\left(\overline{X}_{n} > c_{2}
ight).$$

on each of the three cases for the value of p in terms of c_1 , c_2 , and n, and determine in each case which component(s) of the Type 1 error will converge to zero.

This would allow you to come up with a new set of conditions for c_1 and c_2 in terms of n, given the desired level of 5%. Enter these values (in terms of n) below.

(If applicable, enter $\mathbf{q(alpha)}$ for q_{α} , the $1-\alpha$ -quantile of a standard normal distribution, e.g. enter $\mathbf{q(0.01)}$ for $q_{0.01}$. Do not worry about the parser not rendering $\mathbf{q(alpha)}$ properly; the grader will work nonetheless. You could also enclose $\mathbf{q(alpha)}$ by brackets for the rendering to show properly.)

$$c_1 = 0.48 - q(0.05)*(1/(2*sqrt(n)))$$
 \Box Answer: $-q(0.05)/(2*sqrt(n)) + 0.48$ $c_2 = 0.51 + q(0.05)*(1/(2*sqrt(n)))$ \Box Answer: $q(0.05)/(2*sqrt(n)) + 0.51$

STANDARD NOTATION

Solution:

For this solution, we write c_1 (n) and c_2 (n) for c_1 and c_2 respectively as they are in practice functions of n.

From the previous part, $\mathbf{P}(\overline{X}_n < c_1(n))$ for any $c_1(n) < 0.48$ will definitely converge to 0 for 0.48 and for <math>p = 0.51, but not for p = 0.48. When p = 0.48, we could write

$$\mathbf{P}\left(\overline{X}_{n} < c_{1}\left(n\right)\right) = \Phi\left(2\left(c_{1}\left(n\right) - 0.48\right)\sqrt{n}\right).$$

Similarly, $\mathbf{P}\left(\overline{X}_n>c_2\left(n
ight)
ight)$ for any $c_2\left(n
ight)>0.51$ will converge to 0 for p=0.48 and 0.48< p<0.51, while for p=0.51,

$$\mathbf{P}\left(\overline{X}_{n}>c_{2}\left(n
ight)
ight)=1-\Phi\left(2\left(c_{2}\left(n
ight)-0.51
ight)\sqrt{n}
ight).$$

Summarizing the above observations, we get that for p = 0.48,

$$\lim_{n o \infty} \left(\mathbf{P}_{(}\overline{X}_{n} < c_{1}\left(n
ight)
ight) + \mathbf{P}_{(}\overline{X}_{n} > c_{2}\left(n
ight)
ight) = \lim_{n o \infty} \Phi\left(2\left(c_{1}\left(n
ight) - 0.48
ight) \sqrt{n}
ight);$$

for 0.48 ,

$$\lim_{n o \infty} \left(\mathbf{P}_{\left(\overline{X}_{n} < c_{1}\left(n
ight)
ight)} + \mathbf{P}_{\left(\overline{X}_{n} > c_{2}\left(n
ight)
ight)}
ight) = 0;$$

while for p=0.51,

$$\lim_{n o \infty} \left(\mathbf{P}_{(}\overline{X}_{n} < c_{1}\left(n
ight)
ight) + \mathbf{P}_{(}\overline{X}_{n} > c_{2}\left(n
ight)
ight) = \lim_{n o \infty} 1 - \Phi\left(2\left(c_{2}\left(n
ight) - 0.51
ight)\sqrt{n}
ight);$$

Hence, our constraints (from the first and third cases above) are

$$\lim_{n o \infty} \Phi\left(2\left(c_1\left(n
ight) - 0.48
ight)\sqrt{n}
ight) \leq 0.05, \lim_{n o \infty} \Phi\left(2\left(c_2\left(n
ight) - 0.51
ight)\sqrt{n}
ight) \geq 0.95.$$

Taking the simplest (or broadest) case, we could set equality everywhere, which gives

$$\Phi\left(2\left(c_{1}\left(n
ight)-0.48
ight)\sqrt{n}
ight)=0.05,\quad \Phi(\left(2\left(c_{2}\left(n
ight)-0.51
ight)\sqrt{n}
ight)=0.95.$$

Finally, taking Φ^{-1} of both sides then rearranging gives our answer:

$$c_{1}\left(n
ight) =rac{-q_{0.05}}{2\sqrt{n}}+0.48,\quad c_{2}\left(n
ight) =rac{q_{0.05}}{2\sqrt{n}}+0.51$$

提交

你已经尝试了2次(总共可以尝试3次)

☐ Answers are displayed within the problem

讨论

主题: Unit 2 Foundation of Inference:Homework 3: Introduction to Hypothesis Testing / 8. A Union-Intersection Test

显示讨论

认证证书是什么?

© 保留所有权利