ACL2020

A Joint Neural Model for Information Extraction with Global Features

```
Ying Lin<sup>1</sup>, Heng Ji<sup>1</sup>, Fei Huang<sup>2</sup>, Lingfei Wu<sup>3</sup>

<sup>1</sup>University of Illinois at Urbana-Champaign

<sup>2</sup>Alibaba DAMO Academy <sup>3</sup>IBM Research

{yinglin8, hengji}@illinois.edu,

f.huang@alibaba-inc.com, wuli@us.ibm.com
```

Main Work

 Most existing joint neural models for Information Extraction (IE) use local task-specific classifiers to predict labels for individual instances regardless of their interactions

 we propose a joint neural framework, ONEIE, that aims to extract the globally optimal IE result as a graph from an input sentence.

 Experiments show that adding global features improves the performance of our model and achieves new state-of-the-art on all subtasks.

Task

- Information Extraction (IE) aims to extract structured information from unstructured texts.
 - It is a **complex task** comprised of a wide range of subtasks, such as named, nominal, and pronominal mention extraction, entity linking, entity coreference resolution, relation extraction, event extraction, and event coreference resolution.

Example: Prime Minister **Abdullah Gul** *resigned* earlier Tuesday to make way for **Erdogan**, who *won* a parliamentary seat in by-elections Sunday.

Model

- our ONEIE framework perform entity, relation, and event extraction within a unified framework
 - Entity Extraction
 - Relation Extraction
 - Event Extraction

Model

Figure 2: An illustration of our end-to-end joint information extraction framework ONEIE at the test stage. We do not show all pairwise links for simplicity purposes.

Model

Figure 4: An illustration of our decoding algorithm. At each step, we expand each candidate graph by adding a new node and possible edges between it and existing nodes. After that, we rank all expanded graphs and keep the top ones.

- A limitation of local classifiers is that they are incapable of capturing inter-dependencies between knowledge elements in an information network. We consider two types of inter-dependencies in our framework.
 - The first type of inter-dependency is **Cross-subtask-interactions** between entities, relations, and events.

Example:

A civilian aid worker from San Francisco was killed in an attack in Afghanistan

 Another type of inter-dependency is Crossinstance interactions between multiple event and/or relation instances in the sentence.

Example:

South Carolina **boy**, 9, **dies** during hunting trip after his father accidentally **shot** him on Thanksgiving Day

(a) Cross-subtask Interaction (b) Cross-instance Interactions

Figure 3: Examples of inter-dependencies between elements in information networks. (a) A VICTIM edge is unlikely to exist between a GPE entity and a DIE event trigger. (b) The VICTIM of a DIE event is likely to be the VICTIM of an ATTACK event in the same sentence.

Categary	Description
Role	 The number of entities that act as <role<sub>i> and <role<sub>j> arguments at the same time.</role<sub></role<sub>
	 The number of <event_type<sub>i > events with <number> <role<sub>j > arguments.</role<sub></number></event_type<sub>
	 The number of occurrences of <event_type<sub>i>, <role<sub>j>, and <entity_type<sub>k> combination.</entity_type<sub></role<sub></event_type<sub>
	 The number of events that have multiple <role<sub>i> arguments.</role<sub>
	5. The number of entities that act as a <role<sub>i> argument of an <event_type<sub>j> event and a <role<sub>k> argument of an <event_type<sub>1> event at the same time.</event_type<sub></role<sub></event_type<sub></role<sub>
Relation	6. The number of occurrences of <entity_typei>, <entity_typej>, and <relation_typek> combination.</relation_typek></entity_typej></entity_typei>
	 The number of occurrences of <entity_type<sub>i> and <relation_type<sub>j> combination.</relation_type<sub></entity_type<sub>
	8. The number of occurrences of a <relation_type<sub>i> relation between a <role<sub>j> argument and a <role<sub>k> argument of the same event.</role<sub></role<sub></relation_type<sub>
	 The number of entities that have a <relation_type<sub>i> relation with multiple entities.</relation_type<sub>
	10. The number of entities involving in <relation_type<sub>i> and <relation_type<sub>j> relations simultaneously.</relation_type<sub></relation_type<sub>
Trigger	11. Whether a graph contains more than one <event_type<sub>i> event.</event_type<sub>

Table 1: Global feature categories.

If we ignore the inter-dependencies between nodes and edges, we can simply predict the label with the highest score for each knowledge element and thus generate the locally best graph \hat{G} . The score of \hat{G} can be calculated as

$$s'(\hat{G}) = \sum_{t \in T} \sum_{i=1}^{N^t} \max \hat{y}_i^t,$$

weight of each feature during training. Given a graph G, we represent its global feature vector as $f_G = \{f_1(G), ..., f_M(G)\}$, where M is the number of global features and $f_i(\cdot)$ is a function that evaluates a certain feature and returns a scalar. For example,

$$f_i(G) = \begin{cases} 1, & G \text{ has multiple ATTACK events} \\ 0, & \text{otherwise.} \end{cases}$$

Next, ONEIE learns a weight vector $u \in \mathbb{R}^M$ and calculates the global feature score of G as the dot product of f_G and u. We define the global score of G as the sum of its local score and global feature score, namely

$$s(G) = s'(G) + uf_G,$$

We make the assumption that the gold-standard graph for a sentence should achieve the highest global score. Therefore, we minimize the following loss function

$$\mathcal{L}^{G} = s(\hat{G}) - s(G),$$

Dataset

• ACE05-R

includes named entity and relation annotations

• ACE05-E

- includes entity, relation, and event annotations
- We keep 7 entity types, 6 coarsegrained relation types, 33 event types, and 22 argument roles.

• ACE05-E+

 adding back the order of relation arguments, pronouns, and multi-token event triggers, which have been largely ignored in previous work.

ERE-EN

- from the Entities, Relations and Events(ERE) annotation task created under the Deep Explorationand Filtering of Test (DEFT) program
- LDC2015E29,LDC2015E68, and LDC2015E78

Result

Dataset	Task	DYGIE++	BASELINE	ONEIE
ACE05-R	Entity	88.6	-	88.8
ACE05-K	Relation	63.4	-	67.5
	Entity	89.7	90.2	90.2
	Trig-I	-	76.6	78.2
ACE05-E	Trig-C	69.7	73.5	74.7
ACE03-E	Trig-C Arg-I Arg-C	53.0	56.4	59.2
	Arg-C	48.8	53.9	56.8

Table 3: Results on ACE2005 datasets (F-score, %).

Dataset	Task	DYGIE++*	ONEIE*
	Entity	90.7	90.3
	Trig-I	76.5	78.6
ACE05-E	Trig-C	73.6	75.2
ACE03-E	Arg-I	55.4	60.7
	Trig-C Arg-I Arg-C	52.5	58.6

Table 4: Experiment results on ACE05-E (F-score, %). DYGIE++* and ONEIE* use a four-model ensemble optimized for trigger detection.

		_	_		_	Relation
ACE05-E ⁺	89.6	75.6	72.8	57.3	54.8	
ERE-EN	87.0	68.4	57.0	50.1	46.5	53.2

Table 5: New benchmark results (F-score, %).

Dataset	Training	Entity	Relation	Trig-C	Arg-C
ACE05-CN	CN	88.5	62.4	65.6	52.0
ACE03-CN	CN+EN	89.8	62.9	67.7	53.2
ERE-ES	ES	81.3	48.1	56.8	40.3
LKL-LS	ES+EN	81.8	52.9	59.1	42.3

Table 7: Results on ACE05-CN and ERE-ES (F-score, %). For ACE05-CN, EN refers to ACE05-E⁺. For ERE-ES, EN refers to ERE-EN.

Result

	Positive Feature	Weight
	A TRANSPORT event has only one DESTINATION argument	2.61
	An ATTACK event has only one PLACE argument	2.31
	A TRANSPORT event has only one ORIGIN argument	2.01
	An END-POSITION event has only one PERSON argument	1.51
	A PER-SOC relation exists between two PER entities	1.08
	A GEN-AFF relation exists between ORG and LOC entities	0.96
7	A BENEFICIARY argument is a PER entity	0.93
	A GEN-AFF relation exists between ORG and GPE entities	0.90
	Negative Feature	Weight
9		Weight -3.21
9 10	An entity has an ORG-AFF relation with multiple entities	
10	An entity has an ORG-AFF relation with multiple entities An entity has an PART-WHOLE relation with	-3.21
10 11	An entity has an ORG-AFF relation with multi- ple entities An entity has an PART-WHOLE relation with multiple entities	-3.21 -2.49
10 11	An entity has an ORG-AFF relation with multiple entities An entity has an PART-WHOLE relation with multiple entities An event has two PLACE arguments A TRANSPORT event has multiple DESTINATION arguments	-3.21 -2.49 -2.47
10 11 12 13	An entity has an ORG-AFF relation with multiple entities An entity has an PART-WHOLE relation with multiple entities An event has two PLACE arguments A TRANSPORT event has multiple DESTINATION arguments An entity has a GEN-AFF relation with multi-	-3.21 -2.49 -2.47 -2.25
10 11 12 13	An entity has an ORG-AFF relation with multiple entities An entity has an PART-WHOLE relation with multiple entities An event has two PLACE arguments A TRANSPORT event has multiple DESTINATION arguments An entity has a GEN-AFF relation with multiple entities An ATTACK event has multiple PLACE arguments	-3.21 -2.49 -2.47 -2.25 -2.02

Challenges

Figure 5: Distribution of remaining errors.

$$S_i = rac{e^{V_i}}{\sum_j e^{V_j}}$$

Gold

[0,1,0]

Pred(一次softmax)

[0.01,0.98,0.01] loss:0.02

Pred(两次softmax)

[0.2123, 0.5754, 0.2123] loss:0.87