where $p_i, q_j \in A$ are irreducible, and the product of the common factors of a and b is a gcd of a and b (it is 1 is there are no common factors).

We conclude this section on UFD's by proving a proposition characterizing when a UFD is a PID. The proof is nontrivial and makes use of Zorn's lemma (several times).

Proposition 32.13. Let A be a ring that is a UFD, and not a field. Then, A is a PID iff every nonzero prime ideal is maximal.

Proof. Assume that A is a PID that is not a field. Consider any nonzero prime ideal, (p), and pick any proper ideal \mathfrak{A} in A such that

$$(p) \subset \mathfrak{A}$$
.

Since A is a PID, the ideal \mathfrak{A} is a principal ideal, so $\mathfrak{A} = (q)$, and since \mathfrak{A} is a proper nonzero ideal, $q \neq 0$ and q is not a unit. Since

$$(p) \subseteq (q),$$

q divides p, and we have $p=qp_1$ for some $p_1 \in A$. Now, by Proposition 32.1, since $p \neq 0$ and (p) is a prime ideal, p is irreducible. But then, since $p=qp_1$ and p is irreducible, p_1 must be a unit (since q is not a unit), which implies that

$$(p) = (q);$$

that is, (p) is a maximal ideal.

Conversely, let us assume that every nonzero prime ideal is maximal. First, we prove that every prime ideal is principal. This is obvious for (0). If \mathfrak{A} is a nonzero prime ideal, then, by hypothesis, it is maximal. Since $\mathfrak{A} \neq (0)$, there is some nonzero element $a \in \mathfrak{A}$. Since \mathfrak{A} is maximal, a is not a unit, and since A is a UFD, there is a factorization $a = a_1 \cdots a_n$ of a into irreducible elements. Since \mathfrak{A} is prime, we have $a_i \in \mathfrak{A}$ for some i. Now, by Proposition 32.3, since a_i is irreducible, the ideal (a_i) is prime, and so, by hypothesis, (a_i) is maximal. Since $(a_i) \subseteq \mathfrak{A}$ and (a_i) is maximal, we get $\mathfrak{A} = (a_i)$.

Next, assume that A is not a PID. Define the set, \mathcal{F} , by

$$\mathcal{F} = \{ \mathfrak{A} \mid \mathfrak{A} \subseteq A, \quad \mathfrak{A} \text{ is not a principal ideal} \}.$$

Since A is not a PID, the set \mathcal{F} is nonempty. Also, the reader will easily check that every chain in \mathcal{F} is bounded in \mathcal{F} . Indeed, for any chain $(\mathfrak{A}_i)_{i\in I}$ of ideals in \mathcal{F} it is not hard to verify that $\bigcup_{i\in I}\mathfrak{A}_i$ is an ideal which is not principal, so $\bigcup_{i\in I}\mathfrak{A}_i\in \mathcal{F}$. Then, by Zorn's lemma (Lemma C.1), the set \mathcal{F} has some maximal element, \mathfrak{A} . Clearly, $\mathfrak{A}\neq (0)$ is a proper ideal (since A=(1)), and \mathfrak{A} is not prime, since we just showed that prime ideals are principal. Then, by Theorem C.3, there is some maximal ideal, \mathfrak{M} , so that $\mathfrak{A}\subset \mathfrak{M}$. However, a maximal ideal is prime, and we have shown that a prime ideal is principal. Thus,

$$\mathfrak{A}\subseteq (p),$$