Sorting in Linear Time

Insertion sort:

- Pro's:
 - Easy to code
 - □ Fast on small inputs (less than \sim 50 elements)
 - Fast on nearly-sorted inputs
- Con's:
 - $O(n^2)$ worst case
 - $O(n^2)$ average case
 - $O(n^2)$ reverse-sorted case

Merge sort:

- Divide-and-conquer:
 - Split array in half
 - Recursively sort sub-arrays
 - Linear-time merge step
- Pro's:
 - O(n lg n) worst case asymptotically optimal for comparison sorts
- Con's:
 - Doesn't sort in place

Heap sort:

- Uses the very useful heap data structure
 - Complete binary tree
 - Heap property: parent key > children's keys
- Pro's:
 - O(n lg n) worst case asymptotically optimal for comparison sorts
 - Sorts in place
- Con's:
 - Fair amount of shuffling memory around

Quick sort:

- Divide-and-conquer:
 - Partition array into two sub-arrays, recursively sort
 - All of first sub-array < all of second sub-array
- Pro's:
 - O(n lg n) average case
 - Sorts in place
 - Fast in practice (why?)
- Con's:
 - $O(n^2)$ worst case
 - Naïve implementation: worst case on sorted input
 - Good partitioning makes this very unlikely.

Non-Comparison Based Sorting

- Many times we have restrictions on our keys
 - Social Security Numbers
 - Employee ID's
- We will examine three algorithms which under certain conditions can run in O(n) time.
 - Counting sort
 - Radix sort
 - Bucket sort

Counting Sort

- Why it's not a comparison sort:
 - Assumption: input integers in the range 0..k
 - No comparisons made!
- Basic idea:
 - determine for each input element x its rank: the number of elements less than x.
 - once we know the rank r of x, we can place it in position r+1
- Depends on assumption about the numbers being sorted
 - Assume numbers are in the range 1.. k
- The algorithm:
 - Input: A[1..n], where A[j] $\{1, 2, 3, ..., k\}$
 - Output: B[1..n], sorted (not sorted in place)
 - Also: Array C[1..k] for auxiliary storage

Counting Sort Example

	1	2	3	4	5	6	7	8
A =	2	5	3	0	2	3	0	3
~_	O	1	2	3	4	5		
C =	2	0	2	3	0	1		
	O	1	2	3	4	5		
C =	2	2	4 (7	7	8		
	1	2	3	4	5	6	7	8
B =							3	
	0	1	2	3	4	5		
C =	2	2	4	6	7	8		

Counting Sort Example

Counting Sort Example

Counting Sort

```
CountingSort(A, B, k)
             for i=1 to k
                                      Takes time O(k)
3
                   C[i] = 0;
             for j=1 to n
                   C[A[j]] += 1;
5
             for i=2 to k
6
                                               Takes time O(n)
                   C[i] = C[i] + C[i-1];
             for j=n downto 1
8
9
                   B[C[A[j]]] = A[j];
                   C[A[j]] -= 1;
10
```

What will be the running time?

Counting Sort

- Total time: O(n + k)
 - Usually, k = O(n)
 - \Box Thus counting sort runs in O(n) time
- But sorting is (n lg n)!
 - No contradiction--this is not a comparison sort (in fact, there are no comparisons at all!)
 - Notice that this algorithm is stable
 - If numbers have the same value, they keep their original order

Stable Sorting Algorithms

A sorting algorithms is stable if for any two indices i and j with i < j and ai = aj, element ai precedes element aj in the output sequence.

Observation: Counting Sort is stable.

Counting Sort

- Linear Sort! Cool! Why don't we always use counting sort?
- Because it depends on range k of elements
- Could we use counting sort to sort 32 bit integers? Why or why not?
- Answer: no, k too large $(2^{32} = 4,294,967,296)$

Counting Sort

- Assumption: input taken from small set of numbers of size k
- Basic idea:
 - Count number of elements less than you for each element.
 - □ This gives the position of that number similar to selection sort.
- Pro's:
 - Fast
 - Asymptotically fast O(n+k)
 - Simple to code
- Con's:
 - Doesn't sort in place.
 - Elements must be integers. countable
 - Requires O(n+k) extra storage.

Origin: Herman Hollerith's card-sorting machine for

the 1890 U.S Census

- Digit-by-digit sort
- Hollerith's original (bad) idea : sort on most-significant digit first.
- Good idea: Sort on least-significant digit first with auxiliary stable sort

IBM 083

punch card

sorter

- Intuitively, you might sort on the most significant digit, then the second msd, etc.
- Problem: lots of intermediate piles of cards (read: scratch arrays) to keep track of
- Key idea: sort the least significant digit first

RadixSort(A, d)
for i=1 to d
StableSort(A) on digit i

Radix Sort Example

- What is the running time of radix sort?
 - Each pass over the d digits takes time O(n+k), so total time
 O(dn+dk)
 - When d is constant and k=O(n), takes O(n) time
- Stable, Fast
- Doesn't sort in place (because counting sort is used)

- Problem: sort 1 million 64-bit numbers
 - Treat as four-digit radix 216 numbers
 - Can sort in just four passes with radix sort!
- Performs well compared to typicalO(n lg n) comparison sort
 - Approx lg(1,000,000) 20 comparisons per number being sorted

- Assumption: input has d digits ranging from 0 to k
- Basic idea:
 - Sort elements by digit starting with least significant
 - Use a stable sort (like counting sort) for each stage
- Pro's:
 - Fast
 - Asymptotically fast (i.e., O(n) when d is constant and k=O(n))
 - Simple to code
 - A good choice
- Con's:
 - Doesn't sort in place
 - Not a good choice for floating point numbers or arbitrary strings.

Bucket Sort

- Assumption: input n real numbers from [0, 1)
- Basic idea:
 - Create n linked lists (buckets) to divide interval [0,1) into subintervals of size 1/n
 - Add each input element to appropriate bucket and sort buckets with insertion sort
- Uniform input distribution O(1) bucket size
 - \Box Therefore the expected total time is O(n)

Bucket Sort

Bucket-Sort(A)

- 1. $n \leftarrow length(A)$
- 2. **for** $i \leftarrow 0$ **to** $n \leftarrow$ Distribute elements over buckets
- do insert A[i] into list B[floor(n*A[i])]
- 4. **for** i ← 0 **to** n −1 ← Sort each bucket
- do Insertion-Sort(B[i])
- Concatenate lists B[0], B[1], ... B[n-1] in order

Bucket Sort Example

Bucket Sort-Running Time

- All lines except line 5 (Insertion-Sort) take O(n) in the worst case.
- In the worst case, O(n) numbers will end up in the same bucket, so in the worst case, it will take O(n2) time.
- Lemma: Given that the input sequence is drawn uniformly at random from [0,1), the expected size of a bucket is O(1).
- So, in the average case, only a constant number of elements will fall in each bucket, so it will take O(n) (see proof in book).
- Use a different indexing scheme (hashing) to distribute the numbers uniformly.

Bucket Sort Review

- Assumption: input is uniformly distributed across a range
- Basic idea:
 - Partition the range into a fixed number of buckets.
 - Toss each element into its appropriate bucket.
 - Sort each bucket.
- Pro's:
 - Fast
 - Asymptotically fast (i.e., O(n) when distribution is uniform)
 - Simple to code
 - Good for a rough sort.
- Con's:
 - Doesn't sort in place

Summary of Linear Sorting

Non-Comparison Based Sorts

Running Time

	worst-case	average-case	best-case	in place
Counting Sort	O(n + k)	O(n + k)	O(n + k)	no
Radix Sort	O(d(n + k'))	O(d(n + k'))	O(d(n + k'))	no
Bucket Sort		O(n)		no

Counting sort assumes input elements are in range [0,1,2,..,k] and uses array indexing to count the number of occurrences of each value.

Radix sort assumes each integer consists of d digits, and each digit is in range [1,2,..,k'].

Bucket sort requires advance knowledge of input distribution (sorts n numbers uniformly distributed in range in O(n) time).