Анализ динамики состояний сети в стохастическом случае.

Основные предположения об изменениях топологии, задержках и помехах в измерениях

Олег Николаевич Граничин

Санкт-Петербургский государственный университет, математико-механический факультет

13 ноября 2012

Топология динамической сети

Рассмотрим сетевую систему, состоящую из набора динамических подсистем (агентов) $N=\{1,2,\ldots,n\}$ с входами u_t^i , выходами $y_t^{i,i}$ и состояниями x_t^i , взаимодействующих в соответствии с ориентированным графом (N,E), где E — множество дуг.

Топология динамической сети

Рассмотрим сетевую систему, состоящую из набора динамических подсистем (агентов) $N=\{1,2,\ldots,n\}$ с входами u_t^i , выходами $y_t^{i,i}$ и состояниями x_t^i , взаимодействующих в соответствии с ориентированным графом (N,E), где E — множество дуг.

- ullet Множеством соседей узла i называется $N^i = \{j: (j,i) \in E\}.$
- Структура связей динамической сети описывается с помощью последовательности орграфов $\{(N,E_t)\}_{t\geq 0}$, где $E_t\subseteq E$ меняется во времени.

Динамика состояний узлов

Каждому агенту $i \in N$ (узлу графа) в момент времени $t=0,1,2\dots,T$ сопоставляется изменяющееся во времени состояние $x_t^i \in \mathbb{R}$, динамика которого описывается разностным уравнением:

$$x_{t+1}^{i} = x_{t}^{i} + f^{i}(x_{t}^{i}, u_{t}^{i}),$$
 (1)

с управлением $u_t^i \in \mathbb{R}$, воздействие которого на изменение состояния x_t^i определяется некоторой функцией $f^i(\cdot,\cdot): \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, зависящей от текущего состояния агента x_t^i и задаваемого управления u_t^i .

Наблюдения

Для формирования управления каждый узел $i \in N$ имеет информацию о своем собственном состоянии:

$$y_t^{i,i} = x_t^i + w_t^{i,i}, (2)$$

и, если $N_t^i
eq \emptyset$, наблюдения о состояниях соседей:

$$y_t^{i,j} = x_{t-d_t^{i,j}}^j + w_t^{i,j}, j \in N_t^i,$$
(3)

где $w_t^{i,i}, w_t^{i,j}$ — помехи (шум), а $0 \leq d_t^{i,j} \leq \bar{d}$ — целочисленная задержка, \bar{d} — максимально возможная задержка.

Положим $w_t^{i,j}=0$ и $d_t^{i,j}=0$ для всех остальных пар (i,j), для которых они не были определены. Так как система начинает работу при t=0, неявное требование к множеству соседей: $j\in N_t^i\Rightarrow t-d_t^{i,j}\geq 0$.

Основные сведения из теории графов

- Сопоставим каждой дуге $(j,i) \in E$ вес $a^{i,j} > 0$ и определим матрицу смежности (или связности) $A = [a^{i,j}]$ графа $\mathscr{G}_A = (N,E)$.
- Определим взвешенную полустепень захода вершины i как сумму i-й строки матрицы A: $d^i = \sum_{i=1}^n a^{i,j}$;
- $d_{\max}(A)$ максимальная полустепень захода графа \mathscr{G}_A ;
- $D(A) = \operatorname{diag}\{d^i(A)\};$
- $\mathscr{L}(A) = D(A) A$ лапласиан графа.
- Направленный путь из узла i_1 в узел i_s состоит из последовательности узлов $i_1,\ldots,i_s,\ s\geq 2$ таких, что $(i_k,i_{k+1})\in E, k\in\{1,2,\ldots,s-1\}.$
- Граф называется **связным**, если для всех пар различных узлов (i,j) есть направленный путь из i в j.
- Связный граф, в котором число дуг на одну меньше числа вершин, называется **деревом**. Дерево, являющееся частичным графом связного графа, называется **остовным_деревом**.

Задача консенсуса на графах

- Будем называть протоколом управления в динамической сети с топологией (N, E_t) обратную связь по наблюдениям состояний $u_t^i = K_t^i(y_t^{i,j_1}, \dots, y_t^{i,j_{m_i}})$, где множество $\{j_1, \dots, j_{m_i}\} \subset \{i\} \bigcup \bar{N}_t^i, \ \bar{N}_t^i \subseteq N_t^i.$
- Узлы i и j называются **согласованными** в сети в момент времени t тогда и только тогда, когда $x_t^i = x_t^j$.
- Задача о достижении консенсуса в момент времени t это согласование всех узлов между собой в момент времени t.
- n узлов достигают *среднеквадратичного* ε -консенсуса в момент времени t, если $E||x_t^i||^2<\infty,\ i\in N$ и существует случайная величина x^* такая, что $E||x_t^i-x^*||^2\leq \varepsilon$ для всех $i\in N$.

Консенсусное управление — управление, обеспечивающее достижение консенсуса.

Протокол локального голосования

$$u_t^i = \alpha_t \sum_{j \in \bar{N}_t^i} b_t^{i,j} (y_t^{i,j} - y_t^{i,i}),$$
 (4)

где $\alpha_t>0$ — размеры шагов протокола управления, $b_t^{i,j}>0, \ \forall j\in ar{N}_t^i.$ Положим $b_t^{i,j}=0$ для всех остальных пар i,j.

Протокол распределения заданий в децентрализованной вычислительной сети

Рассмотрим протокол управления (4), в котором $\forall \ i \in N, \ \forall \ t$ определим $ar{N}_t^i = N_t^i$ и $b_t^{i,j} = r_t^j/r_t^i, \ , j \in N_t^i.$

Динамика замкнутой системы протокол (4) в рассматриваемом случае имеет вид:

$$x_{t+1}^{i} = x_{t}^{i} - 1 + z_{t}^{i}/r_{t}^{i} + \alpha_{t} \sum_{j \in N_{t}^{i}} b_{t}^{i,j} (y_{t}^{i,j}/r_{t}^{j} - y_{t}^{i,i}/r_{t}^{i}),$$
 (5)

где α_t — последовательность положительных размеров шагов, $y_t^{i,j}$ — наблюдения (с помехами и задержками) о длине очереди j-го узла, z_t^i — размер нового задания, поступившего на узел i в момент времени t.

Основные предположения - 1

Пусть $(\Omega, \mathscr{F}, \mathsf{P})$ — основное вероятностное пространство. Будем обозначать: E — математическое ожидание и E_{x} — условное математическое ожидание при условии x .

А1. $\forall i \in N$ функции $f^i(x,u)$ — липшицевы по x и u: $|f^i(x,u)-f^i(x',u')| \leq L_1(L_x|x-x'|+|u-u'|);$ скорость роста ограничена: $|f^i(x,u)|^2 \leq L_2(L_c+L_x|x|^2+|u|^2);$ при любом фиксированном x функции $f^i(x,\cdot)$ такие, что $\mathbf{E}_x f^i(x,u) = f^i(x,\mathbf{E}_x u).$

Основные предположения - ІІ

- **A2**. a) $\forall i \in N, j \in N_t^i \cup \{i\}$ помехи наблюдений $w_t^{i,j}$ центрированные, независимые, одинаково распределенные случайные величины с ограниченными дисперсиями: $E(w_t^{i,j})^2 \leq \sigma_w^2$.
- б) $\forall i \in N, j \in N^i$ появление переменных дуг (j,i) в графе \mathscr{G}_{A_t} независимые, случайные события, вероятность которых $p_a^{i,j}$ (т. е. матрицы A_t независимые, одинаково распределенные случайные матрицы).
- в) $\forall i \in N, j \in \bar{N}_t^i$ веса $b_t^{i,j}$ в протоколе управления ограниченные случайные величины: $\underline{b} \leq b_t^{i,j} \leq \bar{b}$ с вероятностью 1, и существуют пределы $b^{i,j} = \lim_{t \to \infty} \mathrm{E} b_t^{i,j}$.
- г) $\forall i,j \in \mathcal{N}$ существует конечная величина $\bar{d} \in \mathbb{N}$: $d_t^{i,j} \leq \bar{d}$ с вероятностью 1 и целочисленные задержки $d_t^{i,j}$ независимые, одинаково распределенные случайные величины, принимающие значения $k=0,\ldots,\bar{d}$ с вероятностями $p_k^{i,j}$.

Кроме того, все перечисленные случайные величины и матрицы независимы между собой.

Основные предположения - III

ullet Обозначим $ar{n}=n(ar{d}+1)$ и определим матрицу A_{\max} размерности $ar{n} imesar{n}$ по правилу:

$$a_{\max}^{i,j} = p_{j \div n}^{i,((j-1) \bmod n)+1} p_a^{i,((j-1) \bmod n)+1} b^{i,((j-1) \bmod n)+1}, i \in N, j = 1,2,...$$

$$a_{\max}^{i,j} = 0, i = n+1, n+2,..., \bar{n}, j = 1,2,..., \bar{n}.$$

(Здесь операция $\mod -$ остаток от деления, $a \div -$ деление нацело.)

- ullet Заметим, что при $ar{d}=0$ это определение структуры сети (матрицы A_{\max} размерности n imes n) имеет вид $a_{\max}^{i,j} = p_a^{i,j} b^{i,j}, \ i \in N, j \in N.$
- ullet Обозначим $E_{\max} = \{(j,i): \sup_{t \geq 0} a_t^{i,j} > 0\}$. Будем обозначать через N_i множество, соответствующее N_{\max}^i .

Будем считать, что для матрицы структуры связей сети выполняется следующее условие:

А3. Граф $\{N, E_{\text{max}}\}$ имеет остовное дерево и для любой дуги $(j,i) \in E_{\text{max}}$ среди элементов $a_{\text{max}}^{i,j}, a_{\text{max}}^{i,j+n}, \ldots, a_{\text{max}}^{i,j+\bar{d}n}$ матрицы A_{max} найдется хотя бы один ненулевой.