II. AMENDMENTS TO THE CLAIMS

- 1. (Currently Amended) A method for alkylating a glycopeptide that comprises a saccharide-amine; the method comprising:
- (a) combining an aldehyde or ketone, a suitable base, and the glycopeptide or a salt thereof, to provide a reaction mixture;
 - (b) acidifying the reaction mixture; and
- (c) combining the reaction mixture with a suitable reducing agent, to provide a glycopeptide that is alkylated at the saccharide-amine.
- 2. (Original) The method of claim 1 wherein the glycopeptide comprises at least one amino group other than the saccharide-amine.
- 3. (Original) The method of claim 2 wherein reductive alkylation at the saccharideamine is favored over reductive alkylation at the other amino group of the glycopeptide by at least about 10:1.
- 4. (Original) The method of claim 2 wherein reductive alkylation at the saccharideamine is favored over reductive alkylation at the other amino group of the glycopeptide by at least about 20:1.
- 5. (Currently Amended) The method of claim 1 wherein the reductive alkylation is carried out in the presence of a suitable solvent.
- 6. (Currently Amended) The method of claim 5 wherein the solvent is a halogenated hydrocarbon, a linear or branched ether, an aromatic hydrocarbon, an alcohol, dimethylsulfoxide, N,N-dimethylformamide, acetonitrile, water, 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidone, tetramethyl urea, N,N-dimethylacetamide, diethylformamide, 1-methyl-2-pyrrolidinone, tetramethylenesulfoxide, glycerol, ethyl acetate, isopropyl acetate, N,N-dimethylpropylene urea,

or dioxane, or a mixture thereof.

- 7. (Currently Amended) The method of claim 6 wherein the solvent is acetonitrile, water, DMF N.N-dimethylformamide, or methanol, or mixtures thereof.
- 8. (Original) The method of claim 1 wherein the reaction mixture that is combined with the reducing agent comprises a protic solvent.
- 9. (Original) The method of claim 1 wherein the reductive alkylation is carried out at a temperature in a range of about 0 °C to about 50 °C.
 - 10. (Original) The method of claim 1 wherein the base is a tertiary amine.
- 11. (Currently Amended) The method of claim 1 wherein the acid is reaction mixture is acidified with a carboxylic acid or a mineral acid.
- 12. (Currently Amended) The method of claim 1 wherein the acid is reaction mixture is acidified with trifluoroacetic acid.
- 13. (Original) The method of claim 1 wherein the reducing agent is sodium cyanoborohydride, sodium triacetoxyborohydride, pyridine/borane, sodium borohydride, or zinc borohydride.
- 14. (Original) The method of claim 1 wherein the reducing agent is a hydrogen source and a transition metal catalyst.

(I)

- 15. (Currently Amended) The A method of claim 1 further comprising for preparing an alkylated glycopeptide, the method comprising:
- (a) combining an aldehyde or ketone, a base, and a glycopeptide or a salt thereof, to provide a reaction mixture;
 - (b) acidifying the reaction mixture;
- (c) combining the reaction mixture with a reducing agent to provide a glycopeptide that is alkylated at the saccharide-amine; and
 - (d) isolating the alkylated glycopeptide.
- 16. (Currently Amended) A method for preparing an alkylated glycopeptide, the method comprising:
 - (a) combining an aldehyde or ketone, a suitable base, and a compound of formula I:

wherein:

R1 is an amino saccharide group;

R² is hydrogen or a saccharide group;

 R^3 is R^3 -is $-OR^c$, $-NR^cR^c$, $-O-R^a-Y-R^b-(Z)_x$, $-NR^c-R^a-Y-R^b-(Z)_x$, $-NR^cR^c$, or $-O-R^c$;

R⁴ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, alkynyl, substituted alkynyl, -C(O)R⁴ and a saccharide group;

 R^5 is selected from the group consisting of hydrogen, halo, $-CH(R^c)-NR^cR^c$, $-CH(R^c)-NR^cR^c$, $-CH(R^c)-NR^c-R^a-Y-R^b-(Z)_{xy}-CH(R^c)-R^x$, and $-CH(R^c)-NR^c-R^a-C(=O)-R^x$;

R⁶ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, alkynyl, substituted alkynyl, -C(O)R^d and a saccharide group;

R⁷ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, and -C(O)R^d;

R⁸ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R⁹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R¹⁰ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; or R⁸ and R¹⁰ are joined to form -Ar¹-O-Ar²-, where Ar¹ and Ar² are independently arylene or heteroarylene;

R¹¹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic, or R¹⁰ and R¹¹ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

R¹² is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heterocyclic, -C(O)R^d, -C(NH)R^d, -C(O)NR^cR^c, -C(O)OR^d, and -C(NH)NR^cR^c, or R¹¹ and R¹² are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

R¹³ is selected from the group consisting of hydrogen or -OR¹⁴;

R¹⁴ is selected from hydrogen, -C(O)R^d and a saccharide group;

each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkynylene, alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, alkynylene and substituted alkynylene;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and -C(O)R^d;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R° is a saccharide group;

R^x is a nitrogen-linked amino saccharide or a nitrogen-linked heterocycle;

X¹, X² and X³ are independently selected from hydrogen or chloro;

each Y is independently selected from the group consisting of oxygen, sulfur, -S-S-,

```
-NR^{\circ}-, -S(O)-, -SO_2-, -NR^{\circ}C(O)-, -OSO_2-, -OC(O)-, -NR^{\circ}SO_2-, -C(O)NR^{\circ}-,
```

-C(O)O-, $-SO_2NR^c-$, $-SO_2O-$, $-P(O)(OR^c)O-$, $-P(O)(OR^c)NR^c-$,

 $-OP(O)(OR^{\circ})O-, -OP(O)(OR^{\circ})NR^{\circ}-, -OC(O)O-, -NR^{\circ}C(O)O-, -NR^{\circ}C(O)NR^{\circ}-,$

 $-OC(O)NR^{c}$ -, -C(=O)-, and $-NR^{c}SO_{2}NR^{c}$ -;

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl

and heterocyclic;

n is 0, 1 or 2; and

x is 1 or 2;

or a stereoisomer or salt thereof; to provide a reaction mixture;

- (b) acidifying the reaction mixture; and
- (c) combining the reaction mixture with a suitable reducing agent, to provide the corresponding glycopeptide alkylated at the amino group of the amino saccharide.
- 17. (Original) The method of claim 16 wherein R¹ is an amino saccharide of formula (III):

wherein R¹⁵ is H; and R¹⁶ is hydrogen or methyl.

- 18. (Original) The method of claim 16 wherein R², R⁴, R⁶, and R⁷ are each hydrogen.
- 19. (Original) The method of claim 16 wherein R³ is -OH.
- 20. (Original) The method of claim 16 wherein R⁵ is hydrogen, -CH₂-NHR^c, -CH₂-NR^cR^c or -CH₂-NH-R^a-Y-R^b-(Z)_x.

- 21. (Original) The method of claim 16 wherein the alkylated glycopeptide is a compound of formula I wherein R^1 is an amino saccharide wherein the saccharide-amine is substituted with- R^a -Y- R^b - $(Z)_x$, alkyl, substituted alkyl, alkenyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, or substituted cycloalkenyl.
- 22. (Original) The method of claim 16 wherein the alkylated glycopeptide is a compound of formula I wherein R¹ is an amino saccharide wherein the saccharide-amine is substituted with − CH₂CH₂−NH−(CH₂)₀CH₃; − CH₂CH₂CH₂−NH−(CH₂)₀CH₃; − CH₂CH₂CH₂CH₂−NH−(CH₂)₀CH₃; − CH₂CH₂CH₂CH₂−NH−(CH₂)₀CH₃; − CH₂CH₂−NHSO₂−(CH₂)₀CH₃; − CH₂CH₂−NHSO₂−(CH₂)₀CH₃; − CH₂CH₂−S−(CH₂)₀CH₃; − CH₂CH₂−S−(CH₂)₀CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂)∂CH₂−S−(CH₂−S−(CH₂−S−(CH₂)∂CH₂−S−(CH₂−S−(CH₂−S−(CH₂)∂CH₂−S−(CH₂−S−(CH₂−S−(CH₂)∂CH₂−S−(CH₂−S−(CH₂−S−(CH₂−S−(CH₂)∂CH₂−S−(CH₂−S−(CH₂−S−(CH₂−S−(CH₂)∂CH₂−S−(CH₂−S−(CH₂−S−(CH₂−S−(CH₂−S−(CH₂)∂CH₂−S−(CH₂−S−(CH₂−S−(CH₂−S−(CH₂−S−(CH₂−S−(CH₂−S−(CH₂−S−(CH₂)∂CH₂−S−(CH₂−S−(CH₂−S−(CH₂)∂CH
- 23. (Original) The method of claim 17 wherein the alkylated glycopeptide is a compound of formula I wherein R^1 is a saccharide group of formula III, wherein R^{15} is $-R^a-Y-R^b-(Z)_x$, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl.

- 25. (Currently Amended) A method for preparing an alkylated glycopeptide, the method comprising:
 - (a) combining an aldehyde or ketone, a suitable base, and a compound of formula II:

$$R^{19}$$
 $N-R^{20}$
 R^{19}
 $N-R^{20}$
 R^{19}
 R^{19}

wherein:

 $R^{3} \text{ is } -OR^{c}, -NR^{c}R^{c}, -O-R^{a}-Y-R^{b}-(Z)_{x}, -NR^{c}-R^{a}-Y-R^{b}-(Z)_{x}, -NR^{c}R^{e}, \text{ or } -O-R^{c};$

 R^5 is selected from the group consisting of hydrogen, halo, $-CH(R^c)-NR^cR^c$, $-CH(R^c)-NR^cR^c$, and $-CH(R^c)-NR^c-R^a-Y-R^b-(Z)$;

R¹⁹ and R²⁰ are each hydrogen;

each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkynylene, alkynylene and substituted alkynylene;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and -C(O)R^d;

R° is a saccharide group;

each Y is independently selected from the group consisting of oxygen, sulfur, -S-S-,

$$-NR^{c}$$
, $-S(O)$ -, $-SO_{2}$ -, $-NR^{c}C(O)$ -, $-OSO_{2}$ -, $-OC(O)$ -, $-NR^{c}SO_{2}$ -, $-C(O)NR^{c}$ -,

- -C(O)O-, $-SO_2NR^c-$, $-SO_2O-$, $-P(O)(OR^c)O-$, $-P(O)(OR^c)NR^c-$,
- $-OP(O)(OR^{\circ})O^{-}$, $-OP(O)(OR^{\circ})NR^{\circ}$, $-OC(O)O^{-}$, $-NR^{\circ}C(O)O^{-}$, $-NR^{\circ}C(O)NR^{\circ}$,
- -OC(O)NR°- and -NR°SO₂NR°-;

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic; and

x is 1 or 2; or a stereoisomer or salt thereof; to provide a reaction mixture;

- (b) acidifying the reaction mixture; and
- (c) combining the reaction mixture with a suitable reducing agent, to provide the corresponding alkylated glycopeptide wherein R^{20} is $-R^a-Y-R^b-(Z)_x$, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, or substituted cycloalkenyl.

- -CH₂CH₂CH₂-S-CH₂-4-(4-Cl-Ph)-Ph; -CH₂CH₂CH₂-S(O)-CH₂-4-(4-Cl-Ph)-Ph; -CH₂CH₂CH₂-S-CH₂-4-[3,4-di-Cl-PhCH₂O-)-Ph; -CH₂CH₂-NHSO₂-CH₂-4-[4-(4-Ph)-Ph]-Ph; -CH₂CH₂CH₂-NHSO₂-CH₂-4-(4-Cl-Ph)-Ph; -CH₂CH₂CH₂-NHSO₂-CH₂-4-(Ph-C≡C-)-Ph; -CH₂CH₂CH₂-NHSO₂-4-(4-Cl-Ph)-Ph; or -CH₂CH₂CH₂-NHSO₂-4-(naphth-2-yl)-Ph.
- 27. (Original) The method of claim 1, further comprising preparing a pharmaceutically acceptable salt of the alkylated glycopeptide.
- 28. (Original) The method of claim 1, further comprising, combining a pharmaceutically acceptable carrier with the alkylated glycopeptide to provide a pharmaceutical composition.
- 29. (Original) The method of claim 27, further comprising, combining a pharmaceutically acceptable carrier with the salt, to provide a pharmaceutical composition.
- 30. (New) A process for preparing an alkylated glycopeptide, the process comprising the steps of:
- (a) contacting a glycopeptide having a amino-containing saccharide group with an aldehyde or ketone in the presence of a tertiary amine to form a reaction mixture;
 - (b) acidifying the reaction mixture from step (a) with an acid;
- (c) contacting the reaction mixture from step (b) with a reducing agent to form an alkylated glycopeptide.
- 31. (New) The process of claim 30, wherein the glycopeptide is vancomycin or A82846B.
- 32. (New) The process of claim 30, wherein the tertiary amine is diisopropylethylamine, N-methylmorpholine or triethylamine.

- 33. (New) The process of claim 30, wherein the acid is trifluoroacetic acid.
- 34. (New) The process of claim 30, wherein the reducing agent is sodium cyanoborohydride, sodium triacetoxyborohydride, pyridine/borane, sodium borohydride or zinc borohydride.