北京理工大学 2005-2006 学年第二学期

2005 级《微积分 A》期末试卷 (A 卷)

一、完成下列各题(每小题6分)

课程编号: A072001

- 1. 求曲线 $\Gamma: \begin{cases} y = 2x^2 \\ z = 2 y^2 \end{cases}$ 在点(1, 2, -2)处的切线方程和法平面方程.
- 2. 设u = f(xy, x y), 其中 f 有连续的二阶偏导数,求 $\frac{\partial u}{\partial x}$ 及 $\frac{\partial^2 u}{\partial y \partial x}$.
- 3. 计算二重积分 $I = \int_0^1 dx \int_x^1 x^2 e^{y^2} dy$.
- 4. 判断级数 $\sum_{n=2}^{\infty} (\frac{1}{\sqrt{n-1}} \frac{1}{\sqrt{n}} \frac{1}{n})$ 的敛散性.
- 二、求解下列各题(每小题7分)
 - 1. 计 算 曲 面 积 分 $I = \iint_{\Sigma} \sqrt{x^2 + y^2 + z^2} dS$, 其 中 Σ 为 圆 锥 面 $z = \sqrt{x^2 + y^2} \text{ 上介于平面 } z = 1 \text{ 和 } z = 2 \text{ 之间的部分.}$
 - 2. 设 \vec{n} 是曲面 $x^2 + 4y^2 = 2z^2$ 在 P(2,1,2) 点处与 z 轴正向夹角为锐角的 法线 向量, 求 函 数 $u = f(x,y,z) = x\sqrt{5y+z^2}$ 在 P 点处的梯度及 f(x,y,z) 在 P 点处沿方向 \vec{n} 的方向导数.
 - 3. 设 S(x) 是 $f(x) = \begin{cases} x^2, & x \in [0,1] \\ x-1, & x \in (1,\pi) \end{cases}$ 的以 2π 为周期的余弦级数展开式的和函数,写出 S(x) 在区间 $(-\pi,0)$ 内的表达式,并求 S(-4) 和 $S(2\pi-1)$ 的值。
 - 4. 求 $f(x,y) = e^{y}(x^2 4x + 2y)$ 的极值,并判别是极大值还是极小值.

- 三、 $(8 \, \text{分})$ 把函数 $f(x) = \frac{1}{x(x-3)}$ 展成(x-1) 的幂级数, 并指出收敛域.
- 四、(8分) 设 Ω 是球体 $x^2 + y^2 + z^2 \le R^2$ 位于第一卦限内的部分,试将三重积分 $I = \iiint_{\Omega} (x^2 + y^2) dx dy dz$ 分别在直角坐标系及球坐标系下化为累次积分,并任选一种方法计算I的值。
- 五、(8分) 利用格林公式计算积分 $I = \int_L (\sin y y) dx + (x \cos y 1) dy$, 其中 L 为半圆周 $y = \sqrt{2x x^2}$ 上从点 O(0,0) 到点 A(1,1) 的一段.
- 六、(8分) 求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(2n-1)} x^{2n}$ 的收敛区间及和函数.
- 七、(8 分) 计算曲面积分 $I = \iint_{\Sigma} \frac{2axdydz + (z-a)^2 dxdy}{\sqrt{x^2 + y^2 + z^2}}$, 其中 Σ 为上半球面 $z = \sqrt{a^2 x^2 y^2}$ (a > 0) 的上侧。