Parallel Data Series Indexing and Similarity Search on Modern Hardware

Panagiota Fatourou, Professor

University of Crete and FORTH Laboratoire d'Informatique Paris Descartes, Université de Paris Cité

Joint work with:

Botao Peng, Chinese Academy of Sciences and **Themis Palpanas**, Université de Paris Cité

Data series

• Sequence of points ordered along some dimension

Data series

• Sequence of points ordered along some dimension

Data series

• Sequence of points ordered along some dimension

Scientific Monitoring

meteorology, oceanography, volcanology, seismology, astronomy, finance, sociology, etc.

Wind speed

From ocean observing node project, http://bml.ucdavis.edu/boon/wind.html

UTC Time in Minutes

Wind Speed Comparison

Volcanic Activity Indicators

From British Geological Survey https://www.bgs.ac.uk/geology-projects/volcanoes/

Panagiota Fatourou

1500

Telecommunications

• analysis of call activity patterns, Telecom Italia

average number of calls

clustermap of incoming calls time series

Neuroscience

- functional Resonance Magnetic Imaging (fMRI) data
 - primary experimental tool of neuroscientists
 - reveal how different parts of brain respond to stimuli

Biology

GTCAATGGCCAGGATATTAGAACAGTACTCTGTGAACCCTATTTATGGTGGCACCCCTTAG

GGGAAGCCTCC AGGGAAAGCCA AAGATATTACA **TGAATAATCCC** ACCGGTTGAA **AACTGGCAACT** CTCCCAAGGAT AGGGCTTTGG **AGCCAGTGACA ITTATGTCTTA GGCCAAGCAT GTGGTTATTTA AGAGCAGAATC GCAAGATGAG CAAGAGCCCA** AATGGCCAGG

ATATTAGAACAGTACTCTGTGAACCCTATTTATGGTAGCACCCCTTAGACTAAGATAACACA GGGAGCAAGAGGTT

What do we want to do with data series?

Panagiota Fatourou

What do we want to do with data series?

What do we want to do with data series? Complex analytics

Dynamic Time Warping

Challenge - Massive data Series collections

1.5 TB per day

Large Synoptic Survey
Telescope
~30 TB per night

passenger aircrafts

20 TB per hour

data center and services monitoring
2B data series
4M points/sec

HARD,
because of
very high
dimension
ality:
each data
series has
several
hundreds
to several
thousands
of points!

Contributions

- ParIS+, a disk-based concurrent data series index for modern hardware
 - Multi-threaded design, SIMD instructions
 - Similarity search up to 15x faster (10sec on 100GB dataset)

 IEEE Trans. on Knowledge & Data Engineering 2021, IEEE Big Data 2018
- MESSI, an in-memory data series index for modern hardware
 - Lower synchronization index design
 - Novel algorithms for query processing
 - Similarity search at interactive speeds (50msec on 100GB dataset)
 VLDB Journal 2021, IEEE International Conference on Data Engineering (ICDE) 2020
- SING, a data series similarity search accelerated by GPUs
 - CPU-GPU collaborative framework
 - Expands scalability of exact similarity search (~30msec on 100GB dataset)

 IEEE International Conference on Data Engineering (ICDE) 2020

State-of-the-Art: ADS, the Adaptive Data Series Index

[Zoumpatianos et al., VLDBJ'16]

State-of-the-Art: ADS, the Adaptive Data Series Index

summarized query query **Summarized Raw Data Series Data Series Best So Far** (BSF) **Answer Superset** data intelligence institute of Paris Université dip Panagiota Fatourou

[Zoumpatianos et al., VLDBJ'16]

State-of-the-Art: ADS, the Adaptive Data Series Index

Panagiota Fatourou

data intelligence institute of Paris

Université dip

Symbolic Aggregate approXimation (SAX).

- (1) Represent data series *T* of length *n* with *w* segments using Piecewise Aggregate Approximation (PAA)
 - *T* typically normalized to $\mu = 0$, $\sigma = 1$

• PAA
$$(T,w) = \overline{T} = \overline{t}_1, \dots, \overline{t}_w$$
where $\overline{t}_i = \frac{w}{n} \sum_{j=\frac{n}{w}(i-1)+1}^{\frac{n}{w}i} T_j$

- (2) Discretize into a vector of symbols
 - Breakpoints map to small alphabet *a* of symbols

iSAX Representation

• iSAX offers a bit-aware, quantized, multi-resolution representation with variable granularity

Lower Bound distance Calculation: Calculate distance between the iSAX summary of a data series and the query PAA

Real Distance Calculation: Calculate real Euclidean distance between the query and a data series **Lower-Bound Property of iSAX summaries**: If the lower bound distance between a query Q and the data series DS is higher than a value v, then the real distance between Q and DS is also higher than v.

