CHAPITRE 6: MINIMISATION D'UN AFD

1. Théorème d'existence de l'AFD minimal

1.1 Problème

Parmi les AFD reconnaissant un même langage L, peut-on en trouver un qui a <u>le nombre minimal d'états</u>?

Oui, et il est <u>unique</u> (à un renommage près des états) :

- on l'obtient en supprimant les états inaccessibles
- puis on identife les états restants qui jouent un rôle identique du point de vue de la reconnaissance

1.2 Théorème de Myhill-Nérode

Théorème de Myhill-Nérode. Soit L un langage rationnel. Parmi tous les AFD reconnaissant L, il en existe un et un seul qui a un nombre minimal d'états.

2. Construction de l'AFD minimal

2.1 Suppression des états inaccessibles

Construction par récurrence d'une suite d'ensembles Acc_i

- $Acc_0 = \{i\}$
- $Acc_{i+1} = Acc_i \cup \delta(Acc_i, \Sigma)$

On s'arrête quand $Acc_{i+1} = Acc_i$, et on pose alors $Q = Acc_i$ (c'est-à-dire qu'on supprime les états de $Q \setminus Acc_i$).

Les états qu'on ne peut atteindre à partir de l'état initial n'apportent aucune contribution au langage L reconnu par l'AFD.

1.2 Automate quotient

Définition. Un mot u sépare deux états q_1 et q_2 si $\delta(q_1, u) \in F$ et $\delta(q_2, u) \notin F$ ou $\delta(q_1, u) \notin F$ et $\delta(q_2, u) \in F$

Définition. Deux états q_1 et q_2 sont équivalents si aucun mot ne les sépare :

 $q_1 \sim q_2$ si et seulement si pour tout mot u, on a :

 $\delta(q_1, u) \in F$ implique $\delta(q_2, u) \in F$ et réciproquement.

Proposition. La relation \sim est une relation d'équivalence sur l'ensemble des états Q: réflexive, symétrique, transitive.

Supposons qu'un mot u sépare $p_1 = \delta(q_1, a)$, et $p_2 = \delta(q_2, a)$. On a :

$$\delta(q_1, au) = \delta(\delta(q_1, a), u) = \delta(p_1, u)$$
, et

$$\delta(q_2, au) = \delta(\delta(q_2, a), u) = \delta(p_2, u).$$

Donc le mot au sépare q_1 et q_2 . On en déduit :

Proposition. Si $q_1 \sim q_2$, alors $\delta(q_1, a) \sim \delta(q_2, a)$ pour toute lettre a.

Construction de l'automate quotient :

On définit une fonction de transition sur <u>les classes d'équivalence des états</u>.

Si [q] est la classe des états équivalents à q, on pose :

$$\delta([q], a) = [\delta(q, a)]$$

Le nombre de classes d'équivalences sur Q est nécessairement <u>inférieur</u> au nombre d'éléments de Q. Donc l'automate quotient a un nombre d'états inférieur au nombre d'états de l'AFD de départ. En fait, on montre que si deux AFD reconnaissent le même langage L, leurs automates quotients ont <u>le même nombre d'états</u> (ce nombre ne dépend que du langage L, pas de l'AFD qui reconnaît L).

1.3 Construction de l'automate quotient

On définit une suite de relations d'équivalence.

- La relation \sim_0 ne comporte que deux classes : les états finals F, et les états non finals $Q \setminus F$
- Les autres relations s'obtiennent en raffinant les classes d'équivalences. Si $[p]_k$ est la classe d'équivalence de l'état p pour la relation \sim_k , on définit $[p]_{k+1}$ à partir de $[p]_k$, mais en ne gardant que les états dont toutes les transitions conduisent vers des états équivalents. On pose donc :

$$[p]_{k+1} = [p]_k \cap \{q \in Q, \delta(q, a) \sim_k \delta(p, a) \text{ pour toutes lettres } a\}$$

Proposition. Pour $k \ge card(Q)$, les relations d'équivalence se stabilisent $\sim_{k+1} = \sim_k$, et l'équivalence obtenue est celle qui définit l'automate quotient.

Exemple:

$$i = 1, F = \{6, 7, 8\}$$

	1	2	3	4	5	6	7	8
a	1	2	4	3	2	3	8	7
b	5	5	6	8	4	7	7	7

On voit facilement qu'aucun mot ne sépare les états 7 et 8. À partir de ces états, on peut lire n'importe quel mot sur $\{a, b\}$. Ces deux états pourront donc être confondus dans l'AFD minimal.

1. Équivalence \sim_0

Initialement, les deux classes sont celle des états finals $[6]_0 = \{6, 7, 8\}$ et celle des autres $[1]_0 = \{1, 2, 3, 4, 5\}$

2. Équivalence \sim_1

Pour éventuellement scinder des classes, il faut regarder dans quelles classes vont les transitions partant des états. On en déduit les nouvelles classes pour \sim_1 .

	1	2	3	4	5	6	7	8
\sim_0	$[1]_{0}$	$[1]_{0}$	$[1]_{0}$	$[1]_{0}$	$[1]_{0}$	$[6]_{0}$	$[6]_{0}$	[6] ₀ [6] ₀ [6] ₀ [7] ₁
a	$[1]_{0}$	$[1]_{0}$	$[1]_{0}$	$[1]_{0}$	$[1]_{0}$	$[1]_{0}$	$[6]_{0}$	$[6]_{0}$
b	$[1]_{0}$	$[1]_{0}$	$[6]_{0}$	$[6]_{0}$	$[1]_{0}$	$[6]_{0}$	$[6]_{0}$	$[6]_{0}$
~1	[1] ₁	$[1]_{1}$	[3] ₁	$[3]_{1}$	$[1]_{1}$	[6] ₁	[7] ₁	$[7]_{1}$

3. Équivalence \sim_2

Dans le tableau ci-après, on n'indique que les transitions qui vont dans une autre classe.

	1	2	3	4	5	6	7	8
~1	$[1]_{1}$	$[1]_{1}$	$[3]_{1}$	[3] ₁	$[1]_{1}$	[6] ₁	[7] ₁	[7] ₁
a								
b					[3] ₁			
\sim_2	$[1]_2$	$[1]_{2}$	$[3]_{2}$	$[4]_{2}$	$[5]_{2}$	[6] ₂	$[7]_{2}$	$[7]_{2}$

4. Équivalence $\sim_3 = \sim_2$

Il n'y a plus aucune scission de classes, donc la suite d'équivalences s'est stabilisée, et on obtient celle de l'AFD minimal.

	1	2	3	4	5	6	7	8
\sim_2	$[1]_{2}$	[1] ₂	[3] ₂	$[4]_{2}$	[5] ₂	[6] ₂	[7] ₂	[7] ₂
a b								
~3	$[1]_{3}$	$[1]_{3}$	$[3]_{3}$	$[4]_{3}$	$[5]_{3}$	$[6]_{3}$	$[7]_{3}$	$[7]_{3}$

On voit donc qu'on peut confondre

- les états 1 et 2
- les états 7 et 8

On en déduit l'AFD minimal.

