Lab -- ENGR 509

Problem Setup

Problem Setup

- Robot localization
 - Given the map, where am I (on the map)?

Examples

Map

What are the information on the map that we need to do localization?

- locations of landmarks

As long as we have enough landmarks, and relative location to the landmarks, we can localize yourself.

Our implementation

- landmark: poles
- A range sensor tells how far to a pole.
- Remember: robot knows the map.

Now, we change the rule:

- The robot movement is not perfect. Although the control command is moving forward by 1.0 unit, the robot can move 1.0 unit plus some errors.
- The robot measurements are not perfect. For example, the measurement is 2.5 units to a pole, meaning distance could be 2.5 units plus some errors.
- For simplicity, we model the errors follow zero-mean Normal distributions.

$$Bel(x_t) = \eta \ p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, u_t) \ Bel(x_{t-1}) \ dx_{t-1}$$

$$draw \ x^{i}_{t-1} \ from \ Bel(x_{t-1})$$

$$draw \ x^{i}_{t} \ from \ p(x_t \mid x^{i}_{t-1}, u_t)$$

$$draw \ x^{i}_{t} \ from \ p(x_t \mid x^{i}_{t-1}, u_t)$$

$$draw \ x^{i}_{t} \ from \ p(x_t \mid x^{i}_{t-1}, u_t)$$

$$draw \ x^{i}_{t} \ from \ p(x_t \mid x^{i}_{t-1}, u_t)$$

$$e \frac{target \ distribution}{proposal \ distribution}$$

$$= \frac{\eta \ p(z_t \mid x_t) \ p(x_t \mid x_{t-1}, u_t) \ Bel(x_{t-1})}{p(x_t \mid x_{t-1}, u_t) \ Bel(x_{t-1})}$$

$$\propto p(z_t \mid x_t)$$

- Sample the next generation for particles using the proposal distribution
- Compute the importance weights : weight = target distribution / proposal distribution
- Resampling: "Replace unlikely samples by more likely ones"

Algorithm Particle_filter($\mathcal{X}_{t-1}, u_t, z_t$):

$$ar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$$
 for $m = 1$ to M do $sample \ x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]})$ $w_t^{[m]} = p(z_t \mid x_t^{[m]})$ $ar{\mathcal{X}}_t = ar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle$ endfor for $m = 1$ to M do $draw \ i$ with probability $\propto w_t^{[i]}$ add $x_t^{[i]}$ to \mathcal{X}_t endfor

return \mathcal{X}_t

Step 1: Generate particles based on our prior

- uniformly prior distributed (each spot has one particle)
- each particle moves following with robot moving, no uncertainties in their movements.
- at this step, we assume each particle holds their beliefs only to be true (belief=1) of false (belief=0)

Step 2: Add uncertainties in particles' movements

- movement errors follow zero-mean Gaussian distribution with a predefined standard deviation
- create one particle, move 10 times, print and observe the measurements
- uncomment # quit() to see how distribution converges with more samples.

Step 3: More realistic sensor model:

Previous measurement

```
def detect_pole(self, poles):
    if self.pos + 1 in poles:
        self.pole_detected = True
    else:
        self.pole_detected = False
```

More realistic measurement considering sensor specifications:

- Maximum measurement range: 3 units
- If object within the detection range, report the distance to the closest object
- If no object detected, output -1000

Your practice:

Complete the step-3.py, fill in the measure function so that

"Measurement should be XXX"

matches

"You Measured: XXX"

- Step 4: Update weights for each particle while taking into account measurement uncertainty in the sensor model.
- For simplicity, we assume the sensor model: errors follow Gaussian distribution with a predefined standard deviation.
- Qs: if robot got measurement 3.0 units to a pole, particle A is at the location distancing 2.0 units to the pole, particle B at the location distancing 3.0 units. How would you assign the weights?
- Complete the step-4.py: update weights by setting the particle.weight value based on the given Gaussian probability density function.

- Step 5: Resample
- Complete the resample_particles function
- Change the particle number and weights, do experiment and Observe -e.g., change the number of particles to be 100, and weights to be either 1 and 0.05 (i.e., large number of particles, but most of them have really small likeliness)

Step 6: Put it together

- You can reuse all the steps we implemented before
- Put them together to implement a complete particle filter for 1D localization

Any problems found? How do you fix it?

