0.1 模

定义 0.1 (模)

- $(1) \ a(x+y) = ax + ay;$
- (2) (a+b)x = ax + bx;
- (3) (ab)x = a(bx);
- (4) $1 \cdot x = x$,

则称 M 为 R 上的一个**左模**, 或称 M 是**左R 模**, ax 称为 a 与 x 的积, 相应地说, R 与 M 间有一个乘法. 类似地, 可定义**右R 模**, 即有映射 $(x,a) \rightarrow xa(a \in R, x \in M)$, 对 $\forall a,b \in R, x,y \in M$ 满足

- (1) (x + y)a = xa + ya;
- (2) x(a+b) = xa + xb;
- (3) x(ab) = (xa)b;
- (4) $x \cdot 1 = x$.

若 M 既是左 R 模, 又是右 R 模且满足

$$(ax)b = a(xb), \quad \forall a, b \in R, x \in M,$$

则称 M 是 R 双模, 或称 R 模.

注 假设 R 交换环且 M 是左或右 R 模, 又对 $a \in R, x \in M$, 令 xa = ax, 则易证 M 是一个 R 模, 今后对于交换环 R 上的模都指这种意义下的模.

例题 0.1 数域 P 上的线性空间 V 就是一个 P 模. 一般地, 域 F 上的模都称为 F 上的线性空间.

证明

例题 0.2 设 R 是幺环, R 对加法是 Abel 群, 记为 R_+ . 考虑 $R \times R_+$ 到 R_+ 的映射

$$(r, x) \rightarrow rx, \quad r \in R, x \in R_+$$

及 $R_+ \times R$ 到 R_+ 的映射

$$(x, s) \rightarrow xs, \quad x \in R_+, s \in R,$$

使 R_+ 变成一个 R 模, 因而 R 可看成它自身上的模.

证明

例题 0.3 设 V 是数域 P 上的线性空间, \mathcal{A} 是 V 的一个线性变换, 令 $R = P[\lambda]$ 为 P 上的一元多项式环, 则 $R \times V$ 到 V 的映射 $(f(\lambda), x) \to f(\mathcal{A})x$, $f(\lambda) \in R(x \in V)$, 使 V 成为一个左 R 模.

证明

例题 0.4 设 M 是一个 Abel 群, 运算为加法, 则 EndM 为 M 的自同态环, 并且 End $M \times M$ 到 M 的映射 $(\eta, x) \to \eta(x)(\eta \in \text{End}M, x \in M)$, 使 M 成为一个左 EndM 模.

证明

定理 0.1

设M是一个R模,则

(1) $\forall a, a_i \in R, x, x_i \in M, 1 \leq i \leq n$,

$$a\left(\sum_{i=1}^{n} x_i\right) = \sum_{i=1}^{n} ax_i, \quad \left(\sum_{i=1}^{n} a_i\right) x = \sum_{i=1}^{n} a_i x.$$

(2) $\forall a \in R, x \in M$,

$$a0 = 0a = 0$$
, $a(-x) = (-a)x = -ax$.

证明

- (1)
- (2)

定义 0.2

设M是一个R模,M的子集N若满足

- (1) N 是 M 的子群;
- (2) $\forall a \in R, x \in N \ f \ ax \in N$,

则称 $N \to M$ 的一个**子模**. 显然, $\{0\}$ 与 M 都是 M 的子模, 称为**平凡子模**.

例题 0.5 设 V 是数域 P 上的线性空间, V 的子模即 V 的线性子空间. 一般域 F 上的线性空间的子模, 也称为 V 的线性子空间或子空间.

证明

例题 0.6 设 M 是一个 Abel 群, 其运算为加法. 映射

 $(m, x) \rightarrow mx, \quad m \in \mathbf{Z}, x \in M,$

使 M 变成一个 Z 模. 并且 M 的子集 N 为子模当且仅当 N 为 M 的子群.

证明

例题 0.7 设 R 是一个幺环, R 可看成左 R 模、右 R 模或 R 模。又设 N 是 R 的子集, 则 N 是左 R 模(或右 R 模、R 模) R 的子模当且仅当 N 是 R 的左理想(或右理想、理想).

证明

例题 0.8 设 V 是数域 P 上的线性空间, \mathcal{A} 是 V 上的一个线性变换. 在定理 0.3中, 从 \mathcal{A} 出发定义了 $P[\lambda]$ 模 $V \setminus V$ 的子集 V_1 是 $P[\lambda]$ 子模当且仅当 V_1 是 \mathcal{A} 的不变子空间.

证明

定理 0.2

设M是一个R模,则

- (1) M 中任意多个子模之交仍为子模.
- (2) M 中有限多个子模 N_1, N_2, \cdots, N_r 之和

$$N_1 + N_2 + \cdots + N_r = \{x_1 + x_2 + \cdots + x_r | x_i \in N_i\}$$

仍为 M 的子模.

(3) 设S为M的子集,则M中包含S的最小子模是所有包含S的子模之交,称为由S生成的子模. 若

 $S = \{y_1, y_2, \dots, y_k\}$ 为有限集,则 S 生成的子模为

$$Ry_1 + Ry_2 + \dots + Ry_k = \left\{ \sum_{i=1}^k a_i y_i \middle| a_i \in R \right\}.$$

特别地,由一个元素 x 生成的子模 Rx 称为**循环子模**. 若 M 是由一个元素 x 生成,即 M = Rx,则称 M 为**循环模**.

循环群就是循环 Z 模. 幺环 R 就是循环 R 模.

证明

- (1)
- (2)
- (3)

定理 0.3

设 $N \to R$ 模 M 的子模. $\overline{M} = M/N \to M$ 对 N 的商群, 定义 $R \times \overline{M}$ 到 \overline{M} 的映射

 $(a, x + N) \rightarrow ax + N, \quad \forall x \in M, a \in R,$

则 \overline{M} 为 R 模, 称为 M 对 N 的**商模**.

证明 首先证明上述映射是单值的,即 R 中元素 \overline{M} 中元素所作乘法运算的合理性.

设 $x_1, x_2 \in M$ 且 $x_1 + N = x_2 + N$, 于是 $x_1 - x_2 \in N$, 因而, 由 N 为子模有 $a(x_1 - x_2) = ax_1 - ax_2 \in N$, 故 $ax_1 + N = ax_2 + N$, 即上面映射是单值的.

以下只要验证 R 模的 4 个定义条件. 这些验证不难.

定义 0.3

设M, M'为两个R模.如果M到M'的映射 η 满足 $\forall a \in R, x, y \in M$ 有

- (1) $\eta(x+y) = \eta(x) + \eta(y)$, 即 η 是群同态;
- (2) $\eta(ax) = a\eta(x)$,

则称 η 为 M 到 M' 的一个模同态或 R 同态.

 $若 \eta$ 还是满映射,则称 η 为**满同态**,此时称 M 与 M' 同态.

 η 若还是一一对应,则称 η 为**模同构**或 **R** 同构,此时称 $M \subseteq M'$ 同构,记为 $M \cong M'$.

注 模同态的定义知模同态必为群同态.

例题 0.9 设 M, M' 是两个 Abel 群, η 是 M 到 M' 的群同态, 则 η 也是 Z 模 M 到 Z 模 M' 的模同态; 若 η 为群同构, 则 η 也是模同构.

证明

例题 **0.10** 设 N 是 R 模 M 的子模, π 是 M 到商模 $\overline{M} = M/N$ 的自然映射, 即 $\pi(x) = x + N(\forall x \in M)$. 已知 π 是群同态, 又对 $\forall a \in R, x \in M$ 有 $\pi(ax) = ax + N = a(x + N) = a\pi(x)$, 故 π 也是模同态, 称 π 是 M 到 M/N 上的自然同态. 证明

例题 0.11 假设 V 是域 F 上的线性空间. V 到自身的模同态 \mathcal{A} , 称为 V 的线性变换. 显然, 当 F 为数域时, \mathcal{A} 就是线性代数中讲的线性空间的线性变换.

证明

定理 0.4

设M是一个R模,

- 1. 设 η 是 M 到 M' 的 R 同态, 则 $\eta(M)$ 是 M' 的子模且 η 是 M 到 $\eta(M)$ 上的同态.
- 2. 设 η 是 R 模 M 到 R 模 M' 的同态, η' 是 R 模 M' 的同态, 则 $\eta'\eta$ 是 M 到 M'' 的模同态 (图 1).
- 3. R模之间的同构关系是等价关系.

证明

- 1.
- 2.
- 3.

定义 0.4

一个 R 模 M 到自身的同态称为 M 的 R 自同态, 简称**自同态**. R 模 M 的 R 自同态的集合记为 End_RM . 以 EndM 表示 Abel 群 M 的所有群自同态的集合.

 $\dot{\mathbf{E}}$ 由模同态的定义知模同态必为群同态, 故有 $\operatorname{End}_R M \subseteq \operatorname{End} M$. 另一方面, 可以验证在 $\operatorname{End} M$ 中可定义加法与乘法使 $\operatorname{End} M$ 是一个环.

定理 0.5

设 M 是一个 R 模,则 M 的 R 自同态的集合 $\operatorname{End}_R M$ 是 Abel 群 M 的自同态环 $\operatorname{End} M$ 的子环. $\operatorname{End}_R M$ 称为 R 模 M 的**模自同态环**.

证明 显然, $id_M \in End_R M$, 故 $End_R M \neq \emptyset$, 又若 $\eta_1, \eta_2 \in End_R M$, $x, y \in M$, $a \in R$, 则有

$$(\eta_1-\eta_2)(x+y)=\eta_1(x+y)-\eta_2(x+y)=(\eta_1-\eta_2)(x)+(\eta_1-\eta_2)(y),$$

可知 $\eta_1 - \eta_2 \in \operatorname{End}_R M$, 故 $\operatorname{End}_R M$ 对加法成群. 又由同态性质知 $\eta_1 \eta_2 \in \operatorname{End}_R M$, 由此可知 $\operatorname{End}_R M$ 是 $\operatorname{End} M$ 的子 环.

例题 0.12 设 M 为 Abel 群, 于是 M 为 Z 模. 则由例题 0.9知 $End_ZM = End_M$.

证明

例题 0.13 设 R 是一个幺环,则 R 作为左 R 模有 $End_RR = R_r$.

<u>i</u> 设 <math>M 是一个左 R 模, 一般把 M 的模自同态环记为 R End M. 若 M 是右 R 模, 则将 M 的模自同态环记为 R End M. 交换幺环上的模, 可自然地看成双模, 故这时没必要区分这两种记号, 统一地以 R End R 表示.

证明 $\forall a \in R$, 可定义 a 的右乘变换 a_r 为 $a_r(x) = xa(\forall x \in R)$. 显然, 对 $\forall x, y, a, b \in R$ 有 $a_r(x+y) = a_r(x) + a_r(y)$, $a_r(bx) = bxa = ba_r(x)$, 故 $a_r \in \operatorname{End}_R R$. 令 $R_r = \{a_r | a \in R\}$, 即有 $R_r \subseteq \operatorname{End}_R R$. 现设 $\eta \in \operatorname{End}_R R$, $\eta(1) = a$, 于是 $\eta(x) = \eta(x \cdot 1) = x\eta(1) = xa = a_r(x)$, 即 $\eta = a_r$. 故 $\eta \in R_r$, 这样就证明了幺环 R 作为左 R 模有 $\operatorname{End}_R R = R_r$.