3-9 Connectivity

Hengfeng Wei

hfwei@nju.edu.cn

November 26, 2018

5.10 5.34 5.22 5.26

 $5.10 \quad 5.34 \quad 5.22 \quad 5.26$

Menger's Theorem (Theorem 5.16; Theorem 5.21)

A connected graph G with $m \geq 2$ is nonseparable

 \iff

any two adjacent edges of G lie on a common cycle of G.

A connected graph G with $m \geq 2$ is nonseparable

 \iff

any two adjacent edges of G lie on a common cycle of G.

Proof.

 $``\Longrightarrow"$

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

Proof.

 $``\Longrightarrow"$

G is nonseparable

 $\implies u, w$ lie on a common cycle

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

Proof.

 $``\Longrightarrow"$

G is nonseparable

 $\implies u, w$ lie on a common cycle

 $\implies \exists \text{ path } u \sim w$

 $\implies \exists \text{ cycle } u - v - w \sim u$

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

Proof.

 $``\Longrightarrow"$

G is nonseparable

 $\implies u, w$ lie on a common cycle

 $\implies \exists \text{ path } u \sim w$

 $\implies \exists \text{ cycle } u - v - w \sim u$

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

Proof.

 $``\Longrightarrow"$

G is nonseparable

 $\implies u, w$ lie on a common cycle

 $\implies \exists \text{ path } u \sim w \text{ that does not contain } v$

 $\implies \exists \text{ cycle } u - v - w \sim u$

A connected graph G with $m \geq 2$ is nonseparable

$$\leftarrow$$

any two adjacent edges of G lie on a common cycle of G.

Proof.

"←

By Contradiction.

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

Proof.

By Contradiction.

Suppose v is a cut-vertex of G

$$\implies G - v \text{ contains } \geq 2 \text{ comps } G_1, G_2, \cdots$$

$$\implies \exists u \in G_1, w \in G_2 : v - u \land v - w$$

$$\implies v - u, v - w$$
 lie on a common cycle

 $\implies \exists \text{ path } u \sim w \text{ that does not contain } v$

$$\forall G_i \; \exists v_i \in G_i \; v - v_i$$

$$\forall G_i \ \exists v_i \in G_i \ v - v_i$$

 $\forall G_i \; \exists v_i \in G_i \; v - v_i$

$$\forall v \in S \ \forall G_i \ \exists v_i \in G_i \ v - v_i$$

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

2-Connectivity (Extended Problem)

A connected graph G with $m \geq 2$ is nonseparable

any two edges of G lie on a common cycle of G.

Expansion Lemma (Problem 5.34; Theorem 5.18)

Let G be a k-connected graph and let S be any set of k vertices.

If a graph H is obtained from G by adding a new vertex w and joining w to the vertices of S, then H is also k-connected.

To prove
$$\kappa(H) \geq k$$

Let U be a vertex-cut of H. We prove that $|U| \ge k$.

Let U be a vertex-cut of H. We prove that $|U| \ge k$.

Case I: U is a vertex-cut of G — Case II: U is not a vertex-cut of G

Let U be a vertex-cut of H. We prove that $|U| \ge k$.

Case I: U is a vertex-cut of G

Case II: U is not a vertex-cut of G

$$|U| \ge k$$

Let U be a vertex-cut of H. We prove that $|U| \ge k$.

Case I: U is a vertex-cut of G

Case II: U is not a vertex-cut of G

$$|U| \ge k$$

 $w \in U$

To prove
$$\kappa(H) \geq k$$

Let U be a vertex-cut of H. We prove that $|U| \ge k$.

Case I: U is a vertex-cut of G

$$|U| \geq k$$

Case II: U is not a vertex-cut of G

$$w \in U$$

U-w is a vertex-cut of G

To prove
$$\kappa(H) \geq k$$

Let U be a vertex-cut of H. We prove that $|U| \ge k$.

Case I: U is a vertex-cut of G

$$|U| \ge k$$

Case II: U is not a vertex-cut of G

$$w \in U$$

$$U - w \text{ is a vertex-cut of } G$$

$$|U| \ge k + 1$$

A connected graph G with $m \geq 2$ is nonseparable

 \iff

any two edges of G lie on a common cycle of G.

A connected graph G with $m \geq 2$ is nonseparable

any two edges of G lie on a common cycle of G.

Consider two edges uv and xy.

A connected graph G with $m \geq 2$ is nonseparable

any two edges of G lie on a common cycle of G.

Consider two edges uv and xy.

A connected graph G with $m \geq 2$ is nonseparable

any two edges of G lie on a common cycle of G.

Consider two edges uv and xy.

 $\begin{array}{c} \operatorname{Add}\,w,z\\ \operatorname{Add}\,wu,wv;zx,zy\\ \end{array}$ w and z lie on a common cycle

Effects of Removing an Edge on Connectivity (Problem 5.22 (a))

(a) If G is k-connected and $e = uv \in E(G)$, then G - e is (k-1)-connected.

Effects of Removing an Edge on Connectivity (Problem 5.22 (a))

(a) If G is k-connected and $e = uv \in E(G)$, then G - e is (k-1)-connected.

To prove
$$\kappa(G) \ge k \implies \kappa(G - e) \ge k - 1$$

Effects of Removing an Edge on Connectivity (Problem 5.22 (a))

(a) If G is k-connected and $e = uv \in E(G)$, then G - e is (k-1)-connected.

To prove
$$\kappa(G) \ge k \implies \kappa(G - e) \ge k - 1$$

Choose any $U \subseteq V(G)$ with |U| < k - 1.

We prove that G - e - U is connected.

We prove that G - e - U is connected.

We prove that G - e - U is connected.

G is k-connected $\implies G - U$ is connected

We prove that G - e - U is connected.

G is k-connected $\implies G - U$ is connected

Suppose, by contradiction, that G - e - U is not connected.

We prove that G - e - U is connected.

G is k-connected $\implies G - U$ is connected

Suppose, by contradiction, that G - e - U is not connected.

e = uv is a bridge of G - U

We prove that G - e - U is connected.

G is k-connected $\implies G - U$ is connected

Suppose, by contradiction, that G - e - U is not connected.

e = uv is a bridge of G - U

We prove that G - e - U is connected.

G is k-connected $\implies G - U$ is connected

Suppose, by contradiction, that G - e - U is not connected.

$$e = uv$$
 is a bridge of $G - U$

But
$$|U \cup \{u\}| < k$$

We prove that G - e - U is connected.

G is k-connected $\implies G - U$ is connected

Suppose, by contradiction, that G - e - U is not connected.

e = uv is a bridge of G - U

But
$$|U \cup \{u\}| < k$$

We prove that G - e - U is connected.

G is k-connected $\implies G - U$ is connected

Suppose, by contradiction, that G - e - U is not connected.

e = uv is a bridge of G - U

But
$$|U \cup \{u\}| < k$$

Case $I: |X| \ge 2 \lor |Y| \ge 2$

Case
$$I: |X| \ge 2 \lor |Y| \ge 2$$

But
$$|U \cup \{u\}| < k$$

Case II :
$$|X| = |Y| = 1$$

Case I :
$$|X| \ge 2 \lor |Y| \ge 2$$

But
$$|U \cup \{u\}| < k$$

Case II :
$$|X| = |Y| = 1$$

$$|U| = n - 2 < k - 1$$

Case
$$I: |X| \ge 2 \lor |Y| \ge 2$$

$$U \cup \{u\}$$
 is a vertex-cut of G

But
$$\left| U \cup \{u\} \, \right| < k$$

Case
$$I: |X| \ge 2 \lor |Y| \ge 2$$

But
$$|U \cup \{u\}| < k$$

Case II :
$$|X| = |Y| = 1$$

$$|U| = n - 2 < k - 1$$

$$\kappa(G) \ge k > n - 1$$

Case
$$I: |X| \ge 2 \lor |Y| \ge 2$$

But
$$|U \cup \{u\}| < k$$

Case II :
$$|X| = |Y| = 1$$

$$|U| = n - 2 < k - 1$$

$$\kappa(G) \ge k > n-1$$

But
$$0 \le \kappa(G) \le n - 1$$

(b) If G is k-edge-connected and $e = uv \in E(G)$, then G - e is (k-1)-edge-connected.

$$\lambda(G) \ge k \implies \lambda(G - e) \ge k - 1$$

(b) If G is k-edge-connected and $e=uv\in E(G),$ then G-e is (k-1)-edge-connected.

$$\lambda(G) \ge k \implies \lambda(G - e) \ge k - 1$$

Choose any $X \subseteq E(G)$ with |X| < k - 1.

We prove that G - e - X is connected.

(b) If G is k-edge-connected and $e = uv \in E(G)$, then G - e is (k-1)-edge-connected.

$$\lambda(G) \ge k \implies \lambda(G - e) \ge k - 1$$

Choose any $X \subseteq E(G)$ with |X| < k - 1.

We prove that G - e - X is connected.

$$G - e - X = G - (e + E)$$
 is connected

(b) If G is k-edge-connected and $e = uv \in E(G)$, then G - e is (k-1)-edge-connected.

$$\lambda(G) \ge k \implies \lambda(G - e) \ge k - 1$$

Choose any $X \subseteq E(G)$ with |X| < k - 1.

We prove that G - e - X is connected.

$$G - e - X = G - (e + E)$$
 is connected $(:: \lambda(G) \ge k)$

$$\kappa(G - e) \le \kappa(G)$$

$$\kappa(G - e) \le \kappa(G)$$

Effects of Removing a Vertex on Connectivity (Extended Problem)

Is
$$\kappa(G - \mathbf{v}) \le \kappa(G)$$
?

Is
$$\lambda(G - \mathbf{v}) \le \lambda(G)$$
?

$$\kappa(G - e) \le \kappa(G)$$

Effects of Removing a Vertex on Connectivity (Extended Problem)

Is
$$\kappa(G - \mathbf{v}) \le \kappa(G)$$
?

Is
$$\lambda(G - \mathbf{v}) \le \lambda(G)$$
?

Degree Condition for $\lambda(G) = \delta(G)$ (Problem 5.26)

If G is graph of order n such that $\delta(G) \geq (n-1)/2$, then $\lambda(G) = \delta(G)$.

Office 302

Mailbox: H016

hfwei@nju.edu.cn