Admir Makas

HW #6

Problem 4.6

Write Taylor expansion up to quadratic terms for the following expression.

4.6
$$e^x$$
 about the point $x^* = 0$

$$egin{aligned} f(x) &= e^x \Longrightarrow e^0 = 1 \ rac{df}{dx} &= e^x \Longrightarrow e^0 = 1 \ rac{d^2f}{dx^2} &= e^x \Longrightarrow e^0 = 1 \ ar{f}(x) &= 1 + 1(x - 0) + 1(x - 0)^2 \ ar{f}(x) &= 1 + x + rac{x^2}{2} \end{aligned}$$

Problem 4.8

Write Taylor expansion up to quadratic terms for the following expression.

4.8 $f(x_1, x_2) = 10x_1^4 - 20x_1^2x_2 + 10x_2^2 + x_1^2 - 2x_1 + 5$ about the point (1, 1). Compare approximate and exact values of the function at the point (1.2, 0.8).

$$igtriangledown f(ar{x}) = egin{bmatrix} rac{\partial f}{\partial x_1} \ rac{\partial f}{\partial x_2} \end{bmatrix} = egin{bmatrix} 40x_1^3 - 40x_1x_2 + 2x_1 - 2 \ -20x_1^2 + 20x_2 \end{bmatrix} = egin{bmatrix} 0 \ 0 \end{bmatrix}$$

$$H = egin{bmatrix} 120x_1^2 - 40x_2 + 2 & -40x_1 \ -40x_1 & 20 \end{bmatrix} = egin{bmatrix} 82 & -40 \ -40 & 20 \end{bmatrix}$$

$$ar{f}\left(x
ight)=4+egin{bmatrix}0\0\end{bmatrix}^Tegin{bmatrix}x_1-1\x_2-1\end{bmatrix}+rac{1}{2}egin{bmatrix}x_1-1\x_2-1\end{bmatrix}^Tegin{bmatrix}82&-40\-40&20\end{bmatrix}egin{bmatrix}x_1-1\x_2-1\end{bmatrix}$$

$$ar{f}\left(x
ight)=41x_{1}^{2}-40x_{1}x_{2}+10x_{2}^{2}+20x_{2}+15$$

At point (1.2, 0.8) the exact function and approximate function values are:

$$f(x) = 8.136$$

 $\bar{f}(x) = 7.64$

Problem 4.11

Determine the nature of the quadratic form.

4.11
$$F(\mathbf{x}) = x_1^2 + x_2^2 + 3x_1x_2$$

From the review of the last term in the above expression it can be seen that $F(\bar{x})$ can be both positive and negative depending on the values of x_1 and x_2 .

Therefore $F(\bar{x})$ is indefinite.

Also eigenvalues for this system are repeated (i.e. $\lambda_{1,2}=1$)

Problem 4.13

Determine the nature of the following quadratic forms.

4.13
$$F(\mathbf{x}) = x_1^2 - x_2^2 + 4x_1x_2$$

From the review of the last term in the above expression it can be seen that $F(\bar{x})$ can be both positive and negative depending on the values of x_1 and x_2 .

Therefore $F(\bar{x})$ is indefinite.

Also eigenvalues for this system are both negative and positive.

$$\lambda_1 = 1 \ \lambda_2 = -1$$

Problem 4.17

Determine the nature of the following quadratic forms.

4.17
$$F(\mathbf{x}) = x_1^2 + 2x_1x_3 - 2x_2^2 + 4x_3^2 - 2x_2x_3$$

In matrix form:

$$F(ar{x}) = \left[egin{array}{ccc} x_1 \ x_2 \ x_3 \end{array}
ight] \left[egin{array}{ccc} 1 & 0 & 2 \ 0 & -2 & -2 \ 0 & 0 & 4 \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight]$$

The eigenvalues of the above matrix are $\lambda_1=1,\;\lambda_2=4,\;\lambda_3=-2.$ Therefore F(ar x) is indefinite.

Problem 4.23

Find fixed points for following expression and determine if the fixed points are min, max, or saddle.

4.23
$$f(x_1, x_2) = x_1^2 + 4x_1x_2 + x_2^2 + 3$$

$$igtriangledown f(ar{x})$$
 = $egin{bmatrix} rac{\partial f}{\partial x_1} \ rac{\partial f}{\partial x_2} \end{bmatrix} = egin{bmatrix} 2x_1 + 4x_2 \ 4x_1 + 2x_2 \end{bmatrix}$

Roots for the above vector expression are $ar{x}^* = [0,0]$

The Hetian matrix for this system is constant and defined below.

$$H=\left[egin{array}{cc} 2 & 4 \ 4 & 2 \end{array}
ight]$$

For matrix H we have following eigenvalues: $\lambda_1=-2~\lambda_2=6$

Based on the lambda values there is a inflection point at the fixed point.

Problem 4.32

Find fixed points for following expression and determine if the fixed points are min, max, or saddle.

4.32 The annual operating cost U for an electrical line system is given by the following expression

$$U = \frac{(21.9E + 07)}{V^2C} + (3.9E + 06)C + (1.0E + 03)V$$

where V = line voltage in kilovolts and C = line conductance in mhos. Find stationary points for the function, and determine V and C to minimize the operating cost.

$$igtriangledown f(ar{x})$$
 = $egin{bmatrix} rac{\partial U}{\partial V} \ rac{\partial U}{\partial C} \end{bmatrix}$ = $egin{bmatrix} rac{-438000000*V}{\left(C+V^2
ight)^2} + 1000 \ rac{-219000000}{\left(C+V^2
ight)^2} + 3900000 \end{bmatrix}$

Roots for the above vector expression are:

$$ar{x}_1^* = [241.8, 0.0310] \ ar{x}_2^* = [-241.8, -0.0310]$$

The Hetian matrix for this system is defined below.

$$H = \left[egin{array}{ccc} rac{1314000000}{CV^4} & rac{438000000}{C^2V^3} \ rac{438000000}{C^2V^3} & rac{438000000}{C^3V^2} \end{array}
ight]$$

For $\bar{x}_1^*=[241.8,0.0310]$, H matrix eigenvalues are $\lambda_1=8.27$ and $\lambda_2=2.52e8$. Since both eigenvalues are positive there is a local minimum at the fixed point.

Conversly for $\bar{x}_2^*=[-241.8,-0.0310]$ the eigenvalues are $\lambda_1=-8.27$ and $\lambda_2=-2.52e8$. Therefore fixed point number two will be a local maximum.

Function value for the local min point is 483528.607.

Problem 4.42

Find fixed points for following expression and determine if the fixed points are min, max, or saddle.

4.42
$$f(x_1, x_2, x_3, x_4) = (x_1 - 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4$$

$$abla f(ar{x}) = egin{bmatrix} rac{\partial f}{\partial x_1} \ rac{\partial f}{\partial x_2} \ rac{\partial f}{\partial x_3} \ rac{\partial f}{\partial x_4} \end{bmatrix} = egin{bmatrix} 2x_1 - 20x_2 + 40(x_1 - x_4)^3 \ -20x_1 + 200x_2 + 4(x_2 - 2x_3)^3 \ 10x_3 - 10x_4 - 8(x_2 - 2x_3)^3 \ -10x_3 + 10x_4 - 40(x_1 - x_4)^3 \end{bmatrix}$$

Roots for the above vector expression are:

$$\bar{x}* = [0, 0, 0, 0]$$

There were the only roots that satisfied the necessary condition of having igtriangledown f=0

The Hetian matrix for this system is defined below.

$$H = egin{bmatrix} 120(x_1-x_4)^2+2 & -20 & 0 & -120(x_1-x_4)^2 \ -20 & 12(x_2-2x_3)^2+200 & -24(x_2-2x_3)^2 & 0 \ 0 & -24(x_2-2x_3)^2 & 48(x_2-2x_3)^2+10 & -10 \ -120(x_1-x_4)^2 & 0 & -10 & 120(x_1-x_4)^2+10 \ \end{bmatrix}$$

After applying the roots H becomes:

$$H = \left[egin{array}{ccccc} 2 & -20 & 0 & 0 \ -20 & 200 & 0 & 0 \ 0 & 0 & 10 & -10 \ 0 & 0 & -10 & 10 \end{array}
ight]$$

The eigenvalues for the Hetian $\lambda_{1,2}=0,\ \lambda_3=202,\ \lambda_4=20$

Since all eigenvalues are positive the root is a local minimum.

Min value of the function is 0.0.