Clustering by fast search and find of density peaks

Alex Rodriguez, Alessandro Laio Presenter: Honglei Zhuang

Rodriguez, Alex, and Alessandro Laio. "Clustering by fast search and find of density peaks." *Science* 344.6191 (2014): 1492-1496.

Existing Clustering Algorithms

- K-means, K-medoids
 - Data points are assigned to nearest cluster centers
 - Not applicable for nonspherical clusters
- Distribution-based
 - Assuming a generative (mixture) distribution for data
 - Requiring pre-defined distribution

Existing Clustering Algorithms

- Density-based
 - DBSCAN
 - Given a density threshold, assigns to different clusters disconnected regions of high density
 - Sensitive to the density threshold
 - Mean-Shift
 - Define a density field
 - Points converged to the same local maximum of the density field are assigned to the same clusters
 - Works only for data defined by a set of coordinates

Proposed Algorithm

Basic Idea

- Cluster centers are surrounded by neighbors with lower local density
- Cluster centers are far away from other points with a higher local density

Advantages

- Based only on distance between data points
- Can produce nonspherical clusters

Basic Definitions

Local Density

$$\rho_i = \sum_i \chi \left(d_{ij} - d_c \right)$$

where $\chi(x) = \mathbf{1}_{\{x<0\}}$ and d_c is a given cutoff

- Basically is the number of points closer than the cutoff to the point.
- Define $\delta_i = \min_{j:\rho_i > \rho_i} (d_{ij})$
 - The minimum distance to other points with a higher local density
 - Defined as $\delta_i = \max_j \left(d_{ij}\right)$ is the density is largest

Example

Fig. 1. The algorithm in two dimensions. (**A**) Point distribution. Data points are ranked in order of decreasing density. (**B**) Decision graph for the data in (A). Different colors correspond to different clusters.

Example

Fig. 1. The algorithm in two dimensions. (**A**) Point distribution. Data points are ranked in order of decreasing density. (**B**) Decision graph for the data in (A). Different colors correspond to different clusters.

Example

Fig. 1. The algorithm in two dimensions. (**A**) Point distribution. Data points are ranked in order of decreasing density. (**B**) Decision graph for the data in (A). Different colors correspond to different clusters.

Proposed algorithm

- After cluster centers have been found,
 - Each remaining point is assigned to the cluster of nearest neighbor of higher density
 - No need to be optimized iteratively

Reliability

- When noise exists
- Define a "border region" for each cluster where points are within cutoff distance d_c from points of other clusters
- Define a highest density in the border region as the threshold density ρ_b
- Any points with a local density lower the threshold density is regarded as noise

Experiments

• 4,000 points drawn

Parameter Sensitivity

Experiments on Face Database

Experiments on Face Database

Cannot clearly determine #clusters

On Random Data Set

 A hint to determine the cluster centers is to calculate

$$\gamma_i = \rho_i \delta_i$$

where usually a gap exists

In a (uniformly)
randomly distributed
data set, following a
power law

Summary

Algorithm Sketch

- Calculate local density and minimum distance to data point with higher density
- Determine cluster centers
- Assign data points to cluster of the closest data point with higher density

Advantages

- Works for nonspherical clusters
- Only requires distance

Drawbacks

Sometimes hard to determine number of clusters

Thanks

Honglei Zhuang