1

Assignment 13

Priya Bhatia

Abstract—This document finds the characteristic value and for each characteristic value find its basis.

Download latex-tikz from

https://github.com/priya6971/ matrix_theory_EE5609/tree/master/ Assignment13

1 Problem

In each of the following cases, let T be the linear operator on \mathbb{R}^2 which is represented by matrix A in the standard ordered basis for \mathbb{R}^2 , and let U be the linear operator on \mathbb{C}^2 represented by A in the standard ordered basis. Find the characteristic polynomial for T and that for U, find the characteristic value of each operator, and for each characteristic value c find a basis for the corresponding space of characteristic vectors.

$$\mathbf{A_1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \tag{1.0.1}$$

$$\mathbf{A_2} = \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix} \tag{1.0.2}$$

$$\mathbf{A}_3 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \tag{1.0.3}$$

2 Solution

Given	T be the linear operator on R^2 which is represented by matrix A in the standard ordered basis for R^2 U be the linear operator on C^2 which is represented by matrix A in the standard ordered basis	
	In all cases, denoting B_c the basis for the subspace corresponding to characteristic value c	
To find	Characteristic value of each operator	
	For each characteristic value <i>c</i> find a basis for the corresponding space of characteristic vectors	

Matrix	Characteristic Polynomial	Basis
$\mathbf{A_1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	$\det(xI - A) = \begin{vmatrix} (x - 1) & 0 \\ 0 & x \end{vmatrix}$ Characteristic Polynomial = $x(x - 1)$ To find characteristic values of the operator $\det(xI - A) = 0$, which gives $c_1 = 0 \text{ and } c_2 = 1$ Both c_1 and c_2 are the characteristic values Assume B_1 and B_2 are Basis for c_1 and c_2	Basis for characteristic value $c_1 = 0$ will be obtained by solving homogeneous equation, $(A - c_1 I)x = 0$ After solving, basis for characteristic value c_1 is $B_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Similarly, we can find out the Basis for $c_2 = 1$ which is $B_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
$\mathbf{A_2} = \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}$	$\det(xI - A) = \begin{vmatrix} (x - 2) & -3 \\ 1 & (x - 1) \end{vmatrix}$ Characteristic Polynomial = $x^2 - 3x + 5$ To find characteristic values of the operator $\det(xI - A) = 0, \text{which gives}$ $c_1 = \frac{3+i\sqrt{11}}{2} \text{ and } c_2 = \frac{3-i\sqrt{11}}{2}$ Both c_1 and c_2 are the characteristic values Assume B_1 and B_2 are Basis for c_1 and c_2	Basis for characteristic value $c_1 = \frac{3+i\sqrt{11}}{2}$ will be obtained by solving homogeneous equation, $(A - c_1 I)x = 0$ After solving, basis for characteristic value c_1 is $B_1 = \left(\frac{1+i\sqrt{11}}{2}\right)$ Similarly, we can find out the Basis for c_2 which is $B_2 = \left(\frac{1-i\sqrt{11}}{2}\right)$
$\mathbf{A_1} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	$\det(xI - A) = \begin{vmatrix} (x - 1) & -1 \\ -1 & (x - 1) \end{vmatrix}$ Characteristic Polynomial = $x(x - 2)$ To find characteristic values of the operator $\det(xI - A) = 0$, which gives $c_1 = 0 \text{ and } c_2 = 2$ Both c_1 and c_2 are the characteristic values Assume B_1 and B_2 are Basis for c_1 and c_2	Basis for characteristic value $c_1 = 0$ will be obtained by solving homogeneous equation, $(A - c_1 I)x = 0$ After solving, basis for characteristic value c_1 is $B_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ Similarly, we can find out the Basis for $c_2 = 2$ which is $B_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

TABLE 0: Finding of Characteristic Polynomial, Characteristic value and corresponding Basis