

BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY

Computing Methods

大创文献综述

李昊, 刘本佳, 庄梓博, 贺怀宇, 王昕凯

目录

第	1章	AGV 发展现状	1
	1.1	研究进展	1
	1.2	公司产业落地情况	1
第	2 章	工程分解: 硬件部分	1
	2.1	AGV 底盘	1
	2.2	LiDAR 传感器	1
	2.3	RGBD 传感器	1
第	3 章	工程分解: 软件部分	1
	3.1	SLAM 算法描述	1
	3.2	路径规划算法描述	1
	3.3	AGV 姿态控制算法描述	1
	3.4	基于 RGBD 的物体识别与定位算法描述	1

大创文献综述

	3.5	基于 Web 和 MySQL 的控制终端描述	1
第	4 章	实验部分	1
	4.1	GUI 控制程序演示	1
	4.2	仿真模型构建	1
	4.3	流程图]
	4 4	运行情况	1

创建日期: 2020 年 3 月 25 日 更新日期: 2020 年 3 月 26 日

摘要

不需要对整个场地进行定制(地面标识,摩擦系数),使其拥有特别高的快速部署 和适应能力(对场地进行建模即可投入运行)

第1章 AGV 发展现状

- 1.1 研究进展
- 1.2 公司产业落地情况

第 2 章 工程分解: 硬件部分

- 2.1 AGV 底盘
- 2.2 LiDAR 传感器
- 2.3 RGBD 传感器

第 3 章 工程分解: 软件部分

- 3.1 SLAM 算法描述
- 3.2 路径规划算法描述
- 3.3 AGV 姿态控制算法描述
- 3.4 基于 RGBD 的物体识别与定位算法描述
- 3.5 基于 Web 和 MySQL 的控制终端描述

第 4 章 实验部分

- 4.1 GUI 控制程序演示
- 4.2 仿真模型构建
- 4.3 流程图
- 4.4 运行情况

参考文献

- [1] Author. *Title*. http://www.baidu.com, 2020.
- [2] Author. Title. http://www.baidu.com, 2020.
- [3] Author. Title. http://www.baidu.com, 2020.

[4]