- The input is a weighted graph
 - associated with each edge (v_i, v_j) is a cost $c_{i,j}$
- The cost of a path is the sum of the weights of the edges, the weighted path length
- The *unweighted path length* is only the number of edges on the path

- **Single-Source Shortest-Path Problem**: Given a weighted graph G = (V, E), and a distinguished starting vertex s, find the shortest weighted path from s to every other vertex in G.
 - "The shortest path from where I am to everywhere else"

- An edge has a weight (cost) associated with it
 - Could have negative weights; really? yes, really!

- An edge has a weight (cost) associated with it
 - Could have negative weights; really? yes, really!

- Positive cost: \$ to traverse (gas or electricity)
- Negative cost: \$ of profit made from selling something along that path

Here is our weighted graph

- The shortest weighted path from V_1 to V_6 has a cost of 6, with 3 edges
 - Path: V₁, V₄, V₇, V₆

- The shortest unweighted path has 2 edges
 - Path: V₁, V₄, V₆

Shortest-Path Algorithms – Negative Cost Cycles

- Between v_2 and v_5 there is a negative cost of -10
- The path from v_5 to v_4 has a cost of 2
- But a shorter path exists by the following loop: v₅, v₄, v₂, v₅, v₄; cost of -3
 - But could stay in the loop arbitrarily long, continually reducing the cost!

Shortest-Path Algorithms – Problems

- Four problems we'll look at...
- 1. Unweighted shortest path
- 2. Weighted shortest path without negative edges
- 3. Weighted shortest path with negative edges
- 4. Weighted shortest path of acyclic graphs

Unweighted Shortest Path

- Using some vertex s, which is an input parameter, find the shortest path from s to all other vertices in a unweighted graph
 - Assume $s = v_3$
 - For example, multiple ways to get to v_7 ; how do we do this?

Unweighted Shortest Path

- Using some vertex s, which is an input parameter, find the shortest path from s to all other vertices in a unweighted graph
 - Use a *breadth-first search*; process nodes by distance, 1, 2, ...

Unweighted Shortest Paths – Pseudocode

```
void unweighted(Vertex s) {
 Queue<Vertex> g = new Queue<Vertex>();
 for each Vertex v {
    v.dist = INFINITY;
 s.dist = 0;
q.enqueue(s);
while (!q.isEmpty()) {
    Vertex v = q.dequeue();
     for each Vertex w adjacent to v {
         if (w.dist == INFINITY) { // Hasn't been visited.
             w.dist = v.dist + 1;
             w.predecessor = v;  // track the shortest path back
             q.enqueue(w);
```

Set all distances to infinity

- Start at v₃
 - Set its distance to 0

- Dequeue front: v₃
- Add adjacent nodes: v₁, v₆
 - add 1 to distance
 - set v₃ as predecessor

- Dequeue front: v₁
- Add adjacent nodes: v₂, v₄
 - add 1 to distance
 - set v_1 as predecessor

- Dequeue front: v₆
- Add adjacent nodes: none

- Dequeue front: v₂
- Add adjacent nodes: v₅
 - add 1 to distance
 - set v₂ as predecessor

- Dequeue front: v₄
- Add adjacent nodes: v₇
 - add 1 to distance
 - set v₄ as predecessor

What if the edges have weights?

Weighted Shortest-Path – Dijkstra's Algorithm

- Very famous, don't forget this or you lose your CS card!
- Add the edge weight from the node to its successor to the current distance
- Pull nodes from a priority queue, based on shortest distance
- **known vertices** are those for which the shortest path has been determined
- The initial distance d_v is tentative. It is the shortest path length from s to v using only *known vertices*
- It is a *greedy algorithm*: proceeds in stages doing the best at each stage
- Select a vertex v with smallest d_v among all unknown vertices and declare it as known
 - Remainder of the stage consists of updating the values d_w for all edges (v, w)

- Start at v₁
 - set it to known
- inspect/add adjacent: v2, v4
 - update distance

priority queue

 V_4 V_2

 V_1

0

distance

 V_2

2

V₃

inf

 V_4

 V_5

 V_6

 V_7

inf inf inf

- Dequeue: v₄
 - set it to known
- inspect/add adjacent: V₃, V₅, V₆, V₇ distance
 - update distances

priority queue

V_2	V ₃	V ₅	V ₇	V ₆

V ₁	V ₂	V ₃	V ₄	V ₅	V ₆	V ₇
0	2	3	1	3	9	5

- Dequeue: v₂
 - set it to known
- inspect/add adjacent: v₄, v₅
 - update distance: v₅
 - no change

priority queue

V ₃	V ₅	V ₇	V ₆
•	_		Ū

distance

V_1	V ₂	V ₃	V ₄	V ₅	V ₆	V ₇
0	2	3	1	3	9	5

- Dequeue: v₃
 - set it to known
- inspect/add adjacent: v₁, v₆
 - update distance: v₆
 - from 9 to 8

priority queue

V ₅	V_7	V ₆
_		_

distance

V ₁	V ₂	V ₃	V ₄	V ₅	V ₆	V ₇
0	2	3	1	3	8	5

- Dequeue: v₅
 - set it to known
- inspect/add adjacent: v₇
 - update distance: v₇
 - no change

priority queue V_7 **V**₆ V_6 V_1 V_2 **V**₃ V_4 V_5 V_7 distance 0 3 1 3 8 5

- Dequeue: v₇
 - set it to known
- inspect/add adjacent: v₆
 - update distance: v₆
 - from 8 to 6

priority queue V_6 V_1 V_6 V_2 **V**₃ V_4 V_5 V_7 distance 0 2 3 1 3 5

- Dequeue: v₆
 - set it to known
- no more unknown: done!

priority queue

distance

V ₁	V ₂	V ₃	V ₄	V ₅	V ₆	V ₇
0	2	3	1	3	6	5

Dijkstra's – Pseudocode

```
void dijkstra(GraphNode s) {
 for each GraphNode v {
     v.dist = INFINITY;
     v.known = false;
 s.dist = 0:
 while (there is an unknown distance vertex) {
     GraphNode\ v = unknown\ vertex\ with\ smallest\ distance
     v.known = true; // We know we'll never find a better path
     for each GraphNode w adjacent to v {
         if (!w.known) {
             cost = cost of edge from v to w;
             if (v.dist + cost < w.dist) {</pre>
                 w.dist = v.dist + cost;
                                                   class GraphNode {
                 w.path = v.id;
                                                       public int id;
                                                       public List adj; // Adjacency list
                                                       public boolean known;
                                                       public int dist;
                                                       public int path;
```

- Dijkstra's algorithm doesn't work with negative edge costs
- Why?

- Dijkstra's algorithm doesn't work with negative edge costs
- Why?
 - Start at v₁
 - Go to v₂ in 3: add to queue
 - Go to v₃ in 4: add to queue
 - v₂ is smallest, call it known at 3
 - From v₂ to v₄ in 1: add to queue
 - v_4/v_3 tie, so remove v_3
 - Now, see we can get to v_2 (from v_1) in 2
 - But Dijkstra's said v₂ was already known!! (oops)

- How to solve?
- Add a large constant to all edges? In our example, add 3, to keep everything positive
 - Why doesn't this work?

- How to solve?
- Add a large constant to all edges? In our example, add 3, to keep everything positive
 - Why doesn't this work?
 - Not obvious, but the cost of a path is now: (# of edges in path) * (added constant)
 - That is biased against paths with more edges

- How to solve?
- Modify Dijkstra's algorithm
 - Forget about the concept of a known vertex
 - Use a regular queue, don't need/want a priority queue anymore (breadth-first search now)
 - Place starting vertex on the queue
 - Examine length to all successors
 - For any successors whose distance has decreased, change their distance and place that node on the queue again
 - If a node has been checked |V| times, don't add it back in the queue...prevents infinite loops due to negative edge costs
 - Repeat until no more nodes on the queue

distance

V 1	V ₂	V 3	V ₄
0	2	4	3

Acyclic Graphs – Negative Edge Costs

- What if the graph is known to be acyclic?
- Consider the nodes in topological order; as all predecessors are final
- Running time = O(|V| + |E|)
- This works because when a vertex is selected, its distance can no longer be lowered, because by topological ordering rule, it has no incoming edges emanating from unknown nodes

Acyclic Graphs – Negative Edge Costs

- Trace this following (acyclic) graph for...
 - Modified Dijkstra's algorithm
 - Topological ordering

Shortest Path

- What if we need all pairs shortest path?
- Could use single-source shortest path repeatedly, starting over with each vertex
- Dijkstra's shortest path is O(E + V log(V))
- Doing it n times is O(n³ log(n)) (after multiplying out and re-arranging terms)