Probing new physics at the LHC: searches for heavy top-like quarks with the ATLAS experiment

Antonella Succurro

PhD candidate in Physics

Bellaterra, 28th of February, 2014

- ▶ Why? bother with "new physics"
- ▶ Where? is all happening

- $\blacktriangleright \ Why? \ {\it bother with "new physics"}$
- ▶ Where? is all happening
- ▶ What? are we looking at

- ▶ Why? bother with "new physics"
- ▶ Where? is all happening
- ▶ What? are we looking at
- ► How?

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for vector-like top partner pairs in the single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Standard Model as an effective theory

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for vector-like top partner pairs in the single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for $T\bar{T}$ decaying to Ht + X

Final results

The LHC complex

AD Antiproton Decelerator CTF-3 Clic Test Facility CNC5 Cern Neutrinos to Gran Sasso 15-OLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-Tof- Neutrons Time Of Flight

The LHC complex

AD Antiproton Decelerator CTF-3 Clic Test Facility CNCS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator Online Device LEIR Low Energy Ion Ring LiNAC LiNear ACcelerator --TDF Neutrons Time Of Fight

The ATLAS Detector

A general purpose experiment

- vertex detector and central tracker
- superconducting solenoid
- electromagnetic and hadronic calorimeters
- muon spectrometer
- superconducting toroids
- ▶ high hermeticity (full ϕ and $|\eta| < 5$)

The ATLAS Detector

A general purpose experiment

- vertex detector and central tracker
- superconducting solenoid
- electromagnetic and hadronic calorimeters
- ▶ muon spectrometer
- superconducting toroids
- ▶ high hermeticity (full ϕ and $|\eta| < 5$)

In 2012 21.7fb⁻¹ collected at $\sqrt{s} = 8$ TeV!

See ATLAS public page

Will present results obtained with 14.3fb⁻¹ of 2012 data

imeters

-cap and

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for vector-like top partner pairs in the single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for $T\bar{T}$ decaying to Ht + X

Final results

Modelling of hadron collisions

want to do physics at hadron colliders? need a good understanding of incoming hadrons

Modelling of hadron collisions

Drawings from [?]

$$E(p_2) = 4 \text{ TeV}$$

Quarks are distributed according to PDFs inside the proton

Hard scattering of two partons

Parton showering

Parton showering

Hadronization

Final particle decays

Underlying event simulation

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for vector-like top partner pairs in the single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Physics objects puzzle

One lepton

Many jets

Missing transverse energy

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for vector-like top partner pairs in the single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for TT decaying to Ht + X

Final results

One lepton

 Build a 2-dim plane to scan model mixing

• Build a 2-dim plane to scan model mixing

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas
- Set exclusion using *CL*_s technique [?, ?]

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas
- Set exclusion using *CL*_s technique [?, ?]
- Updating 7 TeV results

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for vector-like top partner pairs in the single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for vector-like top partner pairs in the single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for $T\bar{T}$ decaying to Ht + X

Final results

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for vector-like top partner pairs in the single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for vector-like top partner pairs in the single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for $T\bar{T}$ decaying to Ht + X

Final results

References I

Backup

BACKUP SLIDES

LHC parameters

Parameter	designed	2010	2011	2012
Beam energy (TeV/c)	7	3.5	3.5	4
Beta function $\beta *$ (m)	0.55	2.0/3.5	1.5/1.0	0.6
Max. No. bunches/beam	2808	368	1380	1380
Max. No. protons/bunch	1.15×10^{11}	1.2×10^{11}	1.45×10^{11}	1.7×1
Bunch spacing (ns)	25	150	75/50	50
Peak luminosity (cm $^{-2}$ s $^{-1}$)	1×10^{34}	2.1×10^{32}	3.7×10^{33}	7.7×1
Emittance ε_n (μ rad)	3.75	2.0	2.4	2.5
Max. $<\mu>$	19	4	17	37

Table: Overview of some parameters for the LHC performance comparing the design values with their time evolution during the first long run operation in 2010-2013 [?].