New topic: Krylov subspace methods
Goal: approximately solve $Ax = \lambda x$ or $Ax = b$ quickly for
large sparse $A \in \mathbb{C}^{n \times n}$ ($n > 7 \cdot 10^4$)
(Ax can be evaluated efficiently)
Previous:
· For Ax=b
- Direct methods, GE cost O(n3)
- Stationary iterative mathods, convergence is usually slow!
• For Ax= λx
- Power iteration: only single eig. val., convergence?
— QR iteration: find all eig. val., but sparsity is not preserved
during iteration, and need access to full matrix A (not available in some applications)
In practice, unly need a few of A's largest/smallest eigenvalues
Today: Krylov subspace methods for $Ax = \lambda x$
Recall: Power iteration. A has eig- vec. v., vz
At kth stage, given xx-1 & C"
compute $\hat{\chi_k} = A \chi_{k-1}$
then $\chi_k = \frac{\hat{\chi}_k}{\ \hat{\chi}_k\ _2}$
•
Convergence: $\ \chi_{k-\pm}\nu_1\ _2 = O(\left \frac{\lambda_1}{\lambda_1}\right ^k)$
Issue :1) Slow when $\left \frac{\lambda_2}{\lambda_1}\right \approx 1$
2) Power iteration visits all the directions

xo, Axo, Axo, ..., Axo, ...

but only makes use of the must recent Akx.

A lot of information is disvegard.

We need a method that "learns from history"

· Krylov subspaces

Given $\chi_0 \in \mathbb{C}^n$. $A \in \mathbb{C}^{n \times n}$, the Krylov subspace is defined by

 $K_{\kappa}(A, \chi_{\bullet}) = span \{\chi_{\bullet}, A\chi_{\bullet}, \dots, A^{k-1}\chi_{\bullet}\}$

= $\{ p(A) \chi \in \mathbb{C}^n : p(A) = \sum_{l=0}^{k-1} t \cdot A^{l} \text{ is a} \}$

polynomial of dagree < K-1}

Krylov subspace methods: find <u>bost</u> solution in Kr(A, Xo)

· Projection method:

Idea: Find $\tilde{v} \in X \subseteq \mathbb{C}^n$, $\tilde{\lambda} \in \mathbb{C}$

s.t. $A\tilde{v} - \tilde{\lambda}\tilde{v} \subseteq \mathbb{C}^n$ is "good" enough

Petrov - Galerkin condition: Av-lv IY

X: search space, Y: test space

Special case: $X = Y = \mathbb{C}^n$, original eig. val. problem
When $X=Y$, let $Q_{k} = [q_{1} \dots q_{k}] \in \mathbb{C}^{n \times k}$
collect orthonormal basis spanning X, then
Galerkin condition \bigoplus $Q_k Q_k^* (AQ_k Z - \lambda Q_k Z) = 0$
$\mathbf{e}_{\mathbf{k}} \in \mathbf{C}^{\mathbf{k} \times \mathbf{k}}$
$\Leftrightarrow \beta_{k} \mathcal{E} = \tilde{\lambda} \mathcal{E}$
Rayleigh-Ritz projection
the problem size is reduced to kxk
We call $\tilde{\lambda}$ Ritz value, $\tilde{v} = Q_K Z$ Ritz vector
• Krylov subspace methods for eig. val. problem Use $X = Y = K_R(A, X_o)$.
Q: How to construct Qk, i.e. an orthonormal basis for Kk(A, Ko) (and Bk) Arnoldi's method
Iden: apply Gram-Schmidt to Xo, AXo,, Ak-1Xo
Algorithm: Arnoldi's iteration
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
By induction span{q,, qn3 = Kn(A, x.)

Implementation:	
Given xo = C ⁿ , k > 1.	
$q \leftarrow \frac{\chi_0}{\ \chi_0\ _2}$	
For i=1,, k	
$w_i \leftarrow Aq_i$	
For $j = 1, \dots, i$ $hji \leftarrow qj^* Wi$ $variable$ $vari$	
end i can be improved by Modified GS $wi \leftarrow wi - hjiqj$ wi $\leftarrow wi - 2j + hjiqj$ end end	
$h_{i+i} = \ W_i\ _2$ $(ast = 2b^2 n for (assign)/Malified Go$	<u> </u>
$q_{i+1} = h_{i+1,i} + k \times \omega st$ to evaluate Aq_i	_
end — — — — — — — — — — — — — — — — — — —	
assume Nz nanzero elements per ron cost \approx 2k Nz n	W
Output: $(q_i)_{i=1}^{k+1}$, $(h_{ji})_{1 \le i \le k}$ ($\leq j \le i+1$	
· Qk = [q, qk] E ("xk forms a basis for Kn(A, Xo)	
The Arnoldi iteration is essentially QR factorization for Ke(A, X.)	
$\begin{bmatrix} x_1 & Ax & \dots & A^{k-1}x_1 \end{bmatrix} = \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix} \begin{bmatrix} r_1 & r_1 & \dots & r_{1k} \end{bmatrix}$	
$\begin{bmatrix} \chi_0 & A \chi_0 & \dots & A^{k-1} \chi_0 \end{bmatrix} = \begin{bmatrix} q_1 & \dots & q_k \end{bmatrix} \begin{bmatrix} \gamma_{11} & \gamma_{12} & \dots & \gamma_{1k} \\ \gamma_{21} & \dots & \gamma_{kk} \end{bmatrix}$	
• From $Aqi = \sum_{i=1}^{i+1} hji qj$. $i=1,\dots, k$	
• From $Aqi = \sum_{j=1}^{i+1} hji qj$. $i = 1, \dots, k$ $A[q_1 \dots q_k] = [q_1 \dots q_k q_{k+1}] \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1k} \\ h_{21} & h_{22} & \cdots & h_{2k} \\ h_{22} & \cdots & h_{2k} \end{bmatrix}$ ktl rows	