Data Analytics in Business

Introduction to R Data Frames

MGT 6203 - Online - Fall 2020

Frederic Bien

fvbien@scheller.gatech.edu

Georgia Scheller College Tech of Business

Lessons

- A. Data
- B. Vectors and Data Frames

Reference: https://cran.r-project.org/doc/manuals/r-release/R-intro.html

A. Data

- Information / knowledge
- Measured / collected / reported.. -> for analysis!
- Measurement / collection error -> error in analysis

- Name: Peter Parker
- Gender: Male
- Age: 21
- College: Georgia Tech
- Major: Business
- Status: Junior
- Concentration: ITM
- GPA: 3.99
- Taken MGT 4050: YES
- Internships: 2
- Favorite food: pizza
- Job offers: 2
- •

Information / knowledge

- Sale price: 400K USD
- House size: 10K (sqft)
- Lot size: 20K (sqft)
- Bedrooms: 8
- Location: Long Beach, CA
- Sale date : 2019/03/10
- Built date: 2012/01/28
- Ocean view: no
- Rooftop : yes
- Color of the exterior wall: ivory
- Zip code: 12345
- # of previous owners : 2
- •

Price	Size	Lotsize	Bedroo ms	Location	Sale date	Built date	Ocean view	Rooftop	Zipcode
400,000	10,000	20,000	8	Long Beach, CA	2019/03/ 10	2012/01/ 28	no	yes	12345
300,500	8,000	18,000	7	Boston, MA	2019/05/ 01	2013/02/ 26	no	no	31245
128,250	12,000	18,000	9	Phoenix, AZ	2019/03/ 08	2016/05/ 05	no	no	54321

- A set of values of subjects with respect to qualitative / quantitative variables (features)
- Subjects
 - Could be anything
 - People of certain characteristics, house, products, ...
- Qualitative variables
 - Categorical
 - Not numerical
- Quantitative variables
 - Numerical

Header (column names)

Price	Size	Lotsize	Bedroo ms	Location	Sale date	Built date	Ocean view	Rooftop	Zipcode
400,000	10,000	20,000	8	Long Beach, CA	2019/03/ 10	2012/01/ 28	no	yes	12345
300,500	8,000	18,000	7	Boston, MA	2019/05/ 01	2013/02/ 26	no	no	31245
128,250	12,000	18,000	9	Phoenix, AZ	2019/03/ 08	2016/05/ 05	no	no	54321

- Data frames (data tables)
- Rows
- Columns

Price	Size	Lotsize	Bedroo ms	Location	Sale date	Built date	Ocean view	Rooftop	Zipcode
400,000	10,000	20,000	8	Long Beach, CA	2019/03/ 10	2012/01/ 28	no	yes	12345
300,500	8,000	18,000	7	Boston, MA	2019/05/ 01	2013/02/ 26	no	no	31245
128,250	12,000	18,000	9	Phoenix, AZ	2019/03/ 08	2016/05/ 05	no	no	54321

Row (subjects)

- A single data item in a table
- A set of related data
- Every row in the table has the same structure
 - In a table that represents houses, each row represents a single house
 - i.e) data on a unit level Yi = Y1, Y2, Y3.. (Y of the 1st, 2nd, 3rd observations)
 - Subjects could reoccur with respect to time
 - i.e) data on a unit & datetime level Yit (Y of the 1st on week 1, week 2..)

Price	Size	Lotsize	Bedroo ms	Location	Sale date	Built date	Ocean view	Rooftop	Zipcode
400,000	10,000	20,000	8	Long Beach, CA	2019/03/ 10	2012/01/ 28	no	yes	12345
300,500	8,000	18,000	7	Boston, MA	2019/05/ 01	2013/02/ 26	no	no	31245
128,250	12,000	18,000	9	Phoenix, AZ	2019/03/ 08	2016/05/ 05	no	no	54321

Column (variables)

- Information / data about features of a subject
- Each column has a data value of a particular type
- A categorical column -> has categorical values
 - Logical
 - Character
- A numerical column -> has numerical values
 - Numeric
 - Integer

Price	Size	Lotsize	Bedroo ms	Location	Sale date	Built date	Ocean view	Rooftop	Zipcode
400,000	10,000	20,000	8	Long Beach, CA	2019/03/ 10	2012/01/ 28	no	yes	12345
300,500	8,000	18,000	7	Boston, MA	2019/05/ 01	2013/02/ 26	no	no	31245
128,250	12,000	18,000	9	Phoenix, AZ	2019/03/ 08	2016/05/ 05	no	no	54321

- Data Analysis
 - Examine related data sets
 - Understand: fit values into a statistical model (i.e. linear regression) to see how the values in certain Xs are related to the value of Y, holding all else constant in the current sample dataset.
 - Predict values of Y for given values of Xs.
- Raw data -> data processing
 - Taking out outliers, checking for measurement errors, editing / altering data
- CSV = comma separated values

- Previous method of data collection
 - Books (logbooks Matthew Fontaine Maury)
 - Articles, newspapers...
- Big data
 - Behaviors are easily tracked / recorded
 - Once on the internet, always on the internet
 - 3 V
 - volume, variety and velocity

Quiz (True / False)

- Zip code is a quantitative variable.
- False
- Datetime is a quantitative variable.
- False
- Data is ready for analysis in its raw form.
- False
- We could change a qualitative variable into a quantitative variable in the data processing stage.
- True

B. Vectors and Data Frames

Data Structures

- Hadley Wikhan's book 'Advanced R' has a detailed treatment of data structures.
- R's base data structures can be organized by
- dimensionality
 - (1d, 2d, or nd)
- and whether they're homogeneous (all contents must be of the same type) or heterogeneous (the contents can be of different types).

Data Structures

This gives rise to the five data types most often used in data analysis:

	Homogeneous	Heterogeneous
1d	Atomic Vector	List
2d	Matrix	Data frame
nd	Array	(Tensor Flow)

- Note that R has no 0-dimensional, or scalar types.
- Individual numbers (1,2,3..) or strings (Yes, No), which you might think would be scalars, are actually vectors of length one.

Data Structures

For our class, we fill focus on 3 data types:

- Atomic vectors
- Lists
- Data frames

Vectors

- Vector a collection of data
- The basic data structure in R.
- Generally, a list of numbers or strings

Column Vector: $\begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$

- i.e.)
- A (vector): 1,2,3,4.....10
- B (vector): Jane, Lisa, Mark, Alice, Lukas, ...
- C (vector): 3
- D (vector): No

Row Vector: (2 4

4 1

Vectors

- Atomic vectors
- Lists
 - Common
 - Type, typeof(), what it is
 - Length, length(), how many elements it contains
 - Attributes, attributes(), additional arbitrary metadata
 - Different
 - The types of their elements:
 - All elements of an atomic vector must be the same type
 - Elements of a list can have different types

- 4 common types of atomic vectors
 - Logical
 - Integer
 - Double (often called numeric)
 - Character
- 2 rare types
 - Complex
 - Raw

Atomic vectors are usually created with c(), short for combine:

- Example)
- We can create a variable and assign it to the value using the assignment operator '<-'</p>
- dbl_var <- c(1, 2.5, 4.5)</p>
- typeof(dbl_var)
- ## [1] "double"
- length(dbl_var)
- **#**# [1] 3
- attributes(dbl_var)
- ## NULL

Price	Size	Lotsize	Bedroo ms	Location		Built date	Ocean view	Rooftop	Zipcode
400,000	10,000	20,000	NA	Long Beach, CA	2019/03/ 10	2012/01/ 28	no	yes	12345

- Missing values are specified with NA
- which is a logical vector of length 1
- NA will always be coerced to the correct type if used inside c()
- dbl_var <- c(1, 2.5, NA, 4.5)</p>

- Attributes
 - Defining factors
- Factor
 - A vector that can contain only predefined values
 - Stores categorical data

- Factors are integer vectors using two attributes:
 - class() which makes them behave differently from regular integer vectors
 - Class(X) of a factor vector X = "factor"
 - levels() which defines the set of allowed values
 - Example) "m" and "f" for a 'gender' factor variable.

- Factors are useful when you know the possible values a variable may take, even if you don't see all values in a given dataset
- Because factors are actually integers that look (and sometimes behave) like character vectors,
- Be careful when treating them like strings.
 - Some string methods coerce factors to strings, while others throw an error, and still others use the underlying integer values
 - For this reason, it's usually best to explicitly convert factors to character vectors if you need string-like behavior
- In early versions of R, there was a memory advantage to using factors instead of character vectors, but this is no longer the case

Atomic Vectors -> Matrix

- Atomic Vector a collection of the same type of data
- Matrix a vector with 2 dimensional shape information
- Matrix: 2 dimensional shape information
 - Rows
 - Columns
- mat <- matrix (</p>
- **c**(2, 4, 3, 1, 5, 7), # the data elements
- nrow =2, # no. of rows
- ncol =3 # no. of columns

Lists

- Different from atomic vectors because their elements can be of any type
- Use *list()* instead of *c()*
- x <- list(1:3, "a", c(TRUE, FALSE, TRUE), c(2.3, 5.9))
- str(x)
- str() is the function to check the structure of any R object
- ## List of 4
- ## \$:int [1:3] 1 2 3
- ## \$: chr "a"
- ## \$: logi [1:3] TRUE FALSE TRUE
- ## \$: num [1:2] 2.3 5.9

Lists

- c() can combine several lists into one
 - If given a combination of atomic vectors and lists, c() coerces the vectors to lists before combining them
- Compare the results of list() and c():

Codes								
$x \le - list(list(1, 2), c(3, 4))$	y <- c(list(1, 2), c(3, 4))							
str(x)	str(y)							
List of 2 \$:List of 2 \$: num 1 \$: num 2 \$: num [1:2] 3 4	List of 4 \$: num 1 \$: num 2 \$: num 3 \$: num 4							

Lists

- Lists are used to build up many of the more complicated data structures in R, such as
- Data frames

Data Frames

- A data frame is the most common way of storing data in R
- Under the hood, a data frame is a list of equal-length vectors.
- This makes it a 2-dimensional structure, so it shares properties of both the matrix and the list.
- A data frame can be viewed as:
- a 1d structure (where it behaves like a list),
- or a 2d structure (where it behaves like a matrix).

Data Frames - Useful functions

- head(dataframe) # Top of dataframe
- tail(dataframe) # Bottom of dataframe
- dim(dataframe) # Dimensions
- ncol(dataframe) # Number of columns
- nrow(dataframe) # Number of rows
- names(dataframe) # Column names
- rownames(dataframe) # Row names
- str(dataframe) # Structure, with class, length, and content
- summary(dataframe) # Summary statistics for each columns

Data Frames - Useful functions

- Example)
- df <- data.frame(x = 1:3, y = c("a", "b", "c"))
- str(df)
- ## 'data.frame': 3 obs. of 2 variables:
- ## \$ x: int 1 2 3
- ## \$ y: Factor w/ 3 levels "a", "b", "c": 1 2 3
- # Beware data.frame()'s default behaviour which turns strings into factors.
- # Use stringAsFactors = FALSE to suppress this behaviour:
- df <- data.frame(x = 1:3,y = c("a", "b", "c"),stringsAsFactors = FALSE)

What is a Data Frame in R?

 A data frame is a table or a two-dimensional array-like structure in which each column contains values of one variable and each row contains one set of values from each column.

Characteristics of a data frame:

- The column names should be non-empty.
- The row names should be unique.
- The data stored in a data frame can be of numeric, factor or character type.
- Each column should contain same number of data items.

Learning R: Creating a Data Frame

- # Create a data frame
- emp.data <- data.frame(emp_id = c (1:5), emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), salary = c(623.3,515.2,611.0,729.0,843.25), start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11", "2015-03-27")), stringsAsFactors = FALSE)</p>
- # Print this data frame
- print(emp.data)
- When we execute the above code, it produces the result:

emj	p_id	emp_name	salary	start_date
1	1	Rick	623.30	2012-01-01
2	2	Dan	515.20	2013-09-23
3	3	Michelle	611.00	2014-11-15
4	4	Ryan	729.00	2014-05-11
5	5	Gary	843.25	2015-03-27

- See: <u>Live Demo</u> (Click Execute at top left. You can modify code)
- See other examples at <u>tutorialspoint.com/r/r data frames.htm</u>

