Lecture 5

Tuesday 11th November, 2014

Contents

1	Der	ivative of a Function	2
	1.1	Definition	2
		1.1.1 Geometrical Interpretation	2
	1.2	Notation	2
	1.3	Derivative Function	2
	1.4	The Tangent Line	2
	1.5	The Normal Line	2
	1.6	Proofs of Standard Derivatives	3
		1.6.1 $y = f(x) = c$	3
		1.6.2 $y = f(x) = x^n; n \in \mathbb{N} \dots \dots \dots \dots \dots \dots$	3
		1.6.3 $y = f(x) = x^{-n}; n \in \mathbb{N}, x \neq 0 \dots$	3
		$1.6.4 y = f(x) = \sin x \dots \dots \dots \dots$	4
	1.7	Theorem: If $\exists f'(x), \exists g'(x) \text{ and } c \text{ is a constant, then, } (cf(x))' =$	
		$cf'(x), (f(x) \pm g(x))' = f'(x) \pm g'(x), (f(x)g(x))' = f'(x)g(x) +$	
		$f(x)g'(x), \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \dots \dots \dots$	4
	1.8	Theorem: Let f be defined on an open interval about x_0 . Then,	
		$f(x)$ is differentiable at x_0 , iff $\exists A \in \mathbb{R}$ and $\exists \alpha(\Delta x)$, with $\lim_{\Delta x \to 0} \alpha(\Delta x)$	=
		0, s.t. $\frac{\Delta y}{\Delta x} = A + \alpha(\Delta x); A = f'(x_0) \dots \dots \dots \dots$	4
	1.9	If $y = f(x)$ is differentiable at x_0 , then, $f(x)$ is continuous at x_0 .	4

1 Derivative of a Function

1.1 Definition

If there exists

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = L$$

then the limit is called the derivative of f at x_0 .

1.1.1 Geometrical Interpretation

The slope of \overrightarrow{AB} is

$$\tan \alpha = \frac{\Delta y}{\Delta x}$$

When $\Delta x \to 0$, \overleftrightarrow{AB} tends to a straight line which is called the tangent to y = f(x) at $(x_0, f(x_0))$.

The derivative is the slope of the tangent to y = f(x) at $(x_0, f(x))$.

1.2 Notation

$$L = f'(x_0) = \frac{\mathrm{d}f(x_0)}{\mathrm{d}x} = \frac{\mathrm{d}y(x_0)}{\mathrm{d}x} = Df(x_0)$$

1.3 Derivative Function

If we calculate the derivative of f(x) at any possible x , we get the <u>derivative</u> function.

$$f'(x) = \frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}x} = Df$$

1.4 The Tangent Line

$$y - f(x_0) = f'(x_0)(x - x_0)$$

1.5 The Normal Line

$$y - f(x_0) = -\frac{1}{f'(x_0)}(x - x_0) \qquad ; f'(x_0) \neq 0$$
$$x = x_0 \qquad ; f'(x_0) = 0$$

1.6 Proofs of Standard Derivatives

1.6.1
$$y = f(x) = c$$

$$f'(x) = \lim_{x \to 0} \frac{f(x + \Delta x)}{\Delta x}$$
$$= \lim_{x \to 0} \frac{c - c}{\Delta x}$$
$$= 0$$

1.6.2
$$y = f(x) = x^n; n \in \mathbb{N}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - x^n}{\Delta x}$$

$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

$$\therefore f'(x) = \lim_{\Delta x \to 0} \frac{\Delta x((x + \Delta x)^{n-1} + (x + \Delta x)^{n-2}x + \dots + (x + \Delta x)x^{n-2} + x^{n-1}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} (x + \Delta x)^{n-1} + (x + \Delta x)^{n-2}x + \dots + (x + \Delta x)x^{n-2} + x^{n-1}$$

$$= x^{n-1} + x \cdot x^{n-2} + \dots + x^{n-2} \cdot x + x^{n-1}$$

$$= nx^{n-1}$$

1.6.3
$$y = f(x) = x^{-n}; n \in \mathbb{N}, x \neq 0$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^{-n} - x^{-n}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\frac{1}{(x + \Delta x)^n} - \frac{1}{x^n}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^n - (x + \Delta x)^n}{\Delta x (x^n (x + \Delta x)^n)}$$

$$= \frac{-nx^{n-1}}{x^n x^n}$$

1.6.4
$$y = f(x) = \sin x$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2\sin\frac{\Delta x}{2}\cos(x + \frac{\Delta x}{2})}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}\cos\left(x + \frac{\Delta x}{2}\right)$$

$$= \cos x$$

1.7 Theorem: If
$$\exists f'(x), \ \exists g'(x) \ \text{and} \ c \ \text{is a constant, then,}$$

$$(cf(x))' = cf'(x), \ (f(x) \pm g(x))' = f'(x) \pm g'(x), \ (f(x)g(x))' = f'(x)g(x) + f(x)g'(x), \ \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

$$\begin{split} (f(x)g(x))' &= \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x + \Delta x) - f(x)g(x)}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{(f(x + \Delta x)g(x + \Delta x) - f(x)g(x + \Delta x)) + (f(x)g(x + \Delta x) - f(x)g(x))}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{(f(x + \Delta x) - f(x))g(x + \Delta x)}{\Delta x} + \frac{f(x)((g(x + \Delta x) - g(x))}{\Delta x} \\ &= f'(x)g(x) + f(x)g'(x) \end{split}$$

- 1.8 Theorem: Let f be defined on an open interval about x_0 . Then, f(x) is differentiable at x_0 , iff $\exists A \in \mathbb{R}$ and $\exists \alpha(\Delta x)$, with $\lim_{\Delta x \to 0} \alpha(\Delta x) = 0$, s.t. $\frac{\Delta y}{\Delta x} = A + \alpha(\Delta x)$; $A = f'(x_0)$
- 1.9 If y = f(x) is differentiable at x_0 , then, f(x) is continuous at x_0 .

$$\exists f'(x_0) \Rightarrow \frac{\Delta y}{\Delta x} = f'(x_0) + \alpha(\Delta x)$$

$$\therefore f(x_0 + \Delta x) - f(x_0) = \Delta y = \Delta x (f'(x_0) + \alpha(\Delta x))$$

$$\therefore f(x_0 + \Delta x) = f(x_0) + \Delta x (f'(x_0) + \alpha(\Delta x))$$

$$\therefore \lim_{\Delta x \to 0} f(x_0 + \Delta x) = \lim_{\Delta x \to 0} f(x_0) + \Delta x (f'(x_0) + \alpha(\Delta x))$$

$$= x_0$$

The converse of this theorem is not true.