CS204: Discrete Mathematics

Ch 1. The Foundations: Logic and Proofs Propositional Logic-2 Truth Table

Sungwon Kang

Acknowledgement

- [Rosen 19] Kenneth H. Rosen, for Discrete Mathematics & Its Applications (8th Edition), Lecture slides
- [Hunter 11] David J. Hunter, Essentials of Discrete Mathematics, 2nd Edition, Jones & Bartlett Publishers, 2011, Lecture Slides

Propositional Logic: Semantics

Any statement has two possible truth values: true(T) or false(F).

A connective can be viewed as a "truth value function".

Ch 1. The Foundations: Logic and Proofs

- 1.1 Propositional Logic
- 1.2 Applications of Propositional Logic
- 1.3 Propositional Equivalences
- 1.4 Predicates and Quantifiers
- 1.5 Nested Quantifiers
- 1.6 Rules of Inference
- 1.7 Introduction to Proofs
- 1.8 Proof Methods and Strategy

Truth tables for —

not p.

Truth tables for A

$$\begin{array}{c|c|c} p & q & p \wedge q \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & F \\ \end{array}$$

Truth tables for v

Truth tables for \rightarrow

p	q	p o q
Т	Τ	Т
Т	F	F
F	Т	Т
F	F	Т

p implies q.
If p then q.
p only if q.

Why T when p is F?

- 1) $p \rightarrow q$ is not false.
- 2) If it is F, then \rightarrow becomes the same as \wedge .

Truth tables for ↔

p	q	$p \leftrightarrow q$
Т	Τ	Т
Т	F	F
F	Т	F
F	F	Т

p if and only if q. p iff q.

Logical Equivalences

Definition

Two statements are *logically equivalent* if they have the same T/F values for all cases, that is, if they have the same truth tables.

Example

$$p \wedge q \equiv q \wedge p$$

$$p \lor q \equiv q \lor p$$

Note) "≡" is not a logical connective. It is a "meta" language symbol that asserts truth value equivalence of two logical expressions.

Compare the following statements:

 $p \rightarrow q$

If a quadrilateral has a pair of parallel sides, then it has a pair of supplementary angles.

 $\neg q \rightarrow \neg p$ (contrapositive of "p $\rightarrow q$ ")

If a quadrilateral does not have a pair of supplementary angles, then it does not have a pair of parallel sides.

 $q \rightarrow p$ (converse of " $p \rightarrow q$ ")

Equivalent to "p \rightarrow q" ?

If a quadrilateral has a pair of supplementary angles, then it has a pair of parallel sides.

Equivalent to " $p \rightarrow q$ "?

That is $p \rightarrow q \equiv \neg q \rightarrow \neg p$ $p \rightarrow q \not\equiv q \rightarrow p$

How can you prove these observations?

p	q
	Т
Т	F
F	Т
F	F

p	q	p ightarrow q	
Т	\vdash	Т	
Т	F	F	
F	T	T	
F	F	Т	

p	q	$\mid p ightarrow q$	$ \neg q$	$ \neg p $	ig eg q o eg p
T	Т	Т	F	F	
Т	F	F	T	F	?
F	T	Т	F	Т	
F	F	T	T	Т	

p	q	$p \rightarrow q$	$ \neg q$	$ \neg p $	$ eg \neg q ightarrow eg p$
Т	\vdash	T	F	F	Т
Т	F	F	T	F	F
F	Т	T	F	Т	T
F	F		T	T	T

 $p \rightarrow q$ is logically equivalent to $\neg q \rightarrow \neg p$: contrapositive

p	q	$p \rightarrow q$	$ \neg q$	$ \neg p$	ig eg q o eg p
T	Т	T	F	F	Т
Т	F	F	T	F	F
F	T	T	F	Т	T
F	F	T	T	Т	T

 $q \rightarrow p$ is not logically equivalent to $p \rightarrow q$: converse

p	q	$q \rightarrow p$		
Т	Т	T		
Т	F	T		
F	Т	F		
F	F	T		

A harder example

A harder example

A harder example

p	q	r
Т	Т	Т
T	Τ	H
T	F	Τ
T	F	F
F	Т	Т
F	Т	F
F	F	Т
F	F	F

A harder example

p	q	r	p o q
Т	Т	Т	Т
Т	Τ	F	Т
Т	F	Т	F
T	F	H	F
F	Т	Т	Т
F	Т	F	Т
F	F	Т	Т
F	F	F	Т

$(p \wedge q) \rightarrow r$	
0	
?	

A harder example

р	q	r	p o q	$p \wedge q$	$(p \land q) \rightarrow r$	S
Т	Т	Т	Т	T	Т	
Т	Т	F	Τ	Т	F	
Т	F	Т	F	F	Т	
Т	F	F	F	F	Т	?
F	Т	Т	Т	F	Т	
F	Τ	F	Т	F	Т	-
F	F	Т	Т	F	Т	
F	F	F	Т	F	Т	

A harder example

p	q	r	p o q	$p \wedge q$	$(p \land q) \rightarrow r$	S
Т	Т	Т	Т	Т	Т	<u>T</u>
T	T	<u>F</u>	Τ	Т	F	F
Т	F	T	F	F	Т	F
Т	F	E	F	F	Т	F
F	Т	Т	Т	F	Т	T
F	Т	<u>F</u>	Т	F	Т	T
F	F	Т	Т	F	Т	T
F	F	<u>F</u>	Т	F	Т	T

A harder example

	р	q	r	p o q	$p \wedge q$	$(p \wedge q) \rightarrow r$	S
	Т	Τ	Т	Т	Т	Т	T
	T	Т	<u>F</u>	Т	Т	F	F
	Т	F	T	F	F	Т Т	F
	Т	F	E	F	F	Т	F
	F	Т	Т	Т	F	Т	T
*	F	Т	E	Т	F	Т	工
	F	F	Т	Т	F	Т	Τ
—	F	F	<u>F</u>	Т	F	Т	I

Quiz 03-1

For each pair of propositions P and Q below, state whether or not P is logically equivalent to Q.

$$Q: \neg p \lor \neg q$$

(2) P:
$$p \rightarrow q$$

(3) P:
$$p \land (\neg q \lor r)$$
 Q: $p \lor (q \land \neg r)$

Q:
$$p \vee (q \wedge \neg r)$$