ISTARSKO VELEUČILIŠTE UNIVERSITÀ ISTRIANA DI SCIENZE APPLICATE Stručni studij politehnike

Izrada snimača podataka, obrada i vizualizacija prikupljenih podataka bazirano na principima slobodnog i otvorednog koda

Završni rad

Kristijan Cetina JMBAG: 2424011721 kcetina@iv.hr

Pula, 25. kolovoza 2019.

Sažetak

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Ključne rječi rijec, dva, tri ...

Kolegij: Elektronika

Mentorica: Sanja Grbac Babić, mag. računarstva, v.predavač

Abstract

Abstract in English

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec non-ummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Keywords: word, two, three ...

Posveta

Zahvala

Zahvala svima koji zaslužuju

"A good scientist is a person with original ideas. A good engineer is a person who makes a design that works with as few original ideas as possible. There are no prima donnas in engineering" - Freeman Dyson

Izjava o samostalnosti izrade završnog rada

Izjavljujem da sam završni rad na temu *Izrada snimača podataka, obrada i vizualizacija prikupljenih podataka bazirano na principima slobodnog i otvorednog koda* samostalno izradio uz pomoć mentorice Sanje Grbac Babić mag. računarstva, koristeći navedenu stručnu literaturu i znanje stečeno tijekom studiranja. Završni rad je pisan u duhu hrvatskog jezika.

Student: Kristijan Cetina

Sadržaj

0	Opis zadatka i ograničenja	2		
	0.1 Uvod	2		
	0.2 Slobodan i otvoreni kod	2		
	0.3 Arduino platforma	4		
	0.4 Jupyter Notebook	4		
	0.5 Git	5		
1	Prikupljanje podataka - hardware	7		
	1.1 GPS logging shield	8		
	1.2 Prikupljanje podataka o temperaturi	10		
	1.2.1 Softwareski filter	10		
	1.2.2 Hardwareski filter	10		
	1.3 Prikupljanje GPS podataka	13		
	1.4 Spremanje podataka na memorijsku karticu	14		
2	Obrada podataka - software			
3	Zaključak	16		
Li	teratura	17		
A	Programski kod na Arduino mikroračunalu			
В				
	ı	24		
_) :1:1			
r	Popis slika			
		_		
	1.1 Izgled korištenog hardwareskog sklopa	7		
	1.2 Shema spoja TMP36 senzora1.3 Shema Adafruit GPS Logger Shield	8 9		

1.4	Vrijednosti senzora	bez filtriranja	11
1.5	Vrijednosti senzora	sa softwareskim filtriranja	11
1.6	Vrijednosti senzora	primjenom kombinacije Sw i Hw filtera	12

Poglavlje 0

Opis zadatka i ograničenja

0.1 Uvod

Cilj ovog rada je bio izraditi jednostavan snimač podataka (datalogger) koji će spremati GPS podatke zajedno s podacima prikupljenim sa instaliranih senzora za kasniju analizu. Izrađeni uređaj je namjenjen kao snimač podataka u kompleksnijem sklopu koji je koji se može koristiti kda god postoji potreba za loggiranje podataka. Uređaj je namjenjen da zadovolji široki spektar potreba koje se mogu javiti bilo u industriji npr. prilikom praćenja pošiljki ili pak prilikom skupljanja podataka u istraživačke svrhe kako bi se razumio širi problem.

Sklop je baziran na Arduino platformi koja omogućava lak razvoj prototipova uz široku dostupnost gotovih dodatnih modula (shields) koji se jednostavno spajaju na bazno mikroračunalo.

Prikpljeni podaci se spremaju na SD karticu na uređaju u datoteku za kasniju obradu i analazu. Prikupljeni podaci se uz pomoć programskog jezika Python i dodatnih modula za statističku i numeričku analizu kao što su Pandas i Matplotlib obrađuju kroz sučelje interaktivne bilježnice Jupyter Notebook. Pristup obrade putem interaktivne bilježnice uz korištenje raznih tipova čelija kao što su Code Cells, Markdown Cells i Raw Cells omogućava lakšu vizualizaciju i pregled samog rada koji je pogodan za kasnije dijeljenje svim zainteresiranim stranama koji žele pregledati ili nastaviti rad na analizi.

Kompletan Git repozitorij ovog rada javno je dostupan na https://github.com/KristijanCetina/BachelorThesis

0.2 Slobodan i otvoreni kod

Izraz otvoreni kod *open source* odnosi se na nešto što ljudi mogu slobodno mijenjati i dijeliti jer je dizajn javno dostupan[1]. Izraz je nastao u kontekstu razvoja računalnog softwarea dok se danas odnosi na na pristup radu bio on software, hardware ili bilo kakav drugi tip projekta. Spomenimo kako

postoje razne licence pod kojima se objavljuju open soure radovi, a u praksi se razlikuju u načinu na koji izjenjeni i izvorni rad mora biti distribuiran svim ostalim zainteresiranim stranama.

Razlozi i prednosti primjene open source pristupa projektima su višestruke, a neke od njih su:

- Kontorla proizvoda
- Učenje i trening
- Sigurnost
- Stabilnost

Kontrola proizvoda: Kada je izvorni kod i ostala dokumentacija nekog proizvoda otvorena onda se može pogledati kako točno radi taj proizvod i na koji način je izgrađen. Na taj način svaki korinik može imati kontrolu nad onime što koristi jer ne postoji koncept crne kutije (BlackBox concept) te omogućava korisniku da uz dostuapn kod i sheme popravi ili unaprijedi proizvod. Zapitajmo se koliko puta smo se osobno susreli sa situacijom kada zbog kvara nekog uređaja smo bili primorani posjetiti i platiti ovlaštenog servisera koji ima specijalni alat za diagnostiku i popravke?

Učenje i trening: Uvidom u otvorenu dokumentaciju možemo vidjeti kako je neki stručnjak rješio određeni problem te to rješenje u potpunosti ili modificirano može se primjeniti na vlastiti problem. Otvorena dokumentacija omogućava proučavanje rješenja određenih problema i na taj način se skračuje vrijeme i pojeftinjuje razvoj novih proizvoda koji imaju slične zahtjeve. Znanstvenici objavljuju svoja otkrića kako bi ih drugi iza njih mogli koristiti. Inženjeri u svakodnevnom radu ne izvode i dokazuju npr Ohmov ili Newtonove zakone već ih samo primjenjuju.

Sigurnost: Proučavanje objavljene dokumentacije nekog projekta drugi stručnjaci iz područja mogu uvidjeti neke propuste koje autori zbog kompleksnosti proizvoda ili drugih razloga nisu primjetili te dojaviti autorima grešku kao bi se ista mogla ispraviti. Neke greške se mogu pojaviti samo u iznimno malom broju slučaja ili kada se poslože veliki broj faktora te nije realno očekivati da se prilikom testiranja proizvoda simulira svaki mogući scenarij korištenja. Zainteresirane strane mogu dodatno testirati proizvod u specifičnim uvjetima i na taj način otkriti inače skrivenu grešku u proizvodu te nakon otklanjanja greške sam proizvod postaje sigurniji.

Stabilnost: Mnogi proizvodi se koriste za vrlo bitne aspekte rada nekog većeg sustava te njihova zamjena iziskuje velike promjene i investicije, a ponekada nije niti moguća. Korištenjem proizvoda otvorenog koda i dokumentacije omogućava se korištenje nastavak podrške i korištenja tog proizvoda i nakon eventualnog nestanka kompanije koja je napravila proizvoda te isti više nije dobaljiv od proizvođača. Ako se koriste open source proizvodi moguće je samostalno rekreirati proizvod ukoliko se ukaže takva potreba.

0.3 Arduino platforma

Arduino je elektronička platforma otvorenog koda¹ baziran na hardwareu i softwareu koje je lako za koristiti. Arduino platforma obuhvaća mikrokontrolerske pločice bazirane na AVR arhitekturi s integriranim digitalnim, alalognim ulazima i izlazima kao i PWM² izlazima. Platforma omogućava lagano spajanje dodatnih vanjskih uređaja kao što su razni senzori, releji, servo i motori putem dodatnog upravljačkog modula i ostale elektroničke i elektromehaničke komponente. Sheme svih mikrokontrolera objavljene pod Creative Commons³ licencom i javno dostupne svim zainteresiranim stranama.

Adruino pločice su relativno povoljne u usporedbi s ostalim platformama i kao takve omogućavaju pristupačnije učenje svim zainteresiranima. Potrebno je ponekad malo spretnosti s lemilicom dok se često mogu slagati moduli na prototipnoj pločici bez lemljenja sa izradom spojeva putem spojnih žica.

Jednostavno korisničko sučelje (IDE⁴) za izradu korisničkih programa (sketch) je jednostavno za korištenje za početnike dok istovremeno omogućava izradu vrlo kompleksnih programa iskusnim korisnicima. IDE je kompatibilan s većinom danas raspostranjenih operacijskih sustava (GNU/Linux, MacOS i Windows). Programski jezik za izradu programa je baziran na C/C++ te omogućava daljnje proširivanje kroz C++ biblioteke ili koristiti AVR-C programski jezik.

0.4 Jupyter Notebook

U ovom radu za obradu i prikazivanje podataka korišten je programski jezik Python⁵ uz dodatke Pandas⁶ i Matplotlib⁷. Pandas omogućava lakšu manipulaciju podacima dok Matplotlib omogućava izradu kvaitetnih grafova s

¹ https://www.arduino.cc/en/Guide/Introduction

²Pulse Width Modulation - Pulsno širinska modulacija

³ https://creativecommons.org/

⁴Integrated development environment

⁵ https://www.python.org/

⁶ https://pandas.pydata.org/

⁷ https://matplotlib.org/

velikom mogučnošću prilagodbe raznim željama i potrebama. Sve zajedno je implementirano kroz sustav interaktivne bilježnice Jupyter⁸ koja omogućava brzu i jednostavnu obradu podataka kao i njeno dijeljenje sa svim zainteresiranim stranama. Jupyter notebook je web aplikacija otvorenog koda koja se može izvršavati na lokalnom računalu ili koristeći resurse računalstva u oblaku. Podržava razne programske jezike poput Julia, Ruby, R, C++ i mnoge druge te u ovom radu korišten Python. Jupyter notebook omogućava kreiranje i djeljenje dokumenata koji sadržavaju izvršivi programski kod, jednadžbe, grafove i vizualizacije te popratni tekst u jednoj cijelini koju trenutno drugim načinima nije moguće ili je vrlo nepregledno za postići. Područja primjene su najčešće obrada i transformacija podataka, numeričke analize, statistički modeli, vizualizacija podataka, strojno učenje i još mnogo toga.

0.5 Git

Git⁹ je distribuirani sustav za verzioniranje koda i ostalog rada kojeg želimo djeliti sa suradnicima. Git sa svojim jednostavnim i brzim granama omogućava lakši razvoj proizvoda kao i ispitivanje mogućnosti i funkcija. Kada se želi ispitati neka funkcionalnost bez da se ugrozi ono što do sada radi kako trebe nema potrebe kopirati cijeli projekt u novi folder i onda u njemu testirati već se jednostavno kreira nova grana u kojoj se radi razvoj i kada smo sigurni da sve radi kako želimo onda se ta grana ujedini s glavnom granom projekta koja prihvati dodatne funkcionalnosti koje su razvijene za proizvod. Kako je Git lagan za resurse onda se može kreirati vrlo veliki broj grana za razne potrebe bez značajnog utjecaja na performanse razvojnog računala ili potrošnje spremišnog prostora.

S obzirom na distibuiranu narav Gita svaki suradnik koji radi na projektu ima svoju kopiju na kojoj radi te nije vezan za neki server i stalnu komunikaciju s ostatkom tima već je ista potrebna samo kada se povlače i šalju učinjene promjene.

Git je nastao 2005 godine za potrebe razvoja Linux jezgre i od tada je poprimio mnoge simpatije unutar inženjerske zajednice koja ga koristi kako bi zajednički razvija projekte.

Kako bi se olakšalo djeljenje i suradnja na projektima 2008. godine je pokrenut GitHub - centralno mjesto za usluge poslužitelja¹⁰ (hosting) putem kojeg je moguće pratiti životni ciklus i povijet projekta. Svatko može pronaći projekt koji ga zanima te ukoliko ima dovoljno vremena i znanja može i pridonjeti njegovom razvoju. Brojne kompanije koriste GitHub kao bi podjelile svoje projekte. Podatak od travnja 2019. godine kaže kako više

⁸ https://jupyter.org/

⁹ https://git-scm.com/

 $^{^{10}\,\}rm https://github.com/features$

od 2.1 miljuna kompanija i organizacija koristi GitHub. Jedna od njih je i Adafruit - kompanija koja proizvodi elektroničke dodatke za Arduino i druge platforme i fokusirana je na edukacija mladih (i onih koji se tako osjećaju), a njihov GitHub sadrži više od 1100 repozitorija¹¹. Upravo je njihov GPS Logger Shield korišten u ovom projektu, a dostupnos dokumentacije i dostupna podrška je jedan od glavnih razloga zašto je odlučeno koristiti upravo taj proizvod.

¹¹ https://github.com/adafruit/

Poglavlje 1

Prikupljanje podataka hardware

Slika 1.1: Izgled korištenog hardwareskog sklopa

U dodatku A je prikazan kompletan izvorni kod koji se izvšvana na Arduino mikrokontroleru.

Slika 1.2: Shema spoja TMP36 senzora

1.1 GPS logging shield

Na shemi 1.3 nalazi se shema gotovog elektroničkog sklopa kako dolazi iz tvornice¹². Na samoj tiskanoj pločici postoji tkz. prototipno područje za dodavanje vanjskih elemanata čiji je raster 2.54 mm koji odgovara standardu true-hole elemenata. Na to područje je dodan temperaturni senzor TMP36³ zajedno s dodatnim pasivnim elementima koji služe kao filter smetnji koje se javljaju u radu zbog okoline. Shema spoja je prikazana na slici 1.2.

¹Kompletna dokumentacija dostupna je na https://learn.adafruit.com/adafruit-ultimate-gps-logger-shield?view=all

²GitHub repozitorij korištene verzije dostupan na https://github.com/adafruit/Adafruit-GPS-Logger-Shield-PCB

³Datasheet dostupan na https://github.com/KristijanCetina/BachelorThesis/blob/master/resources/TMP35_36_37.pdf

Slika 1.3: Shema Adafruit GPS Logger Shield

1.2 Prikupljanje podataka o temperaturi

Kako svaki elektronički sklop ima definirani raspon radne temperature bitno je znati u kojim uvjetima isti se nalazi. Ukoliko je temperatura previsoka može se uključiti aktivno hlađenje ili ako se unaprijed zna da će se sklop nalaziti pod povišenom radnom temperaturom onda se može konstrurati adekvatan sustav hlađenja. Isto vrijedi za prenisku temperaturu. Prema ranije spomenutoj shemi 1.2 dodatn je temperaturni senzor koji mjeri radnu temperaturu okoline uređaja. Pri testiranju ova vrsta senzora se pokazala veoma pouzdana, uz minimalno samozagrijavanje koje bi utjecalo na točnost mjerene veličine ali je isto tako pokazala vrlo brze promjene izlazne vrijednosti koja može biti do vanjskih smetnji. Kako bi se otklonio taj problem primjenjena su dva rješenja. Prvi je hardwareski fiter - kondenzatori koji je prikazan na shemi 1.2, a drugi je softwareski fiter. Tvornički podaci o izlaznom naponu šuma mogu se pronaći u datasheetu uređaja, slika 20. Na slici 1.4 prikazane su izlazne vrijednosti senzora bez ikakvog filtriranja i obrade. frekvencija uzorkovanja je 10Hz (10 očitanja u sekundi) Svakako nije realno za očekivati da se temperatura mjenja sukladno očitanim vrijednostima.

1.2.1 Softwareski filter

Softwareski filter radi na principu da očitava 10 vrijedosti sa senzora te ih sprema u polje. Potom ih sortira po veličini i uzima medijan⁴ vrijednost kao točnu temperaturu. Na taj način se postiže da se eliminiraju sve vrlo visoke i vrlo niske vrijednosti koje se mogu pojaviti zbog šuma u signalu. Vrijenosti se čitaju svakih 100 ms te uz račuanje na bazi 10 vrijednosti daje frekvenciju od 1 očitanja u sekundi koja odgovara i frekvenciji uzorkovanja podataka sa GPS senzora. Prilikom testiranja utvrđeno je da veći broj uzoraka ne doprinosti kvaliteti izmjerenih vrijednosti, a pro manjem broju uzoraka može se potkrasti poneka nerealna vrijenosti. Kako je očekivano vrijeme promjene temperature značajno duže od 1 sekune onda su prihvaćene navedene vrijednosti i metoda filtriranja. Na slici 1.5 prikazane su izlazne vrijendosti senzora nakon primjene opisanog softwareskog filtera. Primjeti se značajno manje skokova od nečega što se može smatrati stvarna vrijendost.

1.2.2 Hardwareski filter

Filter je jednostavna mreža keramičkih kondenzatora vrijednosti 10pF koji su spojeni što bliže senzoru između izvoda za napajanje i izlaza senzora prema točki nultog potencijala (GND, masa) kako bi apsorbirali eventualne smetnje. Iako je softwareski fiter u nekim situacijama dovoljno dobar ovo

⁴Medijan (mediana, centralna vrijednost) je pojam iz statistike koji određuje sredinu distribucije. Pola vrijednosti skupa (distribucije) nalazi se iznad mediane, a pola ispod

Slika 1.4: Vrijednosti senzora bez Slika 1.5: Vrijednosti senzora sa filtriranja softwareskim filtriranja

jednostavno i jeftino rješenje daje dodatan sloj filtriranja koji za posljedicu ima vrlo glatko očitanje temperature bez skokova u vrijednostima.

Primjenom kombinacije softwareskog i hardwareskog filtriranja postignuta je vrlo zadovoljavajuća karakteristika dobivenih stabilnih vrijednosti bez nerealnih skokova i s vrlo glotkom tranzicijom kod grijanja ili hlađenja sklopa. Dobivene vrijednosti su prikazane na slici 1.6.

Slika 1.6: Vrijednosti senzora primjenom kombinacije Sw i Hw filtera

1.3 Prikupljanje GPS podataka

GPS⁵ je javni sustav u vlasništvu vlade SAD-a⁶ za globoalno pozicioniranje baziran na satelitima s atomskim satovima koji odašilju vrlo točno i precizno trenutno vrijeme te su sinkkronizirani s zemaljskim satovima. Bilo kakva odstupanja se korigiraju na dnevnoj bazi. Prijemnik prima signal sa satelita te izračunava točnu poziciju baziranu na poznatoj poziciji satelita i razlikama u primljenim vremenima od svakog satelita. Minimalno su potrebna 3 satelita za dobiti koordinate i 4 satelita za dobiti poziciju o nadmorskoj visini prijemnika.

U ovom radu korišten je GPS chip MTK3339⁷ integriran na prije spomenuti Adafruit Ultimate GPS Logger Shield.

Kao koristan izlaz prijemnik daje NMEA⁸ rečenicu. Ovisno o potrebnim podacima mogu se koristiti razne rečenice, a u ovoj primjeni je korištena \$GPRMC⁹ koja daje minimalne potrebne podatke, a među kojima su vrijeme (UTC) i datum, pozicija i brzina. Primjer \$GPRMC rečenice je

\$GPRMC,053005.000,A,4457.8784,N,01356.1351,E,36.41,124.90,310719,,,A*58

pri čemu je:

\$GPRMC Oznaka rečenice 053005.000UTC vrijeme (7:30:05 lokalno) Oznaka valjanosti, A = OK, V = warningZemljopisna širina 4457.8784,N Zemljopins dužina 01356.1351,E Brzina u čvorovima ($\approx 67km/h$) 36.41 124.90 Smjer kretanja 310719 Datum (31. srpnja 2019.) A*58 Checksum (kontrolni broj)

Prilikom provjere primljenih podataka obavezno se provjerava

- da li primljni checksum odgovara izračunanom za datu rečenicu kako bi se izbjegle pogreške u komunikaciji,
- \bullet da li je oznaka valjanosti A što znači da uređaj ima prijem s dovoljnog broj satelita da se može vjerovati primljenim podacima.

Provjeru valjanosti i checksuma odrađuje bibloteka koja je dostupna za Arduino platformu zajedno s ostalom dokumentacijom uređaja te nije bilo potrebno pisati poseban kod koji će to raditi.

⁵Global Positioning System - Sustav globalnog pozicioniranja

⁶https://www.gps.gov

Thttps://cdn-shop.adafruit.com/datasheets/GlobalTop-FGPMMOPA6C-Datasheet-VOA-Preliminary.

 $^{^8}$ https://www.nmea.org/content/STANDARDS/NMEA_0183_Standard

⁹http://aprs.gids.nl/nmea/

1.4 Spremanje podataka na memorijsku karticu

Na korištenom Adafruit Ultimate GPS Logger Shieldu postoji utor za microSD memorisku karticu koja se koristi za zapisivanje prikupljenih podataka kako bi se isti mogli kasnije obraditi i prikazati. Sustav skupljene podatke sprema na memorisku karticu u .csv 10 formatu koji je pogodan za kasniju obradu bilo putem Excel programskog alata ili drugih alata za obradu i vizualizaciju podataka. Svaki red predstavlja jedan zapis, a u odnosu na ranije prikazanu \$GPRMC rečenicu na kraju je dodan i podatak o trenutnoj temperaturi u $^{\circ}C$ koja je očitana sa senzora opisanog u poglavlju 1.2. Frekvencija zapisivanja podatka je postavljena na 1 zapis u sekundi. Datoteka se automatski kreira prilikom uključivanja sklopa ako je SD kartica prisutna. Ime datoteke je GPSLOGXX.csv pri čemu je XX broj koji počinje od 00 i uvećava je za 1 kod svakog pokretanja. Testiranje je pokazalo da veličina datoteke s 10 sati (≈ 36000 zapisa) snimljnih podataka iznosi otprilike 2.7 Mb.

¹⁰Comma Separated Values

Poglavlje 2

Obrada podataka - software

U ovom poglavlju biti će opisana softwareska komponenta za obradu i vizualizaciju prikupljenih podataka.

U dodatku B prikazana je analiza podataka prikupljenih izrađenim uređajem ugrađenim u vozilo za potrebe testiranja.

Poglavlje 3

Zaključak

Ovdje dođe zakljucak

Literatura

[1] R. H. Inc., "What is open source?." https://opensource.com/resources/what-open-source. (3.8.2019.).

Dodatak A

Programski kod na Arduino mikroračunalu

```
#include <SPI.h>
 2 #include <Arduino.h>
3 #include <Adafruit_GPS.h>
4 #include <SoftwareSerial.h>
5 #include <SD.h>
 6 #include <avr/sleep.h>
 7 #include <Wire.h>
                             // this #include still required because the RTClib
     depends on it
8 #include "RTClib.h"
9
10 int voltage;
11 int Temperatura;
12 int TempSenzor = A0;
13
14 #define aref_voltage 3.3
15 float temp[10] = { 0 };
16
17 float i = 0;
18 int n = 0;
19 float median = 0;
20
21 SoftwareSerial mySerial(8, 7);
22 Adafruit_GPS GPS(&mySerial);
24 // Set GPSECHO to 'false' to turn off echoing the GPS data to the Serial
     console
25 // Set to 'true' if you want to debug and listen to the raw GPS sentences
26 #define GPSECHO false
27 /* set to true to only log to SD when GPS has a fix, for debugging, keep it
     false */
28 #define LOG FIXONLY true
29
30 // this keeps track of whether we're using the interrupt
31 // off by default!
32 #ifndef ESP8266 // Sadly not on ESP8266
33 boolean usingInterrupt = false;
34 #endif
35
36 // Set the pins used
37 #define chipSelect 10
38 #define ledPin 13
39
40 File logfile;
41
42 RTC DS1307 RTC; // define the Real Time Clock object
43 RTC Millis rtc;
44
45 char timestamp[30];
46 // call back for file timestamps
47 void dateTime(uint16_t* date, uint16_t* time) {
48
   DateTime now = RTC.now();
    sprintf(timestamp, "%02d:%02d:%02d %2d/%2d/%2d \n", now.hour(),now.minute
49
      (),now.second(),now.month(),now.day(),now.year()-2000);
50
   Serial.println("yy");
51
    Serial.println(timestamp);
    // return date using FAT DATE macro to format fields
```

```
53
      *date = FAT_DATE(now.year(), now.month(), now.day());
 54
 55
     // return time using FAT_TIME macro to format fields
 56
     *time = FAT_TIME(now.hour(), now.minute(), now.second());
 57 }
 58
 59 // read a Hex value and return the decimal equivalent
 60 uint8_t parseHex(char c) {
      if (c < '0')
 62
        return 0;
 63
      if (c <= '9')
        return c - '0';
 64
 65
      if (c < 'A')
 66
        return 0;
      if (c <= 'F')
 67
         return (c - 'A')+10;
 68
 69 }
 70
 71 // blink out an error code
 72 void error(uint8_t errno) {
 73
      /*
 74
      if (SD.errorCode()) {
 75
        putstring("SD error: ");
 76
        Serial.print(card.errorCode(), HEX);
 77
        Serial.print(',');
 78
        Serial.println(card.errorData(), HEX);
 79
        }
        */
 80
 81
      while(1) {
 82
         uint8_t i;
 83
         for (i=0; i<errno; i++) {</pre>
 84
           digitalWrite(ledPin, HIGH);
 85
           delay(100);
 86
           digitalWrite(ledPin, LOW);
 87
           delay(100);
 88
         for (i=errno; i<10; i++) {</pre>
 89
 90
           delay(200);
 91
         }
 92
       }
 93 }
 94
 95 void setup() {
96
      Wire.begin();
 97
     if (!RTC.begin()) {
        Serial.println("RTC failed");
 99
        while(1);
100
     };
101
      // connect at 115200 so we can read the GPS fast enough and echo without
         dropping chars
102
      // also spit it out
103
      Serial.begin(115200);
104
      Serial.println("\r\nUltimate GPSlogger Shield");
105
      pinMode(ledPin, OUTPUT);
106
      pinMode(TempSenzor, INPUT); //postavi izvod TempSenzor (A0) kao ulazni
107
       analogReference(EXTERNAL); // Koristim 3.3 Vref
```

```
108
109
       // make sure that the default chip select pin is set to
110
      // output, even if you don't use it:
111
      pinMode(10, OUTPUT);
112
113
      if (!SD.begin(chipSelect)) {
        Serial.println("Card init. failed!");
114
115
         error(2);
116
       }
117
      char filename[15];
      strcpy(filename, "GPSLOG00.csv");
118
      for (uint8 t i = 0; i < 100; i++) {
119
         filename[6] = '0' + i/10;
120
        filename[7] = '0' + i%10;
121
         // create if does not exist, do not open existing, write, sync after write
122
123
        if (! SD.exists(filename)) {
124
           break;
125
         }
126
      }
127
128
      logfile = SD.open(filename, FILE WRITE);
      if( ! logfile ) {
129
        Serial.print("Couldnt create ");
130
131
         Serial.println(filename);
132
         error(3);
133
      }
134
      Serial.print("Writing to ");
135
      Serial.println(filename);
136
       // connect to the GPS at the desired rate
137
138
      GPS.begin(9600);
139
140
      // uncomment this line to turn on RMC (recommended minimum) and GGA (fix
        data) including altitude
      //GPS.sendCommand(PMTK SET NMEA OUTPUT RMCGGA);
      // uncomment this line to turn on only the "minimum recommended" data
142
143
      GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCONLY);
144
      // Set the update rate
145
      GPS.sendCommand(PMTK_SET_NMEA_UPDATE_1HZ); // 100 millihertz (once every
        10 seconds), 1Hz or 5Hz update rate
      // Turn off updates on antenna status, if the firmware permits it
146
      GPS.sendCommand(PGCMD NOANTENNA);
      // the nice thing about this code is you can have a timer0 interrupt go off
148
149
      // every 1 millisecond, and read data from the GPS for you. that makes the
150
      // loop code a heck of a lot easier!
151 #ifndef ESP8266 // Not on ESP8266
152
      useInterrupt(true);
153 #endif
154
      Serial.println("Ready!");
155 }
156
157 // Interrupt is called once a millisecond, looks for any new GPS data, and
      stores it
158 #ifndef ESP8266 // Not on ESP8266
159 ISR(TIMER0 COMPA vect) {
      char c = GPS.read();
```

```
161
       // if you want to debug, this is a good time to do it!
162
       #ifdef UDR0
163
           if (GPSECHO)
164
             if(c)UDR0 = c;
165
           // writing direct to UDR0 is much much faster than Serial.print
166
           // but only one character can be written at a time.
167
      #endif
168 }
169
170 void useInterrupt(boolean v) {
       if (v) {
         // Timer0 is already used for millis() - we'll just interrupt somewhere
172
173
         // in the middle and call the "Compare A" function above
174
         OCR0A = 0xAF;
         TIMSK0 |= _BV(OCIE0A);
175
176
         usingInterrupt = true;
177
       }
178
      else {
179
        // do not call the interrupt function COMPA anymore
         TIMSKO &= ~_BV(OCIEOA);
181
         usingInterrupt = false;
182
      }
183
    }
184
    #endif // ESP8266
185
186 // function to sort the array in ascending order
187 void Array_sort(float *array, int n)
188 {
189
       // declare some local variables
190
       int i = 0, j = 0, temp = 0;
191
       for (i = 0; i<n; i++)
192
         for (j = 0; j < n - 1; j++)
193
194
           if (array[j]>array[j + 1])
195
196
197
             temp = array[j];
198
             array[j] = array[j + 1];
199
             array[j + 1] = temp;
200
           }
201
         }
202
       }
203 }
204
205 float Find median(float array[], int n)
206 {
      float median = 0;
207
208
       // if number of elements are even
209
       if (n % 2 == 0)
210
        median = (array[(n - 1) / 2] + array[n / 2]) / 2.0;
       // if number of elements are odd
211
212
       else
213
         median = array[n / 2];
214
      return median;
215 }
216
```

```
...rThesis\arduinoSource\LoggingWithTemp\LoggingWithTemp.c
```

```
217
    void loop(){
      DateTime now = rtc.now();
218
219
       if (! usingInterrupt) {
220
         // read data from the GPS in the 'main loop'
221
         char c = GPS.read();
         // if you want to debug, this is a good time to do it!
222
223
        if (GPSECHO)
224
           if (c) Serial.print(c);
225
      }
226
227
      // if a sentence is received, we can check the checksum, parse it...
228
      if (GPS.newNMEAreceived()) {
229
         char *stringptr = GPS.lastNMEA();
230
         if (!GPS.parse(stringptr)) // this also sets the newNMEAreceived() flag →
231
           to false
232
           return; // we can fail to parse a sentence in which case we should just →
              wait for another
233
234
        // Sentence parsed!
235
         Serial.println("OK");
236
         if (LOG FIXONLY && !GPS.fix) {
           Serial.print("No Fix");
237
238
           return;
239
         }
240
241
         float voltage = analogRead(TempSenzor) * 3.3; //ocitava vrijednosti
           izvoda (A0)
242
         voltage /= 1024.0; //10bit ADC
         float Temperatura = (voltage - 0.5) * 100;
243
244
         Serial.print("Trenutno: ");
245
         Serial.println(Temperatura);
246
247
        // Rad. lets log it!
248
         Serial.println("Log");
249
250
         char tempBuff[5];
251
         dtostrf(Temperatura,0,2,tempBuff);
252
         uint8_t tempSize = strlen(tempBuff);
253
254
        //logfile.flush();
255
256
     // ovaj blok kao dela pa pomalo s tim :-)
257
             uint8 t stringsize = strlen(stringptr);// + tempSize;
258
             if (stringsize != logfile.write((uint8 t *)stringptr,
                                                                                      P
               stringsize))
                               //write the string to the SD file
259
             error(4);
         if (strstr(stringptr, "RMC") || strstr(stringptr, "GGA") )
260
                                                                       logfile.flush →
           ();
261
         logfile.write(tempBuff);
262
        Serial.println();
263
264
       }
265 }
```

266

Dodatak B

Analiza podataka kretanja vozila

Analiza kretanja vozila

Kristijan Cetina

August 25, 2019

1 Plot grafa podataka iz .csv filea

Demo kako uz pomoć pythona i *matplotlib* biblioteke za prikaz grafova Prvo uvezemo potrbne bibliteke

```
[1]: import pandas as pd
import matplotlib.pyplot as plt
from numpy import genfromtxt, arange, sin, pi
from matplotlib import style
from matplotlib import dates as mpl_dates
import numpy as np
```

Unese se ime datoteke s podacima i mapiraju se polja sukladno zapisanome.

U ovom primjeru podaci su razdvojeni s znakom ',' ali česti je slučaja kada su podaci odvojeni nekim drugim znakom te se to treba posebno naznačiti kako bi program znao granice između polja.

```
[2]: filename='GPSLOG10.CSV'

#plt.style.use('ggplot')

data=pd.read_csv(filename, header=None, delimiter=',',

→names=['Sentence','Time','Validity','Latitue','NS','Longitude','EW','Speed',

→'Direction','Date','NA1','NA2','Checksum','Temperature'])
```

Sada smo spremni za prikazati prikupljene podatke.

Prvo možemo prikazati jednostavan s/t graf - brzinu u vremenu. Kako je brzina zapisana u čvorovima, a mi je želimo prikazati u km/h potrebno izvršiti konverziju. 1 nautična milja odgovara 1.852 km.

Svaki graf treba imati označene osi.S komandom plt.xlabel i ylabel označili smo osi grafa i analogno tome imenovan je i graf kako bi čitatelj znao što graf predstavlja. Naravno, pojedinačni grafovi se mogu posebno spremiti u visokoj rezoluciji i željenom formatu za kasniju upotrebu.

```
[3]: #otvori graf u novom prozoru

#%matplotlib

plt.plot(data['Time'],data['Speed']*1.852, 'b-')

plt.xlabel ('time')

plt.ylabel ('v [km/h]')

plt.title('Brzina kretanja vozila')

plt.savefig('GrafKretanjaBrzineVozila.png',format='png', bbox_inches='tight',⊔

→dpi=600)
```


Dodatno se mogu izračunati i pogledati razni podaci koje nas zanimaju.

Ako npr. želimo znati koja je bila maksimalna brzina kojom se vozilo kretalo to se može vidjeti na sljedeći naćin:

```
[4]: print('Maksimalna brzina = ',np.max(data['Speed']*1.852) , 'km/h')
```

Maksimalna brzina = 99.7302000000001 km/h

Ako nas zanimaju podaci o temperaturi moguće je čak koristiti i ugrađene statističke funkcije za izračunati željene podatke

Minimalna temperatura: 25.73 °C Maximalna temperatura: 27.99 °C

Razlika temperature: 2.259999999999998 °C Prosječna temperatura: 26.64 °C \pm 0.57 °C

