6/1/2018
CALIBRATION ERRORS
Calibration equation h: <m;< td=""></m;<>
A A A A A A A A A A
M=ah allometric scaling h=(M/a) b (allometric scaling)
Mass (M)
log (n) = 1/6 log (m) - 1/6 log (a) * you can hearize this but it is difficult to "Hunk" in log space.
log (M) "think" in log space.
(A) Interested in astronating tree toronass he true height (not sin height)

g(a,b,mi)=(mi/a)/b a, b, oc h] ~ [h, g (a, b, m.), oc] $X \left[a \right] \left[b \right] \left[o_c^2 \right]$ > choices for the liklihood h: N ganna (9(a,b,mi)², 9(a,b,mi)) h; N lognormal (log (g (a,b,mi)), oc) #3 log(h;)~ normal(log(g(a,b,m;)), oc) on the 1 og sale how to choose: #1 if varience is constant because variance obcsnt charge as a function of the mean # if variance increases as a function of the mean use lognormal # no longer concerned with having negative values of the parameter (or you need full number has) Lyfon will Cathon this when you check your Model using Posterior predictive checks

* obscreheight but want true mass DATA X: Mi = true unobserved a,b) Informed Priors from the Calibration [oc, a, v, c, op, a, b, Mh] x [[hi] (mi) b, o] X[M:] g(x, x, c, x;), op] x[0°][x][v][c][0°][a][b] be very careful how this is scaled ble dependent on distribution chosin in the calibration model gamma = exponential scale knorm/norm on log scale