WHAT IS CLAIMED IS:

1	1.	A sensor comprising:
2	a subs	strate bearing a first electrode coplanar with a second electrode; and
3	a diele	ectric seismic mass overlying and separated from the electrodes by a gap.
1	2.	The sensor of claim 1 wherein the first and second electrodes are
2	comb-shaped.	
1	3.	The sensor of claim 1 wherein the dielectric seismic mass comprises
2	Parylene.	
1	4.	The sensor of claim 1 wherein the seismic mass is perforated by holes.
1	5.	The sensor of claim 1 wherein movement of the seismic mass alters a
2	rate of occupation of	space by the dielectric material in a fringe electric field arising between
3	the electrodes.	
1	6.	The sensor of claim 5 wherein movement of the seismic mass normal
2	to the electrode plane	e alters the rate of occupation of space by the dielectric material.
1	7.	The sensor of claim 5 wherein movement of the seismic mass parallel
2	to the electrode plane	e alters the rate of occupation of space by the dielectric material.
1	8.	The sensor of claim 7 further comprising a third electrode separated
2	from a fourth electro	de on the substrate, wherein seismic mass defines a first hole between
3	the first and second e	electrodes, and a second hole between the third and fourth electrodes, the
4	second hole offset in	pitch from the first hole.
1	9.	The sensor of claim 1 further comprising a beam in contact with an
2	anchor portion and co	onfigured to support the dielectric mass over the electrodes.
1	10.	The sensor of claim 9 wherein the beam exhibits a linear shape.
1	11.	The sensor of claim 9 wherein the beam is configured to accommodate
2	movement of the seis	smic mass normal to the electrode plane.
1	12.	The sensor of claim 9 wherein the beam is configured to accommodate
2	movement of the seis	smic mass parallel to the electrode plane.

1	13. The sensor of claim 9 wherein the beam exhibits a spiral shape.		
1	14. The sensor of claim 1 wherein the dielectric seismic mass and the		
2	beam comprise integral features of a dielectric layer.		
1	15. A method of fabricating a sensor comprising:		
2	patterning a pair of electrodes in a plane defined by a substrate surface;		
3	forming a sacrificial material over the electrodes and the substrate;		
4	patterning a dielectric layer over the sacrificial material to form a block		
5	anchored to surrounding material by a beam; and		
6	removing the sacrificial material to leave the block supported by the beams		
7	over the electrodes.		
1	16. The method of claim 15 wherein patterning the dielectric material		
2	comprises patterning a Parylene layer.		
1	17. The method of claim 15 wherein:		
2	forming the sacrificial material comprises forming photoresist; and		
3	removing the sacrificial material comprises developing the photoresist.		
1	18. The method of claim 17 wherein:		
2	forming the sacrificial material further comprises forming amorphous silicon		
3	over the electrodes and the substrate, such that the photoresist is formed over the amorphous		
4	silicon; and		
5	removing the sacrificial material comprises developing the photoresist		
6	followed by etching the amorphous silicon.		
1	19. The method of claim 17 further comprising partially developing the		
2	photoresist to form dimples, such that projections are formed in an underside of the dielectric		
3	material corresponding to a location of the dimples.		
1	20. The method of claim 15, wherein:		
2	forming a sacrificial material includes defining a slot; and		
3	patterning the dielectric layer includes forming the dielectric material within		
4	the slot over the substrate.		

1	21. A method of sensing movement of a seismic mass comprising:
2	providing a seismic mass comprising dielectric material overlying and
3	separated by a gap from first and second coplanar electrodes; and
4	detecting fringe capacitance between the first and second electrodes as a rate
5	of occupation of space by the dielectric material changes.

22. The method of claim 21 wherein the rate of occupation of space by the dielectric material changes as the seismic mass moves normal to the plane containing the electrodes.

1

2

3

1 2

- 1 23. The method of claim 21 wherein the rate of occupation of space by the 2 dielectric material changes as a hole defined by the seismic mass moves between the 3 electrodes parallel to the plane containing them.
 - 24. The method of claim 21 wherein the changed rate of occupation of space by the dielectric material results from one of an acceleration and a change in pressure.