Analysis 1 - Course Review

Quan Nguyen

International University, VNU-HCM quannguyenuw@gmail.com

May 2022

Contents

- Preliminaries
- 2 Supremum & Infimum
- 3 Convergent of Sequences
- 4 Limits Continuity Differentiability of Functions
- 5 Applications of Derivatives

1. Preliminaries

We first review some basic concepts, formally.

Definition 1.1 (Sets)

A set is a collection of objects, usually satisfying some common properties. These objects are referred to as members (or elements) of the set.

We write $x \in A$ if x is a member of A and $x \notin A$ otherwise.

Example 1.1

Some familiar sets:

- (a) The emptyset ∅, which has no element;
- (b) The singleton $\{x\}$, which has exactly one element;
- (c) $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, or any interval in \mathbb{R} .

A set with at least one element is called nonempty.

1. Preliminaries

Definition 1.2 (Set Operations)

Let A and B be any two sets.

- (a) We say that A is a subset of B, in symbol $A \subset B$ or $B \supset A$, if each member of A is also a member of B. Otherwise, we write $A \not\subset B$;
- (b) We say that A equals B, i.e. A = B, if $A \subset B$ and $B \subset A$;
- (c) We define the union, intersection and difference of A and B as

$$A \cup B = \{x : x \in A \text{ or } x \in B\},\$$

$$A \cap B = \{x : x \in A \text{ and } x \in B\},\$$

$$A \setminus B = \{x : x \in A \text{ and } x \notin B\}.$$

If $A \subset B$, we sometimes refer to $B \setminus A$ as the complement of A, i.e. A^c .

1. Preliminaries

Definition 1.3 (Functions & Sequences)

Let X and Y be nonempty sets.

- (a) A mapping $f: X \to Y$ is is a rule assigning to each member x in X a unique member f(x) in Y;
- (b) If $Y = \mathbb{R}$, then f is called a function;
- (c) If $X = \mathbb{N}$, then f is called a sequence.
 - X and Y are called the domain and range of f;
 - For a function f, we usually concern on cases where X is an interval;
 - A sequence has a representation $\{x_n\}_{n=1}^{\infty}$, where $x_n = f(n)$.

Exercise. Try to provide examples of functions & sequences by yourself.

2. Supremum & Infimum

Definition 2.1

Let $X \subset \mathbb{R}$ be nonempty and $\alpha \in \mathbb{R}$ be arbitrary.

- (a) α is called a lower bound of X if all members of X are not smaller than α . X is called bounded below if it has a lower bound;
- (b) α is called an upper bound of X if all members of X are not greater than α . X is called bounded above if it has an upper bound;
- (c) X is called bounded if it is bounded above and bounded below.

Example 2.1

- (a) 2 and 3 are lower bounds of $[4, \infty)$, so $[4, \infty)$ is bounded below;
- (b) 5 is an upper bound of (0,1), so (0,1) is bounded above;
- (c) [-3,3) is bounded but $(7,\infty)$ and $\mathbb N$ are not bounded.

2. Supremum & Infimum

Definition 2.2 (Supremum & Infimum)

Let $X \subset \mathbb{R}$ be nonempty and $\alpha \in \mathbb{R}$ be arbitrary.

- (a) If α is an upper bound of X, then we call α the supremum of X, in symbol $\alpha = \sup X$ if it is the smallest upper bound;
- (b) If α is a lower bound of X, then we call α the infimum of X, in symbol $\alpha = \inf X$ if it is the largest lower bound.

A bounded below (above) set must have an infimum (a supremum).

Example 2.2

$$\inf[0,1] = \sup(-\infty,0) = \inf\left\{\frac{1}{n} : n \in \mathbb{N}\right\} = \sup\left\{-|z| : z \in \mathbb{Z}\right\} = 0.$$

Question. How to determine supremum/infimum of an arbitrary set?

2. Supremum & Infimum

Theorem 2.1

Let $X \subset \mathbb{R}$ be nonempty and $\alpha \in \mathbb{R}$ be arbitrary.

(a) If α is an upper bound of X, then α is the supremum of X if

$$\forall \epsilon > 0, \exists x \in X : x > \alpha - \epsilon.$$

(b) If α is a lower bound of X, then α is the infimum of X if

$$\forall \epsilon > 0, \exists x \in X : x < \alpha + \epsilon.$$

In other words,

- ullet the supremum subtracting ϵ is no longer an upper bound;
- ullet the infimum adding ϵ is no longer a lower bound.

Example 2.3

Any $\epsilon > 0$ is not a lower bound of $\left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$.

3. Convergent of Sequences

Definition 3.1

Let $\{x_n\}$ be a sequence in \mathbb{R} . We say that $\{x_n\}$ is

- (a) increasing (decreasing) if $x_n \le x_{n+1}$ ($x_n \ge x_{n+1}$) holds for all $n \in \mathbb{N}$;
- (b) strictly increasing if $x_n < x_{n+1}, \forall n \in \mathbb{N}$;
- (c) strictly decreasing if $x_n > x_{n+1}, \forall n \in \mathbb{N}$;
- (d) bounded below (above) if so is the set $\{x_n : n \in \mathbb{N}\}$.

Definition 3.2 (Convergent)

We say that $\{x_n\}$ converges to $\alpha \in \mathbb{R}$, denoted $x_n \to \alpha$ or $\lim_{n \to \infty} x_n = \alpha$, if

$$\forall \epsilon > 0, \exists N \in \mathbb{N} : |x_n - \alpha| < \epsilon, \forall n > N.$$

 α , if exists, is called the limit of the convergent sequence $\{x_n\}$.

A sequence is called divergent if it is not convergent.

3. Convergent of Sequences

Question. How to verify convergence of an arbitrary sequence?

Theorem 3.1 (Monotone Convergence Theorem)

- (a) An increasing, bounded above sequence is convergent;
- (b) A decreasing, bounded below sequence is convergent.

Theorem 3.2 (Squeeze Theorem)

Let $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ be sequences in $\mathbb R$ and $\alpha \in \mathbb R$. If $x_n \leq y_n \leq y_n$ for all $n \in \mathbb N$ and both $\{x_n\}$, $\{z_n\}$ converges to α , then so is $\{y_n\}$.

Example 3.1

Determine convergence and limits (if exist) of the following sequences:

- (a) $a_n = (-1)^n/n$, $b_n = n/2^n$, $c_n = 0$, $d_n = \ln(n+1)$;
- (b) $e_1 = 1$ and $e_{n+1} = n \cdot e_n/(n+1)$.

3. Convergent of Sequences

Theorem 3.3

Assume that $x_n \to \alpha$.

- (a) If β is another limit of x_n , then $\beta = \alpha$;
- (b) Every subsequence of $\{x_n\}$ also converges to α .

Example. Why the sequence $a_n = (-1)^n$ diverges?

Theorem 3.4

Let $X \subset \mathbb{R}$ be nonempty and $\alpha \in \mathbb{R}$ s.t. $\exists \{x_n\} \subset X : x_n \to \alpha$. Then:

- (a) If α is an upper bound of X, then α is the supremum of X;
- (b) If α is a lower bound of X, then α is the infimum of X.

Example 3.2

Determine inf X and sup X, where $X = \mathbb{Q}^c \cap [0, 1]$.

4. Limits - Continuity - Differentiability of Functions

In the remaining sections, assume $f, g : \mathcal{I} \to \mathbb{R}, x_0 \in \mathcal{I}$ and $\alpha \in \mathbb{R}$.

Definition 4.1 (Limits & Continuity of Functions)

- (a) α is called the left limit of f at x_0 , in symbol $\lim_{x \to x_0^-} f(x) = \alpha$, if
 - $\forall \epsilon > 0, \exists \delta > 0 : \mathsf{x} \in \mathcal{I} \cap (\mathsf{x}_0 \delta, \mathsf{x}_0) \text{ implies } |\mathsf{f}(\mathsf{x}) \mathsf{f}(\mathsf{x}_0)| < \epsilon;$
- (b) α is called the right limit of f at x_0 , in symbol $\lim_{x \to x_0^+} f(x) = \alpha$, if

$$\forall \epsilon > 0, \exists \delta > 0 : x \in \mathcal{I} \cap (x_0, x_0 + \delta) \text{ implies } |f(x) - f(x_0)| < \epsilon;$$

- (c) α is called the limit of f at x_0 , in symbol $\lim_{x \to x_0} f(x) = \alpha$, if it is both the left limit and right limit of f at x_0 . We say that f is continuous at x_0 ;
- (d) We say that f is continuous on $\mathcal I$ if f is continuous at every point in $\mathcal I.$

Note that if α is the limit of f at x_0 , then $f(x_0) = \alpha$.

4. Limits - Continuity - Differentiability of Functions

Definition 4.2 (Derivative & Differentiability)

We say that α is the derivative of f at x_0 , in symbol $f'(x_0) = \alpha$, if

$$\alpha = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

We say that f is differentiable if f' exists and is continuous on \mathcal{I} .

Note. $f'(x_0)$ is the slope of the tangent line to the graph of f at x_0 .

Derivative Rules

- (a) $(f(g(x))' = f'(g(x)) \cdot g'(x);$
- (b) $(u \pm v)' = u' \pm v'$, $(u/v)' = (u'v v'u)/v^2$;
- (c) Derivative of familiar functions...

5. Applications of Derivatives

Theorem 5.1 (L'Hospital Rule)

Assume f and g are differentiable on \mathcal{I} except at x_0 , then

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}$$

provided the latter limit exists and $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) \in \{0,\pm\infty\}$.

We say in such cases that the former limit is in **indeterminate form**.

Example 5.1

$$\lim_{x\to 0}\frac{\sin x}{x}=\lim_{x\to 0}\frac{\frac{d}{dx}(\sin x)}{\frac{d}{dx}(x)}=\lim_{x\to 0}\frac{\cos x}{1}=\cos 0=1.$$

5. Applications of Derivatives

Definition 5.1

We say that x_0 is:

- (a) a maximum of f on \mathcal{I} if $f(x_0) = \sup \{f(x) : x \in \mathcal{I}\}$;
- (b) a minimum of f on \mathcal{I} if $f(x_0) = \inf \{ f(x) : x \in \mathcal{I} \}$;
- (c) an extremum of f if it is either a maximum or a minimum;
- (d) a stationary point of f if $f'(x_0) = 0$.

Theorem 5.2 (Extreme Value Theorem)

If f is continuous on \mathcal{I} , then f has a minimum and a maximum.

Theorem 5.3

If f is differentiable, then every extremum is a stationary point.

5. Applications of Derivatives

Theorem 5.4 (Intermediate Value Theorem)

If $\mathcal{I} = [a, b]$ and f is continuous, then $\exists c, d \in \mathbb{R} : f(\mathcal{I}) = [c, d]$.

Theorem 5.5 (Mean Value Theorem)

If $\mathcal{I} = [a, b]$ and f is differentiable on (a, b), then

$$\exists c \in (a,b) : f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Corollary 5.6 (Rolle's Theorem)

If $\mathcal{I} = [a, b]$, f is differentiable on (a, b) and f(a) = f(b), then

$$\exists c \in (a, b) : f'(c) = 0.$$