```
!pip install -U ucimlrepo
from ucimlrepo import fetch ucirepo
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.metrics import r2 score, mean squared error
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
df = pd.read_csv('/content/winequality-white.csv', delimiter=';')
# Im just displaying the head real guick
print(df.head())
→ Collecting ucimlrepo
      Downloading ucimlrepo-0.0.7-py3-none-any.whl.metadata (5.5 kB)
    Requirement already satisfied: pandas>=1.0.0 in /usr/local/lib/python3.10/dist-package
    Requirement already satisfied: certifi>=2020.12.5 in /usr/local/lib/python3.10/dist-pa
    Requirement already satisfied: numpy<2,>=1.22.4 in /usr/local/lib/python3.10/dist-pack
    Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dis
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages
    Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packag
    Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (fr
    Downloading ucimlrepo-0.0.7-py3-none-any.whl (8.0 kB)
    Installing collected packages: ucimlrepo
    Successfully installed ucimlrepo-0.0.7
       fixed acidity volatile acidity citric acid
                                                      residual sugar
                                                                       chlorides
                                   0.27
                                                0.36
                                                                           0.045
    0
                  7.0
                                                                 20.7
    1
                  6.3
                                   0.30
                                                0.34
                                                                  1.6
                                                                           0.049
    2
                  8.1
                                   0.28
                                                0.40
                                                                  6.9
                                                                           0.050
    3
                  7.2
                                   0.23
                                                0.32
                                                                  8.5
                                                                           0.058
    4
                  7.2
                                   0.23
                                                0.32
                                                                  8.5
                                                                           0.058
       free sulfur dioxide total sulfur dioxide
                                                   density
                                                               рΗ
                                                                   sulphates
    0
                       45.0
                                            170.0
                                                    1.0010
                                                            3.00
                                                                        0.45
    1
                       14.0
                                            132.0
                                                    0.9940
                                                            3.30
                                                                        0.49
    2
                                                                        0.44
                       30.0
                                             97.0
                                                    0.9951
                                                            3.26
    3
                       47.0
                                            186.0
                                                    0.9956 3.19
                                                                        0.40
    4
                       47.0
                                            186.0
                                                    0.9956 3.19
                                                                        0.40
       alcohol
                quality
    0
           8.8
                       6
    1
           9.5
                       6
                       6
    2
           10.1
    3
           9.9
                       6
    4
           9.9
                       6
```

```
# Make it look pretty
print("Columns:", df.columns)

#mean, min, max, and percentiles
print("\nMean:\n", df.mean())
print("\nMin:\n", df.min())
print("\nMax:\n", df.max())
print("\n25th percentile:\n", df.quantile(0.25))
print("\n50th percentile:\n", df.quantile(0.50))
print("\n75th percentile:\n", df.quantile(0.75))

print("\nSummary Statistics:\n", df.describe())
```

1つる	ששששכש⊾ש	40	■ שששששש	TO/ • MAMMAM	₽ 330TAA
max	0.346000	289,000000		440.000000	1.038980
	рН	sulphates	alcohol	quality	
count	4898.000000	4898.000000	4898.000000	4898.000000	
mean	3.188267	0.489847	10.514267	5.877909	
std	0.151001	0.114126	1.230621	0.885639	
min	2.720000	0.220000	8.000000	3.000000	
25%	3.090000	0.410000	9.500000	5.000000	
50%	3.180000	0.470000	10.400000	6.000000	
75%	3.280000	0.550000	11.400000	6.000000	
max	3.820000	1.080000	14.200000	9.000000	

df.describe()

-	_	_
		•
-	→	\mathbf{v}
	<u> </u>	_

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide
count	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000
mean	6.854788	0.278241	0.334192	6.391415	0.045772	35.308085	138.360657
std	0.843868	0.100795	0.121020	5.072058	0.021848	17.007137	42.498065
min	3.800000	0.080000	0.000000	0.600000	0.009000	2.000000	9.000000
25%	6.300000	0.210000	0.270000	1.700000	0.036000	23.000000	108.000000
50%	6.800000	0.260000	0.320000	5.200000	0.043000	34.000000	134.000000
75%	7.300000	0.320000	0.390000	9.900000	0.050000	46.000000	167.000000
max	14.200000	1.100000	1.660000	65.800000	0.346000	289.000000	440.000000

df.corr()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density
fixed acidity	1.000000	-0.022697	0.289181	0.089021	0.023086	-0.049396	0.091070	0.265331
volatile acidity	-0.022697	1.000000	-0.149472	0.064286	0.070512	-0.097012	0.089261	0.027114
citric acid	0.289181	-0.149472	1.000000	0.094212	0.114364	0.094077	0.121131	0.149503
residual sugar	0.089021	0.064286	0.094212	1.000000	0.088685	0.299098	0.401439	0.838966
chlorides	0.023086	0.070512	0.114364	0.088685	1.000000	0.101392	0.198910	0.257211
free sulfur dioxide	-0.049396	-0.097012	0.094077	0.299098	0.101392	1.000000	0.615501	0.294210
total sulfur dioxide	0.091070	0.089261	0.121131	0.401439	0.198910	0.615501	1.000000	0.529881
density	0.265331	0.027114	0.149503	0.838966	0.257211	0.294210	0.529881	1.000000
рН	-0.425858	-0.031915	-0.163748	-0.194133	-0.090439	-0.000618	0.002321	-0.093591
sulphates	-0.017143	-0.035728	0.062331	-0.026664	0.016763	0.059217	0.134562	0.074493
alcohol	-0.120881	0.067718	-0.075729	-0.450631	-0.360189	-0.250104	-0.448892	-0.780138
quality	-0.113663	-0.194723	-0.009209	-0.097577	-0.209934	0.008158	-0.174737	-0.307123

```
# histogram of the quality column
plt.figure(figsize=(8, 6))
df['quality'].plot.hist(edgecolor='black', bins=7)
plt.xlabel('Quality')
plt.ylabel('Frequency')
plt.title('Distribution of Wine Quality')
plt.show()
```


Distribution of Wine Quality


```
# 4. Illustrate the violin plots of all features. Make sure that each plot is visible.
scaler = StandardScaler()
scaled_data = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)

plt.figure(figsize=(16, 10))
sns.violinplot(data=scaled_data, inner='quartile')
plt.title('violin plotting for all the wine features')
plt.xticks(rotation=45)
plt.show()
```



```
#necessary libraries
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt
white_wine = pd.read_csv('/content/winequality-white.csv', delimiter=';')
print(white wine.head())
# we want x for alcohol and y for quality
X = white wine[['alcohol']]
y = white_wine['quality']
# linear regression model
model = LinearRegression()
# training
model.fit(X, y)
# predictions
y_predict = model.predict(X)
# Meanful plots
plt.figure(figsize=(8, 6)) # sizing
plt.scatter(X, y, alpha=0.5, label='Data points')
# Simply just plotting regression
plt.plot(X, y_predict, color='red', label='Regression line')
# alcohol for x
plt.xlabel('Alcohol')
# Quality for y
plt.ylabel('Quality')
plt.title('Linear Regression: Alcohol vs Quality')
plt.legend() # legend display data points and the regression line
plt.show()
# Output model parameters and performance metrics
print("Intercept (b0):", model.intercept_)
print("Coefficient (b1):", model.coef_[0])
rmse = mean_squared_error(y, y_predict, squared=False)
r2 = r2_score(y, y_predict)
print("Root Mean Squared Error (RMSE):", rmse)
print("R-squared (R^2):", r2)
```

Data noints

```
\overline{2}
       fixed acidity volatile acidity citric acid
                                                          residual sugar
                                                                           chlorides
    0
                                                                                0.045
                  7.0
                                     0.27
                                                   0.36
                                                                     20.7
    1
                  6.3
                                     0.30
                                                   0.34
                                                                      1.6
                                                                                0.049
    2
                  8.1
                                     0.28
                                                   0.40
                                                                      6.9
                                                                                0.050
    3
                  7.2
                                     0.23
                                                   0.32
                                                                      8.5
                                                                                0.058
    4
                  7.2
                                     0.23
                                                   0.32
                                                                      8.5
                                                                                0.058
       free sulfur dioxide
                              total sulfur dioxide
                                                      density
                                                                   рΗ
                                                                       sulphates
    0
                        45.0
                                               170.0
                                                        1.0010
                                                                3.00
                                                                             0.45
    1
                        14.0
                                               132.0
                                                        0.9940
                                                                3.30
                                                                             0.49
    2
                        30.0
                                                97.0
                                                        0.9951
                                                                3.26
                                                                             0.44
    3
                                                                             0.40
                        47.0
                                               186.0
                                                        0.9956
                                                                3.19
    4
                        47.0
                                               186.0
                                                        0.9956
                                                               3.19
                                                                             0.40
       alcohol
                 quality
    0
            8.8
                        6
    1
            9.5
                        6
    2
           10.1
                        6
    3
            9.9
                        6
    4
            9.9
                        6
                              Linear Regression: Alcohol vs Quality
```