

CLEAN VERSION OF AMENDMENTS

IN THE CLAIMS

Please cancel claims 6 and 8 without prejudice or disclaimer as to their subject matter by this amendment, amend claims 1-5, 7, 9, 10, 12, 14 and 15 by this amendment and newly add claims 17-23 by this amendment as follows:

1 1. (Amended) An optical channel monitoring apparatus, comprising:
2 an input unit comprising a lensed fiber receiving a wavelength division multiplexed
3 (WDM) optical signal via an optical transmission medium and producing a collimated beam of
4 optical signals, said input unit further comprising a concave lens receiving said collimated beam
5 and outputting a plurality of optical signals that have a continuous range of incidence angles
6 according to the wavelengths each of said plurality of optical signals; and
7 a filter for receiving said plurality of optical signals from the input unit and separating the
8 WDM optical signal into a plurality of optical signals having different wavelengths using the
9 difference between resonance lengths according to the incident angles.

1 2. (Amended) The apparatus of claim 1, further comprising an array of detectors
2 receiving optical signals output by said filter and converting said optical signals into electrical
3 signals, each detector being positioned to pick up a specific wavelength of incident radiation
4 emanating from the filter, said apparatus further comprising a microprocessor calculating signal
5 to noise ratio and spectral components of said optical signals output from said filter.

1 3. (Amended) The apparatus claim 2, an etalon is used as the filter.

1 4. (Amended) An optical channel monitoring apparatus, comprising:

2 an input part receiving a multiplexed, collimated optical signal and dispersing said
3 collimated optical signal via a concave lens into a beam having different incident angles;

4 an optical filter receiving the wavelength division multiplexed (WDM) optical signal
5 having different incident angles from the input part and separating the spanned WDM optical
6 signal into a plurality of optical signals having different wavelengths using the difference
7 between resonance lengths according to the different incidence angles; and

8 a plurality of detectors, each detector being spatially positioned to receive incident
9 radiation of a specific wavelength, said plurality of detectors detecting the intensity of each of
10 said plurality of optical signals having different wavelengths and converting said optical signals
11 to electrical signals.

1 5. (Amended) An optical channel monitoring method, comprising the steps of:

2 receiving a wavelength division multiplexed (WDM) optical signal from an optical
3 transmission medium and outputting, via a concave lens, a plurality of optical signals spanning a
4 continuous range of incidence angles according to the wavelengths of the optical signals;

5 receiving said plurality of optical signals spanning said range of incident angles and
6 separating the WDM optical signal according to wavelengths using the difference between

7 resonance lengths according to the different incidence angles; and

8 detecting the intensity of each of said plurality of optical signals having different
9 wavelengths and converting said intensity into a corresponding plurality of electrical signals.

1 7. (Amended) The apparatus of claim 3, further comprising a beam size controller
2 between said etalon and said detector to amplify said plurality of optical signals having different
3 wavelengths in order to be detected by said array of detectors.

1 9. (Amended) The apparatus of claim 4, said concave lens dispersing an input collimated
2 WDM beam into a beam spanning a range of angles, said range of angles being about 10 degrees.

1 10. (Amended) The apparatus of claim 9, further comprising an optical amplifier
2 amplifying each of said plurality of optical signals having different wavelengths output by said
3 filter allowing said plurality of optical signals having different wavelengths to be detected by
4 corresponding ones of said plurality of detectors.

1 12. (Amended) The apparatus of claim 10, further comprising a microprocessor that
2 determines the wavelength and the optical signal to noise ratio for each of said plurality of optical
3 signals having different wavelengths from said plurality of electrical signals produced by said
4 plurality of detectors.

1 14. (Amended) The method of claim 13, further comprising the step of determining
2 spectral components and the optical signal to noise ratio for each wavelength in said plurality of
3 optical signals having different wavelengths by processing said plurality of electrical signals by
4 said microprocessor.

1 15. (Amended) The method of claim 14, further comprising the step of amplifying said
2 plurality of optical signals having different wavelengths immediately after separating said optical
3 signals according to wavelengths and immediately prior to said detecting step.

1 --17. A method for monitoring and diagnosing spectral components and signal to noise
2 ratios of a WDM optical signals passing through an optical fiber, said method comprising the
3 steps of:

4 outputting said optical signals out of an end of said optical fiber, said end of said optical
5 fiber being lensed producing collimated optical signals upon being output from said optical fiber;

6 inputting said collimated optical signals into a cylindrical concave lens producing a
7 continuous span of output angles of propagation of said optical signals;

8 inputting said span of optical signals into a Fabry Perot etalon resonator to separate said
9 optical signals by wavelengths based on incident angles input into said etalon;

10 inputting said optical signals separated by wavelengths onto an array of detectors
11 producing electrical signals corresponding to wavelengths of said optical signals output from said
12 etalon; and

13 inputting said electrical signals into a microprocessor to calculate spectral components of
14 said optical signal and signal to noise ratio of said optical signal.

1 18. The method of claim 17, said continuous span of angles being 10 degrees
2 corresponding to a 25 nm range of wavelengths being diagnosed and monitored.

1 19. The method of claim 17, said method being able to analyze spectral components of
2 said optical signal with a resolution of 0.1 nm.

1 20. The method of claim 18, said etalon having a thickness of 28 nm and the FSR of the
2 etalon being 30 nm.

1 21. The method of claim 17, further comprising the step of amplifying said optical
2 signals separated by wavelengths emerging from said etalon prior to inputting said optical signals
3 onto said array of detectors.

1 22. The apparatus of claim 11, said etalon being 28 nm thick, said etalon having a FSR
2 of 30 nm, said apparatus having a resolution of 0.1 nm.

1 23. The apparatus of claim 3, said etalon being 28 nm thick, said etalon having a FSR of
2 30 nm, said apparatus having a resolution of 0.1 nm.--