3. Data

• Observations: Monthly series from January 1986 to June 2020.

Data Source:

- a) Oil Price: the spot price of West Texas Intermediate (WTI) crude oil, from the U.S. Energy Information
- b) Policy Uncertainty: Canadian economic policy uncertainty index, from the *Economic Policy Uncertainty* website
- Real Economic Activity: production indices of Canadian industrial, manufacturing, and construction activities, from the OECD Main Economic Indicators

3.1 Time Series Plot

- Trend: each series has an overall upward trend except the oil price series.
- Correlations: economic policy uncertainty series seems to move in an opposite direction to other variables.
- Cycles: apparent cyclical patterns seems evident for each series.

3.2 Covariance Stationarity

- Augmented Dickey Fuller (ADF), Dickey Fuller GLS (DFGLS), KPSS tests
- Null Hypotheses (H_0) :
- a) ADF & DFGLS: the series has a unit root
- b) KPSS: the series is covariance stationary
- I include 11 deterministic seasonal dummy variables and a linear trend in the testing equations as control variables
- I select 11 augmentation terms to ensure the validity of the tests while using monthly data.
- The critical value is based on α = 10% due to the low power of the tests.

3.2 Covariance Stationarity

	A	ADF		DF-GLS		KPSS	
Series	Test Statistic	Crit. Val (α = 10%)	Test Statistic	Crit. Val (α = 10%)	Test Statistic	Crit. Val (α = 10%)	
WTI	-2.096	-3.130	-2.100	-2.560	0.233	0.119	
EPU	-1.232		-1.352		0.429		
Industrial	-1.707		-1.805		0.327		
Manufacturing	-1.186		-0.963		0.436		
Construction	-1.389		-1.252		0.402		

Note: The number of augmentation lags for both the ADF and the DF-GLS tests is set at 11 for each auxiliary regression. For the KPSS test, the #bandwidth is selected through using the Bartlett kernel, and is equal to 15 for EPU and 16 for the other series.

• Each of the series is covariance non-stationary with at least one unit root.

3.3 Seasonal Unit Roots

			59 53		
Frequency	WTI	EPU	Industrial	Manufacturing	Construction
0 & 2π	-1.720	-0.137	-1.665	-1.872	-0.782
$2\pi/12 \& 22\pi/12$	22.721***	25.918***	41.635***	22.168***	29.180***
$4\pi/12 \& 20\pi/12$	30.366***	39.893***	24.255***	9.192***	5.872***
$6\pi/12 \& 18\pi/12$	30.175***	55.041***	16.541***	11.692***	1.679**
$8\pi/12 \& 16\pi/12$	43.438***	27.200***	19.990***	14.291***	4.022***
$10\pi/12 \& 14\pi/12$	33.384***	22.870***	42.522***	35.132***	13.503***
π	-6.013***	-6.072***	-5.895***	-5.736***	-3.014**
All seasonal frequencies	606.388***	74.796***	30.020***	373.439***	215.603***
All frequencies	557.472***	71.682***	28.313***	348.928***	198.284***

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

- I undertake HEGY test to detect the presence of seasonal unit roots
- Null Hypotheses (H_0) : the series has a unit root at the specified frequency (or degree).
- If a series has a unit root at the frequencies other than 0, we may say that the series exhibits a seasonal unit root.
- The test results indicate that all series have a non-seasonal unit root but no seasonal unit roots.

3.4 Cointegration Test

- I perform Johansen's (1988, 1991) maximum-eigenvalue and trace tests to explore for possible cointegrating (long-term) relationships among the series in the same system.
- Each system contain three series: the oil price, economic policy uncertainty, each production type. Therefore, I undertake the test for each considered production variable.

3.4 Cointegration Test

Maximum-eigenvalue Test:

$$H_0^1$$
: $r = 0$ vs. H_a^1 : $r = 1$

$$H_0^2$$
: $r = 1$ vs. H_a^2 : $r = 2$

$$H_0^3$$
: $r = 2$ vs. H_a^3 : $r = 3$

Trace Test:

$$H_0^1$$
: $r = 0$ vs. H_a^1 : $r = 3$

$$H_0^2$$
: r = 1 vs. H_a^2 : r = 3

$$H_0^3$$
: $r = 2$ vs. H_a^3 : $r = 3$

- r denotes the number of cointegrating vectors in the system.
- If we fail to reject H_0^1 , we stop testing, concluding no cointegrating relationships.

3.4 Cointegration Test

Production Series		um-Eigenvalue Test = 0 vs. H _a : r = 1)	Trace Test $(H_0: r = 0 \text{ vs. } H_a: r = 3)$		
	Statistic	Crit. Val (α = 5%)	Statistic	Crit. Val ($\alpha = 5\%$)	
Industrial	4.662		8.361		
Manufacturing	5.277	21.132	9.519	29.797	
Construction	11.232		17.629		

• There are **no** cointegrating relationships in each system, and using the first difference of each series in the VAR estimation seems reasonable.

3.5 VAR Diagnostics

$$Y_t = \alpha + \sum_{i=1}^{p} \phi_i Y_{t-i} + \sum_{j=1}^{11} \psi_j D_{t,j} + \varepsilon_t$$

- $Y_t = [\Delta wti_t, \Delta epu_t, \Delta production_t^k]'$; k = industrial, manufacturing, or construction
- Y_{t-i}: lagged values at order i
- Φ_i : the (3 \times 3) matrix of reduced-form autoregressive parameters
- D_{t. i}: binary variable for the jth month
- ϵ_t : the (3 \times 1) vector of reduced-form error terms
- Based on the Akaike's (1974) Info Criterion, choose p = 4 for the models consisting of industrial and manufacturing productions and p = 6 for construction production.

3.5 VAR Diagnostics

Dependent Variable	Independent Variables	χ^2	p-value
	$\Delta \mathrm{wti}$	26.842	0.0000
Δ ind	Δ epu	4.927	0.2948
	All	39.374	0.0000
	$\Delta \mathrm{wti}$	19.604	0.0006
Δ man	Δ epu	7.946	0.0936
	All	35.290	0.0002
	$\Delta \mathrm{wti}$	17.976	0.0063
$\Delta \mathrm{con}$	Δ epu	23.319	0.0007
	All	52.491	0.0001

- Granger's (1969) non-causality test: tests for one-period ahead predictability.
- Null Hypothesis (H₀): the lagged independent variable does not help explain or Granger cause the current value of the dependent variable.
- The price of crude oil Granger causes all production types, while policy uncertainty only help explain construction production.

4. Methodology

- Functional form
- Identifying restrictions

4.1 Functional Form

$$A_0 Y_t = \alpha + \sum_{i=1}^p A_i Y_{t-i} + \sum_{j=1}^{11} \gamma_j D_{t,j} + u_t$$

- A_0 : the (3 \times 3) contemporaneous coefficient matrix between the endogenous variables
- A_i : the (3 \times 3) matrix comprising the structural autoregressive parameters at order i
- u_t : the (3 \times 1) vector of structural error terms
- I impose short-run restrictions via the error terms, as there are likely no cointegrating relationships amongst the oil price, policy uncertainty, and each real production.

4.2 Identifying Restrictions – Expressions

$$\varepsilon_t = A_0^{-1} u_t$$

$$\begin{bmatrix} \varepsilon_t^{\Delta wti} \\ \varepsilon_t^{\Delta epu} \\ \varepsilon_t^{\Delta production} \end{bmatrix} = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} u_t^{\Delta wti} \\ u_t^{\Delta epu} \\ u_t^{\Delta production} \end{bmatrix} \quad \text{$ u_t^{\Delta wti}$: Oil price shock }$$

•
$$u_t^{\Delta production}$$
: Shock in real activity

$$\begin{bmatrix} \varepsilon_t^{\Delta wti} \\ \varepsilon_t^{\Delta epu} \\ \varepsilon_t^{\Delta production} \end{bmatrix} = \begin{bmatrix} a_{11}u_t^{\Delta wti} \\ a_{21}u_t^{\Delta wti} + a_{22}u_t^{\Delta epu} \\ a_{31}u_t^{\Delta wti} + a_{32}u_t^{\Delta epu} + a_{33}u_t^{\Delta production} \end{bmatrix}$$

4.2 Identifying Restrictions – Economic Reasonings

$$\begin{bmatrix} \varepsilon_t^{\Delta wti} \\ \varepsilon_t^{\Delta epu} \\ \varepsilon_t^{\Delta production} \end{bmatrix} = \begin{bmatrix} a_{11}u_t^{\Delta wti} \\ a_{21}u_t^{\Delta wti} + a_{22}u_t^{\Delta epu} \\ a_{31}u_t^{\Delta wti} + a_{32}u_t^{\Delta epu} + a_{33}u_t^{\Delta production} \end{bmatrix}$$

- a. The oil price does not respond to shocks in Canadian economic policy uncertainty and real activity because it captures the oil market price of the entire world.
- b. A change in the oil price can affect Canadian policy uncertainty, as we cannot anticipate the direction of that change.
- c. Both the world oil price and economic policy uncertainty are necessary determinants of domestic real economic activities.

5. Results

- I interpret and discuss my empirical findings based on:
- a) Impulse response functions (IRFs)
- b) Forecast error variance decompositions (FEVDs)

5.1 Impulse Response Analysis

- The oil price shock leads to an instantaneous positive response for all types of real productions, but this effect dissipates quickly.
- The policy uncertainty shock has a statistically significant impact on construction production, being negative instantaneously but becoming positive shortly thereafter.

5.2 Forecast Error Variance Decomposition

- The structural shocks to the oil price and to policy uncertainty jointly explain 15-20% of the forecast error variance in productions.
- The oil price shock contributes a higher proportion of the variability in industrial and manufacturing productions than policy uncertainty shock; This is the inverse w.r.t. construction production

