Raíces de ecuaciones Métodos cerrados Lección 04

Dr. Pablo Alvarado Moya

CE3102 Análisis Numérico para Ingeniería Área de Ingeniería en Computadores Tecnológico de Costa Rica

II Semestre 2017

Contenido

- Generalidades
- Métodos gráficos
- Métodos cerrados
 - Método de bisección
 - Método de interpolación lineal
- Métodos abiertos
 - Iteración de punto fijo

Funciones algebraicas y trascendentes

• Sea $p_n(x)$ un polinomio de orden n:

$$p_n(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$$

• Función y = f(x) es algebraica si

$$p_n(x)y^n + p_{n-1}(x)y^{n-1} + \ldots + p_1(x)y + p_0(x) = 0$$

- Función es transcendente si no es algebraica
 - funciones trigonométricas
 - exponenciales
 - logarítmicas
 - etc.

Tipos de problemas

Dos tipos de problemas numéricos:

- Determinar raíces reales de ecuaciones algebraicas y trascendentes.
 - Parten de una posición inicial, y
 - Buscan una raíz
- Determinar todas las raíces reales y complejas de polinomios

Métodos gráficos

Solución de
$$y = f(x) = 0$$
 ó $f(x) = g(x)$

- Se grafica la función y se determina el valor de la variable visualmente.
- Método es aproximado, pero conceptualmente seguro.
- Permite detectar posibles errores de métodos numéricos.
- Permite detectar valores iniciales para métodos numéricos.

Ejemplo

Encuentre las raíces de

$$5\cos(\pi t) = \frac{1}{2}e^{-t}$$

Ejemplo: graficación

Solución:

Por ejemplo, utilizando GNUPlot:

```
set xrange [-2.5:3] set samples 1000 set style line 100 lt 1 lc rgb "gray" lw 0.75 set style line 101 lt 1 lc rgb "gray" lw 0.25 dt 2 set mxtics 10 set grid xtics mxtics ytics ls 100, ls 101 plot 5*cos(pi*x) with lines lt -1 lc rgb "#A00000", \ensuremath{\langle} exp(-x)/2 with lines lt -1 lc rgb "#00A000"
```

se obtiene

 Punto de partida: Una función cambia de signo en la vecindad de una raíz.

- Punto de partida: Una función cambia de signo en la vecindad de una raíz.
 - Solo se cumple para raíces de multiplicidad impar.

- Punto de partida: Una función cambia de signo en la vecindad de una raíz.
 - Solo se cumple para raíces de multiplicidad impar.
 - Raíces de multiplicidad pares quedan excluidas de estos métodos.

- Punto de partida: Una función cambia de signo en la vecindad de una raíz.
 - Solo se cumple para raíces de multiplicidad impar.
 - Raíces de multiplicidad pares quedan excluidas de estos métodos.

Ejemplo

$$f(x) = k(x - x_0)(x - x_1)(x - x_2)^2(x - x_3)^3$$

- Punto de partida: Una función cambia de signo en la vecindad de una raíz.
 - Solo se cumple para raíces de multiplicidad impar.
 - Raíces de multiplicidad pares quedan excluidas de estos métodos.

Ejemplo

$$f(x) = k(x - x_0)(x - x_1)(x - x_2)^2(x - x_3)^3$$

• Algoritmos cerrados buscan una raíz.

- Punto de partida: Una función cambia de signo en la vecindad de una raíz.
 - Solo se cumple para raíces de multiplicidad impar.
 - Raíces de multiplicidad pares quedan excluidas de estos métodos.

Ejemplo

$$f(x) = k(x - x_0)(x - x_1)(x - x_2)^2(x - x_3)^3$$

- Algoritmos cerrados buscan una raíz.
- Métodos cerrados parten de un intervalo que encierra la raíz.

- Punto de partida: Una función cambia de signo en la vecindad de una raíz.
 - Solo se cumple para raíces de multiplicidad impar.
 - Raíces de multiplicidad pares quedan excluidas de estos métodos.

Ejemplo

$$f(x) = k(x - x_0)(x - x_1)(x - x_2)^2(x - x_3)^3$$

- Algoritmos cerrados buscan una raíz.
- Métodos cerrados parten de un intervalo que encierra la raíz.
- Intervalo se reduce iterativamente para acorralar la raíz:
 - ⇒ son métodos convergentes

- Punto de partida: Una función cambia de signo en la vecindad de una raíz.
 - Solo se cumple para raíces de multiplicidad impar.
 - Raíces de multiplicidad pares quedan excluidas de estos métodos.

Ejemplo

$$f(x) = k(x - x_0)(x - x_1)(x - x_2)^2(x - x_3)^3$$

- Algoritmos cerrados buscan una raíz.
- Métodos cerrados parten de un intervalo que encierra la raíz.
- Intervalo se reduce iterativamente para acorralar la raíz:
 - ⇒ son métodos convergentes
- Estos métodos asumen conocimiento del intervalo inicial:
 - ⇒ otros algoritmos deben utilizarse para inicializarlos.

9/37

Dos métodos:

- Método de bisección
- 2 Método de interpolación lineal

Método de bisección

- Se busca raíz x_r tal que $f(x_r) = 0$.
- Parte de suposición que $x_r \in [x_l, x_u]$
- Si intervalo suficientemente pequeño entonces signos de $f(x_l)$ y $f(x_u)$ difieren:

$$f(x_I)f(x_u) < 0$$

- Algoritmo de bisección consiste en partir en cada iteración el intervalo en dos
- Condición de parada se realiza cuando el error aproximado

$$\epsilon_a = \left| \frac{x_r^{(i)} - x_r^{(i-1)}}{x_r^{(i)}} \right| 100 \%$$

es menor a un umbral

Reducción del error en la bisección

Puesto que

$$x_r^{(i)} - x_r^{(i-1)} = \frac{x_u - x_l}{2}$$
 $x_r^{(i)} = \frac{x_u + x_l}{2}$

entonces el error aproximado se puede expresar como

$$\epsilon_a = \left| \frac{x_u - x_l}{x_u + x_l} \right| 100 \%$$

En cada iteración el error aproximado se reduce a la mitad y

$$E_a^{(n)} = \frac{\Delta x^{(0)}}{2^n} = \frac{x_u^{(0)} - x_l^{(0)}}{2^n}$$

y para un error deseado E_d se despeja el número de iteraciones

$$n = \log_2\left(\frac{\Delta x^{(0)}}{E_d}\right)$$

Para encontrar las raíces de

$$5\cos(\pi t) = \frac{1}{2}e^{-t}$$

se utiliza el método de bisección resolviendo

$$5\cos(\pi t) - \frac{1}{2}e^{-t} = 0$$

Ejemplo: método de bisección

Con $\epsilon_s = 0,01\%$

i	x _I	× _u	x _r	ϵ_{a}
1	0	1	0,5	100
2	0	0,5	0,25	100
3	0,25	0,5	0,375	33,33333333333
4	0,375	0,5	0,4375	14,285714285714
5	0,4375	0,5	0,46875	6,666666666667
6	0,46875	0,5	0,484375	3,2258064516129
7	0,46875	0,484375	0,4765625	1,6393442622951
8	0,4765625	0,484375	0,48046875	0,8130081300813
9	0,4765625	0,48046875	0,478515625	0,40816326530612
10	0,478515625	0,48046875	0,4794921875	0,20366598778004
11	0,4794921875	0,48046875	0,47998046875	0,10172939979654
12	0,47998046875	0,48046875	0,480224609375	0,050838840874428
13	0,480224609375	0,48046875	0,4803466796875	0,025412960609911
14	0,480224609375	0,4803466796875	0,48028564453125	0,012708095056551
15	0,48028564453125	0,4803466796875	0,480316162109375	0,0063536438147277

Código en C++ de algoritmo de bisección

(1)

```
template <typename T>
T biseccion (T (*f)(const T), // puntero a función
           T xI, // límite inferior de intervalo
                        // límite superior de intervalo
           const T es=sqrt(std::numeric_limits <T>::epsilon()),
           const int maxi=std::numeric_limits<T>::digits) {
 T xr=xl; // hay que iniciar con algo válido
 T fl=f(xl); // sombra para ahorrar evaluaciones de f()
 T ea=T(); // error aproximado
  for (int i=\max i; i>0;--i){
   T xrold(xr); // lo necesitamos para el cálculo del error
   xr=(xI+xu)/T(2); // nueva estimación de raiz, centrada
   T fr=f(xr); // sombra de f en el centro
    // Evite una divisón por cero
    if (std::abs(xr) > std::numeric_limits<T>::epsilon()) {
                                          → 御 → → ま → ま → り へ ○
```

```
ea=std::abs((xr-xrold)/xr)*T(100); // nuevo error aprox.
 T cond=fl*fr; // esto es negativo si extremo inferior y el
               // nuevo centro tienen signos diferentes
  if (cond < T(0)) {
   xu=xr; // es negativo: siga con lado izquierdo
 \} else if (cond > T(0)) {
    xl=xr; // es positivo: siga con lado derecho
   fl=fr:
 } else {
   ea=T(0); // No hay error! \Rightarrow Algún borde es cero
   xr=(std::abs(fl) < std::numeric_limits < T > ::epsilon())
      ? xl : xr; // fl==0
  if (ea < es) return xr; // si se alcanzó precisión, termine
// Retorne un NaN si no encontró ninguna raíz
```

Código en C++ de algoritmo de bisección

```
// en el número de iteraciones especificado
return std::numeric_limits <T>::quiet_NaN();
}
```

Ejemplo de uso:

Otros conceptos de error

• Definición anterior del error aproximado:

$$\epsilon_a = \left| \frac{x_r^{(i)} - x_r^{(i-1)}}{x_r^{(i)}} \right| 100 \%$$

es altamente riesgosa si la raíz es cero o cerca de cero.

 Otros autores (Press et al.) sugieren por ello utilizar como error aproximado

$$\epsilon_{\mathsf{a}} = \left| x_r^{(i)} - x_r^{(i-1)} \right|$$

En este último caso, el umbral de parada suele utilizarse como

$$\epsilon_s = \frac{x_u - x_l}{2} \mathscr{E}$$

donde $\mathscr E$ es el epsilon del formato numérico utilizado.

Método de interpolación lineal

- También denominado método regula falsi o de la falsa posición
- Método de bisección ignora cercanía de $f(x_l)$, $f(x_u)$ y $f(x_r)$ a cero
- El método de interpolación lineal, en vez de dividir el intervalo en dos, asume una aproximación lineal de la función para encontrar la raíz.

Cálculo de raíz aproximada

Por triángulos semejantes

$$\frac{f(x_l)}{x_i - x_l} = \frac{f(x_u)}{x_i - x_u}$$

de donde se despeja

$$x_i = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

Desventajas de la interpolación

- Método parte de suposición que la raíz se encuentra siempre más cercana al extremo menor en magnitud.
- Lo anterior no es siempre cierto (por ejemplo, $f(x) = x^{10} 1$)
- Método debe modificarse

Modificación a interpolación lineal

Truco para solucionar el problema

Si se cambia el mismo extremo del intervalo (el superior, o el inferior) por más de dos veces consecutivas, entonces simúlese un menor valor de la función en el otro extremo, multiplicándolo por un factor 1/2.

Esto permite que en algún momento el valor simulado de la función se acerque lo suficiente para acorralar mejor a la raíz.

Algoritmo modificado de interpolación lineal

(1)

```
for (int i=\max i; i>0;--i){
 T xrold(xr); // lo necesitamos para el cálculo del error
  xr=xu-fu*(xl-xu)/(fl-fu);
 T fr=f(xr);
  // Evite una divisón por cero
  if (std::abs(xr) > std::numeric_limits<T>::epsilon()) {
    ea = std::abs((xr-xrold)/xr)*T(100);
 T cond=fl*fr; // cual subintervalo contiene la raíz?
  if (cond < T(0)) { // el lado izquierdo tiene la raíz.
    xu=xr;
    fu=fr:
    iu = 0:
    il ++:
    if (il >= 2) {
     fI /= T(2);
  } else if (cond > T(0)) { // el lado derecho tiene la raíz.
```

Algoritmo modificado de interpolación lineal

```
(3)
```

```
xI = xr:
    fI = fr;
    il = 0
    iu++:
    if (iu >= 2) {
     fu /= 2:
  } else {
    ea = T(0); // No hay error! Increíble!
    xr = (fl = T(0)) ? xl : xu;
  if (ea < es) return xr;</pre>
// Retorne un NaN si no encontró ninguna raíz
return std::numeric_limits <T>::quiet_NaN();
```

Métodos abiertos

- Los métodos abiertos requieren un único valor inicial o un par de valores pero que no necesitan encerrar la raíz buscada.
- Los métodos abiertos a veces son divergentes
- Si convergen, lo hacen más rápido que los métodos cerrados

Se revisará:

- Iteración de punto fijo
- Método de Newton-Raphson
- Método de la secante

Iteración de punto fijo

La iteración de punto fijo parte de reformular la ecuación

$$f(x) = 0$$

en

$$x = g(x)$$

y permitir que un proceso iterativo

$$x_{i+1} = g(x_i)$$

converja a la raíz, con error aproximado calculado como:

$$\epsilon_{\mathsf{a}} = \left| \frac{\mathsf{x}_{i+1} - \mathsf{x}_i}{\mathsf{x}_{i+1}} \right| 100 \,\%$$

Ejemplos de reformulación para iteraciones

•
$$x^2 - 2x + 3 = 0 \Rightarrow x = \frac{x^2 + 3}{2}$$

•
$$\operatorname{sen} x = 0 \Rightarrow x = \operatorname{sen} x + x$$

•
$$e^{-x} - x = 0 \Rightarrow e^{-x} = x$$

Teorema del valor medio de la derivada

- Sean g(x) y su derivada g'(x) contínuas en un intervalo [a,b]
- El teorema del valor medio de la derivada establece que existe algún punto ξ sobre el que $g'(\xi)$ iguala a la pendiente de la recta trazada entre g(a) y g(b):

$$g'(\xi) = \frac{g(b) - g(a)}{b - a}$$

La ecuación iterativa de búsqueda de la raíz es

$$x_{i+1}=g(x_i)$$

y para la raíz verdadera x_r se cumple

$$x_r = g(x_r)$$

Restando ambas ecuaciones se obtiene

$$x_r - x_{i+1} = g(x_r) - g(x_i)$$

Con el teorema del valor medio se puede expresar con ξ en el intervalo entre x_i y x_r

$$g'(\xi) = \frac{g(x_r) - g(x_i)}{x_r - x_i}$$

y por tanto

$$g'(\xi)(x_r-x_i)=g(x_r)-g(x_i)$$

combinando esto con

$$x_r - x_{i+1} = g(x_r) - g(x_i)$$

se obtiene

$$x_r - x_{i+1} = g'(\xi)(x_r - x_i)$$

3 ト ← 個 ト ← 差 ト ← 差 ・ 夕 へ ○

Si el error verdadero en la *i*-ésima iteración es $E_{t,i} = x_r - x_i$ entonces:

$$E_{t,i+1} = g'(\xi)E_{t,i}$$

de donde se deriva que la magnitud de la derivada |g'(x)| debe ser menor que uno para asegurar **convergencia lineal**.

Si |g'(x)| > 1 entonces este método diverge.

Estructura del código

```
template <typename T>
T fixpoint (T (*f)(const T),
           T ×0.
           const T es=std::sqrt(std::numeric_limits<T>::epsilon())
           const int maxi=std::numeric_limits<T>::digits) {
 T xr=x0; // hay que iniciar con algo válido
 T ea=T():
  for (int i=\max i; i>0;--i){
   T xrold(xr); // lo necesitamos para el cálculo del error
    xr=f(xrold); // iteración de punto fijo
    // Evite una divisón por cero
    if (std::abs(xr) > std::numeric_limits < T > ::epsilon()) {
      ea = std::abs((xr-xrold)/xr)*T(100);
    if (ea < es) return xr;
     Retorne un NaN si no encontró ninguna raíz maxi iteraciones
  return std::numeric_limits <T>::quiet_NaN();
```

Resumen

- Generalidades
- Métodos gráficos
- Métodos cerrados
 - Método de bisección
 - Método de interpolación lineal
- Métodos abiertos
 - Iteración de punto fijo

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-Licenciarlgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2005-2017 Pablo Alvarado-Moya Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica