

Statistical Characterisation of Porous Media at the Pore Scale

Ellipsoidal Model

Student:

Lukas Mosser

Supervisors:

Professor Olivier Dubrule

Professor Martin Blunt

Presentation Outline

- Ellipsoidal Model
 - Review prior results
 - Conceptual Model
 - Scaling Relationship

Conceptual Model

- Ellipsoidal Model:
 - Keep one axis same and change the other two to equal value
 - R1 long axis
 - R2 short axis
 - Axisymmetric Ellipsoids
 - Change in anisotropy in one coordinate axis expected
 - Rhino 3D: Now able to compute many of these models, no mesh editing
- Scaling Relationship:
 - Both Beta 102 and Beta 202 scale exponentially with the ratio of radii

$$R^* = \frac{R_1 - R_2}{R_1} = 1 - \frac{R_2}{R_1}$$

Experimental result NOT analytical

Asymmetric Parametric Pore – R1 = 1.4, R2=1.4-1.1

Minkowski Tensors – R1 = 1.4, R2=1.3

Hidden Elements in manual mesh editing skewed results!

Scaling Relationship

- Anisotropy Index beta 102
 - Scales exponential with deviation from sphericity

Scaling Relationship

- Anisotropy Index beta 102
 - Scales exponential with deviation from sphericity

Scaling Relationship – Beta 202

- Anisotropy Index beta 202
 - Scales exponential with deviation from sphericity
 - Same scaling behavior as Beta 102

Scaling Relationship – Beta 202

- Anisotropy Index beta 202
 - Scales exponential with deviation from sphericity
 - Same scaling behavior as Beta 102

