특정소방대상물	능력단위
위락시설	30m2
공연장 집회장 관람장 문화재 장례식장 및 의료시설	50m2
근린생활 판매 운수 숙박 노유자 전시장 공 동주택 업무시설 방송통신 공장 창고 항공기 및 자동차 관련 및 관광휴게시설	100m2
그 밖	200m2

※ 주요구조부가 내화구조이고, 벽 및 반자의 실내에 면하는 부분이 불연재료, 준불연재료 또는 난연재료로 된 ---- 2배

탬퍼스위치 설치목적

 급수배관에 설치하여 급수배관의 개폐상태를 제어 반에서 감시할수있는 스위치

설치위치

- 1. 주펌프의 흡입측.토출측 배관에 설치된 개폐밸브
- 2. 유수검지장치의 1.2차측 개폐밸브
- 고가수조와 주배관의 수직배관과 연결된 관로상의 개폐밸브
- 4. 일제 개방 밸브의 1.2차측 개폐밸브

비화재보 시 점검 항목

- 1. 주펌프, 충압펌프 세팅정검
- 2. 알람밸브의 압력스위치 점검
- 3. 알람밸브 내 클래퍼와 시트부분 이물질 점검

제연구역 선정기준

- 1. 계단실 및 그 부속실을 동시에 제연하는 것
- 2. 부속실만을 단독으로 제연하는것
- 3. 계단실만을 단독으로 제연하는것
- 4. 비상용 승강기 승강장 단독 제연하는것

자동배수밸브 설치 이유

소화 작업 후 배관 내 고인 물을 자동으로 배수시켜 체크밸브와 연결송수구 사이에 배관의 부식 및 동파 를 방지하기 위하여 설치

S/P 배관 설치방식

격자형 배관 (그리드) - 교차배관을 헤드가 설치된 가 지배관에 연결하여 가압수를 공급할 때 가지배관의 양쪽방향으로 급수가 이루어지는 배관방식

루프형 배관 – 가지배관은 연결하지 않고 교차배관과 교채바관이 서로 연결되는 배관방식

기동용 수압개폐장치 기능

- 1. 펌프의 자동기동 및 정지
- 2. 규격방수 압력유지 및 수격작용 방지

넉다운 효과

분말약제 방출 후 10~20초 이내에 순식간에 화재를 진합하는 효과

- 1. 약제가 부족할때
- 2. 축압식 압력이 방출되었을때
- 3. 화재의 성상이 클때
- 4. 금속 화재일때

소화기 종류

분말 / 할론 / 이산화탄소 (20 / 30 / 50 kg) 포 / 강화액 / 물 (20 / 60 / 80 L)

대형소화기 - 화재시 사람이 운반할수 있도록 운반대 와 바퀴가 설치되어 있고 능력단위가 A급 10단위 이 상, B급 20단위 이상인 소화기

간이소화용구 – 에어로졸식, 투척용 소화용구 및 소화 약제 외의 것을 이용한 소화용구

공동현상 방지 방법

- 1. 펌프의 흡입측 수두, 마찰손실, 임펠러 속도를 적게 한다.
- 2. 펌프 흡입관경, 유효흡입수두를 크게 한다.
- 3. 픔프 설치 위치를 수원보다 낮게 한다.
- 4. 펌프 흡입압력을 유체의 증기압보다 높게 한다.

유리벌브형 - 감열체 중 유리구 안에 액체 등을 넣어 봉한 것 (프레임, 반사판, 유리벌브) 표즈블립크형 - 간역체 중 이윤성 금속으로 윤착되거

퓨즈블링크형 - 감열체 중 이용성 금속으로 융착되거 나 이용성 물질에 의하여 조립된 것

버터플라이 밸브 외의 밸브를 사용해야하는 이유

펌프 흡입측 배관 – 과다한 마찰 손실로 공동현상이 발 생할 수 있음, 순간적인 밸브 조작으로 수격작용 발생

드라이 팬던드형 헤드 사용 이유

- 하향식 헤드의 동파방지를 위하여

옥상수조 없애면 추가되는 설비

- 1. 주펌프 이상의 성능을 가진 엔진펌프 설치
- 2. 발전기에 연결된 펌프 설치

배관과 배관, 배관과 관부속 및 밸브류 접속 방법

- 1. 용접이음: 65mm 이상의 배관 이음 시
- 2. 나사이음 : 50mm 이하의 배관 이음 시
- 3. 플랜지이음 : 밸브나 각종 기구류의 분해조립 및 유지보수 용도로 사용

정압작동장치의 기능

약제저장용기에 내부압력이 설정압력이 되었을때 주 밸브를 개방하는 장치

압력스위치 방식 - 약제탱크 내부의 압려에 의해 움직이는 압력스위치를 설치하여 일정한 압력에 도달했을 때 압력스위치가 닫혀 전자밸브를 개방하여 주밸브 개방용의 가스를 보내는 방식

습식 S/P 설치 시 연결송수관설비를 설치하는 이유 - 수원부족, 펌프고장, 전원차단 등 수원 공급을 위하여

가압송수장치 설치 이유

소방차에서 토출되는 양정만으론 부족하여 높이 70m 이 상에서 규정 방수압력을 얻기 위해

백드래프트 – 감쇠기

밀폐된 공간에서 화재발생 시 산소 부족으로 불꽃을 내지 못하고 가연성가스만 축적되어 있는 상태에서 갑자기문을 개방하면 신선한 공기 유입으로 폭발적인 연소가시작되는 현상

플래시오버 – 성장기

가연성가스를 동반하는 연기와 유독가스가 방출하여 실내의 급격한 온도상승으로 실내 전체로 확산되어 연소하는 현상

스윙형 체크밸브

핀을 기준으로 밸브가 개폐하므로 물올림장치의 체크밸 브로 주로 사용되며, 작은 배관에 주로 사용

리프트형 체크밸브

유체의 압력에 의해서 밸브가 개폐되는 밸브로 수평배관 에 주로 사용

압력챔버의 역할 – 충압펌프 자동기동 및 정지, 주펌프 자동기동

안전밸브의 작동범위 - 호칭압력과 호칭압력의 1.3배의 범위

주거용 주방자동소화장치 설치기준

설치장소 – 아파트 등 및 30층 이상 오피스텔의 모든 층 1. 공기보다 가벼운 가스 : 천장면으로부터 30cm 이하

2. 공기보다 무거운 가스 : 바닥면으로부터 30cm 이하

델류지밸브 종류

가압개방식 : 화재시 감지기가 작동하면 전자밸브를 개방 또는 수동으로 수동개발밸브를 개방하여 가압수가 밸브 피스톤을 밀어 올려 밸브가 열리는 방식

감압개방식: 화재시 감지기가 작동하면 전자밸브를 개방 또는 수동으로 수동개방밸브를 개방하여 밸브의 실린더 실이 감압되어 밸브가 열리는 방식

피스톤 릴리져

방호구역 내 가스방출과 동시에 자동으로 개구부를 폐쇄 하는 장치

분말소화설비의 설치하는 장치 설명

- 1. 정압작동장치 가압용 가스용기로부터 가스가 분말 약제 저장용기에 유입되어 문말약제를 혼합 유동시 킨 후 설정된 방출압력이 된 후 (소요시간 약 15~30 초) 주밸브를 개방시켜주는 장치
- 2. **클리닝 장치** 소화약제 방출 후 송출배관에 잔존하는 분말약제를 청소하기 위해 설치하는 장치

할론소화설비에 사용하는 Soaking time

할론소화약제는 초기화재 시 표면화재에는 5~10%의 저 농도로 사용하는데, 심부화재에 적용할 경우 소화 가능한 고농도를 유지하는데 걸리는 시간

옥내소화전설비의 노즐에서 방수압력을 감압하는 방법

- 1. 중계펌프에 의한 방법
- 2. 고가수조에 의한 방법
- 3. 감압밸브에 의한 방법

옥내소화전 방수구를 설치하지 않을수있는 대상물

- 1. 냉장창고 중 온도가 영하인 냉장실 또는 냉동실
- 2. 고온의 노가 설치된 장소 또는 물과 격렬하게 반응하는 물품의 저장 또는 취급장소
- 3. 발전소.변전소 등으로서 전기시설이 설치된 장소
- 4. 식물원.수족관.목욕실.수영장 또는 이와 비슷한 장소
- 5. 야외음악당.야외극장 또는 이와 비슷한 장소

포소화약제 중 수성막포의 장단점

- 1. 안정성이 좋아 장기보관 가능
- 2. 내유성이 우수하고 유동성 높음

비싼가격, 고발포 사용 불가 휘발성이 큰 석유류 화재는 부적합

	지하	1층	2층	3층	4~10층
노유자	트		미구교다승		교다승
의료.근린 (입원실).접 골원.조산원	띄	1	-	미트구교 다승	트구교 다승
4층 이하인 다중이용	ı	ı	- 미사구완다승		5
그외	트사	-	-	미트공간 교사구 완다승	공간교 사구 완다승

미: 미끄럼대, 트: 피난용트랩, 구: 구조대, 교: 피난교, 사: 피난사다리, 완: 완강기, 다: 다수인피난장비, 승: 승강식피난기, 공: 공기안전매트, 간: 간이완강기

비누화현상 (질식, 억제)

알칼리에 의하여 에스테르가 가수분해되어 알코올과 산 의 알칼리염이 되는 반응

배관이음효율

이음매 없는 배관 1 전기저항 용접배관 0.85 가열맞대기 용접배관 0.6

할로겐화합물 및 불활성기체 소화약제의 구비조건

- 1. 독성이 낮고 설계농도는 NOAEL 이하일것
- 2. 오존층파괴지수, 지구온난화지수 낮을것
- 3. 비전도성이고 소화 후 증발잔유물 없을것
- 4. 소화효과는 할론 소화약제와 유사할것

폐쇄형 해드

기능 : 화재감지 및 가압수 방출

설치장소: 근린생활, 판매, 운수, 복합건축물, 11층 이상

개방형 헤드

기능 : 가압수 방출

설치장소 : 무대부 또는 연소할 우려가 있는 개구부

감압방식

- 1. 고가수조에 의한 방법
- 2. 감압밸브에 의한 방법
- 3. 중계펌프에 의한 방법
- 4. 구간별 전용배관에 의한 방법

물올림장치 설치기준

- 1. 물올림장치에는 전용의 탱크 설치할것
- 2. 탱크의 유효수량은 100L 이상으로 할것
- 3. 구경 15mm 이상의 급수배관에 따라 탱크에 물이 계속 보급되도록 할것

신축이음의 종류

루프형, 스위블형, 슬리브형, 벨로스형, 볼조인트형

소방용 합성수지배관으로 설치할수 있는 경우

- 1. 배관을 지하에 매설하는 경우
- 다른 부분과 내화구조로 구획된 덕트 또는 피트의 내 부에 설치하는 경우
- 3. 천장과 반자를 불연재로 또는 준불연재료로 설치하고 내부에 습식으로 배관을 설치하는 경우

	압력계	진공계	연성계
설치위치	펌프 토출측	펌프 흡입측	펌프 흡입측
지시압력범 위	0.05~200 [MPa]	0~76 [cmHg]	0~76 [cmHg] 0.1~2.0 [MPa]

펌프의 성능시험방법 순서

- 1. 펌프의 토출측 폐쇄
- 동력제어반에서 충압펌프와 주펌프를 수동 또는 정지 위치에 놓는다.
- 3. 성능시험배관상의 개폐밸브를 완전 개방한다.
- 4. 압력챔버의 배수밸브를 개방, 주펌프가 기동되면 배수 밸브를 잠근다.
- 5. 성능시험배관상의 유량조절밸브를 서서히 개방하여 유량계를 통과하는 유량이 정격토출유량이 되도록 조절 한다.
- 6. 성능시험배관상의 유량조절밸브를 조금 더 개방하여 유량계를 통과하는 유량이 정격 토출유량의 150% 가 될 때 펌프의 토출측 압력은 정격토출압력의 65% 이상이어 야 한다.
- 7. 주펌프를 정지하고 성능시험배관상의 밸브를 서서히 잠근다.
- 8. 펌프의 토출측 주밸브를 개방하고 제어반에서 충압펌 프와 주펌프의 선택스위치를 자동으로 한다.

성능시험

- 1. 무부하시험(체절운전): 펌프 토출측의 주밸브와 성 능시험배관의 유량조절밸브를 잠근 상태에서 운전할 경우 양정이 전격양정의 140% 이하인지 확인하는 시험
- 2. 정격부하시험: 펌프를 기동한 상태에서 유량조절밸 브를 개방하여 유량계의 유량이 정격유량상태일때 토출압력계와 흡입압력계의 차이가 정격압력 이상이 되는지 확인하는 시험
- 3. 최대운전시험: 유량조절밸브를 개방하여 정격토출 량의 150% 로 운전 시 정격 토출압력의 65% 이상이 되는지 확인하는 시험

성능시험배관의 설치기준

- 성능시험배관은 펌프의 토출측에 설치된 개폐밸브 이전에 분기하여 설치하고 유량측정장치를 기준으로 전단 직관부에 개폐밸브를, 후단 직관부에는 유량조 절밸브를 설치할 것
- 유량측정장치는 성능시험배관의 직관부에 설치하되 펌프의 정격토출량의 175% 이상 측정할 수 있는 성 능이 있을 것

맥동현상 발생원인 및 방지대책

- 1. 유량조절밸브가 배관 중 수조의 위치 후방에 있을때
- 2. 배관중에 수조가 있을 떄
- 3. 배관 중에 기체상태의 부분이 있을때
- 4. 운전중인 펌프를 정지할때
- 1. 펌프 내의 양수량 증가시킨다.
- 2. 임펠러의 회전수를 증가시킨다.
- 3. 배관내의 잔류 공기를 제거한다.
- 4. 배관 중 수조를 제거한다.

공동현상 발생원인 및 방지대책

- 1. 펌프 흡입측 수두, 마찰손실, 임펠러 속도가 클 때
- 2. 펌프의 흡입관경이 작을 때
- 3. 펌프설치 위치가 수원보다 높을때
- 4. 펌프의 흡입압력이 유체의 증기압보다 낮을 때
- 5. 작게한다
- 6. 크게한다
- 7. 낮게한다
- 8. 높게한다

옥상수조 설치 예외 건축물

- 1. 지하층만 있는 경우
- 2. 건축물의 높이가 지표면으로 10m 이하인 경우
- 3. 고가수조를 가압송수장치로 설치한 스프링클러
- 4. 가압수조를 가압송수장치로 설치한 스프링클러

옥내소화전설비의 감시제어반 기능

- 가 펌프의 작동여부를 확인할 수 있는 표시등 및 음 향경보기능이 있어야 할 것
- 각 펌프를 자동 및 수동으로 작동시키거나 중단시킬수 있어야 할 것
- 비상전원을 설치한 경우 상용전원 및 비상전원의 공 급 여부를 확인할 수 있어야 할 것
- 수조 또는 물올림탱크가 저수위로 될 때 표시등 및 음향으로 경보할 것
- 각 확인회로마다 도통시험 미 작동시험을 할 수 있어 야 할 것

전동기 점검항목

- 1. 베이스에 고정 및 커플링 결합 상태
- 2. 원활한 회전 여부
- 3. 본체의 방청 상태

충압펌프가 수시로 기동 전기를 반복하는 원인

- 1. 펌프 토출측의 체크밸브 2차측의 배관의 누수 될 때
- 2. 압력탱크의 배수밸브가 개방 또는 누수 될 때
- 3. 펌프 토출측의 체크밸브가 미세한 개방으로 역류될 때
- 4. 송수구의 체크밸브가 미세한 개방으로 역류될 때
- 5. 옥상수조의 배관상에 설치된 체크밸브가 밀리는 경우

연결살수설비 송수구의 점검 항복

- 1. 송수구의 설치개수 적부
- 2. 송수구 잡결나사의 보호상태
- 3. 설치장소 및 설치위치, 표시의 적부
- 4. 선택밸브의 설치장소 환경 및 설치위치의 적부
- 5. 자동선택밸브의 작동시험 가능 여부

조기반응형 스프링클러 헤드 설치 대상물

- 1. 공동주택의 거실
- 2. 노유자시설의 거실
- 3. 오피스텔의 침실
- 4. 숙박시설의 침실
- 5. 병원의 입원실

제연설비의 구획 기준

- 1. 하나의 제연구역의 면적은 1000m2 이내로 할 것
- 2. 거실과 통로는 상호 제연구획 할 것
- 3. 하나의 제연구역은 직경 60m 원 내에 들어갈 수 있을 것

전자개방밸브 작동방법

- 1. 방호구역 내 감지기 2개회로 동작
- 2. 수동조작함의 수동조작스위치 동작
- 3. 제어반의 동작시험스위치와 회소선택스위치 동작
- 4. 제어반의 수동스위치 동작
- 5. 솔레노이드밸브의 수동조작버튼 동작

제연설비 댐퍼

솔레노이드 댐퍼 : 솔레노이드가 누르게 핀을 이동시켜 댐퍼 를 작동시키는 방식으로 개구부의 면적이 작은 곳에 설치

모터 댐퍼 : 모터에 의해 누르게 핀을 이동시켜 댐퍼를 작동 시키는 방식으로 개구부의 면적이 큰 곳에 설치하며 제연설 비에 주로 사용하는 댐퍼이다.

비상전원 설치대상에 해당되지 않는 옥내소화전 설비

- 내연기관애 따른 가압송수장치를 사용하는 옥내소화 전 설비
- 2. 고가수조에 따른 ~~
- 3. 가압수조에 따른 ~~

반응시간지수(RTI) - 기류의 온도, 속도 및 작동시간 에 대하여 스프링클러 헤드의 반응을 예상하는 지수 로서 낮을수록 개방온도에 빠르게 도달한다

 $RTI = r \sqrt{u} [m/s]$

r = 감열체의 시간상수

- 1. 조기반응(50이하)
- 특수반응(50초과 80이하)
- 표준반응(80초과 350이하)

소화전 전양정 H = h1 + h2 + h3 + 17

h1 = 실양정(흡입양정 + 토출양정)

h2 = 배관마찰손실수두

h3 = 소방호스마찰손실수두

펌프 전양정 H = h1 + h2 + 10

h1 = 실양정

h2 = 배관마찰손실수두

반발력 = F (플랜지)

r = 비중량

A1 = 호스 단면적

A2 = 노즐 단면적

$$F = \frac{\gamma A_1 Q^2}{2g} \left(\frac{A_1 - A_2}{A_1 A_2} \right)^2$$

F = Qpu = Qp(u2-u1) (운동량)

방출계수 호칭구경

10A = 57K

15A(표준) = 80K

20A = 115K

유효흡입양정

- 흡입 NPSH = Ha Hp Hs HL (펌프 중심보다 낮음)
- 압입 NPSH = Ha Hp + Hs HL (펌프 중심보다 높음)
- a = 대기압, p = 포화증기압,
- s = 흡입, L = 마찰손실 [수두 H]

P = rH / r = pq / P = pqH (r = 비중량, p = 밀도)

가압송수능력 = P2-P1 / 단수

배출량 = m3 * 60 / 직경 (√a^2+b^2)

배출량 = 바닥면적 400m2이상, 예상 제연구역 직경 40m

이내일 경우 배출량 40,000[m3/h] 이상으로 할것

하젠 윌리엄 공식

 $P = 6.053 * 10^4 * L * (Q^1.85 / C^1.85 * D^4.87)$

유속

c = 유량계수

H = 높이차

rs = 수은의 비중량

r = 물의 비중량

$$u = c \sqrt{2 g H \left(\frac{\gamma_s - \gamma}{\gamma}\right)}$$

유량

Co: 유량계수

R : 마노미터 읽음[mm] Q=

r: 물의 비중

m : 개구비

 $m = A2/A1 = (D2/D1)^2$

$$Q = \frac{C_{\rm o}A_2}{\sqrt{1-m^2}} \sqrt{2g\frac{(r_1 - r_2)}{r_2}R}$$

간이스프링클러의 수원

별표5 제1호 마목 1), 6), 7)의 시설	Q=N(최대 5)*1000 (50L/min * 20 min)	
2종 3종 4종	Q=N(최대 2)*500 (50 * 10)	

별표5 제1호 마목 1), 6), 7)의 시설

- 1) 근린생활시설로 바닥면전 1000m2 이상
- 6) 숙박시설 중 바닥면적 600m2 이상
- 7) 복합건축물로 면적 1000m2 이상

	공장 또는 창고	특수 취급.저장	30
-1.11	등의 포는 영보	그 외	20
지하층 제외	근린 판매 운수	판매.복합건축물	30
10층 이하	복합건축	그 외	20
''	그 외	헤드 부착높이 8m 이상	20
	그 죄	8m 미만	10

설치장소의 최고주위온도	표시온도
39℃ 미만	79℃ 미만
39℃이상 64℃미만	79℃이상 121℃미만
64℃이상 106℃미만	121℃이상 162℃미만
106℃이상	162℃이상

옥외소화전의 소화전함 설치 기준

소화전의 개수	수 설치기준	
10개 이하	옥외소화전 5m 이내에 1개 이상	
11개 이상 30개 이하	11개를 각각 분산	
31개 이상	옥외소화전 3개마다 1개 이상	

연기의유출속도

ra = 공기비중량

rs = 연기비중량

$$u = \sqrt{2gH\!\!\left(rac{\gamma_a}{\gamma_s}-1
ight)}$$

연기의 비중량

rs =

$$\gamma_s = \frac{PM}{RT}$$

외부 풍속 = uo

us = 연기의 유출속도

rs = 연기비중량

ra = 공기비중량

관의 두께

 $t = PD / 2\sigma w$

P = 최대허용압력

σw = 재료의 허용응력

비교회전도

n = 단수

(단수는 올림한다)

수은 마노미터 R: 마노미터 읽음 pA: 약제의 비중

pB: 유체의 비중

$$\Delta P = \frac{g}{g_c} R(\rho_A - \rho_B)$$

	옥내소화전	옥외소	S/P	연결송
표준방수압	0.17 [MPa]	0.25	0.1	0.35
표준방수량	130 [L/min]	350	80	2,400
수원	N(5 ↓)*2.6	N(2 ↓)*7		

수원	옥내소화전	옥외소	S/P	연결송
29층 이하	N(최대 5) * 2.6	0.25	0.1	0.35
30~49 이하	N(최대 5) * 5.2	350	80	2,400
50층 이상	N(최대 5) * 7.8			

헤드의 방사량

 $Q = K \sqrt{10P}$

피토게이지 방수량

 $Q = 0.6597 CD^2 \sqrt{10P}$

특정소방대상물	포소화약제 종류	1m2당 방사량
	수성막포소화약	3.7 L 이상
차고 주차장 및 항 공기 격납고	단백포소화약제	6.5 L 이상
	합성계면활성제포소	8 L 이상
특수가연물을 저	수성막포소화약	6.5 L 이상
장.취급하는 특정	단백포소화약제	6.5 L 이상
소방대상물	합성계면활성제포소	6.5 L 이상

구분	약제량	수원의 양
고정포방출구	Q= A * Q1 * T * S	Qw = A * Q1 * T
보조포소화전	Q = N * S * 8000	Qw = N * 8000
배관보정	Q = A * L * S * 1000	Qw = Qa

Q = 포소화약제의 양 A = 탱크 액표면적

Q1 = 단위포소화 수용액의 양 [L/m2·min]

S = 농도

※ 원유탱크는 FRT이므로 면적구할때 조심할것

(고정포방출방식 중 특형만 사용 가능, 상부 지붕이 유면에 떠있는 상태로 전면에 포방출시 지붕이 가라앉을수 있음)

팽창비

= 발포 후 포체적[L] / 발포 전 수용액체적(물+원액)[L]

= 발포 후 포체적 / (원액의 양[L] / 농도)

co2 소화설비 방호구역 체적 당 약제량

방호구역 체적	체적1m3당 약제량	소화약제 저장 최저한도
45m3 미만	1 kg	45kg
45이상 150미만	0.9	0.8
150이상 1450미만	0.8	135
1450 이상	0.75	1125

국소방출식 co2 약제 저장량

특정소방대상물	약제저장량 [kg]		
	고압식	저압식	
윗면이 개방, 가연물 비산우려 x	방호대상물의 표면 적 * 13 * 1.4	방호대상물의 표면 적 * 13 * 1.1	
상기 이외의 것	방호공간의 체적 * (8-6a/A) * 1.4	방호공간의 체적 * (8-6a/A) * 1.1	

	할로겐	불활	CO2 표	면, 심부	분말
전역	10초	AC - 2분 B - 1분	1분	7분	30초
국소	10초		30초	30초	30초

할로겐화합물 정의

플루오린, 염소, 브롬 또는 아이오딘 중 하나 이상의 원소 를 포함하고있는 유기화합물을 기분성분으로 하는 소화 약제

불활성기체 정의

헬륨, 네온, 아르곤, 질소 중 하나 이상의 훤소를 기본성 분으로 하는 소화약제

할.불 설치할수 없는 장소

- 1. 사람이 상주하는 곳
- 2. 3류, 5류 위험물을 사용하는 장소

할로겐화합물 및 불활성기체 저장용기 충전 or 교체기준

- 1. **할로겐** 저장용기의 약제량 손실이 5%를 초과하거 나 압력손실이 10%를 초과할 경우
- 2. 불활성 저장용기의 압력손실이 5%를 초과할경우

분말약제	소화약제량 [kg/m3]	가산량 [kg/m2]	충전비 [L/kg]
1종	0.60	4.5	0.8
2종 3종	0.36	2.7	1.0
4종	0.24	1.8	1.25

			_
방호대상물	1m3 약제 량	설계농도	개구부가산량
유압기기 제외 전 기설비.케이블실	1.3 [kg]	50 [%]	10 [kg]
체적 55m3 미만 전기설비	1.6	50	10
서고, 전자제품, 목 재가공품, 박물관	2.0	65	10
고무류, 면화류, 모 피, 석탄, 집진	2.7	75	10

HFC-23의 저장량

W : 약제의 무게 C : 약제의 설계농도

S : 소화약제별 선형상수

t : 방호구역의 최소 예상온도

불활성기체 소화약제

X : 공간용적당 더해진 약제의 부피 Vs : 20℃에서 소화약제의 비체적 t : 방호구역의 최소 예상온도

$$X = 2.303 \frac{V_S}{S} \times \log \left(\frac{100}{100 - C} \right)$$

화재하중

단위면적당 가연물의 양으로서 건물화재시 발열량 및 화재 의 위험성을 나타내는 용어

화재하중
$$Q = \frac{\sum (G_t \times H_t)}{H \times A} = \frac{Q_t}{4,500 \times A} [\text{kg/m}^2]$$

Gt : 가연물의 질량

Ht : 가연물의 단위발열량 [kcal/kg] H : 목재의 단위발열량 (4,500[kcal]) Qt : 가연물 전체 발열량 [kcal]