# <u>Stock Price Prediction System - End-to-End Design - Task 4</u>

# 1. System Architecture Diagram

1.1 Use case diagram showing user interactions and functionalities



# 1.2 . Deployment View



# 2. Component Justification

# **Data Collection & Ingestion**

## **Technology Choice:**

- Data Source: Alpha Vantage API, Yahoo Finance, or IEX Cloud for real-time stock market data.
- Ingestion Pipeline: Apache Kafka (streaming) or AWS Glue (batch processing).
- Storage: Amazon S3 for raw data storage, PostgreSQL for structured data.

#### Justification:

- Reliable, real-time APIs provide high-frequency market data.
- Apache Kafka enables event-driven data ingestion for live updates.
- S3 offers scalable storage, while PostgreSQL supports structured querying.

#### Trade-offs:

- Real-time ingestion requires more computational resources compared to batch processing.
- Streaming systems introduce complexity in data handling.

# **Data Processing Pipeline**

#### **Technology Choice:**

- Preprocessing & Feature Engineering: Apache Spark for large-scale processing.
- Storage: Feature Store using Amazon Redshift or Databricks.
- Transformation: Pandas for lightweight data processing tasks.

## Justification:

- Spark processes large datasets efficiently.
- A Feature Store ensures consistency across training and inference.

#### Trade-offs:

- Spark requires cluster management and optimization.
- Maintaining a Feature Store adds operational overhead.

## **Model Operations**

#### **Technology Choice:**

- Training & Evaluation: TensorFlow/Keras for deep learning models.
- Model Versioning: MLflow for tracking models.
- **Deployment:** AWS SageMaker, TensorFlow Serving, or FastAPI.
- Monitoring: Prometheus and Grafana for real-time model performance tracking.

#### Justification:

- TensorFlow is highly optimized for time series forecasting.
- MLflow enables experiment tracking and model lifecycle management.
- AWS SageMaker provides scalable deployment.

#### Trade-offs:

- SageMaker can be expensive for frequent retraining.
- TensorFlow Serving needs careful resource allocation.

# **Insight Delivery**

#### **Technology Choice:**

- **Dashboarding:** Streamlit, Power BI, or Tableau.
- Notification System: WebSocket-based alerts.
- User Interface: Flask/Django backend with React.js frontend.

#### Justification:

- Streamlit simplifies interactive visualizations.
- React.js enables a dynamic and responsive UI.
- WebSocket ensures real-time alerts for brokers.

#### Trade-offs:

- Streamlit is limited in complex enterprise-level dashboards.
- WebSockets require persistent connections, adding server load.

# **System Considerations**

| Aspect Solution Justification |
|-------------------------------|
|-------------------------------|

| Scalability | AWS Lambda, Auto-scaling                            | Serverless computing scales based on demand |
|-------------|-----------------------------------------------------|---------------------------------------------|
| Reliability | Multi-AZ Database, Backup                           | Ensures fault tolerance                     |
| Latency     | Edge computing for inference                        | Reduces response time.                      |
| Cost        | Reserved Instances, Cost<br>Optimization Strategies | Minimizes operational expenses              |

# 3. Data Flow Explanation

- 1. Data Ingestion: Market data is collected via APIs and stored in S3/PostgreSQL.
- 2. **Preprocessing**: Missing values handled, features engineered, and data standardized.
- 3. Model Training: LSTM/Transformer-based models trained on historical stock prices.
- 4. **Model Deployment**: The best model is deployed via TensorFlow Serving.
- 5. **Prediction & Insights**: Predictions sent to analysts via dashboards and alerts.

| Stage      | Batch or Streaming? | Reasoning                              |
|------------|---------------------|----------------------------------------|
| Ingestion  | Streaming           | Real-time price updates needed.        |
| Processing | Batch               | Feature engineering done periodically. |
| Prediction | Streaming           | Immediate market insights required.    |

# 4. Challenge Analysis

# **Potential Challenges & Mitigation Strategies**

## 1. Data Latency & Inconsistencies

o Mitigation: Implementing a robust data pipeline with validation steps.

## 2. Scalability Issues

• Mitigation: Using auto-scaling cloud infrastructure to handle peak loads.

## 3. Model Drift & Degradation

• Mitigation: Implementing continuous monitoring and periodic retraining.

## 4. High Deployment Costs

• Mitigation: Using cost-optimized cloud services and scheduled retraining.

#### 5. Regulatory Compliance (GDPR, SEC, etc.)

Mitigation: Ensuring data encryption and proper audit logs.

## Conclusion

This end-to-end system ensures real-time stock predictions, integrates robust ML pipelines, and delivers valuable insights to financial analysts. With scalable infrastructure and continuous monitoring, it provides a production-ready solution that enhances trading strategies.