Е.В. Башкинова, Г.Ф. Егорова, А.А. Заусаев

Численные методы и их реализация в Microsoft Excel

Часть 1

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУЛАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра прикладной математики и информатики

ЧИСЛЕННЫЕ МЕТОДЫ и их реализация в Microsoft Excel Часть 1

Лабораторный практикум по информатике

Самара
Самарский государственный технический университет 2009

Печатается по решению редакционно-издательского совета СамГТУ

УДК 519.6 (075.8)

Численные методы и их реализация в Microsoft Excel. Ч.1: лабораторный практикум по информатике / Сост. Е.В. Башкинова, Г.Ф. Егорова, А.А. Заусаев. — Самара; Самар. гос. техн. ун-т, 2009. 44 с.

Приведены краткие сведения и формулы по темам «Элементы теории погрешностей», «Численные методы решения нелинейных и трансцендентных уравнений», «Численные методы решения систем линейных алгебраических уравнений». Рассматриваются способы реализации численных методов средствами Microsoft Excel. Для самоконтроля даны индивидуальные задания и контрольные вопросы.

Предназначено для студентов первого курса инженерных специальностей факультетов МиAT и Φ T.

УДК 519.6 (075.8)

Составители: канд. физ.-мат. наук Е.В. Башкинова, канд. техн. наук Г.Ф. Егорова, канд. физ.-мат. наук А.А. Заусаев

Рецензент: канд. физ.-мат. наук Л.А. Муратова

[©] Е.В. Башкинова, Г.Ф. Егорова, А.А. Заусаев, составление, 2009

[©] Самарский государственный технический университет, 2009

ПРЕДИСЛОВИЕ

Предлагаемый лабораторный практикум по информатике предназначен для студентов первого курса инженерных специальностей факультетов МиАТ и ФТ. Его цель – помочь студентам самостоятельно или с помощью преподавателя овладеть методами решения нелинейных уравнений и систем линейных алгебраических уравнений с использованием табличного процессора Microsoft Excel.

В данном пособии каждая лабораторная работа снабжена теоретическим материалом по темам «Элементы теории погрешностей», «Численные методы решения нелинейных и трансцендентных уравнений», «Численные методы решения систем линейных алгебраических уравнений». Во всех лабораторных работах на контрольных примерах показаны способы реализации изучаемых методов средствами Microsoft Excel. В каждой работе приведены домашнее задание и контрольные вопросы для самостоятельной работы студентов.

В приложениях к данному пособию приводятся индивидуальные задания, позволяющие добиться лучшего понимания как численных методов, так и инструментов Microsoft Excel, а также тренировочный тест для самопроверки студентами своего уровня знаний.

Тема 1. ЭЛЕМЕНТЫ ТЕОРИИ ПОГРЕШНОСТЕЙ

ЛАБОРАТОРНАЯ РАБОТА № 1 АБСОЛЮТНАЯ И ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТИ

Задание 1. Пользуясь мастером функций f_x , вспомнить основные функции Microsoft Excel и особенности их вычисления. Протабулировать функции $y1 = \sqrt{|x|}$ и $y2 = \ln(x^2 + 1)$ на отрезке [–3; 3] с шагом h = 1, построить графики данных функций.

	Α	В	С	D	E	F	G	Н
2	Х	-3	-2	-1	0	1	2	3
3	y1	1,732	1,414	1,000	0,000	1,000	1,414	1,732
4	y2	2,303	1,609	0,693	0,000	0,693	1,609	2,303

Р и с. 1.1. Значения и графики функций $y1 = \sqrt{|x|}$, $y2 = \ln(x^2 + 1)$ на отрезке [–3; 3]

При выполнении задания 1 вводится только левый конец отрезка — значение x = -3 (ячейка **B2**), затем в ячейки **C2**, **B3**, **B4** записываются соответствующие формулы и распространяются вправо. Значения функций у1, у2 выведены с тремя знаками после запятой (Формат/Ячейки/Число).

При построении графика выбирается тип диаграммы **«точечный»**, затем готовый график редактируется по образцу (см. рис. 1.1) с помощью команд: **Формат оси** (установить по оси *Ox min=-3*, max=3, цену основных делений=1), **Формат области построения**, **Параметры диаграммы**.

Теоретическая справка. Пусть X — точное значение, x — приближенное значение некоторого числа.

<u>Абсолютная погрешность</u> приближенного числа равна модулю разности между его точным и приближенным значениями:

$$\Delta x = |X - x|$$
.

Однако точное значение X зачастую неизвестно, поэтому вместо абсолютной погрешности используют понятие границы абсолютной погрешности:

$$|X-x| \leq \Delta x^*$$
.

Число Δx^* заведомо равно или превышает значение абсолютной погрешности Δx и называется предельной абсолютной погрешностью. Часто применяется запись: $X = x \pm \Delta x^*$.

Следует отметить, что абсолютная погрешность не полностью характеризует результат. Например, абсолютная погрешность в 1 мм никчемна при оценке расстояния от Москвы до Рио-де-Жанейро и абсурдна при поиске расстояний между молекулами твердого вещества. Поэтому основной характеристикой точности является относительная погрешность.

<u>Относительная погрешность</u> — это отношение абсолютной погрешности к приближенному значению числа:

$$dx = \frac{\Delta x}{|x|} .$$

Относительная погрешность иногда измеряется в процентах, тогда

$$dx = \frac{\Delta x}{|x|} \cdot 100\%.$$

Действия над приближенными числами. Результат действий над приближенными числами представляет собой также приближенное число. Погрешность результата может быть выражена через погрешности первоначальных данных по нижеследующим правилам.

- 1. При сложении или вычитании чисел их абсолютные погрешности складываются: $\Delta(a\pm b) = \Delta a + \Delta b$.
- 2. Относительная погрешность разности или суммы двух чисел вычисляется по формулам:

$$d(a+b) = \frac{\Delta(a+b)}{|a+b|} = \frac{\Delta a + \Delta b}{|a+b|}; \quad d(a-b) = \frac{\Delta(a-b)}{|a-b|} = \frac{\Delta a + \Delta b}{|a-b|}, \quad (a \neq b).$$

3. При умножении или делении чисел друг на друга их относительные погрешности складываются:

$$d(a \cdot b) = da + db, d\left(\frac{a}{b}\right) = da + db.$$

4. При возведении в степень приближенного числа его относительная погрешность умножается на показатель степени: $d(a^k) = kda$.

<u>Погрешность функции</u>. Общая формула для оценки предельной абсолютной погрешности функции нескольких переменных $u = f(x_1, x_2, ..., x_n)$ имеет вид:

$$\Delta u^* \approx \left| df(x_1, x_2, ..., x_n) \right| = \left| \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Delta x_i^* \right| = \sum_{i=1}^n \left| \frac{\partial f}{\partial x_i} \right| \Delta x_i^* \right|,$$

где Δx_i^* — предельная абсолютная погрешность числа x_i (i = 1, 2, ..., n).

Задание 2. В ходе вычислений получены приближенные значения некоторых величин: a=5,256, b=2,892. Установить, какой из результатов более точен, если известны их истинные значения: A=5,158 и B=2,814.

Для решения задачи использовать табличный процессор Microsoft Excel, рекомендуемый вид экрана приведен на рис. 1.2.

	А	В	С	D	Е	F
2	Л. р.	№1 Оц	енка точност	и вычисл	тений	
	Студента			группы_		
3						
4	Прибл. знач.:	a=	5,256	b=	2,892	
5	Точное знач.:	A=	5,158	B=	2,814	
6	Абсолют. погр.:	Δa=	0,098	Δb=	0,078	
7	Относит. погр.:	δa=	0,018645	δb=	0,026971	
8		δa=	1,86%	δb=	2,70%	
9						
10	Вывод:	а вычислено точнее b				

Р и с. 1.2. Сравнение относительных погрешностей приближенных величин

При решении задания 2 вводятся начальные значения в ячейках C4:C5; E4:E5. Остальные значения рассчитываются средствами Microsoft Excel по формулам, приведенным в теоретической справке. Для отображения относительной погрешности в процентах, установите соответствующий формат ячейки.

Задание 3. Известно, что $x = \frac{a \cdot \sqrt[3]{b}}{c - a}$, где $A = 1,34 \pm 0,02$; $B = 7,98 \pm 0,05$; $C = 52,74 \pm 0,1$.

1. Найти предельную абсолютную погрешность Δx^* функции x.

Исходная функция x является функцией трех переменных a, b, c. Для оценки предельной абсолютной погрешности воспользуемся формулой:

$$\Delta x^* \approx \left| \frac{\partial x}{\partial a} \right| \Delta a^* + \left| \frac{\partial x}{\partial b} \right| \Delta b^* + \left| \frac{\partial x}{\partial c} \right| \Delta c^*.$$

Найдем частные производные функции $x = \frac{a \cdot \sqrt[3]{b}}{c - a}$:

$$\frac{\partial x}{\partial a} [b, c = const] = \frac{(a)_a' \cdot \sqrt[3]{b} (c-a) - a \cdot \sqrt[3]{b} (c-a)_a'}{(c-a)^2} =$$

$$= \frac{\sqrt[3]{b} (c-a) + a \cdot \sqrt[3]{b}}{(c-a)^2} = \frac{c \cdot \sqrt[3]{b}}{(c-a)^2}$$

$$\frac{\partial x}{\partial b} [a, c = const] = \frac{a}{c-a} (\sqrt[3]{b})_b' = \frac{a}{(c-a)} \frac{1}{3\sqrt[3]{b^2}}$$

$$\frac{\partial x}{\partial c} [a, b = const] = a \cdot \sqrt[3]{b} \left(\frac{1}{c-a}\right)_c' = a \cdot \sqrt[3]{b} \frac{-1}{(c-a)^2} = \frac{-a \cdot \sqrt[3]{b}}{(c-a)^2}$$

	Α	В	С	D	E	F
2			а относительной и абсолютной погрешностей			
	C	тудента		, группы		_
3	а	∆a*	∂x/∂a	ав	ан	
4	1,34	0,02	0,03989	1,36	1,32	
5	b	Δb*	9x/9p	рв	bн	
6	7,98	0,05	0,00218	8,03	7,93	
7	С	Δc^*	∂x/∂c	Св	Сн	
8	52,74	0,1	0,00101	52,84	52,64	
9						
10	X _B =	0,05290	Пред. абсолі	ют. погр.	$\Delta x^* =$	0,0010
11	Хн=	0,05129	Абсолют. погр.		$\Delta x=$	0,0008
12	X=	0,05210	Относит. погр.		δx=	0,0155
13			Пред. относ	ит. погр.	δx*=	0,0193

Р и с. 1.3. Типовой экран для вычисления абсолютной и относительной погрешностей функции x(a, b, c)

Введем исходные данные в блок **А3:В8** (см. рис. 1.3). В ячейках **С3:С8** вычислим значения $\left|\frac{\partial x}{\partial a}\right|$, $\left|\frac{\partial x}{\partial b}\right|$, $\left|\frac{\partial x}{\partial c}\right|$. В ячейку **F10** запишем формулу $=\left|\frac{\partial x}{\partial a}\right|\Delta a^* + \left|\frac{\partial x}{\partial b}\right|\Delta b^* + \left|\frac{\partial x}{\partial c}\right|\Delta c^*$ для вычисления предельной абсолютной погрешности.

2. Найти абсолютную погрешность Δx функции x.

В ячейках **D3:D8** рассчитаем верхнюю оценку значений переменных: a_B =1,34+0,02 (=**A4+B4**), аналогично b_B , c_B . В ячейке **B10** вычислим верхнюю оценку значения функции $x_B = \frac{a_B \cdot \sqrt[3]{b_B}}{c_B - a_B}$. Нижняя оцен-

ка значения функции $x_H = \frac{a_H \cdot \sqrt[3]{b_H}}{c_H - a_H}$ вычисляется в ячейках **ЕЗ:Е8** и

В11 аналогично.

Значение абсолютной погрешности функции ищется по формуле $\Delta x = \frac{\left|x_B - x_H\right|}{2}$ в ячейке **F11**. Найденная абсолютная погрешность (ячейка **F11**) должна быть не больше предельной абсолютной погрешности (ячейка **F10**), т.е. должно выполняться условие: $\Delta x \leq \Delta x^*$.

3. Вычислить относительную погрешность dx функции x.

Исходные данные позволяют вычислить значение x при a=1,34; b=7,98; c=52,74 в ячейке **B12**, а в ячейке **F12** — рассчитать значение относительной погрешности dx, используя найденное выше значение абсолютной погрешности Δx .

4. Оценить предельную относительную погрешность dx^* функции x .

Предельная относительная погрешность заданной функции, согласно рассмотренным выше формулам, представима в виде

$$dx^* = d\left(\frac{a \cdot \sqrt[3]{b}}{c - a}\right)^* = d\left(a \cdot \sqrt[3]{b}\right)^* + d\left(c - a\right)^* = da^* + \frac{1}{3}db^* + d\left(c - a\right)^* =$$

$$= \frac{\Delta a^*}{|a|} + \frac{1}{3}\frac{\Delta b^*}{|b|} + \frac{\Delta(c - a)^*}{|c - a|} = \frac{\Delta a^*}{|a|} + \frac{1}{3}\frac{\Delta b^*}{|b|} + \frac{\Delta c^* + \Delta a^*}{|c - a|}.$$

Запишите полученную формулу в ячейку **F13**. Убедитесь в том, что значение относительной погрешности не превосходит значения предельной относительной погрешности, т.е. $dx \le dx^*$.

Задание 4. Скопировать задание 3 на новый лист. Ввести данные своего варианта в ячейки **A3:B8** (см. рис. 1.3) из таблицы 1 приложения. Вычислить x_B , x_H , x (ячейки **B10**, **B11**, **B12**). Вычислить частные производные и заполнить формулами ячейки **C4**, **C6**, **C8**. Изменить формулу вычисления предельной относительной погрешности dx^* в ячейке **F13**, пользуясь основными правилами. Все остальные ячейки пересчитаются автоматически. Оформить отчет для своего варианта.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Задание 5. Решить в тетради следующую задачу.

Известно, что $A=4\pm0,01$; $B=8\pm0,04$; $C=5\pm0,1$. Найти предельную относительную погрешность dy^* следующих функций:

1)
$$y = a \cdot \sqrt[3]{b}$$
, 2) $y = c - a$, 3) $y = \frac{a}{c + a}$;

найти предельную абсолютную погрешность Δy^* для функций:

4)
$$y = \frac{\sqrt[3]{b}}{c}$$
, 5) $y = 3ac$; 6) $y = a(c-b)$.

Задание 6. Разберите решение следующих задач.

Пример 1. Найти предельную абсолютную погрешность функции $y = b\sqrt{a}$ при заданных значениях $A=4\pm0,01$; $B=7\pm0,04$.

Решение.

$$\Delta y^* \approx \left(b\sqrt{a}\right)_a' \Delta a^* + \left(b\sqrt{a}\right)_b' \Delta b^* = b\frac{1}{2\sqrt{a}} \Delta a^* + \sqrt{a}\Delta b^* = 7\frac{1}{2\sqrt{4}} 0.01 + \sqrt{4} \cdot 0.04 = 0.0175 + 0.08 = 0.0975.$$

Пример 2. Найти предельную абсолютную погрешность функции y = a - b при заданных значениях $A = 4 \pm 0.01$; $B = 7 \pm 0.04$.

Решение.
$$\Delta y^* = \Delta (a-b)^* = \Delta a^* + \Delta b^* = 0.01 + 0.04 = 0.05$$
.

Пример 3. Найти абсолютную погрешность функции $y = \frac{a-b}{c}$ при заданных значениях A=4±0,01; B=7±0,04; C=5±0,1.

Решение.

$$y_B = \frac{(a + \Delta a^*) - (b + \Delta b^*)}{c + \Delta c^*} = \frac{4,01 - 7,04}{5,1} = -0,5941,$$

$$y_H = \frac{(a - \Delta a^*) - (b - \Delta b^*)}{c - \Delta c^*} = \frac{3,99 - 6,96}{4,9} = -0,6061,$$

$$\Delta y = \frac{|y_B - y_H|}{2} = \frac{|-0,5941 - (-0,6061)|}{2} = 0,006.$$

Пример 4. Найти предельную относительную погрешность функции $y = \frac{a}{a-b}$ при заданных значениях $A=4\pm0,01$; $B=7\pm0,04$.

Решение.

$$dy^* = d\left(\frac{a}{a-b}\right)^* = da^* + d(a-b)^* = \frac{\Delta a^*}{|a|} + \frac{\Delta(a-b)^*}{|a-b|} =$$

$$= \frac{\Delta a^*}{|a|} + \frac{\Delta a^* + \Delta b^*}{|a-b|} = \frac{0.01}{4} + \frac{0.01 + 0.04}{|4-7|} \approx 0.0025 + 0.0167 = 0.0192.$$

Пример 5. Найти предельную относительную погрешность функции $y = \frac{a}{\sqrt{b}}$ при заданных значениях $A = 4 \pm 0.01$; $B = 7 \pm 0.04$.

Решение.

$$dy^* = d\left(\frac{a}{\sqrt{b}}\right)^* = da^* + d(\sqrt{b})^* = da^* + \frac{1}{2}db^* = \frac{\Delta a^*}{|a|} + \frac{1}{2}\frac{\Delta b^*}{|b|} =$$
$$= \frac{0.01}{4} + \frac{1}{2}\frac{0.04}{7} \approx 0.0025 + 0.0029 = 0.0054$$

Контрольные вопросы

- 1. Запись основных математических функций в Excel.
- 2. Определение абсолютной и относительной погрешности.
- Основные правила вычисления абсолютной и относительной погрешностей.

Тема 2. **ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ**

ЛАБОРАТОРНАЯ РАБОТА № 2 СПОСОБЫ ОТДЕЛЕНИЯ КОРНЕЙ УРАВНЕНИЙ

Задание 1. С помощью логической функцию «ЕСЛИ», пользуясь мастером функций f_x , вычислить значения составной функции

$$y = \begin{cases} \sin x, & x \le 0; \\ x^3 + \ln x, & x > 0 \end{cases}$$
 в точках $x = -2, x = 0, x = 3.$

Логическая функция «ЕСЛИ» позволяет организовать ветвление и задается следующим образом: **=ЕСЛИ(лог. выражение; первое значение, если лог. выражение** — **истина; второе значение, если лог. выражение** — **ложь)**. Типовой экран для вычисления ветвящейся функции представлен на рис. 2.1.

	Α	В	С	D	E	F
2	Лаб	бораторная	я работа №2. Логі	ическая функ	ция «ЕСЛИ	1»
	СТ	гудента		, группы		-
3	Х	у				
4	-2	-0,909				
5	0	0,000				
6	3	28,099				

Р и с. 2.1. Типовой экран для вычисления ветвящийся функции y

При вычислении функции y в ячейке **B4** окно мастера функций имеет вид, представленный на рис. 2.2.

1	
Лог_выражение	A4>0
начение_если_истина	A4^3+LN(A4)
Значение_если_ложь	SIN(A4)
	Лог_выражение начение_если_истина

Р и с. 2.2. Типовой экран для логической функции «ЕСЛИ»

В лабораторных работах № 2—5 будут рассмотрены приближенные методы решения нелинейных уравнений y(x) = 0 на примере уравнения $x^2 = \sqrt{x+4}$.

При применении некоторых методов в качестве исходных данных необходимо указать отрезок, содержащий только один корень уравне-

ния y(x)=0. Поиск такого отрезка называется отделением корня уравнения и осуществляется с помощью графических методов или аналитическим способом.

Графический метод 1. Очевидно, что действительным корням уравнения y(x) = 0 соответствуют точки пересечения графика функции y = y(x) с осью Ox. Тогда для нахождения отрезка, содержащего только один корень уравнения, достаточно построить график функции y = y(x) (в рассматриваемом примере — график функции $y = x^2 - \sqrt{x+4}$) и визуально определить, на каких подотрезках находятся корни. Данный метод будет рассмотрен и реализован с помощью Microsoft Excel в задании 3 данной лабораторной работы.

Графический метод 2. Построение графика функции вручную — достаточно трудоемкая задача, однако ее можно упростить, разбив исходную функцию на две более простые функции:

$$y(x) = 0 \Leftrightarrow j(x) = y(x)$$
.

Например, $x^2 - \sqrt{x+4} = 0$ представляется в виде $x^2 = \sqrt{x+4}$, и тогда корень уравнения будет находиться в точке пересечения графиков двух функций: $j(x) = x^2$ и $y(x) = \sqrt{x+4}$ (см. рис. 2.3).

Рис. 2.3. Графики функций $j(x) = x^2$ (парабола) и $V(x) = \sqrt{x+4}$ (ветвь параболы)

Из рис. 2.3 видно, что графики функций $j(x) = x^2$ и $y(x) = \sqrt{x+4}$ пересекаются в двух точках, следовательно, уравнение $x^2 - \sqrt{x+4} = 0$ имеет два корня, которые расположены внутри отрезков [-2;-1] и [1;2] оси Ox. Точность определения отрезков зависит от точности построения графиков.

Аналитический метод. В основе аналитического метода лежат теоремы математического анализа.

Теорема 1 (**Теорема Больцано-Коши**). Если непрерывная на отрезке [a;b] функция y = y(x) на концах указанного отрезка принимает значения разных знаков, т.е.:

$$y(a) \cdot y(b) < 0$$
,

то на интервале (a; b) она хотя бы один раз обращается в нуль.

Слабость данной теоремы, заключается в том, что она не дает ответа на вопрос о количестве корней уравнения y(x) = 0 на отрезке [a; b], поэтому в дополнение к ней рассматривается теорема 2.

Теорема 2. Непрерывная монотонно возрастающая или монотонно убывающая функция y = y(x) имеет и притом единственный нуль на отрезке [a;b] тогда и только тогда, когда на концах указанного отрезка она принимает значения разных знаков.

Исходя из приведенных теорем, можно утверждать, что аналитический метод отделения корней при решении нелинейного уравнения y(x)=0 заключается в поиске отрезка [a;b], содержащего точку пересечения графика функции y=y(x) с осью Ox, при этом должны выполнятся два условия:

1) $y(a) \cdot y(b) < 0$; 2) y'(x) > 0 или y'(x) < 0 для любых $x \in [a,b]$. Данные условия выполняются, когда функция на концах отрезка [a;b] принимает значения разных знаков и является монотонно возрастающей или монотонно убывающей на этом отрезке.

Задание **2.** Выполнить отделение корней нелинейного уравнения $x^2 = \sqrt{x+4}$ аналитическим методом.

Протабулируем функцию $y = x^2 - \sqrt{x+4}$ на некотором отрезке [Хнач, Хкон] и определим «соседние» точки a и b, в которых функция y = y(x) принимает значения разных знаков.

<u>На первом шаге</u> выбираем отрезок табулирования функции [Хнач, Хкон]. Для заданной функции $y = x^2 - \sqrt{x+4}$ область допустимых значений имеет вид $[-4;+\infty)$, для табулирования выберем отрезок [-4;6]. Таким образом, Хнач=-4, Хкон=6.

Отметим, что точки Хнач, Хкон и шаг табулирования выбираются произвольно и их значения можно изменять в процессе решения задачи.

<u>На втором шаге</u> оформим заголовок лабораторной работы, введем исходные данные — ячейки **A8:C8** (см. рис. 2.4).

	Α	В	С	D	Е	F	
5	Лабора	аторная	работа №2	 Расчетно-графическое отд 	целение	корней	
	студента, группы						
6	Исх	одные да	анные				
7	Хнач	Хкон	Шаг				
8	-4	6	1				
9							

Р и с. 2.4. Типовой экран расчетно-графического отделения корней нелинейного уравнения. Ввод исходных данных

<u>На третьем шаге</u> введем основные формулы. В ячейку **B11** устанавливается ссылка на ячейку **A8** (т.е. формула =**A8**), чтобы вычисления начались от точки Xнач (см. рис. 2.5).

	Α	В	С	D	E	F
10	Nº	Х	у	Комментарий	y'	у"
11	1	-4	16,000			
12	2	-3	8,000		-6,500	2,250
13	3	-2	2,586		-4,354	2,088
14	4	-1	-0,732	Корень на отрезке -21	-2,289	2,048
15	5	0	-2,000		-0,250	2,031
16	6	1	-1,236		1,776	2,022
17	7	2	1,551	Корень на отрезке 12	3,796	2,017
18	8	3	6,354		5,811	2,013
19	9	4	13,172		7,823	2,011
20	10	5	22,000		9,833	2,009
21	11	6	32,838		11,842	2,008
22		Стоп				

Р и с. 2.5. Типовой экран для расчетно-графического отделения корней нелинейного уравнения. Область решения задачи

В ячейку В12 вводится формула

$$x = \begin{cases} x + h, & x \le x_{\text{KOH}} \\ \text{СТОП}, & x > x_{\text{KOH}}, \end{cases}$$

с помощью которой будет найдено следующее значение X, а в случае выхода за переделы отрезка — появится надпись «Стоп».

Составление данной формулы с использованием мастера функций изображено на рис. 2.6.

Р и с. 2.6. Создание формулы для прерывания вычислений

Полученная формула распространяется вниз по появления слова «Стоп».

В последней формуле использован \$ — знак абсолютной адресации ячеек (устанавливается с помощью клавиши F4). Указанный знак позволяет зафиксировать ссылку в формуле при распространении ее на соседние ячейки.

На четвертом шаге в ячейку **C11** вводится формула вычисления функции $y = x^2 - \sqrt{x+4}$ при значении аргумента x, записанном в ячейке **B11**, и распространяется вниз.

<u>На пятом шаге</u> вводится комментарий. Комментарий поможет определить отрезки, на концах которых функция принимает значения разных знаков: $y(x) \cdot y(x+h) < 0$.

Так как для проверки данного условия требуется два значения y, то формула

=ECЛИ(C11*C12<=0;"Корень на отрезке "&B11&".."&B12;"----") вводится на строку ниже, в ячейку **D12**, и распространяется вниз.

Следует обратить особое внимание на знак амперсанда «&», который позволяет вывести в надписи «Корень на отрезке» значения x из соответствующего столбца.

<u>На шестом шаге</u> в столбцах **E** и **F** записываются формулы вычисления значений первой и второй производных:

$$y' = 2x - \frac{1}{2\sqrt{x+4}}$$
, $y'' = 2 + \frac{1}{4\sqrt{(x+4)^3}} = 2 + \frac{1}{4}(x+4)^{-3/2}$.

Заметим, что в точке x=-4 не существуют ни первая, ни вторая производные, поэтому для данной функции формулы записываются, начиная с x=-3.

<u>Вывод</u>. Таким образом, в результате решения задачи найден отрезок [a,b]=[1, 2], который содержит ровно один корень уравнения $x^2 - \sqrt{x+4} = 0$.

Вычислены значения первой производной y'(x=1)=1,776 и y'(x=2)=3,796, проверено условие $y'(1)\cdot y'(2)>0$, которое с некоторыми допущениями показывает, что отрезок [a,b]=[1,2] содержит единственный корень уравнения $x^2-\sqrt{x+4}=0$.

Убедитесь в том, что на отрезке [1, 2] функция y = y(x) монотонно возрастает, т.е. y'(x) > 0. Для этого задайте значения Хнач=1, Хкон=2, Шаг=0,1, проконтролируйте знак первой производной в ячей-ках **E11:E21**.

Также найдены значения второй производной y''(x=1)=2,022, y''(x=2)=2,017, необходимые в дальнейшем.

Второй найденный отрезок [a, b] = [-2, -1] также содержит единственный корень уравнения $x^2 - \sqrt{x+4} = 0$.

Задание 3. Выполнить отделение корней уравнения $x^2 - \sqrt{x+4} = 0$ графическим метолом 1.

Для решения данной задачи требуется построить график функции $y = x^2 - \sqrt{x+4}$ (см. рис. 2.7). Полученный график подтверждает аналитическое решение (см. задание 2). На рисунке видно, что точки пересечения графика функции $y = x^2 - \sqrt{x+4}$ с осью Ox попадают в ранее найденные отрезки [-2, -1] и [1, 2].

Рис. 2.7. Графическое отделение корней уравнения $x^2 = \sqrt{x+4}$

Задание 4. Выполнить отделение корней для функции своего варианта (см. таблицу 2 приложения). Начальные данные: Хнач, Хкон и шаг подобрать в зависимости от вида уравнения, области допустимых значений. Значения начальных данных можно изменять в процессе решения.

В столбце **E** вычислить значения первой производной y', а в столбце **F** — значения второй производной y''. Проверить, сохраняется ли на найденном отрезке [a,b] знак производной: $y'(a) \cdot y'(b) > 0$. Если в найденных точках a и b производные имеют разные знаки, то следует уменьшить шаг и найти новый отрезок.

Написать отчет в тетради или распечатать его и показать преподавателю. Заполнить таблицу

	йденный этрезок		Значени	я функции	и ее произ	водных	
a=		y(a)=		y'(a) =		y''(a) =	
b=		<i>y</i> (<i>b</i>)=		y'(b) =		y''(b) =	

	йденный этрезок		Значения функци	и и ее произ	зводных	
a=		y(a)=	y'(a) =		y''(a) =	
b=		<i>y</i> (<i>b</i>)=	y'(b)=		y''(b) =	

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Задание **5.** В тетради с помощью графического метода 2 отделить корни уравнений:

1)
$$\cos x - \ln x = 0$$
, 2) $\sin x - x + 3 = 0$, 3) $x^3 + x^2 - 4 = 0$.

В задаче 3) проверить полученный отрезок на выполнение теорем аналитического метода.

Контрольные вопросы

- 1. Расчетно-графическое отделение корней средствами Excel.
- 2. Графический метод 2 отделения корней уравнения.
- 3. Аналитический метод отделения корней уравнения.

ЛАБОРАТОРНАЯ РАБОТА № 3 РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДАМИ БИСЕКЦИЙ (ДЕЛЕНИЯ ОТРЕЗКА ПОПОЛАМ) И ХОРД

В лабораторной работе № 2 выполнено отделение корней уравнения y(x) = 0. Пусть [a,b] — один из полученных отрезков, содержащий только один корень данного уравнения. Тогда любую точку отрезка [a,b] можно принять за приближенное значение корня, при этом

предельная абсолютная погрешность такого приближения определяется неравенством: $\Delta x^* \leq |b-a|$.

Если задана допустимая погрешность e, то задача отыскания приближенного решения с указанной точностью e сводится к нахождению отрезка [a,b], содержащего только один корень уравнения и удовлетворяющего условию: |b-a| < e.

Рассмотрим наиболее распространенные методы уточнения корня.

Метод бисекций. Согласно методу бисекций, найденный отрезок [a,b] делится пополам точкой c=(a+b)/2 (на рис. 3.1 — точка c_1) и далее рассматриваются два отрезка: [a,c] и [c,b]. Затем определяется, в каком из полученных отрезков находится корень уравнения. Если $y(a)\cdot y(c)<0$, то в дальнейшем решении участвует отрезок [a,c], если $y(c)\cdot y(b)<0$, то отрезок [c,b]. Для удобства полученный отрезок переобозначается снова как [a,b] и процесс деления повторяется.

Рис. 3.1. Геометрическая интерпретация метода бисекций

В результате получим систему вложенных отрезков (см. рис. 3.1).

Корень считается найденным, когда длина отрезка станет меньше заданной погрешности, то есть |b-a| < e. За приближенное значение корня принимается середина последнего отрезка.

Задание 1. Найти корень уравнения $x^2 - \sqrt{x+4} = 0$ с точностью $\varepsilon = 0,001$, используя метод бисекций.

Оформить этикетку лабораторной работы. Ввести исходные данные: отрезок [a, b]=[1, 2], полученный в лабораторной работе № 2, и требуемую точность e = 0,001 (**A8:C8**, рис.3.2). Заполнить шапку таблицы (**A10:H10**).

	Α	В	С	D	Е	F		G	Н
5									
6	Исходн	ные да	нные						
7	а	b	погр	ешность					
8	1	2	0,001						
9									
10	а	b	С	y(a)	<i>y</i> (<i>b</i>)	<i>y(c</i>)	Ō	ценка погр.	Коммент.
11	1,000	2,000	1,500	-1,236	1,551	-0,095		1,0000	1
12	1,500	2,000	1,750	-0,095	1,551	0,665		0,5000	
13	1,500	1,750	1,625	-0,095	0,665	0,269		0,2500	
14	1,500	1,625	1,563	-0,095	0,269	0,083		0,1250	
1	=ЕСЛИ	(ABS	B11-A	11)<\$C\$8;	''Корені	ь=''&С1	1; A	BS(B11-A11)))
17	1,531	1,547	1,539	-0,007	0,038	0,015		0,0156	
18	1,531	1 _1	ес пи	/D11*F11	>0."V	, num 110	OTT	елены";"	<u>")</u>
19	1,531	11	CJIVI	(D11.E11	>0; NO	рни не	ОТД	елены ;)
20	1,533	1,535	1,534	-0,002	0,004	0,001		0,0020	
21	1,533	1,534	1,534	-0,002	0,001	0,000	Кор	ень=1,5337	

Р и с. 3.2. Решение нелинейных уравнений методом бисекций

В ячейки **A11** и **B11** поместите ссылки на исходные данные. В ячейке **C11** рассчитывается значение середины отрезка [a, b] — точки c, в ячейках **D11:F11** вычисляются значения функции в указанных точках.

В ячейке **G11** записывается формула оценки погрешности, с помощью которой проверяется выполнение условия |b-a| < e. В том случае, есть последнее неравенство верно, то корень считается найденным и выдается ответ, иначе вычисляется значение |b-a|. В ячейку **H11** вводится комментарий, выдающий сообщение об ошибочности начальных данных.

В ячейках **A12:B12** (см. рис. 3.3) из отрезков [a, c] и [c, b] выбирается тот, на концах которого функция принимает значения разных знаков. Полученный отрезок обозначается снова как [a, b].

Затем формулы распространяются вниз до появления ответа.

	A	В
10	а	b
11	=A8	=B8
12	=ECЛИ(D11*F11<0; A11; C11)	самостоятельно

Р и с. 3.3. Формулы для уточнения корней по методу бисекций

Задание 2. Ввести такие значения [a,b], чтобы данный отрезок не содержал корней. Например [8, 10]. Убедится, что в ячейке **H12** появляется предупреждение «Корни не отделены». Вернуть [a,b] в исходное состояние.

Задание 3. Решить контрольный пример для отрезка [-2, -1], найти второй корень уравнения $x^2 - \sqrt{x+4} = 0$. Ответ: x = -1,2837.

Задание 4. Видоизменить формулу в ячейке G12 так, чтобы значение корня округлялось до 4-х десятичных разрядов после запятой, используя функцию ОКРУГЛ(). Убедиться, что округление выполняется.

Задание 5. Выполнить свой вариант из таблицы 2 приложения. Для этого скопировать контрольный пример на отдельный лист, заменить исходные данные и ввести свою функцию для вычисления y(a), y(b), y(c). Если в колонке «Комментарий» появится сообщение «Корни не отделены», то отрезок [a,b] не содержит корня. В этом случае следует вернуться к лабораторной работе № 2 и проверить вычисления.

Метод хорд. Согласно методу хорд, найденный отрезок делится точкой c, которая находится по формуле

$$c = \frac{a \cdot y(b) - b \cdot y(a)}{v(b) - v(a)}.$$

Рис. 3.4 Геометрическая интерпретация метода хорд

Геометрически, c — это точка пересечения хорды, проходящей через точки A(a, y(a)) и B(b, y(b)), с осью Ox (на рис. 3.4 — точка c_1).

Далее рассматриваются два отрезка: [a,c] и [c,b]. В дальнейшем решении участвует тот из них, на концах которого функция y(x) принимает значения разных знаков:

 $y(a) \cdot y(c) < 0$ или $y(c) \cdot y(b) < 0$.

Полученный отрезок переобозначается как [a,b] и снова

находится c. В результате каждый новый отрезок будет все ближе к искомому корню. Корень будем считать найденным, когда выполнится условие $|c_{i+1}-c_i| < e$. За приближенное значение корня принимается значение c_{i+1} .

Обратите внимание на то, что при использовании метода хорд один из концов отрезка закреплен и используется на каждой итерации.

Задание 6. Найти корень уравнения $x^2 - \sqrt{x+4} = 0$ с точностью $\varepsilon = 0,001$, используя метод хорд.

Скопируйте лист задания 1 лабораторной работы № 3 и измените формулу для вычисления точки c (ячейка **C11**). Распространите формулу вниз. В ячейке **G12** измените условие вывода корня: $|c_{i+1} - c_i| < e$ и распространите формулу вниз. Сравните полученные значения корня и количество итераций в методе бисекций и в методе хорд. Допускается расхождение в значениях корня не более 0,001.

Задание 7. Выполнить свой вариант из таблицы 2 приложения.

Оформите ответ:

Найдены корни уравнения	С ТОЧНОСТЬЮ ε=
На отрезке [a, b]=, корень x=	Корень найден на шаге
метода бисекций и на шаге метода хорд.	
На отрезке [a, b]=, корень x=	Корень найден на шаге
метода бисекций и на шаге метода хорд.	

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Задание 8. 1) Показать графически реализацию метода бисекций при решении уравнения $x^3 + x^2 - 4 = 0$ на отрезке [1; 2]. Перерисовать в тетрадь график функции (см. рис. 3.5) и показать на нем реализацию метода, выполнив четыре итерации.

Рис. 3.5. График функции $x^3 + x^2 - 4 = 0$

- 2) Выяснить, на каком из отрезков *a*) [-3; -2]; *б*) [1; 2]; *в*) [-1; 0] находится единственный корень уравнения $x^3 + x^2 + 9 = 0$.
- 3) Выполнить в тетради два шага метода хорд для уточнения корня уравнения $x^3 + x + 1 = 0$ на отрезке [-1; 0].

Контрольные вопросы

- 1. Решение нелинейных уравнений методом бисекций в Excel.
- 2. Графическое представление метода бисекций.
- 3. Решение нелинейных уравнений методом хорд в Excel.
- 4. Графическое представление метода хорд.

ЛАБОРАТОРНАЯ РАБОТА № 4 РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДОМ НЬЮТОНА (КАСАТЕЛЬНЫХ) И КОМБИНИРОВАННЫМ МЕТОДОМ ХОРД И КАСАТЕЛЬНЫХ

Метод Ньютона (касательных). Данный метод, так же как метод бисекций и метод хорд, позволяет определить корень уравнения y(x) = 0 с заданной точностью ε .

Пусть [a,b] — один из отрезков, полученных в лабораторной работе \mathbb{N}_2 2, содержащий только один корень уравнения y(x) = 0.

В качестве начального приближения к корню выберем $x_0 \in [a,b]$, для которого выполняется условие $y(x_0) \cdot y''(x_0) > 0$. Как правило, в качестве x_0 выбирают $x_0 = a$ или $x_0 = b$, т.е. левый или правый конец отрезка.

Следующее приближение x_1 находится по формуле Ньютона $x_1 = x_0 - \frac{y(x_0)}{y'(x_0)}$. Общая формула метода имеет вид:

$$x_{k+1} = x_k - \frac{y(x_k)}{y'(x_k)}, k=0, 1, 2, \dots$$

Каждое следующее приближение x_{k+1} будет расположено все ближе и ближе к точке, соответствующей искомому корню.

На практике в качестве условия остановки итерационного процесса можно использовать следующий критерий. Вычисления прекращаются тогда, когда для найденного значения x_{k+1} выполняется

условие $|x_{k+1} - x_k| < e$. За приближенное значение корня принимается значение x_{k+1} .

Рис. 4.1. Геометрическая интерпретация метода Ньютона

Геометрическая интерпретация метода (см. рис. 4.1) заключается в следующем: задается начальное приближение x_0 , после чего строится касательная к функции y = y(x) в точке x_0 . Следующее приближение x_1 — это точка пересечения касательной с осью абсцисс. Далее строится новая касательная и получается приближение x_2 , и т.д.

Задание **1.** Найти корень уравнения $x^2 - \sqrt{x+4} = 0$ с точ-

ностью ε =0,001, используя метод касательных.

В лабораторной работе № 2 был найден отрезок [a,b]=[1, 2]. Проверим выполнение условия $y(x_0) \cdot y''(x_0) > 0$ для левого и правого концов данного отрезка, т.е. для a=1, b=2. Значения функции и второй производной в указанных точках нам уже известны: y(x=1) = -1,236; y''(x=1) = 2,022; y(x=2) = 1,551; y''(x=2) = 2,017. Как видим, $y(1) \cdot y''(1) < 0$, а $y(2) \cdot y''(2) > 0$. Таким образом, условие метода выполняется для правого конца отрезка, а значит в качестве начального приближения к решению выберем x_0 =2.

Оформить этикетку лабораторной работы, ввести исходные данные, шапку таблицы (см. рис. 4.2).

В ячейку **А8** установить ссылку на ячейку **А4**. Ввести формулу метода касательных в ячейку **B8**: $x_1=x_0-\frac{x_0^2-\sqrt{x_0+4}}{2x_0-1/(2\sqrt{x_0+4})}$, значе-

ние x_0 берется из ячейки **A8**. Заполнить остальные ячейки строки **8**. В ячейке **A9** установить ссылку на найденное значение x_1 , т.е. ячейку **B8**.

	Α	В	С	D	E					
2	Л.р.№4 Решение нелинейных уравнений методом касательных									
		Студе	нта группа	l						
3	X_0	погрешность								
4	2	0,001								
5										
6										
7	Χn	X _{n+1}	Оценка	Контроль ну-	Число ите-					
′	Λn	∧ n+1	погрешности	ля y(x _{n+1})	раций					
8	2,0000	1,5915	0,4085	0,1683	1					
9	1,5915	1,5349	/ 0,0566	0,0032	2					
10	1,5349		,	0,0000	3					
	1,5338	1,5338	Куорень=1,5338	0,0000	4					

=EСЛИ(ABS(B8-A8)<\$B\$4;"Корень="&ОКРУГЛ(B8;4);ABS(B8-A8))

Р и с. 4.2. Решение нелинейных уравнений методом касательных

Корень уравнения $x^2 - \sqrt{x+4} = 0$ равен 1,5338 и найден на 4 шаге. Сравним его с корнем, полученным в лабораторной работе № 3, который равен 1,5337. Как видим, найденные решения отличаются на 0,0001.

Задание 2. Найти второй корень уравнения $x^2 - \sqrt{x+4} = 0$ на отрезке [-2, -1] с точностью $\varepsilon = 0.001$, используя метод касательных.

Задание 3. Выполнить индивидуальный вариант (см. таблицу 2 приложения) на отдельном листе. Скопировать контрольный пример, внести изменения в исходные данные, изменить формулу в ячейке В8, распространить ее вниз. Сравнить результаты расчетов с предыдущей лабораторной работой № 3. Допускается расхождение не более 0,001. В противном случае следует найти и устранить ошибку.

Задание 4. Переписать результаты расчета в тетрадь: № варианта, исходное уравнение, начальное приближение x_0 , корень с четырьмя десятичными разрядами, число итераций, или сделать распечатку.

Комбинированный метод хорд и касательных. Данный комбинированный метод сочетает в себе принципы метода хорд и метода касательных, и позволяет решать нелинейные уравнения y(x) = 0 с заданной точностью ε .

Приближение к искомому корню происходит одновременно с двух сторон отрезка, на котором отделен корень уравнения.

Следует учесть, что начальным приближением в методе касательных служит тот конец отрезка, для которого выполняется условие $y(x_0) \cdot y''(x_0) > 0$.

Пусть $y(a) \cdot y''(a) > 0$, тогда приближение по методу касательных будет происходить слева, а по методу хорд — справа. Итерационные формулы в данном случае имеют вид:

$$a_{k+1} = a_k - \frac{y(a_k)}{y'(a_k)}, \quad b_{k+1} = \frac{a_k \cdot y(b_k) - b_k \cdot y(a_k)}{y(b_k) - y(a_k)}.$$

Рис. 4.3. Геометрическая интерпретация комбинированного метода хорд и касательных

Если же $y(b) \cdot y''(b) > 0$, то метод касательных применяется справа, а метод хорд — слева (см. рис. 4.3) и формулы запишутся наоборот:

$$b_{k+1} = b_k - \frac{y(b_k)}{y'(b_k)},$$

$$a_{k+1} = \frac{a_k \cdot y(b_k) - b_k \cdot y(a_k)}{y(b_k) - y(a_k)}.$$

Вычисления прекращаются тогда, когда для найденных значений выполняется условие $|b_{k+1}-a_{k+1}| < e$. За приближенное значение корня принимается середина отрезка $[a_{k+1},b_{k+1}]$.

Обратите внимание на то, что в отличие от классического метода хорд, в данном методе один из концов отрезка не является закрепленным. Для построения хорды используются значения приближений, полученные с помощью метода касательных на предыдущей итерации.

Задание 5. Пользуясь типовыми экранами (см. рис. 4.4—4.5), найти решение уравнения $x^2 - \sqrt{x+4} = 0$ с точностью e = 0,001, используя комбинированный метод хорд и касательных.

В лабораторной работе № 2 показано, что y(-2)=2,586, y''(x=-2)=2,088. Таким образом, на отрезке [-2,-1] выполняется

условие $y(a) \cdot y''(a) > 0$. Тогда новый отрезок [a, b], находится по формулам $= a - \frac{y(a)}{y'(a)}$ (ячейка **A9**) и $= \frac{a \cdot y(b) - b \cdot y(a)}{y(b) - y(a)}$ (ячейка **B9**).

	Α	В	С	D	E	F
3	а	b	e			
4	-2	-1	0,001			
5						
6						
7	а	b	y(a)	y(b)	y'(a)	Оценка погреш.
8	-2	-1	2,586	-0,732	-4,354	1,000
9	-1,406	-1,221	0,366	-0,177	-3,123	0,185
10	-1,289	-1,281	0,014	-0,008	-2,881	0,008
11	-1,284	-1,284	0,000	0,000	-2,871	Корень=-1,2838

Р и с. 4.4. Решение нелинейных уравнений комбинированный методом хорд и касательных при выполнении условия $y(a) \cdot y''(a) > 0$

При поиске корня уравнения $x^2 - \sqrt{x+4} = 0$ на отрезке [1, 2] (см. рис. 4.5) метод касательных применяется справа, начиная с точки b=2, так как $y(2) \cdot y''(2) = 1,551 \cdot 2,017 > 0$. В ячейки **А9** и **В9** записы-

ваются формулы
$$=\frac{a\cdot y(b)-b\cdot y(a)}{y(b)-y(a)}$$
 и $=b-\frac{y\left(b\right)}{y'\left(b\right)}$ соответственно.

	Α	В	С	D	Е	F
3	а	b	погрешность			
4	1	2	0,001			
5						
6						
7	а	b	y(a)	y(b)	y'(b)	Оценка погреш.
8	1	2	-1,236	1,551	3,796	1,000
9	1,444	1,592	-0,249	0,168	2,972	0,148
10	1,532	1,535	-0,005	0,003	2,857	0,003
11	1,534	1,534	0,000	0,000	2,855	корень=1,5338

Р и с. 4.5. Решение нелинейных уравнений комбинированный методом хорд и касательных при выполнении условия: $y(b) \cdot y''(b) > 0$

Задание 6. Решить свой вариант (см. таблицу 2 приложения) на отдельном листе. Сравнить результаты расчетов с предыдущими лабораторными работами № 3 и № 4. Допускается расхождение не более 0.001. В противном случае следует найти и устранить ошибку.

Оформите ответ:

Найдены корни уравнения		с точностью <i>є</i> =_	·	
На отрезке $[a, b] =,$	корень x=	Корень найден	на	шаге
метода касательных и на _	шаге комбиниров	ванного метода.		
На отрезке [<i>a</i> , <i>b</i>]=,	корень x=	Корень найден	на	шаге
метода касательных и на _	шаге комбиниров	ванного метода.		

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Задание 7. 1) Выполнить в тетради три шага метода касательных для уравнения $x^3 + x + 1 = 0$ на отрезке [-1; 0].

2) Установить, какая из точек может быть начальной: a) x_0 =0; δ) x_0 = -1; ϵ) x_0 = 1 при решении уравнения $x^3 + x - 18 = 0$ методом касательных.

Контрольные вопросы

- 1. Решение нелинейных уравнений методом касательных в Excel.
- 2. Графическое представление метода касательных при решении нелинейных уравнений.
- 3. Сравнение метода касательных и метода бисекций применительно к решению нелинейных уравнений.

ЛАБОРАТОРНАЯ РАБОТА № 5 РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДОМ ИТЕРАЦИЙ

Метод итераций, так же как и рассмотренные выше методы, позволяет определить корень уравнения y(x)=0 с заданной точностью ε . Формула метода итераций имеет вид:

$$x_{k+1} = x_k + c \cdot y(x_k).$$

В случае, если известен отрезок [a,b], содержащий только один корень уравнения, за начальное приближение x_0 можно взять середину a+b

отрезка
$$x_0 = \frac{a+b}{2}$$
.

Важную роль в рассматриваемой формуле играет коэффициент c, который ищется следующим образом:

$$c = \pm \frac{1}{\max_{[a,b]} |y'(x)|} = \pm \frac{1}{\max_{[a,b]} [|y'(a)|, |y'(b)|]}.$$

Знак перед дробью берется обратным к знаку производной.

Уточнение корня заканчивается при выполнении условия $|x_{k+1} - x_k| < e$. За приближенное значение корня принимается значение x_{k+1} .

Существует другой вариант применения метода итераций, который состоит в представлении уравнения y(x) = 0 в виде x = j(x). В этом случае формула метода имеет вид

$$x_{k+1} = \mathbf{j}(x_k).$$

Итерации также продолжаются до выполнения условия $|x_{k+1} - x_k| < e$.

Сложность последнего способа заключается в том, что на отрезке [a,b] функция x=j(x) должна удовлетворять условию |j'(x)|<1, тогда процесс итераций будет сходиться к корню уравнения y(x)=0.

Задание 1. Найти корень уравнения $x^2 - \sqrt{x+4} = 0$ с точностью $\varepsilon = 0,001$, используя метод итераций.

Оформить этикетку лабораторной работы, ввести исходные данные (см. рис. 5.1). В ячейках **С3** и **D3** ввести формулу вычисления первой производной функции y(x) в точках a и b (см. лабораторную работу N 2).

	Α	В	С	D	E				
1	Л.р.№5 Решение нелинейных уравнений методом итераций Студента группы								
2	а	b	y'(a)	y'(b)	$\max(y'(a) ; y'(b))$				
3	1	2	1,7764	3,7959	3,7959				
4									
5	X_0	погрешность	коэффиц <i>с</i>						
6	1,5	0,001	-0,2634	DOTTI OR O	1.70.1.70				
7				=ЕСЛИ(С3>0	;-1/E3;1/E3)				
8				,	,				
9	X _n	X _{n+1}	Оценка погрешности	Контроль нуля $y(x_{n+1})$	Число итераций				
10	1,5000	1,5251	0,0251	-0,0247	1				
11	1,5251	1,5316	0,0065	-0,0062	2				
12	1,5316	1,5332	0,0016	-0,0015	3				
13	1,5332	1,5336	корень=1,5336	-0,0004	4				

Р и с. 5.1 Решение нелинейных уравнений методом итераций

Используя функцию «МАКС», определить максимальную из них по модулю. Ввести формулы расчета начального приближения x_0 и коэффициента c в строке **6**. В ячейке **B10** набрать формулу метода

итераций = $x_n + c \cdot (x_n^2 - \sqrt{x_n + 4})$. В ячейке **A11** установить ссылку на ячейку **B10**.

Задание 2. Найти второй корень уравнения $x^2 - \sqrt{x+4} = 0$ на отрезке [-2, -1] с точностью e = 0,001, используя метод итераций.

Задание 3. Решить свой вариант (см. таблицу 2 приложения), найти коэффициент c. Сравнить результаты расчетов с предыдущими лабораторными работами. Допускается расхождение не более 0,001. В противном случае следует найти и устранить ошибку.

Задание 4. Переписать результаты расчета в тетрадь: номер варианта, исходное уравнение, начальное приближение x_0 , корень с четырьмя десятичными знаками, число итераций, коэффициент c.

0.1	
Оформите	ответ:

Найдены корни уравнения	с точностью ε=
На отрезке $[a, b]$ =, корень x=	найден на шаге метода
итераций.	
На отрезке [a, b]=, корень x=	найден на шаге метода
итераций.	

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Задание 5. 1) Реализовать в тетради три шага метода итераций $x_{k+1} = j(x_k)$ для уравнения $4-2x-\sin x=0$, представив исходное уравнение в виде $x=2-0.5\sin x$. Показать, что функция $j(x)=2-0.5\sin x$ удовлетворяет неравенству $|j'(x)| \le q < 1$, а значит, итерационный процесс является сходящимся. При нахождении $x_1 = j(x_0) = 4-2x_0 - \sin x_0$ в качестве начального значения можно взять любую точку x_0 , пусть $x_0 = 0$.

2) Реализовать в тетради два шага метода итераций $x_{k+1} = j(x_k)$ для уравнения $x^2 + x - 3 = 0$ на отрезке [1,2]. Найти точное решение уравнения и вычислить погрешность приближенного решения, полученного методом итераций.

Контрольные вопросы

- 1. Решение нелинейных уравнений методом простых итераций.
- 2. Сравнение пройденных методов решения нелинейных уравнений.

Тема 3. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

ЛАБОРАТОРНАЯ РАБОТА № 6

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДОМ ПРОСТЫХ ИТЕРАЦИЙ И МЕТОДОМ ЗЕЙДЕЛЯ

Метод простых итераций. Рассмотрим применение метода простых итераций на примере решения системы линейных уравнений размерности 3×3. Согласно данному методу, исходная система преобразуется следующим образом:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \Rightarrow \begin{cases} x_1 = (b_1 - a_{12}x_2 - a_{13}x_3)/a_{11} \\ x_2 = (b_2 - a_{21}x_1 - a_{23}x_3)/a_{22} \Rightarrow \\ x_3 = (b_3 - a_{31}x_1 - a_{32}x_2)/a_{33} \end{cases}$$

$$\begin{cases} x_1^1 = (b_1 - a_{12}x_2^0 - a_{13}x_3^0)/a_{11} \\ x_2^1 = (b_2 - a_{21}x_1^0 - a_{23}x_3^0)/a_{22} \\ x_3^1 = (b_3 - a_{31}x_1^0 - a_{32}x_2^0)/a_{33}, \end{cases}$$

где $a_{11} \neq 0$, $a_{22} \neq 0$, $a_{33} \neq 0$.

Полученные формулы позволяют найти первое приближение к решению (x_1^1, x_2^1, x_3^1) . В качестве начального приближения (x_1^0, x_2^0, x_3^0) , как правило, используются значения (b_1, b_2, b_3) или (0,0,0).

Вычисление (k+1)-го приближения производится по формулам:

$$\begin{cases} x_1^{k+1} = \left(b_1 - a_{12}x_2^k - a_{13}x_3^k\right)/a_{11} \\ x_2^{k+1} = \left(b_2 - a_{21}x_1^k - a_{23}x_3^k\right)/a_{22} \\ x_3^{k+1} = \left(b_3 - a_{31}x_1^k - a_{32}x_2^k\right)/a_{33} \end{cases}$$

Итерационный процесс продолжается до тех пор, пока не будет выполнено условие:

$$\max \big\{\! \Delta_1, \Delta_2, \Delta_3 \big\} \!\! < \! e \;,$$
 где $\Delta_1 = \! \left| x_1^{k+1} - x_1^k \right|, \; \Delta_2 = \! \left| x_2^{k+1} - x_2^k \right|, \; \Delta_3 = \! \left| x_3^{k+1} - x_3^k \right|.$

Отметим, что для сходимости метода простых итераций достаточно выполнение условия доминирования диагональных элементов системы. Данные условия для системы размерности 3×3 имеют вид:

$$|a_{11}| \ge |a_{12}| + |a_{13}|, \qquad |a_{22}| \ge |a_{21}| + |a_{23}|, \qquad |a_{33}| \ge |a_{31}| + |a_{32}|.$$

Если указанные условия не соблюдаются (в том числе, если $a_{ii}=0$, i=1,2,3), их выполнения можно добиться путем применения к уравнениям системы элементарных преобразований, таких как: перестановка строк; умножение любой строки на ненулевой коэффициент и сложение с другой строкой.

Задание 1. Найти решение системы линейных уравнений

$$\begin{cases} 0.63x_1 + 0.05x_2 + 0.15x_3 = 0.34 \\ 0.05x_1 + 0.34x_2 + 0.1 x_3 = 0.32 \\ 0.15x_1 + 0.1 x_2 + 0.7 x_3 = 0.72 \end{cases}$$

методом простых итераций с точностью ε =0,001.

Оформить заголовок лабораторной работы, ввести исходные данные — матрицы A и B, заполнить заголовок таблицы (**A9:K9**, рис. 6.1).

В ячейках **A10:**C10 задать начальное приближение к решению, для этого установить ссылки на коэффициенты матрицы B (**G5:G7**). В ячейки **A11:**C11 ввести формулы метода простых итераций.

Обратите внимание на то, что ссылки на коэффициенты системы должны иметь абсолютную адресацию (используйте клавишу F4).

Заполнить блок вычисления погрешностей $\Delta_1, \Delta_2, \Delta_3$ приближенного решения на (κ +1)-ом шаге (**D11:F11**). Для этого достаточно распространить вправо формулу ячейки **D11**. С помощью функции «МАКС» определить максимальную из полученных погрешностей (**G11**).

С помощью функции «ЕСЛИ» ввести комментарий (**H11**), сигнализирующий об окончании итерационного процесса. Обратите внимание на необходимость применения абсолютной адресации (**\$1\$6**) при использовании в формулах ссылок на значение заданной точности ε . Ввести формулы для вывода приближенного решения системы линейных уравнений: X_1 (**I11**), X_2 (**J11**), X_3 (**K11**).

Задание 2. Решить индивидуальный вариант (см. таблицу 3 приложения). Предварительно проверить выполнение условия доминирования диагональных элементов. Если данное условие не выполняется, преобразовать систему линейных уравнений. Скопировать контрольный пример на новый лист и ввести свои данные — матрицы A и B. Получить ответ, оформить работу в тетради.

	А	В	С	D	Е	F	G	Н	ı	J	K
4											
5		0,63	0,05	0,15			0,34		3		
6	A=	0,05	0,34	0,1		B=	0,32		0,001		
7		0,15	0,1	0,7			0,72				
8											
9	x1(k+1)	x2(k+1)	x3(k+1)	Δ1	Δ2	Δ3	Макс.	коммент.	x1	x2	x3
10	0,340	0,320	0,720								
11	0,343	0,679	0,910	0,003	0,359	0,190	0,359	Продолж.			
12	0,269	0,623	0,858	0,074	0,056	0,052	0,074	Продолж.			
13	0,286	0,649	0,882	0,017	0,026	0,024	0,026	Продолж.			
14	0,278	0,640	0,875	0,008	0,009	0,007	0,009	Продолж.			
15	0,281	0,643	0,878	0,003	0,003	0,003	0,003	Продолж.			
16	0,280	0,642	0,877	0,001	0,001	0,001	0,001	Продолж.			
17	0,280	0,642	0,877	0,000	0,000	0,000	0,000	Стоп	X1=0,28	X2=0,642	X3=0,877

Р и с. 6.1. Решение системы линейных уравнений методом простых итераций

Метод Зейделя. Отличие метода Зейделя от метода простых итераций заключается в том, что при вычислении x_2^{k+1} используется значение x_1^{k+1} , полученное на текущей итерации, а при вычислении x_3^{k+1} — значения x_1^{k+1} , x_2^{k+1} :

$$\begin{cases} x_1^{k+1} = (b_1 - a_{12}x_2^k - a_{13}x_3^k)/a_{11} \\ x_2^{k+1} = (b_2 - a_{21}x_1^{k+1} - a_{23}x_3^k)/a_{22} \\ x_3^{k+1} = (b_3 - a_{31}x_1^{k+1} - a_{32}x_2^{k+1})/a_{33} \end{cases}$$

Данная модификация позволяет ускорить сходимость итерационного процесса.

Задание 3. Найти решение системы линейных уравнений

$$\begin{cases} 0.63x_1 + 0.05x_2 + 0.15x_3 = 0.34 \\ 0.05x_1 + 0.34x_2 + 0.1 & x_3 = 0.32 \\ 0.15x_1 + 0.1 & x_2 + 0.7 & x_3 = 0.72 \end{cases}$$

методом Зейделя с точностью ε =0,001.

Скопировать лист лабораторной работы, выполненной методом простых итераций. В ячейках **A11:C11** записать формулы, реализующие метод Зейделя, и распространить их вниз до появления слова «Стоп».

	Α	В	С	D	Е	F	G
8							
9	x1(k+1)	x2(k+1)	x3(k+1)	Δ1	Δ2	Δ3	Макс.
10	0,340	0,320	0,720				
11	0,343	0,679	0,858	0,003	0,359	0,138	0,359
12	0,281	0,647	0,876	0,061	0,032	0,018	0,061
13	0,280	0,642	0,877	0,002	0,005	0,001	0,005
14	0,280	0,642	0,877	0,000	0,000	0,000	0,000

Р и с. 6.2. Решение системы линейных уравнений методом Зейделя

Очевидно, что решения X1, X2, X3, полученные методом простых итераций и методом Зейделя, должны отличаться на величину не более 0,001.

Задание 4. Решить индивидуальный вариант (см. таблицу 3 приложения) методом Зейделя. Оформить работу в тетради.

Оформите ответ: Решена система линейных уравнений _____ с точностью ε =___. Корни системы X1=____, X2=____, X3=____ найдены на ___ шаге метода простых итераций и на ___ шаге метода Зейделя.

Выше рассмотрены приближенные методы решения систем линейных уравнений.

Запишем исходную систему линейных уравнений в матричной форме:

$$AX = B$$
.

Для нахождения точного решения системы линейных уравнений можно воспользоваться методом обратной матрицы:

$$X = A^{-1}B.$$

Следует помнить, что метод обратной матрицы применяется только для решения систем линейных уравнений, содержащих равное количество уравнений и неизвестных и являющихся невырожденными (определитель $|A| \neq 0$).

Задание **5.** Выполнить проверку правильности приближенного решения системы линейных уравнений

$$\begin{cases} 0.63x_1 + 0.05x_2 + 0.15x_3 = 0.34 \\ 0.05x_1 + 0.34x_2 + 0.1 & x_3 = 0.32 \\ 0.15x_1 + 0.1 & x_2 + 0.7 & x_3 = 0.72, \end{cases}$$

полученного методами простых итераций и Зейделя, используя метод обратной матрицы.

Выполнить контрольный пример (см. рис. 6.3) на отдельном листе. Оформить заголовок лабораторной работы, скопировать исходные данные — матрицы A и B.

Средствами Microsoft Excel вычислить матрицу, обратную данной (J5:L7). Найти корни системы путем умножения обратной матрицы (J5:L7) на матрицу В (G5:G7). При заполнении блока C10:C12 используется мастер функций и сочетание клавиш CTRL+SHIFT+ENTER. Сравнить полученные ответы с результатами предыдущих лабораторных работ.

	Α	В	С	D	Е	F	G	Н	ı	J	K	L
3												
4												
5		0,63	0,05	0,15			0,34			1,680	-0,147	-0,339
6	A=	0,05	0,34	0,1		B=	0,32		$A^{-1} =$	-0,147	3,083	-0,409
7		0,15	0,1	0,7			0,72			-0,339	-0,409	1,560
8												
9							Г				Y	
10			0,280					Д.	ля нах	кождени	ія обрат	той
11		X=	0,642					Ma	атриц	ы:		
12			0,877					_	выдел	ить диа	пазон (J5:L7);
	=M\(\)	/МН()Ж(J5	5:L7;G	3:0	37)		_	вмест	о ОК н)БР(В5: ажать к nift+Ent	омби-

Р и с. 6.3. Решение системы линейных уравнений методом обратной матрицы

Задание 6. Решить индивидуальный вариант (см. таблицу 3 приложения) методом обратной матрицы.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Задание 7. 1) С помощью элементарных преобразований добиться выполнения условия доминирования диагональных элементов системы линейных уравнений

$$\begin{cases} 2,7x_1 + 9,8x_2 + 3,3x_3 = 2,1 \\ 3,5x_1 + 1,7x_2 + 2,8x_3 = 1,7 \\ 4,5x_1 + 5,8x_2 - 2,7x_3 = 0,8 \end{cases}$$

2) Решить систему линейных уравнений

$$\begin{cases} 6x_1 + x_2 + x_3 = 12 \\ x_1 + 2x_2 + x_3 = 2 \\ 2x_1 + x_2 - 4x_3 = 8 \end{cases}$$

Выполнить два шага: а) методом Зейделя; б) методом итераций. В качестве начального приближения (x_1^0, x_2^0, x_3^0) использовать значения (0.0.0).

Контрольные вопросы

- 1. Решение СЛУ методом Зейделя. Сходимость метода.
- 2. Решение СЛУ методом итераций. Сравнение методов.

тренировочный тест

		T
№	Задания	Варианты ответов
1	Вычислить абсолютную погрешность функ-	A. 0,27 B. 0,5
	ции $y = ab - a$, если $a = 3\pm 0,03$; $b = 6\pm 0,04$.	C. 0,30 D. 0,33
2	Найти относительную погрешность функции $y = a\sqrt{b}$, если относительные погрешности переменных $da = 0.06$; $db = 0.04$.	A. 0,08 B. 0,1, C. 0,0616 D. 0,0012
3	Вычислить предельную относительную погрешность функции $y = \sqrt{a+b}$, если $A = 2 \pm 0.02$; $B = 4 \pm 0.04$.	A. 0,005 B. 0,001 C. 0,05 D. 0,003
4	Установить, какая из точек может быть начальной при решении уравнения $x^3 + 3x^2 - 2 = 0$ методом касательных: 1) $x_0 = -3$; 2) $x_0 = -2$; 3) $x_0 = 0$.	А. 1), В. 2), С. 3), D. 1) и 3).
5	С помощью графического метода найти отрезок, содержащий корень уравнения $x^2 - e^{-x} = 0$.	A. [3; 5] B. [1; 2] C. [-2; 0] D. [0; 1]
6	Выполнить две итерации метода касательных для решения уравнения $x^3 + x = 4$ на отрезке [1; 2].	A. 1,5 B. 1,39 C. 0,87 D. 1,7
7	Выполнить две итерации методом Зейделя для решения системы линейных уравнений $\begin{cases} 5x_1 + 3x_2 + x_3 = 10 \\ 3x_1 - 6x_2 + 2x_3 = 6 \\ 4x_1 + 4x_2 - 10x_3 = 18 \end{cases}$ Начальное приближение $x^{(0)}$ =(0; 0; 0).	A. $x^{(2)} = (2,8;-0,33;-0,6)$ B. $x^{(2)} = (2;-1;-1)$ C. $x^{(2)} = (2,2;-0,23;-1,0)$ D. $x^{(2)} = (1,8;-0,33;-0,9)$

Ответы: 1) **A**; 2) **A**; 3) **A**; 4) **A**; 5) **D**; 6) **B**; 7) **C**.

Тема 1. ЭЛЕМЕНТЫ ТЕОРИИ ПОГРЕШНОСТЕЙ

Таблица 1 Задания к лабораторной работе № 1

No		7		
No	Выражение		чения парамет	
п/п	*	A	В	C
1.	$x = \frac{a \cdot b}{\sqrt[3]{c}}$	3,85±0,04	2,043±0,004	96,6±0,2
2.	$x = \frac{\sqrt{a \cdot b}}{c}$	2,28±0,6	84,6±0,02	68,7±0,05
3.	$x = \frac{\sqrt{a \cdot b}}{c}$	4,632±0,03	23,3±0,04	11,3±0,6
4.	$x = \frac{a^2b}{c}$	0,323±0,005	3,147±0,008	1,78±0,05
5.	$x = \frac{ab^3}{\sqrt{c}}$	0,323±0,005	3,147±0,008	1,78±0,05
6.	$x = \frac{ab}{c^2}$	0,258±0,01	3,45±0,004	1,374±0,007
7.	$x = \frac{a^2b}{c - b}$	2,712±0,005	0,37±0,02	13,21±0,08
8.	$x = \frac{a^2b}{c^3}$	3,804±0,003	4,05±0,005	2,18±0,01
9.	$x = \sqrt{\frac{a \cdot c}{b}}$	0,834±0,004	138±0,03	1,84±0,01
10.	$x = \frac{a - b}{b \cdot c}$	54,8±0,02	2,45±0,01	0,68±0,04
11.	$x = \frac{\sqrt{a \cdot b}}{c^2}$	13,28±0,02	2,37±0,007	5,13±0,01
12.	$x = \frac{a\sqrt{b}}{c^2}$	0,231±0,008	2,13±0,01	5,91±0,05
13.	$x = \frac{a}{\sqrt{c} + b}$	1,182±0,005	2,18±0,009	0,19±0,01
14.	$x = \frac{a + \sqrt{c}}{b^2}$	0,95±0,01	2,3±0,03	1,195±0,005

$N_{\underline{0}}$	Выражение	Значения параметров		
п/п	Быражение	A	В	C
15.	$x = \frac{a+b}{\sqrt{c}}$	1,19±0,05	2,3±0,1	5,191±0,08
16.	$x = \frac{a}{b + \sqrt{c}}$	13,52±0,02	5,1±0,03	9,273±0,008
17.	$x = \frac{a}{\sqrt{c+b}}$	1,18±0,01	2,75±0,05	3,62±0,007
18.	$x = a + \frac{b}{\sqrt{c}}$	1,95±0,03	2,18±0,01	9,193±0,008
19.	$x = a + b + c^2$	0,193±0,006	1,19±0,01	2,276±0,009
20.	$x = a + \frac{\sqrt{c}}{b}$	2,56±0,04	1,785±0,09	3,4±0,1
21.	$x = \frac{a}{b + \sqrt{c}}$	0,171±0,004	0,91±0,007	1,1±0,01
22.	$x = \frac{\sqrt{a}}{b + \sqrt{c}}$	1,65±0,06	0,09±0,04	13,5±0,08
23.	$x = \sqrt{a} + \frac{b^2}{c}$	1,18±0,05	5,1±0,01	0,9±0,005
24.	$x = \sqrt{ac} + \frac{b}{a}$	13,7±0,05	6,2±0,01	0,721±0,008
25.	$x = \frac{b}{c + \sqrt{a}}$	0,18±0,005	1,231±0,008	7,3±0,01
26.	$x = \frac{a + \sqrt{b}}{\sqrt{c}}$	13±0,08	7,1±0,02	0,831±0,007
27.	$x = \frac{a}{b} + \sqrt{c}$	15,76±0,03	7,3±0,05	1,141±0,009
28.	$x = 1 + \sqrt{a} + \frac{b}{c}$	0,841±0,008	1,13±0,01	5,21±0,04
29.	$x = \frac{a + \sqrt{c}}{b}$	1,692±0,005	2,13±0,008	13,1±0,02
30.	$x = \frac{a \cdot c}{\sqrt[3]{b}}$	3,85±0,02	2,043±0,005	9,61±0,04

Тема 2. **ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ**

Таблица 2 Задания к лабораторным работам № 2—5

№ п/п	Уравнение	<u>№</u> п/п	Уравнение
1.	$x^3 - 3x^2 + 3 = 0$	16.	$2 - x = \ln(x)$
2.	$x + 2 = e^{2x}$	17.	$x + \lg(x) = 0.5$
3.	$x^3 + 3x^2 - 2 = 0$	18.	$(x+1)^2 = \frac{1}{2}e^{-x}$
4.	$3x + \cos(x) + 1 = 0$	19.	$(2-x)e^x = 1$
5.	$x^3 - 12x - 5 = 0$	20.	$x^2 + 4\sin\left(x\right) + 1 = 0$
6.	$\left(x+1\right)^3 + \ln\left(x\right) = 0$	21.	$4\cos(x) - 2x^3 = 0$
7.	$x \cdot 2^x = 1$	22.	$x^3 + 6x^2 - 5 = 0$
8.	$\sqrt{x+1} = x$	23.	$2\cos 2x - 3x = 0$
9.	$x - \cos(x) = 0$	24.	$x^3 + 3e^{2x} = 0$
10.	$x + \ln \frac{x}{2} = 0$	25.	$\sqrt{x+1} = 2x$
11.	$2x^3 + 9x^2 - 4 = 0$	26.	$x^2 - 3e^{-2x} = 0$
12.	$x^3 + 3x^2 - 1 = 0$	27.	$x^3 + 2\sin(3x) + 2 = 0$
13.	$x^3 + \cos(x) = 0$	28.	$\cos(x) - x + 2 = 0$
14.	$x^3 - 3x^2 + 3, 5 = 0$	29.	$(x-1)^2 - e^{-(x+1)} = 0$
15.	$x^3 + 12x^2 - 10 = 0$	30.	$\left(x-1\right)^2 = \frac{1}{2}e^x$

Тема 3. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Таблица 3

Задания к лабораторной работе № 6

	1
$1\begin{cases} 27x_1 + 3,3x_2 + 1,3x_3 = 21\\ 3,5x_1 - 17x_2 + 2,8x_3 = 17\\ 4,1x_1 + 5,8x_2 - 17x_3 = 8 \end{cases}$	$2\begin{cases} 17x_1 + 2,8x_2 + 1,9x_3 = 7\\ 2,1x_1 + 34x_2 + 1,8x_3 = 11\\ 4,2x_1 - 1,7x_2 + 13x_3 = 28 \end{cases}$
$3\begin{cases} 31x_1 + 2,8x_2 + 1,9x_3 = 2\\ 1,9x_1 + 31x_2 + 2,1x_3 = 21\\ 7,5x_1 + 3,8x_2 + 48x_3 = 56 \end{cases}$	$ 4 \begin{cases} 91x_1 + 5,6x_2 + 7,8x_3 = 98 \\ 3,8x_1 + 51x_2 + 2,8x_3 = 67 \\ 4,1x_1 + 5,7x_2 + 12x_3 = 58 \end{cases} $
$ \begin{cases} 33x_1 + 2, 1x_2 + 2, 8x_3 = 8 \\ 4, 1x_1 + 37x_2 + 4, 8x_3 = 57 \\ 2, 7x_1 + 1, 8x_2 + 11x_3 = 32 \end{cases} $	$ \begin{cases} 76x_1 + 5,8x_2 + 4,7x_3 = 101 \\ 3,8x_1 + 41x_2 + 2,7x_3 = 97 \\ 2,9x_1 + 2,1x_2 + 38x_3 = 78 \end{cases} $
$7 \begin{cases} 32x_1 - 2.5x_2 + 3.7x_3 = 65 \\ 0.5x_1 + 34x_2 + 1.7x_3 = -2.4 \\ 1.6x_1 + 2.3x_2 - 15x_3 = 43 \end{cases}$	$ \begin{cases} 54x_1 - 2,3x_2 + 3,4x_3 = -35 \\ 4,2x_1 + 17x_2 - 2,3x_3 = 27 \\ 3,4x_1 + 2,4x_2 + 74x_3 = 19 \end{cases} $
$9 \begin{cases} 36x_1 + 1,8x_2 - 4,7x_3 = 38 \\ 2,7x_1 - 36x_2 + 1,9x_3 = 4 \\ 1,5x_1 + 4,5x_2 + 33x_3 = -16 \end{cases}$	$10 \begin{cases} 56x_1 + 2,7x_2 - 1,7x_3 = 19 \\ 3,4x_1 - 36x_2 - 6,7x_3 = -24 \\ 0,8x_1 + 1,3x_2 + 37x_3 = 12 \end{cases}$
$11\begin{cases} 27x_1 + 0.9x_2 - 1.5x_3 = 35\\ 4.5x_1 - 28x_2 + 6.7x_3 = 26\\ 5.1x_1 + 3.7x_2 - 14x_3 = -14 \end{cases}$	$12 \begin{cases} 45x_1 - 3, 5x_2 + 7, 4x_3 = 25 \\ 3, 1x_1 - 6x_2 - 2, 3x_3 = -15 \\ 0, 8x_1 + 7, 4x_2 - 5x_3 = 64 \end{cases}$
$13 \begin{cases} 38x_1 + 6, 7x_2 - 1, 2x_3 = 52 \\ 6, 4x_1 + 13x_2 - 2, 7x_3 = 38 \\ 2, 4x_1 - 4, 5x_2 + 35x_3 = -6 \end{cases}$	$14 \begin{cases} 54x_1 - 6, 2x_2 - 0, 5x_3 = 5, 2\\ 3, 4x_1 + 23x_2 + 0, 8x_3 = -8\\ 2, 4x_1 - 1, 1x_2 + 38x_3 = 18 \end{cases}$

$15 \begin{cases} 78x_1 + 5, 3x_2 + 4, 8x_3 = 18\\ 3, 3x_1 + 11x_2 + 1, 8x_3 = 23\\ 4, 5x_1 + 3, 3x_2 + 28x_3 = 34 \end{cases}$	$16 \begin{cases} 38x_1 + 4, 1x_2 - 2, 3x_3 = 48 \\ -2, 1x_1 + 39x_2 - 5, 8x_3 = 33 \\ 1, 8x_1 + 1, 1x_2 - 21x_3 = 58 \end{cases}$
$17 \begin{cases} 17x_1 - 2, 2x_2 + 30x_3 = 18 \\ 2, 1x_1 + 19x_2 - 2, 3x_3 = 28 \\ 4, 2x_1 + 3, 9x_2 - 31x_3 = 51 \end{cases}$	$18 \begin{cases} 28x_1 + 3, 8x_2 - 32x_3 = 45 \\ 2, 5x_1 - 28x_2 + 3, 3x_3 = 71 \\ 6, 5x_1 - 7, 1x_2 + 48x_3 = 63 \end{cases}$
$19 \begin{cases} 33x_1 + 3,7x_2 + 4,2x_3 = 58 \\ 2,7x_1 + 23x_2 - 2,9x_3 = 61 \\ 4,1x_1 + 4,8x_2 - 50x_3 = 70 \end{cases}$	$20 \begin{cases} 71x_1 + 6,8x_2 + 6,1x_3 = 70 \\ 5,0x_1 + 48x_2 + 5,3x_3 = 61 \\ 8,2x_1 + 7,8x_2 + 71x_3 = 58 \end{cases}$
$21 \begin{cases} 37x_1 + 3.1x_2 + 4.0x_3 = 50 \\ 4.1x_1 + 45x_2 - 4.8x_3 = 49 \\ -2.1x_1 - 3.7x_2 + 18x_3 = 27 \end{cases}$	$22 \begin{cases} 41x_1 + 5, 2x_2 - 5, 8x_3 = 70 \\ 3, 8x_1 - 31x_2 + 4, 0x_3 = 53 \\ 7, 8x_1 + 5, 3x_2 - 63x_3 = 58 \end{cases}$
$23 \begin{cases} 37x_1 - 2, 3x_2 + 4, 5x_3 = 24 \\ 2, 5x_1 + 47x_2 - 7, 8x_3 = 35 \\ 1, 6x_1 + 5, 3x_2 + 13x_3 = -24 \end{cases}$	$24 \begin{cases} 63x_1 + 5, 2x_2 - 0, 6x_3 = 15 \\ 3, 4x_1 - 23x_2 + 3, 4x_3 = 27 \\ 0, 8x_1 + 1, 4x_2 + 35x_3 = -23 \end{cases}$
$25 \begin{cases} 15x_1 + 2, 3x_2 - 3, 7x_3 = 45 \\ 2, 8x_1 + 34x_2 + 5, 8x_3 = -32 \\ 1, 2x_1 + 7, 3x_2 - 23x_3 = 56 \end{cases}$	$26 \begin{cases} 1,3x_1 + 3,3x_2 + 27x_3 = 21\\ 2,8x_1 - 17x_2 + 3,5x_3 = 17\\ 17x_1 + 5,8x_2 - 4,1x_3 = 8 \end{cases}$
$ 27 \begin{cases} 1,9x_1 + 2,8x_2 + 17x_3 = 7 \\ 1,8x_1 + 34x_2 + 2,1x_3 = 11 \\ 13x_1 - 1,7x_2 + 4,2x_3 = 28 \end{cases} $	$28 \begin{cases} 1,9x_1 + 2,8x_2 + 31x_3 = 2\\ 2,1x_1 + 31x_2 + 1,9x_3 = 21\\ 48x_1 + 3,8x_2 + 7,5x_3 = 56 \end{cases}$
$29 \begin{cases} 7,8x_1 + 5,6x_2 + 91x_3 = 98 \\ 2,8x_1 + 51x_2 + 3,8x_3 = 67 \\ 12x_1 + 5,7x_2 + 4,1x_3 = 58 \end{cases}$	$30 \begin{cases} 2,8x_1 + 2,1x_2 + 33x_3 = 8\\ 4,8x_1 + 37x_2 + 4,1x_3 = 57\\ 11x_1 + 1,8x_2 + 2,7x_3 = 32 \end{cases}$

$31 \begin{cases} 4,7x_1 + 5,8x_2 + 36x_3 = 101 \\ 2,7x_1 + 41x_2 + 3,8x_3 = 97 \\ 38x_1 + 2,1x_2 + 2,9x_3 = 78 \end{cases}$	$32 \begin{cases} 3,7x_1 - 2,5x_2 + 32x_3 = 65 \\ 1,7x_1 + 34x_2 + 0,5x_3 = 2,4 \\ 15x_1 + 2,3x_2 - 1,6x_3 = 43 \end{cases}$
$33 \begin{cases} 3,4x_1 - 2,3x_2 + 54x_3 = -35 \\ 2,3x_1 + 17x_2 - 4,3x_3 = 27 \\ 74x_1 + 2,4x_2 + 3,4x_3 = 19 \end{cases}$	$34 \begin{cases} 4,7x_1 + 1,8x_2 - 34x_3 = 38\\ 1,9x_1 - 36x_2 + 2,7x_3 = 4\\ 33x_1 + 4,5x_2 + 1,5x_3 = -16 \end{cases}$
$35 \begin{cases} 1,7x_1 + 2,7x_2 - 56x_3 = 19 \\ 6,7x_1 - 36x_2 - 3,4x_3 = -24 \\ 37x_1 + 1,3x_2 + 0,7x_3 = 12 \end{cases}$	$36 \begin{cases} 1,5x_1 + 0,9x_2 - 27x_3 = 35 \\ 6,7x_1 - 28x_2 + 4,5x_3 = 26 \\ 14x_1 + 3,7x_2 - 5,1x_3 = -1,4 \end{cases}$

ОТВЕТЫ К ЗАДАНИЯМ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Лабораторная работа № 1. Задание 5.

1)
$$d(a\sqrt[3]{b})^* \approx 0,0042$$
; 2) $d(c-a)^* = 0,11$; 3) $d\left(\frac{a}{c+a}\right)^* \approx 0,0147$.

4)
$$\Delta \left(\frac{\sqrt[3]{b}}{c}\right)^* = 0,0087$$
; 5) $\Delta (3ac)^* = 1,35$; 6) $\Delta (a(c-b))^* = 0,59$

Лабораторная работа № 2. Задание 5.

1)
$$[a,b] = [1; \frac{p}{2}];$$
 2) $[a,b] = [3;p];$

3)
$$[a,b]=[1;2];$$
 $y(1)=-2$, $y(2)=8$; $y'=3x^2+2x$, для любых $x \in [1;2]: y'>0$.

Лабораторная работа № 3. Задание 8.

1)
$$c_1 = 1.5$$
; $c_2 = 1.25$; $c_3 = 1.375$; $c_4 = 1.3125$.

2) [-3;-2], т.к.
$$y(-3)y(-2) = -9 \cdot 5 = -45 < 0$$
 и $y' = 3x^2 + 2x$ для любых $x \in [-3;-2]$: $y' > 0$.

3)
$$c_1 = -0.5$$
; $c_2 = -0.636$.

Лабораторная работа № 4. Задание 7.

- 1) $x_0 = -1$; $x_1 = -0.75$; $x_2 = -0.686$; $x_3 = -0.682$.
- 2) $x_0 = -1$.

Лабораторная работа № 5. Задание 5.

1)
$$|q| = \left| -\frac{1}{2} \right| = \frac{1}{2} < 1$$
; $x_1 = 2$; $x_2 = 1,546$; $x_3 = 1,5$.

2)
$$x = \sqrt{3-x}$$
 Ha [1,2]; $x_0 = \frac{2+1}{2} = 1,5$; $x_1 = 1,225$; $x_2 = 1,332$.

Точное решение квадратного уравнения на отрезке [1,2] имеет $-1+\sqrt{13}$

вид
$$x = \frac{-1 + \sqrt{13}}{2} \approx 1,303$$
. Оценка погрешности $\Delta x = |x - x_2| = 0,029$;

$$dx = \frac{\Delta x}{|x|} = 0,022$$
; $dx = 0,022 \cdot 100\% = 2,2\%$

Лабораторная работа № 6. Задание 7.

1) Способов преобразовать систему существует несколько. Приведем один из них.

 $\frac{1 \text{ шаг}}{|a_{22}|}$: поменять местами 1 и 2 уравнение, во 2 строке выполняется: $|a_{22}| \ge |a_{21}| + |a_{23}|$. $\frac{2 \text{ шаг}}{|a_{11}|}$: 1 строка + 3 строка, в результате: $|a_{11}| \ge |a_{12}| + |a_{13}|$. $\frac{3 \text{ шаг}}{|a_{12}|}$: 3 строка — 2 строка, получим $|a_{33}| \ge |a_{31}| + |a_{32}|$.

2) a)
$$\underline{1}$$
 $\underline{\text{mar}}$: $X^{(1)} = (2, 0, -1)$, $\underline{2}$ $\underline{\text{mar}}$: $X^{(2)} = (2, 17; 0, 42; -0.81)$;

б) 1 шаг:
$$X^{(1)} = (2, 1, -2), 2$$
 шаг: $X^{(2)} = (2, 17; 1; -0, 75).$

СПИСОК РЕКОМЕНЛОВАННОЙ ЛИТЕРАТУРЫ

- 1. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. М.: Изд-во МЭИ, 2003. 595 с.
- 2. *Бахвалов Н.С.* Численные методы. М.: Бином. Лаборатория знаний, 2008. 636 с.
- 3. *Вержбицкий В.М.* Численные методы (математический анализ и обыкновенные дифференциальные уравнения). М.: ОНИКС 21 в., 2005. 399 с.
- 4. Волков Е.А. Численные методы. СПб.; М.; Краснодар: Лань, 2007. 248 с.
- 5. *Киреев В.И.*, *Пантелеев А.В.* Численные методы в примерах задачах. М.: Высш.шк., 2006. 480 с.
- 6. *Пирумов У.Г.* Численные методы. М.: Дрофа, 2004. 221 с.
- 7. *Формалев В.Ф.*, *Ревизников Д.Л*. Численные методы. М.: Физматлит, 2006. 400 с.

СОДЕРЖАНИЕ

Предисловие	3
Тема 1. Элементы теории погрешностей	4
Лабораторная работа № 1. Абсолютная и относительная	
погрешности	4
Тема 2. Численные методы решения нелинейных уравнений	11
Лабораторная работа № 2. Способы отделения корней	
уравнений	11
Лабораторная работа № 3. Решение нелинейных уравнений	
методами бисекций (деления отрезка пополам) и хорд	17
Лабораторная работа № 4. Решение нелинейных уравнений	
методом Ньютона (касательных) и комбинированным	
методом хорд и касательных	22
Лабораторная работа № 5. Решение нелинейных уравнений	
методом итераций	27
Тема 3. Численные методы решения систем	
линейных уравнений	30
Лабораторная работа № 6. Решение систем линейных	
уравнений методом простых итераций и методом Зейделя	30
Приложения	36
Ответы к заданиям для самостоятельной работы	42
Список рекомендованной литературы	43

Учебное издание

Численные методы и их реализация в Microsoft Excel. Часть 1.

БАШКИНОВА Елена Викторовна ЕГОРОВА Галина Федоровна ЗАУСАЕВ Артем Анатольевич

Печатается в авторской редакции

Лицензия ИД № 02651 от 28.08.2000 Подписано в печать 16.01.2009 Формат 60х84 1/16. Бумага офсетная. Печать офсетная. Усл. п. л. 2,6. Уч.-изд.л. 2,56. Тираж 400 экз. Рег. № 8. Заказ № 13.

.....

Государственное образовательное учреждение высшего профессионального образования «Самарский государственный технический университет» 443100, г. Самара, ул. Молодогвардейская, 244. Главный корпус

Отдел типографии и оперативной полиграфии 443100, г. Самара, ул. Молодогвардейская, 244. Корпус 8