Testing Techniques 2021 - 2022Tentamen

January 24, 2022

1 Model-Based Testing

Consider the labelled transition systems q_1 , q_2 , q_3 , and q_4 in Fig. 1. These systems model queues with input ?in and outputs !out and !full.

Figure 1: Four models of queues.

System q_1 represents an unbounded queue; the dotted lines at the bottom of q_1 are meant to indicate that there are infinitely many states, and that there is no bound on the number of ?in actions that can be performed after each other. System q_2 is also an unbounded queue, but it is a

lossy queue: every second input may get lost. Queues q_3 and q_4 are bounded queues with capacity three, the difference being that q_4 gives an explicit message when the queue is full.

- a. Which of the systems q_1, q_2, q_3, q_4 are input-enabled? Why?
- b. Consider **ioco** as implementation relation:

```
i ioco s \iff_{\text{def}} \forall \sigma \in Straces(s) : out(i \text{ after } \sigma) \subseteq out(s \text{ after } \sigma)
```

Take q_3 as specification and q_4 as implementation. Is q_4 an **ioco**-correct implementation of q_3 , i.e., does q_4 **ioco** q_3 hold? Explain.

- c. Can an unbounded queue correctly implement a bounded queue specification, i.e., does q_1 ioco q_3 hold? And if the queue is lossy: does q_2 ioco q_3 hold? Explain.
- d. Compare the two unbounded queues: does q_1 ioco q_2 or q_2 ioco q_1 hold?
- e. Now compare the two unbounded queues for implementation relation **uioco**:

What differs with respect to the previous question? Does q_1 uioco q_2 or q_2 uioco q_1 hold?

Figure 2: Test case t_1 for queue systems.

- f. Fig. 2 gives a test case t_1 . From which of the models q_1 and q_2 can this test case be generated using the **ioco**-test generation algorithm?
- g. Give the test runs and determine the verdict of executing the test case t_1 on q_2 .
- h. Is test case t_1 sound for specification q_1 with respect to implementation relation **ioco**? And is it sound for q_2 with respect to **ioco**? Explain.

Labelled Transition Systems

Consider the processes P_1 , P_2 , and P_3 , which are represented as labelled transition systems in Figure 3 with labelset $L = \{a, b, c, d\}$.

Figure 3:

- a. Argue informally whether you consider the following pairs of processes to be equivalent or not, i.e., describe test experiments or observations that can distinguish the processes, or argue why they cannot be distinguished:
 - 1. P_1 and P_2
 - 2. P_2 and P_3
 - 3. P_1 and P_3
- b. Consider testing equivalence, that is, perform a trace of actions σ and see which actions can then be refused. Formally:

 $p \approx_{te} q \iff_{def} \forall \sigma \in L^*, \ \forall A \subseteq L: \ p \text{ after } \sigma \text{ refuses } A \text{ iff } q \text{ after } \sigma \text{ refuses } A$

with p after σ refuses $A \iff_{\text{def}} \exists p': p \stackrel{\sigma}{\Longrightarrow} p'$ and $\forall a \in A \cup \{\tau\}: p' \stackrel{a}{\longrightarrow} A$.

Which of the following pairs of processes are \approx_{te} ? Why?

- 1. P_1 and P_2
- 2. P_2 and P_3
- 3. P_1 and P_3
- c. Now consider the processes as input-output transition systems with $L_I = \{a\}$ and $L_U =$ $\{b,c,d\}$ and completed with self-loops in order to make them input-complete. Which of the following pairs of processes are **ioco**-related?
 - 1. P_1 ioco P_2
 - 2. P_2 ioco P_3
 - 3. P_3 ioco P_1