M

Homework Assignment 1

1. a) Y= \(\beta \chi + \epsilon \)
\(\delta \chi \beta \) = \(\lambda \chi \beta \chi \beta

b) (so e is a rand, om variable. And no matter the difference where our model is fixed or random, is a random variable because it is observed so in term, is a constant because it is observed so in term, is a random variable. A random variable has the probability distribution of the likelihood of any possible values

C)
$$\hat{i} = (x^{T} \times)^{-1} x^{T} Y = \frac{1}{N} \leq Y_{i} = \hat{F} = \hat{B}_{0}$$
 $Var(\hat{B}) = (X'X)^{-1} \sigma^{2} = \frac{D^{2}}{N} \geq derivation$
 $E(\hat{B}) = E\{(x^{T}X)^{-1} x^{T}Y\} = (x^{T}X)^{-1} x^{T} E(Y)$
 $= (x^{T}X)^{-1} x^{T} X \beta = i\beta = \beta$
 $Var(\hat{B}) = Var\{(x^{T}X)^{-1} x^{T} Y \}$
 $= (x^{T}X)^{-1} x^{T} Var(Y) x (x^{T}X)^{-1}$
 $= D^{2} (x^{T}X)^{-1} (x^{T}) |x(x^{T}X)^{-1} = D^{2} (x^{T}X)^{-1}$
 $\hat{B} = E[(x^{T}X)^{-1} (x^{T}(X) + e))$
 $E\hat{B} = E[(x^{T}X)^{-1} (x^{T}(X) + e))$

d) E... En are normally distributed

'B is also normal because 'it can be written as a linear combination.


```
In [1]: import numpy as np
   import matplotlib.pyplot as plt
   import pandas as pd
   import scipy
```

Question 2

a

```
In [2]: data = pd.read_csv("RAV4-142-Spring2021.csv")
    data.info()
    data.head()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 120 entries, 0 to 119
Data columns (total 8 columns):
MonthNumeric
               120 non-null int64
MonthFactor
               120 non-null object
Year
               120 non-null int64
RAV4Sales
              120 non-null int64
Unemployment
              120 non-null float64
RAV4Queries
              120 non-null int64
               120 non-null float64
CPIAll
CPIEnergy
              120 non-null float64
dtypes: float64(3), int64(4), object(1)
memory usage: 7.6+ KB
```

Out[2]:

	MonthNumeric	MonthFactor	Year	RAV4Sales	Unemployment	RAV4Queries	CPIAII	CPIEnergy
0	1	January	2011	11196	9.1	29	221.187	229.258
1	2	February	2011	12562	9.0	29	221.898	232.068
2	3	March	2011	16082	9.0	29	223.046	240.079
3	4	April	2011	15586	9.1	27	224.093	247.977
4	5	May	2011	8624	9.0	28	224.806	250.744

```
In [3]: # from sklearn.model_selection import train_test_split
    train = data[data['Year'] <= 2016]
    test = data[data['Year'] > 2016]
    len(train), len(test)
```

Out[3]: (72, 48)

```
In [10]: import statsmodels.formula.api as smf
    ols = smf.ols(formula='RAV4Sales~ RAV4Queries ',data=train)
    model1 =ols.fit()
    print(model1.summary())
```

```
OLS Regression Results
______
Dep. Variable:
                  RAV4Sales R-squared:
0.725
Model:
                       OLS Adj. R-squared:
0.721
               Least Squares F-statistic:
Method:
184.1
              Thu, 11 Feb 2021 Prob (F-statistic):
                                                2.7
Date:
9e-21
                    11:49:03 Log-Likelihood:
Time:
                                                -6
96.68
                        72 AIC:
No. Observations:
1397.
Df Residuals:
                        70
                          BIC:
1402.
Df Model:
                        1
            nonrobust
Covariance Type:
______
           coef std err t P>|t| [0.025]
0.9751
______
Intercept -6727.5531 2040.356 -3.297 0.002 -1.08e+04 -26
58.191
RAV4Queries 682.3590 50.285 13.570 0.000 582.069
                                                 7
=====
                      2.895 Durbin-Watson:
Omnibus:
1.402
                     0.235 Jarque-Bera (JB):
Prob(Omnibus):
2.446
                     -0.153 Prob(JB):
Skew:
0.294
                      3.850 Cond. No.
Kurtosis:
=====
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The equation is RAV4Sales=682.3590*RAV4Queries. In order to see how different varibales affected the RAV4Sales, I formulated a linear regression model using the different variables like Unemployment, RAV4Queries, CPIEnergy, and CPIAII. After trying the different ones, RAV4Queries have the best influence on RAV4sales and its coefficient is positive which indicates that there will be

an increase in sales, whereas Uemployment and CPIEnergy had negative coefficients. CPIAII also had a positive coefficient but its R squared value was less than RAV4Queries'. The model right here has a R squared value of 0.725.

b

OLS Regression Results

=====	========	=======	========	======	====
Dep. Variable:	RAV4Sales	R-square	ed:		
0.884					
Model:	OLS	Adj. R-s	quared:		
0.853					
Method:	Least Squares	F-statis	tic:		
28.51					
Date: Thu	, 11 Feb 2021	Prob (F-	statistic):		8.5
5e-21					
Time:	12:03:21	Log-Like	elihood:		-6
65.48					
No. Observations:	72	AIC:			
1363.					
Df Residuals:	56	BIC:			
1399.					
Df Model:	15				
Covariance Type:	nonrobust				
=======================================		=======	========	======	====
============					
	coef	std err	t	P> t	
[0.025 0.975]				, ,	
Intercept	7.754e+04	8.82e+04	0.879	0.383	_
9.92e+04 2.54e+05					
MonthFactor[T.August]	2422.0989	1679.828	1.442	0.155	_
943.001 5787.199					
<pre>MonthFactor[T.December]</pre>	1885.2249	1704.333	1.106	0.273	-1
528.965 5299.414					
<pre>MonthFactor[T.February]</pre>	-2922.8349	1644.025	-1.778	0.081	-6
216.214 370.544					
MonthFactor[T.January]	-4543.8071	1648.557	-2.756	0.008	-7
846.264 -1241.350					
MonthFactor[T.July]	-193.7079	1687.715	-0.115	0.909	-3
574.607 3187.191					
MonthFactor[T.June]	-1426.1733	1666.576	-0.856	0.396	-4
764.726 1912.380					
MonthFactor[T.March]	466.8540	1639.891	0.285	0.777	-2
818.243 3751.951					
MonthFactor[T.May]	2010.0694	1640.329	1.225	0.226	-1
275.904 5296.043					
MonthFactor[T.November]	-1540.1770	1687.060	-0.913	0.365	-4
919.765 1839.411			01720		_
MonthFactor[T.October]	-1808.4239	1695.135	-1.067	0.291	- 5
204.188 1587.340	100011207	_0,0,1,00	1.007	V.271	3
MonthFactor[T.September]	-1879.2594	1651.944	-1.138	0.260	-5
188.501 1429.982	10// 23/4	1001.044	1.150	0.200	- 3
Unemployment	-3687.3648	1437.100	-2.566	0.013	-6
566.223 -808.507	3007.3040	140/•100	-2.500	0.013	0
RAV4Queries	228.4423	116.205	1.966	0.054	
1711 JÖRCT TCD	220.7123	110.203	1.900	0.034	

-4.343	461.228					
CPIEnergy		1.1895	40.426	0.029	0.977	
-79.794	82.173					
CPIAll		-175.4430	379.958	-0.462	0.646	_
936.590	585.704					
=======	========	==========	=======		========	===
=====						
Omnibus:		7.146	Durbin-W	Natson:		
1.287						
Prob(Omnibus):		0.028	Jarque-E	Bera (JB):		1
1.806						
Skew:		0.206	Prob(JB)	:		0.
00273						
Kurtosis:		4.941	Cond. No			8.7
0e+04						

=====

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.7e+04. This might indicate that ther e are

strong multicollinearity or other numerical problems.

The equation is RAV4Sales=228.4423*RAV4Queries -3687.3648*Unemployment +

1.1895*CPIEnergy -175.4430*CPIAII. This model has the new independent variable MonthFactor so that the model can also take seasonality into account to predict the sales accurately. The coefficients of each monthly variable depicts either a positive or negative value and when some coefficient months like (June and May) are positive which means that they tend to affect the sales positively. All other months have negative coefficients which affect the sales in the negatively. The new R squared value is .884 and the new significant variables are RAV4 , MonthFactorAugust, MonthFactorMay, and MonthFactorDecember. Adding an independent variable is insightful for the model as we discovered new significant variables and also the R squared value increased from the previous model. I think to improve the model, we can calculate with only significant independent monthly variables.

C

OLS Regression Results

=======================================	========	=======	=========		====
===== Don Variable:	RAV4Sales	R-square	.d.		
Dep. Variable: 0.823	RAV45ales	K-Square	eu:		
Model:	OLS	Adj. R-s	squared:		
0.784	OLD	11aj• K-2	quarea.		
	Least Squares	F-statis	stic:		
20.81	neade bquares	1 Beacin	, , , , ,		
	, 11 Feb 2021	Prob (F-	statistic):		3.5
2e-17	,	1102 (1	200012010,		
Time:	12:20:55	Log-Like	elihood:		-6
80.67		_			
No. Observations:	72	AIC:			
1389.					
Df Residuals:	58	BIC:			
1421.					
Df Model:	13				
	nonrobust				
=======================================				======	====
============	acct	atd own	L	ודן	
[0.025 0.975]	coei	sta err	t	P> t	
[0.025 0.975]					
Intercept	8624.1725	9353.043	0.922	0.360	_
1.01e+04 2.73e+04					
MonthFactor[T.August]	1255.5472	2020.862	0.621	0.537	-2
789.647 5300.741					
<pre>MonthFactor[T.December]</pre>	3299.8868	1994.327	1.655	0.103	_
692.193 7291.967					
MonthFactor[T.February]	-3107.3139	1986.328	-1.564	0.123	-7
083.382 868.754					
MonthFactor[T.January]	-4738.9921	1991.884	-2.379	0.021	-8
726.182 -751.802					
MonthFactor[T.July]	-1582.4212	2017.397	-0.784	0.436	- 5
620.680 2455.837	0.400 = 4.40				
MonthFactor[T.June]	-2482.5140	2004.795	-1.238	0.221	-6
495.548 1530.520	222 4250	1005 441	0 160	0 070	2
MonthFactor[T.March] 651.868 4296.718	322.4250	1985.441	0.162	0.872	-3
651.868 4296.718 MonthFactor[T.May]	2206.3199	1985.491	1.111	0.271	-1
768.071 6180.711	2200.3199	1905.491	1.111	0.271	-1
MonthFactor[T.November]	-283.9308	1987.790	-0.143	0.887	-4
262.924 3695.062	-203.3300	1907.790	-0.143	0.007	
MonthFactor[T.October]	-611.4919	1986.632	-0.308	0.759	-4
588.167 3365.183					=
MonthFactor[T.September]	-1756.3385	1989.174	-0.883	0.381	-5
738.102 2225.425					
RAV4Queries	586.4704	77.764	7.542	0.000	
430.808 742.132					
CPIEnergy	-47.9223	28.966	-1.654	0.103	-

105.904	10.059		
=========	=========		
=====			
Omnibus:		5.917	Durbin-Watson:
0.973			
Prob(Omnibus) :	0.052	Jarque-Bera (JB):
7.536			
Skew:		-0.268	Prob(JB):
0.0231			

4.491 Cond. No.

5.4

====

0e+03

Kurtosis:

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.4e+03. This might indicate that ther e are

strong multicollinearity or other numerical problems.

In [13]: ols = smf.ols(formula='RAV4Sales~ RAV4Queries+CPIEnergy+MonthFactor',data=te
 model1 =ols.fit()
 print(model1.summary())

	_	ssion Resu			
====					
Dep. Variable:	RAV4Sales	R-squar	ed:		
0.682		-			
Model:	OLS	Adj. R-	squared:		
0.560					
Method:	Least Squares	F-stati	stic:		
5.599					
Date:	Thu, 11 Feb 2021	Prob (F	-statistic):		2.6
2e-05					
Time:	14:01:34	Log-Lik	elihood:		-4
63.60					
No. Observations:	48	AIC:			
955.2					
Df Residuals:	34	BIC:			
981.4					
Df Model:	13				
Covariance Type:	nonrobust				
		== ==		== ==	==
_	coef	std err	t	P> t	
[0.025 0.975]	COET	DCG GII	C	1, 6	
Intercept	-4594.3439	1.27e+04	-0.361	0.720	_
3.04e+04 2.13e+04					
MonthFactor[T.August	1.344e+04	3248.488	4.137	0.000	6
835.804 2e+04					
MonthFactor[T.Decemb	per] 9486.5446	3251.640	2.917	0.006	2
878.417 1.61e+04					
MonthFactor[T.Februa	ary] 574.8912	3229.172	0.178	0.860	-5
987.576 7137.359					
MonthFactor[T.Januar		3211.628	-0.833	0.411	-9
200.838 3852.789					
MonthFactor[T.July]	9630.8203	3261.708	2.953	0.006	3
002.231 1.63e+04	m a	2045 5:-			
MonthFactor[T.June]	7046.8050	3241.147	2.174	0.037	
460.001 1.36e+04	0400 5000	2100 000	0.760	0 451	
MonthFactor[T.March]	2432.7239	3190.099	0.763	0.451	-4
050.337 8915.784	1 01 0104	2102 022	2 162	0 002	2
MonthFactor[T.May] 608.025 1.66e+04	1.01e+04	3192.822	3.162	0.003	3
MonthFactor[T.Novemb	per] 7211.3926	3233.726	2.230	0.032	
639.670 1.38e+04	DET /211.3920	3233./20	2.230	0.032	
MonthFactor[T.Octobe	er] 6629.6823	3229.020	2.053	0.048	
67.523 1.32e+04	0027.0023	3227.020	2.000	0.040	
MonthFactor[T.Septem	mber] 9741.2666	3224.511	3.021	0.005	3
188.271 1.63e+04	J/11.2000	3221,311	3.021	0.003	3
RAV4Queries	115.9049	44.866	2.583	0.014	
24.727 207.083		3 0 0			
CPIEnergy	121.5095	60.188	2.019	0.051	
-0.808 243.827					

______ ===== 1.718 Durbin-Watson: Omnibus: 1.177 Prob(Omnibus): 0.424 Jarque-Bera (JB): 1.158 Skew: -0.009 Prob(JB): 0.560 2.239 Cond. No. 4.3 Kurtosis: 7e+03

=====

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.37e+03. This might indicate that the re are

strong multicollinearity or other numerical problems.

The R squared value is 0.823 and osr squared is 0.682. I think this model can be useful bc the osr squared value can help predict RAV4 Sales.

d

<class 'pandas.core.frame.DataFrame'>
Index: 22 entries, City to Dallas
Data columns (total 1 columns):

Category: All categories 22 non-null object

dtypes: object(1)

memory usage: 352.0+ bytes

Out[31]:

Category: All categories

City	Toyota RAV4: (1/1/11 - 1/1/20)
Yonkers	100
San Jose	85
Boston	71
Houston	62
Portland	62
New York	60
San Diego	59
Philadelphia	59
Los Angeles	59

```
In [33]: # frames = [data, filterd]
         # final = pd.concat(frames, axis =1)
         # final.info()
         # final.head()
         # filterd.append(data, ignore index=False)
         city = filterd["Category: All categories"]
         data = data.join(city)
         ValueError
                                                    Traceback (most recent call las
         t)
         <ipython-input-33-96268641aeb7> in <module>()
               5 # filterd.append(data, ignore_index=False)
               6 city = filterd["Category: All categories"]
         ---> 7 data = data.join(city)
         /Users/gyelgireddy/anaconda/lib/python3.6/site-packages/pandas/core/fram
         e.py in join(self, other, on, how, lsuffix, rsuffix, sort)
            6813
                        # For SparseDataFrame's benefit
            6814
                         return self._join_compat(other, on=on, how=how, lsuffix=l
         suffix,
         -> 6815
                                                   rsuffix=rsuffix, sort=sort)
            6816
                     def _join_compat(self, other, on=None, how='left', lsuffix
            6817
         ='', rsuffix='',
         /Users/gyelgireddy/anaconda/lib/python3.6/site-packages/pandas/core/fram
         e.py in join compat(self, other, on, how, lsuffix, rsuffix, sort)
            6828
                             return merge(self, other, left on=on, how=how,
            6829
                                           left index=on is None, right index=True,
         -> 6830
                                           suffixes=(lsuffix, rsuffix), sort=sort)
            6831
                         else:
            6832
                             if on is not None:
         /Users/gyelgireddy/anaconda/lib/python3.6/site-packages/pandas/core/resha
         pe/merge.py in merge(left, right, how, on, left_on, right_on, left_index,
         right index, sort, suffixes, copy, indicator, validate)
              46
                                           copy=copy, indicator=indicator,
              47
                                           validate=validate)
         ---> 48
                     return op.get result()
              49
              50
         /Users/gyelgireddy/anaconda/lib/python3.6/site-packages/pandas/core/resha
         pe/merge.py in get_result(self)
             550
             551
                         llabels, rlabels = items overlap with suffix(ldata.items,
         lsuf,
         --> 552
                                                                       rdata.items,
         rsuf)
             553
             554
                         lindexers = {1: left_indexer} if left_indexer is not None
         else {}
```

/Users/gyelgireddy/anaconda/lib/python3.6/site-packages/pandas/core/inter nals/managers.py in items overlap with suffix(left, lsuffix, right, rsuff

ValueError: columns overlap but no suffix specified: Index(['Category: Al
l categories'], dtype='object')

Struggled with joining both tables but if it worked I would do the below. The new data value I wanted to exist to our existing data frame is the city where RAV4s were sold. Based on the R squared value and OSR squared value, I would be able to tell how much the variable of city be significant or not.

```
In [ ]: ols = smf.ols(formula='RAV4Sales~ RAV4Queries+CPIEnergy+MonthFactor+City',da
model1 =ols.fit()
print(model1.summary())
```