

Olivier Iffrig

Introduction

Supernovae

rill regions

Conclusion

The End

Stellar feedback processes in kiloparsec-scale numerical simulations of the ISM: a real challenge

Olivier Iffrig with Patrick Hennebelle, Sam Geen

Astrophysics division, CEA Saclay

Journées de la Société Française d'Astronomie et d'Astrophysique June 17, 2016

Olivier Iffrig

Introduction

i ilysics

IIII region

Conclusion

Introduction

Olivier Iffrig

Introduction

....

Physics Numerics

Supernova

H_{II} region

Conclusio

The End

Physical context

Goal

Self-consistent feedback models to simulate star formation

Scales

- Kiloparsec box
- < 4 pc resolution

Physical processes

- Turbulence
- · Magnetic field
- Gravity (stars + DM, self-gravity)
- Star formation
- Feedback

Olivier Iffrig

Introduction

Numerics

Supernova

TT:

Conclusio

Conclusio

- - -

Numerical setup

The code

- RAMSES (Teyssier, A & A, 2002, Fromang et al., A & A, 2006)
- MHD, self-gravity (+ galactic potential), cooling
- · Sink particles for star formation and feedback source

Simulations

- Stratified conditions: gaussian n(z), $B_x(z)$
- · Initial turbulent velocity field
- Sink particles: massive star every $120\,M_\odot$
- Feedback models: supernovae, $\boldsymbol{H}_{\boldsymbol{II}}$ regions

Olivier Iffrig

Introduction

Supernovae

Model

Implementation

rill regions

Supernovae

Olivier Iffrig

Introduction

Supernova

Model

Implementati

Simulations

Concidator

The End

The model

Olivier Iffrig

Introduction

Supernovae

Jupernovae

Model Implementati

Simulations

Conclusion

The End

The model

Olivier Iffrig

Introduction

Supernova

Implementation

mpiementatio

H_m regio

Conclusio

Implementation

Hennebelle & Iffrig, A & A, 2014

Schemes

- · Fixed rate
 - A Random position
 - B Densest region
- Star formation events
 - C Within 10 pc around the sink
 - D Between 10 and 20 pc around the sink

The problem

· Big variability!

Olivier Iffrig

Introduction

Supernova

Implementat

Simulations

Jiiiiuiution.

Conclusio

First stars + 40 Myr

Olivier Iffrig

introduction

Supernova

Implementa

Simulations

LI rogio

Conclusio

The End

Simulations

We chose the most "realistic" scheme

- One supernova for every $120 \, M_{\odot}$ accreted
- · Location within 10 pc around the sink
- 2 values of momentum: 10^{43} (cheaper!) and 4×10^{43} g cm s⁻¹
- Magnetic field: 0, 2.5, 5, and 10 μG in the midplane

Olivier Iffrig

IIIIIoductio

Supernovae

Model

mpiement

Simulations

ri_{II} region

Conclusio

The End

40 Myr,
$$p_{SN} = 10^{43} \,\mathrm{g \, cm \, s^{-1}}$$

Olivier Iffrig

Introduction

Supernovae

 H_{II} regions

Models

Implementatio

Simulations

 H_{II} regions

Olivier Iffrig

Introduction

 H_{II} region

Models

Implementati

Conclusio

The models

Photon flux

• Fit of Vacca et al., ApJ, 1996

H_{II} region momentum

· Analytical model: Geen et al., MNRAS, 2015

Olivier Iffrig

Introductio

Dupernove

 $m H_{II}$ regions

Implementation

Simulation

Conclusio

The En

Implementation

Based on sinks

- Create a stellar object every $120\,M_{\odot}$ accreted
- Draw a random mass from an IMF 8 $M_{\odot} \leq M \leq$ 120 M_{\odot}
- Compute a lifetime for this mass (fit of Woosley et al., RvMP, 2002, Claret, A & A, 2004)
- Compute a photon flux

2 variants

- Put $H_{\rm II}$ region momentum
- Radiative transfer simulations (RAMSES-RT, Rosdahl et al., MNRAS, 2013)
- Both with or without a supernova at end of life

Olivier Iffrig

Introduction

Supernova

TT:

IIII regio

....

Simulations

Conclusion

The End

Simulations

14/17

Olivier Iffrig

Introduction

Supernovae

 $H_{\rm II}$ regions

Conclusion

The End

Conclusion

Olivier Iffrig

Introduction

Conclusion

TI - 1

Conclusion

What we have

- · Supernova feedback
- H_{II} region kinetic model
- $H_{\mbox{\scriptsize II}}$ regions with radiative transfer

What's next

- H_{II} region parameter study
- High-resolution simulations
- Other feedback sources (protostellar jets, ...)
- · In-detail study of the interactions

Olivier Iffrig

Introduction

Supernovae

H_{II} regions

Conclusion

The End

Thanks for your attention!