Методические указания к выполнению расчётно-графической работы по теме

«Предел»

Описание работы

Расчетно-графические работы выполняются командами студентов (по 3-4 человека) и заключаются в выполнении заданий, оформлении отчета и его защите (порядок см. ниже). Сформированные команды сами выбирают себе номер от 1 до 8 так, чтобы у каждой команды он был уникальный.

Требования

К выполнению заданий – в работе должны быть:

- 1) поставлены требуемые задачи;
- 2) представлены в логической последовательности основные этапы исследования или решения;
- 3) указаны используемые теоретические положения и методы;
- 4) получены точные численные результаты и построены требуемые графические изображения.

К содержанию отчета — отчет выполняется в электронном виде (текстовый документ или презентация; для презентации в MS Power Point используется шаблон Университета ИТМО: ИСУ —> Полезные ссылки —> Корпоративная стилистика —> Презентации (в самом низу)). Отчёт должен содержать:

- 1) титульный лист/слайд (название дисциплины, учебный год, название РГР, ФИ исполнителей, номера групп, ФИ преподавателя, ФИ ментора (если у преподавателя есть ментор), дата, место выполнения);
- 2) условия всех заданий (условие каждого задания перед его решением);
- 3) основные этапы решения (исследования) каждой задачи, его теоретическое обоснование, численные результаты;
- 4) графики или рисунки, иллюстрирующие решение каждой задачи (выполненные в математическом редакторе Desmos: https://www.desmos.com/, Geogebra: https://www.geogebra.org/ или других);
- выводы;
- 6) оценочный лист (вклад каждого исполнителя оценивается всей командой по шкале от 0 до 100% баллов).

К оформлению отчета:

- 1) Страницы и слайды следует пронумеровать (на титульной странице/слайде номер не ставится).
- 2) Текст представляется полностью в цифровом виде. Не допускается вставка фото или сканов текста, а также скриншотов электронного текста.
- 3) Все формулы набираются в редакторе формул. Не допускается набор формул текстом (например, $f(x)=3*x^2$), а также вставка фото или сканов формул, однако допускается вставка скриншотов электронных формул (если ни один редактор формул не доступен). Про редакторы формул:
 - а. в MS Office есть встроенный редактор формул;
 - b. в MS Office также есть скачиваемая надстройка MathТуре для набора формул;
 - с. Google-документы и Open Office имеют встроенные редакторы формул;
 - d. в LaTeX встроен набор формул;
 - е. можно воспользоваться бесплатным сервисом набора формул https://editor.codecogs.com/ и скачать формулу в виде изображения;
 - f. или воспользоваться математическим пакетом (MathCAD, Wolfram Mathematica и др.) или сайтом Wolfram Alpha и сделать оттуда скриншоты формул.

Защита работ

Порядок защиты РГР определяется преподавателем практики.

Задание 1. Метод математической индукции

Пользуясь методом математической индукции, докажите, что при любом $n \in \mathbb{N}$:

,	, ,	1		
	№ ком.	Утверждение		
	1.	$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{13}{24} \text{при} n > 1$		
	2.	$1^{2} + 3^{2} + \dots + (2n - 1)^{2} = \frac{n(4n^{2} - 1)}{3}$		
	3.	число $n(2n^2 - 3n + 1)$ кратно 6		
	4.	$1 \cdot 2 + 2 \cdot 5 + \dots + n(3n - 1) = n^2(n + 1)$		
	5.	$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n+1} > 1$		
	6.	$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + (n-1)n = \frac{(n-1)n(n+1)}{3}$		
	7.	число n^5-n делится на 5		
	8.	$1 \cdot 2^2 + 2 \cdot 3^2 + \dots + (n-1)n^2 = \frac{n(n^2 - 1)(3n + 2)}{12}$		

- 1) Ознакомьтесь с методом математической индукции. Например, в задачнике: Кудрявцев Л.Д. и др. «Сборник задач по математическому анализу» Том 1 (2003).
- 2) Проверьте утверждение для номеров n = 1, n = 2, n = 3 (база индукции).
- 3) Предположите, что утверждение верно (индукционное предположение).
- 4) Покажите, что из справедливости индукционного предположения для номера n следует справедливость этого утверждения для номера n+1 (*шаг индукции*).
- 5) Сделайте вывод.

Задание 2. Исследование предела рекуррентно заданной последовательности

Вещественная последовательность задана рекуррентно: $x_{n+1} = \sqrt{2 + x_n}$, где $x_1 \in \mathbb{R}$. Исследуйте её предел при $n \to \infty$ в зависимости от значения x_1 .

- 1) Предположите, что предел существует, и найдите его. Доказательство существования предела будет проведено в п. 6).
- 2) Какими могут быть значения x_1 ? Укажите множество возможных значений x_1 . Докажите ваш ответ аналитически.
- 3) При каком значении x_1 последовательность является стационарной? Докажите это аналитически.
- 4) Познакомьтесь с теоремой Вейерштрасса об ограниченной монотонной последовательности и запишите её формулировку (например, в учебнике: Зорич В.А. "Математический анализ" Том 1 (2019): глава III, п. 3. "Вопросы существования предела").
- 5) Выделите характерные случаи для значений x_1 (с точки зрения монотонности) и проиллюстрируйте их графиками последовательности.
- 6) Докажите аналитически ограниченность и монотонность последовательности для каждого характерного случая. Сделайте заключение о существовании предела по теореме Вейерштрасса.

Задание 3. Сравнение бесконечно малых

Решите задачу, следуя плану (см. ниже).

№ ком.	Задача	
1.	Какой порядок будет иметь приращение площади круга по отношению к бесконечно малому приращению его радиуса?	
2.	Какой порядок будет иметь приращение площади квадрата по отношению к бесконечно малому приращению его диагонали?	
3.	Какой порядок будет иметь приращение площади прямоугольного треугольника по отношению к бесконечно малому приращению одного из его катетов?	
4.	Какой порядок будет иметь приращение площади треугольника по отношению к бесконечно малому приращению одного из его углов?	
5.	Какой порядок будет иметь приращение объема шара по отношению к бесконечно малому приращению его радиуса?	
6.	Какой порядок будет иметь приращение объема конуса по отношению к бесконечно малому приращению радиуса его основания?	
7.	Какой порядок будет иметь приращение объема прямой призмы с квадратом в основании по отношению к бесконечно малому приращению стороны квадрата?	
8.	Какой порядок будет иметь приращение объема правильного тетраэдра по отношению к бесконечно малому приращению его ребра?	

- 1) Сделайте геометрическую иллюстрацию к задаче.
- 2) Составьте математическую модель: введите обозначения, составьте формулу.
- 3) Решите задачу аналитически.
- 4) Запишите ответ и проиллюстрируйте его геометрически.

Задание 4. Прикладные задачи

Решите задачу, следуя плану (см. ниже).

№ ком.	Задача
1.	Дан правильный треугольник со стороной a . Из трех его высот строится новый правильный треугольник и так n раз. Найдите предел суммы площадей всех треугольников при $n \to \infty$.
2.	В круг радиуса r вписан квадрат, в квадрат вписан круг и так n раз. Найдите предел суммы площадей всех кругов и предел суммы площадей всех квадратов при $n \to \infty$.
3.	Отрезок длиной a разделен на n частей и на каждой построена полуокружность. Найдите предел длины получившейся линии при $n \to \infty$.
4.	Отрезок длиной a разделен на n частей и на каждой построен равносторонний треугольник. Найдите предел длины получившейся ломаной при $n \to \infty$.
5.	В равнобедренном прямоугольном треугольнике, катет которого равен a , гипотенуза разделена на n частей и на каждой построен треугольник со сторонами, параллельными катетам. Найдите предел длины получившейся ломаной при $n \to \infty$.
6.	Вычислите длину окружности как предел периметра вписанного многоугольника, полученного удвоением числа сторон вписанного правильного шестиугольника.
7.	В треугольной пирамиде боковое ребро высотой h перпендикулярно основанию. Площадь основания равна S . Плоскости, параллельные основанию пирамиды, делят ее на n слоев. На основании каждого слоя строится прямая треугольная призма. Найдите предел суммы объемов призм при $n \to \infty$.
8.	Дан конус с высотой h и радиусом основания R . Плоскости, параллельные основанию конуса, делят его на n слоев. На основании каждого слоя строится прямой цилиндр. Найдите предел суммарного объема цилиндров при $n \to \infty$.

- 1) Сделайте геометрическую иллюстрацию к задаче.
- 2) Составьте математическую модель: введите обозначения, составьте формулу.
- 3) Решите задачу аналитически.
- 4) Запишите ответ и проиллюстрируйте его геометрически.

Задание 5. Исследование сходимости

Даны последовательность a_n и функция f(x). Исследуйте поведение предложенных величин.

-	_	_			
		•	0	TI	•

1)	Вычислите предел последовательности при $n \to \infty$.	Вычислите предел функции при $x \to \infty$.	
2)	Постройте график общего члена последовательности в зависимости от номера n .	Постройте график функции в зависимости от x .	
3)	Проиллюстрируйте сходимость (расходимость) последовательности:	Проиллюстрируйте сходимость (расходимость) функции на бесконечности:	
3a)	вспомните определение сходимости (расходимости) последовательности;	вспомните определение сходимости (расходимости) функции на бесконечности;	
3б)	выберите три различных положительных числа $\varepsilon_1 > \varepsilon_2 > \varepsilon_3$;		
3в)	для каждого такого числа изобразите на графике ε-окрестность («ε-трубу»)		
3г)	и найдите на графике номер n_0 , после которого все члены последовательности попадают в ε -окрестность, или установите, что такого номера нет.	и найдите на графике δ -окрестность переменных x , в которой все значения функции $f(x)$ попадают в ε -окрестность, или установите, что такой окрестности нет.	

№ ком.	a_n	f(x)
1.	$a_n = \frac{4}{1 \cdot 9} + \frac{4}{9 \cdot 17} + \dots + \frac{4}{(8n-7) \cdot (8n+1)}$	$f(x) = \left(\frac{2x - 3}{3x + 8}\right)^{4x + 11}$
2.	$a_n = \frac{8^{n+2} + (-7)^{n-1}}{5 \cdot 8^n + (-7)^n}$	$f(x) = \left(\frac{1 - x^2}{2 - 7x^2}\right)^{x - 13}$
3.	$a_n = \frac{3+8++(5n-2)}{4+7++(3n+1)}$	$f(x) = \left(\frac{x^3 - 1}{3x^3 + 1}\right)^{x^3 - 3}$
4.	$a_n = \frac{\sqrt[3]{n^5(5n-3)} - \sqrt[3]{5n^6 + 2}}{\sqrt{9n^2 - 2n + 3}}$	$f(x) = \left(\frac{1-x}{2-10x}\right)^{5x-3}$
5.	$a_n = -\frac{3}{5} + \frac{3}{25} - \dots + 3 \cdot \frac{\left(-1\right)^n}{5^n}$	$f(x) = \left(\frac{3x-1}{2x+11}\right)^{1-3x}$
6.	$a_n = \frac{\sqrt{9n^4 - 1} + \sqrt{3n^2 + 1}}{7 + 9 + \dots + (2n + 5)}$	$f(x) = \left(\frac{4+3x}{5+x}\right)^{7x+2}$
7.	$a_n = \frac{5 - n + 3n^2}{2 + 6 + \dots + (4n - 2)}$	$f(x) = \left(\frac{13x + 8}{10x - 1}\right)^{x^3 - 1}$
8.	$a_n = \sqrt[3]{n^2} \left(\sqrt[3]{(3n^2 - 1)^2} - \sqrt[3]{(3n^2 + 1)^2} \right)$	$f(x) = \left(\frac{5 - 3x}{1 - 2x}\right)^{0,3x - 3}$