Solution 1

Sequence a_1, a_2, a_3, a_4, a_5

Proof

(a) By Contradiction. Suppose that there is no 3-chain in our sequence and $a_1 \leq a_3$. If $a_4 \ge a_3$ then we have 3-chain with a_1, a_3, a_4 . This implies $a_4 < a_3$.

If $a_4 < a_3$ then $a_1 < a_2$ and $a_1 \le a_3$ implies $a_3 < a_2$. So, $a_4 < a_3 < a_2$ is a 3-chain. This implies $a_4 \geq a_3$. Contradiction.

Thus $a_1 > a_3$.

Proof

(b) If there is no 3-chain then $a_1 > a_3$. So, $a_3 < a_2$. Now, $a_4 > a_3$ and $a_4 < a_2$ for no 3-chain to exist. Thus, $a_3 < a_4 < a_2$.

Proof

(c) We have $a_1 < a_2$ and $a_3 < a_4 < a_2$.

 $a_5 \geq a_2$ will result in 3-chain a_1, a_2, a_5 $a_5 \geq a_4$ will result in 3-chain a_3, a_4, a_5 $a_5 \geq a_1$ will result in 3-chain a_3, a_4, a_5 or a_2, a_4, a_5 . $a_5 \geq a_3$ will result in 3-chain a_2, a_4, a_5 . $a_5 \leq a_3$ will result in 3-chain a_2, a_3, a_5 .

Thus any value of a_5 produces a 3-chain.

Proof

(d) By Contradiction. Suppose $\exists a_1, a_2, a_3, a_4, a_5$ such that no 3-chain exists.

If $a_1 > a_2$ then, $a_2 < a_3 < a_1$ then any a_4 will create 3-chain.

 $a_2 < a_1 < a_4 < a_3$ any a_5 will create 3-chain.

If $a_1 < a_2$ then, $a_1 > a_3$ and $a_3 < a_4 < a_2$. But now, any a_5 will create a 3-chain.

Contradiction.

Solution 2

By Induction.

Induction Hypothesis: P(n) implies for all non negative integer n,

$$\sum_{i=0}^{n} i^3 = ((n(n+1))/2)^2$$

Then,
$$\sum_{i=0}^{n+1} i^3 = \sum_{i=0}^n i^3 + (n+1)^3$$
.

Base case: n = 0. P(0) is $\sum_{i=0}^{0} i^3 = 0 = ((0(0+1))/2)^2$. Thus, P(0) is true. For induction, assume P(n) is true. Now, P(n+1) is $\sum_{i=0}^{n+1} i^3 = (((n+1)(n+2))/2)^2$. Then, $\sum_{i=0}^{n+1} i^3 = \sum_{i=0}^{n} i^3 + (n+1)^3$. $((n(n+1))/2)^2 + (n+1)^3 = (n+1)^2(n^2/4 + (n+1)) = (n+1)^2((n^2+4n+4)/4) = (n+1)^2((n^2+4n+4$ $(n+1)^2((n+2)^2/4) = (((n+1)(n+2))/2)^2.$

Therefore $P(n) \implies P(n+1)$.

By the axiom of induction P(n) is true.