Двойственные пространства

1 Определение

Пусть V - векторное пространство над полем $\mathbb K$. Линейной формой (или линейным функционалом) будем называть такой гомоморфизм (который очевидно является линейным отображением) вида $\omega:V\to\mathbb K$. Множество $Hom(V,\mathbb K)$ таких линейных форм принято называть двойственным к V и обозначаь V^* .

В силу обладания свойствами линейного отображения образ линейной формы однозначно определяется образом базиса:

$$v \in V, \omega(v) = \omega(\sum_{i \in I} x_i e_i) = \sum_{i \in I} x_i \omega(e_i).$$

Также важно заметить, что даже если базис бесконечен, в (однозначном) разложении любого вектора v по базису имеется лишь конечное число ненулевых коэффициентов коэффициентов x_i .

Справедливо сформулировать следущее

Предложение 1. После фиксирования в V базиса $\mathcal{E} = \{e_i\}_{i \in I}$ можно построить изоморфизм двойственного пространства V^* и координатного пространства (которое по сути является пространством функций $Hom(E,\mathbb{K})$) поля \mathbb{K} в количестве $|\mathcal{E}|$ элементов базиса, который переводит линейную форму $\omega \in V^*$ в ее ограничение на базис.

2 Координатные функционалы

Для каждого базиса $\{e_v\} \in V$ существует набор определенных линейных форм $\{e_v^*\} \in V^*$, которые переводят вектор $V \ni v = \sum_{i \in I} x_i e_i$ в его координату x_i вдоль e_i :

$$e_i^*: e_j \mapsto \begin{cases} 1, j = i \\ 0, j \neq i \end{cases}$$

Предложение 2. Координатные функционалы любого базиса пространства V линейно независимы в V^* .

Доказательство. Пусть $\sum \lambda_j e_j^* = 0$ в V^* , где сумма в левой части может содержать лишь конечное число ненулевых коэффициентов. Вычисляя обе части на базисном векторе e_i , получаем, что $\lambda_i = 0$ при любом i;