Lecture 6: Repeated Games

Instructor: Fei Tan

Saint Louis University

Date: October 30, 2025

The Road Ahead

- 1. The Hope and Collapse of Finite Repetition
- 2. Discount Factors and Infinite Games
- 3. Geometric Series: Taming Infinity
- 4. One-Shot Deviation Principle
- 5. Grim Trigger Strategy
- 6. Tit-for-Tat and Credibility
- 7. Folk Theorem: The Explosion of Equilibria
- 8. The Prediction Problem

Finite Repeated Games

The Intuitive Hope: If we play the Prisoner's Dilemma repeatedly, surely the shadow of the future will encourage cooperation?

Classic Prisoner's Dilemma Payoffs:

	Cooperate	Defect
Cooperate	3, 3	1, 4
Defect	4, 1	2, 2

The Brutal Reality: In any **finitely repeated** game where the end is known, backward induction destroys all hope of cooperation.

Why? Players can build trust, signal intentions, and seek rewards/punishments—but a cold, backward-flowing logic prevents cooperation when the end is certain.

The Logic of the End

Final Round Analysis: In the last round, all previous payoffs are locked in. Players must play the one-shot Nash Equilibrium.

In Prisoner's Dilemma: The unique Nash Equilibrium is (Defect, Defect) with payoffs (2, 2).

The First Domino: Certainty of final-round betrayal triggers the unraveling process.

"My actions in this round cannot sway what you will do in the final round. Since I cannot influence the future, my only rational choice is to maximize my payoff for today by defecting."

The Domino Effect

Second-to-Last Round: Players know the final round outcome is (Defect, Defect).

- 1. The Known Future: Final round is predetermined as mutual defection
- 2. **The Empty Promise**: Cooperating now cannot influence future behavior
- 3. **The Inevitable Choice**: This round becomes strategically identical to a one-shot game

The Unstoppable Collapse: This logic continues backward through every round:

Stage N → Stage N-1 → Stage N-2 → ... → Stage 1

Finite Repetition Result: The only subgame perfect equilibrium is (Defect, Defect) in every single round.

A Glimpse of Hope

The Key Insight: The entire unraveling depends on certainty about the end.

Remove the certainty → Prevent backward induction

Two Ways to Eliminate the End:

- 1. **Infinitely repeated games**: No final round exists
- 2. Unknown termination: Players don't know when the game ends

The Result: The incentive to build reputation and encourage future cooperation remains powerful because there's always a "next round" to consider.

However: This opens a complex world where almost anything can be justified as rational—the realm of the **Folk Theorem**.

Discount Factors

The Infinity Problem: How do we compare infinite payoff streams?

Player 1 always defects: $4+4+4+\ldots = \infty$

Player 1 always cooperates: $1+1+1+\ldots=\infty$

Paradox: Best and worst outcomes both equal infinity!

Solution: The discount factor δ where $0 < \delta < 1$

Two Interpretations:

- 1. **Time Value**: \$3 today > \$3 tomorrow (can invest, consume sooner)
- 2. Continuation Probability: $\delta =$ probability the game continues to next period

How Discount Factors Work

Infinite Cooperation Payoff: $3+3\delta+3\delta^2+3\delta^3+\dots$

Period-by-Period Breakdown:

- **Period 1 (Today)**: Value = 3 (no discounting)
- Period 2 (Tomorrow): Value = 3δ
- **Period 3**: Value = $3\delta^2$ (discounted twice)
- Period t: Value = $3\delta^{t-1}$

Key Rule: The exponent on δ is always one less than the period number.

Interpretation of δ Values:

- **High** δ (close to 1): Patient player, future matters greatly
- Low δ (close to 0): Impatient player, present dominates

Geometric Series

The Challenge: Calculate $X + X\delta + X\delta^2 + X\delta^3 + \dots$

Step 1 - Finite Series: $S = X + X\delta + X\delta^2 + \ldots + X\delta^{n-1}$

Step 2 - The Magic Trick:

- ullet Original: $S=X+X\delta+X\delta^2+\ldots+X\delta^{n-1}$
- ullet Multiply by δ : $\delta S = X\delta + X\delta^2 + \ldots + X\delta^{n-1} + X\delta^n$
- Subtract: $S \delta S = X X \delta^n$
- Factor: $S(1-\delta)=X(1-\delta^n)$
- Solve: $S = \frac{X(1-\delta^n)}{1-\delta}$

From Finite to Infinite

Taking the Limit: As $n \to \infty$, what happens to δ^n ?

Example with $\delta=1/2$:

•
$$(1/2)^1 = 1/2 = 0.5$$

•
$$(1/2)^2 = 1/4 = 0.25$$

•
$$(1/2)^3 = 1/8 = 0.125$$

•
$$(1/2)^{10} = 1/1024 \approx 0.001$$

$$ullet$$
 As $n o\infty$: $\delta^n o 0$

Infinite Geometric Series Formula: \$X + X\delta + X\delta^2 + ... = \frac{X}{1-\delta}\$

We've tamed infinity! The "dot dot dot" becomes a simple, finite value.

One-Shot Deviation Principle

The Exponential Strategy Problem: In a 16-decision game:

- 1 decision → 2 strategies
- 2 decisions → 4 strategies
- 3 decisions → 8 strategies
- 16 decisions → 65,536 strategies!

Traditional Approach: To prove a strategy is optimal, check it against all 65,535 alternatives. **Impossible!**

One-Shot Deviation Principle: A strategy is a subgame perfect equilibrium if and only if no player can profitably deviate at a single stage while maintaining their strategy everywhere else.

How the Principle Works

The "Obvious" Part: If a strategy is truly optimal, it must beat any single-change alternative.

The "Powerful" Part: If you can't improve by changing one decision, you can't improve by changing multiple decisions.

Why? Any complex, profitable multi-stage deviation must contain at least one "pivotal" stage that alone provides improvement.

Practical Benefit:

- Without principle: Check 65,535 alternatives
- With principle: Check only 16 one-shot deviations

Result: Transform an impossible task into a manageable one!

Grim Trigger Strategy

The Unforgiving Rule:

"If anyone has defected at any point previously, defect forever. Otherwise, cooperate."

Two Simple Rules:

- 1. Start by cooperating (offer initial trust)
- 2. Permanent punishment for any defection (no forgiveness, ever)

Two Possible Paths:

- Cooperation Path: Both cooperate → steady payoff of 3 each round
- Punishment Path: Someone defects → mutual defection forever (payoff 2)

Why "Bloodthirsty"? A single mistake triggers permanent conflict.

The Trade-Off in Grim Trigger

The Choice: Stick to cooperation or grab a short-term gain?

Option A - Cooperate: Steady payoff stream of $3, 3, 3, \ldots$

Option B - Defect Once:

- Today: Get 4 instead of 3 (temptation payoff)
- Forever After: Stuck with 2 in all future rounds (punishment)
- Payoff Stream: $4, 2, 2, 2, \ldots$

When Does Cooperation Work?

- Present value of cooperation: $\frac{3}{1-\delta}$
- ullet Present value of defection: $4+rac{2\delta}{1-\delta}$
- Cooperation condition: $rac{3}{1-\delta} \geq 4 + rac{2\delta}{1-\delta}$
- Simplifies to: $\delta \geq \frac{1}{2}$

Tit-for-Tat Strategy

The "Nice" Alternative: A forgiving strategy that doesn't hold grudges forever.

Two Simple Rules:

- 1. Start by cooperating (be nice first)
- 2. Copy opponent's last move (forgive quickly, but retaliate immediately)

On Equilibrium Path:

- Round 1: Both cooperate
- Round 2: Both cooperate (copying each other)
- Forever: Mutual cooperation with payoff (3, 3)

Off Equilibrium Path (after one defection):

- Creates alternating pattern: Cooperate, Defect, Cooperate, Defect, ...
- Payoff streams: $4, 1, 4, 1, \ldots$ vs. steady $3, 3, 3, \ldots$

Tit-for-Tat's Success

Robert Axelrod's Computer Tournaments: Tit-for-Tat consistently performed well against complex strategies submitted by experts.

Why It Works:

- Simple: Easy to understand and implement
- Nice: Starts with cooperation and forgives quickly
- Retaliatory: Punishes defection immediately
- Forgiving: Returns to cooperation after one round of punishment

The Trade-Off: Cooperation $(3,3,3,\dots)$ vs. Alternating $(4,1,4,1,\dots)$

Condition for Cooperation: Same as Grim Trigger in this example: $\delta \geq \frac{1}{2}$

The Credibility Problem

The Fatal Flaw: Tit-for-Tat's threat isn't actually credible!

After Opponent Defects, You Face:

- Option A (Punish): Defect \rightarrow payoff stream $4, 1, 4, 1, \dots$
- Option B (Forgive): Cooperate \rightarrow return to payoff stream $3, 3, 3, \dots$

The Contradiction:

- To cooperate initially: Need $\delta \geq \frac{1}{2}$ (future matters enough)
- To punish credibly: Need $\delta \leq \frac{1}{2}$ (prefer alternating to steady 3s)

Knife-Edge Condition: Only works if $\delta = \frac{1}{2}$ exactly!

Result: Tit-for-Tat is a Nash Equilibrium but *not* a Subgame Perfect Equilibrium (except at the knife-edge).

Folk Theorem

The Big Idea: In infinitely repeated games with patient players, almost any reasonable outcome can be sustained as an equilibrium.

Formal Statement: Any outcome that gives all players payoffs **strictly better** than their punishment payoff can be supported as a subgame perfect equilibrium.

Why "Folk"? The theorem emerged simultaneously from the "folklore" of game theory—many theorists discovered it around the same time.

The Mechanism:

- 1. Agreement: Players commit to a specific strategy profile
- 2. **Temptation**: Players always face short-term gains from deviating
- 3. Punishment: Any deviation triggers permanent reversion to Nash equilibrium

Beyond Simple Cooperation

Example of Complex Equilibrium:

- Player 1: Cooperate 100% of the time
- Player 2: Cooperate 95% of the time, defect 5% of the time

Why This Works:

- Both players still get expected payoffs > 2 (punishment level)
- Any deviation triggers permanent mutual defection (payoff = 2 forever)
- As long as players are patient enough, they won't risk losing the good deal

The Explosion: There are infinitely many equilibria in infinitely repeated games!

Key Condition: Players must be "sufficiently patient" (high enough δ).

The Prediction Problem

The Challenge: When everything is possible, nothing is predictable.

Example: Imagine observing this 8-period sequence:

- 1. Mutual Cooperation
- 2. Mutual Defection
- 3. Mutual Defection
- 4. (Defect, Cooperate)
- 5. Mutual Cooperation
- 6. Mutual Cooperation
- 7. (Defect, Cooperate)
- 8. (Cooperate, Defect)

Seemingly Random? The Folk Theorem shows this can be a rational equilibrium!

The Chaotic Equilibrium Explained

The Strategy:

- 1. Periods 1-8: Follow the exact prescribed sequence
- 2. **Period 9 onward**: Cooperate forever
- 3. **Punishment**: Any deviation triggers defection forever

Why It Works:

- The value of infinite future cooperation (payoff 3 forever) vastly outweighs any finite sequence of strange payoffs
- For patient players, any 8-period "cost" becomes irrelevant compared to infinite future benefits

The Problem: If **any** observed behavior can be explained as rational, our theory "predicts everything and therefore predicts nothing."