DECISION ANALYSIS - SHORT EXERCISES II - ELECTRE TRI-B

- I. Consider two alternatives a and e, and a single boundary class profile b_t . They are evaluated on two criteria g_1 and g_2 (the performances are provided in the below table) with the following specification of preference orders as well as intra- and inter-criteria parameters:
 - g_1 gain, weight w_1 =2, indifference threshold $q_1(b_t)$ =10, preference threshold $p_1(b_t)$ =50, and veto threshold $v_1(b_t)$ =100;
 - g_2 cost, weight w_2 =3, indifference threshold $q_2(b_t)$ =0, preference threshold $p_2(b_t)$ =10, and veto threshold $v_2(b_t)$ =20.

For pairs (a,b_t) , (b_t,a) , (e,b_t) , (b_t,e) , compute the marginal concordance c_j and discordance D_j indices, comprehensive concordance indices C, and outranking credibilities σ . When considering the credibility threshold $\lambda = 0.6$, verify the truth of outranking relation S for all considered pairs and indicate which relation (>, <, ?, I) holds for them.

	g ₁ ↑	g ₂ ↓	$c_1(a,b_t) =$	1	$D_1(a,b_t) =$	0	$c_1(b_t,a) =$	1	$D_1(b_t,a) =$	0	Outra	nking
а	145	40	$c_2(a,b_t) =$	0	$D_2(a,b_t) =$	1	$c_2(b_t,a) =$	1	$D_2(b_t,a) =$	0	$aS^{C}b_{t}$	b _t Sa
е	240	20	$C(a,b_t) =$	(2·1+ 3·0)/5 = 0.4			$C(b_t,a) =$	(2·1+ 3·1)/5 = 1			Relation	
b t	150	15	$\sigma(a,b_t) =$	$0.4 \cdot (1-1)/(1-0.4) = 0$			$\sigma(b_t,a) =$	1			a < b _t	

$c_1(e,b_t) =$	1	$1 \qquad D_1(e,b_t) = \qquad 0$		$c_1(b_t,e) =$	0	$D_1(b_t,e) =$	1	Outranking	
$c_2(e,b_t) =$	1	$D_2(e,b_t) =$	0	$c_2(b_t,e) =$	1	$D_2(b_t,e) =$	0	btSe	eScbt
$C(e,b_t) =$	(2*1 + 3*1)/5 = 1			$C(b_t,e) =$	(2*0 + 3*1)/5 = 0.6			Relation	
$\sigma(e,b_t) =$	1			$\sigma(b_t,e) =$	0.6*(1-1)/(1-0.6) = 0			e > bt	

II. Consider alternatives a_1 - a_{10} that are compared against boundary class profiles $b_0 - b_4$. Class C_h is defined by a lower profile b_{h-1} and an upper profile b_h . Thus, four classes $C_1 - C_4$ are considered overall, where C_4 is the most preferred class and C_1 is the least preferred. For alternatives $a_1 - a_6$ determine the class assignments according to the pessimistic and optimistic rules of ELECTRE TRI-B. The interpretation of relations in the table is as follows: > (preference), < (inverse preference), I (indifference), and ? (incomparability). For alternatives $a_7 - a_{10}$, fill in the relations that would imply the provided assignments.

		I	Profile	S		Class assignments		
Alternative	b_0	<i>b</i> ₁	b_2	b ₃	<i>b</i> ₄	Pessimistic	Optimistic	
a ₁	>	>	<	<	<	C ₂	C_2	
a ₂	>	?	<	<	<	C ₁	C_2	
a ₃	>	>	1	1	<	C4	C4	
a ₄	>	?	?	?	<	C1	C4	
a ₅	>	>	>	>	<	C4	C5	
a ₆	1	<	<	<	<	C1	C1	
a ₇	>	>	/	<	<	C ₃	C ₃	
a ₈	>	>	<	<	<	C ₂	C_2	
a ₉	>	?	?	<	<	C ₁	C ₃	
a ₁₀	^	>	1	/	<	C ₄	C ₄	