Infinite Cyclic Group Structure

Definition

Let $n \in \mathbb{Z}$:

$$nZ = \langle n \rangle = \{ nm \mid m \in \mathbb{Z} \}$$

Theorem

$$\forall n \in \mathbb{Z}, n\mathbb{Z} < \mathbb{Z}$$

Proof

Assume $n \in \mathbb{Z}$ Assume $a,b \in n\mathbb{Z}$ $\exists \, h,k \in \mathbb{Z}, a = nh \text{ and } b = nk$ $n\mathbb{Z} \subseteq \mathbb{Z}, \text{ so } b = nk \in \mathbb{Z}$ But \mathbb{Z} is a group, so $-b = -nk \in \mathbb{Z}$ a-b = nh-nk = n(h-k)But $h-k \in \mathbb{Z}$ $a-b \in n\mathbb{Z}$

 \therefore by the subgroup test, $n\mathbb{Z} \leq \mathbb{Z}$.

Corollary

 $\forall\,n\in\mathbb{Z},n\mathbb{Z}\text{ is the smallest subgroup of }\mathbb{Z}\text{ containing }n.$

Corollary

 $n\mathbb{Z}$ are the only subgroups of \mathbb{Z} :

$$H \le G \iff \exists \, n \in \mathbb{Z}, H = n\mathbb{Z}$$

Proof

$$\Longrightarrow \text{Assume } H \leq G \qquad \Longleftrightarrow \text{Assume } \exists \, n \in \mathbb{Z}, H = n\mathbb{Z} \\ H \text{ is cyclic} \qquad \text{But } n\mathbb{Z} \leq \mathbb{Z} \\ \exists \, n \in \mathbb{Z}, H = \langle n \rangle \qquad \qquad \therefore H \leq \mathbb{Z} \\ \therefore H = n\mathbb{Z}$$

Theorem

Let G be infinite cyclic. All subgroups of G must be isomorphic to some $n\mathbb{Z}$:

$$H \leq G \iff H \subseteq G \text{ and } \exists \, n \in \mathbb{Z}, H \simeq n\mathbb{Z}$$

Proof

$$\implies$$
 Assume $H \leq G$

$$H \subseteq G$$

$$G \simeq \mathbb{Z}$$

 $\exists\,\phi:G\to\mathbb{Z},\phi$ is an isomorphism

$$H \simeq \phi[H] \leq \mathbb{Z}$$

$$\exists \, n \in \mathbb{Z}, \phi[H] = n\mathbb{Z}$$

$$\therefore \exists \, n \in \mathbb{Z}, H \simeq n\mathbb{Z}$$

$$\ \ \, \Longleftrightarrow \ \, \mathsf{Assume} \,\, H \subseteq G \,\, \mathsf{and} \,\, \exists \, n \in \mathbb{Z}, H \simeq n\mathbb{Z}$$

$$\mathbb{Z} \simeq G$$

$$\exists\,\phi:\mathbb{Z}\to G,\phi$$
 is an isomorphism

$$n\mathbb{Z} \leq \mathbb{Z}$$

$$H = \phi[n\mathbb{Z}] \leq \phi[\mathbb{Z}] = G$$

$$\therefore H \leq G$$