Zadanie 1.11.J

Łukasz Magnuszewski

Treść

Skonstruować zbiór Ben
rsteina $Z\subseteq [0,1],$ czyli taki zbiór że

$$Z \cap P \neq \emptyset, P/Z \neq \emptyset$$

Dla dowolnoego zbioru domkniętego nieprzeliczalnego $P\subseteq [0,1]$. Zauważyć że Z nie jest mierzalny. a nawet $\lambda^*(Z)=\lambda^*([0,1]/Z)=1$.

Konstrukcja

Ustawmy wszystkie nasze P w ciąg pozaskończony $\{P_{\alpha}: \alpha < 2^{\aleph_0}\}$ Jest to możliwe gdyż $|Bor(\mathbb{R})| = 2^{\aleph_0}$. Na podstawie tego ciągu możemy stworzyć dwa rozłączne ciągi a_{α}, b_{α} . Definiujemy je w następujący sposób: dla każdego $\alpha < 2^{\aleph_0}$ $a_{\alpha}, b_{\alpha} \in P_{\alpha}/\{a_{\gamma}, b_{\gamma}: \gamma < \alpha\}$. Oaz $a_{\alpha} \neq b_{\alpha}$. Pokażmy że skonstruowaliśmy 2 zbiory spełniające warunki zadania.

Warunek 1

Ustalmy dowolne P, Istnieje wtedy $\alpha < 2^{\aleph_0}$, $P = P_{\alpha}$. Wtedy

$$\{a_{\alpha}\}\subseteq A\cap P$$

Oraz

$$\{b_{\alpha}\}\subseteq B\cap P$$

Warunek 2

Ustalmy dowolne P, Istnieje wtedy $\alpha < 2^{\aleph_0}$, $P = P_{\alpha}$. Wtedy

$$\{a_{\alpha}\}\subseteq P/B$$

Oraz

$$\{b_{\alpha}\}\subseteq P/A$$

Mierzalność

Ustalmy teraz dowolne dowolny ciąg przedziałów l_i, r_i taki że $A \subseteq \bigcup [l_i, r_i) =$ C. Załóżmy niewprost że $\lambda(C) \le \lambda^*(A) < 1$. Teraz rozważmy jego dopełnienie na przedziale [0.1] nazwijmy je D. $\lambda(D) > 0$. Jako że jego miara jest dodatnia to istnieje domknięty, nieprzeliczalny podzbiór. Nazwijmy go P. Z tego że A jest zbiorem Benrsteina, wiemy że przekrój A oraz P jest niepusty. Co oznacza sprzeczność.

Z tej sprzeczności wynika że $\lambda^*(A) \geq 1$ oraz że $\lambda(D) = 0$. Dodatkowo jako że A jest podzbiorem przedziału [0,1] to $\lambda^*(A) \leq 1$. Czyli $\lambda^*(A) = 1$. Analogiczny dowód można przeprowadzić dla B.

W takim razie

$$1 = \lambda^*(B) \le \lambda^*(D) = 0$$

Czyli A,B nie mogą być mierzalne.