

deeplearning.ai

Basics of Neural Network Programming

Logistic Regression

Logistic Regression

Given
$$x$$
, want $\hat{y} = P(y=1|x)$
 $x \in \mathbb{R}^{1x}$
Poraretes: $w \in \mathbb{R}^{1x}$, $b \in \mathbb{R}$.
Output $\hat{y} = \sigma(w^{T}x + b)$
Output $\hat{y} = \sigma(z)$

$$X_0 = 1, \quad x \in \mathbb{R}^{n_x + 1}$$

$$\hat{y} = 6 (0^{T}x)$$

$$6 = \begin{bmatrix} 0 & 3 & 6 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$

$$6 = \begin{bmatrix} 0 & 3 & 6 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$

$$6 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$1 + 2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$1 + 2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$1 + 2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$1 + 2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$1 + 2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
And rew N

deeplearning.ai

Basics of Neural Network Programming

Logistic Regression cost function

Logistic Regression cost function

Given
$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$
, want $\hat{y}^{(i)} \approx y^{(i)}$.

Loss (error) function: $\int_{\mathcal{C}} (\hat{y}, y) = \frac{1}{2} (\hat{y} - y)^2$

The second second