COMPUTER ARITHMETIC

Slides prepared by:
Dr. Zubair Ahmad Shah
Department of Computer Science and Engineering
Islamic University of Science and Technology, Awantipora

DATA REPRESENTATION OF FIXED-POINT BINARY DATA

 When an integer binary number is positive, the sign is represented by 0 and the magnitude by a positive binary number.

e.g.
$$+5 = 0.0000101$$

- When an integer binary number is negative, it is represented in one of the following three possible ways:
 - I. Signed-magnitude Representation
 - II. Signed-1's Complement Representation
 - III. Signed-2's Complement Representation

Data Representation cont.

Signed-magnitude Representation:

- -5 = Complement sign bit of +5 = 1 0000101
- **II. Signed-1's Complement Representation:**
 - -5 = Complement all bits of +5 including sign bit = 1 1111010
- **III. Signed-2's Complement Representation:**
 - -5 = 2's complement of +5 including the sign bit = 1 1111011

$$[+5 = 0\ 0000101]$$

ADDITION AND SUBTRACTION OF FIXED-POINT BINARY NUMBERS

Addition and Subtraction of Signed-Magnitude Numbers:

Eight different conditions to consider:

	Add	Subtract Magnitudes		
Operation	Magnitudes	When $A > B$	When $A < B$	When $A = B$
(+A) + (+B)	+(A + B)			
(+A) + (-B)	,	+(A-B)	-(B-A)	+(A - B)
(-A) + (+B)		-(A-B)	+(B-A)	+(A - B)
(-A) + (-B)	-(A + B)			,
(+A)-(+B)		+(A-B)	-(B-A)	+(A - B)
(+A)-(-B)	+(A + B)			, ,
(-A)-(+B)	-(A + B)			
(-A) - (-B)	,	-(A - B)	+(B-A)	+(A - B)

A and B are magnitudes of the two numbers

- Hardware Required:
 - 2 registers (for A and B)
 - 3 flip-flops (one for sign bit of A, second for sign bit of B and third for output carry say E)
 - 1 adder
 - 1 comparator
 - 2 subtractors

 A different procedure can be found that requires less hardware:

Hardware for signed-magnitude addition and subtraction.

Flowchart for add and subtract operations.

• Example 1:

$$X = +5$$
 and $Y = -3$, perform operation $X+Y$

Magnitude of X (A) =
$$5 = 0000101$$

Magnitude of Y (B) =
$$3 = 0000011$$

Sign bit of
$$X(A_s) = 0$$

Sign bit of Y
$$(B_s) = 1$$

$$EA = A + B' + 1 = 0000101 + 11111100 + 1 = 10000010$$

$$=> E = 1$$
 and A = 0000010

Result =
$$A_sA = 0\ 0000010 = +2$$

Example 2:

$$X = +3$$
 and $Y = -5$, perform operation $X+Y$

Magnitude of X (A) =
$$3 = 0000011$$

Magnitude of Y (B) =
$$5 = 0000101$$

Sign bit of
$$X(A_s) = 0$$

Sign bit of Y
$$(B_s) = 1$$

$$EA = A + B' + 1 = 0000011 + 1111010 + 1 = 11111110$$
 (no carry)

$$A = A' = 0000001$$

$$A = A + 1 = 0000010$$
,

$$A_s = A_s' = 1$$

Result =
$$A_sA = 10000010 = -2$$

• Example 3:

$$X = -3$$
 and $Y = +5$, perform operation X-Y

Magnitude of X (A) =
$$3 = 0000011$$

Magnitude of Y (B) =
$$5 = 0000101$$

Sign bit of
$$X(A_s) = 1$$

Sign bit of Y
$$(B_s) = 0$$

$$EA = A + B = 0000011 + 0000101 = 0001000$$
 (no carry)

$$=> E = 0$$
 and $A = 0001000$

Result =
$$A_sA = 10001000 = -8$$

Addition and Subtraction of Signed Numbers (with negative numbers represented in 2's complement):

- Addition:

Note:

- An overflow cannot occur after an addition if one number is positive and the other is negative.
- An overflow may occur after an addition if both numbers are positive or both are negative.
 - In such cases, overflow is detected by XORing the carry into the sign bit position and the carry out of the sign bit position. If 1 overflow has occurred (result invalid), if 0 no overflow has occurred (result valid).

e.g.

carries: 0 1 carries: 1 0

$$+70$$
 0 1000110 -70 1 0111010
 $+80$ 0 1010000 -80 1 0110000
 $+150$ 1 0010110 -150 0 1101010

- Subtraction:

$$(+A) - (+B) = (+A) + (-B)$$

 $(+A) - (-B) = (+A) + (+B)$
 $(-A) - (+B) = (-A) + (-B)$
 $(-A) - (-B) = (-A) + (+B)$

e.g.

Hardware for signed-2's complement addition and subtraction.

Algorithm for adding and subtracting numbers in signed-2's complement representation.

MULTIPLICATION OF FIXED-POINT BINARY NUMBERS

 Multiplication of Signed-Magnitude Numbers:

Bs

Flowchart for multiply operation.

Numerical Example for Binary Multiplier

Multiplicand B = 10111	E	A	Q	SC
Multiplier in Q	0	00000	10011	101
$Q_n = 1$; add B		10111		
First partial product	0	10111		
Shift right EAQ	0	01011	11001	100
$Q_n = 1$; add B		10111		
Second partial product	1	$00\overline{010}$		
Shift right EAQ	0	10001	01100	011
$Q_n = 0$; shift right EAQ	0	01000	10110	010
$Q_n = 0$; shift right EAQ	0	00100	01011	001
$Q_n = 1$; add B		<u>10111</u>		•
Fifth partial product	0	11011		
Shift right EAQ	0	01101	10101	000
Final product in $AQ = 0110110101$				

Multiplication Continued

- Multiplication of Signed-2's Complement Numbers:
 - Booth Multiplication Algorithm

Booth algorithm for multiplication of signed-2's complement numbers.

- -9 in 2's complement = 10111 -13 in 2's complement = 10011
- Result in AC & QR = 0001110101 = +117

Hardware for Booth algorithm.

Example of Multiplication with Booth Algorithm (-9) x (-13)

$Q_n Q_{n+1}$	$\frac{BR}{BR} = 10111$ $R + 1 = 01001$	AC	QR	Q_{n+1}	SC
1 0	Initial Subtract <i>BR</i>	00000 01001 01001	10011	0	101
	ashr	00100	11001	1	100
1 1	ashr	00010	01100	1	011
0 1	Add BR	$\frac{10111}{11001}$			
	ashr	11100	10110	0	010
0 0	ashr	11110	01011	0	001
1 0	Subtract BR	$\frac{01001}{00111}$			
	ashr	00011	10101	1	000

DIVISION OF FIXED-POINT BINARY NUMBERS

Division of Signed-Magnitude Numbers:

Example:

```
Divisor = +17 = 0 10001
Dividend = +448 = 0 0111000000
```

Divisor:	11010	Quotient = Q
B = 10001)0111000000 01110 011100 - <u>10001</u>	Dividend = A 5 bits of $A < B$, quotient has 5 bits 6 bits of $A \ge B$ Shift right B and subtract; enter 1 in Q
	-010110 <u>10001</u>	7 bits of remainder $\geq B$ Shift right B and subtract; enter 1 in Q
	001010 010100 <u>10001</u>	Remainder $< B$; enter 0 in Q ; shift right B Remainder $> B$ Shift right B and subtract; enter 1 in Q
	000110 00110	Remainder $< B$; enter 0 in Q Final remainder

```
Quotient = 11010 = 26
Remainder = 00110 = 6
```

 \overline{B} + 1 = 01111 Divisor B = 10001, Flowchart for divide operation. Е Q SCDivide operation 01110 00000 Dividend: 11100 00000 shl EAQ 0 Dividend in AQ add $\overline{B} + 1$ 01111 Divisor in B 01011 E = 100001 01011 4 Set $Q_n = 1$ 00010 shl *EÄQ* 10110 0 Divide magnitudes Add $\overline{B} + 1$ 01111 00101 $Q_s \leftarrow A_s \bigoplus B_s$ E = 1 $SC \leftarrow n-1$ shi EAQ Set $Q_n = 1$ 00101 00011 3 00110 01010 shl EAQ 0 Add $\overline{B} + 1$ 01111 $EA \leftarrow A + \overline{B} + 1$ 11001 00110 E = 0; leave $Q_n = 0$ 0 Add B 10001 $EA \leftarrow A + \overline{B} + 1$ $A \leftarrow A + \overline{B} + 1$ 2 01010 Restore remainder = 0 10100 01100 0 shl EAQ Add $\overline{B} + 1$ 01111 A > B $A \le B$ A > B00011 E = 1 $EA \leftarrow A + B$ $Q_n \leftarrow 1$ $EA \leftarrow A + B$ $EA \leftarrow A + B$ $DVF \leftarrow 0$ Set $Q_n = 1$ 00011 01101 $DVF \leftarrow 1$ shl EAQ 00110 11010 Add $\overline{B} + 1$ 01111 $SC \leftarrow SC -$ E = 0; leave $Q_n = 0$ 10101 11010 0 Add B 10001 00110 11010 0 Restore remainder 1 Neglect E 00110 Remainder in A: 11010 Quotient in Q: END END (Divide overflow) (Quotient is in Q remainder is in A)

Example of binary division

REFERENCE

Morris Mano, Computer System Architecture, Prentice-Hall of India.