Part 2

Dataset 1

Dataset 2

	C	C Kernel Average Accuracy		Average Mean	Average STD	
0	0.1	linear	0.877333	0.877333	0.082753	
1	0.1	poly	0.633333	0.633333	0.085477	
2	0.1	rbf	0.837333	0.837333	0.092528	
3	0.1	sigmoid	0.830667	0.830667	0.083821	
4	0.5	linear	0.953333	0.953333	0.055086	
5	0.5	poly	0.662667	0.662667	0.083078	
6	0.5	rbf	0.898667	0.898667	0.082928	
7	0.5	sigmoid	0.872000	0.872000	0.053995	
8	8.0	linear	0.954667	0.954667	0.049035	
9	8.0	poly	0.670667	0.670667	0.078259	
10	8.0	rbf	0.916000	0.916000	0.073816	
11	8.0	sigmoid	0.830667	0.830667	0.071104	
12	1.0	linear	0.954667	0.954667	0.049890	
13	1.0	poly	0.665333	0.665333	0.076067	
14	1.0	rbf	0.924000	0.924000	0.071269	
15	1.0	sigmoid	0.821333	0.821333	0.076700	
16	1.5	linear	0.954667	0.954667	0.047532	
17	1.5	poly	0.672000	0.672000	0.082332	
18	1.5	rbf	0.928000	0.928000	0.068498	
19	1.5	sigmoid	0.798667	0.798667	0.084099	
20	3.0	linear	0.958667	0.958667	0.046682	
21	3.0	poly	0.682667	0.682667	0.072947	
22	3.0	rbf	0.937333	0.937333	0.059241	
23	3.0	sigmoid	0.772000	0.772000	0.082785	
24	5.0	linear	0.953333	0.953333	0.049337	
25	5.0	poly	0.701333	0.701333	0.076017	
26	5.0	rbf	0.940000	0.940000	0.058620	
27	5.0	sigmoid	0.774667	0.774667	0.088134	
28	7.0	linear	0.953333	0.953333	0.047346	
29	7.0	poly	0.701333	0.701333	0.078820	
30	7.0	rbf	0.942667	0.942667	0.058600	
31	7.0	sigmoid	0.773333	0.773333	0.086087	
32	10.0	linear	0.954667	0.954667	0.050086	
33	10.0	poly	0.697333	0.697333	0.081235	
34	10.0	rbf	0.941333	0.941333	0.058545	
35	10.0	sigmoid	0.776000	0.776000	0.091502	

Part 3

Hyperparameter Search Results

KNN

	K	Average Accuracy	Average F1	Average Mean Accuracy	Average Mean F1	Average STD Accuracy	Average STD F1	CI Accuracy	CI F1
0	3	0.702575	0.799439	0.702575	0.799439	0.031596	0.022111	(0.69, 0.71)	(0.79, 0.81)
1	5	0.715064	0.812150	0.715064	0.812150	0.027342	0.018815	(0.7, 0.73)	(0.8, 0.82)
2	7	0.723922	0.821114	0.723922	0.821114	0.025828	0.017087	(0.71, 0.73)	(0.81, 0.83)
3	9	0.726383	0.824868	0.726383	0.824868	0.025195	0.016472	(0.72, 0.74)	(0.82, 0.83)

SVC

	C Gamma Kernel Average Accuracy Average F1 Average Mean Accuracy Average Mean F1 Average STD Accuracy Average STD F1 CI Accuracy										
L	C	Gamma	Kernel	Average Accuracy	Average F1	Average Mean Accuracy	Average Mean F1	Average STD Accuracy	Average STD F1	CI Accuracy	CI F1
0	1	scale	rbf	0.750966	0.838899	0.750966	0.838899	0.024442	0.015941	(0.74, 0.76)	(0.83, 0.85)
1	1	scale	linear	0.741657	0.822160	0.741657	0.822160	0.030642	0.022418	(0.73, 0.75)	(0.81, 0.83)
2	1	auto	rbf	0.751085	0.838916	0.751085	0.838916	0.024380	0.015912	(0.74, 0.76)	(0.83, 0.85)
3	1	auto	linear	0.741657	0.822160	0.741657	0.822160	0.030642	0.022418	(0.73, 0.75)	(0.81, 0.83)
4	10	scale	rbf	0.731866	0.814315	0.731866	0.814315	0.030343	0.022113	(0.72, 0.74)	(0.81, 0.82)
5	10	scale	linear	0.740717	0.821363	0.740717	0.821363	0.030760	0.022429	(0.73, 0.75)	(0.81, 0.83)
6	10	auto	rbf	0.731964	0.814141	0.731964	0.814141	0.030326	0.022259	(0.72, 0.74)	(0.81, 0.82)
7	10	auto	linear	0.740717	0.821363	0.740717	0.821363	0.030760	0.022429	(0.73, 0.75)	(0.81, 0.83)

Decision Tree

	Max Depth	Min Samples Split	Average Accuracy	Average F1	Average Mean Accuracy	Average Mean Fl	Average STD Accuracy	Average STD F1	CI Accuracy	CI F1
0	5	4	0.692648	0.789036	0.692648	0.789036	0.032598	0.027482	(0.68, 0.71)	(0.78, 0.8)
1	5	6	0.692229	0.788803	0.692229	0.788803	0.032532	0.027578	(0.68, 0.7)	(0.78, 0.8)
2	7	4	0.685471	0.778488	0.685471	0.778488	0.035903	0.029865	(0.67, 0.7)	(0.77, 0.79)
3	7	6	0.685015	0.778105	0.685015	0.778105	0.035051	0.028470	(0.67, 0.7)	(0.77, 0.79)
4	9	4	0.676792	0.768240	0.676792	0.768240	0.037795	0.030729	(0.66, 0.69)	(0.76, 0.78)
5	9	6	0.675870	0.767431	0.675870	0.767431	0.037506	0.030549	(0.66, 0.69)	(0.76, 0.78)

Random Forest

	N Estimators	Max Depth	Min Samples Split	Average Accuracy	Average F1	Average Mean Accuracy	Average Mean F1	Average STD Accuracy	Average STD F1	CI Accuracy	CI F1
0	50	5	4	0.726211	0.832829	0.726211	0.832829	0.018239	0.010699	(0.72, 0.73)	(0.83, 0.84)
1	100	5	4	0.726032	0.833207	0.726032	0.833207	0.017178	0.009971	(0.72, 0.73)	(0.83, 0.84)
2	50	5	6	0.725832	0.832620	0.725832	0.832620	0.018603	0.011084	(0.72, 0.73)	(0.83, 0.84)
3	100	5	6	0.725514	0.832890	0.725514	0.832890	0.017372	0.010197	(0.72, 0.73)	(0.83, 0.84)
4	50	7	4	0.740081	0.836664	0.740081	0.836664	0.023201	0.014577	(0.73, 0.75)	(0.83, 0.84)
5	100	7	4	0.740995	0.837453	0.740995	0.837453	0.021535	0.013233	(0.73, 0.75)	(0.83, 0.84)
6	50	7	6	0.740076	0.836625	0.740076	0.836625	0.023125	0.014262	(0.73, 0.75)	(0.83, 0.84)
7	100	7	6	0.741596	0.838157	0.741596	0.838157	0.022894	0.014167	(0.73, 0.75)	(0.83, 0.84)

Final Evaluation Results

	Algorithm	Accuracy
0	KNN	0.750751
1	SVC	0.792793
2	Decision Tree	0.754491
3	Random Forest	0.777778

Decision Tree Training

The top 5 most important features from most important to less important are:

Attr1: Status of existing checking account

Attr2: Duration in month Attr5: Credit amount

Attr3: Credit history

Attr6: Savings accounts/bonds

Support Vector Classifier Training

Here is the output of printing the support vectors(scaled back with StandardScaler()):

```
The support vectors are:
[[0.274
             0.71243996 0.063
                                   ... 0.404
                                                  1.15176175 0.037
                       0.063
 [0.72000897 0.269
                                   ... 0.404
                                                  1.15176175 0.037
 [0.274
            0.71243996 0.063
                                   ... 0.404
                                                  1.15176175 0.037
 [0.72000897 0.269
                       0.063
                                   ... 0.404
                                                  1.15176175 0.037
 [0.72000897 0.269
                                   ... 0.89469746 1.15176175 0.037
                        0.063
 [0.274
             0.71243996 0.063
                                                  1.15176175 0.037
                                   ... 0.404
```

Here is one of the support vectors:

```
[2.74000000e-01 7.12439962e-01 6.30000000e-02 3.94000000e-01
5.99436610e+02 4.00000000e-02 4.90000000e-02 1.02909919e+00
8.80000000e-02 2.93000000e-01 2.34000000e-01 1.03000000e-01
1.81000000e-01 7.28998886e-01 1.20000000e-02 2.20000000e-02
5.00000000e-02 0.00000000e+00 9.00000000e-03 9.70000000e-02
1.20000000e-02 1.67929773e+07 1.09227600e+00 1.03000000e-01
6.30000000e-02 4.80000000e-02 1.83000000e-01 6.20000000e-02
1.72000000e-01 8.12369834e-01 1.74000000e-01 2.53000000e-01
5.20931035e+00 5.00000000e-02 7.72493243e-01 5.48000000e-01
9.20000000e-02 0.00000000e+00 1.19743244e+00 4.10000000e-02
5.20000000e-02 5.05133180e+00 7.31973333e-01 2.32000000e-01
3.32000000e-01 1.54000000e-01 2.85681147e+02 1.39000000e-01
4.70000000e-02 1.20310667e+00 1.79000000e-01 1.16536158e+00
1.08000000e-01 1.98436557e+00 2.20000000e-02 2.00000000e-01
1.11280431e+00 1.48000000e-01 1.51690468e+00 1.08669746e+00
4.04000000e-01 1.15176175e+00 3.70000000e-02]
```

I couldn't figure out how to extract feature importances or any other important information from this :