

Autonomous Vehicle Planning and Control

Wu Ning

Session 6

Vehicle Motion Planning/Local Planner

Motion planner

- Motion planner basic concept
- Functionality and Common method
- Fundamental Concepts and Key terminology 关键术语

Stochastic Sampling Methods 随机采样方法

- RRT
- RRT*
- Other improve methods

Lattice planner

- Frenet Coordinate
- Speed planning
- Trajectory planning

Motion Planner

Part I: Main concept and key terminology

Motion Planning Problem

Determine a sequence of actions to reach a specified goal

\$

The Common Motion Planning Methods

(a)Global path by Dijkastra. (b) Trajectory optimization considering a vehicle in the other lane. (c) Lattices and motion primitives. (d) Hybrid A* in DRAPA Junior. (e) RRT. (f) Optimal path to turn the vehicle around. (g) Planning a turn from Stanford. (h) Different motion states, planned with polynomial curves. (i) Evaluation of several Bezie curves. (j) Spline behaviour when a knot changes places

Fundamental Concepts

Completeness:

- Ability to find a solution if one exists,
- Narrow Gap Problem Examples.

2D space (\mathbb{R}^2), point robot

无人驾驶汽车在建筑周围导航

Self-driving car navigating around construction

Probabilistic Completeness:

 Probability of finding a solution (when one exists) increases as computational time spent on the problem increases

找到解决方案的可能性(如果存在的话)随着花费在问题上的计算时间的增加而增加

Batch Informed Trees (BIT*)

Sampling-based Optimal Planning via the Heuristically Guided Search of Implicit Random Geometric Graphs

Jonathan D. Gammell¹, Siddhartha S. Srinivasa², and Timothy D. Barfoot¹

Carnegie Mellon
THE ROBOTICS INSTITUTE

Resolution Completeness:

Ability to find a solution if one exists AND using fine enough resolution in discretization of the state

and/or control space 如果存在解决方案,能够找到解决方案,并在状态和/或控制空间的离散化中使用足够精细的分辨率

Narrow Gap Problem Examples:

2D space (\mathbb{R}^2), point robot

Self-driving car navigating around construction

Algorithmic efficiency: 算法如何求解与输入数据大小成比例的时间标度,

- How an algorithm solve time scales proportionally with respect to size of the input data,
- Big O Notation, O(n) takes time proportional to number of elements.

Optimality:

花费的时间与元素数量成正比

- Optimal is able to find the lowest cost solution of all possible options, optimal能够找到所有可能选项的最
 Subortimal of a lower cost solution exists
- Suboptimal of a lower cost solution exists, 存在较低成本的次优解决方案。
- Asymptotically optimal if guaranteed to converge to the optimal solution given increasing, 渐近最优如果保证收敛到给定增加的最优解,computational time spent on the problem.

花在这个问题上的计算时间。

Complexity

- Space dimensionality
 - configuration space is a \mathbb{R}^3 for rigid body. But for the multi-bodies track, bicycle mode is not accurate enough to capture all the constraints.
- Geometric complexity
 - How bounding box and bounding box interact;
 - How to detect a path between polygons and interact with another obstacles;
 - ...

\$ Fundamental Concepts

There are three types of **Path Constraints**:

- Local Constraints
 - Avoid collision with static obstacles
- Differential constraints
 - Bounded curvature, limited steering angle for vehicle
- Global constraints
 - Find the shortest path by A*

Holonomic vs non-holonomic motion constraints

Holonomic if # of controllable DOF = # of total DOF

Cars are non-holonomic since control throttle and steering (2 DOF), but move in SE(2) (x, y, θ)

Find higher precision "good" (near optimal w.r.t. cost function) path to execute.

Where to search?

Configuration Space Parameterization Options

- Workspace (direct physical environment, traditional)
- Control Space (e.g. velocity space, see <u>link</u>)
 - Only saves effort in simple problems
- Belief Space (POMDP, more later in Session 7)

Velocity Obstacle (control space)

How to search?

- □ Combinatorial methods (exact complete solution, e.g. visibility graph link)
 - Rarely exists to find optimal solution to complex problems
- Sampling-based methods
 - **确定性的** • Deterministic (resolution complete), e.g. uniform grid or road structure graph, repeatable
 - Stochastic (probabilistic completeness), e.g. random sampling 随机的
- ☐ May need some **smoothing/post-process** to improve quality of solution

Visibility Graph (combinatorial)

road "structural graph" (deterministic sampling)

Motion Planner

Part II Stochastic Sampling Methods

Stochastic Sampling Methods: Rapidly-exploring Random Trees

Build up a tree from start to goal through generating "next states" in the tree by executing random controls.

Algorithm 1: RRT Algorithm Input: $\mathcal{M}, x_{init}, x_{goal}$ **Result:** A path Γ from x_{init} to x_{qoal} $\mathcal{T}.init()$; for i = 1 to n do $x_{rand} \leftarrow Sample(\mathcal{M})$; $x_{near} \leftarrow Near(x_{rand}, \mathcal{T});$ $x_{new} \leftarrow Steer(x_{rand}, x_{near}, StepSize);$ $E_i \leftarrow Edge(x_{new}, x_{near});$ if $CollisionFree(\mathcal{M}, E_i)$ then $\mathcal{T}.addNode(x_{new});$ $\mathcal{T}.addEdge(E_i);$ if $x_{new} = x_{goal}$ then Success():

Sample a node X_{rand} in the free space

Algorithm 1: RRT Algorithm Input: $\mathcal{M}, x_{init}, x_{goal}$

Result: A path Γ from x_{init} to x_{goal}

 $\mathcal{T}.init();$

for i = 1 to n do

```
x_{rand} \leftarrow Sample(\mathcal{M});

x_{near} \leftarrow Near(x_{rand}, \mathcal{T});

x_{new} \leftarrow Steer(x_{rand}, x_{near}, StepSize);

E_i \leftarrow Edge(x_{new}, x_{near});

if CollisionFree(\mathcal{M}, E_i) then

\mathcal{T}.addNode(x_{new});

\mathcal{T}.addEdge(E_i);
```

if $x_{new} = x_{goal}$ then

Success();

Find the nearest node X_{near} in current tree


```
Algorithm 1: RRT Algorithm
  Input: \mathcal{M}, x_{init}, x_{goal}
  Result: A path \Gamma from x_{init} to x_{qoal}
  \mathcal{T}.init();
  for i = 1 to n do
       x_{rand} \leftarrow Sample(\mathcal{M});
       x_{near} \leftarrow Near(x_{rand}, \mathcal{T});
       x_{new} \leftarrow Steer(x_{rand}, x_{near}, StepSize);
       E_i \leftarrow Edge(x_{new}, x_{near});
       if CollisionFree(\mathcal{M}, E_i) then
            \mathcal{T}.addNode(x_{new});
            \mathcal{T}.addEdge(E_i);
       if x_{new} = x_{goal} then
             Success();
```


Grow a new node X_{new} and path E_i from X_{near}

Algorithm 1: RRT Algorithm

```
Input: \mathcal{M}, x_{init}, x_{goal}
Result: A path \Gamma from x_{init} to x_{qoal}
\mathcal{T}.init();
for i = 1 to n do
     x_{rand} \leftarrow Sample(\mathcal{M});
     x_{near} \leftarrow Near(x_{rand}, \mathcal{T});
     x_{new} \leftarrow Steer(x_{rand}, x_{near}, StepSize);
     E_i \leftarrow Edge(x_{new}, x_{near});
     if CollisionFree(\mathcal{M}, E_i) then
          \mathcal{T}.addNode(x_{new});
        \mathcal{T}.addEdge(E_i);
     if x_{new} = x_{goal} then
           Success();
```


Do not grow if collision

Algorithm 1: RRT Algorithm

```
Input: \mathcal{M}, x_{init}, x_{goal}
Result: A path \Gamma from x_{init} to x_{qoal}
\mathcal{T}.init();
for i = 1 to n do
     x_{rand} \leftarrow Sample(\mathcal{M});
     x_{near} \leftarrow Near(x_{rand}, \mathcal{T});
     x_{new} \leftarrow Steer(x_{rand}, x_{near}, StepSize);
     E_i \leftarrow Edge(x_{new}, x_{near});
     if CollisionFree(\mathcal{M}, E_i) then
           \mathcal{T}.addNode(x_{new});
          \mathcal{T}.addEdge(E_i);
     if x_{new} = x_{goal} then
           Success();
```


Repeat sampling for n times until the tree reaches the goal or goal region

Pros

- Easy to implement
- Aims to find a path from the start to the goal
- More target-oriented than PRM

Cons

- Not optimal solution
- Not efficient (leave room for improvement)
- Sample in the whole space

- An improvement of RRT
- Asymptotically optimal (under conditions)
 渐近最优(在条件下)

Consider N nearing nodes


```
Algorithm 2: RRT*Algorithm

Input: \mathcal{M}, x_{init}, x_{goal}

Result: A path \Gamma from x_{init} to x_{goal}

\mathcal{T}.\mathsf{init}();

for i=1 to n do

\begin{array}{c} x_{rand} \leftarrow Sample(\mathcal{M}) \; ; \\ x_{near} \leftarrow Near(x_{rand}, \mathcal{T}); \\ x_{new} \leftarrow Steer(x_{rand}, x_{near}, StepSize); \\ \mathsf{if} \; CollisionFree}(x_{new}) \; \mathsf{then} \\ X_{near} \leftarrow NearC(\mathcal{T}, x_{new}); \\ x_{min} \leftarrow ChooseParent(X_{near}, x_{near}, x_{new}); \\ \mathcal{T}.addNodEdge(x_{min}, x_{new}); \\ \mathcal{T}.rewire(); \end{array}
```


Consider *N* nearing nodes

Consider history cost instead of only local information

Consider history cost instead of only local information

Algorithm 2: RRT*Algorithm Input: $\mathcal{M}, x_{init}, x_{goal}$ Result: A path Γ from x_{init} to x_{goal} $\mathcal{T}.init()$; for i = 1 to n do $\begin{array}{c} x_{rand} \leftarrow Sample(\mathcal{M}); \\ x_{near} \leftarrow Near(x_{rand}, \mathcal{T}); \\ x_{new} \leftarrow Steer(x_{rand}, x_{near}, StepSize); \\ \text{if } CollisionFree}(x_{new}) \text{ then} \\ X_{near} \leftarrow NearC(\mathcal{T}, x_{new}); \\ x_{min} \leftarrow ChooseParent(X_{near}, x_{near}, x_{new}); \\ \mathcal{T}.addNodEdge(x_{min}, x_{new}); \end{array}$

 $\mathcal{T}.rewire();$

Rewire to improve local optimality

Algorithm 2: RRT*Algorithm

```
Input: \mathcal{M}, x_{init}, x_{goal}

Result: A path \Gamma from x_{init} to x_{goal}

\mathcal{T}.\text{init}();

for i=1 to n do
\begin{array}{c} x_{rand} \leftarrow Sample(\mathcal{M}) \;;\\ x_{near} \leftarrow Near(x_{rand}, \mathcal{T});\\ x_{new} \leftarrow Steer(x_{rand}, x_{near}, StepSize);\\ \text{if } CollisionFree}(x_{new}) \text{ then}\\ X_{near} \leftarrow NearC(\mathcal{T}, x_{new});\\ x_{min} \leftarrow ChooseParent(X_{near}, x_{near}, x_{new}) \;;\\ \mathcal{T}.addNodEdge(x_{min}, x_{new});\\ \mathcal{T}.rewire(); \end{array}
```


Rewire to improve local optimality

Algorithm 2: RRT*Algorithm

```
Input: \mathcal{M}, x_{init}, x_{goal}

Result: A path \Gamma from x_{init} to x_{goal}

\mathcal{T}.\text{init}();

for i=1 to n do
\begin{array}{c} x_{rand} \leftarrow Sample(\mathcal{M}) \;;\\ x_{near} \leftarrow Near(x_{rand}, \mathcal{T});\\ x_{new} \leftarrow Steer(x_{rand}, x_{near}, StepSize);\\ \text{if } CollisionFree}(x_{new}) \; \text{then}\\ X_{near} \leftarrow NearC(\mathcal{T}, x_{new});\\ x_{min} \leftarrow ChooseParent(X_{near}, x_{near}, x_{new}) \;;\\ \mathcal{T}.addNodEdge(x_{min}, x_{new});\\ \mathcal{T}.rewire(); \end{array}
```


Generate a random point x_{rand}

Algorithm 2: RRT*Algorithm

Input: $\mathcal{M}, x_{init}, x_{goal}$

```
Result: A path \Gamma from x_{init} to x_{goal} \mathcal{T}.init(); for i=1 to n do  \begin{vmatrix} x_{rand} \leftarrow Sample(\mathcal{M}) \ x_{near} \leftarrow Near(x_{rand}, \mathcal{T}); \\ x_{new} \leftarrow Steer(x_{rand}, x_{near}, StepSize); \\ \text{if } CollisionFree}(x_{new}) \text{ then} \\ \begin{vmatrix} X_{near} \leftarrow NearC(\mathcal{T}, x_{new}); \\ x_{min} \leftarrow ChooseParent(X_{near}, x_{near}, x_{new}); \\ \mathcal{T}.addNodEdge(x_{min}, x_{new}); \\ \mathcal{T}.rewire(); \end{vmatrix}
```

https://blog.csdn.net/weixin

Find the nearest nodes $x_{nearest}$

RRT*

Stochastic Sampling Methods: Obstacle avoidance

Obstacle avoidance check:

To simplify the check, we used circle or polygon (rectangle) to represent the objects

• For the circle object, we can check the obstacle easily by

$$x_0 - r - \varepsilon < x_{new,x} < x_0 + r + \varepsilon$$
$$y_0 - r - \varepsilon < x_{new,y} < y_0 + r + \varepsilon$$

 x_{new}

Stochastic Sampling Methods: Obstacle avoidance

Obstacle avoidance check: (polygon: rectangle)

- There are two steps for collision checking for polygon
- If x_{near} and x_{new} are in the same side of obstacle;
 - If they are at the same side, there will be no interaction with the obstacle;
- If x_{near} and x_{new} are not at the same side, there will be two situations:
 - x_{new} is inside the polygon, and there must be an intersection between the connection of x_{near} and x_{new}
 - If both x_{near} and x_{new} are at the outside of the polygon, we will need to use the connect line to check the collision.

 x_{new}

Stochastic Sampling Methods: Obstacle avoidance

Obstacle avoidance check:

• If both x_{near} and x_{new} are at the outside of the polygon, we will need to use the connect line to check the collision.

$$k_{x_{near}x_{new}} < k_{Dx_{near}} \&\& k_{x_{near}x_{new}} > k_{Ax_{near}}$$

where k is the slope of line

Stochastic Sampling Methods: Other improvement

Improvements may come through focus on any of those steps individually, e.g.:

- Connect with edges of desirable properties
 - ✓ <u>Dubins</u> for shortest length w/fixed turn radius
 - ✓ Reeds-Shepp for forward/backward w/fixed turn radius
 - ✓ <u>Spline</u>, <u>clothoid</u>, <u>Bezier</u> for continuous curvature

Stochastic Sampling Methods: RRT* **Improvement**

Bias Sampling

Sample biasing toward the goal

Sample Rejection

Reject samples that don't meet some threshold until you reach the number of samples you need

Tree Pruning

Prune the non-promising sub trees to reduce neighbor query cost.

Graph Sparsify

Reject samples by resolution. Introduce near optimality.

Delay Collision Check

 Sort the neighbours by potential cost-to-come values. Check collisions in order and stop once a collision-free edge is found.

Anytime RRT

Store the collision-checking results for ChooseParent and Rewire.

Informed RRT*: Optimal Sampling-based Path Planning Focused via Direct Sampling of an Admissible Ellipsoidal Heuristic

Motion Planner

Part III Lattice Planner

\$ Lattice Planner

The Lattice Planner algorithm is a local motion planner,

- Sample based motion planner;
- Plan in Frenet coordinate;
- The output is a smooth, safe and collision-free local trajectory that satisfies the vehicle's

kinematics and speed constraints which is directly feed into controller. 输出是一个平滑、安全和无碰撞的局部轨迹,满足车辆的运动学和速度约束,并直接馈入控制器。

The basic process of Lattice planner:

Transform to Frenet coordinate, and calculate the look ahead

Sample the path

(based on time, target speed and lateral displacement of the reference path) 参考路径的横向位移

Construct lateral and longitudinal displacement planning function s(t) and d(s)

Calculate the reference paths in Frenet coordinate by sampling time *t*

Transform the paths back to global Cartesian coordinate

Trajectory scoring

(based on the cost and constraints, such as collision cost and vehicle dynamics constraints)

Frenet coordinate is a frame on the reference line, is a moving frame. Its origin r is the nearest point from the vehicle to the path. The t-axis is along the tangiential direction at r while n-axis is pependicular to t-axis.

Frenet坐标是参考线上的一个坐标系,是一个运动坐标系。它的原点是从车辆到路径的最近点。t轴沿切线方向,而n

Frenet coordinate: $[s, \dot{s}, \ddot{s}, l, \dot{l}, \ddot{l}, l', l'']$

s: longitudinal axis (T- axis) of Frenet coordinate

 $\dot{s} = \frac{ds}{dt}$: differentiation of longitudinal axis w.r.t. to time,

i.e. speed 纵轴相对于时间的微分,即速度

 $\dot{s} = \frac{d\dot{s}}{dt}$: longitudinal acceleration

l: lateral axis of Frenet coordinate

 $\dot{l} = \frac{dl}{dt}$: lateral speed

 $i = \frac{di}{dt}$: lateral acceleration 描轴相对干纵轴的微分

l': differentiation of lateral axis w.r.t. to longitudinal axis

l'': 2nd derivative of lateral axis w.r.t. to longitudinal axis

Cartesian coordinate: $[\vec{x}, v_x, a_x, \theta_x, \kappa_x]$

 \vec{x} : a position vector in Cartesian coordinate

 $v_x = ||\dot{x}||_2$: speed in Cartesian coordinate

 $a_x = \frac{v_x}{dt}$: acceleration in Cartesian coordinate

 θ_x : heading in Cartesian coordinate

$$\kappa_{x}=rac{d heta_{x}}{ds}$$
: curvature

Cartesian to Frenet

$$\begin{split} \dot{s} &= s_r \\ \dot{s} &= \frac{v_x cos(\theta_x - \theta_r)}{1 - k_r l} \\ \ddot{s} &= \frac{a_x cos(\theta_x - \theta_r) - \dot{s}^2 \left[l' \left(k_x \frac{1 - k_r l}{cos(\theta_x - \theta_r)} - k_r \right) - (k'_r l + k_r l') \right]}{1 - k_r l} \\ l &= sign \left((x_x - x_r) cos(\theta_r) - (y_x - y_r) sin(\theta_r) \right) \sqrt{(x_x - x_r)^2 + (y_x - y_r)^2} \\ l' &= (1 - k_r l) tan(\theta_x - \theta_r) \\ l''' &= -(k'_r l + k_r l') tan(\theta_x - \theta_r) + \frac{1 - k_r l}{cos^2 (\theta_x - \theta_r)} \left(\frac{1 - k_r l}{cos(\theta_x - \theta_r)} k_x - k_r \right) \end{split}$$

Frenet to Cartesian

$$\begin{cases} x_x = x_r - lsin(\theta_r) \\ y_x = y_r + lcos(\theta_r) \\ \theta_x = arctan\left(\frac{l'}{1-k_rl}\right) + \theta_r \\ v_x = \sqrt{\left[\dot{s}(1-k_rl)\right]^2 + \left(\dot{s}l'\right)^2} \\ a_x = \ddot{s}\frac{1-k_rl}{cos(\theta_x-\theta_r)} + \frac{\dot{s}^2}{cos(\theta_x-\theta_r)} \left[l'\left(k_x\frac{1-k_rl}{cos(\theta_x-\theta_r)} - k_r\right)\frac{cos(\theta_x-\theta_r)}{1-k_rl}\right] \\ a_x = \ddot{s}\frac{1-k_rl}{cos(\theta_x-\theta_r)} + \frac{\dot{s}^2}{cos(\theta_x-\theta_r)} \left[l'\left(k_x\frac{1-k_rl}{cos(\theta_x-\theta_r)} - k_r\right)\frac{cos(\theta_x-\theta_r)}{1-k_rl}\right] \\ a_x = \left(\left(l'' + (k_r'l + k_rl')tan(\theta_x-\theta_r)\right)\frac{cos^2(\theta_x-\theta_r)}{1-k_rl} + k_r\right)\frac{cos(\theta_x-\theta_r)}{1-k_rl} \\ a_x = \left(\left(l'' + (k_r'l + k_rl')tan(\theta_x-\theta_r)\right)\frac{cos^2(\theta_x-\theta_r)}{1-k_rl} + k_r\right)\frac{cos(\theta_x-\theta_r)}{1-k_rl} \\ a_x = \left(\left(l'' + (k_r'l + k_rl')tan(\theta_x-\theta_r)\right)\frac{cos^2(\theta_x-\theta_r)}{1-k_rl} + k_r\right)\frac{cos(\theta_x-\theta_r)}{1-k_rl} \\ a_x = \left(\left(l'' + (k_r'l + k_rl')tan(\theta_x-\theta_r)\right)\frac{cos^2(\theta_x-\theta_r)}{1-k_rl} + k_r\right)\frac{cos(\theta_x-\theta_r)}{1-k_rl} \\ a_x = \left(\left(l'' + (k_r'l + k_rl')tan(\theta_x-\theta_r)\right)\frac{cos^2(\theta_x-\theta_r)}{1-k_rl} + k_r\right)\frac{cos(\theta_x-\theta_r)}{1-k_rl} \\ a_x = \left(\left(l'' + (k_r'l + k_rl')tan(\theta_x-\theta_r)\right)\frac{cos^2(\theta_x-\theta_r)}{1-k_rl} + k_r\right)\frac{cos(\theta_x-\theta_r)}{1-k_rl} \\ a_x = \left(\left(l'' + (k_r'l + k_rl')tan(\theta_x-\theta_r)\right)\frac{cos^2(\theta_x-\theta_r)}{1-k_rl} + k_r\right)\frac{cos(\theta_x-\theta_r)}{1-k_rl} \\ a_x = \left(\left(l'' + (k_r'l + k_rl')tan(\theta_x-\theta_r)\right)\frac{cos^2(\theta_x-\theta_r)}{1-k_rl} + k_r\right)\frac{cos(\theta_x-\theta_r)}{1-k_rl} \\ a_x = \left(\left(l'' + (k_r'l + k_rl')tan(\theta_x-\theta_r)\right)\frac{cos^2(\theta_x-\theta_r)}{1-k_rl} + k_r\right)\frac{cos(\theta_x-\theta_r)}{1-k_rl} \\ a_x = \left(\left(l'' + (k_r'l + k_rl')tan(\theta_x-\theta_r)\right)\frac{cos^2(\theta_x-\theta_r)}{1-k_rl} + k_r\right)\frac{cos(\theta_x-\theta_r)}{1-k_rl} \\ a_x = \left(\left(l'' + (k_r'l + k_rl')tan(\theta_x-\theta_r)\right)\frac{cos^2(\theta_x-\theta_r)}{1-k_rl} + k_r\right)\frac{cos(\theta_x-\theta_r)}{1-k_rl} \\ a_x = \left(\left(l'' + (k_r'l + k_rl')tan(\theta_x-\theta_r)\right)\frac{cos^2(\theta_x-\theta_r)}{1-k_rl} + k_r\right)\frac{cos(\theta_x-\theta_r)}{1-k_rl} \\ a_x = \left(\left(l'' + (k_r'l + k_rl')tan(\theta_x-\theta_r)\right)\frac{cos^2(\theta_x-\theta_r)}{1-k_rl} + k_r\right)\frac{cos(\theta_x-\theta_r)}{1-k_rl} \\ a_x = \left(\left(l'' + (k_r'l + k_rl')tan(\theta_x-\theta_r)\right)\frac{cos^2(\theta_x-\theta_r)}{1-k_rl} + k_r\right)\frac{cos(\theta_x-\theta_r)}{1-k_rl}$$

Lattice planner sampling

Lattice planner sampling includes:

- Lateral sampling
- Longitudinal sampling
- Time sampling

状态空间:源于环境的空间

- State space: Those arising from the environment
- Control space: Those arising from vehicle mobility

控制空间:由车辆机动性产生的空间

State Space Sampling of Feasible Motions for High-Performance Mobile Robot Navigation in Complex Environments, Thomas M. Howard, Colin J. Green, and Alonzo Kelly

Lattice planner: speed planning

基于采样使用多项式公式化横向规划函数 I(s) 和纵向规划函数 s(t)

- Formulate lateral planning function l(s) and longitudinal planning function s(t) using polynomials based on the sampling.
- Typically, 4th or 5th order polynomials are used to ensure the smoothness of the path.
 通常,四阶或五阶多项式用于确保路径的平滑度。

In stop and go, or spacing control (5th order)

$$s(t) = c_1 t^5 + c_2 t^4 + c_3 t^3 + c_4 t^2 + c_5 t + c_6$$

$$v(t) = 5c_1 t^4 + 4c_2 t^3 + 3c_3 t^2 + 2c_4 t + c_5$$

$$a(t) = 20c_1 t^3 + 12c_2 t^2 + 6c_3 t + 2c_4$$

In cruse control (4th order)

$$s(t) = b_1 t^4 + b_2 t^3 + b_3 t^2 + b_4 t + b_5$$

$$v(t) = 4b_1 t^3 + 3b_2 t^2 + 2b_3 t + b_4$$

$$a(t) = 12b_1 t^2 + 6b_2 t + 2b_3$$

Lattice planner: speed planning

纵向拟合多项式解;

Longitudinal fitting polynomial solution:

In stop and go, or spacing control (5th order example)

$$s(t) = c_1 t^5 + c_2 t^4 + c_3 t^3 + c_4 t^2 + c_5 t + c_6$$

$$v(t) = 5c_1t^4 + 4c_2t^3 + 3c_3t^2 + 2c_4t + c_5$$

$$a(t) = 20c_1t^3 + 12c_2t^2 + 6c_3t + 2c_4$$

Constraint functions:

$$s(t_0) = c_6 = s_0$$

$$v(t_0) = c_5 = ts_0$$

$$a(t_0) = 2c_4 = tts_0$$

$$s(t_1) = c_1t_1^5 + c_2t_1^4 + c_3t_1^3 + c_4t_1^2 + c_5t_1 + c_6 = s_1 \checkmark$$

$$v(t_1) = 5c_1t_1^4 + 4c_2t_1^3 + 3c_3t_1^2 + 2c_4t_1 + c_5 = ts_1$$

$$a(t_1) = 20c_1t_1^3 + 12c_2t_1^2 + 6c_3t_1 + 2c_4 = tts_1$$

Solving the equations to get coefficients

Lattice planner: speed planning

Longitudinal fitting polynomial solution:

In cruise control (4th order example)

$$s(t) = b_1 t^4 + b_2 t^3 + b_3 t^2 + b_4 t + b_5$$

$$v(t) = 4b_1 t^3 + 3b_2 t^2 + 2b_3 t + b_4$$

$$a(t) = 12b_1 t^2 + 6b_2 t + 2b_3$$

Constraint functions:

$$s(t_0) = b_5 = s_0$$

$$v(t_0) = b_4 = ts_0$$

$$a(t_0) = 2b_3 = tts_0$$

$$v(t_1) = 4b_1t_1^3 + 3b_2t_1^2 + 2b_3t_1 + b_4 = ts_1$$

$$a(t_1) = 12b_1t_1^2 + 6b_2t_1 + 2b_3 = tts_1$$

Solving the equations to get coefficients

Lattice planner: lateral trajectory planning

Lateral fitting polynomial solution

$$d(s) = k_1 s^5 + k_2 s^4 + k_3 s^3 + k_4 s^2 + k_5 s + k_6$$

$$d_v(t) = 5k_1 s^4 + 4k_2 s^3 + 3k_3 s^2 + 2k_4 s + k_5$$

$$d_a(t) = 20k_1 s^3 + 12k_2 s^2 + 6k_3 s + 2k_4$$

Constraint function

$$egin{aligned} d(s_0) &= k_1 s_0^5 + k_2 s_0^4 + k_3 s_0^3 + k_4 s_0^2 + k_5 s_0 + k_6 = d_0 \ d_v(s_0) &= 5 k_1 s_0^4 + 4 k_2 s_0^3 + 3 k_3 s_0^2 + 2 k_4 s_0 + k_5 = s d_0 \ d_a(s_0) &= 20 k_1 s_0^3 + 12 k_2 s_0^2 + 6 k_3 s_0 + 2 k_4 = s s d_0 \ d(s_1) &= k_1 s_1^5 + k_2 s_1^4 + k_3 s_1^3 + k_4 s_1^2 + k_5 s_1 + k_6 = d_1 \ d_v(s_1) &= 5 k_1 s_1^4 + 4 k_2 s_1^3 + 3 k_3 s_1^2 + 2 k_4 s_1 + k_5 = s d_1 \ d_a(s_1) &= 20 k_1 s_1^3 + 12 k_2 s_1^2 + 6 k_3 s_1 + 2 k_4 = s s d_1 \end{aligned}$$

Constraint variables:

 d_0 : initial lateral displacement

 sd_0 : initial lateral speed

 ssd_0 : initial lateral acceleration

 d_1 : sampled lateral displacement

 sd_1 : sampled lateral speed

 ssd_1 : sampled lateral acceleration

Lattice planner: Constraint evaluation

For every trajectory generated, it needs to be evaluated to check if it violates any constraint and remove it if it does.

Objective: to choose a feasible path that is nearest to the static reference path, and at the same time, avoid large speed change to ensure comfortability and stay away from obstacles.

目的:选择最接近静态参考路径的可行路径,同时避免较大的速度变化,以保证舒适性并远离障碍物。

$$J = k_{\text{longi}} * J_{longi} + k_{comfort} * J_{comfort} + k_{collision} * J_{collision}$$

where

- k_{longi} : weight on longitudinal objective cost
- J_{longi} : tracking cost, considering speed error, distance to travel.
- $k_{comfort}$: weight on comfort cost
- *J_{comfort}*: comfort cost, considering longitudinal jerk
- $k_{collision}$: weight on collision cost.
- *J_{collision}*: cost of collision to the near objects.

Longitudinal Objective achievement cost: to choose a feasible path that is nearest to the static reference path.

Input: Lon_trajectory, planning_target, reference_s_dot

•
$$J_{speed} = \frac{\sum_{t=0}^{length} t^2 \cdot |V_{ref_t} - V_{evaluation_t}|}{\sum_{t=0}^{length} t^2}$$

•
$$J_{dist} = \frac{1}{1+dist}$$

•
$$J_{\text{longi}} = \frac{W_{speed}Cost_{speed} + W_{dist}Cost_{dist}}{W_{speed} + W_{dist}}$$

Comfort Objective: to choose a feasible path that is having less *jerk*

$$J_{comfort} = \frac{\sum_{t=0}^{length} (jerk_t)^2}{1 + \sum_{t=0}^{length} |jerk_t|}$$

$$J_{comfort} = \max(jerk)$$

Centripetal Objective: to choose a feasible path that is having less *less centripetal accel jerk*. 向心目标:选择一条具有较小向心加速度冲击的可行路径。

•
$$a_{centr_t} = \frac{v_t^2}{R_t} = v_t^2 k_t$$

•
$$J_{CentriAcc} = \frac{\sum_{t=0}^{length} a_{centri_t}^2}{\sum_{t=0}^{length} |a_{centri_t}|}$$

碰撞目标:选择一条距离障碍物最远的路径

Collision Objective: to choose a path that is furthest from obstacles

Lateral offset Objective: to choose a feasible path that is more close to the reference (center line).

Lateral Acceleration Objective: to choose a feasible path that is having smoother lane change

Summary

- Motion planner
 - Motion planner basic concept
 - Functionality and Common method
 - Fundamental Concepts and Key terminology
- Stochastic Sampling Methods
 - RRT
 - RRT*
 - Other improve methods
- Lattice planner
 - Frenet Coordinate
 - Speed planning
 - Trajectory planning

Thanks for Listening