LICHTWELLENLEITER (LWL)

Für die **optische** Übertragung muss das **elektrische** Signal zuerst in ein **optisches** umgewandelt werden. Beim Empfänger wird es anschließend wieder in ein elektrisches Signal umgewandelt.

Simplex: Nur in eine Richtung

Halbduplex: In beide Richtungen, jedoch nicht gleichzeitig

Duplex: In beide Richtungen, gleichzeitig

Optisches Übertragungssystem:

Frequenzbereich und Streckenlänge sind abhängig von:

- Eigenschaften des Lichtwellenleiters
- Der Leistung und Modulierbarkeit (Frequenzverhalten) des Senders
- Die Empfindlichkeit des Empfängers

Vorteile:

- Geringe Dämpfung
- Große Bandbreite
- Galvanische Trennung
- Unempfindlichkeit gegenüber elektromagnetischen Störungen
- Kleine Kabeldurchmesser und geringes Gewicht
- Höhere Abhörsicherheit
- Kein Nebenspreche

Innerer Aufbau:

 $oldsymbol{n_1}$: Lichtdurchlässiges Material

 n_2 : Mantel

 $oldsymbol{\Theta}_1$: Einfallswinkel

0₂: Ausfallswinkel

Einfallswinkel darf bestimmten Wert **nicht unterschreiten**, ansonsten **nicht reflektiert**, sondern nur **gebrochen** abhängig von n_1 und n_2 .

Licht sucht sich immer den kürzesten Weg!

$$t(x_1) = t_1(x_1) + t_2(x_1) = \frac{s_1(x_1)}{c_1} + \frac{s_2(x_1)}{c_2}$$

$$t(x_1) = \frac{\sqrt{x_1^2 + y_1^2}}{c_1} + \frac{\sqrt{(x_2 - x_1)^2 + y_2^2}}{c_2}$$

Zeit-Minimum!

$$t'(x_1) = \frac{2x_1}{c_1 2\sqrt{x_1^2 + y_1^2}} + \frac{-2(x_2 - x_1)}{c_2 2\sqrt{(x_2 - x_1)^2 + y_2^2}} = 0$$

$$\frac{x_1}{c_1\sqrt{x_1^2 + y_1^2}} + \frac{x_1 - x_2}{c_2\sqrt{(x_2 - x_1)^2 + y_2^2}} = 0$$

$$\frac{x_1}{c_1\sqrt{x_1^2 + y_1^2}} = \frac{x_2 - x_1}{c_2\sqrt{(x_2 - x_1)^2 + y_2^2}}$$

$$\frac{\sin \alpha_1}{c_1} = \frac{\sin \alpha_2}{c_2} \to \frac{\sin \alpha_1}{\sin \alpha_2} = \frac{c_1}{c_2}$$

$$c_1 = \frac{c_0}{n_1} \qquad c_2 = \frac{c_0}{n_2}$$

$$\frac{\sin \alpha_1}{\sin \alpha_2} = \frac{c_1}{c_2} = \frac{\frac{c_0}{n_1}}{\frac{c_0}{n_2}} = \frac{n_2}{n_1}$$

Grenzwinkel und numerische Apertur:

 Θ_g : **Grenzwinkel** für die **Totalreflektion**, abhängig von n_1 und n_2

 δ_A : **Akzeptanzwinkel** damit **Totalreflektion** stattfindet, abhängig von n_1 und n_2

 $\sin(\Theta_g) = rac{n_2}{n_1}$, Sinus des max. Winkels, damit Totalreflektion stattfindet

$$n_0 \sin(\delta_{max}) = n_1 \sin(90 - \Theta_1)$$

$$n_0 \sin(\delta_{max}) = n_1 \cos(\Theta_1)$$

$$n_0 \sin(\delta_{max}) = n_1 \sqrt{1 - \sin^2(\Theta_1)}$$

$$n_0 \sin(\delta_{max}) = n_1 \sqrt{1 - \sin^2(\sin^{-1}(\frac{n_2}{n_1}))}$$

$$n_0 \sin(\delta_{max}) = n_1 \sqrt{1 - (\frac{n_2}{n_1})^2} = n_1 \sqrt{\frac{n_1^2 - n_2^2}{n_1^2}}$$

$$n_0 \sin(\delta_{max}) = \sqrt{n_1^2 - n_2^2} \quad n_0 \text{ bei Luft = 1}$$

numerische Apertur NA = $\sin(\delta_{max}) = \sqrt{n_1^2 - {n_2}^2}$, Sinus des max. Einkoppelungswinkel

Mode: Ausbreitungsweg für Licht

• Mehrmodefasern (Multimodefasern): Mehrere Moden

• Einmodefasern (Singlemodefasern): Eine Mode

Indexfasern und Indexprofile:

Brechungsindex abhängig von der **Entfernung** zu der **Mitte** des **Kernes** bei **Gradienten**- und **Stufenindexprofil**.

Liste der Fasern:

Fasertyp	Bezeichnung	Kerndurchmesser
Kunststofffaser	APF (All Plastic Fibre) oder POF (Plastic Optical Fibre)	250 μm 980 μm
Glas-Kunststofffaser	PCS (Plastic Coated Silicon) Glas-Kunststofffaser mit wei- chem Mantel	200 μm
Glas-Kunststofffaser	HCS (Hard Clad Silicon) Glas-Kunststofffaser mit hartem Mantel	50 μm 600 μm
Glasfaser	SIF (Step Index Fibre) Stufenindexfaser	10 μm 200 μm
Glasfaser	GIF (Gradient Index Fibre) Gradientenindexfaser	50 μm 100 μm
Glasfaser	SMF (Single Mode Fibre) Einmodenfaser	5 μm 12 μm

Dispersion: Effekte die zur Impulsverbreiterung führen

Modendispersion

Multimodefasern mit Stufenindexprofil führen zu Laufzeitunterschieden, aufgrund der unterschiedlichen Geschwindigkeiten im Leiter.

Chromatische Dispersion

Unterschiedliche Geschwindigkeiten der Wellenlängen führen ebenso zu einer Impulsverbreiterung
→ schränkt Übertragungsreichweite ein! Chromatische Dispersion deswegen, weil sie von der
Wellenlänge (Farbe) abhängig ist. Gering, wenn nur eine Wellenlänge ausgestrahlt wird und diese
ungefähr 1300nm beträgt.

Dämpfung:

Wird hauptsächlich verursacht durch

- Streueffekte von Inhomogenitäten im Material (Rayleigh-Streuung)
- **Absorptionsverluste** der Strahlung durch Verunreinigung des Quarzmaterials, durch z.B. Wasser (OH-Absorption)
- Es kann auch durch Krümmung zu Verlusten kommen, deshalb muss der max. **Biegeradius** eingehalten werden (Datenblatt).

Sendeelemente:

LED

Frequenzgemisch, bis zu 30MHz

Laserdiode

Gebündeltes Licht, monochromatisch, nur eine Wellenlänge

Bei **Monomodefasern** muss eine **Laserdiode** verwendet werden, außerdem hat sie eine größere Strahlungsleistung

Empfangselemente:

Fototransistor

Große Anstiegs- und Abfallzeiten, nur für langsame niederfrequente Vorgänge

PIN-Fotodiode

I...Intrinsic-Zone, Weite Raumladungszone und somit niedrige Kapazität → schnelle Schaltzeiten, detektieren auch schwache Lichtstärken gut

Empfangsdiode muss im **Wellenbereich** der **Senderdiode** liegen, vom Halbleitermaterial abhängig.

Maß ist die Spektrale Empfindlichkeit (Srel):

Beispiel:

Die Kernbrechzahl eines LWL beträgt 1,55, die des Mantels 1,51. Der Kerndurchmesser beträgt 50μm. Der LWL wird bei einer Wellenlänge von 0,8μm betrieben.

Gesucht: c in Kern (c_1) ; Θ_g ; NA; Θ_{max} ; Vorteile gegenüber Kupfer-Leiter

$$c_1 = \frac{c}{n_1} = \frac{299792}{1,51} = \mathbf{193414} \frac{km}{s}$$

$$\Theta_g = \sin^{-1}(\frac{n_2}{n_1}) = \sin^{-1}(\frac{1,51}{1,55}) = \mathbf{76}, \mathbf{95}^{\circ}$$

$$NA = \sqrt{n_1^2 - n_2^2} = \sqrt{1,55^2 - 1,51^2} = \mathbf{0}, \mathbf{35}$$

$$\Theta_{max} = \sin^{-1}(NA) = \sin^{-1}(0,3498 \dots) = \mathbf{20}, \mathbf{48}^{\circ}$$

Größere Bandbreite, weniger Dämpfung, größere Kanal-Kapazität, keine ohmschen-Verluste, Gewicht

MODULATION

Warum?

Passt das Signal an den Übertragungskanal an

Arten der Modulation:

Allgmeine Funktion:

$$y(t) = \frac{a(t)\cos(2\pi f_c t + \varphi(t))}{a(t)}$$

AMPLITUDENMODULATION

Funktion:

 $a(t) = f\{s(t)\}$

Die Amplitude des Ausgangssignals ist abhängig von der Amplitude des

 $\varphi(t) = \varphi_0$

Eingangssignals

AM ohne Träger:

$$y(t) = A_0 \cos(2\pi f_m t) \cos(2\pi f_c t)$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

$$\cos(\alpha + \beta) + \cos(\alpha - \beta) = 2\cos(\alpha)\cos(\beta)$$

$$y(t) = \frac{A_0}{2} \{ cos[2\pi (f_c - f_m)t] + cos[2\pi (f_c + f_m)t] \}$$

Amplitudenmodulation mit unterdrücktem Träger

AM mit Träger:

$$m * s(t) = cos(2\pi f_m t) \longrightarrow y(t) = (1 + m * s(t))c(t)$$

$$1 \qquad c(t) = A_c cos(2\pi f_c t)$$

$$y(t) = (1 + m * s(t))c(t)$$

$$y(t) = (1 + m * \cos(2\pi f_m t)) A_c \cos(2\pi f_c t)$$

$$y(t) = A_c \cos(2\pi f_c t) + A_c * m * \cos(2\pi f_m t) * \cos(2\pi f_c t)$$

Träger ist präsent!

$$y(t) = A_c \cos(2\pi f_c t) + \frac{A_c * m}{2} \{ \cos[2\pi (f_c - f_m)t] + \cos[2\pi (f_c + f_m)t] \}$$

Amplitudenmodulation mit Träger

Kenngrößen:

Modulationsgrad

$$m{m} = rac{Y-y}{Y+y}$$
, Stärke der Modulations, falls größer als $1 o \ddot{ t U}$ bersteuereung

Spannungen

$$U_{Am,max} = \frac{Y}{2} \qquad U_{Am,min} = \frac{y}{2}$$

$$\widehat{\boldsymbol{U}}_{\boldsymbol{M}} = \frac{U_{Am,max} - U_{Am,min}}{2} = \frac{Y - y}{4}, Amplitude des Modulationssignals$$

$$\widehat{U}_T = \frac{U_{Am,max} + U_{Am,min}}{2} = \frac{Y + y}{4}$$
, Amplitude des Trägerssignals

Leistungen, am Widerstand R

$$P_c = \frac{\widehat{U}_T^2}{2R}$$
, Leistung des Trägers

$$P_{SB} = \frac{\widehat{U}_m^2}{8R}$$
, Leistung eines Seitenbandes

$$P_{M}=2P_{SB}=2rac{\widehat{U}_{m}^{2}}{8R}=rac{\widehat{U}_{m}^{2}}{4R}$$
, Leistung des Modulationssignals — 2 Seitenbänder

$$P_{AM} = P_c \left(1 + \frac{m^2}{2}\right)$$
, mittlere Leistung der AM

$$PEP = P_c(1+m)^2$$
, max. Leistung der Einhüllenden

Frequenzen

 $|f_{OSB} = f_T + f_M$, Frequenz des oberen Seitenbandes

 $\left|f_{USB}=f_T-f_M,Frequenz
ight.$ des unteren Seitenbandes

 $B = f_{OSB} - f_{USB} = 2f_m$, Bandbreite

Ringmodulator:

Der Ringmodulator multipliziert die Input- und Carrierspannung miteinander. Die Spannung am Carrier legt fest, welche Dioden leiten. Dadurch wird die Spannung am Input entweder normal weitergegeben oder negiert. Vorrausetzung dafür ist, dass die Carrierspannung deutlich höher als die Modulationsspannung ist.

Diodenmodulator:

$$U_R = I * R$$

$$I = I_0 (e^{\frac{U}{mU_T}} - 1)$$

$$I \sim e^{\frac{U}{k}} - 1$$

$$e^{\frac{U}{k}} - 1 = \frac{U}{k} + \frac{1}{2!} \left(\frac{U}{k}\right)^2 + \frac{1}{3!} \left(\frac{U}{k}\right)^3 \dots \rightarrow Strom \ is \ proportional \ zum \ Quadrat \ der \ Spannung$$

$$U_s = m\cos(2\pi f_m t) + A_c\cos(2\pi f_c t)$$

$$I \sim U_s^2 \sim [m\cos(2\pi f_m t) + A_c\cos(2\pi f_c t)]^2$$

Durch lösen der binomischen Formel und Anwendung der Kosinussätzen lässt sich herleiten, dass im Signal nach der Diode folgende Frequenzen vorhanden sind: $f_c, f_c - f_m, f_c + f_m \text{ und genau genommen unendlich weitere, die durch die} \\ \text{Mischprodukte} \text{ zustande kommen (siehe Reihenentwicklung e-Funktion)}. Weil aber für uns nur der quadratische Anteil wichtig ist, werden alle anderen mit einem Bandpass herausgefiltert.}$

Hüllkurvendemodulator:

Während der positiven Halbwelle lädt sich der Kondensator auf. Während der negativen entlädt er sich. Ist die Aufladezeit kürzer als die Entladezeit, so kann man sehr gut die einhüllende Kurve herausfiltern.

$$au_1 = R_L C$$
, möglichst klein
$$au_1 = R_E C$$
, möglichst groß
$$f_M \ll \frac{1}{ au_1} \ll f_T$$

Synchrondemodulator: Kohärente AM-Demodulation

Falls Phasenlage unbekannt

$$y(t) = (1+m*s(t)c(t))$$

$$p(t) = 2cos(2\pi f_c t + \phi_0)$$

$$PLL$$

$$p(t) = 2cos(2\pi f_c t + \phi_0)$$

PLL misst Phasenverschiebung und stellt anschließend einen Oszillator ein, bis die Phasenverschiebung 0 ist \rightarrow Trägerrekonstruktion.

$$h(t) = TP(y(t) * p(t))$$

$$h(t) = TP((1 + m * s(t))A_c \cos(2\pi f_c t + \varphi_0) * 2\cos(2\pi f_c t + \varphi_0)$$

$$\cos^2(x) = \frac{1}{2}(\cos(2x) + 1) \rightarrow 2\cos^2(x) = (\cos(2x) + 1)$$

$$h(t) = TP((1 + m * s(t))A_c(\cos(4\pi f_c t + 2\varphi_0) + A_c), \text{ wird durch Tiefpass elir}$$

$$h(t) = TP\left(\left(1 + m * s(t)\right)A_c\cos(4\pi f_c t + 2\varphi_0) + A_c\right), \text{ wird durch Tiefpass eliminiert}$$

$$h(t) = \left(1 + m * s(t)\right)A_c = A_c + A_c m * s(t)$$

IQ-Demodulator: Kohärente AM-Demodulation

Falls Phasenlage unbekannt

$$i(t) = TP((1+m*s(t))c(t)*2\cos(2\pi f_c t))$$

$$i(t) = TP((1+m*s(t))A_c \cos(2\pi f_c t + \varphi_0) 2\cos(2\pi f_c t))$$

$$\cos(x)\cos(x+y) = \frac{1}{2}(\cos(2x+y) + \cos(y)) \rightarrow 2\cos(x)\cos(x+y) = \cos(2x+y) + \cos(y)$$

$$i(t) = TP((1+m*s(t))(A_c\cos(4\pi f_c t + \varphi_0) + A_c\cos(\varphi_0))), \text{ wird durch Tiefpass eliminiert}$$

$$i(t) = (1+m*s(t))A_c\cos(\varphi_0)$$

$$i(t) = (A_c + A_c m * s(t))\cos(\varphi_0)$$

$$q(t) = TP((1+m*s(t))c(t)*2\sin(2\pi f_c t))$$

$$q(t) = TP((1+m*s(t))A_c \cos (2\pi f_c t + \varphi_0)(-2)\sin(2\pi f_c t))$$

$$-2\sin(x)\cos(x+y) = -\sin(2x+y) + \sin(y)$$

$$q(t) = TP((1+m*s(t))(A_c\cos(4\pi f_c t + \varphi_0)A_c\sin(\varphi_0))), wird durch Tiefpass eliminiert$$

$$q(t) = (1+m*s(t))A_c\sin(\varphi_0)$$

$$q(t) = (A_c + A_c m * s(t))\sin(\varphi_0)$$

$$A_{c} + A_{c}m * s(t) = k$$

$$s(t) = \sqrt{i(t)^{2} + q(t)^{2}}$$

$$s(t) = \sqrt{k^{2}cos^{2}(\varphi_{0}) + k^{2}sin^{2}(\varphi_{0})}$$

$$s(t) = \sqrt{k^{2}(cos^{2}(\varphi_{0}) + sin^{2}(\varphi_{0}))}, 1$$

$$s(t) = \sqrt{k^{2}} = k$$

$$s(t) = A_{c} + A_{c}m * s(t)$$

Beispiel: Zur Darstellung eines AM-Signals im Zeigerdiagramm sind die Amplituden der Trägerspannung \widehat{U}_T und der Seitenbänder \widehat{U}_S zu berechnen. Die Trägerleistung des AM-Signals beträgt $P_T=80W$, gesucht ist weiters die Spitzenleistung bei einem Modulationsgrad von 60% und einem Innenwiderstand von $R=75\Omega$.

Gesucht: P_T , \widehat{U}_S , PEP

$$P_T = \frac{\widehat{U}_T^2}{2R} \to \widehat{U}_T = \sqrt{2RP_T} = \sqrt{2*75*80} = \mathbf{109,544}V$$

$$m = \frac{\widehat{U}_S}{\widehat{U}_T} \to \widehat{U}_S = m*\widehat{U}_T = 0.6*109,544 = \mathbf{65,727}V$$

$$PEP = P_T(1+m^2) = 75(1+0.6^2) = \mathbf{102}W$$

Beispiel:
$$U_{AM,max} = 18V$$
, $U_{AM,min} = 2V$, $f_M = 1kHz$, $f_T = 20kHz$, $R = 50\Omega$

Gesucht: Modulationsgrad, Funktionsgleichung, Leistungen, Skizze im Frequenzbereich

$$Y = 2U_{AM,max} = 2 * 18 = 36V \qquad P_T = \frac{\widehat{U}_T^2}{2R} = \frac{10^2}{2 * 50} = 1W$$

$$y = 2U_{AM,min} = 2 * 2 = 4V$$

$$m = \frac{Y - y}{Y + y} = \frac{36 - 4}{36 + 4} = 0.8$$

$$P_{SB} = \frac{\widehat{U}_M^2}{8R} = \frac{8^2}{8 * 50} = 0.16W$$

$$P_{M} = 2P_{SB} = 2 * 0.16 = 0.32W$$

$$\widehat{U}_T = \frac{Y + y}{4} = \frac{36 + 4}{4} = 10V \qquad P_{AM} = P_T \left(1 + \frac{m^2}{2}\right) = 1\left(1 + \frac{0.8^2}{2}\right) = 1.32W$$

$$\widehat{U}_M = \frac{Y - y}{4} = \frac{36 - 4}{4} = 8V \qquad PEP = P_T(1 + m^2) = 1(1 + 0.8^2) = 1.64W$$

$$Y(t) = (1 + m * s(t))c(t) = (1 + m * \cos(2\pi f_M t))\widehat{U}_T\cos(2\pi f_T t)$$

$$Y(t) = \widehat{U}_T\cos(2\pi f_T t) + \widehat{U}_T m * \frac{\cos(2\pi f_M t)\cos(2\pi f_T t)}{\cos(2\pi f_T t)}$$

$$Y(t) = \widehat{U}_T\cos(2\pi f_T t) + \frac{\widehat{U}_T m}{2} \{\cos[2\pi (f_T - f_M)t] + \cos[2\pi (f_T + f_M)t]\}$$

$$Y(t) = \mathbf{10V}\cos(2\pi t * \mathbf{20kHz}) + \mathbf{4V}[\cos(2\pi t * \mathbf{19kHz}) + \cos(2\pi t * \mathbf{21kHz})]$$

WINKELMODULATION

Funktion:

 $a(t) = a_0$ Die Amplitude des Ausgangssignals ist abhängig von der Amplitude des

 $\varphi(t) = f\{s(t)\}\$ Eingangssignals

 $y_{WM}(t) = A_0 \cos(\omega_0 t + \varphi(t))$

Phasenmodulation:

$$\varphi(t) = k_{PM} * s(t) \qquad [k_{PM}] = 1 \frac{rad}{V}$$

$$y_{PM}(t) = A_0 \cos(\omega_0 t + k_{PM} * s(t))$$

 $\Delta \varphi = k_{PM} * \hat{S}, max. Phasen "and er ung"$ → Phasenhub

 \rightarrow $y_{PM}(t)$

Frequenz abhängig von der Änderung!

Frequenzmodulation:

$$\omega_{FM}(t) = \frac{d\theta(t)}{dt} = \omega_0 + k_{FM} * s(t)$$

$$y_{FM}(t) = A_0 \cos(\theta(t))$$

$$\theta(t) = \int \frac{d\theta(t)}{dt} dt$$

$$y_{FM}(t) = A_0 \cos \left(\omega_0 t + k_{FM} \int_0^t s(\tau) d\tau \right)$$

$$oldsymbol{\Delta f} = rac{k_{FM} * \hat{S}}{2\pi}$$
, max. Frequenzänderung

→ Frequenzhub

s(t) -

 \rightarrow $y_{FM}(t)$ FM-MOD

Frequenz abhängig vom Momentanwert!

Analog vs. Digital moduliert:

Phasenhub bei FM: Wie schnell ändert sich die Phase, abhängig von der Spannung U_{NF}

Kenngrößen:

$$\Delta f = \frac{f_{max} - f_{min}}{2}$$
, Frequenzhub

 $m=rac{\Delta f}{f_T}$, Modulations grad, hier unwichtig, da er nicht angibt wie stark moduliert wird

 $\eta = \frac{\Delta f}{f_{\rm M}}$, Modulations index, gibt an wie stark moduliert wird

 $B_{10\%} = 2(\Delta f + f_{M}), nur$ 90% der Leistung werden berücksichtigt $\rightarrow Carson$

$$B_{5\%} = 2(\Delta f + 2f_M)$$

 $U_{FM}(t) = \widehat{U}_T \sum_{-\infty}^{\infty} J_n(\eta) \cos[(\omega_0 + n\omega_m)t]$, Signal wird in Addition von Cosinus umgeformt

$$J_{-n}(\eta) = (-1)^n J_n(\eta)$$

Kenngrößen:

$$Klirrfaktor k = \frac{Leistung \ Oberwellen}{Leistung \ Grundwelle}$$

 $\Delta \varphi \sim \Delta f$, max. Phasenhub prop. zum Phasenhub

 $\Delta \varphi \sim \frac{1}{f_M}$, max. Phasenhub umgekehrt prop. zur Signalfrequenz

FM-Modulator:

Audiosignal kontrolliert die Kapazität und beeinflusst somit die Frequenz des Quarzoszillators. PLL detektiert das Audiosignal und steuert die Frequenz des VCO im Bereich von 125MHz ± 5kHz.

<u>Beispiel:</u> Ein FM-Signal hat einen Modulationsindex von $\eta=3$. Die Trägerfrequenz beträgt $f_T=500kHz$, der Effektivwert der unmodulierten Trägerspannung 10V, das sinusförmige Modulationssignal hat eine Frequenz von 250Hz. Ermitteln Sie die Amplitude der Seitenschwingung bei f=500,75kHz.

$$n = \frac{f - f_T}{f_M} = \frac{500,75 - 500}{0,25} = 3 \rightarrow J_3$$

$$J_3 = 0, 3$$

$$\widehat{U}_{T3} = J_3 * \widehat{U}_T = 0.3 * 10 * \sqrt{2} = 4.24V$$

