Correction du DHC n°4

Qualité du devoir	Note /5
Non rendu (après 2 séances).	0
Aucun investissement et/ou soin : travail bâclé!	1
Partie du sujet non traitée ou bâclée.	2
Travail correct mais qui aurait mérité plus d'investissement.	3
Bon travail mais quelques erreurs et/ou manque de soin.	4
Très bon travail, soigneux et détaillé.	5

Exercice 1 1. Les solutions de l'équation y' + y = 0 sont les fonctions $x \mapsto \lambda e^{-x}$ où λ est un réel quelconque.

- 2. a) f est dérivable sur \mathbb{R} comme produit de fonctions dérivables sur \mathbb{R} et pour tout réel x, on a $f'(x) = C'(x) e^{-x} C(x) e^{-x}$.
 - b) Puisque f est solution de (E), on a, pour tout réel x, $f'(x) + f(x) = \frac{1}{1 + e^x}$. Ainsi, pour tout réel x, on a :

$$C'(x) e^{-x} - C(x) e^{-x} + C(x) e^{-x} = \frac{1}{1 + e^x} \iff C'(x) e^{-x} = \frac{1}{1 + e^x} \iff C'(x) = \frac{e^x}{1 + e^x}$$

- c) On reconnaît une fonction de la forme $\frac{u'}{u}$ avec $u: x \mapsto 1 + e^x$, qui est une fonction strictement positive. Une primitive de cette fonction est $\ln(u)$. La fonction $x \mapsto \ln(1+e^x)$ convient donc. Ainsi, d'après ce qui précède, une solution de (E) est donc $f: x \mapsto \ln(1+e^x) e^{-x}$.
- 3. Les solutions de (E) sont donc les fonctions $x \mapsto C e^{-x} + \ln(1 + e^x) e^{-x}$ où C est un réel quelconque.

Exercice 2 1. a) Deux primitives de cette fonction peuvent être $F_1: x \mapsto e^{2x}$ et $F_2: x \mapsto e^{2x} + 1$

b) Soient $a, b \in \mathbb{R}$, on a:

$$F_1(b) - F_1(a) = e^{2b} - e^{2a}$$
 et $F_2(b) - F_2(a) = e^{2b} + 1 - (e^{2a} + 1) = e^{2b} - e^{2a}$

c) On remarque que les deux expressions sont égales. Si on prend deux primitives quelconque F_1 et F_2 , alors il existe $C \in \mathbb{R}$ telle que $F_2 = F_1 + C$. Ainsi, on retrouve que :

$$F_2(b) - F_2(a) = F_1(b) + C - (F_1(a) + C) = F_1(b) - F_1(a)$$

Ceci montre que la propriété observée précédemment ne dépend pas des primitives choisies.

2. Une primitive de $x \mapsto x$ est $x \mapsto \frac{x^2}{2}$. Une primitive de $x \mapsto \frac{1}{x}$ est $x \mapsto \ln(x)$. Une primitive de $x \mapsto e^x$ est $x \mapsto e^x$.

 $\mathrm{Donc}:$

$$\int_{1}^{2} x dx = \frac{2^{2}}{2} - \frac{1^{2}}{2} = 2 - \frac{1}{2} = \frac{3}{2}$$

$$\int_{1}^{e} \frac{1}{x} dx = \ln(e) - \ln(1) = 1 - 0 = 1$$

$$\int_{0}^{1} e^{x} dx = e^{1} - e^{0} = e - 1$$