GATE-All BRANCHES Engineering Mathematics

LAPLACE TRANSFORM

Lecture No.- 03

Recape of previous lecture

Topic

Problems based on laplace transformation

Topics to be Covered

Topic

Solution of differential equation using laplace transforms

Topic

Problems based on solution of differential equations

Inverse Laplace Transform:

$$L[f(t)] = f(s) = \int_{D}^{\infty} e^{-st} f(t) dt$$
 $L^{-1}[f(s)] = f(t) = (Inverse Laplace Transform)$
 $L^{-1}[f(s)] = Smt$
 $L^{-1}[f(s)] = 1$
 $L^{-1}[f(s)] = 1$

Somain Inverse Laplace Transform

Inverse Laplace Transform:

 $L^{-1}[f(s)] = f(t) = (Inverse Laplace Transform)$

#Q. The inverse Laplace Transform of

$$\frac{1}{(s^2+2s)} = \frac{1-e^{-2t}}{2}$$

$$(1 - e^{-2t})$$

$$\frac{(1-e^{+2t})}{2}$$

В

$$\frac{(1+e^{\pm 2t})}{2}$$

D

$$\frac{(1-e^{-2t})}{2}$$

$$\begin{bmatrix}
-1 \\ (8^{2} + 28)
\end{bmatrix} = \begin{bmatrix} -1 \\ 5 \\ (8^{2} + 28)
\end{bmatrix} = \begin{bmatrix} -1 \\ 5 \\ (8 + 2) \end{bmatrix}$$

$$\begin{bmatrix}
-1 \\ 5 \\ (8 + 2)
\end{bmatrix} = \begin{bmatrix} -1 \\ 5 \\ (8 + 2)
\end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix}
-1 \\ 5 \\ (8 + 2)
\end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix}
-1 \\ 5 \\ (8 + 2)
\end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix}
-1 \\ 5 \\ (8 + 2)
\end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix}
-1 \\ 5 \\ (8 + 2)
\end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix}
-1 \\ 5 \\ -2 \end{bmatrix}$$

5²+25 = Non linear Function Laplace Transform—Linear System (s^2+28) s(8+2)Mulliply Non linear Non linear = linear Term Jessen Jool \Rightarrow Partial f(x) = A + B Cover-wp (x-a)(x-b) (x-a) (x-b) (x-b) A = f(x) x=a (x-b) x=a (x-b)

#Q. The inverse Laplace transforms of $\frac{1}{s^2(s+1)}$ is

$$\frac{1}{2}t^{2}e^{-t}$$

$$t - 1 + e^{-t}$$

В

$$\frac{1}{2}t^2 + 1 - e^{-t}$$

D

$$\frac{1}{2}t^2(1-e^{-t})$$

$$\begin{bmatrix}
-1 & \frac{1}{s^{2}(s+1)} & = \frac{1}{s} \begin{bmatrix} \frac{1}{s(s+1)} \\ \frac{1}{s} \end{bmatrix} \\
& = \frac{1}{s} \begin{bmatrix} \frac{1}{s} - \frac{1}{(s+1)} \\ \frac{1}{s^{2}} \end{bmatrix} \\
& = \frac{1}{s^{2}} - \frac{1}{s(s+1)} \\
& = \frac{1}{s^{2}} - \frac{1}{s} + \frac{1}{(s+1)} \\
& = \frac{1}{s^{2}} - \frac{1}{s} + \frac{1}{(s+1)} \\
& = \frac{1}{s^{2}} - \frac{1}{s} + \frac{1}{(s+1)} \\
& = \frac{1}{s^{2}} - \frac{1}{s} + \frac{1}{s} \\
& = \frac{1}{s} - \frac{1}{s} + \frac{1}{s} + \frac{1}{s} \\
& = \frac{1}{s} - \frac{1}{s} + \frac{1}{s} + \frac{1}{s} \\
& = \frac{1}{s} - \frac{1}{s} + \frac{1}{s} + \frac{1}{s} \\
& = \frac{1}{s} - \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} \\
& = \frac{1}{s} - \frac{1}{s} + \frac{1}{s}$$

$$\frac{1}{s(s+1)} = \frac{A}{s} + \frac{B}{(s+1)} = 0$$

$$A = \frac{1}{(s+1)} = 1 \quad s+1=0$$

$$B = \frac{1}{s} = -1$$

$$S = -1$$

$$\left[\left[\frac{1}{s^n} \right] = \frac{t^{n-1}}{(n-1)!} \right]$$

$$\frac{S+5}{(S+1)(S+3)} = \frac{A}{(S+1)} + \frac{B}{(S+3)}$$

$$A = \frac{(s+5)}{(s+3)} \Big|_{s=-1} = \frac{4}{2} = 2$$

$$B = \frac{(S+5)}{(S+1)} = \frac{2}{-2} = -1$$

$$= \frac{2}{(s+1)} - \frac{1}{(s+3)}$$

$$= \frac{2e^{-t} - e^{-3t}}{2e^{-t} - e^{-3t}}$$

$$\frac{s+9}{s^2+6s+13}$$
 is

$$L^{-1}\left[\frac{5+9}{5^2+65+13}\right] = L^{-1}\left[\frac{(5+9.)}{(5+3)^2+2^2}\right]$$

$$e^{-3t}\cos 2t - 3e^{-3t}\sin 2t$$

$$(5+3)^2+(2)^2$$

$$e^{-3t} \sin 2t + 3e^{-3t} \cos 2t$$

$$e^{-3t}\cos 2t + 3e^{-3t}\sin 2t$$

$$e^{-3t}\cos 2t + 3e^{-3t}\sin 2t$$

L[f(t)] = f(s) $L[f'(t)] = \int_{0}^{\infty} e^{-st} f'(t) dt$ = sf(s) - f(o) $\{f'(t)\}= sf(s)-f(o) \longrightarrow \text{ one mital value}$ $[f''(t)] = s^2 f(s) - sf(o) - f'(o) \longrightarrow Two Tutal values$ $L[f'''(t)] = s^3 f(s) - s^2 f(o) - sf(o) - f''(o)$ $\left[\int_{-\infty}^{\infty} f(s) - \int_{-\infty}^$

$$\frac{d^2y}{dt^2} =$$

$$\frac{d\overline{\gamma}}{dt^2} =$$

Solve the equation: #Q.

$$\frac{d^3y}{dt^3} + 2\frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 0, \text{ where } y = 0$$

$$\frac{d^3y}{dt^3} + 2\frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 0$$

$$y = 0$$
 $\frac{dy}{dt} = 2$ -1 $y'(0) = 2$ $\frac{d^2y}{dt^2} = 2$ at $t = 0$ -2 $y'(0) = 2$

$$\left[L \left(\frac{d^3y}{dt^3} \right) + 2L \left(\frac{d^3y}{dt^2} \right) - L \left(\frac{dy}{dt} \right) - 2L \left[y \right] = L \left[0 \right] \right]$$

$$L[f] = f(s)$$

 $\frac{1(y(s)) = y(t)}{1(y(s)) = y(s) - sy(s) - sy(s) - y(s) - y(s) - y(s) - y(s)} = \left[s^{3}y(s) - s^{2}y(s) - sy(s) - y(s) \right] + 2\left[s^{2}x(s) - sy(s) - y(s) \right] - \left[sy(s) - y(s) \right]$ $\{y(0)=1, y(0)=2, y''(0)=2, y''(0)=$ -2y(s)=0 $= [s^{3}y(s) - s^{2}x | -s | 2 - 2] + 2[s^{3}y(s) - sx] - 2] - [sy(s) - 1]$ $= [s^3y(s) - s^2 - 2s - 2] + 2[s^2y(s) - s - 2] - [sy(s) - 1] - 2y(s) = 0$ $= \frac{3}{4}(s) - 8^{2} - 28 - 2 + 28^{2}y(s) - 28 + 4 - 5y(s) + 1 - 2y(s) = 0$ $= [3^3 + 28^2 - 8 - 2]\gamma(s) = 8^2 + 98 + 28 + 6 - 1 = [5^2 + 46 + 5]$ (53+212-15-2)

$$\frac{Y(s) = (s^2 + 4s + 5)}{(s^3 + 2s^2 - 1)} = \frac{(s^2 + 4s + 5)}{(s - 1)(s + 1)}$$

$$\frac{1}{3}(t) = \frac{1}{3(s^2-1)(s+2)}$$

$$\frac{1}{3(s^2-1)(s+2)}$$

#Q. Solve the Equation:

$$y'' - 3y' + 2y = 4t + e^{3t}$$
, where $y(0) = 1$ and $y'(0) = -1$

$$\gamma(5) \Rightarrow s^{4} - 78^{3} + 138^{2} + 48 + 2$$

 $s^{2}(s-1)(s-2)(s-3)$

$$y(t) = 3 + 2t - e^{t} - 2e^{2t} + 1e^{3t}$$

#Q. Using Laplace transform, solve the following differntial equation:

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = e^{-t} \sin t, \text{ wherex (0) and } x'(0) = 1. \quad \approx (6) = 1$$

$$s^{2}x(s)-sx(0)-x(0)+2sx(s)-x(0)+5x(s)=\frac{1}{(s+1)^{2}+1}$$

$$[s^{2}+2s+5]x(s)-s-1-1=\frac{1}{(s+1)^{2}+1}(x(s))+\frac{1}{(s^{2}+2s+5)}(s+1)+\frac{1}{(s+1)^{2}+1}(x(s))+\frac{1}{(s+1)^{2}+1}(x(s))-x(t)$$

#Q. Using Laplace transformation, solve the differential equation

$$\frac{d^2x}{dt^2} + 9x = \cos 2t, \text{ if } x(0) = 1, x\left(\frac{\pi}{2}\right) = -1.$$

2 mins Summary

Topic One

Topic Two

Topic Three

Topic Four

Topic Five

Problems

Rahul Sin PW

Laplace Trams form.
GATE PYA

THANK - YOU