Consider the model $y_i = \mu + \beta \sin(x_i + \eta) + \epsilon_i$ where $x_i = \frac{2\pi i}{n}$ for i = 0, 1, ..., n, $\epsilon_i \sim \mathsf{N}(0,1)$ independently for each i, and $\eta \in [0,\pi]$.

1. (25 pts) Assume for now that η is known. What is the maximum likelihood estimator for (μ, β) ?

Solution: The model can be written as $y = X\theta + \epsilon$, where

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} 1 & \sin(x_0 + \eta) \\ \vdots & \vdots \\ 1 & \sin(x_n + \eta) \end{pmatrix} \qquad \boldsymbol{\theta} = \begin{pmatrix} \mu \\ \beta \end{pmatrix} \qquad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

The MLE is simply $\boldsymbol{\theta} = \left\{ \mathbf{X}^T \mathbf{X} \right\}^{-1} \mathbf{X}^T \mathbf{y}$ with

$$\mathbf{X}^T \mathbf{X} = \begin{pmatrix} n & \sum_{i=0}^n \sin(x_i + \eta) \\ \sum_{i=0}^n \sin(x_i + \eta) & \sum_{i=0}^n \sin^2(x_i + \eta) \end{pmatrix}$$
$$\mathbf{X}^T \mathbf{y} = \begin{pmatrix} \sum_{i=0}^n y_i \\ \sum_{i=0}^n y_i \sin(x_i + \eta) \end{pmatrix}$$

so that

$$\hat{\mu} = \frac{\left\{\sum_{i=0}^{n} y_i\right\} \left\{\sum_{i=0}^{n} \sin^2(x_i + \eta)\right\} - \left\{\sum_{i=0}^{n} y_i \sin(x_i + \eta)\right\} \left\{\sum_{i=0}^{n} \sin(x_i + \eta)\right\}}{n \sum_{i=0}^{n} \sin^2(x_i + \eta) - \left\{\sum_{i=0}^{n} \sin(x_i + \eta)\right\}^2}$$

and

$$\hat{\beta} = \frac{n \left\{ \sum_{i=0}^{n} y_i \sin(x_i + \eta) \right\} - \left\{ \sum_{i=0}^{n} y_i \right\} \left\{ \sum_{i=0}^{n} \sin(x_i + \eta) \right\}}{n \sum_{i=0}^{n} \sin^2(x_i + \eta) - \left\{ \sum_{i=0}^{n} \sin(x_i + \eta) \right\}^2}.$$

2. (35 pts) Assume now that η is unknown. Compute the maximum likelihood estimator for (μ, β, η) (Hint: You can use simple trigonometric identities to write $\beta \sin(x_i + \eta) = \beta \sin x_i \cos \eta + \beta \cos x_i \sin \eta$. Also, note that $\sum_{i=0}^n \sin x_i \cos x_i = 0$ and $\sum_{i=0}^n \sin x_i \cos x_i = 0$.)

Solution: The proposed alternative representation is valid because of the well-known trigonometric identity $\sin(\alpha + \gamma) = \sin\alpha\cos\gamma + \cos\alpha\sin\gamma$. Note that the model can now be written as

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} 1 & \sin x_0 & \cos x_0 \\ \vdots & \vdots & \vdots \\ 1 & \sin x_n & \cos x_n \end{pmatrix} \qquad \boldsymbol{\theta} = \begin{pmatrix} \mu \\ \phi_1 \\ \phi_2 \end{pmatrix} \qquad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

where $\phi_1 = \beta \cos \eta$ and $\phi_2 = \beta \sin \eta$. In this case

$$\mathbf{X}^{T}\mathbf{X} = \begin{pmatrix} n & \sum_{i=0}^{n} \sin x_{i} & \sum_{i=0}^{n} \cos x_{i} \\ \sum_{i=0}^{n} \sin x_{i} & \sum_{i=0}^{n} \sin^{2} x_{i} & \sum_{i=0}^{n} \sin x_{i} \cos x_{i} \\ \sum_{i=0}^{n} \cos x_{i} & \sum_{i=0}^{n} \sin x_{i} \cos x_{i} & \sum_{i=0}^{n} \cos^{2} x_{i} \end{pmatrix},$$

$$\mathbf{X}^{T}\mathbf{y} = \begin{pmatrix} \sum_{i=0}^{n} y_{i} \\ \sum_{i=0}^{n} y_{i} \sin x_{i} \\ \sum_{i=0}^{n} y_{i} \cos x_{i} \end{pmatrix}.$$

They can proceed with this general form, but it is easier to note that $\sum_{i=0}^{n} \sin x_i = 0$ and $\sum_{i=0}^{n} \sin x_i \cos x_i = 0$ (since both are odd functions around π and the x_i s are equally spaced), so that

$$\mathbf{X}^{T}\mathbf{X} = \begin{pmatrix} n & 0 & \sum_{i=0}^{n} \cos x_{i} \\ 0 & \sum_{i=0}^{n} \sin^{2} x_{i} & 0 \\ \sum_{i=0}^{n} \cos x_{i} & 0 & \sum_{i=0}^{n} \cos^{2} x_{i} \end{pmatrix}.$$

Now, if we work with (ϕ_1, μ, ϕ_2) instead of (μ, ϕ_1, ϕ_2) we obtain a block diagonal matrix that is easier to invert and

$$\hat{\mu} = \frac{\left\{\sum_{i=0}^{n} y_i\right\} \left\{\sum_{i=0}^{n} \cos^2 x_i\right\} - \left\{\sum_{i=0}^{n} y_i \cos x_i\right\} \left\{\sum_{i=0}^{n} \cos x_i\right\}}{n \sum_{i=0}^{n} \cos^2 x_i - \left\{\sum_{i=0}^{n} \cos x_i\right\}^2},$$

$$\hat{\phi_1} = \frac{\sum_{i=0}^{n} y_i \sin x_i}{\sum_{i=0}^{n} \sin^2 x_i},$$

and

$$\hat{\phi}_2 = \frac{n\left\{\sum_{i=0}^n y_i \cos x_i\right\} - \left\{\sum_{i=0}^n y_i\right\} \left\{\sum_{i=0}^n \cos x_i\right\}}{n\sum_{i=0}^n \cos^2 x_i - \left\{\sum_{i=0}^n \cos x_i\right\}^2}.$$

Because of invariance, the MLE of η is simply $\hat{\eta} = \arctan\left\{\frac{\hat{\phi}_2}{\hat{\phi}_1}\right\}$.

3. (40 pts) Assume that you are interested in testing the hypotheses $H_0: \eta = \pi/4$ vs. $H_a: \eta \neq \pi/4$. Derive the likelihood ratio test for this this pair of hypotheses. Please keep in mind that we are assuming that the variance is known!

Solution: Under the null, the model is equivalent to setting $\phi_1 = \phi_2 = \beta$. Hence, testing $H_0: \eta = \pi/4$ vs. $H_a: \eta \neq \pi/4$ is equivalent to testing the general linear hypotheses:

$$H_0: (1,0,-1)$$
 $\begin{pmatrix} \phi_1 \\ \mu \\ \phi_2 \end{pmatrix} = 0$ vs. $H_a: (1,0,-1)$ $\begin{pmatrix} \phi_1 \\ \mu \\ \phi_2 \end{pmatrix} \neq 0$,

Note that

$$(1,0,-1)\begin{pmatrix} \hat{\phi_1} \\ \hat{\mu} \\ \hat{\phi_2} \end{pmatrix} = \frac{\sum_{i=0}^n y_i \sin x_i}{\sum_{i=0}^n \sin^2 x_i} - \frac{n \left\{ \sum_{i=0}^n y_i \cos x_i \right\} - \left\{ \sum_{i=0}^n y_i \right\} \left\{ \sum_{i=0}^n \cos x_i \right\}}{n \sum_{i=0}^n \cos^2 x_i - \left\{ \sum_{i=0}^n \cos x_i \right\}^2},$$

and that

$$(1,0,-1)\begin{pmatrix} \frac{1}{\sum_{i=0}^{n}\sin^{2}x_{i}} & 0 & 0\\ 0 & \frac{\sum_{i=0}^{n}\cos^{2}x_{i}}{n\sum_{i=0}^{n}\cos^{2}x_{i} - \left\{\sum_{i=0}^{n}\cos x_{i}\right\}} & \frac{-\sum_{i=0}^{n}\cos x_{i}}{n\sum_{i=0}^{n}\cos^{2}x_{i} - \left\{\sum_{i=0}^{n}\cos x_{i}\right\}} & \frac{1}{n\sum_{i=0}^{n}\cos^{2}x_{i} - \left\{\sum_{i=0}^{n}\cos x_{i}\right\}} \\ 0 & \frac{-\sum_{i=0}^{n}\cos x_{i}}{n\sum_{i=0}^{n}\cos^{2}x_{i} - \left\{\sum_{i=0}^{n}\cos x_{i}\right\}} & \frac{n}{n\sum_{i=0}^{n}\cos^{2}x_{i} - \left\{\sum_{i=0}^{n}\cos x_{i}\right\}} \end{pmatrix} \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$$
$$= \frac{1}{\sum_{i=0}^{n}\sin^{2}x_{i}} + \frac{n}{n\sum_{i=0}^{n}\cos^{2}x_{i} - \left\{\sum_{i=0}^{n}\cos x_{i}\right\}}.$$

Therefore

$$U = \frac{\left(\frac{\sum_{i=0}^{n} y_i \sin x_i}{\sum_{i=0}^{n} \sin^2 x_i} - \frac{n\{\sum_{i=0}^{n} y_i \cos x_i\} - \{\sum_{i=0}^{n} y_i\} \{\sum_{i=0}^{n} \cos x_i\}}{n\sum_{i=0}^{n} \cos^2 x_i - \{\sum_{i=0}^{n} \cos x_i\}^2}\right)^2}{\frac{1}{\sum_{i=0}^{n} \sin^2 x_i} + \frac{n}{n\sum_{i=0}^{n} \cos^2 x_i - \{\sum_{i=0}^{n} \cos x_i\}}} \sim \chi_1^2$$

So the test proceeds by computing U_{obs} using the sample and rejecting H_0 if $U_{obs} > \chi_1^2(1-\alpha)$ where $\chi_1^2(1-\alpha)$ denotes the $1-\alpha$ quantile of the chi squared distribution with one degree of freedom.