Table 2: Model structure specification for survival (ϕ) , recapture (p), smolting (α) , and emigration (ρ) with relatively common notation. Our notation is as follows: 1) subscripts indicate a discrete effect; 2) terms in parentheses indicate a continuous relationship; 3) terms such as $A \times B$ indicate both individual factor effects and interactions; 4) terms such as A:B indicate interactions only; 5) terms such as A, B, K, with K constant, indicate a multi-dimensional spline; and 6) terms such as A, K, with K constant, indicate a single-dimensional spline with K knots. Each component model is transformed through the inverse logistic transformation to generate an event probability.

	Model#	Survival	Recapture	Smolting	Emigration
	0	ϕ_S	p_S	α_S	$ ho_S$
27	1	ϕ_S	p(d,4)	α_A	$ ho_S$
	2	$\phi_{A imes S}$	p(d,4)	α_A	$ ho_S$
	3	$\phi_{A imes S}$	$p(d,4) + p_{OCC}$	α_A	$ ho_S$
	4	$\phi_{A\times S} + \phi_{A+A:S}(T) + \phi_{A+A:S}(F) + \phi_{S}(T\times F)$	p(d,4)	α_A	$ ho_S$
	5	$\phi_{A\times S} + \phi_{A+A:S}(T) + \phi_{A+A:S}(F) + \phi_{S}(T\times F)$	$p(d,4) + p_{OCC}$	α_A	$ ho_S$
	6	$\phi_{A \times S} + \phi_{A+A:S}(T)^2 + \phi_{A+A:S}(F)^2 + \phi_S(T \times F)^2$	$p(d,4) + p_{OCC}$	α_A	$ ho_S$
	7	ϕ_S	$p(d,4) + p(dT) + p(d\log(F))$	α_A	$ ho_S$
	8	$\phi_{A imes S}$	$p(d,4) + p(dT) + p(d\log(F))$	α_A	$ ho_S$
	9	$\phi_{A imes S}$	$p(d,4) + p(dT) + p(d\log(F)) + p_{OCC}$	α_A	$ ho_S$
	10	$\phi_{A\times S} + \phi_{A+A:S}(T) + \phi_{A+A:S}(F) + \phi_{S}(T\times F)$	$p(d,4) + p(dT) + p(d\log(F))$	α_A	$ ho_S$
	11	$\phi_{A\times S} + \phi_{A+A:S}(T) + \phi_{A+A:S}(F) + \phi_{S}(T\times F)$	$p(d,4) + p(dT) + p(d\log(F)) + p_{OCC}$	α_A	$ ho_S$
	12	$\phi_{A \times S} + \phi_{A+A:S}(T)^2 + \phi_{A+A:S}(F)^2 + \phi_S(T \times F)^2$	$p(d,4) + p(dT) + p(d\log(F)) + p_{OCC}$	α_A	$ ho_S$