Willkommen

Algorithmen I Tutorium 19

Wer? Florian Tobias Schandinat

Wo? 50.34, Raum -118

Wann? jeden Donnerstag 15:45-17:15

Material online

http://github.com/schandinat/algorithmen1_ss11

Grundlagen

- Wurzel, Blätter
- azyklisch
- Weg von Wurzel zu jedem Knoten eindeutig

Grundlagen

- Wurzel, Blätter
- azyklisch
- Weg von Wurzel zu jedem Knoten eindeutig

Grundlagen

- Wurzel, Blätter
- azyklisch
- Weg von Wurzel zu jedem Knoten eindeutig

- 5 + 4 * 3 2 * (1 2)
- {42, 23, 1, 2, 3, 99}

Grundlagen

- Wurzel, Blätter
- azyklisch
- Weg von Wurzel zu jedem Knoten eindeutig

- 5 + 4 * 3 2 * (1 2)
- {42, 23, 1, 2, 3, 99}
- {Paul, Peter, Luise, Anna}

Grundlagen

- Wurzel, Blätter
- azyklisch
- Weg von Wurzel zu jedem Knoten eindeutig

- 5 + 4 * 3 2 * (1 2)
- {42, 23, 1, 2, 3, 99}
- {Paul, Peter, Luise, Anna}
- ...

Grundlagen

- Wurzel, Blätter
- azyklisch
- Weg von Wurzel zu jedem Knoten eindeutig

Vielfältig einsetzbar

- 5 + 4 * 3 2 * (1 2)
- {42, 23, 1, 2, 3, 99}
- {Paul, Peter, Luise, Anna}
- ...

Suchbäume

Knoten erfüllen eine Ordnungsrelation

Binäre Bäume

Einschränkung

Maximal 2 Kinder/Knoten

Binäre Bäume

Einschränkung

Maximal 2 Kinder/Knoten

Darstellung im Array

Beziehungen von A[i] (sofern vorhanden)

Binäre Bäume

Einschränkung

Maximal 2 Kinder/Knoten

Darstellung im Array

Beziehungen von A[i] (sofern vorhanden)

Elternknoten $A[\lfloor \frac{i}{2} \rfloor]$

linkes Kind $A[2 \cdot i]$

rechtes Kind $A[2 \cdot i + 1]$

Rot-Schwarz Bäume

Eigenschaften

- jeder Knoten hat genau eine Farbe (rot oder schwarz)
- Wurzel und Blätter (NIL) sind schwarz
- Knoten rot ⇒ Kinder schwarz
- Anzahl schwarzer Knoten im Pfad zu jedem Blatt gleich
- ⇒ nur wenig unbalanciert

Rotation

- Linksrotation
- Rechtsrotation

Wiederholung

- Bubblesort
- Selectionsort
- Insertionsort
- Mergesort
- Quicksort
- Radixsort
- Meapsort
- Lineare Suche
- 9 Binäre Suche
- Einfach verkettete Liste
- Doppelt verkettete Liste
- Stack
- Queue
- Deque
- Master-Theorem

Vielen Dank für die Aufmerksamkeit!