Résumé de Cours d'Analyse, chapitre III, année 2023

1 Intégrale de Lebesgue des fonctions mesurables à valeurs réelles

Définition: Partie positive et partie négative d'une fonction.

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction mesurable. On définit $f^+ = \max(f, 0)$ et $f^- = \max(-f, 0)$, ainsi f^+ et f^- sont deux fonctions positives et mesurables. On a alors:

$$f = f^+ - f^-$$

et

$$|f| = f^+ + f^-.$$

Définition: Intégrale de Lebesgue d'une fonction mesurable

- 1. Une fonction mesurable positive $f: \mathbb{R} \to \mathbb{R}_+$ est intégrable si et seulement si son intégrale de Lebesgue $\int f d\lambda$ est finie, i.e. $\int_{\mathbb{R}} f d\lambda \in \mathbb{R}_+$.
- 2. Une fonction mesurable $f: \mathbb{R} \to \mathbb{R}$ est intégrable si et seulement si |f| est intégrable, i.e. que f^+ et f^- sont intégrables et

$$\int_{\mathbb{R}} |f| d\lambda = \int_{\mathbb{R}} f^+ d\lambda + \int_{\mathbb{R}} f^- d\lambda \in \mathbb{R}_+.$$

et dans ce cas on définit l'intégrale de Lebesgue de f par:

$$\int_{\mathbb{R}} f d\lambda = \int_{\mathbb{R}} f^+ d\lambda - \int_{\mathbb{R}} f^- d\lambda.$$

Pour résumer: $\int f d\lambda$ est bien définie pour une fonction f mesurable si et seulement si, soit f est positive, soit f est intégrable et dans ce cas $\int |f| d\lambda < +\infty$.

Remarque Cette définition d'intégrabilité fait ici référence à l'intégrale de Lebesgue et non plus à celle de Riemann.

Exemple Toute fonction définie et bornée sur un segment ([a, b] avec $a, b \in \mathbb{R}$, a < b) est intégrable. Ainsi toutes les fonctions Riemann intégrables sont intégrables (au sens de Lebesgue).

Propriétés. Elles sont déduites de l'étude de l'intégrale des fonctions positives et de la définition de l'intégrale d'une fonction réelle.

- 1. Pour tout E mesurable de \mathbb{R} , $\int 1_E d\lambda = \lambda(E)$.
- 2. Linéarité: pour tout α réel et toutes fonctions f et g intégrables sur \mathbb{R} alors $f + \alpha g$ est intégrable sur \mathbb{R} et on a l'égalité:

$$\int (f + \alpha g) \, d\lambda = \int f \, d\lambda + \alpha \int g \, d\lambda.$$

3. Croissance: pour toutes fonctions f et g intégrables sur $\mathbb R$ telles que $f \leq g$ on a:

$$\int f \, d\lambda \le \int g \, d\lambda.$$

4. Inégalité triangulaire: pour toutes fonctions f intégrables sur \mathbb{R} ,

$$|\int f \, d\lambda \mid \leq \int |f| \, d\lambda.$$

5. Soit g une fonction positive intégrable sur $\mathbb R$ alors toute fonction mesurable f telle que $|f| \leq g$ est intégrable et

$$\int |f| \, d\lambda \le \int g \, d\lambda.$$

6. Invariance par translation: pour toutes fonctions f intégrables sur \mathbb{R} ,

$$\int f(x)d\lambda(x) = \int f(x-t)d\lambda(x).$$

7. Invariance par homothétie: pour toutes fonctions f intégrables sur \mathbb{R} ,

$$\int f(x)d\lambda(x) = |s| \int f(sx)d\lambda(x).$$

On note $\mathcal{L}^1_{\mathbb{R}}$ l'ensemble des fonctions intégrables sur \mathbb{R} . Ainsi $\mathcal{L}^1_{\mathbb{R}}$ est un sous espace vectoriel de l'espace des fonctions de \mathbb{R} vers \mathbb{R} .

2 Liens avec l'intégrale de Riemann et les intégrales impropres.

Proposition 1 Soit $a, b \in \mathbb{R}$, a < b et f une fonction, Riemann intégrable sur le segment [a, b], alors f est intégrable et l'intégrale de Lebesgue de f coincide avec celle de Riemann, i.e.

$$\int f \, 1_{[a,b]} \, d\lambda = \int_a^b f(x) dx.$$

Démonstration Décomposons f comme: $f = f^+ - f^-$. D'après le théorème de la section 5 du chapitre II, $\int f^+ 1_{[a,b]} d\lambda = \int_a^b f^+(t) dt$ de même $\int f^- 1_{[a,b]} d\lambda = \int_a^b f^-(t) dt$. Ce qui permet de conclure car $\int f 1_{[a,b]} d\lambda = \int f^+ 1_{[a,b]} d\lambda - \int f^- 1_{[a,b]} d\lambda$.

Proposition 2 Soit $f \in \mathcal{L}^1_{\mathbb{R}}$. Soit $a \in \{-\infty\} \cup \mathbb{R}$, $b \in \mathbb{R} \cup \{+\infty\}$, a < b et soit deux suites (a_n) , (b_n) telles que pour tout entier n, $a_n < b_n$, $[a_n, b_n] \subset]a$, b[, la suite (a_n) est décroissante tendant vers a et la suite (b_n) est croissante, tendant vers b. Alors

$$\lim_{n \to +\infty} \int f \, \mathbb{1}_{[a_n, b_n]} \, d\lambda = \int f \, \mathbb{1}_{]a, b[} \, d\lambda.$$

Démonstration La démonstration a été faite au chapitre précédent dans le cas où la fonction f est positive. Il suffit ici d'écrire la décomposition $f = f^+ - f^-$ et de poser $f_n = f 1_{[a_n,b_n]} = f_n^+ - f_n^-$ avec $f_n^+ = f^+ 1_{[a_n,b_n]}$ et $f_n^- = f^- 1_{[a_n,b_n]}$ ainsi chacune des suites (f_n^+) et (f_n^-) est croissante et positive et convergent simplement respectivement vers f^+ et f^- . En effet, comme $[a_n,b_n] \subset [a_{n+1},b_{n+1}]$ on a $1_{[a_n,b_n]} \leq 1_{[a_{n+1},b_{n+1}]}$ donc comme f^+ et f^- sont positives, les deux suites (f_n^+) et (f_n^-) sont bien croissantes. De plus comme $a_n \to a$ et $b_n \to b$ alors $1_{[a_n,b_n]} \to 1_{]a,b[}$ quand $n \to +\infty$, donc (f_n^+) a f^+ pour limite simple et (f_n^-) a f^- pour limite simple lorsque $n \to +\infty$. Ainsi en appliquant le théorème de convergence monotone à ces deux suites on obtient que

$$\lim_{n \to +\infty} \int f_n^+ d\lambda = \int f^+ d\lambda, \quad \lim_{n \to +\infty} \int f_n^- d\lambda = \int f^- d\lambda$$

d'où le résultat. On en déduit alors la proposition suivante:

Proposition 3 Soit f une fonction Riemann intégrable sur tout segment $[x, y] \subset a, b[$.

1. Si l'intégrale impropre $\int_a^b |f(t)| \, dt$ converge alors f est intégrable sur $]a, \, b[$ et

$$\int_a^b f(t) dt = \int f \, 1_{]a,\,b[} \, d\lambda.$$

2. Si l'intégrale impropre $\int_a^b |f(t)| dt$ diverge alors f n'est pas intégrable sur]a, b[.

Ainsi on peut énoncer (à retenir ou savoir retrouver très vite):

Proposition 4: fonctions intégrables de référence.

- 1. $x \mapsto x^m e^{-ax}$ est intégrable si et seulement si a > 0
- 2. $x \mapsto \sin x e^{-ax}$ est intégrable si et seulement si a > 0
- 3. $x \mapsto \frac{1}{x^a} 1_{]0, 1]}(x)$ est intégrable si et seulement si a < 1
- 4. $x \mapsto \frac{1}{x^a} 1_{[1,+\infty]}(x)$ est intégrable si et seulement si a > 1
- 5. $x \mapsto \frac{(\ln x)^b}{x^a} 1_{[1, +\infty]}(x)$ est intégrable si et seulement si a > 1.

Remarque Il y a des fonctions dont l'intégrale impropre existe, i.e. converge, mais qui n'est pas absolument convergente: ces fonctions ne sont alors pas intégrables. C'est par exemple le cas de la fonction

$$f: x \mapsto \frac{\sin x}{x} 1_{]0, +\infty[}(x), \ f(0) = 1.$$

On démontre que $\int_0^{+\infty} f(x)dx$ converge mais $\int_0^{+\infty} |f(x)|dx = +\infty$. Ainsi cette fonction f n'est pas intégrable.