```
Function
```

Data processing - การประมวลผลข้อมูล

Data storage - การจัดเก็บข้อมูล

Data movement - การส่งผ่านข้อมูล I/O

Control – จัดการทรัพยากรของคอมพิวเตอร์และการทำงานตามหน้าที่

Computer ประกอบไปด้วย

I/O , CPU , Main Memory ทั้งสามอย่างนี้สื่อสารหรือส่งข้อมูลกันด้วย System Bus

เราจะมาดูที่ CPU ก่อน

CPU ประกอบไปด้วย Register , ALU , Control Unit ทั้งสามอย่างนี้สื่อสารหรือส่งข้อมูลกันด้วย Internal Bus

เราจะมาดูที่ Control Unit ก่อน

Control Unit ประกอบไปด้วย Sequencing Logic , Control Unit Registers and Decoder , Control Memory

กลับมาที่ Computer (อันแรกสุด)

Computer ประกอบไปด้วย

CPU – ควบคุมการทำงาน และ ประมวลผลข้อมูลของคอมพิวเตอร์

Main Memory – จัดเก็บข้อมูล

I/O – ย้ายหรือส่งข้อมูลระหว่างคอมพิวเตอร์และสิ่งแวดล้อมภายนอก

System Interconnection - มีไว้เพื่อการสื่อสารระหว่าง CPU, Main Memory, I/O

มาที่ CPU ต่อ

CPU ประกอบไปด้วย

Control Unit – ควบคุมการทำงานของ CPU และ คอมพิวเตอร์

ALU (Arithmetic and Logic Unit) – ประมวลผลข้อมูลทางคณิตศาสตร์และตรรกะศาสตร์

Registers – จัดเตรียมข้อมูลสำหรับ CPU

CPU Interconnection – มีไว้เพื่อการสื่อสารระหว่าง CU, ALU , Registers

Multicore Computer Structure

Central processing Units (CPU) – คอมพิวเตอร์ที่ดึงข้อมูลและดำเนินการตามคำสั่ง ประกอบไปด้วย ALU, Control Unit , Register

Core – หน่วยประมวลผลเดี่ยวบน processor chip

Processor – ส่วนประกอบของคอมพิวเตอร์ที่ประมวลผลและดำเนินการตามที่สั่ง

Cache Memory คือ

- หน่วยความจำที่อยู่ระหว่าง Processor และ Main Memory
- เล็กและเร็วกว่า Main Memory

ใน Mother Board ประกอบไปด้วย Main Memory , I/O , Processor

ซึ่งใน Processor ประกอบไปด้วย core ซึ่งมี่ Cache อยู่ตรงกลาง

ใน Core ประกอบไปด้วย Instruction logic , ALU , load/store logic , data cache , instruction cache

COMPUTER FIRST GENERATION

Vacuum Tube หลอดสุญญากาศ

เคยถูกใช้เป็น digital logic และ memory

รูปอะไรไม่รู้เผื่อต้องจำ (หน้า17)

Registers

Memory buffer register (MBR) – ประกอบไปด้วยคำที่ต้องการจะบันทึกลงใน Memory หรือส่งไปยังหน่วย I/O หรือรับคำจาก memory หรือ จาก I/O

Memory address register – ระบุที่อยู่ของหน่วยความจำของคำที่จะเขียนหรืออ่านใน MBR

Instruction register - ประกอบไปด้วย op-code 8 bit ที่กำลังดำเนินการ

Instruction buffer register – รับข้อมูลชั่วคราวจาก memory

Programmer Counter – ประกอบไปด้วยที่อยู่ของคำสั่งถัดไปที่จะดึงมาจากหน่วยความจำ

Accumulator and multiplier quotient – เก็บข้อมูลการดำเนินการและผลลัพธ์ชั่วคราวที่ได้มาจาก ALU

COMPUTER SECOND GENERATION

Transistor

เล็กกว่า

ถูกกว่า

กระจายความร้อนได้น้อยกว่า

มี ALU และลอจิกที่ซับซ้อนมากยิ่งขึ้น

ใช้ภาษา High level programming

สามารถ โหลดโปรแกรม

สามารถคำนวณได้

COMPUTER THIRD GENERATION

Integrated circuit

Transistor เดี่ยวที่มีอยู่ในตัว

กระบวนการผลิตที่แพงและยุ่งยาก

มีการบัดกรีและต่อสายเข้าด้วยกันบนแผงวงจร

Integrated circuit

Data storage – จัดการโดย memory cells

Data processing – จัดการโดย gates

Data movement - เส้นทางสำหรับย้ายข้อมูลจาก memory to memory และ memory through gates to memory

Control - เส้นทางที่สามารถขนส่งสัญญานการควบคุม

คอมพิวเตอร์ประกอบไปด้วย gate , หน่วยความจำ และ interconnection

Transistor จำนวนมากสามารถผลิตได้ในเวลาเดียวกันบนแผ่นเวเฟอร์ ซิลิคอนแผ่นเดียว

กฎของมัวร์

จำนวน Transistor ที่อยู่บน single ship จะเพิ่มปริมาณเป็นสองเท่าทุกปี

ไม่สามารถเข้ากันได้กับ IMB รุ่นเก่า

สถาปัตยกรรม IBM ยังหลงเหลืออยู่ในปัจุบัน

Generation หลังจากนั้น

LSI Large Scale Integration

VLSI Very Large Scale Integration

ULSI Ultra Large Scale Integration

MICRO PORCESSOR

ความหนาแน่นของ chip บน Processor ยังคงหนาแน่นขึ้นเรื่อยๆ

มีการวางองค์ประกอบบน chip มากขึ้นเรื่อยๆ ทำให้ใช้ชิปน้อยลงในการสร้าง Processor computer ตัวเดียว

EVOLUTION OF INTEL X86 ARCHITECTURE

ตระกูล processor 2 ตระกูลคือ INTEL X86 และ ARM Architecture

ทางเลือกในการออกแบบ processor ที่ลดจำนวนชุดคำสั่ง

Highlights of the Evolution of the Intel Product Line:

Pentium

· Intel introduced the use of superscalar techniques, which allow multiple instructions to execute in parallel

Pentium Pro

 Continued the move into superscalar organization with aggressive use of register renaming, branch prediction, data flow analysis, and speculative execution

Pentium II

 Incorporated Intel MMX technology, which is designed specifically to process video, audio, and graphics data efficiently

Pentium III

- •Incorporated additional floating-point instructions
- Streaming SIMD Extensions (SSE)

Pentium 4

· Includes additional floating-point and other enhancements for multimedia

Core

First Intel x86 micro-core

Core 2

- · Extends the Core architecture to 64 bits
- · Core 2 Quad provides four cores on a single chip
- More recent Core offerings have up to 10 cores per chip
- · An important addition to the architecture was the Advanced Vector Extensions instruction set

Embedded System ระบบฝั่งตัว

คือการใช้อิเล็กทรอนิกส์หรือซอฟต์แวร์ในผลิตภัณฑ์

ในปัจจุบันเครื่องใช้ไฟฟ้าจำนวนมาก มีระบบคอมพิวเตอร์ฝังตัวอยู่

Internet of things IOT

คือการเชื่อมต่อที่มากขึ้นของอุปกรณ์ต่างๆตั้งแต่เครื่องใช้ไฟฟ้าไปยังเซ็นเซอร์ขนาดเล็ก ขับเคลื่อนโดยอุปกรณ์ฝังลึกเป็นหลัก การใช้งานที่จะสิ้นสุดด้วย IOT คือ

Information technology IT – pc, server, router

Operational Technology OT – Machine ต่างๆ เครื่องจักร

Operating system แบบผังตัว หรือ ระบบปฏิบัติการแบผังตัว

มีสองแนวทางในการพัฒนาระบบปฏิบัติการแบบฝังตัว

า ใช้ OS ที่มีอยู่และปรับใช้กับระบบ Operating system

2 ออกแบบ Operating System สำหรับการใช้งานโดยเฉพาะ

Application Processor VS Dedicated Processors

Application Processor ใช้สำหรับวัตถุประสงค์ทั่วไป เช่น โทรศัพท์มือถือ

Dedicated Processors ใช้สำหรับวัตถุประสงค์เฉพาะ ทำให้ลดขนาดและต้นทุนได้

Deeply Embedded System

เป็นส่วนย่อยของระบบฝั่งตัว

มีโปรเซสเซอร์ที่มีพฤติกรรมสังเกตได้ยาก

ใช้ micro controller แทน micro processor

มีข้อจำกัดในการใช้พลังงาน ขนาด processor และ หน่วยความจำ

ARM

คือสถาปัตยกรรม processor ที่วิวัฒนาการมากจาก RISC และถูกนำไปใช้ใน ระบบปฏิบัติการแบบผังตัว

Chips คือ Processor ความเร็วสูงที่ใช้พลังงานต่ำ

เป็นสถาปัตยกรรม Processor ที่ใช้งานกันแพร่หลายมากที่สุด

Cloud computing

ประหยัดขนาด

การจัดการเครือข่ายอย่างมืออาชีพ

การจัดการความปลอดภัยระดับมืออาชีพ

คนทั่วไปหรือบริษัทต้องจ่ายเงินเพื่อ พื้นที่จัดเก็บและความจุที่ต้องการ

ผู้ให้บริการ cloud เป็นผู้รักษาความปลอดภัย

Cloud Networking

คือ network หรือ network management ที่ใช้งานการประมวลผลแบบ Cloud
การจัดเตรียมเครือข่ายคุณภาพสูง หรือ ความน่าเชื่อถือสูง ระหว่างผู้ใหบริการและผู้ใช้บริการ
การใช้บริการพิเศษด้าน internet การใช้ firewall และอุปกรณ์รักษาความปลอดภัยอื่นๆเพื่อป้องกันการเข้าถึง

Cloud storage

เป็นส่วนย่อยของ Cloud computing

ประกอบด้วย Database storage , database hosted remotely บน cloud servers

ทำให้ผู้ใช้ได้รับประโยชน์จากพื้นที่เก็บข้อมูลและสามารถปรับขนาดได้ตามต้องการ โดยไม่ต้องบำรุงรักษาและไม่ต้อง จัดการเรื่องความปลอดภัย

Figure 1.17 Alternative Information Technology Architectures