Supplementary data for:

El-Gabbas A., Baha El Din S., Zalat S., Gilbert F. (2016) Conserving Egypt's reptiles under climate change. Journal of Arid Environments 127:211–221 (doi: 10.1016/j.jaridenv.2015.12.007).

Table S1: A list of species used in this study (with the number of records for each species), their classification according to IUCN guidelines and criteria (global and national status), and distribution status worldwide and in Egypt, models' mean (± sd) AUC scores of 10 folds cross-validation, and the final weighting used to run priotization analyses.

N	Species	# records	Global IUCN	Egypt National IUCN	World status	Egypt Status	Mean AUC ± SD	Weighting score
1	Cyrtopodion scabrum	37	LC	LC	Narrow	Widespread	0.951 ± 0.097	2
2	Hemidactylus flaviviridis	31	NA	VU (D2) 1	Narrow	Narrow	0.961 ± 0.105	8
3	Hemidactylus robustus	40	NA	VU (D2)	Narrow	Narrow	0.899 ± 0.289	8
4	Hemidactylus turcicus	217	LC	LC	Widespread	Widespread	0.955 ± 0.021	1
5	Pristurus flavipunctatus	80	NA	VU (D2) 2	Narrow	Narrow	0.991 ± 0.004	8
6	Ptyodactylus guttatus	115	NA	LC	Narrow	Narrow	0.953 ± 0.026	4
7	Ptyodactylus hasselquistii	225	NA	LC	Narrow	Widespread	0.932 ± 0.031	2
8	Ptyodactylus siphonorhina	180	NA	LC	Restricted	Widespread	0.781 ± 0.09	3
9	Stenodactylus mauritanicus	35	NA	VU (D2)	Restricted	localized	0.989 ± 0.012	18
10	Stenodactylus petrii	60	NA	LC	Narrow	Widespread	0.939 ± 0.034	2
11	Stenodactylus sthenodactylus	268	NA	LC	Narrow	Widespread	0.85 ± 0.041	2
12	Tarentola annularis	324	NA	LC	Narrow	Widespread	0.906 ± 0.046	2
13	Tarentola mauritanica	342	LC	LC	Widespread	Narrow	0.978 ± 0.014	2
14	Tarentola mindiae	43	LC	VU (D2) ³	Near-Endemic	Narrow	0.97 ± 0.019	16
15	Tropiocolotes bisharicus	20	NA	VU (D2)	Near-Endemic	Narrow	0.986 ± 0.017	16
16	Tropiocolotes nattereri	34	NA	LC	Narrow	Narrow	0.975 ± 0.015	4

N	Species	# records	Global IUCN	Egypt National IUCN	World status	Egypt Status	Mean AUC ± SD	Weighting score
17	Tropiocolotes steudneri	197	NA	LC	Narrow	Widespread	0.879 ± 0.037	2
18	Tropiocolotes tripolitanus	24	LC	LC	Narrow	Narrow	0.95 ± 0.036	4
19	Agama spinosa	113	LC	LC	Narrow	Narrow	0.964 ± 0.019	4
20	Laudakia stellio	458	NA	LC	Narrow	Narrow	0.983 ± 0.008	4
21	Pseudotrapelus sinaitus	117	NA	LC	Narrow	Widespread	0.881 ± 0.08	2
22	Trapelus mutabilis	299	NA	LC	Narrow	Widespread	0.947 ± 0.026	2
23	Trapelus pallidus	173	NA	LC	Narrow	Widespread	0.943 ± 0.036	2
24	Trapelus savignii	86	VU (A2abcd)	VU (D2) 4	Near-Endemic	Narrow	0.982 ± 0.007	32
25	Uromastyx aegyptia	82	NA	LC	Narrow	Widespread	0.945 ± 0.022	2
26	Uromastyx ocellata	56	LC	EN (B2 a,b i)	Narrow	Narrow	0.923 ± 0.077	12
27	Uromastyx ornata	16	NA	VU (D2) 5	Restricted	localized	0.99 ± 0.005	18
28	Chamaeleo africanus	72	NA	EN (B2 a,b i,iv) ⁶	Narrow	Narrow	0.963 ± 0.043	12
29	Chamaeleo chamaeleon	262	NA	LC	Widespread	Narrow	0.976 ± 0.013	2
30	Acanthodactylus aegyptius	167	NA	LC	Near-Endemic	Widespread	0.936 ± 0.05	4
31	Acanthodactylus boskianus	1414	NA	LC	Narrow	Widespread	0.889 ± 0.02	2
32	Acanthodactylus longipes	50	NA	VU (D2)	Narrow	Widespread	0.962 ± 0.022	4
33	Acanthodactylus pardalis	191	VU - (A2c; B1ab (i,ii,iii))	VU (D2) ⁷	Restricted	Narrow	0.983 ± 0.017	24
34	Acanthodactylus scutellatus	406	NA	LC	Narrow	Widespread	0.859 ± 0.03	2

N	Species	# records	Global IUCN	Egypt National IUCN	World status	Egypt Status	Mean AUC ± SD	Weighting score
35	Mesalina bahaeldini	98	LC	VU (D2)	Endemic	localized	0.978 ± 0.023	24
36	Mesalina guttulata	216	NA	LC	Narrow	Widespread	0.845 ± 0.055	2
37	Mesalina olivieri	172	NA	LC	Narrow	Widespread	0.951 ± 0.042	2
38	Mesalina pasteuri	19	NA	VU (D2)	Narrow	localized	0.993 ± 0.007	12
39	Mesalina rubropunctata	129	NA	LC	Narrow	Widespread	0.839 ± 0.071	2
40	Ophisops occidentalis	28	LC	VU (D2)	Restricted	localized	0.992 ± 0.006	18
41	Varanus griseus	141	NA	LC	Narrow	Widespread	0.892 ± 0.04	2
42	Varanus niloticus	24	NA	VU (D2)	narrow	localized	0.985 ± 0.021	12
43	Chalcides cf. humilis	37	NA	LC ⁸	Narrow	Widespread	0.87 ± 0.155	4
44	Chalcides ocellatus	596	NA	LC	Widespread	Widespread	0.952 ± 0.015	1
45	Eumeces schneiderii	188	NA	LC	Narrow	Narrow	0.961 ± 0.043	4
46	Scincus scincus	376	NA	LC	Narrow	Widespread	0.87 ± 0.08	2
47	Sphenops sepsoides	367	LC	LC	Restricted	Widespread	0.92 ± 0.027	3
48	Trachylepis quinquetaeniata	318	NA	LC	Narrow	Widespread	0.956 ± 0.021	2
49	Trachylepis vittata	17	LC	VU (D2)	Narrow	Narrow	0.988 ± 0.012	8
50	Leptotyphlops cairi	218	NA	EN (B2 a,b i)	Narrow	Narrow	0.948 ± 0.058	12
51	Leptotyphlops macrorhynchus	17	NA	VU (D2)	Narrow	Narrow	0.926 ± 0.113	8
52	Eryx colubrinus	51	NA	VU (D2)	Narrow	Narrow	0.91 ± 0.113	8

N	Species	# records	Global IUCN	Egypt National IUCN	World status	Egypt Status	Mean AUC ± SD	Weighting score
53	Eryx jaculus	44	NA	LC ⁹	Widespread	Narrow	0.982 ± 0.012	2
54	Eirenis coronella	22	NA	VU (D2)	Narrow	localized	0.985 ± 0.018	12
55	Lytorhynchus diadema	144	NA	LC	Narrow	Widespread	0.894 ± 0.047	2
56	Macroprotodon cucullatus	53	LC	VU (D2)	Widespread	Narrow	0.985 ± 0.023	4
57	Malpolon moilensis	51	NA	LC	Narrow	Widespread	0.874 ± 0.076	2
58	Malpolon monspessulanus	170	LC	LC	Widespread	Narrow	0.98 ± 0.017	2
59	Natrix tessellata	96	LC	VU (D2)	Widespread	localized	0.978 ± 0.012	6
60	Platyceps florulentus	127	LC	LC	Narrow	localized	0.957 ± 0.027	6
61	Platyceps rogersi	45	NA	LC	Narrow	Widespread	0.943 ± 0.071	2
62	Platyceps saharicus	34	NA	LC	Narrow	Narrow	0.882 ± 0.097	4
63	Psammophis aegyptius	183	NA	LC	Narrow	Widespread	0.84 ± 0.055	2
64	Psammophis schokari	371	NA	LC	Narrow	Widespread	0.934 ± 0.03	2
65	Psammophis sibilans	283	LC	LC	Narrow	Narrow	0.979 ± 0.009	4
66	Spalerosophis diadema	216	NA	LC	Widespread	Widespread	0.935 ± 0.036	1
67	Telescopus dhara	56	NA	LC	Narrow	Narrow	0.936 ± 0.074	4
68	Naja haje	60	NA	LC	Narrow	Narrow	0.961 ± 0.026	4
69	Naja nubiae	14	NA	VU (D2)	Restricted	Narrow	0.897 ± 0.214	12
70	Walterinnesia aegyptia	17	NA	VU (D2)	Restricted	Narrow	0.887 ± 0.075	12

N	Species	# records	Global IUCN	Egypt National IUCN	World status	Egypt Status	Mean AUC ± SD	Weighting score
71	Cerastes cerastes	233	NA	LC	Narrow	Widespread	0.838 ± 0.044	2
72	Cerastes vipera	551	NA	LC	Narrow	Widespread	0.922 ± 0.038	2
73	Echis coloratus	50	NA	LC	Narrow	Widespread	0.878 ± 0.11	2
74	Echis pyramidum	59	NA	LC	Narrow	Widespread	0.917 ± 0.128	2
75	Testudo kleinmanni	63	CE (A2 abcd + 3d)	VU (D2) 10	Near-Endemic	Narrow	0.969 ± 0.026	48

- 1. Hemidactylus flaviviridis: a very densely populated species and likely to be associated with man.
- 2. Pristurus flavipunctatus: based on its narrow habitat, strict containment in natural habitats, low densities, and high vulnerability of habitat, it does fit the VU category.
- 3. *Tarentola mindiae:* based on its current distribution, it has quite a large range but a rather narrow habitat. It may be reasonable to be classified at higher threat level (possibly Near Threatened "NT").
- 4. Trapelus savignii: expected to have higher threat level.
- 5. *Uromastyx ornata:* suggested to have a lower threat level even though its range in Egypt is very small and its population size is smaller as well.
- 6. Chamaeleo africanus: Could be of lower threat category due to its large range in Egypt (essentially the whole Nile Valley) and quite dense populations which are expanding rapidly. It also has a very large African range; even invaded parts of Greece.
- 7. Acanthodactylus pardalis: should have a greater threat level. It is practically extinct!
- 8. Chalcides cf. humilis: more recent data indicate its very widespread distribution in Egypt, it occupies a range equal or greater than that of C. ocellatus.
- 9. Eryx jaculus: should be classified at a higher threat status than E.colubrinus or at least equal to it. It is almost extinct from Egypt.
- 10. Testudo kleinmanni: in reality it may be extinct.

Table S2: Species classification according to future species range change (percentage of suitable habitats lost or gained - assuming unlimited dispersal).

<u>Abbreviations used</u>: Critically Endangered "CR": loss>80%; Endangered "EN": loss 50-80%; Vulnerable "VU": loss 30-50%; Least Concern "LC": loss<30 %; Gain 1: gain <30%; Gain 2: gain 30-50%; Gain 3: gain 50-80%; Gain 4: gain 80-100%; Gain 5: gain >100%.

#	Species	A2 2020	A2 2050	A2 2080	B2 2020	B2 2050	B2 2080
1	Cyrtopodion scabrum	Gain 5					
2	Hemidactylus flaviviridis	Gain 5					
3	Hemidactylus robustus	CR	CR	EN	EN	CR	CR
4	Hemidactylus turcicus	Gain 2	Gain 3	Gain 3	Gain 2	Gain 3	Gain 3
5	Pristurus flavipunctatus	EN	EN	EN	VU	EN	EN
6	Ptyodactylus guttatus	VU	EN	CR	EN	EN	EN
7	Ptyodactylus hasselquistii	Gain 1	Gain 3	Gain 5	Gain 1	Gain 4	Gain 5
8	Ptyodactylus siphonorhina	LC	VU	EN	LC	VU	EN
9	Stenodactylus mauritanicus	Gain 1					
10	Stenodactylus petrii	LC	LC	VU	Gain 1	LC	LC
11	Stenodactylus sthenodactylus	Gain 4	Gain 5	Gain 5	Gain 4	Gain 5	Gain 5
12	Tarentola annularis	Gain 4	Gain 5				
13	Tarentola mauritanica	Gain 1	VU	EN	LC	VU	EN
14	Tarentola mindiae	EN	CR	CR	EN	CR	CR
15	Tropiocolotes bisharicus	LC	Gain 1	LC	Gain 1	LC	LC
16	Tropiocolotes nattereri	Gain 3	Gain 5				
17	Tropiocolotes steudneri	Gain 1					
18	Tropiocolotes tripolitanus	LC	LC	VU	LC	VU	VU
19	Agama spinosa	LC	LC	EN	LC	VU	EN
20	Laudakia stellio	Gain 1	LC	EN	Gain 3	Gain 1	LC
21	Pseudotrapelus sinaitus	Gain 1	Gain 3	Gain 4	Gain 1	Gain 3	Gain 3
22	Trapelus mutabilis	VU	EN	CR	VU	EN	CR
23	Trapelus pallidus	Gain 2	Gain 3	Gain 4	Gain 1	Gain 3	Gain 3
24	Trapelus savignii	Gain 1	Gain 4	Gain 5	Gain 1	Gain 3	Gain 5
25	Uromastyx aegyptia	LC	VU	EN	VU	VU	VU
26	Uromastyx ocellata	LC	LC	VU	LC	LC	VU
27	Uromastyx ornata	Gain 5					
28	Chamaeleo africanus	Gain 2	Gain 3	Gain 5	Gain 1	Gain 1	Gain 3
29	Chamaeleo chamaeleon	Gain 4	Gain 5	Gain 5	Gain 4	Gain 5	Gain 5
30	Acanthodactylus aegyptius	LC	LC	VU	LC	LC	VU
31	Acanthodactylus boskianus	Gain 1	Gain 1	Gain 2	Gain 1	Gain 1	Gain 1
32	Acanthodactylus longipes	LC	VU	EN	Gain 1	VU	EN
33	Acanthodactylus pardalis	Gain 2	Gain 3	Gain 1	Gain 3	Gain 3	Gain 2
34	Acanthodactylus scutellatus	Gain 2	Gain 3	Gain 3	Gain 2	Gain 3	Gain 3
35	Mesalina bahaeldini	Gain 2	Gain 1	Gain 1	Gain 1	Gain 2	Gain 1
36	Mesalina guttulata	Gain 2	Gain 3	Gain 5	Gain 2	Gain 3	Gain 5
37	Mesalina olivieri	Gain 4	Gain 5				

#	Species	A2 2020	A2 2050	A2 2080	B2 2020	B2 2050	B2 2080
38	Mesalina pasteuri	LC	Gain 3	Gain 5	LC	Gain 3	Gain 5
39	Mesalina rubropunctata	Gain 3	Gain 5	Gain 5	Gain 3	Gain 5	Gain 5
40	Ophisops occidentalis	Gain 1	LC	LC	Gain 1	Gain 1	LC
41	Varanus griseus	Gain 1	Gain 3	Gain 4	Gain 1	Gain 3	Gain 3
42	Varanus niloticus	Gain 5	Gain 5	Gain 5	Gain 5	Gain 5	Gain 5
43	Chalcides cf. humilis	Gain 5	Gain 5	Gain 5	Gain 5	Gain 5	Gain 5
44	Chalcides ocellatus	Gain 1	Gain 1	Gain 1	Gain 1	Gain 1	Gain 1
45	Eumeces schneiderii	LC	EN	CR	LC	EN	CR
46	Scincus scincus	LC	LC	VU	Gain 1	LC	VU
47	Sphenops sepsoides	Gain 1	Gain 1	EN	Gain 1	Gain 1	LC
48	Trachylepis quinquetaeniata	Gain 3	Gain 5	Gain 5	Gain 3	Gain 5	Gain 5
49	Trachylepis vittata	Gain 3	Gain 5	Gain 5	Gain 3	Gain 5	Gain 5
50	Leptotyphlops cairi	Gain 1	Gain 3	Gain 5	Gain 1	Gain 2	Gain 4
51	Leptotyphlops macrorhynchus	LC	VU	EN	LC	VU	EN
52	Eryx colubrinus	Gain 1	Gain 1	Gain 3	Gain 1	Gain 1	Gain 2
53	Eryx jaculus	VU	EN	CR	VU	EN	EN
54	Eirenis coronella	Gain 2	Gain 1	LC	Gain 3	Gain 2	Gain 1
55	Lytorhynchus diadema	Gain 1	LC	LC	Gain 1	Gain 1	LC
56	Macroprotodon cucullatus	Gain 2	Gain 3	Gain 5	Gain 2	Gain 3	Gain 3
57	Malpolon moilensis	VU	EN	CR	EN	EN	CR
58	Malpolon monspessulanus	Gain 1	LC	VU	Gain 1	LC	VU
59	Natrix tessellata	Gain 1	Gain 1	Gain 2	Gain 1	Gain 1	Gain 2
60	Platyceps florulentus	Gain 1	Gain 1	Gain 2	Gain 1	Gain 2	Gain 1
61	Platyceps rogersi	Gain 3	Gain 5	Gain 5	Gain 2	Gain 4	Gain 5
62	Platyceps saharicus	LC	Gain 1	Gain 2	LC	Gain 1	Gain 1
63	Psammophis aegyptius	Gain 2	Gain 1	Gain 1	Gain 1	Gain 2	Gain 1
64	Psammophis schokari	Gain 1	LC	EN	Gain 1	Gain 1	VU
65	Psammophis sibilans	LC	LC	Gain 1	LC	LC	LC
66	Spalerosophis diadema	Gain 1	Gain 2	Gain 2	Gain 1	Gain 2	Gain 2
67	Telescopus dhara	LC	LC	VU	LC	VU	VU
68	Naja haje	LC	VU	EN	LC	VU	EN
69	Naja nubiae	Gain 3	Gain 5	Gain 3	Gain 4	Gain 3	Gain 5
70	Walterinnesia aegyptia	LC	VU	EN	VU	VU	VU
71	Cerastes cerastes	Gain 3	Gain 4	Gain 5	Gain 2	Gain 4	Gain 4
72	Cerastes vipera	Gain 1	VU	CR	LC	LC	EN
' -	· · · · · · · · · · · · · · · · · · ·						
73	Echis coloratus	Gain 1	Gain 1	Gain 1	LC	LC	Gain 1
		Gain 1	Gain 1 LC	Gain 1 LC	LC LC	LC LC	Gain 1 LC

Table: S3: Species classification according to future species range change (percentage of suitable habitats lost - assuming no-dispersal).

<u>Abbreviations used</u>: Critically Endangered "CR": loss>80%; Endangered "EN": loss 50-80%; Vulnerable "VU": loss 30-50%; Least Concern "LC": loss<30 %.

#	Species	A2 2020	A2 2050	A2 2080	B2 2020	B2 2050	B2 2080
1	Cyrtopodion scabrum	LC	LC	LC	LC	LC	LC
2	Hemidactylus flaviviridis	LC	LC	LC	LC	LC	LC
3	Hemidactylus robustus	CR	CR	EN	EN	CR	CR
4	Hemidactylus turcicus	LC	LC	LC	LC	LC	LC
5	Pristurus flavipunctatus	EN	EN	EN	EN	EN	EN
6	Ptyodactylus guttatus	EN	EN	CR	EN	EN	CR
7	Ptyodactylus hasselquistii	LC	LC	LC	LC	LC	LC
8	Ptyodactylus siphonorhina	VU	EN	CR	VU	EN	EN
9	Stenodactylus mauritanicus	LC	LC	LC	LC	LC	LC
10	Stenodactylus petrii	LC	LC	VU	LC	LC	LC
11	Stenodactylus sthenodactylus	LC	LC	LC	LC	LC	LC
12	Tarentola annularis	LC	LC	LC	LC	LC	LC
13	Tarentola mauritanica	LC	VU	EN	LC	VU	EN
14	Tarentola mindiae	EN	CR	CR	EN	CR	CR
15	Tropiocolotes bisharicus	LC	LC	VU	LC	LC	LC
16	Tropiocolotes nattereri	LC	LC	LC	LC	LC	LC
17	Tropiocolotes steudneri	LC	VU	EN	VU	VU	EN
18	Tropiocolotes tripolitanus	LC	VU	VU	LC	VU	VU
19	Agama spinosa	LC	VU	EN	VU	VU	EN
20	Laudakia stellio	LC	VU	EN	LC	LC	VU
21	Pseudotrapelus sinaitus	LC	LC	LC	LC	LC	LC
22	Trapelus mutabilis	VU	CR	CR	EN	EN	CR
23	Trapelus pallidus	LC	LC	LC	LC	LC	LC
24	Trapelus savignii	LC	LC	LC	LC	LC	LC
25	Uromastyx aegyptia	EN	EN	EN	EN	EN	EN
26	Uromastyx ocellata	LC	LC	EN	LC	LC	VU
27	Uromastyx ornata	LC	LC	LC	LC	LC	LC
28	Chamaeleo africanus	LC	LC	LC	LC	LC	LC
29	Chamaeleo chamaeleon	LC	LC	LC	LC	LC	LC
30	Acanthodactylus aegyptius	LC	VU	EN	LC	VU	VU
31	Acanthodactylus boskianus	LC	LC	LC	LC	LC	LC
32	Acanthodactylus longipes	VU	EN	CR	VU	EN	EN
33	Acanthodactylus pardalis	LC	LC	LC	LC	LC	LC
34	Acanthodactylus scutellatus	LC	LC	LC	LC	LC	LC
35	Mesalina bahaeldini	LC	LC	VU	LC	LC	LC
36	Mesalina guttulata	LC	LC	LC	LC	LC	LC
37	Mesalina olivieri	LC	LC	LC	LC	LC	LC
38	Mesalina pasteuri	VU	LC	LC	VU	VU	LC

#	Species	A2 2020	A2 2050	A2 2080	B2 2020	B2 2050	B2 2080
39	Mesalina rubropunctata	LC	LC	LC	LC	LC	LC
40	Ophisops occidentalis	LC	LC	VU	LC	LC	LC
41	Varanus griseus	LC	LC	LC	LC	LC	LC
42	Varanus niloticus	LC	LC	LC	LC	LC	LC
43	Chalcides cf. humilis	LC	LC	LC	LC	LC	LC
44	Chalcides ocellatus	LC	LC	VU	LC	LC	VU
45	Eumeces schneiderii	LC	EN	CR	LC	EN	CR
46	Scincus scincus	LC	VU	EN	LC	LC	VU
47	Sphenops sepsoides	LC	VU	EN	LC	VU	EN
48	Trachylepis quinquetaeniata	LC	LC	LC	LC	LC	LC
49	Trachylepis vittata	LC	LC	LC	LC	LC	LC
50	Leptotyphlops cairi	LC	LC	LC	LC	LC	LC
51	Leptotyphlops macrorhynchus	VU	VU	EN	VU	VU	EN
52	Eryx colubrinus	LC	LC	LC	LC	LC	LC
53	Eryx jaculus	VU	EN	CR	VU	EN	EN
54	Eirenis coronella	LC	LC	VU	LC	LC	LC
55	Lytorhynchus diadema	LC	LC	LC	LC	LC	LC
56	Macroprotodon cucullatus	LC	LC	LC	LC	LC	LC
57	Malpolon moilensis	EN	EN	CR	EN	EN	CR
58	Malpolon monspessulanus	LC	LC	VU	LC	LC	VU
59	Natrix tessellata	LC	LC	LC	LC	LC	LC
60	Platyceps florulentus	LC	LC	VU	LC	LC	VU
61	Platyceps rogersi	LC	LC	LC	LC	LC	LC
62	Platyceps saharicus	VU	VU	VU	VU	VU	EN
63	Psammophis aegyptius	LC	LC	LC	LC	LC	LC
64	Psammophis schokari	LC	VU	EN	LC	VU	VU
65	Psammophis sibilans	VU	VU	VU	VU	VU	EN
66	Spalerosophis diadema	LC	VU	VU	LC	VU	VU
67	Telescopus dhara	VU	EN	EN	VU	EN	EN
68	Naja haje	LC	VU	EN	LC	VU	EN
69	Naja nubiae	LC	LC	VU	LC	LC	LC
70	Walterinnesia aegyptia	LC	VU	EN	VU	VU	VU
71	Cerastes cerastes	LC	LC	LC	LC	LC	LC
72	Cerastes vipera	LC	EN	CR	LC	VU	EN
73	Echis coloratus	LC	LC	LC	LC	LC	LC
74	Echis pyramidum	LC	LC	VU	VU	LC	VU
75	Testudo kleinmanni	LC	LC	LC	LC	LC	LC

Table S4: Different scores of different parameters used to calculate relative species weight.

Global IUCN status	score
Not assessed	1
Least concern	1
Vulnerable	2
Critically Endangered	3

National IUCN status	score
Least Concern	1
Vulnerable - D2	2
Endangered	3

Species world distribution	score
Widespread	1
Narrow	2
Restricted	3
Endemic/Near Endemic	4

Distribution patterns within Egypt	score
Widespread	1
Narrow	2
localized	3

Fig. S1: The distribution of (a) all Egyptian reptile records; and (b) the number of records per grid square at a scale of a $\frac{1}{4}$ of a degree.

1	The Mediterranean Sea			
2	The Suez Gulf			
3	The Aqaba Gulf			
4	The Red Sea			
5	The Nile Delta			
6	Lake Nasser			
7	Lake Brullus			
8	Lake Bardawil			
9	Lake Manzala			
10	Lake Idku			
11	Lake Mariut			
12	Lake Qarun			
13	Halayeb			
14	Abu Ramad			
15	Al-Shalatein			
16	Berenice			
17	Aswan			
18	Edfu			
19	Mersa Alam			
20	Luxor			
21	El-Quseir			
22	Qena			
23	Sohag			
24	Safaga			

25	Assiut		
26	Hurghada		
27	Ras Mohamed		
28	Sharm El-Sheikh		
29	El-Minia		
30	El-Tur		
31	Ras Gharib		
32	Dahab		
33	Saint-Katherine		
34	Nuweiba		
35	Abu Zneima		
36	Beni Suef		
37	Ras Zaafarana		
38	Fayoum		
39	Taba		
40	Ain Sukhna		
41	Suez		
42	The greater Cairo		
43	Wadi El-Natrun		
44	Ismailia		
45	El-Alamein		
46	El-Dabaa		
47	El-Arish		
48	Alexandria		

49	Ras El-Hekma
50	Port-Said
51	Rafah
52	Mersa Matruh
53	Rosetta
54	Damietta
55	Sallum
56	Sidi Barrani
57	Kharga oasis
58	Dakhla oasis
59	Farafra oasis
60	Bahariya oasis
61	Siwa oasis
62	Gebel Elba area
63	El-Gilf El-Kebir
64	Gebel Abraq area
65	Gebel El-Gallala El-Qibliya
66	Gebel El-Gallala El-Bahariya
67	Qattara Depression
68	Gebel Yillaq
69	El-Hassana
70	Gebel El-Hallal
71	Gebel El-Maghara
72	Tiran & Sanafir islands

Fig. S2: A map showing the outline of Egypt's political boundaries overlain with the main cities and geographical locations mentioned in this study.

No.	Protectorate Name	Declaration Date	Area Km²	Governorate
1	Ras Mohamed National Park	1983	850	South Sinai
2	Zaranik Protectorate	1985	230	North Sinai
3	Ahrash Protectorate	1985	8	North Sinai
4	El-Omayed Protectorate	1986	700	Matrouh
5	Elba National Park	1986	35600	Red Sea
6	Saluga and Ghazal Protectorate	1986	0.5	Aswan
7	St. Katherine National Park	1988	4250	South Sinai
8	Ashtum El-Gamil Protectorate	1988	180	Port Said
9	Lake Qarun Protectorate	1989	250	El Fayoum
10	Wadi El-Rayan Protectorate	1989	1225	El Fayoum
11	Wadi Allaqi Protectorate	1989	30000	Aswan
12	Wadi El-Assuti Protectorate	1989	35	Assuit
13	El Hassana Dome Protectorate	1989	1	Giza
14	Petrified Forest Protectorate	1989	7	Cairo
15	Sannur Cave Protectorate	1992	12	Beni Suef
16	Nabq Protectorate	1992	600	South Sinai
17	Abu Galum Protectorate	1992	500	South Sinai
18	Taba Protectorate	1998	3595	South Sinai
19	Lake Burullus Protectorate	1998	460	Kafr El Sheikh
20	Nile Islands Protectorates *	1998	160	All Governorates on the Nile
21	Wadi Degla Protectorate	1999	60	Cairo
22	Siwa	2002	7800	Matrouh
23	White Desert	2002	3010	Matrouh
24	Wadi El-Gemal/Hamata	2003	7450	Red Sea
25	Red Sea Northern Islands *	2006	1991	Red Sea
26	El-Gilf El-Kebir	2007	48523	New Valley
27	El-Dababya	2007	1	Qena
28	El-Salum Gulf	2010	383	Matrouh
29	El-Wahat El-Bahreya	2010	109	6th October
30	Mount Kamel Meteor Protectorate	2012	1	New Valley

Fig. S3: A map showing the outline of Egypt's political boundaries overlain with the Protected Areas. Protected Areas with * symbols are not shown in the map.

Fig. S4: Average MESS (Multivariate Environmental Similarity Surfaces; Elith et al. 2011) maps of different global circulation models showing areas of future novel climates.

Colours ranges from blue (indicating similar future climate conditions compared to the current; the darker the blue, the higher the similarity) to red (indicating dissimilar climates compared to the current; the darker the red colour, the higher the dissimilarity). Results for dark red areas should be interpreted with caution.

Fig. S5: (a) The number of recorded/suspected amphibian and non-marine reptile species per 0.5° grid (from Baha El Din, 2006); (b) the predicted number of species under current conditions from this study (from thresholded distributions).

Fig. S6a: Future species turnover (a measure of dissimilarity between current and future species composition) assuming unlimited dispersal. Colour range from grey (low species turnover – small species composition change in the future) to dark red (high species turnover – high species composition change in the future).

View publication stats

Fig. S6b: Future species turnover (a measure of dissimilarity between current and future species composition) assuming no-dispersal. Colour range from grey (low species turnover – small species composition change in the future) to dark red (high species turnover – high species composition change in the future).