FIT 3080: Intelligent Systems

Bayesian Networks: Independence

Gholamreza Haffari – Monash University

Announcements

- Readings
 - Sections 14.3
 - Sections 14.4-5

Outline

Semantics of BNs

 Encoded (Conditional) Independencies in BNs

Reasoning (aka Inference)

Outline

Semantics of BNs

 Encoded (Conditional) Independencies in BNs

Reasoning (aka Inference)

Bayes' Nets

 A Bayes' net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - Inference: given a fixed BN, what is P(X | e)?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1 \dots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

Example: Alarm Network

A	J	P(J A)
+a	+j	0.9
+a	¬j	0.1
¬а	+j	0.05
¬а	¬j	0.95

A	M	P(M A)
+a	+m	0.7
+a	¬m	0.3
¬а	+m	0.01
¬а	¬m	0.99

Ш	P(E)
+e	0.002
¬е	0.998

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	¬а	0.05
+b	¬е	+a	0.94
+b	¬е	¬а	0.06
¬b	+e	+a	0.29
¬b	+e	¬а	0.71
¬b	¬е	+a	0.001
¬b	¬е	¬а	0.999

Building the (Entire) Joint

 We can take a Bayes' net and build any entry from the full joint distribution it encodes

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Typically, there's no reason to build ALL of it
- We build what we need on the fly
- To emphasize: every BN over a domain implicitly defines a joint distribution over that domain, specified by local probabilities and graph structure

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?
 2^N
- How big is an N-node net if nodes have up to k parents?
 O(N * 2^{k+1})
- Both give you the power to calculate $P(X_1, X_2, ... X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also turns out to be faster to answer queries (coming)

Bayes' Nets So Far

- We now know:
 - What is a Bayes' net?
 - What joint distribution does a Bayes' net encode?
- Now: properties of that joint distribution (independence)
 - Key idea: conditional independence
 - Last class: assembled BNs using an intuitive notion of conditional independence as causality
 - Today: formalize these ideas
 - Main goal: answer queries about conditional independence and influence
- Next: how to compute posteriors quickly (inference)

Outline

Semantics of BNs

 Encoded (Conditional) Independencies in BNs

Reasoning (aka Inference)

Conditional Independence

- Reminder: independence
 - X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) --- \rightarrow X \perp \!\!\!\perp Y$$

X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) - - \rightarrow X \perp \!\!\!\perp Y|Z$$

(Conditional) independence is a property of a distribution

Example: Independence

For this graph, you can fiddle with θ (the CPTs) all you want, but you won't be able to represent any distribution in which the flips are dependent!

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?

Causal Chains

This configuration is a "causal chain"

X: Low pressure

Y: Rain

Z: Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

Is X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$
$$= P(z|y)$$
 Yes!

Evidence along the chain "blocks" the influence

Common Cause

- Another basic configuration: two effects of the same cause
 - Are X and Z independent?
 - Are X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$
$$= P(z|y)$$

Y: Project due

X: Newsgroup busy

Z: Lab full

 Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect (v-structures)
 - Are X and Z independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
 - Are X and Z independent given Y?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation?
 - This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

X: Raining

Z: Ballgame

Y: Traffic

The General Case

 Any complex example can be analyzed using these three canonical cases

General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph

Reachability

- Recipe: shade evidence nodes
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"

Reachability (D-Separation)

- Question: Are X and Y conditionally independent given evidence vars {Z}?
 - Yes, if X and Y "separated" by Z
 - Look for active paths from X to Y
 - No active paths = independence!
- A path is active if each triple is active:
 - Causal chain A → B → C where B is unobserved (either direction)
 - Common cause A ← B → C where B is unobserved
 - Common effect (aka v-structure)
 A → B ← C where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

Active Triples

Inactive Triples

Example

Example

 $L \! \perp \! \! \perp \! \! T' | T$ Yes

 $L \! \perp \! \! \perp \! \! B$ Yes

 $L \! \perp \! \! \perp \! \! B | T$

 $L \! \perp \! \! \perp \! \! B | T'$

 $L \! \perp \! \! \perp \! \! B | T, R$ Yes

Example

Variables:

R: Raining

■ T: Traffic

D: Roof drips

S: I'm sad

• Questions:

 $T \perp\!\!\!\perp D | R, S$

Outline

Semantics of BNs

 Encoded (Conditional) Independencies in BNs

Reasoning (aka Inference)

Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
 - Posterior probability:

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

Most likely explanation:

$$\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$$

Inference by Enumeration

- Given unlimited time, inference in BNs is easy
- Recipe:
 - State the marginal probabilities you need
 - Figure out ALL the atomic/joint probabilities you need
 - Calculate and combine them
- Example:

$$P(+b|+j,+m) = \frac{P(+b,+j,+m)}{P(+j,+m)}$$

Example: Enumeration

 In this simple method, we only need the BN to synthesize the joint entries

$$P(+b,+j,+m) =$$

$$P(+b)P(+e)P(+a|+b,+e)P(+j|+a)P(+m|+a) +$$

$$P(+b)P(+e)P(-a|+b,+e)P(+j|-a)P(+m|-a) +$$

$$P(+b)P(-e)P(+a|+b,-e)P(+j|+a)P(+m|+a) +$$

$$P(+b)P(-e)P(-a|+b,-e)P(+j|-a)P(+m|-a)$$

Inference by Enumeration?

Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
 - You end up repeating a lot of work!
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration
- We'll need some new notation to define VE

Factor Zoo I

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)

P(cold, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

Factor Zoo II

- Family of conditionals:
 P(X |Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|

P(W	T)
•		, ,

Т	W	Р	
hot	sun	8.0	$\bigcap_{D(W L,A)}$
hot	rain	0.2	ightharpoonup P(W hot)
cold	sun	0.4	
cold	rain	0.6	ig P(W cold)

- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1

P(W|cold)

Т	W	Р
cold	sun	0.4
cold	rain	0.6

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

Т	W	Р	
hot	rain	0.2	$\bigcap P(rain hot)$
cold	rain	0.6	$\left rac{1}{r} P(rain cold) ight $

- In general, when we write P(Y₁ ... Y_N | X₁ ... X_M)
 - It is a "factor," a multi-dimensional array
 - Its values are all P(y₁ ... y_N | x₁ ... x_M)
 - Any assigned X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

Random Variables

R: Raining

■ T: Traffic

L: Late for class!

First query: P(L)

P(R)		
+r	0.1	
-r	0.9	

D(T|D)

$I \left(I \mid I U \right)$			
+r	+t	0.8	
+r	-t	0.2	
-r	+t	0.1	
-r	-t	0 9	

P	(L	R)
	•	

+t	+	0.3
+t	1	0.7
-t	+	0.1
-t	-	0.9

Variable Elimination Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

$$P(R)$$
+r 0.1
-r 0.9

$$P(T|R)$$
 $P(L|T)$

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

 $P(L|T)$

+t +l 0
-t -l 0
-t -l 0

- Any known values are selected
 - E.g. if we know $L = +\ell$, the initial factors are

$$P(R)$$
+r 0.1
-r 0.9

$$P(T|R)$$

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

$$P(+\ell|T)$$
+t +I 0.3
-t +I 0.1

VE: Alternately join factors and eliminate variables

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved
- Example: Join on R

Computation for each entry: pointwise products

$$\forall r, t : P(r,t) = P(r) \cdot P(t|r)$$

Example: Multiple Joins

Join R

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

P(L|T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-1	0.9

P(L|T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

Example: Multiple Joins

P(R,T)

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

P(L|T)

+t

0.7

Join T

R, *T*, *L*

P(R,T,L)

+t	+	0.024
+t	-	0.056
-t	+	0.002
-t	-	0.018
+t	+	0.027
+t	-1	0.063
-t	+1	0.081
-t	-	0.729
	+t -t -t +t +t	+t -l -t +l -t -l +t +l +t -l -t +l -t +l

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:

Multiple Elimination

+r	+t	+	0.024
+r	+t	-	0.056
+r	-t	+	0.002
+r	-t	-	0.018
-r	+t	+	0.027
-r	+t	-	0.063
-r	-t	+	0.081
-r	-t	-	0.729

D	T	7	T	1
I	(L)	,	L	J

+t	+	0.051
+t	-	0.119
-t	+	0.083
-t	-	0.747

P(L): Marginalizing Early!

+r	0.1
-r	0.9

P(T|R)

+t

+t |

+r

+r

-r

8.0

0.2

0.1

0.9

R

Join R

Sum out R

P(L T)				
+t +l 0.3				
+t	-	0.7		
-t	+	0.1		
-t	-	0.9		

0.9

41

Marginalizing Early (aka VE*)

^{*} VE is variable elimination

Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

$$P(R)$$
+r 0.1
-r 0.9

$$P(T|R)$$
 $P(L|T)$

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

 $P(L|T)$

+t +l 0
+t -l 0
-t +l 0

• Computing P(L|+r) , the initial factors become:

$$P(+r)$$

$$P(+r)$$
 $P(T|+r)$ $P(L|T)$
 $P(+r | 0.1)$ $P(L|T)$
 $P(L|T$

We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we'd end up with:

- To get our answer, just normalize this!
- That's it!

General Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

Variable Elimination Bayes Rule

Start / Select

P(B) B P +b 0.1 ¬b 0.9

$$P(A|B) \rightarrow P(a|B)$$

В	Α	Р
+b	+a	8.0
b	٦à	0.2
¬b	+a	0.1
b	'â	0.9

Join on B

P(a,B)

Α	В	Р
+a	+b	0.08
+a	¬b	0.09

Normalize

Α	В	Р
+a	+b	8/17
+a	¬b	9/17

Example

$$P(B|j,m) \propto P(B,j,m)$$

$$P(B)$$
 $P(E)$ $P(A|B,E)$ $P(j|A)$ $P(m|A)$

Choose A

$$P(A|B,E)$$
 $P(j|A)$
 $P(m|A)$
 $P(j,m,A|B,E)$
 $P(j,m|B,E)$

$$P(B)$$
 $P(E)$ $P(j,m|B,E)$

Example

Choose E

Finish with B

$$P(B)$$
 $P(j,m|B)$

Variable Elimination

- What you need to know:
 - Should be able to run it on small examples, understand the factor creation / reduction flow
 - Better than enumeration: saves time by marginalizing variables as soon as possible rather than at the end

Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
 - D-separation gives precise conditional independence guarantees from graph alone
- Variable elimination algorithm can be used for reasoning in BNs
 - Efficient computation of $P(Q|E_1=e_1,\ldots E_k=e_k)$