Project : Advanced Encryption Standard (AES)

GA(EE4415/4415E): Saurabh Jain, Lin Longyang, Trinh Quang Kien, Su Hanyang Lecturer(s): Prof. Massimo Alioto, Prof. Xu Yong Ping

National University of Singapore (NUS) ECE Department

Green IC group

- ♦ Introduction
- ♦ Description
- ♦ Implementation (RTL)
- ♦ Interface with Testbench
- Details at Testbench Level
- Signal Timings
- Synthesis Constraints
- Marks distribution
- Quick Start

- **♦** Introduction
- Description
- Implementation (RTL)
- Interface with Testbench
- Details at Testbench Level
- Signal Timings
- Synthesis Constraints
- Marks distribution
- Quick Start

Introduction

What is AES

- ♦ AES: Advanced Encryption Standard
 - ♦ First introduced in 2001 for encrypting electronic data
 - ♦ Introduced by US. National Institute of Standard and Tech. (NIST)
 - ♦ Block length: 128 bits, key length: 128/192/256
 - Symmetric key algorithm (i.e. encryption and decryption uses same key)
 - First publically available cipher
 - ♦ AES also called "Rijndael"

Where is AES Used

Secure file transfers protocols FTPS/ HTTPS/ SFTP etc.

Read more:

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

- ♦ Introduction
- Description
- Implementation (RTL)
- ♦ Interface with Testbench
- Details at Testbench Level
- Signal Timings
- Synthesis Constraints
- Marks distribution
- Quick Start

Description

Overall Flow

http://poincare.matf.bg.ac.rs/~ezivkovm/nastava/rijndael_a nimacija.swf

```
> press Control + F (full screen mode)
> use Enter key to advance
> use Backspace key to go backwards
```


- ♦ Introduction
- Description
- ♦ Implementation (RTL)
- ♦ Interface with Testbench
- Details at Testbench Level
- Signal Timings
- Synthesis Constraints
- Marks distribution
- Quick Start

Implementation (RTL)

Problem Statement

- ♦ RTL implementation of AES with following specifications:
 - ♦ 128 bit key
 - ♦ 128 bit plain text
 - ♦ 128 bit cipher text
- Variants:
 - ♦ SISO: Single Input (key & plain text) Single Output (cipher text)
 - ♦ MIMO (N): Multiple Input (key & plain text) Multiple Output (cipher text)
 - ♦ N-slowing: N time multiplexed I/O streams

Block Level Hierarchy

Provided Resources: Sub-Bytes

Provided Resources: Mix Column

- ♦ Introduction
- Description
- ♦ Implementation (RTL)
- ♦ Interface with Testbench
- Details at Testbench Level
- Signal Timings
- Synthesis Constraints
- Marks distribution
- Quick Start

Interface with Testbench

Interface between Core, Controller & TB

Accept: Notifies the core to accept input from testbench rndNo: Inform the core about the ongoing round number enbSB: Inform the core when to enable SUB-BYTES block enbSR: Inform the core when to enable SHIFT-ROWS block enbMC: Inform the core when to enable MIX-COULUMN block enbAR: Inform the core when to enable ADD-ROUND-KEY block enbKS: Inform the core when to enable KEY-SCHEDULING block done: Notifies testbench that AES of 1 input completed

completed_round: Notifies testbench the completion status of a given round

cipher_key: incoming key from testbench plain_text: incoming data from testbench

cipher_text: encrypted data

18

- ♦ Introduction
- Description
- ♦ Implementation (RTL)
- Interface with Testbench
- ♦ Details at Testbench Level
- Signal Timings
- Synthesis Constraints
- Marks distribution
- Quick Start

Details at Testbench Level

20

SISO

MIMO

N-Slowing

- ♦ Introduction
- Description
- Implementation (RTL)
- Interface with Testbench
- Details at Testbench Level
- Signal Timings
- Synthesis Constraints
- Marks distribution
- Quick Start

Signal Timings

Saurabh Jain 25

Timing of signals (SISO and MIMO)

Timing of signals (N-Slowing)

♦ N=4

Timing of signals (N-Slowing)

♦ N=4

Timing of signals (N-Slowing)

♦ N=4

- Introduction
- Description
- ♦ Implementation (RTL)
- Interface with Testbench
- Details at Testbench Level
- Signal Timings
- Synthesis Constraints
- Marks distribution
- Quick Start

Synthesis Constraints

♦ SISO:

- ♦ Clock period of 2 ns
- ♦ Input delay (exclude clock) of 0.2 ns
- ♦ Output delay of 0.2 ns
- ♦ Load capacitance (all outputs) of 5fF
- ♦ MIMO (N=4):
 - ♦ Clock period of 2 ns
 - ♦ Input delay (exclude clock) of 0.2 ns
 - ♦ Output delay of 0.2 ns
 - ♦ Load capacitance (all outputs) of 5fF
- \bullet N-slowing (N=4):
 - ♦ Clock period of 0.5 ns
 - ♦ Input delay (exclude clock) of 0.1 ns
 - ♦ Output delay of 0.1 ns
 - ♦ Load capacitance (all outputs) of 5fF

Note: All constraint should be written in "constraint.tcl" file of respective parts

- Introduction
- Description
- Implementation (RTL)
- Signal Timings
- Interface with Testbench
- Details at Testbench Level
- Synthesis Constraints
- Marks distribution
- Quick Start

Marks Distribution

Submissions

- ♦ SISO (Single Input Single Output) (10%)
- ♦ MIMO (Multiple Input Multiple Output) (5%)
- **♦** N-slowing (10%)
- ♦ Report (total 5%)

SISO (part I)

- "src" directory:
 - ♦ Compiled *.v files (7.5%)
 - Comments in the code
- "syn" directory:
 - "constraint.tcl" (else 2.5% won't be awarded)
 - ♦ "synthesis.tcl" (2.5%):
 - ♦ Commands to analyze all *.v files in "src" folder (0.5%)
 - ♦ Command to elaborate "AES_top" (0.5%)
 - ♦ Command to source "constraint.tcl"
 - ♦ Command to compile (or synthesize) "AES_top" (0.5%)
 - ♦ Command to report timing (0.5%)
 - ♦ Command to report area (0.5%)

MIMO (part II)

- "src" directory:
 - ♦ Compiled *.v files (3.5%)
 - ♦ Comments in the code

NOTE: Your code will be tested for arbitrary value of N

- "syn" directory:
 - "constraint.tcl" (else 1.5% won't be awarded)
 - ♦ "synthesis.tcl" (1.5%):
 - ♦ Commands to analyze all *.v files in "src" folder (0.3%)
 - ♦ Command to elaborate "AES_top" (0.3%)
 - ♦ Command to source "constraint.tcl"
 - ♦ Command to compile (or synthesize) "AES_top" (0.3%)
 - ♦ Command to report timing (0.3%)
 - ♦ Command to report area (0.3%)

NOTE : N = 4 for synthesis

Green IC

N-Slowing (part III)

- "src" directory:
 - ♦ Compiled *.v files (7%)
 - Comments in the code

NOTE: Your code will be tested for arbitrary value of N

- "syn" directory:
 - "constraint.tcl" (else 3% won't be awarded)
 - ♦ "synthesis.tcl" (3%):
 - ♦ Commands to analyze all *.v files in "src" folder (0.5%)
 - ♦ Command to elaborate "AES_top" (0.5%)
 - ♦ Command to source "constraint.tcl" file
 - ♦ Command to compile (or synthesize) "AES_top" (0.5%)
 - lack Command to retime the design (0.5%)
 - lack Command to report timing (0.5%)
 - ♦ Command to report area (0.5%)

NOTE : N = 4 for synthesis

Saurabh Jain 37

Report (part IV)

- ♦ Architecture and indicate following (2%):
 - ♦ Interconnection between blocks (i.e. Subbytes, Shift-Rows, Mix-columns, Add-round-key and key-scheduling) (1%)
 - ♦ Registers in your design (1%)
- ♦ Area (um²), critical path delay (ns) and calculated maximum throughput (MS/s) for following (2%):
 - ♦ SISO (0.5%)
 - ♦ MIMO, N=4 (0.5%)
 - ♦ 4-slowing (1%)
- ♦ Observation and discussion (1%)
 - \bullet Which (0.5%) strategy is best (for throughput) and why (0.5%)

Saurabh Jain

Throughput Calculation

- X_{max} (MS/s) = Freq_{max} (MHz)x $\left(\frac{\text{# of valid samples}}{\text{# of cycles}}\right)$
- Hints for completing project!!
 - ♦ Part 2: If part 1 completed part 2 doesn't require any effort
 - ◆ Part 3: For N-slowing **every** register in your design has to be replaced by N cascaded registers

- Introduction
- Description
- ♦ Implementation (RTL)
- Signal Timings
- ♦ Interface with Testbench
- Details at Testbench Level
- Synthesis Constraints
- Marks distribution
- Quick Start

Quick Start

Quick Start

♦ Make a new directory in your home mkdir ~/<new dir name>

◆ Copy src to your new directory

cp -r /app11/lab-session/ee4415_part2/* ~/<new_dir_name>/.

♦ To Compile your source: cd ~/<new_dir_name>/<part>/vcs make compile

◆ To run your code on terminal make sim **or** ./simv

- ◆ To run/debug your code in gui mode ./simv –gui
- ♦ Before starting synthesis (in design compiler)

cd ~/<new_dir_name>/<part>/syn/ cp /app11/lab-session/ee4415_part1/.synopsys_dc.setup ~/<new_dir_name>/<part>/syn/.

Note: carry out synthesis of each part in "syn" folder of respective parts

Saurabh Jain 42

THANK YOU! Questions?

