Schema Design

schema, n. — a representation of a plan or theory in the form of an outline or model.

Schemas

- Table Schema (i.e. relation schema)
 - What is the table called?
 - What columns does it have? What are their data types?
- Database Schema
 - What tables are in the database?
 - How are tables related?

Data Modeling

- How do we represent real world relationships and properties in our program?
 - ...in a way that makes writing the program easy
 - ...while remaining flexible for future changes
 - ...oh, it also has to be fast (enough).

- Analysis
 - What does my program need to output?
 - What data will I need to produce that output?
- Conceptual Design
 - Conceptual entities and their relationships
- Logical Design
 - In a SQL database: What are my tables, attributes, and relationships?
 - In a program: What are my functions and data structures?
- Physical Design
 - JavaScript code, CREATE TABLE statements

What we'll focus on

today

- Analysis
 - What does my program need to output?
 - What data will I need to produce that output?
- Conceptual Design
 - Conceptual entities and their relationships
- Logical Design
 - In a SQL database: What are my tables, attributes, and relationships?
 - In a program: What are my functions and data structures?
- Physical Design
 - JavaScript code, CREATE TABLE statements

- Analysis
 - What does my program need to output?
 - What data will I need to produce that output?
- Conceptual Design
 - Conceptual entities and their relationships
- Logical Design
 - In a SQL database: What are my tables, attributes, and relationships?
 - In a program: What are my functions and data structures?
- Physical Design
 - JavaScript code, CREATE TABLE statements

Example: A Journal Analysis

- I want a program to keep my journal in.
- I want to be able to enter the text of each journal entry.
- I want to be able to see journal entries chronologically.

- Analysis
 - What does my program need to output?
 - What data will I need to produce that output?
- Conceptual Design
 - Conceptual entities and their relationships
- Logical Design
 - In a SQL database: What are my tables, attributes, and relationships?
 - In a program: What are my functions and data structures?
- Physical Design
 - JavaScript code, CREATE TABLE statements

Entity Relationship Diagram (ERD) Conceptual Design

- Analysis
 - What does my program need to output?
 - What data will I need to produce that output?
- Conceptual Design
 - Conceptual entities and their relationships
- Logical Design
 - In a SQL database: What are my tables, attributes, and relationships?
 - In a program: What are my functions and data structures?
- Physical Design
 - JavaScript code, CREATE TABLE statements

Entity Relationship Diagram (ERD) Logical Design

entries	
id	int, primary key
date_created	date
text	text

All done!

- Oh wait, I forgot a couple of things
 - I want to be able to have multiple journals
 - I want to be able to #tag entries and find all entries with a particular #tag
- Take 2...

Example: A Journal Conceptual Design, Take 2

Example: A Journal Logical Design: Take 2

But Wait!!! Normalization

- Organization that minimizes data redundancy and improves data integrity
- How do I change the name of "happy times" to "sadness"?

select * from entries;			
id	date_created	text	journal_title
0	2016-04-01	I am happy	happy times
	2016-04-02	I am very happy	happy times
2	2016-04-03	Despair fills me	happy times
3	2016-04-03	Sadness is my life	an anatomy of pain

Conceptual Design, Take 3

Logical Design, Take 3

- Eliminate repeating groups in individual tables
- Create a separate table for each set of related data
- o Identify each set of related data with a primary key

But what about tags?!?

But what about tags?!?

Conceptual Design, Take 4

Logical Design, Take 4

Logical Design, Take 4

SELECT * FROM entries			
id	date_created	text	journal_id
0	2016-04-01	I am happy	0
	2016-04-02	I am very happy	0
2	2016-04-03	Despair fills me	0
3	2016-04-03	Sadness is my life	I

SELECT * FROM journals		
id	date_created	title
0	2016-04-01	happy times
	2016-04-02	an anatomy of pain

SELECT * FROM entries_tags	
tag_id	entry_id
0	0
0	I
	0

SELECT * FROM tags		
id	date_created	name
0	2016-04-01	#YOLO
I	2016-04-02	#LOVELIFE

Has vs. Belongs To

o If rows in table A "belong to" rows in table B, that means A contains a foreign key for B

olf rows in table A "have" one or many rows in table B, that means table B is responsible for keeping track of the foreign key

Think: the "owner" has less to worry about

Relationships

- Has One/Belongs To
 - Author has one Journal
 - Journal belongs to an Author
- Has Many/Belongs To
 - Entries belong to a Journal
 - A Journal has many Entries
- Belongs To Many
 - Tags and Journal Entries

Example: A Journal Normalized!

select * from entries;			
id	date_created	text	journal_id
0	2016-04-01	I am happy	0
	2016-04-02	Very happy	0
2	2016-04-03	Despair	0
3	2016-04-03	Sadness	

select * from entries_tags;		
id	entry_id	tag_id
0	0	0
I	0	I
2	I	0
3	l	2

select * from entries;		
id	name	
0	0	
	0	
2		
3		

select * from journals;	
id	title
0	happy times
	an anatomy of pain

Do we even need this?

Composite Primary Keys

select * from entries;			
id	date_created	text	journal_id
0	2016-04-01	I am happy	0
	2016-04-02	Very happy	0
2	2016-04-03	Despair	0
3	2016-04-03	Sadness	I

select * from entries_tags;	
entry_id	tag_id
0	0
0	
I	0
	2

select * from entries;	
id	name
0	0
	0
2	
3	

select * from journals;	
id	title
0	happy times
	an anatomy of pain

composite primary key

Normalized Databases

- Focus on optimal storage often at odds with retrieval speed due to complex queries using complicated joins
- Work best when the application is write-intensive and write-load is more than read-load
 - Tables are usually smaller as data is divided vertically (fast reads on single tables)
 - Updates and Inserts are fast because there are no duplicates to update
 - Data is not duplicated so there is less of a need for process intensive group by or distinct queries
- Normalized tables mean join tables, which mean read operations on multiple tables suffer (indexing strategies don't work as well with joins)

Denormalized

- Works best when the application is read-intensive
 - The data is present in the same table (no need for joins)
 - A single table with all required data allows for efficient index usage
- Data is duplicated which means that updates and inserts become complex and costly

What Do I Do?!

- Real world applications will most likely have both read-loads and write-loads
- Utilize both approaches depending on the situation!
- Befriend your local DBA

Steps for Developing your ERD

- I. Identify Entities
- 2. Define Relationships
- 3. Draw Rough-Draft ERD
- 4. Fill in Cardinality/Modality (arrows with relationship type)
- 5. Define Primary Keys
- 6. Label Foreign Keys
- 7. Identify and Map Attributes

Design Twitter!

