Problem 1	1.			
Prof:				
,	5= Pr 6/1,, of B)			
,	·)		
	= Pr(x, 1 1 Ann p) Pr(p)	<u>, </u>		
	= IPr(XIAARAAB)	Pr(d2 1 NonnB)	·· Pr(xn-1/xn/B) Pr(xn/B)	[x n x b)
	Pr(d2 1 rdn 1 B)	Pr(x3//an/P)	Pr (dn/f)	Pr(E)
	$= \mathbb{P}_{r}(\alpha_{1} \alpha_{2}, \dots, \alpha_{n}, \beta)$. Pr (x) (x3,, xn, B)	· Pr (an 1 an, B) . Pr	$(\alpha_n \beta)$
	•			•
	= RHS			
Page	ed. D			

Problem 2. From the publim content, we have: Pr (oil) = 0.5 Pr(gos) = 0.2Pr (-oil 1-gas)=0.3, and we want to compute Pr(oil |+). Pr (+ | oil) = 0.9 Pr (+ | gas) = 0.3 Pr (+ | - oil 1 - gas) = 0.1 Pr(oil +) = Pr(oil) = Pr(oil) - Pr(oil) - Pr(oil) / Pr(+) Here we namely mant to compute (Pr(+). = 0.9.0.5 + 0.3.0.2 + 0.1.0.3

We have [Pr(+) = [Pr(+|oil). [Pr(oil) + [Pr(+|gas).]Pr(gas)+[Pr(+|-oil1-gas).]Pr(-oil1-gas) = 0.54

So |Pr(oil +) = 0.9 · 0.5 / 0.54 = \frac{7}{2} \pi 0.8333

Problem 3.

CPT for node "Bell":

Bayes Network:	_
O (c)	in
\propto	(X_3)
Be	

(PT	<u></u>	node	"Coin") <u>:</u>

Co'in	(win)
a	1/3
Ь	1/3
0	1/3

12(de	Kell	. :		
	χ,	χ,	Χz	Bell	$Pr(Bell X_1, X_2, X_3)$
	H	I	7	>	1
	Н	Н	Н	Х	0
L	Н	H	Ä	V	0
	H	Н	H	Х	1
	H	ΙŦ	工	√	0
	Н	ıΉ	H	×	1
	H	11	江	>	0
	H	1±)±	×	1
•	Ξĺ	I	\mathcal{I}	>	0
Ľ	H	I	H	Х	1
•	H	H	17	>	ð
	H H H	I	17	×	1
i	H	II	工	>	0
1	H	H	H	×	1
	H	H	ìΤ	V	1
	#	Ŧ.	Ή	X	Đ

CPT for node "X2":

CPT for node "X3":

 ' Y '	,,,,	· // .	<u> </u>	Ψ.			<u> </u>	ν .		
 coln	Χı	Pr(XI Gin)		coln	χ,	Pr(X2 Gin)		ଠାn	χ3	Pr(X3/Gin)
 a	Н	0.2		۹	Н	0.2		۵	Ι	0.2
a	17	0.8		a	H	0.8		a	H	0.8
 Ь	H	0.4		Ь	Н	0.4		م	H	0.4
 Ь	19	0.6		Ь	19	٥.6		Ь	19	0.6
 c	Н	0.8		c	Н	0.8		C	Ή	0.8
 c	Ħ	0.2		C	Ħ	0.2		C	ĺΉ	0.2

Problem 4:	
(a) I(A, Ø, BE)	I(E,B,ACDFG)
I(B,Ø,AC)	I(F, CD, ABE)
I(c,A,BDE)	I(G,F, ABCDEH)
I(D,AB,CE)	I(H, EF, ABCDG)
(b) (D. d_seponeted(A, F,	E); Consider the path—: A>c>F is open;

C→F←D is open, as F∈Z; F←D←B is open,
D←B→F is open.

So this path is not blocked.

So d-seperated (A, F, E) is false.

1. d_separated (G,B,E):

Consider Poth -:

DE is closed, as B ∈ Z. So this poth is blocked.

Consider poth -:

 $D \leftarrow B \rightarrow E$ is closed, as $B \in \mathbb{Z}$. So this poth is blocked.

Consider poth -;

F->H=E is closed, as H&Z. So this path is blocked.

Since all these 3 poths are blocked, d-separated (G.B, E) is true.

1. d_separated (AB, CDE, GH)

Any possible path must go clong at least one of A=C=F,

A-D->F, B->D->F, or B->E->H. Since [C,D.E]SZ,

and all the values stated above are squantial, all of these

volves are closed, so all possible peths are blocked.

Thus, d-seponeted (AB, CDE, GH) is true.

```
(c).

Pr(a,b,c,d,e,f,g,h) = Pr(a) Pr(b|a) Pr(c|a,b) Pr(d|a,b,c,d)

- Pr(f|a,b,c,d,e) Pr(g|a,b,c,d,e,f) Pr(h|a,b,c,d,e,f,g)

= Pr(a) · Pr(b) · Pr(c|a) · Pr(d|a,b) · Pr(e|b)

assumptions we made

in (a)

in (a)
```

(d). ①
$$Pr(A=1,B=1)$$

Since we have $I(A,\emptyset,BE)$, we have A and B are independent

Thus, Pr(A=1, B=1) = Pr(A=1) · Pr(B=1)

Since we have I(E,B,ACDFG), we have E and A are independent given B. Thus, $Pr(E=0|A=0) = Pr(E=0|B=0,A=0) \cdot Pr(B=0) + Pr(E=0|B=1,A=0) \cdot Pr(B=1)$ $= Pr(E=0|B=0) \cdot Pr(B=0) + Pr(E=0|B=1) \cdot Pr(B=1)$

$$= 0.1 \times 0.3 + 0.9 \times 0.7$$

$$= 0.66$$

1.200.				
(a) We h	we	A	B	Pr(A,B)
	w _o	٢	٦	0.3
	Wı	٢	۲	0.2
	W ₂	۴	Τ	0.1
	W ₃	F	۲	0.4

as $\alpha: A \Rightarrow B = \neg A \lor B$, we see α is valid as in worlds W_0, W_2, W_3 so Models (α) = $\{w_0, W_2, W_3\}$

(b)
$$P_{r}(x) = \sum_{i} |P_{r}(W_{i})| W_{i} \in M_{0}dels(x)|$$

= $P_{r}(W_{0}) + P_{r}(W_{s}) + P_{r}(W_{3})$
= $0.3 + 0.1 + 0.4$
= 0.8

(c).
$$P_r(A,B|\alpha) = P_r(A\wedge B\wedge \alpha)/P_r(\alpha) = P_r(w_0)/P_r(\alpha) = 0.3/0.8 = \frac{3}{4} = 0.375$$

(d).
$$A \Rightarrow 7B = 7AV - B = 7(A \land B)$$

 $Pr(A \Rightarrow 7B \mid x) = Pr(f(A \land B)) \land x) / Pr(x) = (Pr(W_2) + Pr(W_3)) / Pr(x)$
 $= (0.1 + 0.4) / 0.8$
 $= \frac{5}{8} = 0.625$