2.33 Theorem. Let $k \in \mathbb{N}$. Then there exists a $n \in \mathbb{N}$ (which will be much larger than k) such that no natural number less than k and greater than 1 divides n.

Proof. Let $k \in \mathbb{N}$ be given. Let n > k for $n \in \mathbb{N}$ and 1 < a < k for $a \in \mathbb{N}$ such that $a \not \mid n$. By contradiction, suppose $a \mid n$. recalling a is any natural number less than k, it follows that $a \mid k!$ since a = k - i and k! = k(k-1)(k-2)...(2)(1) for all $1 \le i < k$. Let n = k! + 1. We know that k! and a are divisible, thus they have a common factor. By Theorem 2.32, (k!, k! + 1) = 1. This means n does not have any common factors with k! and a. Thus, there exists a $n \in \mathbb{N}$ (which will be much larger than k) such that no natural number less than k and greater than 1 divides n.