KÜLSHAMMER'S SECOND QUESTION AND THE 1-COHOMOLOGY

Let Γ be an algebraic group, G a connected reductive algebraic group over an algebraically closed field k with $\operatorname{char}(k) = p > 0$. Let P be a parabolic subgroup of G, with Levi subgroup L and unipotent radical V. We have $P = V \rtimes L$, and we denote by π^L the canonical projection

Since L normalizes V we have an action by group automorphisms of L on V given by

$$(0.2) l \cdot v = lvl^{-1},$$

for $l \in L, v \in V$.

Let $\sigma \in \text{Hom}(\Gamma, L)$. Now we have an action of Γ on V given by

$$(0.3) \gamma \cdot v = \sigma(\gamma) \cdot v$$

for $\gamma \in \Gamma, v \in V$, using Equation 0.2.

Let $\rho \in \operatorname{Hom}(\Gamma, P)$. We associate with ρ the homomorphism $\rho^L: \Gamma \to L$ defined by

$$\rho^L = \pi^L \circ \rho,$$

and $\alpha_{\rho}: \Gamma \to V$ defined by

(0.5)
$$\alpha_{\rho}(\gamma) = \rho(\gamma)(\rho^{L}(\gamma))^{-1}.$$

With the action defined in Equation 0.3, α_{ρ} is a 1-cocycle.

In Equation 0.5 we have a formula associating elements of $\operatorname{Hom}(\Gamma, P)$ with 1-cocycles $\Gamma \to V$. However, to be able to compare 1-cocycles it is important that Γ acts on V in the same way. In other words, given $\rho, \varsigma \in \operatorname{Hom}(\Gamma, P)$ it only makes sense to compare $\alpha_{\rho}, \alpha_{\varsigma}$ if $\rho^{L} = \varsigma^{L}$.

Definition 0.6 (Notation). Fix $\sigma \in \text{Hom}(\Gamma, L)$ and define

(0.7)
$$\operatorname{Hom}(\Gamma, P)_{\sigma} = \{ \rho \in \operatorname{Hom}(\Gamma, P) \mid \rho^{L} = \sigma \}.$$

More generally, if $R \subset \text{Hom}(\Gamma, P)$ define

(0.8)
$$R_{\sigma} = \{ \rho \in R \mid \rho^{L} = \sigma \}.$$

For a given $\sigma \in \text{Hom}(\Gamma, L)$, we denote by $Z^1(\Gamma, V)_{\sigma}$ the set of 1-cocycles $\Gamma \to V$ where Γ acts on V as in Equation 0.3. Evidently these 1-cocycles are in one-to-one correspondence with elements of $\text{Hom}(\Gamma, P)_{\sigma}$. Formally, we have the following Lemma.

Lemma 0.9. Define the map $z : \text{Hom}(\Gamma, P)_{\sigma} \to Z^{1}(\Gamma, V)_{\sigma}$ by

$$(0.10) z(\rho) = \alpha_{\rho}.$$

Then z is a bijection.

We return to the notion of comparing 1-cocycles. Following the established theory of abelian 1-cohomology, the non-abelian analogue of *equivalent 1-cocycles* is defined in Chapter 3.

Lemma 0.11. The relation on $Z^1(\Gamma, V)_{\sigma}$ given by $\alpha \sim \beta$ if there exists $v \in V$ such that

(0.12)
$$\alpha(\gamma) = v\beta(\gamma)(\gamma \cdot v^{-1}),$$

for all $\gamma \in \Gamma$, is an equivalence relation.

We denote the 1-cohomology by $H^1(\Gamma, V)_{\sigma}$, defined to be the collection of equivalence classes of $Z^1(\Gamma, V)_{\sigma}$ under the equivalence relation in Equation 0.12. We denote by $\overline{\alpha}$ the image of $\alpha \in Z^1(\Gamma, V)_{\sigma}$ under the canonical projection $Z^1(\Gamma, V)_{\sigma} \to H^1(\Gamma, V)_{\sigma}$.

Following the theme of Lemma 0.9, we relate elements of $H^1(\Gamma, V)_{\sigma}$ to certain conjugacy classes of $\text{Hom}(\Gamma, P)_{\sigma}$.

Lemma 0.13. The bijective map $z : \operatorname{Hom}(\Gamma, P)_{\sigma} \to Z^{1}(\Gamma, V)_{\sigma}$ defined in Equation 0.14 descends to give a bijective map $h : \operatorname{Hom}(\Gamma, P)_{\sigma}/V \to H^{1}(\Gamma, V)_{\sigma}$, defined by

$$(0.14) h(V \cdot \rho) = \overline{\alpha_{\rho}},$$

where $\rho \in \text{Hom}(\Gamma, P)_{\sigma}$.

[some explaination for the following]

Lemma 0.15. The bijective map h defined in Equation ?? descends to give a bijective map \widetilde{h} : $[\operatorname{Hom}(\Gamma, P)_{\sigma}/V]/C_L(\sigma) \to H^1(\Gamma, V)_{\sigma}/C_L(\sigma)$, defined by

(0.16)
$$\widetilde{h}((C_L(\sigma)V) \cdot \rho) = \widetilde{\alpha_\rho},$$

where $(C_L(\sigma)V) \cdot \rho \in [\operatorname{Hom}(\Gamma, P)_{\sigma}/V]/C_L(\sigma) = \operatorname{Hom}(\Gamma, P)_{\sigma}/VC_L(\sigma)$.

Definition 0.17 (Notation). We define

(0.18)
$$\operatorname{Hom}(\Gamma, P)^{L} = \{ \rho^{L} \mid \rho \in \operatorname{Hom}(\Gamma, P) \}.$$

More generally, when $R \subset \text{Hom}(\Gamma, P)$ we define

(0.19)
$$R^{L} = \{ \rho^{L} \mid \rho \in R \}.$$

Lemma 0.20. Let $R \subset \text{Hom}(\Gamma, P)$. Suppose $R = P \cdot \rho$ for some $\rho \in R$. Then $R^L = L \cdot \rho^L$.

More generally, if $R = P \cdot R$ then $R^L = L \cdot R^L$.

Definition 0.21. Define the map

(0.22)
$$\mathcal{H}: \operatorname{Hom}(\Gamma, P)_{\sigma} \to H^{1}(\Gamma, V)_{\sigma}/C_{L}(\sigma)$$

by the composition of $h: \operatorname{Hom}(\Gamma, P)_{\sigma} \to Z^{1}(\Gamma, V)_{\sigma}$, followed by the canonical projection $Z^{1}(\Gamma, V)_{\sigma} \to H^{1}(\Gamma, V)_{\sigma}$, followed by the canonical projection $H^{1}(\Gamma, V)_{\sigma} \to H^{1}(\Gamma, V)_{\sigma}/C_{L}(\sigma)$.

Theorem 0.23. Let $R \subset \text{Hom}(\Gamma, P)$ and suppose $P \cdot R = R$. Then R is a finite union of P-conjugacy classes if and only if

- (i) R^L is a finite union of L-conjugacy classes, and
- (ii) for each $\sigma \in \text{Hom}(\Gamma, L)$, $\mathcal{H}(R_{\sigma}) \subset H^1(\Gamma, V)_{\sigma}/C_L(\sigma)$ is finite.

Remark 0.24. Conditions (i) and (ii) are equivalent to

- (i') $R_{\sigma} = \emptyset$ for all but finitely many L-conjugacy classes of $\sigma \in \text{Hom}(\Gamma, L)$, and
- (ii') for each $\sigma \in \text{Hom}(\Gamma, L)$, R_{σ} is a finite union of $VC_L(\sigma)$ -conjugacy classes.

respectively. We obtain (ii) \Leftrightarrow (ii') by appealing to the bijection \widetilde{h} , while (i) \Leftrightarrow (i') is self-evident.

Proof. First an observation. Suppose $R = P \cdot R$. Fix $\sigma \in \text{Hom}(\Gamma, L)$ and let $\rho \in R_{\sigma}$, so that $\rho^{L} = \sigma$. Suppose $p \cdot \rho \in R_{\sigma}$ for some $p \in P$, and let $v \in V, l \in L$ such that p = vl. Then

$$(0.25) p \cdot \rho \in R_{\sigma} \Leftrightarrow (vl) \cdot \rho \in R_{\sigma}$$

$$(0.26) \qquad \Leftrightarrow \left[(vl) \cdot \rho \right]^L = \sigma$$

$$(0.27) \qquad \Leftrightarrow \quad l \cdot \rho^L = \sigma$$

$$(0.28) \qquad \Leftrightarrow \quad l \in C_L(\sigma).$$

This shows that

$$(0.29) R_{\sigma} \cap P \cdot \rho \subset (VC_L(\sigma)) \cdot \rho.$$

The reverse inclusion follows since $R = P \cdot R$ and R_{σ} is stable under conjugation by V and $C_L(\sigma)$. Hence

$$(0.30) R_{\sigma} \cap P \cdot \rho = (VC_L(\sigma)) \cdot \rho.$$

Now suppose R is a finite union of P-conjugacy classes, so there exists a finite set $\mathscr{P} \subset \operatorname{Hom}(\Gamma, P)$ such that

$$(0.31) R = \bigcup_{\rho \in \mathscr{P}} P \cdot \rho$$

Lemma 0.20 shows that (i) holds. Furthermore

$$(0.32) R_{\sigma} = R_{\sigma} \cap R$$

$$= R_{\sigma} \cap \left(\bigcup_{\rho \in \mathscr{P}} P \cdot \rho \right)$$

$$(0.34) \qquad = \bigcup_{\rho \in \mathscr{P}} (R_{\sigma} \cap P \cdot \rho),$$

and by Equation 0.30

(0.35)
$$R_{\sigma} = \bigcup_{\rho \in \mathscr{P}} (VC_L(\sigma)) \cdot \rho.$$

Hence (ii'), and therefore (ii), holds. This proves the forward direction. Conversely, suppose (i) and (ii) hold. By (ii) there exists a finite set $\mathcal{Q} \subset \operatorname{Hom}(\Gamma, P)$ and by Equation 0.30

$$(0.36) R_{\sigma} = \bigcup_{\sigma \in \mathcal{D}} (VC_L(\sigma)) \cdot \rho$$

$$(0.37) \qquad = \bigcup_{\sigma \in \mathcal{D}} (R_{\sigma} \cap P \cdot \rho)$$

(0.36)
$$R_{\sigma} = \bigcup_{\rho \in \mathcal{Q}} (VC_{L}(\sigma)) \cdot \rho$$

$$= \bigcup_{\rho \in \mathcal{Q}} (R_{\sigma} \cap P \cdot \rho)$$

$$= R_{\sigma} \cap (\bigcup_{\rho \in \mathcal{Q}} P \cdot \rho).$$

Hence R_{σ} is contained in a finite union of P-conjugacy classes. By (i) there exists a finite set $\mathscr{S} \subset \operatorname{Hom}(\Gamma, L)$ such that

$$(0.39) R^L = \bigcup_{\tau \in \mathscr{S}} L \cdot \tau.$$

For $\sigma \in \text{Hom}(\Gamma, L)$, define $L \cdot R_{\sigma} = \{L \cdot \rho \mid \rho \in R_{\sigma}\}$. Evidently $L \cdot R_{\sigma}$ is contained in a finite union of P-conjugacy classes.

Now let $\rho \in R$. By Equation 0.39 there exists $l \in L$, $\tau \in \mathscr{S}$ such that $\rho^L = l \cdot \tau$. Hence $l^{-1} \cdot \rho^L = \tau$ which implies $\rho \in L \cdot R_\tau$. This shows that R is contained in a finite union of P-conjugacy classes. The reverse inclusion is satisfied since $R = P \cdot R$. This completes the proof.

Definition 0.40. Let $\Gamma' < \Gamma$ and denote by ι the inclusion map $\Gamma' \hookrightarrow$ Γ . We denote by ρ^{ι} the homomorphism $\Gamma' \to P$ defined by

$$\rho^{\iota} = \rho \circ \iota,$$

and define

(0.42)
$$\operatorname{Hom}(\Gamma, P)^{\iota} = \{ \rho^{\iota} \mid \rho \in \operatorname{Hom}(\Gamma, P) \}.$$

More generally, if $R \subset \text{Hom}(\Gamma, P)$ then define

(0.43)
$$R^{\iota} = \{ \rho^{\iota} \mid \rho \in R \}.$$

Theorem 0.44. Let $R \subset \text{Hom}(\Gamma, P)$ such that $R = P \cdot R$. Suppose

- (i) R^L is a finite union of L-conjugacy classes,
- (ii) for all $\sigma \in \text{Hom}(\Gamma, L)$ such that $R_{\sigma} \neq \emptyset$, the map

$$H^1(\iota): H^1(\Gamma, V)_{\sigma}/C_L(\sigma) \to H^1(\Gamma', V)_{\sigma^{\iota}}/C_L(\sigma)$$

has finite fibres, and

(iii) R^{ι} is a finite union of P-conjugacy classes.

Then R is a finite union of P-conjugacy classes.

Remark 0.45. Since $R = P \cdot R$, R^L is already a union of L-conjugacy classes by Lemma 0.20, so the point of (i) is that the union is finite.

Proof. Since $R^{\iota} \subset \operatorname{Hom}(\Gamma', V)_{\sigma}$, $R^{\iota} = P \cdot R^{\iota}$ and R^{ι} is a finite union of P-conjugacy classes, by Theorem 0.23

- (iv) $(R^{\iota})^L$ is a finite union of L-conjugacy classes, and
- (v) for each $\tau \in \text{Hom}(\Gamma', V)_{\sigma^{\iota}}$, $\mathcal{H}(R_{\tau})$ is finite.

Let $\sigma \in \text{Hom}(\Gamma, V)$. If $R_{\sigma} = \emptyset$ then $\mathcal{H}(R_{\sigma})$ is certainly finite. On the other hand, if $R_{\sigma} \neq \emptyset$ then

(0.46)
$$\mathcal{H}(R_{\sigma}) \subset \widetilde{H}^{1}(\iota)^{-1}(R_{\sigma^{\iota}})$$