

This slide discusses an remaining issue in Notes Nov 14 on Broken-stick regression that we do not have time to finish today.

- Pupose of Broken-stick regression: make the prediction continuous over covariate values.
 - ► This may be not always needed.
- Simpson's paradox: a trend appears in several groups of data but disappears or reverses when the groups are combined.

This slide discusses an remaining issue in Notes Nov 14 on Broken-stick regression that we do not have time to finish today.

- ▶ Pupose of Broken-stick regression: make the prediction continuous over covariate values.
 - This may be not always needed.
- Simpson's paradox: a trend appears in several groups of data but disappears or reverses when the groups are combined.

This slide discusses an remaining issue in Notes Nov 14 on Broken-stick regression that we do not have time to finish today.

- Pupose of Broken-stick regression: make the prediction continuous over covariate values.
 - ► This may be not always needed.
- ► Simpson's paradox: a trend appears in several groups of data but disappears or reverses when the groups are combined.

- Confounder (Confounding variable):
 - A variable such as Z that is associated with both the dependent and independent variables in a regression model.
- Suppose

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \epsilon_Y$$

$$Z = \gamma_0 + \gamma_1 X + \epsilon_Z$$

$$Y = \beta_0 + \beta_2 \gamma_0 + (\beta_1 + \beta_2 \gamma_1)X + \epsilon_Y + \beta_2 \epsilon_Z$$

- ► Coefficient of X: $\beta_1 + \beta_2 \gamma_1$ can differ from β_1 a lot.
 - ▶ Example: $\beta_1 = -2$ and $\beta_2 \gamma_1 = 3$,
 - ▶ Regress $Y \sim X + Z$, coefficient of X is -2
 - ▶ Regress $Y \sim X$, coefficient of X is -2 + 3 = 1

- Confounder (Confounding variable):
 - A variable such as Z that is associated with both the dependent and independent variables in a regression model.
- Suppose

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \epsilon_Y$$
$$Z = \gamma_0 + \gamma_1 X + \epsilon_Z$$

$$Y = \beta_0 + \beta_2 \gamma_0 + (\beta_1 + \beta_2 \gamma_1)X + \epsilon_Y + \beta_2 \epsilon_Z$$

- ► Coefficient of X: $\beta_1 + \beta_2 \gamma_1$ can differ from β_1 a lot.
 - Example: $\beta_1 = -2$ and $\beta_2 \gamma_1 = 3$,
 - ▶ Regress $Y \sim X + Z$, coefficient of X is -2
 - ▶ Regress $Y \sim X$, coefficient of X is -2 + 3 = 1

- Confounder (Confounding variable):
 - A variable such as Z that is associated with both the dependent and independent variables in a regression model.
- Suppose

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \epsilon_Y$$
$$Z = \gamma_0 + \gamma_1 X + \epsilon_Z$$

$$Y = \beta_0 + \beta_2 \gamma_0 + (\beta_1 + \beta_2 \gamma_1)X + \epsilon_Y + \beta_2 \epsilon_Z$$

- ► Coefficient of X: $\beta_1 + \beta_2 \gamma_1$ can differ from β_1 a lot.
 - Example: $\beta_1 = -2$ and $\beta_2 \gamma_1 = 3$,
 - ▶ Regress $Y \sim X + Z$, coefficient of X is -2
 - ▶ Regress $Y \sim X$, coefficient of X is -2 + 3 = 1

- Confounder (Confounding variable):
 - A variable such as Z that is associated with both the dependent and independent variables in a regression model.
- Suppose

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \epsilon_Y$$
$$Z = \gamma_0 + \gamma_1 X + \epsilon_Z$$

$$Y = \beta_0 + \beta_2 \gamma_0 + (\beta_1 + \beta_2 \gamma_1)X + \epsilon_Y + \beta_2 \epsilon_Z$$

- ► Coefficient of X: $\beta_1 + \beta_2 \gamma_1$ can differ from β_1 a lot.
 - Example: $\beta_1 = -2$ and $\beta_2 \gamma_1 = 3$,
 - Regress $Y \sim X + Z$, coefficient of X is -2
 - ▶ Regress $Y \sim X$, coefficient of X is -2 + 3 = 1

- Confounder (Confounding variable):
 - A variable such as Z that is associated with both the dependent and independent variables in a regression model.
- Suppose

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \epsilon_Y$$
$$Z = \gamma_0 + \gamma_1 X + \epsilon_Z$$

$$Y = \beta_0 + \beta_2 \gamma_0 + (\beta_1 + \beta_2 \gamma_1)X + \epsilon_Y + \beta_2 \epsilon_Z$$

- ► Coefficient of X: $\beta_1 + \beta_2 \gamma_1$ can differ from β_1 a lot.
 - Example: $\beta_1 = -2$ and $\beta_2 \gamma_1 = 3$,
 - ▶ Regress $Y \sim X + Z$, coefficient of X is -2
 - ▶ Regress $Y \sim X$, coefficient of X is -2 + 3 = 1

Simpson's Paradox

- ightharpoonup Can be viewed as Z being a binary variable in the previous slide.
- ▶ Instead of using broken stick, one may want to find the confounder Z and put it in the regression for interpretation.