Curso Arduíno – Aula 6

Motor de Passo

Motores de passos são dispositivos eletromagnéticos que podem ser controlados digitalmente através de um hardware específico ou através de softwares.

Motor de Passo

Motores de passos são encontrados em aparelhos onde a precisão é um fator muito importante. São usados em larga escala em impressoras, plotters, scanners, drivers de disquetes, discos rígidos e muitos outros aparelhos.

Motor de Passo Unipolar

O motor de passo unipolar apresenta uma derivação central (center tape) entre o enrolamento de duas bobinas.

Desligado:

Não há alimentação no motor.

Não existe consumo de energia, e todas as bobinas estão desligadas.

Na maioria dos circuitos este estado ocorre quando a fonte de alimentação é desligada.

Estados dos Motores de Passo

Parado:

Pelo menos uma das bobinas fica energizada e o motor permanece estático num determinado sentido.

Nesse caso há consumo de energia, mas em compensação o motor mantêm-se

alinhado numa posição fixa.

Rodando:

As bobinas são eletrizadas em intervalos de tempos determinados, impulsionando o motor a girar numa direção

Passo completo 1 (Full-step) ou modo simples

- Apenas uma bobina é eletrizada a cada passo;
- Menor torque;
- Pouco consumo de energia;
- Maior velocidade.

Passo completo 2 (Full-step) com alto torque

- Duas bobinas são eletrizadas a cada passo;
- Maior torque;
- Consome mais energia que o Passo completo 1;
- Maior velocidade.

Meio passo (Half-step)

Meio passo (Half-step)

- A combinação do passo completo1 e do passo completo 2 gera um efeito de meio passo;
- Consome mais energia que os passo anteriores;
- É muito mais preciso que os passos anteriores;
- O torque é próximo ao do Passo completo 2;
- A velocidade é menor que as dos passos anteriores.

Tabelas com sequências para controle dos Motores de Passo.

Tabela 1 - Passo Completo 1 (Full-step)

Nº do passo	ВЗ	В2	В1	В0	Decimal
1>	1	0	0	0	8
2>	0	1	0	0	4
3>	0	0	1	0	2
4>	0	0	0	1	1

Tabela 2 - Passo Completo 2 (Full-step)

Nº do passo	ВЗ	В2	В1	В0	Decimal			
1>	1	1	0	0	12			
2>	0	1	1	0	6			
3>	0	0	1	1	3			
4>	1	0	0	1	9			

Tabela 3 - Meio passo (Half-step)

		(· · · · · · · · · · · · · · · · · · ·			
Nº do passo	В3	В2	В1	В0	Decimal
1>	1	0	0	0	8
2>	1	1	0	0	12
3>	0	1	0	0	4
4>	0	1	1	0	6
5>	0	0	1	0	2
6>	0	0	1	1	3
7>	0	0	0	1	1
8>	1	0	0	1	9
8>	1	0	0	1	9

Motor de Passo com Drive de Potência

Na placa didática do curso, ligaremos o drive do motor de passo na saída STEPPER e na alimentação de +5V.

Monte o circuito com Arduíno.

IN1 ao pino 8 do Arduino

IN2 ao pino 9 do Arduino

IN3 ao pino 10 do Arduino

IN4 ao pino 11 do Arduino

A ligação do circuito deve ser realizada como visto a seguir:


```
#include<Stepper.h> //Inclusão da biblioteca
#define GIRO 500 // Definir o numero de passos por volta
                  // Para Motor de Passo Unipolar 28BYJ-48
                  // de 64 passos/volta utilizaremos
                  // 500 passos/volta para suavizar a rotação
Stepper passos(GIRO, 8, 10, 9, 11); // Motor de passo ligados pinos 8 a 11:
void setup(){
  passos.setSpeed(60); // Velocidade do motor em pwm:
}
void loop(){
  passos.step(-1024); // meia volta no sentido anti-horário:
  delay(1000);
  passos.step(2048); // uma volta completa no sentido horário:
  delay(1000);
```

Para diminuir a velocidade ou o passo do motor, basta alterar nas funções .setSpeed e .step

```
#include<Stepper.h> //Inclusão da biblioteca

#define GIRO 500 // Definir o numero de passos por volta

Stepper passos(GIRO,8,10,9,11); // Motor de passo ligados pinos 8 a 11

void setup(){
   passos.setSpeed(10); // Velocidade do motor
}

void loop(){
   passos.step(10); // giro no sentido horário:
   delay(1000);
}
```

Prática 22 – Controle do Motor de Passo pelo Potenciômetro

Agora com potenciômetro controlaremos a movimento do motor de passo.

Prática 22 – Controle do Motor de Passo pelo Potenciômetro

A ligação do circuito deve ser realizada como visto a seguir:

Prática 22 – Controle do Motor de Passo pelo Potenciômetro

Agora com potenciômetro controlaremos a movimento do motor de passo.

```
Stepper passos(STEPS, 8, 10, 9, 11); // Motor de passo ligados pinos 8 a 11:
int previsto = 0; // Declarado variavel como inteira
void setup()
  passos.setSpeed(60); // Velocidade do motor
void loop()
  int valor = analogRead(0); // Pega o valor do sensor na entrada analogica A0
  passos.step(valor - previsto); // pega o valor lido e subtrai da posição anterior
                                 // com isso, o motor gira so o valor da diferença
 previsto = valor; // quarda o valor lido na variavel previsto
```

Prática 23 - Controle de Motor de Passo por botões

Prática 23 - Controle de Motor de Passo por botões

A ligação do circuito deve ser realizada como visto a seguir:


```
#include <Stepper.h> //Inclusão da biblioteca
#define STEPS 500 // Definir o numero de passos por volta
int button1 = 7; // pino 7 atribuido ao botao 1
int button2 = 6; // pino 4 atribuido ao botao 2
int buttonState1 = 0; // Estado logico do botao 1
int buttonState2 = 0; // Estado logico do botao 2
Stepper passos(STEPS, 8, 10, 9, 11); // Motor de passo ligados pinos 8 a 11:
void setup(){
  pinMode(button1, INPUT); //declarado pino 7 como entrada
  pinMode(button2, INPUT); //declarado pino 4 como entrada
  passos.setSpeed(60); // Velocidade do motor
void loop() {
  buttonState1=digitalRead(button1); // verifica se o botão foi pressionado
  buttonState2=digitalRead(button2); // e armazena resultado na variavel state
  if(buttonState1 == HIGH){ // verifica se o botão foi pressionado
      passos.step(10);  // e armazena resultado na variavel buttonState
    if(buttonState1 == LOW){
      return:
                              // quando o boto for solto a funço return
                              // força a sair dos if's para o inicio do loop
  }
  if(buttonState2 == HIGH){
    passos.step(-10);
    if(buttonState2 == LOW) {
      return:
```

Prática 24 – Controle do Motor de Passo via BlueTooth

Agora veremos um programa para acionar o motor de passo, via bluetooth, no sentido horário e anti-horário

Prática 24 – Controle do Motor de Passo via BlueTooth

A ligação do circuito deve ser realizada como visto a seguir:


```
#include <Stepper.h>
#define STEPS 500
char comando;
Stepper passos(STEPS, 8, 10, 9, 11);
void setup() {
  Serial.begin(9600);
  passos.setSpeed(60);
void loop() {
  while(Serial.available() > 0) {
    comando=Serial.read();
    if (comando=='L') {
      passos.step(-10); //L = Left
    }
    if (comando=='R') {
      passos.step(10); //R = Rigth
    if(comando=='S'){ //S = Stop
```

Prática 25 – Controle do Motor de Passo via BlueTooth por Ângulo

Desenvolva um programa para acionar o motor de passo, via bluetooth, enviando o ângulo desejado.

Prática 25 – Controle do Motor de Passo via BlueTooth por Ângulo

A ligação do circuito deve ser realizada como visto a seguir:

