CS70 - Lecture 17 Notes

Name: Felix Su SID: 25794773

Spring 2016 GSI: Gerald Zhang

Review

- Example: $B \subset A \Rightarrow A$ and B are positively correlated
 - $-\Pr[A|B] = 1 > \Pr[A]$ and $\Pr[A \cap B] = \Pr[B] > \Pr[A]\Pr[B]$
- Example: $A \subset B = \emptyset \Rightarrow A$ and B are negatively correlated
 - $-\ \Pr[A|B] = 0 < \Pr[A] \ \text{ and } \ \Pr[A \cap B] = 0 < \Pr[A] \Pr[B]$
- For uniformly distributed probability space Ω , $\Pr[A] = \frac{|A|}{|\Omega|}$

Probability of A given B:

$$\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]} \tag{1}$$

Probability of A and B (intersection):

$$Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$$
(2)

A and B are positively correlated if:

$$Pr[A|B] > Pr[A] , Pr[A \cap B] > Pr[A]Pr[B]$$
(3)

A and B are negatively correlated if:

$$\Pr[A|B] < \Pr[A]$$
 , $\Pr[A \cap B] < \Pr[A]\Pr[B]$ (4)

A and B are independent iff:

$$Pr[A|B] = Pr[A] , Pr[A \cap B] = Pr[A]Pr[B]$$
(5)

Find prior probability given some observation B (A given B)

- 1. Total probability of B given prior probabilities
 - Law of Total probability
 - $Pr[B] = Pr[A_1]Pr[B|A_1] + \cdots + Pr[A_n]Pr[B|A_n]$
- 2. Find Pr[A|B]
 - Bayes Rule
 - $\Pr[A|B] = \frac{\Pr[A]\Pr[B|A]}{\Pr[B]}$

Terms

- Most likely A Posteriori (MAP) of B: The A_m that gives the highest $Pr[A_m]Pr[B|A_m]$
- Maximum Likelihood Estimate (MLE) of B: The A_m that gives the highest $Pr[B|A_m]$

Mutual Independence

• A subset of events $A_1, ..., A_k$ where $A_k, k \in J$ are **mutually independent** if the probability that they all occur is equal to the product of their individual probabilities

Mutual Independence Definition

$$\Pr[\cap_{k \in K} A_k] = \prod_{k \in K} \Pr[A_k], \text{ for all finite } K \subseteq J$$
(6)

Theorem

• If the events $\{A_j, j \in J\}$ are mutually independent, and if K_n are pairwise disjoint finite subsets of J, then all the events $\cap_{k \in K_n} A_k$ are independent (same is true if we replace some of the A_k by \bar{A}_k

Collision Calculation

Let m = no. of elements, n = no. of bins, C = collision

$$\Pr[\bar{C}] \approx e^{\left(-\frac{m^2}{2n}\right)} \tag{7}$$

When $m = 1.2\sqrt{n}$

$$\Pr[C] \approx \frac{1}{2} \tag{8}$$

Collision Derivation

If $A_i = \text{no}$ collision when the *i*th ball is placed in a bin

$$\Pr[A_i | A_{i-1} \cap \dots \cap A_1] = 1 - \frac{i-1}{n}$$
(9)

No collisions = $A_1 \cap \cdots \cap A_m$

Product Rule:

$$\Pr[A_1 \cap \dots \cap A_m] = \Pr[A_1] \Pr[A_2 | A_1] \dots \Pr[A_m | A_1 \cap \dots \cap A_{m-1}]$$

$$\tag{10}$$

Apply to $Pr[\bar{C}]$:

$$\Pr[\bar{C}] = (1 - \frac{1}{n}) \cdots (1 - \frac{m-1}{n}) \tag{11}$$

Natural log of both sides:

$$\ln\left(\Pr[\bar{C}]\right) = \sum_{k=1}^{m-1} \ln\left(1 - \frac{k}{n}\right) \approx \sum_{k=1}^{m-1} \ln\left(-\frac{k}{n}\right)^* = \left(-\frac{1}{n}\right) \left(\frac{m(m-1)}{2}\right) \approx -\frac{m^2}{2n}$$
(12)

* Use property that $\ln(1-\varepsilon)\approx -\varepsilon$ for $|\varepsilon|<<1$

Gauss Summation: $1+2+\cdots+m-1=\frac{m(m-1)}{2}$

Example: Checksums

- \bullet m = no. of files, b = no. of bits in the checksum, C = files share a checksum
- Find b s.t. $Pr[C] \le 10^{-3}$

*
$$\Pr[C] \approx 1 - e^{(-\frac{m^2}{2(2^b)})}$$

*
$$b = \frac{\ln(-\frac{m^2}{2\ln(1-10^{-3})})}{\ln(2)} = 2.9\ln(m) + 9$$

• : $b \ge 2.9 \ln(m) + 9$

Probability of Getting n_i out of n with m picks

- Define event of failure A_m (not success)
- \bullet Determine probability of failing on each iteration of m
 - $\Pr[A_i|A_{i-1}\cap\cdots\cap A_1] = 1 \Pr[\bar{A}_i] \text{ for } i = \{1,...,m\}$
 - If not intuitive, try brute force and find a pattern for each $Pr[A_i]$
- Use Product Rule to get $Pr[A_m]$
 - $-\Pr[A_1 \cap \dots \cap A_m] = \Pr[A_1]\Pr[A_2|A_1] \cdots \Pr[A_m|A_1 \cap \dots \cap A_{m-1}]$
 - If events are **independent** $\Pr[A_1 \cap \cdots \cap A_m] = \Pr[A_1] \Pr[A_2] \cdots \Pr[A_m | A_{m-1}]$
- Take natural log of both sides and simplify using the property that $\ln(1-\varepsilon) \approx -\varepsilon$ for $|\varepsilon| << 1$
- Raise e to the power of both sides (e^n) to derive approximate solution for $Pr[A_m]$
 - $-\Pr[A_m] \approx e^{expression}$

Probability of Complete Collection

- Define event of failure of one iteration E_k
 - $E_k \text{ for } k = \{1, ..., n\}$
 - Derive $Pr[E_k]$ using method above: **Probability of Getting** n_i out of n with m picks
- find probability of failing any iteration (or/union)

$$- p := \Pr[E_1 \cup E_2 \cup \dots \cup E_n]$$

• Estimate p using Union Bound

$$-p := \Pr[E_1 \cup E_2 \cup \dots \cup E_n] \le \Pr[E_1] + \Pr[E_2] + \dots + \Pr[E_n]$$

- Plug in $Pr[E_k]$ expression derived above to find $Pr[failure of at least one iteration] <math>\leq expression$
- Use expression to derive minimum value of m to get a certeain Pr[miss] s.t. Pr[miss] < p