```
אלגוריתם מכריע שפה: תהא A:\Sigma^*	o \{	ext{true},	ext{false}\} שפה אזי אלגוריתם L\subset \Sigma^* המקיים
                                                                                                A\left(x\right)= true מקבל: לכל x\in L מתקיים
                                                                                                A\left(x\right)= false מתקיים x\notin L לכל
                                                                                       f: X \to \{0,1\} פונקציה בולאנית: תהא X קבוצה אזי
                                                                                                                 \mathcal{B} = \{\wedge, \vee, \neg\} בסיס דה־מורגן:
ותהיינה i\in[n] לכל f_i:\{0,1\}^{k_i}	o\{0,1\} מעגל בוליאניו באשר בוליאניו תהיינה k_1\dots k_n\in\mathbb{N}_+ לכל
                                          המקיים \{f_1\dots f_n, x_1\dots x_m, y_1\dots y_k\} מעל מכוון G אזי גרף אזי אי x_1\dots x_m, y_1\dots y_k\in\{0,1\}
                                                                                                                    .חסר מעגלים מכוונים G ullet
                                                                                                    \deg^-(x_i) = 0 מתקיים i \in [m] לכל
                                                                                                    \deg^-(f_i) = k_i מתקיים i \in [n] לכל
                                                                              \deg^+(y_i)=0 וכן \deg^-(y_i)=1 מתקיים i\in[k] לכל •
                                                                                                           f_1 \dots f_n יהי מעגל בוליאני אזי מעגל
                                                                                                         .E\left( C
ight) יהי מעגל בוליאני אזי מעגל מעגל יהי
                                                                                    \max_{v \in V(C)} \deg^+(v) יהי מעגל בולינארי מעגל :fan-out
                                                                   \{G \leq C \mid 1 הוא הוא G של fan-out אזי בולינארי מעגל בולינארי היי מעגל מעגל מעגל בולינארי אזי
שערוך מעגל בולינארי על קלט: יהי y_i מעגל בולינארי על v \in \{0,1\}^m אזי יהי מעגל בולינארי על קלט: יהי מעגל מעגל מעגל אזי יהי
                                                                                                 הפונקציות הבוליאניות על הקודקודים הנכנסים.
                                      C\left(v
ight)=\left(y_{1}\ldots y_{k}
ight) הוא C על של השערוך אזי השערון ויהי v\in\left\{ 0,1
ight\} ^{m} אזי ויהי מעגל בולינאני ויהי
            .C\left(v
ight)=f\left(v
ight) מתקיים v\in\left\{ 0,1
ight\} ^{n} עבורו לכל בולינאני f:\left\{ 0,1
ight\} ^{n}	o\left\{ 0,1
ight\} מתקיים מעגל מחשב פונקציה: תהא
v \in \left\{0,1
ight\}^m משפט אוניברסליות דה־מורגן: תהא f:\left\{0,1
ight\}^m 	o \left\{0,1
ight\}^k אזי קיים מעגל בוליאני
                                                                                                                            .C\left( v\right) =f\left( v\right) מתקיים
                                                         .i באורך מקבל מקבלים: עבורם \left\{C_n
ight\}_{n\in\mathbb{N}} משפחה מעגלים: מעגלים מעגלים
מתקיים x\in\left\{ 0,1
ight\} ^{n} ולכל וולכל n\in\mathbb{N} עבורה מכריעה שפה: תהא שפה אזי משפחה של מעגלים בהוא עבורה לכל וולכל וולכל וולכל וולכל מתקיים
                                                                                                                           (C_n(x)) \iff (x \in L)
                                                . אלגוריתם שלגוריתם אלגוריתם מודל אי וניפורמי: משפחה של מעגלים אלגוריתם שלגוריתם מודל אי יוניפורמי: מודל אי מודל איוניפורמיוו מעגלים אלגוריתם אלגוריתם שונה.
                                                     . הה. אלגוריתם של מעגלים עבורה לכל n\in\mathbb{N} עבורה לכל מעגלים משפחה של מעגלים מודל יוניפורמי:
                                                                                Cבם ביט מספר מספר אזי ורל מעגל: יהי מעגל בוליאני אזי ורל מעגל: יהי מעגל בוליאני
                        |C_n| \leq S\left(n
ight) תסם עליון לגודל משפחת מעגלים: תהא \{C_n\}_{n \in \mathbb{N}} משפחה של מעגלים אזי איז משפחת מעגלים: תהא
                                                   \mathcal{O}\left(n\cdot 2^n
ight) אזי קיים מעגל f:\left\{0,1
ight\}^n	o\left\{0,1
ight\} שמחשב את f:\left\{0,1
ight\}^n
                                                       \mathcal{O}\left(2^{n}\right) טענה: תהא f:\{0,1\}^{n} 
ightarrow \{0,1\} אזי קיים מעגל f:\{0,1\}^{n} 
ightarrow \{0,1\}
```

 $0<|\Sigma|<\aleph_0$ אלפבית: קבוצה Σ המקיימת אלפבית: מילים: יהי Σ אלפבית אזי $\Sigma^*=\bigcup_{n=0}^\infty \Sigma^n$

 $L \subset \Sigma^*$ אלפבית אזי אונ Σ יהי שפה: יהי

|w|=n מילה אזי $w\in \Sigma^n$ אלפבית ותהא אלפבית יהי יהי מילה אזי

 $\langle w_1 \dots w_n
angle^R = \langle w_n \dots w_1
angle$ אזי $\langle w_1 \dots w_n
angle \in \Sigma^*$ תהא מילה: תהא

 $\langle w_1\dots w_n
angle$ $\langle \omega_1\dots \omega_m
angle=\langle w_1\dots w_n,\omega_1\dots\omega_m
angle$ אזי $\langle w_1\dots w_n
angle$, $\langle \omega_1\dots\omega_m
angle\in\Sigma^*$ שרשור מילים: תהיינה

 $(w_1\dots w_n)^m=\prod_{i=1}^m \langle w_1\dots w_n
angle$ אזי איזי $(w_1\dots w_n)\in \Sigma^*$ אזי מילה: תהא

 $.\#_{\sigma}\left(w
ight)=|\{i\in[n]\mid w_{i}=\sigma\}|$ אות אזי $\sigma\in\Sigma$ ותהא של המופעים של אות במילה: תהא מספר המופעים של אות מספר המילה: אות הא

 $L_1\parallel L_2=L_1L_2=\{w\omega\mid (w\in L_1)\wedge (\omega\in L_2)\}$ שרשור שפות: תהיינה $L_1,L_2\subseteq \Sigma^*$ שפות אזי שרשור שפות: תהיינה

 $L^m=\left\{\prod_{i=1}^k w_i \mid orall i\in [k]\,.w_i\in L
ight\}$ אזי $m\in\mathbb{N}$ שפה ויהי $L\subseteq\Sigma^*$ שפה: תהא

.prefix $(L)=\{y\in\Sigma^*\mid\exists x\in\Sigma^*.yx\in L\}$ שפת הרישא: תהא $L\subseteq\Sigma^*$ שפה אזי $L\subseteq\Sigma^*$.suffix L

 $.|\varepsilon|=0$ עבורה $\varepsilon\in\Sigma^*$ אזי אלפבית יהי יהי יהי הריקה:

 $L^R=\{w^R\mid w\in L\}$ שפה אזי $L\subseteq \Sigma^*$ היפוך שפה: תהא

 $L^* = igcup_{k=0}^\infty L^k$ שפה אזי $L \subseteq \Sigma^*$ תהא שפה: תהא

. טענה: \varnothing רגולרית

. רגולרית $\{arepsilon\}$ רגולרית

טענה: $\{x \mid \#_1(x) = 1 \mod 2\}$ רגולרית.

. רגולרית $\{y\,1\,0^{2k}\mid (y\in\{0,1\}^*)\land (k\in\mathbb{N})\}$ רגולרית

 $L_1\left(L_2L_3
ight)=\left(L_1L_2
ight)L_3$ שפות אזי $L_1,L_2,L_3\subseteq\Sigma^*$ טענה: יהיו

טענה: תהא L^* אזי אזי $L \neq \{ arepsilon \}$ וכן וכן $L \neq \varnothing$ אינסופית. ענה: תהא

משפט: תהיינה $\Sigma^* \subseteq L, \mathcal{L} \subseteq \Sigma^*$ משפט: משפט

- . רגולרית $L \cup \mathcal{L}$
- . רגולרית $L \cap \mathcal{L} \bullet$
 - . רגולרית \overline{L}
- . רגולרית $L \| \mathcal{L} \|$
- . מתקיים כי L^n רגולרית $n \in \mathbb{N}$ לכל
 - . רגולרית L^*

מסקנה: $\{x \mid \#_1(x) = 0 \mod 2\}$ רגולרית.

אוטומט סופי לא־דטרמיניסטי מינוס (אסלד"ם): תהא $Q
eq \emptyset$ קבוצה סופית יהי S אלפבית תהא אוטומט סופי לא־דטרמיניסטי מינוס (אסלד"ם): תהא $S,F \subseteq Q$

Q אטלד"ם אזי (Q, Σ, δ, S, F) יהי מינוס: לא־דטרמיניסטי סופי הארדטרמיניסטי מינוס:

 Σ אסלד"ם אזי (Q,Σ,δ,S,F) אסלד"ם אזי לא־דטרמיניסטי מינוס: אדי אסלד

 Q, Σ, δ, S, F) מצבים התחלתיים באוטומט סופי לא־דטרמיניסטי מינוס: יהי

F אסלד"ם אזי (Q,Σ,δ,S,F) אסיניסטי מינוס: אסלד"ם אזי אסלד"ם אזי

 $\hat{\delta}\left(T,arepsilon
ight)=T$ מתקיים $\hat{\delta}:\mathcal{P}\left(Q
ight) imes\Sigma^* o\mathcal{P}\left(Q
ight)$ אסלד"ם אזי מעברים המורחבת: יהי $\hat{\delta}:\mathcal{P}\left(Q
ight) imes\Sigma^* o\mathcal{P}\left(Q
ight)$ אסלד"ם אזי $\hat{\delta}\left(q,x
ight)=\int_{q\in\hat{\delta}\left(T,x_1...x_{n-1}
ight)}\delta\left(q,x_n
ight)$ מתקיים $x\in\Sigma^n$ מתקיים $x\in\Sigma^n$ מתקיים וכן לכל

 $\hat{\delta}\left(S,x
ight)\cap F
eq \emptyset$ המקיים $x\in\Sigma^*$ המקיים אזי היי (Q,Σ,δ,S,F) אוטומט סופי לא־דטרמיניסטי מינוס מקבל מילה: יהי i אזי i אזי i אזי i מקבל את i אזי i אזי i מענה: יהי i אסלד"ם ויהי i אזי i אזי i מקבל את i מקבל את i (קיימים i וכן i וכן i i i i i i i

 $L\left(M
ight)=\{x\in\Sigma^*\mid x$ מקבל את איז M מקלד"ם איז מינוס: יהי אסלד"ם מינוס: אוטומט סופי לא־דטרמיניסטי מינוס מינוס: יהי $M=(Q',\Sigma,\delta',q_0,F')$ אוטומט סופי דטרמיניסטי מינוס החזקה: יהי $M=(Q,\Sigma,\delta,S,F)$ אוטומט סופי דטרמיניסטי מינוס החזקה:

- $Q' = \mathcal{P}(Q) \bullet$
- $.\delta'\left(T,x\right) = \bigcup_{q \in T} \delta\left(q,x\right) \bullet$

```
.q_0 = S \bullet
```

 $.F' = \{T \subseteq Q \mid T \cap F \neq \varnothing\} \bullet$

 $\hat{\delta_A}(T,x)=\hat{\delta_M}(T,x)$ אזי $x\in \Sigma^*$ ויהי ויהי $T\subseteq Q_N$ תהא M אס"ד החזקה של A אס"ד החזקה של למה: יהי

 $L\left(M
ight)=L\left(A
ight)$ עבורו A אסלד"ם אזי קיים אס"ד אסלד אסלד"ם אזי יהי

 $\Sigma_{arepsilon}=\Sigma\cup\{arepsilon\}$ אלפבית אזי אלפבית יהי

 $S,F\subseteq Q$ ותהיינה $\delta:Q imes \Sigma_arepsilon o \mathcal{P}\left(Q
ight)$ אוטומט סופי לא־דטרמיניסטי (אסל"ד): תהא עומט Q
eq Q קבוצה סופית יהי לא אלפבית הא $\delta:Q imes \Sigma_arepsilon o \mathcal{P}\left(Q
ight)$ אזי (Q,Σ,δ,S,F) .

Q אסל"ד אזי (Q, Σ, δ, S, F) אסל"ד אזי לא־דטרמיניסטי: יהי

 $.\Sigma$ אזי אזי אסל"ד אזי (Q,Σ,δ,S,F) אדי יהי לא־דטרמיניסטי: אלפבית באוטומט אסל"ד אזי

 δ אזי אזי (Q,Σ,δ,S,F) אסל"ד אזי אזי אסל"ד אזי אסל"ד אזי אזי אזי מעברים באוטומט סופי לא־דטרמיניסטי:

S אסל"ד אזי (Q,Σ,δ,S,F) אסל"ד אזי איזי אסל"ד אזי אסל"ד אזי

F אסל"ד אזי (Q,Σ,δ,S,F) מצבים מקבלים באוטומט סופי לא־דטרמיניסטי: יהי

 $.E\left(q
ight) = \left\{q' \in Q \mid \exists a \in Q^{k+1}. \left(a_0 = q
ight) \wedge \left(\forall i \in [k]. a_i \in \delta\left(a_{i-1}, arepsilon
ight)
ight) \wedge \left(a_k = q'
ight)
ight\}$ אזי $q \in Q$ אזי $q \in Q$

 $\hat{\delta}\left(T,arepsilon
ight)=\hat{\delta}\left(T,arepsilon
ight)$ מתקיים $\hat{\delta}:\mathcal{P}\left(Q
ight) imes\Sigma^* o\mathcal{P}\left(Q
ight)$ אסל"ד אזי (Q,Σ,δ,S,F) מתקיים $\hat{\delta}\left(q,x
ight)=R\left(igcup_{q\in\hat{\delta}\left(T,x_{1}...x_{n-1}
ight)}\delta\left(q,x_{n}
ight)
ight)$ וכן לכל $x\in\Sigma^{n}$ מתקיים $x\in\Sigma^{n}$ מתקיים $x\in\Sigma^{n}$

 $\hat{\mathcal{S}}\left(S,x
ight)\cap F
eq arnothing$ המקיים $x\in\Sigma^*$ אוטומט סופי לא־דטרמיניסטי מקבל מילה: יהי (Q,Σ,δ,S,F) יהי

 $x^{
otin}=\sigma_1\dots\sigma_n$ אזי $x=arepsilon^{k_0}\sigma_0arepsilon^{k_1}\sigma_1arepsilon^{k_2}\dots\sigma_narepsilon^{k_n}$ עבורם $x\in\Sigma^*$ אזי $x\in\Sigma^*$ אזי $x\in\Sigma^*$ יהיי $x\in\Sigma^*$ יהיי $x\in\Sigma^*$ אזי $x\in\Sigma^*$ אזי $x\in\Sigma^*$ אזי ($x\in\Sigma^*$ עבורם $x\in\Sigma^*$ עבורם $x\in\Sigma^*$ אזי $x\in\Sigma^*$ אזי $x\in\Sigma^*$ אזי ($x\in\Sigma^*$ אזי $x\in\Sigma^*$ אזי $x\in\Sigma^*$ וכן $x\in\Sigma^*$

 $L\left(A
ight)=\left\{ x\in\Sigma^{st}\mid x$ אסל"ד אזי $A
ight\}$ מקבל את אסל"ד אזי לא־דטרמיניסטי: יהי איזי אסל"ד אזי אוטומט סופי לא־דטרמיניסטי: יהי

 $L\left(N
ight)=L\left(M
ight)$ עבורו אסל"ד אזי קיים אסלד"ם אסלד אסל"ד אזי יהי אסל"ד אזי קיים אסלד

 $L\left(A
ight)=L\left(M
ight)$ עבורו אסל"ד אזי קיים אס"ד א אסל"ד אסל"ד אזי יהי N

 $(L(N)=\mathcal{L}$ מסקנה: יהי Ω אלפבית ותהא $\mathcal{L}\subset\Sigma^*$ שפה אזי (\mathcal{L} רגולרית) \Longleftrightarrow (קיים אסל"ד N המקיים \mathcal{L}

ביטוי רגולרי (ב"ר): יהי Σ אלפבית אזי

- .Ø •
- .a יהי $a\in \Sigma_{arepsilon}$ יהי •
- $R_1 \cup R_2$ יהיו אזי ביטויים R_1, R_2 יהיו
 - R_1R_2 יהיו אזי ביטויים R_1,R_2 יהיו
 - R^* יהי R ביטוי רגולרי אזי •

שפה נוצרת מביטוי רגולרי: יהי Σ אלפבית אזי

- $L(\varnothing) = \varnothing \bullet$
- $.L\left(a
 ight) =\left\{ a
 ight\}$ אזי $a\in\Sigma_{arepsilon}$ יהי •
- $L\left(R_{1}\cup R_{2}
 ight)=L\left(R_{1}
 ight)\cup L\left(R_{2}
 ight)$ אזי רגולרים אזי רגולרים אזי רגולרים רגולרים רגולרים אזי ullet
 - $L\left(R_{1}R_{2}
 ight)=L\left(R_{1}
 ight)L\left(R_{2}
 ight)$ אזי רגולרים אזי רגולרים רגולרים פיטויים R_{1},R_{2} יהיו
 - $L(R^*) = L(R)^*$ יהי R ביטוי רגולרי אזי •

 $.R\left(\Sigma\right)=\left\{ r\in\Sigma^{*}\mid$ יטוי רגולרי אזי אלפבית אזי אלפבית אזי ביטוי רגולרי אזי יהי יהי

הערה: קיים סדר פעולות לביטויים רגולריים

- סגור קליני.
 - שרשור.
 - איחוד.

 $(L(r)=\mathcal{L})$ עבורו $R\in R(\Sigma)$ עבורית) שפה אזי עבורית שפט: יהי אל אלפבית ותהא $\mathcal{L}\subset \Sigma^*$ שפה אזי עבורית).

שפה ניתנת לניפוח: שפה |y|>0 וכן |y|>0 וכן |y|>0 באשר $x,y,z\in \Sigma^*$ קיימים $\ell\leq |w|$ באשר שברם לכל $w\in \mathcal{L}$ עבורם לכל $xy^kz\in L$ מתקיים $xy^kz\in \mathbb{N}$ מתקיים $xy^kz\in \mathbb{N}$

 ℓ ניתנת לניפוח: תהא $\ell>0$ שפה רגולרית אזי קיים שפה $\ell>0$ ניתנת לניפוח

 $\min\left\{\ell\in\mathbb{N}_{+}\mid\ell$ ניתנת לניפוח: שפה רגולרית אזי \mathcal{L} שפה רגולרית שפה תהא שפה לניפוח:

טענה: $\left\{ x\in\left\{ 0,1\right\} ^{st}\mid\#_{0}\left(x
ight) =\#_{1}\left(x
ight)
ight\}$ אינה רגולרית.

. טענה: $\left\{0^i1^j\mid i>j
ight\}$ אינה רגולרית.

. אינה רגולרית $\{a^p\mid a\in\Sigma,$ ראשוני $p\}$

. טענה: השפה $\left\{a^ib^nc^n\mid n\in\mathbb{N},i\in\mathbb{N}_+
ight\}\cup\left\{b^nc^n\mid n,m\in\mathbb{N}
ight\}$ ניתנת לניפוח 1 וכן אינה רגולרית.