| Name: |            |
|-------|------------|
| J#:   | Dr. Clontz |
| Date: |            |

## MASTERY QUIZ DAY 15

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

|              | Mark: |  |
|--------------|-------|--|
| Standard V2. |       |  |
|              |       |  |
| Γ₁⅂          |       |  |

Determine if  $\begin{bmatrix} 1\\4\\3 \end{bmatrix}$  is a linear combination of the vectors  $\begin{bmatrix} 2\\3\\-1 \end{bmatrix}$ ,  $\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$ , and  $\begin{bmatrix} -3\\-2\\5 \end{bmatrix}$ .

Solution:

RREF 
$$\left( \begin{bmatrix} 2 & 1 & -3 & 1 \\ 3 & -1 & -2 & 4 \\ -1 & 0 & 5 & 3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Since this system has a solution,  $\begin{bmatrix} 1\\4\\3 \end{bmatrix}$  is a linear combination of the three vectors.

Standard S1.

Mark:

Determine if the set of polynomials  $\{x^2 + x, x^2 + 2x - 1, x^2 + 3x - 2\}$  is linearly dependent or linearly independent

**Solution:** 

RREF 
$$\left( \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 1 & -1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

Since there is a nonpivot column, the set is linearly dependent.

Standard S3.  $\begin{bmatrix} & & & & \\ & & & & \\ & & & \\ & & & \end{bmatrix}$  Let  $W = \operatorname{span}\left(\left\{\begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}\right\}\right)$ . Find a basis for W.

**Solution:** Let 
$$A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$$
, and compute  $\text{RREF}(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$ . Since the first two columns are pivot columns,  $\left\{ \begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \right\}$  is a basis for  $W$ .

Let  $W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\1\\2\\1\end{bmatrix},\begin{bmatrix}3\\3\\6\\3\end{bmatrix},\begin{bmatrix}3\\-1\\3\\-2\end{bmatrix},\begin{bmatrix}7\\-1\\8\\-3\end{bmatrix}\right\}\right)$ . Find the dimension of W.

Solution:

$$\operatorname{RREF}\left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix}\right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has two pivot columns, so W has dimension 2.

Additional Notes/Marks