# 16. Задаване на точки, прави и равнини в аксонометрия. Основни задачи

# A) Изобразяване на точките от координатните равнини на $\overline{K} = \{O, \overline{e}_1, \overline{e}_2, \overline{e}_3\}$ :

Ако  $\overline{M} \in (\overline{O}\overline{e}_1\overline{e}_2)$ , то  $\overline{M} \equiv \overline{M}$  и следователно  $M \equiv M_+$ .

Ако  $\overline{N} \in (\overline{O}\overline{e_1}\overline{e_3})$ , то  $\overline{N_1} \in \overline{O}\overline{e_1}(\overline{O}\overline{x})$  и следователно  $N_1 \in O\overrightarrow{e_1}$ ,  $NN_1 \parallel O\overrightarrow{e_3}$ .

Ако  $\overline{P} \in (\overline{Oe_2e_3})$ , то  $\overline{P_1} \in \overline{Oe_2}(\overline{Oy})$  и следователно  $P_1 \in Oe_2$ ,  $PP_1 \parallel Oe_3$ .

### Б) Изобразяване на прави

Нека  $\overline{a}$  е права,  $\overline{a}_1$  е ортогоналната и проекция в  $(O, \overline{e}_1, \overline{e}_2)$ ,  $a = \psi_{\pi}^{U_s}(\overline{a})$  и  $a_1 = \psi_{\pi}^{U_s}(\overline{a}_1)$ .

Проекциите на  $\overline{a}$  в  $\pi$  наричаме както следва:  $a=(\overline{a},U_s)\cap\pi-$  аксонометрична проекция на  $\overline{a}$ ;

 $a_1 = (\overline{a}_1, U_s) \cap \pi$  — първа вторична проекция на  $\overline{a}$ .

Така в аксонометрия правата  $\bar{a}$  се задава от наредената двойка  $(a, a_1)$ . Както при изобразяване на точка, следва че наредената двойка  $(a, a_1)$  определя еднозначно  $\bar{a}$ ,  $\bar{a}(a, a_1)$ .

Нека в аксонометрия са зададени точка  $\overline{B}(B,B_1)$  и права  $\overline{a}(a,a_1)$ . От свойствата на централното проектиране следва, че  $\overline{B}\in \overline{a}$  тогава и само тогава, когато  $B\in a$  и  $B_1\in a_1$ , т.е.

$$\overline{B} \in \overline{a} \iff B \in a, B_1 \in a_1 (BB_1 \parallel O\vec{e}_3).$$

 $B \in a, C \notin a D \notin a$ 

Cmъnкu на една права  $\overline{a}$  наричаме пресечните точки на  $\overline{a}$  с координатните равнини на  $\overline{K}$  . Това са съответно точките:

1) 
$$\bar{M}^{\bar{a}}=\overline{a}\cap(\bar{O}\overline{e}_{\scriptscriptstyle \parallel}\overline{e}_{\scriptscriptstyle 2})$$
 – първа стъпка на  $\bar{a}$  .

Тъй като  $\overline{M}^{\bar{a}}\in (\overline{O}\overline{e}_1\overline{e}_2)$ , то  $\overline{M}^{\bar{a}}\equiv \overline{M}_1^{\bar{a}}$ . От друга страна  $\overline{M}^{\bar{a}}\in \overline{a}$ , т.е.  $M^{\bar{a}}\in a$  и  $M_1^{\bar{a}}\in a$ . Следователно  $a\cap a_1=M^{\bar{a}}\equiv M_1^{\bar{a}}$ .

2)  $\overline{N}^{\overline{a}} = \overline{a} \cap (\overline{O}\overline{e}_1\overline{e}_3) - втора стъпка на \overline{a}$ .

За нея имаме  $N_1^{\,\bar{a}}\in O\vec{e}_1$  и  $N_1^{\,\bar{a}}\in a_1$ , т.е.  $N_1^{\,\bar{a}}=a_1\cap O\vec{e}_1$ . Също така  $N^{\,\bar{a}}\in a$  и  $N_1^{\,\bar{a}}N_1^{\,\bar{a}}\parallel O\vec{e}_3$ .

3)  $\overline{P}^{\overline{a}} = \overline{a} \cap (\overline{O}\overline{e}_2\overline{e}_3)$  – трета стъпка на  $\overline{a}$  .

За нея имаме  $P_1^{\bar{a}} \in O\vec{e}_2$  и  $P_1^{\bar{a}} \in a_1$ , т.е.  $P_1^{\bar{a}} = a_1 \cap O\vec{e}_2$ . Също така  $P^{\bar{a}} \in a$  и  $P_1^{\bar{a}} P^{\bar{a}} \parallel O\vec{e}_3$ .



## В) Взаимно положение на две прави $\overline{a}(a, a_i)$ и $\overline{b}(b, b_i)$ .

I. Ако  $\overline{a} \cap \overline{b} = \overline{C}$  и  $\overline{C}(C,C_1)$ , то от  $\overline{C} \in \overline{a}$  следва, че  $C \in a, C_1 \in a_1$  и от  $\overline{C} \in \overline{b}$  следва, че  $C \in b, C_1 \in b_1$ . Така получаваме условие за пресичане на две прави:

$$\overline{a} \cap \overline{b} = \overline{C} \Leftrightarrow a \cap b = C, \ a_1 \cap b_1 = C_1, \ CC_1 \parallel O\vec{e}_3.$$



Ако равнините  $(U_S, \overline{a})$  и  $(U_S, \overline{b})$  съвпадат , то  $a \equiv b$ . Тогава правите  $\overline{a}$  и  $\overline{b}$  се пресичат, ако  $a_1$  и  $b_1$  се пресичат.

Ако равнината определена от правите  $\overline{a}$  и  $\overline{b}$  е успоредна на  $\overline{Oe}_3$ , то  $a_1 \equiv b_1$ . Тогава правите  $\overline{a}$  и  $\overline{b}$  се пресичат, ако a и b се пресичат.



II) Ако  $a\|b$ , от свойствата на успоредното проектиране следва, че:  $a\|b$  и  $a_1\|b_1$ , или евентуално  $a\|b$  и  $a_1\equiv b_1$ , или  $a\equiv b$  и  $a_1\|b_1$ . (Но не едновременно  $a_1\equiv b_1$  и  $a\equiv b$ .) Във всички останали случаи правите  $\overline{a}$  и  $\overline{b}$  са кръстосани.

### Г. Изобразяване на равнина:

Една равнина може да бъде зададена чрез три свои неколинеарни точки, или чрез неколинеарни точка и права от нея, чрез две пресичащи се прави или чрез две успоредни прави.

Обикновено равнина  $\overline{\alpha}$  се задава с две от пресечниците с координатните равнини на  $\overline{K}=\{O,\overline{e}_1,\overline{e}_2,\overline{e}_3\}$  . Тези пресечници се наричат д**ири (следи) на**  $\overline{\alpha}$  :

$$\overline{m}^{\overline{\alpha}}=\overline{\alpha}\cap(\overline{O}\overline{e_1}\overline{e_2})$$
 — първа диря на  $\overline{\alpha}$ ;  $\overline{n}^{\overline{\alpha}}=\overline{\alpha}\cap(\overline{O}\overline{e_1}\overline{e_3})$  — втора диря на  $\overline{\alpha}$ ;  $\overline{p}^{\overline{\alpha}}=\overline{\alpha}\cap(\overline{O}\overline{e_2}\overline{e_3})$  — трета диря на  $\overline{\alpha}$ . За тях имаме:  $\overline{m_1}^{\overline{\alpha}}\equiv\overline{m}^{\overline{\alpha}}$ , откъдето  $m_1^{\overline{\alpha}}\equiv m^{\overline{\alpha}}$ ,  $\overline{n_1}^{\overline{\alpha}}\equiv O\overline{e_1}$ , т.е.  $n_1^{\overline{\alpha}}\equiv O\overline{e_1}\equiv Ox$  и  $\overline{p_1}^{\overline{\alpha}}\equiv O\overline{e_2}$ , т.е.  $p_1^{\overline{\alpha}}\equiv O\overline{e_2}\equiv Oy$ .

Пресечните точки на  $\overline{\alpha}$  с координатните оси на  $\overline{K}$  се означават с:  $\overline{X}^{\bar{\alpha}} = \overline{\alpha} \cap \overline{Ox}$ ;  $\overline{Y}^{\bar{\alpha}} = \overline{\alpha} \cap \overline{Oy}$ ;  $\overline{Z}^{\bar{\alpha}} = \overline{\alpha} \cap \overline{Oz}$ .



За да бъде зададена една равнина  $\bar{\alpha}$  е достатъчно в  $\pi$  да са изобразени кои да е две от дирите  $\mathbb{E}$ :  $\bar{\alpha}[m^{\alpha},n^{\alpha}]$ , или  $\bar{\alpha}[m^{\alpha},p^{\alpha}]$ , или  $\bar{\alpha}[n^{\alpha},p^{\alpha}]$ .

## Д. Инцидентност на права и равнина

Ако правата  $\overline{a}$  лежи в равнината  $\overline{\alpha}$ , то стъпките на правата ще бъдат инцидентни с едноименните дири на равнината. Следователно необходимото и достатъчно условие за инцидентност на права и равнина е:  $\overline{a}(a,a_1)\in \overline{\alpha}[m^{\overline{\alpha}},n^{\overline{\alpha}}] \iff M^{\overline{a}}\in m^{\overline{a}}$  и  $N^{\overline{a}}\in n^{\overline{\alpha}}$ , т.е.  $a\cap a_1=M^{\overline{a}}\in m^{\overline{\alpha}}$  и  $a\cap n^{\overline{\alpha}}=N^{\overline{a}}$ ,  $a_1\cap Ox=N_1^{\overline{a}}$ ,  $N_1^{\overline{a}}N^{\overline{a}}\parallel Oz$ .



### Е. Инцидентност на точка и равнина

Ако точката  $\overline{A}$  лежи в равнината  $\overline{\alpha}$ , то тя ще лежи на права от равнината. Следователно необходимото и достатъчно *условие за инцидентност на точка и равнина* е:

$$\overline{A} \in \overline{\alpha} \Leftrightarrow \overline{A} \in \overline{b}, \overline{b} \in \overline{\alpha}$$
.

Обикновено за установяване на инцидентност на точка иравнина се използват така наречените главни прави от равнината  $\overline{\alpha}$ . Правата  $\overline{h}^{\alpha}$  е главна права от І система, ако  $\overline{h}^{\overline{\alpha}} \parallel O\overline{e}_1\overline{e}_2$  или  $\overline{h}^{\overline{\alpha}} \parallel \overline{m}^{\overline{\alpha}}$ . Следователно за  $\overline{h}^{\overline{\alpha}} \left( h^{\overline{\alpha}}, h_1^{\overline{\alpha}} \right)$  имаме  $h^{\overline{\alpha}} \parallel m^{\overline{\alpha}}$  и  $h_1^{\overline{\alpha}} \parallel m^{\overline{\alpha}}$ . Тогава  $\overline{A}(A,A_1) \in \overline{\alpha}[m^{\overline{\alpha}},n^{\overline{\alpha}}] \iff \overline{A} \in \overline{h}^{\overline{\alpha}}$  или  $A \in h^{\overline{\alpha}}, A_1 \in h_1^{\overline{\alpha}}$ . Аналогично може да се използват и главни прави от ІІ система —  $\overline{v}^{\overline{\alpha}} \parallel O\overline{e}_1\overline{e}_3$ , или главни прави от ІІІ система —  $\overline{f}^{\overline{\alpha}} \parallel O\overline{e}_2\overline{e}_3$ .



#### Взаимно положение на две равнини

### 1. Успоредни равнини

Ако две равнини  $\overline{\alpha}$  и  $\overline{\beta}$  са успоредни, то и едноименните им дири ще бъдат успоредни. Следователно  $\overline{\alpha}[m^{\overline{\alpha}}, n^{\overline{\alpha}}] \| \overline{\beta}[m^{\overline{\beta}}, n^{\overline{\beta}}] \iff m^{\overline{\alpha}} \| m^{\overline{\beta}}$  и  $n^{\overline{\alpha}} \| n^{\overline{\beta}}$  (при  $m^{\overline{\alpha}} \cap n^{\overline{\alpha}} \neq \emptyset$ ).

 $3a\partial a$ чa. Дадени са равнина  $\overline{\beta}[m^{\overline{\beta}},n^{\overline{\beta}}]$  и точка  $\overline{A}(A,A_{\!\scriptscriptstyle \parallel})$ . Да се построи равнина  $\overline{\alpha}[m^{\overline{\alpha}},n^{\overline{\alpha}}]$ , такава че  $\overline{\alpha}\parallel\overline{\beta}\,$  и  $\overline{A}\in\overline{\alpha}$ .

Peшeнue: От  $\overline{A} \in \overline{\alpha}$  следва, че  $\overline{A} \in \overline{h}^{\overline{\alpha}}$  – главна права от I система на равнината  $\overline{\alpha}$ . За правата  $\overline{h}^{\overline{\alpha}} \left( h^{\overline{\alpha}}, h_1^{\overline{\alpha}} \right)$  имаме  $h^{\overline{\alpha}} \parallel m^{\overline{\alpha}}$  и  $h_1^{\overline{\alpha}} \parallel m^{\overline{\alpha}}$ . Тъй като  $\overline{\alpha} \parallel \overline{\beta}$ , то  $m^{\overline{\alpha}} \parallel m^{\overline{\beta}}$  и  $n^{\overline{\alpha}} \parallel n^{\overline{\beta}}$ . Тогава  $h^{\overline{\alpha}} \parallel m^{\overline{\beta}}$  и  $h_1^{\overline{\alpha}} \parallel m^{\overline{\beta}}$ . Последователно

построяваме  $\overline{h}^{\bar{\alpha}}\left(h^{\bar{\alpha}},h_1^{\bar{\alpha}}\right)\colon A\in h^{\bar{\alpha}},\ h^{\bar{\alpha}}\parallel m^{\bar{\beta}}\ ;\ A_1\in h_1^{\bar{\alpha}},\ h_1^{\bar{\alpha}}\parallel m^{\bar{\beta}}\ ;\ h_1^{\bar{\alpha}}\cap Ox=N_1^{h^{\bar{\alpha}}},$   $n^{\bar{\alpha}}\colon N^{h^{\bar{\alpha}}}\in h^{\bar{\alpha}},\ N_1^{h^{\bar{\alpha}}}N^{h^{\bar{\alpha}}}\parallel Oz\ ;\ N^{h^{\bar{\alpha}}}\in n^{\bar{\alpha}},\ n^{\bar{\alpha}}\parallel n^{\bar{\beta}}\ ;\ n^{\bar{\alpha}}\cap Ox=X^{\bar{\alpha}}\ ;$   $m^{\bar{\alpha}}\colon X^{\bar{\alpha}}\in m^{\bar{\alpha}},\ m^{\bar{\alpha}}\parallel m^{\bar{\beta}}\ ;\Rightarrow \bar{\alpha}[m^{\bar{\alpha}},n^{\bar{\alpha}}].$ 



 $3a\partial a$ ча. Дадени са неуспоредните равнини  $\overline{\alpha}[m^{\overline{\alpha}},n^{\overline{\alpha}}]$  и  $\overline{\beta}[m^{\overline{\beta}},n^{\overline{\beta}}]$ . Да се построи пресечната им права  $\overline{s}=\overline{\alpha}\cap\overline{\beta}$ .

Peшение: Тъй като  $\overline{\alpha}$  не е успоредна на  $\overline{\beta}$ , то  $\overline{m}^{\overline{\alpha}} \cap \overline{m}^{\overline{\beta}} = \overline{M}^{\overline{s}}$ , т.е.  $m^{\overline{\alpha}} \cap m^{\overline{\beta}} = M^{\overline{s}}$  и  $M^{\overline{s}} \equiv M^{\overline{s}}_1$ . Също така  $\overline{n}^{\overline{\alpha}} \cap \overline{n}^{\overline{\beta}} = \overline{N}^{\overline{s}}$ , т.е.  $n^{\overline{\alpha}} \cap n^{\overline{\beta}} = N^{\overline{s}}$  и  $N^{\overline{s}}N^{\overline{s}}_1 \parallel Oz$ ,  $N^{\overline{s}}_1 \in Ox$ . Тогава  $s = M^{\overline{s}}N^{\overline{s}}$ ,  $s_1 = M^{\overline{s}}_1N^{\overline{s}} \Rightarrow \overline{s} = (s, s_1)$ 





### Ж. Пробод на права и равнина

 $3a\partial a$ ча. Дадени са неуспоредните права  $\overline{a}(a,a_1)$  и равнина  $\overline{\alpha}[m^{\overline{\alpha}},n^{\overline{\alpha}}]$ . Да се построи пресечната им точка  $\overline{S}=\overline{\alpha}\cap\overline{a}$ .

Pешение: През точката  $\overline{S} = \overline{\alpha} \cap \overline{a}$  в равнината  $\overline{\alpha}$  минават безброй много прави. Избираме измежду тях правата  $\overline{k}$ , на която първата вторична проекция съвпада с първата вторична проекция на правата  $\overline{a}$ , т.е.  $\overline{k}(k,a_1)$ . Тогава аксонометричната проекция k на  $\overline{k}$  е определена от условията:

$$\begin{array}{lll} N_1^{\overline{k}} = a_1 \cap Ox &, & N^{\overline{k}} \in n^{\overline{\alpha}} &, & N_1^{\overline{k}} N^{\overline{k}} \parallel Oz &, \\ M^{\overline{k}} = m^{\overline{\alpha}} \cap a_1 & \Longrightarrow k = M^{\overline{k}} N^{\overline{k}} \,. \end{array}$$

Следователно точката  $\overline{S}(S,S_1)$  можем да намерим като пресечна точка на правите  $\overline{a}(a,a_1)$  и  $\overline{k}(k,a_1)$ , т.е.  $S=a\cap k$ ,  $S_1\in k_1\equiv a_1\Rightarrow \overline{S}(S,S_1)$ .

