ACH2053 - Introdução à Estatística

Aula 06: Variável Aleatória Contínua

Valdinei Freire

valdinei.freire@usp.br

http://www.each.usp.br/valdinei

Escola de Artes, Ciências e Humanidades - USP

2025

Livros Textos

- DEGROOT, M.H., SCHERVISH, M.J. Probability and Statistics, Addison Wesley, 4th edition (2011). Seções 3.2, 3.3, 4.1, 4.2, 4.3, 5.6, 5.7
- 2. DEVORE, J.L. Probabilidade e Estatística para Engenharia e Ciências, Pioneira Thompson Learning, 8ª edição, 2016. **Capítulo 4**

Variável Aleatória

Seja Ω o espaço amostral de um experimento. Uma função X com valores reais definida sobre Ω , isto é, $X:\Omega\to\mathbb{R}$ é chamada de variável aleatória.

Seja X uma variável aleatória. A distribuição de X é a coleção de todas probabilidades da forma $\Pr(X \in C)$ para todos conjuntos C de números reais tal que $\{s: X(s) \in C\}$ é um evento, e

$$\Pr(X \in C) = \Pr(\{s : X(s) \in C\}).$$

Variável Aleatória Contínua

Uma variável aleatória X tem uma distribuição contínua ou X é uma variável aleatória contínua se existe uma função não-negativa f, definida na reta real, tal que para todo intervalo de números reais, a probabilidade que X toma um valor no intervalo é a integral de f sobre o intervalo, i.e.,

$$\Pr(X \in [a, b]) = \int_{a}^{b} f(x)dx.$$

A função f é chamada Função Densidade de Probabilidade de X, em inglês, probability density function (p.d.f.).

Variável Aleatória Contínua

A função densidade de probabilidade apresenta algumas características interessantes.

- **a** probabilidade de um único valor é 0, isto é, Pr(X = x) = 0.
- existem infinitas p.d.f. que resultam nas mesmas probabilidades sobre uma variável aleatória X.
- densidade não apresenta axiomas similares aos axiomas de probabilidade, pode ser inclusive ilimitada.
- é comum identificar uma p.d.f. a menos de uma constante de normalização.

Função Distribuição Acumulada

A função distribuição ou função distribuição acumulada (c.d.f. - cumulative distribution function) F de uma variável aleatória X é a função:

$$F(x) = \Pr(X \le x) \text{ para } -\infty < x < \infty.$$

Seja X uma variável aleatória contínua, e denote por f(x) e F(x) respectivamente sua p.d.f. e sua c.d.f.. Então F é contínua em todo x e apresenta as seguintes propriedades para qualquer x para os quais f(x) é contínua:

$$F(x) = \int_{-\infty}^{x} f(t)dt, \text{ e } \frac{dF(x)}{dx} = f(x).$$

Exemplos

Calcule a função distribuição acumulada das seguintes distribuições:

- ▶ Uniforme Contínua $f(x) = \frac{1}{b-a}$ para $x \in [a,b]$ e 0 caso contrário
- Exponencial $f(x) = \lambda e^{-\lambda x}$ para $x \ge 0$ e 0 caso contrário
- ightharpoonup Distribuição de Bernoulli com p=0.7
- ightharpoonup Distribuição Geométrica com p=0.7

Função Distribuição Acumulada

As seguintes propriedades podem ser provadas para variáveis aleatórias contínuas ou discretas:

- A função F(x) é não-decrescente quando x cresce; isto é, se $x_1 < x_2$, então $F(x_1) \leq F(x_2)$.
- $\lim_{x\to-\infty} F(x) = 0$ e $\lim_{x\to\infty} F(x) = 1$.
- Uma c.d.f é sempre contínua pela direita, isto é, $F(x) = \lim_{a \to x^+} F(a)$ para todo ponto x.
- Para todo valor x, Pr(X > x) = 1 F(x).
- ▶ Para todo valor x_1 e x_2 , $\Pr(x_1 < X \le x_2) = F(x_2) F(x_1)$.
- Para todo valor x, $\Pr(X < x) = \lim_{a \to x^-} F(a)$.
- Para todo valor x, $\Pr(X = x) = F(x) \lim_{a \to x^-} F(a)$.

Distribuição Uniforme em um intervalo

Seja a e b dois números reais tal que a < b. Seja X uma variável aleatória tal que $a \le X \le b$ e, para todo subintervalo de [a,b], a probabilidade que X pertence ao subintervalo é proporcional ao comprimento do subintervalo. Então, a variável aleatória tem distribuição uniforme no intervalo [a,b] e p.d.f.

$$f(x) = \left\{ \begin{array}{ll} \frac{1}{b-a} & \text{se } x \in [a,b] \\ 0 & \text{caso contrário} \end{array} \right.$$

V. Freire (EACH-USP) ACH2053 2025 9 / 20

Distribuição Exponencial

A função de probabilidade

$$f(x;\lambda) = \left\{ \begin{array}{ll} \lambda e^{-\lambda x} & \text{se } x \geq 0 \\ 0 & \text{caso contrário} \end{array} \right.$$

é chamada de distribuição Exponencial com parâmetro λ .

V. Freire (EACH-USP) ACH2053 2025 10 / 20

Distribuição Exponencial

As distribuições Exponencial e de Poisson são variáveis aleatórias de um mesmo experimento, no qual ocorrências no tempo são anotadas.

- A distribuição de Poisson representa variáveis aleatórias que contam quantidades de ocorrência em uma unidade de tempo.
- ► A distribuição exponencial representa a variável aleatória que representa o intervalo de tempo entre quaisquer duas ocorrências.

Seja X uma variável aleatória com distribuição exponencial com parâmetro λ e seja t>0. Então para todo número h>0,

$$\Pr(X \ge t + h | X \ge t) = \Pr(X \ge h).$$

Suponha que as variáveis X_1,\ldots,X_n formem uma amostra de uma distribuição exponencial com parâmetro λ . Então a distribuição de $Y=\min\{X_1,\ldots,X_n\}$ será a distribuição exponencial com parâmetro $n\lambda$.

Distribuição Normal

A função de probabilidade

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

é chamada de distribuição normal.

Somatória de infinitas variáveis aleatórias resulta em uma distribuição normal.

Função densidade de probabilidade

Função distribuição acumulada

Sumarizações

Seja X uma variável aleatória contínua com p.d.f. f. Então a média, esperança, ou valor esperado de X, denotado por $\mathsf{E}(X)$, é um número dado por:

$$\mathsf{E}(X) = \int_{-\infty}^{\infty} x f(x) dx.$$

Seja X uma variável aleatória com média finita $\mu=\mathsf{E}(X)$. A variância de X, denotada por $\mathsf{Var}(X)$, é um número dado por:

$$Var(X) = E[(X - \mu)^2] = E(X^2) - [E(X)]^2,$$

e $Var(X) \geq 0$.

O desvio padrão de X, denotado por σ_X (ou simplesmente σ quando X estiver implícito) é a raiz não-negativa de Var(X).

Sumarizações - Propriedades

Teorema

Se Y = aX + b, onde a e b são constantes finitas, então

$$\mathsf{E}(Y) = a\mathsf{E}(X) + b.$$

Teorema

Se X_1, \ldots, X_n são n variáveis aleatórias tal que a esperança de cada uma é finita, então:

$$\mathsf{E}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \mathsf{E}(X_i).$$

Teorema

Se X_1, \ldots, X_n são n variáveis aleatórias **independentes** tal que a esperança de cada uma é finita, então:

$$\mathsf{E}\left(\prod_{i=1}^n X_i\right) = \prod_{i=1}^n \mathsf{E}(X_i).$$

Variância e Desvio Padrão

Teorema

Se Y = aX + b, onde a e b são constantes finitas, então

$$\mathsf{Var}(Y) = a^2 \mathsf{Var}(X).$$

Teorema

Se X_1, \ldots, X_n são n variáveis aleatórias **independentes** tal que a esperança de cada uma é finita, então:

$$\operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \operatorname{Var}(X_i).$$

Exemplos

Calcule a esperança e a variância das seguintes distribuições:

- ▶ Uniforme Contínua $f(x) = \frac{1}{b-a}$
- ► Exponencial $f(x) = \lambda e^{-\lambda x}$

Mediana e Amplitude Interquartil

Seja X uma variável aleatória com c.d.f. F. Para cada p estritamente entre 0 e 1, defina a função $F^{-1}(p)$ como o menor valor x tal que $F(x) \geq p$.

A mediana m de uma distribuição com c.d.f. F é definida por:

$$m = F^{-1}(0.5)$$

Seja X uma variável aleatória com c.d.f. F. A amplitude interquartil (IQR - Interquartile Range) é definida por:

$$IQR = F^{-1}(0.75) - F^{-1}(0.25).$$

Exemplos

Calcule a mediana e a amplitude interquartil das seguintes distribuições:

- ▶ Uniforme Contínua $f(x) = \frac{1}{b-a}$
- ► Exponencial $f(x) = \lambda e^{-\lambda x}$

Esperança vs Mediana

Teorema

Defina o número $\mathsf{E}[(X-d)^2]$ como erro quadrático médio (M.S.E. - mean square error) da predição d. Seja $\mu=\mathsf{E}(X)$, então para qualquer $d\neq\mu$:

$$E[(X - \mu)^2] < E[(X - d)^2],$$

isto é, μ é a predição com M.S.E. mínimo.

Teorema

Defina o número $\mathrm{E}(|X-d|)$ como erro absoluto médio (M.A.E. - mean absolute error) da predição d. Seja m a mediana da distribuição X, então para qualquer $d \neq m$:

$$\mathsf{E}(|X-m|) < \mathsf{E}(|X-d|),$$

isto é, m é a predição com M.A.E. mínimo.

Resumo das Distribuições

Distribuição	Função Densidade de Probabilidade	Função Cumulada de Probabilidade	Esperança	Variância
Uniforme Contínua	$f(x) = \frac{1}{b-a}$	$F(x) = \frac{x-a}{b-a}$	$E[X] = \frac{a+b}{2}$	$Var[X] = \frac{(b-a)^2}{12}$
Exponencial	$f(x) = \lambda e^{-\lambda x}$	$F(x) = 1 - e^{-\lambda x}$	$E[X] = \frac{1}{\lambda}$	$Var[X] = \frac{1}{\lambda^2}$
Normal	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$	não existe função elementar	$E[X] = \mu$	$Var[X] = \sigma^2$