Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration JEDI Collaboration | Physics Institute III B, RWTH Aachen University DPG Frühjahrstagung 2016

Outline

Introduction

Detector concept

Simulation studies

Summary & Outlook

Motivation

Where is the Antimatter in our Universe?

- One precondition for Baryogenesis: *CP*
- Standard Model prediction: $\frac{n_B n_{\bar{B}}}{n_c} \approx 10^{-18}$
- WMAP and COBE (2012): $\frac{n_B n_{\bar{B}}}{n_{\gamma}} \approx 10^{-10}$
- \Rightarrow Not enough \mathcal{CP} in Standard Modell

$$\mathcal{H} = -d\frac{\vec{S}}{S} \cdot \vec{E}$$
 $\mathcal{P}: \mathcal{H} = +d\frac{\vec{S}}{S} \cdot \vec{E}$
 $\mathcal{T}: \mathcal{H} = +d\frac{\vec{S}}{S} \cdot \vec{E}$

- \Rightarrow Electric Dipole Moments violate \mathcal{CP} (assuming \mathcal{CPT})
- ⇒Probe into the physics of the early universe

Nuclear scattering polarimetry

- Nuclear scattering cross section for scattering of polarized particles: $\sigma(\theta, \phi) = \sigma_0(\theta) \cdot (1 + P_y A_y(\theta) \cdot \cos(\phi))$
- Measure left-right asymmetries in cross section: $P_y = \frac{1}{A_y} \frac{L-R}{L+R}$
- May need to also include up, down to account for tensor polarization
- Currently using elastic deuteron-carbon scattering

Design goals for an EDM polarimeter

 EDM search in storage rings: Let EDM interact with fields, wait for polarization change: $\frac{d\vec{S}}{dt} \propto d\vec{E} \times \vec{S}$

Current candidate method for EDM search implicates a linear buildup of

polarization with time at $\Delta P = \mathcal{O}(10^{-6}/1000s)$

Design goals for polarimeter:

Large FoM

Minimal influence on beam

High sensitivity to systematic effects

Good long term stability and reproducibility

Target choice

200 MeV: T. Kawabata et al. Phys. Rev. C 70, 034318 270 MeV: Y. Satou et al. Phys. Let. B 549, 307

- Carbon was chosen as working choice
- Large analysing power, high elastic cross section

15

• FOM for Protons also concentrated in the forward region

20

25

30 Θ [deg]

Detector concept

Signal generation

- Elastically scattered deuterons retain almost complete beam energy.
- Break-up has almost no analyzing power, so discard it
- Protons and neutrons from break-up are energetically well separated ⇒Complete stop of particles provides good signal separation
- Inelastic reactions carry some analysing power, so maybe keep these

Candidate Materials: LYSO/Plastic Scintillator

	LYSO	Plastic
Density [g/cm3]	7.3	1.05
Decay [ns]	40	2.4
L. Y. % NaI(TI)	75	25
S. Peak [nm]	420	420
N ref.	1.82	1.58
Melt. [°C]	2050	75
Hygrosc.	No	No
Radioact	Yes	No

Simulation setup

Geometry: Single detector element

• Generated 100k events each at $T_d=270\,\mathrm{MeV},5^\circ<\Theta<20^\circ,\,0^\circ<\phi<360^\circ$

- Signal: ${}^{12}C(d,d){}^{12}C$

- Background: ${}^{12}\dot{C}(d,pn){}^{12}C$

•
$$\mathcal{FOM} \propto (\sigma_{el}\epsilon_{el} + \sigma_{bg}\epsilon_{bg}) \times \left(\frac{A_{y,el}\sigma_{el}\epsilon_{el} + \sigma_{bg}\epsilon_{bg}A_{y,bg}}{(\sigma_{el}\epsilon_{el} + \sigma_{bg}\epsilon_{bg})}\right)^2$$

Lyso scintillators

Chosen detector size of $3 \times 3 \times 10$ cm³ as starting value

Detector response - lyso

Edep in lyso

Breakup is main cause of efficiency loss

Detection efficiencies (lyso)

dcbreakup detection efficiency in lyso

Plastic scintillators

- Use degrader to suppress photon background and reduce length of plastic detector.
- $T_d = 270 \, \text{MeV}$
 - Absorber thickness \approx 40 mm
 - Scintillator thickness $\approx 50 \, mm$

Detector response - plastic

Detection efficiencies (plastic)

dcelastic detection efficiency in plastic

dcbreakup detection efficiency in plastic

Results

- Main cause of efficiency loss is breakup in detector
- Maximum relative FOM:

	0%	20%
Plastic	15.5	14.5
LYSO	17	12

- LYSO and plastic scintillators provide comparable performance
- No strong dependence on energy resolution

Summary & Outlook

- We have a candidate layout for JEDI polarimeter
- Simulations suggest promising performance
- Hardware tests with LYSO crystals are in progress
- Will include $\Delta E E$ particle identification technique
- Will include inelastic scattering in simulation

