Métodos de Prova de Teoremas Matemática Discreta

Prof. MSc. Samy Sá

Universidade Federal do Ceará Campus de Quixadá

18 de fevereiro de 2014

Outline

Primeiros Passos de uma Demonstração

Principais Técnicas de Demonstração

Prova Direta

Prova por Contraposição

Prova por Contradição - Redução ao Absurdo (RAA)

Comparativo

Exercícios

Primeiro Passo: Compreender o Enunciado

Na aula anterior, vimos...

A terminologia associada a teoremas;

Primeiro Passo: Compreender o Enunciado

Na aula anterior, vimos...

- A terminologia associada a teoremas;
- Enunciados de generalização;

Primeiro Passo: Compreender o Enunciado

Na aula anterior, vimos...

- A terminologia associada a teoremas;
- Enunciados de generalização;
- Tipos de argumentos para generalizações e equivalências;
- Contra-exemplos para falsificar generalizações falhas;
- Argumentos de vacuidade.

• Sabendo o tipo de enunciado, devemos escolher um método.

- Sabendo o tipo de enunciado, devemos escolher um método.
 - ∘ Generalizações $(\forall x)[P(x) \rightarrow Q(x)]$ envolvem a prova do condicional $P(x) \rightarrow Q(x)$ ou $P(c) \rightarrow Q(c)$, onde c é qualquer.

- Sabendo o tipo de enunciado, devemos escolher um método.
 - ∘ Generalizações $(\forall x)[P(x) \rightarrow Q(x)]$ envolvem a prova do condicional $P(x) \rightarrow Q(x)$ ou $P(c) \rightarrow Q(c)$, onde c é qualquer.
 - Equivalências $p \leftrightarrow q$ são dois condicionais: $p \rightarrow q$ e $q \rightarrow p$.

- Sabendo o tipo de enunciado, devemos escolher um método.
 - ∘ Generalizações $(\forall x)[P(x) \rightarrow Q(x)]$ envolvem a prova do condicional $P(x) \rightarrow Q(x)$ ou $P(c) \rightarrow Q(c)$, onde c é qualquer.
 - Equivalências $p \leftrightarrow q$ são dois condicionais: $p \rightarrow q$ e $q \rightarrow p$.

Constatação:

Com frequência precisaremos mostrar a validade de condicionais.

- Sabendo o tipo de enunciado, devemos escolher um método.
 - ∘ Generalizações $(\forall x)[P(x) \rightarrow Q(x)]$ envolvem a prova do condicional $P(x) \rightarrow Q(x)$ ou $P(c) \rightarrow Q(c)$, onde c é qualquer.
 - Equivalências $p \leftrightarrow q$ são dois condicionais: $p \rightarrow q$ e $q \rightarrow p$.

Constatação:

Com frequência precisaremos mostrar a validade de condicionais.

Constatação:

As principais técnicas serão baseadas em relações de causa e consequência.

Causa e Consequência nos Condicionais

- O condicional $p \rightarrow q$ é falso se P é verdadeiro e q é falso.
- Os casos em que *p* é falso não importam (vacuidade).
- Precisamos mostrar então que sempre que p é verdadeiro, q também será verdadeiro.

p	q	p o q
F	F	V
F	V	V
V	F	F
V	V	V

Outline

Primeiros Passos de uma Demonstração

Principais Técnicas de Demonstração

Prova Direta

Prova por Contraposição

Prova por Contradição - Redução ao Absurdo (RAA)

Comparativo

Exercícios

Outline

Primeiros Passos de uma Demonstração

Principais Técnicas de Demonstração Prova Direta

Prova por Contraposição Prova por Contradição - Redução ao Absurdo (RAA)

Comparativo

Exercícios

Prova Direta de Condicionais

Consiste nos seguintes passos:

- 1. Assuma que p é VERDADE.
- 2. Desenvolva passos visando concluir q como consequência.
- **3.** Conclua que se *p* é verdade, então *q* também é, ou seja, que o condicional original é **VERDADE**.

Prova Direta de Condicionais

	Prova Direta (PD)			
Assuma	p			
Desenvolva	<u>:</u>			
Conclua Resultado	$rac{q}{p ightarrow q}$			

Por que Funciona?

Observe a tabela:

р	q	p o q
F	F	V
F	V	V
V	F	F
V	V	V

Por que Funciona?

Observe a tabela:

p	q	p o q
F	F	V
F	V	V
V	F	F
V	V	V

Constatação:

Se assumimos p verdadeiro e obtemos q como consequência direta, é porque o caso de p ser verdadeiro e q ser falso é impossível. Portanto, o condicional será verdadeiro.

Exemplo

Teorema

"O produto de dois números ímpares é ímpar"

Exemplo

Teorema

"O produto de dois números ímpares é ímpar"

O enunciado pode ser reescrito:

 $(\forall x \in \mathbb{Z})(\forall y \in \mathbb{Z})[x \text{ \'e impar} \land y \text{ \'e impar} \rightarrow xy \text{ \'e impar}].$

Exemplo

Teorema

"O produto de dois números ímpares é ímpar"

O enunciado pode ser reescrito:

$$(\forall x \in \mathbb{Z})(\forall y \in \mathbb{Z})[x \text{ \'e impar} \land y \text{ \'e impar} \rightarrow xy \text{ \'e impar}].$$

Constatação:

Temos um condicional $p \rightarrow q$ em que

- p é "x é ímpar ∧ y é ímpar";
- q nos diz que "xy é ímpar".

Teorema

"O produto de dois números ímpares é ímpar" (Prova Direta)

Prova

Suponha que x e y são números ímpares.

Teorema

"O produto de dois números ímpares é ímpar" (Prova Direta)

Prova

Suponha que x e y são números ímpares. Portanto, devem existir inteiros j e k tais que x = 2j + 1 e y = 2k + 1.

Teorema

"O produto de dois números ímpares é ímpar" (Prova Direta)

Prova

Suponha que x e y são números ímpares. Portanto, devem existir inteiros j e k tais que x = 2j + 1 e y = 2k + 1. Temos que xy = (2j + 1)(2k + 1) = (2j).(2k) + (2j).1 + 1.(2k) + 1.1.

Teorema

"O produto de dois números ímpares é ímpar" (Prova Direta)

Prova

Suponha que x e y são números ímpares. Portanto, devem existir inteiros j e k tais que x=2j+1 e y=2k+1. Temos que xy=(2j+1)(2k+1)=(2j).(2k)+(2j).1+1.(2k)+1.1. Adiante, temos xy=4jk+2j+2k+1=2(2jk+j+k)+1, um número ímpar.

Teorema

"O produto de dois números ímpares é ímpar" (Prova Direta)

Prova

Suponha que x e y são números ímpares. Portanto, devem existir inteiros j e k tais que x = 2j + 1 e y = 2k + 1. Temos que xy = (2j + 1)(2k + 1) = (2j).(2k) + (2j).1 + 1.(2k) + 1.1. Adiante, temos xy = 4jk + 2j + 2k + 1 = 2(2jk + j + k) + 1, um número ímpar. Portanto, se x e y são números ímpares, o produto xy também será ímpar. \blacksquare

Outline

Primeiros Passos de uma Demonstração

Principais Técnicas de Demonstração

Prova Direta

Prova por Contraposição

Prova por Contradição - Redução ao Absurdo (RAA)

Comparativo

Exercícios

Prova de Condicionais por Contraposição

Consiste nos seguintes passos:

- **1.** Assuma que q é **FALSO**, ou, alternativamente, que $\neg q$ é **VERDADE**.
- **2.** Desenvolva passos visando concluir $\neg p$ como consequência, ou seja, que p também é **FALSO**.
- **3.** Conclua que se p é verdade, então q também é, ou seja, que $p \rightarrow q$ é **VERDADE**.

Prova de Condicionais por Contraposição

	Contraposição			
Assuma	$\neg q$			
Desenvolva	÷			
Conclua	$_ \neg p$			
Resultado	$\overline{\hspace{1em} p o q}$			

Por que Funciona?

Observe a tabela:

р	q	$p \rightarrow q$	$\neg p$	$\neg q$	$ \neg q \rightarrow \neg p $
F	F	V	V	V	V
F	V	V	V	F	V
V	F	F	F	V	F
V	V	V	F	F	V

Por que Funciona?

Observe a tabela:

p	q	$p \rightarrow q$	$\neg p$	$\neg q$	$\neg q ightarrow eg p$
F	F	V	V	V	V
F	V	V	V	F	V
V	F	F	F	V	F
V	V	V	F	F	V

Constatação:

O condicional $\neg q \to \neg p$ equivale a $p \to q$. Consequentemente, mostrar que $\neg q \to \neg p$ é verdade é o mesmo que mostrar $p \to q!$

Exemplo (Relembrando...)

Teorema

"O produto de dois números ímpares é ímpar"

O enunciado pode ser reescrito:

$$(\forall x \in \mathbb{Z})(\forall y \in \mathbb{Z})[x \text{ \'e impar} \land y \text{ \'e impar} \rightarrow xy \text{ \'e impar}].$$

Constatação:

Temos um condicional $p \rightarrow q$ em que

- p é "x é ímpar ∧ y é ímpar";
- q nos diz que "xy é ímpar".

Teorema

"O produto de dois números ímpares é ímpar"

Temos um condicional $p \rightarrow q$ em que

- p é "x é ímpar ∧ y é ímpar";
- q nos diz que "xy é ímpar".

PERGUNTA:

Qual é a negação de p?

Teorema

"O produto de dois números ímpares é ímpar"

Temos um condicional $p \rightarrow q$ em que

- p é "x é ímpar ∧ y é ímpar";
- q nos diz que "xy é ímpar".

PERGUNTA:

Qual é a negação de p? ⇒ "x é par ou y é par"

Teorema

"O produto de dois números ímpares é ímpar"

Temos um condicional $p \rightarrow q$ em que

- p é "x é ímpar ∧ y é ímpar";
- q nos diz que "xy é ímpar".

PERGUNTA:

- 1. Qual é a negação de p? ⇒ "x é par ou y é par"
- 2. Qual é a negação de q?

Teorema

"O produto de dois números ímpares é ímpar"

Temos um condicional $p \rightarrow q$ em que

- p é "x é ímpar ∧ y é ímpar";
- q nos diz que "xy é ímpar".

PERGUNTA:

- Qual é a negação de p? ⇒ "x é par ou y é par"
- 2. Qual é a negação de q? ⇒ "xy é par"

Teorema

"O produto de dois números ímpares é ímpar"

Temos um condicional $p \rightarrow q$ em que

- p é "x é ímpar ∧ y é ímpar";
- q nos diz que "xy é ímpar".

PERGUNTA:

- Qual é a negação de p? ⇒ "x é par ou y é par"
- 2. Qual é a negação de q? ⇒ "xy é par"
- **3.** Que caminho devemos seguir para demonstrar esse teorema por contraposição?

Teorema

"O produto de dois números ímpares é ímpar"

Temos um condicional $p \rightarrow q$ em que

- p é "x é ímpar ∧ y é ímpar";
- q nos diz que "xy é ímpar".

PERGUNTA:

- Qual é a negação de p? ⇒ "x é par ou y é par"
- 2. Qual é a negação de q? ⇒ "xy é par"
- 3. Que caminho devemos seguir para demonstrar esse teorema por contraposição? ⇒ Supor que "xy é par" e concluir que "x é par ou y é par".

Teorema

"O produto de dois números ímpares é ímpar" (por Contraposição)

Prova

Dados dois inteiros x, y, suponha que seu produto xy é par.

Teorema

"O produto de dois números ímpares é ímpar" (por Contraposição)

Prova

Dados dois inteiros x, y, suponha que seu produto xy é par. Logo, deve existir um inteiro k tal que xy = 2k.

Teorema

"O produto de dois números ímpares é ímpar" (por Contraposição)

Prova

Dados dois inteiros x, y, suponha que seu produto xy é par. Logo, deve existir um inteiro k tal que xy = 2k. Independente da fatoração que fizermos de k, seus fatores seriam reorganizados para formar os números x e y. Portanto, o fator 2 deve ser também fator de x ou fator de y.

Teorema

"O produto de dois números ímpares é ímpar" (por Contraposição)

Prova

Dados dois inteiros x, y, suponha que seu produto xy é par. Logo, deve existir um inteiro k tal que xy = 2k. Independente da fatoração que fizermos de k, seus fatores seriam reorganizados para formar os números x e y. Portanto, o fator 2 deve ser também fator de x ou fator de y. Concluímos que ao menos um dos dois inteiros x ou y é par.

Outline

Primeiros Passos de uma Demonstração

Principais Técnicas de Demonstração

Prova Direta Prova por Contraposicão

Prova por Contradição - Redução ao Absurdo (RAA)

Comparativo

Exercícios

Prova de Condicionais por Contradição

Consiste nos seguintes passos:

- **1.** Suponha que o condicional $p \rightarrow q$ é **FALSA**.
- **2.** Logo, *p* deve ser verdade e *q* deve ser falso.
- 3. Mostre uma contradição que surge como consequência.
- **4.** Conclua que que a suposição original estava errada, ou seja, o condicional original é **VERDADEIRO**.

Prova de Condicionais por Contradição

Assuma... $p, \neg q$ Desenvolva \vdots Conclua... \bot Resultado $p \rightarrow q$

Por que Funciona?

Observe a tabela:

p	q	$p \rightarrow q$	egraph(p o q)
F	F	V	F
F	V	V	F
V	F	F	V
V	V	V	F

Por que Funciona?

Observe a tabela:

p	q	p o q	$\mid \neg(p ightarrow q)$
F	F	V	F
F	V	V	F
V	F	F	V
V	V	V	F

Constatação:

Se $\neg(p \rightarrow q)$ não pode ser verdade, então $p \rightarrow q$ não pode ser falsa. Consequentemente, $p \rightarrow q$ é verdadeira!

Teorema

"O produto de dois números ímpares é ímpar"

Temos um condicional $p \rightarrow q$ em que

- p é "x é ímpar ∧ y é ímpar";
- q nos diz que "xy é ímpar".

PERGUNTA:

Qual é a negação de q?

Teorema

"O produto de dois números ímpares é ímpar"

Temos um condicional $p \rightarrow q$ em que

- p é "x é ímpar ∧ y é ímpar";
- q nos diz que "xy é ímpar".

PERGUNTA:

Qual é a negação de q? ⇒ "xy é par."

Teorema

"O produto de dois números ímpares é ímpar"

Temos um condicional $p \rightarrow q$ em que

- p é "x é ímpar ∧ y é ímpar";
- q nos diz que "xy é ímpar".

PERGUNTA:

- Qual é a negação de q? ⇒ "xy é par."
- 2. O que devemos supor no começo da demonstração por contradição deste teorema?

Teorema

"O produto de dois números ímpares é ímpar"

Temos um condicional $p \rightarrow q$ em que

- p é "x é ímpar ∧ y é ímpar";
- q nos diz que "xy é ímpar".

PERGUNTA:

- Qual é a negação de q? ⇒ "xy é par."
- 2. O que devemos supor no começo da demonstração por contradição deste teorema? ⇒ "x é ímpar e y é ímpar, mas xy é par."

Teorema

"O produto de dois números ímpares é ímpar" (por Contradição)

Prova

Dados dois inteiros x, y, suponha que x, y ímpares. Suponha também que o produto xy é par.

Teorema

"O produto de dois números ímpares é ímpar" (por Contradição)

Prova

Dados dois inteiros x, y, suponha que x, y ímpares. Suponha também que o produto xy é par. Logo, deve existir um inteiro k tal que xy = 2k.

Teorema

"O produto de dois números ímpares é ímpar" (por Contradição)

Prova

Dados dois inteiros x, y, suponha que x, y ímpares. Suponha também que o produto xy é par. Logo, deve existir um inteiro k tal que xy = 2k. Independente da fatoração que fizermos de k, seus fatores seriam reorganizados para formar os números x e y. Portanto, o fator 2 deve ser também fator de x ou fator de y.

Teorema

"O produto de dois números ímpares é ímpar" (por Contradição)

Prova

Dados dois inteiros x, y, suponha que x, y ímpares. Suponha também que o produto xy é par. Logo, deve existir um inteiro k tal que xy = 2k. Independente da fatoração que fizermos de k, seus fatores seriam reorganizados para formar os números x e y. Portanto, o fator 2 deve ser também fator de x ou fator de y. Concluímos que ao menos um dos dois inteiros x ou y é par. Mas isso é uma contradição!

Teorema

"O produto de dois números ímpares é ímpar" (por Contradição)

Prova

Dados dois inteiros x, y, suponha que x, y ímpares. Suponha também que o produto xy é par. Logo, deve existir um inteiro k tal que xy = 2k. Independente da fatoração que fizermos de k, seus fatores seriam reorganizados para formar os números x e y. Portanto, o fator 2 deve ser também fator de x ou fator de y. Concluímos que ao menos um dos dois inteiros x ou y é par. Mas isso é uma contradição! Logo, como a contradição segue da suposição de que xy é par, o produto xy deve ser ímpar. ■

Outline

Primeiros Passos de uma Demonstração

Principais Técnicas de Demonstração

Prova Direta

Prova por Contraposição

Prova por Contradição - Redução ao Absurdo (RAA)

Comparativo

Exercícios

Comparativo

	PD	Contraposição	Contradição
Assuma	p	$\neg q$	$oldsymbol{ ho}, eg oldsymbol{q}$
Desenvolva	÷	:	:
Conclua	q	eg ho	\perp
Resultado	$\overline{ ho o q}$	$\overline{ ho o q}$	$\overline{ ho o q}$

Outline

Primeiros Passos de uma Demonstração

Principais Técnicas de Demonstração

Prova Direta

Prova por Contraposição

Prova por Contradição - Redução ao Absurdo (RAA)

Comparativo

Exercícios

Exercícios

Escolha um dos problemas:

- 1. A soma de dois inteiros ímpares é par.
- **2.** Se x é um quadrado perfeito, então x+2 não é um quadrado perfeito.
- **3.** Se x é irracional, então $\frac{1}{x}$ é irracional.

Exercícios

Escolha um dos problemas:

- 1. A soma de dois inteiros ímpares é par.
- **2.** Se x é um quadrado perfeito, então x+2 não é um quadrado perfeito.
- **3.** Se x é irracional, então $\frac{1}{x}$ é irracional.

Resolva-o por...

- a) Prova Direta;
- **b)** por Contraposição;
- c) por Contradição.