Unsupervised learning

Training set:
$$\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$$

In unsupervised learning, you are given an unlabeled dataset and are asked to find "structure" in the data.

聚类算法:K均值算法(k-means algorithm) 簇分配

分两类:

- (1)选两个聚类中心。分别计算离聚类中心距离来分类。
- (2)分别计算两个聚类的均值,然后重新选择两个聚类中心为这两个均值,重新分配聚类,(簇分配)。

K-means algorithm

Input:

- K (number of clusters) ←
- Training set $\{x^{(1)},x^{(2)},\ldots,x^{(m)}\}$ \longleftarrow

$$x^{(i)} \in \mathbb{R}^n$$
 (drop $x_0 = 1$ convention)

K-means algorithm

Randomly initialize K cluster centroids $\underline{\mu}_1,\underline{\mu}_2,\ldots,\underline{\mu}_K\in\mathbb{R}^n$ Repeat {

For
$$i=1$$
 to m
 $c^{(i)}:= index$ (from 1 to K) of cluster centroid closest to $x^{(i)}$

for $k=1$ to K
 $\mu_k:= average$ (mean) of points assigned to cluster k
 $\mu_k:= average$ (mean) of points $\mu_k:= \mu_k:= \mu_k:=$

如果有一个聚类中心没有被分配到点,那么通常直接移除那个聚类中心。这样就得到K-1个簇。

不可分聚类上执行K均值算法:

K均值算法优化目标:各个样本点和他所属的聚类中心距离平方之和最小。

K-means optimization objective

- $\rightarrow c^{(i)}$ = index of cluster (1,2,...,K) to which example $x^{(i)}$ is currently assigned
- K ke {1,2,..., k} $\Rightarrow \mu_k$ = cluster centroid k ($\mu_k \in \mathbb{R}^n$)
 - $\mu_{c^{(i)}}$ = cluster centroid κ ($\mu_k \in \mathbb{R}$) $\mu_{c^{(i)}} = \text{cluster centroid of cluster to which example } x^{(i)} \text{ has been assigned}$ $\chi^{(i)} \rightarrow \Sigma$ $\chi^{(i)} = \Sigma$ $\chi^{(i)} = M_{\Sigma}$

Optimization objective:

K-means algorithm

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

随机初始化选择聚类中心:

Random initialization

Should have K < m

Randomly pick K training examples.

Set μ_1, \ldots, μ_K equal to these K examples. $\mu_1 = \chi^{(i)}$

局部最优:

K=2

多次随机初始化,避免陷入局部最优

Random initialization

For i = 1 to 100 {
$$> \text{Randomly initialize K-means.}$$
 Run K-means. Get $c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K$. Compute cost function (distortion)
$$> J(c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K)$$
 }

Pick clustering that gave lowest cost $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

选择类型数K--肘部法则:

Choosing the value of K

Elbow method:

为了什么目的而选择聚类:

Choosing the value of K

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

