Aufgabe 1. Gegeben seien $a, b \in \mathbb{R}$ mit a < b. Zeige, dass die Intervalle (a, b) und [a, b] die gleiche Mächtigkeit wie \mathbb{R} haben.

Lösung:

Wir zeigen die Behauptung in zwei Teilen.

Teil 1: Das offene Intervall (a,b) hat die gleiche Mächtigkeit wie \mathbb{R} .

Wir konstruieren eine Bijektion $f:(a,b)\to\mathbb{R}$.

Zunächst transformieren wir das Intervall (a,b) auf das Intervall $(-\frac{\pi}{2},\frac{\pi}{2})$ durch die lineare Abbildung

$$g:(a,b) \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \quad g(x) = \frac{\pi}{b-a} \cdot (x-a) - \frac{\pi}{2}.$$

Diese Abbildung ist bijektiv, denn:

- Sie ist linear mit positiver Steigung $\frac{\pi}{b-a} > 0$, also streng monoton wachsend und damit injektiv.
- Für x = a erhalten wir $g(a) = \frac{\pi}{b-a} \cdot 0 \frac{\pi}{2} = -\frac{\pi}{2}$.
- Für x = b erhalten wir $g(b) = \frac{\pi}{b-a} \cdot (b-a) \frac{\pi}{2} = \pi \frac{\pi}{2} = \frac{\pi}{2}$.
- Da g stetig ist und die Grenzwerte bei a und b die Randpunkte des Zielintervalls sind, ist g surjektiv.

Nun verwenden wir die Tangensfunktion:

$$h: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, \quad h(y) = \tan(y).$$

Die Tangensfunktion ist auf dem Intervall $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ bijektiv:

- Sie ist streng monoton wachsend auf diesem Intervall, also injektiv.
- Es gilt $\lim_{y\to -\frac{\pi}{2}^+}\tan(y)=-\infty$ und $\lim_{y\to \frac{\pi}{2}^-}\tan(y)=+\infty$.
- Da tan stetig ist auf $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, nimmt sie nach dem Zwischenwertsatz jeden reellen Wert an, ist also surjektiv.

Die gesuchte Bijektion ist die Komposition

$$f = h \circ g : (a, b) \to \mathbb{R}, \quad f(x) = \tan\left(\frac{\pi}{b - a} \cdot (x - a) - \frac{\pi}{2}\right).$$

Als Komposition zweier Bijektionen ist f selbst eine Bijektion. Damit haben (a, b) und \mathbb{R} die gleiche Mächtigkeit.

Teil 2: Das abgeschlossene Intervall [a, b] hat die gleiche Mächtigkeit wie \mathbb{R} .

Wir haben bereits gezeigt, dass $(a,b) \sim \mathbb{R}$ (gleiche Mächtigkeit). Es genügt zu zeigen, dass $[a,b] \sim (a,b)$.

Betrachte die Menge $A = \{a, b, a + \frac{b-a}{2}, a + \frac{b-a}{3}, a + \frac{b-a}{4}, \ldots\}$. Diese Menge ist abzählbar unendlich.

1

Wir definieren eine Bijektion $\varphi:[a,b] \to (a,b)$ wie folgt:

$$\varphi(a) = a + \frac{b - a}{2} \tag{1}$$

$$\varphi(b) = a + \frac{b-a}{3} \tag{2}$$

$$\varphi\left(a + \frac{b-a}{2}\right) = a + \frac{b-a}{4} \tag{3}$$

$$\varphi\left(a + \frac{b-a}{3}\right) = a + \frac{b-a}{5} \tag{4}$$

$$\vdots (5)$$

$$\varphi\left(a + \frac{b-a}{n}\right) = a + \frac{b-a}{n+2} \quad \text{für } n \ge 2$$
 (6)

$$\varphi(x) = x$$
 für alle $x \in [a, b] \setminus A$ (7)

Diese Abbildung ist eine Bijektion:

- Injektivität: Für $x, y \in [a, b]$ mit $x \neq y$:
 - Falls $x, y \notin A$, dann $\varphi(x) = x \neq y = \varphi(y)$.
 - Falls $x \in A$ und $y \notin A$, dann ist $\varphi(x) \in \{a + \frac{b-a}{n} : n \ge 2\}$ und $\varphi(y) = y \notin \{a + \frac{b-a}{n} : n \ge 2\}$, also $\varphi(x) \ne \varphi(y)$.
 - Falls $x, y \in A$, dann werden sie auf verschiedene Elemente der Folge abgebildet, also $\varphi(x) \neq \varphi(y)$.
- Surjektivität: Sei $y \in (a, b)$.
 - Falls $y \notin \{a + \frac{b-a}{n} : n \ge 2\}$, dann ist $y \notin A$ und $\varphi(y) = y$.
 - Falls $y=a+\frac{b-a}{n}$ für ein $n\geq 2$, dann ist y das Bild eines Elements aus A gemäß der obigen Definition.

Damit ist φ eine Bijektion zwischen [a, b] und (a, b).

Aus Teil 1 wissen wir $(a,b) \sim \mathbb{R}$, und aus Teil 2 folgt $[a,b] \sim (a,b)$. Mit der Transitivität der Gleichmächtigkeit folgt $[a,b] \sim \mathbb{R}$.

Somit haben sowohl (a, b) als auch [a, b] die gleiche Mächtigkeit wie \mathbb{R} .