Problem Sheet 7

Problems in Part A will be discussed in class. Problems in Part B come with solutions and should be tried at home.

Part A

(7.1) Given a matrix $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, formulate the first-order optimality conditions for the problem

$$f(\boldsymbol{x}) = -\sum_{i=1}^{m} \log(b_i - \boldsymbol{a}_i^{\top} \boldsymbol{x}),$$

with the constraints Ax + s = b and s > 0. Compute the Lagrange dual.

(7.2) Consider the optimization problem

minimize
$$x_1^2 + x_2^2$$
 subject to $\frac{x_1}{1 + x_2^2} \le 0$, $(x_1 + x_2)^2 = 0$. (1)

Show that this problem is not a convex optimization problem. Derive a convex optimization problem that has the same solution as (1)

(7.3) A quadratically constraint quadratic problem (QCQP) has the form

$$\begin{aligned} & \text{minimize} & & \frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{P} \boldsymbol{x} + \boldsymbol{q}^{\top} \boldsymbol{x} + r \\ & \text{subject to} & & \frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{P}_i \boldsymbol{x} + \boldsymbol{q}_i^{\top} \boldsymbol{x} + r_i \leq 0, \ 1 \leq i \leq m, \end{aligned}$$

with P symmetric positive definite and P_1, \ldots, P_m symmetric positive semidefinite. Derive the Lagrange dual of this problem.

Part B

(7.4) Consider the *Boolean* optimization problem

minimize
$$\langle {m c}, {m x} \rangle$$
 subject to ${m A}{m x} \leq {m b}$ $x_i \in \{0,1\}, \ 1 \leq i \leq n.$

This problem requires the x_i to have integer values, and falls outside the scope of continuous optimization. Show that the problem is equivalent to

minimize
$$\langle c, x \rangle$$

subject to $Ax \leq b$
 $x_i(1-x_i) = 0, \ 1 \leq i \leq n.$

While this problem is not convex (the equality constraints are quadratic), we can still formulate the Lagrange dual to this problem, whose optimal value gives a lower bound. Show that the Lagrange dual is a convex optimization problem, thus giving a way to *approximate* the solution of the discrete problem by solving a convex optimization problem.

(7.5) Consider the problem

minimize
$$\boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}$$
 subject to $x_i^2 = 1, \ 1 \le i \le n$ (2)

for a symmetric matrix W. The feasible points are the sets of vectors $x \in \{-1,1\}^n$, with each coordinate either -1 or 1. In principle, we can solve this problem by testing the objective function $x^\top W x$ on all 2^n such problems, but this is computationally inefficient to do so. An interpretation of this problem is as follows: we want to group d elements into two groups, one labeled with -1 and one with 1. The entry w_{ij} of the matrix can be seen as the cost of having i and j in the same partition.

Using Lagrangian duality, show that the optimal value p^* of (2) satisfies

$$p^* \geq n \cdot \lambda_{\min}(\boldsymbol{W}),$$

where $\lambda_{\min}(\boldsymbol{W})$ is the smallest eigenvalue of \boldsymbol{W} .