CMSC 130 - Logic Design and Digital Computer Circuits

Handout # 2: COMPUTER ARITHMETIC

Recall Binary Addition:

$$0 + 0 = 0$$
 $1 + 0 = 1$ $0 + 1 = 1$ $1 + 1 = 10$

Subtraction Using Complements

Given: Minuend

- <u>Subtrahend</u> Difference

1. 10's complement

М	=		72532
10's complement of S	=	+	<u>96750</u>
Sum	=		169282
Discard end carry 10 ⁵	=	_	100000
Answer	=		69282
b. (3250 - 72532) ₁₀			

$$M = 03250$$
10's complement of S = + 27468

Sum = 30718

There is no end carry.

Answer (10's comp.) = - 69282

2. 2's complement

Let:
$$X = 101 \ 0100$$

 $Y = 100 \ 0011$

a. X - Y

X	=		1010100
2's complement of Y	=	+	0111101
Sum	=		10010001
Discard end carry 2 ⁷	=	-	10000000
Answer	=		10001

V	_		1000011
ĭ	=		1000011
2's complement of X	=	+	0101100
Sum	=		1101111
There is no end carry.			
Answer (2's comp.)	=	_	10001

3. 1's complement

Let:
$$X = 101 \ 0100$$

 $Y = 100 \ 0011$

a. X - Y

$$X = 1010100$$
1's complement of $Y = + 0111100$
 $Sum = 10010000$
 $End-around carry = + ____1$
 $Answer = 10001$

Υ	=		1000011
1's complement of X	=	+	0101011
Sum	=		1101110
There is no end carry.			
Answer (1's comp.)	=	_	10001

Overflow/underflow Detection

Overflow

- occurs when an arithmetic operation yields a result that is greater than the range's positive limit
- when the last carry-in is not equal to the carry-out.

Underflow

- occurs when an arithmetic operation yields a result that is lesser than the range's negative limit
- when the last carry-in is not equal to the carry-out.

Using 5 bits:

1. positive + positive

no overflow/underflow

1.b)

2. negative + negative

BCD Addition

BCD is from 0000 to 1001. If the sum is less than or equal to 1001, the answer is still valid.

= 12

= 583

Example:

But if we have:

12 1100 (not in BCD)

To correct the answer, add 6 (0110) to it, so 0100

2.
$$8 1000$$
 $+9 1001$
 $17 0001$
 $+ 0110$
 $0001 0111 = 17$

0101 1000 0011