Теорема 1. Лагранжа.

 $f:[a,b]\to\mathbb{R}$ — непр., дифф. в (a,b). Тогда $\exists c\in(a,b)$, такое что:

$$f(b) - f(a) = f'(c)(b - a)$$

Теорема 2. *Коши.* $f, g : [a, b] \to \mathbb{R}$

 $f,g-\partial u\phi\phi$. в $(a,b);g'\neq 0$ на (a,b). Тогда

 $\exists c \in (a, b), make umo:$

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Доказательство. Следует из теоремы Лагранжа при g(x)=x

Примечание. Если g(b) = g(a), то по т. Ролля . . .

Примечание. От автора конспекта: Кохась действительно не дописал замечание.

Примечание. Теорему Лагранжа можно интерпретировать как следующее: $\frac{f(b)-f(a)}{b-a}$ — тангенс угла между хордой графика и горизонталью, а f'(c) — касательная. Таким образом, если провести хорду графика, то можно найти точку между точками пересечения графика и хорды такую, что касательная к графику будет параллельна этой хорде.

Доказательство. Теоремы Коши.

$$F(x) := f(x) - kg(x)$$

Подберем k такое, что F(b) = F(a)

$$f(b) - kg(b) = f(a) - kg(a)$$

$$k = \frac{f(b) - f(a)}{q(b) - q(a)}$$

По т. Ролля $\exists c: F'(c) = 0$

$$f'(c) - kg'(c) = 0$$

$$k = \frac{f'(c)}{g'(c)}$$

$$\exists M : \forall x \mid f'(x) \mid \leq M$$

Тогда $\forall x, x + h \in [a, b]$

$$|f(x+h) - f(x)| \le M|h|$$

2. f — непр. на $[a,b\rangle$, дифф. на $(a,b\rangle$

$$\exists \lim_{x \to a+0} f'(x) = k \in \overline{\mathbb{R}}$$

Тогда
$$f'_+(a)=k$$

Доказательство. Следствия 2.

 $\exists a < c < a + h$, такой что:

$$\frac{f(a+h) - f(a)}{h} = f'(c) \xrightarrow[h \to 0]{} k$$

f — дифф. при x>0 $f'=e^{-\frac{1}{x^2}}\cdot \frac{2}{x^3}$

$$f' = e^{-\frac{1}{x^2}} \cdot \frac{2}{x^3}$$

$$\lim_{x \to 0} \frac{2e^{-\frac{1}{x^2}}}{x^3} = 0$$
 (позже)

 $\lim_{x \to 0} rac{2e^{-rac{1}{x^2}}}{x^3} = 0$ (позже) Это был контрпример — функция, которая везде дифф., но $ot\equiv$ lim

Теорема 3. Дарбу.

 $f:[a,b] o \mathbb{R} - \partial u \phi \phi$. на [a,b]Тогда $\forall C$ лежащего между f'(a), f'(b)

$$\exists c \in (a,b) : f'(c) = C$$

Доказательство. $F(x) := f(x) - C \cdot x - y$ неё $\exists \max$ (в силу непрерывности)

F'(x) = f'(x) - C F'(a) и F'(b) разных знаков.

1. F'(a) > 0 F'(b) < 0

По лемме при x > a, близких к $a \mid f(x) > f(a) \Rightarrow \max f$ достигается в $c \in (a,b)$

1. Функция f' обладает свойством "сохранять промежуток" Следствие.

2. f' не может иметь разрывов вида "скачок"

1 Показательная функция

$$\forall x,y \quad f(x+y) = f(x) \cdot f(y) \quad (*)$$
 $f: \mathbb{R} \to \mathbb{R}$, непр.

Определение. Показательная функция $f: \mathbb{R} \to \mathbb{R}$, непр.

$$\not\equiv 0, \not\equiv 1$$
 и удовл. $(*)$

Теорема 4. f — *показ.* ϕ -ция

Тогда:

1.
$$\forall x \ f(x) > 0; f(0) = 1$$

2.
$$\forall r \in \mathbb{Q} \quad f(rx) = (f(x))^r$$

3.
$$f$$
 — строго монот.: $a := f(1)$

Тогда $a \neq 1$, если a > 1 — возр., если a < 1 — убыв.

M3137y2019

December 16, 2019

- 4. Множество значений $f(0, +\infty)$
- 5. $\tilde{f}(1)=f(1)$, тогда $f=\tilde{f}$

Доказательство. 1.
$$f \not\equiv 0 \ \exists f(x_0) \neq 0$$

$$x = x_0, y = 0$$
 $f(x_0 + 0) = f(x_0) \cdot f(0) \Rightarrow f(0) = 1$

Если $f(x_1) = 0$, тогда

$$\forall x \quad f(x) = f(x - x_1) \cdot f(x_1) = 0$$
$$f(x) = f\left(\frac{x}{2}\right) \cdot f\left(\frac{x}{2}\right) > 0$$

- 2. Как в опр. ст. с рациональным показателем
 - (a) r = 1
 - (b) $r \in \mathbb{N}$

$$f(2x) = f(x+x) = f(x) \cdot f(x) = f(x^2)$$
$$f((n+1)x) = f(nx+x) = f(nx) \cdot f(x) = (f(x))^n f(x) = (f(x))^{n+1}$$

(c) $r \in "-\mathbb{N}"$

$$1 = f(0) = f(nx + (-n)x) = f(nx) \cdot f(-nx) = (f(x))^n f(-nx)$$

(d) r = 0

$$f(rx) = f(0) = 1 = (f(x))^0$$

(e) $r = \frac{1}{n}$

$$f(x) = f(n \cdot \frac{x}{n}) = (f(\frac{x}{n}))^n$$
$$f(\frac{1}{n}x) = (f(x))^{\frac{1}{n}}$$

(f) $r = \frac{m}{n}$ $m \in \mathbb{Z}, n \in \mathbb{N}$

$$f(\frac{m}{n}x) = f(m \cdot (\frac{1}{n}x)) = (f(\frac{1}{n}x))^m = (f(x)^{\frac{1}{n}})^m$$

3. a = 1 f(1) = 1 $\forall r \in \mathbb{Q}$ $f(r) = 1^r = 1$

$$f$$
 — непр. и $f(x)=1$ при $x\in\mathbb{Q}\Rightarrow f\equiv 1$

a > 1. Тогда $\forall x > 0$ f(x) > 1

$$r \in \mathbb{Q}, r > 0$$
 $f(r) = r(r \cdot 1) = (f(1))^r = a^r > 1$

Значит $\forall x \in \mathbb{R}, x > 0$ берем $r_k \to x (r_k \in \mathbb{Q})$

 $f(r_k) o f(x)$, значит $f(x) \geq 1$

$$f(x) = f((x-r) + r) = f(x-r) \cdot f(r) > 1$$

$$\exists r \in \mathbb{O} : 0 < r < x$$

возр.
$$x \in \mathbb{R}, h > 0$$

$$f(x+h) = f(x) \cdot f(h)$$

$$f(h) > 1 \Rightarrow f(x+h) > f(x)$$
 $a < 1$ — аналогично.

4.
$$f(\mathbb{R}) = (\inf f, \sup f)$$

$$\inf f = 0 \quad \sup f = +\infty$$

$$f(1) = a > 1$$

$$a^n, n \in \mathbb{Z}$$

5.
$$\tilde{f}(1) = f(1) \Rightarrow \forall r \quad \tilde{f}(r) = f(r)$$

$$\forall x \quad r_k \to x$$

$$\tilde{f}(r_k) = f(r_k)$$

$$\tilde{f}(r_k) \to \tilde{f}(x); f(r_k) \to f(x) \Rightarrow f(x) = \tilde{f}(x)$$

Обозначение. f — показ ф-ция, f(1)=a Это значит $\forall r\in\mathbb{Q}\quad f(r)=a^r$ Обозначим: $f(x)=a^x$

Теорема 5. \exists *показ.* ϕ -ция f_0 , удовл.:

$$\frac{f_0(x) - 1}{x} \xrightarrow[x \to 0]{} 1$$

Доказательство будет позже.

Теорема 6. f — *показ.* ϕ -ция.

Тогда
$$\exists \alpha \in \mathbb{R} \ \forall x \ f(x) = f_0(\alpha x)$$

Доказательство. f(1) = a

Множество значений f_0 это $(0, +\infty)$

$$\exists \alpha : f_0(\alpha) = a$$

 $f_0(\alpha x)$ и есть f(x). Покажем это:

$$g(x) := f_0(\alpha x)$$

g(x) — показ. ф., т.к. она не тривиальна и удовлетворяет (*), покажем это:

$$g(x+y) = f_0(\alpha(x+y)) = f_0(\alpha x + \alpha y) = f_0(\alpha x) \cdot f_0(\alpha y) = g(x)g(y)$$

 $g(1) = f_0(\alpha) = a = f(1)$

Следствие. Функция f_0 , удовл. теореме 5, — единственная.

Доказательство. h(x) — ещё одна такая функция $\Rightarrow h(x) = f_0(\alpha x)$

$$1 \underset{xx \to 0}{\longleftarrow} \frac{h(x) - 1}{x} = \frac{f_0(\alpha x) - 1}{\alpha x} \cdot \alpha \xrightarrow[x \to 0]{} \alpha$$

, т.е.
$$lpha=1$$

Определение. f_0 называется экспонента, если:

$$f_0(x) = e^x$$
 $f_0(1) = e$

$$\frac{e^x - 1}{x} \xrightarrow[x \to 0]{} 1$$

, т.е. $e^x > 1$ при x > 0

Следствие. $\forall a > 0, a \neq 1$

$$\exists ! f : f(1) = a$$

Доказательство. Для этого $a \exists ! \alpha \ f_0(\alpha) = a$

$$f(x) = f_0(\alpha x)$$

$$f(1) = f_0(\alpha) = a$$

Следствие. $\forall x,y \in \mathbb{R} \quad \forall a>0, a\neq 1$

$$a^{xy} = (a^x)^y = (a^y)^x$$

Доказательство. x = 0 — тривиально

$$x \neq 0$$
 $a^x = b \neq 1$

$$y \in \mathbb{Q}$$
 $a^{xy} = (a^x)^y = b^y$

$$y \in \mathbb{R}$$
 $r_k \to y$ $a^{xy} \leftarrow a^{xr_k} = b^{r_k} \to b^y \Rightarrow a^{xy} = b^y$

2 Производные высших порядков

Определение. $f: \langle a, b \rangle \to \mathbb{R}$ — дифф.

$$x \in \langle a, b \rangle$$

Если f' — дифф. в x_0 , то $(f')'(x_0)$ — называется вторая производная функции f.

Пусть $n-1\in\mathbb{N}$ — множество D_{n-1} и $f^{(n-1)}:D_{n-1}\to\mathbb{R}$ определены. Пусть D_n — множество точек $x_0\in D_{n-1}$, для которых существует $\delta>0$, такое что:

$$(x_0 - \delta, x_0 + \delta) \cap D_{n-1} = (x_0 - \delta, x_0 + \delta) \cap D$$

и $f^{(n-1)}$ дифференцируема в точке x_0 . Если $x_0 \in D_n$, то f — дифференцируема n раз в точке x_0 . Функция

$$f^{(n)} = (f^{(n-1)})'_{D_n} : D_n \to \mathbb{R}$$

называется производной порядка n.

Если $\forall x \in \langle a,b \rangle \; \exists f^{(n)}(x)$, изучим дифференцируемость $f^{(n)}$ в точке $x_0 \in \langle a,b \rangle$

$$f^{(n+1)}(x_0) = (f^{(n)})'(x_0)$$

$$f_+^{(n)}(x_0) = (f|_{\langle a,b\rangle \cap [x_0,+\infty)})^{(n)}(x_0)$$

Обозначение. E — пр-к в \mathbb{R} , $n \in \mathbb{N}$

$$C^n(E) = \{f: E \to \mathbb{R}: f^{(n)}$$
 непр. на $E\}$

$$C(E) = функции, непр. на E$$

$$C^{\infty}(E)$$
:

$$C(E) \stackrel{\checkmark}{\underset{\neq}{\supset}} C^1(E) \stackrel{\searrow}{\underset{\neq}{\supset}} C^2(E) \stackrel{\searrow}{\underset{\neq}{\supset}} \dots$$

Наблюдение.
$$P(x)$$
 — многочлен степени n Пусть \vdots \vdots $P^{(a)=C_0}$ $P'(a)=C_n$ \vdots $P(x)=\alpha_0+\alpha_1(x-a)+\alpha_2(x-a)^2+\ldots+\alpha_n(x-a)^N$ $P(a)=\alpha_0=C_0$ $P'(x)=\alpha_1+2\alpha_2(x-a)+\ldots+n\alpha_n(x-a)^{n-1}$ $P'(a)=\alpha_1=C_1$ $P''(x)=2\alpha_2+6\alpha_3(x-a)+\ldots+n(n-1)\alpha_n(x-a)^{n-2}$ $P''(a)=2\alpha_2$ \vdots $P^{(n)}(a)=n(n-1)(n-2)\ldots 2\cdot 1\cdot \alpha_n$ $P(x)=C_0+\frac{C_1}{1!}(x-a)+\frac{C_2}{2!}(x-a)^2+\ldots+\frac{C_n}{n!}(x-a)^n$ $P(x)=P(a)+\frac{P'(a)}{1!}(x-a)+\ldots+\frac{P^{(n)}(a)}{n!}(x-a)^n$

Определение. Многочленом Тейлора n-той степени (noряdкa) функции f в точке a называется:

$$T_n(f,a)(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$