MCNT1D

Monte Carlo Neutron Transport, one Dimension

工物系 李锦

Department of Engineering Physics, Tsinghua University

CONTENT

PART 01

PART 02

PART 03

PART 04

项目简介

设计思路

功能实现

实例演示

项目简介

蒙特卡洛方法简介

蒙特卡洛,摩纳哥著名赌城。

蒙卡方法 (Monte Carlo Methods)

are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results.

——From Wikipedia

简言之: 重复抽样获得数值解。

优点:

- ✓ 简单直观,易于理解
- ✓ 应用广泛
- ✓ 收敛速度与问题维数无关
- ✓ 分布式计算易于并行

缺点:

- 精度有限
- 计算量大,耗时严重
- 。 内存消耗严重
- 难以改进

蒙卡方法计算圆周率示意图

n=30000时, $\pi \approx 3.1424$,误差0.07%

蒙卡方法 (Monte Carlo Methods)

20世纪40年代由"曼哈顿计划"成员S.M.乌拉姆和J.冯·诺伊曼首先提出。 但在反应堆工程领域,直到90年代蒙卡方法才被大规模应用。

蒙卡方法 与 核工程

- 消耗计算资源严重 (每次上万核时)
- 通常应用于超级计算机 (天河2号, 太湖之光)
- ✓ 适用于复杂几何
- ✓ 精度高于确定论方法

芬兰VTT技术研究中心

REAL

清华大学核能所

Serpent

By VTT Technology Research Center of Finland

RMC

By Reactor Engineering Analysis Lab (REAL)

设计思路

中子输运一维多群问题

MCNT1D

Monte Carlo Neutron Transport, one dimension, multigroup

- ▶ 只关心中子在一个维度(x方向)上的分布与通量
- ▶ 只考虑中子飞行方向与x方向的夹角
- > 考虑多能群

虽然仅模拟一维,但仍有不少应用

- ✓ 燃料棒模拟 (直径约1cm, 长度约1m)
- ✓ 屏蔽层模拟

抽样

初始位置

飞行方向(方向角余弦)

飞行距离(指数分布的抽样)

碰撞类型(散射?吸收?裂变?)

.

几何

大寸

边界条件(全反射?漫反射?吸收?)

网格划分(均匀?不均匀?网格大小?)

栅元材料(密度?核反应截面?)

• • • • • •

输运

碰撞的处理 分群输运(内迭代)

中子源存储

统计量的计算 (Keff, 通量)

源迭代与收敛判据(外迭代)

.

类设计

Design of the Classes

粒子模块

电子类 (class electron)

增加: double类型私有数据成员energy

反应: 产生、散射

统计量: 通量

光子类 (class photon)

增加: double类型私有数据成员energy

photonType类型私有数据成员type

typedef enum {X, gamma} photonType;

反应:产生、吸收、散射

统计量: 通量

中子类 (class neutron)

增加: int类型私有数据成员group

反应: 裂变、散射、吸收

统计量: 有效增殖系数、功率

材料

material

+nuSigmaF: vector < double >

+sigmaT: vector<double>

+sigmaS: vector<vector<double>> +yield: vector<vector<double>>

+material()

栅元

cell

+left: double +right: double

+mat: material

+cell()

几何

-leftCondition: boundaryCondition

-cellNumber: int

geometry

+geometryCell:

-left: double -right: double

vector<cell>

+geometry()

+getMaterial: material

+getCellID(): int

+ifCrossBoundary: bool

+ifBeyondBoundary():bcol

+setCrossBoundaryCondition():

void

几何模块

材料类 (class material)

一维向量: 裂变截面

一维向量: 总截面

二维向量: 散射截面

二维向量: 裂变产额

栅元类 (class cell)

左右边界位置

材料

几何类 (class geometry)

左右边界位置,边界条件

栅元数

栅元向量: vector<cell>geometryCell

定位栅元: getCellID()

是否穿越栅元边界

是否飞出几何边界

设置边界条件

输入文件

//MCNT1D测试输入文件 //一维两群带反射层核燃料增殖泄露计算 //material模块和cell模块务必按顺序,其他模块不必按顺序 //模块间用空行隔开

Start_CalculationCondition //开始定义计算条件 CellNumber 160 //栅元数为160

GroupNumber 2 //两群

MaterialNumber 2 RepetitiveNumber 4 End_CalculationCondition

纯文本输入文件

▶所有计算条件均在输入文件中定义

▶可以使用"//"注释

▶大小写不敏感

▶程序使用命令行参数运行

Start_Material //开始定义材料,材料号应连续,各截面定义无顺序,截面数据按群号顺序 Material 1 NuSigmaF 0.00569 0.104865 SigmaT 0.0248 0.0786 SigmaS 0 0.0155 0 0 Yield 1 0 1 0 Material 2 NuSigmaF 0 0 SigmaT 0.0308 0.0275 SigmaS 0 0.0288 0 0 Yield 0 0 0 0 End_Material

Start_Cell //开始定义重复栅元

RepetitiveCell 1 30 1 material 2 //1到30号栅元,宽1cm,全部填充为材料2

RepetitiveCell 31 80 1 material 1 RepetitiveCell 81 130 1 material 1 RepetitiveCell 131 160 1 material 2

End_Cell

Start_CalculationParameter //开始定义计算参数

Neutron 1000 100 10 //1000个源中子,总迭代次数100,10非活跃代

Weight 1000 WeightMin 0.1 WeightMax 1

BoundaryCondition 0 0 //边界条件全吸收

End_CalculationParameter

自定义字符串

输入输出

iLine

-_aLine_: string

+iLine()

+str(): string

+lineLength(): unsigned

+isThere(): bool

+isEmpty: bool

+wherels(): unsigned

+countWords(): unsigned

+before(): string +after(): string

+operator[]:string

<<friend>>+operator<<: ostream

Matlab引擎

iMatlab

-matlabEng: engine-matlabCmd: string

+iMatlab() +run(): bool

+open(): bool

+close(): void

异常处理

mcException

-message: string

+mcException()

+~mcException()

<<const>>+getMessage():&

String

iLine类

继承自字符串类,以单词为单位

操纵一行文本中的单词方便快捷

功能: 查询指定单词位置

查询单词个数

查询是否为空

在指定位置截取子串

重载下标运算符[]

重载流插入运算符<<

iMatlab类

封装了Matlab计算和绘图引擎

直接计算关心的统计量并可视化显示

使用: 需在系统下配置环境变量

#include "engine.h"

#pragma comment (lib,"libmat.lib")

#pragma comment (lib,"libeng.lib")

#pragma comment (lib,"libmx.lib")

异常处理

部分异常处理由mcException类处理

部分异常直接用选择分支处理

主要异常: 文件创建与打开

输入文件语法检查

计算参数合理性

运行中的其他异常

功能实现

读取 输入文件

iLine类

iLine translate(string)

- ✓ 将读入的文本转为iLine对象
- ✓ 去除注释,全部转为小写
- ✓ 判断单词个数,识别关键字

map容器

template<typename T>

pair<string, T> getCalculationCondition(iLine)

- ✓ 字符串-数值转换 (stringstream)
- ✓ 关键字-数值配对
- ✓ 键-值查找并初始化计算参数

蒙卡 输运模拟

Algorithm Flowchart

实例演示

END THANKYOU!

PRESENTED BY LI JIN