

# Análise de Componentes Principais (PCA)

Lailson B. Moraes, George D. C. Cavalcanti {lbm4,gdcc}@cin.ufpe.br



# Roteiro

- Introdução
- Características
- Definição
- Algoritmo
- Exemplo
- Aplicações
- Vantagens e Desvantagens



# Introdução (1/4)

### PRINCIPAL COMPONENT ANALYSIS (PCA)

Técnica de análise estatística usada para compressão, visualização e classificação de dados

A ideia central é reduzir a dimensionalidade de um conjunto de dados com o mínimo de perda de informação



# Introdução (2/4)

- Proposta em 1901 por Karl Pearson
  - E posteriormente por Hotelling (1933) e Loève (1963)
  - Também conhecida como Transformação de Hotelling ou Transformação de Karhunen-Loève
- Nasceu no campo da estatística
- Popularizada na década de 60
  - Até hoje bastante usada



# Introdução (3/4)

### **OBJETIVO DO PCA**

Encontrar um novo conjunto de variáveis menor que o conjunto original que preserve a maior parte da informação presente nos dados

Informação diz respeito à variação presente na base de dados INFORMAÇÃO = VARIÂNCIA



# Introdução (4/4)



variáveis correlacionadas, com redundância



transformação linear



variáveis independentes, sem redundância

Em geral, há perda de informação no processo



# Características (1/3)

- Elimina redundância entre os dados
  - Variáveis que medem o mesmo evento
  - Variáveis dependentes
- Análise feita a partir da matriz de covariância dos dados







# Características (2/3)

- Re-expressa os dados em um novo espaço
  - Cada eixo representa um componente principal
  - Novos eixos produzidos por combinações lineares dos eixos originais
  - Eixos selecionados conforme sua variância



# Características (3/3)

Quantidade de componentes principais



Quantidade de variáveis originais

- Maior parte da informação concentra-se em poucos componentes
- Geralmente, obtém-se boa representação em baixa dimensão



# Um pouco de estatística (1/4)

Dada uma matriz de dados X, composta por n vetores-coluna com m atributos

# $\begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \cdots & a_{nm} \end{pmatrix}$ $\mathbf{X}_{1} \quad \mathbf{X}_{2} \quad \mathbf{X}_{n}$

### Média

Vetor-coluna com o valor médio para cada atributo

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_{i} = \begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} a_{i1} \\ \frac{1}{n} \sum_{i=1}^{n} a_{i2} \\ \vdots \\ \frac{1}{n} \sum_{i=1}^{n} a_{im} \end{bmatrix}$$



# Um pouco de estatística (2/4)

Dada uma matriz de dados X, composta por n vetores-coluna com m atributos



### Variância

Vetor-coluna com a dispersão de cada atributo

$$var(X) = s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{X})^2}{n-1}$$



# Um pouco de estatística (3/4)

Dada uma matriz de dados X, composta por n vetores-coluna com m atributos



### Covariância

Mede a correlação entre dois atributos. Se eles são linearmente independentes, sua covariância é nula.

$$cov(m_j, m_k) = \mathbf{s}_{jk}^2 = \frac{\sum_{i=1}^n (a_{ij} - \overline{a_j})(a_{ik} - \overline{a_k})}{n-1}$$



# Um pouco de estatística (4/4)

Dada uma matriz de dados X, composta por n vetores-coluna com m atributos



### Matriz de covariância

Matriz simétrica quadrada (m, m) das covariâncias

$$\mathbf{C} = \begin{pmatrix} \text{cov}(m_{1}, m_{1}) & \text{cov}(m_{2}, m_{1}) & \cdots & \text{cov}(m_{m}, m_{1}) \\ \text{cov}(m_{1}, m_{2}) & \text{cov}(m_{2}, m_{2}) & \cdots & \text{cov}(m_{m}, m_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \text{cov}(m_{1}, m_{m}) & \text{cov}(m_{2}, m_{m}) & \cdots & \text{cov}(m_{m}, m_{m}) \end{pmatrix}$$



# Definição (1/3)

Seja p um vetor-coluna (m, 1) A projeção de X na direção p é dada por  $\hat{X} = p^T X$ 

### **OBJETIVO DO PCA**

Encontrar o vetor **p** que maximiza a variância de X

$$\mathbf{p}_1 = \underset{||p||=1}{\operatorname{argmax}} \left[ \operatorname{var}(\mathbf{p}^T \mathbf{X}) \right]$$



# Definição (2/3)

### **OBJETIVO DO PCA**

Encontrar o vetor **p** que maximiza a variância de X

$$\mathbf{p}_1 = \underset{\|p\|=1}{\operatorname{argmax}} \left[ \operatorname{var}(\mathbf{p}^T \mathbf{X}) \right]$$

$$Sp_1 = \alpha p_1$$

 $\Leftrightarrow$ 

 $p_1$  é um autovetor de S  $\alpha$  é um autovalor de S



# Definição (3/3)

Diz-se que  $p_1$  é um componente principal (PC) de XOs demais podem ser calculados de forma semelhante

$$\mathbf{p}_{2} = \underset{\|p\|=1}{\operatorname{arg\,max}} \left[ \operatorname{var}(\mathbf{p}^{T} \hat{\mathbf{X}}_{1}) \right]$$

$$\vdots$$

$$\mathbf{p}_{m} = \underset{\|p\|=1}{\operatorname{arg\,max}} \left[ \operatorname{var}(\mathbf{p}^{T} \hat{\mathbf{X}}_{m-1}) \right]$$

Contanto que p<sub>1</sub>, p<sub>2</sub>, ..., p<sub>m</sub> sejam ortogonais entre si

# Algoritmo

1 Obter a média e centralizar os dados

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$
  $X' = X - \overline{X}$ 

Calcular a matriz de covariância

$$C = \frac{X'X'^{T}}{n-1}$$

3 Decompor a matriz de covariância em autovalores e autovetores

$$C = PDP^T$$

P autovetores

Montar a matriz de projeção com os k autovetores correspondentes ao k maiores autovalores

$$\mathbf{P} = \begin{pmatrix} p_{11} & p_{21} & \cdots & p_{n1} \\ p_{12} & p_{22} & \cdots & p_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ p_{1m} & p_{2m} & \cdots & p_{km} \end{pmatrix}$$

Projetar os dados originais no novo espaço de *k* dimensões

$$\hat{X} = P^T X'$$



# **Exemplo** (1/4)

### **TOY PROBLEM**

|     | 2.8811<br>-0.8295  | 3.8030<br>5.7179   | 3.6851<br>6.8797   | -0.6650<br>6.6415  | -0.7844<br>2.8888  |
|-----|--------------------|--------------------|--------------------|--------------------|--------------------|
| X = | 5.5984<br>4.5474   | 4.0082<br>3.4669   | 11.3941<br>9.8442  | 12.8090<br>11.8284 | 6.8662<br>13.1371  |
|     | 13.0082<br>10.5828 | 14.9611<br>11.9887 | 12.9753<br>8.4888  | 16.8402<br>16.9971 | 18.4373<br>13.5039 |
|     | 15.4916<br>12.0567 | 18.2839<br>19.9965 | 17.7676<br>19.6259 | 13.2586<br>21.8249 | 18.4653<br>16.8495 |
|     | 21.4630<br>21.7323 | 21.2120<br>22.6428 | 20.7231<br>18.2281 | 27.3713<br>22.0732 | 27.2953<br>21.7529 |
|     | 28.4909<br>27.1667 | 24.7253<br>23.8338 | 27.9318<br>30.9620 | 31.7255<br>31.2658 | 33.3350<br>27.9003 |
|     | 31.6846<br>29.9790 | 28.0678<br>32.9481 | 33.5385<br>35.3437 | 28.7205<br>34.0963 | 33.0673<br>34.7474 |
|     | 36.6693<br>33.2604 | 40.3373<br>35.5642 | 40.1095<br>39.1380 | 37.8455<br>41.8441 | 41.5675<br>41.2086 |
|     |                    |                    | 2×40               |                    |                    |





-21.2891 -21.4086

-17.6543

-13.9016

# Exemplo (2/4)

### **TOY PROBLEM**

Obter a média e centralizar os dados

-17.7430 -16.8212 -16.9390

-14.8253

-13.6634

-21.3726

# **Exemplo** (3/4)

### **TOY PROBLEM**

2 Calcular a matriz de covariância

$$cov(X) = \begin{pmatrix} 147.0276 & 136.6466 \\ 136.6466 & 139.4326 \end{pmatrix}$$

Oecompor a matriz de covariância em autovalores e autovetores

$$D = \begin{pmatrix} 6.5307 & 0 \\ 0 & 279.9294 \end{pmatrix} \qquad P = \begin{pmatrix} 0.6972 & -0.7169 \\ -0.7169 & -0.6972 \end{pmatrix}$$

Montar a matriz de projeção com os k autovetores dos k maiores autovalores

$$D = \begin{bmatrix} 279.9294 & 6.5307 \end{bmatrix}$$

$$\mathbf{P} = \left( \begin{array}{ccc} -0.7169 & 0.6972 \\ -0.6972 & -0.7169 \end{array} \right)$$



# Exemplo (4/4)

### **TOY PROBLEM**

lacktriangle Projetar os dados originais no novo espaço de k dimensões





# Aplicação (1/6)

# CLASSIFICAÇÃO POR RECONSTRUÇÃO

Malagón-Borja and Fuentes. *Object detection using image reconstruction with PCA*. Image and Vision Computing (2009) vol. 27 (1-2) pp. 2-9.



Available online at www.sciencedirect.com

ScienceDirect

Image and Vision Computing 27 (2009) 2-9



Object detection using image reconstruction with PCA

Luis Malagón-Borja <sup>a</sup>, Olac Fuentes <sup>b,\*</sup>

<sup>a</sup> Computer Science Department, I.N.A.O.E., Tonantzintla, Puebla 72840, Mexico
<sup>b</sup> Computer Science Department, University of Texas at El Paso, El Paso, TX 79968, USA

Received 25 January 2006; received in revised form 8 November 2006; accepted 5 March 2007



# Aplicação (2/6)

### IDEIA CENTRAL

# Usar erros de reconstrução para classificação

- A Projeção de um vetor
- B Reconstrução de um vetor
- © Erro de reconstrução

$$\hat{\mathbf{x}} = \mathbf{P}^{\mathsf{T}} \mathbf{x}$$

$$\tilde{x} = P\hat{x}$$

$$\varepsilon = \|\mathbf{x} - \tilde{\mathbf{x}}\|$$

m dimensões  $\rightarrow k$  dimensões

k dimensões  $\rightarrow m$  dimensões

- Cada reconstrução tem um erro associado
- PCA garante erro quadrático médio mínimo



# Aplicação (3/6)

### **IDEIA CENTRAL**

# Usar erros de reconstrução para classificação

| $\mathbf{P}_{gp}$ | $\mathbf{P}_{gn}$ | $P_{\!\scriptscriptstyle{\mathrm{e}p}}$ | $P_{en}$      |
|-------------------|-------------------|-----------------------------------------|---------------|
| pedestres         | não-pedestres     | pedestres                               | não-pedestres |
| escala de cinza   | escala de cinza   | bordas                                  | bordas        |

- PCA captura um padrão a partir das amostras
- Erros menores para imagens de pedestres nas reconstruções de  $P_{gp}$  e  $P_{ep}$



# Aplicação (4/6)



## Imagens de borda diminuem a variabilidade

- Eliminação de cor e textura
- Filtro de Sobel



# Aplicação (5/6)

Original + Bordas

 ${f P}_{gp}$   ${f P}_{ep}$ 

 $P_{qn}$   $P_{er}$ 



# Aplicação (6/6)

- Obtenha as bordas e da imagem g
- 2 Calcule quatro reconstruções

$$\tilde{\mathbf{u}}_{gp} = \mathbf{P}_{gp} \mathbf{P}_{gp}^{\mathsf{T}} (\mathbf{g} - \mu_{gp}) + \mu_{gp}$$

$$\tilde{\mathbf{u}}_{ep} = \mathbf{P}_{ep} \mathbf{P}_{ep}^{\mathsf{T}} (\mathbf{e} - \mu_{ep}) + \mu_{ep}$$

$$\tilde{\mathbf{u}}_{gn} = \mathbf{P}_{gn} \mathbf{P}_{gn}^{\mathsf{T}} (\mathbf{g} - \mu_{gn}) + \mu_{gn}$$

$$\tilde{\mathbf{u}}_{\mathsf{e}\mathsf{n}} = \mathbf{P}_{\mathsf{e}\mathsf{n}} \mathbf{P}_{\mathsf{e}\mathsf{n}}^{\mathsf{T}} (\mathbf{e} - \mu_{\mathsf{e}\mathsf{n}}) + \mu_{\mathsf{e}\mathsf{n}}$$

3 Compute os erros de reconstrução

$$d_{gp} = \left| \tilde{\mathbf{u}}_{gp} - \mathbf{g} \right|$$
  $d_{ep} = \left| \tilde{\mathbf{u}}_{ep} - \mathbf{e} \right|$   $d_{an} = \left| \tilde{\mathbf{u}}_{an} - \mathbf{g} \right|$   $d_{en} = \left| \tilde{\mathbf{u}}_{en} - \mathbf{e} \right|$ 

Calcule o erro total dt

$$d_{\rm t} = d_{\rm gn} + d_{\rm en} - d_{\rm gp} - d_{\rm ep}$$

Classifique usando a regra

$$classe(g) = \begin{cases} Pedestre & d_t \ge 0 \\ N\~{a}o-pedestre & d_t < 0 \end{cases}$$



# **Outras Aplicações**

- Reconhecimento de faces
- Detecção de faces
- Reconstrução de imagens
- Compressão de dados
- Visualização de dados multidimensionais



# Vantagens

- Alto poder de representação
- Técnica puramente estatística
- Robusta e largamente utilizada e estudada
  - Possui muitas adaptações
- Redução no custo de armazenamento
- Fácil implementação



# Desvantagens (1/2)

- Limitação na distribuição dos dados
- Nem sempre é fácil determinar o valor de k



# Desvantagens (2/2)

- Não considera as classes das amostras
  - Não é ótima para classificação





# Referências

- [Moraes 2010] B. de Moraes, Lailson. (2010). Erro Ponderado de Reconstrução com PCA para Detecção de Pedestres em Imagens. Centro de Informática, UFPE.
- **[Shlens 2005]** Shlens, J. (2005). *A tutorial on principal component analysis*. Systems Neurobiology Laboratory, University of California at San Diego.
- [Malagón-Borja 2009] Malagón-Borja, Luis; Fuentes, Olac. (2009). Object detection using image reconstruction with PCA. Image and Vision Computing, 27:2-9.
- Implementação do PCA usando Matlab. <a href="https://gist.github.com/918714">https://gist.github.com/918714</a>



