Homework 10: Maximum Flow and Minimum Cut

1. Consider the following flow network.

The following graph shows a maximum flow \bar{f} in the network.

5+2+3 = 10 because those are the inputs to t

(a) Give the value of the maximum flow \bar{f} .

$$v(f)$$
: 10

(b) Draw the residual graph with respect to the flow \bar{f} .

(c) Use the residual graph to identify the minimum cut (A^*,B^*) in the graph.

(d) Give the capacity of the minimum cut (A^*,B^*) .

$$5 + 2 + 3 = 10$$

$$c(A^*,B^*)$$
: 10

2. Consider the following flow network.

(a) There are 6 possible *s-t*-cuts in the graph. Compute the capacities of each one of the cuts and fill in the last column of the table.

	Cut	A	В	c(A,B)
15+ 6 = 21	1	{s}	{a,b,c,t}	21
8 + 15 + 5 + 2 = 30	2	{s,a}	{ <i>b,c,t</i> }	30
7 + 6 = 13	3	{s,b}	{ <i>a,c,t</i> }	13
5+7+2 = 14	4	{s,a,b}	{ <i>c</i> , <i>t</i> }	14
6+15+5 = 26	5	{s,b,c}	{ <i>a</i> , <i>t</i> }	26
15+5 = 20	6	{ <i>s,a,b,c</i> }	{ <i>t</i> }	20

(b) Use the table to identify the minimum cut (A^*,B^*) in the graph.

(c) Use the minimum cut to identify a maximum flow \bar{f} . Draw the graph showing the maximum flow \bar{f} .

(d) Draw the residual graph $G_{\bar{f}}$ associated with the maximum flow.

Blue: Forwards Edges Orange: Backwards Edges

3. Consider the following flow network.

The following graph shows a flow f in the network.

(a) Draw the residual graph with respect to the flow f.

8

Blue: Forwards Edges

(b) Find all *s-t*-paths in the residual graph and the bottleneck value for each one of them.

s-t-path	nodes	bottleneck
1	s, a, d, b, t	4
2	s, c, d, b, t	2

3	s, a, c, d, b,t	2

(c) Continue the Ford-Fulkerson algorithm to find the maximum flow \bar{f} . Draw the graph showing the maximum flow \bar{f} .

(d) Use the maximum flow to identify the minimum cut (A^*,B^*) in the graph.

$$B^*:\{a, b, d,t\}$$

Min Cut =
$$12 + 4 = 16$$

Hand in your solution on HuskyCT, in pdf format, no later than December 1 at 11:59 PM.