

# AutoLight App

loT Project

Stefano Petrocchi



### Architecture



Home automation application for smart lighting management: smart devices are connected by **multi-hop RPL protocol** with a border router that interfaces them

with a cloud application via CoAP

#### **Devices:**

- ☐ Cloud App
- ☐ Border Router
- ☐ Smart Bulbs
- ☐ Presence Sensors
- ☐ Luminosity Sensors







To interact with the application, the devices must first register:

- The java application includes a CoAP server with a known IP address and /register resource
- 2. At startup, each smart device, after connecting to the network, sends a CoAP PUT\* message as client to /register resource, inserting DEVICE\_TYPE@IP in the payload
- 3. The application receives the message, handles it by creating an appropriate data structure to represent the device according to the *type*, stores the *IP* and sends a CHANGED response code if the operation is successful
- 4. The smart device attempts registration until success



### **Functionalities**



After smart devices **registration**, the following modes are available:

- Manual Mode:
  - Change bulb luminosity
  - Set all bulbs luminosity
  - Switch bulb on/off
  - Switch all bulbs on/off
- Auto Mode:
  - Eco mode: The lights turn on only if someone is present inside the room
  - Constant room luminosity: The luminosity inside the room is kept constant at the preferred value regardless of external luminosity





Java application that manages the smart home's operations and provides the user with a command line interface

#### Available commands:

- !exit!!quit :to exit
- ! reg : lists all registered devices
- !info : refresh and shows bulbs info
- !mode [manuallauto] : to pass to manual/automatic mode
- !des\_lum [value] :to set desired luminosity value
- !sw [Bulb ID] [ONIOFF] : to switch bulb on or off
- !sw ALL [ONIOFF]: to switch all bulbs on or off
- !lum [Bulb ID] [+I-] [value] :increase/decrease bulb luminosity value
- !lum [Bulb ID] [value] : set bulb luminosity value
- !lum [ALL] [value] : set all bulbs luminosity value

#### CoAP Resource:

- •/register:
  - **GET:** get registered devices count
  - **PUT:** performs the device registration operation

Smart Devices Interactions: all interactions with devices are managed asynchronously via CoAP





Smart dimmable light with intensity ranging from 0% to 100%

#### LEDs:

- YELLOW: The device is not yet connected to the network
- GREEN: The light is turned ON and the device connected to the network
- RED: The light is turned OFF and device connected to the network

Button: toggle light ON <-> OFF

#### **CoAP Resources:**

- |-/luminosity:
  - **GET:** get current luminosity value
  - **POST:** increase (+) or decrease (-) luminosity value
  - **PUT** (lum): set luminosity value
- -/switch:
  - **GET:** get the current state (ON/OFF)
  - **POST:** toggle light ON <-> OFF
  - **PUT:** set light ON or OFF





Presence sensor that simulates the presence or absence of someone inside the room

#### LEDs:

- YELLOW: The device is not yet connected to the network
- RED: Presence detected inside the room
- OFF: Nobody present inside the room

Random Presence Simulation: Every random seconds toggle presence status

#### CoAP Observable Resource:

- •/presence:
  - GET: get current presence value (T/F)
  - EVENT: Notify observers of the presence's status change



## **Luminosity Sensor**



Luminosity sensor that simulates the luminosity value in the room by adding the external Luminosity to that of the smart bulbs

#### LEDs:

- YELLOW: The device is not yet connected to the network
- OFF: The sensor is connected to the network

Random External Luminosity Cycle: Every random seconds increase external luminosity by [1,10]%, when it reaches 100%, every random seconds decrease external luminosity by [1,10]%, when it reaches 0% it resumes the cycle

#### CoAP Observable Resource:

- -/luminosity:
  - **GET:** get current luminosity value in the room
  - **PUT:** set bulbs mean luminosity value to simulate sensor perception
  - **EVENT:** Notify observers of the change in luminosity





This mode turns on smart bulbs only when needed:

- During presence sensor's registration, cloud application immediately starts to observe its /presence resource
- 2. If the sensor status changes, the application is notified with the new status
- 3. The application performs a PUT on the resource /switch of each smart bulb registered with it, indicating the new status
- 4. If the PUT is successful, the smart bulbs respond with their new status, in order to update the app values







#### This mode keeps the luminosity in the room constant:

- During luminosity sensor's registration, cloud application immediately starts to observe its /luminosity resource
- 2. If the sensor status changes, the application is notified with the new status
- 3. The application calculates the new bulbs' luminosity to keep that of the room constant, after which it performs a PUT towards the /luminosity resource of all the smart bulbs indicating the new value
- 4. If the PUT is successful, the smart bulbs respond with their new luminosity value, in order to update the app values
- 5. In parallel, the application performs a PUT on the sensor /luminosity resource to allow it to distinguish between natural light and that generated by smart bulbs (coherence mechanism)



## **Luminosity Coherence Mechanism**



