Job No.: 511-5025142 - 1 **Address:** 3219 Arundel Rakaia Gorge Road, Cavendish, New **Date:** 18/09/2024

Zealand

Latitude: -43.720174 **Longitude:** 171.387041 **Elevation:** 365.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N4	Ground Snow Load	1.68 KPa	Roof Snow Load	1.06 KPa
Earthquake Zone	2	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	5.3 m
Wind Region	NZ2	Terrain Category	2.09	Design Wind Speed	50.1 m/s
Wind Pressure	1.51 KPa	Lee Zone	YES	Ultimate Snow ARI	50 Years
Wind Category	extra High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 6.05 m Cpe = -0.9 pe = -1.22 KPa pnet = -1.22 KPa

For roof CP,e from 6.05 m To 12.10 m Cpe = -0.5 pe = -0.68 KPa pnet = -0.68 KPa

For wall Windward $Cp_i = -0.3$ side Wall $Cp_i = -0.3$

For wall Windward and Leeward CP,e from 0 m To 11.50 m Cpe = 0.7 pe = 0.95 KPa pnet = 1.40 KPa

For side wall $\,$ CP,e $\,$ from 0 m $\,$ To 6.05 m $\,$ Cpe = $\,$ pe = -0.88 $\,$ KPa $\,$ pnet = -0.88 $\,$ KPa

Maximum Upward pressure used in roof member Design = 1.22 KPa

Maximum Downward pressure used in roof member Design = $0.59\ KPa$

Maximum Wall pressure used in Design = 1.40 KPa

Maximum Racking pressure used in Design = 1.36 KPa

Design Summary

Girt Design Front and Back

Girt's Spacing = 1 mm Girt's Span = 2667 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.83 S1 Downward = 9.63 S1 Upward = 16.58

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.00 Kn-m	Capacity	1.75 Kn-m	Passing Percentage	Infinity %
V _{0.9D-WnUp}	0.00 Kn	Capacity	12.06 Kn	Passing Percentage	Infinity %

Deflections

Second page

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 0.02 mm

Limit by Woolcock et al, 1999 Span/100 = 26.66 mm

Sag during installation = 3.07 mm

Reactions

Maximum = 0.00 kn

Girt Design Sides

Girt's Spacing = 0 mm

Girt's Span = 2875 mm

Try Girt SG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = NaN

K8 Upward =NaN S1 Downward =NaN S1 Upward =NaN

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mw $_{ind+Snow}$ 0.00 Kn-m Capacity NaN Kn-m Passing Percentage NaN % V0.9D-WnUp 0.00 Kn Capacity 0.00 Kn Passing Percentage NaN %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = NaN mm

Limit by Woolcock et al. 1999 Span/100 = 28.75 mm

Sag during installation = NaN mm

Reactions

Maximum = 0.00 kn

Middle Pole Design

Geometry

300 SED H5 (Minimum 325 dia. at Floor Level) Dry Use 6500 mm Height 76660 mm2 57495.1171875 mm2 Area As 467896461 mm4 2994537 mm3 ZxIx 467896461 mm4 Zx 2994537 mm3 Iy

Lateral Restraint 6500 mm c/c

Loads

Total Area over Pole = 30.66475 m²

Dead 7.67 Kn Live 7.67 Kn 32.50 Kn Wind Down 18.09 Kn Snow Moment wind 38.10 Kn-m Moment snow 11.84 Kn-m Phi 0.8 K8 0.63 K1 snow 0.8 K1 Dead 0.6 K1wind 1

3/5

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	696.74 Kn	PhiMnx Wind	54.89 Kn-m	PhiVnx Wind	136.15 Kn
PhiNcx Dead	418.04 Kn	PhiMnx Dead	32.93 Kn-m	PhiVnx Dead	81.69 Kn
PhiNex Snow	557.39 Kn	PhiMnx Snow	43.91 Kn-m	PhiVnx Snow	108.92 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.77 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.56 < 1 OK$

Deflection at top under service lateral loads = 42.58 mm < 65.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
77.0	(1 : (20)) / (1 : : (20))				

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 0.6 mm	Pile Diameter
--------------	---------------

L = 2300 mm Pile embedment length

f1 = 3975 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind =	38.10 Kn-m	Moment Snow =	Kn-m
Shear Wind =	9.59 Kn	Shear Snow =	11.84 Kn

Pile Properties

Safety Factory 0.55

Hu = 17.28 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 41.57 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.92 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2300) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2300)

Skin Friction = 42.72 Kn

Weight of Pile + Pile Skin Friction = 46.20 Kn

Uplift on one Pile = 30.51 Kn

Uplift is ok