Digitaltechnik Kapitel 1, Einführung

Prof. Dr.-Ing. M. Winzker

Nutzung nur für Studierende der Hochschule Bonn-Rhein-Sieg gestattet. (Stand: 20.03.2019)

1.1 Kurzübersicht zur Digitaltechnik

Für eine konventionelle Digitalschaltung gilt (leicht vereinfacht):

- Digitalschaltungen verarbeiten Binärdaten mit den Zuständen 0 und 1
- Diese Binärdaten werden durch elektrische Spannungen dargestellt
- Ein niedriger Spannungspegel entspricht üblicherweise dem Wert 0, ein hoher Spannungspegel dem Wert 1
 - Es werden auch die Begriffe L für 0 (Low) und H für 1 (High) verwendet
 - L und H werden insbesondere verwendet, wenn man ausdrücken möchte, dass es sich um keine abstrakten Daten sondern um reale Spannungspegel handelt
- Niedriger und hoher Spannungspegel sind stets Spannungswertebereiche

(Genaue Spannungswerte wären ohnehin nicht exakt einzuhalten)

 Zwischen den Wertebereichen ist ein Übergangsbereich, in dem das Signal undefiniert ist

Physikalische Darstellung von Daten

Es existieren (aus gutem Grund) verschiedene Standards für die Bereiche der Pegel

- Die Bereiche für L-Pegel und H-Pegel sind meist unterschiedlich groß
- Der Übergangsbereich ist teilweise größer als die Bereiche für die Pegel
- Die Spannung U_{I.min} ist oft, aber nicht immer etwa 0V
- Werte für die Spannungspegel finden sich in Standards und Datenblättern der Bauelemente; teilweise gibt es mehrere Varianten eines Standards
 - Eingangspegel geben an, wie eine Spannung interpretiert wird
 - Ausgangspegel sind die von den Bauelementen erzeugten Spannungspegel
- Einige Auswahl an typischen Werten für Eingangspegel:

Standard	TTL	CMOS	LVTTL	ECL
$U_{H,max}$	5 V	5 V	3,3 V	0 V
$U_{H,min}$	2,0 V	3,5 V	2,0 V	-1 V
U_L,max	0,8 V	1,5 V	0,8 V	-1,4 V
$U_{L,min}$	0 V	0 V	0 V	-5 V

Logikgatter

Durch Logikgatter werden Berechnungen durchgeführt

- Der Inverter ergibt am Ausgang das Gegenteil des Eingangs
 - ➤ 0 wird zu 1; 1 wird zu 0
- Das UND-Gatter ergibt 1, wenn alle Eingänge 1 sind
- Das **ODER-Gatter** ergibt 1, wenn mindestens ein Eingang 1 ist
 - > Auch für mehrere Eingänge 1 ist der Ausgang 1
- Das Exklusiv-Oder-Gatter, kurz XOR-Gatter, hat zwei Eingänge und ergibt 1, wenn genau ein Eingang 1 ist
 - > Sind beide Eingänge gleich 1, ist der Ausgang nicht 1, sondern 0

Flip-Flops

In **Flip-Flops**, kurz **FF**, werden Daten gespeichert

- Das am meisten verwendete Flip-Flop ist das **D-FF** (D-Flip-Flop)
 - Ein D-FF hat einen Dateneingang D und einen Takteingang C (auch CLK von "clock")
 - Wenn der Takteingang von 0 auf 1 geht (steigende Flanke), wird der Eingang D gespeichert und auf den Ausgang Q gegeben
 - Alle anderen Änderungen am Dateneingang D, vor und nach der steigenden Flanke, werden ignoriert

Beispiel: Einfacher Grafikcontroller

- Grafikcontroller für einfache Grafikanwendungen
 - Moderne PC-Grafikkarten sind sehr leistungsfähig, allerdings auch komplex
 - Die gezeigte Schaltung ist ein einfacher Controller für kleine LCD-Module
 - Auch PC-Grafikkarten der 1980er Jahre hatten ähnliches Konzept

Arbeitsweise

- Der Bildschirm setzt sich aus einzelnen Zeichen zusammen
- Hier gewählt:
 - Bildschirm 800 Bildpunkte breit, 600 Bildpunkte hoch
 - Jedes Zeichen 10 Bildpunkte breit, 15 Bildpunkte hoch
 - Also 40 Zeilen mit je 80 Zeichen
 - Darstellung mit 60 Hz: Ein Bild wird 60-mal je Sekunde dargestellt
- Fester Zeichensatz mit 128 Zeichen
 - Buchstaben in Klein- und Großschreibung
 - Ziffern, Sonderzeichen und Symbole
 - Zeichen können invertiert werden

Beispiel: Struktur des Grafikcontrollers

- Bildschirminhalt in einem RAM-Speicher ("Random Access Memory")
- Ein ROM ("Read-Only-Memory") enthält die 128 Zeichen
- Zwei Zähler für Zeile und Spalte geben nacheinander die Bildpunkte aus:
 - > Jeder Zähler hat wiederum zwei Teile:
 - Aktuelles Zeichen aus dem RAM
 - Einer von 10x15 Bildpunkten aus dem ROM
- Ein Bit des RAM kann Bildpunkt invertieren

Beispiel: Zähler im Grafikcontroller

- Teilschaltung: Einer der Zähler muss die aktuelle Spalte von 0 bis 9 durchzählen
- Zahl als Dualzahl mit 4 bit
- Schaltung erfordert 9 Gatter und 4 Flip-Flops

Arbeitsweise

- Der aktuelle Zählerstand Z wird in den vier Flip-Flops gespeichert
- Die Gatter berechnen den nächsten Zählerstand Z
- Bei der Taktflanke 0 → 1 wird der neue Zählerstand übernommen

Animation unter:

http://youtu.be/BA95ChcrZcU

1.2 Schaltungsrealisierung

Eine Digitalschaltung kann auf verschiedenen Weisen implementiert werden:

Diskreter Aufbau

 Integrierte Schaltungen mit einzelnen UND-, ODER-, EXOR-, Flip-Flop-Elementen werden durch Leitungen verschaltet

Standardbauelemente

Für häufig benötige Funktionen verfügbar (CPU, Speicher, LCD-Controller)

Kundenspezifische Schaltung

 Ein eigener Microchip (ASIC, engl.: "Application Specific Integrated Circuit") wird entworfen und hergestellt

Programmierbare Schaltung

- Auf einem integrierten Chip sind hunderte bis tausende UND-, ODER-, EXOR-, Flip-Flop-Elemente, die durch Programmierung verschaltet werden
- Bezeichnung: FPGA ("Field-Programmable-Gate-Array")

Vergleich Digitalschaltung und Mikrocontroller

- Eine Digitalschaltung kann mehrere Rechenelemente parallel betreiben
 - Dadurch hohe Rechenleistung möglich
- Computer und Mikrocontroller führen Verarbeitungen Schritt für Schritt aus
 - Sie sind natürlich selber eine Digitalschaltung
 - Parallelverarbeitung durch mehrere Cores und Spezialbefehle möglich

Beispiel: Der Maximalwert aus 8 Zahlen soll ermittelt werden

Mikrocontroller:

Schleife mit 7 Durchläufen, ca. 30 Takte

```
max = value(0);
for (i=1;i<8;i++) {
   if (value(i) > max) {
      max = value(i);
   }
}
```

Digitalschaltung:

Funktionsblöcke für Maximum zweier Werte, 1 Takt möglich

```
v(0) v(1) v(2) v(3) v(4) v(5) v(6) v(7)

max2 max2 max2

max2

max2

max2

max2
```

Programmierbare Schaltung - FPGA

Ein "Field-Programmable-Gate-Array" ist ein Mikrochip mit einer programmierbaren Digitalschaltung

- **Field-Programmable:** Im Einsatzfeld (auf der Platine) programmierbar
- Gate-Array: Feld von Gattern mit
 - mehrere tausend Logikfunktionen (wählbar als UND, ODER, EXOR, ...)
 - mehrere tausend Speicherelemente (Flip-Flops, FFs)
 - Verbindungsnetzwerk
- Funktion und Verdrahtung ist programmierbar (in blau)

Vor- und Nachteile:

- Leistungsfähigkeit fast wie ASIC
- Keine aufwändige Fertigung nötig
- Aber Stückpreis höher als ASIC

<u>Vereinfachte Darstellung:</u> Reale FPGAs enthalten wesentlich mehr Logikblöcke und Ein-/Ausgänge

Logikblöcke

- Logikblöcke eines FPGAs enthalten kombinatorische Logik sowie ein Flip-Flop (FF)
 - Bezeichnung: LE ("Logic Element")
- Die kombinatorische Logik ist als Look-Up-Table (LUT) aufgebaut
 - Eine LUT ist ein Speicher, in dem (hier) vier Eingänge den Ausgangswert, wie in einer Funktionstabelle auswählen
- Die Flip-Flops k\u00f6nnen die Ergebnisse der LUT speichern oder unabh\u00e4ngig benutzt werden

Zum Weiterlesen

- Aufbau der AVM FritzBox 7490 mit FPGA in c't 17/2016, Seite 162
- F. Schwiegelshohn et.al. "FPGA Based Traffic Sign Detection for Automotive Camera Systems," IEEE ReCoSoC, 2015.
- M. Park et.al. "Development of an Image Data Acquisition System Using A Multi-Function Front Camera for Automotive Applications", IEEE ISCE, 2015.

Beide IEEE-Artikel unter http://ieeexplore.ieee.org

1.3 Digitale und analoge Informationen

Analoge und digitale Größen sind physikalische Größen, die innerhalb eines Dynamikbereiches verschiedene Werte annehmen können

- Analoge Größen können (innerhalb des Dynamikbereiches) jeden beliebigen Wert annehmen
 - z.B.: Temperatur, elektrische Spannung
- **Digitale Größen** können (innerhalb des Dynamikbereiches) nur **bestimmte**, fest definierte Werte annehmen
 - z.B.: Tabellenplatz eines Fußballvereins

Wortbedeutung: Digital stammt vom lateinischen Wort "digitus", der Finger

Beispiel: "Analoges" und "digitales" Regal

Wert- und zeitdiskrete Größen

Digitale Größen sind üblicherweise sowohl wert- als auch zeitdiskret

 Das heißt, sie sind nur zu bestimmten Zeiten definiert und können nur bestimmte Werte annehmen

Vokabeln:

- Analog: wert- und zeitkontinuierlich
- Digital: wert- und/oder zeitdiskret
- Diskret: räumliche oder zeitliche Trennung von Objekten oder Ereignissen
- **Binär, dual:** zweiwertig, d.h. eine digitale Größe mit nur **zwei** Werten
 - Digitale Größen werden meist durch Binärzahlen dargestellt; darum wird "binär" manchmal (nicht ganz korrekt) für den Begriff "digital" verwendet

Digitalisierung

- Viele Information sind zunächst physikalische Werte und werden durch einen Sensor in analoge elektrische Signale gewandelt
- Für die digitale Verarbeitung und Übertragung werden die Daten digitalisiert

Kenngrößen der Digitalisierung, hier für Sprache und Musik

- Auflösung, also Anzahl an diskreten Werten des Signals
 - Die Auflösung wird meist in bit angegeben; n bit entsprechen 2^n Stufen
 - CDs speichern Audio-Signale mit 16 bit
 - ISDN-Telefonie verwendet nur 12 bit Auflösung
- Abtastfrequenz also die Anzahl an digitalen Werten je Sekunde
 - Das Abtasttheorem (Nyquist, Shannon) bestimmt die nötige Abtastrate
 - o Die Abtastfrequenz muss größer als die doppelte Frequenz des abgetasteten Signals sein
 - Da Töne vom Menschen bis knapp unter 20 kHz wahrgenommen werden können, wird als Abtastrate für CDs 44,1 kHz verwendet

Warum digital?

Nachteil:

 Bei der Analog-Digital-Wandlung gehen Informationen unwiederbringlich verloren

Vorteil:

- Der Informationsverlust ist **einmalig** und kann durch Wahl der Anzahl an diskreten Werten praktisch **beliebig klein** gehalten werden
- Digitale Informationen können verlustfrei übertragen und gespeichert werden
 - Rauschen kann, in gewissen Grenzen, komplett wieder entfernt werden (siehe Grafik)
- Informationen können digital meist einfacher und kostengünstiger verarbeitet und übertragen werden
 - Z.B.: Versand von Fotos per Email
 - Ausnahme: Sehr einfache Bearbeitung

Zeitdiskrete Signale

- Zeitdiskrete Signale sind nur zu bestimmten Zeitpunkten definiert
- Zu anderen Zeitpunkten sind die Signale undefiniert
 - Allerdings wird in manchen Darstellungen ein zeitkontinuierliches Signal eingezeichnet (z.B. auf der vorherigen Folie) oder von Messgeräten angezeigt (z.B. Digitalthermometer)
- Das zeitdiskrete Signal kann nach der Verarbeitung wieder in ein zeitkontinuierliches Signal gewandelt werden, meist durch:

Interpolation oder Filterung in einer Digital-Analog-Wandlung (z.B. Audio)

Halten des Ausgangssignals für einen Zeitraum (z.B. Video)

Stellen im Bereich Digitalschaltungen

Deutschlandweite Suche nach "FPGA" auf vier Jobportalen am 30.8.2016:

- http://www.monster.de/
- http://www.jobpilot.de/
- http://www.jobs.de/
- http://www.stepstone.de/

- → "387 Jobs gefunden"
- → 27 Seiten, 15 Angebote je Seite
- → "56 Fpga Stellenangebote und Karriere-Chancen"
- → "76 Treffer"

Nicht repräsentative Momentaufnahme

- Auch Abschlussarbeiten
- Teilweise Berufserfahrung gefragt
 - Dies kann allerdings verhandelbar sein
- Recherchieren Sie selbst ☺

Stellensuche "FPGA"

