Exercice 1:

BCPST-1

- 1. Soit $t \in [0,1]$. Pour tout réel x, on pose $f_t(x) = x + \frac{1}{2}(t x^2)$.

 Déterminer le tableau de variations de f_t et déterminer son ou ses points fixes sur l'intervalle [0,1].
- 2. Soit $t \in [0,1]$. On pose $(u_n(t))_{n \in \mathbb{N}}$ la suite définie par $u_0(t) = 0$ et :

$$\forall n \in \mathbb{N}, \ u_{n+1}(t) = u_n(t) + \frac{1}{2} \left(t - (u_n(t))^2 \right)$$

- (a) Calculer $u_1(t)$ et $u_2(t)$.
- (b) Etudier la monotonie de la suite $(u_n(t))_{n\in\mathbb{N}}$ et montrer qu'elle converge vers une limite qu'on exprimera en fonction de t.
- 3. (a) Montrer:

$$\forall n \in \mathbb{N}, \ \forall t \in [0,1], \ \sqrt{t} - u_{n+1}(t) = \left(\sqrt{t} - u_n(t)\right) \times \left(1 - \frac{\sqrt{t} + u_n(t)}{2}\right).$$

(b) En déduire:

$$\forall n \in \mathbb{N}, \ \forall t \in [0, 1], \ 0 \leqslant \sqrt{t} - u_n(t) \leqslant \frac{2\sqrt{t}}{2 + n\sqrt{t}}.$$

(c) En déduire :

$$\forall n \in \mathbb{N}, \ \forall t \in [0,1], \ 0 \leqslant \sqrt{t} - u_n(t) \leqslant \frac{2}{n}.$$

et retrouver le résultat du 2) b).

Exercice 2:

Pour $n \in \mathbb{N}^*$, on note (E_n) l'équation $\cos(x) = nx$ d'inconnue le réel x.

- 1. Soit $n \in \mathbb{N}^*$. Montrer que (E_n) admet une unique solution sur \mathbb{R} . On la notera x_n .
- 2. Montrer que $x_n \in [0,1[$ pour tout entier naturel n non nul.
- 3. Montrer que (x_n) est strictement décroissante. En déduire que (x_n) converge. On note L sa limite.
- 4. On suppose ici que L > 0. Déterminer la limite de $\cos(x_n)$ et de nx_n quand n tend vers $+\infty$. Conclure.
- 5. Déterminer un équivalent simple de x_n .

Exercice 3 : (suite de l'exercice 2)

Soit $n \in \mathbb{N} \setminus \{0, 1\}$. On reprend la notation x_n introduite dans l'exercice 2.

Dans cette question, $u_0 = 0$ et $\forall p \in \mathbb{N}$, $u_{p+1} = \frac{\cos(u_p)}{n}$. On cherche à montrer que $(u_p)_{p \in \mathbb{N}}$ converge vers x_n .

- 1. Montrer: $\forall (x, y) \in \mathbb{R}^2$, $|\cos(x) \cos(y)| \leq |x y|$.
- 2. En déduire : $\forall p \in \mathbb{N}, |u_{p+1} x_n| \leq \frac{1}{n} |u_p x_n|$ puis $\forall p \in \mathbb{N}, |u_p x_n| \leq \frac{1}{n^p}$.
- 3. Conclure et donner la première valeur de l'entier naturel p (en fonction de n) telle que $u_p \simeq x_n$ à 10^{-5} près.
- 4. Écrire une fonction Python prenant en entrée un entier $n \ge 2$, un réel $\varepsilon > 0$, et donnant en sortie une valeur approchée de x_n à ε près.