### Chapter 2

# Finite Automata and the Languages They Accept



## Intuition about finite automaton model requirements

- A *finite automaton* is a simple type of computer
  - Its output is limited to "yes" or "no"
  - It has very primitive memory capabilities
- Our primitive computer that answers yes or no acts as a *language acceptor*
- For this model, consider that:
  - The input comes in the form of a string of individual input symbols
  - The computer gives an answer for the *current* string (the string of symbols that have been read so far)

Finite automaton that accepts language  $L = \{(ab)^n \mid n \in N_{\geq 1}\}.$ 



- A finite automaton (FA) or *finite state machine* is always in one of a finite number of *states*
- At each step FA makes a move (from state to state) that depends only on the current state and the input symbol



- The move is to enter a particular state (possibly the same as the one it was already in)
- States are either *accepting* or *nonaccepting* 
  - Entering an accepting state means answering "yes"
  - Entering a nonaccepting state means "no"
- An FA has an initial state

#### Finite Automata: Example

- This FA accepts the language of strings that end in *aa* 
  - The three states represent strings that end with no a's, one
    a, and two a's, respectively
  - From each state, if the input is anything but an a, go back to the initial state, because now the current string doesn't end with a



#### Finite Automata: Example

- This FA accepts the strings ending with *b* and not containing *aa* 
  - The idea is to go to a permanently-non-accepting state if you ever read two *a*'s in a row

Go to an accepting state if you see a b (and haven't read two a's),



#### Finite Automata: Example

- This FA accepts strings that contain *abbaab*
- What do we do when a prefix of *abbaab* has been read but the next symbol doesn't match?
  - Go back to the state representing the longest prefix of abbaab at the end of the new current string
  - Example: If we've read abba and the next symbol is b, go to  $q_2$ , because ab is the longest prefix at the end of abbab



Finite Automata: the language of strings that are the binary representations of natural numbers divisible by 3.

If x represents n, and  $n \mod 3$  is r, then what are  $2n \mod 3$  and  $(2n + 1) \mod 3$ ? It is almost correct that the answers are 2r and 2r + 1; the only problem is that these numbers may be 3 or bigger, and in that case we must do another  $\mod 3$  operation.

- States 0, 1, and 2 represent the current "remainder"
- The initial state is non-accepting: at least one bit is required
- Leading zeros are prohibited
- Transitions represent multiplication by two, then addition of the input bit



0, 1

| n  | bin  | r | n  | bin   | r |
|----|------|---|----|-------|---|
| 0  | 0    | 0 | 16 | 10000 | 1 |
| 1  | 1    | 1 | 17 | 10001 | 2 |
| 2  | 10   | 2 | 18 | 10010 | 0 |
| 3  | 11   | 0 | 19 | 10011 | 1 |
| 4  | 100  | 1 | 20 | 10100 | 2 |
| 5  | 101  | 2 | 21 | 10101 | 0 |
| 6  | 110  | 0 | 22 | 10110 | 1 |
| 7  | 111  | 1 | 23 | 10111 | 2 |
| 8  | 1000 | 2 | 24 | 11000 | 0 |
| 9  | 1001 | 0 | 25 | 11001 | 1 |
| 10 | 1010 | 1 | 26 | 11010 | 2 |
| 11 | 1011 | 2 | 27 | 11011 | 0 |
| 12 | 1100 | 0 | 28 | 11100 | 1 |
| 13 | 1101 | 1 | 29 | 11101 | 2 |
| 14 | 1110 | 2 | 30 | 11110 | 0 |
| 15 | 1111 | 0 | 31 | 11111 | 1 |

