Gaetano Chiriaco 882638 Gianmarco Russo 887277

Pill Quality Control: Classification & GANs

Problem Outline

Pill quality control dataset:

- 1. 225x225px RGB .jpg images
- 2. 3 different classes: normal, chip, dirt
- 3. Small dataset: 330 images
- 4. Unbalanced classes

Chosen Tasks:

- 1. Image Classification
- Image Augmentation using classic transformations and GANs

First Image classification

- Stratified splitting in Train (60%), Validation (20%) and Test (20%)
- Convolutional Neural Network architecture:

<u>Callbacks</u>: EarlyStopping (patience=5)

Loss: Categorical Cross-Entropy

<u>Optimizer</u>: Adam (LR = 0.0001)

$$ext{Loss} = -\sum_{i=1}^{ ext{output}} y_i \cdot \log \hat{y}_i \qquad w_t = w_{t-1} - \eta rac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$$

Other approaches used:

- Data augmentation using the aforementioned net (horizontal/vertical flip and random rotation)
- Fine tuning of an imageNet pre-trained network (MobileNet)

Results on the original dataset

Our CNN does a perfect job on the test set

	F-Score	Accuracy	Precision	Recall	Loss
Our CNN 390,083 trainable parameters	1	1	1	1	0.0193
MobileNet 1,865,283 trainable parameters	0.979	0.971	0.979	0.979	0.0359

When things go too well there's almost always something wrong...

Epoch

Epoch

Fixing the biases - I

The models we trained have developed some biases: in particular the <u>lighting</u> and the <u>background</u> of the images is different among the classes

Probably the model learns to distinguish between classes focusing on other aspects instead of the pill itself

Fixing the biases - II

The training process has been repeated with grayscale and masked images.

The objective was to eliminate the biases caused by the background and the lighting.

MobileNet was not usable at this point since it only works with RGB images, so we only used our CNN, slightly tuning its architecture to work with grayscale images.

Not all the images were perfectly masked, so we removed 40 images that were badly cut

Results on altered images

	F-Score	Accuracy	Precision	Recall	Loss	Class Accuracy
CNN on grayscale images	0.989	0.9857	0.989	0.989	0.0568	Normal: 1 Dirt: 0.965 Chip: 1
CNN on masked images	0.769	0.787	0.835	0.718	0.5362	Normal: 0.9 Dirt: 0.79 Chip: 0.375

As we can see, the grayscale images don't fix the biases, showing the same performance. However the masked one definitely showed some signs of change: the model can't exploit the background and the lighting and its performance drops quite significantly.

Generative Adversarial Neural Networks

GANs are generative models estimated via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G.

Used for various tasks like:

- Image augmentation
- Super resolution
- Style transfer

$$\text{Loss function:} \quad \min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

GANs architecture for image augmentation

Different model for each pill type (normal, dirt, chip)

Different model for each **image type** (RGB, grayscale, masked)

500 epochs for the "normal" class, 500 for the "dirt" class and 500 for the "chip" class

Noise size: 100

Batch size: 16

Problems and disadvantages encountered:

- Complicated structure
- Needs usually a high number of epochs to output good (fake) images

(224, 224, 3)

- Mode Collapse
- Hard to evaluate the effectiveness

Data processing after GANs

Comparing the performances

	F-Score	Accuracy	Precision	Recall	Loss	Class Accuracy
CNN on augmented masked images	0.850	0.853	0.866	0.836	0.5326	Normal: 0.76 Dirt: 0.92 Chip: 1
CNN on masked images	0.769	0.787	0.835	0.718	0.5362	Normal: 0.9 Dirt: 0.79 Chip: 0.375

Possible developments and improvement

- Improve the masking process to avoid the removal of some of the images
- Explore different and more complicated types of GAN to obtain better results (like Conditional GANs)
- Solve the "Mode Collapse" issue
- Choose the best generation of images using more "formal" approaches (like Inception Score)

Gaetano Chiriaco 882638 Gianmarco Russo 887277

Thanks for your attention!

Pill Quality
Control:
Classification
GANs

Bibliography:

1.GANs: [1406.2661] Generative Adversarial Networks (arxiv.org)

Sitography:

- $1. Transfer\ learning\ with\ Mobile Net: \underline{https://www.tensorflow.org/tutorials/images/transfer_learning;}$
- 2.GAN | Generate Your Own Dataset using Generative Adversarial Networks (analyticsvidhya.com)