

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C07D 239/26, 213/50, 403/04, 401/04, 401/06, 401/14, 405/06, 403/06, 403/14, A01N 43/54

(11) International Publication Number:

WO 99/28301

A1 (43) Intern

(43) International Publication Date:

10 June 1999 (10.06.99)

(21) International Application Number:

PCT/US98/22088

(22) International Filing Date:

20 October 1998 (20.10.98)

(30) Priority Data:

60/067,418 60/068,432 3 December 1997 (03.12.97) US 22 December 1997 (22.12.97) US

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KOETHER, Gerard, Michael [US/US]; 2304 Porter Road, Bear, DE 19701 (US). SELBY, Thomas, Paul [US/US]; 116 Hunter Court, Wilmington, DE 19808 (US). STEVENSON, Thomas, Martin [US/US]; 103 Iroquois Court, Newark, DE 19702 (US).
- (74) Agent: BIRCH, Linda, D.; E.I. Du Pont de Nemours and Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: SUBSTITUTED PYRIMIDINE AND PYRIDINE HERBICIDES

$$R^{6}$$
 $(J-1)$
 R^{5}
 R^{6}
 $(J-2)$
 R^{5}
 R^{6}
 $(J-3)$
 R^{5}
 R^{6}
 $(J-4)$
 R^{5}
 $(J-4)$
 R^{7}
 $(J-7)$

(57) Abstract

Compounds of formula (I), and their N-oxides and agriculturally suitable salts, are disclosed which are useful for controlling undesired vegetation, wherein J is (J-1), (J-2), (J-3), (J-4), (J-5), (J-6) or (J-7); and J, W, X, Y, Z, A, R^I-R^8 are as defined in the disclosure. Also disclosed are compositions containing the compounds of formula (I) and a method for controlling undesired vegetation which involves contacting the vegetation or its environment with an effective amount of a compound of formula (I).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
BB	Belgium	GN	Guinea	MK	The former Yugoslav	. TM	Turkmenistan	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine	
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	ſT	Italy	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	JP	Japan	NE	Niger	. VN	Viet Nam	
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
СМ	Cameroon		Republic of Korea	PL	Poland			
CN	China	KR	Republic of Korea	PT	Portugal			
Cυ	Cuba	KZ	Kazakstan	RO	Romania			
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	LI	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden			
EE	Estonia	LR	Liberia	SG	Singapore			
1					- •			

10

15

30

1

TITLE

SUBSTITUTED PYRIMIDINE AND PYRIDINE HERBICIDES BACKGROUND OF THE INVENTION

This invention relates to certain pyrimidines and pyridines, their *N*-oxides, agriculturally suitable salts, compositions thereof, and methods of their use for controlling undesirable vegetation.

The control of undesired vegetation is extremely important in achieving high crop efficiency. Achievement of selective control of the growth of weeds especially in such useful crops as rice, soybean, sugar beet, corn (maize), potato, wheat, barley, tomato and plantation crops, among others, is very desirable. Unchecked weed growth in such useful crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of undesired vegetation in noncrop areas is also important. Many products are commercially available for these purposes, but the need continues for new compounds which are more effective, less costly, less toxic, environmentally safer or have different modes of action.

EP 723,960 discloses herbicidal substituted pyrimidines and pyridines of Formula i:

20 wherein, inter alia,

A is an optionally substituted anyl or 5- or 6-membered nitrogen containing heteroaromatic group;

X is oxygen or sulfur;

Z is nitrogen or CH;

25 R¹ and R² are independently hydrogen, halogen, alkyl, haloalkyl, nitro or cyano; n is 0, 1 or 2; and

m is 0 to 5.

The pyrimidines and pyridines of the present invention are not disclosed in this reference.

SUMMARY OF THE INVENTION

This invention is directed to compounds of Formula I including all geometric and stereoisomers, N-oxides, and agriculturally suitable salts thereof, as well as agricultural

compositions containing them and a method of their use for controlling undesirable vegetation:

$$R^1$$
 R^2
 R^3
 R^4
 R^4

I

5 wherein

10

DYICH V- (f)

W is N or CR11;

15 X, Y and Z are independently N or CR¹²;

 R^1 and R^2 are independently H, halogen, cyano, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_2 - C_4 alkoxyalkyl, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_2 - C_4 alkoxyalkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_3 - C_4 alkenyloxy, C_3 - C_4 alkynyloxy, $S(O)_n R^{13}$, C_2 - C_4

10

15

20

alkylthioalkyl, C_2 - C_4 alkylsulfonylalkyl, C_1 - C_4 alkylamino or C_2 - C_4 dialkylamino;

R³ is H, F, Cl, Br, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl or CO₂R¹⁴;

 R^4 is H, F, C_1 - C_4 alkyl, OH or OR^{14} ;

 R^3 and R^4 can be taken together with the carbon to which they are attached to form C(=0) or $C(=NOR^{14})$;

R⁵ is halogen, cyano, SF₅, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy or S(O)_nR¹³;

 R^6 and R^{10} are independently H, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_nR^{13}$;

 R^7 is halogen, cyano, SF_5 , C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_nR^{13}$;

 \mathbb{R}^8 is \mathbb{C}_1 - \mathbb{C}_4 alkyl or \mathbb{C}_1 - \mathbb{C}_4 haloalkyl;

R⁹ is H, halogen, cyano, SF₅, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy or S(O)_nR¹³;

 R^{11} is H, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_n R^{13}$;

R¹² is H, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy or S(O)_nR¹³;

each R¹³ is independently C₁-C₄ alkyl or C₁-C₄ haloalkyl;

each R¹⁴ is independently C₁-C₄ alkyl; and

each n is independently 0, 1 or 2.

In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, 25 ethyl, n-propyl, i-propyl, or the different butyl, pentyl or hexyl isomers. The term "1-2 alkyl" indicates that one or two of the available positions for that substituent may be alkyl which are independently selected. "Alkenyl" includes straight-chain or branched alkenes such as ethenyl, 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers. "Alkenyl" also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl. 30 "Alkynyl" includes straight-chain or branched alkynes such as ethynyl, 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. "Alkynyl" can also include moieties comprised of multiple triple bonds such as 2,5-hexadiynyl. "Alkoxy" includes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. 35 Examples of "alkoxyalkyl" include CH₃OCH₂, CH₃OCH₂CH₂, CH₃CH₂OCH₂, CH₃CH₂CH₂CH₂OCH₂ and CH₃CH₂OCH₂CH₂. "Alkenyloxy" includes straight-chain or branched alkenyloxy moieties. Examples of "alkenyloxy" include H₂C=CHCH₂O,

(CH₃)₂C=CHCH₂O, (CH₃)CH=CHCH₂O, (CH₃)CH=C(CH₃)CH₂O and CH₂=CHCH₂CH₂O. "Alkynyloxy" includes straight-chain or branched alkynyloxy moieties. Examples of "alkynyloxy" include HC=CCH2O, CH3C=CCH2O and CH₃C≡CCH₂CH₂O. "Alkylthio" includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio, butylthio, pentylthio and 5 hexylthio isomers. "Alkylthioalkyl" denotes alkylthio substitution on alkyl. Examples of "alkylthioalkyl" include CH₃SCH₂, CH₃SCH₂CH₂, CH₃CH₂SCH₂, CH₃CH₂CH₂CH₂SCH₂ and CH₂CH₂SCH₂CH₂. "Alkylsulfinyl" includes both enantiomers of an alkylsulfinyl group. Examples of "alkylsulfinyl" include CH₃S(O), CH₃CH₂S(O), CH₃CH₂CH₂S(O), (CH₃)₂CHS(O) and the different butylsulfinyl, pentylsulfinyl and hexylsulfinyl isomers. 10 Examples of "alkylsulfonyl" include CH₃S(O)₂, CH₃CH₂S(O)₂, CH₃CH₂CH₂S(O)₂, (CH₃)₂CHS(O)₂ and the different butylsulfonyl, pentylsulfonyl and hexylsulfonyl isomers. "Alkylamino", "dialkylamino", "alkenylthio", "alkenylsulfinyl", "alkenylsulfonyl", "alkynylthio", "alkynylsulfinyl", "alkynylsulfonyl", and the like, are defined analogously to the above examples. One skilled in the art will appreciate that not all nitrogen containing 15 heterocycles can form N-oxides since the nitrogen requires an available lone pair for oxidation to the oxide; one skilled in the art will recognize those nitrogen containing heterocycles which can form N-oxides. One skilled in the art will also recognize that tertiary amines can form N-oxides. Synthetic methods for the preparation of N-oxides of heterocycles and tertiary amines are very well known by one skilled in the art including the 20 oxidation of heterocycles and tertiary amines with peroxy acids such as peracetic and m-chloroperbenzoic acid (MCPBA), hydrogen peroxide, alkyl hydroperoxides such as t-butyl hydroperoxide, sodium perborate, and dioxiranes such as dimethyldioxirane. These methods for the preparation of N-oxides have been extensively described and reviewed in the literature, see for example: T. L. Gilchrist in Comprehensive Organic Synthesis, vol. 7, 25 pp 748-750, S. V. Ley, Ed., Pergamon Press; M. Tisler and B. Stanovnik in Comprehensive Heterocyclic Chemistry, vol. 3, pp 18-20, A. J. Boulton and A. McKillop, Eds., Pergamon Press; M. R. Grimmett and B. R. T. Keene in Advances in Heterocyclic Chemistry, vol. 43, pp 149-161, A. R. Katritzky, Ed., Academic Press; M. Tisler and B. Stanovnik in Advances in Heterocyclic Chemistry, vol. 9, pp 285-291, A. R. Katritzky and A. J. Boulton, Eds., 30 Academic Press; and G. W. H. Cheeseman and E. S. G. Werstiuk in Advances in Heterocyclic Chemistry, vol. 22, pp 390-392, A. R. Katritzky and A. J. Boulton, Eds., Academic Press.

The term "halogen", either alone or in compound words such as "haloalkyl", includes fluorine, chlorine, bromine or iodine. The term "1-2 halogen" indicates that one or two of the available positions for that substituent may be halogen which are independently selected. Further, when used in compound words such as "haloalkyl", said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of

10

15

20

25

30

35

"haloalkyl" include F₃C, ClCH₂, CF₃CH₂ and CF₃CCl₂. Examples of "haloalkoxy" include CF₃O, CCl₃CH₂O, HCF₂CH₂CH₂O and CF₃CH₂O.

The total number of carbon atoms in a substituent group is indicated by the "C_i-C_j" prefix where i and j are numbers from 1 to 4. For example, C₁-C₃ alkylsulfonyl designates methylsulfonyl through propylsulfonyl; C₂ alkoxyalkyl designates CH₃OCH₂; C₃ alkoxyalkyl designates, for example, CH₃CH(OCH₃), CH₃OCH₂CH₂ or CH₃CH₂OCH₂; and C₄ alkoxyalkyl designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including CH₃CH₂CH₂OCH₂ and CH₃CH₂OCH₂CH₂. Examples of "alkylcarbonyl" include C(O)CH₃, C(O)CH₂CH₂CH₃ and C(O)CH(CH₃)₂. Examples of "alkoxycarbonyl" include CH₃OC(=O), CH₃CH₂OC(=O), CH₃CH₂CH₂OC(=O), (CH₃)₂CHOC(=O) and the different butoxy- or pentoxycarbonyl isomers. In the above recitations, when a compound of Formula I is comprised of one or more heterocyclic rings, all substituents are attached to these rings through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen.

When a group contains a substituent which can be hydrogen, for example R⁹, then, when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted.

The compounds of this invention thus include compounds of Formula I, geometric and stereoisomers thereof, N-oxides thereof, and agriculturally suitable salts thereof. The compound of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active form.

The salts of the compounds of the invention include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids.

Preferred compounds of the invention for reasons of better activity and/or ease of synthesis are:

Preferred 1. Compounds of Formula I above, geometric or stereoisomers thereof, N-oxides thereof and agriculturally-suitable salts thereof, wherein R^1 and R^2 are independently H, C_1 - C_4 alkyl or C_1 - C_4 alkoxy;

```
R<sup>5</sup> and R<sup>7</sup> are independently halogen, C<sub>1</sub>-C<sub>4</sub> haloalkyl, C<sub>1</sub>-C<sub>4</sub> haloalkoxy or
                                    S(O)_n R^{13};
                            R<sup>6</sup> is H or F:
                            R<sup>8</sup> is C<sub>1</sub>-C<sub>4</sub> alkyl;
                            R<sup>9</sup> is halogen, cyano, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>1</sub>-C<sub>4</sub> haloalkoxy, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub>
  5
                                    haloalkyl or S(O)<sub>n</sub>R<sup>13</sup>;
                            R<sup>10</sup> is H, halogen, cyano or C<sub>1</sub>-C<sub>4</sub> haloalkyl;
                            R<sup>11</sup> is H, halogen, cyano or C<sub>1</sub>-C<sub>4</sub> haloalkyl;
                            R<sup>12</sup> is H, halogen, cyano or C<sub>1</sub>-C<sub>4</sub> haloalkyl; and
10
                            n is 0.
              Preferred 2. Compounds of Preferred 1 wherein
                            W is N:
                            R<sup>5</sup> and R<sup>7</sup> are independently C<sub>1</sub>-C<sub>4</sub> haloalkyl or C<sub>1</sub>-C<sub>4</sub> haloalkoxy; and
                            R^9 is halogen, C_1-C_4 haloalkoxy, C_1-C_4 haloalkyl or S(O)_n R^{13}.
              Preferred 3. Compounds of Preferred 2 wherein
15
                            R^1 is C_1-C_4 alkyl or C_1-C_4 alkoxy;
                            R^2 is H; _
                            R3 and R4 are independently H, F or methyl;
                            R<sup>5</sup> and R<sup>7</sup> are independently C<sub>1</sub>-C<sub>2</sub> haloalkyl or C<sub>1</sub>-C<sub>2</sub> haloalkoxy; and
                            R^9 is C_1-C_2 haloalkoxy, C_1-C_2 haloalkyl or S(O)_nR^{13}.
20
              Preferred 4. Compounds of Preferred 3 wherein
                            J is J-1, J-5 or J-7.
              Preferred 5. Compounds of Preferred 2 wherein
                            R<sup>3</sup> and R<sup>4</sup> can be taken together with the carbon to which they are attached to
                                    form C(=O).
25
              Preferred 6. Compounds of Preferred 5 wherein
                            R^1 is C_1-C_4 alkyl or C_1-C_4 alkoxy;
                            R<sup>5</sup> and R<sup>7</sup> are independently C<sub>1</sub>-C<sub>2</sub> haloalkyl or C<sub>1</sub>-C<sub>2</sub> haloalkoxy; and
                            R^9 is C_1-C_2 haloalkoxy, C_1-C_2 haloalkyl or S(O)_n R^{13}.
30
              Preferred 7. Compounds of Preferred 5 wherein
                           J is J-1 or J-5.
                   Most preferred is the compound of Formula I selected from the group consisting of:
                            (a) 5-ethyl-4-[[3-(trifluoromethoxy)phenyl]methyl]-2-[3-(trifluoromethyl)-
35
                                    1H-pyrazol-1-yl]pyrimidine;
                            (b) 5-ethyl-4-[[3-(trifluoromethyl)phenyl]methyl]-2-[3-(trifluoromethyl)-1H-
                                   pyrazol-1-yl]pyrimidine;
```

WO 99/28301 PCT/US98/22088

7

(c) 5-methyl-2-[4-(trifluoromethyl)phenyl]-4-[[3-(trifluoromethyl)phenyl]methyl]pyrimidine;

5

10

15

20

25

30

35

- (d) 5-methyl-4-[[3-(trifluoromethoxy)phenyl]methyl]-2-[4-(trifluoromethyl)phenyl]pyrimidine;
- (e) 5-methyl-4-[[3-(trifluoromethoxy)phenyl]methyl]-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine;
- (f) [5-methyl-2-[4-(trifluoromethyl)phenyl]-4-pyrimidinyl][3-(trifluoromethyl)phenyl]methanone;
- (g) [5-methyl-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]-4-pyrimidinyl][3-(trifluoromethyl)phenyl]methanone; and
- (h) 5-methyl-4-[[3-(trifluoromethyl)phenyl]-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine.

This invention also relates to herbicidal compositions comprising herbicidally effective amounts of the compounds of the invention and at least one of a surfactant, a solid diluent or a liquid diluent. The preferred compositions of the present invention are those which comprise the above preferred compounds.

This invention also relates to a method for controlling undesired vegetation comprising applying to the locus of the vegetation herbicidally effective amounts of the compounds of the invention (e.g., as a composition described herein). The preferred methods of use are those involving the above preferred compounds.

DETAILS OF THE INVENTION

The compounds of Formula I can be prepared by one or more of the following methods and variations as described in Schemes 1-12. The definitions of J, A, W, X, Y, Z, R¹, R², R³, R⁴, R⁹, R¹⁰, and R¹⁴ in the compounds of Formulae 1-16 below are as defined above in the Summary of the Invention. Compounds of Formulae Ia-Ic are various subsets of the compounds of Formula I, and all substituents for Formulae Ia-Ic are as defined above for Formula I.

Scheme 1 illustrates the preparation of compounds of Formula Ia (Formula I wherein A is A-1). Substituted heterocycles of Formula 1 (where L¹ is halogen) can be coupled with metalated aryls or heteroaryls of Formula 2 (where Met is Sn(alkyl)₃, B(OH)₂ or Zn(L¹)₂) in the presence of a palladium(0) catalyst such as tetrakis(triphenylphosphine)palladium(0) or in the presence of a palladium(II) catalyst such as dichlorobis(triphenylphosphine)-palladium(II) to provide compounds of Formula Ia. Palladium(II) catalysts are generally used with a suitable base such as aqueous sodium bicarbonate or sodium carbonate. Suitable solvents for this coupling include *N,N*-dimethylformamide, dimethoxyethane, acetonitrile or tetrahydrofuran. Reaction temperatures range from 20 °C to 130 °C.

8

Scheme 1

Scheme 2 illustrates the preparation of compounds of Formula Ib (Formula I wherein A is A-2). Substituted heterocycles of Formula 1 are allowed to react with substituted azoles of Formula 3 in the presence of a suitable base such as an alkali carbonate, alkali hydroxide, or alkali hydride in a solvent such as N,N-dimethylformamide, acetonitrile or tetrahydrofuran at temperatures ranging from 0 °C to 130 °C to provide compounds of Formula Ib.

10 Scheme 2

$$1 + \bigvee_{X = Z}^{Y} R^{9} \xrightarrow{\text{base solvent}} \bigvee_{R^{3} = R^{4}}^{R^{2}} \bigvee_{X = Z}^{W} R^{9}$$

$$3 \qquad \qquad \text{Ib}$$

Scheme 3 illustrates a method for preparing compounds of Formula Ic wherein J is an azole heterocycle of Formula J-7 and A is A-1 or A-2. Compounds of Formula 4 are allowed to react with an azole heterocycle of Formula 3 in a protic or aprotic solvent at temperatures ranging from 0 °C to 100 °C in the presence of a suitable base such an alkali carbonate, alkali hydroxide, or alkali hydride to provide compounds of Formula Ic. Particularly suitable are potassium carbonate as base and acetonitrile or N,N-dimethylformamide as solvent at a reaction temperature range of 20 °C to 80 °C.

Ic

5

10

20

25

4

9

Substituted pyrimidine intermediates of Formula 1 (wherein J is J-1 to J-6) can be prepared by the method shown in Scheme 4. By the synthetic protocol of Menta, E. and Oliva, A. J. Heterocyclic Chem. (1997), 34, p 27, a dihalopyrimidine of Formula 5 (where L¹ and L² are halogen) is coupled with a substituted alkyl zinc reagent of Formula 6 (where L³ is halogen) in the presence of a palladium(0) catalyst such as tetrakis(triphenylphosphine)palladium(0) or in the presence of a palladium(II) catalyst such as dichloro-bis(triphenylphosphine)palladium(II). Palladium(II) catalysts are generally used with a suitable base such as sodium bicarbonate or sodium carbonate. Suitable solvents for this coupling include N,N-dimethylformamide, dimethoxyethane, acetonitrile or tetrahydrofuran. Reaction temperatures range from 0 °C to 130 °C.

Metalated aryls and heteroaryls of Formula 2 can be obtained commercially or can be prepared by methods known in the art: Sandosham, J. and Undheim, K. *Tetrahedron* (1994), 50, pp 275-284; Undheim, K. and Benneche, T. *Acta Chemica Scandinavica* (1993), 47, pp 102-121; *Advances in Heterocyclic Chemistry*; Katritzky, A.R., Ed.; Academic Press: New York, 1995; volume 62, pp 305-418.

Azoles of Formula 3 can be obtained commercially or can be prepared by methods known in the art Elguero, J. et al., *Organic Preparations and Procedures Int.* (1995), 27, pp 33-74; *Comprehensive Heterocyclic Chemistry*; Potts, K., Ed.; Pergamon Press: New York,

1984; volume 5, chapters 4.04 - 4.13; *Heterocyclic Compounds*; Elderfield, R., Ed.; John Wiley: New York, 1957; volume 5, chapters 2 and 4; Baldwin, J. et al. *J. Med. Chem.*, (1975), 18, pp 895-900; Evans, J.J. et al. U.S. Patent 4,038,405.

Dihaloheterocycles of Formula 5 can be obtained commercially or can be readily prepared by known methods in the art; for example, see *Advances in Heterocyclic Chemistry*; Katritzky, A.R., Ed.; Academic Press: New York, 1993; volume 58, pp 301-305; *Heterocyclic Compounds*; Elderfield, R.C., Ed.; John Wiley: New York, 1957; volume 6, chapter 7, pp 265-270.

Zinc reagents of Formula 6 can be made by the method shown in Scheme 5. A substituted alkyl halide of Formula 7 (where L³ is halogen) is allowed to react with activated zinc (see Jubert, C. and Knochel, P. J. Org. Chem. (1992), 57, p 5425; Knochel, P. and Singer, R. D. Chem. Rev. (1993), 93, p 2117) in a suitable solvent such as N,N-dimethylformamide, dimethoxyethane, acetonitrile or tetrahydrofuran. Reaction temperatures range from 0 °C to 130 °C.

15

25

10

5

7

As shown in Scheme 6, heterocyclic benzylic bromides of Formula 4 can be made by bromination of heterocycles of Formula 8 with bromine in an acidic solvent such as acetic acid at temperatures ranging from 20 °C to 100 °C (see, for example, Strekowski et al. J. Org. Chem. (1992), 56, p 5610).

15

20

25

Heterocycles of Formula 8 can be made from precursor heterocycles of Formula 9 as shown in Scheme 7. The addition of lithium or Grignard reagents of formula R³R⁴CHLi or R³R⁴CHMgL¹ to heterocycles of Formula 9 is carried out in ethereal solvents such as ether or tetrahydrofuran at temperatures ranging from -70 °C to 30 °C. The reaction mixture is worked up by the addition of water and an oxidizing agent. A particularly suitable oxidizing agent is dichlorodicyanoquinone (DDQ). See Strekowski et al. J. Org. Chem. (1992), 56, p 5610 for examples of this synthetic method.

10 9

Heterocycles of Formula 9 can be prepared according to methods taught by Strekowski et al. J. Org. Chem. (1992), 56, p 5610; Bredereck et. al., Chem. Ber. (1960), 93, p 1208; Burdeska et al. Helv. Chim. Acta (1981), 64, p 113; Undheim, K. and Benneche, T. Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic Press: New York, 1995, volume 62, pp 305-418; and Comprehensive Heterocyclic Chemistry; Boulton, A. J., and McKillop, A., Eds.; Pergamon Press: New York, 1984; volume 3, chapter 2.13. Lithium and Grignard reagents of formulae R³R⁴CHLi or R³R⁴CHMgL¹ are commercially available or can be prepared by methods well known in the art.

Compounds of Formula 1 (wherein R³ and R⁴ are taken together as C(=O)) can be prepared by the condensation of pyrimidines and pyridines of Formula 10 with aldehydes of Formula 11 in the presence of an imidazolium catalyst of Formula 12 as shown in Scheme 8. This reaction is carried out in the presence of a strong base such as an alkali hydride, preferably sodium hydride, in solvents such as dichloromethane, dioxane, tetrahydrofuran, benzene, toluene or other aprotic solvent. The reaction may be carried out at temperatures between 0 and 120 °C. A wide variety of azolium salts are known to catalyze this transformation; see, for example, Miyashita Heterocycles, (1996), 43, 509-512 and references cited therein. A preferred catalyst is 1,3-dimethylimidazolium iodide.

L² is halogen or alkylsulfonyl

Compounds of Formula I (wherein R³ and R⁴ are taken together as C(=NOR¹⁴)) can be formed directly from compounds of Formula I (wherein R³ and R⁴ are taken together as C(=O)) by the action of hydroxylamine or capped hydroxylamine salts of Formula 13 as shown in Scheme 9. Many hydroxylamines are commercially available as acid salts and are freed by the action of a base in the presence of the ketone of Formula I. Suitable bases include alkali carbonates, acetates, and hydroxides. These reactions are best carried out in protic solvents, such as lower alcohols, at temperatures between 0 and 120 °C. Especially preferred conditions use sodium carbonate or sodium acetate as base in ethanol at 70 to 80 °C.

Scheme 9

I + NH₂OR¹⁴-HX base I

(wherein R³ and R⁴
are taken together as C(=O))

X is halogen as C(=NOR¹⁴))

15 Compounds of Formula I (wherein R³ is OH and R⁴ is H) can be made by the reduction of ketones of Formula I (wherein R³ and R⁴ are taken together as C(=O)) as shown in Scheme 10. A wide variety of reduction conditions can be utilized, but for reasons of ease of use and selectivity, alkali borohydrides are preferred reductants. The reduction can be carried out at 0 to 100 °C in a variety of solvents which are inert to the action of 20 borohydrides. Especially preferred conditions are the use of sodium borohydride in ethanol at 0 to 25 °C.

Scheme 10

I +
$$Z^+(BH_4)^-$$
 I (wherein R^3 and R^4 (wherein R^3 is OH are taken together as $C(=O)$) Z is an alkali metal and R^4 is H)

5

10

15

20

25

30

As shown in Scheme 11, compounds of Formula 1 wherein J is J-7 can also be made via the bromination of compounds of Formula 14 with molecular bromine in an acidic solvent such as acetic acid at temperatures ranging from 20 to 100 °C in the same way as previously described in Scheme 6. The brominated products of Formula 15 can be displaced by heterocycles of Formula 3 in the presence of a base such as potassium carbonate as previously described for Scheme 2. Compounds of Formula 14 are known in the literature or are commercially available. See Benneche (*Acta Chemica Scandanavia*, 1997, 51, 302) for preparation of these compounds from compounds of Formula 5.

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{5

Compounds of Formula 1 in which R³ is cyano can be made as shown in Scheme 12. The reaction of acetonitrile derivatives of formula 16 with compounds of Formula 5 in the presence of a base gives compounds of formula 1 with a cyano group. The reaction can be carried out in a variety of solvents such as dimethylformamide, tetrahydrofuran, or other solvents inert to strong bases. A wide variety of bases which can deprotonate substituted acetonitriles can be used. Sodium hydride and potassium t-butoxide are preferred due to their ease of use and availability. The reaction can be carried out at temperatures ranging from 0 to 100 °C. Compounds of formula 16 are well known in the literature and many are commercially available

Scheme 12

Compounds of Formula I substituted with the group $S(O)_n R^{13}$ wherein n is 1 or 2 can be prepared from compounds of Formula I substituted with said $S(O)_n R^{13}$ group wherein n is 0 by treatment with an oxidizing reagent such as m-chloroperoxybenzoic acid or Oxone (potassium peroxymonosulfate). This type of oxidation reaction is well known in the art; for

PCT/US98/22088

5

10

15

20

25

30

35

example, see March, J. Advanced Organic Chemistry; John Wiley: New York, 1992; 4th edition, pp 1201-1203.

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula I may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula I. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular sequence presented to prepare the compounds of Formula I.

One skilled in the art will also recognize that compounds of Formula I and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. ^{1}H NMR spectra are reported in ppm downfield from tetramethylsilane; s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, d = doublet of doublets, d = doublet of triplets, d = doublet

EXAMPLE 1

Step A: Preparation of 2-chloro-5-methyl-4-[[3-(trifluoromethyl)phenyl]methyl]pyrimidine

To a suspension of zinc dust (2.5 g, 38 mmol) stirred in 25 mL of tetrahydrofuran were added 2 drops of 1,2-dibromoethane and the mixture was heated to reflux. The suspension was then cooled and 2 drops of trimethylsilyl chloride were added followed by portionwise addition of 3-(trifluoromethyl)benzyl bromide (6.0 g, 25 mmol) with heating. When the reaction temperature reached 55 °C, a strong exotherm occurred and the reaction mixture was allowed to heat at reflux. The cooled reaction solution was decanted into a solution of 2,4-dichloro-5-methylpyrimidine (3.3 g, 20 mmol) and dichlorobis(triphenylphosphine)-palladium(II) (0.44 g, 0.63 mmol) stirring in 15 mL of tetrahydrofuran. Upon heating, the

PCT/US98/22088 WO 99/28301

15

reaction mixture exothermed strongly again at 55 °C and was then heated to reflux. The reaction mixture was allowed to cool and partitioned between diethyl ether and water. The organic layer was separated, washed with 1 N aqueous hydrochloric acid and brine, dried over magnesium chloride and concentrated under reduced pressure to give a crude oil. Purification by flash chromatography on silica gel (15 to 25% ethyl acetate in hexane) yielded 2.4 g of the title compound of Step A as an oil. ¹H NMR (CDCl₃): δ 8.35 (s, 1H), 7.60-7.35 (m, 4H), 4.15 (s, 2H), 2.25 (s, 3H).

Preparation of 5-methyl-2-[4-(trifluoromethyl)phenyl]-4-[[3-Step B: (trifluoromethyl)phenyl]methyl]pyrimidine

5

10

15

20

25

30

35

A stirred mixture of 4-(trifluoromethyl)benzene boronic acid (430 mg, 2.3 mmol), the title compound of Step A (500 mg, 1.7 mmol), dichlorobis(triphenylphosphine)palladium(II) (120 mg, 0.17 mmol) and sodium carbonate (550 mg, 5.2 mmol) in a mixture of 6 mL of water and 2 mL of tetrahydrofuran was heated at reflux for 1.5 h. The reaction mixture was then partitioned between diethyl ether and water. The organic layer was separated, washed with brine, dried over magnesium sulfate and concentrated under reduced pressure. Flash chromatography on silica gel (20 to 25% ethyl acetate in hexane) followed by trituration with 10% diethyl ether in hexane afforded 350 mg of the title compound of Step B, a compound of this invention, as a yellow-tinted solid melting at 112-113 °C. ¹H NMR (CDCl₃): δ 8.55 (m, 3H), 7.70 (d, 2H), 7.60 (s, 1H), 7.55-7.40 (m, 3H), 4.25 (s, 2H), 2.30 (s, 3H).

EXAMPLE 2

Preparation of 5-methyl-4-[[3-(trifluoromethyl)phenyl]methyl]-2-[3-Step A: (trifluoromethyl)-1H-pyrazol-1-yl]pyrimidine

A stirred mixture of 3-(trifluoromethyl)pyrazole (390 mg, 2.9 mmol), the title compound of Step A in Example 1 (750 mg, 2.6 mmol), and powdered potassium carbonate (1.1 g, 7.9 mmol) in 10 mL of N,N-dimethylformamide was heated at 60 °C for 3 h followed by heating at 80 °C for 1 h. The reaction mixture was then partitioned between diethyl ether and water. The organic layer was separated, washed with brine, dried over magnesium sulfate and concentrated under reduced pressure. Column chromatography on silica gel (5% diethyl ether in 1-chlorobutane) afforded 210 mg of the title compound of Step A as an oil which solidified to a white solid melting at 90-92 °C. ¹H NMR (CDCl₃): δ 8.55 (t,2H), 7.55-7.50 (m, 2H), 7.45-7.40 (m, 2H), 6.72 (d, 1H), 4.26 (s, 2H), 2.32 (s, 3H).

EXAMPLE 3

Preparation of 5-methyl-2-(4-trifluoromethylphenyl)pyrimidine Step A:

A sample of 4-trifluoromethylbenzamidine hydrochloride dihydrate (Maybridge, 15.2 g, 58 mmol) was dissolved in 100 mL of methanol and 3-ethoxy-2-methylacrolein (Janssen, 7.8 g, 64 mmol) was added. Sodium methoxide (25% solution in methanol, 14.7 mL) was added and the mixture was heated at 50 °C for 3 h. The cooled reaction mixture was then added to 500 ml of ice water and stirred for 30 minutes. The white solid was filtered, air

15

20

25

30

dried, dissolved in 300 mL of dichloromethane and dried over magnesium sulfate. The solvent was removed under reduced pressure to yield, after trituration with hexanes, 12.5 g of the product as a white solid melting at 143-146 °C. ¹H NMR (CDCl₃): δ 2.37 (s, 3H), 7.73 (d, 2H), 8.53 (d, 2H), 8.66 (s, 2H).

5 Step B: Preparation of 4,5-dimethyl-2-(4-trifluoromethylphenyl)pyrimidine

The title compound of Step A (9.0 g, 38 mmol) was dissolved in 50 mL of tetrahydrofuran and treated with methyl lithium (1.4 M in ether, 34 mL, 47 mmol) at a temperature of -70 °C. The reaction mixture exothermed to -35 °C. The mixture was stirred at -30 °C for 1.5 h and then treated with 1 mL of water and dichlorodicyanoquinone (9.44 g, 42 mmol). The mixture was stirred at 25 °C for 30 minutes and then partitioned twice between 100 mL of water and 100 mL of dichloromethane. The combined organics were washed with brine and dried over magnesium sulfate. The residue after evaporation was subjected to silica gel chromatography using hexanes/ethyl acetate (95:5) as eluent to give 9.02 g of the title compound of Step B as a white solid melting at 128-131 °C. ¹H NMR (CDCl₃): δ 2.31 (s, 3H), 2.56 (s, 3H), 7.71 (d, 2H), 8.49 (d, 2H), 8.53 (s, 1H).

Step C: Preparation of 4-bromomethyl-5-methyl-2-(4-trifluoromethylphenyl)pyrimidine

The title compound of Step B (2.0 g, 8 mmol) was dissolved in 10 mL of acetic acid and treated with bromine (0.4 mL, 8 mmol). The mixture was heated at 80 °C until the orange color was discharged (1 h). The mixture was evaporated under reduced pressure, diluted with 50 mL of ether and washed twice with 50 mL of sodium bicarbonate and then 50 mL of brine. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure to yield 2.54 g of the title compound of Step C as a tan solid which was used immediately in the next step without further purification. ¹H NMR (CDCl₃): δ 2.44 (s, 3H), 4.54 (s, 2H), 7.74 (d, 2H), 8.56 (d, 2H), 8.62 (s, 1H).

Step D: Preparation of 5-methyl-2-(4-trifluoromethylphenyl)-4-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]methylpyrimidine

The title compound of Step C (0.7 g, 2 mmol), 3-trifluoromethylpyrazole (0.27 g, 2 mmol) and potassium carbonate (0.83 g, 6 mmol) were suspended in 10 mL of acetonitrile and heated to reflux for 1 h. The salts were filtered and the acetonitrile was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with hexanes/ethyl acetate (85:15) to afford 0.52 g of the title compound of Step D, a compound of this invention, as a white solid melting at 112-114 °C. ¹H NMR (CDCl₃): δ 2.39 (s, 3H), 5.53 (s, 2H), 6.62 (d, 1H), 7.6-7.8 (m, 3H), 8.44 (d, 2H), 8.6 (s, 1H).

10

15

20

25

30

35

17

EXAMPLE 4

Step A: Preparation of (2-chloro-5-methyl-4-pyrimidinyl)[3-(trifluoromethyl)phenyl]methanone

2,4-Dichloro-5-methylpyrimidine (3.6 g, 18.4 mmol) was dissolved in dichloromethane (50 mL) and treated sequentially with 3-trifluoromethylbenzaldehyde (3.3 g, 18.4 mmol), and 1,3-dimethylimidazolium iodide (1.37 g, 6.2 mmol). Sodium hydride (0.74 g, 18.4 mmol) was added and an exotherm was noted. After being heated at reflux for 3h, the reaction was quenched with water and the layers were separated. The dried (magnesium sulfate) organic layer was purified by chromatography on silica gel using hexanes/ethyl acetate 85:15 as eluent. The title compound of Step A (1.8 g) was isolated as a white solid melting at 113-116 °C. ¹H NMR (CDCl₃/200 MHz) 2.39 (s, 3H), 7.66 (m, 1H), 7.90 (d, 1H), 8.07 (s, 1H), 8.69 (s, 1H).

Step B: Preparation of [5-methyl-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]-4-pyrimidinyl][3-(trifluoromethyl)phenyl]methanone

The title compound of Step A (0.6 g, 2 mmol), 3-trifluoromethylpyrazole (0.25 g), and potassium carbonate (0.8 g, 6 mmol) were suspended in acetonitrile (15 mL) and heated at reflux for 3 h. The cooled reaction mixture was filtered and the cake washed with acetonitrile. After evaporation of the solvent under reduced pressure, the residue was subjected to silica gel chromatography using hexanes/ethyl acetate (85:15) to give 0.12 g of the title compound of Step B, a compound of the invention, as a white solid. ¹H NMR (CDCl₃/200 MHz) 2.45 (s, 3H), 6.75 (d, 1H), 7.67 (d, 1H), 7.92 (d, 1H), 8.10 (s, 1H), 8.27 (s, 1H), 8.54 (d, 1H), 8.9 (s, 1H).

EXAMPLE 5

Step A: Preparation of [5-methyl-2-[4-(trifluoromethyl)phenyl]-4-pyrimidinyl][3-(trifluoromethyl)phenyl]methanone

The title compound of Example 1, Step A (0.6 g, 2 mmol), 4-trifluoromethyl-benzeneboronic acid (1.1 g, 6 mmol), and bis(triphenylphosphine)palladium dichloride were dissolved in dimethoxyethane (15 mL) and aqueous sodium carbonate (2 M, 4 mmol). The resulting mixture was heated at 80 °C for 3 h. The mixture was diluted with dichloromethane (50 mL) and water (50 mL). The dichloromethane layer was dried over magnesium sulfate, concentrated under reduced pressure, and the residue was subjected to silica gel chromatography using hexanes/ethyl acetate (85:15). The title compound of Step A, a compound of the invention, was isolated as a white solid (0.56 g) melting at 159-161 °C. ¹H NMR (CDCl₃/200 MHz) 2.47 (s, 3H), 7.62-7.78 (m, 3H), 7.94 (d, 1H), 8.17 (d, 1H), 8.34 (s, 1H), 8.5 (d, 2H), 8.9 (s, 1H).

By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 34 can be prepared.

18
Table 1

R¹

R²

R³

R⁴

Y

					Z	K-	
R^3 is H;	K, Y and 2	Z are CH					
<u>R</u> 1	<u>R</u> 4	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 4	<u>R5</u>	<u>R</u> 9
Н	н	CF ₃	CF ₃	н	H	OCF ₃	CF ₃
H	H	CF ₃	OCF ₃	н	H	OCF ₃	OCF ₃
H	Н	CF ₃	SCF ₃	н	H	OCF ₃	SCF ₃
H	H	CF ₃	OCHF ₂	н	H	OCF ₃	OCHF ₂
H	H	CF ₃	SCHF ₂	н	H	OCF ₃	SCHF ₂
H	н	CF ₃	C_2F_5	н	H	OCF ₃	C_2F_5
H	H	CF ₃	Cl	н	H	OCF ₃	Cl
H	H	CF ₃	SCH ₂ CH ₃	н	H	OCF ₃	SCH ₂ CH ₃
H	Н	OCHF ₂	CF ₃	н	H	SCF ₃	CF ₃
H	Н	OCHF ₂	OCF ₃	Н	H	SCF ₃	OCF ₃
H	н	OCHF ₂	SCF ₃	н	H	SCF ₃	SCF ₃
H	H	OCHF ₂	OCHF ₂	н	H	SCF ₃	OCHF ₂
H	H	OCHF ₂	SCHF ₂	Н	H	SCF ₃	SCHF ₂
H	Н	OCHF ₂	C_2F_5	Н	H	SCF ₃	C_2F_5
H	Н	OCHF ₂	Cl	Н	H	SCF ₃	Cl
H	H	OCHF ₂	SCH ₂ CH ₃	Н	H	SCF ₃	SCH ₂ CH ₃
H	Н	SCHF ₂	CF ₃	н	H	Cl	CF ₃
H	Н	SCHF ₂	OCF ₃	н	H	Cl	OCF ₃
H	H	SCHF ₂	SCF ₃	H	H	Cl	SCF ₃
H	Н	SCHF ₂	OCHF ₂	н	H	Cl	OCHF ₂
H	\mathbf{H}	schf ₂	SCHF ₂	Н	H	Cl	SCHF ₂
H	H	SCHF ₂	C_2F_5	Н	H	Cl	C_2F_5
H	H	SCHF ₂	CI	Н	H	Cl	Cl
H	H	SCHF ₂	SCH ₂ CH ₃	н	H	Cl	SCH ₂ CH ₃
H	CH ₃	CF ₃	CF ₃	Н	CH ₃	OCF ₃	CF ₃
H	CH ₃	CF ₃	OCF ₃	н	CH ₃	OCF ₃	OCF ₃
H	CH ₃	CF ₃	SCF ₃	н	CH ₃	OCF ₃	SCF ₃
н	CH ₃	CF ₃	OCHF ₂	н	CH ₃	OCF ₃	OCHF ₂
H	CH ₃	CF ₃	SCHF ₂	н	CH ₃	OCF ₃	SCHF ₂
Н	CH ₃	CF ₃	C ₂ F ₅	н	CH ₃	OCF ₃	C ₂ F ₅

H	· CH ₃	CF ₃	Cl	н	CH ₃	OCF ₃	CI
н	CH ₃	CF ₃	SCH ₂ CH ₃	н	CH ₃	OCF ₃	SCH ₂ CH ₃
H	CH ₃	OCHF ₂	CF ₃	н	CH ₃	SCF ₃	CF ₃
H	CH ₃	OCHF ₂	OCF ₃	н	CH ₃	SCF ₃	OCF ₃
H	CH ₃	OCHF ₂	SCF ₃	н	CH ₃	SCF ₃	SCF ₃
H	CH ₃	OCHF ₂	OCHF ₂	н	CH ₃	SCF ₃	OCHF ₂
Н	CH ₃	OCHF ₂	SCHF ₂	н	CH ₃	SCF ₃	SCHF ₂
H	CH ₃	OCHF ₂	C_2F_5	н	CH ₃	SCF ₃	C ₂ F ₅
H	CH ₃	OCHF ₂	Cl ·	н	CH ₃	SCF ₃	Cl
H	CH ₃	OCHF ₂	SCH ₂ CH ₃	н	CH ₃	SCF ₃	SCH ₂ CH ₃
H	CH ₃	SCHF ₂	CF ₃	н	CH ₃	Cl	CF ₃
H	CH ₃	SCHF ₂	OCF ₃	н	CH ₃	Cl	OCF ₃
H	CH ₃	SCHF ₂	SCF ₃	н	CH ₃	Cl	SCF ₃
H	CH ₃	SCHF ₂	OCHF ₂	н	CH ₃	Cì	OCHF ₂
H	СН3	SCHF ₂	SCHF ₂	H	CH ₃	Cl	SCHF ₂
H	CH ₃	SCHF ₂	C_2F_5	·H	CH ₃	Cl	C_2F_5
H	CH ₃	SCHF ₂	Cl	н	CH ₃	Cl	Cl
H	CH ₃	SCHF ₂	SCH ₂ CH ₃	н	CH ₃	Cl	SCH ₂ CH ₃
H	F	CF ₃	CF ₃	н	F	OCF ₃	CF ₃
H	F	CF ₃	OCF ₃	н	F	OCF ₃	OCF ₃
H	F	CF ₃	SCF ₃	Н	F	OCF ₃	SCF ₃
H	F	CF ₃	OCHF ₂	н	F	OCF ₃	OCHF ₂
H	F	CF ₃	SCHF ₂	н.	F	OCF ₃	SCHF ₂
·H	F	CF ₃	C_2F_5	н	F	OCF ₃	C_2F_5
H	F	CF ₃	Cl	н	F	OCF ₃	CI
H	F	CF ₃	SCH ₂ CH ₃	H	F	OCF ₃	SCH ₂ CH ₃
H	F	OCHF ₂	CF ₃	н	F	SCF ₃	CF ₃
H	F	OCHF ₂	OCF ₃	Н	F	SCF ₃	OCF ₃
H	F	OCHF ₂	SCF ₃	Н	F	SCF ₃	SCF ₃
H	F	OCHF ₂	OCHF ₂	Н	F	SCF ₃	
Н	F	OCHF ₂	SCHF ₂	н	F	SCF ₃	_
H	F	OCHF ₂	C_2F_5	H	F	SCF ₃	
H	F	OCHF ₂	Cl	Н	F	SCF ₃	Cl
H	F	OCHF ₂	SCH ₂ CH ₃	н	F	SCF ₃	SCH ₂ CH ₃
H	F	SCHF ₂	CF ₃	н	F	Cl	CF ₃
H	F	SCHF ₂	OCF ₃	Н	F	Cl	OCF ₃
H	F	SCHF ₂	SCF ₃	Н	F	Cl	SCF ₃
H	F	SCHF ₂	OCHF ₂	н	F	Cl	OCHF ₂

H	F	schf ₂	schf ₂	н	F	CI	SCHF ₂
H	F	SCHF ₂	C_2F_5	н	F	Cl	C_2F_5
H	F	SCHF ₂	Cl	н	F	Cl	Cl
Н	F	SCHF ₂	SCH ₂ CH ₃	н	F	CI	SCH ₂ CH ₃
H	Cl	CF ₃	CF ₃	Н	Cl	OCF ₃	CF ₃
H	Cl	CF ₃	OCF ₃	Н	Cl	OCF ₃	OCF ₃
H	Ci	CF ₃	SCF ₃	н	Cl	OCF ₃	SCF ₃
H	Cl	CF ₃	OCHF ₂	н	Cl	OCF ₃	OCHF ₂
H	CI	CF ₃	SCHF ₂	н	Cl	OCF ₃	SCHF ₂
H	Cl	CF ₃	C ₂ F ₅	н	Cl	OCF ₃	C_2F_5
H	CI	CF ₃	Cl	Н	Cl	OCF ₃	Cl
H	Cl	CF ₃	SCH ₂ CH ₃	H	Cl	OCF ₃	SCH ₂ CH ₃
H	Cl	OCHF ₂	CF ₃	Н	Cl	SCF ₃	CF ₃
H	Cl	OCHF ₂	OCF ₃	Н	Cl	SCF ₃	OCF ₃
H	Cl	OCHF ₂	SCF ₃	Н	Cl	SCF ₃	SCF ₃
H	Cl	OCHF ₂	OCHF ₂	Н	Cl	SCF ₃	OCHF ₂
H	Cl	OCHF ₂	SCHF ₂	н	Cl	SCF ₃	SCHF ₂
H	Cl	OCHF ₂	C_2F_5	н	Cl	SCF ₃	C_2F_5
H	Cl	OCHF ₂	Cl	н	Cl	SCF ₃	CI
H	CI	OCHF ₂	SCH ₂ CH ₃	н	CI	SCF ₃	SCH ₂ CH ₃
H	Cl	SCHF ₂	CF ₃	Н	Cl	Cl	CF ₃
H	Cl	SCHF ₂	OCF ₃	H	Cl	Cl	OCF ₃
H	Cl	SCHF ₂	SCF ₃	Н	Cl	Cl	SCF ₃
H	CI	SCHF ₂	OCHF ₂	Н	,Cl	Cl .	OCHF ₂
H	CI	SCHF ₂	SCHF ₂	Н	Cl	Cl	SCHF ₂
H	CI	SCHF ₂	C_2F_5	H	Cl	Cl	C_2F_5
H	Cl	SCHF ₂	Cl	Н	Cl	CI	Cl
H	CI	SCHF ₂	SCH ₂ CH ₃	Н	Cl	CI	SCH ₂ CH ₃
CH ₃	H	CF ₃	CF ₃	CH ₃	H	OCF ₃	CF ₃
CH ₃	H	CF ₃	OCF ₃	CH ₃	H	OCF ₃	OCF ₃
CH ₃	H	CF ₃	SCF ₃	CH ₃	H	OCF ₃	SCF ₃
CH ₃	H	CF ₃	OCHF ₂	CH ₃	H	OCF ₃	OCHF ₂
CH ₃	H	CF ₃	SCHF ₂	CH ₃	H	OCF ₃	SCHF ₂
CH ₃	H	CF ₃	C ₂ F ₅	CH ₃	H	OCF ₃	C_2F_5
CH ₃	H	CF ₃	Cl	CH ₃	H	OCF ₃	Cl
CH ₃	H	CF ₃	SCH ₂ CH ₃	CH ₃	H	OCF ₃	SCH ₂ CH ₃
CH ₃	H	OCHF ₂	CF ₃	CH ₃	H	SCF ₃	CF ₃
CH ₃	H	OCHF ₂	OCF ₃	CH ₃	Ή	SCF ₃	OCF ₃

•							
CH ₃	н	OCHF ₂	SCF ₃	СН3	H	SCF ₃	SCF ₃
CH ₃	H	OCHF ₂	OCHF ₂	СН3	H	SCF ₃	OCHF ₂
CH ₃	н	OCHF ₂	SCHF ₂	СН3	H	SCF ₃	SCHF ₂
CH ₃	н	OCHF ₂	C_2F_5	СН3	Н	SCF ₃	C_2F_5
СН3	н	OCHF ₂	Cl	СН3	H	SCF ₃	Cl
CH ₃	Н	OCHF ₂	SCH ₂ CH ₃	CH ₃	H	SCF ₃	SCH ₂ CH ₃
СН3	Н	SCHF ₂	CF ₃	СН3	Н	Cl	CF ₃
CH ₃	H	SCHF ₂	OCF ₃	CH ₃	H	Cl	OCF ₃
CH ₃	H	SCHF ₂	SCF ₃	CH ₃	H	Cl	SCF ₃
CH ₃	н	SCHF ₂	OCHF ₂	СН3	H	Cl	OCHF ₂
СН3	H	SCHF ₂	SCHF ₂	CH ₃	H	CI	SCHF ₂
CH ₃	н	SCHF ₂	C_2F_5	CH ₃	. Н	Cl	C_2F_5
CH ₃	H	SCHF ₂	Cl	CH ₃	H	Cl	Cl
СН3	H	SCHF ₂	SCH ₂ CH ₃	CH ₃	H	Ci	SCH ₂ CH ₃
CH ₃	CH ₃	CF ₃	CF ₃	CH ₃	CH ₃	OCF ₃	CF ₃
CH ₃	CH ₃	CF ₃	OCF ₃	СН3	CH ₃	OCF ₃	OCF ₃
CH ₃	CH ₃	CF ₃	SCF ₃	CH ₃	CH ₃	OCF ₃	SCF ₃
CH ₃	CH ₃	CF ₃	OCHF ₂	CH ₃	CH ₃	OCF ₃	OCHF ₂
CH ₃	CH ₃	CF ₃	SCHF ₂	CH ₃	CH ₃	OCF ₃	SCHF ₂
CH ₃	CH ₃	CF ₃	C ₂ F ₅	CH ₃	CH ₃	OCF ₃	C_2F_5
CH ₃	CH ₃	CF ₃	Cl	СН3	CH ₃	OCF ₃	Cl
CH ₃	· CH ₃	CF ₃	SCH ₂ CH ₃	СН3	CH ₃	OCF ₃	SCH ₂ CH ₃
CH ₃	CH ₃	OCHF ₂	CF ₃	CH ₃	CH ₃	SCF ₃	CF ₃
CH ₃	CH ₃	OCHF ₂	OCF ₃	CH ₃	CH ₃	SCF ₃	OCF ₃
CH ₃	CH ₃	OCHF ₂	SCF ₃	CH ₃	CH ₃	SCF ₃	SCF ₃
CH ₃	CH ₃	OCHF ₂	OCHF ₂	CH ₃	CH ₃	SCF ₃	OCHF ₂
CH ₃	CH ₃	OCHF ₂	SCHF ₂	CH ₃	CH ₃	SCF ₃	SCHF ₂
CH ₃	CH ₃	OCHF ₂	C ₂ F ₅	CH ₃	CH ₃	SCF ₃	C_2F_5
CH ₃	CH ₃	OCHF ₂	Cl	CH ₃	CH ₃	SCF ₃	Cl
CH ₃	CH ₃	OCHF ₂	SCH ₂ CH ₃	CH ₃	CH ₃	SCF ₃	SCH ₂ CH ₃
CH ₃	CH ₃	SCHF ₂	CF ₃	CH ₃	CH ₃	Cl	CF ₃
CH ₃	CH ₃	SCHF ₂	OCF ₃	CH ₃	CH ₃	Cl	OCF ₃
CH ₃	CH ₃	SCHF ₂	SCF ₃	CH ₃	CH ₃	Cl	SCF ₃
CH ₃	CH ₃	schf ₂	OCHF ₂	CH ₃	CH ₃	CI	OCHF ₂
CH ₃	CH ₃	SCHF ₂	SCHF ₂	CH ₃	CH ₃	CI	SCHF ₂
CH ₃	CH ₃	SCHF ₂	C ₂ F ₅	CH ₃	CH ₃	Cl	C_2F_5
CH ₃	CH ₃	SCHF ₂	Cl	CH ₃	CH ₃	Cl	Cl
CH ₃	CH ₃	SCHF ₂	SCH ₂ CH ₃	CH ₃	CH ₃	Cl	SCH ₂ CH ₃

CH ₃	F	CF ₃	CF ₃	CH ₃	F	OCF ₃	CF ₃
CH ₃	F	CF ₃	OCF ₃	СН3	F	OCF ₃	OCF ₃
CH ₃	F	CF ₃	SCF ₃	CH ₃	F	OCF ₃	SCF ₃
CH ₃	F	CF ₃	OCHF ₂	CH ₃	F	OCF ₃	OCHF ₂
CH ₃	F	CF ₃	SCHF ₂	СН3	F	OCF ₃	SCHF ₂
CH ₃	F	CF ₃	C_2F_5	СН3	F	OCF ₃	C_2F_5
CH ₃	F	CF ₃	Cl	CH ₃	F	OCF ₃	Cl
CH ₃	F	CF ₃	SCH ₂ CH ₃	CH ₃	F	OCF ₃	SCH ₂ CH ₃
CH ₃	F	OCHF ₂	CF ₃	СН3	F	SCF ₃	CF ₃
CH ₃	F	OCHF ₂	OCF ₃	CH ₃	F	SCF ₃	OCF ₃
CH ₃	F	OCHF ₂	SCF ₃	CH ₃	F	SCF ₃	SCF ₃
CH ₃	F	OCHF ₂	OCHF ₂	CH ₃	F	SCF ₃	OCHF ₂
CH ₃	F	OCHF ₂	SCHF ₂	CH ₃	F	SCF ₃	SCHF ₂
CH ₃	F	OCHF ₂	C ₂ F ₅	СН3	F	SCF ₃	C_2F_5
CH ₃	F	OCHF ₂	Cl	CH ₃	F	SCF ₃	Cl
CH ₃	F	OCHF ₂	SCH ₂ CH ₃	CH ₃	F	SCF ₃	SCH ₂ CH ₃
CH ₃	F	SCHF ₂	CF ₃	CH ₃	F	Cl	CF ₃
CH ₃	F	SCHF ₂	OCF ₃	CH ₃	F	Cl	OCF ₃
CH ₃	F	SCHF ₂	SCF ₃	CH ₃	F	Cl	SCF ₃
CH ₃	F	SCHF ₂	OCHF ₂	CH ₃	F	· Cl	OCHF ₂
CH ₃	F	SCHF ₂	SCHF ₂	СН3	F	Cl	SCHF ₂
CH ₃	F	SCHF ₂	C_2F_5	CH ₃	F	Cl	C_2F_5
CH ₃	F	SCHF ₂	Cl :	CH ₃	F	CI	Cl
CH ₃	F	SCHF ₂	SCH ₂ CH ₃	CH ₃	F	Cl	SCH ₂ CH ₃
CH ₃	CI	CF ₃	CF ₃	CH ₃	Cl	OCF ₃	CF ₃
CH ₃	Cl	CF ₃	OCF ₃	CH ₃	Cl	OCF ₃	OCF ₃
CH ₃	Cl	CF ₃	SCF ₃	CH ₃	CI	OCF ₃	SCF ₃
CH ₃	Cl	CF ₃	OCHF ₂	CH ₃	Cl	OCF ₃	OCHF ₂
CH ₃	Cl	CF ₃	SCHF ₂	СН3	Cl	OCF ₃	SCHF ₂
CH ₃	Cl	CF ₃	C ₂ F ₅	СН3	Cl	OCF ₃	C_2F_5
CH ₃	Cl	CF ₃	Cl	СН3	Cl	OCF ₃	Cl
CH ₃	Cl	CF ₃	SCH ₂ CH ₃	CH ₃	CI	OCF ₃	SCH ₂ CH ₃
CH ₃	Cl	OCHF ₂	CF ₃	CH ₃	Cl	SCF ₃	CF ₃
CH ₃	Cl	OCHF ₂	OCF ₃	CH ₃	Cl	SCF ₃	OCF ₃
CH ₃	CI	OCHF ₂	SCF ₃	CH ₃	Cl	SCF ₃	SCF ₃
CH ₃	Cl	OCHF ₂	OCHF ₂	СН3	Cl	SCF ₃	OCHF ₂
CH ₃	Cl	OCHF ₂	SCHF ₂	СН3	Ci	SCF ₃	SCHF ₂
CH ₃	Cl	OCHF ₂	C ₂ F ₅	CH ₃	Cl	SCF ₃	C_2F_5

				2.00			
CH ₃	Cl	OCHF ₂	CI	СН3	Cl	SCF ₃	CI
CH ₃	Cl	OCHF ₂	SCH ₂ CH ₃	СН3	Cl	SCF ₃	SCH ₂ CH ₃
CH ₃	CI	SCHF ₂	CF ₃	СН3	Cl	Cl	CF ₃
CH ₃	Cì	SCHF ₂	OCF ₃	СН3	Cl	Cl	OCF ₃
CH ₃	Cl	SCHF ₂	SCF ₃	СН3	Cl	Cl	SCF ₃
CH ₃	CI	SCHF ₂	OCHF ₂	CH ₃	CI	Cl	OCHF ₂
CH ₃	Cl	SCHF ₂	SCHF ₂	CH ₃	CI	Cl	SCHF ₂
CH ₃	Cl	SCHF ₂	C ₂ F ₅	СН3	Cl	CI	C_2F_5
CH ₃	Cl	SCHF ₂	CI	CH ₃	CI	C1	CI
CH ₃	Cl	SCHF ₂	SCH ₂ CH ₃	CH ₃	Cì	Cl	SCH ₂ CH ₃
осн3	H	CF ₃	CF ₃	осн ₃	H	OCF ₃	CF ₃
OCH ₃	H	CF ₃	OCF ₃	OCH ₃	H	OCF ₃	OCF ₃
OCH ₃	H	CF ₃	SCF ₃	осн3	H	OCF ₃	SCF ₃
OCH ₃	H	CF ₃	OCHF ₂	осн3	H	OCF ₃	OCHF ₂
OCH ₃	H	CF ₃	SCHF ₂	осн3	H	OCF ₃	SCHF ₂
OCH ₃	H	CF ₃	C_2F_5	осн ₃	H	OCF ₃	C_2F_5
OCH ₃	H	CF ₃	CI	OCH ₃	H	OCF ₃	Cl
OCH ₃	H	CF ₃	SCH ₂ CH ₃	OCH ₃	H	OCF ₃	SCH ₂ CH ₃
OCH ₃	H	OCHF ₂	CF ₃	осн3	H	SCF ₃	CF ₃
OCH ₃	H	OCHF ₂	OCF ₃	осн3	H	SCF ₃	OCF ₃
OCH ₃	H	OCHF ₂	SCF ₃	OCH ₃	. • H	SCF ₃	SCF ₃
OCH ₃	H	OCHF ₂	OCHF ₂	OCH ₃	H	SCF ₃	OCHF ₂
OCH ₃	H	OCHF ₂	SCHF ₂	OCH ₃	H	SCF ₃	SCHF ₂
OCH ₃	H	OCHF ₂	C ₂ F ₅	OCH ₃	H	SCF ₃	C_2F_5
OCH ₃	H	OCHF ₂	Cl	OCH ₃	H	SCF ₃	Ci
OCH ₃	H	OCHF ₂	SCH ₂ CH ₃	OCH ₃	H	SCF ₃	SCH ₂ CH ₃
OCH ₃	H	SCHF ₂	CF ₃	OCH ₃	Н	Cl	CF ₃
OCH ₃	H	SCHF ₂	OCF ₃	OCH ₃	H	Cl	OCF ₃
OCH ₃	H	SCHF ₂	SCF ₃	OCH ₃	H	Cl	SCF ₃
OCH ₃	H	SCHF ₂	OCHF ₂	OCH ₃	H	Cl	OCHF ₂
OCH ₃	H	SCHF ₂	SCHF ₂	OCH ₃	H	CI	SCHF ₂
OCH ₃	H	SCHF ₂	C ₂ F ₅	OCH ₃	Н	Cl	C_2F_5
OCH ₃	H	SCHF ₂	Cl	OCH ₃	Н	Cl	Cl
OCH ₃	H	SCHF ₂	SCH ₂ CH ₃	OCH ₃	H	Cl	SCH ₂ CH ₃
OCH ₃	CH ₃	CF ₃	CF ₃	OCH ₃	CH ₃	OCF ₃	CF ₃
OCH ₃	CH ₃	CF ₃	OCF ₃	OCH ₃	CH ₃	OCF ₃	OCF ₃
OCH ₃	CH ₃	CF ₃	SCF ₃	OCH ₃	CH ₃	OCF ₃	SCF ₃
OCH ₃	CH ₃	CF ₃	OCHF ₂	OCH ₃	CH ₃	OCF ₃	OCHF ₂

OCH ₃	CH ₃	CF ₃	SCHF ₂	осн3	CH ₃	OCF ₃	SCHF ₂
OCH ₃	CH ₃	CF ₃	C ₂ F ₅	OCH ₃	CH ₃	OCF ₃	C_2F_5
OCH ₃	CH ₃	CF ₃	Cl	осн3	CH ₃	OCF ₃	Cl
OCH ₃	CH ₃	CF ₃	SCH ₂ CH ₃	OCH ₃	CH ₃	OCF ₃	SCH ₂ CH ₃
OCH ₃	CH ₃	OCHF ₂	CF ₃	осн3	CH ₃	SCF ₃	CF ₃
осн3	CH ₃	OCHF ₂	OCF ₃	осн3	CH ₃	SCF ₃	OCF ₃
осн3	CH ₃	OCHF ₂	SCF ₃	OCH ₃	CH_3	SCF ₃	SCF ₃
OCH ₃	CH ₃	OCHF ₂	OCHF ₂	осн3	CH ₃	SCF ₃	OCHF ₂
осн3	CH ₃	OCHF ₂	SCHF ₂	осн3	CH ₃	SCF ₃	SCHF ₂
OCH ₃	CH ₃	OCHF ₂	C ₂ F ₅	OCH ₃	CH ₃	SCF ₃	C_2F_5
OCH ₃	CH ₃	OCHF ₂	CI	осн3	CH ₃	SCF ₃	Cl
OCH ₃	CH ₃	OCHF ₂	SCH ₂ CH ₃	осн3	CH ₃	SCF ₃	SCH ₂ CH ₃
OCH ₃	CH ₃	SCHF ₂	CF ₃	осн3	CH ₃	Cl	CF ₃
OCH ₃	CH ₃	SCHF ₂	OCF ₃	осн3	CH ₃	Cl	OCF ₃
OCH ₃	CH ₃	SCHF ₂	SCF ₃	OCH ₃	CH ₃	Cl	SCF ₃
OCH ₃	CH ₃	SCHF ₂	OCHF ₂	осн3	CH ₃	Cl	OCHF ₂
OCH ₃	CH ₃	SCHF ₂	SCHF ₂	OCH ₃	СН3	Cl	SCHF ₂
OCH ₃	CH ₃	SCHF ₂	C ₂ F ₅	OCH ₃	CH ₃	Cl	C_2F_5
OCH ₃	CH ₃	SCHF ₂	Cl	OCH ₃	CH ₃	Cl	Cl
OCH ₃	CH ₃	SCHF ₂	SCH ₂ CH ₃	OCH ₃	CH ₃	Cl	SCH ₂ CH ₃
OCH ₃	F	CF ₃	CF ₃	OCH ₃	F	OCF ₃	CF ₃
OCH ₃	F	CF ₃	OCF ₃	OCH ₃	F	OCF ₃ .	OCF ₃
OCH ₃	F	CF ₃	SCF ₃	OCH ₃	F	OCF ₃	SCF ₃
OCH ₃	F	CF ₃	OCHF ₂	OCH ₃	F	OCF ₃	OCHF ₂
OCH ₃	· F	CF ₃	SCHF ₂	OCH ₃	F	OCF ₃	SCHF ₂
OCH ₃	F	CF ₃	C ₂ F ₅	OCH ₃	F	OCF ₃	C_2F_5
OCH ₃	F	CF ₃	Cl	осн3	F	OCF ₃	Cl
OCH ₃	F	CF ₃	SCH ₂ CH ₃	OCH ₃	F	OCF ₃	SCH ₂ CH ₃
OCH ₃	F	OCHF ₂	CF ₃	OCH ₃	F	SCF ₃	CF ₃
OCH ₃	F	OCHF ₂	OCF ₃	OCH ₃	F	SCF ₃	OCF ₃
OCH ₃	F	OCHF ₂	SCF ₃	осн3	F	SCF ₃	SCF ₃
OCH ₃	F	OCHF ₂	OCHF ₂	OCH ₃	F	SCF ₃	OCHF ₂
OCH ₃	F	OCHF ₂	SCHF ₂	OCH ₃	F	SCF ₃	SCHF ₂
OCH ₃	F	OCHF ₂	C ₂ F ₅	осн3	F	SCF ₃	C_2F_5
OCH ₃	F	OCHF ₂	Cl	осн3	F	SCF ₃	Cl
осн ₃	F	OCHF ₂		осн3	F	SCF ₃	SCH ₂ CH ₃
OCH ₃	F	SCHF ₂	CF ₃	осн3	F	Cl	CF ₃
OCH ₃	F	SCHF ₂	OCF ₃	OCH ₃	F	CI	OCF ₃

				2			
OCH ₃	F	SCHF ₂	SCF ₃	осн3	F	Cl	SCF ₃
OCH ₃	F	SCHF ₂	OCHF ₂	OCH ₃	F	CI	OCHF ₂
OCH ₃	F	SCHF ₂	SCHF ₂	осн3	F	Cl	SCHF ₂
OCH ₃	F	SCHF ₂	C ₂ F ₅	осн ₃	F	Cl ·	C_2F_5
OCH ₃	F	SCHF ₂	Cl	OCH ₃	F	Cl	Cl
OCH ₃	F	SCHF ₂	SCH ₂ CH ₃	OCH ₃	F	Cl	SCH ₂ CH ₃
OCH ₃	Cl	CF ₃	CF ₃	OCH ₃	Cl	OCF ₃	CF ₃
OCH ₃	C1	CF ₃	OCF ₃	осн3	Cl	OCF ₃	OCF ₃
OCH ₃	CI	CF ₃	SCF ₃	осн3	Cl	OCF ₃	SCF ₃
OCH ₃	Cl	CF ₃	OCHF ₂	OCH ₃	Cl	OCF ₃	OCHF ₂
OCH ₃	CI	CF ₃	schf ₂	OCH ₃	Cl	OCF ₃	SCHF ₂
OCH ₃	CI	CF ₃	C_2F_5	OCH ₃	Cl	OCF ₃	C_2F_5
OCH ₃	Cl	CF ₃	C)	OCH ₃	CÌ	OCF ₃	Cl
OCH ₃	Cl	CF ₃	SCH ₂ CH ₃	OCH ₃	Cl	OCF ₃	SCH ₂ CH ₃
OCH ₃	Cl	OCHF ₂	CF ₃	OCH ₃	Cl	SCF ₃	CF ₃
OCH ₃	Cl	OCHF ₂	OCF ₃	OCH ₃	Cl	SCF ₃	OCF ₃
OCH ₃	Cl	OCHF ₂	SCF ₃	OCH ₃	Cl	SCF ₃ .	SCF ₃
OCH ₃	CI	OCHF ₂	OCHF ₂	осн3	Cl	SCF ₃	OCHF ₂
OCH ₃	Cl	OCHF ₂	SCHF ₂	осн3	Cl	SCF ₃	SCHF ₂
OCH ₃	Cl	OCHF ₂	C ₂ F ₅	OCH ₃	Cl	SCF ₃	C_2F_5
OCH ₃	. CI	OCHF ₂	Cl	OCH ₃	Cl	SCF ₃	Cl
OCH ₃	Cl	OCHF ₂	SCH ₂ CH ₃	OCH ₃	Cl	SCF ₃	SCH ₂ CH ₃
OCH ₃	Cl	SCHF ₂	CF ₃	OCH ₃	Cl	Cl	CF ₃
OCH ₃	Cl	SCHF ₂	OCF ₃	OCH ₃	Cl	Cl	OCF ₃
OCH ₃	Cl	SCHF ₂	SCF ₃	OCH ₃	Cl	Cl	SCF ₃
OCH ₃	Cl	SCHF ₂	OCHF ₂	OCH ₃	Cl	Cl	OCHF ₂
OCH ₃	Cl	SCHF ₂	schf ₂	OCH ₃	Cl	Cl	SCHF ₂
OCH ₃	Cl	SCHF ₂	C ₂ F ₅	осн ₃	Cl	Ci	C_2F_5
OCH ₃	Cl	SCHF ₂	Cl	OCH ₃	Cl	Cl	Cl
OCH ₃	Cl	SCHF ₂	SCH ₂ CH ₃	OCH ₃	CI	CI	SCH ₂ CH ₃
CH ₂ CH ₃	H	CF ₃	CF ₃	CH ₂ CH ₃	Н	OCF ₃	
CH ₂ CH ₃	H	CF ₃	OCF ₃	CH ₂ CH ₃	H	OCF ₃	OCF ₃
CH ₂ CH ₃	H	CF ₃	SCF ₃	CH ₂ CH ₃	H	OCF ₃	_
CH ₂ CH ₃	H	CF ₃		CH ₂ CH ₃	H	OCF ₃	
CH ₂ CH ₃	H	CF ₃	SCHF ₂	CH ₂ CH ₃	H	OCF ₃	_
CH ₂ CH ₃		CF ₃	C ₂ F ₅	CH ₂ CH ₃		OCF ₃	
CH ₂ CH ₃	H	CF ₃	Cl	CH ₂ CH ₃		OCF ₃	Cl
CH ₂ CH ₃	H	CF ₃	SCH ₂ CH ₃	CH ₂ CH ₃	H	OCF ₃	SCH ₂ CH ₃

				o.			
CH ₂ CH ₃	H	OCHF ₂	CF ₃	СН2СН3	Н	SCF ₃	CF ₃
CH ₂ CH ₃	H	OCHF ₂	OCF ₃	СН2СН3	Н	SCF ₃	OCF ₃
CH ₂ CH ₃	Н	OCHF ₂	SCF ₃	CH ₂ CH ₃	H	SCF ₃	SCF ₃
CH ₂ CH ₃	Н	OCHF ₂	OCHF ₂	СН2СН3	H	SCF ₃	OCHF ₂
СН2СН3	H	OCHF ₂	SCHF ₂	CH ₂ CH ₃	Н	SCF ₃	SCHF ₂
СH ₂ СH ₃	Н	OCHF ₂	C ₂ F ₅	СН2СН3	Н	SCF ₃	C_2F_5
CH ₂ CH ₃	н	OCHF ₂	Cl	СН2СН3	H	SCF ₃	Cl
CH ₂ CH ₃	H	OCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	н	SCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	H	SCHF ₂	CF ₃	CH ₂ CH ₃	H	Cl	CF ₃
CH ₂ CH ₃	H	SCHF ₂	OCF ₃	CH ₂ CH ₃	H	CI	OCF ₃
CH ₂ CH ₃	H	SCHF ₂	SCF ₃	СН2СН3	H	Ci	SCF ₃
CH ₂ CH ₃	H	SCHF ₂	OCHF ₂	CH ₂ CH ₃	H	CI	OCHF ₂
CH ₂ CH ₃	H	SCHF ₂	SCHF ₂	CH ₂ CH ₃	Н	Cl	SCHF ₂
CH ₂ CH ₃	Н	SCHF ₂	C_2F_5	CH ₂ CH ₃	H	Cl	C_2F_5
CH ₂ CH ₃	H	SCHF ₂	Cl	CH ₂ CH ₃	H	Cl	Cl
CH ₂ CH ₃	H	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	H	Cl	SCH ₂ CH ₃
CH ₂ CH ₃	CH ₃	CF ₃	CF ₃	CH ₂ CH ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	CH ₃	CF ₃	OCF ₃	CH ₂ CH ₃	CH ₃	OCF ₃	OCF ₃
CH ₂ CH ₃	CH ₃	CF ₃	SCF ₃	СН2СН3	CH ₃	OCF ₃	SCF ₃
CH ₂ CH ₃	CH ₃	CF ₃	OCHF ₂	CH ₂ CH ₃	CH ₃	OCF ₃	OCHF ₂
CH ₂ CH ₃	CH ₃	CF ₃	SCHF ₂	CH ₂ CH ₃	CH ₃	OCF ₃	SCHF ₂
CH ₂ CH ₃	CH ₃	CF ₃	C_2F_5	CH ₂ CH ₃	CH ₃	OCF ₃	C_2F_5
CH ₂ CH ₃	CH ₃	CF ₃	Cl	CH ₂ CH ₃	CH ₃	OCF ₃	Cl
CH ₂ CH ₃	CH ₃	CF ₃	SCH ₂ CH ₃	CH ₂ CH ₃	CH ₃	OCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	CH ₃	OCHF ₂	CF ₃	CH ₂ CH ₃	CH ₃	SCF ₃	CF ₃
CH ₂ CH ₃	CH ₃	OCHF ₂	OCF ₃	CH ₂ CH ₃	CH ₃	SCF ₃	OCF ₃
CH ₂ CH ₃	CH ₃	OCHF ₂	SCF ₃	CH ₂ CH ₃	CH ₃	SCF ₃	SCF ₃
CH ₂ CH ₃	CH ₃	OCHF ₂	OCHF ₂	CH ₂ CH ₃	CH ₃	SCF ₃	OCHF ₂
CH ₂ CH ₃	CH ₃	OCHF ₂	SCHF ₂	CH ₂ CH ₃	CH ₃	SCF ₃	SCHF ₂
CH ₂ CH ₃	CH ₃	OCHF ₂	C ₂ F ₅	CH ₂ CH ₃	CH ₃	SCF ₃	C_2F_5
CH ₂ CH ₃	CH ₃	OCHF ₂	Cl	CH ₂ CH ₃	CH ₃	SCF ₃	Cl
CH ₂ CH ₃	CH ₃	OCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	CH ₃	SCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	CH ₃	SCHF ₂	CF ₃	CH ₂ CH ₃	CH ₃	Cl	CF ₃
CH ₂ CH ₃	CH ₃	SCHF ₂	OCF ₃	CH ₂ CH ₃	CH ₃	Cl	OCF ₃
CH ₂ CH ₃	CH ₃	SCHF ₂	SCF ₃	CH ₂ CH ₃	CH ₃	Cl	SCF ₃
CH ₂ CH ₃	сн3	SCHF ₂	OCHF ₂	CH ₂ CH ₃	CH ₃	Cl	OCHF ₂
CH ₂ CH ₃	СН3	SCHF ₂	SCHF ₂	CH ₂ CH ₃	CH ₃	Cl	SCHF ₂
CH ₂ CH ₃	CH ₃	schf ₂	C ₂ F ₅	CH ₂ CH ₃	CH ₃	Cl	C_2F_5

CH ₂ CH ₃	CH ₃	SCHF ₂	Cl	CH ₂ CH ₃	CH ₃	Cl	Cl
CH ₂ CH ₃	CH ₃	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	CH ₃	CI	SCH ₂ CH ₃
CH ₂ CH ₃	F	CF ₃	CF ₃	СН2СН3	F	OCF ₃	CF ₃
CH ₂ CH ₃	F	CF ₃	OCF ₃	CH ₂ CH ₃	F	OCF ₃	OCF ₃
CH ₂ CH ₃	F	CF ₃	SCF ₃	СН ₂ СН ₃	F	ocr ₃	SCF ₃
CH ₂ CH ₃	F	CF ₃	OCHF ₂	СН ₂ СН ₃	F	OCF ₃	OCHF ₂
CH ₂ CH ₃	F	CF ₃	SCHF ₂	CH ₂ CH ₃	F	OCF ₃	SCHF ₂
CH ₂ CH ₃	F	CF ₃	C ₂ F ₅	CH ₂ CH ₃	F	OCF ₃	C ₂ F ₅
CH ₂ CH ₃	F	CF ₃	CI	CH ₂ CH ₃	F	OCF ₃	Cl
CH ₂ CH ₃	F	CF ₃	SCH ₂ CH ₃	СН2СН3	F	OCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	F	OCHF ₂	CF ₃	CH ₂ CH ₃	F	SCF ₃	CF ₃
CH ₂ CH ₃	F	OCHF ₂	OCF ₃	CH ₂ CH ₃	F	SCF ₃	OCF ₃
CH ₂ CH ₃	F	OCHF ₂	SCF ₃	СН ₂ СН ₃	F	SCF ₃	SCF ₃
CH ₂ CH ₃	F	OCHF ₂	OCHF ₂	CH ₂ CH ₃	F	SCF ₃	OCHF ₂
CH ₂ CH ₃	F	OCHF ₂	SCHF ₂	CH ₂ CH ₃	F	SCF ₃	SCHF ₂
CH ₂ CH ₃	F	OCHF ₂	C ₂ F ₅	CH ₂ CH ₃	F	SCF ₃	C_2F_5
CH ₂ CH ₃	F	OCHF ₂	Cl	CH ₂ CH ₃	F	SCF ₃	Cl
CH ₂ CH ₃	F	OCHF ₂	SCH ₂ CH ₃	СH ₂ CH ₃	F	SCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	F	SCHF ₂	CF ₃	СH ₂ CH ₃	F	Cl	CF ₃
CH ₂ CH ₃	F	SCHF ₂	OCF ₃	СH ₂ CH ₃	F	Cl	OCF ₃
CH ₂ CH ₃	. F	SCHF ₂	SCF ₃	CH ₂ CH ₃	F	Cl .	SCF ₃
CH ₂ CH ₃	, F	SCHF ₂	OCHF ₂	СH ₂ CH ₃	F	Cl	OCHF ₂
CH ₂ CH ₃	F	SCHF ₂	SCHF ₂	CH ₂ CH ₃	F ·	Cl	SCHF ₂
CH ₂ CH ₃	F	SCHF ₂	C ₂ F ₅	CH ₂ CH ₃	F	CI	C ₂ F ₅
CH ₂ CH ₃	F	SCHF ₂	Cl	CH ₂ CH ₃	F	Cl	Cl
CH ₂ CH ₃	F	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	F	Cl	SCH ₂ CH ₃
CH ₂ CH ₃	Cl	CF ₃	CF ₃	CH ₂ CH ₃	Cl	OCF ₃	CF ₃
CH ₂ CH ₃	Cl	CF ₃	OCF ₃	СН ₂ СН ₃	Cl	OCF ₃	OCF ₃
CH ₂ CH ₃	Cl	CF ₃	SCF ₃	CH ₂ CH ₃	Cl	OCF ₃	SCF ₃
CH ₂ CH ₃	Cl	CF ₃	OCHF ₂	CH ₂ CH ₃	Cl	OCF ₃	OCHF ₂
CH ₂ CH ₃	Cl	CF ₃	SCHF ₂	CH ₂ CH ₃	Cl	OCF ₃	SCHF ₂
CH ₂ CH ₃	Cl	CF ₃	C ₂ F ₅	CH ₂ CH ₃	Cl .	OCF ₃	C ₂ F ₅
CH ₂ CH ₃	Cl	CF ₃	Cl	CH ₂ CH ₃	C1	OCF ₃	Cl
CH ₂ CH ₃	Cl	CF ₃	SCH ₂ CH ₃	CH ₂ CH ₃	Cl	OCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	Cl	OCHF ₂	CF ₃	CH ₂ CH ₃	Cl	SCF ₃	CF ₃
CH ₂ CH ₃	Cl	OCHF ₂	OCF ₃	CH ₂ CH ₃	Cl	SCF ₃	OCF ₃
CH ₂ CH ₃	Cl	OCHF ₂	SCF ₃	CH ₂ CH ₃	CI	SCF ₃	SCF ₃
CH ₂ CH ₃	Cl	OCHF ₂	OCHF ₂	CH ₂ CH ₃	CI	SCF ₃	OCHF ₂

CH ₂ CH ₃	Cl	OCHF ₂	SCHF ₂	CH ₂ CH ₃	Cl	SCF ₃	SCHF ₂
CH ₂ CH ₃	Cl	OCHF ₂	C ₂ F ₅	СН ₂ СН ₃	Cl	SCF ₃	C_2F_5
CH ₂ CH ₃	Cl	OCHF ₂	Cl	СН2СН3	Cl	SCF ₃	Cl
CH ₂ CH ₃	Cl	OCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	CI	SCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	Cl	SCHF ₂	CF ₃	CH ₂ CH ₃	Cl	Cl	CF ₃
CH ₂ CH ₃	Cl	SCHF ₂	OCF ₃	CH ₂ CH ₃	Cl	CI	OCF ₃
CH ₂ CH ₃	CI	SCHF ₂	SCF ₃	CH ₂ CH ₃	Cl	Ci	SCF ₃
CH ₂ CH ₃	CI	SCHF ₂	OCHF ₂	CH ₂ CH ₃	Cl	CI	OCHF ₂
CH ₂ CH ₃	Cl	SCHF ₂	SCHF ₂	СН2СН3	Cl	Cl	SCHF ₂
CH ₂ CH ₃	Cl	SCHF ₂	C ₂ F ₅	CH ₂ CH ₃	Cl	Cl	C_2F_5
СH ₂ CH ₃	Cl	SCHF ₂	Cl	CH ₂ CH ₃	CI	Cl	Cl
CH ₂ CH ₃	Cl	SCHF ₂	SCH ₂ CH ₃	СН ₂ СН ₃	Cl	CI	SCH ₂ CH ₃
R ³ is F							
R ¹	<u>R</u> 4	R ⁵	R ⁹	R1	R ⁴	R ⁵	R ⁹
H	F	CF ₃	CF ₃	H	F	OCF ₃	CF ₃
н	F	CF ₃	OCF ₃	н	F	OCF ₃	OCF ₃
Н	F	CF ₃	SCF ₃	Н	F	OCF ₃	SCF ₃
н	F	CF ₃	OCHF ₂	н	F	OCF ₃	OCHF ₂
H	F	CF ₃	SCHF ₂	Н	F	OCF ₃	SCHF ₂
H	F	CF ₃	C ₂ F ₅	H	F	OCF ₃	C_2F_5
H	F	CF ₃	Cl	Н	F	OCF ₃	Cl
H	F	CF ₃	SCH ₂ CH ₃	Н.	F	OCF ₃	SCH ₂ CH ₃
H	F	OCHF ₂	CF ₃	Н	F	SCF ₃	CF ₃
Н	F	OCHF ₂	OCF ₃	H	F	SCF ₃	OCF ₃
H	F	OCHF ₂	SCF ₃	Н	F	SCF ₃	SCF ₃
_ H	F	OCHF ₂	OCHF ₂	H	F	SCF ₃	OCHF ₂
H	F	OCHF ₂	SCHF ₂	H	F	SCF ₃	SCHF ₂
H	F	OCHF ₂	C ₂ F ₅	H	F	SCF ₃	C_2F_5
H	F	OCHF ₂	Cl	H	F	SCF ₃	Ci
H	F	OCHF ₂	SCH ₂ CH ₃	H	F	SCF ₃	sch₂ch₃
H	F	SCHF ₂	CF ₃	H	F	Cl	CF ₃
H	F	SCHF ₂	OCF ₃	H	F	Cl	OCF ₃
H	F	SCHF ₂	SCF ₃	Н	F	Cl	SCF ₃
H	F	SCHF ₂	OCHF ₂	H	F	CI	OCHF ₂
H	F	schf ₂	SCHF ₂	Н	F	Cl	SCHF ₂
H	F	SCHF ₂	C ₂ F ₅	н	F	Ci	C ₂ F ₅
H	F	SCHF ₂	Cl	Н	F	Cl	Cl

н	F	SCHF ₂	SCH ₂ CH ₃	н	F	Cl	SCH ₂ CH ₃
CH ₃	F	CF ₃	CF ₃	CH ₃	F	OCF ₃	CF ₃
CH ₃	F	CF ₃	OCF ₃	CH ₃	F	OCF ₃	OCF ₃
CH ₃	F	CF ₃	SCF ₃	CH ₃	F	OCF ₃	SCF ₃
CH ₃	F	CF ₃	OCHF ₂	CH ₃	F	OCF ₃	OCHF ₂
CH ₃	F	CF ₃	SCHF ₂	СН3	F	OCF ₃	SCHF ₂
CH ₃	F	CF ₃	C ₂ F ₅	СН3	F	OCF ₃	C_2F_5
CH ₃	F	CF ₃	Cl	CH ₃	F	OCF ₃	Cl
CH ₃	F	CF ₃	SCH ₂ CH ₃	CH ₃	F	OCF ₃	SCH ₂ CH ₃
CH ₃	F	OCHF ₂	CF ₃	CH ₃	F	SCF ₃	CF ₃
CH ₃	F	OCHF ₂	OCF ₃	CH ₃	F	SCF ₃	OCF ₃
CH ₃	F	OCHF ₂	SCF ₃	CH ₃	F	SCF ₃	SCF ₃
CH ₃	F·	OCHF ₂	OCHF ₂	CH ₃	F	SCF ₃	OCHF ₂
CH ₃	F	OCHF ₂	SCHF ₂	CH ₃	F	SCF ₃	SCHF ₂
CH ₃	F	OCHF ₂	C_2F_5	CH ₃	F	SCF ₃	C_2F_5
CH ₃	F	OCHF ₂	Cl	CH ₃	F	SCF ₃	Cl
CH ₃	F	OCHF ₂	SCH ₂ CH ₃	CH ₃	F	SCF ₃	SCH ₂ CH ₃
CH ₃	F	SCHF ₂	CF ₃	CH ₃	F	Cl	CF ₃
CH ₃	F	SCHF ₂	OCF ₃	CH ₃	F	C1	OCF ₃
CH ₃	F	SCHF ₂	SCF ₃	CH ₃	F	C1	SCF ₃
CH ₃	F	SCHF ₂	OCHF ₂	CH ₃	F	Cl	OCHF ₂
CH ₃	F	SCHF ₂	SCHF ₂	CH ₃	F	Ci	SCHF ₂
CH ₃	F	SCHF ₂	C_2F_5	CH ₃	F	Cl	C_2F_5
CH ₃	F	SCHF ₂	Cl	CH ₃	F	Cl	Cl
CH ₃	F	SCHF ₂	SCH ₂ CH ₃	CH ₃	F	Cl	SCH ₂ CH ₃
OCH ₃	F	CF ₃	CF ₃	OCH ₃	F	OCF ₃	CF ₃
OCH ₃	F	CF ₃	OCF ₃	OCH ₃	F	OCF ₃	OCF ₃
OCH ₃	F	CF ₃	SCF ₃	OCH ₃	F	OCF ₃	SCF ₃
OCH ₃	F	CF ₃	OCHF ₂	OCH ₃	F	OCF ₃	OCHF ₂
OCH ₃	F	CF ₃	SCHF ₂	OCH ₃	F	OCF ₃	SCHF ₂
OCH ₃		CF ₃	C ₂ F ₅	OCH ₃	F	OCF ₃	C_2F_5
OCH ₃	F	CF ₃	Cl	OCH ₃	F	OCF ₃	· Cl
OCH ₃	F	CF ₃	SCH ₂ CH ₃	OCH ₃	F	OCF ₃	SCH ₂ CH ₃
OCH ₃	F	OCHF ₂	CF ₃	OCH ₃	F	SCF ₃	CF ₃
OCH ₃	F	OCHF ₂	OCF ₃	осн ₃	F	SCF ₃	OCF ₃
OCH ₃	F	OCHF ₂	SCF ₃	OCH ₃	F	SCF ₃	
OCH ₃	F	OCHF ₂		OCH ₃	F	SCF ₃	OCHF ₂
OCH ₃	F	OCHF ₂	SCHF ₂	осн3	F	SCF ₃	SCHF ₂

OCH ₃	F	OCHF ₂	C ₂ F ₅	осн3	F	SCF ₃	C_2F_5
OCH ₃	F	OCHF ₂	Cl	осн3	F	SCF ₃	Cl
OCH ₃	F	OCHF ₂	SCH ₂ CH ₃	OCH ₃	F	SCF ₃	SCH ₂ CH ₃
OCH ₃	F	SCHF ₂	CF ₃	OCH ₃	F	Cl	CF ₃
OCH ₃	F	SCHF ₂	OCF ₃	OCH ₃	F	Cl	OCF ₃
OCH ₃	F	SCHF ₂	SCF ₃	OCH ₃	F	Cl	SCF ₃
OCH ₃	F	SCHF ₂	OCHF ₂	OCH ₃	F	CI	OCHF ₂
OCH ₃	F	SCHF ₂	SCHF ₂	OCH ₃	F	C1	SCHF ₂
OCH ₃	F	SCHF ₂	C ₂ F ₅	осн3	F	Cl	C ₂ F ₅
OCH ₃	F	SCHF ₂	CI	осн3	F	CI	CI
OCH ₃	F	SCHF ₂	SCH ₂ CH ₃	осн3	F	CI	SCH ₂ CH ₃
CH ₂ CH ₃	F	CF ₃	CF ₃	CH ₂ CH ₃	F	OCF ₃	CF ₃
CH ₂ CH ₃	F	CF ₃	OCF ₃	CH ₂ CH ₃	F	OCF ₃	OCF ₃
CH ₂ CH ₃	F	CF ₃	SCF ₃	СН ₂ СН ₃	F	OCF ₃	SCF ₃
CH ₂ CH ₃	F	CF ₃	OCHF ₂	CH ₂ CH ₃	F	OCF ₃	OCHF ₂
CH ₂ CH ₃	F	CF ₃	SCHF ₂	CH ₂ CH ₃	F	OCF ₃	SCHF ₂
CH ₂ CH ₃	F	CF ₃	C_2F_5	СН ₂ СН ₃	F	OCF ₃	C_2F_5
CH ₂ CH ₃	F	CF ₃	Cl	CH ₂ CH ₃	F	OCF ₃	Cl
CH ₂ CH ₃	F	CF ₃	SCH ₂ CH ₃	СН ₂ СН ₃	F	OCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	F	OCHF ₂	CF ₃	СН ₂ СН ₃	F	SCF ₃	CF ₃
CH ₂ CH ₃	F	OCHF ₂	OCF ₃	CH ₂ CH ₃	F	SCF ₃	OCF ₃
CH ₂ CH ₃	F	OCHF ₂	SCF ₃	CH ₂ CH ₃	F	SCF ₃	SCF ₃
CH ₂ CH ₃	F	OCHF ₂	OCHF ₂	CH ₂ CH ₃	F	SCF ₃	OCHF ₂
CH ₂ CH ₃	F	OCHF ₂	SCHF ₂	СН ₂ СН ₃	F	SCF ₃	SCHF ₂
CH ₂ CH ₃	F	OCHF ₂	C_2F_5	CH ₂ CH ₃	F	SCF ₃	C ₂ F ₅
CH ₂ CH ₃	F	OCHF ₂	Cl	CH ₂ CH ₃	F	SCF ₃	Cl
CH ₂ CH ₃	F	OCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	F	SCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	F	SCHF ₂	CF ₃	CH ₂ CH ₃	F	Cl	CF ₃
CH ₂ CH ₃	F	SCHF ₂	OCF ₃	CH ₂ CH ₃	F .	Cl	OCF ₃
CH ₂ CH ₃	F	SCHF ₂	SCF ₃	CH ₂ CH ₃	F	Cl	SCF ₃
CH ₂ CH ₃	F	SCHF ₂	OCHF ₂	CH ₂ CH ₃	F	Cl	OCHF ₂
CH ₂ CH ₃	F	SCHF ₂	SCHF ₂	CH ₂ CH ₃	F	CI	SCHF ₂
CH ₂ CH ₃	F	SCHF ₂	C ₂ F ₅	CH ₂ CH ₃	F	Cl	C_2F_5
CH ₂ CH ₃	F	SCHF ₂	Cl	CH ₂ CH ₃	F	Cl	CI
CH ₂ CH ₃	F	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	F	Cl	SCH ₂ CH ₃

			ole 2		
	R ⁵	RI	N N	Y	
X7 X1		711	^_	Z R9	·
	and Z are		Ri	R ⁵	R ⁹
<u>R1</u>	<u>R</u> 5	R ⁹		_	CF ₃
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃ CH ₃	CF ₃ CF ₃	OCF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	_		CF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	ocra	0013
X and Y	are CH; Z is	<u>s N</u>			
<u>R¹</u>	<u>R</u> 5	<u>R</u> 9	$\underline{\mathbb{R}^1}$	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y	are N; Z is	CH			
R ¹	R ⁵	R ⁹	\mathbb{R}^1	R ⁵	<u>R⁹</u>
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
	Y and Z ar		D1	<u>R</u> 5	<u>R</u> 9
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	$\frac{\mathbb{R}^1}{\mathbb{C}^{1}}$		CF ₃
CH ₂ CH ₃		CF ₃	CH ₃	CF ₃	OCF ₃
	CF ₃		CH ₃	CF ₃	CF ₃
	OCF ₃	CF ₃	CH ₃	OCF ₃	
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCI3
Y is CH	X and Z ar	e N			
<u>R1</u>	<u>R⁵</u>	<u>R</u> 9	$\frac{\mathbf{R}^1}{\mathbf{I}}$	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃		CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

X, Y and	Z are N				
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
СH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
		Tal	ble 3		
		R ¹	^		
		\	N		
	p5 / N		· N	Y	
	K N		, j		
			^_	Z R9	
X, Y and					
R^1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	$\underline{\mathbb{R}^5}$	$\underline{\mathbf{R}^9}$
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Z a	re CH; Y i	s N			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	are CH; Z i	s N			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	$\underline{\mathbf{R}^9}$
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	are N; Z is	СН			
R ¹	R ⁵	R9	<u>R</u> 1	R ⁵	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃

	X is CH;	Y and Z are	e N			
	$\frac{R^1}{R^1}$	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
		X and Z are				
	$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
5	X, Y and					
	$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃ ble 4	OCF ₃	OCF ₃
		\wedge	R ¹	<u>~</u>		
٠.		, , , , , , , , , , , , , , , , , , ,		N	v	
		R ⁵		N		
				. X.	$Z R^9$	
	X, Y and	Z are CH				
	<u>R1</u>	R5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
10	X and Z a	re CH; Y i		î		
	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH2CH3	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

are CH; Z i	s N			
<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	$\underline{\mathbf{R^5}}$	$\underline{\mathbf{R}^9}$
CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
are N; Z is	CH			
<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
Y and Z ar	e N			
R ⁵	<u>R</u> 9	<u>R1</u>	<u>R⁵</u>	$\underline{\mathbf{R^9}}$
CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X and Z ar	e N			
<u>R⁵</u>	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
Z are N		•		
<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CF ₃	CF ₃	СН3	CF ₃	CF ₃
CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
	R5 CF3 CF3 OCF3 OCF3 are N; Z is R5 CF3 OCF3 OCF3 OCF3 OCF3 CF3 CF3 CF3 OCF3 CF3 CF3 CF3 CF3 CF3 CF3 CF3 CF3 CF3	CF ₃ CF ₃ CF ₃ OCF ₃ Are N; Z is CH R ⁵ R ⁹ CF ₃ CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ OCF ₃ OCF ₃ OCF ₃ OCF ₃ OCF ₃ X and Z are N R ⁵ R ⁹ CF ₃ CF ₃ CF ₃ OCF ₃	R5 R9 R1 CF3 CF3 CH3 CF3 OCF3 CH3 OCF3 CF3 CH3 OCF3 CF3 CH3 Are N; Z is CH R5 R9 R1 CF3 CF3 CH3 CF3 CF3 CH3 OCF3 CF3 CH3 OCF3 CF3 CH3 Y and Z are N R5 R9 R1 CF3 CF3 CH3 OCF3 CF3 CH3 OCF3 CF3 CH3 X and Z are N R9 R1 CF3 CF3 CH3 OCF3 CF3 CH3 <td>R5 R9 R1 R5 CF3 CF3 CH3 CF3 CF3 OCF3 CH3 OCF3 OCF3 CF3 CH3 OCF3 OCF3 CH3 OCF3 OCF3 CH3 OCF3 CF3 CF3 CH3 CF3 CF3 CF3 CH3 OCF3 OCF3 CF3 CH3 OCF3 OCF3 CF3 CH3 OCF3 Y and Z are N R5 R9 R1 R5 CF3 CF3 CH3 OCF3 OCF3 CF3 CH3 OCF3 OCF3 CF3 CH3 OCF3 OCF3 CF3 CH3 OCF3 X and Z are N R5 R9 R1 R5 CF3 CF3 CH3 OCF3 OCF3 CF3 CH3 OCF3 OCF3 CF3 CH3 OCF3 OCF3 CH3</td>	R5 R9 R1 R5 CF3 CF3 CH3 CF3 CF3 OCF3 CH3 OCF3 OCF3 CF3 CH3 OCF3 OCF3 CH3 OCF3 OCF3 CH3 OCF3 CF3 CF3 CH3 CF3 CF3 CF3 CH3 OCF3 OCF3 CF3 CH3 OCF3 OCF3 CF3 CH3 OCF3 Y and Z are N R5 R9 R1 R5 CF3 CF3 CH3 OCF3 OCF3 CF3 CH3 OCF3 OCF3 CF3 CH3 OCF3 OCF3 CF3 CH3 OCF3 X and Z are N R5 R9 R1 R5 CF3 CF3 CH3 OCF3 OCF3 CF3 CH3 OCF3 OCF3 CF3 CH3 OCF3 OCF3 CH3

			 X_		
	- 077			Z R ⁹	
X, Y and Z		-o l	1	75.5	D 0
$\frac{\mathbb{R}^1}{}$	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	$\frac{R^9}{}$
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
· CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Z a	re CH; Y is	s N			
$\underline{\mathbf{R}^1}$	<u>R⁵</u>	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	ere CH; Z i	s N			
<u>R</u> 1	<u>R⁵</u>	<u>R</u> 9	$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	are N; Z is	<u>CH</u>	•		
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X is CH;	Y and Z ar	e N			
R ¹	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

CH₂CH₃

Y is CH;	X and Z ar	e N			
$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	R ⁵	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X, Y and	Z are N				
R^1	R ⁵	<u>R</u> 9	<u>R</u> 1	$\underline{\mathbf{R^5}}$	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

X, Y and Z are CH R^1 <u>R</u>9 \mathbb{R}^1 CH₂CH₃ CH₂CH₃ CH₃ OCF₃ X and Z are CH; Y is N R⁹ CF₃ $\frac{\mathbb{R}^1}{\text{CH}_3}$ \mathbb{R}^1 CH₂CH₃ CF₃ X and Y are CH; Z is N \mathbb{R}^1 R^1 \mathbb{R}^9 CH₃ CH₂CH₃ OCF₃ CF₃ 10 X and Y are N; Z is CH $\frac{\mathbb{R}^1}{\text{CH}_3}$ \mathbb{R}^1 CH₂CH₃ CF₃ X is CH; Y and Z are N R^1 R^{1}

		37			
R1 CH3	R ⁹ CF ₃	R1 CH2CH3	R ⁹ OCF ₃	R1 CH3	R ⁹ OCF ₃
R1 CH3	R ⁹ CF ₃	R1 CH ₂ CH ₃	R ⁹ OCF ₃	R1 CH3	R ⁹ OCF ₃
Ī	Y ¹ R ¹	Table 7	Y R9		
	Z are CH R ⁷	<u>R⁹</u>	<u>Y1</u>	$\underline{Z^1}$	
	 -	CF ₃	CH	N	
_	_	CF ₃	N	CH	
	_	CF ₃	N	N	
_		OCF ₃	CH	N	
	_	OCF ₃	N	CH	
-	_	OCF ₃	N	N	
- -	•	CF ₃	CH	N	
_	_	CF ₃	N	CH	
	-	CF ₃	N	N	
		OCF ₃	CH	N	
	-	OCF ₃	N	CH	
	OCF ₃	OCF ₃	N	N	
_	CF ₃	CF ₃	CH	N	
	CF ₃	CF ₃	N	CH	
_	CF ₃	CF ₃	N		
_	CF ₃	OCF ₃	CH	N	
_	CF ₃	OCF ₃	N	CH	
_	-	OCF ₃	N	N	
_	OCF ₃	CF ₃	CH	N	
CH ₃	OCF ₃	CF ₃	N	CH	
_	OCF ₃	CF ₃	N	N	
_	OCF ₃	OCF ₃	CH	N	
CH ₃	OCF ₃	OCF ₃	N	CH	
	El CH3 Rl CH3 R7 Zl	R1 CH3 R9 CF3 CH3 CF3 R1 CH3 R9 CF3 R7 CH3 R1 R1 R1 R1 R7 CH2CH3 CF3 CH2CH3 CF3 CF3 CH2CH3 CF3 CH2CH3 CF3 CH2CH3 CF3 CH2CH3 CF3 CH2CH3 CF3 CH2CH3 OCF3 CH2CH3 OCF3 CH2CH3 OCF3 CH2CH3 OCF3 CH2CH3 OCF3 CH2CH3 CF3 CH2CH3 CF3 CH2CH3 CF3 CH3 OCF3	R1	R R R9 CF3 CH2CH3 OCF3 R R9 CF3 CH2CH3 OCF3 R CH3 CF3 CH2CH3 OCF3 R CH3 CF3 CF3 CH2CH3 OCF3 X, Y and Z are CH R1 CH2CH3 CH3 CH2CH3 CF3 CF3 CH3 CH2CH3 CF3 CF3 CH4CH2CH3 CF3 CF3 CH5 CH4CH3 CF3 CF3 CF3 CF3 CF3 CF3 CF3 CF3 CF3 CF	R R R R R R R R

OCF₃

CH₃

CH₃

OCF₃

N

N

X is N;	Y and Z are	CH		
\mathbb{R}^1	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{Y}^{1}}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	СН	N ·
CH ₂ CH ₃	CF ₃	CF ₃	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	СН	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	СН
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	CH
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	И	N
X and Y	are CH; Z			
$\underline{\mathbf{R}^1}$	$\underline{\mathbf{R}^7}$	<u>R</u> 9	$\frac{\mathbf{Y}^{1}}{\mathbf{Y}^{1}}$	Z^1
CH ₂ CH ₃	CF ₃	CF ₃	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	· N	N
СH ₂ CH ₃	OCF ₃	CF ₃	CH	N
СH ₂ CH ₃	OCF ₃	CF ₃	N	CH
СH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N.
CH ₂ CH ₃	OCF ₃	OCF ₃	N·	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N

CF ₃	CF ₃	CH	N
CF ₃	CF ₃	N	CH
CF ₃	CF ₃	N	N
CF ₃	OCF ₃	CH	N
CF ₃	OCF ₃	N	CH
CF ₃	OCF ₃	N	N
OCF ₃	CF ₃	CH	N
OCF ₃	CF ₃	N	CH
OCF ₃	CF ₃	N	N
OCF ₃	OCF ₃	CH	N
OCF ₃	OCF ₃	N	CH
OCF ₃	OCF ₃	N	N
	CF ₃ CF ₃ CF ₃ CF ₃ CF ₃ OCF ₃ OCF ₃ OCF ₃ OCF ₃	CF ₃ CF ₃ CF ₃ CF ₃ CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ OCF ₃ OCF ₃ OCF ₃ OCF ₃	CF ₃ CF ₃ N CF ₃ CF ₃ N CF ₃ CF ₃ N CF ₃ OCF ₃ CH CF ₃ OCF ₃ N CF ₃ OCF ₃ N OCF ₃ CF ₃ CH OCF ₃ CF ₃ CH OCF ₃ CF ₃ N

Table 8

$$Z^{l} = Y^{l} \qquad N \qquad N \qquad Y \qquad X \qquad Z \qquad R^{9}$$

X, Y and Z	are CH				
<u>R</u> 1	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{X^1}}$	$\underline{\mathbf{Y}^1}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	CH .	N
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	N
CH ₃	CF ₃	CF ₃	CH	CH	N
CH ₃	CF ₃	CF ₃	CH	N	CH

CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₃	CF ₃	CF ₃	CH	N	N
CH ₃	CF ₃	OCF ₃	СН	CH	N
CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₃	CF ₃	OCF ₃	N	CH	CH
CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₃	OCF ₃	CF ₃	CH	CH	N
CH ₃	OCF ₃	CF ₃	CH	N	CH
CH ₃	OCF ₃	CF ₃	N	CH	CH
CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₃	OCF ₃	OCF ₃	CH	CH	N
CH ₃	OCF ₃	OCF ₃	CH	N	CH
CH ₃	OCF ₃	OCF ₃	N	CH	CH
CH ₃	OCF ₃	OCF ₃	CH	N	N
	_	u			
X is N; Y a		R ⁹	X^1	$\underline{\mathbf{Y}^1}$	Z^1
<u>R</u> 1	<u>R</u> ⁷	CF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	СН	N	СН
CH ₂ CH ₃	CF ₃	CF ₃	N	СН	СН
CH ₂ CH ₃	CF ₃	CF ₃	СН	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	СН	СН	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	СН
CH ₂ CH ₃	CF ₃	OCF ₃	N	СН	СН
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₂ CH ₃	CF ₃	CF ₃	CH	СН	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	СН
CH ₂ CH ₃	OCF ₃	CF ₃	N	СН	СН
CH ₂ CH ₃	OCF ₃	CF ₃	СН	N	N
CH ₂ CH ₃	OCF ₃	_	CH	СН	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	СН
CH ₂ CH ₃	OCF ₃	OCF ₃	N	СН	СН
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	СН	N
CH ₃	CF ₃	CF ₃	СН	N	СН
CH ₃	CF ₃	CF ₃	N	СН	CH
CH ₃	CF ₃	CF ₃		N	N
CH ₃	CF ₃	CF ₃	CH	СН	N
CH ₃	CF ₃	OCF ₃	CH	CII	• •

СН3	CF ₃	OCF ₃	CH	N	CH
CH ₃	CF ₃	OCF ₃	N	CH	CH
CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₃	OCF ₃	CF ₃	CH	CH	N
CH ₃	OCF ₃	CF ₃	CH	N	CH
CH ₃	OCF ₃	CF ₃	N	CH	CH
CH ₃	OCF ₃	CF ₃	CH	N	N
СН3	OCF ₃	OCF ₃	CH	CH	N
CH ₃	OCF ₃	OCF ₃	CH	N	CH
CH ₃	OCF ₃	OCF ₃	N	CH	CH
CH ₃	OCF ₃	OCF ₃	CH	N	N
X and Y ar	e CH; Z is	N			
$\overline{\mathbb{R}^1}$	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{X}^1}$	$\underline{\mathbf{Y}^1}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	И	CH	CH
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	И
CH ₂ CH ₃	OCF ₃	CF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	СН
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	N
CH ₃	CF ₃	CF ₃	CH	CH	N
CH ₃	CF ₃	CF ₃	CH	N	CH
CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₃	CF ₃	CF ₃	CH	N	N
CH ₃	CF ₃	OCF ₃	CH	СН	N
CH ₃	CF ₃	OCF ₃	СН	N	CH
CH ₃	CF ₃	OCF ₃	N	CH	CH
CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₃	OCF ₃	CF ₃	CH	СН	14

CH ₃	OCF ₃	CF ₃	CH	N	CH
CH ₃	OCF ₃	CF ₃	N	CH	CH
CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₃	OCF ₃	OCF ₃	CH	CH	N
CH ₃	OCF ₃	OCF ₃	СН	N	CH
CH ₃	OCF ₃	OCF ₃	N	CH	CH
CH ₃	OCF ₃	OCF ₃	CH	N	N

$$\mathbb{R}^{1}$$

$$\mathbb{N}$$

X, Y and	Z are CH				
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X is N; Y	and Z are	СН			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> !	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Z a	re CH; Y i	s N			
CH ₂ CH ₃	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R5</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
H	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	re CH; Z i	s N			
<u>R¹</u>	R ⁵	R9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

X and Y a	re N; Z is	CH			
$\underline{\mathbb{R}^1}$	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X is CH;	Y and Z ar	e N			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
СH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
Y is CH;	X and Z ar	e N			
R^1	R^5	<u>R</u> 9	$\underline{R^1}$	<u>R</u> 5	$\underline{\mathbf{R^9}}$
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X, Y and	Z are N				
$\underline{\mathbf{R^{1}}}$	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R5</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃

$$\begin{array}{c|c}
 & \underline{\text{Table 10}} \\
 & R^{1} \\
 & N \\
 &$$

	X is N; Y	and Z are	CH			
	<u>R¹</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
		re CH; Y i				
	$\underline{\mathbb{R}^1}$	<u>R</u> 5	<u>R</u> 9	$\frac{\mathbb{R}^1}{}$	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
5	X and Y a	re CH; Z i	s N			
	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
	X and Y a	re N; Z is			_	
	R^1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
	X is CH;	Y and Z ar	e N			
	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
•	CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
0	V is CU.	X and Z ar	o N			
	R!	R ⁵	R ⁹	R1	R ⁵	R ⁹
		_			_	
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃

		4:	•		
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X, Y and	Z are N		_		
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R⁵</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
		Tab	le 11		
	\wedge	R ¹	^		
	N T		ll I		
	R5		N N	-Y	
			ا X≈	R^9	
V V and	7 ara CU			-Z	
X, Y and R1	R ⁵	R ⁹	R1	R ⁵	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
					_
	and Z are R ⁵	С П R ⁹	R ¹	R ⁵	R ⁹
$\frac{\mathbb{R}^1}{\mathbb{C}^{H_2}\mathbb{C}^{H_2}}$		CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃ CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
01120113		3	3	3	,
X and Z a	re CH; Y i	s N			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
СH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X and Y a	ere CH; Z i	s N			
<u>R1</u>	R ⁵		<u>R</u> 1	<u>R⁵</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
СH ₂ СH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃

10

CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	re N; Z is (CH			
R ¹	R ⁵	R ⁹	\mathbb{R}^1	<u>R⁵</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X is CH:	Y and Z are	e N			
R ¹	R ⁵		<u>R1</u>	<u>R⁵</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
Y is CH;	X and Z ar	e N			
R^1	R ⁵		<u>R1</u>	<u>R⁵</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X, Y and	Z are N				
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R¹</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

Table 12

X, Y and Z are CH R5 CF3 <u>R</u>9 R⁵ R9 $\underline{R^1}$ CF₃ CH₃ CH₂CH₃ CF₃ CF₃ OCF₃ CH₃ CF₃ OCF₃ CH₂CH₃ CF₃

		• •			
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF3	CH ₃	OCF ₃	OCF ₃
X is N; Y	and Z are	CH			
R ¹	R ⁵	R ⁹	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Z a	re CH; Y i	s N			
<u>R</u> 1	<u>R⁵</u>	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
СH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	are CH; Z i	s N			
$\underline{\mathbf{R}^1}$	<u>R⁵</u>	<u>R</u> 9	$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	are N; Z is	СН			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X is CH;	Y and Z ar	e N			•
<u>R1</u>	$\underline{\mathbf{R}^5}$	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
Y is CH;	X and Z ar	re N			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R⁵</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃

R9

5

 \mathbb{R}^1

49

CH ₂ CH ₃	CF ₃	СН3	CF ₃	CH ₂ CH ₃	OCF ₃	СН3	OCF ₃
$\frac{\text{Y is CH; X}}{\frac{\mathbb{R}^1}{\text{CH}_2\text{CH}_3}}$	and Z as R ⁹ CF ₃	1	R ⁹ CF ₃	<u>R</u> 1 СН ₂ СН ₃	R ⁹ OCF ₃	<u>R</u> 1 СН3	R ⁹ OCF ₃
X, Y and Z R ¹ CH ₂ CH ₃	are N R ⁹ CF ₃	R1 CH3	R ⁹ CF ₃		R ⁹ OCF ₃	R ¹ CH ₃	R ⁹ OCF ₃

Table 14

$$Z^{1}$$
 Y^{1}
 R^{1}
 N
 N
 $X = Z$
 R^{9}

X is N; Y and Z are CH

<u>R1</u>	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{Y}^{\mathbf{l}}}$	Z^1
CH ₂ CH ₃	CF ₃	CF ₃	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	CH
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	СН
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N

CH ₃	OCF ₃	OCF ₃	СН	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	N
				•
X and Z	are CH; Y	is N		
$\underline{\mathbb{R}^1}$	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{Y}^1}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH_2CH_3	OCF ₃	CF ₃	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH_2CH_3	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	CH
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	И
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	N
X and Y	are CH; Z	is N		
R ¹	R ⁷	R ⁹	$\underline{\mathbf{Y}^{1}}$	$\underline{Z^1}$
	CF ₃	CF ₃	CH	N N
CH ₂ CH ₃		CF ₃	N	СН
CH ₂ CH ₃	CF ₃	_		N
CH ₂ CH ₃	CF ₃	CF ₃	N	
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N

CH ₂ CH ₃	OCF ₃	CF ₃	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	CH
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	И	CH
CH ₃	OCF ₃	OCF ₃	N	N
X is CH	; Y and Z a	re N		
R^1	<u>R</u> 7	$\underline{\mathbf{R}^9}$	$\underline{\mathbf{Y}^1}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	СН	N
CH ₂ CH ₃	CF ₃	CF ₃	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	CH
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N

CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	N

$$\begin{array}{c|c}
 & \underline{\text{Table 15}} \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

X is N; Y ar	nd Z are CF	<u>1</u>			
R ¹	R ⁷	<u>R</u> 9	$\underline{\mathbf{X}^1}$	$\underline{\mathbf{Y}^1}$	$\underline{\mathbf{Z^1}}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	Й	CH	CH
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	N
CH ₃	CF ₃	CF ₃	CH	CH	N
CH ₃	CF ₃	CF ₃	CH	N	CH
CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₃	CF ₃	CF ₃	CH	N	N
CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₃	CF ₃	OCF ₃	N	CH	CH

CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₃	OCF ₃	CF ₃	CH	CH	N
CH ₃	OCF ₃	CF ₃	CH	N	CH
CH ₃	OCF ₃	CF ₃	N	CH	СН
CH ₃	OCF ₃	CF ₃	СН	N	N
CH ₃	OCF ₃	OCF ₃	СН	CH	N
CH ₃	OCF ₃	OCF ₃	CH	N	CH
CH ₃	OCF ₃	OCF ₃	N	CH	CH
CH ₃	OCF ₃	OCF ₃	CH	N	N
X and Z ar	e CH; Y is	N			
$\underline{\mathbf{R}^1}$	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{X}^{1}}$	$\frac{\mathbf{Y}^{1}}{\mathbf{Y}^{1}}$	Z^1
CH ₂ CH ₃	CF ₃	CF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	СН	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	CH
CH2CH3	OCF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	N
CH ₃	CF ₃	CF ₃	CH	CH	N
CH ₃	CF ₃	CF ₃	CH	N	CH
CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₃	CF ₃	CF ₃	CH	N	N
CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₃	CF ₃	OCF ₃	N	СН	CH
СН3	CF ₃	OCF ₃	CH	N	N
СН3	OCF ₃	CF ₃	CH	CH	N
CH ₃	OCF ₃	CF ₃	СН	N	CH

CH ₃	OCF ₃	CF ₃	N	СН	CH
CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₃	OCF ₃	OCF ₃	CH	CH	N
CH ₃	OCF ₃	OCF ₃	CH	N	CH
CH ₃	OCF ₃	OCF ₃	N	СН	CH
CH ₃	OCF ₃	OCF ₃	CH	N	N
X and Y ar	e CH; Z is	N			
<u>R</u> 1	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{X^1}}$	$\underline{\mathbf{Y}^{1}}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	СН	N
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH	CH
CH_2CH_3	OCF ₃	OCF ₃	CH	N	N
CH ₃	CF ₃	CF ₃	СН	CH	N
CH ₃	CF ₃	CF ₃	CH	N	CH
CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₃	CF ₃	CF ₃	CH	N	N
CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₃	CF ₃	OCF ₃	N	CH	CH
CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₃	OCF ₃	CF ₃	CH.	CH	N
CH ₃	OCF ₃	CF ₃	CH	N	CH
CH ₃	OCF ₃	CF ₃	N	CH	CH
CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₃	OCF ₃	OCF ₃	CH	CH	N

Table 16

$$R^{5}$$
 R^{3}
 R^{4}
 X
 Z
 R^{9}

R ³ is H; X, Y and Z are CH								
<u>R1</u>	<u>R</u> ⁴	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> ⁴	<u>R</u> 5	<u>R</u> 9	
CH ₂ CH ₃	H	CF ₃	CF ₃	CH ₂ CH ₃	H	OCF ₃	CF ₃	
сн ₂ сн ₃	H	CF ₃	OCF ₃	CH ₂ CH ₃	H	OCF ₃	OCF ₃	
СH ₂ CH ₃	H	CF ₃	SCF ₃	CH ₂ CH ₃	H	OCF ₃	SCF ₃	
CH_2CH_3	Н	CF ₃	OCHF ₂	CH ₂ CH ₃	Н	OCF ₃	OCHF ₂	
CH ₂ CH ₃	Н	CF ₃	SCHF ₂	СН2СН3	н	OCF ₃	SCHF ₂	
CH ₂ CH ₃	H	CF ₃	C_2F_5	СН2СН3	H	OCF ₃	C_2F_5	
CH ₂ CH ₃	Н	CF ₃	Cl	CH ₂ CH ₃	H	OCF ₃	Cl	
CH ₂ CH ₃	Н	CF ₃	SCH ₂ CH ₃	CH ₂ CH ₃	H	OCF ₃	SCH ₂ CH ₃	
CH ₂ CH ₃	н	OCHF ₂	CF ₃	CH ₂ CH ₃	H	SCF ₃	CF ₃	
CH ₂ CH ₃	н	OCHF ₂	OCF ₃	CH ₂ CH ₃	H	SCF ₃	OCF ₃	
CH ₂ CH ₃	H	OCHF ₂	SCF ₃	CH ₂ CH ₃	H	SCF ₃	SCF ₃	
CH ₂ CH ₃	H	OCHF ₂	OCHF ₂	СН ₂ СН ₃	H	SCF ₃	OCHF ₂	
CH ₂ CH ₃	H	OCHF ₂	SCHF ₂	CH ₂ CH ₃	H	SCF ₃	SCHF ₂	
CH ₂ CH ₃	Н	OCHF ₂	C ₂ F ₅	CH ₂ CH ₃	H	SCF ₃	C_2F_5	
CH ₂ CH ₃	H	OCHF ₂	Cl	CH ₂ CH ₃	H	SCF ₃	Cl	
CH ₂ CH ₃	H	OCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	H	SCF ₃	SCH ₂ CH ₃	
CH ₂ CH ₃	H	SCHF ₂	CF ₃	CH ₂ CH ₃	H	Cl	CF ₃	
CH ₂ CH ₃	H	SCHF ₂	OCF ₃	СН ₂ СН ₃	Н	Cl	OCF ₃	
CH ₂ CH ₃	H	SCHF ₂	SCF ₃	CH ₂ CH ₃	H	Cl	SCF ₃	
CH ₂ CH ₃	H	SCHF ₂	OCHF ₂	CH ₂ CH ₃	H	Cl	OCHF ₂	
CH ₂ CH ₃	H	SCHF ₂	SCHF ₂	CH ₂ CH ₃	H	Cl	SCHF ₂	
CH ₂ CH ₃	H	SCHF ₂	C_2F_5	CH ₂ CH ₃	H	Cl	C_2F_5	
CH ₂ CH ₃	Ħ	SCHF ₂	Cl	CH ₂ CH ₃	H	Cl	Cl	
CH ₂ CH ₃	H	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	H	Cl	SCH ₂ CH ₃	
CH ₂ CH ₃	CH ₃	CF ₃	CF ₃	СH ₂ CH ₃	CH ₃	OCF ₃	CF ₃	
CH ₂ CH ₃	CH ₃	CF ₃	OCF ₃	CH ₂ CH ₃	CH ₃	OCF ₃	OCF ₃	

CH ₂ CH ₃	CH ₃	CF ₃	SCF ₃	CH ₂ CH ₃	CH ₃	OCF ₃	SCF ₃
CH ₂ CH ₃	CH ₃	CF ₃	OCHF ₂	CH ₂ CH ₃	CH ₃	OCF ₃	OCHF ₂
СH ₂ CH ₃	CH ₃	CF ₃	SCHF ₂	CH ₂ CH ₃	CH ₃	OCF ₃	SCHF ₂
CH ₂ CH ₃	CH ₃	CF ₃	C_2F_5	CH ₂ CH ₃	CH ₃	OCF ₃	C_2F_5
СH ₂ CH ₃	CH ₃	CF ₃	Cl	СН2СН3	CH ₃	OCF ₃	Cl
CH ₂ CH ₃	CH ₃	CF ₃	SCH ₂ CH ₃	СН2СН3	CH ₃	OCF ₃	SCH ₂ CH ₃
сн ₂ сн ₃	CH ₃	OCHF ₂	CF ₃	CH ₂ CH ₃	CH ₃	SCF ₃	CF ₃
СH ₂ CH ₃	CH ₃	OCHF ₂	OCF ₃	CH ₂ CH ₃	CH ₃	SCF ₃	OCF ₃
CH ₂ CH ₃	CH ₃	OCHF ₂	SCF ₃	CH ₂ CH ₃	CH ₃	SCF ₃	SCF ₃
CH ₂ CH ₃	CH ₃	OCHF ₂	OCHF ₂	CH ₂ CH ₃	CH ₃	SCF ₃	OCHF ₂
CH ₂ CH ₃	CH ₃	OCHF ₂	SCHF ₂	СH ₂ СH ₃	CH ₃	SCF ₃	SCHF ₂
СH ₂ CH ₃	CH ₃	OCHF ₂	C ₂ F ₅	СH ₂ СH ₃	СН3	SCF ₃	C_2F_5
CH ₂ CH ₃	CH ₃	OCHF ₂	Cl	СН ₂ СН ₃	CH ₃	SCF ₃	Cl
CH ₂ CH ₃	CH ₃	OCHF ₂	SCH ₂ CH ₃	СН ₂ СН ₃	CH ₃	SCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	CH ₃	SCHF ₂	CF ₃	СН2СН3	CH ₃	Cl	CF ₃
CH ₂ CH ₃	CH ₃	SCHF ₂	OCF ₃	CH ₂ CH ₃	CH ₃	Cl	OCF ₃
CH ₂ CH ₃	CH ₃	SCHF ₂	SCF ₃	CH ₂ CH ₃	CH ₃	Cl	SCF ₃
CH ₂ CH ₃	CH ₃	SCHF ₂	OCHF ₂	CH ₂ CH ₃	CH ₃	Cl	OCHF ₂
CH ₂ CH ₃	CH ₃	SCHF ₂	SCHF ₂	CH ₂ CH ₃	CH ₃	Cl	SCHF ₂
CH ₂ CH ₃	CH ₃	SCHF ₂	C_2F_5	CH ₂ CH ₃	CH ₃	Cl	C_2F_5
CH ₂ CH ₃	CH ₃	SCHF ₂	Cl	CH ₂ CH ₃	CH ₃	Cl	Cl
CH ₂ CH ₃	CH ₃	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	CH ₃	Cl	scH₂cH₃
CH ₂ CH ₃	F	CF ₃	CF ₃	СН ₂ СН ₃	F	OCF ₃	CF ₃
CH ₂ CH ₃	F	CF ₃	OCF ₃	CH ₂ CH ₃	F	OCF ₃	OCF ₃ .
CH ₂ CH ₃	F	CF ₃	SCF ₃	CH ₂ CH ₃	F	OCF ₃	SCF ₃
CH ₂ CH ₃	F	CF ₃	OCHF ₂	CH ₂ CH ₃	F	OCF ₃	OCHF ₂
CH ₂ CH ₃	F	CF ₃	SCHF ₂	CH ₂ CH ₃	F	OCF ₃	SCHF ₂
CH ₂ CH ₃	F	CF ₃	C ₂ F ₅	CH ₂ CH ₃	F	OCF ₃	C_2F_5
CH ₂ CH ₃	F	CF ₃	Cl	CH ₂ CH ₃	F	OCF ₃	Cl
CH ₂ CH ₃	F	CF ₃	SCH ₂ CH ₃	CH ₂ CH ₃	F	OCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	F	OCHF ₂	CF ₃	CH ₂ CH ₃	F	SCF ₃	CF ₃
CH ₂ CH ₃	F	OCHF ₂	OCF ₃	CH ₂ CH ₃	F	SCF ₃	OCF ₃
CH ₂ CH ₃	F	OCHF ₂	SCF ₃	CH ₂ CH ₃	F	SCF ₃	SCF ₃
CH_2CH_3	F	OCHF ₂	OCHF ₂	CH ₂ CH ₃	F	SCF ₃	OCHF ₂
CH ₂ CH ₃	F	OCHF ₂	SCHF ₂	CH ₂ CH ₃	F	SCF ₃	SCHF ₂
CH ₂ CH ₃	F	OCHF ₂	C ₂ F ₅	CH ₂ CH ₃	F	SCF ₃	C_2F_5
CH ₂ CH ₃	F	OCHF ₂	Cl	CH ₂ CH ₃	F	SCF ₃	Cl
CH ₂ CH ₃	F	OCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	F	SCF ₃	SCH ₂ CH ₃

				2			
сн ₂ сн ₃	F	SCHF ₂	CF ₃	CH ₂ CH ₃	F	Cl	CF ₃
сн ₂ сн ₃	F	SCHF ₂	OCF ₃	CH ₂ CH ₃	F	Cl	OCF ₃
сн ₂ сн ₃	F	SCHF ₂	SCF ₃	CH ₂ CH ₃	·F	Cl	SCF ₃
CH ₂ CH ₃	F	SCHF ₂	OCHF ₂	CH ₂ CH ₃	F	Cl	OCHF ₂
сн ₂ сн ₃	F	SCHF ₂	SCHF ₂	CH ₂ CH ₃	F	Cl	SCHF ₂
CH ₂ CH ₃	F	SCHF ₂	C ₂ F ₅	CH ₂ CH ₃	F	Cl	C_2F_5
сн ₂ сн ₃	F	SCHF ₂	Cl	CH ₂ CH ₃	F	Cl	Cl
сн ₂ сн ₃	F	SCHF ₂	SCH ₂ CH ₃	СН2СН3	F	CI	SCH ₂ CH ₃
сн ₂ сн ₃	Cl	CF ₃	CF ₃	CH ₂ CH ₃	Cl	OCF ₃	CF ₃
сн ₂ сн ₃	Cl	CF ₃	OCF ₃	СН2СН3	Cl	OCF ₃	OCF ₃
CH ₂ CH ₃	Cl	CF ₃	SCF ₃	СH ₂ СH ₃	Cl	OCF ₃	SCF ₃
CH ₂ CH ₃	Cl	CF ₃	OCHF ₂	СН ₂ СН ₃	Cl	OCF ₃	OCHF ₂
CH ₂ CH ₃	Cl	CF ₃	SCHF ₂	CH ₂ CH ₃	Ci	OCF ₃	SCHF ₂
CH ₂ CH ₃	Cl	CF ₃	C_2F_5	СН2СН3	Cl	OCF ₃	C_2F_5
CH ₂ CH ₃	Cl	CF ₃	CI	СН ₂ СН ₃	Ci	OCF ₃	Cl
CH ₂ CH ₃	Cl	CF ₃	SCH ₂ CH ₃	CH ₂ CH ₃	CI	OCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	Cl	OCHF ₂	CF ₃	СH ₂ СH ₃	CI	SCF ₃	CF ₃
CH ₂ CH ₃	Cl	OCHF ₂	OCF ₃	СН ₂ СН ₃	CI	SCF ₃	OCF ₃
CH ₂ CH ₃	Cl	OCHF ₂	SCF ₃	СН ₂ СН ₃	Cl	SCF ₃	SCF ₃
CH ₂ CH ₃	Cl	ochf ₂	OCHF ₂	СН2СН3	CI	SCF ₃	OCHF ₂
CH ₂ CH ₃	Cl	OCHF ₂	SCHF ₂	СН2СН3	Cl	SCF ₃	SCHF ₂
CH ₂ CH ₃	· Cl	OCHF ₂	C ₂ F ₅	CH ₂ CH ₃	Ci	SCF ₃	C_2F_5
CH ₂ CH ₃	Cl	OCHF ₂	Cl	CH ₂ CH ₃	. CI	SCF ₃	Cl
CH ₂ CH ₃	Cl	OCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	Cl	SCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	Cl	schf ₂	CF ₃	CH ₂ CH ₃	Cl	Cl	CF ₃
CH ₂ CH ₃	Cl	SCHF ₂	OCF ₃	CH ₂ CH ₃	Cl	Cl	OCF ₃
CH ₂ CH ₃	Cl	SCHF ₂	SCF ₃	CH ₂ CH ₃	Cl	Cl	SCF ₃
CH ₂ CH ₃	Cl	SCHF ₂	OCHF ₂	CH ₂ CH ₃	Cl	Cl	OCHF ₂
CH ₂ CH ₃	Cl	SCHF ₂	SCHF ₂	CH ₂ CH ₃	Cl	CI	SCHF ₂
CH ₂ CH ₃	Cl	SCHF ₂	C_2F_5	CH ₂ CH ₃	Cl	Cl	C_2F_5
CH ₂ CH ₃	Cl	SCHF ₂	Cl	CH ₂ CH ₃	Cl	Cl	Cl
CH ₂ CH ₃	Cl	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	Cl	Cl	SCH ₂ CH ₃
CH ₃	H	CF ₃	CF ₃	СН3	H	OCF ₃	CF ₃
CH ₃	H	CF ₃	OCF ₃	CH ₃	H	OCF ₃	ocr ₃
CH ₃	Н	CF ₃	SCF ₃	CH ₃	H	OCF ₃	SCF ₃
CH ₃	H	CF ₃	OCHF ₂	CH ₃	H	OCF ₃	OCHF ₂
CH ₃	H	CF ₃	SCHF ₂	CH ₃	H	OCF ₃	SCHF ₂
CH ₃	Н	CF ₃	C ₂ F ₅	CH ₃	H	OCF ₃	C_2F_5

			4.3				
CH ₃	н	CF ₃	Cl	CH ₃	H	OCF ₃	Cl
CH ₃	н	CF ₃	SCH ₂ CH ₃	CH ₃	H	OCF ₃	SCH ₂ CH ₃
CH ₃	н	OCHF ₂	CF ₃	CH ₃	H	SCF ₃	CF ₃
CH ₃	н .	OCHF ₂	OCF ₃	CH ₃	H	SCF ₃	OCF ₃
CH ₃	Н	OCHF ₂	SCF ₃	CH ₃	H	SCF ₃	SCF ₃
CH ₃	н	OCHF ₂	OCHF ₂	CH ₃	H	SCF ₃	OCHF ₂
CH ₃	Н	OCHF ₂	SCHF ₂	CH ₃	H	SCF ₃	SCHF ₂
CH ₃	н	OCHF ₂	C ₂ F ₅	CH ₃	H	SCF ₃	C_2F_5
СН3	H	OCHF ₂	Cl	CH ₃	H	SCF ₃	Cl
CH ₃	н	OCHF ₂	SCH ₂ CH ₃	CH ₃	H	SCF ₃	SCH ₂ CH ₃
CH ₃	H	SCHF ₂	CF ₃	CH ₃	H	Cl	CF ₃
CH ₃	H	SCHF ₂	OCF ₃	CH ₃	H	Cl	OCF ₃
CH ₃	Н	SCHF ₂	SCF ₃	CH ₃	H	Cl	SCF ₃
CH ₃	Н	SCHF ₂	OCHF ₂	CH ₃	H	Cl	OCHF ₂
CH ₃	H	SCHF ₂	SCHF ₂	CH ₃	H	Cl	SCHF ₂
CH ₃	н	SCHF ₂	C_2F_5	CH ₃	Н	Cl	C_2F_5
CH ₃	н	SCHF ₂	Cl	CH ₃	H	Cl	Cl
CH ₃	H	SCHF ₂	sch ₂ ch ₃	CH ₃	Н	Cl	SCH ₂ CH ₃
CH ₃	CH ₃	CF ₃	CF ₃	CH ₃	CH ₃	OCF ₃	CF ₃
CH ₃	CH ₃	CF ₃	OCF ₃	CH ₃	CH ₃	OCF ₃	OCF ₃
CH ₃	CH ₃	CF ₃	SCF ₃	CH ₃	CH ₃	OCF ₃	SCF ₃
CH ₃	CH ₃	CF ₃	OCHF ₂	CH ₃	CH ₃	OCF ₃	OCHF ₂
CH ₃	CH ₃	CF ₃	SCHF ₂	CH ₃	CH ₃	OCF ₃	SCHF ₂
CH ₃	CH ₃	· CF ₃	C_2F_5	CH ₃	CH ₃	OCF ₃	C_2F_5
CH ₃	CH ₃	CF ₃	CI	CH ₃	CH ₃	OCF ₃	Cl
CH ₃	CH ₃	CF ₃	SCH ₂ CH ₃	CH ₃	CH ₃	OCF ₃	SCH ₂ CH ₃
CH ₃	CH ₃	OCHF ₂	CF ₃	CH ₃	CH ₃	SCF ₃	CF ₃
CH ₃	CH ₃	OCHF ₂	OCF ₃	CH ₃	CH ₃	SCF ₃	OCF ₃
CH ₃	CH ₃	OCHF ₂	SCF ₃	CH ₃	CH ₃	SCF ₃	SCF ₃
CH ₃	CH ₃	OCHF ₂	OCHF ₂	CH ₃	CH ₃	SCF ₃	OCHF ₂
CH ₃	CH ₃	OCHF ₂	SCHF ₂	CH ₃	CH ₃	SCF ₃	SCHF ₂
CH ₃	CH ₃	OCHF ₂	C_2F_5	CH ₃	CH ₃	SCF ₃	C_2F_5
CH ₃	CH ₃	OCHF ₂	Cl	CH ₃	CH ₃	SCF ₃	Cl
CH ₃	CH ₃	OCHF ₂	SCH ₂ CH ₃	СН3	CH ₃	SCF ₃	SCH ₂ CH ₃
CH ₃	CH ₃	SCHF ₂	CF ₃	CH ₃	CH ₃	CI	CF ₃
CH ₃	CH ₃	SCHF ₂	OCF ₃	CH ₃	СН3	Cl	OCF ₃
CH ₃	CH ₃	SCHF ₂	SCF ₃	CH ₃	CH ₃	Cl	SCF ₃
CH ₃	CH ₃	SCHF ₂	OCHF ₂	СН3	CH ₃	Cl	OCHF ₂

			- 0				
CH ₃	CH ₃	SCHF ₂	SCHF ₂	CH ₃	CH ₃	Cl	SCHF ₂
CH ₃	CH ₃	SCHF ₂	C ₂ F ₅	СН3	CH ₃	Cl	C_2F_5
CH ₃	CH ₃	SCHF ₂	Cl	CH ₃	CH ₃	Cl	Cl
CH ₃	CH ₃	SCHF ₂	SCH ₂ CH ₃	CH ₃	CH ₃	Cl	SCH ₂ CH ₃
CH ₃	F	CF ₃	CF ₃	CH ₃	F	OCF ₃	CF ₃
CH ₃	F	CF ₃	OCF ₃	CH ₃	F	OCF ₃	OCF ₃
CH ₃	F	CF ₃	SCF ₃	CH ₃	F	OCF ₃	SCF ₃
CH ₃	F	CF ₃	OCHF ₂	CH ₃	F	OCF ₃	OCHF ₂
CH ₃	F	CF ₃	SCHF ₂	CH ₃	F	OCF ₃	schf ₂
CH ₃	F	CF ₃	C ₂ F ₅	CH ₃	F	OCF ₃	C_2F_5
CH ₃	F	CF ₃	Cl	CH ₃	F	OCF ₃	CI
CH ₃	F	CF ₃	SCH ₂ CH ₃	CH ₃	F	OCF ₃	SCH ₂ CH ₃
CH ₃	F	OCHF ₂	CF ₃	CH ₃	F	SCF ₃	CF ₃
CH ₃	F	OCHF ₂	OCF ₃	CH ₃	F	SCF ₃	OCF ₃
CH ₃	F	OCHF ₂	SCF ₃	CH ₃	F	SCF ₃	SCF ₃
CH ₃	F	OCHF ₂	OCHF ₂	CH ₃	F	SCF ₃	OCHF ₂
CH ₃	F	OCHF ₂	SCHF ₂	CH ₃	F	SCF ₃	SCHF ₂
CH ₃	F	OCHF ₂	C_2F_5	CH ₃	F	SCF ₃	C_2F_5
CH ₃	F	OCHF ₂	Cl	СН3	F	SCF ₃	CI
CH ₃	F	OCHF ₂	SCH ₂ CH ₃	СН3	F	SCF ₃	SCH ₂ CH ₃
CH ₃	F	SCHF ₂	CF ₃	СН3 .	F	CI	CF ₃
CH ₃	F	SCHF ₂	OCF ₃	CH ₃	F .	Ci	OCF ₃
CH ₃	F	SCHF ₂	SCF ₃	СН3	F	Cl	SCF ₃
CH ₃	F	SCHF ₂	OCHF ₂	СН3	F	Cl	OCHF ₂
CH ₃	, F	SCHF ₂	SCHF ₂	СН3	F	Cl	SCHF ₂
CH ₃	F	SCHF ₂	C_2F_5	CH ₃	F	Cl	C_2F_5
CH ₃	F	SCHF ₂	Cl	CH ₃	F	Cl	C!
CH ₃	F	SCHF ₂	sch ₂ ch ₃	СН3	F	Cl	SCH ₂ CH ₃
CH ₃	CI	CF ₃	CF ₃	СН3	Cl	OCF ₃	CF ₃
CH ₃	CI	CF ₃	OCF ₃	CH ₃	Cl	OCF ₃	OCF ₃
CH ₃	Cl	CF ₃	SCF ₃	CH ₃	Cl	OCF ₃	SCF ₃
CH ₃	CI	CF ₃	OCHF ₂	CH ₃	CI	OCF ₃	OCHF ₂
CH ₃	Cl	CF ₃	SCHF ₂	CH ₃	CI	OCF ₃	SCHF ₂
CH ₃	Cl	CF ₃	C ₂ F ₅	CH ₃	CI	OCF ₃	C_2F_5
CH ₃	C1	CF ₃	CI	CH ₃	CI	OCF ₃	Cl
CH ₃	Cl	CF ₃	SCH ₂ CH ₃	CH ₃	Cl	OCF ₃	SCH ₂ CH ₃
CH ₃	Cl	OCHF ₂	CF ₃	CH ₃	CI	SCF ₃	CF ₃
CH ₃	CI	OCHF ₂	OCF ₃	CH ₃	Cl	SCF ₃	OCF ₃

CH ₃	Cl	OCHF ₂	SCF ₃	CH ₃	Cl	SCF ₃	SCF ₃
CH ₃	Cl	OCHF ₂	OCHF ₂	CH ₃	Cl	SCF ₃	OCHF ₂
CH ₃	Cl	OCHF ₂	SCHF ₂	CH ₃	Cl	SCF ₃	SCHF ₂
CH ₃	Cl	OCHF ₂	C ₂ F ₅	CH ₃	Cl	SCF ₃	C_2F_5
CH ₃	Cl	OCHF ₂	Cl	CH ₃	Cl	SCF ₃	Cl
CH ₃	Ċı	OCHF ₂	SCH ₂ CH ₃	CH ₃	Cl	SCF ₃	SCH ₂ CH ₃
CH ₃	Cl	SCHF ₂	CF ₃	CH ₃	Cl	Cl	CF ₃
CH ₃	Cl	SCHF ₂	OCF ₃	CH ₃	Cl	Cl	OCF ₃
CH ₃	Cl	SCHF ₂	SCF ₃	CH ₃	Cl	CI	SCF ₃
CH ₃	Cl	SCHF ₂	OCHF ₂	CH ₃	Cl	Cl	OCHF ₂
CH ₃	Ci	SCHF ₂	SCHF ₂	CH ₃	Cl	Cl	SCHF ₂
CH ₃	Cl	SCHF ₂	C ₂ F ₅	CH ₃	. Cl	Cl	C_2F_5
CH ₃	Cl	SCHF ₂	Cl	CH ₃	Cl	Cl	Cl
CH ₃	Cl	SCHF ₂	SCH ₂ CH ₃	CH ₃	CI	Cl	SCH ₂ CH ₃
City	O.	22 2	2 3	, ,			

X is N; Y	and Z are	<u>CH</u>	ł.		
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
<u>R1</u>	re CH; Y i	<u>R</u> 9	<u>R</u> 1 ·	<u>R</u> 5	<u>R</u> 9
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1 ·	<u>R</u> 5	<u>R9</u>
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y	are CH; Z	is N	_		
RI	R ⁵	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃

			_		
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	are N; Z is	СН		•	
R ¹	R ⁵	R ⁹	R ^I	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X is CH:	Y and Z ar	e N			
R ¹	R ⁵	R ⁹	R ¹	R ⁵	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
Y is CH:	X and Z ar	e N			
R ¹	R ⁵		R ¹	<u>R⁵</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X, Y and	Z are N				
R ¹	R ⁵	R ⁹	R1	R ⁵	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
	-	-		_	

Table 18

X, Y and Z	Z are CH	4.43			
<u>R1</u>	<u>R</u> 5	R ⁹	$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9
н	CF ₃	CF ₃	Н	OCF ₃	CF ₃
Н	CF ₃	OCF ₃	H	OCF ₃	OCF ₃
Н	CF ₃	SCF ₃	н	OCF ₃	SCF ₃
Н	CF ₃	OCHF ₂	H	OCF ₃	OCHF ₂
H	CF ₃	SCHF ₂	Н	OCF ₃	SCHF ₂
Н	CF ₃	C ₂ F ₅	H	OCF ₃	C_2F_5
H	CF ₃	Cl	H	OCF ₃	Cl
H	CF ₃	SCH ₂ CH ₃	H	OCF ₃	SCH ₂ CH ₃
H	OCHF ₂	CF ₃	H	SCF ₃	CF ₃
H	OCHF ₂	OCF ₃	H	SCF ₃	OCF ₃
H	OCHF ₂	SCF ₃	H	SCF ₃	SCF ₃
н .	OCHF ₂	OCHF ₂	H	SCF ₃	OCHF ₂
H	OCHF ₂	SCHF ₂	H	SCF ₃	SCHF ₂
H	OCHF ₂	C ₂ F ₅	H	SCF ₃	C_2F_5
H	OCHF ₂	Cl	H	SCF ₃	Cl
H	OCHF ₂	SCH ₂ CH ₃	H	SCF ₃	SCH ₂ CH ₃
Н	SCHF ₂	CF ₃	H	Cl	CF ₃
H	SCHF ₂	OCF ₃	H	Cl	OCF ₃
H	SCHF ₂	SCF ₃	Н	Cl	SCF ₃
H	SCHF ₂	OCHF ₂	H	Cl	OCHF ₂
H	SCHF ₂	SCHF ₂	Н	Cl	SCHF ₂
H	SCHF ₂	C ₂ F ₅	н	Cl	C ₂ F ₅
H	SCHF ₂	Cl	Н	Cl	Cl
H	SCHF ₂	SCH ₂ CH ₃	H	Cl	SCH ₂ CH ₃
CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₃	CF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
CH ₃	CF ₃	SCF ₃	CH ₃	OCF ₃	
CH ₃	CF ₃	OCHF ₂	CH ₃	OCF ₃	
CH ₃	CF ₃	SCHF ₂	CH ₃	OCF ₃	
CH ₃	CF ₃	C_2F_5	CH ₃	OCF ₃	
CH ₃	CF ₃	Cl	CH ₃	OCF ₃	
CH ₃	CF ₃	SCH ₂ CH ₃	CH ₃	OCF ₃	
CH ₃	OCHF ₂		CH ₃	SCF ₃	
CH ₃	OCHF ₂		CH ₃		
CH ₃	OCHF ₂		CH ₃	SCF ₃	
CH ₃	OCHF ₂	OCHF ₂	CH ₃	SCF ₃	OCHF ₂

			•		
СН3	OCHF ₂	SCHF ₂	CH ₃	SCF ₃	SCHF ₂
CH ₃	OCHF ₂	C_2F_5	CH ₃	SCF ₃	C_2F_5
СН3	OCHF ₂	Cl	CH ₃	SCF ₃	Cl
CH ₃	OCHF ₂	SCH ₂ CH ₃	CH ₃	SCF ₃	SCH ₂ CH ₃
CH ₃	SCHF ₂	CF ₃	CH ₃	Cl	CF ₃
CH ₃	SCHF ₂	OCF ₃	CH ₃	Cl	OCF ₃
CH ₃	SCHF ₂	SCF ₃	CH ₃	Ci	SCF ₃
CH ₃	SCHF ₂	OCHF ₂	СН3	Cl	OCHF ₂
CH ₃	SCHF ₂	SCHF ₂	CH ₃	CI	SCHF ₂
CH ₃	SCHF ₂	C ₂ F ₅	СН3	Cl	C_2F_5
CH ₃	SCHF ₂	Cl	CH ₃	CI	Ci
CH ₃	SCHF ₂	SCH ₂ CH ₃	СН3	Cl	SCH ₂ CH ₃
OCH ₃	CF ₃	CF ₃	осн3	OCF ₃	CF ₃
OCH ₃	CF ₃	OCF ₃	осн3	OCF ₃	OCF ₃
OCH ₃	CF ₃	SCF ₃	осн3	OCF ₃	SCF ₃
OCH ₃	CF ₃	OCHF ₂	осн3	OCF ₃	OCHF ₂
OCH ₃	CF ₃	SCHF ₂	осн3	OCF ₃	SCHF ₂
OCH ₃	CF ₃	C_2F_5	осн3	OCF ₃	C_2F_5
OCH ₃	CF ₃	Cl	осн3	OCF ₃	Cl
OCH ₃	CF ₃	SCH ₂ CH ₃	OCH ₃	OCF ₃	SCH ₂ CH ₃
OCH ₃	OCHF ₂	CF ₃	OCH ₃	SCF ₃	CF ₃
OCH ₃	OCHF ₂	OCF ₃	осн3	SCF ₃	OCF ₃
OCH ₃	OCHF ₂	SCF ₃	осн3	SCF ₃	SCF ₃
OCH ₃	OCHF ₂	OCHF ₂	осн3	SCF ₃	OCHF ₂
OCH ₃	OCHF ₂	SCHF ₂	OCH ₃	SCF ₃	SCHF ₂
осн3	OCHF ₂	C ₂ F ₅	осн3	SCF ₃	C_2F_5
осн3	OCHF ₂	Cl	OCH ₃	SCF ₃	Cl
OCH ₃	OCHF ₂	SCH ₂ CH ₃	OCH ₃	SCF ₃	SCH ₂ CH ₃
OCH ₃	SCHF ₂	CF ₃	осн3	Cl	CF ₃
OCH ₃	SCHF ₂	OCF ₃	осн3	CI	OCF ₃
OCH ₃	SCHF ₂	SCF ₃	осн3	Cl	SCF ₃
OCH ₃	SCHF ₂	OCHF ₂	осн3	Cl	OCHF ₂
OCH ₃	SCHF ₂	SCHF ₂	осн3	Ci	SCHF ₂
OCH ₃	SCHF ₂	C ₂ F ₅	OCH ₃	Cl	C_2F_5
OCH ₃	SCHF ₂	Cl	осн3	Cl	Cl
OCH ₃	schf ₂	SCH ₂ CH ₃	осн3	Cl	SCH ₂ CH ₃
CH ₂ CH ₃	CF ₃	CF ₃	CH ₂ CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₂ CH ₃	OCF ₃	OCF ₃

CH ₂ CH ₃	CF ₃	SCF ₃	CH ₂ CH ₃	OCF ₃	SCF ₃
CH ₂ CH ₃	CF ₃	OCHF ₂	CH ₂ CH ₃	OCF ₃	OCHF ₂
CH ₂ CH ₃	CF ₃	SCHF ₂	СН2СН3	OCF ₃	SCHF ₂
CH ₂ CH ₃	CF ₃	C ₂ F ₅	CH ₂ CH ₃	OCF ₃	C ₂ F ₅
CH ₂ CH ₃	CF ₃	Cl	CH ₂ CH ₃	OCF ₃	Cl
CH ₂ CH ₃	CF ₃	SCH ₂ CH ₃	CH ₂ CH ₃	OCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	OCHF ₂	CF ₃	СН ₂ СН ₃	SCF ₃	CF ₃
CH ₂ CH ₃	OCHF ₂	OCF ₃	CH ₂ CH ₃	SCF ₃	OCF ₃
CH ₂ CH ₃	OCHF ₂	SCF ₃	CH ₂ CH ₃	SCF ₃	SCF ₃
CH ₂ CH ₃	OCHF ₂	OCHF ₂	CH ₂ CH ₃	SCF ₃	OCHF ₂
CH ₂ CH ₃	OCHF ₂	SCHF ₂	сн ₂ сн ₃	SCF ₃	SCHF ₂
CH ₂ CH ₃	OCHF ₂	C ₂ F ₅	CH ₂ CH ₃	SCF ₃	C_2F_5
CH ₂ CH ₃	OCHF ₂	Cl	CH ₂ CH ₃	SCF ₃	Cl
CH ₂ CH ₃	OCHF ₂	SCH ₂ CH ₃	СН ₂ СН ₃	SCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	SCHF ₂	CF ₃	СH ₂ CH ₃	Cl	CF ₃
CH ₂ CH ₃	SCHF ₂	OCF ₃	СH ₂ CH ₃	Cl	OCF ₃
CH ₂ CH ₃	SCHF ₂	SCF ₃	CH ₂ CH ₃	Cl	SCF ₃
CH ₂ CH ₃	SCHF ₂	OCHF ₂	CH ₂ CH ₃	Cl	ochf ₂
CH ₂ CH ₃	SCHF ₂	SCHF ₂	СH ₂ CH ₃	Cl	SCHF ₂
CH ₂ CH ₃	SCHF ₂	C ₂ F ₅	CH ₂ CH ₃	Ci	C_2F_5
CH ₂ CH ₃	SCHF ₂	Cl	CH ₂ CH ₃	Cl	CI
CH ₂ CH ₃	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	C1	SCH ₂ CH ₃

Table 19

X is N; Y	and Z are	<u>CH</u>	2	•			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9		
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃		
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃		
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃		
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃		
X and Y are CH; Z is N							
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R⁵</u>	<u>R⁹</u>		

			_		
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	are N; Z is	<u>CH</u>	_		
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
сн ₂ сн ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X is CH;	Y and Z are	e N			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
сн ₂ сн ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
СH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
Y is CH;	X and Z are	e N			
<u>R¹</u>	<u>R5</u>	<u>R</u> 9	<u>R</u> 1	<u>R5</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X, Y and	Z are N				
R^1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
СH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

$$\begin{array}{c|c}
 & Table 20 \\
 & R^{1} \\
 & N \\
 & N \\
 & X \\
 & Z \\
 & R^{5}
\end{array}$$

X, Y and Z		-a l	-1	75	D 9
\mathbb{R}^1	<u>R⁵</u>	<u>R</u> 9	$\frac{\mathbb{R}^1}{}$	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
	re CH; Y is	[1	7.5	D 0
<u>R</u> 1	\mathbb{R}^5	<u>R</u> 9	$\underline{\mathbb{R}^1}$	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	re CH; Z is	<u>N</u>		_	- 0
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃ _□	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X and Y a	re N; Z is	<u>CH</u>			_
<u>R1</u>	<u>R⁵</u>	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X is CH;	Y and Z ar	e N			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	\mathbb{R}^5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃ ·	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
Y is CH;	X and Z ar	re N			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	\mathbb{R}^5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃

сн ₂ сн ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃				
X, Y and Z are N									
<u>R1</u>	<u>R⁵</u>	R9	<u>R</u> 1	<u>R⁵</u>	<u>R⁹</u>				
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃				
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃				
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃				
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃				
Table 21									
	\sim	R^{I}	- ^						
	N \		N 						
	R ⁵		N	Y					
		II O	II X						
37 37 amd	7 CII			Z R9					
X, Y and		D 0	D1	n.5	D.0				
R ¹	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9				
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃				
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃				
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃				
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃				
X and Z a	re CH; Y i	s N							
$\underline{\mathbf{R}^1}$	<u>R⁵</u>	<u>R</u> 9	<u>R</u> 1	<u>R⁵</u>	<u>R</u> 9				
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃				
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃				
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃				
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃				
X and Y a	re CH; Z i	s N							
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R⁹</u>				
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃				
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃				
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃				
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃				
X and Y a	re N; Z is	СН							
<u>R¹</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	R ⁵	<u>R</u> 9				
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃				
CH ₂ CH ₃		OCF ₃	CH ₃	CF ₃	OCF ₃				
CH ₂ CH ₃		CF ₃	CH ₃	OCF ₃	CF ₃				
- •	•	- 1	-	-	-				

СН2СН3	OCF ₃ OCF ₃		CH ₃	OCF ₃	OCF ₃
X is CH;	Y and Z are	<u>N</u>			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	$\underline{R^1}$	<u>R</u> 5	\mathbb{R}^9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
Y is CH;	X and Z are	e N			
R ¹	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X, Y and	Z are N				
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH_2CH_3	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
		Table '	22		

X, Y and Z are CH							
R^{1}	<u>R⁵</u>	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9		
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃		
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃		
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃		
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃		
X and Z are CH; Y is N							
R ¹	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9		
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃		
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃		
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃		
	_						

				0.00	0.00			
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			
X and Y are CH; Z is N								
$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	$\underline{\mathbf{R^5}}$	$\underline{\mathbb{R}^9}$			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			
X and Y	are N; Z is	<u>CH</u>						
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	$\underline{\mathbf{R^9}}$			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			
X is CH;	Y and Z ar	e N						
<u>R</u> 1	R ⁵	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃			
CH_2CH_3	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			
Y is CH;	X and Z ar	e N						
RI	R5	<u>R</u> 9	<u>R1</u>	<u>R⁵</u>	<u>R</u> 9			
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃			
CH_2CH_3	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃			
X, Y and Z are N								
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9			
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			

$$\begin{array}{c|c}
 & \underline{\text{Table 23}} \\
 & R^{1} \\
 & N \\
 & X \\
 & Z
\end{array}$$

	X, Y and Z	are CH	•					
	R^1	<u>R</u> 9	<u>R</u> 1	<u>R</u> 9	<u>R1</u>	<u>R</u> 9	<u>R</u> 1	<u>R</u> 9
	CH ₂ CH ₃		R ¹ CH ₃	CF ₃	R1 CH ₂ CH ₃	OCF ₃	R ¹ CH ₃	OCF ₃
5	X and Z are		1—	- 0	1	- 0	1 _,	- 0
	$\underline{\mathbf{R}^1}$	<u>R</u> 9	<u>R</u> 1	R ⁹ CF ₃	R1 CH2CH3	R9	R ¹ CH ₃	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	СН3	CF ₃	CH ₂ CH ₃	OCF ₃	CH ₃	OCF ₃
	X and Y ar	e CH: Z is	N					
	R ¹	R ⁹	R1	R ⁹	\mathbb{R}^1	R ⁹	RI	R9
	R ¹ CH ₂ CH ₃	CF ₃	R1 CH3	CF ₃	R ¹ CH ₂ CH ₃	OCF ₃	CH ₃	R ⁹ OCF ₃
	X and Y ar			-0	J _,	-0		-0
	<u>R</u> 1	<u>R</u> 9	<u>R</u> 1 CH ₃	R9	R1 CH ₂ CH ₃	<u>R9</u>	<u>R1</u>	$\frac{\mathbb{R}^9}{\text{OCF}_3}$
10	CH ₂ CH ₃	CF ₃	CH ₃	CF ₃	CH ₂ CH ₃	OCF ₃	CH ₃	OCF ₃
10	X is CH; Y	and Z are	N					
	<u>R1</u>	<u>R</u> 9	<u>R</u> 1	R ⁹	R ¹	R ⁹	\mathbb{R}^1	R ⁹
	CH ₂ CH ₃	CF ₃	CH ₃	CF ₃	R ¹ CH ₂ CH ₃	OCF ₃	CH ₃	$\frac{\mathbb{R}^9}{\text{OCF}_3}$
				٠				
	Y is CH; X				1	- 1	1	
	<u>R1</u>	<u>R</u> 9	$\underline{\mathbf{R}^1}$	<u>R</u> 9	R1 CH ₂ CH ₃	<u>R</u> 9	$\underline{R^1}$	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CH ₃	CF ₃	CH ₂ CH ₃	OCF ₃	CH ₃	OCF ₃
15	X, Y and Z	are N						
13	R1		RI	R9	R1	1R9	R1	R9
	CH ₂ CH ₃	R ⁹ CF ₃	R1 CH3	CE	R1 CH ₂ CH ₃	OCE	CHa	R ⁹ OCF ₃
	CH2CH3	Cr3	Cnz	Cr3	1 01120113	00.3	CH3	OCE 3

X, Y and	Z are CH			
RI	<u>R</u> 7	<u>R</u> 9	$\frac{\mathbf{Y}^{1}}{\mathbf{Y}^{1}}$	$\frac{Z^1}{}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	CH
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	N

X is N; Y and Z are CH $\underline{\mathbf{Y}^{\mathbf{l}}}$ $\underline{Z^1}$ <u>R</u>7 <u>R</u>9 R^1 CF₃ СН N CF₃ CH₂CH₃ N CH CF₃ CH₂CH₃ CF₃ N N CH₂CH₃ CF₃ CF₃

CH ₂ CH ₃	CF ₃	OCF ₃	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	. CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	· N
CH ₃	CF ₃	CF ₃	CH	И
CH ₃	CF ₃	CF ₃	N	CH
CH ₃	CF ₃	CF ₃	N .	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	И
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N ·
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	N
				• .
X and Y	are CH; Z		**1	71
<u>R</u> 1	$\frac{\mathbb{R}^7}{}$	<u>R</u> 9	<u>Y¹</u>	$\frac{Z^1}{X}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	СН	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	И	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH2CH3	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	СН	N
CH ₃	CF ₃	CF ₃	И	СН

011	CTC	CE.	N	N
CH ₃	CF ₃	CF ₃		•
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	N

$$\begin{array}{c|c}
 & \underline{\text{Table 25}} \\
 & R^1 \\
 & N \\
 & N$$

X, Y and	Z are CH				
$\overline{\mathbb{R}^1}$	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃

X is N; Y and Z are CH

R^1	R ⁵	R9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃

X and Z are CH; Y is N

CH ₂ CH ₃	R ⁵	R ⁹	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
ч	OCF ₂	OCF ₂	CH ₃	OCF ₃	OCF ₃

X and Y a	re CH; Z is	N			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
V and V a	re N; Z is (าน			
	R ⁵	R ⁹	R ¹	R ⁵	R ⁹
<u>R</u> 1			CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	-	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	•	
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X is CH;	Y and Z are	e N			
R^1	R ⁵	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
V is CH.	X and Z ar	e N		•	
R ¹	R ⁵	R ⁹	R1	R ⁵	R ⁹
	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃ CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
CiryCiry	0013	00.3	,,	J	_
X, Y and	Z are N		·	•	
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

			Table 2	<u>6</u>		•
		\wedge	R ¹	∧		
				N		
		R ⁵ N		N N	-Y	
			 O	ا X≈	\mathbb{R}^9	
	X, Y and	7 are CH			L	
	R ¹	<u>R⁵</u>	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
	01120113		0013	1 02.3	0013	
	X is N; Y	and Z are	CH			
	<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
5						
		re CH; Y i			75	70
	<u>R1</u>	<u>R⁵</u>	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
	X and Y a	ere CH; Z i	s N			
	R ¹	R ⁵	R9	<u>R</u> 1	R ⁵	R ⁹
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃		OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	_	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	_		СН3		
10		ere N; Z is			_	
	R^{I}	<u>R</u> 5	<u>R</u> 9	<u>R</u> i	R^5	<u>R</u> 9
	CH ₂ CH ₃	_	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	_	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃		CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

X is CH, I	and Z are	<u>N</u> .			
R1	<u>R</u> 5	<u>R</u> 9	$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
Y is CH;)	K and Z are				0
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	$\frac{\mathbb{R}^1}{}$	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X, Y and Z	Z are N	,		·	- 0
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	$\frac{\mathbb{R}^1}{\mathbb{R}^n}$	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
			_		
		Table 2	7		
	М	Table 2	<u>7</u>		
·	N N		N	- Y	
	R ⁵	RI	7 N N	_Y 	
		RI	N	\mathbb{Z}^{Y} \mathbb{R}^{9}	
X, Y and	Z are CH	$\mathbb{R}^{\mathbb{I}}$	X:	= _Z '	D 9
<u>R</u> 1	Z are CH R ⁵	$ \overline{\mathbb{R}^{1}} $ $ \overline{\mathbb{R}^{9}} $	$\begin{bmatrix} N \\ N \\ X \end{bmatrix}$ $\begin{bmatrix} R^{1} \\ \end{bmatrix}$	=z' <u>R</u> 5	R ⁹
R ¹ CH ₂ CH ₃	Z are CH R ⁵ CF ₃	$\frac{R^{l}}{CF_{3}}$	N N N N N N N N N N N N N N N N N N N	$\frac{R^5}{CF_3}$	CF ₃
R ¹ CH ₂ CH ₃ CH ₂ CH ₃	Z are CH R ⁵ CF ₃ CF ₃	R ¹ O R ⁹ CF ₃ OCF ₃	N N N N N N N N N N N N N N N N N N N	R ⁵ CF ₃ CF ₃	CF ₃ OCF ₃
R ¹ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃	Z are CH R ⁵ CF ₃ CF ₃ OCF ₃	R ¹ O R ⁹ CF ₃ OCF ₃ CF ₃	N N N N N N N N N N N N N N N N N N N	$\frac{R^5}{CF_3}$ CF_3 CF_3 OCF_3	CF ₃ OCF ₃ CF ₃
R ¹ CH ₂ CH ₃ CH ₂ CH ₃	Z are CH R ⁵ CF ₃ CF ₃	R ¹ O R ⁹ CF ₃ OCF ₃	N N N N N N N N N N N N N N N N N N N	R ⁵ CF ₃ CF ₃	CF ₃ OCF ₃
R1 CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ X is N; Y	Z are CH R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃	R ¹ O R ⁹ CF ₃ OCF ₃ CF ₃ OCF ₃	N N N X X X X X X X X X X X X X X X X X	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃
R ¹ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃	Z are CH R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃	R ¹ 0 R ⁹ CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ OCF ₃	R ¹ CH ₃ CH ₃ CH ₃ R ¹	$\frac{R^5}{CF_3}$ CF_3 CF_3 OCF_3 OCF_3	CF ₃ OCF ₃ CF ₃ OCF ₃
R1 CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ X is N; Y	Z are CH R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃	R ¹ 0 R ⁹ CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ CF ₃ OCF ₃	N N N X X X X X X X X X X X X X X X X X	R5 CF3 CF3 OCF3 OCF3	CF ₃ OCF ₃ CF ₃ OCF ₃ OCF ₃
R1 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3	Z are CH R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃ CF ₃	R ¹ O R ⁹ CF ₃ OCF ₃ OCF ₃ OCF ₃ OCF ₃ OCF ₃	N	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ OCF ₃
R1 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3	Z are CH R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃ CF ₃	R ¹ 0 R ⁹ CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ CF ₃ OCF ₃	N N N X X X X X X X X X X X X X X X X X	R5 CF3 CF3 OCF3 OCF3	CF ₃ OCF ₃ CF ₃ OCF ₃ OCF ₃

X and Z as	re CH; Y is	<u>N</u>			
R^1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	$\underline{\mathbf{R^5}}$	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	re CH; Z is	N			
R^1	R5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	re N; Z is (CH			
R^1	R ⁵	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	\mathbb{R}^9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X is CH;	Y and Z are	e N			
R^1	R ⁵	R9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
Y is CH:	X and Z ar	e N			
R^1	R ⁵	R ⁹	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X, Y and	Z are N				
R ¹	R ⁵	<u>R</u> 9	<u>R</u> 1	<u>R⁵</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			X is CH;	Y and Z ar	e N	_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u>R1</u>	<u>R⁵</u>	R ⁹	<u>R</u> 1	<u>R⁵</u>	<u>R</u> 9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			СH ₂ СH ₃	CF ₃	CF ₃	,	CF ₃	CF ₃	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$:					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1 -1	-6	-0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_	_		_	_	
CH2CH3 OCF3 CH3 OCF3 OCF3					-		-		
X, Y and Z are N R\frac{1}{R}							_	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_		CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		X Y and	Z. are N					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					R9	R1	R5	R9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_			_	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_		_	•	
Table 29 R^{l} N N N N N N N				_			_		
$\frac{X, Y \text{ and } Z \text{ are } CH}{R^{1} R^{9} R^{1} R^{9}$								_	
$X, Y \text{ and } Z \text{ are } CH$ $R^{1} R^{9} R^{1} R^{9} R^{1} R^{9} R^{1} R^{9}$ $CH_{2}CH_{3} CF_{3} CH_{3} CF_{3} CH_{2}CH_{3} OCF_{3} CH_{3} OCF_{3}$ $X \text{ is } N; Y \text{ and } Z \text{ are } CH$ $R^{1} R^{9} R^{1} R^{9} R^{1} R^{9} R^{1} R^{9} R^{1} R^{9}$ $CH_{2}CH_{3} CF_{3} CH_{3} CF_{3} CH_{2}CH_{3} OCF_{3} CH_{3} OCF_{3}$ $X \text{ and } Z \text{ are } CH; Y \text{ is } N$						9			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) " Y	N			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					\checkmark	>N / N-	-Y		
F X, Y and Z are CH R¹ R9 R¹ R9 R¹ R9 R¹ R9 CH2CH3 CF3 CH3 CF3 CH2CH3 OCF3 CH3 OCF3 X is N; Y and Z are CH R¹ R9 R¹ R9 R¹ R9 R¹ R9 CH2CH3 CF3 CH3 CF3 CH2CH3 OCF3 X and Z are CH; Y is N		•		1	1	1	R^9		
X, Y and Z are CH R ¹ R ⁹ CH ₂ CH ₃ CF ₃ CH ₃ OCF ₃ CH ₃ OCF				- \	J	220	~Z		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		X, Y and Z	are CH	_					
10 X is N; Y and Z are CH				\mathbb{R}^1	R ⁹	\mathbb{R}^1	R ⁹	R ¹	R ⁹
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			CF ₃	CH ₃	CF ₃	CH ₂ CH ₃	OCF ₃	CH ₃	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10		1						
CH ₂ CH ₃ CF ₃ CH ₃ CF ₃ CH ₂ CH ₃ OCF ₃ CH ₃ OCF ₃ X and Z are CH; Y is N			nd Z are CH		50 1	n I	70	n l	D 0
X and Z are CH; Y is N		-		K.,	K'	K ₁	NCE-	K,	NCE-
		Chiena	Cr3 1	CH3	Cr3 1	Ch ₂ Ch ₃	OCF3	Chi	ocra
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		X and Z are	CH; Y is N		_				
CH_2CH_3 CF_3 CH_3 CF_3 CH_2CH_3 OCF_3 CH_3 OCF_3		$\underline{\mathbb{R}^1}$	R9	R^1	<u>R</u> 9	<u>R</u> 1	<u>R</u> 9	<u>R</u> 1	<u>R</u> 9
		CH ₂ CH ₃	CF ₃	CH ₃	CF ₃	СH ₂ CH ₃	OCF ₃	CH ₃	OCF ₃

	X and Y are	CH; Z is	N			1	1	
	<u>R</u> 1	<u>R</u> 9	<u>R1</u>	<u>R</u> 9	<u>R1</u>	<u>R</u> 9	R^1	\mathbb{R}^9
	CH ₂ CH ₃	CF ₃	CH ₃	CF ₃	CH ₂ CH ₃	OCF ₃	CH ₃	OCF ₃
	X and Y are		-		1			
	$\underline{\mathbf{R}^1}$	<u>R</u> 9	<u>R</u> 1	<u>R</u> 9	<u>R1</u>	<u>R</u> 9	R^1	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CH ₃	CF ₃	сн2сн3	OCF ₃	CH ₃	OCF ₃
5								
	X is CH; Y	and Z are	N		1			
	R^1	<u>R</u> 9	<u>R1</u>	<u>R</u> 9	<u>R1</u>	<u>R</u> 9	$\frac{\mathbb{R}^1}{}$	<u>R</u> 9
	CH_2CH_3	CF ₃	CH ₃	CF ₃	CH ₂ CH ₃	OCF ₃	CH ₃	OCF ₃
	Y is CH; X		N		1	- 1		
	R^{1}	<u>R</u> 9	<u>R1</u>	<u>R</u> 9	$\frac{\mathbb{R}^1}{}$	<u>R</u> 9	$\frac{\mathbb{R}^1}{}$	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CH ₃	CF ₃	CH ₂ CH ₃	OCF ₃	CH ₃	OCF ₃
			٤					
10	X, Y and Z		1		1	. 1		- 0
	\mathbb{R}^1	<u>R</u> 9	<u>R</u> 1	<u>R</u> 9	<u>R</u> 1	<u>R</u> 9	<u>R1</u>	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CH ₃	CF ₃	CH ₂ CH ₃	OCF ₃	CH ₃	OCF ₃

$$\begin{array}{c|c}
R^7 & \underline{\text{Table 30}} \\
Z^1 & \underline{\text{N}} & \underline{\text{N}}$$

X is N; Y and Z are CH							
<u>R</u> 1	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{Y}^{1}}$	$\underline{Z^1}$			
CH ₂ CH ₃	CF ₃	CF ₃	CH	N			
CH ₂ CH ₃	CF ₃	CF ₃	N	CH			
CH ₂ CH ₃	CF ₃	CF ₃	N	N			
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N			
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH			
CH ₂ CH ₃	CF ₃	OCF ₃	N	N			
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N			
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH			
CH ₂ CH ₃	OCF ₃	CF ₃	N	N			

CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	CH
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	N
X and Z	are CH; Y			
$\underline{\mathbf{R}^1}$	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{Y}^1}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	И
CH ₂ CH ₃	CF3	CF ₃	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N·	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	И
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	И
CH ₃	CF ₃	CF ₃	N	CH
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH

CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	·N
X and Y	are CH; Z	is N		
\mathbb{R}^1	$\underline{\mathbf{R}^7}$	<u>R</u> 9	$\underline{\mathbf{Y}^1}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N
CH_2CH_3	CF ₃	OCF ₃	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH_2CH_3	OCF ₃	CF ₃	CH	N
CH_2CH_3	OCF ₃	CF ₃	N	CH
СH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	CH
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
СН3	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	N
X is CH	; Y and Z	are N		
<u>R1</u>	$\underline{\mathbf{R^7}}$	<u>R</u> 9	$\underline{\mathbf{Y}^1}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N

CH ₂ CH ₃	CF ₃	OCF ₃	N	СН
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	СН
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	CH
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N
СН3	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	CH
СН3	OCF ₃	OCF ₃	N	N

$$\begin{array}{c|c}
 & \underline{\text{Table 31}} \\
 & R^{1} \\
 & N \\
 & X \\
 & R^{9}
\end{array}$$

X, Y and Z are CH							
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9		
CH ₂ CH ₃	CF ₃	CF ₃	СН ₂ СН ₃	OCF ₃	CF ₃		
CH ₂ CH ₃	CF ₃	OCF ₃	СН ₂ СН ₃	OCF ₃	OCF ₃		
CH ₂ CH ₃	CF ₃	SCF ₃	CH ₂ CH ₃	OCF ₃	SCF ₃		
CH ₂ CH ₃	CF ₃	OCHF ₂	CH ₂ CH ₃	OCF ₃	OCHF ₂		
CH ₂ CH ₃	CF ₃	SCHF ₂	CH ₂ CH ₃	OCF ₃	SCHF ₂		
CH ₂ CH ₃	CF ₃	C ₂ F ₅	CH ₂ CH ₃	OCF ₃	C_2F_5		
CH ₂ CH ₃	CF ₃	Cl	сн ₂ сн ₃	OCF ₃	Cl		
СH ₂ СH ₃	CF ₃	SCH ₂ CH ₃	СН ₂ СН ₃	OCF ₃	SCH ₂ CH ₃		
CH2CH3	OCHF2	CF ₃	CH ₂ CH ₃	SCF ₃	CF ₃		

CH ₂ CH ₃	OCHF ₂	OCF ₃	CH ₂ CH ₃	SCF ₃	OCF ₃
CH ₂ CH ₃	OCHF ₂	SCF ₃	CH ₂ CH ₃	SCF ₃	SCF ₃
CH ₂ CH ₃	OCHF ₂	OCHF ₂	CH ₂ CH ₃	SCF ₃	OCHF ₂
CH ₂ CH ₃	OCHF ₂	SCHF ₂	CH ₂ CH ₃	SCF ₃	SCHF ₂
CH ₂ CH ₃	OCHF ₂	C ₂ F ₅	CH ₂ CH ₃	SCF ₃	C_2F_5
CH ₂ CH ₃	OCHF ₂	Cl	CH ₂ CH ₃	SCF ₃	Cl
CH ₂ CH ₃	OCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	SCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	SCHF ₂	CF ₃	CH ₂ CH ₃	Cl	CF ₃
CH ₂ CH ₃	SCHF ₂	OCF ₃	CH ₂ CH ₃	CI	OCF ₃
CH ₂ CH ₃	SCHF ₂	SCF ₃	CH ₂ CH ₃	Cl	SCF ₃
CH ₂ CH ₃	SCHF ₂	OCHF ₂	CH ₂ CH ₃	Cl	OCHF ₂
CH ₂ CH ₃	SCHF ₂	SCHF ₂	CH ₂ CH ₃	Cl	SCHF ₂
CH ₂ CH ₃	SCHF ₂	C ₂ F ₅	CH ₂ CH ₃	Cl	C_2F_5
CH ₂ CH ₃	SCHF ₂	Cl	CH ₂ CH ₃	Cl	Cl
CH ₂ CH ₃	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	Cl	SCH ₂ CH ₃
CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₃	CF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
CH ₃	CF ₃	SCF ₃	CH ₃	OCF ₃	SCF ₃
CH ₃	CF ₃	OCHF ₂	CH ₃	OCF ₃	OCHF ₂
CH ₃	CF ₃	SCHF ₂	CH ₃	OCF ₃	SCHF ₂
CH ₃	CF ₃	C ₂ F ₅	CH ₃	OCF ₃	C_2F_5
CH ₃	CF ₃	Cl	CH ₃	OCF ₃	Cl
CH ₃	CF ₃	SCH ₂ CH ₃	CH ₃	OCF ₃	SCH ₂ CH ₃
CH ₃	OCHF ₂	CF ₃	CH ₃	SCF ₃	CF ₃
CH ₃	OCHF ₂	OCF ₃	CH ₃	SCF ₃	OCF ₃
CH ₃	OCHF ₂	SCF ₃	CH ₃	SCF ₃	SCF ₃
CH ₃	OCHF ₂	OCHF ₂	CH ₃	SCF ₃	OCHF ₂
CH ₃	OCHF ₂	SCHF ₂	CH ₃	SCF ₃	SCHF ₂
CH ₃	OCHF ₂	C_2F_5	CH ₃	SCF ₃	C ₂ F ₅
CH ₃	OCHF ₂	Cl	CH ₃	SCF ₃	Cl
CH ₃	OCHF ₂		CH ₃	SCF ₃	SCH ₂ CH ₃
CH ₃	SCHF ₂	CF ₃	CH ₃	Cl	CF ₃
CH ₃	SCHF ₂	OCF ₃	СН3	Cl	OCF ₃
CH ₃	SCHF ₂	SCF ₃	CH ₃	Cl	SCF ₃
CH ₃	SCHF ₂	OCHF ₂	CH ₃	Cl	OCHF ₂
CH ₃	SCHF ₂	SCHF ₂	CH ₃	C1	SCHF ₂
CH ₃	SCHF ₂	C ₂ F ₅	CH ₃	Cl	C_2F_5
CH ₃	SCHF ₂	Cl	CH ₃	Cl	Cl
CH ₃	SCHF ₂	SCH ₂ CH ₃	CH ₃	Cl	SCH ₂ CH ₃

501					PC
	R ⁵	Table 3		Y Z R ⁹	
	and Z are		_,	6	- 0
$\frac{\mathbb{R}^1}{}$	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
	ere CH; Y i				
$\underline{\mathbf{R^1}}$	<u>R</u> 5	R ⁹	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃ .
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	are CH; Z i	s N			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	ere N; Z is	CH .			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₂	CF ₂	CF ₂	CH ₂	CF ₂	CF ₂

_	-	_	_	_	_
CH ₂ CH	23 CF3	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
37 1	37 31. 77	:- CII			
X and	Y are N; Z	is CH			
R^1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH	3 CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH	3 ' OCF3	OCF ₃	CH ₃	OCF ₃	OCF ₃
**					
X is C	H; Y and Z	are N			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH	3 CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH	3 CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH	3 OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH	3 OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃

Y is CH;	X and Z ar	e N								
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9					
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃					
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃					
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃					
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃					
X, Y and	X, Y and Z are N									
R ¹	R ⁵	R ⁹	R1	R ⁵	\mathbb{R}^9					
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃					
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃					
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃					
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃					
Table 33 R ¹ N Y										
•		N_OH	x''_	Z R9						
	Z are CH	OH		_						
$\frac{X, Y \text{ and}}{R^1}$	Z are CH R ⁵	_Он <u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R⁹</u>					
R1 CH ₂ CH ₃	R ⁵ CF ₃	СF ₃	R1 CH3	R ⁵ CF ₃	CF ₃					
R1 CH ₂ CH ₃ CH ₂ CH ₃	<u>R⁵</u> CF ₃ CF ₃	R ⁹ CF ₃ OCF ₃	R1 CH ₃ CH ₃	R ⁵ CF ₃ CF ₃	CF ₃					
R ¹ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃	CF ₃ CF ₃	<u>R</u> 1 СН ₃ СН ₃	R ⁵ CF ₃ CF ₃ OCF ₃	CF ₃ OCF ₃					
R1 CH ₂ CH ₃ CH ₂ CH ₃	<u>R⁵</u> CF ₃ CF ₃	R ⁹ CF ₃ OCF ₃	R1 CH ₃ CH ₃	R ⁵ CF ₃ CF ₃	CF ₃					
R1 CH ₂ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃	CH	<u>R</u> 1 СН ₃ СН ₃ СН ₃	R ⁵ CF ₃ CF ₃ OCF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃					
R ¹ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃	CF ₃ CF ₃ CF ₃ CF ₃	R1 CH3 CH3 CH3 CH3	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃					
R1 CH ₂ CH ₃	$\frac{R^5}{CF_3}$ CF_3 OCF_3 OCF_3 and Z are $\frac{R^5}{CF_3}$	CH R9 CF3 OCF3 CF3 OCF3	R1 CH3 CH3 CH3 CH3	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃					
R1 CH ₂ CH ₃ X is N; Y	$\frac{\mathbb{R}^5}{\mathbb{CF}_3}$ \mathbb{CF}_3 \mathbb{CCF}_3 \mathbb{CCF}_3 \mathbb{CCF}_3 and \mathbb{Z} are	CH R9 CF3 OCF3 CF3 OCF3	R1 CH3 CH3 CH3 CH3	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃					
R ¹ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ X is N; Y R ¹ CH ₂ CH ₃	$\frac{R^5}{CF_3}$ CF_3 OCF_3 OCF_3 and Z are $\frac{R^5}{CF_3}$	CH R9 CF3 CF3 CF3 CF3 CF3 CF3 CF3	R1 CH3 CH3 CH3 CH3	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃ CF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ CF ₃ CF ₃					
R1 CH ₂ CH ₃ X is N; Y R1 CH ₂ CH ₃ CH ₂ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ and Z are R ⁵ CF ₃ CF ₃	CH R9 CF3 CF3 CF3 CF3 CH3	R1 CH3 CH3 CH3 CH3 CH3	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ OCF ₃					
R1 CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ X is N; Y R1 CH ₂ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ and Z are R ⁵ CF ₃ CF ₃	NH R9 CF3 OCF3 CF3 OCF3 CH R9 CF3 CF3 CF3 CF3 CF3	R1 CH3 CH3 CH3 CH3 CH3 CH3 CH3	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃ CF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ CF ₃ CF ₃					
R1 CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ X is N; Y R1 CH ₂ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ and Z are R ⁵ CF ₃ CF ₃ OCF ₃	NH R9 CF3 OCF3 CF3 OCF3 CH R9 CF3 CF3 CF3 CF3 CF3	R1 CH3 CH3 CH3 CH3 CH3 CH3	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃ CF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ CF ₃ CF ₃					
R1 CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ X is N; Y R1 CH ₂ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ and Z are R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ OCF ₃ Tre CH; Z in R ⁵ CF ₃	R9 CF3 OCF3 CF3 OCF3 CF3 OCF3 CF3 OCF3	R1 CH3 CH3 CH3 CH3 CH3 CH3 CH3	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃ CF ₃ OCF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ OCF ₃ OCF ₃ OCF ₃					
R1 CH2CH3 CH2CH3 CH2CH3 CH2CH3 X is N; Y R1 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ and Z are e R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ OCF ₃	CH R9 CF3 OCF3 CF3 OCF3 CF3 OCF3 CF3 OCF3	R1 CH3 CH3 CH3 CH3 CH3 CH3 CH3	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃ CF ₃ OCF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ CF ₃ OCF ₃					

CH₃

CH₃

OCF₃

OCF₃

CF₃

OCF₃

CH₂CH₃

CH₂CH₃

OCF₃

OCF₃

CF₃

OCF₃

X and Y a	are N; Z is	<u>CH</u>			
<u>R1</u>	<u>R5</u>	<u>R</u> 9	<u>R1</u>	<u>R⁵</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X is CH;	Y and Z ar	e N			
<u>R</u> 1	<u>R</u> 5 :	<u>R</u> 9	$\underline{\mathbf{R}^{1}}$	<u>R</u> 5	$\underline{\mathbf{R^9}}$
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
Y is CH;	X and Z ar	e N			
<u>R</u> 1	<u>R5</u>	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X, Y and	Z are N	,			
$\underline{\mathbf{R^1}}$	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

X, Y and	Z are CH				
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF3	OCF ₃	CH ₃	OCF ₃	OCF ₃

X is N; Y	and Z are C	CH .			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X and Y a	re CH; Z is				•
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
сн ₂ сн ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	re N; Z is	<u>CH</u>			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	$\underline{\mathbf{R}^1}$	$\underline{\mathbf{R^5}}$	<u>R</u> 9
CH ₂ CH ₃ -	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X is CH;	Y and Z are				- 0
$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9	$\frac{\mathbb{R}^1}{}$	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
Y is CH;	X and Z ar				
$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X, Y and	Z are N				
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃

CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
СH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF3

Formulation/Utility

5

10

15

20

Compounds of this invention will generally be used as a formulation or composition with an agriculturally suitable carrier comprising at least one of a liquid diluent, a solid diluent or a surfactant. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Useful formulations include liquids such as solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions and/or suspoemulsions) and the like which optionally can be thickened into gels. Useful formulations further include solids such as dusts, powders, granules, pellets, tablets, films, and the like which can be water-dispersible ("wettable") or water-soluble. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred liters per hectare. High-strength compositions are primarily used as intermediates for further formulation.

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.

		Weight Percent	
	Active Ingredient	Diluent	Surfactant
Water-Dispersible and Water-soluble Granules, Tablets and Powders.	5–90	0-94	1–15
Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)	5–50	40–95	0–15
Dusts Granules and Pellets	125 0.0199	70–99 5–99.99	0–5 0–15
High Strength Compositions	90-99	0–10	0-2

Typical solid diluents are described in Watkins, et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950. McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp., Ridgewood, New

10

15

20

25

30

35

Jersey, as well as Sisely and Wood, *Encyclopedia of Surface Active Agents*, Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth and the like, or thickeners to increase viscosity.

Surfactants include, for example, polyethoxylated alcohols, polyethoxylated alkylphenols, polyethoxylated sorbitan fatty acid esters, dialkyl sulfosuccinates, alkyl sulfates, alkylbenzene sulfonates, organosilicones, *N*,*N*-dialkyltaurates, lignin sulfonates, naphthalene sulfonate formaldehyde condensates, polycarboxylates, and polyoxyethylene/polyoxypropylene block copolymers. Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, starch, sugar, silica, talc, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Liquid diluents include, for example, water, *N*,*N*-dimethylformamide, dimethyl sulfoxide, *N*-alkylpyrrolidone, ethylene glycol, polypropylene glycol, paraffins, alkylbenzenes, alkylnaphthalenes, oils of olive, castor, linseed, tung, sesame, corn, peanut, cotton-seed, soybean, rape-seed and coconut, fatty acid esters, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, and alcohols such as methanol, cyclohexanol, decanol and tetrahydrofurfuryl alcohol.

Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. Dusts and powders can be prepared by blending and, usually, grinding as in a hammer mill or fluid-energy mill. Suspensions are usually prepared by wet-milling; see, for example, U.S. 3,060,084. Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pp 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714.

Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.

For further information regarding the art of formulation, see U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4; Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961, pp 81-96; and Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Tables A.

WO 99/28301 PCT/US98/22088

91

	Example A	
	High Strength Concentrate	
	Compound 1	98.5%
	silica aerogel	0.5%
5	synthetic amorphous fine silica	1.0%.
	Example B	
	Wettable Powder	
	Compound 1	65.0%
	dodecylphenol polyethylene glycol ether	2.0%
10	sodium ligninsulfonate	4.0%
	sodium silicoaluminate	6.0%
	montmorillonite (calcined)	23.0%.
	Example C	
	Granule	
15	Compound 1	10.0%
	attapulgite granules (low volatile matter,	
	0.71/0.30 mm; U.S.S. No. 25-50 sieves)	90.0%.
	Example D	
	Extruded Pellet	
20	Compound 1	25.0%
	anhydrous sodium sulfate	10.0%
	crude calcium ligninsulfonate	5.0%
	sodium alkylnaphthalenesulfonate	1.0%
	calcium/magnesium bentonite	59.0%.
25	Test results indicate that the compounds of the present	nt invention are highly
	preemergent and postemergent herbicides or plant growth r	egulants. Many of the
	utility for broad-spectrum pre- and/or postemergence weed	control in areas where
	control of all vegetation is desired such as around fuel store	are tanke industrial etc

Test results indicate that the compounds of the present invention are highly active preemergent and postemergent herbicides or plant growth regulants. Many of them have utility for broad-spectrum pre- and/or postemergence weed control in areas where complete control of all vegetation is desired such as around fuel storage tanks, industrial storage areas, parking lots, drive-in theaters, air fields, river banks, irrigation and other waterways, around billboards and highway and railroad structures. Some of the compounds are useful for the control of selected grass and broadleaf weeds with tolerance to important agronomic crops which include but are not limited to alfalfa, barley, cotton, wheat, rape, sugar beets, corn (maize), sorghum, soybeans, rice, oats, peanuts, vegetables, tomato, potato, perennial plantation crops including coffee, cocoa, oil palm, rubber, sugarcane, citrus, grapes, fruit trees, nut trees, banana, plantain, pineapple, hops, tea and forests such as eucalyptus and conifers (e.g., loblolly pine), and turf species (e.g., Kentucky bluegrass, St. Augustine grass, Kentucky fescue and Bermuda grass). Those skilled in the art will appreciate that not all

30

compounds are equally effective against all weeds. Alternatively, the subject compounds are useful to modify plant growth.

A herbicidally effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general, a herbicidally effective amount of compounds of this invention is 0.001 to 20 kg/ha with a preferred range of 0.004 to 1.0 kg/ha. One skilled in the art can easily determine the herbicidally effective amount necessary for the desired level of weed control.

Compounds of this invention can be used alone or in combination with other commercial herbicides, insecticides or fungicides. Compounds of this invention can also be 10 used in combination with commercial herbicide safeners such as benoxacor, dichlormid and furilazole to increase safety to certain crops. A mixture of one or more of the following herbicides with a compound of this invention may be particularly useful for weed control: acetochlor, acifluorfen and its sodium salt, aclonifen, acrolein (2-propenal), alachlor, ametryn, amidosulfuron, amitrole, ammonium sulfamate, anilofos, asulam, atrazine, 15 azafenidin, azimsulfuron, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron-methyl, bensulide, bentazone, bifenox, bispyribac and its sodium salt, bromacil, bromoxynil, bromoxynil octanoate, butachlor, butralin, butroxydim (ICIA0500), butylate, caloxydim (BAS 620H), carfentrazone-ethyl, chlomethoxyfen, chloramben, chlorbromuron, chloridazon, chlorimuron-ethyl, chlornitrofen, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal-dimethyl, cinmethylin, cinosulfuron, clethodim, clomazone, clopyralid, clopyralid-olamine, cyanazine, cycloate, cyclosulfamuron, 2,4-D and its butotyl, butyl, isoctyl and isopropyl esters and its dimethylammonium, diolamine and trolamine salts, daimuron, dalapon, dalapon-sodium, dazomet, 2,4-DB and its dimethylammonium, potassium and sodium salts, desmedipham, desmetryn, dicamba and its diglycolammonium, 25 dimethylammonium, potassium and sodium salts, dichlobenil, dichlorprop, dichlorprop, dichlorprop, dichlorprop, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-methyl-3-pyridinecarboxylic acid (AC 263,222), difenzoquat metilsulfate, diflufenican, dimepiperate, dimethenamid, dimethylarsinic acid and its sodium salt, dinitramine, diphenamid, diquat dibromide, dithiopyr, diuron, DNOC, endothal, EPTC, esprocarb, ethalfluralin, 30 ethametsulfuron-methyl, ethofumesate, ethoxysulfuron, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenuron, fenuron-TCA, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, fluazifop-butyl, fluazifop-P-butyl, fluchloralin, flumetsulam, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen-ethyl, flupoxam, flupyrsulfuron-methyl and its sodium salt, fluridone, flurochloridone, fluroxypyr, 35 fluthiacet-methyl, fornesafen, fosamine-ammonium, glufosinate, glufosinate-ammonium, glyphosate, glyphosate-isopropylammonium, glyphosate-sesquisodium, glyphosate-trimesium, halosulfuron-methyl, haloxyfop-etotyl, haloxyfop-methyl,

30

hexazinone, imazamethabenz-methyl, imazamox, imazapyr, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazosulfuron, ioxynil, ioxynil octanoate, ioxynil-sodium, isoproturon, isouron, isoxaben, isoxaflutole, lactofen, lenacil, linuron, maleic hydrazide, MCPA and its dimethylammonium, potassium and sodium salts, MCPA-isoctyl, mecoprop, mecoprop-P, mefenacet, mefluidide, 5 metam-sodium, methabenzthiazuron, methylarsonic acid and its calcium, monoammonium, monosodium and disodium salts, methyl [[[1-[5-[2-chloro-4-(trifluoromethyl)phenoxy]-2nitrophenyl]-2-methoxyethylidene]amino]oxy]acetate (AKH-7088), methyl 5-[[[[(4,6dimethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]-1-(2-pyridinyl)-1H-pyrazole-4carboxylate (NC-330), metobenzuron, metolachlor, metosulam, metoxuron, metribuzin, 10 metsulfuron-methyl, molinate, monolinuron, napropamide, naptalam, neburon, nicosulfuron. norflurazon, oryzalin, oxadiazon, oxasulfuron, oxyfluorfen, paraquat dichloride, pebulate. pendimethalin, pentoxazone (KPP-314), perfluidone, phenmedipham, picloram, picloram-potassium, pretilachlor, primisulfuron-methyl, prometon, prometryn, propachlor, 15 propanil, propaquizafop, propazine, propham, propyzamide, prosulfuron, pyrazolynate, pyrazosulfuron-ethyl, pyridate, pyriminobac-methyl, pyrithiobac, pyrithiobac-sodium, quinclorac, quizalofop-ethyl, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron, sethoxydim, siduron, simazine, sulcotrione (ICIA0051), sulfentrazone, sulfometuron-methyl, TCA, TCA-sodium, tebuthiuron, terbacil, terbuthylazine, terbutryn, thenylchlor, 20 thiafluamide (BAY 11390), thifensulfuron-methyl, thiobencarb, tralkoxydim, tri-allate, triasulfuron, triaziflam, tribenuron-methyl, triclopyr, triclopyr-butotyl, triclopyr-triethylammonium, tridiphane, trifluralin, triflusulfuron-methyl, and vernolate.

In certain instances, combinations with other herbicides having a similar spectrum of control but a different mode of action will be particularly advantageous for preventing the development of resistant weeds.

The following Tests demonstrate the control efficacy of the compounds of this invention against specific weeds. The weed control afforded by the compounds is not limited, however, to these species. See Index Tables A-D for compound descriptions. The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared.

94

INDEX TABLE A

$$R^1$$
 R^3
 R^4
 R^4

Cmpd	ī	<u>R</u> 1	<u>R³</u>	<u>R</u> ⁴	<u>A</u>	mp (°C)
1 (Ex. 1)	CF ₃	СН3	H	Н	CF ₃	112-113
2 (Ex. 2)	CF ₃	СН3	н	н	N CF3	90-92 *
3	CF ₃	н	Н	н	N CF3	oil*
4	CF3	CH ₃	Н	н	F	82-91
,5	CF ₃	CH ₃	Н	Н	CF3	98-100
6	CF3	CH ₃	Н	Н	T) _a	112-114
7	N CF3	СН3	Н	Н		84-89
8	CF ₃	СН3	н	н		solid*
9 (Ex. 3)	N CF3	СН3	Ħ	Н	CF ₃	112-114

INDEX TABLE B

Cmpd No.

¹H NMR Data (CDCl₃ solution unless indicated otherwise)^a

2 δ 8.55 (t, 2H), 7.55-7.50 (m, 2H), 7.45-7.40 (m, 2H), 6.72 (d, 1H), 4.26 (s, 2H), 2.32 (s, 3H).

^{*}See Index Table B for ¹H NMR data.

3	δ 8.70 (d, 1H), 8.65 (d, 1H), 7.60-7.55 (m, 2H), 7.50-7.45 (m, 2H), 7.05
	(d, 1H), 6.75 (d, 1H), 4.28 (s, 2H).
8	δ 8.62 (s, 1H), 8.27 (m, 2H), 7.7 (s, 1H), 7.47 (m, 3H), 7.4 (s, 1H), 5.28 (s, 1H), 5
	2H), 2.36 (s, 3H).
47	δ 8.59 (m, 2H), 7.40-7.10 (m, 4H), 6.71 (d, 1H), 4.24 (s, 2H), 2.70 (q,
	2H), 1.20 (t, 3H).
48	δ 8.56 (s, 2H), 7.34 (t, 1H), 7.15 (m, 3H), 6.72 (m, 1H), 4.24 (s, 2H), 2.65
	(t, 2H), 1.57 (m, 2H), 0.98 (t, 3H).
49	δ 8.65 (s, 1H), 8.47 (s, 1H), 8.17 (s, 1H), 7.40-7.15 (m, 4H), 4.20 (s, 2H),
	2.70 (q, 2H), 1.25 (t, 3H).
50	δ 9.20 (s, 1H), 8.60 (s, 1H), 7.41 (t, 1H), 7.15 (m, 3H), 4.25 (s, 2H), 2.80
	(q, 2H), 1.24 (t, 3H.).
<i>5</i> 8	δ 8.57 (s, 1H), 8.54 (m, 1H), 7.53 (m, 2H), 7.43 (m, 2H), 6.71 (d, 1H),

INDEX TABLE C

4.28 (s, 2H), 2.65 (t, 2H), 1.61 (m, 2H), 0.98 (t, 3H).

Cmpd	ī.	<u>R</u> 1	A	mp(°C)
59 (Ex. 4)	CF ₃	CH ₃	CF3	113-116
60	CF ₃	осн ₃	CF3	183-185
61	CF ₃	СН3	CF ₃	80-82
62	OCF ₃	CH ₃	CF2CF3	85-87

INDEX TABLE D

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
63	δ 8.77 (s, 1H), 8.57 (s, 1H), 8.17 (s, 1H), 7.77-7.85 (m, 2H), 7.50-7.60 (m,
	2H), 2.42 (s, 3H).
67	δ (s, 1H), 8.93 (s, 1H), 8.25 (s, 1H), 8.07 (d, 1H), 7.97 (d, 1H), 7.68 (m,
	1H), <u>2</u> .48 (s, 3H).
70	δ 9.13 (d, 1H), 8.60 (m, 2H), 8.42 (d, 1H), 7.91 (m, 2H), 7.72 (t, 1H), 6.70
	(d, 1H).
71	δ 8.81 (s, 1H), 8.58 (s, 1H), 8.18 (s, 1H), 7.81 (s, 1H), 7.77 (m, 1H), 7.57
	(m, 2H), 2.77 (q, 2H), 1.28 (t, 3H).

^a ¹H NMR data are in ppm downfield from tetramethylsilane. Couplings are designated by (s)-singlet, (d)-doublet, (t)-triplet, (q)-quartet, (m)-multiplet, (dd)-doublet of doublets, (dt)-doublet of triplets, (br s)-broad singlet.

BIOLOGICAL EXAMPLES OF THE INVENTION

TEST A

5

10

15

Seeds of barnyardgrass (*Echinochloa crus-galli*), crabgrass (*Digitaria spp.*), morningglory (*Ipomoea spp.*), and velvetleaf (*Abutilon theophrasti*) were planted into a sandy loam soil and treated preemergence by soil drench with test chemicals formulated in a non-phytotoxic solvent mixture which includes a surfactant. At the same time, these crop and weed species were also treated postemergence sprayed to runoff, with test chemicals formulated in the same manner.

Plants ranged in height from two to eighteen cm and were in the one to two leaf stage for the postemergence treatment. Treated plants and untreated controls were maintained in a greenhouse for approximately eleven days, after which all treated plants were compared to untreated controls and visually evaluated for injury. Plant response ratings, summarized in Table A, are based on a 0 to 10 scale where 0 is no effect and 10 is complete control. A dash

20 (-) response means no test results.

^{*}See Index Table D for ¹H NMR data.

TABLE A				CO	MPO	UND													
Rate 2000 g/ha : PRE SOIL DRENCH	1	6	8	12	13	59	65	73	74										
Barnyardgrass 1	0	8	7	7	9	10	5	9	1										
Crabgrass 1	0	9	10	9	10	10	8	10	7										
_	8	5	8	3	3	9	4	9	1										
		8				10		9	4										
mant = a		~	NATS/	NT TO TT	_	ma	BLE	. 70						001	#DOI	TATE:			
TABLE A		CC	-	ומטכ	,					/2	_	_	_		4PO				
Rate 1000 g/ha			8	• .			te			g/ha		6	8	12	13	59	65	73	74
PRE SOIL DRENCH										RUNOF	F								
Barnyardgrass			4	ŀ		Ba	rny	ard	gra	SS	9	8	3	5	6	9	4	8	5
Crabgrass			9	•		Cz	abg	ras	s		9	9	5	8	9	9	5	9	8
Morningglory			9)		Mo	rni	ngg	lor	У	9	6	7	2	2	8	10	9	10
Velvetleaf			2	:		Ve	lve	tle	af	_	9	9	2	6	8	9	5	9	5
TABLE A		C	OME	OUI	₹D														
Rate 500 g/ha			8	3															
SPRAYED TO RUNOFF																			
Barnyardgrass			3	l															
Crabgrass			8	3															
Morningglory			3																
			_																

5 TEST B

10

15

20

Velvetleaf

Seeds of bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), broadleaf signalgrass (Brachiaria decumbens), cocklebur (Xanthium strumarium), corn (Zea mays), crabgrass (Digitaria sanguinalis), giant foxtail (Setaria faberii), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), pigweed (Amaranthus retroflexus), rape (Brassica napus), soybean (Glycine max), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild oat (Avena fatua) and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, these crop and weed species were also treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments. Plant species in the flood test consisted of rice (*Oryza sativa*), smallflower flatsedge (*Cyperus difformis*), duck salad (*Heteranthera limosa*) and barnyardgrass (*Echinochloa crus-galli*) grown to the 2-leaf stage for testing. Treated plants and controls were maintained in a greenhouse for twelve to sixteen days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table B, are based on a scale of 0 to 10 where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

7 7 8 4 1 - 9 2 5 3 5 3 5 8 8 10 10 10 10 10 5 - 10 10 9 9 9 4 8 9 9 8 8 7 8 9 9 8 8 9 9 8 8 9 9 8 9 9 9 9	7 7 8 4 1 - 9 2 5 3 5 3 5 8 8 10 10 10 10 10 10 5 - 10 10 9 9 9 4 8 9 9 8 8 7 8 9 9 8 8 7 8 9 9 8 8 7 8 9 9 8 8 7 8 9 9 9 4 7 9 9 8 8 7 8 9 9 9 4 7 9 9 9 8 8 7 8 9 9 9 8 8 7 8 9 9 9 8 8 7 8 9 9 9 8 8 7 8 9 9 9 9	7 8 4 1 - 9 2 5 3 5 3 5 8 8 4 4 3 5 8 8 4 4 3 5 8 9 4 4 3 5 8 9 4 4 3 5 9 8 9 9 4 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9	7 8 4 1 - 9 2 5 3 5 3 5 8 8 4 4 3 5 8 9 4 4 3 5 10 10 9 9 9 4 4 3 5 8 9 9 4 8 9 9 8 9 9 4 8 9 9 8 9 9 4 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9	8 4 1 - 9 2 5 3 5 3 5 8 8 10 10 10 5 - 10 10 9 9 9 4 8 9 9 4 8 9 9 9 4 8 9 9 9 9 9 9	8 4 1 - 9 2 5 3 5 3 5 8 8 10 10 10 5 - 10 10 9 9 9 4 8 9 9 4 8 9 9 9 4 8 9 9 9 9 9 9	8 4 1 - 9 2 5 3 5 3 5 8 1 10 10 5 - 10 10 9 9 4 8 4 6 9 0 1 3 3 - 9 6 3 6 8 4 6 9 0 4 3 1 - 7 1 3 4 4 2 2 2 5 1 9 4 7 - 9 4 5 9 9 8 6 9 1 9 8 1 - 10 3 10 10 9 10 10 8 10 0 0 1 - 7 - 0 4 5 9 9 8 6 9 1 10 9 9 - 10 7 7 9 9 10 9 10 7 1 5 4 2 7 2 4 6 2 0 1 3 0 1 5 9 3 7 9 9 9 9 8 9 9 0 5 10 9 9 - 10 10 9 9 10 9 10 8 8 4 2 - 9 7 4 9 6 2 2 6 2 1 9 9 - 10 10 9 9 10 9 10 8 8 4 2 - 9 7 4 9 6 2 2 6 2 4 3 1 - 8 2 2 3 4 3 2 5 2 4 3 1 - 9 2 3 6 5 3 7 1	8 4 1 - 9 2 5 3 5 3 5 8 8 10 10 10 10 5 - 10 10 9 9 9 4 8 9 9 4 8 9 9 9 4 8 9 9 9 9 9 9	8 4 1 - 9 2 5 3 5 3 5 8 8 10 10 10 10 5 - 10 10 9 9 9 4 8 9 9 4 8 9 9 9 9 9 9 9 9 9 9 9	8 4 1 - 9 2 5 3 5 3 5 8 8 10 10 10 5 - 10 10 9 9 9 4 8 9 9 4 8 9 9 9 7 6 9 8 8 7 8 9 9 9 7 6 9 9 9 7 9 9 9 9 9 9 9 9 9 9 9	8 4 1 - 9 2 5 3 5 3 5 8 8 10 10 10 5 - 10 10 9 9 9 4 8 9 9 4 8 9 9 9 4 8 9 9 9 9 9 9	8 4 1 - 9 2 5 3 5 3 5 8 8 10 10 10 5 - 10 10 9 9 9 4 8 9 9 4 8 9 9 9 4 8 9 9 9 9 9 9	8 4 1 - 9 2 5 3 5 3 5 8 8 10 10 10 5 - 10 10 9 9 9 4 8 9 9 4 8 9 9 9 4 8 9 9 9 9 9 9	8 4 1 - 9 2 5 3 5 3 5 8 8 9 9 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 4 1 - 9 2 5 3 5 3 5 8 8 10 10 10 5 - 10 10 9 9 9 4 8 9 9 4 8 9 9 4 8 9 9 4 8 9 9 4 8 9 9 9 4 8 9 9 9 4 8 9 9 9 4 8 9 9 9 4 8 9 9 9 4 8 9 9 9 4 8 9 9 9 4 8 9 9 9 9	8 4 1 - 9 2 5 3 5 3 5 8 8 9 9 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9
7 7 8 4 1 - 9 2 5 3 5 3 5 3 5 10 10 10 10 10 10 5 - 10 10 9 9 9 4 8 8 9 9 9 9 9 8 9 9 9 9 9 9 9 9	7 7 8 4 1 - 9 2 5 3 5 3 5 3 5 10 10 10 10 10 10 5 - 10 10 9 9 9 4 8 8 9 8 9 7 8 9 9 8 8 9 7 8 9 9 8 9 9 9 9	7 8 4 1 - 9 2 5 3 5 3 5 3 5 10 10 10 10 10 5 - 10 10 9 9 9 4 8 8 4 5 1 8 9 7 6 - 9 6 9 8 8 7 8 8 8 7 8 8 9 7 6 - 9 6 9 8 8 7 8 8 7 8 8 7 8 9 9 7 7 - 9 4 5 9 9 8 6 5 2 3 3 2 6 9 7 3 7 5 2 6 6 9 8 1 - 10 3 10 10 9 10 10 9 10 10 9 10 10 9 10 10 9 10	7 8 4 1 - 9 2 5 3 5 3 5 3 5 10 10 10 10 10 5 - 10 10 9 9 9 4 8 4 4 3 1 4 5 3 3 - 9 6 9 6 9 8 8 7 8 8 7 8 8 7 8 8 8 7 8 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8 8 8 7 8 8 8 8 7 8 8 8	8 4 1 - 9 2 5 3 5 3 5 3 5 3 5 3 5 3 6 4 4 8 2 4 8 4 4 4 3 3 5 3 3 - 9 6 9 6 9 8 8 7 8 8 4 4 3 3 1 - 7 1 3 4 4 2 2 2 9 4 4 5 9 9 7 7 1 3 4 4 2 2 2 9 9 8 1 - 7 1 3 4 4 2 2 2 9 9 8 1 - 10 3 10 10 9 10 10 0 0 1 - 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 4 1 - 9 2 5 3 5 3 5 3 5 3 5 3 5 3 6 4 4 8 2 4 8 4 4 4 3 3 5 3 3 - 9 6 3 6 8 8 7 8 8 4 4 3 3 1 - 7 1 1 3 4 4 2 2 2 9 4 5 3 3 3 2 6 9 7 3 7 5 2 6 5 3 8 1 - 10 3 10 10 9 10 10 9 10 10 9 7 5 5 - 10 9 9 7 7 9 7 9 10 9 10 9 10 9 10 9 10	4 1 - 9 2 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5	8 4 1 - 9 2 5 3 5 3 5 3 5 3 5 3 6 4 4 8 2 4 8 4 4 4 3 3 1 0 10 5 - 10 10 9 9 9 9 4 8 8 4 4 3 3 3 - 9 6 3 6 3 6 8 8 4 6 6 3 6 3 6 9 8 8 7 8 6 9 4 7 - 9 4 5 9 9 8 6 6 3 3 3 2 6 9 7 3 7 5 2 6 6 9 7 3 7 5 2 6 6 9 7 3 7 5 2 6 6 9 7 3 7 5 2 6 6 9 7 3 7 5 2 6 6 9 7 3 7 5 2 6 6 9 7 5 10 9 9 7 9 3 3 8 9 7 9 7 9 9 10 9 10 9 9 10	8 4 1 - 9 2 5 3 5 3 5 3 5 10 10 10 10 10 10 10 10 10 10 10 10 10	8 4 1 - 9 2 5 3 5 3 5 3 5 10 10 10 10 10 10 10 10 10 10 10 10 10	8 4 1 - 9 2 5 3 5 3 5 3 5 10 10 10 10 10 10 10 10 10 10 10 10 10	8 4 1 - 9 2 5 3 5 3 5 3 5 10 10 10 10 10 10 10 10 10 10 10 10 10	8 4 1 - 9 2 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5	8 4 1 - 9 2 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5	8 4 1 - 9 2 5 3 5 3 5 3 5 3 5 3 5 3 5 3 6 4 4 8 8 2 4 8 8 4 4 4 3 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5	8 4 1 - 9 2 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5
7 7 8 4 1 - 9 2 5 3 3 10 10 10 10 10 10 5 - 10 10 9 9 8 9 7 6 - 9 6 9 8 9 7 8 7 3 9 4 7 7 1 3 4 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7 7 8 4 1 - 9 2 5 3 10 10 10 10 5 - 10 10 9 9 5 4 5 3 3 - 9 6 3 6 9 8 9 7 6 - 9 6 9 8 7 3 9 4 7 - 9 4 5 9 - 2 3 3 2 6 9 7 3 7 9 4 5 3 3 - 9 2 4 9 - 9 9 8 1 - 10 3 10 10 - 0 0 0 1 - 7 5 - 10 9 9 7	7 8 4 1 - 9 2 5 3 10 10 10 5 - 10 10 9 9 4 5 3 3 - 9 6 9 8 8 9 7 6 - 9 6 9 8 3 4 7 - 9 4 5 9 2 3 3 2 6 9 7 3 7 4 5 3 3 - 9 2 4 9 9 9 8 1 - 10 3 10 10 9 9 7 5 - 10 9 7 9 10 9 7 5 - 10 9 7	7 8 4 1 - 9 2 5 3 3 3 6 4 8 2 4 8 4 5 3 3 - 9 6 3 6 8 9 7 6 - 9 6 9 8 3 4 7 - 9 4 5 9 2 3 3 2 6 9 7 3 7 4 5 3 3 - 9 2 4 9 9 9 8 1 - 10 3 10 10 9 9 7 5 - 10 9 7 9 9 10 9 7 7 7 9 7 9	8 4 1 - 9 2 5 3 3 6 4 4 8 2 4 8 5 3 3 - 10 10 9 9 9 7 6 - 9 6 9 8 4 3 1 - 7 1 3 4 9 4 7 - 9 4 5 9 3 3 2 6 9 7 3 7 5 3 3 - 9 2 4 9 9 8 1 - 10 3 10 10 0 0 1 - 7 0 0 9 7 5 - 10 9 9 7 10 9 9 - 10 7 9 1 5 4 2 7 2 4 6 5 9 3 7 9 9 9	8 4 1 - 9 2 5 3 3 6 4 1 - 9 2 5 5 3 3 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 1 - 9 2 5 3 10 5 - 10 10 9 9 3 3 - 9 6 3 6 4 7 - 9 6 9 8 3 1 - 7 1 3 4 4 7 - 9 4 5 9 3 2 6 9 7 3 7 9 1 - 10 3 10 10 0 1 - 7 - 0 0 7 5 - 10 9 9 7 9 9 - 10 7 7 9 5 4 2 7 2 4 6 5 4 2 7 2 4 6 6 9 7 8 9 7 9 9 9 8 1 - 9 7 8 9 8 1 - 9 7 8 9 9 9 9 9	8 4 1 - 9 2 5 3 3 6 4 8 8 2 4 8 8 2 9 9 9 9 9 7 6 - 9 6 9 6 9 8 8 9 7 6 9 7 3 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 4 1 - 9 2 5 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 4 1 - 9 2 5 3 3 6 4 4 8 2 4 8 10 10 5 - 10 10 9 9 5 3 3 - 9 6 9 8 4 3 1 - 7 1 3 4 9 4 7 - 9 4 5 9 3 3 2 6 9 7 3 7 5 3 3 - 9 2 4 9 9 8 1 - 10 3 10 10 0 0 1 - 7 0 0 9 7 5 - 10 9 9 7 10 9 9 - 10 10 9 9 5 9 3 7 9 9 9 9 10 9 9 - 10 10 9 9 8 4 2 - 9 7 3 8 8 4 2 - 9 7 3 8 4 3 1 - 8 2 2 3 4 3 1 - 8 2 2 3 4 3 1 - 9 7 3 8	8 4 1 - 9 2 5 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 4 1 - 9 2 5 3 3 6 4 4 8 2 4 8 8 10 10 10 5 - 10 10 9 9 9 9 7 6 - 9 6 9 6 9 8 8 4 7 - 9 4 5 9 9 9 9 9 7 5 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 4 1 - 9 2 5 3 3 6 4 4 8 8 2 4 8 8 9 7 6 - 9 6 9 6 9 8 8 9 7 6 - 9 6 9 6 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 4 1 - 9 2 5 3 3 6 4 8 8 2 4 8 8 10 10 5 - 10 10 9 9 9 8 4 3 1 - 9 6 9 6 9 8 8 4 3 1 - 7 1 1 3 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 4 1 - 9 2 5 3 3 6 4 4 8 8 2 4 8 8 9 7 6 9 7 6 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 4 1 - 9 2 5 3 3 6 4 4 8 8 2 4 8 8 9 10 10 5 - 10 10 9 9 9 9 7 6 - 9 6 9 6 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9
10 10 10 10 5 - 10 10 10 5 8 2 8 9 9 8 9 7 6 9 8 9 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 10 10 5 - 10 10 10 10 10 10 10 10 10 10 10 10 10	3 3 6 4 4 8 2 4 5 3 3 - 10 10 8 9 7 6 - 9 6 3 4 3 1 - 7 1 3 9 4 7 - 9 4 2 3 3 2 6 9 7 4 5 3 3 - 9 2 9 9 8 1 - 10 3 0 0 0 1 - 7 - 9 9 9 7 5 - 10 9	3 3 6 4 4 8 2 4 5 3 3 - 10 10 8 9 7 6 - 9 6 3 4 3 1 - 7 1 3 9 4 7 - 9 4 2 3 3 2 6 9 7 4 5 3 3 - 9 2 9 9 8 1 - 10 3 0 0 0 1 - 10 3 1 0 9 7 5 - 10 9 3 1 5 4 2 7 2	3 6 4 4 8 2 10 10 5 - 10 10 5 3 3 - 9 6 4 3 1 - 7 1 9 4 7 - 9 4 3 3 2 6 9 7 5 3 3 - 9 2 9 8 1 - 10 3 0 0 1 - 7 - 9 1 5 4 2 7 2 5 9 3 7 9 9	3 6 4 4 8 2 10 10 5 - 10 10 9 7 6 - 9 6 4 3 1 - 7 1 9 4 7 - 9 4 3 3 2 6 9 7 5 3 3 - 9 2 9 8 1 - 10 3 0 0 1 - 7 - 9 10 9 9 - 10 7 1 5 4 2 7 2 5 5 4 - 9 7	10 5 - 4 8 2 3 3 - 10 10 3 1 - 7 1 4 7 - 9 6 3 1 - 7 1 3 2 6 9 7 3 3 - 9 2 8 1 - 10 3 0 1 - 7 - 7 7 5 - 10 9 9 9 - 10 7 5 4 2 7 2 9 3 7 9 9 5 4 2 7 2 9 3 7 9 7 9 3 1 - 9 7 9 4 2 7 8 7 8 7 8 7 9 5 4 7 8 7 8 7 9 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	3 6 4 4 8 2 10 10 5 - 10 10 5 3 3 - 9 6 4 3 1 - 7 1 9 4 7 - 9 4 3 3 2 6 9 7 5 3 3 - 9 2 9 8 1 - 10 3 0 0 1 - 7 - 9 10 9 9 - 10 7 10 9 9 - 10 10 8 4 2 - 9 7 8 4 2 - 9 7 4 3 1 - 9 2	3 6 4 4 8 2 10 10 5 - 10 10 5 3 3 - 9 6 4 3 1 - 7 1 9 4 7 - 9 4 3 3 2 6 9 7 5 3 3 - 9 2 9 8 1 - 10 3 0 0 1 - 7 - 9 10 9 9 - 10 7 1 5 4 2 7 2 1 5 9 3 7 9 9 5 5 4 - 9 7 8 4 2 - 9 7 8 3 1 - 10 10 8 4 2 - 9 7 8 4 2 - 9 7 8 4 2 - 9 7 8 3 1 - 10 10 8 4 2 - 9 7 8 3 1 - 9 7 8 4 2 - 9 7 8 3 1 - 9 7 8 4 2 - 9 7 8 5 5 5 7 8 7 8 8 7 8 7 8 8 7 8 8 7 8 7 8 9 8 8 7 8 9 8 8 7 8 9	3 6 4 4 8 2 10 10 5 - 10 10 5 3 3 - 9 6 4 3 1 - 7 1 9 4 7 - 9 4 3 3 2 6 9 7 5 3 3 - 9 2 9 7 5 - 10 9 10 9 9 - 10 7 10 9 9 - 10 10 8 4 2 7 2 5 9 3 7 9 9 5 5 4 - 9 7 6 4 3 1 - 9 7 7 9 9 8 4 2 7 2 8 4 2 7 2 8 4 2 7 2 7 9 9 8 4 2 7 2 8 4 2 7 2 8 4 2 7 2 8 4 2 7 2 7 9 9 7 10 9 8 4 2 7 9 9 8 7 8 9 7 9 8 8 7 8 9 9 7 9 8 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3 6 4 4 8 2 10 10 5 - 10 10 5 3 3 - 9 6 4 3 1 - 7 1 9 4 7 - 9 4 3 3 2 6 9 7 5 3 3 - 9 2 9 8 1 - 10 3 0 0 1 - 7 - 9 10 9 9 - 10 7 1 5 4 2 7 2 5 9 3 7 9 9 5 5 4 - 9 7 8 4 2 - 9 7 8 5 5 4 - 9 7 8 7 6 6 6	3 6 4 4 8 2 10 10 5 - 10 10 5 3 3 - 9 6 4 3 1 - 7 1 9 4 7 - 9 4 3 3 2 6 9 7 5 3 3 - 9 2 9 7 5 - 10 3 0 0 1 - 7 - 9 10 9 9 - 10 7 1 5 4 2 7 2 5 9 3 7 9 9 1 5 4 - 9 7 5 5 4 - 9 7 6 4 3 1 - 9 7 7 9 9 7 10 10 8 4 2 - 9 7 8 4 2 - 9 7 8 4 2 - 9 7 8 3 1 - 8 2 9 7 8 4 2 - 9 7 8 3 1 - 6 6 6 5 6 6 7 10 10 8 8 6 6 6 8 7 6 6 6 8 7 7 8 8 7 8 7 8 9 7 8 8 2 8 7 8 9 8 7 8 9 8 7 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 6 4 4 8 2 10 10 5 - 10 10 5 3 3 - 9 6 4 3 1 - 7 1 9 4 7 - 9 4 3 3 2 6 9 7 5 3 3 - 9 2 9 8 1 - 10 3 10 9 9 - 10 7 10 9 9 - 10 7 10 9 9 - 10 10 8 4 2 - 9 7 4 3 1 - 9 2 4 3 1 - 6 6 6 2 1 10 8 4 9 5 7 10 6 6 6 2 1 10 8 4 9 3 4 10 2 4	3 6 4 4 8 2 10 10 5 - 10 10 5 3 3 - 9 6 4 3 1 - 9 4 3 3 2 6 9 7 5 3 3 - 9 7 9 4 7 - 9 4 3 3 2 6 9 7 9 8 1 - 10 3 10 9 9 - 10 7 1 5 4 2 7 9 7 5 9 3 7 9 7 8 4 2 - 9 7 8 4 2 - 9 7 8 4 3 1 - 9 2 4 3 1 - 9 6 6 2 4 9 7 8 4 2 - 9 7 8 4 2 - 9 7 8 4 2 - 9 7 8 4 3 1 - 9 6 6 5 7 10 6 6 6 5 7 10 6 6 6 7 7 10 8 6 6 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 6 4 4 8 2 10 10 5 - 10 10 5 3 3 - 9 6 4 3 1 - 9 6 9 4 7 - 9 4 3 3 2 6 9 7 5 3 3 - 9 2 9 8 1 - 10 3 10 9 9 - 10 7 10 9 9 - 10 7 5 5 4 - 9 7 5 9 3 7 9 9 7 9 9 7 8 4 2 - 9 7 8 4 2 - 9 7 8 4 2 - 9 7 8 4 3 1 - 9 2 7 9 9 7 8 4 2 - 9 7 8 4 2 - 9 7 8 4 3 1 - 9 6 6 5 4 - 9 7 7 9 9 7 8 4 7 - 9 10 10 8 4 6 - 9 7 8 4 7 - 9 7 9 5 7 10 6 6 6 2 1 10 8 4 9 5 7 10 6 6 10 0 1 0 1 0 1	3 6 4 4 8 2 10 10 5 - 10 10 5 3 3 - 9 6 4 3 1 - 9 6 9 4 7 - 9 4 3 3 2 6 9 7 5 3 3 - 9 2 9 8 1 - 10 3 10 9 9 - 10 7 10 9 9 - 10 7 5 9 3 7 9 9 7 9 9 7 8 1 8 4 2 - 9 7 8 4 2 - 9 7 8 4 3 1 - 9 2 4 3 1 - 9 6 6 5 4 0 0 1 7 9 6 6 7 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 10 10 5 4 5 3 9 8 9 7 3 3 4 3 7 3 9 4 - 2 3 3 3 9 4 5 3 - 9 9 8	10 10 10 10 5 4 5 3 9 8 9 7 3 3 4 3 7 3 9 4 - 2 3 3 3 9 4 5 3 - 9 9 8 - 0 0 0	10 10 10 4 5 13 3 4 4 3 2 3 3 4 4 2 3 3 4 4 2 0 0 0 9 0 0 0 9 10 9	10 10 10 4 5 13 3 4 4 3 2 3 3 4 4 2 3 3 4 4 5 5 3 6 6 0 0 0 9 9 7 9 10 9	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0 m r m 4 m m 8 0 r o r o r o r o 4 m m	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 5 13 9 4 3 3 3 3 9 6 0 10 9 7 10 9 7 10 9 4 10 9 4 8 4 4 3 8 4 4 3 10 9 14 3	10 10 55 13 99 4 13 13 13 10 9 7 10 9 7 10 9 7 10 9 7 10 9 7 10 9 7 11 15 9 11 14 3	10 10 10 10 3 3 3 3 3 3 3 3 3 3 3 3 3 3	10 10 5 3 9 4 4 4 3 10 9 10 9 10 9 10 9 10 9 11 14 1 11 14 1 6 2	10 10 5 3 9 4 9 4 10 9 10 9 10 9 10 9 11 14 1 11 14 1 9 5 9 5	10 10 55 3 64 3 10 9 9 8 10 9 9 8 10 9 9 8 10 9 9 8 11 14 14 14 14 14 14 14 14 14 14 14 14 1	10 10 5 5 10 10 9 6 9 9 8 9 8 9 9 8 9 9 8 9 9 9 9 9 9 9	10 10 5 5 10 10 9 6 7 3 10 9 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
		0066.00.00		•		4 8 8 8 8 9 9 9 9 8 8 8 9 8 9 8		:							
- 9 2 10 2 10 1 9 0 10 0 3	2 10 2 10 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- 9 9 2 2 10 6 2 10 6 5 1 0 9 5 10 9 7 10 9 9 7 10 9 9 7 10 9 9 9 10 9 9 9 10 9 9 9 9 9 9 9 9 9	- 9 9 2 2 10 6 5 10 6 5 10 9 0 1 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 9 9 9 9 2 2 10 6 7 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	- 9 9 9 9 2 2 10 6 3 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	- 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 9 9 9 9 2 10 6 7 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	2 5 3 3 3 2 10 6 7 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	2 5 3 3 3 2 10 6 7 1 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	2 5 3 3 3 2 10 6 7 2 6 5 - 1 9 9 9 9 9 9 10 9 10 9 10 9 10 9 10	2 5 3 3 3 2 10 6 7 7 10 9 10 0 10 8 3 5 0 10 0 10 0 10 0 10 0 10 0 10 0 10	2 5 3 3 3 2 10 6 7 7 10 9 10 0 0 10 9 10 0 0 0 0 0 0 0 0 0 0	2 5 5 3 3 3 5 5 5 6 6 7 7 7 10 9 10 7 7 10 9 10 7 7 10 9 10 7 7 9 10 9 10	2 5 3 3 3 2 10 6 7 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10
	7 3 4 4 3 2 6 5 2 6 10 5 8 6 6 9 8 9 4 8 10 7 10 10 8	7 3 4 4 3 10 3 9 8 9 2 6 5 2 6 10 5 8 6 6 2 0 0 0 3 10 7 10 10 8 9 9 10 9 9	7 3 4 4 3 2 6 5 2 6 10 5 8 6 6 9 8 9 4 8 2 0 0 0 3 10 7 10 10 8 9 9 10 9 9 6 6 7 3 3	7 3 4 4 3 2 6 5 2 6 10 5 8 6 6 9 8 9 4 8 2 0 0 0 3 10 7 10 10 8 9 9 10 9 9 6 6 7 3 3	10 3 4 4 3 2 6 5 2 6 10 5 8 6 6 2 0 0 0 3 10 7 10 10 8 9 9 10 9 9 6 6 7 3 3 8 8 6 6	7 3 4 4 3 2 6 5 2 6 10 5 8 6 6 2 0 0 0 3 10 7 10 10 8 9 9 10 9 9 6 6 7 3 3 6 6 7 3 3 7 3 2 4 3 7 3 3 5 3	10 3 4 4 3 10 3 9 8 9 2 6 5 2 6 10 5 8 6 6 10 7 10 10 8 9 9 10 9 9 6 6 7 3 3 3 7 3 2 4 3 7 3 3 2 4 3 7 3 3 5 3	10 3 4 4 3 10 3 9 8 9 10 5 8 6 6 10 7 10 10 8 9 9 10 9 9 6 6 7 3 3 6 6 7 3 3 7 3 2 4 3 7 3 3 5 3 8 8 6 6 9 9 8 5 7 8 8 8 6 6 9 9 8 5 7 7 3 3 5 4 3 8 3 5 5 6 8 5 7 8 8 8 6 6 9 9 8 9 8 5 7 7 8 9 9 8 5 7 8 8 8 6 6 6 8 8 8 6 6 6 8 8 8 6 6 6 8 8 8 7 7 8 8 8 8 6 6 8 8 8 7 7 8 8 8 8 6 6 8 8 8 7 7 8 8 8 8 6 6 8 9 9 8 9 8 7 7 8 9 9 8 8 7 7 8 9 9 8 8 7 7 8 9 9 8 8 7 8 9 9 8 8 8 8 6 6 6	10 3 4 4 3 10 5 6 5 2 6 10 5 6 5 2 6 10 7 10 10 8 9 9 10 9 9 9 9 10 10 9 9 9 8 5 7 9 9 10 10 9 9 9 8 5 7 3 3 2 4 3 5 3 4 5 6	10 3 4 4 3 10 5 6 5 5 2 6 10 5 8 8 9 10 7 10 10 8 9 9 8 9 6 6 6 6 7 3 3 7 3 3 2 4 3 7 3 3 2 4 3 8 8 6 6 7 3 3 2 4 3 8 8 6 6 7 3 3 2 4 3 8 8 6 6 7 8 8 8 6 6 8 8 8 5 7 8 8 8 6 6 7 8 9 9 8 8 7 7 9 9 8 8 7 8 9 9 8 8 7 9 9 8 8 8 7 7 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10 3 4 4 3 10 5 6 5 2 6 10 5 8 9 4 8 9 9 10 9 9 6 6 7 3 3 6 6 7 3 3 7 3 3 2 4 3 7 3 3 2 4 3 7 3 3 5 6 8 6 6 9 9 8 5 7 9 9 8 6 6 9 9 8 5 7 10 10 9 9 10 10 9 10 9 1	10 3 4 4 3 2 6 5 2 6 9 8 9 4 8 10 7 10 10 8 9 9 10 9 9 6 6 7 3 3 9 9 10 10 9 9 4 9 9 8 5 3 2 4 3 7 3 3 5 6 10 5 8 7 5 10 10 9	10 3 4 4 3 2 6 5 2 6 9 8 9 4 8 2 0 0 0 3 10 7 10 10 8 9 9 10 9 9 6 6 7 3 3 9 9 10 9 9 8 8 5 7 8 8 8 6 6 9 9 10 10 9 9 4 9 9 8 5 3 2 4 3 7 3 3 2 4 3 7 3 3 2 4 3 7 3 3 5 3 7 3 3 5 5 8 5 6 9 6 6 9 9 8 7 3 9 9 8 7 3 9 9 8 7 3 9 9 8 8 8 6 6 6 9 9 8 5 7 8 8 8 6 6 9 9 8 5 7 8 8 8 6 6 9 9 10 10 9 9 8 10 10 10 10 7 4	10 3 4 4 3 2 6 5 2 6 10 5 8 6 6 2 0 0 0 3 10 7 10 10 8 9 9 10 9 9 8 5 7 8 8 8 6 6 9 9 10 9 9 4 9 9 8 5 3 2 4 3 7 3 3 6 6 10 10 10 7 4 10 10 10 7 4 10 10 10 7 4	10 3 4 4 3 2 6 5 2 6 9 8 9 4 8 10 7 10 10 8 9 9 10 9 9 6 6 7 3 3 9 9 10 9 9 8 8 8 6 6 9 9 10 9 9 8 9 8 5 7 3 3 2 4 3 7 3 3 2 4 3 7 3 3 5 3 10 10 10 7 4 10 10 10 7 4 10 10 10 7 4 10 5 10 9 10
1. 61 61 61 61 61 61 61 61 61 61 61 61 61	1. 01 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	.1 9 1 10 1 2 2 2 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10	1 9 1 10 1 2 2 2 9 1 reed 10 .	1 9 1 10 2 2 9 1 eed 10	1 9 1 10 2 2 2 9 1 6 6 4 10 6 6 4 10 9 1	1 9 1 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 9 1 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 10 1 10 1 10 1 10 10 10 10 10 10 10 10	1 10 1 10 1 10 10 10 10 10 10 10 10 10 1	1 10 1 10 1 10 1 10 1 10 10 10 10 10 10	n ha n n n n n n n n n n n n n n n n n n	ss 9 1 10 1 10 1 10 1 10 1 10 1 10 1 10	1 10 1 10 1 10 1 10 10 10 10 10 10 10 10	1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 1	ने ने ने न
1 9 10 5 8 6 7 10 9 8 9 4 2 2 0 0 0	1 9 10 5 8 6 7 10 9 8 9 4 2 2 0 0 0 9 10 7 10 10	1 9 10 5 8 6 10 9 8 9 4 2 2 0 0 0 9 10 7 10 10	1 9 10 5 8 6 10 9 8 9 4 2 2 0 0 0 9 10 7 10 10 reed 10 9 9 10 9	1 9 10 5 8 6 10 9 8 9 4 2 2 0 0 0 9 10 7 10 10 eed 10 9 9 10 9 - 6 6 7 3 - 9 9 8 5	1 9 10 5 8 6 10 9 8 9 4 2 2 0 0 0 9 10 7 10 10 eed 10 9 9 10 9 - 6 6 7 3 - 9 9 8 5 9 8 8 6	1 9 10 5 8 6 10 9 8 9 4 2 2 0 0 0 9 10 7 10 10 edd 10 9 9 10 9 6 6 7 3 - 6 6 7 3 - 9 9 8 5 9 8 8 8 6 10 9 9 10 10 9 9 4 9 9 5 5 3 2 4	1 9 10 5 8 6 10 9 8 9 4 2 2 0 0 0 9 10 7 10 10 6ed 10 9 9 10 9 - 6 6 7 3 - 6 6 7 3 - 9 9 8 8 10 9 9 4 9 9 5 5 5 3 2 4 9 7 3 3 5	1 9 10 5 8 6 10 9 8 9 4 2 2 0 0 0 9 10 7 10 10 9 10 9 9 10 9 10 9 9 10 10 9 9 4 9 9 5 5 3 2 4 9 7 3 3 5	1 9 10 5 8 6 10 9 8 9 4 2 2 0 0 0 9 10 7 10 10 - 9 9 10 9 - 9 9 8 5 9 8 8 6 10 9 9 10 10 9 9 4 9 9 5 5 3 2 4 9 7 3 3 5 ha 1 2 3 4 5	ed 10 9 8 9 4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 9 10 5 8 6 10 9 8 9 4 2 2 0 0 0 9 10 7 10 10 - 9 9 9 10 9 10 9 9 10 10 9 9 4 9 9 5 5 3 2 4 9 7 3 3 5 ss 9 - 5 - 9 8 8 8 6 10 9 9 4 9 9 8 8 8 6 10 9 9 4 9 9 9 9 4 9 9 9 9 8 8 6 10 9 9 10 10 9 9 9 6 9 9 8 8 8 6 10 9 9 10 10 9 9 10 10 9 9 10 10 9 9 10 10 9 7 3 3 5	1 9 10 5 8 6 10 9 8 9 4 2 2 0 0 0 9 10 7 10 10 - 9 9 8 8 5 9 8 8 8 6 10 9 9 10 10 9 9 4 9 9 5 5 3 2 4 9 7 3 3 5 ba 1 2 3 4 5 ss 9 - 5 9 9 10 10 10 10 7	1 9 10 5 8 6 2 2 0 0 0 9 10 7 10 10 9 10 9 9 4 -	eed 10 5 8 6 2 2 0 0 0 9 10 7 10 10 9 10 9 8 9 4 10 9 9 10 9 10 9 9 10 9 10 9 9 4 9 9 10 9 9 4 9 9 10 10 10 10 7 10 10 10 10 7 10 3 0 1 - 10 3 0 1 - 10 3 0 1 - 10 3 0 1 - 10 3 0 1 -	1 9 10 5 8 6 2 2 0 0 0 9 10 7 10 10 9 10 9 8 9 4 1 0 9 9 10 9 1 0 9 9 10 10 9 9 4 9 9 5 5 3 2 4 9 7 3 3 5 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
, 10 9 8 9 4 8 5 2 2 0 0 0 3 0	2 2 0 0 0 3 0 9 10 10 10 10 10 10 10 10 10 10 10 10 10	10 9 8 9 4 8 5 2 2 0 0 0 3 0 9 10 7 10 10 8 7 reed 10 9 9 10 9 9 7	10 9 8 9 4 8 5 2 2 0 0 0 3 0 9 10 7 10 10 8 7 reed 10 9 9 10 9 9 7 6 6 7 3 3 0	10 9 8 9 4 8 5 2 2 0 0 0 3 0 9 10 7 10 10 8 7 eed 10 9 9 10 9 9 7 - 6 6 7 3 3 0 - 9 9 8 5 7 4	10 9 8 9 4 8 5 2 2 0 0 0 3 0 9 10 7 10 10 8 7 eed 10 9 9 10 9 9 7 - 6 6 7 3 3 0 - 9 9 8 5 7 4 9 8 8 6 6 5	10 9 8 9 4 8 5 2 2 0 0 0 3 0 9 10 7 10 10 8 7 9 9 10 9 9 7 9 9 8 5 7 4 9 9 8 8 6 6 5 10 9 9 9 8 9 9 8 5 7 9 9 9 8 5 5 5 5 5 5 5 5 3 2 4 3 0 9 7 9 7 3 3 5 3 0	10 9 8 9 4 8 5 2 0 0 0 3 0 9 10 7 10 10 8 7 7 10 10 8 7 7 10 10 8 7 7 10 10 9 7 7 10 10 9 8 10 10 9 8 10 10 9 8 10 10 9 8 10 10 9 10 10 10 9 10 10 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	10 9 8 9 4 8 5 2 2 0 0 0 3 0 9 10 7 10 10 8 7 6 6 7 3 3 0 - 9 9 8 5 7 4 9 9 8 6 6 5 10 9 9 10 10 9 8 5 5 3 2 4 3 0 9 7 3 3 5 3 0	10 9 8 9 4 8 5 2 2 0 0 0 3 0 9 10 7 10 10 8 7 - 6 6 7 3 3 0 - 9 9 8 5 7 4 9 9 4 9 9 8 2 5 5 3 2 4 3 0 9 7 3 3 5 3 0	10 9 8 9 4 8 5 2 2 0 0 0 3 0 9 10 7 10 10 8 7 - 6 6 7 3 3 0 - 9 9 8 5 7 4 9 9 4 9 9 8 5 10 9 9 10 10 9 8 5 5 3 2 4 3 0 9 7 3 3 5 3 0 ba 1 2 3 4 5 6 7 ss 9 - 5 - 9 9 0	10 9 8 9 4 8 5 2 2 0 0 0 3 0 9 10 7 10 10 8 7 - 6 6 7 3 3 0 - 9 9 8 5 7 4 9 9 4 9 9 8 5 10 9 9 10 10 9 8 5 5 3 2 4 3 0 9 7 3 3 5 3 0 8 8 6 6 5 10 9 9 4 9 9 8 2 5 5 3 2 4 3 0 9 7 3 3 5 3 0 8 8 9 6 5 9 9 7 8 8 6 6 5 9 9 8 2 9 9 7 8 9 8 2 9 7 8 9 9 8 2 9 7 8 9 9 8 2 9 7 9 9 9 9 9 9 9 0	10 9 8 9 4 8 5 2 2 0 0 0 3 0 9 10 7 10 10 8 7 - 6 6 7 3 3 0 - 9 9 8 5 7 4 9 9 4 9 9 8 5 10 9 9 10 10 9 8 9 9 4 9 9 8 2 5 5 3 2 4 3 0 9 7 3 3 5 3 0 8 8 6 6 5 10 9 9 4 9 9 8 2 9 7 3 3 5 3 0 8 8 9 6 5 9 9 7 3 6 7 8 9 10 5 8 7 5 0 10 10 10 10 7 4 0	10 9 8 9 4 8 5 2 2 0 0 0 3 0 9 10 7 10 10 8 7 - 6 6 7 3 3 0 - 9 9 8 5 7 4 9 9 4 9 9 8 5 10 9 9 10 10 9 8 5 5 3 2 4 3 0 9 7 3 3 5 3 0 ss 9 - 5 - 9 9 0 10 10 10 10 7 4 0 10 3 0 1 - 0 0	10 9 8 9 4 8 5 2 2 0 0 0 3 0 9 10 7 10 10 8 7 - 6 6 7 3 3 0 - 9 9 8 5 7 4 10 9 9 10 10 9 8 7 5 5 3 2 4 3 0 9 7 3 3 5 3 0 8 8 6 6 5 5 7 4 9 9 4 9 9 8 2 5 5 3 2 4 3 0 9 7 3 3 5 3 0 10 10 10 10 7 4 0 10 3 0 1 - 0 0	10 9 8 9 4 8 5 2 2 0 0 0 3 0 9 10 7 10 10 8 7 - 6 6 7 3 3 0 - 9 9 8 5 7 4 10 9 9 10 10 9 8 5 5 3 2 4 3 0 9 7 3 3 5 3 0 8 9 - 5 - 9 9 0 10 10 10 10 7 4 0 10 3 0 1 - 0 0 2 2 1 2 1 0 0 9 10 5 10 5 20
2 2 0 0 0 3 0	2 2 0 0 0 3 0 9 10 7 10 10 8 7	2 2 0 0 0 3 0 9 10 7 10 10 8 7 reed 10 9 9 10 9 9 7	2 2 0 0 0 3 0 9 10 7 10 10 8 7 reed 10 9 9 10 9 9 7 - 6 6 7 3 3 0	2 2 0 0 0 3 0 9 10 7 10 10 8 7 eed 10 9 9 10 9 9 7 - 6 6 7 3 3 0 - 9 9 8 5 7 4	2 2 0 0 0 3 0 9 10 7 10 10 8 7 eed 10 9 9 10 9 9 7 - 6 6 7 3 3 0 - 9 9 8 5 7 4 9 8 8 6 6 5	2 2 0 0 0 3 0 9 10 10 8 7 10 10 8 7 10 10 8 7 10 10 8 7 10 10 8 7 10 10 8 7 10 10 9 9 7 10 10 9 9 10 10 9 9 10 10 9 8 10 10 9 10 10 9 8 10 10 9 10 10 9 10 10 9 10 10 9 10 10 9 10 10 9 10 10 9 10 10 9 10 10 9 10 10 9 10 10 9 10 10 9 10 10 9 10 10 9 10 10 9 10 10 10 9 10 10 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	2 2 0 0 0 3 0 9 10 7 10 10 8 7 - 6 6 7 3 3 0 - 6 6 7 3 3 0 10 9 9 10 10 9 8 10 9 9 4 9 9 8 2 5 5 3 2 4 3 0 9 7 3 3 5 3 0	2 2 0 0 0 3 0 9 10 7 10 10 8 7 - 6 6 7 3 3 0 - 9 9 8 5 7 4 9 9 8 6 6 5 10 9 9 10 10 9 8 9 9 4 9 9 8 2 5 5 3 2 4 3 0 ha 1 2 3 4 5 6 7	2 2 0 0 0 3 0 9 10 7 10 10 8 7 - 6 6 7 3 3 0 - 9 9 8 5 7 4 9 9 4 9 9 8 2 10 9 9 10 10 9 8 9 9 4 9 9 8 2 5 5 3 2 4 3 0 9 7 3 3 5 3 0	2 2 0 0 0 3 0 9 10 7 10 10 8 7 - 6 6 7 3 3 0 - 9 9 8 5 7 4 9 8 8 6 6 5 10 9 9 10 10 9 8 2 9 4 9 9 8 2 5 5 3 2 4 3 0 ha 1 2 3 4 5 6 7 ss 9 - 5 - 9 9 0	2 2 0 0 0 3 0 9 10 7 10 10 8 7 - 6 6 7 3 3 0 - 9 9 8 5 7 4 10 9 9 10 10 9 8 7 10 9 9 4 9 9 8 2 5 5 3 2 4 3 0 5 5 3 2 4 3 0 8 8 1 2 3 4 5 6 7 8 8 9 - 5 - 9 9 0	eed 10 9 9 10 9 9 7 7 10 10 8 7 7 10 10 8 7 7 10 10 8 7 7 10 10 8 7 7 10 10 8 7 7 10 10 9 8 8 8 6 6 5 8 10 9 9 9 8 2 9 9 7 3 3 3 5 3 0 9 7 3 3 3 5 3 0 9 10 10 10 10 10 10 10 10 10 10 10 10 10	eed 10 9 9 10 9 9 7 7 10 10 8 7 7 10 10 8 7 7 10 10 8 7 7 10 10 8 7 7 8 10 9 9 7 7 8 10 9 9 8 10 9 9 8 10 9 9 10 10 9 8 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	2 2 0 0 0 3 0 9 10 7 10 10 8 7 - 6 6 7 3 3 0 - 6 6 7 3 3 0 10 9 9 10 10 9 8 7 10 9 9 4 9 8 6 6 5 5 5 3 2 4 3 0 9 7 3 3 5 3 0 ss 9 - 5 - 9 9 0 10 10 10 10 7 4 0 10 3 0 1 - 0 0	2 2 0 0 0 3 0 9 10 7 10 10 8 7 - 6 6 7 3 3 0 - 9 9 8 8 6 6 5 5 10 9 9 10 10 9 8 10 9 9 4 9 9 8 2 5 5 3 2 4 3 0 9 7 3 3 5 3 0 ss 9 - 5 - 9 9 0 10 10 10 10 7 4 0 10 3 0 1 - 0 0 2 2 1 2 1 0 0 2 2 2 1 2 1 0 0
	9 10 7 10 10 8 7 10	9 10 7 10 10 8 7 10 oct pigweed 10 9 9 10 9 9 7 10	9 10 7 10 10 8 7 10 oct pigweed 10 9 9 10 9 9 7 10 6 6 7 3 3 0 8	9 10 7 10 10 8 7 10 eed 10 9 9 10 9 9 7 10 - 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9	9 10 7 10 10 8 7 10 eed 10 9 9 10 9 9 7 10 - 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9 9 8 8 6 6 5 9	9 10 7 10 10 8 7 10 eed 10 9 9 10 9 9 7 10 - 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9 10 9 9 10 10 9 8 9 9 9 4 9 9 8 2 9 5 5 3 2 4 3 0 6	9 10 7 10 10 8 7 10 - 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9 9 8 8 6 6 5 9 10 9 9 10 10 9 8 9 9 9 4 9 9 8 2 9 5 5 3 2 4 3 0 6 9 7 3 3 5 3 0 8	eed 10 9 9 10 10 8 7 10 - 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9 10 9 9 10 10 9 8 9 10 9 9 10 10 9 8 9 5 5 3 2 4 3 0 6 9 7 3 3 5 3 0 8	9 10 7 10 10 8 7 10 eed 10 9 9 10 9 9 7 10 - 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9 10 9 9 10 10 9 8 9 9 9 4 9 9 8 2 9 5 5 3 2 4 3 0 6 9 7 3 3 5 3 0 8	eed 10 9 9 10 10 8 7 10 - 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9 10 9 9 10 10 9 8 5 10 9 9 10 10 9 8 9 5 5 3 2 4 3 0 6 9 7 3 3 5 3 0 8 ha 1 2 3 4 5 6 7 9	eed 10 9 9 10 10 8 7 10 - 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9 9 10 9 9 10 10 9 8 9 9 9 4 9 9 8 2 9 5 5 3 2 4 3 0 6 9 7 3 3 5 3 0 8 ha 1 2 3 4 5 6 7 9 ss 9 - 5 - 9 9 0 10	eed 10 9 9 10 10 8 7 10 - 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9 10 9 9 10 10 9 8 9 10 9 9 4 9 9 8 2 9 5 5 3 2 4 3 0 6 9 7 3 3 5 3 0 8 ha 1 2 3 4 5 6 7 9 ss 9 - 5 · 9 9 0 10 10 10 10 10 7 4 0 10	eed 10 9 9 10 10 8 7 10 - 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9 10 9 9 10 10 9 8 9 10 9 9 10 10 9 8 9 5 5 3 2 4 3 0 6 9 7 3 3 5 3 0 6 ha 1 2 3 4 5 6 7 9 ss 9 - 5 - 9 9 0 10 10 10 10 10 7 4 0 10 10 3 0 1 - 0 0 9	eed 10 9 9 10 10 8 7 10 - 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9 10 9 9 10 10 9 8 9 10 9 9 4 9 9 8 5 9 5 5 3 2 4 3 0 6 9 7 3 3 5 9 6 ss 9 - 5 9 9 0 10 10 10 10 10 7 9 9 0 10 10 3 0 1 - 0 9	eed 10 9 9 10 10 8 7 10 - 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9 10 9 9 10 10 9 8 9 10 9 9 4 9 9 8 5 9 5 5 3 2 4 3 0 6 9 7 3 3 5 9 6 ss 9 - 5 - 9 9 0 10 10 10 10 10 7 9 0 10 10 3 0 1 - 0 9 10 10 10 10 7 4 0 10 10 10 10 5 10 9 10 10 10 10 5 10 9 10 10 10 10 10 7 4 0 10 10 10 10 5 10 9 10 10 10 10 5 10 9 10 10 10 10 5 10 9 10
eed 10 9 9 10 9 9 7 10 - 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9 9 9 8 8 6 6 5 9 10 9 9 10 10 9 8 9	- 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9. 9 8 8 6 6 5 9 10 9 9 10 10 9 8 9	- 9 9 8 5 7 4 9 9 9 8 8 8 6 6 5 9 8 10 9 9 10 10 9 8 9 9	9 8 8 6 6 5 9 8 10 9 9 10 10 9 8 9 9	10 9 9 10 10 9 8 9 9 10		5 5 3 2 4 3 0 6 3 3 9 7 3 3 5 3 0 8 3 5	5 5 3 2 4 3 0 6 3 3 9 7 3 3 5 3 0 8 3 5	5 5 3 2 4 3 0 6 3 3 9 7 3 3 5 3 0 8 3 5 9/ha 1 2 3 4 5 6 7 9.10 11	5 5 3 2 4 3 0 6 3 3 9 7 3 3 5 3 0 8 3 5 q/ha 1 2 3 4 5 6 7 9 10 11 nce	g/ha 1 2 3 4 5 6 7 9.10 111 grass 9 - 5 - 9 9 0 10 4 8	g/ha 1 2 3 4 5 6 7 9.10 11 ore grass 9 - 5 - 9 9 0 10 4 8 9 9 9 10 5 8 7 5 0 9 10 9	g/ha 1 2 3 4 5 6 7 9 10 11 ore grass 9 - 5 - 9 9 0 10 4 8 9 5 5 10 10 10 10 10 10 10 10 10 10 10 10 10	g/ha 1 2 3 4 5 6 7 9 10 11 11	g/ha 1 2 3 4 5 6 7 9.10 11 ore g/ha 1 2 3 4 5 6 7 9.10 11 ore grass 9 - 5 - 9 9 0 10 4 8 9 10 10 10 10 10 10 7 4 0 10 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S S 3 2 4 3 0 6 3 3 9 7 3 3 5 3 0 8 3 5 a 1 2 3 4 5 6 7 9.10 11 s 9 - 5 - 9 9 0 10 4 8 9 10 5 8 7 5 0 9 10 9 10 10 10 10 7 4 0 10 3 5 10 3 0 1 - 0 0 9 3 - 2 2 1 2 1 0 0 4 1 0 10 10 5 10 9 10 5 10
eed 10 9 9 10 9 9 7 10 - 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9 9 8 8 6 6 5 9 10 9 9 10 10 9 8 9 9 9 4 9 9 8 2 9	- 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9 9 8 8 6 6 5 9 10 9 9 10 10 9 8 9 9 9 4 9 9 8 2 9	- 9 9 8 5 7 4 9 9 8 10 10 9 8 10 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 8 8 6 6 5 9 8 10 9 9 10 10 9 8 9 9 9 9 4 9 9 8 2 9 9	10 9 9 10 10 9 8 9 9 10 9 9 4 9 9 8 2 9 9 9	9949982999	9733530835	9733530835	9 7 3 3 5 3 0 8 3 5 9/ha 1 2 3 4 5 6 7 9.1011	9 7 3 3 5 3 0 8 3 5 9/ha 1 2 3 4 5 6 7 9 10 11 nce	g/ha 1 2 3 4 5 6 7 9 10 11 ore grass 9 - 5 - 9 9 0 10 4 8	g/ha 1 2 3 4 5 6 7 9 10 11 ore grass 9 - 5 - 9 9 0 10 4 8 9 9 10 5 8 7 5 0 9 10 9	g/ha 1 2 3 4 5 6 7 9 10 11 ore grass 9 - 5 - 9 9 0 10 4 8 s 10 10 10 10 10 10 10 10 10 10 3 5	g/ha 1 2 3 4 5 6 7 9 10 11 ore grass 9 - 5 - 9 9 0 10 4 8 9 5 10 10 10 10 10 10 7 4 0 10 3 5 10 3 0	g/ha 1 2 3 4 5 6 7 9.10 11 ore grass 9 - 5 - 9 9 0 10 4 8 grass 10 10 10 10 7 4 0 10 3 5 5 7 5 1 0 10 4 8 6 7 5 0 9 10 9 8 8 7 5 0 9 10 9 8 7 5 0 9 10 9 8 7 5 0 9 10 9 8 7 5 0 9 10 9 8 7 5 0 9 10 9 9 8 7 5 0 9 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	a 1 2 3 4 5 6 7 9.10 11 s 9 - 5 - 9 9 0 10 4 8 10 10 10 10 7 4 0 10 3 5 10 3 0 1 - 0 0 9 3 - 2 2 1 2 1 0 0 4 1 0 10 10 5 10 9 10 5 10
eed 10 9 9 10 9 9 7 10 - 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9 10 9 9 10 10 9 8 9 9 9 4 9 9 8 2 9 5 5 3 2 4 3 0 6	- 6 6 7 3 3 0 8 - 9 9 8 5 7 4 9 9 8 8 6 6 5 9 10 9 9 10 10 9 8 9 9 9 4 9 9 8 2 9 5 5 3 2 4 3 0 6	- 9 9 8 5 7 4 9 9 8 1 10 10 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 8 8 8 6 6 5 9 8 10 9 9 10 10 9 8 9 9 9 9 4 9 9 8 2 9 9 5 5 3 2 4 3 0 6 3	10 9 9 10 10 9 8 9 9 10 9 9 4 9 9 8 2 9 9 9 5 5 3 2 4 3 0 6 3 3	9 9 4 9 9 8 2 9 9 9 5 5 3 2 4 3 0 6 3 3			1 2 3 4 5 6 7 9.10 11	12345679.1011	1 2 3 4 5 6 7 9.10 11 9 - 5 - 9 9 0 10 4 8	1 2 3 4 5 6 7 9.10 11 9 - 5 - 9 9 0 10 4 8 9 10 5 8 7 5 0 9 10 9	1 2 3 4 5 6 7 9.10 11 9 - 5 - 9 9 0 10 4 8 9 10 5 8 7 5 0 9 10 9 10 10 10 10 7 4 0 10 3 5	1 2 3 4 5 6 7 9.10 11 9 - 5 - 9 9 0 10 4 8 9 10 5 8 7 5 0 9 10 9 10 10 10 10 7 4 0 10 3 5 10 3 0 1 - 0 0 9 3 -	g/ha 1 2 3 4 5 6 7 9.10 11 oce grass 9 - 5 - 9 9 0 10 4 8 9 10 5 8 7 5 0 9 10 9 8 10 10 10 10 10 7 4 0 10 3 5 10 3 0 1 - 0 0 9 3 - 2 2 1 2 1 0 0 4 1 0	a 1 2 3 4 5 6 7 9.10 11 s 9 - 5 - 9 9 0 10 4 8 9 10 5 8 7 5 0 9 10 9 10 10 10 10 7 4 0 10 3 5 10 3 0 1 - 0 0 9 3 - 2 2 1 2 1 0 0 4 1 0 10 10 5 10 9 10 5 10

Morningglory	10																									10	0	10	
Nutsedge	⊣																									0	0	0	
Rape	10	0																								10	0	₽	
Redroot pigweed 10		10	10 1	10 1	10	9	2 1	10	7 1	10	6	9	8	3 10	8	6	10	10	10	10	10	0	10	10	10	10	0	10	
Soybean	z,	z,																								7	0	-	
Sugarbeets	10	0																								10	0	10	
Velvetleaf	10																									80	0	10	
Wheat	D																									0	0	Ŋ	
Wild oats	10						_																			10	0	9	
TABLE B										Ú	OMP	MPOUND	C																
Rate 250 g/ha	н	~	٣	4	2	9	7	9 1	0	11 1	12 1	3.1	4 15	5 16	5 17	18	13	3 20	21	22	23	24	25	26	27	28	29	30	
Postemergence																													
B. signalgrass	ω	•			4																						ហ	7	
Barnyardgrass		D.	9	œ	ო	7	н	7	က	•	m	۳, س	5 9		4 6	2	m	0	4	9	9	4	'n		ന	ß	7	4	
Bedstraw	6	σ			თ						٠.																Ø	9	
Blackgrass	6	7			Ŋ																						ß	н	
Cocklebur	6	œ			ω																						œ	ω	
Corn	4	9			7																						ო	N	
Crabgrass	Q	σ			4																						ტ	7	
Ducksalad	•	7			Н																						4	ß	
Giant foxtail	0	δ			4																						4	n	
Morningglory	10	δ			ო																						10	6	
Nutsedge	٦	•			0																						٠	73	
Rape	6	Q			10																						6	10	
Redroot pigweed	10	0			6																						10	6	
Rice	•	S			~																						m	7	
S. Flatsedge	•	œ			5																						æ	œ	
Soybean	6	œ			S																						7	9	
Sugarbeets	10	0			10																						10	10	
Velvetleaf	9	9			7																						4	æ	
Wheat	က	က			က																						4	N	
Wild cate	7	v			4																						7	c	

TABLE B										Ŭ	COMPOUND	Ď	Ģ															
Rate 250 g/ha	31	32	33	34	32	36	37	38	39	40 4	41 4	42 4	43 4	44 4	5.4	6 4	7	49 5	0 51	1 52	2 53	54	59	9	61	62	63	64
Postemergence																												
B. signalgrass	വ	7	~	۲	Н	Н	0	ᆏ	н																4	~	4	9
Barnyardgrass	വ	က	က	-	7	0	0	0	0																ю	m	٣	4
Bedstraw	9	10	6	7	ω	7	٠	•	4																σ	m	Ŋ	7
Blackgrass	♥	ស	~	-	٦	7	0	0	Н																9	7	٣	7
Cocklebur	7	9	9	Φ	~	ന	ო	œ	ß	•					~										æ	7	•	7
Corn	7	-	-	7	-	-	7	-	н																m	7	~	4
Crabgrass	6	~	1	-	~	Н	Н	Н	Н																7	Ŋ	4	Q
Ducksalad	9	4	~	0	-	Н	0	0	0																က	0	~	9
Giant foxtail	က	7	-	7	-	Н	7	0	, 	7	6	6	σ	σ	0	7	7	S	2 10	6 0	9 1	4	8		2	7	n	4
Morningglory	4	10	2	~		7	Н	Н	~																•	0	10	æ
Nutsedge	•	Н	0	0	0	0	0	0	0																0	•	0	0
Rape		œ	7	ო	σ	2	4	9	4																œ	~	œ	4
Redroot pigweed		0	7	ဖ	ស	œ	7	വ	က																0	0	σ	10
Rice	m	7	m	-	-	0	0	0	0																~	0	Н	~
S. Flatsedge	ω	9	œ	ო	7	9	0	4	~																ω	7	œ	æ
Soybean	7	9	4	7	7	N	0	ч	~																Ŋ	Н	7	S
Sugarbeets	10	10	10	σ	10	σ	2	ტ	10																10	6	9	10
Velvetleaf	4	δ	9	-	Н	-	Н	~	Н																œ	7	ω	œ
Wheat	4	~	7	Н		~	0	Н	Н																m	7	7	m
Wild oats	4	က	m	7	7	7	0	-	-																m	Н	7	Ŋ
TABLE B						S	IPOU	Ð																				
Rate 250 g/ha	65	99	67	89	70	7	71 72 73		74	75 .	76	77 7	78															
Postemergence																												
B. signalgrass	Н	4	7	ო	Н	•	9	0	Н	က	0	ч	Н															
Barnyardgrass	0	4	5	4	0	ო	9	9	0	٣	0	0	0															
Bedstraw	7	9	10	თ	۲	٠	4	σ	~	6	0	4	0															
Blackgrass	0	2	0	4	0	•	ស	σ	0	8	0	7	Н															
Cocklebur	-	4	œ	7	7	•	4	თ	ഹ	7	4	٣	0															
Corn	Н	~	ဖ	7	7	٠	5	m	-	ო	۲	,	7															
Crabgrass	-	Φ	10	œ	Н	•	8	0	-	•	~	7	0															

														3 24 25 26		9	1 2	3	8	0	다 다	6 9	4 10	0	7 4 10 0	10 9	0	9	2 2	0	9 4 5
														22 23								10 10	10 1		10 7				8		ص -
														21 2						1 2	10 1			0	5 1				10		œ
														20 2		4	Н	4							0						س
														19 2		0	0	0							0			_	_		0
														18		~	Ŋ	, –ı	0	0	9		9	0	0	7	0	9	0	0	S
														17		σ	2	σ	0	~	σ	10	7	0	ო	10	0	0	7	٣	œ
														16											0						7
														15		σ	ω	10	•	7	10	10	σ	7	9	10	٦	10	7	7	9
c	0	7	0	0	4	0	0	0	0	0	0	0	8	13 14		0	0	0	0	0	7	7	7	0	7	4	0	9	Н	0	0
C	, ,	4	•	N	ო	0	0	Н	m	٦	0	Н	COMPOUND			თ	5	4	Ŋ	Ч	10	10	0	0	σ	6	n	10	10	0	7
C	· -	-	٠	0	7	0	0	Н	က	-	0	0	ີ່ວ	12											9						4
S	4	10	0	σ	10	H	Н	ო	10	თ	က	m		11		œ	9	Ŋ	m	0	0	σ	თ	0	10	10	⊣	10	œ	Н	4
C	•	7	0	-	ထ	0	0	7	9	7	Н	Н		10		7	7								4				ω		
C	9	6	7	10	10	ø	9	0	0	0	2	9		σ,		10	10								10						
~	, ,	4	•	7	0	7	4	Ŋ	0	ß	4	4		7		0				•					0						
C		•	•	•		7		•	•	•	•	•		9		ഗ									4						
_		7												س		<u>ი</u>									10					C)	Ψ ~
			0											4		-:			_	_		10		_			7			_	~
٠		10												<u>س</u>					_			6) 10			5		_
Ľ	, ~	. თ		7					10					7		· -	10	7	_	~	10	10	10		10) 10	~	7	8	m	0
C	·	ι ∞	0	N		0	0	W	œ	N	"	-		-		O1	w	ä	(")	14	7	ਜ	ä	•	ਜ	1 1	,	ដ	Ä	~	0.
חיירה	Giant foxtail	Morningglory	Nutsedge	Rape	Redroot pigweed	Rice	S. Flatsedge	Soybean	Sugarbeets	Velvetleaf	Wheat	Wild oats	TABLE B	Rate 250 g/ha	Preemergence	B. signalgrass	Bedstraw	Blackgrass	Cocklebur	Corn	Crabgrass	Giant foxtail	Morningglory	Nutsedge	Rape	Redroot pigweed	Soybean	Sugarbeets	Velvetleaf	Wheat	Wild oats

TABLE B										O	OMP	COMPOUND	Ð															
Rate 250 g/ha	31	32	33	34	35	36	37	38	39 4	40 4	41 4	2	43 44	4 45	9 7	47	49	20	51	22	23	54	23	9	61	. 79	63	64
Preemergence																												
B. signalgrass	0	7	-	1	0	0	0	7	0													m	σ	m	ω	ω	ထ	10
Bedstraw	•	10	7	0	Н	0	0	~														-	9	7	9	7	4	œ
Blackgrass	m	4	0	0	0	Н	0	0	0											10		ო	7	7	S	ч	œ	9
Cocklebur	٠	0	0	0	0	0	0	•	0													0	•	0	7	•	•	
Corn	Н	0	0	0	0	0	0	0	0													7	~	0	7	٦	7	4
Crabgrass	10	ო	0	7	H	0	0	0	0													m	10	9	æ	6	œ	10
Giant foxtail	10	s	н	Н	Н	0	0	ч	0													œ	10	ß	10	4	9	ა
Morningglory	7	ო	0	0	0	0	0	0	0	7	2 1	10 1	10 10	0	10	9	4	4	10		7	~	10	2	10	4	10	10
Nutsedge	0	0	•	0	0	0	0	0	0													0	0	•	0	0	•	
Rape	Н	10	~	0	0	7	0	0	0													ო	7	-	6	7	4	œ
Redroot pigweed	m	10	~	~	Ŋ	œ	0	0	0													7	10	10	σ	10	10	10
Soybean	0	-	0	0	0	7	0	0	0													0	7	0	Н	0	0	Н
Sugarbeets	ო	10	4	0	٦	7	0	0	0													7	10	o	10	10	10	10
Velvetleaf	0	10	н	0	ч	Н	0	0	0													٦	6	7	10	~	10	9
Wheat	0	0	Н	0	0	0	0	0	0											æ		0	m	0	4	0	٣	Н
Wild oats	7	4	ч	0	ч	0	0	0	0													ന	δ	0	7	4	Ŋ	S
:					i																							
TABLE B					ີ່ວິ	<u></u>	a																					
Rate 250 g/ha	65	99	67	89	70	70 72 73		74	75 .	76 7	777	78																
Preemergence																												
B. signalgrass	Н	0	10	6	0	7	6	0	σ	0	0	0																
Bedstraw	0	ო	σ	9	0	Ŋ	6	0	9	,		0																
Blackgrass	0	œ	ω	7	0	7	10	0	0	0	0	0																
Cocklebur	0	0	7	7	0	0	7	0	7	ò	0	0																
Corn	0	Н	7	-1	0	S	7	0	н	0	0	0																
Crabgrass	0	თ	10	6	0	ი	10	0	δ	0	-	0																
Glant foxtail	0	~	10	თ	0	7	10	0	S	0	7	0																
Morningglory	0	٣	10	5	0	œ	σ	0	10	0	н	0																
Nutsedge	0	•	٠	0	٠	•	0	0	0			0																
Rape	0	4	10	4	0	თ	9	0	4	0	0	0																
Redroot pigweed	0	σ	10	10	0	0	10	0	10	0	0	0					•											

	0	0	ო	7	0	m	1 0	0	0	0	0																	
	0				• •																							
	0																											
	0																											
	0																											
										ပ္ပ	COMPOUND	S																
	н	7	က	4	2	9	7 9	-	0 11	1 12	13	14	15	16	17	18	13	20	21	22	23 2	4	25 2	9	27 28	~	Б	0
	9	·												-	വ	7	7	7										0
	,	7												m	4	Н	7	0										m
	σ	σ												4	σ	8	m	4					•					9
	7	9												Н	9	7	ਜ	7										
	ω	œ												4	œ	7	ო	2										œ
	4	4	7	8	7	٣	1 4		2 3	3	m	7	4	Н	7	~	7	m	m	ო	m	н	7	н	٣	m	7	7
	0	σ				•								7	4	~	7	ო										_
		0												0	Ŋ	7	~	0										4
	7	σ												Н	7	Н	0	7										Н
	ထ	Q												1	∞	∞	ო	4										2
		0												0	0	0	0	0										0
	თ	0												7	œ	7	7	4										ထ
Redroot pigweed	0	6												9	10	9	S	7										6
	•	4												-	4	0	0	0										-
	•	Ŋ												7	m	Н	7	0										9
	æ	7												က	က	4	m	Ŋ										m
	10	σ		• •							• •			œ	10	7	4	ស									٠.,	0
	æ	δ												7	4	9	7	9										و
	~	7												0	ന	ന	0	m										~
	~	က												0	4	Ŋ	Н	က										7
										ಕ	COMPOUND	NS	_															
Rate 125 g/ha	31	32	33	34	35 3	36 3	37 30	89 33	9 4(0 41	1 42	2 43	44	45	46	47	49	20	51	52	53	54	29 (9 09	61 6	2 6.	3 6	4
Postemergence B. signalgrass	m	~	Н	-	Н	∺	0	-	Η.	3	.,	7	4	0	4	Ŋ	က	ᠬ	ω	0	~	۳	7	~	4	7	m	ហ
	,	l		!										,								ı	!	ı	ı	l	,)

3	4	2	7	m	വ	9	ო	œ	0	4	9	-	∞	٣	10	7	m	4															
က	N	ო	m	7	ო	0	7	4	•	4	σ	0	7	7	δ	œ	7	8															
7	က	-	Ŋ	7	က	0	~	Ť	0	~	6	0	9	Н	9	7	~	Н															
ო	œ	4	7	က	ო	Н	4	σ	0	7	6	0	7	ស	10	7	က	က															
ч																																	
4	7	ო	7	7	9	4	9	•	0	7	œ	ന	7	7	σ	7	7	~															
m	7	-	m	23	4	0	m	ო	0	œ	ស	~	ထ	m	7	0	. 63	7															
8	æ	7	2	Н	7	7	-	က	0	œ	9	٦	œ	Ŋ	30	9	7	-															
9	10	0	œ	വ	æ	0	ထ	10	ო	9	10	2	0	Q	10	8	7	ω															
9																																	
4																																	
2	•	9	7	ო	9	4	Ŋ	9	•	δ	0	4	4	7	0	œ	ญ	9															
٣	1	5	œ	ო	σ	ო	4	9	•	10	თ	വ	2	œ	σ	7	S	œ															
٣																																	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0															
4	σ	2	6	ო	Ť	7	7	•	7	10	10	9	σ	9	10	ထ	m	4		1	78		0	0	0	0	0	0	0	0	0	0	0
4																					77		0	0	Н	0	ო	Н	~	0	Н	4	٠
4	σ	7	9	က	7	œ	7	δ	0	10	9	9	δ	9	10	თ	ო	9		ì	9/		0	0	0	0	ņ	Н	0	0	0	0	•
S	σ	9	ω	~	σ	ო	9	œ	0	10	10	2	7	7	10	∞	ო	Ŋ		1	75		7	7	6	9	7	٣	4	Н	7	10	0
N	4	N	7	Н	+	ហ	0	7	•	9	m	Н	7	~	2	7	Н	0		i	74		-	0	Н	0	Ŋ	7	0	0	0	٦	0
0	m	Н	~	Н	0	0	•	Н	0	-	7	0	~	Н	0	٦	Н			í	73		σ	S	σ	7	თ	m	σ	Н	æ	9	0
0	_	0	7	Н	0	0	Н	Н	0	က	4	0	ന	Н	0	Ч	7	Н	Ę	9 1	72		4	က	•	Ŋ	4	က	9	~	9	4	٠
0	-	0	N	Н	0	0	0	H	0	m	~1	0	0	0	Ŋ	0	0	0	CIMPOTIND	3	7.1		7	7	•	٣	4	ო	m	0	7	9	٠
0	_	Ö	7	7	н	0	Н	~	0	ഗ	4	0	ß	н	œ	Н	러	٦	Ž,	1	70		0	0	Н	0	~	Н	-	0	0	Н	0
77	φ	Н	7	Н	7	0	Н	-	0	9	က	Н	~	0	10	Н	0	-		,	69		m	N	0	ო	œ	7	4	Н	m	10	٠
0	က	Н	7	7	Н	0	-	Н	0	٣	m	Ч	7	7	œ	٦	ત	ч		•	9		'n	m	9	e	•	Н	ω	ᅥ	7	8	0
7	σ	Н	9	Н	0	-1	0	2	0	7	~	Н	7	7	10	4	-	~		(29		7	ო	თ	æ	7	S	σ	4	9	7	7
w,	ဖ	7	ω	-	7	m	- -i	œ	0	ω	σ	Н	Ŋ	Ŋ	ដ	œ	N	m		,	99		ന	ო	m	ო	4	0	7	ო	7	4	Н
m '	9	7	9	7	Φ	7	e	ന	0	œ	σ	~	7	4	10	7	ო	က		į	65		Н	0	m	0	Н	Н	۲	0	-	Н	0
Barnyardgrass	Bedstraw	Blackgrass	Cocklebur	Corn	Crabgrass	Ducksalad	Giant foxtail	Morningglory	Nutsedge	Rape	Redroot pigweed	Rice	S. Flatsedge	Soybean	Sugarbeets	Velvetleaf	Wheat	Wild oats	TABLE B		Rate 125 g/ha	Postemergence	B. signalgrass	Barnyardgrass	Bedstraw	Blackgrass	Cocklebur	Corn	Crabgrass	Ducksalad	Giant foxtail	Morningglory	Nutsedge

Ŋ

6

œ

Rape Redroot pigweed	ч к	ოტ	10	10	10	7 7	7	6	9	7	7	2 4	7	00													
Rice	0	-	~	Н	~	0	7	0	Ŋ	0	~	0	0	0													
S. Flatsedge	0	œ	œ	7	4	0	7	m	ന	0	0	0	0	0													
Soybean	7	2	7	ທ	4	7	サ	7	σ	7	m	0	Н	0													
Sugarbeets	7	10	σ	10	10	Н	ω	6	10	~	10	7	٦	0													
Velvetleaf	Н	ა	œ	7	œ	-	9	က	0	Н	σ	7	ч	0													
Wheat	ч	~	7	7	4	0	4	m	4	~	~	0	0	0													
Wild oats	-	7	7	7	n	0	7	7	1	+-1	m	0	0	0													
TABLE B											Š	COMPOUND	S														
Rate 125 g/ha	-	~	က	4	2	9	7	σ	10	11	12	13	14	15	16	17	18	13	20 :	21	22	23 2	4	25 26	5 27		7 28
Preemergence																											•
B. signalgrass	Q	•	~	•	œ		0	S	Н	ന	ထ	œ	0	0	~	7	н	0									
Bedstraw	œ	2	0	m	4		0	7	7	œ	4	7	0	œ	0	~	7	0	0								
Blackgrass	თ	7	က	σ	സ		0	σ	~	ന	7	4	0	10	0	9	0	0	7								
Cocklebur	8	Н	0	0	0		0	7	•	•	٠	•	٠,	Н	0	0	•	•	0								
Corn	Н	~	0	0	0		0	٦	0	0	0	-	0	٦	0	0	0	0	0								
Crabgrass	10	10	Н	9	9		0	10	7	7	4	10	~	10	0	ထ	0	0	н								
Giant foxtail	10	10	ထ	10	σ		0	10	7	9	7	10	4	10	٣	10	0	0	0								
Morningglory	10	0	က	7	4	٦	0	10	m	œ	9	10	0	7	0	~	4	0	0	-	10	ω	4	m	0		7
Nutsedge	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0									
Rape	10	10	Н	4	10		0	σ	4	0	S	9	~	σ	0	7	0	0	0								
Redroot pigweed	10	10	თ	ω	œ		0	10	9	σ	თ	δ	7	10	0	0	ო	0	0								
Soybean	٦	٦	0	0			0	-	0	Н	~	Н	0	Н	0	0	0	0	0								
Sugarbeets	10	10	∞	œ	10		0	10	•	10	∞ ်	10	S	10	٦	Φ	9	0	0								
Velvetleaf	10	9	Н	9	7		0	œ	7	9	4	7	0	7	0	Н	0	0	0								
Wheat	ა	7	0	0	7		0	7	0	Н	0	0	0	4	0	Н	0	0	0							\mathbf{c}	

51 52 52 51 52 52 52 52 52 52 52 52 52 52 52 52 52
1 9 9 7 10 8 5 9 8 8 0 10 - 0 8 3 9 10 10 7 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10
1 9 7 10 5 9 0 10 0 8 0 10 7 10 3 10 10 10
10 10 10 10 10 10
5 9 0 10 0 8 9 10 7 10 3 10 - 9
0 10 0 8 9 10 7 10 3 10 - 9
10 10 10 10 10
9 10 7 10 3 10 - 9
3
. 8
10 10
•
Н
0 0 1 10
0

Soybean					н	0		က	-					0														
Sugarbeets					6	0		0	6					0														
Velvetleaf					8	0		4	4					0														
Wheat	0	-	ო	Н	-	0	ო	0	4	0	4	0	0	0														
Wild oats					2	0		7	σ					0														
TABLE B										J	COMP	POUNE	Ω															
Rate 62 g/ha	-	N	4	S	9	0	10 1	11	12]	13 1	14 1	15 1	16 1	17 1	8 19	9 20	0 21	1 22	23	24	25	26	27	28	29	30	31	_
Postemergence																												
B. signalgrass	ო	•	Н	ო	•	2	~	ო	4	ა																	• •	~
Barnyardgrass		က	4	7	0	S	7		~	7																	•	\sim
Bedstraw	σ	0	9	9	2	10	œ	œ	7	7														•			7.	
Blackgrass	7	സ	ო	ო	0	ო	ч	~	7	ო																	. 1	\sim
Cocklebur	7	œ	ស	ა	ß	6	9	7	•	9																	w	
Corn	4	~	0	C4	m	က	7	n	7	ო																	7	-
Crabgrass	4	œ	4	7	വ	თ	7	7	~	ო																	4	_
Ducksalad	,	0	0	0	0	4	7	,	0	0																	-	_
Giant foxtail	က	7	7	7	•	4	7	~	~	7																	•	~1
Morningglory	4	ω	ထ	က	က	10	ហ	7	ტ	7																		~
Nutsedge	•	0	0	0	7	0	0	-	0	0																	Ŭ	\sim
Rap	6	9	9	ထ	ထ	თ	ထ	თ	7	9																	~	~
Redroot pigweed	6	7	œ	ტ	Ŋ	10	6	6	σ	0																	~	m
Rice	•	က	0	-	-1	ហ	0		Н	0																	• •	
S. Flatsedge		m	ഹ	٣	ო	æ	9		4	7																	•	44
Soybean	œ	9	9	က	9	∞	9	2	ന	4	4	6	ო	m	m	7	4 6	9	8	<u>س</u>	4	က	ß	4	m	ന	•	- H
Sugarbeets	10	σ	0	6	7	10	œ	σ	7	6										• •							7	\sim
Velvetleaf	7	œ	ស	9	7	10	9	œ	7	4																	•	\sim
Wheat	~	7	-	7	Н	m	7	7	က	7																	•	_
Wild oats	4	ന	7	3	0	က	~	7	က	က																	•	\sim

TABLE B										U	OMP	COMPOUND	Ω																
Rate 62 g/ha	33 3	4	35	36	37	38	39 4	40 4	н	42 4	43 4	44 4	45 4	6 4	7 45	9 50	51	52	53	54	59	9	61	62	63	64 (65	99	
Postemergence																													
B. signalgrass	-	-	Н	н	0	ч			7	9									٦	ന	~	~	m	~	4	4		7	
Barnyardgrass	-	0	0	0	0	0													٦	~	m	~	7	~	Н	7		က	
Bedstraw	σ	~	9	9	Н	2													5	m	7	~	œ	٣	7	٣		~	
Blackgrass	0	0	Н	0	0	0													-4	7	7	~	ო	-	7	4		7	
Cocklebur	ო	7	7	₩	~	4													S	٣	4	m	m	~	~	9		٣	
Corn	7	-	Н	-	Н	~													Н	2	-	~	~	7	0	-		~	
Crabgrass	0	0	~	0	0	0													,-	7	9	~	ო	N	ო	4		7	
Ducksalad	0	0	0	0	0	0													0	0	ო	Н	0	0	0	4		~	
Giant foxtail	0	0	-	0	0	0	0	0	7	9	ထ	7	0	က	4	7	8	7	-	~	9	N	~	-	N	٦	ч	~	
Morningglory	7	-	Н		~	⊣					•								•	7	7	~	Ŋ	m	N	~		~	
Nutsedge	0	0	0	0	0	0													0	0	0	0	0	0	0	0		0	
Rape	9	~	9	4	гH	ო													œ	7	9	m	9	~	m	ო		٣	
Redroot pigweed	Н		ო	0	-	~													7	4	œ	ιΩ	œ	œ	φ	œ		æ	
Rice	Н	~	0	0	0	0													7	-	7	0	0	0	0	Н		0	
S. Flatsedge	ო	~	Н	~	0	0													2	9	7	₹	m	m	4	œ		9	
Soybean	-	-	Н	ч	0	н													ß	0	9	~	4	ᆏ	0	~		2	
Sugarbeets	10	ထ	σ	œ	٦	0													6	9	6	æ	σ	თ	10	σ		2	
Velvetleaf	-	~	-1	-1	0	Н													9	~	9	~	7	~	~	~		4	
Wheat	0	0	0	0	0	Н													7	0	1	~	m	-	~	~		~	
Wild oats	н	0	Н	0	0	Н													т	7	~	~	ო	-	ന	ო		~	
TABLE B				Ū	GO CO	COMPOUND	ð						Ę	TABLE	គ មា						ບັ)MP(JUNIC	_					
Rate 62 g/ha	67 (89	69	. 02	71	72	73	74 7	2	76 7	77 7	78	æ	Rate		62	g/ha		67 6	8 69		0 7.	70 71 72	73	1 74	75	76	77	7
Postemergence													д	ree	Preemergence	gen(9												
B. signalgrass	ស	~	ო	0	7	7	æ	H	7		0	0	Д	B.	signalgras	alg	rass		8								0	0	
Barnyardgrass	m	~	Н	0	N	~	4	0	7		0	0	щ	eds	Bedstraw	3											•	•	
Bedstraw	σ	2	0	7	•	•	ტ	Η.	2		_	0	д	lac	Blackgras	255			3								0	0	
Blackgrass	Ŋ	7	7	0	7	4	۲.	0	m	0	0	0	O	ock	Cocklebuz	ur				0	0		0	0	0	0	0	0	
Cocklebur	7	m	œ	-	4	ო	δ	-	7		_	0	U	Corn													0	0	
Corn	4		~	-	7	~	~	-	7			0	U	rap	Crabgrass	S			9								0	0	
Crabgrass	1	ιÒ	m	0	7	4	7	0			0	0	G	Giant		foxtail	31I										0	0	

	99									7								
	65		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	64		ω	m	S	~	ო	9	Н	4	0	m	σ	0	σ	4	0	က
	63		4	7	7	~	0	m	~	~	0	က	œ	0	10	~	7	m
	62		4	0	-	0	0	~	7	~	0	0	œ	0	œ	Н	0	н
	61		S	m	Н	0	~	m	æ	•	0	Ť	œ	0	10	O	-	4
	9		~	0	Н	0	0	0	~	-	0	0	9	0	9	ч	0	0
	29		-	m	~	0	0	æ	œ	9	0	Ŋ	œ	Н	10	7	Н	7
	54		0	0	0	r	0	0	~	0	0	0	-	0	0	0	0	0
	23		0	н	0	0	0		Н	Н	0	~	0	0	4	0	0	0
	52		œ	7	2	Н	m	σ	σ	δ	0	σ	20	4	10	10	~	က
	51									10								
	50									-			~			4		
	49									1			∞	0	9	m	 1	7
	47 4									Н								
	46 4									10								
9	45 4									0								
Ş	44 4									æ								
Š	43 4									0								
	42 4									σ			•					
	41 4									н								
	40 4									0								
	39 4									0								
	38 3									0								
										0								
	6 37									0								
	m									0								
	4 35									0								0
	3 34		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0
	33		_	_	_	_	_	_					_ ~			_	_	_
TABLE B	Rate 62 g/ha	Preemergence	B. signalgrass	Bedstraw	Blackgrass	Cocklebur	£	Crabgrass	Giant foxtail	Morningglory	Nutsedge	ø	Redroot pigweed	Soybean	Sugarbeets	Velvetleaf	at	Wild oats
TAB	Rat	Pre(В.	Bed	Bla	Coc	Corn	Cral	Gia	Mori	Nut	Rape	Red	Soyl	Sug	Vel	Wheat	Wil

TEST C

5

10

15

20

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied to plants that were grown for various periods of time before treatment (postemergence application) using a sandy loam soil mixture.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include arrowleaf sida (Sida rhombifolia), barnyardgrass (Echinochloa crus-galli), cocklebur (Xanthium strumarium), common ragweed (Ambrosia elatior), corn (Zea mays), cotton (Gossypium hirsutum), eastern black nightshade (Solanum ptycanthum), fall panicum (Panicum dichotomiflorum), field bindweed (Convolvulus arvensis), giant foxtail (Setaria faberii), hairy beggarticks (Bidens pilosa), ivyleaf morningglory (Ipomoea hederacea), johnsongrass (Sorghum halepense), ladysthumb smartweed (Polygonum persicaria), lambsquarters (Chenopodium album), large crabgrass (Digitaria sanguinalis), purple nutsedge (Cyperus rotundus), redroot pigweed (Amaranthus retroflexus), soybean (Glycine max), surinam grass (Brachiaria decumbens), velvetleaf (Abutilon theophrasti) and wild poinsettia (Euphorbia heterophylla).

Treated plants and untreated controls were maintained in a greenhouse for approximately 14 to 21 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table C, were based upon a 0 to 100 scale where 0 was no effect and 100 was complete control. A dash response (-) means no test result.

TABLE C COMPOUND	TABLE C COMPOUND
Rate 140 g/ha 9	Rate 70 g/ha 9
POSTEMERGENCE	POSTEMERGENCE
Arrowleaf sida 90	Arrowleaf sida 90
Barnyardgrass 25	Barnyardgrass 25
Cocklebur 80	Cocklebur 80
Common ragweed 10	Common ragweed 30
Corn 15	Corn 15
Cotton 90	Cotton 80
E. blacknightsh 100	E. blacknightsh -
Fall panicum 30	Fall panicum 20
Field bindweed 80	Field bindweed 70
Giant foxtail 30	Giant foxtail 15
H. beggarticks 80	H. beggarticks 70
I. morningglory 100	I. morningglory 60
Johnsongrass 50	Johnsongrass -
Ladysthumb 30	Ladysthumb 30
Lambsquarters 100	Lambsquarters 80
Large crabgrass 50	Large crabgrass 40
Purple nutsedge 5	Purple nutsedge 5
Redroot pigweed -	Redroot pigweed 70

Soybean	50					Soy	bear	L .		50)	
Surinam grass	20					Sur	inam	gra	ss	5	;	
Velvetleaf	90					Vel	vetl	eaf		70)	
Wild poinsettia	100					Wil	d po	inse	ttia	90)	
TABLE C				C	OMPO	UND						
Rate 140 g/ha	1	2	3	9	15	21	23	42	43	46	52	66
PREEMERGENCE												
Arrowleaf sida	100	100	0	95	85	90	100	100	100	100	100	100
Barnyardgrass	100	30	0	50	85	5	10	100	50	50	40	5
Cocklebur	0	10	0	0	5	0	5	60	-	5	20	0
Common ragweed	100	50	0	75	75	20	90	85	50	80	100	30
Corn	10	30	0	10	10	0	5	5	55	5	50	0
Cotton	100	15	0	50	10	20	75	60	10	40	70	0
E. blacknightsh	95	90	0	95	95	85	100	95	100	100	100	30
Fall panicum	95	100	0	100	100	90	100	100	100	100	100	100
Field bindweed	50	100	0	90	100	40	100	100	100	100	100	90
Giant foxtail	100	100	0	100	100	100	100	100	100	100	100	0
H. beggarticks	100	100	0	85	-	40	100	90	100	100	30	0
I. morningglory	20	5	0	50	65	0	40	100	100	50	100	10
Johnsongrass	100	60	0	95	100	5	80	85	30	50	80	10
Ladysthumb	95	-	-	90	90	5	80	95	-	50	-	70
Lambsquarters	100	100	0	100	60	90	100	100	100	100	100	100
Large crabgrass	100	100	0	100	100	100	100	100	100	100	100	100
Purple nutsedge	0	0	0	0	0	0	0	0	0	-	10	0
Redroot pigweed	100	100	0	100	100	100	100	100	100	100	100	100
Soybean	0	40	0	25	10	5	10	35	55	20	70	0
Surinam grass	95	35	0	90	80	10	60	70	10	25	70	20
Velvetleaf	100	50	0	100	70	50	50	95	100	80	100	0
Wild poinsettia	50	45	0	50	20	5	10	85	60	20	100	0
TABLE C				C	OMPO	JND						
Rate 70 g/ha	. 1	2	3	9	15	21	23	42	43	46	52	66
PREEMERGENCE												
Arrowleaf sida	95	20	0	95	85	85	100	95	100	90	100	5
Barnyardgrass	75	5	0	50	35	0	5	10	30	10	40	5
Cocklebur	0	_	0	0	0	0	_	_	_	10	0	0
Common ragweed	100	0	0	95	20	0	30	85	40	20	60	0
Corn	10	0	0	5	5	0	0	5	30	0	45	0
Cotton	60	5	0	35	10	5	75	60	0	5	0	0
E. blacknightsh	90	5	0	100	95	80	100	95	100	100	80	10
Fall panicum	90	5	0	90	80	0	100	85	100	100	100	80
Field bindweed	50	30	0	100	100	40	100	100	100	70	100	80
Giant foxtail	100	5	0	100	100			80	100	100	85	0
H. beggarticks	100	40	0	85	_	0	50	-		100	0	0
I. morningglory	15	5	0	50	20	0	-	70	100	50	100	10
Johnsongrass	95	5	0	85	85	0	20	70	30	45	50	5
Ladysthumb	90	30	-	85	20	_	80	85	_	10	_	-
Lambsquarters	100	_	0	100	20	5	100	100	100		100	0
Large crabgrass		5	ō	100		100	100				100	_
Purple nutsedge	0	0	Ō	0	0	0	0	0	0	-	5	0
Redroot pigweed		5	ō	100	85	80	100		100	100	100	
Soybean	0	ō	ō	20	10	0	5	5	5	0	55	0
Surinam grass	90	10	ō	80	50	5	45	55	5	5	40	5
Velvetleaf	75	5	Ō	95	20	50		80			100	Ö

PCT/US98/22088

Wild poinsettia	10	5	0	50	0	5	5	30	50	15	40	0
TABLE C Rate 35 g/ha		COMP		ND								
POSTEMERGENCE												
Arrowleaf sida		80 10										
Barnyardgrass Cocklebur		60										
Common ragweed		-										
Corn		10										
Cotton		70										
E. blacknightsh		- 100										
Fall panicum		5										
Field bindweed		60										
Giant foxtail		15										
H. beggarticks		65										
 morningglory 		50										
Johnsongrass		10										
Ladysthumb		20										
Lambsquarters		75										
Large crabgrass		20										
Purple nutsedge		5										
Redroot pigweed		60										
Soybean		40 5										
Surinam grass Velvetleaf		10										
Wild poinsettia		90										
niid poinsceera		,,,										
TABLE C				C	OMPO	JND						
Rate 35 g/ha	1	2	3	9	15	21	23	42	43	46	52	66
PREEMERGENCE												
Arrowleaf sida	85	10	0	90	80	.70	80	95	100	100	100	5
Barnyardgrass	20	0	0	10	10	0	0	5	10	5	30	0
Cocklebur	.0	0	0	0	0	0	-	0	0	0	-	0
Common ragweed	80	0	0	80	10	0	10	20	0	10	40	0
Corn	5	0	0	0	0	0	0	5	0	0	0	0
Cotton	30	0	0	10	5	0	5	30	0	0	0	0
E. blacknightsh	90	5 0	0	95	70	40	95		100	80	40 100	0
Fall panicum	90 65	0	0	85 50	40 65	10	55 20	50 95	100 100	10	100	80 40
Field bindweed Giant foxtail	100	0	0	90	70	85	85	70		100	70	40
H. beggarticks	20	40	0	85	-	0	50	0	0	0	0	0
I. morningglory		0	0	20	15	ő	5	30	20	45	5	5
Johnsongrass	50	5	0	65	35	ŏ	5	70	10	5	40	ō
Ladysthumb	25	_	_	35	0	ō	5	90			_	ō
Lambaquarters	100	0	0	95	Ö	Ō	60		100		100	0
Large crabgrass		0	0	95	100	80	100	80	100	80	100	80
Purple nutsedge	0	0	0	0	0	0	0	0	0	_	0	0
Redroot pigweed		5	0	100	60	_	100		100	70	100	100
Soybean	0	0	0	20	0	0	5	0	0	0	0	0
Surinam grass	50	0	0	35	20	0	5	50	0	0	5	5
Velvetleaf	20	0	0	75	5	0	50		100	50	70	0
Wild poinsettia	0	0	0	10	0	0	5	25	10	0	-	0

TEST D

5

10

15

20

25

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied to plants that were in the 1- to 4-leaf stage (postemergence application). A mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include alfalfa (Medicago sativa), annual bluegrass (Poa annua), blackgrass (Alopecurus myosuroides), black nightshade (Solanum nigra), chickweed (Stellaria media), common poppy (Papaver rhoeas), deadnettle (Lamium amplexicaule), downy brome (Bromus tectorum), field violet (Viola arvensis), galium 2 (Galium aparine), green foxtail (Setaria viridis), Italian ryegrass (Lolium multiflorum), jointed goatgrass (Aegilops cylindrica), kochia (Kochia scoparia), lambsquarters (Chenopodium album), lentil (Lens culinaris), littleseed canarygrass (Phalaris minor), pea (Pisum sativum), potato (Solanum tuberosum), rape (Brassica napus), redroot pigweed (Amaranthus retroflexus), Russian thistle (Salsola kali), scentless chamomile (Matricaria inodora), sorghum (Sorghum vulgare), spring barley (Hordeum vulgare), sugar beet (Beta vulgaris), sunflower (Helianthus annuus), ivyleaf speedwell (Veronica hederaefolia), spring wheat (Triticum aestivum), winter wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), wild mustard (Sinapis arvensis), wild oat (Avena fatua), windgrass (Apera spica-venti) and winter barley (Hordeum vulgare).

Treated plants and untreated controls were maintained in a greenhouse for approximately 21 to 28 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table D, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

TABLE D	CC	MPOUNI	TABLE D	(COMP	OUND
Rate 250 g/ha PREEMERGENCE	1	22	Rate 125 g/ha POSTEMERGENCE	1	22	52
Alfalfa	-	-	Annual bluegras	-	70	50
Annual bluegras	85	50	Barley (winter)	10	10	10
Barley (winter)	40	10	Blackgrass	30	20	10
Blackgrass	70	40	Blk nightshade	50	100	65
Blk nightshade	100	50	Chickweed	70	100	80
Chickweed	90	30	Common poppy	100	100	100
Common poppy	100	70	Deadnettle	70	90	98
Deadnettle	90	10	Downy brome	10	20	20
Downy brome	100	10	Field violet	80	100	-
Field violet	85	-	Galium	70	90	60
Galium	100	30	Green foxtail	20	35	30
Green foxtail	100	100	I. Ryegrass	10	10	10

•								
I. Ryegrass	100	75			Jointed goatgra	10	15	10
Jointed goatgra	50				Kochia	70	70	70
Kochia	85	60			Lambsquarters	50	60	80
Lambsquarters	70	70			LS canarygrass	20	60	20
Lentil	-	-			Rape	85	90	85
LS canarygrass	70	50			Redroot pigweed	50	70	70
Pea	-	-			Russian thistle	50	80	-
Potato	-	-			Scentless chamo	60		70
Rape	100	50			Spring Barley	10		10
Redroot pigweed		70			Spring Wheat	20	20	10
Russian thistle		_			Sugar beet		100	100
Scentless chamo	85	70			Sunflower	20	20	70
Sorghum	-	-			Wheat (winter)	10	10	10
Spring Barley	40	2			Wild buckwheat	20	20	80
Spring Wheat	-	5			Wild mustard	100	100	100
Sugar beet	100	80			Wild oat	30	65	10
Sunflower	30	30			Windgrass	30	-	50
Ivyleaf speedwe	100	-						
Wheat (spring)	્ 30	-						
Wheat (winter)	40	5						
Wild buckwheat	85	30						
Wild mustard	98	30						
Wild oat	90	30						
Windgrass	100	30						
TABLE D		COMP	CIVIC		TABLE D	(COMPO	מאוזכ
Rate 125 g/ha	1	22	52		Rate 62 g/ha	1	22	52
PREEMERGENCE	_		-		POSTEMERGENCE	_		-
Alfalfa	_	_	_		Annual bluegras	50	30	20
Annual bluegras	100		100		Barley (winter)	10	10	10
Barley (winter)	30	20	60	•	Blackgrass	10	10	10
Blackgrass	60	60	90		Blk nightshade	50	90	65
Blk nightshade	100	60	90		Chickweed	80	60	70
Chickweed	85	70	85		Common poppy		100	100
Common poppy	100	70	-		Deadnettle	70	50	100
Deadnettle	85	70	90		Downy brome	10	10	20
Downy brome		100	50		Field violet	100		-
Field violet	85		_		Galium	70	70	65
Galium	100	100	_		Green foxtail	20	10	10
Green foxtail		100	100		I. Ryegrass	10	10	10
I. Ryegrass	100	65	70		Jointed goatgra	10	10	10
Jointed goatgra	70	20	40		Kochia	80	50	70
Kochia	100		100		Lambsquarters	60	60	80
Lambsquarters	70		100		LS canarygrass	20	20	10
Lentil	-	-			Rape	100	90	98
LS canarygrass	85	60	90		Redroot pigweed	70	50	60
Pea	-	-	-		Russian thistle	60	80	-
Potato	_	_	_		Scentless chamo	60	50	60
Rape	100	100	100		Spring Barley	10	10	10
Redroot pigweed		100			Spring Wheat	10	10	10
Russian thistle	75	-	85		Sugar beet		100	100
Scentless chamo	75	70	-		Sunflower	20	10	50
Sorghum	75	-	_		Wheat (winter)	10	10	10
Spring Barley	20	10	80		Wild buckwheat	0	20	70
Spring Wheat	0	10	70		Wild mustard	100		98
sharing wirear	v	20	, 0		ustatu	T00	T 00	20

WO 99/28301

Guerra bash	0.5	100	100			W112	20		
Sugar beet Sunflower	50	100	100			Wild oat	20	20	10 20
Ivyleaf speedwe			_			Windgrass	_	30	20
Wheat (spring)	50	_	_						
Wheat (winter)	20	10	60						
Wild buckwheat	85	55	100			• ,			
Wild mustard	100	60	100						
Wild mustard Wild oat	60	30	60						
Windgrass	100	70	100						
WINGGLASS	100	70	100						
TABLE D		COI	MPOU	NTO		TABLE D	CO	MPOUN	D
Rate 62 g/ha	1	22	46	51	52	Rate 31 g/ha	1	52	
PREEMERGENCE						POSTEMERGENCE			
Alfalfa	-	-	-	-	-	Annual bluegras	50	20	
Annual bluegras	60	20	90	100	100	Barley (winter)	10	10	
Barley (winter)	20	0	2	90	50	Blackgrass	10	10	
Blackgrass	50	30	60	80	80	Blk nightshade	-	60	
Blk nightshade	90	10	50	95	40	Chickweed	-	50	
Chickweed	85	40	70	90	80	Common poppy	100	100	
Common poppy	100	60	100	100	-	Deadnettle	70	100	
Deadnettle	65	0	90	80	70	Downy brome	10	20	
Downy brome	50	0	70	80	40	Field violet	100	_	
Field violet	70	-	100	65	_	Galium	60	50	
Galium	100	20	60	100	-	Green foxtail	10	10	
Green foxtail	100	10	100	100	80	I. Ryegrass	10	10	
I. Ryegrass	40	0	60	90	70	Jointed goatgra	10	10	
Jointed goatgra	20	0	60	90	40	Kochia	60	70	
Kochia	100	10	60	80	80	Lambsquarters	60	80	
Lambsquarters	70	60	70	70	90	LS canarygrass	10	10	
Lentil	-	-	-	-	-	Rape	100	65	
LS canarygrass	60	20	90	90	60	Redroot pigweed	70	60	
Pea	-	-	-	-	-	Russian thistle	-	-	
Potato	-	-	-	-	-	Scentless chamo	60	50	
Rape	75	20	100	100	60	Spring Barley	10	10	
Redroot pigweed	70	60	70	70	90	Spring Wheat	10	10	
Russian thistle	100	-	30	70	85	Sugar beet	75	100	
Scentless chamo	70	60	70	70	-	Sunflower	10	20	
Sorghum	-	-	<u> </u>	-	-	Wheat (winter)	10	10	
Spring Barley	20	0	5	80	60	Wild buckwheat	0	50	
Spring Wheat	0	0	10	70	70	Wild mustard	100	70	
Sugar beet	100	30	100	100	100	Wild oat	20	10	
Sunflower	35	20	30	40	0	Windgrass	20	10	
Ivyleaf speedwe	100	_	100	100	-				
Wheat (spring)	10	-	-	-	-				
Wheat (winter)	10	0	2	55	60				
Wild buckwheat	80	0	40	90	60				
Wild mustard	100	30	100	100	90				
Wild oat	60	0	70	95	50				
Windgrass	100	20	100	100	100	•			

TABLE D		CO	MPOU	NTO.	TABLE D	a oi	MDOITE
Rate 31 g/ha	1				Rate 16 g/ha	1	MPOUND 52
PREEMERGENCE	_	40	31	72	POSTEMERGENCE	_	52
Alfalfa	-		-	-	Annual bluegras	20	10
Annual bluegras	75	60	85	50	Barley (winter)	5	10
Barley (winter)	10	50	50	50	Blackgrass	10	10
Blackgrass	30	10	60	50	Blk nightshade	60	55
Blk nightshade	55	50	100	10	Chickweed	80	30
Chickweed	55	70	80	30	Common poppy	50	60
Common poppy	80	100	100	-	Deadnettle	85	45
Deadnettle	60	90	80	50	Downy brome	2	10
Downy brome	30	70	80	30	Field violet	20	-
Field violet	20	85	65	-	Galium	0	40
Galium	20	60	100	-	Green foxtail	5	10
Green foxtail	60	80	100	50	I. Ryegrass	5	5
I. Ryegrass	10	60	60	30	Jointed goatgra	5	10
Jointed goatgra	10	50	60	.30	Kochia	0	70
Kochia	40	60	85	50	Lambsquarters	0	70
Lambsquarters	10	65	70	90	LS canarygrass	10	10
Lentil	-	-	-	-	Rape	65	65
LS canarygrass	20	70	80	30	Redroot pigweed	0	45
Pea	-	-	-	-	Russian thistle	10	-
Potato	-	-	-	-	Scentless chamo 3	30	30
Rape	30	50	100	50	Spring Barley	5	10
Redroot pigweed	75	70	70	90	Spring Wheat	5	10
Russian thistle	10	30	60	30	Sugar beet 4	15	100
Scentless chamo	30	65	65	-	Sunflower	5	40
Sorghum	-	-	-	-	Wheat (winter)	5	10
Spring Barley	10	30	70	50	Wild buckwheat	0	60
Spring Wheat	0	30	60	60	Wild mustard 8	35	60
Sugar beet	30	70	100	100	Wild oat	5	10
Sunflower	10	10	40	0	Windgrass	5	10
Ivyleaf speedwe	50	100	100	-			
Wheat (spring)	10	-	-	-			
Wheat (winter)	10	40	30	50			
Wild buckwheat	40.	40	90	40			
Wild mustard	60	90	100	90			
Wild oat	20	50	80	40			
Windgrass	60	40	100	80			

TEST E

5

10

Seeds, tubers, or plant parts of alexandergrass (Brachiaria plantaginea), annual bluegrass (Poa annua), arrowleaf sida (Sida rhombifolia), barnyardgrass (Echinochloa crusgalli), bermudagrass (Cynodon dactylon), citrus (Citrus sinensis), common chickweed (Stellaria media), common purslane (Portulaca oleracea), common ragweed (Ambrosia elatior), common groundsel (Senecio vulgaris), dallisgrass (Paspalum dilatatum), goosegrass (Eleusine indica), green foxtail (Setaria viridis), guineagrass (Panicum maximum), itchgrass (Rottboellia exaltata), johnson grass (Sorghum halepense), kochia (Kochia scoparia), large crabgrass (Digitaria sanguinalis), leafy spurge (Euphorbia esula), pitted morningglory (Ipomoea lacunosa), purple nutsedge (Cyperus rotundus), quackgrass (Agropyron repens),

Russian thistle (Salsola kali), sandbur (Cenchrus echinatus), sourgrass (Trichachne insularis), Spanishneedles (Bidens bipinnata), sugarcane (Saccharum officinarum), surinam grass (Brachiaria decumbens) and tall mallow (Malva sylvestris) were planted into greenhouse pots of flats containing greenhouse planting medium. Plant species were grown grown in separate pots or individual compartments. Preemergence applications were made within one day of planting the seed or plant part. Postemergence applications were applied when the plants were in the two to four leaf stage (three to twenty cm).

Test chemicals were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied preemergence to the soil surface, postemergence to the plants or as a post directed spray to plants and soil at the base of the target species. Untreated control plants and treated plants were placed in the greenhouse and visually evaluated for injury 13 to 21 days after herbicide application. Plant response ratings, summarized in Table E, are based on a 0 to 100 scale where 0 is no injury and 100 is complete control. A dash (-) response means no test result.

15

10

TABLE E	COMPOUND	TABLE E
Rate 500 g/ha	2	Rate 500 g/
PREEMERGENCE		POSTEMERGENC
A. bluegrass	-	Alexandergra
Alexandergrass	100	Bermudagrass
Arrowleaf sida	-	Com. purslan
B. signalgrass	-	Com. ragweed
Barnyardgrass	-	Com. grounds
Bermudagrass	100	Dallisgrass
Com. purslane	100	Goosegrass
Com. ragweed	100	Guineagrass
Com. chickweed	-	Itchgrass
Com. groundsel	100	Johnsongrass
Dallisgrass	100	Large crabgr
Goosegrass	100	P. morninglo
Green foxtail	- · .	Purple nutse
Guineagrass	•	Sandbur
Itchgrass	100	Sourgrass
Johnsongrass	100	Spanishneedl
Kochia	-	Sugarcane
Large crabgrass	100	Surinam gras
Leafy spurge	-	Tall Mallow
P. morninglory	100	
Purple nutsedge	0	
Quackgrass	-	
Russian Thistle	- .	
Sandbur	100	
Sourgrass	100	
Spanishneedles	100	
Sugarcane	-	
Surinam grass	100	
Tall Mallow	100	

TABLE E	COMPOUND
Rate 500 g/ha	2
POSTEMERGENCE	
Alexandergrass	95
Bermudagrass	75
Com. purslane	70
Com. ragweed	75
Com. groundsel	75
Dallisgrass	95
Goosegrass	95 ·
Guineagrass	90
Itchgrass	95
Johnsongrass	95
Large crabgrass	9 0
P. morninglory	90
Purple nutsedge	0
Sandbur	80
Sourgrass	80
Spanishneedles	70
Sugarcane	25
Surinam grass	80
Tall Mallow	100

TABLE E			CO	MPOU	ND				
Rate 250 g/ha POSTEMERGENCE	1	. 2	9	15	23	44	52		
Alexandergrass	90	80	10	20	80	10	75		
Bermudagrass	30	50	10	20	10	0	35		
Com. purslane	40	70	80	80	50	70	75		
Com. ragweed	70	75	10	10	40	20	80		
Com. groundsel	75	40	30	20	40	10	100		
Dallisgrass	90	90	20	50	40	10	75		
Goosegrass	70	. 90	10	30	75	20	75		
Guineagrass	70	50	35	40	75	85	85		
Itchgrass	85	90	30	85	80	10	40		
Johnsongrass	90	80	85	100	65	10	20		
Large crabgrass	85	80	10	40	40	10	80		
P. morninglory	80	90	50	5	40	40	80		
Purple nutsedge	0	0	0	0	0	0	50		
Sandbur	10	50	0	0	20	0	60		
Sourgrass	30	40	30	25	30	20	50		
Spanishneedles	10	-	15	10	10	10	60		
Sugarcane	-	25	-	-	-	-	-		
Surinam grass	30	70		40	-	-	75		
Tall Mallow	90	100	90	98	90	90	75		
TABLE E		CO	MPOUI	ALD.					
Rate 125 g/ha	2	9	15	44	52				
POSTEMERGENCE	~		1.5	**	72				
Alexandergrass	30	10	10	10	10				
Bermudagrass	35	10	20	0	35				
Com. purslane	65	80	75	70	50				
Com. ragweed	75	10	5	10	50-				
Com. groundsel	20	25	0	10	100				
Dallisgrass	70	10	5	10	5				
Goosegrass	_	5	20	10	5				
Guineagrass	50	35	20	85	80				
Itchgrass	75	30	80	5	35				
Johnsongrass	60	85	98	5	35				
Large crabgrass	75	5	10	10	5				
P. morninglory	80	40	5	30	80				
Purple nutsedge	0	0	0	0	40				
Sandbur	10	0	0	0	5				
Sourgrass	20	10	20	10	10				
Spanishneedles	40	10	5	10	65				
Sugarcane	20	_	_	-	_				
Surinam grass	50	10	35	_	75				
Tall Mallow	100			85	90				
TABLE E			_	WYD-	TT. T-				
	1	2		OMPO		42	A 4	4-	<u>-</u> -
Rate 250 g/ha PREEMERGENCE	_	2	9	15	43	42	44	46	67
A. bluegrass	-	100	-	100	-	_	-	-	_
Alexandergrass	100	100	100	100	98	90	50	60	95
Arrowleaf sida		100		100	-	- ·	-	-	-
B. signalgrass	-	100	-	98	-	-	-	-	-

-	100	-	75	-	-	-	-	-	
100	100	100	98	98	98	100	100	100	
100	100	100	100	100	100	100	100	100	
100	100	100	100	100	90	100	100	100	
-	100	-	100	-	-	-	-	-	
100	100	100	100	100	100	100	100	100	
100	100	100	100	100	100	100	100	100	
100	100	100	100	100	100	100	100	100	
-	100	-	100	-	-	-	-	-	
100	100	100	100	100	100	100	98	100	
95	95	100	80	70	70	40	40	80	
100	100	90	100	90	95	75	0	80	
-	-	-	100	-	-	_	-	-	
100	100	100	100	100	100	60	100	100	
-	100	_	98	_	-	-	_	-	
100	100	100	90	80	75	50	65	90	
50	0	0	0	0	30	0	0	10	
_	100	-	95	_	_	_	_	_	
_	-	_	95	_	-	_	_	_	
100	100	20	100	98	70	80	30	75	
100	100	100	100	100	100	100	100	100	
100	100	60	100	100	90	98	90	50	
_	-	_	10	_	_	_	-	_	
100	100	100	100	_	100	-	55	100	
	100	100	98	90	-	98		98	
_	_								
1	2	9	15	23	42	44	46	52	67
					-	-	-		
			_			40	60	75	70
				-		-	· -		-
				-		-	-	-	
						_	-		-
									90
									100
		_				98	_	_	100
									_
									95
								-	80
					100	98		100	100
		-	-	-	-	-	-	-	_
									100
									65
90	85	85		80	90	60	0	75	50
100	-	-		-	-	-	-	-	-
100	100	100	100	100	100	70	100	100	98
					_		_		-
100	100	-	-	-	_	-	_	_	
100 100		75	- 75	50	65	50	65	100	90
			75 0	50 0	65 30	50 0	65 0	100 50	90 5
100 0	100	75							
100 0	100 0	75 0	0	0	30				
100 0	100 0	75 0 -	0 95	0	30				5 - - 65
	100 100 100 100 100 100 100 100 100 100	100 10	100 100 100 100 100 100 100 100 100 - 100 100 100 100 100 100 - 100 100 100 95 95 100 100 100 100 - 100 100 - 100 100 - 100 100 - 100 100 - 100 100 100 100 100 100 100 100 100 100	100 100 100 98 100 100 100 100 100 100 100 100 - 100 - 100 100 100 100 100 100 100 100 100 - 100 - 100 100 100 100 100 - 100 - 100 100 100 100 100 95 95 100 80 100 100 100 100 - 100 100 100 100 100 90 100 100 100 90 100 100 100 100 - 100 - 95 100 100 100 100 100 100 100 100 100 100	100 100 100 98 98 100 100 100 100 100 100 100 100 100 100	100 100 100 98 98 98 98 100 100 100 100 100 100 100 100 100 10	100 100 100 98 98 98 100 100 100 100 100 100 100 100 100 100	100 100 100 98 98 98 100 100 100 100 100 100 100 100 100 100	100 100 100 98 98 98 100 100 100 100 100 100 100 100 100 10

Spanishneedles	90	100	30		100	100	70	90	35	50
Sugarcane Surinam grass	98	100	20	10 100	_	100	-	40	80	75
Tall Mallow	100	100	100	100	85	98	98	100	100	90
		o							~~	
	COMP	OUND				LE B			COMP	OUNL
Rate 64 g/ha POSTEMERGENCE	2				Rate POS		32 g RGEN		2	
Alexandergrass	30				Ale	xand	ergr	ass	20	
Bermudagrass	20				Ber	nuda	gras	S	10	
Com. purslane	65				Com	. pu	rsla	ne	65	
Com. ragweed	-	•			Com	. ra	gwee	đ	50	
Com. groundsel	20				Com	. gr	ound	sel	0	
Dallisgrass	40				Dal:	lisg:	rass		10	
Goosegrass	75				Goo	segra	ass		60	
Guineagrass	-				Guir	neag:	rass		5	
Itchgrass	40				Itcl	ngra	88		40	
Johnsongrass	60				John	nson	gras	3	10	
Large crabgrass	35						rabg:		35	
P. morninglory	80				P. r	norn:	inglo	ory	80	
Purple nutsedge	0						nutse		0	
Sandbur	10				Sand	lbur		_	0	
Sourgrass	20				Sour	gra	38		10	
Spanishneedles	60				Spar	ish	need.	Les	60	
Sugarcane	20					ircai			20	
Surinam grass	50				Sur	nam	gras	ss	35	
Tall Mallow	95					. Ma			98	
TABLE E		CON	1POU	4D						
Rate 64 g/ha	1	2	9	15	23	42	44	46	52	67
PREEMERGENCE										
A. bluegrass	100	100	-	100	. -	-	-	-	-	-
Alexandergrass	75	90	65	80	0	40	40	0	75	40
Arrowleaf sida	98	100	-	50	-	-	-	-	-	-
B. signalgrass	90	100	-	60	-	-	-	-	-	-
Barnyardgrass	70	95	-	0	-	-	-	-	-	-
Bermudagrass	100	100	98	98	98	95	80	98	90	90
Com. purslane	100	100	100	100	100	100	100	100	100	100
Com. ragweed	100	100	100	100	70	75	85	98	80	95
Com. chickweed	95	100	-	85	-	-	-	-	-	-
Com. groundsel	100	100	100	98	100	100	100	100	98	50
Dallisgrass	100	100	100	100	85	95	80	98	80	70
Goosegrass	100	100	100	98	98	100	98	90	100	90
Green foxtail	100	100	-	100	-	_	-	-	_	_
Guineagrass	100	50	85	100	98	95	80	85	80	100
Itchgrass	20	75	85	30	60	65	0	0	70	40
Johnsongrass	40	98	75	90	80	90	Ō	0	50	35
Kochia	100	-	_	75	_	-	_	_	-	_
Large crabgrass	100		100	100	98	90	60	98	100	95
Leafy spurge	95	98	-	65	-	-	-	-		-
P. morninglory	80	100	60	40	0	30	30	65	100	75
Purple nutsedge	0	0	0	0	ō	30	0	0	30	5
Quackgrass	80	90	-	65	_	-	_	_	-	_
Russian Thistle	-	_	_	90	_	_	_	_	_	_

Sandbur	65	65	0	20	. 80	40	60	10	10	60
Sourgrass	100	100	100	100	98	100	100	100	100	100
Spanishneedles	80	100	20	30	70	20	60	85	20	0
Sugarcane	_	0	-	0	-	_	-	-	~	_
Surinam grass	35	90	10	20	_	50	-	0	70	75
Tall Mallow	100	100	100	100	85	98	80	100	98	90
TABLE E		.00	MPOUI	TT-						
	1	2	9	15	23	42	44	46	52	67
Rate 32 g/ha PREEMERGENCE	_	4	9	13	23	42	**	40	54	07
A. bluegrass	90	80	_	100	_		-	_	_	_
Alexandergrass	10	50	30	75	0	20	0	0	20	25
Arrowleaf sida	98	98	-	65	-	20	-	-	20	25
B. signalgrass	20	65	_	35	_	_	_	_	_	_
Barnyardgrass	2 0	20	_	0	_	_	_	_	_	_
	100	98	70	98	90	90	30	70	70	70
Bermudagrass	98	100		100	100	100	80		100	80
Com. purslane		100	100	100	50		40	100	35	90
Com. ragweed	90					50		0		90
Com. chickweed	30	100	~	65	-	-	~	-	-	-
Com. groundsel	98	100	98	100	100	90	98	100	35	0
Dallisgrass	98	90	85	95	80	70	65	65	35	40
Goosegrass	100	95	90	98	98	98	98	85	20	80
Green foxtail	100	90	-	100	-	-	-	-	-	-
Guineagrass	90	50	20	90	80	95	. 20	60	60	80
Itchgrass	20	70	100	10	30	35	0	0	35	40
Johnsongrass	5	65	55	60	70	10	30	0	-	35
Kochia	95	-		60	-		-			_
Large crabgrass	100	98	70	98	98	50	0	90	98	90
Leafy spurge	75	60	-	35	-	-	-	-	-	-
P. morninglory	70	100	45	5	0	-	20	65	50	60
Purple nutsedge	0	0	0	0	0	20	0	0	5	0
Quackgrass	65	20	-	65	-	-	-	-	-	-
Russian Thistle	•	-	-	70	-	-	-	-	-	-
Sandbur	20	20	0	10	85	0	0	0	0	60
Sourgrass	100	100	85	100	98	100	80	98	95	98
Spanishneedles	40	80	0	50	60	20	20	65	20	0
Sugarcane	-	-	-	0	-	-	-	-	-	-
Surinam grass	65	50	0	20	-	40	-	0	30	35
Tall Mallow	100	98	100	98	80	98	80	100	60	80

CLAIMS

What is claimed is:

- 1. A compound selected from Formula I, geometric or stereoisomers thereof,
- 5 N-oxides thereof and agriculturally suitable salts thereof,

wherein
$$J \text{ is}$$

$$I \text{ wherein}$$

$$J_{10} \text{ R}^{6} \longrightarrow I_{12} \text{ R}^{5}$$

$$I \text{ R}^{6} \longrightarrow I_{13} \text{ R}^{6} \longrightarrow I_{14} \text{ R}^{5}$$

$$I \text{ R}^{7} \longrightarrow I_{17} \text{ R}^{7}$$

$$I \text{ A is}$$

$$I \text{ A is}$$

A-2

W is N or CR11;

X, Y and Z are independently N or CR12;

A-1

15

30

35

R¹ and R² are independently H, halogen, cyano, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₂-C₄ alkoxyalkyl, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkoxyalkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy, S(O)_nR¹³, C₂-C₄ alkylthioalkyl, C₂-C₄ alkylsulfonylalkyl, C₁-C₄ alkylamino or C₂-C₄ dialkylamino;

R³ is H, F, Cl, Br, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl or CO₂R¹⁴;

R⁴ is H, F, C₁-C₄ alkyl, OH or OR¹⁴;

R³ and R⁴ can be taken together with the carbon to which they are attached to form C(=O) or C(=NOR¹⁴);

10 R⁵ is halogen, cyano, SF₅, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy or S(O)_nR¹³;

 R^6 and R^{10} are independently H, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_n R^{13}$;

 R^7 is halogen, cyano, SF_5 , C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_n R^{13}$;

 R^8 is C_1 - C_4 alkyl or C_1 - C_4 haloalkyl;

R⁹ is H, halogen, cyano, SF₅, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy or S(O)_nR¹³;

20 R¹¹ is H, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy or S(O)_nR¹³;

R¹² is H, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy or S(O)_nR¹³;

each R¹³ is independently C₁-C₄ alkyl or C₁-C₄ haloalkyl;

each R¹⁴ is independently C₁-C₄ alkyl; and each n is independently 0, 1 or 2.

2. A compound of Claim 1 wherein

R¹ and R² are independently H, C₁-C₄ alkyl or C₁-C₄ alkoxy;

 R^5 and R^7 are independently halogen, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy or $S(O)_nR^{13}$;

R⁶ is H or F;

 \mathbb{R}^8 is \mathbb{C}_1 - \mathbb{C}_4 alkyl;

 R^9 is halogen, cyano, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl or $S(O)_n R^{13}$;

R¹⁰ is H, halogen, cyano or C₁-C₄ haloalkyl;

R¹¹ is H, halogen, cyano or C₁-C₄ haloalkyl;

R¹² is H, halogen, cyano or C₁-C₄ haloalkyl; and

n is 0.

10

15

20

25

30

35

3. A compound of Claim 2 wherein

W is N;

 R^5 and R^7 are independently C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy; and R^9 is halogen, C_1 - C_4 haloalkoxy, C_1 - C_4 haloalkyl or $S(O)_nR^{13}$.

4. A compounds of Claim 3 wherein

 R^1 is C_1 - C_4 alkyl or C_1 - C_4 alkoxy;

 R^2 is H:

R3 and R4 are independently H, F or methyl;

 R^5 and R^7 are independently C_1 - C_2 haloalkyl or C_1 - C_2 haloalkoxy; and R^9 is C_1 - C_2 haloalkoxy, C_1 - C_2 haloalkyl or $S(O)_nR^{13}$.

5. A compound of Claim 4 wherein

J is J-1, J-5 or J-7.

6. A compound of Claim 3 wherein

 R^3 and R^4 can be taken together with the carbon to which they are attached to form C(=0).

7. A compound of Claim 6 wherein

R1 is C1-C4 alkyl or C1-C4 alkoxy;

 R^2 is H;

 R^5 and R^7 are independently C_1 - C_2 haloalkyl or C_1 - C_2 haloalkoxy; and R^9 is C_1 - C_2 haloalkoxy, C_1 - C_2 haloalkyl or $S(O)_nR^{13}$.

8. A compound of Claim 7 wherein

J is J-1 or J-5.

- 9. The compound of Claim 1 selected from the group consisting of:
 - (a) 5-ethyl-4-[[3-(trifluoromethoxy)phenyl]methyl]-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine;
 - (b) 5-ethyl-4-[[3-(trifluoromethyl)phenyl]methyl]-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine;
 - (c) 5-methyl-2-[4-(trifluoromethyl)phenyl]-4-[[3-(trifluoromethyl)phenyl]methyl]pyrimidine;
 - (d) 5-methyl-4-[[3-(trifluoromethoxy)phenyl]methyl]-2-[4-(trifluoromethyl)phenyl]pyrimidine;
 - (e) 5-methyl-4-[[3-(trifluoromethoxy)phenyl]methyl]-2-[3-(trifluoromethyl)-1H-pyrazol-1-yl]pyrimidine;
 - (f) [5-methyl-2-[4-(trifluoromethyl)phenyl]-4-pyrimidinyl][3-(trifluoromethyl)phenyl]methanone;
 - (g) [5-methyl-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]-4-pyrimidinyl][3-(trifluoromethyl)phenyl]methanone; and

PCT/US98/22088

- (h) 5-methyl-4-[[3-(trifluoromethyl)phenyl]-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine.
- 10. A herbicidal composition comprising a herbicidally effective amount of a compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
- 11. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.

INTERNATIONAL SEARCH REPORT

Int tional Application No PCT/US 98/22088

				11 10, 00100
A. CLASS	C07D239/26 C07D213/50 C0 C07D401/14 C07D405/06 C0	7D403/04 7D403/06	C07D401/04 C07D403/14	C07D401/06 A01N43/54
According	to International Patent Classification (IPC) or to both nation.	al classification an	d IPC	
	SEARCHED			
Minimum of IPC 6	ocumentation searched (classification system followed by CO7D A01N	classification symb	ools)	
Documenta	non searched other than minimum documentation to the ex	dent that such doc	cuments are included in t	he fields searched
Electronic	data base consulted during the international search (name	of data base and,	where practical, search	terms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate	, of the relevant pa	ssages	Relevant to claim No.
X	CHEMICAL ABSTRACTS, vol. 119 1993 Columbus, Ohio, US; abstract no. 264649p, page 331; XP002091616 see abstract & JP 05 213878 A (NIPPON SOT 24 August 1993			1,2,10,
X	EP 0 459 662 A (I.C.I.) 4 De see the whole document	ecember 19	91	1,10,11
Furt	her documents are listed in the continuation of box C.	х	Patent family members	are listed in annex.
"A" docume consider of filing of "L" docume which citation other of "P" docume later the consider of the consideration of the consi	Int which may throw doubts on priority claim(s) or is cried to establish the publication date of another or or other special reason (as specialed) and referring to an oral disclosure, use. exhibition or means are priority to the international filing date but an the priority date claimed	or ch 'X" doc ca ca 'Y' doc ca do m in i	priority date and not in co ed to understand the prin rention sument of particular releven not be considered novel looke an inventive step with sument of particular releva- nnot be considered to invo- cument is combined with	er the international filing date indict with the application but ciple or theory underlying the ance; the claimed invention or cannot be considered to nen the document is taken alone ance; the claimed invention or more other such docuping obvious to a person skilled me patent family
	actual completion of the international search	Da	te of mailing of the intern	ational search report
	9 January 1999		15/02/1999	·
Name and r	naing address of the ISA European Palent Office. P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fay (+31-70) 340-3316	Aut	thorized officer	

INTERNATIONAL SEARCH REPORT

information on patent family members

Int ional Application No PCT/US 98/22088

Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
EP 459662	A	04-12-1991	AT	141600	T	15-09-1996
			AU	7707091	A.	05-12-1991
			CA	2043332	Α	01-12-1991
			CN	1058019	Α	22-01-1992
			CS	9101548	Α	15-01-1992
			DE	69121472	D	26-09-1996
			DE	69121472	T	09-01-1997
			DK	459662	T	10-02-1997
			FI	912601	Α	01-12-1991
			JP	5117264	Α	14-05-1993
			PT	97788	A,B	28-02-1992
			US	5185339	A	09-02-1993