Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/GB05/000861

International filing date: 07 March 2005 (07.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: GB

Number: 0405386.4

Filing date: 10 March 2004 (10.03.2004)

Date of receipt at the International Bureau: 21 April 2005 (21.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

The Patent Office Concept House Cardiff Road Newport South Wales NP10 800

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed William Morell

Dated 7 April 2005

es () ; ;

Patents Form 1/77

Patents Act 1977 (Rule 16)

Request for grant of a patent

See the notes on the back of this form. You can also get us explanately leaded from the Patent Office to help you fill in this faces?

The Fatest Office

Cardiff Road Newport South Wales NP9 1RH

1. Your reference

GS/IC/MPW/P207911

10MAR04 E879846-2 D02835_

P01/7700 0.00-0405386.4 ACCOUNT CHA

2. Patent application number (The Patent Office will fill in this part)

0405386.4

10 MAR 2004

3. Full name, address and postcode of the or of each applicant (underline all surnames)

DePuy International Ltd St. Anthony's Road Leeds LS11 8DT

Patents ADP number (if you know it)

6004797004 I

If the applicant is a corporate body, give the country/state of its incorporation

UK

4. Title of the invention

Device

5. Name of your agent (If you have one)

Urquhart-Dykes & Lord

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode) Tower North Central Merrion Way Leeds LS2 8PA UK

Patents ADP number (If you know it)

1644004

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number (If you know it) Date of filing (day / month / year)

 If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application Number of earlier application

Date of filing (day / month / year)

 Is a statement of inventorship and of right to grant of a patent required in support of this request? (Amwer Tex if:

this request! (Answer Tes II: a) any applicant named in part 3 is not an inventor, or

6) there is an inventor who is not named as an applicant, or

e) any riemed applicant is a corporate body.
 See note (d))

· YES

Patents Form 1/77

Patents Form 1/77

 Enter the number of sheets for any of the following items you are filling with this form.
 Do not count copies of the same document

Continuation sheets of this form

Description 1

Claim(s)

Abstract

Drawing(s) L

only or

If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 19/77)

Any other documents (please specify)

11.

I/We request the grant of a patent on the basis of this application.

Signature V DYKES + LORD

Date 10/3/04

12. Name and daytime telephone number of person to contact in the United Kingdom

lan Craven 0113 245 2388

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

Patents Form 1/77

10

-15

20

25

-1-

Device

This invention relates to a device for guiding an instrument when performing an invasive procedure on a bone (eg a resection of a bone) and to an apparatus for guiding a cutting tool in a surgical procedure on a bone.

A bone may be prepared to receive a component of an orthopaedic joint prosthesis using one or more suitable instruments. For example, a cutting instrument may be used to resect the bone so that it is appropriately shaped to fit a prosthesis. It may be important that the location and dimensions of the resection are controlled accurately to ensure a precise fit. and alignment of the prosthesis on the resected bone. In order to optimise the accuracy of a resection or other preparatory step, it is known to use a guiding block which can be fixed relative to the bone. The guiding block should be positioned accurately relative to the bone and be fixed to avoid movement during the resection or other preparatory step. The guiding block can include one or more structural features which can be engaged by the instrument and which therefore provide a point of reference for locating the instrument. For example, when the instrument is a saw, the structural feature can be a surface or a pair of surfaces which define a slot against which the saw blade is moved. When the instrument is a drill, the structural feature can comprise an opening in which a drill bit can be inserted.

Fixing of a guiding block to a patient's bone is commonly achieved using bone screws or pins or other fasteners which may be inserted into pre-drilled holes or directly into the bone. The fasteners may impinge on the lateral and medial faces of the bone. The resulting configuration is relatively bulky and may cause damage to the soft tissues surrounding the bone, in particular if the bone is in part of the body that is not readily accessible. For example, during femoral resection (a preparatory step for fitting a prosthesis to a femur in knee surgery), the bulky configuration of the guiding block is such that the patella (knee cap) needs to be inverted 90° or more (typically 180°) to allow the guiding block to be fixed. Such displacement may damage the soft tissues (eg ligaments) of the knee.

10

15

20

25

-2.

The present invention seeks to improve invasive bone procedures by providing a device for guiding an instrument (eg a cutting instrument) in a guiding path adjustable through manipulation of one or more manipulators at or near to a transverse extremity of the device. In particular, the present invention relates to a device for guiding an instrument which has a guiding slot defining a guiding path which may be displaced by manipulators at or near to its lateral or medial end.

Thus according to one aspect the present invention provides a device for guiding an instrument in a guiding path when performing an invasive procedure on an extremity of a bone comprising:

a fixing block fixable on the extremity of the bone in a fixing plane;

a guiding block mountable on the fixing block substantially in the fixing plane, wherein the guiding block defines the guiding path; and

a first manipulator for manipulating the guiding path rotationally with respect to the fixing block about an axis substantially perpendicular to the fixing plane and/or a second manipulator for manipulating the guiding path substantially linearly with respect to the fixing block along an axis substantially in the fixing plane, wherein the first manipulator and/or second manipulator are manipulable from a position or positions at or near to a transverse end of the device.

The fixing block of the device of the invention can be fixed to the bone in a first step and any inaccuracy in its location can be corrected by subsequently moving the guiding block relative to the fixing block using the manipulator(s). By virtue of their position in accordance with the device of the invention, the manipulators extend out of a wound largely in a medial or lateral direction so that the procedure is advantageously less disruptive to the tissues surrounding the bone (eg the knee) and to be fitted the device requires a relatively small incision.

Preferably the extremity of the bone is a distal end and the fixing plane is a substantially distal plane. Preferably the bone is the femur.

Preferably the guiding path is a substantially planar path (ie a guiding plane).

10

15

20

25

The guiding block of the invention may comprise a guiding surface which defines the guiding path and which (for example) can be engaged by a cutting instrument such as a blade to define the appropriate alignment for a cut. When the guiding surface is planar, it will define a cutting plane. However, it can be curved or otherwise non-planar so that the bone is cut along a curved line. It might also have two parts which define separate cut lines which may intersect.

The guiding block of the invention may comprise a pair of closely spaced guide surfaces which define between them a slot in which (for example) a blade can be inserted. Preferably the slot is longer at one face of the guiding block than at the opposite face. Particularly preferably the slot is substantially trapezoidal. Preferably the slot is tapered.

The device of the invention may comprise:

a guiding block mountable on the fixing block substantially in the fixing plane, wherein said guiding block defines an anterior guiding path and/or a posterior guiding path. For example, the guiding block may incorporate a first slot defining an anterior guiding path and a second slot defining a posterior guiding path.

The device of the invention preferably comprises:

a first guiding block mountable on the fixing block substantially in the fixing plane, wherein said first guiding block defines a posterior guiding path; and a second guiding block mountable on the fixing block substantially in the fixing plane, wherein said second guiding block defines an anterior guiding path. For example, the first guiding block may incorporate a slot (eg a single slot) defining a posterior guiding path and the second guiding block may incorporate a slot (eg a single slot) defining an anterior guiding path.

In this preferred embodiment, the first guiding block and second guiding block may have opposite handedness.

The angle of the guiding path of each guiding block may be the same or different.

Additional guiding blocks may be desirable (eg third and fourth guiding blocks) where (for

10

15

20

25

example) the angle of the guiding path needs to be varied (eg different angles for the posterior and anterior cuts).

In a preferred embodiment the device of the invention comprises:

a first manipulator for manipulating the guiding path rotationally with respect to the fixing block about the axis substantially perpendicular to the fixing plane, wherein the first manipulator is manipulable from a position at or near to a transverse end of the device.

In a preferred embodiment the device of the invention comprises:

a second manipulator for manipulating the guiding path substantially linearly with respect
to the fixing block along an axis substantially in the fixing plane, wherein the second
manipulator is manipulable from a position at or near to a transverse end of the device.

In a particularly preferred embodiment the device of the invention comprises: a first manipulator for manipulating the guiding path rotationally with respect to the fixing block about an axis substantially perpendicular to the fixing plane and a second manipulator for manipulating the guiding path substantially linearly with respect to the fixing block along an axis substantially in the fixing plane, wherein the first manipulator and second manipulator are manipulable from a position or positions at or near to a transverse end of the device.

The first manipulator may manipulate the guiding path rotationally about the axis of a rotational pivot shaft (eg a cylindrical rotational pivot shaft). The rotational pivot shaft may be pivotally mounted internally in the fixing block (eg in a suitable housing at or near to a transverse end of the fixing block) and secured with a pin. The first manipulator may comprise an exterior actuator connected to a stem with a portion (eg an end portion) which drives the rotational pivot shaft rotationally. For example, the end portion may be threaded (eg a helically threaded portion) and may engage an array of teeth on the exterior surface of the rotational pivot shaft so as to translate rotational manipulation of the first manipulator into rotational motion of the rotational pivot shaft about its axis. Preferably the teeth are concave parallel teeth. Preferably the rotational shaft pivot and the end portion of the first manipulator constitute a worm gear arrangement.

10

15

2ů

25

UDL LEEDS

The second manipulator may manipulate the guiding path substantially linearly along an axis in the fixing plane by the engagement of complementary (eg male and female) threaded portions. For example, the second manipulator may comprise an exterior actuator connected to a stem with a threaded portion which engages a complementary threaded portion elsewhere (in or on the fixing block or on an internal component thereof) eg a lead screw arrangement. The threaded portion may be an intermediate portion of the stem (ie remote from the end). The non-threaded end portion is received in a bore which advantageously assists to withstand non-linear play.

Preferably the first manipulator and/or second manipulator are confined to the fixing plane. This advantageously minimises the bulkiness of the device.

Preferably the axis perpendicular to the fixing plane and the axis in the fixing plane intersect. This advantageously minimises the bulkiness of the device.

In this embodiment, the axis perpendicular to the fixing plane and the axis in the fixing plane may intersect at an axis of a rotational pivot shaft (eg a rotational pivot shaft as hereinbefore defined). The rotational pivot shaft may be pivotally mounted internally in the fixing block (eg in a suitable housing at or near to a transverse end of the fixing block) and secured with a pin. The second manipulator may manipulate the guiding path substantially linearly along an axis in the fixing plane by the engagement of complementary (eg male and female) threaded portions. Preferably the second manipulator comprises an exterior actuator connected to a stem with a threaded portion which engages a complementary threaded bore in the rotational pivot shaft.

The fixing block can be fixed to the bone by means of at least one fastener, generally two three or four fasteners. Suitable fasteners might include, for example, pins or screws. It can therefore be preferred for the fixing block to have at least one opening, preferably a plurality of openings, extending through it in which one or more fasteners can be located for fixing the fixing block to the bone.

10

15

20

25

The guiding block can be fixed to the bone by means of at least one fastener, generally two, three or four fasteners. Suitable fasteners might include, for example, pins or screws. It can therefore be preferred for the guiding block to have at least one opening, preferably a plurality of openings, extending through it in which one or more fasteners can be located for fixing the guiding block to the bone.

The guiding block may be mounted on the fixing block in any conventional manner. Preferably one or more locating pins extend between the guiding block and the fixing block. For example, one or more locating pins on the guiding block may be received in one or more apertures in the fixing block. Preferably the guiding block is confined in the fixing plane.

Of further independently patentable significance is an apparatus in which two degrees of freedom of a fixation block relative to a guide block are achieved in an advantageous manner.

In a further aspect the invention provides an apparatus for guiding a cutting tool in a surgical procedure on a bone which comprises:

- a. a fixation block which can be fitted on to a bone,
- b. a guide block which can be fitted on to the fixation block, the guide block defining a path for a cutting tool,

in which (i) the guide block can be translated relative to the fixation block along a translation axis so as to vary the distance between the guide block and the fixation block, and (ii) the orientation of the guide block relative to the fixation block can be adjusted rotationally about a pivot axis which is approximately perpendicular to the translation axis, and

c. a worm drive assembly for adjusting the orientation of the guide block rotationally relative to the fixation block about the said pivot axis.

Preferably the fixation block has a recess formed in it and the worm drive assembly includes a mount element which is located in the recess, in which the guide block can be fitted on to the mount element, and in which the mount element can be rotated within the

10

15

20

recess to adjust the orientation of the guide block relative to the fixation block about the said pivot axis.

Preferably the apparatus includes an orientation adjuster which can be manipulated to adjust the rotational orientation of the guide block relative to the fixation block about the pivot axis.

Preferably the apparatus includes an orientation adjuster which can be manipulated to adjust the rotational orientation of the guide block relative to the fixation block, in which the orientation adjuster is threaded at one end and engages a surface of the mount element which is arranged approximately parallel to the axis of rotational adjustment of the guide block threadingly at or towards one end.

Preferably the translation axis and the pivot axis intersect.

Preferably the apparatus includes a connector pin which extends between the fixation block and the guide block.

Preferably the connector pin is threaded along at least a portion of its length and the guide block can be made to move along the translation axis by rotation of the connector pin.

Preferably the connector pin is threaded at or towards the end where it engages the fixation block.

Preferably the apparatus includes a first adjuster for adjusting the orientation of the guide block relative to the fixation block and a second adjuster for translating the fixation block relative to the guide block. Particularly preferably the first and second adjusters are located at or towards one end of the fixation block.

Preferably the guide block has a slot formed in it which can receive the blade of a saw.

Viewed from a yet further aspect the present invention provides a method for performing an anterior or posterior cut on a femur comprising:

(a) inserting a device as hereinbefore defined into a wound near to a distal femoral resection on the femur;

UDL LEEDS

- 5 (b) fixing the fixing block onto the distal femoral resection in a distal plane;
 - (c) manipulating the guiding path rotationally with respect to the fixing block about an axis substantially perpendicular to the distal plane and/or manipulating the guiding path substantially linearly with respect to the fixing block along an axis substantially in the distal plane; and
- (d) inserting a cutting instrument along the guiding path to perform an anterior or posterior cut on the femur.
 - Steps (a) to (d) may be performed advantageously without inverting the patella beyond 90°.
 - Steps (a) to (d) may be preceded by (i) making an incision near to the patella to define the wound and (ii) performing the distal resection on the femur.
- The present invention will now be described in a non-limitative sense with reference to the accompanying Figures in which:
 - Figure 1 illustrates a perspective view of an embodiment of the present invention with a right handed guiding block;
- 20 Figure 2 illustrates a perspective view of an isolated left handed guiding block of an embodiment of the present invention;
 - Figure 3 illustrates an elevation of the distal (exposed) face of the embodiment of Figure 1; Figure 4 illustrates an elevation of the proximal (bone-adjoining) face of the embodiment of Figure 1; and
- Figure 5 illustrates a detailed perspective view of the rotational pivot shaft in isolation.
 - Figures 1-4 illustrate a first embodiment of the device of the invention designated generally by reference numeral (1). The device (1) comprises an elongate guiding block which can be right handed (20a in Figure 1) or left handed (20b in Figure 2 in isolation) mounted on an

10

15

20

25

UDL LEEDS

elongate fixing block (10). In a total knee replacement procedure, the fixing block (10) is fixed to a distally resected portion of the femur.

An aperture (not shown) at the end of the guiding block (20a,b) receives a linear manipulator (30) which itself comprises a actuator (301) at one end, a threaded portion (302) and an end portion with a substantially smooth surface (303). The guiding block (20a,b) is secured to the linear manipulator (30) by means of a pin (70) such that the actuator (301) is accessible in the distal plane at a transverse end.

A rotational pivot shaft (50) shown in isolation in Figure 5 has a bore (51) which is threaded and complementary to the threaded portion (302) of the linear manipulator (30) on at least part of its internal surface. The bore (51) receives the threaded portion (302) and smooth portion (303) of the linear manipulator (30). The linear manipulator (30) may move linearly relative to the rotational pivot shaft (50) in the distal plane by the interaction of the male screw thread on the linear manipulator (30) with the female screw thread in the bore (51). The rotational pivot shaft (50) is mounted in a housing near to a transverse end of the fixing block (10) and secured with a pin (not seen in the Figures).

An aperture at the transverse end of the fixing block (10) receives a rotational manipulator (40) adjacent to the rotational pivot shaft (50). The rotational manipulator (40) itself comprises a actuator (401) at one end and a helically threaded portion (not seen in the Figures) at the other end. The rotational manipulator (40) is secured to the fixing block (10) by a pin (60) such that the actuator (401) is accessible in the distal plane substantially at the transverse end adjacent to the actuator (301). The helically threaded portion of the rotational manipulator (40) engages an array of concave parallel teeth (110) on the exterior surface of the rotational pivot shaft (50) so as to translate manipulation of the rotational manipulator (40) into rotational motion of the rotational pivot shaft (50) about its axis in the distal plane (ie a worm-gear arrangement).

The guiding block (20) incorporates a tapered slot (90) which is adapted to receive an instrument (eg a cutting instrument) so that a posterior or anterior resection can be made on the bone (eg femur) to which the device is fixed. The tapered slot (90) is tapered in such a

10

15

way that a cutting angle is defined. This cutting angle is intended to make a cut that has a defined internal angle with the resected distal plane and thus will allow a prosthesis to be correctly fitted. The linear and rotational adjustability of the guiding block (20) allows the tapered slot (90) to be correctly positioned in the distal plane relative to the fixing block (10).

A locating pin (24) projecting from the guiding block (20a,b) is received freely in a guide aperture (15) in the fixing block (10) to confine the guiding block (20a, b) substantially in the distal plane with the fixing block (10). The guide aperture (15) is wider in the transverse axis than is the locating pin (24) allowing the locating pin (24) to move freely in the distal plane when the guiding block (20) is rotated relative to the fixing block (10) whilst withstanding any movement of the guiding block (20a,b) along the proximal/distal axis.

Whereas the fixing block (10) may be used in a left handed or right handed orientation, the guiding block (20a,b) has only one handness. The asymmetry in the guiding blocks (20a,b) is caused by the angle the tapered slot (90) makes with the fixing plane of the device. Thus if an incision is made to the right of the patella, a right-handed guiding block (20a) is required. The device is used with the actuators (301, 401) pointing out of the incision wound to the right. Consequently, if an incision is made to the left of the patella, a left-handed guiding block (20b) is required.

The fixing block (10) incorporates apertures (11, 12) to enable the fixing block (10) to be secured firmly to the surface of the bone. The apertures (11) are counterbored on one face of the fixing block (10) and the apertures (12) are counterbored on the opposite face of the fixing block (10). Thus when the fixing block is in use there will always be counterbored apertures available to receive suitable fasteners whichever orientation the fixing block (10) is in.

The guiding block (20a, b) incorporates apertures (21, 22) to enable the guiding block (20a, b) to be secured firmly to the surface of the bone once it is in the correct position. The

₫ 016/03å

20

-11-

apertures can be sized to receive a pair of pins (21) or counterbored and sized to receive a bone screw (22).

The guiding block (20a, b) narrows towards the end remote from the linear manipulator (30) to facilitate its placement posterior to the patella.

- The use of the device will now be described for an incision to the right of the patella from the point of view of the surgeon (medial on the right knee, lateral on the left knee) and an incision to the left of the patella from the point of view of the surgeon (lateral on the right knee, medial on the left knee) for an anterior resection and a posterior resection. The left handed and right handed guiding blocks (20a, b) are reversed for the posterior resections ie.

 10 a left handed guiding block (20b) is used for a posterior resection with an incision to the right of the patella and a right handed guiding block (20a) is used for a posterior resection with an incision to the left of the patella.
 - (1) INCISION TO THE RIGHT OF THE PATELLA FROM THE POINT OF VIEW OF THE SURGEON - ANTERIOR RESECTION
- A right handed guiding block (20a) has been mounted on a linear manipulator (30) via a pin (70). The linear manipulator (30) is attached to the fixing block (10) by mating the threaded portion (302) of the linear manipulator (30) with the threaded aperture (51) of the rotational pivot shaft (50). The locating pin (24) of the guiding block (20a) is located in the guide aperture (15) of the fixing block (10).

An incision is made to the right of the patella and a part of the femur is resected in the distal plane using an appropriate method. During this step and subsequent steps, the patella may be displaced as little as possible to avoid damage to the delicate surrounding tissues eg the associated ligaments.

The device (1) is inserted into the wound and posterior to the patella via the incision with the actuators (301, 401) on the right extending away from the wound. The fixing block (10) is fixed to the distally resected part of the femur via suitable fasteners attached through

10

15

25

the appropriate apertures (11). Suitable fasteners might include, for example, pins or screws. The accuracy of location of the fixing block (10) when attaching it to the resected femur need only be approximate.

Using an appropriate guiding system, the position of the tapered slot (90) required to make the correct anterior cut on the femur is assessed. The actuators (301, 401) are then used to move the guiding block (20a) relative to the fixing block (10) to position the tapered slot (90). When the actuator (301) of the linear manipulator (30) is rotated the guiding block (20a) is linearly displaced relative to the rotational pivot shaft (50). When the actuator (401) of the rotational manipulator (40) is rotated the rotational pivot shaft (50) and hence the linear manipulator (30) and guiding block (20a) is rotated relative to the fixing block (10). Therefore the guiding block (20a) and hence the tapered slot (90) can be moved to the correct position to allow the anterior cut to be made in the desired anterior cutting plane. Once in this position, the guiding block (20a) is fixed to the resected femur via suitable fasteners attached through the appropriate apertures (21, 22). Suitable fasteners might include, for example, pins or screws.

To execute the anterior cut, a cutting device such as a saw is passed through the front of the tapered slot (90) and used to resect the bone in the anterior cutting plane.

A left handed guiding block (20b) has been mounted on a linear manipulator (30) via a pin (70). The linear manipulator (30) is attached to the fixing block (10) by mating the threaded portion (302) of the linear manipulator (30) with the threaded aperture (51) of the rotational pivot shaft (50). The locating pin (24) of the guiding block (20b) is located in the guide aperture (15) of the fixing block (10).

An incision is made to the left of the patella and a part of the femur is resected in the distal plane using an appropriate method. During this step and subsequent steps, the patella may

10

15

20

be displaced as little as possible to avoid damage to the delicate surrounding tissues eg the associated ligaments.

The device (1) is inserted into the wound and posterior to the patella via the incision with the actuators (301, 401) on the left extending away from the wound. The fixing block (10) is fixed to the distally resected part of the femur via suitable fasteners attached through the appropriate apertures (12). Suitable fasteners might include, for example, pins or screws. The accuracy of location of the fixing block (10) when attaching it to the resected femur need only be approximate.

Using an appropriate guiding system, the position of the tapered slot (90) required to make the correct anterior cut on the femur is assessed. The actuators (301, 401) are then used to move the guiding block (20b) relative to the fixing block (10) to position the tapered slot (90). When the actuator (301) of the linear manipulator (30) is rotated the guiding block (20b) is linearly displaced relative to the rotational pivot shaft (50). When the actuator (401) of the rotational manipulator (40) is rotated the rotational pivot shaft (50) and hence the linear manipulator (30) and guiding block (20b) is rotated relative to the fixing block (10). Therefore the guiding block (20b) and hence the tapered slot (90) can be moved to the correct position to allow the anterior cut to be made in the desired anterior cutting plane. Once in this position, the guiding block (20b) is fixed to the resected femur via suitable fasteners attached through the appropriate apertures (21, 22). Suitable fasteners might include, for example, pins or screws.

To execute the anterior cut, a cutting device such as a saw is passed through the front of the tapered slot (90) and used to resect the bone in the anterior cutting plane.

- (3) INCISION TO THE LEFT OF THE PATELLA FROM THE POINT OF VIEW OF THE SURGEON POSTERIOR RESECTION
- A right handed guiding block (20a) has been mounted on a linear manipulator (30) via a pin (70). The linear manipulator (30) is attached to the fixing block (10) by mating the threaded portion (302) of the linear manipulator (30) with the threaded aperture (51) of the

10

15

20

25

rotational pivot shaft (50). The locating pin (24) of the guiding block (20a) is located in the guide aperture (15) of the fixing block (10).

An incision is made to the left of the patella and a part of the femur is resected in the distal plane using an appropriate method. During this step and subsequent steps, the patella may be displaced as little as possible to avoid damage to the delicate surrounding tissues eg the associated ligaments.

The device (1) is inserted into the wound and posterior to the patella via the incision with the actuators (301, 401) on the left extending away from the wound. The fixing block (10) is fixed to the distally resected part of the femur via suitable fasteners attached through the appropriate apertures (11). Suitable fasteners might include, for example, pins or screws. The accuracy of location of the fixing block (10) when attaching it to the resected femur need only be approximate.

Using an appropriate guiding system, the position of the tapered slot (90) required to make the correct posterior cut on the femur is assessed. The actuators (301, 401) are then used to move the guiding block (20a) relative to the fixing block (10) to position the tapered slot (90). When the actuator (301) of the linear manipulator (30) is rotated the guiding block (20a) is linearly displaced relative to the rotational pivot shaft (50). When the actuator (401) of the rotational manipulator (40) is rotated the rotational pivot shaft (50) and hence the linear manipulator (30) and guiding block (20a) is rotated relative to the fixing block (10). Therefore the guiding block (20a) and hence the tapered slot (90) can be moved to the correct position to allow the posterior cut to be made in the desired posterior cutting plane. Once in this position, the guiding block (20a) is fixed to the resected femur via suitable fasteners attached through the appropriate apertures (21, 22). Suitable fasteners might include, for example, pins or screws.

To execute the posterior cut, a cutting device such as a saw is passed through the front of the tapered slot (90) and used to resect the bone in the posterior cutting plane.

10

15

20

25

(4) INCISION TO THE RIGHT OF THE PATELLA FROM THE POINT OF VIEW OF THE SURGEON - POSTERIOR RESECTION

A left handed guiding block (20b) has been mounted on a linear manipulator (30) via a pin (70). The linear manipulator (30) is attached to the fixing block (10) by mating the threaded portion (302) of the linear manipulator (30) with the threaded aperture (51) of the rotational pivot shaft (50). The locating pin (24) of the guiding block (20b) is located in the guide aperture (15) of the fixing block (10).

An incision is made to the right of the patella and a part of the femur is resected in the distal plane using an appropriate method. During this step and subsequent steps, the patella may be displaced as little as possible to avoid damage to the delicate surrounding tissues eg the associated ligaments.

The device (1) is inserted into the wound and posterior to the patella via the incision with the actuators (301, 401) on the right extending away from the wound. The fixing block (10) is fixed to the distally resected part of the femur via suitable fasteners attached through the appropriate apertures (12). Suitable fasteners might include, for example, pins or screws. The accuracy of location of the fixing block (10) when attaching it to the resected femur need only be approximate.

Using an appropriate guiding system, the position of the tapered slot (90) required to make the correct posterior cut on the femur is assessed. The actuators (301, 401) are then used to move the guiding block (20b) relative to the fixing block (10) to position the tapered slot (90). When the actuator (301) of the linear manipulator (30) is rotated the guiding block (20b) is linearly displaced relative to the rotational pivot shaft (50). When the actuator (401) of the rotational manipulator (40) is rotated the rotational pivot shaft (50) and hence the linear manipulator (30) and guiding block (20b) is rotated relative to the fixing block (10). Therefore the guiding block (20b) and hence the tapered slot (90) can be moved to the correct position to allow the posterior cut to be made in the desired posterior cutting plane. Once in this position, the guiding block (20b) is fixed to the resected femur via

-16-

suitable fasteners attached through the appropriate apertures (21, 22). Suitable fasteners might include, for example, pins or screws.

To execute the posterior cut, a cutting device such as a saw is passed through the front of the tapered slot (90) and used to resect the bone in the posterior cutting plane.

0097227 10-Mar-04 04:05

<u>CLAIMS</u>:

5

10

20

25

- 1. A device for guiding an instrument in a guiding path when performing an invasive procedure on an extremity of a bone comprising:
 - a fixing block fixable on the extremity of the bone in a fixing plane;
- a guiding block mountable on the fixing block substantially in the fixing plane, wherein the guiding block defines the guiding path; and
- a first manipulator for manipulating the guiding path rotationally with respect to the fixing block about an axis substantially perpendicular to the fixing plane and/or a second manipulator for manipulating the guiding path substantially linearly with respect to the fixing block along an axis substantially in the fixing plane, wherein the first manipulator and/or second manipulator are manipulable from a position or positions at or near to a transverse end of the device.
- 2. A device as claimed in claim 1 wherein the guiding path is a substantially planar path.
- 3. A device as claimed in claim 1 or 2 comprising:
- a first guiding block mountable on the fixing block substantially in the fixing plane, wherein said first guiding block defines a posterior guiding path; and a second guiding block mountable on the fixing block substantially in the fixing plane, wherein said second guiding block defines an anterior guiding path.
 - 4. A device as claimed in claim 3 wherein the first guiding block and second guiding block have opposite handedness.
 - 5. A device as claimed in any preceding claim comprising:
 a first manipulator for manipulating the guiding path rotationally with respect to the fixing

block about the axis substantially perpendicular to the fixing plane, wherein the first manipulator is manipulable from a position at or near to a transverse end of the device.

6. A device as claimed in any preceding claim comprising:

UDL LEEDS

a second manipulator for manipulating the guiding path substantially linearly with respect to the fixing block along an axis substantially in the fixing plane, wherein the second manipulator is manipulable from a position at or near to a transverse end of the device.

- 7. A device as claimed in any preceding claim comprising:
- a first manipulator for manipulating the guiding path rotationally with respect to the fixing block about an axis substantially perpendicular to the fixing plane and a second manipulator for manipulating the guiding path substantially linearly with respect to the fixing block along an axis substantially in the fixing plane, wherein the first manipulator and second manipulator are manipulable from a position or positions at or near to a transverse end of the device.
 - 8. A device as claimed in any preceding claim wherein the first manipulator manipulates the guiding path rotationally about the axis of a rotational pivot shaft.
 - 9. A device as claimed in claim 8 wherein the rotational pivot shaft is pivotally mounted internally in the fixing block.
- 10. A device as claimed in claim 8 or 9 wherein the first manipulator comprises: an exterior actuator connected to a stem with an end portion which drives the rotational pivot shaft rotationally.
 - 11. A device as claimed in claim 10 wherein the first manipulator translates rotational manipulation of the exterior actuator into rotational motion of the rotational pivot shaft about its axis.
 - 12. A device as claimed in claim 10 or 11 wherein the end portion is threaded and engages an array of teeth on the exterior surface of the rotational pivot shaft so as to translate rotational manipulation of the exterior actuator into rotational motion of the rotational pivot shaft about its axis.
- 25 13. A device as claimed in claim 12 wherein the teeth are concave parallel teeth.

15

20

25

- 14. A device as claimed in any preceding claim wherein the second manipulator manipulates the guiding path substantially linearly along an axis in the fixing plane by the engagement of complementary threaded portions.
- 15. A device as claimed in claim 14 wherein the second manipulator comprises an exterior actuator connected to a stem with a threaded portion which engages a complementary threaded portion.
 - 16. A device as claimed in any preceding claim wherein the axis substantially perpendicular to the fixing plane and the axis in the fixing plane intersect.
- 17. A device as claimed in claim 16 wherein the axis substantially perpendicular to the fixing plane and the axis in the fixing plane intersect at an axis of a rotational pivot shaft.
 - 18. A device as claimed in claim 17 wherein the second manipulator comprises an exterior actuator connected to a stem with a threaded portion which engages a complementary threaded bore in the rotational pivot shaft.
 - 19. An apparatus for guiding a cutting tool in a surgical procedure on a bone which comprises:
 - a. a fixation block which can be fitted on to a bone,
 - b. a guide block which can be fitted on to the fixation block, the guide block defining a path for a cutting tool,

in which (i) the guide block can be translated relative to the fixation block along a translation axis so as to vary the distance between the guide block and the fixation block, and (ii) the orientation of the guide block relative to the fixation block can be adjusted rotationally about a pivot axis which is approximately perpendicular to the translation axis, and

c. a worm drive assembly for adjusting the orientation of the guide block rotationally relative to the fixation block about the said pivot axis.

20

25

- 20. An apparatus as claimed in claim 19, in which the fixation block has a recess formed in it, and in which the worm drive assembly includes a mount element which is located in the recess, in which the guide block can be fitted on to the mount element, and in which the mount element can be rotated within the recess to adjust the orientation of the guide block relative to the fixation block about the said pivot axis.
- 21. An apparatus as claimed in claim 19, which includes an orientation adjuster which can be manipulated to adjust the rotational orientation of the guide block relative to the fixation block about the pivot axis.
- 22. An apparatus as claimed in claim 20, which includes an orientation adjuster which can be manipulated to adjust the rotational orientation of the guide block relative to the fixation block, in which the orientation adjuster is threaded at one end and engages a surface of the mount element which is arranged approximately parallel to the axis of rotational adjustment of the guide block threadingly at or towards one end.
- 23. An apparatus as claimed in claim 19, in which the translation axis and the pivot axis intersect.
 - 24. An apparatus as claimed in claim 19, which includes a connector pin which extends between the fixation block and the guide block.
 - 25. An apparatus as claimed in claim 24, in which the connector pin is threaded along at least a portion of its length, and in which the guide block can be made to move along the translation axis by rotation of the connector pin.
 - 26. An apparatus as claimed in claim 25, in which the connector pin is threaded remote from the end where it engages the fixation block.
 - 27. An apparatus as claimed in claim 19, which includes a first adjuster for adjusting the orientation of the guide block relative to the fixation block and a second adjuster for translating the fixation block relative to the guide block.

-21-

- 28. An apparatus as claimed in claim 27, in which the first and second adjusters are located at or towards one end of the fixation block.
- 29. An apparatus as claimed in claim 19, in which the guide block has a slot formed in it which can receive the blade of a saw.

·

0097227 10-Mar-04 04:05.

<u>FIG.</u> ₹4

•

.