Learning Verified Monitors for Hidden Markov Models

Luko van der Maas, Sebastian Junges

Monitor is a classifier

- Monitor is a classifier
- Classic learning approaches do not guarantee safety

- Monitor is a classifier
- Classic learning approaches do not guarantee safety
- We introduce a model

- Monitor is a classifier
- Classic learning approaches do not guarantee safety
- We introduce a model
- Verify the monitor is safe on the model

Overview

Problem statement

Learning approach

Verification approach

Correctness results

What is our System Model?

Definition (Hidden Markov Model)

- States: S
- Transition function: $P: S \to \Delta S$
- Observations: Z
- Observation function: obs: $S \rightarrow Z$

$$S = \{q_d, q_i, q_c\}$$

$$Z = \{dry: \bigcirc, icy: \bigcirc$$

Question

Question

Question

Having observed the observation sequence τ , what is the probability of being in q_c ?

0

$$\tau_1 = \bigcirc$$

Question

$$\tau_1 = \bigcirc \qquad \qquad 0$$

$$\tau_2 = \bigcirc \bigcirc \qquad \qquad$$

Question

$$\tau_1 = 0 \qquad 0$$

$$\tau_2 = 0 \qquad 1/4$$

Question

$$\tau_1 = 0$$

$$\tau_2 = 0$$

$$1/4$$

Question

Having observed the observation sequence au, what is the probability of being in q_c ?

$$\tau_1 = 0$$

$$\tau_2 = 0$$

$$1/4$$

5/8

Question

Having observed the observation sequence τ , what is the probability of being in q_c ?

$$\tau_1 = 0$$

$$\tau_2 = 0$$

$$1/4$$

$$\tau_3 = \bigcirc$$

5/8

Question

$$\tau_1 = 0 \qquad 0$$

$$\tau_2 = 0 \qquad 1/4$$

$$\tau_3 = \begin{array}{c} 5/8 \\ \hline \\ \tau_4 = \end{array}$$
?

Question

Probability above $\lambda = 0.3$ is **unsafe**.

$$au_1 = igcomes_{ au_2} = igcomes_{ au_2}$$
 ok

$$au_3 = \bigcirc$$
 $au_4 = \bigcirc$

Question

Probability above $\lambda = 0.3$ is unsafe.

$$au_1 = igcup ok$$
 ok $au_2 = igcup ok$

$$\mathbb{U}_{\lambda} = \{\tau_3, \ldots\}$$

Question

Probability below $\lambda_s = 0.1$ is safe.

Probability above $\lambda_u = 0.3$ is unsafe.

$$au_1 = igcomes_1 = igcomes_2 = igcomes_1 = igcomes_2 = igcomes_1 = igcomes$$

Question

Probability below $\lambda_s = 0.1$ is safe.

Probability above $\lambda_u = 0.3$ is unsafe.

$$au_1 = igcomes_1 = igcomes_2 = igcomes_1 = igcomes_2 = igcomes_1 = igcomes$$

$$\tau_3 =$$

$$\tau_4 =$$

$$\mathbb{U}_{\lambda_{ij}} = \{\tau_3, \ldots\}$$

$$\mathbb{S}_{\lambda_c} = \{\tau_1, \ldots\}$$

Question

Probability below $\lambda_s = 0.1$ is safe.

Probability above $\lambda_u = 0.3$ is unsafe.

Horizon of 3 observations.

$$au_1 = igcomes_1 = igcomes_2 = igcomes_2 ?$$

$$au_3 = \bigcirc$$
 $au_4 = \bigcirc$

$$\mathbb{U}_{\lambda_u}^{\leq 3} = \{\tau_3\}$$

$$\mathbb{S}_{\lambda_{\circ}}^{\leq 3} = \{\tau_1, \ldots\}$$

$$\mathbb{U}_{\lambda_{\scriptscriptstyle U}}^{\leq 3} = \{ \bigcirc \bigcirc \}$$

$$\mathbb{S}_{\lambda_{\mathbb{S}}}^{\leq 3} = \{ \bigcirc, \ldots \}$$

$$\mathbb{U}_{\lambda_{u}}^{\leq 3} = \{ \bigcirc \bigcirc \}$$

$$\mathbb{S}_{\lambda_{\mathbb{S}}}^{\leq 3} = \{ \bigcirc, \ldots \}$$

$$\mathbb{U}_{\lambda_u}^{\leq 3} = \{ \bigcirc \bigcirc \bigcirc \}$$

$$\mathbb{S}_{\lambda_{\mathbb{S}}}^{\leq 3} = \{ \bigcirc, \ldots \}$$

Monitor Correctness

$$\mathbb{U}_{\lambda_u}^{\leq 3} \subseteq \mathcal{L}(\mathcal{A}) \subseteq \Sigma^* \setminus \mathbb{S}_{\lambda_s}^{\leq 3}$$

$$\mathbb{U}_{\lambda_u}^{\leq 3} = \{ \bigcirc \bigcirc \}$$

$$\mathbb{S}_{\lambda_{\mathbb{S}}}^{\leq 3} = \{ \bigcirc, \ldots \}$$

Monitor Correctness

$$\mathbb{U}_{\lambda_u}^{\leq 3} \subseteq \mathcal{L}(\mathcal{A}) \subseteq \Sigma^* \setminus \mathbb{S}_{\lambda_s}^{\leq 3}$$

Verifying Monitors (this paper)

No Missed Alarms Problem

Given a HMM generating a set of traces $\mathbb{U}_{\lambda_n}^{\leq h}$, and a monitor \mathcal{A} , verify that

$$\forall \tau \in \mathbb{U}_{\lambda_u}^{\leq h}. \ \tau \in \mathcal{L}(\mathcal{A})$$

Verifying Monitors (this paper)

No Missed Alarms Problem

Given a HMM generating a set of traces $\mathbb{U}_{\lambda_n}^{\leq h}$, and a monitor \mathcal{A} , verify that

$$\forall \tau \in \mathbb{U}_{\lambda_u}^{\leq h}. \ \tau \in \mathcal{L}(\mathcal{A})$$

↓ Find a counter example

Find Missed Alarm Problem

Given a HMM generating a set of traces $\mathbb{U}_{\lambda_n}^{\leq h}$, and a monitor \mathcal{A} ,

$$\exists \tau \in \mathbb{U}_{\lambda_u}^{\leq h}. \ \tau \notin \mathcal{L}(\mathcal{A})$$

Verifying Monitors (this paper)

No Missed Alarms Problem

Given a HMM generating a set of traces $\mathbb{U}_{\lambda_n}^{\leq h}$, and a monitor \mathcal{A} , verify that

$$\forall \tau \in \mathbb{U}_{\lambda_u}^{\leq h}. \ \tau \in \mathcal{L}(\mathcal{A})$$

↓ Find a counter example

Find Missed Alarm Problem

Given a HMM generating a set of traces $\mathbb{U}_{\lambda_n}^{\leq h}$, and a monitor \mathcal{A} ,

$$\exists \tau \in \mathbb{U}_{\lambda_u}^{\leq h}. \ \tau \notin \mathcal{L}(\mathcal{A})$$

Complexity

Finding a missed alarm is NP-complete (proof in the paper).

Searching for Missed Alarms

- Writing conditional probability properties using reachability, by Baier et al.².
- Equate traces in the HMM to policies in the colored MDP, by Badings et al. ³.

¹R. Andriushchenko et al., "PAYNT: A tool for inductive synthesis of probabilistic programs,", 2021.

²C. Baier et al., "Computing conditional probabilities in markovian models efficiently,", 2014

³T. S. Badings et al., "Ctmcs with imprecisely timed observations,", 2024

Find an unsafe trace which is not in the monitor

Find an unsafe trace which is not in the monitor

Find an unsafe trace which is not in the monitor

Transformation 2/4

path: $q_d \rightarrow q_i \rightarrow q_c$ trace:

Find an unsafe trace which is not in the monitor

Transformation 3/4

Find a trace which

- does not end in t_{ignr},
- has probability $> \lambda_u$ to reach $\left\langle \frac{4}{t_{\text{alrm}}} \right\rangle$.

Transformation 4/4

Find a trace which

- does not end in t_{ignr},
- has probability > λ_u to reach $\left\langle \begin{smallmatrix} 4, \\ t_{\text{alrm}} \end{smallmatrix} \right\rangle$.

Find a policy $\sigma \colon \mathbb{N}^{\leq 4} \to Z$ s.t.

- we reach an end state,
- reach $t_{\rm alrm}$ with prob. $\geq \lambda_u$.

Transformation 4/4

Find a policy $\sigma \colon \mathbb{N}^{\leq 4} \to Z \text{ s.t.}$

- we reach an end state,
- reach t_{alrm} with prob. $\geq \lambda_u$.

Solvable by PAYNT

Transformation 4/4

Find a policy $\sigma \colon \mathbb{N}^{\leq 4} \to Z$ s.t.

- we reach an end state.
- reach t_{alrm} with prob. $> \lambda_{\mu}$.

Solvable by PAYNT

Theorem 1

"The transformation is correct"

Learning Verified Monitors

for Hidden Markov Models

• Active automata learning using L*.

- Active automata learning using L*.
- MQ: Forward Filtering implemented by Premise⁴ on the HMM with threshold λ_l.

$$\lambda_{\rm S} \leq \lambda_l \leq \lambda_{\rm U}$$

⁴S. Junges et al., "Runtime monitors for markov decision processes,", 2021

- Active automata learning using L*.
- MQ: Forward Filtering implemented by Premise⁴ on the HMM with threshold λ_l .

$$\lambda_{\rm S} \leq \lambda_{l} \leq \lambda_{\rm U}$$

E0: is a candidate monitor correct

⁴S. Junges et al., "Runtime monitors for markov decision processes,", 2021

- Active automata learning using L*.
- MQ: Forward Filtering implemented by Premise⁴ on the HMM with threshold λ_l .

$$\lambda_{\rm S} \leq \lambda_{l} \leq \lambda_{\rm U}$$

E0: is a candidate monitor correct

Theorem 2

"Monitors learned using our verification algorithm are correct."

⁴S. Junges et al., "Runtime monitors for markov decision processes,", 2021

Benchmark A-63/64

$$\lambda_{\rm S} = \lambda_{\rm l} = \lambda_{\rm U} = 0.3$$

Benchmark A-63/64

$$\lambda_{\rm S} = \lambda_{\rm l} = \lambda_{\rm U} = 0.3$$

Benchmark A-63/64

$$\lambda_{\rm S}=\lambda_{\rm l}=\lambda_{\rm u}=0.3$$

Benchmark A-63/64

290 states, 1258 transitions, 50 observations, horizon of 10 $\lambda_{\rm S} = 0.1$ $\lambda_{\rm I} = 0.3$ $\lambda_{\rm II} = 0.35$

(a) Learning with verification, $\lambda_s = \lambda_l = \lambda_u$

(b) Learning with sampling-based verification

Benchmark A-63/64

$$\lambda_{\rm S} = 0.1 \quad \lambda_l = 0.3 \quad \lambda_{\rm U} = 0.35$$

Benchmark A-63/64

290 states, 1258 transitions, 50 observations, horizon of 10 $\lambda_{\rm S}=0.1$ $\lambda_{\rm I}=0.3$ $\lambda_{\rm II}=0.35$

(c) Learning with verification, $\lambda_{\text{s}} < \lambda_{l} < \lambda_{u}$

Conclusion

Summary

- We present a verification algorithm for HMM monitors.
- We prove the verification problem is coNP-complete.
- We integrate it with active automata learning to learn correct monitors.
- We learn monitors with up to 1500 states in 11 hours on models with 100s of states.

Future interests

- Ideas to adapt AAL more to our specific problem.
- Adapt colored MDP model checking more to our specific problem of conditional probabilities.
- Learn models from data such that they are useful for monitoring.

Fmail luko vandermaas@ru.nl

Results: Runtime

(a)
$$\lambda_s < \lambda_l < \lambda_u$$
, Runtime

(b)
$$\lambda_s = \lambda_t = \lambda_u$$
, Runtime

Results: Monitor Size

