2021 CCF 非专业级别软件能力认证第一轮 (CSP-S1) 提高级 C++语言试题

认证时间: 2021 年9月19日09:30~11:30

考生注意事项:

- 试题纸共有 16 页,答题纸共有 1 页,满分 100 分。请在答题纸上作答,写在试题纸上的一律无效。
- 不得使用任何电子设备(如计算器、手机、电子词典等)或查阅任何书籍资料。
- 一、单项选择题(共15题,每题2分,共计30分;每题有且仅有一个正确选项)
- 1. 在 Linux 系统终端中,用于列出当前目录下所含的文件和子目录的命令为()。
 - A. ls
 - B. cd
 - C. cp
 - D. all
- 2. 二进制数 001010102 和 000101102 的和为()。
 - A. 00111100₂
 - B. 010000002
 - C. 00111100₂
 - D. 010000102
- 3. 在程序运行过程中,如果递归调用的层数过多,可能会由于()引发错误。
 - A. 系统分配的栈空间溢出
 - B. 系统分配的队列空间溢出
 - C. 系统分配的链表空间溢出
 - D. 系统分配的堆空间溢出
- 4. 以下排序方法中,()是不稳定的。
 - A. 插入排序
 - B. 冒泡排序

CCF CSP-S 2021 第一轮 C++语言试题 第1页,共16页

	CCF CSP-S 2021 第一轮 C++语言试题
	D. 2021
	C. 12
	B. 11
	A. 10
8.	令根结点的高度为 1,则一棵含有 2021 个结点的二叉树的高度至少为 ()。
	D. 11
	C. 10
	B. 9
7.	G是一个非连通简单无向图(没有自环和重边),共有 36 条边,则该图至少有()个点。 A. 8
	D. 8
	C. 7
	B. 6
	A. 5
	数为 h(x)=x ² mod 11。请问 7 存储在哈希表哪个地址中()。
	(到 10 冲突了就从 0 开始往后),现在要依次存储(0,1,2,3,4,5,6,7),哈希函
6.	现有一个地址区间为 0~10 的哈希表,对于出现冲突情况,会往后找第一个空的地址存储
	D. 2n+1
	C. 3n-2
	B. 3n+1
	A. 4n-2
	较次数为()。
5.	以比较为基本运算,对于 2n 个数,同时找到最大值和最小值,最坏情况下需要的最小的比
	D. 归并排序

9. 前序遍历和中序遍历相同的二叉树为且仅为()。
A. 只有1个点的二叉树
B. 根结点没有左子树的二叉树
C. 非叶子结点只有左子树的二叉树
D. 非叶子结点只有右子树的二叉树
10. 定义一种字符串操作为交换相邻两个字符。将"DACFEB"变为"ABCDEF"最少需要(
次上述操作。
A. 7
B. 8
C. 9
D. 6
11. 有如下递归代码
<pre>solve(t, n):</pre>
if t=1 return 1
else return 5*solve(t-1,n) mod n
则 solve(23,23)的结果为()。
A. 1
B. 7
C. 12
D. 22
12. 斐波那契数列的定义为: $F_1=1$, $F_2=1$, $F_n=F_{n-1}+F_{n-2}$ ($n>=3$)。现在用如下程序来计算斐波
那契数列的第 n 项,其时间复杂度为 ()。
F(n):
if n<=2 return 1
else return F(n-1) + F(n-2)

- A. O(n)
- B. $O(n^2)$
- $C. O(2^n)$
- D. $O(n \log n)$
- 13. 有 8 个苹果从左到右排成一排, 你要从中挑选至少一个苹果, 并且不能同时挑选相邻的两个苹果, 一共有() 种方案。
 - A. 36
 - B. 48
 - C. 54
 - D. 64
- **14.** 设一个三位数 $n = \overline{abc}$, a, b, c 均为 $1 \sim 9$ 之间的整数,若以 a、 b、 c 作为三角形的三条边可以构成等腰三角形(包括等边),则这样的 n 有()个。
 - A. 81
 - B. 120
 - C. 165
 - D. 216
- **15.** 有如下的有向图,节点为 A, B, ... , J, 其中每条边的长度都标在图中。则节点 A 到节点 J 的最短路径长度为()。

- A. 16
- B. 19
- C. 20
- D. 22

二、阅读程序(程序输入不超过数组或字符串定义的范围;判断题正确填v,错误填x;除特殊说明外,判断题 1.5 分,选择题 3 分,共计 40 分)

```
(1)
   01 #include <iostream>
   02 #include <cmath>
   03 using namespace std;
   05 const double r = acos(0.5);
   06
   07 int a1, b1, c1, d1;
   08 int a2, b2, c2, d2;
   09
   10 inline int sq(const int x) { return x * x; }
   11 inline int cu(const int x) { return x * x * x; }
   12
   13 int main()
   14 {
   15
          cout.flags(ios::fixed);
          cout.precision(4);
   16
   17
   18
          cin >> a1 >> b1 >> c1 >> d1;
   19
          cin >> a2 >> b2 >> c2 >> d2;
   20
          int t = sq(a1 - a2) + sq(b1 - b2) + sq(c1 - c2);
   21
   22
          if (t \le sq(d2 - d1)) cout (cu(min(d1, d2)) * r * 4;
   23
   24
          else if (t >= sq(d2 + d1)) cout (< 0;
   25
          else {
             double x = d1 - (sq(d1) - sq(d2) + t) / sqrt(t) / 2;
   26
   27
             double y = d2 - (sq(d2) - sq(d1) + t) / sqrt(t) / 2;
             cout << (x * x * (3 * d1 - x) + y * y * (3 * d2 - y)) * r;
   28
   29
   30
          cout << endl;
   31
          return 0;
   32 }
```

CCF CSP-S 2021 第一轮 C++语言试题 第5页,共16页

假设输入的所有数的绝对值都不超过1000,完成下面的判断题和单选题:

判断题

```
16. 将第 21 行中 t 的类型声明从 int 改为 double,不会影响程序运行的结果。( )
```

- 17. 将第 26、27 行中的"/ sqrt(t) / 2"替换为"/ 2 / sqrt(t)", **不会**影响程序运行的结果。()
- **18.** 将第 **28** 行中的 "x * x" 改成 "sq(x)"、"y * y" 改成 "sq(y)" , **不会**影响程 序运行的结果。()
- 19. (2分) 当输入为"00011001"时,输出为"1.3090"。()
- 单选题

```
20. 当输入为 "1 1 1 1 1 1 2" 时,输出为 ( )。
A. "3.1416" B. "6.2832" C. "4.7124" D. "4.1888"
```

- 21. (2.5 分) 这段代码的含义为()。
 - A. 求圆的面积并

B. 求球的体积并

C. 求球的体积交

D. 求椭球的体积并

(2)

```
01 #include <algorithm>
02 #include <iostream>
03 using namespace std;
04
05 int n, a[1005];
96
07 struct Node
08 {
09
      int h, j, m, w;
10
11
      Node(const int _h, const int _j, const int _m, const int _w):
12
          h(_h), j(_j), m(_m), w(_w)
13
      { }
14
15
      Node operator+(const Node &o) const
16
17
          return Node(
18
              max(h, w + o.h),
19
              max(max(j, o.j), m + o.h),
20
              max(m + o.w, o.m),
21
              w + o.w);
22
      }
```

CCF CSP-S 2021 第一轮 C++语言试题 第6页,共16页

```
23 };
24
25 Node solve1(int h, int m)
26 {
27
      if (h > m)
28
          return Node(-1, -1, -1, -1);
      if (h == m)
29
30
          return Node(max(a[h], 0), max(a[h], 0), max(a[h], 0), a[h]);
      int j = (h + m) >> 1;
31
      return solve1(h, j) + solve1(j + 1, m);
32
33 }
34
35 int solve2(int h, int m)
36 {
37
      if (h > m)
38
          return -1;
      if (h == m)
39
40
          return max(a[h], 0);
41
      int j = (h + m) >> 1;
42
      int wh = 0, wm = 0;
      int wht = 0, wmt = 0;
43
44
      for (int i = j; i >= h; i--) {
45
          wht += a[i];
46
          wh = max(wh, wht);
47
48
      for (int i = j + 1; i <= m; i++) {
49
          wmt += a[i];
50
          wm = max(wm, wmt);
51
52
      return max(max(solve2(h, j), solve2(j + 1, m)), wh + wm);
53 }
54
55 int main()
56 {
57
      cin >> n;
58
      for (int i = 1; i <= n; i++) cin >> a[i];
59
      cout << solve1(1, n).j << endl;</pre>
60
      cout << solve2(1, n) << endl;</pre>
61
      return 0;
62 }
```

假设输入的所有数的绝对值都不超过1000,完成下面的判断题和单选题:

● 利胜散

22.程序**总是**会正常执行并输出两行两个相等的数。()

CCF CSP-S 2021 第一轮 C++语言试题 第7页,共16页

```
23. 第 28 行与第 38 行分别有可能执行两次及以上。( )
   24. 当输入为 "5-10 11-9 5-7" 时,输出的第二行为 "7"。()
  单选题
   25. solve1(1, n) 的时间复杂度为( )。
                                                    D. Θ(n²)
    A. \Theta(\log n)
                    B. \Theta(n)
                                  C. \Theta(n \log n)
   26. solve2(1, n) 的时间复杂度为(
                                  C. \Theta(n \log n)
    A. \Theta(\log n)
                   B. \Theta(n)
                                                    D. Θ(n²)
   27. 当输入为 "10-32100-89-4-594" 时,输出的第一行为()。
                    B. "17"
                                   C. "24"
        "13"
                                                   D.
                                                       "12"
(3)
   01 #include <iostream>
   02 #include <string>
   03 using namespace std;
   04
   05 char base[64];
   06 char table[256];
   97
   08 void init()
   09 {
   10
         for (int i = 0; i < 26; i++) base[i] = 'A' + i;
         for (int i = 0; i < 26; i++) base[26 + i] = 'a' + i;
   11
         for (int i = 0; i < 10; i++) base[52 + i] = '0' + i;
   12
   13
         base[62] = '+', base[63] = '/';
   14
         for (int i = 0; i < 256; i++) table[i] = 0xff;
   15
   16
         for (int i = 0; i < 64; i++) table[base[i]] = i;
   17
         table['='] = 0;
   18 }
   19
   20 string encode(string str)
   21 {
   22
         string ret;
   23
         int i;
   24
         for (i = 0; i + 3 \le str.size(); i += 3) {
   25
             ret += base[str[i] >> 2];
             ret += base[(str[i] & 0x03) << 4 | str[i + 1] >> 4];
   26
             ret += base[(str[i + 1] & 0x0f) << 2 | str[i + 2] >> 6];
   27
             ret += base[str[i + 2] & 0x3f];
   28
                         CCF CSP-S 2021 第一轮 C++语言试题
```

第8页,共16页

```
29
      }
30
      if (i < str.size()) {
31
          ret += base[str[i] >> 2];
32
          if (i + 1 == str.size()) {
33
              ret += base[(str[i] & 0x03) << 4];
              ret += "==";
34
35
          }
36
          else {
37
              ret += base[(str[i] & 0x03) << 4 | str[i + 1] >> 4];
              ret += base[(str[i + 1] & 0x0f) << 2];
38
39
              ret += "=";
40
41
42
      return ret;
43 }
44
45 string decode(string str)
46 {
47
      string ret;
      int i;
48
49
      for (i = 0; i < str.size(); i += 4) {
50
          ret += table[str[i]] << 2 | table[str[i + 1]] >> 4;
51
          if (str[i + 2] != '=')
              ret += (table[str[i + 1]] & 0x0f) << 4 | table[str[i +
52
                                                            2]] >> 2;
53
          if (str[i + 3] != '=')
              ret += table[str[i + 2]] << 6 | table[str[i + 3]];
54
55
56
      return ret;
57 }
58
59 int main()
60 {
61
      init();
      cout << int(table[0]) << endl;</pre>
62
63
64
      int opt;
65
      string str;
66
      cin >> opt >> str;
67
      cout << (opt ? decode(str) : encode(str)) << endl;</pre>
68
      return 0;
69 }
```

假设输入总是合法的(一个整数和一个不含空白字符的字符串,用空格隔开),完成下面 的判断题和单选题:

- 判断题
 - 28. 程序总是先输出一行一个整数, 再输出一行一个字符串。()
 - 29. 对于任意不含空白字符的字符串 str1, 先执行程序输入 "0 str1", 得到输出的第 二行记为 str2; 再执行程序输入"1 str2",输出的第二行必为 str1。()
 - 30. 当输入为 "1 SGVsbG93b3JsZA=="时,输出的第二行为"HelloWorld"。()
- 单洗题
 - 31. 设输入字符串长度为 n, encode 函数的时间复杂度为()。
 - A. $\Theta(\sqrt{n})$
- B. $\Theta(n)$ C. $\Theta(n \log n)$ D. $\Theta(n^2)$

- 32. 输出的第一行为()。
 - A. "0xff"
 - B. "255"
- C. "0xFF"
- D. "-1"
- 33. (4分) 当输入为"0 CSP2021csp"时,输出的第二行为()。
 - A. "O1NOMiAyMWNzcAv="
- B. "Q1NQMjAyMGNzcA=="
- C. "Q1NQMjAyMGNzcAv="
- D. "Q1NQMjAyMWNzcA=="

三、 完善程序(单选题,每小题 3 分,共计 30 分)

(1) (**魔法数字**) 小 H 的魔法数字是 4。给定 n,他希望用若干个 4 进行若干次加 法、减法和整除运算得到 n。但由于小 H 计算能力有限, 计算过程中只能出现不超过 M = 10000 的正整数。求至少可能用到多少个 4。

例如, 当 n=2 时, 有 2=(4+4)/4, 用到了 3 个 4, 是最优方案。

试补全程序。

- 01 #include <iostream>
- 02 #include <cstdlib>
- 03 #include <climits>

04

05 using namespace std;

- 07 const int M = 10000;
- 08 bool Vis[M + 1];
- 09 int F[M + 1];

10

```
11 void update(int &x, int y) {
12
       if (y < x)
          x = y;
13
14 }
15
16 int main() {
17
       int n;
18
       cin >> n;
       for (int i = 0; i <= M; i++)
19
20
          F[i] = INT MAX;
21

 (1);

      int r = 0;
22
23
      while (2) {
24
          r++;
25
          int x = 0;
          for (int i = 1; i <= M; i++)
26
27
              if (3)
28
                  x = i;
29
          Vis[x] = 1;
30
          for (int i = 1; i <= M; i++)
31
              if (4) {
32
                  int t = F[i] + F[x];
                  if (i + x <= M)
33
34
                      update(F[i + x], t);
                  if (i != x)
35
36
                      update(F[abs(i - x)], t);
37
                  if (i \% x == 0)
38
                      update(F[i / x], t);
39
                  if (x \% i == 0)
40
                      update(F[x / i], t);
41
              }
42
43
       cout << F[n] << endl;
44
       return 0;
45 }
34. ①处应填( )
    A. \quad F[4] = 0
                                     C. F[1] = 2
                    B. F[1] = 4
                                                    D. F[4] = 1
35. ②处应填()
    A.
        !Vis[n]
                                             r < n
    C.
        F[M] == INT_MAX
                                            F[n] == INT_MAX
```

```
36. ③处应填( )
A. F[i] == r
C. F[i] < F[x]
B. !Vis[i] && F[i] == r
D. !Vis[i] && F[i] < F[x]

37. ④处应填( )
A. F[i] < F[x] B. F[i] <= r
C. Vis[i] D. i <= x
```

(2) (RMQ 区间最值问题) 给定序列 $a_0,...,a_{n-1}$,和 m 次询问,每次询问给定 l,r,求 $\max \{a_l,...,a_r\}$ 。

为了解决该问题,有一个算法叫 the Method of Four Russians, 其时间复杂度为O(n+m), 步骤如下:

- 建立 Cartesian (笛卡尔) 树,将问题转化为树上的 LCA (最近公共祖先)问题。
- 对于 LCA 问题,可以考虑其 Euler 序(即按照 DFS 过程,经过所有点,环游回根的序列),即求 Euler 序列上两点间一个新的 RMQ 问题。
- 注意新的问题为 ±1 RMQ, 即相邻两点的深度差一定为 1。

下面解决这个 ±1 RMQ 问题, "序列"指 Euler 序列:

- 设 t 为 Euler 序列长度。取 $b = \left\lceil \frac{\log_2 t}{2} \right\rceil$ 。将序列每 b 个分为一大块, 使用 ST 表(倍增表)处理大块间的 RMQ 问题,复杂度 $O\left(\frac{t}{b}\log t\right) = O(n)$ 。
- **(重点)** 对于一个块内的 RMQ 问题,也需要O(1) 的算法。由于差分数组 2^{b-1} 种,可以预处理出所有情况下的最值位置,预处理复杂度 $O(b2^b)$,不超过 O(n)。

第12页,共16页

最终,对于一个查询,可以转化为中间整的大块的 RMQ 问题,以及两端块内的 RMQ 问题。

试补全程序。

```
001 #include <iostream>
002 #include <cmath>
003
004 using namespace std;
005
006 const int MAXN = 100000, MAXT = MAXN << 1;
007 const int MAXL = 18, MAXB = 9, MAXC = MAXT / MAXB;
008
009 struct node {
010    int val;
011    int dep, dfn, end;

CCF CSP-S 2021 第一轮 C++语言试题
```

```
node *son[2]; // son[0], son[1] 分别表示左右儿子
012
013 } T[MAXN];
014
015 int n, t, b, c, Log2[MAXC + 1];
016 int Pos[(1 << (MAXB - 1)) + 5], Dif[MAXC + 1];</pre>
017 node *root, *A[MAXT], *Min[MAXL][MAXC];
018
019 void build() { // 建立 Cartesian 树
020
       static node *S[MAXN + 1];
021
       int top = 0;
       for (int i = 0; i < n; i++) {
022
023
           node *p = &T[i];
024
           while (top && S[top]->val < p->val)
025
               1);
           if (top)
026
027
               2;
028
           S[++top] = p;
029
        }
030
       root = S[1];
031 }
032
033 void DFS(node *p) { // 构建 Euler 序列
034
       A[p->dfn = t++] = p;
035
       for (int i = 0; i < 2; i++)
036
           if (p->son[i]) {
037
               p->son[i]->dep = p->dep + 1;
038
               DFS(p->son[i]);
039
               A[t++] = p;
040
           }
041
       p->end = t - 1;
042 }
043
044 node *min(node *x, node *y) {
045
       return ③ ? x : y;
046 }
047
048 void ST_init() {
049
       b = (int)(ceil(log2(t) / 2));
050
       c = t / b;
051
       Log2[1] = 0;
052
       for (int i = 2; i <= c; i++)
           Log2[i] = Log2[i >> 1] + 1;
053
       for (int i = 0; i < c; i++) {
054
           Min[0][i] = A[i * b];
055
                       CCF CSP-S 2021 第一轮 C++语言试题
```

第13页,共16页

```
056
           for (int j = 1; j < b; j++)
057
               Min[0][i] = min(Min[0][i], A[i * b + j]);
058
       for (int i = 1, l = 2; l <= c; i++, l <<= 1)
059
060
           for (int j = 0; j + 1 <= c; j++)
061
               Min[i][j] = min(Min[i - 1][j], Min[i - 1][j + (1 >>
                                                              1)]);
062 }
063
064 void small init() { // 块内预处理
       for (int i = 0; i <= c; i++)
065
          for (int j = 1; j < b && i * b + j < t; j++)
066
067
               if (4)
                  Dif[i] = 1 << (j - 1);
068
       for (int S = 0; S < (1 << (b - 1)); S++) {
069
070
           int mx = 0, v = 0;
           for (int i = 1; i < b; i++) {
071
               ⑤;
072
073
               if (v < mx) {
074
                   mx = v;
075
                   Pos[S] = i;
076
               }
077
           }
078
       }
079 }
080
081 node *ST_query(int l, int r) {
082
       int g = Log2[r - l + 1];
083
       return min(Min[g][1], Min[g][r - (1 << g) + 1]);
084 }
085
086 node *small_query(int l, int r) { // 块内查询
       int p = 1 / b;
087
988
       int S = 6;
       return A[1 + Pos[S]];
089
090 }
091
092 node *query(int l, int r) {
093
       if (1 > r)
094
           return query(r, 1);
095
       int pl = 1 / b, pr = r / b;
096
       if (pl == pr) {
097
           return small_query(l, r);
098
       } else {
                       CCF CSP-S 2021 第一轮 C++语言试题
```

第14页,共16页

```
099
            node *s = min(small_query(1, pl * b + b - 1),
                                               small_query(pr * b, r));
            if (pl + 1 \le pr - 1)
100
101
                 s = min(s, ST_query(pl + 1, pr - 1));
102
            return s;
        }
103
104 }
105
106 int main() {
107
        int m;
108
        cin >> n >> m;
        for (int i = 0; i < n; i++)
109
            cin >> T[i].val;
110
111
        build();
        DFS(root);
112
113
        ST init();
        small_init();
114
115
        while (m--) {
116
            int l, r;
117
            cin >> 1 >> r;
118
            cout << query(T[1].dfn, T[r].dfn)->val << endl;</pre>
119
        }
120
        return 0;
121 }
38.①处应填()
         p \rightarrow son[0] = S[top--]
                                                 p->son[1] = S[top--]
                                             В.
        S[top--]->son[0] = p
                                             D.
                                                 S[top--]->son[1] = p
39. ②处应填()
     Α.
         p \rightarrow son[0] = S[top]
                                                 p \rightarrow son[1] = S[top]
                                             B.
     C.
         S[top] \rightarrow son[0] = p
                                                 S[top] \rightarrow son[1] = p
40. ③处应填()
     Α.
        x->dep < y->dep
                                             В.
                                                 x < y
     C.
        x->dep > y->dep
                                                 x->val < y->val
41. ④处应填( )
     A. A[i * b + j - 1] == A[i * b + j] -> son[0]
     B. A[i * b + j] -> val < A[i * b + j - 1] -> val
     C. A[i * b + j] == A[i * b + j - 1] -> son[1]
     D. A[i * b + j] -> dep < A[i * b + j - 1] -> dep
```

42. ⑤处应填()

- A. v += (S >> i & 1) ? -1 : 1
- B. v += (S >> i & 1) ? 1 : -1
- C. v += (S >> (i 1) & 1) ? 1 : -1
- D. v += (S >> (i 1) & 1) ? -1 : 1

43. ⑥处应填()

- A. (Dif[p] >> (r p * b)) & ((1 << (r 1)) 1)
- B. Dif[p]
- C. (Dif[p] >> (1 p * b)) & ((1 << (r 1)) 1)
- D. $(Dif[p] \Rightarrow ((p + 1) * b r)) & ((1 << (r 1 + 1)) 1)$

一、单项选择题 (共15题, 每题2分, 共计30分)

1	2	3	4	5	6	7	8	9	10
Α	В	Α	С	С	С	С	В	D	Α
11	12	13	14	15					
Α	С	С	С	В					

二、阅读程序(除特殊说明外,判断题1.5分,单选题3分,共计40分)

第1题 . 第2题 .		判断题 (填√或×)	单选题			
	16)	17)	18)	19)(2分)	20)	21) (2.5 分)	
	√	×	×	√	D	20) 21) (2.5 分) D C 单选题 26) 27) C B	
第2题	判例	折题 (填√或	×)		单选题		
	22)	23)	24)	25)	26)	27)	
	√	×	×	В	С	В	
	判图	所题(填√或	×)		单选题		
第2题	28)	29)	30)	31)	32)	33) (4分)	
	×	√	×	В	D	D	

三、完善程序(单选题,每小题3分,共计30分)

第1题				第2题					
34)	35)	36)	37)	38)	39)	40)	41)	42)	43)
D	Α	D	С	Α	D	Α	D	D	С

2021 CCF 非专业级别软件能力认证第一轮

(CSP-J1) 入门级 C++语言试题

认证时间: 2021年9月19日14:30~16:30

考生注意事项:

- 试题纸共有 12 页,答题纸共有 1 页,满分 100 分。请在答题纸上作答,写在试题纸上的一律无效。
- 不得使用任何电子设备(如计算器、手机、电子词典等)或查阅任何书籍资料。
- 一、单项选择题(共15题,每题2分,共计30分;每题有且仅有一个正确选项)
- 1. 以下不属于面向对象程序设计语言的是()。
 - A. C++
 - B. Python
 - C. Java
 - D. C
- 2. 以下奖项与计算机领域最相关的是()。
 - A. 奥斯卡奖
 - B. 图灵奖
 - C. 诺贝尔奖
 - D. 普利策奖
- 3. 目前主流的计算机储存数据最终都是转换成()数据进行储存。
 - A. 二进制
 - B. 十进制
 - C. 八进制
 - D. 十六进制
- 4. 以比较作为基本运算,在 N 个数中找出最大数,最坏情况下所需要的最少的比较次数为()。
 - A. N²

CCF CSP-J 2021 第一轮 C++语言试题 第1页,共12页

	B. N
	C. N-1
	D. N+1
5.	对于入栈顺序为 a, b, c, d, e 的序列, 下列() 不是合法的出栈序列。
	A. a, b, c, d, e
	B. e, d, c, b, a
	C. b, a, c, d, e
	D. c, d, a, e, b
6	对于有 n 个顶点、m 条边的无向连通图 (m>n),需要删掉()条边才能使其成为一棵
0.	村。
	A. n-1
	B. m-n
	C. m-n-1
	D. m-n+1
	D. III-1111
7.	二进制数 101.11 对应的十进制数是()。
	A. 6.5
	B. 5.5
	C. 5.75
	D. 5.25
8.	如果一棵二叉树只有根结点,那么这棵二叉树高度为1。请问高度为5的完全二叉树有
	() 种不同的形态?
	A. 16
	B. 15
	C. 17
	D. 32
	CCF CSP-J 2021 第一轮 C++语言试题 第2页 共12页

9. 表达式 a*(b+c)*d 的后缀表达式为(), 其中 "*"和 "+"是运算符。
A. **a+bcd
B. abc+*d*
C. abc+d**
D. *a*+bcd
10.6个人,两个人组一队,总共组成三队,不区分队伍的编号。不同的组队情况有()
种。
A. 10
B. 15
C. 30
D. 20
11. 在数据压缩编码中的哈夫曼编码方法,在本质上是一种()的策略。
A. 枚举
B. 贪心
C. 递归
D. 动态规划
12. 由 1 , 1 , 2 , 2 , 3 这五个数字组成不同的三位数有() 种。
A. 18
B. 15
C. 12
D. 24
43. 花序加工等归始计
13. 考虑如下递归算法
solve(n)
if n<=1 return 1
CCF CSP-J 2021 第一轮 C++语言试题 第3页,共12页

else if n>=5 return n*solve(n-2)
else return n*solve(n-1)

则调用 solve(7)得到的返回结果为()。

- A. 105
- B. 840
- C. 210
- D. 420
- 14. 以 a 为起点,对右边的无向图进行深度优先遍历,则 b、 c、 d、 e 四个点中有可能作为最后一个遍历到的点的个数为()。
 - A. 1
 - B. 2
 - C. 3
 - D. 4

- 15.有四个人要从 A 点坐一条船过河到 B 点,船一开始在 A 点。该船一次最多可坐两个人。已知这四个人中每个人独自坐船的过河时间分别为 1, 2, 4, 8,且两个人坐船的过河时间为两人独自过河时间的较大者。则最短 ()时间可以让四个人都过河到 B 点(包括从 B 点把船开回 A 点的时间)。
 - A. 14
 - B. 15
 - C. 16
 - D. 17
- 二、阅读程序(程序输入不超过数组或字符串定义的范围;判断题正确填v,错误填x;除特殊说明外,判断题 1.5 分,选择题 3 分,共计 40 分)
- (1)
 - 01 #include <iostream>
 - 02 using namespace std;
 - 03
 - 04 int n;

CCF CSP-J 2021 第一轮 C++语言试题 第4页,共12页

```
05 int a[1000];
  06
  07 int f(int x)
  98 {
  09
        int ret = 0;
  10
        for (; x; x \&= x - 1) ret++;
  11
        return ret;
  12 }
  13
  14 int g(int x)
  15 {
  16
        return x & -x;
  17 }
  18
  19 int main()
  20 {
  21
        cin >> n;
  22
        for (int i = 0; i < n; i++) cin >> a[i];
  23
        for (int i = 0; i < n; i++)
           cout << f(a[i]) + g(a[i]) << ' ';
  24
        cout << endl;
  25
  26
        return 0;
  27 }
判断题
 16. 输入的 n 等于 1001 时,程序不会发生下标越界。( )
 17. 输入的 a[i] 必须全为正整数, 否则程序将陷入死循环。(
 18. 当输入为 "5 2 11 9 16 10" 时,输出为 "3 4 3 17 5"。
 19. 当输入为"1 511998"时,输出为"18"。(
 20. 将源代码中 g 函数的定义(14-17行)移到 main 函数的后面,程序可以正常编译运
  行。()
 单选题
 21. 当输入为"2-65536 2147483647"时,输出为()。
                B. "65552 32" C. "65535 34" D.
      "65532 33"
                                                 "65554 33"
(2)
  01 #include <iostream>
  02 #include <string>
                       CCF CSP-J 2021 第一轮 C++语言试题
                             第5页,共12页
```

```
03 using namespace std;
04
05 char base[64];
06 char table[256];
07
08 void init()
09 {
10
      for (int i = 0; i < 26; i++) base[i] = 'A' + i;
      for (int i = 0; i < 26; i++) base[26 + i] = 'a' + i;
11
12
      for (int i = 0; i < 10; i++) base[52 + i] = '0' + i;
      base[62] = '+', base[63] = '/';
13
14
      for (int i = 0; i < 256; i++) table[i] = 0xff;
15
      for (int i = 0; i < 64; i++) table[base[i]] = i;
16
17
      table['='] = 0;
18 }
19
20 string decode(string str)
21 {
22
      string ret;
23
      int i;
24
      for (i = 0; i < str.size(); i += 4) {
25
          ret += table[str[i]] << 2 | table[str[i + 1]] >> 4;
26
          if (str[i + 2] != '=')
27
              ret += (table[str[i + 1]] & 0x0f) << 4 | table[str[i +
                                                               2]] >> 2;
          if (str[i + 3] != '=')
28
29
              ret += table[str[i + 2]] << 6 | table[str[i + 3]];
30
      }
31
      return ret;
32 }
33
34 int main()
35 {
36
      init();
37
      cout << int(table[0]) << endl;</pre>
38
39
      string str;
40
      cin >> str;
41
      cout << decode(str) << endl;
42
      return 0;
43 }
```

判断题

```
22. 输出的第二行一定是由小写字母、大写字母、数字和"+"、"/"、"="构成的
 字符串。()
  23. 可能存在输入不同, 但输出的第二行相同的情形。( )
  24. 输出的第一行为"-1"。( )
 单选题
  25. 设输入字符串长度为 n, decode 函数的时间复杂度为()。
                                                D. Θ(n²)
   A. \Theta(\sqrt{n})
                  B. \Theta(n)
                               C. \Theta(n \log n)
  26. 当输入为 "Y3Nx" 时,输出的第二行为()。
                                   "CSP"
   A. "csp"
                  B. "csq"
                                                   "Csp"
                               C.
  27. (3.5 分) 当输入为 "Y2NmIDIwMiE=" 时,输出的第二行为( )。
     "ccf2021"
                B. "ccf2022" C. "ccf 2021" D. "ccf 2022"
(3)
  01 #include <iostream>
  02 using namespace std;
  03
  04 const int n = 100000;
  05 const int N = n + 1;
  06
  07 int m;
  08 int a[N], b[N], c[N], d[N];
  09 int f[N], g[N];
  10
  11 void init()
  12 {
  13
        f[1] = g[1] = 1;
  14
        for (int i = 2; i <= n; i++) {
  15
           if (!a[i]) {
  16
               b[m++] = i;
  17
               c[i] = 1, f[i] = 2;
               d[i] = 1, g[i] = i + 1;
  18
  19
           }
  20
           for (int j = 0; j < m && b[j] * i <= n; j++) {
  21
               int k = b[j];
               a[i * k] = 1;
  22
  23
               if (i \% k == 0) {
  24
                  c[i * k] = c[i] + 1;
                  f[i * k] = f[i] / c[i * k] * (c[i * k] + 1);
  25
                  d[i * k] = d[i];
  26
                       CCF CSP-J 2021 第一轮 C++语言试题
```

第7页,共12页

```
27
                  g[i * k] = g[i] * k + d[i];
  28
                  break;
  29
               }
               else {
  30
  31
                  c[i * k] = 1;
                  f[i * k] = 2 * f[i];
  32
                  d[i * k] = g[i];
  33
  34
                  g[i * k] = g[i] * (k + 1);
  35
               }
  36
           }
  37
        }
  38 }
  39
  40 int main()
  41 {
  42
        init();
  43
  44
        int x;
  45
        cin >> x;
        cout << f[x] << ' ' << g[x] << endl;
  46
  47
        return 0;
  48 }
  假设输入的 x 是不超过 1000 的自然数,完成下面的判断题和单选题:
判断题
  28. 若输入不为"1",把第 13 行删去不会影响输出的结果。( )
  29. (2分) 第 25 行的 "f[i] / c[i * k]" 可能存在无法整除而向下取整的情况。
  ( )
  30. (2分) 在执行完 init()后, f 数组不是单调递增的, 但 g 数组是单调递增的。
  ( )
 单选题
  31. init 函数的时间复杂度为( )。

 Θ(n)

               B. \Theta(n \log n)
                                C. \Theta(n\sqrt{n})
                                              D. Θ(n²)
  32. 在执行完 init()后, f[1], f[2], f[3] ...... f[100]中有( ) 个等于 2。
   A. 23
                 B. 24
                               C. 25
  33. (4分) 当输入为"1000"时,输出为()。
   A. "15 1340" B. "15 2340" C. "16 2340" D. "16 1340"
```

三、完善程序(单选题,每小题3分,共计30分)

(1) (Josephus 问题) 有 n 个人围成一个圈,依次标号 0 至 n-1。从 0 号开始,依次 0,1,0,1,... 交替报数,报到 1 的人会离开,直至圈中只剩下一个人。求最后剩下人的编号。

试补全模拟程序。

```
01 #include <iostream>
03 using namespace std;
04
05 const int MAXN = 1000000;
06 int F[MAXN];
07
08 int main() {
09
      int n;
10
      cin >> n;
11
      int i = 0, p = 0, c = 0;
12
      while (1) {
          if (F[i] == 0) {
13
14
             if (2) {
15
                 F[i] = 1;
                 3;
16
17
              }
18
             4);
19
          }
          ⑤;
20
21
      }
22
      int ans = -1;
      for (i = 0; i < n; i++)
23
          if (F[i] == 0)
24
25
             ans = i;
26
      cout << ans << endl;
27
      return 0;
28 }
34.①处应填()
                                C. i < n - 1
    A. i < n
                    B. c < n
35. ②处应填()
    A. i % 2 == 0
                     B. i % 2 == 1
                                     C. p
```

```
36. ③处应填()
    A. i++
                                         i = (i + 1) \% n
    C. c++
                                          p \sim 1
37. ④处应填(
    A. i++
                                       i = (i + 1) \% n
    C.
                                       p ^= 1
        C++
                                    D.
38. ⑤处应填(
       i++
                                          i = (i + 1) \% n
    Α.
    C.
        C++
                                          p \sim 1
```

(2) (矩形计数) 平面上有 n 个关键点,求有多少个四条边都和 x 轴或者 y 轴平行的矩形,满足四个顶点都是关键点。给出的关键点可能有重复,但完全重合的矩形只计一次。

试补全枚举算法。

```
01 #include <iostream>
02
03 using namespace std;
04
05 struct point {
06
      int x, y, id;
07 };
98
09 bool equals(point a, point b) {
      return a.x == b.x && a.y == b.y;
11 }
12
13 bool cmp(point a, point b) {
      return ①;
14
15 }
16
17 void sort(point A[], int n) {
18
      for (int i = 0; i < n; i++)
19
          for (int j = 1; j < n; j++)
              if (cmp(A[j], A[j - 1])) {
20
21
                  point t = A[j];
22
                  A[j] = A[j - 1];
23
                 A[j - 1] = t;
              }
24
25 }
26
```

CCF CSP-J 2021 第一轮 C++语言试题 第10页,共12页

```
27 int unique(point A[], int n) {
28
      int t = 0;
29
      for (int i = 0; i < n; i++)
30
          if (2)
              A[t++] = A[i];
31
32
      return t;
33 }
34
35 bool binary_search(point A[], int n, int x, int y) {
      point p;
36
37
      p.x = x;
38
      p.y = y;
39
      p.id = n;
40
      int a = 0, b = n - 1;
41
      while (a < b) {
42
          int mid = 3;
43
          if (4)
44
              a = mid + 1;
45
          else
46
              b = mid;
47
48
      return equals(A[a], p);
49 }
50
51 const int MAXN = 1000;
52 point A[MAXN];
53
54 int main() {
55
      int n;
56
      cin >> n;
      for (int i = 0; i < n; i++) {
57
58
          cin >> A[i].x >> A[i].y;
59
          A[i].id = i;
60
       }
      sort(A, n);
61
      n = unique(A, n);
62
63
      int ans = 0;
      for (int i = 0; i < n; i++)
64
65
          for (int j = 0; j < n; j++)
66
              if (⑤ && binary_search(A, n, A[i].x, A[j].y) &&
                       binary_search(A, n, A[j].x, A[i].y)) {
67
                  ans++;
68
              }
      cout << ans << endl;
69
```

```
70 return 0;
71 }
39.①处应填()
    A. a.x != b.x ? a.x < b.x : a.id < b.id
    B. a.x != b.x ? a.x < b.x : a.y < b.y
    C. equals(a, b) ? a.id < b.id : a.x < b.x
    D. equals(a, b) ? a.id < b.id : (a.x != b.x ? a.x < b.x : a.y < b.y)
40. ②处应填()
    A. i == 0 \mid cmp(A[i], A[i-1])
    B. t == 0 \mid | equals(A[i], A[t - 1])
    C. i == 0 \mid | !cmp(A[i], A[i - 1])
    D. t == 0 \mid | !equals(A[i], A[t - 1])
41. ③处应填( )
    A. b - (b - a) / 2 + 1
                                    B. (a + b + 1) >> 1
    C. (a + b) >> 1
                                     D. a + (b - a + 1) / 2
42. ④处应填()
    A. !cmp(A[mid], p)
                                    B. cmp(A[mid], p)
    C. cmp(p, A[mid])
                                    D. !cmp(p, A[mid])
43. ⑤处应填()
```

- A. A[i].x == A[j].x
- B. A[i].id < A[j].id</p>
- C. A[i].x == A[j].x && A[i].id < A[j].id
- D. A[i].x < A[j].x && A[i].y < A[j].y

一、单项选择题(共15题,每题2分,共计30分)

1	2	3	4	5	6	7	8	9	10
D	В	Α	С	D	D	С	Α	В	В
11	12	13	14	15					
В	Α	С	В	В					

二、阅读程序 (除特殊说明外, 判断题 1.5分, 单选题 3分, 共计 40分)

1 1000								
		单选题						
第1题	16)	17)	18)	19)	20)	21)		
77 2 72	×	×	×	√	×	В		
	判图	听题 (填√或	×)	单选题				
第2题	22)	23)	24)	25)	26)	27) (3.5 分)		
,, - , -	×	√	√	В	В	С		
	判图	折题(填√或	×)	单选题				
第3题	28)	29) (2 分)	30) (2 分)	31)	32)	33)(4分)		
1,5 0 12	√	×	×	Α	С	С		

三、完善程序(单选题,每小题3分,共计30分)

第1题							第2题		
34)	35)	36)	37)	38)	39)	40)	41)	42)	43)
D	С	С	D	В	В	D	С	В	D