Липецкий государственный технический университет

Кафедра прикладной математики

Индивидуальное домашнее задание №4 по курсу «Организация обработки данных» Вариант 2

Студент		Богомолов Е.А
	подпись, дата	фамилия, инициалы
Группа		
Руководитель		
		Левина Л.В.
ученая степень ученое звание	пошись пата	даминия випимер

Липецк 2022 г.

Содержание

Зғ	адание каф	редры	3
1.	Краткая	георитическая справка	4
2.	Ход рабоз	гы	6
	2.01	10 значений	6
Bı	ыводы		12

Задание кафедры

Дана выборка – 44 значения:

- 1. Для первых 10 элементов найти:
 - $\hat{M}(x), \hat{D}(x)$ обычным способом.
 - $\widetilde{M}(x),\widetilde{D}(x)$ по методу бутстреп.
 - $\widehat{D}\widetilde{M}(x), \widehat{D}\widetilde{D}(x).$
- 2. Для следующих 20 элементов:
 - $\hat{M}(x), \hat{D}(x)$ обычным способом.
 - $\widetilde{M}(x), \widetilde{D}(x)$ по методу бутстреп.
 - $\widehat{D}\widetilde{M}(x), \widehat{D}\widetilde{D}(x).$
- 3. Для всей выборки найти M(x), D(x)

1. Краткая теоритическая справка

В статистике и анализе данных бутстрапом называют статистическую процедуру, основанную на выборке с замещением для определения точности (смещения) выборочных оценок дисперсии, среднего, стандартного отклонения, доверительных интервалов и других структурных характеристик совокупности.

Метод разработан и впервые опубликован в 1972 году Бредли Эфроном.

В основе идеи бутстрапа лежит оценка структурных характеристик генеральной совокупности на основе перевыборки (resampling) из выборки. Иными словами, перевыборка по отношению к выборке рассматривается как выборка по отношению к генеральной совокупности.

Алгоритм работы метода следующий:

- Из генеральной совокупности формируется случайная выборка из N(t) наблюдений.
- К выборке применяется случайная перевыборка с возвратом (псевдовыборка) того же объема, но в которую некоторые наблюдения могут попасть несколько раз, а другие не попасть совсем.
- Процедура перевыборки повторяется достаточно много раз (несколько десятков, сотен или даже тысяч), и для каждого случая вычисляется среднее.
- Из полученного набора средних значений вычисляется среднее и рассматривается как среднее всей генеральной совокупности.

Важнейшим преимуществом бутстрапа являются: простота реализации; отсутствие необходимости гипотез о параметрах распределения данных; возможность оценивания многих статистических характеристик (среднего, дисперсии, стандартного отклонения, доверительных интервалов, квантилей, коэффициентов корреляции и др.).

К недостатку метода можно отнести использование малореалистичного предположения о независимости перевыборок и значительные вычислительные затраты при их многократном построении.

Метод оказывается особенно полезным, когда теоретическое распределение данных неизвестно или объем выборки мал для прямой статистической оценки.

В анализе данных бутстрап используется для оценки точности аналитических моделей.

2. Ход работы

2.0..1 10 значений

$$\widehat{M}(x) = \frac{1}{10} \sum_{u=1}^{10} x_u$$
, $\widehat{D}(x) = \frac{1}{10-1} \sum_{u=1}^{10} (x_u - M)^2$

Рисунок 1 – Формула для пункта «а»

$$M_{i}^{*} = \frac{1}{10} \cdot \sum_{j=1}^{10} V_{ij} X_{ij} \quad M^{*} = \frac{1}{10} \cdot \sum_{i=1}^{10} M_{i}^{*} \Delta = M^{*} - \widehat{M} \quad D_{i}^{*} = \frac{1}{9} \cdot \sum_{j=1}^{10} V_{ij} (X_{j} - M_{i})^{2}$$

$$D^{*} = \frac{1}{10} \sum_{i=1}^{10} D_{i}^{*} \Delta = D^{*} - \widehat{D}$$

Рисунок 2 – Формула для пункта «б»

Рисунок 3 — Формирование подвыборок и вычисление математического ожидания для 10 повторений

Рисунок 4 – Вычисление дисперсии для 10 повторений

M*	-0.125 Погрешность	-0.216
		0.220

Рисунок 5 – Математическое ожидание для 30 повторений

Рисунок 6 – Дисперсия для 30 повторений

M* -0.085 Погрешность -0	.177	
--------------------------	------	--

Рисунок 7 — Математическое ожидание для 50 повторений

D*	0.622 Γ	Тогрешность	-0.184

Рисунок 8 – Дисперсия для 50 повторений

Оценки	
n=10	
(M*i-M)^2	0.01
DM	0.16
(D*i-D)^2	0.01
DD	0.10
n=30	
(M*i-M)^2	0.56
DM	0.17
(D*i-D)^2	0.30
DD	0.10
n=50	
(M*i-M)^2	0.01
DM	0.14
(D*i-D)^2	0.00

		_	
M*	0.09	Погрешность	-0.04

Рисунок 10 – Математическое ожидание для 10 повторений

D*	0.56	Погрешность	-0.27

Рисунок 11 – Дисперсия для 10 повторений

M*	0.10 Пог	решность	-0.03

Рисунок 12 – Математическое ожидание для 30 повторений

D*	0.58 Погрешность	-0.26

Рисунок 13 – Дисперсия для 30 повторений

1	M *	0.10	Погрешность	-0.73

Рисунок 14 — Математическое ожидание для 50 повторений

D*	0.58	Погрешность	-0.25

Рисунок 15 – Дисперсия для 50 повторений

Оценки	
n=10	
(M*i-M)^2	0.07
DM	0.03
(D*i-D)^2	0.00
DD	0.13
n=30	
(M*i-M)^2	0.04
DM	0.03
(D*i-D)^2	0.37
DD	0.11
n=50	
(M*i-M)^2	0.03
DM	0.04
(D*i-D)^2	0.09
DD	0.12

Рисунок 16 – Оценки для математического ожидания и дисперсии

Рисунок 17 – Математическое ожидание и дисперсия для всей выборки

Выводы

Из материала, представленного в отчёте, можно сделать вывод, что метод бутстреп в сравнении с методом джекнайф имеет большую погрешность, но применение данного метода позволит легче интерпретировать полученные оценки.