National Textile University, Faisalabad

Department of Computer Science

Name:	Muhammad Hassaan Raza
Class:	BSAI-6th
Registration No:	22-NTU-CS-1362
Assignment	Lab13-Lab/Home tasks
Course Code:	AIE-3079
Course Name:	Internet of Things Fundamentals
Submitted To:	Mr. Nasir Mehmood
Submission Date:	20-May-2025

LAB 13 REPORT

TASK 1: ARDUINO MQTT PUBLISHER FOR DHT SENSOR

What I Did:

I used Arduino code to send temperature and humidity data from a DHT11 sensor to an MQTT broker (Mosquitto). The ESP32 connects to Wi-Fi and publishes data every second.

Results:

The Serial Monitor showed live updates like:

Published Temperature: 29.40°C Published Humidity: 56.00%

• The data was sent successfully to the topic esp32/dht/temp and esp32/dht/hum.

Problems Faced:

 Sometimes, the sensor failed to read values, but the code handled it by printing an error.

Screenshot Attached:


```
## seeth_mayf6a no

## include <WiFi.h>
## include <PubSubClient.h>
## include <PubSubClient.h>
## include <PubSubClient.h>
## include <PutSubClient.h>
## include <PutSubClient.how
```

TASK 2: STORE MQTT DATA IN INFLUXDB

What I Did:

I ran a Python script (1-dht_data_only.py) to subscribe to MQTT topics and save the sensor data to InfluxDB.

Results:

The script printed confirmations like:

Received Temperature: 29.40°C

Data written to InfluxDB: Temperature: 29.40°C, Humidity: 56.00%

Data was stored in InfluxDB under the measurement dht_data with tags and fields.

Problems Faced:

• First, the script didn't connect because of a wrong IP address. I fixed it by checking the broker address.

screenshot Attached:

TASK 3: TRAIN MODEL WITH NOISE

What I Did:

I ran 2-train_model_with_noise.py to create a synthetic dataset and train a neural network to classify temperature/humidity into 5 classes (e.g., "Hot and Dry").

Results:

- The model achieved ~92% accuracy.
- The confusion matrix showed good performance but some confusion between similar classes (e.g., "Normal" and "Cold and Humid").

Problems Faced:

• The training was slow on my laptop, but eventually it trained.

Screenshots Attached:

TASK 4: CLASSIFY AND STORE IN INFLUXDB

What I Did:

I executed 3-classify_2_influx.py to read live sensor data, classify it using the trained model, and save everything (temperature, humidity, and class label) to InfluxDB.

Results:

- The console showed real-time updates:
 - Received Temperature: 29.40°C
 - Normal Predicted Class: Normal
 - ✓ Data saved to InfluxDB
- The InfluxDB dashboard displayed all fields: temperature, humidity, and class_label.

Problems Faced:

At first, the class labels didn't appear in InfluxDB because of a typo in the field name. I
fixed it by checking the script.

Screenshots Attached:

