ДИСЦИПЛИНА Радиотехнические цепи и сигналы часть 1

полное название дисциплины без аббревиатуры

ИНСТИТУТ Радиотехнических и телекоммуникационных систем

КАФЕДРА радиоволновых процессов и технологий

полное название кафедры

ГРУППА/Ы РРБО-1-3-18; РССО-1-3-18

номер групп/ы, для которых предназначены материалы

ВИД УЧЕБНОГО

Лекция №10

МАТЕРИАЛА

лекция; материал к практическим занятиям; контрольно-измерительные материалы к практическим занятиям; руководство к КР/КП, практикам

ПРЕПОДАВАТЕЛЬ

Исаков Владимир Николаевич

фамилия, имя, отчество

CEMECTP

указать номер семестра обучения

Лекция 10

Линейные радиотехнические цепи

1. Понятие линейной цепи

Линейной называется электрическая цепь, которая состоит из линейных элементов. Линейными элементами являются:

- 1. Сопротивление с линейной вольтамперной характеристикой;
- 2. Ёмкость с линейной кулон-вольтной характеристикой;
- 3. Индуктивность с линейной вебер-амперной характеристикой.

Линейные элементы описываются линейными алгебраическими или дифференциальными уравнениями, поэтому в результате составления уравнений линейной цепи на основе законов Кирхгофа получается система линейных дифференциальных уравнений, которая, как известно, может быть сведена к одному дифференциальному уравнению. Поэтому линейную цепь можно определить и как цепь, описываемую линейным дифференциальным уравнением (ЛДУ). В общем случае ЛДУ цепи имеет вид:

$$a_N u_{\rm BX}^{(N)}(t) + a_{N-1} u_{\rm BX}^{(N-1)}(t) + ... + a_1 u_{\rm BX}'(t) + a_0 u_{\rm BX}(t) = \\ = b_N u_{\rm BMX}^{(N)}(t) + b_{N-1} u_{\rm BMX}^{(N-1)}(t) + ... + b_1 u_{\rm BMX}'(t) + b_0 u_{\rm BMX}(t) \,,$$
 где $\left\{a_n\right\}_{n=0}^N$, $\left\{b_n\right\}_{n=0}^N$ - коэффициенты ЛДУ, которые определяются структурой цепи и параметрами её элементов, N - порядок цепи.

Нетрудно показать, что для цепи, описываемой линейным дифференциальным уравнением, выполняется принцип суперпозиции: реакция цепи на линейную комбинацию сигналов есть такая же линейная комбинация из отдельных её реакций на каждый из сигналов.

2. Линейный оператор цепи. Временные характеристики цепи

Математически выполнение принципа суперпозиции позволяет поставить в соответствие линейной цепи линейный оператор, который отображает множество входных сигналов на множество выходных:

$$\begin{split} u_{\text{вых}}(t) &= T \left\{ u_{\text{вх}}(t) \right\}, \\ T \left\{ k_1 u_{\text{вх}1}(t) + k_2 u_{\text{вх}2}(t) \right\} &= k_1 T \left\{ u_{\text{вх}1}(t) \right\} + k_2 T \left\{ u_{\text{вх}2}(t) \right\}, \ k_{1,2} \in \mathbb{C} \,. \end{split}$$

Найдём структуру этого оператора. Будем рассматривать такие

 $u_{\rm BX}(t)$, что $u_{\rm BX}(t<0)=0$, а цепь на момент времени t=0 находится при нулевых независимых начальных условиях, то есть воздействие на линейную цепь рассматривается не ранее момента времени t=0, а запас энергии в её энергоёмких элементах (ёмкостях, индуктивностях) отсутствует. Представим сигнал на входе линейной цепи в виде

$$u_{\rm BX}(t) = \int_{0}^{+\infty} u_{\rm BX}(t')\delta(t-t')dt',$$

тогда

$$\begin{split} u_{\text{BMX}}(t) &= T \left\{ u_{\text{BX}}(t) \right\} = T_t \left\{ \int_0^{+\infty} u_{\text{BX}}(t') \delta(t - t') dt' \right\} = \\ &= \int_0^{+\infty} u_{\text{BX}}(t') T_t \left\{ \delta(t - t') \right\} dt' = \int_0^{+\infty} u_{\text{BX}}(t') h(t - t') dt' = u_{\text{BX}} * h(t) \,, \end{split}$$

где $h(t) = T\{\delta(t)\}$ - реакция линейной цепи на δ - импульс при нулевых независимых начальных условиях, называемая импульсной характеристикой линейной цепи (ИХ). Импульсной характеристике обычно приписывают размерность $[c^{-1}]$.

Полученная формула называется формулой Дюамеля. Сигнал на выходе линейной цепи может быть найден как свёртка сигнала на её входе и импульсной характеристики. Линейный оператор линейной цепи, таким образом, является оператором свёртки.

Переходной характеристикой линейной цепи (ПХ) называется её отклик на единичный скачок при нулевых независимых начальных условиях:

$$g(t) = T\{\sigma(t)\}.$$

ПХ безразмерна. ИХ и ПХ между собой взаимосвязаны:

$$h(t) = T\left\{\delta(t)\right\} = T\left\{\frac{d\sigma(t)}{dt}\right\} = \frac{d}{dt}T\left\{\sigma(t)\right\} = \frac{dg(t)}{dt}.$$

Поскольку ИХ и ПХ являются реакциями линейной цепи на воздействия в момент времени t=0, то

$$h(t)\big|_{t<0} = 0; \ g(t)\big|_{t<0} = 0.$$

Эти условия называются условиями физической реализуемости

линейной цепи и выражают принцип причинности в теории цепей.

Различают линейные цепи с постоянными и переменными параметрами. Мы в дальнейшем рассматриваем линейные цепи с постоянными параметрами. В линейной цепи с постоянными параметрами параметры элементов не зависят от времени, коэффициенты ЛДУ постоянны.

3. Принцип транспозиции. Частотные характеристики цепи

Рассмотрим стационарный режим при воздействии на линейную цепь с убывающей импульсной характеристикой $\lim_{t \to \infty} h(t) = 0$

гармонического сигнала

$$u_{\text{BX}}(t) = \sigma(t)U_{\text{BX}}\cos(\omega t + \varphi_{\text{BX}}) = \sigma(t)\operatorname{Re}\dot{U}_{\text{BX}}e^{j\omega t},$$

где $\dot{U}_{\scriptscriptstyle \mathrm{BX}} = U_{\scriptscriptstyle \mathrm{BX}} e^{j\phi_{\scriptscriptstyle \mathrm{BX}}}$ - комплексная амплитуда сигнала на входе.

$$\begin{split} u_{\text{\tiny BbIX}}(t) &= \int\limits_0^{+\infty} h(t') u_{\text{\tiny BX}}(t-t') dt' = \int\limits_0^{+\infty} h(t') \sigma(t-t') \operatorname{Re} \dot{U}_{\text{\tiny BX}} e^{j\omega(t-t')} dt' = \\ &= \operatorname{Re} \int\limits_0^t h(t') \dot{U}_{\text{\tiny BX}} e^{j\omega t} e^{-j\omega t'} dt' = \operatorname{Re} \dot{U}_{\text{\tiny BX}} e^{j\omega t} \int\limits_0^t h(t') e^{-j\omega t'} dt' \,. \end{split}$$

Так как ИХ убывает, то начиная с некоторого момента времени верхний предел в интеграле можно заменить бесконечным, тогда

$$u_{\text{BMX}}(t) = \operatorname{Re}\dot{U}_{\text{BX}}e^{j\omega t}\int_{0}^{+\infty}h(t')e^{-j\omega t'}dt' = \operatorname{Re}\dot{U}_{\text{BX}}H(\omega)e^{j\omega t},$$

где $H(\omega) = F\{h(t)\} = |H(\omega)|e^{j\phi_H(\omega)}$ - спектральная функция для импульсной характеристики.

Обозначив $\dot{U}_{\text{вых}} = \dot{U}_{\text{вх}} H(\omega) = U_{\text{вых}} e^{j\phi_{\text{вых}}}$, в стационаром режиме получим

$$u_{\text{BMX}}(t)\Big|_{t\to\infty} = U_{\text{BMX}}\cos(\omega t + \varphi_{\text{BMX}}).$$

Для линейных цепей с постоянными параметрами выполняется принцип транспозиции: при воздействии на линейную цепь с убывающей импульсной характеристикой гармонического сигнала со временем устанавливается такой стационарный режим, в котором

отклик цепи также является гармоническим с частотой, равной частоте воздействия.

Зависимость от частоты отношения комплексной амплитуды выходного гармонического сигнала к комплексной амплитуде входного гармонического сигнала в стационарном режиме называется комплексной частотной характеристикой (КЧХ):

$$H(\omega) = \frac{\dot{U}_{\text{BbIX}}}{\dot{U}_{\text{BX}}}.$$

Зависимость от частоты отношения амплитуды гармонического сигнала на выходе к амплитуде гармонического сигнала на входе в стационарном режиме называется амплитудно-частотной характеристикой (АЧХ):

$$|H(\omega)| = \frac{U_{\text{BMX}}}{U_{\text{BX}}}.$$

Зависимость от частоты разности фаз выходного и входного гармонических сигналов в стационарным режиме называется фазочастотной характеристикой:

$$\varphi_H(\omega) = \varphi_{\text{BMX}} - \varphi_{\text{BX}} = \arg H(\omega).$$

4. Устойчивость линейных цепей

Решение ЛДУ цепи представляет собой сумму общего решения однородного уравнения (свободной или собственной составляющей) и частного решения неоднородного уравнения (вынужденной составляющей)

$$u_{\text{BMX}}^{\text{OH}}(t) = u_{\text{BMX}}^{\text{OO}}(t) + u_{\text{BMX}}^{\text{YH}}(t).$$

Свободная составляющая является решением однородного уравнения линейной цепи

$$b_N u_{\text{BMX}}^{\text{oo}(N)}(t) + b_{N-1} u_{\text{BMX}}^{\text{oo}(N-1)}(t) + ... + b_1 u_{\text{BMX}}^{\text{oo'}}(t) + b_0 u_{\text{BMX}}^{\text{oo}}(t) = 0$$
,

не зависит от вида воздействия и определяется только структурой цепи.

Покажем, что отклик цепи на гармоническое воздействие в стационарном режиме определяется только частным решением ЛДУ. Для этого следует проверить, что $u_{\text{вых}}(t) = U_{\text{вых}} \cos(\omega t + \phi_{\text{вых}})$ удовлетворяет ЛДУ цепи при $u_{\text{вх}}(t) = U_{\text{вх}} \cos(\omega t + \phi_{\text{вх}})$. Чисто

технически такую проверку удобнее произвести для соответствующих комплексов $\dot{u}_{\rm Bыx}(t) = \dot{U}_{\rm Bыx}e^{j\omega t}$ и $\dot{u}_{\rm Bx}(t) = \dot{U}_{\rm Bx}e^{j\omega t}$, учитывая, что если уравнение удовлетворяется для комплексов, то оно удовлетворяется и для действительной и для мнимой частей этих комплексов, что и требуется показать изначально.

ЛДУ цепи очевидно удовлетворяется для комплексов:

$$\begin{split} a_{N}\dot{U}_{\text{BX}}\left(e^{j\omega t}\right)^{(N)} + a_{N-1}\dot{U}_{\text{BX}}\left(e^{j\omega t}\right)^{(N-1)} + ... + a_{1}\dot{U}_{\text{BX}}\left(e^{j\omega t}\right)' + a_{0}\dot{U}_{\text{BX}}e^{j\omega t} = \\ &= b_{N}\dot{U}_{\text{BMX}}\left(e^{j\omega t}\right)^{(N)} + b_{N-1}\dot{U}_{\text{BMX}}\left(e^{j\omega t}\right)^{(N-1)} + ... \\ &\qquad \qquad ... + b_{1}\dot{U}_{\text{BMX}}\left(e^{j\omega t}\right)' + b_{0}\dot{U}_{\text{BMX}}e^{j\omega t} \end{split}$$

ИЛИ

$$\begin{split} \dot{U}_{\text{bx}} \left(a_N (j\omega)^N + a_{N-1} (j\omega)^{N-1} + \ldots + a_1 (j\omega) + a_0 \right) &= \\ &= \dot{U}_{\text{bhix}} \left(b_N (j\omega)^N + b_{N-1} (j\omega)^{N-1} + \ldots + b_1 (j\omega) + b_0 \right), \end{split}$$

откуда

$$H(\omega) = \frac{\dot{U}_{\text{BMX}}}{\dot{U}_{\text{BX}}} = \frac{a_N (j\omega)^N + a_{N-1} (j\omega)^{N-1} + ... + a_1 (j\omega) + a_0}{b_N (j\omega)^N + b_{N-1} (j\omega)^{N-1} + ... + b_1 (j\omega) + b_0}.$$

Таким образом ЛДУ удовлетворяется при надлежащем выборе константы $\dot{U}_{\rm вых} = \dot{U}_{\rm вx} H(\omega)$. Заметим заодно, что полученное выражение связывает КЧХ и коэффициенты дифференциального уравнения цепи.

Поскольку отклик линейной цепи в стационарном режиме определяется только вынужденной составляющей решения, то свободная составляющая решения ЛДУ линейной цепи с убывающей импульсной характеристикой затухает

$$\lim_{t\to\infty}u_{\text{BMX}}^{\text{oo}}(t)=0.$$

Линейная цепь называется устойчивой, если её свободные процессы затухают. Линейная цепь с убывающей импульсной характеристикой устойчива.

В общем случае, как известно, решение однородного ЛДУ записывается в виде:

$$u_{\text{BbIX}}^{\text{OO}}(t) = \sum_{i=0}^{N-1} \sum_{n=0}^{K_i} A_{in} t^n e^{p_i t},$$

где A_{in} - произвольные постоянные; p_i - корни характеристического уравнения цепи, K_i - кратности корней. Характеристическое уравнение цепи записывается следующим образом:

$$b_N p^N + b_{N-1} p^{N-1} + ... + b_1 p + b_0 = 0.$$

Для устойчивости линейной цепи корни её характеристического уравнения должны быть либо отрицательны, либо иметь отрицательную действительную часть, иначе — располагаться в левой полуплоскости.

Если импульсная характеристика линейной цепи абсолютноинтегрируема, то её реакция на ограниченное воздействие ограничена. Действительно, пусть существуют положительные действи-

тельные числа
$$M_h, M_{\mathrm{BX}} \in \mathbb{R}^+$$
, такие, что $\int\limits_0^{+\infty} \left|h(t)\right| dt \leq M_h$ и $\left|u_{\mathrm{BX}}(t)\right| \leq M_{\mathrm{BX}}$, тогда
$$\left|u_{\mathrm{BMX}}(t)\right| = \left|\int\limits_0^{+\infty} u_{\mathrm{BX}}(t-t')h(t')dt'\right| \leq \int\limits_0^{+\infty} \left|u_{\mathrm{BX}}(t-t')\right| \cdot \left|h(t')\right| dt' \leq$$

$$\leq M_{\mathrm{BX}} \int_{0}^{+\infty} |h(t')| dt' \leq M_{\mathrm{BX}} M_h.$$

5. Характеристики линейных цепей 1-го порядка

Комплексная частотная характеристика цепи 1-го порядка в общем случае описывается выражением

$$H(\omega) = \frac{a_0 + a_1 j \omega}{b_0 + b_1 j \omega}.$$

Значение КЧХ в нуле

$$H_0 = H(0) = a_0 / b_0.$$

Значение КЧХ на бесконечности

$$H_{\infty} = \lim_{\omega \to \infty} H(\omega) = a_1 / b_1.$$

Для устойчивой цепи КЧХ не может быть бесконечной при любом значении частоты, поэтому

$$b_0 \neq 0, b_1 \neq 0.$$

Характеристическое уравнение цепи

$$b_0 + b_1 p = 0$$

имеет единственный корень

$$p_1 = -b_0 / b_1$$
.

Цепь первого порядка является устойчивой, если знаки коэффициентов b_0 и b_1 совпадают.

Постоянная времени цепи

$$\tau = 1/|p_1| = b_1/b_0$$
.

Преобразуем выражение для КЧХ

$$H(\omega) = \frac{a_0 + a_1 j \omega}{b_0 + b_1 j \omega} = \frac{1}{b_0} \frac{a_0 + a_1 j \omega}{1 + j \omega b_1 / b_0} = \frac{1}{b_0} \frac{H_0 b_0 + j \omega H_\infty b_1}{1 + j \omega \tau} = \frac{H_0 + j \omega H_\infty b_1 / b_0}{1 + j \omega \tau} = \frac{H_0 + j \omega H_\infty b_1 / b_0}{1 + j \omega \tau} = \frac{H_0 + H_\infty j \omega \tau}{1 + j \omega \tau}.$$

КЧХ полностью определяется тремя параметрами H_0 , H_∞ , τ :

$$H(\omega) = \frac{H_0 + H_{\infty} j\omega \tau}{1 + j\omega \tau}.$$

Амплитудно-частотная характеристика

$$|H(\omega)| = \sqrt{\frac{H_0^2 + (H_{\infty}\omega\tau)^2}{1 + (\omega\tau)^2}}.$$

Фазо-частотная характеристика

$$\psi(\omega) = \arctan\left(\frac{H_{\infty}}{H_0}\omega\tau\right) - \arctan\left(\omega\tau\right).$$

Импульсную характеристику определим как обратное преобразование Фурье от КЧХ

$$h(t) = H_{\infty}\delta(t) + \frac{H_0 - H_{\infty}}{\tau}\sigma(t)e^{-t/\tau}.$$

Переходная характеристика

$$g(t) = \int_{0}^{t} h(x)dx = H_{\infty} \int_{0}^{t} \delta(x)dx + \frac{H_{0} - H_{\infty}}{\tau} \int_{0}^{t} \sigma(x)e^{-t/\tau}dx =$$

$$= \sigma(t)[H_{\infty} + (H_{0} - H_{\infty})(1 - e^{-t/\tau})] = \sigma(t)[H_{0} - (H_{0} - H_{\infty})e^{-t/\tau}].$$

Значения H_0 , H_∞ чаще всего могут быть легко определены непосредственно по схеме, путём её анализа при воздействии постоянного тока и гармонического сигнала предельно большой частоты. При анализе цепи в статическом режиме индуктивности заменяются проводниками, а ёмкости — разрывами.

Постоянная времени определяется в результате решения характеристического уравнения цепи. Характеристическое уравнение можно получить, приравняв нулю входное операторное сопротивление цепи

$$z_{ex}(p) = 0$$
.

Пример 1.

Когда на входе цепи действует постоянное напряжение, сигнал на выходе цепи равен нулю, так как представляет собой напряжение на индуктивном элементе, следовательно

$$H_0 = 0$$
.

В режиме воздействия гармонического сигнала большой частоты комплексное сопротивление последовательного соединения элементов L_1 и L_2 гораздо больше, чем сопротивление R. Поэтому всё входное напряжение приложено к цепочке L_1 - L_2 . Для КЧХ в можем записать

$$H_{\infty} = \frac{\dot{U}_{gblx}}{\dot{U}_{gx}} = \frac{j\omega L_2}{j\omega L_1 + j\omega L_2} = \frac{L_2}{L_1 + L_2}.$$

Входное операторное сопротивление цепи

$$z_{ex}(p) = R + p(L_1 + L_2).$$

Характеристическое уравнение цепи и его решение

$$R + p(L_1 + L_2) = 0$$
, $p_1 = -R/(L_1 + L_2)$.

Постоянная времени

$$\tau = 1/|p_1| = (L_1 + L_2)/R$$
.

Пример 2.

В статическом режиме ток через сопротивление не протекает, поэтому входное напряжение приложено к последовательному соединению $C_1 - C_2$. Распределение заряда на пластинах ёмкостных элементов показано на рисунке. При этом

$$q = \frac{C_1 C_2}{C_1 + C_2} U_{ex} = C_2 U_{ebix}.$$

Из последнего равенства находим

$$H_0 = \frac{U_{\text{Bblx}}}{U_{\text{ex}}} = \frac{C_1}{C_1 + C_2}.$$

При гармоническом воздействии очень большой частоты комплексное сопротивление цепочки C_1-C_2 много меньше сопротивления R_1 , все входное напряжение приложено к нему, следовательно

$$H_{\infty} = 0$$
.

Операторное входное сопротивление цепи

$$z_{ex}(p) = R + \frac{1}{p\frac{C_1C_2}{C_1 + C_2}} = R + \frac{C_1 + C_2}{pC_1C_2}$$
.

Характеристическое уравнение цепи $R+\frac{C_1+C_2}{pC_1C_2}=0$, корень характеристического уравнения $p=-\frac{C_1+C_2}{RC_1C_2}$. Постоянная времени цепи $\tau=\frac{RC_1C_2}{C_1+C_2}$.

Литература

Основная литература

- 1. Радиотехнические цепи и сигналы: Учеб. для вузов / О. А. Стеценко. М.: Высш. шк., 2007.
- 2. Радиотехнические цепи и сигналы: Учебник для студентов радиотехн. спец. вузов / И. С. Гоноровский. М.: Дрофа, 2006.
- 3. Радиотехнические цепи и сигналы: Учебник для студентов радиотехн. спец. вузов / И. С. Гоноровский. М.: Радио и связь, 1986.
- 4. Радиотехнические цепи и сигналы: учеб. для вузов / С. И. Баскаков. М.: Высш. шк., 2000.

Дополнительная литература

- 5. Теория радиотехнических цепей / Н. В. Зернов, В. Г. Карпов.
- Л.: Энергия, 1972. 816 с.: ил. Библиогр.: с. 804 (15 назв.)
- 6. Сигналы. Теоретическая радиотехника: Справ. пособие / А. Н. Денисенко. М.: Горячая линия Телеком, 2005. 704 с.
- 7. Справочник по математике для инженеров и учащихся вузов / И. Н. Бронштейн, К. А. Семендяев. М.: Наука, 1998. 608 с.