

Webfejlesztés alapjai

Know Camp

AZ INTERNET ALAPJAI

Kommunikáció
Információ, jel, adat
Számítógép hálózatok építőelemei
Az internet működése

Kommunikáció

- **Definíció**: Két fél között létrejövő információcsere
- Csoportosítása
 - Egyirányú vagy kétirányú
 - Közvetett vagy közvetlen
- Feltétele
 - Közös nyelv
 - Zavartalan csatorna

Információ

Szóbeli kommunikáció folyamata

Írott kommunikáció folyamata

Jel, adat és információ

- **Elektronikus jel**: Feszültségváltozás egy kábelen, a változások száma, a feszültség szintje, a változások gyakorisága valamilyen jelentéssel bír.
- Adat: Elektronikus jelek sokasága, melyet a küldő küld, a fogadó fogad
- Információ: Adatokból keletkező ismeret, amely értelmezhető a fogadó számára

01001101

"B"

Jelek Adatok Információ

Adatok mértékegysége

- Bit: Két lehetséges érték (0 vagy 1)
 - Feszültség van a vezetéken vagy nincs

• Byte: 8 bit

• KiloByte: 1024 byte

• MegaByte: 1024 KB

• **GigaByte**: 1024 MB

• **TeraByte:** 1024 GB

Kettes számrendszer

2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1

• Példa: 167 átváltása

• 1x128 + 1x32 + 1x4 + 1x2 + 1x1 => 10100111

Megfigyelés: 8 db bitünk van => 255 variációs lehetőség

Karakterek ábrázolása

• Legelső megoldás: ASCII kódtábla

- 1 karakter = 1 byte
- Így 255 variációs lehetőségünk van
- Egy karakter megfeleltethető egy 0-255 közötti számnak

UTF-8 kódtábla

- Az ASCII kódtábla első felével megegyezik
- Második felére több variáció van (országonként más)

UTF-16 kódtábla

- 1 karakter = 2 byte
- Így 65.536 variációs lehetőségünk van

128	Ç	144	É	160	á	176	
129	ü	145	æ	161	í	177	******
130	é	146	Æ	162	ó	178	
131	â	147	ô	163	ú	179	
132	ä	148	ö	164	ñ	180	4
133	à	149	ò	165	Ñ	181	4
134	å	150	û	166	•	182	40
135	ç	151	ù	167	۰	183	п

Adat mérése I.

- Példa: Mekkora helyet foglal a számítógépen egy elektronikus könyv?
- Könyv adatai
 - ASCII kódolású (1 karakter = 1 bájt)
 - A könyv 300 oldalas
 - Minden oldalon 30 sor található
 - Minden sorban 60 karakter található
- Megoldás
 - 30 * 60 * 300 = 540.000 bájt
 - 540.000 bájt / 1024 = 527 KB

Adat mérése II.

- Példa: Mekkora helyet foglal a számítógépen egy digitális kép?
- Kép adatai
 - 100 képpont széles
 - 300 képpont magas
 - Egy képpont 2 bájton ábrázolható (65.535 színvariáció egy képpontra)
- Megoldás
 - 100 * 300 * 2 = 60.000 bájt
 - 60.000 bájt / 1024 = 58 KB

Az adatátvitel sebessége I.

Az internetszolgáltatók a kapcsolat sebességét MB helyett Mbit-ben adják meg

Az adatátvitel sebessége II.

Példa

- Egy hangfájl mérete: 10MB
- Az internetkapcsolat sebessége: 30Mb

Rossz megoldás

• 10/30 = 0.33 másodperc

Jó megoldás

- Hangfájl: 10 * 1024 * 1024 * 8 = 83886080 bit
- Internet: 30 * 1024 * 1024 = 31457280 bit / s
- 83886080 / 31457280 = 2,66 másodperc

Az adatátvitel sebessége III.

• Miért van ez?

 A megabit nyolcada a megabájtnak (bizonyítás: 2,66 / 0,33 = 8)

Következtetés

 Egy 80 Mb sebességű internetkapcsolat 10MB adatot képes átvinni 1 mp alatt

Az adatátvitel sebessége IV.

- Példa: mennyi időbe telik letölteni egy filmet?
- Adatok
 - 2,1 GB a film mérete
 - 25Mb az internetkapcsolat sebessége

Megoldás

- Film megabájtban: 2,1 * 1024 = 2150,4 MB
- Internet megabájtban: 25Mb / 8 = 3,125 MB/s
- 2150,4 / 3,125 = 688 másodperc (11p28mp)

Telefonos hálózat

- 1832: Samuel Morse egy elektromágnes segítségével megalkotja a távírót.
- 1854: Charles Bourseul felveti annak a lehetőségét, hogy a távíró hálózatán hangot is lehetne továbbítani
- 1874: Antonio Meucci feltalálja a telefont (Alexander Graham Bell az ő megoldását szabadalmaztatta)

Számítógép hálózatok I.

- Céljuk: számítógépek közti információcsere
- 1932: Telexgép megjelenése (távíró utódja). <u>Telefonhálózaton keresztül</u> másodpercenként 60 jelet lehetett átvinni.
- 1940: George Stibitz telexgépet használ két számítógép adatainak kicserélésére (de ekkor még valaki megkapta papíron és begépelte az adatokat)
- 1962: Advanced Research Project Agency (ARPA) keretében a telexgépet közvetlenül a számítógéphez kötötték, így elektronikus kapcsolat jön létre két távoli számítógép között

De ezek a módszerek csak pont-pont kapcsolatot tettek lehetővé...

Számítógép hálózatok II.

Hogyan lehetne 3 számítógépet összekötni?

Ebben az esetben viszont annyi interfészre van szüksége egy számítógépnek, ahány egyéb számítógéppel kapcsolatba akar lépni...

Számítógép hálózatok III.

• Megoldás: megosztott közeg

A számítógépek közti kommunikációs csatorna megosztott, mindenki látja mindenkinek az üzenetét, de mindenki csak azzal foglalkozik, ami neki szól.

Megosztott közeg

Előnyök

- Minden eszköznek csupán egyetlen interfésszel kell rendelkeznie
- Egyszerű fizikai kialakítás és kábelezés
- Lehetőség nyílik egyszerűen több címzettnek küldeni ugyanazt az információt

Hátrányok

- Mindenki látja a másoknak szóló üzeneteket, ezáltal nincs privát adat
- Ha két adó egyszerre akar adatot küldeni, akkor ütközés keletkezik és nem lehetséges a küldés
- A közeg átviteli sebességén osztozik mindenki
- Pontosan lefektetett szabályrendszer nélkül gyakorlatilag használhatatlan

Szabványosítás I.

- Szabvány konyhanyelven: Valamely elismert szervezet által alkotott vagy elfogadott közös műszaki jellemzők gyűjteménye.
- Történelmi példa: Velencei gályák szabványosítása
- **Célok a hálózatok területén**: Minden gyártó olyan eszközt készítsen, amelyek képesek egymással kommunikálni.
- Példa jellemzők:
 - Elektromos feszültség szintje
 - Csatlakozó mérete
 - Adatok kódolása
 - Adatok sebessége
 - Órajel frekvenciája
 - Stb.

Szabványosítás II.

- Szabványosításban résztvevő szervezetek műszaki területen:
 - **IEEE** (Institute of Electrical and Electronics Engineers)
 - Mérnököket egyesítő szervezet
 - Kidolgozásért felelős
 - ISO (International Organization for Standardization)
 - A tényleges szabványosításért felelős

Megosztott közeg - gyakorlatban

- IEEE 802.3 Ethernet (1978)
 - Rengeteg alszabványa van (100 fölötti)
 - 2 példa: **802.3y** és **802.3z**

802.3z

- 1Gbit/s
- Üvegszálas kábelen
- Egy módusú
- LC csatlakozóval

Topológiák összefoglalása

Nem megosztott közeg alapú topológiák

- Teljes háló, részleges háló
 - Pont-pont kapcsolatok halmaza
 - Gyors és biztonságos
 - N db szomszéd esetén N darab interfész
- Gyűrű topológia
 - Körkörösen mindenki egy kis ideig használhatja a hálózatot, aztán a következő jön. (Póker: mindig más lesz az osztó)
 - 2 interfész / számítógép

Topológiák összefoglalása

Megosztott közeg alapú topológiák

- Busz topológia
 - A küldő először belehallgat a hálózatba
 - Hogyha a hálózaton épp nincs forgalmazás, akkor beszélhet
 - Ha egyszerre kezd el mindenki beszélni, akkor ütközés keletkezik
- Csillag topológia
 - Hálózati eszközt tartalmaz
 - Ez az eszköz felel a kapcsolatok kezeléséért és az ütközés detektálásért
- Kiterjesztett csillag topológia
 - Csillag topológiák összekötése
 - Hálózatok hálózata
 - Internetnek nevezzük

Hálózati eszközök I.

Nincs hálózati eszköz megosztott közegen

- Busz topológia tipikusan
- Rengeteg ütközés keletkezik
- Mindenki hall mindenkit

HUB

- Csillag topológiánál minden eszköz hozzá csatlakozik
- Az interfészein beérkező adatokat minden interfészén kiküldi.
 - Passzív HUB: csak fizikai összekötő pont az eszközök között
 - Aktív HUB: a jeleket javítja, erősíti

Hálózati eszközök II.

Switch

- MAC cím alapján azonosít
- Képes felismerni, hogy az üzenet melyik címzettnek szól az adott helyi hálózaton
- Csak az adott címzettnek továbbítja az üzenetet a MAC cím alapján

Router

- IP cím alapján azonosít
- Switch-el összekötött helyi hálózatokat köt össze
- Képes felismerni, hogy az üzenet melyik címzettnek szól az egész világon
- Ha helyben található a címzett, akkor továbbítja neki
- Hogyha nem ismeri a címzettet, akkor egy alapértelmezett irányba továbbítja az üzenetet

MAC cím

- Más megnevezés: fizikai cím
- A számítógép minden interfészének van MAC címe (Media Access Control)
- Egy MAC címet a világon kizárólag egy hardver használ
- Felépítés:
 - 64-70-02-18-45-A8
 - 12 db hexadecimális számjegy
 - 1-6. számjegy: gyártó azonosítója
 - 7-12. számjegy: egyedi cím az egész világon

IP cím

- Más megnevezés: logikai cím
- A számítógép minden interfészének van IP címe (Internet Protocol)
- A publikus IP címek egyediek a világon, a helyi hálózati privát IP címek több helyen is előfordulhatnak (nem tárgyaljuk)
- Felépítés:
 - 192.168.10.156
 - 4 db oktett, minden oktett 1 bájt (0-255 közötti decimális érték)

A kurzus keretein túlmutat az IP címek felépítésének, fordításának és kiosztásának magyarázata. Az egyszerűség kedvéért úgy tekintjük a kurzuson, hogy minden számítógép a világon egyedi IP címet használ.

HUB működése

HUB működése

Switch működése

A számítógépek MAC címeinél csak az utolsó 2 hexa számjegy került kiírásra. Feltételezzük, hogy a többi ugyanaz itt.

Switch működése

A számítógépek MAC címeinél csak az utolsó 2 hexa számjegy került kiírásra. Feltételezzük, hogy a többi ugyanaz itt.

Switch-Router együttműködése

A számítógépek IP címeinél csak az utolsó 2 oktett került kiírásra. Feltételezzük, hogy a többi ugyanaz itt.

Switch-Router együttműködése

A számítógépek IP címeinél csak az utolsó 2 oktett került kiírásra. Feltételezzük, hogy a többi ugyanaz itt.

Internet

Hálózatok hálózata

- Egy globális kiterjesztett csillag topológia
- Minden webes szolgáltatás, amit használunk, egy távoli számítógéppel való információcsere
- A távoli számítógépet IP cím alapján tudjuk megszólítani technikailag

DNS – Domain Name System

- A távoli számítógépekhez nem kell IP címet megjegyeznünk, ez lefordítható egy rövid hangzatos címre is (pl: google.com, facebook.com, stb.)
- Ezeket a Domain név IP cím megfeleltetéseket egy globális katalógus tartalmazza
- Elosztott rendszer alapon működik (később részletesen tárgyaljuk)

Köszönöm a figyelmet!