SAUGAT SHARMA

+1 (702) 769 9169 | email: saugat.sharma.18@gmail.com | linkedin.com/in/sharma-saugat/ | Austin, Texas

EDUCATION _

Doctorate in Electrical and Computer Engineering, University of Nevada, Las Vegas

May 2025

Course: Advanced Computer Architecture (Grade: A), Interconnected Networks for Parallel Processing (Grade: A),

Modern Processor Architecture (Grade: A), Advanced Machine Learning (Grade: A)

Nov 2017

Bachelors of Science in Electronics and Communication Engineering, Tribhuvan University, Nepal

EXPERIENCE.

FPGA Design, *I/ONX Neuromorphic* | Las Vegas (Remote)

May 2024 - Present

- RTL design and implementation of a custom convolution layer and DNN activation function in Vitis HLS for Versal FPGAs with SFP-based Ethernet.
- $\bullet \ \ \text{Developed AXI-stream processing for DMA input/output, memory-mapped to CIPS, and deployed via PetaLinux.}$
- Developed Python and Shell scripts for driver interaction, log analysis, and device tree modifications.

Graduate Teaching Assistant, University of Nevada, Las Vegas

Computer Logic Design, Digital System Architecture and Design, and Embedded System laboratory

Jan 2019 - Apr 2024

- Taught design of datapath and control units for RISC/ARM-based microprocessors using Verilog and EDA tools.
- Guided students in writing testbenches and performing functional verification with VCS and ModelSim.
- Microcontroller(Atmega328P) programming (Assembly/C) covering Timers, Interrupts, PWM, ADC, I2C, SPI.
- Instructed on designing sequential & combinational circuits, FSMs, & arithmetic circuits using Verilog and Quartus.
- Guided students in performing timing analysis, simulation, and testing of synchronous digital systems.

PROJECTS_

RTL Design and Verification of a 5-Stage Pipelined Processor for MIPS Architecture

- Designed and implemented a 5-stage pipelined MIPS processor in SystemVerilog on ZedBoard FPGA.
- Developed forwarding and hazard detection units to minimize stalls and improve instruction throughput.
- Verified functionality using UVM with constrained-random testbenches and coverage metrics.

RTL Implementation of Tomasulo's Algorithm for Out-of-Order Execution.

- Implemented Tomasulo's algorithm in SV, including instruction queue, reservation stations, reorder buffer.
- Developed hazard detection, forwarding, and register renaming for efficient instruction scheduling.

UVM Based Verification of AXI Memory and UART.

- AXI Memory: Developed UVM-based to verify AXI4 memory interface with random stimulus, protocol compliance, error scenarios, and coverage-driven checks for read/write, burst, and address/data operations.
- UART Interface: Designed UVM testbenches to verify UART TX/RX transmission, including baud rate handling, error detection, and protocol compliance with constrained-random stimulus and coverage analysis.

Cache Memory Simulator

- Designed and implemented an m-way set-associative cache simulator using python with sizes up to 128KB.
- Integrated LRU replacement policy to optimize cache performance and eviction strategy and track cache hits/misses.

System Verilog based MOESI simulator

- Modeled and analyzed MOESI cache states ensuring correct data consistency and memory coherency.
- Implemented various scenarios and performance metrics to evaluate the behavior of cache interactions, including cache hits, misses, and state transitions.

TECHNOLOGY & SKILLS

Programming Python, C/C++, C#, embedded C, Matlab, Git, LaTeX, Assembly, Verilog, SV, VHDL, UVM

AI, Embedded Systems TensorFlow, PyTorch, OpenCV, Scikit-Learn, Linux, AVR, ARM, x86, Raspberry Pi, Arduino

EDA Tools VCS, DC, PowerArtist, Modelsim, Quartus, Vivado, Xilinx ISE

Certifications Introduction of OpenCL on FPGAs (2023) | SV/UVM for Verification Fundamentals (2023)