Introdução à Arquitetura de Computadores

Lógica Binária e Álgebra de Boole

Pedro M. Lavrador

Departamento de Electrónica, Telecomunicações e Informática Universidade de Aveiro plavrador@ua.pt

Índice

- Lógica binária.
 - As operações lógicas básicas.
 - Portas Lógicas.
- Álgebra de Boole.
 - Axiomas e teoremas.
 - Soma de Produtos e Produto de Somas.
 - Minimização de funções booleanas.

28/02/2023 PML – IAC - 2023 2

Introdução

• George Boole (1815-1864)

- Introduziu as variáveis binárias e os três operadores lógicos fundamentais: AND, OR e NOT
- Foi o percursor da lógica binária na qual se baseiam atualmente os sistemas digitais.

28/02/2023 PML – IAC - 2023

Lógica Binária

Operações Lógicas:

- Variáveis lógicas (ou Booleanas):
 - Podem assumir dois valores: 1 ou 0 (V ou F).
- A álgebra booleana fornece as ferramentas matemáticas necessárias: AND, OR e NOT

Α	В	A AND B	A E	В	A OR B	Α	NOT A
0	0	0	0 (0	0	0	1
0	1	0	0 1	1	1	1	0
1	0	0	1 (0	1		
1	1	1	1 1	1	1		

- Operandos com n-bits são tratados como uma coleção de n valores:
 - A operação é efetuada de modo independente em cada bit.

28/02/2023 PML – IAC - 2023 4

						Lógica Binária
0	per	ações Lógic	as:			
•	Оре	erações NAND e N	IOR			
Α	В	A AND B	Α	В	A NAND B	
0	0	0	0	0	1	
0	1	0	0	1	1	NAND: Not AND
1	0	0	1	0	1	
1	1	1	1	1	0	
Α	В	A OR B	Α	В	A NOR B	
0	0	0	0	0	1	
0	1	1	0	1	0	NOR: Not OR
1	0	1	1	0	0	
1	1	1	1	1	0	
28/0	2/2023		PML –	IAC - 20	123	5

				Lógica Binária
0	per	ações Lógicas:		
•	Ope	ração <i>Xclusive</i> OR		
Α	В	A XOR B		
0	0	0		
0	1	1	$A XOR B = A.\bar{B} + \bar{A}.B$	
1	0	1		
1	1	0		
•	Ope	ração <i>Xclusive</i> NOR		
Α	В	A XNOR B		
0	0	1		
0	1	0		
1	0	0	$A XNOR B = A.B + \overline{A.B}$	
1	1	1		
28/0	2/2023		PML – IAC - 2023	6

Introdução:

- Claude Shannon (1916-2001) provou que era possível construir circuitos elétricos digitais que resolvessem todos os problemas que a Álgebra de Boole pode resolver.
- Dá-se o nome de Porta Lógica (Logic Gate) aos circuitos lógicos que implementam as funções lógicas.

- Uma entrada: Porta NOT

- Duas Entradas: AND, OR, NAND, NOR, XOR, XNOR

Entradas Múltiplas

28/02/2023 PML – IAC - 2023

Lógica Binária

Introdução:

Portas Lógicas

$$Y = \overline{A}$$

28/02/2023

PML – IAC - 2023

Introdução:

- Níveis Lógicos
- Os valores 0 e 1 existem nos circuitos como tensões.
 Por exemplo:
 - 0 corresponde a ground ou 0V
 - 1 corresponde à tensão de alimentação
 - (atualmente ~1.3V, antes 5V ou 3.3V)
- Então e 1.0V? Corresponde a 0 ou 1?
 - E 3.2V?
- Há uma gama de tensões que correspondem ao nível lógico 0 e uma gama que corresponde ao 1.

28/02/2023 PML – IAC - 2023

Introdução:

- Ruído?
- O que é o ruído?
 - Tudo o que degrade a qualidade do sinal.
 - Pode ser uma resistência, imperfeições da fonte, acoplamento aos circuitos vizinhos...
- Vamos definir agora margem de ruído

28/02/2023

PML – IAC - 2023

13

Introdução:

- Os circuitos lógicos podem ser de 2 tipos:
 - Lógica combinatória
 - Sem memória, i.e.,
 - As saídas são determinadas apenas pelos valores atuais das entradas.
 - Lógica Sequencial
 - Com memória
 - As saídas são determinadas pelas entradas atuais e passadas.

28/02/2023 PML – IAC - 2023 15

Introdução:

• Um circuito lógico tem:

- Entradas

- Saídas

- Especificação Funcional

- Especificação Temporal

Entradas

Especificação Temporal

Especificação Temporal

Introdução:

- Especificações temporais:
 - Os componentes eletrónicos usados nos circuitos lógicos são contínuos e não discretos:
 - Logo, as transições entre estado não são instantâneas e por isso há um intervalo de tempo desde que as entradas mudam até que o valor da saída estabilize.
 - Durante esse período de tempo pode ocorrer que o valor da saída seja indefinido.
 - Chamamos a esse período tempo de propagação e está associado à frequência máxima a que um circuito digital pode operar.
- A álgebra de Boole descreve o comportamento dos sistemas digitais em regime estacionário sem considerar estas variações nas transições.

28/02/2023 PML – IAC - 2023 1

Lógica Binária

Introdução:

- Especificação Funcional descreve a relação (lógica) entre as entradas e a(s) saída(s) do circuito lógico.
- Normalmente é especificada como uma tabela de verdade ou como uma equação Booleana.
 - Vamos estudar agora como obter uma equação Booleana a partir de uma tabela de verdade, e como fazer a sua simplificação, usando:
 - Álgebra de Boole
 - Mapas de Karnaugh
 - Vamos ver também como implementar uma equação usando portas lógicas.

28/02/2023 PML – IAC - 2023 18

Introdução:Um circuito

• Um circuito lógico pode ser composto por subcircuitos e, nesse caso, definem-se:

- Elementos de circuito (E1, E2, ...)
- Nós
 - Entradas
 - Saídas
 - Internos: n1

28/02/2023

PML – IAC - 2023

Lógica Binária

Lógica Binária

Introdução:

- Num circuito combinatório:
 - Cada elemento tem que ser combinatório;
 - Cada nó é uma entrada ou liga a uma (e uma só) saída de um elemento;
 - Não existem caminhos cíclicos.

28/02/2023

PML – IAC - 2023

20

Blocos Combinatórios Básicos

Algumas considerações sobre tempo

- Define-se **tempo de propagação** $(t_{pd} \ delay)$ como o tempo máximo que o sinal demora a propagar-se da entrada para a saída.
- Define-se tempo de contaminação (t_{cd}) como o tempo mínimo que o sinal demora a propagar-se da entrada para a saída.

28/02/2023

PML – IAC - 2023

23

Blocos Combinatórios Básicos

Algumas considerações sobre tempo

 Glitch: quando apenas uma mudança da entrada produz mais do que um mudança na saída (variações rápidas não previstas)

28/02/2023

PML – IAC - 2023

24

Índice

- · Lógica binária.
 - As operações lógicas básicas.
- Álgebra de Boole.
 - Axiomas e teoremas.
 - Soma de Produtos e Produto de Somas.
 - Minimização de funções booleanas.

28/02/2023 PML – IAC - 2023

Álgebra de Boole: Definições e Teoremas

Motivação: O piquenique do Ben

- O Ben foi fazer um piquenique. Ele gosta de piqueniques se não chover e se não aparecerem formigas.
- Escreva uma equação lógica que determine em função de chover e aparecerem formigas se o Ben gosta do piquenique.
 - Definir as entradas
 - Definir a saída
 - Formalizar o sistema.

28/02/2023 PML – IAC - 2023 26

Motivação: O piquenique do Ben

- O problema consiste em determinar se o Ben gostou ou não do piquenique.
 - Chamamos à variável de saída G.
- As entradas do sistema são:
 - A Chuva: C
 - As Formigas: F
- Podemos escrever a tabela de verdade do problema:

<i>C</i>	\boldsymbol{F}	G
0	0	1
0	1	0
1	0	0
1	1	0
_	_	

28/02/2023

PML – IAC - 2023

Álgebra de Boole: Definições e Teoremas

Motivação: O piquenique do Ben

Podemos agora descrever a saída do problema como:

$$G = \bar{C}\bar{F}$$

• E G pode ser obtido de C e F através do seguinte circuito:

PML – IAC - 202

28

Motivação: O piquenique do Ben

 Podemos também reconhecer a tabela de verdade da função NOR:

$$G = \overline{C + F}$$

• E G pode ser obtido de C e F através do seguinte circuito:

$\boldsymbol{\mathcal{C}}$	F	G
0	0	1
0	0 1	1 0
1	0	0
1	1	0

28/02/2023

PML – IAC - 2023

Álgebra de Boole: Simplificação de Equações Lógicas

Representação de Funções

- Uma função lógica pode ser representada, como:
 - Uma tabela de verdade;
 - Uma equação algébrica
 - Um circuito lógico
- Como as três formas representam a mesma função têm que ser equivalentes.
- Vamos estudar:
 - Como passar da Tabela de Verdade para a equação algébrica
 - Como simplificar a equação algébrica
 - Como representar o circuito Lógico

28/02/2023

PML – IAC - 2023

30

Equação Booleana

• Uma equação Booleana permite fazer a especificação funcional da saída em função das entradas:

$$S = F(A,B,C_{in})$$

$$C_{out} = F(A,B,C_{in})$$

$$A \longrightarrow C_{out}$$

$$C_{in} \longrightarrow C_{out}$$

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

28/02/2023 PML – IAC - 2023 3

Álgebra de Boole: Definições e Teoremas

Álgebra de Boole: Definições

- Complemento:
 - $-\bar{A},\bar{B},\bar{C}$
- Literal: variável ou o seu complemento
 - $-A, \bar{B}, C$
- Implicante: Produto de Literais
 - $-AB, \bar{B}C, AB\bar{C}$
- Mintermo: Produto que inclui todas as variáveis
 - -ABC, $A\bar{B}C$, $AB\bar{C}$
- Maxtermo: Soma que inclui todas as variáveis

$$-(A + B + C), (A + \bar{B} + C), (A + B + \bar{C})$$

28/02/2023 PML – IAC - 2023

Precedências

• Precedência dos operadores:

$$Y = A + BC$$

• Lê-se

$$Y = (A + B)C$$
 ou $Y = A + (BC)$?

- A prioridade mais elevada é do operador NOT, seguindo-se o AND e depois o OR.
 - Logo neste caso lê-se Y = A + (BC)

28/02/2023 PML – IAC - 2023

Álgebra de Boole: Definições e Teoremas

Álgebra de Boole: Definições e Teoremas

- A tabela de verdade que descreve um problema lógico pode sempre ser descrita como:
 - Uma Soma de Produtos (SoP)
 - Um Produto de Somas (PoS)
- A descrição de uma função Booleana como uma Soma de Produtos (mintermos) corresponde à primeira forma canónica.
- A descrição como um Produto de Somas (maxtermos) corresponde à segunda forma canónica de representação.

28/02/2023 PML – IAC - 2023 34

Soma de Produtos (SoP)

- Uma tabela de verdade de N entradas tem 2^N linhas que descrevem o valor da saída para cada combinação diferente das entradas
- Cada linha corresponde a um mintermo, i.e., um produto (AND) de literais
- Cada mintermo assume o valor 1 na sua linha e só nessa linha
- Somam-se (OR) os mintermos que assumem o valor
 1.

28/02/2023 PML – IAC - 2023

Álgebra de Boole: Definições e Teoremas

Soma de Produtos: Exemplo

• Escreva a forma Soma de Produtos de Y que é função de duas entradas, A e B, descrita pela seguinte tabela verdade:

				minterm
 4	В	Y	minterm	name
0	0	0	$\overline{A} \overline{B}$	m_0
0	1	1	Ā B	m_1
1	0	0	ΑB	m_2
1	1	1	АВ	m_3

$$Y = F(A, B) = \overline{A}B + AB = \Sigma(1, 3)$$

28/02/2023 PML – IAC - 2023

Produtos de Somas (PoS)

- Cada linha corresponde a um maxtermo, i.e., uma soma (OR) de literais
- Cada maxtermo assume o valor 0 na sua linha e só nessa linha
- Multiplicam-se (AND) os maxtermos que assumem o valor 0.

				maxterm	
Α	В	Y	maxterm	name	
0	0	0	A + B	M_{0}	
0	1	1	$A + \overline{B}$	M_1	
1	0	0	A + B	M_2	
1	1	1	$\overline{A} + \overline{B}$	M_3	

$$Y = F(A, B) = (A + B)(\overline{A} + B) = \Pi(0, 2)$$

28/02/2023

PML – IAC - 2023

37

Álgebra de Boole: Definições e Teoremas

Exemplo: O Almoço do Carlos

- O Carlos foi comer à cantina. Ele come (C) se:
 - A cantina estiver aberta (A)
 - A cantina não servir apenas brócolos (\bar{B})
- Escreva a tabela de verdade que determina as condições em que o Carlos almoça (C)

• Escreva C na forma SoP e PoS.

28/02/2023

PML – IAC - 2023

38

Produto de Somas e Soma de Produtos

- Qualquer tabela de verdade pode ser escrita usando PoS ou SoP
- Mas...
- no caso geral a descrição pode ser demasiado complexa para ser útil.
- Vamos estudar álgebra de Boole que nos vai permitir simplificar as expressões:
 - Os fundamentos são os mesmos da Álgebra, mas mais simples (apenas temos dois valores possíveis)
- Todos os Axiomas e teoremas tem um dual, i.e., continuam a verificar-se se trocarmos os 0's por 1's e os AND's por OR's e vice-versa.

28/02/2023 PML – IAC - 2023 35

Álgebra de Boole: Definições e Teoremas

Axiomas

• A1: Valor Binário

B=0 se $B\neq 1$

• A2: NOT $\bar{0} = 1$

• A3,A4 e A5: AND

0.0 = 0

1.1=1

0.1=1.0=0

A1': Valor Binário

B=1 se B≠0

• A2: NOT

 $\overline{1} = 0$

• A3,A4 e A5: OR

1+1 = 1

0+0=0

1+0=0+1 = 1

28/02/2023

PML – IAC - 2023

Algebra de Boole: Definições e Teoremas Teorema 3: Idempotência B.B = B BB = B

28/02/2023

Teorema 5: Complementaridade • $B.\overline{B}=0$ • $B+\overline{B}=1$ $\frac{B}{B} \longrightarrow = 0$ $\frac{B}{B} \longrightarrow = 1$

PML – IAC - 2023

Álgebra de Boole: Definições e Teoremas **Sumário dos Teoremas** Theorem Name T1 $B \bullet 1 = B$ T1' B+0=BIdentity T2 $B \bullet 0 = 0$ T2' B + 1 = 1Null Element T3 $B \bullet B = B$ T3' B + B = BIdempotency $\bar{\bar{B}} = B$ T4 Involution T5 T5' $B \bullet \overline{B} = 0$ $B + \overline{B} = 1$ Complements 28/02/2023 PML – IAC - 2023

Teoremas de várias variáveis

- Teorema 6: Comutatividade
 - -B.C = C.B
 - -B+C=C+B
- Teorema 7: Associatividade
 - (B.C).D = B.(C.D)
 - (B+C)+D = B+(C+D)
- Teorema 8: Distributividade
 - (B.C)+(B.D) = B.(C+D)
 - (B+C).(B+D) = B+(C.D) *
- * O único que é diferente da álgebra convencional.

28/02/2023

PML – IAC - 2023

47

Álgebra de Boole: Definições e Teoremas

Teoremas de várias variáveis

- Teorema 9: Absorção (Covering)
 - -B.(B+C) = B
 - B+(B.C) = B
- Teorema 10: Adjacência (Combining)
 - (B.C)+(B. \overline{C}) = B
 - (B+C).(B+ \overline{C}) = B
- Teorema 11: Consenso
 - $(B.C)+(\bar{B}.D)+(C.D) = (B.C)+(\bar{B}.D)$
 - $(B+C).(\bar{B}+D).(C+D) = (B+C).(\bar{B}+D)$

28/02/2023

PML – IAC - 2023

48

Demonstração dos Teoremas

- Estes teoremas podem ser demonstrados?
- Uma forma é usar a indução perfeita que é simples para teoremas com um número finito de variáveis.
 - Consiste em demonstrar na tabela de verdade que o teorema se verifica para todos os valores das variáveis.
- Exemplo teorema da adjacência (Combining)

В	C	$(B.C)+(B.\overline{C})$	В
0	0	0	0
0	1	0	0
1	0	1	1
1	1	1	1

28/02/2023 PML – IAC - 2023

Álgebra de Boole: Definições e Teoremas

Simplificação de Equações Lógicas

• Exemplo 1:

$$Y = A(AB + ABC)$$

=A(AB(1+C)) (T8 - Distributividade)

=A(AB.(1)) (T2' - El. Absorvente)

= A(AB) (T1 - Identidade)

= (AA)B (T7 - Associatividade)

= AB (T3 – Idempotência)

28/02/2023 PML-IAC-2023 50

Teorema 12: Leis de DeMorgan

• A negação do produto é a soma das negações:

$$\overline{B_0.B_1.B_2...} = \overline{B_0} + \overline{B_1} + \overline{B_2} + \cdots$$

- Corolário:
 - Uma porta NAND equivale a uma porta OR com entradas negadas;
- $Y = \overline{A.B} = \overline{A} + \overline{B}$

28/02/2023

PML – IAC - 2023

Álgebra de Boole: Definições e Teoremas

Teorema 12: Leis de DeMorgan

- A negação da soma é o produto das negações $\overline{B_0 + B_1 + B_2 \dots} = \overline{B_0} \cdot \overline{B_1} \cdot \overline{B_2} \cdot \dots$
- Corolário:
 - Uma porta NOR equivale a uma porta AND com entradas negadas.

•
$$Y = \overline{A + B} = \overline{A}.\overline{B}$$

28/02/2023

PML – IAC - 2023

52

Conjunto completo de operadores

- Define-se conjunto completo de operadores o conjunto de operadores que permite a implementação de qualquer função booleana.
- São Conjuntos Completos de Operadores:
 - {AND, OR, NOT}
 - {AND, NOT}
 - {OR, NOT}
 - {NAND}
 - {NOR}
- Um conjunto completo com apenas um tipo de portas pode facilitar o trabalho de quem projeta os circuitos.

28/02/2023

PML – IAC - 2023

55

Álgebra de Boole: Definições e Teoremas

Operadores NAND e NOR

- Para escrever uma função apenas com operadores NAND coloca-se na forma de SoP e de seguida aplica-se o teorema da involução (dupla negação) e as leis de DeMorgan.
- Para escrever só com operadores NOR começa-se com a forma PoS.
- Exemplo:

$$-x + (y.\bar{z}) = \overline{x + (y.\bar{z})} = \overline{x}.\overline{y.\bar{z}}$$
$$-x + (y.\bar{z}) = \overline{(x + y).(x + \bar{z})} = \overline{x + y} + \overline{x + \bar{z}}$$

28/02/2023

PML – IAC - 2023

56

Outras formas canónicas de representação

- Formalizando o caso geral da representação canónica de funções booleanas temos:
- 1ª forma canónica: SoP

AND-OR

$$f(x_0, x_1, \dots, x_{n-1}) = \sum_{i=0}^{2^n - 1} f_i \cdot m_i$$

• 2ª forma canónica: PoS

OR-AND

$$f(x_0, x_1, \dots, x_{n-1}) = \prod_{i=0}^{2^{n-1}} (f_i + M_i)$$

• E ainda ...

28/02/2023

PML – IAC - 2023

Álgebra de Boole: Definições e Teoremas

Outras formas canónicas de representação

• 3ª forma canónica: SoP

NAND-NAND

$$f(x_0, x_1, ..., x_{n-1}) = \prod_{i=0}^{\frac{2^{n}-1}{f_i \cdot m_i}} \overline{f_i \cdot m_i}$$

• 4ª forma canónica: PoS

NOR-NOR

$$f(x_0, x_1, ..., x_{n-1}) = \sum_{i=0}^{\overline{2^{n-1}}} \overline{f_i + M_i}$$

28/02/2023

PML – IAC - 2023

58

Formas canónicas de representação

- Exercício:
- Determinar as formas canónicas da função:
- $f(x, y, z) = x \cdot y + \overline{z}$
 - Sugestão: Escrevendo a tabela de verdade obtêm-se facilmente a 1ª e a 2ª formas. As formas NAND-NAND e NOR-NOR são obtidas a partir destas.

28/02/2023 PML – IAC - 2023 59

Álgebra de Boole: Definições e Teoremas

Passar da lógica para os circuitos

- A implementação direta da forma Soma de Produtos origina uma implementação lógica a dois níveis:
 - ANDs seguidos de ORs
- Convenção de desenho:
 - Entradas à esquerda (ou em cima)
 - Saídas à direita (ou em baixo)
 - Usam-se linhas retas
 - O fluxo das Gates é da esquerda para a direita

28/02/2023 PML – IAC - 2023 60

Índice

- · Lógica binária.
 - As operações lógicas básicas.
 - Portas Lógicas.
- Álgebra de Boole.
 - Axiomas e teoremas.
 - Soma de Produtos e Produto de Somas.
 - Minimização de funções booleanas.

28/02/2023 PML – IAC - 2023

Simplificação de funções booleanas

Mapas de Karnaugh

- As expressões Booleanas podem ser minimizadas combinando algebricamente os termos.
- Os mapas de Karnaugh são um método de determinar graficamente a minimização das equações.
- Começamos por representar a tabela de verdade num Mapa e desenhamos "círculos" sempre que houver 1's em quadrados adjacentes.
 - Entre cada linha (coluna) apenas pode variar um bit
- Na expressão final usamos apenas os literais que são invariantes em cada "círculo".

28/02/2023 PML – IAC - 2023 66

Simplificação de funções booleanas

Mapas de Karnaugh: Regras

- Cada 1 no mapa tem que estar dentro de pelo menos um "círculo"
- O número de quadrados cobertos por um círculo tem que ser uma potência de 2, em cada direção
- O "círculo" pode fechar-se pelas arestas do mapa
- Um *don't care* (X) inclui-se num "círculo" se ajudar a simplificar a equação

28/02/2023

PML - 2023

PML – IAC - 2023

8

34

