Метрики качества модели и переобучение

Цели занятия

В конце занятия вы:

- (1) Как проводить кросс-валидацию для проверки качества обучения модели
- 2 Будете знать основные метрики качества обучения моделей регрессии и классификации
- Бутете знать что такое переобучение и как с ним бороться

Обучающая, тестовая выборка

Проблема при обучении моделей

Модель может хорошо работать при обучении, однако сильно терять в качестве на новых данных (большая ошибка обобщения).

Обучающая выборка

Содержит значения признаков и целевой переменной.

Тестовая выборка

Содержит значения признаков, по которым необходимо предсказать известные значение целевой переменной.

На обучающей выборке строим модель.

Оцениваем качество различных вариантов модели.

Разбиваем обучающую выборку

Разбиваем обучающую выборку на 2 части. На одной будем тренировать модель (минимизировать ошибку обучения), на другой – проверять (минимизировать ошибку обобщения) (т.е. использовать в качестве тестовой, только с известной целевойпеременной)

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size = 0.3, random_state = 0 )
```


Training

ΓE ST

Практика LOGRES_AFFAIR.IPYNB

Оценка качества модели

Perpeccия MSE, MAE и R2

Метрики регрессии

Средняя абсолютная ошибка

Средняя квадратичная ошибка

Квадратный корень средней квадратичной ошибки

Коэффициент детерминации - это доля дисперсии зависимой переменной, объясняемая рассматриваемой моделью.

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Классификация Precision и Recall Точность и Полнота

Порог для тестовой выборки

```
model = LogisticRegression()
model.fit(X train, y train)
predictions = model.predict proba(X test)
zip(predictions[:, 1], y test)
[(0.64583193796528038, 0),
 (0.075906148028446599, 0),
 (0.2704606033743272, 0),
 (0.26938542699540474, 0),
 (0.26433391263337475, 1),
 (0.1443590034736055, 0),
 (0.17840859560894495, 0),
 (0.21871761029690232, 0),
 (0.75293068528621931, 1),
 (0.2694630112685994, 0),
 (0.11209927315788928, 0),
 (0.18717054508217956, 0),
 (0 081787486664569364 0)
```

Выберем порог, выше которого будем считать полученноезначение принадлежащим первому классу, а ниже – второму.

Это определит долю угаданных моделью значений.

Матрица ошибок для порога

	Actual positive	Actual negative
Predicted positive	True positive	False positive
Predicted negative	False negative	True negative

False positive – ошибка I рода (ложная тревога)

False negative – ошибка II рода (пропуск цели)

Точность

	Actual positive	Actual negative
Predicted positive	True positive	False positive
Predicted negative	False negative	True negative

Ассигасу – доля правильно предсказанных от всех вариантов

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

100 обычных писем

На почту пришло 100 обычных писем и из них 10 писем спама.

Наша модель из 100 обычных 10 классифицировала как спам. Из 10 спам-писем – 5 как спам

10 спам-писем

	Actual positive	Actual negative
Predicted positive	5	5
Predicted negative	10	90

Ассигасу – доля правильно предсказанных от всехвариантов

$$Accuracy = \frac{5+90}{5+90+10+5} = 86\%$$

100 обычных писем

True negative 100

10 спам-писем

False negative 10

Возьмем модель, которая считает все письма обычными

	Actual positive	Actual negative
Predicted positive	0	0
Predicted negative	10	100

Возьмем модель, которая считает все письма обычными

$$Accuracy = \frac{0+100}{0+100+0+10} = 91\%$$

Precision

	Actual positive	Actual negative
Predicted positive	True positive	False positive
Predicted negative	False negative	True negative

Precision – доля правильно предсказанных среди причисленных моделью к категории 1

$$Precision = \frac{TP}{TP + FP}$$

Способность алгоритма отличать данный класс от другихклассов

Recall

	Actual positive	Actual negative
Predicted positive	True positive	False positive
Predicted negative	False negative	True negative

Recall – доля правильно предсказанные среди категории 1

$$Recall = \frac{TP}{TP + FN}$$

Синоним - True Positive Rate (sensitivity)

Способность алгоритма обнаруживать данный классвообще

Precision и Recall дляспама

100 обычных писем

True negative 100

	Actual positive	Actual negative
Predicted positive	0	0
Predicted negative	10	100

10 спам-писем

False negative 10

True positive rate

	Actual positive	Actual negative
Predicted positive	True positive	False positive
Predicted negative	False negative	True negative

True Positive Rate – доля правильно предсказанных среди категории 1

$$TPR = \frac{TP}{TP + FN}$$

False positive rate

	Actual positive	Actual negative
Predicted positive	True positive	False positive
Predicted negative	False negative	True negative

False Positive Rate – доля неправильно предсказанных среди относящихся к категории 0

$$FPR = \frac{FP}{FP + TN}$$

Практика LOGRES_AFFAIR.IPYNB

Area under curve

Receiver Operating Characteristic ROC AUC

Area under the curve

Кривая ROC показывает нам взаимосвязь между показателем ложных положительных результатов (FPR) и истинно положительным показателем (TPR) для разных пороговых значений.

$$FPR = \frac{FP}{FP + TN}$$
 $TPR = \frac{TP}{TP + FN}$

https://towardsdatascience.com/roc-curve-explained-50acab4f7bd8 https://towardsdatascience.com/roc-curve-and-auc-from-scratch-in-numpy-visualized-2612bb9459ab

Идеальный случай

Precision Recall Area under the curve PR AUC

Кривая PR показывает нам взаимосвязь между показателем *Precision (точность)* и Recall (полнота) для разных *пороговых значений*.

Кривая Precision — Recall

Модель тем лучше, чем выше площадь подкривой

Recall

Практика LOGRES_AFFAIR.IPYNB

Борьба с переобучением

Переобучение и недообучение

Переобучение и недообучение

Переобучение (overfitting) – явление, когда ошибка на тестовой выборке заметно больше ошибки на обучающей.

Недообучение (underfitting) – явление, когда ошибка на обучающей выборке достаточно большая, часто говорят «не удаётся настроиться на выборку».

Сложность (complexity) модели алгоритмов — оценивает, насколько разнообразно семейство алгоритмов в модели с точки зрения их функциональных свойств (например, способности настраиваться на выборки). Повышение сложности (т.е. использование более сложных моделей) решает проблему недообучения и вызывает переобучение.

Переобучение и недообучение

Пример переобучения

Имеются данные из 6 точек и 6 точек новых данных

Пример переобучения

Строим простую модель

е1 - ошибка на новых данных >0

Пример Евромуную дель

Пример переобучения

На тестовых данных получаем большую ошибку

е1 - ошибка на новых данных > 0

е2 - ошибка на новых данных >0

e2 > e1

Кросс-валидация k-fold cross validation

Кросс-валидация или **скользящий контроль** — процедура эмпирического оценивания обобщающей способности алгоритма.

Кросс-валидация k-fold cross validation

Практика LOGRES_AFFAIR.IPYNB

Смещение и разброс

Ошибка

БРИНОЖЕМ разложить на слагаемые:

- Bias средняя ошибка прогноза. Характеризует способность модели алгоритмов настраиваться на целевую зависимость.
- Variance изменение ошибки при обучении на разных наборах данных. Характеризует разнообразие алгоритмов, которые могут быть реализованы моделью данного типа.

• Неустранимая ошибка

Ошибка прогноза

Сложная модель (учитывает многопризнаков) – увеличивает разброс ошибки

Слишком простая модель (мало признаков) – вызывает смещение в пользу одного признака

Оптимальный вариант

Можно ли повлиять на стабильность модели, т.е. уменьшить Variance?

L1 и L2 регуляризация

Прошлый пример переобучения

Переберем модели, увеличивая степень функции

$$y = a_0 + a_1 x$$

$$y = a_0 + a_1 x + a_2 x^2$$

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_5 x^5$$

Как будут варьироваться?

При увеличении и степени полинома вариация коэффициентов быстро растет

Корреляция признаков

Рост коэффициентов от корреляции между признаками

Имеем линейную модель в которой есть коррелированные переменные x_1 x_2

$$\dots + w_1 \cdot x_1 + w_2 \cdot x_2 + \dots$$

$$k \cdot x_1 = x_2$$

Тогда одну переменную можно выразить через другую и коэффициент *с* может быть любым

... +
$$w_1 \cdot x_1 + w_2 \cdot x_2 + \cdots =$$

= \cdots + $(w_1 + c \cdot k) \cdot x_1 + (w_2 - c) \cdot x_2 + \cdots$

Надо уменьшить разброс коэффициентов

Имеем модель целевой переменной у и коэффициентамиа

Целевая функция =
$$\sum_{i} (y_{\phi a \kappa \tau} - Xa)^2$$

Штраф за сложность

Основные варианты регуляризации

$$L_1 = \sum_{i} (y_{\phi \text{akt}} - Xa)^2 + \lambda \sum_{i} |a_i|$$

$$L_2 = \sum_{i} (y_{\phi \text{akt}} - Xa)^2 + \lambda \sum_{i} a_i^2$$

Практика LOGRES_AFFAIR.IPYNB регулизация.ipynb

Что мы сегодня узнали

Что мы сегодня узнали

- 1. Изучили метрики оценки качества моделей.
- 2. На практике потренировались в проведении кроссвалидации моделей.
- 3. Изучили признаки и способы борьбы с переобучением на примере L1и L2 регуляризации.

Полезные материалы

Полезные материалы

1. Наглядные примеры переобучения модели и теоретическиевыкладки регуляризации

https://habrahabr.ru/company/ods/blog/322076/

- 1.О разнице между L1и L1peгуляризацией http://www.chioka.in/differences-between-l1-and-l2-as-loss-function-and-regularization/
- 2.Более сложный пример регуляризации https://habrahabr.ru/company/ods/blog/323890/#3-naglyadnyy-primer-regulyarizacii-logisticheskoy-regressii

Спасибо за внимание!

