Vaje 6 [16. november 2023]: Aproksimacija po metodi najmanjših kvadratov.

1. Normalni sistem. Naj bodo f_i , $i=0,1,\ldots,n$, funkcije, ki razpenjajo podprostor S v funkcijskem prostoru X, opremljenem s skalarnim produktom $\langle \cdot, \cdot \rangle$. Funkcijo najboljše aproksimacije $f^* \in S$ za $f \in X$ po metodi najmanjših kvadratov lahko poiščemo z uporabo lastnosti, da je $f-f^* \perp S$. To napravimo tako, da f^* predstavimo kot $f^* = \sum_{j=0}^n \alpha_j f_j$ za neke skalarje α_j , $j=0,1,\ldots,n$, in na podlagi omenjene lastnosti izpeljemo normalni sistem $G\alpha = b$, kjer je

$$G = [\langle f_j, f_i \rangle]_{i,j=0}^n, \qquad \alpha = [\alpha_j]_{j=0}^n, \qquad b = [\langle f, f_i \rangle]_{i=0}^n.$$

Rešitev sistema α določa f^* . Dokažite, da je matrika G obrnljiva natanko tedaj, ko so funkcije f_i , $i=0,1,\ldots,n$, linearno neodvisne. Še več, utemeljite, da je ob taki predpostavki matrika G simetrična pozitivno definitna.

2. Polinom najboljše aproksimacije. Naj bo skalarni produkt funkcij g in h na intervalu [0,1] podan s predpisom

$$\langle g, h \rangle = \int_0^1 g(x)h(x) \, \mathrm{d}x.$$

V prostoru \mathbb{P}_2 bi radi poiskali polinom f^* , ki po metodi najmanjših kvadratov najbolje aproksimira funkcijo $f(x) = x^3$.

- (a) Prostor \mathbb{P}_2 predstavite s potenčno bazo $x \mapsto x^i, i = 0, 1, 2$, in določite pripadajočo Gramovo matriko.
- (b) Prostor \mathbb{P}_2 predstavite z Bernsteinovimi baznimi polinomi B_i^2 , i=0,1,2, in določite pripadajočo Gramovo matriko.

Rešite normalna sistema in preverite, da v obeh primerih dobite enak polinom f^* .

3. Trigonometrični polinom najboljše aproksimacije. Naj bo $n \in \mathbb{N}_0$ in \mathbb{T}_n aproksimacijski prostor, ki ga razpenjajo funkcije $x \mapsto 1/\sqrt{2\pi}$ ter $x \mapsto \cos(kx)/\sqrt{\pi}$ in $x \mapsto \sin(kx)/\sqrt{\pi}$ za $k = 1, 2, \dots, n$. Ti bazni trigonometrični polinomi sestavljajo ortonormiran sistem glede na skalarni produkt, ki je za funkciji g in h podan s predpisom

$$\langle g, h \rangle = \int_0^{2\pi} g(x)h(x) \, \mathrm{d}x.$$

(a) Določite trigonometrični polinom $f_n^* \in \mathbb{T}_n$, ki se po metodi najmanjših kvadratov najbolje prilega funkciji

$$f(x) = \begin{cases} 0; & x \in [0, \pi] \\ 1; & x \in (\pi, 2\pi] \end{cases}.$$

(b) Obravnavajte $\lim_{n\to\infty} ||f - f_n^*||_2$.

4. Implementacija metode najmanjših kvadratov. V Matlabu pripravite metodo, ki izračuna element najboljše aproksimacije za funkcijo f po metodi najmanjših kvadratov. Metoda naj poleg f kot vhodni podatek sprejme še množico baznih funkcij $\{f_0, f_1, \ldots, f_n\}, n \in \mathbb{N}_0$, in funkcijo, ki danima dvema funkcijama priredi skalarni produkt. Vrne naj seznam koeficientov $\alpha_j, j = 0, 1, \ldots, n$, ki določajo element $\sum_{j=0}^n \alpha_j f_j$ najboljše aproksimacije za f po metodi najmanjših kvadratov glede na podani skalarni produkt. Ti koeficienti naj bodo izračunani z reševanjem normalnega sistema. Metodo testirajte z aproksimacijo funkcije $f(x) = e^{\sin(x^2/10)}$ na intervalu $[0, 2\pi]$ glede na zvezni in diskretni skalarni produkt, ki sta za funkciji g in h podana s predpisom

$$\langle g, h \rangle = \int_0^{2\pi} g(x)h(x) dx, \qquad \langle g, h \rangle_N = \frac{1}{N+1} \sum_{i=0}^N g(2\pi \frac{i}{N})h(2\pi \frac{i}{N}), \ N = 50.$$

Poiščite polinoma najboljše aproksimacije iz \mathbb{P}_4 , izražena v potenčni bazi, in trigonometrična polinoma iz \mathbb{T}_2 , izražena s funkcijami $1/\sqrt{2\pi}$, $\cos(x)/\sqrt{\pi}$, $\sin(x)/\sqrt{\pi}$, $\cos(2x)/\sqrt{\pi}$ in $\sin(2x)/\sqrt{\pi}$. Primerjajte napake vseh štirih aproksimacij v normi, inducirani z zveznim skalarni produktom. Za integriranje uporabljajte ukaz

ki funkciji f priredi natančen približek If za integral na intervalu [a, b]. Primerjajte tudi občutljivosti Gramovih matrik, ki jih dobite v posameznih primerih.