Vorlesungsmitschrift

Algorithmen und Berechenbarkeit

Vorlesung 15

Letztes Update: 2018/01/28 - 01:07 Uhr

Satz von Rice

TMs halten nicht auf jeder Eingabe, dass bedeutet, sie berechnen partielle Funktionen, die die folgende Form aufweisen:

$$f: \{0,1\}^* \to \{0,1\}^* \cup \{\bot\}$$

 $\to \bot$ bedeutet, TM hält nicht

Im Rahmen der Vorlesung liegt der Hauptfokus auf TMs, die JA/NEIN ausgeben, also Funktionen der Form:

$$f: \{0,1\}^* \to \{0,1\}^* \cup \{\bot\}$$

$$\to 0 \text{ TM verwirft Eingabe}$$

$$\to 1 \text{ TM akzeptiert Eingabe}$$

Sei nun die Menge aller Funktionen, die von irgendeiner TM erkannt werden, definiert als

$$\mathcal{R} = \{ f_{\mathcal{M}} : \{0,1\}^* \to \{0,1\}^* \cup \{\bot\} \mid \mathcal{M} \text{ ist TM} \}$$

dann besagt der Satz von Rice:

Sei \mathcal{S} eine Teilmenge von \mathcal{R} mit $\emptyset \neq \mathcal{S} \neq \mathcal{R}$, dann ist die Sprache

$$\mathcal{L}(\mathcal{S}) = \{ \langle M \rangle \mid \mathcal{M} \text{ berechnet eine Funktion aus } \mathcal{S} \}$$

unentscheidbar.

Beweis: Man nimmt an, eine TM $\mathcal{M}_{\mathcal{R}(\mathcal{S})}$ existiert, die $\mathcal{L}(\mathcal{S})$ entscheidet. Dann konstruiert man daraus eine TM \mathcal{M}_{ϵ} , die \mathcal{H}_{ϵ} entscheidet, was im Widerspruch zur Unentscheidbarkeit von \mathcal{H}_{ϵ} steht.

Sei u die überall undefinierte Funktion. Man unterscheidet nun die Fälle

- a) $u \notin S$
- b) $u \in S$

Sein nun $f \neq u$ eine Funktion aus \mathcal{S} . Die TM \mathcal{M}_{ϵ} arbeitet wie folgt:

- 1. Falls die Eingabe <M> keine korrekte Kodierung einer TM ist, wird sie verworfen.
- 2. Es wird eine TM \mathcal{M}^* mit folgendem Verhalten konstruiert:
 - Man ignoriert die Eingabe x, d.h. man simuliert \mathcal{M} auf der Eingabe ϵ .
 - Man berechnet f(x), d.h. man simuliert \mathcal{M}_f auf der Eingabe x.
 - \Rightarrow Beobachtung: \mathcal{M}^* berechnet genau dann f(x), falls \mathcal{M} auf ϵ hält. Sonst gilt $f_{\mathcal{M}} = u$.
- 3. Man startet die TM $\mathcal{M}_{\mathcal{L}(S)}$ auf der Eingabe <M*> und akzeptiert genau dann, wenn $\mathcal{M}_{\mathcal{L}(S)}$ akzeptiert.

Korrektheit der Konstruktion:

- $w \in \mathcal{H}_{\epsilon}$
 - $\Rightarrow \mathcal{M}$ hält auf ϵ
 - \Rightarrow <M* $> \in \mathcal{L}(S)$
 - $\Rightarrow \mathcal{M}_{\mathcal{L}(\mathcal{S})}$ akzpetiert $< M^* >$
 - $\Rightarrow \mathcal{M}_{\epsilon}$ akzpetiert w
- $w \notin \mathcal{H}_{\epsilon}$
 - $\Rightarrow \mathcal{M}$ hält nicht auf ϵ
 - $\Rightarrow \mathcal{M}^*$ berechnet u
 - $\Rightarrow \langle M^* \rangle \notin \mathcal{L}(mathcalS)$
 - $\Rightarrow \mathcal{M}_{\mathcal{L}(\mathcal{S})} \text{ verwirft } < M^* >$
 - $\Rightarrow \mathcal{M}_{\epsilon}$ verwirft w

Analog kann der Fall $u \in \mathcal{S}$ gezeigt werden (mit Invertierung des Akzeptanzverhaltens).

Als Folge des Satzes von Rice gilt insbesondere, dass man nicht entscheiden kann, ob ein Programm auf jeder Eingabe hält.

$$S = \{f : \{0,1\}^* \to \{0,1\}^*\}$$

Semi-Entscheidbarkeit

Definition Entscheidbarkeit: Eine Sprache L wird von einer TM \mathcal{M} entschieden, falls \mathcal{M} auf jeder Eingabe hält und genau die Wörter aus L akzeptiert.

Definition Erkennen: Eine Sprache L wird von einer TM \mathcal{M} erkannt, wenn \mathcal{M} jedes Wort aus L akzeptiert und \mathcal{M} kein Wort akzeptiert, das nicht in L ist. Auf Eingaben, die nicht in L sind, muss \mathcal{M} nicht halten (Entweder NEIN sagen, oder ewig loopen).

Definition Semi-Entscheidbarkeit: Eine Sprache heißt **semi-entscheidbar**, wenn es eine TM \mathcal{M} gibt, die L erkennt.

Bsp: Das Halteproblem ($\mathcal{H} = \{ < M > w \mid TM \mathcal{M} \text{ hält auf Eingabe } w \}$) ist semi-entscheidbar, denn es gilt

- Wenn die Eingabe nicht der Form <M>w entspricht, wird verworfen,
- Man simuliert \mathcal{M} auf w:

- Falls \mathcal{M} hält, wird akzeptiert.
- Falls \mathcal{M} nicht hält, wird ewig weiter simuliert.

Wenn eine Sprache nicht semi-entscheidbar ist, dann kann sie auch nicht entscheidbar sein. Alle Sprachen, die entscheidbar sind, sind automatisch auch semi-entscheidbar.

Rekursive Aufzählbarkeit

Definition Aufzähler: Ein Aufzähler für eine Sprache L ist eine TM mit Drucker (Ausgabeband, auf dem der Kopf nur nach rechts bewegt werden darf). Ein Aufzähler für L gibt alle Wörter aus L auf dem Drucker aus:

- \bullet Es werden nur Wörter aus L ausgedruckt.
- Jedes Wort aus L wird irgendwann ausgedruckt.

Definition Rekursiv aufzählbar: Eine Sprache L heißt rekursiv aufzählbar, wenn es einen Aufzähler für L gibt.

Satz: Eine Sprache L ist genau dann semi-entscheidbar, wenn L rekursiv aufzählbar ist.

Beweis:

"aufzählbar \Rightarrow semi-entscheidbar":

Man konstruiert eine TM \mathcal{M} , die auf einer separaten Spur den Aufzähler simuliert. Immer wenn ein Wort ausgegeben wird, wird es mit der Eingabe verglichen. Man akzeptiert, falls die Eingabe einem aufgezählten Wort entspricht. \mathcal{M} erkennt sonst L, da jedes Wort aus L irgendwann aufgezählt wird.

"semi-entscheidbar \Rightarrow aufzählbar":

Seien $w_1, w_2, w_3...$ alle Wörter aus Σ^* in kanonischer Reihenfolge (z.B. lexikografisch) sortiert. Für i=1,2,3,... simuliert man nun i-Schritte von \mathcal{M} auf $w_1, w_2,..., w_i$. Wird dabei ein Wort akzeptiert, druckt man es aus. Offensichtlich werden nur Wörter aus L ausgedruckt. Sei $w=w_k\in L$, dann wird w_k von \mathcal{M} nach t_k Schritten akzeptiert. Wenn $i=\max(k,E_k)$, dann wird w_k betrachtet und \mathcal{M} lange genug simuliert, um w_k zu akzeptieren $\Rightarrow w_k$ wird gedruckt.

Eigenschaften entscheidbarer / semi-entscheidbarer Sprachen

Satz:

- a) Wenn die Sprachen L_1 und L_2 entscheidbar sind, so ist auch $L_1 \cap L_2$ entscheidbar.
- b) Wenn die Sprachen L_1 und L_2 semi-entscheidbar sind, so ist auch $L_1 \cap L_2$ semi-entscheidbar.

Satz:

- a) Wenn die Sprachen L_1 und L_2 entscheidbar sind, so ist auch $L_1 \cup L_2$ entscheidbar.
- b) Wenn die Sprachen L_1 und L_2 semi-entscheidbar sind, so ist auch $L_1 \cup L_2$ semi-entscheidbar.

Satz: Wenn L entscheidbar ist, so ist auch \overline{L} entscheidbar.

Beweis: Man invertiert die Ausgabe des Entscheiders für L.

Satz: Sind L und \overline{L} semi-entscheidbar, so ist L entscheidbar.

Beweis: Man simuliert Semi-Entscheider für L und \overline{L} parallel. Die Entscheidung ist klar, sobald einer der Entscheider akzeptiert. Einer davon muss akzeptieren, denn es gilt: $w \in L$ oder $w \notin L$.

Korollar: L ist unentscheidbar genau dann, wenn mindestens einer der beiden Sprachen L und \overline{L} nicht semi-entscheidbar ist.

Bsp: Sei \mathcal{H} semi-entscheidbar. Dann gilt: $\overline{\mathcal{M}}$ ist nicht semi-entscheidbar oder aufzählbar.

Technik der Reduktion

Das Ziel ist es, mithilfe von bereits untersuchten Sprachen zu zeigen, ob eine Sprache L entscheidbar oder semi-entscheidbar ist. Die Reduktion bildet also die Eingaben eines Problems auf Eingaben eines anderen Problems ab.

Eingabe-Eingabe-Reduktion

Definition: Es seien L_1 und L_2 Sprachen über Σ^* . Dann heißt L_1 auf L_2 reduzierbar $(L_1 \leq L_2)$, wenn es eine berechenbare Funktion $f: \Sigma^* \to \Sigma^*$ gibt, sodass für alle $x \in \Sigma^*$ gilt:

$$x \in L_1 \quad \Leftrightarrow \quad f(x) \in L_2$$

Aus "Berechenbarkeitssicht" bedeutet das insbesondere, dass L_1 nicht schwieriger zu untersuchen ist als L_2 .

Lemma: Falls $L_1 \leq L_2$ und L_2 entscheidbar, so ist auch L_1 entscheidbar.

Lemma: Falls $L_1 \leq L_2$ und L_1 unentscheidbar, so ist auch L_2 unentscheidbar.

Beweis: Man konstruiert eine TM \mathcal{M}_1 , die L_1 entscheidet unter Nutzung der TM \mathcal{M}_2 , die L_2 entscheidet. Nun berechnet man mit der Eingabe x die Funktion f(x) und simuliert \mathcal{M}_2 auf f(x) wobei man deren Akzeptanzverhalten übernimmt.

Dann gilt

$$\mathcal{M}_1$$
 akzpetiert \Leftrightarrow \mathcal{M}_2 akzpetiert $f(x)$
 \Leftrightarrow $f(x) \in L_2$
 \Leftrightarrow $x \in L_1$

Aus dem Lemma folgt außerdem: Falls $L_1 \leq L_2$ und L_1 unentscheidbar $\Rightarrow L_2$ unentscheidbar.

Korollar: Eine Sprache \mathcal{L} ist genau dann unentscheidbar, wenn entweder \mathcal{L} oder $\overline{\mathcal{L}}$ nicht semientscheidbar sind.

4