## Module – 5: Electrochemical Energy Systems

Brief introduction to conventional primary and secondary batteries; High energy electrochemical energy systems:

Lithium batteries – Primary and secondary, its Chemistry, advantages and applications.

Fuel cells – Polymer membrane fuel cells, Solid-oxide fuel cells- working principles, advantages, applications.

## Introduction - Electrochemical Cell





### **Electrolytic Cell**

Chemical reaction by passing electric current

Electrical energy is converted into chemical energy

#### **Electrochemical Cell**

Chemical redox reaction is utilized to produce electrical current

Chemical energy is converted into electrical energy

## Electrochemical cell



Parts of electrochemical cell

- Electrodes
  - i. Anode
  - ii. Cathode
- Electrolyte
- Separator

Oxidation occurs in Anode Reduction occurs in Cathode

## Electrochemical cell – Daniell cell



#### Anode

#### Oxidation

$$M \rightarrow M^{n+} + ne^{-}$$
 (Loss of electron)

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$
 (Daniell cell)

#### Cathode

#### Reduction

$$M^{n+} + ne^{-} \rightarrow M$$
 (Gain of electron)

$$Cu^{2+} + 2e^{-} \rightarrow Cu$$
 (Daniell cell)

## Representation of Electrochemical cell

- Anode is written on the left hand side, Cathode is on the write right hand side.
- In the anode side, electrode is written on the left. In the cathode side, electrode is written on the right

```
Anode electrode | Electrolyte | Electrolyte | Cathode electrode | Zn | Zn<sup>2+</sup> (1M) | Cu<sup>2+</sup> (1M) | Cu
```

- Salt bridge is mentioned as "||"
- Concentration of the electrolyte solution can be mentioned next to the electrolyte

# Battery

 A battery is a device consisting of one or more electrochemical cells with external connections provided to power electrical devices.



- An electrochemical cell is a device capable of generating electrical energy from chemical reactions.
  - e.g. Daniell Cell

# Types of Battery

### Primary battery (primary cells)

• In which the cell reaction is **not reversible**. When all the reactants have been converted to product, no more electricity is produced and the battery is dead.

### Secondary battery (secondary cells)

• In which cell reactions can be reversed by passing electric current in the opposite direction. Thus it can be used for a large number of cycles.

#### Flow battery and Fuel Cell

• In which materials (reactants, products, electrolytes) pass through the battery, which is simply an electrochemical cell that converts chemical to electrical energy.

# Examples

#### Primary batteries

- Dry or lachlanche cell
- ii. Alkaline battery
- iii. Lithium batteries

#### Secondary batteries

- i. Lead acid
- ii. Nickel-Cadmium
- iii. Nickel Metal hydride
- iv. Lithium ion

#### Flow battery and Fuel Cell

- Polymer Membrane Fuel Cell
- ii. Solid Oxide Fuel Cell

# Lithium Primary Cell

 Lithium batteries are different from Lithium ion Batteries (also Known as Li-ion batteries).





Most of the common lithium batteries contain:

Anode: Metallic Li

Cathode: MnO<sub>2</sub>

Electrolyte: Li salts dissolved in organic solvents such as Acetonitrile (CH<sub>3</sub>CN), propylene carbonate, ethylene carbonate

## Lithium as a Anode Material

The main attractions of lithium as an anode material is

- It is the most electronegative metal in the electrochemical series
- It has very low density, means, the largest amount of electrical energy per unit weight

# Lithium Battery

### **Cell Representation**

Li | Li + (non-aqueous) | | KOH(paste) | MnO<sub>2</sub>, Mn(OH)<sub>2</sub>, C

### **Anode**

$$Li \rightarrow Li^+ + e^-$$

### **Cathode**

$$Li^+ + MnO_2 + e^- \rightarrow LiMnO_2$$

### **Overall Reaction**

$$Li + MnO_2 \rightarrow LiMnO_2 + Energy$$

# Different types of Lithium Batteries

| S. No. | Anode | Cathode           | Characteristics                                                                | Applications                                     |
|--------|-------|-------------------|--------------------------------------------------------------------------------|--------------------------------------------------|
| 1      | Li    | SOCI <sub>2</sub> | 3.6 V, Long Shelf life, Low to Moderate rate applications                      | Memory Devices,<br>Standby Electrical<br>devices |
| 2      | Li    | SO <sub>2</sub>   | 3.0 V, Best low temperature performance                                        | Military and Special Industrial needs            |
| 3      | Li    | MnO <sub>2</sub>  | 3.0 V, Small in size, good low temperature performance, low drain applications | Medical Devices, Memory Circuits                 |

# Advantages of Lithium battery

- High electron density
- Long shelf life
- Low self discharge
- Need less maintenance
- Can provide very high current