

The Digestive System

The digestive system is composed of the gastrointestinal tract (GI) and the accessory organs of digestion.

The gastrointestinal tract (GI), also referred to as the "gut", is the passageway from the mouth to the anus. It is composed of all of the major organs that food moves through as it is digested.

The accessory organs are the organs that aid in digestion, but which food does not travel through.

Part A

The gastrointestinal tract

Drag the items (left) into the correct order (right) to show the passage of food through the gastrointestinal tract (top to bottom) in humans.

Note that not all of the items below are regions that food moves through, and so you should not use all of the items below.

Available items

pharynx		
small intestine		
mouth		
oesophagus		
pancreas		
larynx		
anus		
stomach		
liver		
bladder		
large intestine		
kidneys		

Part B Parts & functions

Match the part of the digestive system to the function(s) in the table below.

Part	Function(s)	
	main site of digestion and absorption of nutrients	
	produces acidic solution that kills microorganisms, denatures proteins, and enables digestive enzymes with a low optimal pH (e.g. pepsin) to function	
	produces alkaline solution that contains digestive enzymes	
	absorbs water and ions, and ferments indigestible material	
	produces bile which helps break down lipids	
	moves food into the stomach	
tems: (liver) (large intestine)	oesophagus small intestine stomach pancreas	

Part C Digestive enzymes Fill in the table below to show how large macromolecules are broken down into smaller molecules in the digestive system. Site(s) of origin Reactant(s) Product(s) Enzyme amylase salivary glands, pancreas stomach pepsin lipase stomach, pancreas maltase small intestine maltose lactase small intestine lactose sucrase small intestine sucrose Items:

triglycerides small peptides/amino acids	trisaccharides & disaccharides	glycerol & fatty acids	proteins
glucose & fructose glucose only stard	h glucose & galactose		

Created for isaacphysics.org by Lewis Thomson. Part B adapted with permission from OCSEB A Level January 1998, Structured Science Biology, Physiology of Animals and Plants, Question 3

The Endocrine System

Part A Endocrine glands
The endocrine system is composed of endocrine glands (glands that release directly into the). These glands are found all over the body.
 Head/brain: the
Abdomen: the, the adrenal glands, and the gonads (in males, i females). Items:
enzymes bloodstream ovaries hormones hypothalamus gastrointestinal tract testes pancreas

Part B Hormones
Which of the following statements about hormones are true? Select all that apply.
hormones are proteins that catalyse biological reactions
hormones are substances that are released by one part of the organism and act on another part of the organism
hormones are substances that are released by one neuron into the space between it and another neuron
all hormones are proteins
all hormones are steroids
some hormones are steroids and some hormones are proteins

Part C Endocrine vs nervous syste	em	
contexts, the two systems work	the nervous system help an organism r together and are sometimes collective e differences between the two systems	ely referred to as the neuroendocrine
	Endocrine system	Nervous system
signal type(s)		
signal carried by		
speed of response		
duration of response		
Items: very fast (milliseconds) hormo neurons long duration blood	and neu	rical impulses urotransmitters short duration

Created for isaacphysics.org by Lewis Thomson

Question deck:

Homeostasis

Part A Defining homeostasis			
Which of the following is the definition of homeostasis?			
when the response produced by the control system leads to a decrease in the stimulus detected by the receptor and turns the system off			
the maintenance of blood water potential within restricted limits			
when a response produced by the control system leads to an increase in the stimulus detected by the receptor			
the maintenance of an internal environment within restricted limits			
the maintenance of body temperature within restricted limits			

Negative feedback Negative feedback is an important mechanism in homeostasis. Drag the steps below into the correct order on the right to show how negative feedback helps ensure homeostasis. Available items a change from the normal state occurs the change from the normal state is detected by sensory cells the state returns to the normal state the sensory cells stop responding the endocrine system/nervous system produces a signal in response the response of the endocrine system/nervous system stops

Part C Examples of negative feedback			
Which of the following things are regulated by negative feedback in mammals? Select all that apply.			
blood pH			
blood clotting			
blood water potential			
blood glucose levels			
blood pressure			
internal body temperature			
uterine contractions during childbirth			
Created for isaacphysics.org by Lewis Thomson			

Question deck:

Blood Glucose Regulation

Glucose is the main respiratory substrate used by cells for respiration. Because of this, organisms need to tightly regulate how much glucose is available. When glucose is abundant it needs to be stored so that, when glucose is scarce, stored glucose can be released to cells. There are two main hormones responsible for this regulation: insulin and glucagon.

Part A Insulin secretion

Drag the items (left) into the correct order (right) to show the sequence of events that result in insulin secretion.

Note that not all of the items below are part of the correct sequence of events, and so you should not use all of the items below.

Available items

ATP-sensitive potassium ion channels **close**, which means that potassium ions stop diffusing out of the cells, and so the cells begin to depolarise from $\approx -70\,\mathrm{mV}$ to $\approx -30\,\mathrm{mV}$

Voltage-gated calcium ion channels open, which causes calcium ions to move into the cells

Calcium ions cause insulin-containing secretory vesicles to release insulin by **endocytosis**

the rate of respiration of glucose increases in the cells, which results in more ATP being produced

ATP-sensitive potassium ion channels **open**, which means that potassium ions diffuse out of the cells, and so the cells begin to depolarise from $\approx -70\,\mathrm{mV}$ to $\approx -30\,\mathrm{mV}$

a rise in glucose concentration results in more glucose diffusing (by facilitated diffusion) into the β cells of the islets of Langerhans

Calcium ions cause insulin-containing secretory vesicles to release insulin by exocytosis

Voltage-gated calcium ion channels open, which causes calcium ions to move out of the cells

Most ce	lls in the body have insulin receptors in their cell membranes.
Which capply.	of the following events occur as a result of insulin binding to these insulin receptors? Select all that
	insulin-dependent glucose membrane transport proteins open, causing an increase in uptake of glucose from the bloodstream by cells
	insulin-dependent glucose membrane transport proteins open, causing a decrease in uptake of glucose from the bloodstream by cells
	glucose is converted into glycogen (i.e. glycogenesis) in liver cells and skeletal muscle cells
	glycogen is broken down into glucose (i.e. glycogenolysis) in liver cells
	glucose is converted into triglycerides (i.e. lipogenesis) in liver cells and adipose cells
	triglycerides are broken down into glycerol and fatty acids (i.e. lipolysis) in adipose tissue, and glycerol and amino acids are converted into glucose (i.e. gluconeogenesis) in liver cells

Part C Glucagon action
Unlike insulin, only a few cell types have glucagon receptors in their cell membranes.
Which of the following events occur as a result of glucagon binding to these glucagon receptors? Select al that apply.
insulin-dependent glucose membrane transport proteins open, causing an increase in uptake of glucose from the bloodstream by cells
insulin-dependent glucose membrane transport proteins open, causing a decrease in uptake of glucose from the bloodstream by cells
glucose is converted into glycogen (i.e. glycogenesis) in liver cells and skeletal muscle cells
glycogen is broken down into glucose (i.e. glycogenolysis) in liver cells
glucose is converted into triglycerides (i.e. lipogenesis) in liver cells and adipose cells
triglycerides are broken down into glycerol and fatty acids (i.e. lipolysis) in adipose tissue, and glycerol and amino acids are converted into glucose (i.e. gluconeogenesis) in liver cells
Part D Name the hormone
Name another hormone that causes glycogenolysis in liver cells and muscle cells by binding to membrane receptors of those cells.
Created for isaacphysics.org by Lewis Thomson. Part A adapted with permission from OCR A Level Biology A, June 2015, Communication, Homeostasis, and Energy, Question 2

Question deck:

Oral Glucose Tolerance Test

The oral glucose tolerance test (OGTT) is used to diagnose diabetes.

A result from an OGTT measuring blood glucose and insulin concentrations is shown below.

Figure 1: The results of an oral glucose tolerance test. The patient fasted for 12 hours prior to the test. At the beginning of the test (time =0 mins), the patient was given a glucose solution to drink and a blood sample was taken. Blood samples were then taken every 30 mins over the next 3 hours. Glucose and insulin concentrations were measured from these blood samples and the results were plotted on a graph.

Glucose increase & decrease
Calculate the percentage increase in blood glucose concentration from 0 minutes to 90 minutes. Give your answer to the nearest percent.
Calculate the percentage decrease in blood glucose concentration from 90 minutes to 180 minutes. Give your answer to the nearest percent.
Part B Glucose vs insulin concentrations
Calculate the value of $\frac{\text{blood glucose concentration}}{\text{blood insulin concentration}}$ at 90 minutes. Give your answer to 1 significant figure.
Part C Molecules of glucose
The individual has approximately $5\mathrm{litres}$ of blood in their body.
Estimate the number of molecules of glucose in their circulatory system at 90 minutes. Give your answer to 2 significant figures.

Part D Diabetes diagnosis			
The OGTT result in Figure 1 shows evidence of diabetes.			
Which type of diabetes does the patient have, and how can this be concluded? Select a type and two pieces of evidence below.			
type: 1			
type: 2			
evidence: the graph shows normal changes in blood glucose and insulin concentrations			
evidence: insulin is produced in response to a rise in blood glucose concentration			
evidence: not enough insulin is produced in response to a rise in blood glucose concentration			
evidence: blood insulation concentration is almost as high as blood glucose concentration			
evidence: blood glucose concentration decreases slowly in response to insulin			
evidence: blood glucose concentration continues to increase even when blood insulin concentration is increasing			

Adapted with permission from OCR A Level Biology B, June 2017, Fundamentals of Biology, Question 32

Question deck:

The Second Messenger Model: Adrenaline

Hormones that cannot pass directly through the cell membrane rely on second messengers (small intracellular signalling molecules/ions) to induce a response in target cells. The model that describes this process is called the second messenger model.

In the second messenger model, the hormone (the first messenger) binds to a receptor on the outside of the cell membrane. This causes the activation of the primary effector inside the cell, which causes the production/activation of the second messenger. The second messenger then activates the secondary effector, which causes the target cell to carry out the correct response.

Adrenaline is an example of a hormone that relies on a second messenger.

Part A Adrenaline structure

Figure 1: Skeletal formula of adrenaline.

Based on Figure 1 , which of the following statements explain why adrenaline relies on a second messenger? Select all that apply.
adrenaline is an ion
adrenaline is a polar molecule
adrenaline is a non-polar molecule
adrenaline is too large to pass through the cell membrane
only polar molecules and ions can pass through the cell membrane
only non-polar molecules can pass through the cell membrane

Part B Adrenaline action

Drag the items below into the correct order on the right to show how adrenaline causes liver cells to break down glycogen.

Some of the items are not part of this process, and so you should not use all of them.

Available items

Glycogen is broken down into glucose molecules.

Adenyl cyclase catalyses the formation of cyclic AMP (cAMP) from ATP.

Adrenaline binds to a receptor (a transmembrane protein) on the outside of the liver cell membrane.

Cyclic AMP (cAMP) activates the enzyme protein kinase, which activates the enzymes required for glycogenolysis.

Glucose molecules are converted into glycogen.

Adrenaline passes through the liver cell membrane and binds to a receptor inside the cell.

The transmembrane protein undergoes a conformational change, causing the activation of the enzyme adenyl cyclase, which is attached to the transmembrane protein inside the cell.

sing the information above, and your answer are table below.	to the previous section, match the molecule to the function
Function	Molecule
First messenger	
Primary effector	
Second messenger	
Secondary effector	
protein kinase (cyclic AMP (cAMP)) (glycogen	glucose adenyl cyclase adrenaline
Part D True or false	glucose) (adenyl cyclase) (adrenaline)
Part D True or false	nd messengers are correct? Select all that apply.
Part D True or false hich of the following statements about second	nd messengers are correct? Select all that apply. avel through the blood to the target cell.
Part D True or false hich of the following statements about second Second messengers are hormones that tra	nd messengers are correct? Select all that apply. evel through the blood to the target cell. ry out the response of the target cell.
Part D True or false hich of the following statements about secon Second messengers are hormones that tra Second messengers are enzymes that car	and messengers are correct? Select all that apply. Eavel through the blood to the target cell. Try out the response of the target cell. Les found inside the target cell.

