Data-Driven Models for Discrete Hedging Problem: From One-Step to Multi-Steps Hedging

Ke Nian

Supervisors: Prof. Yuying Li and Prof. Thomas. F. Coleman

David R. Cheriton School of Computer Science, University of Waterloo.

Waterloo. Canada

January 26, 2020

Agenda

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Rlack-Scholes Model Overview of the Discrete

Minimum Variance

Sequential Learning

Multi-Steps Hedging

Real Data Augmentation

Real Data Experiments

Introduction

Black-Scholes Model

Overview of the Discrete Hedging Problem

Delta Hedging Variants

Minimum Variance Approach

Data-Driven Local Hedging Approach

Data-Driven Approach Sequential Learning Framework

Data-Driven Total hedging Approach

From One-Step Hedging to Multi-Steps Hedging Synthetic Experiments Real Data Augmentation Real Data Experiments

Black-Scholes Model

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Black-Scholes Model
Overview of the Discrete

Delta Hedging

Minimum Variance

Data-Driven Local

Data-Driven Approach
Sequential Learning

Framework

Data-Driven Total

hedging Approach From One-Step Hedging t

From One-Step Hedging to Multi-Steps Hedging

Synthetic Experiments Real Data Augmentation

Real Data Experiments

Geometric Brownian Motion:

$$\frac{dS}{S} = \mu dt + \sigma dZ$$

- ightharpoonup Price of the option: V(S,t)
- From Ito's Lemma:

$$dV = \left(\mu S \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}\right) dt + \sigma S \frac{\partial V}{\partial S} dZ$$

Black-Sholes Partial Differential Equation

Set up a hedging portfolio

- ightharpoonup A short position in an option -V
- ▶ Long $\frac{\partial V}{\partial S}$ shares of S

$$\Pi = -V + \frac{\partial V}{\partial S}S$$

Thus the random ΔZ will be canceled:

$$\begin{split} \Delta \Pi &= -\Delta V + \frac{\partial V}{\partial S} \Delta S \\ &= -(\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2}) \Delta t \\ &= r \Pi \Delta t = r (-V + \frac{\partial V}{\partial S} S) \Delta t \text{ (No Arbitrage)} \end{split}$$

Black-Scholes Partial Differential Equation:

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$

Data-Driven Models for Discrete Hedging Problem

Ke Nian

troduction

Black-Scholes Model

Overview of the Discrete Hedging Problem

elta Hedging

Minimum Variance Approach

Hedging Approach

Sequential Learning Framework Data-Driven Total

From One-Step Hedging to Multi-Steps Hedging

Synthetic Experiments
Real Data Augmentation

Real Data Experiments

Set Up Self-Financing Portfolio

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Rlack-Scholes Model Overview of the Discrete

Hedging Problem

Minimum Variance

Sequential Learning

Real Data Augmentation

Real Data Experiments

Consider a portfolio P_t which is composed of:

- \triangleright A short position on option V_t
- ▶ Long α_t (hedging position) shares of S_t
- \blacktriangleright An amount in a risk-free bank account B_t

The hedging portfolio is rebalanced at discrete times t_i . The hedging position is given by α_{t_s} Initially, we have

$$P_{t_0} = -V_{t_0} + \alpha_{t_0} S_{t_0} + B_{t_0} = 0$$

And

$$B_{t_0} = V_{t_0} - \alpha_{t_0} S_{t_0}$$

Rebalance Self-Financing Portfolio

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Black-Scholes Model

Hedging Problem

Delta Hedging

/ariants

Minimum Variance Approach

Data-Driven Local Hedging Approach

Data-Driven Approach Sequential Learning

Data-Driven Total hedging Approach

rom One-Step Hedging to Aulti-Steps Hedging

Muiti-Steps Heaging
Synthetic Experiments

Real Data Augmentation

Real Data Experiments

At each rebalancing time t_i , we update our hedging position by change the share we hold from $\alpha_{t_{i-1}}$ to α_{t_i} at t_i , where any required cash is borrowed, and any excess cash is loaned. Assume $\Delta t = t_i - t_{i-1}$ is fixed. The bank account is updated by:

$$B_{t_i} = e^{r\Delta t} B_{t_{i-1}} - S_{t_i} (\alpha_{t_i} - \alpha_{t_{i-1}})$$

Hedging Objective

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introductio

Black-Scholes Model

Overview of the Discrete

Hedging Problem

elta Hedging

Minimum Variance Approach

Data-Driven Local Hedging Approach

Data-Driven Approac Sequential Learning

Data-Driven Total hedging Approach

From One-Step Hedging to Multi-Steps Hedging

Synthetic Experiments

Real Data Augmentation

Real Data Experiments

Let t_i^+ and t_i^- to be the time immediately after and immediately before t_i . Assume that the performance is measured at the t_N :

$$\begin{split} P_{t_{N}^{-}} &= e^{r\Delta t} B_{t_{N-1}} - V_{t_{N}} + S_{t_{N}} \alpha_{t_{N-1}} \\ &= \sum_{j=0}^{N-1} \left\{ \left[e^{r(N-j-1)\Delta t} S_{t_{j+1}} - e^{r(N-j)\Delta t} S_{t_{j}} \right] \alpha_{t_{i}} \right\} \\ &+ e^{rN\Delta t} V_{t_{0}} - V_{t_{N}} \end{split}$$

If we always set $\alpha=\frac{\partial V}{\partial S}$ and let $\Delta t \to 0$ (we continuously rebalance the portfolio), then $P_{t_N^-}=0$. In reality, we can only rebalance discretely and $P_{t_N^-}$ can take positive (profit) and negative value (loss).

Practitioner Black-Scholes (BS) Delta Hedging

▶ BS model:

$$\frac{dS}{S} = rdt + \sigma dZ$$

 σ : Constant

Implied volatility

$$\sigma_{imp} = V_{BS}^{-1}(V_{mkt},.)$$

 V_{mkt} : market option price V_{BS}^{-1} : inverse of BS pricing function

Use BS Delta with implied volatility as hedging position:

$$\delta_{BS} = \frac{\partial V_{BS}}{\partial S}$$

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Black-Scholes Model
Overview of the Discrete

Hedging Problem Delta Hedging

Minimum Variance

Data-Driven Local

Data-Driven Approach Sequential Learning

Data-Driven Total hedging Approach

From One-Step Hedging to Multi-Steps Hedging

Synthetic Experiments

Real Data Augmentation

Real Data Experiments

Problem with Black-Scholes Delta

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Black-Scholes Model Overview of the Discrete

Hedging Problem

Minimum Variance

Sequential Learning

From One-Step Hedging to Multi-Steps Hedging

Real Data Augmentation

Real Data Experiments

Problem with the traditional Black-Scholes delta:

- Market violates Black-Scholes assumption
- Dependence of implied volatility on underlying asset price

Variants of delta hedging strategy:

- Stochastic Volatility Model
- Local Volatility Model
- Minimum Variance Approach
- Data-Driven Approach

Minimum Variance Approach

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introducti

Black-Scholes Model
Overview of the Discrete

elta Hedging

Minimum Variance Approach

Approach Data-Driven Loca

Hedging Approach
Data-Driven Approach

Sequential Learning Framework

Data-Driven Total hedging Approach

rom One-Step Hedging to Aulti-Steps Hedging

Synthetic Experiments

Real Data Augmentation

Real Data Experiments

The correction for the dependence of implied volatility on asset price:

► The Minimum Variance (MV) delta:

$$\delta_{MV} = \frac{\partial V_{BS}}{\partial S} + \frac{\partial V_{BS}}{\partial \sigma_{imp}} \frac{\partial \sigma_{imp}}{\partial S}$$

- A parametric model ¹learned from market data can be used to estimate $\frac{\partial \sigma_{imp}}{\partial S}$
- Local volatility model and stochastic volatility model (e.g. SABR) can also be used to calculate the $\frac{\partial \sigma_{imp}}{\partial S}$.

¹Hull, J. and White, A., "Optimal delta hedging for options." Journal of Banking and Finance 82 (2017): 180-190.

Problem with Parametric Approach

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Rlack-Scholes Model

Minimum Variance Annroach

Sequential Learning

Real Data Augmentation Real Data Experiments

Parametric approaches:

- Model mis-specification.
- Sub-optimal for discrete hedging problems.

Data-driven approaches:

- Minimum assumptions on S.
- Model is determined by market data.

The indirect data-driven approach ²has been proposed:

- \triangleright Determine the data-driven pricing function V(X) using regression model.
- ightharpoonup Compute $\frac{\partial V(X)}{\partial S}$ as hedging position

³Hutchinson, J.M., Lo, A.W. and Poggio, T., "A nonparametric approach to pricing and hedging derivative securities via learning networks." The Journal of Finance 49.3 (1994): 851-889.

Motiviation of Direct Data-Driven Approach

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Rlack-Scholes Model

Minimum Variance

Data-Driven Approach

Sequential Learning

Multi-Steps Hedging

Real Data Augmentation

Real Data Experiments

The indirect data-driven approach has the following problems:

- Unnecessary intermediate procedure.
- Sub-optimal for discrete hedging.
- Model parameters depend on the asset price.

Direct data-driven approach can be more useful in practice.

- Customized hedging position function.
- Directly learn the hedging position.

Direct Data-Driven Local Hedging Approach

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

....

Black-Scholes Model

Overview of the Discrete

elta Hedging

Minimum Variance

Data-Driven Local Hedging Approach

Data-Driven Approach

Sequential Learning Framework

Data-Driven Total

hedging Approach

rom One-Step Hedging to Multi-Steps Hedging

Synthetic Experiments
Real Data Augmentation

Real Data Augmentation Real Data Experiments

The direct data-driven approach is

$$\min_{f} \left[\frac{1}{N} \sum_{i=1}^{N} (\Delta V_i - \Delta S_i f(X_i))^2 \right]$$

- $ightharpoonup \Delta V_i$: the change of option value in data instance i.
- $ightharpoonup \Delta S_i$: the change of asset price in data instance i.
- \blacktriangleright $f(X_i)$: option hedging position function.
- Data-driven models outperform other delta hedging strategies³.

⁴Nian, Ke, Thomas F. Coleman, and Yuying Li. "Learning minimum variance discrete hedging directly from the market." Quantitative Finance (2018): 1-14.

Understanding the Local Hedging Objective

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Black-Scholes Model

Overview of the Discrete Hedging Problem

elta Hedging

Minimum Variance Approach

Hedging Approach

Data-Driven Approach Sequential Learning

Data-Driven Total

hedging Approach

From One-Step Hedging to Multi-Steps Hedging

Synthetic Experiments
Real Data Augmentation

Real Data Experiments

Recall the hedging portfolio value at t_N is:

$$\begin{split} P_{t_{N}^{-}} &= e^{r\Delta t} B_{t_{N-1}} - V_{t_{N}} + S_{t_{N}} \alpha_{t_{N-1}} \\ &= \sum_{j=0}^{N-1} \left\{ \left[e^{r(N-j-1)\Delta t} S_{t_{j+1}} - e^{r(N-j)\Delta t} S_{t_{j}} \right] \alpha_{t_{i}} \right\} \\ &+ e^{rN\Delta t} V_{t_{0}} - V_{t_{N}} \end{split}$$

Assume r = 0 and we evaluate performance at t_1 :

$$P_{t_1^-} = (S_{t_1} - S_{t_0})\alpha_{t_0} - (V_{t_1} - V_{t_0})$$
$$= \Delta S \alpha_{t_0} - \Delta V$$

Local hedging objective corresponds to one-step hedging.

Volatility Clustering and Financial Time Series

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Black-Scholes Model Overview of the Discrete

Minimum Variance

Sequential Learning Framework

Multi-Steps Hedging

Real Data Augmentation Real Data Experiments

Sequential learning framework may further improve the performance:

- Volatility clustering observed in the financial market.
- Autocorrelation between data instances near in time.
- Dependence of option pricing function on the past history of the underlying has been shown in GARCH models 4.

⁵Heston, Steven L., and Saikat Nandi "A closed-form GARCH option valuation model." The review of financial studies 13.3 (2000): 585-625.

Encoder-Decoder Model

Decoder

 X_1

Ke Nian

Black-Scholes Model Overview of the Discrete

Hedging Problem

Minimum Variance

Sequential Learning Framework

From One-Step Hedging to Multi-Steps Hedging

Real Data Augmentation

Real Data Experiments

Encoder

Evaluation Criteria: Local Risk

Data-Driven Models for Discrete Hedging Problem

Ke Nian

The percentage increase in the effectiveness over the BS hedging:

$$Gain = 1 - \frac{SSE[\Delta V_i - \Delta S_i \delta^i]}{SSE[\Delta V_i - \Delta S_i \delta^i_{BS}]}$$

- ► SSE: sum of squared errors
- \blacktriangleright δ : hedging position computed from different models
- $ightharpoonup \delta_{BS}$: BS delta

ntroduction

Black-Scholes Model

Overview of the Discrete Hedging Problem

elta Hedging

Minimum Variance Approach

Data-Driven Local Hedging Approach

Data-Driven Approach Sequential Learning Framework

Data-Driven Total hedging Approach

From One-Step Hedging to Multi-Steps Hedging

Synthetic Experiments Real Data Augmentation

Real Data Experiments

Experimental Setting

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Rlack-Scholes Model

Minimum Variance

Sequential Learning Framework

Multi-Steps Hedging

Real Data Augmentation

Real Data Experiments

- ▶ Data: S&P 500 index option from Jan 2007 to Aug 2015
- ► The models to be compared:
 - DKL_{SPL}: Direct data-driven kernel learning model.
 - MV: Minimum variance hedging formula.
 - LVF: Local volatility function model.
 - SABR: SABR stochastic volatility model.
 - ► DRNN: The proposed encoder-decoder model

Call Option Daily Hedging

Data-Driven Models for Discrete Hedging Problem

Ke Nian

ntroduction

Black-Scholes Model

Overview of the Discrete

Hedging Problem Delta Hedging

Minimum Variance

Data-Driven Loca Hedging Approach

Data-Driven Approact
Sequential Learning
Framework

Data-Driven Total

From One-Step Hedging to Multi-Steps Hedging

Multi-Steps Hedging Synthetic Experiments

Real Data Augmentation

Real Data Experiments

				Da	ata-Driv	ven Mode	
Delta	MV (%)	SABR(%)	LVF(%)	DKL_{SP}	L (%)	DRNN	(%)
				Traded	All	Traded	All
0.1	42.1	39.4	42.6	47.1	48.6	32.3	33.8
0.2	35.8	33.4	36.2	37.8	40.0	33.7	36.4
0.3	31.1	29.4	30.3	34.1	35.1	34.1	35.5
0.4	28.5	26.3	26.7	32.3	32.0	33.7	34.2
0.5	27.1	24.9	25.5	29.3	29.4	35.1	33.0
0.6	25.7	25.2	25.2	29.9	28.4	35.6	32.1
0.7	25.4	24.7	25.8	29.0	26.8	31.8	29.7
0.8	24.1	23.5	25.4	25.9	24.7	28.6	26.5
0.9	16.6	17.0	16.9	17.7	13.9	19.3	18.9
Overall	25.7	24.6	25.5	31.3	26.0	32.9	28.7

lacktriangle Performance will be slighted better than DKL_{SPL} .

Call Option Weekly Hedging and Monthly Hedging

Data-Driven Models						
for Discrete Hedging						
Problem						

Ke Nian

Rlack-Scholes Model Overview of the Discrete

Minimum Variance

Sequential Learning Framework

Multi-Steps Hedging

Real Data Augmentation

Real Data Experiments

	Data-Driven Model				
Delta	DKL _{SPL} (%)		DRNN	I(%)	
Deita	Traded	All	Traded	All	
0.1	38.9	38.3	47.8	45.6	
0.2	29.0	26.9	48.5	46.0	
0.3	23.5	25.3	48.5	46.6	
0.4	20.8	24.3	45.9	45.4	
0.5	19.9	22.8	46.6	45.0	
0.6	17.3	19.5	44.8	43.1	
0.7	16.8	17.7	43.9	42.4	
0.8	12.5	12.3	37.7	39.0	
0.9	6.2	5.1	16.4	29.1	
Overall	20.2	17.1	43.7	40.5	

	Da	ata-Driv	en Mode	l
Delta	DKLSP	L (%)	DRNN	(%)
Deita	Traded	All	Traded	All
0.1	22.7	24.8	53.9	39.4
0.2	23.5	25.5	51.7	48.3
0.3	24.0	24.6	50.2	49.1
0.4	21.0	20.7	47.8	48.3
0.5	13.5	12.7	44.5	47.6
0.6	14.3	13.5	44.6	47.4
0.7	6.1	7.0	35.3	42.9
0.8	5.3	4.1	24.8	34.1
0.9	4.1	2.3	10.5	19.9
Overall	16.3	12.5	44.5	42.3

Table: Weekly(Left) and Monthly(Right)

▶ Performance will be significantly better than DKL_{SPL}.

From One-Step hedging to Multi-Steps Hedging

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introducti

Black-Scholes Model

Jolta Madaina

elta Hedging

ariants

Approach

Hedging Approach

Sequential Learning Framework

Data-Driven Total hedging Approach

From One-Step Hedging to Multi-Steps Hedging

Synthetic Experiments
Real Data Augmentation

Real Data Augmentation Real Data Experiments

In practice, multi-steps hedging is more common. Particularly, the traders usually would like to hedge to the expiry of the option. In other words, $t_N = T$ and V_{t_N} =payoff.

$$\begin{split} P_{t_{N}^{-}} &= e^{r\Delta t} B_{t_{N-1}} - V_{t_{N}} + S_{t_{N}} \alpha_{t_{N-1}} \\ &= \sum_{j=0}^{N-1} \left\{ \left[e^{r(N-j-1)\Delta t} S_{t_{j+1}} - e^{r(N-j)\Delta t} S_{t_{j}} \right] \alpha_{t_{i}} \right\} \\ &+ e^{rN\Delta t} V_{t_{0}} - V_{t_{N}} \end{split}$$

Total Hedging Objective

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Black-Scholes Model

Overview of the Discrete Hedging Problem

Sequential Learning

From One-Step Hedging to Multi-Steps Hedging

Real Data Augmentation

Real Data Experiments

Assume we have M samples of sequences. Each sequence is of length N. Let the hedging position given by a function $\delta_t = f(X_t, y_t)$. The objective of optimizing f is:

$$\min_{f} \frac{1}{2M} \sum_{i=1}^{M} (P_{t_{N}^{i}}^{i})^{2}$$

Where $P_{t^{-}}^{i}$ is the portfolio at t_{N}^{-} of sample i:

$$P_{t_{N}^{i}}^{i} = \sum_{j=0}^{N-1} \left\{ \left[e^{r(N-j-1)\Delta t} S_{t_{j+1}}^{i} - e^{r(N-j)\Delta t} S_{t_{j}}^{i} \right] f(\mathbf{X}_{t_{j}}^{i}, \mathbf{y}_{t_{j}}^{i}) \right\} + e^{rN\Delta t} V_{t_{0}}^{i} - V_{t_{N}}^{i}$$

Computer Science University of Waterloo

Creating Training Samples and Testing Samples

Data-Driven Models for Discrete Hedging Problem

Ke Nian

The training and testing sample can be generated by simulation:

- Black-Scholes Model:
 - Analytical delta.
 - Analytical optimal total hedging position.⁶
 - ► Total hedging position based on spline function. 6
- Heston Model:
 - Analytical delta.

Rlack-Scholes Model

Minimum Variance

Sequential Learning

Multi-Steps Hedging Synthetic Experiments

Real Data Augmentation

Real Data Experiments

⁶Thomas F Coleman, Yuying Li, and Maria-Cristina Patron. " Total risk minimization using monte carlo simulations". Handbooks in Operations Research and Management Science, 15:593-635, 2007.

Evaluation Criteria

Data-Driven Models for Discrete Hedging Problem

Ke Nian

The evaluation criteria are:

► Total risk: Average of the absolute value of the final portfolio value:

$$e^{-rN\Delta t}\frac{\sum_{i=1}^{M}|P_{t_{N}^{-}}^{i}|}{M}$$

► Total cost: Average of the total cost in rebalancing the portfolio:

$$e^{-rN\Delta t} \frac{\sum_{i=1}^{M} (e^{rN\Delta t} V_{t_0}^i - P_{t_N}^i)}{M}$$

Introduction

Black-Scholes Model

Overview of the Discrete

Hedging Problem

elta Hedging

Minimum Variance Approach

Data-Driven Local

Data-Driven Approach Sequential Learning

Data-Driven Total hedging Approach

From One-Step Hedging to Multi-Steps Hedging

Synthetic Experiments
Real Data Augmentation
Real Data Experiments

Data-Driven Hedging Model

Ke Nian

Introduction

Black-Scholes Model
Overview of the Discrete

Hedging Problem Delta Hedging

Minimum Variance

Data-Driven Local Hedging Approach

Data-Driven Approach Sequential Learning

Data-Driven Total edging Approach

From One-Step Hedging to Multi-Steps Hedging

Multi-Steps Hedging
Synthetic Experiments

Real Data Augmentation

Real Data Experiments

Figure: Model For Synthetic Experiments

Synthetic Case: Black-Scholes Model

**

We have 600 time steps with $\Delta t = 1/600$. We can hedge every 25,50,100,300 time steps. S = K = 100

bi-weekly	monthly	quarterly	semi-annually
0.8376	1.1426	1.6896	2.8038
0.8563	1.1789	1.6518	2.7843
0.8295	1.1636	1.6479	2.7914
0.9481	1.3385	1.9128	3.4582
	0.8376 0.8563 0.8295	0.8376 1.1426 0.8563 1.1789 0.8295 1.1636	0.8376 1.1426 1.6896 0.8563 1.1789 1.6518 0.8295 1.1636 1.6479

Table: Total Risk

method	bi-weekly	monthly	quarterly	semi-annually
GRU	5.9682	5.8370	5.8549	5.1759
Spline	5.9118	5.8445	5.7119	5.2530
Analytical	5.9413	5.8773	5.7399	5.2565
BS	6.0483	6.0897	6.1734	6.5382

Table: Total Cost

Data-Driven Models for Discrete Hedging Problem

Ke Nian

troduction

Black-Scholes Model

Overview of the Discrete Hedging Problem

ta Hedging

Minimum Variance Approach

ta-Driven Local edging Approach

Data-Driven Approach Sequential Learning

Data-Driven Total hedging Approach From One-Step Hedging

From One-Step Hedging to Multi-Steps Hedging

Synthetic Experiments
Real Data Augmentation

Real Data Experiments

Synthetic Case: Heston Model

The parameter for heston model: r = 0.02, $\overline{v} = 0.04$, $\kappa = 1.15$, $\eta = 0.39$, S = 100, K = 100, v = 0.04, $\rho = -0.64$, $\tau = 1$.

method	bi-weekly	monthly	quarterly	semi-annually
GRU	1.9907	2.2183	2.5345	3.5552
Heston	2.6228	2.8492	3.2501	4.1049

Table: Total Risk (Heston Model)

method	bi-weekly	monthly	quarterly	semi-annually
GRU	8.3632	8.3601	8.3387	8.3941
Heston	8.3770	8.3676	8.3894	8.3897

Table: Total Cost (Heston Model)

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Black-Scholes Model

Overview of the Discrete Hedging Problem

elta Hedging

Minimum Variance Approach

edging Approach

Sequential Learning Framework

hedging Approach From One-Step Hedging

Multi-Steps Hedging
Synthetic Experiments

Real Data Augmentation

Real Data Experiments

Challenges of Obtaining Real Data

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Rlack-Scholes Model

Minimum Variance

Sequential Learning

Multi-Steps Hedging

Real Data Augmentation

Real Data Experiments

- 1. Only one single path for underlying asset
 - Extract segments from the path.
- 2. Options with specific K and expiry are not traded every day.
 - Use a calibrated price surface to fill the missing data.
- 3. Options in real market only have fixed expiry dates:
 - Use a calibrated price for option with expiries not seen on market

Call-Put Parity

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introducti

Black-Scholes Model

Overview of the Discrete

Oelta Hedging

Minimum Variance Approach

Data-Driven Local Hedging Approach

Data-Driven Approac Sequential Learning

Data-Driven Total hedging Approach

From One-Step Hedging to Multi-Steps Hedging

Real Data Augmentation

Real Data Experiments

We can also use the Call-Put parity to increase the number price observed from market:

$$C - P = S - DK$$

where C is the (current) value of a call, P is the (current) value of a put, D is the discount factor, and K is the strike price.

Volatility Interpolation Illustration

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Black-Scholes Model

Minimum Variance

Sequential Learning

Multi-Steps Hedging

Real Data Augmentation

Overview of the Discrete

Real Data Experiments

The purpose of volatility Interpolation⁵ is to create a price surface that can be used to obtain option price unobserved from market:

(a) Before

(b) After

Figure: Illustration of Constructing a Price Surface

⁷Jesper Andreasen and Brian Huge. "Volatility interpolation." Risk, 24(3):76, 2011.

Dupire's forward equation

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Black-Scholes Model

Overview of the Discrete

Delta Hedging

Variants
Minimum Variance

Approach

Hedging Approach

Data-Driven Approac Sequential Learning

Data-Driven Total hedging Approach

From One-Step Hedging to Multi-Steps Hedging

Real Data Augmentation

Real Data Augmentatio

► The forward price of a call option for delivery at time T: C(T, K)

- ▶ The spot price at t is: $C(T,K)e^{-\int_t^T r(s)ds}$
- ▶ It can be shown that :

$$\frac{\partial C(T,K)}{\partial T} = \frac{1}{2}\sigma^2(T,K)K^2 \frac{\partial^2 C(T,K)}{\partial K^2}$$

Model Calibration

We can write finite difference discretization of the Dupure forward equation as:

$$M \begin{bmatrix} C(T_i, K_0) \\ C(T_i, K_1) \\ C(T_i, K_2) \\ \vdots \\ C(T_i, K_{n-1}) \\ C(T_i, K_n) \end{bmatrix} = \begin{bmatrix} C(T_{i+1}, K_0) \\ C(T_{i+1}, K_1) \\ C(T_{i+1}, K_2) \\ \vdots \\ C(T_{i+1}, K_{n-1}) \\ C(T_{i+1}, K_n) \end{bmatrix}$$

We try to find M that so that $C(T_{i+1}, K_i) = C_{mkt}(T_{i+1}, K_i)$. This can be done by:

$$\inf_{\sigma(T_{i,.})} \sum_{j} \left(\frac{C(T_{i+1}, K_j) - C_{mkt}(T_{i+1}, K_j)}{Vega_{bs}^{mkt}(T_{i+1}, K_j)} \right)^2$$

Note that, for each T_i , we solve a separate optimization.

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Rlack-Scholes Model Overview of the Discrete

Sequential Learning

Multi-Steps Hedging

Real Data Augmentation

Real Data Experiments

Interpolation Over the Domain of Expiries

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Rlack-Scholes Model

Sequential Learning Framework

Multi-Steps Hedging

Real Data Augmentation

Real Data Experiments

After optimization, the local volatility functions are translated into arbitrage-consistent prices for a discrete set of expiries but it does not directly specify the option prices between the expiries. We can fill in the gaps by:

$$\frac{C(T,K) - C(T_i,K)}{T - T_i} = \frac{1}{2}\sigma(T_i,K)^2 K^2 \frac{\partial^2 C(T_{i+1},K)}{\partial K^2}, T \in [T_i, T_{i+1})$$

Benefits of Interpolation Based On Local Vol Model

Interpolation based on the above procedure can guarantee the option price given by interpolation is arbitrage-free:

1. No call spread arbitrage:

$$\frac{\partial C(T,K)}{\partial K} \leq 0$$

2. No butterfly spread arbitrage:

$$\frac{\partial^2 C(T,K)}{\partial K^2} \geq 0$$

3. No calendar spread arbitrage:

$$\frac{\partial C(T,K)}{\partial T} \geq 0$$

Data-Driven Models for Discrete Hedging Problem

Ke Nian

ntroduction

Black-Scholes Model

Overview of the Discrete Hedging Problem

Delta Hedging

Minimum Variance Approach

ledging Approach

Sequential Learning Framework

Data-Driven Total hedging Approach

Multi-Steps Hedging

Real Data Augmentation

Real Data Augmentation

Real Data Experiments

Total Hedging Model for Real Data Case

Ke Nian

Rlack-Scholes Model Overview of the Discrete

Hedging Problem

Minimum Variance

Sequential Learning

From One-Step Hedging to Multi-Steps Hedging

Real Data Augmentation

Total hedging Model

Figure: Refined Model For Real Cases

Primitive Experimental Setting

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction Rlack-Scholes Model

Overview of the Discrete

Delta Hedgin

Minimum Variance

Data-Driven Local Hedging Approach

Data-Driven Approach Sequential Learning

Data-Driven Total

hedging Approach

From One-Step Hedging to Multi-Steps Hedging

Synthetic Experiments
Real Data Augmentation

Real Data Experiments

- ► Testing period is from 2007 and 2014 for SP500 index option.
- Scenario: weekly hedging for two months.
- ► All data in previous years is used as training.
- Model are updated yearly.
- ► Early stopping is used as regulation
- ▶ Performance is evaluated with **relative** hedging error.

$$rel_{err} = \frac{P_{t_{N}^{-}}^{i}}{V_{t_{0}}}$$

Value-At-Risk of Relative Hedging Error

Data-Driven Models for Discrete Hedging Problem

Ke Nian

ntroduction

Black-Scholes Model

Overview of the Discrete Hedging Problem

elta Hedging orionto

Minimum Variance Approach

Data-Driven Local Hedging Approach

Data-Driven Approach Sequential Learning

Data-Driven Total nedging Approach

From One-Step Hedging to Multi-Steps Hedging

Real Data Augmentation

Real Data Experiments

method	Total	Local	BS
2007	-0.8622	-1.044	-2.3724
2008	-1.1430	-1.0782	-4.9241
2009	-0.4563	-1.3607	-2.3771
2010	-0.4509	-0.6817	-1.7911
2011	-0.7062	-0.9049	-1.9094
2012	-0.3866	-1.7635	-2.6473
2013	-0.4635	-2.7910	-4.2887
2014	-1.5424	-2.0567	-3.1884

Table: Value-At-Risk

Expected Shortfall of **Relative** Hedging Error

Data-Driven Models for Discrete Hedging Problem

Ke Nian

itroduction

Black-Scholes Model

elta Hedging

ariants

Minimum Variance Approach

Data-Driven Loca Hedging Approacl

Data-Driven Approach Sequential Learning

Data-Driven Total hedging Approach

rom One-Step Hedging to Multi-Steps Hedging

Real Data Augmentation

Real Data Experiments

method Total BS Local -1.1568 -1.85452007 -5.4942 -2.06832008 -4.9241 -7.3248 2009 -0.6443 -2.3772 -5.03232010 -0.6207 -1.1806-3.6964-1.1439 2011 -1.9460 -3.2358 -0.5497 2012 -3.2662 -4.7711 -0.6460 2013 -4.3091-6.65872014 -1.9005 -3.4671 -5.2354

Table: Expected Shortfall

Mean Absolute **Relative** Hedging Error

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Rlack-Scholes Model

Overview of the Discrete Hedging Problem

Minimum Variance

Sequential Learning

Multi-Steps Hedging

Real Data Augmentation

Real Data Experiments

method	Total	Local	BS
2007	0.3769	0.7357	1.3396
2008	0.5034	0.6852	0.9068
2009	0.3041	0.6597	0.5092
2010	0.3412	0.5837	1.1331
2011	0.3507	0.4611	0.8513
2012	0.2726	0.5858	0.8084
2013	0.3055	0.8961	0.9710
2014	0.5876	0.9509	1.6091

Table: Mean Absolute Relative Hedging Error

Standard Deviation of **Relative** Hedging Error

Data-Driven Models for Discrete Hedging Problem

Ke Nian

ntroduction

Black-Scholes Model

Overview of the Discrete Hedging Problem

elta Hedging

Minimum Variance Approach

Data-Driven Local Hedging Approach

Data-Driven Approach Sequential Learning

Data-Driven Total hedging Approach

From One-Step Hedging to Multi-Steps Hedging

Real Data Augmentation

Real Data Experiments

method	Total	Local	BS
2007	0.4977	2.2085	3.2548
2008	0.7645	2.4953	3.7674
2009	0.3785	1.3938	2.6829
2010	0.4770	1.1388	1.3975
2011	0.4787	0.7269	1.1465
2012	0.3339	0.9633	1.5448
2013	0.3717	1.4185	2.6968
2014	0.8899	2.2879	5.3217

Table: Standard Deviation

Data-Driven Models for Discrete Hedging Problem

Ke Nian

Introduction

Black-Scholes Model

Overview of the Discrete

Hedging Problem

Delta Hedgir

Minimum Variance

Data-Driven Loca

Data-Driven Approach

ata-Driven Total

From One-Step Hedging to Multi-Steps Hedging

Synthetic Experiments

Real Data Augmentation

Real Data Experiments

Thank you very much! Any Questions?