(Better) understanding the scaled dot-product multi-headed self-attention

Understanding multi-headed self-attention

- Might seem intimidating, but the individual parts are rather simple
 - The easiest way to understand **multi-headed** self-attention is to understand a *single-headed* one

Understanding multi-headed self-attention

- Might seem intimidating, but the individual parts are rather simple
 - o The easiest way to understand **multi-headed** self-attention is to understand a *single-headed* one

In matrix notation (for all pairs of token positions):

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Understanding multi-headed self-attention

- Might seem intimidating, but the individual parts are rather simple
 - o The easiest way to understand **multi-headed** self-attention is to understand a *single-headed* one

In matrix notation (for all pairs of token positions):

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

For a single pair of token positions

$$a_{ij} = \operatorname{softmax}(rac{\mathbf{q}_i \mathbf{k}_j^{ op}}{\sqrt{d_k}}) = rac{\exp(\mathbf{q}_i \mathbf{k}_j^{ op})}{\sqrt{d_k} \sum_{r \in S_i} \exp(\mathbf{q}_i \mathbf{k}_r^{ op})}$$

A personal view on Self-Attention (SA)

A powerful blending machine on steroids

A personal view on Self-Attention (SA)

A powerful blending machine on steroids (gradients)

What are all the query / key / value abstractions, and why are they needed?

Why is multi-headed attention needed?

(Are they needed eventually?)

Output Probabilities

Try forgetting about the decoding (just think of BERT)

Probabilities

- Try forgetting about the decoding (just think of BERT)
- Try forgetting that transformer blocks stacked up
 - Essentially each block receives and omits embeddings

- Try forgetting about the decoding (just think of BERT)
- Try forgetting that transformer blocks stacked up
 - Essentially each block receives and omits embeddings
- Try forgetting (temporarily) the FFNN component

- Try forgetting about the decoding (just think of BERT)
- Try forgetting that transformer blocks stacked up
 - Essentially each block receives and omits embeddings
- Try forgetting (temporarily) the FFNN component
 - At the same time we can forget about multi-headedness

- Try forgetting about the decoding (just think of BERT)
- Try forgetting that transformer blocks stacked up
 - Essentially each block receives and omits embeddings
- Try forgetting (temporarily) the FFNN component
 - At the same time we can forget about multi-headedness

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

- Try forgetting about the decoding (just think of BERT)
- Try forgetting that transformer blocks stacked up
 - Essentially each block receives and omits embeddings
- Try forgetting (temporarily) the FFNN component
 - At the same time we can forget about multi-headedness

- If X contains the input embeddings then we have:
 - $Q = X W_{O}$
 - \circ K = X W_K
 - $V = X W_{V}$

MatMul

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

- At each layer, it allows for new semantic aspects to enter the representations
 - o It adds on top of the already calculated one via the residual connection

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

- At each layer, it allows for new semantic aspects to enter the representations
 - o It adds on top of the already calculated one via the residual connection

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

- At each layer, it allows for new semantic aspects to enter the representations
 - o It adds on top of the already calculated one via the residual connection
- If there was no SA, this would cause the tokens to be handled independently,

i.e. embedding \mathbf{x}_i would simply become $\mathbf{x}_i + \mathbf{x}_i \mathbf{W}_{\vee}$

Attention
$$Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

- At each layer, it allows for new semantic aspects to enter the representations
 - o It adds on top of the already calculated one via the residual connection
- If there was no SA, this would cause the tokens to be handled independently,

i.e. embedding $\mathbf{x_i}$ would simply become $\mathbf{x_i} + \mathbf{x_i} \mathbf{W_v}$

Representations are made context-aware by SA, i.e. instead of

 $\mathbf{x_i} + \mathbf{x_i} V$, we have $\mathbf{x_i} + \Sigma_j a_{ij} (\mathbf{x_j} W_V)$

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

- At each layer, it allows for new semantic aspects to enter the representations
 - o It adds on top of the already calculated one via the residual connection
- If there was no SA, this would cause the tokens to be handled independently,

i.e. embedding $\mathbf{x_i}$ would simply become $\mathbf{x_i} + \mathbf{x_i} \mathbf{W_{\vee}}$

Representations are made context-aware by SA, i.e. instead of

 $\mathbf{x_i} + \mathbf{x_i} V$, we have $\mathbf{x_i} + \Sigma_j a_{ij} (\mathbf{x_j} W_V)$, with

$$a_{ij} = \operatorname{softmax}(rac{\mathbf{q}_i {\mathbf{k}_j}^ op}{\sqrt{d_k}}) = rac{\exp(\mathbf{q}_i {\mathbf{k}_j}^ op)}{\sqrt{d_k} \sum_{r \in S_i} \exp(\mathbf{q}_i {\mathbf{k}_r}^ op)}$$

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

- At each layer, it allows for new semantic aspects to enter the representations
 - o It adds on top of the already calculated one via the residual connection
- If there was no SA, this would cause the tokens to be handled independently,

i.e. embedding $\mathbf{x_i}$ would simply become $\mathbf{x_i} + \mathbf{x_i} \mathbf{W_V}$

Representations are made context-aware by SA, i.e. instead of

 $\mathbf{x_i} + \mathbf{x_i} V$, we have $\mathbf{x_i} + \Sigma_j a_{ij} (\mathbf{x_j} W_V)$, with

$$a_{ij} = \operatorname{softmax}(rac{\mathbf{q}_i {\mathbf{k}_j}^ op}{\sqrt{d_k}}) = rac{\exp(\mathbf{q}_i {\mathbf{k}_j}^ op)}{\sqrt{d_k} \sum_{r \in S_i} \exp(\mathbf{q}_i {\mathbf{k}_r}^ op)}$$

MatMul

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

• They are responsible for the calculation of tha a_{ii} attention scores

 They are responsible for the calculation of tha a_{ij} attention scores by defining a soft dictionary (similar to argmax vs. softmax)

- They are responsible for the calculation of tha a_{ij} attention scores by defining a soft dictionary (similar to argmax vs. softmax)
 - Standard dictionaries assign a specific value to a given key (or none), whereas a soft dictionary assigns a(n adaptively) weighted sum of values to keys
 - Each input embedding is transformed into its query representation with W_Q and each input embedding is transformed into its key representation with W_K

MatMul

SoftMax

- They are responsible for the calculation of tha a_{ij} attention scores by defining a soft dictionary (similar to argmax vs. softmax)
 - Standard dictionaries assign a specific value to a given key (or none), whereas a soft dictionary assigns a(n adaptively) weighted sum of values to keys
 - Each input embedding is transformed into its query representation with W_Q and each input embedding is transformed into its key representation with W_K
- QK^T is essentially (X W_O)(W_K X^T)
 - \circ If both W_Q and W_K were the identity, we would then be left with XX^T, i.e. a matrix with the similarities between each pairs of input embeddings
 - It would artificially inflate the similarity of the embeddings with themselves

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

MatMul

SoftMax

Mask (opt.)

Scale

MatMul

- They are responsible for the calculation of tha a_{ij} attention scores by defining a soft dictionary (similar to argmax vs. softmax)
 - Standard dictionaries assign a specific value to a given key (or none), whereas a soft dictionary assigns a(n adaptively) weighted sum of values to keys
 - Each input embedding is transformed into its query representation with W_Q and each input embedding is transformed into its key representation with W_K
- QK^T is essentially $(X W_Q)(W_K X^T)$
 - o If both W_Q and W_K were the identity, we would then be left with XX^T , i.e. a matrix with the similarities between each pairs of input embeddings
 - It would artificially inflate the similarity of the embeddings with themselves
 - A single transformation $(W_{QK} \approx W_{Q} W_{K})$ could do the job as well as $(XW_{Q})(W_{K}X^{T}) = X(W_{Q}W_{K})X^{T}$
 - Disentangling is, however more effective when
 W_{*} has more rows than columns

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

MatMul

SoftMax

Mask (opt.)

Scale

MatMul

The multi-headed SA

- Hidden dimension d is treated as a composition of hx(d/h) subrepresentations
 - E.g. the 768 dimensional vectors of BERT-base can be viewed as a concatenation of 12 independent 64 dimensional representations
 - With slicing all the attention heads are calculated simultaneously

The multi-headed SA

- Hidden dimension d is treated as a composition of hx(d/h) subrepresentations
 - E.g. the 768 dimensional vectors of BERT-base can be viewed as a concatenation of 12 independent 64 dimensional representations
 - With slicing all the attention heads are calculated simultaneously

- Why we might need multiple heads?
 - Having multiple smaller attention heads in the same layer can be a surrogate to doing multiple attentions performed in subsequent layers
 - There are multiple independent aspects at the current semantic granularity level which can be incorporated into the representation of the next layer

- Why we might need multiple heads?
 - Having multiple smaller attention heads in the same layer can be a surrogate to doing multiple attentions performed in subsequent layers
 - There are multiple independent aspects at the current semantic granularity level which can be incorporated into the representation of the next layer
- As the results of MHSA is treated independently (using concatenation), they shall be blended together ⇒a FF layer is used for upscaling (typically to 4d)

- Why we might need multiple heads?
 - Having multiple smaller attention heads in the same layer can be a surrogate to doing multiple attentions performed in subsequent layers
 - There are multiple independent aspects at the current semantic granularity level which can be incorporated into the representation of the next layer
- As the results of MHSA is treated independently (using concatenation), they shall be blended together ⇒a FF layer is used for upscaling (typically to 4d), then another FF layer is used for downscaling to d

- Why we might need multiple heads?
 - Having multiple smaller attention heads in the same layer can be a surrogate to doing multiple attentions performed in subsequent layers
 - There are multiple independent aspects at the current semantic granularity level which can be incorporated into the representation of the next layer
- As the results of MHSA is treated independently (using concatenation), they shall be blended together ⇒a FF layer is used for upscaling (typically to 4d), then another FF layer is used for downscaling to d
 - Question: Could another attention module maybe decide how to mix the individual SA heads?

The case of MHSA

- Actually, most of the SAs can be omitted, only a few does the 'heavy lifting'
 - o "pruning 38 out of 48 encoder heads results in a [marginal] drop" (Voita et al., 2019)
 - "the number of attention heads doesn't have a significant effect" (K et al., 2020)

			XNLI		
Parameters (in Millions)	Depth	Multi-head Attention	Fake-English	Russian	Δ
132.78	12	1	77.4	63.2	14.2
132.78	12	2	78.3	62.8	15.5
132.78	12	3	79.5	65.3	14.2
132.78	12	6	78.9	66.7	12.2
132.78	12	16	77.9	64.9	13.0
132.78	12	24	77.9	63.9	14.0
132.78	12	12	79.0	65.7	13.3

The case of MHSA

- Actually, most of the SAs can be omitted, only a few does the 'heavy lifting'
 - o "pruning 38 out of 48 encoder heads results in a [marginal] drop" (Voita et al., 2019)
 - "the number of attention heads doesn't have a significant effect" (K et al., 2020)
- The MH also fits the Lottery Ticket Hypothesis

			XNLI		
Parameters (in Millions)	Depth	Multi-head Attention	Fake-English	Russian	Δ
132.78	12	1	77.4	63.2	14.2
132.78	12	2	78.3	62.8	15.5
132.78	12	3	79.5	65.3	14.2
132.78	12	6	78.9	66.7	12.2
132.78	12	16	77.9	64.9	13.0
132.78	12	24	77.9	63.9	14.0
132.78	12	12	79.0	65.7	13.3

The case of MHSA

- Actually, most of the SAs can be omitted, only a few does the 'heavy lifting'
 - o "pruning 38 out of 48 encoder heads results in a [marginal] drop" (Voita et al., 2019)
 - "the number of attention heads doesn't have a significant effect" (K et al., 2020)
- The MH also fits the Lottery Ticket Hypothesis
- OTOH, "reducing the amount of heads also decreases finetuning performance" (Geiping & Goldstein, 2022)

			XNLI		
Parameters (in Millions)	Depth	Multi-head Attention	Fake-English	Russian	Δ
132.78	12	1	77.4	63.2	14.2
132.78	12	2	78.3	62.8	15.5
132.78	12	3	79.5	65.3	14.2
132.78	12	6	78.9	66.7	12.2
132.78	12	16	77.9	64.9	13.0
132.78	12	24	77.9	63.9	14.0
132.78	12	12	79.0	65.7	13.3

Extensions to SA – Reformer

- For an input of length L, there are L² a_{ij} scores to compute :(
- Reformer: LSH to the rescue

Extensions to SA – FlashAttention (Hua et al., 2022)

Extensions to SA – FlashAttention (Hua et al., 2022)

Performs more FLOPs actually, but faster I/O, causing a speedup near up to 10x

Extensions to SA – FlashAttention (Hua et al., 2022)

Performs more FLOPs actually, but faster I/O, causing a speedup near up to 10x

• OTOH, "we implement the recently proposed FLASH mechanism, but find no benefits" (Geiping & Goldstein, 2022)

Outer Loop

Further extensions

- DeBERTa: Relies on a disentangled attention mechanism
- RWKV: a combination of RNNs and transformers (with linear attention)
- Linformer
- Nystromformer
- Longformer
- Performer
- *former
- ...

Attention in ViT

- Transformers (w/o positional embeddings) are meant for sets not sequences
 - There is (certain) evidence that the matter of the order words does not much

Further useful readings

- https://nlp.seas.harvard.edu/2018/04/03/attention.html
- https://lilianweng.github.io/posts/2023-01-27-the-transformer-family-v2
- https://jalammar.github.io/illustrated-transformer/
- https://stats.stackexchange.com/questions/421935/what-exactly-are-keys-queries-and-values-in-attention-mechanisms
- Cross-Lingual Ability of Multilingual BERT: An Empirical Study
- Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting,
 the Rest Can Be Pruned