КРИПТОГРАФІЯ

КОМП'ЮТЕРНИЙ ПРАКТИКУМ №3

Криптоаналіз афінної біграмної підстановки

Виконав: Кандила Микита ФБ-12 6 варіант

Мета роботи: Засвоєння методів частотного криптоаналізу. Здобуття навичок роботи та аналізу потокових шифрів гамування адитивного типу на прикладі шифру Віженера.

Порядок виконання роботи:

- Реалізувати підпрограми із необхідними математичними операціями: обчисленням оберненого елементу за модулем із використанням розширеного алгоритму Евкліда, розв'язуванням лінійних порівнянь.
- При розв'язуванні порівнянь потрібно коректно обробляти випадок із декількома розв'язками, повертаючи їх усі. 2. За допомогою програми обчислення частот біграм, яка написана в ході виконання комп'ютерного практикуму №1, знайти 5 найчастіших біграм запропонованого шифртексту (за варіантом).
- Перебрати можливі варіанти співставлення частих біграм мови та частих біграм шифртексту (розглядаючи пари біграм із п'яти найчастіших). Для кожного співставлення знайти можливі кандидати на ключ (a,b) шляхом розв'язання системи (1).
- Для кожного кандидата на ключ дешифрувати шифртекст. Якщо шифртекст не є змістовним текстом російською мовою, відкинути цього кандидата.
- Повторювати дії 3-4 доти, доки дешифрований текст не буде змістовним.

Хід роботи

1.1 Реалізація підпрограм з математичними операціями

1.1.1 Розширений алгоритм Евкліда

Для реалізацію цього алгоритму були використані матеріали із методичних вказівок:

Для обчислення обернених елементів за даним модулем пропонується використовувати розширений алгоритм Евкліда.

Нагадаємо, що алгоритм Евкліда обчислює найбільший спільний дільник двох чисел $d = \gcd(a,b)$ таким чином. Задаємо $r_0 = a$, $r_1 = b$ та обчислюємо послідовність (r_i) для $i \ge 2$ шляхом ділення з остачею:

$$\begin{aligned} r_0 &= r_1 q_1 + r_2 \,, \\ r_1 &= r_2 q_2 + r_3 \,, \\ \dots \\ r_{s-2} &= r_{s-1} q_{s-1} + r_s \,; \\ r_{s-1} &= r_s q_s \,. \end{aligned}$$

Якщо на відповідному кроці виявилось, що $r_{s+1} = 0$, то $d = r_s$.

Розширений алгоритм Евкліда обчислює дві додаткові послідовності (u_i) та (v_i) такі, що на кожному кроці виконується рівність $r_i = u_i a + v_i b$; зокрема, для найбільшого

спільного дільника матимемо $d = r_s = u_s a + v_s b$. Ці послідовності також можна обчислити рекурентно за допомогою часток q_i :

$$u_0 = 1$$
, $u_1 = 0$, $u_{i+1} = u_{i-1} - q_i u_i$;
 $v_0 = 0$, $v_1 = 1$, $v_{i+1} = v_{i-1} - q_i v_i$.

Звідси обернений елемент до числа a за модулем n знаходиться таким чином: оскільки a обертається лише за умови $\gcd(a,n)=1$, то за розширеним алгоритмом Евкліда знаходяться такі числа u та v, що au+nv=1. Звідси $au\equiv 1 \pmod n$ та $u\equiv a^{-1} \pmod n$.

Peaniзація представлена функціями extended_gcd i find_inverse().

1.1.2 Лінійні рівняння

Алгоритм для розв'язування лінійних рівнянь був використаний з методичних вказівок.

Рівність (2) ϵ так званим *лінійним порівнянням*; розв'язки лінійних порівнянь знаходяться за такою процедурою.

Нехай $ax \equiv b \pmod{n}$ і треба встановити значення x за відомими a та b. Маємо такі випадки:

- 1) gcd(a,n) = 1. В цьому випадку порівняння має один розв'язок: $x \equiv a^{-1}b \pmod{n}$.
- 2) gcd(a,n) = d > 1. Маємо дві можливості:
 - 2.1) Якщо b не ділиться на d, то порівняння не має розв'язків.
 - 2.2) Якщо b ділиться на d, то порівняння має рівно d розв'язків x_0 , $x_0 + n_1$, $x_0 + 2n_1 \dots$, $x_0 + (d-1)n_1$, де $a = a_1d$, $b = b_1d$, $n = n_1d$ і x_0 є єдиним розв'язком порівняння $a_1x \equiv b_1 \pmod{n_1}$: $x_0 = b_1 \cdot a_1^{-1} \pmod{n_1}$.

Реалізація представлена функціями $linear_congruence_solver()$ для знаходження а, та $find_a_and_b()$ для знаходження b.

1.2 Знаходження найчастіших біграм

Для реалізації цього пункту був використаний код з першої лабораторної роботи. Φ ункція — $find_chiper_bigram()$.

1.3 Знаходження всіх можливих а та в

Для того, щоб знайти всі можливі значення а та b, до кожної пари шифрованих біграм були застосовані всі можливі пари нешифрованих біграм (але без повторів).

1.4 Дешифровка

Для дешифровки була використана формула:

$$X_i = a^{-1}(Y_i - b) \bmod m^2$$

Для автоматичного розпізнавання тексту був використаний *критерій* заборонених l-грам.

Функція для перевірки змістовності тексту – $valid_text()$.

Результат дешифровки:

«утробылотихоегородокутанныйтьмоймирнонежилсявпостели»

3 ключем a = 441, b = 310

Висновки: в даній лабораторній роботі я ознайомився з принципом роботи шифру афінної біграмної підстановки та навчився техниці знаходження коректного значення ключа. Під час роботи я зіткнувся з проблемою, що 5-ти найчастіших біграм з ШТ недостатньо для успішної дешифровки, тому для знаходження ВТ я використовував перші 12 найчастіші біграми ШТ.