软件设计文档

20192131018 彭翊桐

一、 软件需求

- 1. 设计一个应用软件,以实现将正则表达式-->NFA--->DFA-->DFA 最小化-->词法分析程序
- 1. 正则表达式应该支持单个字符,运算符号有: 连接 选择 闭包 括号
- 要提供一个源程序编辑界面,让用户输入正则表达式(可保存、打开源程序)
- 3. 需要提供窗口以便用户可以查看转换得到的 NFA (用状态转换表呈现即可)
- 4. 需要提供窗口以便用户可以查看转换得到的 DFA (用状态转换表呈现即可)
- 5. 需要提供窗口以便用户可以查看转换得到的最小化 DFA (用状态转换表呈现即可)
- 6. 需要提供窗口以便用户可以查看转换得到的词法分析程序(该分析程序 需要用 C 语言描述)

二、总体设计

1. 功能设计

将输入的正则表达式转为 NFA 状态转换表、DFA 状态转换表、最小化 DFA 状态转换表和词法分析程序。

2. 界面设计

1) 正则表达式编辑框,显示输入的正则表达式,用户可以直接在编辑框输入正则表达式,也可以点击"读取"按钮选择文件,使用文件中的正

则表达式。

- 2) "读取"按钮,点击后,弹出文件选择对话框,通过对话框可以选择需要打开的文件。选择后,该文件中的正则表达式将被输入正则表达式编辑框中。
- 3) "保存"按钮,点击后,弹出文件选择对话框,通过对话框可以选择需要保存的位置。选择后,正则表达式编辑框中的正则表达式将被保存到指定位置。
- 4) "生成"按钮, 点击后, 程序将分析正则表达式编辑框中的正则表达式, 并将结果显示在 NFA 状态转换表、DFA 状态转换表、最小化 DFA 状态转换表和词法分析程序编辑框中。
- 5) NFA 状态转换表, 该表格显示由正则表达式生成的 NFA 状态转换表。
- 6) DFA 状态转换表, 该表格显示由正则表达式生成的 DFA 状态转换表。
- 7) 最小化 DFA 状态转换表,该表格显示由正则表达式生成的最小化 DFA 状态转换表。
- 8) 词法分析程序编辑框,该编辑框显示由正则表达式生成的词法分析程序。

3. 逻辑设计

本程序的所有转换过程均基于状态转移表实现。

- 1) 正则表达式转 NFA
 - a) 解析算数表达式,过程如下:

b) 进行选择、连接、闭包计算

选择、连接、闭包运算均通过 NFA 状态转移表进行, 规律如下:

2) NFA转 DFA

首先, 计算出初态的闭包, 并将该状态集加入队列。取出队列头的元素, 计算该状态集转换后的状态集, 将全新的状态集入队, 并将队列头元素和转移后的状态集作为 DFA 状态转移表的新的一行, 重复上

述过程直到队列为空,即可得到 DFA 状态转移表。

3) DFA 最小化

建立一个临时表,该表存储状态集简化为单个状态后的 DFA 转态转移表。建立两个集合,分别存储简化后的终态和非终态。根据 DFA 最小化的规则,在临时表中判断并合并相同的状态。最后将结果存储最小化 DFA 状态转移表中。

4) DFA 转词法分析代码

根据 DFA 转词法分析代码的规则,使用最小化 DFA 状态转移表,非 终态和终态集合,自动生成由 C++编写的 lexicalAnalysis 函数。该函数的参数类型为 String 类型,返回值为 bool 类型,返回 true 表示接 收,而返回 false 表示出错。

三、 开发环境和工具

Visual Studio 2019 with C++ MFC