

Resistance

- Materials restricts the flow of charge (I) when a voltage (V) is applied over the material.
- The current I is proportional to the applied voltage V. Ohm's law is:

$$V = RI$$

Georg Simon Ohm (1787–1854)

$$R = \rho \frac{L}{A}$$

where ρ is called resistivity

- Resistivity (ρ) varies many order of magnitude for different materials.

(Course IH1611 Semiconductor Devices explains why resitsivity is so different for different materials.)

Material	Resistivity, $\rho (\Omega \cdot m)$	Co
Conductors		
Silver	1.59×10^{-8}	
Copper	1.68×10^{-8}	
Gold	2.44×10^{-8}	
Aluminum	2.65×10^{-8}	
Tungsten	5.6×10^{-8}	
Iron	9.71×10^{-8}	
Platinum	10.6×10^{-8}	
Mercury	98×10^{-8}	
Nichrome (Ni, Fe, Cr alloy)	100×10^{-8}	
Semiconductors [‡]		
Carbon (graphite)	$(3-60) \times 10^{-5}$	
Germanium	$(1-500) \times 10^{-3}$	
Silicon	0.1 - 60	
Insulators		
Glass	$10^9 - 10^{12}$	
Hard rubber	$10^{13} - 10^{15}$	

[‡] Values depend strongly on the presence of even slight amounts of impurities.

Power

- Power (electric) is the rate at which electric energy is converted into another energy form, e.g. heat or light
- The energy transformed in a device comes from the potential energy converted when a charge moves through a potential difference E_{pot} =QV (see video on electric potential energy and voltage).

$$P = \frac{energy\ transformed}{time} = \frac{QV}{t} = IV$$

$$P = VI$$

James Watt (1736-1819)

The unit of power is:
$$[V][A] = \left[\frac{J}{C}\frac{C}{s}\right] = \left[\frac{J}{s}\right] = [W]$$
 which is named watt (W)