WZORCE PROJEKTOWE A ROBOTYKA

Maciej Hołodniuk

AGENDA

- Wstęp do wzorców projektowych: definicja oraz rola w tworzeniu oprogramowania
- Przegląd typów wzorców projektowych
- Wzorzec "Adapter" a integracja sprzętu z robotyką
- Wzorzec "Obserwator" a systemy czujników w robotyce
- Wzorzec "Strategia" a sterowanie robotem
- Wzorzec "Stan" a sterowanie robotami w zmiennych warunkach
- Podsumowanie

WZORZEC PROJEKTOWY

 Definicja – uniwersalne, sprawdzone w praktyce rozwiązanie często pojawiających się, powtarzalnych problemów projektowych. Pokazuje powiązania i zależności pomiędzy klasami oraz obiektami i ułatwia tworzenie, modyfikację oraz utrzymanie kodu źródłowego. Jest opisem rozwiązania, a nie jego implementacją. Wzorce projektowe stosowane są w projektach wykorzystujących programowanie obiektowe.

KLASYFIKACJA WZORCÓW PROJEKTOWYCH

Kreacyjne	Strukturalne	Operacyjne (behawioralne)
 Budowniczy Fabryka abstrakcyjna Metoda wytwórcza Prototyp Singleton 	 Adapter Dekorator Fasada Kompozyt Most Pełnomocnik Pyłek 	 Łańcuch zobowiązań Polecenie Interpreter Iterator Mediator Memento Metoda szablonowa Obserwator Strategia Wizytator Stan

ADAPTER

- Definicja Przekształca interfejs klasy na inny, oczekiwany przez klienta. Adapter umożliwia współdziałanie klasom, które z uwagi na niezgodne interfejsy standardowo nie mogą współpracować ze sobą.
- W robotyce można znaleźć analogię do tego wzorca, gdy chcemy zintegrować różne sprzętowe komponenty, które mają różne interfejsy. Wykorzystując adaptery, możemy stworzyć jednolity interfejs, który pozwoli nam komunikować się z różnymi rodzajami sprzętu.

OBSERWATOR

- Definicja Określa zależność jeden do wielu między obiektami. Kiedy zmieni się stan jednego z obiektów, wszystkie obiekty zależne od niego są o tym automatycznie powiadamiane i aktualizowane.
- W robotyce można to zastosować w kontekście systemów czujników, gdzie obserwator (np. oprogramowanie) reaguje na zmiany w danym czujniku, takich jak ruch, zmiana temperatury itp., i podejmuje odpowiednie działania.

STRATEGIA

- Definicja Określa rodzinę
 algorytmów, kapsułkuje każdy z nich i
 umożliwia ich zaminne stosowanie.
 Wzorzec ten pozwala zmienić
 algorytmy niezależnie od
 korzystających z nich klientów.
- W robotyce możemy wykorzystać ten wzorzec do sterowania ruchem robotów, gdzie różne strategie mogą być wykorzystywane w zależności od określonych warunków lub zadań, takich jak unikanie przeszkód, planowanie trasy, czy gładkie poruszanie się.

STAN

- Definicja Umożliwia obiektowi modyfikację zachowania w wyniku zmiany wewnętrznego stanu. Wygląda to tak, jakby obiekt zmienił klasę.
- W robotyce można zastosować ten wzorzec, aby sterować robotami w różnych warunkach środowiskowych. Na przykład, robot może mieć różne stany, takie jak "chód", "bieg", "uniesienie przedmiotu" itp., a wzorzec "Stan" pozwoli na dynamiczne przejście między tymi stanami w zależności od kontekstu.

PODSUMOWANIE

- Wzorce projektowe są sprawdzonymi rozwiązaniami w programowaniu, które zapewniają elastyczność, łatwość modyfikacji i rozszerzalność oprogramowania.
- Część wzorców ma swoje analogie w dziedzinie robotyki, które pozwalają na sprawną implementacje wybranych funkcjonalności.
- Zastosowanie wzorców projektowych w robotyce sprawia, że tworzenie zaawansowanych systemów staje się bardziej intuicyjne, elastyczne i łatwiejsze w utrzymaniu.

BIBLIOGRAFIA

- Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of Reusable Object-Oriented Software.
- https://youtu.be/tAuRQs_d9F8 8 Design patterns every developer should know
- https://refactoring.guru/ Refactoring guru/
- https://pl.wikipedia.org/wiki/Wzorzec_projektowy_(informatyka)