Max. Marks: 100

V Semester B.Tech. (CSE/ISE) Degree Examination, February 2021 (CBCS Scheme)

18CIPC 503: DATABASE MANAGEMENT SYSTEMS

Time: 3 Hours

Instructions: 1) Question - 1 is compulsory.

2) Question - 4, 5 are compulsory.

3) Answer Q.-2 or Q.-3, Q.-6 or Q.-7, Q.-8 or Q.-9.

1. 1) Define DBMS.

 $(15 \times 1 = 15)$

- 2) Define Canned transaction.
- 3) Define Weak entity type.
- 4) Define Schema and Scheme Evolution.
- 5) Define record-based data models.
- 6) What is purpose of SQL?
- 7) What is intention locks?
- 8) What is bitmap indexing?
- 9) What is Union compatibility?
- 10) What is the difference between DELETE and TRUNCATE commands?
- 11) What are triggers?
- 12) What is multiple granularity locking?
- 13) What is the difference between ORDERBY and GROUPBY?
- 14) What is a grid file?
- 15) In tuple relational calculus P1→ P2 is equivalent to :
 - a) P1 v P2

b) P1 ^ P2

c) P1 v P2

d) P1 A ¬ P2

7

10

- 2. a) Compare DBMS v/s File system. 05 05 b) Explain different types of attribute with examples. 07 c) Discuss ER-Relational Mapping procedure. OR 06 a) Discuss a high-level data model in the database design process. b) What are relationship types and recursive relationship types ? Explain the differences among a relationship instance, a relationship type, and a 06 relationship set. 05 Discuss cardinality and participation concept in relationship type. 4. a) What are the various restrictions on data that can be specified on a 07 relational database schema in the form of constraints? Explain. 10 b) R: S: Compute: B C A B D 1. π_{C,D}(S). 5 6 1 1 2 2. R x S. 8 8 5 1 3 4 8 2 8 6 3. RMS. 8 5 4. RUS 8 1 5. π_{B C} (R ⋈ S). 6. RM RAKSC S. 7. π_B(R) ∩ π_B(S).
- 5. a) Discuss DDL operations of SQL, with suitable example for each.
 - b) Consider the following schema of a company database :
 - Employees(eid: int, ename: string, DOB: int, address: string, super_eid: int)

8. $\pi_{n}(R) - \pi_{n}(S)$.

9. R + S 10. R+S

Departments(did:integer, dname: string)

Projects(pid:integer, pname: string, did: integer)

Works on(eid:integer, pid: integer, hours: integer)

		For the above company database, write SQL statements for :	
		i) Get the details of the eldest employee working on project = "loT;"	
		ii) Get the details of employee who resides in "KR Circle"	
		iii) Get the details of employee who are born in "1982"	
		iv) Get supervisor's details of each department.	
6	i. a	a) Consider the following relation : CAR_SALE(Car#, Date_sold, Salesperson	n#,
		Commission%, Discount_amt),	10
		Assume that a car may be sold by multiple salespeople,	
		and hence {Car#, Salesperson#} is the primary key.	
		Additional dependencies are:	
		Date_sold→Discount_amt and Salesperson#→Commission%	
		i) Define 1NF, 2NF, 3NF.	
		ii) Based on the given primary key, is this relation in 1NF, 2NF or 3NF. Why or why not ?	
		iii) How would you successively normalize it completely?	
	b)	Define Boyce-Codd normal form. How does it differ from 3NF? Why is it considered a stronger form of 3NF?	7
		OR	
7.	a)	State the informal guidelines for relation schema design. Illustrate how violation of these guidelines may be harmful.	5
	b)	Explain join dependency and fifth normal form.	6
	c)	What is multivalued dependency ? Explain 4NF.	6
8.	a)	Explain different concurrency control techniques and its variants.	7
	b)	Differentiate between Internal hashing and external hashing techniques.	10
		OR	
9.	a)	Explain multilevel indexes and index on multiple keys.	7
	b)	Discuss RAID technology.	10