

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики Кафедра прикладной математики и экономико-математических методов

ЛАБОРАТОРНАЯ РАБОТА

на тему:

«Решение нелинейного уравнения или системы нелинейных уравнений»

метод:

«Метод секщих для системы нелинейных уравнений - 2.3.3a-1»

Направление (специальност	пь)01.03.02
	(код, наименование)
Направленность (специализ	зация)
Обучающийся	Бронников Егор Игоревич
ГруппаПМ-1901 (номер группы)	
Проверил	_Хазанов Владимир Борисович
Полимости	(Ф.И.О. преподавателя)
должностьпрофессор	<u> </u>
Оценка	Дата:
Подпись:	
	Санкт-Петербург

Оглавление

1. НЕОБХОДИМЫЕ ФОРМУЛЫ	3
2. ВХОДНЫЕ ДАННЫЕ	4
3. СКРИНШОТЫ ПРОГРАММЫ	5
4. РЕЗУЛЬТАТЫ И ТЕСТЫ	6
5. ОПЕНКА ТОЧНОСТИ ПОЛУЧЕННОГО РЕШЕНИЯ	7

1. НЕОБХОДИМЫЕ ФОРМУЛЫ

Данные:

 $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ — система нелинейных уравнений

h — малая величина

 $K_{\it max}$ – критерий прекращения итерационного процесса по числу итераций

 δ – критерий прекращения итерационного процесса по малости двух соседних приближений

 x_0 – начальное приближение

Шаги метода секущих:

$$\gamma_{ij}^{(k)} = f_i(\mathbf{x_k} - h\mathbf{e_j}) - f_i(\mathbf{x_k})$$

$$\Gamma_{k} = \{ y_{ij}^{(k)} \}_{i,j}^{s}$$

$$H_k = h I$$

$$f_k^{'-1} \approx \Gamma_k^{-1} H_k$$

$$x_{k+1} = x_k - f_k^{'-1} f_k$$

$$k=1,\ldots,K_{max}$$

2. ВХОДНЫЕ ДАННЫЕ

Матрица F

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} x_1^2 - x_2^2 - 1 \\ x_1 x_2^3 - x_2 - 1 \end{pmatrix}$$

Матрица x_0

$$\mathbf{x}_0 = \begin{pmatrix} 1.8 \\ -0.3 \end{pmatrix}$$

$$K_{max} = 10$$

$$\delta = 10^{-5}$$

$$h=10^{-10}$$

3. СКРИНШОТЫ ПРОГРАММЫ

Входные данные:

```
h = 10.^{-10};

x0 = \{1.5, 1.5\};

\delta = 10.^{-5};

Kmax = 10;

Clear[f1]

f1[x_{-}] := x[1]^{2} - x[2]^{2} - 1

Clear[f2]

f2[x_{-}] := x[1] \times [2]^{3} - x[2] - 1

Clear[F]

F[x_{-}] := \{f1[x], f2[x]\}
```

Алгоритм

```
Clear[secantMethod]
secantMethod[F_Symbol, x0_List, Kmax_Integer, \delta_Real, h_Real] := Module[
   X = \{X\emptyset\},\,
   k = 1,
   dRes = \delta,
   H, G, fDInv, e, n
  n = Length[F[x[1]]]; (* количество уравнений в системе *)
  H = h * IdentityMatrix[n]; (* матрица Н *)
  While[k ≤ Kmax ∧ δ ≤ dRes, (* критерии остановки: число итераций и малось соседних приближений*)
   G = Table (* рассчитываем матрицу Г *)
      e = ConstantArray[0, n];
      e[j] = 1;
     F[x[k] + h * e][i] - F[x[k]][i], (* считаем <math>\gamma_{ij} *)
      {i, n}, {j, n}];
   fDInv = Inverse[G].H; (* считаем fk'-1*)
   AppendTo[x, x[k] - fDInv.F[x[k]]]; (* считаем x_{k+1} *)
   dRes = Norm[x[k + 1] - x[k]]; (* считаем значение соседних приближений *)
   k += 1
  1;
  x[-1] (* выводим результат *)
 1
```

4. РЕЗУЛЬТАТЫ И ТЕСТЫ

Результаты

```
secantMethod[F, x0, Kmax, δ, h] {1.50284, 1.12185}
```

Результат встроенной функции

NSolve
$$[\{x1^2 - x2^2 - 1 = 0, x1x2^3 - x2 - 1 = 0\}, \{x1, x2\}, Reals]$$
 $\{\{x1 \rightarrow 1.50284, x2 \rightarrow 1.12185\}, \{x1 \rightarrow -1.19726, x2 \rightarrow -0.658357\}\}$

5. ОЦЕНКА ТОЧНОСТИ ПОЛУЧЕННОГО РЕШЕНИЯ

Оценка точности

r = F[x]
$$\left\{-3.77476 \times 10^{-15}, \ 3.44169 \times 10^{-14}\right\}$$