Rozwiązania wybranych zadań z listy nr.1 z przedmiotu "Systemy rozproszone"

Mateusz Małowiecki March 3, 2021

Zad.1 Wiadomo, że pojęcie systemu rozproszonego wymyka się jednej definicji. W praktyce taka standardowa definicja nie jest potrzebna. Istnieją jednak założenia, które są prawdziwe w większością systemów rozproszonych. Spróbuj je wymienić i omówić.

Pierwszym takim założeniem jest to, że jest on kolekcją kilka komputerów, które działają niezależnie i są w pewien sposób ze sobą powiązane. Drugim założeniem jest to, że użytkownicy myślą, iż pracują na pojedynczym systemie.

Zad.2 Jaką rolę w systemie rozproszonym odgrywa oprogramowanie warstwy pośredniej?

Oprogramowanie to ma za zadanie przede wszystkim bycie interfejsem pomiędzy różnymi komputerami oraz zapewnienie systemowi przezroczystości.

Zad.4 Wyjaśnij, co rozumiemy przez przezroczystość (rozproszenia), i podaj przykłady różnych rodzajów przezroczystości.

Przezroczystość to ukrywanie różnic między komputerami, sposobów ich komunikacji oraz wewnętrznej organizacji systemu. Rodzaje przezroczystości:

- dostępu
- położenia
- wędrówki
- przemieszczania
- zwielokrotnienia

- współbieżności
- awarii
- trwałości

Zad.5 Dlaczego czasami tak trudno jest ukryć w systemie rozproszonym występowanie awarii i usuwanie ich skutków (rekonstrukcje, uzdrawianie [systemu], ang. recovery)?

Awaria może wystąpić w trakcie jakiegoś procesu, w wyniku czego możemy nie mieć możliwości powrotu do stanu sprzed awarii.

Zad.6 Czy dążenie do osiągnięcia jak największego stopnia przezroczystości jest zawsze dobrym pomysłem? Dlaczego?

Nie zawsze jest to dobry pomysł. Przykładowo jeśli administrator systemu będzie chciał ukryć awarię pojedynczego komputera w systemie, to może to doprowadzić do awarii całego systemu.

Zad.7 Co się rozumie przez systemy otwarte? Czy to jest to samo co systemy o otwartym kodzie? Co to jest otwarty system rozproszony i jakie korzyści wynikają z otwartości?

System otwarty to system, który ma interakcję ze światem zewnętrznym, w szczególności taki system jest przygotowany do komunikacji z każdym innym systemem otwartym. Nie jest to to samo co systemy o otwartym kodzie, ponieważ systemy o otwartym kodzie, to systemy, których kod źródłowy jest publicznie dostępny. Otwarty system rozproszony to zasadniczo system, który oferuje łatwe w obsłudze komponenty mogą być używane lub zintegrowane z innymi systemami.

Zad.8 Opisz dokładnie, co rozumiemy przez system skalowalny. Scharakteryzuj rodzaje skalowalności.

Skalowalność oznacza możliwość dodania nowych zasobów i użytkowników, rozmieszczenia węzłów w różnych miejscach. Rodzaje skalowalności:

• rozmiaru

- ullet geograficzna
- administracyjna

Zad.9 Skalowalność można osiągnąć różnymi sposobami. Jakie to są sposoby?

Te sposoby to:

- zwiększenie odporności na awarie
- spójność danych
- komunikacja asynchroniczna

Zad.10 Czy wieloprocesory z pamięcią dzieloną są systemami rozproszonymi?

Tak

Zad.11 Wieloprocesor z 256 jednostkami centralnymi jest zorganizowany w układzie kraty o wymiarach 16 na 16. Ile wynosi najgorsze opóźnienie (w przeskokach), na jakie jest narażony komunikat

Najgorsze opóźnienie wynosi 31 i występuje na przykład jeśli idziemy od lewego dolnego rogu do prawego górnego rogu tak jak na obrazku poniżej.

Zad.12 Rozważmy teraz kostkę z 256 jednostkami centralnymi. Ile dla niej wynosi opóźnienie (również w przeskokach) w najgorszym przypadku?

Opóźnienie dla niej wynosi 8, gdyż odległość między dwoma wierzchołkami tej kostki wynosi co najwyżej 8.

Zad.13 Na czym polega różnica między rozproszonym systemem operacyjnym a sieciowym systemem operacyjnym?

Główna różnica jest taka, że w systemie sieciowym węzły systemu mogą działać na różnych systemach operacyjnych, a w systemie rozproszonym węzły systemu muszą działać na jednym systemie operacyjnym. Więcej o różnicach można przeczytać na stronie: https://www.geeksforgeeks.org/difference-between-network-os-and-distributed-os/.

Zad.15 Co właściwie oznacza termin "rozproszona pamięć dzielona"?

Jest to architektura pamięci komputerowej, w której fizycznie oddzielone pamięci mogą być adresowane jako jedna logicznie współdzielona przestrzeń adresowa.

Zad.17 Czym różnią się systemy zgrupowane (klastrowe) od siatkowych (gridowych)? Jeśli się różnią.

W systemach zgrupowanych węzły są ściśle połączone za pomocą szybkiej sieci lokalnej. Ponadto na każdym takim węźle działa ten sam system operacyjny. Zupełnie inaczej sytuacja wygląda w przypadku systemów siatkowych. W tym przypadku różne węzły mogą należeć do różnych domen administracyjnych i mogą być bardzo różne pod względem sprzętu, oprogramowania i wdrożonej technologii sieciowej

Zad.19 Mówi się, że w przypadku zaniechania transakcji świat powraca do poprzedniego stanu,tak jak gdyby transakcja nigdy nie wystąpiła. Nie jest to w pełni prawdziwe. Podaj przykład, w którym odtworzenie poprzedniego stanu świata jest niemożliwe.

Wyobraźmy sobie, że mamy drukarkę na której coś drukujemy. Gdy w trakcie drukowania strony nastąpi awaria, to nie da się już wrócić do stanu sprzed awarii, ponieważ część kartki jest już zadrukowana.

Zad.20 Wykonywanie transakcji zagnieżdżonych wymaga jakiejś koordynacji. Wyjaśnij, co faktycznie powinien robić koordynator

Koordynator powinien koordynować zobowiązania subtransakcji, zgodnie ze standardowym protokołem (zatwierdzeniem rozproszonym).

Zad.25 Co to jest jednostka centralna (CPU)? Co to jest procesor? Czy terminy CPU i procesor oznaczają to samo?

Jednostka centralna (CPU) to urządzenie cyfrowe, odpowiedzialne za wykonywanie podstawowych operacji arytmetycznych, logicznych, sterujących oraz operacji wejścia / wyjścia (I / O) określonych przez instrukcje w programie komputerowym. Procesor z kolei jest częścią jednostki centralnej (co w szczególności oznacza, że jednostka centralna może mieć więcej niż jeden procesor). Widzimy więc, że terminy CPU i procesor nie oznaczają tego samego.