Map-Reduce e Spark

Map Reduce - Genesi

- nasce nel 2003-2004
 - ["MapReduce: simplified Data Processing on Large Clusters", Dean, Ghemawat. Google Inc.]
 - Closed-source, scritto in c++
 - nasce dall'esigenza di eseguire problemi "semplici" su big data (>1TB) vedremo degli esempi...
- 2006: Apache & Yahoo! → rilasciano Hadoop e HDFS
 - Open source, scritto in Java
- 2008: diventa un progetto indipendente di Apache
- Oggi: Usato come piattaforma general purpose di storage e analisi di big data

Nella pratica

Permettono a programmatori senza alcuna esperienza di sistemi distribuiti di utilizzare facilmente le risorse di un data center per elaborare grandi moli di dati.

Apache Hadoop

- open source
- struttura e interfaccia relativamente semplici
- fatto di due sotto-componenti:
 - MapReduce Runtime (coordinatore)
 - Paradigma di programmazione per realizzare la programmazione distribuita su diversi server
 - Hadoop Distributed File System (HDFS)
 - File system distribuito
 - Server possono fallire ma non causano l'abort della computazione
 - Dati replicati con ridondanza nel cluster

Hadoop Ecosystem

Single Node Architecture

Machine Learning, Statistica

Data Mining "Classico"

Ma...

- I dati (es. web) possono essere molto grandi
 - Decine di centinaia di TB
- Non si può fare il mining su un server singolo (perché?)
- Esempio
 - 20+ miliardi di pagine web x 20KB = 400+ TB
 - 1 computer legge 30-35 MB/sec dal disco
 - ~4 mesi per leggere il web
 - ~1,000 hd per immagazzinare il web
 - Ma ci vuole molto più tempo per fare qualcosa di utile con questi dati!!!

- Large scale computing per il data mining:
 - Sfide:
 - Come distribuire il calcolo?
 - La programmazione parallela/distribuita è complicata.

Motivazioni

- Negli anni sono emerse nuove architetture per questi problemi:
 - Cluster of commodity Linux node
 - Commodity network (ethernet)

Commodity clusters

- Come organizzare il calcolo su questa architettura?
- Nascondere problemi legati al fallimento dell'hardware

Scale up vs Scale out

Scale up vs Scale out

Scale Out

Idea e Soluzioni

•Problema:

Copiare i dati sulla rete richiede tempo

•ldea:

- Portare il calcolo vicino ai dati
- •Immagazzinare i file più volte per la lettura

Riassumendo..

- Voglio processare grandi moli di dati
- 2. Voglio usare molte (centinaia/ migliaia) di CPU
- 3. Voglio che tutto questo sia SEMPLICE

Idea e Soluzioni

- Map-reduce risolve questi problemi
 - Modo elegante per lavorare con i big data
 - Infrastruttura di Storage File system
 - Google: GFS. Hadoop: HDFS
 - Modello di programmazione
 - Map-Reduce

Storage Infrastructure

- Problema:
 - Se un nodo fallisce come mantengo i dati?
- Soluzione:
 - File system distribuito:
 - Global file namespace
 - Google GFS; Hadoop HDFS;
- Tipico pattern di utilizzo
 - File molto grandi (100s of GB to TB)
 - Raramente aggiornati
 - · Letture e inserimenti in append

File System distribuito

- File divisi in chunk
- Tipicamente ogni chunk è 16-64MB
- Ogni chunk replicato (usualmente 2x o 3x)
- Repliche su rack diversi
- Dimensione dei chunk e grado di replica sono stabiliti dall'utente
- Un file speciale (nodo master) memorizza, per ogni file, la posizione dei chunk
- Il nodo master è replicato
- Una directory per il file system conosce dove trovare il master node

File System distribuito

Master node

- Name Node in Hadoop HDFS (senza name node l'HDFS non puo' essere usato)
- Immagazzina i metadati relativi alle locazioni dove sono memorizzati i file
- Può essere replicato
- Conosce tutti i datanode che contengono i blocchi di un file

Data Node

- Immagazzinano e recuperano i blocchi quando richiesto.
- I blocchi sono memorizzati in diversi datanode.

Quali sono le sfide

- Come assegnare le unità di lavoro ai worker?
- Si possono avere piu' unità di lavoro che worker?
- I worker possono condividere risultati parziali?
- Come aggreghiamo i risultati?
- Come facciamo a sapere che tutti i worker hanno finito?
- Se un worker fallisce?

Esempio di tipico large-data problem

- Iterare su un grande numero di record in parallelo
 - Ogni iterazione estrae qualcosa di interessante
 - Fare uno shuffling e sort dei risultati intermedi dalle iterazioni concorrenti
 - Aggregare i risultati intermedi
 - Generare l'output finale

Reduce

Trova le sue radici nella programmazione funzionale

- MAP: prende una funzione f e la applica ad ogni elemento di una lista
- FOLD: iterativamente applica una funzione g per aggregare i risultati

MapReduce

- MAP: prende in input un oggetto con una chiave ed un valore (k,v) e resituisce un elenco di coppie chiave valore (k_1,v_1) , (k_2,v_2) ,..., (k_n,v_n)
- Il framework colleziona tutte le coppie con la stessa chiave k e associa a k tutti i valori $(k,[v_1,v_2,...,v_l])$
- REDUCE: prende in input una chiave e una lista di valori $(k,[v_1,v_2,....v_l])$ e li combina in una qualche maniera

Programming Model: MapReduce

Warm-up task:

- Grande documento di testo
- Contare il numero di volte in cui ogni parola distinta appare nel documento

- Applicazione d'esempio:
 - Analizzare i log del web server per trovare gli URL popolari

Task: Word Count

Caso 1:

• File troppo grande per andare in memoria, ma le coppie <word, count> entrano in memoria

Caso 2:

- Calcolare le occorrenze di parole:
 - words(docs/*) | sort | uniq -c
 - dove words prende in input il file e da in output le parole presenti nel file, una per riga.
- Caso 2 cattura l'essenza di MapReduce
 - Altamente parallelizzabile

MapReduce: Overview

- Legge sequenzialmente molti dati
- Map:
 - Estrarre qualcosa di utile per il calcolo
- Group by key: Sort e Shuffle
- Reduce:
 - Aggrega, somma, filtra e trasforma
- Scrivi I risultati

Pipeline sempre la stessa, Map e Reduce cambiano da problema a problema

MapReduce: The Map Step

MapReduce: The Reduce Step

Più in dettaglio

- Input: set di coppie key-value (chiave-valore)
- Il programmatore scrive due metodi:
 - Map(k, v) → list(<k', v'>)
 - Prende coppie key-value e da in output un insieme di coppie keyvalue
 - Es. key il nome del file, value una singola linea del file
 - Una call di Map per ogni coppia (k,v)
 - **Reduce(k', list(<v'>))** → list(<k', v">)
 - Tutti I valori v' con la tessa chiave k' sono ridotti assieme e processati nell'ordine di v'
 - Una call della funzione Reduce per ogni chiave univocal k'

MapReduce: Word Counting

Word Count Using MapReduce

```
map(key, value):
// key: document name; value: text of the document
 for each word w in value:
    emit(w, 1)
reduce(key, values):
// key: a word; value: an iterator over counts
      result = 0
      for each count v in values:
            result += v
      emit(key, result)
```

Map-Reduce: Ambiente

L'ambiente Map-Reduce si occupa di:

- Partizionare i dati di input
- Scheduling l'esecuzione del programma sulle machine
- Effettuare lo step group by key
- Gestire i fallimenti delle machine
- Gestire la comunicazione tra le machine

Esempio

- Problema: contare quante parole di una certa lunghezza esistono in una collezione di documenti
- Input: repository di documenti
- Map:
- Reduce

Soluzione

```
map(key, value):
// key: document name; value: text of the document
 for each word w in value:
    emit(length(w), 1)
reduce(key, values):
// key: a word; value: an iterator over counts
      result = 0
      for each count w in values:
            result += 1
      emit(key, result)
```

Data Flow

- Input e output finale memorizzati nel distributed file system (FS):
 - Scheduler prova a schedulare i map task "vicini" allo storage fisico dei dati di input
- Risultati intermedi memorizzati su local FS dei worker Map e Reduce
- Solitamente l'output di un task è l'input di un altro

Coordinamento: Master

- Il Master node effettua il coordinamento:
 - Task status: (idle, in-progress, completati)
 - Idle task schedulati appena il worker diventa disponibile
 - Quando un map task completa, spedisce al master la posizione e la size dei suoi R file intermedi, uno per ogni reduce
 - Il Master fa il push di queste info ai reducer
- Il Master pinga i worker periodicamente per identificare fallimenti

Quanti Job Map e Reduce?

- M map task, R reduce task
- linea guida euristica:
 - M molto più grande del numero di nodi del cluster
 - Comunemente: un chunk DFS per map
 - Migliora il load-balancing dinamico e aumenta la velocità del recovery
- Usualmente R più piccolo di M e perché l'output è suddiviso su R file

Raffinamenti

Problema

- Worker lenti aumentano in modo significativo il tempo di completamento del job:
 - Altri job nella macchina
 - Dischi cattivi
 - Ecc.

Soluzione

- Vicino alla fine della fase, genera copie di backup delle attività
 - Chi finisce per primo «vince»

Effetto

 Riduce notevolmente il tempo di completamento del job

Raffinamento: Combiners

- Quando la funzione Reduce è associativa e commutativa possiamo far fare al map parte del task del reducer.
- Spesso un task Map produrrà diverse coppie del tipo (k,v_1) , (k,v_2) , ... per la stessa chiave k
- Ridurre network time pre-aggregando I valori del

mapper:

- combine(k, list(v_1)) $\rightarrow v_2$
- Combiner usulamente lo stesso della funzione reduce

Refinement: Combiners

• Torniamo all'esempio del word count:

Raffinamenti: Partition Function

- Controllare le come chiavi vengono partizionate?
 - Gli input per mappare le attività sono creati da split contigue del file di input
 - Ridurre le esigenze per garantire che i record con la stessa chiave intermedia finiscano nello stesso worker
- Il Sistema usa una funzione di partizione di default:
 - hash(key) mod R
- A volte è utile fare l'override di tale hash function:
 - Es. **hash(hostname(URL)) mod R** garantisce che URL da un host finiscono nello stesso output file

MapReduce: il quadro completo

• Il programmatore specifica due funzioni

```
map(k1,v1) \rightarrow [(k2,v2)]
reduce(k2,[v2]) \rightarrow [(k3,v3)]
```

Tutti i valori con la stessa chiave sono ridotti assieme

• Il programmatore può anche specificare:

```
combine(k2,[v2]) \rightarrow [(k3,v3)]
```

- Mini reducer che vengono eseguite dopo la fase di map
- Usate per ottimizzare e ridurre il traffico nella rete

```
partition(k2,numero di partizioni) → partizioni per k2
```

- Divide lo spazio delle chiavi per l'esecuzione parallela delle operazioni di reduce
- Al resto ci pensa il framework!!

Problemi di base per Map-Reduce

Esercizio 1: Host Size

- Supponiamo di avere un grande corpus web
 - · Guardiamo i metadati
 - Le linee hanno il seguente formato (URL, dimensioni, data, ...)
- Per ogni host, trova il numero totale
- di byte
 - cioè la somma delle dimensioni della pagina per tutti URL da quell'host

Esercizio 1: Soluzione

```
map(key, value):
// key: URL; value: {size,date,..}
   emit(hostname(URL), size)
reduce(key, values):
// key: a hostname; values: an iterator over
sizes
   result = 0
   for each size s in values:
        result += s
   emit (key, result)
```

Esercizio 2: Graph reversal

- Dato un grafo diretto descritto con lista di adiacenza:
 - src1: dest11, dest12, ...
 - src2: dest21, dest22, ...
- Costruisci il grafo in cui tutti i link sono invertiti

```
map(key value):
key: filename; value: list of adjacency
of each node
  for each r in value
    for each v in adj(r)
    emit(v,r)
```

Reduce:

- Identity function
 - <target, list(source) >

Esercizio 3: Inverted Index

- Supponiamo di avere un grande corpus web, ogni documento identificato da un ID
 - Per ogni parola che appare nel corpus, restituire l'elenco di docID dove la parola si trova

Es. parola: doc_id1, doc_id2 ...

Esercizio 4: Distributed grep

• Voglio filtrare le linee di un insieme di documenti in cui appare una parola X.

Esercizio 5: Distributed sort

• Dato un elenco di record di un documento spezzato in chunk, ordinarli secondo un certo criterio.

Problemi idonei per Map-Reduce

Example: Language Model

- Statistical machine translation:
 - Necessità di contare il numero di volte in cui ogni sequenza di 5 parole si presenta in un corpus di documenti
- Molto semplice MapReduce:
 - Map:
 - extrai (5-word sequence, count) dal documento
 - Reduce:
 - · Combina i count

Example: Join By Map-Reduce

- Calcolare la natural join $R(A,B) \bowtie S(B,C)$
- R ed S immagazzinate in un file
- Tuples sono coppie (a,b) or (b,c)

Α	В
a ₁	b ₁
a_2	b ₁
a_3	b_2
a ₄	b_3

В	С
b ₂	c ₁
b ₂	c_2
b_3	c ₃

Α	С
a ₃	C ₁
a_3	c_2
a ₄	c_3

S

R

Map-Reduce Join

- A Map process:
 - Ogni tupla R(a,b) emette la coppia (b,(a,R))
 - Ogni tuple S(b,c) emette la coppia (b,(c,S))
- Ogni Reduce fa il match di tutte le pairs (b,(a,R)) con (b,(c,S)) e restituisce in output (a,b,c).

Hadoop!

Hadoop 1.0 vs Hadoop 2.0

Single Use System

Batch Apps

HADOOP 1.0

MapReduce

(cluster resource management & data processing)

HDFS

(redundant, reliable storage)

Multi Purpose Platform

Batch, Interactive, Online, Streaming, ...

HADOOP 2.0

YARN: Yet Another Resource Negotiator

Architettura

YARN e' composto da quattro pezzi:

- Resource Manager
- Node Manager
- Application Master
- Container

Hadoop: Concetti di base

Gestore delle risorse

 Controlla le risorse disponibili nel cluster (per tutte le applicazioni).

Gestore nodi

Avvia e tiene traccia dei processi assegnati ai worker (un processo per nodo)

- Container: è un sottoinsieme di risorse del cluster (concetto chiave!)
- Application master: gestisce una particolare applicazione e viene eseguita in un contenitore. Responsabile della tolleranza ai guasti

Hadoop: Concetti di base– Resource Negotiator Process

Hadoop: Concetti di base- Configurazioni

- Hadoop può essere eseguito con 3 diverse configurazioni:
 - 1. Local / Standalone. Viene eseguito in un unico JVM (Java Virtual Machine). Molto utile per il debug!
 - 2. Pseudo-distributed (Cluster simulator)
 - 3. Distributed (Cluster)

Hadoop V2 – Esecuzione di un processo MapReduce

- Esecuzione di un processo MapReduce
 - 1) Il client avvia il processo (connessione con il Resource Manager)

Hadoop V2 – Esecuzione di un processo MapReduce

- Esecuzione di un processo MapReduce
 - 2) Il Resource Manager alloca un singolo contenitore in cui viene eseguito l'application master

Hadoop V2 – Esecuzione di un processo MapReduce

- Esecuzione di un processo MapReduce
 - 3) L'Application Master richiede ai container di eseguire tutte le attività (in nodi diversi)

I contenitori potrebbero non usare tutta la memoria disponibile in un nodo

Hadoop V2 – Executing a MapReduce process

- Execution of a MapReduce process
 - 4) Tutte le attività vengono eseguite nel container. Container vengono rilasciati una volta terminati i suoi compiti

Hadoop V2 – Executing a MapReduce process

- Esecuzione di un processo MapReduce
 - 5) L' **Application Master** nfinisce quando tutti i task sono stati completati e i container rilasciati

Come istalare Hadoop su Docker

 Istallare Docker Desktop: <u>https://www.docker.com/products/docker-desktop</u>

Richiederà preliminarmente di istallare (solo su Windows) il sottosistema Linux

• A questo url troverete le istruzioni per istallare hadoop.

https://medium.com/analytics-vidhya/how-to-easily-install-hadoop-with-docker-ad094d556f11

HDFS

- file system distribuito che viene gestito da dei demoni con un'architettura master/slave
- il contenuto del file system NON è (in generale) replicato sui vari nodi, ma spezzettato tra i vari nodi

NAMENODE

macchina 1 (master) datanode

macchina 2 (slave)

datanode

macchina 1 (slave)

copio un file dal file system locale in HDFS

Hadoop si occupa dello split in modo trasparente all'utente.

Verifico il contenuto di HDFS

• Il file mi viene mostrato come se fosse tutto intero su un unico supporto

```
:~$ hdfs dfs -ls /
Found x items
...
drwxr-xr-x - hadoop root 2010-03-16 11:36 /user/hadoop/file.txt!
...
```

• i comandi sono shell-like

```
:~$ hdfs dfs -mkdir mydir
:~$ hdfs dfs -rmr mydir
```

HDFS

- Può gestire autonomamente anche la replicazione dei dati.
- Parametro di configurazione:

macchina 1 (slave)

• Operazioni di base (con il commando Hadoop):

hadoop fs -1s <pat h=""></pat>	Elencare i file
hadoop fs -cp <src> <dst></dst></src>	Copiare file da HDFS a HDFS
hadoop $fs - mv < src > < dst >$	Spostare i file da HDFS a HDFS
hadoop fs -rm <pat h=""></pat>	Rimuovere i file in HDFS
hadoop fs -rmr <pat h=""></pat>	Rimuovi in modo ricorsivo in HDFS
hadoop fs -cat <pat h=""></pat>	Visualizzare il contenuto di un file in
	HDFS
hadoop fs -mkdir <path></path>	Creare una cartella HDFS
hadoop fs -put <localsrc> <dst></dst></localsrc>	Copiare i file da Locale a HDFS
hadoop fs -copyToLocal <src></src>	Copiare i file da HDFS in locale.
<1 oc a1 ds t >	
Anche:	
hadoop fs -get <src></src>	

- Cosa succede in Hadoop quando lancio questo comando?
- Viene chiamato il componente MapReduce runtime.

Quanti Me R task?

- Vorremmo il maggior grado di parallelismo possibile
 - la risposta dipende da:
 - 1. quale grado di parallelismo ho nella mia architettura? Quanti core?
 - 2. quanti dati devo processare?

Quanti Me R?

- Hadoop permette di specificare il grado di parallelismo di ogni macchina in configurazione esprimendo il numero di slot.
- uno slot è un contenitore in cui può finire un map/reduce task in esecuzione
- su una macchina quad-core specificherò:
 - n° map slots = 8
 - n° reduce slot = 8
- poiché la fase di map e la fase di reduce non si sovrappongono (quasi) mai core1 core2 core3 core4

- Supponiamo di voler fare wordcount su un file da 1GB e di avere 4 slave dual-core
- 8core totali 8 slot
- Soluzione di default di Hadoop:
 - ogni map processa dei chunk di massimo 64MB
 - il file viene spezzato in blocchi di 64MB
- Hadoop lancerà 1GB/64MB = 16 map task tutti insieme?

- è la soluzione migliore? forse no... 1GB/8core = 128MB
- Se avessi avuto dei chunk da 128MB, avrei fatto tutto in parallelo con soli 8 task e meno cambi di contesto.
- Hadoop permette di cambiare il valore del chunck di default in configurazione, ma
 - occorrono nozioni di computazione distribuita
 - effettivi miglioramenti si notano solo con molti TB
 - ⇒ solitamente hadoop decide da solo il numero di map
- numero di map task = numero di chunck da 64MB in input

- Questo lo decide l'utente!
 job.setNumReduceTasks(n);
- Gli sviluppatori di hadoop consigliano due valori ottenuti statisticamente:

```
0.95 * n° tot di reduce slot
```

se i core sono tutti uguali, oppure

```
1,75 * n° tot di reduce slot
```

se c'è qualche differenza di velocità tra i core delle varie macchine

Hadoop default partitioning

• Usare una hash function. Per cui Hadoop implementa questo partitioner di default:

 nessun ordinamento le coppie possono essere inviate ai R man mano che vengono prodotte dai M, senza attendere che si sia definita tutta la lista

```
getPartition("pluto","1",2) = 0

getPartition("topolino","1",2) = 1

getPartition("paperino","1",2) = 1

getPartition("topolino","1",2) = 1

getPartition("pippo","1",2) = 0

getPartition("people","1",2) = 0

getPartition("people","1",2) = 1

getPartition("people","1",2) = 1

getPartition("people","1",2) = 1

chiave
```

sui grandi numeri questo garantisce anche un certo bilanciamento del carico

Combiner

- In certi casi può essere vantaggioso far fare qualcosa di più ai map task anticipando il lavoro dei reducer.
- Es: wordcount classico
 - map emette per ogni w nel chunk, <w,1>
 - reduce emette <w,sum(values)>
- Così ho un sacco di traffico tra M e R: una coppia <w,1> per ogni w nel documento.
- Il reducer deve fare tutte le somme

• Se la funzione del reduce è associativa e commutativa, posso parzialmente anticiparla, facendola eseguire sulla stessa macchina del map task.

I Writables

- Hadoop richiede che tutti gli oggetti in output estendano l'interfaccia Writable
- Un writable è una ottimizzazione dell'oggetto Serializable
 - Nessun metadato è memorizzato
 - Evita di creare nuovi oggetti durante le operazioni
- Quali oggetti:
 - BooleanWritable, ByteWritable, ShortWritable, IntWritable, FloatWritable, LongWritable, DoubleWritable, ObjectWritable, NullWritable
 - Text
 - BytesWritable => byte[]
 - ArrayWritable, TwoDArrayWritable
 - MapWritable, SortedMapWritable

Cosa dobbiamo importare

```
import org.apache.hadoop.conf.*;
import org.apache.hadoop.fs.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.*;
import org.apache.hadoop.mapreduce.lib.output.*;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import java.io.IOException;
import java.util.StringTokenizer;
jimport java.util.regex.Pattern;
```

Struttura del Word Count

```
public class WordCount () {
    private WordCount() {
    }
    public static class TokenizerMapper extends Mapper<Object, Text, Text, LongWritable> {...}
    public static class SumReducer extends Reducer<Text, LongWritable, Text, LongWritable> {...}
    @Override
    public int run(String[] args) throws Exception {...}

public static void main(String[] args) throws Exception {
        int res = ToolRunner.run(new Configuration(), new WordCount(), args);
        System.exit(res);
    }
}
```

Il Mapper

```
public static class TokenizerMapper extends Mapper<Object, Text, Text, LongWritable> {
   private final static Pattern cleaner = Pattern.compile("[^a-z0-9\\s]");
    private final static LongWritable one = new LongWritable( value: 1);
    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {
        StringTokenizer itr = new StringTokenizer(
                cleaner.matcher(value.toString().toLowerCase())
                       .replaceAll( replacement: ""));
        while (itr.hasMoreTokens()) {
            context.write(new Text(itr.nextToken()), one);
```

Struttura di un mapper

```
public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
   public Mapper() {
      protected void setup(Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException {
      protected void map(KEYIN key, VALUEIN value, Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException {
      context.write(key, value);
    }
    protected void cleanup(Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException {
      protected void cleanup(Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException {
      }
    }
}
```

Il Reducer

```
public static class SumReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
    public void reduce(Text key, Iterable<LongWritable> values, Context context)
        throws IOException, InterruptedException {
        long sum = 0;
        for (LongWritable val : values) {
            sum += val.get();
        }
        context.write(key, new LongWritable(sum));
    }
}
```

Struttura di un reducer

Definizione del job

@Override

```
public int run(String[] args) throws Exception {
    Configuration conf = getConf();
    Job job = Job.getInstance(conf, jobName: "word-count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(SumReducer.class);
    job.setReducerClass(SumReducer.class);
    job.setInputFormatClass(TextInputFormat.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(LongWritable.class);
    FileInputFormat.addInputPath(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
    return job.waitForCompletion( verbose: true) ? 0 : 1;
```

Join

Cust ID	First Name	Last Name	Age	Profession
4000001	Kristina	Chung	55	Pilot
4000002	Paige	Chen	74	Teacher
4000003	Sherri	Melton	34	Firefighter
4000004	Gretchen	Hill	66	Engineer

Fig: cust_details

Trans ID	Date	Cust ID	Amount	Game Type	Equipment	City	State	Mode
0000000	06-26-2011	4000001	40.33	Exercise & Fitness	Cardio Machine Accessories	Clarksville	Tennessee	credit
0000001	05-05-2011	4000002	198.44	Exercise & Fitness	Weightlifting Gloves	Long Beach	California	credit
0000002	06-17-2011	4000002	5.58	Exercise & Fitness	Weightlifting Machine Accessories	Anaheim	California	credit
0000003	06-14-2011	4000003	198.19	Gymnastics	Gymnastics Rings	Milwaukee	Wisconsin	credit
0000004	12-28-2011	4000002	98.81	Team Sports	Field Hockey	Nashville	Tennessee	credit
0000005	02-14-2011	4000004	193.63	Outdoor Recreation	Camping & Backpacking & Hiking	Chicago	Illinois	credit
0000006	10-17-2011	4000005	27.89	Puzzles	Jigsaw Puzzles	Charleston	South Carolina	credit

Fig: transaction_details

Matrix-Vector multiplication

- An $n \times n$ matrix M with m_{ij} the element in row i and column j
- ullet A vector $oldsymbol{v}$ of length n whose jth element is v_i
- The matrix-vector product is the vector x of length n where

$$x_i = \sum_{j=1}^n m_{ij} v_j$$

• Key process of the ranking of Web pages where *n* is tens of billions

Matrix-Vector multiplication

- The matrix M and the vector v stored in a file of the DFS.
- Entry of the matrix can be stored with explicit coordinates (i,j m_{ij}) and therefore can be discovered.
- The same for v

Matrix-Vector multiplication on MapReduce

• Map:

- Operates in a chunk of of the matrix M
- For each element m_{ij} it produces the key-value pair $(i, m_{ij} \times v_i)$
- All terms of the sum that make up the component x_i will get the same key

• Reduce:

• Sums all the values associeated with a given key i. The result will be the pair (i, x_i)

If the vector v cannot fit in Main Memory

Matrix multiplication

 A matrix M and a matrix N with the columns of M equals to the number of rows of N. P = MN

$$p_{ik} = \sum_{j} m_{ij} n_{jk}$$

Matrix multiplication

- The matrix can be view as a relation with three attributes. M(I,J,V) with tuples (i,j,m_{ij}) and N(J,K,W) with tuples (j,k,n_{jk})
- The product NM is almost a natural join followed by gruping and aggregation.
- M(I,J,V) natural join N(J,K,W) (i,j,k,m_{ij},n_{jk})
- We want a four component tuple $(i,j,k,m_{ij},n_{jk}) \rightarrow (i,j,k,m_{ij} \times n_{jk})$

• Once we have $(i,j,k,m_{ij}\times n_{jk})$ we can perform a grouping on i and k and sum all $m_{ij}\times n_{jk}$

Matrix multiplication with 2 map reeduce Steps

• Map:

• For each entry m_{ij} produce the key value pair $(j, (M, i m_{ij}))$ the same we comput for n_{jk} $(j, (N, k n_{jk}))$

• Reduce:

• For each key j examin the list of associated values and produce a list of key-value pairs $((i,k),m_{ij}\times n_{jk})$

Map:

The identity function

• Reduce:

• For each (i,k) produce the sum of the list of values associated with this key ((i,k),v) where v is the falue of the element in row i and column k of the matrix P= MN

Problem

- Design MapReduce algorithms to take a very large file of integers and produce as output:
 - The largest integer
 - The average of all the integers
 - The same set of integers, but with each integer appearing only once
 - The count of the number of distinct integers in the input
 - Prodotto di due matrici con una sola coppia M/R

Cost Measures for Algorithms

- In MapReduce we quantify the cost of an algorithm using
- 1. Communication cost = total I/O of all processes
- 2. Elapsed communication cost = max of I/O along any path
- 3. (Elapsed) computation cost analogous, but count only running time of processes

Note that here the big-O notation is not the most useful (adding more machines is always an option)

Example: Cost Measures

- For a map-reduce algorithm:
 - Communication cost = input file size + 2 × (sum of the sizes of all files passed from Map processes to Reduce processes) + the sum of the output sizes of the Reduce processes.
 - Elapsed communication cost is the sum of the largest input + output for any map process, plus the same for any reduce process

What Cost Measures Mean

- Either the I/O (communication) or processing (computation) cost dominates
 - · Ignore one or the other
- Total cost tells what you pay in rent from your friendly neighborhood cloud
- Elapsed cost is wall-clock time using parallelism

Cost of Map-Reduce Join

- Total communication cost
 - $= O(|R|+|S|+|R\bowtie S|)$
- Elapsed communication cost = O(s)
 - We're going to pick k and the number of Map processes so that the I/O limit s is respected
 - We put a limit s on the amount of input or output that any one process can have, s could be:
 - · What fits in main memory
 - What fits on local disk
- With proper indexes, computation cost is linear in the input + output size
 - So computation cost is like comm. cost