Vorlesung 4

Datensatz

- Für die aufgezeichneten Messwerte soll ein Modell erstellt werden
- Ein lineares Modell erscheint sinnvoll
- Modellparameter sollen mit "Gradient Descent" Algorithmus gefunden werden

Loss Function

- Die Loss Function erzeugt aus dem Modellfehler eine Zahl
- Ziel des
 Algorithmus ist,
 diese Zahl zu
 minimieren

Quelle: Deep Learning with PyTorch

Gradient der Loss Function

- Die Parameter sollen iterativ entlang des Gradienten der Loss Function verbessert werden
- Gradient wird mit Kettenregel berechnet

loss
$$L(m_{w,b}(x))$$
 $V = \left(\frac{\partial L}{\partial w}, \frac{\partial L}{\partial b}\right) = \left(\frac{\partial L}{\partial w}, \frac{\partial w}{\partial w}, \frac{\partial L}{\partial w}, \frac{\partial w}{\partial b}\right)$

gradient

partial

model parameters

derivatives

 $M_{w,b}(x)$

Quelle: Deep Learning with PyTorch

Übertraining

Aufgaben

- Implementieren Sie das in der Vorlesung gezeigte "Gradient Descent"
 Beispiel in numpy
- Implementieren Sie eine Ausgleichsgerade mit dem Verfahren der kleinsten Quadrate für die in der Vorlesung gezeigten Daten

Abgabe per Github bis zum 02.05.2023 23:59 Uhr