MPSI 2

Programme des colles de mathématiques.

Semaine 6: du lundi 15 novembre au vendredi 19.

Liste des questions de cours

- 1°) Forme irréductible d'un rationnel : montrer l'existence et l'unicité.
- 2°) Montrer que $\sqrt{2}$ est irrationnel.
- 3°) Dans un ensemble ordonné quelconque, si A et B sont deux parties possédant des bornes supérieures et si $A \subset B$, comparez sup A et sup B. Démontrez-le.
- 4°) Si S et T sont deux parties non vides majorées de \mathbb{R} , montrer que $\sup(S+T)=\sup S+\sup T$.
- $\mathbf{5}^{\circ}$) Soit A une partie de \mathbb{R} non vide et majorée. Montrer qu'il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de A qui converge vers $\sup(A)$.
- 6°) Montrer qu'une union d'intervalles possédant un point commun est un intervalle.
- ${\bf 7}^{\circ})~$ En
oncer l'inégalité triangulaire. En déduire son corollaire.
- 8°) Donner deux définitions d'une partie dense dans \mathbb{R} et montrer qu'elles sont équivalentes.
- 9°) Enoncer et démontrer les CNS de divisibilité par 2, 5, 10, 3, 9 et 11.
- $\mathbf{10}^{\circ}$) Si $(v_n)_{n\geq 1}$ est une suite de chiffres compris entre 0 et 9, montrer qu'on peut définir

$$x = \sum_{n=1}^{+\infty} v_n 10^{-n}$$
, où $x \in [0,1]$. Montrer que $[x = 1 \iff (\forall n \in \mathbb{N}^*, \ v_n = 9)]$.

 $\mathbf{11}^{\circ}$) Soit $a \in \mathbb{N}$ avec $a \geq 2$. Enoncer et démontrer la propriété d'existence et d'unicité du développement en base a du réel x.

Les thèmes de la semaine

1 Arithmétique sur \mathbb{Z}

En révision.

2 Les rationnels

Construction de \mathbb{Q} .

- $(\mathbb{Q}, +, \times)$ est un corps, c'est-à-dire que
 - $(\mathbb{Q}, +, \times)$ est un anneau,
 - \mathbb{Q} n'est pas réduit à $\{0\}$ (on note $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$),
 - \mathbb{Q} est commutatif,
 - tout élément non nul de \mathbb{Q} est inversible : $\forall x \in \mathbb{Q}^*, \exists y \in \mathbb{Q}^*, xy = 1$.

Comme tout corps, \mathbb{Q} est intègre.

Ordre sur \mathbb{Q} , valeur absolue.

Forme irréductible d'une fraction rationnelle.

3 Les réels

3.1 Bornes supérieures

Définition de sup A et inf A dans un ensemble ordonné quelconque, lien avec la notion de maximum.

$$B \subset A \Longrightarrow \sup(B) \le \sup(A), B \subset A \Longrightarrow \inf(B) \ge \inf(A).$$

Passage à la borne supérieure (resp : inférieure) : $[\forall a \in A, a \le e] \iff \sup(A) \le e$.

3.2 Une caractérisation de \mathbb{R} .

Caractérisation de \mathbb{R} : (admise)

Il existe au moins un corps K totalement ordonné dans lequel toute partie non vide majorée admet une borne supérieure. Il est unique à un isomorphisme de corps ordonnés près.

Toute partie non vide minorée de \mathbb{R} possède une borne inférieure.

$$s = \sup(A) \Longleftrightarrow [\forall a \in A, \ a \le s] \land [\forall \varepsilon > 0, \ \exists a \in A, \ s - \varepsilon < a].$$

$$m = \inf(A) \Longleftrightarrow [\forall a \in A, \ a \ge m] \land [\forall \varepsilon > 0, \ \exists a \in A, \ m + \varepsilon > a].$$

3.3 La droite réelle achevée

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}.$$

Toute partie de $\overline{\mathbb{R}}$ possède une borne supérieure et une borne inférieure.

3.4 Les intervalles

Définition. Intervalles ouverts et fermés, segments.

On dit que $A \subset \mathbb{R}$ est convexe si et seulement si pour tout $a, b \in A$ avec $a < b, [a, b] \subset A$. Les parties convexes de \mathbb{R} sont exactement ses intervalles.

Une intersection d'intervalles de \mathbb{R} est un intervalle de \mathbb{R} .

Une union d'intervalles possédant un point commun est un intervalle.

3.5 la valeur absolue

L'inégalité triangulaire et son corollaire.

Distance entre réels : d(x,y) = |x-y|. Inégalité triangulaire : $d(x,z) \le d(x,y) + d(y,z)$.

3.6 Propriétés usuelles des réels

 $\mathbb R$ est archimédien : Pour tout $a,b\in\mathbb R_+^*,\,\exists n\in\mathbb N,\ na>b.$

Parties entières inférieure et supérieure.

 $A \subset \mathbb{R}$ est dense dans \mathbb{R} ssi pour tout $x, y \in \mathbb{R}$ avec x < y, il existe $a \in A$ tell que $x \le a \le y$, ou bien ssi pour tout $x \in \mathbb{R}$, il existe une suite $(a_n)_{n \in \mathbb{N}}$ d'éléments de A telle que $a_n \xrightarrow[n \to +\infty]{} x$.

 \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

4 Développement décimal

4.1 Développement décimal d'un entier naturel

Développement d'un entier naturel en base a, où $a\in\mathbb{N}$ avec $n\geq 2.$

CNS de divisibilité par 2, 5, 10, 3, 9 et 11.

4.2 L'ensemble $\mathbb D$ des nombres décimaux

Définition.
$$\mathbb{D} = \left\{ \frac{n}{10^k} / n \in \mathbb{Z} \text{ et } k \in \mathbb{N} \right\}.$$

Développement décimal d'un élément de \mathbb{D} .

4.3 Approximation d'un réel

Définition d'une valeur approchée à ε près, éventuellement par défaut ou par excès. Le réel x est approché par défaut à 10^{-p} près par le nombre décimal $\frac{\lfloor 10^p x \rfloor}{10^p}$.

4.4 Développement décimal d'un réel

Soit $a \in \mathbb{N}$ avec $a \ge 2$.

Si
$$(v_n)$$
 est une suite de "chiffres" entre 0 et $a-1$, définition de $x=\sum_{n=1}^{+\infty}v_na^{-n}\in[0,1]$: On dit que

$$(v_n)_{n\geq 1}$$
 est un développement de x en base a et on note $x=0, \overline{v_1v_2\cdots v_nv_{n+1}\cdots}$. De plus, $x\in [0,1]$ et $[x=1\Longleftrightarrow (\forall n\in\mathbb{N}^*,\ v_n=a-1)]$.

Théorème. Tout réel de
$$[0,1[$$
 admet un unique développement en base a dans \mathcal{V} , où $\mathcal{V} = \{(v_n)_{n \geq 1} / \forall n \in \mathbb{N}^* \ v_n \in \mathbb{N} \cap [0,a[$ et $\forall N \in \mathbb{N}^* \ \exists n \geq N \ v_n \neq a-1\}.$

Théorème hors programme : caractérisation d'un rationnel. Soit $x \in [0, 1[$. x est un rationnel si et seulement si son développement décimal est périodique à partir d'un certain rang.

Prévisions pour la semaine prochaine :

Applications, images directe et réciproque, injectivité et surjectivité. Lois internes.