EE 241B HW1 Writeup

Vighnesh Iyer

Contents

	Models - MOSFET Characterization 1.1 Threshold Voltages	1 1
2	Fit Velocity Saturation Model	3
A	PMOS/NMOS DC Characterization SPICE Sim	4
В		4

1 Models - MOSFET Characterization

We are using a 32nm LP CMOS process for this class. The devices being characterized are n105 and p105 (TT corner) with a nominal supply voltage of 1.05V.

1.1 Threshold Voltages

We want to determine the threshold voltage V_{th} for the NMOS and PMOS devices (for $V_{BS} = 0$, L = 32nm, and $W = 1\mu$ m), by extrapolating from the I_DS vs. V_{GS} curve at low V_{DS} . We compare the threshold voltage derived from DC sweeps to the values reported in the model file and the DC operating point analysis.

To perform this characterization, we first collect a full range of DC operating points for both transistors to make analysis easier for this entire section. The transistors' drains are connected to a variable DC supply and the transistors' gates are connected to another independent variable DC supply. The source for both transistors is held at ground (0V). We perform a nested DC analysis by sweeping V_{DS} from $0 \to 1.05$ V in (10mV) increments, and sweep V_{GS} from $0 \to 1.05$ V in (10mV) increments.

The gathered I-V curves are shown below.

From the DC OP analysis, V_{th} of the NMOS is reported to be 324.4 mV, and the V_{th} of the PMOS is reported to be -208.1 mV. From the model files the NMOS V_{th} is 370 mV, and the PMOS V_{th} is -213 mV.

To extract the threshold voltage from the I-V curves, we extrapolate the V_{GS} vs I_{DS} curves for a low value of V_{DS} to keep the transistor in the linear region of operation. Then we fit a linear curve to the points where V_{GS} : [0.4, 0.6] for each V_{DS} curve. We treat the x-intercept of those linear curves as the V_{th} of the transistor for the given value of V_{DS} . This method is shown for NMOS and PMOS transistors.

The images on the left side show the linear fit to each curve, while the images on the right side show the extrapolated V_{th} for each V_{DS} curve. As expected, with increased V_{DS} the threshold voltage improves for both devices.

The extrapolated results for the NMOS match the model files and the DC operating point measurement well. However, the PMOS threshold voltage is off by around 100 mV.

2 Fit Velocity Saturation Model

In class, we use this model for I_{DSat} :

$$I_{DSat} = \frac{W}{L} \frac{\mu_{eff} C_{ox} E_{C} L}{2} \frac{(V_{GS} - V_{th})^{2}}{(V_{GS} - V_{th}) + E_{C} L}$$

We want to find the values of E_CL that best fit the NMOS and PMOS characteristics. We will use the V_{th} value from the previous section. We take the case of the V_{DS} curve where $V_{DS} = V_{DD}$ to keep the transistors fully saturated and we sweep V_{GS} . We then fit our simulation data in saturation where $V_{GS} > V_{th}$ to this model with E_CL and k' as free variables.

A PMOS/NMOS DC Characterization SPICE Sim

```
Sweep of V_GS with constant V_DS for N-MOSFET
.lib '/home/ff/ee241/synopsys-32nm/hspice/saed32nm.lib' TT
vds vds gnd 1.05
vgs vgs gnd 1.05
x1 vds vgs gnd gnd n105 (w=1u l=32n)
.op
.dc vgs 0 1.05 10m vds 0 1.05 10m
.option post=2 nomod
.end
```

 \mathbf{B}