

planetmath.org

Math for the people, by the people.

one-sided continuity by series

Canonical name OnesidedContinuityBySeries

Date of creation 2013-03-22 18:34:03 Last modified on 2013-03-22 18:34:03

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 10

Author pahio (2872)
Entry type Theorem
Classification msc 40A30
Classification msc 26A03

Synonym one-sided continuity of series with terms one-sidedly continuous

Related topic OneSidedContinuity
Related topic SumFunctionOfSeries

Theorem. If the function series

$$\sum_{n=1}^{\infty} f_n(x) \tag{1}$$

is uniformly convergent on the interval [a, b], on which the $f_n(x)$ are continuous from the right or from the left, then the sum function S(x) of the series has the same property.

Proof. Suppose that the terms $f_n(x)$ are continuous from the right. Let ε be any positive number and

$$S(x) := S_n(x) + R_{n+1}(x),$$

where $S_n(x)$ is the n^{th} partial sum of (1) (n = 1, 2, ...). The uniform convergence implies the existence of a number n_{ε} such that on the whole interval we have

$$|R_{n+1}(x)| < \frac{\varepsilon}{3}$$
 when $n > n_{\varepsilon}$.

Let now $n > n_{\varepsilon}$ and $x_0, x_0 + h \in [a, b]$ with h > 0. Since every $f_n(x)$ is continuous from the right in x_0 , the same is true for the finite sum $S_n(x)$, and therefore there exists a number δ_{ε} such that

$$|S_n(x_0+h) - S_n(x_0)| < \frac{\varepsilon}{3}$$
 when $0 < h < \delta_{\varepsilon}$.

Thus we obtain that

$$|S(x_0+h) - S(x_0)| = |[S_n(x_0+h) - S_n(x_0)] + R_{n+1}(x_0+h) - R_{n+1}(x_0)|$$

$$\leq |S_n(x_0+h) - S_n(x_0)| + |R_{n+1}(x_0+h)| + |R_{n+1}(x_0)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

as soon as

$$0 < h < \delta_{\varepsilon}$$
.

This means that S is continuous from the right in an arbitrary point x_0 of [a, b].

Analogously, one can prove the assertion concerning the continuity from the left.