EE223 Analog Integrated Circuits Fall 2018

Lecture 6: MOS Capacitances

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

MOS Low-Frequency Small-Signal Model

$$\begin{split} g_{m} &= \frac{\partial i_{D}}{\partial v_{gs}} \bigg|_{Q} \approx \mu C_{OX} \frac{W}{L_{eff}} \left(V_{GS} - V_{T} \right) \bigg|_{Q} \\ g_{0} &= \frac{\partial i_{D}}{\partial v_{ds}} \bigg|_{Q} \approx \left(\frac{\mu C_{OX}}{2} \right) \left(\frac{W}{L_{eff}} (V_{GS} - V_{T})^{2} \right) \bigg|_{Q} \lambda \quad \approx \lambda I \\ g_{mb} &= \frac{\partial i_{D}}{\partial v_{bs}} \bigg|_{Q} \approx \mu C_{OX} \quad \frac{W}{L_{eff}} \left[V_{GS} - V_{T} \right] \bigg|_{Q} \quad \left(-\frac{\partial V_{T}}{\partial v_{bs}} \bigg|_{Q} \right) \quad \cong \frac{\gamma g_{m}}{2\sqrt{2\phi_{F} + V_{SB}}} = \eta g_{m} \end{split}$$

MOS Transistor Capacitances

Gate - Channel Cap = $C_{GC} = WL_{eff}C_{ox}$

Channel - Bulk Cap =
$$C_{CB} = WL_{eff} \sqrt{\frac{q \varepsilon_{Si} N_{sub}}{4\Phi_F}}$$

Gate - Source Overlap (Fringing) Cap = $C_{GSov} = WC_{ov}$ Note, $C_{ov} \neq C_{ox}L_D$

Gate - Drain Overlap (Fringing) Cap = $C_{GDov} = WC_{ov}$

Source - Bulk Junction Cap = $C_{SBJ} = A_S C_j + P_S C_{jsw}$

Drain - Bulk Junction Cap = $C_{DBJ} = A_D C_j + P_D C_{jsw}$

$$C_{j} = \frac{C_{j0}}{\left(1 + \frac{V_{BX}}{\Phi_{B}}\right)^{m}} \qquad C_{jsw} = \frac{C_{jsw0}}{\left(1 + \frac{V_{BX}}{\Phi_{B}}\right)^{msw}}$$

MOS Transistor Capacitances (Off)

Gate - Drain Cap =
$$C_{GD} = C_{GDov} = WC_{ov}$$

Gate - Source Cap =
$$C_{GS} = C_{GDov} = WC_{ov}$$

$$Gate - Bulk Cap = C_{GB} = \frac{C_{GC}C_{CB}}{C_{GC} + C_{CB}}$$

Drain - Bulk Cap =
$$C_{DB} = C_{DBJ}$$

Source - Bulk Cap =
$$C_{SB} = C_{SBJ}$$

MOS Transistor Capacitances (Triode)

Gate - Drain Cap =
$$C_{GD} = C_{GDov} + \frac{1}{2}C_{GC}$$

Gate - Source Cap =
$$C_{GS} = C_{GSov} + \frac{1}{2}C_{GC}$$

Gate - Bulk Cap =
$$C_{GB} \approx 0$$

Drain - Bulk Cap =
$$C_{DB} = C_{DBJ} + \frac{1}{2}C_{CB}$$

Source - Bulk Cap =
$$C_{SB} = C_{SBJ} + \frac{1}{2}C_{CB}$$

MOS Transistor Capacitances (Saturation)

Gate - Drain Cap =
$$C_{GD} = C_{GDov}$$

Gate - Source Cap =
$$C_{GS} = C_{GSov} + \frac{2}{3}C_{GC}$$

Gate - Bulk Cap =
$$C_{GB} \approx 0$$

Drain - Bulk Cap =
$$C_{DB} = C_{DBJ}$$

Source - Bulk Cap =
$$C_{SB} = C_{SBJ} + \frac{2}{3}C_{CB}$$

MOS Small-Signal Model including Capacitances

MOS Source & Drain Junction Capacitors

MOS Layout

When Diffusion and Poly Intersects in the layout, Transistor is formed.

MOS Layout

Metal is used to make the circuit connection between transistors.

MOS Layout Example

Mask Layers

- Layer numbers are assigned to Well, Active, Poly, Contact, Metal, Via, Silicide Protect, and Dummy, respectively.
- Some layer is automatically generated from the pattern on the drawn layer.
 - ex. FOX and GOX is generated from the pattern on the active layer.

