Universidade Federal de Minas Gerais

Engenharia de Sistemas

Estudo de Caso 1: Inferência Estatística Com Uma Amostra

Gustavo Vieira Costa - 2010022003 Rafael Castro - 2013030210 Thaís Matos Acácio - 2013030287 08/04/2016

1 Introdução

O BMI (body mass index, ou índice de massa corporal) é um indicador frequentemente usado em avaliações clínicas de questões relacionadas ao peso de um indivíduo. Este índice é calculado como a razão entre o peso e o quadrado da estatura.

O professor Felipe Campelo, do Departamento de Engenharia Elétrica da UFMG, reporta estar atualmente com um valor de $BMI = 26.3kg/m^2$. Neste estudo de caso vamos buscar responder à pergunta: Os alunos do curso de Engenharia de Sistemas estão, em média, mais "acima do peso" (de acordo com o BMI) do que este professor? Para isso, cada um dos alunos da disciplina forneceu seu peso e estatura de forma anonimizada, formando uma base de dados com a qual pretende-se realizar a inferência estatística a respeito da população.

2 Coleta de dados

Resultados a partir de uma amostra aleatória obedecem as leis de probabilidade, as quais governam o comportamento aleatório e permitem inferência confiável sobre a população.

A Tabela 1 contém a amostra de dados coletados, informados pelos alunos da turma, juntamente com o valor do índice BMI calculado utilizando a seguinte fórmula:

$$bmi = \frac{m}{h^2} \tag{1}$$

onde m é o peso dado em kg e h a altura dada em metros.

Peso	Altura	BMI
48.0	1.56	19.72387
61.5	1.67	22.05170
60.0	1.68	21.25850
63.0	1.65	23.14050
57.0	1.69	19.95728
80.0	1.83	23.88844
76.0	1.71	25.99090
70.0	1.71	23.93899
70.0	1.65	25.71166
66.0	1.83	19.70796
52.0	1.64	19.33373
68.0	1.78	21.46194
82.5	1.76	26.63352

Tabela 1: Tabela de Amostras

A partir dos índices BMI calculados podemos obter a média amostral \bar{x} e o desviopadrão da amostra s, os quais quais são estimativas da média μ e do desvio-padrão σ da população completa.

De acordo com o *Teorema do Limite Central*, se a amostra tiver tamanho n suficiente, a distribuição amostral de \bar{x} é aproximadamente Normal.

$$\bar{x}$$
é aproximadamente $N(\mu,\frac{\sigma}{\sqrt{n}})$

Neste experimento, iremos considerar que o tamanho da amostra n é suficiente, pois assim poderemos utilizar os cálculos da probabilidade Normal para responder a questões sobre médias amostrais de muitas observações. Mais observações serão necessárias se a forma da distribuição populacional estiver longe da Normal.

3 Estratégia de Inferência

O processo de inferência estatística consiste em tirar conclusões sobre uma população com base em informações extraídas de amostras da mesma. No presente estudo de caso, o parâmetro sobre o qual temos interesse é a média μ do índice BMI da população (alunos de Engenharia de Sistemas).

Hipóteses de Teste

O teste estatístico é planejado para avaliar a força da evidência contra a hipótese nula H_0 . Usualmente, a hipótese nula é uma afirmativa de "nenhum efeito". A afirmativa sobre a população a favor da qual estamos tentando achar evidência é a hipótese alternativa H_1 . Logo, as hipóteses são:

$$\begin{cases}
H_0: & \mu = \mu_0 \\
H_1: & \mu > \mu_0
\end{cases}$$
(2)

sendo μ a média da população, e μ_0 o valor de referência, ou seja, BMI do professor $(26.3kg/m^2)$.

Sempre que se seleciona uma amostra existe uma discrepância entre a média dessa amostra e a média da população, esse fato é conhecido como erro padrão da média ou erro amostral. Com base nisso, considerando μ_0 como a média populacional, é possível estudar o erro amostral utilizando o teste estatístico t com n-1 graus de liberdade.

O teste t foi escolhido pois não se sabe previamente qual o desvio padrão da população, o qual consideramos possuir distribuição normal. O termo "graus de liberdade" se refere ao número de observações que são completamente livres para variar.

Premissas do Teste

- O **nível de significância**, α , representa a probabilidade de erro tipo I, ou seja, a probabilidade de rejeitarmos a hipótese nula quando ela é efetivamente verdadeira. Pensando em uma taxa de erro aceitável para o domínio do problema, fixamos $\alpha = 0.05$.
- β representa a **probabilidade de erro tipo II**, ou seja, aceitarmos a hipótese nula quando ela é efetivamente falsa. Resolvemos permitir um erro tipo II de 20% ($\beta = 0.2$), considerando que esse tipo de erro tem menor impacto negativo do que o erro tipo I.
- Nível de confiança (1α) tem como objetivo conhecer o quanto o teste de hipóteses controla um erro do tipo I, ou qual a probabilidade de aceitar a hipótese nula se realmente for verdadeira.
- O **poder do teste** $(1-\beta)$ tem como objetivo conhecer o quanto o teste de hipóteses controla um erro do tipo II ou, qual a probabilidade de rejeitar a hipótese nula se realmente for falsa.
- Definimos o menor tamanho de efeito de importância prática como 2, tomando como referência o intervalo normal do BMI, o qual varia de 18.5 a 24.99.

O intervalo de confiança representa a probabilidade do BMI de um aluno escolhido aleatoriamente se encontrar entre os valores limites, inferior e superior, calculados pela distribuição t-student com 12 graus de liberdade.

A probabilidade, calculada supondo-se H_0 verdadeira, de que a estatística de teste assuma um valor tão ou mais extremo do que o valor realmente observado é chamada de valor \mathbf{P} .

4 Projeto experimental

O código do experimento e o arquivo com os dados da amostra utilizada se encontram disponíveis para download em https://goo.gl/tWi1GV. Para executá-lo, basta compilar o Script no RStudio e as informações completas sobre sua execução serão exibidas no console da aplicação.

```
Segue o código:
> mu < - 26.3;
+ \text{ alpha } \leftarrow 0.05;
+ \#Ler dados de entrada
+ dados <- read.table("data.csv", header=FALSE, sep=";");
+ #Calculo do BMI
+ BMI \leftarrow dados [1]/(dados [2]^2);
+ #Numero de Amostras
+ n \leftarrow nrow(BMI);
+
+ \#Media
+ x_bar \leftarrow mean(as.matrix(BMI));
+ #Tamanho de Efeito
+ size_effect \leftarrow x_bar - mu;
+
+ #Desvio padrao
+ s < - sqrt(sum((BMI-x_bar)^2)/(n-1));
+ \# t \ critico
+ \mathbf{t}_{-} alpha \leftarrow \mathbf{qt} (alpha/2, n-1);
+
```

```
+ #T0
+ t0 <- (x_bar - mu)/(s/sqrt(n));
+
+ #Intervalo de confianca
+ inter_min <- x_bar + (s*t_alpha / (sqrt(n)));
+ inter_max <- x_bar - (s*t_alpha / (sqrt(n)));</pre>
```

Através do código acima, foi possível obter os resultados necessários para comparação com nossa hipótese inicial.

5 Análise dos Resultados

Executando o algoritmo apresentado na seção 4 (Projeto Experimental), obtemos os seguintes valores para os parâmetros calculados:

```
Valor de mu: 26.3

Valor de alpha: 0.05

Numero de amostras: 13

Media amostral: 22.5230002789605

Desvio padrao: 2.56258202347936

Tamanho de efeito: -3.77699972103948
```

T critico: -2.17881282966723

T0: -5.31423620272294

Intervalo de confianca: 20.9744474604701 a 24.0715530974509

Podemos perceber que os dados são estatisticamente significantes no nível α , pois o valor $P < \alpha$.

Usando a média amostral \bar{x} e o desvio padrão amostral s, encontramos a estatística t para hipótese e o valor encontrado se encontra na região de rejeição do intervalo de confiança, ou seja, $t_0 < t_{\alpha/2}$, portanto rejeitamos a hipótese nula.

6 Conclusão

Como o intervalo de confiança da média do BMI dos alunos de Engenharia de Sistemas calculado na rotina apresentada, com nível de confiança de 95% não contém o valor de μ_0 BMI do professor Felipe Campelo, podemos concluir que os alunos de Engenharia de Sistemas não estão, em média, mais "acima do peso" (de acordo com o BMI) do que este professor.

Para o teste de potência, após rodar o algoritmo do projeto experimental, executamos o seguinte comando, com delta igual a 2, como discutido na seção 3, nas premissas do teste:

```
\label{eq:power_states} \textbf{power.t.test} \ (\texttt{n=n}, \ \texttt{delta=2}, \ \textbf{sd=s}, \ \texttt{sig.level=alpha}, \ \texttt{type="one.sample"}) Como saída, obtemos:
```

One-sample t test power calculation

```
n = 13
delta = 2
sd = 2.562582
sig.level = 0.05
power = 0.7336574
alternative = two.sided
```

Como se pode notar pelo resultado, a potência do teste é 0.7336574. Como forma de melhoria, executamos o seguinte algoritmo para sabermos quantas amostras precisaríamos para ter uma potência igual a 0.9:

E o resultado foi:

One-sample t test power calculation

```
n = 19.27387
delta = 2
sd = 2.562582
sig.level = 0.05
power = 0.9
alternative = two.sided
```

Sendo assim, precisaríamos de 20 amostras para termos um teste de cerca de 0.9 de potência.

Referências

- [1] https://github.com/fcampelo/Design-and-Analysis-of-Experiments
- [2] Estatística Aplicada e Probabilidade para Engenheiros (4ª edição) Montgomery
- [3] A Estatística Básica e Sua Prática (6ª edição) David S. Moore, William I. Nortz, Michael A. Fligner
- [4] https://www.youtube.com/watch?v=SacXljL9dKQ&nohtml5=False
- [5] https://www.youtube.com/watch?v=TJbnkmiZiRU&nohtml5=False