Modeling infectious diseases

Modeling infectious diseases using R: Practical Session

Static and Dynamic aspects of SIR model

What do we cover in this practical session?

- Simple transmission models in R.
- SIR: static aspect (time homogeneity).
- SIR: dynamic aspects.
- Vaccination.
- Software: the deSolve package in R.

R requirements

- Basic knowledge in R.
- Programming of a user defined simple function.
- Why R?
- 1. Free.
- 2. Fast (not in our case).
- 3. Updated.
- 4. Documented.

Part 1: time homogeneity

SIR model :time homogeneity

SIR model: time homogeneity

The force of infection = 0.2. On average: 5 years in the susceptible class.
$$\frac{dS(a)}{da} = -\lambda S(a)$$

$$\frac{dI(a)}{da} = \lambda S(a) - \sigma I(a)$$

$$\frac{dR(a)}{da} = \sigma I(a)$$
 The recovery rate: 10 days.

The unit of the parameters are in years

Transmission models in R

 We need to integrate the system of the ordinary differential equation.

$$\frac{dS(a)}{da} = -\lambda S(a)$$

$$\frac{dI(a)}{da} = \lambda S(a) - \sigma I(a)$$

$$\frac{dR(a)}{da} = \sigma I(a)$$

- deSolve package in R.
- Numerical integration using of ODE system.

Transmission models in R

SIR model

$$\frac{dS(a)}{da} = -\lambda S(a)$$

$$\frac{dI(a)}{da} = \lambda S(a) - \sigma I(a)$$

$$\frac{dR(a)}{da} = \sigma I(a)$$

Specification in R

- Model parameters.
- State variables (the value of the parameters at age (time) zero.
- Time range (=age range) for integration.

Transmission models in R

Specification of the model
$$\frac{\frac{dS(a)}{da} = -\lambda S(a)}{\frac{dI(a)}{da} = \lambda S(a) - \sigma I(a)}$$
$$\frac{\frac{dR(a)}{da}}{\frac{dR(a)}{da}} = \sigma I(a)$$

Specification of the model parameters in R

The state variables (initial values at age 0)

- •Let us assume that the cohort size is 5000.
- •At age=0:

$$S(0) = 4999$$

$$I(0) = 1$$

$$R(0) = 0$$

•Specification in R:

Specification of the model in R

$$\frac{dS(a)}{da} = -\lambda S(a)$$

$$\frac{dI(a)}{da} = \lambda S(a) - \sigma I(a)$$

$$\frac{dR(a)}{da} = \sigma I(a)$$

```
SIR<-
function(t,state,parameters)
{
with(as.list(c(state,
parameters)),
{
dX <- -lambda*X
dY <- lambda*X - v*Y
dZ <- v*Y
list(c(dX, dY, dZ))
})
}</pre>
```

We ask from the function to return the values of S, I and R

Specification of the time units for the integration

$$\frac{dS(a)}{da} = -\lambda S(a)$$

$$\frac{dI(a)}{da} = \lambda S(a) - \sigma I(a)$$

$$\frac{dR(a)}{da} = \sigma I(a)$$

- The solution of the model: numerical integration.
- Time units: age.
- Integration from age 0 to age 40 by unit of 0.01 years

```
> times<-seq(0,40,by=0.01)
> times
    [1] 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
    [13] 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23
    [25] 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35
    [37] 0.36 0.37
```

Running the model

require(deSolve)
out<-as.data.frame(ode(y=state,times=times,func=SIR,parms=parameters))

The state variables: The model
the values at age 0. parameters: force of
infection (0.2) and
recovery rate (10
dats)

Running the model

Solution

Graphical output

```
> plot (times,out$X ,type="1",main="X", xlab="time", ylab="-",lwd=2)
> lines(times,out$Z,col=3,lwd=2)
```


Graphical output

> plot (times,out\$Y ,type="1",main="\forall", xlab="time", ylab="-",lwd=2)

Graphical output

Duration of stay in the different compartments of the models

Graphical output

We expect to see only few infected individuals at each age (compared to the number of susceptible and immune).

Duration of stay in the different compartments of the models

Let us assume that the recovery rate is 2 months (i.e. individuals stay in the infected class 2 months)
What do we expect to see ?

The model with recovery rate of 2 months

```
parameters <- c(lambda = 0.2, v=6.083333)
parameters
state <- c(X=4999,Y=1,Z=0)
SIR<-function(t,state,parameters)
                                                                                    Recover rate of 2 months
with(as.list(c(state, parameters)),
                                                                                    (60 days)
dX <- -lambda*X
dY <- lambda*X - v*Y
dZ <- v*Y
list(c(dX, dY, dZ))
times<-seq(0,40,by=0.01)
times
require(deSolve)
out <- as.data.frame(ode(y=state,times=times,func=SIR,parms=parameters))
head(out)
\label{eq:parting} \begin{split} & par(mfrow=c(1,2),\ oma=c(0,0,3,0)) \\ & plot\ (times,out\$X\ ,type="l",main="X",\ xlab="time",\ ylab="-",lwd=2) \end{split}
lines(times,out$Z,col=3,lwd=2)
plot (times,out$Y ,type="l",main="Y", xlab="time", ylab="-",lwd=2)
mtext(outer=TRUE,side=3,"SIR model",cex=1.5)
```

Graphical output (force of infection of 0.2 and recovery rate of 2 months)

Part 2: Mass action prenciple

The Mass-Action Principle

Contacts are made in random.

Number of new cases=P(transmission) X # of infectious X # of susceptible

The Mass-Action Principle

Contacts are made in random.

Number of new cases=P(transmission) X # of infectious X # of susceptible

The Mass-Action Principle

Contacts are made in random.

Number of new cases=P(transmission) X # of infectious X # of susceptible

The Mass-Action Principle

Contacts are made in random.

Number of new cases:

$$\beta \times I \times S$$

Transmission probability per contact

Number of new cases=P(transmission) X # of infectious X # of susceptible

The Mass-Action Principle

$$\frac{dS(a)}{da} = -\lambda S(a)$$

$$\frac{dI(a)}{da} = \lambda S(a) - \sigma I(a)$$

$$\frac{dR(a)}{da} = \sigma I(a)$$

$$\frac{dS(a)}{da} = (\beta \times I(a) \times S(a)) + \sigma I(a)$$

$$\frac{dI(a)}{da} = (\beta \times I(a) \times S(a)) + \sigma I(a)$$

$$\frac{dR(a)}{da} = \sigma I(a)$$

Age dependent force of infection

$$\frac{dS(a)}{da} = -\lambda(a)S(a)$$

$$\frac{dI(a)}{da} = \lambda(a)S(a) - \sigma I(a)$$

$$\frac{dI(a)}{da} = \sigma I(a)$$

$$\frac{dI(a)}{da} = \sigma I(a)$$

$$\frac{dI(a)}{da} = \beta \times I(a) \times S(a) - \sigma I(a)$$

$$\frac{dR(a)}{da} = \sigma I(a)$$

$$\lambda(a) = \beta \times I(a) \times S(a)$$
Age
dependent
constant

Model parameters

$$\frac{dS(a)}{da} = -\beta \times I(a) \times S(a)$$

$$\frac{dI(a)}{da} = \beta \times I(a) \times S(a) - \sigma I(a)$$

$$\frac{dR(a)}{da} = \sigma I(a)$$

$$\beta = 0.0085$$

$$\sigma = 36.5 \quad (10 \quad days)$$

$$\frac{\partial I(a)}{\partial a} = \sigma I(a)$$

Specification of the model in R

Numerical solution

After ~ 2 years there are no infceted individuals.

~3600 individuals will not be infection.

Equilibrium

SIR transmission model in open population

Birth and death rate are equal to μ (constant population size).

SIR transmission model in open population

Open population (1)

The model

Equilibrium values

Vaccination

Vaccination

Vaccination

Vaccination

Part 3: vaccination in SIR model

Transmission model with vaccination

SIR transmission Model with vaccination

SIR transmission model with vaccination

SIR transmission Model with vaccination

Part 4: Dymamic

SIR model in open population: Dynamic aspects

- In order to understand the dynamic of the SIR model we need to allow for time dependent force of infection.
- Open population.
- Mass action principle.

$$\lambda(t) = \beta \times I(t) \times S(t)$$

SIR transmission model in open population

SIR transmission model in open population

```
\frac{dS(t)}{dt} = N\mu - \beta IS - \mu S \\ \frac{dI(t)}{dt} = \beta IS - (\sigma + \mu)I \\ \frac{dR(t)}{dt} = \sigma I - \mu R \\ \end{bmatrix} = \sigma I - \mu R SIR<-function(t,state,parameters) { with(as.list(c(state, parameters)), { dX <- 5000*mu-beta*Y*X - mu*X dY <- beta*Y*X - v*Y - mu*Y dZ <- v*Y -mu*Z list(c(dX, dY, dZ)) } } }
```

Solution for the model

time

Incidence data: Measles in UK

The weekly number of individuals who move from the susceptible to the infected class

Time unit=week

26

Observed outbreak and predicted outbreak

The susceptible class

The infected class

The Inter epidemic period

Equilibrium

At the long run, the infection reach the endemic equilibrium state in which at each time unit there are the same number of susceptible and infected individuals in the population.

Transmission Model with vaccination

SIR model with vaccination at birth

45% are vaccinated at birth.

```
> parameters <- c(mu=1/75,beta=0.001/2, v=1, P=0.45)
> parameters
    mu beta v P
0.01333333 0.00050000 1.00000000 0.45000000
```

Susceptible: inter epidemic period

Infected class: inter epidemic period

Equilibrium

Without vaccination

With vaccination

Equilibrium

Without vaccination

With vaccination