COGNOME	NOME	MATRICOLA	
○ Gr. 1 Bader (A-G)	○ Gr. 2 Ci	lioffi (H-Z)	

Risolvere gli esercizi inserendo le risposte negli **spazi predisposti** con indicazione dei **calcoli** effettuati e fornendo **spiegazioni** chiare ed essenziali. NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

- 1. Si dica quali dei seguenti sottoinsiemi sono sottospazi e, per quelli che lo sono, scrivere una base
 - (i) $U = \{(x, y, z, t) \in \mathbb{R}^4 \mid x y = 2z\}$ in \mathbb{R}^4
 - (ii) $W = \{(x, y, z) \in \mathbb{R}^3 \mid x \ge 0\}$ in \mathbb{R}^3
 - (iii) $Z = \{A \in M_2(\mathbb{R}) \mid A = A^t\}$ nello spazio vettoriale $M_2(\mathbb{R})$ delle matrici quadrate di ordine 2 a elementi in \mathbb{R} (con A^t si denota la matrice trasposta di A).

- **2.** Sia V uno spazio vettoriale.
 - (i) Cosa si intende per base di V?
 - (ii) Cosa si intende per dimensione di V?
 - (iii) Se W è sottospazio di V, è possibile che dimW < dimV? (Se si scrivere un esempio, se no dire perché)

3. Sia V uno spazio vettoriale reale. Cosa si intende per endomorfismo di V?

4. Nello spazio vettoriale reale V di dimensione n sia fissato un riferimento $B = (e_1, \ldots, e_n)$, e sia f un endomorfismo di V. Cosa si intende per matrice associata a f nel riferimento B?

5. Sia A una matrice quadrata reale di ordine n. Cosa si intende per *autovalore* di A? Un autovalore può essere nullo? (Se si scrivere un esempio, se no dire perché)

6. Nelle notazioni del secondo punto dell'esercizio 1, sia f l'endomorfismo di \mathbb{R}^3 associato, nel riferimento canonico, alla matrice $A = \begin{pmatrix} 1 & 0 & -1 \\ -2 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ Si calcolino autovalori ed autovettori di f e si stabilisca se f è diagonalizzabile.

7. Fissato nel piano un riferimento monometrico ortogonale, siano dati i punti A(1,-1) e B(2,1). Dette r la retta per A parallela all'asse y e r' la retta per B ortogonale a x-2y+1=0, determinare il punto comune a r e r'.

8. Fissato nello spazio un riferimento cartesiano monometrico ortogonale, si considerino il punto P(2,-3,1), e la retta $r: \left\{ \begin{array}{ll} 2x-y+2z &=& 1\\ 4x-y &=& 0 \end{array} \right.$. Rappresentare la retta passante per P ortogonale ed incidente r.

9. Fissato nello spazio un riferimento monometrico ortogonale, dimostrare che le rette r:(x,y,z)=(3,0,2)+t(2,1,0) e r':x+y+z-2=x-2y-z-1=0 sono incidenti e rappresentare la sfera di raggio 3 avente centro nel punto $C=r\cap r'$.