第七周作业反馈

张俸铭

April 2020

1 作业答案

练习 18

1. 设 K 中的 $C = \{c_1\}, F = \{f_1^1, f_1^2, f_2^2\}, R = \{R_1^2\},$ 它的一个解释域是 $N = \{0, 1, 2, ...\}, \overline{c_1} = 0, \overline{f_1^1}$ 是后继函数, $\overline{f_1^2}$ 是 $+, \overline{f_2^2}$ 是 $\times, \overline{R_1^2}$ 是 =. 试对以下公式分别找出 $\varphi, \psi \in \Phi_N$,使得 $|p|(\varphi) = 1, |p|(\psi) = 0$,其中 p 是:

 $3^{\circ} \neg R_1^2(f_2^2(x_1, x_2), f_2^2(x_2, x_3)).$

使上式为真的指派满足: $x_1 \times x_2 \neq x_2 \times x_3$

故取项解释 φ 满足: $\varphi(x_1) = 1, \varphi(x_2) = 1, \varphi(x_3) = 2$

取项解释 ψ 满足: $\psi(x_1) = 1, \psi(x_2) = 2, \psi(x_3) = 1$

(注: 答案不唯一)

 $5^{\circ} \quad \forall x_1 \ R_1^2(f_2^2(x_1, c_1), x_1) \to R_1^2(x_1, x_2).$

由于公式的真值只与自由变元的指派相关,故对上式中的变元更名:

 $\forall x_3 \ R_1^2(f_2^2(x_3,c_1),x_3) \to R_1^2(x_1,x_2).$

使上式为假的指派满足: 对 $\forall x_3, x_3 = 0$ 且 $x_1 \neq x_2$

因此,不存在对 x_1,x_2 的指派使上式成立

故对任意的 φ , 恒有 $|p|(\varphi)=1$; 不存在变通 ψ , 使得 $|p|(\psi)=0$

2. 已知 K 中 $C = \{c_1\}, F = \{f_1^2\}, R = \{R_1^2\},$ 还已知 K 的解释域 Z(整数集), $\overline{c_1} = 0$, $\overline{f_1^2}$ 是减法, $\overline{R_1^2}$ 是 ' <'. 试对以下公式分别找出 $\varphi, \psi \in \Phi_N$,使得 $|p|(\varphi) = 1, |p|(\psi) = 0$,其中 p 是:

5°
$$\forall x_1 \ R_1^2(f_1^2(x_1, c_1), x_1) \to R_1^2(x_1, x_2)$$

由于公式的真值只与自由变元的指派相关,故对上式中的变元更名:

 $\forall x_3 \ R_1^2(f_1^2(x_3,c_1),x_3) \to R_1^2(x_1,x_2)$

使上式为假的指派满足: 对 $\forall x_3, x_3 - 0 < x_3$ 且 $x_1 \ge x_2$

而不存在对 x_1, x_2 的指派使上式成立

故对任意的 φ , 恒有 $|p|(\varphi)=1$; 不存在变通 ψ , 使得 $|p|(\psi)=0$

6° $\forall x_1 \forall x_2 \ (R_1^2(f_1^2(x_1, x_2), c_1) \to R_1^2(x_1, x_2))$

由于公式的真值只与自由变元的指派相关,故对上式中的变元更名:

$$\forall x_1 \forall x_2 \ (R_1^2(f_1^2(x_1, x_2), c_1) \to R_1^2(x_3, x_4))$$

使上式为假的指派满足: 对 $\forall x_1, x_2 \ x_1 - x_2 < 0$ 且 $x_3 \ge x_4$

而不存在对 x_3, x_4 的指派使上式成立

故对任意的 φ , 恒有 $|p|(\varphi)=1$; 不存在变通 ψ , 使得 $|p|(\psi)=0$

练习 19

1. 对 2.2.1 例 1 中的 K,N 计算 $|p|_N$, 其中 p 为:

3°
$$\forall x_1 \forall x_2 \exists x_3 \ R_1^2(f_1^2(x_1, x_2), x_3)$$
 对一切 $\varphi \in \Phi_N$,由 $\varphi(x_1) + \varphi(x_1) \in N$,必有 $\exists x_3 \ \varphi(x_3) = \varphi(x_1) + \varphi(x_1)$ 故 $|p|_N = 1$

3. 设 K 中 $C=\{c_1\}, F=\{f_1^2\}, R=\{R_1^2\}$. 试给出 K 的两个解释域 M_1, M_2 使得 $|p|_{M_1}=1, |p|_{M_2}=0$,其中 p 为:

1°
$$\forall x_1 \forall x_2 \ (R_1^2(f_1^2(x_1, x_2), c_1) \to R_1^2(x_1, x_2))$$

取 M_1 : 解释域为 $N; \overline{c_1} = 0; \overline{f_1^2} : -; \overline{R_1^2} :=$

 $M_2:$ 解释域为 $N;\overline{c_1}=0;\overline{f_1^2}:+;\overline{R_1^2}:\geq$

$$2^{\circ} \quad \forall x_1 \ (R_1^2(x_1, x_2) \to R_1^2(x_2, x_1))$$

取 M_1 :解释域为 $N; \overline{R_1^2} :=$

 M_2 :解释域为 N; $\overline{R_1^2}$:>

4. 证明 $|p|_M = 1 \Rightarrow |\exists x \ p|_M = 1$. 反向是否成立?说明理由.

证明:

 $|p|_M = 1$

 $\therefore \forall \varphi \in \Phi_M, \ \texttt{\textit{f}} \ |p|(\phi) = 1$

故对 $\forall \varphi \in \Phi_M, |\neg p|(\varphi) = 0$, 即 $|\neg p|_M = 0$

- $\therefore |\forall x \ \neg p|_M = 0$
- $\therefore |\exists x \ p|_M = 1,$ 证毕.

反向不成立。可以举出反例: 如对于 2.2.1 节例 1 定义的 K 和 N, 有 $|\exists x_1 R_1^2(x_1, x_2)|_N = 1$, 但 $|R_1^2(x_1, x_2)|_N = 0$

练习 20

1.4° 证明: $\models \forall x \forall y \ p \rightarrow \forall y \forall x \ p$

证明:用反证法

假设 $\forall x \forall y \ p \to \forall y \forall x \ p$ 不是有效式,则 $\exists M, \ \exists \varphi \in \Phi_M, \ f \ | \forall x \forall y \ p \to \forall y \forall x \ p | (\varphi) = 0$

由 $|\forall y \forall x \ p|(\varphi) = 0$, 存在 φ 的 y 变通 φ_1 , 使得 $|\forall x \ p|(\varphi_1) = 0$, 进而存在 φ_1 的 x 变通 φ_2 , 使得 $|p|(\varphi_2) = 0$.

由于 φ_1, φ_2 是 φ_1 的变通,故由赋值函数的性质知: $|\forall y \ p|(\varphi_1) = 0$, 进一步 $|\forall x \forall y \ p|(\varphi) = 0$, 这与假设推得的 $|\forall x \forall y \ p|(\varphi) = 1$ 矛盾!

故假设不成立. 故 $\forall x \forall y \ p \rightarrow \forall y \forall x \ p$ 是有效式, 即:

$$\models \forall x \forall y \ p \rightarrow \forall y \forall x \ p$$

3. 证明 K 中以下公式都不是有效式

 $4^{\circ} \quad \forall x_1 \ R_1^2(x_1, x_1) \to \exists x_2 \forall x_1 R_1^2(x_1, x_2)$

取 M: 解释域为 $N; \overline{R_1^2} = '>', 则 |\forall x_1 R_1^2(x_1, x_1)|_N = 1 而 |\exists x_2 \forall x_1 R_1^2(x_1, x_2)|_N = 1$

故原公式不是有效式.

0

 $5^{\circ} \quad \exists x_1 \ R_1^1(x_1) \to R_1^1(x_1)$

取 M: 解释域为 $N, \overline{R_1^1}$ 为'是质数'

则当 $\varphi(x_1) = 4$ 时, $\exists x_1 \ R_1^1(x_1) | (\varphi) = 1$ 而 $|R_1^1(x_1)| (\varphi) = 0$

故原公式不是有效式.

2 问题总结

2.1 关于项解释与公式真值

项解释是与公式中出现的变元有关,而公式的真值只与出现的自由变元有关. 因此当计算公式赋值时,注意将自由变元和约束变元分开讨论 (特别是当出现重名变元时,为避免出错可以先做更名处理再计算). 如练习 18 的 1.5° 有不少同学出错,此处同时还需要注意全称量词的作用范围是前件而不是整个蕴含式.