บทที่ 1.3 ระบบพิกัดและการแปลง

1.3.1 ระบบพิกัดทรงกระบอก (Circular Cylindrical Coordinate System)

ระบบพิกัดทรงกระบอก เป็นระบบที่ใช้บอกตำแหน่งของจุดในสเปซด้วยพิกัด (ρ , ϕ , z) หรือ (r, ϕ , z) ดังรูป โดย ρ หรือ r คือรัศมีของทรงกระบอก หรือระยะห่างจากแกน z

 ϕ เป็นมุมในระนาบ XY ที่วัดจากแกน X ไปยังแนว ho

z เป็นระยะจากระนาบ XY ถึงจุดนั้น : จุด P(ho , ϕ , z) จึงเป็นจุดบน

ผิวทรงกระบอก

เวกเตอร์หน่วยในระบบพิกัดทรงกระบอก ประกอบด้วย $ar{a}_{
ho}$, $ar{a}_{\phi}$, $ar{a}_{z}$ ดังรูป โดยที่จุดใดๆ

 $\vec{a}_{
ho}$ มีทิศชี้ไปตามการเคลื่อนที่ ของจุดนั้น เมื่อ ho เพิ่มขึ้น แต่ ϕ , z คงที่ (แนวเพิ่มho)

 $\vec{a}_{_{d}}$ มีทิศชี้ไปตามการเคลื่อนที่ ของจุดนั้น เมื่อ ϕ เพิ่มขึ้น แต่ ρ , z คงที่ (แนวเพิ่ม ϕ)

 \vec{a}_z มีทิศชี้ไปตามการเคลื้อนที่ ของจุดนั้น เมื่อ z เพิ่มขึ้น แต่ ρ , ϕ คงที่ (แนวเพิ่มz)

จากรูปจะพิจารณาใค้ว่า $\bar{a}_{
ho}$ และ \bar{a}_{ϕ} มีทิศทางต่างกันไปสำหรับแต่ละจุค(ไม่คงที่) แต่ \bar{a}_z คงที่ทั้งขนาดและทิศทาง(เป็นเวกเตอร์ตัวเดียวกับ \bar{a}_z ในระบบพิกัดฉาก) เช่นเดียวกับ \bar{a}_x , \bar{a}_y และ เวกเตอร์หน่วย $\bar{a}_{
ho}$, \bar{a}_{ϕ} , \bar{a}_z ณ จุดหนึ่งๆ จะมีทิศตั้งฉากซึ่งกันและกัน ดังนั้น

$$\vec{a}_{\rho} \cdot \vec{a}_{\rho} = \vec{a}_{\phi} \cdot \vec{a}_{\phi} = \vec{a}_{z} \cdot \vec{a}_{z} = 1$$

$$\vec{a}_{\rho} \cdot \vec{a}_{\phi} = \vec{a}_{\phi} \cdot \vec{a}_{z} = \vec{a}_{z} \cdot \vec{a}_{\rho} = 0$$

$$\vec{a}_{\rho} \times \vec{a}_{\rho} = \vec{a}_{\phi} \times \vec{a}_{\phi} = \vec{a}_{z} \times \vec{a}_{z} = 0$$

$$\vec{a}_{\rho} \times \vec{a}_{\phi} = \vec{a}_{z} \cdot \vec{a}_{\phi} \times \vec{a}_{z} = \vec{a}_{\rho} \cdot \vec{a}_{z} \times \vec{a}_{\rho} = \vec{a}_{\phi}$$

องค์ประกอบของเวกเตอร์และพีชคณิตเวกเตอร์ในระบบพิกัดทรงกระบอก

เวกเตอร์ๆ $ar{A}$ เขียนในรูปองค์ประกอบในระบบพิกัดทรงกระบอก ได้เป็น

$$\vec{A} = A_{
ho} \vec{a}_{
ho} + A_{\phi} \vec{a}_{\phi} + A_{z} \vec{a}_{z}$$
 เมื่อ

 $A_{
ho}=ar{A}ar{a}_{
ho}$, $A_{\phi}=ar{A}ar{a}_{\phi}$, $A_{Z}=ar{A}ar{a}_{z}$ เป็นองค์ประกอบตามแนวของ $ar{A}$ ตาม

แนวเวกเตอร์หน่วย $ar{a}_{
ho},ar{a}_{\phi},ar{a}_{z}$ ตามถำคับ

จากการเขียนเวกเตอร์ในรูปองค์ประกอบเช่นนี้ จะแสดงได้ว่า

$$\vec{A} \pm \vec{B} = (A_{\rho} \pm B_{\rho})\vec{a}_{\rho} + (A_{\phi} \pm B_{\phi})\vec{a}_{\phi} + (A_{Z} \pm B_{Z})\vec{a}_{z}$$

$$\vec{A} \bullet \vec{B} = A_{\rho}B_{\rho} + A_{\phi}B_{\phi} + A_{Z}B_{Z}$$

$$\vec{A} \times \vec{B} = (A_{\phi}B_{z} - A_{z}B_{\phi})\vec{a}_{\rho} + (A_{z}B_{\rho} - A_{\rho}B_{z})\vec{a}_{\phi} + (A_{\rho}B_{\phi} - A_{\phi}B_{\rho})\vec{a}_{z}$$

$$\vec{A} \times \vec{B} = \begin{bmatrix} \vec{a}_{\rho} & \vec{a}_{\phi} & \vec{a}_{z} \\ A_{\rho} & A_{\phi} & A_{z} \\ B_{\rho} & B_{\phi} & B_{z} \end{bmatrix}$$

$$\begin{split} \mathbf{m}\,\vec{A} &= \left(mA_{\,\rho}\right)\!\!\vec{a}_{\,\rho} + \left(mA_{\,\phi}\right)\!\!\vec{a}_{\,\phi} + \left(mA_{\,Z}\right)\!\!\vec{a}_{\,z} \\ \vec{A} \bullet \vec{A} &= A^2 = A_{\,\rho}^{\ 2} + A_{\,\phi}^{\ 2} + A_{\,Z}^{\ 2} \quad \text{that } A = \sqrt{A_{\,\rho}^{\ 2} + A_{\,\phi}^{\ 2} + A_{\,Z}^{\ 2}} \end{split}$$

ความสัมพันธ์ระหว่างเวกเตอร์ในระบบพิกัดทรงกระบอกกับพิกัดฉาก

เวกเตอร์หน่วย
$$\vec{a}_x = \cos \phi \, \vec{a}_p - \sin \phi \vec{a}_\phi$$
 $\vec{a}_p = \cos \phi \vec{a}_x + \sin \phi \vec{a}_y$ $\vec{a}_y = \sin \phi \vec{a}_p + \cos \phi \vec{a}_\phi$ และ $\vec{a}_\phi = -\sin \phi \vec{a}_x + \cos \phi \vec{a}_y$ $\vec{a}_z = \vec{a}_z$ $\vec{a}_z = \vec{a}_z$

ดังนั้น
$$\vec{a}_p . \vec{a}_x = \cos \phi \ , \ \vec{a}_\phi . \vec{a}_x = -\sin \phi \, , \ \vec{a}_z . \vec{a}_z = 0$$

$$\vec{a}_p . \vec{a}_y = \sin \phi \ , \ \vec{a}_\phi . \vec{a}_y = \cos \phi \ , \ \vec{a}_z . \vec{a}_y = 0$$

$$\vec{a}_p \cdot \vec{a}_z = 0$$
 , $\vec{a}_\phi \cdot \vec{a}_z = 0$, $\vec{a}_z \cdot \vec{a}_z = 0$

การ Dot Product ของเวกเตอร์หนึ่งหน่วยในระบบพิกัดทรงกระบอกกับพิกัดฉากสรุปเป็นตาราง ได้ดังนี้

	\vec{a}_p	\vec{a}_{ϕ}	$ec{a}_z$
\vec{a}_x	cos ф	-SIN ϕ	О
\vec{a}_y	SIN 	cos ф	О
\vec{a}_z	О	О	1

องค์ประกอบของเวกเตอร์

$$Ax = \vec{A} \cdot \vec{a}_x = \cos\phi A_p \cdot \sin\phi A_\phi$$
 where $A_p = \vec{A} \cdot \vec{a}_\rho = \cos\phi Ax + \sin\phi Ay$ and $A_p = \vec{A} \cdot \vec{a}_\phi = \sin\phi A_p + \cos\phi A_\phi$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ay$ and $A_\phi = \vec{A} \cdot \vec{a}_\phi = -\sin\phi Ax + \cos\phi Ax + \cos$

ตัวอย่างที่ 1 จงเปลี่ยนจากเวกเตอร์ $\vec{B} = y\vec{a}_x - x\vec{a}_y + z\vec{a}_z$ สู่ระบบพิกัตทรงกระบอก $\vec{B} \text{ ทรงกระบอก} = B_{\rho}\vec{a}_{\rho} + B_{\phi}\vec{a}_{\phi} + B_{z}\vec{a}_{z}$ $B_{\rho} = \vec{B} \bullet \vec{a}_{\rho} = y\left(\vec{a}_{x}.\vec{a}_{\rho}\right) - x\left(\vec{a}_{y}.\vec{a}_{\rho}\right)$ $= Y \cos\varphi - X \sin\varphi = \rho \sin\varphi \cos\varphi - \rho \cos\varphi \sin\varphi = 0$ $B_{\phi} = \vec{B} \bullet \vec{a}_{\phi} = y\left(\vec{a}_{x}.\vec{a}_{\phi}\right) - x\left(\vec{a}_{y}.\vec{a}_{\phi}\right)$ $= -Y \sin\varphi - X \cos\varphi = -\rho \sin^2\varphi - \rho \cos^2\varphi = -\rho$ $B_{z} = \vec{B} \bullet \vec{a}_{z} = z\vec{a}_{z}$ $\therefore \vec{B}_{A\tilde{s},\tilde{t}\tilde{b}P\tilde{t}_{z}} = -\rho\vec{a}_{\phi} + z\vec{a}_{z}.......\mu\tilde{t}^{o}$

ตัวอย่างที่ 2 จงหาระยะห่างระหว่างจุด $P(10,90^{\circ},5)$ กับจุด (ก) $A(15,90^{\circ},5)$ (ข) $B(10,270^{\circ},5)$ (ก) $C(0,126^{\circ},4.83)$

วิธีทำ
$$P(10.90^{\circ},5) = P(x = \rho \cos \phi, y = \rho \sin \phi, z = z)$$

= $P(10 \cos 90^{\circ}, 10 \sin 90^{\circ}, 5) = P(0.10.5)$

$$A(15,90^{\circ},5) = A(0,15,5)$$

 $B(10,270^{\circ},5) = B(0,-10,5)$
 $C(0,126^{\circ},4.83) = C(0,0,4.83)$

(ก) ระยะ
$$PA = \left| \overrightarrow{PA} \right| = 15-10 = 5$$
 หน่วย **ตอา**

(ข) ระยะ
$$PB = \left| \overrightarrow{PB} \right| = \left| -10 - 10 \right| = 20$$
 หน่วย ตอบ

(ค) ระยะ
$$PC=$$
 $|\overrightarrow{PC}|$; $\overrightarrow{PC}=-10\overrightarrow{a}_x-0.17\overrightarrow{a}_z$ $|\overrightarrow{PC}|=\sqrt{\left(-10\right)^2+\left(-0.17\right)^2}~\cong~10~$ หน่วย $\,$ ตอา

1.3.2 ระบบพิกัดทรงกลม(Spherial Coordinate System)

ระบบพิกัดทรงกลม เป็นระบบที่ใช้บอกตำแหน่งของจุดในสเปซด้วยพิกัด (r, θ, ϕ) ในลักษณะ ดังรูป โดย r คือรัศมีของทรงกลม หรือเวกเตอร์บอกตำแหน่ง ของจุดนั้น

heta เป็นมุมในระนาบซึ่งตั้งฉากกับระนาบ xy และทำมุม ϕ ระนาบ xy โดยวัดจาก แกน x ไปยังแนว r

 ϕ เป็นมุมในระนาบ xyโดยวัดจากแกน xไปยังเงาของ r บนระนาบ xy(หรือแนวho)

เวกเตอร์หน่วยในระบบพิกัดทรงกลม ประกอบด้วย $ar{a}_r$, $ar{a}_ heta$, $ar{a}\phi$ คังรูปโดยที่จุดใดๆ

 $ar{a}_r$ มีทิศชี้ตามทิศการเคลื่อนที่ของจุด P เมื่อ r เพิ่มขึ้น; $m{\theta}, m{\phi}$ คงที่(แนวเพิ่ม r) $ar{a}_{\theta}$ มีทิศชี้ตามทิศการเคลื่อนที่ของจุด P เมื่อ $m{\theta}$ เพิ่มขึ้น; $m{r}, m{\phi}$ คงที่(แนวเพิ่ม $m{\theta}$) $ar{a}$ มีทิศชี้ตามทิศการเคลื่อนที่ของจุด P เมื่อ $m{\phi}$ เพิ่มขึ้น; $m{r}, m{\phi}$ คงที่(แนวเพิ่ม $m{\phi}$)

จากรูปจึงพิจารณาได้ว่า \bar{a}_r , \bar{a}_{θ} , $\bar{a}\phi$ มีทิศทางต่างกันไปสำหรับแต่ละจุด(ไม่คงที่) แต่ ณ จุดหนึ่งๆ \bar{a}_r , \bar{a}_{θ} , $\bar{a}\phi$ มีทิศตั้งฉากซึ่งกันและกัน ดังนั้น

$$\vec{a}_r . \vec{a}_r = \vec{a}_\theta . \vec{a}_\theta = \vec{a}\phi . \vec{a}\phi = 1 \qquad \qquad \vec{a}_r . \vec{a}_\theta = \vec{a}_\theta . \vec{a}\phi = \vec{a}\phi . \vec{a}_r = 0$$

$$\text{IIBS } \vec{a}_r \times \vec{a}_r = \vec{a}_\theta \times \vec{a}_\theta = \vec{a}\phi \times \vec{a}\phi = 0 \qquad \qquad \vec{a}_r \times \vec{a}_\theta = \vec{a}\phi \ ; \ \vec{a}_\theta \times \vec{a}\phi = \vec{a}_r \ ; \ \vec{a}\phi \times \vec{a}_r = \vec{a}_\theta \times \vec{a}_r = \vec{a}$$

องค์ประกอบของเวกเตอร์และพืชคณิตของเวกเตอร์ในระบบพิกัดทรงกลม

เวกเตอร์ใดๆ ; $ar{A}$ เขียนในรูปองค์ประกอบในระบบพิกัดทรงกลม ได้เป็น

$$ar{A}=A_rar{a}_r+A_ hetaar{a}_ heta+A_\phiar{a}_\phi$$
 เมื่อ $A_r=ar{A}$. $ar{a}_r$, $A_ heta=ar{A}$. $ar{a}_ heta$, $A_\phi=ar{A}$. $ar{a}\phi$ เป็นองค์ประกอบของ $ar{A}$ ตามแนวเวกเตอร์หน่วย $ar{a}_r$, $ar{a}_ heta$, $ar{a}\phi$ ตามถำคับ และในทำนองเคียวกับระบบพิกัดทรงกระบอก จากกการเขียนในเทอมองค์ประกอบจะ แสดงได้ว่า $ar{A}\pm ar{B}=(A_r\pm B_r)ar{a}_r+(A_ heta\pm B_ heta)ar{a}_ heta+(A_\phi\pm B_\phi)ar{a}_\phi$

แสดงใต้ว่า
$$A\pm B=(A_r\pm B_r)\vec{a}_r+(A_{\theta}\pm B_{\theta})\vec{a}_{\theta}+(A_{\phi}\pm B_{\phi})\vec{a}_{\phi}$$

$$\vec{A}\bullet\vec{B}=A_rB_r+A_{\theta}B_{\theta}+A_{\phi}B_{\phi}$$

$$\vec{A}\times\vec{B}=\begin{bmatrix}\vec{a}_r & \vec{a}_{\theta} & \vec{a}_{\phi}\\A_r & A_{\theta} & A_{\phi}\\B_r & B_{\theta} & B_{\phi}\end{bmatrix}$$

$$=(A_{\theta}B_{\phi}-A_{\phi}B_{\theta})\vec{a}_r+(A_{\phi}B_r-A_rB_{\phi})\vec{a}_{\theta}+(A_rB_{\theta}-A_{\theta}B_r)\vec{a}_{\phi}$$

$$m\vec{A}=(mAr)\vec{a}_r+(mA\theta)\vec{a}_{\theta}+(mA\phi)\vec{a}_{\phi}$$

$$A=\sqrt{Ar^2+A^2\theta^2+A^2\theta^2}$$

ความสัมพันธ์ระหว่างเวกเตอร์ในระบบพิกัดทรงกลมกับพิกัดฉากและพิกัดทรงกระบอก

ตัวแปร
$$x = r \sin\theta \cos\phi$$
 ; $r = \sqrt{X^2 + Y^2 + Z^2}$
 $y = r \sin\theta \sin\phi$; $\theta = \cos^{-1}\left(\frac{Z}{\sqrt{X^2 + Y^2 + Z^2}}\right)$
 $Z = r \cos\theta$; $\phi = \tan^{-1}\left(\frac{y}{x}\right)$

ແລະ
$$\rho = r \sin \theta$$
 ; $r = \sqrt{p^2 + z^2}$

$$\phi = \phi \qquad ; \quad \theta = \tan^{-1}(\rho/z)$$

$$z = r \cos \phi$$
 ; $\phi = \phi$

เวกเตอร์หน่วย

$$\begin{split} \vec{a}_x &= \sin\theta \cos\phi \vec{a}_r + \cos\theta \cos\phi \vec{a}_\theta - \sin\phi \vec{a}\phi \\ \vec{a}_y &= \sin\theta \sin\phi \vec{a}_r + \cos\theta \sin\theta \vec{a}_\theta + \cos\phi \vec{a}\phi \\ \vec{a}_z &= \cos\theta \vec{a}_r - \sin\theta \vec{a}_\theta \\ \vec{a}_r &= \sin\theta \cos\phi \vec{a}_x + \sin\theta \sin\phi \vec{a}_y + \cos\theta \vec{a}_z \\ \vec{a}_\theta &= \cos\theta \cos\phi \vec{a}_x + \cos\theta \sin\phi \vec{a}_y - \sin\theta \vec{a}_z \\ \vec{a}_\theta &= -\sin\phi \vec{a}_x + \cos\phi \vec{a}_y & \sin\omega \\ \vec{a}_p &= \sin\theta \vec{a}_r + \cos\theta \vec{a}_\theta & ; \vec{a}_r = \sin\theta \vec{a}_p + \cos\theta \vec{a}_z \\ \vec{a}_\phi &= \vec{a}\phi & ; \vec{a}_\theta &= \cos\theta \vec{a}_p - \sin\theta \vec{a}_z \\ \vec{a}_z &= \cos\theta \vec{a}_r - \sin\theta \vec{a}_\theta & ; \vec{a}_\theta &= \cos\theta \vec{a}_p - \sin\theta \vec{a}_z \\ \vec{a}_z &= \cos\theta \vec{a}_r - \sin\theta \vec{a}_\theta & ; \vec{a}_\theta &= \vec{a}\phi \end{split}$$

องค์ประกอบของเวกเตอร์

$$Ax = \sin\theta \cos\phi Ar + \cos\theta \cos\phi A\theta - \sin\phi A\phi$$

$$Ay = \sin\theta \sin\phi Ar + \cos\theta \sin\phi A\theta + \cos\phi A\phi$$

$$Az = \cos\theta Ar - \sin\theta A\theta$$

$$Ar = \sin\theta \cos\phi Ax + \sin\theta \sin\phi Ay + \cos\theta Az$$
$$A\theta = \cos\theta \cos\phi Ax + \cos\theta \sin\phi Ay - \sin\theta Az$$
$$A\phi = -\sin\phi Ax + \cos\phi Ay$$

$$A \rho = \sin\theta Ar + \cos\theta A\theta$$
 ; $Ar = \sin\theta A \rho + \cos\theta Az$

$$A\phi = A\phi$$
 ; $A\theta = \cos\theta A \rho - \sin\theta Az$

$$Az = \cos\theta Ar - \sin\theta A\theta$$
 ; $A\phi = A\phi$

การ Dot Product ของเวกเตอร์หนึ่งหน่วยในระบบพิกัดทรงกลมกับพิกัดฉากสรุปได้ดังนี้

	\vec{a}_r	\vec{a}_{θ}	$\vec{a}\phi$
\vec{a}_x	$\sin\theta\cos\phi$	$\cos\theta\cos\phi$	- SINØ
\vec{a}_y	$\sin\theta\sin\phi$	$\cos\theta\sin\phi$	cosф
\vec{a}_z	$\cos\theta$	- $\sin\theta$	О

ตัวอย่างที่1 กำหนดเวกเตอร์ $\vec{G} = (XZ/Y)\vec{a}_x$ ในระบบพิกัดฉากให้เป็นเวกเตอร์ในระบบพิกัด ทรงกลม

จาก
$$G = Gr + G\theta + G\phi$$

$$Gr = \vec{G} . \vec{a}_r = (XZ/Y) \vec{a}_x . \vec{a}_r = (XZ/Y) \sin\theta \cos\phi$$

$$= r \sin\theta \cos\theta \frac{\cos^2\phi}{\sin\phi}$$

$$G\theta = \vec{G} . \vec{a}_\theta = (XZ/Y) \vec{a}_x . \vec{a}_\theta = (XZ/Y) \cos\theta \cos\phi$$

$$= r \cos^2\theta \frac{\cos^2\phi}{\sin\phi}$$

$$G\phi = \vec{G} . \vec{a}\phi = (XZ/Y) \vec{a}_x . \vec{a}\phi = (XZ/Y) (-\sin\phi)$$

$$G\phi = -r \cos\theta \cos\phi$$
คังนั้น \vec{G} ทรงกลม = $r \sin\theta \cos\theta \frac{\cos^2\phi}{\sin\phi} \vec{a}_r + r \cos^2\theta \frac{\cos^2\phi}{\sin\phi} \vec{a}_\theta - r \cos\theta \cos\phi$

ดังนั้น \vec{G} ทรงกลม = $r \sin\theta \cos\theta \frac{\cos^2\phi}{\sin\phi} \vec{a}_r + r \cos^2\theta \frac{\cos^2\phi}{\sin\phi} \vec{a}_\theta - r \cos\theta \cos\phi \vec{a}\phi$ = $r \cos\theta \cos\phi \left(\sin\theta \cot\phi \vec{a}_r + \cos\theta \cot\phi \vec{a}_\theta - \vec{a}_\phi\right)$ พอบ

ตัวอย่างที่2 จงหาเวกเตอร์ ซึ่งเริ่มจากจุด $(4,25^{\circ},15^{\circ})$ ถึงจุด $(7,120^{\circ},75^{\circ})$

วิธีทำ แปลงจากพิกัดทรงกลมไปเป็นพิกัดฉาก

กำหนดจุด P(4,25°,15°) เป็น P(x1,y1,z1)

และ จุด Q(7,120°,75°) เป็น Q(x2,y2,z2)

ที่จุด P ;
$$x1 = r \sin\theta \cos\phi = 4 \sin 25 \cos 15$$
 $= 4(0.4226).(0.9659) = 1.633$ $y1 = r \sin\theta \sin\phi = 4(0.4226).(0.2588) = 0.44$ $z1 = r \cos\theta = 4(0.9063) = 3.62$ ที่จุด Q ; $x2 = 7 \sin 120 \cos 75 = 7(0.866).(0.2588) = 1.56$ $y2 = 7 \sin 120 \sin 75 = 7(0.866).(0.9659) = 5.85$

$$z2=7 \cos^{\circ} = 7(-0.5) = -3.5$$
 เวกเตอร์ระหว่างจุด P และ Q มีค่า = (x2-x1) \vec{a}_x +(y2-y1) \vec{a}_y +(z2-z1) \vec{a}_z = (1.56-1.633) \vec{a}_x +(5.85-0.44) \vec{a}_y +(-3.5-3.62) \vec{a}_z = -0.07 \vec{a}_x +5.41 \vec{a}_y -7.12 \vec{a}_z ตอบ

ตัวอย่างที่ 3 จงแปลงจุดพิกัด P(2,-1,3) ให้อยู่ในระบบพิกัดทรงกระบอก และทรงกลม วิธีทำ

ทรงกระบอก
$$P(\rho, \phi, Z)$$
 ; $\rho = \sqrt{X^2 + Y^2} = \sqrt{5}$

$$\phi = \tan^{-1}(y/x) = \tan^{-1}(-1/2) = 333.4^\circ$$

$$z = 3$$

$$\therefore P(2,-1,3) = P(\sqrt{5},333.4^\circ,3)$$
พรงกลม $P(r, \theta, \phi)$; $r = \sqrt{x^2 + y^2 + z^2} = \sqrt{14}$

$$\theta = \cos^{-1}(Z/r) = \cos^{-1}(3/\sqrt{14}) = 36.7^\circ$$

$$\phi = \tan^{-1}(y/x) = \tan^{-1}(-1/2) = 333.4^\circ$$

$$\therefore P(2,-1,3) = P(\sqrt{14},36.7^\circ,333.4^\circ)$$
พอบ

อนุพันธ์ของปริมาตร พื้นผิว และเส้น

เมื่อจุดพิกัด P ถูกขยายไปเป็น (x+dx ,y+dy,z+dz) หรือ (r+dr, ϕ +d ϕ ,z+dz) หรือ (r+dr, θ +d θ , ϕ +d ϕ) อนุพันธ์ของปริมาตร dv ย่อมเกิดขึ้น สำหรับปริมาณจำกัดของผลต่าง ปริมาตรคือกล่องสี่เหลี่ยมมุมฉากทั้งระบบพิกัดซึ่งค่า dv ในแต่ละระบบแสดงดังรูป

จากรูปจะทราบขนาดพื้นที่ของแต่ละพื้นผิว ซึ่งแต่ละพื้นผิวจะกั้นอนุพันธ์เชิงปริมาตรใน ระบบพิกัดทรงกลมพื้นผิวที่จะตั้งฉาก กับ $\bar{a_r}$ คือ

 $dS = (r d\theta)(r SIN\theta d\phi) = r^2 SIN\theta d\theta d\phi$ ผลต่างเชิงเส้น dl คือเส้นทะแยงมุมที่ผ่านจุด P ดังนั้น

$$dl^2 = dx^2 + dy^2 + dz^2$$

$$dl^2 = dr^2 + d\phi^2 + dz^2$$

$$dl^2 = dr^2 + d\theta^2 + d\phi^2$$

แบบฝึกหัดท้ายบทที่ 1.3

- 1. จงหาระยะทางระหว่างจุด $P(10,60^{\circ},90^{\circ})$ กับจุดต่อ ไปนี้
- (n) A(5, 60 ,90) (10,120 ,270) (n) C(10, 60 ,270)
- คำตอบ (ก) PA = 5 (ข) PB = 20 (ค) PC = 17.32
- 2. จงเขียนสนามอุณหภูมิ T= 240+Z²-2XY เป็นระบบพิกัดทรงกระบอก และทรงกลม
- (2.1) $T = 240 + Z^2 \rho^2 SIN2\phi$ (2.2) $T = 240 + r^2 r^2 SIN2\theta (1 + SIN2\phi)$

โดย COS A SIN A = (1/2) SIN2A

- 3. จงเขียนสนามเวกเตอร์ $\vec{w} = (x-y)\vec{a}_y$ เป็นระบบทรงกระบอกและทรงกลม
- คำตอบ (3.1) $\vec{w} = \rho(\cos\phi \sin\phi)(\sin\phi \vec{a}_p + \cos\phi \vec{a}_\theta)$
 - (3.2) $\vec{w} = r \sin\theta (\cos\phi \sin\phi) (\sin\theta \sin\phi \vec{a}_r + \cos\theta \sin\phi \vec{a}_\theta + \cos\phi \vec{a}_\phi)$
- 4. จงหาความหนาแน่นที่จุด P(-2,-5,1) ถ้าความหนาแน่นมีค่าตามสมการ
- (f) $e^{-z^2} \left(2 + \rho^3 \cos^2 \phi\right)$ (1) $re^{-r/2} \left(5 + \cos \theta + \sin \theta \cos \phi\right)$

คำตอบ (ก) 8.66 (ข) 1.706

5. จงแปลง $A = y\vec{a}_x + x\vec{a}y + \frac{x^2}{\sqrt{x^2 + y^2}}\vec{a}_z$ ให้เป็นระบบพิกัดทรงกระบอก

คำตอบ $A=2r\sin\phi\cos\phi\vec{a}_r+\left(r\cos^2\phi-r\sin^2\phi\right)\vec{a}_\phi+r\cos^2\phi\vec{a}_z$ 6.จงแปลงเวกเตอร์แต่ละตัวต่อไปนี้สู่ระบบพิกัดทรงกระบอกที่จุดที่กำหนดให้

- (f) $5\vec{a}$, \vec{n} $P(\rho=4, \phi=120^{\circ}, Z=2)$ (1) $5\vec{a}$, \vec{n} Q(X=3, Y=4, Z=-1)
- (a) $4\vec{a}_x 2\vec{a}_y 4\vec{a}_z \, \vec{n} \, A(X=2,Y=3,Z=5)$

คำตอบ $-2.50 {\vec a}_{
ho} -4.33 {\vec a} \phi; 3 {\vec a}_{
ho} -4 {\vec a}_{\phi}; -0.555 {\vec a}_{
ho} -4.44 {\vec a}_{\phi} -4 {\vec a}_{z}$

- 7. กำหนดจุด A(X=2,Y=3,Z=-1) และ $B(r=4,\theta=25^{\circ},\phi=120^{\circ})$
- (ก) ค่าระบบพิกัดทรงกลม ของA (ข) ค่าระบบพิกัดฉากของB (ค)ระยะทางจาก A ถึง B คำตอบ $r = 3.74, \theta = 105.5^{\circ}, \phi = 56.3^{\circ}; X = -0.845, Y = 1.464, Z = 3.63; 5.64$