Semiparametic Regression - Assignment 3

Szymon Armata | 341593 | Data Science

2 November 2022

Contents

1	1 Task 1.	2
	1.1 a	 2
	1.2 b	 4
	1.3 c	 Ę
	1.4 d	 Ę
	1.5 e	 6

1 Task 1.

We will begin this exercise by performing some linear algebra, including basis, determinants, etc. Then, we will implement OLS to determine a sample's regression coefficient.

Let's define following functions on [1,0]

$$T_1(x)=1, \qquad T_2(x)=x, \qquad T_3(x)=\left(x-\frac{1}{2}\right)_+$$

and

$$B_1(x) = (1-2x)_+, \qquad B_2(x) = 1 - \mid 2x-1\mid_+, \qquad B_3(x) = (2x-1)_+$$

1.1 a

At first we have to obtain plots of the T_i and B_i , i=1,2,3.

1.2 b

Next, we have to find expressions for B_1, B_2, B_3 in terms of T_1, T_2, T_3 .

So here are the representations we developed:

$$B_1 = T_1 - 2(T_2 - T_3)$$

$$B_2 = 2(T_2 - 2T_3)$$

$$B_3 = 2T_3$$

Now we have to find the result of this equation: $B_1+B_2+B_3.$

$$B_1 + B_2 + B_3 = T_1 - 2T_2 + 2T_3 + 2(T_2 - 2T_3) + 2T_3 = T_1 = 1 \tag{1}$$

1.3 c

To find matrix L_{TB}

$$\begin{bmatrix} B_1 & B_2 & B_3 \end{bmatrix} = \begin{bmatrix} T_1 & T_2 & T_3 \end{bmatrix} L_{TB}$$

we have to solve equation like this:

$$\begin{bmatrix} T_1-2(T_2-T_3) & 2(T_2-2T_3) & 2T_3 \end{bmatrix} = \begin{bmatrix} T_1 & T_2 & T_3 \end{bmatrix} L_{TB}$$

One of the solutions of this equation is following matrix:

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 2 & 0 \\ 2 & -4 & 2 \end{bmatrix}$$

1.4 d

Now we have to find a determinant of L_TB and establish that L_TB is invertible. In linear algebra language, this implies that $\{B_1, B_2, B_3\}$ is an alternative basis for the vector space of functions spanned by $\{T_1, T_2, T_3\}$

[1] 4

Determinant of $L_T B$ is not equal to 0, which means that matrix $L_T B$ is invertible.

1.5 e

Below we compare two models, first build using basis $\{T_1, T_2, T_3\}$, another using $\{B_1, B_2, B_3\}$. We expect that they are visually undifferentiated.

As seen above, fitted lines overlap each other. It confirms that ordinary least squares regression with design matrix X_T leads to same fit as that with design matrix X_B .