Отчет о выполнении лабораторной работы 2.1.2/2.1.3 Определение C_P/C_V

Костылев Влад и Каграманян Артемий, Б01-208

17 мая 2023 г.

Аннотация

Цель работы: определение отношения C_P/C_V , для воздуха или углекислого газа по измерению давления в стеклянном сосуде. Измерения производятся сначала после адиабатического расширения газа, а затем после нагревания сосуда и газа до комнатной температуры.

Измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу. Определение показателя адиабаты с помощью уравнения состояния идеального газа.

В работе используются: стеклянный сосуд; U-образный жидкостный манометр; резиновая груша; газгольдер с углекислым газом.

Звуковой генератор, осциллограф, изолированная труба, термостат.

1 Теоретическая справка

1.1 Метод адиабатического расширения газа

Принцип работы экспериментальной установки описан пунктом ниже. Для адиабаты верно следующее:

$$\left(\frac{P_1}{P_2}\right)^{\gamma-1} = \left(\frac{T_1}{T_2}\right)^{\gamma} \tag{1}$$

Давление P_2 после адиабатического расширения газа равно атмосферному давлению P_0 , а температура T_2 будет ниже комнатной температуры T_1 (температура газа понижается, так как работа расширения совершается за счёт внутренней энергии газа).

После того как кран K вновь отсоединит сосуд от атмосферы, происходит медленное изохорическое нагревание газа. Вместе с ростом температуры растёт и давление газа. За время порядка Δt_T система достигает равновесия, и установившаяся температура газа T_3 становится равной комнатной температуре T_1 .

Изохорический процесс выравнивания температуры при закрытом кране подчиняется закону Гей-Люссака:

$$\frac{P_2}{T_2} = \frac{P_3}{T_3} = \frac{P_1}{T_1} \tag{2}$$

Воспользовавшись формулой (1), получаем следующее:

$$\left(\frac{P_3}{P_2}\right)^{\gamma} = \left(\frac{P_1}{P_2}\right)^{\gamma - 1} \tag{3}$$

Исходя из того, что $P_2 = P_0$:

$$\frac{\ln(P_1/P_0)}{\ln(P_1/P_3)}\tag{4}$$

Давления P_1 и P_3 выразим следующим образом:

$$P_1 = P_0 + \rho g h_1 \qquad P_3 = P_0 + \rho g h_2 \tag{5}$$

Раскладываем логарифмы в ряд Тейлора и пренебрегаем членами второго порядка, получаем:

$$\gamma = \frac{\ln(1 + \rho g h_1/P_0)}{\ln(1 + \rho g h_1/P_0) - \ln(1 + \rho g h_2/P_0)} \approx \frac{h_1}{h_1 - h_2} \tag{6}$$

1.2 По скорости звука в газе

Как нам известно, скорость звука определяется такой формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}} \tag{7}$$

Немного преобразуем формулу:

$$\gamma = \frac{\mu}{RT}c^2 \tag{8}$$

Звуковая волна многократно отражается от стенок трубы. Если мы зададим длину волны так, что выполняется выражение (3), то амплитуда колебаний резко увеличится, и наступит резонанс:

$$L = \frac{\lambda}{2}n\tag{9}$$

В этом случае конец волны совпадет с началом, и эта волна совпадет по фазе с предыдущей. Совпадающие по фазе волны усиливают друг друга. Поэтому наступает резонанс. Так же мы можем найти скорость звука как $c=f\lambda$.

2 Используемое оборудование

В работе используются: стеклянный сосуд; U-образный жидкостный манометр; резиновая груша; газгольдер с углекислым газом.

Звуковой генератор, осциллограф, изолированная труба, термостат.

3 Методика измерений

3.1 Метод адиабатического расширения газа

Ознакомимся с установкой, представленной на изображении ниже.

Рис. 1. Установка для определения C_p/C_v методом адиабатического расширения газа

Можем видеть большой сосуд, в котором с помощью резиновой груши создается избыточное давление. Значение избыточного давления показывается с помощью U-образного манометра. Будем открывать кран K на 0.5 и 3 секунды и вносить данные в таблицу для дальнейшей обработки.

3.2 По скорости звука в газе

В данной работе резонансы производятся следующим образом: для фиксированной длины L трубы подбираются 8 частот звуковых волн, для которых выполняется следующее:

$$L = \frac{\lambda_1}{2} n_1 = \dots = \frac{\lambda_i}{2} n_i = \dots = \frac{\lambda_8}{2} n_8 \tag{10}$$

Подставив $\lambda = \frac{c}{f}$, получим:

$$f = \frac{c}{2L}n\tag{11}$$

Этот процесс производим для каждой рассматриваемой температуры. Затем строим графики, на которых отобразим по оси x значение n_i , а по оси y значение $f_{i+1} - f_1$. Таким образом, мы, построив аппроксимирующие прямые, получим величину c/2L, и отсюда найдем скорость звука при данной температуре.

Рис. 2. Установка для изучения зависимости скорости звука от температуры

4 Результаты измерений и обработка данных

4.1 Метод адиабатического расширения газа

Сперва, найдем характерное время установления термодинамического равновесия:

$$\triangle t_T \approx 20$$
 мин

Сведем все наши данные в одну таблицу:

	0,5 c			3 c	
	h_слева	h_справа		h_слева	h_справа
1)			1)		
dh1	18,2	7,8	dh1	20,7	9,2
открыли	(+-) равны		открыли	(+-) равны	
dh2	16,8	13,8	dh2	16,6	13,5
2)			2)		
dh1	21,8	8,2	dh1	21	9
открыли	(+-) равны		открыли	(+-) равны	
dh2	16,9	13,1	dh2	16,3	13,6
3)			3)		
dh1	24,4	5,6	dh1	20,7	9,3
открыли	(+-) равны		открыли	(+-) равны	
dh2	17,7	12,3	dh2	16,6	13,4
4)			4)		
dh1	27,7	3	dh1	20,8	9,2
открыли	(+-) равны		открыли	(+-) равны	
dh2	18,5	11,4	dh2	16,2	13,7

где $h_{cneвa}$ и $h_{cnpaвa}$ показания манометра слева и справа соответственно. Теперь, воспользовавшись формулой (6) произведем расчеты для показателя адиабаты:

	0,5 c	3 c	Γ_0.5	Γ_3	
dh1	10,4	11,5	1,405	1,369	
dh2	3	3,1	1,405		
dh1	13,6	12	1,388	1 200	
dh2	3,8	2,7	1,300	1,290	
dh1	18,8	11,4	1,403	1 200	
dh2	5,4	3,2	1,405	1,390	
dh1	24,7	11,6	1,403	1 275	
dh2	7,1	2,5	1,405	1,275	

Показатель адиабаты для воздуха ($\gamma = \frac{C_P}{C_V}$) равен 7/5, можем заметить, что полученные данные близки к теоретическим. Также стоит отметить, что при большем избыточном давлении, создаваемом в начале, получаются более точные результаты.

Теперь давайте построим зависимость $\gamma(t)$:

4.2 По скорости звука в газе

Итого, у меня получились следующие значения для резонансов:

T, K	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8
296,10	210,3	440,2	710,4	935,3	1190,3	1405,3	1710,1	1853,9
323	231,1	484,7	732,7	975,3	1225,1	1454,8	1720,6	1917,6
338	244,1	496,8	745,7	992,7	1228,1	1471,3	1733,6	1987,2
353	258,3	515,6	755,8	1017,0	1255,6	1508,4	1759,3	2018,2

Итого, получился график $(k = \frac{c}{2L})$:

Итого, получается, что:

$c, \frac{M}{c}$	273,3	275,8	278,7	280,0
Δ c, $\frac{M}{c}$	0,8	0,9	0,5	0,5
γ	1,27	1,29	1,32	1,33

5 Заключение

В данной работе мы научились довольно точно измерять показатель адиабаты воздуха, а также в ходе выполнения лабораторной мы узнали, что следует создавать большое избыточное давление, для уменьшения расхождения с теоретическими значениями показателя адиабаты данной среды. В методе измерения показателя адиабаты по скорости звука в газе мы получили γ близкое к табличным (табличное - 1.3). Погрешность получилась из-за неточного снятия данных с осциллографа.