

Introduction to NLP

Classic parsing methods


```
S -> NP VP
NP -> DT N | NP PP
PP -> PRP NP
VP -> V NP | VP PP
DT -> 'a' | 'the'
N -> 'child' | 'cake' | 'fork'
PRP -> 'with' | 'to'
V -> 'saw' | 'ate'
```


Parsing as Search

- There are two types of constraints on the parses
 - From the input sentence
 - From the grammar
- Therefore, two general approaches to parsing
 - Top-down
 - Bottom-up

S

```
NP -> DT N | NP PP
PP -> PRP NP
VP -> V NP | VP PP
DT -> 'a' | 'the'
N -> 'child' | 'cake' | 'fork'
PRP -> 'with' | 'to'
V -> 'saw' | 'ate'
```



```
NP -> DT N | NP PP
PP -> PRP NP
VP -> V NP | VP PP
DT -> 'a' | 'the'
N -> 'child' | 'cake' | 'fork'
PRP -> 'with' | 'to'
V -> 'saw' | 'ate'
```



```
NP -> DT N | NP PP
PP -> PRP NP
VP -> V NP | VP PP
DT -> 'a' | 'the'
N -> 'child' | 'cake' | 'fork'
PRP -> 'with' | 'to'
V -> 'saw' | 'ate'
```



```
NP -> DT N | NP PP
PP -> PRP NP
VP -> V NP | VP PP
DT -> 'a' | 'the'
N -> 'child' | 'cake' | 'fork'
PRP -> 'with' | 'to'
V -> 'saw' | 'ate'
```



```
NP -> DT N | NP PP
PP -> PRP NP
VP -> V NP | VP PP
DT -> 'a' | 'the'
N -> 'child' | 'cake' | 'fork'
PRP -> 'with' | 'to'
V -> 'saw' | 'ate'
```


Bottom Up Vs. Top Down Methods

- Bottom up
 - explores options that won't lead to a full parse.
- Top down
 - explores options that don't match the full sentence.
- Dynamic programming
 - caches of intermediate results (memoization)
- Cocke–Kasami–Younger (CKY) parser
 - based on dynamic programming

Introduction to NLP

Shift-reduce parsing

Shift-reduce Parsing

- A bottom-up parser
 - Tries to match the RHS of a production until it can build an S
- Shift operation
 - Each word in the input sentence is pushed onto a stack
- Reduce operation
 - If the top n words on the top of the stack match the RHS of a production, then they are popped and replaced by the LHS of the production
- Stopping condition
 - The process stops when the input sentence has been processed and S has been popped from the stack.

[* the child ate the cake]


```
[ * the child ate the cake]
S [ 'the' * child ate the cake]
```



```
[ * the child ate the cake]
S [ 'the' * child ate the cake]
R [ DT * child ate the cake]
```



```
[ * the child ate the cake]
S [ 'the' * child ate the cake]
R [ DT * child ate the cake]
S [ DT 'child' * ate the cake]
R [ DT N * ate the cake]
```



```
[ * the child ate the cake]
S [ 'the' * child ate the cake]
R [ DT * child ate the cake]
S [ DT 'child' * ate the cake]
R [ DT N * ate the cake]
R [ NP * ate the cake]
S [ NP 'ate' * the cake]
```



```
[ * the child ate the cake]
S [ 'the' * child ate the cake]
R [ DT * child ate the cake]
S [ DT 'child' * ate the cake]
R [ DT N * ate the cake]
R [ NP * ate the cake]
S [ NP 'ate' * the cake]
S [ NP V * the cake]
S [ NP V 'the' * cake]
R [ NP V DT * cake]
S [ NP V DT 'cake' * ]
```



```
[ * the child ate the cake]
S [ 'the' * child ate the cake]
R [ DT * child ate the cake]
S [ DT 'child' * ate the cake]
R [ DT N * ate the cake]
R [ NP * ate the cake]
S [ NP 'ate' * the cake]
R [ NP V * the cake]
S [ NP V 'the' * cake]
R [ NP V DT * cake]
S [ NP V DT 'cake' * ]
R [ NP V DT N * ]
R [ NP V NP * ]
R [ NP VP * ]
R [ S * ]
```



```
[ * the child ate the cake]
 S [ 'the' * child ate the cake]
 R [ DT * child ate the cake]
 S [ DT 'child' * ate the cake]
 R [ DT N * ate the cake]
 R [ NP * ate the cake]
 S [ NP 'ate' * the cake]
 R [ NP V * the cake]
 S [ NP V 'the' * cake]
 R [ NP V DT * cake]
 S [ NP V DT 'cake' * ]
 R [ NP V DT N * ]
 R [ NP V NP * ]
 R [ NP VP * ]
 R [ S * ]
(S (NP (DT the) (N child)) (VP (V ate) (NP (DT the) (N cake))))
```


Introduction to NLP

Cocke-Kasami-Younger (CKY) Parsing

Dynamic Programming

Motivation

- A lot of the work is repeated
- Caching intermediate results improves the complexity

Dynamic programming

 Building a parse for a substring [i,j] based on all parses [i,k] and [k, j] that are included in it.

Complexity

- $O(n^3)$ for recognizing an input string of length n

Dynamic Programming

- CKY (Cocke-Kasami-Younger)
 - bottom-up
 - requires a normalized (binarized) grammar
- Earley parser
 - top-down
 - more complicated

Example

```
["the", "child", "ate", "the", "cake", "with", "the", "fork"]
      S \rightarrow NP VP
     NP -> DT N | NP PP
      PP -> PRP NP
     VP -> V NP | VP PP
      DT -> 'a' | 'the'
     N -> 'child' | 'cake' | 'fork'
      PRP -> 'with' | 'to'
     V -> 'saw' | 'ate'
```

04.03 Classic Parsing Methods

the								
	child							
		ate						
			the					
				cake				
					with			
						the		
							fork	

04.03 Classic Parsing Methods

the								
	child							
		ate						
			the					
				cake				
					with			
						the		
							fork	

the	וען							
	child	N						
		ate						
			the					
				cake				
					with			
						the		
							fork	

the	DT	NP						
	child	N						
		ate						
			the					
				cake				
					with			
						the		
							fork	

the	DT	NP						
	child	N						
		ate	V					
			the					
				cake				
					with			
						the		
							fork	

the	DT	NP						
	child	N						
		ate	V					
			the	DT				
				cake				
					with			
						the		
							fork	

the	וען	NP						
	child	N						
		ate	V					
			the	DT				
				cake	N			
					with			
						the		
							fork	

the	DT	NP						
	child	N						
		ate	V					
			the	DT	NP			
				cake	N			
					with			
						the		
							fork	

the	DT	NP						
	child	N						
		ate	V		VP			
			the	DT	NP			
				cake	N			
					with			
						the		
							fork	

the	DT	NP			S			
	child	N						
		ate	V		VP			
			the	DT	NP			
				cake	N			
					with			
						the		
							fork	

the	DT	NP			S			
	child	N						
		ate	V		VP			
			the	DT	NP			
				cake	N			
					with	PRP		
						the		
							fork	

the	DT	NP			S			S
	child	N						
		ate	V		VP			VP
			the	DT	NP			NP
		2] ==> [0]	NP [2]	cake	N			
[3] DT [6] DT [2] V [5] PRP	[7] N [8		NP [5] NP [8] VP [5] PP [8]		with	PRP		PP
[0] NP [3] NP [2] V	[2] VP [3] [5] PP [4]	5] ==> [0] 8] ==> [3] 8] ==> [2] 8] ==> [2]	S [5] NP [8] VP [8] VP [8]			the	DT	NP
[0] NP		8] ==> [0]	S [8]				fork	N

What is the *meaning* of each of these sentences?


```
(S
  (NP (DT the) (N child))
  (VP
  (VP (V ate) (NP (DT the) (N cake)))
  (PP (PRP with) (NP (DT the) (N fork)))))
```



```
(S
  (NP (DT the) (N child))
  (VP
    (VP (V ate) (NP (DT the) (N cake)))
        (PRP with) (NP (DT the) (N fork))))
(S
      (DT the) (N child))
  (VP
    (V ate)
    (NP
      (NP
          (DT the) (N cake))
          (PRP with) (NP (DT the) (N fork)))))
```


Online Demo

 http://www.diotavelli.net/people/void/ demos/cky.html

Complexity of CKY

- There are $O(n^2)$ cells in the table
- Single parse
 - Each cell requires a linear lookup.
 - Total time complexity is $O(n^3)$
- All parses
 - Total time complexity is exponential

A Longer Example

```
["take", "this", "book"]
   S -> NP VP | Aux NP VP | VP
   NP -> PRON | Det Nom
   Nom -> N | Nom N | Nom PP
   PP -> PRP NP
   VP -> V | V NP | VP PP
   Det -> 'the' | 'a' | 'this'
   PRON -> 'he' | 'she'
   N -> 'book' | 'boys' | 'girl'
   PRP -> 'with' | 'in'
   V -> 'takes' | 'take'
```


Non-binary Productions

["take", "this", "book"]

```
S -> NP VP | Aux NP VP | VP
NP -> PRON | Det Nom
Nom \rightarrow N \mid Nom N \mid Nom PP
PP -> PRP NP
VP \rightarrow V \mid V NP \mid VP PP
Det -> 'the' | 'a' | 'this'
PRON -> 'he' | 'she'
N -> 'book' | 'boys' | 'girl'
PRP -> 'with' | 'in'
V -> 'takes' | 'take'
```


Chomsky Normal Form

- All rules have to be in binary form:
 - $-X \rightarrow YZ$ or $X \rightarrow W$
- This introduces new non-terminals for
 - hybrid rules
 - n-ary rules
 - unary rules

ATIS Grammar

Original version

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

 $NP \rightarrow Pronoun$

NP → Proper-Noun

 $NP \rightarrow Det Nominal$

Nominal \rightarrow Noun

Nominal → Nominal Noun

Nominal → Nominal PP

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

ATIS Grammar In CNF

Original version

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

 $NP \rightarrow Pronoun$

 $NP \rightarrow Proper-Noun$

NP → Det Nominal

Nominal \rightarrow Noun

Nominal → Nominal Noun

Nominal → Nominal PP

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

CNF version

 $S \rightarrow NP VP$

 $S \rightarrow X1 VP$

 $X1 \rightarrow Aux NP$

 $S \rightarrow book \mid include \mid prefer$

 $S \rightarrow Verb NP$

 $S \rightarrow VP PP$

 $NP \rightarrow I \mid he \mid she \mid me$

 $NP \rightarrow Houston \mid NWA$

 $NP \rightarrow Det Nominal$

Nominal → book | flight | meal | money

Nominal → Nominal Noun

Nominal → Nominal PP

VP → book | include | prefer

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

ATIS Grammar In CNF

Original version

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

 $NP \rightarrow Pronoun$

NP → **Proper-Noun**

 $NP \rightarrow Det Nominal$

 $Nominal \rightarrow Noun$

Nominal → Nominal Noun

Nominal → Nominal PP

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

CNF version

 $S \rightarrow NP VP$

 $S \rightarrow X1 VP$

 $X1 \rightarrow Aux NP$

 $S \rightarrow book \mid include \mid prefer$

 $S \rightarrow Verb NP$

 $S \rightarrow VPPP$

 $NP \rightarrow I \mid he \mid she \mid me$

 $NP \rightarrow Houston \mid NWA$

 $NP \rightarrow Det Nominal$

Nominal → book | flight | meal | money

Nominal → Nominal Noun

Nominal → Nominal PP

 $VP \rightarrow book \mid include \mid prefer$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

Chomsky Normal Form

All rules have to be in binary form:

```
- X \rightarrow Y Z or X \rightarrow W
```

 New non-terminals for hybrid rules, n-ary and unary rules:

```
INF-VP → to VP becomes
INF-VP → TO
TO → to
S → Aux NP VP becomes
S → R1 VP
R1 → Aux NP
S → VP VP → Verb VP → Verb NP VP → Verb PP becomes
S → book
S → book
S → buy
S → R2 PP
S → Verb PP
```


Issues with CKY

Weak equivalence only

- Same language, different structure
- If the grammar had to be converted to CNF, then the final parse tree doesn't match the original grammar
- However, it can be converted back using a specific procedure

Syntactic ambiguity

(Deterministic) CKY has no way to perform syntactic disambiguation

