Cyclistic Case Study Q3_2021

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for 2021's third quarter.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

library(tidyverse)

```
## — Attaching packages -
                                                                 – tidyverse 1.3.2 <del>–</del>
## / ggplot2 3.4.0
                        ✓ purrr
                                   0.3.5
## ✓ tibble 3.1.8

✓ dplyr

                                   1.0.10
## ✔ tidyr
             1.2.1

✓ stringr 1.4.1

           2.1.3
                        ✓ forcats 0.5.2
## ✓ readr
## — Conflicts -
                                                           – tidyverse conflicts() —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag()
                     masks stats::lag()
```

library(lubridate)

```
## Loading required package: timechange
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

library(data.table)

```
##
## Attaching package: 'data.table'
##
##
   The following objects are masked from 'package:lubridate':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
##
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
## The following object is masked from 'package:purrr':
##
##
       transpose
```

```
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Jul21 <- read_csv("202107-divvy-tripdata.csv")
```

```
## Rows: 822410 Columns: 13
## — Column specification
## Delimiter: ","
## chr (9): ride_id, rideable_type, started_at, ended_at, start_station_name, s...
## dbl (4): start_lat, start_lng, end_lat, end_lng
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

```
## Rows: 804352 Columns: 13
## — Column specification
## chr (9): ride_id, rideable_type, started_at, ended_at, start_station_name, s...
## dbl (4): start_lat, start_lng, end_lat, end_lng
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

```
Sep21 <- read_csv("202109-divvy-tripdata.csv")
```

```
## Rows: 756147 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (9): ride_id, rideable_type, started_at, ended_at, start_station_name, s...
## dbl (4): start_lat, start_lng, end_lat, end_lng
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**. Then, we need to combine all data one dataframe. Then we examine dataframes to find dimensions, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

```
colnames(Jul21)
```

```
colnames(Aug21)
```

```
colnames(Sep21)
```

Since all column names are the same. We can combine the data for each month into quarters.

```
q3_2021 <- bind_rows(Jul21, Aug21, Sep21)
```

```
View(q3_2021)
```

```
nrow(q3_2021)
```

```
## [1] 2382909
```

```
dim(q3_2021)
```

```
## [1] 2382909 13
```

```
head(q3_2021)
```

```
## # A tibble: 6 × 13
##
                     ridea...¹ start...² ended...³ start...⁴ start...⁵ end s...⁶ end s...⁶ start...௧
    ride id
##
                     <chr> <chr> <chr> <chr> <chr>
                                                                <chr> <chr>
## 1 0A1B623926EF4... docked... 7/2/20... 7/2/20... Michig... 13001
                                                                 Halste… KA1504…
                                                                                      41.9
## 2 B2D5583A5A5E7... classi... 7/7/20... 7/7/20... Califo... 17660
                                                                 Wood S.,, 13432
                                                                                      41.9
## 3 6F264597DDBF4... classi... 7/25/2... 7/25/2... Wabash... SL-012 Rush S... KA1503...
                                                                                      41.9
## 4 379B58EAB20E8... classi... 7/8/20... 7/8/20... Califo... 17660 Carpen... 13196
                                                                                      41.9
## 5 6615C1E4EB08E... electr... 7/28/2... 7/28/2... Califo... 17660
                                                                Elizab... 13197
                                                                                      41.9
## 6 62DC2B32872F9... electr... 7/29/2... 7/29/2... Califo... 17660 Albany... 15655
## # ... with 4 more variables: start lng <dbl>, end lat <dbl>, end lng <dbl>,
## #
       member casual <chr>, and abbreviated variable names ¹rideable type,
       2started_at, 3ended_at, 4start_station_name, 5start_station_id,
## #
       6end_station_name, 7end_station_id, 8start_lat
```

tail(q3_2021)

```
## # A tibble: 6 × 13
                      ridea…¹ start…² ended…³ start…⁴ start…⁵ end_s…⁶ end_s…7 start…8
##
    ride_id
##
                       <chr> <chr> <chr> <chr> <chr> <chr>
                                                                               <chr>
                                                                                            <dbl>
## 1 0A6AA3B1A1EC5... classi... 9/14/2... 9/14/2... Ellis ... KA1503... Shore ... TA1308...
                                                                                              41.8
## 2 FA66BCAB0D73D... classi... 9/22/2... 9/22/2... Ellis ... 584
                                                                       Stony ... KA1503...
                                                                                              41.7
## 3 1D44DEFB5D36C... classi... 9/25/2... 9/25/2... Ellis ... KA1503... Shore ... TA1308...
                                                                                              41.8
## 4 6A346EA57FC23... classi... 9/25/2... 9/25/2... Ellis ... KA1503... Shore ... TA1308...
                                                                                              41.8
## 5 49360AFD77110... classi... 9/15/2... 9/15/2... Ellis ... KA1503... Shore ... TA1308...
                                                                                              41.8
## 6 343190A2DC023... electr... 9/11/2... 9/11/2... Wells ... TA1306... Clinto... 13021
                                                                                              41.9
## # ... with 4 more variables: start lng <dbl>, end lat <dbl>, end lng <dbl>,
        member casual <chr>, and abbreviated variable names ¹rideable type,
## #
        <sup>2</sup>started at, <sup>3</sup>ended at, <sup>4</sup>start station name, <sup>5</sup>start station id,
        <sup>6</sup>end station name, <sup>7</sup>end station id, <sup>8</sup>start lat
## #
```

summary(q3_2021)

```
##
      ride id
                       rideable type
                                          started at
                                                              ended at
##
   Length: 2382909
                      Length: 2382909
                                         Length: 2382909
                                                            Length: 2382909
##
   Class :character
                      Class :character
                                         Class :character
                                                            Class :character
   Mode :character
                      Mode :character
                                         Mode :character
                                                            Mode :character
##
##
##
##
##
                                                            end station id
##
   start station name start station id
                                         end station name
##
   Length: 2382909
                      Length:2382909
                                         Length:2382909
                                                            Length: 2382909
##
   Class :character
                      Class :character
                                         Class :character
                                                            Class :character
##
   Mode :character Mode :character
                                         Mode :character
                                                            Mode :character
##
##
##
##
##
      start_lat
                     start_lng
                                       end_lat
                                                       end_lng
                   Min. :-87.84
                                    Min. :41.57
   Min. :41.65
##
                                                    Min. :-87.87
    1st Qu.:41.88
                   1st Qu.:-87.66
                                    1st Qu.:41.88
                                                    1st Qu.:-87.66
                   Median :-87.64
                                    Median :41.90
##
   Median :41.90
                                                    Median :-87.64
   Mean :41.90
                   Mean :-87.65
                                    Mean :41.90
##
                                                    Mean :-87.65
                                                    3rd Qu.:-87.63
    3rd Qu.:41.93
                   3rd Qu.:-87.63
                                    3rd Qu.:41.93
##
##
   Max. :42.07
                   Max. :-87.52
                                    Max. :42.17
                                                    Max. :-87.49
##
                                    NA's
                                           :2032
                                                    NA's :2032
##
   member casual
##
   Length: 2382909
##
   Class :character
##
   Mode :character
##
##
##
##
```

```
## spc_tbl_ [2,382,909 x 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
                      : chr [1:2382909] "0A1B623926EF4E16" "B2D5583A5A5E76EE" "6F264597DDBF427A" "379B58EAB20E8
## $ ride_id
AA5" ...
                      : chr [1:2382909] "docked bike" "classic bike" "classic bike" "classic bike" ...
## $ rideable type
                       : chr [1:2382909] "7/2/2021 14:44" "7/7/2021 16:57" "7/25/2021 11:30" "7/8/2021 22:08" ...
## $ started at
                       : chr [1:2382909] "7/2/2021 15:19" "7/7/2021 17:16" "7/25/2021 11:48" "7/8/2021 22:23" ...
## $ ended at
## $ start station name: chr [1:2382909] "Michigan Ave & Washington St" "California Ave & Cortez St" "Wabash Ave
& 16th St" "California Ave & Cortez St" ..
## $ start_station_id : chr [1:2382909] "13001" "17660" "SL-012" "17660" ...
## $ end station name : chr [1:2382909] "Halsted St & North Branch St" "Wood St & Hubbard St" "Rush St & Hubbar
d St" "Carpenter St & Huron St" ...
## $ end_station_id : chr [1:2382909] "KA1504000117" "13432" "KA1503000044" "13196" ...
##
                      : num [1:2382909] 41.9 41.9 41.9 41.9 ...
  $ start lat
                      : num [1:2382909] -87.6 -87.7 -87.6 -87.7 -87.7 ...
## $ start_lng
## $ end_lat
                      : num [1:2382909] 41.9 41.9 41.9 41.9 ...
                      : num [1:2382909] -87.6 -87.7 -87.6 -87.7 -87.7 ...
   $ end_lng
##
                      : chr [1:2382909] "casual" "casual" "member" "member" ...
##
   $ member casual
    - attr(*, "spec")=
##
##
    .. cols(
##
         ride id = col character(),
    . .
##
    .. rideable type = col character(),
##
    .. started_at = col_character(),
##
    .. ended_at = col_character(),
##
         start station name = col character(),
     . .
         start station id = col_character(),
##
     . .
##
         end station name = col character(),
     . .
         end station id = col character(),
##
    . .
##
    .. start_lat = col_double(),
    .. start_lng = col_double(),
##
    .. end_lat = col_double(),
##
##
     . .
         end lng = col double(),
    .. member_casual = col_character()
##
    ..)
##
   - attr(*, "problems")=<externalptr>
```

Columns started at and ended at need to be convert from character data type to date data type. Str() syntax confirms changes.

```
q3_2021$started_at <- mdy_hm(q3_2021$started_at)
q3_2021$ended_at <- mdy_hm(q3_2021$ended_at)
str(q3_2021)</pre>
```

```
## spc_tbl_[2,382,909 \times 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ ride_id
                       : chr [1:2382909] "0A1B623926EF4E16" "B2D5583A5A5E76EE" "6F264597DDBF427A" "379B58EAB20E8
AA5" ...
                      : chr [1:2382909] "docked bike" "classic bike" "classic bike" ...
## $ rideable_type
                       : POSIXct[1:2382909], format: "2021-07-02 14:44:00" "2021-07-07 16:57:00" ...
## $ started at
                       : POSIXct[1:2382909], format: "2021-07-02 15:19:00" "2021-07-07 17:16:00"
   $ ended at
## $ start_station_name: chr [1:2382909] "Michigan Ave & Washington St" "California Ave & Cortez St" "Wabash Ave
& 16th St" "California Ave & Cortez St" ..
## $ start station id : chr [1:2382909] "13001" "17660" "SL-012" "17660" ...
## $ end station name : chr [1:2382909] "Halsted St & North Branch St" "Wood St & Hubbard St" "Rush St & Hubbar
d St" "Carpenter St & Huron St" ...
   $ end_station_id : chr [1:2382909] "KA1504000117" "13432" "KA1503000044" "13196" ...
##
##
   $ start_lat
                       : num [1:2382909] 41.9 41.9 41.9 41.9 ...
##
   $ start_lng
                       : num [1:2382909] -87.6 -87.7 -87.6 -87.7 -87.7 ...
                       : num [1:2382909] 41.9 41.9 41.9 41.9 ...
##
   $ end lat
##
   $ end lna
                      : num [1:2382909] -87.6 -87.7 -87.6 -87.7 -87.7 ...
                      : chr [1:2382909] "casual" "casual" "member" "member" ...
##
   $ member casual
    - attr(*, "spec")=
##
##
    .. cols(
##
         ride_id = col_character(),
     . .
##
         rideable_type = col_character(),
    . .
##
    .. started at = col character(),
    .. ended_at = col_character(),
##
##
     .. start_station_name = col_character(),
##
         start station id = col character(),
     . .
##
         end station name = col character(),
     . .
##
         end station id = col_character(),
         start lat = col double(),
##
     . .
         start lng = col double(),
##
     . .
##
     .. end_lat = col_double(),
##
     . .
         end_lng = col_double(),
##
         member casual = col character()
    . .
##
    ..)
   - attr(*, "problems")=<externalptr>
##
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
q3_2021$date <- as.Date(q3_2021$started_at)
q3_2021$month <- format(as.Date(q3_2021$date), "%m")
q3_2021$day <- format(as.Date(q3_2021$date), "%d")
q3_2021$year <- format(as.Date(q3_2021$date), "%Y")
q3_2021$year <- format(as.Date(q3_2021$date), "%A")
q3_2021$ride_length <- difftime(q3_2021$ended_at,q3_2021$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed

```
is.numeric(q3_2021$ride_length)
```

```
## [1] FALSE
```

Recheck ride_length data type.

```
q3_2021$ride_length <- as.numeric(as.character(q3_2021$ride_length))
is.numeric(q3_2021$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
q3_2021 <- na.omit(q3_2021)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
q3_2021 <- subset(q3_2021, nchar(as.character(ride_id)) == 16)
```

Remove rows with the ride_length less than 1 minute.

```
q3_2021 <- subset (q3_2021, ride_length > "1")
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the **mean**, **median**, **max** (maximum), and **min** (minimum) of *ride_length*.

```
mean(q3_2021$ride_length)
 ## [1] 1324.412
 median(q3_2021$ride_length)
 ## [1] 780
 max(q3_2021$ride_length)
 ## [1] 2946420
 min(q3_2021$ride_length)
 ## [1] 60
Run a statistical summary of the ride_length.
 summary(q3_2021$ride_length)
 ##
       Min. 1st Qu.
                      Median
                                 Mean 3rd Qu.
                                                   Max.
 ##
                 420
                          780
                                 1324
                                          1380 2946420
Compare the members and casual users
 aggregate(q3_2021\$ride_length \sim q3_2021\$member_casual, FUN = mean)
      q3_2021$member_casual q3_2021$ride_length
 ##
 ## 1
                      casual
                                          1819.904
 ## 2
                      member
                                           817.035
 aggregate(q3_2021$ride_length \sim q3_2021$member_casual, FUN = median)
 ##
      \verb|q3_2021$member_casual q3_2021$ride_length|\\
 ## 1
                      casual
 ## 2
                      member
 aggregate(q3_2021$ride_length \sim q3_2021$member_casual, FUN = max)
 ##
      q3_2021$member_casual q3_2021$ride_length
 ## 1
                                           2946420
                      casual
 ## 2
                                             89160
                      member
 aggregate(q3_2021\$ride_length \sim q3_2021\$member_casual, FUN = min)
 ##
      q3_2021$member_casual q3_2021$ride_length
 ## 1
                      casual
 ## 2
                                                60
                      member
Aggregate the average ride length by each day of the week for members and users.
 aggregate(q3\_2021\$ride\_length \sim q3\_2021\$member\_casual + q3\_2021\$day\_of\_week, \ FUN = mean)
```

```
\verb|q3_2021$member_casual q3_2021$day_of_week q3_2021$ride_length|
##
## 1
                                          Friday
                                                          1729.2651
                     casual
## 2
                                                            800.2401
                     member
                                          Friday
## 3
                     casual
                                          Monday
                                                           1930.5413
## 4
                                          Monday
                     member
                                                            795.8040
## 5
                                                           1953.1945
                     casual
                                        Saturday
## 6
                     member
                                        Saturday
                                                           922.7092
## 7
                                                           2068.9640
                     casual
                                         Sunday
## 8
                     member
                                          Sunday
                                                            942.1724
## 9
                     casual
                                        Thursday
                                                           1634.2617
## 10
                                        Thursday
                     member
                                                            771.6148
## 11
                     casual
                                        Tuesday
                                                           1556.3393
## 12
                     member
                                         Tuesday
                                                            752.0172
## 13
                     casual
                                       Wednesday
                                                           1559.3931
## 14
                                       Wednesday
                                                            767.5979
                     member
```

Sort the days of the week in order.

```
q3_2021$day_of_week <- ordered(q3_2021$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x \leftarrow aggregate(q3_2021$ride_length \sim q3_2021$member_casual + q3_2021$day_of_week, FUN = mean) head(x)
```

```
##
     q3_2021$member_casual q3_2021$day_of_week q3_2021$ride_length
## 1
                    casual
                                         Sunday
                                                          2068.9640
## 2
                                         Sunday
                    member
                                                           942.1724
                                                          1930.5413
## 3
                    casual
                                         Monday
## 4
                    member
                                         Monday
                                                           795.8040
## 5
                                        Tuesday
                                                          1556.3393
                    casual
## 6
                    member
                                        Tuesday
                                                           752.0172
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
    member casual weekday number of rides average duration
##
##
    <chr>
                    <int>
                                     <int>
## 1 casual
                                    189318
                                                       2069.
                         1
                         2
                                                       1931.
## 2 casual
                                     114316
## 3 casual
                         3
                                     98129
                                                       1556.
## 4 casual
                         4
                                    104887
                                                       1559.
## 5 casual
                                    123642
                                                       1634.
## 6 casual
                         6
                                    145946
                                                       1729.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(q3_2021$member_casual)
```

```
##
## casual member
## 998085 974705
```

```
table(q3_2021$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 1457040 137576 378174
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Days of the Week

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(q3_2021$day_of_week,q3_2021$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual
                                  Freq
## 1
          Sunday
                        casual 189318
## 2
          Monday
                        casual 114316
         Tuesday
## 3
                        casual 98129
## 4
       Wednesday
                        casual 104887
## 5
        Thursday
                         casual 123642
                        casual 145946
## 6
          Friday
```

Weekday trends (Monday through Friday).

Weekend trends (Sunday and Saturday).

Weekends Trends

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(q3_2021$rideable_type,q3_2021$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
     rideable_type member_casual
## 1 classic bike
                         casual 660590
## 2
      docked bike
                          casual 137576
## 3 electric_bike
                         casual 199919
## 4 classic bike
                         member 796450
## 5
      docked bike
                         member
## 6 electric_bike
                         member 178255
```

Plot for bike user vs bike type.

Riders and Ride Types

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(q3_2021, "q3_2021.csv")