Machine Learning Master in Artificial Intelligence and Robotics Sapienza University of Rome

Image Classification and Detection

About me

- Assistant professor with the Department of Computer Science at University of Verona profs.scienze.univr.it/~bloisi
- Team manager SPQR Robot Soccer Team www.diag.uniroma1.it/~bloisi spqr.diag.uniroma1.it
- Research interests: intelligent surveillance, multisensor data fusion, image processing, robotic vision, steganography

See-Think-Act Cycle

Sensors

Geometrical and Semantic data

Geometrical info

Semantic info

Vision Algorithms for Mobile Robotics Davide Scaramuzza

Flow of processing visual data

Detecting objects in images

Classification, Localization, Detection, and Segmentation

- localization
- detection
- segmentation

slide from 2014 - CVPR Tutorial on Deep Learning for Vision - Object Detection

Face Detection Problem

Find regions in the image that contain instances of faces

Detection issues

Additional issues

- Rotation
- Blurring
- Variations in illumination
- Occlusions
- Glasses
- ...

Detection vs Identification

identification

Detection vs Recognition

recognition

Detection & Recognition

Multiscale search

Input resizing

Image Pyramid

Cascade of classifiers

- A chain of classifiers that each reject some fraction of the negative training samples while keeping almost all positive ones
- Each classifier is an AdaBoost ensemble of rectangular Haar-like features sampled from a large pool

Training data

- Training Data
 - 5000 faces
 - All frontal, rescaled to 24x24 pixels
 - 300 million non-faces
 - 9500 non-face images
 - Faces are normalized
 - Scale, translation
- Many variations
 - Across individuals
 - Illumination
 - Pose

Deep Face

Figure 2. Outline of the *DeepFace* architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million parameters, where more than 95% come from the local and fully connected layers.

This figure from

Y. Taigman, M. Yang, M. Ranzato, L. Wolf, "DeepFace: Closing the Gap to Human-Level Performance in Face Verification," in IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701-1708, 2014

Ball detection in RoboCup SPL Soccer

https://youtu.be/ji00mkaWh20

ARGOS system

Automatic Remote Grand Canal Observation System

The ARGOS system controls a waterway of about 6 km length, 80 to 150 meters width, through 14 observation posts (Survey Cells)

ARGOS system: boat tracking

https://youtu.be/9a70Ucgbi U

Detecting boats docking in the highlighted area

Speed limit control

ARGOS captures screenshots of the boats when passing through the yellow line

Boat Classification

Boat Categories in Venice

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 22. 23.

Alilaguna
Ambulanza
Barchino
Cacciapesca
Caorlina
Gondola
Lanciafino10mBianca
Lanciafino10mBianca
Lanciamaggioredi10mBianca
Lanciamaggioredi10mBianca
Lanciamaggioredi10mBianca
Lanciamaggioredi10mBianca
Motobarca
Motopontonerettangolare
MotosafoACTV
Mototopo
Patanella
Polizia
Raccoltarifiuti
Sandoloaremi
Sanpierota
Topa
VaporettoACTV
Virilitatios

MarDCT dataset

http://www.diag.uniroma1.it/~labrococo/MAR/

MarDCT available files for detection

Examples

References and Credits

- P. Sermanet, "Object Detection with Deep Learning"
- K.H. Wong. "Ch. 6: Face detection"
- P. Viola and T.-W. Yue. "Adaboost for Face Detection"
- D. Miller. "Face Detection & Synthesis using 3D Models & OpenCV"
- S. Lazebnik. "Face detection"
- C. Schmid. "Category-level localization"
- C. Huang and F. Vahid. "Scalable Object Detection Accelerators on FPGAs
- Using Custom Design Space Exploration"
- P. Smyth. "Face Detection using the Viola-Jones Method"
- K. Palla and A. Kalaitzis. "Robust Real-time Face Detection"

Machine Learning Master in Artificial Intelligence and Robotics Sapienza University of Rome

Image Classification and Detection

