PB. 50 - Soluzione

Dati. Sono date S=3 sostanze e A=7 alimenti. Indichiamo con un indice $i=1,\ldots,S$ le sostanze (proteine, carboidrati, grassi) e con un indice $j=1,\ldots,A$ gli alimenti. Indichiamo con a_{ij} la quantità (in grammi) di sostanza $i=1,\ldots,S$ per ogni chilogrammo di alimento $j=1,\ldots,A$ [g / kg]. Indichiamo con l_i ed u_i la minima e la massima quantità di sostanza $i=1,\ldots,S$ da assumere ogni giorno [g / giorno]. Indichiamo con c_j il prezzo di ogni alimento $j=1,\ldots,A$ [Euro / kg].

Variabili. Il problema decisionale consiste nel decidere le quantità ottimali di ogni alimento da inserire nella dieta dell'atleta. Definiamo quindi una variabile per ogni tipo di alimento: essa indica la quantità di alimento che deve essere consumata dall'atleta ogni giorno. Abbiamo quindi le variabili x_j con j = 1, ..., A, misurate in kg / giorno. Le variabili sono continue e non-negative.

Vincoli. Le quantità di sostanze nutritive i = 1, ..., S devono essere comprese entro i limiti l_i e u_i . Esiste quindi una coppia di vincoli per ogni sostanza nutritiva i = 1, ..., S. Si esprimono i vincoli come $l_i \le \sum_{j=1}^{A} a_{ij} x_j \le u_i \quad \forall i = 1, ..., S$. Ogni vincolo è espresso in grammi / giorno.

Funzione obiettivo. Si vuole minimizzare il costo complessivo z, che dipende dalle quantità di alimenti scelti: $z = \sum_{j=1}^{A} c_j x_j$. La funzione obiettivo è espressa in Euro / giorno.

Il modello matematico completo risulta quindi:

$$\min z = \sum_{j=1}^{A} c_j x_j$$
s.t.
$$\sum_{j=1}^{A} a_{ij} x_j \ge l_i \qquad \forall i = 1, \dots, S$$

$$\sum_{j=1}^{A} a_{ij} x_j \le u_i \qquad \forall i = 1, \dots, S$$

$$x_j \ge 0 \qquad \forall j = 1, \dots, A.$$