Technial Cybersecurity

ARP Session Hijacking

lo.	Time	Source	Destination	Protocol	Length	Info
- [515 1.980133	172.16.248.130	172.16.248.1	DNS	85	Standard query 0x66e8
	516 1.980295	172.16.248.130	172.16.248.1	DNS	87	Standard query 0x66e9
	517 1.980381	172.16.248.1	172.16.248.130	ICMP	70	Destination unreachab
	518 1.980384	172.16.248.130	172.16.248.1	DNS	87	Standard query 0x66ea
	519 1.980393	172.16.248.1	172.16.248.130	ICMP	70	Destination unreachab
	520 1.980463	172.16.248.130	172.16.248.1	DNS	87	Standard query 0x66eb
	521 1.980665	172.16.248.1	172.16.248.130	ICMP	70	Destination unreachab
	522 1.980708	172.16.248.1	172.16.248.130	ICMP	70	Destination unreachab
	527 5.981896	172.16.248.130	172.16.248.1	DNS	87	Standard query 0x66ec
	528 5.981984	172.16.248.130	172.16.248.1	DNS	87	Standard query 0x66ed
	529 5.982043	172.16.248.1	172.16.248.130	ICMP	70	Destination unreachab
	530 5.982043	172.16.248.130	172.16.248.1	DNS	87	Standard query 0x66ee
	531 5.982052	172.16.248.1	172.16.248.130	ICMP	70	Destination unreachab
	532 5.982098	172.16.248.130	172.16.248.1	DNS	85	Standard query 0x66ef
	533 5.982149	172.16.248.1	172.16.248.130	ICMP	70	Destination unreachab

- Frame 515: 85 bytes on wire (680 bits), 85 bytes captured (680 bits)
- Ethernet II, Src: Vmware_8f:a0:6e (00:0c:29:8f:a0:6e), Dst: Vmware_c0:00:02 (00:50:56:c0:00:02)
- Internet Protocol Version 4, Src: 172.16.248.130, Dst: 172.16.248.1
- User Datagram Protocol, Src Port: 45407, Dst Port: 53
- Domain Name System (query)

What is ARP?

ARP == Address Resolution Protocol Remember our PCAP from the third module? Looked like this?

	Destination	Protocol	Length	Info	
	Broadcast	ARP	42	Who h	has 172.16.248.1? Tell 172.16.248.130
9	Broadcast	ARP	42	Who h	has 172.16.248.2? Tell 172.16.248.130
9	Broadcast	ARP	42	Who h	has 172.16.248.3? Tell 172.16.248.130
2	Vmware_8f:a0:6e	ARP	60	172.1	16.248.1 is at 00:50:56:c0:00:02
9	Broadcast	ARP	42	Who h	has 172.16.248.4? Tell 172.16.248.130
9	Broadcast	ARP	42	Who h	has 172.16.248.5? Tell 172.16.248.130
9	Broadcast	ARP	42	Who h	has 172.16.248.6? Tell 172.16.248.130
9	Broadcast	ARP	42	Who h	has 172.16.248.7? Tell 172.16.248.130
9	Broadcast	ARP	42	Who h	has 172.16.248.8? Tell 172.16.248.130
9	Broadcast	ARP	42	Who h	has 172.16.248.9? Tell 172.16.248.130
9	Broadcast	ARP	42	Who h	has 172.16.248.10? Tell 172.16.248.130
9	Broadcast	ARP	42	Who h	has 172.16.248.13? Tell 172.16.248.130
9	Broadcast	ARP	42	Who h	has 172.16.248.14? Tell 172.16.248.130
9	Broadcast	ARP	42	Who h	has 172.16.248.2? Tell 172.16.248.130
9	Broadcast	ARP	42	Who h	has 172.16.248.3? Tell 172.16.248.130

^{), 42} bytes captured (336 bits)

^{00:0}c:29:8f:a0:6e), Dst: Broadcast (ff:ff:ff:ff:ff:ff)

ARP identifies IP addresses

USED TO RESOLVE IP TO MAC ADDRESSES

Only see ARP traffic on subnets

THE WAY IT **SHOULD** WORK

- Computer A (IP: A.B.C.D) has a packet for computer B (IP: A.B.C.E)
 - 1. Computer A: Hey everybody, who's A.B.C.E? (ARP Request)
 - 2. Computer B: Yo! I'm A.B.C.E, and you can use my MAC address of XX:XX:XX:XX:XX, send me your stuff! (ARP Reply)
 - 3. *Computer A*: Cool; Hey gateway please send this stuff to XX:XX:XX:XX:XX:XX: (Not ARP; TCP or UDP or something else)
 - 4. *Gateway*: Sure thing, and I'll remember that A.B.C.E is XX:XX:XX:XX:XX:XX in case anybody asks again. (**Caching**)

What about this?

SOMETIME LATER...

- 1. *Attacker*: HEY EVERYBODY I'M A.B.C.E AND MY MAC ADDRESS IS YY:YY:YY:YY:YY:YY!!!!! (**ARP Replies**)
- 2. *Gateway*: Okay, okay, you're A.B.C.E, sure. Geez. (Caching)
- 3. *Attacker*: EVERYBODY I'M THE GATEWAY TOO!! (**ARP Replies**)
- 4. *Everybody*: Got it, you're a jerk, but you're also my gateway. (**Caching**)

Now, the gateway sends everything to the attacker, who forwards to others. And others send to the attacker, who forwards to the *real* gateway.

The attacker now has a *man-in-the-middle* (MitM) position and can intercept all communications.

Raspberry Pi

How about a small portable hacking station?

Pwn Plug

And another!

Pi-Hole

And another!

Hiding network access devices isn't that hard.

Protection

NEED TO KNOW WHAT IS ON YOUR NETWORK!

- Remember NMAP? Defenders need to use it too.
- Active probing and passive monitoring
- Automated auditing and record examination

Next, let's talk passwords.