

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1 1. (Currently Amended) A server network architecture, the architecture comprising:
2 a plurality of cluster nodes connected via a SAN according to a SAN-based
3 protocol; and

4 at least first and second one router nodes node bridging the plurality of cluster
5 nodes to a LAN.

1 2. (Currently Amended) The architecture network of claim 1, wherein the router
2 nodes are node is connected to the LAN via a LAN-based protocol.

1 3. (Currently Amended) The architecture network of claim 2, wherein the LAN-
2 based protocol is TCP/IP.

1 4. (Currently Amended) The architecture network of claim 1, wherein the router
2 nodes are node is connected to the plurality of cluster nodes via [[a]] the SAN according to the
3 SAN-based protocol.

1 5. (Currently Amended) The architecture network of claim 4, wherein the SAN-
2 based protocol is one of INFNIBAND, Next Generation I/O (NGIO), and Future I/O (FIO).

1 6. (Cancelled)

1 7. (Currently Amended) The architecture network of claim [[6]] 1, wherein the
2 second router node bridges to the plurality of cluster nodes after the first router node fails-over to
3 the second router node.

1 8. (Currently Amended) The architecture network of claim [[6]] 1, wherein the first
2 and second router nodes bridge node bridges to the plurality of cluster nodes in parallel.

1 9. (Currently Amended) The architecture network of claim 1, wherein [[the]] each
2 router node comprises a session management agent for maintaining session information for
3 sessions between the router node and a cluster node of the plurality of cluster nodes.

1 10. (Currently Amended) The architecture network of claim 1, wherein [[the]] each
2 router node comprises a policy management agent for maintaining connection information and
3 routing policies for the plurality of cluster nodes.

1 11. (Currently Amended) The architecture network of claim 1, wherein [[the]] each
2 router node comprises a routing agent for maintaining connection information for the plurality of
3 cluster nodes.

1 12. (Currently Amended) The architecture network of claim 1, wherein [[the]] each
2 router node comprises a filter agent for bidirectional conversion between the SAN based protocol
3 and a LAN based protocol.

1 13. (Currently Amended) The architecture of claim 1 A server network comprising:
2 a plurality of cluster nodes connected via a SAN according to a SAN-based
3 protocol; and

4 at least one router node bridging the plurality of cluster nodes to a LAN,
5 wherein at least one cluster node comprises a management node for setting
6 routing policies on the router node.

1 14. (Currently Amended) The architecture network of claim 13, wherein the
2 management node comprises a monitoring agent for obtaining statistics from the router node.

1 15. (Currently Amended) The architecture network of claim 1, wherein a cluster
2 node of the plurality of cluster nodes comprises a session management agent for holding session
3 information.

1 16. (Currently Amended) The architecture network of claim 1, wherein a cluster
2 node comprises a policy management agent for maintaining routing policies for the plurality of
3 cluster nodes.

1 17. (Currently Amended) A method of bridging a remote LAN client and [[a]] plural
2 SAN cluster nodes node, comprising the steps of:
3 receiving a request to establish a connection from the remote LAN client;
4 in response to the received request, accessing information that maps service types
5 to respective SAN cluster nodes;
6 based on a service type specified by the received request and based on accessing
7 the information, selecting one of the plural SAN cluster nodes;
8 receiving a LAN protocol communication from the remote LAN client;
9 transforming the LAN protocol communication into a SAN protocol
10 communication; and
11 sending the SAN protocol communication to [[a]] the selected one of the SAN
12 cluster nodes node.

1 18. (Cancelled)

1 19. (Currently Amended) The method of claim 17, further comprising the step of:
2 maintaining statistical information for the SAN cluster nodes node.

1 20 - 21. (CCancelled)

1 22. (Currently Amended) A router comprising:
2 a session management agent to maintain session information for sessions with a
3 plurality of cluster nodes over a LAN;
4 a routing agent to maintain connection information for the plurality of cluster
5 nodes connected via a SAN according to a SAN-based protocol, wherein the connection
6 information maps service types to respective cluster nodes,
7 the routing agent to receive a service request that specifies a service type, and the
8 routing agent to select one of the cluster nodes based on the specified service type and the
9 connection information; and
10 a filter agent to convert between the SAN-based protocol and a LAN-based
11 protocol.

1 23. (Original) The router of claim 22, further comprising:
2 a policy management agent to maintain routing policies for the plurality of cluster
3 nodes.

1 24. (New) The router of claim 22, wherein the connection information comprises a
2 policy table.

1 25. (New) The router of claim 22, wherein the SAN-based protocol is different from
2 the LAN-based protocol.

1 26. (New) The router of claim 22, wherein the connection information further
2 comprises information to indicate authentications to be performed for respective service types.

1 27. (New) The router of claim 22, wherein the connection information further
2 comprises weighting factor information to indicate a proportion of service requests to be directed
3 to a respective cluster node for a particular service type.

1 28. (New) The network of claim 1, wherein the cluster nodes connected via the SAN
2 are viewed by a remote client as being assigned a single IP address.

1 29. . (New) The network of claim 2, wherein each router node includes an agent to
2 convert between communication according to the SAN-based protocol and communication
3 according to the LAN-based protocol, the SAN-based protocol being different from the LAN-
4 based protocol.

1 30. (New) The network of claim 29, wherein each router node stores session
2 information to route data from remote LAN clients to the cluster nodes.

1 31. (New) A method comprising:
2 receiving, by a router, a service request from a client over a LAN that operates
3 according to a LAN-based protocol;
4 in response to the service request, the router accessing connection information
5 mapping service types to respective SAN nodes that are interconnected by a SAN that operates
6 according to a SAN-based protocol, the SAN-based protocol being different from the LAN-
7 based protocol; and
8 in response to a service type requested by the service request and based on the
9 connection information, the router selecting one of the SAN nodes to establish a connection
10 between the client and selected SAN node.