

Kernel Data Structures

- Many similar to standard programming data structures
- Singly linked list

Doubly linked list

Circular linked list

Kernel Data Structures

- **■** Binary search tree
 - left <= right
 - Search performance is O(n)
 - Balanced binary search tree is O(lg n)

Kernel Data Structures

Hash function can create a hash map

- **Bitmap** string of n binary digits representing the status of n items
- Linux data structures defined in

```
include files <linux/list.h>, <linux/kfifo.h>,
<linux/rbtree.h>
```


Transition from User to Kernel Mode

- Timer to prevent infinite loop / process hogging resources
 - Timer is set to interrupt the computer after some time period
 - Keep a counter that is decremented by the physical clock.
 - Operating system set the counter (privileged instruction)
 - When counter zero generate an interrupt
 - Set up before scheduling process to regain control or terminate program that exceeds allotted time

API – System Call – OS Relationship

A kernel crossing illustrated

Firefox: read(int fileDescriptor, void *buffer, int numBytes)

Standard C Library Example

C program invoking printf() library call, which calls write() system call

- The syscall instruction atomically:
 - Saves the current PC
 - Sets the execution mode to privileged
 - Sets the PC to a handler address
- With that, it's a lot like a local procedure call
 - Caller puts arguments in a place callee expects (registers or stack)
 - One of the args is a syscall number, indicating which OS function to invoke
 - Callee (OS) saves caller's state (registers, other control state) so it can use the CPU
 - OS function code runs
 - OS must verify caller's arguments (e.g., pointers)
 - OS returns using a special instruction
 - Automatically sets PC to return address and sets execution mode to user

WRAPPER for System calls!

 generally not invoked directly, but rather via wrapper functions in glibc (or some other library).

- glibc includes
 open, read, write, malloc, printf, pthread_create, exit and more.
 - https://www.gnu.org/software/libc/libc.html

See the list of system calls here http://man7.org/linux/man-pages/man2/syscalls.2.html

Programs (Assignment 2)

Concurrency (more in Assignment 2)

Parallelism

Processors and cores! (Assignment 2)

Memory Sharing (part of A2...) Program 1 Program 2 Memory Program 3

Files (Assignment 3)

There are a lot of Issues...

- Naming!
- Allocating space on disk (permanent storage)
 - organized for fast access
 - minimize waste
- Shuffling data between disk and memory (high-speed temporary storage)
- Coping with crashes

Computing Environments - Virtualization

Computing Environments – Cloud Computing

- Delivers computing, storage, even apps as a service across a network
- Logical extension of virtualization because it uses virtualization as the base for it functionality.
 - Amazon EC2 has thousands of servers, millions of virtual machines, petabytes of storage available across the Internet, pay based on usage
- Many types
 - Public cloud available via Internet to anyone willing to pay
 - Private cloud run by a company for the company's own use
 - Hybrid cloud includes both public and private cloud components
 - Software as a Service (SaaS) one or more applications available via the Internet (i.e., word processor)
 - Platform as a Service (PaaS) software stack ready for application use via the Internet (i.e., a database server)
 - Infrastructure as a Service (laaS) servers or storage available over Internet (i.e., storage available for backup use)

Computing Environments – Cloud Computing

- Cloud computing environments composed of traditional OSes, plus VMMs, plus cloud management tools
 - Internet connectivity requires security like firewalls
 - Load balancers spread traffic across multiple applications

Computing Environments – Real-Time Embedded Systems

- Real-time embedded systems most prevalent form of computers
 - Vary considerable, special purpose, limited purpose OS, real-time OS
 - Use expanding
- Many other special computing environments as well
 - Some have OSes, some perform tasks without an OS
- Real-time OS has well-defined fixed time constraints
 - Processing *must* be done within constraint
 - Correct operation only if constraints met

Bourne Shell Command Interpreter

