Санкт-Петербургский Политехнический Университет Петра Великого

Кафедра компьютерных систем и программных технологий

Отчёт по лабораторной рабте $\mathbb{N}3$

Курс: «Методы оптимизации и принятия решений»

Тема: «Марковские модели принятия решений»

Выполнил студент:

Волкова Мария Дмитриевна

Группа: 13541/3

Проверил:

Сиднев Александр Георгиевич

Содержание

1	Лаб	Лабораторная работ №3						
	1.1	Индивидуальное задание	2					
	1.2	Ход работы	2					
		1.2.1 Решения и стратегии	2					
		1.2.2 Модель динамического программирования с конечным числом этапов	2					
		1.2.3 Решение задачи с бесконечным числом этапов методом полного перебора	5					
	1.3	Вывод	7					

Лабораторная работ №3

1.1 Индивидуальное задание

Фирма может рекламировать свою продукцию с помощью радио (допустимое решение X1), телевидения (допустимое решение X2) и газет (допустимое решение X3). Недельные затраты на рекламу с помощью этих средств равны 200, 900 и 300 денежных единиц соответственно. Фирма может оценить недельный объём сбыта как удовлетворительный (состояние S1), хороший (состояние S2) и отличный (состояние S3). Матрицы переходных вероятностей для каждого из трёх средств массовой информации имеют вид

$$P_{1} = \begin{pmatrix} 0, 4 & 0, 5 & 0, 1 \\ 0, 1 & 0, 7 & 0, 2 \\ 0, 1 & 0, 7 & 0, 2 \end{pmatrix} P_{2} = \begin{pmatrix} 0, 7 & 0, 2 & 0, 1 \\ 0, 3 & 0, 6 & 0, 1 \\ 0, 1 & 0, 7 & 0, 2 \end{pmatrix} P_{3} = \begin{pmatrix} 0, 2 & 0, 5 & 0, 3 \\ 0 & 0, 7 & 0, 3 \\ 0 & 0, 2 & 0, 8 \end{pmatrix}$$

а соответствующие им недельные доходы (в денежных единицах) заданыматрицами

$$R_1 = \begin{pmatrix} 400 & 520 & 600 \\ 300 & 400 & 700 \\ 200 & 250 & 500 \end{pmatrix} R_2 = \begin{pmatrix} 1000 & 1300 & 1600 \\ 800 & 1000 & 1700 \\ 600 & 700 & 1100 \end{pmatrix} R_3 = \begin{pmatrix} 400 & 530 & 710 \\ 350 & 450 & 800 \\ 250 & 400 & 650 \end{pmatrix}$$

в которых не учтены затраты на рекламу, при этом необходимо учитывать коэффициент дисконтирования (если он задан). Найти оптимальную стратегию рекламы для последующих N недель и при бесконечном горизонте планирования.

1.2 Ход работы

1.2.1 Решения и стратегии

Состояния:

- 1 удовлетворительно;
- 2 хорошо;
- 3 отлично;

Для данных состояний имеется три решения:

- X_1 рекламировать на радио;
- X_2 рекламировать в газете;
- X_3 рекламировать на телевиденье;

1.2.2 Модель динамического программирования с конечным числом этапов

В нашем случае число этапов – 3 (недели), число состояний для каждого m=3 (удовлетворительный, хороший, отличный).

Вычислим значения:

$$v_i^k = \sum_{i=1}^m p_{ij}^k * r_{ij}^k$$

$$\begin{array}{l} v_1^1 = 0.4*400 + 0.5*520 + 0.1*600 = 480 \\ v_2^1 = 0.1*300 + 0.7*400 + 0.2*700 = 450 \\ v_3^1 = 0.1*200 + 0.7*250 + 0.2*500 = 295 \\ v_1^2 = 0.7*1000 + 0.2*1300 + 0.1*1600 = 1120 \end{array}$$

```
v_2^2=0.3*800+0.6*1000+0.1*1700=1010 v_3^2=0.1*600+0.7*700+0.2*1100=770 v_1^3=0.2*400+0.5*530+0.3*710=558 v_2^3=0*350+0.7*450+0.3*800=555 v_3^3=0*250+0.2*400+0.8*650=600 Запишем это в таблицу:
```

i	v_i^1	v_i^1	v_i^1
1	480	1120	558
2	450	1010	555
3	295	770	600

С учетом затрат на каждую стратегию (200, 900, 300):

		v_i^k		оптимальное решение			
i	v_i^1	v_i^1	v_i^1	$f_3(i)$	k		
1	280	220	258	280	1		
2	250	110	255	255	3		
3	95	-130	300	300	3		

Этан 3											
			оптимальное решение								
i	k = 1	k = 2	k = 3	$f_3(i)$	k						
1	280	220	258	280	1						
2	250	110	255	255	3						
3	95	-130	300	300	3						
	Этап 2										
	$v_i^k + p_{i1}^k$	$*f_3(1) + p$	оптимальное решение								
i	k = 1	k = 2	k = 3	$f_3(i)$	k						
1	349.5	-403	231.5	349.5	1						
2	316.5	-523	223.5	316.5	1						
3	161.5	-763.5	291	291	3						
			Этап 1								
	$v_i^k + p_{i1}^k$	$*f_2(1) + p$	$p_{i2}^k * f_2(2) + p_{i3}^k * f_2(3)$	оптимальное решение							
i	k = 1	k = 2	k = 3	$f_3(i)$	k						
1	476.65	-965.95	246.95	476.65	1						
2	431.2	-1099.15	232.35	431.2	1						
3	276.2	-1348.8	287.1	287.1	3						

Оптимальное решение показывает, что в 1-ый и 2-ой месяцы фирме следует рекламировать свою продукцию по радио в случае удовлетворительного и хорошего объема продаж и рекламировать в газетах , при условии, что уровень недельного объема продаж будет отличным.

В 3-ем месяце фирме следует рекламировать свою продукцию по радио при удовлетворительном недельном объеме продаж, в остальных случаях (хорошем и отличном) в газетах.

Суммарный ожидаемый доход за 3 месяца составит 476.65 при удовлетворительном уровне продаж в 1-ый месяц, 431.2 при хорошем уровне и 287.1 - при удовлетворительном уровне продаж в 1-ый месяц.

Все расчеты проводились в Matlab:

Листинг 1.1: скрипт // матрицы переходных вероятностей p111 = 0.4; p112 = 0.5; p113 = 0.1; p121 = 0.1; p122 = 0.7; p123 = 0.2; p131 = 0.1; p132 = 0.7; p133 = 0.2; p211 = 0.7; p212 = 0.2; p213 = 0.1; p221 = 0.3; p222 = 0.6; p223 = 0.1; p231 = 0.1; p232 = 0.7; p233 = 0.2; p311 = 0.2; p312 = 0.5; p313 = 0.3;

```
p321 = 0; p322 = 0.7; p323 = 0.3;
p331 = 0; p332 = 0.2; p333 = 0.8;
14 % недельные доходы
15 r111 = 400; r112 = 520; r113 = 600;
16 r121 = 300; r122 = 400; r123 = 700;
r131 = 200; r132 = 250; r133 = 500;
_{19} r211 = 1000; r212 = 1300; r213 = 1600;
|r221| = 800; r222| = 1000; r223| = 1700;
|| r231 = 600; r232 = 700; r233 = 1100;
r311 = 400; r312 = 530; r313 = 710;
r321 = 350; r322 = 450; r323 = 800;
25 r331 = 250; r332 = 400; r333 = 650;
27 % недельные затраты
_{28} o1 = 200;
_{29} o2 = 900;
_{30} o3 = 300;
31
32
зз % 3 этап
34 % радио
35 pnew111 = p111*r111 + p112*r112 + p113*r113 - o1;
36 pnew112 = p121*r121 + p122*r122 + p123*r123 - o1;
37 pnew113 = p131*r131 + p132*r132 + p133*r133 - o1;
  % телевиденье
38
39 pnew121 = p211*r211 + p212*r212 + p213*r213 - o2;
40 pnew122 = p221*r221 + p222*r222 + p223*r223 - o2;
41 pnew123 = p231*r231 + p232*r232 + p233*r233 - o2;
42 % газета
43 pnew131 = p311*r311 + p312*r312 + p313*r313 - o3;
44 pnew132 = p321*r321 + p322*r322 + p323*r323 - o3;
45 pnew133 = p331*r331 + p332*r332 + p333*r333 - o3;
47
48 % 2 этап
49 % радио
50 pnew211 = pnew111 + p111*pnew111 + p112*pnew132 + p113*pnew133 - o1;
51 pnew212 = pnew112 + p121*pnew111 + p122*pnew132 + p123*pnew133 - o1;
52 pnew213 = pnew113 + p131*pnew111 + p132*pnew132 + p133*pnew133 - o1;
53 % телевиденье
54 pnew221 = pnew121 + p211*pnew111 + p212*pnew132 + p213*pnew133 - o2;
55 pnew222 = pnew122 + p221*pnew111 + p222*pnew132 + p223*pnew133 - o2;
56 pnew223 = pnew123 + p231*pnew111 + p232*pnew132 + p233*pnew133 - o2;
57 % газета
58 pnew231 = pnew131 + p311*pnew111 + p312*pnew132 + p313*pnew133 - o3;
59 pnew232 = pnew132 + p321*pnew111 + p322*pnew132 + p323*pnew133 - o3;
60 pnew233 = pnew133 + p331*pnew111 + p332*pnew132 + p333*pnew133 - o3;
61
62
63 % 1 этап
64 % радио
65 pnew311 = pnew211 + p111*pnew211 + p112*pnew212 + p113*pnew233 - o1
66 pnew312 = pnew212 + p121*pnew211 + p122*pnew212 + p123*pnew233 - o1
67 pnew313 = pnew213 + p131*pnew211 + p132*pnew212 + p133*pnew233 - o1
68 % телевиденье
69 pnew321 = pnew221 + p211*pnew211 + p212*pnew212 + p213*pnew233 - o2
_{70} pnew322 = pnew222 + p221*pnew211 + p222*pnew212 + p223*pnew233 - o2
71 pnew323 = pnew223 + p231*pnew211 + p232*pnew212 + p233*pnew233 - o2
```

1.2.3 Решение задачи с бесконечным числом этапов методом полного перебора

В данной задаче принятия решений имеется $3^3=27$ стационарных стратегий поведения, представленных в следующей таблице.

	1					10					19							
	Р			R			Р			R				Р			R	
0,4	0,5	0,1	400	520	600	0,7	0,2	0,1	1000	1300	1600		0,2	0,5	0,3	400	530	710
0,1	0,7	0,2	300	400	700	0,3		0,1	800	1000	1700] [0	0,7	0,3	350	450	800
0,1	0,7	0,2	200	250	500	0,1	0,7	0,2	600	700	1100		0	0,2	0,8	250	400	650
			2				11					20						
	Р			R			Р			R				Р			R	-
0,4	0,5	0,1	400	520	600	0,7		0,1	1000	1300	1600		0,2	0,5	0,3	400	530	710
0,1	0,7	0,2	300	400	700	0,3	0,6	0,1	800	1000	1700		0	0,7	0,3	350	450	800
0,1	0,7	0,2	600	700	1100	0,1	0,7	0,2	200	250	500		0,1	0,7	0,2	200	250	500
			3						12] [21					
	Р			R			Р			R				Р			R	
0,4	0,5	0,1	400	520	600	0,7	0,2	0,1	1000	1300	1600		0,2	0,5	0,3	400	530	710
0,1	0,7	0,2	300	400	700	0,3		0,1	800	1000	1700		0	0,7	0,3	350	450	800
0	0,2	0,8	250	400	650	0	0,2	0,8	250	400	650		0,1	0,7	0,2	600	700	1100
			4						13							22		
	Р			R			Р			R				Р			R	
0,4	0,5	0,1	400	520	600	0,7		0,1	1000	1300	1600		0,2	0,5	0,3	400	530	710
0,3	0,6	0,1	800	1000	1700	0,1	0,7	0,2	300	400	700		0,1	0,7	0,2	300	400	700
0,1	0,7	0,2	200	250	500	0,1	0,7	0,2	200	250	500		0,1	0,7	0,2	200	250	500
	5				14						23							
	Р			R			Р			R				Р			R	
0,4	0,5	0,1	400	520	600	0,7	0,2	0,1	1000	1300	1600		0,2	0,5	0,3	400	530	710
0,3	0,6	0,1	800	1000	1700	0,1	0,7	0,2	300	400	700		0,1	0,7	0,2	300	400	700
0,1	0,7	0,2	600	700	1100	0,1	0,7	0,2	600	700	1100		0,1	0,7	0,2	600	700	1100
			6						15							24		
	Р			R			P			R				Р			R	
0,4	0,5	0,1	400	520	600	0,7		0,1	1000	1300	1600		0,2	0,5	0,3	400	530	710
0,3	0,6	0,1	800	1000	1700	0,1	0,7	0,2	300	400	700		0,1	0,7	0,2	300	400	700
0	0,2	0,8	250	400	650	0	0,2	0,8	250	400	650		0	0,2	0,8	250	400	650
			7						16				25					
	P	0.1	400	R	200		P	101	1000	R	1000			P		400	R	
0,4	0,5	0,1	400	520	600	0,7	/	0,1	1000	1300	1600		0,2	0,5	0,3	400	530	710
0	0,7	0,3	350	450	800	0	0,7	0,3	350	450	800		0,3	0,6	0,1	800	1000	1700
0,1	0,7	0,2	200	250	500	0,1	0,7	0,2	200	250	500		0,1	0,7	0,2	200	250	500
-			8						17	-						26		
0.4	P	0.1	400	R	000	0.5	P	101	1000	R	1.000		0.0	P	0.0	100	R	710
0,4	0,5	0,1	400	520	600	0,7		0,1	1000	1300	1600		0,2	0,5	0,3	400	530	710
0	0,7	0,3	350	450	800	0	0,7	0,3	350	450	800		0,3	0,6	0,1	800	1000	1700
0,1 0,7 0,2 600 700 1100			0,1	0,7	0,2	600	700	1100		0,1 0,7 0,2 600 700 1100				1100				
9							18					- D		27				
0.4	P	0.1	400	R	000		P	0.1	1000	R	1000		0.0	P	0.0	400	R	F10
0,4	0,5	0,1	400	520	600	0,7	0,2	0,1	1000	1300	1600		0,2	0,5	0,3	400	530	710
0	0,7	0,3	350	450	800	0	0,7	0,3	350	450	800		0,3	0,6	0,1	800	1000	1700
0	0,2	0,8	250	400	650	0	0,2	0,8	250	400	650		0	0,2	0,8	250	400	650
Le3vIII	ьтаті	J BH	числ	ений 7	v^s при	велен	Ы В T	гаюли	me									

Результаты вычислений v_i^s приведены в таблице.

S	i=1	i=2	i=3				
1	480	450	295				
2	480	450	770				
3	480	450	600				
4	480	1010	295				
5	480	1010	770				
6	480	1010	600				
7	480	555	295				
8	480	555	770				
9	480	555	600				
10	1120	1010	770				
11	1120	1010	295				
12	1120	1010	600 295 770				
13	1120	450					
14	1120	450					
15	1120	450	600				
16	1120	555	295				
17	1120	555	770				
18	1120	555	600				
19	558	555	600				
20	558	555	295				
21	558	555	770				
22	558	450	295				
23	558	450	770				
24	558	450	600				
25	558	1010	295				
26	558	1010	770				
27	558	1010	600				
CTATINOUADULIA PADOGTUOCI							

Стационарные вероятности находятся из уравнени:

$$\pi^s*P=\pi^s$$

$$\pi_1+\pi_2+\ldots+\pi_m=1$$

(Отметим, что одно из первых трех уравнений избыточно.) Решение системы будет:

$$0.4 * \pi_1 + 0.1 * \pi_2 + 0.1 * \pi_3 = \pi_1$$
$$0.5 * \pi_1 + 0.7 * \pi_2 + 0.7 * \pi_3 = \pi_1$$
$$0.1 * \pi_1 + 0.7 * \pi_2 + 0.2 * \pi_3 = \pi_1$$
$$\pi_1 + \pi_2 + \pi_3 = 1$$

(Отметим, что одно из первых трех уравнений избыточно.) Решение системы будет: $\pi_1^1 = 0.14$ $\pi_2^1 = 0.67$ $\pi_3^1 = 0.18$ $E^! = 421.8$

Результаты вычисления для всех стационарных стратегий приведены в следующей таблице.

S	π_1	π_2	π_3	E_s				
1	0.14	0.67	0.18	421.8				
2	0.14	0.67	0.18	507.3				
3	0.07	0.4	0.48	501.6				
4	0.31	0.58	0.1	764.1				
5	0.31	0.58	0.1	811.6				
6	0.3	0.4	0.3	728				
7	0.04	0.69	0.26	461.57				
8	0.04	0.69	0.26	585.07				
9	0	0.4	0.6	582				
10	0.46	0.42	0.1	1016.4				
11	0.46	0.42	0.1	968.9				
12	0.3	0.3	0.4	920				
13	0.25	0.575	0.175	590.375				
14	0.25	0.575	0.175	673.5				
15	0.13	0.4	0.46	601.6				
16	0.08	0.66	0.26	532.6				
17	0.08	0.66	0.26	651.6				
18	0	0.4	0.6	582				
19	0	0.4	0.6	582				
20	0.03	0.69	0.27	479.34				
21	50.03	0.69	0.27	607.59				
22	0.1	0.67	0.21	387.75				
23	0.1	0.67	0.21	487.5				
24	0.05	0.43	0.51	527.4				
25	0.24	0.59	0.16	777.02				
26	0.24	0.59	0.16	841.82				
27	0.15	0.41	0.41	743.8				
Вирол: Из тоблици вилио ито строя								

Вывод: Из таблицы видно, что стратегия 10 (релкамировать товар на телевиденье при любом объеме недельного сбыта) дает наибольший ожидаемый месячный доход. Следовательно, это и есть оптимальная долгосрочная стратегия (без учета затрат на рекламу).

1.3 Вывод

Рассмотренная модель марковских процессов принятия решений позволяет решать задачи принятия решений в условиях риска при заданном одном критерии, либо нескольких, приведенных к одному. Система допущений, используемых в модели и приводящих реальную ситуацию к описанию с помощью марковских процессов, ограничивает применение метода классом задач принятия решений, в которых можно принять допущение о дискретном времени, зависимости текущего состояния системы только от предшествующего и скачкообразном изменении состояния системы. Несмотря на эти ограничения, модель позволяет решать задачи принятия решений, сводящихся к классической задаче управления запасами.

Основным методом решения марковских задач принятия решений в данной работе является метод линейного программирования. Модель линейного программирования позволяет найти решения задачи за конечное число шагов, при этом не используя сложных и приближенных математических методов. Это облегчает поиск решения.

Решением задачи является вектор решений — стратегия — обеспечивающий оптимальное значение выбранного критерия. В качестве принципа оптимальности выбрана максимизация ожидаемых доходов на заданном числе этапов.