

1/24

Figure 1

2/24

Figure 2 Aiming Wang *et al.* 2002

10/522894

WO 2004/013168

PCT/CA2003/001169

3/24

Figure 3 Aiming Wang *et al.* 2002

4/24

A

taRAFTIN1a 1 MARELVALLATTLVAVOAGGQLGHAAPATAEVEWRALPHSPLPAVLRLLKQPAAGVELLTEATSFVRDAEDR~~RA~~PED 78
 taRAFTIN1b 1 ~~RA~~-----G-----X-----S-----P-----X----- 72
 osRAFTIN1 1 ~~RA~~-----LVAVA-AA-VLS-D-----S-----F-----RPDTSF-VGKA-A~~RA~~AGAARTGF--- 74

taRAFTIN1a 79 YRDYSRSPPDDEPSKSTGAA~~AA~~SGARD~~FDY~~DDYS~~AA~~GGDKLRGAASGAR~~AAA~~DFDYDDYS~~GA~~DKLRGAT~~AAA~~ 141
 taRAFTIN1b 73 -----SS-----V-~~RA~~-----~~AAA~~-----~~AAA~~-----~~AAA~~-----N-----ER-----~~AAA~~ 114
 osRAFTIN1 75 T--RG-DSPTTA-GLDL-GDFGE~~PAP~~-G-A-AQGE-GGGAA-A-EQVLAVDAG-N-K-V-R-L-GSSTAGGE 153

taRAFTIN1a 142 ~~AAA~~EEYKAPSSLAGNGASMARG~~G~~KAET~~TT~~V~~EE~~AVRGKRLP~~FP~~PPAT~~PA~~LGFL~~PRQV~~ADSV~~PF~~TTAALP 212
 taRAFTIN1b 115 ~~AAA~~-----S-Y-----X-----R-----H----- 185
 osRAFTIN1 154 NDDEPFGYD-----GSGTAA~~TT~~V-TGA-----E-----Y-A-TS-----R-----I-----A----- 233

taRAFTIN1a 213 ~~GV~~LATE~~GV~~ASDSATVASMEATL~~R~~ACESPTIAGESKFCATS~~LE~~ALVERAMEVLGTRDIRPVT~~STL~~PRAGAPLQTYTVRSVR 292
 taRAFTIN1b 186 ~~I~~-----T-P-----G-----VA-Q 265
 osRAFTIN1 234 ~~A~~-----L-----P-T-EA-G-RE-----T-W-L-----G-A-----AALA-----G-----A-A-A-L 313

taRAFTIN1a 293 PVEGGPVFVACHDEA~~Y~~PTVYRCHT~~T~~GPSRAYMVDMEG~~AA~~ARGGDAV~~T~~IA~~T~~VCH~~T~~DT~~S~~LWN~~P~~HVS~~E~~KLLG~~T~~KPGG~~P~~V 369
 taRAFTIN1b 266 -----T-----AAA-----A-----A----- 342
 osRAFTIN1 314 -----AG-----Q-----A-----E-----DGGGD-----E-----V-----N-R-----S----- 392

taRAFTIN1a 370 CHLMPYGHIIWAKNVNRSPA 389
 taRAFTIN1b 343 -----K----- 362
 osRAFTIN1 393 -----V-----KS-T----- 412

B

taRAFTIN1a 169 ~~FF~~HEEAVRVGKRLP~~FR~~FP~~PA~~T~~AA~~ALGFL~~PRQV~~ADSV~~PF~~TTAALPGV~~LA~~TE~~GV~~ASDSATVASMEATL~~R~~ACESPTIAGES 246
 PG-bet 415 --R-KMLKS-TIMPM~~A~~-DIKDKMPKRS---VI-SKL---S-SKIAELKAI~~F~~HAGDE-Q~~VE~~KMIGDA-SE--RAPS---T 492
 RD22 176 --L-KDLVR--EMNV--NAEDG~~Y~~GGKTA---GE-ET---GSEKFSET-KR-S-EAG-EEAEM-KK-IEE--ARKVSG-E 255
 ASG-1 87 --N-HD-LE--TE-MY--SV~~A~~-K---Q-R-VQ~~E~~I---S-R-ADI--L-HIPPG-SEAADVAT--GL-DAAAHGDVV 164
 CFC1 124 --L-KDMHP-ATMSLH-TEN-~~AA~~AKSA--Y-T-QK~~I~~--SSDK--E~~IF~~NK-S-KPG-LK-EM-KN-IKE--Q-A-E--E 200
 SCB1 92 --L--DL-A--IFNMK-VNN-KA-TVPL---ISK~~Q~~I--SEDKKKQ--ML--EAN-SNAKIIAE--GL-QE-ATEG-R 169

taRAFTIN1a 247 KFCATS~~LE~~ALVERAMEVLGTRDIRPVT~~STL~~PRAGAPLQTYT~~A~~RSVR~~P~~VEGGPV~~V~~ACHDEA~~Y~~PTVYRCHT~~T~~GPSRAY 324
 PG-bet 493 --R-VN-A-DMIDFATS--RN~~V~~~~A~~-RT-EDTKGSNGNIMIGSVKG~~ING~~GGKVTK~~S~~-S-CTL---LL-Y--SV~~PKV~~-V- 569
 RD22 256 --Y-----SM-DFVSK--KYHV-A-STEVAKKN--M-K-XIAAG-KKLSDDK~~S~~-V--KQK--FA-FY--KAMMTV- 334
 ASG-1 165 R~~A~~-V--PDDM-G--AA---SNMQVLAPS--TG-MS--P--~~AA~~-A-K--D-SQ~~A~~--G--P-L---S-----SVQTGT- 241
 CFC1 201 --Y-----SMIDYSISK--KV-~~AA~~Q-STEVEQ~~A~~TPM-K--IAAAG-QKMTDDK~~A~~-V--KQ~~N~~-A-A-FY--KSETT-- 276
 SCB1 170 --H-----SM-DFV~~V~~SA--K~~VG~~AFSTEKERETES~~A~~GKFV-VKNG--KLGDDHV~~A~~IA--PMS---V-FG--LVPR-SG- 246

taRAFTIN1a 325 MVDMEGARG~~G~~DAV~~T~~IA~~T~~VCH~~T~~DT~~S~~LWN~~P~~HVS~~E~~KLLG~~T~~KPGG~~P~~CHLMPYGHII 380
 PG-bet 570 EA-ILDPNSKV~~K~~INHG~~V~~AI--V---S-G-S-GA-VA--SG--KIE---WIFENDMTW 626
 RD22 338 A-PL--~~AA~~EN-MRAKAVA--KN--A--N-LA--V-KV--TV---FL-ET-VV- 389
 ASG-1 242 VME-QSSY-N-G-LKLVA--RN-TS-D-----V-AS---L-I--FV---V-F 298
 CFC1 277 --PL--~~AA~~AD-TKA~~K~~AVA-----A--K-LA-QV-KV~~E~~--TI---FL-RD--V- 331
 SCB1 247 L-RLK-~~AA~~E~~D~~-VR-KAVVA--R--K-DHN-GA--V-NL---NGT---V~~F~~E-NLL- 301

Top

Figure 4 Aiming Wang *et al.* 2002

5/24

Figure 5

6/24

Figure 6

7/24

Figure 7 Aiming Wang *et al.* 2002

8/24

Top

Figure 8ABCD Aiming Wang *et al.* 2002

9/24

Figure 8EFGH Aiming Wang *et al.* 2002

Top
↑

10/24

Figure 8I Aiming Wang *et al.* 2002

Top
↑

11/24

Figure 9 Aiming Wang *et al.* 2002

12/24

Figure 10

13/24

Fig. 11. *taRAFTIN1a* cDNA sequence (1338 nt excluding the polyA tail, ORF from nt 29 to nt 1198). Start codon and stop codon are underlined.

CTCTGGACCTCTCACCTAGCGCACATCCATGGCGCGCTCCTCGCCCTCCTCGCCACCAC
CCTGGTCGCGGTTCAGGCTGGAGGGCAGCTGGGCCACGCGGCCGGCGACGGCGGAGGTGTT
CTGGCGCGCCGTGCTGCCACACTCGCCATTGCCGACGCCGTTCTCCGCCTCTCAAACAAACC
CGCAGCAGGTGTTGAACTGCTCACAGAACGCCACCAGCTCGTGAGGGATGCGGAGGACAGGCC
CCCCTCGACTACCGTGATTACAGCCGCTGCCGCCGATGATGAACCGAGCAAGAGCACCGG
CGCCGCCTCCGGGGCGCGGGACTTCGACTACGACACTACAGCGGGGGCGACAAGCTCCGTGG
CGCCGCCTCCGGGGCGCGGGACTTCGACTACGACACTACAGCGGGGGCGACAAGCTCCGTGG
CGCCACCGATGAATACAAGGCCCGAGCAGCAGCCTCGCTGGAAACGGGGCGTCCATGGCTAG
GGGCGGCAAGGCGGAGACGACGACGGTGTTTCACGAGGAGGCGGTGCGGTCGCAAGAG
GCTCCCATTCGCTCCGCCGGCGACTCCCGCCGCGCTCGGTTCCTCGCGCCAGGTCGC
CGACTCCGCTCCGTTTCACGACGGCCCGCTGGCGTCCTCGCGACGTTCGGCGTCGCGT
CGACTCCGCCACGGTGGCCAGCATGGAGGCGACGCTCGCGCCTCGGAGTCGCCACATCGC
CGGGGAGTCCAAGTTCTGCGCGACCTCGCTGGAGGCCCTGGTGGAGCGCGCCATGGAAGTGCT
GGGGACCCCGGACTAGGCCGGTGACGTCGACGCTGGCCCCGGGCGCCGGCTGCAGAC
GTACACCGTCGCTCCGTCCGTGGGGCCGGGGTGAGGGGGGCCGTCTTCGGGCGTGCCCACCGACGA
GGCCTACCCGTACACCGGTACCGGGTCCACCCACACTGGCCCGTCCCAGGGCGGTACATGGGTGGA
CATGGAGGGCGCGCGGGCGACGGCGTGACCCATCGCCACCGGTGTGCCAACACCGACACGTC
CCTGTGGAAACCCGGGAGCACGTCTCCTCCAAGCTCCGGACCAAGCCTGGCGGCACGGGT
CTGCCACCTCATCGCGTACGGGCACATAAATCTGGGCCAGAACGTGAATCGCTCGCCGGCG
GTAGCGGGCCGGGCAGCTGTGGTCTCGCCGGAACTAAAGATCGATGTACTACTACTACTATCTG
TTTCCACCTACGTCTCTGTGGTTCAGACCACCAGATGGTCACCAGAGCAGCGCGTTGTAAATAA
AAGAACAGCTTCTGCAAAAAAAAAAAAAA

14/24

Fig. 12. *taRAFTIN1a* genomic sequence (1560 bps including two introns). Introns are shown in lower case letters. Start codon and stop codon are underlined.

CTCTGGACCTCTCACCTAGCGCACATCCATGGCGCGCTTCCTCGCCCTCGCCACCAC
CCTGGTCGCGtaatggccgaagaaggcactgagcaacgcctgcatcttcttcatttcggaa
actgcaccttagtgcatttcgcatgagattgatcgatcacaaactggtgctaacggcctgtttc
gtcacagGTTCAGGCTGGAGGGCAGCTGGGCCACGCGGCCGGCAGCGCGGAGGTGTTCTG
GCGGCCGTGCTGCCACACTCGCCATTGGCCGACGCCGTTCTCCGCCTTCTCAAACAAACCGC
AGCAGgtctgtcttcatgttccttcctgtcgccctccgttaactgtcttcttctcgag
tttgattgaccgcaaacacaaaaaaatgcatgcacgcacagGTGTTGAACTGCTCACAGAAGC
CACCAGCTCGTGAGGGATGCCGAGGACAGGCCCCCTCGACTACCGTGATTACAGCCGCTC
GCCGCCGATGATGAACCGAGCAAGAGCACCGCGCCCTCCGGGGCGCGGGACTTCGACTA
CGACGACTACAGCGGGGGCGACAAGCTCCGTGGCGCCCTCCGGGGCGCGGGACTTCGACTA
CGACGACTACAGCGGGGGCGACAAGCTCCGTGGCGCCACCGATGAATACAAGGCCCGAGCAG
CAGCCTCGCTGGAAACGGGGCGTCCATGGCTAGGGCGGCAAGGGCGGAGACGACGACGGTTT
CTTCACGAGGAGGCGGTGCCGGTCGCAAGAGGCTCCATTCCGCTTCCGCCGGCGACTCC
CGCCCGCTCGTTCCCTGCCGCCAGGTCGCCACTCCGTCCGTCCCGACT
GCCTGGCGCTCTCGCGACGTTCGCGGTCGCGACTCCGCCACGGTGGCCAGCGATGGAGGC
GACGCTCGCGCCCTCGGAGTCGCCACCGCCGGGGAGGTCCAGTTCTCGCGACCTCGCT
GGAGGCCCTGGAGCGCGCCATGGAAGTCGGTGGGGACCCCGACATCAGGCCGTGAGTCC
GACGCTGCCCCGCCGGCGCCCCCGCTCGACAGGTACACCGGTCCGTCGCCGGGTGGGA
GGGGGGCCCTGTCTCGGTGGCGGTCCACCGACGGGCCTACCGGTACACCGGTACCCGGGTGCCA
CACCACTGGCCCGTCAGGGCGGTACATGGGTGGACATGGGAGGGGCGCGCCGGCGACGGCGGT
GACCATCGCCCACCGGTGTGCCACCGACACGACGTCCCTGTGGAACCGGAGCAGTCTCCTTCAA
GCTCCCTGGGCACCAAGCTGGCGGCACGCCCGGGTCTGCCCACCTCAGCCGGTACGGGCACATAAT
CTGGGCCAAGACGTGAATCGCTGCCCGGCGGTGAGCGGCCGGGCAGCTGTGGGTCTCGCCG
GAACTAAAGATCGATGTACTACTACTACTATCTGTTTCCACCTACGTCTGTGGGTCTCGCCG
ACCAGATGGTCACCACCAGAGCGACCGGTTAAAAGAAACAGCTCTGC

15/24

Fig.13. *taRAFTIN1a* promoter sequence (1719 bps).

CTGTCGATGGCGCTCTGCTTGTGATTCTTCTTAGGGAACCTCGTCTCTGGGCCTCCGAGG
CCTGCAACCCTGTATCAGGACAATTCTGACTGGCCTCCAGGAGTCCTAACAGCCACCGACCTG
GTCCACTGGGCCATCTAGAGTATCTTGAAGTGTGTTGCACAAATCCCGCTAATTAAGGGA
TGTGATGATGATGGTTCTGAATCCGCGCCTTACCTCGAAAACGGGAAATTGCAAAGGAT
ATATGGCACCTGTCGCGTGTGAGGCCAGACGCTTCGGTTCAAGCTGGTTATAGGGAGGGGG
AAACGAAGGGTTTTCTCCCTCTGTCTTCATCCATTTCGTCTCCCAGCCCTAGCTCCCAA
AAGCGTGTGCCACCTCAAAGTCTTCAGCGCTGCTCACGTAGCCCCCGTCCACCCCTCCT
GCCACCAAGATGGCCCGAACCAAGAGCGAGAAGGTTCTAAAGGTTCCCAGCTAGGATCTGCC
GCCGCTGGAACGGGCTGAAGCGGAAGAGGGTCGCTCCAAGGGTGGTATGAAACAACAGCCG
GAAGCCCCAAGACTACAGGAAAGTGGTTCCCTCCTCGGCCACCGACAAAAAAACTTCAGGGT
CTCGTGGAGATAGGGCTGATGCCAGGGATTGGAGTGCCGCTCCGGGGACGAGGCTCCG
CCAACTCCTCGCGACGGTGAGCACATCCTCTGCCCTGGAGTATAATTTCGGAGGGGCTCGGG
TTTCCCCTACACGACTTCGTTGCCGGATCTTGCCTTACGGCTGCTAGCTACACCACATC
CCGTCAAACGGGTTCTTACATTGCAAACCTTCATCACATTGCGAGTGCTTCTCGGGACT
GCCGCTCACTTAAGTTGTTCAATACTTCAATCAGGACTGCGTTCAGACCAACGGGACATC
GTCTACGACCCCGAACACCAAATTCTCGCCACATACCTCCGAAAATAATCCTATAACACC
TGGTCTCACGCTTACATCTCGTAAGATTGCCATGTGTACTTCACCAATCTGATGCATCCCTT
TTTCCCCAAGATTATATGCCTGATCTGTATTGCTCCGCTTTCGAGATTGATGTTA
ATTGATGAAGCCAAGCAATCCGGATGCCGTCGGTGCACTAGATGGCTAGCTTCTACGG
TGCTGGGCCTGCCGGCGAGGGGCGCAGGCCACGTAGGAGACTGTTAGGATTCTGGGCTGG
ACCGTGGTGGCGTGAAGTTGGGAAGGAGGATTGAGGAAGAAGGATGCATCAAGATTGGTGA
GAACACGTGGCATCCTCTAGAGTAGGTCTTACGAGATGAAGCCTGAGACCAGGTCGTATGGGA
TTATTTCCGGACCTCCCGAACGCCGAAAGCTTAACTGCAGCTGCGTGGACGGCGAGCACC
GCACCGCACACGAACCGAACCTGACGCTGCCGCCACACAAACAGCCATTGCGCGCGGAT
CGTCGGATGTACGCCAGGATTATATTCTCCGGTGCCGACGTACCATGCGATCGCACAGCT
CACGTGAGAGCTTCTGTTGGCGTCGCCGTCAATGAAACACCTCCGTCGAGCCGACGA
CGCCTATAAGTACCTCGTCTGATCGCATCATCACTCCCAAGTACTACAACCTCTGGACCTCTC
ACCTAGCGCACATCCCATG

16/24

Fig.14. *taRAFTIN1b* cDNA sequence (1275 bps excluding the polyA tail, ORF from nt 25 to nt 1113). Start codon and stop codon are underlined.

CGACCTCTCACCTAGCGCACATCCATGGCGCGCTTCCTCGTCGCCCTCCCTCGCTGCCACCCCTG
GTCGCGGTTCAAGGCTGGAGGGCAGCTGGGCCACGCGGCCGGCTACGGGGGAGGTGTTCTGG
CGCGCCGTGCTGCCGCACTCGCCATTGCCTGACGCCGTTCTCCGCCTCCCAAACAACCTGCA
GCAGAAATCCACCAGCTCGTAGAGAGACCCGAGGACAGGCCCCCTCGACTACCGTGATTAC
AGCCGCTCGTCCGATGATGAACCGAGCAAGAGCACCGTCGCCGCTCCGGAGCGGGGGC
TTCGACTACGACAACACTACAGCGGGGCGACGAACGTCGTGGTGCCACCGATGAATACAAGGC
CCGAGCAGCAGCCTCGCTGGAAGCGGGCGTACATGGCTAGGGCGGCAAGGCAGACGACG
ACGGTGTCTTCACGAGGAGGCGGTGCGCTCGGCAGGAGGCTCCATTCCACTTCCCAGCG
GCGACTCCCGCGCTCTCGGTTCTGCCGCGCAGGTCGCCGACTCCGTCCGTTACGACG
GCCGCCTGCCGGCATCCTCGCAGCTTGGCATCGCTCCGACTCCACACGGTGCCAGC
ATGGAGGGGAGCAGCTGCGCGCTGCGAGTCGCCACCATGCCGGGAGTCCAAGTTCTGCGCG
ACTTCGCTGGAGGCCCTGGGGAGCGCGCCATGGGAGTGCTGGGGACCCGGGACATCAGGCCG
GTGACGTCGACGCTGCCCGCGCCGGCGCCCGCTGCGACAGTACACCGTCGCGCGTGCAG
CCGGTGGAGGGGGGGCCTGTTCTCGTGGCGTGCCACGACGAGGCCTACCCGTACACCGTGTAC
CGGTGCCACACCACCGGCCGTCCAGGGCGTACACGGTGGACATGGAGGGCGCGCGGCC
GACCGGGTACCATGCCGCCGTGCGCACACCGACACGTCCCTGTGGAACCCGGAGCACGTC
TCCTCAAGCTCCTCGGCACCAAGCCGGCGCACGCCGGTCTGCCACCTCATGCCGTACGGG
CACATAATCTGGGCCAAGAACGTGAAGCGCTGCCGGCGTGAACGGCCTTGCAGCTCTGTT
GTCGCCGGAACTAAGATCGATGTACTACTACTATCTGTTCTACCTACGTCTTCTGTTGTT
ATACCAACAGATGGTCACCCAAAGAGCAAGCGTTGTAATAAAAGAACAGCTTTTGAGAAG
CTGGTGTCTTATTTAAAAAAAAAA

17/24

Fig.15. *taRAFTIN1b* genomic sequence (1503 bps including two introns). Introns are shown in lower case letters. Start codon and stop codon are underlined.

CGACCTCTCACCTAGCGCACATCCATGGCGCGCTTCCTCGTCGCCCTCGCTGCCACCTG
GTCGCGgtaatggccgaagaagagcaacgcctgcatcttcttcatttggcaaattgcaccta
gtacattttgcataatcaatcacaactggtgctaacggcctgttgcgtccag
GTTCAAGGCTGGAGGGCAGCTGGGCCACGCCGGCGCTACGGGGGAGGTGTTCTGGCGCGCC
GTGCTGCCGCACTGCCATTGCCTGACGCCGTTCTCCGCCCTCAAACAAACCTGCAGCAGgt
ctgtcttgcataatcctcgtcgccctccgttaactgtcttcttctcgagtttattatca
ccaaacacaaaaatgcatacgacgcgtgggtgtgaactgcgcacagAATCCACCAGCTCGTG
AGAGACCCGAGGACAGGCCCTTCGACTACCGTGATTACAGCCGCTCGTCCGATGAT
GAACCGAGCAAGAGCACCGTCGCCGCCCTCCGGAGCAGGGGGCTTCGACTACGACAACACTACAGC
GGGGCCGACGAACGTCGTGGTGCACCGATGAATAACAAGGCGCCGAGCAGCAGCCTCGTGG
AGCGGGGCGTACATGGCTAGGGCGGAAGGCGGAGACGACGACGGTGTCTTCACGAGGAG
GCGGTGCGCGTCGGCAGGAGGCTCCATTCCACTTCCCGCCGGGACTCCGCCGCTCTGGT
TTCCCTGCCGCCAGGTGCGCCACTCCGTCCCGTTACGACGGCCGCGCTGCCGGCATCCTC
GCGACGTTGGCATCGCGTCCGACTCCACCCACGGTGCCAGCATGGAGGCGACGCTGCGCGCC
TGCGAGTCGCCACCATCGCCGGGAGTCCAAGTTCTGGCGACTTCGCTGGAGGGCCCTGGTG
GAGCGGCCATGGGAGTGCTGGGACCCGGGACATCAGGCCGGTGACGTCGACGCTGCCCGC
GCCGGCGCCCGCTGACGACGTACACCGTCGCGCCGTGACGCCGGTGAGGGGGGCGCTGTC
TTCGTGGCGTGCACGACGAGGCCTACCCGTACACCGTGTACCGGTGCCACACCACCGGCC
TCCAGGGCGTACACGGTGGACATGGAGGGCGCCGGCGACGCCGGTGACCATCGCCGCC
GTGTGCCACACCGACACGTCCTGTGGAACCCGGAGCACGTCTCCTTCAAGCTCCCTGGCACC
AAGCCCGGGCACGCCGGTGTGCCACCTCATGCCGTACGGGCACATAATCTGGGCCAAGAAC
GTGAAGCGCTGCCGGCGTGAGCGGCCTTGCAGCTCTGTGGTGTGCCGAACATAGATCGAT
GTACTACTACTATCTGTTCTACCTACGTCTTGTTCATACCACAGATGGTCACCCA
AGAGCAAGCGTTGTAATAAAAGAACAGCTTTGCAGAAGCTGGTGTATT

18/24

Fig. 16. *taRAFTIN1b* promoter sequence (2095 bps).

TTGTTGAGTGCCACACTATTCACTACACCATAATGCACATTATGCTTGGATTGTCTTGTACT
 TGACTCATGTGTTAGACACTTCATTTATTTGGTGTGAATGACTCCTATGCTTACCATAGACCTTCATTGAGCGCTTGTGCATGTTGTTACACCTTGAGGTAGATGTTGTTCTCTTGTCAAATATATAGCATCTACCTCCCATTGCATGCTTGTACACCATATGCTAGGCTTGATGATGACACTTGTGGGTGACTCACCTTGAATGATTGGTTTGCAATTACGCTAACACACATTATTTTCCAAGTGTGTTGTCCTGCTCCTTGAAGGAACCACATGACGGTGCACATTGGAGAGTGCCTATTCGAGCTTCAAGATGATGAGTGTGTTGATCGTCCACTTCTACATGGTGACGCCGTCTTCCCATTGGTGAATTGGTTTGATCCGAGGTGGATCTTCCCAAGTGGGAGGGGATGATGCGGAGCATACTACGGACATCACCAGTCTAGAGTTCAATTACGCAAGTGACACCTTACACATCTACTACATAAAAGGTGAATCATCTCCTTACACGTGCTACTTGATCCCTTGAGGATGGTATACTACTTGACACTTCTCACGTGTGCATGCATAGGCATTGTCGGAGCACCATGAAACGATGAGGAGGGAGTGCAGACAAAGTGTACAACATACACCATCCGGAGGGAAAGCATGGAAGAGAAGGAAGAAGACATGGACAAGCTCTGGAAAGCCCGAACCTCTGGCCTCCTGGCCAAATCTCTGGATAGCCGGACCTCGACCCGAACCTCCGGCGCTGGACCTTCCGGCCATCCCTGGAACTCCCGGCCCTGCGCTATCCCTCGACAGACTCGGGCCGAAGCCGATGTACCCCTTCTGGCCCTCACTTATCCCTTCGTTGCTATCACTATATATACTCATCCTCCTCCATTCTAGGGTTAGCATTTGATAGCTCATTCGATGTGAGATTGCTCCTTACCCCCATCTCCTTGTGAGAGAGTGGAGATTGATGCACTCCATTGGAGTCCAAGGTCTCTTGGAGAAGATCCCATTGGGAATCAAGACCCCATCATGGGAAGATCCTCTAGGATTCAAGACCTCAACTCCTTAAGGATTGGGATGAACTAGTTACCTCTGTATCTCTGTGTTGGATTAAACCTTGTATCCCTCATGTTGATGTGGATTAGCATATGTGTGATTGGATCTTGTCTATTGGAGTGTGTTCCCTCTTTGTTTCTGTGTTCATCGTTTCTCGGGAGATCCCCCTCAATTCTGAAAGATCGGTCCCTAGGGTTCTACCCCTACATTAGCTCAGGTTCCCTACACATCTCGTTGTGAGCTGTTGCGCTTCTACGGCTGGGAGCTAAGCACATCTCATTCCCACCAAACGGGGTTCTCACATTGTAAACTTCATCGTATTTGCGAACTGCTTCTGGGACAGCCACTCACTTGAGTTGCTCCGATACTCTTCCGGGTCTCGTTCAGACCAACGGGGACACCGTCTGCAACCTGGAGGAGCCATTCTGCGACACACCAAAATTTCGCACGGACCCCCCGAAGATCCGCAAGAAAAAAAGCTGCAACGGCGTGGACGGCGAGCACCGCACCGCACAGCAACAGCGACGCGTACGCCCACGATAATATTCTCCGGTGCCTGACGTACCATGCGATCGCACAGCTCACCGATGTCACTCGCCACGATAATATTCTCCGGTGCCTGACGTACCATGCGATCGCACAGCTCACCGAGAGCTTCTGTTGGTGTGCCGTCAATGAAACACCTTCCCGTCAAGCCGACGACGCCATTAAAGTACCTCGCCTGATCGCATTACTACCTCCAAAGTACTACAAACCTCTCGACCTCTCACCTAGCGCACATCCATG

19/24

Fig. 17. *taRAFTIN1d* predicted cDNA sequence (246 bps).

ATGGCGCGCTTCCTCGCCCTCCTCGCTGCCACCCCTGGTCGGGTTCAAGGCTGGAGGGCAG
CTGGGCCACGCAGCGCCGGCGACGGCGGAGGTGTTCTGGCGCCGTGCTGCCGACTGCCA
TTGCCCGACGCCGTTCTCCGCCTCTCAAACAAACCTGCAGCAGGTGTTGAACTGCACACAGAA
GCCACCAGCTCGTAAGAGACCCCGAGGAACAGGGCCCCCTCGACTACCGTGATTAC

Fig. 18. *taRAFTIN1d* partial genomic sequence (441 bps). Introns are shown in lower case letters.

ATGGCGCGCTTCCTCGCCCTCCTCGCTGCCACCCCTGGTCGCGgtaatggccgaagaagcc
actgagcaacgcctgcacatcttctttatttggcaaactggctaacggccaatactgcccgt
tgcgttacgtctcagGTTCAGGCTGGAGGGCAGCTGGGCCACGCAGCGCCGGCGACGGCGGAG
GTGTTCTGGCGCCGCGCTGCTGCCGCACTCGCCATTGCCGACGCCGTTCTCCGCCTCCTCAAA
CAACCTGCAGCAGgtctgtcttgcacatgttcctcgccctccgttaactgtttttctctc
gagtttgcattgtatcaccaaaacacaaaaatgcacatgcacgcgtacgcgttagGTGTTGAACGCAC
ACAGAACGCCACCAGCTTCGTAAGAGACCCCCGAGGACAGGGCCCCCTTCGACTACCGTGATTAC

21/24

Fig. 19. *osRAFTIN1* cDNA (1301 bps, ORF from nt 63 to nt1301). Start and stop codons are underlined.

GTGCGAGTCGTCTCCGGGAGAAAATCGGCTGCGCCCCGTCTCTCTCTCTCGAACGCTTCCA
TGGCGCGCTTCCTCCTCCTCGTCGCCGTGCCGCTGCCGCCGTGCTTCTGCTGGCG
ACCGGGCGCGTCGACGGCCGAGGTGTTCTGGCGGCCGTGCTGCCGAATCCCCGTTGCCGG
ACGCCTTCCTCCGCCCTCCGCCCTGACACCAGCTTCGTCGTCGGCAAAGCGGAGGCGGCCG
GTGGCGCGGCCGCGGACCGGATTCCCCCTCGATTACACTGACTACAGGGGATCTGATTCTCCGA
CGACGGCGAGTGGTTGGACCTCGCCGGTGACTTCGGCGAGCCGGCGCCCTTCGGCTACGACT
ACAGTGCACAGGGCGAAGGCGGCGGCCGCCGCCGCCGCCGGAGAGCAGGTTCTG
CCGTCACGCGGGCTCAACTACGACAAATACGTCGGCGAGGAAGCTCCGCGGGCAGCA
GCACCGCCGGCGGAGAGAATGATGACGAGCCTTCGGGTACGACTACAAGGCGCCAGCAGCG
GCAGCGGCACCGCGGGCGTCGACGACGGCGAGGGCGTCGGCACGGCGCCACGACGACGGTGT
TCTTCCACGAGGAGGCGGTGCGCGTCCGCGAGAGGCTCCGTTACTTCCCAGGGCGACGA
CGTCGGCGCTGGGCTTCCTGCCGCCGCGTCGGACTCCATCCGTTCACGGCGGCCGCG
TGCCGGCCGTCTCGCGTGTTCGGCGTCGCGCCGGACACCGCCGAGGGCGGCCATGAGGG
AGACGCTGCGCACGTGCGAGTGGCCGACCCCTCGCCGGAGTCAAAGTTCTGCGCCACGTCGC
TGGAGGCCCTGGTGGAGGGGCCATGGCGCGCTCGGGACACGCGACATCGCCGCGCTGGCGT
CGACGCTGCCCGCGGCCGCCGCGCTGCAGGCGTACGCCGTCGCGCCGTGCTCCCCGTG
AGGGCGCCGGCTTCGTGGCGTGCACGACCAGGGCGTACCCGTACACCGTGTACCGCTGCCACA
CCACCGGCCGGCCAGAGCTTACATGGTGGAGATGGAAGGCGACGGCGGGCGATGGCGCG
AGGCGGTGACCGTGGCCACCGTGTGCCACACCAACACGTCGCGGTGGAACCCGGAGCACGTCT
CGTCAAGCTCCTCGGCACCAAGCCGGCGGCTGCCGGTGTGCCACCTCATGCCGTACGGGC
ACATCGTCTGGGCAAGAACGTGAAGAGCTGACGGCGTAG

22/24

Fig. 20. *OsRAFTINI* genomic sequence (1479 bps, two introns included). Introns are shown in lower case letters.

GTGCGAGTCGTCTCCGGCGAGAAATCGGCTGCGCCCCGTCTCTCTCTCTCGAACGCTTCCA
TGGCGCGCTTCCTCCTCCTCGTCGCCGTGCCGCTGCCGCCGTGCTTCGgtacact
catgatgccgtactcagctgagccatgcaccgttgcacccgtataactaacgatcgctcgatc
gaccgacgtgtgtgtttttcagcagCTGGGCGACGCCGCGCCGTGACGCCGAGGTGTCT
GGCGCGCCGTGCTGCCGGAATCCCCGTTGCCGGACGCCCTCCTCCGCCCTCCGCCCTGgtc
ggtgtccttccttccttcgcgcgcgcgcgcgcattactctcctcgaggtttgatgg
tttgtggacgttgca^gACACCAAGCTTCGTCGGCAAAGCGGAGGCCGGTGGCGCG
CGGACCGGATTCCCCCTTCGATTACACTGACTACAGGGGATCTGATTCTCCGACGACGGCGAGT
GGTTTGGACCTCGCCGGTGACTTCGGCAGGCCGCGCCCTTCGGCTACGACTACAGTGCACAG
GGCGAAGGCCGGCGGCCGGCGCCGCGCCGCCGCCGGAGAGCAGGTTCTGCCGTCACGCCG
GGCTTCAACTACGACAAATACGTCGGCGAGGAAGCTCCGCGGGCAGCAGCACGCCGGC
GGAGAGAATGATGACGAGCCTTCGGGTACGACTACAAGGCGCCAGCAGCGGAGCGG
GCAGCGTCGACGACGGCGCGAGCGTCCGGCACGGCGCCACGACGACGGTGTCTCCACGAG
GAGGCCGTGCGTCCGGCGAGAGGCTCCGTTCTACTTCCGCCGGCAGCAGCTGGCGCTG
GGCTTCCCTGCCGCCGCCGCGTCGGACTCCATCCGTTCACGGCGGCCGCGCTGCCGGCGTC
CTCGCGCTGTTCCGGCGTCGCCGCCGGACACCGCCGAGGCCGGCGCATGAGGGAGACGCTGCGC
ACGTGCGAGTGGCCGACCCCTGCCGGCGAGTCCAAGTTCTGCCACGTCGCTGGAGGCCCTG
GTGGAGGGGCCATGGCGGGCGTCGGGACACGCGACATGCCGCCGCTGGCGTCAGCTGCC
CGCGGCCGGCGCCGCGTCAGCGTACGCCGCGCCGTGCTCCCCGTGAGGGCGCCGGC
TTCGTGGCGTGCCACGACCAGCGTACCCGTACACCGTGTACCGCTGCCACACCACGGCCCG
GCCAGAGCTTACATGGTGGAGATGGAAGGCGACGGCGGCCGATGGCGGCGAGCGGTGACC
GTGGCCACCGTGTGCCACACCAACACGTCGCCGGTGGAACCCGGAGCACGTCTCGTTCAAGCTC
CTCGGCACCAAGGCCGGCGTCGCCGGTGTGCCACCTCATGCCGTACGGCACATCGTCTGG
GCCAAGAACGTGAAGAGCTGACGGCGTAG

23/24

Fig. 21. *osRAFTIN1* promoter sequence (1461 bps).

CGAAGGCAAACCTGGTAAGGATTCCCATACAGAACATCAATTATAAGTCTAAAACGAACA
CTATGTTATGAGAAACACCTCACATCCGTCCATAACCGTGGCATGACTATTAAAAAGTTA
ACTAAACTCTACAAAAGTTGCACGCTTACCCACACGTATGAACGTTCACATTACCGAATA
CATGTGGATCGGACATGGCCGACAAAGGAGAGTTCAATACAAGGCTTTCCATAACCAATCCA
TAAATATCCTATGTCCCACGGTGGGAACTCTCCACCAAACATCAAGCCAGGATCAGGT
CCTCATCTACCCATGCCACTCCATGGACTCCGACACATCCCACTGCAGGAGATTGCCATA
TACGCCACCATACCAGTGCTCCTCAACCGCTAACATGTTGGACACCAAATTCTATATACTTAT
ATAGTTCATCTCCACTAAGTGTAGTTAATTACATTCTCTCTCTCATTAAGCCACATCAC
CTCAATTATTTAGCCTTAGATGATAGATCTATGGCCAATTGTCTTTCTTCTTCT
CTTAAAAACATGCAATCTTAAACTTTAGGCTAAAATTGTATCAAATTGTTTAGTTG
TACATATTATGCAACTTAATTTCGCCGCAACCGGGAGGGTATTCATCTAGTATTATTTA
AGAGCTATACACACTGCTATAGGGGAAAAAAAGATAGGTTGGCCCCCTGGTCAGTCCTGTT
GCACGGCTATATGTTGAAGGGAAAAGCCAGTACGTTTGTAGGTTGTTTTAGAATT
GCTAAAAAGTTGGCATGTTTTAGGTTAAAGCCTTAAATATAAGTTACATTGTAACATAC
AGTGTAACTTCCGCTGTAACATATTGTAATCTCTATATAAGTTAGATATAAAATTACATATAT
ATTATTTAATACCTATTATAAGTTAGTATATTAGTTATAATGGAATTAAATTATAATTAT
AGTATAGTTAGATTGAAAGTTTTCTTTAAGAAATTTCGCAACAGTTATTAGATATAGTC
CCTAAACGAAAATGTCAGGTGGATGCATGATTCACTGTCAGTGTGACGCTCGGGCGGATCACGGCTGCG
TCACGAAAATTCCCCCATGCAACCCCGGTCCGGCCGTCCTCGTGCCAACAGGCAACAGCGC
GGCGCCGGCGAACGTACGCCAAGATTATATTCCCCCTCTCGCGCTCGCGCGCCGCGACG
TCGTCGGAGCCAACATTATTTCGTTCTGTCACCGTCGCCGTTGATCTCAAGCGAGATT
TGAGGTTGCCACGACGACGCCCTGCTATAAATACCAAGGTGGTGGTCACCGCCGGCGCGT
CGATCGATCCGTCGCAGTCGTCTCCGGCGAGAAATCGGCTGCGCCCCGTCTCTCTCG
AACGCTTCCATG

24/24

Fig. 22. Predicted protein sequences

taRAFTIN1a (389 residues)

MARFLVALLATTAVQAGGQLGHAAPATAEVFWRAVLPHSPLPDAVLRLLKQPAAGVELLTEATSFVR
DAEDRPPFDYRDYSRSPPDDEPSKSTGAASGARDFDYDDYSGGDKLRAASGARDFDYDDYSGADKLRG
ATDEYKAPSSSLAGNGASMARGGKAETTTVFFHEEAVRVGKRLPFRFPPATPAALGFLPRQVADSPVFT
TAALPGVLATFGVASDSATVASMEATLRACESPTIAGESKFCATSLEALVERAMEVLGTRDIRPVTSTL
PRAGAPLQTYTVRSVRPVEGGPVFVACHDEAYPYTVRCHTTGPSRAYVDMEGARGGDAVTIATVCHT
DTSLWNPEHVSFKLLGTPKGTPVCHLMPYGHIIWAKNVNRSWA

taRAFTIN1b (362 residues)

MARFLVALLAATLVAVQAGGQLGHAAPATGEVFWRAVLPHSPLPDAVLRLLKQPAAEESTSFVRDPEDRP
PFDYRDYSRSSDDEPSKSTVAASGAGGFDYDNYSGADERRGATDEYKAPSSSLAGSGAYMARGGKAET
TTVFFHEEAVRVGRRLPFHFPPATPAALGFLPRQVADSPVFTTAALPGILATFGIASDSTVPSMEATL
RACESPTIAGESKFCATSLEALVERAMGVLGTRDIRPVTSTLPRAGAPLQTYTVVAVQPVEGGPVFVAC
HDEAYPYTVRCHTTGPSRAYVDMEGARGADAVTIAAVCHTDTSLWNPEHVSFKLLGTPKGTPVCHL
MPYGHIIWAKNVKRSPA

taRAFTIN1d (partial sequence, 82 residues)

MARFLVALLAATLVAVQAGGQLGHAAPATAEVFWRAVLPHSPLPDAVLRLLKQPAAGVELHTEATSFVR
DPEDRPPFDYRDY

osRAFTIN1 (412 residues)

MARFLLLLVAVAAAAAVSLGDAAPSTAEVFWRAVLPESPPLPDAFLRLLRPDTSFVVGKAEAGGAART
GFPFDYTDYRGSDSPTTASGLDLAGDFGEPAFPFYDYSAQGEGGGGGAAAAAGEQVLAVDAGFNYDKYV
GARKLRGGSSTAGGENDDEPFYDYSQKAPSSGSGTAASTTARGVGTGATTTVFFHEEAVRVGERLPFYFP
AATTSALGFLPRRVADSIPFTAALPAVLALFGVAPDTAEAGMRETLRTCEWPTLAGESKFCATSLEA
LVEGAMAALGTRDIAALASTLPRGGAPLQAYAVRAVLVPEGAGFVACHDQAYPYTVRCHTTGPARAYM
VEMEGDGGGDGGEAVTVATVCHTNTSRWNPEHVSFKLLGTPKGSPVCHLMPYGHIVWAKNVKSSTA

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.