[2]:	<pre>from sklearn.metrics import accuracy_score, confusion_matrix, classification_report import seaborn as sns oading the dataset: dataset = np.load(r'C:\Users\hp\OneDrive\Desktop\AI\Advanced deep learning and Computer vision\Datasets\Project datasets\ORL_faces.npz') print(type(dataset)) print('=' * 50) for i in dataset.iterkeys(): print(i)</pre>
= t t t t t	cclass 'numpy.lib.npyio.NpzFile'> ====================================
	<pre>X_train = dataset['trainX'] X_test = dataset['testX'] y_train = dataset['trainY'] y_test = dataset['testY'] ## Printing shapes : print('Shape of X_train is ', X_train.shape) print('Shape of X_test is ', X_test.shape) print('Shape of y_train is ', y_train.shape) print('Shape of y_train is ', y_train.shape) print('Shape of y_test is ', y_test.shape)</pre>
S S S	Shape of X_train is (240, 10304) Shape of X_test is (160, 10304) Shape of y_train is (240,) Shape of y_test is (160,) ### Visualising some images : plt.figure(figsize = (15, 15)) for i in range(100): plt.subplot(10, 10, i + 1) plt.imshow(X_train[i].reshape(112, 92))
	<pre>plt.xlabel(y_train[i], color = 'white') #plt.axis('off') plt.xticks([]) plt.yticks([])</pre> plt.show()
	plt.imshow(X_train[91].reshape(112, 92))
	matplotlib.image.AxesImage at 0x2030f355bb0> 0 20 40 60 -
1 [6]:	80 - 100 - 1
X	<pre>### Reshaping to images : X_train = X_train.reshape(240, 112, 92) X_test = X_test.reshape(160, 112, 92) print('X_train shape : ', X_train.shape) print('X_test shape : ', X_test.shape) (_train shape : (240, 112, 92) (_test shape : (160, 112, 92) </pre> <pre>Ormalize the images :</pre>
[8]:	<pre>### Scaling all the images : X_train_scaled = X_train.astype('float32') / 255.0 X_test_scaled = X_test.astype('float32') / 255.0 ### Checking whether all the images are in same size : for img in X_train_scaled: if img.shape != (112, 92): print(img.shape)</pre>
a S [<pre>else: print('all images are in the same size') all images are in the same size plitting the train data into train and validation sets: X_train, X_val, y_train, y_val = train_test_split(X_train_scaled, y_train, test_size = 0.05, random_state = 21, shuffle=True) print('X_train shape :', X_train.shape) print('X_val shape :', X_val.shape)</pre>
x x = y y	<pre>print('=' * 50) print('y_train shape :', y_train.shape) print('y_val shape :', y_val.shape) (_train shape : (228, 112, 92) (_val shape : (12, 112, 92)</pre>
	<pre>X_val = np.expand_dims(X_val, axis = 3) X_test = np.expand_dims(X_test, axis = 3) y_train = np.expand_dims(y_train, axis = 1) y_val = np.expand_dims(y_val, axis = 1) y_test = np.expand_dims(y_test, axis = 1) print('X_train shape :', X_train.shape) print('X_val shape :', X_val.shape) print('X_test shape :', X_test.shape) print('=' * 50) print('y_train shape :', y_train.shape)</pre>
X X X = y y	print('y_test shape :', y_test.shape) print('y_val shape :', y_val.shape) (_train shape : (228, 112, 92, 1) (_val shape : (12, 112, 92, 1) (_test shape : (160, 112, 92, 1)
.2]:	<pre>### Creating the CNN Model : input_shape = Input(shape = (112, 92, 1)) x = Conv2D(36, (7, 7), activation = 'relu')(input_shape) x = MaxPooling2D(2, 2)(x) x = Conv2D(54, (5, 5), activation = 'relu')(x) x = MaxPooling2D(2, 2)(x)</pre>
	<pre>x = Flatten()(x) x = Dense(2024, activation = 'relu')(x) x = Dropout(0.5)(x) x = Dense(1024, activation = 'relu')(x) x = Dropout(0.5)(x) x = Dense(512, activation = 'relu')(x) x = Dropout(0.5)(x) output_class = Dense(20, activation = 'softmax')(x) CNN_model = Model(input_shape, output_class)</pre>
M	CNN_model.summary() Model: "model" Layer (type)
 f d d	Conv2d_1 (Conv2D) (None, 49, 39, 54) 48654 max_pooling2d_1 (MaxPooling2 (None, 24, 19, 54) 0 Flatten (Flatten) (None, 24624) 0 dense (Dense) (None, 2024) 49841000 dropout (Dropout) (None, 2024) 0 dense_1 (Dense) (None, 1024) 2073600
	dropout_1 (Dropout) (None, 1024) 0 dense_2 (Dense) (None, 512) 524800 dropout_2 (Dropout) (None, 512) 0 dense_3 (Dense) (None, 20) 10260 cotal params: 52,500,114 Trainable params: 52,500,114
	CNN_model.compile(loss = 'sparse_categorical_crossentropy',
8 8 8 8 E 8 E 8	Epoch 2/50 8/8 - 11s - loss: 3.0044 - accuracy: 0.0351 - val_loss: 3.0059 - val_accuracy: 0.0000e+00 Epoch 3/50 8/8 - 11s - loss: 3.0110 - accuracy: 0.0789 - val_loss: 3.0248 - val_accuracy: 0.0000e+00 Epoch 4/50 8/8 - 11s - loss: 2.9866 - accuracy: 0.0614 - val_loss: 3.0194 - val_accuracy: 0.0000e+00 Epoch 5/50 8/8 - 12s - loss: 2.9813 - accuracy: 0.0658 - val_loss: 3.0077 - val_accuracy: 0.0000e+00 Epoch 6/50 8/8 - 9s - loss: 2.9556 - accuracy: 0.0789 - val_loss: 2.9572 - val_accuracy: 0.0000e+00 Epoch 7/50
E 8 8 E 8 E 8	3/8 - 9s - loss: 2.9203 - accuracy: 0.1140 - val_loss: 2.7607 - val_accuracy: 0.2500 Epoch 8/50 3/8 - 9s - loss: 2.7042 - accuracy: 0.1623 - val_loss: 2.2292 - val_accuracy: 0.4167 Epoch 9/50 3/8 - 12s - loss: 2.1566 - accuracy: 0.3246 - val_loss: 1.2216 - val_accuracy: 0.6667 Epoch 10/50 8/8 - 9s - loss: 1.7271 - accuracy: 0.4386 - val_loss: 0.6439 - val_accuracy: 0.8333 Epoch 11/50 8/8 - 9s - loss: 1.2808 - accuracy: 0.5921 - val_loss: 0.7013 - val_accuracy: 0.7500 Epoch 12/50 8/8 - 9s - loss: 0.9359 - accuracy: 0.7061 - val_loss: 0.4677 - val_accuracy: 0.8333
8 8 E 8 E 8	Epoch 13/50 8/8 - 13s - loss: 0.6916 - accuracy: 0.7500 - val_loss: 0.0749 - val_accuracy: 1.0000 Epoch 14/50 8/8 - 10s - loss: 0.3872 - accuracy: 0.8640 - val_loss: 0.1182 - val_accuracy: 1.0000 Epoch 15/50 8/8 - 9s - loss: 0.2808 - accuracy: 0.9035 - val_loss: 0.1095 - val_accuracy: 0.9167 Epoch 16/50 8/8 - 9s - loss: 0.2115 - accuracy: 0.9430 - val_loss: 0.0861 - val_accuracy: 1.0000 Epoch 17/50 8/8 - 9s - loss: 0.1330 - accuracy: 0.9649 - val_loss: 0.0067 - val_accuracy: 1.0000 Epoch 18/50
E 8 8 E 8 E 8	3/8 - 9s - loss: 0.1009 - accuracy: 0.9737 - val_loss: 0.0019 - val_accuracy: 1.0000 Epoch 19/50 3/8 - 9s - loss: 0.0246 - accuracy: 0.9912 - val_loss: 2.1750e-04 - val_accuracy: 1.0000 Epoch 20/50 3/8 - 9s - loss: 0.0507 - accuracy: 0.9912 - val_loss: 0.0315 - val_accuracy: 1.0000 Epoch 21/50 3/8 - 10s - loss: 0.0574 - accuracy: 0.9781 - val_loss: 9.6428e-04 - val_accuracy: 1.0000 Epoch 22/50 3/8 - 9s - loss: 0.0481 - accuracy: 0.9781 - val_loss: 2.0160e-04 - val_accuracy: 1.0000 Epoch 23/50 3/8 - 9s - loss: 0.0570 - accuracy: 0.9868 - val_loss: 0.0066 - val_accuracy: 1.0000
8 8 E 8 E 8	Epoch 24/50 8/8 - 9s - loss: 0.0714 - accuracy: 0.9781 - val_loss: 0.0252 - val_accuracy: 1.0000 Epoch 25/50 8/8 - 9s - loss: 0.0268 - accuracy: 0.9912 - val_loss: 1.9802e-04 - val_accuracy: 1.0000 Epoch 26/50 8/8 - 9s - loss: 0.0343 - accuracy: 0.9868 - val_loss: 0.0024 - val_accuracy: 1.0000 Epoch 27/50 8/8 - 9s - loss: 0.0135 - accuracy: 1.0000 - val_loss: 0.0095 - val_accuracy: 1.0000 Epoch 28/50 8/8 - 9s - loss: 0.0214 - accuracy: 0.9956 - val_loss: 0.0030 - val_accuracy: 1.0000 Epoch 29/50
E 8 8 E 8 E 8	3/8 - 10s - loss: 0.0628 - accuracy: 0.9737 - val_loss: 0.0155 - val_accuracy: 1.0000 Epoch 30/50 3/8 - 13s - loss: 0.0470 - accuracy: 0.9956 - val_loss: 0.0410 - val_accuracy: 1.0000 Epoch 31/50 3/8 - 11s - loss: 0.0213 - accuracy: 0.9912 - val_loss: 3.2062e-04 - val_accuracy: 1.0000 Epoch 32/50 3/8 - 11s - loss: 0.0187 - accuracy: 0.9912 - val_loss: 9.2657e-04 - val_accuracy: 1.0000 Epoch 33/50 3/8 - 11s - loss: 0.0241 - accuracy: 0.9912 - val_loss: 0.0028 - val_accuracy: 1.0000 Epoch 34/50 3/8 - 11s - loss: 0.0093 - accuracy: 1.0000 - val_loss: 3.8603e-04 - val_accuracy: 1.0000
8 8 8 8 E 8 E	Epoch 35/50 3/8 - 11s - loss: 0.0171 - accuracy: 0.9956 - val_loss: 1.1963e-04 - val_accuracy: 1.0000 Epoch 36/50 3/8 - 11s - loss: 0.0197 - accuracy: 0.9912 - val_loss: 0.0017 - val_accuracy: 1.0000 Epoch 37/50 3/8 - 12s - loss: 0.0296 - accuracy: 0.9912 - val_loss: 0.0010 - val_accuracy: 1.0000 Epoch 38/50 3/8 - 11s - loss: 0.0393 - accuracy: 0.9912 - val_loss: 0.0016 - val_accuracy: 1.0000 Epoch 39/50 3/8 - 11s - loss: 0.0292 - accuracy: 0.9956 - val_loss: 0.0014 - val_accuracy: 1.0000 Epoch 40/50 3/8 - 11s - loss: 0.0515 - accuracy: 0.9825 - val_loss: 0.0025 - val_accuracy: 1.0000
E 8 8 E 8 E 8	spoch 41/50 3/8 - 11s - loss: 0.0100 - accuracy: 0.9956 - val_loss: 5.2778e-04 - val_accuracy: 1.0000 5poch 42/50 3/8 - 12s - loss: 0.0051 - accuracy: 1.0000 - val_loss: 3.8075e-05 - val_accuracy: 1.0000 5poch 43/50 3/8 - 11s - loss: 0.0256 - accuracy: 0.9956 - val_loss: 0.0048 - val_accuracy: 1.0000 5poch 44/50 3/8 - 11s - loss: 0.0142 - accuracy: 0.9912 - val_loss: 0.0024 - val_accuracy: 1.0000 5poch 45/50 3/8 - 12s - loss: 0.0233 - accuracy: 0.9912 - val_loss: 1.5100e-06 - val_accuracy: 1.0000 5poch 46/50
8 8 E 8 E 8	3/8 - 11s - loss: 0.0019 - accuracy: 1.0000 - val_loss: 1.4901e-07 - val_accuracy: 1.0000 Epoch 47/50 3/8 - 12s - loss: 0.0165 - accuracy: 0.9912 - val_loss: 4.2266e-04 - val_accuracy: 1.0000 Epoch 48/50 3/8 - 11s - loss: 0.0364 - accuracy: 0.9868 - val_loss: 2.6122e-04 - val_accuracy: 1.0000 Epoch 49/50 3/8 - 9s - loss: 0.0216 - accuracy: 0.9956 - val_loss: 2.7963e-05 - val_accuracy: 1.0000 Epoch 50/50 3/8 - 10s - loss: 0.0179 - accuracy: 0.9912 - val_loss: 7.1660e-04 - val_accuracy: 1.0000
M: 15]: .	loss, accuarcy = CNN_model.evaluate(X_test, y_test) print('Loss of the test data :', loss) print('Accuarcy of the test data :', accuarcy) 5/5 [===================================
16]:	<pre>redictions : predictions = CNN_model.predict(X_test) prediction_list = [] for prediction in predictions: temp = np.argmax(prediction) prediction_list.append(temp)</pre>
A = C	print('Accuracy score of the test data :', accuracy_score(prediction_list, y_test)) print('=' * 100) print('Confusion matrix of the test data :', confusion_matrix(prediction_list, y_test)) print('=' * 100) print('Classification report of the test data :\n', classification_report(prediction_list, y_test)) Accuracy score of the test data : 0.925
	[0 0 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
= C	[0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	1 1.00 1.00 8 2 1.00 0.80 0.89 10 3 0.75 1.00 0.86 6 4 0.50 1.00 0.67 4 5 1.00 1.00 8 6 1.00 1.00 8 7 1.00 0.67 0.80 12 8 1.00 0.80 0.89 10 9 0.75 1.00 0.86 6 10 1.00 1.00 8 11 1.00 1.00 8
	12
17]:	plt.figure(figsize = (7, 5)) sns.heatmap(confusion_matrix(prediction_list, y_test), annot = True, cmap = plt.cm.Blues) AxesSubplot:> - 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 7 6 5 4 3	-0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18]:	aving the trained model: CNN_model.save('FaceRecognition_model') loaded_model = tf.keras.models.load_model('FaceRecognition_model')
I 18]: <	loaded_model INFO:tensorflow:Assets written to: FaceRecognition_model\assets Etensorflow.python.keras.engine.functional.Functional at 0x2030ca55640> loaded_model.predict(X_test) array([[1., 0., 0.,, 0., 0., 0.],
20]: (<pre> [0., 0., 0.,, 0., 0., 1.], [0., 0., 0.,, 0., 0., 1.], [0., 0., 0.,, 0., 0., 1.]], dtype=float32) X_test_10 = np.expand_dims(X_test[10], axis = 0) X_test_10.shape (1, 112, 92, 1) </pre>
21]: (22]: (22]: <	<pre>X_test.shape, X_test[0].shape ((160, 112, 92, 1), (112, 92, 1)) plt.imshow(X_test[10]) cmatplotlib.image.AxesImage at 0x2030e548460></pre>
	20 - 40 - 40 - 40 - 40 - 40 - 40 - 40 -
23]: 2 23]: a 24]: [pre = loaded_model.predict(X_test_10) np.argmax(pre)
24]: 1 Pl	
26]:	<pre>### Plotting the accuracy graphs of both train validation data : plt.plot(his.history['accuracy'], label = 'Accuracy of the training data') plt.plot(his.history['val_accuracy'], label = 'Accuracy of the validation data') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.title('Model accuracy') plt.legend(loc = (1, 1)) plt.show()</pre>
Senior	Model accuracy Accuracy of the training data Accuracy of the validation data 0.8 - 0.6 - 0.4 -
27]:	### Plotting the accuracy graphs of both train validation data : plt.plot(his.history['loss'], label = 'loss of the training data')
	<pre>plt.plot(his.history['loss'], label = 'loss of the training data') plt.plot(his.history['val_loss'], label = 'loss of the validation data') plt.xlabel('Epochs') plt.ylabel('loss') plt.title('Model loss') plt.legend(loc = (1, 1)) plt.show()</pre>
	3.0 - 2.5 - 2.0 - 1.0 -
טענע	0.5
230	0.5 - 0.0 - 10 20 30 40 50 Epochs