STAT 4352 - Mathematical Statistics Notes

 ${\rm JaimeGoB}$

February 28, 2021

1 Chapter 11 - Interval Estimation

Point Estimators

 θ is a unknown parameter (feature of a population)

- Ex: population mean μ
- Fixed.

 $\hat{\theta}$ is a point estimator of θ (it is a numerical value)

- Ex: sample mean \bar{x}
- Varies from sample to sample.
- No guarantee of accuracy
- \bullet Must be supplemented by $\mathrm{Var}(\theta)$

Standard Error $SE(\hat{\theta})$ measures how much $\hat{\theta}$ varies from sample to sample. small $SE \implies$ low variance thus a more reliable estimate of θ

Interval Estimators

Def: Interval Estimate

Provides a range of values that best describe the population.

Let L = L(x) be the Lower Limit

U = U(x) be the Upper Limit

Both L,U are Random Variables because they are functions of sample data.

Def: Confidence Level / Confidence Coefficient

Is the probability that the **interval estimate** will include population parameter θ .

- Sample means will follow the <u>normal probability distribution</u> for large sample sizes $(n \ge 30)$
- For small sample forces us to use the t-distribution probability distribution (n < 30)
- A confidence level of 95% implies that 95% of all samples would give an interval that includes θ , and only 5% of all samples would yield an erroneous interval.
- The most frequently used confidence levels are 90%, 95%, and 99% with corresponding Z-scores 1.645, 1.96, 2.576.
- The higher the confidence level, the more strongly we believe that the value of the parameter lies within the interval.

Def: Confidence Interval

Gives plausible values for the parameter θ being estimated where degree of plausibility specified by a confidence level.

To construct an interval estimator of unknown parameter θ . We must find two statistics **L** and **U** such that:

$$P\{\mathbf{L} \le \theta \le \mathbf{U}\} = 1 - \alpha$$

- $P\{L \le \theta \le U\}$ Coverage Probability, in repeated sampling, what percent of samples or Confident Intervals capture true θ .
- 100(1- α) Confidence Interval for unknown fixed parameter θ .
- L,U Lower and Upper Bounds RVs because they are functions of sample data. Vary from sample to sample.
- 1- α Confidence Level (Probability) estimate will include population parameter θ .
- α Level of Significance Percent chance Confidence Interval will not contain population parameter θ .

Def: Coverage Probability

 $P\{\mathbf{L} \leq \theta \leq \mathbf{U}\}$ Gives what % of samples or Confidence Intervals capture true θ .

Ex: Coverage Probability = 95%

Will capture θ , 95% of the time.

Will NOT capture θ , 5% of the time.

Properties of Confidence Intervals

- Confidence Intervals are not unique.
- Desirable to have E[Length of CI] to be small.
- A one-sided $100(1-\alpha)$ lower-confidence interval on θ : L = $-\infty \implies P\{L \le \theta\} = 1-\alpha$
- A one-sided $100(1-\alpha)$ upper-confidence interval on θ : $U=\infty \implies P\{\theta \leq U\} = 1-\alpha$
- If L,U are both finite, then we have a two sided interval.

Correctly Interpreting Confidence Intervals

Not Correct

There is 90% probability that the true population mean is within the interval.

Correct

There is a 90% probability that <u>any given Confidence Interval from a random sample</u> will contain the true population mean.

Theorem 11.1: Confidence Interval on the Mean of a Normal Distribution with known Variance

Let X be normal random variable with:

Unknown mean μ

Known variance σ^2

Suppose a random sample n, $(X_1, X_2, ..., X_n)$ is taken.

A $100(1-\alpha)\%$ confidence interval on μ can be obtained by considering sampling distribution of the sample mean \bar{X} .

Central Limit Theorem:

$$\mathrm{E}(\bar{X}) = \mu$$
 and $\mathrm{SD}(\bar{X}) = \frac{\sigma}{\sqrt{n}}$, so $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ as $\mathrm{n} \to \infty$

Standardizing \bar{X} , Z will be a Standard Normal Distribution

Let
$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

2