Voltage Regulator Data Book

1983

Switching, Series Pass, Shunt, Precision

General Information

Alphanumeric Index Selection Guide Alternate Source Index Glossary

1

Descriptive Information

2

Appendix

Ordering Instructions Mechanical Data

Voltage Regulator Data Book

IMPORTANT NOTICE

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Texas Instruments assumes no responsibility for infringement of patents or rights of others based on Texas Instruments applications assistance or product specifications, since TI does not possess full access to data concerning the use or applications of customer's products. TI also assumes no responsibility for customer product designs.

Copyright 1983 Texas Instruments Incorporated

VOLTAGE REGULATOR DATA BOOK 1983

Voltage regulation is a basic function in the majority of today's electronic systems. In this data book, Texas Instruments is pleased to present important technical information on a broad line of voltage regulator and voltage controller circuits that will assist the designer in selecting components for the complete power system.

This data book includes series pass regulators (both fixed and adjustable), shunt regulators, switching voltage controllers (fixed on-time variable frequency, PWM, single-ended, and dual-ended), DC-to-DC converters, over voltage and under voltage protection circuits.

A functional index, selection guide and alternate source index are included to provide the designer with rapid access to the desired technical information.

While this data book offers design data and specifications only for voltage regulators and voltage regulator-related products, complete technical data on any Texas Instruments semiconductor component is available from your nearest TI field sales office or local TI distributor.

1

General Information

Alphanumeric Index Selection Guide Alternate Source Index Glossary

DEVICE TYPE	PAGE	DEVICE TYPE	PAGE	I DEVICE TYPE	PAGE
DEVICE THE	TAGE	DEVICETIFE	FAGE	DEVICETIFE	PAGE
LM217	2.3	TL497AI	2-105	uA78L08AC	2-167
LM237	2-9	TL497AM	2-105	uA78L08C	2-167
LM317	2-3	TLC498	2-109	uA78L09AC	2-167
LM320-3	2-13	TL580C	2-111	uA78L09C	2-167
LM320-12	2.13	TL593C	2-113	uA78L10AC	2-167
LM320-15	2.13	TL5931	2-113	uA78L10C	2-167
LM323	2-19	TL593M	2-113	uA78L12AC	2-167
LM330	2-25	TL594C	2-113	uA78L12C	2-167
LM337	2.9	TL5941	2-113	uA78L15AC	2-167
LM340-5	2.31	TL594M	2-113	uA78L15C	2-167
LM-340-12	2-31	TL595C	2-113	uA78M05C	2-173
LM340-15	2.31	TL5951	2-113	uA78M05M	2-173
LM350	2-39	TL780-05C	2-123	uA78M06C	2-173
LM2930-5	2-45	TL780-12C	2-123	uA78M06M	2.173
LM2930-8	2-45	TL780-15C	2-123	uA78M08C	2.173
MC3423	2-51	TL783AC	2-127	uA78M08M	2-173
MC34060	2-53	TL783C	2.129	uA78M10C	2-173
MC35060	2-53	TL1451C	2-137	uA78M10M	2.173
MC79L05AC	2-59	TL1525A	2-139	uA78M12C	2-173
MC79L05C	2-59	TL1527A	2-139	uA78M12M	2-173
MC79L12AC	2-59	TL2525A	2-139	uA78M15C	2-173
MC79L12C	2-59	TL2527A	2.139	uA78M15M	2-173
MC79L15AC	2-59	TL3525A	2-139	uA78M20C	2-173
MC79L15C	2-59	TL3527A	2-139	uA78M20M	2-173
RC4193C	2-63	TL7702	2-149	uA78M24C	2-173
RC41931	2-63	TL7705	2-149	uA7905C	2-185
RC4193M	2-63	TL7712	2-149	uA7906C	2-185
SG1524	2.65	TL7715	2-149	uA7908C	2-185
SG2524	2-65	uA723C	2-153	uA7912C	2-185
SG3524	2-65	uA723M	2-153	uA7915C	2-185
TL317C	2-77	uA7805C	2-159	uA7918C	2-185
TL317M	2.77	uA7806C	2-159	uA7924C	2-185
TL430C	2-81	uA7808C	2-159	uA7952C	2-185
TL4301	2-81	uA7810C	2-159	uA79M05C	2-191
TL431C	2-85	uA7812C	2-159	uA79M05M	2-191
TL4311	2-85	uA7815C	2-159	uA79M06C	2-191
TL431M	2-85	uA7818C	2-159	uA79M06M	2-191
TL493C	2-93	uA7824C	2-159	uA79M08C	2-191
TL494C	2-93	uA7885C	2-159	uA79M08M	2-191
TL4941	2-93	uA78L02AC	2-167	uA79M12C	2.191
TL494M	2.93	uA78L02C	2-167	uA79M12M	2-191
TL495C	2.93	uA78L05AC	2-167	uA79M15C	2-191
TL4951	2-93	uA78L05C	2-167	uA79M15M	2-191
TL496C	2-101	uA78L06AC	2-167	uA79M20C	2-191
TL497AC	2-105	uA78L06C	2-167	uA79M24C	2-191

TEXAS INSTRUMENTS

FIXED OUTPUT VOLTAGE REGULATORS

positive output regulators

DEVICE SERIES	OUTPUT VOLTAGE TOLERANCE	MINIMUM DIFFERENTIAL VOLTAGE	OUTPUT CURRENT RATING	AVAILABLE VOLTAGE SELECTIONS	PACKAGES
LM323	±10% †	2.5 V	3 A	1 @ 5 V	KA
LM2930-0	±10% †	0.6 V	150 mA	2 @ 5 V to 8 V	KC
LM330-0	± 4% ‡	0.6 V	150 mA	1 @ 5 V	KC
LM340-00	± 4% ‡	2.0 V	1.5 A	3 @ 5 V to 15 V	KC
TL780-00C	± 1% ‡	2.0 V	1.5 A	3 @ 5 V to 15 V	KC
uA7800C	± 4% ‡	2.0 V-3.0 V	1.5 A	9 @ 5 V to 24 V	KC
uA78L00AC	± 5% ‡	2.0 V	100 mA	8 @ 2.6 V to 15 V	LP
uA78L00C	±10% ‡	2.0 V-2.5 V	100 mA	8 @ 2.6 V to 15 V	LP
uA78M00C*	± 5% ‡	2.0 V-3.0 V	500 mA	8 @ 5 V to 24 V	KC

10verrange -40°C to 25°C

negative output regulators

DEVICE SERIES	OUTPUT VOLTAGE TOLERANCE	MINIMUM DIFFERENTIAL VOLTAGE	OUTPUT CURRENT RATING	AVAILABLE VOLTAGE SELECTIONS	PACKAGES
LM320-00	± 4%	2.0 V	1.5 A	3 @ 5 V to 15 V	KC
MC79L00AC	± 5%	1.7 V	100 mA	3 @ 5 V to 15 V	LP
MC79L00C	±10%	1.7 V	100 mA	3 @ 5 V to 15 V	LP
uA7900C	± 5%	2.0 V-3.0 V	1.5 A	8 @ 5 V to 24 V	KC
uA79M00C*	± 5%	2.0 V-3.0 V	1.5 A	7 @ 5 V to 24 V	кс

available output voltages for above regulator series

DEVICE	VOLTAGE SELECTIONS													
SERIES	2.6	5.0	5.2	6.0	6.2	8.0	8.5	9.0	10.0	12.0	15.0	18.0	20.0	24.0
LM2930-0		х				X								
LM320-00		Х								X	×			
LM330-0		Х												
LM340-00		×								Х	×			
MC79L00AC		х								х	×			
MC79L00C		х								х	х			
TL780-00C		Х								×	×			
uA7800C		×		×		х	х		Х	X	×	×		×
uA7800AC	X	Х			×	X		×	х	×	×			
uA78L00С	х	×			X	X		Х	Х	Х	X			
uA78M00C*		×		×		х			х	×	х		х	х
uA7900C		×	×	×		×				×	X	×		×
uA7900C*		х		х		×				Х	Х		х	х

^{*}Also available in military temperature range (M Suffix)

VARIABLE OUTPUT VOLTAGE REGULATORS

positive output series regulators

DEVICE NUMBER	OUTPUT '	MAX	DIFFERENTIAL VOLTAGE MAX	OUTPUT CURRENT RATING	PACKAGES
LM217	1.2 V	37 V	V ₁ -1.2 V	1.5 A	кс
LM317	1,2 V	37 V	V ₁ ~1.2 V	1.5 A	KC
LM350	1.2 V	33 V	V ₁ -1.2 V	3A	KA, KC
TL317	1,2 V	32 V	V ₁ -1.2 V	100 mA	LP
TL783AC	5 V	200 V	200 V	700 mA	кс
TL783C	10 V	125 V	37 V	700 mA	КС
uA723С*	3 V	38 V	37 V	25 mA	J. N. U

negative output series regulators

DEVICE NUMBER	OUTPUT VOLTAGE MIN MAX		DIFFERENTIAL VOLTAGE MAX	OUTPUT CURRENT RATING	PACKAGES
LM237	1.2 V	37 V	V ₁ +1,2 V	1.5 A	KC
LM337	1.2 V	37 V	V ₁ +1,2 V	1.5 A	KC

positive shunt regulators

DEVICE	SHUNT	SHUNT VOLTAGE SHUNT CURRENT		TEMP COEFFICIENT		
NUMBER	MIN	MAX	MIN	MAX	MAX	PACKAGES
TL430C*	3 V	30 V	2 mA	100 mA	200 ppm/°C	JG, LP
TL431C*	3 V	30 V	0.5 mA	100 mA	100 ppm/° C	LP, P
TL4311**	2.55 V	36 V	1 mA	100 mA	100 ppm/°C	LP, P

^{*}Also available in Military Temperature Range (M. Suffix)

PROTECTION CIRCUITS

undervoltage protection circuits

DEVICE NUMBER	TEMP RANGE	PACKAGES	FEATURES
TL7702 TL7705 TL7712 TL7715	0°C to 70°C	Р	Power-up and voltage drop reset generator specifically for microcomputer control supervision. These devices operate over a wide supply voltage range (3 V to 18 V) and have externally adjustable pulse width to ensure system reset.

overvoltage protection circuit

DEVICE NUMBER	TEMP RANGE	PACKAGES	FEATURES
MC3423	0° to 70°C	JG, P	Separate outputs for "crowbar" and logic circuitry, programmable time delay, TTL-level activation isolated from voltage-sensing inputs.

TEXAS INSTRUMENTS

^{**}I-Suffix for Industrial Temperature Range

SWITCHING VOLTAGE REGULATOR/CONTROLLERS

			BASE I	DEVICE NUMBE	RS		
FEATURES	MC35060 MC34060	RC1493	SG3524 SG2524 SG1524	SG3525A SG2524A SG1525A	TL493	TL494	TL495
General Features							
General Purpose	×	×	×	×	×	×	×
Special Purpose	_	_	_	-	_	-	-
Dual Independent PWM Control	_	_	_	_	_	-	_
Fixed On Time	-	_	_	_	-	-	-
Fixed Frequency PWM	X	X	×	×	×	X	×
Adjustable Frequency PWM	_	_	_	-	-	_	
Low Bias Current Requirements	_	135 µA	_	_	_	-	-
High Efficiency	_	80%	_	_	_		-
Expandable	×	_	×	×	×	X	X
Control Features							
On Chip Reference	×	×	×	×	×	×	×
Precision On Chip Reference	_	_	_	l î	_		
Dead Time Adjust	×			l î	×	×	×
Current Sense Amplifier	_				î		
Error Amplifier	2		2	1	1 1	2	2
Operates to 40 V	×	24 V	35 V	35 V	×	×	X
Operates above 40 V	_	24 0	35 0	35 4	_	_	x
Feed Forward Line Regulator			_				_
			_		_		
Protection Features							
On Chip Regulator	×	-	_	-	_	_	×
Internal Soft Start	_	-	X	X	_	-	_
Under Voltage Lockout		-	X	х	_	-	-
Inhibit Control	_	×	×	х	×	×	×
Double Pulse Protection	_	_	×	×	×	×	×
Output Features							
Single-ended Output	×	×	_	_	_	_	_
Double-ended Outputs	_	_	×	×	×	×	×
Totem-Pole Outputs	_	_	_	×	_	_	
Parallelable Outputs	_	_	_	_	×	×	l x
Adjustable Output	_	×		_	-	_	_
(2.5 V to 24 V)							
Output Current Capability (150 mA)	-	×	-	-	-	-	-
Isolated Power and Ground to	-	_	_	_	_	-	_
Output							
High Noise Immunity	_	_	_	_	_	_	604
External Output Trigger	_	_	_	_	_	_	X
Part Number Ordering							
Information							
Commercial Temp Range Plastic	MC34060N	RC1493CP	SG1524N	SG1525AN	TI 40001:	TL494CN	TL495CN
					TL493CN		
Ceramic	MC34060J	RC1493CJG	SG1524J	SG1525AJ	TL493CJ	TL494CJ	TL495CJ
Industrial Temp Range		RC1493IP	SG2524N	SG2525AN		TL494IN	
Plastic Ceramic		RC1493IJG	SG2524N SG2524J	SG2525AN SG2525AJ		TL494IN TL494IJ	
		UC1493170	3025243	302325AJ		1 149413	
Military Temp Range							
Ceramic	MC35060J	RC1493MJG	SG3524J	\$G3525AJ	TL493MJ	TL494MJ	

SWITCHING VOLTAGE REGULATOR/CONTROLLERS

			BASE	DEVICE NUM	BERS		
FEATURES	TL496	TL497A	TLC498	TL593	TL594	TL595	TL1451
General Features							
General Purpose	-	x	X	x	X	X	x
Special Purpose	9 V	_	_	_	_	_	_
Dual Independent PWM Control	_	_	×		-	_	
Fixed On Time	×	×	_	_	_	_	_
Fixed Frequency PWM	_	_	×	l x	×	×	×
Adjustable Frequency PWM	_	_	×	_	_	_	_
Low Bias Current Requirements	_	_	X	_	_	-	_
High Efficiency	_	_	_	_	_	_	_
Expandable	_	_	×	×	×	×	×
Control Features							
On Chip Reference	×	×	×	×	×	x	×
Precision On Chip Reference	_	_	î	ı î	×	x	_
Dead Time Adjust	×		x	l \hat{x} l	x	x	×
Current Sense Amplifier	x	×	_	î	_	_	^
Error Amplifier	_	î	×		2	2	2
Operates to 40 V			20 V	×	×	X	X
		_		_ ^	^	x	^
Operates above 40 V	_	_	x	~	_	^	_
Feed Forward Line Regulator	_	_	^	_		_	_
Protection Features							
On Chip Regulator	X	-	X	-	-	X	_
Internal Soft Start	_	-	×	-	-	_	_
Under Voltage Lockout	_	_	X	X	X	X	_
Inhibit Control	_	X	X	x	X	X	_
Doublt Pulse Protection	-	_	X	×	X	X	-
Output Features							
Single-ended Output	×	×	_	_	_	_	2
Double-ended Outptus	_	-	×	l x	×	X	-
Totem-pole Outputs	_	_	×	_	_	_	_
Parallelable Outputs	_	_	_	×	X	×	_
Adjustable Output	_	_	_	_	_	_	_
(2.5 V to 24 V)							
Output Current Capability	_	_	_	_	-	_	-
(150 mA)							
Isolated Power and Ground to	_	_	×	-	-	-	_
Output							
High Noise Immunity	_	-	×	_	_	www.	-
External Output Trigger	_	-	-	- 4	-	×	_
Part Number Ordering							
Information							
Commercial Temp Range							
Plastic	TL496CP	TL497ACN	TLC498CN	TL593CN	TL594CN	TL596CN	TL1415CN
Ceramic	TL496CJ	TL497ACI	TLC498CJ	TL593CJ	TL594CJ	TL595CJ	TL1415CJ
Industrial Temp Range Plastic		TI 407 A II:			TL594IN		
1		TL497AIN			TL594IN TL594IJ		
Ceramic		TL497AIJ			1 [594]]		
Military Temp Range							
Ceramic		TL497AMJ		TL593MJ	TL594MJ		

VOLTAGE REGULATOR ALTERNATE SOURCE INDEX

		1		1	
AMD	TI	Lambda	TI	Motorola	TI
723C	uA723C	LAS1505	uA7805C	MC7818C	uA7818C
-	-	LAS1506	uA7806C	MC7824C	uA7824C
Exar	TI	LAS1508	uA7808C	MC7905C	uA7905C
XR2524	SG2524	LAS1510	uA7810C	MC7906C	uA7906C
XR3524	SG3524	LAS1512	uA7812C	MC7908C	uA7908C
-		LAS1515	uA7815C	MC7912C	uA7912C
Fairchild	TI	LAS1518	uA7818C	MC7915C	uA7915C
μA78L02AC	uA78L02AC	LAS1524	uA7824C	MC7918C	uA7918C
μA78L05AC	uA78L05AC	LAS1805	uA7905C	MC7924C	uA7924C
μA78L09AC	uA78L09AC	LAS1806	uA7906C	MC7905.2C	uA7952C
μA78L12AC	uA78L12AC	LAS1808	uA7908C	MC34060	MC34060
μA78L15AC	uA78L15AC	LAS1812	uA7912C	MC35060	MC35060
μA78L6.2AC	uA78L06AC	LAS1815	uA7915C	TL431C	TL431C
μA78M05C	uA78M05C	LAS1818	uA7918C	TL494C	TL494C
μA78M06C	uA78M06C	LAS1824	uA7924C	-	-
μA78M08C	uA78M08C	LAS18052	uA7952C	National	TI
μA78M12C	uA78M12C	_	-	LM78L05C	uA78L05C
μA78M15C	uA78M15C	Motorola	TI	LM78L12C	uA78L12C
μA78M24C	uA78M24C	LM217	LM217	LM78L15C	uA78L15C
μA79M05C	иА79М05С	LM317L	TL317	LM78M05	uA78M05C
μA79M08C	uA79M08C	LM317	LM317	LM78M12	uA78M12C
μA79M12C	uA79M12C	LM340-5	LM340-5	LM78M15	uA78M15C
μA79M15C	uA79M15C	LM340-12	LM340-12	LM79L05A	LM79L05AC
μA217	LM217	LM340-15	LM340-15	LM79L05	MC79L05C
μA317	LM317	MC78L05AC	uA78L05AC	LM79L12A	MC79L12AC
μA431	TL431C	MC78L05C	uA78L05C	LM79L12	MC79L12C
μA494	TL494C	MC78L08AC	uA78L08AC	LM79L15A	MC79L15AC
μA723C	uA723C	MC78L08C	uA78L08C	LM79L15	MC79L15C
μA7805C	uA7805C	MC78L12AC	uA78L12AC	LM79M05	uA79M05C
μA7806C	uA7806C	MC78L12C	uA78L12C	LM79M12	uA79M12C
μA7808C	uA7808C	MC78L15AC	uA78L15AC	LM79M15	uA79M15C
μA7812C	uA7812C	MC78L15C	uA78L15C	LM217	LM217
μA7815C	uA7815C	MC78M05C	uA78M05C	LM237	LM237
μA7818C	uA7818C	MC78M06C	uA78M06C	LM317L	TL317
μA7824C	uA7824C	MC78M08C	uA78M08C	LM317	LM317
μA7885C	uA7885C	MC78M12C	uA78M12C	LM320	LM320
μA7905C	uA7905C	MC78M15C	uA78M15C	LM323	LM323
μA7908C	uA7908C	MC78M20C	uA78M20C	LM330-5.0	LM330
μA7912C	uA7912C	MC78M24C	uA78M24C	LM337	LM337
μA7915C	uA7915C	MC79L05AC	MC79L05AC	LM340A-5.0	TL780-05C
,		MC79L05C	MC79L05C	LM340A-12	TL780-12C
Fujitsu	TI	MC79L12AC	MC79L12AC	LM340A-15	TL780-15C
MB3759	TL494C	MC79L12C	MC79L12C	LM340-5.0	LM340-5
50705	- 124040	MC79L15AC	MC79L15AC	LM340-12	LM340-12
ITT	TJ	MC79L15C	MC79L15C	LM340-15	LM340-15
TDD1605	uA78M05C	MC1723C	uA723C	LM350	LM350
TDD1606	uA78M06C	MC3423	MC3423	LM723C	uA723C
TDD1608	uA78M08C	MC7805C	uA7805C	LM723C	SG2524
TDD1610	uA78M10C	MC7806C	uA7806C	LM2930-5.0	LM2930-5
TDD1612	uA78M12C	MC7808C	uA7808C	LM2930-8.0	LM2930-8
TDD1612	uA78M15C	MC7812C	uA7808C	LM3524	SG3524
TDD1615		MC7812C MC7815C		LM3524 LM7805	uA7805C
1001024	uA78M24C	IVIC/615C	uA7815C	LIMI/BUD	UATOUSC

VOLTAGE REGULATOR ALTERNATE SOURCE INDEX

National	TI	Silicon		Unitrode	TI
LM7812	uA7812C	General	TI	UC2524	SG2524
LM7815	uA7815C	SG2527A	SG2527A	UC3524	SG3524
LM7905	uA7905C	SG3423	MC3423	UC3525A	SG3525A
LM7912	uA7912C	SG3524	SG3524	UC3527A	SG3527A
1 LM7915	uA7915C	SG3525A	SG3525A	UC493AC	TL593C
-	_	SG3527A	SG3527A	UC494AC	TL594C
NEC	TI	SG7805C	uA7805C	UC495AC	TL595C
UPC78L05	uA78L05C	SG7806C	uA7806C	UC7805AC	TL780-05C
UPC78L08	uA78L08C	SG7808C	uA7808C	UC7805C	uA7805C
UPC78L12	uA78L12C	SG7812C	uA7812C	7812AC	TL780-12C
UPC78L15	uA78L15C	SG320-05T	uA79M05C	UC7812C	uA7812C
UPC78M05	uA78M05C	SG320-08T	uA79M08C	UC7815AC	TL780-15C
UPC78M08	uA78M08C	SG320-20T	uA79M20C	UC7815C	uA7815C
UPC78M12	uA78M12C	SG7815C	uA7815C	UC7905C	uA7905C
UPC78M15	uA78M15C	SG7818C	uA7818C	UC7912C	uA7912C
UPC494C	TL494C	SG7805CT	uA78M05C	UC7915C	uA7915C
UPC7805	uA7805C	SG7806CT	uA78M06C	00.0.00	47110100
UPC7808	uA7808C	SG7808CT	uA78M08C		
UPC7812	uA7812C	SG7812CT	uA78M12C		
UPC7818	uA7818C	SG7815CT	uA78M15C		
UPC7824	uA7824C	SG7820CT	uA78M20C		
RCA -	TI	SG7824CT	uA78M24C		
CA723	uA723C	SG7824C	uA7814C		
CA2524		\$G7905.2C			
	SG2524	SG7905.2C SG7905C	uA7952C		
CA3524	SG3524	SG7908C	uA7905C		
Davida	TI TI	SG7912C	uA7908C		
Raytheon	-	SG7915C	uA7912C		
RC723	uA723C	SG7918C	uA7915C		
RC4193	RC4193	3679180	uA7918C		
Signetics	TI	T-10			
SG2524	SG2524	Toshiba	TI		
SG3524	SG3524	TA78L005A	uA78L05AC		
SG3525A	SG3525A	TA78L005	uA78L05C		
SG3527A	SG3527A	TA78L008A	uA78L08AC		
μA723C	uA723C	TA78L008	uA78L08C		
		TA78L009A	uA78L09AC		
Silicon		TA78L009	uA78L09C		
General	TI	TA78L010A	uA78L10AC		
SG217	LM217	TA78L010	uA78L10C		
SG237	LM237	TA78L012A	uA78L12AC		
SG317	LM317	TA78L012	uA78L12C		
SG323	LM323	TA78L015A	uA78L15AC		
SG337	LM337	TA78L015	uA78L15C		
SG340-5	LM340-5	TA7316	uA78L02C		
SG340-12	LM340-12		-		
SG350	LM350	Unitrode	TI		
SG723C	uA723C	UC217	LM217		
SG1525A	SG1525A	UC237	LM237		
SG1527A	SG1527A	UC317	LM317		
SG2524	SG2524	UC337	LM337		
SG2525A	SG2525A	UC350	LM350		
0020207	DOLULUM	00000	FINISO		

TEXAS INSTRUMENTS

1-10

SERIES REGULATORS

Input Regulation

The change in output voltage, often expressed as a percentage of output voltage, for a change in input voltage from one level to another level.

NOTE: Sometimes this characteristic is normalized with respect to the input voltage change.

Ripple Rejection

The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage.

NOTE: This is the reciprocal of ripple sensitivity.

Ripple Sensitivity

The ratio of the peak-to-peak output ripple voltage, sometimes expressed as a percentage of output voltage, to the peak-to-peak input ripple voltage.

NOTE: This is the reciprocal of ripple rejection.

Output Regulation

The change in output voltage, often expressed as a percentage of output voltage, for a change in load current from one level to another level.

Output Resistance

The output resistance under small-signal conditions.

Temperature Coefficient of Output Voltage (avo)

The ratio of the change in output voltage, usually expressed as a percentage of output voltage, to the change in temperature. This is the average value for the total temperature change.

$$\alpha_{VO} = \pm \left[\frac{V_{O} \text{ at } T_{2} - V_{O} \text{ at } T_{1}}{V_{O} \text{ at } 25^{\circ} \text{C}} \right] \left[\frac{100\%}{T_{2} - T_{1}} \right]$$

Output Voltage Change with Temperature

The percentage change in the output voltage for a change in temperature. This is the net change over the total temperature range.

Output Voltage Long-Term Drift

The change in output voltage over a long period of time.

Output Noise Voltage

The rms value of the ac component of the output voltage, sometimes expressed as a percentage of the dc output voltage, with constant load and no input ripple.

Current-Limit Sense Voltage

The current-sense voltage at which current limiting occurs.

Current-Sense Voltage

The voltage that is a function of the load current and is normally used for control of the current-limiting circuitry.

Dropout Voltage

The low input-to-output differential voltage at which the circuit ceases to regulate against further reductions in input voltage.

GLOSSARY VOLTAGE-REGULATOR TERMS AND DEFINITIONS

Feedback Sense Voltage

The voltage that is a function of the output voltage and is used for feedback control of the regulator.

Reference Voltage

The voltage that is compared with the feedback sense voltage to control the regulator.

Bias Current

The difference between input and output currents.

NOTE: This is sometimes referred to as quiescent current.

Standby Current

The input current drawn by the regulator with no output load and no reference voltage load.

Short-Circuit Output Current

The output current of the regulator with the output shorted to ground.

Peak Output Current

The maximum output current that can be obtained from the regulator due to limiting circuitry within the regulator.

Overvoltage Shutdown Voltage

The input voltage applied to a regulator having overvoltage shutdown protection that will cause the output voltage to go nearly to zero.

Junction Temperature, Virtual Junction Temperature

A temperature representing the temperature of the junction(s), field-effect transistor channel(s), or other internal point(s) of heat generation calculated on the basis of a simplified model of the thermal and electrical behavior of the semiconductor device.

SHUNT REGULATORS

NOTE: These terms and symbols are based on JEDEC and IEC standards for voltage regulator diodes.

Shunt Regulator

A device having a voltage-current characteristic similar to that of a voltage-regulator diode; normally biased to operate in a region of low differential resistance (corresponding to the breakdown region of a regulator diode) to develop across its terminals an essentially constant voltage throughout a specified current range.

Anode

The electrode to which the regulator current flows within the regulator when it is biased for regulation.

Cathode

The electrode from which the regulator current flows within the regulator when it is biased for regulation.

Reference Input Voltage (Vref) (of an adjustable shunt regulator)

The voltage at the reference input terminal with respect to the anode terminal.

Temperature Coefficient of Reference Voltage (avref)

The ratio of the change in reference voltage to the change in temperature. This is the average value for the total temperature change.

To obtain a value in ppm/°C:

$$\alpha_{\text{Vref}} = \left[\frac{V_{\text{ref}} \text{ at } T_2 - V_{\text{ref}} \text{ at } T_1}{V_{\text{ref}} \text{ at } 25^{\circ} \text{C}} \right] \left[\frac{10^6}{T_2 - T_1} \right]$$

Regulator Voltage (VZ)

The dc voltage across the regulator when it is biased for regulation.

Regulator Current (12)

The dc current through the regulator when it is biased for regulation.

Regulator Current near Lower Knee of Regulation Range (IZK)

The regulator current near the lower limit of the region within which regulation occurs; this corresponds to the breakdown knee of a regulator diode.

Regulator Current at Maximum Limit of Regulation Range (IZM)

The regulator current above which the differential resistance of the regulator significantly increases.

Differential Regulator Resistance (rz)

The quotient of a change in voltage across the regulator and the corresponding change in current through the regulator when it is biased for regulation.

Noise Voltage (Vnz)

The rms value of the ac component of the voltage across the regulator with the regulator biased for regulation and with no input ripple.

TEXAS INSTRUMENTS

Descriptive Information

D2212 SEPTEMBER 1977 - REVISED DECEMBER 1982

- Output Voltage Range Adjustable from 1.2 V to 37 V
- Guaranteed Output Current Capability of 1.5 A
- Input Regulation Typically 0.01% Per Input-Volt Change
- Output Regulation Typically 0.1%

- Peak Output Current Constant Over Temperature Range of Regulator
- Popular 3-Lead TO-220AB Package
- Ripple Rejection Typically 80 dB
- Direct Replacement for National LM217 and LM317

terminal assignments

KC PACKAGE

description

The LM217, and LM317 are adjustable 3-terminal positive-voltage regulators capable of supplying 1.5 amperes over a differential voltage range of 3 volts to 40 volts. They are exceptionally easy to use and require only two external resistors to set the output voltage. Both input and output regulation are better than standard fixed regulators. The devices are packaged in a standard transistor package that is easily mounted and handled.

In addition to higher performance than fixed regulators, these regulators offer full overload protection available only in integrated circuits. Included on the chip are current limit, thermal overload protection, and safe-area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected. Normally, no capacitors are needed unless the device is situated far from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection, which is difficult to achieve with standard 3-terminal regulators.

Besides replacing fixed regulators, these regulators are useful in a wide variety of other applications. The primary applications of each of these regulators is that of a programmable output regulator, but by connecting a fixed resistor between the adjustment terminal and the output terminal, each device can be used as a precision current regulator. Even though the regulator is floating and sees only the input-to-output differential voltage, use of these devices to regulate output voltages that would cause the maximum-rated differential voltage to be exceeded if the output became shorted to ground is not recommended. The TL783 or TL783A is recommended for output voltages exceeding 37 volts. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground, which programs the output to 1.2 volts where most loads draw little current.

The LM217 and LM317 are characterized for operation from -25 °C to 150 °C and from 0 °C to 125 °C, respectively.

Copyright @ 1982 by Texas Instruments Incorporated

electrical characteristics over recommended ranges of operating virtual junction temperature (unless otherwise noted)

PARAMETER	TECT CO	TEST CONDITIONS †		LM217		LM317			UNIT	
FARAMETER	lesi co	MDITIONS.	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
Input regulation	$V_1 - V_0 = 3 V \text{ to } 40 V$	T _J = 25°C		0.01	0.02		0.01	0.04	%/V	
(See Note 2)	See Note 3	Io = 10 mA to 1.5 A		0.02	0.05		0.02	0.07	76/ V	
	$V_0 = 10 V$,	f = 120 Hz		65			65			
Ripple rejection	V _O = 10 V, 10-μF capacitor between	f = 120 Hz ADJ and ground	66	80		66	80		dB	
	I _O = 10 mA to 1.5 A,	V ₀ ≤ 5 V		5	15		5	25	mV	
Output regulation	T _J = 25°C, See Note 3	V _O > 5 V		0.1	0.3		0.1	0.5	%	
Output regulation	lo = 10 mA to 1.5 A,	V ₀ ≤ 5 V		20	50		20	70	mV	
	See Note 3	V _O > 5 V		0.3	1		0.3	1.5	%	
Output voltage change with temperature	T _J = MIN to MAX			1			1		%	
Output voltage long-term drift (see Note 4)	After 1000 h at $T_J = MA$ and $V_I - V_O = 40 V$	АX		0.3	1		0.3	1	%	
Output noise voltage	f = 10 Hz to 10 kHz, TJ	= 25°C		0.003			0.003		%	
Minimum output current to maintain regulation	V _I - V _O = 40 V			3.5	5		3.5	10	mA	
Dools autout aurona	V _I - V _O ≤ 15 V		1.5	2.2		1.5	2.2			
Peak output current	$V_1 - V_0 \le 40 \text{ V}$			0.4			0.4		Α	
Adjustment-terminal current				50	100		50	100	μА	
Change in adjustment- terminal current	$V_I - V_O = 2.5 \text{ V to } 40^{\circ}$ $I_O = 10 \text{ mA to } 1.5 \text{ A}$	٧,		0.2	5		0.2	5	μΑ	
Reference voltage (output to ADJ)	$V_1 - V_0 = 3 \text{ V to } 40 \text{ V},$ $I_0 = 10 \text{ mA to } 1.5 \text{ A},$		1.2	1.25	1.3	1.2	1.25	1.3 •	٧	

Unless otherwise noted, these specifications apply for the following test conditions; V₁ - V₀ = 5 V and I₀ = 0.5 A. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

- NOTES: 2. Input regulation is expressed here as the percentage change in output voltage per 1-volt change at the input.
 - Input regulation and output regulation are measured using pulse techniques (t_w ≤ 10 μs, duty cycle ≤ 5%) to limit changes in everage internal
 dissipation. Output voltage changes due to large changes in internal dissipation must be taken into account separately.
 - Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a guarantee or warranty.
 It is an engineering estimate of the average drift to be expected from lot to lot.

schematic

All resistor values shown are nominal and in ohms.

absolute maximum ratings over operation temperature range (unless otherwise noted)

	LM217	LM317	UNIT
Input-to-output differential voltage, VI - VO	40	40	V
Continuous total dissipation at 25°C free-air temperature (see Note 1)	2000	2000	mW
Continuous total dissipation at (or below) 25 °C case temperature (see Note 1)	20	20	W
Operating free-air, case, or virtual junction temperature range	- 25 to 150	0 to 125	°C
Storage temperature range	-65 to 150	- 65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260	260	°C

NOTE 1: For operation above 25°C free-air or case temperature, refer to Dissipation Denating Curves, Figures 15 and 16, page 104.

recommended operating conditions

			LM317		UNIT
			MAX	CIVIT	
Output current, IO	5	1500	10	1500	mA
Operating virtual junction temperature, TJ	-25	150	0	125	°C

TYPICAL APPLICATION DATA

FIGURE 1-ADJUSTABLE VOLTAGE REGULATOR

FIGURE 2-0-V to 30-V REGULATOR CIRCUIT FIGURE 3-ADJUSTABLE REGULATOR
CIRCUIT WITH IMPROVED
RIPPLE REJECTION

FIGURE 4- PRECISION CURRENT LIMITER CIRCUIT

FIGURE 5-TRACKING PREREGULATOR CIRCUIT

V+O IN OUT R1 12 kU

FIGURE 6--1.2 to 20-V REGULATOR
CIRCUIT WITH MINIMUM
PROGRAM CURRENT

FIGURE 7-ADJUSTING MULTIPLE ON CARD REGULATORS WITH A SINGLE CONTROL

NOTES: A. Use of an input bypass capacitor is recommended if regulator is far from filter capacitors,

B. Use of an output capacitor improves transient response but is optional.

C. Output voltage is calculated from the equation: $V_Q = V_{ref} \left(1 + \frac{R2}{R1}\right)$

V ref equals the difference between the output and adjustment terminal voltages.

TEXAS INSTRUMENTS

TYPICAL APPLICATIONS

The use of R_S allows low charging rates with a fullycharged battery.

FIGURE 8-BATTERY CHARGER CIRCUIT

FIGURE 9-50-mA CONSTANT-CURRENT BATTERY CHARGER CIRCUIT

FIGURE 10-SLOW-TURN-ON 15-V REGULATOR CIRCUIT

FIGURE 11-A-C VOLTAGE REGULATOR CIRCUIT

FIGURE 12-CURRENT-LIMITED 6-V CHARGER

FIGURE 13-ADJUSTABLE 4-A REGULATOR

Minimum load current is 30 mA. § Optional capacitor improves ripple rejection

FIGURE 14-HIGH-CURRENT ADJUSTABLE REGULATOR

THERMAL INFORMATION

FIGURE 15

2

D2640, NOVEMBER 1981

- Output Voltage Range Adjustable from -1.2 V to -37 V
- Guaranteed In Capability of 1.5 A
- Input Regulation Typically 0.01% per Input-Volt Change
- Output Regulation Typically 0.3%
- Peak Output Current Constant Over Temperature Range of Regulator
- Ripple Rejection Typically 77 dB
- Direct Replacement for National Semiconductor LM237, LM337

LM237, LM337 . . . KC PACKAGE (TOP VIEW) OUTPUT INPUT INPUT TERMINAL IS IN ELECTRICAL CONTACT WITH THE MOUNTING BASE TO-220AB

description

The LM237 and LM337 are adjustable 3-terminal negative-voltage regulators capable of supplying in excess of -1.5 A over an output voltage range of -1.2 V to -37 V. They are exceptionally easy to use, requiring only two external resistors to set the output voltage and one output capacitor for frequency compensation. The current design has been optimized for excellent regulation and low thermal transients. In addition the LM237 and LM337 feature internal current limiting, thermal shutdown, and safe-area compensation, making them virtually immune to blowout by overloads.

The LM237 and LM337 serve a wide variety of applications including local on-card regulation, programmable output voltage regulation, or precision current regulation. They are ideal complements to the LM217 and LM317 adjustable positive-voltage regulators.

absolute maximum ratings over operating temperature range (unless otherwise noted)

Input-to-output differential voltage, V ₁ - V _O	40 V
Continuous total dissipation at 25°C free-air temperature (see Note 1)	2 W
Continuous total dissipation at (or below) 25°C case temperature (see Note 1)	
Operating free-air, case, or virtual junction temperature range: LM237	C to 150°C
LM337	C to 125°C
Storage temperature range	C to 150°C
Lead temperature 1/16 inch from case for 10 seconds	260°C

NOTE 1: For operation above 25°C free-air or case temperature, refer to Dissipation Denating Curves, Figures 1 and 2.

FIGURE 2

TYPES LM237, LM337 3-TERMINAL ADJUSTABLE REGULATORS

recommended operating conditions

		LM237		LM	UNIT	
		MIN	MAX	MIN	MAX	ONT
		10	1500	10	1500	mA
Output current, IO	V _I − V _O < 10 V, P < 15 W	6	1500	6	1500	ma
Operating virtual junction temperature, TJ		-25	150	0	125	°C

electrical characteristics over recommended ranges of operating virtual junction temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS†		LM237			LM337			UNIT	
FARAMETER	TEST CONDIT	IONS	MIN	TYP	MAX	MIN	TYP	MAX	UNI	
1	$V_1 - V_0 = -3 V \text{ to } -40 V$	T _J = 25°C		0.01	0.02		0.01	0.04		
Input regulation‡	See Note 2	T _J = MIN to MAX		0.02	0.05		0.02	0.07	%/V	
	V _O = -10 V,	1 = 120 Hz		60			60			
Ripple rejection	V _O = -10 V,	f = 120 Hz	00	77			77		dB	
	C _{ADJ} = 10 µF		66	//		66	- //			
	Io = 10 mA to 1.5 A,	IV ₀ 1 ≤ 5 V			25			50	mV	
Output regulation	Tj = 25°C, See Note 2	IV01 ≥ 5 V			0.5			1	%	
Output regulation	Io = 10 mA to 1.5 A,	IVO! ≤ 5 V			50			70	mV	
	See Note 2	IV _O I ≥ 5 V			1			1.5	%	
Output voltage	T - MINI MAN			0.0			0.0		%	
change with temperature	TJ = MIN to MAX	J = MIN to MAX		0.6			0.6		76	
Output voltage										
long-term drift	After 1000 h at T_J = MAX and $V_I - V_O = -40 \text{ V}$			0.3	1		0.3	1	%	
(see Note 3)										
Output noise voltage	f = 10 Hz to 10 kHz,	T _J = 25°C		0.003			0.003		%	
Minimum output	V ₁ − V ₀ ≤ 40 V			2.5	5	1	2.5	10	_	
current to maintain	V - VO < 10 V		-						mA	
regulation	141 = 401 = 10 4			1.2	3		1.5	6		
Peak output current	V _I - V _O ≤ 15 V		1.5	2,2		1.5	2.2		А	
reak output current	V - V0 ≤ 40 V,	T _J = 25°C	0.24	0.4		0.15	0.4		~	
Adjustment-				65	100		65	100	μА	
terminal current				05	100	}	05	100	μ	
Change in adjustment	$V_1 - V_0 = -2.5 \text{ V to } -40 \text{ V}$,		2	5		2	5	μА	
terminal current	Io = 10 mA to MAX,	T _J = 25°C		-	3		_	3	100	
Reference voltage	$V_1 - V_0 = -3 \text{ to } -40 \text{ V}$.	T_ = 25°C	-1,225	-1.250	-1.275	-1.213	-1,25	-1.287		
(output to ADJ)	IO = 10 mA to 1.5 A,					1	-1.25		V	
	P < rated dissipation	T _J = MIN to MAX	-1.2	-1.25	-1.3	-1.2	-1.25	-1.3		
Thermal regulation	Initial Ty = 25°C,	10-ms pulse		0.002	0.02		0.003	0.04	%/V	

Unless otherwise noted, these specifications apply for the following test conditions $|V_1 - V_0| = 5 \text{ V}$ and $|V_0| = 0.5 \text{ A}$. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

Input regulation is expressed here as the percentage change in output voltage per 1 volt change at the input.

NOTES: 2. Input regulation and output regulation are measured using pulse techniques (t_W < 10 μs, duty cycle < 5%) to limit changes in average internal dissipation. Output voltage changes due to large changes in internal dissipation must be taken into account separately.

Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a
guarantee or warranty. It is an engineering estimate of the average drift to be expected from lot to lot.

TYPICAL APPLICATION DATA

R1 is typically 120 Ω . R2 = R1 $\left(\frac{-V_O}{-1.25} - 1\right)$ where V_O is the output in volts.

C1 is a 1-µF solid tantalum required only if the regulator is more than 10 cm (4 in.) from the power supply filter capacitor.

C2 is a 1 µF solid tantalum or 10 µF aluminum electrolytic required for stability.

FIGURE 3 - ADJUSTABLE NEGATIVE-VOLTAGE REGULATOR

FIGURE 4 - CURRENT-LIMITING CIRCUIT

D2334, APRIL 1983

- 3-Terminal Regulators
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Easily Adjustable to Higher Output Voltage
- Interchangeable with National Semiconductor LM320 Series

OU	MINAL TPUT LTAGE	MAXIMUM OUTPUT CURRENT	REGULATOR
	-5 V	1.5 A	LM320-5
-	12 V	1 A	LM320-12
L-	15 V	1A	LM320-15

description

The LM320 series of three-terminal, fixed-negative-voltage monolithic integrated circuit voltage regulators are designed to provide a fixed output voltage of -5 volts, -12 volts, and -15 volts with up to 1.5 amperes of output current. Each is designed for a wide range of applications which includes on-card regulation for elimination of noise and distribution problems associated with single-point regulation.

The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. The LM320, when used as a fixed-voltage regulator, needs only one external component: a compensation capacitor at the output terminal. In addition, these devices can be used with external components to obtain adjustable output voltages and currents or as the power-pass element in precision regulators.

schematic diagram

For LM320-5, $R^* = 50 \Omega$. For LM320-12 and LM320-15, $R^* = 150 \Omega$.

Copyright @ 1983 by Texas Instruments Incorporated

Input voltage: LM320-5 –25 \	1
LM320-1235 N	/
LM320-15 – 35 N	/
Input-output voltage differential	1
Continuous total dissipation at 25°C free-air temperature (see Note 1)	/
Continuous total dissipation at (or below) 25 °C case temperature (see Note 1)	/
Operating free-air, case, or virtual junction temperature range55°C to 150°C	;
Storage temperature range)
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds)

NOTE 1: For operation above 25 °C free-air or case temperature, refer to Figures 1 and 2. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

FIGURE 2

recommended operating conditions

		MIN	MAX	UNI
Input voltage,V _I	LM320-5	-7.5	- 25	
	LM320-12	-14.5	- 32	V
	LM320-15	-17.5	- 35	
	LM320-5		1.5	
Output current, IO	LM320-12		1	Α
	LM320-15		1	
Operating virtual junction temperature, T.J.	•	0	125	°C

TYPE SERIES LM320 3-TERMINAL NEGATIVE-VOLTAGE REGULATORS

LM320-5 electrical characteristics at specified virtual junction temperature, $I_0 = 5$ mA, $V_1 = -10$ V, (unless otherwise noted)

PARAMETER	TEST CONDI	TIONS	MIN	TYP	MAX	UNIT
		T _J = 25°C	-4.8		- 5.2	
Output voltage	$V_1 = -7.5 \text{ V to } -25 \text{ V},$ $P \le 15 \text{ W},$	$I_0 = 5 \text{ mA to } 1.5 \text{ A},$ $T_J = 0 ^{\circ}\text{C to } 125 ^{\circ}\text{C}$	- 4.75		-5.25	٧
Input regulation	$V_1 = -7.5 \text{ V to } -25 \text{ V},$	T _J = 25 °C		10	40	mV
Ripple rejection	f = 120 Hz,	T _J = 0°C to 125°C	54	64		dB
Output regulation	IO = 5 mA to 1.5 A,	T _J = 25°C		50	100	mV
Output noise voltage	$C_L = 1 \mu F$, $f = 10 Hz$ to 100 kHz,	$T_J = 25 ^{\circ}C$		150		μV
Output voltage long-term drift (see Note 2)	After 1000 h at T _J = 125°,	T _J = 25°C		10		mV
Bias current	$V_{\parallel} = -7.5 \text{ V to } -25 \text{ V},$	T _J = 0°C to 125°C		1	2	mA
Bias current change	$V_1 = -7.5 \text{ V to } -25 \text{ V}$	T 2500		0.1	0.4	mA
bias current change	I _O = 5 mA to 1.5 A	TJ = 25°C		0.1	0.4	1 ""

LM320-12 electrical characteristics at specified virtual junction temperature, $I_0 = 5$ mA, $V_1 = -17$ V, (unless otherwise noted)

PARAMETER	TEST CONDITI	ons†	MIN	TYP	MAX	UNIT
		T _J = 25°C	-11.6	-12	-12.4	
Output voltage	$V_{\parallel} = -14.5 \text{ V to } -32 \text{ V},$ $P \le 15 \text{ W},$	$I_{O} = 5 \text{ mA to 1 A},$ $T_{J} = 0 ^{\circ}\text{C to 125 ^{\circ}\text{C}}$	-11.4		-12.6	V
Input regulation	$V_1 = -14.5 \text{ V to } -32 \text{ V},$	T _J = 25°C		4	20	mV
Ripple rejection	f = 120 Hz,	T _J = 0°C to 125°C	56	80		dB
Output regulation	10 = 5 mA to 1 A,	T _J = 25°C		30	80	mV
Output noise voltage	$C_L = 1 \mu F$, f = 10 Hz to 100 kHz,	T _J = 25°C		400		μV
Output voltage long-term drift (see Note 2)	After 1000 h at T _J = 125°C,	T _J = 25°C		24		mV
Bias current	$V_{\parallel} = -14.5 \text{ V to } -32 \text{ V}.$	T _J = 0°C to 125°C		2	4	mA
Bias current change	$V_{\parallel} = -14.5 \text{ V to } -32 \text{ V}$	T _{.1} = 25 °C		0.1	0.4	mA
bias current change	I _O = 5 mA to 1 A	7 17 - 25 6		0.1	0.4	IIIA

LM320-15 electrical characteristics at specified virtual junction temperature, $I_0 = 5$ mA, $V_1 = -20$ V, (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT
Output voltage		T _J = 25 °C	- 14.5	-15	-15.5	V
	$V_I = -17.5 \text{ V to } -35 \text{ V},$ $P \le 15 \text{ W},$	$I_{O} = 5 \text{ mA to 1 A},$ $T_{J} = 0 ^{\circ}\text{C to 125 ^{\circ}\text{C}}$	-14.3		-15.7	
Input regulation	$V_{l} = -17.5 \text{ V to } -35 \text{ V},$	T _J = 25 °C		5	20	mV
Ripple rejection	f = 120 Hz,	T _J = 0°C to 125°C	56	80		dB
Output regulation	1 ₀ = 5 mA to 1 A	T _J = 25°C		30	80	mV
Output noise voltage	$C_L = 1 \mu F$, f = 10 Hz to 100 kHz,	T _J = 25°C		400		μV
Output voltage long-term drift (see Note 2)	After 1000 h at T _J = 125°C,	T _J = 25°C		30		mV
Bias current	$V_1 = -17.5 \text{ V to } -35 \text{ V},$	T _J = 0°C to 125°C		2	4	mA
Bias current change	$V_{\parallel} = -17.5 \text{ V to } -35 \text{ V},$	T _J = 25°C		0.1	0.4	mA
	I _O = 5 mA to 1 A			0.1	0.4	

[†]All characteristics are measured with a 1-ρF capacitor across the input and a 2-μF solid-tantalum capacitor across the output. All characteristics except ripple rejection and output noise voltage are measured using pulse techniques (t_W ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

NOTE 2: Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a guarantee or warranty.

It is an engineering estimate of the average drift to be expected from lot to lot.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

OUTPUT IMPEDANCE FREQUENCY - Vo = 5 V = 100 mA TJ = 25°C Output Impedance-\Omega CL = 1 µF SOLID TANTALUM 0.4 C1 = 25 µF ALUMINUM 0.1 0.04 0.01 100 1 k 10 k 100 k 10 M 1 M f-Frequency-Hz FIGURE 9

TYPICAL APPLICATION INFORMATION

FIGURE 10 - FIXED-VOLTAGE REGULATOR

FIGURE 11 - CURRENT SOURCE REGULATOR

FIGURE 12 - ADJUSTABLE OUTPUT REGULATOR

FIGURE 13 - HIGH-STABILITY REGULATOR

NOTES: A. Capacitor C1 is required if the regulator is not located within 75 mm (3 inches) of the power supply filter.

- B. Capacitor C2 is required for stability. For the value given, the capacitor must be solid tantalum but a 25-μF aluminum electrolytic may be substituted.
 Values given may be increased without limit.
- C. In Figure 13 capacitor C1 is solid tantalum.
- D. This resistor determines zener current. Adjust to minimize thermal drift.

INCORPORATED

D2717, JANUARY 1983

- 3-A Output Current Capability
- 2.5-V Dropout Voltage
- Thermal Shutdown Protection
- Internal Current Limiting Protection
- Output Impedance . . . 0.01 Ω Typ.
- Power Dissipation up to 30 W
- Direct Replacement for National
 Semiconductor LM323

KA PACKAGE (TOP VIEW)

description

The LM323 is a three-terminal, fixed-positive-voltage regulator with a 5-volt output and a load driving capability of 3 amperes. The LM323 provides high output current capabilities through new circuit design and processing without sacrificing the regulation characteristics of lower-current devices.

The internal current-limiting and thermal-shutdown features make this device essentially immune to overload. The LM323 requires no external components for fixed-voltage operation, however if the device is more than four inches from the input filter capacitor, a 1-microfarad solid-tantalum capacitor should be used at the input. A 0.1-microfarad capacitor at the output may be used to improve output transient response. In addition to its use as a fixed-voltage regulator, the LM323 can be used with external components to obtain adjustable output voltages and currents and can also be used as the power-pass element in precision regulators.

The LM323 is characterized for operation from 0°C to 125°C.

schematic diagram

Component values shown are nominal.

Copyright 1983 by Texas Instruments Incorporated

absolute maximum ratings over operating temperature range (unless otherwise noted)

Input voltage
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 1)
Continuous total dissipation at (or below) 25 °C case temperature (see Note 1)
Operating free-air, case, or virtual junction temperature range
Storage temperature range65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds

NOTE 1: For operation above 25°C free-air temperature, refer to Figure 1. For operation above 25°C case temperature, refer to Figure 2.

recommended conditions

	MIN	NOM	MAX	UNIT
Input voltage	7.5		15	V
Output current			3	Α
Operating virtual junction temperature range, Tu	0		125	°C

electrical characteristics at 25 °C virtual junction temperature, P ≤ 30 W (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	$V_1 = 7.5 V$, $I_0 = 0$	4.8	5	5.2	
Output voltage	$V_{\parallel} = 7.5 \text{ V to } 15 \text{ V}, \qquad I_{\square} = 0 \text{ to } 3 \text{ A},$ $P \le 30 \text{ W}, \qquad \qquad T_{\square} = 0 \text{ °C to } 125 \text{ °C}$	4.75		5.25	V
Input regulation	V _I = 7.5 V to 15 V, See Note 2		5	25	mV
Output regulation	$V_{\parallel} = 7.5 \text{ V}$, $I_{\parallel} = 0 \text{ to } 3 \text{ A}$, See Note 2		25	100	mV
Output noise voltage	f = 100 Hz to 100 kHz		40		μV
Output voltage long-term drift (see Note 3)	After 1000 h at T _J and V _I both at maximum rated values			35	mV
Bias current	$V_{I} = 7.5 \text{ V to } 15 \text{ V}, \qquad I_{O} = 0 \text{ to } 3 \text{ A},$ $T_{J} = 0 ^{\circ}\text{C} \text{ to } 125 ^{\circ}\text{C}$		12	20	mA
	V _I = 7.5 V		4	5	A
Short-circuit output current	V ₁ = 15 V		3	4.5	^

- NOTES: 2. Input regulation and output regulation are measured using pulse techniques (tw < 1 ms, duty cycle < 5%) to limit changes in average internal dissipation. Output voltage changes due to large changes in internal dissipation must be taken into account separately.
 - 3. Since long-term drift cannot be measured on the individual device prior to shipment, this specification is not intended to be a guarantee or warranty. It is an engineering estimate of the average drift to be expected from lot to lot.

THERMAL INFORMATION

TYPICAL CHARACTERISTICS

OUTPUT VOLTAGE VS VIRTUAL JUNCTION TEMPERATURE

BIAS CURRENT

PEAK OUTPUT CURRENT

VI - Input Voltage - V FIGURE 5

OUTPUT NOISE VOLTAGE

FIGURE 4

SHORT CIRCUIT OUTPUT CURRENT

٧s INPUT VOLTAGE

FIGURE 6

VS

FIGURE 8

TEXAS INSTRUMENTS

TYPICAL CHARACTERISTICS

OUTPUT IMPEDANCE

DROPOUT VOLTAGE

FIGURE 10

INPUT TRANSIENT RESPONSE

LOAD TRANSIENT RESPONSE

FIGURE 12

TYPICAL APPLICATIONS DATA

NOTES: A. All capacitors are solid tantalum.

B. Use of capacitor C1 is required if regulator is more than 10 cm (4 inches) from filter capacitor.

C. Use of capacitor C2 (optional) improves transient response time.

D2700, APRIL 1983

- Input-Output Differential Less than 0.6 V
- Output Current of 150 mA
- Reverse Polarity Protection
- Line Transient Protection
- Internal Short-Circuit Current Limiting
- Internal Thermal Overload Protection
- Mirror-Image Insertion Protection
- Direct Replacement for National LM330T-5.0

description

The LM330 3-terminal positive regulator features an ability to source 150 milliamperes of output current with an inputoutput differential of 0.6 volt or less. Familiar regulator features such as current limit and thermal overload protection are also provided.

The LM330 has low dropout voltage making it useful for certain battery applications. For example, since the low dropout voltage allows a longer battery discharge before the output falls out of regulation, a battery supplying the regulator input voltage may discharge to 5.6 volts and still properly regulate the system and load voltage. The LM330 protects both itself and the regulated system from reverse installation of batteries.

Other protection features include line transient protection above 40 volts, where the output actually shuts down to avoid damaging internal and external circuits. The LM330 regulator cannot be harmed by temporary mirror-image insertion.

2

schematic diagram

Copyright 0 1983 by Texas Instruments Incorporated

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Continuous input voltage	26 V
Transient input voltage t = 1 s	50 V
t = 100 ms	60 V
Continuous total dissipation at 25 °C free-air temperature (see Note 1)	2 W
Continuous total dissipation at (or below) case temperature (see Note 1)	20 W
Operating free-air, case, or virtual junction temperature55°C to	150°C
Storage temperature65°C to	150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTE 1: For operation above 25°C free-air or case temperature, refer to Figures 1 and 2. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

FREE-AIR TEMPERATURE DISSIPATION DERATING CURVE

CASE TEMPERATURE DISSIPATION DERATING CURVE

recommended operating conditions

		MIN	MAX	UNIT
10	Output current	5	150	mA
TA	Operating virtual junction temperature	0	100	°C

Texas Instruments

electrical characteristics at 25 °C virtual junction temperature, $V_I = 14$ V, $I_O = 150$ mA, (unless otherwise noted)

PARAMETERS	TEST	CONDITIONS †	MIN TYP	MAX	UNIT	
	$V_{J} = 6 \text{ V to } 26 \text{ V},$	I _O = 5 mA to 150 mA,	4.8 5	5.2	V	
Output voltage	T _J = 0 °C to 100 °C	4.75	5.25	7 '		
	1 5 0	V ₁ = 9 V to 16 V	7	25	5 mV	
Input regulation	$1_0 = 5 \text{ mA}$	V ₁ = 6 V to 26 V	30	60		
Ripple rejection	f = 120 Hz		56		dB	
Output regulation	IO = 5 mA to 150 mA		14	50	mV	
Output voltage long- term drift [‡]	After 1000 h at T _J = 100 °C		20		m∨	
Dropout voltage	I _O = 150 mA		0.32	0.6	٧	
Output noise voltage	f = 10 Hz to 100 kHz	50		μV		
Output voltage with	D 100.0	$V_1 = -30 \text{ V, t} = 100 \text{ ms}$	>-0.3		V	
input polarity reversed	$R_L = 100 \Omega$	$V_{I} = -12 \text{ V, DC}$	>-0.3		T v	
Output voltage with	V _I = 60 V,	t = 100 ms	< 5.5		V	
input transient	$V_{I} = 50 V,$	t = 1 s	< 5.5		7 °	
Bias current with input	$R_1 = 100 \Omega$	V _I = 40 V, t = 1 s	14		_ mA	
transient	HE = 100 II	$V_1 = -6 V_t t = 1 s$	-80		7 1112	
Overvoltage shutdown			26 45		V	
voltage					,	
Output impedance	I _O = 100 mA, I _O = 1	0 mA (rms), f = 100 Hz to 10 kHz	200		mΩ	
	I _O = 10 mA	3.5	7			
Bias current	I _O = 50 mA	5	11	mA		
	I _O = 150 mA	18	40			
Bias current change	V _I = 6 V to 26 V		10		%	
Peak output current			150 420	700	mA	

¹Unless otherwise specified, all characteristics except ripple rejection and noise voltage measurements are measured using pulse techniques (t_W ≤ 10 ms, duty cycle ≤ 5%) with a capacitor of 0.1 µF across the input and a capacitor of 10 µF across the output. Output voltage changes due to changes in internal temperature must be taken into account separately.

Since long term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a guarantee or warranty. It is an engineering estimate of the average drift to be expected from lot to lot.

TJ-Virtual Junction Temperature-"C

FIGURE 9

2-28

TYPICAL CHARACTERISTICS **OUTPUT VOLTAGE** OUTPUT VOLTAGE **OUTPUT VOLTAGE** VS VS V5 VIRTUAL JUNCTION TEMPERATURE INPUT VOLTAGE INPUT VOLTAGE RL = 100 Ω 5.000 5,000 5,000 0 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0 0,000 0 6 Vo-Output Voltage-V -Output Voltage VO 1 -60 -40 -20 0 20 40 60 80 100 120 140 TJ-Virtual Junction Temperature-C V1~Input Voltage -V Vj-Input Voltage-V FIGURE 3 FIGURE 4 FIGURE 5 PEAK OUTPUT CURRENT RIPPLE REJECTION RIPPLE REJECTION VS ٧s VS INPUT VOLTAGE **OUTPUT CURRENT** FREQUENCY 600 80 10 - 50 mA VI-VO - 9 V - 14 V 500 TJ = 25 C 10 = 120 Hz 60 Current-mA 60 TJ = -40°C 400 50 Rejection 40 300 TJ = 125°C 40 Pask-Output Numble 30 200 100 10 0 10 1 k 10 k 100 k 150 15 39 100 V₁-Input Valtage-V FIGURE 8 FIGURE 6 FIGURE 7 **OUTPUT IMPEDANCE** DROPOUT VOLTAGE DROPOUT VOLTAGE V5 ٧s ٧s VIRTUAL JUNCTION TEMPERATURE OUTPUT CURRENT FREQUENCY 0.6 O.E 10 = 50 mA Tj = 25°C TJ = 25 C 0.5 0.5 Voltage-V 1 0.4 fmpedance-52 10 = N 0.3 0.00 0.00 0.1 10 = 50 mA 0.1 0.1 10 = 10 mA

100

IO-Output Corrent-mA

FIGURE 10

150

200

100 k 1 M

f-Frequency-Hz

FIGURE 11

TYPICAL CHARACTERISTICS

FIGURE 12

INPUT CURRENT

REVERSE INPUT VOLTAGE

FIGURE 14

OUTPUT VOLTAGE

٧s

FIGURE 15

LOAD TRANSIENT RESPONSE

FIGURE 16

BIAS CURRENT

VS

OUTPUT CURRENT

FIGURE 17

BIAS CURRENT

٧Ş VIRTUAL JUNCTION TEMPERATURE

FIGURE 18

BIAS CURRENT

TEXAS INSTRUMENTS

INCORPORATED

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPICAL APPLICATION DATA

- NOTES: A. Use of C1 is required if the regulator is not located in close proximity to the supply filter.
 - 6. Capacitor C2 must be located as close as possible to the regulator and may be an aluminum or tantalum type capacitor. The minimum capacitance that will provide stability is 10 µF. The capacitor must be rated for operation at -40°C to guarantee stability to that extreme.

FIGURE 20

D2332, SEPTEMBER 1977-REVISED MARCH 1983

- 3-Terminal Regulators
- Output Current up to 1.5 A
- No External Components
- Internal Thermal Overload
- High Power Dissipation Capability
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Output Load Regulation . . . 0.3% Typ
- Direct Replacements for National LM340 Series

			o	

This series of fixed-voltage monolithic integrated-circuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Any of these regulators can deliver up to 1.5 amperes of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the powerpass element in precision regulators.

NOMINAL OUTPUT VOLTAGE	REGULATOR
5 V	LM340-5
12 V	LM340-12
15 V	LM340-15

KC PACKAGE

2

schematic

Resistor values shown are nominal and in ohms.

Copyright © 1983 by Texas Instruments Incorporated

Input voltage	. 35 V
Continuous total dissipation at 25 °C free-air temperature (see Note 1)	2 W
Continuous total dissipation at (or below) 25 °C case temperature (see Note 1)	. 15 W
Operating free-air, case, or virtual junction temperature range	5 150°C
Storage temperature range65°C t	150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTE 1: For operation above 25°C free-air or case temperature, refer to Dissipation Denating Curves, Figures 1 and 2.

FIGURE 1

FIGURE 2

recommended operating conditions

		MIN	MAX	UNIT
	LM340-5	7	25	
Input voltage, V _I	LM340-12	14.5	30	V
	LM340-15	17.5	30	
Output current, IO			1.5	Α
Operating virtual junction temperature, TJ			125	°C

LM340-5 electrical characteristics at specified virtual junction temperature, $V_{\parallel}=10~V,~I_{0}=1~A$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS 1		MIN	TYP	MAX	UNIT
	IO = 5 mA to 1 A		25°C	4.8	5	5.2	
Output voltage	$V_1 = 7 \text{ V to } 20 \text{ V},$ P \leq 15 W	10 = 5 mA to 1 A,	0°C to 125°C	4.75		5.25	\
	$V_1 = 7 \text{ V to } 25 \text{ V}$	V _I = 7 V to 25 V	25°C		3	50	
Input regulation	I _O = 500 mA	V _I = 8 V to 20 V	0°C to 125°C			50	mV
		V _I = 7.3 V to 20 V	25°C			50	1 ""
	I _O = 1 A	V _I = 8 V to 12 V	0°C to 125°C			25	1
Di i i i i i	$V_{ } = 8 \text{ V to } 18 \text{ V},$	lo ≤ 1 A	25 °C	62	80		dB
Ripple rejection f = 1:	f = 120 Hz	lo ≤ 500 mA	0°C to 125°C	62			ub.
Output regulation	I _O = 250 mA to 750	mA	25°C			25	
	IO = 5 mA to 1.5 A		25 C		10	50	mV
	Io = 5 mA to 1 A		0°C to 125°C			50	
Output noise voltage	f = 10 Hz to 100 kH	z	25°C		40		μV
Dropout voltage	I _O = 1 A		25°C		2		V
Temperature coefficient of output voltage	I _O = 5 mA		0°C to 125°C		-0.6		mV/°C
Output impedance	f = 1 kHz		25 °C		8		mΩ
0:			25 °C			8	mA
Bias current	I _O ≤ 1 A		0°C to 125°C			8.5	IIIA
	$V_1 = 7.5 \text{ V to } 20 \text{ V},$	1 ₀ ≤ 1 A	25 °C			1	
Bias current change	$V_1 = 7 \text{ V to } 25 \text{ V},$	I _O ≤ 500 mA	0°C to 125°C			1	mA
	10 = 5 mA to 1 A					0.5	
Peak output current			25°C		2.4		Α
Short-circuit current			25°C		2.1		А

[†] All characteristics are measured with a capacitor across the input of 0.22 μF and a capacitor across the output of 0.1 μF. All characteristics except noise voltage rejection ratio are measured using pulse techniques (t_w ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

PARAMETER	Ti	ST CONDITIONS T		MIN	TYP	MAX	UNIT	
	I _O = 5 mA to 1 A		25°C	11.5	12	12.5		
Output voltage	$V_{\parallel} = 14.5 \text{ V to } 27 \text{ V},$ P \leq 15 W	I _O = 5 mA to 1 A,	0°C to 125°C	11.4		12.6	V	
	I _O = 500 mA	V _I = 14.5 V to 30 V	25°C		4	120		
Input regulation	10 = 300 IIIA	V _I = 15 V to 27 V	0°C to 125°C			120	mV	
	I _O = 1 A	V ₁ = 14.6 V to 27 V	25 °C	Ì		120		
	10 = 1 A	V ₁ = 16 V to 22 V	0°C to 125°C			120	1	
Ripple rejection	$V_{J} = 15 \text{ V to } 25 \text{ V}$	I ₀ ≤ 1 A	25°C	55	72			
hippie rejection	f = 120 Hz	1 ₀ ≤ 500 mA	0°C to 125°C	55			dB	
	$I_0 = 250 \text{ mA to } 750$	mA	25 °C			60		
Output regulation	I _O = 5 mA to 1.5 A		25-0		12	120	mV	
	I _O = 5 mA to 1 A		0°C to 125°C			120		
Output noise voltage	f = 10 Hz to 100 kHz		25°C		75		μV	
Dropout voltage	I _O = 1 A		25°C		2		V	
Temperature coefficient of output voltage	I _O = 5 mA		0°C to 125°C		-1.5		mV/°C	
Output impedance	f = 1 kHz		25°C		18		mΩ	
Bias current	I 1 A		25°C			8		
bias current	l ₀ ≤ 1 A		0°C to 125°C			8.5	mA	
	$V_{\parallel} = 14.8 \text{ V to } 27 \text{ V},$	I ₀ ≤ 1 A	25 °C			1		
Bias current change	$V_1 = 14.5 \text{ V to } 30 \text{ V}, I_0 \leq 500 \text{ mA}$		0.00 1.05.00			1	mA	
	I _O = 5 mA to 1 A		0°C to 125°C			0.5		
Peak output current			25°C		2.4		Α	
Short-circuit current			25°C		1.5		А	

[†] All characteristics are measured with a capacitor across the input of 0.22 μF and a capacitor across the output of 0.1 μF. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_W ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

LM340-15 electrical characteristics at specified virtual junction temperature, $V_{\parallel}=23$ V, $I_{O}=1$ A (unless otherwise noted)

PARAMETER		TEST CONDITIONS 1		MIN	TYP	MAX	UNIT
	I _O = 5 mA to 1 A		25 °C	14.4	15	15.6	
Output voltage	V ₁ = 17.5 V to 30 V, P ≤ 15 W	$I_0 = 5 \text{ mA to } 1 \text{ A},$	0°C to 125°C	14.25		15.75	٧
	1 500 mA	V _I = 17.5 V to 30 V	25°C		4	150	
Land on the land	I _O = 500 mA	$V_{\parallel} = 18.5 \text{ V to } 30 \text{ V}$	0°C to 125°C			150	mV
Input regulation	1 1 4	V _I = 17.7 V to 30 V	25°C			150	1 ""
	I _O = 1 A	V _I = 20 V to 26 V	0°C to 125°C			75	
Disale estactor	$V_{\parallel} = 18.5 \text{ V to } 28.5 \text{ V,}$	I ₀ ≤ 1 A	25°C	54	70		dB
Ripple rejection	f = 120 Hz	lo ≤ 500 mA	0°C to 125°C	54			08
	I _O = 250 mA to 750 mA		25°C			75	
Output regulation	Io = 5 mA to 1.5 A		25 ℃		12	150	m∨
	I _O = 5 mA to 1 A		0°C to 125°C			150	
Output noise voltage	f = 10 Hz to 100 kHz		25°C		90		μV
Dropout voltage	I _O = 1 A		25°C		2		V
Temperature coefficient of output voltage	I _O = 5 mA		0°C to 125°C		-1.8		mV/°0
Output impedance	f = 1 kHz		25 °C		19		mΩ
			25°C			8	
Bias current	I _O ≤ 1 A		0°C to 125°C			8.5	mA
	$V_1 = 17.9 \text{ V to } 30 \text{ V},$	l ₀ ≤ 1 A	25°C			1	
Bias current change	$V_1 = 17.5 \text{ V to } 30 \text{ V}$	l _O ≤ 500 mA				1	mA
	1 ₀ = 5 mA to 1 A		0°C to 125°C			0.5	
Peak output current			25°C		2.4		A
Short-circuit current			25°C		1.2		А

¹ All characteristics are measured with a capacitor across the input of 0.22 µF and a capacitor across the output of 0.1 µF. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL APPLICATION DATA

FIGURE 11-ADJUSTABLE SUPPLY WITH STABLE **OUTPUT FROM 8 VOLTS TO 35 VOLTS**

RCL TIP34 RB \$ LM340

The boost circuit takes over at a level determined by RB.

$$R_B \approx \frac{0.6 \text{ V}}{I_B}$$

where IB is the LM340 operating level.

Maximum current limit ICL is determined by RCL.

Example: If IB is selected to be

0.5 A, then

 $R_B = 1.2 \Omega$.

If ICL is 3 A, then

 $R_{CL} = 0.2 \Omega$.

FIGURE 12-OUTPUT CURRENT BOOST CIRCUIT

TEXAS INSTRUMENTS

INCORPORATED

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

- Adjustable Output . . . 1.2 V to 33 V
- 3-A Output Current Capability
- Line Regulation . . . 0.005 %/V Typ
- Load Regulation . . . 0.1% Typ
- Current Limit Constant with Temperature
- Guaranteed Thermal Regulation
- Direct Replacement for National Semiconductor LM350

description

The LM350 is an adjustable 3-terminal positivevoltage regulator capable of supplying 3 amperes over an output voltage range of 1.2 volts to 33 volts. The device is easy to use and requires only two external resistors to set the output voltage. Both input and output regulation are better than standard fixed regulators.

In addition to higher performance than fixed regulators, the LM350 offers full overload protection available only in integrated circuits. Included on the chip are current limit, thermal overload protection, and safe-area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected. Normally, no capacitors are needed unless the device is situated far from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection, which is difficult to achieve with standard 3-terminal regulators.

KA PACKAGE

KC PACKAGE

Besides replacing fixed regulators, the LM350 is useful in a wide variety of other applications. Even though the regulator is floating and sees only the input-to-output differential voltage, use of these devices to regulate voltages that would cause the maximum-rated differential voltage to be exceeded if the output became shorted to ground is not recommended. The TL783 or TL783A is recommended for output voltages exceeding 33 volts. The primary application of the LM350 is that of a programmable output regulator, but by connecting a fixed resistor between the adjustment terminal and the output terminal, this device can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground, which programs the output to 1.2 volts where most loads draw little current.

The LM350 is characterized for operation from 0°C to 125°C.

2

Copyright © 1983 by Texas Instruments Incorporated

NOTE 1: For operation above 25 °C free-air temperature, refer to Figures 1 through 4. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

	MIN	MAX	UNIT
Output current, IO		3	Α
Operating virtual junction temperature, Ty	0	125	°C

electrical characteristics over recommended ranges of operating virtual junction temperature, $V_1 - V_0 = 5 \text{ V}$, $I_0 = 1.5 \text{ A}$ (unless otherwise noted)

PARAMETER	TEST CONE	DITIONS	MIN	TYP	MAX	UNIT
Input regulation	$V_{I} - V_{O} = 3 \text{ V to } 35 \text{ V}$	T _J = 25°C	(0.005	0.03	
(see Note 2)	See Note 3	T _J = 0°C to 125°C		0.02	0.07	- %/V
	$V_0 = 10 V$	f = 120 Hz		65		
Ripple rejection	V _O = 10 V, 10-μF capacitor between ADJ	f = 120 Hz, and ground	66			dB
	10 = 10 mA to 3 A.	V ₀ ≤ 5 V		5	25	mV
Outside and Indian	T _J = 25°C, See Note 3	V _O > 5 V		0.1	0.5	%
Output regulation	I _O = 10 mA to 3 A,	V ₀ ≤ 5 V		20	70	mV
	See Note 3	V ₀ > 5 V		0.3	1.5	%
Output voltage change with temperature	T _J = 0°C to 125°C			1		%
Thermal regulation	t _W = 20 ms			0.002	0.03	%/W
Output voltage long-term drift (see Note 4)	After 1000 h at T _J = 125°C			0.3	1	%
Output noise voltage	f = 10 Hz to 10 kHz,	T _J = 25°C	(0.003		%
Minimum output current to maintain regulation	V _I - V _O = 35 V			3.5	10	mA
Parl Control	V _I − V _O ≤ 10 V		3	4.5		-
Peak output current	$V_1 - V_0 = 30 V_1$	T _J = 25°C	0.25	1		A
Adjustment-terminal current				50	100	μА
Change in adjustment- terminal current	$V_1 - V_0 = 3 \text{ V to } 35 \text{ V},$ $I_0 = 10 \text{ mA to } 3 \text{ A}$			0.2	5	μА
Reference voltage (output to ADJ)	$V_I - V_O = 3 \text{ V to } 35 \text{ V},$ $I_O = 10 \text{ mA to } 3 \text{ A},$	P ≤ 30 W	1.2	1.25	1.3	V

NOTES: 2. Input regulation is expressed as the percentage change in output voltage per 1-volt change at the input.

- 3. Input regulation and output regulation are measured using pulse techniques (t_w ≤ 10 µs, duty cycle ≤ 5%) to limit changes in average internal dissipation. Output voltage changes due to large changes in internal dissipation must be taken into account separately.
- 4. Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a guarantee or warranty. It is an engineering estimate of the average drift to be expected from lot to lot.

THERMAL INFORMATION

TYPICAL CHARACTERISTICS

TYPICAL APPLICATION DATA

NOTES: 5. Capacitor C1 is required if regulator is not located in close proximity to the power supply amplifier.

6. Capacitor C2 may be used to improve transient response.

D2733, APRIL 1983

- Input-Output Differential Less than 0.6 V
- Output Current of 150 mA
- Reverse Battery Protection
- Line Transient Protection
- 40-Volt Load-Dump Protection
- Internal Short-Circuit Current Limiting
- Internal Thermal Overload Protection
- Mirror-Image Insertion Protection
- Direct Replacement for National LM2930 Series

THE COMMON TERMINAL IS IN ELECTRICAL CONTACT WITH THE MOUNTING BASE TO-220AB

description

The LM2930-5 and LM2930-8 are 3-terminal positive regulators that provide fixed 5-volt and 8-volt regulated outputs. Each features the ability to source 150 milliamperes of output current with an input-output differential of 0.6 volt or less. Familiar regulator features such as current limit and thermal overload protection are also provided.

The LM2930 series has low voltage dropout making it useful for certain battery applications. For example, the low voltage dropout feature allows a longer battery discharge before the output falls out of regulation; the battery supplying the regulator input voltage may discharge to 5.6 volts and still properly regulate the system and load voltage. Supporting this feature, the LM2930 series protects both itself and the regulated system from reverse battery installation or two-battery jumps.

Other protection features include line transient protection for load-dump of up to 40 volts. In this case the regulator shuts down to avoid damaging internal and external circuits. The LM2930 series regulator cannot be harmed by temporary mirror-image insertion.

2

schematic diagram

All component values are nominal

Copyright @ 1983 by Texas Instruments Incorporated

Continuous input voltage	26 V
Transient input voltage: t = 1 s	40 V
Continuous reverse input voltage	-6 V
Transient reverse input voltage: t = 100 ms	12 V
Continuous total dissipation at 25 °C free-air temperature (see Note 1)	2 W
Continuous total dissipation at (or below) 25 °C case-temperature (see Note 1)	20 W
Operating free-air, case, or virtual junction temperature40°C to 15	50°C
Storage temperature range65°C to 15	50°C
Lead temperature 1,6 mm (1/16 inch) from case to 10 seconds	30 °C

NOTE 1: For operation above 25°C free-air or case temperature, refer to Figures 1 and 2. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variation in individual device electrical characteristics and thermal resistance, the bult-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

FIGURE 2

recommended operating conditions

		MIN	MAX	UNIT
10	Output current		150	mA
TJ	Operating virtual junction temperature	-40	125	°C

TEXAS INSTRUMENTS

LM2930-5 electrical characteristics at $25\,^{\circ}$ C virtual junction temperature, $V_{\parallel}=14$ V, $I_{O}=150$ mA, (unless otherwise noted)

PARAMETER	TEST C	ONDITIONS ?	MIN	TYP	MAX	UNIT
Output voltage	$V_1 = 6 \text{ V to } 26 \text{ V},$ $T_J = -40 ^{\circ}\text{C to } 125 ^{\circ}\text{C}$	$I_0 = 5 \text{ mA to } 150 \text{ mA}$	4.5	5	5.5	V
Input regulation	IO = 5 mA	V _I = 9 V to 16 V		7	25	mV
input regulation	10 = 9 mA	V _I = 6 V to 26 V		30	80	mv
Ripple rejection	f = 120 Hz			56		dB
Output regulation	I _O = 5 mA to 150 mA			14	50	mV
Output voltage long-term drift [‡]	After 1000 h at T _J = 125	°C		20		mV
Dropout voltage	I _O = 150 mA			0.32	0.6	V
Output noise voltage	1 = 10 Hz to 100 kHz			60		μV
Output voltage during line transients	$V_1 = -12 \text{ V to } 40 \text{ V},$	$R_L = 100 \Omega$	-0.3		5.5	٧
Output impedance	Io = 100 mA, Io = 10 m	A (rms), f = 100 Hz to 10 kHz		200		mΩ
Bias current	I _O = 10 mA			4	7	- ^
I _O = 150 mA				18	40	mA
Peak output current			150	300	700	mA

LM2930-8 electrical characteristics at 25 °C virtual junction temperature, $V_I = 14$ V, $I_O = 150$ mA, (unless otherwise noted)

PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
Output voltage	$V_{I} = 9.4 \text{ V to } 26 \text{ V},$ $T_{J} = -40 ^{\circ}\text{C} \text{ to } 125 ^{\circ}\text{C}$	$I_{O} = 5$ mA to 150 mA,	7.2	8	8.8	V
Input regulation	In = 5 = A	V _I = 9.4 V to 16 V		12	50	V
Input regulation	10 = 5 mA	$V_1 = 9.4 \text{ V to } 26 \text{ V}$		50	100	V
Ripple rejection	f = 120 Hz	*		52		dB
Output regulation	Io = 5 mA to 150 mA			25	50	mV
Output voltage long-term drift [‡]	After 1000 h at T _J = 125 °C			30		mV
Dropout voltage	IO = 150 mA			0.32	0.6	V
Output noise voltage	f = 10 Hz to 100 kHz			90		μV
Output voltage during line transients	$V_{I} = -12 \text{ V to } 40 \text{ V}$	$R_L = 100 \Omega$	-0.3		8.8	V
Output impedance	I _O = 100 mA, I _O = 10 mA	(rms), f = 100 Hz to 10 kHz		300		mΩ
Diag average	I _O = 10 mA			4	7	w.
Bias current	I _O = 150 mA	_		18	40	mA
Peak output current			150	300	700	mA

Unless otherwise specified, all characteristics, except ripple rejection and noise voltage measurements, are measured using pulse techniques It_W ≤ 10 ms, duty cycle ≤ 5%1 with a capacitor of 0.1 µF across the input and a capacitor of 10 µF across the output. Output voltage changes due to changes in internal temperature must be taken into account separately.

¹ Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a guarantee or warranty. It is an engineering estimate of the average drift to be expected from lot to lot.

TYPICAL CHARACTERISTICS

FIGURE 3

VI-Input Voltage-V FIGURE 4

FIGURE 5

0

RIPPLE REJECTION

FIGURE 6

10 = 50 mA

10 = 10 mA

100 k

FIGURE 7

DROPOUT VOLTAGE

10

DROPOUT VOLTAGE

OUTPUT IMPEDANCE

T_-Virtual Junction Temperature- C FIGURE 8

TEXAS INSTRUMENTS INCORPORATED

FIGURE 9

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

OUTPUT VOLTAGE

Io-Output Current-mA

FIGURE 16

120

5

BIAS CURRENT

TEXAS INSTRUMENTS

INCORPORATED

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPICAL APPLICATION DATA

NOTES: A. Use of C1 is required if the regulator is not located in close proximity to the supply filter.

B. Capacitor C2 must be located as close as possible to the regulator and may be an aluminum or tantalum type capacitor. The minimum value required for stability is 10 μF. The capacitor must be rated for operation at -40°C to guarantoe stability to that extreme.

FIGURE 19

D2439, APRIL 1978-REVISED JANUARY 1983

- Separate Outputs for "Crowbar" and Logic Circuitry
- Programmable Time Delay to Eliminate
 Noise Triggering
- TTL-Level Activation Isolated from Voltage-Sensing Inputs
- 2.6-Volt Internal Voltage Reference with Temperature Coefficient Typically 0.08%/°C

MC3423 JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)

description

The MC3423 overvoltage-sensing circuit is designed to protect sensitive electronic circuitry by monitoring the supply rail and triggering an external "crowbar" SCR in the event of a voltage transient or loss of regulation. The protective mechanism may be activated by an overvoltage condition at the Sense 2 input or by application of a TTL high level to the Remote Activate terminal. Separate outputs are available to trigger the crowbar circuit and to provide a logic pulse to indicator or power supply control circuitry. The Sense 2 input provides a direct control of the output circuitry. The Sense 1 input controls an internal current source that may be utilized to implement a delayed trigger by connecting its output to an external capacitor and the Sense 2 input. This protects against false triggering due to noise at the Sense 1 input.

The MC3423 is characterized for operation from 0°C to 70°C.

functional block diagram

Copyright © 1983 by Texas Instruments Incorporated

TEXAS INSTRUMENTS

2-51

absolute maximum ratings

Supply voltage, VCC (see Note 1)
Sense 1 voltage
Sense 2 voltage
Remote activate input voltage
Output current, IQ
Continuous dissipation at (or below) 25 °C free-air temperature (see Note 2): JG package 825 mW
P package 1000 mW
Operating free-air temperature range
Storage temperature range

- NOTES: 1. Voltage values are measured with respect to the VEE terminal.
 - 2. For operating above 25 °C free-air temperature, refer to the Dissipation Derating Table. In the JG package, MC3423 chips are glass-mounted.

DISSIPATION DERATING TABLE

PACKAGE	POWER RATING	DERATING FACTOR	ABOVE T _A
JG (Glass-Mounted Chip)	825 mW	6.6 mW/°C	25°C
Р	1000 mW	8 mW/°C	25°C

recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, VCC	4.5	40	V
High-level input voltage, remote activate input	2		V
Low-level input voltage, remote activate input		0.5	V

electrical characteristics over operating free-air temperature range, VCC = 5 V to 36 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output voltage	Remote Activate at 2 V, IO = 100 mA	V _{CC} - 2.2	V _{CC} -1.8		V
Indicator low-level output voltage	Remote Activate at 2 V, IO = 1.6 mA		0.1	0.4	V
Threshold voltage of either sense input	T _A = 25°C	2.45	2.6	2.75	V
Temperature coefficient of input threshold voltage			0.06		%/°C
Source current (pin 4)	Sense 1 at 3 V, Pin 4 at 1.3 V	0.1	0.22	0.3	mA
High-level input current, Remote Activate input	$V_{CC} = 5 \text{ V}, V_{I} = 2 \text{ V}$		5	40	μA
Low-level input current, Remote Activate input	$T_{CC} = 5 \text{ V}, V_{I} = 0.8 \text{ V}$		- 120	- 180	μΑ
Supply current	Outputs open		6	10	mA
Propagation delay time, Remote Activate input to Output	T _A = 25°C		0.5		μS
Output current rate of rise	TA = 25°C		400		mA/μs

D2726, MARCH 1983

- Complete PWM Power Control Circuitry
- Uncommitted Output for 200-mA Sink or Source Current
- Variable Dead-Time Provides Control Over Total Range
- Internal Regulator Provides a Stable 5-V
 Reference Supply
- Circuit Architecture Provides Easy Synchronization
- Direct Replacements for Motorola MC35060 and MC34060

J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connections

description

The MC35060 and MC34060 incorporate on a single monolithic chip all the functions required in the construction of a pulse-width-modulation control circuit. Designed primarily for power supply control, each of the devices contains an on-chip 5-volt regulator, two error amplifiers, an adjustable oscillator, and a dead-time control comparator. The uncommitted output transistor provides either common-emitter or emitter-follower output capability. The internal amplifiers exhibit a common-mode voltage range from -0.3 volt to $V_{\rm CC}-2$ volts. The dead-time control comparator has a fixed offset that provides approximately 5% dead time unless externally altered. The on-chip oscillator may be bypassed by terminating $R_{\rm T}$ (pin 6) to the reference output and providing a sawtooth input to $C_{\rm T}$ (pin 5), or it may be used to drive the common MC35060 or MC34060 circuitry and provide a sawtooth input for associated control circuitry in multiple rail power supplies.

The MC35060 is characterized for operation over the full military temperature range of $-55\,^{\circ}\text{C}$ to 125 $^{\circ}\text{C}$. The MC34060 is characterized for operation from 0 $^{\circ}\text{C}$ to 70 $^{\circ}\text{C}$.

functional block diagram

All voltage and current values shown are nominal.

Copyright 1983 by Texas Instruments Incorporated

absolute maximum ratings over operation temperature range (unless otherwise noted)

	MC35060	MC34060	UNIT
Supply voltage, V _{CC} (see Note 1)	42	42	V
Amplifier input voltages	V _{CC} +0.3	V _{CC} +0.3	V
Collector output voltage	42	42	V
Collector output current	250	250	mA
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2)	1000	1000	mW
Operating free-air temperature range	- 55 to 125	0 to 70	°C
Storage temperature range	-65 to 150	- 65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package	300	300	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: N package		260	°C

- NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.
 - 2. For operation above 25 °C free-air temperature, refer to Dissipation Derating Table. In the J package, MC35060 chips are alloy-mounted and MC34060 chips are glass-mounted.

DISSIPATION DERATING TABLE

DACKAGE	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	Тд
J (Alloy-Mounted Chip)	1000 mW	11.0 mW/°C	59 °C
J (Glass-Mounted Chip)	1000 mW	8.2 mW/°C	28°C
N	1000 mW	9.2 mW	41 °C

recommended operating conditions

	MC35060		MC	UNIT	
	MIN	MAX	MIN	MAX	UNIT
Supply voltage, VCC	7	40	7	40	V
Amplifier input voltages, V ₁	-0.3	V _{CC} -2	-0.3	VCC-2	V
Collector output voltage, VO		40		40	V
Collector output current (each transistor)		200		200	mA
Reference output current		10		10	mA
Current into feedback terminal		0.3		0.3	mA
Timing capacitor, C _T	0.47	10 000	0.47	10 000	nF
Timing resistor, RT	1.8	500	1.8	500	kΩ
Oscillator frequency	1	200	1	200	kHz
Operating free-air temperature, TA	- 55	125	0	70	°C

TYPES MC35060, MC34060 PULSE-WIDTH-MODULATION CONTROL CIRCUITS

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 \text{ V}$, f = 10 kHz (unless otherwise noted)

reference section

24244555	TEST CONDITIONS†		MC35060			MC34060			J
PARAMETER			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
Output voltage (V _{ref})	I _O = 1 mA		4.75	5	5.25	4.75	5	5.25	V
Input regulation	V _{CC} = 7 V to 40 V,	TA = 25°C		2	25		2	25	mV
Output regulation	I _{IO} = 1 to 10 mA,	TA = 25°C		1	15		1	15	mV
Output voltage change with temperature	ΔT _A = MIN to MAX			0.2	2	i	0.2	2.6	%
Short-circuit output current [§]	V _{ref} = 0		10	35	50	•	35		mA

osciliator section

PARAMETER	TEST CONDITIONS†	MC35060	MC34080	UNIT
FANAMETER	TEST CONDITIONS.	MIN TYP# MAX	MIN TYP [‡] MAX	UNII
Frequency	$C_T = 0.001 \mu F$, $R_T = 47 k\Omega$	25	25	kHz
Standard deviation of frequency	$C_T = 0.001 \mu F$, $R_T = 47 k\Omega$	3	3	%
Frequency change with voltage	VCC = 7 V to 40 V, TA = 25°C	0.1	0.1	%
Frequency change with	$C_T = 0.001 \mu F$, $R_T = 47 k\Omega$,	4	2	%
temperature	ΔTA = MIN to MAX			Ì

dead-time control-section (see figure 1)

PARAMETER	Т	TEST CONDITIONS				MAX	UNIT
Input bias current (pin 4)	V _I = 0 to 5.25 V	V _I = 0 to 5.25 V				-10	μΑ
Maximum duty cycle	VI (nin 4) = 0	$C_T = 0.1 \mu F$,	R _T = 12 kΩ	90	96	100	%
		$R_T = 47 \text{ k}\Omega$		92	100	7"	
Input threshold voltage (pin 4)	Zero duty cycle				3	3.3	
input trication voltage (pin 4)	Maximum duty cycle			0			1 °

error-amplifier sections

PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
Input offset voltage	V _O (pin 3) = 2.5 V		2	10	m∨
Input offset current	V _O (pin 3) = 2.5 V		25	250	nΑ
Input bias current	V _O (pin 3) = 2.5 V		0.2	1	μΑ
		-0.3			
Common-mode input voltage range	V _{CC} = 7 V to 40 V	to			V
		Vcc-	2		l
Open-loop voltage amplification	$\Delta V_{O} = 3 \text{ V}, R_{L} = 2 \text{ k}\Omega, V_{O} = 0.5 \text{ V to } 3.5 \text{ V}$	70	95		dB
Unit-gain bandwidth			800		kHz
Common-mode rejection ratio	VCC = 40 V	65	80		₫B
Output sink current (pin 3)	V _{ID} = -15 mV to -5 V, V _(pin 3) = 0.5 V	0.3	0.7		mA
Output source current (pin 3)	V _{ID} = 15 mV to 5 V, V _(pin 3) = 3.5 V	-2			mA

output section

PARAMETER		TEST CONDITIONS		MC35060			MC34060			
- FARAIN	EIEN	1631 (CHUITICHS	MIN TYP [‡] MAX MIN TYP [‡] MAX			MAX	UNIT		
Collector off-state	current	VCE = 40 V, VCC = 40 V			2	100		2	100	μÄ
Emitter off-state c	urrent	Vcc = Vc = 40	0 V, V _E = 0			-150			-100	μΑ
Collector-emitter	Common-emitter	V _E = 0,	IC = 200 mA		1.1	1.5		1.1	1.3	·
saturation voltage	Emitter follower	Vc = 15 V,	le = −200 mA		1.5	2.5	_	1.5	2.5	V

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operation conditions.

All typical values except for temperature coefficients are at T_A = 25°C.

 $\int_{\frac{N}{n-1}}^{N} (\kappa_n - \overline{\lambda})^2$

⁵Duration of the short-circuit should not exceed one second.

Standard deviation is a measure of the statistical distribution about the mean as derived from the formula

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 \text{ V}$, f = 10 kHz (unless otherwise noted)

pwm comparator section (see figure 1)

PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
Input threshold voltage (pin 3)	Zero duty cycle		4	4.5	V
Input sink current (pin 3)	V _(pin 3) = 0.7 V	0.3	0.7		mA

total device

PARAMETER	TEST CONDITIONS		MIN	TYP‡	MAX	UNIT
Standby supply current	Pin 6 at V _{ref} ,	V _{CC} = 15 V		6	10	mA
Standby supply current	All other inputs and outputs open	V _{CC} = 40 V		9	15] "'^
Average supply current	$V_{(pin 4)} = 2 V,$	See Figure 1	1	7.5		mA

switching characteristics, $T_A = 25$ °C

PARAMETER	TEST CONDITIONS	MIN	TYP*	MAX	UNIT
Output voltage rise time	Common-emitter configuration,		100	200	ns
Output voltage fell time	See Figure 3		25	100	ns
Output voltage rise time	Emitter-follower configuration,		100	200	ns
Output voltage fall time	See Figure 4		40	100	ns

‡Atl typical values except for temperature coefficients are at T_A = 25 °C.

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

TIMING WAVEFORMS

FIGURE 1 - DEAD-TIME AND FEEDBACK CONTROL

2

Texas Instruments

INCORPORATED

PARAMETER MEASUREMENT INFORMATION

FIGURE 2 - ERROR-AMPLIFIER CHARACTERISTICS

FIGURE 3 - COMMON-EMITTER CONFIGURATION

PARAMETER MEASUREMENT INFORMATION

FIGURE 4 - EMITTER-FOLLOWER CONFIGURATION

TYPICAL CHARACTERISTICS

†Frequency variation (Δf) is the change in oscillator frequency that occurs over the full temperature range.

D2656, OCTOBER 1982

- 3-Terminal Regulators
- Output Current up to 100 mA
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Direct Replacement for Motorola MC79L00 Series
- Available in 5% or 10% Selections

desc	ric	tic	'n
uesc	ուբ	·uc)[]

This series of fixed-voltage monolithic integratedcircuit voltage regulators is designed for a wide range of applications. These include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. In addition, they can be used to control series pass elements to make high-current voltage-regulator circuits. One of these regulators can deliver up to 100 mA of output current. The internal current-limiting and thermalshutdown features make them essentially immune to overload. When used as a replacement for a Zenerdiode and resistor combination, these devices can provide an effective improvement in output impedance of two orders of magnitude and lower bias current.

NOMINAL	5%	10%
OUTPUT	OUTPUT VOLTAGE	OUTPUT VOLTAGE
VOLTAGE	TOLERANCE	TOLERANCE
−5 V	MC79L05AC	MC79L05C
-12 V	MC79L12AC	MC79L12C
-15 V	MC79L15AC	MC79L15C

LP SILECT PACKAGE

schematic

Trademark of Texas Instruments Incorporated.

absolute maximum ratings over operating temperature range (unless otherwise noted)

	MC79L05	MC79L12 MC79L15	UNIT
Input voltage	-30	-35	V
Continuous total dissipation at 25 C free-air temperature (see Note 1)	775	775	mW
Continuous total dissipation at (or below) 25°C case temperature (see Note 1)	1600	1600	mW
Operating free-air, case, or virtual junction temperature range	0 to 150	0 to 150	°C
Storage temperature range	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	260	260	°C

NOTE 1: For operation above 25°C free air temperature, refer to Dissipation Derating Curves, Figure 1 and Figure 2.

NOTE 2: This curve for the LP package is based on thermal resistance, R_{8JA}, measured in still air with the device mounted in an Augat socket.

The bottom of the package was 3/8 inch above the socket.

recommended operating conditions

		MIN	MAX	UNIT
	MC79L05	-7	-20	
Input voltage, V _I	MC79L12	-14.5	27	V
	MC79L15	-17.5	-30	
Output current, Io			100	mA
Operating virtual junction temperature, TJ		0	125	°C

SERIES MC79L00 NEGATIVE-VOLTAGE REGULATORS

MC79L05 electrical characteristics at specified virtual junction temperature, $V_I = -10 \text{ V}$, $I_O = 40 \text{ mA}$ (unless otherwise noted)

DARAMETER	TEST SONO!	TIONST		MC79LI)5C	N	IC79L05	AC	UNIT
PARAMETER	TEST CONDI	TEST CONDITIONS†		TYP	MAX	MIN	TYP	MAX	UNIT
		25° C	-4.6	5	-5.4	-4.8	-5	-5.2	
Outrotant	$V_1 = -7 \text{ V to } -20 \text{ V},$ $I_0 = 1 \text{ mA to } 40 \text{ mA}$	0°C to 125°C	-4.5		-5.5	-4.75		-5.25	V
Output voltage	V _I = -10 V, I _O = 1 mA to 70 mA	0° C to 125° C	-4.5		5.5	-4.75		5.25	
land a lada	V _I ≈ -7 V to -20 V	25° C			200			150	mV
Input regulation	V _I ≈ -8 V to -20 V				150			100	1 ""
Ripple rejection	$V_1 = -8 \text{ V to } -18 \text{ V},$ f = 120 Hz	25° C	40	49		41	49		q8
	Io ≈ 1 mA to 100 mA	050.0			60			60	
Output regulation	Io = 1 mA to 40 mA	25° C			30			30	m∨
Output noise voltage	f = 10 Hz to 100 kHz	25° C		40			40		μV
Dropout voltage	Io = 40 mA	25° C		1.7			1.7		V
		25° C			6			6	
Bias current		125°C			5.5			5.5	mA
	V _I ≈ −8 V to −20 V	-0.0 1000			1.5			1.5	
Bias current change	IO = 1 mA to 40 mA	0°C to 125°C			0.2			0.1	mA

MC79L12 electrical characteristics at specified virtual junction temperature, $V_I = -19$, $I_O = 40$ mA (unless otherwise noted)

PARAMETER	TEST COND	TIONET		MC79L	12C	0	AC79L12	ZAC	ALDUT
FANAWETEN	LEST COMP	I I IONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		25° C	-11.1	12	-12.9	-11.5	-12	-12.5	
	$V_1 = -14.5 \text{ to } -27 \text{ V},$ $I_0 = 1 \text{ mA to } 40 \text{ mA}$	0°C to 125°C	-10.8		-13.2	-11.4		-12.6	
Output voltage	V _I ≈ −19 V,	0°C to 125°C	-10.8	-	-13.2	-11.4		-12.6	V
Input regulation	V _I ≈ −14.5 to −27 V	25° C			250			250	mV
Thip at regardion	$V_1 = -16 \text{ V to } -27 \text{ V}$				200			200	1110
Ripple rejection	$V_1 = -15 \text{ V to } -25 \text{ V},$ f = 120 Hz	25° C	36	42		37	42		dB
Output regulation	Io ≈ 1 mA to 100 mA	25° C			100			100	
Output regulation	Io = 1 mA to 40 mA	25 0			50			50	mV
Output noise voltage	f = 10 Hz to 100 kHz	25° C		80			80		μV
Dropout voltage	10 = 40 mA	25° C		1.7			1.7		V
Pies europa		25° C	Î		6.5			6.5	
Bias current		125° C			6			6	mA
Discourant change	V₁ = -16 V to -27 V	0"C to 125°C			1.5			1.5	
Bias current change	Io = 1 mA to 40 mA	0 0 125 0			0.2			0.1	mA

[†]All characteristics are measured with a 0.33 μ F capacitor across the Input and a 0.1- μ F capacitor across the output. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w \leq 10 ms, duty cycle \leq 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

MC79L15 electrical characteristics at specified virtual junction temperature, $V_1 = -23 \text{ V}$, $I_O = 40 \text{ mA}$ (unless otherwise noted)

PARAMETER	TEST CONDI	rionet		MC79L	15C		MC79t	.15AC	11007
FARAWETER TEST CONDITI		IIONS'	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		25° C	-13.8	-15	-16.2	-14.4	-15	-15.6	
0	$V_1 \approx -17.5 \text{ V to } -30 \text{ V},$ $I_0 = 1 \text{ mA to } 40 \text{ mA}$	0°C to 125°C	-13.5		-16.5	-14.25		-15.75	.,
Output voltage	V ₁ = -23 V, I _O = 1 mA to 70 mA	I 0°C to 125°C	-13.5		-16.5	-14.25		-15.75	V
La contrata	V ₁ = -17.5 V to -30 V	25° C			300			300	1,4
Input regulation	V _I = -20 V to -30 V	25 C			250			250	mV
Ripple rejection	V _I = -18.5 V to -28.5 V, f = 120 Hz	25° C	33	39		34	39		dB
0	I _O = 1 mA to 100 mA	25° C			150			150	
Output regulation	I _O = 1 mA to 40 mA	25 C			75			75	mV
Output noise voltage	f = 10 Hz to 100 kHz	25°C		90			90		μV
Dropout voltage	IO = 40 mA	25°C		1.7			1.7		V
		25°C			6.5			6.5	
Bias current		125°C			6			6	mA
B:	V ₁ = -20 V to -30 V	000 - 10500			1.5			1.5	4
Bias current change	1 _O = 1 mA to 40 mA	0°C to 125°C			0.2			0.1	mA

¹ All characteristics are measured with a 0.33.μF capacitor across the input and a 0.1.μF capacitor across the output. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

TYPES RC4193M. RC4193I. RC4193C MICROPOWER SWITCHING REGULATOR

D2718, DECEMBER 1982

High Efficiency . . . 80% Typ

Low Bias Current . . . 135 µA

Adjustable Output . . . 2.5 V to 24 V

Output Current . . . 150 mA

Internal Reference . . . 1.3 V ±5%

Remote Shutdown Capabilities

description

Interchangeable with Raytheon RC4193

The RC4193 is a monolithic micropower switching regulator designed to provide all the functions required to make a complete low-power switching regulator primarily for battery operated instruments. The RC4193 offers the system designer the flexibility of tailoring the circuit to the application. Typical applications include step-up switching regulation. step-down switching regulation, and inverting switch

RC4193M . . . JG RC4193L RC4193C . . . JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW) I BR 🗂 1 CX 🗆 2 7 TVFB LX ∐3 6 | IC GND 🗆 Б∏VCC

FUNCTION TABLE

PIN	FUNCTION .	DESCRIPTION			
1	LBR	Low battery resistor			
2	cx	External capacitor			
3	LX	External inductor			
4	GND	Ground			
5	Vcc	Supply voltage			
6	IC	Reference set control			
7	VFB	Feedback voltage			
8	LBD	Low battery detector			

regulation. The RC4193 contains a 1.3-volt temperature-compensated band-gap reference, an adjustable free-running oscillator, voltage comparator, low battery detection circuitry, and a 150-milliampere output-switch transistor.

For most applications, the RC4193 can achieve up to 80% efficiency while operating over a wide supply voltage range from 2.4 volts to 24 volts at an ultra-low bias current drain of 135 microamperes. The RC4193 has an adjustable 100-hertz to 160-kilohertz free-running oscillator that provides the drive circuitry for the on-chip 150-milliampere outputswitch transistor. An external capacitor on pin 2 determines the oscillator frequency.

The low-battery detection circuitry contains an open-collector output transistor that can be used to activate a liquid crystal display whenever the battery voltage drops below a programmed level. This programmed level is determined by the selection of external resistors connected to pin 1.

The RC4193 will shut off when pin 6 (IC) is below 0.5 volt. The shut-off feature is useful in battery-backup applications requiring operation only when the line power is removed. Another use of this feature is connecting a zener diode between pin 6 and the battery line to shut down the regulator whenever the battery voltage drops below a predetermined level.

The RC4193M is characterized for operation over the full military temperature range of -55 °C to 125 °C. The RC4193I is characterized for operation from -25 °C to 85 °C. The RC4193C is characterized for operation from 0 °C to 70 °C.

functional block diagram

PRODUCT PREVIEW

Copyright © 1982 by Texas Instruments Incorporated

- Complete PWM Power Control Circuitry
- Uncommitted Outputs for Single-Ended or Push-Pull Applications
- Low Standby Current . . . 8 mA Typ
- Interchangeable With Silicon General SG1524, SG2524, and SG3524

description

The SG1524, SG2524, and SG3524 incorporate on single monolithic chips all the functions required in the construction of a regulating power supply. inverter, or switching regulator. They can also be used as the control element for high-power-output applications. The SG1524 family was designed for switching regulators of either polarity, transformercoupled dc-to-dc converters, transformerless voltage doublers, and polarity converter applications employing fixed-frequency, pulse-width-modulation techniques. The complementary output allows either single-ended or push-pull application. Each device includes an on-chip regulator, error amplifier, programmable oscillator, pulse-steering flip-flop, two uncommitted pass transistors, a high-gain comparator, and current-limiting and shut-down circuitry.

SG1524 . . . J SG2524, SG3524 . . . J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

The SG1524 is characterized for operation over the full military temperature range of -55°C to 125°C The SG2524 is characterized for operation from -25°C to 85°C, and the SG3524 is characterized for operation from 0°C to 70°C.

functional block diagram

Copyright © 1982 by Texas Instruments Incorporated

Texas Instruments

INCORPORATED

TYPES SG1524, SG2524, SG3524 REGULATING PULSE WIDTH MODULATORS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply Voltage, VCC (see Notes 1 and 2)	40 V
Reference Output Current	50 mA
Current Through CT Terminal	
Continuous Total Dissipation at (or below) 25°C	Free-Air Temperature (See Note 3) 1000 mW
Operating Free-Air Temperature Range: SG1524	
\$G2524	
Storage Temperature Range	

NOTES: 1. All voltage values are with respect to network ground terminal.

- The reference regulator may be bypassed for operation from a fixed 5-volt supply by connecting the V_{CC} and reference output pine both to the supply voltage. In this configuration the maximum supply voltage is 6 yolts.
- 3. For operation at elevated temperature, refer to Figures 16 and 17. In the J package, SG1524 chips are alloy-mounted; SG2524 and SG3524 chips are glass-mounted.

recommended operating conditions

	SG1524		SG2524		SG3524		UNIT
	MIN	MAX	MIN	MAX	MIN	MAX	וואט
Supply voltage, V _{CC}	8	40	8	40	8	40	V
Reference output current	0	50	0	50	0	50	mA
Current thru C _T terminal	-0.03	-2	-0.03	-2	-0.03	-2	mA
Timing resistor, R _T	1.8	100	1.8	100	1.8	100	kΩ
Timing capacitor, CT	0.001	0.1	0.001	0.1	0.001	0.1	μF
Operating free-air temperature	-55	125	-25	85	0	70	°C

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 20 \text{ V}$, f = 20 kHz (unless otherwise noted)

reference section

DADAMETER	TEST		SG1524		SG2524			SG3524			UNIT
PARAMETER	CONDITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	MIN	TYP‡	MAX	וואטן
Output voltage		4.8	5	5.2	4.8	5	5.2	4.6	5	5.4	V
Input regulation	V _{CC} = 8 to 40 V		10	20		10	20		10	30	mV
Ripple rejection	f = 120 Hz		66			66			66		₫B
Output regulation	I _O = 0 to 20 mA		20	50		20	50		20	50	mV
Output voltage change with temperature	TA = MIN to MAX		0.6	2		0.3	1		0.3	1	%
Short-circuit output current §	V _{ref} = 0		100			100			100		mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions,

[‡]All typical values except output voltage change with temperature are at TA = 25°C.

[§] Duration of the short-circuit should not exceed one second.

TYPES SG1524, SG2524, SG3524 REGULATING PULSE WIDTH MODDLATORS

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 20 V, f = 20 kHz (unless otherwise noted)

oscillator section

PARAMETER	TEST CONDITIONS†	MIN	TYP	MAX	UNIT
Frequency	$C_T = 0.001 \mu F$, $R_T = 2 k\Omega$		450		kHz
Standard deviation of frequency §	All values of voltage, temperature, resistance, and capacitance constant		5		%
Frequency change with voltage	V _{CC} - 8 to 40 V, T _A = 25°C			1	%
Frequency change with temperature	TA = MIN to MAX			2	%
Output amplitude at pin 3			3.5		V
Output pulse width at pin 3	C _T = 0.01 µF		0.5		μs

error amplifier section

BARAMETER	TEST CONDITIONS	SG1524, SG2524				UNIT		
PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	וואטן
Input offset voltage	V _{IC} = 2.5 V		0.5	5		2	10	mV
Input bias current	V _{IC} = 2.5 V		2	10		2	10	μА
Open-loop voltage amplification		72	80		60	80		dB
		1.8			1.8			
Common-mode input voltage range	TA = 25°C	to			to			V
		3,4			3.4			
Common-mode rejection ratio			70			70		dB
Unity-gain bandwidth			3			3		MHz
Output swing	T _A ≈ 25°C	0.5		3.8	0,5		3,8	V

output section

PARAMETER	TEST C	TEST CONDITIONS			MAX	UNIT
Collector-emitter breakdown voltage			40			V
Collector off-state current	V _{CE} = 40 V			0.01	50	μА
Collector-emitter saturation voltage	Ic = 50 mA			1	2	V
Emitter output voltage	V _C = 20 V,	I _E = -250 μA	17	18		V
Turn-off voltage rise time	H _C = 2 kΩ		1	0.2		μs
Turn-on voltage fall time	Hc = 2 kΩ			0.1		μs

comparator section

PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
Maximum duty cycle, each output		45			%
Input threshold voltage at pin 9	Zero duty cycle		1		V
	Maximum duty cycle	3.5			\ \ \
Input bias current			-1		μА

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

§ Standard deviation is a measure of the statistical distribution about the mean as derived from the formula $\sigma = \sqrt{\sum_{n=1}^{\infty} (X_n - \overline{X})^2}$ N = 1

TAIl typical values except for temperature coefficients are at Ta = 25°C.

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 20 V, f = 20 kHz (unless otherwise noted)

current limiting section

PARAMETER	TEST CONDITIONS	SG1524, SG2524			SG3524			UNIT
PANAMETER	TEST CONDITIONS	MIN	TYP‡	MAX MIN T		TYP‡	TYP‡ MAX	
Input voltage range (either input)		-1			-1			
		to			to			V
		+1			+1			
Sense voltage at TA = 25°C	$V_{(pin 2)} - V_{(pin 1)} \ge 50 \text{ mV},$	190	200	210	180	200	220	mV
Temperature coefficient of sense voltage	V _(pin 9) = 2 V		0.2			0.2		mV/°C

total device

PARAMETER		TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
Can dhu aussant	V _{CC} = 40 V,	Pins 1,4,7,8,9,11,14 grounded,			10	
Standby current	Pin 2 at 2 V,	All other inputs and outputs open	en 8		10	mA

[‡]All typical values except for temperature coefficients are at TA = 25°C.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-GENERAL TEST CIRCUIT

TEST CIRCUIT

FIGURE 2-SWITCHING TIMES

TEXAS INSTRUMENTS

INCORPORATED

2-68

TYPICAL CHARACTERISTICS

1 k

10 k

100 k

Frequency-Hz FIGURE 3

100

Open-Loop Voltage Amplification-dB

OUTPUT DEAD TIME Vs TIMING CAPACITANCE VALUE TA = 25°C 4

10 M

1 M

10 Output Dead Time-us 1 0.4 0.04 0.001 0.004 0.01 0.1 CT-Capacitance-µF FIGURE 5

TEXAS INSTRUMENTS

INCORPORATED

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

PRINCIPLES OF OPERATION

The SG1524[†] is a fixed-frequency pulse-width-modulation voltage-regulator control circuit. The regulator operates at a fixed frequency that is programmed by one timing resistor RT and one timing capacitor CT. RT establishes a constant charging current for CT. This results in a linear voltage ramp at CT, which is fed to the comparator providing linear control of the output pulse width by the error amplifier. The SG1524 contains an on-board 5-volt regulator that serves as a reference as well as supplying the SG1524's internal regulator control circuitry. The internal reference voltage is divided externally by a resistor ladder network to provide a reference within the common-mode range of the error amplifier as shown in Figure 6, or an external reference may be used. The output is sensed by a second resistor divider network and the error signal is amplified. This voltage is then compared to the linear voltage ramp at CT. The resulting modulated pulse out of the high-gain comparator is then steered to the appropriate output pass transistor (Q1 or Q2) by the pulse-steering flip-flop, which is synchronously toggled by the oscillator output. The oscillator output pulse also serves as a blanking pulse to assure both outputs are never on simultaneously during the transition times. The width of the blanking pulse is controlled by the value of CT. The outputs may be applied in a push-pull configuration in which their frequency is half that of the base oscillator, or paralleled for single-ended applications in which the frequency is equal to that of the oscillator. The output of the error amplifier shares a common input to the comparator with the current-limiting and shut-down circuitry and can be overridden by signals from either of these inputs. This common point is also available externally and may be employed to control the gain of, or to compensate, the error amplifier, or to provide additional control to the regulator.

TYPICAL APPLICATION DATA

oscillator

The oscillator controls the frequency of the SG1524 and is programmed by RT and CT as shown in Figure 4.

f = 1.15 RT CT

where RT is in kilohms CT is in microfarads f is in kilohertz

Practical values of CT fall between 0.001 and 0.1 microfarad. Practical values of RT fall between 1.8 and 100 kilohms. This results in a frequency range typically from 140 hertz to 500 kilohertz.

blanking

The output pulse of the oscillator is used as a blanking pulse at the output. This pulse width is controlled by the value of CT as shown in Figure 5. If small values of CT are required, the oscillator output pulse width may still be maintained by applying a shunt capacitance from pin 3 to ground.

synchronous operation

When an external clock is desired, a clock pulse of approximately 3 volts can be applied directly to the oscillator output terminal. The impedance to ground at this point is approximately 2 kilohms. In this configuration RT CT must be selected for a clock period slightly greater than that of the external clock.

If two or more SG1524 regulators are to be operated synchronously, all oscillator output terminals should be tied together. The oscillator programmed for the minimum clock period will be the master from which all the other SG1524's operate. In this application, the CT RT values of the slaved regulators must be set for a period approximately 10% longer than that of the master regulator. In addition, CT (master) = 2 CT (slave) to ensure that the master output pulse, which occurs first, has a wider pulse width and will subsequently reset the slave regulators.

[†]Throughout these discussions, references to SG 1524 apply also to SG 2524 and SG 3524.

TYPES SG1524, SG2524, SG3524 REGULATING PULSE WIDTH MODULATORS

TYPICAL APPLICATION DATA

voltage reference

The 5-volt internal reference may be employed by use of an external resistor divider network to establish a reference within the error amplifiers common-mode voltage range (1.8 to 3.4 volts) as shown in Figure 6, or an external reference may be applied directly to the error amplifier. For operation from a fixed 5-volt supply, the internal reference may be bypassed by applying the input voltage to both the VCC and VREF terminals. In this configuration, however, the input voltage is limited to a maximum of 6 volts.

FIGURE 6-ERROR AMPLIFIER BIAS CIRCUITS

error amplifier

The error amplifier is a differential-input transconductance amplifier. The output is available for dc gain control or ac phase compensation. The compensation node (pin 9) is a high-impedance node (R_L = 5 megohms). The gain of the amplifier is Ay = $(0.002 \, \Omega^{-1})$ R_L and can easily be reduced from a nominal 10,000 by an external shunt resistance from pin 9 to ground. Refer to Figure 3 for data.

compensation

Pin 9, as discussed above, is made available for compensation. Since most output filters will introduce one or more additional poles at frequencies below 200 hertz, which is the pole of the uncompensated amplifier, introduction of a zero to cancel one of the output filter poles is desirable. This can best be accomplished with a series RC circuit from pin 9 to ground in the range of 50 kilohms and 0.001 microfarads. Other frequencies can be canceled by use of the formula $f \approx 1/RC$.

shut down circuitry

Pin 9 can also be employed to introduce external control of the SG1524. Any circuit that can sink 200 microamperes can pull the compensation terminal to ground and thus disable the SG1524.

In addition to constant-current limiting, pins 4 and 5 may also be used in transformer-coupled circuits to sense primary current and shorten an output pulse should transformer saturation occur. Pin 5 may also be grounded to convert pin 4 into an additional shutdown terminal.

TYPICAL APPLICATION DATA

current limiting

A current-limiting sense amplifier is provided in the SG1524. The current-limiting sense amplifier exhibits a threshold of 200 millivolts and must be applied in the ground line since the voltage range of the inputs is limited to ± 1 volt to ± 0.7 volt. Caution should be taken to ensure the ± 0.7 -volt limit is not exceeded by either input, otherwise damage to the device may result.

Fold-back current limiting can be provided with the network shown in Figure 7. The current-limit schematic is shown in Figure 8.

FIGURE 7-FOLDBACK CURRENT LIMITING FOR SHORTED OUTPUT CONDITIONS

FIGURE 8-CURRENT-LIMIT SCHEMATIC

output circuitry

The SG1524 contains two identical n-p-n transistors the collectors and emitters of which are uncommitted. Each transistor has antisaturation circuitry that limits the current through that transistor to a maximum of 100 milliamperes for fast response.

2

2-72

TYPES SG1524, SG2524, SG3524 REGULATING PULSE WIDTH MODULATORS

TYPICAL APPLICATION DATA

general

There are a wide variety of output configurations possible when considering the application of the SG1524 as a voltage regulator control circuit. They can be segregated into three basic categories:

- 1. Capacitor-diode-coupled voltage multipliers
- 2. Inductor-capacitor-implemented single-ended circuits
- 3. Transformer-coupled circuits

Examples of these categories are shown in Figures 9, 10 and 11, respectively. Detailed diagrams of specific applications are shown in Figures 12 through 15.

T +V |N| > |-

FIGURE 9-CAPACITOR-DIODE-COUPLED VOLTAGE-

MULTIPLIER OUTPUT STAGES

FIGURE 10-SINGLE-ENDED INDUCTOR CIRCUIT

PUSH PULL

FLYBACK

FIGURE 11-TRANSFORMER-COUPLED OUTPUTS

TYPICAL APPLICATION DATA

FIGURE 12-CAPACITOR-DIODE OUTPUT CIRCUIT

FIGURE 13 - FLYBACK CONVERTER CIRCUIT

TYPES SG1524, SG2524, SG3524 REGULATING PULSE WIDTH MODULATORS

TYPICAL APPLICATION DATA

FIGURE 14-SINGLE-ENDED LC CIRCUIT

FIGURE 15-PUSH-PULL TRANSFORMER-COUPLED CIRCUIT

THERMAL INFORMATION

J PACKAGE FREE-AIR TEMPERATURE DISSIPATION DERATING CURVE

FIGURE 16

FIGURE 17

TEXAS INSTRUMENTS

D2527, APRIL 1979-REVISED JANUARY 1983

- Output Voltage Range Adjustable from 1.2 V to 32 V
- Guaranteed Output Current Capability of
- Input Regulation Typically 0.01% Per Input-Volt Change
- Output Regulation Typically 0.5%
- Ripple Rejection Typically 80 dB

terminal assignments

description

The TL317 is an adjustable 3-terminal positive-voltage regulator capable of supplying 100 milliamperes over an output-voltage range of 1.2 volts to 32 volts. It is exceptionally easy to use and requires only two external resistors to set the output voltage. Both input and output regulation are better than standard fixed regulators. The device is packaged in standard packages that are easily mounted and handled.

In addition to higher performance than fixed regulators, this regulator offers full overload protection available only in integrated circuits. Included on the chip are current limit and thermal overload protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected. Normally, no capacitors are needed unless the device is situated far from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection, which is difficult to achieve with standard 3-terminal regulators.

Besides replacing fixed regulators, the regulator is useful in a wide variety of other applications. Since the regulator is floating and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input-to-output differential is not exceeded. Its primary application is that of a programmable output regulator, but by connecting a fixed resistor between the adjustment terminal and the output terminal, this device can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground, which programs the output to 1.2 volts where most loads draw little current.

The TL317M is characterized for operation over the full military temperature range from -55°C to 125°C. The TL317C is characterized for operation from 0°C to 125°C.

Copyright © 1983 by Texas Instruments Incorporated

schematic

absolute maximum ratings over operation temperature range (unless otherwise noted)

Input-to-output differential voltage, V _I - V _O	5 V
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 1): JG package 1050 m	٦W
LP package 775 m	ηW
Continuous total dissipation at (or below) 25 °C case temperature (see Note 1)	ιW
Operating free-air, case, or virtual junction temperature range: TL317M55°C to 150	°C
TL317C 0°C to 150	°C
Storage temperature range65°C to 150°	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds, JG package	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds, LP package	°C

NOTE 1: For operation above 25°C free-air or case temperature, refer to Dissipation Denating Table.

DISSIPATION DERATING TABLE

	REFERENCE	POWER	DERATING	ABOVE
PACKAGE	POINT	RATING	FACTOR	(TA OR TC)
	Free-air	1050 mW	8.4 mW/°C	25° C
1G	Case	1600 mW	38.4 mW/°C	108°C
	Free-air	775 mW	6.2 mW/°C	25° C
LP	Case	1600 mW	28.6 mW/°C	94° C

recommended operating conditions

	TL	317M	TL317C		UNIT
	MIN	MIN MAX	MIN	MAX	ON
Output current, 10	2.5	100	2.5	100	mA
Operating virtual junction temperature, TJ	- 55	125	0	125	°C

TEXAS INSTRUMENTS

electrical characteristics over recommended ranges of operating virtual junction temperature (unless otherwise noted)

PARAMETER	TEST CON	DITIONS†	MIN	TYP	MAX	UNIT
Input regulation (see Note 2)	$V_I - V_O = 3 V \text{ to } 35 V$,	T _J = 25°C		0.01	0.02	%/V
input regulation (see Note 2)	See Note 3	IO = 2.5 mA to 100 mA		0.02	0.05	20, 4
	V _O = 10 V,	f = 120 Hz		65		
Ripple rejection	V _O = 10 V, f = 120 Hz, 10-μF capacitor between ADJ and ground		66	80		dB
	I _O = 2.5 mA to 100 mA, T _J = 25°C,	V ₀ < 5 V		25		mV
Output regulation	See Note 3	V _O > 5 V	0.5			%
	I _O = 2.5 mA to 100 mA,	V _O < 5 V		50		mV
	See Note 3	Vo > 5 V		1		%
Output voltage change with temperature	T _J = 0°C to 125°C			1		%
Output voltage long-term drift (see Note 4)	After 1000 h at T _J = 125°	C and V _I – V _O = 35 V		0.3	1	%
Output noise voltage	f = 10 Hz to 10 kHz,	Tj = 25°C		0.003		%
Minimum output current to maintain regulation	V _I - V _O = 35 V			1.5	2.5	mA
Peak output current	V ₁ - V ₀ < 35 V		100	200		mA
Adjustment-terminal current				50	100	μА
Change in adjustment-terminal current	V _I - V _O = 2.5 V to 35 V,	I _O = 2.5 mA to 100 mA		0.2	5	μА
Reference voltage (output to ADJ)	$V_1 - V_0 = 3 \text{ V to } 35 \text{ V},$ P \leq rated dissipation	I _O = 2.5 mA to 100 mA,	1.2	1.25	1.3	v

†Unless otherwise noted, these specifications apply for the following test conditions: $V_1 - V_0 = 5$ V and $t_0 = 2.5$ mA.

- NOTES: 2. Input regulation is expressed here as the percentage change in output voltage per 1-volt change at the input,
 - Input regulation and output regulation are measured using pulse techniques (t_W ≤ 10 μs, duty cycle ≤ 5%) to limit changes in average internal dissipation. Output voltage changes due to large changes in internal dissipation must be taken into account separately.
 - 4. Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a guarantee or warranty. It is an engineering estimate of the average drift to be expected from lot to lot.

TYPICAL APPLICATION DATA

†D1 discharges C2 if output is shorted to ground.

FIGURE 1-ADJUSTABLE VOLTAGE REGULATOR

FIGURE 2-0-V to 30-V REGULATOR CIRCUIT

FIGURE 3-ADJUSTABLE REGULATOR
CIRCUIT WITH IMPROVED
RIPPLE REJECTION

- NOTES: A. Use of an input bypass capacitor is recommended if regulator is far from filter capacitors.
 - B. Use of an output capacitor improves transient response but is optional.
 - C. Vrof equals the difference between the output and adjustment terminal voltages.
 - D. Output voltage is calculated from the equation: $V_0 = V_{ref} \left(1 + \frac{R2}{R1} \right)$

TYPICAL APPLICATION DATA

FIGURE 4-PRECISION CURRENT LIMITER CIRCUIT

FIGURE 6-SLOW-TURN-ON 15-V REGULATOR CIRCUIT

‡This resistor sets peak current (100 mA for 6 Ω).

FIGURE 8-CURRENT-LIMITED 6-V CHARGER

FIGURE 5-TRACKING PREREGULATOR CIRCUIT

FIGURE 7-50-mA CONSTANT-CURRENT BATTERY CHARGER CIRCUIT

¶Minimum load current is 30 mA, §Optional capacitor improves ripple rejection

FIGURE 9-HIGH-CURRENT ADJUSTABLE REGULATOR

TYPES TL4301, TL430C ADJUSTABLE SHUNT REGULATORS

D2165, JUNE 1976-REVISED DECEMBER 1982

- Temperature Compensated
- Programmable Output Voltage
- Low Output Resistance
- Low Output Noise
- Sink Capability to 100 mA

description

The TL430 is a three-terminal adjustable shunt regulator featuring excellent temperature stability, wide operating current range, and low output noise. The output voltage may be set by two external resistors to any desired value between 3 volts and 30 volts. The TL430 can replace zener diodes in many applications providing improved performance.

The TL430I is characterized for operation from -25°C to 85°C, and the TL430C is characterized for operating from 0°C to 70°C.

SILECT PACKAGE (TOP VIEW) CATHODE ANODE REF

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Regulator voltage (see Note 1)	30 V
Continuous regulator current	150 mA
Continuous dissipation at (or below) 25 °C free-air temperature (see Note 2)	775 mW
Operating free-air temperature range: TL430!	40 °C to 85 °C
TL430C	0°C to 70°C
Storage temperature range	65 °C to 150 °C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

recommended operating conditions

	IAHHA	MAX	UNII
Regulator Voltage, VZ	v_{ref}	30	V
Regulator current, Iz	2	100	mΑ

NOTES: 1.

- 1. All voltage values are with respect to the anode terminal.
- 2. For operation above 25 °C free-air temperature, refer to Dissipation Denating Curves, Figure 5.

Copyright © 1982 by Texas Instruments Incorporated

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

PARAMETER		TEST	TEST CONDITIONS		TEST CONDITIONS TL4301						UNIT	
	FANAMETEN	FIGURE	1EST COND	TEST CONDITIONS			MIN TYP MAX			MAX] ONII	
V _{ref}	Reference input voltage	1	Vz = V _{ref} ,	Iz = 10 mA	2.6	2.75	2.9	2.5	2.75	3	V	
∝Vref	Temperature coefficient of reference input voltage	1	Vz = V _{ref} , T _A = 0°C to 70°C	IZ = 10 mA,		+120	+200		+120		ppm/°C	
I _{ref}	Reference input current	2	lz = 10 mA, R2 = ∞	R1 = 10 kΩ,		3	10		3	10	μΑ	
IZK	Regulator current near lower knee of regulation range	1	Vz = V _{ref}			0.5	2		0.5	2	mA	
1	Regulator current at maximum	1	VZ = Vref		50			60			mA	
^I ZM	limit of regulation range	2	Vz = 5 V to 30 V,	See Note 3	100			100			1111	
rz	Differential regulator resistance (see Note 4)	1	V _Z = V _{ref} , ΔI _Z = (52-2) mA			1.5	3		1.5	3	Ω	
	V _{nz} Noise voltage 2		ĺ	VZ=3V		50			50			
Vnz		2	f = 0.1 Hz to 10 Hz	Vz = 12 V		200			200		μ∨	
			Vz = 30 V	6			650					

NOTES: 3. The average power dissipation, Vz • Iz • duty cycle, must not exceed the maximum continuous rating in any 10-ms interval.

4. The regulator resistance for $V_Z > V_{ref}$, r_z' , is given by:

$$r_z' = r_z \left(1 + \frac{H1}{H2}\right)$$

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-TEST CIRCUIT FOR VZ = Vref

FIGURE 2-TEST CIRCUIT FOR VZ > Vraf

TYPICAL CHARACTERISTICS

f-Frequency-Hz

THERMAL INFORMATION

FIGURE 5

TEXAS INSTRUMENTS

INCORPORATED

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPICAL APPLICATION DATA

FIGURE 6-SHUNT REGULATOR

FIGURE 7-SERIES REGULATOR

FIGURE 8 - CURRENT LIMITER

FIGURE 9 – OUTPUT CONTROL OF A
THREE-THERMAL
FIXED REGULATOR

FIGURE 10 - HIGHER-CURRENT APPLICATIONS

FIGURE 11-CROW BAR

FIGURE 12 – OVER-VOLTAGE/UNDER-VOLTAGE
PROTECTION CIRCUIT

FIGURE 13-VCC MONITOR

INCORPORATED

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPES TL431M, TL431I, TL431C ADJUSTABLE PRECISION SHUNT REGULATORS

D2410, JULY 1978-REVISED DECEMBER 1982

- Equivalent Full-Range Temperature Coefficient . . . 30 ppm/°C Typ
- Temperature Compensated for Operation Over Full Rated Operating Temperature Range
- Adjustable Output Voltage

- Fast Turn-On Response
- Sink Current Capability . . . 1 mA to 100 mA
- Low (0.2-Ω Typ) Dynamic Output Impedance
- Low Output Noise Voltage

description

The TL431 is a three-terminal adjustable regulator series with guaranteed thermal stability over applicable temperature ranges. The output voltage may be set to any value between V_{ref} (approximately 2.5 volts) and 36 volts with two external resistors (see Figure 16). These devices have a typical dynamic output impedance of 0.2 Ω . Active output circuitry provides a very sharp turn-on characteristic, making these devices excellent replacements for zener diodes in many applications.

The TL431M is characterized for operation over the full military temperature range of -55° C to 125° C. The TL431I is characterized for operation from -40° C to 85° C, and the TL431C from 0° C to 70° C.

terminal assignments

TL431M JG DUAL-IN-LINE PACKAGE	TL431I, TL431C LP SILECT PACKAGE	TL431I, TL431C P DUAL-IN-LINE PACKAGE
(TOP VIEW)	(TOP VIEW)	(TOP VIEW)
REF NC A NC	() CATHODE ANODE	REF NC A NC
K NC NC NC	ANODE REF	K NC NC NC
	BAK	

NC-No internal connection

schematic

functional block diagram

Copyright © 1982 by Texas Instruments Incorporated

TYPES TL431M, TL431I, TL431C ADJUSTABLE PRECISION SHUNT REGULATORS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Cathode voltage (see Note 1)	
Reference input current range	
Continuous power dissipation at (or below) 25°C free-air temperature (see Note 2): JG package 1050 mW	1
LP package 775 mW	r
P package 1000 mW	
Operating free-air temperature range: TL431C	;
TL431I	;
TL431M	
Storage temperature range	;
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package	;
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: LP or P package	;

NOTES: 1. Voltage values are with respect to the anode terminal unless otherwise noted.

2. For operation above 25°C free-air temperature, refer to the Dissipation Denating Table.

DISSIPATION DERATING TABLE

D. 0" . 0 C	POWER	DERATING	ABOVE
PACKAGE	RATING	FACTOR	TA
JG	1050 mW	8.4 mW/°C	25°C
LP	776 mW	6.2 mW/°C	25°C
P	1000 mW	8.0 mW/°C	25°C

recommended operating conditions

 Cathode voltage, VKA
 VKA
 VKA
 Vref
 36
 V

 Cathode current, IK, (for regulation)
 100
 mA

TEXAS INSTRUMENTS

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

PARAMETER		TEST	TEST		TL431M			TL4311		TL431C					
	FARAMETER	CIRCUIT		TEST CONDITIONS		MIN TYP MAX		MIN TYP MAX			MIN TYP MAX			UNIT	
V _{ref}	Reference input voltage	1	VKA = Vref	IK = 10 mA	2440	2495	2550	2440	2495	2550	2440	2495	2550	mV	
V _{ref(dev)}	Deviation of reference input voltage over full temperature range‡	1	VKA = Vref	IK = 10 mA, TA = full range		22	44		15	30		8	17	mV	
ΔV _{ref}	Ratio of change in reference input	2	I _K = 10 mA	ΔVKA = 10 V - V _{ref}		-1.4	-2.7		-1.4	-2.7		-1.4	-2.7	mV	
ΔVKA	voltage to the change in cathode voltage	- 4	K - 10 mA	ΔV _{KA} = 36 V - 10 V		-1	-2		-1	-2		-1	-2	V	
Iref	Reference input current	2	IK = 10 mA,	R1 = 10 kΩ, R2 = ∞		2	4		2	4		2	4	μА	
I _{ref(dev)}	Deviation of reference input current over full temperature range ‡	2	IK = 10 mA, TA = full ran	R1 = 10 k Ω , R2 = - ge [†]		1	3		0.8	2.5		0.4	1.2	μА	
I _{min}	Minimum cathode current for regulation	1	VKA " Vref			0.4	1		0.4	1		0.4	1	mA	
loff	Off-state cathode current	3	VKA = 36 V	, V _{ref} = 0		0.1	1		0.1	1		0.1	1	μΑ	
Izkal	Dynamic impedance §	1	VKA = V _{ref}	I _K = 1 mA to 100 mA		0.2	0.5		0.2	0.5		0.2	0.5	Ω	

Full temperature range is -55°C to 125°C for the TL431M, -40°C to 85°C for the TL431I, and 0°C to 70°C for the TL431C.

‡The deviation parameters V_{ref(dev)} and I_{ref(dev)} are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The equivalent full-range temperature coefficient of the reference input voltage, aVref. is defined as:

$$\left| aV_{ref} \right| \left(\frac{ppm}{c} \right) = \frac{\left(\frac{V_{ref(dev)}}{V_{ref} \otimes 25^{\circ}C} \right) \times 10^6}{\Delta T_A}$$

ADJUSTABLE

PRECISION

REGULATORS

where ΔT_A is the rated operating free-air temperature range of the device.

aV_{ref} can be positive or negative depending on whether minimum V_{ref} or maximum V_{ref}, respectively, occurs at the lower temperature (see Figure 8).

Example: Max V_{ref} = 2500 mV @ 30°C, Min V_{ref} = 2492 mV @ 0°C, V_{ref} = 2495 mV @ 25°C, ΔT_A = 70°C for TL431C

$$\left| \frac{\text{a WV}}{\text{c}} \right| = \frac{\left(\frac{\text{8 mV}}{\text{2495 mV}} \right) \times 10^{\circ}}{70 \text{ C}} = 46 \text{ ppm/}^{\circ} \text{C}$$

Because minimum V_{rof} occurs at the lower temperature, the coefficient is positive,

§ The dynamic impedance is defined as:

$$\left|z_{k,a}\right| = \frac{\Delta V_{K,\Delta}}{\Delta I_{K}}$$

When the device is operated with two external resistors (see Figure 2), the total dynamic impedance of the circuit is given by:

$$\left|z'\right| = \frac{\Delta V}{\Delta I} \approx \left|z_{ka}\right| \left(1 + \frac{R1}{R2}\right)$$

TYPES TL431M, TL431I, TL431C ADJUSTABLE PRECISION SHUNT REGULATORS

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-TEST CIRCUIT FOR VKA = Vref

FIGURE 2-TEST CIRCUIT FOR $V_{KA} > V_{rof}$

FIGURE 3-TEST CIRCUIT FOR Ioff

TYPICAL CHARACTERISTICS

FIGURE 4

FIGURE 6

FIGURE 5

FIGURE 7

INCORPORATED

FIGURE 8

FIGURE 9

CHANGE IN REFERENCE INPUT VOLTAGE

FIGURE 10

FIGURE 11

Data is for devices having the indicated value of V_{ref} at $I_K = 10$ mA, $T_A = 25^{\circ}$ C.

TEXAS INSTRUMENTS

INCORPORATED

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

FIGURE 12

TEST CIRCUIT FOR DYNAMIC IMPEDANCE

FIGURE 13

TEST CIRCUIT FOR VOLTAGE AMPLIFICATION

FIGURE 14

TEST CIRCUIT FOR PULSE RESPONSE

TEXAS INSTRUMENTS

INCORPORATED

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPES TL431M, TL431I, TL431C ADJUSTABLE PRECISION SHUNT REGULATORS

TEST CIRCUIT FOR CURVE A BELOW

TEST CIRCUIT FOR CURVES B, C, AND D BELOW

150 Ω

The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to establish the initial V_{KA} and I_K conditions with C_L = 0. V+ and C_L were then adjusted to determine the ranges of stability.

TYPICAL APPLICATIONS Verifically Volume $V_{\text{out}} = V_{\text{out}} = V$

FIGURE 16-SHUNT REGULATOR

FIGURE 17-SINGLE-SUPPLY COMPARATOR WITH TEMPERATURE-COMPENSATED THRESHOLD FIGURE 18—SERIES REGULATOR

TEXAS INSTRUMENTS

INCORPORATED

FIGURE 19- OUTPUT CONTROL OF A THREE-TERMINAL FIXED REGULATOR

FIGURE 20-HIGHER-CURRENT SHUNT REGULATOR

FIGURE 21-CROW BAR

FIGURE 22-OVER-VOLTAGE/UNDER-VOLTAGE PROTECTION CIRCUIT

FIGURE 23-VOLTAGE MONITOR

FIGURE 25—CURRENT LIMITER OR CURRENT SOURCE

Vref

R_{CI}

FIGURE 26-CONSTANT-CURRENT SINK

INCORPORATED

POST DEFICE BOX 225012 . DALLAS, TEXAS 75265

TYPES TL493, TL494, TL495 PULSE-WIDTH-MODULATION CONTROL CIRCUITS

D2535, JANUARY 1983

- Complete PWM Power Control Circuitry
- Uncommitted Outputs for 200-mA Sink or Source Current
- Output Control Selects Single-Ended or Push-Pull Operation
- Internal Circuitry Prohibits Double Pulse at Either Output
- Variable Dead-Time Provides Control Over Total Range
- Internal Regulator Provides a Stable 5-V Reference Supply Trimmed to 1%
- Circuit Architecture Allows Easy Synchronization
- TL493 Has Output Current-Limit Sensing
- TL495 Has On-Chip 39-V Zener and External Control of Output Steering

description

The TL493, TL494, and TL495 each incorporate on a single monolithic chip all the functions required in the construction of a pulse-width-modulation control circuit. Designed primarily for power supply control, these devices offer the systems engineer the flexibility to tailor the power supply control circuitry to his application.

The TL493 contains an error amplifier, current-limiting amplifier, an on-chip adjustable oscillator, a dead-time control comparator, pulse-steering control flip-flop, a 5-volt, 1%-precision regulator, and output-control circuits.

The error amplifier exhibits a common-mode voltage range from -0.3 volts to $V_{CC}-2$ volts. The current-limit amplifier exhibits a common-mode voltage range from -0.3 volts to 3 volts with an offset voltage of approximately 80 millivolts in series with the inverting input to ease circuit design requirements. The dead-time control comparator has a fixed offset that provides approximately 5% dead time when externally altered. The on-chip oscillator may be bypassed by terminating R_T (pin 6) to the reference output and providing a sawtooth input to C_T (pin 5), or it may be used to drive the common circuits in synchronous multiple-rail power supplies.

TL493C . . . J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

TL494M . . . J TL494I, TL494C . . . J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

TL495I, TL495C . . . J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

DEVICE TYPES, SUFFIX VERSIONS, AND PACKAGES

	TL493	TL494	TL495
TL49-M	٠	J	•
TL49-1	•	J,N	J,N
TL49-C	J,N	J,N	J,N

^{*}These combinations are not defined by this data sheet.

FUNCTION TABLE

INP	UTS	
OUTPUT CONTROL	STEERING INPUT (TL495 only)	OUTPUT FUNCTION
V _I ≤ 0.4 V	Open	Single-ended or parallel output
V _I ≥ 2.4 V	Open	Normal push-pull operation
V _j ≥ 2.4 V	V _I ≤ 0.4 V	PWM Output at Q1
V _I ≥ 2.4 V	V _I ≥ 2.4 V	PWM Output at Q2

Copyright © 1883 by Toxas Instruments Incorporated

description (continued)

The uncommitted output transistors provide either common-emitter or emitter-follower output capability. Each device provides for push-pull or single-ended output operation, which may be selected through the output-control function. The architecture of these devices prohibits the possibility of either output being pulsed twice during push-pull operation.

The TL493 and TL494 are similar except that an additional error amplifier is included in the TL494 instead of a current-limiting amplifier. The TL495 provides the identical functions found in the TL494. In addition, it contains an on-chip 39-volt zener diode for high-voltage applications where V_{CC} is greater than 40 volts, and an output-steering control that overrides the internal control of the pulse-steering flip-flop.

The TL494M is characterized for operation over the full military temperature range from -55°C to 125°C. The TL494I and TL495I are characterized for operation from -25°C to 85°C. The TL493C, TL494C, and TL495C are characterized for operation from 0°C to 70°C.

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	TL494M	TL494I TL495I	TL493C TL494C TL495C	UNIT
Supply voltage, VCC (see Note 1)	41	41	41	V
Amplifier input voltages	V _{CC} +0.3	VCC+0.3	V _{CC} +0.3	V
Collector output voltage	41	41	41	V
Collector output current	250	250	250	mA
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2)	1000	1000	1000	mW
Operating free-air temperature range	-55 to 125	-25 to 85	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package	300	300	300	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: N package		260	260	°C

NOTES: 1. All valtage values, except differential voltages, are with respect to the network ground terminal.

For operation above 25 °C free-air temperature, refer to Dissipation Denating Table. In the J package, TL494M chips are alloy-mounted; TL493C, TL494I, TL494C, TL495I, and TL495I chips are glass mounted.

DISSIPATION DERATING TABLE

PACKAGE	POWER RATING	DERATING FACTOR	ABOVE T _A
J (Alloy-Mounted Chip)	1000 mW	11.0 mW/°C	59°C
J (Glass-Mounted Chip)	1000 mW	8.2 mW/°C	28°C
N	1000 mW	9.2 mW	41°C

recommended operating conditions

	TL494M			TL494I TL495I	7	UNIT	
	MIN	MAX	MIN	MAX	MIN	MAX	
Supply voltage, VCC	7	40	7	40	7	40	V
Amplifier input voltages, V _I	-0.3	V _{CC} -2	-0.3	V _{CC} -2	-0.3	V _{CC} -2	V
Collector output voltage, VO		40		40		40	V
Collector output current (each transistor)		200		200		200	mA
Current into feedback terminal		0.3		0.3		0.3	mA
Timing capacitor, CT	0.47	10 000	0.47	10 000	0.47	10 000	nF
Timing resistor, RT	1.8	500	1.8	500	1.8	500	kΩ
Oscillator frequency	1	300	1	300	1	300	kHz
Operating free-air temperature, TA	- 55	125	- 25	85	0	70	°C

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 15 V, f = 10 kHz (unless otherwise noted)

reference section

PARAMETER	TEST CONDITIONS†		TL494N	1		TL4930 941, TL4 951, TL4	194C	UNIT
		MIN	TYP‡	MAX	MIN	TYP [‡]	MAX	
Output voltage (Vref)	I _O = 1 mA	4.75	5	5.25	4.75	5	5.25	V
Input regulation	V _{CC} = 7 V to 40 V		2	25		2	25	mV
Output regulation	I _O = 1 to 10 mA		1	15		1	15	mV
Output voltage change with temperature	ΔT _A = MIN to MAX		0.2	1		0.2	1	%
Short-circuit output current§	Vref = 0	10	35	50		35		mA

oscillator section

PARAMETER	TEST CONDITIONS		TL494N		TL4	TL4930 941, TL4 951, TL4	94C	UNIT
		MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	
Frequency	$C_T = 0.01 \ \mu F$, $R_T = 12 \ k\Omega$		10			10		kHz
Standard deviation of frequency ¶	All values of VCC, CT, RT, TA constant		10			10		%
Frequency change with voltage	V _{CC} = 7 V to 40 V, T _A = 25°C		0.1			0.1		%
Frequency change with temperature	$C_T = 0.01 \mu F$, $R_T = 12 k\Omega$, $\Delta T_A = MIN \text{ to MAX}$			4			2	%

amplifier sections (see figure 1)

PARAMET	ER	TEST COND	DITIONS	MIN	TYP [‡]	MAX	UNIT
	Error				2	10	
Input offset voltage	current-limit (TL493 only)	$V_{O \text{ (pin 3)}} = 2.5 \text{ V}$			80		mV
Input offset current		V _{O (pin 3)} = 2.5 V			25	250	пА
Input bias current		VO (pin 3) = 2.5 V			0.2	1	μА
Common-mode input	V _C C = 7 V to 40 V		-0.3 to V _{CC} -2	2		V	
	Current-limit (TL493 only)	V(C =) V 15 40 V		-0.3 to			
	Error			70	95		
Open-loop voltage amplification	Current-limit (TL493 only)	$\Delta V_{O} = 3 V_{i}$	$V_0 = 0.5 \text{ V to } 3.5 \text{ V}$		90		dB
Unity-gain bandwidth					800		kHz
Common-mode	Error			65	80		
rejection ratio	Current-limit (TL493 only)	V _{CC} = 40 V,	TA = 25°C		70		dB
Output sink current (pin 3)	$V_{1D} = -15 \text{ mV to } -5 \text{ V},$	$V_{(pin 3)} = 0.5 V$	0.3	0.7		mA
Output source curren	t (pin 3)	$V_{ID} = 15 \text{ mV to 5 V}$	$V_{(pin 3)} = 3.5 V$	- 2			mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

*All typical values except for parameter changes with temperature are at TA = 25 °C.

Duration of the short-circuit should not exceed one second.

TEXAS INSTRUMENTS

 $[\]P$ Standard deviation is a measure of the statistical distribution about the mean as derived from the formula σ

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 15 V, f = 10 kHz (unless otherwise noted)

output section

PARA	PARAMETER		TEST CONDITIONS		TL494N	1		TL4930 941, TL4 951, TL4	194C	UNIT
			MIN	TYP*	MAX	MIN	TYP*	MAX		
Collector off-state	current	V _{CE} = 40 V,	V _{CC} = 40 V		2	100		2	100	μΑ
Emitter off-state c	urrent	$V_{CC} = V_{C} = 40$	V, V _E = 0			- 150			- 100	μA
Collector-emitter	Common-emitter	VE = 0.	I _C = 200 mA		1.1	1.5		1.1	1.3	V
saturation voltage	Emitter-follower	V _C = 15 V,	I _E = -200 mA		1.5	2.5		1.5	2.5	V
Output control inp	ut current	$V_{!} = V_{ref}$				3.5			3.5	mA

dead-time control-section (see figure 2)

PARAMETER	TEST CONDITIONS	MI	N TYP‡	MAX	UNIT
Input bias current (pin 4)	V _I = 0 to 5.25 V		- 2	- 10	μА
Maximum duty cycle, each output	$V_1 (pin 4) = 0$	4	5		%
lenut theophald valtage (nin 4)	Zero duty cycle		3	3.3	V
Input threshold voltage (pin 4)	Maximum duty cycle)		1 *

pwm comparator section (see figure 2)

PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
Input threshold voltage (pin 3)	Zero duty cycle		4	4.5	V
Input sink current (pin 3)	$V_{(pin 3)} = 0.7 V$	0.3	0.7		mA

steering control (TL495 only)

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
Included the second	V _I = 0.4 V		- 200	μА
Input current	V _I = 2.4 V		200	110

zener-diode circuit (TL495 only)

PARAMETER	TEST CONDITIONS	MIN TYP* MAX	UNIT
Breakdown voltage	V _{CC} = 41 V, I _Z = 2 mA	39	V
Sink current	V _{I(pin 15)} = 1 V	0.3	mA

total device

PARAMETER	TEST CONDITIONS	MIN	TYP [‡]	MAX	UNIT	
Standby supply current	Pin 6 at V _{ref} ,	V _{CC} = 15 V		6	10	mA
Standby supply current	All other inputs and outputs open	$V_{CC} = 40 \text{ V}$	1	9	15	l IIIA
Average supply current	V _(pin 4) = 2 V,	See Figures 1		7.5		mA

switching characteristics, Тд = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP [‡]	MAX	UNIT
Output voltage rise time	Common-emitter configuration,		100	200	ns
Output voltage fall time	See Figure 3		25	100	กร
Output voltage rise time	Emitter-follower configuration,		100	200	ns
Output voltage fall time	See Figure 4		40	100	пѕ

[‡]All typical values except for temperature coefficients are at T_A = 25 °C.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - AMPLIFIER CHARACTERISTICS

FIGURE 2 - DEAD-TIME AND FEEDBACK CONTROL

TEXAS INSTRUMENTS

INCORPORATED

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

OUTPUT VOLTAGE WAVEFORM

FIGURE 3-COMMON-EMITTER CONFIGURATION

TEST CIRCUIT

OUTPUT VOLTAGE WAVEFORM

FIGURE 4-EMITTER-FOLLOWER CONFIGURATION

2

TYPICAL CHARACTERISTICS

FIGURE 5

AMPLIFIER VOLTAGE AMPLIFICATION

†Frequency variation (Δf) is the change in oscillator frequency that occurs over the full temperature range.

FIGURE 6

LINEAR INTEGRATED CIRCUITS

TYPE TL496C 9-VOLT POWER-SUPPLY CONTROLLER

D2486, AUGUST 1978-REVISED DECEMBER 1982

- Internal Step-Up Switching Regulator
- Fixed 9-Volt Output
- Charges Battery Source During Transformer-Coupled-Input Operation
- Minimum External Components Required (1 Inductor, 1 Capacitor, 1 Diode)
- 1- or 2-Cell-Input Operation

JG OR P
DUAL-IN-LINE PACKAGE
(TOP VIEW)

FEEDB/	ACK [1]	
1	[2C[]2	7 GND
INPUT <	10□3	6∐sw
į	7 🛮 4	_5∏GND

Pins 5 and 7 are connected together internally.

description

The TL496 power supply control circuit is designed to provide a 9-volt regulated supply from a variety of input sources. Operable from a 1- or 2-cell-battery input, the TL496 performs as a switching regulator with the addition of a single inductor and filter capacitor. When ac coupled with a step-down transformer, the TL496 operates as a series regulator to maintain the regulated output voltage and, with the addition of a single catch diode, time shares to recharge the input batteries.

The design of the TL496 allows minimal supply current drain during stand-by operation (125 μ A typical). With most battery sources this allows a constant bias to be maintained on the power supply. This makes power instantly available to the system thus eliminating power-up sequencing problems.

functional block diagram

NOTE 1: Pins 5 and 7, though connected together internally, must both be terminated to ground to ensure proper circuit operation.

Copyright © 1982 by Texas Instruments Incorporated

absolute maximum ratings

Input voltage:	
Pin 2	
Pin 3	
Pin 4	
Output voltage (Pin 6)	
Diode reverse voltage (Pin 8)	
Switch current (Pin 6)	
Diode current (Pin 8)	
Operating free-air temperature range	

electrical characteristics at 25°C free-air temperature

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

series regulator section (input is pin 4)

Storage temperature range

PARAMETER	TEST CONDITIONS					MAX	UNIT
Dropout voltage	V1 = 5 V,	lo = -50 mA			1.5	2	V
Regulated output voltage	V1 = 20 V			9.5	10.1	11.2	i
	V1 - 20 V		IO = -80 mA	9.0	10.0	11.0	
	V ₁ = 20 V,		IO = -50 µA	8.5	9.0	9.7	٧
	Pin 1 shorted to pin	n 8	Io = -80 mA	6.7	8.6	9.5	
Standby current (pin 4)	V ₁ = 20 V,	Pin 8 at 12 V				400	μА
Reverse current thru pin 4	V _I = −1.5 V,	1 mA into Pin 8		T		-25	μА

output switch

PARAMETER	TEST CONDITIONS	MIN TYP MAX UNIT
VCE(sat) Collector-emitter saturation voltage	800 mA into Pin 6, Pin 2 at 2.25 V	0.35 0.6 V

diode (pin 6 to pin 8)

	PARAMETER	TEST CONDITIONS	MIN TYP MAX UNIT
٧F	Forward voltage	I _F = 1.5 A	1.6 2.5 V
I _R	Reverse current thru pin 6	Pin 6 at 0 V, 1 mA into Pin 8	-20 μA

control section

PARAMETER	т	MIN TY	P MAX	UNIT	
On-state current (pin 2)	Pins 1 and 8 at 0 V,	Pin 2 at 3 V	6	0 100	mA
Standby current (pin 1)	Pin 1 at 8.65 V,	Pins 2 and 6 at 3 V		40	μА
Standby current (pin 2 and 6)	Pin 1 at 8.65 V,	Pins 2 and 6 at 3 V		400	μА
Start-up current (current into pin 6 to initiate cycle)	Pins 1, 2, 6 and 8 at 2.25 V		16		mA

TYPICAL APPLICATION DATA

FIGURE 1-ONE-CELL OPERATION

FIGURE 2-TWO CELL OPERATION

recommended operating conditions

	MIN	MAX	UNIT
Input voltage, one-cell operation (pins 2 and 3 to ground)	1.1	1.5	V
Input voltage, two-cell operation (pin 2 to ground)	2.3	3	V
Input voltage, one-cell or two-cell operation (pin 4 to ground)	V _O +2	20	V

typical electrical characteristics for circuits above

PARAME	TER	ONE-CELL OPERATION (FIGURE 1)	TWO-CELL OPERATION (FIGURE 2)
No load		125 uA	125 uA
Input current	R _L = 120 Ω	525 mA	405 mA
Output voltage	Without T1	7.2 V	8.6 V
	With T1	8.6 V	10 V
Output current capability	/	40 mA	80 mA
Efficiency		66%	66%
Battery life (AA NiCad)	no load	60 days	166 days

The TL496 is designed to operate from either a single-cell or two-cell source. To operate the device from a single cell (1.1 V to 1.5 V) the source must be connected to both inputs 1C and 2C as shown in Figure 1. For two-cell operation (2.3 V to 3.0 V), the input is applied to the 2C input only and the 1C input is left open (see Figure 2).

battery operation

The TL496 operates as a switching regulator from a battery input. The cycle is initiated when a low voltage condition is sensed by the internal feedback (the thresholds at pin 1 and pin 8 are approximately 7.2 and 8.6 volts respectively). An internal latch is set and the output transistor is turned "on." This causes the current in the external inductor (L) to increase linearly until it reaches a peak value of approximately 1 ampere. When the peak current is sensed the internal latch is reset and the output transistor is turned "off." The energy developed in the inductor is then delivered to the output storage capacitor through the blocking diode. The latch remains in the off state until the feedback signal indicates the output voltage is again deficient.

transformer-coupled operation

The TL496 operates on alternate half cycles of the ac input during transformer-coupled operation to, first, sustain the output voltage and, second, recharge the batteries. The TL496 performs like a series regulator to supply charge to the output filter/storage capacitor during the first half cycle. The output voltage of the series regulator is slightly higher voltage than that created by the switching circuit; this maintains the feedback voltage above the switching regulator control circuit threshold. This effectively inhibits the switching control circuitry. During the second half cycle an external diode (1N4001) is used to clamp the negative going end of the transformer secondary to ground thus allowing the positive-going end (end connected to V+ side of battery) to pump charge into the stand-by batteries.

2

2-104

LINEAR INTEGRATED CIRCUITS

TYPES TL497AM, TL497AI, TL497AC SWITCHING VOLTAGE REGULATORS

D2225, JUNE 1976-REVISED JANUARY 1983

- All Monolithic
- High Efficiency . . . 60% or Greater
- Output Current . . . 500 mA
- Input Current Limit Protection
- TTL Compatible Inhibit
- Adjustable Output Voltage
- Input Regulation . . . 0.2% Typ
- Output Regulation . . . 0.4% Typ
- Soft Start-up Capability

description

The TL497A incorporates on a single monolithic chip all the active functions required in the construction of a switching voltage regulator. It can also be used as the control element to drive external components for high-power-output applications. The TL497A was designed for ease of use in step-up, step-down, or voltage inversion applications requiring high efficiency.

TL497AM J TL497AI, TL497AC J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

NC-No internal connection

A block diagram of the TL497A is shown in the above pinout. The TL497A is a fixed-on-time variable-frequency switching voltage regulator control circuit. The on time is programmed by a single external capacitor connected between the frequency control pin and ground. This capacitor, C_T, is charged by an internal constant-current generator to a predetermined threshold. The charging current and the threshold vary proportionally with V_{CC}, thus the on time remains constant over the specified range of input voltage (5 to 12 volts). Typical on times for various values of C_T are as follows:

TIMING CAPACITOR, CT (pF)	200	250	350	400	500	750	1000	1500	2000
ON-TIME (µs)	19	22	26	32	44	56	80	120	180

The output voltage is controlled by an external resistor ladder network (R1 and R2 in Figures 1, 2, and 3) that provides a feedback voltage to the comparator input. This feedback voltage is compared to the reference voltage of 1.2 volts (relative to the substrate pin) by the high-gain comparator. When the output voltage decays below the value required to maintain 1.2 V at the comparator input, the comparator enables the oscillator circuit, which charges and discharges CT as described above. The internal pass transistor is driven on during the charging of CT. The internal transistor may be used directly for switching currents up to 500 milliamperes. Its collector and emitter are uncommitted and it is current driven to allow operation from the positive supply voltage or ground. An internal Schottky diode matched to the current characteristics of the internal transistor is also available for blocking or commutating purposes. The TL497A also has on-chip current-limit circuitry that senses the peak currents in the switching regulator and protects the inductor against saturation and the pass transistor against overstress. The current limit is adjustable and is programmed by a single sense resistor, RCL, connected between pin 14 and pin 13. The current-limit circuitry is activated when 0.7 volt is developed across RCL. External gating is provided by the inhibit input. When the inhibit input is high, the output is turned off.

Simplicity of design is a primary feature of the TL497A. With only six external components (three resistors, two capacitors, and one inductor), the TL497A will operate in numerous voltage conversion applications (step-up, step-down, invert) with as much as 85% of the source power delivered to the load. The TL497A replaces the TL497 in all applications.

The TL497AM is characterized for operation over the full military temperature range of -55°C to 125°C, the TL497AI is characterized for operation from -25°C to 85°C, and the TL497AC from 0°C to 70°C.

Copyright © 1983 by Texas Instruments Incorporated

Input voltage, VCC (see Note 1)
Output voltage
Comparator input voltage
Inhibit input voltage
Diode reverse voltage
Power switch current
Diode forward current
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2)
Operating free-air temperature range: TL497AM
TL497AI
TL497AC
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: N package

NOTES: 1. All voltage values except diode voltages are with respect to network ground terminal.

recommended operating conditions

	MIN	MAX UN	IT
Input voltage, V _I	4.5	12	V
Output voltage: step-up configuration (see Figure 1)		30	V
step-down configuration (see Figure 2)	Vref	V ₁ - 1	V
inverting regulator (see Figure 3)	$-V_{ref}$	-25	V
Power switch current		500 m	١A
Diode forward current		500 n	nΑ

electrical characteristics at specified free-air temperature, V₁ = 6 V (unless otherwise noted)

PARAMETER	TE	ST CONDITIONS	t	TL49	7AM, TI	497AI		TL497	AC .	1.1811					
TAHAMETEH	12.	31 CONDITIONS		MIN	TYPI	MAX	MIN	TYPI	MAX	UNI					
High-level inhibit input voltage	1		25°C	2.5			2.5			V					
Low-level inhibit input voltage			25 C			8.0			0.8	V					
High-level inhibit input current	V(() = 5 V		Full range		0.8	1,5		0.8	1,5	m.A					
Low-level inhibit input current	V(() = 0 V		Full range		5	20		5	10	μА					
Comparator reference voltage	V ₁ = 4.5 V to	6 V	Full range	1.14	1.20	1.26	1.08	1,20	1,32	V					
Comparator input bias current	V = 6 V		Full range		40	100		40	100	μΑ					
Switch on-state voltage	V _I = 4.5 V	10 = 100 mA	25 C		0.13	0.2.		0.13	0.2						
Switch on-state voltage	V = 4.5 V	IO = 500 mA	Full range			1			0.85	V					
Switch off-state current V	V _I = 4.5 V,	VO = 30 V	25"C		10	50		10	50						
		VI = 4.5 V, VO	V - 4.5 V,	V = 4.5 V,	V - 4,5 V,	V [- 4.5 V,	V - 4.5 V,	State corrent VI = 4.5 V, VO = 30 V Ful		VI = 4.5 V, VO = 30 V Full range			500		
Current-limit sense voltage	V1 = 6 V		25° C	0.45		1	0.45		1	V					
	Io - 10 mA		Full range		0.75	0.95		0.75	0,85						
Diode forward voltage	Io = 100 mA		Full range		0.9	1.1		0.9	1	V					
	Io = 500 mA		Full range		1,33	1.75		1.33	1.55						
Diode reverse voltage	Ιο = 500 μΑ		Full range	30											
Drode reverse vortage	I _O = 200 μA		Full range				30			V					
On-state supply current			25 C		11	14		11	14						
On-state supply current			Full range			16			15	mA					
Off state surely surely			25 C		6	9		6	9						
Off-state supply current			Full range			11			10	mA					

Full range for TL497AM is -55°C to 125°C, for TL497AI is -25°C to 85°C, and for TL497AC is 0°C to 70°C.

^{2.} Above 28 °C free-air temperature, derate the N package at the rate of 9.2 mW/° C. Above 41° C free-air temperature, derate the J glass-mounted package at the rate of 8.2 mW/° C. Above 59 °C free-air temperature, derate the J alloy-mounted package at the rate of 11.0 mW/° C. In the J package, TL497AM chips are alloy-mounted; TL497AC chips are glass-mounted.

[‡]All typical values are at TA = 25°C.

Y10 NGL L R15 150 B R15 12 L R

BASIC CONFIGURATION

EXTENDED POWER CONFIGURATION (USING EXTERNAL TRANSISTOR)

DESIGN EQUATIONS

•
$$IpK = 2 IO max \left[\frac{VO}{VI} \right]$$

• L (
$$\mu$$
H) = $\frac{V_1}{lpK} t_{on}(\mu s)$

Choose L (50 to 500 μ H), calculate ton (25 to 150 μ s)

• CF (
$$\mu$$
F) $\approx t_{on} \frac{\left[\frac{V_{I}}{V_{O}} | P_{K} + I_{O}\right]}{V_{ripple} (PK)}$

FIGURE 1-POSITIVE REGULATOR, STEP-UP CONFIGURATIONS

EXTENDED POWER CONFIGURATION (USING EXTERNAL TRANSISTOR)

DESIGN EQUATIONS

IPK = 2 IO max

• L (
$$\mu$$
H) = $\frac{V_I - V_O}{I_{PK}} t_{ON}(\mu s)$

Choose L (50 to 500 μ H), calculate ton (10 to 150 μ s)

•
$$C_T(pF) \approx 12 t_{OD}(\mu s)$$

• R1 =
$$(V_0 - 1.2) k\Omega$$

• CF (
$$\mu$$
F) $\approx t_{on} \frac{\left[\frac{V_i}{V_O} | p_K + I_O\right]}{V_{ripple} (PK)}$

FIGURE 2-POSITIVE REGULATOR, STEP-DOWN CONFIGURATIONS

Texas Instruments

INCORPORATED

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

2-107

TYPES TL497AM, TL497AI, TL497AC SWITCHING VOLTAGE REGULATORS

TYPICAL APPLICATION DATA

BASIC CONFIGURATION
(IPK < 500 mA)

EXTENDED POWER CONFIGURATION (USING EXTERNAL TRANSISTOR)

- $I_{PK} = 2 I_{O} \max \left[1 + \frac{|V_{O}|}{|V_{I}|} \right]$
 - L (μ H) = $\frac{V_1}{l_{PK}}$ t_{on}(μ s)

Choose L (50 to 500 μ H), calculate t_{on} (25 to 150 μ s)

- C_T(pF) ≈ 12 t_{OΠ}(μs)
- R2 = (V_O 1.2) kΩ
- R_{CL} = $\frac{0.5 \text{ V}}{\text{lpK}}$
- $C_F (\mu F) \approx \frac{\left[\frac{V_I}{V_O}\right] I_{PK} + I_O}{V_{ripple} (PK)}$

*Use external catch-diode, e.g., 1N4001, when building an inverting supply with the TL497A.

FIGURE 3-INVERTING APPLICATIONS

EXTENDED INPUT CONFIGURATION WITHOUT CURRENT LIMIT

DESIGN EQUATIONS

$$R_{CL} = \frac{V_{BE(Q1)}}{I_{limit} (PK)}$$

$$R1 = \frac{V_{\parallel}}{I_{B(\Omega 2)}}$$

$$R2 = (V_{reg} - 1) 10 k\Omega$$

CURRENT LIMIT FOR EXTENDED INPUT CONFIGURATION

FIGURE 4-EXTENDED INPUT VOLTAGE RANGE (VI > 15 V)

TEXAS INSTRUMENTS

D2711, JANUARY 1983

- Completely Latched PWM Control Circuitry
- Totem-Pole Outputs for 200-mA Sink or Source Current
- Internal Circuitry Prohibits Double
 Pulse at Either Output
- Circuit Architecture Provides Easy Synchronization
- Low Bias Current

- Soft-Start and Dead-Time Control
- Under-Voltage Lockout Control for Low VCC Conditions
- Internal Precision Reference Trimmed to 1%
- Feed-Forward Line Regulation Over 4-to-1 Input Range
- 20 kHz to 1 MHz Operation

description

The TLC498 incorporates on a single monolithic chip all the functions required for the construction of a pulse-width-modulation control circuit. Designed primarily for power supply control, the TLC498 contains an error amplifier, adjustable oscillator with line controlled ramp generator, latched PWM comparator with pulse-steering flip-flop, latched shutdown circuitry, on-chip 5.1-volt 1% precision reference regulator, soft-start control, and an undervoltage lockout.

The architecture of the TLC498 prohibits the possibility of either output being pulsed twice during push-pull operation. The internal error amplifier exhibits a common-mode voltage range from -0.3 volts to $V_{CC}-2$ volts.

The dual totem-pole output buffers provide a convenient drive for either power FET's or Bipolar transistors. Power and ground to the output buffers are isolated from the rest of the chip, enhancing noise immunity and providing single-ended output capability. The under-voltage lockout control circuitry senses low voltage conditions and locks the outputs off until the internal circuitry is operational.

The TLC498 is characterized for operation from 0°C to 70°C.

functional block diagram

PRODUCT PREVIEW

Copyright © 1983 by Texas Instruments Incorporated

And the second of the second o

. .

D2723, MARCH 1983

High Efficiency . . . 80% Typ

Low Bias Current . . . 140 μA

Two Channels, Each with Output Voltage Adjustment

Channel A: Output Voltage 2.5 V to 24 V

Output Current 100 mA

Channel B: Output Voltage 2.5 V to 24 V

Output Current 1.8 mA

Special Multifunctional Operation-Select Pin

description

The TL580 is a monolithic, micropower, dual-switching regulator designed for use in battery applications. The output voltage of each channel is adjustable. Floating the special pin, SYNC B, causes Channel B to be synchronized to the oscillator in the same manner as Channel A. Shorting SYNC B to ground blocks the oscillator from Channel B, then Channel B becomes a single-input comparator for low-battery indicator detection.

Both Channel A and Channel B are referenced to a band-gap generator. An external capacitor on the C_T input (Pin 2) sets the oscillator frequency between 100 hertz and 160 kilohertz.

The TL580C can attain up to 80-percent efficiency while operating over a supply voltage range of 2.4 volts to 30 volts at an ultralow bias current of 140 microamperes.

The TL580C is characterized for operation from 0°C to 70°C.

functional block diagram (positive logic)

PRODUCT PREVIEW

This document contains information on a product under development. Texas instruments reserves the right to change or discontinue this product without notice.

TEXAS INSTRUMENTS Copyright © 1983 by Texas Instruments Incorporated

TYPES TL593, TL594, TL595 PULSE-WIDTH-MODULATION CONTROL CIRCUITS

D2712, APRIL 1983

- Complete PWM Power Control Circuitry
- Uncommitted Outputs for 200-mA Sink or Source Current
- Output Control Selects Single-Ended or Push-Pull Operation
- Internal Circuitry Prohibits Double Pulse at Either Output
- Variable Dead-Time Provides Control Over Total Range
- Internal Regulator Provides a Stable 5-V Reference Supply Trimmed to 1%
- Circuit Architecture allows Easy Synchronization
- Under-Voltage Lockout for Low VCC Conditions
- TL593 has Output Current-Limit Sensing
- TL595 has On-Chip 39-V Zener and External Control of Output Steering
- Improved Direct Replacements for TL493, TL494, and TL495

description

The TL593, TL594, and TL595 devices, each incorporate on a single monolithic chip all the functions required in the construction of a pulse-width-modulation control circuit. Designed primarily for power supply control, these devices offer the systems engineer the flexibility to tailor the power supply control circuitry to his application. The TL593, TL594, and TL595 are improved direct replacements for the TL493, TL494, and TL495.

The TL593 contains an error amplifier, current-limiting amplifier, an on-chip adjustable oscillator, a dead-time control comparator, pulse-steering control flip-flop, 5-volt regulator with a precision of 1%, an under-voltage lockout control circuit, and output control circuitry.

The error amplifier exhibits a common-mode voltage range from -0.3 volts to $V_{CC}-2$ volts. The current-limit amplifier exhibits a common-mode voltage range from -0.3 volts to $V_{CC}-6$ volts with an offset voltage of approximately 80 millivolts in series with the inverting input to ease circuit design requirements. The dead-time control comparator has a fixed offset that provides approximately 5% dead time when externally altered. The on-chip oscillator may be bypassed by terminating R_T (pin 6) to the reference output and providing a sawtooth input to C_T (pin 5), or it may be used to drive the common circuitry in synchronous multiple-rail power supplies.

TL593M . . . J TL593I, TL593C . . . J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

ERROR NONINV INPUT	U16	NONINV INPUT (CURRENT
AMP 1 INV INPUT [2	15	JINV INPUT LIMIT AME
FEEDBACK □3	14]REF OUT
DEAD-TIME CONTROL ☐ 4	13	OUTPUT CONTROL
C _T □ ₅	12	□vcc
RT[6	11	[] C2
GND[]7	10	☐ E2
C1[8	9]]E1

TL594M . . . J TL594I, TL594C . . . J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

ERROR NONINV INPUT [AMP 1 INV INPUT [FEEDBACK [DEAD-TIME CONTROL [CT] GND [GND [ERROR AMP 2
GNDL C1	7 10 E2 8 9 E1	

TL595I, TL595C . . . J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

5	ERROR NONINV INPUT	U18	NONINV INPUT ERROF
	AMP 1 INVINPUT [2	17	INV INPUT AMP 2
	FEEDBACK[3	16	REF OUT
	DEAD-TIME CONTROL 4	15	Ī∨z
	Ст [] 5	14	OUTPUT CONTROL
	R _T []6	13	STEERING INPUT
	GND[]7	12]∨cc
	C1 [8	- 11]C2
	£1[]9	10]E2

DEVICE TYPES, SUFFIX VERSIONS, AND PACKAGES

	TL593	TL594	TL595
TL59-M	J	J	•
TL59-1	J,N	J,N	J,N
TL59-C	J,N	J,N	J,N

^{*}These combinations are not defined by this data sheet.

FUNCTION TABLE

IN	IPUTS	
OUTPUT	STEERING INPUT (TL595 only)	OUTPUT FUNCTION
V _I < 0.4 V	Open	Single ended or parallel output
$V_1 > 2.4 V$	Open	Normal push-pull operation
$V_1 > 2.4 V$	V _I < 0.4 V	PWM Output at Q!
$V_{ } > 2.4 \text{ V}$	V _I < 2.4 V	PWM Output at Q2

Copyright @ 1983 by Texas Instruments Incorporated

description (continued)

The uncommitted output transistors provide either common-emitter or emitter-follower output capability. Each device provides for push-pull or single-ended output operation with selection by means of the output-control function. The architecture of these devices prohibits the possibility of either output being pulsed twice during push-pull operation. The under-voltage lockout control circuit locks the outputs off until the internal circuitry is operational.

The TL593 and TL594 are similar except that an additional error amplifier is included in the TL594 instead of a current-limiting amplifier. The TL595 provides the identical functions found in the TL594. In addition, the TL595 also contains an on-chip 39-volt zener diode for high-voltage applications where VCC is greater than 40 volts, and an output steering control that overrides the internal control of the pulse-steering flip-flop.

The TL593M and TL594M are characterized for operation over the full military temperature range from -55°C to 125°C. The TL593I, TL594I, and TL595I are characterized for operation from -25°C to 85°C. The TL593C, TL594C, and TL595C are characterized for operation from 0°C to 70°C.

functional block diagram

TYPES TL593, TL594, TL595 PULSE-WIDTH-MODULATION CONTROL CIRCUITS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	TL593M TL594M	TL593I TL594I TL595I	TL693C TL694C TL696C	UNIT
Supply voltage, VCC (see Note 10	41	41	41	<u>v</u>
Amplifier input voltages	V _{CC} +0.3	V _{CC} +0.3	V _{CC} +0.3	V
Collector output voltage	41	41	41	V
Collector output current	250	250	250	mA
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 2)	1000	1000	1000	mW
Operating free-air temperature range	-65 to 125	-25 to 85	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package	300	300	300	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: N package		260	260	°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

For operation above 25 °C free-sir temperature, refer to Dissipation Derating Table. In the J package, the TL593M and TL594M chips are alloy-mounted; TL593I, TL593C, TL594I, TL594C, TL595I, and TL595C chips are glass mounted.

DISSIPATION DERATING TABLE

PACKAGE	POWER RATING	DERATING FACTOR	ABOVE T _A		
J (Alloy-Mounted Chip)	1000 mW	11.0 mW/°C	69°C		
J (Glass-Mounted Chip)	1000 mW	8.2 mW/°C	28 °C		
N	1000 mW	9.2 mW	41 °C		

recommended operating conditions

	1	TL693M TL594M		L593 L594 L595	T T	UNIT	
	MIN	_MAX	MIN	MAX	MIN	MAX	1
Supply voltage, V _{CC}	7	40	7	40	7	40	V
Amplifier input voltages, V ₁	-0.3	V _{CC} -2	-0.3	V _{CC} -2	-0.3	VCC-2	V
Collector output voltage, VO		40		40		40	V
Collector output current (each transistor)		200		200		200	mA
Current into feedback terminal		0.3		0.3		0.3	mA
Timing capacitor, C _T	0.47	10 000	0.47	10 000	0.47	10 000	nF
Timing resistor, R _T	1.8	500	1.8	500	1.8	500	kΩ
Oscillator frequency	1	300	1	300	1	300	kHz
Operating free-air temperature, TA	- 55	125	-26	85	0	70	°C

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 \text{ V}$, f = 10 kHz (unless otherwise noted)

reference section

PARAMETER	TEST CONDITIONS [†]		1	TL593N TL594N		TL5	931, TLE 941, TLE 951, TLE	94C	UNIT
			MIN	TYP‡	MAX	MIN	TYP [‡]	MAX	
Output voltage (V _{ref})	lo = 1 mA,	TA = 25°C	4.95	5	5.05	4.95	5	5.05	V
Input regulation	V _{CC} = 7 V to 40 V,	TA = 25°C		2	25		2	25	m۷
Output regulation	lo = 1 to 10 mA,	TA = 25°C		14	35		14	35	m∨
Output voltage change with temperature	ΔT _A = MIN to MAX			0.2	1		0.2	1	%
Short-circuit output current 5	V _{ref} = 0		10	35	60	10	35	50	mA

oscillator section, $C_T = 0.01 \mu F$, $R_T = 12 k\Omega$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS†		TL693M TL594M			TL593I, TL593C TL594I, TL594C TL595I, TL595C		
		MIN	TYP‡	MAX	MIN	TYP‡	MAX	
Frequency	÷		10			10		kHz
Standard deviation of frequency¶	All values of VCC, CT, RT, TA constant		10			10		%
Frequency change with voltage	V _{CC} = 7 V to 40 V, T _A = 25°C		0.1			0.1		%
Frequency change with temperature	ΔT _A = MIN to MAX			4			2	%

amplifier sections (see figure 1)

PARAME	TER	TEST CO	ONDITIONS	MIN	TYP‡	MAX	UNIT
	Error				2	10	
Input offset voltage	current-limit (TL593 only)	Feedback pin at 2.5 V			80		m∨
Input offset current		Feedback control at 2.5 V			25	250	nΑ
Input bias current		Feedback control at 2.5 V			0.2	1	μA
Common-mode input	Error	Vcc = 7 V to 40 V		-0.3 to V _{CC} -2	!		
voltage range	Current-limit (TL593 anly)			-0.3 to V _{CC} - 6	80 25 250 0.2 1	, 	
0 1	Error			70	95		
Open-loop voltage amplification	Current-limit (TL593 only)	ΔV _O = 3 V,	V _O = 0.5 V to 3.5 V		90		dB
Unity-gain bendwidth					800		kHz
Common mode	Error			65	80		
Common-mode rejection ratio	Current-limit (TL593 only)	VCC = 40 V.	T _A = 25°C		70		dΒ
Output sink current (pin 3)	$V_{ID} = -15 \text{ mV to } -5 \text{ V},$	Feedback control at 0.5 V	0.3	0.7		mA
Output source curren	t (pin 3)	V _{ID} = 15 mV to 5 V,	Feedback at 3.5 V	-2			mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values except for parameter changes with temperature are at T_A = 25 °C.

Duration of the short-circuit should not exceed one second.

 $\sigma = \sqrt{\frac{\sum_{n=1}^{N} (x_n - \overline{x})^2}{N-1}}$

TEXAS INSTRUMENTS

Standard deviation is a measure of the statistical distribution about the mean as derived from the formula

TYPES TL593, TL594, TL595 PULSE-WIDTH-MODULATION CONTROL CIRCUITS

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 15 V, f = 10 kHz (unless otherwise noted)

dead-time control section (see figure 2)

PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
Input bias current (pin 4)	V ₁ = 0 to 5.25 V		- 2	- 10	μΑ
Maximum duty cycle, each output	Dead-time control at 0 V	45			%
Input threshold voltage (pin 4)	Zero duty cycle		3	3.3	.,
input threshold voltage (pin 4)	Maximum duty cycle	0			· ·

output section

PARAMETER	TEST CONDITIONS		TL593M TL594M			TL593I, TL593C TL594I, TL594C TL595I, TL595C			UNIT
			MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	
	V _{CE} = 40 V.	V _{CC} = 40 V		2	100		2	100	
Collector off-state current	V _C = 15 V, V _{CC} = 1 to 3 V, Dead-time and output	VE = 0 V,		4	200		4	200	μΑ
Emitter off-state current	$V_{CC} = V_{C} = 40 \text{ V}$	VE = 0			- 150			- 100	μΑ
Collector-emitter Common-emitter	V _E = 0,	I _C = 200 mA		1.1	1.5		1.1	1.3	V
saturation voltage Emitter-follower	V _C = 15 V,	I _E = -200 mA		1.5	2.5		1.5	2.5	
Output control input current	V _I = V _{ref}				3.5			3.5	mA

pwm comparator section (see figure 2)

PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
Input threshold voltage (pin 3)	Zero duty cycle		4	4.5	V
Input sink current (pin 3)	$V_{(pin 3)} = 0.5 V$	0.3	0.7		mA

under-voltage lockout section

PARAMETER	TEST CONDITIONS [†]		TL593M TL594M		TL59	TL593I, TL593C TL594I, TL594C TL595I, TL595C		UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Threshold valters	T _A ≈ 25°C			6			6	V
Threshold voltage	$\Delta T_A = MIN \text{ to MAX}$	3		6.9	3.5		6.9	V
Hysteresis		30			100			mV

total device

PARAMETER	TEST CONDITIONS		MIN	TYP [‡]	MAX	UNIT
Standby supply current	Pin 6 at V _{ref} , All other inputs	= 15 V		9	15	mA
otalias, esper, estimate		= 40 V		11		
Average supply current	Dead-time Control at 2 V, See Figure 2			12.4		mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $^{^{\}ddagger}$ All typical values except for parameter changes with temperature are at T_A = 25 °C.

Hysteresis is the difference between the posditive-going input threshold voltage and the negative-going input threshold voltage.

switching characteristics, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP [‡]	MAX	UNIT
Output voltage rise time	Common-emitter configuration,		100	200	
Output voltage fall time	See Figure 3		30	100	ns
Output voltage rise time	Emitter-follower configuration,		200	400	ns
Output voltage fall time	See Figure 4		45	100	115

[‡]All typical values are at T_A = 25°C.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - AMPLIFIER CHARACTERISTICS

PARAMETER MEASUREMENT INFORMATION

FIGURE 2 - DEAD-TIME AND FEEDBACK CONTROL

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

OUTPUT VOLTAGE WAVEFORM

FIGURE 3-COMMON-EMITTER CONFIGURATION

TEST CIRCUIT

OUTPUT VOLTAGE WAVEFORM

FIGURE 4-EMITTER-FOLLOWER CONFIGURATION

TYPICAL CHARACTERISTICS

OSCILLATOR FREQUENCY and FREQUENCY VARIATION[†] vs TIMING RESISTANCE

FIGURE 5

AMPLIFIER VOLTAGE AMPLIFICATION

 $^{^{\}dagger}$ Frequency variation (Δf) is the change in oscillator frequency that occurs over the full temperature range.

THE RESIDENCE OF THE PARTY OF T

D2643, APRIL 1981

- ± 1% Output tolerance at 25° C
- ±2% Output Tolerance Over Full Operating Range
- Thermal Shutdown
- Internal Short-Circuit Current Limiting
- Pinout Identical to uA7800 Series

description

Each fixed-voltage precision regulator in this series is capable of supplying 1.5 amperes of load current. A unique temperature-compensation technique coupled with an internally trimmed bandgap reference has resulted in improved accuracy when compared to other three-terminal regulators. Advanced layout techniques provide excellent line, load, and thermal regulation. The internal current limiting and thermal shutdown features make the devices essentially immune to overload.

schematic

KC PACKAGE

Copyright © 1981 by Texas Instruments Incorporated

TEXAS INSTRUMENTS

2-123

Input voltage	5 V
Continuous total dissipation at 25°C free-air temperature (see Note 1)	2 W
Continuous total dissipation at (or below) 25°C case temperature (see Note 1)	
Operating free-air, case, or virtual junction temperature range	0°C
Storage temperature range	0°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	O C

Note 1: For operation above 25°C free-air or case temperature, refer to Dissipation Denating Curves, Figure 1 and Figure 2.

FIGURE 1

FIGURE 2

recommended operating conditions

		MIN	MAX	UNIT
	TL780-05C	7	25	
Input voltage, V ₁	TL780-12C	14.5	30	y
	TL780-15C	17.5	30	
Output current, IO			1.5	A
Operating virtual junction temperature, T _J		0	125	°C

SERIES TL780 POSITIVE VOLTAGE REGULATORS

TL780-05C electrical characteristics at specified virtual junction temperature, $V_I = 10 \text{ V}$, $I_O = 500 \text{ mA}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	st	MIN TYP	MAX	UNIT
	I _O = 5 mA to 1 A, P ≤ 15 W	25° C	4.95 5	5.05	V
Output voltage	V _I = 7 V to 20 V	0°C to 125°C	4.9	5,1	1 "
In the second section	V _I = 7 V to 25 V	25°C	0.5	5	
Input regulation	V _I = 8 V to 12 V	25 C	0.5	5	mV
Ripple rejection	V _I = 8 V to 18 V, f = 120 Hz	0°C to 125°C	70 85		dB
0	IO = 5 mA to 1.5 A	25°C	4	25	mV
Output regulation	1 _O = 250 mA to 750 mA	25 C	1.5	15	mv
Output resistance	f = 1 kHz	0°C to 125°C	0.0035		52
Temperature coefficient of output voltage	IO = 5 mA	0°C to 125°C	0.25		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25° C	75		μV
Dropout voltage	I _O = 1 A	25° C	2		V
Bias current		25° C	5	8	mA
D'	V _I = 7 V to 25 V	0°C to 125°C	0.7	1.3	mA
Bias current change	I _O = 5 mA to 1 A	0 C to 125 C	0.03	0.5	mA
Short-circuit output current	V ₁ = 35 V	25° C	750		mA
Peak output current		25° C	2.2		А

TL780-12C electrical characteristics at specified virtual junction temperature, $V_I = 19 \text{ V}$, $I_O = 500 \text{ mA}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	t	MIN TYP	MAX	UNIT
0	IO = 5 mA to 1 A, P \leftright 15 W	25°C	11.88 12	12.12	V
Output voltage	V _I = 14.5 V to 27 V	0°C to 125°C	11.76	12,24	
	V _I = 14.5 V to 30 V	25°C	1.2	12	mv I
Input regulation	V ₁ = 16 V to 22 V	25 C	1.2	12	
Ripple rejection	V ₁ = 15 V to 25 V	0°C to 125 C	65 80		dB
A 1.1	I _O = 5 mA to 1,5 A	25°C	6.5	60	mV
Output regulation	10 = 250 mA to 750 mA	25 C	2.5	36	.,,,,
Output resistance	f = 1 kHz	0°C to 125°C	0.0035		Ω
Temperature coefficient of output voltage	IO = 5 mA	0°C to 125°C	0.6		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25° C	180		μV
Dropout voltage	1 ₀ = 1 A	25°C	2		V
Bias current		25°C	5.5	8	mA
	V ₁ = 14.5 V to 30 V	0°C to 125°C	0.4	1.3	mA
Bias current change	IO = 5 mA to 1 A	U C to 125 C	0.03	0.5	InA
Short-circuit output current	V ₁ = 35 V	25° C	350		mA
Peak output current		25"C	2.2		А

[†]All characteristics are measured with a capacitor across the input of 0.33 μ F and a capacitor across the output of 0.22 μ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_W \le 10$ ms, duty cycles $\le 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

TL780-15C electrical characteristics at specified virtual junction temperature, $V_1 = 23 \text{ V}$, $I_0 = 500 \text{ mA}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS†		MIN TYP MAX		UNIT
Output voltage	IO = 5 mA to 1 A, P < 15 W	25° C	14.85 15	15.15	v
	V _I = 17.5 V to 30 V	0°C to 125°C	14.7	15.3	
Input regulation	V _I = 17.5 V to 30 V	25°C	1.5	15	mV
	V _I = 20 V to 26 V	25 C	1.5	15	
Ripple rejection	V _I = 18.5 V to 28.5 V f = 120 Hz	0°C to 125°C	60 75		dB
Output regulation	IO = 5 mA to 1.5 A	25°C	7	75	mV
	IO = 250 mA to 750 mA	25 C	2.5	45	
Output resistance	f = 1 kHz	0°C to 125°C	0.0035		Ω
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C	0.62		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C	225		μV
Dropout voltage	I _O = 1 A	25°C	2		V
Bias current		25°C	5.5	8	mA
Bias current change	V _I = 17.5 V to 30 V	-0	0.4	1.3	mA
	I _O = 5 mA to 1 A	0°C to 125°C	0.02	0.5	
Short-circuit output current	V ₁ = 35 V	25°C	230		mA
Peak output current		25°C	2.2		А

⁷ All characteristics are measured with a capacitor across the input of 0.33 µF and a capacitor across the output of 0.22 µF. All characteristics axcept noise voltage and ripple rejection ratio are measured using pulse techniques (t_w ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

TYPICAL APPLICATION DATA

- *C1 required If regulator is far from power supply filter.
- [†]C2 not required for stability, however translent response is improved
- § Permanent damage can occur if output is pulled below ground.

TEXAS INSTRUMENTS

D2713, JANUARY 1983

- Adjustable Regulator for Precise Control of Voltage or Current
- Plug-In Replacement for Differential Voltage ... 5.25 V to 200 V
- Input-to-Output Differential Voltage . . . 5.25 V to 200 V
- 1 A Output Current Capability
- Full Short-Circuit, Safe-Operating-Area, and Thermal Shutdown Protection
- 0.001% Typical Input Regulation
- 0.15% Typical Output Regulation
- 76 dB Typical Ripple Rejection
- Standard TO-220AB Package

KC PACKAGE (TOP VIEW) ⇒ INPLIT OUTPUT = ADJUSTMENT THE OUTPUT TERMINAL IS IN ELECTRICAL CONTACT WITH THE MOUNTING BASE TO-220AB 10

description

The TL783AC is an adjustable 3-terminal positive-voltage regulator with a DMOS output transistor capable of sourcing as much as 1 ampere. It is designed to be a direct plug-in replacement for the TL783C but offers a much larger differential voltage range, 5.25 volts to 200 volts. Excellent performance specifications - superior to those of most bipolar regulators - are achieved through circuit design and advanced layout techniques.

As a state-of-the-art regulator, the TL783AC combines standard bipolar circuitry with high-voltage double-diffused MOS transistors on one chip to yield a device capable of withstanding voltages far higher than standard bipolar integrated circuits. Because of its lack of secondary breakdown and thermal runaway characteristics usually associated with bipplar outputs, the TL783AC maintains full overload protection while operating at up to 200 volts from input to output. Other features of the device include current limiting, safe-operating-area (SOA) protection, and thermal shutdown. Even if the adjustment pin is inadvertently disconnected, the protection circuitry remains functional.

Only two external resistors are required to program the output voltage. An input bypass capacitor is necessary only when the regulator is situated far from the input filter. An output capacitor, although not required, will improve transient response and protection from instantaneous output short-circuits. Excellent ripple rejection can be achieved without a bypass capacitor at the adjustment terminal.

functional block diagram

Copyright © 1983 by Texas Instruments Incorporated

- Output Adjustable From 1.25 V To 125-Volt
- 700 mA Output Current
- Full Short-Circuit, Safe-Operating-Area, and Thermal Shutdown Protection
- 0.001 %/V Typical Input Regulation
- 0.15% Typical Output Regulation
- 76 dB Typical Ripple Rejection
- Standard TO-220 AB Package

THE OUTPUT TERMINAL IS IN ELECTRICAL CONTACT WITH THE MOUNTING BASE TO-220AB

description

The TL783 is an adjustable 3-terminal positive-voltage regulator with an output range of 1.25 volts to 125 volts and a DMOS output transistor capable of sourcing more than 700 milliamperes. It is designed for use in high-voltage applications where standard bipolar regulators cannot be used. Excellent performance specifications ... superior to those of most bipolar regulators ... are achieved through circuit design and advanced layout techniques.

As a state-of-the-art regulator, the TL783 combines standard bipolar circuitry with high-voltage double-diffused MOS transistors on one chip to yield a device capable of withstanding voltages far higher than standard bipolar integrated circuits. Because of its lack of secondary breakdown and thermal runaway characteristics usually associated with bipolar outputs, the TL783 maintains full overload protection while operating at up to 125 volts from input to output. Other features of the device include current limiting, safe-operating-area (SOA) protection, and thermal shutdown. Even if the adjustment pin is inadvertently disconnected, the protection circuitry remains functional.

Only two external resistors are required to program the output voltage. An input bypass capacitor is necessary only when the regulator is situated far from the input filter. An output capacitor, although not required, will improve transient response and protection from instantaneous output short-circuits. Excellent ripple rejection can be achieved without a bypass capacitor at the adjustment terminal.

functional block diagram

TEXAS INSTRUMENTS

absolute maximum ratings over operating temperature range (unless otherwise noted)

Input-to-output differential voltage, VI – VO	125 V
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 1)	2 W
Continuous total dissipation at (or below) 25°C case temperature (see Note 1)	20 W
Operating free-air, case, or virtual junction temperature range0°C to	150°C
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	260°C

NOTE 1: For operation above 25°C free-air or case temperature, refer to the dissipation denating curves, Figures 1 and 2.

CASE TEMPERATURE DISSIPATION DERATING CURVES 22 20 Maximum Continuous Dissipation-W 18 16 14 12 10 8 6 Derating factor = 250 mW/°C above 70°C 2 RøJC≈ 4°C/W 0 25 50 75 100 125 150 TC - Case Temperature - °C

FIGURE 1

FIGURE 2

recommended operating conditions

	MIN	MAX	UNIT
Input-to-output voltage differential, V _I – V _O		125	V
Output current, IO	15	700	mΑ
Operating virtual junction temperature, T.J	0	125	°C

TYPE TL783C HIGH-VOLTAGE ADJUSTABLE REGULATOR

electrical characteristics at V_I - V_O = 25 V, I_O = 0.5 A, T_J = 0°C to 125°C (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]				TYP	MAX	UNIT
Input regulation‡	V V - 20 V 125 V		T _J = 25°C		0.001	0.01	%/V
Input regulation+	$V_1 - V_0 = 20 \text{ V to } 125 \text{ V}$		$T_J = 0^{\circ} C \text{ to } 125^{\circ} C$		0.004	0.02	76/ V
Ripple rejection	$\Delta V_{1(p,p)} = 10 V$,	V _O = 10 V,	f = 120 Hz	66	76		dΒ
	IO = 15 mA to 700 mA,	T_1 = 25°C	V ₀ < 5 V		7.5	25	mV
Output regulation	10 - 19 IIIA to 700 IIIA,	1] - 25 C	V _O > 5 V		0.15	0.5	%
Output regulation	Io = 15 mA to 700 mA		V ₀ ≤ 5 V		20	70	mV
	10 - 19 ma to 700 ma		V _O > 5 V		0.3	1.5	%
Output voltage change with temperature					0.4	4	%
Output voltage long-term drift	1000 h at T _J = 125°C, See Note 2	V _I - V _O = 125 V,			0.2		%
Output noise voltage	f = 10 Hz to 10 kHz,	T _J = 25°C			0.003		%
Minimum output current to maintain regulation	V _I - V _O = 125 V					15	mA
	V _I - V _O = 25 V,	t = 1 ms			1100		
0-1	V ₁ - V ₀ = 15 V,	t = 30 ms			715		mA
Peak output current	$V_1 - V_0 = 25 V_1$	t = 30 ms		700	900		1110
	V _I - V _O = 125 V,	t = 30 ms		100	250		
Adjustment-terminal current					83	110	μА
Change in adjustment- terminal current	V _I - V _O = 15 V to 125 V,	i _O = 15 mA to 700 mA,	P ≤ rated dissipation		0.5	5	μА
Reference voltage (output to ADJ)	$V_1 - V_0 = 10 \text{ V to } 125 \text{ V},$	I _O = 15 mA to 700 mA,	P ≤ rated dissipation	1.2	1.27	1.3	٧

[†]All characteristics except noise voltage and ripple rejection are measured using pulse techniques (t_w < 10 ms, duty cycle < 5%) to limit changes in average internal dissipation. Output voltage changes due to large changes in Internal dissipation must be taken into account separately.

‡Input regulation is expressed here as the percentage change in output voltage per 1-volt change at the input.

NOTE 2: Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a guarantee or warranty. It is an engineering estimate of the average drift to be expected from lot to lot.

TYPICAL CHARACTERISTICS

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 9

FIGURE 8

TYPE TL783C HIGH-VOLTAGE ADJUSTABLE REGULATOR

TYPICAL CHARACTERISTICS

FIGURE 10

FIGURE 11

FIGURE 12

FIGURE 13

FIGURE 14

FIGURE 15

FIGURE 16

DESIGN CONSIDERATIONS

The internal reference (see functional block diagram) is used to generate 1.25 volts nominal (Vrof) between the output and adjustment terminals. This voltage is developed across R1 and causes a constant current to flow through R1 and the programming resistor R2, giving an output voltage of:

$$V_0 = V_{ref} (1 + R2/R1) + I_{adj} (R2)$$

$$V_O \approx V_{ref} (1 + R2/R1)$$
.

The TL783 was designed to minimize ladi and maintain consistency over line and load variations, thereby minimizing the ladi (R2) error term.

To maintain ladi at a low level, all quiescent operating current is returned to the output terminal. This quiescent current must be sunk by the external load and is the minimum load current necessary to prevent the output from rising. The recommended R1 value of 82 ohms will provide a minimum load current of 15 milliamperes. Larger values may be used if the input-to-output differential voltage is less than 125 volts (see minimum operating current curve) or if the load will sink some portion of the minimum current.

Bypass capacitors

The TL783 regulator is stable without bypass capacitors; however, any regulator will become unstable with certain values of output capacitance if an input capacitor is not used. Therefore, the use of input bypassing is recommended whenever the regulator is located more than four inches from the power-supply filter capacitor. A 1-microfarad tantalum or electrolytic capacitor is usually sufficient.

Adjustment-terminal capacitors are not recommended for use on the TL783 because they can seriously degrade load transient response as well as create a need for extra protection circuitry. Excellent ripple rejection is presently achieved without this added capacitor.

Due to the relatively low gain of the MOS output stage, output voltage drop-out may occur under large load transient conditions. Addition of an output bypass capacitor will greatly enhance load transient response as well as prevent drop-out. For most applications it is recommended that an output bypass capacitor be used with a minimum value of:

Larger values will provide proportionally better transient response characteristics.

Protection circuitry

The TL783 regulator includes built-in protection circuitry capable of guarding the device against most overload conditions encountered in normal operation. These protective features are current limiting, safe-operating-area protection, and thermal shutdown. These circuits are meant to protect the device under occasional fault conditions only. Continuous operation in the current limit or thermal shutdown mode is not recommended.

The internal protection circuits of the TL783 will protect the device up to maximum rated V₁ as long as certain precautions are taken. If V₁ is instantaneously switched on, transients exceeding maximum input ratings may occur, which can destroy the regulator. These are usually caused by lead inductance and bypass capacitors causing a ringing voltage on the input. In addition, if rise times in excess of 10 V/ns are applied to the input, a parasitic n-p-n transistor in parallel with the DMOS output can be turned on causing the device to fail. If the device is operated over 50 volts and the input is switched on rather than ramped on, a low-Q capacitor, such as a tantalum or electrolytic should be used rather than ceramic, paper, or plastic bypass capacitors. A dissipation factor of 0.015 or greater will usually provide adequate damping to suppress ringing. Normally, no problems will occur if the input voltage is allowed to ramp upward through the action of an ac line rectifier and filter network.

TYPE TL783C HIGH-VOLTAGE ADJUSTABLE REGULATOR

Similarly, if an instantaneous short circuit is applied to the outputs, both ringing and excessive fall times can result. A tantalum or electrolytic bypass capacitor is recommended to eliminate this problem. However, if a large output capacitor is used and the input is shorted, addition of a protection diode may be necessary to prevent capacitor discharge through the regulator. The amount of discharge current delivered is dependent on output voltage, size of capacitor, and fall time of V₁. A protective diode (see Figure 17) is required only for capacitance values greater than

$$C_O(\mu f) = 3 \times 10^4/(V_O)^2$$
.

Care should always be taken to prevent insertion of regulators into a socket with power on. Power should be turned off before removing or inserting regulators.

FIGURE 17- REGULATOR WITH PROTECTIVE DIODE

Load regulation

The current set resistor (R1) should be located close to the regulator output terminal rather than near the load. This eliminates long line drops from being amplified through the action of R1 and R2 to degrade load regulation. To provide remote ground sensing, R2 should be near the load ground.

FIGURE 18-REGULATOR WITH CURRENT-SET RESISTOR

FIGURE 19- 1.25-V TO 115-V ADJUSTABLE REGULATOR

FIGURE 20-125-V SHORT-CIRCUIT-PROTECTED OFF-LINE REGULATOR

FIGURE 21-50-V
REGULATOR WITH CURRENT BOOST

FIGURE 22-ADJUSTABLE
REGULATOR WITH CURRENT BOOST
AND CURRENT LIMIT

FIGURE 23 - CURRENT-SINKING REGULATOR

FIGURE 24 – CURRENT-SOURCING REGULATOR

FIGURE 25-HIGH-VOLTAGE UNITY-GAIN OFFSET AMPLIFIER

FIGURE 26-48-V, 200-mA FLOAT CHARGER

TEXAS INSTRUMENTS

INCORPORATED

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

- Complete PWM Power Control Circuitry
- Completely Synchronized Operation
- Internal Under-Voltage Lockout Protection
- Wide Supply Voltage Range
- Internal Short-Circuit Protection
- Oscillator Frequency . . . 500 kHz Max
- Variable Dead Time Provides Control Over **Total Range**
- Internal Regulator Provides A Stable 2.5-V Reference Supply

J OR N **DUAL IN-LINE PACKAGE (TOP VIEW)**

	CT[1	J 16	REFERENCE
	R _T [2		SCP
ERROR NONINV IN	IPUT [3	14	NONINV INPUT 2 ERRO
AMP INVIN	IPUT [4		INVER INPUT AMP
1 FEEDB	ACK [5	12	2 FEEDBACK
1 DEAD-TIME CONT	ROL [6	11	2 DEAD-TIME CONTROL
1 001	PUT []7	10	2 ОПТРИТ
	GND [8	9	□vcc

description

The TL1451 incorporates on a single monolithic chip all the functions required in the construction of two pulse-widthmodulation control circuits. Designed primarily for power supply control, the TL1451 contains an on-chip 2.5-volt regulator, two error amplifiers, an adjustable oscillator, two dead-time comparators, under-voltage lockout circuitry, and dual common-emitter output transistor circuits.

The uncommitted output transistors provide common-emitter output capability for each controller. The internal amplifiers exhibit a common-mode voltage range from 0.4 volts to 1.5 volts. The dead-time control comparator has no offset unless externally altered and may be used to provide 0% to 100% dead time. The on-chip oscillator may be operated by terminating RT (pin 2) and CT (pin 1). During low VCC conditions, the under-voltage lockout control circuit feature locks the outputs off until the internal circuitry is operational.

The TL1451 is characterized for operation from -20°C to 85°C.

recommended operating conditions

	MIN	NOM MAX	UNIT
Supply voltage, VCC	3.6	40	V
High-level output voltage, VOH		40	V
High-level output current, IOH		20	mA
Error amplifier common-mode input voltage, V _{IC}	0.4	1.5	V
Input voltage range at dead-time terminal	1.4	2.05	V
Input current at feedback terminal		- 50	μΑ
Timing capacitor, CT	0.15	15	μF
Timing resistor, R _T	5	50	kΩ
Oscillator frequency, fosc	1	500	kHz
Operating free-air temperature, TA	-20	85	°C

Values for R1 through R7, C1 through C4, and L1 and L2 depend upon individual application.

TEXAS INSTRUMENTS

TYPES TL1525A, TL1527A, TL2525A, TL2527A, TL3525A, TL3527A PULSE-WIDTH MODULATION CONTROLLERS

D2724, APRIL 1983

 Complete PWM Power Control Circ 	uitry
---	-------

- 8-Volt to 35-Volt Operation
- 5.1-Volt Reference Trimmed to ±1%
- Frequency Range . . . 100 Hz to 500 Hz
- Adjustable Deadtime Control
- Under-Voltage Lockout for Low VCC Conditions
- Latched PWM Prevents Multiple Pulses
- Dual Sink or Source Output Drivers
- Improved Direct Replacements for Silicon General SG1525A/SG1527A Series

		1 1
out	put	logic

TL1525A, TL2525A, TL3525A . . . NOR TL1527A, TL2527A, TL3527A . . . OR

description

The TL1525A/TL1527A series of pulse-width modulation integrated circuits are designed to offer improved performance and lower external parts count when used to implement various types of switching power supplies. Each device includes an on-chip 5.1-volt reference, error amplifier, programmable oscillator, pulse-steering flip-flop, a latched comparator under-voltage lockout, shutdown circuitry, and complementary source or sink outputs. The on-chip 5.1-volt reference is trimmed to \pm 1% initial accuracy that serves as a reference output as well as supplying the internal regulator control circuitry. The input common-mode range of the error amplifier includes the reference voltage, which eliminates the need for external divider resistors.

The oscillator operates at a fixed frequency determined by one timing resistor R_T and one timing capacitor C_T. The timing resistor establishes the constant charging current for C_T, resulting in a linear voltage ramp at C_T, which is fed to the PWM comparator providing linear control of the output pulse duration by the error amplifier. A Sync input to the oscillator allows for external synchronization or for multiple units to be slaved together. A single external resistor between the C_T pin and the Discharge pin provides a wide range of dead-time adjustment. These devices also feature built-in soft-start circuitry that requires only an external timing capacitor. The Shutdown pin controls both the soft-start and the output drivers, and provides instantaneous turn-off with soft-start recycle for slow turn-on. The soft-start and output driver circuitry are also controlled by the under-voltage lockout circuit, which, during low-input supply voltage of less than that required for normal operation, keeps the soft-start capacitor discharged and the output drivers

Another unique feature is the S/R latch following the PWM comparator. This feature enables the output drivers to be turned off any time the PWM pulse is terminated; The latch is reset with each clock pulse. However, the PWM outputs will remain turned off for the duration of the period if the PWM comparator output is in a low-level state. The TL2525A, and TL3525A output stages feature NOR logic, which results in a low output for an off-state. The TL1527A, TL2527A, and TL3527A output stages feature OR logic, which results in a high-level output for an off-state. The output stages are totem-pole designs capable of sourcing or sinking 200 milliamperes of output current.

The TL1525A and TL1527A are characterized for operation over the full military temperature range of -55°C to 125°C. The TL2525A and TL2527A are characterized for operation from -25°C to 85°C. The TL3525A and TL3527A are characterized for operation for 0°C to 70°C.

TI 15254 TI 15274 I TL2525A, TL2527A, . . J OR N TL3525A, TL3527A, . . J OR N **DUAL-IN-LINE PACKAGE** (TOP VIEW) INVERTING INPUT [1 V16] REFERENCE NONINVERTING INPUT [2 15 VCC (VI) SYNC[3 14 OUTPUT B OSCILLATOR OUT [4 13 VC 12 GND CT [5 RT F 11 OUTPUT A 10 SHUTDOWN DISCHARGE [7 SOFT-START [**TCOMPENSATION**

Copyright © 1983 by Texas Instruments Incorporated

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	40 V
Collector voltage, V _C	40 V
Logic input voltage range sync and shutdown	3 V to 5.5 V
Analog input voltage range error amplifier inputs0	.3 V to VCC
Output current, IQ	500 mA
Reference output current, IREF	50 mA
Current through CT terminal	5 mA
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2)	1000 mW
Operating free-air temperature range:TL1525A, TL1527A	°C to 125°C
TL2525A, TL2527A 25	5°C to 85°C
TL3525A, TL3527A	°C to 70°C
Operating virtual junction temperature range	°C to 150 °C
Storage temperature range65°	°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J Package	300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: N Package	260°C

NOTES: 1. All voltage values are with respect to network ground terminal.

For operating above 25°C free-air temperature, see Dissipation Derating Curves, Figures 1 and 2. In the J package, TL1525A and TL1527A
chips are alloy mounted; TL2525A, TL2527A, TL3525A, and TL3527A chips are epoxy mounted.

TEXAS INSTRUMENTS

INCORPORATED

N PACKAGE FREE-AIR TEMPERATURE DISSIPATION DERATING CURVE 1200 Maximum Continuous Dissipation-mW 1000 800 600 400 DERATING FACTOR = 9.2 mW/°C 200 ABOVE 41°C R⊕JA = 108°C/W 0 25 35 45 55 65 75 85 TA-Free-Air Temperature-°C

FIGURE 1

FIGURE 2

recommended operating conditions

PARAMETER Supply voltage, VCC		TL15254	, TL1527A	TL2525/	A, TL2527A	TL3525A,	UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	OIVI
		8	35	8	35	8	35	V
Collector voltage, VC		4.5	35	4.5	35	4.5	35	V
	Steady state	0	±100	0	±100	0	±100	mA
Output current, IO	Peak	0	±400	0	±400	0	±400	IIIA
Reference output currer	nt, IREF	0	20	0	20	0	20	mA
Oscillator frequency ran	ige	100	500	100	500	500 100		kH:
Timing resistor, RT		2	150	2	150	2	150	kΩ
Timing capacitor, CT		0.001	0.1	0.001	0.1	0.001	0.1	μF
Dead-time resistor, RD		0	500	0	500	0	500	Ω
Operating free-air temp	erature range, TA	-55	125	- 25	85	0	70	°C

electrical characteristics over recommended operating free-air temperature range, $V_{CC}=20~V$ (unless otherwise noted)

reference section

PARAMETER	TEST CONDITIONS		5A, TL 5A, TL		TL352	UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX	
	T _J = 25 °C	5.05	5.1	5.15	5	5.1	5.2	
Output voltage	V _{CC} = 8 V to 35 V, I _O = 0 to 20 mA	5		5.2	4.95		5.25	V
Input regulation	V _{CC} = 8 V to 35 V		14	20		14	20	mV
Output regulation	I _O = 0 to 20 mA		5	50		5	50	mV
Output voltage change with temperature			24	50		24	50	mV
Output voltage long-term drift (see Note 3)	After 1000 h at T _J = 125 °C		25	50		25	50	mV
Output noise voltage (RMS)	f = 10 Hz to 10 kHz, T _J = 25 °C		40	200		40	200	μV
Short-circuit output current	V _O = 0 V, T _J = 25°C		80	100		80	100	mA

oscillator section

PARAMETER	TEST CONDITIONS		TL1525A, TL1527A TL2525A, TL2527A			TL352	UNIT		
			MIN	MIN TYP N		MIN	TYP	MAX	
Maximum frequency	$R_T \approx 2 k\Omega$,	C _T = 1 nF	400			400			kHz
Minimum frequency	$R_T = 150 k\Omega$,	$C_T = 0.1 \mu\text{F}$			100			100	Hz
Initial frequency error	$R_T = 3.6 \text{ k}\Omega,$ $C_T = 0.1 \mu\text{F},$ $T_A = 25 ^{\circ}\text{C}$	$R_D = 0 \Omega$, f = 40 kHz,		±2%	±6%		±2%	±6%	
Frequency change with supply voltage	V _{CC} = 8 V to 35	v	±	0.3%	±1%		±1%	±2%	
Frequency change with temperature	TA = MIN to MAX			±3%	±6%		±3%	±6%	
Output amplitude at Pin 4	$R_T = 3.6 \text{ k}\Omega,$ $C_T = 0.1 \mu\text{F},$		3	3.5		3	3.5	-	٧
Output pulse duration at Pin 4	$R_T = 3.5 \text{ k}\Omega$, $C_T = 0.1 \mu\text{F}$, $T_J = 25 ^{\circ}\text{C}$	$R_{D} = 0 \Omega$ $f = 40 \text{ kHz},$	0.3	0.5	1	0.3	0.6	1	μS
Input threshold voltage at Pin 3			1.2	2	2.8	1.2	2	2.8	V
Input current at Pin 3	$V_{I(Pin3)} = 3.5 V$			1.6	2.5		1.6	2.5	mA
Current through Pin 5 due to internal current mirror	Current through Pir	6 = 6 mA	1.7	2	2.2	1.7	2	2.2	mA

NOTE 3: Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a guarantee or warranty.

It is an engineering estimate of the average drift to be expected from lot to lot.

TYPES TL1525A, TL1527A, TL2525A, TL2527A, TL3525A, TL3527A PULSE-WIDTH MODULATION CONTROLLERS

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 20 \text{ V}$ (unless otherwise noted)

error amplifier section

PARAMETER	TEST CONDITIONS	TL1525A, TL1527A TL2525A, TL2527A			TL3525A, TL3527A			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	1
High-level output voltage		3.8	5.6		3.8	5.6		V
Low-level output voltage			0.2	0.5		0.2	0.5	V
Input offset voltage			0.5	5		2	10	mV
Input bias current			1	10		1	10	μΑ
Input offset current				1			1	μΑ
Open-loop voltage amplification	R _L ≥ 10 M	60	75		60	75		dB
Common-mode rejection ratio	V _{IC} = 1.5 V to 5.2 V	60	75		60	75		dB
Supply voltage rejection ratio	V _{CC} = 8 V to 35 V	50	60		50	60		dB
Gain-bandwidth product (see Note 3)	Ay = 0 dB, T _J = 25°C	1	2		1	2		MHz

comparator section

PARAMETER	TEST CONDIT	TEST CONDITIONS			MAX	UNIT
Input threshold voltage		Duty cycle = 0%	0.6	0.9		
	$R_D = 0 \Omega$, $C_T = 10 \text{ nF}$, $f = 40 \text{ kHz}$	Duty cycle = MAX		3.3	3.6	ľ
Input bias current				0.5	1	JέΑ

soft-start section

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Soft-start voltage	V _I at Pin 10 = 2 V		0.4	0.6	V
Soft-start current	V _I at Pin 10 = 0 V	25	50	80	μΑ
Input current, Shutdown	$V_1 = Pin 10 = 2.5 V$		0.4	1	mA

output section

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	เทท
	IOH = -20 mA	18	19		V
High-level output voltage	I _{OH} = -100 mA	17	18		7
Level and a second and the second	I _{OL} = 20 mA		0.2	0.4	V
Low-level output voltage	I _{OL} = 100 mA		1	2	V
Under-voltage lockout voltage	V _I at Pins 8 and 9 high	6	7	8	V
Oscillator cutoff current (see Note 4)	$V_C = 35 \text{ V, I}_O = 100 \text{ mA}$			200	μА
Output pulse rise time	$C_L = 1 \text{ nF}, T_J = 25 ^{\circ}\text{C}$		100	600	ns
Output pulse fall time	C _L = 1 nF, T _J = 25 °C		50	300	ns
Shutdown delay time	V _I at Pin 10 = 3 V, capacitance at pin 8 = 0, T _{.I} = 25 °C		0.2	0.5	μs

NOTE 4: Collector cutoff current specifications apply only for the TL1525A, TL2525A, and TL3625A devices.

total device

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Minimum duty cycle				0%	
Maximum duty cycle		45%	49%		
Standby current	V _{CC} = 35 V		14	20	mA

TEXAS INSTRUMENTS

TYPICAL CHARACTERISTICS

TEXAS INSTRUMENTS

TYPICAL CHARACTERISTICS

VCC (15)

INVERTING (1)
INPUT

NONINVERTING (2)
INPUT

COMPENSATION (9) 1 kΩ

COMPENSATION (9) 1 kΩ

TO PWM
COMPARATOR

COMPARATOR

5.8 V

SINCE 100 μA | 100 μA | 5.8 V

FIGURE 9 - OUTPUT CIRCUIT SCHEMATIC DIAGRAM

shutdown options

- Use an external transistor or open-collector comparator to pull down on the Compensation terminal (Pin 9). This
 will set the PWM latch and turn off both driver outputs. If the shutdown signal is momentary, pulse-by-pulse protection
 will be accomplished as the PWM latch is reset with each clock pulse.
- The same results may be accomplished by pulling down on the Soft-Start terminal (Pin 8) with the only difference being that on this pin shutdown will not affect the amplifier compensation network, but must discharge any softstart capacitance.
- 3. Application of a positive-going signal to the Shutdown terminal (Pin 10) will provide the most rapid shutdown of the driver outputs but will not immediately set the PWM latch if there is a capacitor at the Soft-Start terminal. The capacitor will discharge but at a current twice the charging current. The PWM latch can be set on a pulse-by-pulse basis by the shutdown terminal if there is no external capacitance on the Soft-start terminal (Pin 8). Slow turn-on may still be accomplished by connecting an external capacitor, blocking diode, and charging resistor to the Compensation terminal (Pin 9).

For single-ended supplies, the driver outputs are grounded. The V_C terminal is switched to ground by the totem-pole source transistors on the alternate oscillator cycles.

FIGURE 10 - SINGLE-ENDED CIRCUIT

Low-power transformers can be directly driven by the TL1525A. Automatic reset occurs during deadtime when both ends of the primary winding are switched to ground.

FIGURE 11 - TRANSFORMER-COUPLED CIRCUIT

In conventional push-pull bipolar designs, forward base drive is controlled by R_1-R_3 . Rapid turn-off times for the power devices are achieved with speed-up capacitors C_1 and C_2 .

FIGURE 12 - BIPOLAR PUSH-PULL CIRCUIT

The low source impedance of the output drivers provides rapid charging of power FET input capacitance while minimizing external components.

FIGURE 13 - LOW-IMPEDANCE BIPOLAR-DRIVE PUSH-PULL CIRCUIT

D2722, APRIL 1983

- Power On Reset Generator
- Automatic Reset Generation After Voltage Drop
- Wide Supply Voltage Range . . . 3 V to 18 V
- Precision Voltage Sensor
- Temperature-Compensated Voltage Reference
- True and Complement Reset Outputs
- Externally Adjustable Pulse Width

P DUAL-IN-LINE PACKAGE (TOP VIEW)

description

The TL7702 series are monolithic integrated circuit supply voltage supervisors specifically designed for use as reset controllers in microcomputer and microprocessor systems. During power-up the device tests the supply voltage and keeps the reset outputs active as long as the supply voltage has not reached its nominal voltage value. Taking RESIN low has the same effect. To ensure that the microcomputer system has reset, the TL7702 then initiates an internal time delay that delays the return of the reset outputs to their inactive states. Since the time delay for most microcomputers and microprocessors is in the order of several machine cycles, the device internal time delay is determined by an external capacitor connected to the C_T input (pin 3).

$$t_d = 1.3 \times 10^4 \text{ X CT}$$

Where: C_T is in farads (F)

In addition, when the supply voltage drops below the nominal value, the outputs become active and stay in this state until the supply voltage returns to the nominal value. An external capacitor (typically 0.1 μ F) must be connected to the REF output (pin 1) to reduce the influence of fast transients in the supply voltage.

The TL7702 series is characterized for operation from 0°C to 70°C.

functional block diagram

All resistor and current values shown are nominal.

NOTE A: TL7702: R1 = 0Ω , R2 = open

TL7705: R1 = $9 k\Omega$, R2 = $10 k\Omega$

TL7709: R1 = $20.4 \text{ k}\Omega$, R2 = $10 \text{ k}\Omega$

TL7712: R1 = 36.6 k Ω , R2 = 10 k Ω

TL7715; R1 = 46.8 k Ω , R2 = 10 k Ω

Copyright © 1983 by Toxas Instruments Incorporated

ADVANCE INFORMATION

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	0 V
Input voltage range at RESIN -0.3 V to 2	0 V
Input voltage range at SENSE: TL7702	6 V
TL7705, TL7709, TL7712, and TL77150.3 V to 2	20 V
Operating free-air temperature range 0°C to 7	0°C
Storage temperature range	0°C

NOTE 1: All voltage values are with respect to the network ground terminal.

recommended operating conditions

	MIN NON	MAX	UNIT
Supply voltage	3	18	V
High-level input voltage at RESIN, VIH	2		V
Low-level input voltage at RESIN, VIL		0.7	V
High-level output current at RESET, IOH		-1	mA
Low-level output current at RESET, IOL		16	mA
Operating free-air temperature range, TA	0	70	°C

electrical characteristics over recommended ranges of supply voltage, input voltage, output current, and free-air temperature (unless otherwise noted)

	PARAMETER VOH High-level output voltage at RESET		PARAMETER TEST CONDITIONS †			MIN	TYP	MAX	UNIT
VOH			I _{OH} = -1 mA	V _{CC} -1			V		
VOL	Low-level output volta	ge at RESET	I _{OH} = 16 mA			0.4	V		
V _{ref}	Reference voltage				2.5		V		
	V _S Sense voltage TL7705 TL7705 TL7709 V _{CC} = 3.5 V to 18 V TL7712 TL7715	TL7702			V _{ref}				
		Sense voltage	TL	TL7705		4.7	4.75	4.8	
Vs			Sense voltage TL7709 V	V _{CC} = 3.5 V to 18 V	7.5	7.6	7.7	V	
		TL7712		11.2	11.4	11.6			
			14	14.2	14.4				
lін	High-level input curren	t at RESIN	V _I = 2.4 V to V _{CC}			20	μA		
IIL	Low-level input curren	t at RESIN	V _I = 0.4 V			- 100	μA		
lcc	Supply current		All inputs and outputs open		1.8	3	mA		

switching characteristics over recommended ranges of supply voltage, input voltage, output current, and free-air temperature (unless otherwise noted)

PARAMETER		PARAMETER TEST CONDITIONS †		TYP	MAX	UNIT
tws	Minimum pulse duration at SENSE input to switch outputs	V _{IH} = V _S typical + 200 mV, V _{IL} = V _S typical - 200 mV			0.5	μ5
tw	Pulse duration at RESET and RESET outputs		0.65	1.3	2.6	ms
tpd	Propagation delay time from RESIN to RESET	V _{CC} = 5 V		9		μS
tr	Rise time at RESET and RESET	V _{CC} = 5 V, see Note 2			1	μS
tf	Fall time at RESET and RESET	VCC = 5 V, see Note 2			1	μS

[†]All characteristics are measured with 0.1-μF capacitors connected at pins 1 and 2 to ground.

NOTE 2: The rise and fall times are measured with a 4.7-kΩ load resistor at RESET (pin 5) and RESET (pin 6).

TEXAS INSTRUMENTS

2

PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - SWITCHING DIAGRAM

TYPICAL CHARACTERISTICS

TEXAS INSTRUMENTS

INCORPORATED

3

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

FIGURE 3 - MULTIPLE POWER SUPPLY SYSTEM RESET GENERATION

FIGURE 4 - RESET CONTROLLER FOR TMS9940 SYSTEM

FIGURE 5 - RESET CONTROLLER FOR TMS1000

TEXAS INSTRUMENTS

D1063 AUGUST 1972-REVISED DECEMBER 1982

- 150-mA Load Current without External Power Transistor
- Typically 0.02% Input Regulation and 0.03% Load Regulation (uA723M)
- Adjustable Current Limiting Capability
- Input Voltages to 40 Volts
- Output Adjustable from 2 to 37 Volts
- Direct Replacement for Fairchild μA723M and μA723C

description

The uA723M and uA723C are monolithic integrated circuit voltage regulators featuring high ripple rejection, excellent input and load regulation, excellent temperature stability, and low standby current. The circuit consists of a temperature-compensated reference voltage amplifier, an error amplifier, a 150-milliampere output transistor, and an adjustable output current limiter.

The uA723M and uA723C are designed for use in positive or negative power supplies as a series, shunt, switching, or floating regulator. For output currents exceeding 150 mA, additional pass elements may be connected as shown in Figures 4 and 5.

The uA723M is characterized for operation over the full military temperature range of -55°C to 125°C; the uA723C is characterized for operation from 0°C to 70°C.

terminal assignments

uA723M... J PACKAGE uA723C... J OR N PACKAGE (TOP VIEW)

(TOP VIEW)

NC-No internal connection

functional block diagram

Copyright © 1982 by Texas Instruments Incorporated

TEXAS INSTRUMENTS

2-153

Peak voltage from V_{CC+} to V_{CC-} (tw ≤ 50 ms)
Continuous voltage from VCC+ to VCC
Input-to-output voltage differential
Differential input voltage to error amplifier
Voltage between noninverting input and VCC
Current from Vz
Current from V _(ref)
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 1):
Jor N package
U package
Operating free-air temperature range: uA723M Circuits
uA723C Circuits
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds, J or U package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds, N package

NOTE 1: Power dissipation = [l_{standby} + l_{ref}] V_{CC} + [V_C - V_{OL}] I_O. For operation at elevated temperature, refer to Dissipation Derating Table. In the J package, uA723M chips are alloy-mounted; uA723C chips are glass-mounted.

recommended operating conditions

	MIN	MAX	UNIT
Input voltage, VI	9.5	40	V
Output voltage, VO			
Input-to-output voltage differential, VC – VO	3	38	V
Output current, IO		150	mA

electrical characteristics at specified free-air temperature (see note 2)

	TEST CONDITIONS [†]		uA723M				uA7230	:		
PARAMETER	TEST CO	NDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	רומט
	V _I = 12 V to V _I = 15 V		25°C		0.01%	0.1%		0.01%	0.1%	
Input regulation	V _I = 12 V to V _I = 40 V		25°C		0.02%	0.2%		0.1%	0.5%	
	V ₁ = 12 V to V ₁ = 15 V		Full range			0.3%			0.3%	
Di la saissaissa	f = 50 Hz to 10 kHz,	C _(ref) = 0	25°C		74			74		dB
Ripple rejection	f = 50 Hz to 10 kHz,	C(ref) = 5 µF	25°C		86			86		ub.
	L = 1 = 0 = L = 50 = 0		25°C		-0.03%	-0.15%		-0.03%	-0.2%	
Output regulation	I _O = 1 mA to I _O = 50 mA		Full range			-0.6%			-0.6%	
Reference voltage, V(ref)			25°C	6.95	7.15	7.35	6.8	7.15	7.5	V
Standby current	V _I = 30 V,	I _O = 0	25°C		2.3	3.5		2.3	4	mA
Temperature coefficient of output voltage			Full range		0.002	0.015		0.003	0.015	%/°C
Short-circuit output current	R _{SC} = 10 Ω,	VO = 0	25°C		65			65		mA
Output paics valtage	BW = 100 Hz to 10 kHz,	$C_{(ref)} = 0$	25°C		20			20		μ٧
Output noise voltage	BW - 100 Hz to 10 kHz,	$C_{(ref)} = 5 \mu F$	25°C		2.5			2.5		μV

Full range for uA723M is -55°C to 125°C and for uA723C is 0°C to 70°C.

NOTE 2: For all values in this table the device is connected as shown in Figure 1 with the divider resistance as seen by the error amplifier ≤ 10 kΩ. Unloss otherwise specified, V₁ = V_{CC+} = V_C = 12 V, V_{CC+} = 0, V_O = 5 V, I_O = 1 mA, R_{SC} = 0, and C_{ref.} = 0.

schematic

RESISTOR AND CAPACITOR VALUES SHOWN ARE NOMINAL

DISSIPATION DERATING TABLE

	POWER	DERATING	ABOVE
POWER	RATING	FACTOR	TA
J (Alloy-Mounted Chip)	1000 mW	11.0 mW/°C	59° C
J (Glass-Mounted Chip)	1000 mW	8.2 mW/° C	28° C
N	1000 mW	9.2 mW/°C	41°C
U	675 mW	5.4 mW/°C	25°C

		FIX	ED		OUTPUT	r			FIX	ED	-	וטקדטנ	Г
OUTPUT	APPLICABLE	OUT	PUT	AD	JUSTAE	BLE	OUTPUT	APPLICABLE	ОUТ	PUT	AD	JUSTAE	BLE
VOLTAGE	FIGURES	2.5	5%	± 10%	(SEE N	OTE 51	VOLTAGE	FIGURES	1 5	5%	± 10%	(SEE N	OTE 5)
(V)	(SEE NOTE 4)	R1	R2	R1	P1	R2	(V)	(SEE NOTE 4)	R1	R2	R1	P1	R2
		{kΩ}	(kΩ)	(kΩ)	(kΩ)	(kΩ)			(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)
+3.0	1, 5, 6, 9, 11,	4.12	3.01	1.8	0.5	1.2	+100	7	3.57	105	2.2	10	91
	12 (4)												
+3.6	1, 5, 6, 9, 11,	3.57	3.65	1.5	0.5	1.5	+250	7	3.57	255	2.2	10	240
	12 (4)												
+5.0	1, 5, 6, 9, 11,	2.15	4.99	0.75	0.5	2.2	-6 [Note 6]	3, (10)	3.57	2,43	1.2	0.5	0.75
	12 (4)							-					
+6.0	1, 5, 6, 9, 11,	1.15	6.04	0.5	0.5	2.7	-9	3, 10	3.48	5.36	1.2	0.5	2.0
	12 (4)											1	
+9.0	2, 4, 15, 6,	1.87	7.15	0.75	1.0	2.7	-12	3, 10	3.57	8.45	1,2	0.5	3.3
	9, 12)											ļ	
+12	2, 4, (5, 6,	4.87	7.15	2.0	1.0	3.0	-15	3, 10	3.57	11.5	1.2	0.5	4.3
	9, 12)												
+15	2, 4, (5, 6,	7.87	7.15	3.3	1.0	3.0	-28	3, 10	3.57	24.3	1.2	0.5	10
	9, 12)												
+28	2, 4, (5, 6,	21.0	7.15	5.6	1.0	2.0	-45	8	3.57	41.2	2.2	10	33
	9, 12)												
+45	7	3.57	48.7	2.2	10	39	-100	8	3.57	95.3	2.2	10	91
+75	7	3.57	78.7	2.2	10	68	-250	8	3.57	249	2.2	10	240

TABLE II
FORMULAS FOR INTERMEDIATE OUTPUT VOLTAGES

Outputs from +2 to +7 volts [Figures 1, 5, 6, 9, 11, 12, 14]] $V_O = V_{\{ref\}} \times \frac{R2}{R1 + R2}$	Outputs from +4 to +250 volts [Figure 7] $V_{O} = \frac{V_{(ret)}}{2} \times \frac{R2 - R1}{R1};$ $R3 = R4$	Current Limiting I(limit) ≈ 0.65 V R _{SC}
Outputs from +7 to +37 volts [Figures 2, 4, (5, 6, 9, 11, 12)] $V_{O} = V_{\{ref\}} \times \frac{R1 + R2}{R2}$	Outputs from -6 to -250 volts [Figures 3, 8, 10] $V_{O} = -\frac{V\{ref\}}{2} \times \frac{R1 + R2}{R1};$ R3 = R4	Foldback Current Limiting [Figure 6] $I_{\{knee\}} \approx \frac{V_O R3 + (R3 + R4) \cdot 0.65 \text{ V}}{R_{SC} R4}$ $I_{OS} \approx \frac{0.65 \text{ V}}{R_{SC}} \times \frac{R3 + R4}{R4}$

- NOTES: 3. Figures 1 through 12 show the R1/R2 divider across either V_O or V_(ref). Figure numbers in parentheses may be used if the R1/R2 divider is placed across the other voltage (V_(ref) or V_O) that it was not placed across in the figures without parentheses.
 - To make the voltage adjustable, the R1/R2 divider shown in the figures must be replaced by the divider shown at the right.
 - For negative output voltages less than 9 V, V_{CC1} and V_C must be connected to a
 positive supply such that the voltage between V_{CC1} and V_{CC} is greater than 9 V.
 - When 10-lead uA723 devices are used in applications requiring V₂, an external 6,2-V regulator diode must be connected in series with the V₀ terminal.

ADJUSTABLE OUTPUT CIRCUITS

TEXAS INSTRUMENTS

INCORPORATED

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPES uA723M, uA723C PRECISION VOLTAGE REGULATORS

TYPICAL APPLICATION DATA

B. R3 may be climinated for minimum component count. Use direct connection (i.e., R3 = 0).

FIGURE 1-BASIC LOW-VOLTAGE REGULATOR (VO = 2 TO 7 VOLTS)

B. 83 may be eliminated for minimum component count. Use direct connection (i.e., R3 = 0).

FIGURE 2-BASIC HIGH-VOLTAGE REGULATOR (VO = 7 TO 37 VOLTS)

FIGURE 3-NEGATIVE-VOLTAGE REGULATOR

FIGURE 4-POSITIVE-VOLTAGE REGULATOR (EXTERNAL N.P.N. PASS TRANSISTOR)

FIGURE 5-POSITIVE-VOLTAGE REGULATOR (EXTERNAL P-N-P PASS TRANSISTOR)

FIGURE 6-FOLDBACK CURRENT LIMITING

TEXAS INSTRUMENTS

10 ks Vcc. ٧c OUT 2N5241 ٧z V(ref) (See Note 7) CL R3 = R2 3 kΩ CS NON INV INV COMP R4 R1 500 pF 3 k11 REGULATED OUTPUT, VO

FIGURE 7-POSITIVE FLOATING REGULATOR

FIGURE 8-NEGATIVE FLOATING REGULATOR

FIGURE 9-POSITIVE SWITCHING REGULATOR

FIGURE 10-NEGATIVE SWITCHING REGULATOR

NOTE A: Current limit transistor may be used for shutdown if current limiting is not required.

FIGURE 12-SHUNT REGULATOR

FIGURE 11-REMOTE SHUTDOWN REGULATOR WITH CURRENT LIMITING

NOTES: 6. For negative output voltages less than 9 V, V_{CC+} and V_C must be connected to a positive supply such that the voltage between V_{CC+} and V_{CC-} is greater than 9 V.

When 10-lead uA723 devices are used in applications requiring V_Z, an external 6.2-V regulator diode must be connected in series
with the V_Q terminal.

 L is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-387 potted core, or equivalent, with 0.009-inch air gap.

2-158

D2154, MAY 1976-REVISED DECEMBER 1982

- 3-Terminal Regulators
- . Output Current up to 1.5 A
- No External Components
- Internal Thermal Overload Protection
- High Power Dissipation Capability d
- Internal Short-Circuit Current Limiting
- **Output Transistor Safe-Area Compensation**
- Direct replacements for Fairchild µA7800 Series

	NOMINAL OUTPUT	REGULATOR
	VOLTAGE	
	5 V	uA7805C
	6 V	uA7806C
	8 V	uA7808C
	8.5 V	uA7885C
ì	10 V	uA7810C
	12 V	uA7812C
	15 V	uA7815C
	18 V	uA7818C
	24 V	uA7824C

KC PACKAGE

(TOP VIEW) OUTPUT = COMMON = INPUT THE COMMON TERMINAL IS IN ELECTRICAL CONTACT WITH THE MOUNTING BASE TO-220AB

description

This series of fixed-voltage monolithic integratedcircuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 1.5 amperes of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the powerpass element in precision regulators.

schematic

82

Resistor values shown are nominal and in ohms.

Copyright © 1982 by Texas Instruments Incorporated

absolute maximum ratings over operating temperature range (unless otherwise noted)

	uA78C	UNIT	
Input voltage	ц A7824C	40	V
	All others	35	1
Continuous total dissipation at 25°C free-air temperature (see Note 1)	2	W	
Continuous total dissipation at (or below) 25°C case temperature (see Note 1)	15	W	
Operating free-air, case, or virtual junction temperature range	0 to 150	°C	
Storage temperature range	-65 to 150	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds		260	°C

Note 1: For operation above 25°C free-air or case temperature, refer to Dissipation Derating Curves, Figure 1 and Figure 2.

FIGURE 1

FIGURE 2

recommended operating conditions

		MIN	MAX	UNIT
	uA7805C	7	25	
	uA7806C	8	25	
	uA7808C	10,5	25	
	uA7885C	10.5	25	
Input voltage, VI	uA7810C	12,5	28	V
1112011030,11	uA7812C	14.5	30	V
	uA7815C	17.5	30	
	uA7818C	21	33	
	uA7824C	27	38	
Output current, IO			1,5	А
Operating virtual junction temperature, T _J		0	125	°C

TYPES uA7805C, uA7806C POSITIVE-VOLTAGE REGULATORS

uA7805C electrical characteristics at specified virtual junction temperature, V_I = 10 V, I_O = 500 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS†			uA7805C		
PANAMETER				TYP	MAX	UNIT
		25°C	4.8	5	5.2	
Output voltage	I_O = 5 mA to 1 A, V_I = 7 V to 20 V, $P \le 15$ W	0°C to 125°C	4.75		5.25	٧
Input regulation	V _I = 7 V to 25 V	25° C		3	100	mV
	V ₁ = 8 V to 12 V	25 C		1	50	mv
Ripple rejection	V _I = 8 V to 18 V, f = 120 Hz	0°C to 125°C	62	78		dB
0	IO = 5 mA to 1.5 A	25°C		15	100	mV
Output regulation	IO = 250 mA to 750 mA	25 C		5	50	mv
Output resistance	f = 1 kHz	0 C to 125°C		0.017		Ω
Temperature coefficient of output voltage	IO = 5 mA	0°C to 125°C		-1.1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25° C		40		μV
Dropout voltage	1 ₀ = 1 A	25°C		2.0		V
Bias current		25°C		4.2	8	mA
Pi-	V ₁ = 7 V to 25 V	0°C to 125°C	1.		1.3	mA
Bias current change	I _O = 5 mA to 1 A	0 0 10 125 0			0.5	IIIA _
Short-circuit output current		25°C		750		mA
Peak output current		25°C		2.2		А

uA7806C electrical characteristics at specified virtual junction temperature, V_I = 11 V, I_O = 500 mA (unless otherwise noted)

0.40.445-50	TEST CONDITIONS†			uA7806C		
PARAMETER				TYP	MAX	UNIT
		25°C	5.75	6	6.25	
Output voltage	$I_0 = 5 \text{ mA to 1 A}, \qquad V_1 = 8 \text{ V to 21 V},$ $P \le 15 \text{ W}$	0°C to 125°C	5.7		6.3	٧
Input regulation	V ₁ = 8 V to 25 V	25° C		5	120	mV
	V _I = 9 V to 13 V	25 C		1.5	60	1110
Ripple rejection	V ₁ = 9 V to 19 V, f = 120 Hz	0°C to 125°C	59	75		dB
Output regulation	IO = 5 mA to 1.5 A	25°C		14	120	mV
	IO = 250 mA to 750 mA	25 C		4	60	""
Output resistance	f = 1 kHz	0°C to 125°C		0.019		Ω
Temperature coefficient of output voltage	1 _O = 5 mA	0°C to 125°C		-0.8		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25° C		45		μV
Dropout voltage	I _O = 1 A	25°C		2.0		V
Bias current		25° C		4.3	8	mA
A	V ₁ = 8 V to 25 V	0°C to 125°C			1.3	mA
Bias current change	t _O = 5 mA to 1 A	0 0 125 0	5 6		0.5	THA .
Short-circuit output current		25°C		550		mA
Peak output current		25° C		2.2		A

^{*}All characteristics are measured with a capacitor across the input of 0.33 μF and a capacitor across the output of 0.1 μF. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

uA7808C electrical characteristics at specified virtual junction temperature, V_{\parallel} = 14 V, I_{\odot} = 500 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS†			uA7808C			
PANAMETER	TEST CONDITIONS.	TEST CONDITIONS				UNIT	
		25°C	7.7	8	8.3		
Output voltage	$I_0 = 5 \text{ mA to 1 A},$ $V_1 = 10.5 \text{ V to 23 V},$ $P \le 15 \text{ W}$	0°C to 125°C	7.6		8.4	٧	
legus regularies	V _I = 10.5 V to 25 V	or°o		6	160		
Input regulation	V _I = 11 V to 17 V	25°C		2	80	mV	
Ripple rejection	V _I = 11.5 V to 21.5 V, f = 120 Hz	0°C to 125°C	56	72		dB	
Output regulation	I _O = 5 mA to 1.5 A	25°C		12	160	mV	
Output regulation	I _O = 250 mA to 750 mA	25 C		4	80		
Output resistance	E = 1 kHz	0°C to 125°C		0.016		Ω	
Temperature coefficient of output voltage	IO = 5 mA	0°C to 125°C		-0.8		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		52		μV	
Dropout voltage	10 = 1 A	25°C		2.0		V	
Bias current		25° C		4.3	8	mA	
Dia-	V _I = 10.5 V to 25 V	-0			1		
Bias current change	IO = 5 mA to 1 A	0°C to 125°C			0.5	mA	
Short-circuit output current		25° C		450		mA	
Peak output current		25° C		2.2		А	

uA7885C electrical characteristics at specified virtual junction temperature,
V_I = 15 V, I_O = 500 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS†			uA7885C		
T ATIAMETER	TEST CONDITIONS.	TEST CONDITIONS.				UNIT
		25°C	8.15	8.5	8.85	
Output voltage	$I_0 = 5 \text{ mA to 1 A},$ $V_1 = 11 \text{ V to 23.5 V},$ $P \le 15 \text{ W}$	0°C to 125°C	8.1		8.9	٧
Input regulation	V _I = 10.5 V to 25 V	05°0		6	170	
input regulation	V _I = 11 V to 17 V	25°C		2	85	mV
Ripple rejection	V ₁ = 11.5 V to 21.5 V, f = 120 Hz	0°C to 125°C	54	70		dB
Output regulation	I _O = 5 mA to 1.5 A	25°C		12	170	
Output regulation	I _O = 250 mA to 750 mA	25 C		4	85	mV
Output resistance	f = 1 kHz	0°C to 125°C		0.016		Ω
Temperature coefficient of output voltage	IO = 5 mA	0°C to 125°C		-0.8		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		55		д∨
Dropout voltage	I _O = 1 A	25°C		2.0		V
Bias current		25°C		4.3	8	mA
Bias current change	V _I = 10.5 V to 25 V	000 4000			1	
bias current change	I _{O.} = 5 mA to 1 A	0°C to 125°C	-		0.5	mA
Short-circuit output current		25°C		450		mA
Peak output current		25°C		2.2		Α

[†]All characteristics are measured with a capacitor across the input of 0.33 μ F and a capacitor across the output of 0.1 μ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_w \le 10$ ms, duty cycle $\le 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

_

TYPES uA7810C, uA7812C POSITIVE-VOLTAGE REGULATORS

uA7810C electrical characteristics at specified virtual junction temperature, V_I = 17 V, I_O = 500 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS†			uA7810	С	UNIT
PAHAMETER	TEST CONDITIONS			TYP	MAX	CIVIT
		25° C	9.6	10	10.4	
Output voltage	$I_0 = 5 \text{ mA to 1 A}, V_1 = 12.5 \text{ V to 25 V},$ $P \le 15 \text{ W}$	0°C to 125°C	9.5	10	10.5	٧
Input regulation	V _I = 12.5 V to 28 V	25°C		7	200	mV
	V _I = 14 V to 20 V	23 C		2	100	1 111
Ripple rejection	V ₁ = 13 V to 23 V, f = 120 Hz	0 C to 125°C	55	71		dB
_	Io = 5 mA to 1.5 A	25°C		12	200	mV
Output regulation	I _O = 250 mA to 750 mA	25 C		4	100	1111
Output resistance	f = 1 kHz	0°C to 125°C		0.018		Ω
Temperature coefficient of output voltage	1 _O = 5 mA	0°C to 125°C		-1.0		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		70		μV
Dropout voltage	IO = 1 A	25°C		2.0		V
Bias current		25° C		4.3	8	mA
	V _I = 12.5 V to 28 V	-0-			1	
Bias current change	Io = 5 mA to 1 A	0°C to 125°C			0.5	mA
Short-circuit output current		25°C		400		mA
Peak output current		25°C		2.2		А

uA7812C electrical characteristics at specified virtual junction temperature, V₁ = 19 V, I_O = 500 mA (unless otherwise noted)

24244575	TEST CONDITIONS†			uA7812C		
PARAMETER				TYP	MAX	UNIT
		25° C	11.5	12	12.5	
Output voltage	$I_{O} = 5 \text{ mA to 1 A},$ $V_{I} = 14.5 \text{ V to 27 V},$ $P \le 15 \text{ W}$	0°C to 125°C	11.4		12.6	٧
Input regulation	V _I = 14.5 V to 30 V	25°C		10	240	mV
	V _I = 16 V to 22 V	25 0		3	120	111.4
Ripple rejection	V ₁ = 15 V to 25 V, f = 120 Hz	0°C to 125°C	55	71		dВ
0	IO = 5 mA to 1.5 A	25°C		12	240	mV
Output regulation	IO = 250 mA to 750 mA	25 C		4	120	mv
Output resistance	f = 1 kHz	0°C to 125°C		0.018		Ω
Temperature coefficient of output voltage	IO = 5 mA	0°C to 125°C		-1.0		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		75		μV
Dropout voltage	10 = 1 A	25° C		2.0		V
Bias current		25°C		4.3	8	mA
	V _I = 14.5 V to 30 V	000 . 10500			1	mA
Bias current change	IO = 5 mA to 1 A	0°C to 125°C			0.5	mA
Short-circuit output current		25°C		350		mA
Peak output current		25° C		2.2		A

¹All characteristics are measured with a capacitor across the input of 0.33 μ F and a capacitor across the output of 0.1 μ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_W \le 10$ ms, duty cycle $\le 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

uA7815C electrical characteristics at specified virtual junction temperature, $V_1 = 23 \text{ V}$, $I_0 = 500 \text{ mA}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS†			uA7815	С	UNIT
ANAMETER	TEST CONDITIONS		MIN	TYP	MAX	JONIII
		25°C	14,4	15	15.6	
Output voltage	$I_0 - 5 \text{ mA to 1 A},$ $V_1 = 17.5 \text{ V to 30 V},$ $P \le 15 \text{ W}$	0°C to 125°C	14.25		15.75	٧
Input regulation	V _I = 17.5 V to 30 V	25° C		11	300	
input regulation	V _I = 20 V to 26 V	25 C		3	150	mV
Ripple rejection	V ₁ = 18.5 V to 28.5 V, f = 120 Hz	0°C to 125°C	54	70		dB
Output regulation	I _O = 5 mA to 1.5 A	25°C		12	300	mV
	I _O = 250 mA to 750 mA	25 C		4	150	HIV
Output resistance	f = 1 kHz	0 C to 125 C		0.019		Ω
Temperature coefficient of output voltage	10 = 5 mA	0°C to 125°C		-1.0		mV/°
Output noise voltage	f = 10 Hz to 100 kHz	25° C		90		μV
Dropout voltage	IO = 1 A	25° C		2.0		٧
Bias current		25°C		4,4	8	mA
Di	V ₁ = 17.5 V to 30 V	-9			1	
Bias current change	I _O = 5 mA to 1 A	0°C to 125°C			0.5	mA
Short-circuit output current		25°C		230		mA
Peak output current		25° C		2,1		А

uA7818C electrical characteristics at specified virtual junction temperature, $V_1 = 27 \text{ V}$, $I_0 = 500 \text{ mA}$ (unless otherwise noted)

PARAMETER	7	EST CONDITIONS†			uA7818	С	UNIT	
raname i en	1	E21 CONDITIONS.		MIN	TYP	MAX	OWIT	
			25°C	17.3	18	18.7		
Output voltage	IO = 5 mA to 1 A, P < 15 W	V _I = 21 V to 33 V,	0°C to 125°C	17.1		18.9	V	
Laguet regulation	V _I = 21 V to 33 V		25°C		15	360	m∨	
Input regulation	V _I = 24 V to 30 V		25 C		5	180		
Ripple rejection	V _I = 22 V to 32 V,	f = 120 Hz	0°C to 125°C	53	69		dB	
Output regulation	Io = 5 mA to 1.5 A				12	360	mV	
	Io = 250 mA to 750 mA		25°C		4	180		
Output resistance	f = 1 kHz		0 C to 125 C		0.022		Ω	
Temperature coefficient of output voltage	IO = 5 mA		0°C to 125°C		-1.0		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz		25°C		110		μV	
Dropout voltage	I _O = 1 A		25°C		2.0		V	
Bias current			25°C		4.5	8	mA	
Dia	V _I = 21 V to 33 V		0°C to 125°C			1		
Bias current change	Io = 5 mA to 1 A		0 0 10 125 0			0.5	mA	
Short-circuit output curren	t		25°C		200		mA	
Peak output current			25° C		2,1		Α	

[†]All characteristics are measured with a capacitor across the input of 0.33 μ F and a capacitor across the output of 0.1 μ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_w \le 10$ ms, duty cycle $\le 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

TEXAS INSTRUMENTS

uA7824C electrical characteristics at specified virtual junction temperature, $V_1 = 33 \text{ V}$, $I_0 = 500 \text{ mA}$ (unless otherwise noted)

DA CAMETED	TEST CONDI	TIONET	1	A7824	С	UNIT	
PARAMETER	TEST CONDI	TIONS.	MIN	TYP	MAX	OMIT	
		25° C	23	24	25		
Output voltage	IO = 5 mA to 1 A, V _I = 27 M P = 15 W	V to 38 V, 0°C to 125°C	22.8		25.2	٧	
	V _I = 27 V to 38 V	25° C		18	480	mV	
Input regulation	V _I = 30 V to 36 V	25 C		6	240		
Ripple rejection	V _I = 28 V to 38 V, f = 120 F	dz 0°C to 125°C	50	66		dB	
Output regulation	Io = 5 mA to 1.5 A	25° C		12	480	mV	
	10 = 250 mA to 750 mA	25 C		4	240		
Output resistance	f = 1 kHz	0 C to 125 C		0.028		\$2	
Temperature coefficient of output voltage	1 ₀ = 5 mA	0°C to 125°C		-1.5		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		170		μV	
Dropout voltage	10 1 A	25° C		2.0		V	
Bias current		25° C		4.6	8	mA	
B:	V ₁ = 27 V to 38 V	-0			1	mA	
Bias current change	10 = 5 mA to 1 A	0°C to 125°C			0.5	mA	
Short-circuit output current		25 C		150		mA	
Peak output current		25°C		2.1		А	

¹All characteristics are measured with a capacitor across the input of 0.33 μ F and a capacitor across the output of 0.1 μ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_w \le 10$ ms, duty cycle $\le 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

2

SERIES uA78L00 POSITIVE-VOLTAGE REGULATORS

D2203, JANUARY 1976-REVISED APRIL 1977

- 3-Terminal Regulators
- Output Current up to 100 mA
- No External Components
- Internal Thermal Overload Protection
- Unusually High Power Dissipation Capability
- Internal Short-Circuit Current Limiting
- Direct Replacement for Fairchild uA78L00 Series

NOMINAL	5%	10%
OUTPUT	OUTPUT VOLTAGE	OUTPUT VOLTAGE
VOLTAGE	TOLERANCE	TOLERANCE
2.6 V	uA78L02AC	uA78L02C
5 V	uA78L05AC	uA78L05C
6.2 V	uA78L06AC	uA78L06C
8 V	uA78L08AC	uA78L08C
9 V	uA78L09AC	uA78L09C
10 V	uA78L10AC	uA78L10C
12 V	uA78L12AC	uA78L12C
15 V	uA78L15AC	uA78L15C

JG	
DUAL-IN-LINE	PACKAGE

LP SILECT PACKAGE

description

This series of fixed-voltage monolithic integrated-circuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. In addition, they can be used with power-pass elements to make high-current voltage regulators. One of these regulators can deliver up to 100 mA of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. When used as a replacement for a Zener-diode-resistor combination, an effective improvement in output impedance of typically two orders of magnitude can be obtained together with lower bias current.

NC - No internal connection

schematic

Resistor values shown are nominal and in ohms.

Copyright © 1977 by Texas Instruments Incorporated

absolute maximum ratings over operating temperature range (unless otherwise noted)

		uA78L02AC, uA78L02C THRU uA78L10AC, uA78L10C	uA78L12AC, uA78L12C uA78L15AC, uA78L15C	TINU
Input voltage		30	35	٧
Continuous total dissipation at 25 C free air temperature (see Note 1)	JG package	825	825	101
Continuous total dissipation at 25 C free air temperature isee Note 11	LP package	775	775	mW
Continuous total dissipation at for below) 25 C case temperature (see	Note 11	1600	1600	mW
Operating free-air, case, or virtual junction temperature range		0 to 150	0 to 150	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 10 seconds		260	260	°C

NOTE 1: For operation above 25°C free-air or case temperature, refer to Dissipation Derating Curves, Figure 1 and Figure 2.

NOTE 2: This curve for the LP package is based on thermal resistance, $H_{\theta,J,A}$, measured in still air with the device mounted in an Augat socket.

The bottom of the package was 3/8 inch above the socket.

recommended operating conditions

		MIN	MAX	UNIT
	uA78L02C, uA78L02AC	4.75	20	
	uA78L05C, uA78L05AC	7	20	Ì
Input voltage, V ₁	uA78L06C, uA78L06AC	8.5	20	
	uA78L08C, uA78L08AC	10.5	23	v
	uA78L09C, uA78L09AC	11.5	24	V
	uA78L10C, uA78L10AC	12.5	25	
	uA78L12C, uA78L12AC	14.5	27	
	uA78L15C, uA78L15AC	17.5	30	
Output current, IO			100	mA
Operating virtual junction temperature, TJ		0	125	°c

SERIES uA78L00 POSITIVE-VOLTAGE REGULATORS

uA78L02AC, uA78L02C electrical characteristics at specified virtual junction temperature, $V_1 = 9 \text{ V}$, $I_0 = 40 \text{ mA}$ (unless otherwise noted)

242445752	TEST CONDITIONS†		u/	478L02	AC.	u,	C:C	UNIT	
PARAMETER	LEST CONDITIONS.		MIN	TYP	MAX	MIN	TYP	MAX	DIVIT
		25°C	2,5	2.6	2.7	2.4	2.6	2,8	
Output voltage	V _I = 4.75 V to 20 V, I _O = 1 mA to 40 mA	0°C to 125°C	2.45		2.75	2.35		2.85	V
	10 = 1 mA to 70 mA	U C to 125 C	2.45		2.75	2,35		2,85	
Lanca constantan	V _I = 4.75 V to 20 V	25°C		20	100		20	125	mV
Input regulation	V ₁ = 5 V to 20 V			16	75		16	100	
Ripple rejection	V _I = 6 V to 16 V, f = 120 Hz	25 C	43	51		42	51		dB
O constant and a second a second and a second a second and a second a second and a second and a second and a	I _O = 1 mA to 100 mA	25°C		12	50		12	50	mV
Output regulation	IO = 1 mA to 40 mA			6	25		6	25	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		30			30		μV
Dropout voltage		25 C		1.7			1.7		V
0.		25°C		3.6	6		3.6	6	^
Bias current		125°C			5.5			5.5	mA
	V ₁ = 5 V to 20 V	0°C to 125°C			2.5			2.5	
Bias current change	IO = 1 mA to 40 mA	U C 10 125 C			0.1			0.2	mA

uA78L05AC, uA78L05C electrical characteristics at specified virtual junction temperature, V_I = 10 V, I_O = 40 mA (unless otherwise noted)

0.00.4445750	TEST CONDITIONS†		u.A	178L05	AC	ш	478L0	5C	UNIT
PARAMETER	TEST CONDITIONS.		MIN	TYP	MAX	MIN	TYP	MAX	CIVIT
		25° C	4.8	5	5.2	4.6	5	5.4	
Output voltage	V ₁ = 7 V to 20 V, I ₀ = 1 mA to 40 mA	0°C to 125°C	4.75		5.25	4.5		5.5	V
	I _O = 1 mA to 70 mA	0 0 125 0	4.75		5.25	4.5		5.5	
	V _I = 7 V to 20 V	25°C		32	150		32	200	mV
Input regulation	V ₁ = 8 V to 20 V		26	100		26	150	1110	
Ripple rejection	V _I = 8 V to 18 V, f = 120 Hz	25° C	41	49		40	49		dB
0	I _O = 1 mA to 100 mA	25°C		15	60		15	60	mV
Output regulation	I _O = 1 mA to 40 mA	25 C		8	30		8	30	1110
Output noise voltage	f = 10 Hz to 100 kHz	25°C		42			42		μV
Dropout voltage		25°C		1.7			1.7		٧
p		25° C		3.8	6		3.8	6	
Bias current		125°C	5.5	5.5			5.5	mA	
Pin	V _I = 8 V to 20 V	0°C to 125°C			1,5			1.5	
Bias current change	I _O = 1 mA to 40 mA	10 6 10 125 6			0.1			0.2	mA

All characteristics are measured with a capacitor across the input of 0.33 µF and a capacitor across the output of 0.1 µF. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

uA78L06AC, uA78L06C electrical characteristics at specified virtual junction temperature, VI = 12 V, IO = 40 mA (unless otherwise noted)

DADAMETER	TEST CONDITIONS [†]		uA	78L06	AC	u	478L0	SC .	UNIT
PARAMETER	TEST CONDITIONS.		MIN	TYP	MAX	MIN	TYP	MAX	Civil
		25 C	5.95	6.2	6.45	5,7	6.2	6.7	
Output voltage	V ₁ = 8.5 V to 20 V, I _O = 1 mA to 40 mA	0 C to 125°C	5,9		6.5	5.6		6.8	٧
	IO = 1 mA to 70 mA	0 C to 125 C	5.9		6.5	5.6		6.8	
land the land	V _I = 8.5 V to 20 V	25°C		35	175		35	200	mV
Input regulation	V _I = 9 V to 20 V	25 C		29	125		29	150	
Ripple rejection	V _I = 10 V to 20 V, f = 120 Hz	25°C	40	48		39	48		dB
Outros annulation	I _O = 1 mA to 100 mA	- 25°C		16	80		16	80	mV
Output regulation	I _O = 1 mA to 40 mA			9	40		9	40	1110
Output noise voltage	f = 10 Hz to 100 kHz	25 C		46			46		μV
Dropout voltage		25°C		1.7			1.7		٧
		25 C		3.9	6		3.9	6	
Bias current		125°C			5.5			5.5	mA
	V ₁ = 9 V to 20 V	010 . 10510			1.5		,	1,5	
Bias current change	I _O = 1 mA to 40 mA	0°C to 125°C			0.1			0.2	mA

uA78L08AC, uA78L08C electrical characteristics at specified virtual junction temperature, V_I = 14 V, I_O = 40 mA (unless otherwise noted)

242445745	TEST CONDITIONS†		цΑ	78L08	AC	u/	478L08	3C	UNIT
PARAMETER	TEST CONDITIONS.		MIN	TYP	MAX	MIN	TYP	MAX	UNII
		25°C	7.7	8	8.3	7,36	8	8.64	
Output voltage	V _I = 10.5 V to 23 V, I _O = 1 mA to 40 mA	0°C to 125°C	7.6		8.4	7.2		8.8	V
	I _O = 1 mA to 70 mA	U C to 125 C	7.6		8.4	7.2		8.8	
	V _I = 10.5 V to 23 V	25°C		42	175		42	200	
Input regulation	V _I = 11 V to 23 V	25 C		36	125		36	150	mV
Ripple rejection	V ₁ = 13 V to 23 V, f = 120 Hz	25° C	37	46		36	46		dΒ
0	I _O = 1 mA to 100 mA	25°C		18	80		18	80	mν
Output regulation	1 _O = 1 mA to 40 mA			10	40		10	40	40
Output noise voltage	f = 10 Hz to 100 kHz	25°C		54			54		μV
Dropout voltage		25°C		1.7			1.7		V
		25 °C		4	6		4	6	
Bias current		125°C			5.5			5.5	mA
D'	V _I = 11 V to 23 V	0 0 125 0			1.5			1.5	0
Bias current change	I _O = 1 mA to 40 mA	0 C to 125 C			0.1			0.2	mA

All characteristics are measured with a capacitor across the input of 0.33 #F and a capacitor across the output of 0.1 #F. All characteristics except noise valtage and ripple rejection ratio are measured using pulse techniques (1_W < 10 ms, duty cycle < 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

SERIES uA78L00 POSITIVE-VOLTAGE REGULATORS

uA78L09AC, uA78L09C electrical characteristics at specified virtual junction temperature, $V_I = 16 \text{ V}$, $I_O = 40 \text{ mA}$ (unless otherwise noted)

DADAMETED	TEST CONDITIONS†		uA	78L09	AC	u	9C	UNIT	
PARAMETER	TEST CONDITIONS.		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		25°C	8.6	9	9.4	8.3	9	9.7	
Output voltage	V _I = 12 V to 24 V, I _O = 1 mA to 40 mA	0 C to 125 C	8.55		9.45	8.1		9.9	V
	I _O = 1 mA to 70 mA	U C to 125 C	8.55		9.45	8.1		9.9	1
lanut manufacion	V _I = 12 V to 24 V	25°C		45	175		45	225	mV
Input regulation	V ₁ = 13 V to 24 V			40	125		40	175	,,,,
Ripple rejection	V _I = 13 V to 24 V, f = 120 Hz	25° C	37	45		36	45		dB
Outros and all all all all all all all all all al	I _O = 1 mA to 100 mA	25°C		19	90		19	90	
Output regulation	I _O = 1 mA to 40 mA			11	40		11	40	mV
Output noise voltage	f = 10 Hz to 100 kHz	25° C		58			58		μV
Dropout voltage		25° C		1.7			1.7		V
0.		25°C		4.1	6		4.1	6	
Bias current		125° C			5.5			5.5	mA
Disc.	V _I = 13 V to 24 V	0.0. 105.0			1.5			1,5	
Bias current change	IO = 1 mA to 40 mA	0 C to 125 C			0.1			0.2	mA

uA78L10AC, uA78L10C electrical characteristics at specified virtual junction temperature, $V_I = 17 \text{ V, I}_O = 40 \text{ mA (unless otherwise noted)}$

PARAMETER	TEST CONDITIONS†		υД	78L10	AC	u/	A78L10	C	
PANAMETER	TEST CONDITIONS.		MIN	TYP	MAX	MIN	TYP	MAX	TINU
		25°C	9.6	10	10.4	9.2	10	10.8	
Output voltage	V ₁ = 13 V to 25 V, I _O = 1 mA to 40 mA	0 C to 125 C	9.5		10.5	9		10	V
	I _O = 1 mA to 70 mA	0 0 125 0	9.5		10.5	9		10	1
1	V _I = 13 V to 25 V	25°C		51	175		51	225	
Input regulation	V _I = 14 V to 25 V	25 C		42	125		42	175	mV
Ripple rejection	V _I = 14 V to 25 V, f = 120 Hz	25° C	37	44		36	44		dB
0	Io = 1 mA to 100 mA	25.0		20	90		20	90	
Output regulation	IO = 1 mA to 40 mA	25 C		11	40		11	40	mν
Output noise voltage	f = 10 Hz to 100 kHz	25 °C		62			62		μV
Dropout voltage		25°C		1.7			1.7		V
D:		25°C		4.2	6		4.2	6	
Bias current		125°C			5.5			5.5	mA
Di-	V _I = 14 V to 25 V				1.5			1.5	
Bias current change	IO = 1 mA to 40 mA	0 C to 125 C			0.1			0.2	mA

¹All characteristics are measured with a capacitor across the input of 0.33 μF and a capacitor across the output of 0.1 μF, All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_W ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

uA78L12AC, uA78L12C electrical characteristics at specified virtual junction temperature, $V_1 = 19 \text{ V}$, $I_O = 40 \text{ mA}$ (unless otherwise noted)

DADAMETER	TEST CONDITIONS†		u A	178L12	AC	U	A78L12	2C	UNIT
PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		25 C	11.5	12	12.5	11,1	12	12.9	
Output voltage	V _I = 14.5 V to 27 V, I _O = 1 mA to 40 mA	D C to 125 C	11.4		12.6	10.8		13.2	V
	IO = 1 mA to 70 mA	0 0 125 0	11.4		12.6	10.8		13.2	
	V ₁ = 14.5 V to 27 V	25 C		55	250		55	250	mV
Input regulation	V _I = 16 V to 27 V	25 0		49	200		49	200	mv
Ripple rejection	V _I = 15 V to 25 V, f = 120 Hz	25 C	37	42		36	42		dB
O toring	1 _O = 1 mA to 100 mA	25 C		22	100		22	100	mV
Output regulation	IO = 1 mA to 40 mA	25 C		13	50		13	50	mv
Output noise voltage	f = 10 Hz to 100 kHz	25 C		70			70		μV
Dropout voltage		25 C		1.7			1.7		V
		25 C		4.3	6.5		4.3	6.5	
Bias current		125 C			6			6	mA
	V _I = 16 V to 27 V	0.0. 125.0			1.5			1.5	
Bias current change	IO = 1 mA to 40 mA	0 C to 125 C			0.1			0.2	mA

uA78L15AC, uA78L15C electrical characteristics at specified virtual junction temperature, $V_I = 23 \text{ V}$, $I_O = 40 \text{ mA}$ (unless otherwise noted)

			υA	78L15	AC	u/	478L15	С	
PARAMETER	TEST CONDITIONS†	MIN TYP MAX MIN TYP		TYP	MAX	דומט			
		25 C	14.4	15	15.6	13.8	15	16.2	
Output voltage	V _I = 17.5 V to 30 V, I _O = 1 mA to 40 mA	0 C to 125 C	14.25		15.75	13.5		16.5	V
	To = 1 mA to 70 mA	0 6 10 125 6	14.25		15.75	13.5		16.5	
	V ₁ = 17.5 V to 30 V	25 C		65	300		65	300	mV
Input regulation	V _I = 20 V to 30 V	25 C		58	250		58	250	l miv
Ripple rejection	V ₁ = 18.5 V to 28.5 V, f = 120 Hz	25 C	34	39		33	39		dB
0	10 = 1 mA to 100 mA	25 C		25	150		25	150	
Output regulation	IO = 1 mA to 40 mA	25 C		15	75		15	75	mV
Output noise voltage	f = 10 Hz to 100 kHz	25 C		82			82		μV
Dropout voltage		25 C		1.7			1.7		V
		25 C		4.6	6.5		4.6	6.5	
Bias current		125 C			6			6	mA
	V ₁ = 20 V to 30 V	0.0. 125.0			1.5			1.5	
Bias current change	IO = 1 mA to 40 mA	0 C to 125 C			0.1			0.2	mA

All characteristics are measured with a capacitor across the input of 0.33 µF and a capacitor across the output of 0.1 µF. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w = 10 ms, duty cycle = 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

D2214, JUNE 1976-REVISED MARCH 1983

- 3-Terminal Regulators
- Output Current up to 500 mA
- No External Components
- Internal Thermal Overload Protection
- High Power Dissipation Capability
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Direct Replacements for Fairchild #A78M00 Series and National LM78MXX and LM341 Series

NOMINAL	-55°C to 150°C	0°C to 125°C
OUTPUT	OPERATING	OPERATING
VOLTAGE	TEMPERATURE RANGE	TEMPERATURE RANGE
5 V	⊔A78M05M	uA78M05C
6 V	uA78M06M	uA78M06C
8V	uA78M08M	uA78M08C
10 V	uA78M10M	ыА78М10С
12 V	uA78M12M	uA78M12C
15 V	uA78M15M	uA78M15C
20 V	uA78M20M	uA78M20C
24 V		uA78M24C
PACKAGES	JG	КС

description

This series of fixed-voltage monolithic integratedcircuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 500 milliamperes of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the power pass element in precision regulators.

schematic

Resistor values shown are nominal and in ohms.

terminal assignments

uA78M_M...JG PACKAGE

uA78M_C...KC PACKAGE

Copyright © 1983 by Texas Instruments Incorporated

TEXAS INSTRUMENTS

INCORPORATED

absolute maximum ratings over operating temperature range (unless otherwise noted)

	uA78M05M	uA78M05C	UNIT
	uA78M24M	uA78M24C	UNIT
uA78M20 thru uA78M24	40	40	V
All others	35	35	Ĭ
JG package	1.05		w
KC (TO-220AB) package		2	1
KC package		7.5	w
	-55 to 150	0 to 150	°C
	-65 to 150	-65 to 150	°C
JG package	300		°C
KC package		260	°C
	All others JG package KC (TO-220AB) package KC package	THRU uA78M24M uA78M20 thru uA78M24 40 All others 35 JG package 1.05 KC (TO-220AB) package KC package -55 to 150 -65 to 150 JG package 300	THRU uA78M24M UA78M24C UA78M20 thru uA78M24 40 40 All others 35 35 JG package 1.05 KC (TO-220AB) package 2 KC package 7.5 -55 to 150 0 to 150 -65 to 150 -65 to 150 JG package 300

NOTE 1: For operation above 25°C free-air or case temperature, refer to Dissipation Derating Curves, Figures 1 through 3.

recommended operating conditions

		MIN	MAX	UNIT
	uA78M05M, uA78M05C	7	25	
	uA78M06M, uA78M06C	8	25	
	uA78M08M, uA78M08C	10.5	25	
	uA78M10M, uA78M10C	12.5	28	
Input voltage, V _I	uA78M12M, uA78M12C	14.5	30	V
	uA78M15M, uA78M15C	17.5	30	
	UA78M20C	23	35	
	uA78M24C	27	38	
Output current, IO	All devices		500	mA
Operation virtual impation temperature T	uA78M05M thru uA78M15M	- 55	150	°C
Operating virtual junction temperature, TJ	uA78M05C thru uA78M24C	0	125	-

TYPES uA78M05M, uA78M05C POSITIVE-VOLTAGE REGULATORS

uA78M05M, uA78M05C electrical characteristics at specified virtual junction temperature, $V_I=10~V,\,I_O=350~mA$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		u/	178M05	M	u.A	178M0	5.2 5.25 100	118117
PARAMETER		TEST CONDITIONS.		MIN	TYP	MAX	MIN	TYP	MAX	UNIT V MV dB mV mV v mV v mV v mA
			25°C	4.8	5	5.2	4.8	5	5.2	
Output voltage	In = 5 mA to 350 mA	V ₁ = 8 V to 20 V	-55°C to 150°C	4.7		5.3				V
	10 ~ 5 ma to 350 ma	$V_1 = 7 \text{ V to } 20 \text{ V}$	0°C to 125°C			411	4.75		5.25	1
		V _I = 7 V to 25 V			3	50		3	100	
Input regulation	IO = 200 mA	V _I = 8 V to 20 V	25 °C		1	25				mV
		V _I = 8 V to 25 V						1	50	1
	V _I = 8 V to 18 V,	1 100 4	-55°C to 150°C	62						
Ripple rejection	f = 120 Hz	I _O = 100 mA	0°C to 125°C				62			dB
	1 = 120 Hz	I _O = 300 mA	25°C	62	80		62	80		
Output regulation	I _O = 5 mA to 500 mA		25°C		20	50		20	100	
Output regulation	I _O = 5 mA to 200 mA		25°C		10	25		10	50	mv
Temperature coefficient			-55°C to 25°C			- 2				
f output voltage	IO = 5 mA		25°C to 150°C			-1.5				mV/°0
or output voitage			0°C to 125°C					- 1		
Output noise voltage	f = 10 Hz to 100 kHz		25°C		40	200		40	200	μV
Dropout voltage			25°C		2	2.5		2	2.5	V
Bias current			25°C		4.5	7		4.5	6	mA
	IO = 200 mA, VI = 8 V	/ to 25 V	-55°C to 150°C			0.8				
Bias current change	10 = 200 IIIA, VI = 8	V 10 25 V	0°C to 125°C			200 40 2.5 2 6 7 4.5	0.8			
bias current change	IO = 5 mA to 350 mA		-55°C ta 150°C			0.5				mA
	10 = 2 HIN 10 220 HIN		0°C to 125°C						0.5	1
Short-circuit output current	V _I = 35 V		25°C		300	600		300		mA
Peak output current			25 °C	0.5	0.7	1.4		0.7		A

¹All characteristics are measured with a capacitor across the input of 0.33 μF and a capacitor across the output of 0.1 μF. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

uA78M06M, uA78M06C electrical characteristics at specified virtual junction temperature, $V_{\parallel}=11~V,~l_{Q}=350$ mA (unless otherwise noted)

PARAMETER		EST CONDITIONS		u/	78M06	M	u/	178M06	SC	UNIT
FANAIVIETEN		EST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			25°C	5.75	6	6.25	5.75	6	6.25	
Output voltage	I 5 - A - 250 - A	V _I = 9 V to 21 V	-55°C to 150°C	5.7		6.3				V
	I _O = 5 mA to 350 mA	V _I = 8 V to 21 V	0°C to 125°C				5.7		6.3	
		V _I = 8 V to 25 V			5	60		5	100	
Input regulation	I _O = 200 mA	V ₁ = 9 V to 20 V	25°C		1.5	30				mV
		V _I = 9 V to 25 V						1.5	50	
	V _I = 9 V to 19 V,	1. 1001	-55°C to 150°C	59						
Ripple rejection	f = 120 Hz	1 ₀ = 100 mA	0°C to 125°C				59			dB
	1 = 120 Hz	i _O = 300 mA	25°C	59	80		59	80		
Output cogulation	utput regulation Io = 5 mA to 500 mA Io = 5 mA to 200 mA		25°C		20	60		20	120	mV
Output regulation			25-0		10	30		10	60	mv
Temperature coefficient			-55°C to 25°C			-2.4			-	
of output voltage	I _O = 5 mA 25 °C to 150 °C	25°C to 150°C			-1.8				mV/°	
or output voltage			0°C to 125°C					- 1		
Output noise voltage	f = 10 Hz to 100 kHz		25°C		45	240		45		μV
Dropout voltage			25°C		2	2.5		2		V
Bias current			25°C		4.5	7		4.5	6	mA
	1 000 A .V. 0.1	/ A DE 1/	-55°C to 150°C			0.8				
Bias current change	$I_0 = 200 \text{ mA}, V_1 = 9$	V to 25 V	0°C to 125°C						0.8	
bias current change			-55°C to 150°C			0.5				mA
	$I_0 = 5 \text{ mA to } 350 \text{ mA}$	0°C to 125°C						0.5		
Short-circuit output current	V _I = 35 V		25 °C		270	600		270		mA
Peak output current			25 °C	0.5	0.7	1.4		0.7		А

¹All characteristics are measured with a capacitor across the input of 0.33 μF and a capacitor across the output of 0.1 μF. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_W ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

TYPES uA78M08M, uA78M08C POSITIVE-VOLTAGE REGULATORS

uA78M08M, uA78M08C electrical characteristics at specified virtual junction temperature, $V_I=14\ V$, $I_O=350\ mA$ (unless otherwise noted)

PARAMETER		EST CONDITIONS T		u.A	78M08	3M	7.6 8.4 6 100	LIMIT		
TANAMETER		EST COMDITIONS.		MIN	TYP	MAX	MIN	TYP	MAX	OIVII
			25°C	7.7	8	8.3	7.7	8	8.3	
Output voltage	In = 5 mA to 350 mA	V _I = 11.5 V to 23 V	-55°C to 150°C	7.6		8.4				V
	10 = 5 MA 10 350 MA	V _I = 10.5 V to 23 V	0°C to 125°C				7.6		8.4	
		$V_{\rm I} = 10.5 \text{ V to } 25 \text{ V}$			6	60		6	100	
Input regulation	IO = 200 mA	V _I = 11 V to 20 V	25 °C		2	30	1			mV
		V _I = 11 V to 25 V						2	50	
	V _I = 11.5 V to 21.5 V,	In - 100 - A	-55°C to 150°C	56						
Ripple rejection	f = 120 Hz	100 mA	0°C to 125°C				56			dB
	T = 120 Hz	I _O = 300 mA	25°C	56	80		56	80		
Output regulation	$I_0 = 5 \text{ mA to } 500 \text{ mA}$		25 °C		25	80		25	160	mV
Juliput regulation	Io = 5 mA to 200 mA		25-0		10	40		10	80	mv
Temperature coefficient			-55°C to 25°C			-3.2				
of output voltage	10 = 5 mA		25°C to 150°C			-2.4	4			mV/°
or output voltage			0°C to 125°C					- 1		
Output noise voltage	f = 10 Hz to 100 kHz		25 °C		52	320		52		μV
Dropout voltage			25 °C		2	2.5		2		V
Bias current			25°C		4.6	7		4.6	6	mA
	IO = 200 mA,	V _I = 11.5 V to 25 V	-55°C to 150°C			0.8				
Bias current change	10 = 200 ma,	V _! = 10.5 V to 25 V	0°C to 125°C						0.8	^
bias current change	In = 5 mA to 350 mA		~55°C to 150°C			0.5				mA
	10 = 3 IIIA to 350 MA		0°C to 125°C						0.5	1
Short-circuit output current	V ₁ = 35 V		25°C		250	600		250		mA
Peak output current			25°C	0.5	0.7	1.4		0.7		A

¹All characteristics are measured with a capacitor across the input of 0.33 _BF and a capacitor across the output of 0.1 _BF. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_W ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

uA78M10M, uA78M10C electrical characteristics at specified virtual junction temperature, $V_I=17\ V,\ I_O=350\ mA$ (unless otherwise noted)

PARAMETER		rest conditions†		U.F	78M10	M	u/	178M10	C	UNIT
PARAMETER		LEST COMPLITIONS		MIN	TYP	MAX	MIN	TYP	MAX	Divit
			25°C	9.6	10	10.4	9.6	10	10.4	
Output voltage	L	V _I = 13.5 V to 25 V	-55°C to 150°C	9.5		10.5				V
	$I_O = 5 \text{ mA to } 350 \text{ mA}$	V _I = 12.5 V to 25 V	0°C to 125°C				9.5		10.5	1
		V _I = 12.5 V to 28 V			7	60		7	100	
Input regulation	IO = 200 mA	V _I = 14 V to 20 V	25°C		2	30				mV
		V _I = 14 V to 28 V						2	50	
	V _I = 15 V to 25 V,	J 100 1	-55°C to 150°C	55						
Ripple rejection	f = 120 Hz	IO = 100 mA	0°C to 125°C				55			dB
	T = 120 MZ	IO = 300 mA	25°C	55	80		55	80		
Output regulation	IO = 5 mA to 500 mA		25 °C		25	100		25	200	mV
Output regulation	IO = 5 mA to 200 mA		25°C		10	50		10	100	mv
Temperature coefficient			-55°C to 25°C			-4				
of output voltage	10 = 5 mA		25 °C to 150 °C			-3				mV/°C
or output voltage			0°C to 125°C					1		
Output noise voltage	f = 10 Hz to 100 kHz		25°C		64			64	-	μV
Dropout voltage			25 °C		2	2.5		2		V
Bias current			25°C		4.7	6		4.7	6	mA
	In = 200 mA.	V _I = 13.5 V to 28 V	-55°C to 150°C			0.8				
Dies europe abana	10 = 200 mA,	V _I = 12.5 V to 28 V	0°C to 125°C						0.8	mA
Bias current change			-55°C to 150°C			0.5				mA
	$I_0 = 5 \text{ mA to } 350 \text{ mA}$		0°C to 125°C						0.5	
Short-circuit output current	V _I = 35 V		25°C		245	600		245		mA
Peak output current			25°C	0.5	0.7	1.4		0.7		Α

[†]All characteristics are measured with a capacitor across the input of 0.33 μ F and a capacitor across the output of 0.1 μ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_w \le 10$ ms, duty cycle $\le 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

TYPES uA78M12M, uA78M12C POSITIVE-VOLTAGE REGULATORS

uA78M12M, uA78M12C electrical characteristics at specified virtual junction temperature, $V_{\parallel}=19~V,~l_{Q}=350~mA$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS†		u.A	78M12	M	u/	78M12	2C	UNIT
- Allametell		LEST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	CIVIT
			25°C	11.5	12	12.5	11.5	12	12.5	
Output voltage	IO = 5 mA to 350 mA	V _I = 15.5 V to 27 V	-55°C to 150°C	11.4		12.6				V
	10 = 2 INA 10 330 INA	V _I = 14.5 V to 27 V	0°C to 125°C				11.4		12.6	
		V _I = 14.5 V to 30 V			8	60		8	100	
Input regulation	Io = 200 mA	V _I = 16 V to 25 V	25 °C		2	30				mV
		V _I = 16 V to 30 V				-		2	50	
	V 15 V to 25 V	100 1	-55°C to 150°C	55						
Ripple rejection	V _I = 15 V to 25 V, f = 120 Hz	I _O = 100 mA	0°C to 125°C				55			dB
	1 = 120 MZ	I _O = 300 mA	25 °C	55	80		55	80		
Output regulation	Io = 5 mA to 500 mA	<u> </u>			25	120		25	240	
Julput regulation	Io = 5 mA to 200 mA		25 °C		10	60		10	120	mV
Temperature coefficient			-55°C to 25°C			-4.8				mV/°C
of output voltage	IO = 5 mA		25°C to 150°C			-3.6			-	
or output voitage			0 °C to 125 °C					- 1		
Output noise voltage	f = 10 Hz to 100 kHz		25°C		75	480		75		μV
Dropout voltage			25°C		2	2.5		2		V
Bias current			25°C		4.8	7		4.8	6	mA
	In = 200 mA,	V _I = 15 V to 30 V	-55°C to 150°C			0.8				
Bias current change	10 = 200 IIIA,	V _I = 14.5 V to 30 V	0°C to 125°C						0.8	
bias current change	In = 5 mA to 350 mA		-55°C to 150°C			0.5				mA
	10 = 5 mA to 350 mA		0°C to 125°C						0.5	
Short-circuit output current	V ₁ = 35 V		25°C		240	600		240		mA
Peak output current			25°C	0.5	0.7	1.4		0.7		A

¹ All characteristics are measured with a capacitor across the input of 0.33 μF and a capacitor across the output of 0.1 μF. All characteristics except noise voltage and ripplo rejection ratio are measured using pulso techniques (t_W ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

uA78M15M, uA78M15C electrical characteristics at specified virtual junction temperature, $V_{I}=23\ V$, $I_{O}=350\ mA$ (unless otherwise noted)

DADAMETED	_	EST CONDITIONS†		uA	78M15	M	uA	78M15	С	UNIT
PARAMETER	,	EST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	DIVIT
			25 °C	14.4	15	15.6	14.4	15	15.6	
Output voltage	In = 5 mA to 350 mA	$V_{\parallel} = 18.5 \text{ V to } 30 \text{ V}$	-55°C to 150°C	14.25		15.75				V
	10 = 2 my to 220 my	$V_I = 17.5 \text{ V to } 30 \text{ V}$	0°C to 125°C				14.25		15.75	
Input regulation	In = 200 mA	$V_{\parallel} = 17.5 \text{ V to } 30 \text{ V}$	0.00		10	60		10	100	mV
input regulation	10 = 200 mA	V _I = 20 V to 30 V	25 °C		3	30		3	50	mv
	V 10 5 V to 20 5 V	1 100 1	-55°C to 150°C	54						
Ripple rejection	$V_1 = 18.5 \text{ V to } 28.5 \text{ V},$ $f = 120 \text{ Hz}$	10 = 100 mA	0°C to 125°C				54			dB
	T = 120 Hz	I _O = 300 mA	25 °C	54	70		54	70		
Output regulation	10 = 5 mA to 500 mA		25 °C		25	150		25	300	mV
Output regulation	I _O = 5 mA to 200 mA		25°C		10	75		10	150	1117
Temperature coefficient			-55°C to 25°C			- 6				
of output voltage	10 = 5 mA		25°C to 150°C			-4.5	-4.5			mV/°C
or output voltage			0°C to 125°C					- 1		
Output noise voltage	f = 10 Hz to 100 kHz		25 °C		90	600		90		μV
Dropout voltage			25 °C		2	2.5		2		٧
Bias current			25°C		4.8	7		4.8	6	mA
	In = 200 mA,	$V_{I} = 18.5 \text{ V to } 30 \text{ V}$	-55°C to 150°C			0.8				
Bias current change	10 - 200 IIIA,	$V_{I} = 17.5 \text{ V to } 30 \text{ V}$	0°C to 125°C						0.8	mA
bias current change	In = 5 mA to 350 mA		-55°C to 150°C			0.5				IIIA
	10 - 5 IIIA 10 350 IIIA		0°C to 125°C						0.5	
Short-circuit output current	V _I = 35 V		25°C		240	600		240		mA
Peak output current			25 °C	0.5	0.7	1.4		0.7		Α

1All characteristics are measured with a capacitor across the input of 0.33 μ F and a capacitor across the output of 0.1 μ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_w \le 10$ ms, duty cycle $\le 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

uA78M20C electrical characteristics at specified virtual junction temperature, $V_I = 29 \text{ V}$, $I_Q = 350 \text{ mA}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS†		uA78M20C			UNIT	
TANAMETER			MIN	TYP	MAX	יוואט ך	
Output voltage			25 °C	19.2	20	20.8	V
	IO = 5 mA to 350 mA,	V _I = 23 V to 35 V	0°C to 125°C	19		21	7 °
Input regulation	In = 200 mA	V _I = 23 V to 35 V	25°C		10	100	
	10 = 200 mA	V _I = 24 V to 35 V	1 25%		5	50	mV
Ripple rejection	V ₁ = 24 V to 34 V,	IO = 100 mA	0°C to 125°C	53			10
urbhie relection	f = 120 Hz	IO = 300 mA	25°C	53	70	-	- qB
Output regulation	IO = 5 mA to 500 mA		25°C	1 -	30	400	T
Output regulation	IO = 5 mA to 200 mA	5 mA to 200 mA			10	200	- m∨
Temperature coefficient	In = 5 mA		0°C to 125°C	1	• •		-1400
of output voltage	10 = 5 HIM		0-0 10 125-0	İ	-1.1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C	1	110		μV
Dropout voltage			25 °C	1	2		V
Bias current			25 °C	1 -	4.9	6	mA
Pina automa abanas	IO = 200 mA,	V _I = 23 V to 35 V	0°C to 125°C	T	•	0.8	
Bias current change	1 _O = 5 mA to 350 mA		O°C to 125°C	1 -	0.		- mA
Short-circuit	V _I = 35 V		25°C		240		mA
Peak output current	·		25°C		0.7		A

[†]All characteristics are measured with a capacitor across the input of 0.33 _pF and a capacitor across the output of 0.1 _pF. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_W ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

uA78M24C electrical characteristics at specified virtual junction temperature, $V_1 = 33 \text{ V, I}_0 = 350 \text{ mA (unless otherwise noted)}$

DADAMETED	TEST CONDITIONS [†]		uA78M24C			UNIT	
PARAMETER			MIN	TYP	MAX	1	
0			25°C	23	24	25	V
Output voltage	lo = 5 mA to 350 mA,	V _I = 27 V to 38 V	0°C to 125°C	22.8		25.2] v
Input regulation	in = 200 mA	V _I = 27 V to 38 V			10	100	mV
infor regulation	10 = 200 IIIA	V _I = 28 V to 38 V			5	50] """
	V _I = 28 V to 38 V, I _O = 100 mA	In = 100 mA	-55°C to 150°C				
Ripple rejection		10 2 100 1114	0°C to 125°C	50			d₿
	1 = 120 Hz	10 = 300 mA	25°C	50	70		1
IO = 5 mA to 500 mA	·	25°C	1	30	480	mV	
Output regulation	lo = 6 mA to 200 mA		25-0		10	240	1 ''''
Temperature coefficient of output voltage	I _O = 5 mA	·	0°C to 125°C		-1.2		mV/°
Output noise voltage	f = 10 Hz to 100 kHz		25°C	1	170		μV
Dropout voltage	· · · · · · · · · · · · · · · · · · ·		25°C	1	2		V
Bias current			25°C	1	5	6	mA
Piece everent about	I _O = 200 mA,	V _I = 27 V to 38 V	0°C to 125°C	1		0.8	mA
Dias chilairt cusuda	ies current change IO = 5 mA to 350 mA		0°C to 125°C			0.5	1 ~~
Short-circuit output current	V _I = 35 V		25°C		240		mA
Peak output current			25°C	1	0.7		A

[†]All characteristics are measured with a capacitor across the input of 0.33 pF and a capacitor across the output of 0.1 pF. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (tw ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

THERMAL INFORMATION

FIGURE 2

TEXAS INSTRUMENTS

D2215, JUNE 1976-REVISED JANUARY 1983

- 3-Terminal Regulators
- Output Current up to 1.5 A
- No External Components
- Internal Thermal Overload Protection
- High Power Dissipation Capability
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Essentially Equivalent to National LM320 Series
- Direct Replacements for Fairchild μA7900 Series and National LM79XX Series

NOMINAL OUTPUT VOLTAGE	REGULATOR
-5 V	uA7905C
−5.2 V	uA7952C
−6 V	uA 7906C
-8 V	uA 7908C
−12 V	uA7912C
−15 V	uA7915C
-18 V	uA7918C
-24 V	uA7924C

description

This series of fixed-negative-voltage monolithic integrated-circuit voltage regulators is designed to complement Series uA7800 in a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 1.5 amperes of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the power pass element in precision regulators.

KC PACKAGE

schematic

12 V-18 V; R° = 50 Ω 5 V-8 V; R° = 150 Ω All component values are nominal.

83

Copyright © 1983 by Texas Instruments Incorporated

TEXAS INSTRUMENTS

absolute maximum ratings over operating temperature range (unless otherwise noted)

		uA7805C THRU uA7924C	UNIT
	uA7924C	-40	~
Input voltage	All others	_35	_ v
Continuous total dissipation at 25°C free-air temperature (see Not	e 1)	2	W
Continuous total dissipation at (or below) 25°C case temperature	(see Note 1)	15	W
Operating free-air, case, or virtual junction temperature range		0 to 150	°C
Storage temperature range		-65 to 150	°c
Lead temperature 3,2 mm (1/8 inch) from case for 10 seconds		260	°C

NOTE 1: For operation above 25°C free-sir or case temperature, refer to Dissipation Denating Curves, Figure 1 and Figure 2.

FIGURE 1

FIGURE 2

recommended operating conditions

		MIN	MAX	UNIT
	uA7905C	7	-25	
	uA7952C	-7.2	-25	
	uA7906C	-8	-25	
	uA7908C	-10.5	-25	
Input voltage, V _i	uA7912C	-14.5	-30	
	uA7915C	-17.5	-30	
	uA7918C	-21	-33	
	UA7924C	-27	-38	
Output current, Io			1.5	A
Operating virtual junction temperature, TJ		0	125	°c

TYPES uA7905C, uA7952C NEGATIVE-VOLTAGE REGULATORS

uA7905C electrical characteristics at specified virtual junction temperature, $V_I = -10 \text{ V}$, $I_O = 500 \text{ mA}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			uA79050		
raname i un	TEST CONDITIONS.		MIN	TYP	MAX	UNIT
		25°C	-4.8	-5	~5.2	
Output voltage	$I_0 = 5 \text{ mA to 1 A}, \qquad V_1 = -7 \text{ V to } -20 \text{ V},$ P < 15 W	0°C to 125°C	-4.75		-5.25	V
Input regulation	V _I = -7 V to -25 V	25°C		12.5	50	
Imput regulation	V _I = -8 V to -12 V	25 C		4	15	m∨
Ripple rejection	V _I = -8 V to -18 V, f = 120 Hz	0°C to 125°C	54	60		dB
Output regulation	I _O = 5 mA to 1.5 A	25°C		15	100	mV
Output regulation	I _O = 250 mA to 750 mA			5	50	
Temperature coefficient of output voltage	1 _O = 5 mA	0°C to 125°C		-0.4		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		125		μV
Dropout voltage	IO = 1 A	25°C		1.1		v
Bias current		25°C		1.5	2	mA
Dies sussent shanns	V ₁ = -7 V to -25 V	0°C 10E°C		0.15	0.5	
Bias current change	I _O = 5 mA to 1 A	0°C to 125°C		0.08	0.5	mA
Peak output current		25°C		2.1		A

uA7952C electrical characteristics at specified virtual junction temperature, $V_I \approx -10 \text{ V}$, $I_O = 500 \text{ mA}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS†		uA7952C			UNIT
PARAMETER	TEST CONDITIONS.		MIN	TYP	MAX	UNII
		25°C	-5	-5.2	-5.4	
P	$I_0 = 5 \text{ mA to 1 A},$ $V_1 = -7.2 \text{ V to } -20 \text{ V},$ $P \le 15 \text{ W}$	0°C to 125°C	-4.95		-5.45	V
hanna annulasian	V ₁ = -7.2 V to -25 V	or° o		12.5	100	
Input regulation	V ₁ = -8.2 V to -12 V	25°C		4	50	m∨
Ripple rejection	V _I = -8.2 V to -18 V, f = 120 Hz	0°C to 125°C	54	60		dB
0	to = 5 mA to 1.5 A	25°C		15	100	
Output regulation	I _O = 250 mA to 750 mA			5	50	m∨
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		-0.4		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		125		μ٧
Dropout voltage	Io = 1 A	25°C		1.1		٧
Bias current		25°C		1,5	2	mA
Disa sussess ab anno	V _I = -7.2 V to -25 V	0°C to 125°C		0.15	1.3	
Bias current change	I _O = 5 mA to 1 A	1 0 0 10 125 0		80.0	0.5	mA
Peak output current		25°C		2.1		Α

[†]All characteristics are measured with a solid-tantslum capacitor across the input of 2 μ F and a solid-tantslum capacitor across the output of 1 μ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_w \le 10$ ms, duty cyclo $\le 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

uA7906C electrical characteristics at specified virtual junction temperature, $V_I = -11 \text{ V}$, $I_O = 500 \text{ mA}$ (unless otherwise noted)

	TEST CONDITIONS [†]		uA7906C			UNIT	
PARAMETER			•	MIN	TYP	MAX	CIVIT
			25° C	-5.75	-6	-6.25	
Output voltage	IO = 5 mA to 1 A, V _I = P < 15 W	-8 V to -21 V,	0°C to 125°C	-5.7		-6.3	v
	V ₁ = -8 V to -25 V		25°C		12.5	120	mν
Input regulation	V _I = -9 V to -13 V		25 C		4	60	mv.
Ripple rejection	V ₁ = -9 V to -19 V, f = 1	20 Hz	0°C to 125°C	54	60		dB
Out-out-of-	lo = 5 mA to 1.5 A		25°C		15	120	m∨
Output regulation	Io = 250 mA to 750 mA				5	60	
Temperature coefficient of output voltage	I _O = 5 mA		0°C to 125°C		-0.4		mV/°C
Output noise voltage	f ≈ 10 Hz to 100 kHz		25°C	1	150		μ∨
Dropout voltage	IO = 1 A		25°C		1.1		V
Bias current			25°C		1.5	2	mA
Disa survent shares	V ₁ = -8 V to -25 V		0°C to 125°C		0.15	1.3	mA
Bias current change	Io = 5 mA to 1 A		0 0 10 125 0		80.0	0.5	L INA
Peak output current			25°C		2.1		Α

uA7908C electrical characteristics at specified virtual junction temperature, $V_I = -14 \text{ V}$, $I_O = 500 \text{ mA}$ (unless otherwise noted)

04.04467700	TEST CONDITIONS†		uA7908C				
PARAMETER	TEST CONDITIONS.		MIN	TYP	MAX	UNIT	
· · · · ·		25°C	-7.7	-8	-8.3		
Output voltage	$I_0 = 5 \text{ mA to 1 A},$ $V_1 = -10.5 \text{ V to } -23 \text{ V},$ $P \le 15 \text{ W}$	0°C to 125°C	-7.6		-8.4	٧	
	V ₁ = -10.5 V to -25 V	25°C		12.5	160		
Input regulation	V _j = -11 V to -17 V	1 250		4	80	mV	
Ripple rejection	V ₁ = -11.5 V to -21.5 V, f = 120Hz	0°C to 125°C	54	60		₫₿	
Ourse sandada	1 _O = 5 mA to 1.5 A	25°C		15	160	mV	
Output regulation	I _O = 250 mA to 750 mA	250	5	80] ""		
Temperature coefficient of output voltage	Io = 5 mA	0°C to 125°C		-0.6		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		200		μV	
Dropout voltage	IO = 1 A	25°C		1.1		V	
Bias current		25°C		1.5	2	mA	
D:	V ₁ = ~10.5 V to ~25 V	0°C to 125°C		0.15	1	mA	
Bias current change	Io = 5 mA to 1 A	U C 10 125 C		0.08	0.5	1 ***	
Peak output current		25°C		2.1		A	

[†]All characteristics are measured with a solid-tentalum capacitor across the input of 2 μ F and a solid-tentalum capacitor across the output of 1 μ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_W \le 10$ ms, duty cycle $\le 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

TYPES uA7912C, uA7915C NEGATIVE-VOLTAGE REGULATORS

uA7912C electrical characteristics at specified virtual junction temperature, $V_1 = -19 \text{ V}$, $I_Q = 500 \text{ mA}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS†		uA7912C			UNIT
PARAMETER	TEST CONDIT	IONS:	MIN	TYP	MAX	UNII
		25° C	-11.5	-12	-12.5	
Output voltage	I _O = 5 mA to 1 A, V _I = -14. P < 15 W	5 V to -27 V, 0°C to 125°C	-11.4		-12.6	\
Indus annulation	V _I = -14.5 V to -30 V	25°C		5	80	mV
Input regulation	V _I = -16 V to -22 V	25 C		3	30	
Ripple rejection	V _I = -15 V to -25 V, f = 120 Hz	0°C to 125°C	54	60		dB
Output regulation	IO = 5 mA to 1.5 A	25°C		15	200	mV
Output regulation	1 ₀ = 250 mA to 750 mA	25 C		5	75] ""V
Temperature coefficient of output voltage	10 = 5 mA	0°C to 125°C		-0.8		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		300		μ∨
Dropout voltage	I _O = 1 A	25°C		1.1		V
Bias current		25°C		2	3	mA
Bias current change	V _I = -14.5 V to -30 V	0°C to 125°C		0.04	0.5	
	IO = 5 mA to 1 A	0 6 10 125 6		0.06	0.5	mA.
Peak output current		25°C		2.1		Α

uA7915C electrical characteristics at specified virtual junction temperature, V_I = -23 V, I_O = 500 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS†			uA7915	C	UNIT
PARAMETER	1 1E2) CONDITIONS.		MIN	TYP	MAX	UNII
		25° C	-14.4	15	-15.6	
Output voltage	$I_0 = 5 \text{ mA to 1 A},$ $V_1 = -17.5 \text{ V to } -30 \text{ V},$ $P \le 15 \text{ W}$	0°C to 125°C	-14.25		-15.75	٧
Input regulation	V ₁ = -17.5 V to -30 V	25°C	[5	100	mV
imput regulation	V _t = -20 V to -26 V	25 C		3	50] ""
Ripple rejection	V _I = -18.5 V to -28.5 V, f = 120 Hz	0°C to 125°C	54	60		d₿
Output regulation	I _O = 5 mA to 1.5 A	25°C		15	200	m۷
Output regulation	1 _O = 250 mA to 750 mA			5	75	
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25° C		375		μV
Dropout voltage	Io=1A	25° C		1,1		V
Bias current		25°C		2	3	mA
0:	V _I ≈ −17.5 V to −30 V	0°C to 125°C		0.04	0.5	
Bias current change	I _O = 5 mA to 1 A	0 0 10 125 0		0.06	0.5	mA
Peak output current		25°C		2.1		A

[†]All characteristics are measured with a solid-tantalum capacitor across the input of 2 μF and a solid-tantalum capacitor across the output of 1 μF. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

TYPES uA7918C, uA7924C NEGATIVE-VOLTAGE REGULATORS

uA7918C electrical characteristics at specified virtual junction temperature, $V_1 = -27 \text{ V}$, $I_0 = 500 \text{ mA}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS†			uA79180	:	UNIT
PARAMETER	TEST CONDITIONS:		MIN	TYP	MAX	UNII
		25°C	-17.3	-18	-18.7	
Output voltage	$I_0 = 5 \text{ mA to 1 A},$ $V_1 = -21 \text{ V to } -33 \text{ V},$ $P < 15 \text{ W}$	0°C to 125°C	-17.1		-18.9	٧
1	V _I = -21 V to -33 V	25°C		5	360	mν
Input regulation	V _I = -24 V to -30 V			3	180	mv
Ripple rejection	V ₁ = -22 V to -32 V, f = 120 Hz	0°C to 125°C	54	60		dB
Ourse seculation	I _O = 5 mA to 1.5 A	25°C		30	360	mV
Output regulation	I _O = 250 mA to 750 mA	25 C		10	180	
Temperature coefficient of output voltage	10 = 5 mA	0°C to 125°C	,	-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		450		μV
Dropout voltage	IO = 1 A	25°C		1.1		V
Bias current		25°C		2	3	mA .
Dies surment abone	V _I = -21 V to -33 V	000 - 1000		0.04	1	
Bias current change	I _O = 5 mA to 1 A	0°C to 125°C		0.06	0.5	mA
Peak output current		25°C		2.1		Α

uA7924C electrical characteristics at specified virtual junction temperature, $V_I = -33 \text{ V}$, $I_O = 500 \text{ mA}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS†			uA7924C				
PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT		
		25°C	-23	-24	-25			
Output voltage	$I_0 = 5 \text{ mA to 1 A},$ $V_1 = -27 \text{ V to } -38 \text{ V},$ $P < 15 \text{ W}$	0°C to 125°C	-22.8		-25.2	\ \		
4	V _I = -27 V to -38 V	25°C		5	480			
Input regulation	V _I = -30 V to -36 V	25 C		3	240	m∨		
Ripple rejection	V _I = -28 V to -38 V, f = 120 Hz	0°C to 125°C	54	60		d₿		
Outres	IO = 5 mA to 1.5 A	25° C		85	480	mV		
Output regulation	1 _O = 250 mA to 750 mA			25	240	mv		
Temperature coefficient of output voltage	IQ = 5 mA	0°C to 125°C		-1		mV/°C		
Output noise voltage	f = 10 Hz to 100 kHz	25°C		600		μ∨		
Dropout voltage	I _O = 1 A	25°C		1.1		V		
Bias current		25°C		2	3	mA		
Pier sussans shanes	V _I = -27 V to -38 V	0°C to 125°C		0.04	1	mA		
Sias current change	Io = 5 mA to 1 A	0 0 10 125 0		0.06	0.5	mA		
Peak output current		25°C		2.1	-	Α		

[†]All characteristics are measured with a solid-tantelum capacitor across the input of 2 μ F and a solid-tantelum capacitor across the output of 1 μ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_W \le 10$ ms, duty cyclo $\le 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

D2216, JUNE 1976-REVISED DECEMBER 1982

- 3-Terminal Regulators
- Output Current up to 500 mA
- No External Components
- High Power Dissipation Capability
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Direct Replacements for Fairchild μA79M00 Series

NOMINAL	−55 C TO 150°C	0°C TO 125 C
OUTPUT	OPERATING	OPERATING
VOLTAGE	TEMPERATURE RANGE	TEMPERATURE RANGE
-5 ∨	uA79M05M	uA79M05C
−6 V	uA79M06M	uA79M06C
-8 V	uA79M08M	uA79M08C
-12 V	uA79M12M	uA79M12C
-15 V	uA79M15M	uA79M15C
-20 V		uA 79M20C
-24 V		uA79M24C
PACKAGE	JG	KC

description

This series of fixed-negative-voltage monolithic integrated-circuit voltage regulators is designed to complement Series uA78M00 in a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 500 milliamperes of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the power pass element in precision regulators.

schematic

terminal assignments

uA79M_M...JG PACKAGE

uA79M_C. , .KC PACKAGE

Copyright © 1983 by Texas Instruments Incorporated

absolute maximum ratings over operating temperature range (unless otherwise noted)

		uA78M05M THRU uA79M16M	uA78M05C THRU uA79M24C	UNIT
Input voltage	uA79M20, uA79M24		-40	v
imper vortage	All others	-35	-35	, v
Continuous total dissipation at 25°C free-air temperature (see Note 1)		1.05		
Continuous total dissipation at 25 C free-air temperature (see Note 1)	KC (TO-220AB) package	1	2	w
Continuous total dissipation at (or below) 25°C case temperature (see Note 1)	KC package		7.5	w
Operating free-air, case or virtual junction temperature range		-55 to 150	0 to 150	°c
Storage temperature range	-65 to 150	-65 to 150	°c	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	JG package	300		°c
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	KC package		260	°C

NOTE 1: For operation above 25°C free-air or case temperature, refer to Dissipation Dereting Curves, Figures 1 through 4, page 188.

recommended operating conditions

		MIN	MAX	UNIT
	uA79M05M, uA79M05C	-7	25	
İ	uA79M06M, uA79M06C	-8	-25	
	uA79M08M, uA79M08C	-10.5	-25	
Input voltage, V _I	uA79M12M, uA79M12C	-14.5	-30	v
	uA79M15M, uA79M15C	-17,5	-30	
	uA79M20C	-23	-35	
	uA79M24C	-27	-38	
Output current, IO			500	mA
Operating virtual junction temperature, T.	uA79M05M thru uA79M15M	-55	150	°c
Operating virtual junction temperature, 1 j	uA79M05C thru uA79M24C	0	125	ن

uA79M05M, uA79M05C electrical characteristics at specified virtual junction temperature, $V_1 = -10~V$, $I_O = 350~mA$ (unless otherwise noted)

DADAMETED		EST CONDITIONS [†]		υA	79M0	iΜ	υA	79M05	5C	UNIT
PARAMETER	16	ST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	וואט
			25°C	-4.8	-5	-5.2	-4.8	-5	-5.2	
Output voltage	In = 5 mA to 350 mA	V: = .7 V to -25 V	~55°C to 150°C	-4.75		-5.25	Г] v
!	I _O = 5 mA to 350 mA, V _I = -7 V to -25 V		0°C to 125°C				-4.75		-5.25	1 '
	V _I = -7 V to -25 V	-	25°C		7	50		7	50	
Input regulation	V _I = -8 V to -18 V				3	30		3	30	m۷
			-55°C to 150°C	50						
Ripple rejection	V ₁ = -8 V to -18 V,	100 mA	0°C to 125°C				50			dВ
	f = 120 Hz	IO = 300 mA	25° C	54	60		54	60		Ì
	10 = 5 mA to 500 mA	A.T	or°o		75	100		75	100	
Output regulation	10 = 5 mA to 350 mA		25°C		50			50		m∨
Temperature coefficient		-	-55°C to 150°C			-1.5				mV/°C
of output voltage	10 = 5 mA	ļ	0°C to 125°C					-0.4		mv/ C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		125	400		125		μ٧
Dropout voltage			25° C		1.1	2.3		1,1		V
Bias current			25°C		1	2		1	2	mA
	N 014 05 14		-55°C to 150°C			0.4	ऻऻ			
	V ₁ = -8 V to -25 V		0°C to 125°C						0.4	
Bias current change	L = 5 - 4 - 250 A		~55"C to 150°C			0.4				mA
Ì	10 = 5 mA to 350 mA		0°C to 125°C						0.4	j
Short-circuit	V ₁ = -30 V	***	25°C	\vdash		600	 	140		mA
output current	V = -30 V		25 C			600	<u> </u>	140		m^
Peak output current			25°C	0.5	0.65	1.4		0.65		Α

[†]All characteristics are measured with a 2-µF capacitor across the input and a 1-µF capacitor across the output. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

uA79M06M, uA79M06C electrical characteristics at specified virtual junction temperature, V_1 = -11 V, I_O = 350 mA (unless otherwise noted)

040445750	_			uΑ	79M06	SM .	υA			
PARAMETER		EST CONDITIONS [†]		MIN	TYP	MAX	MIN	TYP	MAX	TINU
	[25°C	-5.75	-6	-6.25	-5.75	-6	-6.25	
Output voltage	L - 5 - 4 40 250 - 4	V	-55°C to 150°C	-5.7		-6.3				v
	1 _O = 5 mA to 350 mA	, vj = -8 v to -25 v	0°C to 125°C				-5.7		-6.3	
	V _I = -8 V to -25 V		25°C		7	60		7	60	
Input regulation	V _I = -9 V to -19 V		25 C		3	40		3	40	m۷
	V 0.V 10.V	1100-4	-55°C to 150°C	50						
Ripple rejection	V; = -9 V to -19 V, f = 120 Hz	10 - 100 mA	0°C to 125°C				50			ďВ
1 - 120 Hz	IO = 300 mA	25°C	54	60		54	60		1	
Outnus manifesion	10 = 5 mA to 500 mA		25°C		80	120		80	120	
Output regulation	IO = 5 mA to 350 mA		25 0		55			55		mV
Temperature coefficient	10 = 5 mA		-55°C to 150°C			-1.5	L.			
of output voltage	10-8mA		0°C to 125°C					-0.4		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		150	480		150		μV
Dropout voltage			25°C		1.1	2.3		1.1		V
Blas current			25°C		1	2		1	2	mA
	V ₁ = -9 V to -25 V		_55°C to 150°C			0.4				[
Bias current change	V 5 V (0 -25 V		0°C to 125°C	i					0.4	l
Diez carient change	I _D = 6 mA to 350 mA		-55°C to 150°C			0.4				mΑ
	10 - 0 IIIA 10 350 MA		0°C to 125°C						0.4	ł
Short-circuit	V ₁ = -30 V	20.1/				600		140		4
output current_	4130 4		25°C			000		140		mA
Peak output current			25°C	0,5	0.65	1.4		0.65		Α

[†]All characteristics are measured with a 2-µF capacitor across the input and a 1-µF capacitor across the output, All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_W ≤ 10 ms, duty cyclo ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

uA79M08M, uA79M08C electrical characteristics at specified virtual junction temperature, $V_1 = -19 \text{ V}$, $I_0 = 350 \text{ mA}$ (unless noted)

PARAMETER		ST CONDITIONS†		υA	79M0	BM	υA	79M0	8C	UNIT
PANAMETER	16	SI CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			25°C	-7.7	-8	-8.3	-7,7	-8	-8.3	
Output voltage	5 - A - 250 - A V	- 105V:n 25V	-55°C to 150°C	-7.6		-8.4				v
	1 ₀ = 5 mA to 350 mA, V _I = -10.5 V to -25 V		0°C to 125°C				-7.6		-8.4	
la-va-a-vlasia-a	V _I = -10.5 V to -25 V		25°C		8	80		. 8	80	
Input regulation	V _J = -11 V to -21 V	= -11 V to -21 V			4	50		4	50	m∨
<u> </u>		l = = 100 == A	-55°C to 150°C	50						
Ripple rejection	V _I = -11.5 V to -21.5 V, f = 120 Hz	10 a 100 WW	0°C to 125°C				50			₫B
(T = 120 HZ	I _O = 300 mA	25°C	54	59		54	59		1
Output regulation	Io = 5 mA to 500 mA		25°C		90	160		90	160	mν
Output regulation	10 = 5 mA to 350 mA		7 200		60			60		mv
Temperature coefficient	15-A		-55°C to 150°C			-2.4				mV/°C
of output voltage	IQ = 5 mA		0°C to 125°C					-0.6		mv/ C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		200	640		200		μV
Dropout voltage			25°C		1.1	2.3		1.1		V
Bias current			25°C		1	2		1	2	mA
	W = 405W+= 05W		-55°C to 150°C			0.4				
Die	V _I = -10.5 V to -25 V		0°C to 125°C						0.4	
Blas current change	1		-55°C to 150°C			0.4				mA
	IO = 5 mA to 350 mA		0°C to 125°C						0.4	
Short-circuit output current	VI = -30 V		25°C			600		140		mA
Peak output current			25°C	0.5	0.65	1.4		0.65		A

[†] All characteristics are measured with a 2-µF capacitor across the input and a 1-µF capacitor across the output. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_W ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

uA79M12M, uA79M12C electrical characteristics at specified virtual junction temperature, $V_1 = -19 \text{ V}$, $I_0 = 350 \text{ mA}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]		uA	79M1	2M	uА	UNIT			
PARAMETER		E21 CONDITIONS.		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			25°C	<u>-11.5</u>	-12	-12.5	-11.5	-12	-12.5	
Output voltage			-55°C to 150°C	-11.4		-12.6] v
	IO = 5 mA to 350 mA, V _I = -14.5 V to -30 V		0°C to 125°C				-11.4		-12.6	
	V _I = -14.5 V to -30 V		250.0		9	80		9	80	T
Input regulation	V ₁ = -15 V to -25 V		25°C		5	50		_ 5	50	m∨
	W - 45.4 - 65.4		-55°C to 150°C	50						
Ripple rejection	V ₁ = -15 V to -25 V,	IO = 100 mA	0°C to 125°C				50			dВ
	1 = 120 HZ	IO = 300 mA	25°C	54	60		54	60		1
Output regulation	I _O = 5 mA to 500 mA		25°C		65	240		65	240	m۷
Onthat taghistion	IO = 5 mA to 350 mA		200		45			45		
Temperature coefficient	IO = 5 mA		-55°C to 150°C		_	-3,6				mV/°C
of output voltage	10 - 9 mA		0°C to 125°C					-0.8		mv/ C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		300	960		300		μV
Dropout voltage			25°C		1.1	2.3		1.1		V
Bias current			25°C		1,5	3		1.5	3	mA
	V _I = -14.5 V to -30 V		-55°C to 150°C			0.4				
Bias current change	4 14.5 4 to -30 4		0°C to 125°C						0.4	1 .
bias current change	1 5 - A to 250 - A		-55°C to 150°C			0.4				mA
	IO = 5 mA to 350 mA		0°C to 125°C						0.4	1
Short-circuit	V ₁ = -30 V		25°C			600		140		
output current	V 30 V	_	1 25 6			300		140		mA
Peak output current			25°C	0.5	0.65	1.4		0.65		Α

[†]All characteristics are measured with a 2-µF capacitor across the input and a 1-µF capacitor across the output. All characteristics excapt noise voltage and ripple rejection ratio are measured using pulse techniques (t_W ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

uA79M15M, uA79M15C electrical characteristics at specified virtual junction temperature, $V_1 = -23 \text{ V}$, $I_C = 350 \text{ mA}$ (unless otherwise noted)

				uA.	9M1	5M	uA79M15C			
PARAMETER	TE	ST CONDITIONST		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			25°C	-14.4	-15	-15.6	-14.4	-15	-15.6]
Output voltage	1 E A 250 A V	5 4 050 A M = 175 MAR 20 M		-14.25		-15.75				V
	10 = 5 mA to 350 mA, V _I = -17.5 V to -30 V		0°C to 125°C				-14.25		-15.75	
	V _I = -17.5 V to -30 V		25°C		9	80		9	80	m∨
Input regulation	1 = -18 V to -28 V		25 C		7	50		7	50	
	V - 10 E V 20 E V	L 100 4	-55°C to 150°C	50						
Ripple rejection	V _I =18.5 V to28.5 V, If = 120 Hz	10 - 100 MA	0°C to 125°C				50			₫B
	T = 120 Hz	IO = 300 mA	25°C	54	59		54	59		
	IO = 5 mA to 500 mA		25°C		65	240		65	240	mv_
Output regulation	I _O = 5 mA to 350 mA		230		45			45		
Temperature coefficient		1	-55°C to 150°C			-4.5				mv/°c
of output voltage	IO = 5 mA		0°C to 125°C					-1		11107
Output noise voltage	f = 10 Hz to 100 kHz		25°C		375	1200		375		μ٧
Dropout voltage			25° C		1.1	2.3		1.1		V
Bias current			25° C		1.5	3		1.5	3	mA
	W - 17 7 V - 20 V		-55°C to 150°C	<u> </u>		0.4	}			1
	V _I = -17.5 V to -30 V		0°C to 125°C				L		0.4	mA
Bias current change			-65°C to 150°C			0,4	<u>. </u>			""
II	IO = 5 mA to 350 mA		0°C to 125°C						0.4	l
Short-circuit output current	V _I = -30 V		25° C			600		140		mA
Peak output current			25°C	0.5	0.65			0.65		Α

¹All characteristics are measured with a $2 \cdot \mu F$ capacitor across the input and a $1 \cdot \mu F$ capacitor across the output. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_W \le 10 \text{ ms}$, duty cycle $\le 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

2

uA79M20C electrical characteristics at specified virtual junction temperature $V_1 = -29\ V$, $I_O = 350\ mA$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS†			uA79M20C				
PARAMETER	IEST CONDITIONS.				TYP	MAX	UNIT		
Output voltage	1 = E = A += 250 = A	V 22 V 25 V	25°C	-19.2	-20	-20.8	l v		
Output voltage	10 = 5 mA to 350 mA,	0°C to 125°C	-19		-21	, , ,			
Input regulation	V _I ≈ -23 V to -35 V		25°C		12	80	-11		
tubut regulation	V ₁ = -24 V to -34 V				10	70	m∨		
Pinale minutes	$V_1 = -24 \text{ V to } -34 \text{ V},$	I _O = 100 mA	0°C to 125°C	50			70		
Ripple rejection	f = 120 Hz	Io = 300 mA	25° C	54	58		dΒ		
Outrous recorded as	Io = 5 mA to 500 mA	• •	25°C		75	300			
Output regulation	I _O = 5 mA to 350 mA				50		m∨		
Temperature coefficient	Io = 5 mA		0°C to 125°C		-1		mV/°C		
of output voltage	10 - 9 IIIA		0 0 125 0		'		mv/ C		
Output noise voltage	f = 10 Hz to 100 kHz		25°C		500		μV		
Dropout voltage			25° C		1.1		V		
Bias current			25°C		1.5	3.5	mA		
D'an annual abanda	V _I = -23 V to -35 V	-	0°C to 125°C			0.4			
Bias current change	I _O = 5 mA to 350 mA		- U C 10 125 C	0.4		mA			
Short-circuit	V- = -20 V		25°C		140				
output current	V ₁ = -30 V		25 0		140	_	mA		
Peak output current		-	25°C		650		Α		

[†]All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_W < 10 ms, duty cycle < 5%). Output voltage changes due to changes in internal temporature must be taken into account separately.

1282

2-198

uA79M24C electrical characteristics at specified virtual junction temperature, $V_I = -33\ V,\,I_O = 350\ mA$ (unless otherwise noted)

		TEST CONDITIONS [†]			uA79M24C				
PARAMETER					TYP	MAX	UNIT		
			25° C	-23	-24	-25	v		
Output voltage	IO = 5 mA to 350 mA,	0°C to 125°C	-22.8		-25.2				
1	V ₁ = -27 V to -38 V		25°C	1	12	80	m∨		
Input regulation -	V _I = -28 V to -38 V		7 20		12	70	mv		
Dissipation	V _I = -28 V to -38 V,	I _O = 100 mA	0°C to 125°C	50			dΒ		
Ripple rejection	f = 120 Hz	I _O = 300 mA	25° C	54	58		db		
0	I _O = 5 mA to 500 mA		25°C	1	75	300	mV		
Output regulation	IO = 5 mA to 350 mA		7 25 6		50		mv		
Temperature coefficient of output voltage	I _O = 5 mA		0°C to 125°C		_1		mV/°C		
Output noise voltage	f = 10 Hz to 100 kHz		25° C	[600		μ٧		
Dropout voltage			25°C		1.1		V		
Bias current			25° C		1.5	3.5	mA		
Diagonal de la constant de la consta	V ₁ = -27 V to -38 V		0°C to 125°C			0.4	mA		
Bias current change	I _O = 5 mA to 350 mA		J 0 C 10 128 C			0.4	IIIA _		
Short-circuit	V. = 20 V		25° C		140		mA		
output current	v1 30 V	= -30 V		140			""		
Peak output current	**************************************		25° C		650		Α		

[†]All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w < 10 ms, duty cycle < 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

THERMAL INFORMATION

CASE TEMPERATURE **DISSIPATION DERATING CURVE** 10 Derating factor = 250 mW/°C Maximum Continuous Dissipation-W 9 above 120°C RøJC ≈ 4°C/W 8 7 6 5 4 3 2 1 0 L 25

75

50

KC PACKAGE

FIGURE 1

T_C-Case Temperature-°C FIGURE 2

100

125

150

JG PACKAGE FREE-AIR TEMPERATURE **DISSIPATION DERATING CURVE**

FIGURE 3

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

8

Appendix

Ordering Instructions Mechanical Data

ORDERING INSTRUCTIONS

Electrical characteristics presented in this data book, unless otherwise noted, apply for the circuit type(s) listed in the page heading regardless of package. The availability of a circuit function in a particular package is denoted by an alphabetical reference above the pin-connection diagram(s). These alphabetical references refer to mechanical outline drawings shown in this section.

Factory orders for circuits described in this data book should include a four-part type number as explained in the following example.

Circuits are shipped in one of the carriers below. Unless a specific method of shipment is specified by the customer (with possible additional costs), circuits will be shipped on the most practical carrier.

Flat (U) Dual-In-Line (J, JG, N, P) Plug-In (LP) -Barnes Carrier -Slide Magazines -Barnes Carrier -Milton Ross Carrier -A-Channel Plastic Tubing -Sectional Cardboard Box -Barnes Carrier -Individual Cardboard Box -Sectioned Cardboard Box -Individual Plastic Box TO-3 (KA) TO-220AB (KC) -Form Pack -Bulk Pack ~Sleeves

J ceramic dual-in-line packages

These hermetically sealed dual-in-line packages consist of a ceramic base, ceramic cap, and a 14- or 16-lead frame. Hermetic sealing is accomplished with glass. The packages are intended for insertion in mounting-hole rows on 7,62 (0.300) centers (see Note a). Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering.

NOTE a: Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.

JG ceramic dual-in-line package

This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and 8-lead frame. The package is intended for insertion in mounting-hole rows 7,62 (0.300) centers (see Note a). Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering.

3

NOTE a. Each pin centerline is located within 0,25 (o.010) of its true longitudinal position.

LP plastic package

This package is an encapsulation in a plastic compound specifically designed for this purposes. The package will withstand withstand soldering temperatures without deformation. The package exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B.

NOTE a: Lead dimensions are not controlled in this area.

KA (TO-3) package

KC (TO-220AB) package

NOTE: Notches may or may not be present,

3

N plastic dual-in-line packages

These dual-in-line packages consist of a circuit mounted on a 14- or 16-lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. The packages are intended for insertion in mounting-hole rows on 7,62 (0.300) centers (see Note a). Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering.

NOTE a: Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.

3

P dual-in-line plastic package

This dual-in-line package consists of a circuit mounted on an 8-lead frame and encapsulated in an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated under high-humidity conditions. This package is intended for insertion in mounting hole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering.

NOTE A: Each pin centerline is within 0,13 (0.005) radius of true position at the gauge plane with maximum material condition and unit installed.

U ceramic flat packages

This flat package consists of a ceramic base, ceramic cap, and 10-lead frame. Circuit bars are alloy-mounted. Hermetic sealing is accomplished with glass. Tin-plated leads require no additional cleaning or processing when used in soldered assembly.

NTOES: a. Leads are within 0.13 (0.005) radius of true position (TP) at maximum material condition.

b. This dimension determines a zone within which all body and lead irregularities lie.

TI Sales Offices

ALABAMA: Huntsville, 500 Wynn Drive, Suite 514, Huntsville, AL 35805, (205) 837-7530.

ARIZONA: Phoenix, P.O. Box 35160, 8102 N. 23rd Ave., Suite A, Phoenix, AZ 85021, (602) 995-1007.

CALIFORNIA: El Segundo, 831 S. Douglas Sr., El Segundo, CA 90245, [213) 973-5771; Irvine, [1891] Cerrwetgh Rd., Irvine, CA 9214, [714] 666-1000; Sacramento, 1900 Point West West, Suite 171, Sacramento, CA 95815, [916) 929-1521; San Diego, A331 Veur Bilge, 4ve., Suite B., San Diego, CA 92123, (714) 278-9600; Santa Clars, 5351 Betty Ross Dr., Santa Clars, CA 99054, (408) 900-9000; Woodland Hills, 21220 Erwin Sc., Woodland Hills, CA 91367, (213) 704-7759.

COLORADO: Denver, 9725 E. Hampden St., Suite 301, Denver, CO 80231, (303) 695-2800.

CONNECTICUT: Wallingford, 9 Bernes Industrial Park Rd., Barnes Industrial Park, Wallingford, CT 05492, (203) 269-0074.

FLORIDA: Clearwater, 2280 U.S. Hwy, 19 N., Suite 232, Clearwater, Fl. 33515, (813) 796-1926; Fr. Lauderdále, 2765 N.W. 62nd Sc., Fr. Lauderdále, Fl. 33309, (305) 973-8502; Maitland, 2601 Maitland Center Parkway, Maitland, Fl. 32751, 1055 646-9600.

GEORGIA: Atlanta, 3300 Northeast Expg., Building 9, Atlanta, GA 30341, (404) 452-4600.

ILLINOIS: Arlington Heights, 515 W. Algonquin, Arlington Heights, IL 60005, (312) 640-2934.

INDIANA: Ft. Wayne, 2020 Inwood Dr., Ft. Wayne, IN 46805, (219) 424-5174; Indianapolis, 2346 S. Lynhurst, Suite J-400. Indianapolis, IN 46241, (317) 248-8555.

IOWA: Codar Rapids, 373 Collins Rd. NE, Suite 200, Codar Rapids, IA 52402, (319) 395-9550.

MARYLAND: Baltimore, 1 Rutherford Pl., 7133 Rutherford Rd., Baltimore, MD 21207, (301) 944-8600.

MASSACHUSETTS: Wakham, 504 Totten Pond Rd., Wakham, MA 02154, (617) 690-7400.

MICHIGAN: Farmington Hills, 33737 W. 12 Mile Rd., Farmington Hills, MI 48018, (313) 553-1500.

MINNESOTA: Edina, 7625 Parklawn, Edina, MN 55435, (612) 830-1600.

MISSOURI: Kansas City, 8080 Ward Pkwy., Kansas City, MO 64114, (816) 523-2500, Sr. Louis, 11861 Westline Industrial Drive, St. Louis, MO 63141, (314) 569-7600.

NEW JERSEY: Clark, 292 Terminal Ave. West, Clark, NJ 07066, (201) 574-9800.

NEW MEXICO: Albuquerque, 5907 Alice NSE, Suite E., Albuquerque, NM 87110, (505) 265-8491.

NEW YORK: East Syracuse, 6700 Old Collaner Rd., East Syracuse, NY 1957, (315) 463-9291; Endleott, 112 Nanticoke Ave., P.O. Box 616, Endicort, NY 1970, (607) 754-900; Melville, I Huntaggon Quadrangle, Suite 3/CO, P.O. Box 2936, Melville, NY 11747, (350) 454-6600; Pouphkeepies, 201 South Ave., Pouphkeepies,

NORTH CAROLINA: Charlotte, 8 Woodlawn Green, Woodlawn Rd., Charlotte, NC 28210, (704) 527-0930; Raleigh, 300 Highwoods Blvd., Suite 118, Raleigh, NC 27625, (919) 876-2725.

OHIO: Beachwood, 23408 Commerce Park Rd., Beachwood, OH 44122, (216) 464-6100; Dayton, Kingsley Bidg., 4124 Linden Ave., Dayton, OH 45432, (513) 258-3877.

OKLAHOMA: Tulsa, 7615 East 63rd Place, 3 Memorial Place, Tulsa, OK 74133, (405) 250-0633.

OREGON: Besverton, 6700 SW 105th St., Suite 110, Besverton, OR 97005, (503) 643-6758.

PENNSYLVANIA: Pt. Weshington, 575 Verginia Dr., Pt. Washington, PA 19034, (213) 643-6450; Coraopolis, PA 15108, 420 Rouser Rd., 3 Airport Office PK, (412) 771-8550.

TEXAS: Austin, 12501 Research Blvd., P.O. Box 2909, Austin, TX 78723, (312) 250-7655; Dalkas, P. O. Box 1087, Richardson, TX 75000; Houston, 9100 Southwest frey., Suize 237, Houston, TX 77036, (713) 778-6592; San Antonio, 1000 Central Park South, San Antonio, TX 78232, (312) 496-1779.

UTAH: Selt Lake City, 3672 West 2100 South, Salt Lake City, UT 84120, (801) 973-6310.

VIRGINIA: Fairfax, 3001 Prosperity, Fairfax, VA 22031, (703) 849-1400; Midlothian, 13711 Sutter's Mill Circle, Midlothian, VA 23113, (804) 744-1007.

WISCONSIN: Brookfield, 205 Bishops Way, Suite 214, Brookfield, WI 53005, (414) 784-3040.

WASHINGTON: Redmond, 2723 152nd Ave., N.E. Bidg. 6, Redmond, WA 98052, (206) 881-3080.

CANADA; Ottawa, 436 Mac Laren St., Ottawa, Canada, KIPOMB, (613) 233-1177. Richmond Hill, 280 Centre St. E., Richmond Hill L4CIBI, Ontario, Canada, (46) 884-9181; St. Laurent, Ville St. Laurent Quebec, 9400 Trans Canada Hwy., St. Laurent, Ouber, Canada H4SIRT, (514) 314-3435.

TI Distributors

ALABAMA: Hall-Mark (205) 837-8700.

ARIZONA: Phoenis, Kierulff (602) 243-4101; Marshall (602) 968-6181; Wyle (602) 249-2232; Tucson, Kierulff (602) 624-9966.

CALIFORNIA: Los Angeles/Orange County, Arrow (213) 70:1750, [714) 851-8961; Kerniff (213) 725-0225, [714) 551-6961; Kerniff (213) 725-0225, [714) 731-711; Kinzhaid (213) 795-500, (213) 447-720, (714) 556-690; R.V. Weatheriord (714) 634-6900, (213) 649-3451, (114) 632-162; Wyle (213) 225-6100, (714) 641-600, San Diego, Arrow (619) 556-6400; Kiendiff (619) 276-2712; Wyle (619) 565-9711; San Francisco Bay Area, Arrow (630) 745-6000; Kerniff (619) 566-692; Marshail (649) 721-100, Wyle (600) 727-7500; Santa Barbara, R. V. Weatheriord (605) 965-8551.

COLORADO: Arrow (303) 758-2100; Kierulff (303) 790-4444; Wyle (303) 457-9953.

CONNECTICUT: Arrow (203) 265-7741; Diplomat (203) 797-9674; Kicrulff (203) 265-1115; Marshall (203) 265-3822; Milgray (203) 795-0714.

FLORIDA: Ft. Lauderdale, Arrow (305) 776-7790; Diplomat (305) 971-7160; Hall-Mark (305) 971-9280; Kierdif (305) 952-9590; Ortlando, Arrow (305) 725-1480; Diplomat (305) 725-4520; Hall-Mark (305) 855-4020; Milgray (305) 647-5747; Tampa, Diplomat (813) 443-4514; Hall-Mark (813) 576-8691; Kierdiff (813) 576-1966.

GEORGIA: Arrow (404) 449-8252; Hail-Mark (404) 447-8000; Kierulff (404) 447-5252; Marshall (404) 923-5750.

ILLINO18: Arrow (312) 397-3440; Diplomat (312) 595-1000; Hall-Mark (312) 860-3800; Kierulff (312) 640-0200; Newark (312) 638-4411.

Creating useful products and services for you. INDIANA: Indianapolis, Arrow (317) 243-9353; Graham (317) 634-8202; Ft. Wayne, Graham (219) 423-3422.

IOWA: Arrow (319) 395-7230.

KANSAS: Kansas City, Component Specialties (913) 492-3555; Hall-Mark (913) 888-4747; Wichita, LCOMP (316) 265-9507.

MARYLAND: Arrow (301) 247-5200; Diplomat (301) 995-1226; Hall-Mark (301) 796-9300; Kierulff (301) 247-5020; Milgray (301) 468-6400.

MASSACHUSETTS: Arrow (617) 933-8130; Diplomat (617) 429-4120; Kierulff (617) 667-8331; Marshall (617) 272-8200; Time (617) 935-8060.

MICHIGAN: Detroit, Arrow (313) 971-8200; Newark (313) 967-0600; Grand Rapida, Arrow (616) 243-0912.

MINNESOTA: Arrow (612) 830-1800; Hall-Mark (612) 854-3223; Kierulff (612) 941-7500.

MISSOURI: Kenses City, LCOMP (816) 221-2400; St. Louis, Arrow (314) 567-6888; Hall-Mark (314) 291-5350; Kieruiff (314) 739-0855.

NEW HAMPSHIRE: Arrow (603) 668-6968.

NEW JERSEY: Arrow (201) 575-5300, (609) 235-1900; Diplomst (201) 785-1830; General Radio (609) 994-8560; Hall-Mark (201) 575-4415, (609) 424-7300, JACO (201) 778-4722, (800) 645-5130; Kierulif (201) 575-6750; Marshall (201) 882-0320; Milgray (609) 983-5010, (800) 645-3956.

NEW MEXICO: Arrow (505) 243-4566; International Electronics (505) 345-8127.

NEW YORK: Long Island, Arrow (516) 231-1000; Diplomate (516) 454-6334; Hall-Mark (516) 737-0000; JACO (516) 237-5000; Marshald (516) 273-70000; JACO (516) (800) 645-5900; Hall-Mark (516) 737-0000; Rochester Arrow (716) 273-5000; Marshall (716) 237-5000; Rochester Arrow (5176) 273-5000; Marshall (716) 237-5000; Rochester Radio Supply (716) 454-7800; Syracuse, Arrow (315) 632-1000; Diplomate (315) 632-5000; Marshall (607) 744-1570.

NORTH CAROLINA: Arrow (919) 876-3132, (919) 725-8711; Hall-Mark (919) 872-0712; Kierulff (919) 852-9440.

OHIO: Cincinnasi, Ornham (513) 772-1661; Hall-Mark (513) 563-5860; Cleweland, Arrow (216) 248-3990; Hall-Mark (216) 477-3207; Keinelf (216) 587-585; Columbau, Hall-Mark (614) 691-4555; Dayton, Arrow (513) 435-5561; ESCO (513) 226-1133; Marthall (513) 228-6508.

OKLAHOMA: Arrow (918) 665-7700; Component Specialties (918) 664-2820; Hall-Mark (918) 665-3200; Kierulff (918) 252-7537.

OREGON: Kierulff (503) 641-9150; Wyle (503) 640-6000.

PENNSYLVANIA: Arrow (412) 856-7000, (215) 928-1800; General Radio (215) 922-7037; Hall-Mark (215) 355-7300.

TEXAS: Austin, Arrow (512) 835-4180; Component Specialtics (511) 837-8922; Hall-Mark (512) 258-8948; Kierdif (512) 855-200; Dallas, Arrow (41) 386-7500; Component Specialtics (214) 537-6511; Hall-Mark (214) 341-147; Instrumional Electronics (214) 23-922; Kierdif (214) 343-2400; El Paso, International Electronics (915) 778-976; Phoustoo, Arrow (713) 491-400; Component Specialtics (713) 771-7237; Hall-Mark (713) 781-6100; Harrison Equipment (713) 879-2600; Kierdif (713) 350-7030.

UTAH: Diplomat (801) 486-4134; Kierulff (801) 973-6913; Wyle (801) 974-9953.

VIRGINIA: Arrow (804) 282-0413.

WASHINGTON: Arrow (206) 643-4800; Kierulff (206) 575-4420; Wyle (206) 453-8300.

WISCONSIN: Arrow (414) 764-6600; Hall-Mark (414) 761-3000; Kierulff (414) 784-8160.

CANADA: Calgary, Future (403) 259-6408; Varah (403) 230-1235; Hamilton, Varah (416) 561-9311; Montrezi, CESCO (514) 735-5511; Future (514) 694-7710; Ottawa, CESCO (613) 220-6605; Future (613) 240-2631; Quebec City, CESCO (416) 661-0220; Future (416) 667-4231; Toronto, CESCO (416) 661-0220; Future (416) 661-3563; Varah (604) 438-5545; Varah (604) 873-3211; Winnipeg, Varah (204) 633-6490.

TI Worldwide Sales Offices

ALABAMA: Huntaville, 500 Wynn Drive, Suite 514, Huntaville, AL 35805, (205) 837-7530.

ARIZONA: Phoenix, P.O. Box 35160, 8102 N. 23rd Ave., Suite A, Phoenix, AZ 85021, (602) 995-1007.

CALIFORNIA: El Segundo, 831 S. Douglas Sc., El Segundo, CA 90245, (213) 973-2751; Ievine, 17891 Cartweight Rd., Irvine, CA 9214, (714) 660-1000. Secramento, 1900 Brunt West Wes, Suste 171, Secramento, CA 95815, (916) 929-1521; San Diego, 4331 Vew Radge Ave., Suste B., San Dego, CA 92121, (714) 278-9600; Sansa Clara, 5353 Betty Ross Dt., Santa Clara, CA 99054, (408) 980-9000; Woodland Hülls, 21220 Erwin St., Woodland Hülls, CA 91507, (213) 704-7795.

COLORADO: Denves, 9725 E. Hampden St., Suite 301, Denver, CO 80231, (303) 695-2800.

CONNECTICUT: Wallingford, 9 Barnes Industrial Park Rd., Barnes Industrial Park, Wallingford, CT 06492, (203) 269-0074.

FLORIDA: Clearwatez, 2280 U.S. Hwy. 19 N., Sune 232, Clearwater, Fl. 33515, (313) 780-7926; Fr. Lauderdde, 2765 N.W. 6210 Sc., Fr. Lauderdde, Fl. 33300, (305) 973-8502; Maithand, 2601 Maintand Center Parkway, Mantland, Fl. 32751, (305) 646-9600.

GEORGIA: Atlanta, 3300 Northeast Expy., Building 9, Atlanta, GA 30341, (404) 452-4600.

ILLINOIS: Arlington Heights, \$15 W. Algonquan, Arlangton Heights, IL 60005, (312) 640-2934.

INDIANA: Ft. Wayne, 2020 Inwood Dr., Ft. Wayne, IN 46805, (219) 424-5174; Indianapolis, 2346 S. Lynhurst, Suite J-400, Indianapolis, IN 46241, (317) 248-8555.

J-400, Indianapolis, IN 46241, (317) 248-8555. EOWA: Cedar Rapids, 373 Collins Rd. NE, Suite 200, Cedas Rapads, IA 52402, (319) 395-9550.

MARYLAND: Baltimore, 1 Rutherford Pl., 7133 Rutherford Rd., Baltimore, MD 21207, (301) 944-8600.

MASSACHUSETTS: Waltham, 504 Totten Pond Rd., Waltham, MA 02154, (617) 890-7400.

MICHIGAN: Farmington Hills, 33737 W. 12 Mile Rd., Farmington Hills, MI 48018, (313) 553-1500.

MINNESOTA: Edina, 7625 Parklawn, Edina, MN 55435, (612) 830-1600.

MISSOURI: Kansas City, 8080 Ward Pkws., Kansas City, MO 64114, (816) 523-2500, Se. Louis, 11861 Westline Industrial Drive, St. Louis, MO 63141, (314) 569-7600.

NEW JERSEY: Clark, 292 Terminal Ave. West, Clark, NJ 07066, (201) 574-9800.

NEW MEXICO: Albuquerque, 5907 Alace NSE, Suite E., Albuquerque, NM 87110, (505) 265-8491.

NEW YORK: East Syrnessy, 6700 Old Collamer Rd., East Syracuse, NY 1307, (1315) 463-2991; Endicort, 112 Nantacoke Aws., P.O. Box 618, Endocort, NY 13760, (607) 754-3900. Melville, I Huntangton Quadrangle, Suste XCIO, P.O. Box 5296, Melville, NY 11747, (156) 645-6600; Peophikespide, 201 South Aws., Psughkeepse, NY 12601, (914) 473-2900; Rochester, 1210 Jeffsmon Rd., Rochester, NY 14623, (716) 424-5400.

NORTH CAROLINA: Charlotte, 8 Woodlswn Geeen, Woodlswn Rd., Charlotte, NC 28210, (704) 527-0910; Raleigh, NOO Highwoods Blvd., Smte 118, Raleigh, NC 27625, (919) 876-2725.

OHIO: Beachwood, 23408 Commerce Park Rd., Beachwood, OH 44122, (216) 464-6100; Dayton, Kingsley Bidg., 4124 Linden Ave., Dayton, OH 45432, (513) 258-3877.

OKLAHOMA: Tulsa, 7615 East 63rd Place, 3 Memorial Place, Tulsa, OK 74133, (405) 250-0633.

OREGON: Beswerton, 6700 SW 105th St., Suite 110, Beswerton, OR 97005, (503) 643-6758.

PENNSYLVANIA: Ft. Washington, 575 Virginia Dr., Ft. Washington, PA 19034, (215) 643-6450; Coraopolis, PA 15108, 420 Rouser Rd., 3 Airport Office PK, (412) 771-8550.

TEXAS: Austin, 12501 Research Blvd., P.O. Box 2909, Austin, TX 78723, (512) 250-7655; Dallas, P. O. Box 1087, Richardson, TX 75009, Houston, 9100 Southwest Free, Suite 237, Houston, TX 71036, (713) 778-6952; Sen Antonico, 1000 Central Park South, San Antonico, TX 78232, (512) 496-1779.

UTAH: Salt Lake City, 3672 West 2100 South, Salt Lake City, UT 84120, (801) 973-6310.

VIRGINIA: Fairfax, 3001 Prosperity, Fairfax, VA 22031, (703) 849-1400; Midlochian, 13711 Sutter's Mill Circle, Midlochian, VA 23113, (804) 744-1007.

WISCONSIN: Brookfield, 205 Bushops Way, Sunte 214, Brookfield, WI 53005, (414) 784-3040.

WASHINGTON: Redmond, 2723 152nd Ave., N.E. Bidg. 6, Redmond, WA 98052, (206) 881-3080.

CANADA: Ottawa, 436 Mac Laren St., Ottawa, Canada, KIPOMA, (613) 233-1177; Richmond Hill, 200 Centre St. E., Richmond Hill J. (CEI), Ottamo, Canada, (416) 684-938; St. Laurent, Ville St. Laurent Quebec, 9460 Tenro Canada Hwy., St. Laurent, Quebec, Canada HdSIR7, (1913) 334-365.

ARGENTINA, Texas Instruments Argentina S.A.I.C.F.: Esmeralda 130, 15th Floor, 1035 Buenos Aires, Argentina, 394-2963.

AUSTRALIA (G. NEW ZEALAND), Texas Instruments Australia Ind.: 6-10 Taiburen Rd., North Ryde (Sydney), New South Wales, Australia 2113, 02 + 687-1122; 5th Floor, 416 Sc. Kidda Road, Melbourne, Vectoria, Australia 3004, 03 + 267-4677; 171 Philip Highwey, Elizabeth, South Australia 5112, 08 + 257-2066.

AUSTRIA, Texas Instruments Ges.m.b.H.: Industriestrabe B/16, A-2345 Brunn/Gebirge, 2236-846210.

BELGIUM, Texas Instrumento N.V. Belgium S.A.: Mercure Centre, Ruketuragi 100, Rue de la Fusce, 1130 Brusiels, Belgium, 02/720.60.00.

BRAZIL, Texas Instruments Electronicos do Braul Ltda.: Av. Faria Lima, 2003. 20 0 Ander—Pinheiros, Cep-01451 Sao Paulo, Brazil, 815-6166.

DENMARK, Texas Instruments A/S, Manelandvej 46E, DK-2730 Herley, Denmark, 2 - 91 74 00.

FINLAND, Texas Instruments Finland CY: Pl. 56, 00510 Helsinki 51, Finland, (90) 7013133.

PRAINCE. Texas Instruments Prance: Hendquarters and Prod. Plant. BP 05, 05/10 Willeneuve-Loubet, (93) 20-01-01; Paris Office, BP 07 8-10 Avenue Morrare Sustairer, 78/14 Velury-Wilkcomber, (39) 96/97/12; Lyon Saks Office, Clore D'Ecully, Beauseria B, Chemin de la Forentere, 69/130 Ecully, Beauseria B, Chemin de la Forentere, 69/130 Ecully, Beauseria B, Chemin de la Forentere, 69/130 Ecully, 10/131-14; Paris Control (1931) 4-16; Paris College, 1931) 4-16; Paris College, 1931, Paris Coll

Texas Instruments

> Creating useful products and services for you

GERMANY, Texas Instruments Deutschland OrnbH: Haggerti-parase I, D-8050 Freilung, 08161-801; Kurfuetstendamn 195905, Di000 Berlin 15, 030-8827365; III, Hagen 47Kübbitsmane, D-4300 Emen, 0201-24250; Frankfurter Aller 6-8, D-6236 Echborn I, 00196-43074; Hamburger Strase II, D-2000 Hamburg 76, 040-2201154; Kurchborsterstrasse 2, D-3000 Hamburg 75, 0511-68301; Arabellastrasse 15, D-6000 Murchen 81, 089-92341, Maybachurasse II, D-7302 Cutdidem 27Mellingen, 0711-13001.

HONG KONG (+ PEOPLES REPUBLIC OF CHINA), Texas Instrumenta Assa Ltd.: 8th Floor, World Shipping Ctr., Harbour City, 7 Canton Rd., Kowloon, Hong Kong, 3+722-1223.

IRELAND, Texas Instruments (Ireland) Limited: 25 St. Stephens Green, Dublin 2, Eire, 01 609222.

ITALY, Texas Instruments Semiconduction Italia Spa: Viale Drille Scienter, 1, 02015 Cittaducale (Riett), Italy, 0746-694. I; Via Salaria KM 24 (Falkano Coma), Montervinodo Scalo (Rome), Italy, 05 900199; Viale Europa, 30-44, 20093 (Rome), Italy, 05 900199; Viale Europa, 30-44, 20093 (Rome), Italy, 01774-95; Viale Europa, 30-45, 20093 (Rome), Italy, 01774-95; Viale, Benzuzi, 6, 45100 Bologna, Italy, 01715-958)

JAPAN, Tezas Instruments Asia Lnd.: 4F Aoyama Fuji Bkg., 6-12, Kita Aoyama 3-Chome, Minsto-ku, Tokyo, Japan 107, 04-98-2111; Oakab Branch, 5F, Nisho Iswal Bkg., 50 Inabash 3-Chome, Higashi-ku, Oaka, Japan 541, 06-204-1881; Nagoya Barach, 7F Daint Torcas Wert Bkdg., 10-27, Mereks 4-Chome, Nakamura-ku, Nagoya, Japan 450, 051-581-580-7.

KOREA, Texas Instruments Supply Co.: Room 201, Kwangpoung Bidg., 24-1, Hwsyand-Dong, Sung dong-ku, 133 Seoul, Korea, 02 + 464-6274/5.

MEXICO, Texas Instruments de Mexico S.A.: Porsense 116, No. 489, Colonia Vallejo, Mexico, D.F. 02300, 567-9200.

MIDDLE EAST, Texas Instruments: No. 13, 1st Floor Mannas Bidg., Diplomatic Area, Manama, P.O. Buz 26335, Bahram, Araban Gulf, 973 - 72 46 81.

NETHERLANDS, Texas Instruments Holland B.V., P.O. Box 12995, (Bullewijk) 1100 AZ Amsterdam, Zusd-Oost, Holland (020) 5602911.

NORWAY, Texas Instruments Norway A/S: Kr. Augustigt. 13, Oilo I, Norway, (2) 20 60-40.

PHILIPPINES, Texas Instruments Asia Lad.: 14th Floor, Ba-Lepanto Bidg., 8747 Praeo de Rozza, Makats, Metro Marula, Philippines, 882465.

PORTUGAL, Texas Instruments Equipamento Electronico (florrigal), Eda:: Rua Eng. Frederico Ulrich, 2650 Moreira Da Mais, 4470 Maia, Portugal, 2-9461003.

SINGAPORE (+ INDIA, INDONESIA, MALAYSIA, THAILAND), Texas Instruments Aus Ltd.: P.O. Box 138, Unit #02-09. Block 6, Kolam Ayer Industrial Est., Kullang Sector, Singapore 1334, Republic of Singapore, 747-2255.

SPAIN, Texas Instruments Espana, S.A.: C/Jose Lazaro Galdusto No. 6, Madrid 16, 1/458,14.58, C/Balmes, 89 Barcelona-8, 253 60 00/253 29 02:

SWEDEN, Tenss Instruments International Trade Corporation (Sverignfillalen): Box 59(0), (0054 Stockholm, Sweden, 08 -235400.

SWITZERLAND, Texas Instruments, Inc. Riedstrame 6 CH-8953 Dietikon (Zuerich) Switzerland, 1-740 2220.

TAIWAN, Texas Instruments Supply Co.: 10th Floot, Fu-Shing Bidg., 71 Sung-Kieng Road, Taiper, Taiwan, Republic of China, 02 + 521-9321.

UNITED KINGDOM, Texas Inscruments Limited: Manton Lane. Bedford, MX41 7PA, England, 0234 67466; St. James House. Wellington Road North, Sonchport, SK4 2RT, England, 051 442-8448.

