IT594: - DEEP NEURAL NLP

A Project on Research Paper Simplification

Sarvesh Bagwe (202211006) Vedant Dave (202211042) Kashyap Halavadia(202003040) Hiren Thakkar (202211074)

Course Instructor: Prof. Sourish Dasgupta

Problem Formulation

Objective: To reduce the complexity of vocabulary and sentence structures while preserving the original meaning to enhance readability and understanding.

Challenges:

- 1. Preserving Meaning: Striking a balance between simplification and maintaining the core message.
- 2. Accuracy: To ensure precise simplification across diverse context and text types.

Text Preprocessing

- 1. Removing extra white spaces in 'highlights', 'body', and 'text'.
- 2. Removing square brackets and numbers from the 'text'.
- 3. Extracting 'abstract' from 'text' using 'ABSTRACT' and 'INTRODUCTION' markers.
- 4. Filtering rows based on 'abstract' length (500 to 2000 characters).
- 5. Replacing URLs in 'text' with "<LINK>".
- 6. Stripping leading whitespaces in 'abstract' and 'highlights'.
- 7. Removing special characters (excluding alphanumeric, whitespace, dots, and hyphens) in 'abstract' and 'highlights'.
- 8. Replacing hyphens with spaces in 'abstract' and 'highlights'.

Text Summarization

Model Architecture (Encoder Decoder Architecture)

Rationale for using Encoder Decoder Architecture (LSTM-LSTM)

An architecture employing an Encoder-Decoder framework for text summarization.

Encoder:

• It utilizes LSTM to learn input text embeddings, capturing contextual information.

Decoder:

- Initially it focuses on Language Modelling to understand the structure and semantics.
- Takes text embeddings from encoder as condition (C) for generating summaries.
- Leverages the learned embeddings (while Language Modelling) and condition (C) for precise summary generation.

Specifics of the model architecture(LSTM-LSTM)

- Number of Total Parameters: 8474316
- Hyperparameters :- Learning Rate (0.001), Batch Size (5-10), Embedding Dimension, Patience
- Loss function: Sparse Categorical Cross Entropy
- Optimizer:- RMSProp

Model Architecture (BART)

Rationale for using Encoder Decoder Architecture (BART)

An architecture employing an Encoder-Decoder framework for text summarization.

Encoder:

• It utilizes LSTM to learn input text embeddings, capturing contextual information.

Decoder:

- Initially it focuses on Language Modelling to understand the structure and semantics.
- Takes text embeddings from encoder as condition (C) for generating summaries.
- Leverages the learned embeddings (while Language Modelling) and condition (C) for precise summary generation.

Rationale for using Encoder Decoder Architecture (BART)

• Attention Mechanism Advantage: Harnesses an attention mechanism to better capture intricate relationships between words.

Dual Pre-training Objective:

• Model Foundation: It is trained with a dual objective - to regenerate the correct version of a corrupted input, a feature that can prove to be beneficial for the summarization task.

Embracing Auto-Regressiveness:

• Dynamic Generation Process: it exhibits an Auto-Regressive nature (step-by-step generative process).

Specifics of the model architecture (BART)

- Hyperparameters :- Learning Rate (0.0001), Model Dimension, Optimizer
- Loss function:- Sparse Categorical Cross Entropy
- Optimizer:- AdamW

Rationale for using Decoder Only Architecture (GPT-2)

- It is Auto-Regressive in nature (step-by-step generative process).
- It can draw attention to potential redundancy in encoding text before generating summary.
- Human text summarization is linear and sequential process which can be leveraged by Auto-Regressive property.
- GPT-2 uses decoder only architecture which has been pre trained on large corpus of text.
- We can take advantage of pre trained embeddings to enhance our performance by fine-tuning it on our data.

Specifics of the model architecture(GPT-2)

- Hyperparameters :- Learning Rate (0.0002), Sequence Length (512), WarmUp Steps
- Loss function:- Sparse Categorical Cross Entropy
- Optimizer:- AdamW

Rationale for using Encoder Only Architecture (T5 Model)

- Encoder-Decoder framework for text summarization.
- Text-to-Text Framework instead of Sequence-to-Sequence Framework
- It is pre-trained on benchmark dataset of many NLP Tasks

Specifics of the model architecture (T5)

- Hyperparameters :- Learning Rate (0.0001), Weight Decay, Model Dimension
- Loss function:- Cross Entropy
- Optimizer:- AdamW

Results

Model	BLEU	ROUGE-1	ROUGE-2	ROUGE-3
BART	0.06343	0.3386	0.1278	0.3176
Sequence2Sequence(LSTM)	0.1022	0.3790	0.1596	0.3583
T5	0.1867	0.4439	0.2413	0.4274
GPT-2	0.2269	0.4821	0.2931	0.4669

Tabel 1: Evaluating our trained models on different metrics

Thank You