Lecture 5: transpose, permutation, vector space

Lecture 5: transpose, permutation, vector space

```
Permutation matrix  \begin{tabular}{ll} Transpose \\ Vector space \\ vector space \\ Example: From <math>\Bbb R^2 extend to \Bbb R^n subspace  \begin{tabular}{ll} Column space \\ Column space \\ \end{tabular}
```

Permutation matrix

Permutation matrix P: to execute row exchange.

For a good matrix A: inversible and no-zero on the pivot column, always satisfy the equation A=LU.

But not all the matrix are good so we need permutation matrix to finish row exchange and for any inversible matrix always have PA = LU.

Transpose

$$(A^T)_{ij}=(A)_{ji}$$

If $A^T = A$, the A is a symmetric matrix.

• R^TR always a symmetric matrix: $(R^TR)^T = R$.

Vector space

vector space

So-called vector space satisfied that closed with linear operation:

- addition: $\forall v,w \in \mathbb{R}^{\mathrm{n}},\; (v+w) \in \mathbb{R}^{\mathrm{n}}.$
- multiply by a real number: $\forall v \in \mathbb{R}^n, n \in R, n \cdot v \in \mathbb{R}^n$.
- any vector space has to include **0** vector.

Example: From \mathbb{R}^2 extend to \mathbb{R}^n

In lower dimension, we can describe the vector space with diagram, such as \mathbb{R}^2 is a plane and \mathbb{R}^3 is a 3D space people lived and we can draw column picture of them.

When it extend to n-dimension, and $n\to\infty$, it's hard to describe the vector space and the intuitional understanding is \mathbb{R}^n include all n-dimension vector and every vector have n real components.

subspace

Consider: if we select a part of a vector space, will it construct a vector space?

Answer: it depends on whether it still satisfy the condition, some will be and some may not.

Example: \mathbb{R}^2

1. select the first quadrant as a sub-space $\mathbb D$

It's obviously that if we multiply the vector in \mathbb{D} with a negative, the result will in third quadrant rather than first quadrant, so sub-space \mathbb{D} is not a subspace.

2. a line cross the original point: is a subspace of $\ensuremath{\mathbb{R}}^2$

Conclusion:

subspace for \mathbb{R}^2 : \mathbb{R}^2 , line across origin, $\vec{0}$.

subspace for \mathbb{R}^3 : \mathbb{R}^3 , plane across origin, line across origin, $\vec{0}$

Column space

Given a matrix
$$A=egin{bmatrix}1&3\\2&3\\4&1\end{bmatrix}$$
 , how to build a subspace with it?

Look at the column vector, they all in \mathbb{R}^3 , to satisfy the linear closed operation, a intuitional understanding is all its linear combinations form a subspace we called **column space** and denote as C(A).