

### ZADÁNÍ DIPLOMOVÉ PRÁCE

Název: Komunikace skrze Captive portal

Student:Bc. Martin ČernáčVedoucí:Ing. Aleš Padrta, Ph. D.

Studijní program: Informatika

Studijní obor:Počítačové systémy a sítěKatedra:Katedra počítačových systémůPlatnost zadání:Do konce letního semestru 2018/19

#### Pokyny pro vypracování

- 1. Seznamte se s problematikou Captive portals a způsoby jejich obcházení.
- 2. Navrhněte protokol umožňující obejití Captive portals s důrazem na co nejvyšší propustnost.
- 3. Navržený protokol implementujte.
- 4. Výsledky vyhodnoťte a porovnejte s dostupnými řešeními.

#### Seznam odborné literatury

Dodá vedoucí práce.



Diplomová práce

## Komunikace skrze Captive portal

Bc. Martin Černáč

Katedra počítačových systémů Vedoucí práce: Ing. Aleš Padrta, Ph. D.

# Poděkování Rád bych poděkoval svému vedoucímu za cenné rady, věcné připomínky a vstřícnost při konzultacích.

## Prohlášení

Prohlašuji, že jsem předloženou práci vypracoval(a) samostatně a že jsem uvedl(a) veškeré použité informační zdroje v souladu s Metodickým pokynem o etické přípravě vysokoškolských závěrečných prací.

Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorského zákona, ve znění pozdějších předpisů. V souladu s ust. § 46 odst. 6 tohoto zákona tímto uděluji nevýhradní oprávnění (licenci) k užití této mojí práce, a to včetně všech počítačových programů, jež jsou její součástí či přílohou, a veškeré jejich dokumentace (dále souhrnně jen "Dílo"), a to všem osobám, které si přejí Dílo užít. Tyto osoby jsou oprávněny Dílo užít jakýmkoli způsobem, který nesnižuje hodnotu Díla, a za jakýmkoli účelem (včetně užití k výdělečným účelům). Toto oprávnění je časově, teritoriálně i množstevně neomezené. Každá osoba, která využije výše uvedenou licenci, se však zavazuje udělit ke každému dílu, které vznikne (byť jen zčásti) na základě Díla, úpravou Díla, spojením Díla s jiným dílem, zařazením Díla do díla souborného či zpracováním Díla (včetně překladu), licenci alespoň ve výše uvedeném rozsahu a zároveň zpřístupnit zdrojový kód takového díla alespoň srovnatelným způsobem a ve srovnatelném rozsahu, jako je zpřístupněn zdrojový kód Díla.

České vysoké učení technické v Praze Fakulta informačních technologií

© 2018 Martin Černáč. Všechna práva vyhrazena.

Tato práce vznikla jako školní dílo na Českém vysokém učení technickém v Praze, Fakultě informačních technologií. Práce je chráněna právními předpisy a mezinárodními úmluvami o právu autorském a právech souvisejících s právem autorským. K jejímu užití, s výjimkou bezúplatných zákonných licencí a nad rámec oprávnění uvedených v Prohlášení na předchozí straně, je nezbytný souhlas autora.

#### Odkaz na tuto práci

Černáč, Martin. Komunikace skrze Captive portal. Diplomová práce. Praha: České vysoké učení technické v Praze, Fakulta informačních technologií, 2018. Dostupný také z WWW: (https://github.com/octaroot/CTU-FIT-MasterThesis).

| Δ                | bs | tr | 'a | kı | H |
|------------------|----|----|----|----|---|
| $\boldsymbol{H}$ | N2 | LI | a  | NΙ | L |

TODO V několika větách shrňte obsah a přínos této práce v češtině. Po přečtení abstraktu by měl mít čtenář dost informací pro rozhodnutí, zda chce Vaši práci číst.

Klíčová slova Závěrečná práce, LATEX.

## **Abstract**

TODO Sem doplňte ekvivalent abstraktu Vaší práce v angličtině.

# Obsah

| U            | $\operatorname{vod}$                         | 1                  |
|--------------|----------------------------------------------|--------------------|
| 1            | Analýza současné situace  1.1 Captive portál | <b>3</b><br>3<br>8 |
| 2            | Návrh řešení                                 | 9                  |
| 3            | Implementace                                 | 11                 |
| 4            | Testování                                    | 13                 |
| Zá           | ivěr                                         | <b>15</b>          |
| Li           | teratura                                     | 17                 |
| $\mathbf{A}$ | Seznam použitých zkratek                     | 19                 |
| В            | Obsah přiloženého CD                         | 21                 |

# Seznam obrázků

## Úvod

Bezdrátové sítě se staly zcela běžným prostředkem mezilidské komunikace. Uživatelé bezdrátové sítě mají možnost si navzájem vyměňovat informace a nebýt přitom omezeni kabelovým spojením. Velkým přínosem bezdrátové sítě je tedy zvýšená mobilita uživatelů. Ta vedla k vlně popularity bezdrátových sítí počínaje mobilními telefony, využívajících bezdrátovou sít GSM, až po dnešní chytré spotřebiče a jejich zapojení do *Internet of Things*.

S rostoucími nároky uživatelů prošly rozsáhlým vývojem i bezdrátové sítě (vyšší prostupnost, nižší latence a další aspekty). Mezi dlouhodobě populární a velmi rozšířené typy bezdrátových sítí se řadí technologie Wi-Fi. Jedná se o technologii podporovanou širokým spektrem spotřební elektroniky (například televizory, tiskárny, mobilní telefony nebo počítače). Technologie Wi-Fi využívá bezlicenčním pásmo ISM a díky tomu je provozování vlastní Wi-Fi sítě legislativně nenáročné. Na trhu je navíc dostupná celá řada produktů, zajišťující provoz Wi-Fi sítě.

Z těchto důvodů došlo k velkému rozmachu takzvaných hotspotů, tedy veřejně přístupných míst s pokrytím Wi-Fi sítě. Taková Wi-Fi sít je zpravidla veřejně přístupná a uživatelům nabízí přístup do sítě Internet. Ačkoliv je velice snadné začít s provozem hotspotu, je nutné dbát na další aspekty provozu takové služby – zejména právní aspekty.

Uživatelé *hotspotu* by měli být srozuměni s pravidly používání konkrétní sítě, limitovanou odpovědností provozovatele a před začátkem užívání sítě doložit svůj souhlas s pravidly. Provozovatel navíc může mít zájem o některé identifikující informace o uživatelích *hotspotu*.

Technologie Wi-Fi však sama o sobě neumožňuje nic z výše uvedeného. Takovou situaci lze vyřešit například zapojením recepce v prostředí hotelu (uživatel písemně vyjádří souhlas s pravidly používání sítě, recepční vydá přístupové údaje do sítě). Častěji se však setkáváme s automatizovaným přístupem, realizovaným pomocí captive portálu (z angličtiny Captive portal).

Rešení s pomocí *captive portálu* spočívá v detekci nově připojených uživatelů, které je nutné informovat o pravidlech provozu sítě. Po udělení souhlasu

s pravidly je uživateli poskytnut přístup do Internetu a všechny následné interakce uživatele se sítí *captive portál* ignoruje (nezasahuje do nich).

Z principu věci tedy captive portál musí být schopen **nejprve zasahovat** do veškerého síťového provozu (uživatel doposud nedal souhlas s pravidly, neměl by mít možnost síť využívat) a **následně do provozu konkrétního uživatele nezasahovat vůbec**. Existuje celá řada technologických postupů pro docílení popsaného efektu. Mnohé z nich jsou však neefektivní a nepočítají s "neposlušným" uživatelem, který se bude snažit omezující techniky překonat.

Právě proto jsem se rozhodl vypracovat diplomovou práci na téma obcházení *captive portálu*, zdůrazňující jejich technologickou nedokonalost a poukázat na lepší řešení řízení síťového přístupu (*Network Access Control*).

V této práci se proto budu zabývat popisem problematiky captive portálů a obecnými způsoby jejich obcházení. Jako demonstraci technologické nedokonalosti užití captive portálu pro zajištění řízení sítového přístupu rovněž navrhnu a implementuji protokol s důrazem na maximální prostupnost. Implementovaný protokol otestuji a provedu srovnání s dostupnými nástroji pro obcházení captive portálů.

## Analýza současné situace

Tato kapitola se věnuje problematice *captive portálů*, motivací jejich nasazení v síti a častými problémy s používáním *captive portálu* jako nástroje pro zajištění řízení síťového přístupu.

#### 1.1 Captive portál

Captive portál představuje webovou aplikaci, často nasazovanou na veřejně přístupných sítích. Aplikace má za úkol informovat nově připojené klienty o podmínkách užití sítě a požadovat uživatelův souhlas s jejich dodržováním. Až do momentu souhlasu s podmínkami užití sítě je uživateli odepřen přístup do zbytku sítě. Z toho plyne první část názvu Captive portál – uživatel je "zajatý", "uvězněný" (v angličtině captive).

#### 1.1.1 Motivace nasazení

Captive portál je do provozu sítě často nasazován jako nástroj pro zajištění řízení sítového přístupu. Přístup do sítě je umožněn pouze klientům, kteří splní podmínky přístupu do sítě. Takovou podmínkou může být pouhé vyjádření souhlasu s používáním konkrétní sítě, ale může se jednat i o podmínku složitější, například:

- shlédnutí reklamního spotu dle výběru provozovatele
- uhrazení poplatku pro přístup do sítě
- poskytnutí některých osobních údajů a souhlasu s jejich zpracováním
- doložení oprávnění pro přístup do sítě (kód z účtenky, číslo hotelového pokoje, ...)
- zviditelnění provozovatele pomocí sociálních médií (například Facebook check-in)

Jak plyne z výše uvedeného výčtu, vyjma právních aspektů může být captive portál použit i pro shromažďování údajů o uživatelích sítě. Jedním z nástrojů pro takovou činnost je nabízení "přihlášení se" do captive portálu pomocí účtu na některé ze sociálních sítí. Pokud uživatel takovou možnost využije, captive portál si od sociální sítě vyžádá informace o uživateli, jako například jméno, fotografii, pohlaví nebo datum narození. Po shromažďování takových informací je uživateli poskytnut přístup do zbytku sítě. Provozovatel tedy může uživatele například identifikovat nebo detekovat opakované návštěvy hotspotu. Na oplátku je uživateli "zdarma" poskytnut přístup do sítě Internet.

Pro usnadnění nasazení takového řešení nabízí společnost Facebook službu Facebook Wi-Fi[1], cílenou na majitele obchodů. Jedná se o řešení na bázi captive portálu, které vyžaduje aby nově připojený uživatel měl konto na sociální síti Facebook. Po připojení na hotspot je uživatel vyzván ke sdílení informace o jeho návštěvě obchodu, jehož hotspot právě používá (jako protislužbu za poskytnutý přístup do Internetu).

Poněkud méně invazivní motivací pro zavedení *captive portálu* je monetizace *hotspotu*. Například prodejem reklamního místa – uživatel po připojení do sítě musí shlédnou reklamní spot, nebo vyplnit krátkou anketu. Provozovatel *hotspotu* získá z takové aktivity finanční odměnu a uživateli je odměněn přístupem do sítě Internet.

Některé captive portály alternativně umožňují uživateli doložit nárok na přístup do sítě. Například jednorázový kód z účtenky, čímž dokládá útratu v podniku, který hotspot provozuje. Nebo číslo hotelového pokoje, čímž dokládá svůj pobyt v hotelu, který zahrnuje (jinak zpoplatněný) přístup do sítě Internet.

#### 1.1.2 Realizační technologie

Úkolem *captive portálu* je detekovat nově připojené uživatele sítě, omezit jim přístup do sítě a nasměrovat je na webovou aplikaci captive portálu. Po splnění podmínek pro plnohodnotný přístup uživatele do zbytku sítě nesmí *captive portál* do komunikace dále zasahovat (tj. musí *detekovat*, že sítový provoz patří oprávněnému uživateli).

Ačkoliv se jedná o přímočarý cíl, je možné ho dosáhnout celou řadou postupů a technologií. Proto se v praxi setkáváme s velkým počtem různorodých implementací captive portálu. Některé z nich jsou dostupné pod svobodnou licencí, jiné jsou součástí placeného produktu a v neposlední řadě existují řešení na míru – a to nejen na míru provozovateli, ale rovněž na míru konkrétnímu zařízení/hardware.

Z této skutečnosti plyne fakt, že by bylo velice náročné popisovat a srovnávat *všechny* existující implementace *captive portálu*. V této části práce se proto zmiňuji jen o několika vybraných realizačních technologiích, které dostačují pro pochopení práce *captive portálu*.

Přestože efektu captive portálu lze s velkou úspěšností docílit pouhým odkloněním HTTP provozu, existují mnohem sofistikovanější varianty, využívající například oddělené VLAN sítě. Obecně však platí, že captive portál při své práci může vycházet pouze z informací, které putují po síti. Detekce nově připojených uživatelů a identifikace oprávněných uživatelů je tedy zpravidla založena dvojici identifikátorů:

- globálně unikátní MAC adresa zařízení
- přidělená IP adresa zařízení

Captive portál lokálně ukládá informace o autorizovaných uživatelských zařízeních v síti (zaznamenává jejich MAC a IP adresy). Síťový provoz takových zařízení není narušován. Pokud však uživatel využívá zařízení, které captive portál na svém seznamu nenalezne, captive portál síťový provoz buď zahodí, nebo zmanipuluje takovým způsobem, aby se uživatel dostal na webovou aplikaci captive portálu a mohl se identifikovat. Záznamy na seznamu autorizovaných uživatelů sítě zpravidla podléhají periodickému mazání neaktivních uživatelů – uživatel je tedy nucen se po delší době nečinnosti opakovaně identifikovat captive portálu.

Alternativně k periodickému promazávání seznamu autorizovaných klientů může *captive portál* vyžadovat, aby uživatel po celou dobu používání sítě měl v prohlížeči otevřené speciální okno, jehož přítomnost instruuje *captive portál* k přidělení plnohodnotného sítového přístupu.

Ve chvíli, kdy je captive portál schopen rozeznat autorizované a neautorizované uživatele, musí rovněž mít možnost neautorizované uživatele nasměrovat na webovou aplikaci captive portálu. Takový cíl captive portál často naplňuje prováděním MITM útoku na nově připojené uživatele. Například při přístupu neautorizovaného uživatele na libovolnou webovou stránku protokolem HTTP je jeho provoz odkloněn a vrácena odpověď od captive portálu, která prohlížeč uživatele nasměruje na webovou aplikaci captive portálu. Kromě této techniky uvádím v následující části textu i několik dalších.

#### 1.1.2.1 ICMP host redirect

Protokol ICMP specifikuje zprávy, které může směrovač poslat koncové stanici, pokud detekuje, že stanice v rámce své komunikace používá neoptimální sítovou cestu. Je zcela v režii cílové stanice, zda-li si nechá o svém směrování radit od ostatních zařízení v síti. Tato metoda spoléhá na situaci, kdy koncová stanice skutečně upraví svou směrovací tabulku a zanese do ní informace z ICMP host redirect zprávy. Právě s tímto úmyslem odesílá captive portál ICMP host redirect zprávu, když detekuje pokus o spojení uživatele se serverem v Internetu. ICMP zpráva se pokusí cílovou stanici uživatele přesvědčit, že ideální cesta vede skrze server provozující captive portál. Koncová stanice upraví své směrování a začne komunikovat se svým protějškem skrze captive portál, který

díky tomu může komunikaci manipulovat za účelem nasměrování uživatele na webovou aplikaci *captive portálu*.

#### 1.1.2.2 HTTP přesměrování

Při pokusu o přístup na webovou stránku www.example.com je požadavek klienta odkloněn a odpověď na požadavek zaslána přímo z *captive portálu*. V odpovědi je zpravidla využita HTTP hlavička 302 Found, která prohlížeč klienta nasměruje na webovou aplikace *captive portálu*, viz Ukázka 1.1.

```
> GET / HTTP/1.1
> Host: www.example.com
>
< HTTP/1.1 302 Found
< Location: http://192.168.1.1/captive/</pre>
```

Ukázka 1.1: Ukázka přesměrování HTTP požadavku (zkráceno)

#### 1.1.2.3 Podvržení DNS odpovědi

Captive portál monitoruje DNS dotazy klientů. Pokud DNS požadavek patří neautorizovanému klientovi, captive portál mu nazpět zašle odpověď s IP adresou webové aplikace captive portálu bez ohledu na dotazované doménové jméno. Jedná se o značně nebezpečnou techniku, protože může snadno dojít k otrávení DNS cache klienta. Pro minimalizaci takového vedlejšího efektu bývá v podvržené DNS odpovědi nastavena nulová životnost (hodnota TTL = 0). Takové nastavení by mělo zajistit, že podvržená odpověď nebude zanesena do lokální DNS cache. Ukázka 1.2 zachycuje evidentní podvržení IP adresy serveru google.com.

```
$ nslookup google.com
Server: 192.168.1.1
Address: 192.168.1.1#53

Non-authoritative answer:
Name: google.com
Address: 192.168.1.1
```

Ukázka 1.2: Ukázka podvržení DNS odpovědi

#### 1.1.3 Technické problémy

Největším problémem *captive portálů* je závislost na technologii WWW. Ta pramení z velmi různorodých *definic* Internetu napříč jeho uživateli. Pro mnohé

uživatele je totiž tvrzení "Nefunguje Internet" synonymem pro "Nepodařilo se mi načíst mou domovskou stránku". Díky tomu lze valnou většinu uživatelů Internetu přesvědčit k provedení úkonů, které *captive portál* vyžaduje. Uživatel úkony provede, protože mu "nefunguje Internet" a *captive portál* slibuje nápravu situace.

Z předcházejících tvrzení však plyne fakt, že *captive portál* je **závislý** na WWW a tím pádem **závislý na webovém prohlížeči**. V historii se ukázalo, že to představuje velký problém pro zařízení s podporou Wi-Fi, ale bez webového prohlížeče (nebo s velmi omezeným webovým prohlížečem). Demonstrovat takovou situaci lze na populárním (prodáno přes 150 milionů kusů)[2] mobilním herním zařízení *Nintendo DS*. Tento problém v současnosti řeší protokol *WISPr*[3], který usnadňuje (v některých případech zcela eliminuje) nutnou interakci uživatele s webovou aplikací *captive portálu*.

S rostoucím rozmachem HTTPS na úkor nešifrovaného HTTP mají captive portály obtížnější práci s nasměrováním uživatele na webovou aplikaci captive portálu. Captive portály využívající podvržené certifikáty se budou muset od dubna 2018 vyrovnat s ještě větším stupněm nedůvěryhodnosti, díky zavedení nutnosti Certificate Transparency v prohlížeči Google Chrome[4]. Captive portál by se neměl snažit manipulovat s šifrovaným spojením, namísto snahy o modifikaci a rozbití šifrování by takový provoz měl být zahazován. Takový postup však nesdílejí všechny implementace captive portálu, jak je dále popsáno v podkapitole Netechnické problémy 1.1.4.

Návrhovým problémem mnoha *captive portálů* je snaha manipulovat s komunikací uživatelů sítě. V mnohých případech je manipulace dosaženo pomocí MITM útoku. Síť, která zcela úmyslně provádí útoky na své uživatele (ať už s jakýmkoliv účelem) pochopitelně nemůže získat jakoukoliv důvěru uživatelů. Síť s nulovou důvěrou by uživatelé neměli vůbec využívat.

Mnohé softwarové produkty dokáží detekovat omezený sítový provoz – například operační systém Microsoft Windows, nebo webové prohlížeče Firefox a Chrome. Nadměrná manipulace se sítovým provozem neautorizovaných uživatelů však může tuto funkcionalitu potlačit, což je pro uživatele nežádoucí.

Jak bylo uvedeno v podkapitole Realizační technologie 1.1.2, captive portál při své práci vychází z dat, která putují po síti. Do veřejné sítě hotspotu je však jednoduché získat přístup. Útočník na zmíněné síti může naslouchat a například pomocí naklonování MAC a IP adres se následně vydávat za jiné účastníky sítě, čímž se neautorizovaný útočník jeví captive portálu jako autorizovaný uživatel.

#### 1.1.4 Netechnické problémy

V některých případech se *captive portály* chovají velmi invazivně. Na začátku roku 2015 společnost Gogo (poskytovatel připojení na palubách letadel) ve své síti začala využívat falešné certifikáty pro produkty firmy Google. Na situaci upozornila na svém Twitteru[5] Adrienne Porter Felt, zaměstnankyně firmy

Google. Certifikáty byly vystaveny pro doménová jména \*.google.com, tedy všechny domény třetího řádu domény google.com.

Mnoho uživatelů Internetu má ve svých prohlížečích nastavenou domovskou stránku na www.google.com. Po připojení se na palubní Wi-Fi síť v letadle a zapnutí prohlížeče byl uživatel okamžitě varován před nedůvěryhodným certifikátem. Vzhledem k tomu, že uživatel sám žádnou stránku nenavštívil (prohlížeč pouze načetl domovskou stránku), je pro uživatele snadné propadnout dojmu, že chyba není způsobena jeho počínáním a proto bude varování ignorovat.

Takové počínání samozřejmě není správné a poučená osoba by se ho měla vyvarovat. Zdaleka ne všechny uživatele Internetu však lze označit jako poučené uživatele. Takoví uživatelé nedisponují dostatečnými znalostmi pro porozumění problému, před kterým je prohlížeč varuje a varování budou ignorovat. Vytvářet u uživatelů návyky "všechno potvrď a pak se dostaneš na Internet" je neetické a nemělo by k tomu docházet.

V případě captive portálu, který vyžaduje poskytnutí osobních informací by jejich počet měl být minimální a nakládání s nimi obezřetné. Uživatelé hotspotu zpravidla nemají zájem o newsletter provozovatele, ani si nepřejí být provozovatelem statisticky zkoumáni. Provozovatel si na takové akce samozřejmě vyhradí nárok v pravidlech používání sítě, které však (zpravidla na mobilních zařízeních) přečte jen malý zlomek uživatelů.

#### 1.1.5 Alternativy captive portálů

#### 1.2 Metody pro obcházení captive portálů

# Kapitola 2

## Návrh řešení

Doplňte vhodný text.

# **Implementace**

Doplňte vhodný text.

KAPITOLA 4

## Testování

Doplňte vhodný text.

## Závěr

Doplňte závěr.

## Literatura

- [1] Facebook: Get Facebook Wi-Fi for Your Business [online]. 2013, [cit. 2018-02-20]. Dostupné z: https://www.facebook.com/business/facebook-wifi
- [2] Nintendo Co., Ltd.: Consolidated Sales Transition by Region [online]. 4 2016, [cit. 2018-02-23]. Dostupné z: https://www.nintendo.co.jp/ir/library/historical\_data/pdf/consolidated\_sales\_e1603.pdf
- [3] Wireless Broadband Alliance: WISPr 2.0 [online]. 4 2010, [cit. 2018-02-23]. Dostupné z: https://bitbucket.org/tamias/pywispr/downloads/WBA-WISPr2.0v01.00.pdf
- [4] Google Chromium: Certificate Transparency in Chrome Change to Enforcement Date [online]. 4 2017, [cit. 2018-02-23]. Dostupné z: https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/sz\_3W\_xKBNY/6jq2ghJXBAAJ
- [5] Adrienne Porter Felt (@\_\_apf\_\_): Twitter [online]. 1 2015, [cit. 2018-02-23]. Dostupné z: https://twitter.com/\_apf\_\_/status/551083956326920192

PŘÍLOHA **A** 

## Seznam použitých zkratek

**DNS** Domain Name System

ICMP Internet Control Message Protocol

 $\mathbf{XML}$  Extensible markup language

ISM Industrial, Scientific and Medical radio bands

NAC Network Access Control – řízení sítového přístupu

 ${f GSM}$  Global System for Mobile Communications

MAC Media Access Control

**IP** Internet Protocol

 $\mathbf{MITM}$  Man-in-the-middle

**HTTP** Hypertext Transfer Protocol

HTTPS HTTP Secure

TTL Time to live

VLAN Virtual local area network

WWW World wide web

WISPr Wireless Internet Service Provider roaming

PŘÍLOHA B

# Obsah přiloženého CD