Advanced Techniques for Combinatorial Algorithms: Parallel Algorithms

Gianluca Della Vedova

Univ. Milano-Bicocca https://gianluca.dellavedova.org

April 16, 2020

Advanced Techniques for Combinatorial Algorithms

- Advanced Techniques for Combinatorial Algorithms
- https://gitlab.com/dellavg/advanced-algorithms

- Advanced Techniques for Combinatorial Algorithms
- https://gitlab.com/dellavg/advanced-algorithms
- https://algolab.eu/2018/01/07/ advanced-techniques-for-combinatorial-algorithms-2018/

- Advanced Techniques for Combinatorial Algorithms
- https://gitlab.com/dellavg/advanced-algorithms
- https://algolab.eu/2018/01/07/ advanced-techniques-for-combinatorial-algorithms-2018/
- https://gianluca.dellavedova.org

- Advanced Techniques for Combinatorial Algorithms
- https://gitlab.com/dellavg/advanced-algorithms
- https://algolab.eu/2018/01/07/ advanced-techniques-for-combinatorial-algorithms-2018/
- https://gianluca.dellavedova.org
- gianluca.dellavedova@unimib.it

Random Access Memory

- Random Access Memory
- One processor

- Random Access Memory
- One processor
- sequential algorithms

- Random Access Memory
- One processor
- sequential algorithms
- Flat memory

- Random Access Memory
- One processor
- sequential algorithms
- Flat memory
- Infinite memory

Parallel RAM

- Parallel RAM
- p RAMs

- Parallel RAM
- p RAMs
- Shared memory

- Parallel RAM
- p RAMs
- Shared memory
- Synchronized

 Parallel computation is rapidly becoming a dominant theme in all areas of computer science and its applications. It is likely that, within a decade, virtually all developments in computer architecture, systems programming, computer applications and the design of algorithms will be taking place within the context of parallel computation.

- Parallel computation is rapidly becoming a dominant theme in all areas of computer science and its applications. It is likely that, within a decade, virtually all developments in computer architecture, systems programming, computer applications and the design of algorithms will be taking place within the context of parallel computation.
- Karp, R M. and Ramachandran, V. Chapter 17. Parallel Algorithms for Shared-Memory Machines. Handbook of Theoretical Computer Science: Algorithms and complexity, Volume 1. 1990.

- Selim Akl, Parallel Computation: Models and Methods, Prentice Hall, 1997.
- Selim Akl, Design & Analysis of Parallel Algorithms, Prentice Hall, 1989.
- Cormen, Leiserson, and Rivest, Introduction to Algorithms, 1st edition, 1990,
 McGraw Hill and MIT Press, Chapter 30 on parallel algorithms.
- Joseph JaJa, An Introduction to Parallel Algorithms, Addison Wesley, 1992.

• It's a MODEL!

- It's a MODEL!
- MIMD (Multiple Instruction Multiple Data)

- It's a MODEL!
- MIMD (Multiple Instruction Multiple Data)
- Processor ID

- It's a MODEL!
- MIMD (Multiple Instruction Multiple Data)
- Processor ID
- No communication cost

	Read	Write
Exclusive	ER	EW
Concurrent	CR	CW

Different accesses

	Read	Write
Exclusive	ER	EW
Concurrent	CR	CW

- Different accesses
- CRCW is better than EREW.

	Read	Write
Exclusive	ER	EW
Concurrent	CR	CW

- Different accesses
- CRCW is better than EREW.
- But how much?

	Read	Write
Exclusive	ER	EW
Concurrent	CR	CW

- Different accesses
- CRCW is better than EREW.
- But how much?
- Common CRCW: concurrent writes if same value from all processors

Gianluca Della Vedova Advanced Algorithms

	Read	Write
Exclusive	ER	EW
Concurrent	CR	CW

- Different accesses
- CRCW is better than EREW.
- But how much?
- Common CRCW: concurrent writes if same value from all processors
- Priority CRCW: highest priority processor wins

• t(n) = polylogarithmic time

- t(n) = polylogarithmic time
- p(n) = polynomial number of processors

- t(n) = polylogarithmic time
- p(n) = polynomial number of processors
- NC

- t(n) = polylogarithmic time
- p(n) = polynomial number of processors
- NC
- \bullet NC \subseteq P

- t(n) = polylogarithmic time
- p(n) = polynomial number of processors
- NC
- \bullet NC \subseteq P
- Hardness = P-complete problems

Optimal Algorithm

• work $w(n) \leq t(n)p(n)$

Optimal Algorithm

- work $w(n) \leq t(n)p(n)$
- t(n) = polylogarithmic time

Optimal Algorithm

- work $w(n) \leq t(n)p(n)$
- t(n) = polylogarithmic time
- w(n) = O(T(n)), where T(n) = time complexity of best known sequential algorithm

Gianluca Della Vedova Advanced Algorithms 10

Simulations

EREW PRAM can simulate CRCW PRAM

Simulations

- EREW PRAM can simulate CRCW PRAM
- Time multiplied by $O(\log p(n))$

Algorithms

Input

- Input
- Sequence $\langle x_1, \ldots, x_n \rangle$ of elements

Gianluca Della Vedova Advanced Algorithms 13/

- Input
- Sequence $\langle x_1, \ldots, x_n \rangle$ of elements
- Associative operation +

Gianluca Della Vedova Advanced Algorithms 13/2

- Input
- Sequence $\langle x_1, \ldots, x_n \rangle$ of elements
- Associative operation +
- Output

- Input
- Sequence $\langle x_1, \ldots, x_n \rangle$ of elements
- Associative operation +
- Output
- $S = \langle S_1 \dots, S_n \rangle$, with $S_i = x_1 + \dots + x_i$

- Input
- Sequence $\langle x_1, \ldots, x_n \rangle$ of elements
- Associative operation +
- Output
- $S = \langle S_1 \dots, S_n \rangle$, with $S_i = x_1 + \dots + x_i$
- trivial sequential algorithm

Algorithm 1: PrefixSum

- 1 for $i \leftarrow 1$ to n/2 do
- $y_i \leftarrow x_{2i-1} + x_{2i}$
- 3 $S^* = \mathsf{PrefixSum}([y_1, \ldots, y_{n/2}]);$

$$/* S_i^* = x_1 + \cdots + x_{2j}$$

4 for $i \leftarrow 1$ to n do

5 if i is even then

6
$$S_i \leftarrow S_{i/2}^*$$
;

7 else

Gianluca Della Vedovi

Algorithm 2: PrefixSum

- 1 for $i \leftarrow 1$ to n/2 in parallel do
- $y_i \leftarrow x_{2i-1} + x_{2i}$
- 3 $S^* = \mathsf{PrefixSum}([y_1, \ldots, y_{n/2}]);$

$$/* S_i^* = x_1 + \cdots + x_{2i}$$

4 for $i \leftarrow 1$ to n in parallel do

- 5 if *i* is even then
- 7 else

nced Algorithms 14 /

EREW

- EREW
- $O(\log n)$ time, O(n) processors

- EREW
- $O(\log n)$ time, O(n) processors
- w(n) = O(n)

- EREW
- $O(\log n)$ time, O(n) processors
- w(n) = O(n)
- $O(n/\log n)$ processors are enough

- EREW
- $O(\log n)$ time, O(n) processors
- w(n) = O(n)
- $O(n/\log n)$ processors are enough

Brent's scheduling principle

- EREW
- $O(\log n)$ time, O(n) processors
- w(n) = O(n)
- $O(n/\log n)$ processors are enough

Brent's scheduling principle

 \bullet w work on p processors in time t

- EREW
- $O(\log n)$ time, O(n) processors
- w(n) = O(n)
- $O(n/\log n)$ processors are enough

Brent's scheduling principle

- \bullet w work on p processors in time t
- $p_1 < p$

- EREW
- $O(\log n)$ time, O(n) processors
- w(n) = O(n)
- $O(n/\log n)$ processors are enough

Brent's scheduling principle

- \bullet w work on p processors in time t
- $p_1 < p$
- ullet time $\lfloor w/p_i
 floor+t$, work ห

Instance

An array A of n integers

Instance

An array A of n integers

Question

Find the largest element in A.

Instance

An array A of n integers

Question

Find the largest element in A.

Goal

Fastest algorithm

Algorithm 3: Find1. Find Maximum in an Array A

```
1 for i \leftarrow 1 to n in parallel do
B[i] \leftarrow \text{true};
3 for i \leftarrow 1 to n in parallel do
       for i \leftarrow 1 to n in parallel do
if A[i] < A[j] or A[i] = A[j] and i < j then B[i] \leftarrow \text{false};
7 for i \leftarrow 1 to n in parallel do
  if B[i] then
        Return A[i]
```

Time? Work?

Algorithm 4: Find1. Find Maximum in an Array A

```
1 for i \leftarrow 1 to n in parallel do
B[i] \leftarrow \text{true};
3 for i \leftarrow 1 to n in parallel do
     for i \leftarrow 1 to n in parallel do
if A[i] < A[j] or A[i] = A[j] and i < j then B[i] \leftarrow false;
7 for i \leftarrow 1 to n in parallel do
8 if B[i] then
9 | Return A[i]
```

Time? Work?
$$T(n) = O(1)$$
, $W(n) = O(n^2)$

Algorithm 5: Find2. Find Maximum in an Array A

```
1 if n > 16 then
```

- for $i \leftarrow 1$ to n in parallel do
- 3 $B[i] \leftarrow \text{Find2}(A[1 + \lfloor (i-1)/\sqrt{n} \rfloor : \lfloor i/\sqrt{n} \rfloor));$
- 4 Find1(B);
- 5 else
- $6 \mid \operatorname{Find1}(A);$

$$T(n) \le T(\sqrt{n}) + c_1 \Rightarrow T(n) = O(\log \log n)$$

 $W(n) \le \sqrt{n}W(\sqrt{n}) + c_2n \Rightarrow W(n) = O(n \log \log n)$

Algorithm 6: Find3. Find Maximum in an Array A

- 1 for $i \leftarrow 1$ to $n/\log\log n$ in parallel do
- $2 \mid B[i] \leftarrow \min(A[1 + \lfloor (i-1) \log \log n \rfloor : \lfloor i/\log \log n \rfloor));$
- 3 Find2(B);

$$T(n) = O(\log \log n)$$

 $W(n) = O(n)$

Problem: given a list L, find the position of each element in L

Algorithm 7: List Ranking via pointer jumping

```
1 foreach L[i] in parallel do

2 | if next(i) = NIL then

3 | rank[i] \leftarrow 0

4 | else

5 | L rank[i] \leftarrow 1

6 | for k \leftarrow 1 to log_2 n do

7 | rank[i] \leftarrow rank[i] + rank[next[i]];

8 | next[i] \leftarrow next[next[i]]
```

Proof

Proof

At iteration k:

Proof

- At iteration k:
- if $next[i] \neq NIL$ then $rank[i] = 2^k$

Proof

- At iteration k:
- if $next[i] \neq NIL$ then $rank[i] = 2^k$
- if next[i] = NIL then rank[i] is the distance between L[i] and the end of the list

Gianluca Della Vedova Advanced Algorithms 21

Proof

- At iteration k:
- if $next[i] \neq NIL$ then $rank[i] = 2^k$
- if next[i] = NIL then rank[i] is the distance between L[i] and the end of the list
- next[i] = NIL for the last 2^k elements of L

• Problem: to determine depth of each node

- Problem: to determine depth of each node
- parent, left child, right child

- Problem: to determine depth of each node
- parent, left child, right child
- 3 processors for each node

- Problem: to determine depth of each node
- parent, left child, right child
- 3 processors for each node
- O(n)-time sequential algorithm

- Problem: to determine depth of each node
- parent, left child, right child
- 3 processors for each node
- O(n)-time sequential algorithm
- Algorithm 1: Level-wise visit, each node in parallel

Binary trees

- Problem: to determine depth of each node
- parent, left child, right child
- 3 processors for each node
- O(n)-time sequential algorithm
- Algorithm 1: Level-wise visit, each node in parallel
- t(n) = height (not good)

Euler tour

Euler tour

Depth = prefix sum

depth-first visit

- depth-first visit
- No NC algorithm

- depth-first visit
- No NC algorithm
- breadth-first visit

- depth-first visit
- No NC algorithm
- breadth-first visit
- $O(n^{2.37})$ processors

- depth-first visit
- No NC algorithm
- breadth-first visit
- $O(n^{2.37})$ processors
- Euler tour

Instance

Undirected graph G = (V, E)

Instance

Undirected graph G = (V, E)

Instance

Undirected graph G = (V, E)

Instance

Undirected graph G = (V, E)

- \bigcirc M(v, w) adjacency matrix
- ② $R(v) \leftarrow v$ representative. All vertices in the same connected components have the same representative.

Instance

Undirected graph G = (V, E)

- \bigcirc M(v, w) adjacency matrix
- \bigcirc C[v, w] connected components with representative v and w can be merged

Algorithm 8: ConnectedComponents

```
1 for log<sub>2</sub> n times do hookings
      foreach edge(v, w) such that R[v] \neq R[w] do
          if R[v] < R[w] then
           C[R[v], R[w]] \leftarrow \text{true};
      foreach vertex v such that R[v] = v do
          R[v] \leftarrow \max w : C[R[v], R[w]] is true;
      for i \leftarrow 1 to \log_2 n do parallel pointer jumping
          foreach vertex v do
            R[v] \leftarrow R[R[v]];
9
```

Minimum Spanning Tree

Problem

Given an undirected edge-weighted connected graph G = (V, E), find a minimum-weight subset $T \subseteq E$ such that T is a tree spanning V.

Minimum Spanning Tree

Problem

Given an undirected edge-weighted connected graph G = (V, E), find a minimum-weight subset $T \subseteq E$ such that T is a tree spanning V.

Lemma

Let G = (V, E) be an undirected graph, let (V_1, V_2) be a bipartition of V, let T be a minimum spanning tree of G, and let e be the lightest edge connecting V_1 and V_2 . Then $e \in T$.

Additional Bibliography on PRAM

- A Survey of Parallel Algorithms for Shared-Memory Machines
 http://techreports.lib.berkeley.edu/accessPages/CSD-88-408.html
- Vishkin, Uzi (2009), Thinking in Parallel: Some Basic Data-Parallel Algorithms and Techniques. http:
 - //www.umiacs.umd.edu/users/vishkin/PUBLICATIONS/classnotes.pdf