UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO - DCA/CT

DISCIPLINA: DCA0115 - Otimização de Sistemas PROFESSOR: Manoel Firmino de Medeiros Jr.

Lista de Exercícios da 3ª. Avaliação

1) Encontre a solução do problema abaixo, através dos métodos especificados em seguida:

Min
$$f(x, y) = -x - y$$

s.a $x^2 + y^2 = 1$

- a) Graficamente, representando no plano, curvas de nível da função f e a região de factibilidade;
- b) Eliminando a variável x, a partir da restrição de igualdade. Verifique ainda o que acontece se o sinal da raiz for adotado como negativo.
- 2) Resolva o problema de otimização $\min (x^2 + y^2)$, sujeita à restrição $(x-1)^3 = y^2$, tanto graficamente, quanto por eliminação da variável y. Neste último caso, mostre que a função resultante não possui minizador e explique essa contradição aparente.
- 3) Desenhando um diagrama da região factível e dos contornos de f(x), determine a solução do problema:

Min
$$f(x) = -x_1 + x_2$$

s. a
$$\begin{cases} 0 \le x_1 \le a \\ 0 \le x_2 \le 1 \\ x_2 \ge x_1^2 \end{cases}$$

O parâmetro a é assumido como sendo um número positivo. Mostre que o conjunto de restrições ativas se modifica, se $a > \overline{a}$ e determine o valor de \overline{a} . Obtenha os multiplicadores de Lagrange das restrições ativas, em ambos os casos.

4) Verifique que os pontos $x' = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ e $x'' = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{bmatrix}^T$ satisfazem às condições de Kuhn-Tucker (necessárias de 1ª. ordem) para o problema:

Min
$$f(x) = x_2 + x_3$$

s. a
$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1^2 + x_2^2 + x_3^2 = 1 \end{cases}$$

Calcule os multiplicadores de Lagrange correspondentes.

5) Deseja-se construir um galpão de largura x₁, altura x₂ e comprimento x₃ (dimensões em m), com capacidade para 1.500m³. Os custos de construção por m² são: paredes → R\$10,00; teto → R\$15,00; piso (incluindo terreno) → R\$30,00. Por razões estéticas, a largura deve medir o dobro da altura. Formule o problema que determina o galpão de custo mínimo e estabeleça as condições de KT. Eliminando x₁ e x₃, mostre que x₂ = 10 é o valor inteiro mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO - DCA/CT

DISCIPLINA: DCA0115 - Otimização de Sistemas

PROFESSOR: Manoel Firmino de Medeiros Jr.

próximo de x_2 que minimiza o custo e, daí, encontre x_1 e x_3 . Determine os multiplicadores ótimos e as condições de KT.

6) Resolva o problema:

$$Min f(x,y) = x^2 + y^2 + 3xy + 6x + 19y$$

s.a
$$3y + x = 5$$

- 7) Determine os pontos estacionários da função $f(x) = -x_1^2 4x^2 16x_3^2$, sujeita à restrição c(x) = 0, para as seguintes funções c:
 - (i) $c(x) = x_1 1$
 - (ii) $c(x) = x_1x_2 1$
 - (iii) $c(x) = x_1 x_2 x_{3-1}$
- 8) Determine o ponto da elipse definida pela interseção das superfícies x + y = 1 e $x^2 + 2y^2 + z^2 = 1$, que se encontra mais próximo da origem. Use (i) o método dos multiplicadores de Lagrange; (ii) eliminação direta.
- 9) Os parâmetros a, b e c da equação abaixo são constantes positivas. Encontre o menor valor da soma de três números positivos x, y e z, sujeito à restrição:

$$\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 1$$

Use o método dos multiplicadores de Lagrange, assumindo que as condições de positividade não estão ativas.

- 10) Resolva o problema (2) pelo método dos multiplicadores de Lagrange. Mostre que, tanto y = 0 quanto $\lambda = -1$ (isoladamente ou em conjunto) implicam em uma contradição, de maneira que não há uma solução factível. Explique esse fato em termos da hipótese de regularidade.
- 11) Examinando condições de 2ª ordem, determine se os pontos xⁱ e xⁱⁱ são (ou não) soluções locais do problema da questão (4).
- 12) Examinando condições de 2ª ordem, determine a natureza (maximizador, minimizador, ponto de sela) de cada um dos pontos estacionários obtidos na questão (7).