Variational AutoEncoders with Disentanglements

Aryaman Gupta
 IIT (BHU), Varanasi

Colab Notebook

Task

Train an Variational AutoEncoder on Fashion MNIST dataset with disentanglements, and study the transitions in produced outputs by changes in latent space.

Autoencoder Architecture

BETA-VAE

In Beta VAE, we add introduce a beta term in the loss function. It is multiplied with the KL Divergence loss, increasing its importance over the reconstruction loss. New loss function looks like:

$$egin{aligned} L_{ ext{SAE}}(heta) &= L(heta) + eta \sum_{l=1}^L \sum_{j=1}^{s_l} D_{ ext{KL}}(
ho \| \hat{
ho}_j^{(l)}) \ &= L(heta) + eta \sum_{l=1}^L \sum_{j=1}^{s_l}
ho \log rac{
ho}{\hat{
ho}_j^{(l)}} + (1-
ho) \log rac{1-
ho}{1-\hat{
ho}_j^{(l)}} \end{aligned}$$

Hyper-parameters Used

NUM_EPOCHS = 20

LR = 3e-4

LATENT_SPACE_DIM = 20

BETA = 4

OPTIMIZER - ADAM

RECONSTRUCTION LOSS - BCE

Results

