# Convexity

V. Leclère (ENPC)

March, 17th 2023

# Why should I bother to learn this stuff?

- Convex vocabulary and results are needed throughout the course, especially to obtain optimality conditions and duality relations.
- Convex analysis tools like Fenchel transform appears in modern machine learning theory
- $\Longrightarrow$  fundamental for M2 in continuous optimization
- ⇒ usefull for M2 in operation research, machine learning (and some part of probability or mechanics)

## **Contents**

- Convex sets [BV 2]
  - Fundamental definitions
  - Separation theorems
- Convex functions [BV 3]
  - definitions
  - Convex function and optimization
  - Some results on convex functions
- Convex analysis
  - Subdifferential
  - Fenchel transform
- 4 Wrap-up

### Affine sets



Let X be a normed vector space (usually  $X = \mathbb{R}^n$ ), and  $C \subset X$ 

 C is affine if it contains any lines going through two distinct points of C, i.e.

$$\forall x, y \in C, \quad \forall \theta \in \mathbb{R}, \qquad \theta x + (1 - \theta)y \in C.$$

• The affine hull of C is the set of affine combination of elements of C,

$$\operatorname{aff}({\color{red}\mathcal{C}}) := \Big\{ \sum_{i=1}^K \theta_i x_i \; \Big| \; \; \forall x_i \in {\color{red}\mathcal{C}}, \; \forall \theta_i \in {\color{red}\mathbb{R}}, \; \sum_{i=1}^K \theta_i = 1, \; \forall i \in [{\color{red}\mathcal{K}}], \forall {\color{red}\mathcal{K}} \in {\color{red}\mathbb{N}} \Big\}$$

- aff(C) is the smallest affine space containing C.
- The affine dimension of C is the dimension of  $\operatorname{aff}(C)$  (i.e.the dimension of the vector space  $\operatorname{aff}(C) x_0$  for  $x_0 \in C$ ).
- The relative interior of C is defined as

$$\operatorname{ri}(C) := \left\{ x \in C \mid \exists r > 0, \quad B(x, r) \cap \operatorname{aff}(C) \subset C \right\}$$

V. Leclère Convexity March, 17th 2023 3 / 40

### Affine sets



Let X be a normed vector space (usually  $X = \mathbb{R}^n$ ), and  $C \subset X$ 

 C is affine if it contains any lines going through two distinct points of C, i.e.

$$\forall x, y \in C, \quad \forall \theta \in \mathbb{R}, \qquad \theta x + (1 - \theta)y \in C.$$

• The affine hull of C is the set of affine combination of elements of C,

$$\operatorname{aff}({\color{red}\mathcal{C}}) := \Big\{ \sum_{i=1}^K \theta_i x_i \; \Big| \; \; \forall x_i \in {\color{red}\mathcal{C}}, \; \forall \theta_i \in {\color{red}\mathbb{R}}, \; \sum_{i=1}^K \theta_i = 1, \; \forall i \in [K], \forall K \in {\mathbb{N}} \Big\}$$

- aff(C) is the smallest affine space containing C.
- The affine dimension of C is the dimension of aff(C) (i.e.the dimension of the vector space  $aff(C) x_0$  for  $x_0 \in C$ ).
- The relative interior of C is defined as

$$\operatorname{ri}({\color{red} {\color{red} {\color{blue} {C}}}}) := \left\{ x \in {\color{blue} {\color{blue} {C}}} \; \middle| \; \exists r > 0, \; B(x,r) \cap \operatorname{aff}({\color{blue} {\color{blue} {\color{blue} {\color{blue} {C}}}}}) \subset {\color{blue} {\color{b} {\color{blue} {\color{blue} {\color{b} {\color{blue} {\color{blue} {\color{blue} {\color{blu$$

V. Leclère Convexity March, 17th 2023 3 / 40

#### Convex sets



 C is convex if for any two points x and y in C the segment [x, y] ⊂ C, i.e.

$$\forall x, y \in C, \ \forall \theta \in [0,1], \ \theta x + (1-\theta)y \in C.$$

• The convex hull of *C* as the set of convex combination of elements of *C*, i.e.

$$\operatorname{conv}(C) := \Big\{ \sum_{i=1}^{K} \theta_{i} x_{i} \mid \forall x_{i} \in C,$$

$$\forall \theta_i \in [0, 1], \ \sum_{i=1}^K \theta_i = 1, \ \forall i \in [K], \ \forall K \in \mathbb{N}$$

conv(C) is the smallest convex set containing
 C.

Convex set



Non - convex set



@easycalculation.com

## Cones



• C is a cone if for all  $x \in C$  the ray  $\mathbb{R}_+ x \subset C$ , i.e.

$$\forall x \in C, \quad \forall \theta \in \mathbb{R}_+, \qquad \theta x \in C.$$

 The (convex) conic hull of C is the set of all (convex) conic combination of elements of C i.e.

$$cone(C) := \left\{ \sum_{i=1}^{K} \theta_i x_i \mid \forall x_i \in C, \forall \theta_i \in \mathbb{R}_+, \forall i \in [K], \forall K \in \mathbb{N} \right\}$$

- cone(C) is the smallest convex cone containing C.
- A cone C is pointed if it does not contain any full line  $\mathbb{R}x$  for  $x \neq 0$ .
- For C convex,  $cone(C) = \bigcup_{t>0} tC$

# **Examples**

#### Let $X = \mathbb{R}^n$ .

- Any affine space is convex.
- Any hyperplane of X can be defined as  $H := \{x \in X \mid a^{\top}x = b\}$  for well choosen  $a \in \mathbb{R}^n$  and  $b \in \mathbb{R}$  and is an affine space of dimension n-1.
- *H* divide *X* into two half-spaces  $\{x \in \mathbb{R}^n \mid a^\top x \leq b \text{ and } \{x \in \mathbb{R}^n \mid a^\top x \geq b\}$  which are (closed) convex sets.
- For any norm  $\|\cdot\|$  the ball  $B_{\|\cdot\|}(x_0,r):=\{x\in X\mid \|x-x_0\|\leq r\}$  is a (closed) convex set.
  - & Exercise: Prove it.
- The set  $C = \{(x, t) \in X \times \mathbb{R} \mid ||x|| \le t \}$  is a cone.
- The set  $C = \{x \in X \mid Ax \le b\}$  where A and b are given is a (closed) convex set called polyhedron.

# **Examples**

Let  $X = \mathbb{R}^n$ .

- Any affine space is convex.
- Any hyperplane of X can be defined as  $H := \{x \in X \mid a^{\top}x = b\}$  for well choosen  $a \in \mathbb{R}^n$  and  $b \in \mathbb{R}$  and is an affine space of dimension n-1.
- *H* divide *X* into two half-spaces  $\{x \in \mathbb{R}^n \mid a^\top x \leq b \text{ and } \{x \in \mathbb{R}^n \mid a^\top x \geq b\}$  which are (closed) convex sets.
- For any norm  $\|\cdot\|$  the ball  $B_{\|\cdot\|}(x_0,r):=\{x\in X\mid \|x-x_0\|\leq r\}$  is a (closed) convex set.
  - & Exercise: Prove it.
- The set  $C = \{(x, t) \in X \times \mathbb{R} \mid ||x|| \le t \}$  is a cone.
- The set  $C = \{x \in X \mid Ax \le b\}$  where A and b are given is a (closed) convex set called polyhedron.

V. Leclère Convexity March, 17th 2023 6 / 40

# Operations preserving convexity



Assume that all sets denoted by C (indexed or not) are convex.

- $C_1 + C_2$  and  $C_1 \times C_2$  are convex sets.
- ullet For any arbitrary index set  $\mathcal I$  the intersection  $\bigcap_{i\in\mathcal I} \mathcal C_i$  is convex.
- Let f be an affine function. Then f(C) and  $f^{-1}(C)$  are convex.
- In particular,  $C + x_0$ , and tC are convex. The projection of C on any affine space is convex.
- The closure cl(C) and relative interior ri(C) are convex.
- Exercise: Prove these results.

# Perspective and linear-fractional function



Let  $P: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$  be the perspective function defined as P(x,t) = x/t, with  $dom(P) = \mathbb{R}^n \times \mathbb{R}_+^*$ .

#### **Theorem**

If  $C \subset \text{dom}(P)$  is convex, then P(C) is convex. If  $C \subset \mathbb{R}^n$  is convex, then  $P^{-1}(C)$  is convex.

▲ Exercise: Prove this result.

# Perspective and linear-fractional function



Let  $P: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$  be the perspective function defined as P(x,t) = x/t, with  $dom(P) = \mathbb{R}^n \times \mathbb{R}_+^*$ .

#### **Theorem**

If  $C \subset \text{dom}(P)$  is convex, then P(C) is convex. If  $C \subset \mathbb{R}^n$  is convex, then  $P^{-1}(C)$  is convex.

♠ Exercise: Prove this result.

Let  $f: \mathbb{R}^n \to \mathbb{R}^m$  be a linear-fractional function of the form  $f(x) := (Ax + b)/(c^\top x + d)$ , with  $dom(f) = \{x \mid c^\top x + d > 0\}$ .

#### Theorem

If  $C \subset dom(f)$  is convex, then f(C) and  $f^{-1}(C)$  are convex.

& Exercise: prove this result.

# Cone ordering

Let  $K \subset \mathbb{R}^n$  be a closed, convex, pointed cone with non-empty interior. We define the cone ordering according to K by

$$x \leq_K y \iff y - x \in K$$
.

 $\clubsuit$  Exercise: Prove that  $\preceq_K$  is a partial order (i.e.reflexive, antisymmetric, transitive) compatible with scalar product, addition and limits.

## **Contents**

- Convex sets [BV 2]
  - Fundamental definitions
  - Separation theorems
- Convex functions [BV 3]
  - definitions
  - Convex function and optimization
  - Some results on convex functions
- Convex analysis
  - Subdifferential
  - Fenchel transform
- 4 Wrap-up

## Separation



Let X be a Banach space, and  $X^*$  its topological dual (i.e. the set of all continuous linear forms on X).

## Theorem (Simple separation)

Let A and B be convex non-empty, disjunct subsets of X. There exists a separating hyperplane  $(x^*, \alpha) \in X^* \times \mathbb{R}$  such that

$$\langle x^*, a \rangle \leq \alpha \leq \langle x^*, b \rangle \qquad \forall a, b \in A \times B.$$

## Theorem (Strong separation)

Let A and B be convex non-empty, disjunct subsets of X. Assume that, A is closed, and B is compact (e.g. a point), then there exists a strict separating hyperplane  $(x^*, \alpha) \in X^* \times \mathbb{R}$  such that, there exists  $\varepsilon > 0$ ,

$$\langle x^*, a \rangle + \varepsilon \le \alpha \le \langle x^*, b \rangle - \varepsilon \quad \forall a, b \in A \times B.$$

Remark: these theorems require the Zorn Lemma which is equivalent to the axiom of choice.

# Supporting hyperplane



#### **Theorem**

Let  $x_0 \notin ri(C)$  and C convex. Then there exists  $a \neq 0$  such that

$$a^{\top} x \ge a^{\top} x_0, \quad \forall x \in C$$

If  $x_0 \in C$ , say that  $H = \{x \mid a^{\top}x = a^{\top}x_0\}$  is a supporting hyperplane of C at  $x_0$ .



♣ Exercise: prove this theorem Remark: there can be more than one supporting hyperplane at a given point.

## Convex set as intersection of half-spaces



- The closed convex hull of  $C \subset X$ , denoted  $\overline{\operatorname{conv}}(C)$  is the smallest closed convex set containing C.
- $\overline{\operatorname{conv}}(C)$  is the intersection of all the half-spaces containing C.
- A polyhedron is a finite intersection of half-spaces while a convex set is a possibly non-finite intersection of half-spaces.

### Dual and normal cones

• Let  $C \subset \mathbb{R}^n$  be a set. We define its dual cone by

$$\mathbf{C}^{\oplus} := \{ x \mid x^{\top} c \ge 0, \quad \forall c \in \mathbf{C} \}$$

- For any set C,  $C^{\oplus}$  is a closed convex cone.
- The normal cone of C at  $x_0$  is

$$N_{C}(x_{0}) := \{ \lambda \in E \mid \lambda^{\top}(x - x_{0}) \leq 0, \\ \forall x \in C \}$$



### Dual and normal cones

• Let  $C \subset \mathbb{R}^n$  be a set. We define its dual cone by

$$\mathbf{C}^{\oplus} := \{ x \mid x^{\top} c \ge 0, \quad \forall c \in \mathbf{C} \}$$

- For any set C,  $C^{\oplus}$  is a closed convex cone.
- The normal cone of C at  $x_0$  is

$$N_C(x_0) := \{ \lambda \in E \mid \lambda^\top (x - x_0) \le 0, \\ \forall x \in C \}$$



## **Examples**

- The positive orthant  $K = \mathbb{R}^n_+$  is a self dual cone, that is  $K^{\oplus} = K$ .
- In the space of symetric matrices  $S_n(\mathbb{R})$ , with the scalar product  $\langle A,B\rangle=\operatorname{tr}(AB)$ , the set of positive semidefinite matrices  $K=S_n^+(\mathbb{R})$  is self dual.
- Let  $\|\cdot\|$  be a norm. The cone  $K = \{(x,t) \mid \|x\| \le t\}$  has for dual  $K^{\oplus} = \{(\lambda,z) \mid \|\lambda\|_{\star} \le z\}$ , where  $\|\lambda\|_{\star} := \sup_{x:\|x\| \le 1} \lambda^{\top} x$ .
- ♠ Exercise: prove these results

# Some basic properties

Let  $K \subset \mathbb{R}^n$  be a cone.

- $K^{\oplus}$  is closed convex.
- $\bullet \ \, \textit{K}_{1} \subset \textit{K}_{2} \,\, \text{implies} \,\, \textit{K}_{2}^{\oplus} \subset \textit{K}_{1}^{\oplus}$
- $K^{\oplus \oplus} = \overline{\operatorname{conv}} K$
- & Exercise: Prove these results

## Video ressources

https://www.youtube.com/watch?v=P3W\_wFZ2kUo

16 / 40

## **Contents**

- Convex sets [BV 2]
  - Fundamental definitions
  - Separation theorems
- Convex functions [BV 3]
  - definitions
  - Convex function and optimization
  - Some results on convex functions
- Convex analysis
  - Subdifferential
  - Fenchel transform
- 4 Wrap-up

## Functions with non finite values



- It is very useful in optimization to allow functions to take non-finite values, that is to take values in  $\bar{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$ .
- If both  $-\infty$  and  $+\infty$  are allowed be very careful of each addition !
- Let  $f: X \to \overline{\mathbb{R}}$ . We define
  - ightharpoonup The epigraph of f as

$$\operatorname{epi}(f) := \{(x, t) \in X \times \mathbb{R} \mid f(x) \le t \}$$

▶ the domain of f as

$$dom(f) := \{ x \in X \mid f(x) < +\infty \}.$$

ightharpoonup The sublevel set of level  $\alpha$ 

$$lev_{\alpha}(f) := \{x \in X \mid f(x) \leq \alpha\}.$$

- f is said to be lower semi continuous (l.s.c.) if epi(f) is closed.
- f is said to be proper if it never takes value  $-\infty$ , has a non-empty domain (at least one finite value).

## Functions with non finite values



- It is very useful in optimization to allow functions to take non-finite values, that is to take values in  $\bar{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$ .
- If both  $-\infty$  and  $+\infty$  are allowed be very careful of each addition !
- Let  $f: X \to \overline{\mathbb{R}}$ . We define
  - ► The epigraph of *f* as

$$\operatorname{epi}(f) := \{(x, t) \in X \times \mathbb{R} \mid f(x) \leq t \}$$

▶ the domain of f as

$$dom(f) := \{x \in X \mid f(x) < +\infty\}.$$

ightharpoonup The sublevel set of level  $\alpha$ 

$$lev_{\alpha}(f) := \{x \in X \mid f(x) \leq \alpha\}.$$

- f is said to be lower semi continuous (l.s.c.) if epi(f) is closed.
- f is said to be proper if it never takes value  $-\infty$ , has a non-empty domain (at least one finite value).

## Functions with non finite values



- It is very useful in optimization to allow functions to take non-finite values, that is to take values in  $\bar{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$ .
- ullet If both  $-\infty$  and  $+\infty$  are allowed be very careful of each addition !
- Let  $f: X \to \overline{\mathbb{R}}$ . We define
  - ► The epigraph of f as

$$\operatorname{epi}(f) := \{(x, t) \in X \times \mathbb{R} \mid f(x) \leq t \}$$

▶ the domain of f as

$$dom(f) := \{x \in X \mid f(x) < +\infty\}.$$

ightharpoonup The sublevel set of level  $\alpha$ 

$$lev_{\alpha}(f) := \{x \in X \mid f(x) \leq \alpha\}.$$

- f is said to be lower semi continuous (l.s.c.) if epi(f) is closed.
- f is said to be proper if it never takes value  $-\infty$ , has a non-empty domain (at least one finite value).

### Convex function



- A function  $f: X \to \overline{\mathbb{R}}$  is convex if its epigraph is convex.
- $f: X \to \mathbb{R} \cup \{+\infty\}$  is convex iff

$$\forall t \in [0,1], \ \forall x, y \in X,$$
  
 $f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$ 



• f is concave if -f is convex.

## Basic properties



- If f, g convex, t > 0, then tf + g is convex.
- If f convex non-decreasing, g convex, then  $f \circ g$  convex.
- If f convex and a affine, then  $f \circ a$  is convex.
- If  $(f_i)_{i \in I}$  is a family of convex functions, then  $\sup_{i \in I} f_i$  is convex.
- The domain and the sublevel sets of a convex function are convex.
- A convex function is always above its tangents.
- & Exercise: Prove these results.

# Basic properties



- If f, g convex, t > 0, then tf + g is convex.
- If f convex non-decreasing, g convex, then  $f \circ g$  convex.
- If f convex and a affine, then  $f \circ a$  is convex.
- If  $(f_i)_{i \in I}$  is a family of convex functions, then  $\sup_{i \in I} f_i$  is convex.
- The domain and the sublevel sets of a convex function are convex.
- A convex function is always above its tangents.
- & Exercise: Prove these results.

## Theorem (Jensen inequality)

Let f be a convex function and X an integrable random variable. Then we have

$$f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)].$$



Consider a convex function  $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ .

- f is continuous (on  $\mathbb{R}^n$ ) if and only if  $dom(f) = \mathbb{R}^n$  (i.e., if it is finite everywhere)
- f is continuous on the interior of its domain
- f is lower-semicontinuous if and only if the domain is closed and the restriction of f to its domain is continuous

# Convex functions: strict and strong convexity



21/40

•  $f: X \to \mathbb{R} \cup \{+\infty\}$  is strictly convex iff

$$\forall t \in ]0,1[, \forall x, y \in X, f(tx+(1-t)y) < tf(x)+(1-t)f(y)$$

•  $f: X \to \mathbb{R} \cup \{+\infty\}$  is  $\alpha$ -convex iff

$$\forall t \in ]0,1[, \forall x,y \in X, f(tx+(1-t)y) \le tf(x)+(1-t)f(y)+\frac{1}{2}\alpha t(1-t)||x-t||$$

- If  $f \in C^1(\mathbb{R}^n)$ 
  - $\triangleright \langle \nabla f(x) \nabla f(y), x y \rangle \ge 0 \text{ iff } f \text{ convex}$
  - ightharpoonup if strict inequality holds, then f strictly convex
  - ▶  $f: X \to \mathbb{R} \cup \{+\infty\}$  is  $\alpha$ -convex iff  $\forall x, y \in X$

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} ||y - x||^2$$

- If  $f \in C^2(\mathbb{R}^n)$ ,
  - $\nabla^2 f \geq 0$  iff f convex
  - if  $\nabla^2 f \succ 0$  then f strictly convex
  - if  $\nabla^2 f \succcurlyeq \alpha I$  then f is  $\alpha$ -convex

# Convex functions: strict and strong convexity



•  $f: X \to \mathbb{R} \cup \{+\infty\}$  is strictly convex iff

$$\forall t \in ]0,1[, \forall x, y \in X, f(tx+(1-t)y) < tf(x)+(1-t)f(y)$$

•  $f: X \to \mathbb{R} \cup \{+\infty\}$  is  $\alpha$ -convex iff

$$\forall t \in ]0,1[, \forall x, y \in X, f(tx+(1-t)y) \le tf(x)+(1-t)f(y)+\frac{1}{2}\alpha t(1-t)||x-t||$$

- If  $f \in C^1(\mathbb{R}^n)$ 
  - $\blacktriangleright \langle \nabla f(x) \nabla f(y), x y \rangle \ge 0$  iff f convex
  - ▶ if strict inequality holds, then f strictly convex
  - $f: X \to \mathbb{R} \cup \{+\infty\}$  is  $\alpha$ -convex iff  $\forall x, y \in X$

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} ||y - x||^2$$

- If  $f \in C^2(\mathbb{R}^n)$ ,
  - $\nabla^2 f \geq 0$  iff f convex
  - if  $\nabla^2 f > 0$  then f strictly convex
  - if  $\nabla^2 f \geq \alpha I$  then f is  $\alpha$ -convex

# Convex functions: strict and strong convexity



•  $f: X \to \mathbb{R} \cup \{+\infty\}$  is strictly convex iff

$$\forall t \in ]0,1[, \forall x, y \in X, f(tx+(1-t)y) < tf(x)+(1-t)f(y)$$

•  $f: X \to \mathbb{R} \cup \{+\infty\}$  is  $\alpha$ -convex iff

$$\forall t \in ]0,1[, \forall x, y \in X, f(tx+(1-t)y) \le tf(x)+(1-t)f(y)+\frac{1}{2}\alpha t(1-t)||x-t||$$

- If  $f \in C^1(\mathbb{R}^n)$ 
  - ▶  $\langle \nabla f(x) \nabla f(y), x y \rangle \ge 0$  iff f convex
  - ▶ if strict inequality holds, then *f* strictly convex
  - ▶  $f: X \to \mathbb{R} \cup \{+\infty\}$  is  $\alpha$ -convex iff  $\forall x, y \in X$

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} ||y - x||^2$$

- If  $f \in C^2(\mathbb{R}^n)$ ,
  - ▶  $\nabla^2 f \succcurlyeq 0$  iff f convex
  - if  $\nabla^2 f \succ 0$  then f strictly convex
  - if  $\nabla^2 f \succcurlyeq \alpha I$  then f is  $\alpha$ -convex

## Important examples

• The indicator function of a set  $C \subset X$ ,

$$\mathbb{I}_{C}(x) := \begin{cases} 0 & \text{if } x \in C \\ +\infty & \text{otherwise} \end{cases}$$

is convex iff *C* is convex.

- $x \mapsto e^{ax}$  is convex for any  $a \in \mathbb{R}$
- $x \mapsto ||x||^q$  is convex for  $q \ge 1$  and any norm
- $x \mapsto \ln(x)$  is concave
- $x \mapsto x \ln(x)$  is convex
- $x \mapsto \ln(\sum_{i=1}^n e^{x_i})$  is convex

## **Contents**

- Convex sets [BV 2]
  - Fundamental definitions
  - Separation theorems
- Convex functions [BV 3]
  - definitions
  - Convex function and optimization
  - Some results on convex functions
- Convex analysis
  - Subdifferential
  - Fenchel transform
- 4 Wrap-up

## Convex optimization problem



$$\min_{\mathbf{x}\in C} f(\mathbf{x})$$

optimization problem.

- If C is compact and f proper lsc, then there exists an optimal solution.
- If *f* is proper lsc and coercive, then there exists an optimal solution.
- The set of optimal solutions is convex.
- If f is strictly convex the minimum (if it exists) is unique.

Where C is closed convex and f convex finite valued, is a convex

- If f is  $\alpha$ -convex the minimum exists and is unique.
- & Exercise: Prove these results.



# Note that minimizing f over C or minimizing $f + \mathbb{I}_C$ over X is the same thing.

We consider the (unconstrained) optimization problem

with  $x^{\sharp}$  an optimal solution and f not necessarily convex.

- If f is differentiable, then  $\nabla f(x^{\sharp}) = 0$ .
- If f is twice differentiable, then  $\nabla^2 f(x^{\sharp}) \succeq 0$ .
- If f is twice differentiable and  $\nabla^2 f(x_0) \succ 0$  then  $x_0$  is a local minimum.

If, in addition, f is convex then  $\nabla f(x) = 0$  is a sufficient optimality condition



Note that minimizing f over C or minimizing  $f + \mathbb{I}_C$  over X is the same thing.

We consider the (unconstrained) optimization problem

with  $x^{\sharp}$  an optimal solution and f not necessarily convex.

- If f is differentiable, then  $\nabla f(x^{\sharp}) = 0$ .
- If f is twice differentiable, then  $\nabla^2 f(x^{\sharp}) \succeq 0$ .
- If f is twice differentiable and  $\nabla^2 f(x_0) \succ 0$  then  $x_0$  is a local minimum

If, in addition, f is convex then  $\nabla f(x) = 0$  is a sufficient optimality condition.



Note that minimizing f over C or minimizing  $f + \mathbb{I}_C$  over X is the same thing.

We consider the (unconstrained) optimization problem

with  $x^{\sharp}$  an optimal solution and f not necessarily convex.

- If f is differentiable, then  $\nabla f(x^{\sharp}) = 0$ .
- If f is twice differentiable, then  $\nabla^2 f(x^{\sharp}) \succeq 0$ .
- If f is twice differentiable and  $\nabla^2 f(x_0) \succ 0$  then  $x_0$  is a local minimum.

If, in addition, f is convex then  $\nabla f(x) = 0$  is a sufficient optimality condition.



Note that minimizing f over C or minimizing  $f + \mathbb{I}_C$  over X is the same thing.

We consider the (unconstrained) optimization problem

with  $x^{\sharp}$  an optimal solution and f not necessarily convex.

- If f is differentiable, then  $\nabla f(x^{\sharp}) = 0$ .
- If f is twice differentiable, then  $\nabla^2 f(x^{\sharp}) \succeq 0$ .
- If f is twice differentiable and  $\nabla^2 f(x_0) \succ 0$  then  $x_0$  is a local minimum.

If, in addition, f is convex then  $\nabla f(x) = 0$  is a sufficient optimality condition.

### Contents

- Convex sets [BV 2]
  - Fundamental definitions
  - Separation theorems
- Convex functions [BV 3]
  - definitions
  - Convex function and optimization
  - Some results on convex functions
- Convex analysis
  - Subdifferential
  - Fenchel transform
- 4 Wrap-up

#### Partial infimum



Let f be a convex function and C a convex set. The function

$$g: \mathbf{x} \mapsto \inf_{\mathbf{y} \in C} f(\mathbf{x}, \mathbf{y})$$

is convex.

- ♠ Exercise: Prove this result.
- $\clubsuit$  Exercise: Prove that the function distance to a convex set C defined by

$$d_C(x) := \inf_{c \in C} ||c - x|$$

is convex

#### Partial infimum



Let f be a convex function and C a convex set. The function

$$g: \mathbf{x} \mapsto \inf_{\mathbf{y} \in C} f(\mathbf{x}, \mathbf{y})$$

is convex.

- ♠ Exercise: Prove this result.
- $\clubsuit$  Exercise: Prove that the function distance to a convex set C defined by

$$d_C(\mathbf{x}) := \inf_{\mathbf{c} \in C} \|\mathbf{c} - \mathbf{x}\|$$

is convex.

# Perspective function



Let  $\phi: E \to \overline{\mathbb{R}}$ . The perspective of  $\phi$  is defined as  $\widetilde{\phi}: \mathbb{R}_+^* \times E \to \mathbb{R}$  by

$$\tilde{\phi}(\eta, y) := \eta \phi(y/\eta).$$

#### **Theorem**

 $\phi$  is convex iff  $\tilde{\phi}$  is convex.

♠ Exercise: prove this result



#### Inf-Convolution



27 / 40

Let f and g be proper function from X to  $\mathbb{R} \cup \{+\infty\}$ . We define

$$f \square g : \mathbf{x} \mapsto \inf_{\mathbf{y} \in X} f(\mathbf{y}) + g(\mathbf{x} - \mathbf{y})$$

- & Exercise: Show that
  - $f \square g = g \square f$
  - If f and g are convex then so is  $f \square g$

### **Contents**

- Convex sets [BV 2]
  - Fundamental definitions
  - Separation theorems
- Convex functions [BV 3]
  - definitions
  - Convex function and optimization
  - Some results on convex functions
- Convex analysis
  - Subdifferential
  - Fenchel transform
- 4 Wrap-up

### Subdifferential of convex function



Let X be an Hilbert space,  $f: X \to \overline{\mathbb{R}}$  convex.

• The subdifferential of f at  $x \in dom(f)$  is the set of slopes of all affine minorants of f exact at x:

$$\partial f(\mathbf{x}) := \Big\{ \lambda \in X \mid f(\cdot) \ge \langle \lambda, \cdot - \mathbf{x} \rangle + f(\mathbf{x}) \Big\}.$$

If f is derivable at x then

$$\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}.$$

# **Examples**



• If  $f: x \mapsto |x|$ , then

$$\partial f(x) = \begin{cases} -1 & \text{if } x < 0\\ [-1, 1] & \text{if } x = 0\\ 1 & \text{if } x > 0 \end{cases}$$

- If C is convex then, for  $x \in C$ ,  $\partial(\mathbb{I}_C)(x) = N_C(x)$ 
  - & Exercise: Prove it.
- If  $f_1$  and  $f_2$  are convex and differentiable. Define  $f = \max(f_1, f_2)$ . Then
  - if  $f_1(x) > f_2(x)$ ,  $\partial f(x) = \{\nabla f_1(x)\}$
  - if  $f_1(x) < f_2(x)$ ,  $\partial f(x) = {\nabla f_2(x)}$ ;
  - if  $f_1(x) = f_2(x)$ ,  $\partial f(x) = \overline{\operatorname{conv}}(\{\nabla f_1(x), \nabla f_2(x)\})$ .

## Subdifferential calculus



Let  $f_1$  and  $f_2$  be proper convex functions.

#### Theorem

We have

$$\partial(f_1)(x) + \partial(f_2)(x) \subset \partial(f_1 + f_2)(x), \quad \forall x$$

Further if  $ri(dom(f_1)) \cap ri(dom(f_2)) \neq \emptyset$  then

$$\partial(f_1)(x) + \partial(f_2)(x) = \partial(f_1 + f_2)(x), \quad \forall x$$

When  $f_i$  is polyhedral you can replace  $ri(dom(f_i))$  by  $dom(f_i)$  in the condition.

## Subdifferential calculus



Let  $f_1$  and  $f_2$  be proper convex functions.

#### Theorem

We have

$$\partial(f_1)(x) + \partial(f_2)(x) \subset \partial(f_1 + f_2)(x), \quad \forall x$$

Further if  $ri(dom(f_1)) \cap ri(dom(f_2)) \neq \emptyset$  then

$$\partial(f_1)(x) + \partial(f_2)(x) = \partial(f_1 + f_2)(x), \quad \forall x$$

When  $f_i$  is polyhedral you can replace  $ri(dom(f_i))$  by  $dom(f_i)$  in the condition.

#### **Theorem**

If f is convex and a:  $x \mapsto Ax + b$  with  $Im(a) \cap ri(dom(f)) \neq \emptyset$ , then

$$\partial (f \circ a)(x) = A^{\top} \partial f(Ax + b).$$

# First order optimality conditions



#### Theorem

Let  $f: X \mapsto \mathbb{R} \cup \{+\infty\}$  be a convex function (not necessarily) differentiable.  $x^{\sharp}$  is a minimizer of f if and only if  $0 \in \partial f(x^{\sharp})$ .



#### Theorem

Let  $f: X \mapsto \mathbb{R} \cup \{+\infty\}$  be a convex function (not necessarily) differentiable.  $x^{\sharp}$  is a minimizer of f if and only if  $0 \in \partial f(x^{\sharp})$ .

#### **Theorem**

Let f be a proper convex function and C a closed non-empty convex set such that  $\mathrm{ri}(C)\cap\mathrm{ri}(\mathrm{dom}(f))\neq\emptyset$  then  $x^{\sharp}$  is an optimal solution to

$$\min_{\mathbf{x} \in C} f(\mathbf{x})$$

iff

$$0 \in \partial f(\mathbf{x}^{\sharp}) + N_C(\mathbf{x}^{\sharp}),$$

iff

$$\exists \lambda \in \partial f(x^{\sharp}), \quad \lambda \in -N_C(x^{\sharp}).$$

# Normal cone, Tangent cone and optimality

Let C be a convex set. We define the tangent cone of  $C \subset \mathbb{R}^n$  at point  $x \in C$ , as the set of directions in which you can move from x while staying in C for some time, that is

$$T_C(\mathbf{x}) := \left\{ \lambda(\mathbf{y} - \mathbf{x}) \mid \mathbf{y} \in C, \quad \lambda \in \mathbb{R}^+ \right\}$$

In particular,  $T_C(x) = \mathbb{R}^n$  iff  $x \in int(C)$ .

**&** Exercise: Prove that  $[T_C(x)]^{\oplus} = -N_C(x)$ .

 V. Leclère
 Convexity
 March, 17th 2023
 32 / 40

# Normal cone, Tangent cone and optimality

Let C be a convex set. We define the tangent cone of  $C \subset \mathbb{R}^n$  at point  $x \in C$ , as the set of directions in which you can move from x while staying in C for some time, that is

$$T_C(\mathbf{x}) := \left\{ \lambda(\mathbf{y} - \mathbf{x}) \mid \mathbf{y} \in C, \quad \lambda \in \mathbb{R}^+ \right\}$$

In particular,  $T_C(x) = \mathbb{R}^n$  iff  $x \in int(C)$ .

**♣** Exercise: Prove that  $[T_C(x)]^{\oplus} = -N_C(x)$ .



Let  $f: X \times Y \to \overline{\mathbb{R}}$  be a jointly convex and proper function, and define

$$v(\mathbf{x}) = \inf_{\mathbf{y} \in Y} f(\mathbf{x}, \mathbf{y})$$

#### then v is convex.

If v is proper, and  $v(x) = f(x, y^{\sharp}(x))$  then

$$\partial v(\mathbf{x}) = \{ g \in X \mid (g, 0) \in \partial f(\mathbf{x}, y^{\sharp}(\mathbf{x})) \}$$

proof

$$g \in \partial v(x) \quad \Leftrightarrow \quad \forall x', \qquad v(x') \ge v(x) + \langle g, x' - x \rangle$$

$$\Leftrightarrow \quad \forall x', y' \quad f(x', y') \ge f(x, y^{\sharp}(x)) + \left\langle \begin{pmatrix} g \\ 0 \end{pmatrix}, \begin{pmatrix} x' \\ y' \end{pmatrix} - \begin{pmatrix} x \\ y^{\sharp}(x) \end{pmatrix} \right\rangle$$

$$\Leftrightarrow \quad \begin{pmatrix} g \\ 0 \end{pmatrix} \in \partial f(x, y^{\sharp}(x))$$

### Partial infimum



Let  $f: X \times Y \to \overline{\mathbb{R}}$  be a jointly convex and proper function, and define

$$v(\mathbf{x}) = \inf_{\mathbf{y} \in Y} f(\mathbf{x}, \mathbf{y})$$

then v is convex.

If v is proper, and  $v(x) = f(x, y^{\sharp}(x))$  then

$$\partial v(\mathbf{x}) = \{ g \in X \mid (g,0) \in \partial f(\mathbf{x}, y^{\sharp}(\mathbf{x})) \}$$

proof

$$g \in \partial v(\mathbf{x}) \quad \Leftrightarrow \quad \forall \mathbf{x}', \qquad v(\mathbf{x}') \ge v(\mathbf{x}) + \langle g, \mathbf{x}' - \mathbf{x} \rangle$$

$$\Leftrightarrow \quad \forall \mathbf{x}', \mathbf{y}' \quad f(\mathbf{x}', \mathbf{y}') \ge f(\mathbf{x}, \mathbf{y}^{\sharp}(\mathbf{x})) + \left\langle \begin{pmatrix} g \\ 0 \end{pmatrix}, \begin{pmatrix} \mathbf{x}' \\ \mathbf{y}' \end{pmatrix} - \begin{pmatrix} \mathbf{x} \\ \mathbf{y}^{\sharp}(\mathbf{x}) \end{pmatrix} \right\rangle$$

$$\Leftrightarrow \quad \begin{pmatrix} g \\ 0 \end{pmatrix} \in \partial f(\mathbf{x}, \mathbf{y}^{\sharp}(\mathbf{x}))$$

### Partial infimum



Let  $f: X \times Y \to \overline{\mathbb{R}}$  be a jointly convex and proper function, and define

$$v(x) = \inf_{y \in Y} f(x, y)$$

then v is convex.

If v is proper, and  $v(x) = f(x, y^{\sharp}(x))$  then

$$\partial v(\mathbf{x}) = \{g \in X \mid (g,0) \in \partial f(\mathbf{x}, y^{\sharp}(\mathbf{x}))\}$$

proof:

$$g \in \partial v(\mathbf{x}) \quad \Leftrightarrow \quad \forall \mathbf{x}', \qquad v(\mathbf{x}') \ge v(\mathbf{x}) + \langle g, \mathbf{x}' - \mathbf{x} \rangle$$

$$\Leftrightarrow \quad \forall \mathbf{x}', \mathbf{y}' \quad f(\mathbf{x}', \mathbf{y}') \ge f(\mathbf{x}, \mathbf{y}^{\sharp}(\mathbf{x})) + \left\langle \begin{pmatrix} g \\ 0 \end{pmatrix}, \begin{pmatrix} \mathbf{x}' \\ \mathbf{y}' \end{pmatrix} - \begin{pmatrix} \mathbf{x} \\ \mathbf{y}^{\sharp}(\mathbf{x}) \end{pmatrix} \right\rangle$$

$$\Leftrightarrow \quad \begin{pmatrix} g \\ 0 \end{pmatrix} \in \partial f(\mathbf{x}, \mathbf{y}^{\sharp}(\mathbf{x}))$$

# Convex function: regularity



- Assume f convex, then f is continuous on the relative interior of its domain, and Lipschitz on any compact contained in the relative interior of its domain.
- A proper convex function is subdifferentiable on the relative interior of its domain.
- If f is convex, it is L-Lipschitz iff  $\partial f(x) \subset B(0,L)$ ,  $\forall x \in \text{dom}(f)$

### **Contents**

- Convex sets [BV 2]
  - Fundamental definitions
  - Separation theorems
- Convex functions [BV 3]
  - definitions
  - Convex function and optimization
  - Some results on convex functions
- Convex analysis
  - Subdifferential
  - Fenchel transform
- 4 Wrap-up



35 / 40

Let X be a Hilbert space,  $f:X\to \bar{\mathbb{R}}$  be a proper function.

ullet The Fenchel transform of f, is  $f^\star:X o ar{\mathbb{R}}$  with

$$f^*(\lambda) := \sup_{x \in X} \langle \lambda, x \rangle - f(x).$$

- $f^*$  is convex lsc as the supremum of affine functions.
- $f \leq g$  implies that  $f^* \geq g^*$ .
- If f is proper convex lsc, then  $f^{**} = f$ , otherwise  $f^{**} \leq f$ .
- & Exercise: Prove the first two points



Let X be a Hilbert space,  $f: X \to \overline{\mathbb{R}}$  be a proper function.

ullet The Fenchel transform of f, is  $f^\star:X o ar{\mathbb{R}}$  with

$$f^*(\lambda) := \sup_{x \in X} \langle \lambda, x \rangle - f(x).$$

- $f^*$  is convex lsc as the supremum of affine functions.
- $f \leq g$  implies that  $f^* \geq g^*$ .
- If f is proper convex lsc, then  $f^{**} = f$ , otherwise  $f^{**} \leq f$ .
- & Exercise: Prove the first two points



Let X be a Hilbert space,  $f: X \to \overline{\mathbb{R}}$  be a proper function.

ullet The Fenchel transform of f, is  $f^\star:X o ar{\mathbb{R}}$  with

$$f^*(\lambda) := \sup_{x \in X} \langle \lambda, x \rangle - f(x).$$

- $f^*$  is convex lsc as the supremum of affine functions.
- $f \leq g$  implies that  $f^* \geq g^*$ .
- If f is proper convex lsc, then  $f^{**} = f$ , otherwise  $f^{**} \leq f$ .
- Exercise: Prove the first two points



Let X be a Hilbert space,  $f: X \to \overline{\mathbb{R}}$  be a proper function.

• The Fenchel transform of f, is  $f^{\star}: X \to \bar{\mathbb{R}}$  with

$$f^*(\lambda) := \sup_{x \in X} \langle \lambda, x \rangle - f(x).$$

- $f^*$  is convex lsc as the supremum of affine functions.
- $f \leq g$  implies that  $f^* \geq g^*$ .
- If f is proper convex lsc, then  $f^{\star\star} = f$ , otherwise  $f^{\star\star} \leq f$ .
- & Exercise: Prove the first two points



- By definition  $f^*(\lambda) \ge \langle \lambda, x \rangle f(x)$  for all x,
- thus we always have (Fenchel-Young)  $f(x) + f^*(\lambda) \ge \langle \lambda, x \rangle$ .
- Recall that  $\lambda \in \partial f(x)$  iff for all x',

$$f(x') \ge f(x) + \langle \lambda, x' - x \rangle$$

iff

$$\langle \lambda, \mathbf{x} \rangle - f(\mathbf{x}) \ge \langle \lambda, \mathbf{x}' \rangle - f(\mathbf{x}') \qquad \forall \mathbf{x}'$$

that is

$$\lambda \in \partial f(\mathbf{x}) \Leftrightarrow \mathbf{x} \in \arg\max_{\mathbf{x}' \in X} \left\{ \langle \lambda, \mathbf{x}' \rangle - f(\mathbf{x}') \right\} \Leftrightarrow f(\mathbf{x}) + f^*(\lambda) = \langle \lambda, \mathbf{x} \rangle$$

• From Fenchel-Young equality we have

$$\partial v^{\star\star}(\mathbf{x}) 
eq \emptyset \implies \partial v^{\star\star}(\mathbf{x}) = \partial v(\mathbf{x}) \text{ and } v^{\star\star}(\mathbf{x}) = v(\mathbf{x}).$$

$$\lambda \in \partial f(\mathbf{x}) \iff \mathbf{x} \in \partial f^*(\lambda)$$



- By definition  $f^*(\lambda) \ge \langle \lambda, x \rangle f(x)$  for all x,
- thus we always have (Fenchel-Young)  $f(x) + f^*(\lambda) \ge \langle \lambda, x \rangle$ .
- Recall that  $\lambda \in \partial f(x)$  iff for all x',

$$f(x') \ge f(x) + \langle \lambda, x' - x \rangle$$

iff

$$\langle \lambda, \mathbf{x} \rangle - f(\mathbf{x}) \ge \langle \lambda, \mathbf{x}' \rangle - f(\mathbf{x}') \qquad \forall \mathbf{x}'$$

that is

$$\lambda \in \partial f(\mathbf{x}) \Leftrightarrow \mathbf{x} \in \arg\max_{\mathbf{x}' \in X} \left\{ \langle \lambda, \mathbf{x}' \rangle - f(\mathbf{x}') \right\} \Leftrightarrow f(\mathbf{x}) + f^*(\lambda) = \langle \lambda, \mathbf{x} \rangle$$

From Fenchel-Young equality we have

$$\partial v^{\star\star}(x) \neq \emptyset \implies \partial v^{\star\star}(x) = \partial v(x) \text{ and } v^{\star\star}(x) = v(x).$$

$$\lambda \in \partial f(x) \iff x \in \partial f^*(\lambda).$$



- By definition  $f^*(\lambda) \ge \langle \lambda, x \rangle f(x)$  for all x,
- thus we always have (Fenchel-Young)  $f(x) + f^*(\lambda) \ge \langle \lambda, x \rangle$ .
- Recall that  $\lambda \in \partial f(x)$  iff for all x',

$$f(\mathbf{x}') \geq f(\mathbf{x}) + \langle \lambda, \mathbf{x}' - \mathbf{x} \rangle$$

iff

$$\langle \lambda, \mathbf{x} \rangle - f(\mathbf{x}) \ge \langle \lambda, \mathbf{x}' \rangle - f(\mathbf{x}') \qquad \forall \mathbf{x}'$$

that is

$$\lambda \in \partial f(\mathbf{x}) \Leftrightarrow \mathbf{x} \in \arg\max_{\mathbf{x}' \in X} \left\{ \langle \lambda, \mathbf{x}' \rangle - f(\mathbf{x}') \right\} \Leftrightarrow f(\mathbf{x}) + f^*(\lambda) = \langle \lambda, \mathbf{x} \rangle$$

• From Fenchel-Young equality we have

$$\partial v^{\star\star}(\mathbf{x}) \neq \emptyset \implies \partial v^{\star\star}(\mathbf{x}) = \partial v(\mathbf{x}) \text{ and } v^{\star\star}(\mathbf{x}) = v(\mathbf{x}).$$

$$\lambda \in \partial f(x) \iff x \in \partial f^*(\lambda).$$



- By definition  $f^*(\lambda) \ge \langle \lambda, x \rangle f(x)$  for all x,
- thus we always have (Fenchel-Young)  $f(x) + f^*(\lambda) \ge \langle \lambda, x \rangle$ .
- Recall that  $\lambda \in \partial f(x)$  iff for all x',

$$f(\mathbf{x}') \geq f(\mathbf{x}) + \langle \lambda, \mathbf{x}' - \mathbf{x} \rangle$$

iff

$$\langle \lambda, \mathbf{x} \rangle - f(\mathbf{x}) \ge \langle \lambda, \mathbf{x}' \rangle - f(\mathbf{x}') \qquad \forall \mathbf{x}'$$

that is

$$\lambda \in \partial f(\mathbf{x}) \Leftrightarrow \mathbf{x} \in \arg\max_{\mathbf{x}' \in X} \left\{ \langle \lambda, \mathbf{x}' \rangle - f(\mathbf{x}') \right\} \Leftrightarrow f(\mathbf{x}) + f^*(\lambda) = \langle \lambda, \mathbf{x} \rangle$$

• From Fenchel-Young equality we have

$$\partial v^{\star\star}(\mathbf{x}) \neq \emptyset \implies \partial v^{\star\star}(\mathbf{x}) = \partial v(\mathbf{x}) \text{ and } v^{\star\star}(\mathbf{x}) = v(\mathbf{x}).$$

$$\lambda \in \partial f(\mathbf{x}) \iff \mathbf{x} \in \partial f^*(\lambda).$$

# What you have to know

- What is a affine set, a convex set, a polyhedron, a (convex) cone
- What is a convex function, that it is above its tangents.
- Jensen inequality
- What is a convex optimization problem. That any local minimum is a global minimum.
- The necessary optimality condition  $\nabla f(x^{\sharp}) \in [T_X(x^{\sharp})]^{\oplus}$

# What you really should know

- That you can separate convex sets with a linear function
- What is the positive dual of a cone
- Basic manipulations preserving convexity (sum, cartesian product, intersection, linear projection)
- What is the domain, the sublevel of a function f
- What is a lower semi-continuous function, a proper convex function
- Conditions of (strict, strong) convexity for differentiable functions
- The partial minimum of a convex function is convex
- The definition of the subdifferential.
- The definition of the Fenchel transform.
- The link between Fenchel transform and subdifferential.

# What you have to be able to do

- Show that a set is convex
- Show that a function is (strictly, strongly) convex
- $\bullet$  Go from constrained problem to unconstrained problem using the indicator function  $\mathbb{I}_X$

# What you should be able to do

- Compute dual cones
- Use advanced results (projection, partial infimum, perspective) to show that a function or a set is convex
- Compute the Fenchel transform of simple functions