RF TEST REPORT

Report No.: 16070923-FCC-R3
Supersede Report No.: N/A

Applicant	SMT TELECOMM HK LIMITED			
Product Name	Mobile Phone			
Model No.	M488			
Serial No.	N/A			
Test Standard	FCC Part 1	5.247: 2015,	ANSI C63.10:	2013
Test Date	August 23 to	o September	05, 2016	
Issue Date	September 06, 2016			
Test Result	Pass Fail			
Equipment compl	complied with the specification			
Equipment did no	t comply with	the specifica	ation 🔲	
Loven	LUO David Huang			
Loren Luo Test Engineer			I Huang ked By	

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108
Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report No.	16070923-FCC-R3
Page	2 of 54

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report No.	16070923-FCC-R3
Page	3 of 54

This page has been left blank intentionally.

Test Report No.	16070923-FCC-R3
Page	4 of 54

CONTENTS

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	5
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	e
5.	TEST SUMMARY	9
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	10
6.1	ANTENNA REQUIREMENT	10
6.2	DTS (6 DB&20 DB) CHANNEL BANDWIDTH	11
6.3	MAXIMUM OUTPUT POWER	17
6.4	POWER SPECTRAL DENSITY	21
6.5	BAND-EDGE & UNWANTED EMISSIONS INTO RESTRICTED FREQUENCY BANDS	25
6.6	AC POWER LINE CONDUCTED EMISSIONS	31
6.7	RADIATED SPURIOUS EMISSIONS & RESTRICTED BAND	37
ANI	NEX A. TEST INSTRUMENT	43
ANI	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	4 4
ANI	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	49
ANI	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	53
ΔΝΙ	NEX E DECLARATION OF SIMILARITY	54

Test Report No.	16070923-FCC-R3
Page	5 of 54

1. Report Revision History

Report No.	Report Version	Description	Issue Date
16070923-FCC-R3	NONE	Original	September 06, 2016

2. Customer information

Applicant Name	SMT TELECOMM HK LIMITED
Applicant Add	Unit C 8/F, CHARMHILL CTR 50 HILLWOOD RD TST KL
Manufacturer	SMT TELECOMM HK LIMITED
Manufacturer Add	Unit C 8/F, CHARMHILL CTR 50 HILLWOOD RD TST KL

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES	
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park	
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China	
	518108	
FCC Test Site No.	718246	
IC Test Site No.	4842E-1	
Test Software	Radiated Emission Program-To Shenzhen v2.0	

Test Report No.	16070923-FCC-R3
Page	6 of 54

4. Equipment under Test (EUT) Information

Description of EUT: Mobile Phone

Main Model: M488

Serial Model: N/A

Date EUT received: August 22, 2016

Test Date(s): August 23 to September 05, 2016

Equipment Category: DTS

Antenna Gain:

GSM850: 0.8dBi

PCS1900: 1dBi

UMTS-FDD Band V: 1dBi

UMTS-FDD Band II: 1dBi

Bluetooth/BLE/WIFI: 1dBi

GPS: 1dBi

Antenna Type: PIFA antenna

GSM / GPRS: GMSK

EGPRS: GMSK,8PSK

UMTS-FDD: QPSK

Type of Modulation: 802.11b/g/n: DSSS, OFDM

Bluetooth: GFSK, π /4DQPSK, 8DPSK

BLE: GFSK GPS:BPSK

Test Report No.	16070923-FCC-R3
Page	7 of 54

GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz

PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz

UMTS-FDD Band V TX: 826.4 ~ 846.6 MHz; RX: 871.4 ~ 891.6 MHz

UMTS-FDD Band II TX:1852.4 ~ 1907.6 MHz;

RF Operating Frequency (ies): RX: 1932.4 ~ 1987.6 MHz

WIFI: 802.11b/g/n(20M): 2412-2462 MHz WIFI: 802.11n(40M): 2422-2452 MHz

Bluetooth& BLE: 2402-2480 MHz

GPS: 1575.42 MHz

802.11b: 16.67dBm

802.11g: 14.28dBm

Max. Output Power: 802.11n(20M): 14.17dBm

802.11n(40M): 12.10dBm

GSM 850: 124CH PCS1900: 299CH

UMTS-FDD Band V: 102CH UMTS-FDD Band II: 277CH

Number of Channels: WIFI:802.11b/g/n(20M): 11CH

WIFI:802.11n(40M):7CH

Bluetooth: 79CH

BLE: 40CH GPS:1CH

Port: Power Port, Earphone Port, USB Port

Adapter:

Model: PC488

Input: AC100-240V~50/60Hz,0.15A

Output: DC 5.0V-500mA

Input Power: Battery:

Model: BPM488 Voltage: 3.7V

Battery Capacity: 1400mAh Charging limit voltage: 4.2V

Trade Name: N/A

Test Report No.	16070923-FCC-R3
Page	8 of 54

GPRS/EGPRS Multi-slot class	8/10/12
-----------------------------	---------

FCC ID: 2AIMEM488

Test Report No.	16070923-FCC-R3
Page	9 of 54

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

Description of Test	Result
Antenna Requirement	Compliance
DTS (6 dB&20 dB) CHANNEL BANDWIDTH	Compliance
Conducted Maximum Output Power	Compliance
Power Spectral Density	Compliance
Band-Edge & Unwanted Emissions into Restricted Frequency Bands	Compliance
AC Power Line Conducted Emissions	Compliance
Radiated Spurious Emissions & Unwanted Emissions	Compliance
	Antenna Requirement DTS (6 dB&20 dB) CHANNEL BANDWIDTH Conducted Maximum Output Power Power Spectral Density Band-Edge & Unwanted Emissions into Restricted Frequency Bands AC Power Line Conducted Emissions

Measurement Uncertainty

Emissions		
Test Item	Description	Uncertainty
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB
-	-	-

Test Report No.	16070923-FCC-R3
Page	10 of 54

6. Measurements, Examination And Derived Results

6.1 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 2 antennas:

A permanently attached PIFA antenna for Bluetooth/BLE/WIFI/GPS, the gain is 1dBi for Bluetooth/BLE/WIFI/GPS.

A permanently attached PIFA antenna for GSM/PCS/UMTS, the gain is 0.8dBi for GSM850, 1dBi for PCS1900, 1dBi for UMTS-FDD Band V, 1dBi for UMTS-FDD Band II.

The antenna meets up with the ANTENNA REQUIREMENT.

Result: Compliance.

Test Report No.	16070923-FCC-R3
Page	11 of 54

6.2 DTS (6 dB&20 dB) Channel Bandwidth

Temperature	23°C
Relative Humidity	55%
Atmospheric Pressure	1003mbar
Test date :	September 03, 2016
Tested By :	Loren Luo

Spec	Item	Requirement	Applicable
§ 15.247(a)(2)	a)	6dB BW≥ 500kHz; 20dB BW≥ 500kHz;	V
RSS Gen(4.6.1)	b)	99% BW: For FCC reference only; required by IC.	V
1100 0011(4.0.1)	D)	99 % BVV. For Figure 10 or 10 control of the first section of the first	
Test Setup			
	558074 D01 DTS MEAS Guidance v03r03, 8.1 DTS bandwidth		
	6dB b	<u>andwidth</u>	
	a) Se	t RBW = 100 kHz.	
	b) Se	t the video bandwidth (VBW) ≥ 3 × RBW.	
	c) Detector = Peak.		
	d) Trace mode = max hold.		
	e) Sweep = auto couple.		
	f) Allow the trace to stabilize.		
	g) Measure the maximum width of the emission that is constrained by the freq		
Test Procedure	uencies associated with the two outermost amplitude points (upper and lower fr		
restriocedure	equencies) that are attenuated by 6 dB relative to the maximum level measure		
	d in the fundamental emission.		
	20dB bandwidth		
	C63.10 Occupied Bandwidth (OBW=20dB bandwidth)		
	1. S	et RBW = 1%-5% OBW.	
	2. Set the video bandwidth (VBW) ≥ 3 x RBW.		
	3. Set the span range between 2 times and 5 times of the OBW.		
	4. Sweep time=Auto, Detector=PK, Trace=Max hold.		
	5. Once the reference level is established, the equipment is conditioned with t		
	ypical	modulating signals to produce the worst-	

Test Report No.	16070923-FCC-R3
Page	12 of 54

	case (i.e., the widest) bandwidth. Unless otherwise specified for an unlicensed
	wireless device, measure the bandwidth at the 20 dB levels with respect to the
	reference level.
Remark	
Result	Pass

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Measurement result

Test mode	СН	Freq (MHz)	6dB Bandwidth (MHz)	20dB Bandwidth (MHz)	Limit (MHz)
	Low	2412	10.096	14.360	≥ 0.5
802.11b	Mid	2437	9.590	14.385	≥ 0.5
	High	2462	10.013	14.406	≥ 0.5
	Low	2412	15.436	18.892	≥ 0.5
802.11g	Mid	2437	15.283	18.958	≥ 0.5
	High	2462	15.016	18.854	≥ 0.5
802.11n (20M)	Low	2412	15.955	19.280	≥ 0.5
	Mid	2437	17.142	19.331	≥ 0.5
	High	2462	15.260	19.306	≥ 0.5
802.11n (40M)	Low	2422	35.373	41.120	≥ 0.5
	Mid	2437	35.388	39.854	≥ 0.5
	High	2452	35.297	39.765	≥ 0.5

Test Report No.	16070923-FCC-R3
Page	13 of 54

Test Plots

6dB Bandwidth measurement result

Test Report No.	16070923-FCC-R3
Page	14 of 54

Test Report No.	16070923-FCC-R3
Page	15 of 54

20 dB Bandwidth measurement result

Test Report No.	16070923-FCC-R3
Page	16 of 54

Test Report No.	16070923-FCC-R3
Page	17 of 54

6.3 Maximum Output Power

Temperature	23°C		
Relative Humidity	55%		
Atmospheric Pressure	1003mbar		
Test date :	September 03, 2016		
Tested By :	Loren Luo		

Requirement(s):

Snoo	Ite	Requirement	Applicable			
Spec	m					
	a)	FHSS in 2400-2483.5MHz with ≥ 75 channels: ≤ 1 Watt				
	b)	FHSS in 5725-5850MHz: ≤ 1 Watt				
§15.247(b) (3),RSS210	c)	For all other FHSS in the 2400-2483.5MHz band: ≤ 0.125 Watt.				
(3),133210 (A8.4)	d)	FHSS in 902-928MHz with ≥ 50 channels: ≤ 1 Watt				
(7.0.1)	e)	FHSS in 902-928MHz with ≥ 25 & <50 channels: ≤ 0.25 Watt				
	f)	DTS in 902-928MHz, 2400-2483.5MHz: ≤ 1 Watt	V			
Test Setup						
558074 D01 DTS MEAS Guidance v03r03, 9.1.2 Integrated band power method						
	Maximum output power measurement procedure					
	- a) Set span to at least 1.5 times the OBW.					
	- b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.					
Task	- c) Set VBW ≥ 3 x RBW.					
Test	- d) Number of points in sweep ≥ 2 × span / RBW. (This gives bin-to-bin spacing					
Procedure	≤ RBW/2, so that narrowband signals are not lost between frequency bins.)					
	- e) Sweep time = auto.					
	_	f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample				
	detector mode.					
	g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum					
	unggering only on full power pulses. The transmitter shall operate at maximum					

Test Report No.	16070923-FCC-R3
Page	18 of 54

	power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall					
	be set to " free run".					
	- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.					
	- i) Compute power by integrating the spectrum across the OBW of the signal					
	using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW					
	extending across the entire OBW of the spectrum.					
Remark						
Result	Pass Fail					

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Output Power measurement result

Туре	Test mode	СН	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Result
		Low	2412	16.67	30	Pass
	802.11b	Mid	2437	16.46	30	Pass
		High	2462	16.51	30	Pass
	802.11g	Low	2412	13.32	30	Pass
		Mid	2437	14.28	30	Pass
Output		High	2462	13.57	30	Pass
power	802.11n	Low	2412	13.47	30	Pass
		Mid	2437	14.06	30	Pass
	(20M)	High	2462	14.17	30	Pass
	000 44.5	Low	2422	11.97	30	Pass
	802.11n	Mid	2437	11.82	30 Pa	Pass
	(40M)	High	2452	12.10	30	Pass

Test Report No.	16070923-FCC-R3
Page	19 of 54

Test Plots

The Average Power

Test Report No.	16070923-FCC-R3
Page	20 of 54

Test Report No.	16070923-FCC-R3
Page	21 of 54

6.4 Power Spectral Density

Temperature	23°C	
Relative Humidity	55%	
Atmospheric Pressure	1003mbar	
Test date :	September 03, 2016	
Tested By:	Loren Luo	

Spec	Item	Requirement	Applicable		
§15.247(e)	a)	a) The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.			
Test Setup					
Test Procedure	power s	D01 DTS MEAS Guidance v03r03, 10.2 power spectral dense spectral density measurement procedure a) Set analyzer center frequency to DTS channel center frequency b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to: 3 kHz ≤ RBW ≤ 100 kHz. d) Set the VBW ≥ 3 × RBW. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum and level within the RBW. j) If measured value exceeds limit, reduce RBW (no less than repeat.	uency.		
Remark					
Result	Pas	ss Fail			

Test Report No.	16070923-FCC-R3
Page	22 of 54

Test Data Yes (See below) Test Plot

Power Spectral Density measurement result

Туре	Test mode	СН	Freq	PSD	Limit	Result
			(MHz)	(dBm)	(dBm)	
		Low	2412	-4.432	8	Pass
	802.11b	Mid	2437	-7.080	8	Pass
		High	2462	-7.323	8	Pass
		Low	2412	-10.37	8	Pass
	802.11g	Mid	2437	-11.17	8	Pass
DCD		High	2462	-10.06	8	Pass
PSD	802.11n	Low	2412	-11.02	8	Pass
	(20M)	Mid	2437	-11.87	8	Pass
		High	2462	-11.16	8	Pass
	802.11n	Low	2422	-13.09	8	Pass
		Mid	2437	-13.95	8	Pass
	(40M)	High	2452	-13.49	8	Pass

Test Report No.	16070923-FCC-R3
Page	23 of 54

Test Plots

Power Spectral Density measurement result

Test Report No.	16070923-FCC-R3
Page	24 of 54

Test Report No.	16070923-FCC-R3
Page	25 of 54

6.5 Band-Edge & Unwanted Emissions into Restricted Frequency Bands

Temperature	22°C
Relative Humidity	57%
Atmospheric Pressure	1005mbar
Test date :	September 05, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement	Applicable		
§15.247(d)	a)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.			
Test Setup		Ant. Tower Support Units Ground Plane Test Receiver	e		
Test Procedure	Radiated Method Only 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. 2. Position the EUT without connection to measurement instrument. Put it on the Rotated table and turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.				

Test Report No.	16070923-FCC-R3
Page	26 of 54

	- 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a
	convenient frequency span including 100kHz bandwidth from band edge,
	check the emission of EUT, if pass then set Spectrum Analyzer as below:
	a. The resolution bandwidth and video bandwidth of test receiver/spectrum
	analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz.
	b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and
	video bandwidth is 3MHz with Peak detection for Peak measurement at
	frequency above 1GHz.
	c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the
	video bandwidth is 10Hz with Peak detection for Average Measurement as below
	at frequency above 1GHz.
	- 4. Measure the highest amplitude appearing on spectral display and set it as a
	reference level. Plot the graph with marking the highest point and edge
	frequency.
	- 5. Repeat above procedures until all measured frequencies were complete.
Remark	
Result	Pass Fail
Test Data	Yes N/A
Test Plot	Yes (See below)
1 621 LIN	1 63 (Occ below)

Test Report No.	16070923-FCC-R3
Page	27 of 54

Test Plots Band Edge measurement result

Test Report No.	16070923-FCC-R3
Page	28 of 54

Test Report No.	16070923-FCC-R3
Page	29 of 54

Test Report No.	16070923-FCC-R3
Page	30 of 54

Note: F1 is frequency 2390MHz; F2 is frequency 2400MHz

2400MHz

Note: F1 is frequency 2483.5MHz

Test Report No.	16070923-FCC-R3
Page	31 of 54

6.6 AC Power Line Conducted Emissions

Temperature	22°C
Relative Humidity	57%
Atmospheric Pressure	1005mbar
Test date :	September 05, 2016
Tested By:	Loren Luo

Requirement(s):

Spec	Item	Requirement			Applicable
47CFR§15. 207, RSS210 (A8.1)	a)	For Low-power radio-fr connected to the public voltage that is conducte frequency or frequencie not exceed the limits in [mu] H/50 ohms line im lower limit applies at th Frequency ranges (MHz) 0.15 ~ 0.5	e utility (AC) power line ed back onto the AC po es, within the band 150 the following table, as pedance stabilization r	the radio frequency ower line on any kHz to 30 MHz, shall measured using a 50 network (LISN). The ne frequencies ranges.	▼
		0.5 ~ 5	56	46	
Test Setup	Vertical Ground Reference Plane Horizontal Ground Reference Plane Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) are 80cm from EUT and at least 80cm				
Procedure	 The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50W/50mH EUT LISN, connected to filtered mains. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss 				

Test Plot
✓ Yes (See below)
✓ N/A

Test Report No.	16070923-FCC-R3
Page	32 of 54

	coaxial cable.
	4. All other supporting equipment were powered separately from another main supply.
	5. The EUT was switched on and allowed to warm up to its normal operating condition.
	6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power)
	over the required frequency range using an EMI test receiver.
	7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the
	selected frequencies and the necessary measurements made with a receiver bandwidth
	setting of 10 kHz.
	8. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).
Remark	
Result	Pass Fail
Test Data	Ves N/A

Test Report No.	16070923-FCC-R3
Page	33 of 54

Test Mode:	Transmitting Mode
	_

Test Data

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	L1	0.2865	26.79	QP	10.03	36.82	60.63	-23.81
2	L1	0.2865	17.89	AVG	10.03	27.92	50.63	-22.71
3	L1	0.5244	35.75	QP	10.03	45.78	56.00	-10.22
4	L1	0.5244	17.22	AVG	10.03	27.25	46.00	-18.75
5	L1	0.5868	35.20	QP	10.03	45.23	56.00	-10.77
6	L1	0.5868	21.70	AVG	10.03	31.73	46.00	-14.27
7	L1	0.8637	28.08	QP	10.03	38.11	56.00	-17.89
8	L1	0.8637	12.93	AVG	10.03	22.96	46.00	-23.04
9	L1	1.2693	29.67	QP	10.03	39.70	56.00	-16.30
10	L1	1.2693	11.35	AVG	10.03	21.38	46.00	-24.62
11	L1	2.0298	28.62	QP	10.04	38.66	56.00	-17.34
12	L1	2.0298	11.31	AVG	10.04	21.35	46.00	-24.65

Test Report No.	16070923-FCC-R3
Page	34 of 54

Test Mode:	Transmitting	Mode
	_	

Test Data

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
4		*			, ,			, ,
1	N	0.2553	26.14	QP	10.02	36.16	61.58	-25.42
2	N	0.2553	16.44	AVG	10.02	26.46	51.58	-25.12
3	N	0.5985	32.87	QP	10.02	42.89	56.00	-13.11
4	Ν	0.5985	25.90	AVG	10.02	35.92	46.00	-10.08
5	N	0.9378	31.28	QP	10.03	41.31	56.00	-14.69
6	N	0.9378	22.13	AVG	10.03	32.16	46.00	-13.84
7	Ν	1.8855	30.16	QP	10.04	40.20	56.00	-15.80
8	N	1.8855	20.76	AVG	10.04	30.80	46.00	-15.20
9	N	3.6747	29.75	QP	10.06	39.81	56.00	-16.19
10	Ν	3.6747	18.09	AVG	10.06	28.15	46.00	-17.85
11	N	7.3836	30.41	QP	10.10	40.51	60.00	-19.49
12	N	7.3836	12.59	AVG	10.10	22.69	50.00	-27.31

Test Report No.	16070923-FCC-R3
Page	35 of 54

Test Mode:	Transmitting Mode
	_

Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	L1	0.1812	26.18	QP	10.03	36.21	64.43	-28.22
2	L1	0.1812	13.81	AVG	10.03	23.84	54.43	-30.59
3	L1	0.2787	26.00	QP	10.03	36.03	60.85	-24.82
4	L1	0.2787	15.67	AVG	10.03	25.70	50.85	-25.15
5	L1	0.4620	26.55	QP	10.03	36.58	56.66	-20.08
6	L1	0.4620	15.09	AVG	10.03	25.12	46.66	-21.54
7	L1	0.6063	25.24	QP	10.03	35.27	56.00	-20.73
8	L1	0.6063	14.85	AVG	10.03	24.88	46.00	-21.12
9	L1	1.2030	23.88	QP	10.03	33.91	56.00	-22.09
10	L1	1.2030	7.45	AVG	10.03	17.48	46.00	-28.52
11	L1	2.8449	26.69	QP	10.05	36.74	56.00	-19.26
12	L1	2.8449	8.14	AVG	10.05	18.19	46.00	-27.81

Test Report No.	16070923-FCC-R3
Page	36 of 54

Test Mode: Transmitting Mode

Test Data

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	N	0.3684	32.40	QP	10.02	42.42	58.54	-16.12
2	N	0.3684	21.38	AVG	10.02	31.40	48.54	-17.14
3	N	0.4659	35.98	QP	10.02	46.00	56.59	-10.59
4	N	0.4659	23.35	AVG	10.02	33.37	46.59	-13.22
5	N	0.5985	33.85	QP	10.02	43.87	56.00	-12.13
6	Ν	0.5985	23.74	AVG	10.02	33.76	46.00	-12.24
7	N	1.0509	35.03	QP	10.03	45.06	56.00	-10.94
8	N	1.0509	22.40	AVG	10.03	32.43	46.00	-13.57
9	Ν	1.7724	33.82	QP	10.04	43.86	56.00	-12.14
10	N	1.7724	22.85	AVG	10.04	32.89	46.00	-13.11
11	N	2.5212	33.26	QP	10.05	43.31	56.00	-12.69
12	N	2.5212	20.36	AVG	10.05	30.41	46.00	-15.59

Test Report No.	16070923-FCC-R3
Page	37 of 54

6.7 Radiated Spurious Emissions & Restricted Band

Temperature	22°C
Relative Humidity	57%
Atmospheric Pressure	1005mbar
Test date :	September 05, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement		Applicable	
Spec 47CFR§15. 247(d), RSS210 (A8.5)	a)	emissions from the low-power radio exceed the field strength levels spetthe level of any unwanted emission			
		Frequency range (MHz)	Field Strength (µV/m)		
		30 - 88	thigher limit as specified elsewhere in other section, the ions from the low-power radio-frequency devices shall not ad the field strength levels specified in the following table and wel of any unwanted emissions shall not exceed the level of indamental emission. The tighter limit applies at the band indamental emission. The tighter limit applies at the band indamental emission. The tighter limit applies at the band indamental emission. The tighter limit applies at the band indamental emission. The tighter limit applies at the band indamental emission. The tighter limit applies at the band indamental emission. The tighter limit applies at the band indamental emission. The tighter limit applies at the band indamental emission. The tighter limit applies at the band indamental emission. The tighter limit applies at the band indamental emission in the band indamental emission in the band indamental emission indamental emission, the following table and indamental emission indamental emission indamental emission in the following table and indamental emission in		
		88 – 216			
	216 960	200			
		Above 960	500		
RSS210	b)	frequency band in which the spread modulated intentional radiator is oppower that is produced by the intentional radiator is oppower that is produced by the intentional radiator is oppower that is produced by the intentional radiator is oppower that is produced by the intentional radiator is opposed by the measurement measuremen	d spectrum or digitally perating, the radio frequency ational radiator shall be at least 0 kHz bandwidth within the desired power, sethod on output power to be		
	c)	or restricted band, emission must a		V	
	''	emission limits specified in 15.209			

Test Report No.	16070923-FCC-R3
Page	38 of 54

Test Data	Yes	
Test Plot	Yes (See below)	□ _{N/A}

Test Report No.	16070923-FCC-R3
Page	39 of 54

Test Mode:	Transmitting Mode
	_

(Below 1GHz)

Vertical Polarity Plot @3m

No	P/L	Frequency (MHz)	Reading (dBµV)	Detec tor	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)	Height	Degree
1	Τ	31.3992	25.22	peak	-1.29	23.93	40.00	-16.07	100	136
2	Н	98.4866	28.30	peak	-11.20	17.10	43.50	-26.40	100	107
3	Н	188.4125	34.64	peak	-9.33	25.31	43.50	-18.19	100	124
4	Η	260.1444	28.77	peak	-8.72	20.05	46.00	-25.95	100	25
5	Н	289.0021	27.22	peak	-7.40	19.82	46.00	-26.18	100	98
6	Н	909.6667	25.38	peak	4.78	30.16	46.00	-15.84	100	198

Test Report No.	16070923-FCC-R3
Page	40 of 54

(Below 1GHz)

Test Data

Horizontal Polarity Plot @3m

No	P/L	Frequency (MHz)	Reading (dBµV)	Detec tor	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)	Height	Degree
1	٧	32.7486	27.35	peak	-2.28	25.07	40.00	-14.93	100	328
2	V	74.3955	34.61	peak	-13.73	20.88	40.00	-19.12	100	64
3	V	92.4624	37.85	peak	-12.76	25.09	43.50	-18.41	100	47
4	V	159.7844	33.73	peak	-8.28	25.45	43.50	-18.05	100	120
5	V	189.0743	37.66	peak	-9.29	28.37	43.50	-15.13	100	11
6	V	258.3264	29.15	peak	-8.81	20.34	46.00	-25.66	100	52

Test Report No.	16070923-FCC-R3
Page	41 of 54

Above 1GHz

Test Mode: Transmitting Mode	
------------------------------	--

Low Channel (2412 MHz) (b mode worst case)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4824	38.56	AV	V	33.8	6.86	32.69	46.53	54	-7.47
4824	38.27	AV	Η	33.8	6.86	32.69	46.24	54	-7.76
4824	47.58	PK	V	33.8	6.86	32.69	55.55	74	-18.45
4824	47.25	PK	Н	33.8	6.86	32.69	55.22	74	-18.78
17869	23.68	AV	V	45.12	11.57	32.11	48.26	54	-5.74
17869	23.41	AV	Н	45.12	11.57	32.11	47.99	54	-6.01
17869	40.56	PK	V	45.12	11.57	32.11	65.14	74	-8.86
17869	40.13	PK	Н	45.12	11.57	32.11	64.71	74	-9.29

Middle Channel (2437 MHz) (b mode worst case)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4874	39.01	AV	V	33.6	6.82	32.71	46.72	54	-7.28
4874	38.76	AV	Н	33.6	6.82	32.71	46.47	54	-7.53
4874	47.78	PK	V	33.6	6.82	32.71	55.49	74	-18.51
4874	47.25	PK	Н	33.6	6.82	32.71	54.96	74	-19.04
17903	23.59	AV	V	45.17	11.63	32.18	48.21	54	-5.79
17903	23.14	AV	Н	45.17	11.63	32.18	47.76	54	-6.24
17903	40.73	PK	V	45.17	11.63	32.18	65.35	74	-8.65
17903	40.52	PK	Н	45.17	11.63	32.18	65.14	74	-8.86

Test Report No.	16070923-FCC-R3
Page	42 of 54

High Channel (2452 MHz) (b mode worst case)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4924	38.76	AV	V	33.83	6.95	32.79	46.75	54	-7.25
4924	38.55	AV	Н	33.83	6.95	32.79	46.54	54	-7.46
4924	47.49	PK	٧	33.83	6.95	32.79	55.48	74	-18.52
4924	47.31	PK	Н	33.83	6.95	32.79	55.30	74	-18.70
17875	23.52	AV	V	45.19	11.61	32.24	48.08	54	-5.92
17875	23.46	AV	Н	45.19	11.61	32.24	48.02	54	-5.98
17875	40.43	PK	V	45.19	11.61	32.24	64.99	74	-9.01
17875	40.15	PK	Н	45.19	11.61	32.24	64.71	74	-9.29

Note:

- 1, The testing has been conformed to 10*2462MHz=24,620MHz
- 2, All other emissions more than 30 dB below the limit
- 3, X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.

Test Report No.	16070923-FCC-R3
Page	43 of 54

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted					
EMI test receiver	ESCS30	8471241027	09/17/2015	09/16/2016	<u><</u>
Line Impedance	LI-125A	191106	09/25/2015	09/24/2016	<u> </u>
Line Impedance	LI-125A	191107	09/25/2015	09/24/2016	~
LISN	ISN T800	34373	09/25/2015	09/24/2016	~
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/24/2015	09/23/2016	\
Transient Limiter	LIT-153	531118	08/31/2016	08/30/2017	>
RF conducted test					
Agilent ESA-E SERIES	E4407B	MY45108319	09/17/2015	09/16/2016	~
Power Splitter	1#	1#	08/31/2016	08/30/2017	<u><</u>
DC Power Supply	E3640A	MY40004013	09/17/2015	09/16/2016	<u><</u>
Radiated Emissions					
EMI test receiver	ESL6	100262	09/17/2015	09/16/2016	~
Positioning Controller	UC3000	MF780208282	11/19/2015	11/18/2016	~
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	08/31/2016	08/30/2017	•
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/24/2016	03/23/2017	<u><</u>
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/21/2015	09/20/2016	<u>\</u>
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/24/2015	09/23/2016	V
Universal Radio Communication Tester	CMU200	121393	09/25/2015	09/24/2016	V

Test Report No.	16070923-FCC-R3
Page	44 of 54

Annex B. EUT and Test Setup Photographs

Annex B.i. Photograph: EUT External Photo

Test Report No.	16070923-FCC-R3
Page	45 of 54

EUT - Top View

EUT - Bottom View

EUT - Right View

Test Report No.	16070923-FCC-R3
Page	46 of 54

Annex B.ii. Photograph: EUT Internal Photo

Cover Off - Top View 1

Cover Off - Top View 2

Battery - Front View

Battery - Rear View

Mainboard with Shielding - Front View

Mainboard without Shielding - Front View

Test Report No.	16070923-FCC-R3
Page	47 of 54

Mainboard - Rear View

LCD - Front View

LCD - Rear View

GSM/PCS/UMTS-FDD Antenna View

WIFI/BT/BLE/GPS - Antenna View

Test Report No.	16070923-FCC-R3
Page	48 of 54

Annex B.iii. Photograph: Test Setup Photo

Conducted Emissions Test Setup Front View

Conducted Emissions Test Setup Side View

Radiated Spurious Emissions Test Setup Below 1GHz

Radiated Spurious Emissions Test Setup Above 1GHz

Test Report No.	16070923-FCC-R3
Page	49 of 54

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK

Block Configuration Diagram for AC Line Conducted Emissions

Test Report No.	16070923-FCC-R3
Page	50 of 54

Block Configuration Diagram for Radiated Emissions (Below 1GHz).

Test Report No.	16070923-FCC-R3
Page	51 of 54

Block Configuration Diagram for Radiated Emissions (Above 1GHz) .

Test Report No.	16070923-FCC-R3
Page	52 of 54

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
SMT TELECOMM HK LIMITED	Adapter	PC488	D2156273

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	0.8m	D2156273

Test Report No.	16070923-FCC-R3
Page	53 of 54

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see the attachment

Test Report No.	16070923-FCC-R3
Page	54 of 54

Annex E. DECLARATION OF SIMILARITY

N/A