# 1 Modular Arithmetic Equations

Solve the following equations for *x* and *y* modulo the indicated modulus, or show that no solution exists. Show your work.

- (a)  $9x \equiv 1 \pmod{11}$ .
- (b)  $10x + 23 \equiv 3 \pmod{31}$ .
- (c)  $3x + 15 \equiv 4 \pmod{21}$ .
- (d) The system of simultaneous equations  $3x + 2y \equiv 0 \pmod{7}$  and  $2x + y \equiv 4 \pmod{7}$ .

## **Solution:**

- (a) Multiply both sides by  $9^{-1} \equiv 5 \pmod{11}$  to get  $x \equiv 5 \pmod{11}$ .
- (b) Subtract 23 from both sides, then multiply both sides by  $10^{-1} = -3 \pmod{31}$  to find  $x \equiv (-20) \cdot (-3) \equiv 60 \equiv 29 \pmod{31}$ .
- (c) Subtract 15 from both sides to get  $3x \equiv 10 \pmod{21}$ . Now note that this implies  $3x \equiv 1 \pmod{3}$ , since 3 divides 21, and the latter equation has no solution, so the former cannot either.

We are using the fact that if  $d \mid m$ , then  $x \equiv y \pmod{m}$  implies  $x \equiv y \pmod{d}$  (but not necessarily the other way around). To see this, if  $x \equiv y \pmod{m}$ , then  $m \mid x - y$  (by definition) and so  $d \mid x - y$ , and hence  $x \equiv y \pmod{d}$ .

(d) First, subtract the first equation from double the second equation to get  $2(2x+y) - (3x+2y) \equiv x \equiv 1 \pmod{7}$ ; now plug in to the second equation to get  $2+y \equiv 4 \pmod{7}$ , so the system has the solution  $x \equiv 1 \pmod{7}$ ,  $y \equiv 2 \pmod{7}$ .

## 2 Bijections

Let n be an odd number. Let f(x) be a function from  $\{0,1,\ldots,n-1\}$  to  $\{0,1,\ldots,n-1\}$ . In each of these cases say whether or not f(x) is necessarily a bijection. Justify your answer (either prove f(x) is a bijection or give a counterexample).

(a)  $f(x) = 2x \pmod{n}$ .

- (b)  $f(x) = 5x \pmod{n}$ .
- (c) n is prime and

$$f(x) = \begin{cases} 0 & \text{if } x = 0, \\ x^{-1} \pmod{n} & \text{if } x \neq 0. \end{cases}$$

(d) n is prime and  $f(x) = x^2 \pmod{n}$ .

## **Solution:**

- (a) Bijection, because there exists the inverse function  $g(y) = 2^{-1}y \pmod{n}$ . Since n is odd, gcd(2,n) = 1, so the multiplicative inverse of 2 exists.
- (b) Not necessarily a bijection. For example, n = 5, f(0) = f(1) = 0.
- (c) Bijection, because the multiplicative inverse is unique.
- (d) Definitely not a bijection. For example, if n = 3, f(1) = f(2) = 1.

# 3 Baby Fermat

Assume that a does have a multiplicative inverse mod m. Let us prove that its multiplicative inverse can be written as  $a^k \pmod{m}$  for some  $k \ge 0$ .

- (a) Consider the sequence  $a, a^2, a^3, \ldots \pmod{m}$ . Prove that this sequence has repetitions.
- (b) Assuming that  $a^i \equiv a^j \pmod{m}$ , where i > j, what can you say about  $a^{i-j} \pmod{m}$ ?
- (c) Prove that the multiplicative inverse can be written as  $a^k \pmod{m}$ . What is k in terms of i and j?

#### **Solution:**

- (a) There are only m possible values mod m, and so after the m-th term we should see repetitions.
- (b) We will temporarily use the notation  $a^*$  for the multiplicative inverse of a to avoid confusion. If we multiply both sides by  $(a^*)^j$  in the third line below, we get

$$a^{i} \equiv a^{j} \qquad (\text{mod } m),$$

$$a^{i-j} \underbrace{a \cdots a}_{j \text{ times}} \equiv \underbrace{a \cdots a}_{j \text{ times}} \qquad (\text{mod } m),$$

$$a^{i-j} \underbrace{a \cdots a}_{j \text{ times}} \underbrace{a^{*} \cdots a^{*}}_{j \text{ times}} \equiv \underbrace{a \cdots a}_{j \text{ times}} \underbrace{a^{*} \cdots a^{*}}_{j \text{ times}} \qquad (\text{mod } m),$$

$$a^{i-j} \equiv 1 \qquad (\text{mod } m).$$

(c) We can rewrite  $a^{i-j} \equiv 1 \pmod{m}$  as  $a^{i-j-1}a \equiv 1 \pmod{m}$ . Therefore  $a^{i-j-1}$  is the multiplicative inverse of  $a \pmod{m}$ .

# 4 Combining Moduli

Suppose we wish to work modulo n = 40. Note that  $40 = 5 \times 8$ , with gcd(5,8) = 1. We will show that in many ways working modulo 40 is the same as working modulo 5 and modulo 8, in the sense that instead of writing down  $c \pmod{40}$ , we can just write down  $c \pmod{5}$  and  $c \pmod{8}$ .

- (a) What is 8 (mod 5) and 8 (mod 8)? Find a number  $a \pmod{40}$  such that  $a \equiv 1 \pmod{5}$  and  $a \equiv 0 \pmod{8}$ .
- (b) Now find a number  $b \pmod{40}$  such that  $b \equiv 0 \pmod{5}$  and  $b \equiv 1 \pmod{8}$ .
- (c) Now suppose you wish to find a number  $c \pmod{40}$  such that  $c \equiv 2 \pmod{5}$  and  $c \equiv 5 \pmod{8}$ . Find c by expressing it in terms of a and b.
- (d) Repeat to find a number  $d \pmod{40}$  such that  $d \equiv 3 \pmod{5}$  and  $d \equiv 4 \pmod{8}$ .
- (e) Compute  $c \times d \pmod{40}$ . Is it true that  $c \times d \equiv 2 \times 3 \pmod{5}$ , and  $c \times d \equiv 5 \times 4 \pmod{8}$ ?

## **Solution:**

- (a)  $8 \equiv 3 \pmod{5}$  and  $8 \equiv 0 \pmod{8}$ . We can find such a number by considering multiples of 8, i.e. 0, 8, 16, 24, 32, and find that if a = 16,  $16 \equiv 1 \pmod{5}$ . Therefore 16 satisfies both conditions.
- (b) We can find such a number by considering multiples of 5, i.e. 0, 5, 10, 15, 20, 25, 30, 35, and find that if b = 25,  $25 \equiv 1 \pmod{8}$ , so it satisfies both conditions.
- (c) We claim  $c \equiv 2a + 5b \equiv 37 \pmod{40}$ . To see that  $c \equiv 2 \pmod{5}$ , we note that  $b \equiv 0 \pmod{5}$  and  $a \equiv 1 \pmod{5}$ . So  $c \equiv 2a \equiv 2 \pmod{5}$ . Similarly  $c \equiv 5b \equiv 5 \pmod{8}$ .
- (d) We can repeat the same procedure as above, and find that  $d = 3a + 4b \equiv 28 \pmod{40}$ .
- (e)  $c \times d = 37 \times 28 \equiv 36 \pmod{40}$ . Note that if  $w \equiv x \pmod{n}$  and  $y \equiv z \pmod{n}$  then  $w \times y \equiv x \times z \pmod{n}$ . Therefore we can multiply  $c \equiv 2 \pmod{5}$  and  $d \equiv 3 \pmod{5}$  to get  $c \times d \equiv 2 \times 3 \pmod{5}$ . Similarly we can multiply these equations modulo 8 and get  $c \times d = 5 \times 4 \pmod{8}$ .