

ERICK LOPES RODRIGUES JOSUÉ TAVARES DA SILVA SOUSA MARLON SOUSA DA SILVA PEDRO HENRIQUE VIEIRA DA SILVA **RENATO PONCE BATISTA DE CARVALHO**

SIMV: máquina de vendas 4.0

Comentado [v1]:
Recomenda-se que o título deve ser claro e preciso, identificando o seu conteúdo e possibilitando a indexação e recuperação da informação.

SÃO CAETANO DO SUL 2019

ERICK LOPES RODRIGUES JOSUÉ TAVARES DA SILVA SOUSA MARLON SOUSA DA SILVA PEDRO HENRIQUE VIEIRA DA SILVA RENATO PONCE BATISTA DE CARVALHO

SIMV: máquina de vendas 4.0

Comentado [v2]:

Recomenda-se que o título deve ser claro e preciso, identificando o seu conteúdo e possibilitando a indexação e recuperação da informação.

Projeto Mecatrônico apresentado à Escola SENAI "Armando de Arruda Pereira" – Curso Técnico de Mecatrônica na Disciplina Projetos.

Orientador (es): Professor Valdemar Florencio da Cruz e George Geraldo de Oliveira Silva

Comentado [S3]: Insira o nome completo do Professor Orientador

Ficha catalográfica a ser elaborada pela Biblioteca da Escola SENAI "Armando de Arruda Pereira"

Sobrenome, Nome Título e subtítulo / Autor 1 -- São Caetano do Sul, 2015. xx f. il. XXXx

Inclui bibliografia.

Monografia (Especialização) – Faculdade SENAI de Tecnologia Mecatrônica.
Orientador: Nome completo.

1. Assunto. 2. Assunto. 3. Assunto. 4. Assunto. 5. Assunto. I. Título.

CDD XXX.XX

São Caetano do Sul 2019

AGRADECIMENTOS

(Exemplo)

Aos professores e colegas de curso, que contribuíram para a realização deste trabalho com muita dedicação e conhecimento.

Agradecimentos especiais à minha esposa e filha, pela paciência e carinho.

A toda equipe da Escola SENAI "Armando de Arruda Pereira" – Curso Técnico de Mecatrônica.

Comentado [S4]: Insira agradecimentos (opcional)

RESUMO

O resumo deve ressaltar o objetivo, o método, os resultados e as conclusões do documento; deve ser composto de uma sequência de frases concisas e objetivas e não de enumeração de tópicos. Recomenda-se o uso de parágrafo único. A primeira frase deve ser significativa, explicando o tema principal do documento, a seguir, deve-se indicar a informação sobre a categoria do trabalho (estudo de caso, análise de situação, etc.). Devem-se evitar nos resumos: símbolos, fórmulas, equações, citações de outros autores. Descrever utilizando a terceira pessoa do plural ou singular, em sua extensão o resumo deve ter de 150 a 500 palavras.

Palavras-chave: as palavras chaves deverão ser sugeridas e depois verificadas junto à biblioteca a possibilidade de sua utilização - mínimo 3, máximo 5.

Comentado [B5]: O resumo deverá ser colocado em texto corrido (sem parágrafos). Fonte: Arial – tamanho 12 Espaço: 1,5.

Comentado [S6]:
As palavras-chave devem figurar logo abaixo do resumo, antecedidas da expressão Palavras-chave: separadas entre si por ponto e finalizada também por ponto;

ABSTRACT

LISTA DE ABREVIATURAS E SIGLAS

(Exemplo)

ABNT Associação Brasileira de Normas Técnicas

CLP Controle Lógico Programável

CNC Comando Numérico computadorizado

IBGE Instituto Brasileiro de Geografia e Estatística

LED Diodo Emissor de Luz

kw Quilowatt(s)

kwh Quilowatt(s)-hora

Mb Megabit(s)

m/min Metro(s) por minuto
MEC Ministério da Educação

Comentado [v7]: As formas abreviadas de nomes (siglas e abreviaturas) são utilizadas para evitar a repetição de palavras usadas com frequência no texto, elaborada em <u>ordem</u> <u>alfabética</u> e com a indicação por extenso do significado de cada termo.

Comentado [v8]: Quando forem usadas menos de 06 (seis) siglas e menos de 06 (seis) abreviaturas deve elaborar uma lista única intitulada "LISTA DE ABREVIATURAS E SIGLAS". Quando ultrapassar a quantidade citada acima o trabalho deve compreender uma lista própria para abreviaturas e siglas.

LISTA DE SÍMBOLOS

(Exemplo)

ABC	momentos principais de inércia do rotor sobre os eixos.	
N	velocidade de rotação do eixo do rotor relativa a carcaça.	
S	operador Laplaciano.	

Comentado [B9]: Deve ser elaborada de acordo com a ordem de apresentação dos elementos no texto, acompanhados com os devidos significados.

SUMÁRIO

(Exemplo)

Comentado [B10]: Para a elaboração do sumário deve-se consultar a NBR 6027:2003 - Informação e documentação - Sumário - Apresentação. Os elementos pré-textuais (agradecimento, resumo, abstract) não devem aparecer no sumário.

·	
1 INTRODUÇÃO	12
1.2 Objetivos específicos	13
1.3 Justificativa	13
2 DESENVOLVIMENTO	14
2.1 Texto	Erro! Indicador não definido.
2.1.1 O uso de alíneas	Erro! Indicador não definido
2.1.2 Ilustrações	Erro! Indicador não definido
2.1.3 Tabelas e quadros	Erro! Indicador não definido
2.1.4 Equações e fórmulas	Erro! Indicador não definido
3 CONCLUSÃO	16
REFERÊNCIAS (Exemplos)	24
APÊNDICE A – TÍTULO DO APÊNDICE	Erro! Indicador não definido.
ANEXO A – TÍTULO DO ANEXO	Erro! Indicador não definido.

Comentado [VLPBM11]: Apenas os itens de mudança de seção são escritos em letras maiúsculas e negrito, para os demais indicadores de seção (subtítulos) apenas a letra inicial em maiúsculo e o restante das palavras em minúsculo, com exceção de nomes próprios.

Comentado [VLPBM12]: Paginação: As folhas pré-textuais do trabalho mecatrônico, a partir da segunda folha, devem ser contadas sequencialmente, entretanto não são numeradas. A numeração é colocada a partir da introdução, em algarismos arábicos, no canto superior direito, em fonte Arial tamanho 10. Observação: Se o autor não utilizar algum dos itens opcionais no trabalho (agradecimentos, epígrafe, etc.), será necessário alterar a contagem da paginação.

Comentado [S13]: A numeração é colocada a partir da primeira folha de parte textual, em geral, a introdução, em algarismos arábicos, no canto superior direito, fonte Arial, tamanho 10.

Durante nossos questionamentos sobre o que fariamos em nosso trabalho de conclusão de curso, chegamos a conclusão, dentre todas as possibilidades, que trabalhariamos com algum projeto que envolveria algum problema que possa ser encontrado no dia a dia de alguém e que não seja tão pensado pelas pessoas.

Refletimos então na questão de máquinas de vendas, onde pode-se encontrar problemas relacionados ao controle que o proprietário tem sobre seu equipamento. Isso ocorre tanto na checagem de vendas de produtos (saber quantos foram vendidos sem precisar contar a cada final de expediente) como na questão de manutenção da máquina – caso a temperatura esteja regulada errada, o proprietário saberia apenas quando fosse observa-la pessoalmente.

Deste meio saiu a ideia do SIMV, que seria uma máquina de vendas 4.0, ou seja, um equipamento com tecnologias automátizadas inclusas em sua estrutura para facilitar o trabalho de seus principais usuários, que seriam o cliente e o proprietário.

Por possuir a utilização prática e intuitiva, com as funções bem estabelecidas, o cliente poderia fazer seu pedido sem encontrar problemas. Já o empreendedor conseguiria possuir um controle autonomo de sua máquina, pois conseguiria chegar a distância elementos como quantidade de produtos vendidos, quando haveria a necessidade de reabastecer algum produto, temperatura, entre outras vantagens.

O SIMV seria algo vantajoso pelo fato de não precisar de checagem presencial constante, com os serviços de banco de dados em nuvem embutidos se encarregando de coletar as informações e repassando-as ao dono em forma de gráficos, que as interpretaria e conseguiria saber se tudo está funcionando nos conformes. Caberia então ao proprietário apenas organizar e aplicar manutenções de rotina para garantir que a máquina funcione sempre em sua capacidade máxima.

1.1 Objetivo geral

Comentado [B15]: Objetivo geral: insira um parágrafo sobre o objetivo geral

Identificar problemas encontrados por proprietários de máquinas, realizar a produção de uma estrutura física e programar um local para armazenamento de informações para completar o projeto SIMV.

2.1 1.2 Objetivos específicos

Comentado [B16]:
Objetivos específicos: insira um parágrafo sobre os objetivos

- 1.2.1 Compreender as dificuldades enfrentadas por donos de máquinas de vendas;
- 1.2.2 Analisar maneiras possíveis de amenizar as problematicas encontradas;
- 1.2.3 Elaborar a estrutura de uma máquina de vendas, especificando desde suas medidas aos materiais, ferramentas e máquinas a serem utilizadas;
- 1.2.4 Pensar, criar planos de controle e estabelecer uma conexão entre a parte informacional da máquina, conversando os equipamentos entre si;
- 1.2.5 Integrar a estrutura física a inteligência da máquina;

2.2 1.3 Justificativa

Comentado [B17]:
Justificativa: corresponde a defesa do tema da pesquisa
quanto à sua importância, relevância e contribuições.

As máquinas de vendas são equipamentos que podem ser essenciais em situações que se possa apresentar adversidade, oferecendo produtos de maneira rápida e pratica.

Mas sua manutenção e controle de vendas pode ser um problema em alguns casos, pois o proprietário deve fazer visitas constantes ao lugar em que a instalou. E como pode acontecer, eles podem possuir diversas máquinas operando em locais distantes uma da outra, havendo dificuldades então em realizar esse controle.

Por oferecer um controle a base de dados salvos em nuvem em um monitoramento constante, o SIMV tende a eliminar esse problema, pois o dono das máquinas poderá analisar o controle remotamente, levando a um aumento de eficiência.

2 DESENVOLVIMENTO

Para começar, vamos falar sobre as partes do projeto separadamente, de forma a manter as explicações fluídas e fáceis de compreender.

Iniciando pela inteligência. Precisavamos de alguma maneira para realizar o monitoramento dos dados recebidos pelos nossos equipamentos de campo, e para isos idealizamos e desenvolvemos uma recepção de informações em um servidor na nuvem.

3 SITE SIMV

SERVIDOR CLOUD MQTT

Para o uso de servidor em nuvem, resolvemos utilizar um serviço disponibilizado pela Cloud MQTT, onde ele traz as funções do broker ativas. Um broker seria o local designado para que seja realizado a troca de mensagens entre dois pontos na nuvem.

A vantagem em o utilizarmos está no fato de, dessa forma, a programação principal do projeto ter mais possibilidade de focar nas programações que envolveriam o desenvolvimento do site e do código em Arduino que seria responsável por implementar uma troca de informações seguras e eficiêntes.

Figura x - Mapa Mental: Funcionamento de um Broker

Comentado [B18]:

Após o título da seção o texto deve iniciar-se seguido de 1 espaço de 1,5 entrelinhas. Todas as subseções deverão ser elaboradas conforme texto relacionado ao título da seção principal.

Node.js

O que é:

Uma função do java script que permite a execução de diversas funções préprogramadas de maneira simultânea. Sendo assim, ele permite que a aplicação realizada seja mais eficiênte, pois não permite que a programação crie muitas linhas de execução (comunmente chamadas de "multi threads") a cada função executada. Consequentemente a aplicação também não terá grande demanda de memória RAM, pois será necessária apenas uma thread para executar as ações solicitadas, em um efeito chamado de "EVENT LOOP" – que nada mais é do que um programa que, sempre ativo, busca identificarmantendo assim a integridade do sistema. Vantagens de uso:

- Menor gasto de memória;
- Maior número de ações sendo executadas simultâneamente;
- Sistema único para troca de informações;
- Compatibilidade com outras linguagens de programação (em nosso caso, utilizaremos a HTML e a css).

Qual a necessidade do uso da função Node.js em nosso programa? Anteriormente ao uso do Node.js, via-se que havia uma dificuldade em realizar uma troca de dados eficiênte com nosso equipamento de campo, ESP32, que deveria enviar dados de temperatura, humidade e informações sobre pedidos (números totais). O problema que encontravamos era que não havia como enviar dados de todas as informações simultâneamente por limitações de processo.

Depois de analisarmos e tentarmos diferentes tipos de programação para o nosso site, acabamos por decidir usar a função Node.js em prol da sua capacidade de atender nossas expectativas, pois precisavamos de um componente que realizasse todas as trocas de informações.

E o Node.js consegue cumprir com esse objetivo, pois realiza a troca de dados em seu sistema de loop, culmando em todas as aplicações sendo executadas de fomra ordenada, sem atrasos ocasionados por espera na transação entre uma leitura e outra e com pouco gasto de memória – oque evita a sobrecarga dos sistemas ESP32 e SIMV (site em nuvem criado pelo grupo para receber e gerar relatórios).

ELEMENTOS QUE COMPOEM UMA PROGRAMAÇÃO EM HTML

Durante a realização de uma programação em linguagem HTML, inserido nas diversas camadas de programação - html, head, body, que serão explicadas posteriormente — existe a organização das linhas em três tipos diferentes: <h> Do inglês "header", seria o cabeçalho, onde sua príncipal função é identificar os sub-títulos de uma página. Normalmente se há uma hierarquia na hora de utiliza-los, com "<h1>" sendo lido como um código de maior importância, possuido características como fonte maior e uma aparição de mais destaque na programação final.

Dentro de um código há a disponibilidade de utilizar inúmeras headers, com seu número sendo definido exclusivamente pelo tamanho do programa que será produzido.

Seu uso é opcional, não trazendo danos a programação caso não seja utilizado;

GIT HUB

(A acrescentar)

TEMPLATES

(Definição dos templates)

ASPECTOS MECÂNICOS

ASPECTOS ELÉTRICOS

MOTORES

Vamos utilizar motores de vidro elétrico, pela sua compactabilidade física (ou seja, que se integra na estrutura sem grandes problemas) e pela potência (que é o suficiente para movimentar grandes massas), dando tranquilidade no quesito de realizar a movimentação de nossas espirais.

Elas possuem a função de derrubar os produtos inseridos na máquina no espaço selecionado, assim como funciona uma máquina de vendas comum. Serão 3 motores, pelo fato de haver três espirais em nossa estrutura.

Figura x – Motor de Vidro Elétrico

SENSORES

Para monitorarmos o andamento da máquina, observando se ela está funcionando dentro de parâmetros previamente estabelecidos (temperatura e umidade), utilizaremos dois tipos de sensores: para a função citada acima, aplicamos o uso de um sensor de temperatura e humidade (DHT11).

Figura x - Sensor DHT11

O DHT11 possui 4 terminais sendo que somente 3 são usados: GND, VCC e Dados. Se desejar, pode-se adicionar um resistor pull up de 10K entre o VCC e o pino de dados.

Figura x - Definição de Pinos DHT11

Este sensor inclui um componente medidor de umidade e um componente NTC para temperatura, ambos conectados a um controlador de 8-bits. O interessante neste componente é o protocolo usado para transferir dados entre o MCDU e DHT11, pois as leituras do sensor são enviadas usando apena um único fio de barramento.

Suas especificações são:

- Modelo: DHT11 (<u>Datasheet</u>)

- Alimentação: 3,0 a 5,0 VDC (5,5 Vdc máximo)

- Corrente: 200uA a 500mA, em stand by de 100uA a 150 uA

- Faixa de medição de umidade: 20 a 90% UR- Faixa de medição de temperatura: 0º a 50ºC

- Precisão de umidade de medição: ± 5,0% UR
- Precisão de medição de temperatura: ± 2.0 °C
- Tempo de resposta: < 5s
- Dimensões: 23mm x 12mm x 5mm (incluindo terminais)

O outro tipo de sensor utilizado é o ultrassônico, que tem a função de identificar distâncias, que podem váriar entre 2cm e 4m, e possuem precisão de 3mm.

Figura x –Sensor Ultrassônico

Figura x – Diagrama Explicativo do Funcionamento de um Sensor Ultrassônico

ARDUÍNO

O arduíno foi utilizado para integrar os sensores a programação de nosso broker, de forma a fazer o monitoramento do envio de dados constantemente.

Escolhemos utilizar o Arduíno Mega, por conta de tatata, e pela disponibilização do mesmo em obter as funções necessárias de integração aos sensores.

FIGURA X – Arduíno Mega

Figura x – Conexão entre Sensor DHT11 e Arduíno

Figura x – Conexão entre Sensor Ultrassônico e Arduíno

Figura xx – Diagrama Elétrico SIMV

ANEXOS 3 CONCLUSÃO

Deve ser breve, exata, concisa e convincente.

Recapitulam-se as principais partes do trabalho, evidenciando as etapas mais relevantes do caminho, alcançando as conclusões finais do trabalho elaborado.

Comentado [S19]: É a síntese interpretativa dos principais argumentos expostos no desenvolvimento.

4 REFERÊNCIAS

Lista de materiais	Preço unt	Qnt	Preço
Motor DC	R\$ 25,00	3	R\$ 75,00
LCD 16x2	R\$ 17,90	1	R\$ 17,90
Fio de arame 5mm		1	R\$ 0,00
Placa de acrilico (50x50cm)	R\$ 50,00	1	R\$ 50,00
Sensor de temperatura digital	R\$ 14,00	1	R\$ 14,00
Madeira A/B natural	R\$ 16,00	7	R\$ 112,00
Cantoneiras	R\$ 2,00	10	R\$ 20,00
Abraçadeira	R\$ 4,00	5	R\$ 20,00
Teclado Numérico	R\$ 10,00	1	R\$ 10,00
Capacitivo	R\$ 60,00	0	R\$ 0,00
			R\$ 318,90