# Ch8: Noise in Quantum Computation



# **Imperfect gates**

Let's implement a computation in which the quantum gates  $U_1, U_2, ..., U_T$  are applied sequentially to an initial state  $|\psi_0\rangle$ . The state prepared by our ideal quantum circuit is:

$$|\psi_T\rangle = U_T...U_2U_1|\psi_0\rangle$$

But in fact our gates do not have perfect fidelity – pulse timing error, etc. When we attempt to apply the unitary transformation  $U_t$ , we instead apply some "nearby" unitary transformation  $\tilde{U}_t$ :

$$\tilde{U}_1|\psi_0\rangle = |\psi_1\rangle + |E_1\rangle$$

where:

$$|E_1\rangle = (\tilde{U}_1 - U_1)|\psi_0\rangle$$

is an unnormalized vector.



### Coherent noise model

Now, if  $\tilde{U}_t$  denotes the actual gate applied at step t,  $|\tilde{\psi}_t\rangle$  denotes the actual state after t steps, and  $|\psi_t\rangle$  denotes the ideal state, then we may write:

$$\begin{split} |\tilde{\psi}_{t}\rangle &= \tilde{U}_{t}|\tilde{\psi}_{t-1}\rangle \\ &= U_{t}|\psi_{t-1}\rangle + (\tilde{U}_{t} - U_{t})|\psi_{t-1}\rangle + \tilde{U}_{t}(|\tilde{\psi}_{t-1}\rangle - |\psi_{t-1}\rangle) \\ &= |\psi_{t}\rangle + |E_{t}\rangle + \tilde{U}_{t}(|\tilde{\psi}_{t-1}\rangle - |\psi_{t-1}\rangle) \end{split}$$

where  $|E_t\rangle = (\tilde{U}_t - U_t)|\psi_{t-1}\rangle$ . Hence:

$$\begin{split} |\tilde{\psi}_{2}\rangle &= \tilde{U}_{2}|\tilde{\psi}_{1}\rangle = |\psi_{2}\rangle + |E_{2}\rangle + \tilde{U}_{2}|E_{1}\rangle \\ |\tilde{\psi}_{3}\rangle &= \tilde{U}_{3}|\tilde{\psi}_{2}\rangle = |\psi_{3}\rangle + |E_{3}\rangle + \tilde{U}_{3}|E_{2}\rangle + \tilde{U}_{3}\tilde{U}_{2}|E_{1}\rangle \end{split}$$

and so forth, and after T steps we obtain:

$$|\tilde{\psi}_{T}\rangle = |\psi_{T}\rangle + |E_{T}\rangle + \tilde{U}_{T}|E_{T-1}\rangle + \tilde{U}_{T}\tilde{U}_{T-1}|E_{T-2}\rangle + \dots + \tilde{U}_{T}\tilde{U}_{T-1}...\tilde{U}_{2}|E_{1}\rangle$$



### Coherent noise model

Thus we have expressed the difference between  $|\tilde{\psi}_t\rangle$  and  $|\psi_t\rangle$  as a sum of T remainder terms. The worst case yielding the largest deviation of  $|\tilde{\psi}_t\rangle$  from  $|\psi_t\rangle$  occurs if all remainder terms line up in the same direction, so that the errors interfere constructively. Therefore, we conclude that:

$$\||\tilde{\psi}_T\rangle - |\psi_T\rangle\| \le \||E_T\rangle\| + \||E_{T-1}\rangle\| + \dots + \||E_2\rangle\| + \||E_1\rangle\|$$

where we have used the property  $||U|E_t\rangle|| = |||E_t\rangle||$  for any unitary U.



### Coherent noise model

Let  $\|A\|_{sup}$  denote the sup norm of the operator of the operator A – that is, the largest eigenvalue of  $\sqrt{A^{\dagger}A}$ . We then have:

$$||E_t\rangle|| = ||(\tilde{U}_t - U_t)|\psi_{t-1}\rangle|| \le ||\tilde{U}_t - U_t||_{sup}$$

(since  $|\psi_{t-1}\rangle$  is normalized). Now suppose that, for each value of t, the error in our quantum gate is bounded by:

$$\left\| \tilde{U}_t - U_t \right\|_{sup} \le \epsilon$$

then after T quantum gates are applied, we have:

$$\left\| \left| \tilde{\psi}_T \right\rangle - \left| \psi_T \right\rangle \right\| \le T\epsilon$$

in this sense, the accumulated error in the state grows linearly with the length of the computation.



### Beyond coherent noise

Incoherent noise arises from interaction between the system and its environment – electromagnetic interferences, *etc.* To properly describe incoherent noise, we first need to get familiar with the density operator formalism, a more general representation than the state vector.



### Pure and mixed states

Suppose that we only now that:

$$Pr(state = \psi_1) = \frac{1}{3}$$
$$Pr(state = \psi_2) = \frac{2}{3}$$

in such situation we write system as an ensemble  $\left\{\left(\frac{1}{3},\psi_1\right),\left(\frac{2}{3},\psi_2\right)\right\}$  .

More generally:  $\left\{\left(p_i,\psi_i\right)\right\}_{i=1}^n$  with  $\sum_i p_i = 1$ 

ightarrow n = 1 : pure state

 $\rightarrow$  n > 1 : mixed state



# **Density matrix**

A density matrix is a matrix that describes the statistical distribution of quantum states in quantum mechanics:

$$\rho = \sum_{i} p_i |\psi_i\rangle\langle\psi_i|$$

The diagonal elements determine the "populations" - the classical probability distribution of the states, while the off-diagonal elements determine the "coherence" - the quantum nature of the states:

$$\rho = \begin{pmatrix} \rho_{1,1} & \rho_{1,2} & \cdots & \rho_{1,n} \\ \rho_{2,1} & \rho_{2,2} & \cdots & \rho_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n,1} & \rho_{n,2} & \cdots & \rho_{n,n} \end{pmatrix}$$

$$\rho = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \qquad \blacktriangleleft \qquad \left\{ \begin{pmatrix} 1, \frac{|0\rangle + 1\rangle}{\sqrt{2}} \end{pmatrix} \right\}$$

$$\rho = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad \qquad \left\{ \begin{pmatrix} \frac{1}{2}, |0\rangle \end{pmatrix}, \begin{pmatrix} \frac{1}{2}, |1\rangle \end{pmatrix} \right\}$$



# **Properties**

For an operator  $\rho$  to be a density operator, it must be a **positive operator** and have a **trace equal to one**.

Moreover, for pure states we have:  $\rho^2 = \rho$ 

The average value of an operator A is given by:  $\langle A \rangle = Tr\{\rho A\}$ 

Unitary transformation:  $\rho \longrightarrow U \rho U^{\dagger}$ 

For the ensemble the probability of outcome m to occur is:  $p(m) = Tr\{M^{\dagger}M\rho\}$ 

After measurement result  $\emph{m}$ , if initially  $\rho$  then:  $\rho_m = \frac{M\rho M^\dagger}{Tr\{M^\dagger M \rho\}}$ 



# **Composite systems**

Subsystems are described by a reduced density operator. Suppose the system is composed of A and B, then the reduced density operator for subsystem A is:

$$\rho_A = Tr_B\{\rho_{AB}\}$$

Example:

$$\rho_{AB} = |\phi+\rangle\langle\phi+| = \frac{1}{2} (|00\rangle\langle00| + |11\rangle\langle11| + |00\rangle\langle11| + |11\rangle\langle00|)$$

$$\rho_A = Tr_B\{\rho_{AB}\} = \sum_{i=0}^{1} (I \otimes \langle i|) \rho_{AB} (I \otimes |i\rangle) = \frac{1}{2} |0\rangle \langle 0| + \frac{1}{2} |1\rangle \langle 1|$$

This is a statistical mixture of 0 and 1 (coin tossing) even though the composite system was pure! Hallmark of entanglement.



# **Open quantum systems**

An open quantum system consists of two parts, the principal system and an environment. Models of closed (left) and open (right) quantum systems:



where:

$$\mathcal{E}(\rho) = Tr_{env} \{ U(\rho \otimes \rho_{env}) U^{\dagger} \}$$

We assume that the system-environment input state is a product state – when an experimentalist prepares a quantum system in a specified state they undo all the correlations between that system and the environment.



# **Operator-sum representation**

The operator-sum representation is essentially a re-statement of  $\mathcal{E}(\rho)$  explicitly in terms of operators on the principal system's Hilbert space alone.

Let  $|e_k\rangle$  be an orthonormal basis for the - finite dimensional - state space of the environment, and let  $|e_0\rangle\langle e_0|$  be the initial state of the environment.

There is no loss of generality in assuming that the environment starts in a pure state, since if it starts in a mixed state we are free to introduce an extra system purifying the environment.

The main result is motivated by the following calculation: (see next slide)



# **Operator-sum representation**

$$\mathcal{E}(\rho) = \sum_{k} (I \otimes \langle e_{k} |) U (\rho \otimes |e_{0}\rangle \langle e_{0} |) U^{\dagger} (I \otimes |e_{k}\rangle)$$

$$= \sum_{k} (I \otimes \langle e_{k} |) U (\rho \otimes I) (I \otimes |e_{0}\rangle) (I \otimes \langle e_{0} |) U^{\dagger} (I \otimes |e_{k}\rangle)$$

$$= \sum_{k} (I \otimes \langle e_{k} |) U (\rho I) \otimes (I|e_{0}\rangle) (I \otimes \langle e_{0} |) U^{\dagger} (I \otimes |e_{k}\rangle)$$

$$= \sum_{k} (I \otimes \langle e_{k} |) U (I\rho) \otimes (|e_{0}\rangle 1) (I \otimes \langle e_{0} |) U^{\dagger} (I \otimes |e_{k}\rangle)$$

$$= \sum_{k} (I \otimes \langle e_{k} |) U (I \otimes |e_{0}\rangle) \rho (I \otimes \langle e_{0} |) U^{\dagger} (I \otimes |e_{k}\rangle)$$

$$\mathcal{E}(\rho) \equiv \sum_{k} E_{k} \rho E_{k}^{\dagger}$$

Reminder:  $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$ 



# **Operator-sum representation**

The operator-sum representation describes the dynamics of the principal system without having to explicitly consider properties of the environment; all that we need to know is bundled up into the operators  $E_k$ , known as the Kraus operators, which act on the principal system alone.

The Kraus operators satisfy the completeness relation:

$$1 = Tr\{\mathcal{E}(\rho)\} = Tr\left\{\sum_{k} E_{k} \rho E_{k}^{\dagger}\right\} = Tr\left\{\sum_{k} E_{k}^{\dagger} E_{k} \rho\right\}$$

since this relationship is true for all  $\rho$  it follows that we must have:

$$\sum_{k} E_k^{\dagger} E_k = I$$



# Bit-flip channel

The bit flip channel inverts the probability amplitudes of a qubit with probability 1-p:

$$|\psi\rangle \longrightarrow \left\{ (p, |\psi\rangle), (1-p, X|\psi\rangle) \right\}$$

It has two Kraus operators:

$$E_0 = \sqrt{pI} \qquad \qquad E_1 = \sqrt{1 - pX}$$

And thus:

$$\mathcal{E}(\rho) = p\rho + (1 - p)X\rho X$$



# Phase-flip channel

The phase flip channel inverts the phase of a qubit with probability 1-p:

$$|\psi\rangle \longrightarrow \left\{ (p, |\psi\rangle), (1-p, Z|\psi\rangle) \right\}$$

It has two Kraus operators:

$$E_0 = \sqrt{pI} \qquad \qquad E_1 = \sqrt{1 - pZ}$$

And thus:

$$\mathcal{E}(\rho) = p\rho + (1-p)Z\rho Z$$



# **Depolarizing channel**

The depolarizing channel takes a single qubit, and with probability p that qubit is depolarized. That is, it is replaced by the completely mixed state I/2. With probability 1-p the qubit is left unchanged:

$$|\psi\rangle \longrightarrow \left\{ \left(\frac{p}{2}, |0\rangle\right), \left(\frac{p}{2}, |1\rangle\right), \left((1-p), |\psi\rangle\right) \right\}$$

Depolarizing can then be expressed with four Kraus operators:

$$\mathcal{E}(\rho) = \frac{pI}{2} + (1 - p)\rho$$

$$= \frac{p}{4}(\rho + X\rho X + Y\rho Y + Z\rho Z) + (1 - p)\rho$$

$$= \left(1 - \frac{3p}{4}\right)\rho + \frac{p}{4}(X\rho X + Y\rho Y + Z\rho Z)$$