NumPy

1. Arrays

Create a 2D array (matrix):

```
np.array([[1,2],[3,4]]) # 2x2 matrix
np.array(np.arange(16 )).reshape((4,4))
```

Evenly spaced numbers over a specified interval(Useful for plotting):

```
np.linspace(0, 10, 11) # array([0., 1., ..., 10.])
np.arange(0, 10) # Same as linspace without fractional
intervals
```

Array Properties

Command	Description
x.ndim	Number of Dimensions
x.dtype	Data type of an array
x.T	Transpose of an array
x.shape	Gives the shape of an array

Array Operations

Checks if array elements meets a condition: np.all(x>0), np.all(x>2,where
[True, True,False]) --> Checking only the values that are masked as True if
the condition apply to them
example:

```
data = np.array([1,14,10,20,40])
valid_mask = np.array([False,True,False,True,True])
```

```
np.all(data>10,where=valid_mask) # Returns True if all elemets
that mask apply to them >10
```

- Square root: np.sqrt(x)
- Square every element : x**2
- Mean/variance/standard deviation: np.mean(x), np.var(x), np.std(x)
- <u>correlation matrix</u> between x,y: np.corrcoef(x,y)
- Return only the unique elements on the array: np.unique(x)

Random Numbers

• Normal distribution: (Sampling from $N(\mu, \sigma)$)

```
np.random.normal(loc=0,scale=1,size=100) # 100 sample from N(0,1)
```

Reproduce Randomness

```
rng =np.random.default_rng(seed=12) #always same random numbers
rng.normal(0,1,10) #same sample each time
```

Indexing & Slicing

• 2D array:

```
A[1,2] --> Second row Third column
A[[1,2]] --> all of Second row and Third row
A[:[0,2]] --> First column and Third column
```

submatrices:

```
# Selecting rows starting from 1th row till 4th with two steps
# Selecting Column starting from 0th column till 2th with one step
```

Boolean Indexing:

Numpy treat Boolean's and integers differently

```
boolean_rows= np.zeros(A_matrix.shape[0],bool) # 0 th row of
A_matrix
boolean_rows[[1,2]]= True
boolean_cols = np.zeros(A_matrix.shape[:1],bool)
boolean_cols[[0,1,3]] = True
Al=A_matrix[np.array([0,1,1,0])]
A2=A_matrix[boolean_rows]
np.all(A2==A1) # return False
idx_bool =np.ix_(boolean_rows,boolean_cols)
A_matrix[idx_bool]
```

- The sub-matrix generated by the integers array is a mesh: the first, second, first, second rows of A_matrix
- The sub-matrix generated by the boolean array is only the first and second rows of A_matrix
- Its also another way to get the sub-matrix from the A matrix

tags:

#machine-learning #numpy #islp

created: 2025-05-22