Al Response:

Kinematics is a branch of mechanics that deals with the motion of objects without

Key Concepts

- 1. **Displacement**: The change in position of an object. It is a vector quantity, r
- 2. **Distance**: The total path length traveled by an object, irrespective of directi
- 3. **Velocity**: The rate of change of displacement with respect to time. It can be
 - **Average Velocity** = Displacement / Time interval
 - **Instantaneous Velocity** = d(displacement)/dt
- 4. **Speed**: The rate of distance traveled over time. Like distance, it is a scalar
 - **Average Speed** = Total distance / Total time
 - **Instantaneous Speed** = d(distance)/dt
- 5. **Acceleration**: The rate of change of velocity with respect to time. It can also
 - **Average Acceleration** = Change in velocity / Time interval
 - **Instantaneous Acceleration** = d(velocity)/dt

Equations of Motion (for uniformly accelerated motion)

For an object under constant acceleration, the following equations (kinematic eq

- 1. \($v = u + at \)$
 - Where:
 - \(v \) = final velocity
 - \(u \) = initial velocity
 - \(a \) = acceleration
 - \(t \) = time
- - Where:
 - \(s \) = displacement
- 3. \($v^2 = u^2 + 2as \$
- 4. \($s = \frac{(u + v)}{2} t \)$

Graphical Representation

Kinematics can also be analyzed using graphs:

Position vs. Time Craph: A along of the graph gives the valogity. A horizont