

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree in Applied Sciences
Second Year – Semester II Examination – October/November 2017

MAA 2203 - NUMERICAL ANALYSIS II

Time: Two(02) hours

Answer all questions Calculators will be provided

1.

a) Show that the polynomial interpolating the following data has degree 3.

X	-2 -1		0	1	2	3
f(x)	1	4	11	16	13	-4

(40 marks)

b) A natural cubic spline S on [0,2] is defined by;

$$S(x) = \left\langle \begin{array}{l} S_0(x) = 1 + 2x - x^3 & \text{if } 0 \le x \le 1 \\ S_1(x) = 2 + b(x - 1) + c(x - 1)^2 + d(x - 1)^3 & \text{if } 1 \le x \le 2 \end{array} \right.$$

Find b, c and d.

(60 marks)

2.

a) For a function f, the forward divide difference are given by

$x_0 = 0.0$	$f[x_0]$		
		$f[x_0,x_1]$	
$x_1 = 0.4$	$f[x_1]$		$f[x_0, x_1, x_3] = \frac{50}{7}$
		$f[x_1, x_2] = 10$	
$x_2 = 0.6$	$f[x_2] = 6$		

Determine the missing entries in the table.

(40 marks)

b) A **clamped cubic spline** S of a function f defined on [1,3] by $s(x) = \left\langle \begin{array}{l} s_0(x) = 3(x-1) + 2(x-1)^2 - (x-1)^3 \text{ if } 1 \le x \le 2 \\ s_1(x) = a + b(x-2) + c(x-2)^2 + d(x-2)^3 \text{ if } 2 \le x \le 3 \end{array} \right.$

If
$$f'(1) = f'(3)$$
, find a, b, c and d .

(60 marks)

3.

a) The Chebyshev polynomials $[T_{(n)}(x)]$ are orthogonal on [-1,1] with respect to the weight function $w(x) = (1-x^2)^{-\frac{1}{2}}$. Consider $T_{(n)}(x) = \cos(n\cos^{-1}x)$ and proof $T_{(n+1)}(x) = 2x T_{(n)}(x) - T_{(n-1)}(x)$ for $n \ge 1$.

(50 marks)

b) Use the **Midpoint Rule** and the given data to estimate the value of the integral $\int_1^5 f(x) dx$.

x	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
f(x)	2.4	2.9	3.3	3.6	3.8	4.0	4.1	3.9	3.5

(50 marks)

4.

- a) Determine the general solution for the following difference equations,
 - i. $\Delta^2 y_n 3\Delta y_n + 2y_n = 0$ and the solution is unbounded.

(30 marks)

ii.
$$\Delta^2 y_k + 3\Delta y_k - 4y_k = k^2$$
 with the initial conditions $y_0 = 2, y_2 = 2$.

(30 marks)

b) Use Simpson's rule with n = 10 to approximate the integral $\int_0^1 e^{x^2} dx$.

(40 marks)

END