Avanços nos Métodos de Descida Coordenada por Blocos

Vitaliano S. Amaral - UFPI

vitalianoamaral@ufpi.edu.br vitalianoamaral.github.io

XIII Jornada de Matemática da UFPI - JMatUFPI

Setembro de 2025

Métodos de Descida Coordenada por Blocos BCD

Considere o seguinte problema:

Minimizar
$$f(x)$$
 sujeito a $x \in \Omega \subset \mathbb{R}^n$. (1)

Basicamente um método BCD para resolver o Problema (1) consiste em:

Método BCD

Dados $k \leftarrow 0, x^0 \in \Omega$.

Repetir os seguintes passos:

Passo 1. Dado x^k escolher $I_k \subset \{1, 2, \dots, n\}$;

Passo 2. Atualizar apenas as coordenadas do bloco escolhido:

$$x_i^{k+1} = \left\{ \begin{array}{ll} x_i^k, & \text{$i \notin I_k$,} \\ \\ x_i^{k+1} \text{ (valor que gera decréscimo em f,)} & \text{$i \in I_k$.} \end{array} \right.$$

Definir $k \leftarrow k+1$ e voltar ao Passo 1.

Métodos de Descida Coordenada por Blocos BCD

- Os métodos BCD estão entre os primeiros de decomposição de variáveis, onde um dos primeiros algoritmos foi descrito para a minimização de funções quadráticas por Gauss e Seidel.
- Ideia central: decompor um grande problema em subproblemas menores.
- Por um bom tempo, esses métodos receberam pouca atenção por parte dos pesquisadores. Alguns motivos:
 - Baixo desempenho prático.
 - Poucos desafios teóricos.
- A situação mudou drasticamente nas últimas décadas. Dentre vários motivos, destacamos:
 - Aplicações em problemas de grande porte.
 - Desenvolvimento de novas teorias.

Um dos pioneiros na retomada do estudo dos métodos BCD foi o trabalho de Beck e Tetruashvili¹.

Problema considerado:

$$\mathsf{min}\, \mathsf{f}(x)\quad \mathsf{s.a.}\quad x\in\mathbb{R}^n.$$

- Os autores assumiram f convexa,
- ▶ Gradiente parcial $\nabla_{(i)}$ f Lipschitz.

Método do Gradiente Coordenado por Blocos - BCGD

Tome $x^0 \in \mathbb{R}^n$ e L_i $(i=1,\ldots,p)$ constantes de Lipschitz do gradiente parcial $\nabla_{(i)}f$.

Passo 1. Tome $x^{k,0} = x^k$ e defina recursivamente:

$$x^{k,i} = x^{k,i-1} - \frac{1}{L_i} U_i \nabla_{(i)} f(x^{k,i-1}), \quad i = 1, \dots, p$$

Passo 2. Defina $x^{k+1} = x^{k,p}$

¹A. Beck, and L. Tetruashvili (2013). - On the convergence of block coordinate descent type methods. SIAM Journal on Optimization, 23(4):20372060.

Convergência do método BCGD

Assumindo f convexa e condições de Lipschitz nos gradientes parciais, os autores provaram que a sequência $\{f(x^k)\}$ satisfaz as seguintes condições:

▶ Para todo k = 0, 1, 2, ...

$$\begin{split} f(x^k) - f(x^{k+1}) \geqslant \frac{1}{4L_{\max}(1+pL^2/L_{\min}^2)} \|\nabla f(x^k)\|^2 \\ f(x^k) - f(x^*) \leqslant 4L^2 \big(1+pL^2/L_{\min}^2\big) R^2(x^0) \frac{1}{k+8/p}, \ k=0,1,2,....., \end{split}$$

onde L_{max} e L_{min} são as constantes de Lipschitz máxima e mínima dos p-blocos, respectivamente,

$$R(x_0) \equiv \max_{\mathbf{x} \in \mathbb{R}^n} \max_{\mathbf{x}^* \in \mathbf{X}^*} \{\|\mathbf{x} - \mathbf{x}^*\| : f(\mathbf{x}) \leqslant f(x_0)\}$$

e $f(x^*)$ é um valor ótimo de f.

Método BCGD no \mathbb{R}^2

Tome $x^0 \in \mathbb{R}^2$ e L_i (i = 1, 2) constantes de Lipschitz de $\nabla_{(i)} f$.

Passo 1. Tome $x^{k,0} = x^k = (x_1^{k,0}, x_2^{k,0})$ e defina recursivamente:

$$x^{k,1} = x^{k,0} - \frac{1}{L_1}e_1\frac{\partial f(x^{k,0})}{\partial x_1} = \left(x_1^{k,0} - \frac{1}{L_1}\frac{\partial f(x^{k,0})}{\partial x_1}, \, x_2^{k,0}\right)$$

$$x^{k,2} = x^{k,1} - \frac{1}{L_2} e_2 \frac{\partial f(x^{k,1})}{\partial x_2} = \left(x_1^{k,1}, x_2^{k,1} - \frac{1}{L_2} \frac{\partial f(x^{k,1})}{\partial x_2}\right)$$

Passo 2. Defina

$$x^{k+1} = x^{k,2} = \left(x_1^{k,0} - \frac{1}{L_1} \frac{\partial f(x^{k,0})}{\partial x_1}, x_2^{k,1} - \frac{1}{L_2} \frac{\partial f(x^{k,1})}{\partial x_2}\right).$$

▶ Vale destacar que os subproblemas resolvidos no Passo 1 são resolvidos na reta real.

Teste do BCGD em Problemas de Mínimos Quadrados

Considere a função objetivo $f : \mathbb{R}^2 \to \mathbb{R}$, tal que:

$$f(x) = \frac{1}{2} ||Ax - b||^2$$
, onde $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}_{2 \times 2}$ e $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}_{2 \times 1}$

Temos $\nabla f(x) = A^{\mathsf{T}}(Ax - b)$ e $L_i = 9.$ Consideramos $x^0 = \left(1, \frac{2}{3}\right).$

	Bloco $\mathfrak{i}=1$		Bloco $\mathfrak{i}=2$		
_lt.	$U_1\nabla_1 f(x^{k,0})$	$\chi^{k,1}$	$U_2\nabla_2 f(x^{k,1})$	$x^{k,2} = x^{k+1}$	$f(x^{k+1})$
1	(4.6666, 0)	(0.4814, 0.6666)	(0, 2.2592)	(0.4814, 0.4156)	0.120578
2	(1.0699, 0)	(0.3625, 0.4156)	(0, 0.5285)	(0.3625, 0.3569)	0.006290
3	(0.2406, 0)	(0.3358, 0.3569)	(0, 0.1279)	(0.3625, 0.3569)	0.000329
4	(0.0500, 0)	(0.3303, 0.3426)	(0, 0.0346)	(0.3303, 0.3388)	0.000032
5	(0.0068, 0)	(0.3295, 0.3388)	(0, 0.0123)	(0.3295, 0.3374)	0.000016
6	(-0.0024, 0)	(0.3298, 0.3374)	(0, 0.0065)	(0.3298, 0.3367)	0.000012
_7	(-0.0040, 0)	(0.3302, 0.3367)	(0, 0.0047)	(0.3302, 0.3362)	0.000009

Tabela: Resultados do Método BCGD em f para k = 0, 1, 2, 3, 4, 5, 6, 7.

Um outro trabalho importante na retomada dos estudos método BCD foi o trabalho de S. J. Wright².

- O artigo descreve os fundamentos da abordagem, variantes, extensões e propriedades de convergência, sobretudo no caso de funções convexas.
- Dá atenção especial a estruturas que surgem frequentemente em aprendizado de máquina, mostrando implementações eficientes de versões aceleradas.
- ► Além disso, apresenta variantes paralelas e discute suas propriedades de convergência em diferentes modelos de execução.

²S. J. Wright. - Coordinate descent algorithms. Mathematical Programming, 151(1):3-34, 2015

Recentemente surgiram vários trabalhos sobre os métodos CD. Por exemplo, os trabalhos:

V. S. Amaral; R. Andreani; E. J. G. Birgin; D. S. Marcondes and J. M. Martínez. - On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization. Journal of Global Optimization (2022): 1-35

E. G. Birgin, and J. M. Martínez. - Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications 83.1 (2022): 1-27.

I. Necoara and F. Chorobura. - Random Coordinate Descent Methods for Nonseparable Composite Optimization. SIAM Journal on Optimization. 33, 2160-2190 (2023)

Amaral, V. (2025). - A partially derivative-free cyclic block coordinate descent method for nonseparable composite optimization. Mathematical Modelling and Analysis, 30(3), 535?552.

O restante dessa apresentação é dedicada aos seguintes trabalhos:

📄 V. S. Amaral; R. Andreani; E. J. G. Birgin; D. S. Marcondes and J. M. Martínez. - On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization. Journal of Global Optimization (2022): 1-35

Amaral, V. (2025). - A partially derivative-free cyclic block coordinate descent method for nonseparable composite optimization. Mathematical Modelling and Analysis, 30(3), 535-552.

No primeiro trabalho³ foi considerado o seguinte problema:

Minimize
$$f(x)$$
 s.a. $x \in \Omega$, (2)

onde $\Omega\subset\mathbb{R}^n$ é dado por $\Omega=\{x\in\mathbb{R}^n\,|\, \mathbf{l}\leqslant x\leqslant \mathbf{u}\}$, e $\mathbf{l},\mathbf{u}\in\mathbb{R}^n$ são tais que $\mathbf{l}<\mathbf{u}$.

- ightharpoonup f com derivadas primeiras contínuas em Ω .
- $\mathbf{p}_{\mathbf{P}}(\mathbf{x}) = \mathbf{P}_{\mathbf{\Omega}}(\mathbf{x} \nabla \mathbf{f}(\mathbf{x})) \mathbf{x}$ para todo $\mathbf{x} \in \mathbf{\Omega}$, onde $\mathbf{P}_{\mathbf{\Omega}}$ é a projeção euclidiana em $\mathbf{\Omega}$
- $ightharpoonup g_{P,I}(x) \in \mathbb{R}^n$ definida por

$$[g_{P,I}(x)]_{\mathfrak{i}} = \begin{cases} [g_P(x)]_{\mathfrak{i}}, & \text{se } \mathfrak{i} \in I, \\ 0, & \text{se } \mathfrak{i} \notin I. \end{cases}$$

 $ightharpoonup M_{\bar{x}}(\cdot)$ uma aproximação de f em torno de \bar{x} .

³V. S. Amaral; R. Andreani; E. J. G. Birgin; D. S. Marcondes and J. M. Martínez. - On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization. Journal of Global Optimization (2022): 1-35

Introduzimos o seguinte método para resolver o Problema (10):

Algoritmo 1.

Suponha $p \in \{1,2,3,\ldots\}$, $\alpha > 0$, $\sigma_{min} > 0$, $\tau_2 \geqslant \tau_1 > 1$, $\theta > 0$ e $x_0 \in \Omega$ sejam fornecidos. Inicialize $k \leftarrow 0$ e $\sigma_0 \leftarrow 0$.

Passo 1. Escolha um conjunto não vazio $I_k \subseteq \{1, ..., n\}$.

Passo 2. Calcule $x^{trial} \in \Omega$, $x_i^{trial} = x_i^k$ para todos $i \notin I_k$ tal que

$$M_{x^k}(x^{\textit{trial}}) + \sigma_k \|x^{\textit{trial}} - x^k\|^{p+1} \leqslant M_{x^k}(x^k)$$

e

$$\|P_{\Omega}\left[x^{\textit{trial}} - \nabla\left(M_{x^k}(x) + \sigma_k\|x - x^k\|^{p+1}\right)\big|_{x = x^{\textit{trial}}}\right] - x^{\textit{trial}}\| \leqslant \theta \|x^{\textit{trial}} - x^k\|^{p} \,.$$

Passo 3. Se

$$f(x^{\textit{trial}}) \leqslant f(x^k) - \alpha \|x^{\textit{trial}} - x^k\|^{p+1},$$

definir $x^{k+1} = x^{trial}$, $\sigma_{k+1} = \sigma_k$ e voltar ao Passo 1. Caso contrário, atualize $\sigma_k \leftarrow \max\{\sigma_{min}, \tau\sigma_k\}$ com $\tau \in [\tau_1, \tau_2]$ e voltar ao Passo 2.

Boa definição

Assumimos que:

Para todo $x \in \mathbb{R}^n$ existe L > 0 tal que

$$\|\nabla f(x) - \nabla M_{\bar{x}}(x)\| \leqslant L\|x - \bar{x}\|^p$$
,

$$M_{\bar{x}}(\bar{x}) = f(\bar{x}) \quad e \quad f(x) \leqslant M_{\bar{x}}(x) + L \|x - \bar{x}\|^{p+1}.$$

Para satisfazer as condições anteriores, $M_{\bar{x}}(\cdot)$ pode ser Taylor de ordem p de f ao redor de \bar{x} se as derivadas de ordem p de f satisfazem condições de Lipschitz ou a própria f.

Provamos que par $\sigma_k \geqslant L + \alpha$, o ponto x^{trial} satisfaz

$$f(x^{\text{trial}}) \leqslant f(x^k) - \alpha ||x^{\text{trial}} - x^k||^{p+1}$$
(3)

е

$$\|\nabla g_{P,I_k}(x^{\text{trial}})\| \leqslant (L + \tau_2(L + \alpha)(p+1) + \theta)\|x^{\text{trial}} - x^k\|^p, \quad (4)$$

Garantindo a boa definição do método.

Convergência

Provamos que a sequência $\{x^k\}$ gerada pelo Algoritmo 1 satisfaz as seguintes condições:

$$\lim_{k \to \infty} \|x^{k+1} - x^k\| = 0, \tag{5}$$

$$\lim_{k \to \infty} \|\nabla g_{P, I_k}(x^{k+1})\| = 0, \tag{6}$$

е

$$\lim_{k\to\infty} \|\nabla g_{P,I_k}(x^k)\| = 0. \tag{7}$$

Observe que os resultados anteriores não garantem

$$\lim_{k \to \infty} \|g_{P}(x^{k})\| = 0. \tag{8}$$

Para provar (8) foi necessário uma suposição adicional em relação a escolha dos blocos.

Convergência

Suposição 1.

Existe $\bar{m} < +\infty$ tal que, para todo $i \in \{1, \dots, n\}$:

- 1. Existe $k \leq \bar{m}$ tal que $i \in I_k$;
- 2. Para qualquer $k\in\mathbb{N}$, se $i\in I_k$, então existe $\mathfrak{m}\leqslant\bar{\mathfrak{m}}$ tal que $i\in I_{k+\mathfrak{m}}.$

Note que a Suposição 1 nos permite escolher o bloco de coordenadas em cada iteração de diversas formas, basta que, a cada \bar{m} iterações, todos os blocos sejam escolhidos pelo menos uma vez.

Com essa suposição adicional, mostramos que a sequência $\{x^k\}$ satisfaz,

$$\lim_{k \to \infty} \|\nabla g_{\mathbf{P}}(x^k)\| = 0. \tag{9}$$

Além disso, se $x^* \in \Omega$ for um ponto de acumulação de $\{x^k\}$, então temos que $\|\nabla q_P(x^*)\| = 0$.

A complexidade do método

Dado as estimativas $f_{\text{target}} < f(x^0)$ e $\varepsilon>0$ dados. Provamos que o número de iterações k para obter

$$f(x^{k+1})\leqslant f_{\text{target}} \text{ ou } |[g_P(x^{k+1})]_i|\leqslant \varepsilon \text{ para todo } i\in I_k$$

é no máximo

$$\frac{f(x^0) - f_{\text{target}}}{c e^{\frac{p+1}{p}}},$$

onde c depende apenas de α , τ_2 , L, p, e θ .

Podemos observar que a estimativa anterior para o gradiente projetado se refere apenas às coordenadas escolhidas no bloco.

No entanto, obter $|[g_P(x^k)]_i| \leqslant \epsilon$ para todos $i \notin I_k$ é mais difícil, pois para este propósito, é necessário que as iterações consecutivas estejam suficientemente próximas.

Para isso, foi assumido a seguinte suposição.

A complexidade do método

Existe $L_g>0$ tal que para todo $\mathfrak{i}=1,\ldots,\mathfrak{n}$ e $\mathfrak{x},z\in\Omega$,

$$|[g_{P}(x)]_{i} - [g_{P}(z)]_{i}| \leq L_{g}||x - z||.$$

Agora, considerando a suposição adicional anterior, provamos que o número máximo de iterações necessário para obter $f(x^k) \leqslant f_{\mathsf{target}}$ ou $|[g_P(x^k)]_{\dot{\imath}}| \leqslant \epsilon$ para todo $\dot{\imath} = 1, \dots, n$ é

$$\frac{f(x^0) - f_{\text{target}}}{c(\frac{1}{2})^{\frac{p+1}{p}}} \epsilon^{-\frac{p+1}{p}} + \frac{f(x^0) - f_{\text{target}}}{\alpha(\frac{1}{2\bar{m}L_g})^{p+1}} \epsilon^{-(p+1)} + 1.$$

Assim, a complexidade obtida é da ordem $O(\varepsilon^{-(p+1)})$.

A ordem da complexidade obtida chama a atenção, pois piora quando aumentamos a ordem de regularização, ao contrário do que ocorre em métodos tradicionais.

Comentários

Alguns pontos sobre

$$\frac{f(x^0) - f_{\text{target}}}{c(\frac{1}{2})^{\frac{p+1}{p}}} \epsilon^{-\frac{p+1}{p}} + \frac{f(x^0) - f_{\text{target}}}{\alpha(\frac{1}{2\bar{\mathfrak{m}}L_g})^{p+1}} \epsilon^{-(p+1)} + 1.$$

- 1. p cresce \Longrightarrow a complexidade piora, o contrário dos métodos tradicionais.
- 2. \overline{m} cresce \Longrightarrow o segundo termo da expressão acima cresce.
- 3. $\bar{\mathfrak{m}}$ crescer junto com \mathfrak{n} se o tamanho dos subproblemas permanecer limitado.
- 4. O tipo de escolha do bloco pode influenciar na complexidade.

No trabalho⁴ foi considerado o seguinte problema:

$$\text{Minimizar } F(x) := f(x) + h(x) \text{ sujeito a } x \in \mathbb{R}^n,$$
 (10)

onde f diferenciável e $h:\mathbb{R}^n \to \mathbb{R}$ é uma função convexa.

Quando h é a função indicadora de um conjunto convexo C, então o Problema (10) é equivalente a resolver o problema de minimizar F(x)=f(x) restrito ao conjunto convexo C.

Muitos problemas de otimização em aplicações do mundo real são frequentemente de grande escala e alta dimensão, o que os torna desafiadores de resolver, especialmente quando há derivadas difíceis de calcular.

Neste trabalho foi proposto uma versão dos métodos BCD parcialmente livre de derivadas.

⁴V. S. Amaral. - A partially derivative-free cyclic block coordinate descent method for nonseparable composite optimization. Mathematical Modelling And Analysis, v. 30, p. 535-552, 2025.

Para o desenvolvimento do método proposto, foi considerado a função

$$\phi_f: \mathbb{R}^n \times [0,1] \to \mathbb{R}^n \text{ onde } \lim_{\lambda \to 0} \phi_f(x,\lambda) = \nabla f(x). \tag{11}$$

A função em (11) pode ser definida como $\phi_f=\nabla f.$ No entanto, essa definição não é recomendada quando o cálculo do gradiente de f é computacionalmente proibitivo. Nesses casos, é preferível definir ϕ_f como uma aproximação do gradiente $\nabla f,$ que pode ser obtida com um custo computacional menor.

A função ϕ_f pode ser definido por uma das seguintes maneiras:

$$\bullet \ \phi_f(x,\lambda) = \left\lceil \frac{f(x+\lambda e_1) - f(x)}{\lambda}, \cdots, \frac{f(x+\lambda e_n) - f(x)}{\lambda} \right\rceil.$$

$$\bullet \ \phi_f(x,\lambda) = \left[\frac{f(x) - f(x - \lambda e_1)}{\lambda}, \cdots, \frac{f(x) - f(x - \lambda e_n)}{\lambda}\right].$$

$$\bullet \ \phi_f(x,\lambda) = \left[\frac{f(x+\lambda e_1) - f(x-\lambda e_1)}{2\lambda}, \cdots, \frac{f(x+\lambda e_n) - f(x-\lambda e_n)}{2\lambda}\right].$$

Seja $x^0 \in \mathbb{R}^n$; para cada $i=1,\ldots,q$, uma matriz simétrica semidefinida positiva $B_{(i)}(x^0) \in \mathbb{R}^{n_i \times n_i}$; tome $\alpha \in (0,1), \ \epsilon \in (0,1), \ \sigma_0 \geqslant 1$ e $F_{\mathsf{target}} \in \mathbb{R}$. Inicialize $k \leftarrow 0$.

Etapa 1: Escolha $\lambda_k \in \left[0, \ \frac{\varepsilon}{\sigma_k \sqrt{n}}\right]$, e considere $\phi_f(x^k, \lambda_k)$.

Etapa 2: Ponha $x^{k,0}=x^k$ e, para cada $i=1,\ldots,q$, calcule $x^{k,i}=x^{k,i-1}+U_is^k_{(i)}$, onde $s^k_{(i)}\in\mathbb{R}^{n_i}$ é solução de

$$\min_{s\in\mathbb{R}^{n_{\mathfrak{i}}}}\big\langle U_{\mathfrak{i}}^{\mathsf{T}}\phi_{f}(\boldsymbol{x}^{k,\mathfrak{i}-1},\boldsymbol{\lambda}_{k}),s\big\rangle + \frac{1}{2}\langle B_{(\mathfrak{i})}(\boldsymbol{x}^{k,\mathfrak{i}-1})s,s\big\rangle + h(\boldsymbol{x}^{k,\mathfrak{i}-1} + U_{\mathfrak{i}}s) - h(\boldsymbol{x}^{k,\mathfrak{i}-1}) + \frac{\sigma_{k}}{2}\|s\|^{2}.$$

Etapa 3: Se

$$\bigg\| \sum_{i=1}^q U_i s_{(i)}^k \bigg\|_\infty < \frac{\varepsilon}{\sigma_k} \quad \text{ou} \quad F(x^{k,q}) \leqslant F_{\mathsf{target}},$$

pare e declare $x^{k,q}$ como uma solução aceitável. Caso contrário, vá para a Etapa 4.

Etapa 4: Se

$$F(x^{k,q}) \leqslant F(x^k) - \frac{\alpha}{\sigma_k} \epsilon^2$$

faça $k\leftarrow k+1$, defina $x^{k+1}=x^{k,q}$ e $\sigma_{k+1}=\sigma_k$, escolha $B_{(\mathfrak{i})}(x^{k+1})\in\mathbb{R}^{n_{\mathfrak{i}}\times n_{\mathfrak{i}}}$ simétrica s.d.p. e volte à Etapa 1. Caso contrário, defina $\sigma_k\leftarrow 2\sigma_k$ e volte à Etapa 1.

Boa definição

Para garantir a boa definição do método foi considerado que:

Suposição 2.

Existem $L,M\in(0,+\infty)$ e $\beta\in(0,1]$ tais que para todo $x,y\in\mathbb{R}^n$

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2 + \frac{M}{\beta + 1} ||y - x||^{\beta + 1}$$
 (12)

e

$$\|\nabla f(x) - \varphi_f(x, \lambda)\| \leqslant \frac{\sqrt{n}L}{2}\lambda + \frac{\sqrt{n}M}{\beta + 1}\lambda^{\beta}$$
 (13)

Se $f := g_1 + g_2$, onde ∇g_1 L-Lipschitz e ∇g_2 M-Hölder com expoente β então (12) e (13) são válida, pois

$$g_1(y) \leqslant g_1(x) + \langle \nabla g_1(x), y - x \rangle + \frac{L}{2} ||y - x||^2 \ \forall x, y \in \mathbb{R}^n$$

е

$$g_2(y)\leqslant g_2(x)+\langle \nabla g_2(x),y-x\rangle+\frac{M}{\beta+1}\|y-x\|^{\beta+1}\;\forall\,x,y\in\mathbb{R}^n.$$

Boa definição

Além das suposições anterior foi considerado que: existe $\overline{B}\geqslant 1$ tal que $\|B_{(\mathfrak{i})}(x^{k,\mathfrak{i}-1})\|\leqslant \overline{B}$ para todos os $\mathfrak{i}\in\{1,\ldots,\mathfrak{q}\}$ e k.

Assim, provamos que se

$$\|s^k\|_\infty\geqslant\frac{\varepsilon}{\sigma_k}\ e\ \sigma_k\geqslant\left[\frac{2L+q\overline{B}}{(1-\alpha)}+\frac{2q(Mn^{\frac{1-\beta}{2}}+M)}{(\beta+1)(1-\alpha)}\varepsilon^{\beta-1}\right]^{\frac{1}{\beta}}$$

então

$$\mathsf{F}(x^{k,q})\leqslant \mathsf{F}(x^k)-\alpha\frac{\sigma_k}{2}\|s^k\|_\infty^2 \tag{14}$$

е

$$F(x^{k,q}) \leqslant F(x^k) - \frac{\alpha}{\sigma_k} \epsilon^2.$$
 (15)

Garantindo assim a boa definição do método.

Complexidade

Números de Iterações é limitado superiormente por:

$$\frac{c(F(x^0) - F_{target})}{\alpha} e^{-\frac{\beta + 1}{\beta}}.$$

Número de avaliações de f e seus subdiferenciais é limitado superiormente por:

$$\frac{c\big(F(x^0) - F_{\text{target}}\big)}{\alpha} \varepsilon^{-\frac{\beta+1}{\beta}} + log_2\bigg(\frac{\sigma_{\text{max}}}{\sigma_{\text{min}}}\bigg).$$

com

$$\sigma_{\text{max}} = 2\varepsilon^{\frac{\beta-1}{\beta}} \, \text{max} \, \bigg\{ \sigma_{\text{min}}, \, \left\lceil \frac{2L+q\overline{B}}{(1-\alpha)} + \frac{2q(Mn^{\frac{1-\beta}{2}}+M)}{(\beta+1)(1-\alpha)} \right\rceil^{\frac{1}{\beta}} \bigg\}.$$

Aplicações

O método BCDC-Dfree pode resolver problemas:

Caso diferenciável: se $h \equiv 0$

$$\min_x f(x).$$

o problema do lasso

$$\min_{x \in \mathbb{R}^{n}} \left\{ \frac{1}{2} \|Ax - b\|^{2} + \lambda \|x\|_{1} \right\}, \ \lambda > 0, \ \ A \in \mathbb{R}^{s \times n},$$
 (16)

considerando $h(x) = \lambda ||x||_1$, $f(x) = \frac{1}{2} ||Ax - b||^2$.

o problema

$$\min \left\{ \|Ax - b\|^2 \colon 0 \leqslant x_i \leqslant 1, i = 1, 2, \dots, n \right\}$$
 (17)

onde $A \in \mathbb{R}^{s \times n}$ e $b \in \mathbb{R}^s$. Basta minimizar F(x) = f(x) com $f(x) = \delta_{\Omega}(x)$, $\Omega = \{x \in \mathbb{R}^n : 0 \leqslant x_i \leqslant 1, i = 1, 2, \dots, n\}, \ f(x) = \|Ax - b\|^2$.

Aplicações

Problema de mínimos quadrados penalizado por norma L_p (1 < p < 2):

$$\min \mathsf{F}(x) = \frac{1}{2} \|A(x) - b\|_2^2 + \frac{\lambda}{p} \|\Phi(x)\|_p^p,$$

onde $A: \mathbb{R}^n \to \mathbb{R}^m$ é diferenciável (não necessariamente linear), $b \in \mathbb{R}^m$, e Φ é operador linear.

Detalhes em:

A. Bernigaud, S. Gratton and E. Simon, A non-linear conjugate gradient in dual space for L_p -norm regularized non-linear least squares with application in data assimilation, *Numerical Algorithms*, **95**, 471–497 (2024).

https://doi.org/10.1007/s11075-023-01578-x

Testes Numéricos

Aplicamos nosso método proposto para resolver alguns problemas em que ambos foi considerados como um caso particular de

$$F(x) = \frac{1}{2} ||A(x) - b||_2^2 + \frac{\lambda}{p} ||\Phi(x)||_p^p, \tag{18}$$

com $1 , A diferenciável e <math>\Phi$ linear.

Nos exemplos a seguir, consideramos $B_{(i)} \equiv 0$, n=10, $\alpha=0,5$, $\varepsilon=5\times 10^{-5}$, $F_{\text{target}}=0,5$ e a função $\phi_f:\mathbb{R}^{10}\times\mathbb{R}\to\mathbb{R}^{10}$ definida por

$$\phi_f(x,\lambda) = \left[\frac{f(x+\lambda e_1) - f(x)}{\lambda}, \cdots, \frac{f(x+\lambda e_{10}) - f(x)}{\lambda}\right].$$

Exemplo Numérico: Influência de σ_0

A desigualdade em (15) mostra que valores muito grandes de σ_0 podem gerar pequenas reduções na função objetivo, demandando mais iterações para alcançar uma solução aceitável.

Consideramos o seguinte problema de mínimos quadrados lineares, penalizado por uma norma $L_\mathfrak{p}$, com $1<\mathfrak{p}<2$:

$$\min \mathsf{F}(x) = \tfrac{1}{2} \| Ax - b \|_2^2 + \tfrac{\lambda}{p} \| \Phi(x) \|_p^p,$$

onde $A \in \mathbb{R}^{10 \times 10}$ e $b \in \mathbb{R}^{10}$ são fixados.

No algoritmo utilizamos $f(x) = 0.5 \|Ax - b\|^2 + 5 \times 10^{-5} \sum_{i=1}^{10} |x_i|^{3/2}$, h(x) = 0 e $x^0 = 0 \in \mathbb{R}^{10}$.

$\overline{\lambda_k}$	N. Blocos	σ_0	N. Iterações	Approx. F*
	10	1	10	0.4731
$\frac{\epsilon}{\sigma_k \sqrt{10}}$	10	500	40	0.3021
5 K V 10	10	1000	83	0.3003

Tabela: Comportamento do BCDC-Dfree para diferentes σ_0 .

Figura: Evolução do BCDC-Dfree para diferentes valores de σ_0 .

Exemplos Numéricos com A e b Aleatórios

Consideramos o Problema (10) com f dado em (18), onde $A \in \mathbb{R}^{10 \times 10}$ e $b \in \mathbb{R}^{10}$ são gerados aleatoriamente, Φ é a função identidade e h é nulo. Foram avaliadas 100 instâncias distintas, todas com x^0 aleatório, comparando a abordagem com 10 blocos e com um único bloco.

Blocos	σ_0	Iterações Médias	Média-F
10	1	11.55	0.4329
1	1	17.56	0.4682

Tabela: BCDC-Dfree com A e b aleatórios.

Em seguida, σ_0 foi sorteado no intervalo [1,1000], mantendo os demais dados inalterados.

Blocos	σ_0	lterações Médias	Média-F	
10	rand()	805 .45	0.4988	
1	rand()	809.02	0.4988	

Tabela: BCDC-Dfree com A, b e σ_0 aleatórios.

Exemplo com A Não Linear

Agora, consideramos o caso em que A em (18) é não linear, definido por

$$A(x) = (A_1(x), \dots, A_n(x)), \quad A_i(x) = \frac{x_i}{1 + x_{i+1}^2}, \ i = 1, \dots, n-1,$$

com $x_{n+1}=x_1$. Tomamos $\Phi(x)=Bx$, com $B\in\mathbb{R}^{m\times n}$ aleatório e b também aleatório. Foram avaliadas 100 instâncias, todas com x^0 aleatório e σ_0 sorteado em [1,100].

Blocos	σ_0	Iterações Médias	Média-F	
10	rand()	648.96	0.5008	
1	rand()	664.61	0.5008	

Tabela: BCDC-Dfree para o caso com A não linear.