

CONCOURS D'ENTREE EN 1ère ANNEE – SESSION D'AOUT 2019

EPREUVE DE MATHEMATIQUES

Durée 3h00 - Coefficient 4

EXERCICE 1: 3.5 Points

On considère dans l'ensemble des nombres complexes, le système suivant : $\begin{cases} iz + (1-i)z' = 0 \\ z - iz' = -i \end{cases}$

Résoudre le système.

1pt

2- Écrire chacune des solutions sous forme exponentielle.

1.5pt

3- Donner les racines cubiques du nombre complexe u = -i

1pt

EXERCICE 2: 5.5 Points

On considère la fonction f définie sur IR par : $f(x) = e^{-x} \ln(1 + e^x)$ et (C) sa courbe représentative dans le plan muni d'un repère orthonormé (0, I, J).

1- Étudier les branches infinies de f.

1pt

2- On considère la fonction g définie sur l'intervalle]-1; $+\infty[$ par :

$$g(t) = \frac{t}{1+t} - \ln(1+t)$$

Étudier les variations de g et en déduire le signe de g suivant les valeurs de t.

1pt

3-

- 3.1. Calculer la dérivée de f et exprimer f'(x) en fonction de $g(e^x)$. **0.75pt**
- 3.2. En déduire le sens de variation de la fonction f, puis dresser son tableau des variations. **0.5pt**
- 3.3. Tracer (C) ainsi que ses asymptotes.

0.75pt

4- Soit F la fonction définie sur IR par : $F(x) = \int_0^x f(t)dt$

4.1 Etudier le sens de variation de *F*4.2 Calculer F à l'aide d'une intégration par parties
1pt

EXERCICE 3: 5.5 Points

On désigne par n un entier naturel supérieur ou égal à 2.

On dispose de n sacs de jetons S_1 , S_2 , S_3 , ..., S_n . Au départ, le sac S_1 a 2 jetons noirs et 1 jeton blanc, et chacun des autres sacs contient un jeton noir et un jeton blanc.

On se propose d'étudier l'évolution des tirages successifs d'un jeton de ces sacs, effectués de la façon suivante :

Première étape : on tire au hasard un jeton de S_1

Deuxième étape : on place ce jeton dans \mathcal{S}_2 et on tire au hasard un jeton dans \mathcal{S}_2

Troisième étape : Après avoir placé dans S_3 le jeton sorti de S_2 , on tire, au hasard un jeton de S_3 et ainsi de suite.

Pour tout entier naturel k tel que $1 \le k \le n$, on note E_k l'événement << le jeton sorti de S_k est blanc >>

- 1- Déterminer la probabilité de E_1 , notée $p(E_1)$, et les probabilités conditionnelles suivantes : $p(^{E_2}/_{E_1})$, et $p(^{E_2}/_{\bar{E}_1})$. En déduire la probabilité de l'événement E_2 notée $p(E_2)$.
- 2- Pour tout entier naturel k tel que : 1 < k < n, la probabilité de l'événement E_k est notée p_k . Justifier la relation de récurrence $p_{k+1} = \frac{1}{3}p_k + \frac{1}{3}$ 1pt

- 3- On considère la suite (v_k) définie pour tout entier naturel k par $v_k = p_k \frac{1}{2}$. Démontrer que la suite (v_k) est une suite géométrique dont on précisera le premier terme et la raison.
- 4- Donner alors le terme général de la suite (p_k) , puis calculer sa limite. **0.5pt**

EXERCICE 4: 5.5 Points

- 1- Un groupe d'entreprises possède 3 usines. Dans la première, le salaire moyen en milliers de francs est de 100, dans la deuxième de 120 et dans la troisième de 90. Sachant que la moyenne des salaires dans ce groupe est de 104, qu'il y a 10 salariés dans la première usine et 20 salariés dans la deuxième, quel est l'effectif salarié de la troisième usine ?
 1.5pt
- 2- Ce groupe d'entreprises possède 200 points de vente répartis sur plusieurs pays. Chaque point de vente a fait connaître son chiffre d'affaires exprimé en millions de francs, pour le mois de février 2019. Les chiffres fournis sont consignés dans le tableau suivant :

77	129	56	67	78	176	75	101	68	96
89	46	178	125	97	26	50	29	151	141
120	77	33	75	17	113	97	80	144	109
96	60	152	20	84	123	105	57	102	100
61	118	140	95	84	152	101	105	63	95
115	3	104	107	47	83	75	50	119	137
2	46	80	99	120	159	110	108	138	143
93	94	124	17	110	115	139	55	146	72
31	121	109	128	64	136	103	112	149	114
136	144	96	107	86	62	100	105	78	46
50	137	71	74	113	141	42	135	89	38
114	136	115	28	71	114	123	87	124	94
127	34	116	111	107	93	29	113	99	115
113	122	137	86	59	107	78	189	5	114
121	116	68	120	81	124	124	67	93	107
125	123	134	140	49	96	101	99	102	72
79	48	90	128	142	86	72	117	28	16
81	106	125	79	35	82	124	50	77	149
98	103	103	101	97	96	193	152	127	107
109	127	76	97	62	105	50	80	108	62

2.1 Dépouiller les renseignements qui précèdent et présenter les résultats du dépouillement sous forme d'un tableau statistique dans lequel on mettra l'effectif et la fréquence de chaque classe. On retiendra les classes :

[0,30[;[30,50[;[50,70[;[70,90[;[90,100[;[100,110[;

[110, 120]; [120, 130]; [130, 150]; [150, 200]

2.5pts

2.2. Déterminer le nombre et la fréquence de points de vente dont le chiffre d'affaires est :

i) inférieur à 105 millions de francs;	0.5pt
ii) supérieur à 60 millions de francs;	0.5pt
iii) Compris entre 35 et 150 millions de francs.	0.5pt

Les unités incluses à l'intérieur d'un intervalle sont supposées se répartir uniformément à l'intérieur de l'intervalle.