# GANs专题报告(1)

Introduction of GANs and Application in Speech Processing

## **Background**

2014年,Goodfellow在NIPS发表了Generative Adversarial Networks (https://arxiv.org/abs/1406.2661)

Discriminative model VS Generative model

- Success in discriminative model
   Using Backpropagation and dropout algorithms
- 2. Little impact of generative model

# Background —— 之前的做法

Parametric specification + Maximize log likelihood

最经典: 受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)



How to use BP rather than likelihood function?

# Background —— 之前的做法

Markov chains + BP

生成式随机网络(Generative stochastic networks,GSN)



How to eliminate Markov chains?

# Background —— VAEs简介

## 同时出现了两个方法:

VAEs : Variational Auto-Encoder

GANs: Generative Adversarial Networks



事成之后,每从高斯分布中抽取一个样本,我们就得到了一个新的猫的图片!

# GANs简介



$$\mathsf{Update} \quad \mathsf{D} \colon \qquad \max_{D} V(D,G) = E_{x \sim p_{data}(x)}[log(D(x))] + E_{z \sim p_{z}(z)}[log(1 + D(G(z)))]$$

Update G: 
$$\min_{G} V(D,G) = E_{z \sim p_z(z)} [log(1 - D(G(z)))]$$

原文中合并形式: 
$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

# GANs简介



Timeline

z: 随机噪声

箭头: x = G(z)

蓝色: Discriminator

黑色:真实分布绿色:生成分布

# GANs简介



 $\mathsf{Update} \quad \mathsf{D}\colon \qquad \max_{D} V(D,G) = E_{x \sim p_{data}(x)}[log(D(x))] + E_{z \sim p_{z}(z)}[log(1 + D(G(z)))]$ 

Update G:  $\min_{G} V(D,G) = E_{z \sim p_{z}(z)} [log(1 - D(G(z)))]$ 

原文中合并形式:  $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$ 

## 如果我们来设计GAN,哪些部分是可以调整的呢?



# GANs优缺点

Advantage:

不再需要马尔可夫链 数据并不直接更新模型,仅使用D的梯度信号更新G的网络参数 表示一些很尖锐或者衰减型的分布

Disadvantages:

G和D的训练必须同步(训练困难)

对于不同的z,可能都生成同样的x,多样性下降(WGAN解决)

# GAN应用一: 语音合成

Speech Synthesis:

Automatically synthesize speech waveform

- Application
- 1. TTS (Text to Speech)

2. VC (Voice Conversation)

\*modifying the speech signal of one speaker (source speaker) so that it sounds as if it had been pronounced by a different speaker (target speaker)

# 传统的做法

## **HMM & DNN**

#### Problem:

- Vocoding
- Accuracy of acoustic models
- over-smoothing



### 工作1:

Statistical Parametric Speech Synthesis Incorporating Generative Adversarial Networks (TASLP 2017)



#### Convolutional DNN-Based



## MSE (Mean Square Error)

#### **Natural:**

$$y = [y_1^T, y_2^T, \dots y_t^T, \dots y_T^T]^T$$
$$Y_t = [y_t^T, \Delta y_t^T, \Delta \Delta y_t^T]^T$$

$$Y = [Y_1^T, Y_2^T, ... Y_t^T, ... Y_T^T]^T$$

#### Generative:

$$\mathbf{y} = \begin{bmatrix} y_1^T, y_2^T, \dots y_t^T, \dots y_T^T \end{bmatrix}^T \qquad \hat{\mathbf{y}} = \begin{bmatrix} \hat{y}_1^T, \hat{y}_2^T, \dots \hat{y}_t^T, \dots \hat{y}_T^T \end{bmatrix}^T$$

$$\hat{Y} = \left[\hat{Y}_1^T, \hat{Y}_2^T, \dots \hat{Y}_t^T, \dots \hat{Y}_T^T\right]^T$$

#### Loss:

$$L_{MSE}(Y, \hat{Y}) = \frac{1}{T} (\hat{Y} - Y)^T (\hat{Y} - Y)$$

#### Convolutional DNN-Based



## MGE (Minimum Generation Error)

Natural:

$$y = [y_1^T, y_2^T, ... y_t^T, ... y_T^T]^T$$

Generative:

$$\hat{Y} = \left[\hat{Y}_1^T, \hat{Y}_2^T, \dots \hat{Y}_t^T, \dots \hat{Y}_T^T\right]^T$$

$$R = (W^T \Sigma^{-1} W)^{-1} W^T \Sigma^{-1}$$

Loss:

$$y = [y_1^T, y_2^T, ... y_t^T, ... y_T^T]^T \quad \hat{Y} = [\hat{Y}_1^T, \hat{Y}_2^T, ... \hat{Y}_t^T, ... \hat{Y}_T^T]^T \quad L_{MGE}(y, \hat{y}) = \frac{1}{T} (R\hat{Y} - y)^T (R\hat{Y} - y)$$

## **DNN-Based incorporating GAN**





## Update D:

$$L_{\mathrm{D}}^{(\mathrm{GAN})}\left(\boldsymbol{y}, \hat{\boldsymbol{y}}\right) = -\frac{1}{T} \sum_{t=1}^{T} \log \frac{1}{1 + \exp\left(-D\left(\boldsymbol{y}_{t}\right)\right)}$$
$$-\frac{1}{T} \sum_{t=1}^{T} \log \left(1 - \frac{1}{1 + \exp\left(-D\left(\hat{\boldsymbol{y}}_{t}\right)\right)}\right)$$

$$L_{\mathrm{ADV}}^{(\mathrm{GAN})}\left(\boldsymbol{\hat{y}}\right) = -\frac{1}{T} \sum_{t=1}^{T} \log \frac{1}{1 + \exp\left(-D\left(\boldsymbol{\hat{y}}_{t}\right)\right)}.$$

**Update G:** 

$$L_{\mathrm{G}}\left(oldsymbol{y}, \hat{oldsymbol{y}}
ight) = L_{\mathrm{MGE}}\left(oldsymbol{y}, \hat{oldsymbol{y}}
ight) + \omega_{\mathrm{D}} rac{E_{L_{\mathrm{MGE}}}}{E_{L_{\mathrm{ADV}}}} L_{\mathrm{ADV}}^{(\mathrm{GAN})}\left(\hat{oldsymbol{y}}
ight)$$

#### **Feature Function**

在TASLP 2015&2016发表的文章中,有学者针对声音反诈骗(anti-spoofing)的任务提出了一些方法,作者认为可以加入到discriminator之前来提升discriminator的性能,从而最终提高Generator的性能



#### Result

文中作者做了非常多的对比实验,以下抽取其中两个



比较GAN与baseline以及超参数 $\omega_D$ 的影响

比较不同的散度(Divergence)

思考,实际上两个语谱图已经比较接近了,只是(a)是over-smoothing,那么是不是可以直接在(a)上面做优化?



### 工作2:

Generative adversarial network-based postfilter for statistical parametric speech synthesis (ICASSP 2017)



Fig. 2. System overview of proposed GAN-based postfilter.

Reconstructing detailed spectral structures in both the time and frequency directions simultaneously



Fig. 2. System overview of proposed GAN-based postfilter.

$$\min_{G} \max_{D} \mathbb{E}_{x,y \sim P_{\text{Data}}(x,y)} [\log D(x,y)]$$

$$+ \mathbb{E}_{z \sim P_{\text{Noise}}(z),y \sim P_{y}(y)} [\log (1 - D(G(z,y),y))].$$

We use y as a synthesized spectral texture.



Fig. 2. System overview of proposed GAN-based postfilter.

- Residual representation
- Convolutional architecture (FCN)

#### **Table 1**. Network architectures for GAN-based postfilter.

```
Generator (Input: D \times T Mel-cepstrum + D \times T noise)

5 \times 5 128 conv., ReLU + input Mel-cepstrum

5 \times 5 256 conv., ReLU + input Mel-cepstrum

5 \times 5 128 conv., ReLU + input Mel-cepstrum

5 \times 5 1 conv.

Discriminator (Input: D \times T_c Mel-cepstrum)

5 \times 5 64 conv., LReLU

5 \times 5 128 conv. \downarrow, LReLU

3 \times 3 256 conv. \downarrow, LReLU

3 \times 3 128 conv. \downarrow, LReLU

1 fully connected, sigmoid
```



Fig. 3. Comparison of spectral textures generated by different methods.<sup>1</sup>

**NAT:** extracted from a natural speech by STRAIGHT

**SYN:** generated by DNN-based statistical parametric speech synthesis

**VS:** variance scaling-based postfilter

MS: modulation spectrum-based postfilter

MSE: DNN-based postfilter with mean squared error as the loss function

GANv: applying the GAN-based postfilter only in voiced



As shown, the trajectories of SYN, VS, MS, and MSE are too smooth, but GAN and GANv can predict the trajectory that has a similar complexity to the natural one.



**Fig. 5**. Averaging difference in modulation spectrum per Melcepstral coefficient for different methods compared to natural speech.

**Table 2**. Average preference score (%) with 95% confidence intervals. Bold font indicates the number is over 30%.

|              | Former         | Latter         | Neutral        |
|--------------|----------------|----------------|----------------|
| GAN vs. SYN  | $56.5 \pm 4.9$ | $22.0 \pm 4.1$ | $21.5 \pm 4.0$ |
| GAN vs. GANv | $11.3 \pm 3.1$ | $37.3 \pm 4.8$ | $51.5 \pm 4.9$ |
| GAN vs. NAT  | $16.8 \pm 3.7$ | $53.5 \pm 4.9$ | $29.8 \pm 4.5$ |
| GANv vs. NAT | $30.3 \pm 4.5$ | $34.5 \pm 4.7$ | $35.3 \pm 4.7$ |

Human evaluation

# GAN应用二: 语音增强

Speech Enhancement:

Noise reduction for speech

### 传统的做法:

- spectral subtraction
- Wiener filtering
- statistical model-based method
- subspace algorithms

#### 工作3:

SEGAN: Speech Enhancement Generative Adversarial Network (Interspeech 2017)



#### Motivation:

#### 以前的做法有许多限制:

- Use of fixed-length analysis window
- Linear filter
- Gaussian process assumption

https://arxiv.org/pdf/1609.03499.pdf page14

#### SEGAN:

- It works end-to-end, with the raw audio and no hand-crafted features are extracted
- same shared parametrization and more generalizable
- No recursive operation like in RNNs, no causality

### Auto-Encoder



Add adversarial component?



$$\begin{split} \min_{G} V_{\mathrm{LSGAN}}(G) &= \frac{1}{2} \, \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z}), \tilde{\mathbf{x}} \sim p_{\mathrm{data}}(\tilde{\mathbf{x}})} [(D(G(\mathbf{z}, \tilde{\mathbf{x}}), \tilde{\mathbf{x}}) - 1)^2] + \\ &+ \lambda \, \|G(\mathbf{z}, \tilde{\mathbf{x}}) - \mathbf{x}\|_1. \end{split}$$

和语音合成的工作一样

# Result

| Metric      | Noisy | Wiener | SEGAN |
|-------------|-------|--------|-------|
| PESQ        | 1.97  | 2.22   | 2.16  |
| CSIG        | 3.35  | 3.23   | 3.48  |
| <b>CBAK</b> | 2.44  | 2.68   | 2.94  |
| COVL        | 2.63  | 2.67   | 2.80  |
| SSNR        | 1.68  | 5.07   | 7.73  |

| Perference      | Former | Latter | Neutral |
|-----------------|--------|--------|---------|
| Noisy VS SEGAN  | 8%     | 67%    | 25%     |
| Wiener VS SEGAN | 23%    | 53%    | 24%     |

#### 在今年发表的论文中,作者还在不同的文化和不同的噪声类型上做了实验



**Fig. 2**. Objective metrics for Catalan (top row) and Korean (bottom row). Blue line (preeng): Pre-trained with English. Orange line (scratch): trained from scratch. Green dashed line: SEGAN level without fine tunning. Black dash-dotted line: Noisy level.

先在英语上训练,然后用另外一个语言finetune效果最佳(蓝色)

如果不finetune,直接训练的话需要较大的数据量(橙色)

#### 噪声实验:



有趣的现象,在干净的音频上叠加不同种类的噪声,噪声数量的增加似乎没有 影响降噪的效果。

# GAN应用三:情感分析

• Emotion Recognition:

discrete: happy, angry, .......

continuous: Arousal, Valence

• Limitation:

Little scale of labeled data

Can we use GANs to implement semi-supervised training?

#### 工作4:

Learning representations of emotional speech with deep convolutional generative adversarial networks (ICASSP 2017)



# Simple supervised training for valence recognition



# Semi-supervised training for valence recognition

$$\mathcal{L}_r(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^N \log \hat{y}_{r,n}$$
$$\mathcal{L}_f(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^N \log(1 - \hat{y}_{g,n})$$
$$\mathcal{L}_g(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^N \log(\hat{y}_{g,n})$$





本文的结构: DCGAN (Deep Convolution GANs)

DCGAN作者想弥补CNN在supervised 和 unsupervised之间的gap。作者提出了将CNN和GAN相结合的DCGAN,并展示了它在unsupervised learning所取得的不俗的成绩

#### 本文直接套用了DCGAN的框架,区别:

emotion classification a fully connected layer is attached to the final convolutional layer of the DCGAN's discriminator

## 数据集

IEMOCAP 有标注 12hours 交互式情绪捕捉

AMI 无标注 100hours 大量会议中的声音和录像

### 预处理:

- 每个音频的时长不一样,所以需要从中抽取一个固定长度的区域。为了避免抽取的区域不是无声的,先从文本中抽一个词,然后以这个词的音频位置为中心确定这个区域
- 通过oversampling, 迫使每类label的数据量差不多

### Result



|                   | Accuracy       | Accuracy       | Pearson Correlation    |
|-------------------|----------------|----------------|------------------------|
| Model             | (5 class)      | (3 class)      | $(\rho \text{ value})$ |
| BasicCNN          | 38.52%         | 46.59%         | 0.1639                 |
| MultitaskCNN      | 36.78%         | 40.57%         | 0.0737                 |
| <b>BasicDCGAN</b> | <b>43.88</b> % | <b>49.80</b> % | 0.2618                 |
| MultitaskDCGAN    | 43.69%         | 48.88%         | 0.2434                 |

# Thanks

由于时间限制,很多细节不一一详述,有兴趣的同学可以看原文