

算法设计与分析

第3章 动态规划 (4)

谢晓芹 哈尔滨工程大学计算机科学与技术学院

学习要点

- 理解动态规划算法的概念。
- 掌握动态规划算法的基本要素
 - (1)最优子结构性质
 - (2)重叠子问题性质
- 掌握设计动态规划算法的步骤。
 - (1)找出最优解的性质,并刻划其结构特征。
 - (2)递归地定义最优值。
 - (3)以自底向上的方式计算出最优值。
 - (4)根据计算最优值时得到的信息,构造最优解。

学习要点

- 通过应用范例学习动态规划算法设计策略
 - (1)矩阵连乘问题
 - (2)最长公共子序列
 - (3)0/1背包问题
 - (4) 凸多边形最优三角剖分
 - (5)最优二叉搜索树

- 设计程序将英文文档翻译成中文
 - 例如自动翻译机

- ■自动翻译机
 - 使用线性表操作每次运行需要O(n)搜索时间

生词表	
字段1	字段2
aggregate analysis	综合分析;总体分析
amortized	分期,分摊
arbitrary	任意的,武断的,独裁的,专断的
auxiliary	辅助的,补助的
binomial	二项的, 二项式的
bog	沼泽, 陷于泥沼
contemporary	当代的,同时代的
convention	归约, 常规
crucial	至关紧要的
disjoint	不相交的,不相接的,分离的
distinct	清楚的, 明显的, 截然不同的, 独特的

- 建立一棵二叉搜索树
 - n 个英文词作为 keys
 - 中文翻译作为从属数据 (satellite data)
- 查找操作:
 - 对于任何一个单词的搜索,使用二分搜索法的时间为O(lg n)
 - 对于文章中出现的每个单词,都需要搜索该二叉树,如何使得总的搜索次数最少?

生词表

字段1	字段2
aggregate analysis	综合分析;总体分析
amortized	分期,分摊
arbitrary	任意的,武断的,独裁的,专断的
auxiliary	辅助的,补助的
binomial	二项的, 二项式的

■ 问题1:单词出现的频率不同

- 被访问的节点数 = 1+被搜索 key 的节点深度。(当在二叉树中搜索 key 时)
- 高频词出现在远离树根的节点,少用词在接近根的节点?
 - ■减慢翻译速度

■ 结论:希望高频出现的单词接近树根

- 问题2: 英语单词没有对应的汉语译文
 - 英语单词不出现在二叉树中

- 给出一个范围,或者近似的单词
 - 例如 {back,ant,cat,bird,red}
- 虚拟键d_i

 设已知每个单词出现的概率,如何组织一棵二叉搜索树,使得在 所有搜索中,被访问的节点的总数最少?就能实现自动翻译器速 度最快

■ 二叉搜索树

- 若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
- 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
- 它的左、右子树也分别为二叉搜索树
- 二叉搜索树叶节点是形如(x_i, x_{i+1})的开区间,表示为虚拟键 d_i

- $S = \{x_1, x_2, ..., x_n\}$ 是一个**有序**集,用**二叉树**的结点来存储S中的元素,得到有序集S的二叉搜索树. 如果集合A上有序关系R,则称A为有序集
- 假设要翻译单词x,首先要在字典序列 $S = \{x_1, x_2, ..., x_n\}$ 中寻找x
- 在二叉搜索树中找x,搜索结果有两种:
 - 在内部结点找到 $x = x_i$,概率为 p_i (查找成功)
 - 在叶结点确定 $x \in (x_i, x_{i+1})$, 概率为 q_i (查找不成功
 - 每次搜索要么成功,要么不成功,有

$$\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1$$

- $(q_0,p_1,q_1,...,p_n,q_n)$ 称为S的存取概率分布
 - 例如: S={45,12,53,49,100}

■ 例,S = (k₁,k₂, k₃,k₄,k₅)的存取概率分布

i	0	1	2	3	4	5
$egin{array}{c} p_i \ q_i \end{array}$		0.15 0.10				

- 最优二叉搜索树问题: 对于有序集S及其存取概率分布(q_0 , p_1 , q_1 ,..., p_n , q_n), 在**所有**表示有序集S的**二叉搜索树**中找出一棵最优二叉搜索树BST(具有最小平均路长)
 - 输入: $S=(k_1,k_2,...,k_n), (q_0,p_1, q_1,..., p_n, q_n);$
 - 输出:最优二叉搜索树BST(具有最小平均路长);

- 分析1:给定有序集S = <k₁, k₂, ..., k_n> , (k₁< k₂ < ··· < k_n), **如何** 建立 BST?
 - 对每个key k_i, 搜索概率为p_i
 - **→**对应一个**内结点**
 - 建立n+1个 "虚拟键" d₀, d₁, ..., d_n, 搜索概率为q_i
 - →每个di对应建立一个**叶子结点**
 - (对应不在S中的值)
 - d₀表示该值 < k₁;
 - d_n 表示该值 > k_n
 - 1≤i≤n-1时, k_i < d_i < k_{i+1}.

快速排序

■ 根节点?

■ 怎么插结点?

• eg : S={3, 1, 8, 2, 6, 7, 5}

■ 建立二叉搜索树:快排

■ 例如:无序S={3,1,8,2,6,7,5}

插入节点的关键: 递归调用快排QuickSort(S)

▶在随机的情况下,二叉搜索树的平均查找长度和 logn 是等数量级的

電影

最优二叉搜索树

■ 建立二叉搜索树:BSTSort()方法

```
BSTSort(A) {
    T \leftarrow \phi;
    for i=1 to n
        do TreeInsert(T,S[i]);
        InOrder-TreeWalk(S);
    }
```

■ 分析:

- BSTSort和快排:同样比较,不同顺序
- 建立BST的时间:和快排运行时间近似
 - 最坏 Θ(n²), 平均Θ(nlgn)
- 随机化: RandomizedBSTSort()

- 分析2:如何求二叉搜索树的平均路长?
 - 在给定 BST内的一次搜索的期望代价=需比较的结点个数平均值
- 设一次搜索的实际代价为检查比较的结点个数,则二叉搜索树T 的一次搜索的期望代价为
 - k_i 结点,深度为 $depth_T(k_i)$
 - 搜索成功的代价 $depth_T(\mathbf{k_i}) + 1$,不成功的代价 $depth_T(\mathbf{d_i}) + 1$

$$E[\text{search cost in } T] = \sum_{i=1}^{n} (\text{depth}_{T}(k_{i}) + 1) \cdot p_{i} + \sum_{i=0}^{n} (\text{depth}_{T}(d_{i}) + 1) \cdot q_{i}$$

二叉搜索树的平均路长

$$=1+\sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) \cdot p_{i} + \sum_{i=0}^{n} \operatorname{depth}_{T}(d_{i}) \cdot q_{i} ,$$

其中depth_T () 表示一个节点在树T中的深度

层数*搜索概率

- 可以逐个结点(node by node)计算期望的搜索代价:
- 例1

E[search cost in T]

$$= \sum_{i=1}^{n} (\operatorname{depth}_{T}(k_{i}) + 1) \cdot p_{i} + \sum_{i=0}^{n} (\operatorname{depth}_{T}(d_{i}) + 1) \cdot q_{i}$$

$$= 1 + \sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) \cdot p_{i} + \sum_{i=0}^{n} \operatorname{depth}_{T}(d_{i}) \cdot q_{i}$$

node	depth	probability	contribution
k_1	1	0.15	0.30
k_2	0	0.10	0.10
k_3	2	0.05	0.15
k_4	1	0.10	0.20
k_5	2	0.20	0.60
d_0	2	0.05	0.15
d_1	2	0.10	0.30
d_2	3	0.05	0.20
d_3	3	0.05	0.20
d_4	3	0.05	0.20
d_5	3	0.10	0.40
Total			2.80

■ 例2

E[search cost in *T*]

$$= \sum_{i=1}^{n} (\operatorname{depth}_{T}(k_{i}) + 1) \cdot p_{i} + \sum_{i=0}^{n} (\operatorname{depth}_{T}(d_{i}) + 1) \cdot q_{i}$$

$$= 1 + \sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) \cdot p_{i} + \sum_{i=0}^{n} \operatorname{depth}_{T}(d_{i}) \cdot q_{i}$$

node	depth	probability	contribution
k_1	1	0.15	0.30
k_2	0	0.10	0.10
k_3	3	0.05	0.20
k_4	2	0.10	0.30
k_5	1	0.20	0.40
d_0	2	0.05	0.15
d_1	2	0.10	0.30
d_2	4	0.05	0.25
d_3	4	0.05	0.25
d_4	3	0.05	0.20
d_5	2	0.10	0.30
Total			2.75

- 分析3:如何求最小路长的BST?
 - 关键:最优BST的特征?
 - 图 (b) 给出了一棵最优 BST, 其期望代价为2.75
 - 不一定要求树的高度最小
 - 不一定将概率最大的 key 放在树根 (例如:具有最大概率的k5在根节点时得到 BST的最低代价为2.85)

(a) cost: 2.80

(b) cost: 2.75

i	0	1	2	3	4	5
p_i					0.10	
q_i	0.05	0.10	0.05	0.05	0.05	0.10

- 穷举检查所有的可能性的算法效率很低
 - 矩阵链乘法; LCS
- 为了构造 a BST , 对具有 n 个节点的任何二叉树 , 将其节点分别标记为 k_1 , k_2 , ..., k_n 然后附加 虚拟键作为叶子。则有 $\Omega(4^n/n^{3/2})$ 种二叉树。
 - 穷举搜索法的时间复杂度为指数级
- 动态规划算法?

- 分析: 考虑T的一棵子树
 - 结点(k_i,...,k_j), 1≤i≤j≤n
 - 叶子结点(虚拟键) d_{i−1},...,d_j

- 最优解:二叉搜索树T, 内结点 k_1 , ..., k_n , 叶子结点 d_0 , d_1 ,..., d_n
- 子问题:有序集S=(k_i,...,k_j)以及存取概率分布(q_{i-1},p_i,q_i,..., p_j,q_j)
 的一棵最优二叉搜索树
 - 最优解:二叉搜索树T', 内结点k_i, ...,k_j, 叶子结点d_{i-1},d_i,..., d_j

■ 最优子结构

- 设原问题:S=(k₁,...k_n), (q₀,p₁,q₁,...,p_n,q_n)的解(最优BST)为*T*
- 设 T′ 为最优BST T的一个子树 , T′ 包含keys k_i, ..., k_j, 那么 T′ 是子 问题〔关于 k_i, ..., k_i 和 d_{i-1} , ..., d_i〕的最优BST

- 剪贴思想 (Cut-and-paste).
 - 假设T′不是最优。
 - ■则设有一棵子树 T″ / 其期望代价比 T′ 更少
 - cut *T'* out of *T* and paste in *T"* , 获得一棵期望代价比T还少的BST, 和已知T是最优BST产生矛盾。

- 使用最优子结构, 可以根据子问题的最优解来构造原问题的一个最优解。
- 如何求子问题的最优BST?
- 关键:确定BST的树根

- 给定keys k_i,...,k_j, 假设k_r (i≤r≤ j)是最优子树的根
- k_r左子树包括 k_i , ..., k_{r-1}和 d_{i-1} , ..., d_{r-1}
- k_r 右子树包括 k_{r+1} , ..., k_j 和 d_r , ..., d_j .

- 求解子问题最优BST方法
 - 检查所有可能的根节点 k_r , $i \le r \le j$, 检查包含 k_i , ..., k_{r-1} 的所有最优BST 和包含 k_{r+1} , ..., k_j 的最优BST, 就可以找到一棵包含 k_i , ..., k_j 的最优BST
- 原问题求解方法
 - 检查所有的 k_r ,找到相应的子问题的最优BST ,进而将找到原问题的最优BST

- *k_r*在不同位置时的特殊情况分析
 - "empty" 子树
 - 设有一棵子树包含keys(k_i , ..., k_j)
 - 选择 k_i 作为根结点:
 - k_i 左子树不包含keys,但包含一个虚拟键 d_{i-1} .
 - 同样,选择 k_j 作为根结点:
 - k_j 右子树不包含keys,但包含一个虚拟键 d_j .

- 求解策略:
 - 先求树最优平均路长,再求具体BST
 - 根据子问题的最优解来构造原问题的一个最优解
- 定义e[i, j], 表示一棵包含keys = k_i , ..., k_j 的最优BST的平均路长(期望代价)
- 原问题:计算e[1, n]

- 子问题: 寻找包含有序集 $\{k_i, ..., k_j\}$ 的最优BST, 其中 $i \ge 1$, $j \le n$, and $j \ge i-1$ 平均路长为e[i,j]
- 边界条件: 当 j=i-1, 没有实际key值
 - 只有虚拟键: d_{i-1}
 - $e[i, i-1] = q_{i-1}$
 - $e[1,0] = q_0$
 - $e[n+1,n] = q_n$
- When j≥i?

- 当j≥i,
 - $\bigcup k_i$, ..., k_i 中选择 k_r 作为根结点,
 - 造一棵最优BST(包含 k_i , ..., k_{r-1})作为左子树
 - 造一棵最优BST (包含 k_{r+1} , ..., k_i) 作为右子树.

$$e[i,j] = p_r + e[i,r-1] + e[r+1,j]$$
?

- 子树的代价和原树的代价之间有何关系?
- 或:当一棵树成为一个结点的子树时,期望搜索代价如何变化?
 - 子树中每个节点的深度增加 1 , 该子树的期望搜索的 cost 的增量为该子树所有节点的搜索概率之和 , 增量为 :

$$\mathbf{E}_T = e[m, n]$$

$$w[i,j] = \sum_{l=1}^{j} p_l + \sum_{l=i-1}^{j} q_l$$

$$E_{T} = \sum_{x=m}^{n} (\operatorname{depth}(k_{x}) + 1 + 1) \cdot p_{i} + \sum_{x=m-1}^{n} (\operatorname{depth}(d_{x}) + 1 + 1) \cdot q_{x}$$

$$= \sum_{x=m}^{n} (\operatorname{depth}(k_{x}) + 1) \cdot p_{i} + \sum_{x=m-1}^{n} (\operatorname{depth}(d_{x}) + 1) \cdot q_{x} + \sum_{x=m}^{n} p_{i} + \sum_{x=m-1}^{n} q_{x}$$

$$= e[m, n] + w[m, n]$$

- 若 k_r 是最优子树 (包含keys k_i , ..., k_i)的根, 有
 - $e[i, j] = p_r + (e[i, r-1] + w[i, r-1]) + (e[r+1, j] + w[r+1, j])$?
 - 注意: w[i, j] = w[i, r-1] + p_r + w[r+1, j]

$$\left(w[i,r-1] = \sum_{l=i}^{r-1} p_l + \sum_{l=i-1}^{r-1} q_l \quad , \quad w[r+1,j] = \sum_{l=r+1}^{j} p_l + \sum_{l=r}^{j} q_l\right)$$

- 重写 e[i, j] 为:e[i, j] = e[i, r-1] + e[r+1, j] + w[i, j]
- 问题:该递归公式假设知道采用哪个结点 k_r 作为根

■ 选择 kr作为具有最小代价的BST的根结点,有如下递归公式:

$$e[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1, \\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w[i,j]\} & \text{if } i \le j. \end{cases}$$

- e[i, j] 是最优BST的期望代价(平均搜索路长).
- 为了记录最优BST的结构,定义root[i, j], for $1 \le i \le j \le n$, 保存索引r, k_r 是包含 键值 k_i , ..., k_i 的最优BST树的根

步骤3:计算期望搜索代价

- ■最优BST和矩阵连乘问题相似
 - 直接的递归实现效率不高

$$A_i ... A_r ... A_j$$

$$e[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1, \\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w[i,j]\} & \text{if } i \le j. \end{cases}$$

- 将 e[i, j]保存在表 e[1.. n+1, 0.. n].
 - 第一个索引到n+1, 表示子树只包含d_n 的情况, 需要计算e[n+1, n]
 - 第二个索引从0开始,表示子树只包含 d_0 的情况,需要计算e[1, 0] .
- 使用表格root[i, j] , 记录包含键 k_i , ..., k_j 的子树的根结点 , $1 \le i \le j \le n$

步骤3:计算期望搜索代价

- e[i, j] = e[i, r-1] + e[r+1, j] + w[i, j]
 - 无需每次计算 e[i, j] 时都计算 w[i, j] (耗时Θ(j-i) 次加法):把值存在 table w[1.. n+1, 0.. n].
 - 边界情况, 计算w[i, i-1] = q_{i-1} for 1≤i≤n.
 - For $j \ge i$, $w[i,j] = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l = w[i,j-1] + p_j + q_j$
- 因此, w[i, j] 计算要Θ(n²) 复杂度
- 输入: 概率 p_1 , ..., p_n and q_0 , ..., q_n 和大小 n
- 输出:表e和表root

$$e[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1, \\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w[i,j]\} & \text{if } i \le j. \end{cases} \quad w[i,j] = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l = w[i,j-1] + p_j + q_j$$

```
OPTIMAL-BST(p, q, n)
1 for i\leftarrow 1 to n+1
      do e[i, i-1] \leftarrow q_{i-1}
    w[i, i-1] \leftarrow q_{i-1} (决定子问题的规模
4 for l \leftarrow 1 to n
       do for i←1 to n-l+1 // ?1 		子问题的起始(i)
5
                                                  和终止(j)位置
               do j \leftarrow i + l - 1 // ?2
6
                  e[i,j] \leftarrow \infty
8
                  w[i,j] \leftarrow w[i,j-1] + p_i + q_i
9
                  for r \leftarrow i to i
                      do t \leftarrow e[i, r-1] + e[r+1, j] + w[i, j]
10
11
                          if t \le e[i, j]
12
                            then e[i,j] \leftarrow t
13
                                   root[i, j] \leftarrow r
    return e and root
```

```
k_1, k_2, \ldots, k_n
e[i,j]:
 1个元素的 Opti-BST 的 cost
 i = 1, j = l,
 i = 2, j = l+1,
 i=x, j=n,
 n-x+1=l => x=n-l+1
j-i+1 = i+l-1-i+1 = l
```

```
OPTIMAL-BST(p, q, n)
1 for i\leftarrow 1 to n+1
        do e[i, i-1] \leftarrow q_{i-1}
            w[i, i-1] \leftarrow q_{i-1}
4 for l←1 to n // 求l 个元素的Opti-BST
        do for i\leftarrow 1 to n-l+1
                 \mathbf{do} j \leftarrow i + l - 1
6
                    e[i,j] \leftarrow \infty
                    w[i,j] \leftarrow w[i,j-1] + p_j + q_j
                    for r \leftarrow i to j
10
                         do t \leftarrow e[i, r-1] + e[r+1, j] + w[i, j]
11
                             if t<e[i, j]
                                then e[i,j] \leftarrow t
12
                                        root[i, j] \leftarrow r
13
14 return e and root
```

最内层循环, 9–13行, 对包含 k_i , ..., k_j 的最优 BST, 尝试 每一个 k_r 作为树根

运行时间: $\Theta(n^3)$

分析:

O(n³): 三层嵌套循环,每层循环 最多执行n次

 $\Omega(n^3)$:

$$\sum_{l=1}^{n} (n-l+1)l = \sum_{l=1}^{n} (n+1)l - \sum_{l=1}^{n} l^{2}$$

$$= \frac{(n+1)(n+1)n}{2} - \frac{n(n+1)(2n+1)}{6}$$

$$= \frac{n(n+1)(n+2)}{6} = \Omega(n^{3})$$

步骤4:构造最优解

- root(i,j)保存最优T(i,j)的根节点元素
- root(1,n)为所求BST的根节点元素
 - 左子树T(1,root(1,n)-1)的根为root(1,root(1,n)-1)
 - 右子树T(root(1,n)+1,n)的根为root(root(1,n)+1,n)

→ 分治法与动态规划法的比较 +

	分治法	动态规划法
相同点	最优子结构,通过合并子问题的解得到原问题的解.	
	把原问题划分为独立的子问题	子问题不独立,不同子问题共享 相同的子子问题
	递归地解这些子问题	填表形式自底向上求解
不同点	做很多不必要的工作, 重复求 解公共子子问题	只求解公共子子问题一次,并用 一张表来保存所有的答案,避免大量的重复计算.

- 动态规划法包含以下四步(CRCC).
 - 1.找出最优解的性质,并刻划其结构特征(Characterize the structure of an optimal solution).
 - 2.递归地定义最优值(**R**ecursively define the value of an optimal solution).
 - 3.以自底向上的方式计算出最优值(Compute the value of an optimal solution in a **Bottom-up** fashion).
 - 4.根据计算最优值时得到的信息,构造最优解(Construct an optimal solution from computed information).

- 理解动态规划算法的概念
- 难点: 掌握动态规划算法的基本要素
 - (1)最优子结构性质
 - (2)重叠子问题性质

- 重点:掌握设计动态规划算法的步骤
 - (1)找出最优解的性质,并刻划其结构特征。
 - (2)递归地定义最优值。
 - (3)以自底向上的方式计算出最优值。
 - (4)根据计算最优值时得到的信息,构造最优解。

- 算法的共性
 - 表格化
 - 自底向上
 - 基于递归式

- 动态规划算法常用于优化问题 (optimization problems).
- 优化问题
 - 有很多可能的解 (solutions)
 - 每个解有一个值(value)
 - 需要找到具有最优值(最大或最小)的解
- 称问题的某个解为一个最优解,而不是单纯地称为最优解,因为可能有多个解能得出问题的最优值

动态规划的关键

- 动态规划的关键
 - 找出一个问题所包含的子问题及其表现形式
- 子问题的模式
 - 子问题是原问题的前缀
 - 子问题是原问题的中缀
 - 子问题是原问题的子树

动态规划的关键

- 子问题模式1
 - 原问题:X₁,X₂,...,X_n
 - 子问题是: x₁,x₂,...,x_i
 - 子问题个数:线性的
- 子问题模式2
 - 原问题:x₁,x₂,...,x_m,和y₁,y₂,...,y_n
 - 子问题是:x₁,x₂,...,x_i和x₁,x₂,...,x_j
 - 子问题个数: O(mn)

动态规划的关键

- 子问题模式3
 - 原问题:X₁,X₂,...,X_n
 - 子问题是: x_i,x₂,...,x_j
 - 子问题个数: O(n²)
- 子问题模式4
 - 原问题:树
 - 子问题是:其子树
 - 若树有n个结点,它有多少个子问题呢?

思考题

■ 最优二叉搜索树问题和矩阵连乘问题有什么不同?

- 提示:
 - 问题构成
 - 边界/边界值
 - 递归条件
 - 切分点范围

扩展题-子集和问题

- 子集和问题:给定整数集,问是否存在该整数集的一个子集,使得该子集元素的和为0.
 - 例如:整数集[-7,-4,-2, 6, 8],存在子集[-4,-2, 6],该子集和为0.
- 分析:
 - 枚举法:求出所有输入集的子集,逐一验证其和是否为0.
 - 子集个数:每个元素只有出现和不出现两种情况,故子集总数为2n
 - 枚举方法:通过<1,1,1,1,1>来选择相应的子集