June 2013 Written Certification Exam

Algebra

- 1. Let P be a p-Sylow subgroup of a finite group G such that for every other p-Sylow subgroup Q, we have $P \cap Q = 1$. Show that any pair P_1 , P_2 of p-Sylow subgroups intersects trivially: $P_1 \cap P_2 = 1$.
- 2. Let k be a field, and x, y indeterminates over k.
 - (a) Show that x and y are irreducible in k[x, y].
 - (b) Show that as rings $k[x,y]/(y-x^2)$ can never be isomorphic to $k[x,y]/(y^2-x^2)$.
 - (c) Determine the structure of the quotient ring $\mathbb{Q}[x]/(x^{12}-1)$ by characterizing this ring as a direct product of simple (quotient) rings.
- 3. Let V be a finite-dimensional vector space over a field k, and let $T:V\to V$ be a linear operator whose characteristic polynomial generates the ideal $I\subseteq k[X]$ in the polynomial ring consisting of polynomials that vanish at T, i.e., $I=\{f\in k[X]:f(T)=0\}$. Show that any linear operator $U\in \operatorname{End}_k(V)$ that commutes with T is a polynomial in T; i.e., if UT=TU, then there is some $p\in k[X]$ such that U=p(T).
- 4. Let E, F, and K be fields all contained in some larger extension Ω .
 - (a) Suppose that $K \subset F \subset E$. Show that E/F and F/K are algebraic extensions implies that E/K is algebraic.
 - (b) Suppose that E/K is an algebraic extension of fields, but that F/K is an arbitrary extension. Show that the extension EF/F is algebraic where EF is the compositum of E and F.
- 5. Let k be a field, and let V and W be k-vector spaces. Let $V^* := \operatorname{Hom}_k(V, k)$ denote the dual space of V.
 - (a) Define a natural map $F: V^* \otimes_k W \to \operatorname{Hom}_k(V, W)$ of vector spaces that is an isomorphism if V and W are finite-dimensional. (Be sure to show that F is well-defined. You need not prove naturality, but be sure to state what it means to say that F is natural.)
 - (b) Recall that a *projection* on a finite-dimensional k-vector space V is an idempotent linear operator $P \in \operatorname{End}_k(V)$. Determine necessary and sufficient conditions on $\varphi \in V^*$ and $v \in V$ insuring that the decomposable tensor $\varphi \otimes v \in V^* \otimes_k V$ corresponds, via the linear isomorphism $F: V^* \otimes_k V \to \operatorname{End}_k(V)$ above, to a nonzero projection operator.
- 6. Let K/F be a finite separable extension and L the Galois closure of K in some fixed algebraic closure \overline{F} of F. Let G be the Galois group $\operatorname{Gal}(L/F)$ and H the subgroup corresponding to K under the Galois correspondence.

- (a) Show that there is a one-to-one correspondence between the set of embeddings $\sigma: K/F \to \overline{F}$ (that is of K into \overline{F} fixing F pointwise), and the set of cosets G/H.
- (b) Recall that one defines the norm from K to F as follows: For $\alpha \in K$, define $N_{K/F}(\alpha) = \prod_{\sigma} \sigma(\alpha)$ where the product is taken over all the embeddings $\sigma: K/F \to \overline{F}$. Show that $N_{K/F}(K) \subseteq F$.

Topology

- 1. Prove that the Lie bracket of two vector fields is a vector field.
- 2. If $1 \le n < m$, show that no open subset of \mathbb{R}^n is homeomorphic to an open subset of \mathbb{R}^m .
- 3. **a** Does there exist a manifold whose boundary is the disjoint union of two Klein bottles? Construct such a manifold or prove that it does not exist.
 - **b** Does there exist an orientable manifold whose boundary is the disjoint union of two Klein bottles? Construct such a manifold or prove that it does not exist.
 - **c** Does there exist a Lie group whose boundary is a torus $S^1 \times S^1$? Construct such a Lie group or prove that it does not exist.
- 4. Let G be a topological group; that is, G is a group equipped with a topology such that multiplication $\mu: G \times G \to G$ and inversion $\iota: G \to G$ are continuous. Show that the fundamental group $\pi(G,e)$ is abelian.
- 5. Prove that the wedge product of differential forms gives a well defined operation on the cohomology group of the manifold. (This operation is called the cup product of cohomology classes.)
- 6. Suppose that A and B are subspaces of X and that B is a deformation retract of A. Show that $H_q(X,B) \cong H_q(X,A)$ for all $q \geq 0$. (You may use the 5-lemma without proof.)

Analysis

- 1. Suppose that $f: \mathbb{C} \to \mathbb{C}$ is everywhere analytic (i.e., entire).
 - (a) Show that the function $g(z) = f(\bar{z})$ is entire only if f is a constant function.
 - (b) Show that the function $h(z) = \overline{f(\overline{z})}$ is entire.
- 2. Let C[0,1] denote the vector space of all continuous complex-valued functions $f:[0,1]\to \mathbb{C}$. Show that

$$S = \{ f \in C[0,1] : f(0) = 0 \}$$

is a linear subspace of C[0,1]. Give C[0,1] the supremum (uniform) norm $\|\cdot\|_{\infty}$:

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|.$$

Is S a closed subspace? Why or why not?

3. Let (X, M, μ) be a measure space. Let $h: X \to [0, \infty]$ be an M-measurable function on X. Define $\lambda: M \to [0, \infty]$ by

$$\lambda(E) = \int_E h \, d\mu.$$

Show that λ is a measure on (X, M).

- 4. Let \mathcal{H} be a Hilbert space with inner product (\cdot, \cdot) . If S is any nonempty subset of \mathcal{H} and V the closed subspace generated by S, i.e., $V = \overline{\operatorname{span}(S)}$, show that $S^{\perp} = V^{\perp}$, i.e., their orthogonal complements are equal.
- 5. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{R} . We state two definitions of $\limsup a_n$ below. Show definition (a) implies the statement in (b). (You don't have to prove the converse.)
 - (a) $\limsup a_n = \lim_{n \to \infty} (\sup\{a_k : k \ge n\}).$
 - (b) $\limsup a_n$ is the largest subsequential limit of $\{a_n\}_{n=1}^{\infty}$. (Recall that $a \in [-\infty, \infty]$ is said to be a subsequential limit of $\{a_n\}_{n=1}^{\infty}$ if some subsequence $\{a_{n_k}\}_{k=1}^{\infty}$ satisfies $\lim_{k \to \infty} a_{n_k} = a$.)
- 6. Let V and W be Banach spaces. A bounded linear operator operator $A \in L(V, W)$ is said to be bounded below if there is a constant C > 0 such that

$$||A(x)|| \ge C||x||, \quad \forall x \in V.$$

- a.) Show that if A is bounded below, then A is injective and has closed range.
- b.) Show that if A is bounded below then $A^{-1}: \operatorname{Range}(T) \to V$ is bounded. Thus, if A has dense range then $A^{-1} \in L(W,V)$.