MIA Feuille d'exercices numéro 3

Yannick Brenning

October 14, 2024

Exercice 5

1.

$$B = (3e_1 - 2e_2, e_1 + e_2) \Leftrightarrow ((3, -2), (1, 1))$$

Il suffit de montrer que la famille de vecteurs B est linéairement indépendant:

$$3a_1 + a_2 = 0$$

 $-2a_1 + a_2 = 0$
 $\Rightarrow -3a_1 = a_2 = 2a_1$
 $\Rightarrow a_1 = a_2 = 0$

La seule combinaison linéaire des deux vecteurs égale au vecteur zéro est celle dont tous les coéfficients sont nuls. Les deux vecteurs sont alors linéairement indépendants et forment une base dans \mathbb{R}^2 .

2.

$$v = v_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} v_1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ v_2 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = a \begin{pmatrix} 3 \\ -2 \end{pmatrix} + b \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\Leftrightarrow 1 = 3a + b, 0 = -2a + b \Rightarrow 2a = b \Rightarrow a = 1/5, b = 2/5$$

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = c \begin{pmatrix} 3 \\ -2 \end{pmatrix} + d \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\Leftrightarrow 0 = 3c + d, 1 = -2c + d \Rightarrow d = -3c \Rightarrow c = -1/5, d = 3/5$$

Donc
$$P = \begin{pmatrix} 1/5 & -1/5 \\ 2/5 & 3/5 \end{pmatrix}$$

3.

$$\begin{pmatrix} 1/5 & -1/5 \\ 2/5 & 3/5 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2/5 \\ 1/5 \end{pmatrix}$$

Exercice 7

1. (a) En utilisant la notation de séance 6, on peut écrire:

$$C = AB = \sum_{i} a_i \tilde{b}_i^T$$

Avec a_i la *i*-ième colonne de la matrice de gauche et \tilde{b}_i^T la transpose de la *i*-ième ligne de la matrice de droite. Dans ce cas, cela donne une combinaison linéaire des colonnes de la matrice de gauche avec les valeurs scalaires du vecteur de droite.

$$\begin{pmatrix} 3 \\ 2 \end{pmatrix} \cdot 4 + \begin{pmatrix} 6 \\ 1 \end{pmatrix} \cdot 1 + \begin{pmatrix} 2 \\ 3 \end{pmatrix} \cdot 1 = \begin{pmatrix} 20 \\ 12 \end{pmatrix}$$

(b)

$$C = AB = \begin{pmatrix} \tilde{a}_1^T B \\ \vdots \\ \tilde{a}_m^T B \end{pmatrix}$$

Car la matrice de droite B est un vecteur dans ce cas, le resultat de cette expression devient une matrice contenant deux produits scalaires.

$$\begin{pmatrix} (3 & 6 & 2)^T \begin{pmatrix} 4\\1\\1 \end{pmatrix} \\ (2 & 1 & 3)^T \begin{pmatrix} 4\\1\\1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 3 \cdot 4 + 6 \cdot 1 + 2 \cdot 1\\2 \cdot 4 + 1 \cdot 1 + 3 \cdot 1 \end{pmatrix} = \begin{pmatrix} 20\\12 \end{pmatrix}$$

$$2.$$
 (a)

$$C = AB = \begin{pmatrix} Ab_1 & \dots & Ab_p \end{pmatrix}$$

$$= \left(A \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix} \quad A \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \right) = \begin{pmatrix} 20 & 25 \\ 12 & 9 \end{pmatrix}$$

(b)

$$C = AB = \begin{pmatrix} \tilde{a}_1^T B \\ \vdots \\ \tilde{a}_m^T B \end{pmatrix}$$

$$\begin{pmatrix} \begin{pmatrix} 3 & 6 & 2 \end{pmatrix}^T B \\ \begin{pmatrix} 2 & 1 & 3 \end{pmatrix}^T B \end{pmatrix} = \begin{pmatrix} 20 & 25 \\ 12 & 9 \end{pmatrix}$$

(c)

$$C = AB = a_1\tilde{b}_1 + a_2\tilde{b}_2 + a_3\tilde{b}_3$$

$$\begin{pmatrix} 12 & 15 \\ 8 & 10 \end{pmatrix} + \begin{pmatrix} 6 & 12 \\ 1 & 2 \end{pmatrix} + \begin{pmatrix} 2 & -2 \\ 3 & -3 \end{pmatrix} = \begin{pmatrix} 20 & 25 \\ 12 & 9 \end{pmatrix}$$

$$C = AB = \begin{pmatrix} \langle \tilde{a}_1^T, b_1 \rangle & \langle \tilde{a}_1^T, b_2 \rangle \\ \langle \tilde{a}_2^T, b_1 \rangle & \langle \tilde{a}_2^T, b_2 \rangle \end{pmatrix}$$

$$\begin{pmatrix}
\begin{pmatrix} 3 \\ 6 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 3 \\ 6 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \\
\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 20 & 25 \\ 12 & 9 \end{pmatrix}$$

Exercice 8

1. On dénote les vecteurs colonne de A par a_i , et x_i sont les valeurs scalaires (les coefficients diagonaux).

$$A\operatorname{diag}(x_1,\ldots,x_n) = \begin{pmatrix} a_{11} & \ldots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{p1} & \ldots & a_{pn} \end{pmatrix} \begin{pmatrix} x_1 & & \\ & \ddots & \\ & & x_n \end{pmatrix}$$

$$= \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix} \begin{pmatrix} x_1 & & \\ & \ddots & \\ & & x_n \end{pmatrix}$$

$$= \begin{pmatrix} a_1 x_1 & \dots & a_n x_n \end{pmatrix}$$

2.

$$\operatorname{diag}(x_1,\ldots,x_n)B = \begin{pmatrix} x_1 & & \\ & \ddots & \\ & & x_n \end{pmatrix} \begin{pmatrix} b_{11} & \ldots & b_{1p} \\ \vdots & \ddots & \vdots \\ b_{n1} & \ldots & b_{np} \end{pmatrix}$$

$$= \begin{pmatrix} x_1 & & \\ & \ddots & \\ & & x_n \end{pmatrix} \begin{pmatrix} \tilde{b}_1^T \\ \vdots \\ \tilde{b}_n^T \end{pmatrix}$$

$$= \begin{pmatrix} x_1 \tilde{b}_1^T \\ \vdots \\ x_n \tilde{b}_n^T \end{pmatrix}$$

Exercice 15

1.

$$AV = U\Sigma$$

$$AVV^T = U\Sigma V^T$$

$$\Leftrightarrow AI_n = U\Sigma V^T$$

$$\Leftrightarrow A = U\Sigma V^T$$

$$\Leftrightarrow A = U\Sigma V^T$$
Multiplication par matrice identité

$$AV = U\Sigma$$

$$U^TAV = U^TU\Sigma$$
 Multiplication à gauche par U^T
$$\Leftrightarrow I_m\Sigma = U^TAV$$
 Orthogonalité de U
$$\Leftrightarrow \Sigma = U^TAV$$
 Multiplication par matrice identité

2.

$$AV = U\Sigma$$

$$\Leftrightarrow (Av_1 \dots Av_n) = U\Sigma$$

$$\Leftrightarrow (Av_1 \dots Av_n) = U \operatorname{diag}(\sigma_1, \dots, \sigma_r, 0 \dots, 0)$$

$$\Leftrightarrow (Av_1 \dots Av_n) = (u_1\sigma_1 \dots u_r\sigma_r u_{r+1} \cdot 0 \dots u_n \cdot 0)$$
 Exercice 8.1
$$\Leftrightarrow \forall i \in \{1, \dots, r\} : Av_i = u_i\sigma_i$$

3.

$$(Av_1 \dots Av_n) = (u_1\sigma_1 \dots u_r\sigma_r \ u_{r+1} \cdot 0 \dots u_n \cdot 0)$$

$$\Leftrightarrow (Av_{r+1} \dots Av_n) = (u_{r+1} \cdot 0 \dots u_n \cdot 0)$$

$$\Leftrightarrow (Av_{r+1} \dots Av_n) = (0 \dots 0)$$

$$\Leftrightarrow \forall i \in \{r+1,\dots,n\} : Av_i = 0$$

4.

$$AV = U\Sigma \Leftrightarrow A = U\Sigma V^{T}$$

$$\Leftrightarrow A = U \left(\sigma_{1}v_{1}^{T} \dots \sigma_{r}v_{r}^{T}\right)$$

$$\Leftrightarrow A = \sum_{i=1}^{r} u_{i}\sigma_{i}v_{i}^{T}$$
Exercice 7.1a
$$\Leftrightarrow A = \sum_{i=1}^{r} \sigma_{i}u_{i}v_{i}^{T}$$
Loi commutative pour les coéfficients réels σ_{i}