Permit Number 166032 and PSDTX1598

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No.	Source Name (2)	Air Contaminant	Emission Rates	
(1)	Source Name (2)	Name (3)	lbs/hour	TPY (4)
OCPS1A	OCPS Combined Cycle Unit 1A (Turbine)	NOx	28.99	
	(Turbine)	NO _x (MSS) (6)	278.00	
		co	17.65	
		CO (MSS) (6)	9409.00	
		VOC	10.11	
		VOC (MSS) (6)	3209.00	
	The state of the s	SO ₂ (6)	5.48	
		PM (6)	30.40	
		PM ₁₀ (6)	30.40	
		PM _{2.5} (6)	30.40	
		H ₂ SO ₄ (6)	8.39	
		NH ₃ (6)	44.65	
		HAPs (6)	2.09	
OCPS1B	OCPS Combined Cycle Unit 1B (Turbine)	NO _x	28.99	
	(Turbine)	NO _x (MSS) (6)	278.00	
		СО	17.65	
		CO (MSS) (6)	9409.00	
		VOC	10.11	
		VOC (MSS) (6)	3209.00	
		SO ₂ (6)	5.48	
		PM (6)	30.40	
		PM ₁₀ (6)	30.40	
		PM _{2.5} (6)	30.40	
		H ₂ SO ₄ (6)	8.39	

1	1			
		NH ₃ (6)	44.65	
		HAPs (6)	2.09	
OCPS1-CAP	OCPS Combined Cycle Unit 1 Emission Cap	NO _x		318.37
	Lillission Cap	СО	-	2424.38
		voc		994.03
		SO ₂		40.48
		РМ		172.00
		PM ₁₀		172.00
		PM _{2.5}		172.00
		H ₂ SO ₄		63.85
		NH ₃		329.91
		HAPs		17.75
OCPS-CTW		РМ	0.60	2.65
		PM ₁₀	0.49	2.13
		PM _{2.5}	0.01	0.06
OCPS-EMGEN	OCPS Standby Generator	NO _x	29.16	1.46
		СО	16.81	0.84
		VOC	1.58	0.08
		SO ₂	0.04	<0.01
		РМ	0.96	0.05
		PM ₁₀	0.96	0.05
		PM _{2.5}	0.96	0.05
		HAPs	0.03	<0.01
OCPS-FWP		NO _x	2.04	0.10
		СО	1.87	0.09
		VOC	0.11	0.01
		SO ₂	<0.01	<0.01
		PM	0.11	0.01
		PM ₁₀	0.11	0.01

		PM _{2.5}	0.11	0.01
		HAPs	0.01	<0.01
OCPS1AFPGE	OCPS CT1A Fire Protection Generator	NO _x	7.54	0.38
		СО	4.34	0.22
		VOC	0.41	0.02
		SO ₂	0.01	<0.01
		РМ	0.25	0.01
		PM ₁₀	0.25	0.01
		PM _{2.5}	0.25	0.01
		HAPs	0.01	<0.01
OCPS1BFPGE	OCPS CT1B Fire Protection Generator	NO _x	7.54	0.38
		СО	4.34	0.22
		VOC	0.41	0.02
		SO ₂	0.01	<0.01
		РМ	0.25	0.01
		PM ₁₀	0.25	0.01
		PM _{2.5}	0.25	0.01
		HAPs	0.01	<0.01
OCPSNGWBHA	OCPS Fuel Gas NG Water Bath Heater Stack A	NO _x	0.34	1.47
	Healer Stack A	СО	0.32	1.38
		VOC	0.04	0.19
		SO ₂	0.01	0.04
		РМ	0.06	0.26
		PM ₁₀	0.06	0.26
		PM _{2.5}	0.06	0.26
		HAPs	0.02	0.07
OCPSNGWBHB	OCPS Fuel Gas NG Water Bath	NO _x	0.34	1.47
	Heater Stack B	СО	0.32	1.38
		VOC	0.04	0.19

		SO ₂	0.01	0.04
		PM	0.06	0.26
	PM ₁₀	0.06	0.26	
		PM _{2.5}	0.06	0.26
		HAPs	0.02	0.07
OCPSH2WBHA	OCPS Fuel Gas H2 Water Bath Heater Stack A	NO _x	0.28	1.23
	Stack A	со	0.26	1.15
		VOC	0.04	0.16
		SO ₂	0.01	0.04
		РМ	0.05	0.22
		PM ₁₀	0.05	0.22
		PM _{2.5}	0.05	0.22
		HAPs	0.01	0.05
OCPSH2WBHB	OCPS Fuel Gas H2 Water Bath Heater Stack B	NO _x	0.28	1.23
		СО	0.26	1.15
		VOC	0.04	0.16
		SO ₂	0.01	0.04
		РМ	0.05	0.22
		PM ₁₀	0.05	0.22
		PM _{2.5}	0.05	0.22
		HAPs	0.01	0.05
OCPS-NGFUG	OCPS Natural Gas Fugitive Emissions	VOC	0.01	0.05
	(5)	HAPs	<0.01	<0.01
OCPSAMMFUG	OCPS Ammonia Fugitive Emissions (5)	NH ₃	0.08	0.37
OCPSDSLFUG	OCPS Diesel Fugitive Emissions (5)	VOC	0.10	0.45
		HAPs	<0.01	0.01
OCPS-LOV	OCPS Lube Oil Vents	voc	0.03	0.13
OCPSMSSFUG	OCPS Maintenance Activities	NO _x	<0.01	<0.01
		СО	<0.01	<0.01
Project Number: 331768	ı		II.	ı

		voc	60.87	6.94
		PM	2.68	0.08
		PM ₁₀	2.67	0.08
		PM _{2.5}	2.66	0.08
		NH ₃	0.01	<0.01
		HAPs	0.30	0.04
OCPSTK1	GT 1A Control Oil Tank	voc	0.01	<0.01
OCPSTK2	GT 1B Control Oil Tank	VOC	0.01	<0.01
OCPSTK3	NG Condensate Fuel Drain Tank 1	VOC	3.18	0.04
OCPSTK4	NG Condensate Fuel Drain Tank 2	VOC	3.18	0.04
OCPSTK5	NG Condensate Fuel Drain Tank 3	VOC	3.18	0.04
OCPSTK6	ST Control Oil Tank	VOC	0.02	<0.01
OCPSTK7	CT 1A Lube Oil Reservoir	VOC	0.37	0.01
OCPSTK8	CT 1B Lube Oil Reservoir	VOC	0.37	0.01
OCPSTK9	Standby Generator Engine Diesel Tank	VOC	0.35	0.01
OCPSTK10	Standby Generator Lube Oil Tank	VOC	<0.01	<0.01
OCPSTK11	Emergency Firewater Pump Engine Diesel Tank	VOC	0.04	<0.01
OCPSTK12	ST Main Oil Tank	VOC	0.43	0.01
OCPSTK13	Boiler Feed Pump Lube Oil Reservoir 1	VOC	<0.01	0.02
OCPSTK14	Boiler Feed Pump Lube Oil Reservoir 2	VOC	<0.01	0.02
OCPSTK15	Boiler Feed Pump Lube Oil Reservoir 3	VOC	<0.01	0.02
OCPSTK16	Boiler Feed Pump Lube Oil Reservoir 4	VOC	<0.01	0.02
OCPSTK17	Oil Water Separator	VOC	0.22	0.04
OCPSTK18	Cooling Water Sodium Hypochlorite Storage Tank	NaClO	0.14	<0.01
OCPSTK19	Sulfuric Acid Tank	H ₂ SO ₄	<0.01	<0.01
OCPSTK20	CTG 1A Seal Oil Vacuum Tank	VOC	<0.01	<0.01
OCPSTK21	CTG 1B Seal Oil Vacuum Tank	VOC	<0.01	<0.01
OCPSTK22	STG Seal Oil Vacuum Tank	VOC	<0.01	<0.01
OCPSTK23	CTG 1A FP Generator Engine Diesel	VOC	0.04	<0.01
Droject Number: 331768				

	Tank			
OCPSTK24	CTG 1B FP Generator Engine Diesel Tank	voc	0.04	<0.01
OCPSTK25	CTG 1A FP Generator Engine Lube Oil Tank	voc	<0.01	<0.01
OCPSTK26	CTG 1B FP Generator Engine Lube Oil Tank	VOC	<0.01	<0.01

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

(2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

HAP - hazardous air pollutant as listed in § 112(b) of the Federal Clean Air Act or Title 40 Code of

Federal Regulations Part 63, Subpart C

 H_2SO_4 - sulfuric acid NH_3 - ammonia

NaClO - sodium hypochlorite

(4) Compliance with annual emission limits (tons per year) is based on a 12-month rolling period.

(5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.

(6) Planned maintenance, startup and shutdown (MSS) for all pollutants are authorized even if not specifically identified as MSS. During any clock hour that includes one or more minutes of planned MSS or transition load operation events that pollutant's maximum hourly emission rate shall apply during that clock hour.

Date:	TBD	
Dale.	עמו	

Permit Number GHGPSDTX210

This table lists the maximum allowable emission rates of greenhouse gas (GHG) emissions, as defined in Title 30 Texas Administrative Code § 101.1, for all sources of GHG air contaminants on the applicant's property that are authorized by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities authorized by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant	Emission Rates	
		Name (3)	TPY (4)	
OCPS1-CAP	OCPS Combined Cycle Unit 1	CO ₂ (5)	4045655.00	
	Emission Cap	CH ₄ (5)	75.02	
		N ₂ O (5)	7.50	
		CO₂e	4049766.00	
OCPS-EMGEN	OCPS Standby Generator	CO ₂ (5) 152.44	152.44	
		CH ₄ (5)	0.01	
		N ₂ O (5)	<0.01	
		CO₂e	152.96	
OCPS-FWP	OCPS Emergency Fire Pump	CO ₂ (5)	16.71	
		CH ₄ (5)	<0.01	
		N ₂ O (5)	<0.01	
		CO₂e	16.77	
OCPS1AFPGE	OCPS CT1A Fire Protection	CO ₂ (5)	29.58	
	Generator	CH ₄ (5)	<0.01	
		N ₂ O (5)	<0.01	
		CO₂e	29.69	
OCPS1BFPGE	OCPS CT1B Fire Protection	CO ₂ (5)	29.58	
	Generator	CH ₄ (5)	<0.01	
		N ₂ O (5)	<0.01	
		CO₂e	29.69	
OCPSNGWBHA	OCPS Fuel Gas NG Water Bath	CO ₂ (5)	4,303.83	
	Heater Stack A	CH ₄ (5)	0.08	
		N ₂ O (5)	0.01	
		CO₂e	4,308.27	
OCPSNGWBHB	OCPS Fuel Gas NG Water Bath	CO ₂ (5)	4,303.83	
	Heater Stack B	CH ₄ (5)	0.08	
		N ₂ O (5)	0.01	

		CO ₂ e	4,308.27
OCPSH2WBHA	OCPS Fuel Gas H2 Water Bath	CO ₂ (5)	3,586.52
	Heater Stack A	CH ₄ (5)	0.07
		N ₂ O (5)	0.01
		CO ₂ e	3,590.23
OCPSH2WBHB	OCPS Fuel Gas H2 Water Bath	CO ₂ (5)	3,586.52
	Heater Stack B	CH ₄ (5)	0.07
		N ₂ O (5)	0.01
		CO₂e	3,590.23
OCPS-NGFUG	OCPS Natural Gas Fugitive Emissions (5)	CO ₂ (5)	0.14
		CH ₄ (5)	2.50
		CO₂e	62.57
OCPS-CBFUG	OCPS Circuit Breaker Fugitives	SF ₆ (5)	0.01
		CO₂e	152.99
OCPSMSSFUG	OCPS Maintenance Activities	CO ₂ (5)	19.04
		CH ₄ (5)	346.93
		CO ₂ e	8,692.27

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.

 $\begin{array}{cccc} \text{(3)} & \text{CO}_2 & - & \text{carbon dioxide} \\ \text{N}_2\text{O} & - & \text{nitrous oxide} \\ \text{CH}_4 & - & \text{methane} \\ \end{array}$

 SF_6 - sulfur hexafluoride

 CO_2e - carbon dioxide equivalents based on the following Global Warming Potentials (1/2015): CO_2 (1), N_2O (298), CH_4 (25), SF_6 (22,800)

- (4) Compliance with annual emission limits (tons per year) is based on a 12-month rolling period. These rates include emissions from maintenance, startup, and shutdown.
- (5) Emission rate is given for informational purposes only and does not constitute enforceable limit.

Date:	TBD	