Análise Matemática II (2013/2014)

Ficha 4

Cálculo Diferencial.

Derivadas parciais e diferenciabilidade de primeira ordem

- 1. Calcule, utilizando a definição, a derivada direccional de f no ponto ${\bf a}$ segundo o vector ${\bf v}$ se
 - (a) f(x,y) = 2x y, $\mathbf{a} = (-1,2)$, $\mathbf{v} = (1,1)$;
 - (b) $f(x, y, z) = xy + 2x^2 + z$, $\mathbf{a} = (1, -1, 1)$, $\mathbf{v} = (1, 2, 3)$;
 - (c) f(x,y) = 2x y, $\mathbf{a} = (-1,2)$, $\mathbf{v} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$;
 - (d) $f(x, y, z) = x^2 + 2y^2 + 3z^2$, $\mathbf{a} = (1, 1, 0)$, $\mathbf{v} = (\frac{2}{3}, -\frac{1}{3}, \frac{2}{3})$;
 - (e) $f(x,y) = x^2y$, $\mathbf{a} = (-1,2)$, $\mathbf{v} = (\frac{4}{5}, -\frac{3}{5})$.
- 2. Seja $f: \mathbb{R}^n \to \mathbb{R}$ a função definida por $f(\mathbf{x}) = \langle \mathbf{a}, \mathbf{x} \rangle$, onde \mathbf{a} é um vector constante. Calcule $f'(\mathbf{x}; \mathbf{v})$ para $\mathbf{x} \in \mathbf{v} \neq \mathbf{0}$ arbitrários.
- 3. Considere $f: \mathbb{R}^n \to \mathbb{R}$ definida por $f(\mathbf{x}) = \|\mathbf{x}\|^2$.
 - (a) Calcule $f'(\mathbf{x}; \mathbf{v})$ para $\mathbf{x} \in \mathbf{v} \neq \mathbf{0}$ arbitrários.
 - (b) Usando o resultado da alínea (a) no caso n=2 determine todos os vectores (u,v) para os quais f'((2,3);(u,v))=6.
 - (c) Usando o resultado da alínea (a) no caso n=3 determine todos os vectores (u,v,w) para os quais f'((1,2,3);(u,v,w))=0.
- 4. Sejam $\mathbf{T}: \mathbb{R}^n \to \mathbb{R}^n$ uma aplicação linear dada e $f: \mathbb{R}^n \to \mathbb{R}$ a função definida por $f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{T}(\mathbf{x}) \rangle$. Calcule a derivada $f'(\mathbf{x}; \mathbf{v})$ para qualquer $\mathbf{x} \in \mathbb{R}^n$ e $\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$.
- 5. Calcule as derivadas parciais de função

$$f(x,y) = \begin{cases} \frac{x}{\sqrt{x^2 + y^2}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

no ponto (0,0), caso existam.

6. Considere a função $f:\mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{4}{x^2 + y^2} & \text{se } x^2 + y^2 > 4\\ e^{y-2} & \text{se } x^2 + y^2 \le 4. \end{cases}$$

Calcule, usando a definição, as derivadas $\frac{\partial f}{\partial x}(0,2)$, $\frac{\partial f}{\partial y}(0,2)$ e $\frac{\partial f}{\partial x}(0,0)$.

- 7. Considere a função $f(x,y) = x^2 2xy$.
 - (a) Calcule, usando a definição, as derivadas $\frac{\partial f}{\partial x}(1,0)$, $\frac{\partial f}{\partial y}(1,0)$.
 - (b) Verifique os resultados da alínea (a) usando as regras de derivação.
- 8. Determine as derivadas parciais das funções seguintes em todos os pontos onde existem

(a)
$$f(x,y) = xy^2 + xe^y$$
; (b) $f(x,y) = x^2 + y^2 \sin(xy)$;

(c)
$$f(x,y) = e^{x^2+y^2}$$
; (d) $f(x,y,z) = \ln(x^2+y^2+z^2+1)$;

(e)
$$f(x,y) = \arctan(2x)$$
; (f) $f(x,y) = x^3y^2 - 2x^2y - \cos y$;

(g)
$$f(x, y, z) = xyz;$$
 (h) $f(x, y, z) = x\sqrt{y} + \sqrt[3]{z};$

(i)
$$f(x,y) = \frac{x-y}{x+y}$$
; (j) $f(x,y,z) = \begin{cases} e^{x^2+y^2+z^2} & \text{se } (x,y,z) \neq (0,0,0) \\ 0 & \text{se } (x,y,z) = (0,0,0) \end{cases}$

9. Verifique se as funções seguintes são diferenciáveis na origem:

(a)
$$f(x,y) = \sqrt{x^2 + y^2}$$
;

(b)
$$f(x,y) = \begin{cases} \frac{2y^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0); \end{cases}$$

(c)
$$f(x,y) = \begin{cases} \frac{x^3y^2}{x^4+y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

- 10. Verifique se a função $f(x,y) = e^{xy} + xye^{xy}$ é diferenciável e calcule, caso exista, o seu diferencial no ponto (1,0).
- 11. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}.$$

- (a) Calcule, caso existam, as derivadas de f no ponto (0,0) segundo os vectores $(\alpha,0),(0,\beta)$ e (α,β) , com $\alpha,\beta\in\mathbb{R}\setminus\{0\}$.
- (b) Com base na alínea anterior determine $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.
- (c) Mostre que $f(\lambda x, \lambda y) = f(x, y), \forall \lambda \in \mathbb{R} \setminus \{0\}$.
- (d) Mostre que a função não é diferenciável na origem.
- 12. Verifique se as funções seguintes são diferenciáveis em \mathbb{R}^2 e determine, caso existam, os seus diferenciais:
 - (a) $f(x,y) = 3xy^2 + 4x^2y + 2xy$;
 - (b) $f(x,y) = \sin(xy^2)$.
- 13. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por f(x,y) = y|x|. Mostre que f é contínua no ponto (0,1), mas não é diferenciável nesse ponto.
- 14. Determine o gradiente das funções dadas e usando o gradiente calcule as derivadas direccionais das funções respectivas no ponto \mathbf{a} e segundo o vector $\mathbf{v} \neq \mathbf{0}$ dados:
 - (a) $f(x, y, z) = x^2 + 2y^2 + 3z^2$, $\mathbf{a} = (1, 1, 0)$, $\mathbf{v} = (\frac{2}{3}, -\frac{1}{3}, \frac{2}{3})$;
 - (b) $f(x,y) = \frac{xy^2}{x+y}$ se $x + y \neq 0$, $\mathbf{a} = (1,-2)$, $\mathbf{v} = \left(-\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right)$;
 - (c) $f(x, y, z) = \left(\frac{x}{y}\right)^z$, $\mathbf{a} = (1, 1, 1)$, $\mathbf{v} = \left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right)$;
 - (d) $f(x,y) = x^3y^2$, $\mathbf{a} = (-1,2)$, $\mathbf{v} = (\frac{4}{5}, -\frac{3}{5})$;
 - (e) $f(x,y) = e^x \cos y$, $\mathbf{a} = (0, \frac{\pi}{4})$, $\mathbf{v} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.
- 15. Determine o gradiente da função dada por
 - (a) $g(x,y,z) = \sqrt{25 x^2 y^2 z^2}$;
 - (b) $h(x,y) = \frac{xy}{x-2y}$.
- 16. Use a regra da cadeia para calcular a derivada da função composta $t\mapsto f\left(x\left(t\right),y\left(t\right)\right)$ se
 - (a) $f(x,y) = x^2 + y^2$, x(t) = t, $y(t) = t^2$;
 - (b) $f(x,y) = \operatorname{tg}(x^2 + y), x(t) = 2t, y(t) = t^2;$
 - (c) $f(x,y) = x \cos y, x(t) = \sin t, y(t) = t.$
- 17. Determine, usando a regra da cadeia, as derivadas parciais $\frac{\partial z}{\partial u}$ e $\frac{\partial z}{\partial v}$ se

- (a) $z = \sqrt{x^2 + y^2}$ onde x = 2u + 1, $y = \sqrt[3]{v^2}$;
- (b) $\ln(x^2 + y^2)$ onde $x = \cos u \cos v$, $y = \sin u \sin v$.
- 18. Seja f uma função diferenciável numa bola $B(\mathbf{a}, \delta) \subset \mathbb{R}^n$. Mostre que se $\nabla f(\mathbf{x}) = \mathbf{0}$ para todo $\mathbf{x} \in B(\mathbf{a}, \delta)$, então a função f é constante em $B(\mathbf{a}, \delta)$.
- 19. Mostre que o plano tangente ao elipsoide definido por $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1$ num ponto qualquer (x_0, y_0, z_0) é dado pela equação $\frac{x_0}{a^2}x + \frac{y_0}{b^2}y + \frac{z_0}{c^2}z = 1$. Interprete geometricamente.
- 20. Escreva a equações do plano tangente e da recta normal à superfície dada no ponto indicado. Faça o desenho.
 - (a) $z = \frac{x^2}{2} y^2$ no ponto (2, -1, 1);
 - (b) f(x,y) = xy no ponto (1,1,1);
 - (c) $z = x^2 + y^2$ no ponto (1, -2, 5);
 - (d) $\frac{x^2}{16} + \frac{y^2}{9} \frac{z^2}{8} = 0$ no ponto (4, 3, 4).