EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Permit Number 3295

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	mission Source		Contaminant	Emission	Emission Rates *	
Point No. (1)	Name (2)		Name (3)	lb/hr	TPY **	
AIRST	Air Stripper (5)		VOC	0.67	2.94	
B-1	Boiler	PM ₁₀	CO NO _x 0.18 SO ₂ VOC	0.65 1.80 0.33 0.21 0.04	2.84 3.38 0.90 0.19	
DR-1	Drum Filling		VOC	2.20	1.08	
F-1	Aromax Reactor Preheater	PM ₁₀	CO NO _x 0.05 SO ₂ VOC	0.52 0.61 0.20 0.17 0.03	2.26 2.69 0.74 0.15	
F-2	Aromax Reactor Preheater	PM ₁₀	CO NO _x 0.05 SO ₂ VOC	0.52 0.61 0.20 0.17 0.03	2.26 2.69 0.74 0.15	
F-3/F-4	Aromax Reactor Preheater	NO _x PM ₁₀	CO 0.29 0.02 SO ₂ VOC	0.25 1.29 0.10 0.07 0.02	1.08 0.33 0.07	
F-10	Flare	NO _x	CO 1.36	9.84 1.12	7.89	

Emission	ssion Source		Contaminant	Emission Rates *		
Point No. (1)	Name (2)		Name (3)	lb/hr	TPY **	
		SO_2	0.01	0.01		
			VOC	27.21	15.19	
H-1	HDS Preheater		СО	1.03	4.51	
			NO_x	1.23	5.37	
		PM_{10}	0.09	0.41		
			SO_2	0.34	1.47	
			VOC	0.07	0.30	
H-2	Hex Treater Preheater		СО	0.26	1.13	
			NO_x	0.31	1.34	
		PM_{10}	0.02	0.10		
			SO_2	0.07	0.33	
			VOC	0.02	0.07	
H-3	Hot Oil Heater		СО	1.33	5.82	
			NO_x	1.58	6.92	
		PM_{10}	0.12	0.53		
			SO_2	0.43	1.88	
			VOC	0.09	0.38	
H-101	T-15 Reboiler		СО	1.90	8.30	
			NO_x	2.25	9.88	
		PM_{10}	0.17	0.75		
			SO_2	0.60	2.62	
			VOC	0.12	0.54	
H-102	T-16 Reboiler		СО	1.13	4.96	
			NO_x	3.12	5.90	
		PM_{10}	0.31	0.59		
			SO_2	0.36	1.55	
			VOC	0.07	0.32	
H-103	Hot Oil Heater		СО	1.13	4.96	
			NO _x	3.12	5.90	
		PM_{10}	0.31	0.59		
			SO ₂	0.36	1.55	
			VOC	0.07	0.32	

Emission	Source	Air	Contaminant	Emission R	Rates * TPY **
Point No. (1)	Name (2)		Name (3)	ID/III	IFI
H-104	T-4 Reboiler	PM ₁₀	CO NO _x 0.06 SO ₂ VOC	0.62 0.73 0.24 0.21 0.04	2.70 3.22 0.90 0.18
H-105	T-17 Reboiler		CO NO_x PM_{10} SO_2 VOC	0.05 0.06 0.01 0.02 0.01	0.22 0.27 0.02 0.08 0.02
H-106	T-8 Reboiler	PM ₁₀	CO NO _x 0.02 SO ₂ VOC	0.26 0.31 0.10 0.07 0.02	1.13 1.34 0.33 0.07
H-107	T-9 Reboiler	PM ₁₀	CO NO _x 0.02 SO ₂ VOC	0.24 0.28 0.09 0.07 0.02	1.04 1.24 0.33 0.07
H-108	T-3 Reboiler	PM ₁₀	CO NO _x 0.01 SO ₂ VOC	0.10 0.12 0.04 0.04 0.01	0.45 0.54 0.16 0.03
H-109	Sieve Regeneration Heater	PM ₁₀	CO NO _x 0.01 SO ₂ VOC	0.05 0.06 0.02 0.02 0.01	0.22 0.27 0.08 0.02
H-110	T-1- Reboiler		СО	0.13	0.56

Emission	Source	Air	Contaminant	Emission Rates *		
Point No. (1)	Name (2)		Name (3)	lb/hr	TPY **	
		PM ₁₀ SO ₂	NO _x 0.01 0.04 VOC	0.15 0.05 0.16 0.01	0.67	
H-111	T-11 Reboiler	PM ₁₀	CO NO _x 0.01 SO ₂ VOC	0.13 0.15 0.05 0.04 0.01	0.56 0.67 0.16 0.04	
H-113	AA HDS Preheater	PM ₁₀	CO NO _x 0.09 SO ₂ VOC	1.03 1.23 0.41 0.34 0.07	4.51 5.37 1.47 0.30	
H-116	T-13 Reboiler	NO _x PM ₁₀ SO ₂	CO 0.61 0.05 0.17 VOC	0.52 2.68 0.20 0.74 0.03	2.260.15	
H-117	AA Hydrogenation Preheat	er NO _x PM ₁₀ SO ₂	CO 0.61 0.05 0.17 VOC	0.52 2.68 0.20 0.74 0.03	2.260.15	
H-118	T-30 Reboiler	NO _x PM ₁₀ SO ₂	0.16	1.69 11.50 0.65 2.32 0.11	7.18	
H-213	T-21 Reboiler	NO _x	CO 0.61	1.03 2.68	4.51	

Point No. (1)	Emission	Source	Air	Contaminant	Emission Rates *		
H-243 T-24 Reboiler CO	Point No. (1)	Name (2)		Name (3)	lb/hr	<u>TPY **</u>	
H-243 H-243 T-24 Reboiler NO _x 0.61 PM ₁₀ 0.09 0.41 SO ₂ 0.34 1.47 VOC 0.07 0.30 H-253 T-25 Reboiler NO _x 0.61 PM ₁₀ 0.05 0.20 SO ₂ 0.17 VOC 0.03 0.15 H-263 T-26 Reboiler NO _x 0.61 PM ₁₀ 0.05 0.20 SO ₂ 0.17 0.74 VOC 0.03 0.15 H-283 T-28 Reboiler NO _x 0.61 PM ₁₀ 0.09 0.41 SO ₂ 0.34 1.47 VOC 0.07 0.30 H-283 T-28 Reboiler NO _x 0.61 PM ₁₀ 0.09 0.41 SO ₂ 0.34 1.47 VOC 0.07 0.30 H-283 T-29 Reboiler NO _x 0.61 PM ₁₀ 0.09 0.41 SO ₂ 0.05 0.00 SO ₂ 0.17 0.74 VOC 0.03 0.15 H-293 T-29 Reboiler NO _x 0.61 PM ₁₀ 0.05 0.20 SO ₂ 0.17 0.74 VOC 0.03 0.15 H-293 MAINFUG Main Plant Truck Loading Losses VOC 90.23 22.30 RH-1 Reformer Reactor Preheater CO 1.23 5.41			PM_{10}	0.09	0.41		
H-243 H-243 T-24 Reboiler NO _x 0.61 2.68 PM ₁₀ 0.09 0.41 SO ₂ 0.34 1.47 VOC 0.07 0.30 H-253 T-25 Reboiler CO 0.52 2.26 PM ₁₀ 0.05 0.20 SO ₂ 0.17 0.74 VOC 0.03 0.15 H-263 T-26 Reboiler CO 1.03 4.51 PM ₁₀ 0.05 SO ₂ 0.17 0.74 VOC 0.03 0.15 H-283 T-28 Reboiler CO 1.03 4.51 PM ₁₀ 0.09 SO ₂ 0.34 1.47 VOC 0.03 0.15 H-283 T-28 Reboiler CO 0.52 2.26 NO _x 0.61 2.68 PM ₁₀ 0.09 SO ₂ 0.34 1.47 VOC 0.07 0.30 H-283 T-29 Reboiler CO 0.52 2.26 PM ₁₀ 0.05 SO ₂ 0.17 0.74 VOC 0.03 0.15 H-293 T-29 Reboiler CO 0.52 2.26 PM ₁₀ 0.05 SO ₂ 0.17 0.74 VOC 0.03 0.15 H-293 MAINFUG Main Plant Truck Loading Losses VOC 90.23 22.30 RH-1 Reformer Reactor Preheater CO 1.23 5.41			SO_2	0.34	1.47		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				VOC	0.07	0.30	
PM ₁₀ 0.09 0.41 1.47 VOC 0.07 0.30	H-243	T-24 Reboiler		СО	1.03	4.51	
PM ₁₀ 0.09 0.41 1.47 VOC 0.07 0.30			NO_x	0.61			
H-253 H-253 T-25 Reboiler CO 0.052 2.26 NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.17 VOC 0.03 0.15 H-263 T-26 Reboiler CO 1.03 0.15 H-263 T-26 Reboiler CO 1.03 0.15 H-283 T-28 Reboiler CO 0.05 0.20 PM ₁₀ 0.09 0.41 SO ₂ 0.34 1.47 VOC 0.07 0.30 H-283 T-28 Reboiler CO 0.52 0.34 1.47 VOC 0.07 0.30 H-283 T-29 Reboiler CO 0.52 0.05 PM ₁₀ 0.05 SO ₂ 0.17 0.74 VOC 0.03 0.15 H-293 T-29 Reboiler CO 0.52 2.26 PM ₁₀ 0.05 SO ₂ 0.17 0.74 VOC 0.03 0.15 H-293 MAINFUG Main Plant Truck Loading Losses VOC 90.23 22.30 RH-1 Reformer Reactor Preheater CO 1.23 5.41				0.09			
H-253 H-25 Reboiler T-25 Reboiler ROX 0.61 2.68 PM10 0.05 0.20 SO2 0.17 0.74 VOC 0.03 0.15 H-263 T-26 Reboiler CO 1.03 4.51 PM10 0.09 0.41 SO2 0.34 1.47 VOC 0.07 0.30 H-283 T-28 Reboiler CO 0.52 2.26 PM10 0.09 0.41 SO2 0.34 1.47 VOC 0.07 0.30 H-283 T-28 Reboiler CO 0.52 2.26 PM10 0.05 0.20 SO2 0.17 0.74 VOC 0.03 0.15 H-293 T-29 Reboiler CO 0.52 2.26 PM10 0.05 0.20 SO2 0.17 0.74 VOC 0.03 0.15 H-293 MAINFUG Main Plant Truck Loading Losses VOC 90.23 22.30 RH-1 Reformer Reactor Preheater CO 1.23 5.41					1.47		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_		0.07	0.30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H-253	T-25 Reboiler		СО	0.52	2.26	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			NO_x	0.61	2.68		
H-263 T-26 Reboiler CO							
H-263 H-263 T-26 Reboiler CO 1.03 4.51 NO _x 0.61 PM ₁₀ 0.09 0.41 SO ₂ 0.34 1.47 VOC 0.07 0.30 H-283 T-28 Reboiler CO 1.03 1.47 VOC 0.07 0.30 H-283 T-28 Reboiler CO 1.03 1.47 VOC 0.07 0.30 H-283 T-28 Reboiler CO 1.03 0.52 2.26 NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.17 0.74 VOC 0.03 0.15 H-293 T-29 Reboiler CO 1.23 2.26 NO _x NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.17 0.74 VOC 0.03 0.15 MAINFUG Main Plant Truck Loading Losses VOC 90.23 22.30 RH-1 Reformer Reactor Preheater CO 1.23 5.41							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_			0.15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H-263	T-26 Reboiler		СО	1.03	4.51	
H-283 T-28 Reboiler CO NO _x 0.61 PM ₁₀ 0.05 0.05 0.20 SO ₂ 0.17 0.74 VOC 0.05 1.268 PM ₁₀ 0.05 SO ₂ 0.17 0.74 VOC 0.03 0.15 H-293 T-29 Reboiler CO NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.17 0.74 VOC 0.03 0.15 MAINFUG Main Plant Truck Loading Losses VOC 90.23 22.30 RH-1 Reformer Reactor Preheater CO 1.23 5.41			NO_x				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
H-283 T-28 Reboiler CO NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.17 VOC 0.03 0.15 H-293 T-29 Reboiler CO NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.17 0.74 VOC 0.03 0.15 H-293 Main Plant Truck Loading Losses VOC 90.23 22.30 RH-1 Reformer Reactor Preheater CO 1.23 5.41							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.30	
H-293 T-29 Reboiler CO NO _x PM ₁₀ 0.05 SO ₂ 0.17 0.74 VOC 0.03 0.15 CO NO _x 0.61 PM ₁₀ 0.05 0.20 SO ₂ 0.17 0.74 VOC 0.03 0.15 MAINFUG Main Plant Truck Loading Losses VOC 90.23 22.30 RH-1 Reformer Reactor Preheater CO 1.23 5.41	H-283	T-28 Reboiler		СО	0.52	2.26	
H-293 T-29 Reboiler CO NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.07 0.03 0.15 CO NO _x 0.61 2.68 PM ₁₀ 0.05 SO ₂ 0.17 0.74 VOC 0.03 0.15 MAINFUG Main Plant Truck Loading Losses VOC RH-1 Reformer Reactor Preheater CO 1.23 5.41			NO_x	0.61	2.68		
H-293 T-29 Reboiler CO NO _x 0.61 PM ₁₀ 0.05 SO ₂ VOC 0.03 0.15 MAINFUG Main Plant Truck Loading Losses VOC RH-1 Reformer Reactor Preheater CO 0.52 2.26 NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.17 0.74 VOC 0.03 0.15			PM_{10}	0.05	0.20		
H-293 T-29 Reboiler NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.17 VOC NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.17 NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.17 NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.17 NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.17 NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.17 NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.17 NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.17 NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.17 NO _x 0.61 PM ₁₀ 0.05 SO ₂ 0.17 NO _x 0.61 SO ₂ 0.20 SO ₂ 0.17 NO _x 0.61 SO ₂ 0.20 SO ₂ 0.17 NO _x 0.61 SO ₂ 0.20 SO ₂ 0.17 NO _x 0.61 SO ₂ 0.20 SO ₂ 0.17 NO _x 0.61 SO ₂ 0.20 SO ₂ 0.17 NO _x 0.61 SO ₂ 0.20 SO ₂ 0.17 NO _x 0.61 SO ₂ 0.20 SO ₂ 0.17 NO _x 0.61 SO ₂ 0.20 SO ₂ 0.17 SO ₂ 0.17 SO ₂ 0.17 SO ₂ 0.17 SO ₂ 0.15 SO ₂ 0.17 SO ₃ 0.15 SO ₂ 0.17 SO ₂ 0.17 SO ₃ 0.15 SO ₂ 0.17 SO ₂ 0.17 SO ₃ 0.15 SO ₂ 0.17 SO ₃ 0.15 SO ₂ 0.17 SO ₃ 0.15 SO ₃ 0.15 SO ₃ 0.15 SO ₄ 0.17 SO ₄ 0				SO ₂	0.17	0.74	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				VOC	0.03	0.15	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-293	T-29 Reboiler		СО	0.52	2.26	
MAINFUG Main Plant Truck Loading Losses VOC 90.23 22.30 RH-1 Reformer Reactor Preheater CO 1.23 5.41			NO_x	0.61	2.68		
MAINFUG Main Plant Truck Loading Losses VOC 90.23 22.30 RH-1 Reformer Reactor Preheater CO 1.23 5.41			PM_{10}	0.05	0.20		
MAINFUG Main Plant Truck Loading Losses VOC 90.23 22.30 RH-1 Reformer Reactor Preheater CO 1.23 5.41				SO_2	0.17	0.74	
RH-1 Reformer Reactor Preheater CO 1.23 5.41				VOC	0.03	0.15	
RH-1 Reformer Reactor Preheater CO 1.23 5.41							
	MAINFUG	Main Plant Truck Loading L	.osses	VOC	90.23	22.30	
	RH-1	Reformer Reactor Preheate	er	СО	1.23	5.41	

Emission Point No. (1)	Source Name (2)	Air	ContaminantName (3)	Emission R	ates * TPY **
.,	• •	PM ₁₀	0.11 SO ₂ VOC	0.49 0.39 0.08	1.72 0.35
RH-2	Reformer Reactor Preheater	PM ₁₀	CO NO _x 0.07	0.82 0.98 0.33	3.61 4.29
			SO ₂ VOC	0.26 0.05	1.15 0.24
RH-3	Reformer Reactor Preheater	PM ₁₀	CO NO _x 0.04 SO ₂ VOC	0.41 0.49 0.16 0.13 0.03	1.80 2.15 0.57 0.12
TK-1	Tank 1		VOC	0.22	0.96
TK-2	Tank 2		VOC	1.40	4.02
TK-4	Tank 4		VOC	0.66	2.89
TK-8	Tank 8		NaOH	0.11	0.02
TK-9	Tank 9		NaHS	0.06	0.02
TK-11	Tank 11		VOC	0.69	0.41
TK-12	Tank 12		VOC	0.69	0.41
TK-13	Tank 13		VOC	0.69	0.41
TK-14	Tank 14		VOC	0.69	0.41
TK-40	Tank 40		VOC	0.36	1.59
TK-41	Tank 41		VOC	0.36	1.60
TK-48	Tank 48		VOC	0.42	1.83
TK-52	Tank 52		VOC	5.02	8.26

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

AIR CONTAMINANTS DATA

Emission	Source Air Contaminant		Emission Rates *		
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**	
TK-54	Tank 54	VOC	0.99	4.30	
TK-55	Tank 55	VOC	1.7	4.66	
TK-56	Tank 56	VOC	1.2	3.53	
TK-57	Tank 57	VOC	1.38	6.03	
TK-61	Tank 61	VOC	1.38	6.03	
TK-62	Tank 62	VOC	1.01	1.40	
TK-63	Tank 63	VOC	0.65	0.94	
TK-64	Tank 64	VOC	1.11	4.51	
TK-65	Tank 65	VOC	0.12	1.49	
TK-66	Tank 66	VOC	0.91	3.98	
TK-67	Tank 67	NaOH	0.01	0.01	
TK-68	Tank 68	NaHS	0.01	0.01	
WESTFUG	West Plant Truck Loading Loss	es VOC	0.19	0.07	
FUG	Process Fugitives (4)	VOC	3.09	13.50	

Permit Number 3295 Page 7

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

(1)	Emission	point	identification	- eithe	specific	equipment	designation	or	emission	point	number
					from	a					

plot plan.

- (2) Specific point source name. For fugitive sources use area name or fugitive source name.
- (3) CO carbon monoxide
 - NO_x total oxides of nitrogen
 - PM₁₀ particulate matter equal to or less than 10 microns in diameter. Where PM is not listed, it shall be assumed that no PM greater than 10 microns in emitted.
 - SO₂ sulfur dioxide
 - VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 - NaHS sodium hydrosulfide
 - NaOH sodium hydroxide
- (4) Fugitive emissions are an estimate only and should not be considered as maximum allowable emission

rates.

- (5) This EPN is authorized under Permit by Rule Registration Number 38392 and it is only referenced.
- * Emission rates are based on and the facilities are limited by the following maximum operating schedule:

Hrs/day <u>24</u> Days/week <u>7</u> Weeks/year <u>52</u> or Hrs/year

** Compliance with annual emission limits is based on a rolling 12-month period.

Dated October 30, 2006