Kompletterande formelsamling i Teknisk mekanik

Spänningar

Spänningstillstånd i ett plan, vinkelrätt mot en huvudspänning

Huvudspänningar och huvudspänningsriktningar

 $\tau_{\varphi} = \frac{\sigma_y - \sigma_x}{2} \sin 2\varphi + \tau_{xy} \cos 2\varphi$

$$\frac{\sigma_1}{\sigma_2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$\tan \alpha_1 = \frac{\sigma_1 - \sigma_x}{\tau_{xy}}$$

$$\tan \alpha_2 = \frac{\sigma_2 - \sigma_x}{\tau_{xy}}$$

$$\sigma_1 + \sigma_2 = \sigma_x + \sigma_y$$

Maximala skjuvspänningen i planet är

$$(au_{
m max})_{
m planet} = rac{\sigma_1 - \sigma_2}{2}$$

Maximala skjuvspänningen är

$$\tau_{\max} = \max\left(\frac{|\sigma_1 - \sigma_2|}{2}; \frac{|\sigma_1|}{2}; \frac{|\sigma_2|}{2};\right)$$

Töjningar

Normaltöjning: $\varepsilon = \text{relativ ländändring } = \frac{L-L_o}{L_o}$

där L_o =ursprunglig längd, L=ny längd

Skjuvtöjning: $\gamma = \text{minskning av ursprunglig rät vinkel}$

(orsakad av deformation)

Deformationstillståndet i ett plan, vinkelrätt mot en huvudspänningsriktning

$$\varepsilon_{\xi} = \varepsilon_{x} \cos^{2} \varphi + \varepsilon_{y} \sin^{2} \varphi + \gamma_{xy} \sin \varphi \cos \varphi$$
$$\gamma_{\xi\eta} = (\varepsilon_{y} - \varepsilon_{x}) \sin 2\varphi + \gamma_{xy} \cos 2\varphi$$

där

 ε_x är töjningen av ett linje
element i x-riktningen

 ε_y är töjningen av ett linje
element i y-riktningen

 ε_{ξ} är töjningen av ett linjeelement i ξ -riktningen

 γ_{xy} är skjuvningen av axelkorset xy, dvs. minskningen av den räta vinkeln mellan x- och y-riktningen

 $\gamma_{\xi\eta}$ är skjuvningen av axelkorset $\xi\eta$, dvs. minskningen av den räta vinkeln mellan ξ - och η -riktningen

Huvudtöjningar och huvudtöjningsriktningar

Maximala skjuvningen i planet är

$$(\gamma_{\rm max})_{\rm planet} = \varepsilon_1 - \varepsilon_2$$

Samband mellan spänningar och töjningar

Enaxlig belastning

$$F \leftarrow F$$

$$\sigma_x = \frac{F}{A} \qquad \sigma_y = \sigma_z = \tau_{xy} = \tau_{yz} = \tau_{zx} = 0$$

$$\varepsilon_x = \frac{\sigma_x}{E} \qquad \varepsilon_y = \varepsilon_z = -\nu \varepsilon_x; \quad \gamma_{xy} = \gamma_{yz} = \gamma_{zx} = 0$$

Hookes generaliserade lag

$$\varepsilon_x = \frac{\sigma_x}{E} - \frac{\nu}{E}(\sigma_y + \sigma_z)$$

$$\varepsilon_y = \frac{\sigma_y}{E} - \frac{\nu}{E}(\sigma_z + \sigma_x)$$

$$\varepsilon_z = \frac{\sigma_z}{E} - \frac{\nu}{E}(\sigma_x + \sigma_y)$$

$$\gamma_{xy} = \frac{\tau_{xy}}{G}$$

$$\gamma_{yz} = \frac{\tau_{yz}}{G}$$

$$\gamma_{zx} = \frac{\tau_{zx}}{G}$$

eller löst med avseende på spänningarna

$$\begin{split} \sigma_x &= \frac{E}{1+\nu} [(\varepsilon_x + \frac{\nu}{1-2\nu} (\varepsilon_x + \varepsilon_y + \varepsilon_z)] \\ \sigma_y &= \frac{E}{1+\nu} [(\varepsilon_y + \frac{\nu}{1-2\nu} (\varepsilon_x + \varepsilon_y + \varepsilon_z)] \\ \sigma_z &= \frac{E}{1+\nu} [(\varepsilon_z + \frac{\nu}{1-2\nu} (\varepsilon_x + \varepsilon_y + \varepsilon_z)] \\ \tau_{xy} &= G\gamma_{xy} \\ \tau_{yz} &= G\gamma_{zx} \end{split}$$

 $d\ddot{a}r$

 ${\cal E}$ är elasticitetsmodulen

$$G$$
 är skjuvmodulen $G = \frac{E}{2(1+\nu)}$

 ν är Poissons tal

Hookes lag vid plant spänningstillstånd

En huvudspänning är noll. Välj koordinatsystemet så att denna huvudspänning är $\sigma_z=0$. Då gäller också att $\tau_{yz}=\tau_{zx}=0$

$$\varepsilon_x = \frac{1}{E}(\sigma_x - \nu \sigma_y)$$

$$\varepsilon_y = \frac{1}{E}(\sigma_y - \nu \sigma_x)$$

$$\gamma_{xy} = \frac{\tau_{xy}}{G}$$

eller löst med avseende på spänningarna

$$\sigma_x = \frac{E}{1 - \nu^2} (\varepsilon_x + \nu \varepsilon_y)$$
$$\sigma_y = \frac{E}{1 - \nu^2} (\varepsilon_y + \nu \varepsilon_x)$$
$$\tau_{xy} = G\gamma_{xy}$$

Flythypoteser

Initiering av plasticitet sker när

$$\sigma_e = \sigma_s$$

där σ_e är effektivspänningen och σ_s är sträckgränsen.

Skjuvspänningshypotesen (Trescas flytkriterium)

$$\sigma_e = \max(|\sigma_1 - \sigma_2|; |\sigma_1 - \sigma_3|; |\sigma_2 - \sigma_3|)$$

Deviationsarbetshypotesen (von Mises flytkriterium)

$$\sigma_e = \sqrt{\frac{1}{2} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right) \right]}$$

Detta uttryck är ekvivalent med

$$\sigma_e = \sqrt{\frac{1}{2} \left[(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2) \right]}$$

Speciellt vid plant spänningstillstånd kan hypoteserna skrivas

Skjuvspänningshypotesen $\sigma_e = \max(|\sigma_1 - \sigma_2|; |\sigma_1|; |\sigma_2|)$

Deviationsarbetshypotesen $\sigma_e = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2}$

Vid ren skjuvning fås

Skjuvspänningshypotesen $\sigma_e = 2|\tau|$

Deviations ar bets hypotesen $\sigma_e = \sqrt{3}|\tau|$

Vridning

För en roterande axel gäller

$$M_v = \frac{P}{\omega}$$

där M_v är vridmomentet i en axel som överför effekten P vid vinkelhastigheten ω

För maximal vridskjuvspänning $\tau_{v\text{max}}$ gäller

$$\tau_{v\text{max}} = \frac{M_v}{W_v}$$
 W_v är vridmotståndet (se tabell)

För förvridningsvinkel φ mellan axelns ändytor gäller

$$\varphi = \frac{M_v L}{GK} \hspace{1cm} L \text{ är axellängden} \\ K \text{ är vridstyvhetens tvärsnittsfaktor (se tabell)}$$

	Tvärsnitt	W_v	K
Tunnväggigt cirkulärt slutet tvärsnitt med konstant väggtjocklek		$\frac{\pi d^2 t}{2}$	$\frac{\pi d^3 t}{4}$
Tjockväggigt cirkulärt slutet tvärsnitt	$d_i d_y$	$\frac{\pi(d_y^4 - d_i^4)}{16d_y}$	$\frac{\pi(d_y^4 - d_i^4)}{32}$
Massivt cirkulärt tvärsnitt		$\frac{\pi d^3}{16}$	$\frac{\pi d^4}{32}$
Massivt liksidigt triangulärt tvärsnitt		$\frac{s^3}{20}$	$\frac{\sqrt{3}}{80}s^4$
Massivt rektangulärt tvärsnitt		$\eta_2 h b^2$ $\eta_2 ext{ och } \eta_3 ext{ be}$	$\eta_3 h b^3$ stäms ur diagram
Öppna tvärsnitt, sam- mansatta av smala rektanglar	ᆎ	$\frac{\sum b_i^3 h_i}{3b_{\max}}$	$\frac{\sum b_i^3 h_i}{3}$
Slutet tunnväggigt rörtvärsnitt av godtycklig form med variabel väggtjocklek		$2At_{ m min}$ A är den a ${ m sen}$ omslutna a	$\frac{4A^2}{\oint \frac{ds}{t}}$ av medelomkret-
Öppet tunnväggigt rörtvärsnitt av godtycklig form med konstant väggtjocklek		$\frac{ct^2}{3}$ c är medelo	$rac{ct^3}{3}$ omkretsens längd

Balkböjning

Positiva definitioner på belastningsintensitet, tvärkraft och böjande moment.

För balkens totala belastning Q, positiv riktad uppåt, gäller

$$Q = \int_0^L q dx$$

Jämviktsdifferentialekvationerna för balken ges av

$$\frac{dT}{dx} = -q$$
$$\frac{dM_b}{dx} = T$$

Böjspänningar (ingen normalkraft)

Koordinatsystemet ligger sådant att x-axeln går genom tvärsnittets tyngd-

$$\sigma=Erac{z}{
ho}$$
 ho är neutralplanets krökningsradie.
$$\sigma=rac{M_b}{I_y}z$$
 I_y är yttröghetsmomentet kring y -axeln.

För maximal böjspänning σ_b i ett snitt gäller

$$\sigma_b = \frac{|M_b|}{W_b}$$
 W_b är böjmotståndet

För W_b gäller

$$W_b = \frac{I_y}{e}$$
 $e = |z_{\text{max}}|$ är största avståndet från neutralplanet till yttersta fibern

Allmänt om yttröghetsmoment

Steiners sats

För yttrögetsmomentet I_{x_1} kring en axel parallel med en axel genom tyngdpunkten gäller

$$I_{x_1} = I_x + a^2 A$$
 A är tvärsnittsarean a är avståndet mellan axlarna.

För tröghetsradien i gäller

$$i = \sqrt{\frac{I}{A}}$$

Elastiska linjen

För neutralplanets krökningsradie gäller

$$\frac{1}{\rho} = \frac{M_b}{EI}$$

där I är tvärsnittytans tröghetsmoment kring böjningsaxeln.

Elastiska linjens differentialekvation är

$$EI\frac{d^2w}{dx^2} = -M_b$$

Sammansatt belastning

Balk utsatt för böjande moment och normalkraft

$$\sigma_x = \frac{M_b}{I_y}z + \frac{N}{A}$$

Vektorer

Storleken $v=|\bar{v}|$ av vektorn \bar{v} är

$$v = |\bar{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

Enhetsvektorn \hat{v} i \bar{v} :s riktning ges av

$$\hat{v} = \frac{\bar{v}}{|\bar{v}|}$$

Skalärprodukt

$$\bar{b}$$
 \bar{a}
 $\bar{b} = ab\cos\theta$ eller $\bar{a} = a_xb_x + a_yb_y + a_zb_z$

Vektorprodukt

$$\bar{a} \times \bar{b}$$
 \bar{b}
 $\bar{a} \times \bar{b}$ är vinkelrät mot planet som ges av \bar{a} och \bar{b} (högerhandssystem: $\bar{a}, \bar{b}, \bar{a} \times \bar{b}$).

 $\bar{a} \times \bar{b} = (a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)$

och storleken av $\bar{a} \times \bar{b}$ ges av

$$|\bar{a}\times\bar{b}|=\underbrace{ab\sin\theta}_{\text{Area f\"{o}r parallellogrammet som sp\"{a}nns upp av \bar{a} och \bar{b}}$$

Moment

Hydrostatik

Tryck

Det absoluta trycket på djupet hi en vätska med densiteten ρ ges av

$$p = p_0 + \rho g h$$

där p_0 är atmosfärstrycket ovanför vätskeytan och ρgh övertrycket på djupet h

Lyftkraft

Den resulterande lyftkraften F på en kropp, helt eller delvis nedsänkt i en vätska med densiteten ρ ges av

$$F = \rho V g$$

där V är deplacementet, eller den undanträngda vätskans, volym.

Kinematik för punktmassa

xy-koordinater

Normal-tangentkoordinater

Polära koordinater

Energiprincipen

$$\frac{1}{2}mv_1^2 + mgh_1 + \int_1^2 \bar{F}_u \cdot d\bar{s} = \frac{1}{2}mv_2^2 + mgh_2$$

där \bar{F}_u är resultanten till samtliga krafter som verkar på partikeln (exklusive tyngd-kraften som redan är beaktad i termen $mg(h_2-h_1)$).

Elastisk energi i en fjäder

Den elastiska energin V_e som lagras i en fjäder kan skrivas som

$$V_e = \frac{1}{2}k\delta^2$$

där k är fjäderkonstanten och δ fjäderns deformation.

Impluslagen

$$\int_{t_1}^{t_2} \bar{F} dt = \int_{1}^{2} d(m\bar{v}) \qquad m\bar{v} \text{ är rörelsemängden för systemet}$$

och \bar{F} är kraftresultanten som verkar på systemet.

Rak central stöt

Impulslagen ger (då $\bar{F}=0$) att rörelsemängden före stöt = rörelsemängden efter stöt.

 $studskoefficient = \frac{\text{hastighet med vilken kropparna avlägsnar sig från varandra}}{\text{hastighet med vilken kropparna närmar sig varandra}}$

Stel kropp i plan rörelse

Rörelsemängdsmomentet kring en punkt P ges av

$$\bar{H}_p = \int \bar{r} \times \bar{v} dm$$

Rotation kring fix axel

Från rörelsemängdsmomentet kring fix axel genom punkten P fås

$$M_p = \frac{dH_p}{dt}$$

där M_p är momentet kring axeln genom punkten P och H_p är rörelsemängdsmomentet kring axeln genom punkten P. Vi har

$$H_p = J_p \omega$$

där ω är vinkelhastigheten och där masströghetsmomentet ges av

$$J_p = \int R^2 dm$$

(typiska masströghetsmoment ges av tabell senare)

Allmän plan rörelse

$$\bar{F} = m\bar{a}_{TP}$$

$$M_{TP} = \frac{dH_{TP}}{dt}$$

där M_{TP} är momentet kring tyngdpunkten (TP) och H_{TP} är rörelsemängdsmomentet kring TP. Vi har

$$H_{TP} = J_{TP}\omega$$

där J_{TP} är masströghetsmomentet och ω vinkelhastigheten. Typiska masströghetsmoment ges av tabell senare.

Svängningar - system med en frihetsgrad

omskrivning ger

$$\ddot{u} + 2\xi\omega_o\dot{u} + \omega_o^2 u = \frac{P(t)}{m}$$

där

$$\omega_o = \sqrt{\frac{k}{m}}$$

$$\xi = \frac{c}{2m\omega_o} \quad \text{relativa dämpningen}$$

Odämpat system

$$\ddot{u} + \omega_o^2 u = \frac{P(t)}{m}$$
 $\omega_o = \sqrt{\frac{k}{m}} = \text{ egenvinkelfrekvens [rad/s]}$

Om yttre kraft P(t)=0 fås

$$T = \frac{2\pi}{\omega_o} = \text{ period [s]} = \text{tid för hel svängning}$$
 $f = \frac{1}{T} = \text{ egenfrekvens [cykler/s]} = \text{Hertz}$

Masströghetsmoment med avseende på tyngdpunkt

Massirogii	hetsmoment med avseende på tyngdpunkt			
	$\operatorname{Tv\ddot{a}rsnitt}$	J_{TP}		
Tunnväggigt rör	y L/2 L/2	$J_x = J_y = \frac{1}{2}mr^2 + \frac{1}{12}mL^2$ $J_z = mr^2$		
Homogen cylinder	y L/2 L/2	$J_x = J_y = \frac{1}{4}mr^2 + \frac{1}{12}mL^2$ $J_z = \frac{1}{2}mr^2$		
Rätvinkling parallellepiped		$J_x = \frac{1}{12}m(a^2 + L^2)$ $J_y = \frac{1}{12}m(b^2 + L^2)$ $J_z = \frac{1}{12}m(a^2 + b^2)$		
Jämntjock smal stång	y L/2 L/2 z	$J_x = J_y = \frac{1}{12}mL^2$ $J_z \approx 0$		
Halvklot	y $3r/8$	$J_x = J_y = \frac{83}{320}mr^2$ $J_z = \frac{2}{5}mr^2$		

Masströghetsmoment med avseende på tyngdpunkt

Masstroghetsmoment med avseende pa tyngdpunkt						
Homogent klot	z y	$J_x = J_y = J_z = \frac{2}{5}mr^2$				
Tunnväggigt sfäriskt skal	z 1	$J_x = J_y = J_z = \frac{2}{3}mr^2$				
Koniskt skal	2h/3 y h/3	$J_x = J_y = \frac{1}{4}mr^2 + \frac{1}{18}mh^2$ $J_z = \frac{1}{2}mr^2$				
Rät cirkulär kon	3h/4 h/4 r z	$J_x = J_y = \frac{3}{20}mr^2 + \frac{3}{80}mh^2$ $J_z = \frac{3}{10}mr^2$				