b. Let the original number be in the register \$1.

shl \$1, 2, \$1 # \$1=4.\$1old

add \$1, \$1, \$1 # \$1=4.\$1old + \$1old

#cycles = 1+2 = 3

When K= 508, the instruction would be: shl \$1, 1, \$2 ad \$1, \$2, 43. shl \$2,1, \$2 add \$3, \$2, \$3 shl \$2, 1, \$2 \$3, \$2, \$3 5hl \$2, 1, \$2 add \$3, \$2, \$3 shl \$2, 1, \$2 add \$3, \$2, \$3 #\$3= 63. \$1 me shl \$2,1, \$2 # \$2 = 64. \$1 ore #\$1=127. \$1 pre add \$3, \$2, \$1 #\$1 = 508 · \$1 ore shl \$1, 2, \$1

Cycles = 3.6+1=19

c. i) % diff = $\frac{|10-3|}{13/2} = \frac{19}{13}$

ii) % diff = $\frac{19-101}{29/2} = \frac{18}{29}$ percentage difference = $\frac{abs. \text{ value of diff}}{avg. of 2 numbers}$

2a. 1)	Operand	Type	Mem. Address	Value	
<u> </u>	%rax	Type			***************************************
	0x110	register	5.11.	0x2	
	\$0x110	memory	Dx110	0x3	
	263(%rax, %rdx)	immediate	-	0×40	
	0x100(,%rax, 4)	memory	0x10C	0xFF	
	(%rcx,%rax, 2)	memory	0×108	0x1Z	
	(OTOX) OTOX) 2)	memony	OxloC	DxF	
int loop(int a, int b, int c) { int x, y; y = b ; for (x = a + c ; x > 0 ; x) { y + + ; } return y ; }					
b. i) Bias = $2^{k-1} - 1 = 1$					
ii) Largest = $2^{2^{-1}} \cdot (1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}) = 3.75$					
iii) Smallest Normalized = 21-1 · (1+0) = 1.0					
Smallest possible value = $2^{-1} \cdot (0+\frac{1}{3}) = 0.062J$					
- iv) 0/0/00					
가 보고 보고 있는 경험 선물 문학 교통에 있다. 스펙트워진 전 등 기계에 가는 그를 받고 있는 것이 되었다. 그는 그를 가는 그를 가는 것이 되었다. 그를 가는 것은 것은 그를 가는 것이 없다.					
and the Martissa					
C. Since there are 8 bytes in one block, the appeal has 3 bits.					
Hence for address 2 and 4, the set index must					
be the same and no miss would occur. From 8 to 32, every					
read operation would be a miss (every time the set index					
is different). Hence hit rate = $\frac{2}{6} = \frac{3}{3}$.					
If we increase the block size to 16 bytes, the offset					
would be 4 bits. Hence, 2, 4, and 8 would all become					
hits. The only two misses are 16 and 32, hence hit					
rate = $\frac{3}{6} = \frac{1}{2}$, which has been improved.					