Contents

1	Ring	g Theory	4
	1.1	Definitions and Examples	4
	1.2	Ideals and Quotient Rings	12
	1.3	Maximal and Prime Ideals	18
	1.4	Rings of Fractions	21
	1.5	Principal Ideal Domains	24
	1.6	Euclidean Domains	27
	1.7	Unique Factorization Domains	32
		More on Polynomial Rings	
2	Field	d Theory	46
	2.1	Field Extensions	46
		Algebraic Extensions	
			62
		Separable and Inseparable Extensions	67

4 Module Theory

4.1 Definitions and Examples

This section of notes roughly follows Section 10.1 in Dummit and Foote.

Let's start with the definition of a module.

Definition 4.1. Let *R* be a ring (not necessarily commutative nor with 1). A **left** *R***-module** (or **left module over** *R*) is a set *M* together with

- (1) a binary operation + on M under which M is an abelian group, and
- (2) an action of R on M (that is, $R \times M \to M$) denoted by rm, for all $r \in R$ and for all $m \in M$ that satisfies.
 - (a) (r+s)m = rm + sm for all $r, s \in R$ and $m \in M$,
 - (b) (rs)m = r(sm) for all $r, s \in R$ and $m \in M$, and
 - (c) r(m+n) = rm + rn all $r \in R$ and $m, n \in M$.

(d) If *R* has a 1, then we also require: 1m = m for all $m \in M$.

We analogously define **right** R-**modules**. If R is commutative and M is a left R-module, then we can make it a right R-module by defining mr = rm for all $r \in R$ and $m \in M$. Notice that we cannot do this in general if R is not commutative since Axiom (2b) may fail. Unless we explicitly say otherwise, all modules will be left modules. Modules satisfying Axiom (2d) are call **unital modules**. We will assume that all our modules are unital.

The axioms for a module should look familiar. If R is a field, the axioms are precisely those for a vector space over R.

We emphasize that an abelian group M may have many different R-module structures for a fixed ring R (in the same way a group G could act in many ways as a permutation group of some fixed set S).

Definition 4.2. Let R be a ring and let M be an R-module. An R-submodule of M is a subgroup N of M that is closed under the action of ring elements, i.e., $rn \in N$ for all $r \in R$ and $n \in N$.

As expected, submodules of M are just subsets of M that are themselves modules under the same action. In particular, if R is a field, submodules are just vector subspaces. Every R-module has at least two submodules: M and $\{0\}$. The latter is often written as just 0 and called the **trivial submodule**.

Example 4.3. Let's see some examples.

- (1) Let R be any ring. Then M = R is a left R-module, where the action of a ring element on a module element is just usual ring multiplication. In this case, the submodules of M = R are the left ideals of R.
- (2) A special case of the first example is what *R* is a field. Then *R* is 1-dimensional vector space over itself.
- (3) More generally, if R = F is a field, every vector space over F is an F-module and vice versa. Let $n \in \mathbb{Z}^+$ and let

$$F^n = \{(a_1, \dots, a_n) \mid a_i \in F \text{ for all } i\}.$$

We can make F^n into an n-dimensional vector space by defining addition and scalar multiplication in the standard way.

(4) Let *R* be a ring with 1 and let $n \in \mathbb{Z}^+$. As above, define

$$R^n = \{(a_1, ..., a_n) \mid a_i \in R \text{ for all } i\}.$$

We can make R^n an R-module by defining addition and multiplication by elements of R in the same manner as when R was a field. The module R^n is called the **free module of rank** n **over** R.

(5) The same abelian group M may have the structure of a module for several different rings R. In particular, if M is an R-module and S is a subring of R with $1_R = 1_S$, then M is

automatically an S-module. For example, the field \mathbb{R} is an \mathbb{R} -module, a \mathbb{Q} -module, and a \mathbb{Z} -module.

(6) If M is an R-module and for some 2-sided ideal I of R, am = 0 for all $a \in I$ and $m \in M$, we say M is **annihilated by** I. In this case, we can make M into an (R/I)-module by defining an action of the quotient ring R/I on M. For each $m \in M$ and coset $r + I \in R/I$, define

$$(r+I)m = rm$$
.

Since am = 0 for all $a \in I$ and $m \in M$, this is well-defined. In the special case that I is a maximal ideal in a commutative ring R and IM = 0, M is a vector space over the field R/I.

- (7) \mathbb{Z} -modules...
- (8) F[x]-modules...

Theorem 4.4 (Submodule Criterion). Let *R* be a ring and let *M* be an *R*-module. A subset *N* of *M* is a submodule of *M* iff

- (1) $N \neq \emptyset$, and
- (2) $x + ry \in N$ for all $r \in R$ and $x, y \in N$.

Definition 4.5. Let R be a commutative ring with 1. An R-algebra is a ring A with identity together with a ring homomorphism $f: R \to A$ mapping $1_R to 1_A$ such that the subring f(R) of A is contained in the center of A (i.e., the set of all elements of A that commute with every element of A).

If A is an R-algebra, then it is easy to verify that A has a natural left and right unital R-module structure defined by $r \cdot a = a \cdot r = f(r)a$, where f(r)a is just the multiplication in the ring A (which is the same as af(r) since f(r) lies in center). In general, it is possible for an R-algebra A to have other left (or right) R-module structures. Unless stated otherwise, we assume the natural module structure on algebra will be assumed.

Here is an alternate definition.

Definition 4.6. Let R be a commutative ring with 1. An R-algebra is a ring A that is also an R-module such that the multiplication map $A \times A \rightarrow A$ is R-bilinear, that is,

$$r * (ab) = (r * a) \cdot b = a \cdot (rb)$$

for all $a, b \in A$ and $r \in R$, where denotes the R-action on A.

Loosely speaking, the definition above says that an *R*-algebra is an *R*-module, where we are also allowed to multiply the module elements.

Theorem 4.7. Definitions 4.6 and ?? are equivalent.

Example 4.8. Here are a few quick examples. Throughout assume that R is a commutative ring with 1.

- (1) Any ring with 1 is a \mathbb{Z} -algebra.
- (2) Let A be any ring with 1_A . If R is a subring of the center of A containing 1_A , then A is an R-algebra under $f(r) = r1_A$ for $r \in R$. For example, the polynomial ring $R[x_1, ..., x_n]$ is an R-algebra.
- (3) The group ring R[G] for a finite group G is an R-algebra.
- (4) If A is an R-algebra, then the R-module structure of A depends only on the subring f(R) contained in the center of A. If we replace R by its image f(R), we see that up to ring homomorphism, every algebra A arises from a subring of the center of A that contains 1_A .
- (5) In the special case that R = F is a field, F is isomorphic to its image under f, so we can identify F itself as a subring of A. So, saying that A is an algebra over a field F is the same as saying that the ring A contains the field F in its center and the identity of A and of F are the same.

Definition 4.9. If A and B are two R-algebra, an R-algebra homomorphism (respectively, **isomorphism**) is a ring homomorphism (respectively, isomorphism) $\phi : A \to B$ such that

(1)
$$\phi(1_A) = 1_B$$

(2) $\phi(r \cdot a) = r \cdot \phi(a)$ for all $r \in R$ and $a \in A$.