Control de Redes de Computadores (XC), Grado en Ingeniería Informática		20/11/2014	tardor 2014
Nombre:	Apellidos:	DNI	

Duración: 1h15m. El test se recogerá en 30 minutos. Responder en el mismo enunciado.

Datacion, infom, Di test se recogeta en so minutos, recoponaci en el mismo chancitato.
Test. (4 puntos) Todas las preguntas son multi-respuesta: Cada pregunta vale la mitad si hay un error, 0 si más.
1. Indica qué expresiones son ciertas para UDP: □ La cabecera UDP tiene un campo TTL que se decrementa a cada salto para limitar su duración. □ La cabecera UDP tiene un campo "checksum" para proteger el paquete de cambios entre origen y destino. □ Un paquete UDP puede ser fragmentado por el protocolo IP. □ UDP tiene control de flujo pero no control de congestión.
2. En la fase de "slow start" la ventana de congestión puede crecer: ☐ Un segmento más por cada ACK que confirma nuevos datos. ☐ Un segmento más por cada RTT. ☐ Se duplica cada ACK que confirma nuevos datos. ☐ Se duplica cada RTT.
 3. En el régimen permanente de TCP (congestion avoidance) la ventana de congestión puede crecer: □ 1 MSS cada ACK que confirma nuevos datos. □ 1 MSS cada RTT. □ 1 MSS cada segundo. □ 1 MSS cada RTO.
 4. El tamaño de la ventana anunciada por el receptor: □ Cambia a medida que se reciben datos. □ Cambia a medida que un proceso lee del buffer. □ No cambia durante la conexión. □ Cambia según la congestión de la red.
5. En un cierto instante durante una transferencia TCP la ventana anunciada del receptor (awnd) es de 5000 bytes, la ventana de congestión es de 8000 bytes y la variable sshthresh vale 4500. ¿Qué afirmaciones son correctas? □ El último RTO se ha producido cuando la ventana era de 4500 bytes. □ El último RTO se ha producido cuando la ventana era de 9000 bytes. □ Estamos en la fase de slow start. □ Estamos en la fase de congestion avoidance.
6. El número de secuencia en TCP: □ Es un valor que comienza en cero y cuenta segmentos enviados. □ Es un valor que comienza en un valor aleatorio y cuenta segmentos enviados. □ Es un valor que comienza en cero y cuenta bytes enviados. □ Es un valor que comienza en un valor aleatorio y cuenta bytes enviados.
7. Cuando el host origen y destino se comunican sin que se produzcan pérdidas en el camino, se cumple que: □ La fase de slow start acaba cuando hay una reducción de la ventana del receptor (awnd). □ La velocidad de transferencia queda limitada por la ventana anunciada por el receptor si el RTT es grande. □ La fase de slow start no existe pues se toma la ventana anunciada por el receptor directamente. □ La fase de slow start se repite al menos dos veces.
8. Cuando hay varias conexiones TCP con algunos saltos comunes en el camino, en promedio: □ La capacidad se reparte en proporciones iguales. □ La capacidad se reparte con preferencia por conexiones TCP de mayor RTT. □ La capacidad se reparte con preferencia por conexiones TCP de menor RTT. □ La capacidad se reparte con preferencia por conexiones TCP de mayor ventana anunciada del receptor.
9. Cuando un segmento se pierde y se recibe el siguiente en TCP el receptor puede reaccionar: □ Enviando un ACK del último recibido en orden para que se retransmita el segmento perdido. □ Enviando un ACK duplicado para que se retransmita el segmento perdido. □ Esperando RTO sin enviar ningún ACK para que se retransmita el segmento perdido. □ Enviando un RESET para que se ese retransmita el segmento perdido.

Primer control de Xarxes de Computadors (XC), Grau en Enginyeria Informàtica		20/11/2014	Tardor 2014
NOM:	COGNOMS	DNI	

Duració: 1h15m. El test es recollirà en 30 minuts. Respondre en el mateix enunciat.

Pregunta 1. (6 puntos)

El volcado de la figura presenta el intercambio de mensajes TCP entre el servidor y el cliente que aparecen en la figura. En este volcado no aparecen todos los mensajes (se ha indicado con ... las partes eliminadas). Contestar a las siguientes preguntas. Motivar brevemente las respuestas.


```
202.2.2.1.2104 > 150.214.5.1.995: S 655237:655237(0) win 32738 <mss 1452,nop,nop,wscale 0>
0.002
       150.214.5.1.995 > 202.2.2.1.2104: S 16122349:16122349(0) ack 65524 win 4180 <mss 1452,nop,nop,wscale 0>
       202.2.2.1.2104 > 150.214.5.1.995: . ack 1 win 32768
0.151
2.410
       150.214.5.1.995 > 202.2.2.1.2104: . 29248:30700 (1452) ack 120 win 4180
       202.2.2.1.2104 > 150.214.5.1.995: . ack 26344 win 32768
2.561
       150.214.5.1.995 > 202.2.2.1.2104: . 30700:32152(1452) ack 120 win 4180
2.561
2.562
       150.214.5.1.995 > 202.2.2.1.2104: . 32152:33604(1452) ack 120 win 4180
2.711
       202.2.2.1.2104 > 150.214.5.1.995: . ack 26344 win 32768
2.732
       202.2.2.1.2104 > 150.214.5.1.995: . ack 26344 win 32768
3.051
       150.214.5.1.995 > 202.2.2.1.2104: . 26344:27796(1452) ack 120 win 4180
3.200
       202.2.2.1.2104 > 150.214.5.1.995: . ack 32152 win 32768
5.211
       150.214.5.1.995 > 202.2.2.1.2104: F 60918:60918(0) ack 120 win 4180
       202.2.2.1.2104 > 150.214.5.1.995: . ack 60919 win 32768 202.2.2.1.2104 > 150.214.5.1.995: F 120:120(0) ack 60919 win 32768
5.360
5.366
       150.214.5.1.995 > 202.2.2.1.2104: . ack 121 win 4180
       202.2.2.1.2104 > 150.214.5.1.995: F 120:120(0) ack 60919 win 32768
       150.214.5.1.995 > 202.2.2.1.2104: . ack 121 win 4180
5.873
```

a) (3.5 puntos) Considerando el volcado anterior y sabiendo que las aplicaciones escriben y leen los buffers más rápidamente que la red en transmitir y entregar los datos,

1) Identificar

Monthiodi		
	Cliente	Servidor
Dirección IP		
Puerto		
Tamaño del buffer de RX		
MSS		
Cantidad de bytes de datos transmitidos durante toda la conexión TCP		

- 2) Identificar y motivar donde se ha hecho la captura
- 3) Determinar el RTT (tiempo de ciclo) del TCP
- Si no hubiera perdidas, estimar la velocidad efectiva máxima en régimen estacionario

5)	Calcular la velocidad media que se ha conseguido realmente
6)	Razonar si ha habido perdidas y encontrar cuales segmentos se han perdido

b) (2.5 puntos) Dejando ahora el volcado, suponer que, durante toda la transferencia de datos, cuando la ventana de transmisión llega a 8 MSS, Internet siempre pierde el séptimo segmento. Suponiendo que el RTO = RTT, completar la tabla a continuación indicando claramente el valor de la ventana de congestión, si se aplica Slow Start (SS) o Congestion Avoidance (CA) y el umbral sshthresh. Suponer que el cliente siempre anuncia su ventana awnd máxima.

RTT	cwnd (MSS)	SS o CA	ssthresh
0	1	SS	∞
1	2	SS	∞
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			