

Learning logic programs by finding minimal unsatisfiable subprograms

UK Research and Innovation

Andrew Cropper and Céline Hocquette University of Oxford

andrew.cropper@cs.ox.ac.uk; celine.hocquette@cs.ox.ac.uk

1 - Introduction

The goal of inductive logic programming (ILP) is to induce a program (a set of logical rules) that generalises training examples.

In this work, we identify minimal unsatisfiable subprograms (MUSPs) to prune the search space.

Example 1 (Zendo)

$$h = \{ \leftarrow \text{red(Piece)}, \text{blue(Piece)} \}$$

h is an unsatisfiable subprogram because no piece is both red and blue. Therefore, we eliminate from the search space all specialisations of h.

Example 2 (Robot strategy)

Final state

$$h = \{ \leftarrow move_left(Initial,State) \}$$

h is an unsatisfiable subprogram because the robot cannot move left from the initial state. Therefore, we eliminate from the search space all specialisations of h.

3 - Theoretical Analysis

Theorem 1 Constraints from MUSPs are optimally sound.

Theorem 2 Using MUSPs to build constraints leads to more pruning.

5 - Conclusion

An approach that identifies MUSPs to prune the search space.

2 - Our approach (MUSPER)

A program is *unsatisfiable* if it does not entail any positive example.

Key idea: identify the MUSPs of unsatisfiable programs and build constraints from them.

Consider the positive examples $E^+ = \{f([],0), f([e,c,a,i],4)\}$, an appropriate BK, and the program:

$$h = \{ f(A,B) \leftarrow empty(A), head(A,B), tail(A,C), head(C,B) \}$$

h has the MUSPs:

$$\left\{ \leftarrow empty(A), head(A,B) \right\}$$

 $\left\{ \leftarrow empty(A), tail(A,C) \right\}$
 $\left\{ f(A,B) \leftarrow head(A,B) \right\}$

These programs are MUSPs of h because:

- 1. they are subprograms of h,
- 2. they are unsatisfiable, and
- 3. there are no unsatisfiable subprograms of h with strictly smaller size.

We prune specialisations of each of these MUSPs, such as:

$$\{ \leftarrow empty(A), head(A,B), one(B) \}$$

 $\{ \leftarrow empty(A), tail(A,C), tail(C,D), tail(D,E) \}$
 $\{ f(A,B) \leftarrow head(A,B), tail(B,C) \}$

4 - Experiment

- Q1 Can identifying MUSPs reduce learning times?
- Q2 How does MUSPER compare to other approaches?

Domain	POPPER	MUSPER	Change	Disco	MUSPER	Change
trains	13 ± 1	13 ± 1	0%	14 ± 1	13 ± 1	-7 %
zendo	36 ± 4	36 ± 4	0%	40 ± 5	36 ± 4	-10%
imdb	193 ± 51	148 ± 39	-23 %	250 ± 73	148 ± 39	-40%
iggp	617 ± 66	207 ± 34	-66%	583 ± 66	207 ± 34	-64%
graph	12 ± 5	8 ± 2	-33%	8 ± 2	8 ± 2	0%
synthesis	343 ± 39	199 ± 33	-41%	327 ± 38	199 ± 33	-39%
sql	594 ± 63	13 ± 1	-97%	505 ± 58	13 ± 1	-97%

Table 1: Learning times (seconds).

- Q1 Identifying MUSPs can drastically improve learning times whilst maintaining high predictive accuracies.
- Q2 MUSPER can substantially improve learning performance, both in terms of predictive accuracies and learning times, compared to existing approaches.