illiilli CISCO

Módulo 3: VLAN

 Conmutación, enrutamiento y Wireless Essentials v7.0 (SRWE)

Objetivos del módulo

Título del módulo: Protocolos y modelos

Objetivo del módulo: Explicar cómo los protocolos de red permiten que los dispositivos accedan a recursos de red locales y remotos.

Título del tema	Objetivo del tema	
Descripción general de las VLAN	Explique la finalidad de las VLAN en una red conmutada.	
Redes VLAN en un entorno conmutado múltiple	Explique cómo un switch reenvía tramas según la configuración de VLAN en un entorno conmutado múltiple.	
Configuración de VLAN	Configure un puerto para switch que se asignará a una VLAN según los requisitos.	
Enlaces troncales de la VLAN	Configure un puerto de enlace troncal en un switch LAN.	
Protocolo de enlace troncal dinámico	Configure el protocolo de enlace troncal dinámico (DTP).	

3.1 Descripción general de las VLAN

Descripción general de las VLAN Definiciones de VLAN

Las VLAN son conexiones lógicas con otros dispositivos similares.

La colocación de dispositivos en varias VLAN tiene las siguientes características:

- Proporciona segmentación de los diversos grupos de dispositivos en los mismos conmutadores
- Proporcionar una organización más manejable
 - Difusiones, multidifusión y unidifusión se aíslan en la VLAN individual
 - Cada VLAN tendrá su propia gama única de direcciones IP
 - Dominios de difusión más pequeños

Descripción general de las VLAN Beneficios de un diseño de VLAN

Los beneficios de usar VLAN son los siguientes:

Beneficios	Descripción
Dominios de difusión más pequeños	Dividir la LAN reduce el número de dominios de difusión
Seguridad mejorada	Solo los usuarios de la misma VLAN pueden comunicarse juntos
Eficiencia de TI mejorada	Las VLAN pueden agrupar dispositivos con requisitos similares, por ejemplo, profesores frente a estudiantes
Reducción de costos	Un switch puede admitir varios grupos o VLAN
Mejor rendimiento	Los pequeños dominios de difusión reducen el tráfico y mejoran el ancho de banda
Simpler Management	Grupos similares necesitarán aplicaciones similares y otros recursos de red

Descripción general de las VLAN

Tipos de VLAN

VLAN predeterminada

La VLAN 1 es la siguiente:

- La VLAN predeterminada
- La VLAN nativa predeterminada
- La VLAN de administración predeterminada
- No se puede eliminar ni cambiar el nombre

Nota: Aunque no podemos eliminar VLAN1, Cisco recomendará que asignemos estas características predeterminadas a otras VLAN

```
Switch# show vlan brief
VLAN Name
                       Status
     default
                       active
                                 Fa0/1, Fa0/2, Fa0/3, Fa0/4
                                 Fa0/5, Fa0/6, Fa0/7, Fa0/8
                                 Fa0/9, Fa0/10, Fa0/11, Fa0/12
                                 Fa0/13, Fa0/14, Fa0/15, Fa0/16
                                 Fa0/17, Fa0/18, Fa0/19, Fa0/20
                                 Fa0/21, Fa0/22, Fa0/23, Fa0/24
                                 Gi0/1, Gi0/2
1002 fddi-default
                                       act/unsup
1003 token-ring-default
                                       act/unsup
1004 fddinet-default
                                       act/unsup
1005 trnet-default
                                       act/unsup
```

Descripción general de las VLAN

Tipos de VLAN (Cont.)

VLAN de datos

- Dedicado al tráfico generado por el usuario (correo electrónico y tráfico web).
- VLAN 1 es la VLAN de datos predeterminada porque todas las interfaces están asignadas a esta VLAN.

VLAN nativa

- Esto se utiliza sólo para enlaces troncales.
- Todas las tramas están etiquetadas en un enlace troncal 802.1Q excepto las de la VLAN nativa.

VLAN de administración

- Esto se utiliza para el tráfico SSH/Telnet VTY y no debe ser llevado con el tráfico de usuario final.
- Normalmente, la VLAN que es el SVI para el conmutador de capa 2 sus filiales. Todos los derechos reservados

Descripción general de las VLAN

Tipos de VLAN (Cont.)

VLAN de voz

- Se requiere una VLAN separada porque el tráfico de voz requiere:
 - Ancho de banda asegurado
 - Alta prioridad de QoS
 - Capacidad para evitar la congestión
 - Retraso menos de 150 ms desde el origen hasta el destino
- Toda la red debe estar diseñada para admitir la voz.

Descripción general de VLAN

Packet Tracer: ¿quién escucha la transmisión?

En esta actividad de Packet Tracer, hará lo siguiente:

- Observar el tráfico de broadcast en la implementación de una VLAN
- completar las preguntas de repaso

3.2 VLAN en un entorno de conmutación múltiple

VLAN en un entorno de conmutación múltiple

Definición de troncales de VLAN

Un enlace troncal es un enlace punto a punto entre dos dispositivos de red.

Funciones troncal de Cisco:

- Permitir más de una VLAN
- Extender la VLAN a través de toda la red
- De forma predeterminada, admite todas las VLAN
- Soporta enlace troncal 802.1Q

VLAN en un entorno de conmutación múltiple Redes sin VLAN

Sin VLAN, todos los dispositivos conectados a los switches recibirán todo el tráfico de unidifusión, multidifusión y difusión.

PC1 sends out a local Layer 2 broadcast. The switches forward the broadcast frame out all available ports.

VLAN en un entorno de conmutación múltiple

Redes con VLAN

Con las VLAN, el tráfico de unidifusión, multidifusión y difusión se limita a una VLAN. Sin un dispositivo de capa 3 para conectar las VLAN, los dispositivos de diferentes VLAN no pueden comunicarse.

PC1 sends out a local Layer 2 broadcast. The switches forward the broadcast frame only out ports configured for VLAN10.

VLAN en un entorno de conmutación múltiple

Identificación de VLAN con una

etiqueta

- El encabezado IEEE 802.1Q es de 4 Bytes
- Cuando se crea la etiqueta, se debe volver a calcular el FCS.
- Cuando se envía a los dispositivos finales, esta etiqueta debe eliminarse y el FCS vuelve a calcular su número original.

Campo de etiqueta VLAN 802.1Q	Función	
Tipo	 Campo de 2 bytes con hexadecimal 0x8100 Esto se conoce como ID de protocolo de etiqueta (TPID) 	
Prioridad de usuario	Valor de 3 bits que admite	
Identificador de formato canónico (CFI)	 Valor de 1 bit que puede admitir marcos de anillo de tokens en Ethernet 	
VLAN ID (VID)	 Identificador de VLAN de 12 bits que puede admitir hasta 4096 VLAN 	

VLAN en un entorno de conmutación múltiple VLAN nativas y etiquetado 802.1Q

Conceptos básicos del tronco 802.1Q:

- El etiquetado se realiza normalmente en todas las VLAN.
- El uso de una VLAN nativa se diseñó para uso heredado, como el concentrador en el ejemplo.
- A menos que se modifique, VLAN1 es la VLAN nativa.
- Ambos extremos de un enlace troncal deben configurarse con la misma VLAN nativa.
- Cada troncal se configura por separado, por lo que es posible tener una VLAN nativa diferente en troncos separados.

VLAN en un entorno de conmutación múltiple

Etiquetado de VLAN de voz

El teléfono VoIP es un conmutador de tres puertos:

- El conmutador utilizará CDP para informar al teléfono de la VLAN de voz.
- El teléfono etiquetará su propio tráfico (Voz) y puede establecer el coste de servicio (CoS). CoS es QoS para la capa 2.
- El teléfono puede o no etiquetar marcos de la PC.

saliente	Función de etiquetado
VLAN de voz	etiquetado con un valor de prioridad de clase de servicio (CoS) de capa 2 apropiado
VLAN de acceso	también se puede etiquetar con un valor de prioridad CoS de capa 2
VLAN de acceso	no está etiquetado (sin valor de prioridad CoS de capa 2)

VLAN en un entorno de conmutación múltiple

Ejemplo de verificación de VLAN de voz

El comando **show interfaces fa0/18 switchport** puede mostrarnos las VLAN de datos y voz asignadas a la interfaz.

```
S1# show interfaces fa0/18 switchport
Name: Fa0/18
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 20 (student)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: 150 (voice)
```


VLAN en un entorno de conmutadores múltiples

Packet Tracer: investigue una implementación de VLAN

En esta actividad de Packet Tracer, usted puede:

- Parte 1: observar el tráfico de difusión en una implementación de VLAN
- Parte 2: observar el tráfico de difusión sin VLAN

3.3 Configuración de VLAN

Configuración de VLAN Rangos de VLAN en switches Catalyst

Los switches Catalyst 2960 y 3650 admiten más de 4000 VLAN.

Switch# show vlan brief			
VLAN	Name	Status	Ports
1	default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4 Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24 Gi0/1, Gi0/2
1002	fddi-default		act/unsup
1003	token-ring-default	5	act/unsup
1004	fddinet-default		act/unsup
1005	trnet-default		act/unsup

Rango normal VLAN 1 - 1005	Rango extendido VLAN 1006 - 4095
Utilizado en pequeñas y medianas empresas	Usado por los proveedores de servicios
1002 — 1005 están reservados para VLAN heredadas	Están en Running-Config
1, 1002 — 1005 se crean automáticamente y no se pueden eliminar	Admite menos funciones de VLAN
Almacenado en el archivo vlan.dat en flash	Requiere configuraciones de VTP
VTP puede sincronizar entre conmutadores	

Comandos de creación de VLAN de configuración de VLAN

Los detalles de la VLAN se almacenan en el archivo vlan.dat. Crea VLAN en el modo de configuración global.

Tarea	Comando de IOS
Ingresa al modo de configuración global.	Switch# configure terminal
Cree una VLAN con un número de identificación válido.	Switch(config)# vlan vlan-id
Especificar un nombre único para identificar la VLAN.	Switch(config-vlan)# name vlan-name
Vuelva al modo EXEC con privilegios.	Conmutador (config-vlan) # final
Ingresa al modo de configuración global.	Switch# configure terminal

21

Configuración de VLAN **Ejemplo de creación de VLAN**

- Si el Student PC va a estar en VLAN 20, primero crearemos la VLAN y luego la nombraremos.
- Si no lo nombra, Cisco IOS le dará un nombre predeterminado de vlan y el número de cuatro dígitos de la VLAN. Por ejemplo, vlan0020 para VLAN 20.

Indicador	Comando
S1#	Configure terminal
S1(config)#	vlan 20
S1(config-vlan)#	name student
S1(config-vlan)#	finalizar

Comandos de asignación de puertos de VLAN de configuración de VLAN

Una vez creada la VLAN, podemos asignarla a las interfaces correctas.

Tarea	Comando
Ingresa al modo de configuración global.	Switch# configure terminal
Ingrese el modo de configuración de interfaz.	Switch(config)# interface interface-id
Establezca el puerto en modo de acceso.	Switch(config-if)# switchport mode access
Asigne el puerto a una VLAN.	Switch(config-if)# switchport access vlan vlan-id
Vuelva al modo EXEC con privilegios.	Switch(config-if)# end

Configuración de VLAN

Ejemplo de asignación de puerto VL

Podemos asignar la VLAN a la interfaz del puerto.

- Una vez que el dispositivo se asigna la VLAN, el dispositivo final necesitará la información de dirección IP para esa VLAN
- Aquí, Student PC recibe 172.17.20.22

Indicador	Comando
S1#	Configure terminal
S1(config)#	Interfaz fa0/18
S1(config-if)#	Switchport mode access
S1(config-if)#	Switchport access vlan 20
S1(config-if)#	finalizar

Datos de configuración de VLAN y VLAN de voz

Un puerto de acceso solo se puede asignar a una VLAN de datos. Sin embargo, también se puede asignar a una VLAN de voz para cuando un teléfono y un dispositivo final estén fuera del mismo puerto de conmutación.

Ejemplo de VLAN de voz ydatos de configuración de VLAN

- Queremos crear y nombrar VLAN de voz y datos.
- Además de asignar la VLAN de datos, también asignaremos la VLAN de voz y activaremos QoS para el tráfico de voz a la interfaz.
- El switch catalizador más reciente creará automáticamente la VLAN, si aún no existe, cuando se asigne a una interfaz.

Nota: QoS está más allá del alcance de este curso. Aquí mostramos el uso del comando mls qos trust [cos | device cisco-phone | dscp | ip-precedence].

```
S1(config) # vlan 20
S1(config-vlan) # name student
S1(config-vlan) # vlan 150
S1(config-vlan) # name VOICE
S1(config-vlan) # exit
S1(config-vlan) # exit
S1(config-if) # switchport mode access
S1(config-if) # switchport access vlan 20
S1(config-if) # mls qos trust cos
S1(config-if) # switchport voice vlan 150
S1(config-if) # end
```

```
\ Access VLAN does not exist. Creating vlan 30
```

Configuración de VLAN

Verifique la información de VLAN

Use el comando **show vlan** . La sintaxis completa es:

show vlan [brief | id *vlan-id* | **name** *vlan-name* | **summary**]

```
S1# show vlan summary

Number of existing VLANs : 7

Number of existing VTP VLANs : 7

Number of existing extended VLANS : 0
```

```
S1# show interface vlan 20
Vlan20 is up, line protocol is up
Hardware is EtherSVI, address is 001f.6ddb.3ec1 (bia 001f.6ddb.3ec1)
MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set

(Output omitted)
```

Tarea	Opción de comando
Muestra el nombre, el estado y sus puertos de la VLAN, una VLAN por línea.	breve
Muestra información sobre el número de ID de VLAN identificado.	id vlan-id
Muestra información sobre el número de ID de VLAN identificado. El nombre de vlane es una cadena ASCII de 1 a 32 caracteres.	name vlan-name
Mostrar el resumen de información de la VLAN.	resumen

CISCO Información confidencial de Cisco 2/

Configuración de VLAN

Cambiar pertenencia al puerto VLAN

Hay varias formas de cambiar la membresía de VLAN:

- Vuelva a ingresar el comando switchport access vlan vlan-id
- use la vlan de acceso sin puerto de conmutación para volver a colocar la interfaz en la VLAN 1

Utilice los comandos **show vlan brief** o **show interface fa0/18 switchport** para verificar la asociación correcta de VLAN.

```
S1(config) # interface fa0/18
S1(config-if) # no switchport access vlan
S1(config-if)# end
S1#
S1# show vlan brief
VLAN Name
                          Status
                                    Ports
                                  Fa0/1, Fa0/2, Fa0/3, Fa0/4
     default
                        active
                                  Fa0/5, Fa0/6, Fa0/7, Fa0/8
                                  Fa0/9, Fa0/10, Fa0/11, Fa0/12
                                  Fa0/13, Fa0/14, Fa0/15, Fa0/16
                                  Fa0/17, Fa0/18, Fa0/19, Fa0/20
                                  Fa0/21, Fa0/22, Fa0/23, Fa0/24
                                  Gi0/1, Gi0/2
     student
                        active
1002 fddi-default
                        act/unsup
1003 token-ring-default act/unsup
1004 fddinet-default
                        act/unsup
                        act/unsup
1005 trnet-default
```

```
S1# show interfaces fa0/18 switchport
Name: Fa0/18
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
```

Configuración de VLAN Eliminar VLAN

Elimine las VLAN con el_comando **no vlan** *vlan-id* .

Precaución: antes de eliminar una VLAN, reasigne todos los puertos miembros a una VLAN diferente..

- Elimine todas las VLAN con los comandos delete flash:vlan.dat o delete vlan.dat.
- Vuelva a cargar el switch al eliminar todas las VLAN.

Nota: Para restaurar el valor predeterminado de fábrica, desconecte todos los cables de datos, borre la configuración de inicio y elimine el archivo vlan.dat y, a continuación, vuelva a cargar el dispositivo.

Rastreador depaquetes de configuración de VLAN — Configuración de VLAN

En esta actividad de Packet Tracer, completará los siguientes objetivos:

- Verificar la configuración de VLAN predeterminada
- Configurar las redes VLAN
- Asignar VLAN a los puertos

3.4 Troncales VLAN

Comandos de configuracióntroncal devlan

Configure y verifique las troncales VLAN. Los troncos son capa 2 y transportan tráfico para todas las VLAN.

Tarea	Comando de IOS
Ingresa al modo de configuración global.	Switch# configure terminal
Ingrese el modo de configuración de interfaz.	Switch(config)# interface interface-id
Establezca el puerto en modo de enlace permanente.	Conmutador(config-if) # troncaldemodo de puerto de conmutación
Cambie la configuración de la VLAN nativa a otra opción que no sea VLAN 1.	Switch(config-if)# switchport trunk native vlan <i>vlan-id</i>
Especificar la lista de VLAN que se permitirán en el enlace troncal.	Switch(config-if)# switchport trunk allowed vlan vlan-list
Vuelva al modo EXEC con privilegios.	Switch(config-if)# end

Ejemplo de Configuración de Troncales

Troncales de VLAN

Las subredes asociadas a cada VLAN son:

- VLAN 10 Faculty/Staff 172.17.10.0/24
- VLAN 20 Students 172.17.20.0/24
- VLAN 30 Guests 172.17.30.0/24
- VLAN 99 Native 172.17.99.0/24

F0/1 port on S1 is configured as a trunk port.

Nota: Esto supone un conmutador 2960 que utiliza el etiquetado 802.1q. Los switches de capa 3 requieren que la encapsulación se configure antes del modo troncal.

Indicador	Comando
S1(config)#	Interfaz fa0/1
S1(config-if)#	Switchport mode trunk
S1(config-if)#	Switchport trunk native vlan 99
S1(config-if)#	Switchport trunk allowed vlan 10,20,30,99
S1(config-if)#	finalizar

CISCO

Troncales de VLAIN

Verifique la configuración de troncales

Establezca el modo troncal y la vlan nativa.

Observe el comando sh int fa0/1 switchport

- Se establece en troncal administrativamente
- Se establece como troncal operacionalmente (en funcionamiento)
- La encapsulación es dot1q
- VLAN nativa establecida en VLAN 99
- Todas las VLAN creadas en el switch pasarán tráfico en este tronco

```
S1(config) # interface fa0/1
S1(config-if) # switchport mode trunk
S1(config-if) # no switchport trunk native vlan 99
S1(config-if) # end
S1# show interfaces fa0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1g
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 99 (VLAN0099)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
(output omitted)
```

Troncales de VLAN

Restablezca el tronco al estado predeterminado

- Restablezca la configuración predeterminada del tronco con el comando no.
 - Todas las VLAN permitidas para pasar tráfico
 - VLAN nativa = VLAN 1
- Verifique la configuración
 predeterminada con un comando sh

```
S1(config) # interface fa0/1
S1(config-if) # no switchport trunk allowed vlan
S1(config-if) # no switchport trunk native vlan
S1(config-if) # end
```

```
S1# show interfaces fa0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1g
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
(output omitted)
```

Troncales de VLAN

Restablezca el tronco al estado predeterminado (Cont.)

Restablezca el tronco a un modo de acceso con el comando **switchport mode access** :

- Se establece en una interfaz de acceso administrativamente
- Se establece como una interfaz de acceso operacionalmente (en funcionamiento)

```
S1(config) # interface fa0/1
S1(config-if) # switchport mode access
S1(config-if)# end
S1# show interfaces fa0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
(output omitted)
```

VLAN Trunks

Packet Tracer - Configurar Trunks

En esta actividad de Packet Tracer, completará los siguientes objetivos:

- verificar las VLAN
- configurar los enlaces troncales

Troncales VLAN

Laboratorio: configurar VLAN y troncales

En este laboratorio, realizará lo siguiente:

- Armar la red y configurar los ajustes básicos de los dispositivos
- Crear redes VLAN y asignar puertos de switch
- Mantener las asignaciones de puertos de VLAN y la base de datos de VLAN
- Configurar un enlace troncal 802.1Q entre los switches
- Eliminar la base de datos de VLAN

3.5 Dynamic Trunking ProtocolProtocolo de enlace dinámico

Protocolo de enlace dinámico Introduction to DTP

El Protocolo de enlace troncal dinámico (DTP) es un protocolo propietario de Cisco.

Las características de DTP son las siguientes:

- Activado de forma predeterminada en switches Catalyst 2960 y 2950
- Dynamic-Auto es el valor predeterminado en los conmutadores 2960 y 2950
- Puede desactivarse con el comando nonegotiate
- Puede volver a activarse configurando la interfaz en dinámico automático
- Establecer un conmutador en un tronco estático o acceso estático evitará problemas de negociación con los comandos switchport mode trunk o switchport mode access.

```
S1(config-if) # switchport mode trunk
S1(config-if) # switchport nonegotiate

S1(config-if) # switchport mode dynamic auto
```


Protocolo de enlace dinámico

Modos de interfaz negociados

El comando **switchport mode** tiene opciones adicionales.

Utilice el comando switchport nonegotiate interface configuration para detener la negociación

DTP.

Opción	Descripción
Acceso	Modo de acceso permanente y negocia para convertir el vínculo vecino en un vínculo de acceso
Dinámico automático	Will se convierte en una interfaz troncal si la interfaz vecina se configura en modo troncal o deseable
Dinámico deseable	Busca activamente convertirse en un tronco negociando con otras interfaces automáticas o deseables
Enlace troncal	Modo de enlace permanente y negocia para convertir el enlace vecino en un enlace troncal

Resultados del protocolo de enlace troncal dinámico de una configuración DTP

Las opciones de configuración de DTP son las siguientes:

	Dinámico automático	Dinámico deseado	Troncal	Acceso
Dinámico automático	Acceso	Troncal	Troncal	Acceso
Dinámico deseado	Troncal	Troncal	Troncal	Acceso
Troncal	Troncal	Troncal	Troncal	Conectividad limitada
Acceso	Acceso	Acceso	Conectividad limitada	Acceso

Protocolo de enlace dinámico

Verifique el modo DTP

La configuración predeterminada de DTP depende de la versión y plataforma del IOS de Cisco.

- Utilice el comando show dtp interface para determinar el modo DTP actual.
- La práctica recomendada recomienda que las interfaces se configuren para acceder o troncal y para desconectarse DTP

```
S1# show dtp interface fa0/1

DTP information for FastEthernet0/1:
TOS/TAS/TNS: ACCESS/AUTO/ACCESS
TOT/TAT/TNT: NATIVE/NEGOTIATE/NATIVE
Neighbor address 1: C80084AEF101
Neighbor address 2: 000000000000
Hello timer expiration (sec/state): 11/RUNNING
Access timer expiration (sec/state): never/STOPPED
Negotiation timer expiration (sec/state): never/STOPPED
Multidrop timer expiration (sec/state): never/STOPPED
FSM state: S2:ACCESS
# times multi & trunk 0
Enabled: yes
In STP: no
```

Protocolo de enlace dinámico

Packet Tracer - Configurar DTP

En esta actividad de Packet Tracer, completará los siguientes objetivos:

- Configurar la conexión troncal estática
- Configure and verify DTP

3.6 - Módulo de práctica y cuestionario

Práctica del módulo y cuestionario

¿Qué aprendí en este módulo?

- Las VLAN se basan en conexiones lógicas, en lugar de conexiones físicas.
- Las VLAN pueden segmentar redes según la función, el equipo o la aplicación.
- Cada VLAN se considera una red lógica diferente.
- Un enlace troncal es un enlace punto a punto que lleva más de una VLAN.
- Los campos de etiqueta de VLAN incluyen el tipo, prioridad de usuario, CFI y VID.
- Se necesita una red VLAN de voz separada para admitir VoIP.
- Normal range VLAN configurations are stored in the vlan.dat file in flash.
- Un puerto de acceso puede pertenecer a una VLAN de datos a la vez, pero también puede tener una VLAN de voz.

Práctica del módulo y cuestionario

¿Qué aprendí en este módulo? (continuación)

- Un tronco es un vínculo de capa 2 entre dos conmutadores que transporta tráfico para todas las VLAN.
- Los troncos necesitarán etiquetado para las distintas VLAN, normalmente 802.1q.
- El etiquetado IEEE 802.1q proporciona una VLAN nativa que permanecerá sin etiquetar.
- Una interfaz se puede establecer en trunking o no trunking.
- La negociación de enlaces troncales se gestiona mediante el Protocolo de enlace dinámico (DTP).
- DTP es un protocolo de propiedad de Cisco que gestiona las negociaciones troncales.

