Tutorial

May 3, 2021

Question 1. Prove that if A is a square of length 1 then for any five points in side A there will be two points separeated by a distance at max $\frac{1}{\sqrt{2}}$

Divide A into four squares of side length $\frac{1}{2}$. Now apply PHP and try to figure out the solution.

Question 2. If every points of the plane \mathbb{R}^2 is coloured by either red black or blue then there will be a rectangle whose vertices are of same colour. Prove it.

Consider the set $S \subseteq \mathbb{Z}^2 = \{(x, y) | 0 \le x \le 3, 0 \le y \le 81 \}$

So there are 82 columns and for each column there are $3^4 = 81$ possibilities of colouring

Hence there will two columns c_1 , c_2 which will have exact pattern of colouring. (PHP)

Now apply PHP again to find two vertices from each c_i which will have exact same colour.

Question 3. Let $x_1, x_2, ..., x_n \in \mathbb{R}$, $|x_i| \leq 1$. Show that there exists $a_i \in \{-1,0,1\}$, not all zero, such that $|\sum a_i x_i| \leq \frac{n}{2^n - 1}$

Take $\vec{x} = (x_1, ..., x_n)$ s.t. $0 < x_i < 1$

Define $\langle \vec{x}, \vec{y} \rangle = \sum_{i=1}^{n} x_i y_i$ Define $A = \{-1, 0, 1\}^n$, $B \subseteq A = \{0, 1\}^n$ Note for $\vec{b_1}, \vec{b_2} \in B$ we have $\vec{b_1} - \vec{b_2} \in A$ Note for $\vec{b} \in B$ we have $0 \le \langle \vec{b}, \vec{x} \rangle \le n$ and there are 2^n possibilities for $\langle \vec{b}, \vec{x} \rangle$

Now divide the interval [0, n] into $2^n - 1$ equal length intervals and apply PHP Also remember $\langle \vec{b}_1, \vec{x} \rangle - \langle \vec{b}_2, \vec{x} \rangle = \langle \vec{b}_1 - \vec{b}_2, \vec{x} \rangle$