

目 录

1	功能说	名明		2
2	主要特	}性		2
3	应用领	5域		2
4	典型区	7用电路		2
5				
6				
7				
	7.1 7.2			
8				
9	NS416			
	9.1			
	9.4 9.5			
			图目录	
	厦 1 N	C4160 典刑应用由吸		2
	图 5 —	-线脉冲时序图		9
	图 7 S	OP8 装尺寸图		11
			≠ 口 크 .	
	非 1世	: 比县士物理极阻估	表目录	2

1 功能说明

NS4160是一款带 AB 类/D 类工作模式切换功能、超低 EMI、无需滤波器、5W 单声道音频功放。通过一个控制管脚使芯片在 AB 类或者 D 类工作模式之间切换,以匹配不同的应用环境。即使工作在 D 类模式,NS4160 采用先进的技术,在全带宽范围内极大地降低了 EMI 干扰,最大限度地减少对其他部件的影响。NS4160 无需滤波器的 PWM 调制结构及反馈电阻内置方式减少了外部元件、PCB 面积和系统成本。NS4160 内置过流保护、过热保护及欠压保护功能,有效地保护芯片在异常工作状况下不被损坏。并且利用扩频技术充分优化全新电路设计,高达 90%的效率更加适合便携式音频产品。

NS4160 提供 eSOP8 封装, 额定的工作温度范围为-40℃至 85℃。

2 主要特性

- AB 类/D 类工作模式切换功能
- AB 类/D 类工作模式和低功耗关断模式通过一线脉冲控制,节省主控 GPIO
- 5W 输出功率
- 0.1%THD(1W输出功率、5V电源)
- 优异的全带宽 EMI 抑制能力
- 优异的"上电,掉电"噪声抑制
- 高达 90%以上的效率(D 类工作模式)
- 工作电压范围: 3.0V~5.5V
- 过流保护、过热保护、欠压保护
- eSOP8 封装

3 应用领域

- 手提电脑
- 台式电脑
- 低压音响系统

4 典型应用电路

图1 NS4160 典型应用电路

5 极限参数

表1 芯片最大物理极限值

参数	最小值	最大值	单位	说明
电源电压	2.8	5.5	V	
储存温度	-65	150	°C	
输入电压	-0.3	V_{DD}	V	
耐 ESD 电压	4000		V	
结温	150		°C	
工作温度	-40	85	°C	
热阻				
$\theta_{JC}(SOP8)$		20	°C/W	
$\theta_{JA}(SOP8)$		80	°C/W	
焊接温度		220	°C	15 秒内

注: 在极限值之外或任何其他条件下, 芯片的工作性能不予保证。

6 电气特性

限定条件: (TA=25℃)

表2 NS4160 电气特性

符号	参数	测试条件	最小值	标准值	最大值	单位
V_{DD}	电源电压		3.0		5.5	V
$I_{ m DD}$	电源静态电流	$V_{DD} = 3.6V$, $V_{IN} = 0V$, No load		12		mA
TOD	电极即芯电机	$V_{DD} = 5.0V$, $V_{IN} = 0V$, No load		18		mA
I_{SD}	关断漏电流	$V_{ctrl} = Vdd$		1	20	μΑ
Vos	输出失调电压			10	40	mV
Ro	输出电阻			3		ΚΩ
PSRR	电源抑制比	217Hz			-80	dB
ISKK	中国初来了中 市江口口	20KHz			-72	dB
CMRR	共模抑制比			-70		dB
f_{SW}	调制频率	$V_{DD} = 3.0 \text{V to } 5.25 \text{V}$		450		kHz
η	效率	$Po=0.5W, R_L=4\Omega,$ $V_{DD}=3.6V$		90		%
VIH	逻辑控制端 高电平		1.4			V
0VIL	逻辑控制端 低电平				0.4	V
THI	CTRL 一线脉冲 高电平时间		1		12	us
TLO	CTRL 一线脉冲 低电平时间		1		12	us
TOFF	CTRL关断时间		100			us
Po	输出功率	THD=1%,ClassAB $f=1$ KHz, $R_L=2$ Ω		3.9		W

		THD=10%,ClassAB $f=1$ KHz, $R_L=2$ Ω	4.7	W
		THD=1%,ClassAB f=1KHz,R _L =4 Ω	2.1	W
		THD=10%,ClassAB $f=1$ KHz, $R_L=4$ Ω	2.9	W
		THD=1%,ClassD f=1KHz, R_L =2 Ω	4.0	W
		THD=10%,ClassD f=1KHz,R _L =2 Ω	5.0	W
		THD=1%,ClassD f=1KHz,R _L =4 Ω	2.6	W
		THD=10%,ClassD f=1KHz,R _L =4 Ω	3.1	W
THD	失真度	f=1KHz, ClassD, R_L =2 Ω /4 Ω , P_0 =0.5W	0.1	%
SNR	信噪比	$RL=2\Omega$, $Po=0.5W$	85	dB

7 芯片管脚描述

7.1 管脚分配图

图2 SOP8装管脚分配图(top view)

7.2 引脚功能描述

表3 NS4160 管脚描述

符号	管脚号	描述	
CTRL	1	关断以及 AB 类/D 类切换控制, (低电平关断)	
Bypass	2	参考电压外接电容	
INP	3	输入正端	
INN 4 输入		输入负端	
VoN 5 输出		输出负端	
VDD	6	电源输入	
GND 7		电源地	
VoP 8		输出正端	

8 NS4160 典型参考特性

Nsiway____

9 NS4160应用说明

9.1 芯片基本结构描述

NS4160 是单声道带 AB 类,D 类工作模式切换功能的音频功率放大器。芯片内部集成了反馈电阻,放大器的增益可以在外围通过输入电阻设置。其原理框图如下:

Nsiway____

http://www.junyi-ic.com TEL:0755-29955070 FAX:0755-27858707

图3 NS4160 原理框图

9.2 NS4160 工作模式

NS4160的工作模式通过管脚 CTRL 设置,如下表:

次4 N34100 工作[英八以且				
CTRL	工作模式			
一个上升沿	AB 类			
连续两个上升沿	D类			
长低(>100us)	低功耗关断			

表4 NS4160工作模式设置

桥式输出模式

NS4160工作在桥式输出模式,外接电阻 Ri,总增益为 Av = 120k/Rin。

输入电容 Ci 和输入电阻 Ri 选择

输入电容和输入电阻构成高通滤波器,截止频率为 fc=1/(2π×Ri×Ci)。过大的输入电容,增加成本、增加面积,这对于成本、面积紧张的应用来讲,非常不利。显然,确定使用多大的电容来完成耦合很重要。实际上,在很多应用中,扬声器(Speaker)不能够再现低于 100Hz-150Hz 的低频语音,因此采用大的电容并不能够改善系统的性能。除了考虑系统的性能,开关/切换噪声的抑制性能受电容的影响,如果耦合电容大,则反馈网络的延迟大,导致 pop 噪声出现,因此,小的耦合电容可以减少该噪声。

旁路电容 Cb 选择

Cb 决定 NS4160 静态工作点的稳定性,所以当开启有爆裂的输入信号时它的值非常关键。Cb 越大,芯片的输出倾斜到静态直流电压(即 VDD/2) 越慢,则开启的爆裂声越小。Cb 取 1uF 可得到一个"滴答声"和"爆裂声"都较小的关断功能。

电源滤波电容选择

在放大器的应用中,电源的旁路设计很重要,特别是对应用方案的噪声性能及电源电压抑制性能。设计中要求滤波电容尽量靠近芯片电源脚。典型的电容为 10uF 的电解电容并上 0.1uF 的陶瓷电容。

低功耗关断功能

当 CTRL 为低并且保持 100us 以上,芯片处于低功耗关断状态。

AB 类, D 类切换功能

AB类,D类切换控制功能和芯片低功耗关断功能共用一个管脚。通过一线脉冲控制,在AB类/D类模式之间动态切换。当CTRL管脚检测到一个上升沿时,芯片工作在AB类模式;当CTRL管脚连续检测到两个上升沿时,芯片工作在D类模式。CTRL管脚拉低并且保持100us以上芯片进入低功耗关断模式。芯片进入低功耗关断模式以后。如要重新进入其中一种工作模式必须重新设置。示意图如下:

图4 NS4160工作模式设置

加在 CTRL 线脉冲高电平宽度(THI)要求 1us<THI<12us。低电平宽度(TLO)要求 1us<TLO<12us。进入低功耗关断模式低电平保持时间(Toff)要求 Toff>100us。时序图如下:

图5 一线脉冲时序图

9.3 EMI增强技术

NS4160 内置 EMI 增强技术,在全带宽范围内极大地降低了 EMI 干扰,最大限度地减少对其他部件的影响。如图 6 所示。

Nsiway_

图6 EMI测试频谱图

9.4 效率

NS4160 利用扩展频谱技术充分优化全新 D 类放大器的电路设计,以提高效率。工作在 D 类模式时,高达 90%的效率更加适合于便携式音频产品。

9.5 保护电路

当芯片发生输出引脚与电源或地短路,或者输出之间的短路故障时,过流保护电路会关断芯片以防止芯片被损坏。短路故障消除后,NS4160自动恢复工作。当芯片温度过高时,芯片也会被关断。温度下降后,NS4160继续正常工作。当电源电压过低时,芯片同样会被关断,电源电压恢复后,芯片会再次启动。

Nsiway______10

10 芯片的封装尺寸图

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1. 350	1. 750	0. 053	0. 069	
A1	0. 100	0. 250	0. 004	0. 010	
A2	1. 350	1. 550	0. 053	0. 061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0. 006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
Е	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0. 016	0. 050	
θ	0 °	8°	0°	8°	

图7 SOP8 封装尺寸图

声明:深圳市纳芯威科技有限公司保留在任何时间,并且没有通知的情况下修改产品资料和产品规格的权利,本手册的解释权归深圳市纳芯威科技有限公司所有,并负责最终解释。

Nsiway_