已知椭圆方程

$$ax^2 + bxy + cy^2 + dx + ey = 1$$

令**a** = $[a, b, c, d, e]^T$, **x** = $[x^2 \ xy \ y^2 \ x \ y]^T$, 于是方程可表示为**ax** = 1。那么拟合椭圆的最优化问题可表示为:

$$\min \|\mathbf{Da}\|^2$$
s. t. $\mathbf{a}^{\mathsf{T}}\mathbf{Ca} = 1$

其中 D 表示数据样本集合 $n \times 6$, 6 表示维度, n 表示样本数。 a 表示椭圆方程的参数,矩阵 常数矩阵 C 为:

根据拉格朗日乘子法,引入拉格朗日因子λ,得到以下的两个等式方程:

$$2D^{T}Da - 2\lambda Ca = 0$$
$$a^{T}Ca = 1$$

 ϕ **S** = **D**^T**D**, 那么上述方程可改写为:

$$\mathbf{S}\mathbf{a} = \lambda \mathbf{C}\mathbf{a}$$

$$\mathbf{a}^{\mathsf{T}}\mathbf{C}\mathbf{a} = 1$$

求解方程**Sa** = λ **Ca**的特征值和向量(λ_i , \mathbf{u}_i),那么同样地(λ_i , $\mu\mathbf{u}_i$)也是方程**Sa** = λ **Ca**的特征解,其中 μ 是任意的实数。而根据方程 \mathbf{a}^T **Ca** = 1,可以容易地找到一个 μ ,使得 $\mu^2\mathbf{u}_i^T$ **Cu** $_i$ = 1,即:

$$\mu_i = \sqrt[2]{\frac{1}{{\mathbf{u}_i}^\mathsf{T}\mathbf{C}\mathbf{u}_i}} = \sqrt[2]{\frac{\lambda_i}{{\mathbf{u}_i}^\mathsf{T}\mathbf{S}\mathbf{u}_i}}$$

最后令 $\bar{\mathbf{a}}_i = \mu_i \mathbf{u}_i$,取 $\lambda_i > 0$ 对应的特征向量 \mathbf{u}_i ,即可作为曲线拟合的方程解。

Matlab 实现的为代码只需要六行,如下所示:

```
% x,y are lists of coordinates
```

function a = fit_ellipse(x,y)

% Build design matrix

D = [x.*x x.*y y.*y x y ones(size(x))];

% Build scatter matrix

S = D'*D;

% Build 6x6 constraint matrix

C(6,6) = 0; C(1,3) = 2; C(2,2) = -1; C(3,1) = 2;

% Solve eigensystem

[gevec, geval] = eig(inv(S)*C);

% Find the positive eigenvalue

[PosR, PosC] = find(geval > 0 & ~isinf(geval));

% Extract eigenvector corresponding to positive eigenvalue

a = gevec(:,PosC);