α) Για τη γωνία $\theta = A\hat{O}M$ γνωρίζουμε ότι $\frac{\pi}{2} < \theta < \pi$ και $\eta \mu \theta = \frac{4}{5}$. Από τη τριγωνομετρική ταυτότητα $\eta \mu^2 \theta + \sigma \upsilon v^2 \theta = 1$ έχουμε ότι:

$$\left(\frac{4}{5}\right)^2 + \sigma \upsilon v^2 \theta = 1 \Leftrightarrow \frac{16}{25} + \sigma \upsilon v^2 \theta = 1 \Leftrightarrow \sigma \upsilon v^2 \theta = 1 - \frac{16}{25} \Leftrightarrow \sigma \upsilon v^2 \theta = \frac{9}{25}.$$

Όμως $\frac{\pi}{2}$ < θ < π οπότε $\sigma \upsilon v\theta$ < 0 και επομένως $\sigma \upsilon v\theta$ = $-\frac{3}{5}$.

Επίσης
$$\varepsilon \phi \theta = \frac{\eta \mu \theta}{\sigma \upsilon \upsilon \theta} = \frac{\frac{4}{5}}{-\frac{3}{5}} = -\frac{4}{3}$$
 και τέλος $\sigma \phi \theta = \frac{1}{\varepsilon \phi \theta} = \frac{1}{-\frac{4}{3}} = -\frac{3}{4}$.

β) Γενικά, για τα σημεία M και K που η τελική πλευρά μιας γωνίας θ τέμνει τον τριγωνομετρικό κύκλο και την ευθεία $x\!=\!1$ αντίστοιχα, ισχύει ότι $M(\sigma \upsilon v\theta, \eta \mu \theta)$ και $K(1, \varepsilon \phi \theta)$. Συνεπώς $M(-\frac{3}{5}, \frac{4}{5})$ και $K(1, -\frac{4}{3})$.

γ)

- i. Είναι $\eta\mu\phi = \frac{3}{5} > 0$ και $\sigma\upsilon\nu\phi < 0$, οπότε η τελική πλευρά της γωνίας φ είναι στο 2ο τεταρτημόριο.
- ii. Είναι $\frac{3}{5} < \frac{4}{5}$, δηλαδή $\eta\mu\theta > \eta\mu\phi$. Όμως η συνάρτηση $\eta\mu x$ είναι γνησίως φθίνουσα στο $[\frac{\pi}{2},\pi]$, οπότε για να είναι $\eta\mu\theta > \eta\mu\phi$ θα πρέπει $\theta < \phi$.

Εναλλακτικά, βρίσκουμε το σημείο N του κύκλου με τεταγμένη $\eta\mu\phi=\frac{3}{5}$ και τετμημένη $\sigma\upsilon\nu\phi<0\ \, {\rm και}\ \, {\rm διαπιστώνουμε}\ \, {\rm το}\ \, {\rm σημείο}\ \, {\rm N}\ \, {\rm είναι}\ \, {\rm πιο}\ \, {\rm αριστερά}\ \, {\rm και}\ \, {\rm κάτω}\ \, {\rm από}\ \, {\rm το}\ \, {\rm σημείο}\ \, {\rm M}$ ${\rm δηλαδή}\ \, {\rm A\^{O}M}<{\rm A\^{O}N}\ \, {\rm οπότε}\ \, \theta<\phi\ \, .$

