Data Representation II

Integers

Connor Baker

Compiled on September 15, 2019 at 10:56am

Reading Track

This Lecture covers Chapters 2.2 and 2.3 (Integers and Integer Arithmetic)

Reading Homework:

- 1. Read through Chapter 2.4 (Floating Point)
 - Also continue to review Chapter 2.1-2.3 in its entirety
 - We'll spend the next several classes finishing up through Chapter 2.4
- 2. Continue to Review C. This semester, you'll be doing the following operations in Assembly Language. If you know these well in C, it will be a lot easier over the next two months:
 - Passing by reference and working with pointers in functions
 - Dereferencing values: *ptr = 42;
 - Pointer arithmetic with arrays: *(ary + 3) = 42;
 - Working with structs and dynamic memory
 - Working with linked lists using dynamically allocated structs

Lecture Overview from CS262

Bits and Ints	Describe the Limits on Integers in C	Describe how Integers are Represented in Memory	2.2
		Describe the concept of Overflow for Signed and Unsigned Integers	
		Describe the Range for Signed and Insigned Integers given Size in Bytes	
		Describe how to Access the Range of Integers in C using limits.h	
		Describe Converting Unsigned to Signed Integers of Varying Sizes	
		Describe Implicit Conversion on Expressions involving FP Values in C	(+ 2.4.6)
	Perform Arithmetic Operations on Integers by Constants	Perform Left and Right Shifts on an Integer	2.1.9
		Multiple an Integer by Shifts and Arithmetic	2.3
		Divide an Integer Properly using Shifts and Arithmetic	
		Describe the Dangers of Right Shifting in C	

Figure 1: Lecture overview.

Note on Endian-ness and Operations

For most applications that we will write in this class, the Endian-ness of a machine isn't something that we'll need to concern ourselves with.

Operations, even when done in C or Assembly, operate on a multi-byte integers as we would expect them to, if they were just large binary values.

Knowing about Endian-ness is only needed when we want to examine how the CPU stores integers in memory, looking at it byte by byte.

Connor Baker 1 of 16

Integer Representation

Unsigned Integers

With unsigned integers, all bits have the same magnitude that they do in binary. We can use notation to explain this:

$$\sum_{i=0}^{\omega-1} x_2 \times 2^i$$

where ω is the number of bits, and x_i is the bit at position i (zero-indexed from the Least Significant Bit (LSB)).

Signed Integers

Most machines use two's complement when they encode bits.

With the two's complement, all bits have the same magnitude as they would in binary. However, the Most Significant Bit (MSB) of the data type has a negative value. Mathematically,

$$-x_{\omega-1}\times 2^{\omega-1}+\sum_{i=0}^{\omega-2}x_2\times 2^i$$

where ω is the number of bits, and x_i is the bit at position i (zero-indexed from the LSB).

Question 1

Unsigned 8-bit binary integers to decimal:

Note	Binary	Decimal
UMIN	00000000	0
None	10000000	128
None	01111111	127
UMAX	11111111	255

Question 2

Unsigned 8-bit binary integers to decimal:

Connor Baker 2 of 16

Note	Binary	Decimal
None	00000000	0
TMIN	10000000	-128
TMAX	01111111	127
None	11111111	-1

Adding one repeatedly

Let's consider what happens when we repeatedly add one to an 8-bit number, looking at it as both a signed and unsigned integer.

Unsigned	Binary	Signed
0	00000000	0
1	00000001	1
:	:	÷
127	01111111	127
128	10000000	-128
:	:	÷
255	11111111	-1

Integer Ranges

In general, with an n-bit data type, you have an unsigned range of

$$[0,2^n-1]$$

and a signed range of

$$[2^{n-1}, 2^{n-1} - 1]$$

with two's complement.

The limits for different data types are in limits.h and stdint.h.

Connor Baker 3 of 16

Negating a Number

With signed integers in two's complement, we can negate values using the following process:

- Flip all of the bits
- Add one

Take for example the following snippet:

```
char x = 5; // x = 00000101
x = ~x + 1; // x = 111111011
x = ~x + 1; // x = 00000101
```

Performing the operation twice returns us to our original value.

Unsigned and Signed Values

Omitted slide 15.

Figure 2: Mapping between the two types.

Two's complement to unsigned conversion

Note: Converting between signed and unsigned does not change the bits – it's really just telling the program how to interpret that region of memory.

$$T2U(x) = \begin{cases} x, & x \ge 0 \\ x + w^{\omega}, & x < 0 \end{cases}$$

Connor Baker 4 of 16

Example: Convert 8-bit value −1 to an unsigned number.

Since x < 0, we use $T2U(x) = x + 2^{\omega}$. Substituting, T2U(-1) = -1 + 256 = 255.

Unsigned to two's complement conversion

$$U2T(u) = -u_{\omega-1} \times 2^{\omega} + u$$

Example: Convert 8-bit value 255 to an signed number.

Evaluating U2T(255) yields -256 + 255 which is equivalent to -1.

Signed and Unsigned in C

Constants

- Constant values in code are treated as signed integers.
 - To treat them as unsigned, add the U suffix:
 - * x += 429496725; becomes x += 429496725U;

Casting

- You can explicitly cast between signed and unsigned data types
- This is is the same thing as using U2T or T2U: the bits are unchanged

```
- uy = (unsigned int)ty;
```

- C will also implicitly cast if needed
 - int tx = uy; //may throw compiler warning

Casting Surprises

File: casting.c

Question 3

Consider the following table (the constants are all 32-bit integers, so TMAX = 2147483647 and TMIN = -2147483648).

Connor Baker 5 of 16

Constant 1	Constant 2	Signed or Unsigned Evaluation?	Relation? ==, <, or >
0	0U	Unsigned	Constant 1 == Constant 2
-1	0	Signed	Constant 1 < Constant 2
-1	OU	Unsigned	Constant 1 > Constant 2
2147483647	-2147483648	Signed	Constant 1 > Constant 2
2147483647U	-2147483648	Unsigned	Constant 1 < Constant 2
-1	-2	Signed	Constant 1 > Constant 2
(unsigned) -1	-2	Unsigned	Constant 1 > Constant 2
2147483647	2147483648U	Unsigned	Constant 1 < Constant 2
2147483647	(int) 2147483648U	Signed	Constant 1 > Constant 2

Zero Extension

When we cast an unsigned integral data type to a larger unsigned integral data type it is padded with leading zeros.

This does not change the value.

Signed Extension

When we cast a signed integral data type to a larger signed integral data type it is padded with whatever the MSB was.

This does not change the value.

Omitted slide 23.

File: sign.c

As an example, consider the following C snippet:

```
short x = 15213; // 0x3b6d
int ix = (int) x;
short y = -15213; // 0xc493
int iy = (int) y;
```

Туре	Decimal	Hex	Binary
short x	15213	3B 6D	00111011 01101101
int ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101

Connor Baker 6 of 16

Туре	Decimal	Hex	Binary
short y	-15213	C4 93	11000100 10010011
<pre>int iy</pre>	-15213	FF FF C4 93	11111111 11111111 11000100 10010011

Running it yields

```
$ ./sign 6d 3b
6d 3b 00 00
93 c4
93 c4 ff ff
```

Truncation

- The opposite of extension
- Reduces an integer to a smaller data type
- · Chops off the higher-order bits
- This process can change the value if the new size is too small

When to use Unsigned

File: mod.c

- Essentially only use it if you're
 - Performing modular arithmetic
 - When you absolutely need an extra bit worth of range

Unsigned Integer Addition

Modular arithmetic

The sum of two unsigned value may overflow. It is in effect a modular sum: $u+v=(u+v)\mod 2^\omega$. It will wrap at most once. It follow that the true sum will require at most $\omega+1$ bits to represent. The discarded bit is called the carry.

$$UAdd_{\omega}(u,v) = \begin{cases} u+v, & u+v < 2^{\omega} \\ u+v-2^{\omega}, & u+v \geq 2^{\omega} \end{cases}$$

The result of the UAdd function looks like modulo- ω applied to z=x+y in the first octant of \mathbb{R}^3 .

Connor Baker 7 of 16

Figure 3: $UAdd_4(u, v)$.

Detecting Overflow in Unsigned Addition

If u + v < u or u + v < v then you had an overflow.

Two's Complement Integer Addition

Essentially, we see the same behavior as we did with unsigned integer addition. We still have the carry, and the true sum still requires at most $\omega+1$ bits. This is largely due to the fact that the Arithmetic Logic Unit (ALU) only sees bits and does not interpret them.

Note: If you add a positive and a negative number, you'll never have an overflow.

Characterizing Signed Addition

Functionality

- The true sum requires up to $\omega+1$ bits
- This means that MSB may be truncated

Connor Baker 8 of 16

• The remaining bits are treated as signed bits

$$TAdd_{\omega} = \begin{cases} u + v - 2^{\omega}, & TMax_{\omega} < u + v \\ u + v, & TMin_{\omega} \leq u + v \geq TMax_{\omega} \\ u + v + 2^{\omega}, & u + v < TMin_{\omega} \end{cases}$$

- In the first case, we handle positive overflow (positive plus positive yields negative)
- In the last case, we handle negative overflow (negative plus negative yields positive)

Visualizing Two's Complement Addition

Consider what happens with a 4-bit data type.

- Range of [-8,7]
- If $u+v \geq 2^{\omega-1}$ (greater than TMax) it becomes negative
- If $u+v<-2^{\omega-1}$ (less than TMin) it becomes positive (or zero)

Figure 4: $TAdd_4(u, v)$.

Detecting Signed Overflow

Connor Baker 9 of 16

Type of Overflow	Criteria
Negative Overflow	$u < 0, v < 0, u + v \ge 0$
Positive Overflow	$u \ge 0, v \ge 0, u+v <> 0$
Overflow	Operands have the same sign, but the sum is a different sign

We can express the last one as a boolean statement in C:

```
(u < 0 == v < 0) && (u < 0 != sum < 0)
```

Practice with Additions

For each problem, is there an overflow? Consider the additions as both 4-bit unsigned integers and 4-bit signed integers.

```
1001
+1011
----
10100
```

As two unsigned integers, since there is a carry of one we have an unsigned overflow. As two signed integers, since both are negative and the sign of the sum is not the same (it is positive), we have a signed overflow.

```
1001
+0111
----
10000
```

As two unsigned integers, since there is a carry of one we have an unsigned overflow. As two signed integers, since the signs of the summands are different we cannot have a signed overflow.

Integer Addition – Summary

Addition is applied at the bit-level, regardless of whether the integral data type is signed or unsigned. The only difference is in how we detect overflows:

- Unsigned Integral Types
 - Overflow ⇔ carry bit is one
- Signed Integral Types
 - Overflow
 ⇔ the sign of the summands are the same and the sign of sum does not match the sign of the summands

Connor Baker 10 of 16

* Corollary: if the summands are different signs we will never have an overflow

Shift Operations

C lets you shift bits within data types left (<<) or right (>>).

However, according to the standard (§6.5.7):

The integer promotions are performed on each of the operands. The type of the result is that of the promoted left operand. If the value of the right operand is negative or is greater than or equal to the width of the promoted left operand, the behavior is undefined.

The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros. If E1 has an unsigned type, the value of the result is E1 \times 2^{E2}, reduced modulo one more than the maximum value representable in the result type. If E1 has a signed type and nonnegative value, and E1 \times 2^{E2} is representable in the result type, then that is the resulting value; otherwise, the behavior is undefined.

The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a signed type and a nonnegative value, the value of the result is the integral part of the quotient of E1 / 2^{E2}. If E1 has a signed type and a negative value, the resulting value is implementation-defined.

Left shift

Figure 5: An example of C's left shift.

- Shifts the bits in a value x to the left by k bits
- Fills in with zeros on the right
- Shifting ω -bit value ${\sf x}$ left by ${\sf k}$ is the same as $(x \times 2^k) \mod (2^\omega)$

Without overflow Consider the case where we perform 0101 1011 << 1:

Connor Baker 11 of 16

Figure 6: An example of C's left shift without overflow.

Arithmetically,

- 0x5B = 91
- $91 \times 2^1 = 182$
- $182 \mod 2^8 = 182$
- $82 = 0 \times B6$

There's no overflow because we don't lose any value-carrying bits.

With overflow Consider the case where we perform 1011 0110 << 1:

Figure 7: An example of C's left shift with overflow.

Arithmetically,

- $0 \times B6 = 182$
- $182 \times 2^1 = 364$
- $364 \mod 2^8 = 108$
- $108 = 0 \times 6C$

There's an overflow because we lose a value-carrying bit.

Power-of-2 multiplication by shifting

Operation u << k gives you $u \times 2^k$. This works for both signed and unsigned numbers.

Connor Baker 12 of 16

Figure 8: Power-of-two multiplication by left shifting.

Question 5 Express the following as sum or differences of the results of shifts.

• 8u

- u << 3

• 24u

$$- (u << 4) + (u << 3)$$

Logical right shift

- Used with unsigned integer types
- Shifts in zeros from the left
- Shifting ω -bit value \times right by k is the same as $\left\lfloor \frac{x}{2^k} \right\rfloor$

Consider the case where we perform 0101 1010 >> 1:

Figure 9: An example of C's logical right shift.

Arithmetically,

- 0x5A = 90
- $90 \div 2^1 = 45$
- |45| = 45
- $45 = 0 \times 2D$

Connor Baker 13 of 16

Arithmetic right shift

- Used with signed integer types
- Shifts in copies of the MSB from the left
- Shifting ω -bit value \times right by k is the same as $\lfloor \frac{x}{2^k} \rfloor$ in two's complement

Positive signed integral Consider the case where we perform 0101 1010 >> 1:

Figure 10: An example of C's arithmetic right shift on a positive signed integral type.

Arithmetically,

- 0x5A = 90
- $90 \div 2^1 = 45$
- |45| = 45
- $45 = 0 \times 2D$

We see that it is equivalent to the logical right shift.

Negative signed integral Consider the case where we perform 1101 1010 >> 1:

Figure 11: An example of C's arithmetic right shift on a negative signed integral type.

Arithmetically,

- $0 \times DA = -38$
- $-38 \div 2^1 = -19$
- |-19| = -19
- -19 = `0xED

Omitted slide 52.

Connor Baker 14 of 16

Power-of-2 signed divide by shifting

Operation $\times >> k$ gives you $\lfloor x \div 2^k \rfloor$.

Figure 12: Signed power-of-two division by right shifting.

Examples:

- u/2
 - If u = 3, then u >> 1 is equal to one, as expected
 - If u = -3, then u >> 1 is equal to -2 which isn't what we wanted. What happened?
 - * The floor function behaved as it was supposed to. We can think of it as rounding towards $-\infty$ instead of towards zero, which is what we want.
 - * Instead, we should use the *ceiling* function if our operand is negative.

Fixing power-of-2 signed division by shifting We have two cases:

- 1. x divides evenly into 2^k in which case we have a remainder of zero
- 2. x does not divide evenly into 2^k in which case we have a remainder in the range of $[1, 2^k 1]$

In the first case the division by shifting behaves as expected. In the second case it does not. Our goal is to add some value to x before performing the division such that if we have a remainder (e.g. we fall into the second case) the sum of our added term and the remainder are large enough to bump the quotient up by one.

We can achieve this effect by adding the largest possible remainder, 2^k-1 , to x before dividing. With this sum, if x divides evenly we get 2^k-1 as a remainder. That remainder is effectively thrown away be the floor function. If x does not divide evenly, then because the remainder is in $[1, 2^k-1]$ the sum of the remainder and 2^k-1 will always be equal to one after the floor function is applied.

Our fix is then:

$$\left| \frac{x+2^k-1}{2^k} \right| = \left\lfloor \frac{x-1}{2^k} + 1 \right\rfloor.$$

We can write this in C as

Connor Baker 15 of 16

Remember however that this fix is only for negative values, and that for all x < 0 this is equivalent to $\lceil \frac{x}{2^k} \rceil$.

We can see through the following two examples that our fix does indeed work (using $\lfloor (x+2^k-1) \div 2^k \rfloor$):

Figure 13: Computing $-16 \div 8$ with right shifts.

Figure 14: Computing $-15 \div 8$ with right shifts.

Connor Baker 16 of 16