Machine Learning Model for Predicting Insurance Claim Charge.

Dataset

This dataset is taken from Kaggle. Insurance companies are extremely interested

in the prediction of the future. Accurate prediction gives a chance to reduce

financial loss for the company. A major cause of increased costs are payment

errors made by the insurance companies while processing claims. Furthermore,

because of the payment errors, processing the claims again accounts for a

significant portion of administrative costs.

Tools & Libraries: -

Python • Jupyter Notebook • Pandas • NumPy • Seaborn • Matplotlib • Plotly

• PyCharm • Flask

Data Description

This dataset contains 7 features as shown below:

1.age: age of the policyholder

2.sex: gender of policyholder (female=0, male=1)

3.BMI: Body mass index, providing an understanding of the body, weights that are

relatively high or low relative to height, objective index of body weight (kg / m ^ 2)

using the ratio of height to weight, ideally 18.5 to 25

4.children: number of children/dependents of the policyholder

5.smoker: smoking state of policyholder (non-smoke=0;smoker=1)

6.region: the residential area of the policyholder in the US (northeast=0001,

northwest=0010, southeast=1000, southwest=0000)

7.charges: insurance costs billed by health insurance.

EDA

We performed two types of EDA — Univariate and Bivariate.

Univariate EDA: For continuous variables like BMI, Age Children, Charges for univariate EDA we use box plot.

• We observed that there are outliers in charges & BMI.

A few Observations about categorical variables like sex, smoker, region, (we use count plot.)

• It was found that the people who applied for insurance are mostly non-Smoker & from south east region.

Bivariate EDA: In Bivariate EDA, we check for the influence of two factors/variables on the distribution of the data. From the bivariate analysis, we draw the following conclusion, Age and BMI has a significant impact on the charges.

Model Creation/Evaluation

I applied the following regression models:
1.Linear Regression
2.Ridge Regression
3.Lasso Regression
4.Random Forest Regression
5.Gradient Boosting regression
From this I chose Gradient Boosting regression as my final model because I got the

• R Squared (Train)=0.89

score as given below:

- R Squared (Test)=0.888
- CV score mean (Train)=0.84

Finally, I created an app using PyCharm(flask) then I deployed it in Heroku platform.