ECE 371 Materials and Devices

10/22/19 - Lecture 16

Drift Current, Mobility, Conductivity/Resistivity,

Velocity Saturation

General Information

- Homework 4 solutions posted
- Homework 5 assigned and due 10/24
- Midterm #2 on 10/31, covers Ch. 3, 4, 5
- Example problems from previous midterms posted
- Reading: 5.2-5.3

Carrier Transport

- We now know the carrier densities n_0 and p_0 (Ch. 4)
- Next: Determine processes by which electrons and holes move in the semiconductor

- Drift: movement of carriers due to electric fields
- <u>Diffusion:</u> movement of carriers due to concentration gradients

Drift Current Density

- Net movement of charges due to an electric field gives rise to a drift current: $J_{drf}=\rho v_d$, where ρ is the volume charge density and v_d is the average drift velocity
- For holes, $\rho=ep$, where e is the magnitude of the electronic charge and p is the hole concentration
- Holes will accelerate, experience a collision with an ionized impurity or thermally vibrating lattice atom, and then begin accelerating again
- Introduce concept of <u>mobility</u> describes how well a particle will move in a crystal under an applied electric field
- The average drift velocity for holes is proportional to the mobility and the electric field, $v_{dp}=\mu_p E$, so the drift current for holes is $J_{p|drf}=e\mu_p p E$
- The total drift current including electrons is given by $J_{drf}=e(\mu_n n + \mu_p p)E$
- Both drift currents are in the same direction as the electric field

*see in-class notes

Mobility Effects

(a)

Figure 5.1 | Typical random behavior of a hole in a semiconductor (a) without an electric field and (b) with an electric field.

 τ_c = mean time between collisions m_c^* is the conductivity effective mass (see App. F)

carrier mobility

$$\mu_n = \frac{e\tau_{cn}}{m_{cn}^*}$$

$$\mu_p = \frac{e\tau_{cp}}{m_{cp}^*}$$

$$\frac{1}{\mu} = \frac{1}{\mu_I} + \frac{1}{\mu_L}$$

Two scattering mechanisms are dominant in semiconductors:

- 1. Phonon (lattice) scattering due to thermal vibrations, $\mu_L \propto \, T^{-3/2}$
- 2. Ionized Impurity scattering due to Coulomb interaction with ionized impurities, $\mu_I \propto T^{3/2}/N_I$

Mobility vs. Temperature

Figure 5.2 | (a) Electron and (b) hole mobilities in silicon versus temperature for various doping concentrations. Inserts show temperature dependence for "almost" intrinsic silicon. (From Pierret [8].)

Mobility vs. Impurity Concentration

Figure 5.3 | Electron and hole mobilities versus impurity concentrations for germanium, silicon, and gallium arsenide at T = 300 K. (From Sze [14].)

Table 5.1 Typical mobility values at T = 300 K and low doping concentrations

	μ_n (cm ² /V-s)	$\mu_p \text{ (cm}^2\text{/V-s)}$
Silicon	1350	480
Gallium arsenide	8500	400
Germanium	3900	1900

- Higher impurity concentration implies higher probability of collision
- At higher temperatures, impurity scattering goes down
- Undoped silicon dominated by phonon (lattice) scattering

Resistivity (ρ)

$$\rho = \frac{1}{\sigma} = \frac{1}{e(\mu_n n + \mu_p p)}$$

- σ is the conductivity
- Function of mobility and carrier concentration
- · Controllable with doping
- p-type resistivity is usually higher than n-type resistivity

Relation of Resistivity to Resistance

Figure 5.5 | Bar of semiconductor material as a resistor.

$$R = \frac{\rho L}{A}$$

- Current density: J = I/A
- *A* is the cross-sectional area
- *L* is the length
- Resistivity is a material property
- Resistance is dependent upon geometry

n_0 and σ vs. Temperature

Figure 5.6 | Electron concentration and conductivity versus inverse temperature for silicon. (After Sze [14].)

- At high T, n_i increases and dominates n_0 and σ
- Around room temperature, n_0 is almost constant (complete ionization) but σ decreases with increasing T since μ_n decreases
- At low T, freeze out begins and n_0 and σ decrease

Exercise Problems

EXERCISE PROBLEM

Ex 5.3 A compensated p-type silicon material at T = 300 K has impurity doping concentrations of $N_a = 2.8 \times 10^{17}$ cm⁻³ and $N_d = 8 \times 10^{16}$ cm⁻³. Determine the (a) hole mobility, (b) conductivity, and (c) resistivity.

[Ans. (a) $\mu_p \cong 200 \text{ cm}^2/\text{V-s}$; (b) $\sigma = 6.4 \text{ ($\Omega$-cm)}^{-1}$, (c) $\rho = 0.156 \text{ ($\Omega$-cm)}^{-1}$

EXERCISE PROBLEM

Ex 5.4 A bar of p-type silicon, such as shown in Figure 5.5, has a cross-sectional area $A = 10^{-6}$ cm² and a length $L = 1.2 \times 10^{-3}$ cm. For an applied voltage of 5 V, a current of 2 mA is required. What is the required (a) resistance, (b) resistivity, and (c) impurity doping concentration? (d) What is the resulting hole mobility? [s- Λ /₂mɔ 01 \neq = d rl (p) :_{\(\varepsilon\)-mɔ $_{\sigma 1}$ 01 \times \(\varepsilon\)-\(\varepsilon\)-\(\varepsilon\)/\(\varepsilon\) \(\varepsilon\)-\(\varepsilon\) \(\varepsilon\)-\(\varepsilon\)\(\varepsilon\)-\(\varepsilon\)\(\varepsilon\)-\(\varepsilon\) \(\varepsilon\)-\(\varepsilon\)\(\varepsilon\)-\(\varepsilon\)\(\varepsilon\)-\(\}

Velocity Saturation

Materials	v _s (cm/s)
Si	1.0e7
GaAs	7.2e6
SiC	2.2e7
GaN	2.5e7

- Saturation velocity is the maximum velocity a carrier can attain in the semiconductor
- Determines the ultimate "speed limit" or frequency limit of transistors
- Mobility is a function of electric field at high field strengths
- When v_d saturates, so does J_{drf}
- Saturation caused by interaction with phonons