Blocking

Ryan T. Moore

American University

The Lab @ DC

2024-06-11

Table of contents I

What?

Why?

How: blockTools

How: randomizr

Then what?

"Would a canvassing policy increase enrollment in a health insurance program?"

"Would a canvassing policy increase enrollment in a health insurance program?"

Precinct	Party	Canvass?	Enroll %
1	Dem		
2	Dem		
3	Rep		
4	Rep		

Suppose we observationally measure

Precinct	Party	Canvass?	Enroll $\%$
1	Dem	Yes	60
2	Dem	Yes	70
3	Rep	No	20
4	Rep	No	30
		Diff in Means:	40
		(Yes - No)	

Suppose we observationally measure

Precinct	Party	Canvass?	Enroll $\%$
1	Dem	Yes	60
2	Dem	Yes	70
3	Rep	No	20
4	Rep	No	30
		Diff in Means:	40
		(Yes - No)	

Causal claims? Concerns?

Suppose we randomly assign 2 Tr, 2 Co, and measure

Precinct	Party	Canvass?	Enroll $\%$
1	Dem	Yes	60
2	Dem	Yes	70
3	Rep	No	20
4	Rep	No	30
		Diff in Means:	40
		(Yes - No)	

Suppose we randomly assign 2 Tr, 2 Co, and measure

Precinct	Party	Canvass?	Enroll $\%$
1	Dem	Yes	60
2	Dem	Yes	70
3	Rep	No	20
4	Rep	No	30
		Diff in Means:	40
		(Yes - No)	

Causal claims? Concerns?

$$T_i \sim \mathrm{Bern}(\pi)$$

$$T_i \sim \mathrm{Bern}(\pi)$$

▶ → sample imbalance

$$T_i \sim \mathrm{Bern}(\pi)$$

- ► → sample imbalance
- ▶ Might get no treateds!

$$T_i \sim \mathrm{Bern}(\pi)$$

- ► → sample imbalance
- ▶ Might get no treateds!

$$T_i \sim \mathrm{Bern}(\pi)$$

- ➤ → sample imbalance
- ▶ Might get no treateds!

Seriously?

$$T_i \sim \mathrm{Bern}(\pi)$$

- → sample imbalance
- ▶ Might get no treateds!

Seriously? Well, ...

$$T_i \sim \mathrm{Bern}(\pi)$$

- ► → sample imbalance
- ▶ Might get no treateds!

Seriously? Well, ...

Figure 1: Unlucky

$$T_i \sim \mathrm{Bern}(\pi)$$

- ► → sample imbalance
- ▶ Might get no treateds!
- ► CLT SE for diff in means:

$$T_i \sim \mathrm{Bern}(\pi)$$

- ► → sample imbalance
- ▶ Might get no treateds!
- CLT SE for diff in means:

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1} \left[\frac{m \mathrm{Var}(Y_i(0))}{N-m} + \frac{(N-m) \mathrm{Var}(Y_i(1))}{m} + 2 \mathrm{Cov}(Y_i(0), Y_i(1)) \right]} + \frac{1}{N-m} \left[\frac{m \mathrm{Var}(Y_i(0))}{N-m} + \frac{(N-m) \mathrm{Var}(Y_i(1))}{m} + 2 \mathrm{Cov}(Y_i(0), Y_i(1)) \right]} \right]$$

If $Var(Y_i(0)) = Var(Y_i(1))$, allocate units equally.

$$T_i \sim \mathrm{Bern}(\pi)$$

- ► → sample imbalance
- ▶ Might get no treateds!
- CLT SE for diff in means:

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1} \left[\frac{m \mathrm{Var}(Y_i(0))}{N-m} + \frac{(N-m) \mathrm{Var}(Y_i(1))}{m} + 2 \mathrm{Cov}(Y_i(0), Y_i(1)) \right]} + 2 \mathrm{Cov}(Y_i(0), Y_i(1)) + 2 \mathrm{Cov}(Y_i(0), Y_i(0), Y_i(0)) + 2 \mathrm{Cov$$

If $Var(Y_i(0)) = Var(Y_i(1))$, allocate units equally. Say 5 treated, 4 control. What to do with 10th village?

$$T_i \sim \mathrm{Bern}(\pi)$$

- >>> sample imbalance
- ▶ Might get no treateds!
- CLT SE for diff in means:

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1} \left[\frac{m \mathrm{Var}(Y_i(0))}{N-m} + \frac{(N-m) \mathrm{Var}(Y_i(1))}{m} + 2 \mathrm{Cov}(Y_i(0), Y_i(1)) \right]} + \frac{1}{N-m} \left[\frac{m \mathrm{Var}(Y_i(0))}{N-m} + \frac{(N-m) \mathrm{Var}(Y_i(1))}{m} + \frac{(N$$

- If $Var(Y_i(0)) = Var(Y_i(1))$, allocate units equally. Say 5 treated, 4 control. What to do with 10th village?
 - ▶ 10^{th} → control: $SE: \sqrt{\frac{5}{5} + \frac{5}{5}} = \sqrt{2}$

$$T_i \sim \mathrm{Bern}(\pi)$$

- ► → sample imbalance
- ▶ Might get no treateds!
- CLT SE for diff in means:

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1} \left[\frac{m \mathrm{Var}(Y_i(0))}{N-m} + \frac{(N-m) \mathrm{Var}(Y_i(1))}{m} + 2 \mathrm{Cov}(Y_i(0), Y_i(1)) \right]} + \frac{1}{N-m} \left[\frac{m \mathrm{Var}(Y_i(0))}{N-m} + \frac{(N-m) \mathrm{Var}(Y_i(1))}{m} + \frac{(N$$

- If $Var(Y_i(0)) = Var(Y_i(1))$, allocate units equally. Say 5 treated, 4 control. What to do with 10th village?
 - ▶ 10^{th} → control: $SE: \sqrt{\frac{5}{5} + \frac{5}{5}} = \sqrt{2}$
 - ▶ 10^{th} → treated: $SE: \sqrt{\frac{6}{4} + \frac{4}{6}} = \sqrt{2.66}$

$$T_i \sim \mathrm{Bern}(\pi)$$

- ➤ → sample imbalance
- ► Might get no treateds!

$$1 \quad \lceil m \operatorname{Var}(Y_{\cdot}(0)) \rceil$$

- $SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1}} \left[\frac{m \mathrm{Var}(Y_i(0))}{N-m} + \frac{(N-m) \mathrm{Var}(Y_i(1))}{m} + 2 \mathrm{Cov}(Y_i(0), Y_i(1)) \right]$
- - If $Var(Y_i(0)) = Var(Y_i(1))$, allocate units equally. Say 5 treated, 4 control. What to do with 10th village?
- ▶ 10^{th} → control: $SE: \sqrt{\frac{5}{5} + \frac{5}{5}} = \sqrt{2}$ ▶ 10^{th} → treated: $SE: \sqrt{\frac{6}{4} + \frac{4}{6}} = \sqrt{2.66}$
 - If $Var(Y_i(0)) \neq Var(Y_i(1))$, allocate \rightarrow higher-Variance condition

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1}} \left[\frac{m \mathrm{Var}(Y_i(0))}{N-m} + \frac{(N-m) \mathrm{Var}(Y_i(1))}{m} + 2 \mathrm{Cov}(Y_i(0), Y_i(1)) \right]$$

If $Cov(Y_i(0), Y_i(1)) > 0$, larger SE, less precision

If $Cov(Y_i(0), Y_i(1)) < 0$, smaller SE, <u>more</u> precision

 $SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1}} \left[\frac{m \mathrm{Var}(Y_i(0))}{N-m} + \frac{(N-m) \mathrm{Var}(Y_i(1))}{m} + 2 \mathrm{Cov}(Y_i(0), Y_i(1)) \right]$

Demonstration:

Unit	Y_0	Y_1 (+ cov)	$Y_1 (- cov)$
1	0	0	10
2	5	5	5
3	10	10	0
Means	5	5	5

If
$$Cov(Y_i(0), Y_i(1)) > 0$$
, larger SE, less precision
If $Cov(Y_i(0), Y_i(1)) < 0$, smaller SE, more precision

Demonstration:

Unit	Y_0	$Y_1 (+ cov)$	$Y_1 (- cov)$
1	0	0	10
2	5	5	5
3	10	10	0
Means	5	5	5

 $SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1}} \left[\frac{m \mathrm{Var}(Y_i(0))}{N-m} + \frac{(N-m) \mathrm{Var}(Y_i(1))}{m} + 2 \mathrm{Cov}(Y_i(0), Y_i(1)) \right]$

Suppose assign 1 to Tr, 2 to Co.

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1}} \left[\frac{m \text{Var}(Y_i(0))}{N-m} + \frac{(N-m) \text{Var}(Y_i(1))}{m} + 2 \text{Cov}(Y_i(0), Y_i(1)) \right]$$

$$\blacktriangleright \text{ If } \text{Cov}(Y_i(0), Y_i(1)) > 0, \text{ larger SE, less precision}$$

If
$$Cov(Y_i(0), Y_i(1)) < 0$$
, smaller SE, more precision

Demonstration:

Unit	Y_0	$Y_1 (+ cov)$	$Y_1 (- cov)$
1	0	0	10
2	5	5	5
3	10	10	0
Means	5	5	5

Suppose assign 1 to Tr, 2 to Co.

 $\widehat{ATE}_{+\text{cov}} = -7.5, 0, 7.5$

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1}} \left[\frac{m \text{Var}(Y_i(0))}{N-m} + \frac{(N-m) \text{Var}(Y_i(1))}{m} + 2 \text{Cov}(Y_i(0), Y_i(1)) \right]$$

$$\blacktriangleright \text{ If } \text{Cov}(Y_i(0), Y_i(1)) > 0, \text{ larger SE, less precision}$$

If $Cov(Y_i(0), Y_i(1)) < 0$, smaller SE, more precision

Demonstration:

Unit	Y_0	Y_1 (+ cov)	Y_1 (- cov)
1	0	0	10
2	5	5	5
3	10	10	0
Means	5	5	5

Suppose assign 1 to Tr, 2 to Co.

$$\widehat{ATE}_{+\text{cov}} = -7.5, 0, 7.5$$

 $\widehat{ATE}_{cov} = 2.5, 0, -2.5$

▶ If
$$Cov(Y_i(0), Y_i(1)) > 0$$
, larger SE, less precision
▶ If $Cov(Y_i(0), Y_i(1)) < 0$, smaller SE, more precision

 $SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1}} \left[\frac{m \mathrm{Var}(Y_i(0))}{N-m} + \frac{(N-m) \mathrm{Var}(Y_i(1))}{m} + 2 \mathrm{Cov}(Y_i(0), Y_i(1)) \right]$

Unit V V (+ corr) V (corr)

Demonstration:

Unit	r_0	$Y_1 (+ \text{cov})$	$Y_1 (- \text{cov})$
1	0	0	10
2	5	5	5
3	10	10	0
Means	5	5	5
	1 2 3	1 0 2 5 3 10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Suppose assign 1 to Tr, 2 to Co.

$$\widehat{ATE}_{+\text{cov}} = -7.5, 0, 7.5$$

 $\widehat{ATE}_{-\text{cov}} = 2.5, 0, -2.5 \text{ (less variance!)}$

But, is obs difference causal?

But, is obs difference causal?

What do we really want to know?

But, is obs difference causal?

What do we really want to know?

Does can vassing actually <u>change</u> enrollment in precinct? (Or, just Party \rightarrow Enrollment?)

But, is obs difference causal?

What do we really want to know?

Does can vassing actually <u>change</u> enrollment in precinct? (Or, just Party \rightarrow Enrollment?)

What <u>would have</u> happened to "No" precincts if "Yes"?

But, is obs difference causal?

What do we really want to know?

Does can vassing actually <u>change</u> enrollment in precinct? (Or, just Party \rightarrow Enrollment?)

What would have happened to "No" precincts if "Yes"?

What would have happened under <u>other</u> conditions?

Suppose we can know both potential outcomes \dots

			Enroll %	Enroll $\%$
Precinct	Party	Canvass?	if No Canvass	if Canvass
1	Dem	_	20	60
2	Dem	_	30	70
3	Rep		20	30
4	Rep	_	30	40
		Means:	25	50

Suppose we can know both <u>potential outcomes</u> ...

			Enroll $\%$	Enroll $\%$
Precinct	Party	Canvass?	if No Canvass	if Canvass
1	Dem	_	20	60
2	Dem	_	30	70
3	Rep		20	30
4	Rep	_	30	40
		Means:	25	50

$$ATE = 50 - 25 = 25$$

Suppose we can know both potential outcomes ...

			Enroll $\%$	Enroll $\%$
Precinct	Party	Canvass?	if No Canvass	if Canvass
1	Dem	_	20	60
2	Dem	_	30	70
3	Rep		20	30
4	Rep	_	30	40
		Means:	25	50

$$ATE = 50 - 25 = 25$$

(True or an estimate?)

Another way to think about same information:

			Enroll %	Enroll %	True Precinct
Precinct	Party	Canvass?	if No Canvass	if Canvass	Effect
1	Dem		20	60	40
2	Dem	_	30	70	40
3	Rep	_	20	30	10
4	Rep	_	30	40	10
		Means:	25	50	25

$$ATE = (40 + 40 + 10 + 10)/4 = 25$$

The "Fundamental Problem of Causal Inference",

We can't observe both "Canvassed" and "Not Canvassed" for a precinct.

We can't observe both <u>potential outcomes</u> (counterfactuals).

So, how can we get a good causal estimate?

Suppose we observe \dots

			Enroll $\%$	Enroll $\%$
Precinct	Party	Canvass?	if No Canvass	if Canvass
1	Dem	Yes		60
2	Dem	Yes		70
3	Rep	No	20	
4	Rep	No	30	
		Means:	25	65

Estimated ATE = 65 - 25 = 40

Suppose we observe \dots

			Enroll $\%$	Enroll $\%$
Precinct	Party	Canvass?	if No Canvass	if Canvass
1	Dem	Yes		60
2	Dem	Yes		70
3	Rep	No	20	
4	Rep	No	30	
		Means:	25	65

Estimated ATE =
$$65 - 25 = 40$$
 \odot (too big)

Or, we could have observed \dots

Or, we could have observed \dots

			Enroll %	Enroll $\%$
Precinct	Party	Canvass?	if No Canvass	if Canvass
1	Dem	Yes		60
2	Dem	No	30	
3	Rep	Yes		30
4	Rep	No	30	
		Means:	30	45

Estimated ATE = 45 - 30 = 15

Or, we could have observed ...

			Enroll %	Enroll $\%$
Precinct	Party	Canvass?	if No Canvass	if Canvass
1	Dem	Yes		60
2	Dem	No	30	
3	Rep	Yes		30
4	Rep	No	30	
		Means:	30	45

Estimated ATE = 45 - 30 = 15 \odot

(too small; closer)

Assignments	Est ATE
YYNN	40

Assignments	Est ATE
YYNN	40
NYNY	35
YNNY	25
NYYN	25
YNYN	15
NNYY	10

In our random allocation, possible data were

Assignments	Est ATE
YYNN	40
NYNY	35
YNNY	25
NYYN	25
YNYN	15
NNYY	10

Some closer to truth

Assignments	Est ATE
YYNN	40
NYNY	35
YNNY	25
NYYN	25
YNYN	15
NNYY	10

- Some closer to truth
- $E(\hat{\tau}) = \frac{1}{6} \cdot 40 + \frac{1}{6} \cdot 35 + \frac{1}{3} \cdot 25 + \frac{1}{6} \cdot 15 + \frac{1}{6} \cdot 10 = 25 = \bar{\tau}$

Assignments	Est ATE
YYNN	40
NYNY	35
YNNY	25
NYYN	25
YNYN	15
NNYY	10

- Some closer to truth
- $E(\hat{\tau}) = \frac{1}{6} \cdot 40 + \frac{1}{6} \cdot 35 + \frac{1}{3} \cdot 25 + \frac{1}{6} \cdot 15 + \frac{1}{6} \cdot 10 = 25 = \bar{\tau}$

Assignments	Est ATE
YYNN	40
NYNY	35
YNNY	25
NYYN	25
YNYN	15
NNYY	10

- Some closer to truth
- $E(\hat{\bar{\tau}}) = \frac{1}{6} \cdot 40 + \frac{1}{6} \cdot 35 + \frac{1}{3} \cdot 25 + \frac{1}{6} \cdot 15 + \frac{1}{6} \cdot 10 = 25 = \bar{\tau}$ (unbiased)

In practice, we don't know all potential outcomes.

In practice, we don't know all potential outcomes.

Two assignments (YYNN and NNYY) leave treatment perfectly confounded with party.

In practice, we don't know all potential outcomes.

Two assignments (YYNN and NNYY) leave treatment perfectly confounded with party.

We can never see all of Y_1 , Y_0 . But we can see all of X!

In practice, we don't know all potential outcomes.

Two assignments (YYNN and NNYY) leave treatment perfectly confounded with party.

We can never see all of Y_1 , Y_0 . But we can see all of X! Let's ensure X does not predict T.

 $\underline{Blocking}:$

Creating pre-treatmnt groups that look same on $\underline{\text{predictors}}$.

Blocking:

Creating pre-treatmnt groups that look same on predictors.

			Enroll %	Enroll $\%$
Precinct	Party	Canvass?	if No Canvass	if Canvass
1	Dem			
2	Dem			
3	Rep			
4	Rep			

Blocking:

Creating pre-treatmnt groups that look same on <u>predictors</u>.

			Enroll %	Enroll $\%$
Precinct	Party	Canvass?	if No Canvass	if Canvass
1	Dem			
2	Dem			
3	Rep			
4	Rep			

(Then, randomize within groups.)

Blocking:

Creating pre-treatmnt groups that look same on predictors.

			Enroll $\%$	Enroll $\%$
Precinct	Party	Canvass?	if No Canvass	if Canvass
1	Dem	Y		60
2	Dem	N	30	
3	Rep	N	20	
4	Rep	Y		40

(Then, randomize within groups.)

Blocking restricts possible data to

Assignments	Est TE
YYNN	40
NYNY	35
YNNY	25
NYYN	25
YNYN	15
NNYY	10

Blocking restricts possible data to

Assignments	Est TE	
YYNN	40	
NYNY	35	
$\mathbf{Y}\mathbf{N}\mathbf{N}\mathbf{Y}$	25	
NYYN	25	
$\mathbf{Y}\mathbf{N}\mathbf{Y}\mathbf{N}$	15	
NNYY	10	

Estimates have less variance, are closer to true ATE.

Blocking restricts possible data to

Assignments	Est TE
YYNN	40
NYNY	35
YNNY	25
NYYN	25
YNYN	15
NNYY	10

Estimates have less variance, are closer to true ATE.

Under random allocation, 5 possible estimates: 40, 15, 25, 35, 10. Blocking restricts to 3 best: 15, 25, 35.

Blocking restricts possible data to

Assignments	Est TE
YYNN	40
NYNY	35
YNNY	${\bf 25}$
NYYN	${\bf 25}$
YNYN	15
NNYY	10

Estimates have less variance, are closer to true ATE.

Under random allocation, 5 possible estimates: 40, 15, 25, 35, 10. Blocking restricts to 3 best: 15, 25, 35.

Covariate balance

- Covariate balance
- Estimate closer to truth

- Covariate balance
- Estimate closer to truth
- ► Increased efficiency

- Covariate balance
- Estimate closer to truth
- ► Increased efficiency
- ➤ Triply-robust estimates: block, randomize, adjust

- Covariate balance
- Estimate closer to truth
- ► Increased efficiency
- ➤ Triply-robust estimates: block, randomize, adjust
- ▶ Block-level effects
 - \rightsquigarrow different actors interested in different effects

- Covariate balance
- Estimate closer to truth
- ► Increased efficiency
- ▶ Triply-robust estimates: block, randomize, adjust
- ▶ Block-level effects
 - \rightarrow different actors interested in different effects
- ▶ Guidelines for limited/uncertain resources

Why Block: Balance

Simulation study: 100 units, $X_1 \sim N(0,1)$, $X_2 \sim \text{Unif}(0,1)$, $X_3 \sim \chi_2^2$; 1000 such experiments. Assg treatmnt in 3 ways.

Why Block: Balance

Simulation study: 100 units, $X_1 \sim N(0,1)$, $X_2 \sim \text{Unif}(0,1)$, $X_3 \sim \chi_2^2$; 1000 such experiments. Assg treatmnt in 3 ways.

Why Block: Efficiency

Blocking in Applications: Balance and Efficiency

Moore (2012): Perry Preschool Experiment

Left: QQ plot of balance (100 blocked vs. unblocked)

Right: Est TE under sharp null (100 blocked vs. unblocked)

(SES, sex, IQ)

Balance in Applications: Balance and Efficiency

Considering more variables ...

(+ siblings, AFDC, mom empl, educ, father, ...)

Start with some sample data:

```
library(blockTools)
data(x100)

x100 |> head()
```

```
id id2 b1 b2 g ig
1 1001 101 156 795 b 729
2 1002 102 813 469 a 627
3 1003 103 950 978 a 959
4 1004 104 991 781 a 661
5 1005 105 613 759 a 819
6 1006 106 654 838 b 643
```

(Moore 2012; Moore and Schnakenberg 2023)

```
bl <- b$blocks$`1`
bl |> head()
```

```
Unit 1 Unit 2 Distance

1 1043 1040 0.01240000

2 1100 1020 0.02259275

3 1065 1027 0.02912651

4 1085 1081 0.03498815

5 1088 1061 0.04789253

6 1064 1014 0.07985116
```

Why all this?

```
bl <- b$blocks$`1`</pre>
```

We are extracting just the blocked pairs themselves.

▶ Why b\$blocks? Since b has 3 components:

```
names(b)
```

```
[1] "blocks" "level.two" "call"
```

▶ Why blocks\$1'? Since this is (default-named) first (and only) "group":

```
names(b$blocks)
```

```
[1] "1"
```

What else could we do?

```
b_3groups_3conditions <- block(</pre>
 x100,
 groups = "g",
                                 # (Factor variable in data)
 n.tr = 3,
 id.vars = "id",
 block.vars = c("b1", "b2"),
 distance = "mve"
```

```
b_3groups_3conditions$blocks
$a
   Unit 1 Unit 2 Unit 3 Max Distance
```

1 1076 1039 1056 0.2509889

1065 1061 1002 0.4335040 2 3 1084 1058 1017 0.4373315 1 O E O 1010 1 0 0 1 0 4E04767

Some rows from each "group":

```
rows_a <- b_3groups_3conditions$blocks$a |> slice(1:2) |> mutate
rows_b <- b_3groups_3conditions$blocks$b |> slice(1:2) |> mutate
rows_c <- b_3groups_3conditions$blocks$c |> slice(1:2) |> mutate
bind_rows(rows_a, rows_b, rows_c)
```

```
Unit 1 Unit 2 Unit 3 Max Distance group
   1076
         1039
              1056
                     0.2509889
                                а
2
   1065 1061 1002 0.4335040 a
   1043 1040 1019 0.1664608
3
                                b
4
   1048 1031 1062 0.2288718
                                h
5
   1095 1092 1049 0.3778655
                                С
6
   1045
         1015 1082
                     0.3808569
                                C.
```

Other arguments to block()

- vcov.data
- **proups:** for exact-blocks
- n.tr
- id.vars
- block.vars
- algorithm: optGreedy, optimal, naiveGreedy, randGreedy, sortGreedy
- \blacktriangleright distance: mahalanobis, mcd, mve, euclidean, $k \times k$ matx
- weight
- ▶ level.two: block states by most similar cities
- valid.var, valid.range: Goldilocks
- seed.dist: (for mcd and mve)

Assign

```
a <- assignment(b, seed = 71573706)
a</pre>
```

Assignments:

	Treatment 1	Treatment 2	Distance
1	1040	1043	0.01240000
2	1100	1020	0.02259275
3	1065	1027	0.02912651
4	1081	1085	0.03498815
5	1088	1061	0.04789253
6	1014	1064	0.07985116
7	1032	1070	0.08279625
8	1097	1098	0.08882421
9	1038	1018	0.09316331
10	1031	1048	0.10391953
11	1084	1058	0.10835825

Get Assignments

```
a |> extract conditions(x100, id.var = "id")
 [1] 2 1 2 2 2 2 1 2 2 1 1 1 1 1 1 1 1 2 2 1 2 2 2 1 2 1 1 1
 [38] 1 1 1 2 2 2 2 2 2 2 1 2 1 2 2 2 2 1 1 2 1 2 1 2 2 1 3
 x100 |> mutate(
 condition = extract conditions(a, x100, id.var = "id"))
     id id2 b1 b2 g ig condition
   1001 101 156 795 b 729
   1002 102 813 469 a 627
   1003 103 950 978 a 959
3
4
   1004 104 991 781 a 661
5
   1005 105 613 759 a 819
   1006 106 654 838 b 643
6
   1007 107 640 645 c 12
8
   1008 108 681 404 a 221
```

Assign 3 Conditions, within Groups

```
a3 <- assignment(b_3groups_3conditions, seed = 979677744)
```

Assignments:

```
Group: a
    Treatment 1
                   Treatment 2
                                 Treatment 3
                                                Max Distance
    1056
                   1076
                                 1039
                                                0.2509889
2
    1002
                   1061
                                 1065
                                                0.4335040
3
    1058
                   1084
                                 1017
                                                0.4373315
4
    1046
                   1081
                                 1059
                                                0.4524767
5
    1073
                   1098
                                 1029
                                                0.4599752
6
    1060
                   1067
                                 1004
                                                0.5921446
    1089
                   1024
                                 1032
                                                0.7554402
8
    1052
                   1054
                                 1030
                                                0.8848444
9
    1093
                   1026
                                 1068
                                                0.8975495
10
    1036
                   1008
                                 1091
                                                1.3586913
```


Blocking with randomizr::block ra()

1007 107 640 645 c 12 1 1008 108 681 404 a 221

823 b 321

1009 109 530

8 9

```
library(randomizr)
tr <- block_ra(x100$g)
# Better:
x100 \mid > mutate(tr = block ra(x100$g))
      id id2 b1 b2 g ig tr
1
    1001 101 156 795 b 729 1
    1002 102 813 469 a 627 1
3
    1003 103 950 978 a 959 1
    1004 104 991 781 a 661 1
4
5
    1005 105 613 759 a 819 0
6
    1006 106 654 838 b 643 1
```


blockTools: diagnose, get block IDs, check balance

Diagnose:

blockTools: diagnose, get block IDs, check balance

Diagnose:

Get block IDs

```
createBlockIDs(a, data = x100, id.var = "id")
```

blockTools: diagnose, get block IDs, check balance

Diagnose:

Get block IDs

```
createBlockIDs(a, data = x100, id.var = "id")
```

Get balance:

```
assg2xBalance(a, x100, id.var = "id",
bal.vars = c("b1", "b2"))
```

▶ Generally, use Lin or Blocked Diff-in-Means

- ▶ Generally, use Lin or Blocked Diff-in-Means
- ▶ LSDV (block indicators) weights w/in block TE's by

$$p_j(1-p_j)n_j \\$$

- ▶ Generally, use Lin or Blocked Diff-in-Means
- ▶ LSDV (block indicators) weights w/in block TE's by

$$p_j(1-p_j)n_j \\$$

- ▶ Generally, use Lin or Blocked Diff-in-Means
- ▶ LSDV (block indicators) weights w/in block TE's by

$$p_j(1-p_j)n_j$$

where

- $\triangleright p_i = \text{share of block } j \text{ treated}$
- $n_i = \text{size of block } j$
- $(I.e., p_j(1 p_j) = var(TE) \text{ in block } j)$

- ► Generally, use Lin or Blocked Diff-in-Means
- LSDV (block indicators) weights w/in block TE's by

$$p_j(1-p_j)n_j$$

where

- $p_i = \text{share of block } j \text{ treated}$
- $n_i = \text{size of block } j$
- (i.e., $p_i(1-p_i) = var(TE)$ in block j)

Safer when

- $\triangleright p_i$ constant across blocks j
- n_i constant across blocks j

```
library(estimatr)
df \leftarrow x100 \mid x1
lm lin(b1 ~ tr, covariates = ~ g, data = df)
                                                                                                      Estimate Std. Error t value Pr(>|t|)
 (Intercept) 492.800000 39.08723 12.60769882 6.405020e-29
                                      -50.760000 51.70890 -0.98164922 3.287925e-0
tr
gb_c -4.673611 100.16089 -0.04666104 9.628824e-0
gc_c -4.111111 92.84835 -0.04427770 9.647770e-0
tr:gb_c -190.763889 129.80730 -1.46959290 1.450111e-0
tr:gc_c -112.826389 128.65776 -0.87694974 3.827497e-0
```

DF

94

94

94

(Intercept) 94

tr

gb_c

gc c

Can I just ignore blocks and pool?

Can I just ignore blocks and pool?

ightharpoonup If p_j varies, no

Thanks!

rtm@american.edu
www.ryantmoore.org

References I

- Coppock, Alexander. 2023. randomizr: Easy-to-Use Tools for Common Forms of Random Assignment and Sampling. https://CRAN.R-project.org/package=randomizr.
- Moore, Ryan T. 2012. "Multivariate Continuous Blocking to Improve Political Science Experiments." Political Analysis 20 (4): 460–79. https://doi.org/10.1093/pan/mps025.
- Moore, Ryan T., and Keith Schnakenberg. 2023. <u>blockTools: Blocking,</u>
 Assignment, and Diagnosing Interference in Randomized Experiments.
 http://www.ryantmoore.org/html/software.blockTools.html.