

Диелектрични свойства на материалите

Пробив в диелектриците

Материалознание

Въпрос 7

Съдържание

- Основни понятия
- Пробив в газове
- Пробив в течни диелектрици
- Пробив в твърди диелектрици

1. Основни понятия

Диелектрик, поставен в електрическо поле може да загуби изолационните си свойства (рязко да намали изолационното си съпротивление), ако интензитетът на полето превиши определена критична стойност.

Това явление се нарича **пробив**, напрежението при което настъпва – **пробивно** $U_{\rm np}$, а критичният интензитет – **диелектрична якост** $E_{\rm np}$.

$$E_{np} = \frac{U_{np}}{d}$$

Тази формула важи за еднородни диелектрици поставени в еднородно поле.

Основна причина – ударна (вътрешна) йонизация.

Еднородно е електрическото поле, при което интензитетът *E* е еднакъв във всички точки между електродите.

2.1. Пробив в еднородно поле

Свободните заредени частици (електрони и йони) в газообразен диелектрик, поставен в еднородно електрическо поле започват насочено движение, при което придобиват допълнителна енергия:

$$W = Eq\lambda_{cp}$$

където λ_{cp} е средна дължина на свободния й пробег.

Когато тази енергия стане по-голяма от определена критична стойност $W_{йон}$ при сблъсък на заредената частица с друга неутрална, то тя я йонизира.

Следователно условието за йонизация и пробив е: $W > W_{
m йон}$

Основна особеност – пробивът е **обратим**, т. е. след премахване на полето, материалът възвръща изолационните си свойства.

Зависимост на пробивното напрежение от атмосферното налягане р

I област – когато налягането е малко, броят на молекулите в единица обем намалява, следователно намалява вероятността за удар между тях и пробивното напрежение се повишава.

II област – когато налягането е високо, броят на частиците е толкова голям, че намалява средната дължина на свободния им пробег и пробивното напрежение се повишава.

2.2. Пробив в нееднородно поле

 +

Най-голям интензитет се получава в областта около иглата, където започва и йонизацията.

Получените електрони рекомбинират на положителния полюс, докато по-големите положителни йони значително по-бавно се придвижват към отрицателния полюс.

Поради това около иглата се натрупват йони, които могат да се разглеждат като продължение на електрода (ефективното разстояние намалява).

2.2. Пробив в нееднородно поле

Положителните йони рекомбинират на отрицателния полюс, електроните се придвижват към положителния полюс, следователно разстоянието между електродите не се променя.

Пробивът в газообразни диелектрици в нееднородно електрическо поле зависи от формата на електродите и поляритета на приложеното напрежение.

3. Пробив в течни диелектрици

Диелектричната якост на течни диелектрици е по-голяма от тази на газообразните, тъй като имат по-голяма плътност.

Увеличаването на количеството примеси в течните диелектрици рязко намалява диелектричната им якост.

Пробивът в твърди диелектрици се осъществява по три механизма: електрически, топлинен и електрохимически.

Кой от тези механизми ще се прояви зависи от:

- ✓ Вида на материала;
- ✓ Характера на приложеното електрическо поле постоянно, променливо или импулсно;
- ✓ Честотата на полето;
- ✓ Дефекти в диелектрика;
- Условия за охлаждане;
- ✓ Експлоатационни условия и др.

4.1. Електрически пробив

Механизъм – ударна йонизация, протича за кратко време и е обратим.

За да е чисто електрически пробива трябва да няма повишаване на температурата на диелектрика т. е. да няма загуби.

Ако електрическото поле и структурата са еднородни пробивното напрежение е линейна функция на дебелината на образеца.

Зависимост на диелектричната якост от дебелината на нееднороден диелектрик

С увеличаване на дебелината се увеличава вероятността за наличие на примеси, което намалява диелектрична якост.

4.2. Топлинен пробив

Топлинният пробив се получава при повишаване на температурата на диелектрика поради нарушено топлинно равновесие т. е. количеството отделена топлина в материала е по-голямо от количеството отдадена (или разсеяна) топлина в околното пространство.

Обикновенно повишената температура води до нарушаване на структурата на диелектрика и промяна на неговите свойства т. е. този процес е необратим.

Количеството отделена топлина в диелектрика *P* зависи от диелектричните загуби в материала, като с повишаване на температурата най-силно нарастват загубите от електропроводимост.

4.2. Топлинен пробив

Количеството отдадена топлина в околното пространство $P_{\text{от}}$ зависи от конструкцията на електродите и условията на топлоотдаване.

При два плоски метални електрода е:

$$P_{\rm P} = P_{\rm OT} = 2hS(T - T_{\rm A})$$

където h е коефициент на топлопроводимост в мястото на контакта електроддиелектрик; S – площ на диелектрика; T – температура на околната среда.

4.2. Топлинен пробив

Ако диелектрик работи при напрежение U_1 и температура на околната среда T_A то той ще се загрее до температура T_1 .

Ако T_1 е по-малка от топлоустойчивостта на материала, то той може да работи неограничено дълго време без опасност от пробив.

Ако температура на околната среда се повиши над T_2 , то в диелектрика ще настъпи топлинен пробив.

4.2. Топлинен пробив

Ако се приложи напрежение $U_2 > U_1$ условието за настъпване на топлинен пробив е винаги изпълнено, независимо от температурата на околната среда, следователно диелектрикът не може да работи при него.

4.2. Топлинен пробив

Напрежението, при което има само една температурно стабилна точка е пробивното.

На практика пробив може да настъпи и при по-ниски напрежения поради наличието на примеси, дефекти и др.

Органичните материали имат по-малки пробивни напрежения, поради по-малка топлопроводимост.

4.3. Електрохимически пробив

Електрохимическият пробив се получава в резултат на структурни изменения (стареене) на материал, подложен на продължително въздействие на електрическо поле.

Появява се силно при работа в среди с повишена температура и влажност и зависи от материалът на електродите.