TRIBHUVAN UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY AMRIT SCIENCE CAMPUS

Lab Report

<u>SUBMITTED BY:</u> Name: Sasank Lama

Roll: 13/079 Date: 2024/05/16 SUBMITTED TO: Om Narayan Pradhan Department of Statistics

Internal Teacher's Signature

External's Signature

TABLE OF CONTENTS

S	Questions	Pag	Date	Signature
Ν		е		
1	Calculation of confidence intervals.	1		
2	Test of significance of two proportions.	2		
3	Test of single mean.	3		
4	Test of difference of two means.	4		
5	t-test for single sample mean.	5		
6	t-test for difference between two sample means.	7		
7	Paired t-test.	8		
8	Run test for small sample and Binomial Test.	9		
9	Run test, One Sample Kolmogorov Smirnov and	11		
	Chi square test.			
10	Median test, Mann Witney U test and Two Sample	13		
	Kolmogorov Smirnov test.			
11	Chi-Square Test for Independence of Attributes.	18		
12	Wilcoxon Matched Pair Signed Rank Test.	20		
13	Cochran Test.	21		
14	Kruskal Wallis H test.	23		
15	Friedman F test.	25		
16	Completely Randomized Design.	27		
17	Randomized Block Design.	29		
18	Latin Square Design.	31		
19	Regression and Correlations.	34		

Unit 1: Sampling Distribution and Estimation, Parametric test

Experiment 1 (Calculation of confidence intervals)

Find 99% and 95% confidence interval for mean for the given set of data age of patients recently visited to a Government Hospital. Age in years:

44,42,25,46,52,21,23,33,44,12,21,22,27,29,81,35,34,36,37,71,48,10,11,20,29,30,40,44, 40,50,54,45,52,61,44,54,56,57,58,69,70,60,70,30,38,48,47,69,50,33,24,45,45,45,45,45,54, 57,74,51,23,34,42,33,41,20,28,27

Working formula:

(100-α) % C.I. for mean(μ) = sample mean $(\bar{x}) \pm Z_{\alpha/2}/S.E.$ (\bar{x}) Where, S.E. $(\bar{x}) = \sigma/\sqrt{n}$,

for 95% C.I. $Z_{\alpha/2}$ = 1.96

for 99% C.I., $Z_{\alpha/2} = 2.58$

Computation:

Age in				
Years		Measurement		
(x)	x^2	S	Formulae	Values
	193			
44	6	n	COUNTA(A2:A69)	67
40	176	_	A) /ED A OE /A O. A CO)	44.04000054
42	4	\overline{x}	AVERAGE(A2:A69)	41.94029851
25	625	σ	STDEV.S(A2:A69)	16.17225514
	211			
46	6	$\alpha_1/2$	5/200	0.025
	270	_		
52	4	Z_1	NORM.S.INV(1-E5)	1.959963985
21	441	$SE(\bar{x})$	E4/SQRT(E2)	1.975755424
				41.9402985074627±3.87240947386
23	529	95% C.I. of μ	E3 & "±" & (E6*E7)	967
	108			
33	9	μ_{Lower}	E3-E6*E7	38.06788903
	193			
44	6	$\mu_{\sf Upper}$	E3+E4*E7	73.89271932
12	144	$\alpha_2/2$	1/200	0.005
21	441	Z_2	NORM.S.INV(1-E6)	2.575829304
		_	,	41.9402985074627±5.08920871853
22	484	99% C.I. of μ	E3 & "±" & (E12*E7)	4
27	729	$\mu_{Lowe} r$	E3-E12*E7	36.85108979
29	841	$\mu_{\sf Upper}$	E3+E12*E7	47.02950723

Conclusion:

95% C.I. of mean μ = (39.58059335, 48.77562302) and 99% C.I. of mean μ = (39.282453, 41.77637053)

Experiment 2 (Test of significance of two proportions)

Two separate colleges have 500 and 1000 students, if the colleges have passed results 400 and 900 respectively. Test whether there is significant difference between the pass proportion.

Step 1: Setting of Hypothesis:

Null Hypothesis; H_0 : $P_1=P_2$, there is no significant difference between two proportions of pass students in two colleges.

Alternative Hypothesis; $H_1:P_1\neq P_2$, there is significant difference between two proportions of pass students in the two colleges.

Step 2: Test statistics

$$Z_{cal} = \frac{p1 - p2}{\sqrt{\hat{P}\hat{Q}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}} \text{ , } \hat{P} = \frac{n_{1}p_{1} + n_{2}p_{2}}{n_{1} + n_{2}}, \ \hat{Q} = 1 \ - \hat{P}$$

		College A			College B	
Measurements	Symbol			Symbol	Formula	
	S	Formulae	Values	S	е	Values
No of Students No of Passed	n ₁		500	n_2		1000
Sample	\mathbf{X}_1		400	X_2		900
Proportions	p_1	D4/D3	0.8	p_2	G4/G3	0.9
Level of						
Significance Population	α	5/100	0.05			
Proportions	Р	(D4+G4)/(D3+G3)	0.866667			
	Q	1-D7	0.133333			
		(G5-D5)/SQRT(D7*D8*((1/D3)				
Test Statistics	Z_{cal}	+(1/G3)))	5.370862			
	P_{value}	1-NORM.S.DIST(D9,1)	0			
		IF(2*D10<=D6,"Reject H0","Do	Reject			
Decision		not reject H0")	H0			

Step 3: Level of significance and critical value:

Take level of significance(α)= 5%

Critical value is $Z_{tab}(0.05)=1.96$

Step 4: Decision

 $2p \le \alpha$, Reject H_0

Step 5: Conclusion

There is a significant difference between two proportions of pass students in the two colleges.

Experiment 3 (Test of single mean)

A sample of size 400 laptop cells produced by a company is found to be 1570hrs, with S.D. of 150 hrs. Test the hypothesis that the mean lifetime of the laptop cells produced by the company is 1600hrs against the alternative hypothesis that it is greater than 1600hrs at 5% level of significance.

Step 1: Setting of Hypothesis

Null Hypothesis; H_0 : μ = 1600hrs, there is no significant difference between battery life of laptops with 1600hrs.

Alternative Hypothesis; H₁: µ>1600hrs, the battery life of laptop is more than 1600 hrs.

Step 2: Test statistics

$$Z_{cal} = \frac{\bar{x} - \mu}{\sigma \sqrt{n}}$$

Measurements	Symbol s	Formulae	Values
Sample Size	n	1 official	400
· ·			
Population Mean	μ		1600
Population S.D	σ		150
Level of			
Significance	α	5/100	0.05
Sample Mean	X		1570
Test Statistics	Z_{cal}	(D6-D3)/(D4*SQRT(D2))	-4
	P_{value}	1-NORM.S.DIST(D9,1)	3.16712E-05
	Z_{tab}	NORM.S.INV(1-D5)	1.644853627
		IF(ABS(D7)>D9,"Reject H0","Do not	
Decision		reject H0")	Reject H0

Step 3: Level of significance and critical value

Take level of significance(α)= 5%

Critical value is Z_{tab} (0.05) =1.645

Step 4: Decision

Since $Z_{calc} > Ztab$, reject H_0 .

Step 5: Conclusion

There is no significant difference between battery life of laptops with 1600hrs.

Experiment 4 (Test of difference between two means)

Two random samples of Nepalese people taken from rural and urban region gave the following data of income:

Sample	Size	Average monthly income	S.D.
Rural	150	800	50
Urban	100	1250	40

Step 1: Setting of Hypothesis

Null Hypothesis; H_0 : μ_1 = μ_2 , there is no significance difference between income of rural and urban area

Alternative Hypothesis; H_1 : $\mu_1 \neq \mu_2$, there is significant difference between the income of rural and urban area.

Step 2: Test statistics

$$Z_{cal} = \frac{\overline{\overline{x_1}} - \overline{x_2}}{\left(\sqrt{\frac{\sigma_1}{n_1} + \frac{\sigma_2}{n_2}}\right)}$$

Magaurama		Rural		Urba	an
Measureme nt	Symbol			Symbol	Value
TIL.	s	Formulae	Values	S	S
Sample					
Size	n_1		150	n_2	100
Sample				_	
Mean	\bar{X}_1		800	\bar{X}_2	1250
Sample SD	S ₁		50	S ₂	40
Level of					
Significance	α		0.05		
Calculated		ABS((D4-G4)/SQRT((POWER(D5,2)/D3)+(PO			
Z	Z_{cal}	WER(G5,2)/G3)))	78.7336		
Calculated					
P	Р	NORM.S.DIST(D7,1)	1		
			1.95996		
Tabulated Z	Z_{tab}	NORM.S.INV(1-D6/2)	_ 4		
			Reject		
Decision		IF(ABS(D7)>D9,"Reject H ₀ ","Do not reject H ₀ ")	H_0		

Step 3: Level of significance and critical value

Take level of significance(α)= 5%

Critical value is $Z_{tab}(0.05) = 1.96$

Step 4: Decision

Reject H_0 since $Z_{cal} > Z_{tab}$

Step 5: Conclusion

There is a significant difference between the income of rural and urban areas.

Experiment 5 (t-test, single sample mean)

The time in minutes, spent by 12 using randomly selected customers internet in a cybercafé is as follows: 33,35,41,45,48,71,58,89,51,54,66,48. Can you conclude that the average time spent by the customers is more than 50 minutes? Test at 5% level of significance.

Step 1: Setting of Hypothesis

Null Hypothesis; H_0 : μ = 50min, there is no significant difference between the average time spent by customers with 50 min.

Alternative Hypothesis; H_1 : μ > 50, the average time spent by customers is more than 50 min.

Step 2: Test statistics

$$t_{cal} = \frac{\overline{x} - \mu}{s\sqrt{n}}$$

where
$$\overline{x} = \frac{\sum x}{n}$$
, $s = \frac{\sum (x - \overline{x})^2}{n - 1}$

T-TEST
/TESTVAL=50
/MISSING=ANALYSIS
/VARIABLES=x
/CRITERIA=CI(.95).

One-Sample Statistics

	N		Std. Deviation	Std. Error Mean	
Time Spent	12	53.25	15.955	4.606	

One-Sample Test

Test Value = 50

					95% Confidence Interval of the Difference		
	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper	
Time Spent	.706	11	.495	3.250	-6.89	13.39	

Here,

Measuremen	Symbol		
ts	S	Formulae	Value
Mean	X	from SPSS	53.25
S.D.	σ	from SPSS	15.955
Size	n	from SPSS	12
Level of Sig.	α	from SPSS	0.05
Pop. Mean	μ	from SPSS	50
S.E. (X)		from SPSS	4.606
t _{cal}		ABS((D2-D6)/D7)	0.705601389
p-value		from SPSS	0.495
l .		TIND ((4 DE 44)	1.795884819
t _{tab}		T.INV(1-D5,11)	
		IF(D8<=D10,"Do not reject H ₀ ", "Reject	Do not reject
Decision		H ₀ ")	H_0

Step 3: Level of significance and critical value:

Take level of significance(α)= 5% Critical value is t_{tab} (0.05,n-1)

Step 4: Decision

Since $t_{calc} < t_{tab}$, do not reject H_0 .

Step 5: Conclusion

Hence, there is no significant difference between the average time spent by customers with 50 minutes.

Experiment 6 (t-test, difference between two sample means)

Two types of manure were applied to sixteen one-hectare plot, other conditions remaining same, the yield in quintals are given in the table below.

Manure I	18	20	36	54	48	74	45	51	47
Manure II	28	29	25	36	30	29	51		

Can we conclude that the first manure gives more yield? Teat at 5% level of significance.

Step 1: Setting of Hypothesis:

Null Hypothesis; H_0 : $\mu_1 = \mu_2$, there is no significant difference between the average yield given by two manures

Alternative Hypothesis; H_1 : $\mu_1 > \mu_2$, the average yield given by first manure is more.

Step 2: Test statistics

$$t_{cal} = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}},$$

where
$$sp = \frac{\left(n_1 - 1\right)s_1^2 + \left(n_2 - 1\right)s_2^2}{n_1 + n_2 - 2}$$
, $s_1 = \frac{\Sigma\left(x_1 - \overline{x_1}\right)^2}{n_1 - 1}$, $s_2 = \frac{\Sigma\left(x_2 - \overline{x_2}\right)^2}{n_2 - 1}$

	-	<i>-</i>		2	
Manure	Manure	Measuremen	Symbol		
1	II	ts	S	Formulae	Values
18	28	Size	n_1	COUNTA(A2:A10)	9
20	29		n_2	COUNTA(B2:B8)	7
					43.666666
36	25	Mean	\bar{X}_1	AVERAGE(A2:A10)	67
					32.571428
54	36		\bar{X}_2	AVERAGE(B2:B8)	57
					17.284386
48	30	S. D	S ₁	STDEV.S(A2:A10)	02
					8.7722506
74	29		S_2	STDEV.S(B2:B8)	21
			_	((F2-1)*(F6^2) +	203.69387
45	51		S^2	(F3-1)*(F7^2))/(F2+F3-2)	76
				ABS(F5-F4)/SQRT(F8*((1/F3)+(1/F2)	1.5426163
51		t_calc))	21
47		Level of Sig.	α		0.05
					1.7613101
		\mathbf{t}_{tab}		T.INV(1-F10,F2+F3-2)	36
				IF(F9 <f11,"do h0",<="" not="" reject="" td=""><td>Do not</td></f11,"do>	Do not
		Decision		"Reject H0")	Reject H0

Step 3: Level of significance and critical value:

Take level of significance(α)= 5%

Critical value is $t_{tab}(0.05,n1+n2-2)$

Step 4: Decision

Do not reject H_0 as $t_{calc} < t_{tab}$.

Step 5: Conclusion

There is no significant difference between the average yield given by two manures.

Experiment 7 (paired t-test)

Memory capacity of ten students was tested before and after training, state whether the training was effective or not from the following scores.

Roll	1	2	3	4	5	6	7	8	9	10
Before	12	14	11	8	7	10	3	0	5	6
Trainin										
g										
After	15	16	10	7	5	12	10	2	3	8
Trainin										
g										

Step 1: Setting of Hypothesis: Null Hypothesis; H_0 : d = 0, the training is insignificant to increase the memory capacity of students.

Alternative hypothesis; H_1 : $d \neq 0$, the training is significant. d > 0, the training increases the memory capacity. d < 0, the training decreases the memory capacity.

Step 2: Test statistics

$$t_{cal} = \frac{\overline{d}}{\frac{s_d}{\sqrt{n}}}$$

Where,
$$s_d = \frac{\sum (d-d)^2}{n-1}$$

	a n-					
Befor e	After					
trainin	trainin		Measuremen	Symbol		
g	g	d	ts	S	Formulae	Values
12	15	3	Mean Standard	$ar{\mathbf{X}}_{d}$	AVERAGE(C2:C11)	1.2 2.7808871
14	16	2	Dev.	S_d	STDEV.S(C2:C11)	49
11	10	-1	Size	n	COUNTA(A2:A11)	10
					. ,	1.3645764
8	7	-1	t_calc		G2/(G3/SQRT(G4))	78
7	5	-2	Level of Sig.	α		0.05
						2.2621571
10	12	2	t_tab		T.INV.2T(G6,G4-1)	63
					IF(G5 <g7,"do not="" reject<="" td=""><td>Do not</td></g7,"do>	Do not
3	10	7	Decision		H_0 ", "Reject H_0 ")	Reject H₀
0	2	2				
5	3	-2				
6	8	2				

Step 3: Level of significance and critical value:

Take level of significance(α)= 5%

Critical value is $t_{tab}(0.05,n1)$

Step 4: Decision

Reject H_0 if $t_{cal} > t_{tab}$, otherwise accept H_0 .

Step 5: Conclusion

The training significantly increases the memory capacity.

Unit 3: Non-Parametric Tests

Experiment 8: (run test with small sample and Binomial Test)

On tossing a coin 30 times outcomes of head and tail are found as; Head, Head, Tail, Head, Tail, Head, Tail, Head, Tail, Head, Head, Head, Head, Head, Head, Head, Head, Tail, Head, Tail, Head, Tail, Head.

- (i) Are outcomes in random order?
- (ii) Is coin unbiased?

Using 1% level of significance

To test randomness

Step 1: Setting up hypothesis

Null Hypothesis; H_0 : Samples are in random order

Alternative Hypothesis; H_1 : Samples are not in random order

Step 2: Test statistic

Values	Measurements	Symbol	Formulae	Values
Head	Number of Heads Number of	n_1	SUMPRODUCT((ISNUMBER(SEARCH("Head",A 2:A31))))	16
Head	Tails Number of	n_2	COUNTA(A2:A31)-E2	14
Tail 	runs	r		19

r = 19.

Step 3: Level of significance and Critical Value

Level of Significance= α = 1% =0.01

From Table, with d.f. n_1 , n_2 : $\overline{r} = 10$, $\underline{r} = 22$

Step 4: Decision

Accept H_0 since $r \in (\overline{r}, \underline{r})$

Step 5: Conclusion

The Samples are in random order.

To test unbiasedness

Step 1: Setting up Hypothesis.

Null Hypothesis; H_0 : P = 1/2

Alternative Hypothesis; H_1 : P \neq 1/2

Step 2: Test statistic

$$Z = \frac{\left(x_0 \pm 0.5\right) - np}{\sqrt{npa}}$$

Where
$$x_0 = min(n_1, n_2)$$

 $n = n_1 + n_2$, use +0.5 if $x_0 < np$ and -0.5 otherwise.

$$p = prob(Z > |Z_{calc}|)$$

Measurements	Symbol	Formulae	Values
Number of	,	SUMPRODUCT((ISNUMBER(SEARCH("Head",A	
Heads	n_1	2:A31))))	16
Number of Tails	n_2	COUNTA(A2:A31)-E2	14
Number of runs	r		19
X_0		MIN(E2,E3)	14
Probability of			
Head	p	E2/(E2+E3)	0.533333333
	q	1-E6	0.466666667
n			30
np		E8*E6	16
Z _{calc}		(E5+0.5-E9)/SQRT(E9*E7)	-0.548943791
Level of sig.	α		0.01
Z _{tab}		NORM.S.INV(1-E11/2)	2.575829304
			Do not Reject
Decision		IF(ABS(E10) <e12,"do h<sub="" not="" reject="">0", "Reject H₀")</e12,"do>	H_0

Step 3: Level of Significance and Critical Values

Level of significance = α = 0.01

Step 4: Decision

Do not reject H_0 as $Z_{calc} < Z_{tab}$.

Step 5: Conclusion

Thus, the Coin is unbiased.

Experiment 9: (Run test, One Sample Kolmogorov Smirnov test, chi square test)

Marks secured by a sample of 32 students in Final examination of Statistics I are found as 43, 52, 34, 56, 28, 12, 46, 38, 10, 51, 49, 38, 46, 24, 36, 44, 38, 46, 27, 35, 41, 11, 23, 35, 42, 52, 49, 20, 35, 43, 37.

- (i) Are samples selected in random order?
- (ii) Are marks uniformly distributed? Use Kolmogorov Smirnov test
- (iii) Are marks uniformly distributed? Use chi square test Using 5% level of significance.

To test randomness

Find median then to sample values assign symbol say A if sample value less than median and symbol say B if sample value more than median and omit if sample value is equal to median.

Step 1: Setting up Hypothesis.

Null Hypothesis; H_0 : Samples are in random order.

Alternative Hypothesis: H_1 : Samples are not in random order.

Step 2: Test statistic

	Symbol	Measuremen	Symbol		Value
Values	S	ts	S	Formulae	S
43	В	Median		MEDIAN(A2:A33	38
52	В	Total Data	N	COUNTA(A2:A33)	32
				SUMPRODUCT((ISNUMBER(SEARCH("A",B	
34	Α	Number of A	n_1	2:B33))))	14
				SUMPRODUCT((ISNUMBER(SEARCH("B",B	
56	В	Number of B	n_2	2:B33))))	15
28	Α	total n	n	F4+F5	29
12	Α	Runs	r		16
46	В				
38	0				
10	Α				
Dunc: r -	16				

Runs: r = 16.

Step 4: Decision

Accept H0 since $r \in (\overline{r}, \underline{r})$

Step 5: Conclusion

The Samples are in random order.

To test uniformity

Step 1: Setting up Hypothesis.

Null Hypothesis H_0 : Marks are uniformly distributed.

Alternative Hypothesis; H_1 : Marks are not uniformly distributed Kolmogorov Smirnov test.

Step 2: Test statistic

$$D_0 = Max |F_e - F_o|$$

Where
$$F_e = \frac{cf_e}{N}$$
, $F_o = \frac{cf_o}{N}$

	Symb	-	Value								
Eval	ol	Formulae	S	Х	f	cf ₀	F _o	f_{e}	cf _e	F_{e}	$ F_e - F_o $
				4	2		0.06	1.45		0.04	
Median		MEDIAN(A2:A33	38	3	2	2	2	4	1.454	5	0.017
Total				5	2		0.12	1.45		0.09	
Data	N	COUNTA(A2:A33)	32	2	2	4	5	4	2.909	0	0.034
Nor of		SUMPRODUCT(ISNUMBER		3	1		0.15	1.45		0.13	
Α	n_1	(SEARCH("A",B2:B33)))	14	4	ı	5	6	4	4.363	6	0.019
		SUMPRODUCT(ISNUMBER		5	1		0.18	1.45		0.18	
No of B	n_2	(SEARCH("B",B2:B33)))	15	6	1	6	7	4	5.818	1	0.005
				2	1		0.21	1.45		0.22	
total n	n	F4+F5	29	8	ı	7	8	4	7.272	7	800.0
				1	1			1.45		0.27	
Runs	r		16	2	1	8	0.25	5	8.727	2	0.022
Unique				4	3		0.34	1.45	10.18	0.31	
x	n_{unique}		22	6	3	11	3	4	1	8	0.025
				3	3		0.43	1.45	11.63	0.36	
D _o		MAX(N2:N23)	0.093	8	3	14	7	4	6	3	0.073
				1	1		0.46	1.45	13.09	0.40	
D _{tab}	$D_{32,0.05}$		0.234	0	1	15	8	4	0	9	0.059
Decisio	•	IF(F9 <f10,"accept h<sub="">0",</f10,"accept>	Acce	5	1			1.45	14.54	0.45	
n		"Reject H ₀ ")	pt H ₀	1	I	16	0.5	4	5	4	0.045

Step 3: Level of Significance and Critical Values.

Critical value At α level of significance critical value is $D_{n,\alpha}$

Step 4: Decision

Since $D_o < D_{tab}$, accept H_0 .

Step 5: Conclusion

Marks are uniformly distributed.

Chi Square (not appropriate), so same as Kolmogorov test.

Experiment 10: (Median Test, Mann Whitney U test and Two sample Kolmogorov test)

Following are marks secured by 14 students of section A and 15 students of section B of DWIT in final examination of Digital logic are found as

Α	34	48	21	52	31	43	29	37	24	52	49	34	40	48	
В	11	53	27	38	47	50	26	38	44	33	27	33	41	10	28

Are median marks of section A and section B identical at 5% level of significance using?

- (i) Median test
- (ii) Mann Whiteny U test
- (iii) Kolmogorov Smirnov test

For Median Test

Step 1: Setting up Hypothesis

Null Hypothesis; H_0 : $Md_A = Md_B$

Alternative Hypothesis; H_1 : $Md_A \neq Md_B$

Using median test: Combine n_1 and n_2 such that $N = n_1 + n_2$ and obtain median of N observation. Find number of observations in $x_i \le Md$ and denote by a. Find number of observations in $y_i \le Md$ and denote by b. Also find the number of observations in $x_i > Md$ and denote by c and d respectively.

	No of obs. ≤ Md	No of obs. > Md	Total
Sample x	а	С	a + c
Sample y	b	d	b + d
Total	a + b	c + d	a + b + c + d

14

Step 2: Test statistics

$$\chi^2 = \frac{N(ad-bc)^2}{(a+c)(b+d)(a+b)(c+d)} \sim \chi^2_{(1)}$$

If any cell frequency is less than 5 then

$$Corrected\chi^{2} = \frac{N\left(|ad-bc| - \frac{N}{2}\right)^{2}}{(a+c)(b+d)(a+b)(c+d)} \sim \chi^{2}_{(1)}$$

Sample	Sample		Symbol		
Х	у	Measurements	S	Formulae	Values
34	11	Sample Size 1	n_1	COUNTA(A2:A15)	14
48	53	Sample Size 2 Combined	n_2	COUNTA(B2:B16)	15
21	27	Size	N	J4	29
52	38	Median	Md	MEDIAN(A2:B15, B16)	37
		Chi -Squared	χ^2_{calc}		
31	47	Calc		(J4 *(H2*I3 -H3*I2)^2)/(J2*J3*I4*H4)	0.03222222
43	50	Level of sig.	α	5/100	0.05
		Chi-Squared	χ^2_{tab}		
29	26	Tab	tub	CHISQ.INV.RT(F7,1)	3.841458821
				IF(F6 <f8, "do="" h₀",<="" not="" reject="" td=""><td>Do not Reject</td></f8,>	Do not Reject
37	38	Decision		"Reject H ₀ ")	H_0

		No of obs. >	
	No of obs. ≤ Md	Md	Total
Sample			
x	7	7	14
Sample			
у	8	7	15
Total	15	14	29
Formul	COUNTIF(A2:A15, "<="		
а	& F5)		

Step 3: Level of Significance and Critical Values

$$\alpha = 0.05 \, and \, \chi^2_{tab} = 3.841$$

Step 4: Decision

Since $\chi^2_{calc} \leq \chi^2_{tab}$, Do not Reject Null Hypothesis.

Step 5: Conclusion

The Medians of Sample A and Sample B are significantly identical.

For Mann Whitney U Test

Step 1: Setting up Hypothesis

Null Hypothesis; H_0 : $Md_A = Md_B$

Alternative Hypothesis; H_1 : $Md_A \neq Md_B$

Using Mann Whitney U test: Combine n_1 and n_2 such that $n_1+n_2=n$ and rank these n observations in ascending order. If two or more observations are equal, then assign average rank and is called tied. Sum the ranks of sample of sizes n_1 and n_2 separately to get R_1 and R_2 . If two sample sizes are unequal, then the smaller one is n_1 . Obtain U_1 and U_2 as

$$\begin{split} \boldsymbol{U}_1 &= n_1 n_2 + \frac{n_1 \left(n_1 + 1 \right)}{2} - \boldsymbol{R}_1 \text{ , } \boldsymbol{U}_2 = n_1 n_2 + \frac{n_2 \left(n_2 + 1 \right)}{2} - \boldsymbol{R}_2 \\ \boldsymbol{U}_0 &= \min\{\boldsymbol{U}_1, \boldsymbol{U}_2\} \end{split}$$

Step 2: Test statistic

$$Z = \frac{U_0 - \mu}{\sigma_n} = \frac{U_0 - \frac{n_1 n_2}{2}}{\sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}}$$

It is used even if tied occurs within sample. If tied occurs between samples then standard deviation is corrected as

$$\sigma_u = \sqrt{\frac{n_1 n_2}{n(n-1)\{\frac{n^3-n}{12} - \sum \frac{t_i^3-t_i}{12}\}}}$$

t_i = number of times ith rank repeated between samples.

Sample	Rank	Sample	Rank	Combine	Measuremen	Symbol	Famoulas	Malara
X	1	У	2	d	ts	S	Formulae	Values
0.4	40.5	44	0	0.4	Sample Size		OOLINITA (AO. A45)	4.4
34	13.5	11	2	34	1	n_1	COUNTA(A2:A15)	14
40	00.5	50	00	40	Sample Size		0011NITA (D0 D40)	4.5
48	23.5	53	29	48	2	n_2	COUNTA(B2:B16)	15
	_				Combined			
21	3	27	6.5	21	Size	N	M4	29
					Sum of Rank			
52	27.5	38	16.5	52	1	R_1	SUM(B2:B15)	233
					Sum of Rank			
31	10	47	22	31	2	R_2	SUM(D2:D16)	202
							2* 3 + ((2 *(2	
43	20	50	26	43	U₁	U_1	+1))/2) -I5	82
							I2*I3 + ((I3 *(I3	
29	9	26	5	29	U_2	U_2	+1))/2) -l6	128
37	15	38	16.5	37	U_{o}	U_0	MIN(17:18)	82
					v	Ü	SQRT(((I2*I3)/(I4*(
							I4-1)))*(((POWER(I	
					Corrected		4,3)-l4)/12)-6*((PO	22.895941
24	4	44	21	24	S.D	σ_{u}	WER(2,3)-2)/12)))	52
52	27.5	33	11.5	52		ŭ	12*13/2	105
1 32	0	30	0	J <u>-</u>			<i>_</i>	.00

								-1.0045448
49	25	27	6.5	49	Z_{calc}	Z_{calc}	(19-111)/110	44
							NORM.S.INV(1-I1	1.6448536
34	13.5	33	11.5	34	Z_{tab}	Z_{tab}	4)	27
40	18	41	19	40	Level of sig.	α	5/100	0.05
					_		IF(ABS(I12) <i13,< td=""><td></td></i13,<>	
							"Do not Reject H ₀ ",	Do not
48	23.5	10	1	48	Decision		"Reject H ₀ ")	Reject H₀

Step 3: Level of Significance and Critical Value

$$\alpha\,=\,0.\,05$$
 and $Z_{\it tab}^{}=\,1.\,65$

Step 4: Decision

Since $Z_{calc} < Z_{tabulated}$, do not reject H_0 .

Step 5: Conclusion

The Medians of sample A and sample B are significantly identical.

For Kolmogorov Smirnov Test

Step 1: Setting up Hypothesis

Null Hypothesis; H_0 : F(x) = F(y)

Alternative Hypothesis; H_1 : $F(x) \neq F(y)$

Step 2: Test statistics

$$D_0 = maximum|F(x) - F(y)|, where F(x) = \frac{cf_x}{N_x}, F(y) = \frac{cf_y}{N_y}$$

Sample	Sample	Combine		f(x	f(y	F(x		
Х	У	d	Unique)))	F(y)	F(x) - F(y)
						0.0		
34	11	34	10	0	1	0	0.07	0.07
						0.0		
48	53	48	11	0	1	0	0.07	0.07
					_	0.0		
21	27	21	21	1	0	7	0.00	0.07
					_	0.0		
52	38	52	24	1	0	7	0.00	0.07
				_		0.0		
31	47	31	26	0	1	0	0.07	0.07
				_		0.0		
43	50	43	27	0	2	0	0.13	0.13

00	00	00	00	•		0.0	0.07	0.07
29	26	29	28	0	1	0.0	0.07	0.07
37	38	37	29	1	0	7	0.00	0.07
0.4	4.4	0.4	0.4	4	•	0.0	0.00	0.07
24	44	24	31	1	0	7 0.0	0.00	0.07
52	33	52	33	0	2	0	0.13	0.13
40	07	40	24	_	0	0.1	0.00	0.44
49	27	49	34	2	0	4 0.0	0.00	0.14
34	33	34	37	1	0	7	0.00	0.07
40	44	40	20	0	2	0.0	0.40	0.42
40	41	40	38	0	2	0.0	0.13	0.13
48	10	48	40	1	0	7	0.00	0.07
	28	11	41	0	1	0.0	0.07	0.07
	20	11	41	U	1	0.0	0.07	0.07
		53	43	1	0	7	0.00	0.07
		27	44	0	1	0.0	0.07	0.07
		21	7-7	J	•	0.0	0.07	0.07
		38	47	0	1	0	0.07	0.07
		47	48	2	0	0.1 4	0.00	0.14
			10	_	J	0.0		0.11
		50	49	1	0	7	0.00	0.07
		26	50	0	1	0.0	0.07	0.07
						0.1		
		38	52	2	0	4	0.00	0.14
		44	53	0	1	0.0	0.07	0.07
		33						
		27	Total	14	15			

Measuremer	1	
ts	Formula	Values
D0	MAX(I2:I24)	0.142857
α	5/100	0.05
Dn1,n2,α	1.36*SQRT((E26+F26)/(E26*F26))	0.505392
	IF(F27 <f29, "do="" h<sub="" not="" reject="">0",</f29,>	Do not
Decision	"Reject H ₀ ")	Reject H₀

Step 3: Level of Significance and Critical Value

level of significance α = 0.05 critical value for n_1 and n_2 is $D_{n_1, n_2, \alpha}$ = 0.505

Step 4: Decision

Since, $D_0 < D_{n1, n2, \alpha}$, do not reject H_0 .

Step 5: Conclusion

There is no significant difference between the two samples thus their medians.

Experiment 11: Chi Square for Independence of Attributes.

The following information is obtained from locality related to gender and eye color:

Person	Gender	Eye Color
Α	Male	Black
В	Female	Black
С	Male	Brown
D	Male	Black
E	Female	Blue
F	Male	Brown
G	Female	Black
Н	Male	Black
J	Female	Black
K	Female	Brown
L	Female	Black
N	Male	Black
0	Female	Blue
Р	Female	Brown
Q	Male	Black
R	Female	Black
S	Male	Brown
Т	Female	Black
U	Female	Black
٧	Male	Brown

Is there any association between gender and eye color? Use 5% level of significance.

Step 1: Setting up Hypothesis.

Null Hypothesis H0: Attributes are independent.

Alternative Hypothesis H1: Attributes are dependent.

Step 2: Test statistic

$$\chi^{2} = \sum \sum \frac{(o_{ij} - E_{ij})^{2}}{E_{ij}} \sim \chi^{2}_{(r-1)(c-1)}$$

Perso	Gend	Eye		Blac	Brow	Blu	Tot	Grou		E _{ij} = (O _{i.} X		(O _{ij} -
n	er	Color	Ai∖Bj	k	n	е	al	р	O _{ii}	O _{.j})/N	O _{ii} - E _{ii}	E _{ii})^2/E _{ii}
A	Male Femal	Black	Male Femal	5	4	0	9	A_1B_1	5	5.4	-0.4	0.03
В	е	Black Brow	е	7	2	2	11	A_1B_2	4	2.7	1.3	0.63
С	Male	n	Total	12	6	2	20	A_1B_3	0	0.9	-0.9	0.90
D	Male Femal	Black						A_2B_1	7	6.6	0.4	0.02
E	е	Blue Brow						A_2B_2	2	3.3	-1.3	0.51
F	Male Femal	n						A_2B_3	2	1.1	0.9	0.74
G	е	Black						Total				2.83
Н	Male	Black										

Measurements	Formula	Value
Chi-squared		
calc	M8	2.83
α	5/100	0.05
d.f.	(COUNTA(D2:D3)-1)*(COUNTA(E2:G2)-1)	2
Chi-squared tab	CHISQ.INV.RT(F12,F13)	5.991465
		Do not Reject
Decision	IF(F11 <f14, "do="" h<sub="" not="" reject="">0", "Reject H₀")</f14,>	H_0

Step 3: Level of Significance and Critical Value

level of significance α = 0.05

critical value for r =2 and c=3 is
$$\chi^2_{\alpha(r-1)(c-1)} = 5.99$$

Step 4: Decision

Since, $\chi^2_{calc} < \chi^2_{tab}$, do not reject H_0 .

Step 5: Conclusion

Thus, the attributes are independent of each other.

Experiment 12: Wilcoxon Matched Pair Signed Rank Test.

Marks secured by a sample of 15 students at a college in first test and second test of Statistics II are found as

Stude															
nt	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Test I	12	7	15	11	17	19	5	13	17	6	9	18	14	10	8
Test II	14	5	17	13	12	18	9	10	18	12	3	14	16	16	8

Is there improvement in marks in test II as compared to test I? Use nonparametric test at 5% level of significance.

Step 1: Setting up Hypothesis.

Null Hypothesis H₀: Md₁= Md₁₁

Alternate Hypothesis H₁: Md₁ < Md₁

Find di = $y_i - x_i$ or $x_i - y_i$ for each pair of observations (x_i, y_i) , i = 1,2,3,...n. Rank directive of sign in ascending order but omit $d_i = 0$. If two or more di are equal, then assign the average rank and is called tied. In such case corrected sample size $n_c = n - t$, t is number of tied occurred. Assign sign to the ranks with respect to the sign of d_i . Sum the ranks of + sign and - sign separately to get S (+) and S (-) respectively. Finally get T = min {S (+), S (-)}

Step 2: Test statistic

T = Min(S(+), S(-)).

		(, ,,	· //					
	Test	Test						
Student		П	$d_i = y_i - x_i$	$ d_i $	R_i	Measurements	Formula	Values
1	12	14	2	2	5	S (+)	SUMIF(F2:F15,">0") ABS(SUMIF(F2:F15,"<	57
2	7	5	-2	2	-5	S (-)	0")	48
3	15	17	2	2	5	corrected n	COUNTA(A2:A16)-1	14
4	11	13	2	2	5	T_{calc}	MIN(J2:J3)	48
5	17	12	-5	5	-11	α	5/100	0.05
6	19	18	-1	1	-1.5	T_tab		26
							IF(J5 <j7,"reject h<sub="">0",</j7,"reject>	Do not
7	5	9	4	4	9.5	Decision	"Do not Reject H ₀ ")	Reject H ₀
8	13	10	-3	3	-8			

Step 3: Level of Significance and Critical Value

Level of significance $\alpha = 0.05$

Critical Value $T_{\alpha,n} = 26$

Step 4: Decision

Since $T_{calc} > T_{tab}$, do not reject H_0 .

Step 5: Conclusion

There is no significant improvement in test II compared to test I.

Experiment 13: Cochran Test

Four diets are fed to 9 cows, each diet for a month and the result of increase(I) and decrease(D) of milk given by different cows are found as follows:

Cow Diet	ı	II	Ш	IV	V	VI	VII	VIII	IX
D1	I	I	D	I	D	I	I	D	I
D2	D	D	I	D		D	D		
D3	Ī	D	Ī	D	D		I	D	D
D4	I		[D	D			D	

Test whether diets are equally effective or not at 1% level of significance.

Step 1: Setting up Hypothesis.

Null Hypothesis H₀: All the diets are equally effective.

Alternative Hypothesis H₁: All the diets are not equally effective.

Sum all the I(Positive) according to treatment to get Ri (Row wise) and according to objects to get Ci (Column wise), i = 1, 2, 3, k and j = 1, 2, 3, n. Then get.

$$\sum_{i=1}^{k} R_{i'}, \sum_{i=1}^{k} R_{i}^{2}, \sum_{i=1}^{k} C_{j'}, \sum_{i=1}^{k} C_{j'}^{2}.$$

Step 2: Test statistics

$$Q = \frac{(k-1)\left[K\sum R_i^2 - \left(\sum R_i\right)^2\right]}{K\sum C_j - \sum C_j^2} \sim \chi^2.$$

Cow Diet	I	11	III	IV	V	VI	VII	VIII	IX	R _i	R _i ²
D1	I	I	D	l	D			D	I	6	36
D2	D	D	1	D	1	D	D	I	I	4	16
D3	ı	D	I	D	D	I		D	D	4	16
D4	ı	I	I	D	D	I		D	I	6	36
C _i	3	2	3	1	1	3	3	1	3	20	104
$C_i^{\dot{2}}$	9	4	9	1	1	9	9	1	9	52	

Measurements		Formula	Values
$\Sigma R_i = \Sigma C_i$	K6		20

ΣR _i ²	L6	104
ΣC _i ²	K7	52
k	COUNTA(A2:A5)	4
Q	((P5-1)*(P5*P3-POWER(P2,2)))/(P5*P2-P4)	1.714285714
α	1/100	0.01
Χ α(k-1)	CHISQ.INV.RT(P7,P5-1)	11.34486673
Decision	IF(P6 <p8, "do="" h<sub="" not="" reject="">0", "Reject H₀")</p8,>	Do not reject H₀

Step 3: Level of Significance and Critical value

Level of Significance $\alpha = 0.01$ Critical Value $\chi_{\alpha (k-1)}^2 = 11.34$

Step 4: Decision

Since $Q < \chi^2_{\alpha,(k-1)}$, do not reject H_0 .

Step 5: Conclusion

All the Diets are equally Effective.

Experiment 14: Kruskal Wallis H test

The following data represents the operating times in hours for four types of laptops before a charge is required.

Dell	5.3	4.8	6.1	3.5			
Acer	5.2	5.8	3.9	4.6	4.9	5.1	5.6
HP	4.5	5.2	3.8	4.8	5.3		
Lenovo	4.7	6.2	5.7	5.5	3.9	4.8	

Is operating time for all laptops equal at 5% level of significance use nonparametric test?

Step 1: Setting up Hypothesis.

Null Hypothesis H_0 : $Md_1 = Md_2 = Md_3 = \dots = Md_k$

Alternative Hypothesis H₁: At least one Md₁ is different i = 1, 2, 3,, k.

Combine n_1 , n_2 , n_3 and n_k such that $n_1 + n_2 + n_3 + \dots + n_k = n$ and rank these n observations in ascending order. If two or more observations are equal, then assign average rank and is called tied. Sum the ranks of sample of sizes n_1 , n_2 , n_3 , and n_k separately to get R_1 , R_2 , R_3 ,, R_k .

Step 2: Test statistic :
$$H = \frac{12}{n(n+1)} \sum_{i=1}^{R_i^2} -3(n+1) \sim \chi_{(k-1)}^2$$
.

If tied occurs, then corrected test statistic is,

 $H = \frac{\frac{\frac{12}{n(n+1)}\sum_{n_i}^{R_i^2} - 3(n+1)}{1-\sum_{n_i=1}^{\frac{t_i^3-t_i}{n^3-n}}} \text{ , } t_i = \text{number of times i}^{\text{th}} \text{ rank is repeated. Critical value for } n_i < 5 \text{ \& k}$ = 4,

Computer s			Oper	ating Tim	ne			R _i	R _i ²/n _i
Dell	5.3	4.8	6.1	3.5					
R1	15.5	9	21	1				46.5	540.562 5
Acer	5.2	5.8	3.9	4.6	4.9	5.1	5.6		
R2	13.5	20	3.5	6	11	12	18	84	1008
HP	4.5	5.2	3.8	4.8	5.3				
R3	5	13.5	2	9	15.5			45	405
Lenovo	4.7	6.2	5.7	5.5	3.9	4.8			
R4	7	22	19	17	3.5	9		77.5	1001.04
Total									2954.60 4

Measurement	Symbol			_F Value
S	S	Formulae	Values	S
Sample Sizes	n ₁	COUNTA(B2:H2)	4.00	
	n_2	COUNTA(B4:H4)	7.00	
	n ₃	COUNTA(B6:H6)	5.00	
Total Sample	n_4	COUNTA(B9:H9)	6.00	
Size	n	SUM(O2:O6)	22.00	0.000
Repetition	3.5	(POWER(O9,3)-O9)/(POWER(\$O\$8,3)-\$O\$8)	2.00	0.000
	9	(POWER(O10,3)-O10)/(POWER(\$O\$8,3)-\$O\$8)	3.00	0.002
	13.5	(POWER(O11,3)-O11)/(POWER(\$O\$8,3)-\$O\$8)	2.00	0.000
	15.5	(POWER(O12,3)-O12)/(POWER(\$O\$8,3)-\$O\$8) (((12/(2.00	0.000
н		O8*(O8+1)))*J10)-(3*(O8+1)))/(1-SUM(P9:P12))	1.07	

Level of Sig.	α	5/100	0.05	
Chi Square Tab	χ^{2}_{tab}	CHISQ.INV.RT(O14, 4-1)	7.81	
145			Do not	
Decision		IF(O13 <o15,"do h<sub="" not="" reject="">0", "Reject H₀")</o15,"do>	reject H₀	

Step 3: Level of Significance and Critical Value

Level of Significance $\alpha = 0.05$

Critical Value
$$\chi^2_{\alpha,(k-a)} = 7.81$$

Step 4: Decision

Since $H > \chi^2_{tab}$, Do not reject H_0 .

Step 5: Conclusion

Thus at least one Md_i is different, so not all operating times for laptops are equal.

Experiment 15: Friedman F test

The scores of 7 students in Statistics II in three tests are found as

Student Test	A	В	С	D	E	F	G
1	15	13	8	12	9	16	13
II	14	16	12	10	14	11	6
III	10	12	5	16	8	14	16

- (i) Is there any significant difference in marks in the three tests?
- (ii) Is there any significant difference in the marks of seven students? Use nonparametric test at 1% level of significance.

Step 1: Setting up Hypothesis.

Null Hypothesis H_0 : $Md_1 = Md_2 = Md_3 = \dots = Md_k$

Alternative Hypothesis H₁: At least one Md_i is different i = 1, 2, 3, k.

Rank k sample observations for each block separately from 1 to k. in ascending order. If two or more observations are the same, then assign average rank which is also called tied. Obtain sum of ranks for each sample to get Ri, $i = 1, 2, 3, \ldots k$

Step 2: Test statistic

$$F_r = \frac{12}{nk(k+1)} \sum_{i=1}^k R_i^2 - 3n(k+1).$$

If tied occurs, then corrected test statistic is,

$$F_r = \frac{\frac{\frac{12}{nk(k+1)}\sum\limits_{i=1}^{k}R_i^2 - 3n(k+1)}{\sum\limits_{i=1}^{t_i^3 - t_i} {n(k^3 - k)}}}{1 - \sum\limits_{i=1}^{t_i^3 - t_i} {n(k^3 - k)}} \text{ , } t_i \text{ = number of times i}^{\text{th}} \text{ rank is repeated.}$$

Test														
Student	I	R_1		П		R_2		Ш		R_3		R_{i}		R_i^2
Α	1	5	2		14	2	2.5		10		5		9.5	90.25
В	1	3	3.5		16		1		12		4		8.5	72.25
С		8	7		12		4		5		7		18	324
D	1	2	5		10		6		16		1.5		12.5	156.25
E		9	6		14	2	2.5		8		6		14.5	210.25
F	1	6	1		11		5		14		3		9	81
G	1	3	3.5		6		7		16		1.5		12	144
Total														1078

Measuremen			⊤Valu	
ts	Formulae	Values	ė	_F Value
n	COUNTA(A2:A8)	7		
k	COUNTA(B1,D1,F1)	3		
	(POWER(N4,3) -			0.03571
Rank Repeat	N4)/(\$M\$2*(POWER(\$M\$3,3)-\$M\$3))	3.5	2	4
	(POWER(N5,3) -			0.03571
	N5)/(\$M\$2*(POWER(\$M\$3,3)-\$M\$3))	2.5	2	4
	(POWER(N6,3) -			0.03571
	N6)/(\$M\$2*(POWER(\$M\$3,3)-\$M\$3))	1.5	2	4
	((12/(M2*M3*(M3+1)))*I9-(3*M2*(M3+1)))/(1-SUM(O			
F _r	4:06))	78.4		
Р		0		
α	1/100	0.01		
Decision	IF(M8 <m9, "do="" "reject="" h0")<="" h0",="" not="" reject="" td=""><td>Reject H0</td><td></td><td></td></m9,>	Reject H0		

Step 3: Level of Significance and Critical value

For n=7, k=3 critical value p is obtained from Friedman table, $p = P (F_r > 73.96) = 0$.

Step 4: Decision

Since p < α , reject H₀.

Step 5: Conclusion

There are significant Differences.

Experiment 16: Completely Randomized Design

Let A, H, D and L represent Acer, HP, Dell and Lenovo laptop and following information represents their operating time in hours before charge is required.

Α	Н	D	Н	D	L
5.2	3.8	4.6	5.2	3.6	4.5
L	Α	Н	L	L	Α
5.6	3.9	4.6	6.2	4.8	3.5
Н	D	L	D	Α	D
4.4	3.6	5.2	4.8	4.2	5.4
Α	L	Α	Н	D	Н
6.1	4.7	3.2	5.3	4.8	3.9

Carryout analysis of the design at 1% level of significance. (CRD)

Working formula

Mathematical model: $y_{ij} = \mu + \tau_i + e_{ij}$; i = 1, 2, 3, ..., t; j = 1, 2, 3, ..., r.

Step 1: Setting up Hypothesis.

Null Hypothesis H_{0T} : $\mu_{1.} = \mu_{2.} = \mu_{3.} = = \mu_{t}$. (There is no significant difference between the treatments)

Alternative Hypothesis H_{1T} : At least one μ_{L} is different. $i = 1, 2, 3, \ldots t$ (There is at least one significant difference between treatments)

Step 2: Test statistic:

 F_T = MST/MSE, where MST = SST/ (t - 1), MSE = SSE / t(r - 1)

$$TSS = \sum_{i=1}^{t} \sum_{j=1}^{r} y_{ij}^{2} - C.F.$$

$$SST = \frac{\sum_{i=1}^{t} T_{i.}^{2}}{r} - C.F. \text{ where } C.F. = \frac{G^{2}}{N}$$

$$SSE = TSS - SST$$

Using EXCEL, Insert/Data/Data Analysis/ANOVA: Single factor.

ANOVA

values

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	2.308	3	.769	1.197	.336
Within Groups	12.857	20	.643		
Total	15.165	23			

Treatmen							
ts						_	$\Gamma_{i.}$
Α	5.2	3.9	3.5	4.2	6.1	3.2	26.1
D	4.6	3.6	3.6	4.8	5.4	4.8	26.8
Н	3.8	5.2	4.6	4.4	5.3	3.9	27.2
L	4.4	5.6	6.2	4.8	5.2	4.7	30.9
Total							111

Measurements	Formulae	Values
G	H6	111
N	COUNTA(B2:G5)	24
C.F.	POWER(K2,2)/K3	513.375
Σy_{ii}^2	SUM(POWER(B2:G5,2)	528.54
r	COUNTA(B2:G2)	6
t	COUNTA(A2:A5)	4
α	5/100	0.05
TSS	K5-K4	15.165
SST	(SUM(POWER(H2:H5,2))/K6)-K4	2.308333333
SSE	K9-K10	12.85666667
d.f.	M2 & "," & M3	3,20
Decision	IF(P2 <q2,"do h<sub="" not="" reject="">0", "Reject H₀")</q2,"do>	Do not reject H ₀

S.V.	d.f.	S.S.	M.S.	F _{cal}	F _{tab}
Treatme		2.30833	0.76944	1.19695	
nt	3	3	4	8	3.098
		12.8566	0.64283		
Error	20	7	3		
Total	23	15.165			

Step 3: Level of significance and Critical Value

Level of significance $\alpha = 0.05$

Critical Value $F_{\alpha,(t-1),t(r-1)} = 3.098$

Step 4: Decision

Since $F_{calc} < F_{tab}$, do not reject H_0 .

Step 5: Conclusion

Hence there is no significant difference between the laptops(treatments).

Experiment 17: Randomized Block Design

Let A, H, D and L represent Acer, HP, Dell and Lenovo laptop and following information represents their operating time in hours before charge is required.

Α	Н	D	Α	D	L
5.0	3.6	4.8	4.2	3.8	4.6
L	Α	Н	L	L	Α
5.4	4.9	4.3	5.2	5.8	5.5
Н	D	L	D	Α	D
4.8	4.6	5.5	4.6	5.2	5.0
D	L	Α	Н	Н	Н
6.0	4.5	3.9	5.1	4.9	4.9

Carryout analysis of the design at 1% level of significance. (RBD)

Working formula

Mathematical model:

$$y_{ij} = \mu + \tau_i + \beta_j + e_{ij}$$

Where, $y_{ij} = j^{th}$ block receiving ith treatment; i = 1, 2, ..., t, j = 1, 2, ..., b

Step 1: Setting up Hypothesis.

Null Hypothesis H_{0T} : $\mu_{1.} = \mu_{2.} = \mu_{3.} = = \mu_{t}$. (There is no significant difference between the treatments)

Alternative Hypothesis H_{1T} : At least one μ_i is different. $i = 1, 2, 3, \ldots t$ (There is at least one significant difference between treatments)

Null Hypothesis H_{0B} : $\mu_{.1} = \mu_{.2} = \mu_{3.} = = \mu_{.b}$ (There is no significant difference between blocks)

Alternative Hypothesis H_{1T} : At least one μ_j is different. j = 1, 2, 3... b (There is at least one significant difference between blocks)

Step 2: Test statistic

F_T = MST/MSE, F_B = MSB/MSE, where MST = SST/(t - 1), MSB = SSB/(b - 1), MSE = SSE / (t-1)(b - 1)
$$TSS = \sum_{i=1}^{t} \sum_{j=1}^{r} y_{ij}^{2} - C.F.$$
$$SST = \frac{\sum_{i=1}^{t} T_{i}^{2}}{b} - C.F. \text{ where } C.F. = \frac{G^{2}}{N}$$
$$SSB = \frac{\sum_{j=1}^{r} T_{j}^{2}}{b} - C.F$$

SSE = TSS – SST-SSB
Using EXCEL, Insert/Data/Data Analysis/ANOVA: Two factor without replication.

Treatmen							
ts							T _{i.}
Α	5.0	4.9	3.9	4.2	5.2	5.5	28.7
D	6.0	4.6	4.8	4.6	3.8	5.0	28.8
Н	4.8	3.6	4.3	5.1	4.9	4.9	27.6
L	5.4	4.5	5.5	5.2	5.8	5.5	31.9
T _{.i}	21.2	17.6	18.5	19.1	19.7	20.9	117

Measurements	Formulae	Values
G	H6	117
N	COUNTA(B2:G5)	24
C.F.	POWER(K2,2)/K3	570.375
Σy_{ii}^2	SUM(POWER(B2:G5,2)	579.06
b	COUNTA(B2:G2)	6
t	COUNTA(A2:A5)	4
α	5/100	0.01
TSS	K5-K4	8.685
SST	(SUM(POWER(H2:H5,2))/K6)-K4	1.708333333
SSB	(SUM(POWER(B6:G6,2))/K7)-K4	2.415
SSE	K9-K10	4.561666667
df	M2 & "," & M3	3,15
	M3 & "," & M4	5,15
Decision T	IF(P2 <q2,"do h<sub="" not="" reject="">0", "Reject H₀")</q2,"do>	Do not reject H ₀
Decision B	IF(P3 <q3,"do "reject="" h₀")<="" h₀",="" not="" reject="" td=""><td>Do not reject H₀</td></q3,"do>	Do not reject H₀

S.V.	d.f.	S.S.	M.S.	F _{cal}	F _{tab}
Treatment	3	1.708333	0.569444	1.872488	5.417
Blocks	5	2.415	0.483	1.588235	4.556
Error	15	4.561667	0.304111		
Total	23	8.685			

Step 3: Level of Significance and Critical Value

Level of significance $\alpha = 0.01$

Critical Value
$$F_{\alpha,(t-1),(t-1)(r-1)} = 5.417$$
, $F_{\alpha,(r-1),(t-1)(r-1)} = 4.556$

Step 4: Decision

Since $F_{cal} < F_{tab}$ for both block and treatments, do not reject both H_0 .

Step 5: Conclusion

There is not any significant difference between the blocks and treatments.

Experiment 18: Latin Square Design

Let A, H, D and L represent Acer, HP, Dell and Lenovo laptops and the following information represents their operating time in hours before charge is required.

Α	Н	D	L
A 4.2	4.8	4.2	6.2
L	Α	Н	D
4.6	5.9	4.8	5.2
Н	D	L	Α
H 5.4	5.6	5.6	4.8
D	L	Α	Η
4.1	5.7	4.2	4.3

Carryout analysis of the design at 5% level of significance. (LSD)

Working formula

Mathematical model:
$$y_{ijk} = \mu + \alpha_i + \beta_j + \tau_k + e_{ijk}$$

Where $y_{ijk} = i^{th}$ row and j^{th} column receiving k^{th} treatment; I = 1, 2, ..., m; j = 1, 2, ..., m; k = 1, 2...m

Step 1: Setting up Hypothesis.

Null Hypothesis H_{0R} : $\mu_{1...} = \mu_{2..} = \mu_{3..} = \dots = \mu_{m..}$ (There is no significant difference between rows)

Alternative Hypothesis H_{1R} : At least one $\mu_{..}$ is different. I = 1, 2, 3, ... M (There is at least one significant difference between rows)

Null Hypothesis H_{0C} : $\mu_{.1.} = \mu_{.2.} = \mu_{.3.} = = \mu_{.m.}$ (There is no significant difference between columns)

Alternative Hypothesis H_{1C} : At least one $\mu_{.j.}$ is different. J = 1, 2, 3, ... M (There is at least one significant difference between columns)

Null Hypothesis H_{0T} : $\mu_{..1} = \mu_{..2} = \mu_{..3} = = \mu_{..m}$ (There is no significant difference between treatments)

Alternative Hypothesis H_{1T} : At least one $\mu_{...k}$ is different. K = 1, 2, 3, ... M (There is at least one significant difference between treatments)

Step 2: Test statistic

 $F_R = MSR/MSE$, $F_C = MSC/MSE$, $F_T = MST/MSE$,

where MSR = SSR/ (m - 1), MSC = SSC/ (m - 1), MST = SST/ (m - 1), MSE = SSE / (m-1) (m-2)

$$TSS = \sum_{i,j,k}^{m} y_{ij}^{2} - C.F.$$

$$SSR = \frac{\sum_{i=1}^{m} T_{i..}^{2}}{m} - C.F. \text{ where } C.F. = \frac{G^{2}}{N}$$

$$SSC = \frac{\sum_{j=1}^{m} T_{j..}^{2}}{m} - C.F$$

$$SST = \frac{\sum\limits_{k=1}^{\infty} T_{..k}^2}{m} - C.F$$

SSE = TSS - SSR-SSC-SST

Rows		Co	olumns		т
IXOWS	1	II	III	IV	! <u>і</u>
1	4.2	4.8	4.2	6.2	19.4
II	4.6	5.9	4.8	5.2	20.5
III	5.4	5.6	5.6	4.8	21.4
IV	4.1	5.7	4.2	4.3	18.3
T _{.i.}	18.3	22	18.8	20.5	79.6

Treatments	1	II	III	IV	Tk
Α	4.2	2 5.9	4.2	4.8	19.1
D	4.	1 5.6	4.2	5.2	19.1
Н	5.4	4 4.8	4.8	3 4.3	19.3
L	4.0	6 5.7	5.6	6.2	22.1
Total					79.6

Measurements	Formulae	Values
G	L6	79.6
N	COUNTA(H2:K5)	16
C.F.	POWER(O2,2)/O3	396.01
Σy_{ijk}^2	SUM(POWER(H2:K5,2))	403.16
m	COUNTA(H2:K2)	4
α	5/100	0.05
TSS	O5-O4	7.15
SSR	SUM(POWER(F3:F6,2))/O6-O4	1.355
SSC	SUM(POWER(B7:E7,2))/O6-O4	2.135
SST	SUM(POWER(L2:L5,2))/O6-O4	1.62
SSE	08-09-010-011	2.04
Decision R	IF(T2 <u2,"do <math="" not="" reject="">H_0", "Reject H_0")</u2,"do>	Do not Reject H ₀

Decision C	IF(T3 <u3,"do h<sub="" not="" reject="">0", "Reject H₀")</u3,"do>	Do not Reject H₀
Decision T	IF(T4 <u4,"do h<sub="" not="" reject="">0", "Reject H₀")</u4,"do>	Do not Reject H₀

S.V.	d.f.	S.S		M.S.	F _{cal}	F _{tab}
Row		3	1.355	0.451667	1.328431	4.757
Column		3	2.135	0.711667	2.093137	4.757
Treatment		3	1.62	0.54	1.588235	4.757
Error		6	2.04	0.34		
Total		15	7.15			

Step 3: Level of Significance and Critical Value

Level of Significance $\alpha = 0.05$

Critical Value $F_{c,(m-1),(m-1)(m-2)} = 4.757$

Step 4: Decision:

Since $F_{cal} < F_{tab}$ for rows, columns, and treatments, Reject H_0 for all three.

Step 5: Conclusion

There is no significant difference in rows, columns, and treatments.

Unit 4: Multiple Correlation and Regression Experiment 19: Regression and Correlations.

A developer of food for pig wishes to determine what relationship exists among 'age of a pig' when it starts receiving a newly developed food supplement, the initial weight of the pig and the amount of weight it gains in a week period with the food supplement. The following information is the result of a study of eight piglets.

Piglet No.	Initial wt. (lbs.) (x ₁)	Initial age (weeks)	Wt. gain (y)	
		(x_2)		
1	39	8	7	
2	52	6	6	
3	49	7	8	

4	46	12	10
5	61	9	9
6	35	6	5
7	25	7	3
8	55	5	4

- (i) Determine the least square equation that best describes these three variables.
- (ii) Calculate the standard error.
- (iii) How much gain in weight of a pig in a week can we expect with the food supplement if it were 9 weeks old and weighted 49 lbs.
- (iv) Test the significance of regression coefficient and overall fit of the regression equation.
- (v) Conduct residual analysis.
- (vi) Determine partial correlations, multiple correlation and coefficient of multiple determination. Interpret the results.

Working Formula:

(i) The multiple regression equation of Y on X₁ and X₂ is

Y= a + b_1X_1 + b_2X_2 (1), using LSM, we get the normal equations are,

$$\Sigma Y = n a + b_1 \Sigma X_1 + b_2 \Sigma X_2 \dots (2)$$

$$\Sigma Y X_1 = a \Sigma X_1 + b_1 \Sigma X_1^2 + b_2 \Sigma X_2 X_1 \dots (3)$$

$$\Sigma Y X_2 = a \Sigma X_2 + b_1 \Sigma X_1 X_2 + b_2 \Sigma X_2^2 \dots (4)$$

On solving equations 2,3,4 we get values of a, b1 and b2, after putting the values we get the fitted regression equation is $Y = a + b_1X_1 + b_2X_2$

(ii)Standard Error (S. E) =
$$\sqrt{\frac{SSE}{n-k-1}}$$

$$SSE = \sum (Y - \hat{Y})^2 = \sum Y^2 - a\sum Y - b_1 \sum X_1 Y - b_2 \sum X_2 Y.$$

$$(iii)\hat{y} = a + b_1 X_1 + b_2 X_2$$

(iv)To test the significance of the regression coefficient, we have the following procedure

Step 1: Setting up Hypothesis.

Null hypothesis: H_0 : $\beta_1 = \beta_2$, there is no linear relationship between dependent variable Y and independent variables X_1 and X_2 .

Alternative Hypothesis: H_1 : At least one β_i is different from zero.

Step 2: Test Statistics:

 $F = \frac{MSR}{MSE} \sim F$ distribution with (k, n-k-1), where k is the no. of independent variables.

MSR = mean sum of square due to regression =SSR/k

MSE = mean sum square due to error=SSE/(n-k-1)

Model Summary

					Change Statistics				
			Adjusted R	Std. Error of	R Square	F			Sig. F
Model	R	R Square	Square	the Estimate	Change	Change	df1	df2	Change
1	.916ª	.840	.776	1.161	.840	13.092	2	5	.010

a. Predictors: (Constant), Initial Age, InitialWT

b. Dependent Variable: WtGain

Correlations

		WtGain	InitialWT	InitialAge
Pearson Correlation	WtGain	1.000	.514	.794
	InitialWT	.514	1.000	.072
	InitialAge	.794	.072	1.000
Sig. (1-tailed)	WtGain		.096	.009
	InitialWT	.096		.433
	InitialAge	.009	.433	
N	WtGain	8	8	8
	InitialWT	8	8	8
	InitialAge	8	8	8

ANOVA

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	35.266	2	17.633	13.092	.010 ^b
	Residual	6.734	5	1.347		
	Total	42.000	7			

a. Dependent Variable: WtGain

b. Predictors: (Constant), InitialAge, InitialWT

Coefficients

			dardized cients	Standardize d Coefficients			95.0% Confid		C	Correlations	3
							Lower	Upper	Zero-ord		
Mod	el	В	Std. Error	Beta	t	Sig.	Bound	Bound	er	Partial	Part
1	(Constant)	-4.190	2.222		-1.886	.118	-9.902	1.521			
	InitialWT	.096	.038	.459	2.555	.051	001	.193	.514	.753	.458
	InitialAge	.846	.200	.761	4.238	.008	.333	1.359	.794	.884	.759

a. Dependent Variable: WtGain

From the tables,

1. The least square equation that best describes the 3 variables is: y = (-4.190) + (0.096) $X_1 + (0.846) X_2$

- 2. The standard Error is 1.161.
- 3. Given, $X_1 = 49$ lbs. and $X_2 = 9$ weeks.

$$Y = (-4.190) + (0.096) * 49 + (0.846) * 9 = 8.128$$
lbs.

Thus, we can expect 8.128 lbs. gain in weight in a week.

4. For testing null hypothesis $B_0 = 0$: since p value = 0.118, it is insignificant.

For testing null hypothesis $B_1 = 0$: since p value = 0.051, it is insignificant.

For testing null hypothesis $B_2 = 0$: since p value = 0.008, it is significant.

For testing null hypothesis: overall fit of the regression coefficients = 0, since here the p value = 0.010 < 0.05 for F test, which indicates overall fit significant.

5. Residual statistics is as follows:

Residuals Statistics

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	4.13	10.38	6.50	2.245	8
Residual	-1.323	1.562	.000	.981	8
Std. Predicted Value	-1.055	1.727	.000	1.000	8
Std. Residual	-1.140	1.346	.000	.845	8

a. Dependent Variable: WtGain

6. For Correlations

- a. Pearson correlation between Wt. Gain and Initial Weight $(r_{12}) = 0.514$
- b. Pearson correlation between Wt. Gain and Initial Age $(r_{13}) = 0.794$

For multiple correlations

a. Multiple correlation coefficient (R) = 0.916

For coefficient of multiple determination

- a. $R^2 = 0.840$
- b. Adjusted $R^2 = 0.776$

For Partial Correlations:

- a. Partial correlation between Wt. Gain and Initial Weight, controlling for Initial Age $(r_{12.3})=0.753$
- b. Partial correlation between Wt. Gain and Initial Age, controlling for Initial Weight $(r_{13.2})=0.884$

For Interpretation:

- a. The multiple correlation coefficient (R) of 0.916 indicates a strong positive relationship between the predictors (InitialWT and InitialAge) and the response variable (WtGain).
- b. The coefficient of multiple determination (R²) of 0.840 means that 84% of the variance in WtGain is explained by the two predictors.
- c. The high partial correlations indicate that both InitialWT and InitialAge individually have strong relationships with WtGain when controlling for the other variable.

d.	The regression model is statistically significant, as indicated by the significance tests of the coefficients and the F-statistic.		