$A \cap \overline{B}$

Formulaire

Alphabet grec								
Min.	Maj.	Appellation	Min.	Maj.	Appellation	Min.	Maj.	Appellation
α	A	alpha	L	I	iota	ρ	\overline{P}	rhô
β	B	bêta	κ	K	kappa	σ, ς	Σ	sigma
γ	Γ	gamma	λ	Λ	lambda	τ	T:	tau
δ	Δ	delta	μ	M	mu	υ	Υ	upsilon
ε,ϵ	E	epsilon	ν	N	nu	ϕ, φ	Φ	phi
ζ	Z	zêta, dzêta	ξ	Ξ	xi	χ	X	chi, khi
η	H	êta	O	0	omicron	ψ	Ψ .	psi
θ, ϑ	Θ	thêta	π	П	pi	ω	Ω	oméga

Logique	
\forall	quantificateur universel : pour tout, quel que soit
3	quantificateur existentiel : il existe
∃!	quantificateur d'unicité : il existe un unique
\iff	équivalence : si et seulement si (ssi)
\Longrightarrow	implication

Ensembles	
$\{a_1,\ldots,a_n\}$	ensemble formé des éléments a_1, \ldots, a_n
$\{x \mid P(x)\}$	ensemble formé des éléments x pour lesquels $P(x)$ est vraie
$x \in S$	x est un élément de S (relation d'appartenance)
$A \subseteq B$	A est un sous-ensemble de B (relation d'inclusion)
$A \subset B$	A est un sous-ensemble propre de $B:A\subseteq B$ mais $A\neq B$
A = B	A est égal à B $(A = B \iff A \subseteq B \text{ et } B \subseteq A)$
$\varnothing, \{\}$	ensemble vide
Ω	ensemble universel, univers
$\mathscr{P}(S)$	ensemble des parties de $S: \mathscr{P}(S) := \{A \mid A \subseteq S\}$
A , #(A), n(A)	$\operatorname{cardinal} \operatorname{de} A$
$A \cup B$	union/réunion de A et B
$A \cap B$	intersection de A et B

$[A], \#(A), \mathcal{H}(A)$	cardinal de A
$A \cup B$	union/réunion de A et B
$A \cap B$	intersection de A et B
\overline{A} , A^c	complément (absolu) de $A: \overline{A} = \Omega \setminus A$
$A \setminus B$	différence de A et B (complément relatif de B dans A) : $A \setminus B = A$
$A \triangle B, A \oplus B$	différence symétrique de A et $B:A\triangle B=(A\setminus B)\cup(B\setminus A)$
	$= (A \cup B) \setminus (A \cap B)$
$A \times B$	produit cartésien de A et $B: A \times B := \{(a,b) \mid a \in A, b \in B\}$
A^n	$n^{\rm e}$ puissance de A (par rapport au produit cartésien)
(a,b)	couple, paire ordonnée
(a_1,\ldots,a_n)	<i>n</i> -uple
N	ensemble des entiers naturels (non négatifs) $(\mathbb{N} = \mathbb{Z}_+)$
\mathbb{N}^*	ensemble des entiers positifs
\mathbb{Z}	ensemble des entiers (relatifs)
	, ,

 \mathbb{Q}

 \mathbb{R}

ensemble des nombres réels

ensemble des nombres rationnels : $\mathbb{Q} := \{x/y \mid x, y \in \mathbb{Z}, y \neq 0\}$

Propriétés des opérations sur les ensembles $(A,\,B$ et C sont des sous-ensembles de $\Omega)$

$A \cup (B \cup C) = (A \cup B) \cup C$	Associativité		
$A\cap (B\cap C)=(A\cap B)\cap C$			
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributivité		
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	The state of the s		
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutativité		
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan		
$\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan		
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	${f Absorption}$		
$\overline{\overline{A}} = A$	Involution		
$A \cup A = A$ $A \cap A = A$	Idempôtence		
$A \cup \varnothing = A$ $A \cap \Omega = A$	Identité		
$A\caparnothing=arnothing$ $A\cup\Omega=\Omega$	Domination		
$A \cup \overline{A} = \Omega$ $A \cap \overline{A} = \emptyset$	Complémentarité		

Relations

2 COROLCA CHAS	
$R \subseteq A \times B$	relation de A vers B
$R \subseteq A^2$	relation sur A
R^{-1}	relation inverse de $R:R^{-1}:=\{(b,a)\mid (a,b)\in R\}$
\overline{R}	relation complémentaire de $R:\overline{R}:=(A\times B)\setminus R$
$S \circ R$	composition de R et S
\mathbb{R}^n	$n^{\rm e}$ puissance de R (par rapport à la composition)
$[a]_R$	classe d'équivalence de a par rapport à R

Fonctions

e A . D	
$f:A\longrightarrow B$	fonction de A dans B
f(x)	image de x par la fonction f ou valeur de la fonction f en x
f(S)	image de l'ensemble S par $f:f(S):=\{f(x)\mid x\in S\}$
$\mathrm{Im}(f)$	image (ensemble image) ou portée de $f: \text{Im}(f) = f(A)$
$f^{-1}:B\longrightarrow A$	fonction inverse ou réciproque de f (existe ssi f est bijective)
$f^{-1}(y)$	préimage de y par la bijection f (unique $x \in A$ tel que $f(x) = y$)
$f^{-1}(T)$	image réciproque de l'ensemble T par $f:f^{-1}(T):=\{x\mid f(x)\in T\}$
$g\circ f$	composition des fonctions f et $g:(g\circ f)(x):=g(f(x))$
$\lfloor x floor$	partie entière inférieure de x
$\lceil x ceil$	partie entière supérieure de x
$[x]^+$	partie positive de $x:[x]^+:=\max(0,x)$
$[x]^-$	partie négative de $x:[x]^-:=\max(0,-x)$
n!	factorielle de n, n factoriel : $n! := 1 \cdot 2 \cdot \dots \cdot n, n \in \mathbb{N}^*, (0! := 1)$
$a \mid b$	a divise b , a est un facteur de b , b est un multiple de a
$a \mod m$	a modulo m , reste de la division entière de a par m

Suites et séries

a_k	terme d'indice k
$(a_1,\ldots,a_n) = (a_k)_{k=1}^n$	suite finie formée des termes a_1, \ldots, a_n
$(a_1, a_2, \ldots) = (a_k)_{k=1}^{\infty}$	suite infinie de terme général a_k
$\sum_{k=1}^{n} a_k$	somme de $a_1, a_2, \ldots, a_n : \sum_{k=1}^n a_k := a_1 + a_2 + \ldots + a_n$
$\sum_{k \in K} a_k$	somme des termes a_k pour tous les indices k appartenant à K
$\prod_{k=1}^n a_k$	produit de $a_1, a_2,, a_n : \prod_{k=1}^n a_k := a_1 \cdot a_2 \cdot \cdot a_n$
$\prod_{k \in K} a_k$	produit des termes a_k pour tous les indices k appartenant à K

Sommes des puissances des n premiers entiers positifs : $S^{[k]}(n)$

$$S^{[1]}(n) = \sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$S^{[2]}(n) = \sum_{k=1}^{n} k^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$S^{[3]}(n) = \sum_{k=1}^{n} k^3 = 1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$

$$S^{[4]}(n) = \sum_{k=1}^{n} k^4 = 1^4 + 2^4 + \dots + n^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}$$

Dénombrement

Benombremen					
Type	répétitions	symbole	formule	conditions	
Arrangements	non	A_k^n	$\frac{n!}{(n-k)!}$	$0 \le k \le n$	
	oui	$\overline{A_k^n}$	n^k	$k \geq 0, n \geq 1$	
Combinaisons	non	$C_k^n, \binom{n}{k}$	$\frac{n!}{k!(n-k)!}$	$0 \le k \le n$	
	oui	$\overline{C_k^n}$	$\overline{k!(n-k)!}$ $\overline{C_k^n} = C_k^{n+k-1}$	$k \ge 0, n \ge 1$	
Permutations :	$P_n = A_n^n = n!$	Binôme de Newton : $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$			