Т	Mana
ream	Name:

Instructions

<u>Only one sheet per team will be turned in.</u> Each team member can work on their own sheet for practice, but then the group as a whole should discuss the answers and collaborate on the turn-in sheet. Everyone can take home their own sheets.

Team Info (only fill out for the sheet to be turned in)

Team Name:

Group members (up to four):

3.

1.

4.

2.

Introduction 1

This time we're exploring mathematical writing and getting introduced to proofs. This means that we are going to be working more with <u>contrapositives</u> and <u>implications</u> in order to prove statements.

In Example 1 from the book, it asks to rewrite the statement

For every prime n, n^2-n+41 is also prime.

in "if, then" implication form, which comes out to:

If a positive integer *n* is prime, then the number $n^2 - n + 41$ is also prime.

Question 1

Rewrite the following statements as "if, then" statements:

<i>a</i>) Whenever n is an even integer, $n+1$ is an odd integer.
b) All squares have four equal sides. (Think of representing the square as a variable, and the length of a side as a variable)

Introduction 2

A <u>counterexample</u> is a way to disprove a proposition. For implications, if we can come up with *some hypothesis* that results in the *conclusion* being false, then we can disprove a statement.

In Practice Problem 4 from book, the statement is made...:

For every integer $n \ge 1$, if n is odd, then $n^2 + 4$ is a prime number.

Several examples given don't disprove this statement:

$$3^{2}+4=13$$
 , $5^{2}+4=29$, $7^{2}+4=53$

But as long as at least one can be found, then we can use this as a counterexample to disprove it: $9^2+4=85$, 85 is divisible by 5 and 17.

Question 2

Disprove the following statements with a counterexample:

a) For every even integer n , $n+1$ is also even					
b) For every integer integer <i>n</i> ,	n/2 is also an integer.				

Introduction 3

How do we prove that an implication is true?

Given this proposition:

"The result of summing any odd integer with any even integer is an odd integer."

We can write this in mathematical language. First, let's define our numbers: x is an odd integer, and y is an even integer, so x + y should result in an odd integer.

But how do we symbolize "even" and "odd" numerically? We can come up with more symbols:

$$x=2A+1$$
 , $y=2B$

where 2A+1 will always be odd for an integer A, and 2B will always be even for an integer.

Then we can form the expression:

$$x+y=(2A+1)+(2B)$$

and simplify:

$$x+y=2A+2B+1$$

 $x+y=2(A+B)+1$

Notice the similarity between x=2A+1 and 2(A+B)+1 - since A+B is an integer, and 2x(integer)+1 results in an odd integer, we can conclude that the result will **always** be an odd integer.

Question 3

Prove the following	g statement: For	all integers <i>n</i>	> 0, if <i>n</i> is odd	d, then $n^2 + n$	is even.	

Introduction 4 Several definitions from the book:
Divisible by 4 "An integer n is divisible by 4 if it can be written in the form $n = 4M$ for some integer M "
Even "An integer n is even if it can be written in the form $n = 2K$ for some integer K "
Odd "an integer m is odd if it can be written in the form $m = 2L+1$ for some integer L"
Example: Show that 10 is even: $10=5.2$
Question 4 Using the definitions of even, odd, and divisible by 4, show that the following statements are true: a) 12 is even
b) -13 is odd
c) 64 is divisible by 4
d) $8n^2+8n+4$ is divisible by 4 (hint: You don't have to factor it to a FOIL-able state! Look for the common term to factor out)