

Haloalkane Substitution

Subject & topics Chemistry Organic Reactions		
Status Not started	Stage & difficulty A Level Practice 1	

Part A 2-lodobutane and sodium ethoxide
What is the product of a <u>nucleophilic</u> substitution reaction between 2-iodobutane and sodium ethoxide (${ m NaOC_2H_5}$)?
ho CH ₃ CH=CHCH ₃
$\bigcirc \mathrm{CH_{3}CH_{2}CH(OCH_{3})CH_{2}CH_{3}}$
$\bigcirc \mathrm{CH_{3}CH_{2}CH(CH_{3})OCH_{2}CH_{3}}$
$ (\mathrm{CH_3})_2\mathrm{CHCH_2OCH_2CH_3} $

Part B $\mathrm{C_2H_5X} + \mathrm{OH}^-$
Why does the reaction
$\mathrm{C_2H_5X} + \mathrm{OH}^- \longrightarrow \mathrm{C_2H_5OH} + \mathrm{X}^-$
take place more rapidly in aqueous solution when X is I than when X is Br ?
The ${ m I}^-$ ion is a stronger nucleophile than the ${ m Br}^-$ ion.
The ${ m I}^-$ ion is less hydrated in solution than the ${ m Br}^-$ ion.
$ ho$ The $\mathrm{C-Br}$ bond is weaker than the $\mathrm{C-I}$ bond.
$ ho$ The $\mathrm{C-Br}$ bond is stronger than the $\mathrm{C-I}$ bond.

Part A adapted with permission from UCLES, A-Level Chemistry, June 1994, Paper 4, Question 22; Part B adapted with permission from UCLES, A-Level Chemistry, June 1995, Paper 4, Question 20

Haloalkane Substitution Mechanism

Subject & topics Chemistry Organic Reactions		
Status Not started	Stage & difficulty A Level Practice 1	

Part A

Energy profile

Halogenoalkanes react with aqueous alkali. One mechanism of this reaction has the energy profile shown below.

Figure 1: Energy profile for haloalkane with aqueous alkali

Which of the following statements are correct?

- 1. The reaction is an example of nucleophilic substitution.
- **2**. Between **X** and **Z** the C-Hal bond will be lengthening.
- **3**. The energy difference between **X** and **Y** represents the activation energy.

1, 2 and 3 are correct
1 and 2 only are correct
1 and 3 only are correct
2 and 3 only are correct
1 only is correct
2 only is correct

3 only is correct

Part B

Curly arrow mechanism

Which diagram correctly represents the transfer of electrons when ammonia reacts with a chloroalkane (alkyl chloride)?

Figure 2: Possible mechanisms for ammonia with chloroalkane

() A

() B

() C

() D

Part A adapted with permission from UCLES, A-Level Chemistry, June 1993, Paper 4, Question 37; Part B adapted with permission from UCLES, A-Level Chemistry, June 1994, Paper 4, Question 26

Alkene Bromination

Subject & topics Chemistry Organic Reactions		
Status Not started	Stage & difficulty A Level Practice 1	

Part A

Bromination of $C_4H_8\,$

Which of the following compounds could be formed by the action of bromine on an alkene of formula ${
m C_4H_8}$?

Figure 1: Possible products of $C_4H_8\ \mbox{with bromine}$

- Δ
- () B

Bromination of limonene

Limonene is an oil formed in the peel of citrus fruits.

Limonene

Figure 2: Structure of limonene

Which product is formed when limonene reacts with excess molecular bromine at room temperature in the dark?

Α

В

$$H_3C$$
 CH_2
 Br
 H_3C
 Br
 Br

C

D

$$H_3C$$
 C
 CH_2Br
 CH_3
 CH_3

	Figure 3: Possible products of limonene bromination
_ A	
В	
_ c	
D	
t A adapted with permissio	n from UCLES, A-Level Chemistry, November 1994, Paper 4, Question 22;

Question deck:

Alkene Bromination Mechanism

Part A Curly arrows

What is the sequence of curly arrows denoting movement of electrons in the first step of the reaction between ethene and bromine (below)?

Figure 1: Bromination mechanism

For example in the reaction below, if you think the mechanism is as shown, your answer would be **cdef**.

Figure 2: Sequence cdef

Ethene bromination sequence:

Part B Reaction type			
What type of reaction is this?			

Created for isaacphysics.org by R. Less

Question deck:

Alkenes With HBr

Subject & topics Chemistry Organic Reactions		
Status Not started	Stage & difficulty A Level Practice 2	

Part A

1-Methylcyclohexene with $\ensuremath{\mathrm{HBr}}$

Which of the following structures represents the main organic compound produced when hydrogen bromide is added to 1-methylcyclohexene (shown below)?

Figure 1: 1-methylcyclohexene and possible products of reaction with HBr

- () A
- () B
- _ c
- _____E

Part B

Methylpropene with ${ m HBr}$

Methylpropene has the structure shown below.

Figure 2: Structure of methylpropene

What is the **major** product formed when methylpropene reacts with HBr?

Use the <u>structure editor</u> to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

<u>Using the structure editor</u>

Part A adapted with permission from OCSEB, A-Level Chemistry, June 1998, Paper 1, Question 22; Part B created for Isaac Physics by R. Less

Question deck:

Alkene Reactions

Propene reacts under the following conditions to give compounds ${\bf A}$, ${\bf B}$ and ${\bf C}$.

Figure 1: Propene with bromine and steam in presence of an acid catalyst

Part A with Br_2

What is product **A**?

Use the <u>structure editor</u> to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Part B with steam / acid catalyst

What are products **B** and **C**?

Use the <u>structure editor</u> to generate SMILES strings.

Give your answer in the format "B, C" (space after comma).

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

<u>Using the structure editor</u>

Created for isaacphysics.org by R. Less

Question deck:

More Alkene Bromination

Compound **A** undergoes the following reactions:

$$\begin{array}{c} \mathbf{A} \xrightarrow[\text{bromine in trichloroethane}]{\text{(I)}} & \text{CH}_3 \text{ CHBrCHBrCH}_3 \xrightarrow[\text{(II)}]{\text{(II)}} & \text{CH}_2 = \text{CH} - \text{CH} = \text{CH}_2 \end{array}$$

Part A Bromination of compound A

What is compound **A**? (There are two possible isomers: give the structure of either.)

Use the <u>structure editor</u> to generate a SMILES string.

Click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

<u>Using the structure editor</u>

What type of reaction is step (II)?

Part C Ethene with aqueous bromine
Ethene reacts with aqueous bromine to give the two products ${ m CH_2BrCH_2Br}$ and ${ m CH_2BrCH_2OH}$.
Which statement is correct for these products?
Both products are obtained in this reaction by nucleophilic addition.
Both products can be hydrolysed to form the same diol.
Both products possess an overall dipole.
Reaction of ethene with aqueous HBr gives the same products.
Both products are obtained in this reaction by electrophilic substitution.
Part A adapted with permission from UCLES, A-Level Chemistry, June1991, Paper 3, Question 8;

Part B adapted with permission from UCLES, A-Level Chemistry, November 1993, Paper 4, Question 24

Question deck:

Free Radical Reactions

Subject & topics Chemistry Organic Reactions		
Status	Stage & difficulty	
Not started	A Level Practice 1	

Part A CFCs
In the upper atmosphere, chlorofluoroalkanes (CFCs) are broken down to give chlorine radicals but not fluorine radicals.
What is the best explanation for this?
Fluorine has a lower atomic number.
Chlorine has a higher molecular weight.
The $\mathrm{C}\mathrm{-F}$ bond is stronger than the $\mathrm{C}\mathrm{-Cl}$ bond.
Fluorine has a higher ionisation energy than chlorine.

Part B Chlorination of methane
Methane reacts with chlorine in the presence of sunlight. Which statement about the intermediates is correct?
They are more energetically stable than the reactants.
They are positively charged ions.
They combine to form HCl.
They contain an odd number of electrons.
Part A adapted with permission from UCLES, A-Level Chemistry, November 1997, Paper 3, Question 25; Part B adapted with permission from UCLES, A-Level Chemistry, November 1998, Paper 3, Question 21

Question deck:

Part A

Ethene to ethanal

STEM SMART Chemistry Week 25

Ethene Oxidation

Subject & topics Chemistry Organic Reactions		
Status	Stage & difficulty	
Not started	A Level Challenge 1	

dehydes and ketones are produced industrially by the catalytic oxidation of alkenes, e.g. ethanal is manufactured
om ethene as shown below:

$$\mathrm{H_2\,C}{=}\mathrm{CH_2}\,+rac{1}{2}\,\mathrm{O_2} \xrightarrow{\mathrm{catalyst}} \mathrm{CH_3\,CHO}$$

This process is also used industrially with but-2-ene.

Which of the following represents the structure of the compound which would be produced from but-2-ene?

$\mathrm{CH_{3}CH_{2}CHO}$
$\mathrm{CH_{3}CH_{2}CH_{2}CHO}$
$\mathrm{CH_{3}COCH_{2}CH_{3}}$
$\mathrm{CH_{3}COCH_{3}}$

 $(\mathrm{CH_3})_2\mathrm{CHCHO}$

Part B

Ethene with bromine and sodium nitrate

When ethene reacts with bromine in the presence of concentrated aqueous sodium nitrate, the product contains the following compound:

$$\begin{array}{c|c} H & H \\ \hline \\ I & I \\ \hline \\ C & C \\ \hline \\ ONO_2 & Br \end{array}$$

Figure 1: Reaction product

What is the intermediate formed in this reaction?

Figure 2: Possible intermediates

- \bigcirc A
- () B
- C
- () D
- _____E

Part A adapted with permission from UCLES, A-Level Chemistry, November 1993, Paper 4, Question 22; Part B adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 4, Question 22

Question deck:

Epoxy Precursor

Epoxy resins are polymers which are used as adhesives. One monomer used in their manufacture has the displayed formula:

$$H_2C$$
 CH CH_2CI

Figure 1: Epoxy resin monomer

This is manufactured from propene in three stages:

stage I

$$H_2C$$
 $=$ CH $=$ CH_2CI

stage II

 H_2C $=$ CH $=$ CH_2CI
 H_2C $=$ CH $=$ CH_2CI
 H_2C $=$ CH $=$ A $=$ A

Figure 2: Three stages of epoxy monomer manufacture from propene

Part A Stage I
What type of reaction mechanism takes place between propene and chlorine gas in stage I?
Suggest what conditions are necessary for this reaction.
Part B Stage II
What type of reaction mechanism takes place when the aqueous chlorine reacts in stage II?
Part C Stage III
What type of organic reaction takes place in stage III?

Adapted with permission from UCLES, A-Level Chemistry, November 1994, Paper 3, Question 4