	AULA 07- 27/03 - OTIMIZACED	
OBJEtivo	Encontrar ponto, de máximo e mínimo de uma Lunção	
TEV), (NOP OLOGIA)	Se USITÉ l'ampacté e f: K - Te l'antine, entato f fem méx. e min. GLOBBL	
(10P000G,A)	em K.	
	Pobano, tentar aplicar esse resultado mesmo quando W não é compacto.	
£×.	A(x,4) = x2+(4-1)2+4. Quais soo or mox. emin. on Q={(x,4) Ent: x,47,0}?	
	Observe que la é fechado, mas não é limitado.	
	Quo 0≤ β(x,4) ≤ 1 en d e β(Q4) = 0 470, temos {(0,4):470} e'o ως.	
	de pondos de mínimo global (x+0=> A(x>1)>0=1 (x>1) não min. global).	
	Estationo, o comportamento quando 11(x4)11-00:	
	$0 \in \mathcal{L}(x^{1,d}) \leq \frac{\ (x^{1,d-1})\ _{L^{q}}}{\ (x^{1,d-1})\ _{L^{q}}} \leq \frac{\ (x^{1,d-1})\ _{L^{q}}}{1} \longrightarrow 0$	
	Logo, I fan un ma'x, mo global em la (segre do teo. scina)	
	Agos que sabenos que from un máximo global, vanos tentar en contrá-to.	
	Ele esta no interior de la ou no eixo x (4=0)	· Andlogo do método plada
	Mo inknor de la procurano, os pontos cuíticos (candidados o ponto max.)	máx e mín. en Anélise no Pete!
	0=df=(x=(1-1)=4) ((-)dx+(-)d7)	Estudanos o intentor do intereb
		e begois os extrenos.
	,	
	Tend $f(z,1) = \frac{1}{4}$.	
	No eixo x, procurenos or pontes chicos de $Q(\xi) = f(\xi,0) = \xi^{-2} + s^{-1} + s^{-1}$	
	Ono ((E) = (E25)2, segre for ((E) =) E70 C=> E= 15.	
	Teno, $f(rs, 0) = \frac{1}{24s} < \frac{1}{4} = f(z, 1)$	
(5)	Loso, (2,1) e' ponto de maíximo globel.	
LEMO	Segam FERT fechado e ilimitado e f: F-R contínus.	
	(2) Se f(x)-20 quendo 11x11-20 en F, entro f tem mínimo global en F.	
	(2) se AG) → O quado IIVII → oo en F e existe pGF 1.9. A(p) >0	
	(resp. f(p) co), entos f ten un máx. (resp. mín.) global en F.	

DEM.	(CPSO (Z), com f(p) >0; ex. ankn'er) cono f(x) -0 quando	F
	11×11-00 e 4p)20, entro existe R20 1.9. f(x) <f(p) 4 x 7r<="" td=""><td>,</td></f(p)>	,
	Seja N= {xet: x = Rd. teno, No compach e per	
	logo flu ten un máximo, digenos flpo) plalgum po e R.	
	Esle , o max. global em F, pois XEFIX => f(x) < f(p) < f(po)	
	, .	
	OTIMIZAÇÃO & CONDIÇÕES (cn.: "problem w/ constraints")	
	Agors, minimizar e maximizar uma função nun Guj. da forma	
	H = {xe 1/2": g@)=0}	K > 1, C.I. Não podenos aplite
	Se g e' Ck e dg(p) \$0 Up&H, ent30 He'ma H.PERSUPERFÍCIE de classe	- 0 e'un valor vegular de g.
	Ch definida pela eq. g=0.	
ex.	A estere unitsisse din. N-2, 5" = {xGR": x =1}, i'a hipersuper-	
	ficte de classe 200 definida pela eq. go-1=11x11-1=x,+++x2.	
exerc's'o	ukrificar a condição pes=" = dg(p) + O	
	verenos que a condição "g(p)=0 => dg(p)+0 garante que He'una variedade de	
	Classe CK (sem singularidada) e que o espaço tangente de H em 9 e'	
	TpH = Ker (dg(p)) = {VETE : dg(p).V=0}.	
ex.	Maix. e min. de f(x, x) = x + y 2 + y no disco {x + y = L}.	
	· Parlos cuíticos no intenta do disso:	
	Max. e min. de $f(x_1, x_1) = x^2 + y^2 + y$ no disco $\{x + y \in L\}$. Parlo cn'hio) no intenta do disco: $0 = dL = 2x dx + (cy + 1) dy = 1$ $2y + 1 = 0$ $x^2 + y^2 < L$ Parlo de liste $\int_{-\infty}^{\infty} \frac{1}{2} x dx = 1$ Parlo ma la chiera de liste $\int_{-\infty}^{\infty} \frac{1}{2} x dx = 1$ Parlo de liste $\int_{-\infty}^{\infty} \frac{1}{2} x dx = 1$ Parlo de liste $\int_{-\infty}^{\infty} \frac{1}{2} x dx = 1$ Parlo de liste $\int_{-\infty}^{\infty} \frac{1}{2} x dx = 1$ Parlo de liste $\int_{-\infty}^{\infty} \frac{1}{2} x dx = 1$ Parlo de liste $\int_{-\infty}^{\infty} \frac{1}{2} x dx = 1$ Parlo de liste $\int_{-\infty}^{\infty} \frac{1}{2} x dx = 1$	
	Xz+4z=F	
	· Bordo do disco, 5º: Problema de Otimização (/ condições.	
	Vana aplicar o:	
TEO.	[MULTIPLICADORED DE LAGRANGE] SEZ VERR, L: Un ITZ de claise 22 e	
	H={xER": g(x)=0} une superficre de classe èt contida em U. Se pEU	MUCTIPLICADOR DE LAGRANGE
	e'un extremo local de HH:H→R, entab existe 26R + q. dfp)=2dg(p).	
DEM. (IDE/A)	Basta mostor que p e'un porto cuítico de fla, i.e., dffp) TpH = 0.	T _P H /
	1	

₹ ⊀,	Quereno, resolver I de = 2 dg - n equações	
(LOCTAND)	Quereno, resolver $\int dL = \lambda dg \rightarrow n \text{ equation}$ $0 = 0 \qquad \left(g(x) = x^2 + y^2 - 1\right)$ $(=) \int 2x dx + (2y + 1) dy = \lambda \left(2x dx + 2y dy\right) \qquad (=) \int 2y + (-2)y dy$ $x^2 + y^2 = 1$	
	x~ty~=1	
	∠=> X=O e Y=± (\(\lambda = \frac{2}{3} \omega \frac{1}{3} \). Tenos \(\lambda \(\text{(0, -1)} = \text{O} \).	
	Máximo global: f(Q1)=2 . Mínimo global: f(Q-12)=-14	
D€M.	CTED EXPERTILAL VIA MULT. LAGRANGE) SETE A E Munn (IR) sim.	IDEID: Cousidere Aja dies.
	Considere for)= <axix>. Soo U1 Esni max. global de flsni</axix>	$\Delta = dias(\lambda_1,, \lambda_n)$
	Pelo 170., existe 2, GIR tig. df(u1) = 2, dg(u1), on g g6== x 2-2.	ordenado per 2,2 ··· 2 2m.
	Pl bob VETR", know	Teno f(x) = <pre>F(x) = Ax + + 1 x 12</pre>
	2 <pu1, v=""> = df(u1).V = 2dg(u1).V= 2, 2<u1, v="">,</u1,></pu1,>	≤ >, N×112
	Partonby < Du, v > = < >1 u1, v > .	Robins en 5" f(x) = >1
	(ano isso vale pl todo v , segu su, = 2, u, , a seja, u, e' andonebor ol	Nok sue I stinge: f(xi) = 2.
	evlach 11.	Portonby 2, e' ma'xino global de f
	Sez vi = (VERT: < V, un> = 0} o compl. orl. do 12u1.	en 5 nd (valor e'atingido no
	$\left(\mathbb{R}^* = \mathbb{R} u_1 \oplus V_1 \sim V_1 \simeq \mathbb{R}^{-1} \right).$	abuebr associato, X1)
	Note que A preverva viz, pois:	
	$\langle u_{1}, v \rangle =_{\mathcal{O}} \Rightarrow \langle u_{1}, A_{v} \rangle = \langle A_{u_{1}}, v \rangle = \langle A_{u_{1}}, v \rangle = \lambda_{1} \langle u_{1}, v \rangle = \mathcal{O}.$	
	Podenos consider a Bras quedalica flu: viant-1 - R	-Escrevenos X en une base de
	x -> <ax,x></ax,x>	Vi e Ax na malma base.
	O resultado segue por sindução: Maximizando flu, em 5-1 NVi ~ 5-2,	
	Oblemos U26 V1, on 114211=2, e 22 = R 1.g. A(42) = 22 U2 ; () 1	
	1	