Plot the terminal points for $t=0,\,\pi/6,\,\pi/4,\,\pi/3,\,$ and $\pi/2.$

Definition of the Trigonometric Functions

t is any real number and P(x,y) is the terminal point on the unit circle associated with t:

$$\sin(t) =$$

$$\cos(t) =$$

$$tan(t) =$$

$$\csc(t) =$$

$$sec(t) =$$

$$\cot(t) =$$

Example: For $t=2\pi/3$, find the values of each of the six trigonometric functions.

1 T	Com oo ob	*** 1	of thelerry	£ 4	aaala af	+ la a airr	trimoro amo atrico franctica ac
1. 1	ror eacn	varue	or t below.	шиа	each or	the six	trigonometric functions:

(a)
$$t = 5\pi/4$$

(b)
$$t = -7\pi/6$$

(c)
$$4\pi/3$$

2. What is the sign of $\tan t \sec t$ if the terminal point of t is in quadrant IV?

3. If $\sin t > 0$ and $\sec t < 0$, in what quadrant is the terminal point of t?

4. Find the values of the trigonometric function of t from the fact that $\cos t = -7/25$ and the terminal point of t is in quadrant III.

5. Determine the domain of all six trigonometric functions.

6	Write	tant	in	terms	α f	sin t	and	cost
v.	VVIIUC	ι	111	OCLILIO	OI	$om \iota$	and	$COS \iota$

7. Explain why
$$\csc t = \frac{1}{\sin t}.$$
 (This is called a reciprocal identity.)

8. Find reciprocal identities for
$$\sec t$$
 and $\cot t$.

9. Explain why
$$\sin^2 t + \cos^2 t = 1$$
 for any choice of t . (This is called a Pythagorean Identity.)

11. Use the definition to show that
$$f(t) = \sin t$$
 is an odd function.

12. Determine whether the functions below are even or odd:

(a)
$$f(t) = \cos t$$

(b)
$$f(t) = \tan t$$

(c)
$$f(t) = t^2 \cos(t)$$

13. How do you know the equation $2 - 2\sin x = 6$ has no solutions.

14. Find all t so that $\sin t = 0$.

15. Find all t so that cos(t/2) = 0.