

Today's Plan

- Random Utility Model (recap)
- Multinomial Logit (MNL)
- Re-scaling
- Normalisation
- Partial Effects for MNL
- Odds Ratio
- Bootstrap Standard Errors
- Tastes in MNL
- Your time to shine!

Random Utility Model

• The Random Utility Model (RUM) serves as a framework which allows us to model *N* individuals' choices over *J* alternatives

$$u_{ij} = v_{ij} + \varepsilon_{ij}, \quad \varepsilon_{ij} \sim \text{IID Extreme Value Type I}$$
 (1)

$$y_i = \underset{j \in \{1, 2, \dots, J\}}{\operatorname{argmax}} u_{ij} \qquad (2)$$

where i is the individual, j is the alternative, $y_i \in \{1, 2, \ldots, J\}$ is the alternative chosen by i, u_{ij} is i's utility from choosing alternative j. u_{ij} is composed of deterministic utility v_{ij} and stochastic utility ε_{ij}

RUM and Conditional and Multinomial Logit

- How we model deterministic, observable utility v_{ij} determines which model we estimate
- Conditional Logit: $v_{ij} = \mathbf{x}_j \boldsymbol{\beta}$
 - Individuals' choices depend on the observable attributes of different alternatives x_j e.g. if alternatives are cars then attributes include price, colour, whether the car is electric etc.
 - People with different characteristics e.g. income or household size are assumed to respond in the same way to e.g. price increases
- Multinomial Logit: $v_{ij} = \mathbf{x}_i \boldsymbol{\beta}_i$
 - Individuals' choices depend on their observable characteristics X_i
 e.g. a richer person may prefer Tesla
 - People with different characteristics e.g. income or household size can respond **differently** to different alternatives (e.g. cars)
- Combined: People with different characteristics e.g. income or household size are allowed to respond differently to different attributes of different alternatives (e.g. price and size of cars)

UNIVERSITY OF COPENHAGEN

Multinomial Logit (CL)

- Today we will consider Multinomial Logit
- Choice probabilities are given by:

$$P(y_i = j \mid \mathbf{x}_i) = \frac{\exp(\mathbf{x}_i \boldsymbol{\beta}_j)}{\sum_{h=1}^{J} \exp(\mathbf{x}_i \boldsymbol{\beta}_h)}$$
(3)

Therefore the log-likelihood function is:

$$\ell_i = \mathbf{x}_i \boldsymbol{\beta}_j - \log \left(\sum_{h=1}^J \exp(\mathbf{x}_i \boldsymbol{\beta}_h) \right)$$
 (4)

- The derivation can be found in Train (2009) ch. 3
- Like last time, if you use macro rather than micro data the estimated choice probabilities will be equal to market shares

Scaling for Numerical Stability

 Like last time we max-rescale to aid numerical precision (because exp(.) explodes for high values which can lead to overflow):

$$v_{ij} = \mathbf{x}_i \beta_j - \max_{i \in \{1, 2, \dots, J\}} \mathbf{x}_i \beta_j \tag{5}$$

Normalisation & Identification

- We need to set $m{\beta}_0 = 0_{K \times 1}$. That is, we pick a "baseline" alternative against which all other alternatives are compared. We do this as only J-1 of $m{\beta}_0, m{\beta}_1, \dots, m{\beta}_{J-1}$ are identified
- Why can we only identify J-1 of the J different β_j ? Do we have the same (or a similar) problem in Conditional Logit?

Partial Effects

 The partial effects are given by: continuous

$$\frac{\partial P(y_i = j \mid \mathbf{x}_i)}{\partial x_{ik}} = p_{ij} \left(\beta_{jk} - \sum_{l=1}^{J} p_{il} \beta_{il} \right)$$
 (6)

and discrete

$$\delta_j^d(x_{ik}) = P(y_i = j \mid x_{ik} = 1) - P(y_i = j \mid x_{ik} = 0)$$
 (7)

• Interpretation: How does the probability of choosing alternative j change when the characteristic k of chooser $i \in \{1, 2, ..., N\}$ changes by one unit?

Odds Ratio

• The odds ratio between alternatives j and h only depends on these (j, h) alternatives' attributes:

$$\frac{P(y_i = j \mid x_i)}{P(y_i = h \mid x_i)} = \frac{\frac{\exp(\mathbf{x}_i \beta_j)}{\sum_{k=1}^{J} \exp(\mathbf{x}_i \beta_j)}}{\frac{\exp(\mathbf{x}_i \beta_h)}{\sum_{k=1}^{J} \exp(\mathbf{x}_i \beta_h)}} = \frac{\exp(\mathbf{x}_i \beta_j)}{\exp(\mathbf{x}_i \beta_h)}$$
(8)

 Interpretation: The odds ratio is the probability of choosing one alternative relative to the probability of choosing another alternative

Bootstrap: Inference on Partial Effects

- Bootstrap is an alternative to the delta method when computing the standard errors of measures of interest (e.g. partial effects, elasticities, the logsum etc.)
- To use this procedure:
 - A) draw a bootstrap sample with replacement.
 - B) estimate $\hat{\theta}$ on this sample and compute partial effects.
 - C) Repeat for each bootstrap sample.
 - D) Compute the standard deviation in estimated partial effects across bootstrap samples.
- You'll need a high number of boostrap samples for this to perform well. That might take quite a while to run...
- To resample our data we randomise the numbers in an index. np.random.choice(N, size = N, replace = True) can be used

Tastes in Multinomial Logit

- Is MNL also susceptible to IIA? Why/Why not?
- Like Conditional Logit, Multinomial Logit can only capture systematic taste variation, not random taste variation. Mixed Logit would be needed to capture random taste variation.

Your time to shine!

- Fill in mlogit_ante.py and solve the problem set
- The bootstrap question can take a while to run don't lose faith