Classify and Predict Injury Severity Using Crash Reporting Sampling System (CRSS) Data of the Most Recent Years

Golnoosh Garakani ¹ Ayegba David Haruna ¹ Meghanath Payasam ¹ ¹University of Michigan, Dearborn

Background and Research Questions

- Road traffic accidents are a widespread problem, resulting in many injuries and deaths worldwide.
- In the US, in 2022, car crashes resulted in 42,795 deaths, incurring costs of over \$300 billion.

To conduct a crash data analysis and identify the trend of leading factors the following research questions are identified:

- Which factors contributed to severe injury or fatality in recent years?
- Which factors contributed to minor or no injury in recent years?
- How changes in leading factors influence the injury severity over the years?
- Which modeling scheme can more accurately represent the statistical property of the data and precisely predict the injury severity?

Methodology

To answer the research questions, the following steps are considered:

- Employed recent accident data from the CRSS from 2019-2021.
- Data set creation and data engineering to prepare the data set for modeling.
- Categorized the severity of accidents into two groups of No injury/Minor injury as label 0 and Major injury/Fatal as label 1.
- Considered various factors including the year, geographic region, month, weekday, speed, alcohol involvement, weather conditions, age group, use of restraints, and driver distraction.
- Feature correlation analysis to gain insights into the factors and how they relate to each other and the severity.
- Modeling using binary classification methods of Logistic Regression and Random Forest, model analysis, and visualization of the data.

Data Engineering

Frequency of each injury severity Class in different years and months:

Figure 1. No. of crash injuries per month over year by injury severity

Major findings toward modeling

- Data is imbalanced:
- Only 13.3% of the data represent fatal/serious (label 1).
- hypothetical model classifying all cases as Minor/no injury could achieve 86.7% accuracy.
- Techniques for dealing with imbalanced data such as sampling are required.
- Upsampling with SMOTE resulted in computational challenges.
- Downsampling was identified as the remedy for imbalanced data.
- April 2020 recorded the lowest number of crashes in each category.
- October experienced the highest frequency of crashes.
- October 2019 had the most major/fatal injuries.
- October 2021 had the most minor/no injuries.

Factor Distribution-Alcohol

Alcohol impaired crashes by age group:

Figure 2. Variable distribution

Alcohol impaired crashes by region:

Figure 3. Variable distribution

Correlation Analysis

Correlation analysis to decipher the relationships between independent variables:

Figure 4. Correlation Matrix of Variables

- restraint showed the strongest correlation with the age group.
- adults and young adults tend to have a higher incidence of restraint misuse or non-use compared to instances where restraints were not misused.
- More crashes reported when restraint was used for senior citizens.

Modeling

Modeling schemes

1)Logistic Regression (LR) 2)Random Forest (RF)

LR models the relationship between predictors and a categorical response variable as follows: $Logit(P) = \beta_0 + \beta \cdot X + \epsilon$

Where $\{x_1, x_2, \cdots, x_n\}$ represent the independent variables used in this modeling. Hence we can derive:

$$P(Y=1) = \frac{1}{\mathbf{e}^{-(\beta_0 + \beta X)}} \tag{2}$$

RF uses labeled data to learn and classify unlabeled data, with architecture like:

Modeling Challenge

Downsampling can enhance the precision and recall of the model, however:

- Downsampling can lead to a loss of information.
- Reducing the size of the majority class affects the overall accuracy of the model.
- Comparison of sampling rate vs accuracy is critical to decide the best model.

Results and Conclusions

Trade-off between downsampling and evaluation metrics of modeling:

Modeling	Injury Severity Class	Precision	Recall	F-1 score
LR-100% sampling-rate	0	0.59	0.71	0.64
	1	0.64	0.52	0.57
LR-75% sampling-rate	0	0.63	0.86	0.73
	1	0.64	0.34	0.45
LR-50% sampling-rate	0	0.70	0.94	0.80
	1	0.63	0.21	0.31
LR-25% sampling-rate	0	0.81	0.99	0.89
	1	0.56	0.06	0.11
RF-100% sampling-rate	0	0.79	0.78	0.78
	1	0.78	0.79	0.78
RF-75% sampling-rate	0	0.81	0.84	0.82
	1	0.77	0.73	0.75
RF-50% sampling-rate	0	0.84	0.90	0.87
	1	0.76	0.65	0.70
RF-25% sampling-rate	0	0.89	0.96	0.92
	1	0.76	0.51	0.61

Table 1. Modeling performance in presence of different sampling rates

Key Findings

- RF exceeds the modeling performance of LR
 - RF with 75% sampling-rate resulted in the best performance (with an accuracy of 0.79).
 - LR with 100% sampling-rate performs the best among LR cases (with an accuracy of 0.61).
- This analysis showed that the South region experienced the highest number of alcohol-involved crashes.
- West region reported the second highest.
- Distraction by Outside/Others is the main category of known distraction contributing to both minor and major/fatal crashes.
- This category caused the highest fatalities in 2020.
- Speeding Contributed to the increasing trend in crashes over the recent years.