Nom:	DM0 – Révisions					
Prénom :	APP	ANA	REA	VAL	СОМ	RCO
Exercice 1 – Applications numériques						
1. Longueur : m – Masse : kg – Vitesse : $m \cdot s^{-1}$ – Énergie : J – Temps : s – Température : K – Volume : m^3 – Puissance : W .						••
2. $532 \text{ nm} = 5.32 \times 10^{-1} \text{ µm} = 5.32 \times 10^{-7} \text{ m}.$ $1.45 \text{ GW} = 1.45 \times 10^9 \text{ W}.$ $0.125 \text{ L} = 1.25 \times 10^2 \text{ mL} = 1.25 \times 10^{-4} \text{ m}^3$			•••			
3. Une année-lumière correspond à la distance parcourue par la lumière pendant un an. Or, $c = 299792458\mathrm{m\cdot s^{-1}} \approx 3,00\times10^8\mathrm{m\cdot s^{-1}}$ donc : $1500\times365,25\times24\times60\times60\times c\approx5,91\times10^{14}\mathrm{km}.$	•	•	•			•
4. La vitesse du son dans l'air est d'environ $v \approx 3.4 \times 10^2 \mathrm{m\cdot s^{-1}}$ donc la vitesse de la fusée est voisine de : $v_{\mathrm{fusée}} = 5.6 \times v \approx 1.9 \times 10^3 \mathrm{m\cdot s^{-1}} = 6.8 \times 10^3 \mathrm{km\cdot h^{-1}}.$	•	•	•			•
5. $F_{\rm G} \approx 3.52 \times 10^{22} \rm N.$			•••			
EXERCICE 2 – Représenter des données avec Python						
1. Avec quelques commandes (cf. Ann. 1), on peut obtenir le graphe demandé :			• •		••	
Caractéristique courant tension d'une résistance						
Données Ajustement : $R = 516.0 \Omega$						
1.2						
$\begin{bmatrix} \sum_{i=1}^{1.0} \\ \sum_{i=1}^{1} \end{bmatrix}$						
(S) 1.0 - D 0.8 - is 0.6 -						
0.4 -						
0.2 -						
0.0 -						
0.0 0.5 1.0 1.5 2.0 2.5 3.0 Courant / (mA)						
2. La courbe est une droite passant par l'origine : on retrouve la		•	•	•	•	
loi d'Ohm. Le coefficient directeur de la droite correspond à la valeur de la résistance. Ici, un ajustement numérique permet						
d'obtenir $R \approx 516 \Omega$.						
Total	APP	ANA	REA	VAL	СОМ	RCO
Nombre total de points	2	3	11	1	3	4
Nombre de points obtenus						
COMMENTAIRES:	$\eta =$	%;	$\tau =$	%;		/24

Annexe 1

MWE permettant de représenter les données expérimentales.

```
import numpy as np
import matplotlib.pyplot as plt

u = np.array([0, .211, .401, .599, .802, 1.008, 1.203, 1.402, 1.499])
i = np.array([0, .4, .77, 1.13, 1.53, 1.93, 2.31, 2.71, 2.91])*1e-3

plt.plot(i*1e3, u, "o", label="Données")

plt.xlabel("Courant $I$ (mA)")
plt.ylabel("Tension $U$ (V)")
plt.title("Caractéristique courant tension d'une résistance")
plt.legend()
```