Projective and Injective Modules

MATH 511: Algebra III

Alejandro Adames

University of Calgary

December 4, 2020

Table of Contents

- Definitions
- 2 Some Useful Results
- 3 Characterizations of Projective Modules
- What about Injective Modules?
- 6 References

Definition (Hom Functor)

If R is a commutative ring, then $\operatorname{Hom}_R(A,-)$ (where A is an R-module) is a covariant functor that maps R-modules M in R-**Mod** to R-**Mod** via

$$M \mapsto \operatorname{\mathsf{Hom}}_R(A,M)$$

and maps $\operatorname{\mathsf{Hom}}_R(M,N) \to \operatorname{\mathsf{Hom}}_R(\operatorname{\mathsf{Hom}}_R(A,M),\operatorname{\mathsf{Hom}}_R(A,N))$ via

$$f\mapsto \varphi\circ f$$

Definition (Exact Functor)

A covariant functor \mathscr{F} from R-**Mod** to R-**Mod** is exact if whenever

$$0 \longrightarrow M \stackrel{f}{\longrightarrow} N \stackrel{g}{\longrightarrow} L \longrightarrow 0$$

is an exact sequence, then

$$0 \longrightarrow \mathscr{F}(M) \xrightarrow{\mathscr{F}(f)} \mathscr{F}(N) \xrightarrow{\mathscr{F}(g)} \mathscr{F}(L) \longrightarrow 0$$

is an exact sequence.

Split Epimorphisms

An epimorphism $\varphi:M\to N$ of R-modules is said to split if and only if it has a right inverse.

$$\exists \psi : N \to M, \quad \varphi \circ \psi = \mathrm{id}_N$$

Split Epimorphisms

An epimorphism $\varphi: M \to N$ of R-modules is said to split if and only if it has a right inverse.

$$\exists \psi : N \to M, \quad \varphi \circ \psi = \mathrm{id}_N$$

Proposition

This is equivalent to the sequence

$$0 \longrightarrow \ker \varphi \longrightarrow M \stackrel{\varphi}{\longrightarrow} N \longrightarrow 0$$

splitting.

Definition (Projective Module)

A module P is projective if the functor $Hom_R(P, -)$ is exact.

Definition (Injective Module)

A module Q is projective if the functor $Hom_R(-, Q)$ is exact.

Definition (Pullack)

If M,N,Z are objects in a category and $\mu:M\to Z$ and $\nu:N\to Z$ are morphisms,

Definition (Pullack)

If M, N, Z are objects in a category and $\mu: M \to Z$ and $\nu: N \to Z$ are morphisms, a pullback is an object $M \times_Z N$ together with morphisms $\pi_N: M \times_Z N \to N$ and $\pi_M: M \times_Z N \to M$

Definition (Pullack)

If M,N,Z are objects in a category and $\mu:M\to Z$ and $\nu:N\to Z$ are morphisms, a pullback is an object $M\times_Z N$ together with morphisms $\pi_N:M\times_Z N\to N$ and $\pi_M:M\times_Z N\to M$ such that the following diagram commutes.

Definition (Pullack)

If M, N, Z are objects in a category and $\mu: M \to Z$ and $\nu: N \to Z$ are morphisms, a pullback is an object $M \times_Z N$ together with morphisms $\pi_N: M \times_Z N \to N$ and $\pi_M: M \times_Z N \to M$ such that the following diagram commutes.

$$\begin{array}{ccc} M \times_Z N & \stackrel{\pi_N}{\longrightarrow} & N \\ \downarrow^{\pi_M} & & \downarrow^{\nu} \\ M & \stackrel{\mu}{\longrightarrow} & Z \end{array}$$

Definition (Pullack)

If M,N,Z are objects in a category and $\mu:M\to Z$ and $\nu:N\to Z$ are morphisms, a pullback is an object $M\times_Z N$ together with morphisms $\pi_N:M\times_Z N\to N$ and $\pi_M:M\times_Z N\to M$ such that the following diagram commutes.

$$\begin{array}{ccc} M \times_Z N & \stackrel{\pi_N}{\longrightarrow} & N \\ \downarrow^{\pi_M} & & \downarrow^{\nu} \\ M & \stackrel{\mu}{\longrightarrow} & Z \end{array}$$

Furthermore, it is universal, meaning that for every object L,

Definition (Pullack)

If M,N,Z are objects in a category and $\mu:M\to Z$ and $\nu:N\to Z$ are morphisms, a pullback is an object $M\times_Z N$ together with morphisms $\pi_N:M\times_Z N\to N$ and $\pi_M:M\times_Z N\to M$ such that the following diagram commutes.

$$\begin{array}{ccc} M \times_Z N & \stackrel{\pi_N}{\longrightarrow} & N \\ \downarrow^{\pi_M} & & \downarrow^{\nu} \\ M & \stackrel{\mu}{\longrightarrow} & Z \end{array}$$

Furthermore, it is universal, meaning that for every object L, and morphisms $\varphi_M:L\to M$ and $\varphi_N:L\to M$ such that $\mu\circ\varphi_M=\nu\circ\varphi_N$,

Definition (Pullack)

If M,N,Z are objects in a category and $\mu:M\to Z$ and $\nu:N\to Z$ are morphisms, a pullback is an object $M\times_Z N$ together with morphisms $\pi_N:M\times_Z N\to N$ and $\pi_M:M\times_Z N\to M$ such that the following diagram commutes.

Furthermore, it is universal, meaning that for every object L, and morphisms $\varphi_M: L \to M$ and $\varphi_N: L \to M$ such that $\mu \circ \varphi_M = \nu \circ \varphi_N$, there is a unique $\sigma: L \to M \times_Z N$ that makes the diagram commute.

So, do pullbacks exists in *R*-**Mod**?

So, do pullbacks exists in *R*-**Mod**? Yes!

So, do pullbacks exists in *R*-**Mod**? Yes!

Theorem

Pullbacks exists in R-Mod.

So, do pullbacks exists in *R*-**Mod**? Yes!

Theorem

Pullbacks exists in R-Mod.

Proof

For *R*-modules M, N, Z, and *R*-module homomorphisms $\mu : M \to Z$, $\nu : N \to Z$, define $M \times_Z N$ as

So, do pullbacks exists in *R*-**Mod**? Yes!

Theorem

Pullbacks exists in R-Mod.

Proof

For *R*-modules M,N,Z, and *R*-module homomorphisms $\mu:M\to Z$, $\nu:N\to Z$, define $M\times_Z N$ as

$$M \times_{Z} N \doteq \{(m, n) \in M \times N : \mu(m) = \nu(n)\}$$

So, do pullbacks exists in *R*-**Mod**? Yes!

Theorem

Pullbacks exists in R-Mod.

Proof

For *R*-modules M,N,Z, and *R*-module homomorphisms $\mu:M\to Z$, $\nu:N\to Z$, define $M\times_Z N$ as

$$M \times_{Z} N \doteq \{(m, n) \in M \times N : \mu(m) = \nu(n)\}$$

Exercise for you: show that this is an *R*-module.

Proof (Cont.)

What are the maps $\pi_N: M \times_Z N \to N$ and $\pi_M: M \times_Z N \to M$?

Proof (Cont.)

What are the maps $\pi_N: M \times_Z N \to N$ and $\pi_M: M \times_Z N \to M$?

$$\pi_N(m,n)=n$$
 $\pi_M(m,n)=m$

Proof (Cont.)

What are the maps $\pi_N: M \times_Z N \to N$ and $\pi_M: M \times_Z N \to M$?

$$\pi_N(m,n) = n$$
 $\pi_M(m,n) = m$

They make the diagram

$$\begin{array}{ccc}
M \times_{Z} N & \xrightarrow{\pi_{N}} & N \\
\downarrow^{\pi_{M}} & & \downarrow^{\nu} \\
M & \xrightarrow{\mu} & Z
\end{array}$$

commute since for all $(m, n) \in M \times_Z N$ we have

$$\mu(\pi_M(m,n)) = \mu(m) = \nu(n) = \nu(\pi_N(m,n))$$

Proof (Cont.)

What are the maps $\pi_N: M \times_Z N \to N$ and $\pi_M: M \times_Z N \to M$?

$$\pi_N(m,n) = n$$
 $\pi_M(m,n) = m$

They make the diagram

$$\begin{array}{ccc}
M \times_{Z} N & \xrightarrow{\pi_{N}} & N \\
\downarrow^{\pi_{M}} & & \downarrow^{\nu} \\
M & \xrightarrow{\mu} & Z
\end{array}$$

commute since for all $(m, n) \in M \times_Z N$ we have

$$\mu(\pi_M(m,n)) = \mu(m) = \nu(n) = \nu(\pi_N(m,n))$$

Now we have to check that $M \times_Z N$ is universal with respect to this property.

Proof (Cont.)

Suppose we had another R-module L and R-module homomorphisms $\varphi_N:L\to N$ and $\varphi_M:L\to M$ such that $\mu\circ\varphi_N=\nu\circ\varphi_M$.

Proof (Cont.)

Suppose we had another *R*-module *L* and *R*-module homomorphisms $\varphi_N: L \to N$ and $\varphi_M: L \to M$ such that $\mu \circ \varphi_N = \nu \circ \varphi_M$. Define

$$\sigma(\ell) = (\varphi_M(\ell), \varphi_N(\ell))$$

Check: Does this map go to $M \times_Z N$? Is this really an R-module homomorphism?

Proof (Cont.)

Suppose we had another R-module L and R-module homomorphisms $\varphi_N:L\to N$ and $\varphi_M:L\to M$ such that $\mu\circ\varphi_N=\nu\circ\varphi_M$. Define

$$\sigma(\ell) = (\varphi_M(\ell), \varphi_N(\ell))$$

Check: Does this map go to $M \times_Z N$? Is this really an R-module homomorphism?

$$\pi_{M}(\sigma(\ell)) = \pi_{M}(\varphi_{M}(\ell), \varphi_{N}(\ell)) = \varphi_{M}(\ell)$$

$$\pi_N(\sigma(\ell)) = \pi_N(\varphi_M(\ell), \varphi_N(\ell)) = \varphi_N(\ell)$$

Proof (Cont.)

Suppose we had another *R*-module *L* and *R*-module homomorphisms $\varphi_N: L \to N$ and $\varphi_M: L \to M$ such that $\mu \circ \varphi_N = \nu \circ \varphi_M$. Define

$$\sigma(\ell) = (\varphi_M(\ell), \varphi_N(\ell))$$

Check: Does this map go to $M \times_Z N$? Is this really an R-module homomorphism?

$$\pi_{M}(\sigma(\ell)) = \pi_{M}(\varphi_{M}(\ell), \varphi_{N}(\ell)) = \varphi_{M}(\ell)$$

$$\pi_N(\sigma(\ell)) = \pi_N(\varphi_M(\ell), \varphi_N(\ell)) = \varphi_N(\ell)$$

Proof (Cont.)

Now we need to check that σ is unique. Suppose that we had an R-module homomorphism $\alpha:L\to M\times_Z N$ such that

$$\pi_{\mathcal{M}}(\alpha(\ell)) = \varphi_{\mathcal{M}}(\ell)$$
 $\pi_{\mathcal{N}}(\alpha(\ell)) = \varphi_{\mathcal{N}}(\ell)$

and suppose $\alpha(\ell) = (m, n)$. Hence

$$\varphi_M(\ell) = \pi_M(\alpha(\ell)) = \pi_M(m, n) = m$$

$$\varphi_N(\ell) = \pi_N(\alpha(\ell)) = \pi_M(m, n) = n$$

Therefore $\alpha(\ell) = \sigma(\ell)$ showing that σ is unique! Therefore pullbacks exist in R-mod.

Lemma (If μ is surjective, then π_N is surjective)

Consider the following diagram

If μ is surjective, then π_N is surjective.

Proof

Suppose that μ is surjective.

$$\begin{array}{ccc} M \times_{Z} N & \xrightarrow{\pi_{N}} & N \\ \downarrow^{\pi_{M}} & & \downarrow^{\nu} \\ M & \xrightarrow{\mu} & Z \end{array}$$

Proof

Suppose that μ is surjective.

$$\begin{array}{ccc} M \times_{Z} N & \xrightarrow{\pi_{N}} & N \\ \downarrow^{\pi_{M}} & & \downarrow^{\nu} \\ M & \xrightarrow{\mu} & Z \end{array}$$

For any $n \in N$, $\nu(n) \in Z$.

Proof

Suppose that μ is surjective.

$$\begin{array}{ccc} M \times_{Z} N & \stackrel{\pi_{N}}{\longrightarrow} & N \\ \downarrow^{\pi_{M}} & & \downarrow^{\nu} \\ M & \stackrel{\mu}{\longrightarrow} & Z \end{array}$$

For any $n \in N$, $\nu(n) \in Z$.

There exists some $m \in M$ such that $\mu(m) = \nu(n)$.

Proof

Suppose that μ is surjective.

$$\begin{array}{ccc} M \times_Z N & \stackrel{\pi_N}{\longrightarrow} & N \\ \downarrow^{\pi_M} & & \downarrow^{\nu} \\ M & \stackrel{\mu}{\longrightarrow} & Z \end{array}$$

For any $n \in N$, $\nu(n) \in Z$.

There exists some $m \in M$ such that $\mu(m) = \nu(n)$.

But this means that $(m, n) \in M \times_Z N$.

Proof

Suppose that μ is surjective.

$$\begin{array}{ccc} M \times_Z N & \stackrel{\pi_N}{\longrightarrow} & N \\ \downarrow^{\pi_M} & & \downarrow^{\nu} \\ M & \stackrel{\mu}{\longrightarrow} & Z \end{array}$$

For any $n \in N$, $\nu(n) \in Z$.

There exists some $m \in M$ such that $\mu(m) = \nu(n)$.

But this means that $(m, n) \in M \times_Z N$.

Hence, $\pi_N(m, n) = n$.

Proof

Suppose that μ is surjective.

$$\begin{array}{ccc}
M \times_{Z} N & \xrightarrow{\pi_{N}} & N \\
\downarrow^{\pi_{M}} & & \downarrow^{\nu} \\
M & \xrightarrow{\mu} & Z
\end{array}$$

For any $n \in N$, $\nu(n) \in Z$.

There exists some $m \in M$ such that $\mu(m) = \nu(n)$.

But this means that $(m, n) \in M \times_Z N$.

Hence, $\pi_N(m, n) = n$.

This shows that π_N is surjective.

Theorem 1

An R-module P is projective if and only if for all epimorphisms of R-modules $\mu:M\to N$ every R-linear map $\hat f:P\to N$ lifts to an R-linear map $\hat f:P\to M$.

Theorem 1

An R-module P is projective if and only if for all epimorphisms of R-modules $\mu:M\to N$ every R-linear map $f:P\to N$ lifts to an R-linear map $\hat f:P\to M$.

$$M \xrightarrow{\mu} N \longrightarrow 0$$

Theorem 1

An R-module P is projective if and only if for all epimorphisms of R-modules $\mu: M \to N$ every R-linear map $f: P \to N$ lifts to an R-linear map $\hat{f}: P \to M$.

Theorem 1

An R-module P is projective if and only if for all epimorphisms of R-modules $\mu: M \to N$ every R-linear map $f: P \to N$ lifts to an R-linear map $\hat{f}: P \to M$.

Proof

 (\Rightarrow) Suppose that P is projective. If we have an epimorphism

$$M \xrightarrow{\mu} N \longrightarrow 0$$

we can extend it to a short exact sequence where ${\it K}$ is the kernel of μ

$$0 \longrightarrow K \stackrel{\lambda}{\longrightarrow} M \stackrel{\mu}{\longrightarrow} N \longrightarrow 0$$

 $0 \longrightarrow \operatorname{Hom}_R(P,K) \xrightarrow{\lambda \circ} \operatorname{Hom}_R(P,M) \xrightarrow{\mu \circ} \operatorname{Hom}_R(P,N) \longrightarrow 0$ is also exact.

Proof (Cont.)

By exactness of

$$\operatorname{\mathsf{Hom}}_R(P,M) \stackrel{\mu \circ}{\longrightarrow} \operatorname{\mathsf{Hom}}_R(P,N) \longrightarrow 0$$

Proof (Cont.)

By exactness of

$$\operatorname{\mathsf{Hom}}_R(P,M) \stackrel{\mu\circ}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \operatorname{\mathsf{Hom}}_R(P,N) \longrightarrow 0$$

For each $f \in \operatorname{Hom}_R(P, N)$,

Proof (Cont.)

By exactness of

$$\operatorname{\mathsf{Hom}}_R(P,M) \stackrel{\mu\circ}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \operatorname{\mathsf{Hom}}_R(P,N) \longrightarrow 0$$

For each $f \in \operatorname{Hom}_R(P, N)$, there is some $\hat{f} \in \operatorname{Hom}_R(P, M)$,

Proof (Cont.)

By exactness of

$$\operatorname{\mathsf{Hom}}_R(P,M) \stackrel{\mu \circ}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \operatorname{\mathsf{Hom}}_R(P,N) \longrightarrow 0$$

For each $f \in \operatorname{Hom}_R(P, N)$, there is some $\hat{f} \in \operatorname{Hom}_R(P, M)$, such that $\mu \circ \hat{f} = f$.

Proof (Cont.)

 (\Leftarrow) Now suppose

Proof (Cont.)

(⇐) Now suppose

Since $\operatorname{Hom}_R(P-)$ is left exact we only have to show that

$$\operatorname{\mathsf{Hom}}_R(P,M) \stackrel{\mu \circ}{\longrightarrow} \operatorname{\mathsf{Hom}}_R(P,N) \longrightarrow 0$$

is exact.

Proof (Cont.)

(⇐) Now suppose

Since $Hom_R(P-)$ is left exact we only have to show that

$$\operatorname{\mathsf{Hom}}_R(P,M) \stackrel{\mu\circ}{\longrightarrow} \operatorname{\mathsf{Hom}}_R(P,N) \longrightarrow 0$$

is exact.

$$\operatorname{\mathsf{Hom}}_R(P,M) \stackrel{\mu\circ}{\longrightarrow} \operatorname{\mathsf{Hom}}_R(P,N) \longrightarrow 0$$

is exact.

Proof (Cont.)

(⇐) Now suppose

Since $Hom_R(P-)$ is left exact we only have to show that

$$\operatorname{\mathsf{Hom}}_R(P,M) \stackrel{\mu\circ}{\longrightarrow} \operatorname{\mathsf{Hom}}_R(P,N) \longrightarrow 0$$

is exact.

$$\operatorname{\mathsf{Hom}}_R(P,M) \stackrel{\mu \circ}{\longrightarrow} \operatorname{\mathsf{Hom}}_R(P,N) \longrightarrow 0$$

is exact. But we can do this since if we have $f \in \text{Hom}(P, N)$, there is some $g \in \text{Hom}_R(P, M)$ such that $\mu \circ g = f$.

Theorem 2

P is projective if and only if every epimorphism $M \rightarrow P$ splits.

Theorem 2

P is projective if and only if every epimorphism $M \rightarrow P$ splits.

Proof

 (\Rightarrow) If P is projective then using the characterization from Theorem 1, we have that there exists a g such that the following diagram commutes

Theorem 2

P is projective if and only if every epimorphism $M \rightarrow P$ splits.

Proof

 (\Rightarrow) If P is projective then using the characterization from Theorem 1, we have that there exists a g such that the following diagram commutes

i.e $\mu \circ g = id_P$ therefore μ splits.

Proof (Cont.)

$$M \xrightarrow{\mu} Z \longrightarrow 0$$

Proof (Cont.)

Proof (Cont.)

Proof (Cont.)

Proof (Cont.)

 (\Leftarrow) Suppose every epimorphism to P splits. Here's where we get to use pullbacks! Consider an epimorphism

By our lemma, since π_P is surjective, (i.e. an epimorphism) it must split.

Proof (Cont.)

 (\Leftarrow) Suppose every epimorphism to P splits. Here's where we get to use pullbacks! Consider an epimorphism

By our lemma, since π_P is surjective, (i.e. an epimorphism) it must split. There exists $\psi: P \to M \times_Z P$ such that $\pi_P \circ \psi = \mathrm{id}_P$.

Proof (Cont.)

 (\Leftarrow) Suppose every epimorphism to P splits. Here's where we get to use pullbacks! Consider an epimorphism

By our lemma, since π_P is surjective, (i.e. an epimorphism) it must split. There exists $\psi: P \to M \times_Z P$ such that $\pi_P \circ \psi = \mathrm{id}_P$. Define $g = \pi_M \circ \psi$.

Proof (Cont.)

 (\Leftarrow) Suppose every epimorphism to P splits. Here's where we get to use pullbacks! Consider an epimorphism

By our lemma, since π_P is surjective, (i.e. an epimorphism) it must split. There exists $\psi: P \to M \times_Z P$ such that $\pi_P \circ \psi = \mathrm{id}_P$. Define $g = \pi_M \circ \psi$. We know $f \circ \pi_P = \mu \circ \pi_M$ hence

$$f \circ \pi_P \circ \psi = \mu \circ \pi_M \circ \psi$$

Proof (Cont.)

 (\Leftarrow) Suppose every epimorphism to P splits. Here's where we get to use pullbacks! Consider an epimorphism

By our lemma, since π_P is surjective, (i.e. an epimorphism) it must split. There exists $\psi: P \to M \times_Z P$ such that $\pi_P \circ \psi = \mathrm{id}_P$. Define $g = \pi_M \circ \psi$. We know $f \circ \pi_P = \mu \circ \pi_M$ hence

$$f \circ \pi_P \circ \psi = \mu \circ \pi_M \circ \psi$$

Therefore

$$f = \mu \circ g$$
.

Theorem 3

An R-module P is projective if and only if there exists a free module F, an R-module K, and an isomorphism $F \cong K \oplus P$.

Theorem 3

An R-module P is projective if and only if there exists a free module F, an R-module K, and an isomorphism $F \cong K \oplus P$.

Proof

 (\Rightarrow) Suppose that P is projective. Take the free module $F=R^{\oplus P}$, then we have a surjection

$$F \longrightarrow P \longrightarrow 0$$

Theorem 3

An R-module P is projective if and only if there exists a free module F, an R-module K, and an isomorphism $F \cong K \oplus P$.

Proof

(\Rightarrow) Suppose that P is projective. Take the free module $F=R^{\oplus P}$, then we have a surjection

$$F \longrightarrow P \longrightarrow 0$$

and the inclusion

$$0 \longrightarrow \ker \varphi \longrightarrow \mathit{F}$$

Theorem 3

An R-module P is projective if and only if there exists a free module F, an R-module K, and an isomorphism $F \cong K \oplus P$.

Proof

(\Rightarrow) Suppose that P is projective. Take the free module $F=R^{\oplus P}$, then we have a surjection

$$F \longrightarrow P \longrightarrow 0$$

and the inclusion

$$0 \longrightarrow \ker \varphi \longrightarrow \mathit{F}$$

Since *P* is projective the sequence

$$0 \longrightarrow \ker \varphi \longrightarrow F \longrightarrow P \longrightarrow 0$$

splits so $F \cong \ker \varphi \oplus P$.

Proof (Cont.)

 (\Leftarrow) Suppose that $F\cong K\oplus P$.

Proof (Cont.)

 (\Leftarrow) Suppose that $F \cong K \oplus P$.

 $j(s) \in F$ so $f(j(s)) = \mu(m)$ for some $m \in M$.

Proof (Cont.)

 (\Leftarrow) Suppose that $F \cong K \oplus P$.

$$j(s) \in F$$
 so $f(j(s)) = \mu(m)$ for some $m \in M$.

Define $\overline{f}:S\to M$ via $\overline{f}(s)=m$

Proof (Cont.)

 (\Leftarrow) Suppose that $F \cong K \oplus P$.

$$j(s) \in F$$
 so $f(j(s)) = \mu(m)$ for some $m \in M$.

Define $\overline{f}: S \to M$ via $\overline{f}(s) = m$

Universal property of free modules gives us $\varphi : F \to M$.

Proof (Cont.)

 (\Leftarrow) Suppose that $F \cong K \oplus P$.

$$j(s) \in F$$
 so $f(j(s)) = \mu(m)$ for some $m \in M$.

Define $\overline{f}:S\to M$ via $\overline{f}(s)=m$

Universal property of free modules gives us $\varphi : F \to M$.

Since $\mu \circ \overline{f} = f \circ j$, $\mu \circ \varphi = f$

Proof (Cont.)

We want to show that P is projective.

Proof (Cont.)

We want to show that P is projective.

So there exists φ such that $g \circ \pi_P = \mu \circ \varphi$

Characterization of Projective Modules

Proof (Cont.)

We want to show that P is projective.

So there exists φ such that $g \circ \pi_P = \mu \circ \varphi$

$$g \circ \pi_P \circ \iota_P = \mu \circ \varphi \circ \iota_P$$

Characterization of Projective Modules

Proof (Cont.)

We want to show that P is projective.

So there exists φ such that $g \circ \pi_P = \mu \circ \varphi$

$$g \circ \pi_P \circ \iota_P = \mu \circ \varphi \circ \iota_P$$

hence

$$g = \mu \circ \psi$$

Characterization of Projective Modules

Proof (Cont.)

We want to show that P is projective.

So there exists φ such that $g \circ \pi_P = \mu \circ \varphi$

$$g \circ \pi_P \circ \iota_P = \mu \circ \varphi \circ \iota_P$$

hence

$$g = \mu \circ \psi$$

P is projective.

Corollary

Free modules are projective.

Corollary

Free modules are projective.

We incidentally proved this in the proof of the previous theorem.

Corollary

Free modules are projective.

We incidentally proved this in the proof of the previous theorem.

Question: Are there projective modules that are not free?

Corollary

Free modules are projective.

We incidentally proved this in the proof of the previous theorem.

Question: Are there projective modules that are not free?

Example

Taking $R = \mathbb{Z}/6\mathbb{Z}$.

Corollary

Free modules are projective.

We incidentally proved this in the proof of the previous theorem. Question: Are there projective modules that are not free?

Example

Taking $R = \mathbb{Z}/6\mathbb{Z}$. The module $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$ is free as an R-module and by our previous theorem, $\mathbb{Z}/2\mathbb{Z}$ is projective as an R-module.

Corollary

Free modules are projective.

We incidentally proved this in the proof of the previous theorem. Question: Are there projective modules that are not free?

Example

Taking $R=\mathbb{Z}/6\mathbb{Z}$. The module $\mathbb{Z}/6\mathbb{Z}\cong\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/3\mathbb{Z}$ is free as an R-module and by our previous theorem, $\mathbb{Z}/2\mathbb{Z}$ is projective as an R-module. However it is not free.

Theorem 4

A module Q is injective if and only if for all monomorphisms of R-modules $\lambda:L\to M$, every R-linear map $q:L\to Q$ extends to an R-linear map $\hat{q}:M\to Q$.

Theorem 4

A module Q is injective if and only if for all monomorphisms of R-modules $\lambda:L\to M$, every R-linear map $q:L\to Q$ extends to an R-linear map $\hat{q}:M\to Q$.

The proof of this is essentially the same as the one for projective modules.

Theorem 4

A module Q is injective if and only if for all monomorphisms of R-modules $\lambda:L\to M$, every R-linear map $q:L\to Q$ extends to an R-linear map $\hat{q}:M\to Q$.

The proof of this is essentially the same as the one for projective modules.

Theorem 5

A module Q is injective if and only if every monomorphism $Q \to M$ splits.

Theorem 4

A module Q is injective if and only if for all monomorphisms of R-modules $\lambda:L\to M$, every R-linear map $q:L\to Q$ extends to an R-linear map $\hat{q}:M\to Q$.

The proof of this is essentially the same as the one for projective modules.

Theorem 5

A module Q is injective if and only if every monomorphism $Q \to M$ splits.

Pushouts (or fibered coproduct) are used to prove this. They're the dual of pullbacks.

Remark

However, there is no theorem for injective modules similar to the one of a projective module being a direct summand of a free module.

Remark

However, there is no theorem for injective modules similar to the one of a projective module being a direct summand of a free module.

Theorem (Baer's Criterion)

An R-module Q is injective if and only if every R-linear map $f: I \to Q$, where I is an ideal of R, extends to an R-linear map $\hat{f}: R \to Q$.

Remark

However, there is no theorem for injective modules similar to the one of a projective module being a direct summand of a free module.

Theorem (Baer's Criterion)

An *R*-module *Q* is injective if and only if every *R*-linear map $f: I \to Q$, where *I* is an ideal of *R*, extends to an *R*-linear map $\hat{f}: R \to Q$.

Proof.

The proof uses a clever application of Zorn's lemma. See Aluffi for full proof.

Summarizing our results

	Lifting/Extending	Splitting	Summands of free modules
Projective	Yes	Yes	Yes
Modules			
Injective	Yes	Yes	No
Modules			

Table: Comparison between injective and projective module characterizations

References

P. Aluffi

Algebra: Chapter 0

Graduate studies in mathematics. American Mathematical Society,

2009.

Abstract Algebra: The Basic Graduate Year

Thank you!

Thank you! Any Questions?