REPORT OF DAI-101 ASSIGNMENT 1

ANKIT KUMAR

Enrollment: 23116013

Department: ECE

Table of Content:

- 1. Introduction
- 2. Data Loading and Inspection
- 3. Univariate Analysis
- 4. Bivariate Analysis
- 5. Multivariate Analysis
- 6. Conclusion

1. Introduction

In this report, we conduct an in-depth analysis of the dataset, data_ak.csv. The analysis includes data inspection, missing value treatment, outlier handling, univariate, bivariate, and multivariate analysis using statistical and visualization techniques.

2. Data Loading and Inspection

Dataset Overview

The dataset is loaded using Pandas, and an initial inspection is conducted using .info() and .describe() methods. This helps us understand:

- The number of entries (rows and columns).
- Data types (numerical vs categorical).
- Presence of missing values.
- Basic statistical properties such as mean, standard deviation, and range of numerical variables.

Handling Missing Values

- **Numerical Columns**: Missing values are replaced with the **mean** of the respective column.
- Categorical Columns: Missing values are replaced with the **mode** (most frequent category).

Duplicate Removal

To ensure data integrity, duplicate records are identified and removed using .drop duplicates().

Outlier Treatment

- The Interquartile Range (IQR) method is used to detect and replace outliers.
- Values falling outside **1.5 times** the IQR are considered outliers and replaced with the mean of the respective column.

Standardization of Categorical Variables

Strings are converted to lowercase and stripped of whitespace.

Common typos in categorical values are corrected.

3. Univariate Analysis

Univariate analysis focuses on analyzing individual variables to understand their distribution and properties.

3.1 Statistical Summary

- Mean, median and mode are calculated to understand central tendency.
- Variance and skewness are analyzed to measure dispersion and asymmetry in numerical variables.

3.2 Visualization

- Histograms are plotted to show the frequency distribution of numerical variables.
- Boxplots are used to detect outliers and analyze spread.
- Bar charts display the frequency of categorical variables.

4. Bivariate Analysis

Bivariate analysis examines the relationships between two variables.

4.1 Correlation Matrix

- A heatmap is generated to visualize correlations among numerical variables.
- Strong correlations indicate potential multicollinearity, useful for feature selection in modeling.

4.2 Scatter Plots

 Pairwise scatter plots of numerical variables help identify linear/non-linear relationships.

4.3 Categorical vs. Numerical Analysis

- Bar plots compare numerical variables across categorical groups.
- Violin plots show distribution shapes within categories.

• **Box plots** highlight variations and outliers.

5. Multivariate Analysis

Multivariate analysis extends beyond two variables to explore deeper relationships.

5.1 Pair Plots

• Pairwise scatter plots combined with kernel density estimation (KDE) help visualize multiple variable interactions.

5.2 Advanced Correlation Heatmap

A refined heatmap further investigates multicollinearity.

5.3 Grouped Comparisons

 Box plots with hue differentiation show how multiple categorical features impact numerical variables.

6. Conclusion

Key Insights:

- Missing values were successfully handled, ensuring data completeness.
- Outlier treatment was applied to mitigate extreme value influence.
- Univariate analysis highlighted skewness and dominant categories.
- Bivariate analysis revealed strong correlations and category-based variations.
- Multivariate analysis provided deeper insights into variable interactions.