$\begin{array}{c} {\rm Gruppen} \\ {\rm gym3} \ / \ {\rm WaJ} \\ {\rm November} \ 2023 \end{array}$

Aufgabe 1

Notiere noch einmal die Definition einer Gruppe $\mathbb G$ mit Verknüpfung *.

Aufgabe 2

Welche der folgenden Strukturen sind Gruppen?

a) $\langle \mathbb{N}, + \rangle$

g) $\langle \mathbb{Q}^*, \cdot \rangle$

b) $\langle \mathbb{N}_0, + \rangle$

h) $\langle \mathbb{Q}^+, \cdot \rangle$

c) $\langle \mathbb{Z}, + \rangle$

i) $\langle \mathbb{R} \setminus \mathbb{Q}, + \rangle$

 $d) \langle \mathbb{N}, \cdot \rangle$

 $j) \ \langle (\mathbb{R} \setminus \mathbb{Q}) \cup \{1\}, \cdot \rangle$

e) $\langle \mathbb{Z}, \cdot \rangle$

k) $\langle \mathbb{Z}_{73}^*, \cdot \rangle$

f) $\langle \mathbb{Q}, \cdot \rangle$

1) $\langle \mathbb{Z}_{\triangleleft}, + \rangle$

Aufgabe 3

Erstelle eine Verknüpfungstabelle für:

a) $\langle \mathbb{Z}_2, + \rangle$

d) $\langle \mathbb{Z}_2^*, \cdot \rangle$

b) $\langle \mathbb{Z}_2, \cdot \rangle$

e) $\langle \mathbb{Z}_6^*, \cdot \rangle$

c) $\langle \mathbb{Z}_2^*, + \rangle$

f) $\langle \mathbb{Z}_7^*, \cdot \rangle$

Aufgabe 4

Finde ein Element $a \in \mathbb{Z}_{10}^*$, welches ein multiplikatives Inverses hat. Erstelle eine Tabelle mit allen Elemente in \mathbb{Z}_{10}^* , welche Inverse haben. Notiere daneben $\langle \mathbb{Z}_5^*, \cdot \rangle$. Worin unterscheiden sich die beiden Strukturen?

Aufgabe 5

Zeige, dass das neutrale Element einer Gruppe $\langle \mathbb{G}, * \rangle$ eindeutig bestimmt ist.

(Hint: Widerspruchsbeweis)

Aufgabe 6

Sei $\mathbb{G} = \{e, x, y\}$ mit e *-neutral und x * y = e. Ist die Verknüpfungstafel damit eindeutig bestimmt? Ist die Verknüpfungstabelle eindeutig bestimmt, wenn $\langle \mathbb{G}, * \rangle$ eine Gruppe sein soll?

Aufgabe 7

Eine innere Verknüpfung * auf einer Menge G heisst kommutativ oder abelsch, falls

$$\forall a, b \in \mathbb{G} : a * b = b * a.$$

Nenne eine Operation, die nicht kommutativ ist. Notiere explizit ein Beispiel.

Gruppen gym3 / WaJ November 2023

Aufgabe 8

Zeige, dass in einer Gruppe $\langle \mathbb{G}, * \rangle$ inverse Elemente eindeutig bestimmt sind.

Jetzt folgen ein paar eher toughere Übungen. Ich verwende — wie unter Mathematikern üblich — einen Mix zwischen der Standardnotation und der multiplikativ motivierten, teils effizienteren Schreibweise · anstelle von *, 1 := e und $a^{-1} := \tilde{a}$.

Aufgabe 9

Wahr oder falsch:

- a) $a \cdot a = a \cdot b \implies a = b$
- b) $a^5 = a \implies a^4 = e$
- c) $\forall a \in \mathbb{G}$ sei $a^2 = 1 \implies \mathbb{G}$ abelsch Gilt die Umkehrung?
- d) $a \cdot a = b \cdot b \implies a = b$
- e) Seien $a, b \in \mathbb{G}$. $\exists ! x \in \mathbb{G}$ mit $a \cdot x = b$

Aufgabe 10

Vervollständige die Gruppentafel 1 auf Seite 2.

•	e	a	b	\boldsymbol{x}	y	z
\overline{e}	e	a	b	x	y	z
a	a	b	e	y		
b	b					
\boldsymbol{x}	x	z				a
y	y					
z	z			$\frac{x}{y}$		

Tabelle 1: Gruppentafel

Aufgabe 11

Back to the future.

- a) Zeige: (0,1) und \mathbb{R} sind gleichmächtig.
- b) Zeige: $\langle \mathbb{R}, + \rangle$ und $\langle \mathbb{R}^+, \cdot \rangle$ sind isomorph.

Definition 1. Ein Gruppenhomomorphismus φ ist eine Abbildung $\varphi : \mathbb{G}_1 \longrightarrow \mathbb{G}_2$ zwischen zwei Gruppen $\langle \mathbb{G}_1, * \rangle$ und $\langle \mathbb{G}_2, \star \rangle$ so, dass

$$\varphi(a * b) = \varphi(a) \star \varphi(b).$$

Ein Isomorphismus ist ein bijektiver Homomorphismus.