Central Limit Theorem

Week 02 - Day 02

Normal Distribution

Names

Normal distribution

Gaussian distribution

Bell-shaped distribution

1. Age of all the students in GA

- 1. Age of all the students in GA
- 2. Height of all the trees in a forest

- 1. Age of all the students in GA
- 2. Height of all the trees in a forest
- 3. Number of grains of rice eaten by ppl in Singapore every year

- 1. Age of all the students in GA
- 2. Height of all the trees in a forest
- 3. Number of grains of rice eaten by ppl in Singapore every year
 - a. bimodal if you add Europe!

Parameters

- 1. Mean
- 2. STD

Mean

numpy.random.normal(loc=100, scale=15, size=1000)

STD

The 68-95-99.7 rule

Standard Normal distribution

Mean = 0

Std = 1

 $x = 3.5 \rightarrow "3.5 \text{ std(s)} \text{ far from the mean"}$

The z-score

$$Z = (x - X_mean) / X_std$$

- Normal distribution → Standard normal distribution
- Used is ML!

Central Theorem

Population vs. Sample

Metric	Statistic	Parameter
mean	$\bar{x} = \frac{\sum x}{n}$	$\mu = \frac{\sum x}{N}$
standard deviation	$s = \sqrt{\frac{\sum_{i} (x_i - \bar{x})^2}{n - 1}}$	$\sigma = \sqrt{\frac{\sum_{i} (x_i - \mu)^2}{N}}$
correlation	$r = \frac{\hat{Cov}(X, Y)}{s_X s_Y}$	$\rho = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$

"The sampling distribution of X_mean is normally

distributed...even if the distribution of is not!"

Property 1 from CLT

If
$$X \sim N(\mu, \sigma)$$
, then \bar{X} is exactly $N(\mu, \frac{\sigma}{\sqrt{n}})$
Len of the sample

[mean(sample_1), mean(sample_2),...mean(sample_i)]

Property 2 from CLT

If \bar{X} is normally distributed,

then we can use inferential methods

that rely on our sample mean, \bar{x}

PDF vs. Histogram

```
xpoints = np.linspace(40, 160, 500)
# Use stats.norm.pdf to get values on the probability density function
ypoints = stats.norm.pdf(xpoints, 100, 15)
# initialize a matplotlib "figure":
fig, ax = plt.subplots(figsize=(8,5))
# Plot the lines using matplotlib's plot function:
ax.plot(xpoints, ypoints, linewidth=3, color='darkred')
[<matplotlib.lines.Line2D at 0x10dfb2e50>]
0.025
0.020
0.015
0.010
0.005
0.000
```

100

120

140

160

Generate points on the x axis:

60

80

PDF vs histogram?

Histogram = count the values in each bin

PDF

sum=1

area between two points

Exercises

- 1. Play (i.e. plot the histogram, print the percentiles, etc.) with the CLT using a normal distribution
- 2. Play with CLT using a bimodal distribution (i.e. put together two normal distributions with different means)
- 3. Play with CLT using a small sample (e.g. n=5)