LINUX

교재명	우분투 리눅스 시스템 & 서버
저자	창병모
출판사	생능출판사
발행년	2024.07.12
ISBN	979-11-92932-72-9

우분투 리눅스 시스템 & 서버

1장 리눅스 시작

1.1 유닉스/리눅스 특징

동기

유닉스/리눅스 운영체제

- 1970년대 초에 AT&T 벨연구소에서 유닉스가 개발된 이후로 지속적으로 발전
- 스마트폰, PC, 서버 시스템, 슈퍼컴퓨터에까지 사용되고 있음
- 소프트웨어 경쟁력의 핵심!

유닉스/리눅스 기반 운영체제

- 1. 안드로이드(Android) OS
- 2. iOS
- 3. 맥(Mac) OS X
- 4. 리눅스(Linux)
- 5. BSD 유닉스(Unix)
- 6. 시스템 V
- 7. Sun 솔라리스(Solaris)
- 8. IBM AIX
- 9. HP HP-UX
- 10. Cray 유니코스(Unicos)

유닉스의 설계 철학

단순성

- MIT MULTICS에 반대해서 최소한의 기능만 제공
- 자원에 대한 일관된 관점 제공

이식성

- 이식성을 위해 C 언어로 작성
- 다양한 플랫폼에 이식 가능
- 스마트폰, PC, 서버, 슈퍼컴퓨터 등

개방성

- 소스 코드 공개와 같은 개방성

그림 1.1 유닉스의 이식성

유닉스의 특징

다중 사용자, 다중 프로세스

- 여러 사용자가 동시에 사용 가능
- 여러 프로그램이 동시에 실행
- 관리자 슈퍼유저가 있음.

쉘과 대화식 운영체제

- 명령어 해석기 쉘 사용
- 명령어나 유틸리티 등을 사용하여 쉘 스크립트 작성

계층적 파일 시스템

- 트리와 같은 디렉터리 계층구조

훌륭한 네트워킹

- 유닉스에서부터 네트워킹이 시작
- ftp, telnet, WWW, X-window 등

그림 1.2 다중 사용자 다중 프로세스

1.2 유닉스/리눅스 시스템 구조

유닉스 시스템 구조

운영체제

- 컴퓨터의 하드웨어 자원을 운영 관리하고
- 프로그램을 실행할 수 있는 환경을 제공.

커널(kernel)

- 운영체제의 핵심으로 하드웨어 운영 및 관리

시스템 호출(system call)

커널이 제공하는 서비스에 대한프로그래밍 인터페이스 역할

쉘(shell)

- 사용자와 운영체제 사이의 인터페이스
- 사용자로부터 명령어를 입력 받아 해석하여 수행해주는 명령어 해석기

커널

커널의 역할

- 하드웨어를 운영 관리하여
- 프로세스, 파일, 메모리, 통신, 주변장치 등을
- 관리하는 서비스를 제공한다.

커널의 역할

프로세스 관리(Process management)

- 여러 프로그램이 실행될 수 있도록
- 프로세스들을 CPU 스케줄링하여 동시에 수행되도록 한다.

파일 관리(File management)

- 디스크와 같은 저장장치에 파일 시스템을 구성하여 파일을 관리

메모리 관리(Memory management)

메인 메모리가 효과적으로 사용될 수 있도록 관리 한다.

커널의 역할

통신 관리(Communication management)

- 네트워크를 통해 정보를 주고받을 수 있도록 관리 한다.

주변장치 관리(Device management)

모니터, 키보드, 마우스와 같은 장치를 사용할 수 있 도록 관리한다.

1.3 유닉스 역사 및 버전

유닉스 역사

AT&T 벨 연구소(Bell Lab)에서 개발됨

- Ken Thompson이 어셈블리어로 개발함
- D. Ritchie가 C 언어로 다시 작성함
 - C 언어는 Unix를 작성하기 위한 언어로 밀접하게 관련되어 있음
- 이론적으로 C 컴파일러만 있으면 이식 가능
- 소스 코드를 대학에 개방함

유닉스의 큰 흐름

- 시스템 V(System V)
- BSD(Berkeley Standard Distribution) 유닉스
- 리눅스(Linux)

유닉스 버전 트리[위키백과]

유닉스 시스템 V

벨 연구소에서 개발된 버전이 발전하여 시스템 V가 됨 유닉스 버전 중의 최초의 대표적인 성공 사례

- 여러 유틸리티가 공개되면서 일반 사용자들에 확산
 다양한 상업용 버전으로 발전
 - IBM의 AIX, Sun의 Solaris, HP의 UP-UX

BSD 유닉스

공개 소스코드를 기반으로 버클리대학교에서 개선

- 지속적으로 발전하여 BSD 4.3 버전이 개발됨

주요 기능 개선

- 메모리 관리 기능 향상
- 네트워킹 기능 추가
- TCP/IP 네트워킹, 소켓(Socket) 등

상업용 운영체제의 기초

- 썬 OS(Sun OS), 맥 OS(Mac OS) 등

The original BSD daemon appeared first in 1983 on the cover of the 4.2BSD manuals published by the Usenix Association

솔라리스(Solaris)

썬(SUN)에서 개발한 시스템 V 기반의 운영체제

- 썬 워크스테이션에서 전문가들이 주로 사용

리눅스

PC를 위한 효율적인 유닉스 시스템

- 1991년 헬싱키 대학의 Linus Torvalds에 의해 개발됨

소스코드가 공개

- 인터넷 상에서 자원자들에 의해서 기능 추가 및 확장됨
- 공용 도메인 상의 무료 OS

다양한 하드웨어 플랫폼에 포팅 가능

- PC, 워크스테이션, 서버, 메인프레임 등
- 놀라운 성능 및 안정성

GNU 소프트웨어와 함께 배포

- GNU/Linux 운영체제
- 다양한 응용 프로그램

맥 OS(Mac OS)

1984년 애플 매킨토시 컴퓨터용 운영체제로 개발

- 개인용 컴퓨터에 GUI를 처음으로 도입 맥 OS X
 - 2002년에 NeXTSTEP 운영체제와 BSD 유닉스를 기반으로 개발
 - 문서편집, 그래픽, 멀티미디어 등의 분야에서 많이 사용됨

모바일 기기용 운영체제

안드로이드(Android)

맥 OS X를 기반으로 개발된 모 바일 기기용 운영체제

- 리눅스 기반 모바일 기기용주로 스마트폰, 태블릿 PC 등
- 개방형 운영체제로 소스 코드 등 공개
- 애플사의 iPhone, iPad, iPod

iOS

리눅스 서버

웹 서버

- Apache, Nginx 등을 사용하여 웹 및 웹 애플리케이션을 호스팅
 데이터베이스 서버
- MySQL, MariaDB 등의 데이터베이스를 호스팅하고 관리 파일 서버
- 파일 공유, 백업, 스토리지 등을 위해 파일 서버로 사용된다.
 애플리케이션 서버
 - 다양한 애플리케이션을 실행하고 관리한다.

네트워크 서버

네트워크 인프라, 라우터, 방화벽, VPN 등을 관리하는 데 사용된다.

1.4 우분투 리눅스

리눅스 설치

배포판

- 커널은 공유함.
- 배포판마다 조금씩 다른 데스크톱 환경이나 응용 프로그램 제공
- 상업용 배포판 : 레드햇(RedHat)
- 무료 배포판
 - 우분투(Ubuntu), CentOS, 페도라(Fedora) 등

우분투 리눅스

- 데스크톱
- 서버

우분투 데스크톱

우분투 홈페이지

- 우분투 데스크톱 다운로드
- 우분투 서버 다운로드

http://ubuntu.com

http://ubuntu.com/download/desktop http://ubuntu.com/download/server

설치 디스크

내 PC에 직접 설치

- 배포판(iso 파일)을 다운받아
- DVD 또는 USB 형태로 설치 디스크를만들어 설치

설치 디스크 만들기

- DVD 설치 디스크 굽기(Burning)
 - 배포판 파일을 빈 DVD에 복사하는 과정
 - 디스크 이미지 버너 이용
- USB 설치 디스크
 - 유니버설 USB 인스톨러(Universal USB Installer)

http://www.pendrivelinux.com/universal-usb-installer-easy-as-1-2-3/

우분투 리눅스 설치

우분투 리눅스

- PC에서 리눅스를 쉽게 사용할 수 있게 만든 배포판
- 데비안 배포판을 바탕으로 만들어짐.
- 우분투 리눅스 설치 과정
 http://www.ubuntu.com/download/desktop/install-ubuntu-desktop

우분투 데스크톱 vs 서버

데스크톱

- 1. 그래픽 사용자 인터페이스(GUI)
- 2. 데스크톱 응용 및 GUI 도구
- 3. 다양한 그래픽 응용 프로그램 및 서비스
- 4. 많은 메모리와 그래픽 성능이 필요함
- 5. 추가 보안 및 주의가 필요함

서버

- 1. 명령줄 인터페이스(CLI)
- 2. 최소한의 패키지만 설치
- 3. 서버 역할에 특화된 서비스와 프로세 스만 실행
 - 4. 최소한 자원으로 안정적인 서비스
- 5. 최소한의 포트만 개방하여 보안 강화

1.5 가상 머신 만들기

가상 머신

가상 머신(Virtual Machine)

- 컴퓨터 하드웨어(CPU, MEMORY, DISK 등)를 추상화
- 마치 실제 하드웨어와 같은 환경을 소프트웨어로 제공.
- MS 윈도에 가상 머신 설치하고 그 위에 리눅스 설치 가능.
 - MS 윈도는 호스트 운영체제, 리눅스는 게스트 운영체제

가상 머신 소프트웨어

VirtualBox

- Oracle 사에서 제공하는 무료 소프트웨어
- VirtualBox(virtualbox.org)

VMware Workstation Player

- 유료 소프트웨어이나 비상업적 개인 용도로는 무료
- VMWare(vmware.com)
- 다운로드
 - https://www.vmware.com/products/workstationplayer/workstation-player-evaluation.html
 - https://www.techspot.com/downloads/1969-vmwareplayer.html

VMware 가상 머신에 우분투 설치 과정

- 1. VMware 다운로드 및 설치
- 2. VMware에 가상 머신 만들기
- 3. 우분투 설치파일로 부팅
- 4. 우분투 리눅스 설치
- 5. 설치 완료 및 설치된 우분투로 재부팅

VMware Workstation Player 설치

가상 머신 만들기

[Create a New Virtual Machine] 새로운 가상 머신을 만든다.

- 1. 설치할 운영체제의 설치파일(iso image)을 선택한다(그림 1.18)
- 2. 사용자 계정과 패스워드를 설정한다(그림 1.19).
- 3. 가상 머신의 이름과 머신 폴더를 선택한다(그림 1.20).
- 4. 가상 하드디스크를 만든다(그림 1.21).
- 가상 머신에 대해 요약(그림 1.22) 하고 새로운 가상 머신을 생성한다(그림 1.23).

가상 머신 만들기

1.6 우분투 리눅스 설치

VMware에 우분투 리눅스 설치

(1) 언어를 한국어로 선택한다.

(3) 키보드 유형을 선택한다.

(5) 우분투 설치를 선택한다.

(7) 설치할 앱을 Extended selection으로 선택한다.

(9) 설치 형식을 디스크 지우고 우분투 설치로 선택한다.

(11) 시간대를 선택한다.

(12) 설치가 진행된다.

1.7 사용 환경

GNOME 데스크톱 시작 화면

GNOME 데스크톱

상태 영역

1.8 슈퍼 유저

슈퍼유저

슈퍼유저(superuser)

- 시스템을 관리할 수 있는 사용자로
- 슈퍼유저가 사용하는 계정이 root이다

시스템 관리자의 역할

- 사용자 등록 및 삭제
- 소프트웨어 설치, 업그레이드, 삭제
- 하드웨어 추가 설치
- 시스템 보안
- 데이터 백업

sudo

\$ sudo 명령

일시적으로 슈퍼유저(root) 권한으로 원하는 명령을 실행한다.

예1 : 관리자 권한으로 apt를 이용하여 gcc를 설치 \$ sudo apt install gcc // gcc 컴파일러 설치 [sudo] chang의 암호:

예2 : root 계정의 암호를 설정한 후에 root 계정을 이용 \$ sudo passwd root // root 패스워드 설정 [sudo] chang의 암호:

새 암호:

새 암호 재입력:

passwd: 암호를 성공적으로 업데이트했습니다

Autumn 2025

SU

\$ su [사용자명]

사용자명을 주지 않으면 root로 전환하고 사용자명을 주면 해당 사용자로 전환한다.

슈퍼유저 로그인

- 직접 root 계정으로 로그인
- 다른 계정으로 로그인 후

```
$ su
암호:
# cd ~
# pwd
/root
```

핵심 개념

유닉스 시스템의 가장 큰 특징은 단순성과 이식성과 개방성이다.

운영체제는 컴퓨터의 하드웨어 자원을 운영 관리하고 프로그램을 실행할수 있는 환경을 제공한다.

쉘(shell)은 사용자와 운영체제 사이의 인터페이스를 제공하는 특수 소프트웨어로 사용자로부터 명령어를 입력 받아 그 명령어를 해석하여 수행해 주는 명령어 해석기이다.

커널은 하드웨어를 운영 관리하여 프로세스, 파일, 메모리, 통신, 주변장치 등을 관리하는 서비스를 제공한다.