AULA 6 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS RECURSIVOS

*** Entregue, num ficheiro ZIP, este guião preenchido e o código desenvolvido ***

Implemente os seguintes algoritmos recursivos – sem recorrer a funções de arredondamento (floor e ceil) – e analise o número de chamadas recursivas executadas por cada algoritmo.

$$T_{1}(n) = \begin{cases} 0, sen = 0 \\ T_{1}\left(\lfloor \frac{n}{4} \rfloor\right) + n, sen > 0 \end{cases}$$

$$T_{2}(n) = \begin{cases} n, sen = 0, 1, 2, 3 \\ T_{2}\left(\lfloor \frac{n}{4} \rfloor\right) + T_{2}\left(\lceil \frac{n}{4} \rceil\right) + n, sen > 3 \end{cases}$$

$$T_{3}(n) = \begin{cases} n, sen = 0, 1, 2, 3 \\ 2 \times T_{3}\left(\frac{n}{4}\right) + n, sen \acute{e} m \acute{u} l t i p lo de 4 \\ T_{3}\left(\lfloor \frac{n}{4} \rfloor\right) + T_{3}\left(\lceil \frac{n}{4} \rceil\right) + n, caso contrario \end{cases}$$

Deve utilizar aritmética inteira: n/4 é igual a $\lfloor \frac{n}{4} \rfloor$ e (n+3)/4 é igual a $\lceil \frac{n}{4} \rceil$.

- Preencha a tabela da página seguinte com o resultado de cada função e o número de chamadas recursivas para os sucessivos valores de n.
- Analisando os dados da tabela, estabeleça uma ordem de complexidade para cada algoritmo.

$$T_{1}(n) \in \Theta(n)$$

$$T_{2}(n) \in \Theta(n^{(1/2)} \log n)$$

$$T_{3}(n) \in \Theta(n)$$

Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função T₁(n). Obtenha, depois, uma expressão exata e simplificada; determine a sua ordem de complexidade. Compare a expressão obtida com os dados da tabela. Sugestão: use o desenvolvimento telescópico.

$$C_{1}(0)=0$$

$$C_{1}(n)=1+C_{1}\left(\left\lfloor\frac{n}{4^{k}}\right\rfloor\right)=k+C_{1}\left(\left\lfloor\frac{n}{4^{k}}\right\rfloor\right)$$

$$Para\frac{n}{4^{k}}=1\Leftrightarrow n=4^{k}\Leftrightarrow k=\log_{4}(n)$$

$$Sendo \ assim\ , temos\ que\ C_{1}(n)=1+\log_{4}(n)$$

$$Ordem\ de\ complexidade\ ser\'a\ de\ :\Theta(n)$$

Nome: N° Mec:

n	T ₁ (n)	Nº de Chamadas Recursivas	$T_2(n)$	Nº de Chamadas Recursivas	T ₃ (n)	Nº de Chamadas Recursivas
0	0	0	0	0	0	0
1	1	1	1	0	1	0
2	2	1	2	0	2	0
3	3	1	3	0	3	0
4	5	2	6	2	6	1
5	6	2	8	2	8	2
6	7	2	9	2	9	2
7	8	2	10	2	10	2
8	10	2	12	2	12	1
9	11	2	14	2	14	2
10	12	2	15	2	15	2
11	13	2	16	2	16	2
12	15	2	18	2	18	1
13	16	2	22	4	22	3
14	17	2	23	4	23	3
15	18	2	24	4	24	3
16	21	3	28	6	28	2
17	22	3	31	6	31	5
18	23	3	32	6	32	5
19	24	3	33	6	33	5
20	26	3	36	6	36	3
21	27	3	38	6	38	6
22	28	3	39	6	39	6
23	29	3	40	6	40	6
24	31	3	42	6	42	3
25	32	3	44	6	44	6
26	33	3	45	6	45	6
27	34	3	46	6	46	6
28	36	3	48	6	48	3

NOME: Nº MEC:

• Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função $T_2(n)$. Considere o caso particular $n=4^k$ e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

$$Express\~ao\ recorrente: C_2(n) = \begin{cases} 1\ se\ n = 0,1,2,3 \\ C_2\bigg(floor\bigg(\frac{n}{4}\bigg)\bigg) + C_2\bigg(ceil\bigg(\frac{n}{4}\bigg)\bigg) + 2\ , se\ n > 3 \end{cases}$$

$$Com\ n = 4^k\ , e\ assumindo\ que\ ceil\bigg(\frac{n}{4}\bigg) = floor\bigg(\frac{n}{4}\bigg)$$

$$C_2(n) = 2 + 2 \times C_2\bigg(\frac{n}{4}\bigg) = 2 \times \bigg(C_2\bigg(\frac{n}{4^2}\bigg) + 2\bigg) + 2 = 2^k \times C_2\bigg(\frac{n}{4^k}\bigg) + \sum_{i=1}^k 2^i = 2^k \times C_2\bigg(\frac{n}{4^k}\bigg) + 2^{(i-1)} - 2$$

$$...\ uma\ vez\ que\ log\ _4 \ n = k\ , a\ complexidade\ \'e\ linear\ .$$

$$Com\ a\ express\~ao\ C_2(n) = 2 \times C_2\bigg(\frac{n}{4}\bigg) + 2\ temos\ :$$

$$a = 2\ , b = 4\ e\ como\ f\ (n)\ \'e\ constante\ , d = 0$$

A partir do Teorema Mestre podemos afirmar que $a > b^d \Leftrightarrow 2 > 1$ resultando em $C_2(n) = \Theta(n^{(\log_4 2)})$ Confirmando assim a complexidade linear O(n).

• Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

Sim podemos, pois o mesmo pois o comportamento da função não se altera para diferentes n's

• Obtenha uma expressão recorrente para o número de chamadas recursivas efetuadas pela função $T_2(n)$.

$$Express\~ao\ recorrente: C_2(n) = \begin{cases} 1\ se\ n = 0,1,2,3 \\ C_2\bigg(floor\bigg(\frac{n}{4}\bigg)\bigg) + C_2\bigg(ceil\bigg(\frac{n}{4}\bigg)\bigg) + 2\ , se\ n > 3 \end{cases}$$

NOME: N° MEC:

• Considere o caso particular $n=4^k$ e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

$$C_{3}(m) = \begin{cases} 1, & \text{se} & m = 0.1, 2, 3 \\ 1 + C_{4}(m) \end{cases}, & \text{se} & m > 2 = \text{mode} \text{ do } 9 \\ C_{3}(m) + C_{5}(m) + 2, & \text{se} & m > 3 = \text{si} & \text{mode} \text{ do } 9 \end{cases}$$

$$Considerando \quad m = 9^{k} \quad C = \begin{bmatrix} m/7 \\ q \end{bmatrix} + 2, & \text{se} & m > 3 = \text{si} & \text{mode} \text{ do } 9 \end{cases}$$

$$C_{3}(m) = 1 + C_{5}(m) \quad \dots \quad C_{5}(4) = 1 + C_{5}(1) = 2 \dots \quad C_{5}(m) + k + C_{5}(m) \quad \dots \quad \text{assim}, \text{ peb Teomeono Nestre}$$

$$e \quad a_{mn} \quad m = 9^{k} \quad a_{5} \mid k = C_{9}, \quad m \Rightarrow m = 11 \quad C_{5}(m) = 0 \quad (m)$$

$$C_{5}(m) = log_{4} \quad m + C_{5}(4) \quad a_{5} \quad c_{5}(m) = 1 + C_{9}, \quad m \quad \text{Resoltando cm complant do da lineax}$$

$$\begin{array}{c} P_{4} \quad m = 1, & p_{5} \quad$$

• Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

Não, pois o mesmo pois o comportamento da função e subsequentemente a sua complexidade são diferentes para *n's* múltiplos de 4 e para o que não o são.

• Atendendo às semelhanças entre $T_2(n)$ e $T_3(n)$ estabeleça uma ordem de complexidade para $T_3(n)$. Justifique.

Visto que $T_3(n)$ é como que uma composição de $T_1(n)$ para múltiplos de 4, e de $T_2(n)$ para não múltiplos de 4, e estes dois apresentam complexidade linear, também $T_3(n)$ é de complexidade lineae

Nome: N° Mec: