CAPÍTULO 4

Circuitos Resistivos: Divisores de Tensão e Divisores de Corrente

André Prado Procópio - 2022055556 Lucas Ribeiro da Silva - 2022055564

Belo Horizonte, 28/03/2025

4.1 Introdução

Às vezes, por conta da especificação de um projeto, é necessário limitar a corrente ou a tensão sobre um determinado elemento utilizando-se apenas uma única fonte de alimentação. Para isso utiliza-se os circuitos puramente resistivos divisores de tensão e corrente, sendo que, para se dividir a tensão, as resistências são ligadas em série e, para se dividir as correntes, os resistores são ligados em paralelo.

Pré-relatório: Elabore uma introdução teórica sobre Divisor de Tensão, Divisor de Corrente e Ponte de Wheatstone.

Em circuitos elétricos com restrições específicas de tensão e corrente é útil fazer o ajuste da forma do modelo para ajustar esses valores. Duas formas de ajustá-los é utilizando o divisor de tensão ou o divisor de correntes. A divisão de tensões é utilizada quando há circuitos com resistências em série, sendo possível calcular a fração da tensão total dissipada em cada resistor tendo em vista a sua resistência. Já a divisão de correntes é utilizada em quando há circuitos com resistências em paralelo, distribuindo a corrente entre os ramos de acordo de maneira inversamente proporcional a resistência dos resistores. Já a ponte de WheatStone é um arranjo de resistências em série e paralelo que permite medir resistências desconhecidas

com alta precisão, baseando-se no equilíbrio das tensões em um circuito. Os conceitos apresentados são muito úteis no desenvolvimento de circuitos eletrônicos em geral e por isso são amplamente utilizados.

4.1.1 Objetivos

- 1. Verificar as propriedades dos circuitos básicos para atenuação de corrente e de tensão.
- 2. Verificar as propriedades da ponte de Wheatstone.

4.2 Materiais e Métodos

4.2.1 Pré-relatório: Análise e Memória de Cálculo

Divisor de corrente

- 1. Considere o circuito mostrado na Figura 4.1. Desenvolva as equações para as correntes I_1 e I_2 com base nas grandezas I_S , R_1 e R_2 .
- 2. Calcule os valores das correntes I_1 e I_2 (Preenchendo a Tabela 4.1), considerando que os valores dos resistores são $R_S = 1k\Omega$, $R_1 = 2,2k\Omega$ e $R_2 = 5,6k\Omega$.
- 3. Simule o circuito da Figura 4.1 e apresente os sinais das correntes I_8 , I_1 e I_2 em um mesmo gráfico. (Preencha a Tabela 4.1)

Figura 4.1: Circuito divisor de corrente.

Equações e Memória de Cálculo:

Montando as equações utilizando Divisor de Correntes:

$$I_1 = \frac{R_{eq}}{R_1} \cdot I_s \tag{1}$$

$$I_2 = \frac{R_{eq}}{R_2} \cdot I_s \tag{2}$$

$$R_{eq} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{R_1 \cdot R_2}{R_1 + R_2} \tag{3}$$

$$I_1 = \frac{R_1 \cdot R_2}{R_1(R_1 + R_2)} \cdot I_s = \frac{R_2}{(R_1 + R_2)} \cdot I_s \tag{4}$$

$$I_2 = \frac{R_1 \cdot R_2}{R_2(R_1 + R_2)} \cdot I_s = \frac{R_1}{(R_1 + R_2)} \cdot I_s \tag{5}$$

Escrevendo I_s em função de R_s :

$$I_S = \frac{V_s}{R_{eq}} \tag{6}$$

$$R_{eq} = R_s + \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{R_s (R_1 + R_2) + R_1 \cdot R_2}{R_1 + R_2}$$

$$I_S = \frac{V_s \cdot (R_1 + R_2)}{R_s \cdot (R_1 + R_2) + R_1 \cdot R_2}$$
(8)

$$I_S = \frac{V_s \cdot (R_1 + R_2)}{R_s \cdot (R_1 + R_2) + R_1 \cdot R_2} \tag{8}$$

Substituindo e fazendo os cálculos

$$I_S = \frac{10 \cdot (2, 2k+5, 6k)}{1k \cdot (2, 2k+5, 6k) + 2, 2k \cdot 5, 6k} = \frac{78k}{20, 12k^2} = 3,876 \text{ mA}$$
 (9)

$$I_1 = \frac{5,6k}{2,2k+5,6k} \cdot 3,876m = \frac{21,672m}{7,8} = 2,783\text{mA}$$
 (10)

$$I_2 = \frac{2,2k}{2,2k+5,6k} \cdot 3,876m = \frac{8,514m}{7,8} = 1,093\text{mA}$$
 (11)

Divisor de tensão

Considere o circuito mostrado na Figura 4.2. Desenvolva as equações para as tensões 1. V_1 e V_2 com base nas grandezas V_S , R_1 e R_2 .

Figura 4.2: Circuito divisor de tensão.

- 2. Calcule os valores das tensões V₁ e V₂ (Preenchendo a Tabela 4.2), considerando que os valores dos resistores são a) $R_1 = 5.6k\Omega$ e $R_2 = 1.2k\Omega$.
- 3. Simule o circuito da Figura 4.2 e preencha a Tabela 4.2 com os valores simulados de $V_1 e V_2$.
- Repita os dois últimos itens 2 e 3 (cálculo e simulação) para b) $R_1 = R_2 = 5.6k\Omega$ e 4. c) $R_1 = R_2 = 8.2 M\Omega$ (preenchendo as Tabelas 4.3 e 4.4, respectivamente).

Equações e Memória de Cálculo:

Utilizando o Divisor de Tensão

$$V_1 = \frac{R_1}{R_{eq}} \cdot V_s \tag{1}$$

$$V_2 = \frac{R_2}{R_{eq}} \cdot V_s \tag{2}$$

$$R_{eq} = R_1 + R_2 \tag{3}$$

$$V_1 = \frac{R_1}{R_1 + R_2} \cdot V_s \tag{4}$$

$$V_2 = \frac{R_2}{R_1 + R_2} \cdot V_s \tag{5}$$

Substituindo os Valores

$$V_1 = \frac{5,6k}{5,6k+1,2k} \cdot 5 = 4,117 \text{ V}$$
 (6)

$$V_2 = \frac{1,2k}{5,6k+1,2k} \cdot 5 = 0,882 \text{ V}$$
 (7)

Para $R_1 = R_2 = 5.6 \text{k}\Omega$

$$V_1 = \frac{5,6k}{5,6k+5,6k} \cdot 5 = 2,5 \text{ V}$$
 (8)

$$V_2 = \frac{5,6k}{5,6k+5,6k} \cdot 5 = 2,5 \text{ V}$$
 (9)

Para $R_1 = R_2 = 8,2M\Omega$

$$V_1 = \frac{8,2M}{8,2M+8,2M} \cdot 5 = 2,5 \text{ V}$$
 (10)

$$V_1 = \frac{8,2M}{8,2M+8,2M} \cdot 5 = 2,5 \text{ V}$$

$$V_2 = \frac{8,2M}{8,2M+8,2M} \cdot 5 = 2,5 \text{ V}$$
(10)

Ponte de Wheatstone

1. Modifique o circuito da Figura 4.2, colocando um segundo divisor de tensão em paralelo com o primeiro e com resistências de mesmo valor, conforme a Figura 4.3. Calcule o valor da tensão V_d e preencha a Tabela 4.5.

Altere o R_2 da direita para $1k\Omega$, e mantenha o da esquerda em seu valor inicial. Calcule o novo valor de V_d e preencha a Tabela 4.5

Figura 4.3: Circuito em ponte.

Memória de Cálculo:

Utilizando o Divisor de Tensão na Ponte de Wheatstone

$$V_{1_c} = \frac{R_1}{R_{eq_c}} \cdot V_s \tag{1}$$

$$V_{1_d} = \frac{R_1}{R_{eq_d}} \cdot V_s \tag{2}$$

$$R_{eq_e} = R_1 + R_{2_e}$$
 (3)

$$R_{eq_d} = R_1 + R_{2_d} (4)$$

$$V_{1_e} = \frac{R_1}{R_1 + R_{2_e}} \cdot V_s \tag{5}$$

$$V_{1_d} = \frac{R_1}{R_1 + R_{2_d}} \cdot V_s \tag{6}$$

Definindo V_d

$$V_d = V_{1_e} - V_{1_d} = \left(\frac{R_1}{R_1 + R_{2_e}} \cdot V_s\right) - \left(\frac{R_1}{R_1 + R_{2_d}} \cdot V_s\right) = 0 \tag{7}$$

Substituindo e Calculando V_d para $R_{2_e}=R_{2_d}=1,2$ k Ω

$$V_d = V_{1_e} - V_{1_d} = \left(\frac{5,6k}{5,6k+1,2k} \cdot 5\right) - \left(\frac{5,6k}{5,6k+1,2k} \cdot 5\right) = 0 \tag{8}$$

Substituindo e Calculando V_d para $R_{2_e}=R_{2_d}=1$ k Ω

$$V_d = V_{1_e} - V_{1_d} = (\frac{5,6k}{5,6k+1,2k} \cdot 5) - (\frac{5,6k}{5,6k+1k} \cdot 5) = 4,117-4,242 = -0,124$$

2. Simule o circuito da Figura 4.3 para as duas condições descritas no item 1 e registre os valores de V_d na Tabela 4.5.

4.2.2 Parte prática

Material necessário: Fonte de tensão contínua, multímetro e resistores.

Divisor de corrente

- 1. Monte o circuito da Figura 4.1.
- 2. Meça correntes nos ramos dos resistores R_1 e R_2 utilizando um multímetro, preencha os valores na Tabela 4.1 e compare os valores calculados com os medidos.

Divisor de tensão

- 1. Monte o circuito da Figura 4.2.
- 2. Meça as tensões nos terminais dos resistores R_1 e R_2 , utilizando um multímetro, preencha os valores da Tabela 4.2 e compare os valores calculados com os medidos.
- 3. Modifique o circuito colocando ambos os resistores com o mesmo valor ôhmico e igual a $5,6k\Omega$. Refaça as medições e discuta os resultados.
- 4. Repita o passo anterior utilizando resistores de 8,2MΩ. (Relate e justifique eventuais discrepâncias nos resultados na seção "Discussão e conclusão)".

Ponte de Wheatstone

- 1. Monte o circuito da ponte de Wheatstone (Figura 4.3), considerando $R_1 = 5,6k\Omega$ e $R_2 = 1,2k\Omega$.
- 2. Meça a tensão V_d utilizando um multímetro, preencha a Tabela 4.5 e compare o valor calculado com o medido.
- 3. Repita o item anterior, alterando o valor de R_2 da direita para $1k\Omega$.

4.3 Resultados

4.3.1 Divisor de Corrente

Tabela 4.1: Valores de corrente

	Calculado (mA)	Simulado (mA)	Medido (mA)	E (%)
I_{S}	3,876	3,876	3,89	0,36
$\overline{I_1}$	2,783	2,783	2,79	0,25

I_2 1,093 1,093	1,09	0,27

4.3.2 Divisor de Tensão

Tabela 4.2: Valores de tensão - R_1 = 5,6 $k\Omega$ e R_2 = 1,2 $k\Omega$

	Calculado (V)	Simulado (V)	Medido (V)	E (%)
V_1	4,117	4,117	4,15	0,80
$\overline{\mathbf{V_2}}$	0,882	0,882	0,862	2,26

Tabela 4.3: Valores de tensão - $R_1 = R_2 = 5.6k\Omega$

	Calculado (V)	Simulado (V)	Medido (V)	E (%)
V_1	2,5	2,5	2,51	0,4
V_2	2,5	2,5	2,5	0

Tabela 4.4: Valores de tensão - $R_1 = R_2 = 8.2 M\Omega$

	Calculado (V)	Simulado (V)	Medido (V)	E (%)
$\mathbf{V_1}$	2,5	2,5	1,78	28,8
$\overline{\mathbf{V_2}}$	2,5	2,5	1,95	22

Extra: Resistência do Multímetro

$$R_{eq} = \frac{R_1 \cdot R_m}{R_1 + R_m} + R_2$$

$$I = \frac{V}{R_{eq}}$$

$$V_1 = \frac{R_1 \cdot R_m}{R_1 + R_m} * I$$

Então

$$V_1 = \frac{R_1 \cdot R_m}{R_1 + R_m} * \frac{V}{\frac{R_1 \cdot R_m}{R_1 + R_m} + R_2}$$

Numericamente

$$1.78 = \frac{8.76M \cdot R_m}{8.76M + R_m} * \frac{5.01}{\frac{8.76M \cdot R_m}{8.76M + R_m} + 8.65M}$$

Fazendo as contas (joguei no Geogebra)

$$R_m = 10.47 \text{ M}\Omega$$

É coerente com o valor de $10M\Omega$ especificado no manual do mesmo.

4.3.3 Ponte de Wheatstone

Tabela 4.5: V_{d1} : para $R_2 = 1.2k\Omega$ e V_{d2} : para $R_2 = 1k\Omega$

	Calculado (V)	Simulado (V)	Medido (V)	E (%)
V_{d1}	0	0	0,016	∞
V_{d2}	0,124	0,124	0,122	1,61

4.4 Discussão e Conclusão

Discuta os resultados, comparando os valores medidos em laboratório com aqueles calculados e simulados, e explicando eventuais discrepâncias.

Divisor de Corrente

As pequenas diferenças entre valores medidos e simulados (inferiores a 0,4%) estão dentro de um intervalo aceitável e ocorrem principalmente devido às tolerâncias reais dos resistores utilizados (normalmente entre 1% e 5%), além da resistência dos cabos e possíveis pequenos erros de instrumentos. Esses erros são comuns na prática e não invalidam a teoria aplicada.

Divisor de Tensão

Para os casos (a) e (b), com resistências mais baixas, os resultados experimentais confirmam e batem com os cálculos teóricos, apresentando erros inferiores a 2,3%. Já no caso (c), com resistências elevadas (8,2 $M\Omega$), houve discrepâncias significativas, chegando até cerca de 28%. Essa diferença pode ser explicada pela resistência interna do voltímetro (aproximadamente $10M\Omega$), que passa a influenciar diretamente o circuito, alterando as medições. Tal comportamento mostra a necessidade crítica de selecionar instrumentos adequados ao tipo de circuito analisado.

Ponte de Wheatstone

Na ponte de Wheatstone, obteve-se uma diferença praticamente nula no primeiro cenário teórico, porém experimentalmente foi detectada uma pequena tensão (0,016V), indicando o quanto as mínimas variações de tolerância das resistências afetam o equilíbrio do circuito. Na segunda condição, quando alterada uma das resistências, o resultado prático (0,122V)

ficou próximo ao esperado (0,124V), mostrando que a ponte é bastante sensível e eficaz em detectar pequenas variações, mas que seu desempenho depende fortemente da precisão dos componentes utilizados.

Os experimentos realizados com divisor de corrente, divisor de tensão e ponte de Wheatstone confirmaram as expectativas teóricas, apesar das pequenas discrepâncias observadas, típicas de experimentos práticos. Os divisores demonstraram ser ferramentas eficazes para controle e divisão precisa de tensões e correntes, especialmente em circuitos de baixa resistência. Entretanto, deve-se tomar especial cuidado em medições envolvendo resistências elevadas, devido à influência significativa dos instrumentos. A ponte de Wheatstone revelou sua alta sensibilidade à variação de resistências, destacando a importância do uso de componentes com alta precisão para aplicações práticas reais.

4.5 Questões para o relatório

As propriedades de divisão de corrente poderiam ser aplicadas para as correntes I_1 e I_2 no circuito mostrado na Figura 4.4? Explique.

Figura 4.4: Circuito #1 de Questões para o relatório.

Não. Para utilizar o divisor de correntes é estritamente necessário que os dois resistores observados estejam em paralelo, compartilhando os mesmos dois nós, o que não acontece no circuito apresentado pois R_1 e R_2 não possuem nó inferior em comum, havendo a existência de outros resistores interligando os nós.