ПРЕОБРАЗОВАНИЕ НЕДЕТЕРМИНИРОВАННЫХ КОНЕЧНЫХ РАСПОЗНАВАТЕЛЕЙ В ДЕТЕРМИНИРОВАННЫЕ

Два конечных распознавателя (детерминированных, недетерминированных с є-переходами или без них) называются эквивалентными, если равны допускаемые ими языки.

Процедуру получения недетерминированного конечного распознавателя без є-переходов, эквивалентного заданному недетерминированному конечному распознавателю с є-переходами назовём *устранением є-переходов*.

Процедуру получения детерминированного конечного распознавателя, эквивалентного заданному недетерминированному конечному распознавателю назовём преобразованием недетерминированного конечного распознавателя в детерминированный.

Преобразование недетерминированных конечных распознавателей с ε-переходами в детерминированные

Преобразование недетерминированных конечных распознавателей с єпереходами в детерминированные выполняется в два этапа:

- 1) устранением є-переходов;
- 2) преобразованием недетерминированного конечного распознавателя в детерминированный.

Устранение ε-переходов

При устранении ε -переходов используется понятие " ε -замыкание". ε -замыкание состояния $s \in S$ ($\varepsilon(s)$) — это множество всех состояний, которые достижимы из s по ε -переходам. Само состояние s принадлежит ε -замыканию состояния s ($s \in \varepsilon(s)$).

Если из состояния s нет ϵ -переходов, то ϵ -замыкание состояния s состоит только из одного состояния s ($\epsilon(s)=\{s\}$).

Пример. Таблица недетерминированного распознавателя с є-переходами:

	\						1
	s0	s1	s2	s3	s4	s5	s6
Ц		s1,s3			s5	s5	
•			s4	s5			
+	s1,s2						
-	s1,s2						
3	s1,s2					s6	

Граф недетерминированного распознавателя с є-переходами:

 ϵ -замыкания следующие: $\epsilon(s0) = \{s0, s1, s2\}$, $\epsilon(s1) = \{s1\}$, $\epsilon(s2) = \{s2\}$, $\epsilon(s3) = \{s3\}$, $\epsilon(s4) = \{s4\}$, $\epsilon(s5) = \{s5, s6\}$, $\epsilon(s6) = \{s6\}$.

Алгоритм устранения є-переходов.

- 1. Множеством состояний недетерминированного конечного распознавателя без ε-переходов является множество ε-замыканий недетерминированного конечного распознавателя с ε-переходами.
- 2. По входному символу $x \in X$ недетерминированный конечный распознаватель без ε -переходов переходит из состояния, соответствующего $\varepsilon(s_i)$, в множество состояний, соответствующих ε -замыканиям состояний переходов из каждого состояния $s_i \in \varepsilon(s_i)$ по входному символу x.
- 3. Начальными состояниями недетерминированного конечного распознавателя без ϵ -переходов являются состояния, соответствующие ϵ -замыканиям состояний $s_j \in \epsilon(s_0)$, где $s_0 \in S_0$, т.е. ϵ -замыкания состояний, достижимых из начальных по ϵ -переходам.
- 4. Допускающими состояниями недетерминированного конечного распознавателя без ε-переходов являются состояния, соответствующие ε-замыканиям состояний ε(s), в которые входят допускающие состояния недетерминированного конечного распознавателя с ε-переходами.
- 5. Состояния недетерминированного конечного распознавателя без єпереходов, недостижимые из начальных, исключаются из множества состояний.

Выполнение алгоритма устранения є-переходов будем представлять построением таблицы недетерминированного конечного распознавателя без є-переходов.

Пример.

Граф недетерминированного распознавателя с є-переходами.

	\	\	\rightarrow			1	1
	ε(s0)	ε(s1)	$\varepsilon(s2)$	ε(s3)	ε(s4)	ε(s5)	ε(s6)
	$\{s0, s1, s2\}$	{s1}	{s2}	{s3}	{s4}	{s5, s6}	{s6}
Ц	$\varepsilon(s1), \varepsilon(s3)$	$\varepsilon(s1), \varepsilon(s3)$			$\varepsilon(s5)$	$\varepsilon(s5)$	
•	ε(s4)		$\varepsilon(s4)$	$\varepsilon(s5)$			
+	$\varepsilon(s1), \varepsilon(s2)$						
-	$\varepsilon(s1), \varepsilon(s2)$						

Обозначив $\epsilon(s_i)$ через s_i и исключив недостижимое из начальных состояние $\epsilon(s6)$ получим таблицу недетерминированного конечного распознавателя без ϵ -переходов:

	\	\downarrow	\			1
	s0	s1	s2	s3	s4	s5
Ц	s1,s3	s1,s3			s5	s5
•	s4		s4	s5		
+	s1,s2					
_	s1,s2					

Алгоритм 1 преобразования недетерминированного конечного распознавателя в детерминированный.

- 1. Состояние детерминированного конечного распознавателя представляет собой подмножество состояний недетерминированного конечного распознавателя, а множеством состояний детерминированного конечного распознавателя является множество всех подмножеств состояний недетерминированного конечного распознавателя.
- 2. Начальным состоянием детерминированного конечного распознавателя является состояние, соответствующие множеству S_0 начальных состояний недетерминированного конечного распознавателя.
- 3. По входному символу $x \in X$ детерминированный конечный распознаватель переходит из состояния, соответствующего подмножеству $S_i \subseteq S$, в состояние, соответствующее подмножеству $S_j \subseteq S$, элементами которого являются состояния переходов из каждого состояния $s_k \in S_i$ по входному символу x.
- 4. Допускающими состояниями детерминированного конечного распознавателя являются состояния, соответствующие подмножествам состояний недетерминированного конечного распознавателя, в которые входит хотя бы одно допускающее состояние недетерминированного конечного распознавателя.
- 5. Состояния детерминированного конечного распознавателя, недостижимые из начального, исключаются из множества состояний.

Данный алгоритм является неэффективным, т.к. в процессе его выполнения состояния перехода определяются и для состояний, недостижимых из начального, которые затем исключаются из множества состояний. Это требует неоправданных затрат памяти для хранения состояний, соответствующих всем подмножествам состояний ($2^{|S|}$) недетерминированного конечного распознавателя, и времени на их обработку. Алгоритм можно существенно упростить, если множество состояний детерминированного конечного распознавателя формировать в процессе определения состояний перехода.

Алгоритм 2 преобразования недетерминированного конечного распознавателя в детерминированный.

- 1. Начальным состоянием детерминированного конечного распознавателя сделать состояние, соответствующие множеству S_0 начальных состояний недетерминированного конечного распознавателя и включить его в множество S' состояний детерминированного конечного распознавателя $(S'=\{S_0\})$.
- 3. Пока в множестве S' есть состояние, для которого состояния перехода не определены, определить их следующим образом: по входному символу $x \in X$ детерминированный конечный распознаватель переходит из состояния, соответствующего подмножеству $S_i \subseteq S$, в состояние, соответствующее подмножеству $S_j \subseteq S$, элементами которого являются состояния переходов из каждого состояния $s_k \in S_i$ по входному символу x, состояние перехода S_j включить в множество S' состояний детерминированного конечного распознавателя.
- 4. Допускающими состояниями детерминированного конечного распознавателя являются состояния, соответствующие подмножествам состояний недетерминированного конечного распознавателя, в которые входит хотя бы одно допускающее состояние недетерминированного конечного распознавателя.

Выполнение алгоритма преобразования недетерминированного конечного распознавателя в детерминированный будем представлять построением таблицы детерминированного конечного распознавателя. Построение таблицы начинается с первого столбца, который отмечается множеством начальных состояний недетерминированного конечного распознавателя. Множества, соответствующие состояниям перехода записываются в соответствующие строки. Если получено множество, которым не отмечен ни один столбец таблицы, то добавляется новый столбец и отмечается этим множеством. Построение таблицы заканчивается, когда будут определены состояния перехода для всех столбцов.

Пример. Таблица недетерминированного распознавателя

	\	<u> </u>	\			1
	s0	s1	s2	s3	s4	s5
Ц	s1, s3	s1, s3			s5	s5
	s4		s4	s5		
+	s1, s2					
-	s1, s2					

	\downarrow				1
	{s0, s1, s2}	{s1, s3}	{s4}	{s1, s2}	{s5}
Ц	{s1, s3}	$\{s1, s3\}$	{s5}	{s1, s3}	{s5}
	{s4}	{s5}		{s4}	
+	{s1, s2}				
-	{s1, s2}				

Обозначив состояние, соответствующее i-му столбцу таблицы через s_{i-1} , получим таблицу детерминированного конечного распознавателя:

	\downarrow				1
	s0	s1	s2	s3	s4
Ц	s1	s1	s4	s1	s4
•	s2	s4		s2	
+	s3				
-	s3				