### K 10/17

## **ЭЛЕКТРОСТАТИКА**

## Электрический заряд



$$|q_e|=|q_p|=q_{min}$$

т.е. электрический заряд электрона и протона - это минимальный заряд, существующий в природе







Заряд, который мы можем сообщить телу:

$$q=\pm N\cdot |e|$$
 ,  $N$  - целое число

-;37 электрический заряд

### Закон сохранения заряда (3С3)

$$q_1+q_2+\cdots+q_n=const$$

 $q_1+q_2+\cdots+q_n=const$   $\longrightarrow$  суммарный заряд всех элементов, образующих изолированную систему, остается неизменным при любых процессах в этой системе

## Закон Кулона





(из опыта)  $k=9\cdot 10^9 \frac{H\cdot {\it M}^2}{{\it K}{\it \Lambda}^2}$ 

число, показывающее во сколько раз

кулоновская сила в вакууме больше такой же силы в данной **среде** 

закона Кулона всегда > 1  $F_{\it bak.}^{'}$   $\longrightarrow$  диэлектрическая  $F_{cped.}$ проницаемость среды

Иногда в виде:

$$^{*}k=rac{1}{4\piarepsilon_{0}}$$

$$^*arepsilon_0 = 8,85\cdot 10^{-12} rac{ extit{K} \pi^2}{H\cdot extit{M}^2} 
ightarrow$$
 электрическая

Принцип работы

# youtu.be/62fBGijR09w

примечание

•  $q \longrightarrow$  электрический заряд

## <u>ЧАСТЬ</u>

### Электрическое поле

- Близкодействие электромагнитное воздействие распростроняется мгновенно
- Дальнодействие электромагнитное воздействие распростроняется с конечной скоростью с помощью промежуточных агентов

Фарадей, Максвелл:

- Каждый заряд создает электрическое поле
- Взаимодействуют: поле  $\longleftrightarrow$  заряд
- Электрическое поле материально (радиоволны)
- Главное свойство действие на q

## Напряженность электрического поля



похоже? $\longrightarrow \vec{a} = \overline{\phantom{a}}$ Опытным путем: электрического поля

295;42 напряженность эл. заряда  $\mathrm{CW}{:}[E] = rac{H}{K\!\pi} = rac{B}{M}$ 





296;44

(6) Принцип супепозиции полей

$$ec{E}=ec{E}_1+ec{E}_2+ec{E}_3+\cdots$$



Графическое представление полей — линии напряженности



эти линии условны, воображаемые

Линии напряжённости — линии, касательная в каждой точке которых совпадают с вектором направлениия эл.поля

- Имеют начало (+) и конец (-)
- Не пересекаются











## примечание