Álgebra Linear - Ciência de Dados Fatec Rubens Lara

Prof. Me. Alexandre Garcia de Oliveira

 $August\ 2022$

Chapter 1

Matrizes e sistemas lineares

1.1 Sistemas Lineares

Um sistema de equções lineares é quando temos várias equações que envolvem várias variáveis. Dois métodos básicos serão investigados em um primeiro momento e depois será investigado a forma matricial de um sistema linear.

Definição 1.1 Um sistema linear com duas variáveis e duas equações possuem a forma:

$$\begin{cases} ax + by = c \\ dx + ey = f \end{cases}$$
 (1.1)

Nota-se que $a, b, c, d, e, f \in \mathbb{R}$ e x, y são incógnitas.

Um método para solucionar um sistema linear é o de substituição.

Definição 1.2 (Método da substituição) esse método consiste em isolar uma das variáveis na primeira equação e substituir na segunda, eliminando assim uma das variáveis. Por exemplo, queremos isolar x no sistema:

$$\begin{cases} ax + by = c \\ dx + ey = f \end{cases}$$
 (1.2)

para isso devemos subtrair by dos dois lados na primeira equação e dividir depois por a (assumimos que $a \neq 0$).

$$\begin{cases} x = \frac{c - by}{a} \\ dx + ey = f \end{cases}$$
 (1.3)

 $Agora, \ substitui-se \ x \ por \ \tfrac{c-by}{a} \ na \ segunda \ equação.$

$$d\left(\frac{c-by}{a}\right) + ey = f$$

Agora, sepramos a fração

$$\frac{dc}{a} - \frac{dby}{a} + ey = f$$

Subtraimos a quantidade $\frac{dc}{a}$ em ambos os lados

$$-\frac{dby}{a} + ey = f - \frac{dc}{a}$$

Agora, o y fica em evidência.

$$(e - \frac{db}{a})y = f - \frac{dc}{a}$$

Dividimos em ambos os lados pela quantia $(e - \frac{db}{a})$.

$$y = \frac{f - \frac{dc}{a}}{\frac{db}{a} + e}$$

E finalmente substituimos novamente na expressão que possui x (primeira equação).

$$x = \frac{c - b\left(\frac{f - \frac{dc}{a}}{\frac{db}{a} + e}\right)}{a}$$

A fórmula fechada e reduzida para x fica como exercício. Uma observação é que para termos solução devemos ter que $\frac{db}{a}+e\neq 0.$

Exemplo 1.1 Resolva

$$\begin{cases} x + y = 9 \\ x - 2y = 15 \end{cases}.$$

Primeiro passo, isolar x.

$$\begin{cases} x = 9 - y \\ x - 2y = 15 \end{cases}.$$

 $Substituimos\ x\ na\ segunda\ equação.$

$$9 - y - 2y = 15$$

Resolvemos a equação de primeiro grau em y.

$$9 - 3y = 15$$
$$-3y = 6$$
$$y = -2$$

Agora, substituimos y na primeira equação.

$$x = 9 - y = 9 - (-2) = 11$$

$$Logo, x = 11 \ e \ y = -2$$

5

Outro método é quando multiplicamos uma das equações por uma constante e somamos ou subtraimos uma equação da outra de modo a eliminar uma das variáveis.

Definição 1.3 (Método da eliminação) Dado o sistema:

$$\begin{cases} ax + by = c \\ dx + ey = f \end{cases}$$
 (1.4)

Queremos eliminar x, para isso devemos deixar que o coeficiente de x na primeira equação seja -d. Para isso, divide-se a primeira equação por $a \neq 0$ e multiplicamos por -d.

$$\begin{cases} x + \frac{by}{a} = \frac{c}{a} \\ dx + ey = f \end{cases}$$

$$\begin{cases} -dx - \frac{dby}{a} = \frac{-dc}{a} \\ dx + ey = f \end{cases}$$

Somando as duas equações, temos que x é eliminado.

$$-\frac{dby}{a} + ey = f - \frac{dc}{a}$$
$$(-\frac{db}{a} + e)y = f - \frac{dc}{a}$$
$$y = \frac{f - \frac{dc}{a}}{e - \frac{db}{a}}$$

 $Procedemos\ da\ mesma\ maneira\ para\ x.$

Exemplo 1.2 Resolva

$$\begin{cases} x + y = 9 \\ x - 2y = 15 \end{cases} .$$

Devemos multiplicar por -1 (o oposto do inverso do coeficiente de x que \acute{e} 1) a primeira equação e somar com a segunda

$$\begin{cases}
-x - y = -9 \\
x - 2y = 15
\end{cases}$$

$$-3y = 6$$

Logo,

$$y = -2$$

Substituindo na primeira equação y = -2

$$x - 2 = 9$$

$$x = 11$$

Exemplo 1.3 Resolva

$$\begin{cases} 3x + 2y = 10 \\ 8x + y = 7 \end{cases}.$$

Primeiro passo é multiplicar pelo inverso do coeficiente de x na primeira equação, que no caso é 3, logo seu inverso é $\frac{1}{3}$.

$$\begin{cases} x + \frac{2}{3}y = \frac{10}{3} \\ 8x + y = 7 \end{cases}.$$

O próximo passo é multiplicar pelo oposto do coeficiente de x da segunda equação, que no caso é 8, nos dando -8.

$$\begin{cases}
-8x - \frac{16}{3}y = \frac{-80}{3} \\
8x + y = 7
\end{cases}.$$

Agora é somar as duas equações

$$y - \frac{16}{3}y = 7 - \frac{80}{3}$$
$$\frac{3y}{3} - \frac{16}{3}y = \frac{21}{3} - \frac{80}{3}$$
$$-\frac{13}{3}y = \frac{-59}{3}$$
$$-13y = -59$$
$$y = \frac{-59}{-13} = \frac{59}{13}$$

Substituimos $y = \frac{59}{13}$ na primeira equação.

$$3x + 2\frac{59}{13} = 10$$

Multiplicando tudo por 13 para facilitar

$$39x = 12$$

39x + 118 = 130

$$x = \frac{12}{39}$$

Logo, $x = \frac{12}{39} e y = \frac{59}{13}$

Exemplo 1.4 Resolva

$$\begin{cases} 3x + 2y = 10 \\ 8x + y = 7 \end{cases}.$$

Podemos sempre eliminar se os coeficientes das duas equações (em x) sejam opostos. Nesse caso, multiplica-se, na primeira equação, por -8 que é o oposto de 8 (coeficiente de x na segunda equação). Na segunda equação multiplica-se por 3 para obtermos coeficientes opostos.

$$\begin{cases} -24x - 16y = -80\\ 24x + 3y = 21 \end{cases}$$

Somando as duas equações

$$-13y = -59$$
$$y = \frac{-59}{-13} = \frac{59}{13}$$

Para x procede-se da mesma forma que a solução anterior.

Uma observação é que podemos sempre eleiminar y primeiro se bem quisermos.

1.2 Forma matricial de um sistema linear

Definição 1.4 Uma matrix quadrada 2×2 com coeficientes em \mathbb{R} é o seguinte conjunto $M_2(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$. Para matrizes quadrados 2×2 $(n \times n)$ basta indicar com o número em questão abaixo do M. Por exemplo $M_3(\mathbb{R}) = \left\{ \begin{bmatrix} a & b & c \\ c & d & e \\ f & g & h \end{bmatrix} \mid a, b, c, d, e, f, g, h \in \mathbb{R} \right\}$. Para matrizes retangulares, por exemplo (2×3) , escrevemos $M_{2,3}(\mathbb{R}) = \left\{ \begin{bmatrix} a & b & c \\ c & d & e \end{bmatrix} \mid a, b, c, d, e \in \mathbb{R} \right\}$

Exemplo 1.5

$$\begin{bmatrix} 2 & 7 \\ 9 & -1 \\ 0 & 3 \end{bmatrix} \in M_{3,2}(\mathbb{R})$$

Exemplo 1.6

$$\begin{bmatrix} 2 & 7 & -8 & 9 \\ 9 & -1 & 0 & 10 \\ 0 & 3 & 0 & 1 \end{bmatrix} \in M_{3,4}(\mathbb{R})$$

Todo sistema linear pode ser escrito em forma de matriz, para isso devemos relembrar as operações com matrizes.

Definição 1.5 (Soma de matrizes) para somarmos duas matrizes de mesma dimensão (mesmas linhas e colunas) devemos somar ordenamente na mesma posição sempre. Por exemplo, $A, B \in M_2(\mathbb{R})$ com $A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}$ e $B = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}$, $logo\ A + B = \begin{bmatrix} a_1 + b_1 & a_2 + b_2 \\ a_3 + b_3 & a_4 + b_4 \end{bmatrix}$

Exemplo 1.7
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$$
 $e B = \begin{bmatrix} -1 & 1 \\ 5 & 7 \end{bmatrix}$, $logo A + B = \begin{bmatrix} 0 & 1 \\ 7 & 10 \end{bmatrix}$

Uma observação é que as matrizes satisfazem os axiomas de associatividade, oposto, neutro e comutatividade para a soma (+). No caso de $M_2(\mathbb{R})$, o neutro seria a matriz $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ e dado uma matriz $B \in M_2(\mathbb{R})$, seu oposto é -B que possui todos os seus coeficientes multiplicados por (-1).

Definição 1.6 Dado uma matriz $A \in M_{m,n}(\mathbb{R})$, a matriz $A^T \in M_{n,m}(\mathbb{R})$ possuindo os mesmos valores.

Nota-se que as entradas de uma linha i e coluna j são trocadas para uma entrada em uma linha j e coluna i.

Exemplo 1.8

$$A = \begin{bmatrix} 2 & 7 \\ 9 & -1 \\ 0 & 3 \end{bmatrix} \in M_{3,2}(\mathbb{R}),$$

sua transposta é

$$A^{T} = \begin{bmatrix} 2 & 9 & 0 \\ 7 & -1 & 3 \end{bmatrix} \in M_{2,3}(\mathbb{R}).$$

Trabalhando com matrizes quadradas (mesmo número de linhas e de colunas) existe uma função que associa a cada matriz um número real. Essa função auxilia para verificar se uma matriz possui uma inversa ou não.

Definição 1.7 O determinante é a função det : $M_n(\mathbb{R}) \to \mathbb{R}$, e possui a seguinte regra de cálculo.

n=2: Seja

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{R}),$$

Seu determinante é det(A) = ad - bc

n=3: Seja

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \in M_3(\mathbb{R}),$$

 $Seu\ determinante\ (regra\ de\ Sarrus)\ det(A) = aei+bfg+cdh-bdi-afh-ceg$

Exemplo 1.9 Calcule det(A) para

$$A = \begin{bmatrix} 1 & 1 \\ 8 & 10 \end{bmatrix} \in M_2(\mathbb{R}).$$

$$det(A) = 1 \cdot 10 - 1 \cdot 8 = 10 - 8 = 2$$

Exemplo 1.10 Calcule det(A) para

$$A = \begin{bmatrix} 1 & 5 & -1 \\ 0 & 2 & 2 \\ 1 & 3 & 1 \end{bmatrix} \in M_3(\mathbb{R}).$$

$$det(A) = 1 \cdot 2 \cdot 3 + 5 \cdot 2 \cdot 1 + (-1 \cdot 0 \cdot 3) - 5 \cdot 0 \cdot 1 - 1 \cdot 2 \cdot 3 - (-1 \cdot 2 \cdot 1) = 8$$

Definição 1.8 Seja $A \in M_{m,n}(\mathbb{R})$ e $B \in M_{n,p}(\mathbb{R})$, a multiplicação $A \cdot B \in M_{m,p}(\mathbb{R})$ dada pelo critério abaixo.

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}$$

$$B = \begin{bmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,p} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,1} & b_{n,2} & \cdots & b_{n,p} \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,p} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m,1} & c_{m,2} & \cdots & c_{m,p} \end{bmatrix}$$

Para calcular os coeficientes de $A \cdot B$ devemos fazer o produto de cada elemento da linha de A com cada elemento da coluna de B e fazer a soma. Por exemplo $c_{1,1} = a_{1,1} \cdot b_{1,1} + a_{1,2} \cdot b_{2,1} + \ldots + a_{1,n} \cdot a_{m,1}$. Genericamente, $c_{i,j} = c_{i,1} \cdot c_{j,1} + c_{i,2} \cdot c_{2,j} + \ldots + c_{i,n} \cdot c_{j,m}$.

Exemplo 1.11

$$A = \begin{bmatrix} 1 & 5 & -1 \\ 0 & 2 & 2 \end{bmatrix} \in M_{2,3}(\mathbb{R}),$$
$$B = \begin{bmatrix} 0 & 7 \\ 2 & 1 \\ -1 & 1 \end{bmatrix} \in M_{3,2}(\mathbb{R}).$$

$$A \cdot B = \begin{bmatrix} 1 \cdot 0 + 5 \cdot 2 + ((-1) \cdot (-1)) & 1 \cdot 7 + 5 \cdot 1 + ((-1) \cdot 1) \\ 0 \cdot 0 + 2 \cdot 2 + (2 \cdot (-1)) & 0 \cdot 7 + 2 \cdot 1 + 2 \cdot 1 \end{bmatrix} \in M_2(\mathbb{R}).$$

$$A \cdot B = \begin{bmatrix} 11 & 11 \\ 2 & 4 \end{bmatrix} \in M_2(\mathbb{R}).$$

Definição 1.9 No caso da multiplicação de matrizes quadradas (mesmo número de linhas e colunas), a multiplicação possui um elemento neutro $I_n \in M_n(\mathbb{R})$, com as entradas da diagonal sempre sendo 1 e o resto sempre sendo 0. Por exemplo

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in M_3(\mathbb{R}).$$

Definição 1.10 Dado uma matriz $A \in M_n(\mathbb{R})$, sua inversa $A^{-1} \in M_n(\mathbb{R})$, satisfaz

$$A \cdot A^{-1} = A^{-1} \cdot A = I_n$$

Observação: $det(A) \neq 0$

Aplicando as definições de matrizes acima, conseguimos achar uma forma matricial para um sistema linear. Basicamente temos que achar uma solução de um sistema é a mesma coisa do que achar a inversa de uma matriz de coeficientes. Note que para isso funcionar o sistema deve possuir o mesmo número de equações e incógnitas para termos a matrix quadrada.

Definição 1.11 Um sistema linear na forma matricial é dado por:

$$A \cdot \mathbf{x} = \mathbf{b}$$

. Por exemplo, se um sistema linear possuir 3 incógnitas e 3 variáveis temos que $A \in M_3(\mathbb{R})$, $\mathbf{x} \in M_{3,1}(\mathbb{R})$ e $\mathbf{b} \in M_{3,1}(\mathbb{R})$. A matriz A representa os coeficientes, a matriz \mathbf{x} de variáveis e a matriz \mathbf{b} de resultados.

Exemplo 1.12

$$\begin{cases} 3x + 2y = 10 \\ 8x + y = 7 \end{cases},$$

A equação em forma matricial é

$$\begin{bmatrix} 3 & 2 \\ 8 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 10 \\ 7 \end{bmatrix}$$

A solução de um sistema linear se dá pela multiplicação à esquerda da matriz inversa de coeficientes. Ou seja, se tivermos o sistema $A \cdot \mathbf{x} = \mathbf{b}$, devemos fazer os seguintes passos para resolver.

$$A \cdot \mathbf{x} = \mathbf{b}$$

O primeiro passo é multiplicar a inversa de A pela esquerda

$$A^{-1} \cdot A \cdot \mathbf{x} = A^{-1} \cdot \mathbf{b}$$

$$I_n \cdot \mathbf{x} = A^{-1} \cdot \mathbf{b}$$

o segundo passo é notar que $I_n \cdot \mathbf{x} = \mathbf{x}$ para obtermos

$$\mathbf{x} = A^{-1} \cdot \mathbf{b}$$

e por fim devemos realizar a multiplicação de $A^{-1}\cdot \mathbf{b}$ nos dando a solução do sistema.

1.3 Matrizes Inversas

Para calcularmos a inversa de uma matriz 2 por 2 basta apenas usar uma fórmula. Para todos os outros casos usa-se o método da eliminação de Gauss.

Definição 1.12 (Caso 2 por 2) Dado

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{R}),$$

sua inversa é dada por

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \in M_2(\mathbb{R}),$$

 $note \ que \ det(A) = ad - bc \neq 0$

Exemplo 1.13

$$A = \begin{bmatrix} 1 & 3 \\ -1 & 7 \end{bmatrix} \in M_2(\mathbb{R}),$$

$$det(A) = 1 \cdot 7 - 3 \cdot (-1) = 7 - (-3) = 7 + 3 = 10$$

$$A^{-1} = \frac{1}{10} \begin{bmatrix} 7 & -3 \\ 1 & 1 \end{bmatrix} \in M_2(\mathbb{R}),$$

logo

$$A^{-1} = \begin{bmatrix} \frac{7}{10} & \frac{-3}{10} \\ \frac{1}{10} & \frac{1}{10} \end{bmatrix} \in M_2(\mathbb{R}),$$

Exemplo 1.14 Resolva

$$\begin{cases} 3x + 2y = 10 \\ 8x + y = 7 \end{cases}$$

 $Primeiro\ colocamos\ em\ forma\ matricial.$

$$\begin{bmatrix} 3 & 2 \\ 8 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 10 \\ 7 \end{bmatrix}$$

A solução é dada por

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 8 & 1 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 10 \\ 7 \end{bmatrix}.$$

Depois achamos a inversa da matriz de coeficientes.

$$\begin{bmatrix} 3 & 2 \\ 8 & 1 \end{bmatrix}^{-1} = \frac{1}{3 - 2 \cdot 8} \begin{bmatrix} 1 & -2 \\ -8 & 3 \end{bmatrix} = \frac{-1}{13} \begin{bmatrix} 1 & -2 \\ -8 & 3 \end{bmatrix} = \begin{bmatrix} \frac{-1}{13} & \frac{2}{13} \\ \frac{8}{13} & \frac{-3}{13} \end{bmatrix}$$

Logo,

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{-1}{13} & \frac{2}{13} \\ \frac{8}{13} & \frac{-3}{3} \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 7 \end{bmatrix} = \begin{bmatrix} \frac{-10}{13} + \frac{14}{13} \\ \frac{80}{13} - \frac{21}{13} \end{bmatrix} = \begin{bmatrix} \frac{4}{13} \\ \frac{59}{13} \end{bmatrix}.$$

Portanto, $x = \frac{4}{13} e y = \frac{59}{13}$.

Definição 1.13 (Algoritmo da eliminação de Gauss) consiste em achar a inversa de uma matriz quadrada A de qualquer dimensão. O algoritmo consiste na aplicação de 3 regras até que a matriz inversa desejada seja formada. A regras são:

- 1. Troca de linhas
- 2. Soma e subtração de linhas (ou múltiplos de linhas)
- 3. Multiplicação por uma constante na linha toda.

O algoritmo consiste de deixar a matriz desejada e a matriz identidade correspondente lado-a-lado, o algoritmo deve ser efetuada com a sucessiva aplicação das regras até que a matriz identidade aparece do lado esquerdo onde estava a matriz A inicial, a matriz do lado direito será a matriz inversa desejada.

Exemplo 1.15 Calcular a inversa da matriz

$$A = \begin{bmatrix} 9 & 3 & 4 \\ 7 & 10 & 11 \\ 12 & 13 & 6 \end{bmatrix}$$

$$[A|I] = \left[\begin{array}{ccc|ccc|c} 9 & 3 & 4 & 1 & 0 & 0 \\ 7 & 10 & 11 & 0 & 1 & 0 \\ 12 & 13 & 6 & 0 & 0 & 1 \end{array} \right].$$

Divide-se por 9 a primeira linha toda.

$$\left[\begin{array}{ccc|c}
1 & \frac{1}{3} & \frac{4}{9} & \frac{1}{9} & 0 & 0 \\
7 & 10 & 11 & 0 & 1 & 0 \\
12 & 13 & 6 & 0 & 0 & 1
\end{array}\right].$$

Linha 2 menos 7 vezes a linha 1 e substituo pela linha 2 $(l_2 - 7l_1 \rightarrow l_2)$.

•
$$7 - 1 \cdot 7 = 0$$

1.3. MATRIZES INVERSAS

•
$$10 - \frac{1}{3} \cdot 7 = \frac{30-7}{3} = \frac{23}{3}$$

•
$$11 - \frac{4}{9} \cdot 7 = \frac{99 - 28}{9} = \frac{71}{9}$$

•
$$0 - \frac{7}{9} = \frac{-7}{9}$$

•
$$1 - 0 \cdot 7 = 1$$

$$\bullet \ 0 - 0 \cdot 7 = 0$$

$$\begin{bmatrix} 1 & \frac{1}{3} & \frac{4}{9} & \frac{1}{9} & 0 & 0\\ 0 & \frac{23}{3} & \frac{71}{9} & \frac{-7}{9} & 1 & 0\\ 12 & 13 & 6 & 0 & 0 & 1 \end{bmatrix}.$$

13

Linha 3 menos 12 vezes a linha 1 e substituo pela linha 3

•
$$12 - 12 = 0$$

•
$$13 - \frac{12}{3} = 13 - 4 = 9$$

•
$$6 - \frac{4 \cdot 12}{9} = \frac{54 - 48}{9} = \frac{6}{9} = \frac{2}{3}$$

•
$$0 - \frac{12}{9} = \frac{-4}{3}$$

•
$$0 - 12 \cdot 0 = 0$$

•
$$1 - 12 \cdot 0 = 1$$

$$\begin{bmatrix} 1 & \frac{1}{3} & \frac{4}{9} & \frac{1}{9} & 0 & 0\\ 0 & \frac{23}{3} & \frac{71}{9} & \frac{-7}{9} & 1 & 0\\ 0 & 9 & \frac{2}{3} & \frac{-4}{3} & 0 & 1 \end{bmatrix}.$$

Divide-se tudo na linha 2 por $\frac{23}{3}$.

$$\begin{bmatrix} 1 & \frac{1}{3} & \frac{4}{9} \\ 0 & 1 & \frac{71}{9} \cdot \frac{9}{23} \\ 0 & 9 & \frac{2}{2} \end{bmatrix} \begin{vmatrix} \frac{1}{9} & 0 & 0 \\ -\frac{7}{9} \cdot \frac{3}{23} & \frac{3}{23} & 0 \\ \frac{-4}{2} & 0 & 1 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & \frac{1}{3} & \frac{4}{9} & \frac{1}{9} & 0 & 0\\ 0 & 1 & \frac{213}{207} & \frac{-21}{207} & \frac{3}{23} & 0\\ 0 & 9 & \frac{2}{3} & \frac{-4}{3} & 0 & 1 \end{bmatrix}.$$

Multipl
ca-se $\frac{1}{3}$ da linha 2 e subtrai-se da linha 1 e substitui-se pe
la linha 1 $l_1-\frac{l_2}{3}\to l_1$

$$\bullet$$
 $\frac{1}{3} - \frac{1}{3} = 0$

$$\bullet \ \frac{4}{9} - \frac{213}{621} = \frac{2484 - 1917}{5589} = \frac{7}{69}$$

$$\bullet$$
 $\frac{1}{9} + \frac{21}{621} = \frac{621 + 189}{5589} = \frac{10}{69}$

•
$$0 - \frac{3}{23 \cdot 3} = \frac{1}{23}$$

$$\left[\begin{array}{ccc|c} 1 & 0 & \frac{7}{69} \\ 0 & 1 & \frac{213}{207} \\ 0 & 9 & \frac{2}{3} \end{array} \right| \begin{array}{ccc|c} \frac{10}{69} & \frac{1}{23} & 0 \\ \frac{-21}{207} & \frac{3}{23} & 0 \\ \frac{-4}{3} & 0 & 1 \end{array} \right].$$

Multipl
ca-se -9da linha 2 e soma-se da linha 3 e substitui-se pe
la linha 3 $(l_3-9l_2\to l_3)$

$$\bullet \ \frac{2}{3} - 9 \cdot \frac{213}{207} = \frac{2}{3} - \frac{1917}{207} = \frac{414 - 5751}{621} = \frac{-5337}{621} = \frac{593}{69}$$

$$\bullet$$
 $\frac{-4}{3} + \frac{189}{207} = \frac{-29}{69}$

$$\begin{bmatrix} 1 & 0 & \frac{7}{69} & \frac{10}{69} & \frac{1}{23} & 0\\ 0 & 1 & \frac{213}{207} & \frac{-21}{207} & \frac{3}{23} & 0\\ 0 & 0 & \frac{593}{69} & \frac{-29}{69} & \frac{-27}{23} & 1 \end{bmatrix}.$$

Multiplica-se por $\frac{69}{593}$ a linha 3 toda.

$$\left[\begin{array}{cc|ccc} 1 & 0 & \frac{7}{69} & \frac{10}{69} & \frac{1}{23} & 0\\ 0 & 1 & \frac{213}{207} & \frac{-21}{207} & \frac{3}{23} & 0\\ 0 & 0 & 1 & \frac{-29}{593} & \frac{-81}{593} & \frac{69}{593} \end{array}\right].$$

O proximo passo é fazer $l_2 - \frac{213}{207}l_3 \rightarrow l_2$.

$$\bullet \ \ \frac{213}{207} - \frac{213}{207} = 0$$

•
$$\frac{-21}{207} - \frac{213}{207} (\frac{-29}{593}) = \frac{-21}{207} + \frac{213}{207} (\frac{29}{593}) = \frac{-12453 + 6177}{122751} = \frac{-18630}{122751} = \frac{-90}{593}$$

$$\bullet$$
 $\frac{-3}{23} - \frac{213}{207} (\frac{-81}{593}) = \frac{-6}{593}$

$$\bullet \ \ \frac{-213}{207} \left(\frac{69}{593}\right) = \frac{-71}{593}$$

$$\begin{bmatrix} 1 & 0 & \frac{7}{69} & \frac{1}{69} & \frac{1}{23} & 0\\ 0 & 1 & 0 & \frac{-90}{593} & \frac{-6}{593} & \frac{-71}{593}\\ 0 & 0 & 1 & \frac{-29}{593} & \frac{-81}{593} & \frac{69}{593} \end{bmatrix}.$$

O último passo é fazer $l_1 - \frac{7}{69}l_3 \rightarrow l_1$.

$$\bullet \ \ \frac{7}{69} - \frac{7}{69} = 0$$

•
$$\frac{10}{69} - \frac{-7}{69}(\frac{-29}{593}) = \frac{10}{69} - \frac{7}{69}(\frac{29}{593}) = \frac{5930}{40917} - \frac{203}{40917} = \frac{5727}{40917} = \frac{83}{593}$$

•
$$\frac{1}{23} - \frac{7}{69} \left(\frac{-81}{593} \right) = \frac{3}{69} - \frac{7}{69} \left(\frac{81}{593} \right) = \frac{1779}{40917} + \frac{567}{40917} = \frac{2346}{40917} = \frac{34}{593}$$

•
$$0 - \frac{-7}{69} (\frac{69}{593}) = \frac{7}{69} (\frac{69}{593}) = \frac{483}{40917} = \frac{7}{593}$$

$$\begin{bmatrix} 1 & 0 & 0 & \frac{83}{593} & \frac{34}{593} & \frac{7}{593} \\ 0 & 1 & 0 & \frac{-90}{593} & \frac{-6}{593} & \frac{-71}{593} \\ 0 & 0 & 1 & \frac{-29}{593} & \frac{-81}{593} & \frac{69}{593} \end{bmatrix} .$$

O algoritmo termina nos dando a matriz inversa de A.

$$A^{-1} = \begin{bmatrix} \frac{83}{593} & \frac{34}{593} & \frac{7}{593} \\ \frac{593}{593} & \frac{7}{593} & \frac{7}{593} \\ \frac{7}{593} & \frac{7}{593} & \frac{7}{593} \\ \frac{7}{593} & \frac{7}{503} & \frac{7}{593} \end{bmatrix}$$

Colocando em evidência $\frac{-1}{593}$, também podemos escrever a inversa na forma a seguir.

$$A^{-1} = \frac{-1}{593} \begin{bmatrix} -83 & 34 & -7\\ 90 & 6 & -71\\ 29 & 81 & -69 \end{bmatrix}$$

Esta última forma de escrever a matriz inversa não é coincidência, pois o determinante de A é exatamente -593 (pede-se para o leitor o cálculo).

Teorema 1 Dado uma matriz $A \in M_n(\mathbb{R})$, com $det(A) \neq 0$, sua inversa A^{-1} pode ser calculada pela fórmula a seguir.

$$A^{-1} = \frac{1}{\det(A)} Adj(A),$$

onde Adj(A) é a matriz adjunta de A.

A matriz adjunta é calculada através da transposta da matriz de cofatores A.

Definição 1.14 A matriz de cofatores de A é calculada pela expressão

$$C = (-1)^{i+j} M_{i,j}$$

onde $M_{i,j}$ é o determinante da matriz A eliminando-se a linha i e a coluna j. A matriz adjunta é apenas $Adj(A) = C^T = (-1)^{i+j} M_{j,i}$ e devemos, nesse caso, eliminar a linha i e coluna j da transposta de A.

O exemplo feito através do método da eliminação de Gauss pode também ser feito com a fórmula apresentada pelo Teorema.

Exemplo 1.16 Seja

$$A = \begin{bmatrix} 9 & 3 & 4 \\ 7 & 10 & 11 \\ 12 & 13 & 6 \end{bmatrix},$$

temos que o determinante det(A) = -593. Vamos agora calcular a adjunta, para isso devemos achar a matriz C dos cofatores. Primeiro obtenha a transposta de A.

$$A^{T} = \begin{bmatrix} 9 & 7 & 12 \\ 3 & 10 & 13 \\ 4 & 11 & 6 \end{bmatrix},$$

$$M_{1,1} = (-1)^{1+1} det \left(\begin{bmatrix} 10 & 13 \\ 11 & 6 \end{bmatrix} \right) = 1 \cdot (60 - 143) = -83$$

$$M_{1,2} = (-1)^{1+2} det \left(\begin{bmatrix} 3 & 13 \\ 4 & 6 \end{bmatrix} \right) = (-1)^{3} \cdot (18 - 52) = (-1)(-34) = 34$$

$$M_{1,3} = (-1)^{1+3} det \left(\begin{bmatrix} 3 & 10 \\ 4 & 11 \end{bmatrix} \right) = 1 \cdot (33 - 40) = -7$$

$$\begin{split} M_{2,1} &= (-1)^{2+1} det \left(\begin{bmatrix} 7 & 12 \\ 11 & 6 \end{bmatrix} \right) = (-1) \cdot (42 - 132) = 90 \\ M_{2,2} &= (-1)^{2+2} det \left(\begin{bmatrix} 9 & 12 \\ 4 & 6 \end{bmatrix} \right) = 1 \cdot (54 - 48) = 6 \\ M_{2,3} &= (-1)^{2+3} det \left(\begin{bmatrix} 9 & 7 \\ 4 & 11 \end{bmatrix} \right) = (-1) \cdot (99 - 28) = -71 \\ M_{3,1} &= (-1)^{3+1} det \left(\begin{bmatrix} 7 & 12 \\ 10 & 13 \end{bmatrix} \right) = 1 \cdot (91 - 120) = -29 \\ M_{3,2} &= (-1)^{3+2} det \left(\begin{bmatrix} 9 & 12 \\ 3 & 13 \end{bmatrix} \right) = (-1) \cdot (117 - 36) = -81 \\ M_{3,3} &= (-1)^{3+3} det \left(\begin{bmatrix} 9 & 3 \\ 7 & 10 \end{bmatrix} \right) = 1 \cdot (90 - 21) = 69 \end{split}$$

Logo, a adjunta de A é dada por

$$Adj(A) = \begin{bmatrix} -83 & 34 & -7\\ 90 & 6 & -71\\ -29 & -81 & 69 \end{bmatrix}$$

que nos dá

$$A^{-1} = \frac{-1}{593} \begin{bmatrix} -83 & 34 & -7\\ 90 & 6 & -71\\ -29 & -81 & 69 \end{bmatrix}.$$

O método dos cofatores é rápido para matrizes quadradas de tamanhos 2 e 3, porém é mais lento para fazer manualmente em casos para dimensões maiores que 3, por causa do cálculo dos determinantes. Neste último caso o método indicado é o da eliminação de Gauss.

Exemplo 1.17 Resolver o sistema linear abaixo.

$$\begin{cases} x - y + z = 67 \\ x + y - z = -53 \\ x + y + z = 10 \end{cases}$$

A forma matricial dessa equação é dada por

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 67 \\ -53 \\ 10 \end{bmatrix}$$

A solução consiste em achar a matriz A^{-1} da matriz

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$

e depois multiplicaremos pela matriz de resultados

$$\begin{bmatrix} 67 \\ -53 \\ 10 \end{bmatrix}$$

para acharmos x,y e z. Vamos proceder pelo método dos cofatores. Sabe-se que det(A)=4.

$$A^{T} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$

$$M_{1,1} = (-1)^{1+1} det \left(\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \right) = 1 \cdot (1 - (-1)) = 1 \cdot 2 = 2$$

$$M_{1,2} = (-1)^{1+2} det \left(\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \right) = (-1)^{3} \cdot (-1 - 1) = (-1) \cdot (-2) = 2$$

$$M_{1,3} = (-1)^{1+3} det \left(\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \right) = (-1)^{4} \cdot (1 - 1) = 1 \cdot 0 = 0$$

$$M_{2,1} = (-1)^{2+1} det \left(\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \right) = (-1)^{3} \cdot (1 - (-1)) = (-1) \cdot 2 = -2$$

$$M_{2,2} = (-1)^{2+2} det \left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right) = (-1)^{4} \cdot (1 - 1) = 1 \cdot 0 = 0$$

$$M_{2,3} = (-1)^{2+3} det \left(\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right) = (-1)^{5} \cdot (-1 - 1) = (-1) \cdot (-2) = 2$$

$$M_{3,1} = (-1)^{3+1} det \left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right) = (-1)^{4} \cdot (1 - 1) = 1 \cdot 0 = 0$$

$$M_{3,2} = (-1)^{3+2} det \left(\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \right) = (-1)^{5} \cdot (1 - (-1)) = (-1) \cdot 2 = -2$$

$$M_{3,3} = (-1)^{3+3} det \left(\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \right) = (-1)^{6} \cdot (1 - (-1)) = 1 \cdot 2 = 2$$

$$Adj(A) = \begin{bmatrix} 2 & 2 & 0 \\ -2 & 0 & 2 \\ 0 & -2 & 2 \end{bmatrix}$$

Que nos dá

$$A^{-1} = \frac{1}{4} \begin{bmatrix} 2 & 2 & 0 \\ -2 & 0 & 2 \\ 0 & -2 & 2 \end{bmatrix},$$

 $ou\ multiplicando\ todas\ as\ entradas\ por\ \tfrac{1}{4},$

$$A^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ -\frac{1}{2} & 0 & \frac{1}{2}\\ 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

Para verificar se a matriz A^{-1} é realmente a inversa de A, devemos efetuar, por exemplo, $A \cdot A^{-1}$ e verificar se temos a matriz identidade I_3 .

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

A seguir as contas necessária para se efetuar a multiplicação acima.

- $linha\ 1,\ coluna\ 1:\ 1\cdot\frac{1}{2}+(-1)\cdot\frac{-1}{2}+1\cdot 0=1$
- linha 1, coluna 2: $1 \cdot \frac{1}{2} + (-1) \cdot 0 + 1 \cdot \frac{-1}{2} = 0$
- $linha\ 1$, $coluna\ 3$: $1 \cdot 0 + (-1) \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = 0$
- linha 2, coluna 1: $1 \cdot \frac{1}{2} + 1 \cdot \frac{-1}{2} + (-1) \cdot 0 = 0$
- $linha\ 2$, $coluna\ 2$: $1 \cdot \frac{1}{2} + 1 \cdot 0 + (-1) \cdot \frac{-1}{2} = 1$
- $linha\ 2$, $coluna\ 1$: $1 \cdot 0 + 1 \cdot \frac{1}{2} + (-1) \cdot \frac{1}{2} = 0$
- $linha\ 3$, $coluna\ 1$: $1 \cdot \frac{1}{2} + 1 \cdot \frac{-1}{2} + 1 \cdot 0 = 0$
- linha 3, coluna 2: $1 \cdot \frac{1}{2} + 1 \cdot 0 + 1 \cdot \frac{-1}{2} = 0$
- $linha\ 3$, $coluna\ 3$: $1 \cdot 0 + 1 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = 1$

Para achar a solução final devemos fazer a seguinte multiplicação.

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} 67 \\ -53 \\ 10 \end{bmatrix} = \begin{bmatrix} \frac{67}{2} - \frac{53}{2} + 0 \cdot 10 \\ \frac{-67}{2} - 0 \cdot (-53) + \frac{10}{2} \\ 0 \cdot 67 + \frac{53}{2} + \frac{10}{2} \end{bmatrix} = \begin{bmatrix} 7 \\ -\frac{57}{2} \\ \frac{63}{2} \end{bmatrix}.$$

Logo,
$$x = 7, y = \frac{-57}{2} e z = \frac{63}{2}$$
.

No caso de sistemas lineares, uma simplificação do método de Gauss pode ser feita e podemos reuzir a matriz A junta com a matriz de resultados e não com a identidade como fizemos anteriormente nos facilitando um pouco a vida. O nome dessa técnica chama-se escalonamento da matriz de coeficientes.

Exemplo 1.18 Considere a mesma equação anterior em sua forma matricial. A forma matricial dessa equação é dada por

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 67 \\ -53 \\ 10 \end{bmatrix}$$

Devemos agora escalonar a matriz [A|b], onde b é a matriz

$$\begin{bmatrix} 67 \\ -53 \\ 10 \end{bmatrix}.$$

19

Ou seja,

$$[A|b] = \begin{bmatrix} 1 & -1 & 1 & 67\\ 1 & 1 & -1 & -53\\ 1 & 1 & 1 & 10 \end{bmatrix}.$$

O primeiro passo é $-l_2 + l_3 \rightarrow l_3$

$$\left[\begin{array}{ccc|c} 1 & -1 & 1 & 67 \\ 1 & 1 & -1 & -53 \\ 0 & 0 & 2 & 63 \end{array}\right].$$

O segundo passo é multiplicar por $\frac{1}{2}$ a linha 3.

$$\begin{bmatrix} 1 & -1 & 1 & | & 67 \\ 1 & 1 & -1 & | & -53 \\ 0 & 0 & 1 & | & \frac{63}{2} \end{bmatrix}.$$

O terceiro passo $\acute{e} - l_1 + l_2 \rightarrow l_2$.

$$\left[\begin{array}{ccc|c} 1 & -1 & 1 & 67 \\ 0 & 2 & -2 & -120 \\ 0 & 0 & 1 & \frac{63}{2} \end{array}\right].$$

O quarto passo é multiplicar a linha 2 por $\frac{1}{2}$

$$\begin{bmatrix} 1 & -1 & 1 & 67 \\ 0 & 1 & -1 & -60 \\ 0 & 0 & 1 & \frac{63}{2} \end{bmatrix}.$$

O quinto passo é somar linhas 1 e 1 e substituir na linha 2 $(l_2 + l_1 \rightarrow l_1)$.

$$\left[\begin{array}{ccc|c} 1 & 0 & 0 & 7 \\ 0 & 1 & -1 & -60 \\ 0 & 0 & 1 & \frac{63}{2} \end{array}\right].$$

O último passo é somar linhas 2 e 3 e substituir na linha 2 $(l_2 + l_3 \rightarrow l_2)$.

$$\left[\begin{array}{ccc|c} 1 & 0 & 0 & 7 \\ 0 & 1 & 0 & -\frac{57}{2} \\ 0 & 0 & 1 & \frac{63}{2} \end{array}\right].$$

O algoritmo deve para, pois a matriz identidade apareceu. Logo, $x=7, y=\frac{-57}{2}$ e $z=\frac{63}{2}$.

Note que todos os sistemas resolvidos possuem matrizes de coeficientes com o determinante diferente de zero. Quando o determinante for zero temos o caso de infinitas soluções (retas coincidentes) ou nenhuma solução (retas paralelas).

Exemplo 1.19 Resolva o sistema linear.

$$\begin{cases} 2x + 3y = 5\\ 8x + 12y = 20 \end{cases}$$

Em forma matricial, temos a seguinte equação.

$$\begin{bmatrix} 2 & 3 \\ 8 & 12 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 20 \end{bmatrix}$$

Notemos que o determinante da matriz de coeficientes é 0. Vamos tentar escalonar a matriz de coeficientes juntada com a de resultados.

$$\left[\begin{array}{cc|c} 2 & 3 & 5 \\ 8 & 12 & 20 \end{array}\right].$$

Devemos multiplicar a primeira por 4 e subtrair da segunda linha substituindo na própria $4l_1 - l_2 \rightarrow l_2$.

$$\left[\begin{array}{cc|c} 2 & 3 & 5 \\ 0 & 0 & 0 \end{array}\right].$$

Nota-se que a segunda linha zerou, logo teremos infinitas soluções. Pois, temos apenas uma equação válida 2x+3y=5. A equação 8x+12y=20 não acrescenta nenhuma informação a mais (retas paralelas). Para ver isso basta multiplicar por 4 em ambos lados de 2x+3y=5. Na literatura esse sistema é chamado de possível porém indeterminado.

Exemplo 1.20 Resolva o sistema linear.

$$\begin{cases} x + 3y = 10 \\ 5x + 15y = 15 \end{cases}$$

Em forma matricial, temos a seguinte equação.

$$\begin{bmatrix} 1 & 3 \\ 5 & 15 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 10 \\ 15 \end{bmatrix}$$

Note que o determinante da matriz de coeficientes é 0. Vamos escalonar a matriz de coeficientes juntada com a de resultados.

$$\left[\begin{array}{cc|c} 1 & 3 & 10 \\ 5 & 15 & 15 \end{array}\right].$$

Fazemos então $-5l_1 + l_2 \rightarrow l_2$.

$$\left[\begin{array}{cc|c} 1 & 3 & 10 \\ 0 & 0 & -35 \end{array}\right].$$

Note que não conseguiremos mais efetuar o algoritmo, pois temos que a parte da matriz dos coeficientes está zerada. Diferentemente do outro exemplo, neste temos a linha $0\ 0\ -35$ que nos daria a equação 0x+0y=-35, ou seja, 0=-35 que é um absurdo. Portanto, o sistema acima é impossível (não há soluções). Nesse caso teriamos duas retas paralelas.

21

1.4 Matrizes - Revisão

Note que até o momento foi possível observar algumas operações simples com matrizes. A soma de matrizes, por exemplo, onde temos que: $M_{lk}(\mathbb{R}) + M_{lk}(\mathbb{R}) \to M_{lk}(\mathbb{R})$. Logo $A = (a_{ij}), B = (b_{ij}) \to (a_{ij} + b_{ij}) \in \mathbb{R}$.

Exemplo 1.21 (+)

$$\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 2 + (-1) & 1 + 1 \\ 0 + (-1) & 1 + 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$$

Exemplo 1.22 (+)

$$\begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1+0 \\ 3+(-1) \\ 5+2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}$$

Agora, é importe ressaltar que há casos em que não é possível calcular essas matrizes, pois pertencem a conjuntos diferentes, como:

Exemplo 1.23

$$\begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

pois $\in M_2(\mathbb{R})$ e $\in M_{2,1}(\mathbb{R})$

Outra operação vista foi a multiplicação de matrizes, a qual muda as suas dimensões, $M_{lk}(\mathbb{R}) \cdot k_n \to M_{ln}(\mathbb{R})$:

Exemplo 1.24

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 9 \\ 1 \\ -1 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 9 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \cdot 9 + 2 \cdot 1 + (-1) \cdot (-1) \\ 1 \cdot 9 + 1 \cdot 1 + 1 \cdot (-1) \end{bmatrix} = \begin{bmatrix} 12 \\ 9 \end{bmatrix}$$

$$\in M_{2,1}(\mathbb{R})$$

Exemplo 1.25 Imagine o sequinte cenário: e se fosse $B \cdot A$?

$$B \cdot A = \begin{bmatrix} 9 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$

 $M_{3,1}(\mathbb{R})$, $M_{2,3}(\mathbb{R})$, não seria possível, pois $1 \neq 2$, portanto, não pode ser realizada a multiplicação.

Observação: As ordens dos fatores altera o produto.

Ainda temos a multiplicação por escalar, onde: $\mathbb{R} \cdot M_{lk}(\mathbb{R}) \to M_l \cdot k(\mathbb{R})$. Ou seja, $\lambda(a_{ij}) \to (\lambda a_{ij})$.

Exemplo 1.26

$$A = \begin{bmatrix} -1 & 1\\ 0 & 2 \end{bmatrix}$$

$$5A = \begin{bmatrix} 5 \cdot (-1) & 5 \cdot 1\\ 5 \cdot 0 & 5 \cdot 2 \end{bmatrix} = \begin{bmatrix} -5 & 5\\ 0 & 10 \end{bmatrix}$$

Uma matriz é nula quando independentemente de sua dimensão, todos os seus elementos são iguais a zero.

Exemplo 1.27

$$O_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} A = \begin{bmatrix} 2 & 3 \\ 5 & -1 \end{bmatrix}$$

$$O + A = \begin{bmatrix} 0+2 & 0+3 \\ 0+5 & 0+(-1) \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 5 & -1 \end{bmatrix}$$

$$A + O = \begin{bmatrix} 2+0 & 3+0 \\ 5+0 & (-1)+0 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 5 & -1 \end{bmatrix}$$

A matriz identidade recebe esse nome quando ela possui os elementos da diagonal principal iguais a 1 e os restante dos elementos iguais a 0. Veja um exemplo:

Exemplo 1.28

$$I_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$$

$$AI_{2} = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \cdot 1 + (-1) \cdot 0 & 3 \cdot 0 + (-1) \cdot 1 \\ 2 \cdot 1 + 1 \cdot 0 & 2 \cdot 0 + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$$

$$I_{2}A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 3 + 0 \cdot 2 & 1 \cdot (-1) + 0 \cdot 1 \\ 0 \cdot 3 + 1 \cdot 2 & 0 \cdot (-1) + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$$

Agora vamos elaborar um sistema a partir da solução:

Exemplo 1.29

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix} x = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

$$Ax = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 0 + 3 \cdot (-1) \\ 2 \cdot 1 + 1 \cdot 0 + 2 \cdot (-1) \\ 1 \cdot 1 + 1 \cdot 0 + 2 \cdot (-1) \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ -1 \end{bmatrix} = b$$

23

$$Ax = b \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x + 2y + 3z \\ 2x + y + 2z \\ x + y + 2z \end{bmatrix}$$

Logo:

$$\begin{cases} x + 2y + 3z = -2\\ 2x + y + 2z = 0\\ x + y + 2z = -1 \end{cases}$$

Definição 1.15 Duas matrizes são iguais quando cada elemento de mesma posição for igual. Se $A = (a_{ij})$ e $B = (b_{ij})$ com A e B de mesma dimensão, vale que: $A = B \Leftrightarrow a_{ij} = b_{ij}, \forall_{ij}$.

Exemplo 1.30

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

$$A = B \Leftrightarrow \begin{cases} a_{11} = b_{11} \\ a_{12} = b_{12} \\ a_{21} = b_{21} \\ a_{22} = b_{22} \end{cases}$$

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} x = \begin{bmatrix} x \\ y \end{bmatrix} b = \begin{bmatrix} 7 \\ 5 \end{bmatrix}$$

$$Ax = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x + y \\ -x + 3y \end{bmatrix}$$

Portanto, com a noção de igualdade de matrizes, gera o sistema linear.

Quando você multiplica a inversa, você obtém como resultado a inversa (à esquerda).

Note que: Matrizes não são comutativas.

Exemplo 1.31

$$Ax = b$$

$$A^{-1}(Ax) = A^{-1}b$$

$$(A^{-1}A)x = A^{-1}b$$

$$Ix = A^{-1}b$$

$$x = A^{-1}b$$

Para solucionar sistemas lineares, uma das propostas vistas que iremos utilizar daqui para frente, foi o "escalonamento da matriz de coeficientes", chamada também de "operações elementares". Para isso é necessário seguir as regras abaixo:

- 1. Trocar de linhas;
- 2. Multiplicar linhas;
- 3. Atualizar linha por combinação de duas.

Exemplo 1.32 Resolva o seguinte sistema:

$$\begin{cases} x + 2z = -1 \\ -2x - 3z = 1 \\ 2y = -2 \end{cases}$$

Ou seja:

$$\left[\begin{array}{ccc|c}
1 & 0 & 2 & -1 \\
-2 & 0 & -3 & 1 \\
0 & 2 & 0 & -2
\end{array}\right]$$

O primeiro passo é $l_2 + l_1 \rightarrow l_2$ (Regra 3)

$$\left[\begin{array}{ccc|c}
1 & 0 & 2 & -1 \\
0 & 0 & 1 & -1 \\
0 & 2 & 0 & -2
\end{array}\right]$$

O segundo passo é trocar $l_2 \Leftrightarrow l_3$ (Regra 1)

$$\left[\begin{array}{ccc|c}
1 & 0 & 2 & -1 \\
0 & 2 & 0 & -2 \\
0 & 0 & 1 & -1
\end{array}\right]$$

O terceiro passo é $l_2/2 \rightarrow l_2$ (Regra 2)

$$\left[\begin{array}{ccc|c} 1 & 0 & 2 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{array}\right]$$

O quarto e último passo $l_1 + (-2)l_3 \rightarrow l_1$

$$\left[\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{array}\right]$$

O algoritmo deve parar, pois a matriz identidade apareceu.

Logo,
$$x = 1$$
 $y = -1$ e $z = -1$.

Exemplo 1.33 Vamos resolver o seguinte sistema:

$$\begin{cases} x+y+z=6\\ -y+2z=4\\ 3x-y=1 \end{cases}$$

25

Sendo assim:

$$\left[\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
0 & -1 & 2 & 4 \\
3 & -1 & 0 & 1
\end{array}\right]$$

O primeiro passo é $l_3 + (-3)l_1 \rightarrow l_3$

$$\left[\begin{array}{ccc|ccc}
1 & 1 & 1 & 6 \\
0 & -1 & 2 & 4 \\
0 & -4 & -3 & -17
\end{array}\right]$$

O segundo passo $l_3 + (-4)l_2 \rightarrow l_3$

$$\left[\begin{array}{ccc|ccc}
1 & 1 & 1 & 6 \\
0 & -1 & 2 & 4 \\
0 & 0 & -11 & -33
\end{array}\right]$$

O terceiro passo é $\frac{1}{-11}l_3 \rightarrow l_3$

$$\left[\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
0 & -1 & 2 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]$$

O quarto passo é $l_2 + (-2)l_3 \rightarrow l_2$

$$\left[\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
0 & -1 & 0 & -2 \\
0 & 0 & 1 & 3
\end{array}\right]$$

O quinto passo, basta multiplicar l_2 por (-1)

$$\left[\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]$$

O sexto passo é $l_1 + (-1)$ $l_3 \rightarrow l_1$

$$\left[\begin{array}{ccc|c}
1 & 1 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]$$

O sétimo e último passo é $l_1 + (-1)$ $l_2 \rightarrow l_1$

$$\left[\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]$$

$$Logo, x = 1, y = 2 e z = 3.$$

Cada operação elementar, é na verdade uma multiplicação à esquerda de uma matriz elementar no sistema.

Exemplo 1.34

$$Ax = b$$

$$M_1(Ax) = M_1b$$

$$M_2(M_1(Ax)) = M_2M_1b$$

$$M_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$

$$M_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{bmatrix}$$

$$M_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{-1}{11} \end{bmatrix}$$

$$M_4 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M_5 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M_6 = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M_7 = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Se multiplicar todas essas matrizes, obtém-se a inversa

$$A^{-1} = M_1 M_2 M_3 M_4 M_5 M_6 M_7$$
$$x = M_1 M_2 M_3 M_4 M_5 M_6 M_7$$

1.5 Exercícios

Exercício 1 Dado as matrizes

$$A = \begin{bmatrix} 2 & -1 \\ 3 & 5 \end{bmatrix}$$

e

$$B = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$$

Calcule:

- a) 3A + 7B
- b) B-A
- c) $A \cdot B$
- $d) \ 2 \cdot (AB)$
- $e) B \cdot \mathbf{A}$
- $f) A^2$
- $g) B^2$

Exercício 2 Dado a matriz:

$$\left[\begin{array}{cc|cc|c} 1 & 0 & 2 & -1 \\ -2 & 0 & -3 & 1 \\ 0 & 2 & 0 & -2 \end{array}\right].$$

- a) Quem são as matrizes elementares? b) Calcular A^{-1} (opcional).

Chapter 2

Espaços Vetoriais

Um espaço vetorial é um conjunto formado com as operações de adição de vetores (+) e de multiplicação por escalar $(\cdot\lambda)$ os quais satisfazem as 8 propriedades que veremos mais adiante. A ideia é mostrar que alguns conjuntos possuem estrutura similar as dos espaços vetoriais.

2.1 Noção Geométrica de um Vetor

Definição 2.1 Vetor é um objeto matemático que possui direção, magnitude e sentido no plano ou espaço. Pode ser representado como: \vec{v} ou em negrito \vec{v} . A seta \rightarrow aponta na direção e no sentido da ação e seu comprimento fornece a magnitude da ação.

Exemplo 2.1 Considere o vetor \vec{v} em amarelo, onde: $||\vec{v}|| = \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}$.

Definição 2.2 (+) A soma de vetores pode ser realizada através da operação chamada soma vetorial, a qual devem ser considerados o módulo, direção e sentido, que gera um \vec{v} resultante, ou seja, ligando a origem com a extremidade obtém-se o vetor soma.

Exemplo 2.2 (Comutatividade): Considerando que $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ e $\vec{w} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$:

$$\vec{u} = \vec{v} + \vec{w} = \begin{pmatrix} 1+4\\2+2 \end{pmatrix} = \begin{pmatrix} 5\\4 \end{pmatrix}$$

$$\vec{u} = \vec{w} + \vec{v} = \begin{pmatrix} 4+1\\2+2 \end{pmatrix} = \begin{pmatrix} 5\\4 \end{pmatrix}$$

Representação gráfica do vetor \vec{u} :

NOTA: A soma geralmente formará paralelogramos. O gráfico acima ilustra como a ordenação da soma vetorial possui a propriedade de comutatividade.

Exemplo 2.3 (Associatividade): Considerando que $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ e $\vec{u} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

$$\begin{aligned} \vec{v} + \vec{w} + \vec{u} &= \vec{a} \\ \vec{v} + \vec{w} &= \vec{c} \\ \vec{w} + \vec{u} &= \vec{b} \end{aligned}$$

Representação gráfica dos vetores v, w e u:

31

Definição 2.3 O vetor com comprimento equivalente a 0 é o vetor nulo (neutro): $\vec{0} = \binom{0}{0}$, além disso, é o único sem direção específica.

Exemplo 2.4 (Neutro): Considerando que $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$:

$$\vec{v} + \vec{0} = \begin{pmatrix} 1+0\\ 2+0 \end{pmatrix} = \begin{pmatrix} 1\\ 2 \end{pmatrix}$$
$$\vec{0} + \vec{v} = \begin{pmatrix} 0+1\\ 0+2 \end{pmatrix} = \begin{pmatrix} 1\\ 2 \end{pmatrix}$$

Exemplo 2.5 (Oposto): O oposto de um vetor é representado por \vec{v} e $-\vec{v}$, onde possuem a mesma magnitude e direção, mas no sentido contrário.

$$\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rightarrow \vec{-v} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

Definição 2.4 (.) A multiplicação por escalar ou homotetia é a dilatação da distância entre um ponto em relação a um ponto fixo e $\lambda \neq 0$, segundo uma razão dada. Nesse contexto, podemos multiplicar um $\lambda \in \mathbb{R}$ por um \vec{v} , ou simplesmente $\lambda \cdot \vec{v}$, a ideia é fazer o \vec{v} crescer $\vec{w} = \lambda \cdot \vec{v}$.

Exemplo 2.6 (Multiplicação por escalar): Considerando que $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ e $\lambda = 2$:

$$2 \cdot {1 \choose 2} = 2\vec{v}$$

Agora saindo da geometria, uma possível aplicação com carteiras de ativos, "teoria da carteira" ou "teoria de Markowitz". Essa teoria não é foco dessa disciplina, mas é possível termos uma exemplo menor que envolva finanças.

Exemplo 2.7 Considerando que temos as seguintes corrência em mãos BRL, USD (real e dólar):

a)
$$100BRL + 50BRL = (100 + 50) = 150BRL$$

- b) 10BRL 10BRL = (10 10)BRL = 0BRL = 0
- c) $2 \cdot BRL + USD$. Não se multiplica corrências e sim um escalar pela unidade de dinheiro.

2.2 Exercícios

Exercício 1 Dado $\vec{v} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$, represente geometricamente os vetores:

- a) $3\vec{v} + 6\vec{w}$
- $b) \frac{1}{2}\vec{v} + \frac{1}{5}\vec{w}$
- c) $\vec{v} + \vec{w}$
- d) $-\vec{v}$ $-\vec{w}$
- $e) \vec{v} + \vec{v}$
- $f) \vec{w} + \vec{w} + \vec{w}$

Exercício 2 Calcule as expressões abaixo:

a)
$$\vec{v} = \begin{pmatrix} 10 \\ 11 \end{pmatrix}$$
, $\vec{w} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$, $\vec{w} + \vec{v}$, $+3\vec{w} - 7\vec{v}$, $15\vec{w}$, $20\vec{v}$.

b)
$$\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\vec{w} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, $\vec{w} - \vec{v}$, $\vec{v} - \vec{w}$, $3\vec{v} + 2\vec{w}$, $5\vec{v}$, $17\vec{w}$.

Exercício 3 Dado $\vec{u} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \vec{v} = \begin{pmatrix} -1 \\ -1 \end{pmatrix} e \vec{w} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, calcule:$

- a) $\vec{u} + 2\vec{v} 5\vec{w}$
- b) $7\vec{u} + 0\vec{v} + 15\vec{w}$
- c) $\frac{1}{2}\vec{u} + \pi\vec{v}$
- $d) \vec{u} \vec{v}$
- $e) \ \vec{v}$ \vec{u}
- $f) \vec{u} + \vec{v} + \vec{w} + \vec{w}$
- $g) \vec{u} + \vec{u} \vec{v} + 3\vec{v}$

2.3 Noção Algébrica de um Vetor

O módulo de um vetor é representado pela dimensão do segmento de uma reta. A direção por sua vez pode ser representada através de diversas formas, sendo por pontos cardeiais (direção Norte-Sul, Leste-Oeste...), círculo trigonométrico e direção referencial.

Ainda podemos dizer que em um sistema de coordenadas (definidas pelos eixos direcionais) pode ser visto como 2 dimensões, 3 dimensões e etc. Os vetores podem, dessa forma, ser representados pelo par ordenado (x,y) ou através das expressões álgebricas.

Outra forma de representação vetorial é com a utilização da notação matricial.

Definição 2.5 $Um \mathbb{R}$ -espaço vetorial V é um objeto matemático (conjunto) que satisfaz duas operações:

$$(+): V \times V \to V$$

 $(\cdot): \mathbb{R} \times V \to V$

Aqui, é possível observar as oito propriedades que satisfazem as operações de "Adição" e "Multiplicação por Escalar" para cálulos que envolvem os espaços vetoriais.

Adição de vetores, satisfaz:

- 1. Associatividade (+): $(\forall u, v, w \in V) (u + v) + w = u + (v + w)$
- 2. Neutro (+): $(\exists \mathbf{0} \in V) \ (\forall \mathbf{v} \in V) \ \mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v} = \mathbf{v}$
- 3. Oposto (+): $\forall v \in V \exists (-v) \in V v + (-v) = (-v) + v = 0$
- 4. Comutatividade (+): $\forall \mathbf{u}, \mathbf{v} \in V \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$

Multiplicação de vetor por escalar, satisfaz:

- 5. Distributividade: $\forall a, b \in \mathbb{R} \ \forall \ \mathbf{v} \in V \ (a+b) \cdot \mathbf{v} = a \cdot \mathbf{v} + b \cdot \mathbf{v}$
- 6. Distributividade: $\forall a \in \mathbb{R} \ \forall \ \boldsymbol{u}, \boldsymbol{v} \in V \ a \cdot (\boldsymbol{u} + \boldsymbol{v}) = a \cdot \boldsymbol{u} + b \cdot \boldsymbol{v}$
- 7. Distributividade: $\forall a, b \in \mathbb{R} \ \forall \ \boldsymbol{u} \in V \ (ab) \cdot \boldsymbol{u} = a \cdot (b \cdot u)$
- 8. Neutro (·): $\forall v \in V \ 1 \cdot v = v$

Proposição 1 Mostrar que o $\mathbb{R}^2 : \mathbb{R} \times \mathbb{R}$ é um \mathbb{R} -espaço vetorial.

Demonstração 1 Primeiramente, define-se:

$$(+): \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$

$$(+): (a,b)(c,d) = (a+c,b+d)$$

$$(\cdot): \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$$

$$(\cdot): a(x,y) = (ax,ay)$$

Associatividade: Sejam $\mathbf{u} \in \mathbb{R}^2$, $\mathbf{v} \in \mathbb{R}^2$, $\mathbf{w} \in \mathbb{R}^2$

$$egin{aligned} m{u} &= (m{u}_1, m{u}_2) \ m{v} &= (m{v}_1, m{v}_2) \ m{w} &= (m{w}_1, m{w}_2) \ (m{u} + m{v}) + m{w} &= ((m{u}_1, m{u}_2) + (m{v}_1, m{v}_2)) + (m{w}_1, m{w}_2) \ &= ((m{u}_1 + m{v}_1, m{u}_2 + m{v}_2)) + (m{w}_1, m{w}_2) \ &= (m{u}_1 + m{v}_1 + m{w}_1, m{u}_2 + m{v}_2 + m{w}_2) \ &= (m{u}_1 + (m{v}_1 + m{w}_1), m{u}_2 + (m{v}_2 + m{w}_2)) \ &= (m{u}_1, m{u}_2) + ((m{v}_1, m{v}_2) + (m{w}_1, m{w}_2)) \ &= m{u} + (m{v} + m{w}) \end{aligned}$$

Exemplo 2.8 (Numérico):

$$((1,2)+(0,3))+(1,1) = (1,5)+(1,1) = (2,6)$$

 $(1,2)+((0,3)+(1,1)) = (1,2)+(1,4) = (2,6)$

Neutro: $\exists \ \boldsymbol{0} \in \mathbb{R}^2 \ \forall \ \boldsymbol{v} \in \mathbb{R}^2$

$$egin{aligned} oldsymbol{0} &= (oldsymbol{0}, oldsymbol{0}) \ oldsymbol{v} &= (oldsymbol{v}_1, oldsymbol{v}_2) \ oldsymbol{0} + oldsymbol{v} &= oldsymbol{v} + oldsymbol{0} &= oldsymbol{v} + oldsymbol{0} &= oldsymbol{v} + oldsymbol{0} &= oldsymbol{v} + oldsymbol{0} &= oldsymbol{v} + oldsymbol{v}_2 + oldsymbol{v}) \\ (oldsymbol{v}_1, oldsymbol{v}_2) + (oldsymbol{v}_2, oldsymbol{v}_2) + (oldsymbol{v}_1, oldsymbol{v}_2) + (oldsymbol{v}_1, oldsymbol{v}_2) + (oldsymbol{v}_2, oldsymbol{v}_2, oldsymbol{v}_2, oldsymbol{v}_2) + (oldsymbol{v}_2, oldsymbol{v}_2, oldsymbol{$$

Exemplo 2.9 (Numérico):

$$(0,0)+(3,4) = (0+3,0+4) = (3,4)$$

Oposto: Sejam $\forall \ \boldsymbol{v} \in \mathbb{R}^2 \ \exists \ (-\boldsymbol{v}) \in \mathbb{R}^2$

$$v = (v_1, v_2)$$

$$-v = (-v_1, -v_2)$$

$$v+(-v) = 0$$

$$(-v)+v = 0$$

$$v+(-v) = (v_1, v_2)+(-v_1, -v_2)$$

$$= (v_1+(-v_1), v_2+(-v_2))$$

$$= (v_1, -v_1), (v_2 - v_2)$$

$$= (0, 0)$$

Exemplo 2.10 (Numérico):

$$(5,-3)+(-5,3)=(5-5),(-3+3)=(0,0)$$

Comutatividade: Sejam $\forall u, v \in \mathbb{R}^2$

$$egin{aligned} m{u} &= (m{u}_1, m{u}_2) \ m{v} &= (m{v}_1, m{v}_2) \ m{u}_1, m{u}_2 \ m{v}_1, m{v}_2 &\in \mathbb{R} \ m{u} + m{v} &= m{v} + m{u} \ m{u} + m{v} &= (m{u}_1, m{u}_2) + (m{v}_1, m{v}_2) \ &= (m{u}_1 + m{v}_1, m{u}_2 + m{v}_2) \ &= (m{v}_1 + m{u}_1, m{v}_2 + m{u}_2) \ &= (m{v}_1, m{v}_2) + (m{u}_1, m{u}_2) \ &= m{v} + m{u} \end{aligned}$$

35

Exemplo 2.11 (Numérico):

$$(4,3)+(1,-1) = (5,2)$$
ou
 $(1,-1)+(4,3) = (5,2)$

<u>Distributividade:</u> Sejam $\forall a, b \in \mathbb{R} \ \forall \ \mathbf{v} \in \mathbb{R}^2$

$$v = (v_1, v_2)$$

$$(a+b) \cdot v = (v_1, v_2) = a \cdot v + b \cdot v$$

$$(a+b) \cdot v = ((a+b)v_1, (a+b)v_2)$$

$$= (av_1, av_2) + (bv_1, bv_2)$$

$$= a \cdot (v_1, v_2) + b \cdot (v_1, v_2)$$

$$= a \cdot v + b \cdot v$$

Exemplo 2.12 (Numérico):

$$(2+3)\cdot(1,1) = 5\cdot(1,1) = (5,5)$$
ou
$$2\cdot(1,1)+3\cdot(1,1) = (2,2)+(3,3) = (5,5)$$

Distributividade: Sejam $\forall \ a \in \mathbb{R} \ \forall \ \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^2$

$$\begin{aligned} \boldsymbol{u} &= (\boldsymbol{u}_1, \boldsymbol{u}_2) \\ \boldsymbol{v} &= (\boldsymbol{v}_1, \boldsymbol{v}_2) \\ a \cdot (\boldsymbol{u} + \boldsymbol{v}) &= a \cdot \boldsymbol{u} + a \cdot \boldsymbol{v} \\ a \cdot (\boldsymbol{u}_1 + \boldsymbol{v}_1, \boldsymbol{u}_2 + \boldsymbol{v}_2) \\ &= (a(\boldsymbol{u}_1 + \boldsymbol{v}_1), a(\boldsymbol{u}_2 + \boldsymbol{v}_2)) \\ &= (a\boldsymbol{u}_1 + a\boldsymbol{v}_1, a\boldsymbol{u}_2 + a\boldsymbol{v}_2) \\ &= (a\boldsymbol{u}_1, a\boldsymbol{u}_2) + (a\boldsymbol{v}_1, a\boldsymbol{v}_2) \\ &= a \cdot (\boldsymbol{u}_1, \boldsymbol{u}_2) + a \cdot (\boldsymbol{v}_1, \boldsymbol{v}_2) \\ &= a \cdot \boldsymbol{u} + a \cdot \boldsymbol{v} \end{aligned}$$

Exemplo 2.13 (Numérico):

$$7 \cdot ((1,1) + (1,0)) = 7 \cdot (2,0) = (14,0)$$
ou
$$7 \cdot (1,1) + 7 \cdot (1,0) = (7,7) + (7,0) = (14,0)$$

Distributividade: Sejam $\forall a, b \in \mathbb{R} \ \forall \ \mathbf{u} \in \mathbb{R}^2$

$$egin{aligned} m{v} &= (m{v}_1, m{v}_2) \ (ab) \cdot m{v} &= a \cdot (b \cdot m{v}) \ (ab) \cdot m{v} &= (ab) \cdot (m{v}_1, m{v}_2) \ &= (abm{v}_1, abm{v}_2) \ &= (a(bm{v}_1), a(bm{v}_2)) \ &= a \cdot (bm{v}_1, bm{v}_2) \end{aligned}$$

Exemplo 2.14 (Numérico):

$$6 \cdot (1,1) = (6,6)$$

$$ou$$

$$(2 \cdot 3) \cdot (1,1) = 2 \cdot (3 \cdot (1,1))$$

$$2 \cdot (3,3) = (6,6)$$

Neutro: Sejam $\forall v \in \mathbb{R}^2 \ 1 \cdot v = v$

$$egin{aligned} oldsymbol{v} &= (oldsymbol{v}_1, oldsymbol{v}_2) \ 1 \cdot oldsymbol{v} &= oldsymbol{v} \cdot (oldsymbol{v}_1, oldsymbol{v}_2) \ (oldsymbol{v}_1, 1 oldsymbol{v}_2) &= (oldsymbol{v}_1, oldsymbol{v}_2) = oldsymbol{v} \end{aligned}$$

Exemplo 2.15 (Numérico):

$$1 \cdot (3,2) = (3,2)$$

Logo, \mathbb{R}^2 é um \mathbb{R} -Espaço vetorial.

Vejamos mais alguns exemplos:

Proposição 2 (
$$\mathbb{C}$$
) = $\{a+bi \mid a,b,c,d \in \mathbb{R}\}$ (vetores = números complexos).
+ : $\mathbb{C} \times \mathbb{C} \to \mathbb{C}$
 $(a+bi)+(c+di) \to (a+c)+(b+d)i$

$$+: \mathbb{R} \times \mathbb{C} \to \mathbb{C}$$

 $\lambda(a+bi) \to +bi$

Exemplo 2.16 Comutatividade: $\forall u, v \in \mathbb{C}$.

$$\begin{aligned} u+v&=v+u\\ u&=u_1+u_2i(u_1,u_2\in\mathbb{R})\\ v&=v_1+v_2i(v_1,v_2\in\mathbb{R})\\ u+v&=(u_1+u_2i)+(v_1+v_2i)\\ &=(u_1+v_1)+(u_2+v_2)i\\ &=(v_1+u_1)+(v_2+u_2)i\\ &=(v_1+v_2i)+(u_1+u_2i)\\ &=v+u \end{aligned}$$

2.4. EXERCÍCIOS

37

Exemplo 2.17 Distributividade: $\forall a, b \in \mathbb{R} \ u \in \mathbb{C}$:

$$(ab) \cdot \mathbf{u} = a \cdot (b\mathbf{u})$$

$$(ab) \mathbf{u} = (ab) \cdot (\mathbf{u}_1 + \mathbf{u}_2 i)$$

$$= ab\mathbf{u}_1 + ab\mathbf{u}_2 i$$

$$= a(b\mathbf{u}_1) + a(b\mathbf{u}_2 i)$$

$$= a \cdot (b\mathbf{u}_1 + b\mathbf{u}_2 i)$$

$$= a \cdot (b \cdot (\mathbf{u}_1 + \mathbf{u}_2 i))$$

$$= a \cdot (b \cdot \mathbf{u})$$

2.4 Exercícios

Exercício 1 Mostre que são \mathbb{R} -Espaços vetoriais os seguintes conjuntos:

 $a) \mathbb{R}$

$$u + v = u \cdot v$$

$$a \cdot \mathbf{v} = \mathbf{v}^a$$

b)
$$M_{2\times 2}(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$$

c)
$$\mathbb{R}^n$$
, $\forall n > 2$

- $d) \mathbb{R}^3$
- $e) \mathbb{R}^4$
- $f) \mathbb{R}^5$
- $g) \mathbb{R}^6$
- $h) \mathbb{R}^7$
- $i) \mathbb{R}^8$
- $j) \mathbb{R}^{10}$

2.5 Subespaços

Um subconjunto W de um espaço vetorial V, recebe o nome de "Subespaço Vetorial" de V se esse subconjunto é um \mathbb{R} -espaço vetorial e está relacionado com as oito propriedades vistas, as quais satisfazem as operações de adição e multiplicação por escalar.

Teorema 2 : Seja $W \subseteq V$, onde V é um \mathbb{R} -espaço vetorial, W é um espaço vetorial de V se satisfaz:

- a) $0 \in W$;
- b) Se $\mathbf{w}_1, \mathbf{w}_2 \in W$, então $\mathbf{w}_1 + \mathbf{w}_2 \in W$;
- c) Se $a \in \mathbb{R}$ e $\mathbf{w} \in W$, então $a \cdot w \in W$.

Exemplo 2.18 $W = \{(x_1, x_2) \mid x_1 - 2x_2 = 0\}$. Mostre que W é um subespaço vetorial de \mathbb{R}^2 .

Resposta:

$$x_1 - 2x_2 = 0$$
$$x_1 = 2x_2$$

então: $W = \{(2x_1, x_2) \mid x_1 \in \mathbb{R}\}$

a) $\mathbf{0} \in W$

$$(0,0) = (2x_2, x_2)$$
$$2x_2 = 0$$
$$x_2 = 0$$
$$(0,0) \in W$$

b) $u, v \in W \rightarrow u+v \in W$

$$u = (2u_2, u_2)$$

$$v = (2v_2, v_2)$$

$$u+v = (2u_2, u_2)+(2v_2, v_2)$$

$$= (2u_2 + v_2, u_2 + v_2)$$

$$= (2(u_2 + v_2)u_2 + v_2)$$

$$= (u_2 + v_2)\cdot(2, 1)$$

Exemplo 2.19 (Numérico):

$$\mathbf{w}_1 = (4, 2) = 2 \cdot (2, 1)$$

 $\mathbf{w}_2 = (6, 3) = 3 \cdot (2, 1)$
 $\mathbf{w}_1 + \mathbf{w}_2 = (10, 5)$
 $= 5 \cdot (2, 1)$

c) $a \in \mathbb{R} \boldsymbol{u} \in W \to a \cdot \boldsymbol{u} \in W$

$$egin{aligned} & m{u} = (2 m{u}_2, m{u}_2) \ & a \cdot m{u} = (2 m{u}_2, m{u} a) \ & = (2 a m{u}_2, a m{u}_2) \in W \ & = a m{u}_2 \cdot (2, 1) \end{aligned}$$

Logo, $W \notin um \ subespaço \ de \mathbb{R}^2$.

Representação gráfica \rightarrow Subespaços de $\mathbb{R}^2(Plano)$:

2.5. SUBESPAÇOS

39

$$-\mathbb{R}^2 \subseteq \mathbb{R}^2$$

$$-Retas que passam em (0,0)$$

$$-\{(0,0)\} \subseteq \mathbb{R}^2$$

$$0$$

Exemplo 2.20 $W = \{(x_1, x_2, x_3) \mid x_1 - x_3 = 0 \land x_1 + x_2 + x_3 = 0\}$. Mostre que W é um subespaço vetorial de \mathbb{R}^3 . Resposta:

$$x_1 - x_3 = 0$$
$$x_1 + x_2 + x_3 = 0$$

$$x_1 = x_3$$
$$2x_1 + x_2 = 0$$
$$x_2 = -2x_1$$

Então $W = \{(x_1 - 2x_1, x_1) \mid x_1 \in \mathbb{R}\}.$

a)
$$\mathbf{0} \in W$$
; $(0,0,0) = (0,-2\cdot 0,0) \in W$.

b)
$$u, v \in W \rightarrow u+v \in W$$

$$u = (u_1, -2u_1, u_1)$$

$$v = (v_1, -2v_1, v_1)$$

$$u+v = (u_1 + v_1, -2u_1 - 2v_1, u_1 + v_1)$$

$$= (u_1 + v_1, (-2)(u_1 + v_1), u_1 + v_1)$$

$$= (u_1 + v_1) \cdot (1, -2, 1)$$

$$c)\ a \in \mathbb{R}\boldsymbol{u} \in W \to a \cdot \boldsymbol{u} \in W$$

$$u = (u_1, -2u_1, u_1)$$

 $a \cdot u = (au_1, -2au, u_1) \in W$
 $= (au_1 \cdot (1, -2, 1)$

Logo, W é um subespaço de \mathbb{R}^3 .

Representação gráfica \rightarrow Subespaços de \mathbb{R}^3 :

$-\mathbb{R}^3 \subseteq \mathbb{R}^3$	3
- Planos que passam em $(0,0,0)$	2
- Retas que passam em $(0,0,0)$	1
$-\{(0,0,0)\}$	0

Subespaços de \mathbb{R}^4

$-\mathbb{R}^4 \subseteq \mathbb{R}^4$	4
$-Cubos\ que\ passam\ em\ (0,0,0,0)$	3
- Planos que passam em $(0,0,0,0)$	2
$-Retas\ que\ passam\ em\ (0,0,0,0)$	1
$-\{(0,0,0,0)\}$	0

Vajamos mais alguns exemplos:

Exemplo 2.21 $W = \{(x_1, x_2, x_3) \mid x_1 + 3x_3 = 0\}$ Mostre que W é um subespaço vetorial de \mathbb{R}^3 .

$$\rightarrow x_1 = -3x_3$$

Reescrevemos como: $W = \{(-3x_3, x_2, x_3) \mid x_2, x_3 \in \mathbb{R}\}$

$$(-3x_3, 0, x_3) + (0, x_2, 0)$$

 $x_3(-3, 0, 1) + x_2(0, 1, 0)$

Esse subespaço é um plano com os vetores diretores sendo (-3,0,1) e (0,1,0) passando por (0,0,0).

a)
$$(0,0,0) \in W \ x_3 = 0 \ e \ x_2 = 0$$

b) $\boldsymbol{u}, \boldsymbol{v} \in W$

$$u = (-3u_3, u_2, u_3)$$

$$v = (-3v_3, v_2, v_3)$$

$$u + v = (-3u_3 - 3v_3, u_2 + v_2, u_3 + v_3)$$

$$= (-3(u_3 + v_3), u_2 + v_2, u_3 + v_3)$$

$$= (-3(u_3 + v_3), 0, u_3 + v_3) + (0, u_2 + v_2, 0)$$

$$= (u_3 + v_3) \cdot (-3, 0, 1) + (u_2 + v_2)(0, 1, 0)$$

 $c) \ a \in \mathbb{R} \ \boldsymbol{u} \in W$

$$u = (-3u_3, u_2, u_3)$$

$$a \cdot u = (-3au_3, au_2, au_3) \in W$$

$$= (-3au_3, 0, au_3) + (0, au_2, 0)$$

$$= au_3 \cdot (-3, 0, 1) + au_3 \cdot (0, 1, 0)$$

2.6 Exercícios

Exercício 1 Mostre que os conjuntos W são subespaços dos \mathbb{R} -Espaços vetoriais ao lado.

a)
$$W = \{(x_1, x_2, x_3, x_4) \mid x_2 - 5x_3 = 0 \land x_1 + x_4 = 0\}$$
 \mathbb{R}^4
b) $W = \{(x_1, x_2, x_3) \mid x_1 - x_2 + x_3 = 0 \land x_1 - 2x_3 = 0\}$ \mathbb{R}^3
c) $W = \{(x_1, x_2, x_3) \mid 5x_1 - x_2 = 0 \land x_2 - x_3 = 0\}$ \mathbb{R}^3
d) $W = \{(x_1, x_2, x_3) \mid 5x_1 - 2x_2 + x_3 = 0\}$ \mathbb{R}^3
e) $W = \{(x_1, x_2, x_3, x_4) \mid x_3 = 0\}$ \mathbb{R}^4
f) $W = \{(x_1, x_2, x_3) \mid x_2 + x_3 = 0\}$ \mathbb{R}^3
g) $W = \{(x_1, x_2, x_3) \mid x_2 - x_3 + x_1 = 0 \land x_2 + \frac{x_1}{2} = 0\}$ \mathbb{R}^3
h) $W = \{(x_1, x_2) \mid 9x_1 + 8x_2 = 0\}$ \mathbb{R}^2
i) $W = \{(x_1, x_2) \mid 5x_1 + 2x_2 = 0\}$ \mathbb{R}^2

Exercício 2 Modifique os conjuntos acima de forma que não sejam mais subespaços. Explique.