ECSE 444 Analog Interfaces: ADC & DAC

Zeljko Zilic

zeljko.zilic@mcgill.ca

Acknowledgments: to STMicroelectronics for material on processors and the board

Outline

- Analog to Digital Converter (ADC)
 - Basics, principles of operation
 - ADC modes of use
- Digital to Analog Converter (DAC)
- O Lab: Part 1 of Lab 2
 - Progress and Structuring of Experiments

Analog-to-Digital Converters

- 2 ADCs : ADC1 (master), ADC2 (slave)
- Maximum frequency of the ADC analog clock: 120MHz
- 12-bits, 10-bits, 8-bits or 6-bits configurable resolution
- ADC conversion rate with 12 bit resolution (16 bits with oversampling)
- Conversion range: 0 to 3.6 V
- ADC supply: VDDA = 2.4V to 3.6V at full speed, down to 1.65V at lower speed
- Up to 16 external channels
- 3 ADC1 internal channels connected to:
 - Temperature sensor,
 - Internal voltage reference : VREFINT (1.2V typ),
 - VBAT for internal battery monitoring.

ADC Features

- External trigger option
- Single and continuous modes
- Left or right data alignment with data coherency
- Channel by channel programmable sampling time
- Discontinuous mode
- Dual ways

ADC Features – DMA, Interrupt

DMA capability

- DMA request generation during regular channel conversion in single mode,
- "ADC-DMA mode 1" used in regular simultaneous Dual ADC mode,
- "ADC-DMA mode 2" used in interleaved Dual ADC mode as well as in regular simultaneous Dual ADC mode,
- "ADC-DMA mode 3" used in interleaved Dual ADC mode with 6-bits and 8-bits resolution.
- Analog Watchdog on high and low thresholds.
- Interrupt generation on:
 - End of Conversion
 - End of Injected conversion
 - Analog watchdog
 - Overrun

ADC Speed Performances – F4

AHBCLK	APB2CLK	ADC_CLK	ADC speed (15 cycles)
168MHz	(a)	(2)	0.714μs
	84MHz	21MHz	1.4 Msample/s
144MHz	(a)	(1)	0.416μs
	72MHz	36MHz	2.4 Msample/s
120MHz	(a)	(1)	0.5μs
	60MHz	30MHz	2 Msample/s
96MHz	(a)	(1)	0.625μs
	48MHz	24MHz	1.6 Msample/s
72MHz	(b)	(1)	0.416μs
	72MHz	36MHz	2.4 Msample/s

- (1). ADC_PRESC = /2
- (2). ADC_PRESC = /4
- (a) $APB_PRESC = /2$
- (b) APB_PRESC = /1

ADC Sampling Time (T_{Sampling})

- ADCCLK, up to 36MHz, taken from PCLK through a prescaler (Div2, Div4, Div6 and Div8).
- Three bits programmable sample time for each channel:

Total Conversion Time

 \circ Total conversion Time = $T_{Sampling} + T_{Conversion}$

Resolution	T _{Conversion}
12 bits	12 Cycles
10 bits	10 Cycles
8 bits	8 Cycles
6 bits	6 Cycles

With Sample time= 3 cycles @ ADC_CLK = 36MHz → total conversion time:

resolution	Total conversion Time		
12 bits	12 + 3 = 15cycles	0.416 us → 2.4 Msps	
10 bits	10 + 3 = 13 cycles	0.361 us → 2.71 Msps	
8 bits	8 + 3 = 11 cycles	0.305 us → 3.27 Msps	
6 bits	6 + 3 = 9 cycles	0.25 us → 4 Msps	

Enabling ADC in Software

- Initiate the enable signal (ADEN signal)
- ADC can be used when ready (ADRDY signal)
- Disabling when conversion done (ADDIS signal)

Reference Manual: Sec. 21.4.9 (page 629)

ADC conversion in single mode (12 bit resolution)

ADC Regular / Injected Channels

- Programmable number of regular channels: Up to 16 conversions.
- Programmable sample time and conversion sequence.
- Conversion started by:
 - Software: through start bit,
 - External trigger generated by:
 - EXTI IT11,
 - 15 triggers from 6 TIMERS,
- Programmable number of injected channels: Up to 4 conversions.
- Programmable sample time and conversion sequence.
- Conversion started by:
 - JAUTO: automatic injected conversion after regular channels conversion,
 - Software: through start bit,
 - External trigger generated by:
 - EXTI IT15,
 - 15 triggers from 6 TIMERS.

ADC Sequencer

- Up to 16 regular and 4 injected conversions with programmable order, sampling time and over-sampling Example: Conversion of channels: 0, 2, 8, 4, 7, 3, 3, 3 and 11
 - Different sampling time
 - Over-sampling of channel 3

ADC conversion modes

Five conversion modes available:

Discontinuons conversion mode

CHa CHb CHc CHx CHy CHz

ADC Discontinuous Conversion

- Split channels conversion sequence into sub-sequences
- Available for both regular and injected groups:
 - Up to 8 conversions for regular group
 - Up to 3 conversions for injected group

Example:

- Conversion of regular channels: 0, 1, 2, 4, 5, 8, 9, 11, 12, 13, 14 and 15
- Discontinuous mode Number of conversions: 3

ADC dual modes

- ADCs: ADC1 master and ADC2 slave, ADC3 is independently
- Start of conversion triggered alternately or simultaneously by the ADC1 master to the ADC2

ADC Triple modes (F4, G4)

ADCs: ADC1 master, ADC2 and ADC3 slaves

Start of conversion is triggered alternately or simultaneously by the ADC1 master to the ADC2 and ADC3 6 ADC Triple modes

ADC Triple modes Injected simultaneous mode

- Converts an injected channel group
- External trigger source, which start the conversion, comes from ADC1 (simultaneous trigger provided to ADC2 and ADC3 slaves)
- An end of injected conversion is generated at the end of all channels conversion
- Results stored on injected data registers of each ADC.

<u>Injected simultaneous mode on 4 injected channels:</u>

ADC Triple modesRegular simultaneous mode

- Converts a regular channel group
- The external trigger source, which start the conversion, comes from ADC1 (simultaneous trigger provided to ADC2 and ADC3 slaves)
- An end of regular conversion is generated at the end of all channels
- Results stored on the common data register ADC_CDR

ADC Triple modesInterleaved mode

- Converts a regular channel group (usually one channel)
- The external trigger source, which start the conversion, comes from ADC1:
 - ADC1 starts immediately
 - ADC2 starts after a delay of 5 ADC clock cycles
 - ADC3 starts after a delay of 5 ADC clock cycles referred to the ADC2 conversion
- In this mode the sampling criteria to respect is always "Tsampling + 2
 ADC Cycles " as minimum delay
- Results stored on the common data register ADC_CDR

<u>Interleaved mode on 1 regular channel in continuous conversion mode:</u>

ADC conversion in Triple Interleaved mode (12 bit resolution)

ADC conversion in Triple Interleaved mode (6 bit resolution)

ADC Triple modes Alternate Trigger mode

- Converts an injected channel group.
- External trigger source, which start the conversion, comes from ADC1:
 - On 1st trigger, the first injected group channel in ADC1 is converted
 - On 2nd trigger, the first injected group channel in ADC2 is converted
 - On 3rd trigger, the first injected group channel in ADC3 is converted...
- An end of injected conversion is generated at the end of each conversion
- Results stored on injected data registers of each ADC.

Alternate Trigger mode on 4 injected channels:

ADC Triple modes Combined Regular + Injected

simultaneous mode

- Converts an injected and regular channel groups.
- The external triggers sources, which start the conversions, comes from ADC1 (simultaneous trigger provided to ADC2 and ADC3): injected simultaneous mode can interrupt all channels conversions.
- Results of injected channels stored on injected data registers of each ADC, and regular channels on the common data register ADC_CDR.

Combined Regular/Injected simultaneous mode on 4 regular channels and 2 injected channels:

ADC Triple modes (7/7)

channels

Combined Regular simultaneous + Alternate Trigger mode

- Converts an injected and regular channel groups.
- The external triggers sources, which start the conversions, comes from ADC1 (simultaneous trigger provided to ADC2 and ADC3): alternate trigger mode can interrupt all channels conversions.
- Results of injected channels stored on injected data registers of each ADC, and regular channels on the common data register ADC_CDR.

Combined Regular simultaneous + Alternate trigger mode:

ADC and DMA: Single mode

 DMA request generated on each ADC end of regular channel conversion (Not in injected channels)

Example:

- Conversion of regular channels: 0, 2, 3, 4, 2, 5, 9, 7 and 8
- Converted data stored in ConvertedValue_Tab[9]
- DMA transfer enabled (destination address auto incremented)

Note: Each time DMA accessed to ADC_DR register, EOC

flag is automatically cleared

ADC and DMA: ADC_DMA mode "1"

Used in regular simultaneous Dual/Triple ADC mode

channels

- DMA ensure the access to the converted regular channel values which are stored into the common data register ADC_CDR
- On each DMA request, a half-word representing an ADC-converted data item is transferred
- DMA bits in common control register ADC_CCR must be set at 0b01

DMA transfer in Triple ADC Regular simultaneous mode: DMA request ++ 1st DMA 4th DMA **DMA 1st request** request request ADC CDR[31:0] = ADC1 DR[15:0] ADC1 CH₁ CHO 2nd DMA 5th DMA request request **DMA 2st request** ADC2 **CH15 CH14 ADC CDR register** ADC CDR[31:0] = ADC2 DR[15:0]3rd DMA 6th DMA request request ADC3 **CH10 CH12** DMA 3st request ADC CDR[31:0] = ADC3 DR[15:0]Trigger for

ADC and DMA: ADC_DMA mode "2"

- Used in interleaved Dual/Triple ADC mode and in regular simultaneous Dual ADC mode
- DMA ensure the access to the converted regular channel values which are stored into the common data register ADC_CDR
- On each DMA request, two half-words representing two ADC-converted data items are transferred as a word
- DMA bits in common control register ADC_CCR must be set at 0b10

DMA transfer in Triple ADC interleaved mode:

ADC and DMA(4/4): ADC_DMA mode "3"

- Used in interleaved Dual/Triple ADC mode and in regular simultaneous
 Dual ADC mode with 6-bits and 8-bits resolutions
- DMA ensure the access to the converted regular channel values which are stored into the common data register ADC_CDR
- On each DMA request, two bytes representing two ADC-converted data items are transferred as a half-word
- DMA bits in common control register ADC_CCR must be set at 0b11

ADC Analog Watchdog

- 12-bit programmable analog watchdog low and high thresholds
- Enabled on one or all converted channels: one regular or/and injected channel, all injected or/and regular channels
- Interrupt generation on low or high thresholds detection

ADC Flags and interrupts

OVR: Overrun detection when regular converted data are lost

EOC : « Regular channel end of conversion » to indicate (depending on EOCS bit) the end of :

→ a regular **CHANNEL** conversion

→ sequence of regular **GROUP** conversions .

JEOC : « Injected channel end of conversion» to indicate at the end of injected **GROUP** conversion

AWD: « Analog watchdog » to indicate if the converted voltage crosses the programmed thresholds values.

STRT: « Regular channel start » to indicate when regular **CHANNEL** conversion starts.

JSTRT: « Injected channel start » to indicate hardware when injected **GROUP** conversion starts.

Temp. Sensor, V_{REF} & V_{BAT} Monitors

- Temperature Sensor internally connected to ADC1_IN17 input
- Measured value: V_{TS} ; Two factory-calibrated points V_{Cal1} & V_{Cal2} Temp [°C] = $f(V_{TS}-V_{Cal1})/Avg_Slope + 30$
 - Reading and conversion procedure: L4+ Reference Manual, page 689
 - Locations for calibrated values: STM32L4S5 Datasheet, page 44, Table 8
- V_{REF} voltage connected to ADC1_IN0
 - Calibrated voltage stored as per STM32L4S5 Datasheet, page 44, Table 9
- Also, V_{BAT} input voltage can be converted on ADC1_IN18 input for Battery monitoring
 - As V_{BAT} voltage could be higher than VDDA, for correct operating condition of the ADC, the Input voltage is V_{BAT} followed by a bridge divider by 2

Quiz

• What is the maximum ADC clock frequency?

- What are the different ADC resolution possibilities?
- What is the minimum sampling time of the ADC?
- How many modes the ADC offers in Multi mode? What are they?
- What is the maximum "Msample/s" that ADCs could achieve ? In which mode?
- What are the different ADC_DMA modes and uses?

