核磁共振实验报告

何金铭 PB21020660

摘要

核磁共振是一个重要的物理现象,也有很多实际应用。本实验利用扫频法来做实现核磁共振,并且会利用一个简单的实验装置来测量 H 的 γ_H,g_H 因子和 ^{19}F 的 γ_F,g_F 因子。并且利用了测得的 γ_H 来测量磁体于其它位置产生的 B_0 。最后测量了 5 个不同调制电压下的 B_m

关键词:核磁共振,扫频法,磁感应强度测量

1 引言

核磁共振是一个重要的物理现象,先简单叙述一下它的实验原理。

1.1 实验原理

1.1.1 Lamor 进动

由于原子核有轨道磁矩和自旋磁矩,故于外场 B_0 中会做进动,且有关系 $\omega_0=\gamma B_0$ 。其中 ω_0 称 为 Lamor 频率, $\gamma=g\frac{q}{2m}$ 称为旋磁比,g 为朗德因子

1.1.2 磁共振

于 x-y 平面中加入一个角频率与 Lamor 频率相同 (即: $\omega = \omega_0 = \gamma B_0$) 的外加旋转磁场 B_1 中。此时,磁矩与 B_1 相对静止,会使磁矩绕 B_1 产生进动,势能增加。

- 对于电子自旋共振, $\gamma = g \frac{\mu_B}{\hbar}$
- 对于核自旋共振, $\gamma = g \frac{\mu_N}{\hbar}$

1.1.3 寒曼分裂

含自旋的原子核会在外磁场中产生能级分裂,在适当波长中的电磁波诱导下,不同能级之间会有跃迁,产生强弱不同的共振信号。

1.1.4 检验共振信号

一般有吸收法、感应法、平衡法等几种方法,不同的方法有不同的特点,这里不详细展开叙述。

1.2 本实验中的具体测量方法

图 1: 实验方法示意图

当满足 $\omega_0 = \gamma(B_0 + B_m \sin 100\pi t)$ 时会出现共振信号,且当共振信号等间距时,有 $\omega_0 = \gamma B_m$

2 实验内容

2.1 实验仪器

图 2: 实验仪器示意图

1. 样品水:提供实验用的粒子, ¹H, ¹⁹F

2. 永磁铁: 提供稳恒外磁场 B_0 , 中心磁感应强度约为 0.58T。

3. 边限振荡器:产生射频场,提供一个垂直于稳恒外磁场的高频电磁场频率(旋转磁场 B_1)。同时也将探测到的共振电信号放大后输出到示波器,边限振荡器的频率由频率计读出。

4. 绕在永磁铁外的磁感应线圈: 提供叠加在永磁铁上的调制场 $B=B_m\sin 100\pi t$

5. 调压变压器: 为磁感应线圈提供 50Hz 的可调电压。

6. 频率计: 读取射频场的频率。

7. 示波器:观察共振信号。

2.2 具体实验内容

- 1. 观察并分析调制场 \tilde{B} 的大小和射频频率 ν 对共振信号波形的影响
- 2. 计算 $\gamma_H, g_H, \gamma_F, g_F$
- 3. 计算不同位置的磁场强度 $B_0(x)$
- 4. 测量 5 个不同调制电压下 (0-100V) 的 B_m

3 原始实验数据

注: 系统显示是 5 号座位, 实际在 4 号位置操作

3.1 4号位置已知实验参数

已知中心的磁场强度为 0.58T。当样品处于磁场中心时, 边限振荡器的右侧的刻度为 3.5cm

3.2 实验现象描述

3.2.1 调制场 \tilde{B} 的大小对共振信号波形的影响

当增加接入的电压大时,调制场 \tilde{B} 的峰值 B_m 的变大。

发现,若在某时刻出现了共振信号,当射频频率不变的情况下,当 B_m 变大的时候共振信号的峰值也随之增加;而当 B_m 变小的时候,共振信号的峰值也随之减少,当 B_m 小于某个值时共振信号消失。

3.2.2 射频频率 ν 对共振信号波形的影响

发现,若在某时刻出现了共振信号,当调制场 \tilde{B} 不变的情况下,当 ν 变大到某个值后,共振信号会重叠,再变大后则会消失;当 ν 变小到某个值后,共振信号会重叠,再变小后则会消失;当 ν 取某个恰当的值时,会使共振信号变为等间距。

3.3 数据记录表

组数	1	2	3	4	5	6
ν/MHz	24.620713	24.621753	24.621300	24.621067	24.621513	24.621501

表 1: ¹H 核磁共振时频率计读数记录表

组数	1	2	3	4	5	6
ν/MHz	23.162852	23.163111	23.162131	23.162203	23.162103	23.162861

表 2: ¹⁹F 核磁共振时频率计读数记录表

ν/MHz	1	2	3	4	5	6
2cm	24.618354	24.616727	24.617720	24.618302	24.618877	24.618675
3cm	24.620753	24.620070	24.620269	24.620208	24.619898	24.619891
4cm	24.622112	24.622933	24.621642	24.622159	24.622527	24.621783
5cm	24.620847	24.622769	24.620229	24.621194	24.621755	24.622271

表 3: 不同位置 (外磁场 $B_0(x)$) 下 1H 核磁共振时频率计读数记录表

说明,此处的 l 是边限振荡器右侧在磁体固定的刻度尺上的读数

电压 V/v	100	80	60	40	20
ν_1/MHz	24.582016	24.588243	24.596032	24.603952	24.611901
ν_2/MHz	24.659694	24.651687	24.644097	24.636851	24.629393

表 4: 不同调制电压下 ¹H 核磁共振时频率计读数记录表

4 数据处理与数据分析

4.1 实验现象的解释

产生共振信号需要满足的条件是:

$$2\pi\nu = \gamma(B_0 + B_m \sin 100\pi t) \tag{1}$$

4.1.1 调制场 \tilde{B} 的大小对共振信号波形的影响

改变 B_m 的大小会导致可能发生核磁共振的频谱范围发生了改变,在 ν 不变的情况下,当 B_m 变大时,原来的核磁共振信号会变得更大,而当 B_m 变小时,信号会变弱,直到 B_m 脱离了核磁共振的范围,此时核磁共振现象会消失,其信号自然也随之消失。

与观察的现象相符。

4.1.2 射频频率 ν 对共振信号波形的影响

改変 ν 的大小,就相当于改变了频率在频谱中的位置,在 B_m 不变的情况下, ν 的取值范围为 $\nu \in \frac{\gamma}{2\pi}[B_0 - B_m, B_0 + B_m]$,当 $\nu > \frac{\gamma}{2\pi}(B_0 + B_m)$ 或 $\nu < \frac{\gamma}{2\pi}(B_0 - B_m)$ 时,核磁共振会消失,而 当 $\nu = \frac{\gamma}{2\pi}B_0$ 时,共振信号为等间距。

与实验现象相符。

4.2 计算 $\gamma_H, q_H, \gamma_F, q_F$

计算得 $\bar{\nu_H} = 24.621308MHz$, $\bar{\nu_F} = 23.162544MHz$: 由 γ 和 g 的计算公式:

$$\gamma = \frac{2\pi\bar{\nu}}{B_0} \tag{2}$$

$$g = \gamma \frac{\hbar}{\mu_N} \tag{3}$$

其中 $B_0=0.58T, \hbar=1.0545718\times 10^{-34}J\cdot s, \mu_N=5.050783699\times 10^{-27}J/T$ 分别代人 1H 和 ^{19}F 中的数据得:

$$\gamma_H = 2.667246 \times 10^8 rad \cdot T^{-1} \cdot s^{-1}, \quad g_H = 5.569042$$
 (4)

$$\gamma_F = 2.509216 \times 10^8 rad \cdot T^{-1} \cdot s^{-1}, \quad g_F = 5.239086$$
 (5)

发现测得的旋磁比与朗德因子均与理论的值相近。

4.3 计算不同位置的磁场强度 $B_0(x)$

得到不同位置处 v 的值见下表:

位置 l/cm	2	3	4	5
频率平均值 $\bar{\nu}/MHz$	24.618109	24.620182	24.622193	24.621511

表 5: 不同位置处的频率平均值 ū 表

由计算公式:

$$B_0 = \frac{2\pi\bar{\nu}}{\gamma} \tag{6}$$

得:

位置 l/cm	2	3	4	5
磁感应强度 B_0/T	0.579925	0.579973	0.580021	0.580005

表 6: 不同位置处的磁感应强度 B_0/T 表

说明永磁铁中不同位置的磁场强度是不同的,是不均匀的。但大体上可认为在中心的磁场强度 是均匀。

4.4 测量 5 个不同调制电压下 (0-100V) 的 B_m

处理数据得:

电压 V/v	100	80	60	40	20
$(\nu_2 - \nu_1)/MHz$	0.077678	0.063444	0.048065	0.032899	0.017492

表 7: 不同调制电压下 ¹H 核磁共振时频率计读数差值记录表

由计算公式:

$$B_m = \frac{1}{2} \left(\frac{2\pi(\nu_2 - \nu_1)}{\gamma} \right) = \frac{\pi(\nu_2 - \nu_1)}{\gamma} \tag{7}$$

得:

电压 、	V/v	100	80	60	40	20
$B_m/$	Gs	9.149236	7.472697	5.661294	3.874980	2.060280

表 8: 不同调制电压下产生的磁场强度峰值 B_m 记录表

发现不同调制电压产生的感应磁场磁感应强度峰值 B_m 是几乎呈线性的,是符合物理直观的。

5 实验总结和误差分析

5.1 误差分析

在实验中还存在一些问题:

- 1. 观察共振信号是否等间距靠的是肉眼,会产生较大误差。
- 2. 在测量不同位置的磁场强度时,在边缘的点 l = 2cm, 3cm 处。由于数字示波器不能检验到触发信号,图像无法锁定,故只能依靠模拟示波器进行粗略的估计,共振信号不一定等间距。
- 3. 在利用频率计读数时,由于频率计示数在不断的跳动,所以会产生估读误差。
- 4. 实验中可能还存在一些系统误差,但由于实验装置是集成的,这里无法分析。

5.2 实验总结

- 1. 调制场 \tilde{B} 的峰值 B_m 和射频频率 ν 均会对共振信号波形产生影响,实验中需要寻找合适的值才能观察到现象。
- 2. 实验中测得的 1H , ^{19}F 的旋磁比与朗德因子分别为 $\gamma_H = 2.667246 \times 10^8 rad \cdot T^{-1} \cdot s^{-1}, g_H = 5.569042, <math>\gamma_F = 2.509216 \times 10^8 rad \cdot T^{-1} \cdot s^{-1}, g_F = 5.239086$ 且发现测量值与理论值相近。
- 3. 发现永磁铁中不同位置的磁感应强度是不同的,不太均匀,但大体上可认为中心磁感应强度是均匀的。
- 4. 发现不同调制电压产生的感应磁场磁感应强度峰值 B_m 是几乎呈线性的,是符合物理直观的。

6 思考题

6.1 B_0, B_1, \tilde{B} 的作用是什么?如何产生,它们有何区别?

- 1. B_0 为稳恒外磁场,是为了使得原子核在外磁场的作用下产生 Lamor 进动。其由装置中的永磁铁产生。
- 2. B_1 为垂直于稳恒磁场方向的外加磁场,且绕稳恒磁场方向以角速度 ω 旋转,是为了与外磁场中的原子核产生核磁共振。其由边限振荡器产生。
- 3. \tilde{B} 为沿稳恒磁场方向的外加交流磁场,且在本次实验中,其表达式为 $\tilde{B} = B_m \sin 100\pi t$,是为了增加能够观察到核磁共振现象的频谱范围,更加容易观察到核磁共振现象,且更加方便测量。其由围绕着永磁铁的且外加交流电的线圈产生。

它们的区别由上分析显然得到,它们的目的和产生机制都是不同的。

7 致谢

感谢一教物理实验中心提供的核磁共振实验仪器,也感谢王少敏助教的指导!

8 参考文献

1. 核磁共振实验实验讲义. 大学物理实验-现代物理实验.