

CSU0021: Computer Graphics

Graphics System

Input device

CPU/Memory

GPU/Memory

Monitor

Raster Graphics System

- Raster: An array of picture elements
- Based on raster-scan TV technology
- The screen or a picture consists of discrete pixels, and each pixel has a small display area.

Frame Buffer

- Frame buffer: the memory to hold the pixel properties (color, alpha, depth, stencil mask, etc)
- Properties of a frame buffer that affect the graphics performance
 - Size: screen resolution
 - Depth: color level
 - 1 bit/pixel: black and white
 - 8bits/pixel: 256 levels gray or color pallet index
 - 24bits/pixel: 16 million colors
 - Speed: refresh rate

Graphics Acceleration (card)

Graphics Accelerator (card)

- Process geometry/pixels and produce images to be displayed on the screen
- Can also be used to perform general purpose computation (via CUDA/ OpenGL)
- Processors that implement a simple pipeline with fixed graphics functionality, to complex many-core architectures that contain several deep parallel pipelines
 - Example: Nvidia Tesla V100 has 5120 cores and 21.1 billions transistors
 - Nowadays, a graphics card can easily have more than 4 GB of video memory

Nvidia V100 Architecture

CPU/GPU Performance Gap

Why are GPU's so fast?

- Entertainment industry has driven the economy of these chips
 - Recently, deep learning has driven these economy, too
- Moore's Law
- Simplified design (stream processing)
- Single-chip designs

A lot of computing unit (green), but weak

Modern GPU has more ALU's

The GPU devotes more transistors to data processing

A Specialize Processor

- Very efficient for
 - Fast parallel floating-point processing
 - Single instruction multiple data operations
 - High computation per memory access
- Not as efficient for
 - Double precision
 - Branching-intensive operations
 - Random access, memory-intensive operations

The Rendering Pipeline

- The basic construction three conceptual stage
- Each stage is a pipeline and runs in parallel
- Graphics performance is determined by the slowest stage
- Modern graphics system:
 - Software:
 - Hardware:

The Rendering Pipeline

- The process to generate two-dimensional images from given virtual cameras and 3D objects
- The pipeline stages implement various core graphics rendering algorithms
- Why should you know the pipeline?
 - Necessary for programming GPUs
 - Understand various graphics algorithms
 - Analyze performance bottleneck

Rendering Pipeline

- Host interface: move data from CPU to GPU
- Vertex processing: transform vertex from object to screen space
- Triangle setup: rasterization
- Pixel processing: color pixels
- Memory interface: produce final image

The Quest for Realism

