Dryad and DryadLINQ

General-purpose Distributed Computing using a High-level Language

Michael Isard Microsoft Research Silicon Valley

Distributed Data-Parallel Computing

- Workloads beyond standard SQL, HPC
 - Data-mining, graph analysis, ...
 - Complex, long-lived application software
- Cloud (shared clusters)
 - Transparent scaling
 - Resource virtualization
- Commodity hardware
 - Fault tolerance with good performance

Talk overview

- Part I
 - High-level language: LINQ
 - Computational model: DAG
 - Execution layer: Dryad+Quincy
- Part II
 - Dryad systems issues
 - Comparison with MapReduce
 - DryadLINQ demo

LINQ

- Microsoft's Language INtegrated Query
- Operators to manipulate datasets in .NET
 - Dataset is a first-class abstraction
 - Select, Join, GroupBy, Aggregate, etc.
 - Set at a time, instead of looping over Object at a time
- Integrated into .NET programming languages
 - Programs can call operators
 - Operators can invoke arbitrary .NET functions
- Data model
 - Data elements are strongly typed .NET objects
 - Much more expressive than SQL tables
- Extensible
 - Add new operators and implementations

Aggregating partial sums

```
class PartialSum { public int sum; public int count; };
static double MergeSums(PartialSum[] sums)
  int totalSum = 0, totalCount = 0;
  int i;
  for (i = 0; i < sums.Length; ++i)
    totalSum += sums[i].sum;
    totalCount += sums[i].count;
  return (double) totalSum / (double) totalCount;
```

Aggregating partial sums

Convenient syntax

```
var words =
  tableOfLines.SelectMany(I => I.Split(' ')).GroupBy(w => w);
```

Convenient syntax

```
var words =
   tableOfLines.SelectMany(I => I.Split(' ')).GroupBy(w => w);
IQueryable<IGrouping<string,string>> words =
      tableOfLines.SelectMany(mySplitFunction).GroupBy(myStringIdentity);
IEnumerable<string> mySplitFunction(string line)
   return line.Split(' ');
string myStringIdentity(string word)
   return word;
```


K-means helper functions

```
class Vector { ... }

Vector Mean(IEnumerable<Vector> set) {
    Vector sum = set.Aggregate( (x, y) => x + y );
    return sum / set.Count();
}

Vector NearestNeighbor(Vector vect, IEnumerable<Vector> set) {
    return set.Min( e => (e - vect).L2Norm() );
}
```

```
IEnumerable<Vector> kMeansStep(IEnumerable<Vector> vectors,
                                   IEnumerable<Vector> centers) {
   var clusters = vectors.GroupBy(
        vector => NearestNeighbor(vector, centers).VectorId);
   return clusters.Select(cluster => Mean(cluster));
IEnumerable<Vector> kMeans(IEnumerable<Vector> vectors,
                              IEnumerable<Vector> centers) {
   for (int i = 0; i < iterations; i++) centers = kMeansStep(vectors, centers);
   return centers;
```

Data mining, machine learning, ...

- Decision-tree training
- SVD
- Power iteration (PageRank)
- Image feature extraction/indexing/clustering
- Network trace analysis
- Light-field simulation

• ...

Talk overview

- Part I
 - High-level language: LINQ
 - Computational model: DAG
 - Execution layer: Dryad+Quincy
- Part II
 - Dryad systems issues
 - Comparison with MapReduce
 - DryadLINQ demo

Computational model: DAG

- Distributed processing
 - Partition computation across cores/cluster
 - Minimize communication overhead
- Directed-acyclic graph
 - Edge is finite sequence of data items
 - Vertex is computation over input edge sequences

DAG abstraction

- Explicit dataflow
 - Exposes dependencies within computation
- Absence of cycles
 - Allows re-execution for fault-tolerance
 - Simplifies scheduling: no deadlock
- Cycles can often be replaced by unrolling
 - Unsuitable for fine-grain inner loops
- Very popular
 - Databases, functional languages, ...

Map

- Independent transformation of dataset
 - for each x in S, output x' = f(x)
- E.g. simple grep for word w
 - output line x only if x contains w

Map

- Independent transformation of dataset
 - for each x in S, output x' = f(x)
- E.g. simple grep for word w
 - output line x only if x contains w

Map

- Independent transformation of dataset
 - for each x in S, output x' = f(x)
- E.g. simple grep for word w
 - output line x only if x contains w

- Grouping plus aggregation
 - 1) Group x in S according to key selector k(x)
 - 2) For each group g, output r(g)
- E.g. simple word count
 - group by k(x) = x
 - for each group g output key (word) and count of g

- Grouping plus aggregation
 - 1) Group x in S according to key selector k(x)
 - 2) For each group g, output r(g)
- E.g. simple word count
 - group by k(x) = x
 - for each group g output key (word) and count of g

D is distribute, e.g. by hash or range

ir is initial reduce, e.g. compute a partial sum

K-means

K-means

PageRank

Distributed Word Count

Count word frequency in a set of documents:

```
var words = docs.SelectMany(doc => doc.words);
var groups = words.GroupBy(word => word);
var counts = groups.Select(g => new WordCount(g.Key, g.Count()));
```


Execution Plan for Word Count

Execution Plan for Word Count

Talk overview

- Part I
 - High-level language: LINQ
 - Computational model: DAG
 - Execution layer: Dryad+Quincy
- Part II
 - Dryad systems issues
 - Comparison with MapReduce
 - DryadLINQ demo

Dryad

- General-purpose execution engine
 - Batch processing on immutable datasets
 - Well-tested on large clusters
- Automatically handles
 - Fault tolerance
 - Distribution of code and intermediate data
 - Scheduling of work to resources

Fault tolerance

- Buffer data in (some) edges
- Re-execute on failure using buffered data
- Speculatively re-execute for stragglers

Rewrite graph at runtime

- Loop unrolling with convergence tests
- Adapt partitioning scheme at run time
 - Choose #partitions based on runtime data volume
 - Broadcast Join vs. Hash Join, etc.
- Adaptive aggregation and distribution trees
 - Based on data skew and network topology
- Load balancing
 - Data/processing skew (cf work-stealing)

Dryad System Architecture

Dryad System Architecture

Quincy DAG Scheduler

- Data locality and fairness (SLAs)
- SOSP 2009

Production system

- Dryad well-tested, scalable
 - Daily use supporting Bing for over 3 years
 - Clusters with >10k computers
- Applicable to large number of computations
 - 250 computer cluster at MSR SVC, Mar->Nov 09
 - 15k jobs (tens of millions of processes executed)
 - Hundreds of distinct programs
 - Network trace analysis, privacy-preserving inference, lighttransport simulation, decision-tree training, deep belief network training, image feature extraction, ...

Conclusion

- DryadLINQ supports many computations
 - Easy to use, flexible
- DAG-structured jobs scale to large clusters
 - Transient failures common, disk failures daily
- Publically available for download http://connect.microsoft.com/Dryad

Talk overview

- Part I
 - High-level language: LINQ
 - Computational model: DAG
 - Execution layer: Dryad+Quincy
- Part II
 - Dryad systems issues
 - Comparison with MapReduce
 - DryadLINQ demo

Dryad Inputs and Outputs

- Partitioned data set
 - Records do not cross partition boundaries
 - Data on compute machines: NTFS, SQLServer, ...
- Optional semantics
 - Hash-partition, range-partition, sorted, etc.
- Loading external data
 - Partitioning "automatic"
 - File system chooses sensible partition sizes
 - Or known partitioning from user

Partitioning driven by data

Partitioning driven by data

Push vs Pull

- Databases typically 'pull' using iterator model
 - Avoids buffering
 - Can prevent unnecessary computation
- But DAG must be fully materialized
 - Complicates rewriting
 - Prevents resource virtualization in shared cluster

Channel abstraction

Push vs Pull

- Channel types define connected component
 - Shared-memory or TCP must be gang-scheduled
- Pull within gang, push between gangs

Fault tolerance

- Buffer data in (some) edges
- Re-execute on failure using buffered data
- Speculatively re-execute for stragglers
- 'Push' model makes this very simple

DryadLINQ Internals

- Distributed execution plan
 - Static optimizations: pipelining, eager aggregation, etc.
 - Dynamic optimizations: data-dependent partitioning, dynamic aggregation, etc.
- Automatic code generation
 - Vertex code that runs on vertices
 - Channel serialization code
 - Callback code for runtime optimizations
 - Automatically distributed to cluster machines
- Separate LINQ query from its local context
 - Distribute referenced objects to cluster machines
 - Distribute application DLLs to cluster machines

Decomposable Functions

- Roughly, a function H is decomposable if it can be expressed as composition of two functions IR and C such that
 - IR is commutative
 - C is commutative and associative
- Some decomposable functions
 - Sum: IR = Sum, C = Sum
 - Count: IR = Count, C = Sum
 - OrderBy.Take: IR = OrderBy.Take,C = SelectMany.OrderBy.Take

Two Key Questions

- How do we decompose a function?
 - Two interfaces: iterator and accumulator
 - Choice of interfaces can have significant impact on performance
- How do we deal with user-defined functions?
 - Try to infer automatically
 - Provide a good annotation mechanism

Iterator Interface in DryadLINQ

```
[Decomposable("InitialReduce", "Combine")]
public static IntPair SumAndCount(IEnumerable<int>
g) {
  return new IntPair(g.Sum(), g.Count());
public static IntPair InitialReduce(IEnumerable<int> g)
  return new IntPair(g.Sum(), g.Count());
public static IntPair Combine(IEnumerable<IntPair> g)
  return new IntPair(g.Select(x => x.first).Sum(),
                        g.Select(x =>
x.second).Sum());
```

Accumulator Interface in DryadLINQ

```
[Decomposable("Initialize", "Iterate", "Merge")]
public static IntPair SumAndCount(IEnumerable<int>
g) {
  return new IntPair(g.Sum(), g.Count());
public static IntPair Initialize() {
  return new IntPair(0, 0);
public static IntPair Iterate(IntPair x, int r) {
  x.first += r;
  x.second += 1;
  return x;
public static IntPair Merge(IntPair x, IntPair o) {
  x.first += o.first;
  x.second += o.second;
  return x;
```

Iterator PartialSort

G1+IR and G2+C

- Keep only a fixed number of chunks in memory
- Chunks are processed in parallel: sorted, grouped, reduced by IR or C, and emitted

• G3+F

 Read the entire input into memory, perform a parallel sort, and apply F to each group

Observations

- G1+IR can always be pipelined with upstream
- G3+F can often be pipelined with downstream
- G1+IR may have poor data reduction
- PartialSort is the closest to MapReduce

Accumulator FullHash

- G1+IR, G2+C, and G3+F
 - Build an in-memory parallel hash table: one accumulator object/key
 - Each input record is "accumulated" into its accumulator object, and then discarded
 - Output the hash table when all records are processed

Observations

- Optimal data reduction for G1+IR
- Memory usage proportional to the number of unique keys, not records
 - So, we by default enable upstream and downstream pipelining
- Used by DB2 and Oracle

Talk overview

- Part I
 - High-level language: LINQ
 - Computational model: DAG
 - Execution layer: Dryad+Quincy
- Part II
 - Dryad systems issues
 - Comparison with MapReduce
 - DryadLINQ demo

MapReduce (Hadoop)

- MapReduce restricts
 - Topology of DAG
 - Semantics of function in compute vertex
- Sequence of instances for non-trivial tasks

MapReduce language complexity

- Simple to describe MapReduce model
- Can be hard to map algorithm to framework
 - cf k-means: combine C+P, broadcast C, iterate, ...
 - HIVE, PigLatin etc. mitigate programming issues

MapReduce system complexity

- Simple to describe MapReduce system
- Implementation not uniform
 - Different fault-tolerance for mappers, reducers
 - Add more special cases for performance
 - Hadoop introducing TCP channels, pipelines, ...
 - Dryad has same state machine everywhere

DryadLINQ demo

Conclusions

- High-level language is good
 - For ease of use, maintainability, expressiveness
- Computational abstraction is important
 - Suitable target for compiler, not developer
 - Common patterns should be efficient
 - Optimization should be easy
- LINQ is a pretty good language abstraction
- DAG is a very good computational model