Solar energy systems

Overview

- Structure of a PV energy system
- The PV generator
- Energy storage
 - Batteries
- Power conditioning and control
- Sizing off-grid PV energy systems
- Example applications of PV energy systems
 - Off-grid systems
 - Grid connected systems
- Economics of PV energy systems
- Environmental impact of PV energy

Based on T. Markvart's book "Solar electricity – 2nd edition", Wiley 2005

Structure of a PV energy system

Stand alone PV energy system

Grid connected PV energy system

Hybrid PV energy system

The PV generator

- The solar module
 - Most PV modules are designed to work with 12 V batteries
 - Typical configuration: 36 cells in series
 - 36 * 0.5 V = 18 V
 - Some over-voltage allowed
 - Will give at least 12 V under non-ideal irradiation
 - From several tens to more than 100 W modules available
 - Output measured under STC
 - AM1.5 @ 1 kW/m²
 - 25 °C
 - Nominal output often called W_p

Performance of the PV generator

Effect of irradiance (G)

$$I_{SC}(G) \sim (I_{SC,STC}/G_{STC}) \cdot G$$

Effect of temperature (T)

$$V_{OC}(T_c) = V_{OC,STC} + (T_{cell} - T_{cell,STC}) \cdot (dV_{OC}(T)/dT)$$

- For Si solar modules: $dV_{OC}(T)/dT = -2.3*N_{cells}$ [mV/K]
- T_{cell} for a given G is given by the NOCT of the module

Nominal operating T_{cell} (NOCT)

Nominal operating cell temperature (NOCT)

$$T_{cell} - T_{ambient} = (NOCT - 20 \circ C/0.8) \cdot G$$

- Defined for a set of standard testing conditions (STC)
 - $G_{ref} = 0.8 \text{ kW/m}^2$
 - Wind speed 1 m/s
 - Ambient temperature = 20 °C
 - Mounting: open back side
- Typical NOCT values: 42 46 °C

Output power of a PV generator

- Example calculation
 - Module spec': $I_{SC,STC}$ = 3A, $V_{OC,STC}$ = 20.4 V, P_{max} = 45,9 W, NOCT = 43 °C
 - Operating conditions: G = 0.7 kW/m², T_{ambient} = 34 °C

$$\begin{array}{lll} \bullet & I_{SC}(G) & = I_{SC,STC} \cdot (G/G_{STC}) & = 2.1 \text{ A} \\ \bullet & T_{cell} & = T_{ambient} + (NOCT - 20 \, ^{\circ}C/0.8) \cdot G & = 54.1 \, ^{\circ}C \\ \bullet & V_{OC}(T) & = V_{OC,STC} + (T_{cell} - T_{cell,STC}) \cdot (dV_{OC}(T)/dT) & = 18.1 \, V \\ \end{array}$$

Assuming a FF independent of T and G:

• FF =
$$P_{\text{max}} / I_{\text{SC,STC}} \cdot V_{\text{OC,STC}}$$
 = 0.75
• $P_{\text{max}}(G,T)$ = $I_{\text{SC}}(G) \cdot V_{\text{OC}}(T) \cdot \text{FF}$ = 28.5 W

Under these conditions, this module operates at 62 % of nominal rating

Output power of a PV generator

- Any given situation with any given T and G has a corresponding maximum power point (MPP)
 - If possible, it is important to ensure operation of a PV generator as close to the MPP as possible
- If connected to a 12 V battery

•
$$P = I_{SC}(G) \cdot V_{bat}$$
 = $I_{SC,STC} \cdot V_{bat} \cdot G$ $\equiv P_{eff} \cdot G$

Interconnection of PV generators

- Quite analogous to the interconnection of cells in a module
 - Number of modules in a string gives desired DC bus voltage
 - Number of strings gives current required from PV generator
- In practice, not all modules perform equally well
 - Variation in cell and module manufacturing quality
 - Typically results in higher dispersion in current than in voltage
 - Different operating conditions in different parts of PV generator system
 - Cleanliness
 - Partial shading and cloud cover
 - This leads to mismatch losses
 - Such losses minimized by sorting modules prior to interconnection

Interconnection of PV generators

- There is a possibility that the poorest module and/or string can be driven into reverse operation
 - Hot-spot formation
 - Can degrade or destroy modules
- Care can be taken to avoid this
 - Including a bypass diode for each module
 - Include a blocking diode for each string

Capturing the Sunlight

- A PV generator can be mounted in different configurations
 - Flat / horizontal
 - Inclined
 - Most common
 - Angle chosen commonly equal to latitude angle, as this maximizes the yearly average irradiation
 - In PV energy systems with summer peak loads (e.g. crop irrigation), a smaller angle gives better performance
 - In PV energy systems where the daily irradiance in the days with the least irradiance is critical (winter), a larger angle is more suitable
 - Tracking
 - Gives better performance, but moving parts increase need for maintenance and repair
 - Necessary in PV energy systems using concentrators

Energy storage

- Solar energy supply varies with time
- Stand-alone PV energy systems must usually be able to store energy over time
- Most PV energy systems use battery storage
 - Notable exeption: water pumping systems
 - Most common batteries: lead-acid batteries
 - Other possibilities
 - Compressed air
 - Flywheels
 - Current in superconducting rings
 - Hydrogen

- Example: a lead-acid battery
 - Lead electrodes
 - Sulphuric acid electrolyte

Battery charging

Charging

- Lead oxide forms at one electrode (anode)
- Pure lead forms at other electrode (cathode)
- Sulphuric acid liberated in electrolyte

Battery discharging

- Discharging
 - Lead sulphate formed at both electrodes
 - Acid removed from electrolyte

- Cyclical operation
 - The battery is charged by the PV generator
 - The battery is discharged through the load
- Charging
 - If excessively charged, O₂ and H₂ gas is formed at the electrodes
 - Battery lifetime shortened
 - Increased maintenance requirements
 - Can be used to alleviate stratification
- Cycling leads to repeated growth and dissolution of lead, lead oxide and lead sulphide
 - Resulting mechanical stresses might lead to the shedding of active matter from the electrodes

Sulphation

- Large lead sulphate crystals can form at electrodes hindering further chemical reactions
- Mainly occurs if battery remains in low charge state for some time

Stratification

- During battery operation, the densest parts of the electrolyte sink to the bottom of the battery
 - Promotes corrosion and sulphation in lower part of battery
- Can be avoided by regular overcharging and accompanying gassing

- Care must be taken when designing and calculating the cost of a stand-alone PV energy system based on batteries
 - Maintenance requirements
 - Typically shorter lifetime of battery than PV generator makes replacement(s) necessary under the lifetime of the system

- The output from a PV generator varies with time
 - Position of Sun
 - Weather
 - Shading
 - •
- A range of different electronic devices are used to condition the output power
 - System malfunction must be avoided
 - DC/AC conversion
 - •

- Blocking diodes
 - A PV generator in the dark will become a discharge path
 - Night
 - Shading
 - When the voltage at the battery exceeds the voltage of the generator, the diode becomes reverse-biased
 - Will cause voltage drop during daytime operation, and is sometimes omitted

- Self-regulating systems
 - If output voltage from PV generator becomes too low, the blocking diode becomes reverse-biased and no longer conducts
 - Simple design
 - Temperature dependent system
 - Can often result in poor performance of the PV energy system
 - Mostly used in small, very lowcost systems

- Charge regulators
 - Variable resistors or switches
 - Series or shunt configurations
 - Disconnects load from battery if battery voltage becomes too small
 - Limits over-voltage
 - Can be tuned in order to prolong battery lifetimes
 - Controlled gassing

Charge regulator

- DC/DC converters
 - Will allow the PV generator to operate closer to the MPP
 - MPP tracking

- DC/AC converters / inverters
 - Grid connection
 - AC appliances

- AC/DC converters
 - Useful in energy systems

PV energy systems – examples

- Off-grid PV energy systems
- Grid-connected PV energy systems

Off-grid PV energy systems

- Off-grid PV energy systems
 - Rural electrification
 - Water pumping
 - Consumer electronics
 - Space applications
 - Telecommunications
 - Navigation
 - Vaccine cooling
 - Education
 - Illumination
 - Information technology
 - •
- PV-diesel hybrid energy systems
- Sizing off-grid PV energy systems

Off-grid PV energy system

Water pumping system

- 1. Determine energy input
 - Daily solar radiation data
 - Panel inclination
 - Calculate available daily solar energy
 - Average
 - Seasonal (winter / worst case)
- Determine load demand
 - Load specifications
 - Daily load profile
 - Calculate load power demand

- 3. Determine number of modules connected in series
 - Required DC operating voltage
 - Usually a multiple of 12 V
- 4. Determine number of parallel strings
 - Calculate average load currents
 - Use average load power demand and operating voltage
 - Using the average available solar energy, the number of parallel strings is calculated
 - Usually an oversize factor is used

- 5. Sizing the required energy storage
 - Calculate daily charge deficit
 - Gives allowed daily discharge limit for safe system operation
 - Calculate seasonal (winter) charge deficit
 - If properly sized, excess charge generation in the summer should cover the winter charge deficit

PV-diesel hybrid energy system

Grid-connected PV energy systems

- Grid-connected PV energy systems
 - Building-integrated PV (BIPV)
 - PV power stations

Grid-connected PV energy system

Grid-connected PV power station

Solar energy statistics

30.11.2017

On-grid or off grid?

Source: www.iea-pvps.org

Performance Ratio Development for PV Systems Germany

Source: Fraunhofer ISE "1000 Dächer Jahresbericht" 1994 and 1997; 2011 system evaluation

