Métodos Matemáticos da Física

2014/15

Teste 2 04-05-2015

1. Considere a equação diferencial

$$x^{2}y''(x) + (2x - x^{2})y'(x) + \lambda x y(x) = 0$$
, $x \in [0, +\infty[$.

- a) Coloque a equação sob a forma de Sturm-Liouville.
- b) Defina, justificando, o produto interno de funções adequado a este problema.
- 2. Considere a equação diferencial

$$xy''(x) + (2-x)y'(x) + \lambda y(x) = 0$$
, $x \in [0, +\infty[$.

- a) Admita que a solução y(x) se pode escrever como uma série de potências de x e deduza a relação de recorrência entre os seus coeficientes. Escreva a expressão da solução encontrada até à ordem x^4 . Admita que y(0) = 1.
- **b)** Determine os valores próprios, λ_n , associados a funções próprias, $y_n(x)$, dadas por polinómios de grau n.
- c) Obtenha as expressões das funções próprias, $y_0(x)$, $y_1(x)$, $y_3(x)$, e os respectivos valores próprios.
- **3.a)** Mostre que a função harmónica esférica $Y_l^m(\theta,\phi)=c\sin\theta\cos\theta\,e^{-i\phi}$ (c é uma constante) é função própria do operador

$$A = \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2}.$$

- **b)** Encontre, justificando, os valores l, m, da mesma função.
- c) Escreva a definição de produto interno adequado às funções harmónicas esféricas. Calcule o produto interno entre a função $Y_l^m(\theta,\phi)$ dada acima e a função $u(\theta,\phi)=\sin\theta\,e^{-i\,\phi}$.