

Neural network(1)

- Biological Neural Network
- Artificial Neural Network
- Activation Function
- Single-Layer Perceptron
- Multiple Layer Perceptron

생물학적 신경망(biological neural network)

뇌는 수많은 뉴런(neuron)이 시냅스(synapse)를 통하여 네트워크를 구성 뉴런은 외부자극을 받아서 반응하는 기능을 담당

생물학적 신경망(biological neural network)

• 뉴런(Neuron)

- 생물체들이 외부자극을 받아들이고 반응하는 신경계를 구성하는 신경세포
- 인접한 다른 뉴런과 신경접합부(Synapse)를 통해 신호를 주고 받음으로써 다양한 정보를 받아들이고, 저장하고 계산하는 기능을 함

• 뉴런의 구조

- 수상돌기(dendrite) : 신경세포가 신호를 받아들이는 가지
- 세포체(soma, cell body): 신경세포의 중심부로 세포핵(nucleus) 을 가짐, 수상돌기로 들어온 신호를 합하여 값이 크면 '활동전위(action potential)'가 생겨 다음 신경세포에 전달되는 신호가 강해짐
- 축삭(axon): 세포체로부터 아주 길게 뻗어나가는 부분으로 수상돌기와 세포체를 거쳐 전달된 신호를 다른 신경세포에 전달하는 부분
- 시냅스(synapse): 인접한 두 신경 세포가 연접하면서 만드는 구조, 전기적인 신호로 전달된 신호 는 신경전달물질이라는 화학적 신호로 바뀌어 시냅스를 통과
- 생물학적 신경망(biological neural network)
 - 인간의 신경계에서 약 860 억 개의 뉴런이 발견되며 시냅스와 연결되어 네트워크(neural network)를 구성

인공신경망(artificial neural network)

 생물학적 신경 시스템이 정보를 처리하는 기능을 모방하여 인공적으로 구축 한 신경망

synapses

https://medium.com/@ivanliljeqvist/the-essence-of-artificial-neural-networks-5de300c995d6
산업융합형 인공지능 청년혁신가 양성 교육과정 2020 딥러닝 기초

synapse

인공신경망(artificial neural network)

• 이전 뉴런의 신호는 입력 x 와 시냅스의 연결강도 w 를 곱하여 모든 뉴런들의 신호를 합한 후 활성화 함수를 적용한 결과를 출력

https://cs231n.github.io/neural-networks-1/

인공신경망(artificial neural network)

- Perception(퍼셉트론)
 - 초기 형태의 인공 신경망
 - 다수의 입력으로부터 하나의 결과를 내보내는 알고리즘

- transfer function (전달함수) : 입력 노드들의 입력값 (x_i) 과 연결강도(가중치 $, w_i)$ 를 곱하여 합을 구하는 함수(weighted sum)
- · activation function(활성 함수) : 임계값에 따라 활성화 여부를 결정하는 함수

activation function

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z)=z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks	
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0,z)$	Multi-layer Neural Networks	
Rectifier, softplus	$\phi(z) = \ln(1+e^z)$ 가 양성 교육과정 202	Multi-layer Neural 예단하당 기초	

Unit step : 전달받은 값 z가 음수이면 0, 0이면 0.5, 양수이면 1로 출력

Logistic(sigmoid): 전달받은 값 z를 비선형 함수 인 시스모이드를 적용하여 0~1 출력, z값이 크거 나 작을 때 출력에 영향을 덜 줄 수 있는 함수

ReLU : 전달받은 값 z를 직선조합으로 비선형을 표현, (0~z) 출력, 딥러닝에서 주로 사용

Single-Layer Perceptron

- 단층 퍼셉트론(Single-Layer Perceptron)
 - 입력단계(layer)와 출력단계로 구성된 퍼셉트론
 - 입력층(input layer)과 출력층(output layer)으로 구성
 - 입력벡터를 두 부류(0 또는 1)로 분류하는 이진 선형 분류기

Single-Layer Perceptron

AND, NAND, OR 연산에 대한 선형 분류 처리

input		output		
x_1	x_2	AND	OR	NAND
0	0	0	0	1
0	1	0	1	1
0	0	0	1	1
1	1	1	1	0

산업융합형 인공지능 청년혁신가 양성 교육과정 2020 딥러닝 기초

Single-Layer Perceptron 예

AND

 \bullet (1,1)

- AND 연산을 위한 단층 퍼셉트론
 - 입력이 1,1일 경우만 1 나머지는 0을 출력하는 선형분류

Input layer

output layer

입력		출력		
x_1	x_2	S	y	
0	0	-1.5	0	
0	1	-0.5	0	
1	0	-0.5	0	
1	1	0.5	1	

(1,0)

(0,0)

Multiple Layer Perceptron

- 다층 퍼셉트론(MultiLayer Perceptron, MLP):
 - 은닉층(hidden layer)을 두어 여러 층으로 구성된 퍼셉트론
 - 입력층으로부터 입력된 신호는 계산되어 첫번째 은닉층의 출력으로 나가고 두번째 은닉층
 의 입력 값이 되어 계산되고 출력층으로 신호가 전달
 - 심층 신경망(Deep Neural Network, DNN)
 - : 복잡한 문제를 해결하기 위해 은닉층을 여러 개 사용
 - 비선형 분류기

산업융합형 인공지능 청년혁신가 양성 교육과정 2020 딥러닝 기초

- XOR 문제 해결을 위한 다층 퍼셉트론
 - NAND, OR, AND 연산을 조합하여 XOR 연산에 대한 비선형 분류 가능
 XOR = AND(NAND,OR)

input		output
x_1	x_2	XOR
0	0	0
0	1	1
0	0	1
1	1	0

inp	out	hid		output
x_1	x_2	NAND	OR	AND
0	0	1	0	0
0	1	1	1	1
0	0	1	1	1
1	1	0	1	0

- XOR 문제 해결을 위한 다층 퍼셉트론
 - NAND, OR, AND 문제 해결을 위해 수동으로 찾은 가중치와 바이어스 사용

logical operation	weights		bias
	W_1	W_2	b
NAND	-1	-1	1.5
OR	1	1	-0.5
AND	1	1	-1.5

Input layer hidden layer output layer 산업융합형 인공지능 청년혁신가 양성 교육과정 2020 딥러닝 기초