6. Analiza zahtev

6.1. Zajem in specifikacija zahtev

KAKO izvemo, KAJ si uporabniki želijo?

- Zajem in specifikacija zahtev je ena pomembnejših aktivnosti razvoja (oziroma nakupa) IS.
- Osnovni namen zajema in specifikacije zahtev je opredeliti želen IS na način, ki bo omogočal:
 - Pri nakupu IS izbirati med obstoječimi rešitvami.
 - Pri razvoju IS opredeliti osnovno funkcionalnost ter tehnološke in druge nefunkcionalne zahteve in omejitve za izgradnjo želenega IS.

- Rezultat zajema in specifikacije zahtev je dokument (imenovan specifikacije zahtev), kjer so zabeležene vse funkcionalne in nefunkcionalne zahteve v zvezi z želenim IS.
- V nadaljnjih korakih se dokument lahko uporablja:
 - pri pripravi razpisne dokumentacije za nakup IS oziroma izbiro zunanjega razvijalca,
 - kot priloga k pogodbi med naročnikom in izvajalcem projekta razvoja,
 - kot vhod v nadaljnji postopek analize, modeliranja in načrtovanja IS.

- Zajem zahtev izvede sistemski analitik ob tesnem sodelovanju s poznavalci problemske domene oziroma ključnimi uporabniki.
- Osnovni koraki zajemajo:
 - zajem zahtev,
 - ureditev zahtev, in
 - potrditev zahtev.

Zajem zahtev

- Zajem zahtev je proces, v katerem pridobimo vse potrebne zahteve o želenem IS.
- Zahteve pridobimo od vseh relevantnih udeležencev pri razvoju IS:
 - Naročniki, sponzorji, ključni uporabniki, ...
- Za zajem zahtev uporabimo različne tehnike zajema, odvisno od ciljne skupine udeležencev, vrste zajetih zahtev, namena zajema, ...

Ureditev zahtev

- V aktivnosti ureditev zahtev skušamo naše razumevanje želenega IS opredeliti še v okviru dokumenta, s katerim bodo zahteve IS podane bolj formalno in jedrnato.
- Izdelek, ki nastane, imenujemo specifikacija zahtev.
- Specifikacija zahtev lahko služi kot temeljna podlaga pri dogovarjanju med naročnikom in izvajalcem.

Potrditev zahtev

- Zadnja aktivnost je potrditev zahtev, katere namen je predstavitev specifikacije zahtev naročniku in pridobitev soglasja o tem, da so zajete zahteve res to, kar si naročnik želi.
- Potrditev zahtev je potreben, vendar ne tudi zadosten pogoj za uspešen IS !!!

Funkcionalne in nefunkcionalne zahteve

Specifikacija zahtev

- Specifikacija zahtev ima navadno naslednjo strukturo:
 - Kratek opis namena IS ali njegovega podsistema
 - Opis funkcionalnih zahtev
 - Opis nefunkcionalnih zahtev
 - Opis vmesnikov
 - □ Slovar izrazov

Funkcionalne zahteve

- Funkcionalne zahteve so zahteve, ki se nanašajo na želeno funkcionalnost sistema.
 - V bistvu naštevajo KAJ VSE (katere funkcije) naj IS omogoča.
 - So ključnega pomena za delovanje IS.
- Brez posamezne funkcionalne zahteve IS ne bi omogočal izvajanje procesa, za podporo katerega je narejen.
- Primer: Odjava iz izpitnega roka
 - Sistem naj študentom omogoča odjavo iz izpitnega roka.
 - Poslovna pravila:
 - Študent mora vnesti vpisno številko in osebno geslo.
 - Študent se ne more odjaviti iz izpitnega roka, če je do roka še manj kot dva dni.
 - •

Nefunkcionalne zahteve

- Nefunkcionalne zahteve se nanašajo na tehnične, estetske in druge nevsebinske zahteve sistema.
 - V bistvu določajo TEHNIČNE in PODPORNE značilnosti IS.
- Brez posamezne nefunkcionalne zahteve bi IS še zmeraj omogočal podporo celotnega procesa (izvajanje vseh funkcij).
 - Z nefunkcionalnimi zahtevami predvsem določimo želeno učinkovitost sistema, tehnološke omejitve, poskrbimo za prijaznost uporabe.

Primeri:

- Sistem naj omogoča hkratno uporabo 100 uporabnikov, pri čemer odziv sistema ne sme biti daljši od 3 sekund.
- Podatki naj se hranijo v podatkovni bazi Oracle.
- Sistem mora delovati tako v brskalniku Chrome kot tudi Firefox.
- Za avtentikacijo naj se uporabi digitalno potrdilo.
- ---

Vaja dela ...

- Razmislite o aplikaciji za predvajanje videoposnetkov (kot je npr. Media Player)
 - Katere so funkcionalne zahteve za tak sistem?
 - Katera "poslovna" pravila naj veljajo za posamezno funkcionalno zahtevo?
 - Katere so nefunkcionalne zahteve?

6. Analiza zahtev

6.2. Diagrami primerov uporabe

Kako s primeri uporabe PRIKAŽEMO funkcionalnosti IS?

Primer: Bančni avtomat

Scenarij PU: Informacije o stanju na računu

- "Pozitiven" scenarij:
 - Stranka vloži kartico
 - BA ugotovi pravilnost kartice
 - BA zahteva vnos gesla
 - Stranka vnese geslo (geslo je pravilno)
 - Izpiše se stanje na računu
- Alternative scenarija:
 - kartica je nepravilna, BA vrne kartico
 - vneseno geslo je napačno (trije poskusi, potem BA zadrži kartico)
 - komunikacijski kanal je prekinjen
 - uporabnik prekine akcijo s pritiskom na ustrezen gumb

Diagrami primerov uporabe (PU)

- Diagrami PU (use case diagrams) predstavljajo komunikacijo med akterji (uporabniki, drugimi sistemi, navideznimi uporabniki) in sistemom, ki ga razvijamo.
 - Povezava med uporabniki sistema in procesi, ki v sistemu tečejo.
- Realni primer poslovnega procesa, ki se začne in konča z okoljem poslovnega sistema.
- Prenos sistemskega pristopa v poslovno modeliranje.

Namen uporabe diagramov PU (1/2)

- Diagrami PU služijo kot osnova pri
 - definiranju funkcionalnih zahtev,
 - identificiranju in določanju lastnosti objektov,
 - definiranju interakcije med objekti in vmesniki objektov,
 - načrtovanju uporabniških vmesnikov,
 - testiranju,
 - komunikaciji z uporabnikom!

Namen uporabe diagramov PU (2/2)

 Primeri uporabe povezujejo vse aktivnosti v življenjske ciklu razvoja IS !!!

Notacija

- Gradniki diagrama primera uporabe so
 - primer uporabe,
 - akter,
 - povezave med akterji in primeri uporabe,
 - sistem (podsistem).
- Scenarij: dodan opis s pomočjo strukturiranega besedila
 - Pozitiven scenarij najbolj verjeten scenarij, kjer se aktivnosti izvedejo v skladu s predvidevanji
 - Alternative scenarija ko se med izvajanjem aktivnosti zgodi kakšna izjema, ki tok izvajanja spremeni od predvidenega

Diagram PU

Sistem ali podsistem

- Je koncept prikaza poslovnega sistema.
- Predstavlja IS, katerega želimo modelirati.
- Sistem (podsistem) mora biti omejen, z jasno definirano mejo.
 Banka
 - S to mejo vemo, kaj je domena IS (kaj moramo mi razviti) in kaj je izven dosega IS (kaj mi ne razvijamo, ampak še vedno imamo v mislih pri razvoju).
- Delitev sistema na podsisteme pomeni večjo razumljivost za ljudi, ki imajo opravka le z delom poslovanja, enostavnejši prikaz odgovornosti za posameznika in prikaz medsebojnih vplivov.

Bankomat

Akter

- Je zunanja entiteta, ki komunicira s PU in predstavlja vpliv okolja na sistem.
- Akter lahko predstavlja vlogo posameznika, sistema ali stroja izven sistema, ki s sistemom komunicira in jo hočemo modelirati.

Akterji niso nujno osebe, čeprav so akterji v diagramu predstavljeni s človeško figuro. Akterji so lahko tudi zunanji sistemi, ki potrebujejo informacije od sistema, ki ga razvijamo.

Generalizacija, specializacija

- S pomočjo generalizacije lahko izpostavimo splošnega akterja oz. vlogo, ki jo predstavljajo vsi izpeljani (specializirani) akterji.
 - Vsi izpeljani (specializirani) akterji pa lahko komunicirajo še z drugimi primeri uporabe, s katerimi generalizirani akter (ali drugi izpeljani akterji) ne komunicirajo.

PU - Primer uporabe

- Primer uporabe predstavlja zaporedje transakcij v sistemu, ki akterju vrača merljive rezultate.
- Opisuje možen potek interakcije med sistemom in enim ali več akterji.
- Ne predstavlja enega samega scenarija, temveč opis množice potencialnih scenarijev.
- V primeru, ko je potrebno podrobno poznavanje scenarijev, opis dopolnimo s strukturiranim opisom posameznih scenarijev (opišemo običajni scenarij in naštejemo vse alternative scenarija).

Primer uporabe

PU - Primer uporabe

- Namesto strukturiranega besedila lahko uporabimo diagram zaporedja:
 - Identificiramo "subjekte", ki so odgovorni za izvajanje scenarija.
 - Izrišemo časovno zaporedje dogodkov, ki tečejo med udeleženimi "subjekti".
- Da bolj natančno določimo posamezno aktivnost, uporabimo diagram sodelovanja.

Povezava "komunicira"

Sodelovanje akterja v primeru uporabe prikažemo z neprekinjeno povezavo med simbolom akterja in simbolom primera uporabe ("communicate").

Povezava "razširja"

- Je povezava med primeri uporabe.
- Relacija "razširja" (<<extend>>) od primera uporabe B do primera uporabe A pomeni, da izvajanje primerka primera uporabe A lahko vsebuje (ni pa obvezno) obnašanje, ki je vsebovano v primeru uporabe B.
 - To pomeni, da primer uporabe B razširja tok dogodkov primera uporabe
 A (B extends A).

Povezava "razširja"

Prikažemo jo z usmerjeno povezavo od primera uporabe, ki zagotavlja razširitev, do osnovnega primera uporabe.

Povezava "vključuje"

- Je povezava med primeri uporabe.
- Povezava "vključuje" (<<include>>) med primeroma uporabe A in B določa, da primerek primera uporabe A v svojem delovanju vsebuje tudi delovanje primerka primera uporabe B (A include B).

Prejšnje verzije: <<uses>>

Povezava "vključuje"

 Prikažemo jo z usmerjeno povezavo od primera uporabe, ki vključuje (uporablja) drug primer uporabe.

Povezavi razširja in vključuje

- Razlika med relacijama vključuje in razširja je:
 - Relacijo razširja uporabimo, kadar imamo primer uporabe, ki je podoben drugemu primeru uporabe, toda dela nekaj več.
 - Relacijo vključuje modeliramo, kadar je obnašanje primera uporabe skupno več kot le enemu primeru uporabe.
- Primer za bankomat:
 - Avtorizacija se izvede kot del zaporedja dogodkov v več primerih uporabe:
 - Dvig denarja
 - Polog denarja
 - Informacije o stanju na računu

Komentarji

- Če želimo, lahko tudi v diagramih PU uporabimo komentarje – vendar naj le-ti predstavljajo kratko opombo in ne razlago gradnikov.
- Velikokrat komentarji pomenijo, da diagram PU ni sam po sebi dovolj razumljiv – razlog za premislek!

Scenarij (opis PU)

- Za natančnejše razumevanje posameznega PU izdelamo opis poteka oz. scenarij.
- Uporabimo lahko posebne diagramske tehnike (diagram sodelovanja, diagram zaporedja, diagram aktivnosti) ali strukturirano besedilo.
 - Navedemo pričakovano zaporedje dogodkov po posameznih korakih (pozitivni scenarij).
 - Obstajajo tudi možna odstopanja od osnovnega zaporedja, pri čemer se tok dogodkov spremeni (alternative scenarija).

Splošno priporočilo

- Diagram PU je namenjen olajšanju zajema oz. prikaza zahtev, ne zato, da si z njim otežimo naše delo!!!
- Princip Occamove britve:
 - "Entia non sunt multiplicanda praeter necessitatem."
 - ali prevedeno v slovenščino:
 - Stvari naj se ne komplicirajo bolj kot je to treba.

Vaja dela...

- Izdelajte diagram primerov uporabe za informacijski sistem AIPS.
- Za izbran primer uporabe napišite pozitiven scenarij in alternativne možnosti scenarija.