Université de Lorraine Analyse complexe

Examen partiel du 20/03/2024

Durée : 2h. Documents, calculatrices, téléphones interdits. Toutes les réponses doivent être justifiées.

Exercice 1. Soit Ω un ouvert connexe de \mathbb{C} et $f:\Omega\to\mathbb{C}$ une fonction analytique. On suppose que f s'annule sur une partie possédant un point d'accumulation dans Ω . Montrer que f est nulle sur Ω .

Exercice 2. Énoncer la formule de Cauchy. Application directe : calculer $\int_{\mathcal{C}} \frac{e^{z^2} dz}{z-2}$, où \mathscr{C} est le cercle de centre 1 + i et de rayon 2, orienté dans le sens direct.

Exercice 3. Dans cet exercice, à chaque fois que r est défini, γ_r désigne le lacet $\gamma_r : [0, 2\pi] \to \mathbb{C}, t \mapsto re^{it}$.

- 1. Soit $n \in \mathbb{Z}$ et $r \in \mathbb{R}_+^*$. Calculer $\int_{\gamma_r} z^n dz$.
- 2. Soit $n \in \mathbb{Z}$, $a \in \mathbb{C}$, et $r \in \mathbb{R}_+^* \setminus \{|a|\}$. Donner sans démonstration la valeur de $\int_{\mathbb{R}_+}^* (z-a)^n dz$.
- 3. Soit $f: \mathbb{C} \setminus \{2, -3\} \to \mathbb{C}, z \mapsto \frac{13z 11}{(z 2)^2(z + 3)}$. Soit $r \in \mathbb{R}_+^* \setminus \{2, 3\}$. Calculer la quantité $I(r) := \int_{Y_z} f(z) dz$.
- 4. Hors-barème, ne PAS passer trop de temps sur cette question. Démontrer le résultat de la question 2 (avec la méthode vue en TD ou toute autre méthode permise par le cours vu depuis lors).

Exercice 4. On note $\mathbb{R}[x,y]$ le \mathbb{R} -espace vectoriel des polynômes à deux variables et à coefficients réels. Si $d \in \mathbb{N}$, on note $\mathbb{R}[x, y]_d$ le sous-espace engendré par les monômes de degré total d. (À titre d'exemple, $3x^2y + y^7 \in \mathbb{R}[x, y]$ et $2x^3y^2 + xy^4 \in \mathbb{R}[x, y]_5$.) L'espace $\mathbb{R}[x, y]_d$ est de dimension finie d + 1 et est muni de la base $(x^k y^{d-k})_{0 \le k \le d}$. On l'appelle l'espace des polynômes homogènes de degré d. Enfin, on considère le laplacien

$$\Delta: \mathbb{R}[x,y] \to \mathbb{R}[x,y], P \mapsto \frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2}.$$

Le laplacien est une application linéaire et induit des applications $\mathbb{R}[x, y]_d \to \mathbb{R}[x, y]_{d-2}$ pour tout $d \ge 2$. Un polynôme dont le laplacien est nul est dit harmonique.

- 1. Écrire la matrice de $\Delta : \mathbb{R}[x, y]_3 \to \mathbb{R}[x, y]_1$ dans les bases précisées plus haut.
- 2. En déduire l'ensemble des polynômes harmoniques homogènes de degré trois.
- 3. Si $P \in \mathbb{R}[x, y]_3$ déterminer toutes les fonctions holomorphes $f \in \mathcal{O}(\mathbb{C})$ dont la partie réelle est P (vu comme fonction polynomiale $\mathbb{C} \to \mathbb{R}$).

Exercice 5. Soit Ω un ouvert connexe de \mathbb{C} , $f:\Omega\to\mathbb{C}^*$ une fonction holomorphe et $\mathrm{Arg}:\mathbb{C}^*\to]-\pi,\pi]$ la fonction qui à un nombre complexe non nul associe son unique argument compris dans $]-\pi,\pi]$. On suppose que $\operatorname{Arg} \circ f$ est constante. Montrer que f est constante.

Exercice 6. Soit $f: \mathbb{C} \to \mathbb{C}$ holomorphe vérifiant : $\forall t \in \mathbb{R}$, $f(it) = t^4 + t^2$. Calculer f(1).

Exercice 7. Soit $\sum_{n>0} a_n z^n$ une série entière de rayon R>0 et f sa somme.

- 1. On suppose que pour tout entier naturel n > 1/R, on a $f\left(\frac{1}{n}\right) = \frac{1}{n^2}$. Que peut-on dire de f?
- 2. On suppose cette fois que pour tout entier naturel n > 1/R, on a $\left| f\left(\frac{1}{n}\right) \right| \le \frac{1}{2^n}$. Montrer que f est nulle.

Exercice 8. Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon R>0 et f sa somme. On note u la partie réelle de f.

- 1. Montrer: $\forall n > 0, \forall r \in]0, R[, a_n = \frac{1}{\pi r^n} \int_0^{2\pi} u(re^{it}) e^{-int} dt$. Attention: il est explicitement demandé de justifier soigneusement l'interversion, en précisant à quelle fonction (de quoi vers quoi) on applique quel théorème. Une phrase telle que « par convergence normale/uniforme, ... » ne suffira pas.
- 2. La formule précédente est-elle vraie pour a_0 ?