Muhammed Bilal Tisk	MANOROLA BHURS
1.) a) fixe) = fixe), assumed	b) fixi) = fixn), ossumed
x1-1 = x2-1-	x' ₂ = x' ₂
$\begin{bmatrix} \times & - & \times \\ & & & \end{bmatrix}$	$\left[\begin{array}{c} x_1 = x_2 \end{array} \right]$
For all integer numbers there is only one image. Therefore, this function is one-to-one.	For all integers, there is only one image, Theirbore, this function is one-to-one.
c) fix1) = f(x2), assumes	d) fix() = 2(12)
x, 2+1 = x2+1	[x1/2] = [x2/2] , lets x1=3
$\left(x_1 = -x_2\right)$, $\left(x_1 = x_2\right)$	[1.5] = [2]
Two different integers have a some image. Therefore, this is not one-to-one.	Different integers in domain have some value in a image. Therefore, this function is not one-to-one.
2.) a) y= n-1 => y-1=n => f(n)	= n +1 b) y=n3=> n=y3=> s(n)=3n
fin = n+1 4n +2, 4 fin +2.	fin) = 3(n 4n &2, 4 Pin) #2
Therefore, this is only	Therefore, this is not with.
(a) $y = n^2 + 1 = 1$ $y - 1 = n^2 = 1$ $n = \sqrt{y - 1} = 1$) fin)=sn-7 d) Let fin = sn/27=9,
fin) = In-1' An +2, Afin) +2.	is a is even, n=2a. Then
Therefore, this is not onto.	An) = 1 297 = a. 4a 1a=26 € 2
	18 a 12 022, n=20-1. Then
	An)=[2at]= and, tala=ak+1 &

ei) fim, n) = m2-4=k k = 2 m2 = k+4 => m= 1k+4, m= 5k+4 m may not be any integer such that fimin)= k This is not onto. 4.) a) fim, n) = m+n= k kEZ Let m=k, n=0, fimin)=k+0=k YILEZ, there exist mEZ, nEZ such that from, n) = E. b) f(m,n) = m2+n2=k kEZ let k = b. There does at exist only m=2, n=2 such that f(m,n) = k c) Answer is in the following page. d) fimin) = In1 = 6 62 if k > 0, m=0, n=k. Then fim,n)=161= k if k wo, m=0, n=-k, then fim, n) = 1-kl=k for Mk EZ, There exist mEZ, n EZ such that fimil = k. es) fimin) = m-n=6 662 if m=k, n=0. Then fim. n) = k-0 = k. for HE &Z, there exist m=2, n=2 such that fimin) = &.

ja.

7		7					.,							7
) c)	fim	n)	= m	= ½	ke?	2								
Let	m	= k	, n	٠ ,	Then	Sir	n.n) :	= _	= 12.					
For	b/k	€7	, } \	pie	exist	m	٤Ζ,	ne	7	such	the	,} }	lm,	n)=k
5,)	n=1				\$1 = (-1 2 = (-1				fo =	3,	f ₁ =1	, }	2=1	
955	ume		k	£ 4+	1 = -1	, - f	L = -	1)6	,	pro	e	n = lc	, + 1.	
		(f k +	£ 12+1), }		41	- (-1							
* \$	le= fle	41. C	k-1 -	(-1)k	=) fig:	- Ste+	, Fk-1	+ (-1)		k+1)				
		·			1 + fiz			1						
				\$) + (- (-1) ⁽⁴⁾	1) (col (-1) (col (-1) (col	-1)6+1 +1		+1				
1	1 3						1			I	1 1	1 1		

•

6.) q: A-B, P: B-C a) ry EA, if x=y then g(x)=g(y) = g(y)=g(y) EB 9(x) , 9(x) = B, if g(x) = 9(y) then f(9(x)) = f(9(x)) f(9(x)) f(9(x)) x=y so that figur = figur . Therefore, fog is one-lo-one b) a +A, b +B, for Yb +B 9(a) = b beB, LEC, for YCEC fib)=C=) fig(a))=C YbeB gra)=b, then Yce(figra))=c, Therefore, tog is onto. $a_1^{\circ} = a_1 - a_2 = a_2 =$ Inductive: assume n=t & air = ar -a 0=++1 5 a.r. = ar -a =) = ark + ar = ar -a ar - a = ar - a

