

Departamento de Estatística Universidade Federal de Juiz de Fora

Delineamento em Blocos Casualizados

Professora Ângela

Delineamento em Blocos Casualizados

- Leva em consideração o princípio do controle local, além dos princípios básicos da repetição e da casualização;
- Fornece a possibilidade de estudar o efeito de tratamentos mesmo quando existe alguma heterogeneidade na área experimental, no material a ser utilizado no experimento, diferenças entre técnicos envolvidos, material de medida...

Análise de um Experimento em Blocos Casualizados

- Assim como para o caso do delineamento inteiramente casualizado, o primeiro passo é a especificação do modelo matemático;
- $y_{ij} = m + t_i + b_j + e_{ij};$
 - Em que y_{ij} representa a observação relativa ao tratamento i (i = 1, 2, ..., I) no bloco j (j = 1, 2, ..., J);
 - m representa a média geral;
 - t_i representa o efeito do tratamento i;
 - b_j representa o efeito do bloco j; e
 - $ightharpoonup e_{ij}$ o erro aleatório relativo a cada observação.
- Obs: Como todos os tratamentos devem estar representados, uma única vez, dentro de cada bloco, pode-se considerar cada bloco como uma repetição.

Esquema da ANOVA

Causa de Variação	Graus de Liberdade	Soma de Quadrados	Quadrado Médio
Tratamentos	I-1	$\sum \frac{1}{J} T_i^2 - C$	$\frac{SQTrat}{I-1}$
Blocos	<i>J</i> – 1	$\sum \frac{1}{I} B_j^2 - C$	
Resíduo	(I-1)(J-1)	SQTotal-SQTrat-SQBlocos	$\frac{SQRes}{(I-1)(J-1)}$
Total	<i>IJ</i> – 1	$\sum_{i,j} y_{ij}^2 - C$	

ANOVA

Os estimadores de mínimos quadrados para os efeitos do modelo são:

$$\widehat{m} = \frac{\sum_{ij} y_{ij}}{IJ} = \frac{G}{IJ};$$

$$\hat{t}_i = \frac{T_i}{I} - \widehat{m};$$

$$\hat{b}_j = \frac{B_j}{I} - \widehat{m}$$

- ▶ Em que:
 - ightharpoonup G é o total geral;
 - $ightharpoonup T_i$ é o total do tratamento i;
 - \triangleright B_j é o total do bloco j;
 - ► I é o número de tratamentos; e
 - → J é o número de blocos.
- Para obter esses resultados é necessário utilizar duas restrições:

Exemplo

- Um pesquisador pretende avaliar o comportamento de 9 porta-enxertos para a laranjeira Valência:
 - ▶ I Tangerina sunki;
 - 2 Limão rugoso nacional;
 - 3 Limão rugoso da Florida;
 - 4 Tangerina cleópatra;
 - 5 Citrange-troyer;
 - ▶ 6 Trifoliata;
 - 7 Tangerina cravo;
 - ▶ 8 Laranja caipira ; e
 - 9 Limão cravo.

Planejamento do experimento

- Terreno aparentemente homogêneo, porém com um leve declive;
- Temos disponibilidade de quantos porta enxertos e enxertos forem necessário;
- O trabalho de implementação e observação vai ser feito por técnicos treinados;
- O usual é utilizar duas plantas por parcela no caso de frutíferas arbóreas;
- A variável que será observada é o número médio de frutas produzidas (frutas por planta) durante um período de 10 anos (dos 2 aos 12 anos de idade das plantas).

Resultados – médias de fruto por planta

Trat		Blocos		Ti	mi	ti
	I	2	3			
1	145	155	166	466	155,33	-27,22
2	200	190	190	580	193,33	10,78
3	183	186	208	577	192,33	9,78
4	190	175	186	55 I	183,67	1,12
5	180	160	156	496	165,33	-17,22
6	130	160	130	420	140	-42,55
7	206	165	170	541	180,33	-2,22
8	250	271	230	75 I	250,33	67,78
9	164	190	193	547	182,33	-0,25
Bj	1648	1652	1629			
mj	183,11	183,56	181	Tota	al geral = 4	1929
bj	0,56	I	-1,56	Média geral = 182,56		

Análise da Variância

C.V.	G.L.	S.Q.	Q.M.	F
Trat	8	22981,33	2872,67	11,41**
Blocos	2	33,55	16,78	
Resíduo	16	4027,79	251,74	
Total	26	27042,67		

$$CV(\%) = 8,69\%$$

Teste de Comparação de Médias (Tukey)

	\widehat{m}_2	\widehat{m}_3	\widehat{m}_4	\widehat{m}_{5}	\widehat{m}_6	\widehat{m}_7	\widehat{m}_8	\widehat{m}_{9}
\widehat{m}_1	38	37	28,34	10	15,33	25	95	27
\widehat{m}_2		I	9,66	28	53,33	13	57	11
\widehat{m}_3			8,66	27	52,33	12	58	10
\widehat{m}_4				18,34	43,67	3,34	66,66	1,34
\widehat{m}_5					25,33	15	85	17
\widehat{m}_6						40,33	110,33	42,33
\widehat{m}_7							70	2
\widehat{m}_8								68

 $\Delta = 46,08$

Conclusões e Interpretação

maior							\longrightarrow	menor
\widehat{m}_8	\widehat{m}_2	\widehat{m}_3	\widehat{m}_4	\widehat{m}_{9}	\widehat{m}_7	\widehat{m}_5	\widehat{m}_1	\widehat{m}_6
			a	a	a	a	a	a
	b	b	b	b	b	b	b	

Se um produtora escolher um porta-enxerto significativamente superior a outros, ele está escolhendo um porta-enxerto que induz à copa uma produção de 46 frutos/planta a mais do que aquela de quem foi diferente significativamente.

Assumindo que um fruto pesa em média 150gr e que 1kg de frutos custa US\$ 0,24; ele terá um ganho de US\$ 497,00/ha, supondo-se 300 plantas/ha.

Sendo assim, o porta enxerto de maior valor econômico é o enxerto Laranja caipira.

C

Blocos Casualizados com uma Parcela Perdida

- Existem duas opções de análise quando existe uma parcela perdida em dados obtidos de um experimento instalado segundo um delineamento em blocos casualizados.
- Considerar um modelo para blocos casualizados desbalanceados – Blocos Incompletos;
- Ou estimar o valor relativo à parcela perdida.

Caso Desbalanceado

- Ignora-se a parcela perdida e trata-se o conjunto de dados como pertencente a um experimento em blocos casualizados incompletos;
- Diferentemente do caso inteiramente casualizado, não é possível derivar as somas de quadrados do caso balanceado pro caso desbalanceado com a mesma facilidade;
- Faz-se necessário o uso de um software estatístico na análise dos dados relativos a um experimento seguindo um delineamento em blocos casualizados incompletos.

Estimação da Parcela Perdida

- Uma segunda opção é estimar a parcela perdida e prosseguir com a ANOVA;
- Deve-se no entanto:
 - Remover um grau de liberdade do total, e por consequência do resíduo;
 - Fazer um ajuste (ou correção) à soma de quadrados de tratamento, superestimada no processo.

Estimação da Parcela Perdida

Estima-se a parcela perdida (PP) utilizando a seguinte expressão:

$$y = \frac{IT + JB - G}{(I - 1)(J - 1)}.$$

- Em que:
- y é a estimativa da PP que minimiza a SQRes;
- ► I é o número de tratamentos;
- ightharpoonup T é o total relativo ao tratamento no qual ocorreu a PP;
- ▶ J é o número de blocos;
- \triangleright B é o total relativo ao bloco no qual ocorreu a PP;
- ▶ G é o total geral das (IJ 1) parcelas obtidas no experimento.

Estimação da Parcela Perdida

Tuesta un a nata a		Totala			
Tratamentos	1	2	•••	J	Totais
1	y_{11}	(y)	•••	y_{1J}	T+y
2	y_{21}	y_{22}	•••	y_{2J}	T_2
•	:	:	•••	:	:
I	y_{I1}	y_{I2}	•••	y_{IJ}	T_I
Totais	B_1	B + y	•••	B_J	G + y

Correção da Soma de Quadrados de Tratamento

A SQTrat é corrigida pela expressão:

$$U = \frac{I-1}{I} \left(y - \frac{B}{I-1} \right)^2;$$

- Em que:
- I é o número de tratamentos;
- \triangleright B é o total relativo ao bloco no qual ocorreu a PP;
- y é a estimativa da PP.
- A soma de quadrados de tratamentos ajustada, ou corrigida, é dada por:
- \triangleright $SQTrat_{aj} = SQTrat U.$

Comparação entre Médias de Tratamentos

- A diferença na comparação entre as médias dos tratamentos do caso sem PP e do caso com PP, está no cálculo da variância estimada do contraste envolvendo a média do tratamento no qual ocorreu a PP.
- A estimativa da variância do contraste envolvendo a média do tratamento, no qual ocorreu a PP, é dada por:
- $\widehat{V}(\widehat{Y}_{PP}) = \left[\frac{2}{J} + \frac{I}{J(I-1)(J-1)}\right] QMRes.$

Exemplo

Tuest		Blocos		Takaia Tuak
Trat	1	2	3	Totais Trat
I	145	155	166	466
2	200	190	190	580
3	183	186	208	577
4	190	175	186	551
5	180	160	156	496
6	130	160	130	420
7	206	y	170	(376)+ y
8	250	271	230	751
9	164	190	193	547
Totais Bl	1648	(1487)+ y	1629	4764)+ y
		B		G

Exemplo

		Blocos		
Trat	ı	2	3	Totais Trat
ı	145	155	166	466
2	200	190	190	580
3	183	186	208	577
4	190	175	186	551
5	180	160	156	496
6	130	160	130	420
7	206	193	170	569
8	250	271	230	75 I
9	164	190	193	547
Totais Bl	1648	1680	1629	4957

ANOVA

CV	GL	SQ	QM	F
SQTrat	8	23089,18	2886,15	12,10
SQBloco	2	147,63	73,81	
SQRes	15	3577,70	238,51	
SQTotal	25	26814,51		

$$CV(\%) = 8,41\%$$

$$SQTrat_{aj} = 23044,06 \Rightarrow QMTrat_{aj} = \frac{23044,06}{8} = 2880,51$$

$$F_{aj} = \frac{2880,51}{238,51} = 12,08**$$

Teste de Tukey (PP no trat 7)

\widehat{m}_8	\widehat{m}_2	\widehat{m}_3	\widehat{m}_4	\widehat{m}_{9}	\widehat{m}_7	\widehat{m}_5	\widehat{m}_1	\widehat{m}_6
250,33	193,33	192,33	183,67	182,33	189,67	165,33	155,33	140
	\widehat{m}_2	\widehat{m}_3	\widehat{m}_4	\widehat{m}_5	\widehat{m}_6	\widehat{m}_7	\widehat{m}_8	\widehat{m}_{9}
\widehat{m}_1	38	37	28,34	10	15,33	34,34	95	27
\widehat{m}_2		I	9,66	28	53,33	3,66	57	П
\widehat{m}_3			8,66	27	52,33	2,56	58	10
\widehat{m}_4				18,34	43,67	6	66,66	1,34
\widehat{m}_{5}					25,33	24,34	85	17
\widehat{m}_6						49,67	110,33	42,33
\widehat{m}_7							60,66	7,34
\hat{m}_8								68

 $\Delta = 45,3$

 $\Delta' = 51,27$

Conclusão e Interpretação

A conclusão e interpretação não sofreu alteração nenhuma quando comparadas com as encontradas no caso estudado sem a parcela perdida (slides da aula de blocos).

- Considera dois modelos distintos para o mesmo experimento:
 - Modelo completo

$$y_{ij} = m + t_i + b_j + e_{ij}$$

Modelo reduzido

$$y_{ij} = m + b_i + e_{ij}$$

- Utiliza o modelo reduzido para encontrar a SQTrat livre da estimativa da PP
- Ao desconsiderar o efeito de tratamentos, o modelo reduzido contém um resíduo inflacionado, que passa a incluir o efeito de tratamento como se ele fosse devido ao acaso:

$$SQTotal_{1} = SQBlocos_{1} + SQRes_{1} \begin{cases} SQTrat_ajustada \\ SQRes_completa \end{cases}$$

A fim de encontrar a SQTrat ajustada, basta utilizar a expressão:

$$SQTrat_{aj} = SQRes_1 - SQRes$$

Em que SQRes é a soma de quadrados de resíduos calculada utilizando a estimativa da PP

I 145	Blocos 2	3
145		3
145		
ITJ	155	166
200	190	190
183	186	208
190	175	186
180	160	156
130	160	130
206		170
250	271	230
164	190	193
1648	1487	1629
	183 190 180 130 206 250 164	183 186 190 175 180 160 130 160 206 271 164 190

G = 4764

CV	GL	SQ
SQTrat	8	23089,18
SQBloco	2	147,63
SQRes	15	3577,70
SQTotal	25	26814,51

CV	GL	SQ
Blocos	2	100,85
Res ₁	23	26621,76
Total ₁	25	26722,61

$$SQTrat_{ai} = SQRes_1 - SQRes = 26621,76 - 3577,7 = 23044,06$$

$$SQTrat - SQTrat_{aj} = 23089,18 - 23044,06 = 45,12 = U$$

Blocos Casualizados com Duas ou Mais Parcelas Perdidas

- As opções para se lidar com um experimento em blocos casualizados com 2 ou mais PPs são as mesmas que pro caso de uma PP:
 - Considerar o experimento como desbalanceado e analisá-lo com o auxílio de softwares estatísticos;
 - Du estimar as parcelas perdidas e prosseguir com a análise removendo um grau de liberdade do total pra cada PP.
- A diferença maior, é que não existem fórmulas fechadas para estimar as PPs. Como é o caso quando existe apenas uma PP.

Estimação das Parcelas Perdidas

- ▶ Pode-se estimar as PP's pelo método de mínimos quadrados, visando minimizar a SQRes. Deriva-se a SQRes com respeito a cada PP, formando um sistema de k equações a k incógnitas. A solução desse sistema de equações fornece o conjunto de estimativas das PP's;
- Quando são poucas PP's uma alternativa é utilizar um processo iterativo.

Processo Iterativo no Caso de duas Parcelas Perdidas

Primeira etapa:

Atribuir um valor arbitrário para uma das PP's (x, pode ser a média dos valores obtidos para o tratamento em que ocorreu, por exemplo);

Segunda etapa:

Estimar a segunda PP (y) pela expressão $y = \frac{IT + JB - G}{(I-1)(J-1)}$.

▶ Terceira etapa:

Despreze o valor atribuído a x e recalcule a estimativa de x utilizando a expressão $x = \frac{IT + JB - G}{(I-1)(J-1)}$, considera-se a estimativa obtida por y como sendo um valor observado e não perdido.

Processo Iterativo no Caso de duas Parcelas Perdidas

Quarta etapa a):

Comparar ambos os valores encontrados para x, se os valores forem iguais encerra-se o processo. Em seguida deve-se retirar 2 graus de liberdade do total e prosseguir com a ANOVA.

Quarta etapa b):

Calcular uma nova estimativa para y, considerando o segundo valor encontrado para x como sendo um valor observado.

Quinta etapa a):

Comparar ambos os valores encontrados para y, se os valores forem iguais encerra-se o processo. Em seguida deve-se retirar 2 graus de liberdade do total e prosseguir com a ANOVA.

Quinta etapa b):

Caso ambos os valores obtidos para y sejam distintos deve-se assumir o segundo encontrado e prosseguir com o processo iterativo até que dois valores estimados, consecutivamente, para a mesma PP sejam iguais.

Exemplo

T		T T .			
Trat	I	1 2 3		Totais Trat	
I	145	155	166	466	
2	200	190	190	580	
3	183	186	208	577	
4	\boldsymbol{x}	175	186	361 + x	
5	180	160	156	496	
6	130	160	130	420	
7	206	y	170	376 + y	
8	250	271	230	75 I	
9	164	190	193	547	
Totais BI	1458 + x	1487 + <i>y</i>	1629	4574 + x + y	

Exemplo – 2º Passo – Processo Iterativo

				$7 180,5 = \frac{175 + 186}{2}$
_		Blocos	T. Asia Tasa	
Trat	1	2	3	Totais Trat
ı	145	155	166	466
2	200	190	190	580
3	183	186	208	577
4	180,5	175	186	541,5
5	180	160	156	496
6	130	160	130	420 T
7	206	y	170	376)+ y
8	250	271	230	751
9	164	190	193	547
Totais BI	1638,5	1487 + y	1629	4754,5)+ y

Exemplo – 3º Passo – Processo Iterativo

Took		Blocos		To to in Tree t
Trat	I	2	3	Totais Trat
I	145	155	166	466
2	200	190	190	580
3	183	186	208	577
4	\boldsymbol{x}	175	186	361 + x
5	180	160	156	496
6	130	160	130	420
7	206	193,16	170	569,16
8	250	271	230	751
9	164	190	193	547
Totais Bl	1458+ x	1680,16	1629	4767,16)+ <i>x</i>

Exemplo – 4º Passo – Processo Iterativo

	Ī			
Trat		Blocos		Totais Trat
ITal	1	2	3	iotais irat
1	145	155	166	466
2	200	190	190	580
3	183	186	208	577
4	178,49	175	186	539,49
5	180	160	156	496
6	130	160	130	420
7	206	y	170	376 + y
8	250	271	230	751
9	164	190	193	547
Totais Bl	1636,49	1487 y	1629	4752,49)+ <i>y</i>

Exemplo – 5º Passo – Processo Iterativo

T4		Blocos		Takaia Tuak
Trat	1	2	3	Totais Trat
I	145	155	166	466
2	200	190	190	580
3	183	186	208	577
4	\boldsymbol{x}	175	186	361 + x
5	180	160	156	496
6	130	160	130	420
7	206	193,28	170	569,28
8	250	271	230	75 I
9	164	190	193	547
Totais Bl	1458 x	1680,28	1629	4767,28)+ <i>x</i>

Estimativas das Parcelas Perdidas

- Pelo método dos mínimos quadrados:
 - $x \approx 178,48$
 - $y \cong 193,28$

- Pelo método iterativo:
 - $x \approx 178,48$
 - $y \cong 193,28$

Cálculo da ANOVA

- Em primeiro lugar deve-se inserir os valores estimados das parcelas perdidas na tabela de resultados do experimento;
- Em seguida monta-se o esquema da ANOVA com os graus de liberdade, lembrando de retirar um grau de liberdade do total para cada valor estimado, ou parcela perdida;
- Por fim calculam-se as Somas de Quadrado segundo um experimento em blocos casualizados balanceado.

Exemplo

Trat		T- 4-1- T				
	I	2	3	Totais Trat		
I	145	155	166	466		
2	200	190	190	580		
3	183	186	208	577		
4	178,48	175	186	539,48		
5	180	160	156	496		
6	130	160	130	420		
7	206	193,28	170	569,28		
8	250	271	230	75 I		
9	164	190	193	547		
Totais BI	1636,48	1680,28	1629	4945,76		

Exemplo - Análise da Variância

CV	GL	SQ	QM	F
Trat	8	23130,46	2891,31	11,57
Bloco	2	170,52	85,26	
Resíduos	14	3499,29	249,95	
Total	24	26800,23		

CV(%) = 8,63%

Correção da Soma de Quadrados de Tratamento

- A correção da SQTrat deve ser feita pelo método do Resíduo Condicional.
- Primeiro deve-se fazer a ANOVA seguindo o modelo matemático completo:
 - $Y_{ij} = m + t_i + b_j + e_{ij}.$
- Em seguida deve-se considerar o modelo incompleto, sendo que o efeito a ser removido é aquele relativo à causa de variação que se deseja ajustar:
 - $Y_{ij} = m + b_j + e_{ij}.$
- ▶ Faz-se uma nova ANOVA para os mesmos dados segundo o modelo reduzido.

Correção da Soma de Quadrados de Tratamento

- Ao calcular as SQ's relativas a ANOVA segundo o modelo reduzido encontra-se uma nova SQRes_(k) que leva em consideração, além do efeito do acaso, o efeito da causa de variação retirada do modelo, sendo assim:
 - \triangleright $SQTrat_{aj} = SQRes_{(k)} SQRes.$

Exemplo – Método do Resíduo Condicional

Trat		Blocos	
	I	2	3
I	145	155	166
2	200	190	190
3	183	186	208
4		175	186
5	180	160	156
6	130	160	130
7	206		170
8	250	271	230
9	164	190	193
Totais Bl	1458	1487	1629

G = 4574

Exemplo - Método do Resíduo Condicional

CV	GL	SQ
Bloco(2)	2	106,585
Resíduos(2)	22	26568,375
Total(2)	24	26674,96

$$SQTrat_{aj} = SQRes_2 - SQRes = 26568,38 - 3499,29 = 23069,09$$

$$QMTrat_{aj} = \frac{23069,09}{8} = 2883,636 \implies F_{aj} = 11,54**$$

Ftab = 2,7 (8gl, 14gl e 5%) ou 4,14 (8gl, 14gl e 1%)

Comparação de Médias de Tratamentos – Teste de Tukey

Para comparar as médias entre tratamentos sem parcela perdida, pode-se usar a distância mínima de Tukey para o caso balanceado:

Para comparar médias entre tratamentos com parcela perdida ou entre tratamentos com e sem parcela perdida, é necessário calcular o número efetivo de repetições (aproximação de Taylor) entre ambos os tratamentos.

Número Efetivo de Repetições

- O número efetivo de repetições (N.E.R.) de um tratamento com relação à outro é obtido da seguinte maneira:
 - Se o tratamento A ocorre no bloco j e o tratamento B também ocorre nesse mesmo bloco, dá-se o valor I para o N.E.R. de A em relação a B para o bloco j;
 - Se A não ocorre no bloco j, dá-se o valor 0 para o N.E.R. de A em relação à B para esse bloco, independente do fato de B ter ocorrido ou não;
 - Se A ocorre no bloco j e B não ocorre, dá-se o valor $\frac{I-2}{I-1}$ para o N.E.R., em que I representa o número de tratamentos.
- A soma dos valores encontrados para cada bloco fornece o N.E.R. de A em relação a B.

Exemplo

Trat		Blocos	
	I	2	3
I	145	155	166
2	200	190	190
3	183	186	208
4		175	186
5	180	160	156
6	130	160	130
7	206		170
8	250	271	230
9	164	190	193

Teste de Tukey (PPs no trat 4 e 7)

\widehat{m}_8	\widehat{m}_2	\widehat{m}_3	\widehat{m}_7	\widehat{m}_{9}	\widehat{m}_4	\widehat{m}_5	\widehat{m}_1	\widehat{m}_6
250,33	193,33	192,33	189,76	182,33	179,83	165,33	55,33	140
	\widehat{m}_2	\widehat{m}_3	\widehat{m}_4	\widehat{m}_5	\widehat{m}_6	\widehat{m}_7	\widehat{m}_8	\widehat{m}_{9}
\widehat{m}_1	38,00	37,00	24,49	10,00	15,33	34,43	95,00	27,00
\widehat{m}_2		1,00	13,51	28,00	53,33	3,57	57,00	11,00
\widehat{m}_3			12,51	27,00	52,33	2,57	58,00	10,00
\widehat{m}_4				14,50	39,83	9,93	70,50	2,50
\widehat{m}_{5}					25,33	24,43	85,00	17,00
\widehat{m}_6						49,76	110,33	42,33
\widehat{m}_7							60,57	7,43
\widehat{m}_8								68,00

 $\Delta = 46,82$

 $\Delta_1 = 52,80$

 $\Delta_2 = 59,23$

Conclusão e Interpretação

A conclusão e interpretação não sofreu alteração nenhuma quando comparadas com as encontradas no caso estudado sem a parcela perdida ou no caso com uma parcela perdida.

Média Harmônica

- Em alguns softwares estatísticos não são encontradas distâncias mínimas significativas (dms) diferentes em casos de experimentos desbalanceados;
- Ao invés de encontrar valores diferentes para as dms, uma alternativa é calcular a média harmônica de repetições e calcular uma única dms:

$$r_h = \frac{I}{\sum_i \frac{1}{r_i}}$$
 , $\Delta = q \sqrt{\frac{\text{QMRes}}{r_h}}$

- Em que:
 - r_h é a média harmônica dos números de repetições;
 - ▶ I é o número de tratamentos do experimento;
 - r_i , com i = 1, ..., I é o número de repetições do tratamento i.

