高级计量经济学

Lecture 3: The Geometry of Linear Regression

黄嘉平

工学博士 经济学博士 深圳大学中国经济特区研究中心 讲师 办公室 粤海校区汇文楼1510

E-mail huangjp@szu.edu.cn

https://huangjp.com Website

欧氏空间

欧氏空间

Euclidean Space

n 维欧氏空间 E^n 是在 n 维实向量的集合 \mathbb{R}^n 中加入内积

$$\langle x, y \rangle = x \cdot y \equiv x^{\mathsf{T}} y$$
 for all $x, y \in \mathbb{R}^n$

 E^n 中向量的长度: $||x|| = (x^T x)^{1/2}$

内积与内角: $\langle x, y \rangle = ||x|| ||y|| \cos \theta$

$$x,y$$
 平行时,则 $\langle x,y \rangle = ||x|| ||y||$

$$x,y$$
 互相垂直时(即正交 $x \perp y$),则 $\langle x,y \rangle = 0$

Cauchy-Schwartz inequality:
$$|x^{T}y| \leq ||x|| ||y||$$
 $||x|| \leq ||x|| ||y||$

子空间

Subspace

 E^n 的子空间也是一个欧氏空间 E^k , $k \leq n$ 。

基底(basis vectors)与张成(span)

若 E^n 中的 n 个向量 $x_1, ..., x_n$ 线性不相关,且任意 $y \in E^n$ 可以写成 $x_1, ..., x_n$ 的线性结合,则 $x_1, ..., x_n$ 被称为 E^n 的基底, E^n 可以由 $x_1, ..., x_n$ 张成,记作 $E^n = S(x_1, ..., x_n)$ 。

 $S(x_1,...,x_k), x_1,...,x_k \in E^n, k \le n$, 是由 $x_1,...,x_k$ 张成的 E^n 的子空 间。

当矩阵 $X = [x_1 \ x_2 \ \cdots \ x_k]$ 时, $S(x_1, ..., x_k)$ 被称作 X 的列空间,记作 S(X)。

正交子空间

Orthogonal Subspaces

对于 E^n 的两个子空间 S_1 和 S_2 ,若任意 $v_1 \in S_1$, $v_2 \in S_2$ 的内积为零,则称 S_1 和 S_2 正交。

 E^n 中所有和 S(X) 正交的向量的集合 $S^{\perp}(X)$ 被称作 S(X) 在 E^n 中的正交补空间,即

$$\mathcal{S}^{\perp}(X) = \{ y \in E^n \mid y \perp x \text{ for all } x \in \mathcal{S}(X) \}$$

维度: 空间的维度等于其基底的数量

$$\dim(E^n) = n$$
, $\dim(\mathcal{S}(X)) = k \Rightarrow \dim(\mathcal{S}^{\perp}(X)) = n - k$

根据定义,任意的 $a\in\mathcal{S}(X)$ 和任意的 $b\in\mathcal{S}^\perp(X)$ 都满足 $a\perp b$

正交投影

正交投影

Orthogonal Projection

投影:将 E^n 中的每一点和其子空间中的一点关联起来的函数,或映射(mapping)。这时要保持原本在子空间中的点不变。

正交投影:将 E^n 的每一点映射到子空间中距离其最近的点。

绿色直线为正交投影

紫色直线为透视投影

投影矩阵

Projection Matrix

$$\hat{u} = y - X\hat{\beta}$$

$$= y - X(X^{T}X)^{-1}X^{T}y$$

$$= (I - X(X^{T}X)^{-1}X^{T})y$$

令

$$\begin{aligned} \boldsymbol{P}_{X} &= \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top}, \\ \boldsymbol{M}_{X} &= \boldsymbol{I} - \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} = \boldsymbol{I} - \boldsymbol{P}_{X} \end{aligned}$$

则 $P_X y = X \hat{\beta}$ 为 y 的 OLS 预测值 \hat{y} , $M_X y = \hat{u}$ 为 OLS 残差。

我们可以称 P_X 为投影矩阵,因其将 y 投影到子空间 $\mathcal{S}(X)$;称 M_X 为 残差生成矩阵(residual maker),因其将 y 投影到 $\mathcal{S}^{\perp}(X)$ 。

投影矩阵的性质

•
$$P_X X = X(X^\top X)^{-1} X^\top X = X$$

•
$$M_X X = (I - P_X)X = X - X = O$$
 (零矩阵)

- P_X 和 M_X 是对称矩阵 注意 $(A^T)^{-1} = (A^{-1})^T$
- P_X 和 M_X 是幂等矩阵 (idempotent matrix)

$$P_X^2 = X(X^{\top}X)^{-1}X^{\top}X(X^{\top}X)^{-1}X^{\top} = X(X^{\top}X)^{-1}X^{\top} = P_X$$

 $M_X^2 = (I - P_X)(I - P_X) = I - 2P_X + P_X^2 = I - P_X = M_X$

•
$$P_X M_X = M_X P_X = O$$

投影的值域与子空间

 P_X 的值域是 $\mathcal{S}(X)$ 整体。 M_X 的值域是 $\mathcal{S}^{\perp}(X)$ 整体。

- 1. 值域包含在子空间内: 对于任意的 $y \in \mathbb{R}^n$, $P_X y = X \hat{\beta}$ 是 X 的列的线性结合,因此 $P_X y \in \mathcal{S}(X)$; $X^{\top} M_X y = X^{\top} M_X^{\top} y = (M_X X)^{\top} y = 0$,因此 $M_X y \in \mathcal{S}^{-1}(X)$ 。
- 2. 子空间包含在值域内: S(X) 中的任意一点 x 都可以写成 $x = a_1x_1 + \cdots + a_kx_k = Xa$,因为 $P_Xx = P_XXa = Xa = x$,所以 S(X) 中所有的点都是其自身通过 P_X 得到的像。 $S^{-1}(X)$ 中的任意一点 z 都满足 $X^{\mathsf{T}}z = 0$,此时 $M_Xz = (I P_X)z = z P_Xz$,因为 $P_Xz = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}z = 0$,所以 $M_Xz = z$,即 $S^{-1}(X)$ 中所有的点都是其自身通过 M_X 得到的像。

其他重要公式

标准方程 (normal equation)

$$X^{\mathsf{T}}\hat{u} = \mathbf{0}$$
 \Leftrightarrow $X^{\mathsf{T}}(y - X\hat{eta}) = \mathbf{0}$ \Leftrightarrow $X^{\mathsf{T}}X\hat{eta} = X^{\mathsf{T}}y$ 与最小二乘法相同

• 线性模型的正交分解

由定义可知 $P_X + M_X = I$,因此

$$y = P_X y + M_X y = \hat{y} + \hat{u}$$

通过勾股定理可得 $||y||^2 = ||\hat{y}||^2 + ||\hat{u}||^2$, 即 TSS = ESS + SSR

独立变量的线性变换

子空间 S(X) 的基底

S(X) 可以由不同的基底张成。

令 A 为 $k \times k$ 的非奇异矩阵,即 $det(A) \neq 0$,A 可逆,则

$$XA = X[a_1 \ a_2 \ \dots \ a_k] = \begin{bmatrix} Xa_1 \ Xa_2 \ \dots \ Xa_k \end{bmatrix}$$

这里每个 Xa_i 都是S(X)中的一点,因此由 $(Xa_1,Xa_2,...,Xa_k)$ 张成的子空间 $S(XA) \subseteq S(X)$ 。

任意的 $x \in S(X)$ 都可以表达为 $x = Xb = XAA^{-1}b = (XA)(A^{-1}b)$,因此 $x \in XA$ 的列的线性结合,即 $x \in S(XA)$ 。因此 $S(X) \subseteq S(XA)$ 。

最终可得 S(X) = S(XA)。

解释变量的线性变换

XA 可以看做线性回归中解释变量的线性变换。变换前后的投影矩阵 P_X 和 P_{XA} 代表同一正交投影。

$$P_{XA} = XA(A^{\top}X^{\top}XA)^{-1}A^{\top}X^{\top}$$

$$= XAA^{-1}(X^{\top}X)^{-1}(A^{\top})^{-1}A^{\top}X^{\top}$$

$$= X(X^{\top}X)^{-1}X^{\top}$$

$$= P_{X}$$

$$\Rightarrow W_{XA} = W_{X}, W_{XA}y = W_{X}y$$

$$\Rightarrow \hat{\beta}_{XA} = (A^{\top}X^{\top}XA)^{-1}A^{\top}X^{\top}y = A^{-1}(X^{\top}X)^{-1}(A^{\top})^{-1}A^{\top}X^{\top}y = A^{-1}\hat{\beta}_{X}$$

针对线性回归 $y = X\beta + u$,若将解释变量进行线性变换,则变换后的模型 $y = XA\beta + u$ 和原模型的预测值相同,残差相同,但 OLS 估计值 $\hat{\beta}$ 会发生变化。

解释变量的单位转换

由上一页的结论可导出:解释变量的单位转换不影响预测值和残差,但影响系数的估计值。

假设模型包含温度这一解释变量和常数项。温度的单位可以是摄氏(C)或华氏(F),二者的关系是 $F=32+\frac{9}{5}C$ 。令 ι 代表要素为 1 的向量,则

$$\begin{bmatrix} \mathbf{i} & \mathbf{F} \end{bmatrix} = \begin{bmatrix} \mathbf{i} & \mathbf{C} \end{bmatrix} \begin{bmatrix} 1 & 32 \\ 0 & \frac{9}{5} \end{bmatrix}$$

即以摄氏记录的数据可以通过 $\begin{bmatrix} 1 & 32 \\ 0 & \frac{9}{5} \end{bmatrix}$ 转换为华氏。若摄氏和华氏下的回归系数分别为 $[\beta_1 \ \beta_2]$ 和 $[\alpha_1 \ \alpha_2]$,则可得 $\beta_1 = \alpha_1 + 32\alpha_2$, $\beta_2 = \frac{9}{5}\alpha_2$ 。