

MT6771 MFNR Manual

2018/03

Content

- MFNR2.5 Flow Introduction
- MFNR2.5 Tool Operation Guide
- MFNR2.5 Tuning Guide

Content

- MFNR2.5 Flow Introduction
- MFNR2.5 Tool Operation Guide
- MFNR2.5 Tuning Guide

Objective

- Reduce noise by multi-frame blending
- 15%~40% faster in Shot-to-JPG compared to MFNR2.0

Flow

N*Iraw: Input RAW files. In MT6771, N=2~6

N*Ibfbld: Images prepared to do multi-frame blending

Imfb: Multi-Frame blended Image

Image after motion area refinement

loutput: Image with After NR/EE

1. Before NR

- Convert RAW to YUV
- Noise pre-reduced to fit into MFP's capacity
- Remove impulse noise and bad pixels
- Relative Registers:
 - MFNR → BEFORE-UDM / BEFORE-NBC / BEFORE-NBC2

2. Multi-Frame Processing

- Compound all Ibfbid frames into one Imfb frame
 - Reduce noise without losing details
 - Work on both luma and chroma noise
- Relative Registers:
 - MFNR \rightarrow MFP/MAR

3. Motion Area Refinement

- Apply stronger NR against motion area
 - Remove motion occlusion noise left in MFB stage
 - Improve visual continuity between motion and static areas
- Relative Registers:
 - MFNR \rightarrow MFP/MAR
 - MFNR → MAR-NBC / MAR-NBC2

4. After NREE

- Apply AFTER-NBC/EE/NBC2/HFG:
 - Reduce low-frequency noise in advance
 - Improve image sharpness
 - Add random fine noise for boosting visually clarity
- Relative Registers:
 - MFNR → AFTER-NBC / AFTER-EE / AFTER-NBC2 / AFTER-HFG

Content

- MFNR2.5 Flow Introduction
- MFNR2.5 Tool Operation Guide
- MFNR2.5 Tuning Guide

- Step1 (I): Load RAW files
 - Hot Key: CTRL + R
 - Make sure that all MFNR RAW files share the same name, followed by a serial number
 - Only the first one(*-0000-0000*.raw/packed_word) needs to be opened
 - EXIF/tuning /SDBLK with same file name will also be loaded automatically

- Step1 (II): Load DAT Settings (optional)
 - Hot Key: CTRL + D
 - For loading pre-saved DAT file, make sure RAW is loaded first

Cancel

- Step2: Ensure MFNR flow is enabled
 - Menu -> ISPs -> ensure "Multi-Frame Noise Reduction" is checked

(If RAW is shot in MFNR mode, it'll auto-checked after RAW/JPG loaded, only confirmation needed)

- Step3: Registers Checking/Tuning
 - MFNR related parameters are congregated into 10 tabs in MFNR page (Please refer following "MFNR Tuning Guide" section for tuning)

- Step4(I): Full Simulation
 - In MFP_MAR tab, make sure all MFNR stages are checked.

- It takes about 4~12 minutes for full MFNR simulation.

- Step4(II): Partial Simulation
 - Once full simulation is done, some stages can be skipped in next run if no register in these stages been changed.
 - Ex: If only AFTER-NBC/EE module are changed since previous run, Before/ MFP can be skipped in next run.

- Step5: Result Images Checking
 - Results are saved in "Results\" folder located in the same folder as the RAW files
 - Following bitmap files would be generated after simulating:

- Step6: Save tuning result as DAT file
 - Keep setting for next time tuning
 - Hot Key: CTRL + T
 - Can also save MFNR modules only. (CTRL + M)
 - Suggest to mark ISO/sensor/IC in DAT file name for recognizing

Step7: Merge Settings to NVRAM

MEDIATEK

Please refer to "Guideline_ISP_Reg_Header_File_Tool.pptx"

- Step8: Set frame-number in "XXX_\$(scenario)_ISP_MFNR.cpp"
 - Set capture_frame_number = blend_frame_number = 6 (max. frames)
 - Set mfll_iso_th = minimum MFNR enable ISO
 - There are 7 ISO thresholds for MFP frame-number mapping. Frame_num1~7 are individually mapping to iso_level1~7

```
// Gives N, for capturing N frames
capture frame number
// Gives N, for N-frame blending. E.g.: N = 6, 6-frame blending, do blending 5 times.
blend frame number
// Give 0 or 1, 0 for half size MC, 1 for full size MC
full size mc
                                 1,
memc bad mv range
                                 255,
memc_bad_mv_rate_th
                                 12707
// The threshold of doing MFB or not
mfll_iso_th
                                 200,
// iso range for adaptive frame number mechanism
iso level1
                                 200,
iso level2
                                 300,
iso level3
                                 400,
iso level4
                                 600,
iso level5
                                 800,
iso level6
                                          // reserved for extension
                                 2000,
iso level7
                                 2000,
                                         // reserved for extension
// at least to set blend frame number >= 2
frame num1
                                 2,
frame num2
frame num3
frame_num4
frame num5
                                 6,
frame num6
                                 6,
frame num7
                                          // reserved for extension
```


Content

- MFNR2.5 Flow Introduction
- MFNR2.5 Tool Operation Guide
- MFNR2.5 Tuning Guide

MFNR Tuning Guide

Before NR-STEP1: UDM

- Please refer to DM3.5 tuning guide for tuning.
- LO OFST ↑ : Directional noise ↓
- SL Y1/Y2 ↓ : Corner region sharpness ↓
- HA/H1~H3 个: Sharpness 个
- H1/2/3 LWB↑: Flat region noise ↓
- H1/2/3 UPB个: Edge sharpness 个
- N0 STR↑: Noise↓

Before NR-STEP 2

- Before tuning BEFORE-NBC, set Y HF ACT Y0~4=64 and Y L0~3 HF W=16 to measure STD with NR off
- If the STD <= 8, keep the setting and go to MFP stage</p>

Y HF ACT Y0	64
Y HF ACT Y1	64
Y HF ACT Y2	64
Y HF ACT Y3	64
Y HF ACT Y4	64

Y L0 HF W	16
Y L1 HF W	16
Y L2 HF W	16
Y L3 HF W	16

Stddev:(Y,Cb,Cr)= (9.27, 0.81, 0.47)

Before NR-STEP 3

- Set Y HF ACT Y0~4 = 0 (no blend to source), for checking pure NR result
- Adjust L0~3 std (NR strength), ensure the noise in flat region are all cleaned (include impulse noises)

Y HF ACT Y0	0
Y HF ACT Y1	0
Y HF ACT Y2	0
Y HF ACT Y3	0
Y HF ACT Y4	0

L0 std	200
L1 std	132
L2 std	87
L3 std	60

Stddev:(Y,Cb,Cr)=(2.89, 0.24, 0.00)

Before NR STEP 4

Increase Y HF ACT Y0~4 to add noise/detail back, till the flat region STD = 8~9

Y HF ACT Y0	36
Y HF ACT Y1	36
Y HF ACT Y2	36
Y HF ACT Y3	36
Y HF ACT Y4	36

MFNR Tuning Guide

MFB Quality Check

Checkpoint:

- Ibfbld
 - Check if all images meets the STD requirement (8~9)
 - Check if brightness/color/ISO of all Ibfbld are consistent

```
■ 095048934-0000-0000_2880x2156_8d_s1_MFNR_BFBLD.bmp
■ 095048934-0000-0001_2880x2156_8d_s1_MFNR_BFBLD.bmp
■ 095048934-0000-0002_2880x2156_8d_s1_MFNR_BFBLD.bmp
■ 095048934-0000-0003_2880x2156_8d_s1_MFNR_BFBLD.bmp
■ 095048934-0000-0003_2880x2156_8d_s1_MFNR_BFBLD.bmp
```

Imfb

095048934-0020-0003_2880x2156_8d_s1_MFNR_MFB.bmp

- Ghost effect in motion area(kids, cars, sports, walkers, etc)
 - Decrease XXX_THH0~2 / Increase "n" value in MFB v2.0 Tuning Step2
 - Need to re-tune MFB/BeforeUDM/NBC by steps
- Too much noise => Check the MFB weighting Map
 - Tune BEFORE-NBC/NBC2
 - Noise in motion area can be ignore here, MAR will take care later
 - Stronger corner Noise => BEFORE_NBC_LCE_GAIN2~3 / BEFORE_UDM_SL_Y2
 - Some slighter noise can also be handled by AFTER-NBC later
- Lack of details
 - Lower UDM N0 / Higher UDM HT/HD
 - If details exist, just a little blurry, it can be enhanced by AFTER-EE later

MFB Quality Check

- Weighting Map (BLD_W_OU.bmp)
 - Keep higher MFB weighting in static region (map pixel value = 32*frame_number)
 =>Adjust BEFORE-NBC/NBC2
 - Keep lower weighting in moving region (map pixel value -> 0)
 =>Higher MFB CLIP TH1/2

MFNR Tuning Guide

MAR Tuning

Goal:

 Motion noise left by MFB should be handled in MAR(Motion Area Refinement), to keep its noise level being consistent with the static area

Tuning Criteria:

- MAR NR/EE strength can be predicted by fine-tuned AFTER NR/EE setting
- MAR-NBC/NBC2: check the motion noise level is similar to neighboring static area after MAR
- MAR-EE: ≈ After-EE

Partial Run Setup:

MAR – Tuning Criteria

- MAR-NBC should only work on motion area.
- Make sure static area STD of "XXX_SINGLE.bmp" are similar to "XXX_MFB.bmp"

MAR – Tuning

- MAR-NR Suggestion:
 - Y/C Noise ≈ (Total frame) $^0.5 \times [AFTER_NBC1 PTC1^4 / L0^3 std]$

L0 std	206
L1 std	145
L2 std	108
L3 std	23

- Y HF ACT Y0~4:
 - $\approx (0.3^{\circ}0.5) \times (AFTER_NBC1)$
 - Adjust to align STD(Imfb)

Y HF ACT YO	19
Y HF ACT Y1	19
Y HF ACT Y2	19
Y HF ACT Y3	19
Y HF ACT Y4	19

CNR Strength	
PTC1	6
PTC2	12
PTC3	18
PTC4	24

- Other parameter:
 - ≈ (AFTER_NBC1/2)
- MAR_M1
 - Total frame = 4: M1 = 96
 - Total frame = 5: M1 = 117
 - Total frame = 6: M1 = 160

MAR – Result

MFB.bmp

MFNR_A.bmp

MFNR Tuning Guide

Post NREE NBC

- Objective: STD in static area ≈ referenced photo
 - Similar to BEFORE-NBC tuning steps
 - L0~3 std: control Luma noise level
 - PTC1~4: control Chroma noise level
- Reduce low-frequency noise
 - Higher L3 std, lower Y L3 HF W

L0 std	60
L1 std	39
L2 std	27
L3 std	17

PTC1	4
PTC2	6
PTC3	8
PTC4	10

Post NREE SEEE

 Objective: Final sharpness of edge and details ≈ referenced photo

By frequency: Adjust H1~H3 GN

By Edge index: Adjust EE GLUT

GLUT	
X1	0
X2	32
Х3	64
X4	96
Y1	16
Y2	96
Y3	192
Y4	240
Y5	161

Suppress ringing side-effect

- Dial down RESP CLIP RESP CLIP 16

 Please refer to SEEE4.0 Tuning Guide for advanced EE tuning

Post NREE NBC2

- If impulse noises left in static area(sometimes they are raised by AFTER-EE), alleviate them by LCL/NCL
- Adjust PTC1~4 for low-frequency chroma noise reduction
 (Ultra-low freq. chroma noise can be erased later by SWNR if needed)

Median Filter	
LCL TH	32
LCL LV	8
NCL TH	48
NCL LV	8

PTC Strength [U+V]		
PTC1	1	
PTC2	2	
PTC3	2	
PTC4	3	

Before AFTER NR/EE

AFTER-NR

AFTER-EE

Post NREE HFG

Raise Noise STD to enhance visual clarity

HFC Luma Noise STD 6

- Noise STD ≈ 0^{16}

Noise STD = 0

Noise STD = 16

MFNR Tuning Guide

ISO Adaptive Frame Number

- MFNR v2.0+, It's available to change frame number by shooting ISO
 - The more frame number, the better SNR of image
 - Low ISO: original noise is low, use less frame for shooting performance
 - High ISO: Gradually increase frame number for image quality

Comparison of different frame number MFNR result:

6-frame MFNR

ISO Adaptive Frame Number – Image Quality

ISO Adaptive Frame Number - Image Quality

ISO Adaptive Frame Number – Performance

Shot-to-Shot Latency

ISO Adaptive Frame Number – Performance

Shot-to-Shot Latency

ISO Adaptive Frame Number – Simulation

Set "Total Frame" value in tool for simulation

ISO Adaptive Frame Number – Tuning

- Initially MFNR should be tuned with the highest frame number.
- Once frame number falls, AFTER-NBC and MAR_M1 need to be revised to keep the noise level consistency

MAR_M1

- Total frame = 4: M1 = 96
- Total frame = 5: M1 = 117
- Total frame = 6: M1 = 160

ISO Adaptive Frame Number – Tuning (AFTER-NBC1)

MEDIATEK

everyday genius