ESCUELA DE INGENIERIA CIVIL Y GEOMÁTICA Programa de Ingenieria Topográfica PRACTICA RUTEO – CURSO SIG 3

Profesor: Fabio Andres Herrera fabio.herrera@correounivalle.edu.co

REQUERIMIENTOS

- PostgreSQL https://www.postgresql.org/
- PostGIS https://postgis.net/
- PgRouting https://pgrouting.org/
- OGR/GDAL https://live.osgeo.org/es/quickstart/gdal_quickstart.html

MATERIALES PRACTICA

Archivos clase:

- sitiosinteres_univalle.shp
- redpeatonal_univalle.shp
- vias_univalle.shp
- rios_univalle.shp
- usossuelo_univalle.shp
- edificios_univalle.shp
- cuerposagua_univalle.shp

DESARROLLO DE LA PRACTICA

PASO 1

1. Creación de la base de datos (sig3_ruteo)

2. Añadir soporte espacial (Extensión PostGIS)

3. Habilitar extensión ruteo (pgrouting)

PASO 2

• Conversión de datos espaciales (shp) a SQL

Ejemplo:

shp2pgsql -g the_geom -W LATIN1 -s 4326 redpeatonal_univalle
redpeatonal_univalle > redpeatonal_univalle.sql

PASO 3

• Cargar datos sql a base de datos (sig3_ruteo)

Ejemplo:

psql -h localhost -p 5432 -d sig3_ruteo -U user -f redpeatonal_univalle.sql

Nota: recuerde que el nombre de usuario y contraseña de postgresql en osgeolive es: **user/user** (https://wiki.osgeo.org/wiki/Live_GIS_Disc_FAQ)

PASO 4

 Preparar (redpeatonal_univalle) para soportar operaciones de calculo de ruta

Nombre	Tipo de dato
x1	double precision
y1	double precision
x2	double precision
y2	double precision
source	integer
target	integer
costo	double precision

Ejemplo:

ALTER TABLE redpeatonal_univalle ADD COLUMN x1 double precision;

1. Calulo de coordenadas iniciales de los segmentos

Ejemplo:

UPDATE redpeatonal_univalle SET x1 = ST_x(ST_PointN(st_lineMerge(the_geom),
1));

2. Calculo de coordenadas finales de los segmentos

Ejemplo:

UPDATE redpeatonal_univalle SET x2 = ST_x(ST_PointN(st_lineMerge(the_geom),
ST_NumPoints(st_lineMerge(the_geom))));

PASO 5

1. Creación de topologia de RED

SELECT pgr_createTopology('redpeatonal_univalle',0.00001, 'the_geom',
'gid');

```
Tables (9)

Tables (10)

Tables (10)
```

2. Creación de indices

```
CREATE INDEX ways_source_idx ON redpeatonal_univalle("source");
CREATE INDEX ways_target_idx ON redpeatonal_univalle("target");
```

OJO Leer:

Indices espaciales:

https://postgis.net/workshops/postgis-intro/indexing.html

Indices

https://www.postgresql.org/docs/9.1/sql-createindex.html

PASO 6

Asignación de costo (criterio distancia)

```
UPDATE redpeatonal_univalle SET costo =
st_length(st_transform(the_geom, 3115));
```

PRACTICA

1) Añadir capa de Nodos (habilitar etiquetado: id)

2) Calculo de ruta más corta entre dos nodos

Nodo inicial: 1114 Nodo final: 351

Resultado ruta más corta (alfanúmerica (Nodos y Segmentos))

Output pane								
Data Output		Explain	Messages		History			
	seq integer	node integer	edge integer	cost	: ble precisi	ion		
1	0	1114	1261	13.	73248559	92473		
2	1	1113	1375	16.	77392990	25103		
3	2	1197	1489	24.	30510752	83279		
4	3	1282	1507	5.	44031194	48427		
5	4	1298	1508	9.9	93558738	53829		
6	5	1276	1482	8.9	91182428	63039		
7	6	1240	1431	1.0	02447132	53288		
Ω	7	1007	1/127	1 7	01115050	70077		

```
CREATE OR REPLACE VIEW resultado_ruteo AS SELECT seq, id1 AS node, id2 AS edge, cost, b.the_geom FROM pgr_dijkstra('SELECT gid AS id, source::integer, target::integer, costo::double precision AS cost FROM redpeatonal_univalle',1114,351, false, false) a LEFT JOIN redpeatonal_univalle b ON (a.id2 = b.gid);
```


3) Incrementar el costo en un segmento de la red

UPDATE redpeatonal_univalle SET costo=500 WHERE gid=830;

Resultado

Recargar vista del mapa

FIN DE LA PRÁCTICA - CONTINUE ABAJO CON LA ACTIVIDAD

ACTIVIDAD PARA COMPLEMENTAR LA PRACTICA

AUTOMATIZACIÓN DE PROCESOS

- 1. Implementar una rutina que permita la conversión de forma masiva de datos shp a sql
- 2. Implementar una rutina que permita la carga de forma masiva de datos en formato sgl a la base de datos

CONSULTAS SQL

- 3. Realizar calculo ruta más corta entre punto incial dado por coordenadas (lat,lon) y un nodo
- 4. Realizar calculo ruta más corta entre punto incial dado por coordenadas (lat,lon) y punto final dado por coordenadas (lat,lon)
- 5. Realizar calculo ruta más corta entre punto incial dado por coordenadas (X,Y) y punto final dado por coordenadas (lat,lon). Nota: x,y en 3115
- 6. Para realizar calculo entre un punto incial dado por coordenadas (lat,lon) y un sitio de interes (buscar el nodo más cercano)
- 7. Calcular la Ruta más corta entre el CAI y la plazoleta de Ingenieria
- 8. (a) Calcular la ruta entre el punto -76.53283 3.37600 y el punto -76.53209,3.37746 (b) Incrementar en un 10% el costo de los segmentos de red peatonal que se encuentran a un radio de 120 metros del punto (-76.53279,3.37490). (c) volver a calcular la ruta del punto (a). (d) Reversar los cambios de costo.
- ENTREGA HASTA 4 Diciembre 2019 (Campus virtual)
 - Consultas SQL
 - Evidencia
 - Analisis