CORSO DI OTTIMIZZAZIONE COMBINATORIA PROVA SCRITTA DEL 18 DICEMBRE 2023 Tempo a disposizione: ore 1:45.

#### Si ricorda che:

- Per quanto possibile, occorre scrivere in bella calligrafia (il testo illeggibile non verrà preso in considerazione).
- Su tutti i fogli che vi abbiamo consegnato occorre riportare cognome, nome e numero di matricola.
- Occorre riportare in modo chiaro tutti i passi che portano alla determinazione del risultato.
- Il numero dell'esercizio che si sta svolgendo va sempre riportato in modo chiaro.
- Non è consentita la consultazione di appunti, libri, etc.
- Non è consentito l'uso di calcolatrici, telefoni cellulari, etc.
- Non è concesso chiedere alcunché ai docenti e agli altri studenti.
- Occorre consegnare anche la brutta copia ai docenti.

#### Esercizio 1. (Punti 9)

Un'azienda ha ricevuto il CV di n neoleaureati in informatica e deve decidere quanti e quali di tali candidati assumere. Ciascun candidato i ha segnalato lo stipendio netto desiderato, da cui si può facilmente dedurre il relativo costo annuo per l'azienda, che è di  $c_i$  Euro. Inoltre, ciascun candidato i ha segnalato il sottoinsieme  $S_i \subseteq \{1, \ldots, m\}$  delle skills che pensa di avere sviluppato durante il suo corso di studi. Si aiuti l'azienda a decidere come procedere, sapendo che il costo annuo complessivo dei nuovi assunti deve essere minimizzato e che, per ogni skill j, occorre che tra i nuovi assunti ci siano almeno  $g_j$  dipendenti con la skill j.

#### Esercizio 2. (Punti 6)

Si risolva il seguente problema di programmazione lineare attraverso l'algoritmo del simplesso. Si parta dalla base ammissibile corrispondente ai vincoli della colonna di sinistra.

 $\min x$ 

$$\begin{aligned} x &\leq 2 \\ y+2 &\geq x \end{aligned} \qquad \begin{aligned} y+1 &\geq 0 \\ y+2x+1 &\geq 0 \end{aligned}$$

### Esercizio 3. (Punti 10)

Si risolva il seguente problema di flusso di costo minimo tramite l'algoritmo basato sulla cancellazione di cicli. Si indichino in modo preciso il valore ottimo e la soluzione ottima.



#### Esercizio 4. (Punti 5)

Si consideri la seguente variazione sul tema del Problema 1. Si supponga che l'azienda conosca, grazie ad un test attitudinale, l'insieme  $V_i\subseteq S_i$  delle skills che il candidato i effettivamente possiede. A questo punto l'azienda vuole minimizzare la quantità totale di skills che i candidati assunti dichiarano di avere, ma che in realtà non hanno. Non è più interessante, di conseguenza, minimizzare il costo totale annuo, che però deve rimanere al di sotto di un limite pari a t Euro.

## ESERCIZIO 1

PARAMETRI (cir che ci viene dato)

n Condidate

Ci Stipendio richiesto dal andidato i

M Still

Si C {1... m} sottoinsierne di skille dichianate dal condidato i

PRE-PROCESSING DEI PARAMETRI

Si ~>> Sij = { l se j E Si N.B. NON e' mus Variabile NON scegliamo moi Sij

VARIABILI (ció che decidiamo moi)

 $x_i \in \{0,1\} = \{1 \text{ se anuniants il cana. } i$  $i \in \{1,...,w\} = \{0 \text{ altriments} \}$ 

FUNTIONE OBJETTIVO

MIN Su Wici

VINCOCI

 $\sum_{i=1}^{N} \chi_{i} S_{ij} \geq g_{j} \quad \text{per ogui } j \in \{1...m\}$ 

### ESERCIZIO 2



ESERCIZIO 3 FWSSO AMMISSIBILE CON EK





RIPORTIAMO IL FUSSO OTTENUTO NEUA RETE ORIGINALE APPUCHIAMO CANCEUAZIONE DEI CICLI

COSTO OTIMO: -2.3 + 5.8 + 2.2 + 4.4= -6 + 40 + 4 + 16 = 54

# ESERCIZIO A

NUOVI PARAMETRI

Vi E Si sottoinsierre delle skill <u>veramente</u> possedute dol constidato i

PRE-PROCESSING

Vi ~ vij = { 1 se j ∈ Vi N.B. Non e' una varidbile

NUOVA PUNZIONE OBIETIUO

$$MIN = \sum_{i=1}^{u} \sum_{j=1}^{w} \chi_{i} \left( S_{ij} - v_{ij} \right)$$

NUOUI VINCOLI