ARMA-X Models

Contents

Full Timeframe	2
SPY Models	2
SPY IRFs	5
SPY Residuals	13
VGK Models	15
VGK IRFs	18
VGK Residuals	25
ASHR Models	27
ASHR IRFs	30
ASHR Residuals	37
First Term	39
SPY Models	39
SPY IRFs	41
SPY Residuals	50
VGK Models	52
VGK IRFs	55
VGK Residuals	62
ASHR Models	64
ASHR IRFs	67
ASHR Residuals	74
Second Term	76
SPY Models	76
SPY IRFs	79
SPY Residuals	86
VGK Models	88
VGK IRFs	91
VGK Residuals	98
ASHR Models	100
ASHR IRFs	103
ASHR Residuals	110

	Model 1
ar1	0.0300
	(0.0510)
ar2	0.7229^{***}
	(0.0397)
ar3	0.2110^{***}
	(0.0287)
ma1	0.2751^{***}
	(0.0496)
ma2	-0.6445***
	(0.0284)
ma3	-0.3527^{***}
	(0.0256)
intercept	0.0202^{***}
	(0.0042)
$dummy_lag_0$	0.0014^{***}
	(0.0002)
$dummy_lag_1$	0.0008***
	(0.0002)
AIC	-45761.2161
AICc	-45761.2051
BIC	-45682.1963
Log Likelihood	22890.6081
Num. obs.	19970
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$	

Table 1: ARMAX selected by AIC

Full Timeframe

SPY Models

Model 1
0.0278
(0.0510)
0.7210***
(0.0399)
0.2148***
(0.0284)
0.2779***
(0.0496)
-0.6430^{***}
(0.0285)
-0.3563***
(0.0253)
0.0211***
(0.0042)
0.0004^{***}
(0.0001)
0.0002**
(0.0001)
-45737.6695
-45737.6585
-45658.6497
22878.8348
19970

***p < 0.001; **p < 0.01; *p < 0.05

Table 2: ARMAX selected by AIC

	Model 1
ar1	0.2200***
	(0.0084)
ar2	0.9388***
	(0.0037)
ar3	-0.1837^{***}
	(0.0079)
ma1	0.0870^{***}
	(0.0042)
ma2	-0.8960^{***}
	(0.0042)
intercept	0.0219^{***}
	(0.0042)
$tariff_lag_0$	0.0035*
	(0.0014)
$tariff_lag_1$	0.0191^{***}
	(0.0015)
$tariff_lag_2$	0.0103^{***}
	(0.0015)
$tariff_lag_3$	-0.0045^{**}
	(0.0014)
AIC	-46020.9547
AICc	-46020.9415
BIC	-45934.0340
Log Likelihood	23021.4774
Num. obs.	19968

Table 3: ARMAX selected by AIC

	Model 1	
ar1	2.1903***	
	(0.0096)	
ar2	-1.4727^{***}	
	(0.0173)	
ar3	0.2784***	
	(0.0082)	
ma1	-1.8955^{***}	
	(0.0062)	
ma2	0.9165***	
	(0.0063)	
intercept	0.0225***	
•	(0.0028)	
$trade_lag_0$	$0.0032^{'}$	
_	(0.0018)	
$trade_lag_1$	0.0016	
_ 0_	(0.0018)	
AIC	-45816.1540	
AICc	-45816.1449	
BIC	-45745.0361	
Log Likelihood	22917.0770	
Num. obs.	19970	
*** n < 0.001: ** n < 0.01: * n < 0.05		

***p < 0.001; **p < 0.01; *p < 0.05

Table 4: ARMAX selected by AIC

SPY IRFs

```
#we want to plot the IRFs of these models
nb.periods = 7 * 15
irf.plot(dummy_fit$model,nb.periods)
```

	Model 1
ar1	0.2209***
	(0.0084)
ar2	0.9382^{***}
	(0.0037)
ar3	-0.1837^{***}
	(0.0079)
ma1	0.0878***
	(0.0042)
ma2	-0.8950^{***}
	(0.0042)
intercept	0.0225^{***}
	(0.0042)
$china_lag_0$	0.0026*
	(0.0012)
AIC	-45840.5349
AICc	-45840.5277
BIC	-45777.3186
Log Likelihood	22928.2675
Num. obs.	19971

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 5: ARMAX selected by AIC

	Model 1
ar1	0.0262
	(0.0503)
ar2	0.7230^{***}
	(0.0390)
ar3	0.2146***
	(0.0283)
ma1	0.2800***
	(0.0489)
ma2	-0.6451^{***}
	(0.0277)
ma3	-0.3571***
	(0.0252)
intercept	0.0212***
	(0.0042)
prop_positive_lag_0	0.0063^{***}
	(0.0016)
AIC	-45722.7625
AICc	-45722.7534
BIC	-45651.6441
Log Likelihood	22870.3812
Num. obs.	19971
9	19971

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 6: ARMAX selected by AIC

	Model 1
ar1	0.0237
	(0.0495)
ar2	0.7250***
	(0.0379)
ar3	0.2150***
	(0.0283)
ma1	0.2824***
	(0.0481)
ma2	-0.6460***
	(0.0270)
ma3	-0.3581^{***}
	(0.0251)
intercept	0.0216^{***}
	(0.0042)
prop_negative_lag_0	0.0070^{**}
	(0.0022)
AIC	-45716.8054
AICc	-45716.7964
BIC	-45645.6871
Log Likelihood	22867.4027
Num. obs.	19971
*** n < 0.001, ** n < 0.01, * n < 0	0.05

 $^{^{***}}p < 0.001; \ ^{**}p < 0.01; \ ^{*}p < 0.05$

Table 7: ARMAX selected by AIC

irf.plot(count_fit\$model,nb.periods)

irf.plot(tariff_fit\$model,nb.periods)

irf.plot(trade_fit\$model,nb.periods)

irf.plot(china_fit\$model,nb.periods)

irf.plot(positive_fit\$model,nb.periods)

irf.plot(negative_fit\$model,nb.periods)

SPY Residuals

```
res = checkresiduals(dummy_fit$model, plot = FALSE)

##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(3,0,3) errors
## Q* = 125.17, df = 4, p-value < 2.2e-16
##
## Model df: 6. Total lags used: 10

res = checkresiduals(count_fit$model, plot = FALSE)

##
## data: Residuals from Regression with ARIMA(3,0,3) errors
## Q* = 130.09, df = 4, p-value < 2.2e-16
##
## Model df: 6. Total lags used: 10</pre>
```

```
res = checkresiduals(tariff_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(3,0,2) errors
## Q* = 304.53, df = 5, p-value < 2.2e-16
##
## Model df: 5.
                 Total lags used: 10
res = checkresiduals(trade_fit$model, plot = FALSE)
##
##
  Ljung-Box test
## data: Residuals from Regression with ARIMA(3,0,2) errors
## Q* = 260.68, df = 5, p-value < 2.2e-16
## Model df: 5.
                 Total lags used: 10
res = checkresiduals(china fit$model, plot = FALSE)
##
##
   Ljung-Box test
## data: Residuals from Regression with ARIMA(3,0,2) errors
## Q* = 303.32, df = 5, p-value < 2.2e-16
## Model df: 5.
                 Total lags used: 10
res = checkresiduals(positive_fit$model, plot = FALSE)
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(3,0,3) errors
## Q* = 138.01, df = 4, p-value < 2.2e-16
## Model df: 6. Total lags used: 10
res = checkresiduals(negative_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(3,0,3) errors
## Q* = 139.51, df = 4, p-value < 2.2e-16
## Model df: 6. Total lags used: 10
```

	Model 1
ar1	0.9843***
	(0.0025)
ma1	-0.7428^{***}
	(0.0075)
ma2	-0.1703****
	(0.0087)
ma3	-0.0265^{***}
	(0.0072)
intercept	0.0004
dummy_lag_0	0.0000
AIC	-200279.9599
AICc	-200279.9543
BIC	-200224.6457
Log Likelihood	100146.9800
Num. obs.	19971
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$	

Table 8: ARMAX selected by AIC

VGK Models

```
#dummy
dummy_fit = auto.armax.r(data$VGK_vol, x=data$dummy,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#count
count_fit = auto.armax.r(data$VGK_vol, x=data$N,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#tariffs
tariff_fit = auto.armax.r(data$VGK_vol, x=data$tariff,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#trade
trade_fit = auto.armax.r(data$VGK_vol, x=data$trade,
               max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#china
china_fit = auto.armax.r(data$VGK_vol, x=data$china,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#proportion of positive
positive_fit = auto.armax.r(data$VGK_vol, x=data$prop_positive,
```

max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)

	Model 1
ar1	0.9843***
	(0.0025)
ma1	-0.7427^{***}
	(0.0075)
ma2	-0.1708***
	(0.0087)
ma3	-0.0260***
	(0.0072)
intercept	0.0004
N_lag_0	0.0000
AIC	-200269.0091
AICc	-200269.0035
BIC	-200213.6949
Log Likelihood	100141.5046
Num. obs.	19971
***n < 0.001 · **n < 0.0	$0.1 \cdot *_{D} < 0.05$

***p < 0.001; **p < 0.01; *p < 0.05

Table 9: ARMAX selected by AIC $\,$

	Model 1
ar1	0.9844***
	(0.0025)
ma1	-0.7432^{***}
	(0.0075)
ma2	-0.1701***
	(0.0087)
ma3	-0.0270^{***}
	(0.0073)
intercept	0.0004***
	(0.0000)
$tariff_lag_0$	0.0000
	(0.0000)
$tariff_lag_1$	0.0001***
	(0.0000)
AIC	-200253.6847
AICc	-200253.6775
BIC	-200190.4688
Log Likelihood	100134.8424
Num. obs.	19970
*** - < 0.001 ** - < 0.0	01 * < 0.05

***p < 0.001; **p < 0.01; *p < 0.05

Table 10: ARMAX selected by AIC

	Model 1
ar1	0.9843***
	(0.0025)
ma1	-0.7424^{***}
	(0.0075)
ma2	-0.1706***
	(0.0087)
ma3	-0.0267^{***}
	(0.0072)
intercept	0.0004^{***}
	(0.0000)
$trade_lag_0$	-0.0000
	(0.0000)
AIC	-200248.5095
AICc	-200248.5039
BIC	-200193.1952
Log Likelihood	100131.2548
Num. obs.	19971
*** - 0 001 ** - 0	21 * - 0.05

***p < 0.001; **p < 0.01; *p < 0.05

Table 11: ARMAX selected by AIC

	Model 1
ar1	0.9843***
	(0.0025)
ma1	-0.7427^{***}
	(0.0075)
ma2	-0.1708^{***}
	(0.0087)
ma3	-0.0261^{***}
	(0.0072)
intercept	0.0004^{***}
	(0.0000)
$china_lag_0$	0.0000
	(0.0000)
AIC	-200251.1835
AICc	-200251.1779
BIC	-200195.8692
Log Likelihood	100132.5917
Num. obs.	19971
*** .0.001 ** .0.01 * .0.05	

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 12: ARMAX selected by AIC

	Model 1
ar1	0.9843***
	(0.0025)
ma1	-0.7426^{***}
	(0.0075)
ma2	-0.1708***
	(0.0087)
ma3	-0.0262^{***}
	(0.0072)
intercept	0.0004***
	(0.0000)
prop_positive_lag_0	0.0001**
	(0.0000)
AIC	-200258.3763
AICc	-200258.3707
BIC	-200203.0620
Log Likelihood	100136.1881
Num. obs.	19971
*** .0.001 ** .0.01 * .0.05	

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 13: ARMAX selected by AIC

VGK IRFs

```
#we want to plot the IRFs of these models
nb.periods = 7 * 15
irf.plot(dummy_fit$model,nb.periods)
```

	Model 1
ar1	0.9843***
	(0.0025)
ma1	-0.7425^{***}
	(0.0075)
ma2	-0.1707^{***}
	(0.0087)
ma3	-0.0265^{***}
	(0.0072)
intercept	0.0004***
	(0.0000)
$prop_negative_lag_0$	0.0001
	(0.0000)
AIC	-200250.1442
AICc	-200250.1386
BIC	-200194.8300
Log Likelihood	100132.0721
Num. obs.	19971

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 14: ARMAX selected by AIC

irf.plot(count_fit\$model,nb.periods)

irf.plot(tariff_fit\$model,nb.periods)

irf.plot(trade_fit\$model,nb.periods)

irf.plot(china_fit\$model,nb.periods)

irf.plot(positive_fit\$model,nb.periods)

irf.plot(negative_fit\$model,nb.periods)

VGK Residuals

```
## Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,3) errors
## Q* = 7.0043, df = 6, p-value = 0.3204
##
## Model df: 4. Total lags used: 10

res = checkresiduals(count_fit$model, plot = FALSE)

## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,3) errors
## Q* = 7.2173, df = 6, p-value = 0.3012
##
## Model df: 4. Total lags used: 10
```

```
res = checkresiduals(tariff_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,3) errors
## Q* = 8.6899, df = 6, p-value = 0.1918
##
## Model df: 4.
                  Total lags used: 10
res = checkresiduals(trade_fit$model, plot = FALSE)
##
##
  Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,3) errors
## Q* = 8.4517, df = 6, p-value = 0.2068
## Model df: 4.
                 Total lags used: 10
res = checkresiduals(china_fit$model, plot = FALSE)
##
##
   Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,3) errors
## Q* = 8.274, df = 6, p-value = 0.2187
                  Total lags used: 10
## Model df: 4.
res = checkresiduals(positive_fit$model, plot = FALSE)
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,3) errors
## Q* = 7.942, df = 6, p-value = 0.2424
## Model df: 4. Total lags used: 10
res = checkresiduals(negative_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,3) errors
## Q* = 8.3531, df = 6, p-value = 0.2134
##
## Model df: 4. Total lags used: 10
```

	Model 1
ar1	0.9910***
	(0.0014)
ma1	-0.7445^{***}
	(0.0072)
ma2	-0.1387^{***}
	(0.0088)
ma3	-0.0470^{***}
	(0.0072)
intercept	0.0001
dummy_lag_0	0.0000
AIC	-256599.7623
AICc	-256599.7567
BIC	-256544.4480
Log Likelihood	128306.8811
Num. obs.	19971
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$	

Table 15: ARMAX selected by AIC

ASHR Models

```
#dummy
dummy_fit = auto.armax.r(data$ASHR_vol, x=data$dummy,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#count
count_fit = auto.armax.r(data$ASHR_vol, x=data$N,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#tariffs
tariff_fit = auto.armax.r(data$ASHR_vol, x=data$tariff,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#trade
trade_fit = auto.armax.r(data$ASHR_vol, x=data$trade,
               max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#china
china_fit = auto.armax.r(data$ASHR_vol, x=data$china,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#proportion of positive
positive_fit = auto.armax.r(data$ASHR_vol, x=data$prop_positive,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
```

	Model 1
ar1	0.9909***
	(0.0014)
ma1	-0.7439^{***}
	(0.0072)
ma2	-0.1410^{***}
	(0.0087)
ma3	-0.0452^{***}
	(0.0072)
intercept	0.0001
N_lag_0	0.0000
AIC	-256508.5319
AICc	-256508.5263
BIC	-256453.2176
Log Likelihood	128261.2659
Num. obs.	19971
***n < 0.001 · **n < 0.01 · *n < 0.05	

*** p < 0.001; ** p < 0.01; *p < 0.05

Table 16: ARMAX selected by AIC

	Model 1
ar1	0.9913***
	(0.0013)
ma1	-0.7508***
	(0.0072)
ma2	-0.1387^{***}
	(0.0088)
ma3	-0.0429^{***}
	(0.0073)
intercept	0.0002***
	(0.0000)
$tariff_lag_0$	0.0000
	(0.0000)
AIC	-255990.0623
AICc	-255990.0567
BIC	-255934.7481
Log Likelihood	128002.0312
Num. obs.	19971
*** < 0.001. ** < 0.01. * < 0.05	

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 17: ARMAX selected by AIC

	Model 1
ar1	0.9914***
	(0.0013)
ma1	-0.7494^{***}
	(0.0072)
ma2	-0.1406***
	(0.0087)
ma3	-0.0427^{***}
	(0.0073)
intercept	0.0002^{***}
	(0.0000)
$trade_lag_0$	0.0000**
	(0.0000)
AIC	-256004.3080
AICc	-256004.3024
BIC	-255948.9937
Log Likelihood	128009.1540
Num. obs.	19971

***p < 0.001; **p < 0.01; *p < 0.05

Table 18: ARMAX selected by AIC

	Model 1
ar1	0.9915***
	(0.0013)
ma1	-0.7509***
	(0.0072)
ma2	-0.1383^{***}
	(0.0088)
ma3	-0.0434^{***}
	(0.0073)
intercept	0.0002***
	(0.0000)
$china_lag_0$	0.0000**
	(0.0000)
AIC	-256010.2273
AICc	-256010.2217
BIC	-255954.9130
Log Likelihood	128012.1137
Num. obs.	19971
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$	

Table 19: ARMAX selected by AIC

	Model 1
ar1	0.9910***
	(0.0014)
ma1	-0.7463^{***}
	(0.0072)
ma2	-0.1410^{***}
	(0.0087)
ma3	-0.0438***
	(0.0073)
intercept	0.0001***
	(0.0000)
$prop_positive_lag_0$	0.0001^{***}
	(0.0000)
AIC	-256208.9107
AICc	-256208.9050
BIC	-256153.5964
Log Likelihood	128111.4553
Num. obs.	19971
*** .0.001 ** .0.01 * .0.05	

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 20: ARMAX selected by AIC

ASHR IRFs

```
#we want to plot the IRFs of these models
nb.periods = 7 * 15
irf.plot(dummy_fit$model,nb.periods)
```

	Model 1
ar1	0.9915***
	(0.0013)
ma1	-0.7488***
	(0.0072)
ma2	-0.1400^{***}
	(0.0087)
ma3	-0.0440^{***}
	(0.0073)
intercept	0.0001***
	(0.0000)
$prop_negative_lag_0$	0.0001***
	(0.0000)
AIC	-256073.7682
AICc	-256073.7625
BIC	-256018.4539
Log Likelihood	128043.8841
Num. obs.	19971
0.001 0.01	

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 21: ARMAX selected by AIC

irf.plot(count_fit\$model,nb.periods)

irf.plot(tariff_fit\$model,nb.periods)

irf.plot(trade_fit\$model,nb.periods)

irf.plot(china_fit\$model,nb.periods)

irf.plot(positive_fit\$model,nb.periods)

irf.plot(negative_fit\$model,nb.periods)

ASHR Residuals

```
res = checkresiduals(dummy_fit$model, plot = FALSE)

##   Ljung-Box test
##   data: Residuals from Regression with ARIMA(1,0,3) errors
##   Q* = 342.99, df = 6, p-value < 2.2e-16
##   ## Model df: 4.   Total lags used: 10

res = checkresiduals(count_fit$model, plot = FALSE)

##   Ljung-Box test
##   data: Residuals from Regression with ARIMA(1,0,3) errors
##   Q* = 357.28, df = 6, p-value < 2.2e-16
##   ## Model df: 4.   Total lags used: 10</pre>
```

```
res = checkresiduals(tariff_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,3) errors
## Q* = 602.55, df = 6, p-value < 2.2e-16
##
## Model df: 4.
                  Total lags used: 10
res = checkresiduals(trade_fit$model, plot = FALSE)
##
##
  Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,3) errors
## Q* = 587.58, df = 6, p-value < 2.2e-16
## Model df: 4.
                 Total lags used: 10
res = checkresiduals(china_fit$model, plot = FALSE)
##
##
   Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,3) errors
## Q* = 590.9, df = 6, p-value < 2.2e-16
                  Total lags used: 10
## Model df: 4.
res = checkresiduals(positive_fit$model, plot = FALSE)
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,3) errors
## Q* = 476.09, df = 6, p-value < 2.2e-16
## Model df: 4. Total lags used: 10
res = checkresiduals(negative_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,3) errors
## Q* = 548.15, df = 6, p-value < 2.2e-16
##
## Model df: 4. Total lags used: 10
```

Model 1
0.2806***
(0.0217)
0.1356^{***}
(0.0217)
0.5678^{***}
(0.0214)
0.1913***
(0.0176)
-0.1581***
(0.0166)
-0.6627^{***}
(0.0154)
0.0168^{*}
(0.0085)
0.0012***
(0.0001)
0.0004**
(0.0001)
-0.0002
(0.0001)
-0.0008****
(0.0001)
-28702.9487
-28702.9043
-28620.6381
14363.4744
7039
01; *p < 0.05

Table 22: ARMAX selected by AIC

First Term

SPY Models

	Model 1
ar1	0.2835***
	(0.0218)
ar2	0.1357^{***}
	(0.0217)
ar3	0.5648***
	(0.0215)
ma1	0.1903^{***}
	(0.0176)
ma2	-0.1594***
	(0.0166)
ma3	-0.6621^{***}
	(0.0155)
intercept	0.0172*
	(0.0086)
N_lag_0	0.0005***
	(0.0001)
N_lag_1	0.0001^*
	(0.0001)
N_lag_2	-0.0001
	(0.0001)
N_lag_3	-0.0003****
	(0.0001)
AIC	-28679.8164
AICc	-28679.7720
BIC	-28597.5057
Log Likelihood	14351.9082
Num. obs.	7039
*** n < 0.001 · ** n < 0.0	01: *n < 0.05

***p < 0.001; **p < 0.01; *p < 0.05

Table 23: ARMAX selected by AIC

	Model 1
ar1	0.2953***
	(0.0225)
ar2	0.1434***
	(0.0220)
ar3	0.5456***
	(0.0223)
ma1	0.1854***
	(0.0180)
ma2	-0.1707***
	(0.0169)
ma3	-0.6557^{***}
	(0.0162)
intercept	0.0174^{*}
•	(0.0085)
$tariff_lag_0$	0.0011
	(0.0010)
AIC	-28604.6559
AICc	-28604.6303
BIC	-28542.9191
Log Likelihood	14311.3279
Num. obs.	7042
***n < 0.001: **n < 0.0	01: *n < 0.05

 $^{***}p<0.001;\ ^{**}p<0.01;\ ^{*}p<0.05$

Table 24: ARMAX selected by AIC

SPY IRFs

```
#we want to plot the IRFs of these models
nb.periods = 7 * 15

irf.plot(dummy_fit$model,nb.periods)
```

	Model 1
ar1	0.2943***
	(0.0224)
ar2	0.1439^{***}
	(0.0220)
ar3	0.5462^{***}
	(0.0222)
ma1	0.1863^{***}
	(0.0179)
ma2	-0.1706***
	(0.0169)
ma3	-0.6564^{***}
	(0.0161)
intercept	0.0174*
	(0.0086)
$trade_lag_0$	0.0023^{**}
	(0.0009)
AIC	-28610.2269
AICc	-28610.2013
BIC	-28548.4901
Log Likelihood	14314.1134
Num. obs.	7042
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$	

p < 0.001; p < 0.01; p < 0.05

Table 25: ARMAX selected by AIC

	3.5 1.1.4
	Model 1
ar1	0.2927^{***}
	(0.0224)
ar2	0.1438^{***}
	(0.0219)
ar3	0.5480***
	(0.0222)
ma1	0.1866***
	(0.0179)
ma2	-0.1695^{***}
	(0.0168)
ma3	-0.6575^{***}
	(0.0161)
intercept	0.0173^{*}
-	(0.0086)
china lag 0	0.0018**
_ 0_	(0.0006)
AIC	-28613.1693
AICc	-28613.1437
BIC	-28551.4325
Log Likelihood	14315.5847
Num. obs.	7042
*** n < 0.001: ** n < 0.0	01: *n < 0.05

 $^*p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 26: ARMAX selected by AIC

	Model 1
ar1	0.2916***
	(0.0223)
ar2	0.1414***
	(0.0219)
ar3	0.5512***
	(0.0221)
ma1	0.1867^{***}
	(0.0179)
ma2	-0.1678^{***}
	(0.0168)
ma3	-0.6575^{***}
	(0.0161)
intercept	0.0144
	(0.0085)
$prop_positive_lag_0$	0.0048^{***}
	(0.0011)
$prop_positive_lag_1$	0.0045^{***}
	(0.0012)
$prop_positive_lag_2$	0.0035^{**}
	(0.0011)
AIC	-28615.8662
AICc	-28615.8286
BIC	-28540.4132
Log Likelihood	14318.9331
Num. obs.	7040
***. < 0.001 ** < 0.01 * <	0.05

 $^{^{***}}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 27: ARMAX selected by AIC

	Model 1
ar1	0.2955***
	(0.0226)
ar2	0.1452^{***}
	(0.0222)
ar3	0.5438^{***}
	(0.0225)
ma1	0.1851^{***}
	(0.0182)
ma2	-0.1728***
	(0.0171)
ma3	-0.6538^{***}
	(0.0164)
intercept	0.0169^*
	(0.0086)
$prop_negative_lag_0$	0.0034^{**}
	(0.0012)
AIC	-28611.2002
AICc	-28611.1746
BIC	-28549.4634
Log Likelihood	14314.6001
Num. obs.	7042

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 28: ARMAX selected by AIC

irf.plot(count_fit\$model,nb.periods)

irf.plot(tariff_fit\$model,nb.periods)

irf.plot(trade_fit\$model,nb.periods)

irf.plot(china_fit\$model,nb.periods)

irf.plot(positive_fit\$model,nb.periods)

irf.plot(negative_fit\$model,nb.periods)

SPY Residuals

```
res = checkresiduals(dummy_fit$model, plot = FALSE)

##    Ljung-Box test
##    data: Residuals from Regression with ARIMA(3,0,3) errors
##    Q* = 513.57, df = 4, p-value < 2.2e-16
##    Model df: 6.    Total lags used: 10

res = checkresiduals(count_fit$model, plot = FALSE)

##    Ljung-Box test
##    data: Residuals from Regression with ARIMA(3,0,3) errors
##    Q* = 526.61, df = 4, p-value < 2.2e-16
##    ##    Model df: 6.    Total lags used: 10</pre>
```

```
res = checkresiduals(tariff_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(3,0,3) errors
## Q* = 613.41, df = 4, p-value < 2.2e-16
##
## Model df: 6.
                 Total lags used: 10
res = checkresiduals(trade_fit$model, plot = FALSE)
##
##
  Ljung-Box test
## data: Residuals from Regression with ARIMA(3,0,3) errors
## Q* = 613.1, df = 4, p-value < 2.2e-16
## Model df: 6.
                 Total lags used: 10
res = checkresiduals(china_fit$model, plot = FALSE)
##
##
   Ljung-Box test
## data: Residuals from Regression with ARIMA(3,0,3) errors
## Q* = 610.2, df = 4, p-value < 2.2e-16
## Model df: 6.
                  Total lags used: 10
res = checkresiduals(positive_fit$model, plot = FALSE)
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(3,0,3) errors
## Q* = 589.29, df = 4, p-value < 2.2e-16
## Model df: 6. Total lags used: 10
res = checkresiduals(negative_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(3,0,3) errors
## Q* = 609.58, df = 4, p-value < 2.2e-16
##
## Model df: 6. Total lags used: 10
```

	Model 1
ar1	0.9900***
	(0.0023)
ma1	-0.9459^{***}
	(0.0051)
intercept	0.0003
$dummy_lag_0$	0.0000
AIC	-70570.1789
AICc	-70570.1704
BIC	-70535.8807
Log Likelihood	35290.0894
Num. obs.	7042
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$	

Table 29: ARMAX selected by AIC

	Model 1
ar1	0.9901***
	(0.0023)
ma1	-0.9459^{***}
	(0.0051)
intercept	0.0003
N_{lag_0}	0.0000
AIC	-70566.3579
AICc	-70566.3494
BIC	-70532.0597
Log Likelihood	35288.1790
Num. obs.	7042
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$	

Table 30: ARMAX selected by AIC

VGK Models

	Model 1
ar1	0.9900***
	(0.0023)
ma1	-0.9460^{***}
	(0.0051)
intercept	0.0003**
	(0.0001)
$tariff_lag_0$	0.0000
	(0.0001)
AIC	-70556.6085
AICc	-70556.6000
BIC	-70522.3103
Log Likelihood	35283.3043
Num. obs.	7042
*** .0.001 ** .0.4	01 * - 0.05

***p < 0.001; **p < 0.01; *p < 0.05

Table 31: ARMAX selected by AIC

	Model 1
ar1	0.9900***
	(0.0023)
ma1	-0.9458^{***}
	(0.0051)
intercept	0.0003**
	(0.0001)
$trade_lag_0$	0.0000
	(0.0001)
AIC	-70556.9184
AICc	-70556.9099
BIC	-70522.6202
Log Likelihood	35283.4592
Num. obs.	7042
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$	

Table 32: ARMAX selected by AIC

	Model 1
ar1	0.9901***
	(0.0023)
ma1	-0.9459***
	(0.0051)
intercept	0.0003**
	(0.0001)
$china_lag_0$	0.0000
	(0.0000)
AIC	-70557.6988
AICc	-70557.6903
BIC	-70523.4006
Log Likelihood	35283.8494
Num. obs.	7042
*** n < 0.001, ** n < 0.01, * n < 0.05	

 $^{***}p<0.001;\ ^{**}p<0.01;\ ^{*}p<0.05$

Table 33: ARMAX selected by AIC

	Model 1
ar1	0.9901***
	(0.0023)
ma1	-0.9460^{***}
	(0.0051)
intercept	0.0003^{**}
	(0.0001)
$prop_positive_lag_0$	0.0000
	(0.0001)
AIC	-70556.8894
AICc	-70556.8809
BIC	-70522.5912
Log Likelihood	35283.4447
Num. obs.	7042

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 34: ARMAX selected by AIC

	Model 1
ar1	0.9901***
	(0.0023)
ma1	-0.9459^{***}
	(0.0051)
intercept	0.0003^{**}
	(0.0001)
prop_negative_lag_0	0.0000
	(0.0001)
AIC	-70556.5554
AICc	-70556.5469
BIC	-70522.2572
Log Likelihood	35283.2777
Num. obs.	7042

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 35: ARMAX selected by AIC

VGK IRFs

```
#we want to plot the IRFs of these models
nb.periods = 7 * 15

irf.plot(dummy_fit$model,nb.periods)
```


irf.plot(count_fit\$model,nb.periods)

irf.plot(tariff_fit\$model,nb.periods)

irf.plot(trade_fit\$model,nb.periods)

irf.plot(china_fit\$model,nb.periods)

irf.plot(positive_fit\$model,nb.periods)

irf.plot(negative_fit\$model,nb.periods)

VGK Residuals

```
res = checkresiduals(dummy_fit$model, plot = FALSE)

##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,1) errors
## Q* = 5.2076, df = 8, p-value = 0.7352
##
## Model df: 2. Total lags used: 10

res = checkresiduals(count_fit$model, plot = FALSE)

##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,1) errors
## Q* = 5.3135, df = 8, p-value = 0.7236
##
## Model df: 2. Total lags used: 10
```

```
res = checkresiduals(tariff_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,1) errors
## Q* = 5.672, df = 8, p-value = 0.6839
##
## Model df: 2.
                  Total lags used: 10
res = checkresiduals(trade_fit$model, plot = FALSE)
##
##
  Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,1) errors
## Q* = 5.6804, df = 8, p-value = 0.683
## Model df: 2.
                 Total lags used: 10
res = checkresiduals(china_fit$model, plot = FALSE)
##
##
   Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,1) errors
## Q* = 5.6558, df = 8, p-value = 0.6857
## Model df: 2.
                  Total lags used: 10
res = checkresiduals(positive_fit$model, plot = FALSE)
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,1) errors
## Q* = 5.6522, df = 8, p-value = 0.6861
## Model df: 2.
                Total lags used: 10
res = checkresiduals(negative_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,1) errors
## Q* = 5.7122, df = 8, p-value = 0.6794
##
## Model df: 2. Total lags used: 10
```

	M - J - 1 1
	Model 1
ar1	1.1174***
	(0.0132)
ar2	-0.1544^{***}
	(0.0178)
ar3	0.0292^{*}
	(0.0126)
ma1	-0.9256^{***}
	(0.0058)
intercept	0.0001
dummy_lag_0	0.0000
AIC	-99130.5963
AICc	-99130.5804
BIC	-99082.5788
Log Likelihood	49572.2982
Num. obs.	7042
***n < 0.001: **n < 0.0	11. *n < 0.05

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 36: ARMAX selected by AIC

ASHR Models

```
#dummy
dummy_fit = auto.armax.r(data$ASHR_vol, x=data$dummy,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#count
count_fit = auto.armax.r(data$ASHR_vol, x=data$N,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#tariffs
tariff_fit = auto.armax.r(data$ASHR_vol, x=data$tariff,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#trade
trade_fit = auto.armax.r(data$ASHR_vol, x=data$trade,
               max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#china
china_fit = auto.armax.r(data$ASHR_vol, x=data$china,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#proportion of positive
positive_fit = auto.armax.r(data$ASHR_vol, x=data$prop_positive,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
```

	Model 1
ar1	1.1183***
	(0.0132)
ar2	-0.1574^{***}
	(0.0178)
ar3	0.0314*
	(0.0126)
ma1	-0.9259***
	(0.0058)
intercept	0.0001
N_lag_0	0.0000
AIC	-99042.9843
AICc	-99042.9684
BIC	-98994.9668
Log Likelihood	49528.4922
Num. obs.	7042

***p < 0.001; **p < 0.01; *p < 0.05

Table 37: ARMAX selected by AIC

	Model 1
ar1	1.1181***
	(0.0131)
ar2	-0.1602^{***}
	(0.0178)
ar3	0.0346^{**}
	(0.0125)
ma1	-0.9279^{***}
	(0.0056)
intercept	0.0001^{***}
	(0.0000)
$tariff_lag_0$	0.0000
	(0.0000)
AIC	-98862.1298
AICc	-98862.1139
BIC	-98814.1123
Log Likelihood	49438.0649
Num. obs.	7042
*** .0.001 ** .0.01 * .0.05	

*** p < 0.001; ** p < 0.01; *p < 0.05

Table 38: ARMAX selected by AIC

	Model 1
ar1	1.1187***
	(0.0131)
ar2	-0.1613^{***}
	(0.0178)
ar3	0.0350**
	(0.0125)
ma1	-0.9276***
	(0.0056)
intercept	0.0001^{***}
	(0.0000)
$trade_lag_0$	0.0000
	(0.0000)
AIC	-98866.7403
AICc	-98866.7244
BIC	-98818.7228
Log Likelihood	49440.3701
Num. obs.	7042
*** n < 0.001, ** n < 0.01, *n < 0.05	

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 39: ARMAX selected by AIC

	Model 1
ar1	1.1187***
	(0.0131)
ar2	-0.1605^{***}
	(0.0178)
ar3	0.0343^{**}
	(0.0125)
ma1	-0.9280^{***}
	(0.0056)
intercept	0.0001*
	(0.0000)
$china_lag_0$	0.0000
	(0.0000)
AIC	-98878.3382
AICc	-98878.3223
BIC	-98830.3207
Log Likelihood	49446.1691
Num. obs.	7042
*** - < 0.001 ** - < 0.0	01 * .0.05

*** p < 0.001; ** p < 0.01; * p < 0.05

Table 40: ARMAX selected by AIC

	Model 1
ar1	1.1178***
	(0.0131)
ar2	-0.1600***
	(0.0178)
ar3	0.0346^{**}
	(0.0125)
ma1	-0.9271^{***}
	(0.0056)
intercept	0.0001**
	(0.0000)
$prop_positive_lag_0$	0.0001^{***}
	(0.0000)
AIC	-98917.4883
AICc	-98917.4723
BIC	-98869.4707
Log Likelihood	49465.7441
Num. obs.	7042

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 41: ARMAX selected by AIC

ASHR IRFs

```
#we want to plot the IRFs of these models
nb.periods = 7 * 15
irf.plot(dummy_fit$model,nb.periods)
```

	Model 1
ar1	1.1198***
	(0.0131)
ar2	-0.1639^{***}
	(0.0178)
ar3	0.0365^{**}
	(0.0125)
ma1	-0.9274^{***}
	(0.0056)
intercept	0.0001***
	(0.0000)
$prop_negative_lag_0$	0.0001^{***}
	(0.0000)
AIC	-98891.2157
AICc	-98891.1997
BIC	-98843.1981
Log Likelihood	49452.6078
Num. obs.	7042
*** .0.001 ** .0.01 * .0	

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 42: ARMAX selected by AIC

irf.plot(count_fit\$model,nb.periods)

irf.plot(tariff_fit\$model,nb.periods)

irf.plot(trade_fit\$model,nb.periods)

irf.plot(china_fit\$model,nb.periods)

irf.plot(positive_fit\$model,nb.periods)

irf.plot(negative_fit\$model,nb.periods)

ASHR Residuals

```
res = checkresiduals(dummy_fit$model, plot = FALSE)

##    Ljung-Box test
##    data: Residuals from Regression with ARIMA(3,0,1) errors
##    Q* = 144.43, df = 6, p-value < 2.2e-16
##    ## Model df: 4. Total lags used: 10

res = checkresiduals(count_fit$model, plot = FALSE)

##    Ljung-Box test
##    data: Residuals from Regression with ARIMA(3,0,1) errors
##    Q* = 162.63, df = 6, p-value < 2.2e-16
##    ## Model df: 4. Total lags used: 10</pre>
```

```
res = checkresiduals(tariff_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(3,0,1) errors
## Q* = 239.92, df = 6, p-value < 2.2e-16
##
## Model df: 4.
                 Total lags used: 10
res = checkresiduals(trade_fit$model, plot = FALSE)
##
##
  Ljung-Box test
## data: Residuals from Regression with ARIMA(3,0,1) errors
## Q* = 236.7, df = 6, p-value < 2.2e-16
## Model df: 4.
                 Total lags used: 10
res = checkresiduals(china_fit$model, plot = FALSE)
##
##
   Ljung-Box test
## data: Residuals from Regression with ARIMA(3,0,1) errors
## Q* = 233.67, df = 6, p-value < 2.2e-16
## Model df: 4.
                 Total lags used: 10
res = checkresiduals(positive_fit$model, plot = FALSE)
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(3,0,1) errors
## Q* = 215.12, df = 6, p-value < 2.2e-16
## Model df: 4. Total lags used: 10
res = checkresiduals(negative_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(3,0,1) errors
## Q* = 230.4, df = 6, p-value < 2.2e-16
##
## Model df: 4. Total lags used: 10
```

	Model 1
ar1	0.9683***
	(0.0162)
ma1	-0.6923^{***}
	(0.0470)
ma2	-0.1730^{***}
	(0.0438)
intercept	0.1151
	(0.0807)
$dummy_lag_0$	0.0049
	(0.0066)
$dummy_lag_1$	0.0095
	(0.0065)
AIC	637.7953
AICc	638.0154
BIC	667.5316
Log Likelihood	-311.8977
Num. obs.	517
***n < 0.001: **n < 0.0	$0.1 \cdot *n < 0.05$

***p < 0.001; **p < 0.01; *p < 0.05

Table 43: ARMAX selected by AIC

Second Term

SPY Models

	Model 1
ar1	0.9684***
	(0.0163)
ma1	-0.6907^{***}
	(0.0470)
ma2	-0.1756***
	(0.0438)
intercept	0.1347
	(0.0793)
N_{lag_0}	0.0004
	(0.0019)
AIC	638.2287
AICc	638.3931
BIC	663.7285
Log Likelihood	-313.1143
Num. obs.	518
**** ~ < 0.001, ** ~ < 0.	01. * < 0.05

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 44: ARMAX selected by AIC

	Model 1
ar1	0.9686***
	(0.0163)
ma1	-0.6965^{***}
	(0.0469)
ma2	-0.1732^{***}
	(0.0437)
intercept	0.1170
	(0.0775)
$tariff_lag_0$	0.0048
	(0.0099)
$tariff_lag_1$	0.0278**
	(0.0102)
$tariff_lag_2$	0.0168
	(0.0099)
AIC	633.4836
AICc	633.7676
BIC	667.4525
Log Likelihood	-308.7418
Num. obs.	516
***p < 0.001; **p < 0.0	01; *p < 0.05

Table 45: ARMAX selected by AIC

	Model 1
ar1	0.9683***
	(0.0163)
ma1	-0.6905^{***}
	(0.0469)
ma2	-0.1755***
	(0.0438)
intercept	0.1372
	(0.0791)
$trade_lag_0$	-0.0074
	(0.0297)
AIC	638.2093
AICc	638.3737
BIC	663.7092
Log Likelihood	-313.1047
Num. obs.	518
*** $p < 0.001$; ** $p < 0.001$	01; *p < 0.05

Table 46: ARMAX selected by AIC

	Model 1
ar1	0.9693***
	(0.0161)
ma1	-0.7207^{***}
	(0.0467)
ma2	-0.1609***
	(0.0434)
intercept	0.1044
	(0.0704)
$china_lag_0$	0.0173
	(0.0319)
$china_lag_1$	0.1515^{***}
	(0.0324)
$china_lag_2$	0.1309***
	(0.0319)
AIC	610.2140
AICc	610.4980
BIC	644.1829
Log Likelihood	-297.1070
Num. obs.	516
*** $p < 0.001$; ** $p < 0.001$	01; *p < 0.05

Table 47: ARMAX selected by AIC

	Model 1
ar1	0.9686***
	(0.0162)
ma1	-0.6855***
	(0.0473)
ma2	-0.1833^{***}
	(0.0441)
intercept	0.0862
	(0.0853)
prop_positive_lag_0	0.0416
	(0.0517)
prop_positive_lag_1	0.0145
	(0.0541)
prop_positive_lag_2	0.1014
	(0.0517)
AIC	637.4076
AICc	637.6916
BIC	671.3764
Log Likelihood	-310.7038
Num. obs.	516

Table 48: ARMAX selected by AIC

SPY IRFs

```
#we want to plot the IRFs of these models
nb.periods = 7 * 15
irf.plot(dummy_fit$model,nb.periods)
```

	Model 1
ar1	0.9684***
	(0.0163)
ma1	-0.6906^{***}
	(0.0470)
ma2	-0.1759***
	(0.0438)
intercept	$0.1351^{'}$
•	(0.0798)
prop_negative_lag_0	0.0056
	(0.0841)
AIC	638.2670
AICc	638.4313
BIC	663.7668
Log Likelihood	-313.1335
Num. obs.	518
*** < 0.001. ** < 0.01. * < 0	05

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 49: ARMAX selected by AIC

irf.plot(count_fit\$model,nb.periods)

irf.plot(tariff_fit\$model,nb.periods)

irf.plot(trade_fit\$model,nb.periods)

irf.plot(china_fit\$model,nb.periods)

irf.plot(positive_fit\$model,nb.periods)

irf.plot(negative_fit\$model,nb.periods)

SPY Residuals

```
res = checkresiduals(dummy_fit$model, plot = FALSE)

##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,2) errors
## Q* = 3.0398, df = 7, p-value = 0.8813
##
## Model df: 3. Total lags used: 10

res = checkresiduals(count_fit$model, plot = FALSE)

##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,2) errors
## Q* = 3.4498, df = 7, p-value = 0.8405
##
## Model df: 3. Total lags used: 10
```

```
res = checkresiduals(tariff_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,2) errors
## Q* = 3.3682, df = 7, p-value = 0.849
##
## Model df: 3.
                  Total lags used: 10
res = checkresiduals(trade_fit$model, plot = FALSE)
##
##
  Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,2) errors
## Q* = 3.5284, df = 7, p-value = 0.8322
## Model df: 3.
                 Total lags used: 10
res = checkresiduals(china_fit$model, plot = FALSE)
##
   Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,2) errors
## Q* = 6.2381, df = 7, p-value = 0.5122
## Model df: 3.
                  Total lags used: 10
res = checkresiduals(positive_fit$model, plot = FALSE)
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,2) errors
## Q* = 3.7261, df = 7, p-value = 0.8107
## Model df: 3. Total lags used: 10
res = checkresiduals(negative_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,2) errors
## Q* = 3.4705, df = 7, p-value = 0.8383
##
## Model df: 3. Total lags used: 10
```

	Model 1
ar1	0.9655***
	(0.0183)
ma1	-0.7925^{***}
	(0.0482)
ma2	-0.0926^*
	(0.0443)
intercept	0.0010
	(0.0006)
$dummy_lag_0$	0.0000
	(0.0001)
AIC	-4213.9337
AICc	-4213.7693
BIC	-4188.4338
Log Likelihood	2112.9669
Num. obs.	518
***p < 0.001; **p < 0.0	01; *p < 0.05

Table 50: ARMAX selected by AIC

VGK Models

```
#dummy
dummy_fit = auto.armax.r(data$VGK_vol, x=data$dummy,
               \max_p = 3, \max_q = 3, \max_r = 3, criterion = "AIC", latex=T)
#count
count_fit = auto.armax.r(data$VGK_vol, x=data$N,
               max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#tariffs
tariff_fit = auto.armax.r(data$VGK_vol, x=data$tariff,
              max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#trade
trade_fit = auto.armax.r(data$VGK_vol, x=data$trade,
               max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#china
china_fit = auto.armax.r(data$VGK_vol, x=data$china,
               max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#proportion of positive
positive_fit = auto.armax.r(data$VGK_vol, x=data$prop_positive,
               max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
```

	Model 1
ar1	0.9655***
	(0.0180)
ma1	-0.7924^{***}
	(0.0482)
ma2	-0.0927^*
	(0.0442)
intercept	0.0010
$N_{lag}0$	0.0000
AIC	-4213.9232
AICc	-4213.7588
BIC	-4188.4234
Log Likelihood	2112.9616
Num. obs.	518
***n < 0.001 · **n < 0.0	01·*n < 0.05

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 51: ARMAX selected by AIC

Model 1
0.9655***
(0.0183)
-0.7924***
(0.0483)
-0.0928^*
(0.0443)
0.0010
(0.0006)
-0.0000
(0.0001)
-4213.9090
-4213.7446
-4188.4092
2112.9545
518

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^{*}p < 0.05$

Table 52: ARMAX selected by AIC

	Model 1
ar1	-0.4124^{***}
	(0.0436)
ar2	0.4156^{***}
	(0.0366)
ar3	0.8710^{***}
	(0.0395)
ma1	0.5639^{***}
	(0.0422)
ma2	-0.2968^{***}
	(0.0524)
ma3	-0.8499^{***}
	(0.0383)
intercept	0.0011
	(0.0006)
$trade_lag_0$	-0.0001
	(0.0003)
AIC	-4217.5958
AICc	-4217.2415
BIC	-4179.3461
Log Likelihood	2117.7979
Num. obs.	518
*** n < 0.001: ** n < 0.0	$0.1 \cdot *n < 0.05$

p < 0.001; p < 0.01; p < 0.05

Table 53: ARMAX selected by AIC

	Model 1
ar1	0.1017
	(0.0538)
ar2	0.9345^{***}
	(0.0262)
ar3	-0.0843
	(0.0487)
ma1	0.0834**
	(0.0299)
ma2	-0.8961^{***}
	(0.0301)
intercept	0.0011
	(0.0007)
$china_lag_0$	-0.0001
	(0.0003)
AIC	-4214.4968
AICc	-4214.2139
BIC	-4180.4970
Log Likelihood	2115.2484
Num. obs.	518
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$	

Table 54: ARMAX selected by AIC

	Model 1
ar1	2.1242***
	(0.0463)
ar2	-1.3360***
	(0.0874)
ar3	0.2010^{***}
	(0.0437)
ma1	-1.9668^{***}
	(0.0228)
ma2	0.9921^{***}
	(0.0227)
intercept	0.0012^{**}
	(0.0004)
$prop_positive_lag_0$	-0.0003
	(0.0004)
AIC	-4223.7160
AICc	-4223.4331
BIC	-4189.7162
Log Likelihood	2119.8580
Num. obs.	518

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 55: ARMAX selected by AIC

VGK IRFs

```
#we want to plot the IRFs of these models
nb.periods = 7 * 15
irf.plot(dummy_fit$model,nb.periods)
```

	3.5 1.1.4
	Model 1
ar1	2.1045***
	(0.0451)
ar2	-1.3011^{***}
	(0.0868)
ar3	0.1857^{***}
	(0.0440)
ma1	-1.9567^{***}
	(0.0147)
ma2	0.9821^{***}
	(0.0149)
intercept	0.0011^*
	(0.0004)
$prop_negative_lag_0$	0.0002
	(0.0008)
AIC	-4223.9232
AICc	-4223.6403
BIC	-4189.9234
Log Likelihood	2119.9616
Num. obs.	518

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 56: ARMAX selected by AIC

irf.plot(count_fit\$model,nb.periods)

irf.plot(tariff_fit\$model,nb.periods)

irf.plot(trade_fit\$model,nb.periods)

irf.plot(china_fit\$model,nb.periods)

irf.plot(positive_fit\$model,nb.periods)

irf.plot(negative_fit\$model,nb.periods)

VGK Residuals

```
res = checkresiduals(dummy_fit$model, plot = FALSE)

##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,2) errors
## Q* = 2.7556, df = 7, p-value = 0.9067
##
## Model df: 3. Total lags used: 10

res = checkresiduals(count_fit$model, plot = FALSE)

##
## data: Residuals from Regression with ARIMA(1,0,2) errors
## Q* = 2.7588, df = 7, p-value = 0.9064
##
## Model df: 3. Total lags used: 10
```

```
res = checkresiduals(tariff_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,2) errors
## Q* = 2.753, df = 7, p-value = 0.9069
##
## Model df: 3.
                  Total lags used: 10
res = checkresiduals(trade_fit$model, plot = FALSE)
##
##
  Ljung-Box test
## data: Residuals from Regression with ARIMA(3,0,3) errors
## Q* = 5.4067, df = 4, p-value = 0.2481
## Model df: 6.
                 Total lags used: 10
res = checkresiduals(china_fit$model, plot = FALSE)
##
##
   Ljung-Box test
## data: Residuals from Regression with ARIMA(3,0,2) errors
## Q* = 3.8495, df = 5, p-value = 0.5713
## Model df: 5.
                  Total lags used: 10
res = checkresiduals(positive_fit$model, plot = FALSE)
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(3,0,2) errors
## Q* = 5.5511, df = 5, p-value = 0.3524
## Model df: 5. Total lags used: 10
res = checkresiduals(negative_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(3,0,2) errors
## Q* = 5.1699, df = 5, p-value = 0.3955
##
## Model df: 5. Total lags used: 10
```

	Model 1
1	
ar1	0.9605^{***}
	(0.0197)
ma1	-0.5186^{***}
	(0.0485)
ma2	-0.1564^{***}
	(0.0474)
ma3	-0.1526^{***}
	(0.0431)
intercept	0.0001
dummy_lag_0	0.0000
AIC	-7346.1081
AICc	-7345.8885
BIC	-7316.3583
Log Likelihood	3680.0541
Num. obs.	518
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$	

Table 57: ARMAX selected by AIC

ASHR Models

```
#dummy
dummy_fit = auto.armax.r(data$ASHR_vol, x=data$dummy,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#count
count_fit = auto.armax.r(data$ASHR_vol, x=data$N,
                \max_p = 3, \max_q = 3, \max_r = 3, criterion = "AIC", latex=T)
#tariffs
tariff_fit = auto.armax.r(data$ASHR_vol, x=data$tariff,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#trade
trade_fit = auto.armax.r(data$ASHR_vol, x=data$trade,
               max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#china
china_fit = auto.armax.r(data$ASHR_vol, x=data$china,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
#proportion of positive
positive_fit = auto.armax.r(data$ASHR_vol, x=data$prop_positive,
                max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
```

	Model 1
ar1	0.9606***
	(0.0198)
ma1	-0.5192^{***}
	(0.0485)
ma2	-0.1579^{***}
	(0.0473)
ma3	-0.1506***
	(0.0430)
intercept	0.0001
N_lag_0	0.0000
AIC	-7342.1193
AICc	-7341.8997
BIC	-7312.3695
Log Likelihood	3678.0597
Num. obs.	518
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$	

Table 58: ARMAX selected by AIC

	Model 1
ar1	0.4497^*
	(0.1972)
ar2	0.4884^{**}
	(0.1872)
ma1	-0.0140
	(0.1964)
ma2	-0.4553^{***}
	(0.1158)
ma3	-0.2640^{***}
	(0.0599)
intercept	0.0001
$tariff_lag_0$	0.0000
AIC	-7340.0355
AICc	-7339.7526
BIC	-7306.0357
Log Likelihood	3678.0177
Num. obs.	518
$^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$	

Table 59: ARMAX selected by AIC

	Model 1
ar1	0.9606***
	(0.0199)
ma1	-0.5199^{***}
	(0.0486)
ma2	-0.1665***
	(0.0494)
ma3	-0.1442^{**}
	(0.0452)
intercept	0.0001
	(0.0001)
$trade_lag_0$	0.0000
	(0.0001)
AIC	-7337.3403
AICc	-7337.1207
BIC	-7307.5905
Log Likelihood	3675.6701
Num. obs.	518
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$	

Table 60: ARMAX selected by AIC

	Model 1
ar1	0.4363^*
	(0.1855)
ar2	0.5031**
	(0.1772)
ma1	0.0016
	(0.1857)
ma2	-0.4725^{***}
	(0.1168)
ma3	-0.2700***
	(0.0594)
intercept	0.0001
	(0.0001)
$china_lag_0$	0.0000
	(0.0001)
AIC	-7339.9489
AICc	-7339.6660
BIC	-7305.9491
Log Likelihood	3677.9744
Num. obs.	518
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$	

Table 61: ARMAX selected by AIC

	Model 1
ar1	0.9603***
	(0.0199)
ma1	-0.5226^{***}
	(0.0487)
ma2	-0.1646^{***}
	(0.0474)
ma3	-0.1424^{**}
	(0.0437)
intercept	0.0001
	(0.0001)
$prop_positive_lag_0$	0.0000
	(0.0000)
AIC	-7339.9687
AICc	-7339.7491
BIC	-7310.2189
Log Likelihood	3676.9844
Num. obs.	518

 $^{^{***}}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 62: ARMAX selected by AIC $\,$

ASHR IRFs

```
#we want to plot the IRFs of these models
nb.periods = 7 * 15
irf.plot(dummy_fit$model,nb.periods)
```

	Model 1
ar1	0.4424^{*}
	(0.2057)
ar2	0.4952^{*}
	(0.1950)
ma1	-0.0092
	(0.2053)
ma2	-0.4531^{***}
	(0.1229)
ma3	-0.2671^{***}
	(0.0598)
intercept	0.0001
	(0.0001)
$prop_negative_lag_0$	0.0001
	(0.0001)
AIC	-7339.7972
AICc	-7339.5143
BIC	-7305.7974
Log Likelihood	3677.8986
Num. obs.	518
*** $n < 0.001$: ** $n < 0.01$: * $n < 0.05$	

 $^{^{***}}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 63: ARMAX selected by AIC

irf.plot(count_fit\$model,nb.periods)

irf.plot(tariff_fit\$model,nb.periods)

irf.plot(trade_fit\$model,nb.periods)

irf.plot(china_fit\$model,nb.periods)

irf.plot(positive_fit\$model,nb.periods)

irf.plot(negative_fit\$model,nb.periods)

ASHR Residuals

```
res = checkresiduals(dummy_fit$model, plot = FALSE)

##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,3) errors
## Q* = 25.247, df = 6, p-value = 0.0003073
##
## Model df: 4. Total lags used: 10

res = checkresiduals(count_fit$model, plot = FALSE)

##
## data: Residuals from Regression with ARIMA(1,0,3) errors
## Q* = 25.016, df = 6, p-value = 0.0003392
##
## Model df: 4. Total lags used: 10
```

```
res = checkresiduals(tariff_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(2,0,3) errors
## Q* = 24.465, df = 5, p-value = 0.0001767
##
## Model df: 5.
                 Total lags used: 10
res = checkresiduals(trade_fit$model, plot = FALSE)
##
##
  Ljung-Box test
## data: Residuals from Regression with ARIMA(1,0,3) errors
## Q* = 24.008, df = 6, p-value = 0.0005204
## Model df: 4.
                 Total lags used: 10
res = checkresiduals(china_fit$model, plot = FALSE)
##
##
   Ljung-Box test
## data: Residuals from Regression with ARIMA(2,0,3) errors
## Q* = 25.002, df = 5, p-value = 0.0001392
## Model df: 5.
                 Total lags used: 10
res = checkresiduals(positive_fit$model, plot = FALSE)
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,3) errors
## Q* = 24.311, df = 6, p-value = 0.0004577
## Model df: 4. Total lags used: 10
res = checkresiduals(negative_fit$model, plot = FALSE)
##
## Ljung-Box test
## data: Residuals from Regression with ARIMA(2,0,3) errors
## Q* = 25.996, df = 5, p-value = 8.941e-05
##
## Model df: 5. Total lags used: 10
```