What happens before your H-1b application finds its way to the Visa lottery pool

Background

- The Big Question for every graduate: which job will sponsor your future H-1b visa?
- For H-1b applicants, whether you would "win" the visa lottery means more than a lucky draw from the pool.

The Data

- The data is extracted from Kaggle H-1b Visa Petitions 2011-2016, the raw data could be found at the Office of Foreign Labor Certification (OFLC) website.
- The dataset contains 3 millions records of H-1b partitions from year 2011 to 2016 after LCA processing
- The LCA approved cases are ready for lottery

What happens before your H-1b application finds its way to the Visa lottery pool

The Questions Need Addressing

- Core question to address: the probability of getting certified after the LCA process.
- First, it's like buying a house: location, location, LOCATION
- Second, given location, can I do the job?

Variables Explained

- CASE_STATUS: Certified/Denied/ Withdrawn; "CERTIFIED" applicants are eligible to buy the ticket to lottery
- SOC_NAME: Standard
 Occupational Classification
 (SOC), painfully detailed
 classification
- WORKSITE: City and State of your intended area of employment, we'll re-measure it to State level
- PREVAILING_WAGE: average
 wage paid to similarly employed
 workers in the requested
 occupation in the area of
 intended employment.

A hierarchical model to address the location problem, aka where should I move to after graduation

The Model

- The target: the probability of getting the stamp of Certified/Denied/Withdrawn
- It's easy to model the data with Multinomial distribution:

$$y \stackrel{iid}{\sim} Multinomial(\theta_{1i}, \theta_{2i}, \theta_{3i})$$

where θ_{ij} , i = 1, 2, 3 is defined as the probability of getting certified/denied/withdrawn respectively

let
$$\alpha_{ij} = \frac{\theta_{1j}}{\theta_{1j} + \theta_{2j}}$$
 and $\alpha_{2j} = 1 - \theta_{3j}$
and $\beta_{ij} = logit(\alpha_{1j}), \ \beta_{2j} = logit(\alpha_{2j})$

 And we assign multivariate normal for the beta

	Certified	Denied	Withdrawn
ALBAMA	1733	41	279
ALASKA	154	13	32
ARIZONA	8692	105	937
ARKANSAS	3057	38	311
CALIFORNIA	104070	1892	13778
COLORADO	5507	113	882
CONNECTICUT	9100	100	835
DELAWARE	3081	25	416
DC	3566	106	462

First 9 observations of the summary data

A hierarchical model to address the location problem, aka where should I move to after graduation

The Simulation

- The hierarchical contains 104 parameters plus 5 hyper-parameters, and the marginal posterior distribution is not well defined, so Metropolis Algorithm is used in simulation.
- jumping distribution is used for hyper-parameters, and multivariate normal is set as jumping distribution for each pair of beta.
- Realized average acceptance rate of 20%

Posterior check suggests the model fits the data relatively well, and we can get to the fun part

Checking the replicates

• 2000 samples are drawn from the simulated results, and the number of cases certified are generated and plotted.

	VA	DC	NY	CA		
2.5%	0.877	0.854	0.872	0.867		
25%	0.880	0.860	0.873	0.868		
50%	0.881	0.864	0.874	0.869		
75%	0.883	0.867	0.875	0.870		
97.5%	0.886	0.874	0.877	0.871		

Quantiles of Simulated Parameters

Posterior check suggests the model fits the data relatively well, and we can get to the fun part

Check the simulated data: Virginia is GOOD!

• Simulated data suggests there is a difference between the certified rate between states, and so far staying in Virginia seems like a good choice.

Simulated Certified Rate of Different States

After deciding that we stay put in Virginia, let's look at the job aspect in Virginia

A Simple Model

- Top 25 jobs with the largest amount of applicants for H-1b in year 2016 are choose, the rest is categorized as "other"
- Previous year's data is used as prior information
- Follow the Multinomial model in previous question, we have the similar set up for the model:

 $y \stackrel{iid}{\sim} Multinomial(\theta_{1j}, \theta_{2j}, \theta_{3j})$ where θ_{ij} , i = 1, 2, 3 is defined as the probability of getting certified/denied/ withdrawn respectively assign a conjugate prior $p(\theta_{.j} \sim Dir(\rho_{1j}\alpha_{1j}, \rho_{2j}))$

where α_{ij} are previous year's data ρ is a hyperparameter representing the weight of previous year's data

After deciding that we stay put in Virginia, let's look at the job aspect in Virginia

The Simulation

- Gibbs-Metropolis algorithm is used to simulate the parameters
- The thetas are sampled from Beta distribution (marginal of Dirichlet Distribution), and Metropolis algorithm is used for rho

After deciding that we stay put in Virginia, let's look at the job aspect in Virginia

Simulate Posterior Distribution

• The simulated results suggest that there is a difference between certified rate among jobs, and the perspective for statisticians is not too optimal

Quantiles of Simulated Parameters

	Stat	FA	MA	СР
2.5%	0.703	0.860	0.904	0.875
25%	0.739	0.884	0.918	0.880
50%	0.755	0.895	0.923	0.882
75%	0.771	0.907	0.930	0.885
97.5%	0.801	0.925	0.940	0.890

Conclusion and further work

Conclusion

- The 2 Bayesian model offers some insights into the probability of your H-1b applications getting certified to be in the lottery
- So far as I can tell, stay in Virginia, and maybe look for jobs in Financial/Management analyst, or if programming works for you, in computer programming.

Further

- The two models, hierarchical as they are, are still simple models.
- Combined variables from other data source, e.g. economic development, demographic factors, etc, may offer more insight into the question.

