

第一讲对偶单纯性算法

主讲教师: 朱建明

Email: jmzhu@ucas.ac.cn

Homepage: http://people.ucas.ac.cn/~jianming

目录

- ✓ 两阶段法
- ✓ 灵敏度分析
- ✓对偶单纯形算法

两阶段法

min
$$z = 4x_1 + x_2$$

$$\begin{cases} 3x_1 + x_2 = 3\\ 4x_1 + 3x_2 \ge 6\\ x_1 + 2x_2 \le 4\\ x_1, x_2 \ge 0 \end{cases}$$

转化

$$\min z = 4x_1 + x_2
\begin{cases}
3x_1 + x_2 &= 3 \\
4x_1 + 3x_2 - x_3 &= 6 \\
x_1 + 2x_2 &+ x_4 &= 4 \\
x_1, x_2, x_3, x_4 \geqslant 0
\end{cases}$$

两阶段法步骤

- ✓ 构造辅助线性规划,得到第一个基本可行解
- ✓继续在原问题上应用单纯性算法

阶段 I
$$\min r = R_1 + R_2$$

$$\begin{cases} 3x_1 + x_2 & +R_1 = 3 \\ 4x_1 + 3x_2 - x_3 & +R_2 = 6 \\ x_1 + 2x_2 & +x_4 = 4 \\ x_1, x_2, x_3, x_4, R_1, R_2 \geqslant 0 \end{cases}$$

求解第一阶段

1	\propto_1	χ_2	% 3	R,	Rz	χ_{4}			
	0	0	0	1	1	0	0		
\mathcal{R}_{1}	3		0	1	0	0	3		
R_2	4	3	-1	0	1	0	6	杨	河沿
74	1	2	0	0	0	¥1	4		5
1								到到了	
							73		

1	χ_{l}	X2	x 3	R_{i}	RZ	X4	
	0	0	0	1	1	ō	0
$\overline{\gamma_1}$	1	0	<u>±</u>	<u>3</u> 5	- 1/5	0	35
X 2	0	1	-3-5	35 45	3/5	0	5 6 5
X4	0	٥	1	ı	-1	1	1

剔除人工变量

$$\min z = 4x_1 + x_2
\begin{cases} x_1 + \frac{1}{5}x_3 = \frac{3}{5} \\ x_2 - \frac{3}{5}x_3 = \frac{6}{5} \\ x_3 + x_4 = 1 \\ x_1, x_2, x_3, x_4 \geqslant 0 \end{cases}$$

第一张单纯形表

	χ_1	×2	×3	74	
	4	1	0	0	0
×1	1	0	1/5	0	3/5
ガ 2	0		-35	0	6 5
γ_{4}	0	0	1	1	1

灵敏度分析

JOBCO 公司在两台机器上生产两种产品。每单位产品 1 需要 2 小时机器 1 和 1 小时机器 2; 每单位产品 2 需要 1 小时机器 1 和 3 小时机器 2。每单位产品 1 和产品 2 的收益分别是 30 美元和 20 美元。每台机器总的可加工时间是 8 小时。

$$\max z = 30x_1 + 20x_2$$
s.t.
$$\begin{cases} 2x_1 + x_2 \le 8 \text{ (机器 1)} \\ x_1 + 3x_2 \le 8 \text{ (机器 2)} \\ x_1, x_2 \ge 0 \end{cases}$$

改变右 端约束b

12

单位价值 (对偶价格, 影子价格)

✓ 约束改变一个单位, 目标函数的变化量。

机器 1 增加 1 小时工作能力所产生收益的变化率(点 C 变到点 G)

$$=\frac{z_G-z_C}{$$
工作能力的改变 $=\frac{142-128}{9-8}=14$ (美元/小时)

	χ_{i}	χ_{2}	χ_3	χ_{4}	
990	30	20	0	0	D
×3	2	1	1	0	8
χ4	1	3	0	1	8

	χ	X2	γ_{3}	χ _ψ	
100	0	0	-/4	2	-128
× ₁	1	0	3 20	1-5	16 5
X2	0	1	- 3	2 5	8 5

改变目 标函数 系数c

TOYCO 通过三种操作装配三种玩具: 玩具火车、玩具卡车和玩具汽车。对于这三种操作,每天的可用时间限制分别是 430 分钟、460 分钟和 420 分钟,玩具火车、玩具卡车和玩具汽车的单位收入分别是 3 美元、2 美元和 5 美元。每辆玩具车在三种操作中的装配时间分别是 1 分钟、3 分钟和 1 分钟 (时间为零表示不使用该项操作)。

$$\max z = 3x_1 + 2x_2 + 5x_3$$
s.t.
$$\begin{cases} x_1 + 2x_2 + x_3 \leq 430 & (操作 1) \\ 3x_1 + 2x_3 \leq 460 & (操作 2) \\ x_1 + 4x_2 & \leq 420 & (操作 3) \\ x_1, x_2, x_3 \geqslant 0 \end{cases}$$

最优单纯形表

基	x_1	x_2	x_3	x_4	x_5	x_6	解
z	-4	0	0	1	2	0	 1 350
x_2	$-\frac{1}{4}$	1	0	$\frac{1}{2}$	$-\frac{1}{4}$	0	100
x_3	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230
x_6	2	0	0	-2	1	1	20

改变右端项

max
$$z = 3x_1 + 2x_2 + 5x_3$$

$$\begin{cases} x_1 + 2x_2 + x_3 \leq 430 + D_1 & (操作 1) \\ 3x_1 + 2x_3 \leq 460 + D_2 & (操作 2) \\ x_1 + 4x_2 & \leq 420 + D_3 & (操作 3) \\ x_1, x_2, x_3 \geq 0 \end{cases}$$

最后一张单纯形表

							8	Solu	tion	
Basic	x_1	x_2	x_3	x_4	x_5	x_6	RHS	D_1	D_2	D_3
z	-4	0	0	1	2	0	-13 50	1	2	0
<i>x</i> ₂	$-\frac{1}{4}$	1	0	1/2	$-\frac{1}{4}$	0	100	1/2	$-\frac{1}{4}$	0
x_3	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230	0	$\frac{1}{2}$	0
x_6	2	0	0	-2	1	1	20	-2	1	1

$$z = 1350 + D_1 + 2D_2$$

$$x_2 = 100 + \frac{1}{2}D_1 - \frac{1}{4}D_2$$

$$x_3 = 230 + \frac{1}{2}D_2$$

$$x_6 = 20 - 2D_1 + D_2 + D_3$$

$$z = 1350 + 1D_1 + 2D_2 + 0D_3$$

可行区域

$$x_2 = 100 + \frac{1}{2}D_1 - \frac{1}{4}D_2 \ge 0$$

$$x_3 = 230 + \frac{1}{2}D_2 \ge 0$$

$$x_6 = 20 - 2D_1 + D_2 + D_3 \ge 0$$

只改变一个约束

$$\begin{cases}
 x_2 = 100 + \frac{1}{2}D_1 \ge 0 \Rightarrow D_1 \ge -200 \\
 x_3 = 230 > 0 \\
 x_6 = 20 - 2D_1 \ge 0 \Rightarrow D_1 \le 10
 \end{cases}
 \Rightarrow -200 \le D_1 \le 10$$

汇总

77 ME	34 /田 /人 44		资	源数量 (分钟	中)
资源	对偶价格	可行性区间	最小值	当前值	最大值
操作 1	1	$-200 \leqslant D_1 \leqslant 10$	230	430	440
操作 2	2	$-20 \leqslant D_2 \leqslant 400$	440	440	860
操作 3	0	$-20 \leqslant D_3 < \infty$	400	420	∞

改变目标函数

$$\max z = 3x_1 + 2x_2 + 5x_3$$

$$\text{s.t.} \begin{cases} x_1 + 2x_2 + x_3 \leq 430 & (操作 1) \\ 3x_1 + 2x_3 \leq 460 & (操作 2) \\ x_1 + 4x_2 & \leq 420 & (操作 3) \\ x_1, x_2, x_3 \geq 0 \end{cases}$$

$$\max z = (3 + d_1)x_1 + (2 + d_2)x_2 + (5 + d_3)x_3$$

对偶-dual

原问题 primal

对偶问题 dual

(1)
$$\max z = CX$$
 $\min w = Yb$
s.t
$$\begin{cases} AX \le b \\ X \ge 0 \end{cases}$$
 s.t
$$\begin{cases} YA \ge C \\ Y \ge 0 \end{cases}$$

弱对偶定理

若上述原始问题和对偶问题分别有可行解x₀和y₀,则cx₀<=y₀b。这个定理表明极大化问题任一可行解的目标函数值总是不大于它的对偶问题的任一可行解的目标函数值。

强对偶定理

若上述原始问题和对偶问题都可行,则它们分别有最优解x*和y*,且cx*=y*b。

互补松弛

$$(X^*)^T (C - A^T Y^*) + (Y^*)^T (AX^* - b) = 0$$

举例

$$\max z = 3x_1 + 2x_2 + 5x_3$$

$$s.t. \begin{cases} x_1 + 2x_2 + x_3 \le 430 & (操作 1) \\ 3x_1 + 2x_3 \le 460 & (操作 2) \\ x_1 + 4x_2 & \le 420 & (操作 3) \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

30

对偶问题

格特納等納為

对偶单纯形算法

- ✓最优性条件
- ✓可行性条件

对偶单纯形算法

✓对偶单纯形算法从一个优于最优解但不可行的基本解开始,最优性条件和可行性条件用于在保持基本解的最优性的同时,使得解迭代朝着可行性方向移动。

例子

$$\min z = 3x_1 + 2x_2 + x_3
3x_1 + x_2 + x_3 \ge 3
-3x_1 + 3x_2 + x_3 \ge 6
x_1 + x_2 + x_3 \le 3
x_1, x_2, x_3 \ge 0$$

第一张单纯形表

基	x_1	x_2	x_3	x_4	x_5	x_6	解军
z	- 3	-2	-1	0	0	0	0
x_4	-3	-1	-1	1	0	0	-3
x_5	3	-3	-1	0	1	0	-6
x_6	1	1	1	0	0	1	3

最优单纯形表

基	x_1	x_2	x_3	x_4	x_5	x_6	角军
z	<u>-3</u>	0	0	12	1 2	0	$\frac{9}{2}$
x_3	6	0	1	$-\frac{3}{2}$	$\frac{1}{2}$	0	$\frac{3}{2}$
x_2	-3	1	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	$\frac{3}{2}$
x_6	-2	0	0	1	0	1	0

作业

4-24. 考虑下面的线性规划模型:

$$\max z = 5x_1 + 2x_2 + 3x_3$$
s.t.
$$\begin{cases} x_1 + 5x_2 + 2x_3 \le b_1 \\ x_1 - 5x_2 - 6x_3 \le b_2 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

下表是对应于 b1 和 b2 特定值的最优表:

基	x_1	x_2	x_3	x_4	x_5	解
z	0	a	-7	-d	-e	 150
x_1	1	b	2	1	0	30
x_5	0	c	-8	-1	1	10

求以下各值: (a) 右端项 b_1 和 b_2 的值; (b) 最优对偶解; (c) 元素 a,b,c,d,e。