BMRGs and ARGs Co-occurrence

Alex Oswald & Thy Nguyen

Resistant Bacteria

- Bacterial infection is a current global challenge.
- Overuse of antimicrobial agents contributes to the issue.
- Some settings where they are used: hospitals, food chain, and environment.
 - In 2017, the global sales of antimicrobial agents for livestock was 93, 309 tons.
 - By 2030, the sale can go up by 11.5%.
 - o In 2019, 35% of abx Rx was unnecessary worldwide.
- Overtime, the bacteria can develop the resistant gene to both biocide/metal and antibiotic.

Project's Goal

- Identify bacterial gene that are resistant to both biocide/metals and antibiotics
- Determine a list of dangerous bacteria
- Inform the audience the factor contributing to failure in bacterial treatment globally
- Raise public awareness on antimicrobial agents overuse reduction

Data Sources

CARD, the **Comprehensive Antibiotic Resistance Database**

 Collects and organizes reference information on antimicrobial resistance genes, proteins and phenotypes

BacMet, the **Antibacterial Biocide and Metal Resistance Genes Database**

 Identify bacterial gene that are resistant to both biocide/metals and antibiotics

Bacteria that crossed both Databases (non-fuzzy search) with num of 2x Danger Genes

Top 5 Bacteria most dangerous bacteria...

Most Dangerous by Gene Count...

1. escherichia coli

2. klebsiella pneumoniae

3. pseudomonas aeruginosa

4. acinetobacter baumannii

5. staphylococcus aureus

has 134 metal/biocide resistive genes && 624 antibiotic resistant genes has 4 metal/biocide resistive genes & 691 antibiotic resistant genes has 25 metal/biocide resistive genes & 560 antibiotic resistant genes has 8 metal/biocide resistive genes & 511 antibiotic resistant genes has 18 metal/biocide resistive genes & 372 antibiotic resistant genes

Most Dangerous by Number of Resistivities...

1. escherichia coli

2. staphylococcus aureus

3. pseudomonas putida

4. acinetobacter baumannii

5. pseudomonas aeruginosa

has 54 metal/biocide resistances && 39 antibiotic resistances

has 26 metal/biocide resistances & 41 antibiotic resistances

has 29 metal/biocide resistances && 33 antibiotic resistances

has 21 metal/biocide resistances && 37 antibiotic resistances

has 17 metal/biocide resistances & 38 antibiotic resistances

Most Dangerous Bacterium Genes...

1. rhodococcus rhodochrous has a 1.285714 ratio of resistivities to resistive genes

2. neisseria gonorrhoeae

has a 0.415730 ratio of resistivities to resistive genes 3. pseudomonas fluorescens has a 0.390909 ratio of resistivities to resistive genes

4. streptococcus pneumoniae has a 0.380952 ratio of resistivities to resistive genes

5. pseudomonas putida

has a 0.354286 ratio of resistivities to resistive genes

Most Dangerous Bacteria

Streptococcus Pyogenes

Neisseria Gonorrhoeae

Mycobacterium Tuberculosis

Acinetobacter Baumannii

Escherichia Coli

Klebsiella Pneumoniae

Pseudomonas Aeruginosa

Staphylococcus Aureus

Clostridium Difficile

Burkholderia Cepacia

Resistivities : Resistive Genes by Index Rank

Verified Data via Threat List Overlap

Klebsiella Pneumoniae
Pseudomonas Aeruginosa
Acinetobacter Baumannii
Escherichia Coli
Staphylococcus Aureus
Mycobacterium Tuberculosis
Neisseria Gonorrhoeae

is a verified threat at dangerousness rank: 1 is a verified threat at dangerousness rank: 2 is a verified threat at dangerousness rank: 4 is a verified threat at dangerousness rank: 7 is a verified threat at dangerousness rank: 10 is a verified threat at dangerousness rank: 24 is a verified threat at dangerousness rank: 31

Implications

- These bacteria and mutations disproportionately affect marginalized communities in the US
- Knowing this, we need to direct research and outreach to researchers and encourage increased funding to target
- Observe experimental methods to perhaps prevent these specific bacteria from mutating
- For further research... explore the prevalence of these bacterium and present trends