- 1. Suppose Y is a discrete random variable with probability function $p(y) = ky(1/4)^y$, $y = 0, 1, 2, 3, \dots$ Find
 - (a) k and (b) E(Y) and V(Y).

Solution. Let p = 1/4.

(a) We have that

$$1 = \sum_{y=0}^{\infty} kyp^{y}$$

$$= \sum_{y=0}^{\infty} kp \left(\frac{d}{dp}p^{y}\right)$$

$$= kp \frac{d}{dp} \sum_{y=0}^{\infty} p^{y}$$

$$= kp \frac{d}{dp} \left(\frac{1}{1-p}\right)$$

$$= \frac{kp}{(1-p)^{2}}.$$

It follows that $k = \frac{(1-p)^2}{p} = \frac{9}{4}$.

(b) We have that

$$E(Y) = \sum_{y=0}^{\infty} ky^{2}p^{y}$$

$$= \sum_{y=0}^{\infty} ky^{2}p^{y} - \sum_{y=0}^{\infty} kyp^{y} + \sum_{y=0}^{\infty} kyp^{y}$$

$$= \sum_{y=0}^{\infty} k(y^{2} - y)p^{y} + \sum_{y=0}^{\infty} kyp^{y}$$

$$= \sum_{y=0}^{\infty} kp^{2} \left(\frac{d^{2}}{dp^{2}}p^{y}\right) + \sum_{y=0}^{\infty} kyp^{y}$$

$$= kp^{2} \frac{d^{2}}{dp^{2}} \sum_{y=0}^{\infty} p^{y} + 1$$

$$= kp^{2} \frac{d^{2}}{dp^{2}} \left(\frac{1}{1-p}\right) + 1$$

$$= \frac{2kp^{2}}{(1-p)^{3}} + 1$$

$$= \frac{5}{3},$$

and

$$E(Y^{2}) = \sum_{y=0}^{\infty} ky^{3}p^{y}$$

$$= \sum_{y=0}^{\infty} ky^{3}p^{y} - 3\sum_{y=0}^{\infty} ky^{2}p^{y} + 2\sum_{y=0}^{\infty} kyp^{y} + 3\sum_{y=0}^{\infty} ky^{2}p^{y} - 2\sum_{y=0}^{\infty} kyp^{y}$$

$$= \sum_{y=0}^{\infty} k(y^{3} - 3y^{2} + 2y)p^{y} + 3E(Y) - 2$$

$$= \sum_{y=0}^{\infty} ky(y - 1)(y - 2)p^{y} + 3$$

$$= \sum_{y=0}^{\infty} kp^{3} \left(\frac{d^{3}}{dp^{3}}p^{y}\right) + 3$$

$$= kp^{3}\frac{d^{3}}{dp^{3}}\sum_{y=0}^{\infty} p^{y} + 3$$

$$= \frac{6kp^{3}}{(1-p)^{4}} + 3.$$

Since $V(Y) = E(Y^2) - E(Y)^2$, it follows that

$$V(Y) = E(Y^{2}) - E(Y)^{2}$$

$$= \frac{6kp^{3}}{(1-p)^{4}} + 3 - \frac{25}{9}$$

$$= \frac{8}{9}.$$

2. Verify the identity $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$ and use it to show that $E[Y^k] = npE[(X+1)^{k-1}]$ where Y is a binomial random variable with parameters n and p and X is a binomial random variable with parameters n-1 and p.

Proof. We have that

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$= \frac{n(n-1)!}{k(k-1)!(n-k)!}$$

$$= \frac{n}{k} \frac{(n-1)!}{(k-1)!(n-k)!}$$

$$= \frac{n}{k} \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!}$$

$$= \frac{n}{k} \binom{n-1}{k-1}.$$

Now

$$E[Y^{k}] = \sum_{y=0}^{n} y^{k} p(y)$$
 [Definition]
$$= \sum_{y=0}^{n} y^{k} \binom{n}{y} p^{y} (1-p)^{n-y}$$

$$= \sum_{y=1}^{n} y^{k} \binom{n}{y} p^{y} (1-p)^{n-y}$$

$$= \sum_{y=1}^{n} y^{k-1} n \binom{n-1}{y-1} p^{y} (1-p)^{n-y}$$

$$= np \sum_{y=1}^{n} y^{k-1} \binom{n-1}{y-1} p^{y-1} (1-p)^{n-y}$$

$$= np \sum_{x=0}^{n-1} (x+1)^{k-1} \binom{n-1}{x} p^{x} (1-p)^{(n-1)-x}$$
 [Let $y = x+1$]
$$= np \sum_{x=0}^{n-1} (x+1)^{k-1} p(x)$$

$$= np E[(X+1)^{k-1}],$$

which is what we wanted to show.