Quanying Liu

BME, SUSTech

2024.3.21

Content

- 1 Recap
- 2 Nonseparable patterns
- 3 Soft Margin
- 4 Solution
- **5** Summary

- Recap
- 2 Nonseparable patterns
- Soft Margir
- 4 Solution
- Summary

Maximizing the margin

In SVM, for a given dataset $\{(\mathbf{x}_i, d_i)\}_{i=1}^N$, the goal is to find the **optimal hyperplane** where has the **maximal margin** over all possible hyperplanes (\mathbf{w}, b) .

We have to define margin mathematically.

Hyperplane: $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$ Normalization: $|\mathbf{w}^T \mathbf{x}_i + \mathbf{b}| = 1$

Any two points in the hyperplane: $\mathbf{w}^T \mathbf{x} + b = 0$, $\mathbf{w}^T \mathbf{x}' + b = 0$ $\implies \mathbf{w}^T (\mathbf{x} - \mathbf{x}') = 0$ $\implies \mathbf{w}$ is \perp to the hyperplane

Unit vector
$$\hat{\mathbf{w}} = \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

$$\gamma_i = \text{distance} = |\hat{\mathbf{w}}^T(\mathbf{x}_i - \mathbf{x})| = \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^T(\mathbf{x}_i - \mathbf{x})|$$

$$= \frac{1}{\|\mathbf{w}\|} |(\mathbf{w}^T \mathbf{x}_i + b) - (\mathbf{w}^T \mathbf{x} + b)| = \frac{1}{\|\mathbf{w}\|}$$

990

Recap

The constrained optimization problem:

$$\mathbf{w}^*, b^* = \underset{\mathbf{w}, b}{\operatorname{arg max}} \frac{1}{\|\mathbf{w}\|}$$
s.t.,
$$\min_{i=1,2,\dots,n} |\mathbf{w}^T \mathbf{x}_i + b| = 1$$
(1)

Notice: For a two-class SVM classification, $\mathbf{w}^T \mathbf{x}_i + b > 0$, $d_i = +1$; otherwise, $\mathbf{w}^T \mathbf{x}_i + b < 0$, $d_i = -1$. $\Longrightarrow d_i(\mathbf{w}^T \mathbf{x}_i + b) > 0$

$$\mathbf{w}^*, b^* = \underset{\mathbf{w}, b}{\operatorname{arg \, min}} \frac{1}{2} \mathbf{w}^T \mathbf{w}$$
s.t., $d_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1$ for $i = 1, 2, ..., n$

Recap

Recap

Chouching Problem

The optimization problem for SVM in Eq. (2):

$$\min_{\mathbf{w},b} \frac{1}{2} \mathbf{w}^T \mathbf{w}$$
s.t. $1 - d_i(\mathbf{w}^T \mathbf{x}_i + b) \le 0$

The Lagrangian multipliers: $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n]^T$ The generalized Lagrangian function is:

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + \sum_{i=1}^{n} \alpha_{i} \left(1 - d_{i} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b \right) \right)$$
(3)

The unconstrained optimization problem:

$$\min_{\mathbf{w},b} \max_{\alpha} \mathcal{L}(\mathbf{w},b,\alpha)
\text{s.t. } \alpha_i > 0$$
(4)

990

Dual problem

The unconstrained optimization problem in Eq. (4):

$$\min_{\mathbf{w}, b} \max_{\alpha} \mathcal{L}(\mathbf{w}, b, \alpha)$$
s.t. $\alpha_i > 0$

Since Eq. (4) is unconstrained w.r.t. \mathbf{w} and b, we would like to solve \mathbf{w}, b firstly, with $\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 0$, $\frac{\partial \mathcal{L}}{\partial b} = 0$.

The dual problem:

$$\max_{\alpha} \min_{\mathbf{w}, b} \mathcal{L}(\mathbf{w}, b, \alpha) = \max_{\alpha} Q(\alpha)$$
s.t. $\alpha_i > 0$ (5)

Watch video for proof:

https://www.bilibili.com/video/BV1aE411o7qd?p=32

Solving $\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 0$

Recall the generalized Lagrangian function:

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + \sum_{i=1}^{n} \alpha_{i} \left(1 - d_{i} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b \right) \right)$$

Considering $\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 0$,

$$\frac{\partial \mathcal{L}(\mathbf{w}, b, \alpha)}{\partial \mathbf{w}} = \frac{\partial}{\partial \mathbf{w}} \left(\frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^n \alpha_i d_i \mathbf{w}^T \mathbf{x}_i - b \sum_{i=1}^n \alpha_i d_i + \sum_{i=1}^n \alpha_i \right)
= \frac{1}{2} \frac{\partial \left(\mathbf{w}^T \mathbf{w} \right)}{\partial \mathbf{w}} - \sum_{i=1}^n \alpha_i d_i \left(\frac{\partial \left(\mathbf{w}^T \mathbf{x}_i \right)}{\partial \mathbf{w}} \right)
= \mathbf{w} - \sum_{i=1}^n \alpha_i d_i \mathbf{x}_i = \mathbf{0}$$

Solving $\frac{\partial \mathcal{L}}{\partial b} = 0$

Recall the generalized Lagrangian function:

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + \sum_{i=1}^{n} \alpha_{i} \left(1 - d_{i} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b \right) \right)$$

Considering $\frac{\partial \mathcal{L}}{\partial b} = 0$,

$$\frac{\partial \mathcal{L}(\mathbf{w}, b, \alpha)}{\partial b} = \frac{\partial}{\partial b} \left(\frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^n \alpha_i d_i \mathbf{w}^T \mathbf{x}_i - b \sum_{i=1}^n \alpha_i d_i + \sum_{i=1}^n \alpha_i \right)$$
$$= \sum_{i=1}^n \alpha_i d_i = 0$$

Solving the Dual problem

Therefore, it becomes a dual problem of $Q(oldsymbol{lpha})$

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^n \alpha_i \left(d_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \right)$$

$$= \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^n \alpha_i d_i \mathbf{w}^T \mathbf{x}_i - b \sum_{i=1}^n \alpha_i d_i + \sum_{i=1}^n \alpha_i$$

$$= \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

$$\triangleq Q(\boldsymbol{\alpha})$$

We maximize Q(lpha) to get the optimal Lagrange multipliers $lpha^*$

The $lpha^*$

The optimal Lagrange multipliers α^* :

$$\alpha^* = \arg \max_{\alpha} Q(\alpha)$$

$$= \arg \min_{\alpha} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j - \sum_{i=1}^{n} \alpha_i$$
s.t.
$$\sum_{i=1}^{n} \alpha_i d_i = 0$$

$$\alpha_i \ge 0$$

It can be solved by quadratic programming using **Linear Quadratic Solver**.

- 2 Nonseparable patterns
- Soft Margin
- 4 Solution
- Summary

Non-separable Cases

Recall: Two classes of data are **linearly separable**, if and only if there exists a hyperplane $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$ that separates two classes.

In reality, there are non-separable cases. How to classify these two classes?

图 1: Non-separable cases

Soft Margin & Kernel Method

1. Find the optimal hyperplane to minimize classification error with some tolerance (Soft Margin).

2. Transform data into a higher-dimension space where two classes are separable (Kernel Method).

Quanying Lit

- 2 Nonseparable patterns
- **3** Soft Margin
- 4 Solution
- Summary

The non-negative slack variable ξ_i

Introduce an **non-negative slack variable** ξ_i for $i = \{1, \dots, N\}$ that satisfies:

- $\xi_i = 0$: Data point i is not inside the margin of separation
- 2 $0 \le \xi_i \le 1$: Data point is inside the margin of separation and on the <u>correct</u> side of the hyperplane (e.g., ξ_1 and ξ_2)
- § $\xi_i > 1$: Data point is inside the margin of separation but on the wrong side of the hyperplane (e.g., ξ_3 and $\overline{\xi_4}$)

- 4日ト4回ト4注ト4注ト 注 り900

The new loss function with Soft margin

The optimal hyperplane must penalize the classification error $\sum_{i=1}^{N} \xi_i$.

The new loss function $\mathcal{L}(\mathbf{w}, \boldsymbol{\xi})$ is:

$$\mathcal{L}(\mathbf{w}, \boldsymbol{\xi}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \lambda \sum_{i=1}^{N} \xi_i$$

- λ is a hyperparameter, reflecting the cost of violating the margin constraints.
 - \bullet A large λ generally leads to a smaller margin but also fewer misclassification of training data
 - A small λ generally leads to a larger margin but more misclassification of training data
- As a design parameter, λ can be set by user with $\lambda > 0$.

The new constraints with Soft margin

Given a data x_i , we have

$$d_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) \ge 1 - \xi_i$$

If $\xi_i = 0$, then the constraint is the same as that in basic version (Hard Margin).

SVM with soft margin:

Primal problem:
$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \lambda \sum_{i=1}^N \xi_i$$

$$s.t. \ d_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 + \xi_i \ge 0$$

$$\xi_i \ge 0$$
(6)

Hinge loss: $\mathcal{L} = \max\{0, 1 - d\hat{v}\}$

Hinge loss $\mathcal{L}()$ is a loss function, which is usually used in the classification task of "maximum-margin".

Hinge loss
$$\mathcal{L} = \max\{0, 1 - d\hat{y}\},\$$

where d represents the label (-1 or 1), and \hat{y} represents the prediction output. For a data point i:

$$\mathcal{L}(\mathbf{w}, b) = \max\{0, 1 - d_i \left(\mathbf{w}^T \mathbf{x}_i + b\right)\}\$$

- 1 $-d_i(\mathbf{w}^T\mathbf{x}_i+b) \le 0$: Data point i is classified correctly.
- $(\mathbf{v}^{\mathsf{T}}\mathbf{x}_i + \mathbf{b}) > 0$: Data point i is classified incorrectly.

Reading material: https://zhuanlan.zhihu.com/p/347456667

The dual problem with soft margin

Let α_i and β_i be the Lagrange multipliers for the two constraints.

The generalized Lagrangian function is: $\mathcal{L}(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})$

$$= \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + \lambda \sum_{i=1}^{N} \xi_{i} - \sum_{i=1}^{N} \alpha_{i} \left(d_{i} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b \right) - 1 + \xi_{i} \right) - \sum_{i=1}^{N} \beta_{i} \xi_{i}$$

$$= \frac{\mathbf{w}^{\mathsf{T}} \mathbf{w}}{2} + \lambda \sum_{i=1}^{N} \xi_{i} - \sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} - b \sum_{i=1}^{N} \alpha_{i} d_{i} + \sum_{i=1}^{N} \alpha_{i} - \sum_{i=1}^{N} \alpha_{i} \xi_{i} - \sum_{i=1}^{N} \beta_{i} \xi_{i}$$

Soft Margin

The constrained Primal problem becomes the **dual problem**:

$$\min_{\mathbf{w},b,\xi} \max_{\alpha,\beta} \quad \mathcal{L}(\mathbf{w},b,\boldsymbol{\xi},\alpha,\beta)
s.t. \quad \alpha_i \ge 0, \quad \beta_i \ge 0$$
(7)

- 4 Solution

KKT conditions

The KKT conditions are as follows,

$$\partial \mathcal{L}/\partial \mathbf{w} = \mathbf{w} - \sum_{i=1}^{N} \alpha_i d_i \mathbf{x}_i = \mathbf{0}$$

$$\partial \mathcal{L}/\partial b = -\sum_{i=1}^{N} \alpha_i d_i = 0$$

$$\partial \mathcal{L}/\partial \xi_i = \lambda - \alpha_i - \beta_i = 0$$

$$d_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 + \xi_i \ge 0$$

$$\alpha_i \left(d_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 + \xi_i \right) = 0$$

$$\beta_i \xi_i = 0$$

$$\alpha_i \ge 0$$

$$\beta_i > 0$$

Solving the dual problem: Step 1

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \lambda \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i d_i \mathbf{w}^T \mathbf{x}_i - b \sum_{i=1}^{N} \alpha_i d_i + \sum_{i=1}^{N} \alpha_i - \sum_{i=1}^{N} \alpha_i \xi_i - \sum_{i=1}^{N} \beta_i \xi_i$$

We have derived:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{N} \alpha_i d_i \mathbf{x}_i = \mathbf{0} \qquad \Longrightarrow \mathbf{w} = \sum_{i=1}^{N} \alpha_i d_i \mathbf{x}_i$$
$$\frac{\partial \mathcal{L}}{\partial b} = -\sum_{i=1}^{N} \alpha_i d_i = 0 \qquad \Longrightarrow \sum_{i=1}^{N} \alpha_i d_i = 0$$
$$\frac{\partial \mathcal{L}}{\partial \xi_i} = \lambda - \alpha_i - \beta_i = 0 \qquad \Longrightarrow \lambda = \alpha_i + \beta_i$$

$$\mathbf{w}^T \mathbf{w} = \sum_{i=1}^N \sum_{j=1}^N \alpha_i d_i \alpha_j d_j \mathbf{x}_i^T \mathbf{x}_j$$

 $\sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{w}^{T} \mathbf{x}_{i} = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} d_{j} \alpha_{j} d_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \mathbf{y}_{i} \mathbf{x}_{j} \mathbf{y}_{i} \mathbf{x}_{j} \mathbf{y}_{i} \mathbf{x}_{j} \mathbf{y}_{j} \mathbf{y}_{j} \mathbf{x}_{j} \mathbf{y}_{j} \mathbf{y}$

Solving the dual problem: Step 2

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \lambda \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i d_i \mathbf{w}^T \mathbf{x}_i - b \sum_{i=1}^{N} \alpha_i d_i$$
$$+ \sum_{i=1}^{N} \alpha_i - \sum_{i=1}^{N} \alpha_i \xi_i - \sum_{i=1}^{N} \beta_i \xi_i$$

$$= \frac{1}{2} \mathbf{w}^{T} \mathbf{w} - \sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{w}^{T} \mathbf{x}_{i} + \lambda \sum_{i=1}^{N} \xi_{i} + \sum_{i=1}^{N} \alpha_{i} - \sum_{i=1}^{N} \alpha_{i} \xi_{i} - \sum_{i=1}^{N} \beta_{i} \xi_{i}$$

$$= -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} d_{i} \alpha_{j} d_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} + \sum_{i=1}^{N} (\underline{\alpha_{i} + \beta_{i}}) \xi_{i} + \sum_{i=1}^{N} \alpha_{i} - \sum_{i=1}^{N} \alpha_{i} \xi_{i} - \sum_{i=1}^{N} \beta_{i} \xi_{i}$$

$$= -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} d_{i} \alpha_{j} d_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} + \sum_{i=1}^{N} \alpha_{i} \triangleq Q(\boldsymbol{\alpha})$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト (差) め 9 (0)

Solving the dual problem: Step 3

Formulate the Dual Problem (with soft margin):

Subject to:
$$\sum_{i=1}^{N} \alpha_i d_i = 0$$
 and $0 \le \alpha_i \le \lambda$

- Note: $Q(\alpha)$ is same as the dual problem without soft margin.
- The effect of the error penalty $\sum_{i=1}^{N} \xi_i$ on the optimization problem is to set an upper bound for Lagrange multipliers α_i .
- In KKT conditions, $\lambda = \alpha_i + \beta_i$ with $\alpha_i > 0$ and $\beta_i > 0$. $\implies 0 < \alpha_i < \lambda$.

Solving α^* with Quadratic programming

$$\boldsymbol{\alpha}^* = \arg\min_{\boldsymbol{\alpha}} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j - \sum_{i=1}^{N} \alpha_i$$
s.t.
$$\sum_{i=1}^{N} \alpha_i d_i = 0 \quad \text{and} \quad 0 \le \alpha_i \le \lambda$$

Solving with **Linear Quadratic Solver**:

$$\arg\min_{\boldsymbol{\alpha}} \frac{1}{2} \boldsymbol{\alpha}^T \begin{bmatrix} d_1 d_1 \mathbf{x}_1^T \mathbf{x}_1 & d_1 d_2 \mathbf{x}_1^T \mathbf{x}_2 & \cdots & d_1 d_n \mathbf{x}_1^T \mathbf{x}_n \\ d_2 d_1 \mathbf{x}_2^T \mathbf{x}_1 & d_2 d_2 \mathbf{x}_2^T \mathbf{x}_2 & \cdots & d_2 d_n \mathbf{x}_2^T \mathbf{x}_n \\ \vdots & \vdots & \ddots & \vdots \\ d_n d_1 \mathbf{x}_n^T \mathbf{x}_1 & d_n d_2 \mathbf{x}_n^T \mathbf{x}_2 & \cdots & d_n d_n \mathbf{x}_n^T \mathbf{x}_n \end{bmatrix} \boldsymbol{\alpha} + (-1)^T \boldsymbol{\alpha}$$

s.t. $\mathbf{d}^T \alpha = 0$ and $\mathbf{0} < \alpha < [\lambda, \lambda, \dots, \lambda]^T$

イロト イ団ト イミト イミト 一恵

Using 'cvxopt' to solve α

```
from cvxopt import matrix, solvers Define the quadratic part of the objective function P and the linear part q P = matrix([[?,?], [?,?]]) q = matrix([?,?]) Define the inequality constraints G and h (Gx <= h) G = matrix([[?],[?]]) h = matrix([?,?]) Define the equality constraints Ax = b (empty in this case) A = matrix([[?,?], (1,2)]) b = matrix(?) Solve the quadratic programming problem solution = solvers.qp(P, q, G, h, A, b) print('Solution:') print(solution['x'])
```

What is P, q, G, h, A, b in the code?

Where are the support vectors?

From KKT condtions:

$$d_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 + \xi_i \ge 0$$

$$\beta_i \xi_i = 0$$

$$\alpha_i + \beta_i = \lambda$$

If the data \mathbf{x}_i is a support vector (i.e., , $0 \le \alpha_i \le \lambda$), then

$$d_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 + \xi_i = 0 \Longrightarrow d_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) = 1 - \xi_i$$

- Support vector \mathbf{x}_i with $\alpha_i < \lambda$ and $\beta_i = \lambda \alpha_i > 0$
 - 1. To satisfy $\beta_i \xi_i = 0$, we must have $\xi_i = 0$
 - 2. Support vector is located on the border of the margin
- Support vector \mathbf{x}_i with $\alpha_i = \lambda$ and $\beta_i = \lambda \alpha_i = 0$
 - 1. Condition $\beta_i \xi_i = 0$ is still satisfied, when $\xi_i \neq 0$
 - 2. Support vector is located inside the margin

- 1 Recap
- 2 Nonseparable patterns
- Soft Margin
- 4 Solution
- **5** Summary

SVM with Soft Margin

	Primal Problem	Dual Problem
Find :	\mathbf{w}, b	α_i
Minimizing:	$\mathcal{L}(\mathbf{w},b,\xi)$	$\ \mathbf{w}\ $
Maximizing:	NaN	$Q(oldsymbol{lpha})$
Subject to :	$d_i\left(\mathbf{w}^T\mathbf{x}_i + b\right) \ge 1 - \xi_i$	$\sum_{i=1}^{N} \alpha_i d_i = 0$
	$\xi_i \ge 0$	$0 \le \alpha_i \le \lambda$

Primal Problem:
$$\mathcal{L}(\mathbf{w}, b, \xi) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \lambda \sum_{i=1}^{N} \xi_i$$

$$\text{Dual Problem:} \quad Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j \textit{d}_i \textit{d}_j \mathbf{x}_i^\mathsf{T} \mathbf{x}_j$$

Solving α^* with Quadratic programming

$$\boldsymbol{\alpha}^* = \arg\min_{\boldsymbol{\alpha}} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j - \sum_{i=1}^{N} \alpha_i$$
s.t.
$$\sum_{i=1}^{N} \alpha_i d_i = 0 \quad \text{and} \quad 0 \le \alpha_i \le \lambda$$

Solving with Linear Quadratic Solver:

$$\arg\min_{\alpha} \frac{1}{2} \alpha^T \begin{bmatrix} d_1 d_1 \mathbf{x}_1^T \mathbf{x}_1 & d_1 d_2 \mathbf{x}_1^T \mathbf{x}_2 & \cdots & d_1 d_n \mathbf{x}_1^T \mathbf{x}_n \\ d_2 d_1 \mathbf{x}_2^T \mathbf{x}_1 & d_2 d_2 \mathbf{x}_2^T \mathbf{x}_2 & \cdots & d_2 d_n \mathbf{x}_2^T \mathbf{x}_n \\ \vdots & \vdots & \ddots & \vdots \\ d_n d_1 \mathbf{x}_n^T \mathbf{x}_1 & d_n d_2 \mathbf{x}_n^T \mathbf{x}_2 & \cdots & d_n d_n \mathbf{x}_n^T \mathbf{x}_n \end{bmatrix} \alpha + (-1)^T \alpha$$

s.t. $\mathbf{d}^T \alpha = 0$ and $\mathbf{0} \le \alpha \le [\lambda, \lambda, \dots, \lambda]^T$

- 4 ロ > 4 個 > 4 差 > 4 差 > - 差 - 夕久の

Algorithm

Step 1: Solve α^* with Linear Quadratic Solver.

Step 2: Calculate w* as follows:

$$\mathbf{w}^* = \sum_{i=1}^N \alpha_i^* d_i \mathbf{x}_i$$

Step 3: Calculate b^* as follows:

• For each data point \mathbf{x}_i with $0 < \alpha_i < \lambda$,

$$b_i^* = \frac{1}{d_i} - \mathbf{w}^{*T} \mathbf{x}_i$$

Take b* as the average of all such b*;

$$b^* = \frac{1}{m} \sum_{i=1}^m b_i^*$$

where m is the total number of \mathbf{x}_i with $0 < \alpha_i \le \lambda$.