- Задача добиться улучшения качества работы модели, основанной на персептроне, путем изменения dropout, функции активации и оптимизационного алгоритма
- Руководство воспроизведения работы кода для подбора гипер-параметров (команды выполняются в терминале терминале)
 - o pip install -r requirements.txt (в новом виртуальном окружении)
 - python optuna_pytorch.py
 - tensorboard --logdir runs
 - Проследовать в браузере по адресу http://localhost:6006, пользуясь доступным функционалом ознакомиться с визуализацией процесса подбора параметров
- График зависимости совокупно-объясненной дисперсии от главных компонент датасета

- На основании графика принято решение провести подбор параметров, ограничив главные компоненты между 100 и 200, с шагом в 20
- Точностью которой удалось достичь 0.76
 - ∘ Количество скрытых слоев 1
 - Размерность скрытых слоев 60
 - ∘ Количество эпох 20
 - ∘ Уровень обучения 0.05
 - Функция активации glu
 - dropout (доля исключенных нейронов) 0.0
 - о Оптимизационный алгоритм Adagrad
- Вывод применение РСА позволяет значительно снизить вычислительную сложность без серьезных потерь в точности и проверять рабочие гипотезы в

краткие сроки на слабых машинах, чт создать MVP быстро и дешево.	о сэкономит деньг	и бизнеса и поможет