BRAC UNIVERSITY Department of Computer Science and Engineering

Examination: Quiz 06 Semester: Summer 2023

Duration: 30 Minutes Full Marks: 15

CSE320: Data Communications

Answer the following questions on the question paper

Question 01: CO5 [5 + 5]

- a) Given the dataword $x^9 + x^5 + x^3 + x^2 + 1$ and the divisor 10111, **show** the generation of the CRC codeword at the sender side **using binary division**.
- b) After sending the codeword to the receiver, suppose the **second bit from MSB (left) to LSB (right)** is corrupted or inverted during transmission. **Show** the calculation at the receiver side using **polynomial division. Comment** if CRC can detect the error or not.

Question 02: CO5 [5]

 a) For how many changing bits can we successfully detect and correct errors using this 2B/6B scheme?
 Show the calculation.

Dataword	Codeword	
00	101101	
01	110100	
10	000010	
11	011000	

BRAC UNIVERSITY Department of Computer Science and Engineering

Examination: Quiz 06 Semester: Summer 2023
Duration: 30 Minutes Full Marks: 15

CSE320: Data Communications

Name:	ID·	Section:
1 value.	ID.	occuon.

Answer the following questions on the question paper

Question 01: CO5 [4 + 4]

- a) Assume a packet is made only of five $decimal_{(base 10)}$ words: 7, 8, 5, 9, 21. Represent the data in 4 bits binary sequence. Show the checksum at the sender side using 4 bits binary representation.
- b) Now change the second data to 9 and third data to 6. **Show** the calculation at the receiver side. **Comment** on the error detection.

Question 02: CO5 [3 + 4]

- a) Assume a packet is made only of four 16-bit words (56E)₁₆, (DB2)₁₆, (94)₁₆, and (DD)₁₆. **Show** the checksum at the sender.
- b) If the second data item is changed to $(C0)_{16}$ and the last data item is changed to $(E1)_{16}$ during transmission, check if the receiver can detect any error or not.

(Hint: The given words are in hexa-decimal value, that means, each digit can be represented by 4 bits. Remember hexadecimal values range from 0000 – FFFF).