逻辑航线信息学奥赛系列教程

P1094 纪念品分类

题目描述

元旦快到了,校学生会让乐乐负责新年晚会的纪念品发放工作。为使得参加晚会的同学所获得的纪念品价值相对均衡,他要把购来的纪念品根据价格进行分组,但每组最多只能包括两件纪念品,并且每组纪念品的价格之和不能超过一个给定的整数。为了保证在尽量短的时间内发完所有纪念品,乐乐希望分组的数目最少。

你的任务是写一个程序,找出所有分组方案中分组数最少的一种,输出最少的分组数目。

输入格式

共 n+2 行:

第一行包括一个整数 w, 为每组纪念品价格之和的上上限。

第二行为一个整数 n, 表示购来的纪念品的总件数 G。

第 3~n+2 行每行包含一个正整数 Pi表示所对应纪念品的价格。

输出格式

一个整数,即最少的分组数目。

输入样例

100

9

90

20

20

30 50

60

70

80 90

输出样例

6

解析

我们希望一个价格较低的物品和一个价格较高的物品进行组合。所以,需要将所有的价格按照从小到大进行排列。然后,使用两个指针进行组合比较。

90独立一组,因为最小的数字与他的加和都超过了范围

1	2	3	4	5	6	7	8	9
20	20	30	50	60	70	80	90	90

同理

			U					
1	2	3 .	4	5	6	7	8	9
20	20	30	>50	60	70	80	90	90

相加后不超过上限,分到同一组

×1-/_	2	3	4	5	6	7	8	9
20	20	30	50	60	70	80	90	90

相加后不超过上限,分到同一组

1	2	3	4	5	6	7	8	9
20	20	30	50	60	70	80	90	90

同上

	20	20	30	50	60	70	80	90	90	
同上										
	1	2	3	4	5	46 ^X	<i>◇</i> 7 °°	8	9	
	20	20	30	50	60	70	80	90	90	

自己独立一组

1	2	3	4	5	6	7	8	9
20	20	30	50	60	70	80	90	90

编码

#include <bits/stdc++.h>

```
using namespace std;
const int Maxn = 30000 + 1;
int w, n, countNum = 0;
int Prices[Maxn]; //礼物的价格
//按照价格从小到达排列
bool Compare(int a, int b) {
   return a < b;</pre>
}
```

```
int main() {
   scanf("%d %d", &w, &n);
   for (int i = 1; i <= n; ++i) {
      scanf("%d", &Prices[i]);
   sort(Prices + 1, Prices + n + 1, Compare);
   int s = 1;
   int e = n;
   while (s <= e) {
       //超了, e模块独立一组
      if (Prices[s] + Prices[e] > w) {
           e--;
          //匹配成功
           s++;
           e--;
       countNum++;
   cout << countNum;</pre>
   return 0;
}
```

逻辑航线培优教育,信息学奥赛培训专家。

扫码添加作者获取更多内容。

