Random Access Machines

A random access machine (RAM) is a simple *model of computation*. Its memory consists of an unbounded sequence of registers. Each of the registers may hold an integer value.

The *control unit* of a RAM holds a *program*, i.e. a numbered list of statements. The *program counter* determines which statement is to be executed next.

Rules for executing a RAM-program:

- in each work cycle the RAM executes one statement of the program;
- the program counter specifies the number of the statement that is to be executed;
- the program ends when the program counter takes an invalid value (i.e. there's no statement in the program that has the specified number)

To "run" a program in the RAM, we need to:

- define the program, i.e. the exact list of statements;
- define starting values for the registers (the *input*);
- define starting values for the program counter (usually, we'll start with the first statement);

Statements of a RAM

Notation:

<Ri> $\hat{=}$ the integer stored in the i-th register

<Ri> := x $\hat{=}$ let integer x be the content of the i-th register

List of Statements:

Statement	Effect on registers	Program Counter
Ri ← Rj	<ri> := <rj></rj></ri>	<pc> := <pc> + 1</pc></pc>
$\mathtt{Ri} \leftarrow \mathtt{RRj}$	<ri> := <r<rj>></r<rj></ri>	<pc> := <pc> + 1</pc></pc>
RRi ← Rj	<r<ri>> := <rj></rj></r<ri>	<pc> := <pc> + 1</pc></pc>
Ri ← k	<ri> := k</ri>	<pc> := <pc> + 1</pc></pc>
$Ri \leftarrow Rj + Rk$	<ri> := <rj> + <rk></rk></rj></ri>	<pc> := <pc> + 1</pc></pc>
Ri ← Rj - Rk	$<$ Ri> := $\max \{0, <$ Rj> - $<$ Rk> $\}$	<pc> := <pc> + 1</pc></pc>
GOTO m		<pc> := m</pc>
TE D:-O COTO		$\int \mathbf{m} \qquad \text{if } \langle \mathbf{Ri} \rangle = 0$
IF Ri=O GOTO m		$\langle PC \rangle := \begin{cases} \text{m} & \text{if } MI > 0 \\ \langle PC \rangle + 1 & \text{otherwise.} \end{cases}$
TE D:>0 COTO		$\int \mathbf{m} \text{if } \langle \text{Ri} \rangle > 0$
IF Ri>O GOTO m		$\langle PC \rangle := \left\{ \begin{array}{l} -1 \\ \langle PC \rangle + 1 \end{array} \right.$ otherwise.