Algebra 1A, lista 10.

KOnwersatorium 9.01.2017, ćwiczenia 10.01.2017.

- 0S. Zasadnicze twierdzenie arytmetyki. Relacja stowarzyszenia. Element nierozkładalny w pierścieniu. Twierdzenie o jednoznacznym rozkładzie w pierścieniu euklidesowym. Zasadnicze twierdzenie algebry liczb zespolonych. Twierdzenie o pierwiastkach zespolonych wielomianu rzeczywistego.
 - 1S. Wyznaczyć grupę elementów odwracalnych w następujących pierścieniach:
 - (a) \mathbb{Z} ,
 - (b) $\mathbb{Z}[i]$,
 - (c) $\mathbb{Z}[X]$,
 - (d) $\mathbb{Z}_3[X]$,
 - (e) $\mathbb{Q}[X]$.
 - 2S. Czy następujące elementy a, b są stowarzyszone w pierścieniu R?
 - (a) $a = 2, b = 4, R = \mathbb{Z},$
 - (b) a = 5 + i, b = 1 5i, $R = \mathbb{Z}[i]$,
 - (c) $a = 2X^2 + 2$, $b = X^2 + 1$, $R = \mathbb{Z}[X]$,
 - (d) $a = 2X^2 + 2$, $b = X^2 + 1$, $R = \mathbb{Z}_3[X]$.
 - 3K. Wskazać nierozkładalny wielomian:
 - (a) stopnia 2 nad \mathbb{Z}_5 ,
 - (b) stopnia 3 nad \mathbb{Z}_7 ,
 - (c) stopnia 4 nad \mathbb{Z}_2 .
- 4. (a) Załóżmy, że $W(X), V(X) \in \mathbb{R}[X]$ są względnie pierwsze, niezerowe. Udowodnić, że istnieją wielomiany $S(X), T(X) \in \mathbb{R}[X]$ takie, że w ciele $\mathbb{R}(X)$ mamy:

$$\frac{1}{W(X) \cdot V(X)} = \frac{S(X)}{W(X)} + \frac{T(X)}{V(X)}.$$

- (b)* Udowodnić, że każdą funkcję wymierną $f(X) \in \mathbb{R}(X)$ można przedstawić jako sumę ułamków postaci $\frac{V(X)}{W(X)}$, gdzie $V, W \in \mathbb{R}[X]$ oraz W(X) jest potęgą nierozkładalnego wielomianu stopnia ≤ 2 . (uwaga: dzięki temu umiemy całkować funkcje wymierne).
- 5.K (a) Zaznaczyć na płaszczyźnie Gaussa wszystkie liczby $z \in \mathbb{Z}[i]$ takie, że $\delta(z) \leq 10$. Ile ich jest ?
- (b) Które z liczb 1, 2, 3, 4, 5, 1 + i, 2 + i, 3 + i, 4 + i, 5 + i są nierozkładalne w pierścieniu $\mathbb{Z}[i]$? (wskazówka: skorzystać z tego, że jesli x = ab, to $\delta(x) = \delta(a)\delta(b)$).
- 6. Rozważamy pierścień $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$, podpierścień ciała liczb rzeczywistych.
- (a) Udowodnić, że dla $x \in \mathbb{Z}[\sqrt{2}]$ przedstawienie x w postaci $a+b\sqrt{2},\ a,b\in\mathbb{Z},$ jest jednoznaczne.
- (b) Funkcja $d: \mathbb{Z}[\sqrt{2}] \to \mathbb{N}$ dana jest wzorem $d(a+b\sqrt{2}) = |a-2b^2|$. Udowodnić, że dla $x, y \in \mathbb{Z}[\sqrt{2}], d(xy) = d(x)d(y)$.
- (c) Wyznaczyć grupę elementów odwracalnych pierścienia $\mathbb{Z}[\sqrt{2}]$.
- (d) Znaleźć rozkład liczby 2 na iloczyn czynników nierozkładalnych w pierścieniu $\mathbb{Z}[\sqrt{2}].$

W dalszych zadaniach z tej listy R jest pierścieniem euklidesowym.

- 7. Załóżmy, że $p \in R \setminus R^*$ jest nierozkładalny oraz $u \in R^*$. Udowodnić, że q = up też jest nierozkładalny.
- 8. (a) Załóżmy, że $x,y \in R$ oraz $a,b \in R$ sa oba najmniejszymi wspólnymi wielokrotnościami x,y. Udowodnić, że $a \sim b$ (tzn. a,b są stowarzyszone) oraz każdy element stowarzyszony z a jest również NWW(x,y)
- (b) To samo, co w (a), lecz z NWD zamiast NWW.
 - 9. Załóżmy, że $p, q \in \mathbb{Z}$ są różnymi liczbami pierwszymi, $x = p^2 q^5$, $y = p^3 q^4$.
 - (a) Udowodnić, że liczba $z = p^2 q^4$ jest NWD(x, y)
 - (b) Udowodnić, że liczba $t = p^3 q^5$ jest NWW(x, y).
- (c) Zauważyć, że xy = NWD(x, y)NWW(x, y). Uogólnić ten wynik na przypadek dowolnych liczb całkowitych dodatnich.
- 10^* . Uogólnić zadanie 8 dla dowolnego euklidesowego R. Zastąpić "różne liczby pierwsze" przez "niestowarzyszone elementy nierozkładalne".
- 11. Załóżmy, że $a, b, c \in \mathbb{Q}$ i $a+b\sqrt{c}$ jest niewymiernym pierwiastkiem wielomianu $W(X) \in \mathbb{Q}[X]$. Udowodnić, że $a-b\sqrt{c}$ też jest pierwiastkiem tego wielomianu oraz wielomian $X^2-2aX+(a^2-b^2c)$ dzieli wielomian W(X) w pierścieniu $\mathbb{Q}[X]$. (wsk: wzorować się na dowodzie twierdzenia z wykładu).