

Diseño de Base de Datos

SOLUCIONARIO DE EJERCICIOS DE ÁLGEBRA RELACIONAL (1)

Símbolo	Caracter	Font	Significado
ρ	r minúscula	Symbol	Renombramiento
σ	s minúscula	Symbol	Selección
П	P mayúscula	Symbol	Proyección
Θ	Q mayúscula	Symbol	Join (Reunión natural)
^	Alt 0217	Symbol	У
V	Alt 0218	Symbol	0
3	\$	Symbol	Existe
≠	Alt 0185	Symbol	No es igual a
\cap	Alt 0199	Symbol	Intersección
U	Alt 0200	Symbol	Unión
÷	Alt 0184	Symbol	División
一一	Alt 0216	Symbol	Negación
∇	ñ mayúscula	Symbol	Para todo

R1 = {nombre-empleado, calle, ciudad}

R2 = {nombre-empleado, nombre-empresa, sueldo}

R3 = {nombre-empresa, ciudad}

R4 = {nombre-empleado, nombre-jefe}

a) Averiguar los nombres de todos los empleados que trabajan en la empresa "Brillante".

 Π nombre-empleado (σ nombre-empresa = "Brillante" (R2))

Nombre-empleado				
Juan				
Pedro				
María				
Ana				
Andrés				
José				

b) Averiguar el nombre y la ciudad de residencia de todos los empleados que trabajan para la empresa "Brillante".

 Π R1.nombre-empleado, R1.ciudad (σ R2.nombre-empresa = "Brillante" (R1 Θ R2))

nombre-empleado	ciudad
Juan	Lima
Pedro	Lince
María	Lima
Ana	Lince
Andrés	Lince
José	Lince

c) Averiguar el nombre, la calle y la ciudad de residencia de todos los empleados que trabajan en la empresa "Brillante" y ganan más de 3,000 soles mensuales.

 Π R1.nombre-empleado, R1.calle, R1.ciudad (σ R2.nombre-empresa="Brillante" \wedge R2.sueldo > 3000(R1 Θ R2))

nombre-empleado	calle	ciudad
María	calle A	Lima
Andrés	calle B	Lince

- d) Averiguar el nombre de todos los empleados que figuran en la base de datos, y que viven en la misma ciudad que la empresa donde trabajan.
 - Join de R2 con R3: empleados con empresa donde trabajan y la ciudad donde se ubica la empresa

$$P = (R2 \Theta R3)$$

Esquema de P = {R2.nombre-empleado, R2.nombre-empresa, R2.sueldo, R3.ciudad}

R2.nombre-empleado	R2.nombre-empresa	R2.sueldo	R3.ciudad
Juan	Brillante	1,500	Lince
Pedro	Brillante	2,300	Lince
María	Brillante	3,200	Lince
Ana	Brillante	2,800	Lince
Andrés	Brillante	5,000	Lince
José	Brillante	2,000	Lince
Flavia	Ocaso	850	Lima
Ricardo	Ocaso	1,200	Lima
Mario	Ocaso	1,700	Lima
Teresa	Lucero	1,800	Surco
Cristina	Lucero	2,500	Surco
Rafael	Lucero	2,300	Surco
Benjamín	Lucero	4,500	Surco
Diego	Cielo	1,000	Miraflores
Sergio	Cielo	2,500	Miraflores
Guillermo	Cielo	4,000	Miraflores

Q = Π R1.nombre-empleado, R1.calle, R1.ciudad (R1 Θ P)

nombre-empleado	Calle	ciudad
Pedro	calle B	Lince
Ana	calle B	Lince
Andrés	calle B	Lince
José	calle B	Lince
Rafael	calle A	Surco

• Proyección del atributo Q.nombre-empleado: Π Q.nombre-empleado (Q)

nombre-empleado				
Pedro				
Ana				
Andrés				
José				
Rafael				

- e) Averiguar el nombre de todos los empleados que viven en la misma ciudad y en la misma calle que sus jefes.
 - Obtenemos una relación P con los empleados, sus direcciones y los nombres de sus respectivos jefes:
 - Hacemos el producto cartesiano de R1 con R4, y seleccionamos las tuplas donde R1.nombre_empleado = R4.nombre_empleado

σ R1.nombre_empleado = R4.nombre_empleado (R1 X R4)

 Proyectamos los atributos R1,nombre_empleado, calle, ciudad, nombre_jefe y renombramos esta relación como P

 ρ P (Π nombre-empleado, calle, ciudad, nombre_jefe (σ R1.nombre_empleado = R4.nombre_empleado (R1 X R4)))

Esquema de la relación P = {nombre-empleado, nombre-jefe, calle, ciudad}

P.nombre-empleado	P.nombre-jefe	P.calle	P.ciudad
Juan	María	calle A	Lima
Pedro	María	calle B	Lince
María	Andrés	calle A	Lima
Ana	Andrés	calle B	Lince
Andrés		calle B	Lince
José	Ana	calle B	Lince
Flavia	Mario	calle J	San Borja
Ricardo	Mario	calle A	San Borja
Mario		calle A	Surco
Teresa	Cristina	calle B	Lince
Cristina	Benjamín	calle A	San Borja
Rafael	Benjamín	calle A	Surco
Benjamín		calle A	Lima
Diego	Guillermo	calle B	Lince
Sergio	Guillermo	calle A	Surco
Guillermo		calle A	Surco

 Combinamos por producto cartesiano la relación P con R1, seleccionando las tuplas donde P.nombre_jefe = R1.nombre_empleado, para obtener una relación con los datos de cada empleado junto a los datos de su respectivo jefe (nótese que los empleado que no tienen jefe no figuran en la relación resultante):

σ R1.nombre_empleado = P.nombre_jefe (P X R1)

P.nombre-empleado	P.nombre- iefe	P.calle	P.ciudad	R1.nombre-	R1.calle	R1.ciudad
				empleado		
Juan	María	calle A	Lima	María	calle A	Lima
Pedro	María	calle B	Lince	María	calle A	Lima
María	Andrés	calle A	Lima	Andrés	calle B	Lince
Ana	Andrés	calle B	Lince	Andrés	calle B	Lince
José	Ana	calle B	Lince	Ana	calle B	Lince
Flavia	Mario	calle J	San Borja	Mario	calle A	Surco
Ricardo	Mario	calle A	San Borja	Mario	calle A	Surco
Teresa	Cristina	calle B	Lince	Cristina	calle A	San Borja
Cristina	Benjamín	calle A	San Borja	Benjamín	calle A	Lima
Rafael	Benjamín	calle A	Surco	Benjamín	calle A	Lima
Diego	Guillermo	calle B	Lince	Guillermo	calle A	Surco
Sergio	Guillermo	calle A	Surco	Guillermo	calle A	Surco

Seleccionamos las tuplas donde P.calle = R1.calle y P.ciudad = R1.ciudad

 σ P.calle = Q.calle \wedge P.ciudad = Q.ciudad (σ R1.nombre_empleado = P.nombre_jefe (P X R1))

P.nombre-empleado	P.nombre-jefe	P.calle	P.ciudad	Q.nombre-jefe	P.calle	P.ciudad
Juan	María	calle A	Lima	María	calle A	Lima
Ana	Andrés	calle B	Lince	Andrés	calle B	Lince
José	Ana	calle B	Lince	Ana	calle B	Lince
Sergio	Guillermo	calle A	Surco	Guillermo	calle A	Surco

• Proyectamos el atributo P.nombre_empleado:

 Π P.nombre-empleado (σ P.calle = Q.calle \wedge P.ciudad = Q.ciudad (σ R1.nombre_empleado = P.nombre_jefe (P X R1)))

nombre-empleado				
Juan				
Ana				
José				
Sergio				

f) Averiguar el nombre de todos los empleados que no trabajan para la compañía "Brillante".

 Π nombre-empleado (σ nombre-empresa \neq "Brillante" (R2))

Alternativa:

$$\Pi$$
 nombre-empleado (R2 - (σ nombre-empresa = "Brillante" (R2)))

- g) Averiguar el nombre de todos los empleados registrados en la base de datos, que ganan más que todos los empleados de la empresa "Ocaso".
 - g.1) Hallar el sueldo máximo de los empleados de "Ocaso".

Selecciona las tuplas de "Ocaso" de la relación R2

Q1 = σ nombre-empresa = "Ocaso" (R2)

nombre-empleado	nombre-empresa	sueldo
Flavia	Ocaso	850
Ricardo	Ocaso	1,200
Mario	Ocaso	1,700

Producto cartesiano de Q1 por Q1

Q1 x ρ D (Q1)

Q1.	Q1.	Q1.	D.	D.	D.
nombre-empleado	nombre-empresa	sueldo	nombre-empleado	nombre-empresa	sueldo
Flavia	Ocaso	850	Flavia	Ocaso	850
Flavia	Ocaso	850	Ricardo	Ocaso	1,200
Flavia	Ocaso	850	Mario	Ocaso	1,700
Ricardo	Ocaso	1200	Flavia	Ocaso	850
Ricardo	Ocaso	1200	Ricardo	Ocaso	1,200
Ricardo	Ocaso	1200	Mario	Ocaso	1,700
Mario	Ocaso	1700	Flavia	Ocaso	850
Mario	Ocaso	1700	Ricardo	Ocaso	1,200
Mario	Ocaso	1700	Mario	Ocaso	1,700

Selecciona las tuplas donde D.sueldo no es el máximo

$$\sigma$$
 D.sueldo < Q1.sueldo (Q1 x ρ D (Q1))

Q1.	Q1.	Q1.	d	. D.	D.
nombre-empleado	nombre-empresa	sueldo	nombre-empleado	nombre-empresa	sueldo
Ricardo	Ocaso	1200	Flavia	Ocaso	850
Mario	Ocaso	1700	Flavia	Ocaso	850
Mario	Ocaso	1700	Ricardo	Ocaso	1,200

Determina los sueldos que no son el máximo, proyectando el atributo D.sueldo

$$\Pi$$
 D.sueldo (σ D.sueldo < Q1.sueldo (Q1 x ρ D (Q1)))

D.sueldo	
850	
1200	

Determina el sueldo máximo de Ocaso por diferencia

Q3 =
$$\Pi$$
 Q1.sueldo (Q1) - Π D.sueldo (σ D.sueldo (Q1 x ρ D (Q1)))

Q1.sueldo
850
1,200
1,700

D.sueldo	
850	
1200	

Q3.sueldo
1,700

g.2) Hallar los empleados que ganan más que los de "Ocaso"

Hallar el producto cartesiano de R2 x Q3

R2.nombre-empleado	R2.nombre-empresa	R2.sueldo	Q3.sueldo
Juan	Brillante	1,500	1,700
Pedro	Brillante	2,300	1,700
María	Brillante	3,200	1,700
Ana	Brillante	2,800	1,700
Andrés	Brillante	5,000	1,700
José	Brillante	2,000	1,700
Flavia	Ocaso	850	1,700
Ricardo	Ocaso	1,200	1,700
Mario	Ocaso	1,700	1,700
Teresa	Lucero	1,800	1,700
Cristina	Lucero	2,500	1,700
Rafael	Lucero	2,300	1,700
Benjamín	Lucero	4,500	1,700
Diego	Cielo	1,000	1,700
Sergio	Cielo	2,500	1,700
Guillermo	Cielo	4,000	1,700

Seleccionar las tuplas donde R2.sueldo > Q3.sueldo

 Π R2.nombre-empleado (σ R2.sueldo > Q3.sueldo (R2 x Q3))

R2.nombre-empleado
Pedro
María
Ana
Andrés
José
Teresa
Cristina
Rafael
Benjamín
Sergio
Guillermo

- h) Supóngase que cada empresa puede tener filiales en varias ciudades (considérese la tabla ejemplo R3' en lugar de R3). Averiguar todas las empresas instaladas en cada ciudad en la que está instalada la empresa "Ocaso".
 - Formamos una relación con las ciudades donde está instalada "Ocaso":

 $Q = \Pi \text{ ciudad } (\sigma \text{ nombre-empresa = "Ocaso" } (R3'))$

ciudad		
Lima		
San Borja		

• Formamos una relación con seleccionando de R3 las tuplas donde la empresa no es "Ocaso":

$$P = (\sigma \text{ nombre-empresa} \neq "Ocaso" (R3')$$

nombre-empresa	ciudad
Brillante	Lince
Brillante	San Borja
Lucero	Surco
Cielo	Miraflores

• Fusionamos las dos relaciones anteriores: Q y P, y proyectamos el atributo nombre_empresa

 Π nombre-empresa (P Θ Q)

nombre-empresa		
Brillante		