Homework 4

VE311 - Electronic Circuits Fall 2021

* Name: Huang Yucheng ID: 519021910885

4.1

4.1.1

Since it is NMOS and $V_D = V_{DD}$ and $V_S = V_X$. We have

$$V_{TH} = 0.7 \text{ V}$$

$$\mu_n = 350 \text{ cm}^2/(\text{V} \cdot \text{s}) = 0.035 \text{ m}^2/(\text{V} \cdot \text{s})$$

$$C_{OX} = \frac{\epsilon_o \epsilon_r}{t_{ox}} = \frac{8.85 \times 10^{-12} \times 3.9}{9 \times 10^{-9}} = 3.835 \times 10^{-3} \text{ F/m}^2$$

$$W = 2 \times 10^{-5} \text{ m}$$

$$L_{eff} = L_{drawn} - 2L_D = 1.84 \times 10^{-6} \text{ m}$$

Since

$$V_{GS} - V_{TH} = 4.3 - V_X$$

When $V_X < 4.3 \text{ V}$

$$V_{DS} - (V_{GS} - V_{TH}) = 0.7 \text{ V} > 0 \quad \Rightarrow \quad V_{DS} > V_{GS} - V_{TH}$$

in the saturation region.

$$I_X = I_D = \frac{1}{2} \mu_n C_{OX} \frac{W}{L_{eff}} (V_{GS} - V_{TH})^2$$
$$= 7.295 \times 10^{-4} \times (V_{DD} - V_X - V_{TH})^2$$
$$= 7.295 \times 10^{-4} \times (4.3 - V_X)^2$$

Therefore,

$$I_x = \begin{cases} 7.295 \times 10^{-4} \times (4.3 - V_x)^2 & V_x < 4.3 \text{ V} \\ 0 & V_x > 4.3 \text{ V} \end{cases}$$

4.1.2

$$V_G = 1.9 \text{ V}.$$

$$\begin{split} V_{TH} &= 0.7 \text{ V}, \\ \mu_n &= 350 \text{ cm}^2/(\text{V} \cdot \text{s}) = 0.035 \text{ m}^2/(\text{V} \cdot \text{s}) \\ C_{OX} &= \frac{\epsilon_o \epsilon_r}{t_{\text{ox}}} = \frac{8.85 \times 10^{-12} \times 3.9}{9 \times 10^{-9}} = 3.835 \times 10^{-3} \text{ F/m}^2 \\ W &= 2 \times 10^{-5} \text{ m} \\ L_{\text{eff}} &= L_{\text{drawn}} - 2L_D = 1.84 \times 10^{-6} \text{ m} \end{split}$$

 $V_x < 1 \text{ V}$, Then S and D changes their roles

$$V_D - V_G + V_{TH} = -0.2 \text{ V} \quad \Rightarrow \quad V_{DS} < V_{GS} - V_{TH}$$

Figure 1: problem 1

it is in the triode region. According to the formula:

$$I_X = -I_D = -\mu_n C_{OX} \frac{W}{L_{eff}} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$
$$= -1.92 \times 10^{-3} \times (1 - V_X) (0.7 - 0.5 V_X)$$

When $V_x > 1$ V Then, S and D changes their roles again, If 1 V < $V_x < 1.2$ V, then it is in the triode region, so they are the same.

If $V_x > 1.2$ V, then it is in the saturation region, so we have

$$I_X = I_D = \frac{1}{2} \mu_n \operatorname{CoX} \frac{W}{L_{\text{eff}}} (V_{GS} - V_{TH})^2$$
$$= 0.7295 \times 10^{-3} \times 0.2^2$$
$$= 2.918 \times 10^{-5} \text{ A}$$

So,

$$I_X = \begin{cases} 1.92 \times 10^{-3} \times (V_x - 1) (0.7 - 0.5V_X) & 0 < V_x < 1.2 \text{ V} \\ 2.918 \times 10^{-5} \text{ A} & v_X > 1.2 \text{ V} \end{cases}$$

Figure 2: problem 2

4.1.3

 $V_G = 1 \text{ V}$, we have

$$V_{TH} = 0.7 \text{ V}$$

$$\mu_n = 0.035 \text{ m}^2/(\text{V} \cdot \text{s})$$

$$C_{OX} = \frac{\epsilon_o \epsilon_r}{t_{ox}} = \frac{8.85 \times 10^{-12} \times 3.9}{9 \times 10^{-9}} = 3.835 \times 10^{-3} \text{ F/m}^2$$

$$W = 2 \times 10^{-5} \text{ m}$$

$$L_{\text{eff}} = L_{\text{drawn}} - 2L_D = 1.84 \times 10^{-6} \text{ m}$$

When $V_X < 1.9$ V, then S and D changes their roles

$$V_D - V_G + V_{TH} = 1.6 \text{ V} > 0 \quad \Rightarrow \quad V_{DS} > V_{GS} - V_{TH}$$

in the saturation region.

$$I_X = -I_D = -\frac{1}{2}\mu_n \operatorname{Cox} \frac{W}{L_{eff}} (V_{GS} - V_{TH})^2$$
$$= -0.729 \times 10^{-3} \times (0.3 - V_X)^2$$

When $V_X > 1.9 \text{ V}$, $I_D = 0$. Therefore

$$I_x = \begin{cases} -0.729 \times 10^{-3} \times (0.3 - V_x)^2 & 0 < V_X < 0.3 \text{ V} \\ 0 & V_X > 0.3 \text{ V} \end{cases}$$

Figure 3: problem 3

4.1.4

$$V_{THP} = -0.8 \text{ V}$$

$$\mu_p = 100 \text{ cm}^2/(\text{V} \cdot \text{s}) = 0.01 \text{ m}^2/(\text{V} \cdot \text{s})$$

$$C_{OX} = \frac{\epsilon_o \epsilon_r}{t_{\text{ox}}} = \frac{8.85 \times 10^{-12} \times 3.9}{9 \times 10^{-9}} = 3.835 \times 10^{-3} \text{ F/m}^2$$

$$W = 2 \times 10^{-5} \text{ m}$$

$$L_{eff} = L_{\text{drawn}} - 2L_D = 1.82 \times 10^{-6} \text{ m}$$

When $V_X < 1.9$ V, then S and D changes their roles

$$V_G - V_D + |V_{THP}| = 1.8 - V_X$$

 $V_x < 1.8 \text{ V}$, then in the saturation region

$$I_X = -I_D = -\frac{1}{2}\mu_p C_{OX} \frac{W}{L_{eff}} (V_{SG} - |V_{THP}|)^2$$
$$= -2.107 \times 10^{-6} \text{ A}$$

 $1.8 \text{ V} < V_X < 1.9 \text{ V}$, then it is in the triode region

$$I_X = -I_D = -\mu_p C_{OX} \frac{W}{L_{eff}} \left[(V_{SG} - |V_{THP}|) V_{SD} - \frac{1}{2} V_{SD}^2 \right]$$
$$= -4.214 \times 10^{-4} (0.5 V_X - 0.85) (1.9 - V_X)$$

When $V_X > 1.9 \text{ V}$, it is in the triode region

$$I_X = I_D = \mu_p C_{OX} \frac{W}{L_{\text{eff}}} \left[(V_{SG} - |V_{THP}|) V_{SD} - \frac{1}{2} V_{SD}^2 \right]$$
$$= 6.321 \times 10^{-4} (0.5 V_X - 0.85) (V_X - 1.9)$$

Therefore, we can obtain

$$I_X = \begin{cases} -2.107 \times 10^{-6} \text{ A} & 0 < V_X < 1.8 \text{ V} \\ 4.214 \times 10^{-4} (0.5V_x - 0.85) (V_X - 1.9) & 1.8 \text{ V} < V_X < 5 \text{ V} \end{cases}$$

Figure 4: problem 4

4.2

4.2.1

When $V_{GS} = 1$ V, triode area is less than 0.3V, and saturation area is 0.3V-5V. There is no turn off region.

$$r_0 = 1.6 \times 10^5 \Omega$$

Theoratically,

$$r_o = \frac{1}{\frac{1}{2}\mu_n C_{OX} \frac{W}{L_{\text{eff}}} (V_{GS} - V_{TH})^2 \cdot \lambda} = 1.523 \times 10^5 \Omega$$

They are almost the same.

When $V_{GS} = 1.5$ V, triode area is less than 0.6V, and saturation area is 0.6V-5V. There is no turn off region.

$$r_0 = 3 \times 10^4 \Omega$$

Theoratically,

$$r_o = \frac{1}{\frac{1}{2}\mu_n C_{OX} \frac{W}{L_{\text{eff}}} (V_{GS} - V_{TH})^2 \cdot \lambda} = 2.142 \times 10^4 \Omega$$

They are almost the same.

When $V_{GS} = 2$ V, triode area is less than 1.2V, and saturation area is 1.2V-5V. There is no turn off region.

$$r_0 = 8.3 \times 10^3 \Omega$$

Figure 5: problem 1a

Figure 6: problem 1b

Theoratically,

$$r_o = \frac{1}{\frac{1}{2}\mu_n C_{OX} \frac{W}{L_{\text{eff}}} (V_{GS} - V_{TH})^2 \cdot \lambda} = 8.111 \times 10^3 \Omega$$

They are almost the same.

Figure 7: problem 1c

4.2.2

In the figure, I can see the slope as gm.

$$gm = 2.9 \times 10^{-3} \Omega^{-1}$$

In theory, we can calculate gm as

gm =
$$\mu_n C_{OX} \frac{W}{L_{eff}} (V_{GS} - V_{TH}) (1 + \lambda V_{DS}) = 2.845 \times 10^{-3} \Omega^{-1}$$

They are almost the same.

Figure 8: problem 2