FACUATY OF ENGINEERING	Project				Job Ref.	
UNIVERSITY OF RUHUNA	Section				Sheet no./rev.	
Learning Tool for					1	
Reinforced Concrete	Calc.by	Date	Chk'd by	Date	App'd by	Date
Design						

FLEXURAL REINFORCEMENT CALCULATION (EC2)

(FLANGE BEAM)

$$K' = 0.167$$

$$b_{eff} =$$

$$K = \frac{M}{bd^2 f_{cu}} =$$

$$Z = d \left\{ 0.5 + \sqrt{0.25 - \frac{K}{1.134}} \right\} =$$

But not greater than 0.95d

$$x = \frac{(d-z)}{0.4} =$$

 $0.8x \le h_f$ Slab thickness is taken as h_f , hence, neutral axis is in fact within the flange and the beam can be designed as a rectangular beam width.

$$(b_{eff} = b)$$

$$A_S = {}^M/_{0.87} f_{yK} Z$$
$$A_S =$$

 $0.8x > h_f$ So the rectangular stress block goes outside the flange region,

and the neutral axis goes inside the web region. The above Z value is then not valid.

$$M_{uf} = 0.567 f_{ck} (b_{eff} - b_w) h_f (d - 0.5 h_f)$$

 $M_{uf} =$

$$K_f = \frac{M - M_{uf}}{f_{ck} b_w d^2}$$
$$K_f =$$

$$A_{S} = \frac{M_{uf}}{0.87 f_{yk} (d - 0.5 h_{f})}$$

$$A_{S} = \frac{M_{uf}}{M_{uf}}$$

<u>Check for maximum reinforcement</u> $A_{S,max} = 0.04A_c =$

$$A_{S max} = 0.04A_c =$$