1 Groups and Fields

Definition 1. Group (G, *) is a set G with a operation * having the following properties

- 1. $G \neq \emptyset$: non-empty
- 2. $*: G \times G \rightarrow G$ is a binary operation
- 3. $\forall a, b \in G; a * b \in G$: closed
- 4. $\forall a, b, c \in G; a * (b * c) = (a * b) * c$: associative
- 5. $\exists e \in G, \forall a \in G; e * a = a * e = a$: identity exists
- 6. $\forall a \in G, \exists \overline{a} \in G; a * \overline{a} = \overline{a} * a = e$: inverse exists

Definition 2. Abelian Group (G, *)

- 1. (G,*) is a group
- 2. $\forall a, b \in G; a * b = b * a$: commutative

Example 1. Check which of the following are groups

- 1. $(\mathbb{R},+)$
- 2. $(\mathbb{R} \{1\}, +)$
- $\mathcal{G}.$ (\mathbb{R},\cdot)
- 4. $(\mathbb{R} \{0\}, \cdot)$
- 5. $GL_2(\mathbb{R})$ =General Linear group= all invertible 2×2 matrices with real entries, under matrix multiplication.
- 6. $\mathbb{B} = \{0, 1\}$ with boolean addition +
- 7. $\mathbb{B} = \{0, 1\}$ with boolean multiplication \cdot
- 8. $D_3 = \{R_0, R_1, R_2, R_3, L_1, L_2, L_3\} = Dihedral group = set of symmetries of an equilateral triangle, under composition.$
- 9. Elliptic Curve with point at infinity: $\mathbb{E} = \{(x,y)|y^2 = x^3 + Ax + B, 4A^3 + 27B^2 \neq 0\} \cup \mathcal{O}$ under elliptic curve addition +: If P, Q, R on a straight line in \mathbb{E} then
- $P+Q+R=\mathcal{O}.$

Theorem 1. If (G, *) is a group and $a \in G$. Then

- 1. e is unique
- 2. \overline{a} is unique
- $3. \ \overline{\overline{a}} = a$

Definition 3. Field $(F, +, \cdot)$ is a set with two binary operations + and \cdot having the following properties

- 1. (F,+) is an abelian group. We write e=0 and $\overline{a}=-a$
- 2. $(F \{0\}, \cdot)$ is an abelian group. We write e = 1 and $\overline{a} = a^{-1}$
- $\textit{3. } \forall a,b \in F; a \cdot b \in F$
- 4. $\forall a, b, c \in F; a \cdot (b+c) = (a \cdot b) + (a \cdot c)$: distributive

Example 2. Check which of the following are groups

- 1. $(\mathbb{R},+,\cdot)$
- 2. $(\mathbb{R},\cdot,+)$
- $\beta. (\mathbb{Q}, +, \cdot)$
- 4. $(\mathbb{Z},+,\cdot)$

- 4. $\mathbb{B} = \{0, 1\}$ with boolean addition and multiplication
- 5. $\mathbb{B} = \{0, 1\}$ with mod 2 addition and multiplication
- 6. $\{0, 1, 2, 3\}$ with mod 4 addition and multiplication
- 7. $(GL_2(\mathbb{R}),+,\cdot)$

Theorem 2. Finite Fields

- 1. If p is a prime, the set $\mathbb{F}_p = \{0, 1, 2, 3, \dots, p-1\}$ under mod p addition and multiplication is a field.
- 2. If F is a finite field with n number of elements, then $n = p^k$ for some prime p and integer k.

Theorem 3. If $(F, +, \cdot)$ is a field and $a \in F$

- 1. $a \cdot 0 = 0$
- 2. $1 \neq 0$
- 3. There must be at least two elements in a field.

Definition 4. Vector space $(V, *, \circ)$ over the field $(F, +, \cdot)$

- 1. (V.*) is an abelian group
- 2. $(F, +, \cdot)$ is a field
- 3. $\forall a \in F, \forall x \in V; a \circ x \in V$
- 4. $\forall a \in F, \forall x, y \in V; a \circ (x * y) = (a \circ x) * (a \circ y)$
- 5. $\forall a, b \in F, \forall x \in V; (a+b) \circ x = (a \circ x) * (b \circ x)$
- 6. $\forall a, b \in F, \forall x \in V; (a \cdot b) \circ x = a \circ (b \circ x)$
- 7. $\forall x \in V; 1 \circ x = x$

Note 1. Vector Space operations

- $+: F \times F \to F$
- $\cdot: F \times F \to F$
- $*: V \times V \to V$
- $\circ: F \times V \to V$

Example 3. Check which of the following are vector spaces

- 1. $(\mathbb{R}^3, +, \cdot)$ over $(\mathbb{R}, +, \cdot)$
- 2. $(\mathbb{R}^3, +, \cdot)$ over $(\mathbb{C}, +, \cdot)$
- 3. $(\mathbb{C}^3, +, \cdot)$ over $(\mathbb{R}, +, \cdot)$
- 4. $(\mathbb{C}^3, +, \cdot)$ over $(\mathbb{C}, +, \cdot)$
- 5. $(\mathbb{Q}_n[x], +, \cdot)$ over $(\mathbb{Q}, +, \cdot)$ where $\mathbb{Q}_n[x]$ is the set of polynomials of degree n or less in x with coefficients in \mathbb{Q} .
- 6. $(\mathbb{R}^{m \times n}, +, \cdot)$ over $(\mathbb{R}, +, \cdot)$ where $\mathbb{R}^{m \times n}$ is the set of $m \times n$ degree matrices with coefficients in \mathbb{R} .
- 7. $(\mathbb{R}^+, *, \circ)$ over $(\mathbb{R}, +, \cdot)$ where * and \circ operations are defined as x * y = xy and $a \circ x = x^a$ for $x, y \in \mathbb{R}^+$ and $a \in \mathbb{R}$

Theorem 4. $(V, *, \circ)$ over $(F, +, \cdot)$ is a vector space

- 1. $\forall x \in V; 0 \circ x = e$
- $2. \ \forall a \in F; a \circ e = e$
- 3. $\forall a \in F, \forall x \in V; a \circ x = e \Rightarrow a = 0 \text{ or } x = e$
- 4. $\forall x \in V; (-1) \circ x = \overline{x}$