

Turn-Key PHY/MAC Designs (and other applications)

John Malsbury john.malsbury@spacex.com

Special Thanks to:

Overview

- Overview of Existing Projects
- Where to go for working examples/applications
- gr-mac an open source MAC project
- (In-Tree OFDM Implementation)

In-Tree Modules and Examples

- Audio Examples → gr-audio/examples
 - Dual tone generation
 - Audio FFT, Resampling and More
 - Python/C++/GRC
- Lots of Examples → gr—uhd/examples/
 - USRP-specified examples
 - FM/AM/Weater receivers and PTT trasmitters
 - Digital/PSK examples
 - uhd_fft
- Digital TV Reception → gr-dtv/examples
 - ATSC (US)
 - DVB-S/T/S2/etc coming soon!
- Digital Communications (mostly mPSK) → gr-digital/examples/
- Many other in-tree modules → gr-fec, gr-fft, gr-filter

CGRAN and Out-Of-Tree Modules

- https://www.cgran.org
- Large variety of open source projects
- A great place to get started with cool applications in a matter of a few minutes!

- gr-air-modes
- Receive aircraft RADAR beacons and plot in Google Earth!

- gr-ieee802-11
- Full function 802.11 a/g/p receiver

A Few Important Concepts

- Shown several time throughout the week
- Important Features/Concepts
 - Samples vs. Polymorphic Types
 - Stream Tags
 - Message Passing API
 - PDUs
 - Advanced Hardware Support
 - C++ vs. Python Blocks

Polymorphic Data Types

Key

Source

Offset

Value

Type: String

Used by blocks to identify PMT

Type: String

Specifies origin(block) of PMT

Type: Int

Specifies sample position

Type: Can by many types "payload data"

Int, String, Bool, PDU, etc.

Stream Tags

- · Tags PMTs that are inserted into a GNU Radio sample stream
- · PMT assigned <u>absolute</u> offset, tagging a specific sample
- Useful for synchronizing block functionality to DSP/samples
- Examples: UHD Sink understands tx_sob, tx_time, tx_eob tags

Tag, Offset = 0

Tag, Offset = n

Tag, Offset = 1024

Sample Stream – first samples in buffer 1024 samples

Half-Duplex/Bursting with Stream Tags

- Specifies time of burst, start of burst, and end-of-burst
- Useful for half-duplex systems that require tight control over tx/rx functionality

```
Tag, Offset = n
Key = 'tx_time'
Value = [sec frac_sec]
```

```
Tag Offset = n
Key = "tx_sob"
Value = pmt.PMT_T
```

nples Before

Samples associated with frame Sample count = 512

Samples Afte

Tagged Stream Blocks

Tag, Offset = n Key = 'pkt_length' Value = int

Tag, Offset = n Key = 'pkt_length' Value = int

nples Before

Samples associated with frame/DSP opertion

Samples Afte

A Simple Transmitter

A Simple Receiver

A Hierarchal Block

A Simple Transceiver

Late-Night Demo Prep/Recording

MAC Frame

Sequence Number

Destination Address

Source Address

Control Word I

Control Word II

Payload

Sequence Number for ARQ and dropped-frame detection

Address of radio we're sending this msg to.

Radio's address ("my address")

Control words: settings include ARQ, protocol id, FEC settings, etc.

This is our payload, it can be represented as a "blob" and is in our implementation

Sequence Number

Destination Address

Source Address

Control Word I

Control Word II

Payload

Preamble/Sync Words

PHY Header Byte count, etc.

MDU

CRC16

A Simple Transceiver (simple_trx.py)

Python-Defined MAC Layer

Adding MAC to the Transceiver

About 3.5 hrs later...

Back to the OFDM...

And then we have an OFDM transceiver...

Adding MAC to the Transceiver

Balint added IP Networking!

But some of us (me) have OCD...

And then Balint kicked my butt in BZFlag...

IP Games over gr-mac

Release the Rage in:

B200-BZFlag Demo

@ Hackfest on Friday!

Balint Winning (many times)

Other Ways to Interact with a Transceiver

```
#make the flowgraph
tb = simple trx mac(rx antenna=antenna, rx gain=options.rx gain, tx gain=options.tx gain, a
tb.start()
while(1):
    if state == INIT:
         #start the FG - disable transmission until next state
         tb.set ampl(0.0)
         if options.mode == "slave":
              print "I'm a slave, searching for channel."
              index = 0
              last byte count = 0
              period = 0.250
              tb.set beacon interval = 10.0
              state = SEARCH
         elif options.mode == "master":
              tb.set beacon interval = 0.1
              print "I'm a master, setting channel"
              state = MASTER SET
         else:
              print "Invalid mode '%s' specified. Exiting." % options.mode
     elif state == SEARCH:
        if not tb.simple mac.get rx byte count() > last byte count:
           trv:
               freq = channels[index]
               print "Searching. Setting Slave to %f MHz." % (freq/le6)
               tb.set rx freg(freg)
               tb.set tx freq(freq)
               index = ( index + 1 ) % len(channels)
               print "Could not set SDR center frequency. Most likely a bad frequency index."
               sys.exit()
        else:
           print "Found downlink, moving to nominal comms state."
           state = NOMINAL
           tb.set ampl(options.ampl)
           tb.set tx gain(options.tx gain)
           period = 15.0
```


gr-mac Wishlist

PHY	Spread Spectrum		
Channel Access	RSSI-based Channel Sense Implementation	FHSS	TDMA
Networking Layer	QoS management	Self-organizing networks	Good Idea
FEC Integration	Anything from gr-fec	Good Idea	Good Idea
PHY/MODEM	Freq error correction and burst sync for GMSK Demod	Spread spectrum	QAM/PSK integration (test_corr_and_sync)
Utility	Traffic simulator	BSC Simulator	Shared channel simulator for bursty signals
ARQ	Sliding Window	Hybrid ARQ	Good Idea
Awesome-ness	FPGA PHY Integration (ie. RF NoC)	Embedded	Anything on Parallela
Boring but Important	Documentation	Throughput/ latency benchmarks	Python → C++

gr-mac Challenge

- You have an RTL-SDR!
- Low-power encoded beacon @ Hackerspace
- Hints:
 - GMSK modem
 - simple_trx.py might be a good place to start
 - Share results/progress with #grcon14 hashtag on twitter
 - Random parameters:
 - Multiple dazta rates < 125 kbps
 - Hopping across the amateur 33 cm band (KI4MTT)
 - Get help via Tutor Program!

Bounty:

ohn@yosemite ~/src/gr-mac/examples \$ nc 127.0.0.1 12348

VOPE!SZKA6VISKO/GPZBYEAYERIXKQ/ZH8YAFDS9ZKGKC4F19KCDTL3CWBBHGITQGEUGZTNV4ZWSFMCZZAXAS 9LMB8YIZNYOGECUKNIL5UW9MZ9IOXYZXY01TX1G6LDBV0ZAM1PMPUKF1DMY4GGG9PVQ7LB6N45AUP2QY VN2DGWUVBFYCRXJPHRRM87PSZO456DSBMHAWN33M50V877KD5ABE5EXU3YJV9JCHDONIHAB4N1EP013X GETTING WARMER!

68NPI80PDUX1FTNEBMSKN8Q4PJ2IEV6SPDJ69PUDNC1A280Q9BZN4AF7Q7HWCJZLQTBQ3PZ3E20A1N4J
CQY6DFRYLKXXJ2Y9MJV04ZTP7M6H532H07LV4CJVU1GLP36MZAF1498QQ60FF30DDNGLXHMHCGN04DDN
SWGDR4UC450DSLDS2RPVJB3R3AZHFI50T4JAATK6NU7JBD3TTTX3L0P7D7VLJSKV3PL6F1A8RHV0FVZT
FFRZQ9NZLOZ0LZ3JKDE08F7RHADJ00EH0WUQKIP3BNBVZJ5ILZTXXM4GFA80LDTW19HVZL787ABPV3J9
GRCON14!DK5DXGDRF0EG35QFN5GBDWY2IB6L9LMQEKHMJN59H0ZHGDEPI6SNBEAJP8PXIQ6ME0685IQ3KXJ88EF8
UN45SMZ30RS3JEQCPJFH14BJDJ3D9XTC18N3AK06Z7HAILNF8H32ZB3NU4HDF6WK1DUPHTWYV5ZYDDCN
AXWT47MDHDDRN5HL4AVZ31SQSWZCN5G70FVE0UV3V9WBXS6HHHA3JCKNKCW9CB5154VFINEG0LRTWUVF
NOPE!6LZNLK48BH6HE2ZM89CD7MXGWGTP0Q0RB3VYHJYQC13YELNJMS0403UKR0M6ZLXCI6P6AJU72NR0LYIA
TDX5EJJ23FZR5JVH4T4S9R3ZX5P2U1YS7BG2JPBNNETER3DF89UDK2DF9UVMI1QNV07Y5QMQ4W001KWP
9GUI42JZNCLINSET4FRL7I7AXP1BA30F7GWMPP7ARYTONGIOV6R3013XCQD9LLJM8DXXC1E7QN5V3PB4
LYYUYC21DQINI6YTSLSRHN820SVMEGN8X91NDIBAHJNDBYA9W11CKK5HF0L268PKSPUDDKKCIV0VQ4HB

http://github.com/jmalsbury/gr-mac