苏州大学 抽象代数 课程试卷(A)答案 共2页

(考试形式 闭卷 2006年7月)

一.判断题

- (1). $(\sqrt{})$
- (2). (\times)
- (3). (\times)
- (4). (\times)
- (5). $(\sqrt{)}$
- (6). (\times)
- (7). $(\sqrt{})$
- (8). $(\sqrt{})$
- (9). $(\sqrt{})$
- (10). (\times)
- 二. 证明: 根据R是交换环及理想的定义即可证得.
- 三. 证明: 若n不为素数,则 $\exists n_1, n_2 \in N \coprod n_1, n_2 < n, n = n_1 n_2$. 又由R特征为n,则 $\exists a \in R$ 使得 $n_1 a \neq 0 \coprod n_2 a \neq 0$,但n = 0,又 $(n_1 a)(n_2 a) = (n_1 n_2)a^2 = (n a)a = 0$,与R 是不含零因子的环矛盾,所以n为素数.
- 四. 解: \mathbb{Z}_6 的理想有: $\{\bar{0}\}; \{\bar{0},\bar{2},\bar{4}\}; \{\bar{0},\bar{3}\}; \mathbb{Z}_6$.
- 五. 证明: "⇒"由 $a|b \perp b|a$ 知存在 $c,d \in R$ 使b=ac,a=bd,于是a=acd。 若a=0,则b=ac=0,故a=b;若 $a\neq 0$,则由a=acd消去a 得cd=1,所以c,d为cd 的单位。因而总存在单位c 使 $a=\varepsilon b$ 。
 - " \leftarrow " 若有单位 ε 使 $a=\varepsilon b$, 则 $b=\varepsilon^{-1}a$, 所以a|b且b|a, 即a与b相伴。
- 六. 证明: "⇒"设 $[a] \in \mathbb{Z}_n$ 是 \mathbb{Z}_n 的可逆元, 则 $\exists [r] \in \mathbb{Z}_n$ 使得[r][a] = [1],

即[ra] = [1], 所以 $\exists s \in \mathbb{Z}$ 使得ra + sn = 1, 从而可知(n, a) = 1.

" \leftarrow " 设 ra+sn=1, 所以 [ra+sn]=[1], 即 [ra]=[r][a]=1, 从而可知 [a]是 \mathbb{Z}_n 的可逆元.

七.

证明: "⇒"设(a,b)=(d),则 $a\in (d),b\in (d)$ 得 $d\mid a,d\mid b$.又若 $d'\mid a,d'\mid b$,则 $(a)\subseteq (d'),(b)\subseteq (d')$,于是 $(a,b)\subseteq (d')$,故 $(d)\subseteq (d')$,则 $(d)\in (d')$,所以 $(d)\in (d')$,的一个最大公因子.

" \Leftarrow " 若d 是a,b 的最大公因子,则d | a 且d | b, 于是(a) \subseteq (d) 且(b) \subseteq (d),从而(a,b) \subseteq (d).由于R 是主理想整环,所以存在 $d_1 \in R$ 是(a,b) = (d_1) ,则(a) \subseteq (d_1) ,(b) \subseteq (d_1) ,即(d) \subseteq (d_1) ,即(d) \subseteq (d,b),所以(d,b) = (d).