

Personalized IR SE-POA

Armanni Luca 509085 Ghiotto Alessandro 513944

SE-PQA dataset

Dimension of answers and questions

Word Count - Question Text

---- Average Text Word Count: 118
---- Median Text Word Count: 89

1000
800
400
200
0 100 200 300 400 500
Word Count

Topic of our documents

Sparsity of user profiles...

Number of Questions per User

Roadmap

- 1 Baseline retrieval
- Neural-reranking
- 3 Query expansion
- 4 Tags score
- 5 Learn to rank
- 6 Best model

1. Baseline retrieval

Best weighting parameters:

- c = 1.0, k_1 = 1.2 for precision
- c = 1.0, k_1 = 2.5 for recall

2. Neural re-ranking

3. Query expansion

4. Tags score

BM25~%~100

 $\lambda_1 \cdot ext{BiEncoder_score} + \lambda_2 \cdot ext{BM25_score} \ + \lambda_3 \cdot ext{tags_score}$

best config:

$$(\lambda_1,\lambda_2,\lambda_3)=(.7,.1,.2)$$

$$rac{len(intersection(Tags(u_q,t),Tags(u_a,t))}{len(Tags(u_q,t))+1}$$

5. Learn to Rank

6. Best model

 $.7 \cdot BiEncoder_score + .1 \cdot BM25_score \\ + .2 \cdot tags_score$

 $\begin{array}{c} \text{if n_questions} \\ \geq 512 \end{array}$

BM25 % 100

 $.9 \cdot BiEncoder_score + .1 \cdot BM25_score$

otherwise

We use the personalized model if we have enough data about the user

Results

Best model on test set

P@1	P@3	nDCG@3	nDCG@10	R@100	AP@100
0.878	0.306	0.901	0.915	0.969	0.902

Thanks for your attention!