<u>Recall</u>	for a top space X with <u>basepoint</u> x: π_1(X, x) = {[γ] loops γ in X based at x}	hence ((π_1(X, x), *) is a group with id elt [e_x]
	e_x is the constant path at x		will follow from the more general:
<u>Df</u>	loop γ at x is nulhomotopic iff [γ] = [e_x]	<u>Thm</u>	fix v, w, x, y in X and paths
Ex	let $\gamma(t) = (\cos(2\pi t), \sin(2\pi t))$		α β γ
	want γ nulhomotopic in R^2		v to w to x to y
	but not in $R^2 - \{(0, 0)\}$ [picture]		
		then	1) $[\alpha * \beta] * [\gamma] = [\alpha] * [\beta * \gamma]$
<u>Thm</u>	for any α , β , γ in $\pi_1(X, x)$:		2) $[e_x * \gamma] = [\gamma] = [\gamma * e_y]$
			3) if $w = y$ and β reverses γ
1)	$[\alpha * \beta] * [\gamma] = [\alpha] * [\beta * \gamma]$		then $[\beta * \gamma] = [e_w]$
2)	$[e_x * \gamma] = [\gamma] = [\gamma * e_x]$		$[\gamma * \beta] = [e_x]$
3)	if β is the "reverse" of γ		
	then $[\beta * \gamma] = [e_x] = [\gamma * \beta]$	[what d	oes each statement mean, visually?]

Pf of 3) WLOG
$$\gamma$$
: [0, 1] to X,

$$\beta(s) = \gamma(1-s)$$

want
$$[\gamma * \beta] = [e_x]$$

proof that $[\beta * \gamma] = [e_w]$ is analogous

want path homotopy h :
$$[0, 1] \times [0, 1]$$
 to X s.t.
h(-, 0) = e_x and h(-, 1) = $\gamma * \beta$

[draw picture]

[idea:
$$h(-, t)$$
 should "freeze" when it hits $\gamma(t)$]

h(s, t): x to
$$\gamma(t)$$
 for s in [0, t/2]
stay at $\gamma(t)$ for s in [t/2, 1 - t/2]
 $\gamma(t)$ back to x for s in [1 - t/2, 1]

$$\gamma(2s) \qquad \qquad s \le t/2$$

$$h(s, t) = \gamma(t) \qquad \qquad t/2 \le s \le 1 - t/2$$

$$\gamma(2 - 2s) = \beta(2s) \qquad 1 - t/2 \le s$$

Pf of 2) again WLOG
$$\gamma$$
: [0, 1] to X

want to prove $[e_x * \gamma] = [\gamma]$ proof that $[\gamma * e_y] = [\gamma]$ is analogous

want path homotopy
$$h : [0, 1] \times [0, 1]$$
 to X s.t. $h(-, 0) = e_x * \gamma$ and $h(-, 1) = \gamma$

[do a more abstract argument this time:]

notice: if
$$X = [0, 1]$$
 and $x = 0$ and $\gamma(t) = t$ then much easier

reduce to this case using two identities:

Lem given paths φ , φ' , ψ : [0, 1] to A cts map f : A to X

- if j is a path homotopy φ to φ'
 then f ∘ j is a path homotopy f ∘ φ to f ∘ φ'
- 2) if $\phi * \psi$ def., then $f \circ (\phi * \psi) = (f \circ \phi) * (f \circ \psi)$

take A = [0, 1] and $\phi = e_0$ * id $\phi' = id$ pick a path homotopy j from ϕ to ϕ' [uses convexity of [0, 1]]

now take $f = \gamma$ then $\gamma \circ j$ is a path homotopy $\gamma \circ \phi$ to $\gamma \circ \phi'$ but $\gamma \circ (e_0 * id) = (\gamma \circ e_0) * (\gamma \circ id) = e_x * \gamma$ $\gamma \circ id = \gamma$

Pf of 1) recall

want $[\alpha * \beta] * [\gamma] = [\alpha] * [\beta * \gamma]$

similar idea as in 2): if X = [0, 1] and α , β , γ all linear then much easier

 $f = (\alpha * \beta) * \gamma$ check that $f \circ \phi = \alpha * (\beta * \gamma)$: v to w for s in [0, 1/2] w to x for s in [1/2, 3/4] x to y for s in [3/4, 1]

path homotopy ϕ to id yields path homotopy $f \circ \phi$ to $f \square$

[so π_1(X, x) is a group under *]

Rem the subscript 1 in π_1 alludes to "higher homotopy groups" π_n

roughly, π_n describes maps S^n to X up to basepoint-fixing homotopy

Rem if P is the path comp. of X containing x then $\pi_1(X, x) = \pi_1(P, x)$

so π_1 cannot "see" the other path components so $\pi_1(X, x)$ only interesting for X path-connected

 \underline{Q} how much does $\pi_1(X, x)$ depend on x?

[recall what it means for groups to be "the same"] from last time:
a https://doi.org/10.1001/journal.org/<a> a homomorphism (G, •) and (K, •) is a map

$$\varphi$$
: G to K s.t. $\varphi(a \cdot b) = \varphi(a) \circ \varphi(b)$

it's an isomorphism iff it has an inverse

Thm for any x_0 , x_1 in X a choice of path α from x to y defines an isomorphism

 \ddot{a} : $\pi_{1}(X, x_{0})$ to $\pi_{1}(X, x_{1})$

that actually only depends on $[\alpha]$

Pf let $\ddot{\alpha}([\gamma]) = [\alpha'] * [\gamma] * [\alpha]$ where α' is the reverse of α

to get inverse map: switch α with α' \square

Df write f: (X, x) to (Y, y) to mean f: X to Y is cts, f(x) = y

for such f, let $f_* : \pi_1(X, x)$ to $\pi_1(Y, y)$ be

$$f_*([\gamma]) = [f \circ \gamma]$$

earlier lemmas show this is well-defined

have $(g \circ f)_* = g_* \circ f_* : \pi_1(X, x)$ to $\pi_1(Z, z)$

Cor if f is a homeomorphism then f_* is an isomorphism

so $\pi_1(X, x)$ is a topological invariant of X

Pf take g to be the inverse of f

next time: $\pi_1(R^2 - \{(0, 0)\}, (1, 0))$ is nontrivial