Unifais Unifais Unifais Unifais Unifais Unifais Unifais Universidade Federal de Alfenas Univer

Matemática atuarial

Seguros Aula 4

Danilo Machado Pires danilo.pires@unifal-mg.edu.br Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br Notas de aula da disciplina Matemática Atuarial I, oferecida pelo curso de Bacharelado Interdisciplinar em Ciência e Economia/Ciências Atuariais da Universidade federal de Alfenas- Campus Varginha.

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Un

PIRES,M.D. COSTA, L,H. Seguros de Vida. [Notas de aula]. Universidade Federal de Alfenas, Curso de Bacharelado Interdisciplinar em Ciência e Economia, Alfenas, 2025. Disponível em: https://atuaria.github.io/portalhalley/notas_MatAtuarial1.html. Acessado em: 28 jun. 2025.

Introdução

- ➤ A matemática atuarial é o ramo da Matemática intimamente ligada ao segmento de seguros...
 - > Avaliar riscos.
 - > Avaliar sistemas de investimentos.

- > A matemática atuarial atua fornecendo meios para apuração de prêmios de seguros ligados à vida...
 - > Produtos atuariais do ramo vida
 - > Seguros,
 - ➤ Planos de previdência,
 - Planos de benefício

Seguros

➤ Seguro é todo contrato pelo qual uma das partes (segurador) se obriga a pagar um *benefício a outra (segurado) em caso de ocorrência de sinistro, em troca do recebimento de um prêmio seguro.

- > Características do contrato de seguros
 - > Aleatório: Depende de elementos futuros e incertos;
 - Oneroso e Bilateral: Há obrigações para as duas partes, segurado e segurador possuem ônus e vantagens econômicas;
 - Solene: Há uma formalidade materializada na forma de apólice;

- > Seguros de vida são contratos de seguro estabelecidos com base no risco de morte .
 - > Garante ao beneficiário um capital ou renda determinada no caso de morte.
 - > Mediante coberturas adicionais, pode cobrir invalidez permanente.
 - De Des benefícios podem ser pagos de uma só vez ou durante um determinado período estipulado na apólice.
 - > Refletem uma característica única nos seres humanos.

- ▶ Para a apuração dos prêmios ligados à vida é necessário uma avaliação do risco de morte:
- ➤ Como o risco é uma probabilidade de ocorrência de eventos desfavoráveis, logo:
 - > É necessário identificar e caracterizar a variável aleatória trabalhada.
 - > Tempo de vida restante.
- Diferente do risco de danos, no risco de vida (sob certas circunstâncias) a seguradora lida com a certeza que terá que pagar algum dia o valor do benefício.

> Suponha que a seguradora deseja guardar o valor presente do gasto que ela terá com o segurado no futuro. Qual deverá ser esse valor?

$$F_0 = Fv^n = bv^n$$

É usual chamar de b o benefício pago ao segurado, e n nesse caso corresponde ao tempo de vida do segurado.

- \triangleright O tempo de vida futuro (ou adicional) de um indivíduo de idade x, que deseja contratar um seguro de vida inteiro (vitalício) de definida por uma variável aleatória, tal que:
 - $ightharpoonup T \in (0, \infty)$
 - > Tábua de vida.
 - > Função de distribuição.

EXEMPLO 1: Para que um beneficiário receba um valor financeiro de \$100 000,00 ao final do ano do sinistro. Qual deve ser o valor presente (VP) ou F_0 ?

Resp.:

$$VP = 100000 \left(\frac{1}{1+i}\right)^{T+1} = 100000 v^{T+1}$$

EXEMPLO 1 (continuação): Para o caso de i = 5% ao ano, então $v = \frac{1}{1+0.05} = 0.9524$, assim, pode-se por exemplo calcular qual o valor presente necessário a pagar o benefício de \$100 000,00 para os casos em que:

> O sinistro ocorre em 4 anos.

$$VP =$$

> O sinistro ocorre em 31 anos.

$$VP =$$

➤ O sinistro ocorre em 49 anos.

$$VP =$$

EXEMPLO 1 (continuação): Para o caso de i = 5% ao ano, então v = 0.9524, assim, pode-se por exemplo calcular qual o valor presente necessário a pagar o benefício de \$100 000,00 para os casos em que:

> O sinistro ocorre em 4 anos.

$$VP = 100000v^{4+1} = 100000(0,9524)^5 \approx $78352,61$$

➤ O sinistro ocorre em 31 anos.

$$VP = 100000v^{31+1} = 100000(0,9524)^{32} \approx $20986,61$$

➤ O sinistro ocorre em 49 anos.

$$VP = 100000v^{49+1} = 100000(0,9524)^{50} \approx $8720,37$$

Em resumo temos que a uma taxa de 5% ao ano para um beneficiário poder ganhar b=\$100000,00 reais depois de 4 , 31 e 49 anos, tempos que ter os seguintes valores presentes.

T(anos)	<i>VP</i> (\$)
4	\$78352,61
31	\$20986,61
49	\$ 8720,37

Imagine que T é uma variável aleatória e esses são os únicos valores que ele pode assumir. Então que é o valor presente esperado que o indivíduo x deveria pagar hoje por este seguro de modo que a seguradora receba o necessário para pagar o benefício de \$100 000,00?

A resposta a essa questão está relacionada a esperança matemática (valor esperado ou média probabilística) de uma função de variável aleatória.

Para o caso em questão seja T uma variável, então :

$$E[g(T)] = \sum_{j} g(t_{j})P(T = t_{j})$$

Considerando que não existe despesas administrativas, imposto e lucro, o valor a ser cobrado deveria ser valor esperado de bv^{T+1} , logo:

$$E(VP) = E(bv^{T+1}) = bE(v^{T+1})$$

Considerando que não existe despesas administrativas, imposto e lucro, o valor a ser cobrado deveria ser o valor esperado para bv^{T+1} , logo:

$$E(VP) = E(bv^{T+1}) = bE(v^{T+1})$$

$$E(VP) = 100000(0,9524)^5 P(T=4) + 100000(0,9524)^{32} P(T=31) + 100000(0,9524)^{50} P(T=49)$$

$$E(VP) = 100000[(0,9524)^5P(T=4) + (0,9524)^{32}P(T=31) + (0,9524)^{50}P(T=49)]$$

$$E(VP) = 100000 E(v^{T+1})$$

Também chamado de valor presente atuarial VPA.

Definição: Seja T a variável aleatória associada ao tempo de vida futuro, ou seja, o tempo entre a emissão da apólice do seguro e a morte do segurado, então:

$$b_T = b$$
 \rightarrow Função benefício;

$$v_t = v^{t+1}$$
 \rightarrow Função desconto;

$$Z_T = bv^{T+1}$$
 \rightarrow Função valor presente.

Seguro de vida pago ao fim do ano de morte

$$Z=b\frac{1}{(1+i)^{4+1}}$$

$$\boldsymbol{Z_T} = \boldsymbol{bv^{T+1}}$$

Prêmio Puro único

- Chame de **prêmio puro único** a parcela única do prêmio, suficiente para pagar sinistros.
 - Neste sentido o **prêmio puro único** é o prêmio que propõe o pagamento de despesas relacionadas ao risco que está sendo assumido pela seguradora.
 - ➤ O valor **esperado** do valor presente de todos os benefícios que a seguradora se compromete a pagar.
 - > Em geral é estabelecido em um dado período, normalmente um ano.
 - > O termo *puro* significa que ao valor considerado não foram adicionadas quaisquer cargas técnicas.
 - ➤ De gestão ou comerciais
 - ➤ O termo *único* se refere ao fato do pagamento do prêmio ser feito mediante um único pagamento.

- > Só há equilíbrio entre lucro e prejuízo se houver um elevado número de contratos do mesmo tipo...
 - A reserva criada, recebendo apenas como prêmio o valor atuarial do risco coberto, não é suficiente para garantir que a seguradora não venha a ter prejuízos significativos.

SEGURO DE VIDA VITALÍCIO (INTEIRO)

- Existe incerteza sobre o momento do pagamento, e o benefício será pago não importando quando.
- \triangleright O valor presente de um benefício unitário pago ao final do ano de morte de um segurado de idade x será representado pela variável aleatória, Z_{T_x} , tal que:

$$Z_{T_x}=v^{T+1}, T=0,1,\ldots,\omega-x$$

em que ω corresponde a última idade da tábua de vida usada como modelo de probabilidade...

EXEMPLO 2: Qual o valor do prêmio puro único de um seguro vitalício feito por uma pessoa de 110 anos? Considere um benefício igual a \$1, com taxa de juros de 4% ao ano e a tábua de vida AT-2000 masculina.

\boldsymbol{x}	q_{χ}
	4(5)
110	0,60392
111	0,66819
112	0,73948
113	0,81825
114	0,90495
	1,00000
_	

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

$$\omega - x = 5$$

$$b_T = \begin{cases} 1, t = 0, 1, 2, ..., 5 \\ 0, \text{ caso contrário} \end{cases} \rightarrow \text{Função benefício};$$

$$v_T = v^{t+1}$$
, $t \ge 0$ \rightarrow Função desconto;

$$Z_T = \begin{cases} v^{T+1}, & T = 0,1,\dots,5 \\ 0, \text{caso contrário} \end{cases} \rightarrow \text{Função valor presente}.$$

Obs.: É normal o uso de T_x para indicar que a variável T está vinculada a idade x.

$$b_T = 1.u.m, i = 4\%.$$

x:Idade da coorte

$$x q_x p_x l_x$$

$$\boldsymbol{q}_x = P(T_x \le 1)$$

$$p_x = P(T_x > 1)$$

 l_x : número de vivos a idade xDo ponto de vista analítico, l_x pode ser considerada uma função contínua e diferençável de x.

$$Z_t = \{v^1, v^2, v^3, v^4, v^5, v^6\}$$

$$E(Z_T) = v^1 P(T_{110} = 0) + v^2 P(T_{110} = 1) + v^3 P(T_{110} = 2) + v^4 P(T_{110} = 3) + v^5 P(T_{110} = 4) + v^6 P(T_{110} = 5)$$

$$E(Z_{T_{110}}) = \sum_{t=0}^{5} v^{t+1} P(T_{110} = t)$$

Importante: $P(T_x = t)$ corresponde a probabilidade do tempo de vida adicional ser igual a t, no caso a probabilidade que indivíduo "morra" durante o intervalo de t a t+1 é determinado que

$$P(t < T_x \le t + 1) = P(T_x > t) - P(T_x > t + 1)$$

$$P(t < T_x \le t + 1) = {}_t p_x - {}_{t+1} p_x$$

Lembrando da relação
$$_{m+l}p_x = _{m}p_x \times _{l}p_{x+m}$$

$$P(t < T_x \le t+1) = _{t}p_x - _{t}p_{x} \cdot _{1}p_{x+t}$$

$$P(t < T_x \le t+1) = _{t}p_x (1-p_{x+t})$$

$$P(T_x = t) = (_{t}p_x) (q_{x+t}) = _{t}|q_x$$

$$E(Z_{T_{110}}) = \sum_{t=0}^{5} v^{t+1}({}_{t}p_{110}) (q_{110+t})$$

$$E(Z_{T_{110}}) = \sum_{t=0}^{5} v^{t+1} P(T_{110} = t) = \sum_{t=0}^{5} v^{t+1} (_{t}p_{110}) (q_{110+t})$$

$$\begin{split} &E(Z_{T_{110}})\\ &= v^{1}_{0}p_{110}q_{110} + v^{2}p_{110}q_{111} + v^{3}_{2}p_{110}q_{112} + v^{4}_{3}p_{110}q_{113} + v^{5}_{4}p_{110}q_{114} \\ &+ v^{6}_{5}p_{110}q_{115} \end{split}$$

$$E(Z_{T_{110}}) \approx 0,9403557u.m.$$

Sabendo que:

$$_{0}p_{110} = 1$$
 $_{3}p_{110} = \frac{l_{113}}{l_{110}} = (p_{110})(p_{111})(p_{112})$

Seguro de vida de uma pessoa de idade x com cobertura vitalícia e benefício unitário pago ao final do ano de morte do segurado

$$E(Z_{T_x}) = \sum_{t=0}^{\omega - x} v^{t+1} P(T_x = t) = \sum_{t=0}^{\omega - x} v^{t+1} (_t p_x) (q_{x+t})$$

$$A_{x} = \sum_{t=0}^{\omega - x} v^{t+1}(t_{t}p_{x}) (q_{x+t}) = E(Z_{T_{x}})$$

$$A_{110} \approx 0.9403557u.m.$$

Observação

A expectativa de vida de uma pessoa de idade x, mede quantos anos em média uma pessoa sobrevive a partir dessa idade.

$$e_{x} = \sum_{t=0}^{\omega - x} t_{t} p_{x} q_{x+t} = \sum_{t=1}^{\omega - x} t_{t} p_{x}$$

A expectativa de vida completa de uma pessoa de idade x, admitindo que a distribuição das mortes ao longo do ano é uniforme, é dada por:

$$e_x^0 = e_x + \frac{1}{2}$$

Probabilidades AT-49 M

Probabilidades AT-49 M

SEGURO DE VIDA TEMPORÁRIO

- ➤ O pagamento ocorre desde que o sinistro ocorra dentro de um período estipulado.
- > Como calcular o VPA desse Benefício?
 - Calcular a esperança matemática da variável aleatória "quanto devo ter hoje para pagar o benefício devido em relação a um segurado?"

EXEMPLO 3: Pense no caso de uma pessoa de 25 anos que deseja fazer um seguro onde caso este segurado faleça nos próximos 5 anos, o seu beneficiário receberá uma quantia de 1.u.m. Considere também uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte. Calcule o valor esperado da função valor presente.

Idade	q_x	
25	0,00077	
26	0,00081	
27	0,00085	
28	0,00090	
29	0,00095	
30	0,00100	
31	0,00107	
32	0,00114	
33	0,00121	
34	0,00130	
35	0,00139	

Resp.:

$b_T = \begin{cases} 1, t = 0, 1, 2, \dots, 4 \\ 0, \text{ caso contrário} \end{cases} \rightarrow \text{Função benefício};$

$$v_T = v^{t+1}$$
 , $t \ge 0$ \rightarrow Função desconto;

$$Z_T = \begin{cases} v^{T+1}, & T = 0,1,\dots,4 \\ 0, \text{caso contrário} \end{cases} \rightarrow \text{Função valor presente}.$$

Obs. É normal o uso de T_x para indicar que a variável T está vinculada a idade x

 $b_T = 1.u.m., i = 4\%.$

x	$q_x =_1 q_x$	$p_x =_1 p_x = 1 - q_x$	$l_x = \frac{l_{x+1}}{p_x}$
25	0,00077	0,99923	100000
26	0,00081	0,99919	99923
27	0,00085	0,99915	99842
28	0,00090	0,99910	99757
29	0,00095	0,99905	99667
30	0,00100	0,99900	99572
31	0,00107	0,99893	99472
32	0,00114	0,99886	99365
33	0,00121	0,99879	99251
34	0,00130	0,99870	99131
35	0,00139	0,99861	99002

$$Z_t = \{v^1, v^2, v^3, v^4, v^5, 0\}$$

 $E(Z_T) = v^1 P(T_{25} = 0) + v^2 P(T_{25} = 1) + v^3 P(T_{25} = 2) + v^4 P(T_{25} = 3) + v^5 P(T_{25} = 4) + [0P(T_{25} = 5) + \cdots]$

$$E(Z_T) = v^1 P(T_{25} = 0) + v^2 P(T_{25} = 1) + v^3 P(T_{25} = 2) + v^4 P(T_{25} = 3) + v^5 P(T_{25} = 4)$$

$$E(Z_T) = v^1_{0}p_{25}q_{25} + v^2_{125}q_{26} + v^3_{21}p_{25}q_{27} + v^4_{3}p_{25}q_{28} + v^5_{4}p_{25}q_{29}$$

Unifal Un

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Un

$$E(Z_T) = v^1 P(T_{25} = 0) + v^2 P(T_{25} = 1) + v^3 P(T_{25} = 2) + v^4 P(T_{25} = 3) + v^5 P(T_{25} = 4)$$

$$E(Z_T) = v^1 q_{25} + v^2 p_{25} q_{26} + v^3 p_{25} q_{27} + v^4 p_{25} q_{28} + v^5 p_{25} q_{29}$$

$$E(Z_T) = \left(\frac{1}{1,04}\right) \frac{q_{25}}{q_{25}} + \left(\frac{1}{1,04}\right)^2 p_{25} q_{26} + \left(\frac{1}{1,04}\right)^3 \left(\frac{l_{27}}{l_{25}}\right) q_{27} + \left(\frac{1}{1,04}\right)^4 \left(\frac{l_{28}}{l_{25}}\right) q_{28} + \left(\frac{1}{1,04}\right)^5 \left(\frac{l_{29}}{l_{25}}\right) q_{29}$$

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Un

$$E(Z_T) = v^1 P(T_{25} = 0) + v^2 P(T_{25} = 1) + v^3 P(T_{25} = 2) + v^4 P(T_{25} = 3) + v^5 P(T_{25} = 4)$$

$$E(Z_T) = v^1 q_{25} + v^2 p_{25} q_{26} + v^3 p_{25} q_{27} + v^4 p_{25} q_{28} + v^5 p_{25} q_{29}$$

$$E(Z_T) = \left(\frac{1}{1,04}\right) q_{25} + \left(\frac{1}{1,04}\right)^2 p_{25} q_{26} + \left(\frac{1}{1,04}\right)^3 \left(\frac{l_{27}}{l_{25}}\right) q_{27} + \left(\frac{1}{1,04}\right)^4 \left(\frac{l_{28}}{l_{25}}\right) q_{28} + \left(\frac{1}{1,04}\right)^5 \left(\frac{l_{29}}{l_{25}}\right) q_{29}$$

$$E(Z_T) = \left(\frac{1}{1,04}\right)0,00077 + \left(\frac{1}{1,04}\right)^20,999230,00081 + \left(\frac{1}{1,04}\right)^30,998420,00085 + \left(\frac{1}{1,04}\right)^40,997570,00090 + \left(\frac{1}{1,04}\right)^50,996670,00095$$

$$E(Z_{T_{25}}) \approx 0.003788 \, u.m.$$

Outra opção seria:

$$b_T = \begin{cases} 1, & t = 0,1,2,3,4 \\ 0, & \text{caso contrário} \end{cases}$$

$$v_T = v^{t+1}$$
, $t \ge 0$ $Z_T = \begin{cases} v^{T+1}, T = 0,1,2,3,4 \\ 0$, caso contrário

$$VPA = E(Z_T)$$

$$E(Z_T) = v^1 q_{25} + v^2 p_{25} q_{26} + v^3 p_{25} q_{27} + v^4 p_{25} q_{28} + v^5 p_{25} q_{29}$$

Como
$$_{m+l}p_x={}_{m}p_x\times{}_{l}p_{x+m}$$
, então:

$$E(Z_T) = v^1 q_{25} + v^2 p_{25} q_{26} + v^3 p_{25} p_{26} q_{27} + v^4 p_{25} p_{26} p_{27} q_{28} + v^5 p_{25} p_{26} p_{27} p_{28} q_{29}$$

$$E(Z_T) \approx 0.003788 \, u.m.$$

Unifal Un

$$E(Z_T) = v^1 P(T_{25} = 0) + v^2 P(T_{25} = 1) + v^3 P(T_{25} = 2) + v^4 P(T_{25} = 3) + v^5 P(T_{25} = 4)$$

x	T. vida adicional	\boldsymbol{Z}_{t}	$S_T(t) = {}_t p_x$	$F_T(t) = {}_1 q_x$
25	t = 0	v	$T_{25} > 0$	$T_{25} \leq 1$
26	t = 1	v^2	$T_{25} > 1$	$T_{25} \le 2$
27	t = 2	v^3	$T_{25} > 2$	$T_{25} \le 3$
28	t = 3	v^4	$T_{25} > 3$	$T_{25} \le 41$
29	t = 4	v^5	$T_{25} > 4$	$T_{25} \leq 5$

$$E(Z_T) = \sum_{t=0}^{4} v^{t+1} t p_{25} q_{25+t} \approx 0,003788 u.m.$$

Seguro de vida de uma pessoa de idade x com cobertura de n anos, com benefício unitário pago ao final do ano de morte do segurado.

$$E(Z_{T_{x}}) = \sum_{t=0}^{n-1} v^{t+1} P(T_{x} = t) = \sum_{t=0}^{n-1} v^{t+1} (_{t}p_{x}) (q_{x+t})$$

$$A_{x^{1}:\overline{n|}} = \sum_{t=0}^{n-1} v^{t+1}(tp_{x}) (q_{x+t}) = E(Z_{T_{x}})$$

"1" acima do "x" indica que o seguro é pago se "x" expirar antes que "n".

$$A_{25^1:\overline{5}|} \approx 0,003788 \ u.m$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- BOWERS et al. **Actuarial Mathematics**, 2^a edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUE S,R. Fundamentos da matemática atuarial: vida e pensões. Curitiba :CRV,2022.
- GARCIA, J. A.; SIMÕES, O. A. Matemática actuarial Vida e pensões. 2. ed. Coimbra: Almedina, 2010.

Matemática atuarial

Seguros Aula 5

Danilo Machado Pires danilo.pires@unifal-mg.edu.br Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br **Exemplo 1:** Uma pessoa de 25 anos deseja fazer um seguro de **vida inteiro** que paga 1 *u.m.* ao fim do ano de morte. O tempo de sobrevida desse segurado pode ser modelado pela tábua AT-49 e a seguradora promete remunerar o capital em 5% ao ano. Qual deverá ser o prêmio puro único pago por esse segurado?

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

Unifal Un

Exemplo 1:

$$A_{x} = \sum_{t=0}^{\omega - x} v^{t+1} {}_{t} p_{x} q_{x+t}$$

$$A_{25} = \sum_{t=0}^{90} \left(\frac{1}{1,05}\right)^{t+1} t^{t} p_{25} q_{25+t}$$

$$A_{25} = \left(\frac{1}{1,05}\right)^1 q_{25} + \left(\frac{1}{1,05}\right)^2 p_{25} q_{26} + \left(\frac{1}{1,05}\right)^3 p_{25} q_{27} + \dots + \left(\frac{1}{1,05}\right)^{91} p_{0} p_{25} q_{115} \approx 0.11242$$

Unifai Unifai Unifai Unifai Unifai Unifai Unifai Unifai Unifai Universidade Federal de Alfenas Universidade Federal de Alfenas

Exemplo 1:

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

$$A_{25} = \left(\frac{1}{1,05}\right)^{1} q_{25} + \left(\frac{1}{1,05}\right)^{2} p_{25}q_{26} + \left(\frac{1}{1,05}\right)^{3} p_{25}q_{27} + \dots + \left(\frac{1}{1,05}\right)^{91} p_{0}p_{25}q_{115} \approx 0.11242$$

$$A_{25} = \left(\frac{1}{1,05}\right)^{1} \mathbf{1}q_{25} + \left(\frac{1}{1,05}\right)^{2} p_{25}q_{26} + \dots + \left(\frac{1}{1,05}\right)^{91} (p_{25}p_{26}p_{27} \dots p_{114})q_{115} \approx 0,11242$$

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Un

Exemplo 2: A seguradora irá pagar um benefício de 1 u.m. por um seguro temporário caso o segurado de 105 anos faleça dentre um período de 4 anos. Considere uma taxa de juros de 4% ao ano e tábua At-2000 Masculina. Calcule o prêmio puro único:

Cal	alcule o prêmio puro único:				
	x	q_x	p_{χ}	$A_{105^{1}:\overline{4} } = v^{1}_{0}p_{105}q_{105} + v^{2}p_{105}q_{106} + v^{3}_{2}p_{105}q_{107} + v^{4}_{3}p_{105}q_{10}$	
106	105	0.37240	0.62760		
107	106	0.40821	0.59179	$A_{105^{1}:\overline{4} } = \sum_{t=0}^{3} v^{t+1} t p_{105} q_{105+t}$	
108	107	0.44882	0.55118	$ A_{105^{1}:4} - \int_{t=0}^{t} v tP_{105}Y_{105}t$	
109	108	0.49468	0.50532	$\iota = 0$	
110	109	0.54623	0.45377		
111	110	0.60392	0.39608	$v = \{v^1, v^2, v^3, v^4\}$	
112	111	0.66819	0.33181		
113	112	0.73948	0.26052	$pxx = \{ p_{105}, p_{105}, p_{105}, p_{105}, p_{105} \}$	
114	113	0.81825	0.18175	COP105/P105/2P105/3P105/	
115	114	0.90495	0.09505	$avv - \{a, a, a, a, a\}$	
116	115	1 00000	0.00000	$qxx = \{q_{105}, q_{106}, q_{107}, q_{108}\}$	

116 115 1.00000 0.00000

$$A_{105^{1}:\overline{4}|} = \sum_{t=0}^{3} v^{t+1} t p_{105} q_{105+t}$$

#Função que recebe como entrada, a taxa de rentabilidade(i) anual, a idade do segurado (idade), o numero de anos de cobertura(n) e o valor do benefício (b).

$$\begin{array}{lll} AX <- \; function(\; i, \; idade, \; n,b,k) \; & \{ & \\ v & <- \; (1/(i+1))^{\smallfrown}(k(1:n)) \\ pxx <- \; c(1, \; cumprod(\; px[(idade+1):(idade+n-1)]) \;) \\ & \# 1, p_{105}, {}_2p_{105}, {}_3p_{105} \\ qxx <- \; qx[(idade+1):(idade+n)] \\ & \# q_{105}, q_{106}, q_{107}, q_{108} \\ AX & <- \; b^* \; sum(v^*pxx^*qxx) \\ & return \; (AX) \\ & \} \\ A_{105^1:\overline{4}|} = \; AX(0.04,105,4,1,1) \end{array}$$

 $\boldsymbol{\chi}$

110

111

116

 q_x

106 | 105 | 0.37240 | 0.62760

107 106 0.40821 0.59179

108 107 0.44882 0.55118

109 108 0.49468 0.50532

109 0.54623 0.45377

110 0.60392 0.39608

111 0.66819 0.33181

113 0.81825 0.18175

115 1.00000 0.00000

113 112 0.73948 0.26052

115 | 114 | 0.90495 | 0.09505

 p_{x}

SEGURO DE VIDA TEMPORÁRIO

SEGURO DE INTEIRO OU VITALÍCIO

$$A_{x^{1}:\overline{n}|} = \sum_{t=0}^{n-1} v^{t+1} {}_{t} p_{x} q_{x+t}$$

$$A_{x} = \sum_{t=0}^{\omega - x} v^{t+1} \,_{t} p_{x} q_{x+t}$$

$$A_{x^1:\overline{n}|} = AX(i,x,n,b,1)$$

$$A_{x} = AX(i,x,\frac{max(x)-x}{b},1)$$

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Unifal[®] Universidade Federal de Alfenas Universidade

Expectativa de vida

$$e_0 = \sum_{t=0}^{\omega - x} t_t p_x q_{x+t}$$

```
\begin{array}{lll} ex <- \; function(idade) \; \left\{ \\ & n & <- \; max(Idade)\text{-}idade \\ & pxx <- \; c(1, \; cumprod(\; px[(idade+1):(idade+n-1)]) \;) \\ & qxx <- \; qx[(idade+1):(idade+n)] \\ & t & <- \; 1:n \\ & ex & <- \; sum(t*pxx*qxx) \\ & return \; (ex) \end{array} \right.
```


- Portal Halley: https://atuaria.github.io/portalhalley/
- BOWERS et al. **Actuarial Mathematics**, 2^a edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUE S,R. Fundamentos da matemática atuarial: vida e pensões. Curitiba :CRV,2022.
- GARCIA, J. A.; SIMÕES, O. A. Matemática actuarial Vida e pensões. 2. ed. Coimbra: Almedina, 2010.

Matemática atuarial

Seguros Aula 6

Danilo Machado Pires danilo.pires@unifal-mg.edu.br Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br

Seguro de vida pago no momento da morte

Seja T ou T_0 a variável aleatória associada ao tempo de vida adicional de um indivíduo recém nascido (de idade 0). Então a função de sobrevivência, $S_{T_0}(t)$, é a probabilidade desse indivíduo viver além da idade futura t, tal que:

$$S_{T_0}(t) = 1 - F_{T_0}(t) = P(T_0 > t)$$
 ou $S_T(t) = 1 - F_T(t) = P(T > t)$

Seja T_x a variável aleatória tempo de vida adicional do indivíduo de idade x. Então a função de sobrevivência, $S_{T_x}(t)$, é a probabilidade de viver além da idade futura t.

$$S_{T_x}(t) = 1 - F_{T_x}(t) = P(T_x > t)$$

Seguro de vida pago no momento da morte

 \triangleright A probabilidade de uma pessoa de idade x atingir (viva) a idade x + t, é dada por:

$$_{t}p_{x} = S_{T_{x}}(t) = P(T_{x} > t) = P(T_{0} > t + x | T_{0} > x)$$

$$_{t}p_{x} = \frac{S_{T_{0}}(x+t)}{S_{T_{0}}(x)} = \frac{P(T>t+x)}{P(T>x)}$$

 \triangleright A probabilidade de uma pessoa de idade x morrer antes de atingir a idade x+t, é dado por:

$$tq_x = 1 - \frac{S_{T_0}(x+t)}{S_{T_0}(x)} = F_{T_x}(t)$$

Logo:

$$_{t}q_{x}+_{t}p_{x}=1$$

- A força de mortalidade é a taxa na qual as pessoas em uma determinada população estão morrendo em um período de tempo específico.
 - \triangleright Função hazard h(x) / Taxa de falha
 - > Intensidade instantânea de ocorrência de óbito em uma população, dada a sobrevivência até um certo tempo.
 - ➤ Valor pequeno para função implica em unidade exposta a menor quantidade de risco...
 - ➤ É uma ferramenta poderosa que ajuda a quantificar e gerenciar a incerteza e o perigo em diversas áreas.

A força de mortalidade -transição instantânea do estado vivo para o morto, e define-se pelo limite:

$$\mu(x) = \lim_{h \to 0} \frac{{}_h q_x}{h}$$

$$\mu(x) = \lim_{h \to 0} \left[\frac{P(T_x \le h)}{h} \right] = \lim_{h \to 0} \left[\frac{1 - P(T_x > h)}{h} \right]$$

$$\mu(x) = \lim_{h \to 0} \left[\frac{1 - \frac{P(T_0 > x + h)}{P(T_0 > x)}}{h} \right] = \lim_{h \to 0} \left[\frac{1 - \frac{S_{T_0}(x + h)}{S_0(x)}}{h} \right]$$

$$\mu(x) = \lim_{h \to 0} \left[\frac{S_{T_0}(x) - S_{T_0}(x+h)}{h \, S_{T_0}(x)} \right]$$

٠.,

$$\mu(x) = \lim_{h \to 0} \left[\frac{1 - \frac{P(T_0 > x + h)}{P(T_0 > x)}}{h} \right] = \lim_{h \to 0} \left[\frac{1 - \frac{S_{T_0}(x + h)}{S_{T_0}(x)}}{h} \right] = \lim_{h \to 0} \left[\frac{S_{T_0}(x) - S_{T_0}(x + h)}{h} \right]$$

$$\mu(x) = -\frac{1}{S_{T_0}(x)} \lim_{h \to 0} \left[\frac{S_{T_0}(x+h) - S_{T_0}(x)}{h} \right]$$

$$\mu(x) = -\frac{S'_{T_0}(x)}{S_{T_0}(x)}$$

 $\mu(x)$ é a força de mortalidade, calculada no momento x a partir da idade 0.

A força de mortalidade - transição instantânea do estado vivo para o morto, e define-se por:

$$\mu(x) = -\frac{S'_{T_0}(x)}{S_{T_0}(x)}$$

- É uma medida relativa da mortalidade em que a idade x é atingida, enquanto q_x mede a mortalidade ao logo do ano.
- $\mu(x) \geq 0$.
- $\mu(x)$ não necessariamente é menor que 1.
- $\mu(x)dx$ representa a probabilidade de morte no intervalo infinitesimal (0, dx).

Seguro de vida pago no momento da morte

Importante notar que:

$$_{n}p_{x}=e^{-\int_{0}^{n}\mu(x+t)dt}$$

e

$$_{n}q_{x}=1-e^{-\int_{0}^{n}\mu(x+t)dt}$$

Em que $\mu(x+t)$ é a força de mortalidade, calculada quando o tempo T passa a ser contato a partir da idade x.

$$\mu(x+t) = -\frac{S'_{T_0}(x+t)}{S_{T_0}(x+t)}$$

Leis de mortalidade

Lei de Gompertz

$$\mu(x+t) = Bc^{x+t} \qquad \to \qquad _t p_x = g^{c^{x+t} - c^x}$$

Lei de Makeham

$$\mu(x+t) = A + Bc^{x+t} \to tp_x = e^{-At}g^{c^{x+t}-c^x}$$

Em que:
$$g = e^{-\frac{B}{\ln(c)}}$$

$$0,001 < A < 0,003$$

 $0,00001 < B < 0,001$
 $1,06 < c < 1,12$

Importante notar que:

$$f_{T_x}(t) = \frac{d}{dt}({}_t q_x)$$

$$f_{T_x}(t) = \frac{d}{dt}(1 - tp_x) = \frac{d}{dt}\left(1 - \frac{S_{T_0}(x+t)}{S_{T_0}(x)}\right)$$

$$f_{T_x}(t) = -\frac{S'_{T_0}(x+t)}{S_{T_0}(x)}$$

$$f_{T_x}(t) = -\frac{S'_{T_0}(x+t)}{S_{T_0}(x)} \times \frac{S_{T_0}(x+t)}{S_{T_0}(x+t)} = \left[-\frac{S'_{T_0}(x+t)}{S_{T_0}(x+t)} \right] \frac{S_{T_0}(x+t)}{S_{T_0}(x)}$$

$$f_{T_x}(t) = \mu(x+t)(t_p_x)$$

Observação

A expectativa de vida de uma pessoa de idade x, mede quantos anos em média uma pessoa sobrevive a partir dessa idade.

$$e_{x} = E(T_{x}) = \int_{0}^{\omega - x} t f_{T_{x}}(t) dt = \int_{0}^{\omega - x} t p_{x} dt$$

Observação

$$e_{x} = E(T_{x}) = \int_{0}^{\omega - x} t f_{T_{x}}(t) dt = -\int_{0}^{\omega - x} t \frac{d(t_{t}p_{x})}{dt} dt$$

Lembre-se que do ponto de vista analítico l_x pode ser vista como uma função contínua e diferenciável em x, então:

$$e_x = -\int_0^{\omega - x} t \, d\left(\frac{l_{x+t}}{l_x}\right) = -\int_0^{\omega - x} t \, \frac{1}{l_x} d(l_{x+t})$$

Fazendo u=t e $-\frac{1}{l_x}d(l_{x+t})=dv$ logo du=dt e $-\frac{l_{x+t}}{l_x}=v$, assim

$$e_x = -t \frac{l_{x+t}}{l_x} \Big|_0^{\omega - x} + \int_0^{\omega - x} \frac{l_{x+t}}{l_x} dt = \int_0^{\omega - x} \frac{l_{x+t}}{l_x} dt$$

$$e_x = \int_0^{\omega - x} t p_x \, dt$$

Exemplo 1: Suponha que o tempo de vida adicional da pessoa ao nascer, possa ser modelada por meio da função de densidade:

$$f_{T_0}(t) = \frac{1}{140} I_{[0,140]}(t)$$

Calcule e_0 , tp_x e tq_x .

niversidade Federal de Alfenas Universidade Federal de Alfenas

Unifai Unifai Unifai Unifai Unifai Unifai Unifai Unifai Universidade Federal de Alfenas Univer

Exemplo 1: Nota-se que para $T_0 \sim U_c(0.140)$, implica aceitar que $e_0 = E(T_0) = \frac{140}{2}$, pois:

$$e_0 = \int_0^{140} t \left(\frac{1}{140} \right) dt$$

$$e_0 = \left[\frac{t^2}{2} \left(\frac{1}{140}\right)\right]_{t=0}^{t=140} = \frac{140^2}{2} \left(\frac{1}{140}\right) = \frac{140}{2}$$

$$e_0 = 70$$
 anos

Exemplo 1

$$S_{T_x}(t) = P(T_x > t) = {}_t p_x$$

$$S_{T_x}(t) = P(T_x > t) = P(T_0 > x + t | T_0 > x)$$

$$S_{T_x}(t) = \frac{P(T_0 > x + t, T_0 > x)}{P(T_0 > x)} = \frac{P(T > x + t, T > x)}{P(T > x)}$$

$$S_{T_x}(t) = \frac{P(T > x + t)}{P(T > x)} = \frac{\int_{x+t}^{140} \frac{1}{140} dt}{\int_{x}^{140} \frac{1}{140} dt} = \frac{\frac{140 - (x + t)}{140}}{\frac{140 - (x)}{140}} = \frac{140 - x - t}{140 - x}$$

$$_{t}p_{x} = \frac{140-x-t}{140-x}$$
 $_{t}q_{x} = 1 - \frac{140-x-t}{140-x} = \frac{t}{140-x}$

Exemplo 1

$$_{t}p_{x} = \frac{140-x-t}{140-x} \rightarrow _{t}p_{0} = \frac{140-t}{140}$$

$$e_0 = \int_0^{140} \frac{140 - t}{140} dt$$

$$e_0 = t - \frac{t^2}{2} \left(\frac{1}{140} \right) \Big|_{t=0}^{t=140} = 70 \text{ anos}$$

Unifaig Unifaig Unifaig Unifaig Unifaig Unifaig Universidade Federal de Alfenas Universidade F

EXEMPLO 2: Suponha que o tempo de vida adicional da pessoa ao nascer, possa ser modelada por meio da função de densidade:

$$f_{T_0}(t) = \frac{1}{140} I_{[0,140]}(t)$$

Calcule $\mu(x+t)$. Lembrando do exercício anterior que:

$$_{t}p_{x} = \frac{140-x-t}{140-x}$$
 $_{t}q_{x} = \frac{t}{140-x}$

EXEMPLO 2

$$_tp_x\mu(x+t)=f_{T_x}(t)$$

Então:

$$_{t}q_{x}=\frac{1}{140-x}=F_{T_{x}}(t)$$

Considerando que $\frac{dF_{T_x}(t)}{dt} = f_{T_x}(t)$, assim:

$$\frac{dF_{T_x}(t)}{dt} = \frac{d}{dt} \left(\frac{t}{140 - x} \right) = \frac{1}{140 - x} = f_{T_x}(t)$$

Logo

$$\mu(x+t) = \frac{\frac{1}{140-x}}{\frac{140-x-t}{140-x}} = \frac{1}{140-x-t}$$

Seguro de vida pago no momento da morte

Considerando que não existe despesas administrativas, imposto e lucro, o valor a ser cobrado deveria ser valor esperado de $b_t e^{-\delta T}$, logo:

$$E(VP) = E(be^{-\delta T}) = bE(e^{-\delta T})$$

Lembrando que $\delta = ln(1+i)$.

SEGURO DE VIDA TEMPORÁRIO

SEGURO DE INTEIRO OU VITALÍCIO

 T_x Contínuo

$$\bar{A}_{x^1:\overline{n|}} = \int_0^n Z_t f_{T_x}(t) dt$$

$$\bar{A}_{x} = \int_{0}^{\infty} Z_{t} f_{T_{x}}(t) dt$$

$$\bar{A}_{x^1:\overline{n|}} = \int_0^n e^{-\delta t} {}_t p_x \mu(x+t) dt$$

$$\bar{A}_x = \int_0^\infty e^{-\delta t} \,_t p_x \mu(x+t) dt$$

EXEMPLO 3: Considere que a função de sobrevivência e força de mortalidade de x=30 em dada população seja de:

$$_{t}p_{30} = \frac{70-t}{70}$$
 e $\mu(30+t) = \frac{1}{70-t}$ para $t > 0$

Esse indivíduo decide fazer um seguro de vida temporário no período de 20 anos. Admita que a taxa de rentabilidade constante, e suponha que i=5% ao ano.

Calcule o VPA (prêmio puro único) que paga 1 u.m. de benefício pago no momento da morte do segurado.

Unifal[®] Unifal

EXEMPLO 3

$$\bar{A}_{30^1:\overline{20|}}$$

$$i = 5\%$$
 ao ano. $v = e^{-\ln(1,05)}$

$$v = e^{-\ln(1.05)}$$

$$b=1$$
 , $0 \leq t \leq 20$ $v_t = e^{-\delta t}$, $0 \leq t \leq 20$

$$Z_T = \begin{cases} e^{-\delta T}, 0 \le T \le 20\\ 0, \text{ caso contrário} \end{cases}$$

EXEMPLO 3

$$VPA = E(Z_T) = \bar{A}_{30^1:\overline{20}|}$$

$$\bar{A}_{30^{1}:\overline{20|}} = \int_{0}^{20} e^{-\delta t} f_{T_{30}}(t) dt = \int_{0}^{20} e^{-\delta t} t p_{30} \mu(30+t) dt = \int_{0}^{20} e^{-\delta t} \frac{1}{70} dt$$

$$\bar{A}_{30^{1}:\overline{20|}} = \frac{e^{-\delta t}}{70(-\delta)} \bigg|_{t=0}^{t=20} = \frac{1}{-70\delta} \left[e^{20(-\delta)} - e^{0(-\delta)} \right]$$

Como
$$\delta = ln(1,05)$$

$$\bar{A}_{30^{1}:\overline{20|}} = \frac{1}{-3,4153} (e^{-0,9758} - 1) \approx 0,182446$$

EXEMPLO 3

Veja que, é suficiente para o segurado pagar 0,182446 u.m. hoje de forma a receber (o beneficiário) 1,00 u.m. na ocorrência de sinistro.

O exemplo considerou que o benefício seria de 1 u.m., e caso o segurado contratasse um seguro que paga \$250000,00 reais no momento de morte? Quanto deveria ser o prêmio puro único pago por ele???

$$\bar{A}_{30^1:\overline{20|}}\,, \qquad T_{30} \sim U_c(0.70) \; \mathrm{e} \qquad i = 5\% \; \mathrm{a.a.} \; \; v = e^{-\ln(1.05)t}$$

$$b = 2500000$$
.

$$\bar{A}_{30^1:\overline{20|}} \approx 0.182446$$

$$250000 \, \bar{A}_{30^1:\overline{20|}} \approx 45611,53$$

Caso o valor do benefício seja \$250000,00, o prêmio a ser pago pelo segurado deverá ser (arredondando no centavo) de \$45611,53 (considerando a mesma taxa de juros).

EXEMPLO 4: Para proteger seu filho de 5 anos, uma pessoa de 30 anos decide fazer um contrato de seguro de vida temporário com benefício variável no tempo (Considere distribuição $T_{30} \sim U_c(0,70)$). Considere i = 5% ao ano.

- I) Se morrer dentro de 10 anos o benefício será de \$100000,00.
- II) Se morrer entre 10 e 20 anos, o benefício será: 150000 5000t.

Unifală Unifală Unifală Unifală Unifală Universidade Federal de Alfenas Universidade Federal d

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Universidade Federal de Alfenas Universidade Federal d

EXEMPLO 4: Veja que, para esse caso, o benefício é diferente dependendo do momento de morte do segurado, então:

$$Z_T = b_T e^{-\delta T} = \begin{cases} 100000 \ e^{-\delta T}, & T \le 10 \\ (150000 - 5000T) e^{-\delta T}, & 10 < T \le 20 \end{cases}$$

Portanto:

$$VPA = \int_{0}^{10} \frac{100000e^{-\delta t}}{70} dt + \int_{10}^{20} \frac{(150000 - 5000t)e^{-\delta t}}{70} dt$$

$$VPA = VPA_1 + VPA_2$$

$$VPA_1 = \int_0^{10} \frac{100000e^{-\delta t}}{70} dt$$

$$VPA_1 = \frac{10000e^{-\delta t}}{7(-\delta)} \Big|_{t=0}^{t=10} = \frac{10000e^{-0.4879} - 10000}{-0.34153}$$

$$VPA_1 \approx 11304,59$$

EXEMPLO 4

$$VPA_2 = \int_{10}^{20} \frac{(150000 - 5000t)e^{-\delta t}}{70} dt$$

Por partes:

$$\int u dr = ur - \int r du$$

então

$$u = 150000 - 5000t;$$

$$du = -5000dt$$

$$dr = \frac{e^{-\delta t}}{70}dt$$

$$r = \frac{e^{-\delta t}}{70(-\delta)}$$

$$VPA_2 = (150000 - 5000t) \frac{e^{-\delta t}}{70(-\delta)} \bigg|_{t=10}^{t=20} - \int_{10}^{20} -\frac{e^{-\delta t}}{70(-\delta)} 5000 dt$$

EXEMPLO 4

$$VPA_2 = \int_{10}^{20} \frac{(150000 - 5000t)e^{-\delta t}}{70} dt$$

$$VPA_2 = (150000 - 5000t) \frac{e^{-\delta t}}{70(-\delta)} \bigg|_{t=10}^{t=20} + \int_{10}^{20} \frac{e^{-\delta t}}{70(-\delta)} 5000 dt$$

$$VPA_2 = (150000 - 5000t) \frac{e^{-\delta t}}{70(-\delta)} \bigg|_{t=10}^{t=20} + \frac{e^{-\delta t}}{7(-\delta)^2} 500 \bigg|_{t=10}^{t=20}$$

$$VPA_2 = \frac{5000e^{-0.04879(20)} - 10000e^{-0.04879(10)}}{7(-0.04879)} + \frac{500(e^{-0.04879(20)} - e^{-0.04879(10)})}{7(-0.04879)^2}$$

$$VPA_2 \approx 12457,73 - 7112,165 \approx 5345,565$$

Exemplo 4: Veja que, para esse caso, o benefício é diferente dependendo do momento de morte do segurado, então:

$$VPA = \int_0^{10} \frac{100000e^{-\ln(1,05)t}}{70} dt + \int_{10}^{20} \frac{(150000 - 5000t)e^{-\ln(1,05)t}}{70} dt$$

$$VPA = VPA_1 + VPA_2$$

$$VPA = 11304,59 + 5345,565 \approx $16650,15$$

SEGURO DE VIDA TEMPORÁRIO

SEGURO DE INTEIRO OU VITALÍCIO

 T_x Contínuo

$$\bar{A}_{x^1:\overline{n|}} = \int_0^n Z_t f_{T_x}(t) dt$$

$$\bar{A}_{x^1:\overline{n|}} = \int_0^n e^{-\delta t} {}_t p_x \mu(x+t) dt$$

 T_{x} discreto

$$A_{x^1:\overline{n|}} = \sum_{t=0}^{n-1} Z_t P(T_x = t)$$

$$A_{x^{1}:\overline{n|}} = \sum_{t=0}^{n-1} v^{t+1} {}_{t} p_{x} q_{x+t}$$

 T_x Contínuo

$$\bar{A}_{x} = \int_{0}^{\infty} Z_{t} f_{T_{x}}(t) dt$$

$$\bar{A}_{x} = \int_{0}^{\infty} e^{-\delta t} {}_{t} p_{x} \mu(x+t) dt$$

 T_x discreto

$$A_{x} = \sum_{t=0}^{\omega - x} Z_{t} P(T_{x} = t)$$

$$A_{x} = \sum_{t=0}^{\omega - x} v^{t+1} \,_{t} p_{x} q_{x+t}$$

$$Z_{T} = v^{T+1}, T \ge 0$$

$$A_{x} = \sum_{t=0}^{\omega-x} Z_{T} t p_{x} q_{x+t}$$

$$Z_{T} = \begin{cases} v^{T+1}, T = 0, 1, \dots, n-1 \\ 0, & c. c. \end{cases}$$

$$A_{x^{1},\overline{m}} = \sum_{t=0}^{m-1} Z_{T} t p_{x} q_{x+t}$$

$$E(Z_{T})$$

$$E(Z_{T})$$

$$E_{0} = \int_{0}^{\omega-x} t f_{T_{x}}(t) dt$$

$$F_{T_{x}}(t) = t p_{x} \mu(x+t)$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- BOWERS et al. **Actuarial Mathematics**, 2^a edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUE S,R. Fundamentos da matemática atuarial: vida e pensões. Curitiba :CRV,2022.
- GARCIA, J. A.; SIMÕES, O. A. Matemática actuarial Vida e pensões. 2. ed. Coimbra: Almedina, 2010.

Matemática atuarial

Seguros Aula 7

Danilo Machado Pires danilo.pires@unifal-mg.edu.br Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br

Em geral a variabilidade de uma variável é avaliada pela discrepância de seus valores em relação à média ou à mediana.

- A média dos desvios é sempre zero e, portanto, nada informativa.
- > Tomando o quadrado dos desvios e, então, calculando o valor esperado, chegamos a uma das mais importantes medidas de variabilidade.

 \triangleright A definição matemática da variância de uma variável aleatória Z_T é tal que:

$$var(Z_T) = E\{[Z_T - E(Z_T)]^2\}$$

$$var(Z_T) = E(Z_T^2) - E(Z_T)^2$$

 \triangleright A raiz quadrada da variância é denominada de desviopadrão e representado por $\sigma_{Z_T}.$

Considerando $Z_T = bv^{T+1}$, uma função de variável aleatória e por consequência também uma variável aleatória, tem-se:

$$var(Z_T) = var(bv^{T+1}) = b^2 var(v^{T+1})$$

Caso de
$$T$$
 discreto: $var(Z_T) = {}^2A_{x^1:\overline{n}|} - \left(A_{x^1:\overline{n}|}\right)^2$

$$var(Z_T) = E(v^{2T+2}) - E(v^{T+1})^2 = \sum_{t=0}^{n-1} w^{t+1} {}_t p_x q_{x+t} - \left[\sum_{t=0}^{n-1} v^{t+1} {}_t p_x q_{x+t}\right]^2$$

 $v^2 = w \rightarrow \text{Fator de desconto}$

Caso de
$$T$$
 contínuo: $var(Z_T) = \overline{{}^2A_{x^1:\overline{n}|}} - (\overline{A}_{x^1:\overline{n}|})^2$

$$var(Z_T) = E(e^{-2\delta T}) - E(e^{-\delta T})^2 = \int_0^n e^{-2\delta t} f_{T_X}(t) dt - \left[\int_0^n e^{-\delta t} f_{T_X}(t) dt\right]^2$$

Caso de T discreto: $var(Z_T) = {}^2A_x - (A_x)^2$

$$var(Z_T) = E(v^{2T+2}) - E(v^{T+1})^2 = \sum_{t=0}^{\omega-x} w^{t+1} {}_t p_x q_{x+t} - \left[\sum_{t=0}^{\omega-x} v^{t+1} {}_t p_x q_{x+t}\right]^2$$

 $v^2 = w \rightarrow \text{Fator de desconto}$

Caso de
$$T$$
 contínuo: $var(Z_T) = \overline{{}^2A_x} - (\bar{A}_x)^2$

$$var(Z_T) = E(e^{-2\delta T}) - E(e^{-\delta T})^2 = \int_0^\infty e^{-2\delta t} f_{T_x}(t) dt - \left[\int_0^\infty e^{-\delta t} f_{T_x}(t) dt\right]^2$$

SEGURO DE VIDA TEMPORÁRIO

SEGURO DE INTEIRO OU VITALÍCIO

$$A_{x^{1}:\overline{n|}} = \sum_{t=0}^{n-1} v^{t+1} {}_{t} p_{x} q_{x+t}$$

$$A_{x} = \sum_{t=0}^{\omega - x} v^{t+1} {}_{t} p_{x} q_{x+t}$$

$$A_{x^1:\overline{n}|} = AX(i,x,n,b,1)$$

$$A_x = AX(i,x, \frac{max(x)-x,b,1}{})$$

$$var(Z) = AX(i, x, n, b, 2) - AX(i, x, n, b, 1)^{2}$$

$$var(Z) = AX(i, x, \max(x) - x, b, 1) - AX(i, x, \max(x) - x, b, 1)^{2}$$

EXEMPLO 1: Calcule a variância de Z_T .

$$b=1 \ , \ 0 \le t < 5 \ v^{t+1} \ , t \ge 0 \ Z_T = \begin{cases} v^{T+1}, \ 0 \le T < 5 \\ 0, \ c. c. \end{cases}$$

Lembramos que $A_{25^1:\overline{5}|}\approx 0,0037888$ para i=4%.

Unifală Unifală Unifală Unifală Unifală Universidade Federal de Alfenas Universidade Federal d

Unifais Unifais Unifais Unifais Unifais Unifais Universidade Federal de Alfenas Universidade F

Dados do exemplo 1 i = 4%

Idade	q_x	$p_x = 1 - q_x$	$l_x = \frac{l_{x+1}}{p_x}$
25	0,00077	0,99923	100000
26	0,00081	0,99919	99923
27	0,00085	0,99915	99842
28	0,00090	0,99910	99757
29	0,00095	0,99905	99667
30	0,00100	0,99900	99572
31	0,00107	0,99893	99472
32	0,00114	0,99886	99365
33	0,00121	0,99879	99251
34	0,00130	0,99870	99131
35	0,00139	0,99861	99002

EXEMPLO 1

$$var(Z_T) = {}^{2}A_{25^{1}:\overline{5}|} - (0,0037888)^{2}$$

$$var(Z_t) = \sum_{t=0}^{4} \left[\left(\frac{1}{1,04} \right)^2 \right]^{t+1} t^{t+1} p_{25} q_{25+t} - (0,0037888)^2$$

$$var(Z_T) = \left[\left(\frac{1}{1,04} \right)^2 q_{25} + \left(\frac{1}{1,04} \right)^4 {}_1 p_{25} q_{26} + \left(\frac{1}{1,04} \right)^6 {}_2 p_{25} q_{27} + \left(\frac{1}{1,04} \right)^8 {}_3 p_{25} q_{28} + \left(\frac{1}{1,04} \right)^{10} {}_4 p_{25} q_{29} \right] - (0,00337014)^2$$

 $var(Z_T) \approx 0.0033557$

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Un

EXEMPLO 2: Considere que uma pessoa de 30 anos decide fazer um seguro de vida temporário no período de 20 anos. Admita que o tempo de vida adicional desta pessoa possa ser modelado pela distribuição uniforme contínua de parâmetros 0 e 70, ou seja:

$$T_{30} \sim U_c(0.70).$$

Considere i = 5% ao ano.

Sabemos pela resolução do problema que $\bar{A}_{30^1:\overline{20|}}\approx 0,182446$. A partir dessas informações obtenha a variância para esse seguro.

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

EXEMPLO 2

$$b = 1,0 \le t \le 20$$
 $e^{-\delta t}$, $t \ge 0$ $Z_T = \begin{cases} e^{-\delta T}, & 0 \le T \le 20 \\ 0, & c.c. \end{cases}$

$$var(Z_T) = \int_0^{20} e^{-2\delta t} \frac{1}{70} dt - 0,182446^2$$

$$var(Z_T) = \frac{1 - e^{-40\delta}}{140\delta} - 0,182446^2 \approx 0,09231757$$

$$\sigma_{Z_T} = \sqrt{0.09231757} \approx 0.3038381$$

SEGURO DE VIDA INTEIRO-Simulação

Considere a situação em que uma pessoa de 30 anos deseja fazer um seguro que pague ao seu beneficiário no momento da morte um valor de \$200 000,00. Para esse cálculo a seguradora considera uma taxa de rentabilidade anual de 5% e que o tempo de vida adicional do segurado seja modelado por um modelo uniforme contínua. Assim:

$$T_{30} \sim U_c(0,70)$$
 $i=5\% \ ao \ ano \ \ b_T=R\$200000,00$
$$VPA = \int_0^{70} z_T f_T(t) dt = \int_0^{70} 200000 e^{-\ln(1,05)t} \frac{1}{70} dt$$

$$VPA = -\frac{200000e^{-\ln(1,05)t}}{70 \ln 1,05} \bigg|_{t=0}^{t=70} = \frac{200000}{70 \ln 1,05} \left[-e^{-\ln(1,05)70} + e^{-\ln(1,05)0} \right]$$

$$VPA = 200000\overline{A}_{30} = 58559, 81(-e^{-3.415} + 1) \approx 56634, 57$$

SEGURO DE VIDA INTEIRO-Simulação

Considere agora que após um determinado tempo observando 3000 pessoas da mesma coorte que fizeram no mesmo ano um seguro de vida vitalício. Seja anotado o tempo gasto para que cada um venha a falecer.

SEGURO DE VIDA INTEIRO-Simulação

Levando em consideração que "sabemos" previamente a sobrevida de cada segurado (dados simulados). Os valores presentes necessários ao pagamento do benefício contratado por cada segurado pode ser calculada. Assim:

$$z_t = bv^t = 200000e^{-\delta t} = 200000e^{-\ln(1.05)t}$$

- A distribuição Uniforme para modelar a sobrevida do segurado, leva a um valor de prêmio alto, pois essa supõem que chance da pessoa morrer "cedo" é igual a de morrer "tarde".
- > Apesar das limitações, a estimativa se mostrou próxima da média verificada a posteriori.
- Devido a forte assimetria o valor obtido para VPA está a direita da moda e mediana.

Prêmio calculado por percentil

 \succ Considere um prêmio $\Pi_{\mathcal{X}}$ de um seguro vitalício de forma que:

$$P(Z_{T_x} \le \Pi_x) = \alpha$$

$$P(be^{-\delta T_{\chi}} \le \Pi_{\chi}) = \alpha$$

$$P\left(e^{-\delta T_{\chi}} \le \frac{\Pi_{\chi}}{b}\right) = \alpha$$

$$P\left(-\delta T_{x} \leq ln\left(\frac{\Pi_{x}}{b}\right)\right) = \alpha$$

$$P\left(T_{x} \geq -\frac{\ln\left(\frac{\Pi_{x}}{b}\right)}{\delta}\right) = \alpha$$

Prêmio calculado por percentil

$$P(Z_T \le \Pi_{t_{\alpha}}) = \alpha$$

$$P(T_x \ge t_{\alpha}) = \alpha$$

$$P(T_x \ge t_\alpha) = \alpha$$

$$P\left(T_{\chi} \ge -\frac{\ln\left(\frac{\Pi_{\chi}}{b}\right)}{\delta}\right) = c$$

Como a variável aleatória de comportamento conhecido é tempo (T), é mais conveniente lidar com sua distribuição do que com a distribuição dos valor presente atuarial.

Assim:

$$t_{\alpha} = -\frac{ln\left(\frac{\Pi_{x}}{b}\right)}{\delta}$$

Prêmio calculado por percentil

- Devido à variabilidade elevada, pode ser interessante determinar o valor presente a partir de um quantil predefinido.
- Dobter um valor presente de baseado nas probabilidades dos benefícios futuramente pagos, serem inferiores ao estipulado.

EXEMPLO 3: Considere um seguro de vida vitalício feito por x=30, com benefício igual a \$200000, dado que $T_{30} \sim U_c(0,70)$ e i=5% ao ano. Qual seria o valor do prêmio Π_{30} de forma que $P(Z_T \leq \Pi_{30}) = 0,9$?

Unifala Unifala Unifala Unifala Unifala Universidade Federal de Alfenas Universidade Federal d

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Unifal[®] Universidade Federal de Alfenas Universidade

Unifal[®] Unifal

EXEMPLO 3

$$b = $20000,00$$
. $T_{30} \sim U_c(0,70)$ $i = 5\%$ ao ano $\alpha = 0.9$

$$T_{30} \sim U_c(0.70)$$

$$i = 5\%$$
 ao and

$$\alpha = 0.9$$

$$P(T_{30} \ge t_{90\%}) = 0.9$$

$$P(T_{30} \ge t_{90\%}) = \int_{t_{90\%}}^{70} \frac{1}{70} dt = \frac{70 - t_{90\%}}{70} = 0.9$$

$$t_{90\%} = 7 \rightarrow P(T_{30} \ge 7) = 0.9$$

$$P(T_{30} \ge 7) = P\left(T_{30} \ge -\frac{\ln\left(\frac{\Pi_{30}}{200000}\right)}{\ln(1,05)}\right) = 0.9$$

$$-\frac{\ln\left(\frac{\Pi_{30}}{200000}\right)}{\ln(1,05)} = 7$$

- ➤ Quanto maior o tempo de vida adicional menor o valor presente.
 - ➤ Valores grandes de t geram valores pequenos e próximos de VPA.

EXEMPLO 4: O segurado de idade x decide fazer um seguro de vida vitalício com pagamento de benefício unitário no momento de sua morte. Considere a taxa instantânea de juros, $\delta = 0.06$ e que $T_x \sim Exp(0.04)$.

$$f_{T_x}(t) = 0.04e^{-0.04t}, \ t > 0$$

Determine o valor de Π_{χ} tal que $P(Z_T \leq \Pi_{\chi}) = 0,1$.

Gráfico da simulação de 1000 apólices com as condições do exemplo 4.

SEGURO DE VIDA INTEIRO

$$P(Z_{T_{x}} \le z) = P\left(T_{x} \ge -\frac{\ln\left(\frac{z}{b}\right)}{\delta}\right)$$

$$P(Z_{T_{\chi}} \le z) = \frac{S_{T_0}\left(x + \left(-\frac{\ln(z)}{\delta}\right)\right)}{S_{T_0}(x)}$$

$$e^{-\delta(\omega-x)} \le z \le 1$$

EXEMPLO 5: Considere a função de sobrevivência dada por:

$$S_{T_0}(t) = 115^{-\frac{1}{3}}(115 - t)^{\frac{1}{3}}; \quad 0 \le t \le 115.$$

Dado
$$x = 40$$
 e $i = 4\%$ determine $P(Z_{T_x} \le z)$.

Unitală Unitală Universidade Federal de Alfenas Universidade F

EXEMPLO 5:

$$P(Z_{T_x} \le z) = \frac{S_{T_0}\left(40 - \frac{ln(z)}{0,04}\right)}{S_{T_0}(40)} = \frac{115^{-\frac{1}{3}}\left(115 - \left(40 - \frac{ln(z)}{0,04}\right)\right)^{\frac{1}{3}}}{115^{-\frac{1}{3}}(115 - 40)^{\frac{1}{3}}}$$

$$P(Z_{T_x} \le z) = \frac{\left(75 + \frac{\ln(z)}{0.04}\right)^{\frac{1}{3}}}{(75)^{\frac{1}{3}}}$$

$$P(Z_{T_x} \le z) = \left(\frac{3 + ln(z)}{3}\right)^{\frac{1}{3}}, \qquad e^{-3} \le z \le 1$$

Considere agora a variável aleatória S associada a uma carteira de seguros composta por k apólices (independentes e identicamente distribuídas), isso é

$$S = \sum_{i=1}^{k} Z_i$$

em que Z_i corresponde a função valor presente da apólice i.

$$E(S) = E\left(\sum_{i=1}^{k} Z_i\right) = \sum_{i=1}^{k} E(Z_i) = kE(Z)$$

$$var(S) = var\left(\sum_{i=1}^{k} Z_i\right) = \sum_{i=1}^{k} var(Z_i) = k \ var(Z)$$

Definição: Teorema central do limite.

Seja S uma variável aleatória correspondente a uma soma de k variáveis aleatórias independentes e identicamente distribuídas, cada qual com esperança μ e variância σ^2 . Então:

$$W = \frac{S - k\mu}{\sigma\sqrt{k}} \to W \sim N(0,1)$$

Logo

$$S \sim N(k\mu, k\sigma^2)$$

Chamando de S a soma dos valores presentes necessários a cobrir os sinistros ocorridos, queremos encontrar o valor Π_q (prêmio global) tal que:

$$P(S \le \Pi_{g}) = \alpha$$

$$P\left(\frac{S - nE(Z)}{\sigma_{Z}\sqrt{n}} \le \frac{\Pi_{g} - nE(Z)}{\sigma_{Z}\sqrt{n}}\right) = \alpha$$

$$P\left(W \le \frac{\Pi_{g} - nE(Z)}{\sigma_{Z}\sqrt{n}}\right) = \alpha$$

$$\frac{\Pi_{\rm g} - nE(Z)}{\sigma_Z \sqrt{n}} = w_\alpha$$

EXEMPLO 6: Considere uma carteira composta por 100 apólices de seguro de vida vitalício, com o benefício pago no momento do falecimento do segurado. Suponha que todas as apólices sejam independentes e identicamente distribuídas. Admita ainda que a idade dos segurados seja x = 60, e que o valor esperado do pagamento por apólice seja 0,4, com variância igual a 0,09.

Deseja-se determinar o valor do prêmio único puro Π_{g} , utilizando a aproximação normal, tal que a probabilidade de o total dos benefícios pagos ser inferior ou igual a esse prêmio seja de 95%, isto é, $P(S \leq \Pi) = 0.95$. Considere ainda um benefício unitário b=1 e uma taxa de desconto $\delta=0.06$.

SOLUÇÃO

Se para cada apólice temos E(Z) = 0.4 u.m. e $var(Z_T) \approx 0.09$, então E(S) = 40 e var(S) = 9. Assim:

$$P(S \le \Pi) = 0.95$$
 $P\left(W \le \frac{\Pi - 40}{\sqrt{9}}\right) = 0.95$

Como $W \sim N(0,1)$, então

$$\frac{\Pi - 40}{\sqrt{9}} = w_{0,95} = 1,645$$
$$\Pi = 44,93.$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- BOWERS et al. **Actuarial Mathematics**, 2^a edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUE S,R. Fundamentos da matemática atuarial: vida e pensões. Curitiba :CRV,2022.
- GARCIA, J. A.; SIMÕES, O. A. Matemática actuarial Vida e pensões. 2. ed. Coimbra: Almedina, 2010.

