Storage Systems Disk, RAID, Dependability

1960s – 1980s Computing Revolution

1990 – Information Age

Communication

Computation

Storage

Communication

Computation

Storage

Storage

Storage

requires higher standard of dependability

than the rest of the computer

Storage?

requires higher standard of dependability

than the rest of the computer

program crash

Storage

requires higher standard of dependability than the rest of the computer

data loss_{Storage}

requires higher standard of dependability than the rest of the computer

Memory Hierarchy

permanent storage

Preview

- Disk
- Disk Array: RAID
- Dependability: Fault, Error, Failure

let's start from a single disk

: wiki

Sector
 minimum storage unit
 a block may span multiple
 sectors

: wiki

Sector minimum storage unit a block may span multiple sectors

Cluster

(dis)contiguous groups of sectors to reduce the overhead of managing on-disk data structures;

may span more than one track

: wiki

http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter10/10_01_DiskMechanism.jpg

: locate data

Disk Capacity

- Areal Density
- =bits/inch²
- =(tracks/inch) x (bits-per-track/inch)

Disk Capacity

- Areal Density
 in 2011, the highest density
 400 billion bits/inch²
- Costs per gigabyte
 between 1983 and 2011,
 improved by almost
 a factor of 1,000,000

Disk vs DRAM

Disk's Competitor

Flash Memory

```
non-volatile semiconductor memory;
same bandwidth as disks;
100 to 1000 times faster;
15 to 25 times higher cost/gigabyte;
```

- Wear out
 limited to 1 million writes
- Popular in cell phones,
 but not in desktop and server

Disk Power

• Power by disk motor

≈Diameter^{4.6} x RPM^{2.8} x No. of platters

RPM: Revolutions Per Minute rotation speed

Disk Power

Power by disk motor

≈Diameter^{4.6} x RPM^{2.8} x No. of platters

RPM: Revolutions Per Minute rotation speed

 Smaller patters, slower rotation, and fewer platters reduce disk motor power

Disk Power

disk	Capacity (GB)	Price	Platters	RPM	Diameter (inches)	Average seek (ms)	Power (watts)	I/O/sec	Disk BW (MB/sec)	Buffer BW (MB/sec)	Buffer size (MB)	MTTF (hrs)
SATA	2000	\$85	4	5900	3.7	16	12	47	45–95	300	32	0.6M
SAS	600	\$400	4	15,000	2.6	3–4	16	285	122–204	750	16	1.6M

Disk & File Abstract

fscanf (fp, "%d", &mydata)

Contiguous allocation on a disk

Disk & File Abstract

Linked allocation on a disk

Disk & File Abstract

Indexed allocation on a disk

what if one is not enough...

what if one is not enough... disk failure

what if one is not enough... disk failure all or nothing

Disk Arrays

- Disk arrays with **redundant disks** to tolerate faults
- If a single disk fails, the lost information is reconstructed from redundant information
- Striping: simply spreading data over multiple disks
- RAID: redundant array of inexpensive/independent disks

RAID Redundant Array of Indepent Disks

RAI	D level	Disk failures tolerated, check space overhead for 8 data disks	Pros	Cons	Company products
0	Nonredundant striped	0 failures, 0 check disks	No space overhead	No protection	Widely used
1	Mirrored	1 failure, 8 check disks	No parity calculation; fast recovery; small writes faster than higher RAIDs; fast reads	Highest check storage overhead	EMC, HP (Tandem), IBM
2	Memory-style ECC	1 failure, 4 check disks	Doesn't rely on failed disk to self-diagnose	~ Log 2 check storage overhead	Not used
3	Bit-interleaved parity	1 failure, 1 check disk	Low check overhead; high bandwidth for large reads or writes	No support for small, random reads or writes	Storage Concepts
4	Block-interleaved parity	1 failure, 1 check disk	Low check overhead; more bandwidth for small reads	Parity disk is small write bottleneck	Network Appliance
5	Block-interleaved distributed parity	1 failure, 1 check disk	Low check overhead; more bandwidth for small reads and writes	Small writes → 4 disk accesses	Widely used
6	Row-diagonal parity, EVEN-ODD	2 failures, 2 check disks	Protects against 2 disk failures	Small writes → 6 disk accesses; 2× check overhead	Network Appliance

RAID 0: Nonredundant striped

- JBOD: just a bunch of disks
- No redundancy
- No failure tolerated

 Measuring stick for other RAID levels: cost, performance, and dependability

Stripe 0
Stripe 4
Stripe 8
Stripe 12

Stripe 1
Stripe 5
Stripe 9
Stripe 13

Stripe 2
Stripe 6
Stripe 10
Stripe 14

Stripe 3
Stripe 7
Stripe 11
Stripe 15

- Mirroring or Shadowing
- Two copies for every piece of data
- one logical write = two physical writes
- 100% capacity/space overhead

- Each bit of data word is written to a data disk drive
- Each data word has its (Hamming Code) ECC word recorded on the ECC disks
- On read, the ECC code verifies correct data or corrects single disks errors

- Data striped over all data disks
- Parity of a stripe to parity disk
- Require at least 3 disks to implement

- Favor small accesses
- Allows each disk to perform independent reads, using sectors' own error checking

RAID 3 & RAID 4

bottleneck: single parity disk

access:

parallel vs independent

- Distributes the parity info across all disks in the array
- Removes the bottleneck of a single parity disk as RAID 3 and RAID 4

Stripe 0
Stripe 5
Stripe 10
Stripe 15
P16-19

Stripe 1
Stripe 6
Stripe 11
P12-15
Stripe 16

Stripe 2
Stripe 7
P8-11
Stripe 12
Stripe 17

Stripe 3
P4-7
Stripe 8
Stripe 13
Stripe 18

P0-3
Stripe 4
Stripe 9
Stripe 14
Stripe 19

RAID 6: Row-diagonal Parity

RAID-DP

Recover from two failures

Trecover from two failures	
Data disk 0 Data disk 2 Data disk 3 Row parity	Diagonal parity
0 1 2 3 4	0
2 3 4 0 1	1 2
xor 3 4 0 1 2	3

row: 00+11+22+33=r4 diagonal: 01+11+31+r1=d1

RAID: Further Readings

Raid Types – Classifications
 BytePile.com

https://www.icc-usa.com/content/raid-calculator/raid-0-1.png

• RAID

JetStor

http://www.acnc.com/raidedu/0

- More error detection and recovery schemes
- Reed Solomon coding: https://www.youtube.com/watch?v=jgO09opx56o
- Erasure coding, etc.

When are disks dependable and when are they not?

Dependability

• Computer system **dependability** is the quality of delivered service such that reliance can justifiably be placed on this service.

• The **service** delivered by a system is its observed **actual behavior** as perceived by other system(s) interacting with this system's users.

• Each module also has an ideal **specified behavior**, where a **service specification** is an agreed description of the expected behavior.

Failure

• A system **failure** occurs when the actual behavior deviates from the specified behavior.

Error, Fault

- The failure occurred because of an **error**, a defect in that module.
- The cause of an error is a fault.

- When a fault occurs, it creates a latent error, which becomes effective when it is activated;
- When the error actually affects the delivered service, a **failure** occurs.

Fault, Error, Failure

- A fault creates one or more latent errors
- Either an effective error is a formerly latent error in that component or it has propagated from another error in that component or from else where
- A component failure occurs when the error affects the delivered service

Categories of Faults by Cause

Hardware faults

failed devices

Design faults

usually in software design; occasionally in hardware design;

Operation faults

mistakes by operations and maintenance personnel;

Environmental faults

fire, flood, earthquake, power failure, sabotage;

Categories of Faults by Duration

Transient faults

exist for a limited time and are not recurring;

Intermittent faults

cause a system to oscillate between faulty and fault-free operation

Permanent faults

do not correct themselves with the passing of time;

Threats/Vulnerabilities/Attacks

Threats

- A threat is a specific means by which a risk can be realized by an adversary
- Context specific (a fact of the environment)

Vulnerabilities

A Vulnerability is a flaw that is accessible (threat) to an adversary who
has the capability to exploit that flaw

Attacks

- An attack occurs when someone attempts to exploit a vulnerability
- Kinds of attacks: Passive/Active/Denial of Service

Attacks

- 缓冲区溢出攻击: Buffer overflow attack (stack/heap)
- 返回编程攻击: ROP attack
- 密码攻击: Password attack
- 钓鱼攻击: Phishing attack
- 跨站脚本攻击: XSS attack
- SQL注入攻击: SQL injection attack
- 冷启动攻击: Cold-boot attack
- 整数溢出攻击: Integer overflow attack
- 竞争条件攻击: Race condition attack
- 回放攻击: Replay attack
- 返回用户攻击: Return-to-user attack

- 拒绝服务攻击: Deny-of-service attack
- 暴力穷举攻击: Brute-force attack
- 回滚攻击: Rollback attack
- 社会工程攻击: Social engineering attack
- 侧信道攻击: Side-channel attack
- 隐蔽信道攻击: Covert-channel attack
- 物理攻击: Physical attack

• ...

Safety/Security/Trust

NTNU definition (Skavland Idsø and Mejdell Jakobsen, 2000):

Safety is protection against random incidents. Random incidents are unwanted incidents that happen as a result of one or more coincidences.

Security is protection against intended incidents. Wanted incidents happen due to a result of deliberate and planned act.

Security

- Confidentiality
- Integrity
- Availability

Example: Berkeley's Tertiary Disk

Component	Total in system	Total failed	Percentage failed
SCSI controller	44	1	2.3%
SCSI cable	39	1	2.6%
SCSI disk	368	7	1.9%
IDE/ATA disk	24	6	25.0%
Disk enclosure—backplane	46	13	28.3%
Disk enclosure—power supply	92	3	3.3%
Ethernet controller	20	1	5.0%
Ethernet switch	2	1	50.0%
Ethernet cable	42	1	2.3%
CPU/motherboard	20	0	0%

knowledge map

