Outline

Introduction

- Pormal Definitions, Notations and Construction
- 3 Languages accepted by 2DFA

What is 2DFA?

2DFA

A Two-Way Deterministic Finite Automaton (2DFA) is a type of finite state machine that extends the capabilities of a regular Deterministic Finite Automaton (DFA) by allowing its read head to move bidirectionally along the input tape.

• 2DFAs were introduced in 1959 by Rabin and Scott.

How 2DFA works?

- Two-way Finite Automata has a read head, which can move left or right over the input string.
- Read head can revisit the input symbols any number of times.
- The input string is enclosed between left and right endmarkers \vdash and \dashv , which are not elements of the input alphabet Σ .
- The read head will not move outside of the endmarkers.
- A 2DFA needs only a single accept state and a single reject state.

Turing Machine vs 2DFA

Turing Machine:

- Contains a read/write head that moves left or right along the tape
- Has unbounded memory.

2DFA:

- Has read only head that moves left or right along the tape.
- Has finite memeory like DFA.

Languages accepted by 2DFA

Formal representation of 2DFA

A 2DFA is of the form

$$(Q, \Sigma, \vdash, \dashv, \delta, s, t, r)$$

where,

- Q is a finite set of states.
- \bullet Σ is a finite set of input symbols.
- \vdash is the left endmarker. ($\vdash \notin \Sigma$)
- \dashv is the right endmarker. $(\dashv \notin \Sigma)$
- $\delta: Q \times (\Sigma \cup \{\vdash, \dashv\}) \rightarrow Q \times \{L, R\}$ is a transition function. (L = left, R = right)
- $s \in Q$ is the start state.
- $t \in Q$ is the accept state.
- $r \in Q$ is the reject state $(r \neq t)$.

Properties of transition function

For all states p,

- $\delta(p,\vdash) = (q,R)$, for some $q \in Q$
- $\delta(p, \dashv) = (q, L)$, for some $q \in Q$

Current input symbol is $a \in \Sigma \cup \{\vdash\}$, t = accept state, r = reject state.

- $\delta(t, a) = (t, R)$ and $\delta(t, \dashv) = (t, L)$
- $\delta(r, a) = (r, R)$ and $\delta(r, \dashv) = (r, L)$

In general, $\delta(p, a) = (q, d)$ where $p, q \in Q$ and $d \in \{L, R\}$

Example 2DFA

Introduction

2DFA for a*

 $(Q, \Sigma, \vdash, \dashv, \delta, s, t, r)$ where,

- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{a, b\}$
- $s = \text{start state} = q_0$
- t = accept state = q₁
- $r = \text{reject state} = q_2$

Table: Transition function δ

$\delta(,)$	-	a	b	\dashv
q 0	(q_0, R)	(q_0, R)	(q_2,R)	(q_1, L)
q_1	(q_1,R)	(q_1,R)	(q_1,R)	(q_1, L)
92	(q_2,R)	(q_2,R)	(q_2, R)	(q_2, L)

Configurations

Fix an input $x \in \Sigma^*$. $x = a_1 a_2 a_3 \dots a_n$. Let $a_0 = \vdash$ and $a_{n+1} = \dashv$. $a_0 a_1 a_2 a_3 \dots a_n a_{n+1} = \vdash x \dashv$.

Configuration

A configuration of the machine on input x is a pair (q, i) such that $q \in Q$ and $0 \le i \le n+1$. Informally, the pair (q, i) gives a current state and current position of the read head.

The start configuration is (s,0), meaning that the machine is in its start state s and scanning the left endmarker.

A binary relation $\frac{1}{x}$, the next configuration relation, is defined on configurations as follows:

$$\delta(p,a_i)=(q,L)\Rightarrow (p,i)\xrightarrow[\times]{1}(q,i-1),$$

$$\delta(p, a_i) = (q, R) \Rightarrow (p, i) \xrightarrow{1} (q, i + 1).$$

Configurations

The relation $\frac{1}{x}$ describes one step of the machine on input x. We define the relations $\frac{n}{x}$ inductively, $n \ge 0$:

- $\bullet (p,i) \xrightarrow[\times]{0} (p,i)$
- if $(p,i) \xrightarrow[\times]{n} (q,j)$ and $(q,j) \xrightarrow[\times]{1} (u,k)$, then $(p,i) \xrightarrow[\times]{n+1} (u,k)$.

For any configuration (p, i), there is exactly one configuration (q, j) such that $(p, i) \xrightarrow{n} (q, j)$.

Acceptance and Rejection

$$(p,i) \stackrel{*}{\underset{\times}{\longrightarrow}} (q,j)$$
 iff $\exists n \geq 0$ such that $(p,i) \stackrel{n}{\underset{\times}{\longrightarrow}} (q,j)$.

Acceptance

The input x is accepted by the machine iff $(s,0) \stackrel{*}{\underset{x}{\longrightarrow}} (t,k)$ for some k.

Rejection

• The input x is rejected by the machine if $(s,0) \stackrel{*}{\underset{x}{\longrightarrow}} (r,k)$ for some k.

If the machine neither reaches accept state nor reject state then the machine is said to be looping on that input.

Language accepted by the machine $= \{x \in \Sigma^* | x \text{ is accepted by the machine} \}.$

Constructing 2DFA 'M'

 $L(M) = \{x \in \Sigma^* \mid \#a(x) \text{ is multiple of 3, } \#b(x) \text{ is multiple of 2} \}$

Machine Description

- Machine starts scanning from the left endmarker.
- Scan input string from left to right, counting only 'a's. If the count of 'a's is not a multiple of 3, reject and enter state r.
- Let q₀, q₁, q₂ be the states for counting 'a's.
 q₀: 3k; q₁: 3k+1; q₂: 3k+2.
- If the count of 'a's is a multiple of 3, start scanning from the right, counting only 'b's. If the count of 'b's is not a multiple of 2, enter state t; otherwise, enter state r.
- Let p₀, p₁ be the states for counting 'b's.
 p₀: 2k; p₁: 2k+1.

Constructing 2DFA 'M'

• input = bbaabab : $q_0 \xrightarrow{\vdash} q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_2 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{\dashv} p_0 \xrightarrow{b} p_1 \xrightarrow{a} p_1 \xrightarrow{b} p_0 \dots \xrightarrow{\dashv} t$

DFA to 2DFA conversion

Theorem

- 2DFA only accepts regular languages.
- L(2DFA) = L(DFA) = Regular languages

Proof: $L(DFA) \subseteq L(2DFA)$

For an arbitary DFA 'X', let us construct a 2DFA 'Y' that accepts the same language as X.

- X : (Q, Σ, δ, s, F)
- Let Y : (Q \cup {t, r}, Σ , \vdash , \dashv , δ' , s, t, r)
- δ' : $\delta_R \cup \delta'((s, \vdash)) = (s, R)$ • $\delta'((f, \dashv)) = (t, L)$ for $f \in F$; $\delta'((n, \dashv)) = (r, L)$ for $n \in Q$ -F. • $\delta'((t, a)) = (t, R)$; • $\delta'((r, a)) = (r, R)$ for $a \in \Sigma - \{\dashv\}$ • $\delta'((t, \dashv)) = (t, L)$; • $\delta'((r, \dashv)) = (r, L)$

DFA to 2DFA conversion

Proof: $L(X) \subseteq L(Y)$

- Let $x \in L(X)$, len(x)=n.
- Then, $\widehat{\delta}(s,x) = f$ where $f \in F$
- $(s,0) \xrightarrow[+x\to]{1} (s,1) \xrightarrow[+x\to]{n} (f,n+1) \xrightarrow[+x\to]{1} (t,n)$.
- As (s,0) $\xrightarrow[\vdash x \dashv \vdash]{} (t,n+1)$, $x \in L(Y)$.
- Hence, $L(X) \subseteq L(Y)$.

Recall:

A configuration of the machine on input x is the pair (q,i), which gives the current state and current position of the read head. (s,0) means that the machine is in its start state s and scanning the left endmarker.

DFA to 2DFA conversion

Proof: $L(Y) \subseteq L(X)$

- Let $x \in L(Y)$, len(x)=n.
- Then (s,0) $\xrightarrow[+x+]{*}$ (t,m) in Y
- $\bullet \ \ \text{So} \ (\text{s,0}) \xrightarrow[\vdash \text{x-} \dashv]{1} (\text{s,1}) \xrightarrow[\vdash \text{x-} \dashv]{n} (\text{f,n+1}) \xrightarrow[\vdash \text{x-} \dashv]{1} (\text{t,n}) \ .$
- As $\widehat{\delta}(s,x) = f$ where $f \in F$, $x \in L(X)$
- Hence, $L(Y) \subseteq L(X)$.

Therefore, L(Y) = L(X)