案例学习三 IEEE802.3协议之帧档式

IEEE802.3的MAC帧结构

7	1	6	6	2	0~1500	0~46	4B
Preamble	SFD	DA	SA	Length	Payload	PAD	CRC

- DA 目的地址,标识帧的接收方
- SA 源地址,标识帧的发送方
- Length 标识有效载荷的字节数

- Payload (缺省1500个字节) 有效载荷运载数据信息
- PAD 满足最小帧长要求
- CRC循环校验码,4字节

注意:802.3帧没有序号、确认号、控制、帧类别字段!

IEEE802.3成帧方法及差错检测

IEEE802.3地址及单播

802.3协议支持一对一的单播、一对全部的广播和一对多的组播通信方式。

目的地址(DA)/源地址(SA) 48位

I/G

制造商标识

厂商唯一

MAC地址 硬件地址

I/G: 地址类型标志

0 单地址

1 组地址

- 广播网络中每个节点必须有标识自 己的地址
- 发送的数据帧必须给出接收方和发 送方的地址

IEEE802.3最小帧长要求

7	1	2~6	2~6	2	0~1500	0~46	4 B
Preamble	SFD	DA	SA	Length	Payload	PAD	CRC

当两个帧发送前没有侦听到对方帧 后发送必将产生冲突后,冲突后立 即停止,此刻共享信道上有什么

PAD字段的作用

- •为区分有效帧/垃圾802. 3规定有效帧必须至少64字节长
- ·为了冲突检测规定了最小帧长为2~*数据速率

IEEE802.3提供的MAC服务

802.3提供了不可 靠的无连接数据传 输服务。

应用层

TCP/UDP

IP

IEEE 802.3

①上层用户要求802.3发送数据

MA_UNITDATA.request (DA, m-sdu, service_type)

③ 802.3 MAC把收到的数据交给上层用户

MA_UNITDATA.indication(DA, SA, m-sdu, receive_status)

② 802.3 MAC层向上层用户报 告发送结果

MA_UNITDATA_STATUS.indication(send_status)

时间

