Optimization algorithms

Quiz, 10 questions

1 point

3.

Why is the best mini-batch size usually not 1 and not m, but instead something in-between?

Optimization algorithms

Quiz, 10 questions

If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.

If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.

If the mini-batch size is 1, you end up having to process the entire training set before making any progress.

1 point

4.

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

Optimization algorithms Whether you're using batch gradient descent or mini-batch optimization algorithms

Quiz, 10 questions

If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.

1 point

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st: $\theta_1 = 10^{o}C$

Jan 2nd: $\theta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$igcup v_2=10$$
, $v_2^{corrected}=7.5$

$$igcolone{v}_2=7.5$$
, $v_2^{corrected}=10$

$$v_2=10$$
, $v_2^{corrected}=10$

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

1 point

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = \frac{1}{\sqrt{t}} \alpha_0$$

Optimization algorithms $lpha=0.95^tlpha_0$

Quiz, 10 questions

$$\alpha = rac{1}{1+2*t} \, lpha_0$$

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

	Decreasing eta will shift the red line slightly to the right.
--	---

Decreasing eta will create more oscillation within the red line.

Increasing β will create more oscillations within the red line.

Optimization algorithms

Quiz, 10 questions

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

1 point

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

Try using Adam

Try mini-batch gradient descent

Optimization algorithms he learning rate a

Quiz, 10 q	uestions
------------	----------

Try initializing all the weights to zero

1 point

10.

Which of the following statements about Adam is False?

- We usually use "default" values for the hyperparameters eta_1,eta_2 and arepsilon in Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)
- Adam combines the advantages of RMSProp and momentum
- Adam should be used with batch gradient computations, not with mini-batches.
- The learning rate hyperparameter α in Adam usually needs to be tuned.

I, **Kubera Kalyan**, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.

Learn more about Coursera's Honor Code

Submit Quiz

