PLACEMENT REFRESHER PROGRAM

Session 9 - ML 2
Classification

Agenda

- Classification
- Decision Tree
- Model Performance

Supervised learning uses labeled data to predict outcomes. For instance, in email spam detection (a classification problem), the algorithm is trained on a dataset where emails are already marked as 'spam' or 'not spam'. It learns patterns from this training set and applies them to new data.

Unsupervised learning, however, doesn't have labels for its training data. The algorithm must find structure within the data itself. An example of a classification problem here would be customer segmentation. Given purchasing behavior data, an unsupervised algorithm could group customers into different segments without prior knowledge of what these groups might be.

Classification is a data mining task of assigning a data instance to one of the predefined classes/groups based upon the knowledge gained from previously seen(classified data)

Types of attributes

Attribute	Continuous	Discrete
Age	11,12,15,25, etc.	Child, youngster, senior citizen, etc.
Income	30K, 45K, 60K, etc.	Low, High, etc.

Prediction:

predicts continuous values Eg. How much will a customer spend?

Classification:

predicts discrete values
Eg. Is giving loan to a customer safe
or risky?

Types of Classification Algorithm

upGrad

- Naive Bayes
- Decision Tree
- Random Forest
- K-Nearest Neighbour
- Neural Networks
- Logistic Regression

A decision tree is a flowchart-like tree structure, where each internal node (non-leaf node) denotes a test on an attribute, each branch represents an outcome of the test, and each leaf node (or terminal node) holds a class label. The topmost node in a tree is the root node.

There can be more than one tree that fits the same data

Confusion Matrix:

Actual class\Predicted class	C ₁	¬ C ₁	
C ₁	True Positives (TP)	False Negatives (FN)	
¬ C ₁	False Positives (FP)	True Negatives (TN)	

Example of Confusion Matrix:

Actual class\Predicted	buy_computer	buy_computer	Total
class	= yes	= no	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

upGrad

Measure	Formula
accuracy, recognition rate	$\frac{TP+TN}{P+N}$
error rate, misclassification rate	$\frac{FP+FN}{P+N}$
sensitivity, true positive rate, recall	$\frac{TP}{P}$
specificity, true negative rate	$\frac{TN}{N}$
precision	$\frac{TP}{TP + FP}$
F, F ₁ , F-score, harmonic mean of precision and recall	$\frac{2 \times precision \times recall}{precision + recall}$

Model Performance Evaluation - Example

upGrad

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.40 (accuracy)

Precision = 90/230 = 39.13%

$$Recall = 90/300 = 30.00\%$$

Model Performance Evaluation - Question

upGrad

Sr. No.	Email (Spam/Not Spam)	Prediction
1	Spam	Spam
2	Spam	Not Spam
3	Not Spam	Not Spam
4	Spam	Not Spam
5	Not Spam	Not Spam
6	Not Spam	Spam
7	Spam	Spam
8	Not Spam	Not Spam
9	Not Spam	Spam
10	Spam	Not Spam

Find

- 1. Accuracy
- 2. Precision
- 3. Recall
- 4. True Positive Rate
- 5. Sensitivity

Model Performance Evaluation - Question

upGrad

Sr. No.	Email (Spam/Not Spam)	Prediction	
1	Spam	Spam	TP
2	Spam	Not Spam	FN
3	Not Spam	Not Spam	TN
4	Spam	Not Spam	FN
5	Not Spam	Not Spam	TN
6	Not Spam	Spam	FP
7	Spam	Spam	TP
8	Not Spam	Not Spam	TN
9	Not Spam	Spam	FP
10	Spam	Not Spam	FN

upGrad

Confusion Matrix:

Actual class\Predicted class	C ₁	¬ C ₁	
C ₁	True Positives (TP)	False Negatives (FN)	
¬ C ₁	False Positives (FP)	True Negatives (TN)	

Actual \ Predicted	Email = Spam	Email = Not Spam	Total
Email = Spam	2	3	5
Email = Not Spam	2	3	5
Total	4	6	10

Model Performance Evaluation - Question

upGrad

Actual \ Predicted	Email = Spam	Email = Not Spam	Total
Email = Spam	2 (TP)	3 (FN)	5 (P)
Email = Not Spam	2 (FP)	3 (TN)	5 (N)
Total	4	6	10

- 1. Accuracy = 0.5
- 2. Precision = 0.5
- 3. Recall = 0.4
- 4. True Positive Rate = 0.4
- 5. Sensitivity = 0.4

THANK YOU