Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope Colloquium "Großer Beleg"

Maximilian Moeller

21.11.2023

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope Colloquium "Großer Beleg"

Maximilian Moelle

21 11 2023

Agenda

Introduction

Separating Inequalities

Data

Empirical Results

Conclusion

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Introduction

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope \sqsubseteq Introduction

Introduction

Clique Partitioning

- clustering based on pairwise similarities
- framework for aggregation of binary relations [GW90] [Wak86]
- useful in biology, medicine [Pre23]

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Introduction

Clique Partitioning

Clique Partitioning

- clustering based on pairwise similarities
 framework for aggregation of binary relations [GW90]
- of binary relations [GW90 [Wak86] • useful in biology, medicine [Pre23]

- 1. biology: taxonomy of animals (e.g., whales and dolphins)
- 2. medicine: clustering of organoids in light microscopy images
- 3. probably also operations research

Clique Partitioning

Definition

Given a graph G = (V, E), a subset of edges $A \subseteq E$ is called a *clique partitioning of* G if there exists a partition $\Gamma = \{W_1, W_2, \dots, W_k\}$ of Vsuch that

$$A = \bigcup_{i=1}^{k} \{(u, v) \in E \mid u, v \in W_i\}.$$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Introduction

Clique Partitioning

- 1. show which partition is induced
- 2. typically only complete graphs considered (indicates for every pair of nodes)
- 3. then one-to-one corresponds to an equivalence relation
- 4. induces complete subgraphs clique partitioning

Clique Partitioning

Definition

Given a graph G = (V, E), a subset of edges $A \subseteq E$ is called a clique partitioning of G if there exists a partition $\Gamma = \{ W_1, W_2, \dots, W_k \} \text{ of } V$ such that

$$A = \bigcup_{i=1}^{k} \{(u, v) \in E \mid u, v \in W_i\}.$$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope -Introduction

-Clique Partitioning

- 1. show which partition is induced
- 2. typically only complete graphs considered (indicates for every pair of nodes)
- 3. then one-to-one corresponds to an equivalence relation
- 4. induces complete subgraphs clique partitioning

Input: complete graph $K_n = (V_n, E_n)$ and edge costs $w \in \mathbb{R}^{E_n}$

Compute: a clique partitioning of minimum weight

$$\min \qquad \sum_{e \in E_n} w_e x_e$$

s.t.
$$\forall e \in E_n \colon x_e \in \{0, 1\}$$

 x characterizes a clique partitioning

sut: complete graph $K_n = (V_n, E_n)$ and edge costs $w \in \mathbb{R}^{K_n}$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Introduction

Compute a clips putitioning of minimum weight $\min \sum_{x \in \mathcal{X}_{x}} v_{x,x}$ s.t. $\forall x \in \mathcal{X}_{x}, v_{x} \in \{0,1\}$ x durations of the putitioning

The Clique Partitioning Problem

- 1. characterize clique partitionings by binary vectors
- 2. 1 means it is in the clique partitioning and 0 means it is not in it
- 3. exactly opposite to multicut (equivalent problem)

 $\begin{array}{c} {\rm Introduction} \\ {\rm 0000}{\bullet}{\rm 00} \end{array}$

The Clique Partitioning Problem

• NP-complete [Wak86]

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope __Introduction

The Clique Partitioning Problem

NP-complete [Wak86]

The Clique Partitioning Problem

- 1. blue drawn are edges with negative weights, all others non-negative
- 2. interesting instances need to have 'conflicts'

- NP-complete [Wak86]
- Trivial cases:

 $\begin{array}{c} {\rm Introduction} \\ {\rm 0000}{\bullet}{\rm 00} \end{array}$

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope \sqsubseteq Introduction

The Clique Partitioning Problem

NP-complete [Wak86]
 Trivial cases:

└─The Clique Partitioning Problem

- $1. \ \, \text{blue drawn are edges with negative weights, all others} \\ \, \text{non-negative}$
- 2. interesting instances need to have 'conflicts'

- NP-complete [Wak86]
- Trivial cases:
 - w > 0

Introduction

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Introduction

└─The Clique Partitioning Problem

- 1. blue drawn are edges with negative weights, all others non-negative
- 2. interesting instances need to have 'conflicts'

- NP-complete [Wak86]
- Trivial cases:

Introduction

- w > 0
 - w ≤ 0

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Introduction

The Clique Partitioning Problem $\begin{array}{ll} \bullet & \text{NF-complete (Wkb80)} \\ \bullet & \text{NF-complete (Wkb80)} \\ \bullet & \text{Trick one} \\ \bullet & \bullet & \bullet \end{array}$

└─The Clique Partitioning Problem

- 1. blue drawn are edges with negative weights, all others non-negative
- 2. interesting instances need to have 'conflicts'

- NP-complete [Wak86]
- Trivial cases:

Introduction

- w > 0
- w ≤ 0
- \bullet w induces cliques

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Introduction

The Clique Partitioning Problem

* NP-complete [Vid.56]

* Trice on

* > 0

* o index dipse

The Clique Partitioning Problem

- 1. blue drawn are edges with negative weights, all others non-negative
- 2. interesting instances need to have 'conflicts'

An ILP-formulation of Clique Partitioning

characteristic vectors x

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Introduction

An ILP-formulation of Clique Partitioning

LAn ILP-formulation of Clique Partitioning

- 1. we want to make use of (I)LP techniques: linear inequalities
- 2. explain support graph: left hand side can be drawn as graph, dotted negative, solid positive
- 3. triangle inequalities ensure transitivity
- 4. for the same i, j, k there are actually three triangles (show)

An ILP-formulation of Clique Partitioning

characteristic vectors x need to satisfy triangle inequalities $(i, j, k \in V_n$, pairwise distinct) [GW90]

$$x_{ij} + x_{jk} - x_{ik} \le 1$$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Introduction

characteristic vectors x need to satisfy triangle inequalities (i, j, $k \in V_n$, pairwise distinct) [GW90] $x_{ij} + x_{jk} - x_{ik} \le 1$

—An ILP-formulation of Clique Partitioning

- 1. we want to make use of (I)LP techniques: linear inequalities
- 2. explain support graph: left hand side can be drawn as graph, dotted negative, solid positive
- 3. triangle inequalities ensure transitivity
- 4. for the same i, j, k there are actually three triangles (show)

An ILP-formulation of Clique Partitioning

characteristic vectors x need to satisfy triangle inequalities $(i, j, k \in V_n, \text{ pairwise distinct})$ [GW90]

$$x_{ij} + x_{jk} - x_{ik} \le 1$$
$$x_{ij} - x_{jk} + x_{ik} \le 1$$
$$-x_{ij} + x_{ik} + x_{ik} \le 1$$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Introduction

An ILP-formulation of Clique Partitioning

- 1. we want to make use of (I)LP techniques: linear inequalities
- 2. explain support graph: left hand side can be drawn as graph, dotted negative, solid positive
- 3. triangle inequalities ensure transitivity
- 4. for the same i, j, k there are actually three triangles (show)

The Task

Introduction

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

_Introduction

The Tas

└─The Task

- 1. original task: branch-and-cut algorithm, i.e., solving the ILP
- 2. consists of multiple parts: **cutting planes for bounds**, finding good solutions and branch management
- 3. explain overall iteration procedure
- 4. even if not integral, a few percent off might be good for practical use
- 5. however, no guarantee to arrive at integral or within a constant factor

The Task

Introduction

focus on cutting plane procedure:

• solve LP relaxation of the problem

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Introduction

The Task

focus on cutting plane procedure: • solve LP relaxation of the problem

1

L—The Task

- 1. original task: branch-and-cut algorithm, i.e., solving the ILP
- 2. consists of multiple parts: **cutting planes for bounds**, finding good solutions and branch management
- 3. explain overall iteration procedure
- 4. even if not integral, a few percent off might be good for practical use
- 5. however, no guarantee to arrive at integral or within a constant factor

Introduction

focus on cutting plane procedure:

- solve LP relaxation of the problem
- tighten the solution iteratively

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Introduction

The Tas

solve LP relaxation of the problem

L—The Task

- 1. original task: branch-and-cut algorithm, i.e., solving the ILP
- 2. consists of multiple parts: **cutting planes for bounds**, finding good solutions and branch management
- 3. explain overall iteration procedure
- 4. even if not integral, a few percent off might be good for practical use
- 5. however, no guarantee to arrive at integral or within a constant factor

The Task

Introduction

focus on cutting plane procedure:

- solve LP relaxation of the problem
- tighten the solution iteratively
- hopefully arrive at integral solution

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Introduction

The Tas

focus on cutting plane procedure:

• solve LP relaxation of the problem

tighten the solution iteratively
 benefully arrive at internal colut

L—The Task

- 1. original task: branch-and-cut algorithm, i.e., solving the ILP
- 2. consists of multiple parts: **cutting planes for bounds**, finding good solutions and branch management
- 3. explain overall iteration procedure
- 4. even if not integral, a few percent off might be good for practical use
- 5. however, no guarantee to arrive at integral or within a constant factor

The Task

Introduction

focus on cutting plane procedure:

- solve LP relaxation of the problem
- tighten the solution iteratively
- hopefully arrive at integral solution
- ???
- profit

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope __Introduction

L—The Task

e Task

focus on cutting plane procedure:

* selve LP refunction of the problem

* tighten the solution iteratively

* hopefully arrive at integral solutio

* 777

* profit

- 1. original task: branch-and-cut algorithm, i.e., solving the ILP
- 2. consists of multiple parts: **cutting planes for bounds**, finding good solutions and branch management
- 3. explain overall iteration procedure
- 4. even if not integral, a few percent off might be good for practical use
- 5. however, no guarantee to arrive at integral or within a constant factor

Separating Inequalities

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope \sqsubseteq Separating Inequalities

Separating Inequalitie

Ingredients

• classes of facet-defining linear inequalities

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

└─Ingredients

1. explain: what is separation (check (and produce))

2. explain: facet-defining

Ingredients

- classes of facet-defining linear inequalities
- algorithms for separating them

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

classes of facet-defining linear inequalitie
 algorithms for separating them

└─Ingredients

- 1. explain: what is separation (check (and produce))
- 2. explain: facet-defining

Ingredients

- classes of facet-defining linear inequalities
- algorithms for separating them
- data to test on (next section)

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

└─Ingredients

Ingredients

• classes of facet-defining linear inequalities
• algorithms for separating them
• data to text on (next section)

- 1. explain: what is separation (check (and produce))
- 2. explain: facet-defining

Triangle Inequalities (Δ)

Using complete enumeration $\mathcal{O}(n^3)$

Four variations

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

Triangle Inequalities (Δ)

Using complete enumeration $\mathcal{O}(n^2)$ Four variations

_Triangle Inequalities (Δ)

- 1. Separation algorithms: separators
- 2. separators get abbreviations
- 3. maxcut is for limiting lp size
- 4. var_once is for solving the graph evenly

Triangle Inequalities (Δ)

Using complete enumeration $\mathcal{O}(n^3)$

Four variations

abbreviation	maxcut	var_once
Δ	400	_
Δ_{∞}	∞	_
Δ_{∞} $\Delta^{\leq 1}$	400	\checkmark
$\Delta_{\infty}^{\leq 1}$	∞	\checkmark

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

☐ Triangle Inequalities (Δ)

Triangle Inequalities (Δ)

Using complete cumeration $O(n^2)$ Four variations

abheviation maxcut var_ence $\Delta = 400 - 400$ $\Delta_n = -400$ $\Delta_n = -400$

- 1. Separation algorithms: separators
- 2. separators get abbreviations
- 3. maxcut is for limiting lp size
- 4. var_once is for solving the graph evenly

2-Partition Inequalities

Let $S, T \subseteq V_n$ disjoint.

2-partition inequality ([S, T]-inequality) [GW90]

$$\sum_{s \in S} \sum_{t \in T} x_{st} - \sum_{\substack{s,s' \in S \\ s \neq s'}} x_{ss'} - \sum_{\substack{t,t' \in T \\ t \neq t'}} x_{tt'} \le \min(|S|, |T|)$$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

2-Partition Inequalities

Let $S, T \subseteq V_n$ disjoint.

2-partition inequality ([S, T]-inequality) [GW90] $\sum \sum x_{st} - \sum x_{sr'} - \sum x_{tr} \le \min(|S|, |T|)$

└─2-Partition Inequalities

1. Generalization of triangle inequalities

2-Partition Inequalities

Let $S, T \subseteq V_n$ disjoint.

2-partition inequality ([S, T]-inequality) [GW90]

$$\sum_{s \in S} \sum_{t \in T} x_{st} - \sum_{\substack{s,s' \in S \\ s \neq s'}} x_{ss'} - \sum_{\substack{t,t' \in T \\ t \neq t'}} x_{tt'} \le \min(|S|, |T|)$$

facet defining for $|S| \neq |T|$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

└─2-Partition Inequalities

1. Generalization of triangle inequalities

Separation of 2-Partition Inequalities (st)

• already NP-hard for any fixed |S| [ORS01]

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

Separation of 2-Partition Inequalities (st

already NP-hard for any fixed |S| [ORS01

Separation of 2-Partition Inequalities (st)

- 1. no use in using approximation if it is np-hard again
- 2. not explaining details, involve random choosing of an order of some nodes. Thus re-run three times.

Separation of 2-Partition Inequalities (st)

- already NP-hard for any fixed |S| [ORS01]
- using two heuristics: st¹ and st² from [GW89]

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

Separation of 2-Partition Inequalities (st

already NP-hard for any fixed |S| [ORS01]
 using two heuristics: st¹ and st² from [GW89]

Separation of 2-Partition Inequalities (st)

- 1. no use in using approximation if it is np-hard again
- 2. not explaining details, involve random choosing of an order of some nodes. Thus re-run three times.

Separation of 2-Partition Inequalities (st)

- already NP-hard for any fixed |S| [ORS01]
- using two heuristics: st¹ and st² from [GW89]
- only search for constraints with |S| = 1

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

Separation of 2-Partition Inequalities (st)

- using two heuristics: at¹ and at² from [GW89]
 only search for constraints with |S| = 1

Separation of 2-Partition Inequalities (st)

- 1. no use in using approximation if it is np-hard again
- 2. not explaining details, involve random choosing of an order of some nodes. Thus re-run three times.

Two-Chorded Odd Cycle Ineugalities

Let $5 \le k \le n$ and $v : \mathbb{Z}_k \to \mathbb{Z}_n$ injective two-chorded odd cycle inequality [GW90]

$$\sum_{i \in \mathbb{Z}_k} x_{v_i v_{i+1}} - x_{v_i v_{i+2}} \le \left\lfloor \frac{1}{2} k \right\rfloor$$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope Separating Inequalities

Let $5 \leq k \leq n$ and $v: \mathbb{Z}_k \to \mathbb{Z}_n$ injective two-charded odd cucle inequality [GW90] $\sum_{i} x_{i_1 i_{i+1}} - x_{i_1 i_{i+2}} \le \left| \frac{1}{2} k \right|$

Two-Chorded Odd Cycle Ineuqulities

- 1. separable in polytime shown by müller 1996
- 2. technique hard to motivate

Two-Chorded Odd Cycle Ineuqulities

Let $5 \le k \le n$ and $v : \mathbb{Z}_k \to \mathbb{Z}_n$ injective two-chorded odd cycle inequality [GW90]

$$\sum_{i \in \mathbb{Z}_k} x_{v_i v_{i+1}} - x_{v_i v_{i+2}} \le \left\lfloor \frac{1}{2} k \right\rfloor$$

facet defining for k odd

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

Two-Chorded Odd Cycle Ineuqualities

- 1. separable in polytime shown by müller 1996
- 2. technique hard to motivate

Separating Two-Chorded Odd Cycle Inequalities (two)

[Mül96]

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

Separating Two-Chorded Odd Cycle Inequalities (two)

Separating Two-Chorded Odd Cycle

- 1. following an odd cycle and summing edges by +- 1 gives left hand side
- 2. we do not need to know the k to know that we get a lhs
- 3. maybe we can also rewrite the rhs independent of k
- 4. new problem distinguish even from odd cycles -> hints at auxiliary graph

Separating Two-Chorded Odd Cycle Inequalities (two)

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

- 2. we do not need to know the k to know that we get a lhs
- 3. maybe we can also rewrite the rhs independent of k
- 4. new problem distinguish even from odd cycles -> hints at auxiliary graph

Separating Two-Chorded Odd Cycle Inequalities (two)

$$\sum_{i \in \mathbb{Z}_k} x_{v_i v_{i+1}} - x_{v_i v_{i+2}} \le \left\lfloor \frac{1}{2} k \right\rfloor$$

For odd k

$$\sum_{i \in \mathbb{Z}_k} x_{v_i v_{i+1}} - x_{v_i v_{i+2}} \le \frac{1}{2} (k-1)$$

After rearranging

$$\sum_{i \in \mathbb{Z}_{L}} \left(\frac{1}{2} - x_{v_{i}v_{i+1}} + x_{v_{i}v_{i+2}} \right) \ge \frac{1}{2}$$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

—Separating Two-Chorded Odd Cycle

- 1. following an odd cycle and summing edges by +- 1 gives left hand side
- 2. we do not need to know the k to know that we get a lhs
- 3. maybe we can also rewrite the rhs independent of k
- 4. new problem distinguish even from odd cycles -> hints at auxiliary graph

For every pair
$$(i,j) \in V_n^2$$
 with $i \neq j$:

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

Auxiliary Graph $H = (V_H, E_H$ For every pair $(i,j) \in V_a^2$ with $i \neq i$:

$$\sqsubseteq$$
 Auxiliary Graph $H = (V_H, E_H)$

1. bipartide graph can distinguish between odd and even walks 2.

For every pair
$$(i,j) \in V_n^2$$
 with $i \neq j$:

$$V_{H} := V_{H} \cup \left\{ u_{1}^{i,j}, u_{2}^{i,j}, \hat{u}_{1}^{i,j}, \hat{u}_{2}^{i,j} \right\}$$

$$E_{H} := E_{H} \cup \left\{ (u_{1}^{i,j}, u_{2}^{i,j}), (\hat{u}_{1}^{i,j}, \hat{u}_{2}^{i,j}) \right\}$$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope Separating Inequalities

$$\vdash$$
 Auxiliary Graph $H = (V_H, E_H)$

- 1. bipartide graph can distinguish between odd and even walks
- 2.

For every triple $(i, j, k) \in V_n^3$ with i, j, k pairwise distinct:

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope Separating Inequalities

Auxiliary Graph $H = (V_H, E_H)$

For every triple $(i, j, k) \in V_n^3$ with i, j, k pairwise distinct:

-Auxiliary Graph $H = (V_H, E_H)$

- 1. bipartide graph can distinguish between odd and even walks
- 2.

For every triple $(i, j, k) \in V_n^3$ with i, j, k pairwise distinct:

$$E_H := E_H \cup \left\{ (u_2^{i,j}, \hat{u}_1^{j,k}), (\hat{u}_2^{i,j}, u_1^{j,k}) \right\}$$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope Separating Inequalities

-Auxiliary Graph $H = (V_H, E_H)$

- 1. bipartide graph can distinguish between odd and even walks
- 2.

Weights for the auxiliary graph

$$\sum_{i \in \mathbb{Z}_k} \left(\underbrace{\frac{1}{2} - x_{v_i v_{i+1}}}_{\text{inner-gadget weights}} + \underbrace{x_{v_i v_{i+2}}}_{\text{inter-gadget weights}} \right) \ge \frac{1}{2}$$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Separating Inequalities

Weights for the auxiliary grap

 $\sum_{i \in \mathbb{Z}_0} \left(\begin{array}{cc} \frac{1}{2} - x_{i_1 v_{i+1}} & + & x_{i_1 v_{i+2}} \\ \end{array} \right) \geq \frac{1}{2}$

Weights for the auxiliary graph

1. no negative cycles as long as triangle inequalities are satisfied! (müller)

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

 $1. \ \, {\rm each\ violated\ odd\text{-}cycle\ inequality\ corresponds\ to\ a\ u,uhat\ walk} \\ ({\rm same\ gadget})$

$$|V_H| = 4n(n-1) = 4n^2 - 4n$$

$$|E_H| = \underbrace{2n(n-1)}_{\text{inner-gadget edges}} + \underbrace{2n(n-1)(n-2)}_{\text{inter-gadget edges}} = 2n^3 - 4n^2 + 2n$$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

Dimensions of H $|Vy| = 4n(n-1) = 4n^2 - 4n$ $|Ey| = \frac{2n(n-1)}{2n(n-1)} + \frac{2n(n-1)(n-2)}{4n^2 + 2n} = 2n^3 - 4n^2 + 2n$ $\frac{2n^2}{4n^2 + 2n^2} = \frac{2n^3}{4n^2 + 2n}$

 \sqsubseteq Dimensions of H

- 1. size has effect on choice of shortest path
- 2. floyd-warshall takes 80GB of memory on largest instances
- 3. we can terminate belman-ford early -> after 15 minutes

$$|V_H| = 4n(n-1) = 4n^2 - 4n$$

$$|E_H| = \underbrace{2n(n-1)}_{\text{inner-gadget edges}} + \underbrace{2n(n-1)(n-2)}_{\text{inter-gadget edges}} = 2n^3 - 4n^2 + 2n$$

Shortest path-algorithms

• Floyd-Warshall $\mathcal{O}(|V|^3) = \mathcal{O}(n^6)$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

 \sqsubseteq Dimensions of H

- 1. size has effect on choice of shortest path
- 2. floyd-warshall takes 80GB of memory on largest instances
- 3. we can terminate belman-ford early \rightarrow after 15 minutes

$$|V_H| = 4n(n-1) = 4n^2 - 4n$$

$$|E_H| = \underbrace{2n(n-1)}_{\text{inner-gadget edges}} + \underbrace{2n(n-1)(n-2)}_{\text{inter-gadget edges}} = 2n^3 - 4n^2 + 2n$$

Shortest path-algorithms

- Floyd-Warshall $\mathcal{O}(|V|^3) = \mathcal{O}(n^6)$
- Belman-Ford: $\mathcal{O}(|V_H| \cdot |E_H|) = \mathcal{O}(n^5)$, $\mathcal{O}(n^2)$ many times

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

 \sqsubseteq Dimensions of H

- 1. size has effect on choice of shortest path
- 2. floyd-warshall takes 80GB of memory on largest instances
- 3. we can terminate belman-ford early -> after 15 minutes

$$|V_H| = 4n(n-1) = 4n^2 - 4n$$

$$|E_H| = \underbrace{2n(n-1)}_{\text{inner-gadget edges}} + \underbrace{2n(n-1)(n-2)}_{\text{inter-gadget edges}} = 2n^3 - 4n^2 + 2n$$

Shortest path-algorithms

- Floyd-Warshall $\mathcal{O}(|V|^3) = \mathcal{O}(n^6)$, $\mathcal{O}(|V|^2) = \mathcal{O}(n^4)$ space!
- Belman-Ford: $\mathcal{O}(|V_H| \cdot |E_H|) = \mathcal{O}(n^5)$, $\mathcal{O}(n^2)$ many times, $\mathcal{O}(|V|) = \mathcal{O}(n^2)$ space

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope -Separating Inequalities

 \sqsubseteq Dimensions of H

Floyd-Warshall $\mathcal{O}(|V|^3) = \mathcal{O}(n^6)$, $\mathcal{O}(|V|^2) = \mathcal{O}(n^4)$ space! Belman-Ford: $\mathcal{O}(|V_H| \cdot |E_H|) = \mathcal{O}(n^5)$, $\mathcal{O}(n^2)$ many ti $\mathcal{O}(|V|) = \mathcal{O}(n^2)$ space

- 1. size has effect on choice of shortest path
- 2. floyd-warshall takes 80GB of memory on largest instances
- 3. we can terminate belman-ford early -> after 15 minutes

Half-Chorded Odd Cycle Ineugalities

Let $5 \leq k \leq n$, let $d = \frac{k-1}{2}$ and $v : \mathbb{Z}_k \to \mathbb{Z}_n$ injective

half-chorded odd cycle inequality [And+22]

$$\sum_{i \in \mathbb{Z}_k} (x_{v_i v_{i+1}} - x_{v_i v_{i+d}}) \le k - 3$$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

Half-Chorded Odd Cycle Ineuqalities Let $5 \le k \le n$, let $d = \frac{k-1}{2}$ and $v : \mathbb{Z}_k \to \mathbb{Z}_n$ injective half-chorded odd cycle inequality [And+22] $\sum_{i} (x_{i_1v_{i_1+1}} - x_{i_1v_{i_2}}) \le k - 3$

 $\sum_{i \in \mathbb{Z}_6} (x_{i_1 v_{i+1}} - x_{i_1 v_{i+d}}) \le k - 3$

Half-Chorded Odd Cycle Ineuqualities

Half-Chorded Odd Cycle Ineuqualities

Let $5 \leq k \leq n$, let $d = \frac{k-1}{2}$ and $v : \mathbb{Z}_k \to \mathbb{Z}_n$ injective

half-chorded odd cycle inequality [And+22]

$$\sum_{i \in \mathbb{Z}_k} (x_{v_i v_{i+1}} - x_{v_i v_{i+d}}) \le k - 3$$

facet defining for k odd

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

Half-Chorded Odd Cycle Ineugalities

Separating Half-Chorded Odd Cycle Ineuqualities (half)

$$\sum_{i \in \mathbb{Z}_k} (x_{v_i v_{i+1}} - x_{v_i v_{i+d}}) \le k - 3$$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

Separating Half-Chorded Odd Cycle

- 1. half-chords also form a cycle, solid edges are two-chords to that cycle $\mathord{-}\!\!>$ relabeling
- 2. technique with auxiliary graph is exactly the same, except all weights are non-negative
- 3. dijkstra, can terminate early if current weight is already ≥ 3

Separating Half-Chorded Odd Cycle Ineugalities (half)

$$\sum_{i \in \mathbb{Z}_k} (x_{v_i v_{i+1}} - x_{v_i v_{i+d}}) \le k - 3$$

After relabeling

$$\sum_{i \in \mathbb{Z}_k} (x_{v'_i v'_{i+2}} - x_{v'_i v'_{i+1}}) \le k - 3$$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope Separating Inequalities

-Separating Half-Chorded Odd Cycle

- 1. half-chords also form a cycle, solid edges are two-chords to that cycle -> relabeling
- 2. technique with auxiliary graph is exactly the same, except all weights are non-negative
- 3. dijkstra, can terminate early if current weight is already ≥ 3

Separating Half-Chorded Odd Cycle Ineuqulities (half)

After relabeling

$$\sum_{i \in \mathbb{Z}_k} (x_{v'_i v'_{i+2}} - x_{v'_i v'_{i+1}}) \le k - 3$$

After rearranging

$$\sum_{i \in \mathbb{Z}_k} \left(\underbrace{x_{v_i'v_{i+1}'}}_{\text{inner-gadget}} + \underbrace{1 - x_{v_i'v_{i+2}'}}_{\text{inter-gadged}} \right) \ge 3$$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

Separating Half-Chorded Odd Cycle

- 1. half-chords also form a cycle, solid edges are two-chords to that cycle -> relabeling
- 2. technique with auxiliary graph is exactly the same, except all weights are non-negative
- 3. dijkstra, can terminate early if current weight is already ≥ 3

Separating Half-Chorded Odd Cycle Ineuqualities (half)

After rearranging

$$\sum_{i \in \mathbb{Z}_k} \left(\underbrace{x_{v_i'v_{i+1}'}}_{\text{inner-gadget}} + \underbrace{1 - x_{v_i'v_{i+2}'}}_{\text{inter-gadged}} \right) \ge 3$$

Dijkstra's Algortihm: $\mathcal{O}(|E_H| + |V_H| \cdot \log|V_H|) = \mathcal{O}(n^3),$ $\mathcal{O}(n^2)$ many times

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

Separating Half-Chorded Odd Cycle

- 1. half-chords also form a cycle, solid edges are two-chords to that cycle -> relabeling
- 2. technique with auxiliary graph is exactly the same, except all weights are non-negative
- 3. dijkstra, can terminate early if current weight is already ≥ 3

Run Configurations

	Δ-st-1	Δ-st-2	Δ-st-12	Δ-1/2	Δ-2	Δ-с	all
1	Δ	Δ	Δ	Δ	Δ	Δ	Δ
2	\mathtt{st}^1	\mathtt{st}^2	\mathtt{st}^1	half	two	half	\mathtt{st}^1
3			\mathtt{st}^2			two	\mathtt{st}^2
4				_			half
5				_			two

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Separating Inequalities

└─Run Configurations

- 1. all use Δ first, because they implicitly rely on it
- 2. ordered them by (expected) run time

Data

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope Lata

Dat

Natural instances

- cetacea (30) [GW89]
- cats (36)

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Data

* cetacea (30) [GW89]
cats (36)

└Natural instances

Natural instances

- cetacea (30) [GW89]
- cats (36)
- football (115) [Kap+15]
- adjnoun (112)
- polbooks (105)
- lesmis (77)
- dolphins (62)
- karate (34)

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Data

└─Natural instances

tural instances

catacaa (30) [GW89]

cata (36)

football (115) [Kap+15]

adjuoun (112)

polbooks (105)

leamis (77)

dolphins (62)

• karate (34)

Natural instances

- cetacea (30) [GW89]
- cats (36)
- football (115) [Kap+15]
- adjnoun (112)
- polbooks (105)
- lesmis (77)
- dolphins (62)
- karate (34)
- organoid_[size]_[difficulty] (160, 100, 80, 40) [Pre23]

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of

inequalities of the Clique Partitioning polytope -Data

_Natural instances

• cetacea (30) [GW89]

- cats (36) • football (115) [Kap+15] • adinoun (112)
- polbooks (105) • lesmis (77)
- dolphins (62)
- organoid_[size]_[difficulty] (160, 100, 80, 40) [Pre23]

Random instances

• Binary r_binary_[size] size $\in \{25, 50\}$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Data

• Binsey r_binary_[size] size ∈ {25,50}

Random instances

Random instances

- Binary r_binary_[size] $size \in \{25, 50\}$
- Uniform r_uniform_[size]_[lb]_[ub] $size \in \{25, 50\}$ $(lb, ub) \in \{(-10, 10), (-100, 100), (-10, 100)\}$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope -Data

-Random instances

- Binsry r_binary_[size] size ∈ {25,50}
- Uniform r_uniform_[size]_[lb]_[ub] size ∈ {25,50} (lb, ub) ∈ {(-10,10), (-100,100), (-10,100)}

Random instances

- Binary r_binary_[size] $size \in \{25, 50\}$
- Uniform r_uniform_[size]_[lb]_[ub] $size \in \{25, 50\}$ $(lb, ub) \in \{(-10, 10), (-100, 100), (-10, 100)\}$
- Normal r_normal_[size]_[mu]_[sigma] $size \in \{25, 50\}$ $(mu, sigma) \in \{0, 0.5, 2\} \times \{0.5, 1, 2\}$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

-Data

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

-Random instances

- Binary r_binary_[size]
 size ∈ {25,50}
- Uniform r_uniform_[size]_[lb]_[ub] size ∈ {25,50} (lb, ub) ∈ {(-10,10), (-100,100), (-10,100)}
- Normal r_normal_[size]_[ms]_[sigma] size ∈ {25,50} (ms, sigma) ∈ {0,0.5,2} × {0.5,1,2}

Empirical Results

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope \sqsubseteq Empirical Results

Empirical Results

Relative Gap

Relative gap of solution z' to the optimal solution z

$$\operatorname{gap}(z,z')\coloneqq\frac{|z-z'|}{|z|}$$

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Empirical Results

Relative Gap $\label{eq:Relative Gap} Relative gap of solution x' to the optimal solution <math display="block">gap(x,x') = \frac{|x-t'|}{|x|}$

└Relative Gap

- 1. case z = 0 can be ignored
- 2. only possible to compute when optimal value is known

Example: adjnoun

Table 6: Computational results for adjnoun

							Δ-st-1		Δ-st-2			Δ-st-12							all		
1		Δ	Δ_{∞}	$\Delta^{\leq 1}$	$\Delta_{\infty}^{\leq 1}$	1	2	3	1	2	3	1	2	3	Δ-%	Δ-2	∆-c	1	2	3	
2	# it.	122	6	204	45	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	1,038	1,320	1,200	10,000	10,000	10,000	
3	# A-calls	0	0	0	0	1067	1094	1095	622	613	614	1111	1098	1095	81	97	110	1117	1131	1083	
4	cuts																				
5	# total	47,262	12,963	26,027	8,003	390,825	392,629	387,427	994,177	994,987	987,904	382,283	391,531	387,849	140,769	171,755	158,097	373,139	372,381	391,373	
- 6	# max	400	8,362	186	500	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	
7	# min	2	16	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
8	# A-cuts	0	0	0	0	22,493	22,443	23,675	136,047	134,127	134,175	22,847	23,823	22,871	30,158	38,660	39,872	23,366	22,366	23,421	
9	# removed	43,535	7,190	23,452	5,379	386,392	388,288	383,042	988,377	988,865	982,200	377,858	$387,\!156$	383,454	134,093	165,476	150,739	368,669	367,987	386,963	
10	objective																				
11	bound	0.4275	0.4275	0.4275	0.4275	0.391	0.3904	0.3895	0.3865	0.3863	0.3866	0.3899	0.389	0.3903	0.398	0.3978	0.3978	0.3891	0.39	0.3893	
12	gap	36.1%	36.1%	36.1%	36.1%	24.4%	24.3%	24.0%	23.0%	22.9%	23.0%	24.1%	23.8%	24.2%	26.7%	26.6%	26.6%	23.8%	24.1%	23.9%	
13	time																				
14	total $1/s$	4.846	0.794	5.822	4.210	652.918	657.831	640.986	1234.069	1249.390	1211.961	654.060	668.754	666.687	2322.078	3922.257	4303.249	650.074	623.255	657.059	
15	normalized	1.00	0.16	1.20	0.87	134.73	135.75	132.27	254.66	257.82	250.10	134.97	138.00	137.57	479.17	809.38	888.00	134.15	128.61	135.59	
16	lp time $1/s$	4.701	0.764	5.566	4.042	618.769	623.890	606.817	1198.666	1213.964	1176.594	619.855	634.372	632.492	67.300	100.684	79.603	615.768	589.009	623.100	

Example: adjnoun

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Empirical Results

Example: adjnoun

Example: organoid_160_hard

Table 11: Computational results for organoid_160_hard

							∆-st-1			∆-st-2		∆-st-12							all	
1		Δ	Δ_{∞}	$\Delta^{\leq 1}$	$\Delta_{\infty}^{\leq 1}$	1	2	3	1	2	3	1	2	3	0-X	0-2	∆-c	1	2	3
2	# it.	3,712	6	10,000	20	4,060	4,152	3,929	4,000	4,186	4,030	4,037	3,990	3,917	3,712	3,712	3,712	4,081	3,928	3,922
3	# #-calls	0	0	0	0	1	1	1	2	1	1	2	1	2	1	1	2	4	1	2
4	cuts																			
5	# total	1,482,621	131,841	1,729,012	15,901	1,621,281	1,657,361	1,568,785	1,592,542	1,669,574	1,608,612	1,609,391	1,591,066	1,562,088	1,482,621	1,482,621	1,482,621	1,626,670	1,568,107	1,563,353
- 6	# max	400	65,771	237	1,450	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400
7	# min	16	4	53	21	6	6	6	1	3	6	2	5	3	16	16	16	2	6	5
8	# #-cuts	0	0	0	0	6	6	6	24	6	6	30	5	9	0	0	0	17	6	15
9	# removed	$1,\!476,\!839$	55,589	1,723,930	10,233	1,615,450	1,652,117	1,563,129	1,586,880	1,663,428	1,602,578	1,602,759	1,584,994	1,556,817	1,476,839	1,476,839	$1,\!476,\!839$	1,619,226	1,561,818	1,558,062
10	objective																			
11	bound	135.5	135.5	136.3	135.5	135.3	135.3	135.3	135.3	135.3	135.3	135.3	135.3	135.3	135.5	135.5	135.5	135.3	135.3	135.3
12	gap	0.1%	0.1%	0.7%	0.1%	0.0%*	0.0%*	0.0%*	0.0%*	0.0%*	0.0%*	0.0%*	0.0%*	0.0%*	0.1%	0.1%	0.1%	0.0%*	0.0%*	0.0%*
13	time																			
14	total 1/s	286.655	140.807	599.619	14.621	305.721	309.898	300.815	302.782	311.934	305.005	305.710	302.744	300.734	846.531	1192.236	1752.368	307.655	301.564	300.637
15	normalized	1.00	0.49	2.09	0.05	1.07	1.08	1.05	1.06	1.09	1.06	1.07	1.06	1.05	2.95	4.16	6.11	1.07	1.05	1.05
16	$\mathrm{lp\ time\ 1/s}$	280.912	140.651	586.847	14.398	299.461	303.465	294.748	296.512	305.446	298.737	299.366	296.552	294.604	281.039	281.239	281.777	301.282	295.407	294.493

Example: organoid_160_hard

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope Empirical Results

-Example: organoid_160_hard

Run-Times on Natural Instances

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Empirical Results

Run-Times on Natural Instances

- $1. \ \, {\rm Running \ time \ of \ run \ configurations \ on \ non-random \ instances}.$
- 2. For run configurations containing a ${\tt st}$ -separator the results were averaged per instance among the three runs.
- 3. All results are normalized with respect to the Δ run configuration (first column).
- 4. The ordinate is logarthmically scaled. Box plots are drawn in the standard way, *i.e.*, boxes are from Q_1 to Q_3 , the blue mark highlights the median, and whiskers extend by 1.5 * IQR.
- 5. are cycles worth it?

Relative Gaps on Natural Instances

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Empirical Results

Relative Gaps on Natural Instances

 $1. \ \, \text{st-separators artifact of measuring integrality with tolerance} \\ \text{parameter}$

Run-Times on Random Instances

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Empirical Results

Run-Times on Random Instances

Relative Gaps on Random Instances

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Empirical Results

Relative Gaps on Random Instances

- 1. axis is now linear!
- 2. explain underlying structure in natural instances to show why they are easier

Conclusion

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope \sqsubseteq Conclusion

Conclusion

Conclusion

- ullet Δ and \mathfrak{st} often sufficient for integral solutions
- two and half run longer and do only improve bounds marginally

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Conclusion

Conclusion $\bullet \ \Delta \ {\rm and} \ {\rm at} \ {\rm often} \ {\rm sufficient} \ {\rm for} \ {\rm integral} \ {\rm solutions}$

└─Conclusion

- 1. Everything with a note: on the instances i tested
- 2. Personal: great fun, learned much
- 3. would not have started it if i knew how little i knew ((i)lp, optimization, c++), 10/10

Reference I

[And+22] Bjoern Andres et al. "A Polyhedral Study of Lifted Multicuts". In: Discrete Optimization 47 (Feb. 2022), p. 100757. issn: 15725286. doi: 10.1016/j.disopt.2022.100757. url: https://linkinghub.elsevier.com/retrieve/pii/S1572528622000627 (visited on 10/16/2023).
[GW89] M. Grötschel and Y. Wakabayashi. "A Cutting

Plane Algorithm for a Clustering Problem". In:

Mathematical Programming 45.1-3 (Aug. 1989),
pp. 59–96. issn: 0025-5610, 1436-4646. doi:
10.1007/BF01589097. url:
http://link.springer.com/10.1007/BF01589097
(visited on 10/16/2023).

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Conclusion

└─Reference

Reference 1

[And+22] Bjoern Andres et al. "A Polyhedral Study of Lifted
Multicuts". In: Discrete Optimization 47 (Feb.
2022), p. 100757. Som: 15752588. doi: 10.1016/j.disept.2022.100757. un!:
https://linkinghub.elsevier.com/retrievn/

west of the control o

Reference II

[GW90]

M. Grötschel and Y. Wakabayashi. "Facets of the Clique Partitioning Polytope". In: *Mathematical Programming* 47 (May 1990), pp. 367–387. issn: 0025-5610, 1436-4646. doi: 10.1007/BF01580870. url:

http://link.springer.com/10.1007/BF01580870 (visited on 10/16/2023).

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope —Conclusion

└─Reference

Reference II

[GW90] M. Grösschel and Y. Wakabayasahi. "Facets of the Clique Partitioning Polytope". In: Mathematical Programming 47 (May 1990), pp. 367-387. Issu: 0025-5610, 1436-4646. doi: 10.1007/EP01580870. url: http://link.springer.com/10.1007/EP015808

Reference III

[Kap+15] Jörg H. Kappes et al. "A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems". In:

International Journal of Computer Vision 115.2
(Nov. 2015), pp. 155–184. issn: 0920-5691,
1573-1405. doi: 10.1007/s11263-015-0809-x. url:
http://link.springer.com/10.1007/s11263-

015-0809-x (visited on 10/27/2023).

[Mül96] Rudolf Müller. "On the Partial Order Polytope of a Digraph". In: *Mathematical Programming* 73.1 (Apr. 1996), pp. 31–49. issn: 0025-5610, 1436-4646. doi: 10.1007/BF02592097. url:

http://link.springer.com/10.1007/BF02592097 (visited on 10/16/2023).

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

—Conclusion

└─Reference

Reference IV

[ORS01] Maarten Oosten, Jeroen H. G. C. Rutten, and Frits C. R. Spieksma. "The Clique Partitioning Problem: Facets and Patching Facets". In: Networks 38.4 (Dec. 2001), pp. 209–226. issn: 0028-3045, 1097-0037. doi: 10.1002/net.10004. url: https://onlinelibrary.wiley.com/doi/10. 1002/net.10004 (visited on 10/16/2023).

[Pre23] Jannik Presberger. "Segmentation and Clustering of Organoids in Light Microscopy Images". Master

Thesis (unpublished). Dresden, Saxony, Germany:

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Technische Universität Dresden, 2023.

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Conclusion

└─Reference

Reference V

[Wak86] Yoshiko Wakabayashi. "Aggregation of Binary Relations: Algorithmic and Polyhedral Investigations". In: 1986. url: https://www.semanticscholar.org/paper/Aggregation-of-binary-relations%3A-algorithmic-and-Wakabayashi/75262f6acccb09118efb517efba46c1c7957c2a9 (visited on 10/20/2023).

Maximilian Moeller

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Evaluation of separation routines for some classes of inequalities of the Clique Partitioning polytope

Conclusion

∟Reference

[Wak86] Voolulo Wakaloopulai. "Aggregation of Binary Robitions: Algorithmic and Polyhedral Involgations". In: 1996. url https://www.mantticachlar.org/paper/ Aggregation=of-binary=ralations/Ellalgorithmic=and-wiakalopulai. 7:705056cs=cch00118ch16517eTheodelct/957cla