Boolean Algebra

BINARY LOGIC

- Binary logic deals with variables that take on two discrete values and with operations that assume logical meaning.
- The two values the variables assume may be called by different names
 - 1 and 0
 - true and false
 - yes and no
 - **—** ...

BINARY LOGIC

- Binary logic consists of binary variables and a set of logical operations.
- The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc., with each variable having two and only two distinct possible values: 1 and 0.
- There are three basic logical operations:
 - AND,
 - OR,
 - NOT.
- Each operation produces a binary result(say z)

AND

- This operation is represented by a dot or by the absence of an operator.
- For example,
 - -x.y=z
 - -xy=z
 - is read "x AND y is equal to z."
- If the result of the operation x . y is z, the logical operation AND is interpreted to mean that
 - -z = 1 if and only if x = 1 and y = 1;
 - Otherwise z = 0.
- (x, y, and z are binary variables and can be equal either to 1 or 0, and nothing else.)

OR

- This operation is represented by a plus sign.
- For example,
 - -x+y=z
 - is read "x OR y is equal to z,"
- If the result of the operation x+y is z, the logical operation OR is interpreted to mean that
 - -z = 1 if x = 1 or if y = 1 or if both x = 1 and y = 1.
 - -z = 0 if both x = 0 and y = 0

NOT

- This operation is represented by a prime or sometimes by an overbar.
- For example,
 - -x'=z
 - $-\overline{x} = z$
 - is read "not x is equal to z,"
- If the result of the operation x' is z, the logical operation
 NOT is interpreted to mean that
 - if x = 1, then z = 0,
 - if x = 0, then z = 1.
- The NOT operation is also referred to as the complement operation, since it changes a 1 to 0 and a 0 to 1

Binary logic Vs Binary arithmetic

- Binary logic resembles binary arithmetic,
 - AND operation is similar to multiplication
 - OR operation is similar to addition
- Symbols used for
 - AND is same as multiplication
 - OR is same as addition
- Binary arithmetic variable designates a number that may consist of many digits.
 - in binary arithmetic, we have 1 + 1 = 10 (read "one plus one is equal to 2"),
- A logic variable is always either 1 or 0.
 - in binary logic, we have 1 + 1 = 1 (read "one OR one is equal to one").

Truth Table

- Definitions of logical operations may be listed in a compact form called truth tables.
- A truth table is a table of all possible combinations of the variables, showing the relation between the values that the variables may take and the result of the operation.

AND				
y	$x \cdot y$			
0	0			
1	0			
0	0			
1	1			
	y 0 1 0			

OR				
x	y	x + y		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

NOT			
x	x'		
0	1		
1	0		

Logic Gates & Graphic symbols

- Logic gates are electronic circuits that operate on one or more input signals to produce an output signal.
- The gates are blocks of hardware that produce the equivalent of logic-1 or logic-0 output signals if input logic requirements are satisfied.
- The graphic symbols used to designate the three types of gates (AND, OR, NOT).

Boolean algebra

- Defined with a set of elements, a set of operators, and a number of unproved axioms or postulates.
- In 1854, George Boole developed an algebraic system now called Boolean algebra
- In 1938, Claude E. Shannon introduced a two-valued Boolean algebra called switching algebra that represented the properties of bistable electrical switching circuits

Boolean Algebra (Formal Definition)

- Boolean algebra is an algebraic structure defined by a set of elements, B, together with two binary operators, + and ●, provided that the following (Huntington) postulates are satisfied:
 - 1. (a) The structure is closed with respect to the operator +.
 - (b) The structure is closed with respect to the operator .
 - 2. (a) The element 0 is an identity element with respect to +; that is, x + 0 = 0 + x = x.
 - (b) The element 1 is an identity element with respect to \bullet ; that is, $x \bullet 1 = 1 \bullet x = x$.
 - 3. (a) The structure is commutative with respect to +; that is, x + y = y + x.
 - (b) The structure is commutative with respect to \bullet ; that is, $x \bullet y = y \bullet x$.
 - 4. (a) The operator \bullet is distributive over +; that is, $x \bullet (y + z) = (x \bullet y) + (x \bullet z)$.
 - (b) The operator + is distributive over \bullet ; that is, $x + (y \bullet z) = (x + y) \bullet (x + z)$.
 - 5. For every element $x \in B$, there exists an element $x' \in B$ (called the complement of x) such that (a) x + x' = 1 and (b) $x \bullet x' = 0$.
 - 6. There exist at least two elements x, $y \in B$ such that $x \neq y$.

Two-valued Boolean Algebra

- Two-valued Boolean algebra has applications in set theory (the algebra of classes) and in propositional logic.
- Boolean algebra can be applied to gate-type circuits commonly used in digital devices and computers.
- A two-valued Boolean algebra is defined on a set of two elements, $B = \{0, 1\}$, with rules for the two binary operators + and . as shown in the following operator tables (the rule for the complement operator is for verification of postulate 5):

AND				
y	$x \cdot y$			
0	0			
1	0			
0	0			
1	1			
	y 0 1			

OR				
x	y	x + y		
0	0	0		
0	1	1		
1	0	1		
1	1	1		
	0 0 1	x y 0 0 0 0 1 1 0		

NOT				
	x	x'		
	0	1		
	1	0		

BASIC THEOREMS AND PROPERTIES OF BOOLEAN ALGEBRA

Duality

- This important property of Boolean algebra is called the duality principle
 - states that every algebraic expression deducible from the postulates of Boolean algebra remains valid if the operators and identity elements are interchanged.
- In a two-valued Boolean algebra, the identity elements and the elements of the set B are the same: 1 and 0.
- The duality principle has many applications.
- If the dual of an algebraic expression is desired, we simply interchange OR and AND operators and replace 1's by 0's and 0's by 1's.

Postulates and Theorems of Boolean Algebra

Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Theorem 3, involution		(x')' = x		
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4, associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4, distributive	(a)	x(y+z) = xy + xz	(b)	x + yz = (x + y)(x + z)
Theorem 5, DeMorgan	(a)	(x + y)' = x'y'	(b)	(xy)' = x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b)	x(x + y) = x

Operator Precedence

- The operator precedence for evaluating Boolean expressions is
 - (1) parentheses,
 - -(2) NOT
 - (3) AND
 - (4) OR.

Proving Theorems

$$x + x = x$$
.

Statement	Justification
$x + x = (x + x) \cdot 1$	postulate 2(b)
= (x + x)(x + x')	5(a)
= x + xx'	4(b)
= x + 0	5(b)
= x	2(a)

 $x \cdot x = x$.

Statement	Justification	
$x \cdot x = xx + 0$	postulate 2(a)	
= xx + xx'	5(b)	
= x(x + x')	4(a)	
$= x \cdot 1$	5(a)	
= x	2(b)	

Proving Theorems

$$x + 1 = 1$$
.

Statement

Statement	Justineation	
$x+1=1\cdot(x+1)$	postulate 2(b)	
= (x + x')(x + 1)	5(a)	
$= x + x' \cdot 1$	4(b)	
= x + x'	2(b)	
A + C = A + BC		

Instification

$$(A + B)(A + C) = A + BC$$

 $(A + B)(A + C) = AA + AC + AB + BC$ Distributive law
 $= A + AC + AB + BC$ AA = A
 $= A(1 + C) + AB + BC$ Factoring (distributive law)
 $= A \cdot 1 + AB + BC$ 1 + C = 1
 $= A(1 + B) + BC$ Factoring (distributive law)
 $= A \cdot 1 + BC$ 1 + B = 1
 $= A + BC$ A \cdot 1 = A

Proving theorems

$$A + \overline{A}B = A + B$$

$$A + \overline{A}B = (A + AB) + \overline{A}B$$
 $A = A + AB$
 $= (AA + AB) + \overline{A}B$ $A = AA$
 $= AA + AB + A\overline{A} + \overline{A}B$ adding $A\overline{A} = 0$
 $= (A + \overline{A})(A + B)$ Factoring
 $= 1 \cdot (A + B)$ $A + \overline{A} = 1$
 $= A + B$ drop the 1

$$A + \overline{A}B = A + B$$
.

A	В	\overline{AB}	$A + \overline{AB}$	A + B	_
0	0	0	0	0	$A \longrightarrow$
0	1	1	1	1	
1	0	0	1	1	В
1	1	0	1	1	A —
			L eq	1	$B \longrightarrow$

Proving theorems

Apply DeMorgan's theorems to each expression:

(a)
$$\overline{(A + B)} + \overline{C}$$

(b)
$$(\overline{A} + B) + CD$$

(c)
$$\overline{(A + B)}\overline{C}\overline{D} + E + \overline{F}$$

Solution

(a)
$$\overline{(A+B)} + \overline{C} = (\overline{A+B})\overline{C} = (A+B)C$$

(b)
$$\overline{(\overline{A} + B) + CD} = (\overline{\overline{A} + B})\overline{CD} = (\overline{\overline{A}}\overline{B})(\overline{C} + \overline{D}) = A\overline{B}(\overline{C} + \overline{D})$$

(c)
$$\overline{(A+B)\overline{C}D} + E + \overline{F} = \overline{((A+B)\overline{C}D)}(\overline{E+F}) = (\overline{A}\overline{B} + C + D)\overline{E}F$$

BOOLEAN FUNCTIONS

- Boolean algebra is an algebra that deals with binary variables and logic operations.
- A Boolean function described by an algebraic expression consists of binary variables, the constants 0 and 1, and the logic operation symbols.
- For a given value of the binary variables, the function can be equal to either 1 or 0.
- Example: Consider the Boolean function

$$F1 = x + y'z$$

- F1 is equal to 1 if x is equal to 1 or if both y' and z are equal to 1.
- F1 is equal to 0 otherwise.
- The complement operation dictates that when y = 1, y = 0.
 - Therefore, F1 = 1 if x = 1 or if y = 0 and z = 1.
- A Boolean function expresses the logical relationship between binary variables and is evaluated by determining the binary value of the expression for all possible values of the variables.

BOOLEAN FUNCTIONS

- A Boolean function can be represented in a truth table.
 - The number of rows in the truth table is 2^n , where n is the number of variables in the function.
 - The binary combinations for the truth table are obtained from the binary numbers by counting from 0 through 2^n 1.
 - Example: Truth table for the function F1(F1 = x + y'z)

X	y	Z	F ₁
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1
			I

Logic circuit diagram or Schematic

- A Boolean function can be transformed from an algebraic expression into a circuit diagram composed of logic gates connected in a particular structure.
- The logic-circuit diagram (also called a schematic) for F1(F1 = x + y'z) is shown below:

Example

• Function: F2 = x'y'z + x'yz + xy'

– Simplification:

$$F2 = x'y'z + x'yz + xy'$$

$$= x'z(y' + y) + xy'$$

$$= x'z + xy'$$

Note the number of gates required for implementing the same function in two different ways!

$$F_2 = x'y'z + x'yz + xy'$$

$$F_2 = xy' + x'z$$