Løsningsforslag eksamon TTK 4105 Reguleringsteknikk 30/5-2013

 $h(z) = \frac{y_k}{u_k}(z) = \frac{1}{1 + T_1 \left[\frac{2}{7} \cdot \frac{2}{2+1} \right]} - \frac{T(2+1)}{T(2+1) + 2T_1(2-1)}$

=) $y_k[T(z+1)+2T_1(z-1)] = u_kT(z+1)$

>> yk(T+2T1)= yk-1(2T1-T)+T(Uk+Uk-1)

=) $y_{k} = \frac{27.-7}{27.+7} y_{k-1} + \frac{7}{27.+7} (u_{k} + u_{k-1})$ $b_{0} = b_{1}$

O2) alle sporsmål, læreboka side 384-385 Men Obs: Feil i O2a): skulke stætt y(s) = N(s) L(s) hv v(s). Vil bli honsyntatt.

03 a) Sluttverditeorenef: lim e(t)=lim(se(s))

= lim s [1 tho yo] = lim s [ho to yo] =

 $\lim_{s\to 0} s \left[\frac{(1+7s)(s-a)}{(1+7s)(s-a)+Kp} \cdot s \right] = \frac{-a}{-a+Kp} = \frac{a}{Kp-a}$

O36) Bytter ut Kp med hr= Kp 1+Tis Når s→0 går hr→∞. Altså går e(t)→0.

03c) Z-N og Skogestad for utsetter at prosessen er åpent stabil. Det er ikke tilfelle her, p.g. a polita. 149

03 d) (V.11) = Nyquist: Δ2(Hh) = -2π (Nn-Np) 2 Fra figur 3.1 ser vi at &L(Hho) = +29T ho has en poli hhp >Np=1. Vi far +2TT = -2TT (Nn-1) \Leftrightarrow -1= Nn-1 \Rightarrow Nn=0 \Rightarrow lublet system or stabilt. ()3e) Da Hir AL (1+ho) = -29 i stedet. => 1= Nn-1 => Nn=2 poter i hhp Malt: 1.6 cm . 0,5 => ny kp = 0.115 (=> stab.grense 04) Austand en periode T males, Ta 0.63, B = 211:997 Demping males som $\frac{A^2}{A^2}$, der toppen A_2 ligger Tetter toppen A_1 .

Vi har $2^{\alpha T} = \frac{A^2}{A^2} = -\alpha T = \ln \frac{2.15}{4.05} = > \alpha = + \ln \frac{4.05}{2.15} \approx 1$ $\omega_0^2 = \alpha'^2 + \beta^2 \Rightarrow \omega_0 = \sqrt{1^2 + 9.97^2} = 10, \xi = (\frac{\alpha}{\omega_0}) = \frac{1}{10}$ => Alternativ C: 5=0.1, wo=10 () 5) T2 ZZT1. Venstre indre delsystem Uir de 21 i stedet for 1+1725. Rédusérer reshen: $\frac{1}{T_{i,5} + b + 1} = \frac{1}{(b+1)} \cdot \frac{1}{1 + \frac{T_{i,5}}{b + 1}} = \frac{1}{(b+1)} \cdot \frac{1}{(b+1)} = \frac{1}{(b+1)} \cdot \frac{T_{i,5}}{(b+1)} = \frac{$ Annon metode: Redusere diagrammet forst, så sette $T_2 \approx 0$:

 $h(s) = \frac{1}{1 + (T_1 + T_2)s + T_1T_2s^2 + b} \approx \frac{1}{T_1s + b + 1} / s \text{ amme}$ svar 150

Oppgave 6

a)

Benytter Newtons lov:

$$\sum F = ma = m\dot{w}. \tag{21}$$

I oppgaveteksten er sammenhengen mellom kreftene gitt slik at differensialligningen kan settes opp:

$$\sum F = C_1 g - C_2 w^2 = m \dot{w} \tag{22}$$

$$\Rightarrow \frac{C_1}{m}g - \frac{C_2}{m}w^2 = \dot{w} \tag{23}$$

$$\dot{w} = \frac{C_G g - C_W w^2}{m}, \text{ der } C_G = \frac{C_1}{m} \text{ og } C_W = \frac{C_2}{m}.$$
 (24)

b)

Den maksimale hastigheten finnes ved stasjonære forhold, dvs $\dot{w}=0$.

$$\dot{w} = 0 \Rightarrow C_G g_{\text{max}} - C_W w_{\text{max}}^2 \Rightarrow w_{\text{max}} = \sqrt{\frac{C_G g_{\text{max}}}{C_W}}.$$
 (25)

c)

Vi har $\dot{g}=K_p(r-w)$, som gir $g(t)=K_p\int_0^t{(r-w)}\mathrm{d}\tau$. Dette er en I-regulator. Etter innsvingningstiden blir $\dot{g}=0$.

$$\dot{g} = 0 \Rightarrow K_p(r - w) = 0 \Rightarrow r = w,$$
 (26)

altså, vi oppnår referansen til tross for forstyrrelse fra friksjon og luftmotstand.

d)

Finner g_0 som uttrykk av w_0 vha ligningen fra a):

$$0 = C_G g_0 - C_W w_0^2 \Rightarrow g_0 = \frac{C_W}{C_G} w_0^2.$$
 (27)

 $\operatorname{Med} x_1 = w \operatorname{og} x_2 = g \operatorname{kan} \operatorname{vi} \operatorname{skrive}$

$$\dot{x_1} = C_g x_2 - C_W x_1^2 = f_1(\underline{x}, r)$$
 (28)

Den lineariserte modellen finnes ved hjelp av formlene fra formelsamlingen insatt arbeidspunktet (\underline{x}_0 , r_0).

$$\Delta \underline{\dot{x}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} \Delta \underline{x} + \begin{bmatrix} \frac{\partial f_1}{\partial r} \\ \frac{\partial f_2}{\partial r} \end{bmatrix} \Delta r. \tag{30}$$

$$\frac{\partial f_1}{\partial x_1} = -2C_W x_1 \tag{31}$$

$$\frac{\partial f_1}{\partial x_2} = C_G \tag{32}$$

$$\frac{\partial f_2}{\partial x_1} = -K_p \tag{33}$$

$$\frac{\partial f_2}{\partial x_2} = 0 \tag{34}$$

$$\frac{\partial f_1}{\partial r} = 0 \tag{35}$$

$$\frac{\partial f_2}{\partial r} = K_p. (36)$$

Vi får dermed følgende modell når vi setter inn arbeidspunktet (\underline{x}_0, r_0):

$$\underline{\Delta \underline{\dot{x}} = \begin{bmatrix} -2C_W w_0 & C_G \\ -K_p & 0 \end{bmatrix} \Delta \underline{x} + \begin{bmatrix} 0 \\ K_p \end{bmatrix} \Delta r}.$$
 (37)

e)

Egenverdiene finnes fra $|\lambda I - A| = 0$:

$$\lambda(\lambda + 2C_W w_0) + K_p C_G = 0 \Rightarrow \underbrace{\lambda_{1,2} = -C_W w_0 \pm \sqrt{C_W^2 w_0^2 - K_p C_G}}.$$
 (38)

Ved lave hastigheter (når $C_W w_0^2 < K_p C_G$) blir systemet marginalt stabilt med to poler på imaginæraksen. Ved høye hastigheter er systemet eksponensielt stabilt med to poler i venstre halvplan.

Dersom bilen kjører langsomt har vi $w_0^2\approx 0.$ Da blir modellen (la
Place-transformert)

$$s\Delta w(s) = C_G \Delta g(s) \tag{39}$$

$$s\Delta g(s) = K_p \left(\Delta r(s) - \Delta w(s) \right). \tag{40}$$

Substituerer man for $\Delta g(s)$, får man

$$s\Delta w(s) = C_G \left(\frac{K_p}{s} \Delta r(s) - \frac{K_p}{s} \Delta w(s) \right)$$
 (41)

$$\frac{\Delta w}{\Delta r}(s) = \frac{C_G K_p}{s^2 + C_G K_p}. (42)$$

Dette systemet har (formelsamlingen) sprangrespons $k(t) = K(1 - cos(\omega_0 t))$, der K = 1 og $\omega_0 = \sqrt{C_G K_p}$. Altså, dersom spranget er på Δr , blir responsen

$$\Delta w(t) = \Delta r \left(1 - \cos(\sqrt{C_G K_p} t) \right). \tag{43}$$

Oppgave 🔭

a)

Dette er en begrenset PD-regulator. Denne er nødvendig her da prosessen $h_u(s)$ har to rene integratorer i seg. Dermed blir faseresponsen -180° fra starten av, og vi trenger et tidlig nullpunkt for å løfte den opp.

6) Se pålegnet diagram under c) Kpr EdBJ = Kp[dBJ + 18 = -12+18 = 6dB

7d)

Den interne sløyfen har åpen-sløyfetransferfunksjon $h_{01} = \frac{K_1}{s(1+T_1s)}$. Vi har at feilforholdet $N_1(s) = \frac{1}{1+h_{01}(s)}$. Altså er

$$N_1(s) = \frac{1}{1 + \frac{K_1}{s(1 + T_1 s)}} = \frac{s(1 + T_1 s)}{s(1 + T_1 s) + K_1}.$$
 (51)

Av figuren ser vi at $h_v(s) = \frac{1}{s(1+T_1s)}$.

$$M_1(s) = \frac{h_{01}(s)}{1 + h_{01}(s)} = \frac{\frac{K_1}{s(1 + T_1 s)}}{1 + \frac{K_1}{s(1 + T_1 s)}} = \frac{K_1}{\underline{s(1 + T_1 s) + K_1}}.$$
 (52)

7e) Flore fordeler born nevnes, not med to for full post:

For den indre sløy fa har fjernet en integrator og dermed bedret faseforløpet til den ytre sløyfetransferfantsformen.

· Ki kan økes kraffig, defte gir hurtigere respons fra yo til y

virkningen av v blir mindre på y, p-g-a. Ny liten for Ky stor

Formelsamling

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sf(s), \quad \text{og} \quad \lim_{t \to 0} f(t) = \lim_{s \to \infty} sf(s)$$
 (V.1)

$$\mathcal{L}\left[\dot{f}(t)\right] = \left.sf(s) - f(t)\right|_{t = 0} \quad , \quad \mathcal{L}\left[\dot{f}(t)\right] = \left.s^2 f(s) - s f(t)\right|_{t = 0} - \dot{f}(t)\Big|_{t = 0} \quad (\text{V}.2)$$

Residuregning:
$$f(t) = \sum_{a_i} \frac{1}{(m-1)!} \left[\frac{\partial^{m-1}}{\partial s^{m-1}} \{ (s - a_i)^m f(s) e^{st} \} \right]_{s = a_i}$$
 (V.3)

Tidsforsinkelse:
$$\ell [f(t-\tau)] = e^{-\tau s} f(s)$$
 (V.4)

$$|\lambda \mathbf{I} - \mathbf{A}| = 0 \tag{V.5}$$

Rettlinja bevegelse: f = ma, Rotasjon: $d = J\dot{\omega}$; med masse på vektløs stang har vi $J = ml^2$ (V.6)

Folding (konvolusjon):

$$y(t) = h(t) * u(t) = \int_{0}^{t} h(t - \tau)u(\tau)d\tau, \quad \mathcal{L}[h(t) * u(t)] = h(s)u(s)$$
 (V.7)

Linearisering:
$$\Delta \dot{\mathbf{x}} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \begin{vmatrix} \Delta \mathbf{x} & + \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \end{vmatrix}_{\mathbf{x}^{p}, \mathbf{u}^{p}} \qquad , \mathbf{A} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Big|_{\mathbf{x}^{p}, \mathbf{u}^{p}} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{x}^{p}, \mathbf{u}^{p} & \vdots & \vdots \\ \mathbf{x}^{p}, \mathbf{u}^{p$$

$$x[dB] = 20 \cdot \log_{10}(x),$$
 $x = 10^{(x[dB])/20}$ (V.9)

$$N(s) = \frac{1}{1 + h_0(s)}, \ M(s) = \frac{h_0}{1 + h_0(s)}, \ M(s) + N(s) = 1, \ \frac{e}{v}(s) = -h_v(s)N(s)$$
 (V.10)

Nyquists stabilitetskriterium: Gitt en åpen prosess $h_0(s)$ med N_p poler i høyre halvplan. Vektoren $1 + h_0(j\omega)$ får en netto vinkeldreining lik

$$\Delta \angle (1 + h_0) = -2\pi (N_n - N_p)$$
 når ω går fra $-\infty$ til ∞ (V.11)

 N_n blir da antall poler i h.h.p. for det lukkede (tilbakekoplede) system. Merk: Dreieretning er definert positiv mot urviseren.

$$\psi = \angle h_0(j\omega_c) - (-180^\circ), \qquad \frac{1}{\Delta K} = |h_0(j\omega_{180})| \quad , \quad \Delta K = \frac{1}{|h_0(j\omega_{180})|}$$
(V.13)

$$e^{-\tau s} \approx \frac{1 - \frac{\tau s}{2}}{1 + \frac{\tau s}{2}} \tag{V.14}$$

Ziegler-Nichols' lukket-sløyfe-regler:

Regulator	K_p	T_{i}	T_d		
P	$0.5K_{pk}$	∞	0	2π	(7.1.5)
PI	$0.45K_{pk}$	$0.85 T_k$	0	, her er $T_k = \frac{2\pi}{\omega_{180}}$	(V.15)
PID	$0.6K_{pk}$	$0.5T_k$	$0.12T_k$		

Skogestads "SIMC" åpen-sløyfe-regel for PI-innstilling (bruker notasjonen fra notatet om dette):

Sett på et sprang. Anta at prosessen $\approx h_u = \frac{Ke^{-\theta s}}{1 + T_1 s}$. Mål (anslå) T_1 , K og θ ut fra responsen.

Velg så
$$K_p = \frac{T_1}{K(\theta + \tau_c)}$$
 og $T_i = \min(T_1, 4(\theta + \tau_c))$, hvor τ_c er (V.16)

ønsket tidskonstant i responsen til det lukkede systemet, bør velges som $\tau_c > 0.3\theta$, f. eks. $\tau_c = \theta$.

PI-regulator:
$$h_r = K_p \frac{1 + T_i s}{T_i s}$$
 (V.17)

begrenset PD-regulator:
$$h_r = K_p \frac{1 + T_d s}{1 + \alpha T_d s}$$
 (V.18)

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & & 0 & 0 \\ \vdots & \vdots & & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ -\alpha_0 - \alpha_1 - \alpha_2 & \cdots - \alpha_{n-2} - \alpha_{n-1} \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$
(V.19)

$$\mathbf{c}^T = \begin{bmatrix} \rho_0 & \rho_1 & \rho_2 & \cdots & \rho_{n-1} \end{bmatrix}$$

gir
$$\frac{y}{u}(s) = h(s) = \frac{\rho_{n-1}s^{n-1} + \dots + \rho_1s + \rho_0}{s^n + \alpha_{n-1}s^{n-1} + \dots + \alpha_1s + \alpha_0}$$
 (V.20)

Diskret regulator *eller filter*: Alle s erstattes med $\frac{2}{T} \frac{z-1}{z+1}$, der z er en tidsforskyvingsoperator.(V.21)

Diskret regulator brukt på kontinuerlig prosess medfører tilnærma en ekstra tidsforsinkelse = T/2 i sløyfetransferfunksjonen. (V.22)

Sammenhenger mellom tilstandsrombeskrivelse og Laplace, og mellom 1. ordens og høyere ordens lineære systemer

1. Differensiallikning $\dot{x} = ax + bu$ (\dot{x}) 2. Laplace $x(s) = \frac{1}{s-a}x(t=0)$ 3. Løsning $x(t) = e^{at}x(0)$ 4. Dekopling (Trivielt:) $A = a = \frac{1}{2}$ 5. Rekkeutvikling $e^{at} = 1 + at + \frac{a^2t^2}{2!}$ 6. $(t) \stackrel{\mathcal{L}}{\longleftrightarrow} (s)$ $e^{at} \stackrel{1}{\longleftrightarrow} \frac{1}{s-a}$		Høyere orden
Laplace Løsning Dekopling Rekkeutvikling $(t) \stackrel{\mathcal{L}}{\longleftrightarrow} (s)$	$+bu$ $(\dot{x} = -\frac{1}{T}x + \frac{1}{T}u)$	$\dot{x} = Ax + Bu$
Løsning $Dekopling$ $Rekkeutvikling$ $(t) \stackrel{\mathcal{L}}{\longleftrightarrow} (s)$	$x(s) = \frac{1}{s-a}x(t=0) + \frac{b}{s-a}u(s)$	$\mathbf{x}(s) = (sI - A)^{-1}\mathbf{x}(t = 0) + (sI - A)^{-1}\mathbf{B}\mathbf{u}(s)$
Dekopling Rekkeutvikling $(t) \stackrel{\mathcal{L}}{\longleftrightarrow} (s)$	$e^{gt}x(0) + \int_0^t e^{a(t-\tau)}bu(\tau)d\tau$	$m{x}(t) = e^{At} m{x}(0) + \int_0^t e^{A(t- au)} m{B} m{u}(au) d au^{-1}$
Rekkeutvikling $(t) \stackrel{\mathcal{L}}{\longleftrightarrow} (s)$	(Trivielt:) $A = a = \lambda = \text{skalar}$	$A = M\Lambda M^{-1}$, $e^{At} = Me^{\Lambda t}M^{-1}$, $\Lambda = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$
$(t) \stackrel{\mathcal{L}}{\longleftrightarrow} (s)$	$e^{at} = 1 + at + \frac{a^2t^2}{2!} + \frac{a^3t^3}{3!} + \dots$	$e^{At} = \Phi(t) = I + At + A^{2} \frac{t^{2}}{2!} + A^{3} \frac{t^{3}}{3!} + \dots$ 2)
	$\rightarrow \frac{1}{s-a} \left(\begin{array}{cc} \frac{1}{T}e^{-t/T} & \stackrel{\mathcal{L}}{\longleftrightarrow} & \frac{1}{1+Ts} \right)$	$e^{At} = \Phi(t) \stackrel{\mathcal{L}}{\longleftrightarrow} (sI - A)^{-1}$
7. Fra $u(s)$ til $y(s)$ $y = cx$ $y(s) =$	$y(s) = c \frac{b}{s-a} u(s)$ $h(s) = \frac{cb}{s-a}$	$y = Cx$ $y(s) = C(sI - A)^{-1}Bu(s)$ $H(s) = C(sI - A)^{-1}B$
8. Impulsrespons $h(t) \stackrel{\mathcal{L}}{\longleftrightarrow} h(s)$	$\stackrel{\mathcal{L}}{\longrightarrow} h(s) \qquad h(t) = cbe^{at}$	3) $h(t) = \boldsymbol{c}^T e^{\boldsymbol{A} t} \boldsymbol{b}$ 4) $\stackrel{\mathcal{L}}{\longleftrightarrow} h(s) = \boldsymbol{c}^T (s \boldsymbol{I} - \boldsymbol{A})^{-1} \boldsymbol{b}$

 $^{1)}\int_{0}^{t}e^{A(t-\tau)}\boldsymbol{B}\boldsymbol{u}(\tau)d\tau=e^{At}\boldsymbol{B}*\boldsymbol{u}(t)\quad\overset{\mathcal{L}}{\longleftrightarrow}\quad(s\boldsymbol{I}-\boldsymbol{A})^{-1}\boldsymbol{B}\cdot\boldsymbol{u}(s)$

 $^{2)}$ NB: $e^{At} \neq \left\{ e^{a_{ij}t} \right\}$, bortsett fra når $A = \Lambda$ er diagonal.

 $^{3)}$ Antar nå at u og y er skalare.

 $^4)$ Hvis yog uer skalare og $\pmb{x}(0) = \pmb{0}$ så har vi fra 3. linje at $y(t) = \int_0^t h(t-\tau)u(\tau)d\tau = h(t)*u(t)$

Tilstandsrom: $\dot{x}=Ax+Bu$. Laplace: $H(s)=C(sI-A)^{-1}B=C^{{
m adj}(sI-A)\over |sI-A|}B$

Egenverdier følger av: $|\lambda I - A| = 0$ Polene gitt av nevneren: |sI - A| = 0.

 \uparrow

 \Rightarrow poler = egenverdier

Impuls- og sprangresponser	impulsrespons: $h(t) = L^{-1}[h(s)] = \frac{K}{T}e^{-t/T}$ sprangrespons: $k(t) = L^{-1}\left[\frac{1}{s}h(s)\right] = \int_{0}^{t}h(\tau)d\tau$ $= K(1 - e^{-t/T})$	$h(t) = K\omega_0 \sin \omega_0 t$ $k(t) = K(1 - \cos \omega_0 t)$	$h(t) = K \frac{\omega_0^2}{\beta} e^{-\alpha t} \sin \beta t$ $k(t) = K \left(1 - \frac{\omega_0}{\beta} e^{-\alpha t} \cos (\beta t - \varphi) \right)$	$h(t) = \frac{K}{T^2} t e^{-t/T}$ $k(t) = K \left(1 - \left[1 + \frac{t}{T} \right] e^{-t/T} \right)$	$h(t) = \frac{K}{T_1 - T_2} \left(e^{-\frac{t}{T_1}} - e^{-\frac{t}{T_2}} \right)$ $k(t) = K \left(1 + \frac{T_2}{T_1 - T_2} e^{-\frac{t}{T_2}} - \frac{T_1}{T_1 - T_2} e^{-\frac{t}{T_1}} \right)$
Poler	$\lambda = -\frac{1}{T}$	$j\omega_0 \bigstar \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$	$\begin{array}{c} \alpha \\ \beta \\ \omega_0 \\ \phi \end{array} \begin{array}{c} \zeta = \sin \phi, \\ \text{når } \zeta \leq 1 \\ \\ \lambda_{1,2} = -\alpha \pm j \beta \end{array}$	$\lambda_{1,2} = -\alpha = -\omega_0 = -\frac{1}{T}$	$\frac{-\frac{1}{T_2}}{\boldsymbol{X}} - \frac{1}{T_1}$ $\boldsymbol{X} \times \boldsymbol{X}$ $\boldsymbol{\zeta} = \frac{-(\lambda_1 + \lambda_2)}{2\sqrt{\lambda_1 \lambda_2}}, \text{ gielder for }$
Transferfunksjon h(s)	$h(s) = \frac{K}{1+Ts} = \frac{\frac{K}{T}}{s+\frac{1}{T}} = \frac{-K\lambda}{s-\lambda}$	$rac{K}{\left(rac{s}{\omega_0} ight)^2+1}=rac{K\omega_0^2}{s^2+\omega_0^2}=rac{K\lambda_1\lambda_2}{(s-\lambda_1)(s-\lambda_2)}$	$\frac{K}{\left(\frac{s}{\omega_0}\right)^2 + 2\zeta\left(\frac{s}{\omega_0}\right) + 1} = \frac{K\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2} = \frac{K\lambda_1\lambda_2}{(s - \lambda_1)(s - \lambda_2)}$ $= \frac{K(\alpha^2 + \beta^2)}{s^2 + 2\alpha s + (\alpha^2 + \beta^2)} , \boxed{\omega_0 = \frac{\beta}{\sqrt{1 - \zeta^2}} = \sqrt{\alpha^2 + \beta^2}}$	$\frac{K}{\left(\frac{s}{\omega_0}\right)^2 + 2\left(\frac{s}{\omega_0}\right) + 1} = \frac{K\omega_0^2}{(s + \omega_0)^2} = \frac{K\lambda^2}{(s - \lambda)^2} = \frac{\frac{K}{T^2}}{\left(s + \frac{1}{T}\right)^2}$	$\frac{K}{(1+T_1s)(1+T_2s)} = \frac{\frac{K}{T_1T_2}}{\left(s+\frac{1}{T_1}\right)\left(s+\frac{1}{T_2}\right)} = \frac{K\lambda_1\lambda_2}{(s-\lambda_1)(s-\lambda_2)}$ $0_0 = \sqrt{\lambda_1\lambda_2},$
Orden	1. orden	2. orden, $\zeta = 0$	 2. orden, ζ < 1 	2. orden, ζ = 1	2. orden, ζ > 1

209

13 av 15

FIGUR 6.17 Nyquist-diagram og faseforløp i Bode-diagram

for $e^{-j\omega\tau}$

6.4.1 Prosedyre for tegning av asymptotisk AFF-diagram

Her følger en generell prosedyre som alltid kan brukes:

1. Transferfunksjonen bringes over på formen (6.18). Dersom vi har transferfunksjonen

$$h(s) = \frac{K(\ldots)}{(\ldots)(a+s)}$$

må den omformes til

$$h(s) = \frac{K'(\ldots)}{(\ldots)(1+T's)}$$

der K' = K/a og T' = 1/a. Dette må gjentas like mange ganger som vi har 1.ordens ledd i h(s). Dersom vi har resonansledd

$$h(s) = \frac{K(...)}{(...)(c+bs+as^2)}$$

må vi først omforme dette til

$$h(s) = \frac{K'(\dots)}{(\dots)\left(1 + 2\zeta \frac{s}{\omega_0} + \left(\frac{s}{\omega_0}\right)^2\right)}$$

der K'=K/c og $\omega_0=\sqrt{c/a}$. Poenget er altså at alle ledd i nevner (og i teller!) må ha konstantledd lik 1, det vil si at hvert ledd er lik 1 for s=j0. Forsterkning i alle ledd "samles" da i en felles K', fra nå av bare kalt K.

2. Begynn alltid til venstre i diagrammet, ved de laveste frekvensene (ω « 1). (Vi symboliserer "liten ω " med å skrive ω « 1 .) Ved slike frekvenser kan vi se bort fra virkningen av nullpunkts-, tidskonstant- og resonansledd. Videre prosedyre blir:

Frekvensanalyse14 av 15

<u>Tilfelle a):</u> Hvis vi har q integrasjoner i h(s), q > 0, har vi

$$h(j\omega)_{\omega < 1} \approx \frac{K}{(j\omega)^q}$$
, $|h(j\omega)|_{\omega < 1} \approx \frac{K}{\omega^q}$, $\angle h(j\omega)_{\omega < 1} \approx (-q) \cdot 90^\circ$

q kan selvsagt være lik 0, da er vi over i *Tilfelle b)* nedenfor.

Amplitudeforløp

Asymptoten vil ved lave frekvenser ha helning -q og skjære 0-dB-linjen i $\omega = K^{\overline{q}}$. Dermed kan vi fastlegge venstre del av $|h(j\omega)|_{as}$ og 0-dB-linjen (subskript $_{as}$ betyr "asymptotisk verdi av". Se forøvrig figur 6.18).

<u>Faseforløp</u>

Dette er enklere. Asymptoten er horisontal og starter til venstre i $(-q) \cdot 90^{\circ}$.

<u>Tilfelle b):</u> Ingen reine integrasjoner i h(s)

Amplitudeforløp: Da har vi $|h(j\omega)|_{\omega \ll 1} = K$, dvs. horisontal asymptote ved lave frekvenser, i K [dB] over 0-dB-linja.

<u>Faseforløpet</u> starter nå til venstre med en horisontal asymptote i 0°.

3. Videre amplitudeforløp

Asymptotene skal utgjøre en sammenhengende serie av linjestykker. Ta utgangspunkt i den venstre asymptoten som allerede er tegnet, og finn den minste **knekkfrekvensen**.

Knekkfrekvensene er der den asymptotiske kurven for et ledd i en transferfunksjon knekker. De er som vist ovenfor den inverse av tidskonstanten i nullpunkts- og tidskonstantledd, og frekvensen ω_0 i et resonansledd.

Finn helningen p på asymptoten til leddet du betrakter. p=1 for nullpunktsledd, -1 for tidskonstantledd og -2 for resonansledd. Tegn et nytt linjestykke fra den minste knekkfrekvensen fram til den $etterf \phi lgende$ knekkfrekvensen med en helning som er lik forrige asymptotes helning +p.

Sett "minste knekkfrekvens" = etterfølgende knekkfrekvens og gjenta prosedyren for neste ledd, osv.

Videre faseforløp

Asymptotene er ikke sammenhengende, men er horisontale, og springer opp eller ned ved knekkfrekvensen, med $p \cdot 90^{\circ}$ målt fra forrige asymptote.

For faseforløpet gjelder unntaksregelen at et nullpunktsledd av typen $1 - T_i s$ gir 90° knekk *ned*, ikke opp.

EKSEMPEL 6.6 Asymptotisk Bodediagram for en transferfunksjon med flere ledd

Vi ønsker å tegne et asymptotisk amplitudediagram og asymptotisk fasediagram for frekvensresponsen til transferfunksjonen

$$h(s) = \frac{K(1+T_2s)(1+T_3s)}{s(1+T_1s)(1+T_4s)^2}$$
(6.29)

der K = 3, $T_1 = 40$, $T_2 = 10$, $T_3 = 2$, $T_4 = 0.2$ Vi finner

$$\lg|h(j\omega)| = \lg K + \lg|1 + j\omega T_2| + \lg|1 + j\omega T_3|
-\lg\omega - \lg|1 + j\omega T_1| - 2\lg|1 + j\omega T_4|$$
(6.30)

FIGUR 6.18 Bodediagram for h(s), eksakt diagram, og asymptotisk diagram

