Унитарный оператор

Содержание

§1 Определение унитарного оператора

1

§2 Матрица унитарного оператора

 $\mathbf{2}$

§3 Спектральные свойства унитарного оператора

3

§1. Определение унитарного оператора

Лемма 1.1. Пусть v - опертор в евклидовом пространстве $X_E(\Bbbk)$, тогда следующие свойства эквиваентны:

- (a) изометрия: $\langle vx, vy \rangle = \langle x, y \rangle$;
- (б) сохранение нормы: ||vx|| = ||x||;
- (в) свойство сопряженного: $v^{\dagger} = v^{-1}$

Доказательство. Проверим следующие импликации:

• Onp.(1) \Rightarrow Onp.(2):

$$\|vx\|^2 = \langle vx, vx \rangle = \langle x, x \rangle = \|x\|^2;$$

• Onp.(2) \Rightarrow Onp.(1):

$$||v(x+y)||^2 = ||vx||^2 + ||vy||^2 + 2\operatorname{Re}\langle vx, vy\rangle,$$
$$||x+y||^2 = ||x||^2 + ||y^2|| + 2\operatorname{Re}\langle x, y\rangle \implies \operatorname{Re}\langle x, y\rangle = \operatorname{Re}\langle vx, vy\rangle$$

Для Im аналогично рассматриваем $||v(x+i\cdot y)||^2$

• Onp.(1) \Rightarrow Onp.(3):

$$\langle \upsilon x, \upsilon y \rangle = \langle x, \upsilon^{\dagger} \upsilon y \rangle = \langle x, y \rangle$$
 Rightarrow $\upsilon^{\dagger} \upsilon = \mathcal{I}$.

• Onp.(3) \Rightarrow Onp.(1):

$$\langle x, y \rangle = \langle x, \mathcal{I}y \rangle = \langle x, v^{\dagger}vy \rangle = \langle vx, vy \rangle.$$

Определение 1.1. Унитарным называется оператор v, обладающий одним из перечисленных выше свойств (и, как следствие, всем остальными).

Лемма 1.2. Определитель оператора v имеет следующее свойство:

$$|\det v| = 1.$$

Доказательство. Прямой проверкой можно убедиться, что

$$\det \mathcal{I} = \det \left(v^{\dagger} v \right) = \det v^{\dagger} \det v = \overline{\det v} \cdot \det v = |\det v|^2 = 1.$$

Замечание 1.1. Унитарный оператор в вещественном евклидовом пространстве X_E называется **ортогональным** оператором.

§2. Матрица унитарного оператора

Замечание 2.1. Матрицы унитарного и ортогонального операторов имеют свойсва:

$$\mathbb{C}: \quad v \leftrightarrow U, \quad \overline{U^T} = U^{-1};$$

$$\mathbb{R}: \quad v \leftrightarrow U, \quad U^T = U^{-1}.$$

Замечание 2.2. В вещественном случае

$$\det v = \det U = \pm 1$$

Пемма 2.1. Пусть $U = \|u_{ik}\|$ - матрица унитарного оператора, тогда:

$$\sum_{j=1}^{n} \overline{u}_{ij} u_{kj} = \delta_{ik}.$$

Замечание 2.3. Столбцы матрицы унитарного оператора ортогональны.

Пример 2.1. Матрица Эйлера - пример ортогональной матрицы:

$$U = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.$$

Пемма 2.2. Множество унитарных операторов, действующих на пространстве X_E образует мультипликативную группу:

$$U(n) = \{ v : v^{\dagger}v = \mathcal{I} \}, \quad \dim_{\mathbb{K}} X_E = n.$$

$$SU(n) = \{ v : v^{\dagger}v = \mathcal{I}, \quad \det v = 1 \}.$$

Доказательство. Пусть $v_1, v_2 \in U(n)$, тогда $v_1v_2 \in U(n)$. Действительно:

$$\langle v_1 v_2 x, v_1 v_2 y \rangle = \langle v_2 x, v_2 y \rangle = \langle x, y \rangle.$$

§3. Спектральные свойства унитарного оператора

Лемма 3.1. Все собственные значения оператора v по модулю равны единице:

$$|\lambda| = 1 \quad \Leftrightarrow \quad \lambda = e^{i\chi}.$$

Доказательство. Пусть $vx = \lambda x$, тогда

$$\langle vx, vx \rangle = \langle \lambda x, \lambda x \rangle = |\lambda|^2 \langle x, x \rangle. \quad \Rightarrow \quad |\lambda| = 1.$$

Пемма 3.2. Собственные векторы унитарного оператора, отвечающие различным собственным значениям ортогональны:

$$vx_1 = \lambda_1 x_1, \quad vx_2 = \lambda_2 x_2, \quad \lambda_1 \neq \lambda_2 \quad \Rightarrow \quad \langle x_1, x_2 \rangle = 0.$$

Доказательство. Убедимся прямой проверкой:

$$\langle x_1, x_2 \rangle = \langle vx_1, vx_2 \rangle = \overline{\lambda}_1 \lambda_2 \langle x_1, x_2 \rangle = e^{-i\chi_1} e^{i\chi_2} \langle x_1, x_2 \rangle = e^{i(\chi_2 - \chi_1)} \langle x_1, x_2 \rangle.$$

Откуда сразу следует:

$$\left(e^{i(\chi_1-\chi_2)}-1\right)\langle x_1,x_2\rangle=0\quad\Rightarrow\quad\langle x_1,x_2\rangle=0.$$

Лемма 3.3. Любое инвариантное подпространство v является приводящим. **Доказательство**. Для любых $x \in L$ и $y \in L^{\perp}$ имеем:

$$0 = \langle x, y \rangle = \langle vx, vy \rangle \quad \Rightarrow \quad vx \perp vy \quad \Rightarrow \quad vy \in M.$$

Теорема 3.1. Унитарный оператор является опертором скалярного типа.

Доказательство. Доказательство как для случая эрмитова оператора.

Пример 3.1. Ортогональный оператор, вообще говоря, не явяется скалярным.

Теорема 3.2. (Спектральная теорема для унитарного оператора) Пусть $v: X_E \to X_E$ - унитарный оператор и $\{e_j\}_{j=1}^n$ - OHB X_E , состоящий из собственных векторов v, тогда:

$$v* = \sum_{j=1}^{n} e^{i\chi_j} \langle e_j, * \rangle e_j.$$

Лемма 3.4. Любая эрмитова матрица может быть приведена к диагональной форме унитарным преобразованием.

Лемма 3.5. Для любого унитарного оператора v найдется такой самосопряженный оператор φ , что:

$$v = e^{i\varphi}.$$