Logic Practicum F

1. Gegeven de volgende predicaten:

-M(x):x is man

-V(x): x is vrouw

-L(x):x is lang

Vertaal onderstaande uitspraken als een predicaat-wff

a. Alle mannen zijn lang.

$$(\forall x)(M(x) o L(x))$$

b. Sommige vrouwen zijn lang.

$$(\exists x)(V(x)\wedge L(x))$$

c. Alle mannen zijn lang maar geen enkele vrouw is lang.

$$(orall x)(M(x) o L(x)) \wedge (orall x)(V(x) o
eg L(x))$$

d. Alleen vrouwen zijn lang.

$$(\exists x)(V(x) o L(x))\wedge (\forall x)(M(x) o \lnot L(x))$$

e. Als iedere man lang is, dan is iedere vrouw ook lang.

$$(orall x)(M(x) o L(x)) o (V(x) o L(x))$$

2. Gegeven de volgende predicaten:

-M(x):x is man

-V(x): x is vrouw

-W(x,y):x x werkt voor y

Vertaal onderstaande uitspraken als een predicaat-wff

a.
$$(\exists x)(V(x) \wedge (\forall y)(M(y) \rightarrow \neg W(x,y)))$$

Er is een vrouw die niet werkt voor een man

b.
$$(\forall x)[M(x) \rightarrow (\exists y)(V(y) \land W(x,y))]$$

Alle mannen werken voor een vrouw

C.
$$(\forall x)[M(x) \rightarrow (\forall y)(W(x,y) \rightarrow V(y))]$$

Als een man voor iemand werkt dan is het een vrouw

d.
$$(\forall x)(\forall y)(M(x) \land W(y,x) \rightarrow V(y))$$

Als iemand een man is en voor iemand anders werkt dan moet dit een vrouw zijn.

- 3. Geef in het onderstaande redeneerschema aan welke regels er gebruikt zijn om de geldigheid aan te tonen van het argument:
 - $(\exists x)[P(x) o Q(x)] o [(\forall x)P(x) o (\exists x)Q(x)]$
 - a. $(\exists x)[P(x) \to Q(x)]$ Hypothese
 - b. P(a) o Q(a) 1, Universele Instantiatie
 - c. $(\forall x)P(x)$ Hypothese
 - d. P(a) 3, Universele Instantiatie
 - e. Q(a) 2, 4 Modus Ponens
 - f. $(\exists x)Q(x)$ 5, Existientiële Generalisatie
- 4. Geef in het onderstaande redeneerschema aan welke regels er gebruikt zijn om de geldigheid aan te tonen van het argument:

$$(\exists x)P(x) \wedge (\forall x)(P(x) \rightarrow Q(x)) \rightarrow (\exists x)Q(x)$$

- a. $(\exists x)(P(x))$ Hypothese
- b. $(\forall x)(P(x) \rightarrow Q(x))$ Hypothese
- c. P(a) 1, Existientiële Generalisatie
- d. P(a) o Q(a) 2, Universele Instantiatie
- e. Q(a) 3,4 Modus Ponens
- f. $(\exists x)Q(x)$ 5, Existientiële Generalisatie
- 5. Gegeven de wff $(\forall y)(\exists x)Q(x,y) \rightarrow (\exists x)(\forall y)Q(x,y)$
 - a. Bedenk een interpertatie (= een tegenvoorbeeld) waaruit blijkt dat deze wff niet geldig is.

Stel x is een mens en y is het aantal personen dat je kent. Dan zou er worden gezegd dat er een persoon is die iedereen kent wat niet kan.

- b. Ontdek de fout in het onderstaande redeneerschema. Licht je antwoord toe.
 - i. $(\forall y)(\exists x)Q(x,y)$
 - ii. $(\exists x)Q(x,y)$ 1, ui
 - iii. Q(a,y) 2, ei
 - iv. $(\forall y)Q(a,y)$ 3, ug
 - v. $(\exists x)(\forall y)Q(x,y)$ 4, eg

In stap 1 naar 2 wordt er vanuit gegaan dat $((\forall y)(\exists x)Q(x,y)) \rightarrow (\exists x)Q(x,y)$ maar dit klopt niet.

- 6. Bewijs met behulp van een redeneerschema de geldigheid van het argument $(\forall x)P(x) \to (\forall x)[P(x) \lor Q(x)]$
 - a. $(\forall x)P(x)$ Hypothese
 - b. P(t) 1, Universele Instantiatie
 - c. $P(t) \vee Q(a)$ 2, Additie of toevoeging
 - d. $(\forall x)[P(x) \lor Q(x)]$ 3, 4 Universele Generalisatie
- 7. Bewijs met behulp van een redeneerschema de geldigheid van het argument

$$(\exists x)(\exists y)P(x,y) \rightarrow (\exists y)(\exists x)P(x,y)$$

- a. $(\exists x)(\exists y)P(x,y)$ Hypothese
- b. $(\exists y)P(a,y)$ 1, Existientiële Instantiatie
- c. P(a,b) 2, Existientiële Instantiatie

- d. $(\exists x)P(x,b)$ 3, Existientiële Generalisatie
- e. $(\exists y)(\exists x)P(x,y)$ Existientiële Generalisatie