PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Enzo Barcelos Rios Ferreira Igor Miranda Santos João Paulo de Sales Pimenta

RELATÓRIO LAB02: CARACTERÍSTICAS DE QUALIDADE DE SISTEMAS JAVA

SUMÁRIO

1 INTRODUÇÃO 2

- 1.1 Objetivo geral
- 1.2 Objetivos específicos 3

2 METODOLOGIA 4

- 2.1 Coleta de Dados
- 2.2 Processamento de Dados 5
- 2.3 Análise de Dados

3 APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS

- RQ 01. Qual a relação entre a popularidade dos repositórios e as suas características de qualidade?
- RQ 02. Qual a relação entre a maturidade do repositórios e as suas características de qualidade ?
- RQ 03. Qual a relação entre a atividade dos repositórios e as suas características de qualidade?
- RQ 04. Qual a relação entre o tamanho dos repositórios e as suas características de qualidade?
- 4 ANÁLISE GERAL DOS DADOS
- **5 CONCLUSÃO**
- 6 GLOSSÁRIO

1 INTRODUÇÃO

O desenvolvimento colaborativo de sistemas open-source traz desafíos para garantir a qualidade interna dos softwares. Este estudo analisa repositórios Java populares no GitHub buscando correlações entre popularidade, maturidade, atividade e tamanho com métricas internas de qualidade (CBO, DIT e LCOM).

1.1 Objetivo Geral

Analisar as características de qualidade de sistemas Java populares no GitHub e suas correlações com métricas do processo de desenvolvimento.

1.2 Objetivos Específicos

• Avaliar a relação entre popularidade e qualidade interna. • Examinar como a maturidade dos repositórios influencia a qualidade. • Investigar a atividade dos repositórios e seu impacto na qualidade. • Analisar como o tamanho afeta as características de qualidade.

2 METODOLOGIA

2.1 Coleta de Dados

Foram coletadas métricas dos 1.000 repositórios Java mais populares no GitHub utilizando a ferramenta CK para métricas de qualidade e a API do GitHub para métricas de processo (popularidade, releases, maturidade).

2.2 Processamento dos Dados

Os datasets foram combinados para análises conjuntas. Foram calculadas as medidas de tendência central para análise comparativa.

2.3 Análise dos Dados

Foi realizada análise estatística descritiva visando identificar relações significativas entre as métricas coletadas.

3 APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS

3.1 Popularidade vs Qualidade

3

• Popularidade média: 38.388 estrelas. • Qualidade interna: CBO médio (4,42), DIT médio

(1,20), LCOM médio (60,77).

Apesar da popularidade elevada, os valores médios de LCOM indicam problemas de coesão,

A maturidade não demonstrou correlação forte com melhorias significativas nas métricas

rejeitando parcialmente a hipótese inicial.

3.2 Maturidade vs Qualidade

• Maturidade média: 9,17 anos.

internas de qualidade, rejeitando parcialmente a hipótese inicial.

3.3 Atividade vs Qualidade

• Atividade média: 54,74 releases.

Atividade elevada não garantiu melhor qualidade interna, evidenciada pelos valores médios

de CBO e LCOM. A hipótese inicial foi parcialmente rejeitada.

3.4 Tamanho vs Qualidade

Repositórios maiores demonstraram valores médios elevados de LCOM (60,77), confirmando

parcialmente a hipótese de que o tamanho afeta negativamente a coesão.

4 ANÁLISE GERAL DOS DADOS

De maneira geral, os dados coletados demonstram que a relação entre as métricas de processo

(popularidade, maturidade, atividade e tamanho) e as métricas internas de qualidade (CBO,

DIT e LCOM) não segue um padrão linear. Observou-se que popularidade e atividade não são

garantias de melhor qualidade do código-fonte. A maturidade também não se mostrou um

fator determinante isolado para a melhoria da qualidade interna. Entretanto, ficou evidente

que o tamanho dos repositórios influencia negativamente a coesão, indicando uma

necessidade de melhores práticas para gerenciar o crescimento de projetos.

5 CONCLUSÃO

A popularidade, maturidade e atividade não são necessariamente indicadores de melhor

qualidade interna nos sistemas Java analisados. Entretanto, o tamanho mostrou influência

negativa clara na coesão dos métodos. Sugere-se aprofundar estudos em práticas específicas de engenharia de software que impactem diretamente a qualidade interna.

6 GLOSSÁRIO

CBO – Coupling Between Objects.

DIT – Depth of Inheritance Tree.

LCOM – Lack of Cohesion in Methods.

CK – Ferramenta para análise estática de código Java.