Resumen de la Clase 8: Momentos y Distribuciones

Akira

1. Funciones Generadoras

1.1 Función Generadora de Momentos (MGF)

$$M_X(t) = E[e^{tX}] = \begin{cases} \sum_{x} e^{tx} f_X(x), & X \text{ discreta,} \\ \int_{-\infty}^{\infty} e^{tx} f_X(x) dx, & X \text{ continua,} \end{cases}$$

Se usa para obtener momentos:

$$E[X^k] = M_X^{(k)}(0).$$

Linealidad: si Y = aX + b, entonces

$$M_Y(t) = e^{bt} M_X(at).$$

1.2 Función Generadora de Probabilidad (PGF)

Para X discreta con valores en $\{0, 1, 2, \dots\}$:

$$G_X(t) = E[t^X] = \sum_{x=0}^{\infty} P(X = x) t^x, \quad |t| < 1.$$

Derivadas en t=1 dan momentos factoriales $E[X(X-1)\cdots(X-k+1)]$.

1.3 Función Característica (FC)

Siempre existe:

$$\varphi_X(t) = E[e^{itX}] = E[\cos(tX)] + i E[\sin(tX)].$$

Caracteriza la distribución sin condición de existencia.

2. Distribuciones Discretas

Distribución	Soporte	PMF	E[X]	Var(X)	_
Uniforme discreta	$\{x_1,\ldots,x_N\}$	1/N	$\frac{1}{N}\sum x_i$	$\frac{1}{N} \sum x_i^2 - (E[X])^2$	
Binomial $Bin(n, p)$	$0,1,\ldots,n$	$\binom{n}{x} p^x (1-p)^{n-x}$	np	np(1-p)	ı
Hipergeométrica $Hip(n, K, N)$	$0,\ldots,\min(n,K)$	$\frac{(x)(n-x)}{(N)}$	$n\frac{K}{N}$	$npq\frac{N-n}{N-1}$	-
Poisson $Pois(\lambda)$	$0,1,2,\ldots$	$e^{-\lambda \frac{\lambda^n}{x!}}$	λ	λ	
Negativa $BN(r, p)$	$r, r+1, \ldots$	$\binom{x-1}{r-1}p^r(1-p)^{x-r}$	r/p	$r(1-p)/p^2$	ı
Geométrica $Geo(p)$	$1, 2, \dots$	$p(1-p)^{x-1}$	1/p	$(1-p)/p^2$	

3. Distribuciones Continuas

Distribución	Soporte	PDF	E[X]	Var(X)	$M_X(t)$
Uniforme $U(a,b)$	(a,b)	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{t(b-a)}$
Normal $N(\mu, \sigma^2)$	\mathbb{R}	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$\left \exp\{\mu t + \frac{1}{2}\sigma^2 t^2\} \right $
Gamma $\Gamma(\alpha, \lambda)$	$(0,\infty)$	$\begin{vmatrix} \frac{1}{\sigma\sqrt{2\pi}}e^{2\sigma^2} \\ \frac{\lambda^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x} \end{vmatrix}$	α/λ	α/λ^2	$\left(1-\frac{t}{\lambda}\right)^{-\alpha}$
$\operatorname{Exp}(\lambda)$			$1/\lambda$	$1/\lambda^2$	$\left (1 - \frac{t}{\lambda})^{-1} \right $
χ^2_{ν}		_	ν	2ν	$(1-2t)^{-\nu/2}$
Erlang (k, λ)		_	k/λ	k/λ^2	$\left (1-\frac{t}{\lambda})^{-k} \right $

4. Conexiones y Propiedades

- Límite Binomial \rightarrow Poisson: $n \rightarrow \infty, p \rightarrow 0, np \rightarrow \lambda$.
- Propiedad sin memoria en Geo(p): $P(X > s \mid X > t) = P(X > s t)$.
- Transformación de variables: $M_{aX+b}(t) = e^{bt} M_X(at)$.
- Relacionar Gamma con Exp y χ^2 (casos $\alpha=1, \alpha=\nu/2, \lambda=1/2$).