Intermediate Microeconomics - Preferences and Utility (Ch3/4)

Shan Gui

Shanghai University of Finance and Economics

March 6, 2025

Consumption Theory

Components Market Equilibrium

- ▶ Demand side: Consumer Theory
- ► Supply side: Producer Theory
- ► Equilibrium

Consumer Theory

- ▶ Simple intuition: assumes that consumers choose the best (Ch3, preference) bundle of goods they can afford (Ch2).
- ▶ Budget Constraint: describes what a consumer can afford
- ▶ Preferences: describe what a consumer thinks as "the best"

Outline

Describing Preferences

- ▶ Translating verbal statements into economic notation
- ► Establishing assumptions about rational preferences

Illustrating Preferences

► Using indifference curves

Utility Representation of Preferences

▶ Defining the utility function

Preference Refers to How Individuals Compare Options

Example: Ranking My Professors

- ► Each professor is a **bundle** of attributes (lecture quality, personality).
- ▶ Suppose their attributes are: **Prof. Zhao**: (9 stars, 5 stars); **Prof. Qian**: (8 stars, 4 stars); **Prof. Sun**: (7 stars, 9 stars)

Preference Refers to How Individuals Compare Options

Example: Ranking My Professors

- ► Each professor is a **bundle** of attributes (e.g., lecture quality, personality).
- ▶ Suppose their attributes are: **Prof. Zhao**: (9 stars, 5 stars); **Prof. Qian**: (8 stars, 4 stars); **Prof. Sun**: (7 stars, 9 stars)

Your ranking reflects your **preference**

▶ The ranking comes from binary comparisons: "I prefer Prof. Zhao over Prof. Qian, Prof. Qian over Prof. Sun, and so on."

How do you determine the ranking?

- ▶ Based on satisfaction: "Prof. Zhao gives me the most satisfaction, followed by Prof. Qian, then Prof. Sun, etc."
- ▶ Utility is a way to measure satisfaction. (Thus, rating professors is possible.)

Translating Verbal Statements into Economic Notation

Strictly Preferred (\succ) , Weakly Preferred (\succeq) , and Indifferent (\sim)

- 1. "I like A more than B" $A \succ B$ A is strictly preferred to B (by me)
- 2. "I like B more than A" $B \succ A$ I strictly prefers B to A
- 3. "I like A and B the same" $A \sim B$ A is indifferent to B
- (4.) "I think A is at least as good as B" $A \succeq B$ A is weakly preferred to B

Q: Can One Symbol Represent All (Three) Possible Comparison Outcomes?

▶ Use ≥

How Do You Describe Your Satisfaction Level (Utility)?

- ▶ The **utility function** assigns a numerical value to each bundle to represent your satisfaction level.
- $ightharpoonup A \succeq B \Rightarrow U(A) \geq U(B)$

Three Assumptions on Preference (\succeq) as a Binary Relationship

Completeness

- ▶ Every two options can be compared, leading to a complete ranking list.
- ▶ Either $A \succeq B$ or $B \succeq A$ (or both).

Reflexivity

- ► Any bundle is at least as good as itself.
- $ightharpoonup A \succeq A$.

Transitivity

- ▶ Preferences are logically consistent, leading to a unique and stable ranking.
- ▶ If $A \succeq B$ and $B \succeq C$, then $A \succeq C$.

Are These Assumptions Obvious?

To Illustrate Preferences

The indifference curve represents all equally preferred bundles

- ightharpoonup Consider two goods only: x_1 and x_2
- \triangleright x_1 : what we focus on
- $ightharpoonup x_2$: composite good that represents anything else other than x_1 income is m (RMB)
- Indifference Curve: $U(x_1, x_2) = u_0$ Bundles at the same indifference curve are equally preferred

To Illustrate Preferences

Indifference curves cannot cross

- ▶ Different curves represent different sanctification levels (utilities).
- ▶ If indifference curves across X, Y, and Z would all have to be indifferent to each other
- and thus could not lie on distinct indifference curves.

Well-behaved Preference: (Positive) Monotonicity

- ▶ Monotonic Preference: More of both goods is better,
 - $B(x_1 + \Delta_{x_1}, x_2 + \Delta_{x_2}) \succ B(x_1, x_2)$
- Curve 1: $U(x_1, x_2) = u_1$; Curve 2: $U(x_1, x_2) = u_2$.
- ▶ If $u_2 > u_1$, then Curve 2 must lie above or to the right of Curve 1
- Strict Monotonic Preference: More of any good is better, $B(x_1 + \Delta_{x_1}, x_2) \succ A(x_1, x_2),$ $C(x_1, x_2 + \Delta_{x_2}) \succ A(x_1, x_2)$
- ightharpoonup \Rightarrow negative slope

Preference Violating Strict Monotonicity

(b) x_2 is a bad

Extreme Preferences

Perfect Substitutes

- ► Two goods are **perfect substitutes** if the consumer is willing to substitute one good for the other at a constant rate.
- Say one unit of x_1 leads to the same satisfactions level as one unit of x_2
- Then the utility function: $U(x_1, x_2) = U(x_1 + x_2)$
- Indifference curves are straight lines: $x_1 + x_2 = a_n$

Extreme Preferences

Perfect Complements

- ▶ Perfect complements are goods that are always consumed together in fixed proportions.
- Say one unit of x_1 must be consumed with one unit of x_2 together,
- Then the utility function: $U(x_1, x_2) = U(min\{x_1, x_2\})$
- ▶ Q: Is this a strict monotonic preference?

Well-behaved Preference: Convexity

- ► Convex preference: Weighted averaged bundles are weakly preferred to extremes.
- ▶ Bundle $A(x_1, y_1)$, Bundle $B(x_2, y_2)$
- Weighted averaged bundles: $C(tx_1+(1-t)x_2, ty_1+(1-t)y_2), t \in (0,1)$
- ightharpoonup Convexity: $C \succeq A, C \succeq B$
- ▶ Strict Convex preference: Weighted averaged bundles are strictly preferred to extremes.
- ➤ ⇒ slope of the indifferent curve becomes flatter as you move right

Summary

What We Have Learned

- ► Three fundamental assumptions of preference: Completeness, Reflexivity, and Transitivity.
- ► Two additional assumptions for well-behaved preferences: Monotonicity and Convexity.
- ➤ The typical shape of an indifference curve: negative slope, slope becomes flatter as you move right

What's Next?

- ▶ The slope of indifference curves: the Marginal Rate of Substitution (MRS).
- ▶ A typical well-behaved preference represented by the Cobb-Douglas utility function.

Thank you!