Designing a Multilingual Translation & Transliteration System

Problem, Data, Cleaning, Models, and Inference - End to End

Chandan J

July 23, 2025

Agenda

- Problem Definition
- 2 Datasets
- 3 Data Cleaning & Preprocessing
- Model Designs
- **5** Inference Procedure
- **6** Evaluation
- Deployment & Maintenance
- 8 Summary

What Are We Building?

Goal

Design an AI system that can:

Translate: Convert meaning from a source language to a target language.

Transliterate: Convert the script/phonetics of text while keeping pronunciation (e.g., Romanized Hindi to Devanagari).

Key Decisions

Language pairs and directions (uni- vs. bi-directional).

Real-time vs. batch usage; cloud vs. edge deployment.

Quality vs. latency trade-offs (beam width, model size, quantization).

Translation vs. Transliteration

Translation

- Semantic conversion.
- Example: "I need water" → मुझे पानी चाहीए
- Sentence/documeent level

Transliteration

- Script/phonetic mapping.
- Example: 'Venkatesh" → वेंकटटेश
- Often word/name level (can be extended)

Parallel Translation Corpora

Dataset	Langs	Domain	Size (pairs)
FLORES-200	200	Balanced eval	\sim 3k/dev & test/lang
OPUS (TED, Tatoeba, etc.)	400+	Varied (talks, subtitles)	10k–Millions
WMT (News/ParaCrawl)	10-30	News/Web	Millions
Samanantar (Indic)	11 Indic-En	Web, curated	\sim 49M
IITB En-Hi	En-Hi	Mixed (tech/news)	\sim 1.5M
PMIndia	13 Indic-En	Govt. releases	\sim 0.5M

Transliteration Datasets

Dataset	Langs/Scripts	Task	Size
Dakshina	12 Indic	$Roman \leftrightarrow Native$	\sim 1.7M pairs
Aksharantar	20 Indic	Name/word translit.	\sim 4.7M pairs
NEWS Shared Task	15-20	Name transliteration	20k–100k/lang
Wiki Titles/Wiki Names	100+	Entity translit.	Millions (noisy)

Monolingual & Code-Mixed Corpora

Monolingual: mC4, OSCAR, IndicCorp, Wikipedia, News Crawl (useful for back-translation and LM pretraining).

Code-mixed/Romanized: LinCE, GLUECoS, FIRE Hinglish, CMU Hinglish datasets.

Why needed?

Augment low-resource languages via back-translation.

Robustness to spelling/code-mixing variations.

Cleaning Pipeline

- 1. Normalize Unicode (NFC/NFKC), remove control characters.
- 2. **Deduplicate** sentence pairs and drop near-identical duplicates.
- 3. **Length filters**: remove pairs with extreme length ratios (e.g., \geq 3:1) or too long/short sentences.
- 4. Language ID (LID) filtering: ensure each side is actually in the declared language.
- 5. Punctuation & whitespace normalization.
- 6. Script normalization for Indic languages (e.g., nukta forms).
- 7. Remove noisy HTML, emojis (if not needed).

Tokenization & Vocab

Translation

Subword methods: SentencePiece (BPE / unigram LM) with joint vocabulary.

Typical vocab size: 16k-64k.

Special language tags: <2hi> to control target language.

Transliteration

Character-level tokenization often sufficient.

Explicitly control allowed output character set per language.

Model Options: Translation

Baselines	Advanced
${\sf Seq2Seq\ LSTM\ +\ Attention}$	Pretrained mBART, mT5, NLLB fine-tuning
Transformer (Encoder–Decoder)	Mixture-of-Experts for many languages
	Shared encoder/decoder with language embeddings

Model Options: Transliteration

Char-level Seq2Seq with attention (BiLSTM encoder, LSTM decoder).

Transformer at character level (lighter, fast to train).

Rule-based / WFST baseline for comparison and error analysis.

Pronunciation-aware (G2P, phoneme embeddings) if speech-oriented.

Typical Training Loop (PyTorch Sketch)

```
for epoch in range(num_epochs):
model.train()
 for batch in train loader:
     src_ids, src_mask, tgt_in, tgt_out, tgt_mask = batch
     logits = model(src_ids, src_mask, tgt_in, tgt_mask)
            = label_smoothing_ce(logits, tgt_out, eps=0.1)
     loss
     loss.backward()
     torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
     optimizer.step(); optimizer.zero_grad()
 valid score = validate(model, valid loader)
 scheduler.step()
 save_checkpoint(...)
```

Training Tips

Label smoothing (e.g., $\epsilon = 0.1$) improves generalization.

Mixed precision (FP16) for speed and memory.

Gradient accumulation for large batches on small GPUs.

Early stopping based on BLEU/chrF (translation) or CER (transliteration).

Track experiment configs with YAML + DVC/Weights&Biases.

Decoding / Inference

Beam Search (Translation)

Beam size 4-8 usually a good trade-off.

Length penalties to avoid too short outputs.

Constrained decoding (e.g., glossary constraints) if needed.

Constrained Output (Transliteration)

Restrict output to valid target script characters.

Use top-k candidates (k=5) for ambiguous names; rank by language model.

Post-processing

Detokenization / script re-normalization.

Recasing and punctuation restoration if tokenization was case-insensitive.

Handling unknown tokens with copy-mechanisms or dictionary lookups.

For transliteration: unify diacritics, remove duplicates.

Metrics

Translation	Transliteration
BLEU, chrF, TER	Exact Match Accuracy
COMET / BERTScore (semantic)	Character Error Rate (CER) / Levenshtein distance
Human eval: Adequacy & Fluency, MQM	Top-k accuracy

Serving the Model

Export: TorchScript / ONNX \rightarrow TensorRT for low latency.

REST/gRPC API (FastAPI + Uvicorn).

Quantization (INT8), pruning for edge devices.

Batch vs. streaming inference depending on use-case.

MLOps & Monitoring

CI/CD: unit tests for tokenizers, data loaders, decoding.

Version checkpoints & data (Git-LFS / DVC).

Monitor drift in input language distribution.

Feedback loop: collect user corrections for continual fine-tuning.

Takeaways

Choose clear scope: translation vs. transliteration (or both).

Curate and clean robust datasets (parallel, monolingual, code-mixed).

Baseline first (Seq2Seq/Transformer), then scale (pretrained, MoE).

Carefully design inference (beam, constraints) and evaluation (BLEU/CER).

Plan for deployment, monitoring, and continuous improvement.

Questions?