Notes by Izam Mohammed

NLP

- > NLP basics
 - Working pipeline
 - Application
 - Chatbot
 - Sentiment analysis
 - NER
 - Email spam detection
 - Challenges
 - Handling informal words
 - Ambiguity in words
 - Dialects (wannabe and all)
 - Lack of data in different languages
- > Tokenization
 - What is it
 - Types
 - Word tokenization
 - Subword tokenization (Bite pair encoding -> BPE)

BPE ensures that the most common words are represented in the vocabulary as a single token while the rare words are broken down into two or more subword tokens and this is in agreement with what a subword-based tokenization algorithm does.

> Subword → sub, word Smarter → smart, er

- Sentence
- Character level
- Why tokenization, over 'split the sentence'
- OOV words (Out of vocabulary)
- > Corpus
 - What is it → collection of documents
 - Corpora → plural of corpus
 - Types
 - General
 - Special → specific topic
 - Multilingual
 - Monolingual
 - Parallel → same content, multiple languages
 - Balanced, imbalanced → category
 - Annotated → dedicated to NLP

> Stemming

- \circ What is it \rightarrow Reduce the word into root form
- Types
 - Porter → simple
 - Lancaster → extreme stemming, faster
 - Snowball → multiple languages
- Challenges
 - Over stemming → remove too many affix (prefix + suffix)
 - Under stemming → not enough
- Purpose / Importance
 - Reduce data redundancy → duplicates in data
 - Information retrieval
 - Normalization

> Lemmatization

- What is it → consider the context and meaning of words
- Types
 - WordNet Lemmatizer → nltk

Utilize the Wordnet lexical database to find the lemma

■ Spacy Lemmatizer → spacy

Use rule-based and statistical-based methods to find the lemma

- Challenges
 - Slower, computationally intensive
 - Need dictionary lookup

> NER

- \circ What is it \rightarrow Identify and categorize the entities in the corpus
- Goal → extract structured info in unstructured data
- Types of entity → Person, Org, Place, Money, Date, Time, Percentage
- Usecase
 - Chatbot
 - Q&*A*
 - Information Extraction
 - Identify hashtags
- Techniques
 - Rule-based
 - Statistical approach → ml model
 - Deep learning approach
- Challenges
 - Ambiguity
 - Model generalization → biased to a domain
 - Language variation

➤ POS tagging

What → Assign grammatical categories (pos)

- Types
 - Noun (N) → cat
 - $Verb(V) \rightarrow walk$
 - Adverb (ADV) → very *describes a verb
 - Adjective (ADJ) → happy *describes a noun
 - Pronoun (PRON) → he, it
 - Preposition (PREP) → in, on
 - Conjunction (CONJ) \rightarrow and, but
 - Interjection (INTJ) → wow, oh

> Ngrams

- \circ What \rightarrow continuous sequences of n items
- o Types
 - Unigrams
 - Bigrams
 - Trigrams
 - 4-gram, 5-grams ...
- o Application
 - Text prediction
 - Spell checker
 - Translation
- Python from scratch implementation

> Vectorization

- What → Convert word to numeric format
- Types
 - Label Encoding
 - One-hot-encoding
 - CountVectorizer (BOW)
 - TF IDF
 - TF(t, d) = No. of times the term appeared in doc / Total No. terms in the doc
 - IDF(t, D) = log((no. of documents/
 No of the documents contain t) +1)
 - Word2Vec

Represent word as a vector trained with an FFN network

CBOW

Context → word *fake problem solving

Skip-grams

Word → word (negative sampling)

■ Glove → Global Vectors for Word Representation

Use a Co-occurrence matrix

■ Fasttext

Operate on sub-word level. excels in handling rare words or words not seen during training

- > Stop words
 - Words that have no meaning
- > Parsing

process of analyzing the grammatical structure of a sentence and how they relate to each other.

- > NLU vs NLP vs NLG
 - NLP → NLU + NLG
 - NLU → Natural Language Understanding
 Speech recognition, sentiment analysis
 - NLG → Natural Language Generation Chatbots, Voice assistants

> Phases of NLP

- Lexical Analysis → tokenization
- Syntactic Analysis → Parsing
- Semantic Analysis → focuses on extracting the meaning of words.
- Pragmatic Analysis →

involves considering the context, speaker's intentions, and shared knowledge to interpret the true message

 \circ Discousure Integration \rightarrow

Connects individual sentences into a logical discourse

> Cosine Similarity

$$\cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}}$$

> Visualize the text

 \circ

- t-SNE → t-Distributed Stochastic Neighbor Embedding the goal of t-SNE is to take a high-dimensional dataset and project it into a lower-dimensional space (usually 2D or 3D)
- > What are the options for a chatbot
 - o Rasa nlu
 - o Google dialogue flow
 - Amazon alex
 - Microsoft Luis
 - Use a pre-trained transformer from Huggingface
 - o Use a LSTM model and train
 - o Use any LLM and RAG system
 - o Take an LLM and finetune