

Figure 1: Training progress for each of the networks. Network has only 1 output layer. Network 2 has 1 hidden layer with 10 neurons. Network 3 has one hidden layer with 50 neurons. Network 4 has two hidden layers with 50 neurons each.

Net1	Net2	Net3	Net4
Train error: 0.5854	Train error: 0.5412	Train error: 0.4715	Train error: 0.4155
Val error: 0.6202	Val error: 0.5969	Val error: 0.5784	Val error: 0.5404
Test error: 0.6212	Test error: 0.5944	Test error: 0.5772	Test error: 0.5400
epoch: 10	epoch: 14	epoch: 17	epoch: 19

Table 1: Classification errors for each data set for each corresponding network

Theoretical: More neurons will improve the approximating the target function. Networks that are more complex (more neurons and deeper) take also longer time to converge training performance. Less complex network take shorter epochs before converging the training performance.

Experimental results: The experiment investigated on 4 different network layouts. The networks are named in terms of complexity (i.e Network 1 is the simplest and Network 4 the most complex). Figure 1 shows that the more complex network take longer epochs to fully converge. Table 1 shows that increased complexity in the network gives better generalization performance (test set results). It can also be seen that the it took longer epochs for improving the generalization performance for more complex networks