Unconventional Compute Architectures for Enabling the Roll-Out of Deep Learning

Michaela Blott
Distinguished Engineer, Xilinx Research

Background

>Xilinx

- Fabless semiconductor company
- Founded in Silicon Valley in 1984
- Today:
 - 3,500 employees
 - \$2.5B revenue
- >> Invented the FPGA

What are FPGAs?

Customizable, Programmable Hardware Architectures

- > The chameleon amongst the semiconductors...
 - >> Customizes IO interfaces, compute architectures, memory subsystems to meet the application
- > Classic use case: Nothing else works, and you want to avoid ASIC implementation
- > Recent use cases: Custom hardware architecture for performance or efficiency required

Trends Meet Technological Reality

Era of heterogeneous computing has begun

- Diversification of increasingly heterogeneous "unconventional" devices
- Moving away from van Neumann architectures
- Archit5ectural and algorithmic innovation is needed

Increasingly Heterogeneous Devices From the Xilinx World: Evolution of FPGAs to ACAPs

More Unconventional: Customized Hardware for Al DPU: Deep Learning Processing Unit

> Custom AI Accelerators (soft in FPGA and hard in ASICS)

Microsoft Brainwave

Popular DPU Architecture

"Layer by layer compute"

Even more unconventional:

Custom-Tailored Hardware Architectures (Macro-Level)

Synchronous Dataflow

"Hardware Architecture Mimics the NN Topology"

- > Customized feed-forward dataflow architecture to match network topology
- Higher compute and memory efficiency

Further unconventional at the Micro-Architecture, leveraging Floating Point to Reduced Precision Neural Networks

Reducing Precision Scales Performance & Reduces Memory

- > Reducing precision shrinks hardware cost
 - >> Instantiate 100x more compute within the same fabric
 - >> Thereby scale performance 100x

>> NN model can stay on-chip => no memory bottlenecks

>	Reducing	precision	inherently	saves	power
---	----------	-----------	------------	-------	-------

		R	elative	e Energ	gy Cost	
Operation:	Energy (pJ)					
8b Add	0.03					
16b Add	0.05					
32b Add	0.1					
16b FP Add	0.4					
32b FP Add	0.9					
8b Mult	0.2					
32b Mult	3.1					
16b FP Mult	1.1					
32b FP Mult	3.7					
32b SRAM Read (8KB)	5					
32b DRAM Read	640					

Precision	Modelsize [MB]
	(ResNet50)
1b	3.2
8b	25.5
32b	102.5

Source: Bill Dally (Stanford), Cadence Embedded Neural

Network Summit, February 1, 2017

Design Space Trade-Offs

Summary

- Unconventional computing architectures emerge to help with the roll-out of deep learning
- Customized dataflow architectures and precisions provide dramatic performance scaling and energy efficiency
- Providing new exciting trade-offs within the design space

More information can be found at: http://www.pynq.io/ml

Adaptable. Intelligent.

More information can be found at:

http://www.pynq.io/ml

