1. TUJUAN

- 1. Menjelaskan fungsi dasar dari Mosfet Daya tipe *n-channel enchancement*
- 2. Mempelajari profit waktu tegangan input, tegangan dan arus output dalam rangkaian DC Chopper untuk berbagai waktu penyalaan ton.
- 3. Mempelajari karakteristik pengaturan dari buck dan boost konverter untuk beban Resistif dan beban Resistif Induktif.

2. ALAT DAN BAHAN

No	Nama Alat	Jumlah
1.	Beban Tahanan dan Induktif	1
2.	DC Power Supply +/- 15V,3A	1
3.	Set Point Potentiometer	1
4.	Control Unit PWM	1
5.	Probe	Sesuai kebutuhan
6.	Osiloskop	1
7.	Mosfet Daya	1

4. PROSEDUR PERCOBAAN

1. Gunakan peralatan trainer buck dan boost converter di Lab Elka

Gambar Buck Konverter

Gambar Boost Konverter

- 2. Tunjukkan pada asisten apakah peralatan yang telah dirangkai sudah benar.
- 3. Bila sudah benar, maka percobaan sudah bisa dilaksanakan.
- 4. Hubungkan rangkaian dengan beban Resistif R = 220Ω , 5Watt
- Set harga ton = 0 ms dan ukur tegangan input (Vin), arus input (lin), tegangan output (Vout), dan arus output (lout). Masukan nilainilai terukur tersebut pada tabel 4.1.
- Ulangi langkah di atas berturut-turut untuk nilai ton yang periodik sesuai dengan ketentuan asisten. Masukan parameter-parameter terukur pada tabel 4.1.
- 7. Ulangi langkah 6 8 untuk beban R = 220 Ω yang di seri dengan L=2x50Mh (disesuaikan dg komponen di lab) . Masukan parameter terukur pada tabel 4.2.
- 8. Tampilkan pada layar osiloskop untuk tegangan sumber , tegangan beban dan arus beban Resistif dan Resistif Induktif untuk waktu penyalaan yang sesuai dengan instruksi Asisten. Catatlah nilai tegangan dan time/div dan faktor pengali yang ada pada isolation amplifier.

IV.6. Data hasil percobaan

Tabel Data hasil percobaan untuk beban R = 220 Ω

D (Duty	ton	Vout	lin	lout	ton T	V _{out} Vin	
(Duty Cycle) (%)	(ms)	(V)	(A)	(A)		Praktek	Teori
0							
25							
50							
75							
100							

$$T =ms$$
, $f =V$

Tabel 4.2. Data hasil percobaan untuk beban $R = 220\Omega$ seri dengan $L = 2 \times 50 \text{mH}$ (sesuai komponen yg ada di lab) pada berbagai ton.

D (Duty Cycle) (%)	ton (ms)	Vout (V)	lin (A)	lout (A)	ton T	Vout Vin Praktek Teori	
(%)	(1113)	(v)	(^)	(^)		Taktek	16011
0							
25							
50							
75							
100							

$$T = \dots Ms$$
, $f = \dots Mz$, $Vin = \dots V$

5. TUGAS

- Dari tabel 4.1. dan 4.2. hitunglah ton/T dan Vout/Vin baik untuk beban Resistif maupun beban Resistif – Induktif!
- 2. Buatlah grafik karakteristik pengaturan untuk $\frac{Vout}{Vin} = f(\frac{ton}{T})$ baik secara teori maupun praktek , kemudian beri komentar dan analisa !

