Dimostrazioni per l'esame orale di Analisi Matematica A

Filippo Troncana, dalle note della professoressa A. Defranceschi con l'aiuto del collega D. Borra ${\rm A.A.~2022/2023}$

Indice

1	Inti	roduzione	2		
Ι	M	odulo 1 Irrazionalità di radice di 2	2		
2	Fun	Funzioni in generale			
	2.1	Funzione	2		
	2.2	Immagine di una funzione	2		
	2.3	Grafico di una funzione	2		
	2.4	Funzione iniettiva, suriettiva e bijettiva	3		
3	Insi	iemi numerici	3		
	3.1	Disuguaglianza di Bernoulli	3		
	3.2	Densità di $\mathbb Q$	3		
	3.3	Proprietà Archimedea	3		
	3.4	Destra e sinistra	3		
	3.5	Assioma di Dedekind	3		
	3.6	Completezza di \mathbb{R}	3		
	3.7	Caratterizzazione di sup e inf	3		
	3.8	Radici ennesime dei complessi	4		
4	\mathbf{Pro}	pprietà locali di funzioni $\mathbb{R} o \mathbb{R}$	4		
	4.1	Limite	4		
	4.2	Unicità del limite	4		
	4.3	Limitatezza locale	4		
	4.4	Permanenza del segno	4		
	4.5	Teorema del confronto	4		
	4.6	Limite di funzioni composte	5		
	4.7	Esistenza del limite per funzioni monotone	5		
	4.8	Continuità	5		
5	Teo	oremi fondamentali sui limiti	6		
	5.1	Teorema di esistenza degli zeri	6		
	5.2	Teorema dei valori intermedi			

II Modulo 2

1 Introduzione

Per l'esame orale di Analisi Matematica A è richiesta la conoscenza di tutti gli enunciati e tutte le definizioni visti a lezione, oltre che la capacità di dimostrare i teoremi più importanti.

In questa trattazione sono presenti tutte le definizioni e i teoremi richiesti, e nell'indice sono evidenziati i teoremi di cui è richiesta la dimostrazione, gli unici di cui essa è allegata per garantire una trattazione più snella e orientata allo studio per l'esame.

Parte I

Modulo 1

1.1 Irrazionalità di radice di 2

Teorema. $\sqrt{2}$ è irrazionale, ovvero $\nexists m, n \in \mathbb{Z}$: $MCD(m, n) = 1 \land \frac{m}{n} = \sqrt{2}$.

Dimostrazione. Siano $m, n \in \mathbb{Z}$ tali che $MCD(m, n) = 1 \wedge \frac{m^2}{n^2} = 2$. Allora $m^2 = 2n^2$, dunque m^2 è pari e automaticamente m è pari.

Sia m=2k, allora $4k^2=2n^2\Rightarrow n^2=2k^2$, dunque anche n è pari.

Ma allora $MCD(m, n) \geq 2$, assurdo, dunque non esistono tali $m, n \in \mathbb{Z}$.

2 Funzioni in generale

2.1 Funzione

DEF (Funzione). Dati due insiemi X, Y, una **funzione** $f : X \to Y$ è una qualsiasi legge che ad ogni elemento $x \in X$ associa un unico elemento $y \in Y$, e scriviamo y = f(x). X si dice **dominio** di f, Y si dice **codominio** di f.

2.2 Immagine di una funzione

DEF (Immagine). Dati due insiemi X, Y e una funzione $f: X \to Y$, essa induce una **funzione** immagine che indichiamo con lo stesso nome:

$$f: \mathcal{P}(X) \to \mathcal{P}(Y)$$

$$A \to \{y \in Y: \exists x \in A: y = f(x)\}$$

2.3 Grafico di una funzione

DEF (Grafico). Dati due insiemi X,Y e una funzione $f:X\to Y,$ il **grafico** di f è l'insieme:

$$G_f = \{(x, y) \in X \times Y : y = f(x)\}$$

2.4 Funzione iniettiva, suriettiva e bijettiva

DEF. (Iniettività, suriettività e bijettività) Dati due insiemi X,Y e una funzione $f:X\to Y$, essa si dice:

Iniettiva se $f(x) = f(y) \Rightarrow x = y$

Suriettiva se $\forall y \in Y \exists x \in X : y = f(x)$

Bijettiva se è sia iniettiva che suriettiva.

3 Insiemi numerici

3.1 Disuguaglianza di Bernoulli

Proposizione 3.1 (Disuguaglianza di Bernoulli). Sia $x \in \mathbb{R}$ tale che $x \ge -1$ e $n \in \mathbb{N}$. Allora vale:

$$x^n \ge 1 + n(x - 1)$$

3.2 Densità di \mathbb{Q}

Proposizione 3.2 (Densità di \mathbb{Q}). Siano $x, y \in \mathbb{R}$ tali che x < y. Allora $\exists z \in \mathbb{Q} : x < z < y$.

3.3 Proprietà Archimedea

Proposizione 3.3 (Proprietà Archimedea). Siano $x, y \in \mathbb{Q}_{>0}$. Allora $\exists n \in \mathbb{N} : y \leq nx$.

3.4 Destra e sinistra

DEF (Destra e sinistra). Dati $A, B \subseteq \mathbb{R}$ si dice che A sta a sinistra di B se

$$\forall a \in A, \forall b \in B, a \leq b$$

Analogamente, diciamo che B sta **a destra** di A.

3.5 Assioma di Dedekind

Assioma 1. (Dedekind) Siano $A, B \subseteq \mathbb{R}$ non vuoi tali che A stia a sinistra di B. Allora esiste $c \in \mathbb{R}$ tale che:

$$\forall a \in A, \forall b \in B, a \le c \le b$$

3.6 Completezza di \mathbb{R}

Teorema (Completezza di \mathbb{R}). Sia $A \subseteq \mathbb{R}$ non vuoto. Se A è limitato superiormente, allora $\exists \sup A \in \mathbb{R}$. Se A è limitato inferiormente, allora $\exists \inf A \in \mathbb{R}$.

3.7 Caratterizzazione di sup e inf

Proposizione 3.4 (Caratterizzazione di sup e inf). Sia $A \subseteq \mathbb{R}$ non vuoto e limitato superiormente. Allora sup A è il più piccolo dei maggioranti di A.

Sia $A \subseteq \mathbb{R}$ non vuoto e limitato inferiormente. Allora infA è il più grande dei minoranti di A.

3.8 Radici ennesime dei complessi

Teorema. Siano $w \in \mathbb{C}, n \in \mathbb{N}_{\geq 1}$.

Se w = 0, l'unica radice di w di qualsiasi ordine è 0.

Altrimenti, w ha esattamente n radici n-esime distinte, ciascuna identificata da un numero naturale $k \in \{0, 1, ..., n-1\}$, e sono date da:

$$z_k = \sqrt[n]{|w|} \left[\cos\left(\frac{\arg w + 2k\pi}{n}\right) + i\sin\left(\frac{\arg w + 2k\pi}{n}\right)\right]$$

Dimostrazione. Se $w=0 \Rightarrow z^n=0 \Leftrightarrow |z|^n=0 \Leftrightarrow |z|=0 \Leftrightarrow z=0.$

Altrimenti, supponiamo $w \neq 0$.

Riscriviamo z e w in forma trigonometrica:

$$\begin{split} z^n &= w \Leftrightarrow |z|^n [\cos(n\arg z) + i\sin(n\arg z)] = |w| [\cos(\arg w) + i\sin(\arg w)] \\ &\Leftrightarrow |z|^n = |w| \wedge n\arg z = \arg w + 2k\pi \\ &\Leftrightarrow |z| = \sqrt[n]{|w|} \wedge \arg z = \frac{\arg w + 2k\pi}{n} \end{split}$$

Prendendo $1 \le k < n$, abbiamo le *n* radici distinte.

QED

4 Proprietà locali di funzioni $\mathbb{R} \to \mathbb{R}$

4.1 Limite

DEF (Limite). Sia $f: A \subseteq \mathbb{R} \to \mathbb{R}$ e $x_0 \in \mathbb{R}$ un punto di accumulazione per A. Allora $l \in \mathbb{R}$ è il **limite** di f per $x \to x_0$ se:

$$\forall I_l, \exists I_{x_0} : x \in I_{x_0} \Rightarrow f(x) \in I_l$$

4.2 Unicità del limite

Teorema (Unicità del limite). Se f ha limite l per $x \to x_0$, allora l è unico.

4.3 Limitatezza locale

Teorema (Limitatezza locale). Se f ha limite l per $x \to x_0$, allora $\exists I_{x_0} : f(I_{x_0})$ è limitato.

4.4 Permanenza del segno

Teorema (Permanenza del segno). Se $\lim_{x\to x_0} f(x) = l$, allora esiste un intorno di x_0 in cui f ha lo stesso segno di l.

4.5 Teorema del confronto

Teorema (Teorema del confronto). Siano $f, g, h : X \subseteq \mathbb{R} \to \mathbb{R}$ tali che $\forall x \in I(x_0), f(x) \leq g(x) \leq h(x)$ e sia $x_0 \in \mathbb{R}$ un punto di accumulazione per X. Allora si ha che

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = l \Rightarrow \lim_{x \to x_0} g(x) = l$$

Limite di funzioni composte

Teorema (Limite di funzioni composte). Siano $f: X \subseteq \mathbb{R} \to \mathbb{R}$ $e \ g: Y \subseteq \mathbb{R} \to \mathbb{R}$ con $f(X) \subseteq Y$. Sia x_0 un punto di accumulazione per X. Allora se esistono i limiti

$$\lim_{x \to x_0} f(x) = y_0, \lim_{y \to y_0} g(y) = l$$

 $e f(x) \neq y_0$ in un intorno di x_0 (ipotesi non necessaria se $y_0 \in Y$ $e g(y_0) = l$), allora si ha $\lim_{x \to x_0} g(f(x)) = l.$

4.7 Esistenza del limite per funzioni monotone

Teorema. Sia $f: X \subseteq \mathbb{R} \to \mathbb{R}$ monotona $e x_0 \in \mathbb{R}$.

Se f è crescente in X e x_0 è un punto di accumulazione sinistro per X, allora

$$\exists \lim_{x \to x_0} f(x) = \sup_{X \cap \mathbb{R}_{< x_0}} f$$

Se f è crescente in X e x_0 è un punto di accumulazione destro per X, allora

$$\exists \lim_{x \to x_0} f(x) = \sup_{X \cap \mathbb{R}_{>x_0}} f$$

Analogamente per f decrescente.

Dimostrazione. Basta dimostrare la prima proposizione, il resto è analogo.

Sia $l=\sup_{X\cap\mathbb{R}_{< x_0}}f$, che esiste per completezza di \mathbb{R} . Supponiamo $l\in\mathbb{R}$. Per definizione di sup si ha :

$$\forall x \in X \cap \mathbb{R}_{\leq x_0}, f(x) \leq l$$

$$\forall \varepsilon > 0, \exists x_{\varepsilon} \in X \cap \mathbb{R}_{< x_0} : l - \varepsilon < f(x_{\varepsilon})$$

Allora fissato $\varepsilon > 0$ qualsiasi, $\forall x \in]x_{\varepsilon}, x_0[\cap X, l - \varepsilon < f(x_{\varepsilon}) \le f(x) \le l \le l + \varepsilon.$

Abbiamo quindi che $\forall x \in]x_{\varepsilon}, x_0[\cap X, |f(x) - l| < \varepsilon$, ovvero la tesi.

Supponiamo ora $l=+\infty$. In tal caso f non è limitata superiormente su X e in quanto monotona crescente il suo limite è $+\infty = l$. QED

4.8 Continuità

DEF (Continuità). Sia $f: X \subseteq \mathbb{R} \to \mathbb{R}, x_0 \in X$. Allora:

Se x_0 è un punto isolato, f è continua in x_0 ;

Se x_0 è un punto di accumulazione, f è continua in x_0 se e solo se $\lim_{x\to x_0} f(x) = f(x_0)$

Teorema (Ponte). Siano $f: X \subseteq \mathbb{R} \to \mathbb{R}, l \in \mathbb{R}^*$ con x_0 punto di accumulazione per X. Allora $\lim_{x\to x_0} f(x) = l$ se e solo se per ogni successione $(x_n)_n \subset X$ convergente a x_0 si ha $\lim_{n\to +\infty} f(x_n) = l$

5 Teoremi fondamentali sui limiti

5.1 Teorema di esistenza degli zeri

Teorema. Sia $f:[a,b]\to\mathbb{R}$ continua e tale che f(a)f(b)<0. Allora $\exists c\in]a,b[$ tale che f(c)=0. Se f è strettamente monotona, c è unico.

Dimostrazione. Supponiamo f(a) < 0, f(b) > 0 senza perdita di generalità e procediamo iterativamente:

Chiamiamo $a_0 := a, b_0 := b, c_0 := \frac{a_0 + b_0}{2}$, ovvero il punto medio.

Se $f(c_0) = 0$ abbiamo finito.

Se $f(c_0) < 0$, allora $a_1 := c_0, b_1 = b_0$

Se $f(c_0) > 0$, allora $a_1 := a_0, b_1 = c_0$.

Dunque le ipotesi del teorema sono soddisfatte in entrambi i casi.

Per il passo numero i definiamo $c_i = \frac{a_i + b_i}{2}$. Come sopra:

Se $f(c_i) = 0$ abbiamo finito.

Se $f(c_i) < 0$, allora $a_{i+1} := c_i, b_{i+1} = b_i$

Se $f(c_i) > 0$, allora $a_{i+1} := a_i, b_{i+1} = c_i$

Abbiamo dunque le ipotesi del teorema su $[a_i, b_i]$ con $b_i - a_i = \frac{b-a}{2^i}$.

Al limite avremo tre successioni: $(a_n)_n$ monotona crescente, $(b_n)_n$ monotona decrescente e $(c_n)_n$ tali che $\forall i, a_i \leq c_i \leq b_i$. Dato che $b_i - a_i$ tende a 0, le successioni hanno lo stesso limite, che chiamiamo c. Dimostriamo f(c) = 0:

Abbiamo $0 \le f(b_{\infty}) = f(a_{\infty}) \le 0$, dunque è evidente che f(c) = 0.

QED

5.2 Teorema dei valori intermedi

Teorema. Sia $I \subseteq \mathbb{R}$ un intervallo qualsiasi e sia $f: I \to \mathbb{R}$ continua su I. Allora f assume in I tutti i valori compresi tra $\inf_I f$ e $\sup_I f$.

Dimostrazione. Se $\inf_I f = \sup_I f$ la funzione è costante e la tesi è ovvia.

Altrimenti, sia $y \in \mathbb{R}$ tale che inf $_I f < y < \sup_I f$. Per definizione di estremi inferiori e superiori, abbiamo che esistono $\exists a, b \in I : f(a) < y < f(b)$.

Definiamo $h: I \to \mathbb{R}$ come h(x) = f(x) - y. Per il teorema di esistenza degli zeri, h deve avere uno zero in]a, b[, e in particolare $h(x) = 0 \Leftrightarrow f(x) = y$, dunque f assume il valore di g da qualche parte in g. Per l'arbitrarietà nella scelta di g, abbiamo la tesi. QED

Parte II

Modulo 2