Física Nuclear

Paulo Freitas Gomes Setembro 2013

Aula 2 - Reações Nucleares

Reações Nucleares

- Reações químicas
- Estrutura atômica
- Reações nucleares
- Decaimento α
- Decaimento β
- \bullet E=mc²

Reações nucleares

- Altera número de prótons e/ou nêutrons
- Decaimento: 3 modos principais
- Existe um tempo médio para que ocorra
- Alteração do elemento químico

- Decaimento α: emite partícula α (2 prótons e 2 nêutrons)
- ${}^{218}Po_{84} \rightarrow {}^{4}\alpha_{2} + {}^{214}Pb_{82}$
- Decaimento γ: núcleo relaxa para um estado menos energético emitindo onda eletromagnética

Animação

- Decaimento β : um nêutron se converte em um próton mais uma partícula β (elétron + neutrino), que é emitida do núcleo.
- Decaimento β*: um próton se converte em um nêutron mais uma partícula β* (pósitron + neutrino)

Beta-minus Decay

Carbon-14

б protons 8 neutrons

Nitrogen-14

7 protons 7 neutrons

Antineutrino

+

Electron

Beta-plus Decay

Carbon-10

б protons 4 neutrons

$\stackrel{\beta^+}{\longrightarrow}$

5 protons 5 neutrons

Boron-10

┻ ``

Animação

Decay Type	Radiation Emitted	Generic Equation	Model
Alpha decay	⁴ α	${}_{Z}^{A}X \longrightarrow {}_{Z-2}^{A-4}X' + {}_{2}^{4}\alpha$	Parent Daughter Alpha Particle
Beta decay	⁰ ₋₁ β	${}_{Z}^{A}X \longrightarrow_{Z+1} {}^{A}X' + {}^{0}_{-1}\beta$	Parent Daughter Beta Particle
Positron emission	0 +1β	$_{Z}^{A}X \longrightarrow_{Z-1}^{A}X' +_{+1}^{0}\beta$	Parent Daughter Positron
Electron capture	X rays	${}^{A}_{Z}X + {}^{0}_{-1}e \longrightarrow_{Z-1} {}^{A}_{Z}X' + X \text{ ray}$	Parent Electron Daughter X ray
Gamma emission	0 0 7	${\stackrel{A}{Z}}X^* \xrightarrow{\text{Relaxation}} {\stackrel{A}{Z}}X' + {\stackrel{0}{0}}\gamma$	Parent Daughter Gamma ray (excited nuclear state)
Spontaneous fission	Neutrons A	$A + B + C \times \longrightarrow A \times Y + B \times Y + C_0^1 n$	Parent (unstable) Neutrons
	<u></u>		Daughters

Periodic table with elements colored according to the half-life of their most stable isotope. Elements which contain at least one stable isotope. Slightly radioactive elements: the most stable isotope is very long-lived, with a halflife of over four million years. Significantly radioactive elements: the most stable isotope has half-life between 800 and 34,000 years. Radioactive elements: the most stable isotope has half-life between one day and 103 years. Highly radioactive elements: the most stable isotope has half-life between several minutes and one day. Extremely radioactive elements: the most stable isotope has half-life less than several minutes.