3D Graphics Programming Tools

Modelling Transformations

1

Modelling transformations

3

Today's agenda

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- 3D Transformations
 - Basic 3D transformations

Modelling transformations

- · Specify transformations for objects
 - definitions of objects in own coordinate systems
 - use of object definition multiple times in a scene

5

2D modelling transformations

2D modelling transformations

7

2D modelling transformations

Queen Mary
University of London

2D modelling transformations

9

2D modelling transformations

Scaling

- Scaling a coordinate
 - means multiplying each of its components by a scalar
- · Uniform scaling
 - means this scalar is the same for all components

11

Scaling

- Non-uniform scaling
 - different scalars per component

How can we represent this in matrix form?

Scaling

· Scaling operation:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ax \\ by \end{bmatrix}$$

· Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix

Multiplying a point (or a vector) by a matrix (a transformation) yields a new transformed point (or a new vector)

13

2D rotation

$$x = r \cos(\phi)$$

$$y = r \sin(\phi)$$

$$x' = r \cos (\phi + \theta)$$

$$y' = r \sin (\phi + \theta)$$

trigonometric identity...

$$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$

$$y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$$

substitute...

$$\mathbf{x'} = \mathbf{x} \cos(\theta) - \mathbf{y} \sin(\theta)$$

$$y' = x \sin(\theta) + y \cos(\theta)$$

2D rotation

· Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ ,
 - x' is a linear combination of x and y
 - y' is a linear combination of x and y

15

Basic 2D transformations

- Translation
 - $-x' = x + t_x$
 - $-y'=y+t_{v}$
- Scale
 - $-x' = x * s_x$
 - $-y' = y * s_y$
- Shear
 - $x' = x + h_{x*} y$
 - $-y' = y + h_{v} * x$
- Rotation
 - $-x' = x * \cos\Theta y * \sin\Theta$
 - $-y' = x * \sin\Theta + y * \cos\Theta$

Transformations can be combined (with simple algebra)

Name the transformation!

17

Name the transformation!

Name the transformation!

Name the transformation!

Name the transformation!

Basic 2D transformations (combination)

25

Basic 2D transformations (combination)

Scale
 x' = x * s_x
 y' = y * s_y

$$x' = x * s_x$$
$$y' = y * s_y$$

Basic 2D transformations (combination)

- Scale
 - $x' = x * s_x y' = y * s_y$
- Rotation

$$x' = x * \cos\Theta - y * \sin\Theta$$

 $y' = x * \sin\Theta + y * \cos\Theta$

$$x' = (x * S_x) * \cos\Theta - (y * S_y) * \sin\Theta$$
$$y' = (x * S_x) * \sin\Theta + (y * S_y) * \cos\Theta$$

27

Basic 2D transformations (combination)

- Scale
 - $x' = x * s_x y' = y * s_y$
- Rotation

 $x' = x * \cos\Theta - y * \sin\Theta$ $y' = x * \sin\Theta + y * \cos\Theta$

Translation

 $x' = x + t_x$ $y' = y + t_y$

Today's agenda

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- · 3D Transformations
 - Basic 3D transformations

29

Matrix representation

• Represent 2D transformation by a matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Multiply matrix by column vector
 apply transformation to point

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \qquad \begin{aligned} x' &= ax + by \\ y' &= cx + dy \end{aligned}$$

Matrix representation

· Transformations combined by multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Matrices are a convenient and efficient way to represent a sequence of transformations

Matrix multiplication is not generally commutative!

31

2x2 matrices

 What types of transformations can be represented with a 2x2 matrix?

2D identity
$$x' = x$$

 $y' = y$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D scale

$$x' = s_x * x$$
$$y' = s_y * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2x2 matrices

- What types of transformations can be represented with a 2x2 matrix?
 - 2D rotate around (0,0)

$$x' = \cos \Theta * x - \sin \Theta * y$$

$$y' = \sin \Theta * x + \cos \Theta * y$$

$$x' = \cos \Theta * x - \sin \Theta * y y' = \sin \Theta * x + \cos \Theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D shear

$$x' = x + sh_x * y$$
$$y' = sh_y * x + y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & sh_x \\ sh_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

33

2x2 matrices

- · What types of transformations can be represented with a 2x2 matrix?
 - 2D mirror about Y axis

$$x' = -x$$

$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D mirror over (0,0)

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2x2 matrices

 What types of transformations can be represented with a 2x2 matrix?

2D translation

$$x' = x + t_x$$

$$y' = y + t_y$$
NO!

Only linear 2D transformations can be represented with a 2x2 matrix

35

Linear transformations

- · Linear transformations are combinations of
 - scale
 - rotation
 - shear and
 - mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Properties of linear transformations
 - origin maps to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

$$T(s_1\mathbf{p}_1 + s_2\mathbf{p}_2) = s_1T(\mathbf{p}_1) + s_2T(\mathbf{p}_2)$$

Homogeneous coordinates

- Homogeneous coordinates
- represent coordinates in 2 dimensions with a 3D vector
- seem unintuitive, but they make graphics operations much easier

37

Homogeneous coordinates

- · How can we represent translation as a 3x3 matrix?
 - Using the rightmost column

$$x' = x + t_{x}$$

$$y' = y + t_{y}$$

$$Translation = \begin{bmatrix} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{bmatrix}$$

Translation

39

Homogeneous coordinates

- · Homogeneous coordinates
 - add a 3rd coordinate to every 2D point
 - (x, y, w) represents a point at location (x/w, y/w)
 - (x, y, 0) represents a point at infinity
 - (0, 0, 0) is not allowed

Convenient coordinate system to represent many useful transformations

Queen Mary

Basic 2D transformations

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \mathbf{t}_x \\ 0 & 1 & \mathbf{t}_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

rotate

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

scale

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

shear

41

Affine transformations

- · Affine transformations are combinations of
 - Linear transformations, and
 - Translations

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Properties of affine transformations
 - origin does not necessarily map to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

Today's agenda

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- · 3D Transformations
 - Basic 3D transformations

43

Matrix composition

• Transformations can be combined by matrix multiplication

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\Theta & -\sin\Theta & 0 \\ \sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \mathsf{T}(\mathsf{t}_{\mathsf{x}},\mathsf{t}_{\mathsf{y}}) \qquad \mathsf{R}(\Theta) \qquad \mathsf{S}(\mathsf{s}_{\mathsf{x}},\mathsf{s}_{\mathsf{y}}) \qquad \mathbf{p}$$

Matrix multiplication (reminder)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$$

45

Matrix composition

- Matrices are a convenient and efficient way to represent a sequence of transformations
 - general purpose representation
 - hardware matrix multiply

$$p' = (T * (R * (S*p)))$$

$$p' = (T*R*S) * p$$

- NB! order of transformations matters
 - · matrix multiplication is not commutative

Example

- · What if we want to rotate and translate?
- Ex: Rotate line segment by 45 degrees about endpoint a

47

Multiplication order - wrong way

- · The line segment is defined by two endpoints
 - Applying a rotation of 45 degrees, R(45), affects both points
 - We could try to translate both endpoints to return endpoint a to its original position, but by how much?

Multiplication order - correct

- Isolate endpoint a from rotation effects
- First translate line so a is at origin: T (-3)
- Then rotate line 45 degrees: R(45)
- Then translate back so a is where it was: T(3)

49

Example

Will this sequence of operations work?

$$\begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(45) & -\sin(45) & 0 \\ \sin(45) & \cos(45) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ 1 \end{bmatrix} = \begin{bmatrix} a'_x \\ a'_y \\ 1 \end{bmatrix}$$

Matrix composition

- After correctly ordering the matrices
- Multiply matrices together
- What results is one matrix store it (on stack)!
- Multiply this matrix by the vector of each vertex
- → All vertices easily transformed with one matrix multiply

51

Exercise

Today's agenda

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- 3D Transformations
 - Basic 3D transformations

53

3D transformations

- · Same idea as 2D transformations
 - homogeneous coordinates: (x,y,z,w)
 - 4x4 transformation matrices

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Basic 3D transformations

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{w} \end{bmatrix}$$

identity

scale

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

translation

mirror about Y/Z plane

55

Basic 3D transformations

Rotate around Z axis

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} \cos\Theta & -\sin\Theta & 0 & 0 \\ \sin\Theta & \cos\Theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Rotate around Y axis

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} \cos\Theta & 0 & \sin\Theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\Theta & 0 & \cos\Theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{w} \end{bmatrix}$$

Rotate around X axis

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\Theta & -\sin\Theta & 0 \\ 0 & \sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Queen Mary

3D rotation

General rotations in 3D

- require rotating about an arbitrary axis of rotation
- deriving the rotation matrix for such a rotation directly is a good exercise in linear algebra ...
- standard approach
 - express general rotation as composition of canonical rotations
 - rotations about X, Y, Z

57

Twist

Twist

```
void display()
  glClear(GL_COLOR_BUFFER_BIT);
  divide_triangle(v[0], v[1], v[2], n);
  glFlush();
}
void divide_triangle(GLfloat *a, GLfloat *b, GLfloat *c, int m)
{
  GLfloat v[3][2];
  int j;
  if(m>0)
     for(j=0; j<2; j++) v[0][j]=(a[j]+b[j])/2;
     for(j=0; j<2; j++) v[1][j]=(a[j]+c[j])/2;
     for(j=0; j<2; j++) v[2][j]=(b[j]+c[j])/2;
     divide_triangle(a, v[0], v[1], m-1);
     divide_triangle(v[0], b, v[2], m-1);
     divide_triangle(v[1], v[2], c, m-1);
     divide_triangle(v[0], v[1], v[2], m-1);
  else(triangle(a,b,c));
                                                                ∖Q√ Queen Mary
}
```

59

Twist

```
GLfloat twist = 1.5;
void triangle (GLfloat *a, GLfloat *b, GLfloat *c)
  GLfloat v[2];
  double d;
  glBegin(GL_POLYGON);
          d = sqrt(a[0]*a[0] + a[1]*a[1]);
          v[0] = ?
          v[1] = ?
          glVertex2fv(v);
          d = sqrt(b[0]*b[0] + b[1]*b[1]);
          v[0] = ?
          v[1] = ?
          glVertex2fv(v);
          d = sqrt(c[0]*c[0] + c[1]*c[1]);
          v[0] = ?
          v[1] = ?
          glVertex2fv(v);
 glEnd();
}
```

