Introducción a distribuciones de probabilidad

Ramon Ceballos

6/2/2021

Conceptos básicos en Probabilidad

Hay una serie de conceptos que hemos de conocer en el mundo de la probabilidad.

Experimento aleatorio. Experimento que efectuado en las mismas condiciones puede dar lugar a resultados diferentes.

Suceso elemental. Cada uno de los posibles resultados del experimento aleatorio.

Espacio muestral. Conjunto Ω formado por todos los sucesos elementales del experimento aleatorio.

EJEMPLOS

Lanzar una moneda es un experimento aleatorio.

Los sucesos elementales son: sacar cara (C) y sacar cruz (+).

El espacio muestral de este experimento aleatorio es $\Omega = \{C, +\}$.

1. Sucesos

Dentro de este apartado hemos de conocer los siguientes conceptos.

Suceso. Subconjunto del espacio muestral.

Suceso total o seguro (Ω) . Es todo el espacio muestral.

Suceso vacío o imposible (\emptyset) . No tiene ninguna conjunto del espacio muestral.

Operaciones con sucesos. Sean $A, B \subseteq \Omega$ sucesos. Entonces:

- $A \cup B$ es el suceso unión (resultados que pertenecen a A, o a B, o a ambos).
- $A \cap B$ es el suceso intersección (resultados que pertenecen a $A \setminus B$, a la vez).
- A^c es el suceso complementario (resultados que no pertenecen a A).
- $A B = A \cap B^c$ es el suceso diferencia (resultados que pertenecen a A pero no a B). No es simétrica.

Sucesos incompatibles. Si $A \cap B = \emptyset$. Si la instersección de A y B da lugar a un suceso imposible o vacío.

EJEMPLOS

Lanzar un dado es un experimento aleatorio.

Algunos sucesos podrían ser: sacar número par $(\{2,4,6\})$, sacar mayor que 4 $(\{5,6\})$, sacar número múltiplo de 3 $(\{3,6\})$...

El suceso total de este experimento aleatorio es $\Omega = \{1, 2, 3, 4, 5, 6\}.$

Un ejemplo de suceso imposible de este experimento aleatorio es $\emptyset = \{7\}$ (sacar 7).

2. Probabilidad

Probabilidad de un suceso. Número entre 0 y 1 (ambos incluidos) que mide la expectativa de que se dé este suceso.

Probabilidad. Sea Ω el espacio muestral de un experimento aleatorio. Suponiendo que Ω es **finito**, una probabilidad sobre Ω es una aplicación:

$$p: \mathcal{P}(\Omega) \longrightarrow [0,1]$$

Esto satisface, siendo A parte o subconjunto del espacio muestral, lo siguiente:

- $0 \le p(A) \le 1 \ \forall A \in \mathcal{P}(\Omega)$
- $p(\Omega) = 1$
- Si $\{A_1, \ldots, A_n\}$ son success incompatibles dos a dos $(A_i \cap A_j = \emptyset \ \forall i \neq j)$, entonces:

$$p(A_1 \cup \dots \cup A_n) = p(A_1) + \dots + p(A_n)$$

Notación: Si $a \in \Omega$, escribiremos p(a) en vez de $p(\{a\})$.

En este caso, "a" es un único elemento dentro del espacio muestral.

EJEMPLOS

- La probabilidad de sacar un 6 al lanzar un dado estándar no trucado es $\frac{1}{6}$.
- La probabilidad de sacar un 6 al lanzar un dado de 4 caras es 0.
- La probabilidad de sacar un 6 al lanzar un dado de 20 caras es $\frac{1}{20}$.