Exploring the relationship between pollution and weather conditions: an European analysis

Andrea D'Amicis, Gaia Gubelli, Emmanuele Lotano

Data Management project Academic year 2023/2024

Main goal

This study aims to provide a descriptive overview of the dynamics governing **air pollution** in relation to **weather conditions**.

The goal is to obtain a unique database, which contains both metereological conditions and pollution measurements.

The data collected refer to the **year 2022** and encompass the majority of **European States**.

Research questions

European descriptive analysis:

- 1. What are the European average O3 levels across maximum temperature ranges?
- 2. What are the European average NO2 levels in the precipitation ranges?
- 3. What are the European average PM10 levels in the different wind speed ranges?
- 4. What are the European average values of PM10 by season?

Italian descriptive analysis:

- 1. How do pollution measures vary over time in Italy?
- 2. What are the 5 records with the highest PM2.5 values observed in Italy? Where were these values observed? What were the meteorological conditions on those days?

European states included

- Italy (IT)
- Switzerland (CH)
- Spain (ES)
- France (FR)
- Belgium (BE)
- Netherlands (NL)
- Germany (DE)

- Portugal (PT)
- Great Britain (GB)
- Ireland (IE)
- Austria (AT)
- Norway (NO)
- Finland (FI)
- Sweden (SE)

Data acquisition

Pollution

- Retrieval of the data from the API: https://openaq.org
- For each city available we obtained the daily measurements averaging the hourly detections

The parameters requested in each call are:

- **PM10**: particulate matter with diameter ≤ 10 μm
- **PM2.5**: particulate matter with diameter ≤ 2.5 μm
- **03**: ozone
- NO2: nitrogen dioxide
- NO: nitric oxide
- CO: carbon monoxide
- NOx: nitrogen oxide
- **SO2**: sulfur dioxide

All parameters are expressed according to the unit of measurement $\mu g/m3$.

Weather

- Retrieval of the data from the API: https://open-meteo.com
- For each city of the first dataset, we obtained the daily meteorological measurements

The parameters requested in each call are:

- WMO code
- Max. temperature (°C)
- Min. temperature (°C)
- Wind Speed (km/h)
- Apparent max. temperature (°C)
- Apparent min. temperature (°C)
- **Precipitation** (sum in *mm*)
- Rain (sum in mm)
- Snow (sum in mm)

Storage

- **Document-oriented** database: MongoDB
- Documents structured in a BSON format
- Fields can have sub-documents
- Schema-less which gives greater **flexibility** and **efficiency** when dealing with large datasets
- At the end of this phase we obtained 180'768 documents for each collection.

```
_id: ObjectId('6585af1b96e7d3da98ec32f2')
State: "CH"
City: "Basel-Landschaft"
Date: "2022-01-11"
Latitude: 47.5410842894654
Longitude: 7.58326959999999
Pm10: 2.804947826086957
Pm25: 2.707542028985508
O3: 2.609584057971014
No2: 6.032176086956522
No: 0
Co: 0
Nox: 0
So2: 0.2206195652173913
```

```
_id: ObjectId('6585b6a7532eb78cb75582d9')
State: "CH"
City: "Basel-Landschaft"
Date: "2022-01-11"
Latitude: 47.5410842894654
Longitude: 7.5832695999999995
WMO_code: 3
TemperatureMin: -2.5
TemperatureMax: 3.4
WindSpeed: 10.8
ApparentTMAX: 0.4
ApparentTMIN: -5.7
PrecipitationSum: 0
SnowfallSum: 0
```

Data profiling: completeness

Pollution

Here, zeros are actually missing values.

Table completeness:

• 35% (8% + 27%) of missing values

Attribute completeness:

• missing values in "NOx", "CO" and "NO" represents almost the totality of the dataset

TOT PM10 PM2.5 O3 NO2 NONOx SO2 NaN % NAN 8 12 1212 12705612 45125 7117542973 15750 156836 119825 158426 95502 % 0 27 39 23 522486 66 87

TAB. I: Completeness measures for Pollution.

Weather

Here, zeros represent correct measurements, indicating the absent of a certain phenomenon.

Table completeness:

• there are 45'183 missing values, <1% of the entire dataset

Attribute completeness:

number of missing values is minimal

	TOT	TempMin	TempMax	x AppTem	pMin App	TempMax
NaN	45183	7	7	7		7
% NAN	1	0	0	0		0
	$\mathbf{W}\mathbf{M}$	$\mathbf{OCode} \ \mathbf{W}$	$\operatorname{indSpeed}$	PrecSum	RainSum	SnowSum
NaN		7	7	7	7	7
1 101 1		1	1	•	'	'

TAB. II: Completeness measures for Weather.

Data profiling: consistency

Pollution

The idea is to assess the consistency of the values with reference to real observable values.

- There are **negative** values, which are impossible
- Some maximum values are improbable

--→ probably due to measurement errors or nonnatural phenomena (e.g. a fire)

	PM10	PM2.5	O 3	NO2	NO	CO	NOx	SO ₂
Min	-333	-499	-249	-3333	-249	-200	0	-206
Max	204	85	70	60	30	73131	0	37

TAB. III: Consistency measures for Pollution.

Weather

Looking at the ranges we can observe some inconsistencies:

- WindSpeed and PrecipitationSum show negative values
- Maximum value of **TemperatureMin** is higher than the maximum value of **TemperatureMax**.
- --→ there are some documents whose measurements are completely inconsistent

	TempMin	TempMax	AppTempMin	AppTempMax
Min	-38	-29	-42	-34
Max	73	48	44	48

	${\bf WMOCode}$	$\mathbf{WindSpeed}$	PrecSum	RainSum	SnowSum
Min	0	-3	-11	0	0
Max	75	76	106	106	59

TAB. IV: Consistency measures for Weather.

Data Integration and Cleaning

We merged the two datasets to obtain for each day and for each city, a single coherent view of parameters.

Pollution

- Removal of documents with excessively high values of pollution parameters
- Removal of documents with **negative values** of pollutants
- Removal of CO, NOx and NO, which contained almost all NaN
- **Mean replacement** for remaining NaN, for each state taken individually

Weather

- Inconsistent and improbable measurements.

 Removal of documents where:
 - Min. temperature > Max. temperature
 - Apparent min. temperature > Apparent max.
 temperature
 - Min. temperature > 50 OR Apparent min.
 temperature > 0
- Documents with inconsistent values of **WindSpeed** and **Precipitation** were the same of those with inconsistent temperature values

Data Enrichment

- Addition of the description related to <u>WMO_code</u> to provide greater interpretability:
 - o for example, WMO = 1 is "Cloud development not observed or not observable"
- Addition of Season attribute (Winter, Summer, Spring, Autumn)
- Addition of Region, according to the United Nations Geoscheme for Europe:
 - Northern Europe: Norway, Finland, Sweden, Great Britain and Ireland
 - o Western Europe: Germany, Austria, Switzerland, Netherlands, Belgium and France
 - Southern Europe: Italy, Spain and Portugal

Final Storage

- We obtained a collection containing 99'048 documents
- **Measurement** object contains pollution parameters
- Weather parameters are clearly defined
- Units of measurement are provided for each parameter

```
_id: ObjectId('65ce383f5b493dc1b735ba1d')
  State: "CH"
 City: "Basel-Landschaft"
  Date: 2022-01-11T00:00:00.000+00:00
 Latitude: 47.5410842894654
 Longitude: 7.583269599999999
▼ Measurements : Object
    Pm10: 2.804947826086957
    Pm25: 2.707542028985508
    03: 2,609584057971014
    No2: 6.032176086956522
    So2: 0.2206195652173913
    Unit: "µg/m3"
▼ WMO : Object
    Code: 3
    Description: "Clouds generally forming or developing"
▼ Temperature : Object
    Min: -2.5
    Max: 3.4
    Unit: "°C"
▼ ApparentTemperature : Object
    Min: -5.7
    Max: 0.4
    Unit: "°C"
▼ WindSpeed : Object
    Value: 10.8
    Unit: "km/h"
▼ Precipitation : Object
    Sum: 0
    Rain: 0
    Snowfall: 0
    Unit: "mm"
 Region: "Western Europe"
 Season: "Winter"
```

Queries

European average O3 levels over temperature

- The trend in O3 levels seem to reflect the theoretical considerations with the exception of the Northern Europe region
- O3 levels are higher for warmer temperatures
- Temperature range [-30, -15] stands out: it encompasses obs. from Scandinavian countries

European average NO2 levels over daily rain

- There is no clearly defined trend
- The phenomenon represented is complex:
 - cleaner air is probably observed the day after a rainy day
- Classes [90,105] and [105+] were removed, as they were represented by only 2 documents each

European average PM10 levels over wind speed

- First three classes are homogenous
- Class [45,60]: clear difference in the increase of the average PM10 value (particularly for Western Europe)
- Class [75,90] was represented by only 2 documents and therefore it was excluded from the analysis

European average PM10 across seasons

- Highest average levels observed in the spring:
 - PM10 is mainly composed of dust, pollen and spores
- Winter also shows slightly higher values (with the exception of the Southern Europe regions)

Italian pollution measures over time

• NO2:

- compound composed of gaseous polluting particles produced by industrial processes and domestic heating
- o it shows higher values during colder months
- o it shows lower values during the warmer months

• O3:

- o opposite trend
- o maximum levels are reached in the summer
- Ozone is formed on the days with higher temperature

• PM2.5:

- o average levels remain constant throughout the year
- o slightly higher values occur in the colder months

Highest PM2.5 values observed in Italy

- The first five documents with the highest PM2.5 values are observed in **Brindisi**
- According to the Air Quality Index, these values are considered a problem for health
- **Hypothesis** of the cause:
 - o in Brindisi there is the Italy's largest coal-fired power plant
 - only 60 km apart as the crow flies there is the steel plant <u>ILVA</u>, in Taranto
- These high values are observed in strong wind days and in the coldest months

City	Date	PM2.5	WindSpeed	TempMin	TempMax	PrecSum
Brindisi	22-11	84.8	43.4	10.2	19.5	6.7
Brindisi	21-01	73.7	22.7	7.5	12.6	3.3
Brindisi	09-02	66.6	22.1	6.3	15.3	0
Brindisi	19-01	66.5	13.9	2.2	11.3	0
Brindisi	01-11	66.0	14.2	16.2	25.4	0

TAB. V: Highest PM2.5 values observed in Italy.

Conclusions

Limitations:

- absence of CO2 parameters from the API
- the pollution API did not made available cities of Lombardy

Future developments:

• in-depth analysis for each state taken individually

Thanks for the attention

