Matthew Fitzgerald Econ 204B March 13, 2020

Problem Set # 5

Problem 6.8 from S&L: Wage growth and the reservation wage

An unemployed worker receives each period an offer to work for wage w_t forever, where $w_t = w$ in the first period and $w_t = \phi^t w$ after t periods on the job. Assume $\phi > 1$, that is, wages increase with tenure. The initial wage offer is drawn from a distribution F(w) that is constant over time (entry-level wages are stationary); successive drawings across periods are independently and identically distributed.

The worker's objective is to maximize

$$\mathbb{E}\sum_{t=1}^{\infty} \beta^t y_t, \quad \text{where } 0 < \beta < 1$$

and $y_t = w_t$ if the worker is employed and $y_t = c$ is the worker is unemployed, where c is unemployment compensation. Let v(w) be the optimal value of the objective function for an unemployed worker who has offer w in hand. Write the Bellman equation for this problem. Argue that, if two economies differ only in the growth rate of wages of employed workers, say $\phi_1 > \phi_2$, the economy with the higher growth rate has the smaller reservation wage. Note: Assume that $\phi_i \beta < 1$, i = 1, 2.

Problem 6.9 from S&L: Search with a finite horizon

Consider a worker who lives two periods. In each period the worker, if unemployed, receives an offer of lifetime work at wage w, where w is drawn from a distribution F. Wage offers are identically and independently distributed over time. The worker's objective is to maximize $\mathbb{E}\{y_1 + \beta y_2\}$, where $y_t = w$ if the worker is employed and is equal to c – unemployment compensation – if the worker is not employed.

Analyze the worker's optimal decision rule. In particular, establish that the optimal strategy is to choose a reservation wage in each period and to accept any offer with a wage at least as high as the reservation wage and to reject offers below that level. Show that the reservation wage decreases over time.