Detailed Project Report

BUDGET SALES ANALYSIS Neeraj Kumar Sharma

1. Problem Statement:

Our "Domain Sale" process is structured to help potential buyers purchase the domain they want immediately without the hassle of contacting the seller directly.

A seller lists a domain for sale at a specific price in our Marketplace. An interested buyer sees this domain for sale and decides to buy it.

2. Objectives:

- The collection includes records for sales orders, customer information, product information, and geographical data.
- In order to deduce important metrics and patterns in the dataset, this project will use the provided data to perform ETL and data analysis.
- Additionally, several visualisations and reports are created to represent significant linkages.

3. Benefits

- Help in making wiser business decisions.
- Aid in customer satisfaction and trend monitoring, which can serve current consumers and attract new ones.
- Greater client base understanding is provided.
- Facilitates seamless resource management flow.

4. Data attributes

Customer

CustomerKey	FullName	Birthdate
Maritalstatus	Gender	YearlyIncome
TotalChildren	NumberChildrenAtHome	Education
Occupation	HouseOwnerFlag	NumberCarsOwned
DateFirstPurchase	CommuteDistance	

Product

ProductKey	ProductName	Subcategory
Category	ListPrice	DaysToManufacture
ProductLine	ModelName	ProductDescription
StartDate		

Territory

SalesTerritoryKey	Region	Country
Group		

Sales

ProductKey	OrderDate	ShipDate
CustomerKey	PromotionKey	SalesTerritoryKey
SalesOrderNumber	SalesOrderLineNumber	OrderQuantity
UnitPrice	TotalProductCost	SalesAmount
TaxAmt		

4.1 Dataset information

CustomerKey: Primary key for customer dataset

Birthdate: Birthdate of the customer

MaritalStatus: M- Married / S - Single

Gender: M – Male / F – Female

TotalChildren: Total number of children

NumberChildrenAtHome: Number of children staying along with

their parents

Education: Education qualification

Occupation: Present occupation

HouseOwnerFlag: 1- Owns house / 0- Doesn't have a permanent

address

NumberCarsOwned: Number of cars owned by the customer

DateFirstPurchase: First date of order by the customer

ProductKey: Primary Key for the product dataset

ProductName: Product name with colour of the product

Subcategory: Sub category name of the product

Category: Category name of the product

ListPrice: Sale price of the product

DaysToManufacture: Days to manufacture the product after

receiving the order

ProductLine: Product line name

ModelName: Model name of the product

ProductDescription: more details about the product **SalesTerritoryKey:** Primary Key of the Territory dataset

Region: Region name of the order

Country: Country name of the order

OrderDate: Date of the order received

ShipDate: Date when the order left the factory for export

SalesOrderNumber: Invoice number of the order

OrderQuantity: Number of quantities ordered for a product

UnitPrice: Per unit sale price of the product

TotalProductCost: Cost of the product

SalesAmount: Total sales price of the product

TaxAmt: Tax collected for the product sold

5. Architecture

- **1. Collect Raw Data** This step involves extracting the data from different sources relevant to the problem statement or obtaining data from the client
- **2. Importing Libraries** Import analysis related python libraries example Pandas, Numpy, Plotly, datetime etc
- **3. Data Wrangling** Contains following steps gathering data, assessing data, handling missing data and adding columns

- **4. Exploring Data** Once the data is loaded and preprocessed, we preform data analysis using python libraries and Business Intelligence tools like Power BI
- **5. Data Modelling** Data Modelling is one of the features used to connect multiple data sources in BI tool using a relationship.

A relationship defines how data sources are connected with each other and you can create interesting data visualizations on multiple data sources

6. Deployment - The prepared visualizations are deployed on the powerbi.microsoft.com site. Where they will be available publicly

6. Insights

1. Product Price per unit Distribution

☐ According to the above distribution plot we can conclude that maximum of the product unit price is below \$1000

2. Sales order line number distribution

Most of the time three to two products are ordered in a single order

3. Sales order quantity distribution

Maximum quantity ordered for a product is below 5

4. Age distribution

☐ A sizable portion of the clientele is made up of people between the act of 40 and 59

5. **Year wise sales**

exponential surge in sales

☐ The year 2016 saw an

6. Top 5 selling products

7. Quantity ordered based on category and subcategory from 2014 to 2016

OrderQuantity			
	SubCategory	Category	sale_year
616	Mountain Bikes		2014
2876	Road Bikes	Bikes	2014
1661	Mountain Bikes	Bikes	2015
3284	Road Bikes	Bikes	2015
493	Bike Racks		
394	Bike Stands		
12055	Bottles and Cages		
1381	Cleaners	Accessories	
3239	Fenders	Accessories	
9685	Helmets		
1124	Hydration Packs		
25518	Tires and Tubes		
5490	Mountain Bikes		2016
6535	Road Bikes	Bikes	
3410	Touring Bikes		
3178	Caps		
2143	Gloves	Clothing	
5068	Jerseys		
1491	Shorts		
856	Socks		
824	Vests		

8. Country wise quantity ordered

☐ High quantity of products is ordered from

Australia and United States

9. Overall profit based on order year, category and subcategory

Major Profit is contributed by the Bike Category

10. How efficient are the logistics?

- ☐ The average order has a gap of 7 days between the day the order is ready for export from the factory and the date it was shipped
- Management must work to reduce this gap toward 3 days

11. What was the best month for sales? How much was earned that month?

- Maximum profit earned in the months of June, November, and December
- 12. What time should we display advertisement to maximize

likelihood of customer is buying product?

☐ High sales orders are seen on

Wednesday and

Saturday; therefore, we can promote our product during these workweek

13. Which products are most often sold together?

☐ The above product can be sold in a bundle or a combined package for discount

14. Which product sold the most? why do you think it sold the most?

prices.corr(quantity_ordered)
-0.5333019792658484

- There is a high negative correlation between Price and number of Quantity ordered
- we can conclude that low price product has high demand

15. Compare most ordered product by gender

16. Does Gender and home ownership matter in order purchasing

☐ It's interesting to note that the average amount spent by men without permanent addresses is low, whilst the average amount spent by women without permanent addresses is higher

17. Number of children and Purchase correlation

☐ Purchase among customers with number of children, 2 and 5, are high

18. Occupation and purchase correlation

Purchases by Professional and Management customers are comparatively high

19. Which age group has produced the most revenue?

☐ Age range of 40-49 and 5059 is shows high demand compared to other age group

20. Yearly income range and purchase correlation

☐ High salary range leads to increase in revenue

21. Partial high school vs bachelors income mean and most ordered product

Customers with a high school diploma and modest annual income buy more products than people with bachelor's degrees

and lost

22. Customer segmentation

☐ According to the customer segmentation described above, approximately 15% of our clients are high value clients, whereas the majority of our clientele

are low value

clients

23. Cohort Analysis

- We can infer from the heatmap above that client retention in 2014 was subpar
- ☐ Since August of 2015, we have noticed some customers returning, though not in large numbers
- 2016 brought about a slight improvement in retention

7. Key Performance Indicator

Sales trend line

П	Cost trend line
	Average unit cost and price
	Revenue generated by Subcategory
	Sales by Product Line
	Revenue contribution by region
	Profit contribution by region
	Profit % by region
	Current year profit margin vs difference in last year's profit
	margin
	Total orders
	Total revenue
	Variance to target comparison by category
	Variance by month line chart
	Actual sales and target sales matrix
	Cohort analysis table
	Customer retention line chart
	Monthly spending trend
	Average monthly spend distribution

8. Conclusion

A sizable portion of the clientele is made up of people between
the ages of 40 and 59
The year 2016 saw an exponential surge in sales
High quantity of products is ordered from Australia and United
States
Major Profit is contributed by the Bike Category
The average order has a gap of 7 days between the day the
order is ready for export from the factory and the date it was
shipped
Maximum profit earned in the months of June, November, and
December
High sales orders are seen on Wednesday and Saturday , when
compared to other weekdays
There is a high negative correlation between Price and number
of Quantity ordered

Ц	The average amount spent by men without permanent
	addresses is low, whilst the average amount spent by women
	without permanent addresses is higher
	Age range of 40-49 and 50-59 is shows high demand compared
	to other age group
	High salary range leads to increase in revenue
	Customers with a high school diploma and modest annual
	income buy more products than people with bachelor's degrees
	According to the customer segmentation described above,
	approximately 15% of our clients are high value clients,
	whereas the majority of our clientele are low value and lost
	clients
	Client retention in 2014 was subpar
	2016 brought about a slight improvement in retention

9. Q & A

- Q1) What's the source of data?
 - The Dataset was taken from iNeuron's Provided Project Description Document
 - O Data Link
- Q2) What was the type of data?
 - The data was the combination of numerical and Categorical values
- Q 3) What's the complete flow you followed in this Project?
 - Refer page 4 for better Understandings
- Q4) What techniques were you using for data?
 - Removing unwanted attributes
 - Visualizing relation of independent variables with each other
 - Cleaning data by removing column with missing values
 - Converting Numerical data into Categorical values
- Q 6) What were the libraries that you used in Python?

O I used Pandas, NumPy, Matplotlib, Seaborn and Plotly libraries