

DeepRoad

도로를

누빈다

깊이

학습하고

단계

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

조건부 자동화

고도 자동화

완전 자동화

자율	·주행 단계별	기술과 도전	
명칭	기술명	사용 기반 기술	
없음	운전자 상태 감지 (DSM)	영상인식, 적외선 센서, HMI	
	사각지대 감지 (BSM)	근거리 RADAR, 초음파 센서	
운전자 지원	차선이탈 경고 (LDW)	카메라 영상인식	
	적응형 크루즈 컨트롤 (ACC)	LiDAR, RADAR, 스테레오 카메라	
부분 자동화	차로유지 지원 (LKAS)	카메라 영상인식	
	자동주차 보조 (PAS)	초음파 센서, 근거리 RADAR	
	전방/후방 차량 모니터링	카메라, RADAR, 초음파 센서	
	교통신호 인식 (TSR)	카메라 영상인식	
	보행자 감지 (PD)	카메라, RADAR, LiDAR	
	충돌방지 시스템 (CAS/ICAS)	RADAR, 카메라, LiDAR	
	자동 제동장치 (AEB)	LiDAR, RADAR, 초음파 센서	
	적응형 상향등 제어 (AHBC)	카메라, 영상인식, RADAR	
	야간 시야 보조 (NV)	적외선 카메라	
スカロスにをおい	고속도로 자율주행	고정밀 GPS, 3D맵, LiDAR, 센서융합	

카메라, RADAR, HMI

LiDAR, 고정밀지도, 클라우드

풀스택 AI, V2X, 엣지컴퓨팅

정체구간 주행보조 (TJP)

셔틀, 로보택시

도심 주행 포함 완전자율주행

DR프로젝트 (with ChatGPT) 진행 과정

ه, 자율주행차

T:: 개발 환경

DR프로젝트 (with ChatGPT) 진행 과정

ర్థి OpenCV

/♠ 차선 검출

Gemini 도움

흑백 + 블러

엣지 검출

ROI 설정

허프변환

차선 필터링

최종 차선

/▄\ 차선 검출

ChatGPT 도움

DR프로젝트 (with ChatGPT) 진행 과정

(해 딥러닝

/▄\ 차선 검출

(해 딥러닝

/심 차선 검출

데이터 구축

(생 딥러닝

/심 차선 검출

모델 구축

텐서플로우

CNN 레이어가 포함된 순차 모델

NVIDIA PilotNet 아키텍처

(해 딥러닝

/⇔\ 차선 검출

모델 학습

(1) 데이터 전처리 / 정규화

(2) 데이터 분할

학습데이터 **80%** 검증데이터 **20%**

(4) 모델 구축

(5) 모델 학습

(3) 조향각 분포 확인

(6) 모델 저장 및 검증

/♠ 차선 검출

차량 탑재 및 테스트

RPi 모델 로드 시 오류 (1~4차)

```
Traceback (most recent call last): File "/home/pi/DeepRoad/8 4 LaneDetection.py", line 115, in <module> main() File
Traceback (most recent call last): File "/home/pi/DeepRoad/8 4 LaneDetection.py", line 115, in <module> main() File
 sal Not Traceback (most recent call last): File "/home/pi/DeepRoad/8_4_LaneDetection.py", line 115, in <module> main() File
    /US "/home/pi/DeepRoad/8_4_LaneDetection.py", line 72, in main model = load_model(model_path) File
    reg "/home/pi/DeepRoad/env/lib/python3.11/site-packages/keras/src/saving/saving_api.py", line 262, in load_model return
line 276 TypeError( TypeError: Error when deserializing class 'InputLayer' using config={'batch_shape': [None, 66, 200, 3],
```


(배 딥러닝

/심\ 차선 검출

차량 탑재 및 테스트

RPi 모델 로드 시 오류 (1~4차)

(생 딥러닝

/⊖\ 차선 검출

차량 탑재 및 테스트

Tensorflow 버전 맞추기 오류 (5~6차)

구글 코랩

2.15.0

2.18.0

(해 딥러닝

/e\ 차선 검출

차량 탑재 및 테스트

Tensorflow 버전 맞추기 오류 (5~6차)

아이고, 파이썬 패키지 의존성 문제 때문에 골치 아프시겠네요! 지금 보니 여러 패키지들이 서로 요구하는 버전이 달라서 충돌이 일어나고 있고, 특히 tensorflow 를 불러올 때 RecursionError 가 발생하는 상황입니다. 이는 설치된 패키지들의 버전이 맞지 않아서 생기는 문제일 가능성이 높아요.

문제 상황 요약:

- jax , tensorflow-decision-forests , ydf , tf-keras , thinc , grpcio-status , tensorflow-text , tensorstore 등 여러 패키지들이 각각 필요로 하는 tensorflow , protobuf , numpy , ml-dtypes 의 버전이 현재 설치된 버전과 맞지 않습니다.
- 이러한 버전 충돌 때문에 tensorflow 를 불러오는 과정에서 무한 재귀 오류 (RecursionError)가 발생하고 있습니다.

차량 탑재 및 테스트

TensorflowLite 모델로 저장 (7차)

라즈베리파이 (RPi) 시스템 다운 됨

/▄\ 차선 검출

차량 탑재 및 테스트

최초 테스트 (책 참고) 결과

DR프로젝트 (with ChatGPT) 진행 과정

Р 객체 탐지

Traffic Light Detection and Color Classification Using Yolo v8

(해 딥러닝

/▄\ 차선 검출

DR프로젝트 (with ChatGPT) 진행 과정

∰ 개발 환경

작업 준비

계속 실패해도

깊이 학습하고

Deep

앞으로 나아간다

도로를 누빈다

Road

향후 확장 프로젝트

향후 확장 프로젝트

		0 1 10 ——	·—
단계	명칭	기술명	사용 기반 기술
Level 0	없음	운전자 상태 감지 (DSM)	영상인식, 적외선 센서, HMI
		사각지대 감지 (BSM)	근거리 RADAR, 초음파 센서
Level 1	운전자 지원	차선이탈 경고 (LDW)	카메라 영상인식
		적응형 크루즈 컨트롤 (ACC)	LiDAR, RADAR, 스테레오 카메라
Level 2	부분 자동화	차로유지 지원 (LKAS)	카메라 영상인식
		자동주차 보조 (PAS)	초음파 센서, 근거리 RADAR
		전방/후방 차량 모니터링	카메라, RADAR, 초음파 센서
		교통신호 인식 (TSR)	카메라 영상인식
		보행자 감지 (PD)	카메라, RADAR, LiDAR
		충돌방지 시스템 (CAS/ICAS)	RADAR, 카메라, LiDAR
		자동 제동장치 (AEB)	LiDAR, RADAR, 초음파 센서
		적응형 상향등 제어 (AHBC)	카메라, 영상인식, RADAR
		야간 시야 보조 (NV)	적외선 카메라
Level 3	조건부 자동화	고속도로 자율주행	고정밀 GPS, 3D맵, LiDAR, 센서융합
		정체구간 주행보조 (TJP)	카메라, RADAR, HMI

셔틀, 로보택시

도심 주행 포함 완전자율주행

LiDAR, 고정밀지도, 클라우드

풀스택 AI, V2X, 엣지컴퓨팅

고도 자동화

완전 자동화

Level 4

Level 5

더 깊이 연구하고

계속 실패해도

깊이 학습하고

Deep

끝없이 정진한다

앞으로 나아간다

> 도로를 누빈다

Road

감사합니다.