Men's Bodyfat Percentage Calculator

Yunhui Qi, Sam Waterbury, Junxia Zhu

University of Wisconsin – Madison

February 7, 2019

Overview

- Rule of Thumb and Example
- 2 Data Description and Background Info
- Oata Cleaning
- Wariable Selection
- 5 Model Fitting and Diagnostic
- 6 Robustness Tests
- Strengths and Weaknesses

Rule of Thumb and Example

Rule of Thumb

 $BODYFAT = 0.91 \cdot ABDOMEN - 0.14 \cdot WEIGHT - 40.27$ "90% abdomen minus 10% weight, don't forget to minus 40%, get your body fat!".

Example Usage

for an ordinary man with abdomen 84cm and weight 173lbs, his predicted body fat % percentage would be around 12.05%.

Data Description

IDNO	BODYFAT	DENSITY	AGE	WEIGHT	HEIGHT	ADIPOSITY	NECK	CHEST	ABDOMEN	HIP	THIGH	KNEE	ANKLE	BICEPS	FOREARM	WRIST
1	12.6	1.0708	23	154.25	67.75	23.7	36.2	93.1	85.2	94.5	59.0	37.3	21.9	32.0	27.4	17.1
2	6.9	1.0853	22	173.25	72.25	23.4	38.5	93.6	83.0	98.7	58.7	37.3	23.4	30.5	28.9	18.2
3	24.6	1.0414	22	154.00	66.25	24.7	34.0	95.8	87.9	99.2	59.6	38.9	24.0	28.8	25.2	16.6
4	10.9	1.0751	26	184.75	72.25	24.9	37.4	101.8	86.4	101.2	60.1	37.3	22.8	32.4	29.4	18.2
5	27.8	1.0340	24	184.25	71.25	25.6	34.4	97.3	100.0	101.9	63.2	42.2	24.0	32.2	27.7	17.7
6	20.6	1 0502	24	210.25	74 75	26.5	39.0	104.5	94.4	107.8	66.0	42.0	25.6	35.7	30.6	18.8

- 252 observations of 16 features
- DENSITY is measured accurately from underwater weighing and BODYFAT is obtained by Siri's equation.

Figure: linear diagnostic plot

IDNO	BODYFAT	DENSITY	AGE	,
48	6.4	1.0665	39	_
76	18.3	1.0666	61	
96	17.3	1.0991	53	
182	0.0	1.1089	40	

Figure: abnormal points

BFP calculated by Density

• 48th: 14.1%

• 76th: 14.1%

• 96th: 0.37%

IDNO	BODYFAT	DENSITY	AGE	WEIGHT	HEIGHT	ADIPOSITY	
182	0	1.1089	40	118.5	68	18.1	

Figure: 182nd point

- 0% of bodyfat is impossible, and the BODYFAT calculated by DENSITY is negative.
- ADIPOSITY measures BMI which relies on weight and height. Check if this is correct by $BMI = 703 * Weight(lbs)/Height^2(in^2)$
- $AdultBodyFat\% = 1.51 \cdot BMI 0.70 \cdot AGE 3.6 \cdot SEX + 1.4$ Impute BFP of 182^{nd} point with value 14.7%

Figure: Boxplot on all variables

IDNO	BODYFAT	DENSITY	AGE	WEIGHT	HEIGHT	ADIPOSITY	NECK	CHEST	ABDOMEN	
39	33.8	1.0202	46	363.15	72.25	48.9	51.2	136.2	148.1	Ī
42	31.7	1.0250	44	205.00	29.50	29.9	36.6	106.0	104.3	

Figure: abnormal points

- 39th: Weight is extremely high.
- 42^{th} : Height is 29.50 inches. Apply $BMI = 703 * Weight(lbs)/Height^2(in^2)$ and got 69.43 inches.
- We also detect some other points, decide not to do any changes.

Variable Selection

Stepwise Selection

- Bidirectional stepwise regression using both AIC and BIC
- AIC resulted in models with too many features
- BIC identified 4 important variables: ABDOMEN, WEIGHT, WRIST, and FOREARM

Lasso Regression

- Chose λ -value which selected a model with four variables
- It selected AGE, HEIGHT, ABDOMEN, and WRIST
- Thus, we narrowed our search to six variables:
 ABDOMEN, WRIST, WEIGHT, FOREARM, AGE, and HEIGHT

Variable Selection

- Using these six variables, we performed Best Subset Selection
- This found the best variables for a model of size p = 1, 2, 3, 4:

p	√MSE	Features
1	4.54	ABDOMEN
2	4.14	ABDOMEN, WEIGHT
3	4.08	ABDOMEN, WEIGHT, WRIST
4	4.04	ABDOMEN, WEIGHT, WRIST, FOREARM

- We chose to use p=2 since it provides the best balance between simplicity and accuracy
- We also performed BSS using second-order interactions (multiplication and ratios), but this did not improve the accuracy of an estimator with 2 variables

Model Fitting

SLR model:

 $BODYFAT\% = 0.91 \cdot ABDOMEN(lbs) - 0.14 \cdot WEIGHT(cm) - 40.27\%$

- Interpretation of SLR results:
 - Coefficients:
 - Negative coefficient of weight: gain of weight = fat or muscle?
 - R²: 70.98% of the variation in body fat,compared with the full model which has adjusted R² equal to 72.49%, our model doesn't have much efficiency loss but less predictors.

Model Diagnostic

- Additivity: reasonable from the interpretation of coefficients
- Constant effects: have no reason to deny.
- Fixed X: have no reason to deny.
- Multicolinearity: vif value less than 10.
- Linearity: scatter plot, fitted vs residuals plot
- Error terms: Q-Q plot, fitted vs residuals plot, standardized residuals plot.
- Outliers: cook's distance and pii values, leverage plot.

Model Diagnostic

Robustness Tests

- Trade off between precision and robustness.
- Bootstrap sample of original data set.

	with	without	bootstrap
(Intercept)	-40.27	-41.77	-40.27
ABDOMEN	0.91	0.90	0.91
WEIGHT	-0.14	-0.12	-0.14

Strengths and Weaknesses

Strengths:

- Adopting background information to impute strange points.
- Considering interaction and ratio terms.
- Evaluation of robustness and precision.

• Weakness:

- P hacking problem.
- Negative coefficient of weight gives some constrain to our shiny app.

The End