Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Meyer, Schneider, Unterreiter SS 2008 21.07.2008

Juli – Klausur (Rechenteil) Analysis II für Ingenieure

Name:	Vorname:						
MatrNr.:	Studi	Studiengang:					
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge				ben. M	Iit Blei	stift ge-	
Dieser Teil der Klausur umfasst die vollständigen Rechenweg an.	Recher	naufgal	oen. G	eben S	Sie imn	ner den	
Die Bearbeitungszeit beträgt 60 Minuten.							
Die Gesamtklausur ist mit 40 von 80 Punkten bestanden, wenn in jedem der beiden Teile der Klausur mindestens 12 von 40 Punkten erreicht werden.							
Korrektur							
	1	2	3	4	5	Σ	

1. Aufgabe 9 Punkte

Ermitteln Sie für die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = x^3 + y^3 - 6xy + 1$. alle lokalen Extrema. Geben Sie auch die Art der Extrema an. Hat f auf \mathbb{R}^2 auch globale Extrema?

2. Aufgabe 7 Punkte

Bestimmen Sie die Extrema der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit f(x,y) = x - 2y unter der Nebenbedingung $x^2 + 4y^2 = 8$. Geben Sie auch die Art der Extrema an.

3. Aufgabe 9 Punkte

Berechnen Sie den Fluß des Vektorfeldes $\vec{v} : \mathbb{R}^3 \to \mathbb{R}^3$ mit $\vec{v}(x,y,z) = (\frac{x^3}{3}, \frac{y^3}{3}, 0)^T$ durch die gesamte Oberfläche des Körpers K, der von den Flächen $F_1 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 = z\}$ und $F_2 = \{(x,y,z) \in \mathbb{R}^3 \mid z = 1\}$ berandet wird.

Hinweis: Verwenden Sie einen geeigneten Integralsatz und Zylinderkoordinaten.

4. Aufgabe 6 Punkte

Berechnen Sie das Kurvenintegral $\int_{\vec{c}} \vec{v} \cdot \vec{ds}$ für das Vektorfeld $\vec{v} \colon \mathbb{R}^2 \to \mathbb{R}^2$ mit $\vec{v}(x,y) = (y^2 + \cos x, \cos x)^T$ längs der Kurve \vec{c} , wobei \vec{c} der Graph $y = f(x) = \sin(x)$ mit $x \in [0, 2\pi]$ ist.

5. Aufgabe 9 Punkte

Sei B das Dreieck in der xy-Ebene mit den Eckpunkten $(0,0),\,(0,2)\,$ und (1,1).

Berechnen Sie $\iint_B x^2 y \, dx dy$.