

SF1624 Algebra och geometri Tentamen 11 januari 2021

Skrivtid: 08:00-11:00

Tillåtna hjälpmedel: inga.

Allt plagiat som vi hittar i inlämnade lösningar kommer att rapporteras.

Examinator: Danijela Damjanović

Tentamen består av sex uppgifter som vardera ger maximalt sex poäng.

Del A på tentamen utgörs av de två första uppgifterna. Till antalet erhållna poäng från uppgift 1 adderas dina bonuspoäng. Poängsumman på uppgift 1 kan dock som högst bli 6 poäng.

De två följande uppgifterna utgör del B och de två sista uppgifterna del C, som främst är till för de högre betygen.

Betygsgränserna vid tentamen kommer att ges av

Betyg	Α	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

Instruktioner

- För poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa.
- Det innebär att lösningarna ska vara prydligt skrivna med en handstil som är lätt att läsa.
- Det innebär också att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Alla steg i alla beräkningar ska finnas redovisade och vara lätta att följa.
- Lösningar och svar utan korrekta, utförliga och tydliga motiveringar ger inga poäng.

0. Hederskodex. Se uppgift 0 i Canvas. Hederskodex är obligatorisk och tentamen rättas inte (blir underkänd) om du inte har lämnat in hederskodex.

DEL A

1. Linjerna L_1 och L_2 ges på parameterform av

$$L_1: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \quad t \in \mathbb{R},$$

$$L_2: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} + s \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}, \quad s \in \mathbb{R}.$$

- (a) Bestäm en skalär ekvation för det plan \mathcal{P} som innehåller linjen L_1 och är parallellt med linjen L_2 .
- (b) Bestäm det kortaste avståndet mellan L_1 och L_2 . (Tips: det kortaste avståndet mellan L_1 och L_2 är samma som avståndet från en godtycklig punkt på L_2 till planet \mathcal{P}). (3 p)

2. Låt A vara matrisen

$$\begin{bmatrix} 2 & 2 & 7 \\ 0 & 2 & 1 \\ 3 & -14 & 2 \end{bmatrix}.$$

(a) Hitta en vektor \vec{v} så att ekvationen $A\vec{x} = \vec{v}$ inte har några lösningar. (3 p)

(b) Hitta en vektor $\vec{w} \neq \vec{0}$ så att ekvationen $A\vec{x} = \vec{w}$ har oändligt många lösningar. (3 p)

DEL E

3. Låt $\vec{u} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \ \vec{v} = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}, \ \vec{w} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$. Låt F vara en avbildning som uppfyller: $F(\vec{u}) = \vec{u}, \quad F(\vec{v}) = 2\vec{v}, \quad F(\vec{w}) = -\vec{w}.$

(a) Bestäm avbildningsmatrisen i standardbasen. (4 p)

(b) Diagonalisera avbildningsmatrisen. (2 p)

4. Låt $V=\operatorname{span}(\left[\begin{array}{c}1\\2\\4\end{array}\right],\left[\begin{array}{c}-1\\2\\1\end{array}\right],\left[\begin{array}{c}0\\4\\5\end{array}\right]).$

(a) Avgör om $\vec{v} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ finns i V. (2 p)

(b) Bestäm dimensionen $\dim(V)$ av V. (1 p)

(c) Hitta en ortonormal bas för V. (3 p)

DEL C

5. Matrisen A är symmetrisk och har storlek 3×3 . Den har ett enkelt egenvärde $\lambda_1 = 3$ med en egenvektor $v_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ och ett dubbelt egenvärde $\lambda_2 = -1$.

(a) Bestäm matrisen A. (3 p)

(b) Beräkna
$$A^{99}w$$
, där $w = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$. (3 p)

6. Låt U vara ett ändligdimensionellt vektorrum, och låt V och W vara två delrum av U. Då sägs $U = V \oplus W$ vara den *inre direkta summan* av V och W om varje vektor $\vec{u} \in U$ på ett *entydigt* sätt kan skrivas som $\vec{u} = \vec{v} + \vec{w}$, där $\vec{v} \in V$ och $\vec{w} \in W$.

Visa att $U = V \oplus W$ om och endast om följande två påståenden är uppfyllda: (6 p)

(1) $V \cap W = \vec{0}$,

(2) $\dim(V) + \dim(W) = \dim(U)$.