Discrete Mathematics for Computer Science

Department of Computer Science

Lecturer: Nazeef Ul Haq

Reference Book: Discrete Mathematics and its applications BY

Kenneth H. Rosen -8^{th} edition

Lecture 3

Chapter 1. The Foundations

- 2. Propositional Equivalences
- 3. Predicates and Quantifiers

Truth Tables

Truth table for ~p ∧ (q ∨ ~r)

p	q	r	$\stackrel{\sim}{\mathbf{r}}$	$q \vee \sim r$	~ p	$\sim p \wedge (q \vee \sim r)$
T	T	T	F	T	F	F
T	T	F	T	T	F	
T	F	T	F	F	F	F
Т	F	F	T	T	F	F
F	T	T	F	T	T	T
F	T	F	T	Т Т		T
F	F	T	F	F T		F
F	F	F	T	T	T	T

4

Double Negation

Double Negative Property ~(~p) ≡ p

p	~p	~(~p)			
T	F	T			
F	T	F			

- Example: "It is not true that I am not happy"
- Solution:
- Let p = "I am happy"
- then ~ p = "I am not happy"
- and ~(~ p) = "It is not true that I am not happy"
- Since ~ (~p) ≡ p
- Hence the given statement is equivalent to: "I am happy"

De Morgan's Laws

- The negation of an and statement is logically equivalent to the or statement in which each component is negated.
 Symbolically ~(p ∧ q) ≡ ~p ∨ ~q.
 ¬(x intersection y) = ~x ∪ ~y
- The negation of an or statement is logically equivalent to the and statement in which each component is negated.
 Symbolically: ~(p ∨ q) ≡ ~p ∧ ~q.
 ~(x ∪ y) = ~x intersection ~y

De Morgan's Laws

How we can prove this?~(p ∨ q) ≡ ~p ∧ ~q

p	q	~p	~q	$p \vee q$	\sim (p \vee q)	~p ^ ~q
T	T	F	F	T	F	F
T	F	F	T	T	F	F
F	T	T	F	T	F	F
F	F	T	T	F	T	T
					Î	1

Same truth values

4

De Morgan's Laws

- Give negations for each of the following statements:
 - a. The fan is slow **or** it is very hot.
 - b. Akram is unfit and Saleem is injured.
- Solution:
 - a. The fan is **not** slow **and** it is **not** very hot.
 - b. Akram is **not** unfit **or** Saleem is **not** injured.
- INEQUALITIES AND DEMORGAN'S LAWS:
- Use DeMorgan's Laws to write the negation of
 -1 < x ≤ 4
- $-1 < x \le 4$ means x > -1 and $x \le 4$

By DeMorgan's Law, the negation is:

x > -1 or $x \le 4$ Which is equivalent to: $x \le -1$ or x > 4

1.2 Propositional Equivalence

tautology: All true

- A tautology is a compound proposition that is true no matter what the truth values of its atomic propositions are! And represented by a symbol "t"
 - e.g. $p \lor \neg p$ ("Today the sun will shine or today the sun will not shine.") [What is its truth table?]

 A contradiction is a compound proposition that is false no matter what! And represented by a symbol "c"

- e.g. $p \land \neg p$ ("Today is Wednesday and today is not Wednesday.") [Truth table?]
- A contingency is a compound proposition that is neither a tautology nor a contradiction.
 - e.g. $(p \lor q) \rightarrow \neg r$

Logical Equivalence

- Compound proposition p is *logically* equivalent to compound proposition q, written $p \equiv q$ or $p \Leftrightarrow q$, iff the compound proposition $p \leftrightarrow q$ is a tautology.
- Compound propositions p and q are logically equivalent to each other iff p and q contain the same truth values as each other in all corresponding rows of their truth tables.

Proving Equivalence via Truth Tables

• Prove that $\neg(p \land q) \equiv \neg p \lor \neg q$. (De Morgan's law)

p q	$p \land q \mid \neg p \mid \neg$		$\neg q$	$\neg p \times$	$\neg (p \land q)$			
TT	T	F	F	F			F	
TF	F	F	T	T			T	
FT	F	T	F	T			T	
F F	F	T	T	T			T	

Show that Check out the solution in the textbook!

■
$$\neg(p \lor q) \equiv \neg p \land \neg q$$
 (De Morgan's law)

$$p \rightarrow q \equiv \neg p \lor q$$

•
$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$
 (distributive law)

Equivalence Laws

These are similar to the arithmetic identities you may have learned in algebra, but for propositional equivalences instead.

They provide a pattern or template that can be used to match part of a much more complicated proposition and to find an equivalence for it and possibly simplify it.

Equivalence Laws

$$p \wedge T \equiv p$$
 $p \vee F \equiv p$

■ Domination:
$$p \lor T \equiv T$$
 $p \land F \equiv F$

$$p \wedge F \equiv F$$

• Idempotent:
$$p \lor p \equiv p$$
 $p \land p \equiv p$

$$p \vee p \equiv p$$

$$p \wedge p \equiv p$$

■ Double negation:
$$\neg \neg p = p$$

$$\neg\neg p \equiv p$$

• Commutative:
$$p \lor q \equiv q \lor p$$
 $p \land q \equiv q \land p$

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

$$(p \land q) \land r \equiv p \land (q \land r)$$

More Equivalence Laws

■ Distributive: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

De Morgan's:

$$\neg(p \land q) \equiv \neg p \lor \neg q$$
$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Absorption

$$p \lor (p \land q) \equiv p$$
 $p \land (p \lor q) \equiv p$

Trivial tautology/contradiction:

$$p \vee \neg p \equiv \mathbf{T}$$
 $p \wedge \neg p \equiv \mathbf{F}$

See Table 6, 7, and 8 of Section 1.2

Defining Operators via Equivalences

Using equivalences, we can *define* operators in terms of other operators.

■ Exclusive or:
$$p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$$

 $p \oplus q \equiv (p \lor q) \land \neg (p \land q)$

• Implies:
$$p \rightarrow q \equiv \neg p \lor q$$

■ Biconditional:
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

 $p \leftrightarrow q \equiv \neg (p \oplus q)$

This way we can "normalize" propositions

An Example Problem

■ Show that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent.

$$\neg(p \rightarrow q)$$

 $\equiv \neg(\neg p \lor q)$ [Expand definition of \rightarrow]
 $\equiv \neg(\neg p) \land \neg q$ [DeMorgan's Law]
 $\equiv p \land \neg q$ [Double negation Law]

EXERCISE

- Use Logical Equivalence to rewrite each of the following sentences more simply.
- It is not true that I am tired and you are smart.
 {I am not tired or you are not smart.}
- It is not true that I am tired or you are smart. {I am not tired and you are not smart.}
- I forgot my pen or my bag and I forgot my pen or my glasses.
 (p \(\text{q} \) \^ (p \(\text{r} \)) = p \(\text{(q \^ r)} \)
 - {I forgot my pen or I forgot my bag and glasses.}
- It is raining and I have forgotten my umbrella, or it is raining and I have forgotten my hat.
 {It is raining and I have forgotten my umbrella or my hat.}

1

Negation of Implication

Since p→q ≡ ~p∨q therefore

~
$$(p \rightarrow q) \equiv$$
 ~ $(~p \lor q)$
≡ ~ $(~p) \land (~q)$ by De Morgan's law
≡ $p \land ~q$ by the Double Negative law

Thus the negation of "if p then q" is logically equivalent to "p and not q".

Example:

1. If Ali lives in Pakistan then he lives in Lahore.
Ali lives in Pakistan and he does not live in Lahore.

Example

- Show that $\sim (p \rightarrow q) \rightarrow p$ is a tautology without using truth tables.
- \sim (p \rightarrow q) \rightarrow p Given statement form $\equiv \sim [\sim (p \land \sim q)] \rightarrow p \quad \text{Implication law p} \rightarrow q \equiv \sim (p \land \sim q)$ $\equiv (p \land \sim q) \rightarrow p \quad \text{Double negation law}$ $\equiv \sim (p \land \sim q) \lor p \quad \text{Implication law p} \rightarrow q \equiv \sim p \lor q$ $\equiv (\sim p \lor q) \lor p \quad \text{De Morgan's law}$ $\equiv (q \lor \sim p) \lor p \quad \text{Commutative law}$ $\equiv q \lor (\sim p \lor p) \quad \text{Associative law}$ $\equiv q \lor t \quad \text{Negation law}$ $\equiv t$

Another Example Problem

Check using a symbolic derivation whether

$$(p \land \neg q) \to (p \oplus r) \equiv \neg p \lor q \lor \neg r$$

$$(p \land \neg q) \rightarrow (p \oplus r)$$
 [Expand definition of \rightarrow]
$$\equiv \neg (p \land \neg q) \lor (p \oplus r)$$
 [Expand definition of \oplus]
$$\equiv \neg (p \land \neg q) \lor ((p \lor r) \land \neg (p \land r))$$
[DeMorgan's Law]
$$\equiv (\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r))$$

$$cont.$$

Example Continued...

$$(p \land \neg q) \rightarrow (p \oplus r) \equiv \neg p \lor q \lor \neg r$$

$$(\neg p \lor q) \lor ((p \lor r) \land \neg (p \land r)) \ [\lor Commutative]$$

$$\equiv (q \lor \neg p) \lor ((p \lor r) \land \neg (p \land r)) \ [\lor Associative]$$

$$\equiv q \lor (\neg p \lor ((p \lor r) \land \neg (p \land r))) \ [Distribute \lor over \land]$$

$$\equiv q \lor (((\neg p \lor (p \lor r)) \land (\neg p \lor \neg (p \land r)))) \ [\lor Assoc.]$$

$$\equiv q \lor (((\neg p \lor p) \lor r) \land (\neg p \lor \neg (p \land r))) \ [Trivial taut.]$$

$$\equiv q \lor ((T \lor r) \land (\neg p \lor \neg (p \land r))) \ [Domination]$$

$$\equiv q \lor ((\neg p \lor \neg (p \land r))) \ [Identity]$$

$$\equiv q \lor ((\neg p \lor \neg (p \land r)))$$

cont.

End of Long Example

$$(p \land \neg q) \rightarrow (p \oplus r) \equiv \neg p \lor q \lor \neg r$$

$$q \lor (\neg p \lor \neg (p \land r))$$
 [DeMorgan's Law]
 $\equiv q \lor (\neg p \lor (\neg p \lor \neg r))$ [\lor Associative]
 $\equiv q \lor ((\neg p \lor \neg p) \lor \neg r)$ [Idempotent]
 $\equiv q \lor (\neg p \lor \neg r)$ [Associative]
 $\equiv (q \lor \neg p) \lor \neg r$ [\lor Commutative]
 $\equiv \neg p \lor q \lor \neg r$

Review: Propositional Logic

- Atomic propositions: p, q, r, ...
- Boolean operators: ¬ ∧ ∨ ⊕ → ↔
- Compound propositions: $(p \land \neg q) \lor r$
- Equivalences: $p \land \neg q \Leftrightarrow \equiv \neg (p \rightarrow q)$
- Proving equivalences using:
 - Truth tables
 - Symbolic derivations (series of logical equivalences) $p \equiv q \equiv r \equiv \cdots$

1.3 Predicate Logic

Consider the sentence

"For every x, x > 0"

If this were a true statement about the positive integers, it could not be adequately symbolized using only statement letters, parentheses and logical connectives.

The sentence contains two new features: a predicate and a quantifier

Subjects and Predicates

- In the sentence "The dog is sleeping":
 - The phrase "the dog" denotes the subject the object or entity that the sentence is about.
 - The phrase "is sleeping" denotes the *predicate* a property that the subject of the statement can have.
- In predicate logic, a predicate is modeled as a proposional function P(-) from subjects to propositions.
 - P(x) = "x is sleeping" (where x is any subject).
 - P(The cat) = "The cat is sleeping" (proposition!)

More About Predicates

- Convention: Lowercase variables x, y, z...
 denote subjects; uppercase variables P, Q,
 R... denote propositional functions (or
 predicates).
- Keep in mind that the result of applying a predicate P to a value of subject x is the proposition. But the predicate P, or the statement P(x) itself (e.g. P = "is sleeping" or P(x) = "x is sleeping") is not a proposition.
 - e.g. if P(x) = "x is a prime number", P(3) is the *proposition* "3 is a prime number."

4

Propositional Functions

- Predicate logic generalizes the grammatical notion of a predicate to also include propositional functions of any number of arguments, each of which may take any grammatical role that a noun can take.
 - e.g.:
 let P(x,y,z) = "x gave y the grade z"
 then if
 x = "Mike", y = "Mary", z = "A",
 then
 P(x,y,z) = "Mike gave Mary the grade A."

Examples

- Let P(x): x > 3. Then
 - P(4) is TRUE FALSE 4 > 3
 - P(2) is TRUE FALSE 2 > 3
- Let Q(x, y): x is the capital of y. Then
 - Q(Washington D.C., U.S.A.) is TRUE
 - Q(Hilo, Hawaii) is FALSE
 - Q(Massachusetts, Boston) is FALSE
 - Q(Denver, Colorado) is TRUE
 - Q(New York, New York) is FALSE
- Read EXAMPLE 6 (pp.33)
 - If x > 0 then x := x + 1 (in a computer program)

Universe of Discourse (U.D.)

- The power of distinguishing subjects from predicates is that it lets you state things about many objects at once.
- e.g., let P(x) = "x + 1 > x". We can then say, "For *any* number x, P(x) is true" instead of $(\mathbf{0} + 1 > \mathbf{0}) \land (\mathbf{1} + 1 > \mathbf{1}) \land (\mathbf{2} + 1 > \mathbf{2}) \land \dots$
- The collection of values that a variable *x* can take is called *x*'s *universe of discourse* or the *domain of discourse* (often just referred to as the *domain*).

Quantifier Expressions

- Quantifiers provide a notation that allows us to quantify (count) how many objects in the universe of discourse satisfy the given predicate.
- "∀" is the FOR∀LL or *universal* quantifier. ∀x P(x) means <u>for all</u> x in the domain, P(x).
- " \exists " is the \exists XISTS or **existential** quantifier. $\exists x P(x)$ means there exists an x in the domain (that is, 1 or more) such that P(x).

T

The Universal Quantifier ∀

- $\forall x P(x)$: For all x in the domain, P(x).
- $\forall x P(x)$ is
 - true if P(x) is true for every x in D (D: domain of discourse)
 - false if P(x) is false for at least one x in D
 - For every real number x, $x^2 \ge 0$ TRUE
 - For every real number x, $x^2 1 > 0$ FALSE
- A *counterexample* to the statement $\forall x P(x)$ is a value x in the domain D that makes P(x) false
- What is the truth value of ∀x P(x) when the domain is empty? TRUE

The Universal Quantifier ∀

If all the elements in the domain can be listed as x_1 , $x_2,...,x_n$ then, $\forall x P(x)$ is the same as the conjunction:

$$P(x_1) \wedge P(x_2) \wedge \cdots \wedge P(x_n)$$

- Example: Let the domain of x be parking spaces at UH. Let P(x) be the statement "x is full." Then the universal quantification of P(x), ∀x P(x), is the proposition:
 - "All parking spaces at UH are full."
 - or "Every parking space at UH is full."
 - or "For each parking space at UH, that space is full."

The Existential Quantifier 3

- ∃x P(x): There exists an x in the domain (that is, 1 or more) such that P(x).
- $\exists x P(x) \text{ is}$
 - true if P(x) is true for at least one x in the domain
 - false if P(x) is false for every x in the domain
- What is the truth value of $\exists x P(x)$ when the domain is empty? FALSE
- If all the elements in the domain can be listed as $x_1, x_2,..., x_n$ then, $\exists x P(x)$ is the same as the disjunction:

$$P(x_1) \vee P(x_2) \vee \cdots \vee P(x_n)$$

The Existential Quantifier 3

Example:

Let the domain of x be parking spaces at UH. Let P(x) be the statement "x is full."

Then the **existential quantification** of P(x), $\exists x P(x)$, is the *proposition*:

- "Some parking spaces at UH are full."
- or "There is a parking space at UH that is full."
- or "At least one parking space at UH is full."

Free and Bound Variables

An expression like P(x) is said to have a free variable x (meaning, x is undefined).

A quantifier (either ∀ or ∃) operates on an expression having one or more free variables, and binds one or more of those variables, to produce an expression having one or more bound variables.

Example of Binding

- P(x,y) has 2 free variables, x and y.
- $\forall x P(x,y)$ has 1 free variable \bigvee , and one bound variable \bigvee . [Which is which?]
- "P(x), where x = 3" is another way to bind x.
- An expression with <u>zero</u> free variables is a bona-fide (actual) proposition.
- An expression with <u>one or more</u> free variables is not a proposition:

1

Quantifiers with Restricted Domain

- Sometimes the universe of discourse is restricted within the quantification, e.g.,
 - $\forall x > 0$ P(x) is shorthand for "For all x that are greater than zero, P(x)." = $\forall x (x > 0 \rightarrow P(x))$
 - $\exists x > 0$ P(x) is shorthand for "There is an x greater than zero such that P(x)." $= \exists x (x > 0 \land P(x))$

Translating from English

- Express the statement "Every student in this class has studied calculus" using predicates and quantifiers.
 - Let C(x) be the statement: "x has studied calculus."
 - If domain for x consists of the students in this class, then
 - it can be translated as $\forall x C(x)$

or

- If domain for x consists of all people
- Let S(x) be the predicate: "x is in this class"
- Translation: $\forall x (S(x) \rightarrow C(x))$

4

Translating from English

- Express the statement "Some students in this class has visited Mexico" using predicates and quantifiers.
 - Let M(x) be the statement: "x has visited Mexico"
 - If domain for x consists of the students in this class, then
 - •it can be translated as $\exists x M(x)$ or
 - If domain for x consists of all people
 - Let S(x) be the statement: "x is in this class"
 - Then, the translation is $\exists x (S(x) \land M(x))$

4

Translating from English

- Express the statement "Every student in this class has visited either Canada or Mexico" using predicates and quantifiers.
 - Let C(x) be the statement: "x has visited Canada" and M(x) be the statement: "x has visited Mexico"
 - If <u>domain for x consists of the students in this class</u>, then
 - it can be translated as $\forall x (C(x) \lor M(x))$

Negations of Quantifiers

- ∀x P(x): "Every student in the class has taken a course in calculus" (P(x): "x has taken a course in calculus")
 - "Not every student in the class ... calculus" $\neg \forall x P(x) \equiv \exists x \neg P(x)$
- Consider $\exists x P(x)$: "There is a student in the class who has taken a course in calculus"
 - "There is <u>no</u> student in the class who has taken a course in calculus"

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Negations of Quantifiers

- Definitions of quantifiers: If the domain = {a, b, c,...}
 - $\forall x P(x) \equiv P(a) \land P(b) \land P(c) \land \cdots$
 - $\exists x P(x) \equiv P(a) \lor P(b) \lor P(c) \lor \cdots$
- From those, we can prove the laws:

$$\neg \forall x \ P(x) \equiv \neg (P(a) \land P(b) \land P(c) \land \cdots)$$
$$\equiv \neg P(a) \lor \neg P(b) \lor \neg P(c) \lor \cdots$$
$$\equiv \exists x \neg P(x)$$

$$\neg \exists x \ P(x) \equiv \neg (P(a) \lor P(b) \lor P(c) \lor \cdots)$$
$$\equiv \neg P(a) \land \neg P(b) \land \neg P(c) \land \cdots$$
$$\equiv \forall x \neg P(x)$$

Which propositional equivalence law was used to prove this?
Delivergan's

Discrete Mathematics – Fall 2022

Negations of Quantifiers

Theorem:

Generalized De Morgan's laws for logic

1.
$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

2.
$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Negations: Examples

- What are the negations of the statements $\forall x (x^2 > x)$ and $\exists x (x^2 = 2)$?

 - $\neg \exists x (x^2 = 2) \equiv \forall x \neg (x^2 = 2) \equiv \forall x (x^2 \neq 2)$
- Show that $\neg \forall x(P(x) \rightarrow Q(x))$ and $\exists x(P(x) \land \neg Q(x))$ are logically equivalent.
 - $\neg \forall x (P(x) \to Q(x)) \equiv \exists x \neg (P(x) \to Q(x))$ $\equiv \exists x \neg (\neg P(x) \lor Q(x))$ $\equiv \exists x (P(x) \land \neg Q(x))$

© The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 1 Quantifiers.				
Statement	When True?	When False?		
$\forall x P(x)$ $\exists x P(x)$	P(x) is true for every x . There is an x for which $P(x)$ is true.	There is an x for which $P(x)$ is false. $P(x)$ is false for every x .		

@ The McGraw-Hill Companies, Inc. all rights reserved.

Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x

Nesting of Quantifiers

Example:

Let the domain of x and y be people.

Let L(x,y) = "x likes y" (A statement with 2 free variables – not a proposition)

- Then $\exists y \ L(x,y) =$ "There is someone whom x likes." (A statement with 1 free variable x not a proposition)
- ■Then $\forall x (\exists y L(x,y)) =$

"Everyone has someone whom they like."

Nested Quantifiers

- Nested quantifiers are quantifiers that occur within the scope of other quantifiers.
- The order of the quantifiers is important, unless all the quantifiers are universal quantifiers or all are existential quantifiers.
 The McGraw-Hill Companies, Inc. all rights reserved.

Statement	When True?	When False?
$\forall x \forall y P(x, y) \forall y \forall x P(x, y)$	P(x, y) is true for every pair x, y .	There is a pair x, y for which $P(x, y)$ is false.
$\forall x \exists y P(x,y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y .
$\exists x \forall y P(x,y)$	There is an x for which $P(x, y)$ is true for every y .	For every x there is a y for which $P(x, y)$ is false.
$\exists x \exists y P(x, y) \exists y \exists x P(x, y)$	There is a pair x, y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y .

Nested Quantifiers

$$\blacksquare \forall x \forall y P(x, y)$$

$$\blacksquare \forall x \exists y P(x, y)$$

$$\blacksquare \exists x \ \forall y \ P(x, y)$$

$$\blacksquare \exists x \exists y P(x, y)$$

- For every x, there exists y such that x + y = 0. (T)
- There exists y such that, for every x, x + y = 0. (F)

R:set of real

numbers

Nested Quantifiers: Example

- Let the domain = $\{1, 2, 3\}$. Find an expression equivalent to $\forall x \exists y P(x,y)$ where the variables are bound by substitution instead:
 - Expand from inside out or outside in.
 - Outside in:

```
\forall x \,\exists y \, P(x,y)
\equiv \exists y \, P(1,y) \land \exists y \, P(2,y) \land \exists y \, P(3,y)
\equiv [P(1,1) \lor P(1,2) \lor P(1,3)] \land [P(2,1) \lor P(2,2) \lor P(2,3)] \land [P(3,1) \lor P(3,2) \lor P(3,3)]
```

Quantifier Exercise

■ If R(x,y)="x relies upon y," express the following in unambiguous English when the domain is all people

$$\forall x(\exists y \ R(x,y)) = \text{Everyone has } someone \text{ to rely on.}$$

$$\exists y(\forall x\ R(x,y)) =$$

There's a poor overburdened soul whom *everyone* relies upon (including himself)!

$$\exists x(\forall y R(x,y)) =$$

There's some needy person who relies upon *everybody* (including himself).

$$\forall y(\exists x R(x,y)) =$$

Everyone has *someone* who relies upon them.

$$\forall x (\forall y R(x,y)) =$$

Everyone relies upon everybody, (including themselves)!

Negating Nested Quantifiers

- Successively apply the rules for negating statements involving a single quantifier
- **Example**: Express the negation of the statement $\forall x \exists y (P(x,y) \land \exists z R(x,y,z))$ so that all negation symbols immediately precede predicates.

Equivalence Laws

Exercise:

See if you can prove these yourself.

Notational Conventions

Quantifiers have higher precedence than all logical operators from propositional logic:

$$(\forall x P(x)) \land Q(x)$$

Consecutive quantifiers of the same type can be combined:

$$\forall x \forall y \forall z P(x,y,z) \equiv \forall x,y,z P(x,y,z)$$

or even $\forall xyz P(x,y,z)$