Vedang Lad 1 2 Jonas Mueller 1

Problem/Objective

Noisy label

Contribution/Key Idea

- Noisy label detection
 - 라벨 품질 평가하는 Softmin 알고리즘 제안
 - 라벨 품질이 낮다는 것은 부정확한 라벨이 많다는 것

Vedang Lad 1 2 Jonas Mueller 1

- Correctly Classified Pixels (CCP)

모델 예측 결과와 라벨이 일치하는 비율

$$s_{CCP}(x) = \frac{\sum_{i,j} \mathbb{I}[l_{ij} = P_{ij}]}{h \cdot w} \tag{1}$$

Thresholded CCP (TCCP)

CCP 에 클래스 별 임계값 도입

$$s_{TCCP,t}^{k}(x) = \frac{\sum_{i,j} \mathbb{I}[l_{ij} = k, p_{ijk} > \tau]}{h \cdot w}$$
 (2)

$$\tau_k^* = \operatorname*{argmax} s_{TCCP,\tau}^k(x) \tag{3}$$

$$s_{TCCP}(x) = \frac{1}{K} \sum_{k=1}^{K} s_{TCCP,\tau_k^*}^k(x)$$
 (4)

Vedang Lad 1 2 Jonas Mueller 1

- Confidence In Label (CIL)

픽셀마다 라벨 품질 점수 구하고 이미지 단위 평균

$$s_{CIL}(x) = \frac{1}{h \cdot w} \sum_{i,j} s_{ij}$$

$$s_{ij} := p_{i,j,l_{ij}}$$
(5)

- Softmin (Our Proposed Method)

라벨 품질 최소 점수를 soft approximation

$$s_{SM}(x) = \sum_{i,j} s_{ij} \cdot \frac{\exp\left(\frac{1 - s_{ij}}{\tau}\right)}{\sum_{i,j} \exp\left(\frac{1 - s_{ij}}{\tau}\right)}$$
(6)

Vedang Lad 1 2 Jonas Mueller 1

- Confident Learning Counts (CLC)

이미지 내 라벨링 잘된 픽셀 비율

$$s_{CLC} = \frac{\sum_{i,j} b_{ij}}{h \cdot w} \tag{7}$$

- IOU

예측 마스크와 레이블 마스크 간 loU

$$s_{IOU}(x) = \frac{|\mathbf{P} \cap \mathbf{l}|}{|\mathbf{P} \cup \mathbf{l}|} \tag{8}$$

- Connected Components (CoCo)

각 이미지 내 모든 연결 성분들의 평균 라벨 품질 점수

$$s_{CoCo}(x)$$

Vedang Lad 1 2 Jonas Mueller 1

- Experiments

라벨 오류 유형 3가지 학습 및 검증 이미지 개수: 1112개, 1112개 검증 세트에 대해서만 예측 및 라벨 품질 점수 계산함.

Drop (Car overlooked) - Given Mask for Unlabeled class

Shift Error (in Sky class) - Given Mask for Sky class

Swap (Building → Vegetation) - Given Mask for Vegetation

Vedang Lad 1 2 Jonas Mueller 1

- Experiments

Table 1. AUROC achieved by various label quality scores used with two types of models for detecting three types of annotation errors.

Метнор	Drop		SWAP		SHIFT	
MODEL	DEEPLABV3+	FPN	DEEPLABV3+	FPN	DEEPLABV3+	FPN
CORRECTLY CLASSIFIED PIXELS	0.915	0.916	1.000	1.000	0.833	0.798
THRESHOLDED CCP	0.869	0.869	0.993	0.993	0.852	0.818
CONFIDENCE IN LABEL	0.915	0.916	1.000	1.000	0.832	0.797
CONFIDENT LEARNING COUNTS	0.904	0.905	0.999	0.999	0.807	0.778
IoU	0.921	0.901	0.880	0.880	0.713	0.649
CONNECTED COMPONENTS	0.880	0.888	0.984	0.982	0.783	0.819
SOFTMIN	0.951	0.947	0.998	0.998	0.863	0.828

Vedang Lad 1 2 Jonas Mueller 1

- Experiments

Table 2. AUPRC achieved by various label quality scores used with two types of models for detecting three types of annotation errors.

ERROR TYPE	Drop		SWAP		Shift	
MODEL	DEEPLABV3+	FPN	DEEPLABV3+	FPN	DEEPLABV3+	FPN
CORRECTLY CLASSIFIED PIXELS	0.814	0.814	0.999	0.999	0.474	0.399
THRESHOLDED CCP	0.684	0.681	0.983	0.983	0.526	0.440
CONFIDENCE IN LABEL	0.813	0.814	0.999	0.999	0.472	0.398
CONFIDENT LEARNING COUNTS	0.795	0.796	0.999	0.999	0.429	0.375
IoU	0.808	0.749	0.754	0.759	0.440	0.320
CONNECTED COMPONENTS	0.654	0.675	0.971	0.965	0.519	0.537
SOFTMIN	0.888	0.875	0.996	0.996	0.545	0.461