Problem 2.1 (20 points; 4 points each). Decide if each of the following are true or false and provide a small proof or counterexample in each case. All vector spaces are assumed to be finite-dimensional here.

(a) $C \subseteq \mathcal{B}$ Given a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for a vector space V and U a subspace of V, then there is $\mathcal{C} \subseteq \mathcal{B}$ that is a basis for U.

(b) _____ Given a basis \mathcal{C} for a subspace U of a vector space V, \mathcal{C} can be extended to a basis \mathcal{B} for V.

(c) $\underline{\qquad}$ If $\mathbf{v} \in \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, then it is guaranteed that there are unique scalars $\alpha_1, \dots, \alpha_n$ so that $\mathbf{v} = \sum \alpha_i \mathbf{v}_i$.

(d) _____ If $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\}$ span V and $\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n\}\subseteq V$ is linearly independent, then $\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n\}$ span V.

(e) _____ Suppose V is a vector space and $U \subseteq V$ is a subspace. For any $v \in V$, there is a **unique** $u \in U$ so that v = u + (v - u), that is, there is a unique "projection" of V into U.

Problem 2.2 (10 pts). A square matrix A is called **horizontally-symmetric** if flip(A) = A where flip(A) is the matrix you obtain from A by flipping it horizontally, for example,

$$\text{flip} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 1 \\ 6 & 5 & 4 \\ 9 & 8 & 7 \end{bmatrix}$$

- a) Show that the flip-symmetric 3×3 matrices form a subspace of all 3×3 matrices.
- b) Give a basis, \mathcal{B} , for the 3×3 flip-symmetric matrices.
- c) Give representation $[\boldsymbol{v}]_{\mathcal{B}}$ for $\boldsymbol{v} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -2 & -3 & -2 \end{bmatrix}$ with respect to the basis that you gave.

Problem 2.3. Suppose U and W subspaces of a vector space V such that

$$U + W = V$$
, and $U \cap W = \{0\}$.

Then for every $v \in V$, there is a **unique pair** $u \in U$, $w \in W$ so that u + w = v.

Recall: $U + W = \{ \boldsymbol{u} + \boldsymbol{w} \mid \boldsymbol{u} \in U \text{ and } \boldsymbol{w} \in W \}.$