Динамическое программирование. Задачи с неопределенностью

Неопределенность в задаче управления

Неопределенность в задаче управления

$$i$$
-й этап $(i+1)$ -й этап
$$s_{j} = \sum_{\substack{j=1 \ x \in X}} p_{0,j,j} \otimes p_{0,j,j}$$

Траектории

- Детерминированный случай:
 - Траектория полностью определена. Решив задачу, можем восстановить путь от начального состояния до конечного.
- Задача с неопределенностью:
 - Даже после выбора оптимального управления для каждого состояния мы можем оценить лишь распределение вероятностей для каждого из шагов.
 - Траектория «рождается» по мере реализации процесса. Фактическое выполнение дает нам новую **информацию**.
 - А значит, мы можем уточнять оценку стоимости, переходя от математического ожидания к фактическим значениям.

Марковский процесс принятия решений

- Дискретное время (этапы)
- Конечное число состояний
- Переходные вероятности между состояниями описывают *марковскую цепь*
 - Условное распределение последующего состояния не зависит от предыстории состояний
- Структура вознаграждений представима в виде матрицы дохода при переходе

Марковский процесс (марковская цепь)

Шаг *i*-1

Шаг і

Шаг *i*+1

Шаг *i+2*

$$s_1 O \Rightarrow s_2 O \Rightarrow s_3 O \Rightarrow s_4 O \Rightarrow s_5 O \Rightarrow s_5$$

$$P_{i-1}$$

Для перехода от шага i к шагу i+1:

$$p_{i+1} = p_i P_i$$

$$P_i(k,j) = p(S^{(i+1)} = s_j | S^{(i)} = s_k)$$

 p_i – вектор-строка вероятностей

Марковский процесс (марковская цепь)

Для перехода от шага i к шагу i+1:

$$p_{i+1} = p_i P_i$$

$$\mathbb{P}(S^{(i+1)} = s_j) = \sum_{s_k} \mathbb{P}(S^{(i+1)} = s_j | S^{(i)} = s_k) \mathbb{P}(S^{(i)} = s_k)$$

$$\boxed{\mathbb{P}(S^{(i)} = s_1) \mid \mathbb{P}(S^{(i)} = s_2) \mid \mathbb{P}(S^{(i)} = s_3)} \quad \bullet$$

Марковский процесс принятия решений

Задача о садовнике

- Продуктивность сада зависит от состояния почвы на начало сезона и может оцениваться как
 - 1) «хорошая»,
 - 2) «удовлетворительная»,
 - 3) «плохая».
- Состояние почвы в текущем году зависит **только от состояния почвы в предыдущем году** (с учетом проведенных агротехнических мероприятий).
- Необходимо выбрать наилучшую стратегию внесения удобрений на конечное число этапов.

Задача о садовнике

Матрицы дохода

Состояние почвы в следующем году

 $P^{(1)}$

 $= P^{(2)}$

	_	хор.	уд.	пл.	_
Состояние	хор.	0,2	0,5	0,3	
почвы в этом	уд.	0	0,5	0,5	=
году	пл.	0	0	1	

7	6	3	
0	5	1	$=R^{(1)}$
0	0	-1	

Не вносим удобрения

Матрицы вероятностей переходов

0,3	0,6	0,1
0,1	0,6	0,3
0,05	0,4	0,55

6	5	-1	
7	4	0	$=R^{(2)}$
6	3	-2	

Вносим удобрения

Стратегия

- Стратегия **правило** выбора действия **для каждого возможного состояния**
- Например, полностью заданная стратегия для некоторого **одного** шага может «говорить», что:
 - Если состояние почвы «хорошее», то «не вносить».
 - Если состояние почвы «удовлетворительное», то «не вносить».
 - Если состояние почвы «плохое», то «вносить».

Стратегия в МППР для одного шага

Состояние	Действие (управление)
Хорошее	Не вносить
Удовл.	Не вносить
Плохое	Вносить

Стратегия в МППР для одного шага

Состояние	Действие (управление)
Хорошее	Не вносить
Удовл.	Не вносить
Плохое	Вносить

$$P_i = \begin{bmatrix} 0,2 & 0,5 & 0,3 \\ 0 & 0,5 & 0,5 \\ 0,05 & 0,4 & 0,55 \end{bmatrix}$$

	7	6	3
$R_i =$	0	5	1
	6	3	-2

Задачи

- Оценка стратегии (предсказание)
- Оптимизация стратегии (управление)

Стационарная стратегия в МППР

Одинаковы для всех шагов

Стратегия в МППР для всех шагов

Для перехода от шага i к шагу i+1:

$$p_{i+1} = p_i P_i$$

$$v_{i,i+1} = sum\{p_i(P_i \circ R_i)\}$$

 p_i – вектор-строка вероятностей

Стратегия в МППР для всех шагов

Рекуррентная формула для вычисления условного ожидаемого выигрыша на шагах, начиная *i*-того (оценка стратегии):

$$f_i(s_j) = \sum_{s_k \in S} P_i(s_j, s_k) \left(R_i(s_j, s_k) + f_{i+1}(s_k) \right)$$

Оценка выигрыша при заданной стратегии

```
1. def finite_horizon_mdp_eval(P, R, periods):

2. # Количество состояний f_i(s_j) = \sum_{s_k \in S} P_i(s_j, s_k) \left(R_i(s_j, s_k) + f_{i+1}(s_k)\right)

3. n_states = P.shape[1]

4. 

5. profit = np.zeros((1, n_states))

6. for period in reversed(range(periods)):

7. profit = np.sum(P[period] * (R[period] + profit), axis=-1)

8. return profit
```

Оптимизация стратегии методом ДП

Уравнение Беллмана:

$$W_i(s_j) = \max_{u \in U} \sum_{s_k \in S} P_i^{(u)}(s_j, s_k) \left(R_i^{(u)}(s_j, s_k) + W_{i+1}(s_k) \right)$$

Оптимизация стратегии (Python)

```
1.
    # Предполагается, что Р и R имеют размерность
    # 'количество управлений' х 'кол-во состояний' х 'кол-во состояний'
2.
    def finite horizon mdp solver(P, R, periods):
3.
4.
        # Количество состояний
5.
        n states = P.shape[1]
        # Сформируем результирующие матрицы
6.
        profit = np.zeros((periods, n states))
7.
                                                       # Условно оптимальные выигрыши
        control = np.zeros((periods, n states), dtype='int32') # Условно оптимальные управления
8.
        # Для последнего этапа выигрыш на "следующем" этапе
9.
10.
        # должен быть равен нулю
        profit next = np.zeros((1, n states))
11.
        for period in reversed(range(periods)):
12.
            tmp = np.sum(P * (R + profit_next), axis=-1)
13.
            profit[period, :] = np.max(tmp, axis=0)
14.
            control[period, :] = np.argmax(tmp, axis=0)
15.
16.
            profit_next = profit[period, :]
        return profit, control
17.
```

Резюме

- Динамическое программирование оказывается полезным и при выборе оптимального управления в системах с неопределенностью
 - Например, максимизация ожидаемой выгоды
- Марковский процесс принятия решений (МППР, MDP) широко распространенное обобщение учета неопределенности в задаче формирования управления
 - Решается (в том числе) с помощью динамического программирования
- Литература для дальнейшего углубления в тему:
 - Таха Х. Введение в исследование операций. 7е издание. Вильямс, 2007.
 - Bertsekas D. Dynamic Programming and Optimal Control.