Dinámica de sistemas físicos

Modelado en el dominio de la frecuencia

Dr. Jesús Emmanuel Solís Pérez

jsolisp@unam.mx

Modelado de sistemas eléctricos

La relación que establece el flujo electromagnético ϕ y la corriente i que lo produce está dada por la siguiente ecuación:

$$\phi = Li$$
,

donde *L* es una constante que depende de los factores geométricos y de entorno llamada *inductancia*.

Los cambios de flujo electromagnético originan potenciales eléctricos relacionados por la Ley de Faraday

$$u_L = -\frac{\mathrm{d}\phi}{\mathrm{d}t}$$
,

donde u_L denota el voltaje en las terminales de la inductancia a razón del cambio de flujo. Por consiguiente, la Ley de Faraday se puede expresar como sigue

$$u_L = -L \frac{\mathrm{d}i}{\mathrm{d}t}.$$

En elementos resistivos el voltaje u_R entre el componente y la corriente i que circula por él obedecen a la **Ley de Ohm** dada como siguiente

$$u_R = Ri$$
,

donde *R* es una constante que depende del componente denominado **resistencia**.

El voltaje u_C entre las terminales de una capacitancia y la carga q siguen la siguiente relación

$$u_C = \frac{q}{C} \equiv \frac{1}{C} \int i \mathrm{d}t,$$

donde C es una constante que depende de la geometría y el entorno denominada capacitancia. Si consideramos que la corrieente se define como una variación temporal de carga

1

$$i = \frac{\mathrm{d}q}{\mathrm{d}t}, \quad q = \int i\mathrm{d}t$$

entonces u_C se expresa en los siguientes términos

$$u_C = \frac{1}{C} \int i \mathrm{d}t.$$

Leyes de Kirchoff

Establecen dos relaciones fundamentales en el análisis de circuitos eléctricos.

Ley de malla

La suma de los voltajes en todo lazo cerrado de un circuito eléctrico es nula.

Ley de nodos

La suma de las corrientes en todo punto de un circuito eléctrico es nula.

Las leyes de Kirchoff permiten establecer las ecuaciones dinámicas que siguen las corrientes y voltajes en los circuitos eléctricos.

Circuito RC

Considere el circuito considerado en la siguiente figura

Por la Ley de Malla, obtenemos

$$u_R + u_C = V_{in},$$

por las relaciones anteriores, tenemos

$$Ri + \frac{1}{C} \int i \mathrm{d}t = V_{in},$$

expresado en términos de la carga q, tenemos la siguiente expresión

$$R\dot{q} + \frac{1}{C}q = V_{in}.$$

Por la Ley de Nodos, tenemos

$$i_R + i_C = i$$
,

dado que el voltaje entre los componentes eléctricos es el mismo y lo denotamos por u, tenemos

$$\frac{u}{R} + C\dot{u} = i$$

Considerando el modelo obtenido por la **Ley de Malla** y considerando V como la carga en el capacitor dividida por la capacitancia V=q/C, sustituimos

$$R\dot{V}C + \frac{1}{C}(VC) = V_{in},$$

$$RC\dot{V} + V = V_{in}$$

$$\dot{V} + \frac{1}{RC}V = \frac{1}{RC}V_{in}.$$

Función de transferencia

La función de transferencia de este sistema está dada por la siguiente ecuación

$$\frac{V(s)}{U(s)} = \frac{1}{RCs+1} \equiv \frac{1}{\tau s+1},$$

donde $\tau = RC$.

Solución analítica

La solución de una ecuación diferencial lineal

$$\dot{y}(x) + p(x)y(x) = q(x),$$

está dada por una familia uniparamétrica de la forma

$$y(x) = \frac{1}{\mu(x)} \left[\int_0^x \mu(t) q(t) dt + c \right]$$

donde

$$\mu(x) = \exp\left[\int_0^x p(t)dt\right].$$

Considere la ec. dif. del circuito RC en términos del voltaje que hay a través del capacitor

$$\dot{V}(t) + \frac{1}{RC}V(t) = \frac{1}{RC}V_{in}(t).$$

Considerando $p(t) = \frac{1}{RC}$ y $q(t) = \frac{1}{RC}V_{\mathit{in}}(t)$, tenemos

$$y(t) = \frac{1}{\exp\left[\int_0^t \frac{1}{RC} dx\right]} \left[\int_0^t \exp\left[\int_0^t \frac{1}{RC} dx\right] \frac{1}{RC} V_{in} dx + c_1\right],$$

resolviendo las integrales,

$$y(t) = e^{-\frac{t}{RC}} \left(V_{in} \ e^{\frac{t}{RC}} + c_1 \right),$$

$$y(t) = V_{in} + e^{-\frac{t}{RC}}c_1.$$

Considerando c.i. iguales a cero $c_1 = 0$. Por consiguiente

$$y(t) = V_{in} \left(1 - e^{-\frac{t}{RC}} \right).$$

Modelo fraccionario

$$y(t) = V_{in} \left(1 - E_{\alpha} \left[-\frac{t^{1-\alpha}}{\frac{p}{RC}} t^{\alpha} \right] \right)$$

donde

$$E_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)}$$

 t_p constante de tiempo de Planck $t_p = 5.39124 \times 10^{-44}$ y α el orden fraccionario.

```
% Fractional analytical solution
v_ml = @(t,alpha,Vin,R,C) Vin*(1 - ml(-((tp.^(1-alpha))/(R*C))*(t.^alpha),alpha));
```

Modelo conformable

$$y(t) = V_{in} \left(1 - e^{-\frac{\Gamma(\beta+1)}{RC\alpha} t^{\alpha} \int_{p}^{t^{1-\alpha}} dt} \right)$$

donde $\Gamma(\cdot)$ es la función Gamma de Euler

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} \mathrm{d}t,$$

 α y β son los ordenes de orden no entero del modelo conformable.

% M-analytical solution
$$v_M = @(t,Vin,R,C,alpha,beta) - ((-1 + exp((-(t.^alpha)*gamma(beta+1)*(tp.^(1-alpha)))/(beta+1))$$

Circuito RLC

Amplificadores operacionales

Amplificador inversor

Amplificador sumador inversor

Amplificador no inversor

Amplificador sumador no inversor

Seguidor de voltaje