## 2009-2010 学年第一学期 高等数学(2-1) 期中试题参考答案

一、填空题(共6小题,每小题3分,满分共18分)

2. 设 
$$y = \frac{1}{1 + \sqrt{x}} + \frac{1}{1 - \sqrt{x}}$$
, 则  $\frac{dy}{dx} =$ \_\_\_\_\_\_

3. 设 
$$y = f(x + f(x))$$
 二阶可导,  $\frac{d^2y}{dx^2} =$ \_\_\_\_\_\_

4. 试用"
$$\varepsilon$$
- $\delta$ "语言叙述  $\lim_{x \to x_0^-} f(x) = A$ 的定义

5. 设 
$$f(x) > 0$$
且在点  $x_0 = a$  处可导,则  $\lim_{n \to \infty} n \ln \frac{f(a + \frac{1}{n})}{f(a)} = \underline{\hspace{1cm}}$ 

6. 当
$$x \to \infty$$
时, $\frac{1}{x^k}$ 与 $\sin \frac{1}{x^2+1}$ 是等价无穷小,则 $k=$ \_\_\_\_\_\_

- 二 选择题 (共4小题,每小题3分,满分12分)
- 1. 设函数 y = f(x)在点  $x_0$  处可微,则下面表达式不正确的是 ( ).

$$A. \qquad \lim_{x \to x_0} f(x) = f(x_0).$$

B. 
$$dy|_{x=x_0} = f'(x_0)dx$$
.

C. 
$$f(x) = f(x_0) + f'(x_0)(x - x_0)$$
. D.  $dy - \Delta y = o(\Delta x)$   $(\Delta x \to 0)$ .

D. 
$$dy - \Delta y = o(\Delta x)$$
  $(\Delta x \rightarrow 0)$ .

图 [1]

- 2. 设函数 f(x) 在( $-\infty$ , $+\infty$ ) 内连续,其导函数的图形如图[1]所示,则 f(x)有( ).
  - A. 一个极小点和一个极大点.
- B. 两个极小点和一个极大点.
- C. 两个极小点和两个极大点. D. 三个极小点和一个极大点.
- 3. 下列命题错误的是().



B. 若 
$$\lim_{x \to x_0} f(x) = A$$
,则  $\lim_{x \to x_0} |f(x)| = |A|$ .

C. 若  $\lim_{x \to x_0} f(x)$ ,  $\lim_{x \to x_0} g(x)$  存在,则  $\lim_{x \to x_0} (f(x) + g(x))$  存在.

- D. 若  $\lim_{x \to x_0} (f(x) + g(x))$  存在,则  $\lim_{x \to x_0} f(x)$ ,  $\lim_{x \to x_0} g(x)$  分别存在.
- 4. 曲线  $y = 2x + \frac{\ln x}{x-1} + 4$  的渐近线的条数为 ( ).
  - A. 0. B. 1. C. 2. D. 3.

- 三、计算题(共6小题,每小题6分,满分36分)

1. 
$$\lim_{x \to +\infty} \frac{\sqrt{1+x} - 3}{2 + \sqrt{x}}$$

$$2. \quad \lim_{x \to \frac{\pi}{2}} \frac{\ln \sin x}{(2x - \pi)^2}$$

3. 
$$\lim_{x \to 0} \left( \frac{(1+x)^{\frac{1}{x}}}{e} \right)^{\frac{1}{x}}$$

3. 
$$\lim_{x \to 0} \left( \frac{(1+x)^{\frac{1}{x}}}{e} \right)^{\frac{1}{x}}$$
4.  $i \frac{\pi}{2} \begin{cases} x = a(\ln \tan \frac{t}{2} + \cos t), & \frac{dy}{dx}, & \frac{d^2y}{dx^2}. \end{cases}$ 

5. 设  $f(x) = \frac{x^3}{x-1}$ , 求 f(x) 在点  $x_0 = 2$  处的 n 阶导数值.

6. 设 y = y(x) 是由方程  $y^x = x^y$  所确定的函数, x > 0, y > 0, 求微分 dy.

四、应用题(共4小题,每小题6分,满分24分)

1. 设 
$$f(x) = \begin{cases} a(x+1)^2, & x < 1 \\ b, & x = 1,$$
 选取合适的  $a \times b \times c$  使  $f(x)$  在点  $x = 1$  处连续、可  $c + \arctan x, \quad x > 1$ 

무.

2. 设函数  $f(x) = \frac{x|x-2|}{(x^2-4)\sin x}$ , 指出函数的间断点, 并判断其类型.



4. 一气球从离开观察员 500 米处离开地面铅直上升, 其速率为 140 米/分, 当气球高度为 500 米时, 观察员视线的仰角增加率是多少?

五、证明题(共2题,每小题5分,满分10分)

1.设 f(x) 在 [a,b] 上连续,且恒为正,证明对于任意的  $x_1, x_2 \in (a,b), x_1 < x_2$ ,

必存在一点
$$\xi \in [x_1, x_2]$$
, 使 $f(\xi) = \sqrt{f(x_1)f(x_2)}$ .

2. 证明: 当0 < x < 1时, $e^{2x} < \frac{1+x}{1-x}$ .