Peergrade #3: Sequences and Sums, Graphs and Trees, Number Theory

Alessandro Bruni

October 11, 2019

Exercise 1. Consider the following graphs, then explain why each statement is true or false.

- (a) There exists a simple path from a to d
- (b) There exists a simple path from c to d
- (c) The graph is connected

- (a) The graph represents a tree
- (b) The graph represents a binary tree
- (c) The graph represents a full binary tree

Exercise 2. Compute the following values, showing the process for each computation:

- 1. Show the following sequences for 1 < j < 10:
 - (a) $a_i = j^2$
 - (b) $b_i = 1/j$
 - (c) $c_j = \sum_{i=1}^j a_i \cdot b_i$
- 2. (a) $(763636 \cdot 437813 \cdot 936257) \mod 43$
 - (b) $(894461 \cdot (206193 + 83218)) \mod 59$

(Use the theorems shown in class to simplify each step of the computation.)

3. (a) Convert (73217)₈ to its binary and decimal expansion.

- (b) Convert $(62290)_{10}$ to its octal and hexadecimal expansion.
- 4. (a) gcd(2574, 1976)
 - (b) lcm(1525, 4405)

Exercise 3. Let x, y, z and m be integers. Assume that $x \equiv y \pmod{m}$ and that $m \mid z$. Prove that $x + 2z \equiv y \pmod{m}$.