A model for South Australian electricity prices

Angus Lewis Supervised by Prof. Nigel Bean & Dr. Giang Nguyen

South Australia has some of the highest and most volatile wholesale electricity prices

South Australia has some of the highest and most volatile wholesale electricity prices

Why do we need a model?

- Risk management
- Value contracts
- Value investments
- Describe the behaviour of the market (i.e. the distribution/occurence of spikes)

About the market

Every 5 minutes AEMO

- Aggregates supply bids scheduled generators only
- Estimates wind generation
- Estimates demand
- Matches supply and demand
 - Dispatches generators
 - Sets the dispatch price
 - Spot price = average of 6 dispatch prices

Spikes and drops are caused by a mismatch between supply and demand

- Unexpected demand
- Unexpected wind

Price data - Characteristics

Price data - Characteristics

- Mean reversion to a trend line
- Negative prices!

Price data - Simplifying the problem

- Model average daily price
 - Justification: Some contracts are valued on daily average prices
 - Drawback: Not all contracts are valued in this way
 - Drawback: Lose a lot of information

The Model

The Model - Seasonal components

$$X_t = egin{cases} B_t & \text{when } R_t = 1, \ S_t & \text{when } R_t = 2, \ D_t & \text{when } R_t = 3. \end{cases}$$

Model 1: 3-regime - shifted log-normal spikes and drops

$$X_t = \begin{cases} B_t & \text{when } R_t = 1, \\ S_t & \text{when } R_t = 2, \\ D_t & \text{when } R_t = 3. \end{cases}$$

• R_t evolves with probabilities $p_{ij} = \mathbb{P}(R_t = j | R_{t-1} = i)$

$$X_t = \begin{cases} B_t & \text{when } R_t = 1, \\ S_t & \text{when } R_t = 2, \\ D_t & \text{when } R_t = 3. \end{cases}$$

- R_t evolves with probabilities $p_{ij} = \mathbb{P}(R_t = j | R_{t-1} = i)$
- $B_t = \alpha + \phi B_{t-1} + \sigma \varepsilon_t$ AR(1) base regime • to capture mean reversion

$$X_t = \begin{cases} B_t & \text{when } R_t = 1, \\ S_t & \text{when } R_t = 2, \\ D_t & \text{when } R_t = 3. \end{cases}$$

- R_t evolves with probabilities $p_{ij} = \mathbb{P}(R_t = j | R_{t-1} = i)$
- $B_t = \alpha + \phi B_{t-1} + \sigma \varepsilon_t$ AR(1) base regime • to capture mean reversion
- $\log(S_t q_2) \sim \mathcal{N}(\mu_S, \sigma_S^2)$ Shifted log-normal spikes • $q_2 = 75^{th}$ percentile of the data

$$X_t = \begin{cases} B_t & \text{when } R_t = 1, \\ S_t & \text{when } R_t = 2, \\ D_t & \text{when } R_t = 3. \end{cases}$$

- R_t evolves with probabilities $p_{ij} = \mathbb{P}(R_t = j | R_{t-1} = i)$
- $B_t = \alpha + \phi B_{t-1} + \sigma \varepsilon_t$ AR(1) base regime • to capture mean reversion
- $\log(S_t q_2) \sim \mathcal{N}(\mu_S, \sigma_S^2)$ Shifted log-normal spikes • $q_2 = 75^{th}$ percentile of the data
- $\log(q_3 D_t) \sim \mathcal{N}(\mu_D, \sigma_D^2)$ Shifted log-normal drops • $q_3 = 25^{th}$ percentile of the data

We use data-augmented block-wise MCMC for Bayesian inference.

We use data-augmented block-wise MCMC for Bayesian inference.

Bayesian inference

Goal:

$$\overbrace{p(\theta|\mathsf{data})}^{\mathsf{posterior}} = \frac{p(\mathsf{data}|\theta)}{p(\mathsf{data})} \overbrace{p(\theta)}^{\mathsf{prior}}$$

• We use uniform (improper) priors

We use data-augmented block-wise MCMC for Bayesian inference.

MCMC

 Markov chain Monte Carlo - Generate a Markov chain that has the posterior as its stationary distribution

We use data-augmented block-wise MCMC for Bayesian inference.

Data-augmentation

• Recall:

$$p(\theta|\mathsf{data}) = \cfrac{\overbrace{p(\mathsf{data}|\theta)}^{\mathsf{likelihood}} p(\theta)}{p(\mathsf{data})}$$

Likelihood:

$$p(\mathsf{data}|oldsymbol{ heta}) = \sum_{oldsymbol{R}} p(\mathsf{data}|oldsymbol{R},oldsymbol{ heta}) p(oldsymbol{R}|oldsymbol{ heta})$$

where $\mathbf{R} = (R_0, R_1, ..., R_T)$ is a sequence of hidden regimes

Solution:

$$p(R, \theta | \mathsf{data}) = \frac{\overbrace{p(\mathsf{data} | R, \theta) p(R | \theta)}^{\mathsf{augmented likelihood}} p(\theta)}{p(\mathsf{data})}$$

We use data-augmented block-wise MCMC for Bayesian inference.

Block-wise aka Metropolis within Gibbs

• The support of the posterior $p(R, \theta | \text{data})$ is large:

$$\mathcal{S} = \underbrace{(-\infty, \infty)^4}_{\alpha, \phi, \mu_{\mathcal{S}}, \mu_{\mathcal{D}}} \times \underbrace{[0, \infty)^6}_{\sigma, \sigma_{\mathcal{S}}, \sigma_{\mathcal{D}}} \times \underbrace{[0, 1]^3}_{p_{ij}} \times \underbrace{\{1, 2, 3\}^T}_{\text{regime sequence}}$$

where T is the length of the data

- ⇒ Difficult to find a proposal that
 - 1. simultaneously updates all parameters and
 - 2. allows the Markov chain to explore the space well
- ullet Solution: partition ${\cal S}$ into blocks and update each block iteratively

We use data-augmented block-wise MCMC for Bayesian inference.

Algorithm: To create an MCMC chain of length N

- For n = 1, 2, 3, ..., N:
 - o Sample $p_{ij}^{(n)}$ using a Gibbs sampler
 - o Data-augmentation: sample $R^{(n)}$
 - o Apply Metropolis-Hastings steps to update each of

$$\{\alpha^{(n)}, \phi^{(n)}, \sigma^{(n)}, \mu_D^{(n)}, \sigma_D^{(n)}, \mu_S^{(n)}, \sigma_D^{(n)}\}$$

• Adapt proposals every N^* steps to 'optimise' the algorithm

Results - 3-regimes

2-regime model

Model 2: 2-regime - shifted log-normal spikes

- $B_t = \alpha + \phi B_{t-1} + \sigma \varepsilon_t$ AR(1) base regime
- $\log(S_t q_2) \sim \mathcal{N}(\mu_S, \sigma_S^2)$ Shifted log-normal spikes • $q_2 = 75^{th}$ percentile of the data

$$X_t = \begin{cases} B_t & \text{when } R_t = \text{Base,} \\ S_t & \text{when } R_t = \text{Spike,} \end{cases}$$

Results - 2-regimes

Results - 2-regimes

- $B_t = \alpha + \phi B_{t-1} + \sigma \varepsilon_t$ AR(1) base regime
- $\log(S_t q_2) \sim \mathcal{N}(\mu_S, \sigma_S^2)$ Shifted log-normal spikes

Table: Posterior means for parameters

Parameter		
p_{11}	0.9452	
p_{22}	0.6573	
α	-0.5974	
ϕ	0.5027	
σ^2	423.8374	
$\mu_{\mathcal{S}}$	4.5003	
$\sigma_{\mathcal{S}}^2$	1.2291	

Results - Interpretation

- Mean spike size = \$314.90 (above the trend)
- Spike std. dev. = \$1,363.89
- Stationary dist. of regimes

$$(\pi_1, \pi_2) \approx (0.862, 0.138)$$

Parameter	Mean	
<i>p</i> ₁₁	0.9452	
<i>p</i> ₂₂	0.6573	
α	-0.5974	
ϕ	0.5027	
σ^2	423.8374	
$\mu_{\mathcal{S}}$	4.5003	
σ_S^2	1.2291	

Is regime-switching really time-homogeneous?

In addition it is known that prices are dependent on

- weather
- day of week
- transmission outages

Model extension - exogenous variables

- $B_t = \alpha + \phi B_{t-1} + \sigma \varepsilon_t$
- $\log(S_t q_2) \sim \mathcal{N}(\mu_S, \sigma_S^2)$
- Stochastic component

$$X_t = \begin{cases} B_t & \text{when } R_t = \mathsf{Base}, \\ S_t & \text{when } R_t = \mathsf{Spike}, \end{cases}$$

• R_t evolves with probabilities

$$p_{ij} = \mathbb{P}(R_t = j | R_{t-1} = i, \mathbf{w}_t)$$
$$= \frac{\exp(\beta_j \mathbf{w}_t)}{\sum_k \exp(\beta_k \mathbf{w}_t)}$$

where
$$\beta_{j} \mathbf{w}_{t} = \beta_{j,0} w_{0} + \beta_{j,1} w_{1} + \beta_{j,2} \mathbb{I}(R_{t-1} = 2) + ...$$

What predictors? Weather, load, maintenance indicators

Preliminary results - Temperature-dependent probabilities

$$p_{ij} = \mathbb{P}(R_t = j | R_{t-1} = i, \mathbf{w}_t)$$
$$= \frac{\exp(\beta_j \mathbf{w}_t)}{\sum_k \exp(\beta_k \mathbf{w}_t)}$$

where

$$eta_1 \mathbf{w}_t = eta_{1,0} + eta_{1,1} C_t^{\circ} + eta_{1,2} \mathbb{I}(R_{t-1} = 2) + eta_{1,3} \mathbb{I}(R_{t-1} = 2) C_t^{\circ}$$

 $eta_2 = \mathbf{0}$

Parameter	
$\beta_{1,0}$	-7.0309
$\beta_{1,1}$	0.3466
$\beta_{1,2}$	9.1939
$\beta_{1,3}$	-0.3136

Parameter	
α	-1.041
ϕ	0.5169
σ^2	421.0808
$\mu_{\mathcal{S}}$	4.4682
σ_S^2	1.2942

Interpretation

Future research

- 30-minute prices
 - Investigate trend models
 - Test the AR(1) assumption
- Investigate predictors for regime-switching probabilities
- Use exogenous variables in the stochastic component

$$X_t = \begin{cases} eta_{w_t} + B_t & \text{when } R_t = \mathsf{Base}, \\ S_t & \text{when } R_t = \mathsf{Spike}, \end{cases}$$

Some model specifications

Model 0: 2-regime - Normal spikes.

- $B_t = \alpha + \phi B_{t-1} + \sigma \varepsilon_t$ AR(1) base regime.
- $Z_t \sim \mathcal{N}(\mu_S, \sigma_S^2)$ Normal spikes.

$$X_t = \begin{cases} B_t & \text{when } R_t = \text{Base,} \\ Z_t & \text{when } R_t = \text{Spike,} \end{cases}$$

Results - Normal vs. log-normal spikes

- $B_t = \alpha + \phi B_{t-1} + \sigma \varepsilon_t$ AR(1) base regime.
- $Z_t \sim \mathcal{N}(\mu_S, \sigma_S^2)$ Normal spikes.
- $\log(S_t-q_2)\sim \mathcal{N}(\mu_S,\sigma_S^2)$ Shifted log-normal spikes.

Table: Posterior means for parameters

Parameter	Normal	LN
p_{11}	0.9543	0.9457
p_{22}	0.6551	0.5180
α	-4.9793	-2.1206
ϕ	0.5462	0.5290
σ^2	467.7538	464.3700
$\mu_{\mathcal{S}}$	191.9605	4.2605
σ_S^2	72852.8130	1.7273

Diagnostics - But...

More work is needed here.

Diagnostics - Normal vs. log-normal spikes

Both aren't great, but the log-normal might be better.

Modelling 30-minute prices

- Much more complicated trend.
- Base prices may no longer be AR(1).
- Much more data,
 - \circ Makes MCMC slower \sim 3 hours (compared to 30 mins for a two regime model).

Metropolis Hastings algorithm

Generates a Markov chain $S_0, S_1, ..., S_N$ with $S_N \sim p(R, \theta | data)$ for large N.

- Step 1. Set n = 0 and choose a starting point $S_0 = (\mathbf{R}^{(0)}, \mathbf{\theta}^{(0)})$.
- Step 2. Given current state $S_n = (\mathbf{R}^{(n)}, \boldsymbol{\theta}^{(n)})$, generate

$$S' \sim \underbrace{q((\boldsymbol{\theta}', \boldsymbol{R}')|S_n)}_{\text{proposal}}.$$

Step 3. Generate $U \sim \textit{Uniform}(0,1)$ and let

$$\alpha = \frac{p(\textit{data}|\mathbf{R}', \theta')(\mathbf{R}', \theta')q((\theta^{(n)}, \mathbf{R}^{(n)})|S')}{p(\textit{data}|\mathbf{R}^{(n)}, \theta^{(n)})(\mathbf{R}^{(n)}, \theta^{(n)})q((\theta', \mathbf{R}')|S_n)}$$

Estimation

- Observations: $\mathbf{x}_T = (x_0, x_1, ..., x_T)$.
- Parameters: θ .
- The likelihood:

$$L(\theta) = \mathbb{P}(\mathbf{x}_T|\theta) = \sum_{\mathbf{R}} \mathbb{P}(\mathbf{x}_T|\mathbf{R}, \theta) \mathbb{P}(\mathbf{R}|\theta).$$

But the sum is too big to calculate.

o Expectation-Maximisation.