EECE 5550: Mobile Robotics

Lecture 11: Mapping

Recap

Last week: Bayesian networks and the Bayes Filter

Bayes Filter: For t = 1, 2 ... repeat the following operations:

• **Predict** belief for current state X_t given previous control u_{t-1} :

$$p(X_t|u_{0:t-1},Z_{1:t-1}) = \int p(X_t|X_{t-1},u_{t-1}) \cdot p(X_{t-1}|u_{0:t-2},Z_{1:t-1}) \ dX_{t-1}$$

• **Update** belief after incorporating measurement Z_t at current state X_t :

$$p(X_t|u_{0:t-1},Z_{1:t}) = \frac{p(Z_t|X_t)p(X_t|u_{0:t-1},Z_{1:t-1})}{\int p(Z_t|X_t)p(X_t|u_{0:t-1},Z_{1:t-1}) \ dX_t}$$

Next two weeks: Mapping and localization!

- 1. Mapping
- 2. Localization
- 3. The Big One: Simultaneous localization and mapping (SLAM)

What is a "map"?

Simple answer: A *map* is a simply a *model* of an environment.

Less simple questions:

- What *properties* of the environment should a map capture?
- How should these properties be represented in the map?

Examples:

- Connectivity/traversability: Topological maps (graph)
 Good for: Route planning
- Free and occupied space: Occupancy grids / voxels
- Good for: 2D / 3D navigation
- Appearance: Visual maps (keyframes)
 Good for: Visual reconstruction, place recognition
- **Objects & affordances:** Semantic maps, scene graphs, etc. Good for: high-level autonomy, environmental interaction

The Mapping Problem as a Bayesian Network

Two fundamental problems in robotic perception

Mapping

Given: Robot poses $x_{0:t}$, measurements $z_{1:t}$

Estimate: Belief $p(m|x_{0:t}, z_{1:t})$ over the map M

Localization

Given: Map m, measurements $z_{1:t}$

Estimate: Belief $p(x_t | m, z_{1:t})$ over the robot pose

Key observation: Given *either* poses $x_{0:t}$ or map m, we can efficiently recover the other via *recursive* Bayesian estimation (Bayes Filter)

Simultaneous Localization and Mapping (SLAM)

Given: Prior $p(x_0)$ for initial pose x_0 , sequence of motor commands $u_{0:t-1}$, observations $z_{1:t}$

Estimate: Joint posterior $p(x_{0:t}, m | u_{0:t-1}, z_{1:t})$ over robot poses $x_{0:t}$ and map m given $u_{0:t-1}$ and $z_{1:t}$

Key point: This coupled problem is *much* harder than either mapping or localization alone

Plan of the day

Today we will consider the specific problem of 2D occupancy mapping using beam sensors, as a prelude to/subcomponent of *full SLAM* (next week!)

- Probabilistic occupancy grid maps
- Recursive Bayesian estimation for occupancy mapping with known poses
- (Inverse) sensor models for beam sensors

References

Chapter 9 of "Probabilistic Robotics"

Introduction to Mobile Robotics

Grid Maps and Mapping With Known Poses

Wolfram Burgard

Wolfram Burgard's lecture "Grid Maps and Mapping with Known Poses"