Redes de Comunicação 2023/2024

T06 Wireless Networks

Jorge Granjal University of Coimbra

T06: Wireless Networks

Background:

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)!
- # wireless Internet-connected devices exceeds # wireline Internet-connected devices
 - laptops, Internet-enabled phones promise anytime untethered Internet access
- * two important (but different) challenges
 - wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

T06: outline

- 6. I Introduction
- 6.2 Wireless links, characteristics
- 6.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 6.4 Cellular Internet Access
 - architecture
 - standards (e.g., GSM)

Characteristics of selected wireless links

2G vs 3G vs 4G vs 5G

Comparison	2G	3 G	4G	5G
Introduced in year	1993	2001	2009	2018
Technology	GSM	WCDMA	LTE, WIMAX	MIMO, mm Waves
Access system	TDMA, CDMA	CDMA	CDMA	OFDM, BDMA
Switching type	Circuit switching for voice and packet switching for data	Packet switching except for air interference	Packet switching	Packet switching
Internet service	Narrowband	Broadband	Ultra broadband	Wireless World Wide Web
Bandwidth	25 MHz	25 MHz	100 MHz	30 GHz to 300 GHz
Advantage	Multimedia features (SMS, MMS), internet access and SIM introduced	High security, international roaming	Speed, high speed handoffs, global mobility	Extremely high speeds, low latency
Applications	Voice calls, short messages	Video conferencing, mobile TV, GPS	High speed applications, mobile TV, wearable devices	High resolution video streaming, remote control of vehicles, robots, and medical procedures

ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Wireless network taxonomy

	single hop	multiple hops
infrastructure (e.g., APs)	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: mesh net
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET,VANET

T06: outline

- 6. Introduction
- 6.2 Wireless links, characteristics
- 6.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 6.4 Cellular Internet Access
 - architecture
 - standards (e.g., GSM)

Wireless Link Characteristics

important differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: standardized wireless frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- multipath propagation: radio signal reflects off objects/ground, reaching destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

T06: outline

- 6. Introduction
- 6.2 Wireless links, characteristics
- 6.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 6.4 Cellular Internet Access
 - architecture
 - standards (e.g., GSM)

IEEE 802.11 Wireless LAN

802.11b

- 2.4-5 GHz unlicensed spectrum
- up to 11 Mbps
- direct sequence spread spectrum (DSSS) in physical layer

802.11a

- 5-6 GHz range
- up to 54 Mbps

802.11g

- 2.4-5 GHz range
- up to 54 Mbps

802. I In: multiple antennae

- 2.4-5 GHz range
- up to 200 Mbps

- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

802.11 LAN architecture

BSS 2

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

802.11: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication
 - will typically run DHCP to get IP address in AP subnet

802. I I: passive/active scanning

passive scanning:

- (I) beacon frames sent from APs
- (2) association Request frame sent: H1 to selected AP
- (3) association Response frame sent from selected AP to HI

active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

IEEE 802.11: multiple access

- avoid collisions: 2⁺ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for **DIFS** (Interframe space) then transmit entire frame (no CD)

2 if sense channel busy then

start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval, repeat 2

802.11 receiver

 if frame received OK return ACK after SIFS (Short Interframe Space)

Avoiding collisions (more)

idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they' re short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS exchange

802.11 frame: addressing

which AP is attached

Address 2: MAC address of wireless host or AP transmitting this frame

802.11 frame: addressing

802.3 frame

802.11 frame

802.11: mobility within same subnet

- HI remains in same
 IP subnet: IP address
 can remain same
- switch: which AP is associated with HI?
 - self-learning (T05): switch will see frame from H1 and "remember" which switch port can be used to reach H1

T06: outline

- 6. Introduction
- 6.2 Wireless links, characteristics
- 6.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 6.4 Cellular Internet access
 - architecture
 - standards (e.g., GSM)

Components of cellular network architecture

MSC

cell

- covers geographical region
- base station (BS) analogous to 802.11 AP
- * mobile users attach to network through BS
- air-interface: physical and link layer protocol between mobile and BS

Cellular networks: the first hop

- Two techniques for sharing mobile-to-BS radio spectrum
- combined FDMA/TDMA: divide spectrum in frequency channels, divide each channel into time slots
- CDMA: code division multiple access

T07: Bibliography

J. Kurose and K. Ross, "Computer Networking – a top-down approach", Pearson. Chapter 6: Wireless and Mobile Networks

