適応的な部分グラフ指示子の探索・選択に基づく非線形グラフ分類回帰

白川 稜,横山 侑政,岡崎 文哉,瀧川 一学 北海道大学 email:sira@ist.hokudai.ac.jp

概要

- グラフに対する教師付き学習(分類・回帰)
- 部分グラフの総数は膨大、全列挙困難
- 適応的な部分グラフ指示子の探索・選択に基づく効率的な非 線形モデル構築法の提案
- 実データ及び人工データに対する実験並びに精度、スケーラ ビリティの評価

背景

グラフ は広く用いられる重要なデータ構造

- 化学構造式
- RNA二次構造
- 構文木

グラフに対する教師付き学習

- 様々な分野での応用
 - 創薬
 - 材料科学

グラフに対する教師付き学習

入力 ラベル (y: 離散, 実数値) 付きグラフ集合

y_1	y_2	y_3		y_n
0.1	0.7	1.2	•••	0.9
G_1	G_2	G_3		G_n

出力 未知のグラフに対するラベルを予測する予測モデル

特徴量 部分グラフ指示子

1H,7,7										
y	G	٥٥	90	0	٥,	900	000	9 000	~	
0.3	ı	1	1	1	1	1	1	1	1	:
0.	7	1	1	1	0	1	1	1	1	
0.9		1	1	1	0	1	1	1	1	

既存研究

● 2-step 手法(Wale+ 2007)

事前選択された特徴の列挙 + 任意モデルでの学習

- →事前に選択される特徴に大きく影響
- gBoost(Saigo+ 2009)

適応的部分グラフ指示子の探索・選択に基づく線形モデル

→ 全部分グラフ指示子の考慮が可能

アプローチ

- branch & bound手法を用いた特徴探索により全部分グラフ指示 子を考慮した回帰木の学習
- 精度及び不安定性向上のためアンサンブル学習(勾配ブース ティング)を基にした非線形モデルの構築
- 実験による線形、非線形モデル間の比較

実験&結果

精度予測(%) Graph-XOR

"Graph-XOR": 非線形な学習を要するグラフ版XOR

非線形モデルが必要

gBoost
70.0

d: 木の深さ

精度予測 (%) QSAR

実データに対しても高精度

	CPDB	Mutag	NCI1	NCI47
非線形モデル				
提案手法	79.3	87.8	84.7	84.5
線形モデル				
提案手法 (d1)	79.3	87.8	83.1	82.8
gBoost	77.1	91.4	82.7	81.3

2-step 手法とのスケーラビリティの比較

2-step手法よりもスケールする

提案手法

非線形グラフ分類回帰モデル

回帰木

入力データに対して

内部ノードで質問し最適な分割を行う 葉ノードで定数値を返す

質問:

ある部分グラフを含むor含まない

勾配ブースティングは分類木ではなく回帰木が必要

勾配ブースティング

加法的アンサンブルモデル

 $F(G) = T_0(G) + sT_1(G) + sT_2(G) + sT_3(G) + \cdots$

 T_k : 各反復における残差 r_i に対する回帰木.

 $r_i = \frac{\partial L(y_i, F_{k-1}(G_i))}{\partial F}$ (2)

含む D'₁/

y = +0.8

s: 学習率, L: 損失関数.

内部ノードにおける分割ルールの学習

二乗誤差和を最小化する分割ルール(部分グラフ)の学習

$$\arg\min_{x_i \in X} \left[TSS(D_1(x_j)) + TSS(D_0(x_j)) \right]$$
 (3)

X:全部分グラフ集合(全列挙は困難)

 $D_1(x_i): \{x_i$ を含むグラフ集合 $\}$, $D_0(x_i): \{x_i$ を含まないグラフ集合 $\}$

TSS(D): 残差 r_i に対する二乗誤差和

内部ノードにおける分割ルールの学習

木探索(列挙木)

全部分グラフ集合は部分グラフ同型関係により 木状探索空間に表現が可能

木探索の特性

子ノード(c)は親ノード(p)の拡大グラフとなる

 \rightarrow 子孫ノードcを含むグラフは常に親ノードpを含む

ightarrow 子孫ノードcを含むグラフ集合は親ノードpを含むグラフ集合の部分集合となる $D_1(c) \subseteq D_1(p)$

最適部分グラフの探索

- 列挙木の性質に基づいたBranch & bound探索

 $D_1(g)$ と $D_0(g)$ が与えられる時, $g'\supset g$ を満たす全ての部分グラフに対して以下が成立 $TSS(D_1(g')) + TSS(D_0(g')) \ge \min_{(\diamondsuit, k)} \left[TSS(D_1(g) \setminus S_{\diamond,k}) + TSS(D_0(g) \cup S_{\diamond,k}) \right]$

 $(\diamond, k) \in \{\leq, >\} \times \{2, \dots, |D_1(g) - 1|\}, S_{\diamond, k} \subset D_1(g),$

 $S_{<,k}$ は $D_1(g)$ を残差に関して降順にした際の上からk番目までの集合. $S_{>,k}$ は昇順.

Q1

y = -1

含む D₁

 \bigcirc

D₀ 含まない

y = +1

D'o 含まない