Approximate Query Processing

- Space Partitioning-based
 - Tree
 - Encoding
 - Locality Sensitive Hashing
- Graph-based Methods

Notes:

- Recent works mainly in the Database area
- Prefer ease of exposition over rigor
- Categorization is not fixed/unique

- □ From the perspective of collision probability
 - (Ordinary) hash function h:
 - $Pr[h(x) = h(y)] = \varepsilon, \text{ if } x \neq y$

c.f., Cryptographic hash functions Pr [h(x) = h(y)] = 2^{-m} , if Hamming(x, y) = 1

- □ From the perspective of collision probability
 - (Ordinary) hash function h:
 - $Pr[h(x) = h(y)] = \varepsilon, \text{ if } x \neq y$
 - LSH
 - Pr[h(x) = h(y)] increases with locality
 - \blacksquare Randomness comes from r.v. $h \in H$

```
(r_1, r_2, p_1, p_2)-sensitive [IM98]
```

- $Pr[h(x) = h(y)] \ge p_1$, if $dist(x, y) \le r_1$
- $Pr[h(x) = h(y)] \le p_2$, if $dist(x, y) \ge r_2$

$$Pr[h(x) = h(y)] = sim(x, y) [C02] too narrow$$

c.f., Cryptographic hash functions

Pr $[h(x) = h(y)] = 2^{-m}$, if

Hamming(x, y) = 1

Can be generalized [SWQZ+14, ACPS18, CKPT19, ...]

- Equality search
 - Index: store o into bucket h(o)
 - Query:
 - retrieve every o_i in the bucket h(q)
 - verify if o_i = q

$$Pr[h(q) = h(o)] = 1/B$$

- Equality search
 - Index: store o into bucket h(o)

Pr[h(q) = h(o)] = 1/B

- Query:
 - retrieve every o_i in the bucket h(q)
 - verify if o_i = q
- □ LSH

c.f., [PIM12] for the <u>rigorous</u> QP procedure

- $\square \forall h \in LSH$ -family, $\Pr[Q(h(q)) = Q(h(o))] = f(Dist(q, o))$
 - Q(): quantization (not essential)
 - "Near-by" points have more chance of colliding with q than "far-away" points
- □ Similar index & query procedures, with a weak
 probabilistic guarantee
 → Repeat to boost the guarantee

LSH Families

- Many are known
 - Arr L_p (0 \leq 2): use p-stable distribution to generate the projection vector
 - For L₂, just use random Gaussian vector
 - Other families exists, e.g., sparse random projection
 - Angular distance (arccos): SimHash
 - Jaccard: minhash (based on random permutation)
 - Hamming:
 - random projection
 - covering LSH

Comments

- New queries can be reduced to known LSH cases
 - Maximum inner product search (MIPS)
 - Set containment
 - Group aggregated query
- Related to various distortion-bounded embedding
 - Edit distance: CGK-embedding to Hamming with O(K) distortion

Probabilistic Mapping

 Probabilistic, linear mapping from the original space to the projected space

Probabilistic Mapping

- Probabilistic, linear mapping from the original space to the projected space
- What about the distances (wrt Q or $\pi(Q)$) in these two spaces?

Probabilistic Distance Tracking Property of the Mapping

- □ ProjDist(P)² ~ Dist(P)² * χ^2_m [SWQZ+14]
 - ProjDist(P)² can be computed (incrementally) from $h_i(P)$ and $h_i(Q)$ due to the linearity of the hash function
 - Can be generalized to other p-stable LSH functions

Probabilistic Distance Tracking Property of the Mapping

LSH provides a probabilistic distance-preserving mapping between the two spaces

Johnson & Lindenstrauss Lemma [JL84] only works for L2 and induces a method that requires more space than LSH [AIR18]

Roadmap

- Roadmap
 - Practical LSH methods (i.e., linear index complexity)
 - Data-dependent LSH methods

Practical Variations of LSH

- Easy to relax the LSH method in practice at the cost of no worst-case guarantees
 - E2LSH: use fewer number of random projections
 - Multiprobe LSH (entropyLSH and other variants): space-time tradeoff
 - LSH in practice: use empirically tuned parameters (k, l)
 - SRS: a space-saving LSH index with in-memory or disk implementations
 - QALSH: use multiple B-trees for the index and use collision counting strategy based on LSH
 - HD-index: space filling curves as pseudo-LSH functions
 - SK-LSH: Replace LSB-tree/forest by a dimension-wise linear mapping

Data-sensitive Hashing

- LSH is data-insensitive
 - Indexing hyper-parameters determined by the shape of the data only
 - Indexing parameters are randomly generated
- Efforts to make data-sensitive, LSH-like methods
 - □ [AR15]
 - lacktriangle Aim: break the lower bounds of ho

c.f., [AIR18]

- DSH
- OPFA / NeOPFA
- Learning-to-hash methods
 - NSH [PCM15]
 - [LYZX+18] and many in the ML/CV communities

DSH [GJLO14]

Learn a family of (hash) functions, H, that preserves
 kNN of queries

- 1. Training data: $\mathbf{W}_{ij} = \begin{cases} 1 & \text{, if } o_j \in kNN(q_i) \\ -1 & \text{, if } o_j \not\in kNN(q_i) \land o_j \text{ is sampled} \\ 0 & \text{otherwise.} \end{cases}$
 - their k-NN objects (+ve)
 - samples non-c*k-NN objects (-ve)
- 2. Function family:
 - Thresholded linear functions $h(\mathbf{x}; \mathbf{a}) = \operatorname{sgn}(\mathbf{a}^{\top} \mathbf{x})$
- 3. Learn one hash function

$$\arg\min_{h} \sum_{i} \sum_{j} \ell(q_i, o_j) \mathbf{W}_{ij} \quad \text{, where } \ell(q, o) = (h(q) - h(o))^2$$

DSH [GJLO14]

- Learn a family of (hash) functions, H, that preserves
 kNN of queries
 - 4. Learn multiple hash functions
 - Multiplicative updates on W_{ij}
 - Increase W_{ij} if incorrectly classified
 - Decrease W_{ii} if correctly classified
 - (Under some assumptions) obtain H that satisfies the (k, ck, p_1 , p_2)-sensitive property for the training data
 - if $o \in NN(q, k)$, then collision probability from $H \ge p_1$
 - if o \notin NN(q, ck), then collision probability from H \leq p₂

Learned ANN Index [LZSW+20]

- Focus on external I/O
 - Use B-trees and maximize the use of sequential I/Os
- Scheme:
 - \blacksquare H: R^d \rightarrow R^M
 - Index each dimension of H(X) in a clustered B-tree
- Query processing
 - Collect candidates
 on each of the M
 projected
 dimensions
 - When T candidates are seen on all M lists, rerank them and return top-k

Function family

- Consider
 - linear functions
 - $\blacksquare H(x)[m] = w_m^T x$
 - non-linear functions

19

Consider the linear functions: $H(x)[m] = w_m^T x$

- □ Goal:
 - Encourage segment-order preserving mappings

Part of the Loss function

$$J^*(\mathbf{w}_m) = \sum_{i=1}^L \sum_{\tilde{x} \in l_i^o} \mathbf{1}_{r(\tilde{x})} \in [t \cdot (i-1), t \cdot i)$$

Continuous Relaxation

mapped x in the i-th segment

x in the i-th segment

Biology Inspired Hashing

FlyHash

 The fly olfactory circuit generates a lowoverlapping, sparse neuron activation pattern when an odor is presented

FlyHash

Difference with LSH

 $\mathbf{z} = \sigma(\mathbf{W}\mathbf{x})$

- W is a sparse binary random matrix
- Dimensionality expansion !!
- Sparsification
- L2 distance approximately preserved in expectation

Enable

[KH19]

- Unsupervised learning inspired by biological synaptic plasticity rules
- Overview
 - □ (Given W) Stabilizing the hidden competing neurons
 - Learning the projection matrix W

Learning h

 Fixing the W, the dynamical equation will converge to a stable hidden vector h

Learning W

 Fixing the h, the dynamical equation will converge to a final weight matrix W

BioHash - Learning W

The rest is the same as FlyHash (i.e., WTA sparsification)