Définition 2. Soit a un réel. Alors la suite $(\exp(n \times a))_{n \in \mathbb{N}}$ est une **suite géométrique** de premier terme 1 et de raison $\exp(a)$. On en déduit que pour tout $n \in \mathbb{N}$,

$$\exp(na) = \exp(a)^n$$

Démonstration. On pose pour tout $n \in \mathbb{N}$, $u_n = \exp(na)$. Étudier u_{n+1} en fonction de u_n , puis déduire que $(u_n)_{n \in \mathbb{N}}$ est géométrique.

En particulier, on va s'intéresser à a=1.

Définition 3. Le nombre $e = \exp(1)$ est appelé **constante de Néper**, et vaut approximativement 2.718... Par extension de la fonction puissance aux réels, la fonction exponentielle est notée, pour tout $x \in \mathbb{R}$,

$$\exp(x) = e^x$$

Remarque. La raison pour laquelle la notation e^x a été adoptée est pour correspondre avec les propriétés algébriques associées aux puissances :

$$\begin{cases} e^{x+y} = e^x e^y \\ e^{-x} = \frac{1}{e^x} \\ e^{x-y} = \frac{e^x}{e^y} \\ e^{nx} = (e^x)^n \quad \text{pour tout } n \in \mathbb{N} \end{cases}$$

3 Étude de la fonction exponentielle

On représente sur ce repère la courbe représentative de la fonction exponentielle.

Proposition 1. La fonction exponentielle est strictement positive sur \mathbb{R} : pour tout $x \in \mathbb{R}$,

$$\exp(x) > 0$$

Proposition 2. *Le fonction exponentielle est strictement croissante sur* \mathbb{R} :

