What Is Claimed Is:

1	1. A method for selectively monitoring store instructions to support	
2	transactional execution of a process, comprising:	
3	encountering a store instruction during transactional execution of a block	
4	of instructions in a program, wherein changes made during the transactional	
5	execution are not committed to the architectural state of a processor until the	
6	transactional execution successfully completes;	
7	determining whether the store instruction is a monitored store instruction	
8	or an unmonitored store instruction;	
9	if the store instruction is a monitored store instruction,	
10	performing a corresponding store operation, and	
11	store-marking a cache line associated with the store	
12	instruction to facilitate subsequent detection of an interfering data	
13	access to the cache line from another process; and	
14	if the store instruction is an unmonitored store instruction, performing the	
15	corresponding store operation without store-marking the cache line.	
1	2. The method of claim 1, wherein prior to executing the program, the	
2	method further comprises generating the instructions for the program, wherein	
3	generating the instructions involves:	
4	determining whether store operations that take place during transactional	
5	execution need to be monitored;	
6	generating monitored store instructions for store operations that need to be	
7	monitored; and	
8	generating unmonitored store instructions for store operations that do not	
9	need to be monitored.	

1	3.	The method of claim 2, wherein determining whether a store	
2	operation nee	eds to be monitored can involve examining a data structure associated	
3	with the store	e operation to determine whether the data structure is a "protected"	
4	data structure	e for which stores need to be monitored, or an "unprotected" data	
5	structure for	which stores do not need to be monitored.	
1	4.	The method of claim 2, wherein determining whether a store	
2	operation nee	eds to be monitored can involve determining whether the store	
3	operation is directed to a heap, wherein stores from the heap need to be monitored		
4	and stores fro	om outside the heap do not need to be monitored.	
1	5.	The method of claim 2, wherein determining whether a store	
2	operation needs to be monitored can involve allowing a programmer to determi		
3	if the store operation needs to be monitored.		
1	6.	The method of claim 1, determining whether the store instruction is	
2	a monitored store instruction involves examining an op code of the store		
3	instruction.		
1	7.	The method of claim 1, determining whether the store instruction is	
2	a monitored	store instruction involves examining an address associated with the	

The method of claim 7, wherein examining the address involves

store instruction to determine whether the address falls within a range of addresses

comparing the address with one or more boundary registers.

2

3

4

1

2

for which stores are monitored.

8.

1	9. The method of claim 7, wherein examining the address involves	
2	examining a Translation Lookaside Buffer (TLB) entry associated with the	
3	address.	
1	10. The method of claim 1, wherein if an interfering data access from	
2	another process is encountered during transactional execution of the block of	
3	instructions, the method further comprises:	
4	discarding changes made during the transactional execution; and	
5	attempting to re-execute the block of instructions.	
1	11. The method of claim 1, wherein if transactional execution of the	
2	block of instructions completes without encountering an interfering data access	
3	from another process, the method further comprises:	
4	committing changes made during the transactional execution to the	
5	architectural state of the processor; and	
6	resuming normal non-transactional execution of the program past the	
7	block of instructions.	
1	12. The method of claim 1, wherein an interfering data access can	
2	include:	
3	a store by another process to a cache line that has been load-marked by the	
4	process; and	
5	a load or a store by another process to a cache line that has been store-	
6	marked by the process.	

1	13. The method of claim 1, wherein the cache line is store-marked in
2	the cache level closest to the processor where cache lines are coherent.
1	14. The method of claim 1, wherein a store-marked cache line
2	indicates at least one of the following:
3	loads from other processes to the cache line should be monitored;
4	stores from other processes to the cache line should be monitored; and
5	stores to the cache line should be buffered until the transactional execution
6	completes.
1	15. An apparatus that selectively monitors store instructions to support
2	transactional execution of a process, comprising:
3	an execution mechanism within a processor;
4	wherein the execution mechanism is configured to support transactional
5	execution of a block of instructions in a program, wherein changes made during
6	the transactional execution are not committed to the architectural state of a
7	processor until the transactional execution successfully completes;
8	wherein upon encountering a store instruction during transactional
9	execution, the execution mechanism is configured to,
10	determine whether the store instruction is a monitored store
11	instruction or an unmonitored store instruction,
12	if the store instruction is a monitored store instruction, to
13	perform a corresponding store operation, and to store-mark a cache
14	line associated with the store instruction to facilitate subsequent
15	detection of an interfering data access to the cache line from
16	another process; and

17	if the store instruction is an unmonitored store instruction,	
18	to perform the corresponding store operation without store-	
19	marking the cache line.	
1	16. The apparatus of claim 15, further comprising an instruction	
2	generation mechanism configured to:	
3	determine whether store operations that take place during transactional	
4	execution need to be monitored;	
5	generate monitored store instructions for store operations that need to be	
6	monitored; and to	
7	generate unmonitored store instructions for store operations that do not	
8	need to be monitored.	
1	17. The apparatus of claim 16, wherein the instruction generation	
2	mechanism is configured to determine whether a store operation needs to be	
3	monitored by examining a data structure associated with the store operation to	
4	determine whether the data structure is a "protected" data structure for which	
5	stores need to be monitored, or an "unprotected" data structure for which stores do	
6	not need to be monitored.	
1	18. The apparatus of claim 16, wherein the instruction generation	
2	mechanism is configured to determine whether a store operation needs to be	
3	monitored by determining whether the store operation is directed to a heap,	
4	wherein stores from the heap need to be monitored and stores from outside the	
5	heap do not need to be monitored.	

1	19.	The apparatus of claim 16, wherein the instruction generation	
2	mechanism is configured to determine whether a store operation needs to be		
3	monitored by allowing a programmer to determine if the store operation needs to		
4	be monitored.		
1	20.	The apparatus of claim 15, wherein the execution mechanism is	
2	configured to	determine whether a store operation needs to be monitored by	
3	examining an	op code of the store instruction.	
		•	
1	21.	The apparatus of claim 15, wherein the execution mechanism is	
2	configured to	determine whether a store operation needs to be monitored by	
3	examining an	address associated with the store instruction to determine whether	
4	the address fa	lls within a range of addresses for which stores are monitored.	
	,		
1	22.	The apparatus of claim 21, wherein the execution mechanism is	
2	configured to	examine the address by comparing the address with one or more	
3	boundary regi	sters.	
1	23.	The apparatus of claim 21, wherein the execution mechanism is	
2	configured to	examine the address by examining a Translation Lookaside Buffer	
3	(TLB) entry a	ssociated with the address.	
1	24.	The apparatus of claim 15, wherein if an interfering data access	
2	from another	process is encountered during transactional execution of the block of	
3	instructions, t	he execution mechanism is configured to:	
4	discard changes made during the transactional execution; and to		
5	attempt to re-execute the block of instructions.		

l	25. The apparatus of claim 15, wherein if transactional execution of
2	the block of instructions completes without encountering an interfering data
3	access from another process, the execution mechanism is configured to:
4	commit changes made during the transactional execution to the
5	architectural state of the processor; and to
6	resume normal non-transactional execution of the program past the block
7	of instructions.
1	26. The apparatus of claim 15, wherein an interfering data access can
2	include:
3	a store by another process to a cache line that has been load-marked by the
4	process; and
5	a load or a store by another process to a cache line that has been store-
6	marked by the process.
1	27. The apparatus of claim 15, wherein the cache line is store-marked
2	in the cache level closest to the processor where cache lines are coherent.
1	28. The apparatus of claim 15, wherein a store-marked cache line
2	indicates at least one of the following:
3	loads from other processes to the cache line should be monitored;
	•
4	stores from other processes to the cache line should be monitored; and
5	stores to the cache line should be buffered until the transactional execution
6	completes.

1	29. A computer system that selectively monitors store instructions to
2	support transactional execution of a process, comprising:
3	a processor;
4	a memory;
5	an execution mechanism within the processor;
6	wherein the execution mechanism is configured to support transactional
7	execution of a block of instructions in a program, wherein changes made during
8	the transactional execution are not committed to the architectural state of a
9	processor until the transactional execution successfully completes;
10	wherein upon encountering a store instruction during transactional
11	execution, the execution mechanism is configured to,
12	determine whether the store instruction is a monitored store
13	instruction or an unmonitored store instruction,
14	if the store instruction is a monitored store instruction, to
15	perform a corresponding store operation, and to store-mark a cache
16	line associated with the store instruction to facilitate subsequent
17	detection of an interfering data access to the cache line from
18	another process; and
19	if the store instruction is an unmonitored store instruction,
20	to perform the corresponding store operation without store-
21	marking the cache line.