STAA 577: HW6

Your Name

Problem 1

Regularization refers to adding a penalty term to the loss function that shrinks the estimated coefficients toward zero. This is used to prevent overfitting by discouraging overly complex models as such improves the model's generalization.

Problem 2

Problem 3

Estimated Probability of Heart Disease vs. thalach

Problem 4

```
library(mgcv)
library(splines)
loocv_accuracy <- function(formula, data) {</pre>
               n <- nrow(data)</pre>
               pred_cat <- rep(NA, n)</pre>
               for (i in 1:n) {
                               fit <- gam(formula, data = data[-i, ], family = binomial)</pre>
                              phat <- predict(fit, newdata = data[i, ], type = "response")</pre>
                              pred_cat[i] <- ifelse(phat > 0.5, 1, 0)
               }
               return(mean(pred_cat == data$target))
}
formula1 <- target ~ s(age) + sex + cp + s(trestbps) + s(chol) + fbs + restecg +
               s(thalach) + exang + s(oldpeak) + slope + ca + thal
acc1 <- loocv_accuracy(formula1, heart)</pre>
formula2 <- target ~ ns(age, df = 4) + sex + cp + ns(trestbps, df = 4) + ns(chol, df = 
               df = 4) + fbs + restecg + ns(thalach, df = 4) + exang + ns(oldpeak, df = 4) +
               slope + ca + thal
acc2 <- loocv_accuracy(formula2, heart)</pre>
```

LOOCV accuracy for Model 1 (all predictors with s()): 0.8052805

```
cat("LOOCV accuracy for Model 2 (all predictors with ns()):", acc2, "\n")
```

LOOCV accuracy for Model 2 (all predictors with ns()): 0.8019802

```
cat("LOOCV accuracy for Model 3 (reduced model):", acc3, "\n")
```

LOOCV accuracy for Model 3 (reduced model): 0.8052805

Problem 5

```
## (Intercept) X1 X3
## 1.045641 1.937950 -5.011689
```

Problem 5(v.)

Convergence reached at iteration 24 for initial beta1 = 10

Backfitting Iterations (Initial beta1 = 10)

Problem 5(vi.)

Convergence reached at iteration 22 for initial beta1 = 0

Problem 5(vii.)

```
## For initial beta1 = 10, convergence was reached at iteration: 24
```

For initial beta1 = 0, convergence was reached at iteration: 22

For initial beta 1=10, convergence was reached at iteration: 24 For initial beta 1=0, convergence was reached at iteration: 22

Problem 5(viii.)

when beta1 was initialized at 0 instead of 10 the early part of the path varied signifficantly. 0 got there a bit quicker and 10 took a lot longer. That said final convergence did happen at a similar time its jsut that the early change was different

Problem 6

Type down (tex) answers for each part or upload the picture of the handwritten answers.

Problem 6(a.)

Write

$$f_1(x) = a_1 + b_1 x + c_1 x^2 + d_1 x^3,$$

where

$$a_1 = \beta_0, \quad b_1 = \beta_1, \quad c_1 = \beta_2, \quad d_1 = \beta_3.$$

Problem 6(b.)

We expand $(x - \xi)^3$:

$$(x - \xi)^3 = x^3 - 3\xi x^2 + 3\xi^2 x - \xi^3.$$

Substituting this expansion into f(x) gives:

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x^3 - 3\xi x^2 + 3\xi^2 x - \xi^3)$$

= $(\beta_0 - \beta_4 \xi^3) + (\beta_1 + 3\beta_4 \xi^2) x$
+ $(\beta_2 - 3\beta_4 \xi) x^2 + (\beta_3 + \beta_4) x^3$.

Thus, define

$$f_2(x) = a_2 + b_2 x + c_2 x^2 + d_2 x^3,$$

with

$$a_2 = \beta_0 - \beta_4 \xi^3$$
, $b_2 = \beta_1 + 3\beta_4 \xi^2$, $c_2 = \beta_2 - 3\beta_4 \xi$, $d_2 = \beta_3 + \beta_4$.

Problem 6(c.)

For $x > \xi$:

$$f_2(\xi) = (\beta_0 - \beta_4 \xi^3) + (\beta_1 + 3\beta_4 \xi^2) \xi$$
$$+ (\beta_2 - 3\beta_4 \xi) \xi^2 + (\beta_3 + \beta_4) \xi^3$$
$$= \beta_0 + \beta_1 \xi + \beta_2 \xi^2 + \beta_3 \xi^3,$$

since the β_4 -terms cancel. Therefore,

$$f_1(\xi) = f_2(\xi).$$

Problem 6(d.)

Differentiate $f_1(x)$:

$$f_1'(x) = \beta_1 + 2\beta_2 x + 3\beta_3 x^2,$$

so that

$$f_1'(\xi) = \beta_1 + 2\beta_2 \xi + 3\beta_3 \xi^2.$$

Differentiate $f_2(x)$:

$$f_2'(x) = b_2 + 2c_2x + 3d_2x^2,$$

and thus,

$$f_2'(\xi) = (\beta_1 + 3\beta_4 \xi^2) + 2(\beta_2 - 3\beta_4 \xi)\xi + 3(\beta_3 + \beta_4)\xi^2$$
$$= \beta_1 + 3\beta_4 \xi^2 + 2\beta_2 \xi - 6\beta_4 \xi^2 + 3\beta_3 \xi^2 + 3\beta_4 \xi^2$$
$$= \beta_1 + 2\beta_2 \xi + 3\beta_3 \xi^2.$$

Thus, we have

$$f_1'(\xi) = f_2'(\xi).$$

Problem 6(e.)

Differentiate $f'_1(x)$:

$$f_1''(x) = 2\beta_2 + 6\beta_3 x$$
, so $f_1''(\xi) = 2\beta_2 + 6\beta_3 \xi$.

Differentiate $f_2'(x)$:

$$f_2''(x) = 2c_2 + 6d_2x$$
, so $f_2''(\xi) = 2(\beta_2 - 3\beta_4\xi) + 6(\beta_3 + \beta_4)\xi$.

Simplifying,

$$f_2''(\xi) = 2\beta_2 - 6\beta_4 \xi + 6\beta_3 \xi + 6\beta_4 \xi$$

= $2\beta_2 + 6\beta_3 \xi$.

Hence,

$$f_1''(\xi) = f_2''(\xi).$$

Problem 7

Appendix

```
library(knitr)
# install the tidyverse library (do this once) install.packages('tidyverse')
library(tidyverse)
library(splines)
library(ggplot2)
library(tidyr)
# set chunk and figure default options
knitr::opts_chunk$set(echo = FALSE, message = FALSE, warning = FALSE, fig.width = 5.5,
    fig.height = 4, tidy = TRUE)
# problem 2
library(ggplot2)
library(splines)
prostate <- read.csv("prostate.csv")</pre>
model_poly <- lm(lpsa ~ poly(pgg45, 3), data = prostate)</pre>
model_ns1 <- lm(lpsa ~ ns(pgg45, knots = c(15, 45)), data = prostate)</pre>
model_ns2 \leftarrow lm(lpsa \sim ns(pgg45, knots = c(25, 50, 75)), data = prostate)
grid <- data.frame(pgg45 = seq(min(prostate$pgg45), max(prostate$pgg45), length.out = 200))
grid$pred_poly <- predict(model_poly, newdata = grid)</pre>
```

```
grid$pred_ns1 <- predict(model_ns1, newdata = grid)</pre>
grid$pred_ns2 <- predict(model_ns2, newdata = grid)</pre>
ggplot(prostate, aes(x = pgg45, y = lpsa)) + geom_point() + geom_line(data = grid,
    aes(y = pred_poly, color = "Cubic Polynomial"), size = 1) + geom_line(data = grid,
    aes(y = pred_ns1, color = "Natural Spline 1"), size = 1) + geom_line(data = grid,
    aes(y = pred_ns2, color = "Natural Spline 2"), size = 1) + labs(title = "Prostate Data: lpsa vs. pg
    x = "Percentage of Gleason Scores 4 or 5 (pgg45)", y = "Log Prostate Specific Antigen (lpsa)",
    color = "Model") + theme minimal()
# Problem 3
library(ggplot2)
library(splines)
library(tidyr)
heart_train <- read.csv("heart_training.csv")</pre>
heart_test <- read.csv("heart_test.csv")</pre>
heart <- rbind(heart_train, heart_test)</pre>
heart$sex <- as.factor(heart$sex)</pre>
heart$cp <- as.factor(heart$cp)</pre>
heart$exang <- as.factor(heart$exang)</pre>
heart$fbs <- as.factor(heart$fbs)</pre>
heart$restecg <- as.factor(heart$restecg)</pre>
model_logit <- glm(target ~ thalach, data = heart, family = binomial)</pre>
model_ns2 <- glm(target ~ ns(thalach, df = 2), data = heart, family = binomial)</pre>
model_ns6 <- glm(target ~ ns(thalach, df = 6), data = heart, family = binomial)</pre>
thalach_grid <- data.frame(thalach = seq(min(heart$thalach), max(heart$thalach),
    length.out = 200))
thalach_grid$pred_logit <- predict(model_logit, newdata = thalach_grid, type = "response")
thalach_grid$pred_ns2 <- predict(model_ns2, newdata = thalach_grid, type = "response")</pre>
thalach_grid$pred_ns6 <- predict(model_ns6, newdata = thalach_grid, type = "response")</pre>
pred_data <- pivot_longer(thalach_grid, cols = starts_with("pred_"), names_to = "model",</pre>
    values_to = "pred")
pred_data$model <- factor(pred_data$model, levels = c("pred_logit", "pred_ns2", "pred_ns6"),</pre>
    labels = c("Linear Logistic", "Natural Spline 2", "Natural Spline 7"))
ggplot(heart, aes(x = thalach, y = target)) + geom_point(alpha = 0.5, position = position_jitter(height
    geom_line(data = pred_data, aes(x = thalach, y = pred, color = model), size = 1) +
    labs(title = "Estimated Probability of Heart Disease vs. thalach", x = "thalach",
        y = "Predicted Probability", color = "Model") + theme_minimal()
library(mgcv)
library(splines)
loocv_accuracy <- function(formula, data) {</pre>
    n <- nrow(data)</pre>
    pred_cat <- rep(NA, n)</pre>
```

```
for (i in 1:n) {
         fit <- gam(formula, data = data[-i, ], family = binomial)</pre>
        phat <- predict(fit, newdata = data[i, ], type = "response")</pre>
        pred_cat[i] <- ifelse(phat > 0.5, 1, 0)
    return(mean(pred_cat == data$target))
}
formula1 <- target ~ s(age) + sex + cp + s(trestbps) + s(chol) + fbs + restecg +
    s(thalach) + exang + s(oldpeak) + slope + ca + thal
acc1 <- loocv_accuracy(formula1, heart)</pre>
formula2 <- target ~ ns(age, df = 4) + sex + cp + ns(trestbps, df = 4) + ns(chol,
    df = 4) + fbs + restecg + ns(thalach, df = 4) + exang + ns(oldpeak, df = 4) +
    slope + ca + thal
acc2 <- loocv_accuracy(formula2, heart)</pre>
formula3 <- target ~ s(age) + sex + cp + s(trestbps) + s(chol) + s(thalach) + exang +
    s(oldpeak)
acc3 <- loocv_accuracy(formula3, heart)</pre>
cat("LOOCV accuracy for Model 1 (all predictors with s()):", acc1, "\n")
cat("LOOCV accuracy for Model 2 (all predictors with ns()):", acc2, "\n")
cat("LOOCV accuracy for Model 3 (reduced model):", acc3, "\n")
# Problem 5i-iv
set.seed(577)
n <- 150
X1 <- rnorm(n)</pre>
X2 \leftarrow rnorm(n)
X3 \leftarrow 0.5 * X1 + 0.5 * X2 # X3 is generated from X1 and X2
epsilon \leftarrow rnorm(n, mean = 0, sd = 0.5)
Y \leftarrow 1 + 2 * X1 - 5 * X3 + epsilon
lm_fit \leftarrow lm(Y \sim X1 + X3)
coef_true <- coef(lm_fit)</pre>
print(coef_true)
tol <- 1e-06
max_iter <- 100
beta1 <- 10
beta0_est <- numeric(max_iter)</pre>
beta1_est <- numeric(max_iter)</pre>
beta2_est <- numeric(max_iter)</pre>
conv_iter_10 <- NA</pre>
for (i in 1:max_iter) {
    fit_beta2 \leftarrow lm(I(Y - beta1 * X1) \sim X3)
    beta0 <- coef(fit_beta2)[1]</pre>
    beta2 <- coef(fit_beta2)[2]</pre>
```

```
fit_beta1 \leftarrow lm(I(Y - beta2 * X3) \sim X1)
    beta0_new <- coef(fit_beta1)[1]</pre>
    beta1_new <- coef(fit_beta1)[2]</pre>
    beta0_est[i] <- beta0_new</pre>
    beta1_est[i] <- beta1_new</pre>
    beta2_est[i] <- beta2</pre>
    if (i > 1 && abs(beta1_new - beta1) < tol) {</pre>
        conv_iter_10 <- i</pre>
         cat("Convergence reached at iteration", i, "for initial beta1 = 10\n")
        break
    beta1 <- beta1_new
if (is.na(conv_iter_10)) conv_iter_10 <- max_iter</pre>
iter_vals <- 1:(ifelse(is.na(conv_iter_10), max_iter, conv_iter_10))</pre>
backfit_df <- data.frame(iter = iter_vals, beta0 = beta0_est[iter_vals], beta1 = beta1_est[iter_vals],</pre>
    beta2 = beta2_est[iter_vals])
backfit_long <- pivot_longer(backfit_df, cols = c("beta0", "beta1", "beta2"), names_to = "coefficient",</pre>
    values_to = "estimate")
p1 <- ggplot(backfit_long, aes(x = iter, y = estimate, color = coefficient)) + geom_line() +
    labs(title = "Backfitting Iterations (Initial beta1 = 10)", x = "Iteration",
        y = "Coefficient Estimate") + theme_minimal() + geom_hline(aes(yintercept = coef_true["(Interce
    color = "beta0"), linetype = "dashed") + geom_hline(aes(yintercept = coef_true["X1"],
    color = "beta1"), linetype = "dashed") + geom_hline(aes(yintercept = coef_true["X3"],
    color = "beta2"), linetype = "dashed")
print(p1)
beta1 <- 0
beta0_est2 <- numeric(max_iter)</pre>
beta1_est2 <- numeric(max_iter)</pre>
beta2_est2 <- numeric(max_iter)</pre>
conv_iter_0 <- NA</pre>
for (i in 1:max_iter) {
    fit_beta2 <- lm(I(Y - beta1 * X1) ~ X3)</pre>
    beta0 <- coef(fit_beta2)[1]</pre>
    beta2 <- coef(fit_beta2)[2]</pre>
    fit_beta1 \leftarrow lm(I(Y - beta2 * X3) \sim X1)
    beta0_new <- coef(fit_beta1)[1]</pre>
    beta1_new <- coef(fit_beta1)[2]</pre>
    beta0_est2[i] <- beta0_new</pre>
    beta1_est2[i] <- beta1_new</pre>
    beta2_est2[i] <- beta2</pre>
    if (i > 1 && abs(beta1_new - beta1) < tol) {</pre>
         conv_iter_0 <- i</pre>
         cat("Convergence reached at iteration", i, "for initial beta1 = 0\n")
```

```
beta1 <- beta1_new
if (is.na(conv_iter_0)) conv_iter_0 <- max_iter</pre>
iter_vals2 <- 1:(ifelse(is.na(conv_iter_0), max_iter, conv_iter_0))</pre>
backfit_df2 <- data.frame(iter = iter_vals2, beta0 = beta0_est2[iter_vals2], beta1 = beta1_est2[iter_vals2]
    beta2 = beta2_est2[iter_vals2])
backfit long2 <- pivot longer(backfit df2, cols = c("beta0", "beta1", "beta2"), names to = "coefficient
    values to = "estimate")
p2 <- ggplot(backfit_long2, aes(x = iter, y = estimate, color = coefficient)) + geom_line() +
    labs(title = "Backfitting Iterations (Initial beta1 = 0)", x = "Iteration", y = "Coefficient Estima
    theme_minimal() + geom_hline(aes(yintercept = coef_true["(Intercept)"], color = "beta0"),
    linetype = "dashed") + geom_hline(aes(yintercept = coef_true["X1"], color = "beta1"),
    linetype = "dashed") + geom_hline(aes(yintercept = coef_true["X3"], color = "beta2"),
    linetype = "dashed")
print(p2)
cat("For initial beta1 = 10, convergence was reached at iteration:", conv_iter_10,
cat("For initial beta1 = 0, convergence was reached at iteration:", conv_iter_0,
    "\n")
x_{seq} \leftarrow seq(-2, 6, by = 0.1)
b1 \leftarrow ifelse(x_seq >= 0 \& x_seq <= 2, 1, 0) - ifelse(x_seq >= 1 \& x_seq <= 2, (x_seq -
b2 <- ifelse(x_seq >= 3 & x_seq <= 4, (x_seq - 3), 0) + ifelse(x_seq > 4 & x_seq <=
    5, 1, 0)
fhat <-1 + 1 * b1 + 3 * b2
df <- data.frame(x = x_seq, fhat = fhat)</pre>
ggplot(df, aes(x = x, y = fhat)) + geom_line(size = 1.2) + labs(title = "Fitted Curve with Basis Functi
    x = "X", y = "Estimated f(X)") + theme_minimal() + scale_x_continuous(breaks = seq(-2,
    6, by = 1)) + scale_y_continuous(breaks = seq(0, 5, by = 1))
```