

$$\frac{(R-x)^2+y^2}{x^2+y^2}=\exp\left[\frac{4\pi\epsilon_0 V}{\lambda}\right]$$

Let exp[4740V] = c ne have equation of motion

- W-MINHT =

$$y^{2} + \left(x - \frac{R}{1-c}\right)^{2} - \frac{R^{2}}{(1-c)^{2}} + \frac{R^{2}}{1-c} = 0$$

This is equation of a circle:

(soldiste in E! -

$$y^{2} + (x - \frac{R}{1 - c})^{2} = \frac{R^{2}}{(1 - c)^{2}} - \frac{R^{2}}{1 - c}$$

The coordinate
$$\frac{1}{15}$$
 $x = \frac{R}{1-C}$ $y = 0$.

Davidson Cheng 2.4. 2024 Jadoson 2.8 (b)

and radius

The coordinate for the equipotential circle is

Consider 2 equipotential circles illustrated as below

$$r_2 = R \left[\frac{1}{(1-C_2)^2} - \frac{1}{1-C_2} \right]^{\frac{7}{2}} = 6$$

$$a^{2} = R^{2} \left[\frac{1}{(1-c_{1})^{2}} - \frac{1}{1-c_{1}} \right], \quad b^{2} = R^{2} \left[\frac{1}{(1-c_{2})^{2}} - \frac{1}{1-c_{2}} \right]$$

$$d^{2} = R^{2} \left[\frac{1}{(1-c_{1})^{2}} + \frac{1}{(1-c_{2})^{2}} - \frac{2}{(1-c_{1})(1-c_{2})} \right]$$

$$a^{2} + b^{2} = R^{2} \left[\frac{1}{(1-c_{1})^{2}} + \frac{1}{(1-c_{2})^{2}} - \frac{1}{1-c_{1}} - \frac{1}{1-c_{2}} \right]$$

$$= R^{2} \left[\frac{1}{(1-c_{1})^{2}} + \frac{1}{(1-c_{2})^{2}} - \frac{2-c_{2}-c_{1}}{(1-c_{1})(1-c_{2})} \right]$$

$$= R^{2} \left[\frac{1}{(1-c_{1})^{2}} + \frac{1}{(1-c_{2})^{2}} - \frac{2-c_{2}-c_{1}}{(1-c_{1})(1-c_{2})} \right]$$

$$R^{2} \text{ (an be eliminated via ab :}$$

$$ab = R^{2} \left(\frac{1}{(1-c_{2})^{2}} - \frac{1}{1-c_{1}} \right) \left(\frac{1}{(1-c_{2})^{2}} - \frac{1}{1-c_{2}} \right)$$

$$= R^{2} \left[\frac{1-(1-c_{2})-(1-c_{1})}{(1-c_{2})^{2}} + \frac{(1-c_{1})(1-c_{2})}{(1-c_{2})^{2}} \right]$$

$$= R^2 \frac{\sqrt{c_1 c_2}}{(1-c_1)(1-c_2)}$$

It's then tempting to write d2-(a2-162) = R [c1+(2] [c1+(2]]

ab [C1+(2]]

[= C1+C2 Recall G= exp [4 TEOVI], plug this in: $\frac{d^{2}-(a^{2}+b^{2})}{ab} = \exp\left[\frac{4\pi40}{n}V_{1}\right] + \exp\left[\frac{4\pi40}{n}V_{2}\right]$ exp[2760 (V, +12)] = exp[276 (V1-V2)] + exp[276 (V2-V1)] Then it's evident that $\frac{-1}{2ab} \left[\frac{d^2 - (a^2 + b^2)}{2ab} \right] = \frac{2\pi 4}{N} (V_1 - V_2)$ = 27,90 [Vaiff] The capatitane formula $C = \frac{Q}{V}$ gives the answer.

2.5.2024

Judgson 2-9 (C) The appropriate limit is dir a, b then $\frac{d^2 - a^2 - b^2}{2ab} \approx \frac{d^2}{2ab}$ For large &, cosho & Inzo =7 $\cosh^{-1} \left[\frac{d^2 - a^2 - b^2}{2ab} \right] \propto \ln \left[\frac{d}{ab} \right]$ = $2 \ln \left[\frac{d}{d} \right]$ Then C= 271 % reduces to (435 [---] C2 27/2 $= \pi \left\{ \int_{ab} \left[\ln \frac{d}{J_{ab}} \right] \right\}$ which is the formula from exercise 1.7. Darder ans

2-5-2024