Nome e cognome: _	Classe:	Data:Griglia

Risposte (variante 48)

20
20

- 1. Cosa postula il modello di Bohr riguardo all'emissione di radiazione da parte di un atomo?
 - (a) Un atomo emette radiazione solo quando viene ionizzato.
 - (b) Un atomo emette radiazione solo se si trova in uno stato eccitato stazionario.
 - (c) Un atomo emette radiazione (un fotone) solo quando un elettrone salta da un'orbita permessa a un'altra orbita permessa di energia inferiore.
 - (d) Un atomo emette radiazione continuamente mentre l'elettrone orbita attorno al nucleo.
- 2. Il nucleo di Deuterio (2_1 H) è formato da 1 protone ($m_p \approx 1.0073\,\mathrm{u}$) e 1 neutrone ($m_n \approx 1.0087\,\mathrm{u}$). La sua massa misurata è $m_D \approx 2.0141\,\mathrm{u}$. Qual è approssimativamente il difetto di massa Δm ?
 - (a) $\Delta m \approx 2.0141 (1.0073 + 1.0087) = -0.0019 \,\mathrm{u}$
- (c) $\Delta m \approx (1.0073 + 1.0087) 2.0141 = 0.0019 \,\mathrm{u}$

(b) $\Delta m \approx 2.0141 \,\mathrm{u}$

- (d) $\Delta m \approx 1.0073 + 1.0087 + 2.0141 \approx 4.0301 \,\mathrm{u}$
- 3. Quale tipo di decadimento radioattivo consiste nell'emissione di un nucleo di Elio $\binom{4}{2}$ He)?
 - (a) Decadimento Beta meno (β^{-})

(c) Decadimento Beta più (β^+)

(b) Emissione Gamma (γ)

- (d) Decadimento Alfa (α)
- 4. Completare la seguente reazione di decadimento beta più (β^+) o cattura elettronica (EC), sapendo che il Fluoro-18 $({}^{18}_{9}F)$ può decadere β^+ : ${}^{18}_{9}F \rightarrow ? + e^+ + \nu_e$
 - (a) $^{18}_{10}$ Ne

(b) ${}^{18}_{8}$ O

- (c) $^{19}_{9}F$
- (d) ${}_{0}^{17}$ F
- 5. In un esperimento Compton, un fotone X incide su un elettrone a riposo. La variazione della lunghezza d'onda $(\Delta \lambda = \lambda' \lambda)$ del fotone diffuso dipende dall'angolo di diffusione θ . Quando è massima questa variazione?
 - (a) Quando l'angolo di diffusione è $\theta = 90^{\circ}$.
 - (b) Quando l'angolo di diffusione è $\theta = 180^{\circ}$ (diffusione all'indietro).
 - (c) La variazione è indipendente dall'angolo θ .
 - (d) Quando l'angolo di diffusione è $\theta = 0^{\circ}$ (nessuna diffusione).
- 6. Un isotopo radioattivo ha un tempo di dimezzamento di $T_{1/2} = 5$ giorni. Se inizialmente abbiamo 16 mg di questo isotopo, quanti milligrammi rimarranno dopo 20 giorni?
 - (a) 2 mg

(b) 1 mg

(c) 4 mg

- (d) 8 mg
- 7. Nel range di energie tipico della radiodiagnostica (es. 30 150 keV), quale interazione tra fotoni X e tessuti biologici (a basso Z) è generalmente dominante e più rilevante per la formazione dell'immagine?
 - (a) Produzione di coppie (e^+/e^-) .

(c) Scattering di Rayleigh (coerente).

(b) Effetto Compton.

- (d) Effetto fotoelettrico.
- 8. La "catastrofe ultravioletta" è un problema sorto nello studio della radiazione di corpo nero perché la fisica classica prevedeva:
 - (a) Un'intensità energetica nulla per lunghezze d'onda molto piccole.
 - (b) Un'intensità energetica infinita per lunghezze d'onda molto piccole (alte frequenze).

(c) Che l'intensità massima si spostasse verso il rosso (frequenze basse) all'aumentare della temperatura.	
(d) Che l'energia emessa fosse quantizzata fin dall'inizio.	
Secondo l'esperimento mentale di Schrödinger, cosa determina il passaggio del gatto da uno stato di sovrapposizione a ustato definito (vivo o morto)?	mo
(a) Il decadimento dell'atomo radioattivo all'interno della scatola.	
(b) Il tempo trascorso dall'inizio dell'esperimento.	

(c) La volontà del gatto.

9.

- (d) L'atto di osservazione o misurazione (apertura della scatola).
- 10. Nel paradosso del gatto di Schrödinger, cosa rappresenta lo stato del gatto PRIMA che la scatola venga aperta, secondo un'interpretazione strettamente quantistica?
 - (a) Uno stato indeterminato che non è né vivo né morto.
 - (b) Una sovrapposizione quantistica degli stati "gatto vivo" e "gatto morto".
 - (c) Lo stato "gatto vivo".
 - (d) Lo stato "gatto morto".
- 11. Cosa dimostra in modo sorprendente l'esperimento della doppia fenditura con elettroni singoli?
 - (a) Che il principio di indeterminazione non è valido.
 - (b) Che gli elettroni sono particelle classiche che seguono traiettorie ben definite.
 - (c) Che la luce è composta da particelle (fotoni).
 - (d) Che anche le singole particelle (elettroni) esibiscono un comportamento ondulatorio (interferenza), suggerendo che ogni elettrone "passa attraverso entrambe le fenditure" in senso quantistico.
- 12. Una radiazione di frequenza $f=1.0\times 10^{15}\,\mathrm{Hz}$ colpisce un metallo con lavoro di estrazione $W=2.0\,\mathrm{eV}$. Sapendo che $h\approx 6.63\times 10^{-34}\,\mathrm{J\cdot s}$ e 1 eV $\approx 1.6\times 10^{-19}\,\mathrm{J}$, qual è circa l'energia cinetica massima K_{max} degli elettroni emessi? (Suggerimento: calcola prima hf in eV, $hf\approx 4.14\,\mathrm{eV}$)
 - (a) $K_{max} \approx 4.14 \,\text{eV}$ (b) $K_{max} \approx 6.14 \,\text{eV}$ (c) $K_{max} \approx 2.14 \,\text{eV}$ (d) $K_{max} \approx 2.0 \,\text{eV}$
- 13. Secondo la spiegazione di Einstein dell'effetto fotoelettrico, perché esiste una "frequenza di soglia" al di sotto della quale non vengono emessi elettroni, indipendentemente dall'intensità della luce?
 - (a) Perché l'energia del singolo fotone (hf) deve essere almeno pari al lavoro di estrazione (W) per liberare un elettrone.
 - (b) Perché a basse frequenze la luce si comporta solo come un'onda.
 - (c) Perché l'intensità della luce non è sufficiente a "scaldare" abbastanza gli elettroni.
 - (d) Perché l'interazione tra luce e materia richiede un tempo minimo che dipende dalla frequenza.
- 14. Come spiega il modello di Bohr l'emissione di luce a frequenze discrete (spettro a righe) da parte degli atomi?
 - (a) L'elettrone emette un fotone di energia definita (E = hf) quando salta da un'orbita permessa a energia superiore a una a energia inferiore.
 - (b) Il nucleo atomico vibra emettendo fotoni.
 - (c) Gli urti tra atomi eccitati producono lo spettro.
 - (d) L'elettrone emette luce continuamente mentre orbita, ma solo a certe frequenze.
- 15. Identificare il prodotto mancante nel decadimento alfa dell'Uranio-238: $^{238}_{92}$ U $\rightarrow X + \alpha$
- 16. Nell'effetto Compton, un fotone X interagisce con un elettrone libero (o debolmente legato). Cosa succede al fotone?
 - (a) Viene assorbito completamente dall'elettrone.
 - (b) Viene diffuso con una frequenza maggiore (lunghezza d'onda minore).
 - (c) Passa attraverso l'elettrone senza interagire.
 - (d) Viene diffuso (scatterato) con una frequenza minore (lunghezza d'onda maggiore).
- 17. Completare la seguente reazione di decadimento beta meno (β^-) : ${}^{14}_{6}C \rightarrow ? + e^- + \bar{\nu}_e$

(2)	14 C	(b) $^{14}_{7}N$	(c) ${}^{13}_{6}$ C	(d) 14B
(a)	$_{6}^{14}\mathrm{C}$	(D) $\tilde{7}^{-1}N$	(c) $\frac{1}{6}$ c	(d) ${}_{5}^{14}B$

18. Come si calcola l'energia di legame (E_B) di un nucleo, noto il difetto di massa Δm ?

(a) $E_B = (\Delta m)/c^2$. (b) $E_B = m_{nucleo}c^2$. (c) $E_B = (\Delta m)c^2$. $(\sum m_{costituenti})c^2$.

- 19. Il principio di indeterminazione è una conseguenza fondamentale:
 - (a) Della teoria della relatività di Einstein.
 - (b) Del modello atomico di Bohr.
 - (c) Degli errori sperimentali inevitabili negli strumenti di misura.
 - (d) Della natura ondulatoria della materia (dualismo onda-corpuscolo) e dei limiti intrinseci alla misurazione nel mondo quantistico.
- 20. La legge del decadimento radioattivo $N(t) = N_0 e^{-\lambda t}$ descrive:
 - (a) Il tempo di dimezzamento del campione.
 - (b) Il numero N(t) di nuclei radioattivi non ancora decaduti presenti al tempo t, partendo da N_0 nuclei al tempo t = 0.
 - (c) L'attività del campione al tempo t.
 - (d) Il numero di nuclei decaduti al tempo t.