Notes on Probability and Computing

Xu Zhean

January 22, 2022

Contents

1	Events and Probability	2
2	Discrete Random Variables and Expectation	2
3	Moments and Deviations	4
4	Chernoff and Hoeffding Bounds	5
5	Balls, Bins, and Random Graphs	6
6	The Probabilistic Method	6
7	Markov Chains and Random Walks	6

1 Events and Probability

A probability space is a measure space $(\Omega, \mathcal{F}, \mathbb{P})$ consisting of:

- the sample space Ω a set of outcomes called sample;
- the σ -algebra \mathcal{F} a family of subsets of Ω , called **events**, such that $\Omega \in \mathcal{F}$ and \mathcal{F} is closed under complements (i.e. $\forall A \in \mathcal{F}$, $\Omega \setminus A \in \mathcal{F}$) and countable unions (i.e. $\forall A_i \in \mathcal{F}$, $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$);
- the probability function $\mathbb{P}: \mathcal{F} \to [0,1]$ such that $\mathbb{P}(\Omega) = 1$ and \mathbb{P} is σ -additive (i.e. $\mathbb{P}(\bigsqcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$).

The motivation behind this complicated definition is that some sets are **non-measurable**, thus mathematicians developed the theory of **measure**. For instance, **Borel set** on real line forms a σ -algebra which is **generated by** open intervals. **Stieltjes measure** is a **Borel measure** and builds the measure-theoretic foundation of **continuous probability distribution**.

Lemma 1.1 (Inclusion-exclusion principle) Let E_1, \dots, E_n be any n events. Then

$$\mathbb{P}\left(\bigcup_{i=1}^n E_i\right) = \sum_{\ell=1}^n (-1)^{\ell+1} \sum_{i_1 < i_2 < \dots < i_\ell} \mathbb{P}\left(\bigcap_{r=1}^\ell E_{i_r}\right).$$

Events E_1, E_2, \dots, E_n are **mutually independent** (simply called **independent** when k = 2) if and only if, for any subset $I \subseteq \{1, 2, \dots, k\}$, $\mathbb{P}\left(\bigcap_{i \in I} E_i\right) = \prod_{i \in I} \mathbb{P}(E_i)$. Note that events X, Y, Z, \dots are unnecessarily mutually independent when they are pairwise independent.

The **conditional probability** that event E occurs given that event F occurs is $\mathbb{P}(E \mid F) = \mathbb{P}(E \cap F) / \mathbb{P}(F)$.

Theorem 1.2 (Law of total probability) Let events $\bigsqcup_{i=1}^n E_i = \Omega$. Then we have $\mathbb{P}(B) = \sum_{i=1}^n \mathbb{P}(B \mid E_i) \cdot \mathbb{P}(E_i)$.

Theorem 1.3 (Bayes's law) Let events E_1, E_2, \dots, E_n satisfy $\bigsqcup_{i=1}^n E_i = \Omega$. Then we have

$$\mathbb{P}(E_k \mid B) = \frac{\mathbb{P}(E_k \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B \mid E_k) \cdot \mathbb{P}(E_k)}{\sum_{i=1}^n \mathbb{P}(B \mid E_i) \cdot \mathbb{P}(E_i)}.$$

In the **Bayesian approach** one starts with a **prior** model, giving some initial value to the model parameters. This model is then modified, by incorporating new observations, to obtain a **posterior** model that captures the new information.

Exercise 1.6 Using mathematical induction, we have $p_{i,j} = \frac{i-1}{i+j-1} \cdot p_{i-1,j} + \frac{j-1}{i+j-1} \cdot p_{i,j-1} = \frac{i+j-2}{i+j-1} \cdot \frac{1}{i+j-2} = \frac{1}{i+j-2}$.

Exercise 1.7.b Let $F_{b_1b_2\cdots b_n}$ be the intersection of events E_i ($b_i=1$) or $\Omega\backslash E_i$ ($b_i=0$), and P_k be the sum of $\mathbb{P}(F_b)$ where b consists of k one and n-k zero. Then for every $k\geq 1$, we have $\sum_{i=1}^l (-1)^{i+1} \binom{k}{i} = 1 + (-1)^{l+1} \binom{k-1}{l} \geq 1$. Multiply both sides by P_k and sum them up. We eventually reach the desired inequality.

Exercise 1.11.b $p_3 = p_1 \cdot (1 - p_2) + (1 - p_1) \cdot p_2 \Rightarrow q_3 = 1 - 2p_3 = (1 - 2p_1)(1 - 2p_2) = q_1q_2$. Is there any underlying motivation?

Exercise 1.24 (Karger's algorithm) Let K be the minimum r-way cut-set. Considering all r-way cut-sets consisting of r-1 single vertex, the total size is $m \cdot \binom{n-2}{r-1}$ with an upper bound $(m-|K|) \cdot \binom{n}{r-1}$. It follows that

$$m \cdot \binom{n-2}{r-1} \leq (m-|K|) \cdot \binom{n}{r-1} \quad \Rightarrow \quad 1 - \frac{|K|}{m} \geq \binom{n-2}{r-1} \binom{n}{r-1}^{-1} = \frac{(n-r+1)(n-r)}{n(n-1)}.$$

The probability that K survives all the n-r iterations is at least

$$\prod_{i=0}^{n-r-1} \frac{(n-i+1-r)(n-i-r)}{(n-i)(n-i-1)} = r \cdot \binom{n}{r-1}^{-1} \binom{n-1}{r-1}^{-1}$$

and its reciprocal is the maximum possible number of minimum cardinality of r-way cut-sets.

2 Discrete Random Variables and Expectation

A (real-valued) random variable X on a sample space Ω is a measurable function $X: \Omega \to \mathbb{R}$, and a discrete random variable is one which may take on only a countable number of distinct values. "X = a" represents the set $\{s \in \Omega \mid X(s) = a\}$, and we denote the probability of that event by $\mathbb{P}(X = a) = \sum_{s \in \Omega: X(s) = a} \mathbb{P}(s)$.

Random variables X_1, X_2, \dots, X_n are **mutually independent** (simply called **independent** when k = 2) if and only

if, for any subset $I \subseteq \{1, 2, \dots, k\}$ and any values $x_i \ (i \in I), \ \mathbb{P}(\bigcap_{i \in I} (X_i = x_i)) = \prod_{i \in I} \mathbb{P}(X_i = x_i)$.

The **expectation** of a discrete random variable X, denoted by $\mathbb{E}[X]$, is given by $\mathbb{E}[X] = \sum_i i \cdot \mathbb{P}(X = i)$. Note that the infinite series needs to be **absolutely convergent** (i.e. rearrangements do not change the value of the sum).

Theorem 2.1 (Linearity of expectation) For discrete random variables X_1, X_2, \dots, X_n with finite expectations and any contants c_1, c_2, \dots, c_n , we have $\mathbb{E}[\sum_{i=1}^n c_i X_i] = \sum_{i=1}^n c_i \mathbb{E}[X_i]$.

Proof. Observe that we only need to prove the following two cases:

$$\begin{split} \mathbb{E}[X+Y] &= \sum_i \sum_j (i+j) \cdot \mathbb{P}((X=i) \cap (Y=j)) \\ &= \sum_i i \sum_j \mathbb{P}((X=i) \cap (Y=j)) + \sum_j j \sum_i \mathbb{P}((X=i) \cap (Y=j)) = \mathbb{E}[X] + \mathbb{E}[Y], \\ \mathbb{E}[cX] &= \sum_i i \cdot \mathbb{P}(cX=j) = c \cdot \sum_j (j/c) \cdot \mathbb{P}(X=j/c) = c \cdot \sum_k k \cdot \mathbb{P}(X=k) = c \cdot \mathbb{E}[X]. \end{split}$$

When there are countably infinite variables, the situation becomes more subtle. We will discuss it later.

Theorem 2.2 (Jensen's inequality) If f is a convex function, then $\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])$.

Proof. Assume that f has a Taylor expansion. Let $\mu = \mathbb{E}[X]$. By Taylor's theorem, there is a value c such that

$$f(x) = f(\mu) + f'(\mu)(x - \mu) + \frac{f''(c)(x - \mu)^2}{2} \ge f(\mu) + f'(\mu)(x - \mu)$$

Taking expectations of both sides

$$\mathbb{E}[f(X)] \ge \mathbb{E}[f(\mu) + f'(\mu)(X - \mu)] = \mathbb{E}[f(\mu)] + f'(\mu)(\mathbb{E}[X] - \mu) = f(\mu) = f(\mathbb{E}[X])$$

An alternative proof will be presented in Exercise 2.10.

Define **conditional expectation** $\mathbb{E}[Y \mid Z = z] = \sum_{y} y \cdot \mathbb{P}(Y = y \mid Z = z)$ and $\mathbb{E}[Y \mid Z]$ as a random variable f(Z) that takes on the value $\mathbb{E}[Y \mid Z = z]$ when Z = z.

Theorem 2.3 (Law of total expectation) For any random variables X and Y,

$$\mathbb{E}[X] = \sum_{y} \mathbb{P}(Y = y) \cdot \mathbb{E}[X \mid Y = y] = \mathbb{E}[\mathbb{E}[X \mid Y]].$$

A **Bernoulli** random variable X takes 1 with probability p and 0 with probability 1-p. A **binomial** random variable X with parameters n and p, denoted by B(n,p), is defined by **probability distribution** $\mathbb{P}(X=k)=\binom{n}{k}\cdot p^k(1-p)^{n-k},\ n=0,1,\cdots,n$. Its expectation is np.

A **geometric** random variable X with parameter p is defined by probability distribution $\mathbb{P}(X=n)=(1-p)^{n-1}p$, $n=1,2,\cdots$. Its expectation is 1/p. Geometric random variables are **memoryless**, that is, one ignores past failures as distribution does not change. Formally, we have the following statement.

Lemma 2.4 (Memorylessness) Let X be a geometric random variable with parameter p. Then, for n > 0,

$$\mathbb{P}(X = n + k \mid X > k) = \mathbb{P}(X = n).$$

Lemma 2.5 Let X be a discrete random variable that takes on only nonnegative integer values. Then,

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} k \cdot \mathbb{P}(X = k) = \sum_{1 \le i \le k} \mathbb{P}(X = k) = \sum_{i=1}^{\infty} \mathbb{P}(X \ge i)$$

Exercise 2.7 (a) By the memoryless property, we can ignore the case of X > 1 and Y > 1, thus $\mathbb{P}[X = Y] = \mathbb{P}[(X = 1) \cap (Y = 1)] / (1 - \mathbb{P}[(X > 1) \cap (Y > 1)])$. (b) Consider the first **trial**, and we can get an equation of $\mathbb{E}[\max(X, Y)]$. (c) Construct a **bernoulli trial** that success when there is at least one of two trials success. Its distribution of the first successful time provides the answer. (d) is the same as (a).

Exercise 2.14 (Negative binomial distribution) the k-th successful time. $\mathbb{P}(X=n) = \binom{n-1}{k-1} p^k (1-p)^{n-k}, n \geq k$.

Exercise 2.16.b Break the sequence of flips up into disjoint blocks of $\lfloor \log_2 n - 2 \log_2 \log_2 n \rfloor$ consecutive flips. For sufficiently large n, the probability is less than

$$\left(1 - 2^{\log_2 n - 2\log_2\log_2 n}\right)^{\frac{n}{\log_2 n - 2\log_2\log_2 n}} < \left(1 - \frac{n}{\log_2^2 n}\right)^{\frac{n}{\log_2^2 n} \cdot \log_2 n} < e^{-\ln n} = \frac{1}{n}.$$

Exercise 2.29 If $\{X_n\}$ is a sequence of random variable satisfying $X_n \to X$ almost surely (i.e. except possibly on an event of zero probability) then (monotone convergence) if $0 \le X_n \le X_{n+1}$ for all n almost surely, then

 $\mathbb{E}[X_n] \to \mathbb{E}[X]$; (dominated convergence) if $|X_n| \le Y$ for all n almost surely and $\mathbb{E}[Y]$ is finite, then $\mathbb{E}[X_n] \to \mathbb{E}[X]$. Let $Z_n = \sum_{i=0}^n X_i$. We have $Z_n \to \sum_{i=0}^\infty X_i$ and $|Z_n| \le \sum_{i=0}^\infty |X_n|$ whose expectation is finite $(\mathbb{E}[\sum_{i=0}^\infty |X_n|]) = \sum_{i=0}^\infty \mathbb{E}[|X_n|] < \infty$ is a consequence of monotone convergence). By dominated convergence, it follows that

$$\sum_{j=0}^{n} \mathbb{E}[X_j] = \mathbb{E}\left[\sum_{j=0}^{n} X_j\right] = \mathbb{E}[Z_n] \to \mathbb{E}[Z] = \mathbb{E}\left[\sum_{j=0}^{\infty} X_j\right], \qquad n \to \infty.$$

Exercise 2.32 For i > m, $\mathbb{P}(E_i) = \frac{1}{n} \cdot \frac{m}{i-1}$. Putting this all together, we get $\mathbb{P}(E) = \frac{m}{n} \sum_{j=m+1}^{n} \frac{1}{j-1}$. Then,

$$\frac{m}{n} \cdot \ln\left(\frac{n}{m}\right) = \frac{m}{n} \cdot \int_{m+1}^{n+1} \frac{\mathrm{d}\,x}{x-1} \le \mathbb{P}(E) \le \frac{m}{n} \cdot \int_{m}^{n} \frac{\mathrm{d}\,x}{x-1} = \frac{m}{n} \cdot \ln\left(\frac{n-1}{m-1}\right)$$

Note that $m(\ln n - \ln m)/n$ is maximized when m = n/e and $\mathbb{P}(E) \geq 1/e$ for this choice of m.

3 Moments and Deviations

Theorem 3.1 (Markov's Inequality) Let X be a random variable with only nonnegative values. Then, for all a > 0,

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}$$

Proof. For a > 0, let I = 1 (if $X \ge a$) or 0 (otherwise), and note that $I \le X/a$. Taking expectaions on both sides, thus yields $\mathbb{P}(X \ge a) = \mathbb{E}[I] = \le \mathbb{E}[X/a] = \mathbb{E}[X]/a$.

The k-th moment of a random variable X is $\mathbb{E}[X^k]$. The variance of random variable X is defined as $\mathsf{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$, and the **standard deviation** of a random variable X is $\sigma[X] = \sqrt{\mathsf{Var}[X]}$. The **convariance** of two random variables X and Y is $\mathsf{Cov}(X, y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$, and we have

Lemma 3.2 For any two random variables X and Y, $Var[X + Y] = Var[X] + Var[Y] + 2 \cdot Cov(X, Y)$.

Lemma 3.3 For any two independent random variables X and Y, $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$. (opposite does not hold)

Corollary 3.4 If X and Y are independent random variables, then Cov(X,Y) = 0.

Theorem 3.5 (Linearity of variance) Let X_1, X_2, \dots, X_n be mutually independent random variables. Then

$$\mathsf{Var}\bigg[\sum_{i=1}^n X_i\bigg] = \sum_{i=1}^n \mathsf{Var}[X_i]$$

For example, a Bernoulli trial with success probability p has variable p(1-p), therefore the variance of a binomial random variable X with parameters n and p is np(1-p).

Theorem 3.6 (Chebyshev's inequality) Let X be a random variable. Then, for any a > 0,

$$\mathbb{P}\left(|X - \mathbb{E}[X]| \ge a\right) \le \frac{\mathsf{Var}[X]}{a^2}$$

Proof. We can apply Markov's inequality to prove:

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge a) = \mathbb{P}((X - \mathbb{E}[X])^2 \ge a^2) \le \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{a^2} = \frac{\mathsf{Var}[X]}{a^2}$$

A useful variant of Chebyshev's inequality is to substitute a with $t \cdot \sigma[X]$ $(t \ge 1)$.

The **median** of random variable X is defined to be any value m such that $\mathbb{P}(X \leq m) \geq 1/2$ and $\mathbb{P}(X \geq m) \geq 1/2$.

Theorem 3.7 For any random variable X with finite expectation $\mathbb{E}[X]$ and finite median m,

- the expectaion $\mathbb{E}[X]$ is the value of c that minimizes the expression $\mathbb{E}[(X-c)^2]$.
- the median m is the value of c that minimizes the expression $\mathbb{E}[|X-c|]$.

Corollary 3.8
$$|\mu - m| = |\mathbb{E}[X] - m| = |\mathbb{E}[X - m]| \le \mathbb{E}[|X - m|] \le \mathbb{E}[|X - \mu|] \le \sqrt{\mathbb{E}[(X - \mu)^2]} = \sigma.$$

Exercise 3.10 By the memoryless property, we have $\mathbb{E}[X^k] = (1-p) \cdot \mathbb{E}[(X+1)^k] + p$. A clever way is to use falling factorial, and we will get $\mathbb{E}[X^{\underline{k}}] = k! \cdot (1-p)^{k-1} \cdot p^{-k}$, $\mathbb{E}[X^n] = \sum_{k=0}^n \binom{n}{k} \cdot \mathbb{E}[X^{\underline{k}}]$.

Exercise 3.15 $Var[\sum_i X_i] = \sum_i Var[X_i] + 2\sum_i \sum_j Cov(X_i, X_j)$. If $\mathbb{E}[X_i X_j] = \mathbb{E}[X_i] \mathbb{E}[X_j]$, then $Cov(X_i, X_j) = 0$.

Exercise 3.18 (Cantelli's inequality) Let $Y = X - \mathbb{E}[X]$, and it follows that $\mathbb{E}[Y] = 0$ and $\text{Var}[Y] = \mathbb{E}[Y^2] = \sigma^2$.

For any $\lambda, u > 0$ (taking $u = \sigma^2/\lambda$ in last step),

$$\mathbb{P}(Y \ge \lambda) = \mathbb{P}(Y + u \ge \lambda + u) \le \mathbb{P}\left((Y + u)^2 \ge (\lambda + u)^2\right) \le \frac{\mathbb{E}[(Y + u)^2]}{(\lambda + u)^2} = \frac{\sigma^2 + u^2}{(\lambda + u)^2} = \frac{\sigma^2}{\lambda^2 + \sigma^2}$$

Exercise 3.26 (The weak law of large numbers) Apply Chebyshev's Inequality, thus for any $\varepsilon > 0$ we have

$$\mathbb{P}\left(\left|\frac{X_1 + X_2 + \dots + X_n}{n}\right| - \mu\right) \le \frac{\sigma^2}{\varepsilon^2 \cdot n} \to 0, \quad \text{as } n \to \infty.$$

4 Chernoff and Hoeffding Bounds

The moment generating function of a random variable X is $M_X(t) = \mathbb{E}[e^{tX}]$, and we are interested in its existence and properties near zero. It captures all of the moments of X,

Theorem 4.1 Let X be a random variable. Assuming that we can exchange the expectation and differentiation operands, then $M_X^{(n)}(t) = \mathbb{E}[X^n e^{eX}]$. Computed at t = 0, we have $M_X^{(n)}(0) = \mathbb{E}[X^n]$.

Theorem 4.2 Let X and Y be two random variables. If $M_X(t) = M_Y(t)$ for all $t \in (-\delta, \delta)$ for some $\delta > 0$, then X and Y have the same distribution.

Theorem 4.3 If X and Y are independent random variables, then $M_{X+Y}(t) = M_X(t)M_Y(t)$.

Bounds derived from following approach are called **Chernoff bounds**. Generally, for any t > 0,

$$\mathbb{P}(X \geq a) = \mathbb{P}(e^{tX} \geq e^{ta}) \leq \frac{\mathbb{E}[e^tX]}{e^{ta}} \Rightarrow \mathbb{P}(X \geq a) \leq \min_{t \geq 0} \frac{\mathbb{E}[e^{tX}]}{e^{ta}}.$$

We can select an appropriate value of t to obtain the best possible bounds. Similarly, for any t < 0,

$$\mathbb{P}(X \le a) = \mathbb{P}(e^{tX} \ge e^{ta}) \le \frac{\mathbb{E}[e^t X]}{e^{ta}} \Rightarrow \mathbb{P}(X \le a) \le \min_{t \le 0} \frac{\mathbb{E}[e^{tX}]}{e^{ta}}.$$

Let X_1, \dots, X_n be a sequence of independent Bernoulli trials with $\mathbb{P}(X_i = 1) = p_i$. The sum $X = \sum_{i=1}^n X_i$ forms a **Poisson binomial distribution**. Let $\mu = \mathbb{E}[X] = \sum_{i=1}^n p_i$, and we have

$$M_X(t) = \prod_{i=1}^n M_{X_i}(t) = \prod_{i=1}^n \left(1 + p_i \cdot (e^t - 1)\right) \le \prod_{i=1}^n e^{p_i \cdot (e^t - 1)} = e^{(e^t - 1) \cdot \mu}$$

Theorem 4.4 Let X be a Poisson binomial distribution, and $\mu = \mathbb{E}[X]$. Then the following Chernoff bounds hold:

$$\mathbb{P}(X \ge (1+\delta) \cdot \mu) \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}, \quad \text{for } \delta > 0; \qquad \mathbb{P}(X \le (1-\delta) \cdot \mu) \le \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}, \quad \text{for } \delta > 0.$$

Corollary 4.5 Let X be a Poisson binomial distribution. Then, for $0 < \delta < 1$,

$$\mathbb{P}(X \geq (1+\delta) \cdot \mu) \leq \exp\left(-\mu\delta^2 \cdot (2\ln 2 - 1)\right), \qquad \mathbb{P}(X \geq (1-\delta) \cdot \mu) \leq \exp\left(-\mu\delta^2 / 2\right).$$

The coefficient $(2 \ln 2 - 1)$ and 1/2 are derived from $\min((1 + \delta) \cdot \ln(1 + \delta) / \delta^2 - 1/\delta)$ in $\delta \in (0, 1)$ and $\delta \in (-1, 0)$.

Theorem 4.6 Let X be a binomial distribution where p = 1. Then,

$$\mathbb{P}(X \ge (1+\delta) \cdot \mu) \le \exp\left(-\delta^2 \mu\right), \quad \text{for } \delta > 0; \qquad \mathbb{P}(X \le (1-\delta) \cdot \mu) \le \exp\left(-\delta^2 \mu\right), \quad \text{for } 0 < \delta < 1.$$

Lemma 4.7 (Hoeffding's lemma) Let X be a random variable such that $\mathbb{P}(X \in [a, b]) = 1$. Then for every $\lambda > 0$,

$$\mathbb{E}[e^{\lambda X}] \leq \exp\left(\lambda \mu + \frac{\lambda^2 \cdot (b-a)^2}{8}\right), \qquad \text{where } \mu = \mathbb{E}[X].$$

Proof. Assume $\mathbb{E}[X] = 0$ and $a \leq 0 \leq b$. Since $e^{\lambda x}$ is a convex function, we have

$$\mathbb{E}[e^{\lambda X}] \leq \mathbb{E}\left[\frac{b-X}{b-a} \cdot e^{\lambda a}\right] + \mathbb{E}\left[\frac{X-a}{b-a} \cdot e^{\lambda b}\right] = \frac{b}{b-a} \cdot e^{\lambda a} - \frac{a}{b-a} \cdot e^{\lambda b} = e^{g(u)}, \quad \text{where } u = \lambda \cdot (b-a).$$

Then $g(u) = -c \cdot u + \ln(1 - c + c \cdot e^u)$ with c = -a/(b-a). We can verify that g(0) = g'(0) = 0 and $g''(u) \le 1/4$. By Taylor's theorem, for any u > 0 there is a $u_0 \in [0, u]$ such that $g(u) = g(0) + u \cdot g(0) + u^2 \cdot g''(u_0)/2 \le u^2/8$.

Theorem 4.8 (Hoeffding bound) Let X_1, \dots, X_n be independent random variables with $\mathbb{E}[X_i] = \mu_i$ and $\mathbb{P}(a_i \leq X \leq b_i) = 1$ for constants a_i and b_i . Then

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \mu_i \ge \varepsilon\right) \le \exp\left(\frac{-2 \cdot \varepsilon^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right)$$

Proof. Let $Z_i = X_i - \mu_i$ and $Z = \sum_{i=1}^n Z_i$. For any $\lambda > 0$, by Chernoff's approach, we have

$$\mathbb{P}(Z \ge \varepsilon) = \mathbb{P}\left(e^{\lambda Z} \ge e^{\lambda \varepsilon}\right) \le \frac{\mathbb{E}[e^{\lambda Z}]}{e^{\lambda \varepsilon}} = \frac{\prod_{i=1}^{n} \mathbb{E}[e^{\lambda Z_i}]}{e^{\lambda \varepsilon}} \le \exp\left(-\lambda \varepsilon + \lambda^2 \cdot \sum_{i=1}^{n} \frac{(b_i - a_i)^2}{8}\right)$$

Let $\lambda = 4\varepsilon/(\sum_{i=1}^{n}(b_i - a_i)^2)$, and it follows Hoeffding bound.

Packet routing in sparse networks ...

Exercise 4.9 (a) Let $Z = \sum_{i=1}^n X_i/n$, and we have $\operatorname{Var}[Z] = \sum_{i=1}^n \operatorname{Var}[X_i]/n^2 = \operatorname{Var}[X]/n$. By Chebyshev's Inequality, $\mathbb{P}(|X - \mathbb{E}[X]| \geq \varepsilon \cdot \mathbb{E}[X]) \leq \operatorname{Var}[X]/(\sigma^2 \cdot \mathbb{E}[X]^2) \leq r^2/(n \cdot \sigma^2) \leq \delta \Rightarrow n \geq r^2/(\sigma^2 \cdot \delta)$. (c) Assume that we have obtained $m = \lceil 12 \log \frac{1}{\delta} \rceil$ independent estimates S_1, \dots, S_m for $\mathbb{E}[X]$. Let Y_i be the 0-1 random variable that is 1 if and only if $|S_i - \mathbb{E}[X]| \geq \varepsilon \cdot \mu$. $\mathbb{E}[Y_i] \leq 1/4$. Applying the Chernoff bound gives $\mathbb{P}(|M - \mathbb{E}[X]| \geq \varepsilon \cdot \mathbb{E}[X]) \leq \mathbb{P}(Y \geq (1+1) \cdot m/4) \leq \exp(-(m/4) \cdot 1^2 \cdot (2 \ln 2 - 1)) \leq \delta$.

5 Balls, Bins, and Random Graphs

6 The Probabilistic Method

7 Markov Chains and Random Walks

A stochastic process $\mathbf{X} = \{X(t) : t \in T\}$ is a collection of random variables X(t) (interchangeably, X_t), the state of process at time t. Assume stochastic processes below are discrete time and discrete space.

A discrete time stochastic process X_0, X_1, X_2, \cdots is a (time-homogeneous) **Markov chain** if and only if $\mathbb{P}(X_t = a_t \mid X_{t-1} = a_{t-1}, X_{t-2} = a_{t-2}, \cdots, X_0 = a_0) = \mathbb{P}(X_t = a_t \mid X_{t-1} = a_{t-1}) = P_{a_{t-1}, a_t}$. The state X_t only depends on the previous state X_{t-1} . This is called the **Markov property** or **memoryless property**, and we say that chain is **Markovian**. The transition probabilities form a one-step **transition matrix** P, and for all i, $\sum_{j\geq 0} P_{i,j} = 1$. Let $p(t) = (p_0(t), p_1(t), p_2(t), \cdots)$ represents the distribution of the state at time t, and we have $p(t) = p(t-1) \cdot P$.

In the finite case, it is equivalent to analyzing the connectivity structure of the directed graph (i.e. strongly connected component). It follows several trivial definitions and conclusions. State j is **accessible** from state i if $\exists n \geq 0, P_{i,j}^n > 0$. If two states i and j are accessible from each other, we say that they **communicate**. A Markov chain is **irreducible** if all states belong to one communicating class. Let $r_{i,j}^t = \mathbb{P}(X_t = j \land \forall 1 \leq s \leq t-1, X_s \neq j \mid X_0 = i)$. A state is **recurrent** if $\sum_{t\geq 1} r_{i,i}^t = 1$, and **transient** otherwise. Let $h_{i,j} = \sum_{t\geq 1} t \cdot r_{i,j}^t$. A recurrent state i is **positive recurrent** if $h_{i,i} < \infty$. Otherwise, it is **null recurrent** (this occurs only in infinite case).

Lemma 7.1 In a finite Markov chain, at least one state is recurrent, and all recurrent states are positive recurrent.

A state j in a discrete time Markov chain is **periodic** if there exists and integer $\Delta > 1$ such that $\mathbb{P}(X_{t+s} = j \mid X_t = j) = 0$ unless $\Delta \mid s$. A discrete time Markov chain is periodic if any state in the chain is periodic. A state of chain that is not periodic is **aperiodic**. An aperiodic, positive recurrent state is an **ergodic** state. A Markov chain is ergodic if all its states are ergodic.

A stationary distribution π of a Markov chain is a probability distribution π such that $\pi = \pi \cdot P$.

Theorem 7.2 Any finite, irreducible, and ergodic Markov chain has the following properties:

- the chain has a unique stationary distribution $\pi = (\pi_0, \pi_1, \dots, \pi_n)$;
- for all j and i, the limit $\lim_{t\to\infty} P_{j,i}^t$ exists and it is independent of j;
- $\pi_i = \lim_{t \to \infty} P_{j,i}^t = 1/h_{i,i}$.

Lemma 7.3 For any irreducible, ergodic Markov chain and for any state i, the limit $\lim_{t\to\infty} P_{i,i}^t = 1/h_{i,i}$.

The expected time between visits to i is $h_{i,i}$ and therefore state i is visited $1/h_{i,i}$ of the time. Thus, if $\lim_{t\to\infty} P_{i,i}^t$ exists, it must be $1/h_{i,i}$. In fact, any finite Markov chain has a stationary distribution; but in the case of periodic state i, the stationary probability π_i is not the limiting probability of being in i (which does not exist) but instead just the long-term frequency of visiting state i. We can compute the stationary distribution by solving $\pi \cdot P = \pi$.

Considering the **cut-sets** of Markov chain, for any state i of the chain, $\sum_{j=0}^{n} \pi_{j} P_{j,i} = \pi_{i} = \pi_{i} \sum_{j=0}^{n} P_{i,j}$. It follows

Theorem 7.4 Let S be a set of states of a finite, irreducible, aperiodic Markov chain. In the stationary distribution, the probability that the chain leaves the set S equals the probability that it enters S.

Theorem 7.5 Consider a finite, irreducible, and ergodic Markov chain with transition matrix P. If there are nonnegative numbers $\pi = (\pi_0, \dots, \pi_n)$ such that $\sum_{i=0}^n \pi_i = 1$ and if, for any pair of states $i, j, \pi_i P_{i,j} = \pi_j P_{j,i}$, then π is the stationary distribution corresponding to P.

Chains that satisfy the condition $\pi_i P_{i,j} = \pi_j P_{j,i}$ are called **time reversible**.

Theorem 7.6 Any irreducible aperiodic Markov chain belongs to one of the following two categories:

- the chain is ergodic for any pair of states i and j, the limit $\lim_{t\to\infty} P_{j,i}^t$ exists and is independent of j, and the chain has a unique stationary distribution $\pi_i = \lim_{t\to\infty} P_{j,i}^t > 0$; or
- no state is positive recurrent for all i and j, $\lim_{t\to\infty} P_{j,i}^t = 0$, and the chain has no stationary distribution.

A random walk on G is a Markov chain, where $P_{i,j} = 1 / \deg(i)$.

Lemma 7.7 A random walk on an undirected graph G is aperiodic if and only if G is not bipartite.

Theorem 7.8 A random walk on G converges to a stationary distribution π , where $\pi_v = \deg(v)/2|E|$.

Denote **hitting time** $h_{u,v}$ the expected time to reach state v when starting at state u. The **cover time** of a graph G is the maximum over nodes $v \in V$ of the expected time to visit all of the nodes by a random walk starting from v.

Lemma 7.9 If $(u, v) \in E$, the commute time $h_{u,v} + h_{v,u}$ is at most 2|E|.

Proof. We can view the random walk on G as a Markov chain with states of 2|E| directed edges. Since it is a **doubly** stochastic (the sum of the entries in each column is 1), it has a uniform stationary distribution. An upper bound for $h_{u,v} + h_{v,u}$ is the interval of visiting time of edge (u,v).

Lemma 7.10 The cover time of G = (V, E) is bounded above by 2|E|(|V| - 1).

Theorem 7.11 (Matthews' theorem) The cover time C_G of G = (V, E) with n vertices is bounded by

$$C_G \le H(n-1) \max_{u,v \in V: u \ne v} h_{u,v}.$$

Proof. Consider a random permutation $\{Z_1, Z_2, \dots, Z_n\}$. Assume that we have computed the expected time visiting all of $\{Z_1, \dots, Z_{j-1}\}$. If Z_j is not the first visiting node in $\{Z_1, \dots, Z_j\}$, it contributes nothing. Otherwise, it contributes to the answer with the probability of 1/j.

Parrondo's paradox shows that two losing games can be combined to make a winning game.

A random algorithm for 3-Satisfiability ...

Exercise 7.13 (a) $\mathbb{P}(X_k \mid X_{k+1}, \cdots, X_m) = \mathbb{P}(X_k, \cdots, X_m) / \mathbb{P}(X_{k+1}, \cdots, X_m) = \mathbb{P}(X_k)\mathbb{P}(X_{k+1} \mid X_k)\mathbb{P}(X_{k+2}, \cdots, X_m \mid X_k, X_{k+1}) / \mathbb{P}(X_{k+1})\mathbb{P}(X_{k+2}, \cdots, X_m \mid X_{k+1}) = \mathbb{P}(X_k)\mathbb{P}(X_{k+1} \mid X_k) / \mathbb{P}(X_{k+1}), \text{ thus it is Markovian. (b) Let } \mathbb{P}(X_k = j) = \pi_j \text{ and } \mathbb{P}(X_{k+1} = j) = \pi_j.$ (c) From part (b), we have $\pi_i Q_{i,j} = \pi_j P_{j,i}$. Then $Q_{i,j} = P_{i,j}$.

Exercise 7.17 Recall that we let $r_{0,0}^t$ be the probability that the first return to 0 from 0 is at time t. Then

$$\sum_{t=0}^{\infty} r_{0,0}^t = \sum_{n=0}^{\infty} C_n p^n (1-p)^{n+1} = (1-p) \cdot \frac{1-\sqrt{1-4p(1-p)}}{2p(1-p)}, \quad \text{since } \sum_{n=0}^{\infty} C_n x^n = \frac{1-\sqrt{1-4x}}{2x}.$$

Hence the chain is recurrent if and only if $p \leq 1/2$. Let $h_{0,0}^t$ be the expectation. Then

$$\sum_{t=0}^{\infty} h_{0,0}^t = \sum_{n=0}^{\infty} (2n+2)C_n p^n (1-p)^{n+1} = \frac{2(1-p)}{\sqrt{1-4p(1-p)}}, \quad \text{since } (n+1)C_n = \binom{2n}{n} \text{ and } \sum_{n=0}^{\infty} \binom{2n}{n} = \frac{1}{\sqrt{1-4x}}.$$

Hence $h_{0,0}^t$ is finite when p < 1/2 and is infinite when p = 1/2.

Exercise 7.18 (Random walk on \mathbb{Z}^d) Let $P_d(n)$ be the probability that one returns to origin at time n. Random walk on \mathbb{Z}^d is recurrent if and only if $\sum_{n\geq 1} P_d(2n)$ is unbound. In case of d=2, we can transform Manhattan distance into Chebyshev distance (i.e. $(x,y)\to (x+y,x-y)$), thus it becomes two independent random walks on \mathbb{Z} . Then

$$\sum_{n=1}^{\infty} P_2(2n) = \sum_{n=1}^{\infty} P_1(2n)^2 = \sum_{n=1}^{\infty} \left(\frac{\binom{2n}{n}}{2^{2n}}\right)^2 \simeq \sum_{n=1}^{\infty} \frac{1}{\pi n} = \infty, \quad \text{since } n! \sim n^n e^{-n} \sqrt{2\pi n} \text{ (Stirling's formula)}$$

In the case of d=3, we have $P_3(n)=\Theta(n^{-3/2})$. The explicit expectation formula can be derived by Fourier analysis.

Exercise 7.22 Formulate a new Markov chain with n^2 states of the form (i, j). By Lemma 1.9, $h_{u,v} \leq 4m^2$, and we can construct a length O(n) path from (i, j) to (i, i), which gives us an upper bound of $O(m^2n)$.

Exercise 7.24 (Lollipop graph) (a) We need to travel from v to u first, and then travel around the clique. Thus $C_G = h_{v,u} + c_u = \Theta(n^2) + \Theta(n \log n) = \Theta(n^2)$. (b) $h_{u,v} \leq C_G \leq h_{u,v} + c_u$, thus $C_G = \Theta(h_{u,v}) = \Theta(n^3)$.

Exercise 7.30 (Random walk on hypercube) Let f_i be the hitting time when there is exactly i bits differ. Then,

$$f_i = \frac{i}{n} \cdot f_{i-1} + \frac{n-i}{n} \cdot f_{i+1} + 1 \Rightarrow i \cdot (f_i - f_{i-1}) = (n-i) \cdot (f_{i+1} - f_i) + n.$$

Denote the difference $f_i - f_{i-1}$ by g_i . Then we have $g_n = 1$, and $i \cdot g_i = (n-i) \cdot g_{i+1} + n$. Expand formula, it follows

$$g_1 = \binom{n-1}{1} \cdot g_2 + \binom{n}{1} = \binom{n-1}{2} \cdot g_3 + \binom{n}{2} + \binom{n}{1} = \dots = \sum_{i=1}^n \binom{n}{i} = 2^n - 1.$$

In addition, $g_n \leq g_{n-1} \leq \cdots \leq g_2 \leq \frac{g_1}{n-1}$. Thus, $f_n = \sum_{i=1}^n g_i = \Theta(2^n)$ and the cover time is $O(N \log N)$.