DSA 8020 R Session 8: CRD

Whitney

March 03, 2023

Contents

CRD	1
Create the data set	1
Summary statistics by treatments	2
Plot the data	2
ANOVA table	3
Multiple Comparisons	3
Model Assumptions	4
Read the data into R	4
Convert variable COLOR to a factor	5
Model Fitting and Residuals	5
Assess Equal Variance	6
Plot r_{ij} versus \hat{y}_{i} and treatments	7
Assess Normality	7
Assess Indepdence	9
Durbin-Watson test	9
Fit a model with correlated AR(1) error $\dots \dots \dots \dots \dots \dots \dots \dots \dots$	10

CRD

Create the data set

```
r1 <- c(9.8, 8.8, 8.4, 9.5, 9.2)

r2 <- c(8.2, 6.9, 7.5, 7.1, 6.5)

r3 <- c(6.8, 6.6, 5.9, 7.3, 7.2)

r4 <- c(4.8, 5.2, 5.4, 5.9, 4.6)

times <- c(r1, r2, r3, r4)

trt <- rep(1:4, each = 5)

dat <- data.frame(y = times, trt = as.factor(trt))
```

Summary statistics by treatments

```
(means <- tapply(dat$y, dat$trt, mean))

## 1 2 3 4
## 9.14 7.24 6.76 5.18

(vars <- tapply(dat$y, dat$trt, var))

## 1 2 3 4
## 0.308 0.418 0.313 0.262</pre>
```

Plot the data

```
boxplot(y ~ trt, data = dat, las = 1)
```


ANOVA table

Multiple Comparisons

```
# LSD
library(agricolae)
LSD_bon <- LSD.test(AOV ,"trt", p.adj = "bonferroni")
LSD_bon$groups
        y groups
## 1 9.14
## 2 7.24
               b
## 3 6.76
               b
## 4 5.18
# HSD
HSD <- TukeyHSD(AOV, conf.level = 0.95)</pre>
HSD$trt
##
        diff
                   lwr
                              upr
                                         p adj
## 2-1 -1.90 -2.931952 -0.868048 4.024593e-04
```

```
## 3-1 -2.38 -3.411952 -1.348048 3.310735e-05

## 4-1 -3.96 -4.991952 -2.928048 4.112087e-08

## 3-2 -0.48 -1.511952 0.551952 5.577630e-01

## 4-2 -2.06 -3.091952 -1.028048 1.708962e-04

## 4-3 -1.58 -2.611952 -0.548048 2.363679e-03
```

Model Assumptions

Example: Balloon Experiment (taken from Dean and Voss Exercise 3.12)

The experimenter (Meily Lin) had observed that some colors of birthday balloons seem to be harder to inflate than others. She ran this experiment to determine whether balloons of different colors are similar in terms of the time taken for inflation to a diameter of 7 inches. Four colors were selected from a single manufacturer. An assistant blew up the balloons and the experimenter recorded the times with a stop watch. The data, in the order collected, are given in Table 3.13, where the codes 1, 2, 3, 4 denote the colors pink, yellow, orange, blue, respectively.

Table 3.13	Times	(in secon	ds) for th	e balloon	experiment
			_	_	

Time order	1	2	3	4	5	6	7	8
Coded color	1	3	1	4	3	2	2	2
Inflation time	22.0	24.6	20.3	19.8	24.3	22.2	28.5	25.7
Time order	9	10	11	12	13	14	15	16
Coded color	3	1	2	4	4	4	3	1
Inflation time	20.2	19.6	28.8	24.0	17.1	19.3	24.2	15.8
Time order	17	18	19	20	21	22	23	24
Coded color	2	1	4	3	1	4	4	2
Inflation time	18.3	17.5	18.7	22.9	16.3	14.0	16.6	18.1
Time order	25	26	27	28	29	30	31	32
Coded color	2	4	2	3	3	1	1	3
Inflation time	18.9	16.0	20.1	22.5	16.0	19.3	15.9	20.3

Figure 1: Source: Table 3.13 of Dean and Voss Exercise 3.12

Read the data into R

```
balloon <- read.csv("cr_assumptions.csv", header = T)</pre>
head(balloon)
##
     ORDER COLOR TIME
## 1
         1
                1 22.0
## 2
         2
                3 24.6
## 3
         3
                1 20.3
## 4
          4
                4 19.8
## 5
          5
                3 24.3
## 6
          6
                2 22.2
```

```
summary(balloon)
```

```
ORDER
##
                      COLOR
                                     TIME
## Min. : 1.00 Min. :1.00 Min. :14.00
## 1st Qu.: 8.75 1st Qu.:1.75 1st Qu.:17.40
## Median: 16.50 Median: 2.50 Median: 19.70
## Mean :16.50 Mean :2.50 Mean :20.24
## 3rd Qu.:24.25 3rd Qu.:3.25 3rd Qu.:22.60
## Max. :32.00 Max. :4.00 Max. :28.80
head(balloon, 10)
##
     ORDER COLOR TIME
## 1
        1 1 22.0
## 2
         2
              3 24.6
## 3
         3
             1 20.3
## 4
        4
             4 19.8
## 5
             3 24.3
       5
             2 22.2
## 6
         6
         7
## 7
             2 28.5
## 8
       8
             2 25.7
## 9
             3 20.2
        9
## 10
        10
             1 19.6
Convert variable COLOR to a factor
attach(balloon)
colorf <- as.factor(COLOR)</pre>
colorf
## [1] 1 3 1 4 3 2 2 2 3 1 2 4 4 4 3 1 2 1 4 3 1 4 4 2 2 4 2 3 3 1 1 3
## Levels: 1 2 3 4
Model Fitting and Residuals
mod1 <- lm(TIME ~ colorf)</pre>
summary(mod1)
##
## Call:
## lm(formula = TIME ~ colorf)
##
## Residuals:
     Min
              1Q Median
                            3Q
                                    Max
```

1.644 2.578 0.0155 *

1.644 2.152 0.0401 *

-5.8750 -2.2500 0.0687 2.0531 6.2250

4.237

3.538

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.337 1.162 15.778 1.83e-15 ***

##

##

Coefficients:

colorf2

colorf3

```
## colorf4
             -0.150 1.644 -0.091 0.9279
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.287 on 28 degrees of freedom
## Multiple R-squared: 0.2967, Adjusted R-squared: 0.2214
## F-statistic: 3.938 on 3 and 28 DF, p-value: 0.01836
anova(mod1)
## Analysis of Variance Table
##
## Response: TIME
            Df Sum Sq Mean Sq F value Pr(>F)
            3 127.66 42.554 3.9379 0.01836 *
## colorf
## Residuals 28 302.58 10.806
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
# Residuals
r <- residuals(mod1)
s <- rstandard(mod1)
var(s)
## [1] 1.032258
t <- rstudent(mod1)
Assess Equal Variance
# Levene's test for equal variance
library(lawstat)
levene.test(TIME, colorf, location = "mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: TIME
## Test Statistic = 2.1682, p-value = 0.1141
# Brown-Forsythe test
levene.test(TIME, colorf, location = "median")
##
## Modified robust Brown-Forsythe Levene-type test based on the absolute
## deviations from the median
##
## data: TIME
## Test Statistic = 1.3975, p-value = 0.2642
```

Plot r_{ij} versus $\hat{y}_{i.}$ and treatments

```
plot(mod1$fitted, mod1$resid, las = 1, xlab = "Fitted value", ylab = "Residual", cex = 0.75, col = "blu abline(h = 0)
```


plot(mod1\$resid ~ colorf, ylab = "Residual", las = 1)

Assess Normality

```
par(mfrow = c(1, 2), las = 1)
hist(mod1$resid, 8, main = "", xlab = "Residual", col = "lightblue")
qqnorm(mod1$resid, cex = 0.8)
qqline(mod1$resid, col = "red", lwd = 1.5)
```

Normal Q-Q Plot

Residual

Theoretical Quantiles

Treatme

Theoretical Quantiles

Theoretical Q

Assess Indepdence

Durbin-Watson test

```
library(lmtest)
dwtest(TIME ~ colorf, data = balloon)
```

##
Durbin-Watson test
##

```
## data: TIME ~ colorf
## DW = 1.1617, p-value = 0.006005
## alternative hypothesis: true autocorrelation is greater than 0
```

Fit a model with correlated AR(1) error

Residual standard error: 3.321057

```
library(nlme)
mod2 \leftarrow gls(TIME \sim colorf, correlation = corARMA(p = 1, q = 0))
mod2
## Generalized least squares fit by REML
##
    Model: TIME ~ colorf
##
    Data: NULL
   Log-restricted-likelihood: -74.42885
##
## Coefficients:
## (Intercept)
                               colorf3
                                           colorf4
                  colorf2
## 18.5860865 3.7248742 3.4233901 -0.3578644
##
## Correlation Structure: AR(1)
## Formula: ~1
## Parameter estimate(s):
##
         Phi
## 0.4285025
## Degrees of freedom: 32 total; 28 residual
```