

System Velocity:

A new method for dimension reduction and ecological regime shift detection

Jessica L. Burnett

N.B. Price, A.J. Tyre, C.R. Allen, D.G. Angeler, & D. Twidwell 2019.04.10

Ecological Regime Shifts

what? a persistent change in the structure or functioning of a system

how? loss of negative feedback(s) maintaining the
system

goal? predict in time to prevent

Regime Shifts

Ecosystems are Complex

(and complicated)

- high dimensional
- many (∞ ?) interactions
- non-linear
- non-ergodic (open)
- dynamic
- difficult to model mathematically

(Too Many) Methods for Detecting Regime Shifts

>70 (!) methods proposed in literature

10 suitable for multivariable data

few explicitly handle **noisy** data

few explicitly handle irregular sampling

Regime Shifts Detection Methods

Rising Variance/Critical Slowing Down

Variance Index (max eigenvalue of covariance matrix)

Principal Coordinates Analysis

Fisher Information

Velocity, v

Toy System

Velocity, $v=rac{\Delta s}{\Delta t}$

the linear speed of a system's trajectory (e.g., in phase space)

Step 1: Calculate Δx_i

$$\Delta x_i = (x_{i,j}-x_{i-1,j})^2$$

Step 2: Calculate Δs , 'distance travelled'

$$\Delta s_i = \sqrt{\sum_{j=1}^n (x_{i,j}-x_{i-1,j})^2}$$

Step 3: Calculate *s* , **cumulative** distance travelled

$$\Delta s_i = \sqrt{\sum_{j=1}^n (x_{i,j}-x_{i-1,j})^2}$$

$$s_k = \sum_{i=2}^k \Delta s_i$$

$$2 \le k \le n$$

Step 4: Calculate $oldsymbol{v}$, the linear speed of $oldsymbol{s}$

$$v=rac{\Delta s}{\Delta t}$$

Empirical System: Paleodiatom Community

data: Spanbauer et al. 2014 PlosOne

Empirical System: Paleodiatom Community

Dotted blue lines = **our** shift points **Dashed** red line = Spanbauer *et al.* shift point

Getting the Derivatives of Noisy Data

Total Variation Regularized Numerical Differentiation to smooth the original data

github: natbprice/tvdiff

Velocity (v) Identifies Previously Unknown Periodicities

$oldsymbol{s}$ and $oldsymbol{v}$ Robust to Data Quality & Quantity Issues

$oldsymbol{s}$ and $oldsymbol{v}$ Robust to Data Quality & Quantity Issues

Conclusions

Simply calculation, relative to other regime detection methods

Handles noisy and sparse data

Less sensitive to data quality issues common in ecology

Velocity is best when mean > variance

Next Steps

Numerical identification of exact change points

Compare to distance-based metrics

Compare to ordination techniques

Identify out-of-sample predictive capacity

Relevant R Packages:

- distanceTravelled calculate velocity
- regimeDetectionMeasures calculate various metrics
- bbsRDM application to Breeding Bird Survey
- tvdiff regularized differentation noisy data

More Information

• Twitter: @trashbirdecol

• **GitHub**: trashbirdecology

• Email: jburnett@huskers.unl.edu

Acknowledgements

Financial Support

Analysis & Presentation

GitHub: TrashBirdEcology **twitter**: @trashbirdecol

e-mail: jburnett@huskers.unl.edu