Solution to Exercise 6

Simon A. Broda

1. (a) We start by generating the log returns as usual. We also create the negative returns for plotting later.

```
genr r = dlog(sp500)
genr negative_returns = -r
```

The historical VaR is then obtained via

```
genr var_hist = -@quantile(r, 0.01)
```

Notice that this uses the whole sample instead of the last 250 days for each t. Doing that would require us to write a loop.

(b) The normal VaR is generated as

```
genr var_norm = -@mean(r)-@stdev(r) *@qnorm(0.01)
```

(c) For the GARCH VaR, we estimate a GARCH(1, 1) as usual, first using normal errors. We then save the predicted variances by clicking Proc→Make GARCH Variance Series... and entering garchn_sig2 as the series name. We then convert the variances into volatilities and compute the VaR, using the commands

```
genr garchn_sig = @sqrt(garchn_sig2)
genr var_garch_n = -c(1)-garchn_sig * @qnorm(0.01)
```

Here, c(1) refers to the estimated intercept in the mean equation. We then re-estimate the model using standardized t innovations (just choose it in the GARCH specification dialog). This results in the estimated model below.

Dependent Variable: R

Method: ML ARCH - Student's t distribution (BFGS / Marquardt steps)

Date: 12/01/22 Time: 17:14

Sample (adjusted): 10/30/2012 10/27/2022 Included observations: 2546 after adjustments Convergence achieved after 27 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7) GARCH = C(2) + C(3)*RESID(-1)*2 + C(4)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
С	0.000904	0.000126	7.176877	0.0000	
Variance Equation					
C RESID(-1)^2 GARCH(-1)	2.92E-06 0.221296 0.773192	6.17E-07 0.026849 0.023233	4.743725 8.242232 33.27982	0.0000 0.0000 0.0000	
T-DIST. DOF	5.275193	0.568869	9.273121	0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.002211 -0.002211 0.010958 0.305579 8675.354 2.285926	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000390 0.010946 -6.810961 -6.799488 -6.806800	

The estimated degrees of freedom are 5.28, which corresponds to fairly heavy tails. We then save the GARCH variance series as before, choosing the name garcht_sig2. Then we convert the variances into volatilities and compute the VaR, using the commands

Note that the second command should be entered on a single line. Also, c (5) corresponds to the estimated degrees of freedom.

(d) The plot below can be generated by opening the four VaR predictions, together with the negative returns, as a group.

2. The four hit series are generated as follows:

```
genr hit_norm = (negative_returns > var_norm)
genr hit_hist = (negative_returns > var_hist)
genr hit_garchn = (negative_returns > var_garch_n)
genr hit_garcht = (negative_returns > var_garch_t)
```

Each of the hit series will be equal to one at time t if the negative return on that day exceeded the respective VaR estimate. We begin by testing, for each hit series, if the proportion of VaR violations is significantly different from zero. For example, for the historical VaR, this works as follows: compute $\hat{\pi} = T_1/T = \frac{1}{T} \sum_{t=1}^{T} I_t$ via

```
scalar p_hist = @mean(hit_hist)
```

This yields $\hat{\pi} = 0.009819$. From this, we can compute the t-statistic

$$t = \frac{\hat{\pi} - p}{\sqrt{\hat{\pi}(1 - \hat{\pi})/T}} = \frac{0.009819 - 0.01}{\sqrt{0.009819(1 - 0.009819)/2547}} = -0.09264.$$

Comparing this with the critical value ± 1.96 , we see that $\hat{\pi}$ is not significantly different from p, hence the model has correct unconditional coverage. Note that this is **by construction**, because we defined the the historical VaR as a sample quantile. So by construction, exactly 1% of the negative returns should exceed the VaR. Alteratively, we can just regress $I_t - 0.01$ onto an intercept by entering the regression specification

$$(hit_hist - 0.01)$$
 c

and test whether the intercept is significant. The output is

Dependent Variable: HIT_HIST-0.01 Method: Least Squares Date: 12/02/22 Time: 17:59 Sample (adjusted): 10/30/2012 10/27/

Sample (adjusted): 10/30/2012 10/27/2022 Included observations: 2546 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.000181	0.001955	-0.092437	0.9264
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.098624 24.75452 2285.536 1.939040	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	-0.000181 0.098624 -1.794608 -1.792314 -1.793776

We see that the t-statistic obtained this way is almost the same (the two tests are asymptotically equivalent), so we arrive at the same conclusion.

To test for independence, we regress $I_t - 0.01$ on an intercept and I_{t-1} , by entering the regression specification

The output is

Dependent Variable: HIT_HIST-0.01 Method: Least Squares

Date: 12/02/22 Time: 18:52

Sample (adjusted): 10/31/2012 10/27/2022 Included observations: 2545 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C HIT_HIST(-1)	-0.000476 0.030476	0.001964 0.019821	-0.242398 1.537573	0.8085 0.1243
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000929 0.000536 0.098617 24.73143 2285.326 2.364130 0.124278	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.000177 0.098643 -1.794362 -1.789771 -1.792697 2.011661

Independence can be tested by checking if b_1 , the coefficient on the lagged hit, is significant at the 5% level. Here, surprisingly, it isn't, so we don't reject the null of independence of the VaR violations. Finally, we can use an F-test for $H_0: b_0 = b_1 = 0$ to test the correctness of the conditional coverage. Note that we cannot use the F-statistic provided in the output above, because that is for a test of the null that all coefficients except the intercept are significant. Instead, go to $View \rightarrow Coefficient$ Diagnostics $\rightarrow Wald$ Test, and enter the restrictions

$$c(1)=0$$
, $c(2)=0$

The result is shown below.

Wald Test: Equation: Untitled

Test Statistic	Value	df	Probability
F-statistic	1.186156	(2, 2543)	0.3056
Chi-square	2.372311	2	0.3054

Null Hypothesis: C(1)=0, C(2)=0 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
C(1)	-0.000476	0.001964
C(2)	0.030476	0.019821

Restrictions are linear in coefficients.

The degrees of freedom of the F-test are 2 and T-2. From the table, we find that the critical value is 3, which is not exceeded by the observed value 1.19. Hence, the null of correct conditional coverage is resoundingly rejected. I should note that this is **highly unusual**; typically,

the historical VaR will fail the independence and conditional coverage tests, because the fact that it doesn't react to changes in volatility means that violations will cluster during crises, making them dependent.

Repeating the analysis for the other hit series results in the table below.

	Hist	Norm	GARCHn	GARCHt
$\hat{\pi}$ (×100)	0.98	2.04	2.59	1.65
$t(\pi = 0.01)$	-0.09	3.72	5.06	2.57
\hat{b}_1	0.03	0.08	0.00	0.03
$t(b_1=0)$	1.54	3.91	0.23	1.60
$F(b_0 = b_1 = 0)$	1.18	14.60	12.80	4.59

For the normal VaR, all 3 tests reject. The GARCH models pass the independence test, while the conditional and unconditional coverage tests reject.