Lógica EI

Lic. Eng. Informática Duração: 2 horas

Nota: Justifique adequadamente cada uma das suas respostas.

1. (a) Construa derivações em DNP que provem que:

- (i) $(p_0 \rightarrow \neg p_1) \rightarrow \neg (p_0 \land p_1)$ é um teorema;
- (ii) $\neg (p_0 \land p_1) \vdash (p_0 \rightarrow \neg p_1)$.
- (b) Seja Γ um conjunto de fórmulas do Cálculo Proposicional. Prove que, se $\Gamma \vdash \neg (p_0 \land p_1)$, então $\Gamma \vdash p_0 \rightarrow \neg p_1$.
- 2. Considere o tipo de linguagem $L = (\{0, s, -\}, \{P, <\}, \mathcal{N})$ em que $\mathcal{N}(0) = 0$, $\mathcal{N}(s) = 1$, $\mathcal{N}(-) = 2$, $\mathcal{N}(P) = 1$ e $\mathcal{N}(<) = 2$.
 - (a) Das seguintes palavras sobre \mathcal{A}_L , apresente árvores de formação das que pertencem a \mathcal{T}_L ou \mathcal{F}_L , e indique (sem justificar) quais as que não pertencem a nenhum desses conjuntos.
 - (i) $s(x_1) (x_2 s(0))$

- (ii) $(x_1 0) \vee P(x_2)$
- (iii) $\exists_{x_2} (\mathsf{P}(x_1) \land \forall_{x_1} (x_2 < x_1))$
- (iv) $\forall_{x_0} (P(x_0, 0) \lor (s(x_0) < 0))$
- (b) Indique (justificando) o conjunto das variáveis substituíveis pelo L-termo $x_2 \mathsf{s}(x_1)$ na L-fórmula $\forall_{x_1}(\mathsf{P}(x_4) \to \exists_{x_0} \neg (x_0 < x_2 \mathsf{s}(x_1 0)))$.
- (c) Defina por recursão estrutural a função $f: \mathcal{T}_L \longrightarrow \mathbb{N}_0$ que a cada L-termo t faz corresponder o número de ocorrências da variável x_{2011} em t.
- 3. Sejam L o tipo de linguagem da pergunta anterior e $E=(\mathbb{Z},\overline{})$ a L-estrutura tal que $\overline{0}$ é o número zero, \overline{s} e $\overline{}$ são as operações de sucessor e subtração em \mathbb{Z} , respectivamente, $\overline{\mathsf{P}}=2\mathbb{Z}=\{\ldots,-4,-2,0,2,4,\ldots\}$ (ou seja, $\overline{\mathsf{P}}$ é o predicado "é par"), e $\overline{<}$ é a relação "menor do que" em \mathbb{Z} .
 - (a) Seja a a atribuição em E tal que, para todo $i \in \mathbb{N}_0$, $a(x_i) = i$. Calcule:
 - (i) $(0 s(x_1 x_8))[a]$
 - (ii) $(P(x_2) \wedge \exists_{x_1} (s(x_1) < 0)) [a]$
 - (b) Seja $\varphi = \neg P(x_0 x_1) \to ((x_0 < x_1) \lor (x_1 < x_0))$. Prove que:
 - (i) φ é válida em E;
 - (ii) φ não é universalmente válida.
 - (c) Indique (justificando) uma L-fórmula universalmente válida.
 - (d) Para cada uma das seguintes afirmações, indique (sem justificar) uma L-fórmula que a represente:
 - (i) Todo o número é menor do que algum número par.
 - (ii) A diferença de quaisquer dois números pares é par.
- 4. (a) Sejam $L, \varphi, \psi \in \mathcal{F}_L$ e x arbitrários. Mostre que $\exists_x (\varphi \land \psi) \vDash (\exists_x \varphi \land \exists_x \psi)$.
 - (b) Indique (justificando) L tipo de linguagem, φ e ψ L-fórmulas e x variável tais que $\not\vdash (\exists_x \varphi \land \exists_x \psi) \rightarrow \exists_x (\varphi \land \psi)$.
 - (c) Sejam $\varphi, \psi \in \mathcal{F}_L$ e x tais que $x \notin LIV(\psi)$. Prove que $(\forall_x \varphi) \to \psi \Leftrightarrow \exists_x (\varphi \to \psi)$. (Sugestão: exiba uma série de equivalências lógicas.)

Cotações	1.	2.	3.	4.
	3+1	1,5+1+1,5	2,5+2+1,5+1,5	1,5+1,5+1,5