Phys 111: General Physics I

Ross Miller

University of Idaho

August 26, 2019

Fiziks? Fysics? Physics.

What's your first thought when you think of Physics?

- ▶ Difficult? Uber-difficult?
- ► That Newton-apple thing? Apple/Fig Newtons?
- ► Made-up Theories?
- Fun ways to describe reality?

Formally

Physics is the study of the interactions of energy, matter, space, and time. A physics type of question would be any question focused on what fundamental mechanisms underlie a phenomenon.

Map of Physics¹

Any Questions? Please switch to the syllabus now.

¹https://dominicwalliman.com

Examples of Physical Quantities

Physical Quantity	SI Unit
Length	meter (m)
Time	second (s)
Mass	kilogram (kg)
Speed	meter per second (m/s)
Velocity	meter per second (m/s)
Acceleration	meter per second per second
	$(m/s/s=m/s^2)$
Force	newton (N)
Weight	newton (N)
Energy	joule (J)
Power	watt (W)
Temperature	kevlin (K)
Luminosity	candela (cd)
Electrical Current	ampere (A)
Magnetic Field	tesla (T)

Unit Conversions (Collecting)

Conversion Relationships

- ▶ 1.0 in. = 2.54 cm
- ▶ 1.0 mi = 1.61 km
- $T_F = 1.8T_C + 32$

Conversions

- ▶ 78 in. = 6.5 ft
- ▶ 10 in. = 25.4 cm
- ▶ 45 mi = 72 km
- ▶ 85 $^{\circ}F = 29.4 \, ^{\circ}C$

Comparisons

- ▶ 12 in. = 30.5 cm < 31 cm
- ▶ 60 mph = 96 kmph > 85 kmph
- ightharpoonup -40 $^{\circ}F$ = -40 $^{\circ}C$
- $ightharpoonup 1000 \ ft^2 = 92.9 \ m^2 < 100 \ m^2$

Math Review

Variables

- 1. 4x + 20x = 24x
- 2. $x + x^2 = x + x^2 or x(1 + x)$, not very compact
- 3. $3x \cdot 3y = 9xy$
- 4. (3x)(3y) = 9xy
- 5. xy + 5y = (x + 5)y, also not very compact, but doable
- 6. $(125a^2b^7c^{-3}) \div (10a^{-3}b^3c) = 25a^5b^4/(2c^4)$

Pre-calculus

- 1. $r = ln(1/e^4) = -4$
- 2. $f = (x+2)^2/(x^2-4) = (x+2)/(x-2)$
- What does the vertical value of the vertex of a parabola tell you? Max or Min value of the output.
- 4. $\rho = \cos^2(28x) + \sin^2(28x) = 1$

Dimensional Analysis

I like to refer to **Dimensional Analysis** as the first sanity check of problem solving. The answer to the following question holds the significance of dimensional analysis:

Can you add miles and miles per hour for one net result?

NO!!!

Summary

- Dimensional Analysis is the act of treating all units like variables and performing all necessary algebraic operations on them.
- ► This means if you divide two lengths you will get a unit-less number. Ex. 13.0 m / 26.0 m = 0.500
- If you divide a distance by a time then you will get a speed. Ex. 360 mi / 6 hr = 60 mph
- ▶ You can **not** add or subtract two quantities if they have **different** units!
- All quantities must have the same units to add or subtract them!

Significant Digits in Calculations

A **Significant Digit** is any digit that contributes meaning to a measurement.

Four Concise Rules

- 1. All non-zero digits are significant: 1, 2, 3, 4, 5, 6, 7, 8, 9.
- 2. Zeros between non-zero digits are significant: 301, 7004, 80003.
- 3. Leading zeros are never significant: 0.04, 003.857, 0.000719.
- 4. In a number with or without a decimal point, trailing zeros (those to the right of the last non-zero digit) are significant provided they are justified by the precision of their derivation: 389,000; 2.02000; 5.400; 57.5400.*

Some Arithmetic Rules

- ▶ When adding two numbers, you must round to the least precise place value. Ex. 13.74213 + 1.2 = 14.9
- ▶ When **mulitplying** two numbers, you must round to the least **number** of significant digits. Ex. $143.02 \times 0.02 = 3$

Map of Physics¹

Any Questions?

¹https://dominicwalliman.com