Задание 4. Рекурренты.

1 Злодей Анти-человек придумал последовательность чисел Анти-начи. Она продолжает последовательность чисел Фибоначчи влево. Например, поскольку F_0 = 0, F_1 = 1 и F_{k+2} = F_{k+1} + F_k , выполняется равенство 1 = 0+ F_{-1} , из чего следует, что F_{-1} = 1. Дальнейшие числа Анти-начи определяются аналогично.

Анти-человек умеет быстро возводить матрицы в степень. Подскажите, как ему находить F_k для отрицательных k.

- **3** Найдите асимптотическую оценку функции T(n). Примените мастер-теорему в тех случаях, когда ее можно использовать, **и посчитайте асимптотику иначе, когда нельзя**. Варианты есть следующие. Можно выписать рекурренту в виде суммы и найти, чему она равна. Можно подставить рекурренту саму в себя и посмотреть, что получается. Можно обратиться к литературе (учебник Кормена, учебник Дасгупты)
 - 1. $T(n) = 25T(\frac{n}{5}) + n^2$
 - 2. $T(n) = 16T(\frac{n}{2}) + n^3$
 - 3. $T(n) = 9T(\frac{n}{3}) + n^3$
 - 4. T(n) = T(n-1) + 3n
 - 5. $T(n) = T(\frac{n}{4}) + T(\frac{3n}{4}) + n$
 - 6. $T(n) = T(\frac{n}{2}) + T(\frac{2n}{3}) + n^2$
 - 7. $T(n) = T(n-1) + n^2$
 - 8. $T(n) = 4T(\frac{n}{16}) + \sqrt{n}$
 - 9. $T(n) = 9T(\frac{n}{2}) + n^3$
 - 10. $T(n) = 9T(\frac{n}{3}) + n$
- **3** Выведите первый случай мастер-теоремы (основной теоремы о рекуррентных соотношениях) для целых степеней (пренебрегая округлениями). Формально, нужно показать, что если
 - $T(n) = aT(\frac{n}{b}) + f(n), 1 \le a \in \mathbb{N}, 1 < b \in \mathbb{R}$
 - T(n) = $\Theta(1)$ для $n < N_f$
 - $\exists \varepsilon > 0 : f(n) = O(n^{\log_b a \varepsilon})$
 - TO $T(n) = \Theta(n^{\log_b a})$.