Part A

Best realized gain: 13.9593 dB

Part B

I chose to use the Gordy algorithm. Matlab's built-in genetic algorithm is set up to minimize functions, while Gordy's algorithm is already configured to maximize functions. I optimized the perimeter and diameter of the elements, while holding aspect ratio and spacing steady at the midpoint of the provided limits. Ideally, an even better antenna would also optimize aspect ratio and spacing, but these simulations would take much longer to run.

Part CA scale drawing was generated using NECPlot:

Part DAll antenna parameters are listed below in meters:

Element (n)	Perimeters (P _n)	Aspect Ratios (A _n)	Spacing (S _n)	Diameters (d _n)
1	0.138899674	1	0.024570025	0.001552247
2	0.126905042	1	0.024570025	0.002566789
3	0.128961097	1	0.024570025	0.002367595
4	0.124517236	1	0.024570025	0.002483629
5	0.111063207	1	0.024570025	0.002984117
6	0.120022481	1	0.024570025	0.000389445
7	0.115636926	1	0.024570025	0.000693917
8	0.106887967	1	0.024570025	0.001493936
9	0.105948409	1	0.024570025	0.002741622
10	0.127544034	1	0.024570025	0.002829877

Part ERelevant changes to the NEC input file are shown below:

46	EX	0	5	3	0	1.0000	0.0000		
47	FR	0	300		0 0	2300.0000	1.0000		
48	RP	0	1	1	1000	90.0000	0.0000	0.0000	0.0000
49	EN								

Part F

Relevant changes to the NEC input file are shown below for 2.4 GHz. Similar changes were made for 2.484 GHz.

46	EX	0	5	3	0	1.0000	0.0000		
47	FR	0	1	0	0 2	400.0000	0.0000		
48	RP	0	1	1	1000	90.0000	0.0000	0.0000	0.0000
49	EN								

Frequency (GHz)	Impedance (Ohms)	Gain (dB)	Realized Gain (dB)
2.4	28.2477	13.92	12.93436968
2.442	50.37	13.96	13.95928772
2.484	47.635	13.86	13.41222586

Part G

Relevant changes to the NEC input file are shown below for 2.4 GHz. Similar changes were made for 2.442 and 2.484 GHz.

```
46 EX 0 5 3 0 1.0000 0.0000
47 FR 0 1 0 0 2400.0000 0.0000
48 RP 0 181 91 1000 0. 0. 2 2
49 EN
```


2.484 GHz

