Национальный исследовательский ядерный университет «МИФИ»

Экзаменационный билет по курсу «ДМ-3: Теория алгоритмов и сложность вычислений»

Фамилия	ī			-91-9-7-7	Груп	ша	В	АРИАНТ	ПР 2	2012
Вопрос	1(2)	2(2)	3(3)	4(3)	5(2)	6(3)	7(3)	8(2)	Всего(20)	
Баллы										
Вопрос 1. Т Максимальная Уточните фор Георема	еоремы и оценка воп мулировку (доказате проса 5 балл (обведите к.	льства пов. пючевое сло	во или прин	ведите полні	ый текст фој	рмулировки	и) и напиши	те доказательство	георемы.
Множество	действител	іьных чисе	ел			Cu	іётно		несчётно	
Доказатель	ство:									
Зопрос 2. Т Максимальная Уточните фор Георема Чер	мулировку (доказате. гроса 5 балл (обведите к.	льства пов. пючевое сло	ово или прин	ведите полні	ый текст фој	рмулировки	и) и напиши	те доказательство	георемы
Доказатель	ство:									

ВОПРОС 3

Максимум за вопрос 5 баллов, 5 подвопросов по 1 баллу. За одну ошибку снимается 0.5 балла, две и более ошибок в строке - 0 баллов. Произведите максимум за вопрос 9 одллов, 3 подвопросов по 1 одллу. За одну ошноку снимается 0.5 одлла, две и облес ошноок в строке - 0 одллов, 1 произведите указанную операцию над множествами, укажите мощность полученного в результате множества X и ответьте на вопрос о его счетности. Отметьте значком "+" элементы, которые принадлежат множеству X. Значки "." ставить не обязательно -пустые клетки интерпретируются аналогично. N - множество натуральных чисел, N* - расширенное множество натуральных чисел, Z - множество целых чисел, Q - множество рациональных чисел, A - множество алгебраических чисел, R - множество действительных чисел, Т - множество трансцендентных чисел. Р(X) - булеан множества X

	Мощно сть Х	Счетнос ть	(-2,√2)	(2,0)	{3/2,4}	{1/2, √3}	{π}	Ø	61/2	16	√3	-5
X=P(QnI)												
X - мн-во конечных комплексов (х1,, хk), где хі \in Q												
$X=P(A\backslash Z)$												
X=(R\Z)∩A												
X состоит из чисел h: h=y^2, y∈R, h<=26												

ВОПРОС 4. Угадайка.

Максимум за вопрос 5 баллов, всего 10 вопросов типа «да-нет». За каждую ошибку снимается - 0.5 балла, за каждый правильный ответ начисляется +0.5, но итоговый результат не может быть меньше нуля. ВНИМАНИЕ: если ответа нет, то штраф не начисляется. Оцените правильность утверждений в общем случае (обведите в кружок слова «да» или «нет»)

	em eny lae (obbeditte b kpyrkok enoba vida// hin vilet//)		
1	Для выражения мощности всех счетно-бесконечных множеств необходимо и достаточно использовать ровно одно трансфинитное число.	Да	Нет
2	Конечные множества могут быть равномощны какому -нибудь своему собственному подмножеству	Да	Нет
3	Если у алгоритма одна из двух функций сложности полиномиальна, то это полиномиальный алгоритм	Да	Нет
4	Если задача решается полиномиальным алгоритмом степени более 10, то она является трудноразрешимой	Да	Нет
5	Любой вычислительный процесс можно преобразовать в нормальный алгоритм Маркова	Да	Нет
6	Функции одного верхнего порядка с экспонентой называются экспоненциальными функциями.	Да	Нет
7	Для любого множества А найдется множество В, мощность которого больше А	Да	Нет
8	Существуют вычислимые частичные арифметические функции, не определенные ни в одной точке.	Да	Нет
9	Если функция записана в расширенном базисе Клини с использованием оператора минимизации, она в любом случае не может являться примитивно-рекурсивной.	Да	Нет
10	Все общерекурсивные функции также являются примитивно-рекурсивными	Да	Нет

ВОПРОС 5. Принадлежность функций к определенным классам Всего 5 баллов, 5 подвопросов по 1 баллу. За одну ошибку снимается 0.5 балла, две и более ошибок в строке - 0 баллов. Заполните таблицу. Укажите ВСЕ (!!!) множества, к которым принадлежит функция (поставьте в соотв. ячейках «+»). Если функция данному множеству не принадлежит, поставьте «-». Обозначения: ПР - примитивно-рекурсивные, ОР - общерекурсивные, ЧР - частично рекурсивные, НР- нерекурсивные, А - арифметические, ЧА частичные арифметические, ВА - вычислимые арифметические, ВЧА - вычислимые частичные арифметические. Последняя буква Ф везде означает функции

Функция F	АФ	ЧАФ	ВАФ	ВЧАФ	ПРФ	ОРФ	ЧРФ	НРФ
x+y, если x < y F (x, y) = 3x-2y, если x > y (x+y)/2 если x=y								
x!, если х нечетное, x/2, иначе								
х+8, если машина Тьюринга Тх+1 не F(x) = остановится на чистой ленте 0, если останов. за первые 4 шага 3х+1, иначе								
F(x) = My[E(y)+2=2x] E(x)=x+4								
р(x,x)+100, если x<5, F(x)= р(x,x)-100, иначе, где р(x,x) - ф-я Аккермана								

Вопрос 6. Определения.

Максимальная оценка вопроса 5 баллов. 5 вопросов по 1 баллу.

Дайте точные определения следующим понятиям или закончите определение.

Термин	Определение
Взаимозаменяемые машины Тьюринга	
Множество (по Тьюрингу)	
Теорема Райса	
Нормальный алгоритм Маркова	
Арифметическая функция f(x) называется функцией одного порядка с функцией g(x) и записывается	

ВОПРОС 7. Рекурсии.

(1 вопрос, 5 баллов). Неаргументированные ответы (без вычислений и комментариев) не оцениваются!! За восстановление общего вида функций G(x) и E(x) по 1 баллу, за нахождение значений f максимум 3 балла (по 1 баллу для каждой точки).

$$G(x) = R_{30}(S_2^2(\div, U_1^2, C_5^2))$$

$$E(x) = R_0(S_2^2(\div, S_2^2(\Pi, U_2^2, C_3^2), C_5^2)$$

$$f(x) = \mu_y(G(y) + E(y) = 5x)$$

Найдите значение функции f	При x = 2 f(x) =	При x = 5 f(x) =	При x = 10 f(x) =
Запишите общий вид функции G (x)			
Запишите общий вид функции Е (х)			

Вопрос 8. Практические вопросы (мини-вычисления).

Максимальная оценка вопроса 5 баллов. 10 вопросов по 0.5 балла. С свободной клетке.	Этветьте на поставленные вопросы, ответ запишите справа в
Запишите через базисные операторы обращение функции f(x)=2x+1 и найдите значение полученной функции в точках 0,1,17,40	
Приведите пример ВЧАФ, не определенной ни в одной точке	
Машину Тьюринга А с 33 символами алфавита преобразовали в эквивалентную машину С по второй теореме Шеннона. Сколько клеток на ленте м.С понадобится для записи слова "крокодил" (кавычки не считаются)	
Запишите P(P({Ø})). Начните ответ со знака равенства и далее опишите полученное множество в соответствии с правилами описания множеств	
Сколько различных чисел потребуется для задания мощностей всех возможных конечных множеств	
Напишите характеристическую функцию для области определения функции f(x)=(x-21)/2	
Пусть мощность множества А равна 8, а мощность множества В равна 17. А ∩ В={1,3,6}. Чему равна мощность множества А U В	
Сколько различных слов, содержащих конечное число символов, теоретически можно составить из алфавита, содержащего счетно-бесконечное число символов	
Запишите любую функцию f(x) одного верхнего порядка с функцией g(x)=x^4+100	
f(x) = x+10, g(x)=x^3+1, строго на основании определения докажите что f(x) = O(g(x)). Строго доказать - значит привести определние и указать коэфф. с и соотв x*	

Фамилия Группа ВАРИАНТ ПР 2012