

INF2705 Infographie

Spécification des requis du système Travail pratique 1 Utilisation du pipeline graphique et des VBO

Table des matières

1	Introduction				
	1.1	But	2		
	1.2	Portée	2		
	1.3	Remise	2		
2	Des	cription globale	3		
	2.1	But	3		
	2.2	Travail demandé	3		
3	Exig	Exigences			
	3.1	Exigences fonctionnelles	6		
	3.2	Exigences non fonctionnelles	6		
	3.3	Rapport	6		
Α	List	Liste des commandes			
В	Figures supplémentaires				
C	Δnn	Annrentissage sunniémentaire			

1 Introduction

Ce document décrit les exigences fonctionnelles et non fonctionnelles du TP1 « *Utilisation du pipeline graphique et des VBO* » du cours INF2705 Infographie.

1.1 But

Le but des travaux pratiques est de permettre à l'étudiant d'appliquer directement les notions vues en classe.

1.2 Portée

Chaque travail pratique permet à l'étudiant d'aborder un sujet spécifique.

1.3 Remise

Vous remettrez un fichier zip contenant tout le code source du TP et le rapport (*.cpp, *.h, *.glsl, makefile, *.txt).

Faites « make remise » pour créer l'archive « remise.zip ». Vous déposerez ensuite ce fichier dans Moodle.

2 Description globale

2.1 But

Le but de TP est de permettre à l'étudiant de mettre en pratique les fonctions de contrôle du pipeline graphique d'OpenGL pour la modification des matrices et la manipulation de la caméra synthétique : Rotate(), Translate(), Scale(), PushMatrix() et PopMatrix().

Ce travail pratique lui permettra aussi d'utiliser les fonctions liées aux *Vertex Buffer Objects (VBOs)* : glGenBuffers(), glBindBuffers(), glBufferData() et glDrawElements().

2.2 Travail demandé

Partie 1: la bestiole

On demande de réaliser un programme permettant d'afficher une bestiole un peu bizarre (probablement d'origine extraterrestre!) avec une tête sphérique de rayon fixe, un corps cubique de taille variable (tailleCorps) et quatre pattes de taille fixe (longPatte x largPatte) formées par des cubes étirés. Cette bestiole pourra aussi transformer son corps en LA théière bien connue en infographie! La Figure 1 montre cette bestiole sous ses deux formes : cube et théière.

La sphère et les cubes sont tracés par des appels aux fonctions fournies (sans modifier ces fonctions). La tête de la bestiole est une sphère positionnée au milieu de l'arête supérieure (en X+ et Z+). Chaque patte est composé d'un cube étiré et articulé selon un angle (anglePatte) (Figure 2). Enfin, la bestiole peut aussi tourner sur elle-même (angleBestiole) et se déplacer (positionBestiole) dans l'espace de la boîte (Figure 3). Les valeurs de toutes les variables sont contrôlés interactivement.

Note: Ce TP utilise OpenGL 4.x et certains appels à OpenGL sont un peu différents des appels vus au TPO. En classe, nous avons parlé de l'utilisation de la librairie glm et de std::stack qui sont utilisés dans la classe MatricePipeline du fichier inf2705.h. Consultez les notes de cours et explorez la classe MatricePipeline afin de bien comprendre son fonctionnement.

Partie 2 : utilisation de *Vertex Buffer Objects (VBOs)*

Le corps de la bestiole pourra être représenté par un cube ou par la célèbre théière. La théière sera affichée en utilisant deux VBOs (sommets et indices) créés avec les deux tableaux définis dans le fichier déjà inclus « teapot_data.h ». Ces VBOs doivent être définis une seule fois à l'initialisation et ensuite réutilisés à chaque affichage.

L'orientation de cette théière variera linéairement en fonction de sa hauteur (afin de verser le thé!), tel qu'illustré à la Figure 4 : à l'horizontale (rotation de 0°) lorsque la théière est au sol ; à la verticale (rotation de 90°) lorsque la théière est tout en haut.

FIGURE 1 – Bestiole sous la forme d'un cube ou d'une théière

FIGURE 2 – Articulation des pattes

FIGURE 3 – Déplacement, rotation et articulation des pattes en mode animation

FIGURE 4 – Variation de l'orientation de la théière en fonction de sa hauteur

3 Exigences

3.1 Exigences fonctionnelles

Partie 1:

- E1. Le corps, la tête et la pattes sont dessinés en utilisant les fonctions afficherCube() et afficherSphere().
- E2. Les fonctions Rotate(), Translate() et Scale() sont correctement utilisées pour les transformations géométriques nécessaires au dessin de chaque partie de la bestiole.
- E3. Les fonctions PushMatrix() et PopMatrix() sont correctement utilisées pour sauvegarder l'état des matrices pour le dessin de chaque patte.
- E4. La bestiole est positionnée selon positionBestiole et la taille de son corps est donnée par tailleBestiole.
- E5. La tête de la bestiole est bien positionnée au milieu de l'arête.
- E6. La rotation du corps de la bestiole suit angleBestiole.
- E7. Les pattes de la bestiole sont attachées aux coins du cube et sont de taille largPatte x largPatte x longPatte.

Partie 2:

- E8. Les fonctions glGenBuffers(), glBindBuffers(), glBufferData() et glDrawElements() sont correctement utilisées afin d'utiliser deux VBOs (sommets et indices) pour afficher la théière. Les VBOs sont définis à l'initialisation et réutilisés à chaque affichage.
- E9. Le corps de la bestiole peut être affiché en utilisant cette théière tel qu'illustré à la Figure 1.
- E10. L'orientation de la théière varie linéairement en fonction de sa hauteur tel qu'illustré à la Fiqure 4.
- E11. (Le logiciel utilise correctement les touches listées à l'annexe A pour faire varier les divers paramètres.)

3.2 Exigences non fonctionnelles

Pour la partie 1, des modifications sont principalement à faire dans la fonction afficherBestiole(). Pour la partie 2, des modifications sont principalement à faire dans les fonctions initiliaser() et afficherTheiere().

3.3 Rapport

Vous devez répondre aux questions dans le fichier Rapport.txt et l'inclure dans la remise. Vos réponses doivent être complètes et suffisamment détaillées. (Quelqu'un pourrait suivre les instructions que vous avez écrites sans avoir à ajouter quoi que ce soit.)

ANNEXES

Touche

A Liste des commandes

Description

loucne	Description
q	Quitter l'application
X	Activer/désactiver l'affichage des axes
V	Recharger les fichiers des nuanceurs et recréer le programme
i	Réinitiliaser le point de vue
g	Permuter l'affichage en fil de fer ou plein
m	Choisir le modèle affiché : cube, théière
MOINS	Reculer la caméra
PLUS	Avancer la caméra
DROITE	Déplacer la bestiole vers +X
GAUCHE	Déplacer la bestiole vers -X
PAGEPREC	Déplacer la bestiole vers +Y
PAGESUIV	Déplacer la bestiole vers -Y
BAS	Déplacer la bestiole vers +Z
HAUT	Déplacer la bestiole vers -Z
FIN	Diminuer la taille du corps
DEBUT	Augmenter la taille du corps
VIRGULE	Tourner la bestiole dans le sens anti-horaire
POINT	Tourner la bestiole dans le sens horaire
CROCHETGAUCHE	Diminuer l'angle des pattes
CROCHETDROIT	Augmenter l'angle des pattes
b	Incrémenter la dimension de la boite
h	Décrémenter la dimension de la boite
ESPACE	Mettre en pause ou reprendre l'animation
BOUTON GAUCHE	Déplacer (modifier angles) la caméra

B Figures supplémentaires

Allez voir la théière bien connue en infographie sur Internet :

http://www.sjbaker.org/wiki/?title=The_History_of_The_Teapot

http://en.wikipedia.org/wiki/Utah_teapot.

FIGURE 5 – La théière utilisée dans *Toy Story*

FIGURE 6 – La théière utilisée dans l'épisode Treehouse of Horror VI

FIGURE 7 – La théière utilisée dans un écran de veille (Windows)

C Apprentissage supplémentaire

- Remplacer la fonction LookAt() qui positionne la caméra par une combinaison de Translate()
 et de Rotate(). L'affichage doit être le même, peu importe si on utilise l'une ou l'autre version
 pour définir le point de vue.
- 2. Quel est le nombre minimal de PushMatrix()/PopMatrix() à utiliser? Pourquoi faut-il éviter d'en ajouter inutilement?
- 3. Allonger les pattes selon la taille du corps.
- 4. Ajouter des ailes à la bestiole et faites-la voler automatiquement.
- 5. Utiliser un octaèdre régulier au lieu d'un cube.
- 6. Utiliser une sphère au lieu d'un cube.