样题(一)简要解答

说明:

- 1. 样题仅用于学生熟悉考试形式。因教学进度等方面的差异,样题对实际考试内容、考试 难度等无任何指导。
- 2. 《样题(一)简要解答》仅给出题目答案与提示。**请同学们在正式考试作答过程中给出** 详细解题步骤。

题1. (5分) 把矩阵A 的第一行的2倍加到第二行,之后互换第一列和第二列,得到的矩阵 是 $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 。那么,矩阵A 是什么?

解答1.
$$\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$$
.

题2. (5分) 试给出一个2阶上三角矩阵U, 使得U 不是对角阵, 且 $U^{-1} = U$ 。

解答2.
$$U = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$
.

题3. (5分) 假设 A_1, A_2, \ldots, A_4 是同阶可逆方阵, $C = A_1A_2A_3A_4$ 是它们的乘积,试用 C^{-1} 和 A_1, A_2, A_4 表示 A_3^{-1} .

解答3. $A_3^{-1} = A_4 C^{-1} A_1 A_2$.

题4. (83) 试写下两个非零的2阶方阵A,B 使得 $A^2=B^2=0$. 所有满足 $A^2=0$ 的2阶方阵的全体是否是 $M_2(\mathbb{R})$ 的线性子空间? 若是请证明, 若不是请说明原因。

解答4.
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. 记 $Nil = \{A \in M_2(\mathbb{R}) : A^2 = 0\}$. 因为 $A, B \in Nil$ 而 $A + B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 是一个 2 阶置换阵 P ,其平方是 I_2 ,所以 $P \notin Nil$,由此可见, Nil 在加法运算下不封闭,故它不是 $M_2(\mathbb{R})$ 的子空间。

题5. (8) 设 $A \in M_2(\mathbb{R})$, $\mathbf{b} \in \mathbb{R}^2$, 且线性方程组 $A\mathbf{x} = \mathbf{b}$ 有三组解 $\mathbf{x_1} = \begin{bmatrix} 2 \\ 7 \end{bmatrix}$, $\mathbf{x_2} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, $\mathbf{x_3} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$, 试证明 $\mathbf{x_4} = \begin{bmatrix} 5 \\ 26 \end{bmatrix}$ 也是该方程组的解。

解答5. 因为 \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 都是 $A\mathbf{x} = \mathbf{b}$ 的解,所以 $\mathbf{x}_2 - \mathbf{x}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ 和 $\mathbf{x}_3 - \mathbf{x}_2 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ 是齐次线性方程组 $A\mathbf{x} = 0$ 的解。方程组 $A\mathbf{x} = 0$ 的解集N(A) 是 \mathbb{R}^2 的线性子空间。既然N(A) 包含 $\mathbf{x}_2 - \mathbf{x}_1$ 和 $\mathbf{x}_3 - \mathbf{x}_2$,那么N(A) 必然包含这两个向量的所有线性组合。又因 $\begin{bmatrix} 1 \\ -3 \end{bmatrix}$ 与 $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ 不共线,故它们的所有线性组合是 \mathbb{R}^2 ,也就是说 $N(A) = \mathbb{R}^2$. 所以 $A\mathbf{x} = \mathbf{b}$ 的解集是 $\mathbf{x}_1 + N(A) = \mathbf{x}_1 + \mathbb{R}^2 = \mathbb{R}^2$,特别的 \mathbf{x}_4 是该方程组的解。

题6. (8%) 设A 是 3×4 阶矩阵,A 的零空间N(A) 是 $\{c_1\begin{bmatrix} 3\\1\\0\\0\end{bmatrix}+c_2\begin{bmatrix} 1\\0\\4\\1\end{bmatrix}:c_1,c_2\in\mathbb{R}\}.$ 求rref(A).

解答6.
$$R = \begin{bmatrix} 1 & -3 & 0 & -1 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
.

题7. (10分) 求下面线性方程组的通解

$$\begin{cases} x_1 + x_2 + x_3 + x_4 & = 1 \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 & = 0 \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 & = 2 \end{cases}$$

解答7. 方程组的通解是

$$\begin{bmatrix} -2 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}.$$

题8.
$$(20分)$$
 设 $A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix}$.

- 1. (6分) 证明: A 可逆的充分必要条件是a,b,c 两两不同。
- 2. (6分) 当A 可逆时, 求A 的LU 分解。
- 3. (8分) 当a=1, b=2, c=3 时, 求 A^{-1} .

$$2. \ L = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ a^2 & b + a & 1 \end{bmatrix}, \ U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & b - a & c - a \\ 0 & 0 & (c - a)(c - b) \end{bmatrix}.$$
$$3. \ A^{-1} = \begin{bmatrix} 3 & -\frac{5}{2} & \frac{1}{2} \\ -3 & 4 & -1 \\ 1 & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}.$$

题**9.**
$$(6分)$$
 设 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \\ 3 & 6 & 12 \end{bmatrix}$.

- 1. (2分) 把A 写成 $\alpha\beta^T$ 的形式, 其中 α,β 均是列向量。
- 2. (4分) 计算A²⁰¹⁹.

解答9. 1.
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$$
.

题
$${f 10.}\,\,(8eta)$$
 设 $A=egin{bmatrix} 1 & 1 \\ & 1 \\ & & 1 \end{bmatrix}$. 求所有与 A 可交换的矩阵。

解答10. 这样的矩阵形如
$$\begin{bmatrix} b_{11} & b_{12} & b_{13} \\ 0 & b_{22} & b_{23} \\ 0 & 0 & b_{11} \end{bmatrix}$$
.

- 题**11.** (12分) 设 $A \in M_{m \times n}(\mathbb{R})$. 证明:
 - 1. (3分) A^TA是对称矩阵;
 - 2. (6分) 设 $\mathbf{x} \in \mathbb{R}^n$ 是非零向量, 且 $c \in \mathbb{R}$ 满足 $A^T A \mathbf{x} = c \mathbf{x}$. 证明 $c \geq 0$;

3. (3分)证明 A^TA 的对角线元素都不小于零.

解答11. $(A^TA)^T = A^T(A^T)^T = A^TA$.

- 2. 因为 $A^TAx = cx$, 所以 $x^TA^TAx = x^Tcx$. 等式的左边是 $(Ax)^T(Ax)$, 这是m 维实向量Ax 的范数平方, 故是一个 ≥ 0 的数。等式的右边是 cx^Tx , 其中 x^Tx 是n 维非零向量x 的范数平方, 故是一个正实数。综上有 $cx^Tx > 0$, 所以c > 0.
- 3. 由矩阵乘法的定义知 A^TA 的(i,i)-元素是 A^T 的第i 行与A 的第i 列的点积,而 A^T 的第i 行就是A 的第i 列(在不计转置意义下),所以 A^TA 的(i,i)-元素是A 的第i 列与自身的内积,也就是它的范数平方,这总是一个非负的实数。
- 题12. (5分) 设 $A, B \in M_n(\mathbb{R})$, 且 $A^k = 0$, 其中k是一个正整数。
 - 1. (2分) 证明 $I_n A$ 可逆,
 - 2. (3分) 若AB + BA = B, 证明B = 0.

解答12. 1. 验证 $(I_n-A)(I_n+A+A^2+\cdots+A^{k-1})=I_n+A+A^2+\cdots+A^{k-1}-(A+A^2+\cdots+A^{k-1}+A^k)=I_n-A^k=I_n$,所以 I_n-A 可逆,且 $(I_n-A)^{-1}=I_n+A+\cdots+A^{k-1}$.

2. 把AB + BA = B 重新写成 $AB = B(I_n - A)$, 左乘A 得到

$$A^{2}B = A(AB) = AB(I_{n} - A) = B(I_{n} - A)^{2},$$

再乘一次A 得到

$$A^{3}B = AA^{2}B = AB(I_{n} - A)^{2} = B(I_{n} - A)^{3},$$

以此类推,不难看出对任意的正整数m,

$$A^m B = B(I_n - A)^m$$

成立。特别的,等式对m=k 成立。当m=k 时,等式的左边是 $A^kB=0B=0$,等式的右边是 $B(I_n-A)^k$,故 $0=B(I_n-A)^k$.又由1知 I_n-A 可逆,所以它的k 次幂也可逆,右乘 $(I_n-A)^{-k}$ 即得B=0.