

1.
$$\int c f(x) dx = c \int f(x) dx, c \text{ is constant}$$

2.
$$\int [f(x) \pm g(x) \pm h(x)] dx = \int f(x) dx \pm \int g(x) dx \pm \int h(x) dx$$
In general,

$$\int [f_1(x) \pm f_2(x) \pm f_3(x) \pm ... \pm f_n(x)] dx$$

$$= \int f_1(x) dx \pm \int f_2(x) dx \pm \int f_3(x) dx \pm ... \pm \int f_n(x) dx$$

One Important Note: If the power of the numerator of the integrand is greater than or equal to that of its denominator, then before integration the numerator must be divided by the denominator.

ILLUSTRATIVE EXAMPLES

Find the following integrals: 1.

(i)
$$\int (8x^2 + 3) dx$$
 (ii) $\int x^{\frac{3}{2}} dx$
(iii) $\int (3x^2 + 2)^3 x dx$ (iv) $\int \left(\frac{2+x}{x}\right) dx$
(v) $\int \left(2^x + \frac{1}{2}e^{-x} + \frac{3}{x} - \frac{1}{4\sqrt{x}}\right) dx$ (vi) $\int (\sqrt{x} - \frac{1}{\sqrt{x}}) dx$
(vii) $\int \sqrt{x} (1+x) dx$ (viii) $\int \left(e^{2x} + \frac{1}{e^x}\right) dx$
(ix) $\int \left(\frac{ax^3 + bx^2 + cx + d}{x}\right) dx$ (x) $\int \frac{x^3}{x+1} dx$
(xi) $\int (2x+1)^{\frac{3}{3}} dx$

Solution: (i) $\int (8x^2 + 4) dx$

$$= \int 8x^{2} dx + \int 4 dx \text{ (property) (2)}$$

$$= 8 \int x^{2} dx + 4 \int 4 dx \text{ (property) (1)}$$

$$= 8 \int x^{2+1} + 4x + C \text{ (formulae (2) and (1))}$$

$$= 8 \cdot \frac{x^{2+1}}{2+1} + 4x + C \text{ (formulae (2) and (1))}$$

Note: In fact, each integral includes one constant of integration. Thus the actual integral is Note: In fact, each integral includes one constant C_1 and C_2 can together be expressed as C where $C = C_1 + C_2$.

Scanned By Kagaz Scanner.

(ii)
$$\int x^{\frac{3}{2}} dx = \frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1} + C$$
$$= \frac{2x^{\frac{5}{2}}}{5} + C$$
(iii)
$$\int (3x^2 + 2)^3 x dx$$

[Formula(2)]

(iii)
$$\int (3x^2 + 2)^3 x dx$$

= $\int (27x^7 + 54x^5 + 36x^3 + 8x) dx$
= $27 \int x^7 dx + 54 \int x^5 dx + 36 \int x^3 dx + 8 \int dx$
= $\frac{27x^8}{8} + 9x^6 + 9x^4 + 4x^2 + C$

[Properties (1) and (2)]

[Formula (2)]

(iv)
$$\int \left(\frac{2+x}{x}\right) dx = \int \frac{2}{x} dx + \int dx$$
$$= 2 \int \frac{1}{x} dx + \int dx$$
$$= 2 \log x + x + C$$

(v)
$$\int \left(2^{x} + \frac{1}{2}e^{-x} + \frac{3}{x} - \frac{1}{\sqrt[4]{x}}\right)dx$$

$$= \int 2^{x} dx + \frac{1}{2} \int e^{-x} dx + 3 \int \frac{1}{x} dx - \int x^{-\frac{1}{4}} dx$$

$$= \frac{2^{x}}{\log 2} + \frac{1}{2} \cdot \frac{e^{-x}}{-1} + 3 \log x - \frac{x^{-\frac{1}{4}+1}}{-\frac{1}{4}+1} + C$$

$$= \frac{2^x}{\log 2} - \frac{1}{2}e^{-x} + 3\log x - \frac{4}{3}x^{\frac{3}{4}} + C$$

[See formulae (5) and (6)]

$$(vi) \int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right) dx$$

$$= \int x^{\frac{1}{2}} dx - \int x^{-\frac{1}{2}} dx$$

$$= \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} - \frac{x^{-\frac{1}{2}+1}}{\frac{1}{2}+1} + C$$

$$= \frac{2}{3}x^{\frac{3}{2}} - 2x^{\frac{1}{2}} + C$$

(vii) $\int \sqrt{x(1+x)} dx = \int x^{\frac{1}{2}} dx + \int x^{\frac{3}{2}} dx$ scanned By KagazScanner

$$= \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + \frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1} + C$$

$$= \frac{2}{3}x^{\frac{3}{2}} + \frac{2}{5}x^{\frac{5}{2}} + C$$

(viii)
$$\int (e^{2x} + \frac{1}{e^x}) dx = \int e^{2x} dx + \int e^{-x} dx$$
$$= \frac{e^{2x}}{2} + \frac{e^{-x}}{-1} + C$$
$$= \frac{e^{2x}}{2} - e^{-x} + C$$

[Formula (5)]

Note:
$$\int e^{-x} dx = \int e^{(-1)x} dx = \frac{e^{(-1)x}}{-1} = -e^{-x} \left[\because \int e^{mx} dx = \frac{e^{mx}}{m} \right]$$

$$(ix) \int \left(\frac{ax^3 + bx^2 + cx + d}{x}\right) dx = \int \left(ax^2 + bx + c + \frac{d}{x}\right) dx$$

$$= a \int x^2 dx + b \int x dx + c \int dx + d \int \frac{1}{x} dx$$

$$= \frac{ax^3}{3} + b \frac{x^2}{2} + cx + d \log x + c$$

(x)
$$\int \frac{x^3}{x+1} dx$$

[When the power of the numerator of the integrand is greater than or equal to that of its denominator.] then before integration the numerator is to be divided by the denominator.]

$$= \int \left[(x^2 - x + 1 - \frac{1}{x+1}) dx \right]$$

$$= \int x^2 dx - \int x dx + \int dx - \int \frac{1}{x+1} dx$$

$$= \frac{x^3}{3} - \frac{x^2}{2} + x - \log(x+1) + C$$

$$x+1)x^{3} \qquad (x^{2}-x+1)$$

$$\frac{x^{3}+x^{2}}{-x^{2}}$$

$$\frac{-x^{2}-x}{x}$$

$$\frac{x+1}{-1}$$

$$\therefore \frac{x^{3}}{x+1} = (x^{2}-x+1) - \frac{1}{x+1}$$

[Formula (6)]

 $\int \frac{1}{ax+b} dx = \frac{\log(ax+b)}{a} + C$ N.R $\int \frac{1}{x+1} dx = \frac{\log(x+1)}{1} + C$

Scanned By KagazScanner

(xi)
$$\int (2x+1)^{\frac{1}{3}} dx = \frac{(2x+1)^{\frac{1}{3}+1}}{\frac{1}{3}+1} \times \frac{1}{2} + C$$

$$= \frac{3}{8} (2x+1)^{\frac{4}{3}} + C$$
[Form

(xii)
$$\int \frac{1}{4x-11} dx = \frac{\log(4x-11)}{4} + C$$

Formu

Evaluate the following integrals:

(i)
$$y = \int (x^3 + 2x^{\frac{5}{2}} + 5x^{\frac{3}{2}} + 10x) dx$$
, if $y = 0$ when $x = 0$

(ii)
$$y = \int (3x^2 + 2x + 6) dx$$
, if $y = 5$ when $x = 0$

(iii)
$$P = \int \frac{1}{\sqrt{2ax}} dx$$
, $P = 2a$ when $x = \frac{1}{3}a^3$. If $x = 2a^3$, evaluate P.

N.B. In such examples the actual value of the constant of integration is determined fro given condition.

Solution: (i)
$$y = \int (x^3 + 2x^{\frac{5}{2}} + 5x^{\frac{3}{2}} + 10x) dx$$
$$= \int x^3 dx + 2 \int x^{\frac{5}{2}} dx + 5 \int x^{\frac{3}{2}} dx + 10 \int x dx$$
$$= \frac{1}{4}x^4 + \frac{4}{7}x^{\frac{7}{2}} + 2x^{\frac{5}{2}} + 5x^2 + C$$

Given that, y = 0 when x = 0

$$\therefore \quad 0 = 0 + 0 + 0 + 0 + C \Rightarrow C = 0$$

$$\therefore y = \frac{1}{4}x^4 + \frac{4}{7}x^{\frac{7}{2}} + 2x^{\frac{5}{2}} + 5x^2$$

(ii)
$$y = \int (3x^2 + 2x + 6) dx$$

$$= 3 \int x^2 dx + 2 \int x dx + 6 \int dx$$

$$= 3 \cdot \frac{x^3}{3} + 2 \cdot \frac{x^2}{2} + 6x + C$$

$$= x^3 + x^2 + 6x + C$$

that $y = 5$ when $x = 0$

Given that y = 5 when x = 0

$$5 = 0 + 0 + 0 + C \Rightarrow C = 5$$

$$y = x^3 + x^2 + 6x + 5$$

$$y = x^3 + x^2 + 6x + 5$$

$$\Rightarrow dx = \frac{dz}{5}$$

$$\therefore I = \int \sqrt{z} \cdot \left(\frac{dz}{5}\right)$$

$$= \frac{1}{5} \int z^{\frac{1}{2}} dz$$

$$= \frac{1}{5} \frac{z^{3/2}}{\frac{3}{2}} + C$$

$$= \frac{2}{15} z^{3/2} + C$$

$$= \frac{2}{15} (5x + 7)^{3/2} + C$$

N.B. Students should integrate 5x + 7 = z mentally w.r.t. z and write 5dx = dz directly.

or,
$$\int \sqrt{5x + 7} \, dx = \int (5x + 7)^{1/2} \, dx$$
$$= \frac{(5x + 7)^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} \left(\frac{1}{5}\right) + C$$
$$= \frac{2}{15} (5x + 7)^{3/2} + C$$

$$(ii) I = \int x \sqrt{2x+1} \ dx$$

dx = zdz

Solution: Let $2x + 1 = z^2$

Integrating both sides w.r.t. x we get,

$$2dx = 2z dz$$

Again,
$$2x + 1 = z^{2}$$

 $\Rightarrow 2x = z^{2} - 1$
 $\Rightarrow x = \frac{z^{2} - 1}{2}$
 $\therefore I = \int \frac{z^{2} - 1}{2} \sqrt{z^{2}} z dz$
 $= \frac{1}{2} \int (z^{2} - 1) z^{2} dz$
 $= \frac{1}{2} \int (z^{4} - z^{2}) dz$
 $= \frac{1}{2} \left(\frac{z^{5}}{5} - \frac{z^{3}}{3} \right) + C$
 $= \frac{1}{2} \left(\frac{(2x + 1)^{5/2}}{5} - \frac{(2x + \overline{1})^{3/2}}{3} \right) + C$
 $[\because z^{2} = 2x + 1 \Rightarrow z = (2x + 1)^{\frac{1}{2}}]$

$$\int_{(iii)}^{2x-2} 1 = \int_{x^2-2x+3}^{2x-2} dx$$

Solution: Let $x^2 - 2x + 3 = t$

Integrating w.r.t. x we get,

$$2x - 2 = \frac{dt}{dx}$$

$$\Rightarrow (2x - 2) dx = dt$$

$$\therefore I = \int_{-t}^{1} dt = \log t + c$$

$$= \log (x^2 - 2x + 3) + c$$
as (differential or integrals)

Note: In calculus (differential or integral) log x implies log_e x which is also denoted by ln x.

(iv)
$$I = \int e^{2x^2 - 5x + 6} \cdot (4x - 5) dx$$

Solution: Let $2x^2 - 5x + 6 = t$

Integrating w.r.t. x we get,

$$(4x-5)\,dx=dt$$

$$I = \int e^t dt = e^{-t} + c = e^{2x^2 - 5x + 6} + c$$

(v)
$$I = \int \frac{4x-5}{4x^2-10x+8} dx$$

Solution: Let $4x^2 - 10x + 8 = z$

Integrating w.r.t. x, (8x - 10) dx = dz

Now,
$$I = \frac{1}{2} \int \frac{8x - 10}{4x^2 - 10x + 8} dx$$
 (Note this step)

$$= \frac{1}{2} \int \frac{dz}{z} = \frac{1}{2} \log z + C$$

$$= \frac{1}{2} \log(4x^2 - 10x + 8) + C$$

$$(vi) I = \int \frac{e^x + e^{-x}}{e^x - e^{-x}} dx$$

Solution: Let $t = e^x - e^{-x}$

$$\Rightarrow \frac{dt}{dx} = e^x - (-e^{-x}) = e^x + e^{-x}$$

$$\Rightarrow dt = (e^x + e^{-x}) dx$$

If the integrand is such deat its numerator is the derivative of the denomination in the derivative of the denomination in the constant is such death need; Byokefithe integrand plus the constant $I = \int \frac{dt}{t} = \log t + c = \log (e^{x} - e^{-x}) + C.$