Random Oracles in a Quantum World

Dan Boneh¹ Özgür Dagdelen² Marc Fischlin²
Anja Lehmann³ Christian Schaffner⁴ Mark Zhandry¹

¹Stanford University, USA

²CASED & Darmstadt University of Technology, Germany

³IBM Research Zurich, Switzerland

⁴University of Amsterdam and CWI, The Netherlands

December 5, 2011

Classical Random Oracle Model Adversaries

Quantum Random Oracle Model Adversaries

Quantum Random Oracle Model (QROM)

 Why quantum queries? Random oracle models hash function, which a quantum adversary can evaluate on superposition.

Quantum Random Oracle Model (QROM)

- Why quantum queries? Random oracle models hash function, which a quantum adversary can evaluate on superposition.
- Because quantum adversaries can query on a superposition, classical proofs of security do not carry over to the quantum setting.

Quantum Random Oracle Model (QROM)

- Why quantum queries? Random oracle models hash function, which a quantum adversary can evaluate on superposition.
- Because quantum adversaries can query on a superposition, classical proofs of security do not carry over to the quantum setting.

Examples:

- Simulating the random oracle
- Determining what points the adversary is interested in
- Programming the random oracle
- Rewinding

Separation result: Scheme secure in classical ROM, but insecure in QROM

- Separation result: Scheme secure in classical ROM, but insecure in QROM
 - Identification scheme

- Separation result: Scheme secure in classical ROM, but insecure in QROM
 - Identification scheme
- Positive result: Signature Schemes

- Separation result: Scheme secure in classical ROM, but insecure in QROM
 - Identification scheme
- Positive result: Signature Schemes
 - Some classical security proofs carry over (if quantum PRFs exist).

- Separation result: Scheme secure in classical ROM, but insecure in QROM
 - Identification scheme
- Positive result: Signature Schemes
 - Some classical security proofs carry over (if quantum PRFs exist).
 - Example: Lattice-based signatures ([GPV08])
 - Example: Specific instances of Full Domain Hash
 - Generic Full Domain Hash is still open.

- Separation result: Scheme secure in classical ROM, but insecure in QROM
 - Identification scheme
- Positive result: Signature Schemes
 - Some classical security proofs carry over (if quantum PRFs exist).
 - Example: Lattice-based signatures ([GPV08])
 - Example: Specific instances of Full Domain Hash
 - Generic Full Domain Hash is still open.
- Positive result: Encryption Schemes

Preimage Sampleable Functions

- A preimage sampleable trapdoor function (PSF) \mathcal{F} is a triple of functions (G, f, f^{-1}) :
 - $G(1^n)$ outputs (sk, pk)
 - f_{pk}(x) is efficiently computable, uniformly distributed for random x.
 - $f_{\rm sk}^{-1}(y)$ samples uniformly from the set of x such that $f_{\rm pk}(x)=y$

Preimage Sampleable Functions

- A preimage sampleable trapdoor function (PSF) \mathcal{F} is a triple of functions (G, f, f^{-1}) :
 - $G(1^n)$ outputs (sk, pk)
 - f_{pk}(x) is efficiently computable, uniformly distributed for random x.
 - $f_{\rm sk}^{-1}(y)$ samples uniformly from the set of x such that $f_{\rm pk}(x)=y$
- $\mathcal{F} = (G, f, f^{-1})$ is secure if it is one-way, collision-resistant, and has high preimage min-entropy.

Preimage Sampleable Functions

- A preimage sampleable trapdoor function (PSF) \mathcal{F} is a triple of functions (G, f, f^{-1}) :
 - $G(1^n)$ outputs (sk, pk)
 - f_{pk}(x) is efficiently computable, uniformly distributed for random x.
 - $f_{\rm sk}^{-1}(y)$ samples uniformly from the set of x such that $f_{\rm pk}(x)=y$
- $\mathcal{F} = (G, f, f^{-1})$ is secure if it is one-way, collision-resistant, and has high preimage min-entropy.
- Secure construction from lattices [GPV08]

Given a PSF $\mathcal{F} = (G, f, f^{-1})$, construct a signature scheme $\mathcal{S}^O = (G, \mathcal{S}^O, V^O)$ as follows:

Given a PSF $\mathcal{F} = (G, f, f^{-1})$, construct a signature scheme $\mathcal{S}^O = (G, \mathcal{S}^O, V^O)$ as follows:

• $S_{\rm sk}^O(m) = f_{\rm sk}^{-1}(O(m))$. Remember this output for future queries of m

Given a PSF $\mathcal{F} = (G, f, f^{-1})$, construct a signature scheme $\mathcal{S}^O = (G, \mathcal{S}^O, V^O)$ as follows:

- $S_{\rm sk}^O(m) = f_{\rm sk}^{-1}(O(m))$. Remember this output for future queries of m
- $V_{\rm pk}^O(m,\sigma)$ accepts if and only if $f_{\rm pk}(\sigma)=O(m)$.

Given a PSF $\mathcal{F} = (G, f, f^{-1})$, construct a signature scheme $\mathcal{S}^O = (G, \mathcal{S}^O, V^O)$ as follows:

- $S_{\rm sk}^O(m) = f_{\rm sk}^{-1}(O(m))$. Remember this output for future queries of m
- $V_{\rm pk}^O(m,\sigma)$ accepts if and only if $f_{\rm pk}(\sigma)=O(m)$.

$\mathsf{Theorem}$

Suppose $\mathcal F$ is a quantum-secure PSF, and that quantum pseudorandom functions exist. Then $\mathcal S$ is quantum secure.

Security of GPV Signatures

Two parts:

Security of GPV Signatures

Two parts:

 Prove that security of a certain type of classical reduction (called history free) implies security in the quantum setting

Security of GPV Signatures

Two parts:

- Prove that security of a certain type of classical reduction (called history free) implies security in the quantum setting
- Show that the reduction of [GPV08] is history free

Classical RO Techniques:

Simulating the random oracle.

- Simulating the random oracle.
 - Use a random oracle.

- Simulating the random oracle.
 - Use a random oracle.
- Determine what points the adversary is querying the oracle on.

- Simulating the random oracle.
 - Use a random oracle.
- Determine what points the adversary is querying the oracle on.
 - Not allowed.

- Simulating the random oracle.
 - Use a random oracle.
- Determine what points the adversary is querying the oracle on.
 - Not allowed.
- Programming the random oracle.

- Simulating the random oracle.
 - Use a random oracle.
- Determine what points the adversary is querying the oracle on.
 - Not allowed.
- Programming the random oracle.
 - Only non-adaptively (i.e. no knowledge of previous queries)

- Simulating the random oracle.
 - Use a random oracle.
- Determine what points the adversary is querying the oracle on.
 - Not allowed.
- Programming the random oracle.
 - Only non-adaptively (i.e. no knowledge of previous queries)
- Rewinding

- Simulating the random oracle.
 - Use a random oracle.
- Determine what points the adversary is querying the oracle on.
 - Not allowed.
- Programming the random oracle.
 - Only non-adaptively (i.e. no knowledge of previous queries)
- Rewinding
 - Not allowed.

- Reduction algorithm has private random oracle O_c
 - Implemented on the fly

- ullet Reduction algorithm has private random oracle O_c
 - Implemented on the fly
- Random oracle queries answered by Rand^{Oc}
 - Truly random

- ullet Reduction algorithm has private random oracle O_c
 - Implemented on the fly
- Random oracle queries answered by Rand^{Oc}
 - Truly random
- Signatures answered by Sign^{Oc}
 - Consistent with random oracle
 - Distribution identical to actual

Main Theorem

Theorem

Suppose a random oracle model signature scheme $\mathcal S$ has a history-free reduction that transforms any classical adversary A into a classical algorithm B for some hard problem for quantum computers. Suppose further that quantum pseudorandom functions exist. Then $\mathcal S$ is secure against quantum adversaries.

Proof

Proof

Quantum adversary could query on a superposition of exponentially many inputs.

Quantum adversary could query on a superposition of exponentially many inputs.

• Results in queries to O_q on exponential superposition.

Quantum adversary could query on a superposition of exponentially many inputs.

- Results in queries to O_q on exponential superposition.
- Implementing the random oracle would require exponential randomness.

Quantum adversary could query on a superposition of exponentially many inputs.

- Results in queries to O_q on exponential superposition.
- Implementing the random oracle would require exponential randomness.

Idea: Use a quantum pseudorandom function

Quantum PRF

A quantum pseudorandom function PRF is a keyed function that quantum computers cannot tell from a random oracle. Precisely, for all polynomial-time quantum oracle algorithms A,

$$\left| \mathsf{Pr}[A^{\mathsf{PRF}_k}() = 1] - \mathsf{Pr}[A^{O_q}() = 1] \right| < \mathrm{negl}$$

Where the left probability is over k and the right is over O_q , both chosen randomly.

Quantum PRF

A quantum pseudorandom function PRF is a keyed function that quantum computers cannot tell from a random oracle. Precisely, for all polynomial-time quantum oracle algorithms A,

$$\left| \mathsf{Pr}[A^{\mathsf{PRF}_k}() = 1] - \mathsf{Pr}[A^{O_q}() = 1] \right| < \mathrm{negl}$$

Where the left probability is over k and the right is over O_q , both chosen randomly.

No known provably secure constructions!

Proof

Proof

GPV Reduction

Modified GPV Reduction

History-Freeness of GPV Reduction

This reduction is in history-free form!

History-Freeness of GPV Reduction

This reduction is in history-free form!

Caveats:

- $f_{pk}(r)$ for random r is NOT truly random for GPV construction.
- GPV signatures are NOT truly random preimages of O(m)

History-Freeness of GPV Reduction

This reduction is in history-free form!

Caveats:

- $f_{pk}(r)$ for random r is NOT truly random for GPV construction.
- GPV signatures are NOT truly random preimages of O(m)
- Need to relax definition of history freeness to allow indistinguishable (by quantum adversaries)

Other History-Free Reductions

- Full Domain Hash from claw-free permutations ([Cor00]).
- Katz-Wang Signatures (KW03)

• History-freeness complicated by the challenge query. Easier to prove directly.

- History-freeness complicated by the challenge query. Easier to prove directly.
- CPA-security of Bellare-Rogaway encryption scheme ([BR93]):

$$E_{
m pk}(m) = f_{
m pk}(r) || m \oplus O(r)$$
 for a random r

where f is a trapdoor permutation.

- History-freeness complicated by the challenge query. Easier to prove directly.
- CPA-security of Bellare-Rogaway encryption scheme ([BR93]):

$$E_{\mathrm{pk}}(m) = f_{\mathrm{pk}}(r) || m \oplus O(r)$$
 for a random r

where f is a trapdoor permutation.

• CCA-security of hybrid encryption scheme:

$$E_{\mathrm{pk}}(m) = f_{\mathrm{pk}}(r)||(E_S)_{O(r)}(m)$$
 for a random r

where f is a trapdoor permutation and E_S is CCA-secure private key encryption.

Classical security reductions do not carry over to the quantum world

- Classical security reductions do not carry over to the quantum world
- Restricted class of classical security proofs do imply quantum security

- Classical security reductions do not carry over to the quantum world
- Restricted class of classical security proofs do imply quantum security
- GPV Signatures are secure

Generic Full Domain Hash

- Generic Full Domain Hash
- Signatures from Identification Protocols [FS86]

- Generic Full Domain Hash
- Signatures from Identification Protocols [FS86]
- CCA-security from weaker security notions [FO99]

- Generic Full Domain Hash
- Signatures from Identification Protocols [FS86]
- CCA-security from weaker security notions [FO99]
- Quantum PRFs from one-way functions