

PARTIE 2 Module: TECHNIQUES DE L'INFORMATION ET DE LA COMMUNICATION 1ère année Ingénieur Informatique A-B-C-D&E

Dr. Wissem BAHRI Dr. Amor GUEDDANA

• 1

Introduction

2

• Detection par Redondance Cyclique

3

Codage Correcteur d'Erreurs

Introduction
 Detection par Redondance Cyclique
 Codage Correcteur d'Erreurs

×

Introduction

- Les données peuvent subir des erreurs durant la transmission.
 - Bits perdus
 - Changement de la valeur du bit…

<u>Question</u>: Comment se rendre compte de la modification ou de la perte des données à l'arrivée des trames ?

Réponse: Un code de détection d'erreur est ajouté à la trame transmise

Exemple de méthode

 La station émettrice rajoute des bits de parités à partir d'une opération mathématique. A la réception, on refait les mêmes calculs et on compare les deux résultats. Si les deux résultats ne correspondent pas, on peut conclure qu'il y a eu une erreur durant la transmission.

Il existe plusieurs autres méthodes

- Le contrôle par redondance cyclique (CRC) (détecteur)
- Le contrôle de parité (détecteur)
- La parité longitudinale et verticale (détecteur et correcteur)

• ...

• Introduction

• Detection par Redondance Cyclique

• Codage Correcteur d'Erreurs

Détection par Redondance Cyclique (1/7)

- Le CRC (Cyclic Redondancy Checksum) est une méthode puissante de détection d'erreur.
- Cette méthode consiste à réaliser la division de la séquence des bits (message) à transmettre par une valeur générée (CRC) et envoyer le reste FCS (Frame Check Sequence) avec la séquence de bits.
- La station réceptrice répète l'opération. Si elle obtient le même reste, alors la séquence est considérée comme sans erreur.
- Le CRC est connu de l'émetteur et du récepteur.

Détection par Redondance Cyclique (2/7)

- Il existe plusieurs types de CRC:
 - CRC- 12 utilisé pour un caractère de 6 bits
 - CRC- 16/ ITU utilisé dans les réseaux WANs
 - CRC- 32 utilisé dans les réseaux locaux

CRC	Formule	Valeur du CRC
CRC-12	$X^{12} + X^{11} + X^3 + X^2 + X + 1$	1100000001111
CRC-16	$X^{16} + X^{15} + X^2 + 1$	11000000000000101
CRC-16/CCITT	$X^{16} + X^{12} + X^5 + 1$	10001000000100001
CRC-32	$X^{32} + X^{26} + X^{23} + X^{16} + X^{12} + X^{11} +$	10000010010000001000111
	$X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$	0110110111

- A toute séquence de « k » bits, on peut faire correspondre un polynôme de degré « k 1 » et de coefficients « 0 » ou « 1 » (ou inversement)
 - **Exemple**: Soit la séquence de k = 10 bits **1101011011**
 - Le Polynôme de degré k -1 = 9 associé à cette séquence est donné par:

$$1x^9+1x^8+0x^7+1x^6+0x^5+1x^4+1x^3+0x^2+1x^1+1=x^9+x^8+x^6+x^4+x^3+x^1+1$$

м

Détection par Redondance Cyclique (3/7)

On associe à la séquence de bits à transmettre un polynôme:

$$M(x)=a_mx^m+a_{(m-1)}x^{(m-1)}+.....+a_1x^1+a_0$$

- $a_i = 0$ ou 1 pour i = 0,1,..., m sont les facteurs du polynôme constituant la séquence de bits = $(a_m a_{(m-1)} ... a_1 a_0)$
- Dans le monde des polynômes, cela correspond à
 - 1. $(M(x) \times x^n) = Q(x) \times C(x) + R(x)$
 - 2. $(M(x) \times x^n)/C(x) = Q(x) + [R(x)/C(x)]$
 - 3. $[M(x) \times x^n R(x)] / C(x) = Q(x) + 0$
 - R(x) = le reste (séquence de n bits) est obtenu en divisant <math>M(x). x^n par C(x).
 - C(x) = le diviseur de degré n (séquence de n+1 bits)
- Méthodologie
 - Multiplier le polynôme M(x) par xⁿ (revient à ajouter n "0" à la séquence de bits M)
 - Calculer le reste R(x)
 - Transmettre la séquence correspondante à $(M(x) \times x^n) R(x)$
 - À la station réceptrice, diviser $(M(x) \times x^n) R(x)$ par C(x)
 - Si le reste est 0, pas d'erreur
 - Si le reste est différent de 0, il y a erreur

Détection par Redondance Cyclique (4/7)

Exemple

- Au niveau de l'émission
 - Prenons M = 1101011011. Le polynôme associé est noté par M(x):

$$M(x) = x^9 + x^8 + x^6 + x^4 + x^3 + x + 1$$

- C = 10011, soit $C(x) = x^4 + x + 1$
- Multiplions M par x^4 (revient à ajouter 4 "0" à la séquence M), soit:

$$M' = 11010110110000$$

- Divisons M'(x) par C(x) en utilisant l'opération XOR (OU exclusif)
- Le reste obtenu correspond au FCS donné par 1110
- Le message envoyé est : M' R = 110101101111110
- A la réception,
 - La station effectue la division par le même CRC de la séquence entière.
 - Si le reste est 0, pas d'erreur

Détection par Redondance Cyclique (5/7)

Exemple de codage CRC (méthode binaire)

1 1 0 1 0 1 1 0 1 1 1 1 1 0

Bits transmis

Détection par Redondance Cyclique (6/7)

Décodage (méthode binaire)

Pas d'erreur car le reste est nul

Détection par Redondance Cyclique (7/7)

Décodage (méthode binaire) (Avec erreur de transmission)

Erreur de transmission car le reste n'est pas nul

Introduction

 Detection par Redondance Cyclique

 Codage Correcteur d'Erreurs

.

Codage Correcteur d'Erreurs (1/4)

A l'émission

- M=[m₁,..., m_k] est le mot d'information à transmettre
- C=[c₁,..., c_n] est le mot de code donné par :

$$C = M G \text{ où } G = [id_k P]$$

- G: matrice génératrice du code de dimension (k, n)
- P: matrice de parité

A la réception

Soit R le vecteur ligne représentant le mot de code de n éléments reçu:

$$R = C + E$$

- E est un vecteur ligne dont les composantes binaire représentent les éventuelles erreurs de transmission.
- **Vecteur Erreur:** Les erreurs subies par un mot code peuvent être représentées par un vecteur $E=[e_1, e_2, ..., e_n]$, où e_i prends la valeur 0 s'il n'y pas d'erreur sur le bit d'indice i du mot code et la valeur 1 dans le cas contraire.

Codage Correcteur d'Erreurs (2/4)

Méthode de décodage

1ere étape: Calcule du vecteur syndrome S

$$S = R H^T = (C + E)H^T$$
 avec $H = \begin{bmatrix} P^T & Id_{n-k} \end{bmatrix}$ matrice de contrôle de parité

<u>2^{eme} étape</u>: Détermination des vecteurs d'erreurs *e* possibles

- Calculer la distance de Hamming minimal d_m
- Déduire les capacités de détection et de correction données respectivement par:

$$(d_m-1)$$
 et $x \le (d_m-1)/2$

- Déduire les vecteurs erreurs possibles de poids x

3eme étape: Détermination du vecteur erreur correspondant au syndrome S

- Relier chaque syndrome à l'erreur correspondante

$$S = e H^T$$

- Déduire à partir du mot de code reçu le mot code envoyé
- **Distance de Hamming:** Étant donné deux mots de n bits m1 et m2, le nombre de bits dont ils diffèrent est appelé leur distance de Hamming.
- Le poids de Hamming d'un vecteur binaire est le nombre d'éléments "1" qu'il contient.

Codage Correcteur d'Erreurs (3/4)

A l'émission

Exemple

- Mot d'information: M= [m1 m2 m3] = [1 1 0]
- C = M G

$$C = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}}_{\text{Mot info}} \underbrace{\begin{array}{c} 0 & 1 & 1 \\ \text{Bits de redondance} \end{array}}_{\text{redondance}}$$

- A la réception
 - Le mot de code reçu R :

$$R = \begin{bmatrix} 1 & 1 & \boxed{1} & 0 & 1 & 1 \end{bmatrix}$$

• On calcul le syndrome S comme: $S = [1 \ 1 \ 1 \ 0 \ 1 \ 1]$

$$\begin{vmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{vmatrix} = [0 \ 1 \ 1]$$

м

Codage Correcteur d'Erreurs (4/4)

Calcule de la distance de Hamming minimale d_m:

Mots informations	Mots de codes	Poids de	
$\mathbf{X}_1 \ \mathbf{X}_2 \ \mathbf{X}_3$	$\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3$	Hamming	
000	00000	0	
0 0 1	001011	3	
010	010110	3	
011	011101	4	
100	100101	3	
1 0 1	101110	4	
110	110011	4	
111	111000	3	

Dans cet exemple, le code de bloc ne peut corriger qu'une seule erreur

Relier chaque syndrome à l'erreur correspondante

Vecteur erreurs	Syndrome
100000	1 0 1
010000	110
001000	011
000100	100
000010	010
000001	0 0 1

Déduire à partir du mot de code reçu le mot code envoyé:

$$Y^T = [mot code + Vecteur erreur] mod (2)$$

$$= [111011] + [001000] \mod (2)$$

