Underapproximative verification of an automated anesthesia delivery system

This example will demonstrate the use of SReachTools in verification and controller synthesis for stochastic continuous-state discrete-time linear time-invariant (LTI) systems. In this example, we will verify an automated anesthesia delivery model.

Notes about this Live Script:

- MATLAB dependencies: This Live Script uses MATLAB's Global Optimization Toolbox, and Statistics and Machine Learning Toolbox.
- 2. External dependencies: This Live Script uses Multi-Parameteric Toolbox (MPT) and CVX.
- 3. We will also Genz's algorithm (included in helperFunctions of SReachTools) to evaluate integrals of a Gaussian density over a polytope.
- 4. Make sure that srtinit is run before running this script.

This Live Script is part of the SReachTools toolbox. License for the use of this function is given in https://github.com/abyvinod/SReachTools/blob/master/LICENSE.

Problem Formulation

We first define a LtiSystem object corresponding to the discrete-time approximation of the three-compartment pharmacokinetic system model.

```
systemMatrix = [0.8192, 0.03412, 0.01265;
                0.01646, 0.9822, 0.0001;
                0.0009, 0.00002, 0.9989];
inputMatrix = [0.01883;
               0.0002;
               0.000011:
% Automation input bounds
auto input max = 7;
% Process disturbance with a specified mean and variance
dist mean = 0;
dist var = 5;
process disturbance = StochasticDisturbance('Gaussian',...
                                             dist mean, ...
                                             dist var);
% LtiSystem definition
sys = LtiSystem('StateMatrix', systemMatrix, ...
                 'InputMatrix', inputMatrix, ...
                'DisturbanceMatrix', inputMatrix, ...
                 'InputSpace', Polyhedron('lb', 0, 'ub', auto input max), ...
                'Disturbance', process disturbance);
disp(sys)
```

LTI System with 3 states, 1 input, 1 disturbance

Safety specifications

We desire that the state remains inside a set $\mathcal{K} = \{x \in \mathbf{R}^3 : 0 \le x_1 \le 6, 0 \le x_2 \le 10, 0 \le x_3 \le 10\}$.

```
time_horizon = 5;
safe_set = Polyhedron('lb',[1, 0, 0], 'ub', [6, 10, 10]);
```

Computation of polytopic underapproximation

```
%% Definition of the affine hull
x3 initial state = 5;
affine hull of interest 2D A = [zeros(2,3); 0, 0, 1];
affine hull of interest 2D b = [zeros(2,1);x3 initial state];
affine hull of interest 2D = Polyhedron('He',...
                                         [affine hull of interest 2D A,...
                                          affine hull of interest 2D b]);
probability threshold of interest = 0.99;
                                               % Stochastic reach-avoid 'level' of interest
                                              % Increase for a tighter polytopic
no of direction vectors = 8;
                                              % representation at the cost of higher
                                              % computation time
tolerance bisection = 1e-2;
                                              % Tolerance for bisection to compute the
                                              % extension
%% Parameters for MATLAB's Global Optimization Toolbox patternsearch
desired accuracy = 1e-3;
                                              % Decrease for a more accurate lower
                                              % bound at the cost of higher
                                              % computation time
PSoptions = psoptimset('Display', 'off');
timer val = tic;
[underapproximate stochastic reach avoid polytope,...
 optimal input vector at boundary points,...
 xmax,..
 optimal input vector for xmax,...
 maximum underapproximate reach avoid probability,...
 optimal theta i,...
 optimal reachAvoid i] =...
          getUnderapproxStochReachAvoidSet(sys,...
                                            time horizon,...
                                            safe set,...
                                            safe set,...
                                            probability_threshold_of interest,...
                                            tolerance bisection,...
                                            no of direction vectors,...
                                            affine hull of interest 2D,...
                                            desired accuracy,...
                                            PSoptions);
```

```
Computing the x max for the Fourier transform-based underapproximation
Polytopic underapproximation exists for alpha = 0.99 since W(x max) = 1.000.
Analyzing direction (shown transposed) :1/8
          1
Upper bound of theta: 4.67
OptRAProb | OptTheta | LB theta | UB theta | OptInp^2 | Exit reason
 1.0000
           2.3373 | 0.0000 |
                               4.6746 | 0.0000 | Feasible
 1.0000
           3.5059
                     2.3373
                                4.6746 | 0.0000 | Feasible
 1.0000
           4.0903 | 3.5059 |
                               4.6746 | 0.0000 | Feasible
 1.0000
           4.3824 | 4.0903 |
                               4.6746 | 0.0000 | Feasible
           4.5285 | 4.3824 | 4.6746 | 0.0000 | Feasible
 1.0000
                               4.6746 | 0.0000 | Feasible
 1.0000
           4.6015 | 4.5285 |
           4.6381 | 4.6015 |
 1.0000
                               4.6746 | 0.0000 | Feasible
           4.6563 | 4.6381 |
                                4.6746 | 0.0000 | Feasible
 1.0000
           4.6654 | 4.6563 | 4.6746 |
                                         0.0000 | Feasible
 1.0000
Analyzing direction (shown transposed) :2/8
```

Upper bound OptRAProb 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Analyzing o	OptTheta L 1.7678 2.6517 3.0936 3.3146 3.4250 3.4803 3.5079 3.5217 3.5286	54 B_theta 0.0000 1.7678 2.6517 3.0936 3.3146 3.4250 3.4803 3.5079 3.5217 own transp	UB_theta 3.5355 3.5355 3.5355 3.5355 3.5355 3.5355 3.5355 3.5355 3.5355 3.5355	OptInp^2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Exit reason Feasible Feasible Feasible Feasible Feasible Feasible Feasible Feasible Feasible
Upper bound OptRAProb 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Analyzing c	OptTheta L 1.2500 1.8750 2.1875 2.3437 2.4219 2.4609 2.4805 2.4902	50 B_theta 0.0000 1.2500 1.8750 2.1875 2.3437 2.4219 2.4609 2.4805 own transp	UB_theta 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000	OptInp^2 0.0000 0.0000 0.0000 0.0000 16.0000 16.0000 16.0000	Exit reason Feasible Feasible Feasible Feasible Feasible Feasible Feasible
Upper bound OptRAProb 1.0000 1.0000 1.0000 1.0000 1.0000 0.9990 0.9980 0.9970 Analyzing o	OptTheta L 1.7678 2.6517 3.0936 3.3146 3.4250 3.4803 3.5079 3.5217 3.5286	54 .B_theta 0.0000 1.7678 2.6517 3.0936 3.3146 3.4250 3.4803 3.5079 3.5217 own transp	UB_theta 3.5355 3.5355 3.5355 3.5355 3.5355 3.5355 3.5355 3.5355 3.5355 3.5355	OptInp^2 0.0000 1.0000 64.0000 113.0000 133.0000 146.0000 146.0000	Exit reason Feasible Feasible Feasible Feasible Feasible Feasible Feasible Feasible Feasible
Upper bound OptRAProb 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Analyzing o		33 .B_theta 0.0000 2.6627 3.9941 4.6597 4.9926 5.1590 5.2422 5.2838 5.3046 5.3150 own transp	UB_theta 5.3254 5.3254 5.3254 5.3254 5.3254 5.3254 5.3254 5.3254 5.3254 5.3254 60sed) :6/8	OptInp^2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Exit reason Feasible Feasible Feasible Feasible Feasible Feasible Feasible Feasible Feasible
Upper bound OptRAProb 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000		54 B_theta 0.0000 1.7678 2.6517 3.0936 3.3146 3.4250 3.4803 3.5079	UB_theta 3.5355 3.5355 3.5355 3.5355 3.5355 3.5355 3.5355 3.5355	OptInp^2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Exit reason Feasible Feasible Feasible Feasible Feasible Feasible Feasible

```
1.0000 | 3.5286 | 3.5217 | 3.5355
                                               0.0000 | Feasible
Analyzing direction (shown transposed) :7/8
    1.0000
             -0.0000
Upper bound of theta: 2.50
OptRAProb | OptTheta | LB theta | UB theta |
                                              OptInp^2 | Exit reason
  1.0000
             1.2500
                         0.0000
                                    2.5000
                                                0.0000
                                                       | Feasible
  1.0000
              1.8750
                         1.2500
                                    2.5000
                                                0.0000
                                                          Feasible
                                    2.5000
                                                0.0000
                                                          Feasible
  1.0000
             2.1875
                         1.8750
             2.3437
  1.0000
                         2.1875
                                    2.5000
                                                0.0000
                                                       I Feasible
             2.4219
                         2.3437
                                    2.5000
                                                0.0000
                                                        I Feasible
  1.0000
             2.4609
                                    2,5000
                                                0.0000
                                                        I Feasible
  1.0000
                         2.4219
                         2.4609
  1.0000
             2.4805
                                    2.5000
                                               0.0000
                                                       | Feasible
             2.4902
                                               0.0000
                                                       | Feasible
  1.0000
                         2.4805
                                    2.5000
Analyzing direction (shown transposed) :8/8
    0.7071
              0.7071
Upper bound of theta: 3.54
OptRAProb | OptTheta | LB theta |
                                   UB theta |
                                               OptInp^2 |
                                                          Exit reason
                                                          Feasible
  1.0000
             1.7678
                         0.0000
                                    3.5355
                                                0.0000
  1.0000
              2.6517
                         1.7678
                                    3.5355
                                                0.0000
                                                          Feasible
  1.0000
             3.0936
                         2.6517
                                    3.5355
                                               0.0000
                                                          Feasible
  1.0000
             3.3146
                         3.0936
                                    3.5355
                                               0.0000
                                                          Feasible
                         3.3146
             3.4250
                                               0.0000
                                                        | Feasible
  1.0000
                                    3.5355
                                                        | Feasible
  1.0000
             3.4803
                         3.4250
                                    3.5355
                                               0.0000
  1.0000
             3.5079
                         3.4803
                                    3.5355
                                               0.0000
                                                        | Feasible
  1.0000
             3.5217
                         3.5079
                                    3.5355
                                               0.0000
                                                       | Feasible
  1.0000
             3.5286
                         3.5217
                                    3.5355
                                                0.0000
                                                        | Feasible
elapsed time = toc(timer val);
disp(elapsed time)
```

76.2916

This approach is computationally efficient as well.

Construct the 2D representation of the underapproximative polytope.

Plotting

```
set(leg,'Location','SouthEast');
xlabel('$x_1$','interpreter','latex')
ylabel('$x_2$','interpreter','latex')
box on;
grid on;
title('Open-loop underapproximative stochastic reach-avoid set');
```


Validate the underapproximative set and the controllers synthesized using Monte-Carlo simulations

We will now check how the optimal policy computed for each corners perform in Monte-Carlo simulations.

```
no mcarlo sims = 1e5;
no sims to plot = 10;
if ~isEmptySet(underapproximate stochastic reach avoid polytope)
    for direction index = 1:no of direction vectors
        figure();
        hold on;
        plot(safe set.slice([3], x3 initial state), 'color', 'y');
        scatter(vertex_poly(1,direction index),...
                vertex poly(2,direction index),...
                200, 'cs', 'filled');
        plot(underapproximate stochastic reach avoid polytope 2D,...
              color', 'm', 'alpha', 0.5);
        legend cell = {'Safe set', ...
                       'Initial state',...
                       'Underapproximation set'};
        [reach avoid probability mcarlo,...
         legend cell] = checkViaMonteCarloSims(...
```

```
no mcarlo sims,...
                 sys,...
                 vertex poly(:,direction index),...
                 time horizon,...
                 safe set,...
                 safe set,...
                 optimal input vector at boundary points(:, direction index),...
                 legend cell,...
                 no sims to plot);
        % Compute and plot the mean trajectory under the optimal open-loop
        % controller from the the vertex under study
        [H matrix, mean X sans input, ∼] =...
         getHmatMeanCovForXSansInput(sys,...
                                      vertex poly(:,direction index),...
                                      time horizon);
        optimal mean X = mean X sans input + H matrix *...
                    optimal input vector at boundary points(:, direction index);
        optimal mean trajectory=reshape(optimal mean X,sys.state dimension,[]);
        % Plot the optimal mean trajectory from the vertex under study
        scatter(...
              [vertex poly(1,direction index), optimal mean trajectory(1,:)],...
              [vertex poly(2,direction index), optimal mean trajectory(2,:)],...
              30, 'bo', 'filled');
        legend cell{end+1} = 'Mean trajectory';
        leg = legend(legend cell, 'Location', 'EastOutside');
        % title for the plot
        if no sims to plot > 0
            title(sprintf(['Open-loop-based lower bound: %1.3f\n Monte-Carlo ',...
                            'simulation: %1.3f\n'],...
                optimal reachAvoid i(direction index),...
                round(reach avoid probability mcarlo / desired accuracy) *...
                    desired accuracy));
        end
        box on;
        grid on;
        xlabel('$x 1$','interpreter','latex')
        ylabel('$x 2$','interpreter','latex')
        fprintf(['Open-loop-based lower bound and Monte-Carlo simulation ',...
                  '(%1.0e particles): %1.3f, %1.3f\n'],...
                no mcarlo sims,...
                optimal reachAvoid i(direction index),...
                round(reach avoid probability mcarlo / desired accuracy) *...
                    desired accuracy);
    end
end
Open-loop-based lower bound and Monte-Carlo simulation (1e+05 particles): 1.000, 1.000
```

```
Open-loop-based lower bound and Monte-Carlo simulation (1e+05 particles): 1.000, 1.000 Open-loop-based lower bound and Monte-Carlo simulation (1e+05 particles): 1.000, 0.999 Open-loop-based lower bound and Monte-Carlo simulation (1e+05 particles): 0.997, 0.997 Open-loop-based lower bound and Monte-Carlo simulation (1e+05 particles): 1.000, 1.000 Open-loop-based lower bound and Monte-Carlo simulation (1e+05 particles): 1.000, 1.000 Open-loop-based lower bound and Monte-Carlo simulation (1e+05 particles): 1.000, 1.000 Open-loop-based lower bound and Monte-Carlo simulation (1e+05 particles): 1.000, 1.000 Open-loop-based lower bound and Monte-Carlo simulation (1e+05 particles): 1.000, 1.000
```

Open-loop-based lower bound: 1.000 Monte-Carlo simulation: 1.000

Open-loop-based lower bound: 1.000 Monte-Carlo simulation: 1.000

Open-loop-based lower bound: 1.000 Monte-Carlo simulation: 0.999

Open-loop-based lower bound: 0.997 Monte-Carlo simulation: 0.997

Open-loop-based lower bound: 1.000 Monte-Carlo simulation: 1.000

Open-loop-based lower bound: 1.000 Monte-Carlo simulation: 1.000

Open-loop-based lower bound: 1.000 Monte-Carlo simulation: 1.000

Open-loop-based lower bound: 1.000 Monte-Carlo simulation: 1.000

