Chapter 1 Introduction

Yaxiong Xie

Department of Computer Science and Engineering University at Buffalo, SUNY

James F. Kurose | Keith W. Ross COMPUTER A TOP-DOWN APPROACH P

Computer Networking: A Top-Down Approach

8th edition Jim Kurose, Keith Ross Pearson, 2020

Announcements

- Just for reference:
 - **A**: top 15-20%
 - **A-**: next 10-15%
 - **B+, B, B-**: next 25-40%
 - C+,C,C-: next 10-20%
- Grading standard is the same for both undergraduates and graduates
 - Final grades will be assigned separately
- Wireshark Lab-1 has been uploaded
 - Wireshark Introduction
 - Basics of HTTP
- Reminder:
 - Complete the Al Quiz

Chapter 1: introduction

Chapter goal:

- Get "feel," "big picture," introduction to terminology
 - more depth, detail *later* in course

Overview/roadmap:

- What is the Internet? What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Protocol layers, service models
- Security

The Internet: a "nuts and bolts" view

Billions of connected computing *devices*:

- hosts = end systems
- running network apps at Internet's "edge"

Packet switches: forward packets (chunks of data)

routers, switches

Communication links

- fiber, copper, radio, satellite
- transmission rate: bandwidth

Networks

collection of devices, routers, links: managed by an organization

"Fun" Internet-connected (host/end) devices

IP picture frame

control cable TV

Pacemaker & Monitor

Tweet-a-watt: monitor energy use

scooters

Internet phones

Gaming devices

sensorized, bed mattress

AR devices

Web-enabled toaster +

weather forecaster

Others?

What's the Internet: "nuts and bolts" view -continued

- Software: protocols control sending, receiving of msgs
 - e.g., HTTP (web), SMTP (for email server),
 - Wifi /BT (802.x) for wireless devices,
 - Ethernet (for local area networks),
 - TCP/UDP (for hosts on the internet)
 - IP (for the routers in the core networks)
- Internet standards define these protocols
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

Introduction 1-

What's a protocol?

A human protocol and a computer network protocol:

The Internet: a "services" view

- As an Infrastructure that provides services to applications:
 - Web, streaming video, multimedia teleconferencing, social media,...
 - provided by hardware and software (protocols)
- provides programming interface to distributed applications:
 - "hooks" allowing sending/receiving apps to "connect" to, use Internet transport service
 - provides service options, analogous to postal service

What's the Internet: a service view

- services provided by protocols
 - running on hosts and routers.
- two types of services provided to apps:
 - Connectionless (UDP)
 - faster/quicker delivery (no need to set up any connection)
 - less reliable, no orderly packets delivered
 - Suitable for real-time streaming
 - Connection-oriented (TCP)
 - Suitable for file/email transfers

Introduction 1-10

Chapter 1: roadmap

- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models
- History

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

wired, wireless communication links

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

wired, wireless communication links

Network core:

- interconnected routers
- network of networks

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks (WiFi, 4G/5G)

Access networks: cable-based access

frequency division multiplexing (FDM): different channels transmitted in different frequency bands

Access networks: cable-based access

- HFC: hybrid fiber coax
 - asymmetric: up to 40 Mbps 1.2 Gbps downstream transmission rate, 30-100 Mbps upstream transmission rate
- network of cable, fiber attaches homes to ISP router
 - homes share access network to cable headend

Access networks: digital subscriber line (DSL)

- use existing telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- 24-52 Mbps dedicated downstream transmission rate
- 3.5-16 Mbps dedicated upstream transmission rate

Access networks: home networks

Wireless access networks

Shared wireless access network connects end system to router

via base station aka "access point"

Wireless local area networks (WLANs)

- typically within or around building (~100 ft)
- 802.11b/g/n (WiFi): 11, 54, 450Mbps transmission rate

Wide-area cellular access networks

- provided by mobile, cellular network operator (10's km)
- 10's Mbps
- 4G cellular networks (5G coming)

Access networks: enterprise networks

- companies, universities, etc.
- mix of wired, wireless link technologies, connecting a mix of switches and routers (we'll cover differences shortly)
 - Ethernet: wired access at 100Mbps, 1Gbps, 10Gbps
 - WiFi: wireless access points at 11, 54, 450 Mbps

Access networks: data center networks

high-bandwidth links (10s to 100s
 Gbps) connect hundreds to thousands of servers together, and to Internet

Courtesy: Massachusetts Green High Performance Computing Center (mghpcc.org)

Host: sends packets of data

host sending function:

- takes application message
- breaks into smaller chunks,
 known as packets, of length L bits
- transmits packet into access network at transmission rate R
 - link transmission rate, aka link capacity, aka link bandwidth

packet time needed to transmission = transmit
$$L$$
-bit = $\frac{L}{R}$ (bits/sec)

Links: physical media

- bit: propagates between transmitter/receiver pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

Twisted pair (TP)

- two insulated copper wires
 - Category 5: 100 Mbps, 1 Gbps Ethernet
 - Category 6: 10Gbps Ethernet

Links: physical media

Coaxial cable:

- two concentric copper conductors
- bidirectional
- broadband:
 - multiple frequency channels on cable
 - 100's Mbps per channel

Fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (10's-100's Gbps)
- low error rate:
 - repeaters spaced far apart
 - immune to electromagnetic noise

Links: physical media

Wireless radio

- signal carried in various "bands" in electromagnetic spectrum
- no physical "wire"
- broadcast, "half-duplex" (sender to receiver)
- propagation environment effects:
 - reflection
 - obstruction by objects
 - Interference/noise

Radio link types:

- Wireless LAN (WiFi)
 - 10-100's Mbps; 10's of meters
- wide-area (e.g., 4G cellular)
 - 10's Mbps over ~10 Km
- Bluetooth: cable replacement
 - short distances, limited rates
- terrestrial microwave
 - point-to-point; 45 Mbps channels
- satellite
 - up to 45 Mbps per channel
 - 270 msec end-end delay

Electromagnetic Spectrum

ELF = Extremely low frequency

VF = Voice frequency

VLF = Very low frequency

LF = Low frequency

AF = Medium frequency

HF = High frequency

VHF = Very high frequency

UHF = Ultrahigh frequency

SHF = Superhigh frequency

EHF = Extremely high frequency