<u>תכנון אלגוריתמים תרגיל 5 – דף תשובות</u>

אנא הגישו רק חלק זה. <u>אל תחרגו מהמקום המוקצה לתשובה!</u>

ציון	
------	--

т.л	שם
r.n	שם

שאלה 1

סעיף א

1. הגדרת הבעיה הליניארית בשלמים

, אחרת, $a_{ij}=1$ ולכל $a_j\in s_i$ את (משתנה אינדיקטור: אם $a_{ij}=1,\ldots,n$ אחרת, $a_{ij}=1,\ldots,n$ אחרת, $a_{ij}=0$ ולכל $a_{ij}=0$ את בעיית התכנון הליניארי הבאה: $a_{ij}=0$ אוז $a_{ij}=0$ ווארי הבאה: $a_{ij}=0$ אוז $a_{ij}=0$ אוז a

2. הגדרת הבעיה הדואלית

$\max \sum_{j=1}^{n} y_{j}$
s.t $\sum_{j=1}^{n} a_{ij} y_j \le c_{s_i}$, $i = 1,, m$ $0 \le y_j$, $j = 1,, n$
$0 \le y_j$, $j = 1, \dots, n$

סעיף ב

1. הגדרת הבעיה הליניארית

$v_1 \in V_1, v_2 \in V_2$ באופן הבא: לכל $v \in V$ באופן הבא	נסתכל על הגרף הלא המכוון $G' = (V_1 \cup V_2, E')$ המוגדר נ	
$a_{ve}=1$ נגדיר את $a_{ve}=a_{ve}$ כמשתנה אינדיקטור: אם e חלה על $u_1, v_2 \in E'$ ולכל $u_1, v_2 \in E'$		
:אחרת $a_{ve}=0$. כעת, נגדיר את בעיית התכנון הליניארי הבאה		
$\max \sum_{e \in E'} w(e)$ s.t $\sum_{e \in E'} a_{ve} w(e) \le 1$,	$\forall v \in V_1 \cup V_2$	
$0 \le w(e), \forall e \in E'$		
	G בגרף $w(\{u_1, \mathbf{v}_2\}) = w((u, v))$ נשים לב כי	

2. הגדרת הבעיה הדואלית

$min \sum_{v \in V_1 \cup V_2} y_v$
$s.t \sum_{v \in V_1 \cup V_2} a_{ve} y_v \ge 1, \forall e \in E'$
$0 \le y_v, \forall v \in V_1 \cup V_2$

.3

10
נניח בשלילה כי לבעיה הליניארית מסעיף א' קיים פתרון בעל ערך גדול מ $ E $, ממשפט הדואליות החזקה
קיים פתרון בעל ערך גדול מ $ E $ לבעיה הדואלית מסעיף א'. ניתן לראות כי הבעיה הדואלית
- מסעיף א' זהה לבעיה מסעיף ב', ולכן ניתן להסיק כי קיימת פונקציית משקל בעל ערך גדול מ
אז על פי עקרון שובך היונים קיימת צלע שמשקלה לפי w גדול ממש מ $-$ 1, בסתירה לכך, $ E $
שדרגת הכניסה והיציאה של כל קודקוד קטנה שווה מ – 1.

<u>שאלה 2</u>

סעיף א – בעיית תכנון ליניארי

	•	-	
$\min\{10x_1 + 16x_2 + 12x_3 + 18x_4\}$			
$s. t x_1 + x_2 + x_3 + x_4 \ge 150$			
$0x_1 + x_2 + 0x_3 + x_4 \ge 50$			
$x_i \ge 0, i = 1,2,3,4$			

סעיף ב – הגדרת התוכנית הדואלית

$\max\{150y_1 + 50y_2\}$
$y_1 + 0y_2 \le 10$
$y_1 + y_2 \le 16$
$y_1 + 0y_2 \le 12$
$y_1 + y_2 \le 18$
$r_j \ge 0, i = 1,2$

סעיף ג

~ 120
אבחנה: $x_3=x_4=0$ (אילוצי סוג 1,3 ואילוצי 2,4 זהים, לכן על מנת "לנמנמם" את ערך פונקציית המטרה
נעדיף לבחור ימים של 1 במקום 3 ושל 2 במקום 4).
עבור מערכת צירים בה הקורדינטה הראשונה היא x_1 והקורדינטה השנייה היא x_2 , התחום הפיזבילי הינו
הישר $f(x_1)=-x_2$ בין הנקודות $\{(0,150),(100,50)\}$. נסמן נקודה (a,b) על הישר בתחום הנ"ל, ונסתכל
$.10a + 16b > 10(a+\varDelta) + 16(b-\varDelta) = 10a + 16b - 6\varDelta$: על הנקודה $(a+\varDelta,b-\varDelta)$ עבור $(a+\varDelta,b-d)$ נשים לב כי
לכן, הנקודה האופטימלית נמצאת בקצה הימני תחתון (100,50). בסה"כ קיבלנו כי הערך האופטימלי לבעיה
.1,800 מתקבל עבור $x_1 = 100, x_2 = 50, x_3 = x_4 = 0$, וערכו

<u>שאלה 3</u>

סעיף א

אליס תשלח לבוב את המחרוזת $A \circ B$. אם תת המחרוזת הנוצרת מ n האיברים הראשונים D-1 וגם קיים תו עליו תת המחרוזת הנוצרת מ n האיברים האחרונים ו C-1 לא מסכימים החזר "כן", אחרת החזר "לא". ניתן לראות כי אורך ההודעה שאליס שולחת הינו 2n, ומכאן שסיבוכיות התקשורת הינה O(n).

סעיף ב

תיאור האלגוריתם

$z_1 = A mod q_1$, $z_2 = B mod q_2$ ומחשבת $\mathbf{q}_1, \mathbf{q}_2 < n^2$ אליס מגרילה שני מספרים ראשוניים
${ m q}_1, z_1, { m q}_2, z_2$ אליס שולחת לבוב
$-(C \mod q_1 == z_1) \& (D \mod q_2! = z_2)$ בוב מחזיר לאליס

סיבוכיות תקשורת

אליס שולחת $q_1,z_1,q_2,z_2< n^2$ ולכן שולחת $q_1,z_1,q_2,z_2< n^2$ ביטים, בוב שולח $q_1,z_1,q_2,z_2< n^2$ מתשובה ביט יחיד וסה"כ סיבוכיות התקשורת של האלגוריתם הינה $q_1,z_2,z_3< n^2$ מרשובה ביט יחיד וסה"כ סיבוכיות התקשורת של האלגוריתם הינה $q_1,z_2,z_3< n^2$ מרשובה ביט יחיד וסה"כ סיבוכיות התקשורת של האלגוריתם הינה $q_1,z_2,z_3< n^2$ מרשובה ביט יחיד וסה"כ סיבוכיות התקשורת של האלגוריתם הינה $q_1,z_2,z_3< n^2$ מרשובה ביט יחיד וסה"כ סיבוכיות התקשורת של האלגוריתם הינה $q_1,z_2,z_3< n^2$ מרשובה ביט יחיד וסה"כ סיבוכיות התקשורת של האלגוריתם הינה $q_1,z_2,z_3< n^2$ מולדים הינה מולדים הינה

הוכחת הסתברות שגיאה

$$(B-D)mod ext{q}_2 = 0$$
 או $B \neq D$ או $(A-C)mod ext{q}_1 = 0$ האלגוריתם נכשל אם $A \neq C$ וגם $A \neq C$ ואם $A \neq C$ וגם $A \neq C$ ואם $A \neq C$ וואם $A \neq C$ ווא

$$Pig(A
eq C) mod \mathbf{q}_1 = 0$$
 או $B \neq D$ או $B = D) mod \mathbf{q}_2 = 0 = 0$ וגם $Pig(A \neq C) mod \mathbf{q}_1 = 0 + Pig(B \neq D) mod \mathbf{q}_2 = 0 = 0 = 0$ וגם $A = C mod \mathbf{q}_1 = 0 + Pig(B \neq D) mod \mathbf{q}_2 = 0 = 0 = 0 = 0$

5 תכנון אלגוריתמים 2020, עבודת בית

בהצלחה!