Measurements and Actuators

Extension of Domain

1. Two terminal connections

I_{SN}	n	The e	xtended o	levice	The standard device		ε_a	ε_r	n`	R_c
SIV.		I_a		1	I_e		(rel 20)	(rel 21)	(rel 22)	(rel 25)
[mA]		[div]	[mA]	[mA]	[div]	[mA]	[mA]	[%]		[Ω]

2. Four terminal connections

I_{SN}	n	The extended device			The standard device		ε_a	ε_r	n`	R_c	
314		I_{c}	I_a		I_e		(rel 20)	(rel 21)	(rel 22)	(rel 26)	
[mA]		[div]	[div] [mA]		[div]	[mA]	[mA]	[%]		[Ω]	
1											

Formulas used for calculations:

$$R_a = 10\Omega$$

$$\begin{split} I \,\&\, I_e &= [div] * ___ \to for\, I_{SN} = ___; \\ I \,\&\, I_e &= [div] * ___ \to for\, I_{SN} = ___; \\ I \,\&\, I_e &= [div] * ___ \to for\, I_{SN} = ___; \\ \varepsilon_a &= I - I_e\, [mA]; \\ \varepsilon_r &= \frac{I - I_e}{I_e} * 100\, [\%]; \\ n' &= n - \frac{\varepsilon_a}{I_a}; \\ n'' &= n - \frac{\varepsilon_a}{I_e}; \\ R_c &= \frac{3}{2} * \frac{n - n'}{(n - 1) * (n' - 2)} * R_a \text{- for ammeter circuit with simple shunts.} \\ R_c &= \frac{1}{2} * \frac{n'' - n}{n - 1} * R_a \text{- for ammeter circuit with double terminals.} \end{split}$$

Graphics to be traced for both tables on a single sheet:

$$f(I) = \varepsilon_a;$$

 $f(I) = \varepsilon_r;$

Upstream AC experimental circuit with different loads

NR.	Meter	Range X_N	Max. defl. $lpha_{max}$	Instr. Constant $C = \frac{X_N}{\alpha_{max}}$	Accuracy Class c	Max. abs. error $\varepsilon_{max} = \frac{cX_N}{100}$
	type	[X]	[div.]	[X/div]	[%]	[X]
1						
2						
3						

	Range		R_a	R_v	R_{wi}	R_{wu}	R_{aw}	R_{vw}
ammeter	er voltmeter wattmeter		Ω	$k\Omega$	Ω	$k\Omega$		

Formulas to be used for calculations:

$$R_{aw} = R_a + R_{wi}$$

$$R_{vw} = R_V \left\| R_{wu} = \left(\frac{1}{R_v} + \frac{1}{R_{wu}} \right)^{-1} \right\|$$

Downstream Connection	Upstream Connection
$\Delta P_{aw} = R_{aw} * I^2$	$\Delta P_{aw} = \frac{U^2}{R_{vw}}$
$Z = \frac{\sqrt{U^2 - R_{aw}(2P - R_{aw}I^2)}}{I}$	$Z = \frac{U}{\sqrt{I^2 - \frac{I}{R_{vw}}(2P - \frac{U^2}{R_{vw}})}}$
$cos\varphi_Z = \frac{P - R_{aw}I^2}{I\sqrt{U^2 - R_{aw}(2P - R_{aw}I^2)}}$	$cos\varphi_{Z} = \frac{P - \frac{U^{2}}{R_{vw}}}{U\sqrt{I^{2} - \frac{1}{R_{vw}}(2P - \frac{U^{2}}{R_{vw}})}}$

$$R_Z = Z cos \varphi_Z$$

$$X_Z = Z sin \varphi_Z$$

$$P_Z = P - R_{aw}I^2$$

Upstream AC experimental circuit

Load	U	ı	F	Р		$arepsilon_{rp}$	Z	R_Z	X_Z	$\cos \varphi_Z$	P_Z	S_Z	Q_Z						
			[W]=[d	[W]=[div]*C		W]=[div]*C		W]=[div]*C		[W]=[div]*C		$\frac{\Delta P_{aw}}{P} * 100$	Rel (1.5)	Rel (1.7)	Rel (1.8)	Rel. (1.6)	Rel (1.3)	U*I	$\sqrt{S_Z^2 - P_Z^2}$
type	[V]	[A]	[div]	[W]	[W]	[%]	[Ω]	[Ω]	[Ω]		[VA]	[Var]	[VA]						
R																			
RL																			
RC																			
RLC																			
R																			
RL																			
RC																			
RLC																			
R																			
RL																			
RC																			
RLC																			

Downstream AC experimental circuit

Load	U	ı	P	Р		$arepsilon_{rp}$	Z	R_Z	X_Z	$\cos \varphi_Z$	P_Z	S_Z	Q_Z
			[W]=[d	div]*C	Rel (1.15)	$\frac{\Delta P_{aw}}{P} * 100$	Rel (1.5)	Rel (1.7)	Rel (1.8)	Rel. (1.6)	Rel (1.3)	U*I	$\sqrt{S_Z^2 - P_Z^2}$
type	[V]	[A]	[div]	[W]	[W]	[%]	[Ω]	[Ω]	[Ω]		[VA]	[Var]	[VA]
R													
RL													
RC													
RLC													
R													
RL													
RC													
RLC													
R													
RL													
RC													
RLC													

ANALOG AND DIGITAL MEASUREMENT DEVICES

1. Experimental circuit for digital DC voltmeter

DMM/Digital	Analog	$DMM U_i$	Analo	g U _i	$DMM e_{max}$	Analog e_{max}	DMM $e_r[\%]$	Analog $e_r[\%]$	$DMM \\ U_m$
Voltmeter	voltmeter		[V]]			$\frac{e_{max}}{U_i}$ 100	$\frac{e_{max}}{U_i}$ 100	$U_i \pm e_{max}$
Range U_N /Resolution	Range/ U_N Resolution	[V]	[div]	[V]	[V]	[V]	[%]	[%]	[V]
		_	_						

$$Analog \ U_i = [div] * \frac{Range}{Resolution} = [div] * -----$$

DMM: $e_{max} = 0.012\% * U_i + 5* digits$, where 1 digit = values from first column

Analog:
$$c = \frac{Range}{Resolution} = \frac{c * U_N}{100}$$

2. The measurement of periodical signals:

Pick three different values of Amplitudes (1-10V) on the Signal Generator and note them here:

V;	V	/; \	/
		<i>'</i>	

Waveform	Pick coeff $(k_{v)}$ (table)	Shape coeff (k_f) (table)	Indicated value (U_i)	Mean value $U_{mean} = \frac{U_i}{k_{f \ sin}}$	RMS value $U = \frac{k_f}{k_{f \ sin}} * U_i$	Max. value $U_m = rac{k_f * k_c}{k_{f sin}} * U_i$	Osc. Pk to pk (U_{v-v})
	Pi	Sha	[V]	[V]	[V]	[٧]	[V]

Wheatstone Bridge

		The ND (null detector) c	α deviation afte	r the adjustme	nt of:
	D /D	The first	The second	The third	The fourth	The fifth
	R_2/R_3	decade (the	decade	Decade	decade	Decade
Measured resistance		most				
ivieasured resistance		significant)				
	[mV]					
	[1114]	α1 [mV]	α2 [mV]	α3 [mV]	α4 [mV]	α5 [mV]
R_1						
R_2						
R_3						
R_4						
R_5						
R_6						

Meas		Meası	ıred va	lues			Computed values						
R esist. R_{xN}	R ₂ /R ₃ (1)	R _{4e} (2)	$lpha_l$ left	R _{4l} left	$lpha_r$ right	R_{4r} right	R_{4i}	R _{mas} (1) *(2)	e_{rc}	e_{rd}	e_{rRx}	e_a	R_{x}
	[Ω/Ω]	[Ω]	[div]	[Ω]	[div]	[Ω]	[Ω]	[Ω]	[%]	[%]	[%]	[%]	[Ω]
R_1										0			
R_2										0			
R_3										0			
R_4										0			
R_5										0			
R_6										0			

Meas. resist. R_{xN}	R_2/R_3	$lpha_l(lpha_j)$ [mV]	$R_{4l}(R_{4j})$	$\begin{array}{c} \alpha_r(\alpha_j+1) \\ [\text{mV}] \end{array}$	$R_{4r}(R_{4j}+1)$	S_l	S_r	S
R_1								
R_2								
R_3								
R_4								
R_5								
R_6			_	_				

$$e_{rRx} = e_{rc} + e_{rd}$$

$$e_a = \frac{e_{rRx}R_{mas}}{100}$$

$$R_X = R_{mas} \pm e_a$$

$$S_r = \frac{\alpha_r}{\frac{R_{4r} - R_{4e}}{R_{4e}}};$$

$$S_{l} = \frac{\alpha_{l}}{\frac{R_{4e} - R_{4l}}{R_{4e}}} \; ;$$

$$S = \frac{\alpha_r - \alpha_l}{\frac{R_{4r} - R_{4l}}{R_{4e}}}$$