# Econometrics II: Data Management and Handling Project By Toshan Majumdar (ID:0086133)

Date: 6 February, 2022

## 1) Dataset:

We have used The LISS panel (Longitudinal Internet studies for the Social Sciences) dataset for our project, which consists of survey questionnaires from 7500 individuals over 5000 households in the Netherlands. The panel data stored by CentERdata requires permission for data handling. The longitudinal study is conducted every year, with the aim of following the socio-economic conditions of its panel members, who are compensated monetarily for their participation.

Our questionnaires of interest among the core studies are: <u>Work and Schooling</u>, <u>Family and Household</u>, <u>Economic Situation</u>: <u>Income</u>, and <u>Region and Ethnicity</u>. Our econometric modelling is based on the raw data of the longitudinal waves from 2008-2020, which is downloaded in .dta format, along with their codebooks.

## 2) Data Handling:

We have used the Work and Schooling questionnaire to obtain data on educational levels, and employment status.

#### 2.1) Educational Levels:

We have considered the participant responses to question \*005 (\*006 for 2019) as their highest level of education received in the Netherlands. This variable has been converted into a categorical variable based on their responses: 0: No Education (values 1,2), 1: Completed School (values 3-15), 2: Completed University (values 16-21), 3: Completed Advanced Degree (values 22-26), 4:Other (values 27).

**Missing Data:** We handled the large proportion of non-responses for the year 2019 (96.3%) by replacing missing values with the education level of the previous year.

#### 2.2) Employment Status:

We have considered the participant responses to the question \*001 (does respondent have paid work: yes/no) as their employment status. Missing data is not an issue since the average non response rate is: 0.17%.



FIGURE 1: YEARWISE DISTRIBUTION OF PAID WORK STATUS



FIGURE 2: AGE DISTRIBUTION OF RESPONDENTS

#### 2.3) Participant Year of Birth:

We have considered the participant responses to the question \*002 as their year of birth. Missing data is not an issue since the average non response rate is: 0%. The proportion of outliers (birth\_year == 1900,1913) is insignificant. We will later compute the age of the participant by subtracting their birth year from the current survey wave.

We have used the **Religion and Ethnicity questionnaire** (78305 responses | 15653 unique individuals) to obtain data on nationality and views on abortion.

#### 2.4) Nationality:

We have considered the responses to question \*079 (Which languages did you speak growing up?) as an indicator of Dutch nationality rather than question \*043 (What is your nationality?), since the latter has been omitted from surveys after 2010.

**Missing Data:** We handled the large proportion of non-responses for the year 2014 by replacing missing values with the nationality of the previous year since it is a time invariant variable.

#### 2.5) Abortion:

We consider responses to the question \*105 (Do you consider it good that abortion is permitted? Yes/No) as an indicator on the individual's attitudes on large families.

**Missing Data**: Since this question has been omitted from surveys after 2018, we have replaced the missing responses with the reply from previous years, with the assumption that such a belief would not change in the years 2019,2020.

We have used the **Family and Household questionnaire** (78264 responses | 15608 unique individuals) to obtain data on gender, partner characteristics and family size.

#### 2.6) Gender:

We consider responses to the question \*003 (Respondent Gender) as a self-reported indicator of the individual's gender. Missing data is not an issue since the average non response rate is: 0.07%.

2.7) Partner Characteristics: We have considered responses to questions \*024, \*026, and \*032 as self-reported indicators to the individual's partner, partner's birth year, and partner's gender. Since the non-response rate of these survey questions is high, we have decide to exclude such variables from our analysis.

#### 2.9) Family Size:

In order to calculate family size, responses to the question \*036 (How many children do you have? 1-15) was used. High non response rate was observed for the years 2009-2014, after which the survey question was modified by the researchers into: \*455 (How many living children do you have?)

Missing Values: In order to deal with the missing values from 2009-2014, we calculated the no. of children based on the responses given regarding the participant's children's gender (\*068-\*082). We also tried to include childcare allowance status (\*385), but due to high non response rate (89.6%), the external validity of the analysis is not strong.



FIGURE 1: DISTRIBUTION OF FAMILY SIZE OF RESPONDENTS. DATA HAS A POSITIVE SKEW DUE TO MAJORITY OF FAMILIES HAVING 1-3 CHILDREN

We have used the **Economic Situation: Income** (72,012 Reponses | 14264 individuals) to obtain data on financial situation and retirement status.

#### 2.10) Financial Situation:

We have considered responses to the question \*252 (How would you describe the financial situation of your household at this moment?) as an indicator of the household family situation. We have converted participant responses to a categorical variable consisting of: 1: Good Financial Situation (values 4-5), 2: Bad Financial Situation (values 1-3). Missing data is not an issue since the average non response rate is 12.58%.

#### 2.11) Retirement Status:

We have considered responses to the question \*065 (Were you on early retirement in YEAR or for a part of YEAR?) as an indicator of retirement status of the participant. Missing data is an issue since the average non response rate is 45.8%. We have used age as a proxy for retirement status (age<60) in the final analysis due to the missing data.

## 3) Merging Data:

In the first stage, we appended the various longitudinal waves (2008-2020) for each distinct survey, after creating a variable indicating year (obtained through the .dta file name). This resulted in 4 datasets:

ws\_combine.dta (77,227 observations | 15148 unique respondents ) (Table 1.4)

family\_combine.dta (78264 responses | 15608 unique individuals) (Table 1.1)

ethnic\_combine.dta (78305 responses | 15653 unique individuals) (Table 1.2)

income combine.dta(72,012 responses | 14264 unique individuals) (Table 1.3)

The next stage, is to merge the 4 datasets into a single .dta file:combine\_dta, using the combination of survey\_year and respondent ID: **noemem\_encr** (unique to each participant, assigned randomly by the researchers)as a primary key.

The final stage, after creating a single merged dataset: **combine.dta** (Table 2.1) was imputing the missing values of time invariant characteristics of the sample from the non-missing values within each participant's observations. This was done for the variables: **birth\_year**, **nationality**, and **abortion**. We also removed individual observations whose age is less than 20 and more than 60, to focus on those individuals with a tangible relation between employment and family size. The

resultant panel data contains 48,382 observations of 11167 unique participants and 16 participant characteristics (variables).

The resulting panel data is highly unbalanced with only 568 individuals observations available for the entire 13 waves. We have decided to keep the dataset intact to control for unobserved characteristics among individuals who tend to complete the surveys, vs those who drop out.



FIGURE 2: DISTRIBUTION OF INDIVIDUALS YEAR WISE RESPONSE TO THE SOCIAL SURVEYS.

### 4) Econometric Analysis:

The following are the research questions of interest which guide the econometric modelling: **Primary**: Does the status of employment of individuals have an impact on their family size(no. of children)? **Exploratory**: Does the gender of the second last child have an impact on family size of an individual?

#### 4.1) Econometric Analysis on Panel Data:

The core analysis of our research project is exploring the impact of employment status (regressor) on family size (dependent variable). We first run a Poisson regression (Table 5.1) with family size (kids) as the dependent variable and the employment status as regressor. We apply the random effects estimate and cluster by respondent id. The possibility of overdispersion in our regression is eliminated since coefficient of  $\hat{y}_{poisson}$ =0.68 < 1.0 (Table 5.2) We then compile the marginal effects of the regression (Table 5.3) to get a better understanding of the impact of the regressor on the dependent variable. Our results indicate that being employed is associated with a higher probability of having more children, but since it is insignificant (low p value:0.07), we need to run alternate regressions to confirm the effect.

$$Kids_{it} = \beta_0 + \beta_1 \cdot Paid_Work_{it} + \sum_{j=2008}^{2020} \beta_j \cdot Year_i(dummy) + \varepsilon_{it}$$

We compare the results of our Poisson regression by running linear regressions on our panel data. We set the family size as dependent variable, employment status as regressor and control for year wise effects, clustering errors by respondent id. The results of our regression (using both random effects (Table 6.1) as well as fixed effects (Table 6.2)) indicate that there is no strong correlation between family size and employment status. Our analysis is complicated by the fact that most families tend to 1-3 children and that the impact of the financial crisis on employment status is not captured well by our surveys.

#### 4.2) Expolratory Analysis on Time Invariant Variables:

We have run a linear regression of regressor: education level on dependent family size, with the regressor split into dummy levels, assigning No Schooling as base level (<u>Table 4.0</u>). Our results indicate family size decreases as individuals attain higher education levels (**due to the significant p-values**), which is consistent with our hypothesis.

$$Kids_i = \beta_0 \cdot No\_School_i + \sum_{j=2008}^{2020} \beta_j \cdot Educ_i(dummy) + \varepsilon_i$$

In our exploratory data analysis, we investigate if there is any difference in means of family size by nationality (dutch vs non dutch), gender of second last child (male vs female) and childcare subsidies (yes vs no). The following are the results of the Wilcoxon rank-sum test:

- 1. There is a significant difference (**p value:0.0016**) between the family size of individuals having their second last child as female vs having their second last child as male. This could indicate to a gender preference among individuals which causes them to try for at least having one male child (Table 4.1)
- 2. There is no significant difference (**p value:0.195**) between family size of Dutch individuals when compare them with individuals of other nationalities (<u>Table 4.3</u>)
- 3. Finally we find that individuals with no childcare tend to have larger families (significant p-value:0.05) as compared to individuals with no childcare. It is challenging to interpret such a result as we expect childcare allowance to encourage people having more children. It is possible that wealthy individuals are both ineligible for childcare allowance as well as can provide amenities for their children which impacts their decision having larger family size (Table 4.5)

## 5) Issues and improvements for Further Research

#### **Modelling Issues:**

- Since the research question focusses on family size, it would be more appropriate to select the household as a the basic unit of analysis, instead of an individual. It is possible to implement this for future research, by matching individual members with the same household ID. We would also need to match current partners based on household ID, individual ID and other partner characteristics, taking marriage, separation into account (Do you live with your partner? How long have you lived with your partner?, etc).
- It is possible that the employment of the household head has more impact on family size, than the employment status of other household members. It is possible to control for this, in future research, by identifying household heads from the Income Questionnaire (variable: \*001)
- It is possible that certain female/male respondents voluntarily leave their jobs to raise their family. Thus there could be reverse causality between family size (dependent variable) and employment (regressor).
- There could be unobserved confounding variables impacting family size such as: wealth from non-income sources, health conditions of household members, social beliefs, etc.

#### **Selectivity Issues:**

- The survey is conducted in Dutch, hence the sample is skewed towards Dutch speaking individuals living in the Netherlands.
- Many social indicators depend on the validity of the self-reported responses of the participants. There is a high non response rate for many survey questions as well as a requirement to verify the self-reported responses of the participants (regarding income ,education, employment) from government records.
- The unbalanced panel data points to attrition in the sample. There are only 2250 individuals whose data is included in all 13 waves of the survey (2008-2020). This number gets reduced further when we control for age (keeping participants within the age range of 20-60 only).
- The variability of the employment variable (**paid\_work**) is low, even in the years of financial crises. This points to a systematic bias of excluding recently unemployed individuals and a need to choose an alternate data source.

## 6) Tables & Results

| Variable     | Obs=.  | Obs>. | Obs<.  | Unique<br>values | Min    | Max    |
|--------------|--------|-------|--------|------------------|--------|--------|
| id           |        |       | 78,264 | >500             | 800009 | 899993 |
| year         |        |       | 78,264 | 13               | 2008   | 2020   |
| gender       | 56     |       | 78,208 | 2                | 0      | 1      |
| partner      | 49     |       | 78,215 | 2                | 0      | 1      |
| partner age  | 65,164 |       | 13,100 | 93               | 1810   | 2006   |
| partner ge~r | 61,683 |       | 16,581 | 2                | 0      | 1      |
| kids         | 9,152  |       | 69,112 | 13               | 0      | 15     |
| child gender | 35,129 |       | 43,135 | 2                | 0      | 1      |
| childcare    | 70,123 |       | 8,141  | 2                | 0      | 1      |

|                                       |             |       |                                      | Obs<.                |                          |                          |
|---------------------------------------|-------------|-------|--------------------------------------|----------------------|--------------------------|--------------------------|
| Variable                              | Obs=.       | Obs>. | Obs<.                                | Unique<br>values     | Min                      | Max                      |
| id<br>year<br>nationality<br>abortion | 15<br>1,486 |       | 78,305<br>78,305<br>78,290<br>76,819 | >500<br>13<br>2<br>4 | 800009<br>2008<br>0<br>1 | 899993<br>2020<br>1<br>4 |

Table 1.1: Combined family dataset

Table 1.2: Combined ethnicity dataset

|        | Obs<.  |                  |        |       |        |          |
|--------|--------|------------------|--------|-------|--------|----------|
| Max    | Min    | Unique<br>values | Obs<.  | Obs>. | Obs=.  | Variable |
| 899993 | 800009 | >500             | 72,012 |       |        | id       |
| 2020   | 2008   | 13               | 72,012 |       |        | year     |
| 2      | 1      | 2                | 62,976 |       | 9,036  | fin      |
| 1      | 0      | 2                | 38,987 |       | 33,025 | retire   |

|           |       |       |        | Obs<.            |        |        |
|-----------|-------|-------|--------|------------------|--------|--------|
| Variable  | Obs=. | Obs>. | Obs<.  | Unique<br>values | Min    | Max    |
| id        |       |       | 77,227 | >500             | 800009 | 899993 |
| year      |       |       | 77,227 | 13               | 2008   | 2020   |
| educ      | 1,296 |       | 75,931 | 5                | 0      | 4      |
| paid work | 131   |       | 77,096 | 2                | 0      | 1      |
| age       |       |       | 77,227 | 91               | 9      | 109    |
| l         |       |       |        | 1                |        |        |

Table 1.3: Combined finance dataset

Table 1.4: Combined work schooling dataset

| Contains data f | mam aamla | ina dea |            |                                                                                  |
|-----------------|-----------|---------|------------|----------------------------------------------------------------------------------|
|                 | 8,386     | Ine.dta |            |                                                                                  |
| vars:           | 16        |         |            | 4 Feb 2022 18:38                                                                 |
|                 | 6,320     |         |            | 4 FED 2022 10:30                                                                 |
| Size: 5,00      | 0,320     |         |            |                                                                                  |
| s               | torage    | display | value      |                                                                                  |
| variable name   | type      | format  | label      | variable label                                                                   |
| id              | double    | %10.0g  |            | Number of household member encrypted                                             |
| year            | float     | %10.0g  |            | Survey Year                                                                      |
| educ            | double    | %15.0g  | educ_level |                                                                                  |
|                 |           |         | *          | What is the highest level of education that you have completed with diploma or c |
| paid_work       | double    | %10.0g  | cw08a001   | Does the respondent have paid work?                                              |
| age             | double    | %10.0g  |            | Respondents Age                                                                  |
| fin             | double    | %10.0g  | fin_situat | ion                                                                              |
|                 |           |         |            | How would you describe the financial situation of your household at this moment? |
| retire          | double    | %10.0g  | yesno      | Were you on early retirement ?                                                   |
| gender          | double    | %10.0g  | sex        | Gender respondent                                                                |
| partner         | double    | %10.0g  | yesno      | Do you currently have a partner?                                                 |
| partner_age     | double    | %10.0g  |            | Respondents Partners Age                                                         |
| partner_gender  | double    | %10.0g  | sex        | What is your partner's gender?                                                   |
| kids            | double    | %10.0g  |            | How many children have you had in total?                                         |
| child_gender    | float     | %9.0g   | sex        | Gender of Second Youngest Child                                                  |
| childcare       | double    | %10.0g  | yesno      | Have you received any childcare supplement from the tax authority?               |
| nationality     | double    | _       | yesno      | Which language or languages did you grow up speaking: Dutch                      |
| abortion        | double    | %10.0g  | yesno      | Do you believe that abortion is ever permitted?                                  |
|                 |           |         | *          | indicated variables have notes                                                   |

Table 2.1: Final Merged Dataset Description

| Variable     | Obs    | Mean     | Std. Dev. | Min    | Max    |
|--------------|--------|----------|-----------|--------|--------|
| id           | 48,386 | 850273   | 28929.02  | 800009 | 899993 |
| year         | 48,386 | 2013.572 | 3.752192  | 2008   | 2020   |
| educ         | 47,796 | 1.836995 | .7431104  | 0      | 4      |
| paid work    | 48,344 | .7948866 | .4037886  | 0      | 1      |
| age          | 48,386 | 42.13473 | 11.63854  | 20     | 60     |
| fin          | 35,386 | 1.569802 | .4951108  | 1      | 2      |
| retire       | 13,330 | .0132783 | .1144683  | 0      | 1      |
| gender       | 43,977 | .4386156 | .4962233  | 0      | 1      |
| partner      | 43,972 | .7892295 | .4078604  | 0      | 1      |
| partner_age  | 8,347  | 40.97197 | 12.31167  | 15     | 202    |
| partner ge~r | 10,066 | .5659646 | .4956542  | 0      | 1      |
| kids         | 37,483 | 1.597071 | 1.28278   | 0      | 15     |
| hild gender  | 21,285 | .5115339 | .4998787  | 0      | 1      |
| childcare    | 7,005  | .6301213 | .4828061  | 0      | 1      |
| nationality  | 43,250 | .9338728 | .2485071  | 0      | 1      |
| abortion     | 42,635 | 1.482303 | .8671338  | 1      | 4      |

Table 2.2: Final Merged Dataset Summary Statistics

| -> tabulation        | n of nationalit | У             |                |
|----------------------|-----------------|---------------|----------------|
| (max)<br>nationality | Freq.           | Percent       | Cum.           |
| Not Dutch<br>Dutch   | 644<br>9,491    | 6.35<br>93.65 | 6.35<br>100.00 |
| Total                | 10,135          | 100.00        |                |

Table 3.1: Nationality Count Tabulation

| -> tabulation                 | -> tabulation of child_gender |                |                 |  |  |  |  |  |  |
|-------------------------------|-------------------------------|----------------|-----------------|--|--|--|--|--|--|
| (max)  <br>child_gende  <br>r | Freq.                         | Percent        | Cum.            |  |  |  |  |  |  |
| female male                   | 2,340<br>2,640                | 46.99<br>53.01 | 46.99<br>100.00 |  |  |  |  |  |  |
| Total                         | 4,980                         | 100.00         |                 |  |  |  |  |  |  |

Table 3.3: Gender of second last child count Tabulation

Table 3.4: Childcare Subsidy Count Tabulation

| -> tabulation   | n of gender    |                |                 |
|-----------------|----------------|----------------|-----------------|
| (max)<br>gender | Freq.          | Percent        | Cum.            |
| female<br>male  | 5,774<br>4,553 | 55.91<br>44.09 | 55.91<br>100.00 |
| Total           | 10,327         | 100.00         |                 |

Table 3.2: Gender Count Tabulation

| -> tabulation of childcare |              |                |                 |  |  |  |  |  |  |
|----------------------------|--------------|----------------|-----------------|--|--|--|--|--|--|
| (max)<br>childcare         | Freq.        | Percent        | Cum.            |  |  |  |  |  |  |
| no<br>yes                  | 914<br>1,661 | 35.50<br>64.50 | 35.50<br>100.00 |  |  |  |  |  |  |
| Total                      | 2,575        | 100.00         |                 |  |  |  |  |  |  |

| -> tabulation of                                                 | educ                                 |                                         |                                           |
|------------------------------------------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------------|
| (max) educ                                                       | Freq.                                | Percent                                 | Cum.                                      |
| No Education<br>School<br>University<br>Advanced Degree<br>Other | 69<br>3,221<br>5,634<br>1,608<br>553 | 0.62<br>29.06<br>50.83<br>14.51<br>4.99 | 0.62<br>29.68<br>80.51<br>95.01<br>100.00 |
| Total                                                            | 11,085                               | 100.00                                  |                                           |

Table 3.5: Highest education count tabulation

| Source         |     | SS        | df     |      | MS      | Number of F(4, 1004) |       | =    | 10,047<br>46.73 |
|----------------|-----|-----------|--------|------|---------|----------------------|-------|------|-----------------|
| Model          | 32  | 26.367488 | 4      | 81.5 | 5918719 | Prob > F             | - /   | =    | 0.0000          |
| Residual       | 17  | 7535.1524 | 10,042 | 1.74 | 1618128 | R-squared            |       | =    | 0.0183          |
|                |     |           |        |      |         | Adj R-squ            | ared  | =    | 0.0179          |
| Total          | 17  | 7861.5199 | 10,046 | 1.7  | 7797331 | Root MSE             |       | =    | 1.3214          |
|                |     |           |        |      |         |                      |       |      |                 |
| ki             | .ds | Coef.     | Std.   | Err. | t       | P> t                 | [95%  | Conf | . Interval]     |
| ed             | luc |           |        |      |         |                      |       |      |                 |
| Schoo          | 1   | 5484902   | .1849  | 9344 | -2.97   | 0.003                | 910   | 9986 | 1859818         |
| Universit      | У   | 5402277   | .1842  | 1665 | -2.93   | 0.003                | 90    | 1231 | 1792244         |
| Advanced Degre | e   | -1.014997 | .186   | 1691 | -5.44   | 0.000                | -1.38 | 0513 | 6494799         |
| Othe           | r   | 3660377   | .1920  | 0289 | -1.91   | 0.057                | 742   | 4528 | .0103773        |
| cc             | ns  | 2         | .1832  | 2496 | 10.91   | 0.000                | 1.64  | 0794 | 2.359206        |

Table 4.0: Linear Regression of Education Levels on kids

| Two-sample Wil                                                  | lcoxon rank-s | sum (Mann-Wh | itney) test |  |  |  |  |
|-----------------------------------------------------------------|---------------|--------------|-------------|--|--|--|--|
| child_gender                                                    | obs           | rank sum     | expected    |  |  |  |  |
| female                                                          |               | 5691429      |             |  |  |  |  |
| male                                                            | 2640          | 6711261      | 6574920     |  |  |  |  |
| combined                                                        | 4980          | 12402690     | 12402690    |  |  |  |  |
| unadjusted variance 2.564e+09<br>adjustment for ties -6.957e+08 |               |              |             |  |  |  |  |
| adjusted varia                                                  | ance 1.80     | 69e+09       |             |  |  |  |  |
| Ho: kids(child_~r==female) = kids(child_~r==male) z = -3.154    |               |              |             |  |  |  |  |
| Prob >  z                                                       | = 0.0016      |              |             |  |  |  |  |

Table 4.1: Two Sample Wilcoxon Test by second last child gender

| (max)<br>child_gende<br>r | Summary of (max) kids<br>Mean Std. Dev.    | Freq. |
|---------------------------|--------------------------------------------|-------|
| female<br>male            | 2.5102564 .87888972<br>2.5640152 .90787916 | 2,340 |
| Total                     | 2.538755 .89468766                         | 4,980 |

Table 4.2: Summary Statistics of second last child gender

| Two-sample Wil                                     | coxon rank-            | sum (Mann-Wh        | itney) test     |
|----------------------------------------------------|------------------------|---------------------|-----------------|
| nationality                                        | obs                    | rank sum            | expected        |
| Not Dutch<br>Dutch                                 |                        | 3027352<br>43278524 |                 |
| combined                                           | 9623                   | 46305876            | 46305876        |
| unadjusted var<br>adjustment for<br>adjusted varia | ties <u>-3.7</u>       | 66e+08              |                 |
| 3                                                  |                        |                     |                 |
| •                                                  | n~y==Not Du<br>= 1.296 | tcn) = kias(        | nation~y==Dutch |
| Prob >  z                                          | = 0.1951               |                     |                 |

| (max)<br>nationality | _           | of (max)<br>td. Dev. | kids | Freq.        |
|----------------------|-------------|----------------------|------|--------------|
| Not Dutch<br>Dutch   |             | .4308361<br>.3219969 |      | 612<br>9,011 |
| Total                | 1.4054869 1 | .3292744             |      | 9,623        |

Table 4.3: Two Sample Wilcoxon Test by Nationality

| Two-sample Wil                                                 | coxon rank- | sum (Mann-Wh       | itney) test        |  |  |  |
|----------------------------------------------------------------|-------------|--------------------|--------------------|--|--|--|
| childcare                                                      | obs         | rank sum           | expected           |  |  |  |
| no<br>yes                                                      | 914<br>1661 | 1326470<br>1990130 | 1177232<br>2139368 |  |  |  |
| combined                                                       | 2575        | 3316600            | 3316600            |  |  |  |
| unadjusted variance 3.259e+08<br>adjustment for ties -45638074 |             |                    |                    |  |  |  |
| adjusted varia                                                 | ance 2.8    | 03e+08             |                    |  |  |  |
| Ho: kids(childc~e==no) = kids(childc~e==yes)<br>z = 8.915      |             |                    |                    |  |  |  |
| Prob >  z                                                      | = 0.0000    |                    |                    |  |  |  |

Table 4.4: Summary Statistics of Nationality

| (max)     | Summa:    | ry of (max) | kids  |
|-----------|-----------|-------------|-------|
| childcare | Mean      | Std. Dev.   | Freq. |
| no        | 2.3774617 | 1.0960327   | 914   |
| yes       | 2.0036123 | .84024463   | 1,661 |
| Total     | 2.1363107 | .9557325    | 2,575 |

Table 4.5: Two Sample Wilcoxon Test by Childcare

Table 4.6: Summary Statistics of Childcare

```
Fitting Poisson model:
Iteration 0:
               log pseudolikelihood = -47083.894
Iteration 1: log pseudolikelihood = -47083.894
Fitting full model:
               log pseudolikelihood = -40710.929
Iteration 0:
               log pseudolikelihood = -40619.065
log pseudolikelihood = -40613.676
Iteration 1:
Iteration 2:
               log pseudolikelihood = -40613.667
Iteration 3:
               log pseudolikelihood = -40613.667
Iteration 4:
Random-effects Poisson regression
                                                   Number of obs
                                                                             29,400
Group variable: id
                                                   Number of groups =
                                                                              8,058
Random effects u i ~ Gamma
                                                   Obs per group:
                                                                  min =
                                                                                3.6
                                                                  avg =
                                                                  max =
                                                                                 13
                                                   Wald chi2(2)
                                                                            1811.77
Log pseudolikelihood = -40613.667
                                                   Prob > chi2
                                                                             0.0000
                                       (Std. Err. adjusted for clustering on id)
                               Robust
        kids
                     Coef.
                              Std. Err.
                                                   P>|z|
                                                              [95% Conf. Interval]
                              .0107982
                                                                           .0203451
   paid_work
                 -.0008189
                                          -0.08
                                                   0.940
                                                              -.021983
                                                                          -.0049849
         fin
                 -.0179731
                              .0066268
                                           -2.71
                                                   0.007
                                                             -.0309614
                  .4114377
                              .0195763
                                          21.02
                                                   0.000
                                                              .3730689
                                                                           .4498064
        cons
                 -.1973198
                              .1967722
                                                             -.5829862
                                                                           .1883466
    /lnalpha
                   .820928
                              .1615358
                                                              .5582289
                                                                           1.207252
LR test of alpha=0: \underline{\text{chibar2}(01)} = 1.3e+04
                                                           Prob >= chibar2 = 0.000
```

Table 5.1: Panel Data Poisson Regression of Paid Work on Kids

| . reg ystar yh    | nat_poisson,no           | cons        |                          |        |                |          |                                     |
|-------------------|--------------------------|-------------|--------------------------|--------|----------------|----------|-------------------------------------|
| Source            | SS                       | df          | MS                       |        | of ob          |          | 37,461                              |
| Model<br>Residual | 299.294703<br>166261.127 | 1<br>37,460 | 299.294703<br>4.43836432 | R-squa | > F<br>ared    | = =      | 67.43<br>0.0000<br>0.0018<br>0.0018 |
| Total             | 166560.422               | 37,461      | 4.44623534               |        | -square<br>MSE | d =<br>= | 2.1067                              |
| ystar             | Coef.                    | Std. Err.   | t                        | P> t   | [95% (         | Conf.    | Interval]                           |
| yhat_poisson      | .0658513                 | .0080191    | 8.21                     | 0.000  | .0501          | 336      | .081569                             |

Table 5.2: Test for Overdispersion

| у =              | effects after<br>- Linear predi<br>38258931 | -         | ct) |      |       |         |   |
|------------------|---------------------------------------------|-----------|-----|------|-------|---------|---|
| variable         | dy/dx                                       | Std. Err. | Z   | P> z | [ 95% | C.I. ]  | Х |
| paid_w~k*<br>fin | 0008189<br>0179731                          | .0108     |     |      |       | .020345 |   |

Table 5.3: Marginal Effects of Poisson Regression

| Fixed-effects  | (within) reg | ression   |          | Number    | of obs =      | 29,400      |
|----------------|--------------|-----------|----------|-----------|---------------|-------------|
| Group variable | e: id        |           |          | Number    | of groups =   | 8,058       |
| R-sq:          |              |           |          | Obs per   | group:        |             |
| within :       | = 0.0404     |           |          | -         | min =         | 1           |
| between :      | = 0.0007     |           |          |           | avg =         | 3.6         |
| overall :      | = 0.0017     |           |          |           | max =         | 13          |
|                |              |           |          | F(14,80   | 57) =         | 29.48       |
| corr(u_i, Xb)  | = -0.1206    |           |          | Prob >    | F =           | 0.0000      |
|                |              | (Std.     | Err. ad  | justed fo | r 8,058 clust | ers in id)  |
|                |              | Robust    |          |           |               | <del></del> |
| kids           | Coef.        | Std. Err. | t        | P> t      | [95% Conf.    | Interval]   |
| paid work      | 0169426      | .013743   | -1.23    | 0.218     | 0438824       | .0099972    |
| fin            | .0009691     | .0088976  | 0.11     | 0.913     | 0164725       | .0184107    |
| year           |              |           |          |           |               |             |
| 2009           | .1218593     | .0092787  | 13.13    | 0.000     | .1036705      | .140048     |
| 2010           | .1477035     | .012573   | 11.75    | 0.000     | .1230571      | .1723498    |
| 2011           | .2012647     | .0123752  | 16.26    | 0.000     | .1770061      | .2255234    |
| 2012           | .2220341     | .0146273  | 15.18    | 0.000     | .1933608      | .2507074    |
| 2013           | .2612885     | .0155709  | 16.78    | 0.000     | .2307654      | .2918115    |
| 2014           | .2550426     | .0167312  | 15.24    | 0.000     | .2222452      | .2878399    |
| 2015           | .2020026     | .0188734  | 10.70    | 0.000     | .1650059      | .2389993    |
| 2016           | .2371233     | .0191942  | 12.35    | 0.000     | .1994977      | .2747489    |
| 2017           | .2633561     | .0204802  | 12.86    | 0.000     | .2232096      | .3035026    |
| 2018           | .2784498     | .0209309  | 13.30    | 0.000     | .2374198      | .3194797    |
| 2019           | .3075113     | .0217449  | 14.14    | 0.000     | .2648858      | .3501369    |
| 2020           | .3265867     | .0225399  | 14.49    | 0.000     | .2824027      | .3707706    |
| _cons          | 1.479267     | .020958   | 70.58    | 0.000     | 1.438184      | 1.52035     |
| sigma_u        | 1.2780623    |           |          |           |               |             |
| sigma_e        | .3846287     |           |          |           |               |             |
|                | .91695257    | (fraction | of varia | nce due t | oui)          |             |

Table 6.1 Panel Data Regression (with Fixed Effects)

| Random-effects GLS regression |                | Number of obs      | =      | 29,400 |
|-------------------------------|----------------|--------------------|--------|--------|
| Group variable: id            |                | Number of groups   | =      | 8,058  |
| R-sq:                         |                | Obs per group:     |        |        |
| within = 0.0386               |                | mir                | 1 =    | 1      |
| between = 0.0005              |                | avo                | J =    | 3.6    |
| overall = 0.0001              |                | max                | = 2    | 13     |
|                               |                | Wald chi2(14)      | =      | 491.91 |
| $corr(u_i, X) = 0 $ (assumed) |                | Prob > chi2        | =      | 0.0000 |
|                               | (Std. Err. adi | usted for 8.058 cl | usters | in id) |

Robust kids Coef. Std. Err. P>|z| [95% Conf. Interval] paid work -.0124699 .0130733 -0.95 0.340 -.0380931 .0131534 -.0043302 .0086053 -0.50 0.615 -.0211963 .0125359 vear .1342788 2009 .1523098 .0091996 16.56 0.000 .1703407 .1607322 .0123374 13.03 0.000 .1365513 2010 .184913 .2192076 .2428023 .1956128 2011 .0120384 18.21 0.000 .2332987 .0141946 0.000 2012 16.44 .2054777 .2611197 17.93 2013 .270672 .0150946 0.000 .2410871 .3002568 2014 .2511342 .0161372 15.56 0.000 .2195059 .2827624 .2186259 2015 .1831998 .0180749 10.14 0.000 .1477737 2016 .2186924 .0183594 11.91 0.000 .1827086 .2546762 2017 .2390668 .0195426 12.23 0.000 .200764 .2773696 2018 .2505596 .0198013 12.65 0.000 .2117499 .2893694 2019 .2810756 .0206086 13.64 0.000 .2406835 .3214676 2020 .2897881 .021173 .2482898 .3312864 13.69 0.000 1.259359 .0239929 52.49 0.000 1.212334 1.306385 \_cons sigma\_u 1.1433578 sigma\_e .3846287 .89833797 (fraction of variance due to u\_i)

Table 6.2: Panel Data Regression (with Random Effects)