Missouri University of Science & Technology

Spring 2023

Department of Computer Science
CS 2500: Algorithms (Sec: 102)

Solutions to Homework 2

Name: Sid Nadendla Email: nadendla@mst.edu

Problem 1. Workflow of Heapsort and Quicksort

25 points

Demonstrate HEAP-SORT and QUICK-SORT iterations for both the following arrays:

```
(i) A_1 = \{2, 6, 4, 3, 1, 5\}, and (ii) A_2 = \{1, 5, 2, 3, 0, 2, 2, 1, 4, 5\}.
```

SOLUTION:

This problem considers two sorting algorithms, namely Heap-Sort and Quick-Sort, whose pesudocodes are given below:

HEAPSORT(A)		Q	QUICKSORT(A,p,r)	
1	BUILD-MAX-HEAP (A)	1	if $p < r$	
2	for $i = \lfloor A. length \rfloor$ downto 2	2	q = Partition(A, p, r)	
3	Swap $A[1]$ and $A[i]$	3	QUICKSORT $(A, p, q - 1)$	
4	A.heap- $size = A.heap$ - $size - 1$	4	QUICKSORT $(A, q + 1, r)$	
5	$\mathbf{M}\mathbf{a}\mathbf{x}$ - $\mathbf{H}\mathbf{e}\mathbf{a}\mathbf{p}\mathbf{i}\mathbf{f}\mathbf{y}(A,1)$			

- (i) Let us consider the first array $A_1 = \{2, 6, 4, 3, 1, 5\}$. The various stages of Heap-Sort (A_1) are demonstrated in Figure 1. Similarly, the various stages of Quick-Sort (A_1) are demonstrated in Figure 2.
- (ii) The various stages of $Heap-Sort(A_2)$ and $Quick-Sort(A_2)$ can be demonstrated similar to that shown in (i).

Problem 2. Empirical Analysis of Heapsort and Quicksort 25 points

Implement HEAP-SORT (Page 170 with supporting functions in Pages 165, 167, all in *CLRS*) and QUICK-SORT (Page 183, *CLRS*) in Python, and validate its average run-time performance (similar to Problem 2 in Homework 1).

SOLUTION: Code will be provided as a Jupyter notebook, along with these solutions. \Box

Problem 3. Modified Quicksort

25 points

Traditional quicksort routine chooses a pivot q such that $A[p:q-1] \leq A[q] \leq A[q+1,r]$. Instead, present an analysis when the quicksort algorithm partitions the array A[p:r] into three parts using two pivots q_1 and q_2 such that $A[p:q_1-1] \leq A[q_1] = \cdots = A[q_2] \leq A[q_2+1:r]$. (Hint: Assume that the entries in A are picked from $\{1,\cdots,m\}$, where m< n.)

SOLUTION:

This modified quicksort is called threeway quicksort, and is known to improve the run-time of the traditional quicksort by a significant factor when the input array contains repeated entries.

Given two pivots q_1 and q_2 such that the array A satisfies $A[p:q_1-1] \leq A[q_1] = \cdots = A[q_2] \leq A[q_2+1:r]$, the problem reduces to sorting the left sub-array $L=A[p:q_1-1]$ and the right sub-array $R=A[q_2+1:r]$. Note that the size of L and R are q_1-1 and $n-q_2$ respectively. If T(n) represents the run-time of threeway quicksort on input array A, then its run-time recursion is given by

$$T(n) = T(q_1 - 1) + T(n - q_2) + \Theta(n),$$

where $\Theta(n)$ is the total run-time for the new partition function. Note that, if we choose $q_1 = q_2 = q$, we obtain the same run-time recursion as the traditional quicksort.

In the case of threeway quicksort, the worst-case run time is given by

$$T_{worst}(n) = \max_{1 \le q_1 \le q_2 \le n} [T(q_1 - 1) + T(n - q_2) + \Theta(n)].$$

We prove that $T_{worst}(n) = O(n^2)$ using substitution method. In other words, we will prove that there exists three positive numbers c_1 , c_2 and N_0 such that, for all $n \ge N_0$, we have

$$T_{worst}(n) \le \max_{1 \le q_1 \le q_2 \le n} \left[c_1(q_1 - 1)^2 + c_1(n - q_2)^2 + c_2(n) \right]. \tag{1}$$

Base Case (n = 1): In this case, since there is only one entry in the array, we have $q_1 = q_2 = n = 1$. In other words,

$$T_{worst}(n=1) \le c_2.$$

The remainder of proof by induction is carried out, assuming that this condition holds true for all $n = 1, 2, \cdots$.

Maintenance Case (n=k): Assume that the inequality in Equation (1) is true for all $n=1, \dots, k$. Since $1 \le q_1 \le q_2 \le k+1$, we also have $q_1-1 \le k$ and $k+1-q_2 \le k$. Since the inequality in Equation (1) is true for $n=1, \dots, k$, we have $T(q_1-1)=O\left[(q_1-1)^2\right]$ and $T(k+1-q_2)=O\left[(k+1-q_2)^2\right]$. Then, the worst-case runtime for threeway quicksort for n=k+1 reduces to

$$T_{worst}(k+1) = \max_{1 \le q_1 \le q_2 \le k+1} \left[T(q_1 - 1) + T(k+1 - q_2) + \Theta(k+1) \right]$$

$$\le \max_{1 \le q_1 \le q_2 \le k+1} \left[c_1(q_1 - 1)^2 + c_2(k+1 - q_2)^2 + c_3(k+1) \right], \ \forall \ n \ge N_0,$$

for some positive N_0 .

Let us denote $f(q_1, q_2) = c_1(q_1 - 1)^2 + c_2(k + 1 - q_2)^2 + c_3(k + 1)$. Therefore, the gradient and Hessian of f are given by

$$\nabla f = \begin{bmatrix} 2c_1(q_1 - 1) \\ 2c_2(q_2 - k - 1) \end{bmatrix}$$

and

$$\nabla^2 f = \left[\begin{array}{cc} 2c_1 & 0 \\ 0 & 2c_2 \end{array} \right]$$

respectively. Since the determinant of Hessian $\nabla^2 f$ is positive ($|\nabla^2 f| = 4c_1c_2 > 0$), the maximum always lies at the extreme points. This means either $q_1 = q_2 = 1$, or $q_1 = q_2 = k + 1$. In both cases, we have

$$T_{worst}(k+1) \le c \cdot k^2 + c_3(k+1), \ \forall \ n \ge N_0,$$
 (2)

where

$$c = \begin{cases} c_2, & \text{if } q_1 = q_2 = 1, \\ c_1, & \text{if } q_1 = q_2 = k + 1. \end{cases}$$

Simplifying the RHS of the inequality in Equation (3), we have

$$T_{worst}(k+1) \leq c \left[k^2 + 2k + 1\right] + c_3(k+1) - 2ck - c,$$

$$\leq c(k+1)^2 + (c_3 - 2c)k + (c_3 - c),$$
(3)

for all $n \geq N_0$. In other words, $T_{worst}(k+1) = O[(k+1)^2]$.

<u>Termination Case</u>: Assuming that this recursion terminates for some finite n, we have $T_{worst}(n) = O(n^2)$ by the principle of induction.

Problem 4. Sort by Frequency

25 points

Write a program in Python that sorts all the integer entries in an input array A of size n according to the decreasing frequency of occurrence. If the frequency of two numbers is the same, then sort them in the increasing order of value. Assume that $A[j] \in \{0,1,\cdots,k\}$ for all $j=1,\cdots,n$, and let $k \ll n$ to allow enough number of repetitions.

(Hint: You can find frequencies using COUNTING-SORT).

Example: Let $A = \{3, 5, 2, 1, 0, 1, 2, 3, 4, 2, 0, 3, 4, 2, 1\}$. Note that n = 15 and k = 5. Let f(i) denote the frequency of occurrence of a number i in A. Then, we have

$$f(0) = 2,$$
 $f(3) = 3,$
 $f(1) = 3,$ $f(4) = 2,$
 $f(2) = 4,$ $f(5) = 1.$

Then, the output should look like: $B = \{2, 2, 2, 2, 1, 1, 1, 3, 3, 3, 0, 0, 4, 4, 5\}.$

SOLUTION: Code will be provided as a Jupyter notebook, along with these solutions. \Box

Problem 5.

Extra credit (5 points)

SELECTION-SORT(A) sorts the input array A by first finding the j^{th} smallest element in A and swapping it with the element in A[j], in the order $j=1, j=2, \cdots, j=n-1$. Write pseudocode for SELECTION-SORT, and find the best-case and worst-case running times of SELECTION-SORT in Θ -notation.

SOLUTION:

The pseudocode for SELECTION-SORT(A) is given as follows:

```
MIN-INDEX(A, i)
SELECTION-SORT(A)
   for i = 1 downto A. length
                                            1
                                               k = i
2
       j = MIN-INDEX(A, i)
                                                for j = i + 1 downto A.length
3
       Swap A[i] with A[j]
                                            3
                                                    if A[j] < A[k]
                                            4
                                                        k = i
                                            5
                                              return k
```

If the size of array A is n, then MIN-INDEX(A,i) has a for-loop that runs for $\Theta(n)$ run-time in the worst case. Given that MIN-INDEX(A,i) is inside the for-loop in SELECTION-SORT(A) which itself iterates for n times, it is natural that the runtime of SELECTION-SORT(A) is $\Theta(n^2)$.

Note that the above discussion is an informal proof. A more formal way of proving the run-time for this algorithm is expected from students, which is similar to that presented for INSERTION-SORT(A) algorithm in the class.

Figure 1: Stages of Heap-Sort on input $A_1 = \{2, 6, 4, 3, 1, 5\}$.

$$\begin{array}{c} \textbf{Line 2: } q = \texttt{Partition}(A_1, 1, 6) \\ & \underbrace{ 2 \ 6 \ 4 \ 3 \ 1 \ 5 }_{i \ p, j \ r} = \underbrace{ 2 \ 6 \ 4 \ 3 \ 1 \ 5 }_{p, i \ j \ r} = \underbrace{ 2 \ 4 \ 3 \ 1 \ 5 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 3 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 4 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 5 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 5 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 4 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 4 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 4 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 4 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 4 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 4 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 2 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 2 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 2 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 2 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 2 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 2 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 2 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 2 }_{p, i \ j \ r} = \underbrace{ 1 \ \text{Iteration: } j = 2 }_{p,$$

Figure 2: Stages of Quick-Sort on input $A_1 = \{2, 6, 4, 3, 1, 5\}$.