1. ► Graph der Ableitungsfunktion identifizieren

(9BE)

Die Funktion f_a ist nur für $-a \le x \le a$ definiert. Dabei sind $f_a(-a) = f_a(a) = 0$. Graph 3 muss somit den Graphen einer Funktion f_a darstellen.

Der Graph der Ableitungsfunktion f'_a muss **unterhalb** der x-Achse verlaufen, wo der Graph von f_a fällt und **oberhalb** der x-Achse verlaufen, wo der Graph von f_a steigt.

Damit ist Graph 1 der Graph der Ableitungsfunktion f'_a .

► Parameterwert angeben

Im Funktionsterm von f_a kannst du leicht erkennen, dass $f_a(-a) = f_a(a) = 0$. Graph 3 schneidet die x-Achse bei x = -2 und x = 2. Damit folgt der Parameterwert a = 2.

► Auswirkungen des Parameters beschreiben

Da die Funktion f_a bei $x_{1,2}=\pm a$ Nullstellen besitzt, beeinflusst der Parameter a die Lage der Schnittpunkte des Graphen von f_a mit der x-Achse.

Wegen $f_a(0) = \sqrt{a^2 - 0} = a$ beeinflusst der Parameter a auch den Schnittpunkt des Graphen von a mit der y-Achse, nämlich $S_a(0 \mid a)$.

Da durch den Graphen von f_a ein Halbkreis dargestellt wird, lässt sich der Parameter a auch als **Radius** des Halbkreises interpretieren.

2. ► Erste Ableitung bestimmen

(9BE)

Leite f_a nach der **Kettenregel** ab. Schreibe den Funktionsterm von f_a vorher um:

$$f_a(x) = \sqrt{a^2 - x^2} = (a^2 - x^2)^{\frac{1}{2}}$$

$$f'_a(x) = \frac{1}{2} \cdot (a^2 - x^2)^{-\frac{1}{2}} \cdot (-2x)$$

$$f'_a(x) = -\frac{2x}{2\sqrt{a^2 - x^2}}$$

$$f'_a(x) = -\frac{x}{\sqrt{a^2 - x^2}}$$

► Symmetrieverhalten der Graphen nachweisen

Mit einem Blick auf die Graphen in Abbildung 1 liegt die Vermutung nahe, dass der Graph von f_a achsensymmetrisch zur y-Achse ist und dass der Graph von f'_a punktsymmetrisch zum Ursprung verläuft.

1. Schritt: Achsensymmetrie des Graphen von f_a

Der Graph von f_a ist achsensymmetrisch zur y-Achse, falls gilt: $f_a(-x) = f_a(x)$:

$$f_a(-x) = \sqrt{a^2 - (-x)^2} = \sqrt{a^2 - x^2} = f_a(x)$$

Damit ist die Achsensymmetrie des Graphen nachgewiesen.

2. Schritt: Punktsymmetrie des Graphen von f'_a

Der Graph von f'_a ist punktsymmetrisch zum Ursprung, falls gilt: $f_a(-x) = -f_a(x)$:

$$f'_a(-x) = -\frac{-x}{\sqrt{a^2 - (-x)^2}} = -\left(-\frac{x}{\sqrt{a^2 - x^2}}\right) = -f'_a(x)$$

Damit ist die Punktsymmetrie des Graphen nachgewiesen.

► Definitionsbereiche angeben

1. Schritt: Definitionsbereich von f_a

Die Wurzelfunktion ist **nicht für** negative Argumente definiert, also nur für $x \in \mathbb{R}$ mit $a^2 - x^2 \ge 0$:

$$a^2 - x^2 \ge 0 \quad \Leftrightarrow \quad a^2 \ge x^2 \quad \Leftrightarrow \quad -a \le x \le a$$

Der Definitionsbereich D_a von f_a lautet $D_a = [-a; a]$.

2. Schritt: Definitionsbereich von f'_a

Der Definitionsbereich von f'_a ist aufgrund der Wurzel im Nenner **höchstens** so groß wie der von f_a . Da f'_a aber eine gebrochene Funktion ist, gilt als zusätzliche Bedingung, dass der Nenner niemals Null werden darf. Dies ist für $x = \pm a$ der Fall.

Für den Definitionsbereich D'_a von f'_a gilt also $D'_a =]-a$; a[.

3. \blacktriangleright Koordinaten von P bestimmen

(10BE)

Alle Punkte, die auf einem Halbkreis mit Radius a um den Ursprung liegen, haben vom Ursprung genau den **Abstand** a. Für alle Punkte $P(x \mid y)$ gilt dann also:

$$d(P;O) = \sqrt{(x-0)^2 + (y-0)^2} = a$$

$$\sqrt{x^2 + y^2} = a \qquad | ()^2$$

$$x^2 + y^2 = a^2 \qquad | -x^2$$

$$y^2 = a^2 - x^2 \qquad | \sqrt{x^2 + y^2} = f_a(x)$$

Der Halbkreis mit Radius a um den Ursprung ist gerade der Graph der Funktion f_a .

Die Koordinaten von *P* sollen nun so bestimmt werden, dass der Flächeninhalt des einbeschriebenen Rechtecks maximal wird.

Aufgrund der Achsensymmetrie sind die beiden "Teilrechtecke" links und rechts von der y-Achse gleich groß. Für den Flächeninhalt des Rechtecks gilt also $A = 2 \cdot x \cdot f_a(x)$

Dabei ist *x* genau die *x*-Koordinate des Punktes *P*. Als Zielfunktion dieses Extremwertproblems ergibt sich also:

$$A_a(x) = 2x \cdot f_a(x) = 2x \cdot \sqrt{a^2 - x^2}$$

Die Funktion A_a gibt dir in Abhängigkeit vom Radius a den Flächeninhalt des Rechtecks an. Gesucht ist der Wert für x, für den dieser Flächeninhalt **maximal** wird, also das **Maximum** von A_a .

Bilde zunächst die ersten beiden Ableitung nach der Produktregel und der Quotientenregel:

$$A'_{a}(x) = 2\sqrt{a^{2} - x^{2}} - 2x \cdot \frac{x}{\sqrt{a^{2} - x^{2}}} = 2\left(\sqrt{a^{2} - x^{2}} - \frac{x^{2}}{\sqrt{a^{2} - x^{2}}}\right)$$

$$A''_{a}(x) = 2 \cdot \left(-\frac{x}{\sqrt{a^{2} - x^{2}}} - \frac{2x \cdot \sqrt{a^{2} - x^{2}} + x^{2} \cdot \frac{x}{\sqrt{a^{2} - x^{2}}}}{\left(\sqrt{a^{2} - x^{2}}\right)^{2}}\right)$$

$$A''_{a}(x) = 2 \cdot \left(-\frac{x}{\sqrt{a^{2} - x^{2}}} - \frac{2x \cdot \sqrt{a^{2} - x^{2}}}{\left(\sqrt{a^{2} - x^{2}}\right)^{2}} - \frac{x^{2} \cdot \frac{x}{\sqrt{a^{2} - x^{2}}}}{a^{2} - x^{2}}\right)$$

$$A''_{a}(x) = 2 \cdot \left(-\frac{x}{\sqrt{a^{2} - x^{2}}} - \frac{2x}{\sqrt{a^{2} - x^{2}}} - \frac{x^{3}}{\left(\sqrt{a^{2} - x^{2}}\right)^{3}}\right)$$

$$A''_{a}(x) = 2 \cdot \left(-\frac{3x}{\sqrt{a^{2} - x^{2}}} - \frac{x^{3}}{\left(\sqrt{a^{2} - x^{2}}\right)^{3}}\right)$$

Mit der notwendigen Bedingung für ein Extremum $A'_a(x) = 0$ ergibt sich:

$$A'_{a}(x) = 2\left(\sqrt{a^{2} - x^{2}} - \frac{x^{2}}{\sqrt{a^{2} - x^{2}}}\right) = 0 \qquad | : 2$$

$$\sqrt{a^{2} - x^{2}} - \frac{x^{2}}{\sqrt{a^{2} - x^{2}}} = 0 \qquad | + \frac{x^{2}}{\sqrt{a^{2} - x^{2}}}$$

$$\sqrt{a^{2} - x^{2}} = \frac{x^{2}}{\sqrt{a^{2} - x^{2}}} \qquad | \cdot \sqrt{a^{2} - x^{2}}$$

$$a^{2} - x^{2} = x^{2} \qquad | +x^{2}$$

$$2x^{2} = a^{2} \qquad | : 2$$

$$x^{2} = \frac{1}{2}a^{2} \qquad | \sqrt{x^{2} - x^{2}}$$

$$x_{1,2} = \pm \sqrt{\frac{1}{2}} \cdot a$$

Aufgrund der Achsensymmetrie genügt es, wenn du dich auf die **positive** Lösung beschränkst. Es bleibt zu prüfen, ob für $x=\sqrt{\frac{1}{2}}\cdot a$ wirklich ein **Maximum** vorliegt. Das ist dann der Fall, wenn $A_a''(\sqrt{\frac{1}{2}}\cdot a)<0$:

$$A_{a}^{"}\left(\sqrt{\frac{1}{2}} \cdot a\right) = 2 \cdot \left(-\frac{3 \cdot \sqrt{\frac{1}{2}} \cdot a}{\sqrt{a^{2} - \frac{1}{2}a^{2}}} - \frac{\frac{1}{\sqrt{8}}a^{3}}{\left(\sqrt{a^{2} - \frac{1}{2}a^{2}}\right)^{3}}\right)$$

$$A_{a}^{"}\left(\sqrt{\frac{1}{2}} \cdot a\right) = 2 \cdot \left(-\frac{3 \cdot \sqrt{\frac{1}{2}} \cdot a}{\sqrt{\frac{1}{2}} \cdot a} - \frac{\frac{1}{\sqrt{8}}a^{3}}{\left(\sqrt{\frac{1}{2}} \cdot a\right)^{3}}\right)$$

$$A_{a}^{"}\left(\sqrt{\frac{1}{2}} \cdot a\right) = 2 \cdot \left(-3 - \frac{\frac{1}{\sqrt{8}}a^{3}}{\sqrt{\frac{1}{8}} \cdot a^{3}}\right)$$

$$A_{a}^{"}\left(\sqrt{\frac{1}{2}} \cdot a\right) = 2 \cdot (-3 - 1) = -8 < 0$$

Damit ist gezeigt, dass der Flächeninhalt für $x=\sqrt{\frac{a^2}{2}}$ sein Maximum annimmt.

Der Punkt $P\left(\sqrt{\frac{1}{2}} \cdot a \mid f_a\left(\sqrt{\frac{1}{2}} \cdot a\right)\right)$ hat dann die vollständigen Koordinaten $P\left(\sqrt{\frac{1}{2}} \cdot a \mid \sqrt{\frac{1}{2}} \cdot a\right)$.

Für den maximalen Flächeninhalt $A_a\left(\sqrt{rac{a^2}{2}}
ight)$ ergibt sich:

$$A_a\left(\sqrt{\frac{1}{2}} \cdot a\right) = 2\sqrt{\frac{1}{2}} \cdot a \cdot \sqrt{a^2 - \frac{1}{2}a^2} = 2 \cdot \sqrt{\frac{1}{2}} \cdot a \cdot \sqrt{\frac{1}{2}} \cdot a = 2 \cdot \frac{1}{2}a^2 = a^2.$$

4.1 ► Umformungsschritte erklären

(12BE)

Zeile 1: 1. Schritt: Substitution

x wird substituiert durch $x = \sin z$. Dabei gilt: $\frac{dx}{dz} = \cos z$, also $dx = \cos(z)dz$.

Auch die "alten" Integrationsgrenzen 0 und 1 werden angepasst. Untere Grenze: $\sin^{-1}(0) = 0$, obere Grenze: $\sin^{-1}(1) = \frac{\pi}{2}$.

Zeile 1: 2. Schritt: Sinus und Kosinus umformen

Da
$$\sin^2 z + \cos^2 z = 1$$
, gilt $\sqrt{1 - \sin^2 z} \cdot \cos z = \sqrt{\cos^2 z} \cdot \cos z = \cos z \cdot \cos z = \cos^2 z$.

Zeile 2: 1. Schritt: Partielle Integration

Allgemein sagt die Regel zur partiellen Integration:

$$\int_{a}^{b} u'(z) \cdot v(z) dz = \left[u(z) \cdot v(z) \right]_{a}^{b} - \int_{a}^{b} u(z) \cdot v'(z) dz$$

In unserem Fall gilt:

$$u'(z) = \cos(z) \implies u(z) = \sin z$$

 $v(z) = \cos(z) \implies v'(z) = -\sin z$

Einsetzen in die Formel liefert:

$$\int_{0}^{\frac{\pi}{2}} \cos^{2}z \, dz = [\sin(z) \cdot \cos(z)]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \sin(z) \cdot (-\sin(z)) \, dz$$

$$\int_{0}^{\frac{\pi}{2}} \cos^{2}z \, dz = [\sin(z) \cdot \cos(z)]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \sin^{2}(z) \, dz \qquad | \sin^{2}(z) = 1 - \cos^{2}(z)$$

$$\int_{0}^{\frac{\pi}{2}} \cos^{2}z \, dz = [\sin(z) \cdot \cos(z)]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} (1 - \cos^{2}(z)) \, dz$$

$$\int_{0}^{\frac{\pi}{2}} \cos^{2}z \, dz = [\sin(z) \cdot \cos(z)]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} 1 \, dz - \int_{0}^{\frac{\pi}{2}} \cos^{2}(z)) \, dz \qquad | + \int_{0}^{\frac{\pi}{2}} \cos^{2}(z)$$

$$2 \cdot \int_{0}^{\frac{\pi}{2}} \cos^{2}z \, dz = [\sin(z) \cdot \cos(z)]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} 1 \, dz$$

4.2 ► Wert des Integrals berechnen

Aus der Umformung aus 4.1 folgt:

$$\int_{0}^{1} \sqrt{1 - x^{2}} \, dx = \int_{0}^{\frac{\pi}{2}} \cos^{2} z \, dz$$
Dabei ist
$$\int_{0}^{\frac{\pi}{2}} \cos^{2} z \, dz = \frac{1}{2} \left(\left[\sin(z) \cdot \cos(z) \right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} 1 \, dz \right)$$

Damit ergibt sich:

$$\int_{0}^{1} \sqrt{1 - x^{2}} \, dx = \frac{1}{2} \left(\left[\sin(z) \cdot \cos(z) \right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} 1 \, dz \right)$$

$$\int_{0}^{1} \sqrt{1 - x^{2}} \, dx = \frac{1}{2} \left(\left[\sin(z) \cdot \cos(z) \right]_{0}^{\frac{\pi}{2}} + \left[z \right]_{0}^{\frac{\pi}{2}} \right)$$

$$\int_{0}^{1} \sqrt{1 - x^{2}} \, dx = \frac{1}{2} \left(\left[\sin(\frac{\pi}{2}) \cdot \cos(\frac{\pi}{2}) \right] - \left[\sin(0) \cdot \cos(0) \right] + \left[\frac{\pi}{2} \right] - 0 \right)$$

$$\int_{0}^{1} \sqrt{1 - x^{2}} \, dx = \frac{1}{2} \left(\left[\sin(\frac{\pi}{2}) \cdot 0 \right] - \left[0 \cdot \cos(0) \right] + \left[\frac{\pi}{2} \right] \right)$$

$$\int_{0}^{1} \sqrt{1 - x^{2}} \, dx = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4}$$

▶ Geometrische Interpretation

Betrachte zunächst den Term $k(x)=\sqrt{1-x^2}$. Der Graph zu diesem Funktionsterm ist ein **Halbkreis** mit Radius 1.

Mit dem Wert des Integrals $\int_{0}^{1} \sqrt{1-x^2} \, dx$ wird der Inhalt der Fläche berechnet, die vom Graphen von k und den Koordinatenachsen eingeschlossen wird. Genauer gesagt liegt diese Fläche im 1. Quadranten des Koordinatensystems und hat die Form eines **Viertelkreises**.

Somit wird mit $\int_{0}^{1} \sqrt{1-x^2} dx$ der Flächeninhalt eines Viertelkreises mit Radius 1 berechnet.