Developing Deep Learning Models using

O PyTorch

Arun Prakash A

DL Course Instructor

BS, IIT Madras, POD

The objective is not only

but also to Debug

Build-Train-Test

```
Deep Learning models
```

```
1 import torch
 2 import torch.nn as nn
 3 import torch.nn.functional as F
   class Model(nn.Module):
       def init (self, num hidden):
           super(Model, self). init ()
           self.layer1 = nn.Linear(28 * 28, 100)
           self.layer2 = nn.Linear(100, 50)
10
11
           self.layer3 = nn.Linear(50, 20)
           self.layer4 = nn.Linear(20, 1)
12
13
           self.num hidden = num hidden
       def forward(self, img):
14
           flattened = img.view(-1, 28 * 28)
15
16
           activation1 = F.relu(self.layer1(flattened))
17
           activation2 = F.relu(self.layer2(activation1))
18
           activation3 = F.relu(self.layer3(activation2))
19
           output = self.layer4(activation3)
20
           return output
```

Debugging requires a deeper understanding of things happening under the hood!

For the next two sessions, you most likely feel you are not doing deep learning ©

The Software Architecture of Pyrorch

torch.autograd) torch torch.nn torch. utils **Python API Autograd ATen** JIT Cpp Cpp Cpp Hardware TH THC **Specific** CUDA,CPU,AMD,METAL

"A Tensor": ATen

"Caffe2 10": C10

Tensor computation (like NumPy) with strong GPU acceleration

Deep neural networks built on a tape-based autograd system

Support efficient industry production at massive scale

Support exporting models to Python-less environment

Support for platforms of Caffe2 (iOS, Android, Raspbian, Tegra, etc) and will continue to expand various platforms support

Component	Description
torch	A Tensor library like NumPy, with strong GPU support
torch.autograd	A tape-based automatic differentiation library that supports all differentiable Tensor operations in torch
torch.jit	A compilation stack (TorchScript) to create serializable and optimizable models from PyTorch code
torch.nn	A neural networks library deeply integrated with autograd designed for maximum flexibility
torch.multiprocessing	Python multiprocessing, but with magical memory sharing of torch Tensors across processes. Useful for data loading and Hogwild training
torch.utils	DataLoader and other utility functions for convenience

torch.tensor()

tensors

Concepts

0.3 0.2 ... 1.1
-0.2 0.1 ... 5.2
... ... -1.1
... ... -6.5
2.9 7.4 5.3 2.9 7.5

Physical (Storage)

DODOS

COOOS

Devices

dtype

1	1.0	2	2.0
---	-----	---	-----

Memory Layout

Why should I Learn the internals?

Suppose we have a matrix of size X=1000 imes1000

Is transposing a costly operation?

How do you write a code to transpose? Looping?

Does accessing elements take constant time?

Is computing len(x) a costly operation?

We can answer questions like these if we know how the tensors are actually stored in a hardware.

Tensor Object

Tensor storage stride shape Some useful/important attributes device of a pytorch tensor size grad grad_fn ndim

Tensor: Strided Representation

logical

tensor[1,0]

sizes [2,2] strides [2,1] The other representation is sparse representation

Dispatching

Physical storage

Source:istock

Logical View

Source:istock

Dim: 0

```
x = torch. Tensor(0.1)

0.1
```

x[0]
invalid index of a 0-dim tensor
x.item()

Memory location

```
Dim: 1
```

```
x = torch. Tensor([0.1, 0.2, 0.3])
```



```
x[0]
>>0.1
```

Stride: 1

Dim: 2

```
x = torch. Tensor([[0.1,0.2,0.3],[0.4,0.5,0.6],[0.7,0.8,0.9]])
```


x[1]

stride: (3,1)

[d0*d0_stride + d1*d1_stride]

It is alright to view this as a matrix but not always helpful when we deal with high dim tensors

```
Dim: 2
```

```
x = torch. Tensor([[0.1,0.2,0.3],[0.4,0.5,0.6],[0.7,0.8,0.9]])

torch.sum(x,dim=0)
```

```
        0.1
        0.2
        0.3
        0.4
        0.5
        0.6
        0.7
        0.8
        0.9
        1
```

1.2

```
shape: (3,3) Range:d0={0,1,2} Range:d1={0,1,2}
stride: (3,1) [d0*d0_stride + d1*d1_stride] side
```

```
0*3+ 0*1=0, x[0]=0.1
1*3+ 0*1=3, x[3]=0.4
2*3+ 0*1=6, x[6]=0.7
= 1.2
```

since sum is across dim:0, vary dim:0 to its range (inner loop) and then dim:1 (outer loop)

2*3+1*1=7, x[7]=0.8

1.2 1.5

since sum is across
dim:0, vary dim:0 to
its range (inner
loop) and then dim:1
(outer loop)

Dim: 2

```
x = torch. Tensor([[0.1,0.2,0.3],[0.4,0.5,0.6],[0.7,0.8,0.9]])

torch.sum(x,dim=0)
```

```
shape: (3,3) Range:d0={0,1,2} Range:d1={0,1,2}
stride: (3,1) [d0*d0_stride + d1*d1_stride] side
```

```
0*3+ 2*1=2, x[1]=0.3
1*3+ 2*1=5, x[4]=0.6
2*3+ 2*1=8, x[7]=0.9
```

since sum is across
dim:0, vary dim:0 to
its range (inner
loop) and then dim:1
(outer loop)

```
Dim: 2
```

```
x = torch. Tensor([[0.1,0.2,0.3],[0.4,0.5,0.6],[0.7,0.8,0.9]])
torch.sum(x,dim=1)
```

0.6

```
shape: (3,3) Range:d0={0,1,2} Range:d1={0,1,2}
stride: (3,1) [d0*d0_stride + d1*d1_stride]
```

```
0*3+ 0*1=0, x[0]=0.1

0*3+ 1*1=1, x[1]=0.2

0*3+ 2*1=2, x[2]=0.3
```


since sum is across
dim:1 now, vary dim:1
to its range (inner
loop) and then dim:1
(outer loop)

```
Dim: 2
x = torch. Tensor([[0.1,0.2,0.3],[0.4,0.5,0.6],[0.7,0.8,0.9]])
torch.sum(x,dim=1)
```

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

0.6 1.5

```
shape: (3,3) Range:d0={0,1,2} Range:d1={0,1,2}
stride: (3,1) [d0*d0_stride + d1*d1_stride] side
```

```
1*3+ 0*1=3, x[3]=0.4

1*3+ 1*1=1, x[4]=0.5 \sum = 1.5

1*3+ 2*1=2, x[5]=0.6
```

since sum is across
dim:1 now, vary dim:1
to its range (inner
loop) and then dim:1
(outer loop)

Dim: 3

```
x = torch.tensor([[[0.1,0.2],[0.3,0.4]],[[0.5,0.6],[0.7,0.8]]])
torch.sum(x,dim=1)
```

0.	.1 0.2	2 0.3	0.4	0.5	0.6	0.7	0.8	
----	--------	-------	-----	-----	-----	-----	-----	--

Let's figure out the shape of the tensor by starting with the right most dimension

 $d_k=2$ (because there are two numbers (scalars) enclosed by a square brackets

 $d_{k-1}=2$ (because there are two vectors (dim:1) enclosed by a square brackets

$$d_{k-2} = 1$$

Dim: 3

```
x = torch.tensor([[[0.1,0.2],[0.3,0.4]],[[0.5,0.6],[0.7,0.8]]])
torch.sum(x,dim=1)
```

```
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
```

```
shape: (1,2,2) Range: d0=\{0,1,2\} Range: d1=\{0,1,2\}
```

stride: (4,2,1) [d0*d0_stride + d1*d1_stride+d2*d2_stride]

 $x: 2 \times 2 \times 3 \times 2$ torch.sum(x,dim=2)

Range:d0={0,1} Range:d2={0,1,2} Range:d1={0,1} Range:d3={0,1}

stride: (12,6,2,1)

		· -
tensor([[[0,	2],
	[1,	1], 2]],
	[0,	2]],
	[1,	2],

[[1,	2],
[1,	2],
[1,	1]]],
L 2	2327

d0*12	d1*6	d2*2	d3*1	
0	0	0	0	
		1		
		2		

index:
$$0+0+0+0=0$$
, $x[0]=0$

index:
$$0+0+2+0=0$$
, $x[2]=1$ \sum = 1

index:
$$0+0+4+0=0$$
, $x[4]=0$

 $x: 2 \times 2 \times 3 \times 2$ torch.sum(x,dim=2)

Range:d0={0,1} Range:d2={0,1,2} Range:d1={0,1} Range:d3={0,1}

tensor([[[[0, [1, [0,	2], 1], 2]],
[[1, [1, [1,	
	0], 1], 1]],
	1], 2], 2]]]])

d0*12	d1*6	d2*2	d3*1	
0	0	0		
		1	1	
		2		

stride: (12,6,2,1)

index: 0+0+0+1=1, x[1]=2index: 0+0+2+1=3, x[3]=1 = 5

index: 0+0+4+1=0, x[5]=2

 $x \cdot 2 \times 2 \times 3 \times 2$ torch.sum(x,dim=2)

Range:d0={0,1} Range:d2={0,1,2} Range:d1={0,1} Range:d3={0,1} stride: (12,6,2,1)

$x: 2 \times 2 \times 3$	\times 2
tensor([[[[0,	2],
[1,	1],
[0,	2]],
[[1,	2],
[1,	2],
[1,	1]]],

[[1, 2], [1, 2],	d0*12	d1*6	d2*2	d3*1	
[1, 1]]],	0		0	0	
		1	1		
ומ בוו					

[[[2, 0], [0, 1], [2, 1]], [[0, 1], [1, 2], [1, 2]]])

index:
$$0+6+0+0=6$$
, $x[6]=1$
index: $0+6+2+0=8$, $x[8]=1$ $= 3$

index:
$$0+6+4+0=10$$
, $x[10]=1$ tensor([[[1, 5], [3, 5]],

x:2 imes2 imes3 imes2

```
tensor([[[[0, 2],
          [1, 1],
          [0, 2]],
         [[1, 2],
          [1, 2],
          [1, 1]]],
        [[[2, 0],
          [0, 1],
          [2, 1]],
         [[0, 1],
          [1, 2],
          [1, 2]]])
```

We call the 'sum' a **reduction operation** as it reduces the dim from 3 to 1.

torch.sum(x,dim=2)

torch.sum(x,dim=1)

torch.sum(x,dim=3)

All these cubes are the elements at 0-th dim of a tensor of shape $3 \times 5 \times 5 \times 5$. The first number 3 denotes three elements in zeroth dim and each of size $5 \times 5 \times 5$ and

$$3 \times 5 \times 5 \times 5$$

Let's switch to Colab Notebook