Cavallaro, Jeffery Math 229 Homework #2

2.1.2

Let $U \in M_n$ be unitary and let λ be a given eigenvalue of U.

a) Show: $|\lambda| = 1$

There exists eigenvector $\vec{x} \neq 0$ associated with λ such that:

$$U\vec{x} = \lambda \vec{x}$$

Since U preserves length and because $\|\vec{x}\| \neq 0$:

$$||U\vec{x}|| = ||\lambda\vec{x}||$$
$$||\vec{x}|| = |\lambda| ||\vec{x}||$$
$$|\lambda| = 1$$

b) Prove: \vec{x} is a right eigenvector of U associated with λ iff \vec{x} is a left eigenvector of U associated with λ .

$$\begin{array}{ccc} U\vec{x} = \lambda\vec{x} & \Longleftrightarrow & \vec{x} = U^*\lambda\vec{x} \\ & \Longleftrightarrow & \overline{\lambda}\vec{x} = |\lambda|^2\,U^*\vec{x} = U^*\vec{x} \\ & \Longleftrightarrow & \vec{x}^*U = \lambda\vec{x}^* \end{array}$$

2.3.6

Let $A, B \in M_n$ be given and suppose A and B are simultaneously similar to upper triangular matrices - there exists nonsingular $S \in M_n$ such that:

$$SAS^{-1} = T_1 \in UT(n)$$

$$SBS^{-1} = T_2 \in UT(n)$$

Show that every eigenvalue of AB-BA must be 0.

Lemma

Let $A, B \in UT(n)$:

1).
$$AB \in UT(n)$$

2).
$$(AB)_{ii} = A_{ii}B_{ii}$$

Proof

$$(AB)_{ij} = \sum_{k=0}^{n} A_{ik} B_{kj}$$

Assume i > j

if k < i then $A_{ik} = 0$

if k > i then k > j and $B_{kj} = 0$

Therefore, $(AB)_{ij} = 0$ and $AB \in UT(n)$

Now, assume i = j

$$(AB)_{ii} = \sum_{k=0}^{n} A_{ik} B_{ki}$$

if k < i then $A_{ik} = 0$

if k > i then $B_{ki} = 0$

Therefore, $(AB)_{ii} = A_{ii}B_{ii}$

Now back to original proof:

$$A = S^{-1}T_1S$$
 and $B = S^{-1}T_2S$

$$AB = (S^{-1}T_1S)(S^{-1}T_2S) = S^{-1}T_1T_2S$$

$$BA = (S^{-1}T_2S)(S^{-1}T_1S) = S^{-1}T_2T_1S$$

$$AB - BA = S^{-1}T_1T_2S - S^{-1}T_2T_1S = S^{-1}(T_1T_2 - T_2T_1)S$$

But $T_1T_2 - T_2T_1 \in UT(n)$, and is thus a Schur triangularization of AB - BA. Furthermore:

$$(T_1T_2 - T_2T_1)_{ii} = (T_1)_{ii}(T_2)_{ii} - (T_2)_{ii}(T_1)_{ii} = 0$$

Thus, the Schur triangularization of AB-BA has all zeros on its diagonal

Therefore, all of the eigenvalues of AB - BA are 0.

2.4.13

Let $A \in M_n$ and $B \in M_m$. Prove: $\forall C \in M_{n,m}$ there exists a unique solution $X \in M_{n,m}$ to the equation AX - XB = C iff $\sigma(A) \cap \sigma(B) = \emptyset$. Moreover, if C = 0 then X = 0.

Consider the linear transformations $T_1, T_2: M_{n,m} \to M_{n,m}$ defined by:

$$T_1(X) = AX$$

$$T_2(X) = XB$$

Let $T = T_1 - T_2$ be the linear transformation corresponding to AX - XB.

 \implies Assume AX-XB=C, and hence T(X)=C, has a unique solution for every $C\in M_{n,m}$

Thus T is both one-to-one (unique solution) and onto (all $C \in M_{n,m}$), and so T is a bijection. This means that T is invertible and by the IMT, $0 \notin \sigma(T)$.

Let \vec{x} be an eigenvector of $A(T_1)$ with respect to eigenvalue λ and let \vec{y} be a left eigenvector of $B(T_2)$ with respect to eigenvalue μ . Also, let $X = xy^*$:

$$T(X) = T(xy^*)$$

$$= (T_1 - T_2)(xy^*)$$

$$= T_1(xy^*) - T_2(xy^*)$$

$$= Axy^* - xy^*B$$

$$= \lambda xy^* - x\mu y^*$$

$$= \lambda xy^* - \mu xy^*$$

$$= (\lambda - \mu)xy^*$$

$$= (\lambda - \mu)X$$

And so all of the eigenvalues of T are differences of eigenvalues of T_1 and T_2 . But $0 \notin \sigma(T) \implies \lambda \neq \mu$.

$$\therefore \sigma(A) \cap \sigma(B) = \emptyset.$$

$$\iff$$
 Assume $\sigma(A) \cap \sigma(B) = \emptyset$

Assume $X \in M_{n,m}$

$$(T_1T_2)(X) = T_1(T_2(X)) = T_1(XB) = AXB$$

$$(T_2T_1)(X) = T_2(T_1(X)) = T_2(AX) = AXB$$

Thus, T_1 and T_2 commute, and so $\sigma(T) \subseteq \sigma(T_1) - \sigma(T_2)$.

In other words all eigenvalues of T can be computed as differences of the eigenvalues of T_1 and T_2 .

Now, $\lambda \in \sigma(T_1)$ iff there exists $X \in M_{m,n}$ such that $X \neq 0$ and $T_1(X) = \lambda X$. But this is true iff $AX = \lambda X$, which means that for every non-zero column of X, $\vec{x_i} \in \operatorname{Eig}_A(\lambda)$. Thus, $\operatorname{Sp}(A) = \operatorname{Sp}(T_1)$, and by similar argument, $\operatorname{Sp}(B) = \operatorname{Sp}(T_2)$.

Since A and B, and hence T_1 and T_2 , have no eigenvalues in common, $0 \notin \sigma(T)$ and thus, by the IMT, T is invertible, and thus a bijection - both one-to-one and onto.

Therefore, T(X) = C, and hence the equation AX - XB = C, has a unique solution (one-to-one) for every $C \in M_{n,m}$ (onto). Moreover, since T is one-to-one the null space is trivial and therefore $AX - XB = 0 \implies X = 0$.

2.5.6

Let $A \in M_n$. Prove: A is normal iff A commutes with some normal matrix with distinct eigenvalues.

 \implies Assume A is normal

$$A \text{ is unitary diagonalizable, so let } A = U \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} U^* \text{ for some unitary } U.$$

Let
$$B = U \begin{bmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & n \end{bmatrix} U^*$$

Note that B is diagonalizable, and hence normal, and has distinct eigenvalues $\{1, \ldots, n\}$.

$$AB = U \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{bmatrix} U^* U \begin{bmatrix} 1 & 0 \\ 0 & n \end{bmatrix} U^*$$

$$= U \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & n \end{bmatrix} U^*$$

$$= U \begin{bmatrix} 1 & 0 \\ 0 & n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{bmatrix} U^*$$

$$= U \begin{bmatrix} 1 & 0 \\ 0 & n \end{bmatrix} U^* U \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{bmatrix} U^*$$

$$= U \begin{bmatrix} 1 & 0 \\ 0 & n \end{bmatrix} U^* U \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{bmatrix} U^*$$

$$= BA$$

 \iff Assume A commutes with some normal matrix with distinct eigenvalues.

Lemma

Let $A, B \in UT(n)$ such that B is diagonal with distinct eigenvalues:

$$AB = BA \implies A$$
 is diagonal

Proof

Assume AB = BA

Proof by induction on n:

Base Case: n=1

Nothing to prove.

Assume $A \in UT(n-1)$ is diagonal.

Consider $A \in UT(n)$

Let
$$A = \begin{bmatrix} S & \vec{x} \\ \hline 0 & a \end{bmatrix}$$
, where $S \in UT(n-1)$, $\vec{x} \in \mathbb{C}^{n-1}$ and $a \in \mathbb{C}$.

Let
$$B = \begin{bmatrix} D & 0 \\ \hline 0 & \lambda_n \end{bmatrix}$$
, where $D = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_{n-1} \end{bmatrix}$ and the λ_k are distinct.

$$AB = \begin{bmatrix} SD & \lambda_n \vec{x} \\ \hline 0 & \lambda_n a \end{bmatrix} \text{ and } BA = \begin{bmatrix} DS & \lambda_1 \vec{x} \\ \hline 0 & \lambda_n a \end{bmatrix}$$

The upper-left quadrant tells us that SD = DS, so by the inductive assumption, we can conclude that S is diagonal.

Moreover, the upper-right quadrant tells us that $\lambda_1 \vec{x} = \lambda_n \vec{x}$, and since the $\lambda_1 \neq \lambda_n$, it must be the case that $\vec{x} = 0$.

Therefore, A is diagonal.

Now, back to the original question. Let B be the normal matrix with distinct eigenvalues with which A commutes. Since A and B commute, they are simultaneously triangularizable, so let:

$$A = UTU^*$$
 and $B = UDU^*$ for $T, D \in UT(n)$ and D diagonal.

$$AB = BA$$

$$UTU^*UDU^* = UDU^*UTU^*$$

$$UTDU^* = UDTU^*$$

$$TD = DT$$

And so by the lemma, T is also diagonal, and so A is unitary diagonalizable.

Therefore A is normal.

2.6.15

Let $A = [a_{ij}] \in M_n$ have eigenvalues $\lambda_1, \dots, \lambda_n$ ordered so that $|\lambda_1| \ge \dots \ge |\lambda_n|$ and singular values $\sigma_1, \dots, \sigma_n$ ordered so that $\sigma_1 \ge \dots \ge \sigma_n \ge 0$.

a) Prove:

$$\sum_{i,j=1}^{n} |a_{ij}|^2 = \operatorname{tr}(A^*A) = \sum_{k=1}^{n} \sigma_k^2$$

$$A = [a_{ij}]$$

$$A^* = [\overline{a_{ji}}]$$

$$(A^*A)_{ij} = \sum_{k=1}^{n} (A^*)_{ik} A_{kj} = \sum_{k=1}^{n} \overline{a_{ki}} a_{kj}$$

$$(A^*A)_{ii} = \sum_{k=1}^{n} \overline{a_{ki}} a_{ki} = \sum_{k=1}^{n} |a_{ki}|^2$$

$$\therefore \operatorname{tr}(A^*A) = \sum_{i=1}^{n} \sum_{k=1}^{n} |a_{ki}|^2 = \sum_{i,j=1}^{n} |a_{ij}|^2$$

Let the SVD for A be:

$$A = U \begin{bmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & \sigma_n \end{bmatrix} V$$

for some unitary matrices U and V

$$\operatorname{tr}(A^*A) = \operatorname{tr}\left(\left(U\begin{bmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & \sigma_n \end{bmatrix} V\right)^* \left(U\begin{bmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & \sigma_n \end{bmatrix} V\right)\right)$$

$$= \operatorname{tr}\left(V^*\begin{bmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & \sigma_n \end{bmatrix}^* U^*U\begin{bmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & \sigma_n \end{bmatrix} V\right)$$

$$= \operatorname{tr}\left(V^*\begin{bmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & \sigma_n \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & \sigma_n \end{bmatrix} V\right)$$

$$= \operatorname{tr}\left(V^*\begin{bmatrix} \sigma_1^2 & 0 \\ & \ddots & \\ 0 & \sigma_n^2 \end{bmatrix}\right)$$

$$= \operatorname{tr}\left(VV^*\begin{bmatrix} \sigma_1^2 & 0 \\ & \ddots & \\ 0 & \sigma_n^2 \end{bmatrix}\right)$$

$$= \operatorname{tr}\left(\begin{bmatrix} \sigma_1^2 & 0 \\ & \ddots & \\ 0 & \sigma_n^2 \end{bmatrix}\right)$$

$$= \sum_{k=1}^n \sigma_k^2$$

b) Prove: $\sum_{k=1}^{n} |\lambda_1|^2 \leq \sum_{k=1}^{n} \sigma_k^2$ with equality iff A is normal.

By Schur triangularization, there existslet $A=U\begin{bmatrix}\lambda_1&&t_{ij}\\&\ddots&\\0&&\lambda_n\end{bmatrix}U^*$ for some unitary U, and so:

$$\operatorname{tr}(A^*A) = \sum_{1 \le i, j \le n} |a_{ij}|^2 = \sum_{k=1}^n |\lambda_k|^k + \sum_{i < j} |t_{ij}|^2$$

But from the last problem:

$$tr(A^*A) = \sum_{k=1}^n \sigma_k^2$$

and so:

$$\sum_{k=1}^{n} |\lambda_k|^k + \sum_{i < j} |t_{ij}|^2 = \sum_{k=1}^{n} \sigma_k^2$$

But $\sum_{i < j} |t_{ij}|^2 \ge 0$, with equality only when A is normal and thus unitary diagonalizable Therefore $\sum_{k=1}^n |\lambda_k|^k \le \sum_{k=1}^n \sigma_k^2$ with equality only when A is normal.

c) Prove: $\sigma_k = |\lambda_k| \iff A$ is normal.

And so
$$A=V^*\begin{bmatrix}\lambda_1&&0\\&\ddots&\\0&&\lambda_n\end{bmatrix}V$$
 and hence is unitary diagonalizable.

Therefore A is normal.

 \iff Assume A is normal.

$$A = U \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} \text{ for some unitary } U.$$

$$A^*A = U \begin{bmatrix} |\lambda_1|^2 & 0 \\ & \ddots & \\ 0 & |\lambda_n|^2 \end{bmatrix} U^*$$

But also, $A=V\begin{bmatrix}\sigma_1&&0\\&\ddots&\\0&&\sigma_n\end{bmatrix}W$ for some unitary V and W.

$$A^*A = W^* \begin{bmatrix} \sigma_1^2 & 0 \\ & \ddots & \\ 0 & \sigma_n^2 \end{bmatrix} W^*$$

But diagonalizations are unique up to permutation, and since the λ_k and σ_k are properly ordered, it must be the case that $U=W^*$ and $|\lambda_k|^2=\sigma_k^2$.

$$\therefore \sigma_k = |\lambda_k|$$

d) Prove: $|a_{ii}| = \sigma_i \implies A$ is diagonal.

Assume $|a_{ii}| = \sigma_i$

$$tr(A^*A) = \sum_{1 \le i,j \le n} |a_{ij}|^2 = \sum_{i=1}^n |a_{ii}|^2 + \sum_{i \ne j} |a_{ij}|^2$$

But also:

$$tr(A^*A) = \sum_{i=1}^n \sigma_i^2$$

And so:

$$\sum_{i=1}^{n} |a_{ii}|^2 + \sum_{i \neq j} |a_{ij}|^2 = \sum_{i=1}^{n} \sigma_i^2$$
$$\sum_{i=1}^{n} \sigma_i^2 + \sum_{i \neq j} |a_{ij}|^2 = \sum_{i=1}^{n} \sigma_i^2$$

$$\sum_{i \neq j} |a_{ij}|^2 = 0$$

And thus $a_{ij} = 0$ for $i \neq j$.

Therefore, A is diagonal.

e) Prove: A is normal and $|a_{ii}|=|\lambda_i| \implies A$ is diagonal.

Assume A is normal and $|a_{ii}|=|\lambda_i|$ Since A is normal, $|\lambda_i|=\sigma_k$ and so $|a_{ii}|=\sigma_i$

Therefore A is diagonal.