HW Solution 6

1. (3 points) Let A be an elementary set. Then it is a finite union of intervals, $A=\sum\limits_{i=1}^k I_i$. Let us assume that $I_1=(a_1,b_1)$ for some $a_1< b_1\in \mathbb{R}$. We first show the following claim.

claim: For any ϵ , there are closed set F and open set O such that

$$F \subset I_1 \subset O$$
 and $\mu(O) - \epsilon \le \mu(I_1) \le \mu(F) + \epsilon.$ (1)

It follows from taking $F=\left[a_1+\frac{\delta}{4},b_1-\delta 4\right]$ and $)=\left(a_1-\frac{\delta}{4},b_1+\delta 4\right)$ where $\delta=\min\{\epsilon,b_1-a_1\}.$ Similarly, we prove (1) if I_1 is of the form $(a_1,b_1],[a_1,b_1)$ and $[a_1,b_1].$ Since intersection of closed sets and union of open sets are closed set and open set, respectively, we also prove the claim for the case A.

2. (3 points) Let $f: \mathbb{R} \to \mathbb{R}$ be a Lebesgue measurable function. Let $a \in \mathbb{R}$. It suffices to show that

$$f_a = \{x \in \mathbb{R} ; f(x) > a\}$$

is a measurable set. We may assume that f_a is nonempty set.

- (a) Suppose that $n \in f_a$ for any $n \in \mathbb{Z}$. Then this implies that $f_a = \mathbb{R}$.
- (b) Suppose that there is a $M \in \mathbb{Z}$ such that $M \notin f_a$. Then f_a is bounded below because f is non-decreasing. Thus there is a real number $M_a = \inf\{x \in \mathbb{R} \, ; \, x \in f_a\}$. Since f is non-decreasing, f_a is either $(-\infty, M_a]$ or $(-\infty, M_a)$.

In any case, we have shown that f_a is measurable set.

3. (5 points) Let a be a real number. Then it suffices to show that

$$g_a = \{ x \in \mathbb{R} \, ; \, g(x) > a \}$$

is a Lebesgue measurable set. Let us define

$$B = \{ x \in \mathbb{R} \, ; \, f(x) \notin g(x) \}.$$

Then we have that

$$g_a = A \cup \{x \in \mathbb{R} ; f(x) > a\}$$

for some subset $A \subset B$. By completeness of Lebesgue measure, A is Lebesgue measurable, so is g_a .

4. (5 points) It suffices to show that

$$S \equiv \left\{ x \; ; \; \liminf_{n \to \infty} f_n(x) = \limsup_{n \to \infty} f_n(x) \quad \text{and} \quad |\limsup_{n \to \infty} f_n(x)| < \infty \right\}$$

is measurable set. Let us define

$$B = \left\{ x \, ; \, |\liminf_{n \to \infty} f(x)| = \infty \quad \text{or} \quad |\limsup_{n \to \infty} f(x)| = \infty \right\}.$$

and

$$A = X \setminus B$$
.

Then we observe that

$$S = \left\{ x : \liminf_{n \to \infty} f_n|_A(x) = \limsup_{n \to \infty} f_n|_A(x) \right\},\,$$

where $f_n|_A$ is the restriction of f_n to the set A. Since $\liminf_{n\to\infty} f_n|_A - \limsup_{n\to\infty} f_n|_A$ is a well defined real-valued measurable function, S is the measurable set.

Another proof: Use the following relation

$$S = \bigcap_{n=1}^{\infty} \bigcup_{i=1}^{\infty} \left\{ x \, ; \, |f_m(x) - f_l(x)| < \frac{1}{n} \quad \text{and} \quad m, l \ge i \right\}.$$

5. (3 points) Define

$$E_n = \left\{ x \, ; \, f(x) \ge \frac{1}{n} \right\}.$$

By the assumption,

$$\frac{1}{n}\mu(E_n) \le \int_{E_n} f \, d\mu = 0.$$

Therefore, we have that

$$\mu(\lbrace x \, ; \, f(x) > 0 \rbrace) \le \sum_{n=1}^{\infty} \mu(E_n) = 0$$

which implies that f=0 a.e. on E.

6. (3 points) Let $x \in [0,1]$. Then $f_{2k}(x) = 0$ or $f_{2k+1}(x) = 0$ for any $k \in \mathbb{N}$. Thus we observe that

$$\liminf_{n \to \infty} f_n(x) = 0.$$

On the other hand,

$$\int_0^1 f_n(x) \, dx = \frac{1}{2}.$$

7. (3 points) Let

$$C = \{x : f(x) \le 0\}$$
 and $D = \{x : f(x) \ge 0\}$.

Then $f|_C$ and $-f|_D$ satisfy the assumption given in the problem 5. Thus we have that f=0 a.e. on C and D. Since $E=C\cup D$, we obtain the desired result.

8. (5 points) Let us define

$$S = \{x : g(x) = f(x) = \infty \text{ or } f(x) = g(x) = -\infty\} \text{ and } B = X \setminus S.$$

Then we observe that $h=f|_B-g|_B$ is a well defined measurable function. In addition, since f and g are in \mathcal{L}^1 , $\mu(S)=0$. We now prove the equivalent relation given in the problem 8.

(a) Suppose that f=g a.e. on X with respect to the measure μ . Note that by the fact that $\mu(S)=0$,

$$\int_{S} g \, d\mu = \int_{S} f \, d\mu = 0.$$

Then for any $A \in \mathcal{M}$,

$$\int_A f \, d\mu = \int_{A \setminus S} f \, d\mu = \int_{A \setminus S} g \, d\mu = \int_A g \, d\mu.$$

(b) Suppose that for any $A \in \mathcal{M}$,

$$\int_A f \, d\mu = \int_A g \, d\mu.$$

Then we have that

$$0 = \int_{A \cap B} f - g, d\mu = \int_{A} h \, d\mu = 0$$

for any $A\in\mathcal{M}.$ By the problem 7, we have that h=0 a.e. on X. Since $\mu(S)=0$, f=g a.e. on X.

Another proof: If $f,g\in L^1$, then $f-g\in L^1$.(Theorem 11.29) Then the desired result follows from the problem 5.