L7: Combinazioni lineari di vettori geometrici (12)

Argomenti lezione:

- Introduzione
- Combinazione lineare di vettori
- Vettori linearmente indipendenti

Introduzione

- Introduciamo il concetto di <u>combinazione lineare di vettori</u> (del piano o dello spazio) e di <u>vettori linearmente indipendenti</u>.
- Dimostriamo poi che nel <u>piano</u> esistono coppie di vettori linearmente indipendenti, ma non esistono <u>più di due vettori linearmente indipendenti</u>.
- Si dimostra infine che nello <u>spazio</u> esistono terne di vettori linearmente indipendenti, ma non esistono <u>più di tre vettori linearmente indipendenti</u>.

Combinazione lineare di vettori

Sia nel piano che nello spazio, si ha la seguente definizione.

Dati n vettori v_1, v_2, \dots, v_n , e dati n numeri reali a_1, a_2, \dots, a_n , il vettore $v := \sum_{i=1}^n a_i v_i$

viene chiamato **combinazione lineare** dei vettori $v_1, v_2, ..., v_n$ con **coefficienti** $a_1, a_2, ..., a_n$.

Esempio:

$$egin{aligned} oldsymbol{v}_1 &\coloneqq \overrightarrow{OP_1} \ oldsymbol{v}_2 &\coloneqq \overrightarrow{OP_2} \ a_1 oldsymbol{v}_1 &= \overrightarrow{OP_1'} \ a_2 oldsymbol{v}_2 &= \overrightarrow{OP_2'} \ oldsymbol{v} &= a_1 oldsymbol{v}_1 + a_2 oldsymbol{v}_2 &= \overrightarrow{OP} \end{aligned}$$

Geometria e Combinatoria marcella.sama@uniroma3.it

Combinazione lineare di vettori

Dati comunque n vettori v_1, v_2, \dots, v_n , si ha:

$$\sum_{i=1}^n 0v_i = 0$$

Dimostrazione:

Per definizione, abbiamo 0v = 0 per ogni vettore v.

Pertanto $0v_1 + 0v_2 + ... + 0v_n = 0 + 0 + ... + 0 = 0$

L'ultima uguaglianza si ottiene applicando ripetutamente la proprietà 0 + 0 = 0, caso particolare di v + 0 = v con v = 0.

Sia nel piano che nello spazio, si ha la seguente definizione. Dati n vettori $v_1, v_2, ..., v_n$, essi si dicono **linearmente dipendenti** se esistono $a_1, a_2, ..., a_n$ coefficienti non tutti nulli tali che $\sum_{i=1}^{n} a_i v_i = 0$

Dati n vettori $v_1, v_2, ..., v_n$, essi si dicono **linearmente indipendenti** se l'uguaglianza $\sum_{i=1}^{n} a_i v_i = 0$ è verificata <u>solamente</u> nel caso in cui $a_1 = a_2 = ... = a_n = 0$.

L'unica loro combinazione lineare uguale al vettore nullo è la combinazione lineare con tutti i coefficienti nulli.

Analizziamo il significato geometrico di indipendenza lineare.

Teorema:

Un vettore v_1 è <u>linearmente dipendente</u> se e solo se $v_1 = 0$.

Dimostrazione:

Supponiamo che $v_1 = 0$: Allora $1v_1 = 0$ è una combinazione lineare di v_1 con coefficiente <u>non nullo</u> uguale al vettore nullo. Dunque, per definizione, v_1 è linearmente dipendente.

<u>Viceversa</u>, supponiamo che *v*₁ sia linearmente dipendente.

Allora, per definizione, esiste $h \neq 0$ tale che $h v_1 = 0$.

Moltiplicando ambo i membri per h^{-1} si ha: h^{-1} h $v_1 = h^{-1}$ 0.

D'altra parte $h^{-1} h v_1 = 1v_1 = v_1$ e $h^{-1} 0 = 0$. Dunque $v_1 = 0$.

Analizziamo il significato geometrico di indipendenza lineare.

Teorema:

Dato un vettore del piano (o dello spazio) $v := \overrightarrow{OA}$ <u>linearmente</u> indipendente. Sia r la retta passante per O e A.

Dato un punto qualsiasi P della retta r, <u>esiste un solo scalare</u> h in R tale che $\overrightarrow{OP} = h$ \overrightarrow{OA} .

Dimostrazione:

Se P = O allora $\overrightarrow{OP} = 0$: basta porre h = 0.

Se $P \neq O$, sia d(P,O) = k d(A,O):

- Se P in r1, $\overrightarrow{OP} = k \overrightarrow{OA}$, h = k.
- Se P in r2, $\overrightarrow{OP} = -k \overrightarrow{OA}$, h = -k.

Analizziamo il significato geometrico di indipendenza lineare. Segue il teorema:

Dato un vettore del piano (o dello spazio) $v := \overrightarrow{OA}$ <u>linearmente</u> indipendente. L'insieme delle *combinazioni lineari* di v, cioè l'insieme dei vettori hv al variare di h in R, è formato da tutti e soli i vettori \overrightarrow{OP} tali che il punto P appartenga alla retta r passante per i punti distinti O e A.

<u>Teorema</u>: Due vettori $v_1 := \overrightarrow{OP}_1$ e $v_2 := \overrightarrow{OP}_2$ sono <u>linearmente</u> <u>dipendenti</u> se e solo se i punti O, P_1 e P_2 sono allineati.

Dimostrazione:

Supponiamo che O, P1 e P2 sono allineati. Abbiamo due casi:

• Se $P_1 = O$ allora $v_1 = 0$. Pertanto $1v_1 + 0v_2 = 0$.

Dunque v1 e v2 sono linearmente dipendenti.

• Se $P1 \neq O$ allora i punti P1 e O individuano una retta r.

Poiché O, P_1 e P_2 sono allineati il punto P_2 appartiene a r.

Grazie al teorema precedente, esiste un h in R tale che $v_2 = h v_1$.

Allora abbiamo: $h v_1 + (-1) v_2 = 0$.

Dunque v1 e v2 sono linearmente dipendenti.

<u>Teorema</u>: Due vettori $v_1 := \overrightarrow{OP}_1$ e $v_2 := \overrightarrow{OP}_2$ sono <u>linearmente</u> <u>dipendenti</u> se e solo se i punti O, P_1 e P_2 sono allineati.

Dimostrazione:

Viceversa supponiamo che v1 e v2 sono linearmente dipendenti.

Sappiamo che esistono due numeri reali h e k non entrambi

<u>nulli tali</u> che: $h v_1 + k v_2 = 0$. Ad esempio, $k \neq 0$.

Moltiplicando per k^{-1} si ha: $k^{-1}hv_1 + v_2 = 0$

Dunque: $v^2 = -k^{-1} h v^1$.

Essendo v_2 multiplo di v_1 , il termine P_2 di v_2 appartiene a r.

Pertanto esiste una retta r che contiene i punti O, P1 e P2.

<u>Teorema</u>: Dati comunque 2 vettori <u>linearmente indipendenti</u> di $V^2(O)$, ogni vettore di $V^2(O)$ è loro combinazione lineare.

<u>In altre parole</u>: se $v_1 := \overrightarrow{OP}_1$ e $v_2 := \overrightarrow{OP}_2$ sono vettori di $V^2(O)$ <u>linearmente indipendenti</u>, allora per ogni $v := \overrightarrow{OP}$ in $V^2(O)$, esistono h_1 in R e h_2 in R tali che: $v = h_1 \ v_1 + h_2 \ v_2$.

<u>Teorema</u>: Dati comunque 2 vettori <u>linearmente indipendenti</u> di $V^2(O)$, ogni vettore di $V^2(O)$ è loro combinazione lineare.

<u>Dimostrazione</u>: Poniamo $v_1 := \overrightarrow{OP}_1$, $v_2 := \overrightarrow{OP}_2$, $v := \overrightarrow{OP}_2$.

Poiché i vettori v1 e v2 sono linearmente indipendenti,

i tre punti O, P1 e P2 non sono allineati (vedi teorema precedente).

OP '1 PP '2 è un parallelogramma.

Esiste h_1 in R tale che $OP'_1 = h_1v_1$

Esiste h_2 in R tale che $OP'_2 = h_2v_2$

$$\overrightarrow{OP} = \overrightarrow{OP_1'} + \overrightarrow{OP_2'} = h_1 \mathbf{v}_1 + h_2 \mathbf{v}_2$$

Geometria e Combinatoria marcella.sama@uniroma3.it

<u>Teorema</u>: Dati comunque 3 vettori di $V^2(O)$, essi sono linearmente dipendenti.

Dimostrazione:

Siano v1, v2 e v3 i tre vettori. Distinguiamo due casi:

• Supponiamo *v*1 e *v*2 sono <u>linearmente dipendenti</u>.

Allora esistono h_1 e h_2 non entrambi nulli tali che $h_1v_1 + h_2v_2 = 0$.

Segue $h_1v_1 + h_2v_2 + 0v_3 = 0$ e i tre vettori sono lin. dipendenti;

• Supponiamo *v*1 e *v*2 sono <u>linearmente indipendenti</u>.

Allora esistono due numeri reali h_1 e h_2 tali che $v_3 = h_1v_1 + h_2v_2$

Segue $h_1v_1 + h_2v_2 + (-1)v_3 = 0$ e i tre vettori sono lin. dipendenti.

Teorema: Dati comunque n vettori di $V^2(O)$ con $n \ge 3$, essi sono linearmente dipendenti.

Dimostrazione:

Dobbiamo dimostrare che in $V^2(O)$ non esistono più di due vettori che siano tra loro linearmente indipendenti.

Sappiamo che 3 vettori in $V^2(O)$ sono tra loro lin. dipendenti.

Esistono quindi *h*1, *h*2 e *h*3 <u>non tutti nulli</u> tali che:

$$h_1v_1 + h_2v_2 + h_3v_3 = 0$$

Ora siano dati *n* vettori v_1 , v_2 , v_3 , v_4 , ..., v_n , con n > 3.

Allora si ha: $h_1v_1 + h_2v_2 + h_3v_3 + \mathbf{0}v_4 + \mathbf{0}v_5 + ... + \mathbf{0}v_n = 0$.

Pertanto gli *n* vettori sono linearmente dipendenti.

Nel caso di vettori dello spazio si dimostrano i seguenti teoremi:

<u>Teorema</u>: Siano $v_1 := \overrightarrow{OP}_1$, $v_2 := \overrightarrow{OP}_2$ due vettori di $V^3(O)$ <u>linearmente indipendenti</u>. L'insieme delle loro combinazioni lineari è formato da tutti e soli i vettori \overrightarrow{OP} tali che il punto P <u>appartenga al piano passante per i punti non allineati</u> O, P_1 e P_2 .

<u>Teorema</u>: Tre vettori $v_1 := \overrightarrow{OP_1}$, $v_2 := \overrightarrow{OP_2}$ e $v_3 := \overrightarrow{OP_3}$ di $V^3(O)$ sono <u>linearmente dipendenti</u> se e solo se i punti O, P_1 , P_2 e P_3 sono <u>complanari</u>.

Nel caso di vettori dello spazio si dimostrano i seguenti teoremi:

<u>Teorema</u>: Dati tre vettori <u>linearmente indipendenti</u> di $V^3(O)$, ogni vettore di $V^3(O)$ è loro combinazione lineare.

<u>In altre parole</u>: se $v_1 := \overrightarrow{OP}_1$, $v_2 := \overrightarrow{OP}_2$ e $v_3 := \overrightarrow{OP}_3$ sono vettori di $V^3(O)$ <u>linearmente indipendenti</u>, allora per ogni $v := \overrightarrow{OP}$ in $V^3(O)$, esistono h_1 in R, h_2 in R e h_3 in R tali che:

$$v = h_1 v_1 + h_2 v_2 + h_3 v_3$$
.

<u>Teorema</u>: Dati comunque $n \ge 4$ vettori di $V^3(O)$, essi sono linearmente dipendenti.