TECHNION, ISRAEL INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering

Robot Navigation

Part #1 of Mini-Project

E. Rimon Issued: May 28 2025 Spring 2025 Due: June 25 2025

C-space for a Polygonal Robot in a Polygonal Environment

This is Exercise 7(a) of Chapter 3 in Latombe's book. In Section 1.6 of Chapter 3 an algorithm is described for building fixed- θ slices of the c-space obstacle CB due to a convex polygonal robot \mathcal{A} intersecting a convex polygonal obstacle \mathcal{B} .

- 1. Write a program that implements the algorithm as follows:
 - **Input:** Description of a convex polygonal robot and a single convex polygonal obstacle, as a list of their vertices described in counter-clockwise order.
 - Output: For 32 regularly spaced θ layers (starting at $\theta = 0$ until $\theta = 2\pi 2\pi/32$), compute the vertices of the c-obstacle slices, and draw the lines connecting these vertices.
 - **Test:** Test your code on the robot \mathcal{A} and the obstacle \mathcal{B}_1 given in Figure 1. Give us a copy of your code and a printout of layers 1, 8, 16, 32.
- 2. Extend your code to accommodate a list of possibly overlapping convex polygonal obstacles. Test your code on the example of Figure 1. The example shows an apartment with two bedrooms and a living room connected by a short corridor. The outer wall is represented by a union of four rectangular obstacles $\mathcal{B}_{0_1}, \mathcal{B}_{0_2}, \mathcal{B}_{0_3}, \mathcal{B}_{0_4}$. The interior walls are rectangular obstacles $\mathcal{B}_1, \ldots, \mathcal{B}_5$. The two doors are $\mathcal{B}_6, \mathcal{B}_7$. Coordinates of \mathcal{B}_2 : (17,17), (18,17), (18,29), (17,29). Coordinates of \mathcal{B}_{0_1} : (0,29), (32,29), (32,30), (0,30). Use the figure to build the input. Give us a printout of layers 1,8,16,32. It would be nice if you mark in each slice the regions belonging to the respective physical obstacles.
- 3. As a preparation for part #2 of the mini-project, set up an (x, y, θ) grid of dimension $32 \times 32 \times 32$. For every θ layer, fill the cells of the respective c-obstacles boundaries by 1. The others should be filled with 0. Note that you will need a code that draws a discretized straight line between two given endpoints. Note, too, that portions of the c-obstacles corresponding to the outer wall spill out of the grid. Give us a printout of layers 1, 8, 16, 32.

The Matlab command axis equal should be used when plotting the figures.

Figure 1: The Bed Movers Problem.