Definiciones y Teoremas

Corolario 1

Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{K} , sean \mathcal{B} , \mathcal{B}' bases ordenadas de V. Entonces

$$[v]_{\mathcal{B}} = [Id]_{\mathcal{B}'\mathcal{B}} [v]_{\mathcal{B}'}, \quad \forall v \in V.$$

Definición 1

Sea V un espacio vectorial de dimensión finita sobre el cuerpo K y sean \mathcal{B} y \mathcal{B}' bases ordenadas de V. La matriz $P = [Id]_{\mathcal{B}'\mathcal{B}}$ es llamada la matriz de cambio de base de la base \mathcal{B}' a la base \mathcal{B} . Basicamente es una matriz que nos permite cambiar las coordenadas de un vector en una base por las coordenadas del mismo vector en otra base.

Método para hallar la matriz de cambio de base

Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{K} , sean \mathcal{B} , \mathcal{B}' bases ordenadas de V, para hallar la matriz de cambio de base de \mathcal{B} a \mathcal{B}' ,

1. Se construye la matriz $P = [Id]_{\mathcal{BB}'}$ colocando como columnas cada uno de los vectores de la base \mathcal{B} expresados en la base \mathcal{B}' . Es decir si $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$:

$$P = [Id]_{\mathcal{B}\mathcal{B}'} = \begin{bmatrix} \vdots & \vdots & \vdots \\ [v_1]_{\mathcal{B}'} & [v_2]_{\mathcal{B}'} & \cdots & [v_n]_{\mathcal{B}'} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

2. Para hacer uso de la matriz de cambio de base, se tiene que multiplicar la matriz P por el vector v expresado en la base \mathcal{B} , y dará como resultado el vector v expresado en la base \mathcal{B}' . Es decir, si $v \in V$, entonces

$$[v]_{\mathcal{B}'} = P[v]_{\mathcal{B}} = [Id]_{\mathcal{B}\mathcal{B}'}[v]_{\mathcal{B}}.$$

Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{K} , sean \mathcal{C} la base canónica de V, \mathcal{B} una base ordenada de V, para hallar la matriz de cambio de base de \mathcal{C} a \mathcal{B} ,

1. Se construye la matriz $P = [Id]_{\mathcal{BC}}$ colocando como columnas cada uno de los vectores de la base \mathcal{B} expresados en la base canónica. Es decir si $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$:

$$P = [Id]_{\mathcal{BC}} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ [v_1]_{\mathcal{C}} & [v_2]_{\mathcal{C}} & \cdots & [v_n]_{\mathcal{C}} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ v_1 & v_2 & \cdots & v_n \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

2. Luego, como estamos trabajando con el operador lineal identidad, P es invertible y la matriz de cambio de base de C a B es la matriz P^{-1} .

Ejemplo

Ejercicio 1

Sea $\mathcal{B} = \{(1, -2, 1), (2, -3, 3), (-2, 2, -3)\}$ un subconjunto del \mathbb{R} -espacio vectorial \mathbb{R}^3 , hallar la matriz de cambio de base de la base canónica \mathcal{C} a \mathcal{B} y con el resultado, obtener las coordenadas, respecto de \mathcal{B} , de los vectores (1, 0, 1) y (-1, 2, 1).

Solución: Para hallar la matriz de cambio de base de la base canónica \mathcal{C} a \mathcal{B} primero obtengo la matriz de cambio de base de \mathcal{B} a \mathcal{C} : Se tiene que $[v]_{\mathcal{C}} = P_{\mathcal{BC}} \cdot [v]_{\mathcal{B}}$.

Primero debo expresar los vectores de \mathcal{B} como combinacion lineal de los vectores de la base canónica para obtener las coordenadas:

$$(1, -2, 1) = 1(1, 0, 0) + (-2)(0, 1, 0) + 1(0, 0, 1)$$
$$(2, -3, 3) = 2(1, 0, 0) + (-3)(0, 1, 0) + 3(0, 0, 1)$$
$$(-2, 2, -3) = -2(1, 0, 0) + 2(0, 1, 0) + (-3)(0, 0, 1)$$

Entonces, la matriz de cambio de base de \mathcal{B} a \mathcal{C} es:

$$P_{\mathcal{BC}} = \begin{bmatrix} 1 & 2 & -2 \\ -2 & -3 & 2 \\ 1 & 3 & -3 \end{bmatrix}$$

Ahora, para obtener la matriz de cambio de base de \mathcal{C} a \mathcal{B} , debo invertir la matriz anterior, ya que lo que se busca es $[v]_{\mathcal{B}}$: planteo la matriz ampliada:

$$\begin{pmatrix} 1 & 2 & -2 & | & 1 & 0 & 0 \\ -2 & -3 & 2 & | & 0 & 1 & 0 \\ 1 & 3 & -3 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow{f_2 + 2f_1} \begin{pmatrix} 1 & 2 & -2 & | & 1 & 0 & 0 \\ 0 & 1 & -2 & | & 2 & 1 & 0 \\ 1 & 3 & -3 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow{f_3 - f_1} \begin{pmatrix} 1 & 2 & -2 & | & 1 & 0 & 0 \\ 0 & 1 & -2 & | & 2 & 1 & 0 \\ 0 & 1 & -1 & | & -1 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{f_3 - f_2} \begin{pmatrix} 1 & 2 & -2 & | & 1 & 0 & 0 \\ 0 & 1 & -2 & | & 2 & 1 & 0 \\ 0 & 0 & 1 & | & -3 & -1 & 1 \end{pmatrix} \xrightarrow{f_2 + 2f_3} \begin{pmatrix} 1 & 2 & -2 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -4 & -1 & 2 \\ 0 & 0 & 1 & | & -3 & -1 & 1 \end{pmatrix}$$

$$\xrightarrow{f_1 + 2f_3} \begin{pmatrix} 1 & 2 & 0 & | & -5 & -2 & 2 \\ 0 & 1 & 0 & | & -4 & -1 & 2 \\ 0 & 0 & 1 & | & -3 & -1 & 1 \end{pmatrix} \xrightarrow{f_1 - 2f_2} \begin{pmatrix} 1 & 0 & 0 & | & 3 & 0 & -2 \\ 0 & 1 & 0 & | & -4 & -1 & 2 \\ 0 & 0 & 1 & | & -3 & -1 & 1 \end{pmatrix}$$

Entonces, la matriz de cambio de base de \mathcal{C} a \mathcal{B} es:

$$P_{\mathcal{CB}} = \begin{bmatrix} 3 & 0 & -2 \\ -4 & -1 & 2 \\ -3 & -1 & 1 \end{bmatrix}$$

Para hallar las coordenadas de los vectores (1,0,1) y (-1,2,1) en la base \mathcal{B} , debo plantear la matriz de cambio de base de \mathcal{C} a \mathcal{B} y multiplicarla por el vector:

$$[(1,0,1)]_{\mathcal{B}} = \begin{bmatrix} 3 & 0 & -2 \\ -4 & -1 & 2 \\ -3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix}$$
$$[(-1,2,1)]_{\mathcal{B}} = \begin{bmatrix} 3 & 0 & -2 \\ -4 & -1 & 2 \\ -3 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -5 \\ 4 \\ 2 \end{bmatrix}$$