Méthodes modernes en topologie algébrique

Par Henri Cartan, Paris 1)

1. Limites projectives de groupes

Nous appelons *limite projective* d'une famille de groupes ce que Steenrod²) appelle ,,inverse homomorphism system"; l'expression ,,limite projective" a donc ici un sens plus général que chez A. Weil³).

Soit I un ensemble ordonné filtrant à gauche, c'est-à-dire un ensemble d'éléments α , β ,... muni d'une relation d'ordre (partielle) notée $\alpha \subset \beta$, telle que, quels que soient α et β , existe γ satisfaisant à $\gamma \subset \alpha$ et $\gamma \subset \beta$. Attachons à chaque $\alpha \in I$ un groupe topologique abélien G_{α} , noté additivement, et supposons donnée, pour tout couple (α, β) tel que $\alpha \subset \beta$, une représentation continue $\varphi_{\alpha\beta}$ de G_{α} dans G_{β} , de manière que soit satisfaite la condition de transitivité suivante: si $\alpha \subset \beta \subset \gamma$, la représentation $\varphi_{\alpha\gamma}$ est composée de $\varphi_{\alpha\beta}$ et $\varphi_{\beta\gamma}$ (ce que nous écrirons $\varphi_{\alpha\gamma} = \varphi_{\beta\gamma} \circ \varphi_{\alpha\beta}$). La limite projective des groupes G suivant les représentations $\varphi_{\alpha\beta}$ est l'ensemble des systèmes $(x_{\alpha})_{\alpha\in I}$ tels que, pour $\alpha \subset \beta$, on ait $x_{\beta} = \varphi_{\alpha\beta}(x_{\alpha})$, cet ensemble G étant muni de la structure de groupe $(x_{\alpha}) + (y_{\alpha}) = (x_{\alpha} + y_{\alpha})$ (G est donc sous-groupe du groupe-produit des G_{α}). Le groupe G sera muni de la topologie induite par celle du groupe-produit⁴) des G_{α} ; si les G_{α} sont compacts⁵), il en est de même de G.

Soit, pour chaque α , un sous-groupe H_{α} de G_{α} , de manière que, pour $\alpha \subset \beta$, $\varphi_{\alpha\beta}(H_{\alpha}) \subset H_{\beta}$. On identifiera la limite projective des H_{α} à un sous-groupe de la limite projective des G_{α} .

Soit J un sous-ensemble filtrant (à gauche) de I, et soit G' la limite projective des $G_{\alpha}(\alpha \in J)$ suivant les représentations $\varphi_{\alpha\beta}$. Il existe une représentation continue, dite canonique, de G dans G', savoir celle qui, à l'élément $(x_{\alpha})_{\alpha \in I}$ de G, associe l'élément $(x_{\alpha})_{\alpha \in J}$ de G'. Lorsque J est un sous-ensemble fondamental de I (pour tout $\alpha \in I$ existe un $\beta \in J$ tel

¹⁾ Note de la rédaction: L'avant-propos de cet article a paru dans "Festschrift Andreas Speiser", Zurich 1945, p. 246. Il y manque l'indication (1 bis): Lefschetz: Topologie (Amer. Math. Soc. Colloq. vol. XII), Chap. II, § 5.

²) Steenrod, Amer. Journal of Math., t. 58, 1936, p. 661-701.

 $^{^3}$) A. Weil, L'intégration dans les groupes topologiques (Actualités, n° 869, 1940, chez Hermann à Paris); voir pages 23 et suivantes.

⁴⁾ Voir par ex. N. Bourbaki, Topologie générale, chap. III et IV (Actualités, n° 916), p. 18.

 $^{^{5})}$ Le mot "compact" est employé au sens de Bourbaki (bicompact au sens d'Alexandroff-Hopf).

que $\beta \subset \alpha$), la représentation canonique de G dans G' est un isomorphisme de G sur G': on identifie alors G et G'.

Proposition 1.1. Attachons à chaque $\alpha \in I$ un sous-ensemble compact non vide A_{α} de G_{α} , de manière que, pour $\alpha \subset \beta$, $\varphi_{\alpha\beta}(A_{\alpha}) \subset A_{\beta}$. Alors il existe un élément (x_{α}) de la limite projective, tel que $x_{\alpha} \in A_{\alpha}$ pour tout α .

Proposition 1.2. Soient deux limites projectives relatives au même ensemble d'indices: G, lim. proj. de G_{α} suivant des $\varphi_{\alpha\beta}$, et G', lim. proj. de G'_{α} suivant des $\varphi'_{\alpha\beta}$. Soit, pour chaque α , une représentation continue f_{α} de G_{α} dans G'_{α} , de manière que, pour $\alpha \subset \beta$, on ait $f_{\beta} \circ \varphi_{\alpha\beta} = \varphi'_{\alpha\beta} \circ f_{\alpha}$. Alors il existe une représentation continue f et une seule de G dans G', qui transforme l'élément (x_{α}) de G dans l'élément $(f_{\alpha}(x_{\alpha}))$ de G'; si chaque f_{α} est un isomorphisme de G_{α} sur G'_{α} , f est un isomorphisme de G sur G'. Dans tous les cas, l'ensemble des $x = (x_{\alpha})$ de G tels que f(x) = 0 n'est autre que la limite projective des sous-groupes H_{α} formés des x_{α} tels que $f_{\alpha}(x_{\alpha}) = 0$; en outre, lorsque les G_{α} sont compacts, le groupe image f(G) n'est autre que la limite projective des sous-groupes $f_{\alpha}(G_{\alpha})$.

Démontrons seulement la dernière partie de l'énoncé: soit (y_{α}) un élément de la lim. proj. des $f_{\alpha}(G_{\alpha})$; on veut trouver un élément (x_{α}) de G tel que $f_{\alpha}(x_{\alpha}) = y_{\alpha}$ pour tout α . Pour cela, on considère, pour chaque α , l'ensemble A_{α} des $x_{\alpha} \in G_{\alpha}$ tels que $f_{\alpha}(x_{\alpha}) = y_{\alpha}$, et on applique la proposition 1.1.

2. Groupe d'homologie d'un espace compact

Nous supposons connues les notions⁶) de complexe simplicial abstrait (il s'agira seulement de complexes finis), de simplexe orienté, de chaîne (sur un complexe simplicial K et sur un groupe abélien g), de bord d'une chaîne (nous préférons le mot "bord" au mot "frontière" qui a un autre sens en Topologie générale). Le groupe d'homologie (ou groupe de Betti) du complexe K (pour un groupe de base g), que nous noterons $G_g(K)$, est le quotient du groupe des cycles (chaînes dont le bord est nul) par le sous-groupe des bords (le bord d'un bord est toujours nul); dans $G_g(K)$, on distingue, pour chaque entier $r \geq 0$, le sous-groupe $G_g^r(K)$ des cycles de dimension r, et $G_g(K)$ est somme directe des sous-groupes $G_g^r(K)$.

Plus généralement, le groupe d'homologie de K modulo H (H désignant un sous-complexe de K), que nous noterons $G_{\mathfrak{g}}(K/H)$ (ou G(K/H) quand

⁶⁾ Pour toutes les notions fondamentales, voir par ex. le Traité d'Alexandroff-Hopf.

il sera inutile de préciser le groupe de base g), est le quotient du groupe des cycles-modulo H (chaînes dont le bord est une chaîne de H) par le sous-groupe, somme des chaînes de H et des bords de chaînes de K. Ici encore, on distingue le sous-groupe $G_q^r(K/H)$ relatif à la dimension r.

Le groupe de base g sera toujours muni d'une topologie, ce qui donne une topologie évidente sur $G_g(K/H)$; cette dernière topologie est séparée si le groupe des bords est fermé dans le groupe des chaînes: pour cela, nous supposerons²) que g satisfait à la condition: pour tout entier n, le sous-groupe des $n \xi$ (où ξ parcourt g) est fermé dans g. Si g est discret, ou compact, cette condition est vérifiée.

Rappelons enfin qu'une application simpliciale f de K dans un complexe K', telle que $f(H) \subset H'$ (H' sous-complexe de K'), definit une représentation continue ψ_f de G(K/H) dans G(K'/H'), qui transforme tout élément de $G^r(K/H)$ en un élément $G^r(K'/H')$; et les représentations ainsi associées aux applications simpliciales satisfont à une évidente condition de transitivité.

Pour définir le groupe d'homologie d'un espace compact A modulo un sous-espace fermé B, nous suivons la méthode de Cech. Pour chaque recouvrement α de A par un nombre fini d'ensembles ouverts, on considère, avec Alexandroff, le nerf K_{α} du recouvrement: c'est un complexe simplicial dont les "sommets" sont les ensembles du recouvrement, une famille de "sommets" constituant un "simplexe" si les ensembles correspondants du recouvrement ont une intersection non vide. On définit le sous-complexe H_{α} suivant: un simplexe de K_{α} appartient à H_{α} si ses "sommets" (qui sont des ensembles du recouvrement α) ont, sur B, des traces dont l'intersection n'est pas vide. Pour chaque recouvrement α , soit G_{α} le groupe $G_{\alpha}(K_{\alpha}/H_{\alpha})$. Dans l'ensemble I des recouvrements ouverts finis, considérons la relation d'ordre: $\alpha \subset \beta$ si tout ensemble de α est contenu dans au moins un ensemble de β ; I est filtrant à gauche. Pour $\alpha \subset \beta$, associons à chaque ensemble de α un ensemble de β le contenant; on obtient une application simpliciale $f_{\alpha\beta}$ de K_{α} dans K_{β} , telle que $f_{\alpha\beta}(H_{\alpha}) \subset H_{\beta}$; d'où une représentation continue $\varphi_{\alpha\beta}$ de G_{α} dans G_{β} . On prouve que $\varphi_{\alpha\beta}$ ne dépend pas de l'application particulière $f_{\alpha\beta}$, et que, pour $\alpha \subset \beta \subset \gamma$, on a $\varphi_{\alpha\gamma} = \varphi_{\beta\gamma} \circ \varphi_{\alpha\beta}$. Cela posé, le groupe d'homologie de A modulo B, noté $G_{g}(A/B)$, est par définition la limite projective des groupes $G_{\mathfrak{g}}(K_{\alpha}/H_{\alpha})$ suivant les représentations $\varphi_{\alpha\beta}$; le sous-groupe $G_q^r(A/B)$ relatif à la dimension r est la limite projective des sous-groupes $G_{\sigma}^{r}(K_{\alpha}/H_{\alpha})$.

Si l'espace A est de dimension $brouwerienne \leqslant n$ (c'est-à-dire possède

des recouvrements ouverts finis arbitrairement fins dont le nerf est de dimension $\leq n$), les groupes $G^r(A/B)$ sont nuls pour r > n.

Un cas important est celui où le groupe de base g est le groupe additif des nombres réels modulo un, que nous noterons T; alors le groupe $G_T(A/B)$ est compact.

3. Représentation définie par une application continue

Soient deux espaces compacts A et A', f une application continue de A dans A', B un sous-espace fermé de A, B' un sous-espace fermé de A' tel que $f(B) \subset B'$. Alors f définit une représentation continue φ_f de $G^r(A/B)$ dans $G^r(A'/B')$. Si f se déforme continûment sans que f(B) cesse d'être contenu dans B', la représentation φ_f reste invariable.

Si l'on a un troisième espace compact A'', une application continue h de A' dans A'', un sous-espace fermé B'' de A'' tel que $h(B') \subset B''$, la représentation de $G^r(A/B)$ dans $G^r(A''/B'')$, définie par l'application composée $h \circ f$, n'est autre que la composée $\varphi_h \circ \varphi_f$.

Nous examinerons trois cas particuliers importants:

1° celui où A est un sous-espace de A', f étant l'application identique de A dans A', et où B = B': d'où une représentation de $G^r(A/B)$ dans $G^r(A'/B)$;

2° celui où A' est identique à A, f étant l'application identique de A dans A, avec $B \subset B'$; d'où une représentation de $G^r(A/B)$ dans $G^r(A/B')$;

3° celui où f est l'application "canonique"7) de A dans l'espace-quotient A' obtenu en identifiant entre eux les points de B, et où B' est le sous-espace f(B) (réduit à un point); alors f est un homéomorphisme de A-B sur A'-B', et on démontre que φ , est un isomorphisme de $G^r(A/B)$ sur $G^r(A'/B')$.

L'examen de ce dernier cas conduit à la nouvelle notion que voici:

4. Groupe de Lefschetz d'un espace localement compact

Soit E un espace localement compact; désignons par \widehat{E} l'espace E si celui-ci est compact, sinon l'espace compact obtenu par adjonction d'un point à E (Alexandroff)⁸). Soit I le sous-espace de \widehat{E} formé de ce point si E n'est pas compact; si E est compact, I désignera le sous-espace vide.

⁷⁾ Bourbaki, Théorie des ensembles (fasc. de résultats) (Actualités, n° 846);

⁸⁾ Voir Bourbaki, Topologie générale, chap. I et II (Actualités, n° 858), p. 65-67.

Par définition, le groupe de Lefschetz $\Gamma_g^r(E)$ est le groupe $G_g^r(\widehat{E}/I)$; il coıncide avec le groupe $G_g^r(E)$ si E est compact. Dans tous les cas, le groupe $\Gamma_T^r(E)$ est compact.

Théorème 4.1. Soient E un espace localement compact, A un espace compact et B un sous-espace fermé de A, f un homéomorphisme de A-B sur E. Alors f définit un isomorphisme φ_f de $G^r(A/B)$ sur le groupe de Lefschetz $\Gamma^r(E)$.

Bornons-nous en effet au cas où E n'est pas compact. Alors f se prolonge en une application continue \hat{f} de A dans \hat{E} , telle que $\hat{f}(B) = I$. Or la représentation $\varphi_{\hat{f}}$ de $G^r(A/B)$ dans $G^r(\hat{E}/I)$ est un isomorphisme du premier groupe sur le second (cf. 3° cas particulier du n° 3). Il suffit donc de prendre pour φ_f l'isomorphisme $\varphi_{\hat{f}}$.

En particulier, on identifiera le groupe $G^r(A/B)$ au groupe de Lefschetz $\Gamma^r(A-B)$.

Théorème 4.2. Soient E et E' deux espaces localement compacts, f une application continue de E dans E', telle que l'image réciproque de tout compact de E' soit un compact de E. Alors f définit une représentation continue φ_f de $\Gamma^r(E)$ dans $\Gamma^r(E')$. Si on a en outre une application continue h de E' dans un espace localement compact E'', telle que l'image réciproque de tout compact soit un compact, la représentation de $\Gamma^r(E)$ dans $\Gamma^r(E'')$, définie par l'application composée $h \circ f$, est la représentation composée $\varphi_h \circ \varphi_f$. En particulier, si f est un homéomorphisme de E sur E', φ_f est un isomorphisme de $\Gamma^r(E)$ sur $\Gamma^r(E')$.

Démonstration abrégée: f se prolonge en une application continue \hat{f} de \hat{E} dans \hat{E}' , telle que $\hat{f}(I) \subset I'$.

5. Les trois représentations fondamentales

Soit E un espace localement compact, F un sous-espace ferm'e de E, U=E-F le complémentaire (ouvert) de F dans E. Pour un recouverment ouvert fini α de \widehat{E} , soit K_{α} le nerf de α , H_{α} le sous-complexe nerf de α en tant que recouverment de \widehat{F} (\widehat{F} désigne l'adhérence de F dans \widehat{E}), et L_{α} le sous-complexe nerf de α en tant que recouverment de I (notation du n° 4). Les groupes $\Gamma^r(E)$, $\Gamma^r(F)$ et $\Gamma^r(U)$ sont respectivement identifiées aux limites projectives des $G^r(K_{\alpha}/L_{\alpha})$, $G^r(H_{\alpha}/L_{\alpha})$ et $G^r(K_{\alpha}/H_{\alpha})$.

l° L'application simpliciale identique de H_{α} dans K_{α} définit une représentation de $G^r(H_{\alpha}/L_{\alpha})$ dans $G^r(K_{\alpha}/L_{\alpha})$; par passage à la limite

projective (conformément à la proposition 1.2), on en déduit une représentation continue (dite canonique) de $\Gamma^r(F)$ dans $\Gamma^r(E)$; c'est aussi la représentation définie par l'application identique de F dans E (conformément au théorème 4.2).

- 2° L'application simpliciale identique de K_{α} dans L_{α} définit une représentation de $G^r(K_{\alpha}/L_{\alpha})$ dans $G^r(K_{\alpha}/H_{\alpha})$; par passage à la limite projective, on en déduit une représentation continue (dite canonique) de $\Gamma^r(E)$ dans $\Gamma^r(U)$; c'est aussi la représentation de $G^r(\widehat{E}/I)$ dans $G^r(\widehat{E}/\widehat{E}-U)$ définie par l'application identique de \widehat{E} dans \widehat{E} (cf. n° 3, 2° cas particulier).
- 3° A chaque élément de $G^r(K_\alpha/H_\alpha)$ faisons correspondre son bord, qui est un cycle du complexe H_α ; il définit un cycle de H_α modulo L_α ; d'où une représentation de $G^r(K_\alpha/H_\alpha)$ dans $G^{r-1}(H_\alpha/L_\alpha)$. Par passage à la limite projective, on en déduit une représentation continue (dite canonique) de $\Gamma^r(U)$ dans $\Gamma^{r-1}(F)$; l'élément de $\Gamma^{r-1}(F)$ qui correspond ainsi à un élément de $\Gamma^r(U)$ sera appelé le bord de cet élément.

On a ainsi une cascade de représentations, dites canoniques, de chacun des groupes de la suite

$$\ldots, \Gamma^r(F), \Gamma^r(E), \Gamma^r(U), \Gamma^{r-1}(F), \Gamma^{r-1}(E), \Gamma^{r-1}(U), \ldots$$

dans le suivant; et ces représentations jouissent de la propriété fondamentale suivante:

Théorème 5.1. (Théorème fondamental.) Γ_1 , Γ_2 , Γ_3 désignant trois groupes consécutifs quelconques de la suite précédente, φ désignant la représentation canonique de Γ_1 dans Γ_2 , et ψ la représentation canonique de Γ_2 dans Γ_3 , la représentation composée $\psi \circ \varphi$ est nulle. En outre, lorsque le groupe de base g est le groupe T, le sous-groupe de Γ_2 formé des éléments dont l'image par ψ est nulle, est précisément l'image $\varphi(\Gamma_1)$.

Démonstration: évidente à partir du cas simplicial, et en appliquant la proposition 1.2.

Le théorème précédent est la clef d'un grand nombre de théorèmes importants en Topologie algébrique, comme nous allons le montrer sur quelques exemples. Auparavant, examinons un cas particulier:

Proposition 5.1. Si F est un sous-ensemble à la fois ouvert et fermé de E localement compact, la représentation canonique de $\Gamma^r(F)$ dans $\Gamma^r(E)$ est un isomorphisme de $\Gamma^r(F)$ sur un sous-groupe de $\Gamma^r(E)$, auquel on identifiera toujours $\Gamma^r(F)$.

Démonstration: évidente à partir du cas simplicial, par passage à la limite projective conformément à la proposition 1.2.

Dans l'hypothèse de la proposition précédente, $\Gamma^r(E)$ est somme directe de ses sous-groupes $\Gamma^r(F)$ et $\Gamma^r(U)$ (U désigne toujours E-F). Plus généralement:

Proposition 5.2. Si un espace localement compact E est réunion (finie ou infinie) d'ensembles ouverts U_i deux à deux sans point commun (les U_i sont donc aussi fermés), $\Gamma^r(E)$ est somme topologique directe⁹) de ses sous-groupes $\Gamma^r(U_i)$.

Cette proposition peut se ramener à la précédente grâce à une récurrence et au théorème suivant, intéressant par lui-même.

Théorème 5.2. Soit E un espace localement compact, réunion d'une famille filtrante (croissante) de sous-ensembles ouverts E_i . Les applications canoniques de $\Gamma^r(E)$ dans les groupes $\Gamma^r(E_i)$ définissent (conformément à la proposition 1.2) une représentation continue de $\Gamma^r(E)$ dans la limite projective des $\Gamma^r(E_i)$; cette représentation est un isomorphisme de $\Gamma^r(E)$ sur cette limite projective, qu'on identifiera donc à $\Gamma^r(E)$.

Ce théorème résulte de la proposition suivante, facile à vérifier: Soit A compact, et soient B_i des sous-ensembles fermés de A formant une famille filtrante (décroissante) d'intersection B; les représentations canoniques de $G^r(A/B)$ dans $G^r(A/B_i)$ (cf. n° 3, 2^e cas particulier) définissent une représentation de $G^r(A/B)$ dans la limite projective des $G^r(A/B_i)$, qui est un isomorphisme de $G^r(A/B)$ sur cette limite projective.

6. Application à l'invariance du domaine

Dans ce numéro et les suivants, nous supposons que le groupe de base g est le groupe T (groupe additif des nombres réels modulo 1), de manière à pouvoir nous servir du théorème 5.1.

Proposition 6.1. Soit E un espace localement compact¹⁰) de dimension $\leq n$, F un sous-espace fermé de E, U le complémentaire de F dans E. Les trois conditions suivantes sont équivalentes:

⁾ Un groupe abélien topologique G est somme topologique directe de sous-groupe G_i si tout élément x de G se met d'une manière et d'une seule sous la forme $\sum x_i$, la famille des $x_i \in G_i$ étant sommable (au sens de Bourbaki, loc. cit. en 4), p. 34), et chaque x_i étant fonction continue de x.

¹⁰⁾ Par définition, la dimension d'un espace localement compact est la borne supérieure des dimensions de ses sous-espaces compacts.

- a) le groupe $\Gamma^n(F)$ est nul;
- b) l'image canonique de $\Gamma^n(F)$ dans $\Gamma^n(E)$ est nulle;
- c) la représentation qui, à chaque élément de $\Gamma^n(E)$, fait correspondre sa trace dans $\Gamma^n(U)$, est $biunivoque^{11}$) (les traces de deux éléments distincts sont distinctes).

En effet, $\Gamma^{n+1}(U)$ est nul, donc (théorème 5.1) la représentation canonique de $\Gamma^n(F)$ dans $\Gamma^n(E)$ est biunivoque, ce qui prouve l'équivalence des conditions a) et b). Or la condition b) équivaut à c), d'après le théorème 5.1.

Proposition 6.2. Soit E localement compact de dimension $\leq n$, F et F' deux sous-ensembles fermés tels que $F' \subset F$. Si $\Gamma^n(F)$ est nul, $\Gamma^n(F')$ est aussi nul.

C'est une conséquence immédiate de la proposition 6.1 appliquée à F et à F', compte tenu du fait que la représentation canonique de $\Gamma^n(F')$ dans $\Gamma^n(E)$ est composée des représentations canoniques de $\Gamma^n(F')$ dans $\Gamma^n(F)$ et de $\Gamma^n(F)$ dans $\Gamma^n(E)$.

Théorème 6.1. B_n désignant la boule ouverte de l'espace numérique de dimension n, le groupe $\Gamma^n(F')$ est nul pour tout vrai sous-ensemble fermé F' de B_n .

En effet, soit V l'intérieur d'une boule fermée contenue dans B_n et sans point commun avec F', et soit F le complémentaire de V dans B_n . Le groupe $\Gamma^n(F)$ est nul, car F peut être continûment déformé en la frontière de B_n ; donc $\Gamma^n(F')$ est nul, d'après la proposition 6.2.

Théorème 6.2. Soit U un sous-ensemble ouvert non vide de la boule ouverte B_n ; la représentation canonique de $\Gamma^n(B_n)$ dans $\Gamma^n(U)$ est biunivoque, et, en particulier, $\Gamma^n(U)$ n'est pas nul¹²).

En effet, $\Gamma^n(B_n-U)$ est nul d'après le théorème 6.1; il suffit alors d'appliquer le théorème 5.1.

L'ensemble des théorèmes 6.1 et 6.2 fournit ce qu'il est convenu d'appeler le théorème de "l'invariance du domaine": soit A un sous-espace localement compact de la boule ouverte B_n ; la propriété, pour un point a de A, d'être intérieur à A (propriété qui, a priori, est relative à l'espace ambiant B_n), peut être caractérisée intrinsèquement à l'espace topologique A: il faut et il suffit que, pour tout voisinage ouvert U suffisamment petit de a dans A, le groupe $\Gamma^n(U)$ ne soit pas nul.

¹¹⁾ Nous employons le mot biunivoque au sens de Bourbaki (loc. cit. en 7), p. 10, n° 8).

¹²) Nous admettons que le groupe $\Gamma_T^n(B_n)$ est isomorphe au groupe de base T, ce qui serait du reste facile à démortrer par récurrence sur n, en utilisant le théorème fondamental 5.1.

On peut compléter le théorème 6.2:

Théorème 6.3. Soit U un sous-ensemble ouvert, homéomorphe à B_n , de la boule ouverte B_n . La représentation canonique de $\Gamma^n(B_n)$ dans $\Gamma^n(U)$ est un isomorphisme du premier groupe sur le second.

Démonstration: d'après le théorème 6.2, il suffit de montrer que cette représentation φ est une représentation de $\Gamma^n(B_n)$ sur $\Gamma^n(U)$. Or soit $a \in U$, et soit V l'intérieur d'une boule fermée de centre a contenue dans U. Le groupe $\Gamma^{n-1}(B_n-V)$ est nul, donc (théorème 5.1) la représentation canonique de $\Gamma^n(B_n)$ dans $\Gamma^n(V)$ est une représentation sur $\Gamma^n(V)$, et comme elle est composée de φ et de la représentation canonique φ de $\Gamma^n(U)$ dans $\Gamma^n(V)$ (représentation φ qui est biunivoque d'après le théorème 6.2), il s'ensuit que φ est une représentation sur $\Gamma^n(U)$. C. Q. F. D.

7. Le groupe de Lefschetz, pour la dimension $m{n}$, d'une variété de dimension $m{n}$

Nous appelons variété de dimension n un espace topologique (connexe ou non) dont chaque point possède un voisinage ouvert homéomorphe à une boule ouverte de dimension n. Nous laissons ici de côté les généralisations possibles de la notion de variété combinatoire¹³).

Une boule ouverte B_n de dimension n est une variété de dimension n. Par définition, orienter B_n , c'est choisir l'un des deux isomorphismes possibles du groupe $\Gamma_T^n(B_n)$ sur le groupe de base T. Une orientation de B_n induit une orientation pour tout sous-ensemble ouvert U de B_n homéomorphe à B_n , d'après le théorème 6.3.

Par définition, orienter une variété E de dimension n, c'est orienter chaque sous-ensemble ouvert de E homéomorphe à B_n , de manière que si U et V sont deux tels sous-ensembles satisfaisant à $U \subset V$, l'orientation de U soit induite par celle de V. Dans le cas où E est précisément une boule B_n , cette définition de l'orientation est d'accord avec la précédente.

Une variété E de dimension n est orientable s'il est possible de l'orienter, dans le sens qui vient d'être défini. Pour cela, il faut et il suffit que chaque composante connexe de E soit orientable, et alors il y a deux orientations possibles (opposées) pour chaque composante connexe de E.

Théorème 7.1. Pour une variété E de dimension n, le groupe de Lefschetz $\Gamma_T^n(E)$ est somme topologique directe des sous-groupes $\Gamma_T^n(E_i)$

¹⁸) Voir par ex. le deuxième des mémoires de Čech : Ann. of Math., t. 34, 1933, p. 621—730.

relatifs aux composantes connexes E_i de E; chaque groupe $\Gamma_T^n(E_i)$ est isomorphe à T si E_i est orientable, isomorphe au groupe Z_2 (groupe additif des entiers modulo 2) si E_i n'est pas orientable.

La première partie de l'énoncé résulte immédiatement de la proposition 5.2. La deuxième partie résultera d'un théorème général relatif au groupe $\Gamma_n^n(E)$ d'un espace localement compact E de dimension $\leq n$:

Théorème 7.2. Soit E localement compact de dimension $\leq n$. Soient des ensembles ouverts non vides U_i , formant une base de la topologie de E; et soit, pour chaque U_i , un élément γ_i du groupe $\Gamma_T^n(U_i)$. Pour que les γ_i soient respectivement les traces, sur les U_i , d'un même élément γ de $\Gamma_T^n(E)$, il faut et il suffit que, pour tout couple (U_i, U_j) tel que $U_i \subset U_j$, γ_i soit la trace de γ_j . (Nous dirons alors que les γ_i forment un système cohérent.) L'élément γ est alors unique.

Admettons ce théorème pour un instant. Il prouve que la détermination du groupe $\Gamma_T^n(E)$ revient à celle des systèmes cohérents; si E est une variété connexe de dimension n, les U_i étant les sous-ensembles ouverts homéomorphes à la boule B_n , le groupe des systèmes cohérents est isomorphe au groupe Γ_T^n de l'un des U_i si E est orientable, sinon il est isomorphe au sous-groupe de $\Gamma_T^n(U_i)$ formé des éléments égaux à leur opposé. Et ceci achève la démonstration du théorème 7.1.

L'intérêt du théorème 7.1 est qu'il ne fait intervenir aucune hypothèse de triangulabilité ni, au cours de la démonstration, aucun procédé rappelant de près ou de loin un pavage de la variété.

Reste à démontrer le théorème 7.2; il résultera des deux théorèmes qui vont suivre.

8. Deux théorèmes sur le groupe de Lefschetz¹⁴) de la réunion de deux ensembles ouverts

Théorème 8.1. Soit E localement compact, réunion de deux sousensembles ouverts U_1 et U_2 , d'intersection V. Pour qu'un élément γ_1 de $\Gamma^r(U_1)$ et un élément γ_2 de $\Gamma^r(U_2)$ soient respectivement les traces d'un même élément γ de $\Gamma^r(E)$, il faut et il suffit que γ_1 et γ_2 aient même trace dans $\Gamma^r(V)$.

Théorème 8.2. Soit E localement compact, réunion de deux sousensembles ouverts U_1 et U_2 , d'intersection V. Le sous-groupe de $\Gamma^r(E)$ formé des éléments dont la trace dans $\Gamma^r(U_1)$ et la trace dans $\Gamma^r(U_2)$

¹⁴) Il est entendu que jusqu'à la fin de ce travail il s'agit uniquement des groupes de Lefschetz par rapport au groupe de base T.

sont nulles, est isomorphe au quotient de $\Gamma^{r+1}(V)$ par le sous-groupe engendré par les traces (dans $\Gamma^{r+1}(V)$) des éléments de $\Gamma^{r+1}(U_1)$ et de $\Gamma^{r+1}(U_2)$.

Ces deux théorèmes se démontrent uniquement par application répétée du théorème fondamental 5.1. Donnons à titre d'exemple la démonstration du théorème 8.1. La condition de l'énoncé est évidemment nécessaire; reste à montrer qu'elle est suffisante. Soit donc δ la trace commune de γ_1 et de γ_2 dans $\Gamma^r(V)$; et soit à montrer l'existence d'un élément γ de $\Gamma^r(E)$, ayant pour trace γ_1 dans $\Gamma^r(U_1)$ et γ_2 dans $\Gamma^r(U_2)$.

La suite des groupes $\Gamma^r(U_1)$, $\Gamma^r(V)$, $\Gamma^{r-1}(U_1-V)$ montre que δ a un bord nul dans $\Gamma^{r-1}(U_1-V)$. De même, le bord de δ dans $\Gamma^{r-1}(U_2-V)$ est nul. Comme E-V est réunion des sous-ensembles ouverts U_1-V et U_2-V sans point commun, $\Gamma^{r-1}(E-V)$ est somme directe de $\Gamma^{r-1}(U_1-V)$ et $\Gamma^{r-1}(U_2-V)$, et par suite le bord de δ dans $\Gamma^{r-1}(E-V)$ est nul. La suite des groupes $\Gamma^r(E)$, $\Gamma^r(V)$, $\Gamma^{r-1}(E-V)$ montre alors que δ est la trace d'un élément ε de $\Gamma^r(E)$. Soient ε_1 et ε_2 les traces de ε dans $\Gamma^r(U_1)$ et $\Gamma^r(U_2)$ respectivement. L'élément $\gamma_1-\varepsilon_1$ de $\Gamma^r(U_1)$, $\Gamma^r(V)$, $\Gamma^r(V)$ prouve que $\gamma_1-\varepsilon_1$ est l'image canonique d'un élément δ_1 de $\Gamma^r(U_1-V)$. De même, l'élément $\gamma_2-\varepsilon_2$ de $\Gamma^r(U_2)$ est l'image canonique d'un élément δ_2 de $\Gamma^r(U_2-V)$.

Dans le groupe $\Gamma^r(E)$, soit γ la somme de ε et des images canoniques de $\delta_1 \in \Gamma^r(U_1 - V)$ et de $\delta_2 \in \Gamma^r(U_2 - V)$. Cherchons la trace de γ dans $\Gamma^r(U_1)$: c'est la somme des traces de ε et de l'image canonique $\gamma_1 - \varepsilon_1$ de δ_1 ; c'est donc γ_1 . De même, γ a pour trace γ_2 dans $\Gamma^r(U_2)$. Et ceci achève la démonstration du théorème.

Il nous reste à montrer comment le théorème 7.2 peut se déduire des théorèmes 8.1 et 8.2. Soit donc, avec les notations du théorème 7.2, un système cohérent d'éléments γ_i ; montrons d'abord qu'il existe au plus un élément γ de $\Gamma^n(E)$ ayant pour trace γ_i dans $\Gamma^n(U_i)$, et ceci pour tout i. Autrement dit: si un élément δ de $\Gamma^n(E)$ a une trace nulle dans chacun des $\Gamma^n(U_i)$, il est nul; cela, moyennant la seule hypothèse que E est un espace localement compact de dimension $\leq n$. Et en effet, grâce au théorème 8.2, on voit de proche en proche que la trace de δ est nulle dans tout groupe $\Gamma^n(W)$, W désignant une réunion finie d'ensembles U_i . D'autre part, $\Gamma^n(E)$ est limite projective des $\Gamma^n(W)$ (théorème 5.2); donc δ est bien nul.

Pour achever de démontrer le théorème 7.2, il reste à prouver l'existence d'un élément γ de $\Gamma^n(E)$ ayant pour trace γ_i dans chaque $\Gamma^n(U_i)$. Il suffira de prouver que, pour chaque réunion finie W d'ensembles U_i ,

existe un élément δ_W de $\Gamma^n(W)$ ayant pour trace γ_i dans chacun des $\Gamma^n(U_i)$ relatifs aux U_i dont se compose W; car, en vertu de l'unicité de chacun des δ_W , les δ_W sont les traces mutuelles les uns des autres (d'une façon précise: si $W_1 \subset W_2$, δ_{W_1} est la trace de δ_{W_2} dans $\Gamma^n(W_1)$, et par suite définissent un élément γ de la limite projective $\Gamma^n(E)$. Quant à l'existence de l'élément δ_W , elle se prouve par récurrence sur le nombre des U_i dont W est la réunion. Supposons-la en effet démontrée pour un certain W, et soit W' la réunion de W et d'un certain U_i . Les éléments $\delta_W \in \Gamma^n(W)$ et $\gamma_i \in \Gamma^n(U_i)$ ont même trace dans $\Gamma^n(W \cap U_i)$, car ils ont même trace dans chacun des $\Gamma^n(U_j)$ relatifs aux U_j contenus dans $W \cap U_i$. Donc, en vertu du théorème 8.1, il existe un élément $\delta_{W'}$ de $\Gamma^n(W')$ ayant pour trace δ_W dans $\Gamma^n(W)$ et γ_i dans $\Gamma^n(U_i)$. C. Q. F. D.

Ceci achève la démonstration du théorème 7.2 et, par là, celle du théorème 7.1.

9. Le théorème de Jordan-Brouwer

Sous sa forme la plus générale, il se déduit facilement des résultats précédents.

Tout d'abord, les théorèmes 6.1 et 6.2 se généralisent de la manière suivante:

Théorème 9.1. Soit E une variété connexe de dimension n. Pour tout sous-ensemble ouvert non vide U de E, la représentation canonique de $\Gamma^n(E)$ dans $\Gamma^n(U)$ est biunivoque. Pour tout vrai sous-ensemble fermé F de E, le groupe $\Gamma^n(F)$ est nul.

Démonstration: la deuxième partie de l'énoncé se déduit de la première, d'après la proposition 6.1. Il reste seulement à prouver que si un élément γ de $\Gamma^n(E)$ a une trace nulle dans $\Gamma^n(U)$, il est nul. Or soit V_0 un sous-ensemble ouvert de U, homéomorphe à la boule B_n ; γ a une trace nulle dans $\Gamma^n(V_0)$, donc, de proche en proche, dans tous les $\Gamma^n(V)$ (quel que soit le sous-ensemble ouvert V homéomorphe à B_n); par suite γ est nul.

Théorème 9.2. Soit E une variété connexe de dimension n, F un sous-ensemble fermé tel que $\Gamma^{n-1}(F)$ soit nul. Alors la représentation canonique de $\Gamma^n(E)$ dans $\Gamma^n(E-F)$ est un isomorphisme du premier groupe sur le second; par suite E-F est une variété connexe, orientable si E est orientable, non-orientable si E est non-orientable. C'est en particulier le cas si F est de dimension $\leq n-2$.

Démonstration: on applique le théorème 5.1 à la suite des groupes $\Gamma^n(F)$, $\Gamma^n(E)$, $\Gamma^n(E-F)$, $\Gamma^{n-1}(F)$, dont le premier et le dernier sont nuls.

Théorème 9.3. Soit E une variété connexe orientable de dimension n, telle que $\Gamma^{n-1}(E)$ soit nul (par exemple, l'espace numérique de dimension n). Si F est un sous-ensemble fermé de E, le groupe $\Gamma^{n-1}(F)$ est un produit de groupes isomorphes à T, en nombre égal au nombre des composantes connexes de E-F diminué d'une unité.

En effet, d'après le théorème fondamental 5.1, $\Gamma^{n-1}(F)$ est isomorphe au quotient de $\Gamma^n(E-F)$ par le sous-groupe, image canonique de $\Gamma^n(E)$, sous-groupe qui est isomorphe au groupe $\Gamma^n(E)$ (lui-même isomorphe au groupe de base T) puisque la représentation canonique de $\Gamma^n(E)$ dans $\Gamma^n(E-F)$ est biunivoque (théorème 9.1). Or le groupe Γ^n de la variété orientable E-F est fourni par le théorème 7.1. D'où le résultat.

Pour obtenir le théorème de Jordan-Brouwer, il suffit, dans les hypothèses du théorème 9.3, de supposer en outre que F est une variété de dimension n-1 (sans oublier que F est supposé f ermé dans E). En appliquant le théorème 7.1 à la variété F, on voit que F est orientable, et que le nombre de ses composantes connexes est égal au nombre des composantes connexes de E-F diminué d'une unité. Si en outre F est supposé connexe, E-F a deux composantes connexes; et, pour tout vrai sous-ensemble fermé F' de F, E-F' est connexe (car $\Gamma^{n-1}(F')$ est nul en vertu du théorème 9.1).

On remarquera que notre démonstration du théorème de Jordan-Brouwer ne fait à aucun moment intervenir des considérations de triangulation ou de pavage, tant pour la variété E que pour la sous-variété F. Elle repose uniquement sur l'usage répété du théorème fondamental 5.1. J'ignore si une méthode analogue pourrait conduire simplement au théorème général de dualité d'Alexander-Pontrjagin, sans hypothèse de triangulabilité.

10. Le groupe de Lefschetz d'un complexe cellulaire

Nous appelons complexe cellulaire un espace localement compact E muni de la donnée de sous-espaces $fermés\ E_i$ appelés cellules, en nombre fini ou infini, tels que tout sous-ensemble compact n'en rencontre qu'un nombre fini, et qui satisfont aux conditions suivantes:

1° l'intersection de deux cellules est vide ou est une réunion de cellules;

2° si d'une cellule E_i on enlève la réunion des cellules incidentes à E_i (c'est-à-dire contenues dans E_i et autres que E_i), il reste un ensemble E_i' , ouvert dans E_i , appelé le noyau de E_i . On suppose que, pour chaque noyau, les groupes $\Gamma_T^r(E_i')$ sont nuls pour toutes les valeurs de r sauf une au plus; si $\Gamma_T^r(E_i')$ n'est pas nul, r s'appellera la pseudo-dimension du noyau E_i' (ou de la cellule E_i); la pseudo-dimension de E_i' sera -1 si $\Gamma_T^r(E_i')$ est nul pour tout $r \geqslant 0$;

 3° si une cellule E_{i} est incidente à une cellule E_{i} , sa pseudo-dimension est strictement plus petite que celle de E_{i} .

Par exemple, les hypothèses précédentes sont vérifiées si chaque noyau est réduit à un point ou homéomorphe à une boule ouverte de dimension quelconque; la dimension du noyau coı̈ncide alors avec sa pseudo-dimension.

L'application répétée du théorème fondamental 5.1 permet de déterminer entièrement le groupe de Lefschetz $\Gamma_T^n(E)$ d'un tel complexe cellulaire, et cela pour toute dimension n. Sans entrer dans le détail, voici l'essentiel des idées et des résultats:

Soit A_n la réunion des cellules de pseudo-dimension $\leq n$; A_n est fermé. L'ensemble $B_{n+1} = A_{n+1} - A_n$ est la réunion des noyaux de pseudo-dimension n+1; B_{n+1} est ouvert dans A_{n+1} . Le groupe $\Gamma^r(B_{n+1})$ est nul pour $r \neq n+1$. On voit alors par récurrence sur n que $\Gamma^r(A_n)$ est nul pour r > n. Le groupe $\Gamma^{n+1}(A_{n+1})$ peut être identifié à un sousgroupe de $\Gamma^{n+1}(B_{n+1})$, savoir celui des éléments dont le bord (élément de $\Gamma^n(A_n)$) est nul. Mais comme tout élément de $\Gamma^n(A_n)$ peut être à son tour identifié à un élément de $\Gamma^n(B_n)$, le bord d'un élément de $\Gamma^{n+1}(B_{n+1})$ peut être identifié à un élément de $\Gamma^n(B_n)$. D'ailleurs $\Gamma^n(B_n)$ est somme topologique directe des groupes Γ^n des noyaux de pseudo-dimension n.

Ensuite, $\Gamma^n(A_{n+1})$ est isomorphe au quotient de $\Gamma^n(A_n)$ par le sous-groupe des bords des éléments de $\Gamma^{n+1}(B_{n+1})$; $\Gamma^n(A_{n+1})$ peut donc être identifié au quotient d'un sous-groupe de $\Gamma^n(B_n)$ (savoir celui des éléments dont le bord est nul) par le sous-groupe des bords des éléments de $\Gamma^{n+1}(B_{n+1})$.

Enfin, on montre que $\Gamma^n(E)$ est isomorphe à $\Gamma^n(A_{n+1})$, auquel on l'identifie. Bref, lorsqu'on connaît le bord de chaque élément de chaque groupe Γ^n de chaque noyau (n désignant la pseudo-dimension de ce noyau), bord qui est identifié à une somme (finie ou infinie) d'éléments des groupes Γ^{n-1} des noyaux des cellules incidentes, on sait déterminer les groupes de Lefschetz, de toutes dimensions, du complexe cellulaire E. Tout revient ainsi à déterminer, pour chaque couple d'une cellule E_i de

pseudo-dimension n et d'une cellule E_j , incidente à E_i , de dimension n-1, une représentation continue du groupe Γ^n du noyau de E_i dans le groupe Γ^{n-1} du noyau de E_j . Lorsque tous les noyaux sont homéomorphes à des boules ouvertes (ou réduits à un point), supposées orientées (d'une manière arbitraire), chacune de ces représentations est définie par une représentation du groupe de base T dans T, c'est-à-dire, en fin de compte, par un nombre entier, positif, négatif ou nul. La connaissance de ces entiers détermine le groupe de Lefschetz pour toute dimension.

Ce résultat vaut sans aucune hypothèse de triangulabilité relative aux cellules.

(Reçu le 1er mai 1945.)