Работа выполнена авторами www.MatBuro.ru Помощь онлайн по высшей математике ©MatБюро - Решение задач по математике, экономике, статистике

Рукописное решение при сдаче экзамена по алгебре и геометрии (МГТУ МИРЭА) (комплексные числа, линейные пространства, операторы, квадратичные формы, векторы, многочлены).

Билет

Ход решения

Рукописный, так как задания объемные и сложные, а срок на решение небольшой.

Работа выполнена авторами www.MatBuro.ru Помощь онлайн по высшей математике

2) Cyuna gbyx berrofob: (2a, , a, + 361, 61) + (2a, a, +362, 62) = (2a, a+sb. b), где a=a, +a, b=b, +b, apocopuscibly. Inscornerue Ha Wille L(2a, a+36, 6) = (2A, A+3B, B), A-do, Level "furraquemus. Brams, B = dl To unei noe hogherfaceiforeito Motor beard by For hoeifa a(2,1,0)+6(0,1,1) Juant (2,1,0) 4 (0,1,1) - Eague moro experiences la Dur haugreun blero Eaguea R3 mon gotabut , transpures, bench (0,0,1),

Работа выполнена авторами www.MatBuro.ru Помощь онлайн по высшей математике

© Матыоро - 1 сшение задач но математике, экономике, ст
3) Ax=(x,+x3, 2x2+x3,-x4)=
$= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix}$
$O8_{py}$ benoon $\begin{pmatrix} -2 \\ 0 \end{pmatrix}$
$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$
$x_{1} = 0 = 0$ $x_{1} = 0$ $x_{2} = 0$ $x_{3} = 0$ $x_{4} = 0$ $x_{5} = 0$
Kert = {0}. Tak kak aggs nyilled, to
Образний оператор сущей вуст, к.к.
$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & -1 \end{vmatrix} = -2 \neq 0.$

Работа выполнена авторами www.MatBuro.ru Помощь онлайн по высшей математике

©матьюро - Решение задач по математике, экономике, статис
Gestalenne marene
$\begin{vmatrix} A-\lambda & \xi \end{vmatrix} = \begin{vmatrix} 2-\lambda & 0 & 0 \\ 1 & 1-\lambda & 0 \\ 8 & 0 & -2-\lambda \end{vmatrix} = (2-\lambda)(\lambda-1)(\lambda+2) = 0.$
$ λ_1 = 2, λ_2 = 1, λ_3 = -2. $ Haugen coscibensine binsopn, planae cuisan $(A - λ E)X = 0$
(A-)E)X=0
7=2. { Old 0=0 } B= L 2-B=0 = 8=2L. Older L-waser 8L-4y=0.
unomuso bzero, kanp, L=1, hayrun
Coses 6. bearon $\bar{e}_{\tau}(\frac{1}{p}) = \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}$
$\lambda = 1$
$\begin{cases} d = 0 \\ d = 0 \end{cases} = 7 \begin{cases} d = p = 0 \\ \beta - 2y = 0 \end{cases} \beta = 1,$
(87-5/=0
l= (6).

2=-2

(4d=0

(4d

+8K2-8K2 Xs = y12- y2 Dance (2, = 4, 2, 2 = 4, - (42+243) 2= 4, - (42+243) | 23 = y3 | 17y3 = y23 - 22 + 11 Ito karpo reure crui bug.

Theremis liberum lingles unefigies - 2 (
haromus. aranaeune), othery, ungere =

1. haromus. 3 hepeneure 2, 2, 2, 25, 10

Работа выполнена авторами www.MatBuro.ru Помощь онлайн по высшей математике

©Матьюро - Решение задач по математике, экономике, статистике
6) Uz maspuyu bugno, 20
$(e_1, e_i) = 1, (e_i, e_i) = -1, (e_1, e_2) = 2$
Frence 1e,1=1, e2 =12,
$\cos \lambda = \frac{(e_1, e_2)}{ e_1 e_2 } = \frac{1}{\sqrt{2}}, \ \lambda = \frac{3\pi}{4}.$
(Y,X) = (e,+e, e,+e) = (e,e) +2(e, e)+/e, e)
=1-2+2=1, $ x =1$,
(y, y) = (-e, +2e2, -e, +2e2) = (e, e,) -4(e, e2) +
$+(e_2,e_2)=1+4+2=7; y =\sqrt{7};$
(x,y) = (e,+l2,-e,+2l2) = -(e, e) +(e,e)+
$+2(e_2,e_2)=-1-1+4=2$
$Cos \beta = (x, y) = \frac{1}{\sqrt{x}} + \beta = \arccos \sqrt{x}$
12/19/
$+2[\ell_2, \ell_2] = -(-1+4-2)$ $\cos \beta = \frac{(x, y)}{ x y } = \frac{2}{\sqrt{7}}, \beta = \arccos \frac{2}{\sqrt{7}}$

4) Unew $\hat{A}(d\rho_1 + \beta \rho_2) = 2(d\rho_1 + \beta \rho_2) - (d\rho_1 + \rho_2)^2 - d(3\rho_1 - \rho_1) + p(3\rho_2 - \rho_2) = d\hat{A}(\rho_1) + p\hat{A}(\rho_2) + p\hat{A}(\rho_2)$

Coscil. rucia: $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 1 & 2 - \lambda & 0 \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = 2 - \lambda & 2 - \lambda \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = 2 - \lambda & 2 - \lambda \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = 2 - \lambda & 2 - \lambda \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = 2 - \lambda & 2 - \lambda \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = 2 - \lambda & 2 - \lambda \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = 2 - \lambda & 2 - \lambda \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = 2 - \lambda & 2 - \lambda \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$, $|A - AE| = 2 - \lambda & 2 - \lambda \\ 0 & -2 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$,

Работа выполнена авторами www.MatBuro.ru Помощь онлайн по высшей математике

Работа выполнена авторами www.MatBuro.ru Помощь онлайн по высшей математике

© Матокоро - 1 сшение задач по математике, экономике, статист
Banuculas beaugn E, Ez, Ez Cerasogu, is
ness in the stance.
1-2 1/2 1/2
C / TE NE 130 hardmit elleni +6
0 - 1/2 FED / U OT KUYDALIEKURE C
S= (- = 1/16 50) New York & S 1/16 50 New York & S 1/16 50 New York & S New
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Paul = 1 - K Oda
(1 = - 15 9 + 15 92 + 530 93 mile & reference
5 4 520 93
$\begin{cases} 1_1 = -\frac{2}{\sqrt{5}}y_1 + \frac{1}{\sqrt{6}}y_2 + \frac{1}{\sqrt{30}}y_3 & \text{mich 2 repension} \\ 1_2 = -\frac{1}{\sqrt{6}}y_2 + \frac{5}{\sqrt{30}}y_3 & \text{mich 2 repension} \end{cases}$
X3 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
17
Первоналачено у нас магрида
green A = (0 10)
Pepus A = (1 42), nocue npero payobanue 0 20
10/25/2 / 020
repetit programme
1 0710 (000)
$A_{1} = S^{T}AS = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 5 \end{pmatrix}, 2 & 0 & 2 \end{pmatrix}$
1 005/1 2 52
Канонитеский вид форми - 42+543