Aufgabe S.1

```
In [1]:
import numpy as np
import matplotlib.pyplot as plt

def f_l(x):  # radius within which the function will be plotted
    result = - x**5

    return result

d = 3.0
    x = np.arange(-d, d, 0.01)
    y = f_l(x)

plt.figure()
    plt.plot(x,y)
    plt.grid()
    plt.show()
```

```
In [2]: from mpl_toolkits.mplot3d import axes3d
from matplot1bi import cm
imatplot1bi notebook

def f_2(x):
    result = 9* x[0]**2 - 6 * x[0] * x[1]**2 + x[1]**4

    return result

d = 3.0 # radius within which the function will be plotted
X = np.arange(-d, d, 0.01)
Y = np.arange(-d, d, 0.01)

x, Y = np.meshgrid(X, Y)
z = f_2((X,Y))

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_surface(X, Y, Z, cmap=cm.oranges_r)
Figure 1
```


Aufgabe S.2

Gegeben sei das Optimierungsproblem

$$P: \min f(x), \text{ s.t. } x \in M$$

mit

a)
$$f(x) = -x^5$$
, $M = (-\infty, 1)$.

b)
$$f(x) = 9x_1^2 - 6x_1x_2^2 + x_2^4$$
, $M = \mathbb{R}^2$

c)
$$f(x) = \frac{x^T A x}{\|x - b\|_2 + 1}$$
, mit $A \in \mathbb{R}^{n \times n}$ positiv definit, $b \in \mathbb{R}^n$ und $M = \mathbb{R}^n$.

Begründen Sie jeweils: ist f koerziv auf M? Ist P lösbar?

Hinweis: Nutzen Sie für Aufgabenteil c) die Äquivalenz der Normen im \mathbb{R}^n

Proof: Nach Vorlesung (Definition 1.2.37) gilt:

Gegeben seien eine (nicht notwendigerweise abgeschlossene) Menge $M \subseteq \mathbb{R}^n$ und eine Funktion $f: M \to \mathbb{R}$. Falls für alle Folgen $(x^{\nu}) \subseteq M$ mit $\lim_{\nu} \|x^{\nu}\| \to \infty$ und alle konvergenten Folgen $(x^{\nu}) \subseteq M$ mit $\lim_{\nu} x^{\nu} \notin M$ die Bedingung

$$\lim_{\nu} f(x^{\nu}) = +\infty$$

gilt, $dann\ heißt\ f\ koerziv\ auf\ M$.

a)
$$f(x) = -x^5$$
, $M = (-\infty, 1)$:

Beachte $M \subseteq \mathbb{R}$. Es gilt $\overline{M} = (-\infty, 1]$, d.h. $\partial M = \{1\}$. Für die Koerzivität sind demnach alle Folgen $(x^{\nu}) \subseteq M$ zu betrachten für die entweder

$$x^{\nu} \longrightarrow \infty$$
 oder $x^{\nu} \longrightarrow 1$

gilt. Sei nun (x^{ν}) eine Folge für die gilt $x^{\nu} \to 1$. Für alle $\epsilon > 0$ existiert demnach ein m, sodass:

$$||x^{\nu_m} - 1|| < \epsilon, \quad \forall \nu_m > m.$$

Daraus ergibt sich:

$$\lim_{\nu} f(x^{\nu}) = \lim_{\nu} \left(-(x^{\nu})^{5} \right) = -\lim_{\nu} \left((x^{\nu} - 1 + 1)^{5} \right)$$

$$\leq -\lim_{\nu} \left(-(\|x^{\nu} - 1\| + 1)^{5} \right)$$

$$< \lim_{\nu} (\epsilon + 1)^{5}.$$

Da diese Ungleichung im Grenzwert für alle $\epsilon > 0$ gilt, ist f nicht koerziv.

b) $f(x) = 9x_1^2 - 6x_1x_2^2 + x_2^4$, $M = \mathbb{R}^2$:

Es gilt

$$f(x) = 9x_1^2 - 6x_1x_2^2 + x_2^4 = (3x_1 - x_2^2)^2.$$

Demnach ist für jede Folge für die gilt $\sqrt{3x_1^{\nu}} = x_2^{\nu}$ für alle $\nu \in \mathbb{N}$:

$$f(x^{\nu}) = 0.$$

Da wir eine Menge von Folgen gefunden haben für die $||x^{\nu}|| \to \infty$ gilt, allerdings gleichzeitig $\lim_{\nu} f(x^{\nu}) = f(x^{\tilde{\nu}}) = 0$, ist die Funktion nicht koerziv.

c) $f(x) = \frac{x^T A x}{\|x - b\|_2 + 1}$, mit $A \in \mathbb{R}^{n \times n}$ positiv definit, $b \in \mathbb{R}^n$ und $M = \mathbb{R}^n$:

Da $\mathbb{R}^{n\times n}$ unbeschränkt ist, betrachten wir lediglich eine beliebige divergente Folge (x^{ν}) . Aufgrund der positiven Definitheit von A ist $x^{T}Ax > 0$ und damit ist

$$f(x) = \frac{x^T A x}{\|x - b\|_2 + 1} > 0.$$

In der Übung wurde die Norm

$$||x||_{\tilde{A}} = \sqrt{\langle x, x \rangle_{\tilde{A}}} = \sqrt{x^T \tilde{A} x}$$

eingeführte, mit einer positiv definite, symmetrische Matrix \tilde{A} . Wir können o.B.d.A. annehmen, dass die positiv definite Matrix A aus der Aufgabe auch symmetrisch ist, denn es gilt

$$x^T A x = x^T \left(\frac{A^T + A}{2} \right) x,$$

und $\frac{A^T+A}{2}$ ist symmetrisch (ansonsten ersetze A durch $\frac{A^T+A}{2}$). Damit folgt:

$$|f(x^{\nu})| = \left| \frac{(x^{\nu})^T A x^{\nu}}{\|x^{\nu} - b\|_2 + 1} \right| = \frac{\|x^{\nu}\|_A^2}{\|x^{\nu} - b\|_2 + 1}.$$

Aufgrund der Divergenz der Folge (x^{ν}) gilt für ν groß genug unter Verwendung der Dreiecksungleichung die Abschätzung

$$|f(x^{\nu})| = \frac{\|x^{\nu}\|_{A}^{2}}{\|x^{\nu} - b\|_{2} + 1} \ge \frac{\|x^{\nu}\|_{A}^{2}}{2\|x^{\nu} - b\|_{2}}$$

$$\ge \frac{\|x^{\nu}\|_{A}^{2}}{2(\|x^{\nu}\|_{2} + \|b\|_{2})}$$

$$\ge \frac{\|x^{\nu}\|_{A}^{2}}{2(\|x^{\nu}\|_{2} + \|x^{\nu}\|_{2})}$$

Durch die Äquivalenz der Normen im \mathbb{R}^n existiert nun eine Konstante c so, dass

$$|f(x^{\nu})| \ge \frac{c}{2} \cdot \frac{\|x^{\nu}\|_{A}^{2}}{2(\|x^{\nu}\|_{A} + \|x^{\nu}\|_{A})} = \frac{c}{4} \cdot \frac{\|x^{\nu}\|_{A}^{2}}{\|x^{\nu}\|_{A}} = \frac{c}{4} \cdot \|x^{\nu}\|_{A} \to \infty,$$

wobei wir im letzten Schritt wieder die Äquivalenz der Normen verwendet haben, da somit x^{ν} in allen Normen divergiert. Das heißt, für alle divergenten Folgen (x^{ν}) , ist $f(x^{\nu}) > 0$ und

$$|f(x^{\nu})| \to \infty,$$

d.h. f ist koerziv.

Aufgabe S.3

Gegeben sei das unrestringierte Optimierungsproblem

$$P: \min_{x \in \mathbb{R}^2} \exp(-\min -x_1 - 3, -|x_2 - 4|, x_1 + x_2 - 20).$$

a) Geben Sie die verallgemeinerte Epigraph-Umformulierung P_{epi} von P an (siehe Übung 1.3.9. im Skript). Begründen Sie, welche Funktionen f, g, F und G Sie für die Umformulierung verwenden.

Proof: Da es sich um ein unrestringiertes Problem handelt, ist $X=\mathbb{R}^2,\,G\equiv 0,g\equiv 0.$ Definiere

$$F: \mathbb{R} \to \mathbb{R}, x \mapsto e^{-x},$$

 $f: R^2 \to R, x \mapsto \min \left\{ -x_1 - 3, -|x_2 - 4|, x_1 + x_2 - 20 \right\}.$

Damit ist das unrestringierte Optimierungsproblem äquivalent zu

$$P: \min_{x \in \mathbb{R}^2} F(f(x)) \text{ s.t. } G(g(x)) \le 0, x \in X$$

Nach Übung 1.3.9 (Verallgemeinerte Epigraph-Umformulierung) ist somit folgende Epigraph-Umformulierung äquivalent zu P:

$$P_{epi}: \min_{(x,\alpha,\beta)\in\mathbb{R}^2\times R\times\mathbb{R}} F(\alpha) \text{ s.t. } G(\beta) \le 0, f(x) \le \alpha, g(x) \le \beta, x \in X$$

$$\iff \min_{(x,\alpha)\in\mathbb{R}^2\times R} e^{-\alpha} \text{ s.t. } \min\left\{-x_1 - 3, -|x_2 - 4|, x_1 + x_2 - 20\right\} \le \alpha, x \in X$$

b) Formulieren Sie, aufbauend auf Aufgabenteil a), ein lineares Optimierungsproblem P_{lin} , welches die selben Optimalpunkte wie P_{epi} besitzt.

Proof: Sei

$$\tilde{F}: \mathbb{R} \to \mathbb{R}, x \mapsto e^x,$$

 $\tilde{f}: R^2 \to R, x \mapsto -\min\left\{-x_1 - 3, -|x_2 - 4|, x_1 + x_2 - 20\right\}.$

Dann ist $F(f(x)) = \tilde{F}(\tilde{f}(x))$ für alle $x \in X$. D.h. \tilde{F} , \tilde{f} beschreiben das gleiche Optimierungsproblem und es gilt

$$\tilde{f}(x) = -\min\left\{-x_1 - 3, -|x_2 - 4|, x_1 + x_2 - 20\right\}$$

$$= \max\left\{x_1 + 3, |x_2 - 4|, -(x_1 + x_2) + 20\right\}.$$

Aus der Epigraph-Formulierung bedeutet die Bedingung $\tilde{f}(x) \leq \alpha$, dass jede Komponente des Maximums kleiner gleich α sein muss, d.h. das folgende Problem besitzt die selben Optimalpunkte wie P_{epi} :

$$\tilde{P}_{epi} : \min_{(x,\alpha) \in \mathbb{R}^2 \times R} e^{\alpha} \text{ s.t. } x \in X, \begin{cases} x_1 + 3 \le \alpha \\ x_2 - 4 \le \alpha, -x_2 + 4 \ge -\alpha \\ -(x_1 + x_2) + 20 \le \alpha \end{cases}$$

Da die Exponentialfunktion streng monoton ist, ist jedes Minimum der Identität auf dieser Menge gleich dem Minimum der Exponentialfunktion. D.h. ein lineares Optimierungsproblem P_{lin} , welches die selben Optimalpunkte wie P_{epi} besitzt, lautet

$$\tilde{P}_{epi}: \min_{(x,\alpha) \in \mathbb{R}^2 \times R} \alpha \text{ s.t. } x \in X, \begin{cases} x_1 + 3 \le \alpha \\ x_2 - 4 \le \alpha, \ -x_2 + 4 \ge -\alpha \\ -(x_1 + x_2) + 20 \le \alpha \end{cases}$$

c) Zeigen Sie, mit Hilfe des verschärften Satz von Weierstraß, dass das Problem P_{lin} lösbar ist.

- d) Modellieren Sie das Problem in Matlab/ Jupyter Notebook und geben Sie den globalen Minimalpunkt von P_{lin} aus.
- e) Bestimmen Sie einen globalen Optimalpunkt und den Optimalwert von P.