M17: Métaux

Louis Heitz et Vincent Brémaud

Sommaire

Rapport du jury	3
Bibliographie	3
Introduction	4
I Module d'Young	4
II Conductivité électrique	4
III Conductivité thermique	4
Conclusion	4
A Correction	4
B Commentaires	4
C Matériels	4
D Tableau présenté	4

Le code couleur utilisé dans ce document est le suivant :

- \bullet \rightarrow Pour des élements de correction / des questions posées par le correcteur
- Pour les renvois vers la bibliographie
- Pour des remarques diverses des auteurs
- \triangle Pour des points particulièrement délicats, des erreurs à ne pas commettre
- Pour des liens cliquables

Rapports du jury

Bibliographie

[1] Compte rendu de Armel et Fabien

Introduction

Les métaux sont des conducteurs. Utile pour électricité et thermique. Déjà, on voit que c'est "rigide" on caractrise à l'aide du module d'Young.

I Module d'Young

II Conductivité électrique

Dépendance géométrique qualitative. cf MP34 pour les valeurs

III Conductivité thermique

Barreau de cuivre cf MP34 pour les valeurs

Conclusion

Les conducteurs conduisent. Propriétés régies par stats quantiques alors qu'on est à T ambiant, c'est rigolo.

- A Correction
- B Commentaires
- C Matériels
- D Tableau présenté