Subject	Grammar Formalisms
Homework	3
Name	Cyril Fahlenbock
MatNr	2280776

1

a)

She runs regularly in the park

Word	Cat
she	np
runs	$s \neq np$
regularly	$(s\np)\(s\np)$
in	$((s\np)\(s\np))/np$
the	np/n
park	n

	$\frac{\overline{\text{runs}}}{\text{s} \setminus \text{np}}$	$\frac{\overline{\text{regularly}}}{(s \setminus np) \setminus (s \setminus np)}$	$\frac{\overline{\mathrm{in}}}{((\mathrm{s}\backslash\mathrm{np})\backslash(\mathrm{s}\backslash\mathrm{np}))/\mathrm{np}}$	$\frac{\frac{\text{the}}{\text{np/n}}}{\frac{\text{np}}{\text{np}}}$	$\frac{\overline{park}}{n} (>)$
shenp		s\np	$\frac{((s \setminus np) \setminus (s \setminus np))}{(s \setminus np)}$) (<)	- (>)

b)

They named their son Stan and daughter Shelly

Word	Cat
they named	np ((s\np)/np)/np
their son daughter	np/n n
and	$(X\backslash X)/X$

Word	Cat
Shelly	np
Stan	np

c)

The wine that she bought gave me a headache

Word	Cat	
The	np/n	

Word	Cat
wine	n
that	$(np\np)/(s\np)$
she	np
bought	$(s\np)/np$
gave	$((s\np)/np)/np$
me	np
a	np/n
headache	n

$$\frac{\frac{\overline{she}}{np}}{np/n} (T) = \frac{\overline{bought}}{\frac{\overline{shp}}{(s \setminus np)/np}} (>B)$$

$$\frac{\overline{The}}{np/n} = \frac{\overline{m}}{n} (>) = \frac{\overline{that}}{(n \setminus n)/(s \setminus np)} = \frac{s/np}{n \setminus n} (>)$$

$$np = (>)$$

$$\overline{gave me a headache} = \frac{s \setminus np}{s} (<)$$

$$\frac{\overline{she}}{np/n} (>) = \frac{s/np}{n \setminus n} (>)$$

$$\overline{gave me a headache} = \frac{s \setminus np}{s} (<)$$

$$\overline{((s \setminus np)/np)/np} = \overline{me} = \frac{\overline{a}}{np/n} = \overline{headache} = \frac{\overline{headache}}{np} (>)$$

$$\overline{(s \setminus np)/np} = \overline{np} = \overline{(s \setminus np)/np} = \overline{np} = \overline{(s \setminus np)/np} = \overline{(s \setminus np)/$$

d)

The angry referee should watch and analyse the video

Word	Cat
The	np/n
angry	n/n
referee	n
should	$((s\np)/np)/((s\np)/np)$
watch	$(s\np)/np$
and	$((X\backslash X)/X)$

s\np

Word	Cat
analyse the	$(s\np)/np$ np/n
video	n

$$\frac{\frac{-1}{\mathrm{the}}}{\frac{\mathrm{np/n}}{\mathrm{np/n}}} = \frac{\frac{\mathrm{angry}}{\mathrm{n/n}}}{\frac{\mathrm{n}}{\mathrm{np}}} \xrightarrow{(>)}$$

$$\frac{ \frac{\text{should watch and analyse}}{\text{should watch and analyse}} = \frac{\frac{\text{the}}{\text{np/n}} \frac{\text{video}}{\text{n}}}{\frac{\text{np}}{\text{odd}}} \\ \frac{(\text{s} \setminus \text{np})/\text{np}}{\text{s}} \frac{(\text{s} \setminus \text{np})}{\text{s}} (<)$$

2

Marshall persuaded Lily to fogive Barney

 $\mathbf{a})$

Object control since persuade is an object control verb.

b)

	persuaded	Lily	to forgive	Barney
	$\overline{((s\np)/(sto\np))/np: o p s. persuaded'(s, o, p(o))}$	np: lily'	$(\operatorname{sto} p)/\operatorname{np}: y x. \text{ forgive } (x,y)$	np: barney'
Marshall	$(s\np)/(sto\np): \p s. persuaded'(s, lily', p(lily'))$		sto\np: \x. forgive'(x, bar	rney')
np: marshall'	s\np: \s. persuaded'(s, lily', forgive'(lily', barney')			
s: persuaded'(marshall', lily', forgive'(lily', barney')				