VE401 Probabilistic Methods in Eng. Final Review Part 1

CHEN Xiwen

UM-SJTU Joint Institute

May 10, 2020

Table of contents

Hypothesis Tests

Fisher's Null Hypothesis Test Neyman-Pearson Decision Theory Null Hypothesis Significance Testing and More

Hypothesis Tests

Fisher's Null Hypothesis Test

Neyman-Pearson Decision Theory

Null Hypothesis Significance Testing and More

Fisher's Null Hypothesis Test

Overview.

- 1. Set up a *null hypothesis* H_0 that compares a population parameter θ to a given null value θ_0 .
 - \vdash $H_0: \theta = \theta_0$,
 - \vdash $H_0: \theta \leq \theta_0$,
 - $H_0: \theta \geq \theta_0.$
- 2. Try to reject the null hypothesis by finding *P-value* for the test.
 - One-tailed: upper bound of probability of obtaining the data or more extreme data (based on the null hypothesis), given that the null hypothesis is true.

$$P[D|H_0] \leq P$$
-value.

- ► <u>Two-tailed</u>: twice of p-value for one-tailed test.
- 3. We either
 - ightharpoonup fail to reject H_0 or
 - reject H_0 at the [p-value] level of significance.

Understanding P-values

One-tailed tests. For one-tailed test, the p-value is an upper bound of probability of obtaining the data or <u>more extreme</u> data based on the null hypothesis, given that the null hypothesis is true.

- ▶ $H_0: \mu \ge \mu_0$, extreme \Leftrightarrow too small $\widehat{\mu}$.
- ▶ $H_0: \mu \leq \mu_0$, extreme \Leftrightarrow too large $\widehat{\mu}$.

Note: Refer to an estimator of the parameter in the null hypothesis $(\widehat{\mu} = \overline{X})$ in this case).

Understanding P-values

One-tailed tests. For one-tailed test, the p-value is an upper bound of probability of obtaining the data or <u>more extreme</u> data based on the null hypothesis, given that the null hypothesis is true.

- ▶ $H_0: \mu \ge \mu_0$, extreme \Leftrightarrow too small $\widehat{\mu}$.
- ▶ $H_0: \mu \leq \mu_0$, extreme \Leftrightarrow too large $\widehat{\mu}$.

Note: Refer to an estimator of the parameter in the null hypothesis $(\widehat{\mu} = \overline{X})$ in this case).

Assignment 5.2. X_1, \ldots, X_n are i.i.d. exponential random variables with parameter β , then the sum Y

$$f_Y(y) = \frac{\beta^n}{\Gamma(n)} y^{n-1} e^{-\beta y} \quad \Rightarrow \quad 2n\beta \overline{X} \sim \chi^2_{2n}.$$

The maximum-likelihood estimator for β is $\widehat{\beta}=1/\overline{X}$. Then we reject $H_0: \beta \leq \beta_0$ with test statistic $2n\beta_0\overline{X}$ if $P[2n\beta_0\overline{X}<2n\beta_0\overline{x}|\beta=\beta_0]$ is too small.

Understanding P-values

Two-tailed tests. For two-tailed test, the p-value is twice of p-value for one-tailed test. Namely, suppose for one-tailed hypotheses $H_{0,u}: \mu \geq \mu_0$ and $H_{0,I}: \mu \leq \mu_0$, the corresponding p-values are p_u and p_I , then for the two-tailed H_0 ,

$$pvalue = 2 \min (p_u, p_l).$$

The intention of doubling is to consider "more extreme data" in both directions, while taking the minimum corresponds to taking the one-tailed hypothesis such that the data seems more "extreme".

In some cases (where the distribution of test statistic is not symmetric), the p-value for a two-tailed test is not understood in terms of "probability of more extreme data", but in terms of "double of p-value for one-tailed test".

P-values for Representative Parametric Tests

T-test for mean. With sample X_1, \ldots, X_n from normal populations with mean μ and unknown variance σ^2 , we have test statistic

$$T_{n-1} = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$

and p-values: (F is the c.d.f. of T_{n-1} .)

 $\blacktriangleright \ \underline{H_0: \mu \leq \mu_0}.$

pvalue =
$$1 - F(t_{n-1})$$
;

 $\blacktriangleright \ \underline{H_0: \mu \geq \mu_0}.$

pvalue =
$$F(t_{n-1})$$
;

• $H_0: \mu = \mu_0$.

pvalue =
$$2 \min (F(t_{n-1}), 1 - F_{T_{n-1}}(t_{n-1}))$$
.

P-values for Representative Parametric Tests

F-test for comparing variances. Let S_1^2 and S_2^2 be sample variances from independent samples of sizes n_1, n_2 from normal populations with means μ_1, μ_2 and variances σ_1^2, σ_2^2 , we have test statistic

$$F_{n_1-1,n_2-1}=\frac{S_1^2}{S_2^2}.$$

and p-values: (F is the c.d.f. of F_{n_1-1,n_2-1} .)

 $\blacktriangleright \ \underline{H_0: \sigma_1 \leq \sigma_2}.$

pvalue =
$$1 - F(f_{n_1-1,n_2-1})$$
;

pvalue =
$$F(f_{n_1-1,n_2-1})$$
;

pvalue =
$$2 \min (F(f_{n_1-1,n_2-1}), 1 - F(f_{n_1-1,n_2-1}))$$
.

P-values for Representative Non-parametric Tests

Signed test for median. Let X_1, \ldots, X_n be a random sample, we have test statistic

$$Q_{-}=\#\{X_{k}:X_{k}-M_{0}<0\}.$$

and p-values:

- ▶ $H_0: M \le M_0$. pvalue = $F(q_-)$;
- ► $H_0: M \ge M_0$. pvalue = $1 F(q_-)$;
- ► $H_0: M = M_0$. pvalue = $2 \min (F(q_-), 1 F(q_-))$,

where with a binomial random variable Y and $n' = q_+ + q_-$,

$$F(k) = P[Y \le k | M = M_0] = \sum_{y=0}^{k} {n' \choose y} \frac{1}{2^{n'}}.$$

Note. In lecture slides, we use $min(q_-, q_+)$ for two-tailed test, which is equivalent since

pvalue =
$$\min (F(q_{-}), F(q_{+})) = F(\min(q_{-}, q_{+}))$$
.

P-values for Representative Non-parametric Tests

Wilcoxon signed rank test. Let X_1, \ldots, X_n be a random sample of size n from a symmetric distribution. We have test statistic

$$|W_-| = \sum_{R_i < 0} |R_i|, \quad \mathsf{E}[|W_-|] = \frac{n(n+1)}{4}, \quad \mathsf{Var}|W_-| = \frac{n(n+1)(2n+1)}{24},$$

and for large sample size, we have p-values (F is the c.d.f for normal distribution with mean and variance above.):

 $\blacktriangleright \ \underline{H_0: M \leq M_0}.$

$$\mathsf{pvalue} = F(|w_-|);$$

 $\blacktriangleright \ \underline{H_0: M \geq M_0}.$

$$\mathsf{pvalue} = 1 - F(|w_-|);$$

► $\underline{H_0: M = M_0}$.

pvalue =
$$2 \min (F(|w_-|), 1 - F(|w_-|))$$
.

Hypothesis Tests

Fisher's Null Hypothesis Test

Neyman-Pearson Decision Theory

Null Hypothesis Significance Testing and More

Neyman-Pearson Decision Theory

Overview.

- 1. Set up a *null hypothesis* H_0 and an *alternative hypothesis* H_1 .
- 2. Determine a desirable α and β , where
 - $ightharpoonup \alpha := P[\text{reject } H_0 | H_0 \text{ true}],$
 - $ightharpoonup eta := P[\text{accept } H_0 | H_1 \text{ true}], \text{ and }$
 - power := $1 \beta = P[\text{reject } H_0 | H_1 \text{ true}].$
- 3. Use α and β to determine the appropriate sample size n.
- 4. Use α and n to determine the *critical region*.
- 5. Obtain sample statistics, and reject H_0 at significance level α and accept H_1 if the test statistic falls into critical region. Otherwise, accept H_0 .

Type-I Error: α

Type-I error. It is

ightharpoonup only related to H_0 :

$P[\text{reject } H_0|H_0 \text{ true}];$

▶ used to determine the critical region: this means that the critical region (whether H_0 is rejected or not, whether H_1 is accepted or not), is only determined by H_0 .

 \triangle If H_0 is true, the probability of rejecting H_0 is no more than α .

Type-II error. It is

related to both H_0 and H_1 :

 $P[\text{fail to reject } H_0|H_1 \text{ true}];$

used to analyze the power:

power =
$$1 - \beta$$
;

either calculated analytically or read from OC curves.

 \triangle If H_1 is true, the probability of accepting H_0 is no more than β .

F-test for comparing variances. Let S_1^2 and S_2^2 be sample variances based on independent random samples of sizes n_1 and n_2 drawn from normal populations with means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 , respectively. The test statistic is given by

$$F_{n_1-1,n_2-1}=\frac{S_1^2}{S_2^2}.$$

We reject at significance level α

- $H_0: \sigma_1 \leq \sigma_2 \text{ if } S_1^2/S_2^2 > f_{\alpha,n_1-1,n_2-1},$
- $H_0: \sigma_1 \geq \sigma_2 \text{ if } S_2^2/S_1^2 > f_{\alpha,n_2-1,n_1-1}$,
- ► H_0 : $\sigma_1 = \sigma_2$ if $S_1^2/S_2^2 > f_{\alpha/2,n_1-1,n_2-1}$ or $S_2^2/S_1^2 > f_{\alpha/2,n_2-1,n_1-1}$.

OC curve. The abscissa is defined by

$$\lambda = \frac{\sigma_1}{\sigma_2}$$
.

F-test for comparing variances. Consider the following cases (suppose $\delta > 1$).

▶ One-tailed test.

$$H_0: \sigma_1 \leq \sigma_2, \qquad H_1: \frac{\sigma_1}{\sigma_2} \geq \delta.$$

One-tailed test.

$$H_0: \sigma_1 \geq \sigma_2, \qquad H_1: \frac{\sigma_1}{\sigma_2} \leq \delta.$$

► <u>Two-tailed test</u>.

$$H_0: \sigma_1 = \sigma_2, \qquad H_1: \max\left(\frac{\sigma_1}{\sigma_2}, \frac{\sigma_2}{\sigma_1}\right) \geq \delta.$$

Recall that $\sigma_2^2 S_1^2/(\sigma_1^2 S_2^2) \sim F_{n_1-1,n_2-1}$. We only discuss the last case here.

F-test for comparing variances. Based on the distribution, we calculate

$$\begin{split} P[\mathsf{accept}\ H_0|H_1\ \mathsf{true}] &= P\left[\frac{\sigma_2^2}{\sigma_1^2} f_1 \leq F_{n_1-1,n_2-1} \leq \frac{\sigma_2^2}{\sigma_1^2} f_2 \middle| \underbrace{\mathsf{max}\left(\frac{\sigma_1}{\sigma_2},\frac{\sigma_2}{\sigma_1}\right) \geq \delta}_{H_1}\right] \\ &= P_1 \cdot \frac{P\left[\frac{\sigma_1}{\sigma_2} \geq \delta\right]}{P[H_1]} + P_2 \cdot \frac{P\left[\frac{\sigma_1}{\sigma_2} \leq \frac{1}{\delta}\right]}{P[H_1]} \leq \mathsf{max}\left(P_1,P_2\right), \end{split}$$

where with $f_1 = f_{1-\alpha/2,n_1-1,n_2-1}$, $f_2 = f_{\alpha/2,n_1-1,n_2-1}$,

$$\begin{split} P_1 &\leq P\left[\left.\frac{\sigma_2^2}{\sigma_1^2}f_1 \leq F_{n_1-1,n_2-1} \leq \frac{\sigma_2^2}{\sigma_1^2}f_2\right| \frac{\sigma_1}{\sigma_2} = \delta\right] = F\left(\frac{1}{\delta^2}f_2\right) - F\left(\frac{1}{\delta^2}f_1\right), \\ P_2 &\leq P\left[\left.\frac{\sigma_2^2}{\sigma_1^2}f_1 \leq F_{n_1-1,n_2-1} \leq \frac{\sigma_2^2}{\sigma_1^2}f_2\right| \frac{\sigma_1}{\sigma_2} = \frac{1}{\delta}\right] = F\left(\delta^2f_2\right) - F\left(\delta^2f_1\right), \end{split}$$

where F is the c.d.f. for F_{n_1-1,n_2-1} . Then we have the upper bound $\beta = \max(P_1, P_2)$.

Normal case. Suppose the sample mean \overline{X} follows a normal distribution with unknown mean μ and known variance σ^2 , and we have hypothesis

$$H_0: \mu = \mu_0, \qquad H_1: |\mu - \mu_0| \ge \delta_0.$$

Relation between α , β δ , σ and n. With true mean $\mu=\mu_0+\delta$, the test statistic $Z=\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\sim N(\delta\sqrt{n}/\sigma,1)$.

$$\begin{split} P[\text{fail to reject } H_0 | \mu = \mu_0 + \delta] &= \frac{1}{\sqrt{2\pi}} \int_{-z_{\alpha/2}}^{z_{\alpha/2}} e^{-(t - \delta\sqrt{n}/\sigma)^2/2} \mathrm{d}t \\ &= \frac{1}{\sqrt{2\pi}} \int_{-z_{\alpha/2} - \delta\sqrt{n}/\sigma}^{z_{\alpha/2} - \delta\sqrt{n}/\sigma} e^{-t^2/2} \mathrm{d}t \\ &\approx \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z_{\alpha/2} - \delta\sqrt{n}/\sigma} e^{-t^2/2} \mathrm{d}t \stackrel{!}{=} \beta, \end{split}$$

where we set $-z_{\beta} = z_{\alpha/2} - \delta \sqrt{n}/\sigma$.

Normal case. Suppose the sample mean \overline{X} follows a normal distribution with unknown mean μ and known variance σ^2 , and we have hypothesis

$$H_0: \mu = \mu_0, \qquad H_1: |\mu - \mu_0| \ge \delta_0.$$

Choosing the sample size n.

$$n pprox rac{(z_{lpha/2} + z_{eta})^2 \sigma^2}{\delta^2},$$

where $z_{\alpha/2}$ and z_{β} satisfies that

$$\Phi(z_{\alpha/2}) = 1 - \alpha/2, \qquad \Phi(z_{\beta}) = 1 - \beta,$$

given cumulative distribution function Φ of standard normal distribution.

OC curves. Still taking the F-test as an example, when $n_1 = n_2 = n$, the abscissa is given by

$$\lambda = \frac{\sigma_1}{\sigma_2}.$$

If we have the hypotheses

$$H_0: \sigma_1 = \sigma_2, \qquad H_1: \max\left(\frac{\sigma_1}{\sigma_2}, \frac{\sigma_2}{\sigma_1}\right) \geq \delta,$$

Shall we use $\lambda = \delta$ or $\lambda = 1/\delta$ or both?

OC curves. Still taking the F-test as an example, when $n_1 = n_2 = n$, the abscissa is given by

$$\lambda = \frac{\sigma_1}{\sigma_2}$$
.

If we have the hypotheses

$$H_0: \sigma_1 = \sigma_2, \qquad H_1: \max\left(\frac{\sigma_1}{\sigma_2}, \frac{\sigma_2}{\sigma_1}\right) \geq \delta,$$

Shall we use $\lambda = \delta$ or $\lambda = 1/\delta$ or both? As we have calculated,

$$P[\mathsf{accept}\ \textit{H}_0|\textit{H}_1\ \mathsf{true}] \leq \mathsf{max}\left\{\textit{F}\left(\frac{1}{\delta^2}\textit{f}_2\right) - \textit{F}\left(\frac{1}{\delta^2}\textit{f}_1\right), \textit{F}\left(\delta^2\textit{f}_2\right) - \textit{F}\left(\delta^2\textit{f}_1\right)\right\},$$

However, with equal sizes, $f_2 = 1/f_1$, and thus

$$\begin{split} F\left(\delta^2 f_2\right) - F\left(\delta^2 f_1\right) &= F\left(\frac{\delta^2}{f_1}\right) - F\left(\frac{\delta^2}{f_2}\right) = 1 - F\left(\frac{1}{\delta^2} f_1\right) - \left[1 - F\left(\frac{1}{\delta^2} f_2\right)\right] \\ &= F\left(\frac{1}{\delta^2} f_2\right) - F\left(\frac{1}{\delta^2} f_1\right). \end{split}$$

The two cases $\sigma_1/\sigma_2=\delta$ or $\sigma_2/\sigma_1=\delta$ are equivalent.

Hypothesis Tests

Fisher's Null Hypothesis Test Neyman-Pearson Decision Theory

Null Hypothesis Significance Testing and More

Null Hypothesis Significance Testing

- ▶ H_0 and H_1 are set up, but H_1 is always the logical negation of H_0 .
- Either a hypothesis test is performed by finding a critical region, or the test statistic is evaluated and a p-value is found to reject or accept H₁.
- ▶ In either case, there is no meaningful discussion of β , since H_1 is exactly the negation of H_0 .

Setting up Hypotheses

▶ Setting up H_0 . In most of the cases, when we want to find evidence *for* an event, H_0 is usually set up to be the opposite of this event.

Assignment 6.2.(i). Is there evidence that the success rate is greater for longer tears (μ_1) ?

$$H_0: \mu_1 \leq \mu_2$$

Alternative hypothesis H₁. In addition to testing equality and inequality, we would like to test an additional amount of such difference.

Assignment 6.3. Is there sufficient evidence to conclude that the two population standard deviations differ by at least 10%?

$$H_0: \sigma_1 = \sigma_2, \qquad H_1: \max\left(\frac{\sigma_1}{\sigma_2}, \frac{\sigma_2}{\sigma_1}\right) \geq 1.1$$

Confidence Interval vs. Critical Region

Suppose we would like to estimate the mean μ of a sample X_1, \ldots, X_n of size n.

- ▶ Confidence interval. Given a sample data with specific values, the CI gives an interval for the unknown mean μ .
- ▶ Critical region. Given a null value μ_0 , the critical region gives an interval for sample mean \overline{X} before obtaining specific values.
- ▶ Relation. The null hypothesis H_0 is rejected $\Leftrightarrow \overline{X}$ lies in the critical region \Leftrightarrow null value μ_0 lies outside the confidence interval.

Critical Region vs. Confidence Interval

Suppose X_1, \ldots, X_n is a sample of size n from a normal population X with mean μ and known variance σ^2 . We have

$$H_0: \mu \leq \mu_0, \qquad H_1: \mu > \mu_0.$$

Then what is the corresponding confidence interval? We know that we reject H_0 at significance level α if

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} > z_{\alpha} \quad \Leftrightarrow \quad \mu_0 < \overline{X} - z_{\alpha} \frac{\sigma}{\sqrt{n}}.$$

In this case the null value μ_0 falls **outside** of the confidence interval. Therefore, the corresponding confidence interval is given by

$$\mathsf{CI} = \left[\overline{X} - z_{lpha} \frac{\sigma}{\sqrt{n}}, \infty\right).$$

Similarly, if the null hypothesis is H_0 : $\mu \ge \mu_0$, the corresponding one-sided confidence interval is given by

$$\mathsf{CI} = \left(-\infty, \overline{X} + z_{lpha} \frac{\sigma}{\sqrt{n}}\right].$$

Thanks for your attention!

Good luck for Final exam!