ir fi fi	mport matplotlib.pyplot as plt mport numpy as np rom scipy.io import wavfile rom scipy.signal import lfilter, convolve, fftconvolve lt.style.use('bmh')
##	Sound player function that plays array "x" with a sample rate "rate", and labels it with "label" ef sound(x, rate=8000, label=''): from IPython.display import display, Audio, HTML display(
	<pre>HTML('<style> table, th, td {border: 0px; }</style> ! label + '' + Audio(x, rate=rate)repr_html_()[3:] +</pre>
	<pre>Function that plots the spectrogram of a sound ef plot_spectrogram(input_sound, fs, title="Spectrogram"): plt.title(title) plt.specgram(input_sound, Fs=fs, cmap="winter") plt.xlabel('Time [sec]') plt.ylabel('Frequency [Hz]') plt.show()</pre>
de	<pre>iplot_filter_spectrogram(filter,</pre>
	<pre>plt.subplot(211) plt.plot(filter) plt.title(filter_title) plt.xlabel("samples") plt.ylabel("amplitude") # Plot the spectrogram plt.subplot(212) plt.title(spec_title)</pre>
fr	<pre>plt.specgram(input_sound, Fs=fs, cmap="winter") plt.xlabel('Time [sec]') plt.ylabel('Frequency [Hz]') plt.show() Load the input sound name = 'loop.wav' s, input_sound = wavfile.read(f'./data/{fname}')</pre>
in so p	nput_sound = normalize_signal(input_sound) bund(input_sound, rate=fs, label=fname) lot_spectrogram(input_sound, fs, title=f"Spectrogram of {fname}") op.wav Description
	Spectrogram of loop.wav
[1]	15000
	5000 - 1 2 3 4 5 6 7 Time [sec]
TI a)	Part 1. Designing simple reverb using filters the simplest forms of reverbs can be designed using simple delays, comb and allpass filters. We will design one of each to get started. A room with a single wall. For this reverb we will assume that we have a room that only has one reflective wall as shown below. Design a filter that simulates what the microphone will record. figure out the right filter in the case where $d_i = [1, 10]$ meters. Let me know what the differences between these sounds are. To keep things simple, round the delays to an integer number and make up an approximate gain loss due to propagation and the way.
bo	punce. $d_1 = \frac{1}{2} \left(\frac{1}{2} \right)^{\frac{1}{2}}$
	1 P ## PART 1A ### eflect_gain = 0.6
	Returns a filter that simulates a single wall's reflections ef single_wall(dist_vec, reflect_gain, fs): total_dist = np.sqrt((dist_vec[0] / 2)**2 +
f: s:	<pre>filter[-1] = reflect_gain return filter Simulate a single wall in close position ilter = single_wall([0.1, 1], reflect_gain, fs) ingle_wall_close = convolve(input_sound, filter)</pre>
	cound(single_wall_close, rate=fs, label=f'{fname} with single wall in close position') lot_filter_spectrogram(filter, single_wall_close, fs, filter_title="Impulse response simulation of single wall in close position", spec_title=f"Spectrogram of {fname} with single wall in close position")
f: s:	Simulate a single wall in far position ilter = single_wall([1, 10], reflect_gain, fs) ingle_wall_far = convolve(input_sound, filter) bund(single_wall_far, rate=fs, label=f'{fname} with single wall in far position') lot_filter_spectrogram(
lo	filter, single_wall_far, fs, filter_title="Impulse response simulation of single wall in far position", spec_title=f"Spectrogram of {fname} with single wall in far position") op.wav with single wall in close position -0:07
	Impulse response simulation of single wall in close position 1.00 0.75 0.50 0.00
ָרָחַז.	Spectrogram of loop.wav with single wall in close position
	15000 - 10000 - 1 2 3 4 5 6 7 Time [sec]
	Impulse response simulation of single wall in far position 1.00 0.75 0.50 0.25
	0 500 1000 1500 2000 2500 samples Spectrogram of loop.wav with single wall in far position
	20000 - 1 10000 - 1 2 3 4 5 6 7
b)	Now we will use a room geometry as shown below. Design the proper filter again, for $d_i = [0.1, 1]$ meters and then for $d_i = [1, 10]$ meters. Comment on the audible differences between these two settings.
	## PART 1B ### eflect_gain = 0.6
	Returns a filter that simulates 2 parallel walls' reflections ef parallel_walls(dist_vec, reflect_gain, fs): dist1 = np.sqrt((dist_vec[0] / 2)**2 + dist_vec[1]**2) * 2 # Pythagoras * 2 dist2 = np.sqrt((dist_vec[0] / 4)**2 + dist_vec[1]**2) * 4 samples1 = int(dist1 / 343 * fs) # Convert to number of samples
	<pre>samples2 = int(dist2 / 343 * fs) filter = np.zeros(int(samples2)) filter[0] = 1 filter[int(samples1)] = reflect_gain filter[-1] = reflect_gain</pre> return filter
f: pa	Simulate parallel walls in close position ilter = parallel_walls([0.1, 1], reflect_gain, fs) arallel_walls_close = convolve(input_sound, filter) bund(parallel_walls_close, rate=fs, label=f'{fname} with parallel walls in close position') lot_filter_spectrogram(filter,
f:	parallel_walls_close, fs, filter_title= "Impulse response simulation of parallel walls in close position", spec_title=f"Spectrogram of {fname} with parallel walls in close position") Simulate parallel walls in far position ilter = parallel_walls([1, 10], reflect_gain, fs) arallel_walls_far = convolve(input_sound, filter)
S	<pre>pund(parallel_walls_far,</pre>
	"Impulse response simulation of parallel walls in far position", spec_title=f"Spectrogram of {fname} with parallel walls in far position") op.wav with parallel walls in close position Impulse response simulation of parallel walls in close position 1.00
	0.75 0.50 0.25 0.00 0 100 200 300 400 500
[[]]	samples Spectrogram of loop.wav with parallel walls in close position 20000 - 15000 - 10000
	0 1 2 3 4 5 6 7 Time [sec] op.wav with parallel walls in far position
	Impulse response simulation of parallel walls in far position 1.00 0.75 0.50 0.25
, [רוו]	0.00 2000 3000 4000 5000 samples Spectrogram of loop.wav with parallel walls in far position
	15000 - 10000 - 1 2 3 4 5 6 7 Time [sec]
l v fe a	Conclusions will be examining the audio in both room geometries in both close and far positions in both geometries: Close Position Far Position Single wall The audio seems to have lost some of it's power end thump rels a little hazy to me. There is a much more apparent fast echo which can be heard very clearly with the snare and hi-hats. Parallel walls The audio seems like it has reduced in quality even further than in the single wall scenario almost as to lot of frequencis have been scooped out using an equilizer. The echos are a lot more apparent than in the single wall simulation and in opinion a little too much. While tweaking the reflection gain, I was able to find a few sweet spots where the counted nice and "musical"
##	Since for small values of d the output above gets its spectrum altered, we will use an allpass filter to make a more natural sounding echo pattern. Use the formulation shown in the lecture slides and compare that filter's frequency response with esponse from the filter in the section b) above. ## PART 1C ### eflect_gain = 0.2
	<pre>Returns an all-pass filter ef allpass(delay, fs, g, input_sound=None): # Initialize the numerator and denominator of the filter samples = int(delay * fs) a = np.zeros(samples + 1) b = np.zeros(samples + 1) # Set the coefficients a[0] = 1</pre>
	<pre>b[0] = g a[samples] = g b[samples] = 1 if input_sound is not None: return lfilter(b, a, input_sound) else: return b, a</pre>
f:	<pre>I tuned the delay and reflect_gain parameters to get a nice sound iltered_sound = allpass(0.15, fs, reflect_gain, input_sound) pund(filtered_sound, rate=fs, label=f"{fname} with all-pass filter") lot_spectrogram(filtered_sound,</pre>
ir b y p p	<pre>mpulse = np.zeros(10) mpulse[0] = 1 , a, = allpass(0.15, fs, reflect_gain) = lfilter(b, a, impulse) lt.plot(y) lt.title("Impulse Response of All-Pass Filter") lt.xlabel("Sample") lt.ylabel("Amplitude")</pre>
	op.wav with all-pass filter Spectrogram of loop.wav with all-pass filter
[[-]]	20000 -
	5000 -
	Impulse Response of All-Pass Filter
(F.	0.175 - 0.150 - 0.125 - 0.100 - 0.075
A 2007	0.075
	O.000 O 2 4 6 8 Sample Part 2. Schroeder reverberators
N	ow we will combine multiple filters to make a more serious sounding reverb. Implement the structure shown below. Comb Comb
Tr	Comb Comb Ty to find the necessary parameters for the above structure that makes it sound as good as possible (not too busy, not too subtle). Hint: There is no right answer! Try a few things, see what sounds best and explain why you used the parameters ecided to use. As you come across some bad sounding cases, describe what the problem was.
#	## PART 2 ### Returns a comb filter ef comb_filter(delay, fs, g, input_sound=None): # Initialize the numerator and denominator of the filter samples = int(delay * fs) a = np.zeros(samples + 1) b = np.zeros(samples + 1)
	<pre># Set the coefficients a[0] = 1 b[0] = 1 a[samples] = g if input_sound is not None: return lfilter(b, a, input_sound) else:</pre>
C (C (C (C (C (C (C (C (C (C (return b, a Setting the parameters for the Schroeder reverberators omb_1 = comb_filter(0.01, fs, .6, input_sound) omb_2 = comb_filter(0.009, fs, .2, input_sound) omb_3 = comb_filter(0.015, fs, .7, input_sound) omb_4 = comb_filter(0.02, fs, .3, input_sound) omb_sum = comb_1 + comb_2 + comb_3 + comb_4
a a # e · so	<pre>llpass_1 = allpass(0.037, fs, .6, comb_sum) llpass_2 = allpass(0.03, fs, .6, allpass_1) Adding the input sound to the Schroeder reverberators ffected_sound = input_sound + allpass_2 pund(effected_sound, rate=fs, label=f"{fname} with Schroeder reverberators")</pre>
p	Spectrogram of loop.wav with Schroeder reverberators") Spectrogram of loop.wav with Schroeder reverberators")
[20000 -
	10000 - 50
ı	5000 1 2 3 4 5 6 7 Time [sec] Found that to try an minimize the reflections in this reverb sound, I had to keep the delay of the allpass filters < 0.04. I kept messing around with various combinations of delays and gains, and I found that this combination sounded really cool to not a sound that the reflections in this reverb sound.
P To	ound that to try an minimize the reflections in this reverb sound, I had to keep the delay of the allpass filters < 0.04. I kept messing around with various combinations of delays and gains, and I found that this combination sounded really cool to redds a slight metallic sound to the input, but I thing the timbre is very unique and is something I would add to my own productions. I would characterize the reverb as very short and tight. Part 3. Applying a real room response Dapply a more realistic filter we need to use a real room response. Download the St. Andrew's church room impulse response (Stereo) from: https://openairlib.net/?page_id=683]
M sc op dc	lake sure that the sound you will convolve with it will be at the same sampling rate. This impulse response captures that church's RIR using two channels. To synthesize a sound in that room you need to convolve it with the impulse response. If you can simply convolve it with each of the two impulse responses and then use the resulting outputs as the left and right channel. You will notice that using the scipy.signal.lfilter command for this operation can take very long to compute. For faster convolutions we need to perform this filtering in the frequency domain (using the fast convolution algorithm that we mentioned in the filtering lecture). The function numpy.convolve automated that the resulting output sounds like it has been placed inside a church. The function numpy.convolve automated that the resulting output sounds like it has been placed inside a church.
fs le	<pre>catal control of control of</pre>
le r:	onvolved_sound = np.array([left_convolved, right_convolved])
le r: co	convolved_sound = np.array([left_convolved, right_convolved]) cound(convolved_sound, rate=fs_RR, label=f"{fname} convolved with {fname_RR}") cop.wav convolved with st-andrews-church (stereo).wav Part 4 (extra credit). Measuring a room response.