CS 103: Mathematical Foundations of Computing Problem Set #8

Zara Rutherford, Diya Ahuja March 8, 2024

Due Friday, March 8 at 4:00 pm Pacific

You'll submit your answers to Problem 1 and Problem 4 separately. Symbols you might find helpful in this problem set:

• The "unstar" of a monoid from Q3 is written M^{\dagger} .

Problem Two: The Fixed-Point Theorem

i.

- 1. Yes, it is monotone
- 2. Yes, it is monotone
- 3. No, it is not monotone
- 4. Yes, it is monotone

ii.

- 1. Yes, aaa
- 2. Yes, aaa
- 3. Yes, a
- 4. Yes, \emptyset^*

iii.

We need to prove that for a language L where $L \subseteq f(L)$, that $L \subseteq X$. To do so, pick an arbitrary $s \in L$. We will prove that $s \in X$. Since we know that $s \in L$, and $L \subseteq f(L)$, we see that $s \in X$ based on how we defined the language X.

Problem Set 8

iv.

We need to prove that if f is monotone, then X = f(X). To do so, we will prove that $X \subseteq f(X)$ and $f(X) \subseteq X$.

First, we will show that $X \subseteq f(X)$. To do so, choose an arbitrary $s \in X$. We need to show that $s \in f(X)$. Since $s \in X$, by the definition of X we know that there exists a language L such that $s \in L$ and $L \subseteq f(L)$, so $s \in f(L)$. Based on our previous proof, we know $L \subseteq X$, and since f is monotone, this means $f(L) \subseteq f(X)$. Since we know $s \in f(L)$, this means $s \in f(X)$, as needed.

Second, we will show that $f(X) \subseteq X$. Since f is monotone, we know that $f(X) \subseteq f(f(X))$. Based on our previous proof, we see that if $f(X) \subseteq f(f(X))$, then $f(X) \subseteq X$, as needed.

Since $X \subseteq f(X)$ and $f(X) \subseteq X$, this means that X = f(X), as required.

Problem Three: Unstarring a Language

i.

- 1. No, it is not a codeword of L
- 2. No, it is not a codeword of L
- 3. Yes, it is a codeword of L
- 4. No, it is not a codeword of L
- 5. No, it is not a codeword of L

ii.

```
1. { }
2. { a, b }
3. { aa }
4. { b, ba, baa }
```

iii.

We need to prove that if M is a monoid over an alphabet Σ , then $(M^{\dagger})^* = M$. To do so, we will prove that $(M^{\dagger})^* \subseteq M$ and $M \subseteq (M^{\dagger})^*$.

First, we will show that $(M^{\dagger})^* \subseteq M$. To do so, we will first prove that $M^{\dagger} \subseteq M$. Choose an arbitrary $s \in M^{\dagger}$. We will show that $s \in M$. Since $s \in M^{\dagger}$, this means that s is a codeword of M. By definition of a codeword, we know that $s \in M$, as needed. Then, since $M^{\dagger} \subseteq M$, based on our proof in Problem Set Six we know that $(M^{\dagger})^* \subseteq M$, as required.

Second, we will show that $M \subseteq (M^{\dagger})^*$. Let P(n) be the statement "for a string s with length n, if $s \in M$, then $s \in (M^{\dagger})^*$. We will prove that P(n) holds for all $n \in \mathbb{N}$.

For our base case, we need to prove P(0), that if the empty string is in M, then the empty string is also in $(M^{\dagger})^{\star}$. By definition of a monoid, we know that $\varepsilon \in M$. By definition of the Kleene star, we know that $\varepsilon \in (M^{\dagger})^{\star}$, as required.

For our inductive step, pick some $k \in N$ and assume P(0), ..., P(k) are all true. We need to prove P(k+1), that if a string s of length k+1 is in M, then $s \in (M^{\dagger})^*$. To do so, consider two cases:

Case 1: s is a codeword. This means that $s \in M^{\dagger}$, so by definition of the Kleene star, s must be in $(M^{\dagger})^{\star}$, as needed.

Case 2: s is not a codeword. Since s is not a codeword, we know that there must exist two strings x and y in M such that s = xy, and neither x nor y are the empty string. Since s has length k+1 and both x and y have length at least equal to 1, this means that both x and y must have length between 1 and k, inclusive. Therefore, based on our inductive hypothesis, we know that $x \in (M^{\dagger})^*$ and $y \in (M^{\dagger})^*$. Furthermore, since $x \in (M^{\dagger})^*$ and $y \in (M^{\dagger})^*$, there re natural numbers m and n such that $x \in (M^{\dagger})^n$ and $y \in (M^{\dagger})^m$. This means that $xy \in (M^{\dagger})^n (M^{\dagger})^m = (M^{\dagger})^{n+m}$, meaning that $s \in (M^{\dagger})^{n+m}$. Thus, $s \in (M^{\dagger})^*$, as needed.

This shows that P(k+1) holds, which completes the induction.

Problem Five: Executable Computability Theory

i.

- $L = \{ a^n b^n \mid n \in \mathbb{N} \}$
- \bullet Yes, the function is also a decider for L.
- \bullet Yes, L is decidable.

ii.

- $\bullet \ L = \{ \, w \mid w \in \Sigma^\star \, \}$
- Yes, the function is also a decider for L.
- $\bullet\,$ Yes, L is decidable.

iii.

- $L = \{ w \mid w \in \Sigma^* \text{ and } |w| \text{ is in the fibonacci sequence } \}$
- \bullet No, the function is not a decider for L.
- ullet Yes, L is decidable.

Problem Six: What Does it Mean to Solve a Problem?

٠	
1	
T	٠

// By rejecting every input, if $w \in \Sigma *$ or not, it is rejected so conditions 1 and 2 are satisfied Start: Return False

ii.

// All inputs are accepted Start: Return True

iii.

// Infinite loop and nothing is accepted or rejected Start:

Goto Start

iv.

Consider a language L over an alphabet Σ for which there is a TM M that satisfies these three properties:

- 1. For all $w \in \Sigma^*$. M halts on w
- 2. For all $w \in \Sigma^*$, if M accepts w, then $w \in L$
- 3. For all $w \in \Sigma^*$, if M rejects w, then $w \notin L$

We will prove that L is a decidable language such that there is a decider for it. Since L has a TM M, we will show that M is a decider for L.

For M to be a decider, it must fulfill these properties:

- 1. For all $w \in \Sigma^*$. M halts on w
- 2. For all $w \in \Sigma^*$, $M \in L$ if and only if M accepts w.

Let's prove each property individually.

- 1. For all $w \in \Sigma^*$. M halts on w. We can see this is also the first property of M so that M fulfills this property of a decider.
- 2. For all $w \in \Sigma^*$, $M \in L$ if and only if M accepts w.

Let's first prove that for all $w \in \Sigma^*$, if $M \in L$ then M accepts w. We can prove this by contradiction such that there exists a $y \in L$ where M doesn't accept y.

Since M doesn't accept y and we know that M halts on y, it must be that M rejects y. However, the third property of M states that for all $w \in \Sigma^*$, if M rejects w, then $w \notin L$. Therefore, M must accept y so we have reached a contradiction and if $y \in L$ then M accepts y.

We also need to prove that for all $w \in \Sigma^*$, if M accepts w then $w \in L$. We can see that this is also one of the properties of M so we have proven this case.

We have proven each property such that M is a decider for L so that L is a decidable language. \blacksquare