# **US Patent & Trademark Office Patent Public Search | Text View**

United States Patent 12393576 Kind Code B2 Date of Patent August 19, 2025 Williams: Frank John et al. Inventor(s)

# Determination of meaning of a phrase with ambiguity resolution

## Abstract

A method executed by a computing device includes determining a set of identigens for a phrase to produce sets of identigens. A set of identigens of the sets of identigens represents one or more different meanings of a word of the phrase. The method further includes interpreting, based on identigen pairing rules of a knowledge database, pairs of sequentially adjacent identigens of adjacent sets of identigens of the sets of identigens to determine a first most likely meaning interpretation of the phrase and produce a first phrase entigen group of phrase entigen groups. The method further includes identifying an inconsistency between at least two phrase entigen groups of the phrase entigen groups and obtaining an inconsistency clarification based on the inconsistency. The method further includes selecting one phrase entigen group of the phrase entigen groups based on the inconsistency clarification to produce a final phrase entigen group.

Inventors: Williams; Frank John (Rossmoor, CA), Sundberg; Stephen Emerson (Chicago, IL), Reed; Ameeta Vasant (Deerfield, IL), Roberson; Dennis Arlen (Chapin, SC), MacTavish; Thomas James (Inverness, IL), Knutson; Karl Olaf (Palatine, IL), Thomas; Jessy (Palatine, IL), MacTavish; Niklas Josiah (Inverness, IL), Corns, II; David Michael (Elgin, IL), Chu; Andrew (St. Charles, IL), Alberth; Kyle Edward (Hampshire, IL), Fattahian; Ali (South Barrington, IL), McCord; Zachary John (Palatine, IL), Abunaser; Ahmad Abdelgader (Hoffman Estates, IL), Grube; Gary W. (Barrington Hills, IL)

Applicant: entigenlogic LLC (Schaumburg, IL)

Family ID: 1000008766962

entigenlogic LLC (Schaumburg, IL) **Assignee:** 

Appl. No.: 18/747416

Filed: **June 18, 2024** 

**Prior Publication Data** 

**Document Identifier Publication Date** 

## **Related U.S. Application Data**

continuation parent-doc US 17502262 20211015 US 12019628 child-doc US 18747416 us-provisional-application US 63094825 20201021

## **Publication Classification**

Int. Cl.: G06F16/242 (20190101); G06F16/2455 (20190101); G06F16/28 (20190101);

**G06F40/289** (20200101)

**U.S. Cl.:** 

CPC **G06F16/243** (20190101); **G06F16/24564** (20190101); **G06F16/284** (20190101);

**G06F40/289** (20200101);

## **Field of Classification Search**

**CPC:** G06F (16/243); G06F (16/24564); G06F (16/284); G06F (40/289); G06F (16/24522);

G06F (16/90344); G06F (40/30); G06N (5/022); G06N (5/04)

## **References Cited**

#### U.S. PATENT DOCUMENTS

| Patent No.   | <b>Issued Date</b> | <b>Patentee Name</b> | U.S. Cl. | CPC |
|--------------|--------------------|----------------------|----------|-----|
| 6175834      | 12/2000            | Cai                  | N/A      | N/A |
| 2003/0097251 | 12/2002            | Yamada               | N/A      | N/A |
| 2008/0208569 | 12/2007            | Simpson              | N/A      | N/A |
| 2016/0147979 | 12/2015            | Kato                 | N/A      | N/A |
| 2018/0081871 | 12/2017            | Williams             | N/A      | N/A |
| 2019/0220474 | 12/2018            | Williams             | N/A      | N/A |
| 2019/0258717 | 12/2018            | Williams             | N/A      | N/A |
|              |                    |                      |          |     |

Primary Examiner: Kerzhner; Aleksandr

Assistant Examiner: Toughiry; Aryan D

# **Background/Summary**

CROSS REFERENCE TO RELATED PATENTS (1) The present U.S. Utility patent application claims priority pursuant to 35 U.S.C. § 120 as a continuation of U.S. Utility application Ser. No. 17/502,262, entitled "DETERMINATION OF MEANING OF A PHRASE WITH AMBIGUITY RESOLUTION," filed Oct. 15, 2021, issuing Jun. 25, 2024, as U.S. Pat. No. 12,019,628, which claims priority pursuant to pursuant to 35 U.S.C. § 119 (e) to U.S. Provisional Application No. 63/094,825, entitled "DETERMINATION OF MEANING OF A PHRASE WITH AMBIGUITY

RESOLUTION" filed Oct. 21, 2020, all of which are hereby incorporated herein by reference in their entirety and made part of the present U.S. Utility patent application for all purposes.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT (1) NOT APPLICABLE

INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC (2) NOT APPLICABLE

BACKGROUND OF THE INVENTION

Technical Field of the Invention

(3) This invention relates generally to computing systems and more particularly to generating data representations of data and analyzing the data utilizing the data representations.

Description of Related Art

- (4) It is known that data is stored in information systems, such as files containing text. It is often difficult to produce useful information from this stored data due to many factors. The factors include the volume of available data, accuracy of the data, and variances in how text is interpreted to express knowledge. For example, many languages and regional dialects utilize the same or similar words to represent different concepts.
- (5) Computers are known to utilize pattern recognition techniques and apply statistical reasoning to process text to express an interpretation in an attempt to overcome ambiguities inherent in words. One pattern recognition technique includes matching a word pattern of a query to a word pattern of the stored data to find an explicit textual answer. Another pattern recognition technique classifies words into major grammatical types such as functional words, nouns, adjectives, verbs and adverbs. Grammar based techniques then utilize these grammatical types to study how words should be distributed within a string of words to form a properly constructed grammatical sentence where each word is forced to support a grammatical operation without necessarily identifying what the word is actually trying to describe.

## **Description**

# BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

- (1) FIG. **1** is a schematic block diagram of an embodiment of a computing system in accordance with the present invention;
- (2) FIG. **2** is a schematic block diagram of an embodiment of various servers of a computing system in accordance with the present invention;
- (3) FIG. **3** is a schematic block diagram of an embodiment of various devices of a computing system in accordance with the present invention;
- (4) FIGS. **4**A and **4**B are schematic block diagrams of another embodiment of a computing system in accordance with the present invention;
- (5) FIG. **4**C is a logic diagram of an embodiment of a method for interpreting content to produce a response to a query within a computing system in accordance with the present invention;
- (6) FIG. **5**A is a schematic block diagram of an embodiment of a collections module of a computing system in accordance with the present invention;
- (7) FIG. **5**B is a logic diagram of an embodiment of a method for obtaining content within a computing system in accordance with the present invention;
- (8) FIG. **5**C is a schematic block diagram of an embodiment of a query module of a computing system in accordance with the present invention;
- (9) FIG. **5**D is a logic diagram of an embodiment of a method for providing a response to a query within a computing system in accordance with the present invention;
- (10) FIG. **5**E is a schematic block diagram of an embodiment of an identigen entigen intelligence (IEI) module of a computing system in accordance with the present invention;

- (11) FIG. **5**F is a logic diagram of an embodiment of a method for analyzing content within a computing system in accordance with the present invention;
- (12) FIG. **6**A is a schematic block diagram of an embodiment of an element identification module and an interpretation module of a computing system in accordance with the present invention;
- (13) FIG. **6**B is a logic diagram of an embodiment of a method for interpreting information within a computing system in accordance with the present invention;
- (14) FIG. **6**C is a schematic block diagram of an embodiment of an answer resolution module of a computing system in accordance with the present invention;
- (15) FIG. **6**D is a logic diagram of an embodiment of a method for producing an answer within a computing system in accordance with the present invention;
- (16) FIG. 7A is an information flow diagram for interpreting information within a computing system in accordance with the present invention;
- (17) FIG. **7**B is a relationship block diagram illustrating an embodiment of relationships between things and representations of things within a computing system in accordance with the present invention;
- (18) FIG. 7C is a diagram of an embodiment of a synonym words table within a computing system in accordance with the present invention;
- (19) FIG. 7D is a diagram of an embodiment of a polysemous words table within a computing system in accordance with the present invention;
- (20) FIG. 7E is a diagram of an embodiment of transforming words into groupings within a computing system in accordance with the present invention;
- (21) FIG. **8**A is a data flow diagram for accumulating knowledge within a computing system in accordance with the present invention;
- (22) FIG. **8**B is a diagram of an embodiment of a groupings table within a computing system in accordance with the present invention;
- (23) FIG. **8**C is a data flow diagram for answering questions utilizing accumulated knowledge within a computing system in accordance with the present invention;
- (24) FIG. **8**D is a data flow diagram for answering questions utilizing interference within a computing system in accordance with the present invention;
- (25) FIG. **8**E is a relationship block diagram illustrating another embodiment of relationships between things and representations of things within a computing system in accordance with the present invention;
- (26) FIGS. **8**F and **8**G are schematic block diagrams of another embodiment of a computing system in accordance with the present invention;
- (27) FIG. **8**H is a logic diagram of an embodiment of a method for processing content to produce knowledge within a computing system in accordance with the present invention;
- (28) FIGS. **8**J and **8**K are schematic block diagrams another embodiment of a computing system in accordance with the present invention;
- (29) FIG. **8**L is a logic diagram of an embodiment of a method for generating a query response to a query within a computing system in accordance with the present invention;
- (30) FIGS. **9**A-**9**C are schematic block diagrams of another embodiment of a computing system illustrating a method for determining meaning of a phrase with ambiguity resolution within the computing system in accordance with the present invention;
- (31) FIGS. **10**A-**10**B are schematic block diagrams of another embodiment of a computing system illustrating a method for processing informal utilization of words within the computing system in accordance with the present invention;
- (32) FIGS. **11**A-**11**C are schematic block diagrams of another embodiment of a computing system illustrating a method for identifying knowledge associated with a set of phrases within the computing system in accordance with the present invention;
- (33) FIGS. 12A-12C are schematic block diagrams of another embodiment of a computing system

- illustrating a method for identifying medical conditions within the computing system in accordance with the present invention;
- (34) FIGS. **13**A-**13**B are schematic block diagrams of another embodiment of a computing system illustrating a method for identifying true meaning of a sarcastic phrase within the computing system in accordance with the present invention; and
- (35) FIGS. **14**A-**14**D are schematic block diagrams of another embodiment of a computing system illustrating a method for processing a query within the computing system in accordance with the present invention.

#### DETAILED DESCRIPTION OF THE INVENTION

- (36) FIG. **1** is a schematic block diagram of an embodiment of a computing system **10** that includes a plurality of user devices **12-1** through **12-**N, a plurality of wireless user devices **14-1** through **14-**N, a plurality of content sources **16-1** through **16-**N, a plurality of transactional servers **18-1** through **18-**N, a plurality of artificial intelligence (AI) servers **20-1** through **20-**N, and a core network **24**. The core network **24** includes at least one of the Internet, a public radio access network (RAN), and any private network. Hereafter, the computing system **10** may be interchangeably referred to as a data network, a data communication network, a system, a communication system, and a data communication system. Hereafter, the user device and the wireless user device may be interchangeably referred to as user devices, and each of the transactional servers and the AI servers may be interchangeably referred to as servers.
- (37) Each user device, wireless user device, transactional server, and AI server includes a computing device that includes a computing core. In general, a computing device is any electronic device that can communicate data, process data, and/or store data. A further generality of a computing device is that it includes one or more of a central processing unit (CPU), a memory system, a sensor (e.g., internal or external), user input/output interfaces, peripheral device interfaces, communication elements, and an interconnecting bus structure.
- (38) As further specific examples, each of the computing devices may be a portable computing device and/or a fixed computing device. A portable computing device may be an embedded controller, a smart sensor, a smart pill, a social networking device, a gaming device, a cell phone, a smart phone, a robot, a personal digital assistant, a digital music player, a digital video player, a laptop computer, a handheld computer, a tablet, a video game controller, an engine controller, a vehicular controller, an aircraft controller, a maritime vessel controller, and/or any other portable device that includes a computing core. A fixed computing device may be security camera, a sensor device, a household appliance, a machine, a robot, an embedded controller, a personal computer (PC), a computer server, a cable set-top box, a satellite receiver, a television set, a printer, a fax machine, home entertainment equipment, a camera controller, a video game console, a critical infrastructure controller, and/or any type of home or office computing equipment that includes a computing core. An embodiment of the various servers is discussed in greater detail with reference to FIG. 2. An embodiment of the various devices is discussed in greater detail with reference to FIG. 3.
- (39) Each of the content sources **16-1** through **16-**N includes any source of content, where the content includes one or more of data files, a data stream, a tech stream, a text file, an audio stream, an audio file, a video stream, a video file, etc. Examples of the content sources include a weather service, a multi-language online dictionary, a fact server, a big data storage system, the Internet, social media systems, an email server, a news server, a schedule server, a traffic monitor, a security camera system, audio monitoring equipment, an information server, a service provider, a data aggregator, and airline traffic server, a shipping and logistics server, a banking server, a financial transaction server, etc. Alternatively, or in addition to, one or more of the various user devices may provide content. For example, a wireless user device may provide content (e.g., issued as a content message) when the wireless user device is able to capture data (e.g., text input, sensor input, etc.). (40) Generally, an embodiment of this invention presents solutions where the computing system **10**

supports the generation and utilization of knowledge extracted from content. For example, the AI servers **20-1** through **20-**N ingest content from the content sources **16-1** through **16-**N by receiving, via the core network **24** content messages **28-1** through **28-**N as AI messages **32-1** through **32-**N, extract the knowledge from the ingested content, and interact with the various user devices to utilize the extracted knowledge by facilitating the issuing, via the core network **24**, user messages **22-1** through **22-**N to the user devices **12-1** through **12-**N and wireless signals **26-1** through **26-**N to the wireless user devices **14-1** through **14-**N.

- (41) Each content message **28-1** through **28-**N includes a content request (e.g., requesting content related to a topic, content type, content timing, one or more domains, etc.) or a content response, where the content response includes real-time or static content such as one or more of dictionary information, facts, non-facts, weather information, sensor data, news information, blog information, social media content, user daily activity schedules, traffic conditions, community event schedules, school schedules, user schedules airline records, shipping records, logistics records, banking records, census information, global financial history information, etc. Each AI message **32-1** through **32-**N includes one or more of content messages, user messages (e.g., a query request, a query response that includes an answer to a query request), and transaction messages (e.g., transaction information, requests and responses related to transactions). Each user message **22-1** through **22-**N includes one or more of a query request, a query response, a trigger request, a trigger response, a content collection, control information, software information, configuration information, security information, routing information, addressing information, presence information, analytics information, protocol information, all types of media, sensor data, statistical data, user data, error messages, etc.
- (42) When utilizing a wireless signal capability of the core network **24**, each of the wireless user devices **14-1** through **14-**N encodes/decodes data and/or information messages (e.g., user messages such as user messages **22-1** through **22-**N) in accordance with one or more wireless standards for local wireless data signals (e.g., Wi-Fi, Bluetooth, ZigBee) and/or for wide area wireless data signals (e.g., 2G, 3G, 4G, 5G, satellite, point-to-point, etc.) to produce wireless signals **26-1** through **26-**N. Having encoded/decoded the data and/or information messages, the wireless user devices **14-1** through **14-**N and/receive the wireless signals to/from the wireless capability of the core network **24**.
- (43) As another example of the generation and utilization of knowledge, the transactional servers **18-1** through **18-**N communicate, via the core network **24**, transaction messages **30-1** through **30-**N as further AI messages **32-1** through **32-**N to facilitate ingesting of transactional type content (e.g., real-time crypto currency transaction information) and to facilitate handling of utilization of the knowledge by one or more of the transactional servers (e.g., for a transactional function) in addition to the utilization of the knowledge by the various user devices. Each transaction message **30-1** through **30-**N includes one or more of a query request, a query response, a trigger request, a trigger response, a content message, and transactional information, where the transactional information may include one or more of consumer purchasing history, crypto currency ledgers, stock market trade information, other investment transaction information, etc.
- (44) In another specific example of operation of the generation and utilization of knowledge extracted from the content, the user device **12-1** issues a user message **22-1** to the AI server **20-1**, where the user message **22-1** includes a query request and where the query request includes a question related to a first domain of knowledge. The issuing includes generating the user message **22-1** based on the query request (e.g., the question), selecting the AI server **20-1** based on the first domain of knowledge, and sending, via the core network **24**, the user message **22-1** as a further AI message **32-1** to the AI server **20-1**. Having received the AI message **32-1**, the AI server **20-1** analyzes the question within the first domain, generates further knowledge, generates a preliminary answer, generates a quality level indicator of the preliminary answer, and determines to gather further content when the quality level indicator is below a minimum quality threshold level.

- (45) When gathering the further content, the AI server **20-1** issues, via the core network **24**, a still further AI message **32-1** as a further content message **28-1** to the content source **16-1**, where the content message **28-1** includes a content request for more content associated with the first domain of knowledge and in particular the question. Alternatively, or in addition to, the AI server **20-1** issues the content request to another AI server to facilitate a response within a domain associated with the other AI server. Further alternatively, or in addition to, the AI server **20-1** issues the content request to one or more of the various user devices to facilitate a response from a subject matter expert.
- (46) Having received the content message 28-1, the contents or 16-1 issues, via the core network 24, a still further content message 28-1 to the AI server 20-1 as a yet further AI message 32-1, where the still further content message 28-1 includes requested content. The AI server 20-1 processes the received content to generate further knowledge. Having generated the further knowledge, the AI server 20-1 re-analyzes the question, generates still further knowledge, generates another preliminary answer, generates another quality level indicator of the other preliminary answer, and determines to issue a query response to the user device 12-1 when the quality level indicator is above the minimum quality threshold level. When issuing the query response, the AI server 20-1 generates an AI message 32-1 that includes another user message 22-1, where the other user message 22-1 includes the other preliminary answer as a query response including the answer to the question. Having generated the AI message 32-1, the AI server 20-1 sends, via the core network 24, the AI message 32-1 as the user message 22-1 to the user device 12-1 thus providing the answer to the original question of the query request.
- (47) FIG. 2 is a schematic block diagram of an embodiment of the AI servers 20-1 through 20-N and the transactional servers **18-1** through **18-**N of the computing system **10** of FIG. **1**. The servers include a computing core **52**, one or more visual output devices **74** (e.g., video graphics display, touchscreen, LED, etc.), one or more user input devices 76 (e.g., keypad, keyboard, touchscreen, voice to text, a push button, a microphone, a card reader, a door position switch, a biometric input device, etc.), one or more audio output devices **78** (e.g., speaker(s), headphone jack, a motor, etc.), and one or more visual input devices **80** (e.g., a still image camera, a video camera, photocell, etc.). (48) The servers further include one or more universal serial bus (USB) devices (USB devices 1-U), one or more peripheral devices (e.g., peripheral devices 1-P), one or more memory devices (e.g., one or more flash memory devices 92, one or more hard drive (HD) memories 94, and one or more solid state (SS) memory devices 96, and/or cloud memory 98). The servers further include one or more wireless location modems **84** (e.g., global positioning satellite (GPS), Wi-Fi, angle of arrival, time difference of arrival, signal strength, dedicated wireless location, etc.), one or more wireless communication modems 86-1 through 86-N (e.g., a cellular network transceiver, a wireless data network transceiver, a Wi-Fi transceiver, a Bluetooth transceiver, a 315 MHz transceiver, a zig bee transceiver, a 60 GHz transceiver, etc.), a telco interface **102** (e.g., to interface to a public switched telephone network), and a wired local area network (LAN) 88 (e.g., optical, electrical), and a wired wide area network (WAN) 90 (e.g., optical, electrical).
- (49) The computing core **52** includes a video graphics module **54**, one or more processing modules **50-1** through **50-**N (e.g., which may include one or more secure co-processors), a memory controller **56** and one or more main memories **58-1** through **58-**N (e.g., RAM serving as local memory). The computing core **52** further includes one or more input/output (I/O) device interfaces **62**, an input/output (I/O) controller **60**, a peripheral interface **64**, one or more USB interfaces **66**, one or more network interfaces **72**, one or more memory interfaces **70**, and/or one or more peripheral device interfaces **68**.
- (50) The processing modules may be a single processing device or a plurality of processing devices where the processing device may further be referred to as one or more of a "processing circuit", a "processor", and/or a "processing unit". Such a processing device may be a microprocessor, microcontroller, digital signal processor, microcomputer, central processing unit, field programmable

gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or operational instructions.

- (51) The processing module, module, processing circuit, and/or processing unit may be, or further include, memory and/or an integrated memory element, which may be a single memory device, a plurality of memory devices, and/or embedded circuitry of another processing module, module, processing circuit, and/or processing unit. Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information. Note that if the processing module, module, processing circuit, and/or processing unit includes more than one processing device, the processing devices may be centrally located (e.g., directly coupled together via a wired and/or wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect coupling via a local area network and/or a wide area network).
- (52) Further note that if the processing module, module, processing circuit, and/or processing unit implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry, the memory and/or memory element storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry. Still further note that, the memory element may store, and the processing module, module, processing circuit, and/or processing unit executes, hard coded and/or operational instructions corresponding to at least some of the steps and/or functions illustrated in one or more of the Figures. Such a memory device or memory element can be included in an article of manufacture.
- (53) Each of the interfaces **62**, **66**, **68**, **70**, and **72** includes a combination of hardware (e.g., connectors, wiring, etc.) and may further include operational instructions stored on memory (e.g., driver software) that are executed by one or more of the processing modules **50-1** through **50-N** and/or a processing circuit within the interface. Each of the interfaces couples to one or more components of the servers. For example, one of the IO device interfaces **62** couples to an audio output device **78**. As another example, one of the memory interfaces **70** couples to flash memory **92** and another one of the memory interfaces **70** couples to cloud memory **98** (e.g., an on-line storage system and/or on-line backup system). In other embodiments, the servers may include more or less devices and modules than shown in this example embodiment of the servers.
- (54) FIG. **3** is a schematic block diagram of an embodiment of the various devices of the computing system **10** of FIG. **1**, including the user devices **12-1** through **12-**N and the wireless user devices **14-1** through **14-**N. The various devices include the visual output device **74** of FIG. **2**, the user input device **76** of FIG. **2**, the audio output device **78** of FIG. **2**, the visual input device **80** of FIG. **2**, and one or more sensors **82**.
- (55) The sensor may be implemented internally and/or externally to the device. Example sensors includes a still camera, a video camera, servo motors associated with a camera, a position detector, a smoke detector, a gas detector, a motion sensor, an accelerometer, velocity detector, a compass, a gyro, a temperature sensor, a pressure sensor, an altitude sensor, a humidity detector, a moisture detector, an imaging sensor, and a biometric sensor. Further examples of the sensor include an infrared sensor, an audio sensor, an ultrasonic sensor, a proximity detector, a magnetic field detector, a biomaterial detector, a radiation detector, a weight detector, a density detector, a chemical analysis detector, a fluid flow volume sensor, a DNA reader, a wind speed sensor, a wind direction sensor, and an object detection sensor.
- (56) Further examples of the sensor include an object identifier sensor, a motion recognition detector, a battery level detector, a room temperature sensor, a sound detector, a smoke detector, an intrusion detector, a motion detector, a door position sensor, a window position sensor, and a sunlight detector. Still further sensor examples include medical category sensors including: a pulse rate monitor, a heart rhythm monitor, a breathing detector, a blood pressure monitor, a blood

glucose level detector, blood type, an electrocardiogram sensor, a body mass detector, an imaging sensor, a microphone, body temperature, etc.

- (57) The various devices further include the computing core **52** of FIG. **2**, the one or more universal serial bus (USB) devices (USB devices **1-**U) of FIG. **2**, the one or more peripheral devices (e.g., peripheral devices **1-**P) of FIG. **2**, and the one or more memories of FIG. **2** (e.g., flash memories **92**, HD memories **94**, SS memories **96**, and/or cloud memories **98**). The various devices further include the one or more wireless location modems **84** of FIG. **2**, the one or more wireless communication modems **86-1** through **86-**N of FIG. **2**, the telco interface **102** of FIG. **2**, the wired local area network (LAN) **88** of FIG. **2**, and the wired wide area network (WAN) **90** of FIG. **2**. In other embodiments, the various devices may include more or less internal devices and modules than shown in this example embodiment of the various devices.
- (58) FIGS. 4A and 4B are schematic block diagrams of another embodiment of a computing system that includes one or more of the user device **12-1** of FIG. **1**, the wireless user device **14-1** of FIG. **1**, the content source **16-1** of FIG. **1**, the transactional server **18-1** of FIG. **1**, the user device **12-2** of FIG. 1, and the AI server 20-1 of FIG. 1. The AI server 20-1 includes the processing module 50-1 (e.g., associated with the servers) of FIG. 2, where the processing module **50-1** includes a collections module **120**, an identigen entigen intelligence (IEI) module **122**, and a query module **124**. Alternatively, the collections module **120**, the IEI module **122**, and the guery module **124** may be implemented by the processing module **50-1** (e.g., associated with the various user devices) of FIG. **3**. The computing system functions to interpret content to produce a response to a query. (59) FIG. **4**A illustrates an example of the interpreting of the content to produce the response to the query where the collections module **120** interprets (e.g., based on an interpretation approach such as rules) at least one of a collections request 132 from the query module 124 and a collections request within collections information **130** from the IEI module **122** to produce content request information (e.g., potential sources, content descriptors of desired content). Alternatively, or in addition to, the collections module **120** may facilitate gathering further content based on a plurality of collection requests from a plurality of devices of the computing system **10** of FIG. **1**. (60) The collections request **132** is utilized to facilitate collection of content, where the content may be received in a real-time fashion once or at desired intervals, or in a static fashion from previous discrete time frames. For instance, the query module **124** issues the collections request **132** to facilitate collection of content as a background activity to support a long-term query (e.g., how many domestic airline flights over the next seven days include travelers between the age of 18 and 35 years old). The collections request **132** may include one or more of a requester identifier (ID), a content type (e.g., language, dialect, media type, topic, etc.), a content source indicator, security credentials (e.g., an authorization level, a password, a user ID, parameters utilized for encryption, etc.), a desired content quality level, trigger information (e.g., parameters under which to collect content based on a pre-event, an event (i.e., content quality level reaches a threshold to cause the trigger, trueness), or a timeframe), a desired format, and a desired timing associated with the content.
- (61) Having interpreted the collections request **132**, the collections module **120** selects a source of content based on the content request information. The selecting includes one or more of identifying one or more potential sources based on the content request information, selecting the source of content from the potential sources utilizing a selection approach (e.g., favorable history, a favorable security level, favorable accessibility, favorable cost, favorable performance, etc.). For example, the collections module **120** selects the content source **16-1** when the content source **16-1** is known to provide a favorable content quality level for a domain associated with the collections request **132**.
- (62) Having selected the source of content, the collections module **120** issues a content request **126** to the selected source of content. The issuing includes generating the content request **126** based on the content request information for the selected source of content and sending the content request

- **126** to the selected source of content. The content request **126** may include one or more of a content type indicator, a requester ID, security credentials for content access, and any other information associated with the collections request **132**. For example, the collections module **120** sends the content request **126**, via the core network **24** of FIG. **1**, to the content source **16-1**. Alternatively, or in addition to, the collections module **120** may send a similar content request **126** to one or more of the user device **12-1**, the wireless user device **14-1**, and the transactional server **18-1** to facilitate collecting of further content.
- (63) In response to the content request **126**, the collections module **120** receives one or more content responses **128**. The content response **128** includes one or more of content associated with the content source, a content source identifier, security credential processing information, and any other information pertaining to the desired content. Having received the content response **128**, the collections module **120** interprets the received content response **128** to produce collections information **130**, where the collections information **130** further includes a collections response from the collections module **120** to the IEI module **122**.
- (64) The collections response includes one or more of transformed content (e.g., completed sentences and paragraphs), timing information associated with the content, a content source ID, and a content quality level. Having generated the collections response of the collections information 130, the collections module 120 sends the collections information 130 to the IEI module 122. Having received the collections information 130 from the collections module 120, the IEI module 122 interprets the further content of the content response to generate further knowledge, where the further knowledge is stored in a memory associated with the IEI module 122 to facilitate subsequent answering of questions posed in received queries.
- (65) FIG. **4**B further illustrates the example of the interpreting of the content to produce the response to the query where, the query module **124** interprets a received query request **136** from a requester to produce an interpretation of the query request. For example, the query module **124** receives the query request **136** from the user device **12-2**, and/or from one or more of the wireless user device **14-2** and the transactional server **18-2**. The query request **136** includes one or more of an identifier (ID) associated with the request (e.g., requester ID, ID of an entity to send a response to), a question, question constraints (e.g., within a timeframe, within a geographic area, within a domain of knowledge, etc.), and content associated with the question (e.g., which may be analyzed for new knowledge itself).
- (66) The interpreting of the query request **136** includes determining whether to issue a request to the IEI module **122** (e.g., a question, perhaps with content) and/or to issue a request to the collections module **120** (e.g., for further background content). For example, the query module **124** produces the interpretation of the query request to indicate to send the request directly to the IEI module **122** when the question is associated with a simple non-time varying function answer (e.g., question: "how many hydrogen atoms does a molecule of water have?").
- (67) Having interpreted the query request **136**, the query module **124** issues at least one of an IEI request as query information **138** to the IEI module **122** (e.g., when receiving a simple new query request) and a collections request **132** to the collections module **120** (e.g., based on two or more query requests **136** requiring more substantive content gathering). The IEI request of the query information **138** includes one or more of an identifier (ID) of the query module **124**, an ID of the requester (e.g., the user device **12-2**), a question (e.g., with regards to content for analysis, with regards to knowledge minded by the AI server from general content), one or more constraints (e.g., assumptions, restrictions, etc.) associated with the question, content for analysis of the question, and timing information (e.g., a date range for relevance of the question).
- (68) Having received the query information **138** that includes the IEI request from the query module **124**, the IEI module **122** determines whether a satisfactory response can be generated based on currently available knowledge, including that of the query request **136**. The determining includes indicating that the satisfactory response cannot be generated when an estimated quality

level of an answer falls below a minimum quality threshold level. When the satisfactory response cannot be generated, the IEI module **122** facilitates collecting more content. The facilitating includes issuing a collections request to the collections module **120** of the AI server **20-1** and/or to another server or user device, and interpreting a subsequent collections response **134** of collections information **130** that includes further content to produce further knowledge to enable a more favorable answer.

- (69) When the IEI module **122** indicates that the satisfactory response can be generated, the IEI module **122** issues an IEI response as query information **138** to the query module **124**. The IEI response includes one or more of one or more answers, timing relevance of the one or more answers, an estimated quality level of each answer, and one or more assumptions associated with the answer. The issuing includes generating the IEI response based on the collections response **134** of the collections information **130** and the IEI request, and sending the IEI response as the query information **138** to the query module **124**. Alternatively, or in addition to, at least some of the further content collected by the collections module **120** is utilized to generate a collections response **134** includes one or more of further content, a content availability indicator (e.g., when, where, required credentials, etc.), a content freshness indicator (e.g., timestamps, predicted time availability), content source identifiers, and a content quality level.
- (70) Having received the query information **138** from the IEI module **122**, the query module **124** issues a query response **140** to the requester based on the IEI response and/or the collections response **134** directly from the collections module **120**, where the collection module **120** generates the collections response **134** based on collected content and the collections request **132**. The query response **140** includes one or more of an answer, answer timing, an answer quality level, and answer assumptions.
- (71) FIG. **4**C is a logic diagram of an embodiment of a method for interpreting content to produce a response to a query within a computing system. In particular, a method is presented for use in conjunction with one or more functions and features described in conjunction with FIGS. **1-3**, **4**A-**4**B, and also FIG. **4**C. The method includes step **150** where a collections module of a processing module of one or more computing devices (e.g., of one or more servers) interprets a collections request to produce content request information. The interpreting may include one or more of identifying a desired content source, identifying a content type, identifying a content domain, and identifying content timing requirements.
- (72) The method continues at step **152** where the collections module selects a source of content based on the content request information. For example, the collections module identifies one or more potential sources based on the content request information and selects the source of content from the potential sources utilizing a selection approach (e.g., based on one or more of favorable history, a favorable security level, favorable accessibility, favorable cost, favorable performance, etc.). The method continues at step **154** where the collections module issues a content request to the selected source of content. The issuing includes generating a content request based on the content request information for the selected source of content and sending the content request to the selected source of content.
- (73) The method continues at step **156** where the collections module issues collections information to an identigen entigen intelligence (IEI) module based on a received content response, where the IEI module extracts further knowledge from newly obtained content from the one or more received content responses. For example, the collections module generates the collections information based on newly obtained content from the one or more received content responses of the selected source of content.
- (74) The method continues at step **158** where a query module interprets a received query request from a requester to produce an interpretation of the query request. The interpreting may include determining whether to issue a request to the IEI module (e.g., a question) or to issue a request to

- the collections module to gather further background content. The method continues at step **160** where the query module issues a further collections request. For example, when receiving a new query request, the query module generates a request for the IEI module. As another example, when receiving a plurality of query requests for similar questions, the query module generates a request for the collections module to gather further background content.
- (75) The method continues at step **162** where the IEI module determines whether a satisfactory query response can be generated when receiving the request from the query module. For example, the IEI module indicates that the satisfactory query response cannot be generated when an estimated quality level of an answer is below a minimum answer quality threshold level. The method branches to step **166** when the IEI module determines that the satisfactory query response can be generated. The method continues to step **164** when the IEI module determines that the satisfactory query response cannot be generated, the method continues at step **164** where the IEI module facilitates collecting more content. The method loops back to step **150**.
- (76) When the satisfactory query response can be generated, the method continues at step **166** where the IEI module issues an IEI response to the query module. The issuing includes generating the IEI response based on the collections response and the IEI request, and sending the IEI response to the query module. The method continues at step **168** where the query module issues a query response to the requester. For example, the query module generates the query response based on the IEI response and/or a collections response from the collections module and sends the query response to the requester, where the collections module generates the collections response based on collected content and the collections request.
- (77) The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system **10** of FIG. **1** or by other devices. In addition, at least one memory section (e.g., a computer readable memory, a non-transitory computer readable storage medium, a non-transitory computer readable memory organized into a first memory element, a second memory element, a third memory element, a fourth element section, a fifth memory element etc.) that stores operational instructions can, when executed by one or more processing modules of one or more computing devices (e.g., one or more servers, one or more user devices) of the computing system **10**, cause the one or more computing devices to perform any or all of the method steps described above.
- (78) FIG. **5**A is a schematic block diagram of an embodiment of the collections module **120** of FIG. **4**A that includes a content acquisition module **180**, a content selection module **182**, a source selection module **184**, a content security module **186**, an acquisition timing module **188**, a content transformation module **190**, and a content quality module **192**. Generally, an embodiment of this invention presents solutions where the collections module **120** supports collecting content. (79) In an example of operation of the collecting of the content, the content acquisition module **180** receives a collections request **132** from a requester. The content acquisition module **180** obtains content selection information **194** based on the collections request **132**. The content selection information **194** includes one or more of content requirements, a desired content type indicator, a desired content source identifier, a content type indicator, a candidate source identifier (ID), and a content profile (e.g., a template of typical parameters of the content). For example, the content acquisition module **180** receives the content selection information **194** from the content selection module **182**, where the content selection module **182** generates the content selection information **194** based on a content selection information request from the content acquisition module **180** and where the content acquisition module 180 generates the content selection information request based on the collections request **132**.
- (80) The content acquisition module **180** obtains source selection information **196** based on the collections request **132**. The source selection information **196** includes one or more of candidate source identifiers, a content profile, selected sources, source priority levels, and recommended

source access timing. For example, the content acquisition module **180** receives the source selection information **196** from the source selection module **184**, where the source selection module **184** generates the source selection information **196** based on a source selection information request from the content acquisition module **180** and where the content acquisition module **180** generates the source selection information request based on the collections request **132**.

- (81) The content acquisition module **180** obtains acquisition timing information **200** based on the collections request **132**. The acquisition timing information **200** includes one or more of recommended source access timing, confirmed source access timing, source access testing results, estimated velocity of content update's, content precious, timestamps, predicted time availability, required content acquisition triggers, content acquisition trigger detection indicators, and a duplicative indicator with a pending content request. For example, the content acquisition module **180** receives the acquisition timing information **200** from the acquisition timing module **188**, where the acquisition timing module **188** generates the acquisition timing information **200** based on an acquisition timing information request from the content acquisition module **180** and where the content acquisition module **180** generates the acquisition timing information request based on the collections request **132**.
- (82) Having obtained the content selection information 194, the source selection information 196, and the acquisition timing information 200, the content acquisition module 180 issues a content request 126 to a content source utilizing security information 198 from the content security module 186, where the content acquisition module 180 generates the content request 126 in accordance with the content selection information 194, the source selection information 196, and the acquisition timing information 200. The security information 198 includes one or more of source priority requirements, requester security information, available security procedures, and security credentials for trust and/or encryption. For example, the content acquisition module 180 generates the content request 126 to request a particular content type in accordance with the content selection information 194 and to include security parameters of the security information 198, initiates sending of the content request 126 in accordance with the acquisition timing information 200, and sends the content request 126 to a particular targeted content source in accordance with the source selection information 196.
- (83) In response to receiving a content response 128, the content acquisition module 180 determines the quality level of received content extracted from the content response 128. For example, the content acquisition module 180 receives content quality information 204 from the content quality module 192, where the content quality module 192 generates the quality level of the received content based on receiving a content quality request from the content acquisition module 180 and where the content acquisition module 180 generates the content quality request based on content extracted from the content response 128. The content quality information includes one or more of a content reliability threshold range, a content accuracy threshold range, a desired content quality level, a predicted content quality level of trust.
- (84) When the quality level is below a minimum desired quality threshold level, the content acquisition module **180** facilitates acquisition of further content. The facilitating includes issuing another content request **126** to a same content source and/or to another content source to receive and interpret further received content. When the quality level is above the minimum desired quality threshold level, the content acquisition module **180** issues a collections response **134** to the requester. The issuing includes processing the content in accordance with a transformation approach to produce transformed content, generating the collections response **134** to include the transformed content, and sending the collections response **134** to the requester. The processing of the content to produce the transformed content includes receiving content transformation information **202** from the content transformation module **190**, where the content transformation module **190** transforms the content in accordance with the transformation approach to produce the

transformed content. The content transformation information includes a desired format, available

- formats, recommended formatting, the received content, transformation instructions, and the transformed content.
- (85) FIG. 5B is a logic diagram of an embodiment of a method for obtaining content within a computing system. In particular, a method is presented for use in conjunction with one or more functions and features described in conjunction with FIGS. 1-3, 4A-4C, 5A, and also FIG. 5B. The method includes step 210 where a processing module of one or more processing modules of one or more computing devices of the computing system receives a collections request from the requester. The method continues at step 212 where the processing module determines content selection information. The determining includes interpreting the collections request to identify requirements of the content.
- (86) The method continues at step **214** where the processing module determines source selection information. The determining includes interpreting the collections request to identify and select one or more sources for the content to be collected. The method continues at step **216** where the processing module determines acquisition timing information. The determining includes interpreting the collections request to identify timing requirements for the acquisition of the content from the one or more sources. The method continues at step **218** where the processing module issues a content request utilizing security information and in accordance with one or more of the content selection information, the source selection information, and the acquisition timing information. For example, the processing module issues the content request to the one or more sources for the content in accordance with the content requirements, where the sending of the request is in accordance with the acquisition timing information.
- (87) The method continues at step **220** where the processing module determines a content quality level for received content area the determining includes receiving the content from the one or more sources, obtaining content quality information for the received content based on a quality analysis of the received content. The method branches to step **224** when the content quality level is favorable and the method continues to step **222** when the quality level is unfavorable. For example, the processing module determines that the content quality level is favorable when the content quality level is equal to or above a minimum quality threshold level and determines that the content quality level is unfavorable when the content quality level is less than the minimum quality threshold level.
- (88) When the content quality level is unfavorable, the method continues at step **222** where the processing module facilitates acquisition and further content. For example, the processing module issues further content requests and receives further content for analysis. When the content quality level is favorable, the method continues at step **224** where the processing module issues a collections response to the requester. The issuing includes generating the collections response and sending the collections response to the requester. The generating of the collections response may include transforming the received content into transformed content in accordance with a transformation approach (e.g., reformatting, interpreting absolute meaning and translating into another language in accordance with the absolute meaning, etc.).
- (89) The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system 10 of FIG. 1 or by other devices. In addition, at least one memory section (e.g., a computer readable memory, a non-transitory computer readable storage medium, a non-transitory computer readable memory organized into a first memory element, a second memory element, a third memory element, a fourth element section, a fifth memory element etc.) that stores operational instructions can, when executed by one or more processing modules of one or more computing devices (e.g., one or more servers, one or more user devices) of the computing system 10, cause the one or more computing devices to perform any or all of the method steps described above.
- (90) FIG. **5**C is a schematic block diagram of an embodiment of the query module **124** of FIG. **4**A that includes an answer acquisition module **230**, a content requirements module **232** a source

requirements module **234**, a content security module **236**, an answer timing module **238**, an answer transformation module **240**, and an answer quality module **242**. Generally, an embodiment of this invention presents solutions where the query module **124** supports responding to a query. (91) In an example of operation of the responding to the query, the answer acquisition module **230** receives a query request **136** from a requester. The answer acquisition module **230** obtains content requirements information **248** based on the query request **136**. The content requirements information **248** includes one or more of content parameters, a desired content type, a desired content source if any, a content type if any, candidate source identifiers, a content profile, and a question of the query request **136**. For example, the answer acquisition module **230** receives the content requirements information **248** from the content requirements module **232**, where the content requirements information request the content requirements information **248** based on a content requirements information request from the answer acquisition module **230** and where the answer acquisition module **230** generates the content requirements information request based on the query request **136**.

- (92) The answer acquisition module **230** obtains source requirements information **250** based on the query request **136**. The source requirements information **250** includes one or more of candidate source identifiers, a content profile, a desired source parameter, recommended source parameters, source priority levels, and recommended source access timing. For example, the answer acquisition module **230** receives the source requirements information **250** from the source requirements module **234**, where the source requirements module **234** generates the source requirements information request from the answer acquisition module **230** and where the answer acquisition module **230** generates the source requirements information request based on the query request **136**.
- (93) The answer acquisition module **230** obtains answer timing information **254** based on the query request **136**. The answer timing information **254** includes one or more of requested answer timing, confirmed answer timing, source access testing results, estimated velocity of content updates, content freshness, timestamps, predicted time available, requested content acquisition trigger, and a content acquisition trigger detected indicator. For example, the answer acquisition module **230** receives the answer timing information **254** from the answer timing module **238**, where the answer timing module 238 generates the answer timing information 254 based on an answer timing information request from the answer acquisition module 230 and where the answer acquisition module **230** generates the answer timing information request based on the query request **136**. (94) Having obtained the content requirements information **248**, the source requirements information **250**, and the answer timing information **254**, the answer acquisition module **230** determines whether to issue an IEI request **244** and/or a collections request **132** based on one or more of the content requirements information **248**, the source requirements information **250**, and the answer timing information **254**. For example, the answer acquisition module **230** selects the IEI request **244** when an immediate answer to a simple query request **136** is required and is expected to have a favorable quality level. As another example, the answer acquisition module **230** selects the collections request 132 when a longer-term answer is required as indicated by the answer timing information to before and/or when the query request **136** has an unfavorable quality level. (95) When issuing the IEI request **244**, the answer acquisition module **230** generates the IEI request **244** in accordance with security information **252** received from the content security module **236** and based on one or more of the content requirements information **248**, the source requirements information **250**, and the answer timing information **254**. Having generated the IEI request **244**, the answer acquisition module **230** sends the IEI request **244** to at least one IEI module. (96) When issuing the collections request 132, the answer acquisition module 230 generates the collections request **132** in accordance with the security information **252** received from the content

security module **236** and based on one or more of the content requirements information **248**, the source requirements information **250**, and the answer timing information **254**. Having generated the

collections request **132**, the answer acquisition module **230** sends the collections request **132** to at least one collections module. Alternatively, the answer acquisition module **230** facilitate sending of the collections request **132** to one or more various user devices (e.g., to access a subject matter expert).

- (97) The answer acquisition module 230 determines a quality level of a received answer extracted from a collections response 134 and/or an IEI response 246. For example, the answer acquisition module 230 extracts the quality level of the received answer from answer quality information 258 received from the answer quality module 242 in response to an answer quality request from the answer acquisition module 230. When the quality level is unfavorable, the answer acquisition module 230 facilitates obtaining a further answer. The facilitation includes issuing at least one of a further IEI request 244 and a further collections request 132 to generate a further answer for further quality testing. When the quality level is favorable, the answer acquisition module 230 issues a query response 140 to the requester. The issuing includes generating the query response 140 based on answer transformation information 256 received from the answer transformation module 240, where the answer transformation module 240 generates the answer transformation information 256 to include a transformed answer based on receiving the answer from the answer acquisition module 230. The answer transformation information 250 6A further include the question, a desired format of the answer, available formats, recommended formatting, received IEI responses, transformation instructions, and transformed IEI responses into an answer.
- (98) FIG. 5D is a logic diagram of an embodiment of a method for providing a response to a query within a computing system. In particular, a method is presented for use in conjunction with one or more functions and features described in conjunction with FIGS. 1-3, 4A-4C, 5C, and also FIG. 5D. The method includes step 270 where a processing module of one or more processing modules of one or more computing devices of the computing system receives a query request (e.g., a question) from a requester. The method continues at step 272 where the processing module determines content requirements information. The determining includes interpreting the query request to produce the content requirements. The method continues at step 274 where the processing module determines source requirements information. The determining includes interpreting the query request to produce the source requirements. The method continues at step 276 where the processing module determines answer timing information. The determining includes interpreting the query request to produce the answer timing information.
- (99) The method continues at step **278** the processing module determines whether to issue an IEI request and/or a collections request. For example, the determining includes selecting the IEI request when the answer timing information indicates that a simple one-time answer is appropriate. As another example, the processing module selects the collections request when the answer timing information indicates that the answer is associated with a series of events over an event time frame. (100) When issuing the IEI request, the method continues at step **280** where the processing module issues the IEI request to an IEI module. The issuing includes generating the IEI request in accordance with security information and based on one or more of the content requirements information, the source requirements information, and the answer timing information. (101) When issuing the collections request to a collections module. The issuing includes generating the collections request in accordance with the security information and based on one or more of the content requirements information, the source requirements information, and the answer timing information. Alternatively, the processing module issues both the IEI request and the collections request when a satisfactory partial answer may be provided based on a corresponding IEI response
- (102) The method continues at step **284** where the processing module determines a quality level of a received answer. The determining includes extracting the answer from the collections response

and a further more generalized and specific answer may be provided based on a corresponding

collections response and associated further IEI response.

and/or the IEI response and interpreting the answer in accordance with one or more of the content requirements information, the source requirements information, the answer timing information, and the query request to produce the quality level. The method branches to step **288** when the quality level is favorable and the method continues to step **286** when the quality level is unfavorable. For example, the processing module indicates that the quality level is favorable when the quality level is equal to or greater than a minimum answer quality threshold level. As another example, the processing module indicates that the quality level is unfavorable when the quality level is less than the minimum answer quality threshold level.

- (103) When the quality level is unfavorable, the method continues at step **286** where the processing module obtains a further answer. The obtaining includes at least one of issuing a further IEI request and a further collections request to facilitate obtaining of a further answer for further answer quality level testing as the method loops back to step **270**. When the quality level is favorable, the method continues at step **288** where the processing module issues a query response to the requester. The issuing includes transforming the answer into a transformed answer in accordance with an answer transformation approach (e.g., formatting, further interpretations of the virtual question in light of the answer and further knowledge) and sending the transformed answer to the requester as the query response.
- (104) The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system 10 of FIG. 1 or by other devices. In addition, at least one memory section (e.g., a computer readable memory, a non-transitory computer readable storage medium, a non-transitory computer readable memory organized into a first memory element, a second memory element, a third memory element, a fourth element section, a fifth memory element etc.) that stores operational instructions can, when executed by one or more processing modules of one or more computing devices (e.g., one or more servers, one or more user devices) of the computing system 10, cause the one or more computing devices to perform any or all of the method steps described above.
- (105) FIG. **5**E is a schematic block diagram of an embodiment of the identigen entigen intelligence (IEI) module **122** of FIG. **4**A that includes a content ingestion module **300**, an element identification module **302**, and interpretation module **304**, and answer resolution module **306**, and an IEI control module **308**. Generally, an embodiment of this invention presents solutions where the IEI module **122** supports interpreting content to produce knowledge that may be utilized to answer questions.
- (106) In an example of operation of the producing and utilizing of the knowledge, the content ingestion module **300** generates formatted content **314** based on question content **312** and/or source content **310**, where the IEI module **122** receives an IEI request **244** that includes the question content **312** and the IEI module **122** receives a collections response **134** that includes the source content **310**. The source content **310** includes content from a source extracted from the collections response **134**. The question content **312** includes content extracted from the IEI request **244** (e.g., content paired with a question). The content ingestion module **300** generates the formatted content **314** in accordance with a formatting approach (e.g., creating proper sentences from words of the content). The formatted content **314** includes modified content that is compatible with subsequent element identification (e.g., complete sentences, combinations of words and interpreted sounds and/or inflection cues with temporal associations of words).
- (107) The element identification module **302** processes the formatted content **314** based on element rules **318** and an element list **332** to produce identified element information **340**. Rules **316** includes the element rules **318** (e.g., match, partial match, language translation, etc.). Lists **330** includes the element list **332** (e.g., element ID, element context ID, element usage ID, words, characters, symbols etc.). The IEI control module **308** may provide the rules **316** and the lists **330** by accessing stored data **360** from a memory associated with the IEI module **122**. Generally, an embodiment of this invention presents solutions where the stored data **360** may further include one

or more of a descriptive dictionary, categories, representations of element sets, element list, sequence data, pending questions, pending request, recognized elements, unrecognized elements, errors, etc.

(108) The identified element information **340** includes one or more of identifiers of elements identified in the formatted content **314**, may include ordering and/or sequencing and grouping information. For example, the element identification module **302** compares elements of the formatted content **314** to known elements of the element list **332** to produce identifiers of the known elements as the identified element information **340** in accordance with the element rules **318**. Alternatively, the element identification module **302** outputs un-identified element information **342** to the IEI control module **308**, where the un-identified element information **342** includes temporary identifiers for elements not identifiable from the formatted content **314** when compared to the element list **332**.

(109) The interpretation module **304** processes the identified element information **340** in accordance with interpretation rules **320** (e.g., potentially valid permutations of various combinations of identified elements), question information **346** (e.g., a question extracted from the IEI request **244** which may be paired with content associated with the question), and a groupings list **334** (e.g., representations of associated groups of representations of things, a set of element identifiers, valid element usage IDs in accordance with similar, an element context, permutations of sets of identifiers for possible interpretations of a sentence or other) to produce interpreted information **344**. The interpreted information **344** includes potentially valid interpretations of combinations of identified elements. Generally, an embodiment of this invention presents solutions where the interpretation module **304** supports producing the interpreted information **344** by considering permutations of the identified element information **340** in accordance with the interpretation rules **320** and the groupings list **334**.

(110) The answer resolution module **306** processes the interpreted information **344** based on answer rules 322 (e.g., guidance to extract a desired answer), the question information 346, and inferred question information **352** (e.g., posed by the IEI control module or analysis of general collections of content or refinement of a stated question from a request) to produce preliminary answers **354** and an answer quality level **356**. The answer generally lies in the interpreted information 344 as both new content received and knowledge based on groupings list 334 generated based on previously received content. The preliminary answers **354** includes an answer to a stated or inferred question that subject further refinement. The answer quality level **356** includes a determination of a quality level of the preliminary answers **354** based on the answer rules **322**. The inferred question information **352** may further be associated with time information **348**, where the time information includes one or more of current real-time, a time reference associated with entity submitting a request, and a time reference of a collections response. (111) When the IEI control module **308** determines that the answer quality level **356** is below an answer quality threshold level, the IEI control module **308** facilitates collecting of further content (e.g., by issuing a collections request 132 and receiving corresponding collections responses 134 for analysis). When the answer quality level **356** compares favorably to the answer quality threshold level, the IEI control module **308** issues an IEI response **246** based on the preliminary answers **354**. When receiving training information **358**, the IEI control module **308** facilitates updating of one or more of the lists **330** and the rules **316** and stores the updated list **330** and the updated rules **316** in the memories as updated stored data **360**.

(112) FIG. 5F is a logic diagram of an embodiment of a method for analyzing content within a computing system. In particular, a method is presented for use in conjunction with one or more functions and features described in conjunction with FIGS. 1-3, 4A-4C, 5E, and also FIG. 5F. The method includes step 370 where a processing module of one or more processing modules of one or more computing devices of the computing system facilitates updating of one or more rules and lists based on one or more of received training information and received content. For example, the

processing module updates rules with received rules to produce updated rules and updates element lists with received elements to produce updated element lists. As another example, the processing module interprets the received content to identify a new word for at least temporary inclusion in the updated element list.

- (113) The method continues at step **372** where the processing module transforms at least some of the received content into formatted content. For example, the processing module processes the received content in accordance with a transformation approach to produce the formatted content, where the formatted content supports compatibility with subsequent element identification (e.g., typical sentence structures of groups of words).
- (114) The method continues at step **374** where the processing module processes the formatted content based on the rules and the lists to produce identified element information and/or an identified element information. For example, the processing module compares the formatted content to element lists to identify a match producing identifiers for identified elements or new identifiers for unidentified elements when there is no match.
- (115) The method continues at step **376** with a processing module processes the identified element information based on rules, the lists, and question information to produce interpreted information. For example, the processing module compares the identified element information to associated groups of representations of things to generate potentially valid interpretations of combinations of identified elements.
- (116) The method continues at step **378** where the processing module processes the interpreted information based on the rules, the question information, and inferred question information to produce preliminary answers. For example, the processing module matches the interpreted information to one or more answers (e.g., embedded knowledge based on a fact base built from previously received content) with highest correctness likelihood levels that is subject to further refinement.
- (117) The method continues at step **380** where the processing module generates an answer quality level based on the preliminary answers, the rules, and the inferred question information. For example, the processing module predicts the answer correctness likelihood level based on the rules, the inferred question information, and the question information. The method branches to step **384** when the answer quality level is favorable and the method continues to step **382** when the answer quality level is unfavorable. For example, the generating of the answer quality level further includes the processing module indicating that the answer quality level is favorable when the answer quality level is greater than or equal to a minimum answer quality threshold level. As another example, the generating of the answer quality level further includes the processing module indicating that the answer quality level is unfavorable when the answer quality level is less than the minimum answer quality threshold level.
- (118) When the answer quality level is unfavorable, the method continues at step **382** where the processing module facilitates gathering clarifying information. For example, the processing module issues a collections request to facilitate receiving further content and or request question clarification from a question requester. When the answer quality level is favorable, the method continues at step **384** where the processing module issues a response that includes one or more answers based on the preliminary answers and/or further updated preliminary answers based on gathering further content. For example, the processing module generates a response that includes one or more answers and the answer quality level and issues the response to the requester. (119) The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system **10** of FIG. **1** or by other devices. In addition, at least one memory section (e.g., a computer readable memory, a non-transitory computer readable storage medium, a non-transitory computer readable memory organized into a first memory element, a second memory element, a third memory element, a fourth element section, a fifth memory element etc.) that stores operational instructions can, when executed by one or more

processing modules of one or more computing devices (e.g., one or more servers, one or more user devices) of the computing system **10**, cause the one or more computing devices to perform any or all of the method steps described above.

- (120) FIG. **6**A is a schematic block diagram of an embodiment of the element identification module **302** of FIG. **5**A and the interpretation module **304** of FIG. **5**A. The element identification module **302** includes an element matching module **400** and an element grouping module **402**. The interpretation module **304** includes a grouping matching module **404** and a grouping interpretation module **406**. Generally, an embodiment of this invention presents solutions where the element identification module **302** supports identifying potentially valid permutations of groupings of elements while the interpretation module **304** interprets the potentially valid permutations of groupings of elements to produce interpreted information that includes the most likely of groupings based on a question.
- (121) In an example of operation of the identifying of the potentially valid permutations of groupings of elements, when matching elements of the formatted content **314**, the element matching module **400** generates matched elements **412** (e.g., identifiers of elements contained in the formatted content **314**) based on the element list **332**. For example, the element matching module **400** matches a received element to an element of the element list **332** and outputs the matched elements **412** to include an identifier of the matched element. When finding elements that are unidentified, the element matching module **400** outputs un-recognized words information **408** (e.g., words not in the element list **332**, may temporarily add) as part of un-identified element information **342**. For example, the element matching module **400** indicates that a match cannot be made between a received element of the formatted content **314**, generates the unrecognized words info **408** to include the received element and/or a temporary identifier, and issues and updated element list **414** that includes the temporary identifier and the corresponding unidentified received element.
- (122) The element grouping module **402** analyzes the matched elements **412** in accordance with element rules **318** to produce grouping error information **410** (e.g., incorrect sentence structure indicators) when a structural error is detected. The element grouping module **402** produces identified element information **340** when favorable structure is associated with the matched elements in accordance with the element rules **318**. The identified element information **340** may further include grouping information of the plurality of permutations of groups of elements (e.g., several possible interpretations), where the grouping information includes one or more groups of words forming an associated set and/or super-group set of two or more subsets when subsets share a common core element.
- (123) In an example of operation of the interpreting of the potentially valid permutations of groupings of elements to produce the interpreted information, the grouping matching module **404** analyzes the identified element information **340** in accordance with a groupings list **334** to produce validated groupings information **416**. For example, the grouping matching module **404** compares a grouping aspect of the identified element information **340** (e.g., for each permutation of groups of elements of possible interpretations), generates the validated groupings information **416** to include identification of valid permutations aligned with the groupings list **334**. Alternatively, or in addition to, the grouping matching module **404** generates an updated groupings list **418** when determining a new valid grouping (e.g., has favorable structure and interpreted meaning) that is to be added to the groupings list **334**.
- (124) The grouping interpretation module **406** interprets the validated groupings information **416** based on the question information **346** and in accordance with the interpretation rules **320** to produce interpreted information **344** (e.g., most likely interpretations, next most likely interpretations, etc.). For example, the grouping interpretation module **406** obtains context, obtains favorable historical interpretations, processes the validated groupings based on interpretation rules **320**, where each interpretation is associated with a correctness likelihood level.

- (125) FIG. **6**B is a logic diagram of an embodiment of a method for interpreting information within a computing system. In particular, a method is presented for use in conjunction with one or more functions and features described in conjunction with FIGS. **1-3**, **4**A-**4**C, **5**E-**5**F, **6**A, and also FIG. **6**B. The method includes step **430** where a processing module of one or more processing modules of one or more computing devices of the computing system analyzes formatted content. For example, the processing module attempt to match a received element of the formatted content to one or more elements of an elements list. When there is no match, the method branches to step **434** and when there is a match, the method continues to step **432**. When there is a match, the method continues at step **432** where the processing module outputs matched elements (e.g., to include the matched element and/or an identifier of the matched element). When there is no match, the method continues at step **434** where the processing module outputs unrecognized words (e.g., elements and/or a temporary identifier for the unmatched element).
- (126) The method continues at step **436** where the processing module analyzes matched elements. For example, the processing module attempt to match a detected structure of the matched elements (e.g., chained elements as in a received sequence) to favorable structures in accordance with element rules. The method branches to step **440** when the analysis is unfavorable and the method continues to step **438** when the analysis is favorable. When the analysis is favorable matching a detected structure to the favorable structure of the element rules, the method continues at step **438** where the processing module outputs identified element information (e.g., an identifier of the favorable structure, identifiers of each of the detected elements). When the analysis is unfavorable matching a detected structure to the favorable structure of the element rules, the method continues at step **440** where the processing module outputs grouping error information (e.g., a representation of the incorrect structure, identifiers of the elements of the incorrect structure, a temporary new identifier of the incorrect structure).
- (127) The method continues at step **442** where the processing module analyzes the identified element information to produce validated groupings information. For example, the processing module compares a grouping aspect of the identified element information and generates the validated groupings information to include identification of valid permutations that align with the groupings list. Alternatively, or in addition to, the processing module generates an updated groupings list when determining a new valid grouping.
- (128) The method continues at step **444** where the processing module interprets the validated groupings information to produce interpreted information. For example, the processing module obtains one or more of context and historical interpretations and processes the validated groupings based on interpretation rules to generate the interpreted information, where each interpretation is associated with a correctness likelihood level (e.g., a quality level).
- (129) The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system **10** of FIG. **1** or by other devices. In addition, at least one memory section (e.g., a computer readable memory, a non-transitory computer readable storage medium, a non-transitory computer readable memory organized into a first memory element, a second memory element, a third memory element, a fourth element section, a fifth memory element etc.) that stores operational instructions can, when executed by one or more processing modules of one or more computing devices (e.g., one or more servers, one or more user devices) of the computing system **10**, cause the one or more computing devices to perform any or all of the method steps described above.
- (130) FIG. **6**C is a schematic block diagram of an embodiment of the answer resolution module **306** of FIG. **5**A that includes an interim answer module **460**, and answer prioritization module **462**, and a preliminary answer quality module **464**. Generally, an embodiment of this invention presents solutions where the answer resolution module **306** supports producing an answer for interpreted information **344**.
- (131) In an example of operation of the providing of the answer, the interim answer module 460

analyzes the interpreted information **344** based on question information **346** and inferred question information **352** to produce interim answers **466** (e.g., answers to stated and/or inferred questions without regard to rules that is subject to further refinement). The answer prioritization module **462** analyzes the interim answers **466** based on answer rules **322** to produce preliminary answer **354**. For example, the answer prioritization module **462** identifies all possible answers from the interim answers **466** that conform to the answer rules **322**.

- (132) The preliminary answer quality module **464** analyzes the preliminary answers **354** in accordance with the question information 346, the inferred question information 352, and the answer rules **322** to produce an answer quality level **356**. For example, for each of the preliminary answers **354**, the preliminary answer quality module **464** may compare a fit of the preliminary answer **354** to a corresponding previous answer and question quality level, calculate the answer quality level **356** based on a level of conformance to the answer rules **322**, calculate the answer quality level **356** based on alignment with the inferred question information **352**, and determine the answer quality level **356** based on an interpreted correlation with the question information **346**. (133) FIG. **6**D is a logic diagram of an embodiment of a method for producing an answer within a computing system. In particular, a method is presented for use in conjunction with one or more functions and features described in conjunction with FIGS. 1-3, 4A-4C, 5E-5F, 6C, and also FIG. **6**D. The method includes step **480** where a processing module of one or more processing modules of one or more computing devices of the computing system analyzes received interpreted information based on question information and inferred question information to produce one or more interim answers. For example, the processing module generates potential answers based on patterns consistent with previously produced knowledge and likelihood of correctness. (134) The method continues at step **482** where the processing module analyzes the one or more interim answers based on answer rules to produce preliminary answers. For example, the processing module identifies all possible answers from the interim answers that conform to the answer rules. The method continues at step **484** where the processing module analyzes the preliminary answers in accordance with the question information, the inferred question information, and the answer rules to produce an answer quality level. For example, for each of the elementary answers, the processing module may compare a fit of the preliminary answer to a corresponding previous answer-and-answer quality level, calculate the answer quality level based on performance to the answer rules, calculate answer quality level based on alignment with the inferred question information, and determine the answer quality level based on interpreted correlation with the question information.
- (135) The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system **10** of FIG. **1** or by other devices. In addition, at least one memory section (e.g., a computer readable memory, a non-transitory computer readable storage medium, a non-transitory computer readable memory organized into a first memory element, a second memory element, a third memory element, a fourth element section, a fifth memory element etc.) that stores operational instructions can, when executed by one or more processing modules of one or more computing devices (e.g., one or more servers, one or more user devices) of the computing system **10**, cause the one or more computing devices to perform any or all of the method steps described above.
- (136) FIG. 7A is an information flow diagram for interpreting information within a computing system, where sets of entigens **504** are interpreted from sets of identigens **502** which are interpreted from sentences of words **500**. Such identigen entigen intelligence (IEI) processing of the words (e.g., to IEI process) includes producing one or more of interim knowledge, a preliminary answer, and an answer quality level. For example, the IEI processing includes identifying permutations of identigens of a phrase of a sentence (e.g., interpreting human expressions to produce identigen groupings for each word of ingested content), reducing the permutations of identigens (e.g., utilizing rules to eliminate unfavorable permutations), mapping the reduced permutations of

identigens to at least one set of entigens (e.g., most likely identigens become the entigens) to produce the interim knowledge, processing the knowledge in accordance with a knowledge database (e.g., comparing the set of entigens to the knowledge database) to produce a preliminary answer, and generating the answer quality level based on the preliminary answer for a corresponding domain.

- (137) Human expressions are utilized to portray facts and fiction about the real world. The real-world includes items, actions, and attributes. The human expressions include textual words, textual symbols, images, and other sensorial information (e.g., sounds). It is known that many words, within a given language, can mean different things based on groupings and orderings of the words. For example, the sentences of words **500** can include many different forms of sentences that mean vastly different things even when the words are very similar.
- (138) The present invention presents solutions where the computing system 10 supports producing a computer-based representation of a truest meaning possible of the human expressions given the way that multitudes of human expressions relate to these meanings. As a first step of the flow diagram to transition from human representations of things to a most precise computer representation of the things, the computer identifies the words, phrases, sentences, etc. from the human expressions to produce the sets of identigens 502. Each identigen includes an identifier of their meaning and an identifier of an instance for each possible language, culture, etc. For example, the words car and automobile share a common meaning identifier but have different instance identifiers since they are different words and are spelled differently. As another example, the word duck is associated both with a bird and an action to elude even though they are spelled the same. In this example the bird duck has a different meaning than the elude duck and as such each has a different meaning identifier of the corresponding identigens.
- (139) As a second step of the flow diagram to transition from human representations of things to the most precise computer representation of the things, the computer extracts meaning from groupings of the identified words, phrases, sentences, etc. to produce the sets of entigens **504**. Each entigen includes an identifier of a single conceivable and perceivable thing in space and time (e.g., independent of language and other aspects of the human expressions). For example, the words car and automobile are different instances of the same meaning and point to a common shared entigen. As another example, the word duck for the bird meaning has an associated unique entigen that is different than the entigen for the word duck for the elude meaning.
- (140) As a third step of the flow diagram to transition from human expressions of things to the most precise computer representation of the things, the computer reasons facts from the extracted meanings. For example, the computer maintains a fact-based of the valid meanings from the valid groupings or sets of entigens so as to support subsequent inferences, deductions, rationalizations of posed questions to produce answers that are aligned with a most factual view. As time goes on, and as an entigen has been identified, it can encounter an experience transformations in time, space, attributes, actions, and words which are used to identify it without creating contradictions or ever losing its identity.
- (141) FIG. 7B is a relationship block diagram illustrating an embodiment of relationships between things **510** and representations of things **512** within a computing system. The things **510** includes conceivable and perceivable things including actions **522**, items **524**, and attributes **526**. The representation of things **512** includes representations of things used by humans **514** and representation of things used by computing devices **516** of embodiments of the present invention. The things **510** relates to the representations of things used by humans **514** where the invention presents solutions where the computing system **10** supports mapping the representations of things used by humans **514** to the representations of things used by computing devices **516**, where the representations of things used by computing devices **516** map back to the things **510**. (142) The representations of things used by humans **514** includes textual words **528**, textual symbols **530**, images (e.g., non-textual) **532**, and other sensorial information **534** (e.g., sounds,

sensor data, electrical fields, voice inflections, emotion representations, facial expressions, whistles, etc.). The representations of things used by computing devices **516** includes identigens **518** and entigens **520**. The representations of things used by humans **514** maps to the identigens **518** and the identigens **518** map to the entigens **520**. The entigens **520** uniquely maps back to the things **510** in space and time, a truest meaning the computer is looking for to create knowledge and answer questions based on the knowledge.

- (143) To accommodate the mapping of the representations of things used by humans **514** to the identigens **518**, the identigens **518** is partitioned into actenyms **544** (e.g., actions), itenyms **546** (e.g., items), attrenyms **548** (e.g., attributes), and functionals **550** (e.g., that join and/or describe). Each of the actenyms **544**, itenyms **546**, and attrenyms **548** may be further classified into singulatums **552** (e.g., identify one unique entigen) and pluratums **554** (e.g., identify a plurality of entigens that have similarities).
- (144) Each identigen **518** is associated with an identigens identifier (IDN) **536**. The IDN **536** includes a meaning identifier (ID) **538** portion, an instance ID **540** portion, and a type ID **542** portion. The meaning ID **538** includes an identifier of common meaning. The instance ID **540** includes an identifier of a particular word and language. The type ID **542** includes one or more identifiers for actenyms, itenyms, attrenyms, singulatums, pluratums, a time reference, and any other reference to describe the IDN **536**. The mapping of the representations of things used by humans **514** to the identigens **518** by the computing system of the present invention includes determining the identigens **518** in accordance with logic and instructions for forming groupings of words.
- (145) Generally, an embodiment of this invention presents solutions where the identigens **518** map to the entigens **520**. Multiple identigens may map to a common unique entigen. The mapping of the identigens **518** to the entigens **520** by the computing system of the present invention includes determining entigens in accordance with logic and instructions for forming groupings of identigens. (146) FIG. 7C is a diagram of an embodiment of a synonym words table **570** within a computing system, where the synonym words table **570** includes multiple fields including textual words **572**, identigens **518**, and entigens **520**. The identigens **518** includes fields for the meaning identifier (ID) **538** and the instance ID **540**. The computing system of the present invention may utilize the synonym words table **570** to map textual words **572** to identigens **518** and map the identigens **518** to entigens **520**. For example, the words car, automobile, auto, bil (Swedish), carro (Spanish), and bil (Danish) all share a common meaning but are different instances (e.g., different words and languages). The words map to a common meaning ID but to individual unique instant identifiers. Each of the different identigens map to a common entigen since they describe the same thing. (147) FIG. 7D is a diagram of an embodiment of a polysemous words table 576 within a computing system, where the polysemous words table **576** includes multiple fields including textual words 572, identigens 518, and entigens 520. The identigens 518 includes fields for the meaning identifier (ID) **538** and the instance ID **540**. The computing system of the present invention may utilize the polysemous words table **576** to map textual words **572** to identigens **518** and map the identigens **518** to entigens **520**. For example, the word duck maps to four different identigens since the word duck has four associated different meanings (e.g., bird, fabric, to submerge, to elude) and instances. Each of the identigens represent different things and hence map to four different entigens. (148) FIG. 7E is a diagram of an embodiment of transforming words into groupings within a computing system that includes a words table **580**, a groupings of words section to validate permutations of groupings, and a groupings table **584** to capture the valid groupings. The words table **580** includes multiple fields including textual words **572**, identigens **518**, and entigens **520**. The identigens **518** includes fields for the meaning identifier (ID) **538**, the instance ID **540**, and the type ID **542**. The computing system of the present invention may utilize the words table **580** to map textual words **572** to identigens **518** and map the identigens **518** to entigens **520**. For example, the word pilot may refer to a flyer and the action to fly. Each meaning has a different identigen and

different entigen.

(149) The computing system the present invention may apply rules to the fields of the words table **580** to validate various groupings of words. Those that are invalid are denoted with a "X" while those that are valid are associated with a check mark. For example, the grouping "pilot Tom" is invalid when the word pilot refers to flying and Tom refers to a person. The identigen combinations for the flying pilot and the person Tom are denoted as invalid by the rules. As another example, the grouping "pilot Tom" is valid when the word pilot refers to a flyer and Tom refers to the person. The identigen combinations for the flyer pilot and the person Tom are denoted as valid by the rules. (150) The groupings table **584** includes multiple fields including grouping ID **586**, word strings **588**, identigens **518**, and entigens **520**. The computing system of the present invention may produce the groupings table **584** as a stored fact base for valid and/or invalid groupings of words identified by their corresponding identigens. For example, the valid grouping "pilot Tom" referring to flyer Tom the person is represented with a grouping identifier of **3001** and identity and identifiers 150.001 and 457.001. The entigen field **520** may indicate associated entigens that correspond to the identigens. For example, entigen e717 corresponds to the flyer pilot meaning and entigen e61 corresponds to the time the person meaning. Alternatively, or in addition to, the entigen field 520 may be populated with a single entigen identifier (ENI).

(151) The word strings field **588** may include any number of words in a string. Different ordering of the same words can produce multiple different strings and even different meanings and hence entigens. More broadly, each entry (e.g., role) of the groupings table **584** may refer to groupings of words, two or more word strings, an idiom, just identigens, just entigens, and/or any combination of the preceding elements. Each entry has a unique grouping identifier. An idiom may have a unique grouping ID and include identifiers of original word identigens and replacing identigens associated with the meaning of the idiom not just the meaning of the original words. Valid groupings may still have ambiguity on their own and may need more strings and/or context to select a best fit when interpreting a truest meaning of the grouping.

(152) FIG. **8**A is a data flow diagram for accumulating knowledge within a computing system, where a computing device, at a time=t0, ingests and processes facts **598** at a step **590** based on rules **316** and fact base information **600** to produce groupings **602** for storage in a fact base **592** (e.g., words, phrases, word groupings, identigens, entigens, quality levels). The facts **598** may include information from books, archive data, Central intelligence agency (CIA) world fact book, trusted content, etc. The ingesting may include filtering to organize and promote better valid groupings detection (e.g., considering similar domains together). The groupings **602** includes one or more of groupings identifiers, identigen identifiers, entigen identifiers, and estimated fit quality levels. The processing step **590** may include identifying identigens from words of the facts **598** in accordance with the rules **316** and the fact base info **600** and identifying groupings utilizing identigens in accordance with rules **316** and fact base info **600**.

(153) Subsequent to ingestion and processing of the facts **598** to establish the fact base **592**, at a time=t1+, the computing device ingests and processes new content **604** at a step **594** in accordance with the rules **316** and the fact base information **600** to produce preliminary grouping **606**. The new content may include updated content (e.g., timewise) from periodicals, newsfeeds, social media, etc. The preliminary grouping **606** includes one or more of preliminary groupings identifiers, preliminary identifiers, preliminary entigen identifiers, estimated fit quality levels, and representations of unidentified words.

(154) The computing device validates the preliminary groupings **606** at a step **596** based on the rules **316** and the fact base info **600** to produce updated fact base info **608** for storage in the fact base **592**. The validating includes one or more of reasoning a fit of existing fact base info **600** with the new preliminary grouping **606**, discarding preliminary groupings, updating just time frame information associated with an entry of the existing fact base info **600** (e.g., to validate knowledge for the present), creating new entigens, and creating a median entigen to summarize portions of

knowledge within a median indicator as a quality level indicator (e.g., suggestive not certain). (155) Storage of the updated fact base information **608** captures patterns that develop by themselves instead of searching for patterns as in prior art artificial intelligence systems. Growth of the fact base **592** enables subsequent reasoning to create new knowledge including deduction, induction, inference, and inferential sentiment (e.g., a chain of sentiment sentences). Examples of sentiments includes emotion, beliefs, convictions, feelings, judgments, notions, opinions, and views

- (156) FIG. **8**B is a diagram of an embodiment of a groupings table **620** within a computing system. The groupings table **620** includes multiple fields including grouping ID **586**, word strings **588**, an IF string **622** and a THEN string **624**. Each of the fields for the IF string **622** and the THEN string **624** includes fields for an identigen (IDN) string **626**, and an entigen (ENI) string **628**. The computing system of the present invention may produce the groupings table **620** as a stored fact base to enable IF THEN based inference to generate a new knowledge inference **630**. (157) As a specific example, grouping **5493** points out the logic of IF someone has a tumor, THEN someone is sick and the grouping **5494** points of the logic that IF someone is sick, THEN someone is sad. As a result of utilizing inference, the new knowledge inference 630 may produce grouping **5495** where IF someone has a tumor, THEN someone is possibly sad (e.g., or is sad). (158) FIG. **8**C is a data flow diagram for answering questions utilizing accumulated knowledge within a computing system, where a computing device ingests and processes question information **346** at a step **640** based on rules **316** and fact base info **600** from a fact base **592** to produce preliminary grouping **606**. The ingesting and processing questions step **640** includes identifying identigens from words of a question in accordance with the rules **316** and the fact base information **600** and may also include identifying groupings from the identified identigens in accordance with the rules **316** and the fact base information **600**.
- (159) The computing device validates the preliminary grouping **606** at a step **596** based on the rules **316** and the fact base information **600** to produce identified element information **340**. For example, the computing device reasons fit of existing fact base information with new preliminary groupings **606** to produce the identified element information **340** associated with highest quality levels. The computing device interprets a question of the identified element information **340** at a step **642** based on the rules **316** and the fact base information **600**. The interpreting of the question may include separating new content from the question and reducing the question based on the fact base information **600** and the new content.
- (160) The computing device produces preliminary answers **354** from the interpreted information **344** at a resolve answer step **644** based on the rules **316** and the fact base information **600**. For example, the computing device compares the interpreted information **344** two the fact base information **600** to produce the preliminary answers **354** with highest quality levels utilizing one or more of deduction, induction, inferencing, and applying inferential sentiments logic. Alternatively, or in addition to, the computing device may save new knowledge identified from the question information **346** to update the fact base **592**.
- (161) FIG. **8**D is a data flow diagram for answering questions utilizing interference within a computing system that includes a groupings table **648** and the resolve answer step **644** of FIG. **8**C. The groupings table **648** includes multiple fields including fields for a grouping (GRP) identifier (ID) **586**, word strings **588**, an identigen (IDN) string **626**, and an entigen (ENI) **628**. The groupings table **648** may be utilized to build a fact base to enable resolving a future question into an answer. For example, the grouping **8356** notes knowledge that Michael sleeps eight hours and grouping **8357** notes that Michael usually starts to sleep at 11:00 PM.
- (162) In a first question example that includes a question "Michael sleeping?", the resolve answer step **644** analyzes the question from the interpreted information **344** in accordance with the fact base information **600**, the rules **316**, and a real-time indicator that the current time is 1:00 AM to produce a preliminary answer of "possibly YES" when inferring that Michael is probably sleeping

- at 1:00 AM when Michael usually starts sleeping at 11:00 PM and Michael usually sleeps for a duration of eight hours.
- (163) In a second question example that includes the question "Michael sleeping?", the resolve answer step **644** analyzes the question from the interpreted information **344** in accordance with the fact base information **600**, the rules **316**, and a real-time indicator that the current time is now 11:00 AM to produce a preliminary answer of "possibly NO" when inferring that Michael is probably not sleeping at 11:00 AM when Michael usually starts sleeping at 11:00 PM and Michael usually sleeps for a duration of eight hours.
- (164) FIG. **8**E is a relationship block diagram illustrating another embodiment of relationships between things and representations of things within a computing system. While things in the real world are described with words, it is often the case that a particular word has multiple meanings in isolation. Interpreting the meaning of the particular word may hinge on analyzing how the word is utilized in a phrase, a sentence, multiple sentences, paragraphs, and even whole documents or more. Describing and stratifying the use of words, word types, and possible meanings help in interpreting a true meaning.
- (165) Humans utilize textual words **528** to represent things in the real world. Quite often a particular word has multiple instances of different grammatical use when part of a phrase of one or more sentences. The grammatical use **649** of words includes the nouns and the verbs, and also includes adverbs, adjectives, pronouns, conjunctions, prepositions, determiners, exclamations, etc. (166) As an example of multiple grammatical use, the word "bat" in the English language can be utilized as a noun or a verb. For instance, when utilized as a noun, the word "bat" may apply to a baseball bat or may apply to a flying "bat." As another instance, when utilized as a verb, the word "bat" may apply to the action of hitting or batting an object, i.e., "bat the ball."
- (167) To stratify word types by use, the words are associated with a word type (e.g., type identifier **542**). The word types include objects (e.g., items **524**), characteristics (e.g., attributes **526**), actions **522**, and the functionals **550** for joining other words and describing words. For example, when the word "bat" is utilized as a noun, the word is describing the object of either the baseball bat or the flying bat. As another example, when the word "bat" is utilized as a verb, the word is describing the action of hitting.
- (168) To determine possible meanings, the words, by word type, are mapped to associative meanings (e.g., identigens **518**). For each possible associative meaning, the word type is documented with the meaning and further with an identifier (ID) of the instance (e.g., an identigen identifier).
- (169) For the example of the word "bat" when utilized as a noun for the baseball bat, a first identigen identifier 536-1 includes a type ID 542-1 associated with the object 524, an instance ID 540-1 associated with the first identigen identifier (e.g., unique for the baseball bat), and a meaning ID 538-1 associated with the baseball bat. For the example of the word "bat" when utilized as a noun for the flying bat, a second identigen identifier 536-2 includes a type ID 542-1 associated with the object 524, an instance ID 540-2 associated with the second identigen identifier (e.g., unique for the flying bat), and a meaning ID 538-2 associated with the flying bat. For the example of the word "bat" when utilized as a verb for the bat that hits, a third identigen identifier 536-2 includes a type ID 542-2 associated with the actions 522, an instance ID 540-3 associated with the third identigen identifier (e.g., unique for the bat that hits), and a meaning ID 538-3 associated with the bat that hits.
- (170) With the word described by a type and possible associative meanings, a combination of full grammatical use of the word within the phrase etc., application of rules, and utilization of an evergrowing knowledge database that represents knowledge by linked entigens, the absolute meaning (e.g., entigen **520**) of the word is represented as a unique entigen. For example, a first entigen e1 represents the absolute meaning of a baseball bat (e.g., a generic baseball bat not a particular baseball bat that belongs to anyone), a second entigen e2 represents the absolute meaning of the

- flying bat (e.g., a generic flying bat not a particular flying bat), and a third entigen e3 represents the absolute meaning of the verb bat (e.g., to hit).
- (171) An embodiment of methods to ingest text to produce absolute meanings for storage in a knowledge database are discussed in greater detail with reference to FIGS. **8**F-H. Those embodiments further discuss the discerning of the grammatical use, the use of the rules, and the utilization of the knowledge database to definitively interpret the absolute meaning of a string of words.
- (172) Another embodiment of methods to respond to a query to produce an answer based on knowledge stored in the knowledge database are discussed in greater detail with reference to FIGS. **8**J-L. Those embodiments further discuss the discerning of the grammatical use, the use of the rules, and the utilization of the knowledge database to interpret the query. The query interpretation is utilized to extract the answer from the knowledge database to facilitate forming the query response.
- (173) FIGS. **8**F and **8**G are schematic block diagrams of another embodiment of a computing system that includes the content ingestion module **300** of FIG. **5**E, the element identification module **302** of FIG. **5**E, the interpretation module **304** of FIG. **5**E, the IEI control module **308** of FIG. **5**E, and the SS memory **96** of FIG. **2**. Generally, an embodiment of this invention provides presents solutions where the computing system **10** supports processing content to produce knowledge for storage in a knowledge database.
- (174) The processing of the content to produce the knowledge includes a series of steps. For example, a first step includes identifying words of an ingested phrase to produce tokenized words. As depicted in FIG. 8F, a specific example of the first step includes the content ingestion module 300 comparing words of source content 310 to dictionary entries to produce formatted content 314 that includes identifiers of known words. Alternatively, when a comparison is unfavorable, the temporary identifier may be assigned to an unknown word. For instance, the content ingestion module 300 produces identifiers associated with the words "the", "black", "bat", "eats", and "fruit" when the ingested phrase includes "The black bat eats fruit", and generates the formatted content 314 to include the identifiers of the words.
- (175) A second step of the processing of the content to produce the knowledge includes, for each tokenized word, identifying one or more identigens that correspond the tokenized word, where each identigen describes one of an object, a characteristic, and an action. As depicted in FIG. **8**F, a specific example of the second step includes the element identification module **302** performing a look up of identigen identifiers, utilizing an element list **332** and in accordance with element rules **318**, of the one or more identigens associated with each tokenized word of the formatted content **314** to produce identified element information **340**.
- (176) A unique identifier is associated with each of the potential object, the characteristic, and the action (OCA) associated with the tokenized word (e.g. sequential identigens). For instance, the element identification module **302** identifies a functional symbol for "the", identifies a single identigen for "black", identifies two identigens for "bat" (e.g., baseball bat and flying bat), identifies a single identigen for "eats", and identifies a single identigen for "fruit." When at least one tokenized word is associated with multiple identigens, two or more permutations of sequential combinations of identigens for each tokenized word result. For example, when "bat" is associated with two identigens, two permutations of sequential combinations of identigens result for the ingested phrase.
- (177) A third step of the processing of the content to produce the knowledge includes, for each permutation of sequential combinations of identigens, generating a corresponding equation package (i.e., candidate interpretation), where the equation package includes a sequential linking of pairs of identigens (e.g., relationships), where each sequential linking pairs a preceding identigen to a next identigen, and where an equation element describes a relationship between paired identigens (OCAs) such as describes, acts on, is a, belongs to, did, did to, etc. Multiple OCAs occur for a

common word when the word has multiple potential meanings (e.g., a baseball bat, a flying bat). (178) As depicted in FIG. 8F, a specific example of the third step includes the interpretation module 304, for each permutation of identigens of each tokenized word of the identified element information 340, the interpretation module 304 generates, in accordance with interpretation rules 320 and a groupings list 334, an equation package to include one or more of the identifiers of the tokenized words, a list of identifiers of the identigens of the equation package, a list of pairing identifiers for sequential pairs of identigens, and a quality metric associated with each sequential pair of identigens (e.g., likelihood of a proper interpretation). For instance, the interpretation module 304 produces a first equation package that includes a first identigen pairing of a black bat (e.g., flying bat with a higher quality metric level), the second pairing of bat eats (e.g., the flying bat eats, with a higher quality metric level), and a third pairing of eats fruit, and the interpretation module 304 produces a second equation package that includes a first pairing of a black bat (e.g., baseball bat, with a neutral quality metric level), the second pairing of bat eats (e.g., the baseball bat eats, with a lower quality metric level), and a third pairing of eats fruit.

- (179) A fourth step of the processing of the content to produce the knowledge includes selecting a surviving equation package associated with a most favorable confidence level. As depicted in FIG. 8F, a specific example of the fourth step includes the interpretation module 304 applying interpretation rules 320 (i.e., inference, pragmatic engine, utilizing the identifiers of the identigens to match against known valid combinations of identifiers of entigens) to reduce a number of permutations of the sequential combinations of identigens to produce interpreted information 344 that includes identification of at least one equation package as a surviving interpretation SI (e.g., higher quality metric level).
- (180) Non-surviving equation packages are eliminated that compare unfavorably to pairing rules and/or are associated with an unfavorable quality metric levels to produce a non-surviving interpretation NSI 2 (e.g., lower quality metric level), where an overall quality metric level may be assigned to each equation package based on quality metric levels of each pairing, such that a higher quality metric level of an equation package indicates a higher probability of a most favorable interpretation. For instance, the interpretation module **304** eliminates the equation package that includes the second pairing indicating that the "baseball bat eats" which is inconsistent with a desired quality metric level of one or more of the groupings list **334** and the interpretation rules **320** and selects the equation package associated with the "flying bat eats" which is favorably consistent with the one or more of the quality metric levels of the groupings list **334** and the interpretation rules **320**.
- (181) A fifth step of the processing of the content to produce the knowledge utilizing the confidence level includes integrating knowledge of the surviving equation package into a knowledge database. For example, integrating at least a portion of the reduced OCA combinations into a graphical database to produce updated knowledge. As another example, the portion of the reduced OCA combinations may be translated into rows and columns entries when utilizing a rows and columns database rather than a graphical database. When utilizing the rows and columns approach for the knowledge database, subsequent access to the knowledge database may utilize structured query language (SQL) queries.
- (182) As depicted in FIG. **8**G, a specific example of the fifth step includes the IEI control module **308** recovering fact base information **600** from SS memory **96** to identify a portion of the knowledge database for potential modification utilizing the OCAs of the surviving interpretation SI **1** (i.e., compare a pattern of relationships between the OCAs of the surviving interpretation SI **1** from the interpreted information **344** to relationships of OCAs of the portion of the knowledge database including potentially new quality metric levels).
- (183) The fifth step further includes determining modifications (e.g., additions, subtractions, further clarifications required when information is complex, etc.) to the portion of the knowledge database based on the new quality metric levels. For instance, the IEI control module **308** causes adding the

element "black" as a "describes" relationship of an existing bat OCA and adding the element "fruit" as an eats "does to" relationship to implement the modifications to the portion of the fact base information **600** to produce updated fact base information **608** for storage in the SS memory **96**.

(184) FIG. **8**H is a logic diagram of an embodiment of a method for processing content to produce knowledge for storage within a computing system. In particular, a method is presented for use in conjunction with one or more functions and features described in conjunction with FIGS. **1-8**E, **8**F, and also FIG. **8**G. The method includes step **650** where a processing module of one or more processing modules of one or more computing devices of the computing system identifies words of an ingested phrase to produce tokenized words. The identified includes comparing words to known words of dictionary entries to produce identifiers of known words.

(185) For each tokenized word, the method continues at step **651** where the processing module identifies one or more identigens that corresponds to the tokenized word, where each identigen describes one of an object, a characteristic, and an action (e.g., OCA). The identifying includes performing a lookup of identifiers of the one or more identigens associated with each tokenized word, where the different identifiers associated with each of the potential object, the characteristic, and the action associated with the tokenized word.

(186) The method continues at step **652** where the processing module, for each permutation of sequential combinations of identigens, generates a plurality of equation elements to form a corresponding equation package, where each equation element describes a relationship between sequentially linked pairs of identigens, where each sequential linking pairs a preceding identigen to a next identigen. For example, for each permutation of identigens of each tokenized word, the processing module generates the equation package to include a plurality of equation elements, where each equation element describes the relationship (e.g., describes, acts on, is a, belongs to, did, did too, etc.) between sequentially adjacent identigens of a plurality of sequential combinations of identigens. Each equation element may be further associated with a quality metric to evaluate a favorability level of an interpretation in light of the sequence of identigens of the equation package. (187) The method continues at step **653** where the processing module selects a surviving equation package associated with most favorable interpretation. For example, the processing module applies rules (i.e., inference, pragmatic engine, utilizing the identifiers of the identigens to match against known valid combinations of identifiers of entigens), to reduce the number of permutations of the sequential combinations of identigens to identify at least one equation package, where nonsurviving equation packages are eliminated the compare unfavorably to pairing rules and/or are associated with an unfavorable quality metric levels to produce a non-surviving interpretation, where an overall quality metric level is assigned to each equation package based on quality metric levels of each pairing, such that a higher quality metric level indicates an equation package with a higher probability of favorability of correctness.

(188) The method continues at step **654** where the processing module integrates knowledge of the surviving equation package into a knowledge database. For example, the processing module integrates at least a portion of the reduced OCA combinations into a graphical database to produce updated knowledge. The integrating may include recovering fact base information from storage of the knowledge database to identify a portion of the knowledge database for potential modifications utilizing the OCAs of the surviving equation package (i.e., compare a pattern of relationships between the OCAs of the surviving equation package to relationships of the OCAs of the portion of the knowledge database including potentially new quality metric levels). The integrating further includes determining modifications (e.g., additions, subtractions, further clarifications required when complex information is presented, etc.) to produce the updated knowledge database that is based on fit of acceptable quality metric levels, and implementing the modifications to the portion of the fact base information to produce the updated fact base information for storage in the portion of the knowledge database.

(189) The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system 10 of FIG. 1 or by other devices. In addition, at least one memory section (e.g., a computer readable memory, a non-transitory computer readable storage medium, a non-transitory computer readable memory organized into a first memory element, a second memory element, a third memory element, a fourth element section, a fifth memory element etc.) that stores operational instructions can, when executed by one or more processing modules of one or more computing devices (e.g., one or more servers, one or more user devices) of the computing system 10, cause the one or more computing devices to perform any or all of the method steps described above.

(190) FIGS. **8**J and **8**K are schematic block diagrams of another embodiment of a computing system that includes the content ingestion module **300** of FIG. **5**E, the element identification module **302** of FIG. **5**E, the interpretation module **304** of FIG. **5**E, the answer resolution module **306** of FIG. **5**E, and the SS memory **96** of FIG. **2**. Generally, an embodiment of this invention provides solutions where the computing system **10** supports for generating a query response to a query utilizing a knowledge database.

(191) The generating of the query response to the query includes a series of steps. For example, a first step includes identifying words of an ingested query to produce tokenized words. As depicted in FIG. 8J, a specific example of the first step includes the content ingestion module 300 comparing words of query info **138** to dictionary entries to produce formatted content **314** that includes identifiers of known words. For instance, the content ingestion module **300** produces identifiers for each word of the query "what black animal flies and eats fruit and insects?" (192) A second step of the generating of the query response to the query includes, for each tokenized word, identifying one or more identigens that correspond the tokenized word, where each identigen describes one of an object, a characteristic, and an action (OCA). As depicted in FIG. 8J, a specific example of the second step includes the element identification module **302** performing a look up of identifiers, utilizing an element list **332** and in accordance with element rules **318**, of the one or more identigens associated with each tokenized word of the formatted content **314** to produce identified element information **340**. A unique identifier is associated with each of the potential object, the characteristic, and the action associated with a particular tokenized word. For instance, the element identification module 302 produces a single identifier identifier for each of the black color, an animal, flies, eats, fruit, and insects.

(193) A third step of the generating of the query response to the query includes, for each permutation of sequential combinations of identigens, generating a corresponding equation package (i.e., candidate interpretation). The equation package includes a sequential linking of pairs of identigens, where each sequential linking pairs a preceding identigen to a next identigen. An equation element describes a relationship between paired identigens (OCAs) such as describes, acts on, is a, belongs to, did, did to, etc.

(194) As depicted in FIG. **8**J, a specific example of the third step includes the interpretation module **304**, for each permutation of identigens of each tokenized word of the identified element information **340**, generating the equation packages in accordance with interpretation rules **320** and a groupings list **334** to produce a series of equation elements that include pairings of identigens. For instance, the interpretation module **304** generates a first pairing to describe a black animal, a second pairing to describe an animal that flies, a third pairing to describe flies and eats, a fourth pairing to describe eats fruit, and a fifth pairing to describe eats fruit and insects.

(195) A fourth step of the generating the query response to the query includes selecting a surviving equation package associated with a most favorable interpretation. As depicted in FIG. 8J, a specific example of the fourth step includes the interpretation module 304 applying the interpretation rules 320 (i.e., inference, pragmatic engine, utilizing the identifiers of the identigens to match against known valid combinations of identifiers of entigens) to reduce the number of permutations of the sequential combinations of identigens to produce interpreted information 344. The interpreted

- information **344** includes identification of at least one equation package as a surviving interpretation SI **10**, where non-surviving equation packages, if any, are eliminated that compare unfavorably to pairing rules to produce a non-surviving interpretation.
- (196) A fifth step of the generating the query response to the query includes utilizing a knowledge database, generating a query response to the surviving equation package of the query, where the surviving equation package of the query is transformed to produce query knowledge for comparison to a portion of the knowledge database. An answer is extracted from the portion of the knowledge database to produce the query response.
- (197) As depicted in FIG. **8**K, a specific example of the fifth step includes the answer resolution module **306** interpreting the surviving interpretation SI **10** of the interpreted information **344** in accordance with answer rules **322** to produce query knowledge QK 10 (i.e., a graphical representation of knowledge when the knowledge database utilizes a graphical database). For example, the answer resolution module **306** accesses fact base information **600** from the SS memory **96** to identify the portion of the knowledge database associated with a favorable comparison of the query knowledge QK 10 (e.g., by comparing attributes of the query knowledge QK 10 to attributes of the fact base information **600**), and generates preliminary answers **354** that includes the answer to the query. For instance, the answer is "bat" when the associated OCAs of bat, such as black, eats fruit, eats insects, is an animal, and flies, aligns with OCAs of the query knowledge.
- (198) FIG. **8**L is a logic diagram of an embodiment of a method for generating a query response to a query utilizing knowledge within a knowledge database within a computing system. In particular, a method is presented for use in conjunction with one or more functions and features described in conjunction with FIGS. **1-8**D, **8**J, and also FIG. **8**K. The method includes step **655** where a processing module of one or more processing modules of one or more computing devices of the computing system identifies words of an ingested query to produce tokenized words. For example, the processing module compares words to known words of dictionary entries to produce identifiers of known words.
- (199) For each tokenized word, the method continues at step **656** where the processing module identifies one or more identigens that correspond to the tokenized word, where each identigen describes one of an object, a characteristic, and an action. For example, the processing module performs a lookup of identifiers of the one or more identigens associated with each tokenized word, where different identifiers associated with each permutation of a potential object, characteristic, and action associated with the tokenized word.
- (200) For each permutation of sequential combinations of identigens, the method continues at step 657 where the processing module generates a plurality of equation elements to form a corresponding equation package, where each equation element describes a relationship between sequentially linked pairs of identigens. Each sequential linking pairs a preceding identigen to a next identigen. For example, for each permutation of identigens of each tokenized word, the processing module includes all other permutations of all other tokenized words to generate the equation packages. Each equation package includes a plurality of equation elements describing the relationships between sequentially adjacent identigens of a plurality of sequential combinations of identigens.
- (201) The method continues at step **658** where the processing module selects a surviving equation package associated with a most favorable interpretation. For example, the processing module applies rules (i.e., inference, pragmatic engine, utilizing the identifiers of the identigens to match against known valid combinations of identifiers of entigens) to reduce the number of permutations of the sequential combinations of identigens to identify at least one equation package. Nonsurviving equation packages are eliminated the compare unfavorably to pairing rules. (202) The method continues at step **659** where the processing module generates a query response to the surviving equation package, where the surviving equation package is transformed to produce

query knowledge for locating the portion of a knowledge database that includes an answer to the query. As an example of generating the query response, the processing module interprets the surviving the equation package in accordance with answer rules to produce the query knowledge (e.g., a graphical representation of knowledge when the knowledge database utilizes a graphical database format).

- (203) The processing module accesses fact base information from the knowledge database to identify the portion of the knowledge database associated with a favorable comparison of the query knowledge (e.g., favorable comparison of attributes of the query knowledge to the portion of the knowledge database, aligning favorably comparing entigens without conflicting entigens). The processing module extracts an answer from the portion of the knowledge database to produce the query response.
- (204) The method described above in conjunction with the processing module can alternatively be performed by other modules of the computing system **10** of FIG. **1** or by other devices. In addition, at least one memory section (e.g., a computer readable memory, a non-transitory computer readable storage medium, a non-transitory computer readable memory organized into a first memory element, a second memory element, a third memory element, a fourth element section, a fifth memory element etc.) that stores operational instructions can, when executed by one or more processing modules of one or more computing devices (e.g., one or more servers, one or more user devices) of the computing system **10**, cause the one or more computing devices to perform any or all of the method steps described above.
- (205) FIGS. **9**A-**9**C are schematic block diagrams of another embodiment of a computing system illustrating a method for determining meaning of a phrase with ambiguity resolution within the computing system. The computing system includes the content ingestion module **300** of FIG. **5**E, the element identification module **302** of FIG. **5**E, the interpretation module **304** of FIG. **5**E, the answer resolution module **306** of FIG. **5**E, and a knowledge database **700**. The knowledge database **700** may be implemented utilizing one or more of the memories of FIG. **2**.
- (206) FIG. **9**A illustrates example steps of the method of operation for the determining meaning of the phrase with ambiguity resolution, where, in a first step the content ingestion module **300** obtains a query **702** that includes a string of words. The obtaining includes receiving, looking up, retrieving, and generating. For example, the content ingestion module **300** receives the query **702** that includes a string of words "George green?".
- (207) Having obtained the query **702**, a second step of the method for determining meaning of the phrase includes the content ingestion module **300** parsing the query **702** to generate query words **704**. The parsing includes one or more of validating words of the string of words with valid words of a dictionary **703**, eliminating unneeded words, replacing undesired words with replacement words that are desired, and adding additional words that may provide enhanced clarity of understanding as is commonly used within a given language. For example, the content ingestion module **300** obtains the dictionary **703** from the knowledge database **700** and validates the words of the string of words with words of the dictionary **703** to produce the query words **704**. For instance, the content ingestion module **300** compares each word of the string of words "George green?" to words of the dictionary **703** to validate each of the words producing the valid sequence of query words **704** that includes "George, green."
- (208) In a third step of the method for the determining meaning of the phrase, the element identification module **302** determines a set of identigens for each query word of the query **702** to produce a plurality of sets of identigens **708**. A set of identigens of the plurality of sets of identigens represents one or more different meanings of a query word of the query. Each identigen of the set of identigens includes a meaning identifier, an instance identifier, and a time reference. Each meaning identifier associated with a particular set of identigens represents a different meaning of one or more different meanings of a corresponding query word of the query **702**. Each time reference provides time information when a corresponding different meaning of the one or

more different meanings is valid (e.g., a time range for a particular word meaning).

(209) A first set of identigens of the plurality of sets of identigens includes one or more different meanings of a first word of the valid sequence of query words **704**. The producing of the set of identigens includes a series of sub-steps. A first sub-step includes accessing, for each word of the valid sequence of query words **704**, the knowledge database **700** to recover the set of identigens. For example, the element identification module **302** receives identigen information **706** from the knowledge database **700** that includes an identigen set #1 for the word "George", where the identigen set #1 includes identigen **20**. The identigen **20** represents an interpretation of the word "George", including "a person." As another example, the element identification module **302** receives identigen information **706** from the knowledge database **700** that includes an identigen sets #2 for the word "green", including two meanings of "inexperienced" and "sickly." (210) A second sub-step includes interpreting a query response from another computing device to produce the set of identigens, where the query response is received in response to an identigen query with regards to the word. For example, the element identification module **302** receives the plurality of sets of identigens from the other computing device.

- (211) FIG. **9**B further illustrates the example steps of the method of operation for the determining meaning of the phrase with ambiguity resolution, where, having produced the plurality of sets of identigens **708**, in a fourth step the interpretation module **304** interprets, based on identigen pairing rules of the knowledge database **700**, pairs of sequentially adjacent identigens of adjacent sets of identigens of the plurality of sets of identigens to determine a first most likely meaning interpretation of the query and produce a first query entigen group of a plurality of query entigen groups **713**. The plurality of query entigen groups **713** are associated with a plurality of most likely meaning interpretations of the query. The plurality of most likely meaning interpretations of the query.
- (212) The first query entigen group represents the first most likely meaning interpretation of the query. Each entigen of the first query entigen group corresponds to a selected identigen of one of the plurality of sets of identigens having a selected meaning identifier of the one or more different meanings of a corresponding query word of the query words that represents a first most likely meaning interpretation of the corresponding query word. Each selected identigen corresponding to the first query entigen group favorably pairs with at least one corresponding sequentially adjacent identigen of an adjacent set of identigens in accordance with the identigen pairing rules. For example, identigen #20 favorably pairs with identigen #31.
- (213) Each entigen of the first query entigen group represents a single conceivable and perceivable thing in space and time that is independent of language and corresponds to a time reference of a corresponding selected identigen associated with the first query entigen group. The knowledge database **700** includes a plurality of records that link entigens having a connected meaning. (214) In an instance, the interpretation module **304** interprets identigen rules **710** from the knowledge database **700** with regards to the identigens of the sets of identigens **708**. For instance, the interpretation module **304** interprets the identigen rules **710** to determine that the identigen #20 is allowed to pair with identigens #31 and #32. The interpretation module **304** generates the first query entigen group to include identigens #20 and #31 and a second query entigen group to include identigens #20 and #32.
- (215) The example of operation fourth step further includes the interpretation module **304** interpreting, based on the identigen pairing rules of the knowledge database, the pairs of sequentially adjacent identigens of the adjacent sets of identigens of the plurality of sets of identigens to determine a second most likely meaning interpretation of the query and produce the second query entigen group of the plurality of query entigen groups. For example, identigens #20 and #32 are selected to produce the second query entigen group.
- (216) The plurality of most likely meaning interpretations of the query includes the second most likely meaning interpretation of the query. The second query entigen group represents the second

most likely meaning interpretation of the query. Each entigen of the second query entigen group corresponds to a selected identigen of one of the plurality of sets of identigens having a selected meaning identifier of the one or more different meanings of a corresponding query word of the guery words that represents a second most likely meaning interpretation of the corresponding guery word. Each selected identigen corresponding to the second query entigen group favorably pairs with at least one corresponding sequentially adjacent identigen of an adjacent set of identigens in accordance with the identigen pairing rules. For example, identigen #20 favorably pairs with identigen #32. Each entigen of the second query entigen group represents a single conceivable and perceivable thing in space and time that is independent of language and corresponds to a time reference of a corresponding selected identigen associated with the second query entigen group. (217) FIG. **9**C further illustrates the example steps of the method of operation for the determining meaning of the phrase with ambiguity resolution, where, having produced the plurality of query entigen groups **713**, in a fifth step the interpretation module **304** identifies an inconsistency between at least two query entigen groups of the plurality of query entigen groups. The identifying the inconsistency between at least two query entigen groups of the plurality of query entigen groups includes one or more of a variety of approaches. A first approach includes identifying a first query entigen of the first query entigen group that is different than a first query entigen of the second query entigen group. For example, the interpretation module 304 identifies entigens #31 and entigen #32 as different.

- (218) A second approach includes determining that a number of query entigens of the first query entigen group is different than a number of query entigens of the second query entigen group. For example, in another instance, the interpretation module **304** determines that to entigens are in the first query entigen group and 3 entigens are in the second query entigen group.
- (219) Having identified the inconsistency, a sixth step of the example method of operation includes the interpretation module **304** obtaining an inconsistency clarification based on the inconsistency between the at least two query entigen groups of the plurality of query entigen groups. The obtaining the inconsistency clarification based on the inconsistency between the at least two query entigen groups of the plurality of query entigen groups includes at least one of a variety of approaches. A first approach includes the interpretation module **304** accessing the knowledge database **700** utilizing the first query entigen group to produce a clarification entigen group as the inconsistency clarification. For example, the interpretation module **304** interprets entigen information **714** from the knowledge database **700** that indicates that entigens #20, #43, #32, and #54 compare favorably to the second query entigen group (e.g., entigens #20 and #32), which provides disconfirming knowledge that George is sickly (e.g., since George's health is seldom sickly). The interpretation module **304** includes entigens #20, #43, #32, and #54 in the clarification entigen group.
- (220) A second approach includes the interpretation module **304** interpreting a clarification response **718** to a clarification request **716** to produce the clarification entigen group as the inconsistency clarification. The clarification request **716** is based on the inconsistency between the at least two query entigen groups. For example, the interpretation module **304** generates the clarification request **716** to include a question "George are you sickly?" to test the query entigen group entigen and outputs the clarification request **716** to a query entity (e.g., a computing device associated with a subject of the query, a proxy for the subject, or someone asking the question). Having issued the clarification request **716**, the interpretation module **304** obtains the clarification response **718** from the entity associated with the query (e.g., George). For example, the interpretation module **304** receives the clarification response **718** from George that includes "I'm not sick." Having obtained the clarification response **718**, the interpretation module **304** interprets the clarification response **718** to produce the clarification entigen group (e.g., entigens indicating that George is not sick) as the inconsistency clarification.
- (221) Having obtained the inconsistency clarification, a seventh step of the example method of

operation includes the interpretation module **304** selecting one query entigen group of the plurality of query entigen groups based on the inconsistency clarification to produce a final query entigen group **715**. The selecting the one query entigen group of the plurality of query entigen groups based on the inconsistency clarification to produce the final query entigen group **715** includes a series of steps. A first step includes the interpretation module **304** obtaining a clarification entigen group based on the inconsistency clarification. For example, the interpretation module **304** obtains the clarification entigen group that includes entigens number #20, #43, #32, and #54. As another example, the interpretation module obtains the clarification entigen group that includes entigens indicating that George is not sick.

- (222) A second step includes the interpretation module **304** selecting the one query entigen group of the plurality of query entigen groups that is most consistent with the clarification entigen group to produce the final query entigen group **715**. For example, the interpretation module **304** disqualifies the second query entigen group when utilizing the clarification entigen group that includes entigens indicating that George is not 6. As another example, the interpretation module **304** disqualifies the second query entigen group when interpreting the clarification entigen group that includes entigens number #20, #43, #32, and #54 indicating that George is seldom sick. Having disqualified the second query entigen group, the interpretation module **304** deduces that the first query entigen group is the most consistent with the clarification entigen group. As such, the interpretation module **304** selects the first query entigen group (e.g., that includes entigens #20 for George and #31 for inexperienced).
- (223) Having produced the final query entigen group **715**, the answer resolution module **306** accesses the knowledge database **700** utilizing the final query entigen group **715** to produce a response entigen group. For example, the answer resolution module **306** interprets entigen information **714** from the knowledge database **700** that includes linked entigens #20 and #31 (e.g., for the George entigen and the inexperienced entigen).
- (224) Having produced the response entigen group, the answer resolution module **306** generates a response to the query utilizing the response entigen group. The response includes at least one response word. For example, the answer resolution module **306** generates the response to the query to include "George is inexperienced" when the response entigen group includes the entigens for "George" and "inexperienced" (e.g., associated with George is inexperienced as an interpretation of "George is green").
- (225) The method described with reference to the preceding figures and in conjunction with the various modules can alternatively be performed by other modules of the computing system 10 of FIG. 1 or by other devices. In addition, at least one memory section (e.g., a non-transitory computer readable memory, a non-transitory computer readable storage medium, a non-transitory computer readable memory organized into a first memory element, a second memory element, a third memory element, a fourth element section, a fifth memory element, a sixth memory element etc.) that stores operational instructions can, when executed by one or more processing modules of one or more computing devices (e.g., one or more servers, one or more user devices) of the computing system 10, cause the one or more computing devices to perform any or all of the method steps described above.
- (226) FIGS. **10**A-**10**B are schematic block diagrams of another embodiment of a computing system illustrating a method for processing informal utilization of words within the computing system. The computing system includes the content ingestion module **300** of FIG. **5**E, the element identification module **302** of FIG. **5**E, the interpretation module **304** of FIG. **5**E, the answer resolution module **306** of FIG. **5**, and a knowledge database **700**. The knowledge database **700** may be implemented utilizing one or more of the memories of FIG. **2**.
- (227) FIG. **10**A illustrates example steps of the method of operation for the processing informal utilization of words, where, in a first step the content ingestion module **300** obtains a phrase **802** from a subject (e.g., Tom) that includes a string of words. The obtaining includes receiving, looking

up, retrieving, and generating. For example, the content ingestion module **300** receives the phrase **802** that includes a string of words from Tom "Fred is plumb crazy."

(228) Having obtained the phrase **802**, a second step of the method for the processing informal utilization of words includes the content ingestion module **300** parsing the phrase **802** to generate phrase words **804**. The parsing includes one or more of validating words of the string of words with valid words of a dictionary **703**, eliminating unneeded words, replacing undesired words with replacement words that are desired, and adding additional words that may provide enhanced clarity of understanding as is commonly used within a given language. For example, the content ingestion module **300** obtains the dictionary **703** from the knowledge database **700** and validates the words of the string of words with words of the dictionary **703** to produce the phrase words **804**. For instance, the content ingestion module **300** compares each word of the string of words "Fred is plumb crazy" to words of the dictionary **703** to validate each of the words producing the valid sequence of phrase words **804** that includes "Fred", "plumb", and "crazy."

(229) In a third step of the method for processing informal utilization of words, the element identification module **302** identifies a set of identigens for each valid word of the phrase words **804** to produce a (plurality) of sets of identigens **808**. A first set of identigens of the plurality of sets of identigens includes one or more different meanings of a first word of the valid sequence of phrase words.

(230) The identifying the set of identigens includes a series of one or more sub-steps. A first sub-step includes accessing, for each word of the valid sequence of phrase words **804**, the knowledge database **700** to recover the set of identigens. For example, the element identification module **302** receives identigen information **706** from the knowledge database **700** that includes an identigen set #1 for the word "Fred", where the identigen set #1 includes identigen #10 for Fred the person. As another example, the identigen information **706** also includes an identigen set #2 for the word "plumb", including "test", "exactly", and "plumb bob." As yet another example, the element identification module **302** receives identigen information **706** from the knowledge database **700** that includes identigens **26**, and **27** for the word "crazy", where identigen **26** is associated with a meaning of deranged and identigen **27** is associated with a meaning of enthusiastic.

- (231) The identigen information **706** also indicates when identigens are associated with informal meanings. For example, identigen #22 associated with the meaning of exactly when the word "plumb" is utilized in an informal way. As another example, identigen number **27** is associated with the meaning of enthusiastic when the word "crazy" is utilized in an informal way.
- (232) A second sub-step includes interpreting a query response from another computing device to produce the set of identigens, where the query response is received in response to an identigen query with regards to the word. For example, the element identification module **302** receives the plurality of sets of identigens from the other computing device.
- (233) FIG. **10**B further illustrates the example steps of the method of operation for the processing informal utilization of words, where, having produced the plurality of sets of identigens **808**, in a fourth step the interpretation module **304** identifies an idiolect for the source (e.g., Tom's manner of speaking). For example, the interpretation module **304** interprets idiolect information **807** from the knowledge database **700** that indicates that Tom frequently uses very informal meanings of words. (234) Having identified the idiolect for the source, in a fifth step of the method of operation for the processing informal utilization of words, the interpretation module **304** generates a phrase entigen group **812** utilizing identigen rules modified for the source idiolect. The generating of the phrase entigen group **812** includes a series of sub-steps. A first sub-step includes applying the idiolect information **807** to identigen rules **710** associated with identigens of the sets of identigens **808** to produce modified identigen rules **711**. For example, the interpretation module **304** produces an allowed identigen pairing rule of the modified identigen rules **711** for identigens #10 and #22 and a disallowed identigen pairing rule for identigens #10 and #21 when the source frequently uses informal meanings of words and identigen #22 is associated with the informal meaning of the word

- "plumb" and identigen #21 is not.
- (235) A second sub-step includes the interpretation module **304** selecting identigens #10 for "Fred", #22 for "plumb", and #27 for "crazy" to produce the phrase entigen group **812** when allowed identigen pairings of the modified identigen rules **711** includes #10 with #22 and #22 with #27. Having produced the phrase entigen group **812**, the interpretation module **304** issues the phrase entigen group **812** to the answer resolution module **306** for further processing. Alternatively, or in addition to, the answer resolution module **306** facilitates storage of the phrase entigen group **812** in the knowledge database **700** as new incremental knowledge.
- (236) The method described with reference to the preceding figures and in conjunction with the various modules can alternatively be performed by other modules of the computing system 10 of FIG. 1 or by other devices. In addition, at least one memory section (e.g., a non-transitory computer readable memory, a non-transitory computer readable storage medium, a non-transitory computer readable memory organized into a first memory element, a second memory element, a third memory element, a fourth element section, a fifth memory element etc.) that stores operational instructions can, when executed by one or more processing modules of one or more computing devices (e.g., one or more servers, one or more user devices) of the computing system 10, cause the one or more computing devices to perform any or all of the method steps described above.
- (237) FIGS. **11**A-**11**C are schematic block diagrams of another embodiment of a computing system illustrating a method for identifying knowledge associated with a set of phrases within the computing system. The computing system includes the content ingestion module **300** of FIG. **5**E, the element identification module **302** of FIG. **5**E, the interpretation module **304** of FIG. **5**E, the answer resolution module **306** of FIG. **5**E, and a knowledge database **700**. The knowledge database **700** may be implemented utilizing one or more of the memories of FIG. **2**.
- (238) FIG. **11**A illustrates example steps of the method of operation for the for the identifying knowledge associated with the set of phrases, where, in a first step the content ingestion module **300** obtains a set of phrases **802** that includes a string of words. The obtaining includes receiving, looking up, retrieving, and generating. For example, the content ingestion module **300** receives the set of phrases **802** that includes word strings "heard crash" and "saw police car".
- (239) Having obtained the set of phrases **802**, a second step of the method for the identifying knowledge associated with the set of phrases includes the content ingestion module **300** parsing the set of phrases **802** to generate phrase words **804**. The parsing includes one or more of validating words of the word strings with valid words of a dictionary **703**, eliminating unneeded words, replacing undesired words with replacement words that are desired, and adding additional words that may provide enhanced clarity of understanding as is commonly used within a given language. For example, the content ingestion module **300** obtains the dictionary **703** from the knowledge database **700** and validates the words of the word strings with words of the dictionary **703** to produce the phrase words **804**. For instance, the content ingestion module **300** compares each word of the word strings "heard crash" and "saw police car" to words of the dictionary **703** to validate each of the words producing the valid sequence of phrase words **804** that includes "heard" and "crash" of a first word string and "saw", "police", and "car" of a second word string.
- (240) In a third step of the method for the identifying knowledge associated with the set of phrases, the element identification module **302** identifies a set of identigens for each valid word of the phrase words **804** to produce a (plurality) of sets of identigens **808**. A first set of identigens of the plurality of sets of identigens includes one or more different meanings of a first word of the valid sequence of phrase words.
- (241) The identifying the set of identigens includes a series of one or more sub-steps. A first sub-step includes accessing, for each word of the valid sequence of phrase words **804**, the knowledge database **700** to recover the set of identigens. For example, the element identification module **302** receives identigen information **706** from the knowledge database **700** that includes an identigen set

- #1 for the word "heard", where the identigen set #1 includes identigens **40**, and **41**. The identigens **40** and **41** represent to unique interpretations of the word "heard", including "listen" and "aware." As another example, the element identification module **302** receives identigen information **706** from the knowledge database **700** that includes identigens **61**, **62**, and **63** for the word "saw", representing meanings of "cut", "visualized", and "tool."
- (242) A second sub-step includes interpreting a query response from another computing device to produce the set of identigens, where the query response is received in response to an identigen query with regards to the word. For example, the element identification module **302** receives the plurality of sets of identigens from the other computing device.
- (243) FIG. 11B further illustrates the example steps of the method of operation for the identifying knowledge associated with the set of phrases, where, having identified the set of identigens for each valid phrase word, a fourth step includes the interpretation module 304 generating a set of query entigen groups 713 for the set of phrases. For example, the interpretation module 304 accesses the knowledge database 700 utilizing the sets of identigens 808 to recover identigen rules 710 associated with the identigens of the sets of identigens 808. Having recovered the identigen rules 710, the interpretation module 304 interprets the identigen rules 710 for the identigens of the sets of identigens 808 to identify each query entigen group of the set of query entigen groups 713. For instance, the interpretation module 304 identifies a first query entigen group that includes entigens 40 and 51 (e.g., pertaining to listening to a collision) and identifies a second query entigen group that includes entigens 62, 71, and 81 (e.g., pertaining to visualizing a civil force vehicle) when both entigen groups are allowed by the identigen rules 710.
- (244) FIG. 11C further illustrates the example steps of the method of operation for the identifying knowledge associated with the set of phrases, where, having produced the set of query entigen groups 713, in a fifth step the answer resolution module 306 accesses the knowledge database 700 utilizing the set of query entigen group 713 to produce a response entigen group 720. For example, the answer resolution module 306 locates an entigen group within the knowledge database 700 and associated with the set of query entigen groups 713 representing knowledge associated with dispatching of a police car to a car collision at 1000 Main St. is located. The answer resolution module 306 interprets entigen information 714 associated with the located entigen group to produce the response entigen group 720 to include entigens representing the car collision at 1000 Main St.
- (245) Alternatively, or in addition to, the answer resolution module **306** produces a response based on the response entigen group **720**. For example, the answer resolution module **306** produces a response "a car collision is at 1000 Main Street."
- (246) The method described with reference to the preceding figures and in conjunction with the various modules can alternatively be performed by other modules of the computing system 10 of FIG. 1 or by other devices. In addition, at least one memory section (e.g., a non-transitory computer readable memory, a non-transitory computer readable storage medium, a non-transitory computer readable memory organized into a first memory element, a second memory element, a third memory element, a fourth element section, a fifth memory element etc.) that stores operational instructions can, when executed by one or more processing modules of one or more computing devices (e.g., one or more servers, one or more user devices) of the computing system 10, cause the one or more computing devices to perform any or all of the method steps described above.
- (247) FIGS. **12**A-**12**C are schematic block diagrams of another embodiment of a computing system illustrating a method identifying medical conditions within the computing system. The computing system includes the content ingestion module **300** of FIG. **5**E, the element identification module **302** of FIG. **5**E, the interpretation module **304** of FIG. **5**E, the answer resolution module **306** of FIG. **5**E, and a knowledge database **700**. The knowledge database **700** may be implemented utilizing one or more of the memories of FIG. **2**.

- (248) FIG. **12**A illustrates example steps of the method of operation for the identifying medical conditions, where, in a first step the content ingestion module **300** obtains at least one phrase **802** that includes a string of words associated with a set of medical phrases. The obtaining includes receiving, looking up, retrieving, and generating. For example, the content ingestion module **300** receives the phrase **802** that includes a string of words "been sick 24 hours" and "with fever and cough."
- (249) Having obtained the phrase **802**, a second step includes the content ingestion module **300** parsing the set of medical phrases of the phrase **802** to generate phrase words **804**. The parsing includes one or more of validating words of the string of words with valid words of a dictionary **703**, eliminating unneeded words, replacing undesired words with replacement words that are desired, identifying unknown words, and adding additional words that may provide enhanced clarity of understanding as is commonly used within a given language. For example, the content ingestion module **300** obtains the dictionary **703** from the knowledge database **700** and validates each of the words "been sick 24 hours" and "with fever and cough" with the dictionary **703** to produce validated words of the phrase words **804**.
- (250) In a third step of the method for the identifying medical conditions, the element identification module **302** identifies a set of identigens for each valid phrase word for the set of medical phrases of the phrase words **804** to produce sets of identigens **808**. A first set of identigens of the sets of identigens includes one or more different meanings of the word "sick" of the phrase words **804** (e.g., excellent, illness, unpleasant). A third set of identigens of the sets of identigens includes one or more different meanings of the word "fever" of the valid phrase words **804** (e.g., hi body temperature, craze).
- (251) The identifying the set of identigens includes a series of one or more sub-steps. A first sub-step includes accessing, for each word of the phrase words **804**, the knowledge database **700** to recover the set of identigens. For example, the element identification module **302** receives identigen information **706** from the knowledge database **700** that includes the first identigen set for the word "sick" where the first identigen set includes identigens #90, 91, and 92.
- (252) A second sub-step includes interpreting a query response from another computing device to produce the set of identigens, where the query response is received in response to an identigen query with regards to the word. For example, the element identification module **302** receives the sets of identigens from the other computing device.
- (253) FIG. **12**B further illustrates the example steps of the method of operation for the identifying medical conditions, where, having obtained the set of identigens **808**, a fourth step includes the interpretation module **304** generating a set of query entigen group **713** based on the sets of identigens **808**. For example, the interpretation module **304** accesses the knowledge database **700** utilizing the identigens of the sets of identigens **808** to recover medical identigen rules **709** associated with identigens of a medical domain.
- (254) The interpretation module **304** interprets the medical identigen rules **709** with regards to the sets of identigens **808** to identify valid permutations of identigens to produce the set of query entigen group **713**. For instance, the interpretation module **304** interprets the medical identigen rules **709** to produce a first query entigen group of the set of query entigen groups **713** that includes identigen #91 associated with a meaning of "illness" and identigen #95 associated with the meaning of "a day." As another instance, the interpretation module **304** interprets the medical identigen rules **709** to produce a second query entigen group of the set of query entigen groups **713** that includes identigen #75 associated with a meaning of "high body temperature" and identigen #66 associated with "sound of coughing."
- (255) FIG. **12**C further illustrates the example steps of the method of operation for the identifying medical conditions, where having obtained the set of query entigen groups **713**, in a fifth step the answer resolution module **306** accesses the knowledge database **700** utilizing the set of query entigen group **713** to produce a medical response entigen group **721**. For example, the answer

resolution module **306** accesses a portion of the knowledge database **700** to locate an entigen group associated with each of the query entigen groups of the set of query entigen group **713**. The answer resolution module **306** interprets medical entigen information **717** associated with the located entigen group to produce the medical response entigen group **721**. For example, the answer resolution module **306** locates entigens associated with illnesses with symptoms of coughing and fever to include cold, influenza, pneumonia, pandemic virus, and bronchitis.

- (256) Alternatively, or in addition to, the answer resolution module **306** generates a response based on the medical response entigen group **721**. For example, the answer resolution module **306** issues a response to include "illnesses include a cold, influenza, pneumonia, pandemic virus, and bronchitis.
- (257) The method described with reference to the preceding figures and in conjunction with the various modules can alternatively be performed by other modules of the computing system 10 of FIG. 1 or by other devices. In addition, at least one memory section (e.g., a non-transitory computer readable memory, a non-transitory computer readable storage medium, a non-transitory computer readable memory organized into a first memory element, a second memory element, a third memory element, a fourth element section, a fifth memory element etc.) that stores operational instructions can, when executed by one or more processing modules of one or more computing devices (e.g., one or more servers, one or more user devices) of the computing system 10, cause the one or more computing devices to perform any or all of the method steps described above.
- (258) FIGS. **13**A-**13**B are schematic block diagrams of another embodiment of a computing system illustrating a method for identifying true meaning of a sarcastic phrase within the computing system. The computing system includes the content ingestion module **300** of FIG. **5**E, the element identification module **302** of FIG. **5**E, the interpretation module **304** of FIG. **5**E, the answer resolution module **306** of FIG. **5**E, and a knowledge database **700**. The knowledge database **700** may be implemented utilizing one or more of the memories of FIG. **2**.
- (259) FIG. **13**A illustrates example steps of the method of operation for the identifying true meaning of the sarcastic phrase, where, in a first step the computing system obtains a phrase **802** that includes a set of phrases from a subject (e.g., John). For example, the content ingestion module **300** obtains the phrase **802** that includes John's words "truck broken" and "I love my truck." In a second step of the example method of the identifying true meaning of the sarcastic phrase, the content ingestion module **300** generates valid phrase words **804** from the set of phrases of the phrase **802**. For example, the content ingestion module **300** validates the words of the phrase utilizing words from a dictionary **703** of the knowledge database **700** to produce the phrase words **804** to include "truck", "broken" and "I", "love", and "truck."
- (260) In a third step of the example method of the identifying true meaning of the sarcastic phrase, the element identification module **302**, for each word of the phrase words **804**, identifies a set of identigens to produce a plurality of sets of identigens **808**. For example, the element identification module **302** utilizes the phrase words **804** to access the knowledge database **700** to obtain identigen information **706** that includes, for each word, the set of identigens to produce the sets of identigens **808**. For instance, the word "truck" results in a first set of identigens including identigen #35 for "transport" and identigen #45 for "broken." In another instance, the word "love" results in a fourth set of identigens including identigen number #15 for "to adore", identigen #16 for "feeling", and identigen #17 for a sarcastic meaning associated with "hate."
- (261) FIG. **13**B further illustrates the example steps of the method of operation for the identifying true meaning of the sarcastic phrase, where, having obtained the sets of identigens **808**, in a fourth step the interpretation module **304** identifies an idiolect for the subject. For example, the interpretation module **304** obtains idiolect information **807** with regards to John from the knowledge database **700**, where the idiolect information **807** indicates that John frequently uses words sarcastically.

- (262) Having obtained the idiolect information **807**, a fifth step of the example method of operation for the identifying true meaning of the sarcastic phrase includes the interpretation module **304** generating a phrase entigen group **812** utilizing identigen rules modified for the sarcastic source idiolect. The generating of the phrase entigen group **812** includes a series of sub-steps. A first substep includes modifying identigen rules **710** to produce modified identigen rules **711**, where the modified identigen rules **711** accommodate sarcastic interpretations of words by pairing identigens associated with sarcastic meanings of words. For example, the interpretation module **304** generates the modified identigen rules **711** to include an allowed pairing of identigens #25 and #17 and another allowed pairing of identigens #17 and #36 when the subject frequently uses words sarcastically and the identigen #17 is associated with a sarcastic meaning (e.g., "hate" meaning for word "love").
- (263) A second sub-step includes utilizing the modified identigen rules **711** to interpret the sets of identigens **808** to produce the phrase entigen group **812**. For example, the interpretation module **304** generates the phrase entigen group **812** to include entigen #45 for a meaning of "disrepair", entigen #36 for a meaning of "vehicle", an entigen for "John", and entigen #17 for a meaning of "hate."
- (264) Alternatively, or in addition to, the answer resolution module **306** forms a response from the phrase entigen group **812**. For example, the answer resolution module **306** generates the response to include "John hates his vehicle (e.g., truck) in disrepair." Further alternatively, or in addition to, the answer resolution module **306** stores the phrase entigen group **812** in the knowledge database **700** as incremental new knowledge to record the observation that John hates his truck that is in disrepair.
- (265) The method described with reference to the preceding figures and in conjunction with the various modules can alternatively be performed by other modules of the computing system 10 of FIG. 1 or by other devices. In addition, at least one memory section (e.g., a non-transitory computer readable memory, a non-transitory computer readable storage medium, a non-transitory computer readable memory organized into a first memory element, a second memory element, a third memory element, a fourth element section, a fifth memory element etc.) that stores operational instructions can, when executed by one or more processing modules of one or more computing devices (e.g., one or more servers, one or more user devices) of the computing system 10, cause the one or more computing devices to perform any or all of the method steps described above.
- (266) FIGS. **14**A-**14**D are schematic block diagrams of another embodiment of a computing system illustrating a method for processing a query within the computing system. The computing system includes the content ingestion module **300** of FIG. **5**E, the element identification module **302** of FIG. **5**E, the interpretation module **304** of FIG. **5**E, the answer resolution module **306** of FIG. **5**E, and a knowledge database **700**. The knowledge database **700** may be implemented utilizing one or more of the memories of FIG. **2**.
- (267) FIG. **14**A illustrates example steps of the method of operation for the processing the query, where, in a first step the content ingestion module **300** obtains a query **702** that includes a string of words. The obtaining includes receiving, looking up, retrieving, and generating. For example, the content ingestion module **300** receives the query **702** that includes a string of words "bat animal colors?".
- (268) Having obtained the query **702**, a second step of the method for the processing of the query includes the content ingestion module **300** parsing the query **702** to generate query words **704**. The parsing includes one or more of validating words of the string of words with valid words of a dictionary **703**, eliminating unneeded words, replacing undesired words with replacement words that are desired, and adding additional words that may provide enhanced clarity of understanding as is commonly used within a given language. For example, the content ingestion module **300** obtains the dictionary **703** from the knowledge database **700** and validates the words of the string of words

- with words of the dictionary **703** to produce the query words **704**. For instance, the content ingestion module **300** compares each word of the string of words "bat animal colors?" to words of the dictionary **703** to validate each of the words producing the valid sequence of query words **704** that includes "bat, animal, colors."
- (269) In a third step of the method for the determining meaning of the phrase, the element identification module **302** identifies a set of identigens for each valid word of the query words **704** to produce a (plurality) of sets of identigens **708**. A first set of identigens of the plurality of sets of identigens includes one or more different meanings of a first word of the valid sequence of query words **704**.
- (270) The identifying the set of identigens includes a series of sub-steps. A first sub-step includes accessing, for each word of the valid sequence of query words **704**, the knowledge database **700** to recover the set of identigens. For example, the element identification module **302** receives identigen information **706** from the knowledge database **700** that includes an identigen set #1 for the word "bat", where the identigen set #1 includes identigen #7 for a meaning of "baseball bat", identigen #8 for the meaning of "animal bat", and identigen #9 for a meaning of "to hit." As another example, the element identification module **302** receives identigen information **706** from the knowledge database **700** that includes an identigen sets #3 for the word "colors", including identigens #1-#3 associated with meanings of "appearance", "skin color", and "change color" respectively.
- (271) A second sub-step includes interpreting a query response from another computing device to produce the set of identigens, where the query response is received in response to an identigen query with regards to the word. For example, the element identification module **302** receives the plurality of sets of identigens from the other computing device.
- (272) FIG. **14**B further illustrates the example steps of the method of operation for the processing of the query, where, having obtained the plurality of sets of identigens **708**, in a fourth step the interpretation module **304** applies identigen rules **710** to the sets of identigens **708** to generate a query entigen group **712**. For example, the interpretation module **304** interprets identigen rules **710** from the knowledge database **700** with regards to the identigens of the set of identigens **708**. For instance, the interpretation module **304** interprets the identigen rules **710** to determine that the identigen #8 is allowed to pair with identigen #0 and identigen number #8 is allowed to pair with identigen #1 associated with color appearance, the object of the query.
- (273) FIG. **14**C further illustrates the example steps of the method of operation for the processing of the query, where, having obtained the query entigen group **712**, in a fifth step the answer resolution module **306** accesses the knowledge database **700** using the query entigen group **712** to generate a response entigen group **920**. For example, the answer resolution module **306** interprets entigen information **714** from the knowledge database to identify color characteristic entigens associated with the color appearance entigen #1 including gray, white, brown, and black to include in the response entigen group **920** along with entigen #0 for "living organism", entigen #8 for "animal bat", and entigen #1 for "color appearance".
- (274) Having produced the response entigen group **920**, in a **6** step of the example method of operation for the processing of the query, the answer resolution module **306** determines that the response entigen group **920** is unfavorable. The determining of the unfavorable response entigen group **920** includes indicating that the response entigen group **920** is unfavorable when one or more indicators have been detected. The indicators includes detecting that a timeframe since a last update of color characteristic entigens is greater than a time threshold, determining that a number of characteristic entigens is less than a characteristic threshold level, and detecting that a date of knowledge associated with bat colors is older than an age threshold level.
- (275) When the response entigen group **920** is unfavorable, a seventh step of the example method of the processing of the query includes the answer resolution module **306** obtaining further related knowledge. For example, the answer resolution module **306** issues a content request **900** to one or

more content sources for content associated with color characteristics of animal bats to produce content **902 4** ingestion by the computing system. In an instance, the content ingestion module **300** receives **10,000** more documents associated with bat animals as content **902**, and generates content words **904** that includes "bat animal colors include orange and red."

- (276) The element identification module **302** generates content sets of identigens **908** based on the content words **904** and the interpretation module **304** generates a content entigen groups **912** based on the content sets of identigens **908**, where the content entigen group **912** includes the color characteristic entigens of orange and red for the color appearance of the bat animal.
- (277) FIG. **14**D further illustrates the example steps of the method of operation for the processing of the query, where, having obtained the content entigen group **912**, in and eighth step the answer resolution module **306** generates an updated response entigen group **922** utilizing the further related knowledge. For example, the answer resolution module **306** combines the response entigen group **920** and the content entigen group **912** to produce the updated response entigen group **922**. For instance, the answer resolution module **306** generates the updated response entigen group to include color characteristic entigens of grey, white, brown, black, red, and orange to describe the color appearance of the bat animal.
- (278) Alternatively, or in addition to, the answer resolution module **306** facilitates generation of a response based on the updated response entigen group **922**. For example, the answer resolution module **306** generates the response to include "bat animal colors include grey, white, brown, black, red, and orange." Further alternatively, or in addition to, the answer resolution module **306** facilitates storage of the further related knowledge in the knowledge database **700**. For example, the answer resolution module **306** issues entigen information **714** to the knowledge database **700**, where the entigen information **714** includes the characteristic entigens for orange and red to be associated with the color appearance entigen within the knowledge database **700**. As another example, the answer resolution module **306** issues other entigen information **714** to the knowledge database **700**, where the entigen information **714** excludes a previously stored appearance color characteristic entigen when the further related knowledge includes disconfirming information. For instance, removing the white color characteristic when the content **902** conclusively indicates that white bats are a myth and do not occur in nature.
- (279) The method described with reference to the preceding figures and in conjunction with the various modules can alternatively be performed by other modules of the computing system 10 of FIG. 1 or by other devices. In addition, at least one memory section (e.g., a non-transitory computer readable memory, a non-transitory computer readable storage medium, a non-transitory computer readable memory organized into a first memory element, a second memory element, a third memory element, a fourth element section, a fifth memory element etc.) that stores operational instructions can, when executed by one or more processing modules of one or more computing devices (e.g., one or more servers, one or more user devices) of the computing system 10, cause the one or more computing devices to perform any or all of the method steps described above.
- (280) It is noted that terminologies as may be used herein such as bit stream, stream, signal sequence, etc. (or their equivalents) have been used interchangeably to describe digital information whose content corresponds to any of a number of desired types (e.g., data, video, speech, text, graphics, audio, etc. any of which may generally be referred to as 'data').
- (281) As may be used herein, the terms "substantially" and "approximately" provides an industry-accepted tolerance for its corresponding term and/or relativity between items. For some industries, an industry-accepted tolerance is less than one percent and, for other industries, the industry-accepted tolerance is 10 percent or more. Other examples of industry-accepted tolerance range from less than one percent to fifty percent. Industry-accepted tolerances correspond to, but are not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, thermal noise, dimensions, signaling errors, dropped packets, temperatures, pressures,

material compositions, and/or performance metrics. Within an industry, tolerance variances of accepted tolerances may be more or less than a percentage level (e.g., dimension tolerance of less than  $\pm 1$ ). Some relativity between items may range from a difference of less than a percentage level to a few percent. Other relativity between items may range from a difference of a few percent to magnitude of differences.

- (282) As may also be used herein, the term(s) "configured to", "operably coupled to", "coupled to", and/or "coupling" includes direct coupling between items and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module) where, for an example of indirect coupling, the intervening item does not modify the information of a signal but may adjust its current level, voltage level, and/or power level. As may further be used herein, inferred coupling (i.e., where one element is coupled to another element by inference) includes direct and indirect coupling between two items in the same manner as "coupled to".
- (283) As may even further be used herein, the term "configured to", "operable to", "coupled to", or "operably coupled to" indicates that an item includes one or more of power connections, input(s), output(s), etc., to perform, when activated, one or more its corresponding functions and may further include inferred coupling to one or more other items. As may still further be used herein, the term "associated with", includes direct and/or indirect coupling of separate items and/or one item being embedded within another item.
- (284) As may be used herein, the term "compares favorably", indicates that a comparison between two or more items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2, a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1. As may be used herein, the term "compares unfavorably", indicates that a comparison between two or more items, signals, etc., fails to provide the desired relationship.
- (285) As may be used herein, one or more claims may include, in a specific form of this generic form, the phrase "at least one of a, b, and c" or of this generic form "at least one of a, b, or c", with more or less elements than "a", "b", and "c". In either phrasing, the phrases are to be interpreted identically. In particular, "at least one of a, b, and c" is equivalent to "at least one of a, b, or c" and shall mean a, b, and/or c. As an example, it means: "a" only, "b" only, "c" only, "a" and "b", "a" and "c", "b" and "c", and/or "a", "b", and "c".
- (286) As may also be used herein, the terms "processing module", "processing circuit", "processor", "processing circuitry", and/or "processing unit" may be a single processing device or a plurality of processing devices. Such a processing device may be a microprocessor, microcontroller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or operational instructions. The processing module, module, processing circuit, processing circuitry, and/or processing unit may be, or further include, memory and/or an integrated memory element, which may be a single memory device, a plurality of memory devices, and/or embedded circuitry of another processing module, module, processing circuit, processing circuitry, and/or processing unit. Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information. Note that if the processing module, module, processing circuit, processing circuitry, and/or processing unit includes more than one processing device, the processing devices may be centrally located (e.g., directly coupled together via a wired and/or wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect coupling via a local area network and/or a wide area network). Further note that if the processing module, module, processing circuit, processing circuitry and/or

processing unit implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry, the memory and/or memory element storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry. Still further note that, the memory element may store, and the processing module, module, processing circuit, processing circuitry and/or processing unit executes, hard coded and/or operational instructions corresponding to at least some of the steps and/or functions illustrated in one or more of the Figures. Such a memory device or memory element can be included in an article of manufacture. (287) One or more embodiments have been described above with the aid of method steps illustrating the performance of specified functions and relationships thereof. The boundaries and sequence of these functional building blocks and method steps have been arbitrarily defined herein for convenience of description. Alternate boundaries and sequences can be defined so long as the specified functions and relationships are appropriately performed. Any such alternate boundaries or sequences are thus within the scope and spirit of the claims. Further, the boundaries of these functional building blocks have been arbitrarily defined for convenience of description. Alternate boundaries could be defined as long as the certain significant functions are appropriately performed. Similarly, flow diagram blocks may also have been arbitrarily defined herein to illustrate certain significant functionality.

(288) To the extent used, the flow diagram block boundaries and sequence could have been defined otherwise and still perform the certain significant functionality. Such alternate definitions of both functional building blocks and flow diagram blocks and sequences are thus within the scope and spirit of the claims. One of average skill in the art will also recognize that the functional building blocks, and other illustrative blocks, modules and components herein, can be implemented as illustrated or by discrete components, application specific integrated circuits, processors executing appropriate software and the like or any combination thereof.

(289) In addition, a flow diagram may include a "start" and/or "continue" indication. The "start" and "continue" indications reflect that the steps presented can optionally be incorporated in or otherwise used in conjunction with one or more other routines. In addition, a flow diagram may include an "end" and/or "continue" indication. The "end" and/or "continue" indications reflect that the steps presented can end as described and shown or optionally be incorporated in or otherwise used in conjunction with one or more other routines. In this context, "start" indicates the beginning of the first step presented and may be preceded by other activities not specifically shown. Further, the "continue" indication reflects that the steps presented may be performed multiple times and/or may be succeeded by other activities not specifically shown. Further, while a flow diagram indicates a particular ordering of steps, other orderings are likewise possible provided that the principles of causality are maintained.

(290) The one or more embodiments are used herein to illustrate one or more aspects, one or more features, one or more concepts, and/or one or more examples. A physical embodiment of an apparatus, an article of manufacture, a machine, and/or of a process may include one or more of the aspects, features, concepts, examples, etc. described with reference to one or more of the embodiments discussed herein. Further, from figure to figure, the embodiments may incorporate the same or similarly named functions, steps, modules, etc. that may use the same or different reference numbers and, as such, the functions, steps, modules, etc. may be the same or similar functions, steps, modules, etc. or different ones.

(291) Unless specifically stated to the contra, signals to, from, and/or between elements in a figure of any of the figures presented herein may be analog or digital, continuous time or discrete time, and single-ended or differential. For instance, if a signal path is shown as a single-ended path, it also represents a differential signal path. Similarly, if a signal path is shown as a differential path, it also represents a single-ended signal path. While one or more particular architectures are described herein, other architectures can likewise be implemented that use one or more data buses not

expressly shown, direct connectivity between elements, and/or indirect coupling between other elements as recognized by one of average skill in the art.

(292) The term "module" is used in the description of one or more of the embodiments. A module implements one or more functions via a device such as a processor or other processing device or other hardware that may include or operate in association with a memory that stores operational instructions. A module may operate independently and/or in conjunction with software and/or firmware. As also used herein, a module may contain one or more sub-modules, each of which may be one or more modules.

(293) As may further be used herein, a computer readable memory includes one or more memory elements. A memory element may be a separate memory device, multiple memory devices, or a set of memory locations within a memory device. Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, a quantum register or other quantum memory and/or any other device that stores data in a non-transitory manner. Furthermore, the memory device may be in a form of a solid-state memory, a hard drive memory or other disk storage, cloud memory, thumb drive, server memory, computing device memory, and/or other non-transitory medium for storing data. The storage of data includes temporary storage (i.e., data is lost when power is removed from the memory element) and/or persistent storage (i.e., data is retained when power is removed from the memory element). As used herein, a transitory medium shall mean one or more of: (a) a wired or wireless medium for the transportation of data as a signal from one computing device to another computing device for temporary storage or persistent storage; (b) a wired or wireless medium for the transportation of data as a signal within a computing device from one element of the computing device to another element of the computing device for temporary storage or persistent storage; (c) a wired or wireless medium for the transportation of data as a signal from one computing device to another computing device for processing the data by the other computing device; and (d) a wired or wireless medium for the transportation of data as a signal within a computing device from one element of the computing device to another element of the computing device for processing the data by the other element of the computing device. As may be used herein, a non-transitory computer readable memory is substantially equivalent to a computer readable memory. A nontransitory computer readable memory can also be referred to as a non-transitory computer readable storage medium.

(294) While particular combinations of various functions and features of the one or more embodiments have been expressly described herein, other combinations of these features and functions are likewise possible. The present disclosure is not limited by the particular examples disclosed herein and expressly incorporates these other combinations.

## **Claims**

1. A method for execution by a computing device, the method comprises: determining a set of identigens for each word of a phrase from a source to produce a plurality of sets of identigens, wherein a set of identigens of the plurality of sets of identigens represents one or more different meanings of a word of the phrase, wherein each identigen of the set of identigens includes a meaning identifier for a particular different meaning of the one or more different meanings, an instance identifier that includes a particular spelling in a particular language for the word, and an interpretation time reference, wherein each meaning identifier associated with a particular set of identigens represents a different meaning of the one or more different meanings of a corresponding word of the phrase, wherein each interpretation time reference provides time information when an interpretation of a particular corresponding different meaning of the one or more different meanings applies; interpreting, based only on identigen pairing rules, pairs of sequentially adjacent identigens of adjacent sets of identigens of the plurality of sets of identigens to determine a

plurality of phrase entigen groups, wherein each entigen group of the plurality of phrase entigen groups includes a valid selection of a particular identigen of each set of identigens in accordance with the identigen pairing rules, wherein the plurality of phrase entigen groups includes a first phrase entigen group associated with a first most likely meaning interpretation of the phrase of a plurality of most likely meaning interpretations of the phrase associated with the plurality of phrase entigen groups, wherein each entigen of the first phrase entigen group corresponds to a selected identigen of one of the plurality of sets of identigens having a selected meaning identifier of the one or more different meanings of a corresponding word of the phrase that represents a first most likely meaning interpretation of the corresponding word, wherein each selected identigen corresponding to the first phrase entigen group favorably pairs with at least one corresponding sequentially adjacent identigen of an adjacent set of identigens in accordance with the identigen pairing rules, wherein each entigen of the first phrase entigen group represents a single conceivable and perceivable thing in space and time that is independent of language and corresponds to an interpretation time reference of a corresponding selected identigen associated with the first phrase entigen group; identifying an inconsistency between at least two phrase entigen groups of the plurality of phrase entigen groups, wherein the inconsistency includes at least two different meaning interpretations of the phrase, wherein the inconsistency includes a first conflicting entigen of the first phrase entigen group that conflicts with a second conflicting entigen of a second phrase entigen group of the plurality of phrase entigen groups, wherein the inconsistency is further associated with a first interpretation time reference of the first conflicting entigen that is different than a second interpretation time reference of the second conflicting entigen; obtaining an inconsistency clarification based on the inconsistency between the at least two phrase entigen groups of the plurality of phrase entigen groups, wherein the inconsistency clarification is associated with at least one of disconfirming knowledge and confirming knowledge, wherein the disconfirming knowledge is associated with conflicting interpretation time references between a phrase entigen of a phrase entigen group of the at least two phrase entigen groups and a knowledge database entigen, wherein the confirming knowledge is associated with non-conflicting interpretation time references between the phrase entigen of the phrase entigen group of the at least two phrase entigen groups and the knowledge database entigen; and selecting one phrase entigen group of the plurality of phrase entigen groups based on the inconsistency clarification to produce a final phrase entigen group.

- 2. The method of claim 1 further comprises: interpreting, based only on the identigen pairing rules, the pairs of sequentially adjacent identigens of the adjacent sets of identigens of the plurality of sets of identigens to determine a second most likely meaning interpretation of the phrase and produce the second phrase entigen group of the plurality of phrase entigen groups, wherein the plurality of most likely meaning interpretations of the phrase includes the second most likely meaning interpretation of the phrase, wherein the second phrase entigen group represents the second most likely meaning interpretation of the phrase, wherein each entigen of the second phrase entigen group corresponds to a selected identigen of one of the plurality of sets of identigens having a selected meaning identifier of the one or more different meanings of a corresponding word of the phrase that represents a second most likely meaning interpretation of the corresponding word, wherein each selected identigen corresponding to the second phrase entigen group favorably pairs with at least one corresponding sequentially adjacent identigen of an adjacent set of identigens in accordance with the identigen pairing rules, wherein each entigen of the second phrase entigen group represents a single conceivable and perceivable thing in space and time that is independent of language and corresponds to an interpretation time reference of a corresponding selected identigen associated with the second phrase entigen group.
- 3. The method of claim 1 further comprises: accessing a knowledge database utilizing the final phrase entigen group to produce a response entigen group, wherein the knowledge database includes a plurality of records that link entigens having a connected meaning; and generating a

representation of the response entigen group, wherein the representation includes at least one representation word.

- 4. The method of claim 1, wherein the identifying the inconsistency between the at least two phrase entigen groups of the plurality of phrase entigen groups comprises one or more of: identifying a first phrase entigen of the first phrase entigen group that is different than a first phrase entigen of the second phrase entigen group of the plurality of phrase entigen groups; and determining that a number of phrase entigens of the first phrase entigen group is different than a number of phrase entigens of the second phrase entigen group.
- 5. The method of claim 1, wherein the obtaining the inconsistency clarification based on the inconsistency between the at least two phrase entigen groups of the plurality of phrase entigen groups comprises at least one of: accessing a knowledge database utilizing the first phrase entigen group to produce a clarification entigen group as the inconsistency clarification, wherein the knowledge database includes a plurality of records that link entigens having a connected meaning; interpreting a clarification response to a clarification request to produce the clarification entigen group as the inconsistency clarification, wherein the clarification request is based on the inconsistency between the at least two phrase entigen groups; generating modified identigen pairing rules from the identigen pairing rules and an idiolect for the source; and interpreting, based on the modified identigen pairing rules, the pairs of sequentially adjacent identigens of adjacent sets of identigens of the plurality of sets of identigens to produce an updated plurality of phrase entigen groups that eliminates the inconsistency between the at least two phrase entigen groups. 6. The method of claim 1, wherein the selecting the one phrase entigen group of the plurality of phrase entigen groups based on the inconsistency clarification to produce the final phrase entigen group comprises: obtaining a clarification entigen group based on the inconsistency clarification; and selecting the one phrase entigen group of the plurality of phrase entigen groups that is most consistent with the clarification entigen group to produce the final phrase entigen group. 7. A computing device of a computing system, the computing device comprises: an interface; a local memory; and a processing module operably coupled to the interface and the local memory, wherein the processing module performs functions to: determine a set of identigens for each word of a phrase from a source to produce a plurality of sets of identigens, wherein a set of identigens of the plurality of sets of identigens represents one or more different meanings of a word of the phrase, wherein each identigen of the set of identigens includes a meaning identifier for a particular different meaning of the one or more different meanings, an instance identifier that includes a particular spelling in a particular language for the word, and an interpretation time reference, wherein each meaning identifier associated with a particular set of identigens represents a different meaning of the one or more different meanings of a corresponding word of the phrase, wherein each interpretation time reference provides time information when an interpretation of a particular corresponding different meaning of the one or more different meanings applies; interpret, based only on identigen pairing rules, pairs of sequentially adjacent identigens of adjacent sets of identigens of the plurality of sets of identigens to determine a plurality of phrase entigen groups, wherein each entigen group of the plurality of phrase entigen groups includes a valid selection of a particular identigen of each set of identigens in accordance with the identigen pairing rules, wherein the plurality of phrase entigen groups includes a first phrase entigen group associated with a first most likely meaning interpretation of the phrase of a plurality of most likely meaning interpretations of the phrase associated with the plurality of phrase entigen groups, wherein each entigen of the first phrase entigen group corresponds to a selected identigen of one of the plurality of sets of identigens having a selected meaning identifier of the one or more different meanings of a corresponding word of the phrase that represents a first most likely meaning interpretation of the corresponding word, wherein each selected identigen corresponding to the first phrase entigen group favorably pairs with at least one corresponding sequentially adjacent identigen of an adjacent set of identigens in accordance with the identigen pairing rules, wherein each entigen of the first

phrase entigen group represents a single conceivable and perceivable thing in space and time that is independent of language and corresponds to an interpretation time reference of a corresponding selected identigen associated with the first phrase entigen group; identify an inconsistency between at least two phrase entigen groups of the plurality of phrase entigen groups, wherein the inconsistency includes at least two different meaning interpretations of the phrase, wherein the inconsistency includes a first conflicting entigen of the first phrase entigen group that conflicts with a second conflicting entigen of a second phrase entigen group of the plurality of phrase entigen groups, wherein the inconsistency is further associated with a first interpretation time reference of the first conflicting entigen that is different than a second interpretation time reference of the second conflicting entigen; obtain an inconsistency clarification based on the inconsistency between the at least two phrase entigen groups of the plurality of phrase entigen groups, wherein the inconsistency clarification is associated with at least one of disconfirming knowledge and confirming knowledge, wherein the disconfirming knowledge is associated with conflicting interpretation time references between a phrase entigen of a phrase entigen group of the at least two phrase entigen groups and a knowledge database entigen, wherein the confirming knowledge is associated with non-conflicting interpretation time references between the phrase entigen of the phrase entigen group of the at least two phrase entigen groups and the knowledge database entigen; and select one phrase entigen group of the plurality of phrase entigen groups based on the inconsistency clarification to produce a final phrase entigen group.

- 8. The computing device of claim 7, wherein the processing module further performs functions to: interpret, based only on the identigen pairing rules, the pairs of sequentially adjacent identigens of the adjacent sets of identigens of the plurality of sets of identigens to determine a second most likely meaning interpretation of the phrase and produce the second phrase entigen group of the plurality of phrase entigen groups, wherein the plurality of most likely meaning interpretations of the phrase includes the second most likely meaning interpretation of the phrase, wherein the second phrase entigen group represents the second most likely meaning interpretation of the phrase, wherein each entigen of the second phrase entigen group corresponds to a selected identigen of one of the plurality of sets of identigens having a selected meaning identifier of the one or more different meanings of a corresponding word of the phrase that represents a second most likely meaning interpretation of the corresponding word, wherein each selected identigen corresponding to the second phrase entigen group favorably pairs with at least one corresponding sequentially adjacent identigen of an adjacent set of identigens in accordance with the identigen pairing rules, wherein each entigen of the second phrase entigen group represents a single conceivable and perceivable thing in space and time that is independent of language and corresponds to an interpretation time reference of a corresponding selected identigen associated with the second phrase entigen group.
- 9. The computing device of claim 7, wherein the processing module further performs functions to: access, via the interface, a knowledge database utilizing the final phrase entigen group to produce a response entigen group, wherein the knowledge database includes a plurality of records that link entigens having a connected meaning; and generate a representation of the response entigen group, wherein the representation includes at least one representation word.
- 10. The computing device of claim 7, wherein the processing module performs functions to identify the inconsistency between the at least two phrase entigen groups of the plurality of phrase entigen groups by one or more of: identifying a first phrase entigen of the first phrase entigen group that is different than a first phrase entigen of the second phrase entigen group of the plurality of phrase entigen groups; and determining that a number of phrase entigens of the first phrase entigen group is different than a number of phrase entigens of the second phrase entigen group.
- 11. The computing device of claim 7, wherein the processing module performs functions to obtain the inconsistency clarification based on the inconsistency between the at least two phrase entigen groups of the plurality of phrase entigen groups by at least one of: accessing, via the interface, a

knowledge database utilizing the first phrase entigen group to produce a clarification entigen group as the inconsistency clarification, wherein the knowledge database includes a plurality of records that link entigens having a connected meaning; interpreting a clarification response to a clarification request to produce the clarification entigen group as the inconsistency clarification, wherein the clarification request is based on the inconsistency between the at least two phrase entigen groups; generating modified identigen pairing rules from the identigen pairing rules and an idiolect for the source; and interpreting, based on the modified identigen pairing rules, the pairs of sequentially adjacent identigens of adjacent sets of identigens of the plurality of sets of identigens to produce an updated plurality of phrase entigen groups that eliminates the inconsistency between the at least two phrase entigen groups.

- 12. The computing device of claim 7, wherein the processing module performs functions to select the one phrase entigen group of the plurality of phrase entigen groups based on the inconsistency clarification to produce the final phrase entigen group by: obtaining a clarification entigen group based on the inconsistency clarification; and selecting the one phrase entigen group of the plurality of phrase entigen groups that is most consistent with the clarification entigen group to produce the final phrase entigen group.
- 13. A non-transitory computer readable memory comprises: a first memory element that stores operational instructions that, when executed by a processing module, causes the processing module to: determine a set of identigens for each word of a phrase from a source to produce a plurality of sets of identigens, wherein a set of identigens of the plurality of sets of identigens represents one or more different meanings of a word of the phrase, wherein each identigen of the set of identigens includes a meaning identifier for a particular different meaning of the one or more different meanings, an instance identifier that includes a particular spelling in a particular language for the word, and an interpretation time reference, wherein each meaning identifier associated with a particular set of identigens represents a different meaning of the one or more different meanings of a corresponding word of the phrase, wherein each interpretation time reference provides time information when an interpretation of a particular corresponding different meaning of the one or more different meanings applies; a second memory element that stores operational instructions that, when executed by the processing module, causes the processing module to: interpret, based only on identigen pairing rules, pairs of sequentially adjacent identigens of adjacent sets of identigens of the plurality of sets of identigens to determine a plurality of phrase entigen groups, wherein each entigen group of the plurality of phrase entigen groups includes a valid selection of a particular identigen of each set of identigens in accordance with the identigen pairing rules, wherein the plurality of phrase entigen groups includes a first phrase entigen group associated with a first most likely meaning interpretation of the phrase of a plurality of most likely meaning interpretations of the phrase associated with the plurality of phrase entigen groups, wherein each entigen of the first phrase entigen group corresponds to a selected identigen of one of the plurality of sets of identigens having a selected meaning identifier of the one or more different meanings of a corresponding word of the phrase that represents a first most likely meaning interpretation of the corresponding word, wherein each selected identigen corresponding to the first phrase entigen group favorably pairs with at least one corresponding sequentially adjacent identigen of an adjacent set of identigens in accordance with the identigen pairing rules, wherein each entigen of the first phrase entigen group represents a single conceivable and perceivable thing in space and time that is independent of language and corresponds to an interpretation time reference of a corresponding selected identigen associated with the first phrase entigen group; a third memory element that stores operational instructions that, when executed by the processing module, causes the processing module to: identify an inconsistency between at least two phrase entigen groups of the plurality of phrase entigen groups, wherein the inconsistency includes at least two different meaning interpretations of the phrase, wherein the inconsistency includes a first conflicting entigen of the first phrase entigen group that conflicts with a second conflicting entigen of a second phrase

entigen group of the plurality of phrase entigen groups, wherein the inconsistency is further associated with a first interpretation time reference of the first conflicting entigen that is different than a second interpretation time reference of the second conflicting entigen; a fourth memory element that stores operational instructions that, when executed by the processing module, causes the processing module to: obtain an inconsistency clarification based on the inconsistency between the at least two phrase entigen groups of the plurality of phrase entigen groups, wherein the inconsistency clarification is associated with at least one of disconfirming knowledge and confirming knowledge, wherein the disconfirming knowledge is associated with conflicting interpretation time references between a phrase entigen of a phrase entigen group of the at least two phrase entigen groups and a knowledge database entigen, wherein the confirming knowledge is associated with non-conflicting interpretation time references between the phrase entigen of the phrase entigen group of the at least two phrase entigen groups and the knowledge database entigen; and a fifth memory element that stores operational instructions that, when executed by the processing module, causes the processing module to: select one phrase entigen group of the plurality of phrase entigen groups based on the inconsistency clarification to produce a final phrase entigen group.

- 14. The non-transitory computer readable memory of claim 13 further comprises: a sixth memory element stores operational instructions that, when executed by the processing module, causes the processing module to: interpret, based only on the identigen pairing rules, the pairs of sequentially adjacent identigens of the adjacent sets of identigens of the plurality of sets of identigens to determine a second most likely meaning interpretation of the phrase and produce the second phrase entigen group of the plurality of phrase entigen groups, wherein the plurality of most likely meaning interpretations of the phrase includes the second most likely meaning interpretation of the phrase, wherein the second phrase entigen group represents the second most likely meaning interpretation of the phrase, wherein each entigen of the second phrase entigen group corresponds to a selected identigen of one of the plurality of sets of identigens having a selected meaning identifier of the one or more different meanings of a corresponding word of the phrase that represents a second most likely meaning interpretation of the corresponding word, wherein each selected identigen corresponding to the second phrase entigen group favorably pairs with at least one corresponding sequentially adjacent identigen of an adjacent set of identigens in accordance with the identigen pairing rules, wherein each entigen of the second phrase entigen group represents a single conceivable and perceivable thing in space and time that is independent of language and corresponds to an interpretation time reference of a corresponding selected identigen associated with the second phrase entigen group.
- 15. The non-transitory computer readable memory of claim 13 further comprises: a seventh memory element stores operational instructions that, when executed by the processing module, causes the processing module to: access a knowledge database utilizing the final phrase entigen group to produce a response entigen group, wherein the knowledge database includes a plurality of records that link entigens having a connected meaning; and generate a representation of the response entigen group, wherein the representation includes at least one representation word.

  16. The non-transitory computer readable memory of claim 13, wherein the processing module functions to execute the operational instructions stored by the third memory element to cause the processing module to identify the inconsistency between the at least two phrase entigen groups of the plurality of phrase entigen groups by one or more of: identifying a first phrase entigen of the first phrase entigen group that is different than a first phrase entigen of the second phrase entigen group of the plurality of phrase entigen groups; and determining that a number of phrase entigens of the second phrase entigen group.
- 17. The non-transitory computer readable memory of claim 13, wherein the processing module functions to execute the operational instructions stored by the fourth memory element to cause the

processing module to obtain the inconsistency clarification based on the inconsistency between the at least two phrase entigen groups of the plurality of phrase entigen groups by at least one of: accessing a knowledge database utilizing the first phrase entigen group to produce a clarification entigen group as the inconsistency clarification, wherein the knowledge database includes a plurality of records that link entigens having a connected meaning; interpreting a clarification response to a clarification request to produce the clarification entigen group as the inconsistency clarification, wherein the clarification request is based on the inconsistency between the at least two phrase entigen groups; generating modified identigen pairing rules from the identigen pairing rules and an idiolect for the source; and interpreting, based on the modified identigen pairing rules, the pairs of sequentially adjacent identigens of adjacent sets of identigens of the plurality of sets of identigens to produce an updated plurality of phrase entigen groups that eliminates the inconsistency between the at least two phrase entigen groups.

18. The non-transitory computer readable memory of claim 13, wherein the processing module functions to execute the operational instructions stored by the fifth memory element to cause the processing module to select the one phrase entigen group of the plurality of phrase entigen groups based on the inconsistency clarification to produce the final phrase entigen group by: obtaining a clarification entigen group based on the inconsistency clarification; and selecting the one phrase entigen group of the plurality of phrase entigen groups that is most consistent with the clarification entigen group to produce the final phrase entigen group.