Generalization of Deep Neural Networks

Thomas Walker

Imperial College London thomas.walker21@imperial.ac.uk

July 23, 2023

Theorem

Let $\beta, \delta \in (0,1), n \in \mathbb{N}, \mathcal{D} \in \mathcal{M}_1(Z)$ and $P \in \mathcal{M}_1(\mathcal{H})$. With probability at least $1 - \delta$ over $S \sim \mathcal{D}^n$, for all $Q \in \mathcal{M}_1(\mathcal{H})$,

$$L_{\mathcal{D}}(Q) \leq \Psi_{eta,\delta}(Q,P;S) := rac{1}{eta} L_S(Q) + rac{\mathrm{KL}(Q,P) + \log\left(rac{1}{\delta}
ight)}{2eta(1-eta)|S|}.$$

Require: Stopping criteria \mathcal{E} , Prefix fraction α , Batch size b.

function GetBound($\mathcal{E}, \alpha, T, \sigma_P$)

$$S_{\alpha} \leftarrow \{z_1, \dots, z_{\alpha|S|} \subset S\}$$

$$w_{\alpha}^0 \leftarrow \mathsf{SGD}\left(w_0, S_{\alpha}, b, \frac{|S_{\alpha}|}{b}\right)$$

$$w_S \leftarrow \mathsf{SGD}\left(w_{\alpha}^0, S, b\infty, \mathcal{E}\right)$$

$$P \leftarrow \mathcal{N}\left(w_{\alpha}^{G}, \sigma_{P} I_{p}\right)$$

$$Q \leftarrow \mathcal{N}(w_S, \sigma_P I_p)$$

Bound $\leftarrow \Psi_{\delta}^*(Q, P; S \setminus S_{\alpha})$

return Bound

end function

¹Dziugaite, Hsu, Gharbieh, and Roy 2020.

Mutual Information²

Definition

For two random variables X and Y, with joint distribution p(x, y), their Mutual Information is defined as,

$$I(X;Y) = \mathrm{KL}(p(x,y),p(x)p(y)) = H(X) - H(X|Y),$$

where H(X) and H(X|Y) are the entropy and conditional entropy of X and Y.

Consider a K-layered deep neural network, with T_i denoting the representation of the i^{th} layer then there is a unique information path,

$$I(X;Y) \ge I(T_1;Y) \ge \cdots \ge I(T_k;Y) \ge I(\hat{Y};Y),$$

 $H(X) \ge I(X;T_1) \ge \cdots \ge I(X;T_k) \ge I(X;\hat{Y}).$

²Shwartz-Ziv and Tishby 2017.

Stiffness³

Let
$$\bar{g} = \nabla_W \mathcal{L}(f_W(X), y)$$
.

Definition

For two data points (X_1, y_1) and (X_2, y_2) define the sign stiffness to be

$$S_{\operatorname{sign}}\left(\left(X_{1},y_{1}\right),\left(X_{2},y_{2}\right);f\right)=\mathbb{E}\left(\operatorname{sign}\left(\bar{g}_{1}\cdot\bar{g}_{2}\right)\right),$$

and the cosine stiffness to be

$$S_{\cos}((X_1, y_1), (X_2, y_2); f) = \mathbb{E}(\cos(\bar{g}_1 \cdot \bar{g}_2)),$$

where

$$\cos\left(ar{g}_1\cdotar{g_2}
ight)=rac{ar{g}_1\cdotar{g_2}}{|ar{g}_1||ar{g}_2|}.$$

³Fort, Nowak, and Narayanan 2019.

Coherence⁴

Definition

The coherence of a distribution \mathcal{D} is defined to be

$$\alpha(\mathcal{D}) := \frac{\mathbb{E}_{z,z' \sim \mathcal{D}}(g_z \cdot g_{z'})}{\mathbb{E}_{z \sim \mathcal{D}}(g_z \cdot g_z)}.$$

Theorem

If stochastic gradient descent is run for T steps on a training set consisting of m examples drawn from distribution \mathcal{D} , then,

$$|\operatorname{gap}(\mathcal{D}, m)| \leq \frac{L^2}{m} \sum_{t=1}^{T} (\eta_k \beta)_{k=t+1}^{T} \cdot \eta_t \cdot \sqrt{2(1-\alpha(w_{t-1}))},$$

where $gap(\mathcal{D}, m)$ is the expected difference between training and test loss over samples of size m from \mathcal{D} .

⁴Chatterjee and Zielinski 2022.

Persistent Homology⁵

Definition

Let δ be a metric on \mathbb{R}^d . The Vietoris-Rips complex at scale $\epsilon > 0$ on $X \subseteq \mathbb{R}^d$ is the abstract simplicial complex

$$\operatorname{VR}_{\epsilon}(X) := \left\{ \left[x_0, \ldots, x_k \right\} : \delta\left(x_i, x_j \right) \leq 2\epsilon, x_0, \ldots, x_k \in X, k = 0, \ldots, n \right\}.$$

Let X be a sample from a manifold $M \subseteq \mathbb{R}^d$.

- At scale $\epsilon = 0$, then $VR_0(X) = \{[x] : x \in X\}$, that is VR_0 overfits the data X.
- As $\epsilon \to \infty$ all the points of X become vertices of a single |X|-dimensional simplex.

A persistence barcode is an interval $[\epsilon, \epsilon']$ showing where a features emerges then disappears.

⁵Naitzat, Zhitnikov, and Lim 2020.

Architecture Design

Stiffness for to Architecture Design

References

- Shwartz-Ziv, Ravid and Naftali Tishby (2017). "Opening the Black Box of Deep Neural Networks via Information". In: CoRR.
- Fort, Stanislav, Pawel Krzysztof Nowak, and Srini Narayanan (2019). "Stiffness: A New Perspective on Generalization in Neural Networks". In: CoRR.
- Dziugaite, Gintare Karolina, Kyle Hsu, Waseem Gharbieh, and Daniel M. Roy (2020). "On the role of data in PAC-Bayes bounds". In: *CoRR*.
- Naitzat, Gregory, Andrey Zhitnikov, and Lek-Heng Lim (2020). "Topology of deep neural networks". In: CoRR.
- Chatterjee, Satrajit and Piotr Zielinski (2022). On the Generalization Mystery in Deep Learning.