Math 635 Lecture 8

Professor Alejandro Uribe-Ahumada

Transcribed by Thomas Cohn

2/5/21

Start with a vector bundle $\mathcal{E} \to M$, with connection ∇ . Let $U \subseteq M$, and (E_1, \ldots, E_r) a moving frame on U. Note that we have the following commutative diagram

$$\pi^{-1}(U) \stackrel{\phi}{\cong} U \times \mathbb{R}^r$$

 $\forall s \in \Gamma(U), \ \exists \vec{f}: U \to \mathbb{R}^r, \ \vec{f} = (f^1, \dots, f^r) \text{ s.t. } s = \sum_{i=1}^r f^i E_i. \text{ Thus, we have an isomorphism}$

$$\Gamma(U) \stackrel{\sim}{\to} C^{\infty}(U, \mathbb{R}^r)$$

 $s \mapsto \vec{f}$

Under this isomorphism, $\nabla_X s$ corresponds with $\nabla_X \vec{f}$. We saw:

$$\nabla_X \vec{f} = d\vec{f}(X) + \vartheta(X)\vec{f}$$

treating \vec{f} as a column vector, $d\vec{f}(X) = \begin{pmatrix} df^1(X) \\ \vdots \\ df^r(X) \end{pmatrix} = X\vec{f}$, and $\vartheta = (\theta_i^j)$ s.t. $\nabla_X E_i = \sum_j \theta_i^j(X) E_j$. So we can rewrite this as $\nabla_X = X + \vartheta(X)$ on $C^\infty(U, \mathbb{R}^r)$.

Parallelism

Let $\mathcal{E} \to M$ be a vector bundle, with connection ∇ .

Defn: Given $\gamma:[a,b]\to M$ and $s\in\Gamma(\mathcal{E})$, we say s is <u>covariant constant</u>, or <u>parallel</u>, along γ if and only if $\forall t\in[a,b]$, $\nabla_{\dot{\gamma}(t)}s=0\in\mathcal{E}_{\gamma(t)}=\pi^{-1}(\gamma(t))$. Locally, this is true if and only if $\frac{d\vec{f}(t)}{dt}=-\vartheta(\dot{\gamma}(t))\vec{f}(t)$, where $\vec{f}(t)=\vec{f}(\gamma(t))$.

Today, we'll work with parallel transport. The idea is given γ , we can construct sections along γ that are covariant constant. Given a vector bundle $\mathcal{E} \to M$, with connection ∇ , a curve $\gamma: [a,b] \to M$, and a section $s_a \in \mathcal{E}_{\gamma(a)}$, we want to "parallel transport" s_a along γ .

Defn: Given $\gamma:[a,b]\to M$ on a vector bundle $\pi:\mathcal{E}\to M$, a section of \mathcal{E} along γ is a function $V:[a,b]\to\mathcal{E}$ such that the following diagram commutes:

$$[a,b] \xrightarrow{\gamma} M$$

That is, $\forall t \in [a, b], \ \pi(V(t)) = \gamma(t), \text{ i.e., } V(t) \in \mathcal{E}_{\gamma(t)}$

Our (nonstandard) notation is, for a curve γ , $\Gamma_{\gamma}(\mathcal{E})$ is the set of all such smooth V.

Ex: We can always just use a global section. If we have $s \in \Gamma(\mathcal{E})$, then $V = s \circ \gamma : [a, b] \to \mathcal{E}$ is a section along γ .

1

We can extend covariant differentiation (with respect to ∇) to $\Gamma_{\gamma}(\mathcal{E})$ for a given γ !

Prop: (Do Carmo, Chapter 2, Prop 2.2) Given \mathcal{E} , ∇ , and γ , there is a unique operator

$$\frac{D}{dt}:\Gamma_{\gamma}(\mathcal{E})\to\Gamma_{\gamma}(\mathcal{E})$$

such that

- (a) $\frac{D}{dt}$ is \mathbb{R} -linear. (b) $\frac{D}{dt}$ is a derivation: $\forall f \in C^{\infty}([a,b]), \forall V \in \Gamma_{\gamma}(\mathcal{E}), \frac{D}{dt}(fV) = f\frac{DV}{dt} + \dot{f}V$, where $\dot{f}(t) = \frac{df}{dt}$. (c) $\forall s \in \Gamma(\mathcal{E}), \frac{D}{dt}(s \circ \gamma) = \nabla_{\dot{\gamma}(t)}s$.

Proof: Start with local uniqueness. Let (E_1, \ldots, E_r) be a moving frame on $U \subseteq M$, with $U \cap \operatorname{Im}(\gamma) \neq \emptyset$. Let ϑ be the connection matrix associated with the E_i 's. Assume that $\frac{D}{dt}$ exists. Then we have a commutative diagram:

 $\forall t \in \gamma^{-1}(U), \, \phi(V(t)) = (\gamma(t), (f^1(t), \dots, f^r(t))).$ This defines $f^i(t)$. Now, we claim that (a), (b), and (c) together of $\frac{D}{dt}$ imply that, $\forall t \in \gamma^{-1}(U)$,

$$\frac{DV}{dt}(t) = \frac{D}{dt} \left(\sum_{i=1}^{r} f^{i}(t) E_{i}(\gamma(t)) \right) = \sum_{i=1}^{r} f^{i}(t) (\nabla_{\dot{\gamma}(t)} E_{i})(t) + \dot{f}^{i}(t) E_{i}(\gamma(t))$$

Existence: Define $\frac{D}{dt}$ locally, using the above formula, and then use trivializations $\{U_{\alpha}\}$ that cover, so that

$$\gamma^{-1}\left(\bigcup_{\alpha}U_{\alpha}\right) = [a, b]$$

Uniqueness: On the overlap of differing U_{α} 's, the definitions must agree. \square

In fact, you can check: If we define in terms of $F_j = \sum_i a_i^i E_i$, then the definitions agree.

Defn: (Parallel Transport) For $\gamma:[a,b]\to M$, we define $\mathcal{P}_{\gamma}:\mathcal{E}_{\gamma(a)}\to\mathcal{E}_{\gamma(b)}$ by $\forall s_a\in\mathcal{E}_{\gamma(a)},\,\mathcal{P}_{\gamma}(s_a)=V(b)$, where V(b) is a solution at t = b of $\frac{DV}{dt}(t) = 0$, $V(a) = s_a$, where $V \in \Gamma_{\gamma}(\mathcal{E})$. Locally: $\vec{f} = -\vartheta(\dot{\gamma})\vec{f}$.

Observe: \mathcal{P}_{γ} is \mathbb{R} -linear.

We can extend this to continuous, piecewise smooth γ by using composition: Say $\gamma_1:[a,b]\to M$ and $\gamma_2:[a',b']\to M$ are two smooth curves, with $\gamma_1(b) = \gamma_2(a')$. Then for their concatenation $\gamma_2 \# \gamma_1$ (we won't use this notation often), we have $\mathcal{P}_{\gamma_2 \# \gamma_1} = \mathcal{P}_{\gamma_2} \circ \mathcal{P}_{\gamma_1}.$

In particular, reversing the direction of γ shows that \mathcal{P}_{γ} is a bijection. If we have a loop, so $\mathcal{E}_{\gamma(a)} = \mathcal{E}_{\gamma(b)}$, then $\mathcal{P}_{\gamma} : \mathcal{E}_{\gamma(a)} \Rightarrow$ is called the holonomy of γ .