Collaborators: None

Sources: Lecture Notes

Q5 Tensor Product Practice

(a) Given an $m \times n$ matrix A, for every $1 \le i \le m$, $1 \le j \le n$, show that the entry on the i^{th} row and j^{th} column of A equals $\langle i \mid A \mid j \rangle$. Here $\mid i \rangle$ represents the i^{th} vector in the standard basis.

Ans:

- $\langle i \mid$ is a column vector with dimension $1 \times m$ where the i^{th} element is 1, and all other elements are 0.
- $|j\rangle$ is a similar column vector with dimension nx1 where the j^{th} element is 1.

$$\begin{split} A \mid j \rangle &= [s_{k1} \mid s_{k1} = \sum_{p=1}^{n} (a_{kp} * j e_{p1}) \; \; ; \; a_{kp} \epsilon A \; ; \; j_{p1} \epsilon \mid j \; \rangle \;]_{\text{mx1}} \\ &\Rightarrow A \mid j \rangle = [s_{k1} \mid s_{k1} = a_{kj} \; \; ; \; a_{kp} \epsilon A]_{\text{mx1}} \; (\because j e_{k1} = 0 \; \forall k \neq j) \\ &\langle i \mid A \mid j \rangle = (\langle i \mid) (A \mid j \rangle) = [\sum_{p=1}^{m} (i e_{1p} * s_{p1}) \; ; \; a_{pj} = s_{p1} \epsilon A \mid j \rangle \; ; \; i e_{1p} \epsilon \langle i \mid]_{\text{1x1}} \\ &\Rightarrow \langle i \mid A \mid j \rangle = [s_{i1}]_{\text{1x1}} = \pmb{a_{ij}} \; (\because i e_{1k} = 0 \; \forall k \neq i) \end{split}$$

Thus, the entry on the i^{th} row and j^{th} column of A, a_{ij} equals $\langle i \mid A \mid j \rangle$.

(b) Show that if *A* and *B* are invertible matrices, then so is $A \otimes B$, and in fact $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$.

Ans: Given that both A and B are invertible, we know that A^{-1} and B^{-1} exist.

Multiplying $(A \otimes B)$ with $(A^{-1} \otimes B^{-1})$,

$$(A \otimes B)(A^{-1} \otimes B^{-1}) = (AA^{-1}) \otimes (BB^{-1}) \quad (\because (A \otimes B)(C \otimes D) = (AC) \otimes (BD))$$
$$\Rightarrow (A \otimes B)(A^{-1} \otimes B^{-1}) = I_m \otimes I_n = I_{mn}$$

As inverse is unique, thus $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$

(C) Verify that $(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}$.

Ans: Consider the matrix element $(A \otimes B)_{ij,kl}$ where (i,j) and (k,l) are the row and column indices in the tensor product matrix. This element can be expressed as:

$$(A \otimes B)_{ij,kl} = A_{ik}B_{jl}$$

Taking the conjugate transpose, we get:

$$((A \otimes B)^{\dagger})_{ij,kl} = \overline{A_{ki}B_{lj}} = \overline{A_{ki}} \, \overline{B_{lj}} = (A^{\dagger})_{ik}(B^{\dagger})_{jl} = (A^{\dagger} \otimes B^{\dagger})_{ij,kl}$$

This shows that the conjugate transpose of the tensor product is indeed the tensor product of the conjugate transposes:

$$(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}$$

(d) Suppose $|u_1\rangle, ..., |u_d\rangle$ is an orthonormal basis for C^d , and $|v_1\rangle, ..., |v_e\rangle$ is an orthonormal basis for C^e . Show that the collection $|u_i\rangle \otimes |v_j\rangle$ (for all $1 \le i \le d, 1 \le j \le e$) is an orthonormal basis for C^{de} .

 $\underline{\mathsf{Ans:}} \; (\mid u_m \rangle \otimes \mid v_n \rangle)^T (\mid u_i \rangle \otimes \mid v_j \rangle) = \sum_{p=1}^e \left(\sum_{q=1}^d (\; (\mid v_n \rangle)_p * \left(\mid v_j \rangle\right)_p * \; (\mid u_m \rangle)_q * (\mid u_i \rangle)_q \right)$

$$= \sum_{p=1}^{e} ((\mid v_n \rangle)_p * (\mid v_j \rangle)_p) * \left(\sum_{q=1}^{d} ((\mid u_m \rangle)_q * (\mid u_i \rangle)_q) \right)$$

If $m \neq i$, then as $|u_1\rangle, ..., |u_d\rangle$ is an orthonormal basis, $\sum_{q=1}^d (|u_m\rangle)_q * (|u_i\rangle)_q) = 0$,

$$(\mid u_m \rangle \otimes \mid v_n \rangle)^T (\mid u_i \rangle \otimes \mid v_i \rangle) = 0$$

Else if m=i, $(\mid u_m\rangle \otimes \mid v_n\rangle)^T(\mid u_i\rangle \otimes \mid v_j\rangle)=\sum_{p=1}^e (\mid v_n\rangle)_p*(\mid v_j\rangle)_p)*(1)$

Similarly, if $n \neq j$, then as $\mid v_1 \rangle, \dots, \mid v_e \rangle$ is an orthonormal basis, $\sum_{p=1}^e (\; (\mid v_n \, \rangle)_p * \left(\mid v_j \rangle\right)_p) = 0$,

$$(\mid u_m\rangle \otimes \mid v_n\rangle)^T(\mid u_i\rangle \otimes \mid v_j\rangle) = 0$$

Else if n = j, $(|u_m\rangle \otimes |v_n\rangle)^T (|u_i\rangle \otimes |v_i\rangle) = 1$

Thus, if $(m, n) \neq (i, j)$, $(|u_m\rangle \otimes |v_n\rangle)^T (|u_i\rangle \otimes |v_j\rangle) = 0$

Therefore, the collection $\mid u_i \rangle \otimes \mid v_j \rangle$ (for all $1 \leq i \leq d$, $1 \leq j \leq e$) is an orthonormal basis for \mathcal{C}^{de} .