Lösen des Poisson-Problems mittels Finite-Differenzen-Diskretisierung und LU-Zerlegung

Marisa Breßler und Anne Jeschke (PPI27)

03.01.2020

Inhaltsverzeichnis

1	Einleitende Worte	2
2	Untersuchungen zur Genauigkeit	3
	$2.1 \text{Verfahrens-/Approximationsfehler} \; . \; . \; . \; . \; . \; . \; . \; . \; . \; $	3
	2.2 Rundungsfehler	3
3	Untersuchungen zum Speicherplatz	5
4	Zusammenfassung und Ausblick	6

1 Einleitende Worte

In unserem Bericht vom 29.11.2019 haben wir das Poisson-Problem vorgestellt und einen numerischen Lösungsansatz aufgezeigt, der es mittels einer Diskretisierung des Gebietes und des Laplace-Operators in das Lösen eines linearen Gleichungssystems überführt. Letzteres soll nun wie angekündigt durchgeführt werden. In dieser Arbeit wollen wir das lineare Gleichungssystem direkt lösen. Dazu nutzen wir die LU-Zerlegung (mit Spaltenund Zeilenpivotisierung) der ermittelten tridiagonalen Block-Matrix A^d .

Anhand einer Beispielfunktion und den bereits im vorherigen Bericht betrachteten Fällen des Einheitsintervalls, -quadrates, -würfels (d.h. für das Gebiet $\Omega \subset \mathbb{R}^d$ ($d \in \mathbb{N}$) und dessen Rand $\partial \Omega$ gilt: $\Omega = (0,1)^d$, $d \in \{1,2,3\}$ mit der Randbedingung $u \equiv 0$ auf $\partial \Omega$, wobei u die gesuchte Funktion ist) wollen wir im Folgenden die Funktionalität (Genauigkeit/Fehler, Konvergenzgeschwindigkeit, Effizienz) dieses Lösungsverfahrens exemplarisch untersuchen. Alle im Rahmen dessen nötigen theoretischen Grundlagen finden sich in unseren vorherigen Berichten.

2 Untersuchungen zur Genauigkeit

Für unsere Untersuchungen wählen wir die Beispielfunktion $u:\Omega\to\mathbb{R}$, die wie folgt definiert ist:

$$u(x) := \prod_{l=1}^{d} x_l \sin(\pi x_l)$$

Dabei sei wie bereits erwähnt $\Omega = (0,1)^d$ und $d \in \{1,2,3\}$. Die Funktion u ist die exakte Lösung des Poisson-Problems, sie wird in der Praxis gesucht. Bekannt ist lediglich die Funktion $f \in C(\Omega; \mathbb{R})$ und $\forall x \in \Omega$ gelte $-\Delta u(x) = f(x)$. Dementsprechend ist die Funktion $f: \Omega \to \mathbb{R}$ gegeben durch:

$$f(x) := ...$$

Die Genauigkeit unserer numerischen Lösung des Poisson-Problems – wir nennen diese gesuchte Funktion \hat{u} (denn sie ist die Approximation der exakten Lösungsfunktion u) – ist abhängig von der Größenordnung der Fehler. Dabei gilt folgender Zusammenhang: Der Gesamtfehler setzt sich aus Verfahrens-/Approximationsfehler auf der einen und Rundungsfehler auf der anderen Seite zusammen. Im Folgenden wollen wir beiden Fehlerarten in Hinblick auf unser Beispiel betrachten.

2.1 Verfahrens-/Approximationsfehler

numerisches Verfahren konvergiert: Genauigkeit der numerischen Lösung umso höher, je kleiner Intervalllänge $h=n^{-1}$ bzw. je größer Anzahl der Intervalle (in jeder Dimension) oder der Diskretisierungspunkte

beispielhaft für Fall d=2

grafische Darstellung der Lösung (3 Grafiken für n = 5, 10, 20)

selbst bei sehr grober Diskretisierung (n = 5) Abweichung/Fehler mit Auge kaum wahrzunehmen > deswegen Differenz auch im Plot

Zusammenhang: je größer N, desto genauer Lösung/kleiner Fehler

Fehler-/Konvergenzplot (1 Grafik)

Konditionsplot von A^d (1 Grafik)

2.2 Rundungsfehler

Lösen eines linearen Gleichungssystems beschreibt mathematisches Problem Kondition einer Matrix: Maß für Abhängigkeit der Lösung eines Problems von Störung der Eingangsdaten Konditionszahl: Faktor, um den sich der Eingangsfehler maximal verstärken kann Vgl. Kondition von A^d und der entsprechenden Hilbertmatrix mit gleicher Dimension (Tabelle)

3 Untersuchungen zum Speicherplatz

sparsity von A^d und deren LU-Zerlegung (3 Grafiken)

4 Zusammenfassung und Ausblick