Jiaoran WANG

jiaoranw@usc.edu | TEL: 213-284-4964 | Los Angeles, CA

OBJECTIVE: Applying for 2021 Fall Mechanical Engineering Ph.D. Program

EDUCATION BACKGROUND:

09/2019-Present	University of Southern California	Los Angeles, USA
	♦ Major: Mechanical Engineering	
	♦ GPA: 3.75/4.0	
	♦ Degree: Master of Mechanical Engineering (expected in 05/2021)	
09/2015-07/2019	Harbin Engineering University	Harbin, China
09/2015-07/2019	Harbin Engineering University	Harbin, China
09/2015-07/2019		Harbin, China

SKILLS:

\$	Programming Language:	MATLAB-Simulink (proficient), Python (good at data structure), R/RStudio (familiar),
		C/C++(familiar), Octave (familiar)
\$	CAD Software:	SolidWorks (proficient), Auto-CAD (proficient), UG-NX (familiar),
		CATIA (familiar)
\$	Simulation Software:	ANSYS (proficient in APDL/FLUENT/CFX), COMSOL (familiar with Multiphysics)
\$	Equipment:	3D Printer(proficient), Laser Cutting Machine, CNC Machine and other machine tools
\$	Algorithm:	Machine Learning Algorithm, Deep Learning Algorithm

RESEARCH EXPERIENCES:

01/2020-Present	Valero Lab (Brain-Body Dynamics Lab)	Los Angeles, USA
	♦ Working on the design and strain gauges' signal testing of biomechanical	l leg.
	♦ Using Machine Learning module in MATLAB to classify the observed si	ignal
01/2020-05/2020	Center for Advanced Manufacturing (CAM at USC)	Los Angeles, USA
	♦ Working on Additive Manufacturing 3D Printing of Conformal Antenna.	
	♦ Designed Arduino – Python UDP communication system for manually and remote control for	
	robot 3D printing	
09/2019-11/2019	Design Project on Automatic Test-tube Sorting System	Los Angeles, USA
	♦ Put forward a design proposal using rollers and conveyers for rapid Test-	tube Sorting System.
	♦ Used OpenCV (visual image recognition technology) for tube identification	
02/2019-06/2019	Outstanding Dissertation at Harbin Engineering University	Harbin, China
	♦ Design and Experimental Study of Thermoelectric Structure in Aerospace Aircraft	
	♦ The thermoelectric sheet architecture among annular thermoelectric module at gunship nozzle	
	was designed, and the temperature difference experiment was carried out.	
	♦ Method to determine the optimal size based on the conversion efficiency extremum is	
	proposed.	

INTERNSHIP EXPERIENCES:

02/2019-03/2019	Aviation Industry Corporation of China	Beijing, China
	♦ Worked in the structure of transportation rocket projector and participated in the unit part	
	grinding and assembly process	
08/2018-09/2018	Shenyang Aircraft Corporation	Shenyang, China
	♦ Visited the workshops of civil and military aviation and learnt practical aircraft manufacturing knowledge and skills as well as the differences in the procedures of manufacturing	

EXCHANGE EXPERIENCES:

Jiaoran WANG

jiaoranw@usc.edu | TEL: 213-284-4964 | Los Angeles, CA

OBJECTIVE: Applying for 2021 Fall Mechanical Engineering Ph.D. Program

02/04-03/03/2018	International Programs in UC San Diego Extension	San Diego, USA
	♦ Program: English for Engineering and Technology	
	♦ Grade: A	
01/20-02/07/2018	Course Leaning Program in The University of Minnesota	Minneapolis, USA
	♦ Department: Chemical Engineering and Material Science	
	♦ Core Courses: Reactor and reaction engineering, Chemical engineering laboratory, Numerical	
	methods in chemical applications	

LISENCES & CERTIFICATES:

Issue Date	Name	Issuing Organization
06/2020	R Programming	Johns Hopkins University
	♦ Credential: https://www.coursera.org/account/accomplishments/certificate	offered through
	/HH6LDFV5BNJA	Coursera
06/2020	Capstone: Retrieving, Processing, and Visualizing Data with Python	University of Michigan
	♦ Credential: https://www.coursera.org/account/accomplishments/records/F	offered through Coursera
	8YUUTWR7U6T	
06/2020	MATLAB-Machine Learning Onramp	MATLAB-Online
	♦ Credential: https://matlabacademy.mathworks.com/progress/share/certific	Training Service
	ate.html?id=fedb0ed4-9b29-441a-8b4c-404c3f69b3ad	
06/2020	MATLAB-Deep Learning Onramp	MATLAB-Online
	♦ Credential: https://matlabacademy.mathworks.com/progress/share/certific	Training Service
	ate.html?id=9284795f-2558-4dcf-836b-1881ccc339a3	
05/2020	Using Python to Access Web Data	University of Michigan
	♦ Credential: https://www.coursera.org/account/accomplishments/verify/2L	offered through Coursera
	WKRUUHV76G	
05/2020	Python Data Structures	University of Michigan
	♦ Credential: https://www.coursera.org/account/accomplishments/verify/K2	offered through Coursera
	SS6NVE756G	

PERSONAL INTERESTS

- ♦ Arduino programing for Robot car control
- ♦ MIDI keyboard controller for electrical song arrangement
- ♦ Playing LEGO (obsessed with 'Apollo' series)