КОНТРОЛЬНАЯ РАБОТА № 4, 8 класс (25.02.2016)

Задание 1 (5 баллов)

Для погрузки массивных бочек на платформу используется наклонная плоскость и лебедка. Один конец троса закреплен в верхней точке наклонной плоскости, трос охватывает бочку,

второй конец троса наматывается на вал лебедки. Двигатель лебедки питается электрогенератором, развивающим постоянную мощность P_0 , КПД лебедки равен η , радиус вала лебедки r. Лебедка поднимает бочку массой m на высоту h по наклонной плоскости длиной L, массой троса можно пренебречь. Определите частоту вращения n (число оборотов в единицу времени) вала лебедки и время подъема бочки.

Задание 2 (5 баллов)

Сосуд глубины H заполнен жидкостью, плотность которой линейно изменяется от ρ_0 на поверхности до ρ у дна сосуда. В сосуд погружают два маленьких шарика одинакового объема V, связанных тонкой легкой нитью длины l. Плотность одного шарика ρ_1 , другого — ρ_2 . Эта система плавает внутри жидкости. Найдите силу натяжения нити, считая $\rho_0 < \rho_1 < \rho_2 < \rho$.

Задание 3 (10 баллов — по 2,5 за каждый пункт)

Схема **установки** представлена на рисунке 1 (вид сверху). Тонкий параллельный лазерный ЛУЧ шириной d = 5.0 MMпроходит через отверстие в экране Э и попадает на маленькое плоское двухстороннее зеркальце находящееся на расстоянии L=20Mот экрана, которое может вращаться вокруг вертикальной оси. Пусть φ – угол его поворота (рис. 1). После луч попадает сферическое зеркало 32, радиус кривизны которого равен R = 10 M. Размеры зеркала будем

характеризовать величиной угла $\theta=10^\circ$ — угол, под которым видно это зеркало из центра зеркальца 31. Маленькое зеркальце находится в центре кривизны зеркала 32, т.е. на расстоянии R от него. После отражения от сферического зеркала, лазерный луч снова попадает на зеркальце 31, отражается и формирует на экране пятно некоторого диаметра D.

- **1.** При каких углах φ можно наблюдать пятно в центре экрана.
- **2.** Определите диаметр пятна D.

Начнём вращать зеркальце с достаточно большой скоростью. Пусть зеркальце совершает $v = 5.0 \cdot 10^2$ оборотов в секунду. Скорость света

равна
$$c = 3.0 \cdot 10^8 \, \text{M/c}$$
.

3. Покажите, что пятно на экране сдвинется на некоторое расстояние в ту или другую сторону, в зависимости от направления вращения. Определите величину этого смещения x.

С помощью такой установки Араго также удалось измерить показатель преломления воды. Для этого необходимо добавить ещё одно сферическое зеркало и резервуар с водой, занимающий практически всё пространство между зеркальцем 31 и вторым зеркалом 33 (см. рисунок 2). Стенки резервуара полуклустине поэтому

(см. рисунок 2). Стенки резервуара полукруглые, поэтому преломлением света на его границе можно пренебречь.

4. При какой частоте вращения ν' можно наблюдать два раздельных пятна. Показатель преломления воды n=1,3