Sensors

Computational topology - group project

Nejc Kišek, Žan Klaneček

Faculty of computer and information science University of Ljubljana

June, 2018

Sensors June, 2018 1 / 10

Outline

- Problem description
 - Problem
 - Goals
- Topological solution
 - Vietoris-Rips complex
 - Čech complex
- Results and implementation
 - Data generator
 - Algorithm for MC simulated annealing

Sensors June, 2018 2 / 10

Problem description

Number of sensors on the sphere of radius 1 (Earth):

- each sensor gathers data from the surrounding area in the shape of a circle of radius *R*,
- each sensor can communicate with other sensors which are at most r away.

Sensors June, 2018 3 / 10

Goals

- The sensor network is connected.
- 2 The sensor network covers the whole sphere.
- \odot Values of r and R are as small as possible.
- There are no obsolete sensors.
- Find optimal distribution of 50 sensors on the sphere.

Sensors June, 2018 4/10

Vietoris-Rips complex $\longrightarrow r$

Connected sensor network \longrightarrow Such r so that Vietoris-Rips complex $VR_r(S)$ is connected.

- sensors: S $(S_i = (r_i, \phi_i, \theta_i))$,
- sensor connections $\{S_i, S_j\} \subset S$; $d(S_i, S_j) \leq 2r$,
- $F \subset S$ is a simplex in $VR_r(S)$, if diam $F \leq 2r$.

Sensors June, 2018 5/10

Čech complex $\longrightarrow R$

The sensor network covers the whole sphere \longrightarrow Such R so that Euler characteristic of Čech complex should be that of a sphere.

- sensors: S $(S_i = (r_i, \phi_i, \theta_i))$,
- $B_R(x)$ closed ball with radius R around x,
- $\check{\mathsf{C}}_R = \{ \sigma \subset \mathsf{S}, \cap_{\mathsf{x} \in \sigma} \mathsf{B}_R(\mathsf{x}) \neq \emptyset \}.$

In practice, instead of calculating Euler characteristic we checked first two Betti numbers.

Sensors June, 2018 6 / 10

Data generator

Distribution of points on the sphere so that parameters r and R are as small as possible.

Coulomb's law

$$|\mathbf{F}_{ij}| = k_e \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|^2}$$

Electrostatic potential energy

$$V = \sum_{i \neq j} V_{ij} \propto \sum_{i \neq j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_i|}$$

- Electrons would distribute themselves evenly around the sphere.
- \bullet Minimization of V with simulated annealing.

◆ロト ◆部ト ◆差ト ◆差ト を めらぐ

Sensors June, 2018 7 / 10

Algorithm for MC simulated annealing

- Start with random distribution of points on sphere.
- \odot Set initial temperature of the system T.
- Ohoose random point, move it according to Gaussian distribution.
- Calculate difference in energy ΔE .
- **1** If $\Delta E < 0$, accept the change.
- **1** If $\Delta E \geq 0$, accept the change with probability $\exp(\frac{-\Delta E}{T})$
- $oldsymbol{0}$ If enough changes accepted, decrease the temperature T.
- **8** Repeat process from 3. \longrightarrow

Sensors June, 2018 8 / 10

Summary

Baum chiqua baum baum.

Sensors June, 2018 9/10

Bibliography

- Vietoris-Rips. https://en.wikipedia.org/wiki/Vietoris_Rips_complex (5.6.2018).
- Čech-complex. https://en.wikipedia.org/wiki/Cech_complex (5.6.2018).
- Lecture notes from prof. dr. Neža Mramor Kosta.

Sensors June, 2018 10 / 10