$V_{out}(t) - V_{out}(0) = \alpha(V_{in}(t) - V_{in}(0))$ Fundamental frequency: $\omega_0 = \frac{2\pi}{T} = 2\pi f_0$ General form: $F(t) = C_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} B_n \sin(n\omega_0 t)$ $C_0 = \frac{1}{T} \int_0^T f(t) dt = \frac{A_0}{2}$ $A_n = \frac{2}{T} \int_0^T f(t) \cos(n\omega_0 t) dt$ $B_n = \frac{2}{T} \int_0^T f(t) \sin(n\omega_0 t) dt$ Complex form (standard form): $F(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t} dt$ $D_n = \frac{1}{T} \int_{-\frac{T}{2}}^2 f(t) e^{-jn\omega_0 t}$ $D_n = \frac{A_n - jB_n}{2}$ Cosine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n = -\arctan(\frac{B_n}{A_n})$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \phi_n)$ Sine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n^* = \arctan(\frac{A_n}{B_n})$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \phi_n^*)$ Evenness: $f(t)g(t)$ and $\frac{f(t)}{g(t)}$ are even only if both $f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = 0$ 2.1 Zero-order system Differential equations: $A_1 \frac{dX_{out}}{dt} + X_{out} = KX_{in}$ General solution: $x(t) = (x_0 - x_\infty) e^{-\frac{t}{\tau}} + x_\infty$	Amplitude linearity:
General form: $F(t) = C_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} B_n \sin(n\omega_0 t)$ $C_0 = \frac{1}{T} \int_0^T f(t) dt = \frac{A_0}{2}$ $A_n = \frac{2}{T} \int_0^T f(t) \cos(n\omega_0 t) dt$ $B_n = \frac{2}{T} \int_0^T f(t) \sin(n\omega_0 t) dt$ Complex form (standard form): $F(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t} dt$ $D_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-jn\omega_0 t}$ $D_n = \frac{A_n - jB_n}{2}$ Cosine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n = -\arctan\left(\frac{B_n}{A_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \phi_n)$ Sine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n^* = \arctan\left(\frac{A_n}{B_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \phi_n^*)$ Evenness: $f(t)g(t) \text{ and } \frac{f(t)}{g(t)} \text{ are even only if both } f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = 0$ 2.1 Zero-order system Differential equations: $A_1 \frac{dX_{out}}{dt} + X_{out} = KX_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{dX_{out}}{dt} + A_0X_{out} = B_0X_{in}$ $T \frac{dX_{out}}{dt} + X_{out} = KX_{in}$ General solution:	$V_{out}(t) - V_{out}(0) = \alpha (V_{in}(t) - V_{in}(0))$ Fundamental frequency:
$F(t) = C_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} B_n \sin(n\omega_0 t)$ $C_0 = \frac{1}{T} \int_0^T f(t) dt = \frac{A_0}{2}$ $A_n = \frac{2}{T} \int_0^T f(t) \cos(n\omega_0 t) dt$ $B_n = \frac{2}{T} \int_0^T f(t) \sin(n\omega_0 t) dt$ Complex form (standard form): $F(t) = \sum_{n=-\infty}^{\infty} D_n e^{in\omega_0 t} dt$ $D_n = \frac{1}{T} \int_{-\frac{T}{2}}^{2} f(t) e^{-jn\omega_0 t}$ $D_n = \frac{A_n - jB_n}{2}$ Cosine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n = -\arctan\left(\frac{B_n}{A_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \phi_n)$ Sine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n^* = \arctan\left(\frac{A_n}{B_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \phi_n^*)$ Evenness: $f(t)g(t) \text{ and } \frac{f(t)}{g(t)} \text{ are even only if both } f(t)$ and $g(t) \text{ are either even or odd}$ Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_{0}^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{dX_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $T \frac{dX_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$\omega_0 = \frac{2\pi}{T} = 2\pi f_0$
$C_0 = \frac{1}{T} \int_0^1 f(t) dt = \frac{A_0}{2}$ $A_n = \frac{2}{T} \int_0^T f(t) \cos(n\omega_0 t) dt$ $B_n = \frac{2}{T} \int_0^T f(t) \sin(n\omega_0 t) dt$ Complex form (standard form): $F(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t} dt$ $D_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-jn\omega_0 t}$ $D_n = \frac{A_n - jB_n}{2}$ Cosine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n = -\arctan\left(\frac{B_n}{A_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \phi_n)$ Sine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n^* = \arctan\left(\frac{A_n}{B_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \phi_n^*)$ Evenness: $f(t)g(t) \text{ and } \frac{f(t)}{g(t)} \text{ are even only if both } f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{dX_{out}}{dt} + X_{out} = K X_{in}$ General solution:	General form:
$C_0 = \frac{1}{T} \int_0^1 f(t) dt = \frac{A_0}{2}$ $A_n = \frac{2}{T} \int_0^T f(t) \cos(n\omega_0 t) dt$ $B_n = \frac{2}{T} \int_0^T f(t) \sin(n\omega_0 t) dt$ Complex form (standard form): $F(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t} dt$ $D_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-jn\omega_0 t}$ $D_n = \frac{A_n - jB_n}{2}$ Cosine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n = -\arctan\left(\frac{B_n}{A_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \phi_n)$ Sine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n^* = \arctan\left(\frac{A_n}{B_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \phi_n^*)$ Evenness: $f(t)g(t) \text{ and } \frac{f(t)}{g(t)} \text{ are even only if both } f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{dX_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$F(t) = C_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} B_n \sin(n\omega_0 t)$
$F(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t} dt$ $D_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-jn\omega_0 t}$ $D_n = \frac{A_n - jB_n}{2}$ Cosine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n = -\arctan\left(\frac{B_n}{A_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \phi_n)$ Sine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n^* = \arctan\left(\frac{A_n}{B_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \phi_n^*)$ Evenness: $f(t)g(t) \text{ and } \frac{f(t)}{g(t)} \text{ are even only if both } f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{dX_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{dX_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$C_0 = \frac{1}{T} \int_0^1 f(t) dt = \frac{A_0}{2}$
$F(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t} dt$ $D_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-jn\omega_0 t}$ $D_n = \frac{A_n - jB_n}{2}$ Cosine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n = -\arctan\left(\frac{B_n}{A_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \phi_n)$ Sine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n^* = \arctan\left(\frac{A_n}{B_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \phi_n^*)$ Evenness: $f(t)g(t) \text{ and } \frac{f(t)}{g(t)} \text{ are even only if both } f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{dX_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{dX_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$A_n = \frac{2}{T} \int_{0}^{T} f(t) \cos(n\omega_0 t) dt$
$F(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t} dt$ $D_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-jn\omega_0 t}$ $D_n = \frac{A_n - jB_n}{2}$ Cosine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n = -\arctan\left(\frac{B_n}{A_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \phi_n)$ Sine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n^* = \arctan\left(\frac{A_n}{B_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \phi_n^*)$ Evenness: $f(t)g(t) \text{ and } \frac{f(t)}{g(t)} \text{ are even only if both } f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{dX_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{dX_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$B_n = \frac{2}{T} \int_0^1 f(t) \sin(n\omega_0 t) dt$
$F(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t} dt$ $D_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-jn\omega_0 t}$ $D_n = \frac{A_n - jB_n}{2}$ Cosine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n = -\arctan\left(\frac{B_n}{A_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \phi_n)$ Sine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n^* = \arctan\left(\frac{A_n}{B_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \phi_n^*)$ Evenness: $f(t)g(t) \text{ and } \frac{f(t)}{g(t)} \text{ are even only if both } f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{dX_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{dX_{out}}{dt} + X_{out} = K X_{in}$ General solution:	Complex form (standard form):
$D_n = \frac{A_n - j\bar{B}_n}{2}$ Cosine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n = -\arctan\left(\frac{B_n}{A_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \phi_n)$ Sine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n^* = \arctan\left(\frac{A_n}{B_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \phi_n^*)$ Evenness: $f(t)g(t) \text{ and } \frac{f(t)}{g(t)} \text{ are even only if both } f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_{0}^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_{0}^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$F(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t} dt$
$C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n = -\arctan\left(\frac{B_n}{A_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \phi_n)$ Sine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n^* = \arctan\left(\frac{A_n}{B_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \phi_n^*)$ Evenness: $f(t)g(t) \text{ and } \frac{f(t)}{g(t)} \text{ are even only if both } f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$D_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{1}{2}} f(t)e^{-jn\omega_0 t}$
$C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n = -\arctan\left(\frac{B_n}{A_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \phi_n)$ Sine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n^* = \arctan\left(\frac{A_n}{B_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \phi_n^*)$ Evenness: $f(t)g(t) \text{ and } \frac{f(t)}{g(t)} \text{ are even only if both } f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$D_n = \frac{A_n - j\bar{B}_n}{2}$
$\phi_n = -\arctan\left(\frac{B_n}{A_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \phi_n)$ Sine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n^* = \arctan\left(\frac{A_n}{B_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \phi_n^*)$ Evenness: $f(t)g(t) \text{ and } \frac{f(t)}{g(t)} \text{ are even only if both } f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_{0}^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_{0}^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	Cosine form:
Sine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n^* = \arctan\left(\frac{A_n}{B_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \phi_n^*)$ Evenness: $f(t)g(t) \text{ and } \frac{f(t)}{g(t)} \text{ are even only if both } f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	
Sine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n^* = \arctan\left(\frac{A_n}{B_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \phi_n^*)$ Evenness: $f(t)g(t) \text{ and } \frac{f(t)}{g(t)} \text{ are even only if both } f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^i} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$\phi_n = -\arctan\left(\frac{B_n}{A_n}\right)$
Sine form: $C_n = \sqrt{A_n^2 + B_n^2}$ $\phi_n^* = \arctan\left(\frac{A_n}{B_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \phi_n^*)$ Evenness: $f(t)g(t) \text{ and } \frac{f(t)}{g(t)} \text{ are even only if both } f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$F(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \phi_n)$
$\phi_n^* = \arctan\left(\frac{A_n}{B_n}\right)$ $F(t) = C_0 + \sum_{n=1}^{\infty} C_n \sin(n\omega_0 t + \phi_n^*)$ Evenness: $f(t)g(t) \text{ and } \frac{f(t)}{g(t)} \text{ are even only if both } f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	Sine form:
Evenness: $f(t)g(t)$ and $\frac{f(t)}{g(t)}$ are even only if both $f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in} X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in} $ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$C_n = \sqrt{A_n^2 + B_n^2}$
Evenness: $f(t)g(t)$ and $\frac{f(t)}{g(t)}$ are even only if both $f(t)$ and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in} X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in} $ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$\phi_n^* = \arctan\left(\frac{B_n}{B_n}\right)$
and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	Evenness:
and $g(t)$ are either even or odd Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$f(t)g(t)$ and $\frac{f(t)}{g(t)}$ are even only if both $f(t)$
Even function: $B_n = 0$ $A_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{dX_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{dX_{out}}{dt} + X_{out} = K X_{in}$ General solution:	and $g(t)$ are either even or odd
$A_n = \frac{4}{T} \int_{0}^{\frac{T}{2}} f(t) \cos(n\omega_0 t) dt$ $C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_{0}^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	Even function:
$C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt$ Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^i} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	
Odd function: $A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^i} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$A_n = \frac{4}{T} \int_0^2 f(t) \cos(n\omega_0 t) dt$
$A_n = 0$ $C_0 = 0$ $B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^i} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$C_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{2} f(t) dt$
$B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	Odd function:
$B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$ 2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$A_n = 0$ $C_0 = 0$
2 Linear systems Linear systems: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$B_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(n\omega_0 t) dt$
$\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$ Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^i} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution:	
Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{dX_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{dX_{out}}{dt} + X_{out} = K X_{in}$ General solution:	Linear systems:
Homogeneous equation: $\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^t} = 0$ 2.1 Zero-order system $A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{dX_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{dX_{out}}{dt} + X_{out} = K X_{in}$ General solution:	$\sum_{n=0}^{N} A_n \frac{d^n X_{out}}{dt^n} = \sum_{m=0}^{M} B_m \frac{d^m X_{in}}{dt^m}$
2.1 Zero-order system $A_0X_{out} = B_0X_{in}$ $X_{out} = KX_{in}$ 2.2 First-order system Differential equations: $A_1\frac{dX_{out}}{dt} + A_0X_{out} = B_0X_{in}$ $\tau\frac{dX_{out}}{dt} + X_{out} = KX_{in}$ General solution:	Homogeneous equation:
$A_0X_{out} = B_0X_{in}$ $X_{out} = KX_{in}$ 2.2 First-order system Differential equations: $A_1\frac{dX_{out}}{dt} + A_0X_{out} = B_0X_{in}$ $\tau\frac{dX_{out}}{dt} + X_{out} = KX_{in}$ General solution:	$\sum_{n=0}^{N} A_n \frac{d^n A_{out}}{dt^t} = 0$
$X_{out} = KX_{in}$ 2.2 First-order system Differential equations: $A_1 \frac{dX_{out}}{dt} + A_0X_{out} = B_0X_{in}$ $\tau \frac{dX_{out}}{dt} + X_{out} = KX_{in}$ General solution:	2.1 Zero-order system
2.2 First-order system Differential equations: $A_{1} \frac{dX_{out}}{dt} + A_{0}X_{out} = B_{0}X_{in}$ $\tau \frac{dX_{out}}{dt} + X_{out} = KX_{in}$ General solution:	$A_0 X_{out} = B_0 X_{in}$ $X_{out} = K X_{in}$
$A_{1} \frac{dX_{out}}{dt} + A_{0}X_{out} = B_{0}X_{in}$ $\tau \frac{dX_{out}}{dt} + X_{out} = KX_{in}$ General solution:	2.2 First-order system
$A_1 \frac{u X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ $\tau \frac{d X_{out}}{dt} + X_{out} = K X_{in}$ General solution: $x(t) = (x_0 - x_\infty)e^{-\frac{t}{\tau}} + x_\infty$	Differential equations:
$\tau^{\frac{dX_{out}}{dt}} + X_{out} = KX_{in}$ General solution: $x(t) = (x_0 - x_\infty)e^{-\frac{t}{\tau}} + x_\infty$	$A_1 \frac{dA_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$
General solution: $x(t) = (x_0 - x_\infty)e^{-\frac{t}{\tau}} + x_\infty$	$\tau \frac{a X_{out}}{dt} + X_{out} = K X_{in}$
$x(t) = (x_0 - x_\infty)e^{-\frac{\pi}{\tau}} + x_\infty$	Companyl colutions
	General solution: $\frac{t}{t}$

1 Fourier Series

Amplitude linearity:

2.3 Second-order system Differential equation: $A_2 \frac{d^2 X_{out}}{dt^2} + A_1 \frac{d X_{out}}{dt} + A_0 X_{out} = B_0 X_{in}$ Dynamic equation: $F = m\ddot{x} + b\dot{x} + kx$ Frequency response $(\frac{X}{E})$: Resonance: $\omega_0^2 = \omega_n^2 = \frac{k}{m} = \frac{k}{I}$ Damping ratio: Mechanical Q: $Q^2 = \frac{km}{h}$, when Q = 0.5, the system is critically damped 2.4 Characteristic equation Equation: $\sum_{n=0}^{N} A_n s^n = 0$ Primary (N = 1): $A_1s + A_0 = 0$ $s = \frac{A_0}{A_1}$, if $A_0 \neq 0$ Ouadratic (N = 2): $A_2s^2 + A_1s + A_0 = 0$ $s = \frac{-A_1 \pm \sqrt{A_1^2 - 4A_0 A_2}}{2A_2}, \text{ if } A_2 \neq 0$ 3 Solving homogeneous equations **3.1 Primary** (N = 1)if both f(t)Single real root: $s_1 = r$ General solution: 3.2 Secondary (N=2) Two conjugate roots: $s_1 = a + bi$, $s_2 =$ a-biGeneral solution: $(C_1 \sin(bt) + C_2 \cos(bt))e^{at}$ Two different real roots: $s_1 \neq s_2$ General solution: $C_1 e^{s_1 t} + C_2 e^{s_2 t}$ Double real roots: $s_1 = s_2 = r$ General solution: $(C_1 + C_2 t)e^{rt}$ 3.3 Multiple roots (N = k)Multiple roots: $s_1 = s_2 = \cdots = s_k = r$ General solution: $(C_0 + C_1t + C_2t^2 + \cdots + C_{k-1}t^{k-1})e^{rt}$ 4 Dynamic systems Magnitude ratio: $M(\omega) = \frac{1}{\sqrt{1 + (\omega \tau)^2}}$ Dynamic error (1st order system): $\delta(\omega) = 1 - M(\omega)$ 5 Sampling Nyquist frequency (f_{max}): $f_s > 2f_{max}$

Time interval:

 $\Delta t = \frac{1}{f_c}$

Aliased signal frequency: $f_a = |f_s \cdot i - f_n|$ 6 Binary Calculate arbitrary logarithmic base: $\log_m n = \frac{\ln n}{\ln m}$ $\log_m n = \frac{\log_{10} n}{\log_{10} m}$ 6.1 Steps to convert number into binary ♦ Repeatedly divide the number by 2 until the quotient reaches 0. ♦ Keep track of the remainder at the side. ♦ Write the remainder from the bottom to the top. 7 Op-amp Characteristics: 1. It has infinite impedance on both inputs, so no current is drawn from the input circuit: $I_+ = I_- = 0$ 2. It has infinite gain, so the difference between input voltages is zero: $V_{+} = V_{-}$ 3. It has zero output impedance, so the output voltage does not depend on the output current. Inverting amplifier: $V_{out} = -\frac{R_F}{R}V_{in}$ Non-inverting amplifier: $V_{out} = \left(1 + \frac{R_F}{R}\right) V_{in}$ Summing amplifier: $V_{out} = -\left(\frac{R_F}{R_1}V_1 + \frac{R_F}{R_2}V_2 + \dots + \frac{R_F}{R_N}V_N\right)$ Difference amplifier: $V_{out} = \frac{R_F}{R}(V_2 - V_1)$ Integrator: $V_{out} = -\frac{1}{RC} \int_0^t V_{in}(\tau) d\tau$ Differentiator: $V_{out} = -RC \frac{dV_{in}}{dt}$ 8 Filters Cut-off frequency: $f_c = \frac{1}{2\pi RC}$ Time constant estimate: Frequency response: 9 Quantisation Relative quantisation error Quantisation error Gain × Amplitude Sensitivity: Change in input after amplification: $\Delta V_{in} = \frac{Q_{res}}{GK}$ 9.1 Quantisation procedure ♦ Figure out the amplitude and frequencies in the given signal.

 $(f_s > 2f_{max}).$

nal given. R =

and pick the best. 10 Circuits Voltage: V = IRCurrent: $I = \frac{v}{R}$ Resistance: $R = \rho \frac{L}{A}$ Power: $P = VI = I^2 R = \frac{V^2}{P}$ Capacitance: $C = \frac{Q}{V} = \frac{\epsilon_0 \epsilon_r ES}{Ed} = \frac{\epsilon_0 \epsilon_r S}{d}$ Current through a capacitor: Impedance of a capacitor: $Z_c = \frac{1}{i\omega C}$ Energy in a capacitor: $E = \frac{1}{2}CV^2$ Power output of a motor: $P_{out} = \omega T$ RC circuits: $RC = \frac{V}{T} \cdot \frac{Q}{V} = \frac{Q}{Q} = t = \tau$ Voltage through the capacitor: $V_c(t) = (V_0 - V_\infty)e^{\frac{-t}{\tau}} + V_\infty$ Voltage through an inductor: $V = L \frac{dI}{dt}$ Thermistor resistance: $R = R_0 e^{\beta \left(\frac{1}{T} - \frac{1}{T_0}\right)}$ 10.1 Kirchhoff's voltage law ♦ Pick a current direction to move through the circuit. ♦ When moving from a negative terminal to a positive terminal, add the voltage, as the voltage has increased. ♦ When moving from a positive terminal to a negative terminal, subtract the voltage, as the voltage has decreased. ♦ Essentially, just do the opposite of the signs suggest you to do. 10.2 Kirchhoff's current law The total current entering a junction is equal to the total current leaving the junction. 11 Circular motion Torque: T = rFVelocity: Centripetal acceleration: \diamond Apply the Shannon sampling theorem $a_n = \omega^2 r$

♦ Find the amplitude range using the sig- Tangential acceleration: $a_t = r\alpha$ ♦ Obtain the relative quantisation error 12 Sensors Gauss law (for capacitive sensors): $Q = \iint_{\Sigma} \epsilon_0 \epsilon_r \mathbf{E} \, dS$ Lorentz force (for proximity sensors): $\vec{F} = a\vec{v} \times \vec{B}$ Newton's second law: $F = ma = I\alpha$ Spring force: $F = kx = k\theta$ Energy of a spring: $F = \frac{1}{2}kx^2 = \frac{1}{2}k\theta^2$ *n*-bit encoder resolution: $\Delta s = \frac{360^{\circ}}{2^n} = \frac{2\pi}{2^n}$ 13 Strain gauges Poisson's ratio: $v = \frac{\text{lateral strain}}{\text{axial strain}}$

Gauge factor: $G = \frac{dR}{R} = \frac{1}{R} \frac{\partial R}{\partial S} = \frac{d\rho}{\rho} \frac{1}{S} + 1 + 2\nu$

13.1 Wheatstone bridge

Wheatstone bridge equations:

$$\frac{V_i}{V_i} = \frac{R_1 + R_2}{R_1 + R_2}$$
 $\frac{V^-}{V_i} = \frac{R_4}{R_3 + R_4}$
 $\frac{V_0}{V_i} = \frac{R_2}{R_1 + R_2} - \frac{R_4}{R_3 + R_4}$
Bridge balance condition:
 $V_0 = 0 \iff R_1 R_4 = R_2 R_3$
1st order approximation:

$$\frac{dV_o}{V_i} = \frac{1}{4} \left(\frac{dR_2}{R_2} - \frac{dR_1}{R_1} + \frac{dR_3}{R_3} - \frac{dR_4}{R_4} \right)$$
Wheatstone bridge strain equation

Wheatstone bridge strain equations:

$$S_1 = S^a + S^b + S^T$$

$$S_1 = S^a + S^b + S^T$$

 $S_2 = S^a - S^b + S^T$

13.2 Determine the sum of strains

♦ A strain gauge connected from the positive terminal of the battery (+) to negative terminal of the output (-) connection is added.

♦ A strain gauge connected from the positive terminal of the battery (+) to positive terminal of the output (+) connection is subtracted.

	(0)
14 Maths	$\cos(-\theta) = \cos\theta$
14.1 Derivatives	$tan(-\theta) = -tan\theta$
Chain rule:	$\cot(-\theta) = -\cot\theta$
$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$	$\csc(-\theta) = -\csc\theta$
Product rule:	$sec(-\theta) = sec \theta$ Co-function identities:
$\frac{d}{dx}(u \cdot v) = \frac{du}{dx} \cdot v + u \cdot \frac{dv}{dx}$	$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$
Quotient rule:	\(\sigma = \sigma \)
$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$	$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$
Standard derivatives:	$\tan\left(\frac{\pi}{2}-\theta\right)=\cot\theta$
$\frac{d}{dx}(\sin x) = \cos x$	$\cot\left(\frac{\pi}{2}-\theta\right)=\tan\theta$
$\frac{d}{dx}(\cos x) = -\sin x$	$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta$
$\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}}$	$\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$
$\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}}$	$\frac{\pi}{2}$ radians = 90°
11 2	Sum/difference identities:
$\frac{d}{dx}\left(\arctan x\right) = \frac{1}{1+x^2}$	$\sin(\theta \pm \phi) = \sin\theta\cos\phi \pm \cos\theta\sin\phi$ $\cos(\theta \pm \phi) = \cos\theta\cos\phi \mp \sin\theta\sin\phi$
$\frac{d}{dx}(\csc x) = -\csc x \cot x$	$\tan(\theta \pm \phi) = \frac{\tan\theta \pm \tan\phi}{1 \mp \tan\theta \tan\phi}$
$\frac{d}{dx}(\sec x) = \sec x \tan x$	
14.2 Integrals	Double angle identities:
$\int \sin x dx = -\cos x$	$\sin(2\theta) = 2\sin\theta\cos\theta$ $\cos(2\theta) = \cos^2\theta - \sin^2\theta$
$\int \cos x dx = \sin x$	$\cos(2\theta) = \cos^2\theta - \sin^2\theta$ $\cos(2\theta) = 2\cos^2\theta - 1$
$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right)$	$\cos(2\theta) = 2\cos^2\theta - 1$ $\cos(2\theta) = 1 - 2\sin^2\theta$
$\int \frac{1}{\sqrt{a^2 - x^2}} \frac{u}{\sqrt{a}} \left(\frac{x}{a} \right)$	$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$
Yu X	Half angle identities:
$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right $ $\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left \frac{a + x}{a - x} \right $	$\sin^2\theta = \frac{1-\cos(2\theta)}{2}$
* u x =	$\cos^2\theta = \frac{1 + \cos(2\theta)}{2}$
$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left \sqrt{x^2 - a^2} + x \right $	$\tan^2 \theta = \frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}$
$\int_{C} \tan x dx = \ln \sec x $	Sum to product of 2 angles:
$\int \cot x dx = \ln \sin x $	/ - 7\ /\
$\int \csc x dx = -\ln \csc x + \cot x $	$\sin \theta + \sin \phi = 2 \sin \left(\frac{\theta + \phi}{2}\right) \cos \left(\frac{\theta - \phi}{2}\right)$
$\int \sec x dx = -\ln \sec x + \tan x $	$\sin \theta - \sin \phi = 2 \cos \left(\frac{\theta + \phi}{2}\right) \sin \left(\frac{\theta - \phi}{2}\right)$
Integration by parts: $\int u dv = uv - \int v du$	$\cos \theta + \cos \phi = 2\cos \left(\frac{\theta + \phi'}{2}\right)\cos \left(\frac{\theta - \phi'}{2}\right)$
14.3 Trigonometric identities	
Quotient identities:	$\cos \theta - \cos \phi = -2 \sin \left(\frac{\theta + \phi}{2} \right) \sin \left(\frac{\theta - \phi}{2} \right)$
$\tan \theta = \frac{\sin \theta}{\cos \theta}$	Product to sum of 2 angles:
$\cot \theta = \frac{\cos \theta}{\sin \theta}$	$\sin\theta\sin\phi = \frac{\cos(\theta - \phi) - \cos(\theta + \phi)}{2}$
Reciprocal identities:	$\cos\theta\cos\phi = \frac{\cos(\theta - \phi) + \cos(\theta + \phi)}{2}$
$\sin\theta = \frac{1}{\csc\theta}$	$\sin(\theta + \phi) + \sin(\theta - \phi)$
$\csc\theta = \frac{1}{\sin\theta}$	$\sin\theta\cos\phi = \frac{\sin(\theta+\phi)+\sin(\theta-\phi)}{2}$
	$\cos\theta\sin\phi = \frac{\sin(\theta+\phi)-\sin(\theta-\phi)}{2}$
$\cos \theta = \frac{1}{\sec \theta}$	Law of sines:
$\sec \theta = \frac{1}{\cos \theta}$	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
$\tan \theta = \frac{1}{\cot \theta}$ $\cot \theta = \frac{1}{\tan \theta}$	Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos A$
$\cot \theta = \frac{1}{\tan \theta}$	$a^2 = b^2 + c^2 - 2bc \cos A$ Area of a triangle:
Pythagorean identities:	$A = \frac{1}{2}ab\sin C$
$\sin^2\theta + \cos^2\theta = 1$	2 40 0111 0
$\sec^2 \theta - \tan^2 \theta = 1$ $\csc^2 \theta - \cot^2 \theta = 1$	
Even/odd identities:	
$\sin(-\theta) = -\sin\theta$	