11-442 / 11-642 / 11-742: Search Engines

Diversity

Jamie Callan and Chenyan Xiong Carnegie Mellon University callan@cs.cmu.edu

1

Topic Outline

- Introduction
- Diversity Evaluation Metrics
- Implicit Methods
 - Maximum Marginal Relevance (MMR)
 - Learning to Rank for diversification
- Explicit Methods
 - Query intents (subtopics) discovery
 - -xQuAD
 - -PM-2

2

Explicit Query Intents

Some diversification methods assume that query intents are known

• Query intents are explicit

How can query intents be known?

• Analysis of search logs (covered in a few weeks)

How can this problem be studied without search logs?

- Query intents provided by TREC (which got them from Bing)
- Query intents inferred from commercial search engine suggestions

3

© 2021 Jamie Callan & Chenyan Xiong

3

Explicit Query Intents: The TREC Web Track Diversity Task

The 2009-2014 TREC Web Tracks had a diversity task

• Intended to encourage research on diversification

Each year, 50 information needs were created

- Most information needs had <u>multiple intents</u>
 - Ambiguous: Unrelated interpretations of the query
 - Faceted: Related interpretations of the query
- Information needs with multiple intents had two types of intents
 - Navigational
 - Informational

4

Explicit Query Intents: TREC Information Needs

Queries were manually chosen from Bing's search log

- Picked from <u>median</u> queries (by frequency)
 - Head queries are too easy
 - Tail queries are too rare

Subtopic generation process

- Cluster Bing's query log,
- Manually pick queries from top clusters

5

2021 Jamie Callan & Chenyan Xiong

5

Explicit Query Intents: TREC Information Needs

Topic 15, type=ambiguous

- Query: espn sports
- Description: I'm looking for various sports scores and information from the ESPN Sports site.
- Subtopic, type=nav: The ESPN Sports home page.
- Subtopic, type=inf: College football and basketball scores.
- Subtopic, type=inf: NBA basketball standings.
- **Subtopic**, **type=inf**: Baseball scores and information on upcoming live broadcast games.
- Subtopic, type=inf: Information on NASCAR races.
- **Subtopic**, **type=inf**: Fantasy football leagues.

(http://trec.nist.gov/data/web/09/wt09.topics.full.xml)

navigational

informational

nav:

inf:

Explicit Query Intents: TREC Information Needs

Topic 1, type=faceted

- Query: obama family tree
- **Description:** Find information on President Barack Obama's family history, including genealogy, national origins, places and dates of birth, etc.
- Subtopic, type=nav: Find the TIME magazine photo essay "Barack Obama's Family Tree".
- **Subtopic**, **type=inf**: Where did Barack Obama's parents and grandparents come from?
- Subtopic, type=inf: Find biographical information on Barack Obama's mother.

(http://trec.nist.gov/data/web/09/wt09.topics.full.xml)

© 2021 Jamie Callan & Chenyan Xion

navigational

informational

nav:

inf:

7

Explicit Query Intents: TREC Information Needs

Note the two types of topics

- Ambiguous: Unrelated interpretations of the query
 - E.g., "michael jordan", "avp", "espn sports"
- Faceted: Related interpretations of the query
 - E.g., "carnegie mellon university", "arizona game and fish", "obama family tree"

Different types might require different methods

- TREC hoped to focus attention on this problem
- A difficult problem, mostly ignored by researchers (so far)

8

Explicit Query Intents: TREC Information Needs

In TREC evaluations, the search engine does not know the multiple intents for an information need

- It sees only the query, e.g., "espn sports"
- The assessor knows the different intents
 - Used to form relevance assessments

What information can your search engine use to diversify the ranking?

9

Explicit Query Intents: Commercial Search Engines

Google and Bing provide suggested and related queries

• Probably they indicate common search intents

Query suggestions

Related queries

espn espn s espn espn scores espn3 espn sports espn fantasy espn soccer espn mlb espn schedule espn sports science

espn sports espn sports espn sports center espn sportsnation

Searches related to espn sports

espn boxing espn soccer fox sports espn sports golf espn sports live yahoo sports espn scores cbs sports

© 2021 Jamie Callan & Chenyan Xiong

10

ΙU

Explicit Query Intents: Commercial Search Engines

Suggested queries

- Appear at the top of the page
- Often prefix-oriented suggestions
 - High precision, low recall

Related queries

- Appear at the bottom of the page
- A wider range of suggestions
 - Higher recall, lower precision

11

Explicit Query Intents: Commercial Search Engines

Suggested and related queries produced by three web search engines

Search Engine	Query Type	Avg # of Queries	Avg Query Length	Avg # of Matched Pages
A	related	7.4	2.9	10.4 M
	suggested	6.7	3.0	8.6 M
В	related	9.7	2.6	10.3 M
	suggested	9.3	3.3	7.1 M
С	related	15.9	1.8	18.1 M
	suggested	8.9	3.3	9.5 M

• An average of 14-25 short suggested and related queries

(Santos, et al., 2010)

Explicit Query Intents: Automatic Generation

How can query intents be generated without a query log?

- Only large search companies have large query logs
- Even Google doesn't have much information about tail queries

This topic is challenging for several reasons

- Query intents are very personal
 - Different people have different interpretations
- There are many possible subtopics
 - Which ones does the gold standard want?
- There are many types of subtopics
 - E.g. ambiguous vs. facets vs. tasks
- Which ones does the gold standard want?

© 2021 Jamie Callan & Chenyan Xions

13

Explicit Query Intents: Automatic Generation

Many methods have been proposed

- Common ideas
 - Cluster top retrieved documents
 - » By text, URL, keywords, etc.
 - Topic modeling on top retrieved documents
 - Pick diversified terms from search result page using existing document summarization tools
- None of them are convincing
 - E.g., not nearly as effective as Google suggestions
- Still an open research topic

14

Topic Outline

- Introduction
- Diversity Evaluation Metrics
- Implicit Methods
 - Maximum Marginal Relevance (MMR)
 - Learning to Rank for diversification
- Explicit Methods
 - Query intents (subtopics) discovery
 - -xQuAD
 - -PM-2

15

© 2021 Jamie Callan & Chenyan Xiong

15

xQuAD

eXplicit Query Aspect Diversification (xQuAD)

- Inputs
 - An initial ranking
 - A set of query intents (e.g., from search engine suggestions)
- Observation: A single document may cover multiple intents
 - More likely to be true for faceted queries
- Key idea: Select documents that satisfy as many uncovered intents as possible
 - Provide maximum coverage and minimum redundancy
 - MMR did this implicitly xQuAD does it explicitly

(Santos, et al., 2010)

16

```
 \begin{array}{lll} \mathbf{xQuAD}(q,R,\tau,\lambda) & & \\ & 1 & S \leftarrow \emptyset \\ & 2 & \mathbf{while} \; |S| < \tau \; \mathbf{do} \\ & 3 & d^* \leftarrow \arg\max_{d \in R \setminus S} \; (1-\lambda) \, \mathrm{P}(d|q) + \lambda \, \mathrm{P}(d,\bar{S}|q) \\ & 4 & R \leftarrow R \setminus \{d^*\}_{\nwarrow} & \mathbf{Relevance} & \mathbf{Diversity} \\ & 5 & S \leftarrow S \cup \{d^*\}_{\nwarrow} & \mathbf{Remove} \; \mathbf{d}^* \; \mathbf{from} \; \mathbf{the} \; \mathbf{initial} \; \mathbf{ranking} \\ & 6 & \mathbf{end} \; \mathbf{while} & \mathbf{Remove} \; \mathbf{d}^* \; \mathbf{from} \; \mathbf{the} \; \mathbf{initial} \; \mathbf{ranking} \\ & 7 & \mathbf{return} \; \; S & \mathbf{Add} \; \mathbf{d}^* \; \mathbf{to} \; \mathbf{the} \; \mathbf{diversified} \; \mathbf{ranking} \\ \end{array}
```

- R: Initial ranking (produced by some other method)
- S: Diversified ranking (initially empty)
- τ: Desired length of diversified ranking
- λ : Balance between relevance and diversity

17

(Santos, et al., 2010)

17

Diversity Notation Alert

Earlier lectures defined qi as the ith term of query q

- q: search engines course
- q₂: 'engines'

This lecture defines q_i as the i^{th} intent of query q

- q: michael jordan
- q₂: The Berkeley professor Michael Jordan

This is how notation is used in most of the published work

• I'm sorry – don't be confused

18

xQuAD's selection criteria:
$$(1 - \lambda) P(d|q) + \lambda P(d, \bar{S}|q)$$

Relevance Diversity

Make some assumptions

- A query q has intents specified by subqueries $\{q_1, ..., q_k\}$
- Independence assumptions

xQuAD's diversity component becomes:

19

$\begin{array}{c} \textbf{xQuAD Example:} \\ (1-\lambda)\operatorname{P}(d|q) + \lambda \displaystyle \sum_{q_i \in Q} \left[\operatorname{P}(q_i|q)\operatorname{P}(d|q_i) \prod_{d_j \in S} (1-\operatorname{P}(d_j|q_i))\right] \\ \\ \textbf{rank}_{\textbf{init}} \\ \textbf{d}_1, 0.70 \\ \\ \textbf{d}_2, 0.69 \\ \\ \textbf{d}_3, 0.68 \\ \\ \textbf{d}_4, 0.67 \\ \\ \textbf{d}_5, 0.66 \\ \\ \\ 20 \end{array} \right. \\ \text{0.212. Anis Callo A. Chayen Xing}$

 $\begin{array}{c|c} \mathbf{xQuAD \ Example:} \\ (1-\lambda) \ \mathrm{P}(d|q) + \lambda \sum_{q_i \in Q} \left[\mathrm{P}(q_i|q) \ \mathrm{P}(d|q_i) \prod_{d_j \in S} (1-\mathrm{P}(d_j|q_i)) \right] \\ \hline \mathbf{rank_{init}} \quad \mathbf{q_1} \quad \mathbf{q_2} \\ \mathbf{d_1}, \ 0.70, \ 0.7, \ 0.2 \\ \hline \mathbf{d_2}, \ 0.69, \ 0.8, \ 0.1 \\ \hline \mathbf{d_3}, \ 0.68, \ 0.6, \ 0.3 \\ \hline \mathbf{d_4}, \ 0.67, \ 0.2, \ 0.7 \\ \hline \mathbf{d_5}, \ 0.66, \ 0.3, \ 0.8 \\ \hline \end{array}$

22

xQuAD Example: $(1-\lambda)\operatorname{P}(d|q) + \lambda \sum_{i=0}^{\infty} \left[\operatorname{P}(q_i|q)\operatorname{P}(d|q_i)\prod_{\substack{j=0 \ j \in S}} (1-\operatorname{P}(d_j|q_i))\right]$ rank_{init} rank_{div} $p(q_i|q)=0.5$ $\mathbf{q_1}$ $\mathbf{q_2}$ $\lambda = 0.4$ $d_1, 0.70, [0.7,] 0.2$ d_5 d₂, 0.69, 0.8, 0.1 d_2 d_3 , 0.68, 0.6, 0.3 d_4 , 0.67, 0.2, 0.7 d_5 , 0.66, 0.3, 0.8 26

26

xQuAD Example: $(1 - \lambda) P(d|q) + \lambda \sum_{i=0}^{\infty} \left[P(q_i|q) P(d|q_i) \prod_{i=0}^{\infty} (1 - P(d_j|q_i)) \right]$ $p(q_i|q)=0.5$ rank_{init} rank_{div} $\mathbf{q_2}$ $\lambda = 0.4$ d_1 , 0.70, 0.7, 0.2 d_5 d₂, 0.69, 0.8, 0.1 d_2 d_3 , 0.68, 0.6, 0.3 d_1 d_4 , 0.67, 0.2, 0.7 d_5 , 0.66, 0.3, 0.8 28

28

xQuAD Example: $(1 - \lambda) P(d|q) + \lambda \sum_{q_i \in Q} \left[P(q_i|q) P(d|q_i) \prod_{d_j \in S} (1 - P(d_j|q_i)) \right]$ $p(q_i|q)=0.5$ rank_{init} rank_{div} $\mathbf{q_2}$ $\lambda = 0.4$ $d_1, 0.70, 0.7,$ 0.2 d_5 d₂, 0.69, 0.8, 0.1 d_2 d_3 , 0.68, 0.6, 0.3 d_1 d_4 , 0.67, 0.2, 0.7 d_4 d_5 , 0.66, 0.3, 0.8 30

30

xQuAD prefers documents that satisfy multiple intents

rank_{init}
d₁, 0.70
d₂, 0.69
d₃, 0.68
d₄, 0.67
d₅, 0.66
d₆, 0.65
d₇, 0.64
d₈, 0.63

32

 $p(q_i|q)=0.5$ $\lambda=0.4$

xQuAD prefers documents that satisfy multiple intents

rank_{init} q₁ q₂ d₁, 0.70, 0.7, 0.1 d₂, 0.69, 0.7, 0.2 d₃, 0.68, 0.4, 0.5 d₄, 0.67, 0.5, 0.4 d₅, 0.66, 0.5, 0.5 d₆, 0.65, 0.5, 0.5 d₇, 0.64, 0.1, 0.7 d₈, 0.63, 0.1, 0.9

33

© 2021 Jamie Callan & Chenyan Xiong

33

xQuAD Behavior

 $p(q_i|q)=0.5$ $\lambda=0.4$

xQuAD prefers documents that satisfy multiple intents

34

© 2021 Jamie Callan & Chenyan Xiong

 $p(q_i|q)=0.5$ $\lambda=0.4$

xQuAD prefers documents that satisfy multiple intents

```
rank<sub>init</sub>
                          rank<sub>1</sub>
            \mathbf{q_1}
                  \mathbf{q_2}
d_1, 0.70, 0.7, 0.1
                          0.580
d_2, 0.69, 0.7, 0.2
                          0.594
d_3, 0.68, (0.4, 0.5)
                          0.588
d_4, 0.67, 0.5, 0.4
                          0.582
d_5, 0.66, 0.5, 0.5
                         0.596
d<sub>6</sub>, 0.65, 0.5, 0.5
                          0.590
d_7, 0.64, 0.1, 0.7
                          0.544
d_8, 0.63, 0.1, 0.9
                          0.578
```

Selecting the first document

35

© 2021 Jamie Callan & Chenyan Xiong

35

xQuAD Behavior

 $p(q_i|q)=0.5$ $\lambda=0.4$

xQuAD prefers documents that satisfy multiple intents

```
rank_{init} q_1 q_2
                        rank<sub>1</sub> rank<sub>2</sub>
d_1, 0.70, 0.7, 0.1
                        0.580 0.500
d_2, 0.69, 0.7, 0.2
                        0.594 0.504
d_3, 0.68, 0.4, 0.5
                        0.588 0.498
d<sub>4</sub>, 0.67, 0.5, 0.4
                        0.582 0.492
d<sub>5</sub>, 0.66, 0.5, 0.5
                       [0.596]
d<sub>6</sub>, 0.65, 0.5, 0.5
                        0.590 0.490
d_7, 0.64, 0.1, 0.7
                        0.544 0.464
d_8, 0.63, 0.1, 0.9
                        0.578 0.478
```

Selecting the second document

36

© 2021 Jamie Callan & Chenyan Xiong

 $p(q_i|q)=0.5$ $\lambda=0.4$

xQuAD prefers documents that satisfy multiple intents

```
rank<sub>init</sub>
                        rank<sub>1</sub> rank<sub>2</sub> rank<sub>3</sub>
           \mathbf{q_1}
                \mathbf{q_2}
d_1, 0.70, 0.7, 0.1
                        0.580 0.500 0.449
d_2, 0.69, 0.7, 0.2
                        0.594 0.504
d_3, 0.68, 0.4, 0.5
                        0.588 0.498 0.460
d_4, 0.67, 0.5, 0.4
                        0.582 0.492 0.449
d_5, 0.66, 0.5, 0.5
                      0.596
d<sub>6</sub>, 0.65, 0.5, 0.5
                        0.590 0.490 0.445
d_7, 0.64, 0.1, 0.7
                        0.544 0.464 0.443
d_8, 0.63, 0.1, 0.9
                       0.578 0.478 0.453
                                      Selecting
                                      the third
                                      document
```

© 2021 Jamie Callan & Chenyan Xiong

37

xQuAD Behavior

37

 $p(q_i|q)=0.5$ $\lambda=0.4$

xQuAD prefers documents that satisfy multiple intents

```
rank_{init} q_1 q_2
                       rank<sub>1</sub> rank<sub>2</sub> rank<sub>3</sub> rank<sub>4</sub>
                       0.580 0.500 0.449 0.437
d_1, 0.70, (0.7, 0.1)
d_2, 0.69, (0.7, 0.2)
                       0.594 0.504
d_3, 0.68, 0.4, 0.5
                       0.588 0.498 [ 0.460 ]
                       0.582 \quad 0.492 \quad 0.449 \quad 0.427
d_4, 0.67, 0.5, 0.4
d_5, 0.66, 0.5, 0.5
                      0.596
d_6, 0.65, 0.5, 0.5
                       0.590 0.490 0.445 0.419
d_7, 0.64, 0.1, 0.7
                       0.544 0.464 0.443 0.414
d_8, 0.63, 0.1, 0.9
                       0.578 0.478 0.453 0.416
                                              Selecting
```

the fourth document

38

2021 Jamie Callan & Chenyan Xiong

 $p(q_i|q)=0.5$ $\lambda=0.4$

xQuAD prefers documents that satisfy multiple intents

```
rank<sub>1</sub> rank<sub>2</sub> rank<sub>3</sub> rank<sub>4</sub> rank<sub>5</sub>
rank<sub>init</sub>
                  \mathbf{q}_{\mathbf{2}}
            \mathbf{q_1}
d_1, 0.70, 0.7, 0.1
                         0.580 \quad 0.500 \quad 0.449 \quad 0.437
d_2, 0.69, 0.7, 0.2
                         0.594 0.504
                         0.588 0.498 0.460
d_3, 0.68, (0.4, 0.5)
d_4, 0.67, 0.5, 0.4
                         0.582 0.492 0.449 0.427 [0.419]
d_5, 0.66, 0.5, 0.5
                        0.596
d<sub>6</sub>, 0.65, 0.5, 0.5
                         0.590 0.490 0.445 0.419 0.411
d_7, 0.64, 0.1, 0.7
                         0.544 0.464 0.443 0.414 0.410
                         0.578  0.478  0.453  0.416  0.411
d_8, 0.63, 0.1, 0.9
```

Selecting the fifth document

39

© 2021 Jamie Callan & Chenyan Xiong

39

xQuAD Behavior

 $p(q_i|q)=0.5$ $\lambda=0.4$

xQuAD prefers documents that satisfy multiple intents

```
rank_{init} q_1 q_2
                      rank<sub>1</sub> rank<sub>2</sub> rank<sub>3</sub> rank<sub>4</sub> rank<sub>5</sub>
                      0.580 0.500 0.449 0.437
d_1, 0.70, (0.7, 0.1)
                      0.594 0.504
d_2, 0.69, (0.7, 0.2)
                      0.588 0.498 [ 0.460 ]
d_3, 0.68, (0.4, 0.5)
d_4, 0.67, 0.5, 0.4
                      0.582 0.492 0.449 0.427 0.419
d_5, 0.66, 0.5, 0.5
                     0.596
d_6, 0.65, 0.5, 0.5
                      0.590 0.490 0.445 0.419 0.411
d_7, 0.64, 0.1, 0.7
                      0.544 0.464 0.443 0.414 0.410
d_8, 0.63, 0.1, 0.9
                      0.578  0.478  0.453  0.416  0.411
```

 \mathbf{q}_2 is covered by mediocre documents that also cover $\mathbf{q}_1,$ so \mathbf{d}_7 and \mathbf{d}_8 don't get promoted

40

2021 Jamie Callan & Chenyan Xiong

Santos, et al investigated three methods of weighting queries

- Uniform weights: 1 / |Q|
- A method similar to the CRCS resource ranking algorithm
 - In a later lecture we will cover ReDDE, a similar algorithm
 - Related to the number of top-ranked documents q_i matches
- Based on the relative number of documents it matches in a commercial search engine
 - $-n_w(q_i)$ on an earlier slide

Uniform was the most effective on TREC 2009 data

• Perhaps because TREC intents are all weighted equally

(Santos, et al., 2010)

41

41

xQuAD

$\underline{\textbf{Effectiveness when using } \underline{\textbf{TREC}} \textbf{ intents (the gold standard)} \\$

	(α-NDCC	j		IA-P		
	@5	@10	@100	@5	@10	@100	
BM25	0.159	0.186	0.288	0.075	0.071	0.059	Initial ranking
+MMR	0.120	0.150	0.224	0.056	0.058	0.039	
+Q-Filter	0.159	0.186	0.286	0.075	0.071	0.057	
+IA-Select	0.110	0.119	0.180	0.043	0.037	0.023	
$+xQuAD_u$	0.208	0.227	0.324	0.080	0.075	0.056	
DPH	0.198	0.212	0.304	0.109	0.106	0.062	Initial ranking
+MMR	0.195	0.211	0.303	0.105	0.103	0.062	
+Q-Filter	0.198	0.212	0.303	0.109	0.106	0.060	
+IA-Select	0.148	0.157	0.203	0.077	0.071	0.023	
$+xQuAD_u$	0.208	0.243	0.334	0.097	0.096	0.061	

ClueWeb09-B (50 queries from 2009)

(Santos, et al., 2010)

Searches related to espn sports
espn boxing espn soccer
fox sports espn sports golf

espn sports live yahoo sports espn scores cbs sports

Effectiveness when using search engine queries as intents

		related sub-queries					
	(α-NDCC	à				
	WSE	@5	@10	@100	@5	@10	@100
BM25		0.159	0.186	0.288	0.075	0.071	0.059
$+xQuAD_u$	A	0.154	0.184	0.282	0.070	0.072	0.057
$+xQuAD_u$	В	0.154	0.182	0.279	0.073	0.076	0.054
$+xQuAD_u$	\mathbf{C}	0.161	0.182	0.285	0.076	0.076	0.057
DPH		0.198	0.212	0.304	0.109	0.106	0.062
$+xQuAD_u$	A	0.164	0.189	0.288	0.086	0.083	0.056
$+xQuAD_u$	В	0.186	0.205	0.295	0.090	0.082	0.057
$+xQuAD_u$	C	0.206	0.209	0.307	0.108	0.090	0.062

Initial ranking

Initial ranking

ClueWeb09-B (50 queries from 2009)

Related queries (from web search engines A, B, and C) provide little benefit

(Santos, et al., 2010)

43

43

xQuAD

espn s
espn s
espn s
espn scores
espn sepn sports
espn sports
espn sports
espn sports
espn sports espn sports center
espn sportsaction
espn sports science

Effectiveness when using search engine queries as intents

				ggested s	sub-quei	ries IA-P		
		(α-NDCC	,			1	
	WSE	@5	@10	@100	@5	@10	@100	1
BM25		0.159	0.186	0.288	0.075	0.071	0.059]]
$+xQuAD_u$	A	0.171	0.186	0.291	0.082	0.071	0.053	
$+xQuAD_u$	В	0.129	0.158	0.261	0.065	0.067	0.052	
$+xQuAD_u$	\mathbf{C}	0.163	0.184	0.287	0.084	0.069	0.053	
DPH		0.198	0.212	0.304	0.109	0.106	0.062]]
$+xQuAD_u$	A	0.215	0.222	0.313	0.108	0.088	0.055	
$+xQuAD_u$	В	0.162	0.189	0.281	0.088	0.085	0.055	
$+xQuAD_u$	C	0.201	0.236	0.320	0.093	0.092	0.059	

Initial ranking

Initial ranking

ClueWeb09-B (50 queries from 2009)

Suggested queries (from some engines) are more effective

(Santos, et al., 2010)

44

© 2021 Jamie Callan & Chenyan Xion

Effectiveness when using search engine queries (Bing) as intents

•			E	ERR-IA			$\alpha\text{-nDCG}$				•
		\mathcal{S}_q	@20	_	=	+	@20	_	=	+	_
	DPH		0.253				0.364				Initial ranking
	+MMR		0.253°°	55	30	60	0.367°▽	56	28	61	
	+PC	BS	0.256▲°	25	58	62	$0.375^{\blacktriangle\triangledown}$	29	55	61	
	+IA-Select	DZ	$0.250^{\circ\circ}$	67	12	66	$0.356^{\circ \triangledown}$	70	12	63	
	+xQuAD	BS	0.281°	40	24	81	<u>0.402</u> ▲	37	24	84	
LeToR	LambdaMA	RT	0.337				0.464				Initial ranking
	+MMR		$0.338^{\circ\circ}$	69	20	56	$0.466^{\circ\circ}$	69	20	56	
	+PC	BS	0.339▲°	27	52	66	0.472▲°	32	45	68	
	+IA-Select	DZ	0.217	93	13	39	$0.329^{\blacktriangledown\blacktriangledown}$	98	13	34	
	+xQuAD	BS	$\underline{0.351}^{\vartriangle}$	43	24	78	<u>0.479</u> ▲	42	23	80	
	(ClueWeb09	9-B, 1	45 TREC	que	ries 1	from	2009-201	1)			(Santos, et al., 2010)
					45						© 2021 Jamie Callan & Chenyan Xiong

45

xQuAD

xQuAD characteristics

- Requires a set of explicit query intents
- Allows a single document to satisfy multiple query intents
 - Those documents are more likely to be ranked highly
- The diversified ranking covers each intent equally
 - Weighting is possible, but uniform weights were best
- Each query q requires running queries q and $\{q_1, ..., q_k\}$
 - 7-10 queries in Santos, et al's experiments
 - Thus a little expensive computationally
- One of the more effective methods available today

46

Topic Outline

- Introduction
- Diversity Evaluation Metrics
- Implicit Methods
 - Maximum Marginal Relevance (MMR)
 - Learning to Rank for diversification
- Explicit Methods
 - Query intents (subtopics) discovery
 - -xQuAD
 - -PM-2

47

© 2021 Jamie Callan & Chenyan Xiong

47

PM-2

Proportionality Model 2 (PM-2)

- Inputs
 - An initial ranking
 - A set of query intents (e.g., from search engine suggestions)
- Observation: A high Recall algorithm for discovering query intents would find many <u>rare or unpopular</u> intents
 - They shouldn't get equal coverage in a diversified ranking
- **Key idea:** The number of documents for each subtopic should be <u>proportional to each subtopic's popularity</u>
 - Minimizes redundancy
 - Coverage of subtopics may better match a person's expectation

48

(Dang and Croft, 2012)

PM-2

PM-2 is an adaptation of the Sainte-Laguë method of assigning proportional representation in elections

- It is a greedy algorithm
- At each rank r
 - Select the query intent q_i that must be covered next to maintain proportional coverage of intents in the ranking
 - Select a document d that covers intent q_i
 - » And, maybe also covers other query intents
 - Remove d from the initial ranking R
 - Assign d to the diversified ranking S

A document may cover multiple intents to varying degrees

(Dang and Croft, 2012)

49

PM-2

 $\forall i, v_i = \frac{\text{Diversified Ranking Size}}{\text{Number Of Intents}}, s_i = 0$

s_i: ranks in S assigned to q_i now s: a rank in S to be filled

v_i: desired ranks in S for q_i

for all $s \in S$

 $\forall q_i \in Q, qt[i] = \frac{v_i}{2s_i + 1}$

Priority of each intent now

 $i^* = \arg\max_i qt[i]$

i*: The intent to cover now

 $d^* = \arg\max_{d_j \in R} \left(\lambda \underbrace{qt[i^*]p\big(d_j|q_{i^*}\big)} + (1 - \lambda) \underbrace{\sum_{i \neq i^*} qt[i]p\big(d_j|q_i\big)} \right)$ $S = S \cup \{d^*\}$ Covers \mathbf{q}_{i^*} Also covers other intents

 $R = R \setminus \{d^*\}$

 $\forall q_i \in Q, s_i = s_i + \frac{p(d^*|q_i)}{\sum_{q_i \in Q} p(d^*|q_j)}$

Update coverage of each intent

end for

50

(Dang and Croft, 2012)

 $\forall i, v_i = \frac{\text{Diversified Ranking}}{\text{Number Of inten}}$ for all $s \in S$ $\forall q_i \in Q, qe[i] = \frac{v_i}{2s_i + 1}$ $s^* = \arg\max_{q \in G} \{\lambda \text{ eff}(s^*)\}$ $S = S \cup \{d^*\}$ $R = R \setminus \{d^*\}$ **PM-2 Example** rank_{init} $\lambda = 0.6$ rank_{div} **Quotient scores** $\mathbf{q_2}$ $d_1, 0.70, 0.7, 0.2$ $qt[1] = 4 / (2 \times 1.16 + 1) = 1.20$ "quotients (priorities)" d_2 $qt[2] = 4 / (2 \times 0.84 + 1) = 1.49$ d₂, 0.69, 0.8, 0.1 d_5 $i^* = 2$ "selected intent" d_3 , 0.68, 0.6, 0.3 d_4 , 0.67, 0.2, 0.7 d₅, 0.66, 0.3, 0.8 58

 $\forall i, v_j = Doversified Ranking Signal Yi, v_j = Number Of Intents for all <math>s \in S$ $\forall q_1 \in Q, qe[i] = \frac{v_1}{2u_1 + 1}$ $s^* = \arg\max_{q \in S} qe[i]$ $d^* = \arg\max_{q \in S} (\lambda qe[i^*]p[i])$ $S = S \cup \{d^*\}$ $R = R \setminus \{d^*\}$ **PM-2 Example** rank_{init} rank_{div} $\lambda = 0.6$ $\mathbf{q_2}$ $d_1, 0.70, 0.7,$ d_2 0.2 Repeat until all documents d₂, 0.69, 0.8, 0.1 d_5 in the initial ranking are added to the diversified ranking d_3 , 0.68, 0.6, 0.3 d_4 d_4 , 0.67, 0.2, 0.7 d_1 d₅, 0.66, 0.3, 0.8 64

xQuAD vs PM-2

xQuAD picks a document that covers multiple intents

• Give higher weight to intents that need coverage

PM2 picks the intent that most needs to be covered

- Then it picks a document that covers that intent
- There is extra credit for covering other intents, too

 d_2 , 0.69, 0.8, 0.1 d_5 d_2 d_3 , 0.68, 0.6, 0.3 d_1 d_4 d₄, 0.67, 0.2, 0.7 d_4

 $rank_{init}$ q_1 q_2

 $d_1, 0.70, [0.7,] 0.2$

 d_1 d_5 , 0.66, 0.3, 0.8 d_3

 d_2

 d_3

rank_p rank_v

 d_5

Notice the choices that each algorithms makes

 $\lambda_p=0.6, \lambda_v=0.4$

65

xQuAD vs PM-2

xQuAD picks a document that covers multiple intents

• Give higher weight to intents that need coverage

PM2 picks the intent that most needs to be covered

- Then it picks a document that covers that intent
- There is extra credit for covering other intents, too

 $rank_{init}$ q_1 q_2 rank_p rank_v

 $d_1, 0.70, [0.7, 0.1]$ d_2 , 0.69, 0.7, 0.2

 d_5 d_{s} d_2

 d_3 , 0.68, 0.4, 0.5 d_4 , 0.67, 0.5, 0.4

 d_3

 d_5 , 0.66, 0.5, 0.5

 d_4 d_6

 d_6 , 0.65, 0.5, 0.5 d_7 , 0.64, 0.1, 0.7

 d_4

 d_{∞} , 0.63, 0.1, 0.9

 d_7 d_3 d_{s}

Notice the choices that each algorithms makes

 $\lambda_{\rm p}=0.6, \lambda_{\rm v}=0.4$

66

PM-2

Dang and Croft use uniform weighting of query intents

• Santos, et al found it to be most effective

67

(Dang and Croft, 2012)

67

PM-2

How well does it work?

		α-NDCG	Win/Loss	ERR-IA	Prec-IA
			WT-2009		
CS	Query-likelihood	0.2979		0.1953	0.1146
topics	MMR	0.2963	16/19	0.1922	0.1221
	xQuAD	$0.3300_{Q,M}$	23/15	$0.2207_{Q,M}$	0.1190
Sub	PM-1	0.3076	18/17	0.2027	0.1140
S	PM-2	0.3473^{P}	19/19	0.2407^{P}	0.1197
us	Query-likelihood	0.2875		0.1895	0.1095
tio	MMR	0.2926	16/15	0.1919	0.1108
es	xQuAD	0.2995	14/19	0.1973	0.1089
Suggestions	PM-1	0.2870	16/18	0.1830	0.0929^{X}
S	PM-2	0.3200	17/19	0.2139	0.1123^{P}
WI	7-2009 Best (uogTrDYCcsB) [10]	0.3081	N/A	0.1922	N/A

ClueWeb09-B (50 queries from 2009)

Evaluated at 50 documents (e.g., α-NDCG@50)

68

(Dang and Croft, 2012)

PM-2

How well does it work?

		α-NDCG	Win/Loss	ERR-IA	Prec-IA
			WT-2010		
cs	Query-likelihood	0.3236		0.2081	0.1713
opi	MMR	0.3349_{Q}	19/14	0.2161	0.1740
Ť	xQuAD	$0.4074_{Q,M}$	29/14	$0.2671_{Q,M}$	0.2028
Sub-topics	PM-1	$0.4323_{Q,M}^{X,M}$	32/13	$0.3071_{Q,M}^{X,M}$	0.1827
01	PM-2	$0.4546_{Q,M}^{X,P}$	34/10	$0.3271_{Q,M}^X$	0.2030
ns	Query-likelihood	0.3268		0.2131	0.1730
tio	MMR	0.3361_{Q}	17/14	0.2206	0.1746
es	xQuAD	$0.3582_{Q,M}$	31/6	$0.2372_{Q,M}$	0.1785
Suggestions	PM-1	0.3664^{X}	25/15	0.2409	0.1654
S	PM-2	$0.4374^{X,P}_{Q,M}$	33/10	$0.3087_{Q,M}^{X,P}$	0.1841
WT	7-2010 Best (uogTrB67xS) [11]	0.4178	N/A	0.2980	N/A

ClueWeb09-B (50 queries from 2010)

Evaluated at 50 documents (e.g., α-NDCG@50)

69

(Dang and Croft, 2012)

69

PM-2

PM-2 characteristics

- Requires a set of explicit query intents
- Allows a single document to satisfy multiple query intents
 - Those documents are more likely to be ranked highly
- The diversified ranking covers each intent proportionally
 - Weighting is possible, but uniform weights were best
- Each query q requires running queries q and $\{q_1, ..., q_k\}$
 - Presumably 7-10 queries in Dang & Croft's experiments
 - Thus a little expensive computationally
- Relative performance vs. xQuAD depends on detailed datasets and explicit topics.

70

Implicit vs. Explicit Diversification Algorithms

Explicit methods are more effective than MMR, but they need to know query intents

- Obtaining intents from web search engines is unsatisfying
 - Reliance on another organization
 - Perhaps the query suggestions don't work well for your task

R-LeToR works the best with supervision

• xQuAD and PM-2 are both unsupervised (but they have extra information – intents)

Ideally, we want the best characteristics of each method

- No need for external resources
- Make use of subtopics when available
- Fully utilize supervision

71

© 2021 Jamie Callan & Chenyan Xiong

71

Summary

Methods of identifying query intents

- Commercial search engine suggestions
 - Query suggestions > related queries
- Still an open problem
 - Very hard without search log

72

2021 Jamie Callan & Chenyan Xiong

Summary

Diversification algorithms

- Maximum Marginal Relevance (MMR)
- Relational Learning to Rank (R-LeToR)
- xQuAD
- PM-2

Characteristics

• MMR: Implicit, unsupervised, penalizes redundancy

• R-LeToR: Implicit, supervised, features to model redundancy

• xQuAD: Explicit, unsupervised, penalizes redundancy

• PM-2: Explicit, unsupervised, enforces proportionality

© 2021 Jamie Callan & Chenyan Xiong

73

Summary

Performance: R-LeToR > PM-2 \approx xQuAD > MMR

74

2021 Jamie Callan & Chenyan Xiong

Topic Outline

- Introduction
- Diversity Evaluation Metrics
- Implicit Methods
 - Maximum Marginal Relevance (MMR)
 - Learning to Rank for diversification
- Explicit Methods
 - Query intents (subtopics) discovery
 - -xQuAD
 - -PM-2

75

© 2021 Jamie Callan & Chenyan Xiong

75

For More Information

- R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In WSDM '09 Proceedings. 2009.
- J. Carbonell and J. Goldstein. The use of MMR, diversity-based reranking for reordering documents and producing summaries. Proceedings for SIGIR '98. 1998.
- C. L.A. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkann, S. Büttcher, and I. MacKinnon. Novelty and diversity in information retrieval evaluation. In SIGIR '08 Proceedings. 2008.
- V. Dang and W.B. Croft. Diversity by proportionality: An election-based approach to search result diversification. In Proceedings of SIGIR '12. 2012.
- V. Dang and W. B. Croft. Term-level search result diversification. Proceedings of SIGIR '13. 2013.
- D. Lawrie, W.B. Croft, and A. Rosenberg. Finding topic words for hierarchical summarization. In Proceedings of SIGIR. 2001.
- R. L. T. Santos, C. Macdonald, and I. Ounis. Exploiting query reformulations for web search result diversification. Proceedings of WWW 2010. 2010.
- R. L. T. Santos. Explicit web search result diversification. Ph.D. dissertation. 2013.
- Y. Zhu, Y. Lan, J. Guo, X. Cheng and S. Niu. Learning for search result diversification. SIGIR 2014. 2014.

76

2021 Jamie Callan & Chenyan Xiong