Question 1

Consider the following 4 functions

- 1) Write a set of orthonormal basis functions for these 4 functions.
- 2) What is the dimension of the space spanned by the 4 functions?
- 3) Use your basis in 1) to represent each of the 4 functions.
- 4) Use Gram-Schmidt procedure to find a set of orthonormal basis for the set spanned by the 4 functions.

Question 2

Consider the signals

$$\begin{split} s_1(t) &= 2\cos\left(\omega t + \frac{\pi}{6}\right) + \sin(\omega t), 0 \le t \le \frac{2\pi}{\omega} \\ s_2(t) &= 3\sin\left(\omega t + \frac{\pi}{4}\right), 0 \le t \le \frac{2\pi}{\omega} \end{split}$$

- 1) Calculate the energy of each signal.
- 2) Find a set of orthonormal basis functions for these signals. Express them as a linear combination of those functions.
- 3) Calculate the energy again used the coordinates in the signal space.
- 4) Find the inner product of these two signals.

Question 3

Consider a digital communication system employing M-ary modulation over an AWGN channel with noise power-spectral density $N_0/2$. The average symbol energy is E_s

- a) Assuming that 8-FSK modulation is employed, what's the dimension of 8-FSK? Using the union bound, express the BER P_b , in terms of E_s/N_0 .
- b) Assuming that 8-PSK modulation is employed, draw the constellation diagram and using the union bound, express the BER P_b in terms of E_s/N_0 . State all key assumptions in deriving the result.
- c) Which one requires more correlators in the structure of the optimal detector (followed by a minimum distance calculator) for 8FSK and 8PSK? Point out the advantage and disadvantage for MFSK and MPSK.
- d) If the system is with very limited energy, which scheme (MFSK or MPSK) will you choose?

Question 4

A digital communications system transmit 4 equally likely symbols (i.e., with $P(S_k) = \frac{1}{4}$ for all k) with symbol energy \sqrt{E} over an AWGN channel with double-sided power spectral density $N_0/2$. The signal constellation for the concerned communication system is shown below:

- a) What is the dimension of the signal space for the above signal constellation?
- b) Determine the optimal decision regions Rm for m = 1, 2, 3, 4.
- c) Determine $P(C|s_1)$: the exact probability of correct decision when S_1 is transmitted.
- d) Determine the exact symbol error probability, P_{eM} , as a function of E_b and N_0 by assuming that

$$(Q(\sqrt{\frac{E_b}{N_0}}))^2 \cong 0 \quad \text{for high E_b/N_0}$$

- e) Sketch the block diagrams of two possible realizations of the optimum receiver structure by using correlators.
- f) Give the block diagram of the optimum receiver by using the matched filter. Your receiver must be as simple as possible.