

Physique

Classe: 4ème année

Chapitre: les filtres

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(5) 40 min

9 pts

Un filtre électrique est constitué d'un GBF délivrant une tension sinusoïdale de fréquence N réglable et d'amplitude U_{Em} constante, d'un condensateur de capacité $2\mu F$, d'une bobine d'inductance L=0,8H et de résistance r, et d'un conducteur ohmique de résistance R=200 Ω .

La tension de sortie du filtre est notée : $u_s(t) = U_{sm} \sin(2\pi N t + \phi_s)$ cependant, la tension d'entrée est notée $u_E(t) = U_{Em} \sin(2\pi N t)$.

Un oscilloscope bicourbe, convenablement branché aux bornes de ce filtre, permet de visualiser simultanément les tensions $U_E(t)$ et $U_S(t)$.

Pour les fréquences N_1 et N_2 de N, on obtient, respectivement les chronogrammes des figures 2 et 3

1.

- a. Définir un filtre électrique
- b. Déterminer, par exploitation des figures 2 et 3, les fréquences N₁et N₂ du GBF.
- c. Justifier, pour les deux figures 2 et 3, que la courbe (a) correspond à la variation de $U_E(t)$.
- d. Préciser, en le justifiant, la nature de ce filtre (actif ou passif).
- 2. On rappelle que la transmittance d'un filtre est donnée par la relation : $\mathbf{T} = \frac{U_{sm}}{U_{Em}}$
 - a. Déterminer, pour la fréquence N₁, la valeur de la transmittance T₁ de ce filtre.
 - b. Donner la relation entre la transmittance maximale T_0 et la transmittance T_1 pour que N_1 soit une fréquence de coupure.
 - c. Sachant que $T_0=0.90$; vérifier que N_1 est une fréquence de coupure de ce filtre.
- 3. Pour une fréquence N_0 de N, les tensions $U_E(t)$ et $U_s(t)$ sont en phase, avec une transmittance T qui atteint sa valeur maximale T_0
 - a. Déterminer la valeur de la fréquence N₀
 - b. Montrer que l'expression de T₀ peut se mettre sous la forme $T_0 = \frac{R}{R+r}$
 - c. En déduire que la valeur de r est pratiquement égale à 20 Ω
- 4. Pour une fréquence N_3 inférieur à N_0 , la transmittance T_3 est telle que T_3 = T_1
 - a. Montrer que N_3 est aussi une fréquence de coupure.
 - b. Préciser, en le justifiant, la nature de ce filtre (passe bas, passe haut ou passe bande)
 - c. En déduire la largeur de la bande passante ΔN de ce filtre. On donne N_3 =105 Hz
 - d. Calculer la valeur du facteur de qualité Q de ce filtre.

Exercice 2

(\$ 40 min

9 pts

On considère le circuit de la figure 1 comportant un résistor de résistance R réglable, une bobine d'inductance L et de résistance r négligeable, un condensateur de capacité C et un générateur GBF délivrant une tension alternative sinusoïdale U(t) de fréquence N réglable.

La tension efficace du GBF est fixée à la valeur U₁=4V et la résistance du résistor est réglée à la valeur $R=450~\Omega$

On fait varier la fréquence N du GBF et on mesure à l'aide d'un voltmètre la tension efficace UR aux bornes du résistor correspondante. Les mesures réalisées permettent de tracer la courbe $U_R=f(N)$ donné par la figure 2. Une zone de cette partie est agrandie sur la figure 3.

Figure 2

Figure 3

On rappelle que la fréquence propre du circuit $N_0 = \frac{1}{2\pi\sqrt{LC}}$; le facteur de qualité $Q = \frac{N_0}{\Delta N} = \frac{1}{R_t} \sqrt{\frac{L}{C}} \quad \text{avec } \Delta N \text{ la largeur de la bande passante et } R_t \text{ la résistance totale du}$ circuit électrique

1.

- a. Déterminer graphiquement la valeur de la fréquence propre du circuit No
- b. En déduire les valeurs du produit LC
- 2. Le circuit étudié constitue un filtre électrique. les tensions U(t) et $U_R(t)$ sont respectivement, la tension d'entrée et la tension de sortie du filtre.
 - a. En exploitant la figure 2, indiquer la nature de ce filtre (passe bas, passe haut, passe bande)

- b. Déterminer, graphiquement la (ou les) fréquence(s) de coupure du filtre.

 En déduire la largeur de la bande passante ΔN.
- c. Calculer la valeur du facteur de qualité Q. en déduire la valeur du quotient $\frac{L}{c}$
- 3. Déduire des calculs précédents, la valeur de L et la valeur de C.
- 4. Sans changer les autres composants du circuit, on règle la valeur de la résistance du résistor à une valeur $R_3 > R_2$. Indiquer, si les grandeurs suivantes sont modifiées ou non :
 - La fréquence propre N₀
 - La largeur de la bande passante ΔN

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000