Mathematics Class Slides Bronx Early College Academy

Christopher J. Huson PhD

7-15 October 2020

BECA / Dr. Huson / Geometry Unit 1
1.0 Deview washulaw and samuest saladations. 7 October
1.8 Review vocabulary and segment calculations, 7 October

GQ: How do we measure line segments?

CCSS: HSG.CO.A.1 Know precise geometric definitions 1.8 Wednesday 7 Oct

Do Now: Self-assessments questions

- 1. How do we work efficiently and become a good scholar
- 2. What should we know and be able to do

Lesson: Circle definition, trisection

Review and practice of vocabulary, line segments, and congruence

Scholarship assessment

1: Well below, 2: Approaching, 3: Meets expectations, 4: Exceeds

- 1. Participate: Attendance (Google Classroom), Classkick
- Practice assignments: Khan Academy, Deltamath, 1.5 worksheet
- Detailed notes: Notebook treasure hunt uploads (weekend)

What do I know, what can I do assessment

1: Well below, 2: Approaching, 3: Meets expectations, 4: Exceeds

- 1. Classkick (open book, timed; use @beca324.org login): Diagrams & notation, segment addition, number line lengths
- 2. Project: Construction of an equilateral triangle

Definition of a circle in a plane

A circle is defined by its center point and radius r as all the points with distance r to the center.

Shown below circle C, radius = 2

Note: All of the radii of a circle are congruent.

Definition: Trisection of a line segment

Two points *trisect* a line segment if they divide it into three congruent segments

Given \overline{ABCD} with trisecting points B and C. If AD = 9, find x.

1) Diagrams and notation

Given the points P and Q, draw \overrightarrow{PQ} .

Q

F

2) Diagrams and notation

Write your answers using proper notation

- 1. What is the name of the ray shown in plane p
- 2. Mark the intersection of \overrightarrow{JK} and \overrightarrow{LM} on the diagram and label it N.

3) Diagrams and notation

Sketch a circle centered at point A with radius AB.

A • _____

4) Diagrams and notation

Given isosceles $\triangle XYZ$ with $\overline{XY} \cong \overline{XZ}$.

On the diagram mark the congruent line segments with tick marks.

5) Applying the segment addition postulate

Given \overline{TUV} , TU = 4.7, and UV = 6.2. Find TV.

Show your work by marking the diagram and writing an equation.

6) Applying the segment addition postulate

Find the perimeter of the isosceles $\triangle ABC$, given $\overline{AC}\cong \overline{BC}$, AB=7, and AC=10

Show your work with an equation for full credit.

7) Applying the segment addition postulate

Given \overline{LMN} , LM = 2x + 2, MN = 15, LN = 23. Find x.

- 1. Write down an equation to represent the situation.
- 2. Solve for *x*.

Check your answer.

8) Applying the segment addition postulate

Given equilateral $\triangle ABC$ having perimeter of 21. Find the length of side \overline{AB} , x.

9) Finding lengths on the number line

Given E(-3) and F(1), as shown on the number line.

Find the length of the line segment *EF*.

State an equation and the solution.

Check your work by counting the distance. Leave marks to show your work.

10) Finding lengths on the number line (spicy)

Given S(1) and T(4), as shown on the number line.

Find point U given that point T bisects \overline{SU} . Plot and label U on the number line.

11) Applying the segment addition postulate

Given M is the midpoint of \overline{AB} , AM = 3x + 6, MB = 15.

- 1. Mark the diagram with the values and tick marks
- 2. Write an equation and solve for x
- 3. Check your result

12) Applying the segment addition postulate

The points Q and R trisect the line segment \overline{PS} . $PS = 13\frac{1}{2}$.

- 1. Mark and label the approximate locations of Q and R.
- 2. Find *PQ*. State an equation for full credit.

