Feuille d'exercices n° 10 : Ensembles, applications, arithmétique

Exercice 1. Soient A et B deux parties d'un ensemble E. Simplifier :

$$C = \overline{A \cap \overline{A \cap \overline{A \cap \overline{A}}}} \qquad \qquad D = A \cap \overline{(A \cup B) \cap \overline{A}}$$

$$D = A \cap \overline{(A \cup B) \cap \overline{A}}$$

Exercice 2. Soient E et F deux ensembles, et $f \in \mathcal{F}(E,F)$, soient A, A_1 et A_2 des parties de E, et B, B_1 et B_2 des parties de F. Montrer que :

1.
$$f(\varnothing) = \dots$$
 et $f^{-1}(\varnothing) = \dots$

5.
$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$

2.
$$f^{-1}(F) = \dots$$

6.
$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$

3.
$$A \subset f^{-1}(f(A))$$

7.
$$f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$$

4.
$$f(f^{-1}(B)) \subset B$$

8.
$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$$

Exercice 3. Soit $f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & (x^2-1)^2 \end{array}$.

1. Étudier f et dessiner sa courbe représentative.

2. On note A = [0, 1]. Déterminer f(A) puis $f^{-1}(f(A))$.

3. On note B = [-1, 1]. Déterminer $f^{-1}(B)$ puis $f(f^{-1}(B))$.

On peut montrer que : $A \subset f^{-1}(f(A))$ et $f(f^{-1}(B)) \subset B$. Cet exercice montre que dans le cas général, il n'y a pas égalité.

Exercice 4. Soient les applications f et g de \mathbb{N} dans \mathbb{N} , définies par :

 $\forall n \in \mathbb{N},$ f(n) = 2n

si n est pair , $g(n) = \frac{n}{2}$, et si n est impair, $g(n) = \frac{n-1}{2}$. $\forall n \in \mathbb{N},$

1. Etudier, l'injectivité, la surjectivité, et la bijectivité de f et g.

2. Déterminer l'application $q \circ f$. Les fonctions f et g sont-elles bijections réciproques l'une de l'autre?

Exercice 5. On identifie le plan muni d'un repère orthonormé et \mathbb{C} de la manière usuelle.

1. Montrer que $f: \begin{array}{c} \mathbb{C}\setminus\{-1\} & \to & \mathbb{C}\setminus\{2\} \\ z & \mapsto & \frac{2z+5}{z+1} \end{array}$ est bijective et expliciter f^{-1} .

2. Si D est la droite d'équation $x=\frac{1}{2}$, montrer que f(D) est inclus dans un cercle de centre Ω d'affixe $z_{\Omega} = 3$ dont on donnera le rayon.

Exercice 6. Soit $f: E \to F$ une application et $A \subset E$.

1. Montrer que f injective $\Rightarrow f_{|A}$ injective. La réciproque est-elle vraie?

2. Enoncer une proposition sur le modèle de la question précédente mais avec "surjective".

Exercice 7. Soient E, F et G trois ensembles, $f \in \mathcal{F}(E, F)$ et $g \in \mathcal{F}(F, G)$.

- 1. Montrer que : $g \circ f$ est injective implique que f est injective.
- 2. Montrer que : $g \circ f$ est surjective implique que g est surjective.
- 3. Montrer que : $g \circ f$ est injective n'implique pas que g est injective.
- 4. Montrer que : $g \circ f$ est surjective n'implique pas que f est surjective.

Exercice 8. Soient $f \in \mathcal{F}(E, F)$, $g \in \mathcal{F}(F, G)$ et $h \in \mathcal{F}(G, E)$. On suppose que les applications $f \circ h \circ g$ et $h \circ g \circ f$ sont injectives et que l'application $g \circ f \circ h$ est surjective. Montrer que les applications f, g et h sont bijectives (on pourra utiliser l'exercice 7).

Exercice 9. Soient $f \in \mathcal{F}(E, F)$ et $g \in \mathcal{F}(F, G)$. Montrer que si $g \circ f$ est surjective et g injective, alors f est surjective.

Exercice 10. Une application f de E dans E est dite idempotente si et seulement si elle vérifie : $f \circ f = f$.

- 1. Donnez des exemples d'applications idempotentes.
- 2. On note Id_E l'application identitée de E. Montrer que si f est idempotente et injective, alors $f = Id_E$. Montrer que si f est idempotente et surjective, alors $f = Id_E$.

Indication:

1. On sait que : $\forall x \in E$, f(f(x)) = f(x).

Exercice 11. Trouver le nombre d'entiers naturels qui, dans la division euclidienne par 51, ont un quotient égal au reste.

Exercice 12. Quels sont les entiers $n \in \mathbb{N}^*$ tels que $A_n = 4n^2 - 1$ est premier?

Pour s'entrainer

Exercice 13. Soient $f \in \mathcal{F}(E, F)$, $g \in \mathcal{F}(F, G)$ et $h \in \{(G, E)\}$. Montrer que si les applications $g \circ f$ et $h \circ g$ sont bijectives alors f, g, et h sont bijectives.

Exercice 14. On pose $f(z) = \frac{z-i}{z+i}$, pour tout $z \text{ de } \mathbb{C} - \{-i\}$.

- 1. L'application f est-elle une application injective de $\mathbb{C} \{-i\}$ dans \mathbb{C} ? Une application surjective de $\mathbb{C} \{-i\}$ dans \mathbb{C} ? Une application bijective de $\mathbb{C} \{-i\}$ dans \mathbb{C} ?
- 2. Déterminer les ensembles C_1 et C_2 les plus grands possibles, inclus dans \mathbb{C} , tels que f définisse une bijection de C_1 dans C_2 .
- 3. Montrer que la restriction de f à l'ensemble $P = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ est une bijection de P dans $D = \{z \in \mathbb{C} \mid |z| < 1\}$.

Exercice 15. Soient X et Y deux ensembles. Montrer que :

- 1. $X \subset Y \iff \mathcal{P}(X) \subset \mathcal{P}(Y)$.
- 2. $X = Y \iff \mathcal{P}(X) = \mathcal{P}(Y)$.

Exercice 16. Soient E un ensemble, A et B deux parties de E, et $f: \begin{array}{ccc} \mathcal{P}(E) & \to & \mathcal{P}(A) \times \mathcal{P}(B) \\ X & \mapsto & (X \cap A, X \cap B) \end{array}$.

- 1. Montrer que f est surjective si et seulement si $A \cap B = \emptyset$.
- 2. Montrer que f est injective si et seulement si $A \cup B = E$.
- 3. On suppose que f est bijective; déterminer alors f^{-1} .

Exercice 17. Soit pour $z \in \mathbb{C} \setminus \{-i\}$: $f(z) = \frac{z-2}{z+i}$. Déterminer (géométriquement) le lieu des points M du plan d'affixe z tels que :

a)
$$|f(z)| = 1$$
.

b)
$$f(z) \in \mathbb{R}$$
.

c)
$$f(z) \in i\mathbb{R}$$

Exercice 18. On note $\mathbb{H} = \{z \in \mathbb{C} \mid \Im(z) > 0\} \text{ et } \mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}.$

- 1. Soit $f: z \mapsto \mathbb{C}$ $z \mapsto \frac{z-i}{z+i}$. Montrer que f réalise une bijection de \mathbb{H} sur \mathbb{D} .
- 2. Soient $a, b, c, d \in \mathbb{R}$ tels que ad bc = 1 et h définie par $h(z) = \frac{az + b}{cz + d}$.

 Montrer que pour tout z du domaine de définition de h on a $\Im(h(z)) = \frac{\Im(z)}{|cz + d|^2}$, puis que h définit une bijection de \mathbb{H} sur \mathbb{H} .

Exercice 19. On considère l'application $f: z \mapsto \frac{z+1}{z-2}$, et on note $A = \mathbb{C} \setminus \{2\}$ et $B = \mathbb{C} \setminus \{1\}$.

- 1. Montrer que f réalise une bijection de A vers B. Déterminer une expression simple de sa réciproque f^{-1} .
- 2. Déterminer l'image réciproque de \mathbb{U} (c'est-à-dire l'ensemble des z tels que $f(z) \in \mathbb{U}$) et celle du disque unité $\{z \in \mathbb{C} \mid |z| \leq 1\}$.
- 3. Déterminer les nombres complexes $z \in \mathbb{U}$ tels que $f(z) \in \mathbb{U}$.
- 4. Quel est l'ensemble de définition de l'application $f \circ f$? Est-elle également bijective, et si oui, vers quel ensemble?

Exercice 20. ϕ est l'application de $\mathbb C$ dans $\mathbb C$ définie par : $\phi(z) = z^2 + z + 1$. L'application ϕ est elle injective de $\mathbb C$ sur $\mathbb C$? surjective? bijective?

Exercice 21. Soient E et F deux ensembles, et $f \in \mathcal{F}(E,F)$. On note $\tilde{f}: \mathcal{F}(E) \to \mathcal{P}(F)$

- 1. Montrer que \tilde{f} est injective si et seulement si f est injective.
- 2. Montrer que \tilde{f} est surjective si et seulement si f est surjective.

Exercice 22.

1. Donner un exemple qui montre que si f est une application de E dans F, si A est une partie de E et si $a \in E$, l'énoncé

$$f(a) \in f(A) \implies a \in A$$

est - en général - faux.

2. Démontrer que si f est une injection de E sur F, alors l'énoncé précédent est vrai pour toute partie A de E et tout élément a de E.

Exercice 23.

- 1. Montrer que la composée de deux applications croissantes est croissante.
- 2. L'application réciproque d'une bijection croissante est-elle nécessairement croissante?

Exercice 24. Soient E, F et G des ensembles. Démontrer que :

1.
$$E \cap F = E \Leftrightarrow E \subset F$$
.

3.
$$(E \setminus F) \cup (E \setminus G) = E \setminus (F \cap G)$$
.

2.
$$E \cup F = E \Leftrightarrow F \subset E$$
.

Exercice 25.

1. Léa, Léo et Léon, qui forment un groupe de colle qu'on note $\mathcal G$, ont colle de SI. On note $\mathcal N$ l'ensemble des entiers entre 0 et 20 et on considère l'application $\varphi:\mathcal G\to\mathcal N$ qui à x associe sa note en colle.

Donner une phrase en français la plus simple possible signifiant que φ est injective. φ peut-elle être surjective?

- 2. Léa, Léo, Léon, Léonhard, Paul, Pauline, Paulette, Paula, Carl, Carla et Charline ont obtenu les notes respectives de A, B, C, D, F, B, D, A, B, E et C à leur devoir de Mathématiques, le devoir étant noté par la lettre A, B, C, D, E ou F, A signifiant "excellent", . . . et F signifiant "très mauvais". On note $\mathcal E$ l'ensemble des élèves cités précédemment et $\mathcal N$ l'ensemble $\{A,B,C,D,E,F\}$ et on considère l'application $\psi:\mathcal E\to\mathcal N$ qui à x associe sa note au devoir.
 - (a) ψ est-elle injective? ψ est-elle surjective? Une application de \mathcal{E} dans \mathcal{N} peut-elle être injective?
 - (b) Donner $X, Y \subset \mathcal{E}$ tels que $\operatorname{card}(X \cap Y) = 2$ et les applications $\psi_{|X}$ et $\psi_{|Y}$ sont bijectives.
- 3. Léa, Léo, Léon, Léonhard, Paul, Pauline, Paulette, Paula, Carl, Carla et Charline ont obtenu les notes respectives de A, B, C, D, E, B, D, A, B, E et C à leur devoir de Mathématiques, le devoir étant noté par la lettre A, B, C, D, E ou F, A signifiant "excellent", . . . et F signifiant "très mauvais". On note \mathcal{E} l'ensemble des élèves cités précédemment et \mathcal{N} l'ensemble $\{A, B, C, D, E, F\}$ et on considère l'application $\psi: \mathcal{E} \to \mathcal{N}$ qui à x associe sa note au devoir.
 - (a) ψ est-elle injective? ψ est-elle surjective?
 - (b) On note $W = \psi(\{\text{L\'ea}, \text{L\'eo}\})$. Déterminer $\psi^{-1}(W)$.
 - (c) On note $V = \psi^{-1}(\{D, E, F\})$. Déterminer $\psi(V)$.