Design and Analysis of Algorithms

Section VI: Graph Algorithms

Chapter 26: Maximum Flow

VI Graph Algorithms

26 Maximum Flow

710

Chapter 26 Maximum Flow

26.2 The Ford-Fulkerson method

Soviet rail network (1950s)

"Free world" goal. Cut supplies (if cold war turns into real war).

Reference: On the history of the transportation and maximum flow problems.

Alexander Schrijver in Math Programming, 91: 3, 2002.

Shipping Example

- Lucky Puck Company's Trucking Problem
- Vancouver Factory
- Winnipeg Warehouse

Flow Network

- Directed graph G = (V, E) with
 - edge capacities c(u,v) ≥ 0
 - a designated source node s
 - a designated target/sink node t
 - flows on edges f(u,v)

Shipping Example

- Lucky Puck Company's Trucking Problem
- Vancouver Factory
- Winnipeg Warehouse

Flow Network

Antiparallel Edges Not Allowed

Antiparallel Edges Not Allowed

Antiparallel Edges Not Allowed/Easily Converted

Multiple-Source/ Multiple-Sink

Multiple-Source/Multiple-Sink Easily Converted

Flow Network

- Directed graph G = (V, E) with
 - edge capacities c(u,v) ≥ 0
 - flows on edges f(u,v)
- Capacity Constraint:
 - For all $u, v \ni V, 0 \le f(u,v) \le c(u,v)$
 - Flow is greater than 0
 - Flow is less than capacity

Flow Network

- Directed graph G = (V, E) with
 - edge capacities c(u,v) ≥ 0
 - flows on edges f(u,v)
- Capacity Constraint:
 - For all u, v \ni V, 0 ≤ f(u,v) ≤ c(u,v)
 - Flow is greater than 0
 - Flow is less than capacity
- Flow Conservation:

$$\bigvee_{u\in V-\{s,t\}} \sum_{v\in V} f(v,u) = \sum_{v\in V} f(u,v)$$

- Flow into Vertex equals Flow out

Applications

- fluid in pipes
- current in an electrical circuit
- traffic on roads
- data flow in a computer network
- money flow in an economy
- etc.

Maximum Flow Problem

- Assuming
 - Source produces the material at a steady rate
 - Sink consumes the material at a steady rate
- What is the maximum net flow from s to t?

Residual Capacity

- Given a flow f in network G = (V, E)
- Consider a pair of vertices u, v ∈ V
- - $\circ c_f(u, v) = f(v, u) \mid IF(v, u) \in E$ Represents potential reduction in opposite flow.

AND no parallel edges

Residual Capacity

Residual network induced by flow f is defined as

•
$$G_f = (V, E_f)$$

 $E_f = \{ (u, v) \in V \times V \mid c_f(u, v) > 0 \}$

Example (1)

Example (2)

Augmentation

- Given:
 - Flow f in G
 - Flow f' in G_f (the Residual Graph from G w/ f)

$$(f \uparrow f')(u, v) = \begin{cases} f(u, v) + f'(u, v) - f'(v, u) & \text{if } (u, v) \in E, \\ 0 & \text{otherwise}. \end{cases}$$
(26.4)

Augmented Flow is a Flow

Given:

- Flow f in G
- Flow f' in G_f (the Residual Graph from G w/ f)

$$(f \uparrow f')(u, v) = \begin{cases} f(u, v) + f'(u, v) - f'(v, u) & \text{if } (u, v) \in E, \\ 0 & \text{otherwise}. \end{cases}$$
(26.4)

Lemma 26.1

Let G = (V, E) be a flow network with source s and sink t, and let f be a flow in G. Let G_f be the residual network of G induced by f, and let f' be a flow in G_f . Then the function $f \uparrow f'$ defined in equation (26.4) is a flow in G with value $|f \uparrow f'| = |f| + |f'|$.

Augmentation Path

Augmentation Path is a simple path in the residual graph

Augmentation Path

Augmentation Path is a simple path in the residual graph

 Residual Capacity is the min residual capacity of any link in the Augmentation Path

$$c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is on } p\}$$

Augmentation Path

 Residual Capacity is the min residual capacity of any link in the Augmentation Path

$$c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is on } p\}$$

Augmentation

$$(f \uparrow f')(u, v) = \begin{cases} f(u, v) + f'(u, v) - f'(v, u) & \text{if } (u, v) \in E, \\ 0 & \text{otherwise}. \end{cases}$$
(26.4)

Ford-Fulkerson Algorithm

- Start with zero flow
- Repeat until convergence:
 - Find an augmenting path, from s to t along which we can push more flow
 - Augment flow along this path

Example (1)

Example (2)

Example (3)

residual graph, with flow-augmenting path

Example (4)

original graph with new flow

Example (5)

new residual graph, with augmenting path

Example (6)

original graph with new flow

Example (7)

new residual graph, with augmenting path

Example (8)

original graph, with new flow


```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G.E

2 (u, v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 if (u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 else (v, u).f = (v, u).f - c_f(p)
```

Example: Finding Augmenting Path

queue = { v1, v2 }

queue = {v2}

queue = {v3}

queue = {v4, v5}

queue = { v5, v6 }

- The previous is an example
- Depth-first search is an alternative
- The code is nearly the same
- Only the queuing order differs

ToVisit = { v0 }

ToVisit = { v1, v2 }

To Visit = { v2, v3 }

To Visit = { v2, v3 }

To Visit = { v4, v5 }

To Visit = { v5 , v6}

ToVisit = {v6}

ToVisit = {v7}

ToVisit = {}

 Now see what happens if ToVisit is implemented as a stack (LIFO).

ToVisit = { vO }

ToVisit = { v1, v2 }

ToVisit = { v1, v3 }

To Visit = { v1, v4, v5}

To Visit = { v1, v4 }

ToVisit = { v1, v6}

ToVisit = { v1, v7}

ToVisit = { v1 }

Analysis

- Each iteration adjusts flow by at least 1
- O(E |f*|)

Example

Example

No Augmentation Paths

