

Airbag protection for road vehicle

Patent number: DE19756977
Publication date: 1999-07-01
Inventor: EBERLE WALTER DIPL ING (DE)
Applicant: DAIMLER CHRYSLER AG (DE)
Classification:
- **international:** B60R21/16; B60R21/26
- **european:** B60R21/20D
Application number: DE19971056977 19971220
Priority number(s): DE19971056977 19971220

[Report a data error here](#)

Abstract of DE19756977

An airbag protection for a vehicle has two or more gas generators incorporated into the mounting. A single airbag (4) is inflated by the first gas generator and its inflated size is restricted by a mechanical restraint (6). The restraint is released by the pressure from a second gas generator and allows the airbag to expand to its full size. The restraint can be a grip to hold a fold in the airbag or is can be a tie which bridges a folded section of the airbag. The timing for the activation of the second and subsequent gas generators can be controlled in response to the size and position of the seat occupant.

Data supplied from the [esp@cenet](#) database - Worldwide

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) **Patentschrift**
(10) **DE 197 56 977 C2**

(3) (51) Int. Cl. 7:
B 60 R 21/16

(21) Aktenzeichen: 197 56 977.3-42
(22) Anmeldetag: 20. 12. 1997
(43) Offenlegungstag: 1. 7. 1999
(45) Veröffentlichungstag
der Patenterteilung: 5. 7. 2001

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(13) Patentinhaber:

DaimlerChrysler AG, 70567 Stuttgart, DE

(17) Erfinder:

Eberle, Walter, Dipl.-Ing., 73269 Hochdorf, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht
gezogene Druckschriften:

DE 1 95 29 561 C1
DE 40 32 757 C2
DE 1 95 41 584 A1
DE 2 97 07 162 U1
US 53 08 113 A
US 52 49 825 A
EP 05 86 131 B1

BEST AVAILABLE COPY

(54) Airbag für ein Kraftfahrzeug

(55) Airbag für ein Kraftfahrzeug, mit einer im Ruhezustand zusammengefalteten Airbaghülle, die beim Fahrzeugcrash durch einen Gaseinlaß hindurch mit Gas aus einer Druckgasquelle befüllbar ist, wobei deren Volumenausbildung durch eine an der Airbaghülle angreifende Haltevorrichtung begrenzbar ist, in dem die Verbindung zur Airbaghülle lösbar ist, wobei durch das Lösen der Verbindung das vollständige Volumen der Airbaghülle entfaltbar ist, dadurch gekennzeichnet, daß die Druckgasquelle (3) mindestens zwei unabhängig aktivierbare Gaszuführstufen (I, II) aufweist, und mit einer ersten Gaszuführstufe (I) eine Befüllung der Airbaghülle (4) mit begrenztem Volumen erfolgt und mit der zweiten Gaszuführstufe (II) ein Lösen der Verbindung zur Airbaghülle (4) in der Haltevorrichtung (6) gekoppelt ist.

DE 197 56 977 C2

Beschreibung

Die Erfindung betrifft einen Airbag für ein Kraftfahrzeug gemäß dem Oberbegriff des Anspruches 1.

In der US 5 308 113, die im Oberbegriff des Anspruches 1 berücksichtigt ist, ist ein Airbag beschrieben, dessen Airbaghülle im Inneren ein Fangband aufweist, das eine Falte aufweist, die durch eine aufhebbare Verbindung zusammengehalten ist, wodurch das Fangband verkürzt ausgebildet ist, und so die volle Entfaltung der Airbaghülle verhindert. Beim Befüllen der Airbaghülle mit Gas wird beim Erreichen eines vorherberechneten Innendruckes der Airbaghülle die Verbindung am Fangband gelöst, und die volle Länge des Fangbandes frei. Die damit erzielbaren unterschiedlichen Formen der Airbaghülle sollen sich für den sich out of position befindenden Insassen ebenso wie für den in der richtigen Position sitzenden Insassen vorteilhaft auswirken. Die aufhebbare Verbindung wird hier durch den Druckanstieg in der Airbaghülle gelöst, so daß sich die beiden möglichen Formen der Airbaghülle immer nacheinander ausbilden. Genau ist der Zeitpunkt des Lösens der aufhebbaren Verbindung dabei nicht vorherbestimmbar, da der Innendruckanstieg nicht gleichmäßig erfolgen muß, und vor allem bei einer Nähaht als Verbindungsmitte auch noch die Alterung und die Fertigungstoleranzen den vorherbestimmten Reißzeitpunkt der Naht verfälschen. Eine individuelle und für die Sicherheit der Insassen notwendige Anpassung der Form der Airbaghülle bzw. des Entfaltungsvolumens an die Gegebenheiten im Fahrzeug ist somit nicht möglich.

Aus der EP 0 586 131 B1 ist ein Airbag bekannt, dessen Airbaghülle durch innenliegende Haltebänder geformt wird. Die Haltebänder weisen auf ihrer Länge jeweils eine vorsätzlich gebildete Falte auf, durch die das Halteband verkürzt ist. Durch einen Reißvorgang wird beim Befüllen der Airbaghülle mit Gas diese Falte aufgetrennt, und das Halteband in seine volle Länge gestreckt, wodurch auch die Airbaghülle ihrem maximalen Umfang erreicht. Durch das verkürzte Halteband wird die Airbaghülle bei der Befüllung verschwenkt und in eine für den Insassen vorteilhafte Position gebracht. Bei einer frühen Belastung der Airbaghülle durch den Insassen würde das Halteband nicht ausreichend auf Zug belastet werden, und den Reißvorgang nicht auslösen können, so daß sich die Airbaghülle nicht voll entfalten würde, und dem Insassen ein nur unzureichender Aufprallschutz gegen ein Durchschlagen auf die vor ihm liegenden Fahrzeugverkleidungsteile vorgelagert wäre.

In der DE 40 32 757 C2 ist ein Airbag mit zwei voneinander unabhängig aktivierbaren Druckgasquellen beschrieben, von denen eine oder beide aktivierbar sind, wodurch die sich immer mit ihrem ganzen Volumen entfaltende Airbaghülle mit unterschiedlichem Innendruck füllbar ist, um so die Belastung des Insassens beim Anprall an die Airbaghülle an die Unfallschwere anzupassen zu können. Die Ansteuerung nur einer der Druckgasquellen führt zu einer Befüllung der Airbaghülle mit einem geringeren Innendruck aber zu keiner Volumengrenzung der Airbaghülle.

Des weiteren ist aus der DE 297 07 162 U1 ein Airbag bekannt, der ein Fangband aufweist, dessen Länge durch eine Naht verkürzt ist, wobei die Naht bei erhöhtem Innendruck im Gassack in einer zweiten Stufe der Entfaltung aufreißbar ist. Die aufhebbare Verbindung in der Naht wird hier durch den Druckanstieg in der Airbaghülle und den dadurch hervorgerufenen Zug auf die Naht gelöst. Der Zeitpunkt des Lösens der aufhebbaren Verbindung ist bei dieser bekannten Vorrichtung nicht vorherbestimmbar.

Aus der DE 195 41 584 A1 ist ein mehrstufiger Gasgenerator bekannt, mit dem unterschiedliche Airbaginnendrücke erzeugt werden können. Die DE 195 29 561 C1 bezieht sich

auf einen Airbag, der mit einem flexiblen Schlauch versehen ist, der über eine Steuereinheit durch Kolben festklemmbar ist. Eine zusätzliche Steuereinheit für variables Volumen des Airbags ist hier nicht vorgesehen. Schließlich ist aus der US 5,249,825 A eine Klemmvorrichtung bekannt, die zur Begrenzung eines Airbagvolumens durch die Rückhaltung der Airbaghülle dient, wobei diese Klemmung durch den Airbaginnendruck aufhebbar ist.

Die Aufgabe der Erfindung besteht darin, bei einem gatungsgemäßen Airbag eine sichere Funktionssteuerung für die Haltevorrichtung vorzusehen.

Die Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst.

Durch die mindestens zwei vorhandenen, unabhängig voneinander aktivierbaren Gaszuführstufen der Druckgasquelle kann die Entfaltung des Airbags genau gesteuert werden und ist damit an die Gegebenheiten beim Fahrzeugcrash individuell anpaßbar. Somit können erfassbare Meßwerte, wie z. B. die Sitzposition des Insassens, dessen Größe und Gewicht, die Fahrzeuggeschwindigkeit wie auch die des Unfallgegners zur Ermittlung des Zeitpunktes der Ansteuerung der zweiten Gaszuführstufe herangezogen werden und damit ein für den Insassen optimales Airbagverhalten erreicht werden. Es ist dabei auch möglich, daß nur die erste Gaszuführstufe aktiviert wird, und damit die Volumenausbildung, angepaßt an die Erfordernisse beim Fahrzeugcrash, begrenzt bleibt, womit dem Airbag die Aggressivität bei z. B. weit vorne sitzenden Insassen genommen wird. Es ist weiterhin möglich, die Gaszuführstufen gleichzeitig oder

30 nacheinander zu aktivieren.

Bei einer Ausbildung der Druckgasquelle mit einem bekannten zwei- oder mehrstufigen Gasgenerator oder auch mit zwei oder mehreren Gasgeneratoren kann die Gaszufuhr durch Aktivierung der Zündpillen einfach gesteuert werden, und auch der erzeugte Gasdruck kann dabei noch geregelt werden. Das Steuersignal für die zweite Gasgeneratorstufe kann gleichzeitig auch noch zur Ansteuerung des Lösevorganges in der Haltevorrichtung dienen.

Die Haltevorrichtung kann in einfach herstellender Art und Weise mechanisch bewegbare Bauteile als lösbarer Verbindungsmittel zur Airbaghülle umfassen, die elektrisch oder magnetisch angesteuert oder durch den Gasdruck der zweiten Gaszuführstufe bewegt oder auch als Klemmvorrichtung ausgebildet sein können, die die Airbaghülle aufgrund eines erreichten Schwellenwertes des Innendruckes in der Airbaghülle freigibt.

Eine derartige Haltevorrichtung kann einfach an einem Airbaggehäuse oder am Gasgenerator selbst festgelegt werden und benötigt damit kaum Bauraum. Die Airbaghülle kann mit einem oder mehreren, außen an der Airbaghülle verlaufenden Fangbändern oder direkt mit einem Abschnitt der Airbaghülle selbst in der Haltevorrichtung lösbar gehalten werden. Dabei ist es auch möglich, dem Gaseinlaß in die Airbaghülle naheliegende Falten der Airbaghülle beizubehalten, so daß sich das begrenzt ausbildende Volumen bei geschlossener Haltevorrichtung ungestört und in der gewünschten Kissenform entfalten kann.

Weitere Vorteile und Ausgestaltungen gehen aus den Unteransprüchen und der Beschreibung hervor.

60 Die Erfindung ist nachstehend anhand einer Zeichnung näher beschrieben.

Es zeigen:

Fig. 1a in einer Seitenansicht skizziert einen Airbag mit einer beim Crash aufgrund einer Haltevorrichtung mit begrenztem Volumen gasgefüllten Airbaghülle.

Fig. 1b den Airbag aus Fig. 1a voll entfaltet mit gelöster Verbindung der Airbaghülle zur Haltevorrichtung.

Fig. 2 ein weiteres Ausführungsbeispiel eines derartigen

Airbags mit in einer Haltevorrichtung gehaltenen, außenseitig der Airbaghülle verlaufenden Fangbändern, und

Fig. 3 einen Airbag mit einem in der Haltevorrichtung gehaltenen Airbaghüllenabschnitt.

Die Figuren zeigen einen Airbag 1, mit einem Airbaggehäuse 2, in dem als Druckgasquelle 3 ein Gasgenerator gelagert ist, und an dem zudem eine Airbaghülle 4 gasdicht festgelegt ist, die im Ruhezustand z. B. in einem Verkleidungs teil eines Kraftfahrzeugs zusammengefaltet verstaut ist, und bei einem Fahrzeugcrash durch einen Gaseinlaß 5 hindurch mit Gas aus dem dann gezündeten Gasgenerator 3 befüllt wird und sich schützend kissenartig vor dem Insassen ausbreitet.

Wie die Fig. 1a zeigt ist die Volumenausbildung der Airbaghülle durch eine an dieser angreifenden Haltevorrichtung 6 begrenzbar, wozu gegenüberliegend je eine Aufnahme 7 der Haltevorrichtung 6 am Airbaggehäuse 2 nahe des Gaseinlasses 5 festgelegt ist, in der eine Öse 8 an der Innenseite der Airbaghülle 4 gehalten ist. Dadurch werden die dem Gaseinlaß 5 naheliegenden Falten 9 der Airbaghülle 4 festgehalten und stören so die Entfaltung des vorerst befüllbaren Airbaghüllenvolumens nicht.

Die Druckgasquelle 3 weist mindestens zwei unabhängig voneinander aktivierbare Gaszuführstufen I, II mit gleichem oder unterschiedlichem Gasdruck auf. Hierbei kann es sich z. B. um einen zweistufigen Gasgenerator oder auch um zwei separate Gasgeneratoren handeln. Durch die Aktivierung der ersten Gaszuführstufe I wird bei geschlossener Haltevorrichtung 6 das in der Entfaltung begrenzte Volumen der Airbaghülle 4 mit dem notwendigen Druck befüllt. Bei der gleichzeitigen oder nachfolgenden Aktivierung der Gaszuführstufe II wird gleichzeitig auch die Haltevorrichtung 6 betätigt, und damit die Ösen 8 aus den Aufnahmen 7 freigegeben, und die Verbindung der Airbaghülle 4 mit der Haltevorrichtung gelöst, wobei durch die Gaszufuhr die Airbaghülle 4 in voller Größe befüllt wird, wie es die Fig. 1b zeigt.

Durch die mindestens zwei vorhandenen, unabhängig voneinander aktivierbaren Gaszuführstufen I, II der Druckgasquelle 3 ist die Entfaltung des Airbags 1 genau steuerbar und ist damit an die Gegebenheiten beim Fahrzeugcrash individuell anpaßbar. Somit können erfaßbare Meßwerte, wie z. B. die Sitzposition des Insassen, dessen Größe und Gewicht, die Fahrzeuggeschwindigkeit wie auch die des Unfallgegners zur Ermittlung des Zeitpunktes der Ansteuerung der zweiten Gaszuführstufe II herangezogen werden, und damit ein für den Insassen optimales Airbagverhalten erreicht werden. Es ist dabei auch möglich, daß nur die erste Gaszuführstufe I aktiviert wird, und damit die Volumenausbildung, angepaßt an die Erfordernisse beim Fahrzeugcrash, begrenzt bleibt, womit dem Airbag die Aggressivität bei z. B. weit vorne sitzendem Insassen genommen wird. Es ist ebenso möglich, die Gaszuführstufen I, II gleichzeitig oder auch nacheinander zu aktivieren.

Bei einer Ausbildung der Druckgasquelle 3 mit dem bekannten zwei- oder mehrstufigen Gasgenerator oder auch mit zwei oder mehreren Gasgeneratoren ist die Gaszufuhr durch Aktivierung der Zündpille einfach steuerbar, und auch der erzeugte Gasdruck kann dabei noch geregelt werden. Das Steuersignal für die zweite Gasgeneratorstufe II dient gleichzeitig noch zur Ansteuerung des Lösevorganges in der Haltevorrichtung 6.

Die Haltevorrichtung 6 weist in einfach herzustellender Art und Weise mechanisch bewegbare Bauteile als lösbarer Verbindungsmittel zur Airbaghülle 4 auf, die elektrisch oder magnetisch angesteuert oder auch als Klemmvorrichtung ausgebildet sein können, die die Airbaghülle 4 aufgrund eines erreichten Schwellenwertes des Innendruckes in der Airbaghülle 4 freigibt.

In der Fig. 2 ist eine Airbaghülle 4 gezeigt, die mit außen an der Airbaghülle 4 verlaufenden Fangbändern 10 in der Haltevorrichtung 6 lösbar gehalten ist, wodurch auch hier das in der Gaszuführstufe I entfaltbare Volumen begrenzt ist. Die Haltevorrichtung 6 weist hier jeweils einen Schieber 11 auf, der das Fangband 10 durchsetzt und festhält, und der bei der Aktivierung der Gaszuführstufe II durch den dann entstehenden Gasdruck zur Seite (hier nach links) gedrückt wird und damit das Fangband 10 und die vollständige Entfaltung und Befüllung der Airbaghülle 4 gesteuert freigibt.

In einem weiteren Ausbildungsbeispiel zeigt die Fig. 3 eine entsprechende Anordnung, bei der die Airbaghülle 4 selbst mit einem Abschnitt 12 in der Haltevorrichtung 6 lösbar gehalten ist. Ein Bolzen 13 durchsetzt jeweils diesen Abschnitt 12 und wird bei der Aktivierung der Gaszuführstufe II zurückgedrückt und gibt dabei die volle Entfaltung der Airbaghülle 4 frei.

Bei gelöster Verbindung zwischen der Airbaghülle 4 und der Haltevorrichtung 6 entfaltet sich die Airbaghülle 4 auch bei den Ausführungsbeispielen nach den Fig. 2 und 3 vollständig, wie es in der Fig. 1b dargestellt ist.

Patentansprüche

1. Airbag für ein Kraftfahrzeug, mit einer im Ruhezustand zusammengefalteten Airbaghülle, die beim Fahrzeugcrash durch einen Gaseinlaß hindurch mit Gas aus einer Druckgasquelle befüllbar ist, wobei deren Volumenausbildung durch eine an der Airbaghülle angreifende Haltevorrichtung begrenzbar ist, in dem die Verbindung zur Airbaghülle lösbar ist, wobei durch das Lösen der Verbindung das vollständige Volumen der Airbaghülle entfaltbar ist, dadurch gekennzeichnet, daß die Druckgasquelle (3) mindestens zwei unabhängig aktivierbare Gaszuführstufen (I, II) aufweist, und mit einer ersten Gaszuführstufe (I) eine Befüllung der Airbaghülle (4) mit begrenztem Volumen erfolgt und mit der zweiten Gaszuführstufe (II) ein Lösen der Verbindung zur Airbaghülle (4) in der Haltevorrichtung (6) gekoppelt ist.
2. Airbag nach Anspruch 1, dadurch gekennzeichnet, daß die zweite Gaszuführstufe (II) nach der ersten Gaszuführstufe (I) aktiviert wird.
3. Airbag nach Anspruch 1, dadurch gekennzeichnet, daß die Haltevorrichtung (6) mechanisch bewegbare Bauteile umfaßt, die durch den Gasdruck der zweiten Gaszuführstufe (II) zum Lösen der Verbindung zur Airbaghülle (4) betätigt werden.
4. Airbag nach Anspruch 1, dadurch gekennzeichnet, daß die Haltevorrichtung (6) aufgrund des Innendruckes in der Airbaghülle (4) nach dem Aktivieren der zweiten Gaszuführstufe (II) die vollständige Entfaltung der Airbaghülle (4) freigibt.
5. Airbag nach Anspruch 1, dadurch gekennzeichnet, daß außen an der Airbaghülle (4) mindestens ein Fangband (10) festgelegt ist, das in der Haltevorrichtung (6) gehalten ist.
6. Airbag nach Anspruch 1, dadurch gekennzeichnet, daß durch die Haltevorrichtung (6) dem Gaseinlaß (5) naheliegende Falten (9) der Airbaghülle (4) festgehalten sind.
7. Airbag nach Anspruch 1, dadurch gekennzeichnet, daß die Haltevorrichtung (6) als Klemmvorrichtung ausgebildet ist.

Fig. 1a

Fig. 1b

Fig. 2

Fig. 3

