Übungen zur Algebraischen Zahlentheorie I

Wintersemester 2021/22

Universität Heidelberg Mathematisches Institut Prof. A. Schmidt Dr. K. Hübner

Blatt 8

Abgabetermin: Freitag, 17.12.2021, 09:30 Uhr

Aufgabe 1. (6 Punkte) Sei A ein Dedekindring mit Quotientenkörper K und $\mathfrak{p} \neq (0)$ ein Primideal von A. Sei

$$f = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$$

ein Eisensteinpolynom bezüglich \mathfrak{p} , das heißt, \mathfrak{p} kommt in der Primfaktorzerlegung aller a_i vor und in a_0 genau einmal. Wir nehmen an, dass f separabel ist. Für eine Nullstelle α von f im algebraischen Abschluss von K setzen wir $L = K[\alpha]$.

- (a) Zeigen Sie, dass [L:K]=n.
- (b) Zeigen Sie, dass \mathfrak{p} total verzweigt in L|K ist, d.h. es gibt genau ein Primideal \mathfrak{P} von L über \mathfrak{p} und $e_{\mathfrak{P}} = n$.

Aufgabe 2 (6 Punkte). Es sei A ein Dedekindring mit Quotientenkörper K und B der ganze Abschluss von A in einer endlichen separablen Erweiterung L|K. Sei $\theta \in L$ ein ganzes primitives Element von L|K mit Minimalpolynom $p_{\theta} \in A[X]$. Man zeige: Ist \mathfrak{p} ein Primideal von A und p_{θ} irreduzibel und separabel modulo \mathfrak{p} , so ist \mathfrak{p} träge in der Erweiterung L|K. (Man beachte, dass keine Annahme an das Verhältnis von \mathfrak{p} zum Führer von $A[\theta]$ in B gemacht wird.)

Aufgabe 3 (8 Punkte). Bestimmen Sie für jede Primzahl p das Zerlegungsverhalten im biquadratischen Zahlkörper $K = \mathbb{Q}(\sqrt{-3}, \sqrt{5})$.

Hinweis: Bestimmen Sie zunächst das Zerlegungsverhalten von p in den Unterkörpern $\mathbb{Q}(\sqrt{-3})$, $\mathbb{Q}(\sqrt{5})$ und $\mathbb{Q}(\sqrt{-15})$ und folgern Sie daraus das Zerlegungsverhalten in K. Das Verhalten hängt nur von der Restklasse von p modulo 15 ab.

Aufgabe 4 (4 Punkte). Sei K ein Zahlkörper, r_2 die Zahl der Paare komplexer Einbettungen. Zeigen Sie, dass $\operatorname{sgn}(d_K) = (-1)^{r_2}$.

Hinweis: Sei $\alpha_1, \ldots, \alpha_n$ eine Ganzheitsbasis von \mathcal{O}_K , und seien $\tau_1, \ldots, \tau_n : K \to \mathbb{C}$ die verschiedenen (reellen und komplexen) Einbettungen. Betrachten Sie das Verhalten von $\det(\tau_i \alpha_j)$ unter $F : \mathbb{C} \to \mathbb{C}, \quad z \mapsto \overline{z}$.