Non-Deterministic Finite Automata

Non-deterministic Finite Automata (NFA)

- A Non-deterministic Finite Automaton (NFA)
 - is of course "non-deterministic"
 - Implying that the machine can exist in more than one states at the same time
 - Transitions could be non-deterministic

• Each transition function therefore maps to a <u>set</u> of states

Nondeterministic Finite Automaton (NFA)

Alphabet =
$$\{a\}$$

Alphabet = $\{a\}$

a a

All input is consumed

Second Choice

a a

Second Choice

Input cannot be consumed

How to use an NFA?

- Input: a word w in ∑*
- Question: Is w acceptable by the NFA?
- Steps:
 - Start at the "start state", q_0
 - For every input symbol in the sequence w do
 - Determine all possible next states from all current states, given the current input symbol in w and the transition function
 - If after all symbols in w are consumed <u>and</u> if at least one of the current states is a final state then accept w;
 - Otherwise, reject w.

aa is accepted by the NFA:

because this computation accepts aa

Rejection example

a

Second Choice

a

Second Choice

Another Rejection example

a a a

Input cannot be consumed

Second Choice

a a a

Second Choice

Input cannot be consumed

An NFA rejects a string:

if there is no computation of the NFA that accepts the string.

For each possible computation path:

 All the input is consumed and the automaton is in a non-accepting state

OR

The input cannot be consumed

a is rejected by the NFA:

All possible computations lead to rejection

aaa is rejected by the NFA:

All possible computations lead to rejection

Language accepted: $L = \{aa\}$

Epsilon Transitions

aa

input tape head does not move

Automaton changes state

all input is consumed

String aa is accepted

Rejection Example

a a a

(read head doesn't move)

Input cannot be consumed

Automaton halts

String aaa is rejected

Language accepted: $L = \{aa\}$

$$- q_0 \xrightarrow{a} q_1 \xrightarrow{\varepsilon} q_2 \xrightarrow{a} q_3$$

Another NFA Example

 $a \mid b$

Another String

Language accepted

$$L = \{ab, abab, ababab, ...\}$$
$$= \{ab\}\{ab\}^*$$

Another NFA Example

Language accepted

$$L = \{\varepsilon, 10, 1010, 101010, ...\}$$

= $\{10\}^*$

Simple Automata

NFAs are interesting because we can express languages easier than DFAs

NFA M₁

$$L(M_1) = \{a\}$$

$$L(M_2) = \{a\}$$

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Set of states, i.e. $\{q_0,q_1,q_2\}$

 Σ : Input applied, i.e. $\{a,b\}$ $\mathcal{E} \notin \Sigma$

 δ : Transition function

 q_0 : Initial state

F: Accepting states

Transition Function δ

$$\delta(q, x) = \{q_1, q_2, \dots, q_k\}$$

resulting states reached by following one transition with input symbol x

States reachable from q_0 scanning 1

$$\delta(q_0,1) = \{q_1\}$$

States reachable from q_1 scanning 0

$$\delta(q_1,0) = \{q_0,q_2\}$$

States reachable from q_0 with one transition scanning no input symbol

$$\mathcal{S}(q_0, \varepsilon) = \{q_2\}$$

States reachable from q_2 scanning 1

$$\delta(q_2,1) = \emptyset$$

Extended Transition Function

 δ^{\star}

Similar with δ but applied on strings

$$\delta^*(q_0,a) = \{q_1\}$$

States reachable from q_0 scanning aa

$$\delta^*(q_0,aa) = \{q_4,q_5\}$$

States reachable from q_0 scanning ab

$$\delta^*(q_0,ab) = \{q_2,q_3,q_0\}$$

Special case:

for any state q

$$q \in \delta^*(q, \varepsilon)$$

In general

 $q_j \in \delta^*(q_i, w)$: there is a walk from q_i to q_j with label w

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q_i \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} q_j$$

The Language of an NFA M

The language accepted by M is:

$$L(M) = \{w_1, w_2, ..., w_n\}$$

Where for each
$$w_m$$

$$\delta^*(q_0, w_m) = \{q_i, ..., q_k, ..., q_j\}$$

and there is some
$$q_k \in F$$
 (accepting state)

$$w_m \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\epsilon$$

$$q_3$$

$$\delta^*(q_0, aa) = \{q_4, \underline{q_5}\} \qquad aa \in L(M)$$

$$\leq F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\epsilon$$

$$q_3$$

$$\delta^*(q_0, ab) = \{q_2, q_3, \underline{q_0}\} \longrightarrow ab \in L(M)$$

$$\leq F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$p$$

$$p$$

$$q_2$$

$$p$$

$$p$$

$$p$$

$$q_3$$

$$\delta^*(q_0, abaa) = \{q_4, \underline{q_5}\} \implies abaa \in L(M)$$

$$= F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\epsilon$$

$$q_3$$

$$\delta^*(q_0, aba) = \{q_1\} \qquad aba \notin L(M)$$

$$\not \in F$$

$$L(M) = \{ab\}^* \cup \{ab\}^* \{aa\}$$

NFAs accept the Regular Languages

Equivalence of Machines

Next session

Equivalence of Machines

Definition:

Machine $\,M_1\,$ is equivalent to machine $\,M_2\,$

if
$$L(M_1) = L(M_2)$$

Example of equivalent machines

$$L(M_1) = \{10\} *$$

Theorem:

Languages
accepted
by NFAs
=
Regular
Languages

Languages
accepted
by DFAs

NFAs and DFAs have the same computation power, namely, they accept the same set of languages

Proof: we need to show

Languages accepted by NFAs AND Languages accepted by NFAs

Proof-Step 1

 Languages

 accepted

 by NFAs

 Regular

 Languages

Every DFA is trivially a NFA

Any language L accepted by a DFA is also accepted by a NFA

Proof-Step 2

 Languages

 accepted

 by NFAs

 Regular

 Languages

Any NFA can be converted to an equivalent DFA

Any language L accepted by a NFA is also accepted by a DFA

Conversion of NFA to DFA

$$\delta^*(q_0,a) = \{q_1,q_2\}$$

$\delta^*(q_0,b) = \emptyset$ empty set

END OF CONSTRUCTION

General Conversion Procedure

Input: an NFA M

Output: an equivalent DFA M' with L(M) = L(M')

The NFA has states q_0, q_1, q_2, \dots

The DFA has states from the power set

$$\emptyset$$
, $\{q_0\}$, $\{q_1\}$, $\{q_0,q_1\}$, $\{q_1,q_2,q_3\}$,

Conversion Procedure Steps

step

1. Initial state of NFA: q_0

$$\delta^*(q_0,\varepsilon) = \{q_0,\ldots\}$$

Initial state of DFA: $\{q_0,...\}$

Example

DFA M'

step

2. For every DFA's state $\{q_i, q_j, ..., q_m\}$

compute in the NFA

$$\begin{array}{c}
\delta^*(q_i, a) \\
 \cup \delta^*(q_j, a)
\end{array}$$

$$\begin{array}{c}
\text{Union} \\
 = \{q'_k, q'_l, ..., q'_n\} \\
 \dots \\
 \cup \delta^*(q_m, a)
\end{array}$$

add transition to DFA

$$\delta(\{q_i, q_j, ..., q_m\}, a) = \{q'_k, q'_l, ..., q'_n\}$$

Example

$$\delta * (q_0, a) = \{q_1, q_2\}$$

NFA M

DFA M'

step

3. Repeat Step 2 for every state in DFA and symbols in alphabet until no more states can be added in the DFA

Example

step

4. For any DFA state $\{q_i, q_j, ..., q_m\}$

if some q_j is accepting state in NFA

Then,
$$\{q_i,q_j,...,q_m\}$$
 is accepting state in DFA

Example

Lemma:

If we convert NFA $\,M\,$ to DFA $\,M'\,$ then the two automata are equivalent:

$$L(M) = L(M')$$

Proof:

We need to show: $L(M) \subseteq L(M')$

$$L(M) \supseteq L(M')$$

First we show:
$$L(M) \subseteq L(M')$$

We only need to prove:

$$w \in L(M)$$
 $w \in L(M')$

NFA Consider $w \in L(M)$

symbol

denotes a possible sub-path like

symbol

We will show that if $w \in L(M)$

More generally, we will show that if in M:

(arbitrary prefix)
$$v=a_1a_2\cdots a_n$$
 $n\leq r$ NFA $M: \neg q_0 \overset{a_1}{\nearrow} q_i \overset{a_2}{\nearrow} q_i \overset{a_2}{\nearrow} q_i \overset{a_2}{\nearrow} q_i \overset{a_2}{\nearrow} q_m$

DFA
$$M'$$
: $\xrightarrow{a_1}$ $\xrightarrow{a_2}$ $\xrightarrow{a_2}$ $\underbrace{\{q_1,\ldots\}}$ $\underbrace{\{q_l,\ldots\}}$ $\underbrace{\{q_m,\ldots\}}$

Proof by induction on |v|

Induction Basis:
$$|v|=1$$
 $v=a_1$

NFA
$$M: \rightarrow q_0 q_i$$

DFA
$$M'$$
: $q_0,...$ $q_i,...$

is true by construction of M'

Induction hypothesis:
$$1 \le |v| \le k$$

$$v = a_1 a_2 \cdots a_k$$

Suppose that the following hold

NFA
$$M: -q_0 q_i q_i q_j q_j q_j q_d$$

DFA
$$M'$$
: q_1, \ldots q_1, \ldots q_2, \ldots q_2, \ldots q_2, \ldots q_2, \ldots q_2, \ldots

Induction Step:
$$|v| = k + 1$$

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$

Then this is true by construction of M'

NFA
$$M: q_0^{a_1} q_i^{a_2} q_j^{a_3} q_j^{a_4} q_d^{a_{k+1}} q_e$$

Therefore if $w \in L(M)$

$$w = a_1 a_2 \cdots a_r$$

NFA $M: -q_0$

DFA
$$M': \xrightarrow{a_1} \xrightarrow{a_2} \xrightarrow{a_2} \xrightarrow{a_r} \underbrace{a_r} \underbrace{a_r} \underbrace{a_r} \underbrace{q_f, \dots}$$

$$w \in L(M')$$

We have shown:
$$L(M) \subseteq L(M')$$

With a similar proof we can show: $L(M) \supseteq L(M')$

Therefore:
$$L(M) = L(M')$$