Filter Design Assignment

Arka Sadhu - 140070011 Filter Number 23

April 11, 2017

Contents

1	Firs	t Filter Specifications	2
	1.1	Un-normalized Discrete Time Filter Specifications	2
	1.2	Normalized Digital Filter Specifications	2
	1.3	Analog Filter Specifications	2
	1.4	Frequency transformation to be employed	2
	1.5	Frequency transformed lowpass analog filter specifications	2
	1.6	The analog Low pass Transfer Function	3
	1.7	The Analog BandPass Transfer Function	3
	1.8	The Discrete Time Filter Transfer Function	4
	1.9	Direct Form 2 Realization of the Discrete Filter	6
	1.10	FIR Filter Transfer Function to get the same specifications	7
2	Second Filter Specifications		
	2.1	Un-normalized Discrete Time Filter Specifications	9
	2.2	Normalized Digital Filter Specifications	9
	2.3	Analog Filter Specifications	9
	2.4	Frequency transformation to be employed	9
	2.5	Frequency transformed lowpass analog filter specifications	9
	2.6	The analog Low pass Transfer Function	10
	2.7	The Analog BandStop Transfer Function	10
	2.8		11
		The Discrete Time Filter Transfer Function	11
	2.9	The Discrete Time Filter Transfer Function	13

1 First Filter Specifications

1.1 Un-normalized Discrete Time Filter Specifications

- Sampling Frequency $(f_s) = 140 \text{kHz}$
- $B_L = 9.4kHz$
- $\bullet \ B_H = 14.4kHz$
- Monotonic Passband (Butterworth)

1.2 Normalized Digital Filter Specifications

- $\omega_{p1} = \frac{9.4}{140} 2\pi = 0.4219$
- $\omega_{p2} = \frac{14.4}{140} 2\pi = 0.6463$
- $\omega_{s1} = \frac{8.4}{140} 2\pi = 0.3770$
- $\omega_{s2} = \frac{15.4}{140} 2\pi = 0.6912$

1.3 Analog Filter Specifications

- $\Omega_{p1} = tan(\frac{\omega_{p1}}{2}) = 0.2141$
- $\Omega_{p2} = tan(\frac{\omega_{p2}}{2}) = 0.3349$
- $\Omega_{s1} = tan(\frac{\omega_{s1}}{2}) = 0.1908$
- $\Omega_{s2} = tan(\frac{\omega_{s2}}{2}) = 0.3600$

1.4 Frequency transformation to be employed

$$s_L = \frac{s^2 + \Omega_0^2}{Bs} \tag{1}$$

(2)

with $B = \Omega_{p2} - \Omega_{p1} = 0.1208$ and $\Omega_0 = \sqrt{\Omega_{p1}\Omega_{p2}} = 0.2678$

This translates to $\Omega_L = \frac{\Omega^2 - \Omega_0^2}{B\Omega}$

From 2

- $\Omega_{Lp} = 1$
- $\Omega_{Ls} = min(\Omega_{Ls1}, \Omega_{Ls2}) = 1.3321$

1.6 The analog Low pass Transfer Function

Figure 1: Analog Low Pass Transfer Function

Figure 2: Analog Low Pass Bode plot

1.7 The Analog BandPass Transfer Function

```
H_s_bp = 7.959e-11 s^11

0.4533 s^22 + 0.4133 s^21 + 0.5459 s^20 + 0.3528 s^19 + 0.2621 s^18 + 0.1301 s^17 + 0.0689 s^16 + 0.02732 s^15 + 0.01122 s^14 + 0.003626 s^13 + 0.001198 s^12 + 0.0003179 s^11 + 8.587e-05 s^10 + 1.864e-05 s^9 + 4.135e-06 s^8 + 7.222e-07 s^7 + 1.306e-07 s^6 + 1.768e-08 s^5 + 2.554e-09 s^4 + 2.465e-10 s^3 + 2.735e-11 s^2 + 1.485e-12 s + 1.168e-13

Continuous-time transfer function.
```

Figure 3: Analog Band Pass Transfer Function

Figure 4: Analog Band Pass Bode Plot

1.8 The Discrete Time Filter Transfer Function

Discrete-time transfer function.

```
H_z_bp_actual =

3.506e-11 + 2.132e-14 z^-1 - 3.86e-10 z^-2 + 2.501e-12 z^-3 + 1.916e-09 z^-4 + 4.729e-11 z^-5 - 5.919e-09 z^-6 + 2.983e-10 z^-
-7 + 1.099e-08 z^-8 + 9.459e-10 z^-9 - 1.746e-08 z^-10 + 1.368e-09 z^-11 + 1.487e-08 z^-12 + 1.062e-09 z^-13 - 1.23e-08 z^-14
+ 4.184e-10 z^-15 + 5.588e-09 z^-16 + 7.458e-11 z^-17 - 1.951e-09 z^-18 + 5.372e-12 z^-19 + 3.847e-10 z^-20 + 9.726e-14 z^-21
- 3.506e-11 z^-22
- 3.506e-11 z^-22
- 1.17.59 z^-1 + 150 z^-2 - 824.9 z^-3 + 3279 z^-4 - 1.002e04 z^-5 + 2.444e04 z^-6 - 4.874e04 z^-7 + 8.081e04 z^-8 - 1.126e05 z^-9
+ 1.329e05 z^-10 - 1.333e05 z^-11 + 1.139e05 z^-12 - 8.269e04 z^-13 + 5.083e04 z^-14 - 2.627e04 z^-15 + 1.129e04 z^-16
- 3966 z^-17 + 1112 z^-18 - 239.7 z^-19 + 37.36 z^-20 - 3.754 z^-21 + 0.1829 z^-22
- Sample time: 7.1429e-06 seconds
```

Figure 5: Discrete Time Band Pass Transfer Function

Figure 6: Frequency Magnitude Response of Discrete Time Band Pass Filter

1.9 Direct Form 2 Realization of the Discrete Filter

Figure 7: Direct Form 2 Signal Flow Graph for Band Pass IIR filter (Zoom In To see the Diagram)

1.10 FIR Filter Transfer Function to get the same specifications

Given that $\delta = 0.1$, we get

$$A = -20log_{10}(\delta) = -20log_{10}(0.1) = 20$$

For A < 21 we get $\alpha = 0$ and hence $\beta = 0$. Also we have $\Delta \omega = w_s - w_p$ We then compute

$$N \ge \frac{A - 8}{2 * 2.285 * \Delta\omega} = 58.507$$

Therefore we choose

N = 59

.

But with N=59 the resulting FIR doesn't meet all the specifications. Here is the plot for the same

Figure 8: Order 59 FIR Band Pass

On increasing N to N=63, we get an FIR that meets the specifications.

Figure 9: Order 63 FIR Band Pass

The complete Frequency Response is

Figure 10: Frequency Response

$$\begin{split} H_{fir_bp} &= 0.010699z^{-59} + 0.0099216z^{-58} + 0.0061769z^{-57} + 0.00067888z^{-56} + -0.0047345z^{-55} + \\ &-0.0083073z^{-54} + -0.0090412z^{-53} + -0.0070586z^{-52} + -0.0035005z^{-51} + 1.5549e - 17z^{-50} + \\ &0.0020437z^{-49} + 0.0020753z^{-48} + 0.0006074z^{-47} + -0.0010474z^{-46} + -0.0014292z^{-45} + 0.00031922z^{-44} + \\ &0.0039434z^{-43} + 0.0080615z^{-42} + 0.010683z^{-41} + 0.010067z^{-40} + 0.0055652z^{-39} + -0.0019308z^{-38} + \\ &-0.010166z^{-37} + -0.016293z^{-36} + -0.017965z^{-35} + -0.014297z^{-34} + -0.0062993z^{-33} + 0.0034278z^{-32} + \\ &0.011658z^{-31} + 0.015779z^{-30} + 0.014805z^{-29} + 0.009742z^{-28} + 0.0031172z^{-27} + -0.0021396z^{-26} + \\ &-0.0040068z^{-25} + -0.0023031z^{-24} + 0.0011925z^{-23} + 0.003537z^{-22} + 0.0020435z^{-21} + -0.0042678z^{-20} + \\ &-0.013846z^{-19} + -0.022858z^{-18} + -0.026534z^{-17} + -0.021167z^{-16} + -0.0059818z^{-15} + 0.01592z^{-14} + \\ &-0.0040068z^{-25} + 0.0023031z^{-24} + 0.0026534z^{-17} + -0.021167z^{-16} + -0.0059818z^{-15} + 0.01592z^{-14} + \\ &-0.0040068z^{-25} + 0.0023031z^{-24} + 0.0026534z^{-17} + -0.021167z^{-16} + -0.0059818z^{-15} + 0.01592z^{-14} + \\ &-0.0040068z^{-25} + 0.0023031z^{-24} + 0.00206534z^{-17} + -0.0221167z^{-16} + -0.0059818z^{-15} + 0.01592z^{-14} + \\ &-0.0040068z^{-19} + 0.00208z^{-10} +$$

 $\begin{array}{l} 0.038073z^{-13} + 0.05258z^{-12} + 0.052901z^{-11} + 0.036481z^{-10} + 0.0062323z^{-9} + -0.029837z^{-8} + \\ -0.060854z^{-7} + -0.07654z^{-6} + -0.070733z^{-5} + -0.04374z^{-4} + -0.0026197z^{-3} + 0.040796z^{-2} + \\ 0.073555z^{-1} + 0.085714z^{0} + 0.073555z^{1} + 0.040796z^{2} + -0.0026197z^{3} + -0.04374z^{4} + -0.070733z^{5} + \\ -0.07654z^{6} + -0.060854z^{7} + -0.029837z^{8} + 0.0062323z^{9} + 0.036481z^{10} + 0.052901z^{11} + 0.05258z^{12} + \\ 0.038073z^{13} + 0.01592z^{14} + -0.0059818z^{15} + -0.021167z^{16} + -0.026534z^{17} + -0.022858z^{18} + \\ -0.013846z^{19} + -0.0042678z^{20} + 0.0020435z^{21} + 0.003537z^{22} + 0.0011925z^{23} + -0.0023031z^{24} + \\ -0.0040068z^{25} + -0.0021396z^{26} + 0.0031172z^{27} + 0.009742z^{28} + 0.014805z^{29} + 0.015779z^{30} + \\ 0.011658z^{31} + 0.0034278z^{32} + -0.0062993z^{33} + -0.014297z^{34} + -0.017965z^{35} + -0.016293z^{36} + \\ -0.010166z^{37} + -0.0019308z^{38} + 0.0055652z^{39} + 0.010067z^{40} + 0.010683z^{41} + 0.0080615z^{42} + \\ 0.0039434z^{43} + 0.00031922z^{44} + -0.0014292z^{45} + -0.0010474z^{46} + 0.0006074z^{47} + 0.0020753z^{48} + \\ 0.0020437z^{49} + 1.5549e - 17z^{50} + -0.0035005z^{51} + -0.0070586z^{52} + -0.0090412z^{53} + -0.0083073z^{54} + \\ -0.0047345z^{55} + 0.00067888z^{56} + 0.0061769z^{57} + 0.0099216z^{58} + 0.010699z^{59} \end{array}$

2 Second Filter Specifications

2.1 Un-normalized Discrete Time Filter Specifications

- Sampling Frequency $(f_s) = 90 \text{kHz}$
- $B_L = 7.7kHz$
- $B_H = 10.7kHz$
- Equiripple Passband (Chebyshev)

2.2 Normalized Digital Filter Specifications

- $\omega_{p1} = \frac{6.7}{90} 2\pi = 0.4677$
- $\omega_{p2} = \frac{11.7}{90} 2\pi = 0.8168$
- $\omega_{s1} = \frac{7.7}{90} 2\pi = 0.5376$
- $\omega_{s2} = \frac{10.7}{90} 2\pi = 0.7470$

2.3 Analog Filter Specifications

- $\Omega_{p1} = tan(\frac{\omega_{p1}}{2}) = 0.2382$
- $\Omega_{p2} = tan(\frac{\omega_{p2}}{2}) = 0.4327$
- $\Omega_{s1} = tan(\frac{\omega_{s1}}{2}) = 0.2754$
- $\Omega_{s2} = tan(\frac{\omega_{s2}}{2}) = 0.3919$

2.4 Frequency transformation to be employed

$$s_L = \frac{Bs}{s^2 + \Omega_0^2} \tag{3}$$

with $B = \Omega_{p2} - \Omega_{p1} = 0.1945$ and $\Omega_0 = \sqrt{\Omega_{p1}\Omega_{p2}} = 0.3211$ This translates to

$$\Omega_L = \frac{B\Omega}{\Omega^2 - \Omega_0^2} \tag{4}$$

2.5 Frequency transformed lowpass analog filter specifications

From 4

- $\Omega_{Lp} = 1$
- $\Omega_{Ls} = min(\Omega_{Ls1}, \Omega_{Ls2}) = 1.5097$

2.6 The analog Low pass Transfer Function

Figure 11: Analog Low Pass Transfer Function For Band Stop

Figure 12: Analog Low Pass Bode plot For Band Stop

2.7 The Analog BandStop Transfer Function

Figure 13: Analog Band Stop Transfer Function

Figure 14: Analog Band Stop Bode Plot

2.8 The Discrete Time Filter Transfer Function

```
 G_z bs_actual = \\ 0.5423 - 3.527 z^{-1} + 10.77 z^{-2} - 19.91 z^{-3} + 24.25 z^{-4} - 19.91 z^{-5} + 10.77 z^{-6} - 3.527 z^{-7} + 0.5423 z^{-8} \\ 1 - 5.654 z^{-1} + 15.05 z^{-2} - 24.39 z^{-3} + 26.25 z^{-4} - 19.23 z^{-5} + 9.388 z^{-6} - 2.815 z^{-7} + 0.4029 z^{-8} \\ Sample time: 1.1111e-05 seconds Discrete-time transfer function.
```

Figure 15: Discrete Time Band Stop Transfer Function

Figure 16: Frequency Magnitude Response of Discrete Time Band Stop Filter

2.9 Direct Form 2 Realization of the Discrete Filter

Figure 17: Direct Form 2 Signal Flow Graph for Band Stop IIR filter (Zoom In To see the Diagram)

2.10 FIR Filter Transfer Function to get the same specifications

Given that $\delta = 0.1$, we get

$$A = -20log_{10}(\delta) = -20log_{10}(0.1) = 20$$

For A < 21 we get $\alpha = 0$ and hence $\beta = 0$. Also we have $\Delta \omega = w_s - w_p$ We then compute

$$N \ge \frac{A - 8}{2 * 2.285 * \Delta\omega} = 37.6121$$

Therefore we choose

$$N = 38$$

.

But with N=38 the resulting FIR doesn't meet all the specifications. Here is the plot for the same

Figure 18: Order 38 FIR Band Stop

On increasing N to N=39, we get an FIR that meets the specifications.

Figure 19: Order 39 FIR Band Stop

The complete Frequency Response is

Figure 20: Frequency Response

 $H_{fir.bs} = 0.012088z^{-39} + 0.010386z^{-38} + 0.0031096z^{-37} + -0.0071609z^{-36} + -0.015816z^{-35} + \\ -0.018492z^{-34} + -0.013424z^{-33} + -0.002553z^{-32} + 0.0092892z^{-31} + 0.016789z^{-30} + 0.016869z^{-29} + \\ 0.010236z^{-28} + 0.00087022z^{-27} + -0.0062943z^{-26} + -0.0081842z^{-25} + -0.0052796z^{-24} + -0.0011458z^{-23} + \\ -1.4092e - 05z^{-22} + -0.0038107z^{-21} + -0.010465z^{-20} + -0.014705z^{-19} + -0.011139z^{-18} + \\ 0.0019957z^{-17} + 0.020653z^{-16} + 0.035952z^{-15} + 0.038273z^{-14} + 0.0226z^{-13} + -0.0077075z^{-12} + \\ -0.041041z^{-11} + -0.062085z^{-10} + -0.058952z^{-9} + -0.029547z^{-8} + 0.01619z^{-7} + 0.059689z^{-6} + \\ 0.081643z^{-5} + 0.070893z^{-4} + 0.030086z^{-3} + -0.024772z^{-2} + -0.070945z^{-1} + 0.91111z^{0} + -0.070945z^{1} + \\ -0.024772z^{2} + 0.030086z^{3} + 0.070893z^{4} + 0.081643z^{5} + 0.059689z^{6} + 0.01619z^{7} + -0.029547z^{8} + \\ -0.024772z^{2} + 0.030086z^{3} + 0.070893z^{4} + 0.081643z^{5} + 0.059689z^{6} + 0.01619z^{7} + -0.029547z^{8} + \\ -0.024772z^{2} + 0.030086z^{3} + 0.070893z^{4} + 0.081643z^{5} + 0.059689z^{6} + 0.01619z^{7} + -0.029547z^{8} + \\ -0.024772z^{2} + 0.030086z^{3} + 0.070893z^{4} + 0.081643z^{5} + 0.059689z^{6} + 0.01619z^{7} + -0.029547z^{8} + \\ -0.024772z^{2} + 0.030086z^{3} + 0.070893z^{4} + 0.081643z^{5} + 0.059689z^{6} + 0.01619z^{7} + -0.029547z^{8} + \\ -0.024772z^{2} + 0.030086z^{3} + 0.070893z^{4} + 0.081643z^{5} + 0.059689z^{6} + 0.01619z^{7} + -0.029547z^{8} + \\ -0.024772z^{2} + 0.030086z^{3} + 0.070893z^{4} + 0.081643z^{5} + 0.059689z^{6} + 0.01619z^{7} + -0.029547z^{8} + \\ -0.024772z^{2} + 0.030086z^{3} + 0.070893z^{4} + 0.081643z^{5} + 0.059689z^{6} + 0.01619z^{7} + -0.029547z^{8} + \\ -0.024772z^{2} + 0.030086z^{3} + 0.070893z^{4} + 0.081643z^{5} + 0.059689z^{6} + 0.01619z^{7} + -0.029547z^{8} + \\ -0.024772z^{2} + 0.030086z^{3} + 0.070893z^{4} + 0.081643z^{5} + 0.059689z^{6} + 0.01619z^{7} + 0.029547z^{8} + \\ -0.024772z^{2} + 0.030086z^{3} + 0.070893z^{4} + 0.081643z^{5} + 0.081643z^{5} + 0.081643z^{5} + 0.081643z^{5$

 $-0.058952z^9 + -0.062085z^{10} + -0.041041z^{11} + -0.0077075z^{12} + 0.0226z^{13} + 0.038273z^{14} + 0.035952z^{15} + \\ 0.020653z^{16} + 0.0019957z^{17} + -0.011139z^{18} + -0.014705z^{19} + -0.010465z^{20} + -0.0038107z^{21} + \\ -1.4092e - 05z^{22} + -0.0011458z^{23} + -0.0052796z^{24} + -0.0081842z^{25} + -0.0062943z^{26} + 0.00087022z^{27} + \\ 0.010236z^{28} + 0.016869z^{29} + 0.016789z^{30} + 0.0092892z^{31} + -0.002553z^{32} + -0.013424z^{33} + -0.018492z^{34} + \\ -0.015816z^{35} + -0.0071609z^{36} + 0.0031096z^{37} + 0.010386z^{38} + 0.012088z^{39}$