$$\bigcirc$$
 d. $y=-rac{1}{2}x-2$

$$\bigcirc$$
 e. $y=-rac{1}{2}x+2$

La imagen de la función

$$f(x) = \begin{cases} 2x & \text{si} & -2 < x \le -1 \\ 2 & \text{si} & -1 < x \le 2 \end{cases}$$

Calcular la pendiente a y la ordenada al origen b de una recta que pasa por los puntos $\left(-\frac{1}{5},-\frac{5}{4}\right)$ y $\left(\frac{1}{4},1\right)$ y expresar el resultado en el cuadro blanco correspondiente.

$$x_1 = \frac{1}{5}$$
 $x_2 = \frac{1}{4}$
 $x_3 = \frac{1}{4}$
 $x_4 = \frac{1}{5}$

$$=\frac{9}{4}:\frac{9}{20}(X+\frac{1}{5})-\frac{5}{4}$$

$$=$$
 $5x + \frac{1}{1} - \frac{5}{4}$

$$y = S_{x} - \frac{1}{4}$$

Sea la función lineal f(x)=-x-3 y la función cuadrática $g(x)=x^2+x-2$, elija las opciones correctas

- \bigcirc \square a. Las raíces de la función g(x) son (-2;0) y (1;0) \checkmark
- $\stackrel{\smile}{oldsymbol{\mathsf{S}}}$ \square b. Las funciones se intersecan en el punto (-1;-2) \checkmark
 - $\ \square$ c. Las funciones f y g no tienen puntos en común. $\ \swarrow$
 - ☐ d. Las funciones se intersecan en dos puntos 🗶
 - \Box e. La pendiente de la función f(x) es 1

$$0 = 1^{2} + 1 - 2$$

$$0 = 1 + 1 - 2$$

$$0 = 2 - 2$$

$$0 = 0$$

 $\mathcal{L} \supset \mathcal{I}$ $g(x) = x^2 + x - 2$

$$-2 = (-1)^{2} + (-1) - 2$$

$$-2 = 1 - 1 - 2$$

$$-2 = 0 - 2$$

$$-2 = -2$$