Network Optimization Chapter 2: Mathematical Tools

Yiyin Wang yiyinwang@sjtu.edu.cn Department of Automation Shanghai Jiao Tong University

Nov. 4, 2014

Acknowledgements

Slides borrow heavily from lectures by Stephen Boyd (Stanford), Lieven Vandenberghe (UCLA), and Mung Chiang (Princeton)

Part 3: Algorithms

- ▶ 2.4 Descent algorithm
- ▶ 2.5 Interior-point algorithm

Unconstrained minimization

▶ Given $f: \mathbf{R}^n \to \mathbf{R}$ convex and twice differentiable:

minimize
$$f(x)$$

Optimizer x^* . Optimized value $p^* = f(x^*)$

Necessary and sufficient condition of optimality:

$$\nabla f(x^*) = 0$$

Unconstrained minimization

Iterative algorithm: computes a sequence of points $x^{(k)} \in \text{dom } f, \ k = 0, 1, \dots, \text{ such that}$

$$\lim_{k\to\infty}f(x^{(k)})=p^*$$

- ▶ Terminate algorithm when $f(x^{(k)}) p^* \le \epsilon$ for a specified $\epsilon > 0$
- Can be interpreted as iterative methods for solving optimality condition

$$\nabla f(x^*) = 0$$

- ▶ The iterative algorithm require a starting point $x^{(0)}$ such that
 - $x^{(0)} \in \text{dom } f$
 - ▶ Sublevel set $S = \{x \mid f(x) \le f(x^{(0)})\}$ is closed

Examples

Least-squares: minimize

$$||Ax - b||_2^2 = x^T (A^T A)x - 2(A^T b)^T x + b^T b$$

Optimality condition $(\nabla f(x^*) = 0)$ is system of linear equations:

$$A^T A x^* = A^T b$$

called normal equations for least squares

Unconstrained geometric programming: minimize

$$f(x) = \log \left(\sum_{i=1}^{m} \exp(a_i^T x + b_i) \right)$$

Optimality condition $(\nabla f(x^*) = 0)$ has no analytic solution:

$$\nabla f(x^*) = \frac{1}{\sum_{j=1}^{m} \exp(a_j^T x^* + b_j)} \sum_{i=1}^{m} \exp(a_i^T x^* + b_i) a_i = 0$$

Strong convexity

▶ f assumed to be strongly convex: there exits m > 0 such that

$$\nabla^2 f(x) \succeq mI$$

which also implies that there exists $M \ge m$ such that

$$\nabla^2 f(x) \leq MI$$

Bound optimal value:

$$|f(x) - \frac{1}{2m} \| \nabla f(x) \|_2^2 \le p^* \le f(x) - \frac{1}{2M} \| \nabla f(x) \|_2^2$$

Suboptimality condition:

$$\| \bigtriangledown f(x) \|_2^2 \le (2m\epsilon)^{1/2} \to f(x) - p^* \le \epsilon$$

Distance between x and optimal x*

$$||x - x^*||_2 \le \frac{2}{m} || \nabla f(x) ||_2$$

Descent Methods

▶ Minimizing sequence $x^{(k)}, k = 1, ..., (where t^{(k)} > 0)$

$$x^{(k+1)} = x^{(k)} + t^{(k)} \triangle x^{(k)}$$

- $\triangle x^{(k)}$: the search direction or step
- $t^{(k)}$: the step length or step size
- Descent methods:

$$f(x^{(k+1)}) < f(x^{(k)})$$

By convexity of f, search direction must make an acute angle with negative gradient:

$$\nabla f(x^{(k)})^T \triangle x^{(k)} < 0$$

Because otherwise,
$$f(x^{(k+1)}) \ge f(x^{(k)})$$
 since $f(x^{(k+1)}) \ge f(x^{(k)}) + \nabla f(x^{(k)})^T (x^{(k+1)} - x^{(k)})$

General descent method

Given a starting point $x^{(0)} \in \text{dom } f$ Repeat

- 1. Determine a descent direction $\triangle x^{(k)}$
- 2. Line search: choose a step size t > 0
- 3. Update: $x^{(k+1)} = x^{(k)} + t \triangle x^{(k)}$

Until stopping criterion satisfied

Line search types

- ▶ Exact line search: $t = \operatorname{argmin}_{s>0} f(x + s \triangle x)$
- ▶ Backtracking line search (with parameters $\alpha \in (0, 1/2), \beta \in (0, 1)$)
 - ▶ Starting at t = 1, repeat $t := \beta t$ until

$$f(x + t\triangle x) < f(x) + \alpha t \nabla f(x)^T \triangle x$$

lacktriangleright graphical interpretation: backtrack until $t \leq t_0$

Gradient descent method

Given a starting point $x \in \text{dom } f$ **Repeat**

- 1. $\triangle x := \nabla f(x)$
- 2. Line search: choose a step size t > 0
- 3. Update: $x := x + t \triangle x$

Until stopping criterion satisfied

- ▶ Stopping criterion usually of the form $\| \nabla f(x) \|_2 \le \epsilon$
- Convergence result: for strong convex f,

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$

 $c \in (0,1)$ depends on $m, x^{(0)}$, line search type

Very simple, but often very slow; rarely used in practice

Examples: quadratic problem in \mathbb{R}^2

minimize
$$f(x) = \frac{1}{2}(x_1^2 + \gamma x_2^2)$$
 $(\gamma > 0)$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

- ▶ Very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- Example for $\gamma = 10$

Examples: nonquadratic example

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

Backtracking line search

Exact line search

Examples: a problem in \mathbf{R}^{100}

$$f(x) = c^T x - \sum_{i=1}^{500} \log(b_i - a_i^T x)$$

'Linear' convergence, i.e. a straight line on a semilog plot

Steepest descent method

▶ Normalized steepest descent direction (at x, for norm $\|\cdot\|$):

$$\triangle x_{\mathrm{nsd}} = \operatorname{argmin}\{ \nabla f(x)^{\mathsf{T}} \nu \, | \, \|\nu\| = 1 \}$$

Interpretation: for small ν , $f(x + \nu) \approx f(x) + \nabla f(x)^T \nu$; direction $\triangle x_{\rm nsd}$ is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

$$\triangle x_{\mathrm{sd}} = \| \bigtriangledown f(x) \|_* \triangle x_{\mathrm{nsd}}$$

satisfies
$$\nabla f(x)^T \triangle_{\mathrm{sd}} = -\| \nabla f(x) \|_*^2$$

- Steepest decent method
 - General descent method with $\triangle x = \triangle x_{\rm sd}$
 - Convergence properties similar to gradient descent

Examples

- ▶ Euclidean norm: $\triangle x_{\mathrm{sd}} = \nabla f(x)$
- ▶ Quadratic norm $||x||_P = (x^T P x)^{1/2} (P \in \mathbf{S}_{++}^n) : \triangle x_{\mathrm{sd}} = -P^{-1} \nabla f(x)$
- ▶ ℓ_1 -norm: $\triangle x_{\mathrm{sd}} = -(\partial f(x)/\partial x_i)e_i$, where $|\partial f(x)/\partial x_i| = \| \bigtriangledown f(x)\|_{\infty}$

Unit balls and normalized steepest descent directions for a quadratic norm and the ℓ_1 -norm

Choice of norm for steepest descent

- Steepest descent with backtracking line search for two quadratic norms
- ► Ellipses show $\{x \mid ||x x^{(k)}||_P = 1\}$
- ▶ Equivalent interpretation of steepest descent with quadratic norm $\|\cdot\|_P$: gradient descent after change of variables $\bar{x} = P^{1/2}x$ Show choice of P has strong effect on speed of convergence

Newton step

$$\triangle x_{\rm nt} = -\bigtriangledown^2 f(x)^{-1} \bigtriangledown f(x)$$

Interpretations

• $x + \triangle x_{\rm nt}$ minimizes second order approximation

$$\hat{f}(x+\nu) = f(x) + \nabla f(x)^{\mathsf{T}} \nu + \frac{1}{2} \nu^{\mathsf{T}} \nabla^2 f(x) \nu$$

• $x + \triangle x_{\rm nt}$ solves linearized optimality condition

$$\nabla f(x+\nu) \approx \nabla \hat{f}(x+\nu) = \nabla f(x) + \nabla^2 f(x)\nu = 0$$

Newton step

 $ightharpoonup \triangle x_{
m nt}$ is independent of linear (or affine) changes of coordinates. It is affine invariant

$$x = Ty$$
, $x + \triangle x_{\rm nt} = T(y + \triangle y_{\rm nt})$

 $ightharpoonup \triangle x_{
m nt}$ is steepest descent direction at x in local Hessian norm

$$||u||_{\nabla^2 f(x)} = (u^T \nabla^2 f(x)u)^{1/2}$$

Dash lines are contour lines of f; ellipse is $\{x + \nu \mid \nu^T \bigtriangledown^2 f(x)\nu = 1\}$ arrow shows $- \bigtriangledown f(x)$

Newton decrement

$$\lambda(x) = (\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x))^{1/2}$$

a measure of the proximity of x to x^* Properties

• Gives an estimate of $f(x) - p^*$, using quadratic approximation \hat{f} :

$$f(x) - \inf_{y} \hat{f}(y) = f(x) - \hat{f}(x + \triangle x_{\text{nt}}) = \frac{1}{2}\lambda(x)^{2}$$

Equal to the norm of the Newton step in the quadratic Hessian norm

$$\lambda(x) = (\triangle x_{\rm nt}^T \bigtriangledown^2 f(x) \triangle x_{\rm nt})^{1/2}$$

- ▶ Directional derivative in the Newton direction, $\nabla f(x)^T \triangle x_{\rm nt} = -\lambda(x)^2$, can be used in the backtracking line search
- ▶ Affine invariant (unlike $\| \nabla f(x) \|_2$)

Newton's method

- Given a starting point $x \in \text{dom } f$, tolerance $\epsilon > 0$
- Repeat
 - 1. Compute the Newton step and decrement

$$\triangle x_{\rm nt} := -\bigtriangledown^2 f(x)^{-1} \bigtriangledown f(x); \quad \lambda^2 := \bigtriangledown f(x)^T \bigtriangledown^2 f(x)^{-1} \bigtriangledown f(x)$$

- 2. Stopping criterion. Quit if $\lambda^2/2 \le \epsilon$
- 3. Line search. Choose step size *t* by backtracking line search.
- 4. Update. $x := x + t \triangle x_{\rm nt}$

Advantages of Newton method: fast, robust, scalable

Example in \mathbf{R}^{100}

$$f(x) = c^T x - \sum_{i=1}^{500} \log(b_i - a_i^T x)$$

- ▶ Backtracking parameters $\alpha = 0.01, \beta = 0.5$
- ► Backtracking line search almost as fast as exact l.s. (and much simpler)
- Clearly shows two phases in algorithm

Summary about Newton's method

- Convergence of Newton's method is rapid in general, and quadratic near x*
- Newton's method is affine invariant
- Newton's method scales well with problem size
- ► The good performance of Newton's method is not dependent on the choice of algorithm parameters
- ▶ The main disadvantage of Newton's method is the cost of forming and storing the Hessian $(\nabla^2 f(x))$, and the cost of computing the Newton step