Working with Graph Algorithms in Python

INTRODUCING THE GRAPH DATA STRUCTURE

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

What You Need in Your Toolkit

Prerequisites

Familiarity with the command line on a Mac, Linux or Windows machine

A basic understanding of algorithms and time complexity

Comfortable with writing programs in Python

Install and Setup

A Mac, Linux or Windows machine on which you code and run programs

A working version of Python 2.7.x or 3.x

Course Overview

Introduction to the graph data structure and its representation and traversal

Ordering of dependent nodes using topological sort

Shortest path algorithms in weighted and unweighted graphs

Spanning tree algorithms to connect all nodes in a graph

Overview

Graphs are excellent tools for modeling complex relationships

An adjacency matrix is the most common way of representing a graph

Adjacency lists and adjacency sets are alternative data representations

The two fundamental ways of traversing a graph are

- Depth-first
- Breadth-first

Graphs for Modeling Relationships

Two Big Trends

Bigger data

More and more data being collected and aggregated

Smaller world

More and more interconnections between actions and events

Modeling interconnections is increasingly important

Interconnections

Relationships between entities

Interconnections

Interconnections

Graphs

Graphs represent relationships between entities

Graphs consist of

- Vertices (entities)
- Edges (relationships)

Modeling the Real World

Vertex

Edge

People

Social or professional relationships

Modeling the Real World

Edge

Locations

Means of transportation i.e. road, rail air

Modeling the Real World

Vertex

Edge

Phones - landlines

Phone network to carry voice calls

"Deep Learning" Binary Classifier

Neural Network Computation Graph

Corpus of Images

ML-based Classifier

Neural Network Computation Graph

Corpus of Images The vertices in the computation graph are neurons (simple building blocks)

ML-based Classifier

Neural Network Computation Graph

Corpus of Images

The edges in the computation graph are data items called tensors

ML-based Classifier

Structure of a Graph

Graph (V,E)

A set of vertices (V) and edges (E)

"Jim drives his car"
Relationship goes one way only

"Jim drives his car"
Relationship goes one way only

"Jim drives his car"
Relationship goes one way only

"Jim drives his car"
Relationship goes one way only

Directed Graph

Relationship goes one way only

Undirected Graph

Relationship goes both ways

Twitter Followers

Relationship goes one way only

Facebook Friends

Relationship goes both ways

Undirected Graphs

An Undirected Graph

 $V = \{A, B, C, D, E, F, G, H\}$

An Undirected Graph

 $V = \{A, B, C, D, E, F, G, H\}$

Adjacent Nodes

A and C are adjacent nodes - a single edge connects them

Degree of a Node

The degree of F is 3, since 3 edges are incident on F

Paths in a Graph

A series of edges links node C to node B - this is called a path

Undirected Cyclic Graph

The nodes A, D, E, C and A form a cycle

Undirected Acyclic Graphs

Removing edges A - C, A - D and B - D eliminates the cycles in this graph

Undirected Acyclic Graphs

The graph is now an undirected acyclic graph

Connected Graph

Every node is connected to every other node via a series of edges

Connected Graph

Equivalently, there is a path from every node to every other node

Disconnected Graph

Disconnected Graph

Removing the F - H edge leaves H without a path to the other nodes in the graph

Disconnected Graph

Disconnected

Connected Graph with Cycle

Connected Graph with no Cycle

Removing edges A - C, A - D and B - D eliminates the cycles in this graph

Connected Graph with no Cycle

Such a graph is called a tree

Connected Graph with no Cycle

Trees are great for depicting hierarchical relationships

Forest: Set of Disjoint Trees

Trees are great for depicting

hierarchical relationships

Forest: Set of Disjoint Trees

Removing F - G divides the original graph into two disjoint graphs

Such a set of disjoint trees is called a forest

Directed Graphs

Directed and Undirected Graphs

Twitter Followers

Relationship goes one way only

Facebook Friends

Relationship goes both ways

An Undirected Graph

 $V = \{A, B, C, D, E, F, G, H\}$

A Directed Graph

 $V = \{A, B, C, D, E, F, G, H\}$

Paths in a Graph

A series of edges links node A to node H - this is called a path

Paths in a Graph

In a directed graph, the path must follow the direction of the arrows

Directed Cyclic Graph

The nodes A,B, D and A form a cycle

Directed Cyclic Graph

The nodes A, C, E, D and A do not form a cycle

Directed Acyclic Graph

Removing the edge D -> A eliminates the only cycle in this directed graph

Directed Acyclic Graph

Removing the edge D -> A eliminates the only cycle in this directed graph

Directed Acyclic Graphs (DAGs)

Especially important type of graph Common applications

- Scheduling tasks
- Evaluating expressions

Neural Network Computation Graph

Corpus of Images

Operations (nodes) on data (edges)

ML-based Classifier

Adjacency Matrices

Graph (V,E)

A set of vertices (V) and edges (E)

Three ways to represent graphs in code

- Adjacency matrices
- Adjacency lists
- Adjacency sets

The adjacency matrix of a graph with N nodes is an N x N matrix

Each node has a corresponding row and column

Value of 1 in (Row A, Column B) indicates an edge from A to B

Value of 1 in (Row A, Column B) indicates an edge from A to B

Edge A to C (Row A, Column C)

Edge C to D (Row C, Column D)

Edge D to E (Row D, Column E)

Edge D to B (Row D, Column B)

Edge B to E (Row B, Column E)

Six edges in graph => six 1s in adjacency matrix

All other elements are zero

All diagonal elements are zero (since nodes are not connected to themselves)

The adjacency matrix of a Directed Graph is not symmetric

The adjacency matrix of an undirected graph is symmetric

The adjacency matrix of a directed graph is asymmetric

Demo

Set up a abstract base class to represent a Graph

Represent a Graph as an adjacency matrix

A Sample Undirected Graph

A Sample Directed Graph

Adjacency Lists and Adjacency Sets

Adjacency List Representation

Each node maintains a linked list of its adjacent nodes

Adjacency List for a Directed Graph

Each node maintains a linked list of adjacent nodes

Adjacency List for an Undirected Graph

Each node maintains a linked list of adjacent nodes

Adjacency List Flaws

In a list, order matters

Thus, the same graph can have multiple representations

Deletion of a node is inefficient

Requires iterations through all adjacency lists

Adjacency lists have some serious flaws

Adjacency sets help address them

Adjacency List Representation

Each node maintains a linked list of its adjacent nodes

Adjacency Set Representation

Each node maintains a set of its adjacent nodes

Each node maintains a set of adjacent nodes

Adjacency Set for a Undirected Graph

Each node maintains a set of adjacent nodes

Demo

Represent a Graph as an adjacency set

A Sample Undirected Graph

A Sample Directed Graph

Adjacency Matrix

Makes sense for small, densely connected graphs

Adjacency List

Useful for large, sparsely connected graphs - saves on storage space

Adjacency Matrix

Adjacency List

Space required

 $O(V^2)$

O(E+V)

Checking if edge is present

0(1)

O(degree V)

Iterating over edges

O(V)

O(degree V)

Adjacency lists have some serious flaws

Adjacency sets help address them

Adjacency Matrix

Adjacency Set

Space required

 $O(V^2)$

O(E+V)

Checking if edge is present

0(1)

O(In(degree V))

Iterating over edges

O(V)

O(degree V)

Depth-first and Breadth-first Graph Traversal

Two Ways of Conveying Information

"Answer first"

Headlines in a newspaper

"Drop the mic"

Punchlines in comedy

Two Ways of Traversing Graphs

Breadth-first

All nodes at same distance from origin visited together

Depth-first

All nodes in certain direction from origin visited together

Tree traversal is easier to understand than graph traversal - start there

Connected Graph with no Cycle

Such a graph is called a tree

Two Ways of Traversing Graphs

Breadth-first

All nodes at same distance from origin visited together

Depth-first

All nodes in certain direction from origin visited together

Nodes are visited level-by-level

Visited H

Visited H - B

Visited H - B - F

Visited H - B - F - A

Visited H - B - F - A - G

Visited H - B - F - A - G - E

Visited H - B - F - A - G - E - C

Visited H - B - F - A - G - E - C - D

Two Ways of Traversing Graphs

Breadth-first

All nodes at same distance from origin visited together

Depth-first

All nodes in certain direction from origin visited together

Visited H

Visited H - B

Visited H - B - A

Visited H - B - A

Visited H - B - A

Visited H - B - A - F

Visited H - B - A - F - G

Visited H - B - A - F - G - E

Visited H - B - A - F - G - E - C

Visited H - B - A - F - G - E - C

Two Ways of Traversing Graphs

Breadth-first

All nodes at same distance from origin visited together

Depth-first

All nodes in certain direction from origin visited together

Tree traversal is easier to understand than graph traversal - start there

Traversing a Tree

Traversing a Graph

One node is designated root

Only one specific path from root to any node

No designated root

Multiple paths possible between any pair of nodes

Traversing a Tree

Traversing a Graph

No cycles

Any node will be visited exactly once

No need to track which nodes already visited

Cycles possible

Nodes could be visited multiple times (could lead to infinite loop)

Essential to track which nodes already visited

Traversing a Tree

Traversing a Graph

No unconnected nodes possible

Unconnected nodes possible

Traversing a Tree

Traversing a Graph

No unconnected nodes possible

No need to track which nodes already visited

Unconnected nodes possible

Algorithm can not terminate until all nodes have been visited

Graph traversal, unlike tree traversal, explicitly needs to ensure that each node is visited exactly once

Demo

Breadth-first traversal of a graph

A Sample Undirected Graph

A Sample Directed Graph

Demo

Depth-first traversal of a graph

A Sample Undirected Graph

A Sample Directed Graph

Summary

Graphs are excellent tools for modeling complex relationships

An adjacency matrix is the most common way of representing a graph

Adjacency lists and adjacency sets are alternative data representations

The two fundamental ways of traversing a graph are

- Depth-first
- Breadth-first