User Interface *User provides sample-specific information* Mineral, nuclide, atmospheric depth conversion mode, time range, tectonic plate PmagPy Paleolatitude Calculate time-varying paleolatitude

Read in relevant text files

Read

Excel file with dataset (sample name, lat/lon, elevation, geometric shielding, erosion, sample depth, nuclide concentration

MCADAM

Generate time-averaged paleointensities in 250 ka bins

MCADAM model, Geomagia database

User-specified plate, lat/lon, PmagPy Apparent Polar Wander Path (APWP) package

Cutoff Rigidity (Rc)

Calculate cutoff rigidity MCADAM paleointensity averages, PmagPy paleolatitude

Atmospheric Depth

Convert elevation to atmospheric depth

If user specified ERA40: Use ERA40 mean temperature and pressure to interpolate sitespecific pressure

Else: use ICAO standard atmosphere conversion

Neutron Spallation

Calculate neutron production

Time-averaged solar modulation parameter (Lifton et al., 2008), neutron flux and energy spectra (Sato et al., (2008)), reaction cross sections (Reedy (2013)), atmospheric depth, atomic number density, cutoff rigidity

Proton Spallation

Calculate proton production

Time-averaged solar modulation parameter (Lifton et al., 2008), proton flux and energy spectra (Sato et al., (2008)), reaction cross sections (Reedy (2013)), atmospheric depth, atomic number density, cutoff rigidity

Muons

Calculate muogenic production (for 21Ne only) FILL IN

Thickness shielding factor

Calculate shielding due to sample depth

Spallation attenuation length, user-specified sample depth below surface

Scaling Factor

Calculate sample and site specific scaling factor

Production from neutrons and protons, reference production rate (SLHL)

Exposure Age

Calculate exposure age

Scaling factor, reference production rate, thickness shielding factor, geometric shielding factor, erosion rate, spallation attenuation length, For 21Ne only: muogenic attenuation length and production rate