

Introdução à Ciência da Computação - 113913

Lista de Exercícios 5 Strings

Observações:

- As listas de exercícios serão corrigidas por um **corretor automático**, portanto é necessário que as entradas e saídas do seu programa estejam conforme o padrão especificado em cada questão (exemplo de entrada e saída). Por exemplo, não use mensagens escritas durante o desenvolvimento do seu código como "Informe a primeira entrada". Estas mensagens não são tratadas pelo corretor, portanto a correção irá resultar em resposta errada, mesmo que seu código esteja correto.
- As questões estão em **ordem de dificuldade**. Cada lista possui 7 exercícios, sendo 1 questão fácil, 3 ou 4 médias e 2 ou 3 difíceis.
- Assim como as listas, as provas devem ser feitas na versão Python 3 ou superior.
- Leia com atenção e faça **exatamente** o que está sendo pedido.

Questão A - Ataque em Roma

A equipe de inteligência Romana tem obtido sucesso interceptando as mensagens do Império Otomano, mas elas são muito suspeitas, pois não faziam sentido algum. Até que Aristolfo descobriu o segredo adversário: a real mensagem se esconde no terceiro caractere de cada uma das palavras. Por exemplo:

André tretou cabum brocado trans pus

Vira:

deboas

Até então, este trabalho estava sendo feito à mão. Mas como você é muito inteligente, Aristolfo pediu que escrevesse um programa que resolvesse isso para ele.

Entrada

A entrada consiste em uma frase criptografada usando o método descrito acima, contendo apenas palavras de três letras ou mais.

Saída

Seu programa deve escrever uma única linha na saída, contendo a real mensagem do Império Otomano.

Exemplo de Entrada	Exemplo de Saída
André tretou cabu brocado trans pus	deboas
Esparta prestigia derrotas trincadas legais problemáticas	perigo

Table 1: Questão A

Questão B - Função para Entrada de Dados

Usando uma função, faça um programa que leia 10 números inteiros e imprima na tela o maior deles. No caso de valores iguais, imprima qualquer um dos maiores. Caso o maior número seja múltiplo do primeiro número \boldsymbol{n} lido, imprima \boldsymbol{n} na tela.

Entrada

Dez números inteiros, considere que o primeiro número lido nunca será 0.

Saída

O maior número maior e o primeiro número n lido, caso $m = a \cdot n, a \in \mathbb{Z}$.

Exemplo de Entrada	Exemplo de Saída
3	
1	
2	
$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	
4	9
5	3
6	
7	
8	
9	
-1	
-5	
-4	
10	
8	10
0	-1
4	
3	
2	
1	
-2	
-4	
-8	
-16	
-32	-2 -2
-64	-2
-128	
-256	
-512	
-2	

Table 2: Questão B

Questão C - Pares do Intervalo

Usando recursividade, faça um programa que dado um inteiro n positivo lido do teclado, retorne todos os números pares maiores ou iguais a dois, que são menores ou iguais a n.

Entrada

Um único inteiro $n \geq 0$.

Saída

Todos os números pares, maiores ou iguais a zero, que são menores ou iguais a \boldsymbol{n} , um por linha.

Exemplo de Entrada	Exemplo de Saída
10	10
	8
	6
	4
	2
15	14
	12
	10
	8
	6
	4
	2
4	4
	2

Table 3: Questão C

Questão D - Soma de Sequência Par

Usando funções recursivas, faça um programa que dado um inteiro \boldsymbol{n} lido do teclado, retorne e imprima na tela a soma de todos os números pares de 0 até \boldsymbol{n} - $\boldsymbol{2}$, incluindo \boldsymbol{n} - $\boldsymbol{2}$, se for o caso. Caso \boldsymbol{n} seja menor que 0, imprima na tela "-1".

Entrada

Um único inteiro n.

Saída

Será impresso na tela a soma de todos os pares de 0 até n-2. Caso n seja menor que 0 o programa deverá imprimir -1 na tela.

Exemplo de Entrada	Exemplo de Saída
15	42
20	90
-1	-1

Table 4: Questão D

Questão E - Quadrado de Pares

Usando funções faça um programa que leia um valor \mathbf{n} indefinidas vezes. O programa deve encerrar quando o valor de \mathbf{n} for zero. Para cada \mathbf{n} lido apresente o quadrado de cada um dos valores pares (conforme formato especificado abaixo) de 1 até \mathbf{n} , inclusive \mathbf{n} , se for o caso.

Entrada

Inteiro $n \geq 0$.

Saída

Será impresso na tela o quadrado de todos os números pares de 1 até n que são menores ou iguais a n, conforme exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
7	$6^2 = 36$
0	$4^2 = 16$
0	$2^2 = 4$
1	
2	$2^2 = 4$
0	
	$10^2 = 100$
	$8^2 = 64$
10	$6^2 = 36$
5	$4^2 = 16$
3	$2^2 = 4$
0	$4^2 = 16$
	$2^2 = 4$
	$2^2 = 4$

Table 5: Questão E

Questão F - Mínimo Múltiplo Comum

O mínimo múltiplo comum (mmc) de dois inteiros \boldsymbol{a} e \boldsymbol{b} é o menor inteiro positivo que é múltiplo simultaneamente de \boldsymbol{a} e de \boldsymbol{b} . Se não existir tal inteiro positivo, por exemplo, se $\boldsymbol{a}=\boldsymbol{0}$ ou $\boldsymbol{b}=\boldsymbol{0}$, então mmc(a,b) é zero por definição. O mínimo múltiplo comum é útil em operações de soma e subtração de frações vulgares, onde é preciso um denominador comum entre as frações operadas. Usando recursividade faça um programa que leia dois números separados por espaço indefinidas vezes e calcule o seu mmc. O programa deve encerrar quando a entrada conter um número negativo.

Entrada

Cada linha de entrada conterá dois inteiros a e b.

Saída

O mínimo múltiplo comum de $a \in b$.

Exemplo de Entrada	Exemplo de Saída
8 12 20 24 3 9 -1 0	24 120 9
4 5 2 7 13 3 -5 -5	20 14 39
4 4 0 4 7 133 4 90 0 -10	4 0 133 180

Table 6: Questão F

Questão G - Definição Recursiva de Strings

Seja uma **string s** definida da seguinte forma:

$$s ::= nil \mid n : s'$$

onde nil representa a string vazia, e n:s' denota a string com primeiro elemento n e cauda s' (sendo s' também uma string).

O comprimento de uma string é definido recursivamente por:

$$length(s) = \begin{cases} 0; \text{ se } s = nil \\ 1 + length(s'); \text{ se } s = a : s' \end{cases}$$

A concatenação de strings também pode ser definida por uma função recursiva:

$$concat(s1, s2) = \begin{cases} s2; \text{ se } s1 = nil \\ a: (concat(s1', s2)); \text{ se } s1 = a: s1' \end{cases}$$

O reverso de strings é definido por:

$$rev(s) = \begin{cases} s; \text{ se } s = nil\\ concat(rev(s'), (n:nil)); \text{ se } s = n:s' \end{cases}$$

Uma lista é prefixo da outra se:

$$prefix(s1, s2) = \begin{cases} True; \text{ se } s1 = nil \text{ e } s2 \neq nil \\ prefix(s1', s2'); \text{ se } s1 = a : s1' \text{ e } s2 = b : s2' \\ False; \text{ caso contrário} \end{cases}$$

Considerando o código dado abaixo e usando as definições recursivas acima, **complete** o programa abaixo. Dado duas strings s1 e s2, o trecho de código acima escreve na tela parte do que é especificado em **Saída**.

Entrada

A entrada consistirá apenas de duas strings s1 e s2. Não terá como entrada duas strings iguais.

Saída

Escreva na tela s1 concatenada com s2, o reverso de s1 e se s1 é prefixo de s2. No primeiro exemplo s1 é a string vazia (nil).

Exemplo de Entrada	Exemplo de Saída
	b
b	True
aaa bbb	aaabbb aaa False
cd cdd	cdcdd dc True

Table 7: Questão G