Relations Binaires Relations d'équivalence sur un ensemble

MPSI 2

1 Généralités

Soit E un ensemble non vide.

Definition 1.0.1

On appelle <u>relation binaire sur E</u> le couple (E,G) où G est un graphe de E dans E.

Notations: $(E,G), \mathcal{R}$

$$\forall (x,y) \in E^2, \ x \mathcal{R} y \iff (x,y) \in G$$

Notons $\Delta_E = \{(x, x), x \in E\}$

 Δ_E s'appelle la diagonale de E

On en définit une relation binaire:

$$\forall (x,y) \in E^2, \ x \mathcal{R} y \iff (x,y) \in \Delta_E$$

 $\iff x = y$

2 Relations d'équivalences

Soit \mathcal{R} une relation binaire sur E

Definition 2.0.2

 \mathcal{R} est réflexive si $\forall x \in E, x \mathcal{R} x$

Definition 2.0.3

 \mathcal{R} est symétrique si $\forall (x,y) \in E^2, (x \mathcal{R} y) \Rightarrow (y \mathcal{R} x)$

Definition 2.0.4

 \mathcal{R} est <u>transitive</u> si $\forall (x, y, z) \in E^3$, $(x \mathcal{R} y \text{ et } y \mathcal{R} z) \Rightarrow (x \mathcal{R} z)$

Definition 2.0.5

 \mathcal{R} est une relation d'équivalence sur E si \mathcal{R} est réflexive, symétrique et transitive.

Definition 2.0.6

Soit \mathcal{R} une relation d'équivalence sur E.

Soit x un élément de E.

On appelle classe d'équivalence de x suivant \mathcal{R} le sous ensemble de E:

$$C_{\mathcal{R}}(x) = \{ y \in E, \ x \mathcal{R} y \}$$

Propriete 2.0.1

La famille des classes d'équivalences suivant \mathcal{R} , $(\mathcal{C}_{\mathcal{R}}(x))_{x\in E}$ est une partition de E.

(1) Montrer que: $\mathcal{C}_{\mathcal{R}}(x) \neq \emptyset$ \mathcal{R} est réflexive, donc $x \mathcal{R} x$

Autrement dit, $x \in \mathcal{C}_{\mathcal{R}}(x)$ donc $\mathcal{C}_{\mathcal{R}}(x) \neq \emptyset$

② Montrer que:
$$\bigcup_{x \in E} C_{\mathcal{R}}(x) = E$$
 $\iff \bigcup_{x \in E} C_{\mathcal{R}}(x) \subset E \text{ et que } E \subset \bigcup_{x \in E} C_{\mathcal{R}}(x)$

a) Les classes d'équivalences sont des sous-ensembles de E.

$$\forall x \in E, \ \mathcal{C}_{\mathcal{R}}(x) \subset E$$
Ainsi,
$$\bigcup_{x \in E} \mathcal{C}_{\mathcal{R}}(x) \subset E$$

b) Montrer que: $E \subset \bigcup_{x \in E} \mathcal{CR}(x)$ $\iff \forall t \in E, \ t \in \bigcup_{x \in E} \mathcal{C}_{\mathcal{R}}(x)$

$$\iff \forall t \in E, \ t \in \bigcup_{x \in E} \mathcal{C}_{\mathcal{R}}(x)$$

 \mathcal{R} est réflexive, donc $t \in \mathcal{C}_{\mathcal{R}}(t)$

En posant t = x) on démontre la proposition.

Cela étant vrai pour tout x, on obtient $E \subset \bigcup_{x \in E} \mathcal{C}_{\mathcal{R}}(x)$

3 Montrer que: $\forall (x,y) \in E^2$, $\mathcal{C}_{\mathcal{R}}(x) = \mathcal{C}_{\mathcal{R}}(y)$ ou $\mathcal{C}_{\mathcal{R}}(x) \cap \mathcal{C}_{\mathcal{R}}(y) = \emptyset$

$$\iff \forall (x,y) \in E^2, \ (\mathcal{C}_{\mathcal{R}}(x) \cap \mathcal{C}_{\mathcal{R}}(y) \neq \varnothing) \Rightarrow (\mathcal{C}_{\mathcal{R}}(x) = \mathcal{C}_{\mathcal{R}}(y))$$

 H_1 : Soit (x,y) un couple d'éléments de E tels que $\mathcal{C}_{\mathcal{R}}(x) \cap \mathcal{C}_{\mathcal{R}}(y) \neq \emptyset$

Montrer que: $C_{\mathcal{R}}(x) = C\mathcal{R}(y)$

$$\iff \mathcal{C}_{\mathcal{R}}(x) \subset \mathcal{C}_{\mathcal{R}}(y) \text{ et } \mathcal{C}_{\mathcal{R}}(y) \subset \mathcal{C}_{\mathcal{R}}(x)$$

a) Montrer que: $\mathcal{C}_{\mathcal{R}}(x) \subset \mathcal{C}_{\mathcal{R}}(y)$

$$\iff \forall z \in E, \ z \in \mathcal{C}_{\mathcal{R}}(x) \Rightarrow z \in \mathcal{C}_{\mathcal{R}}(y)$$

 H_2 : Soit z un élément de $\mathcal{C}_{\mathcal{R}}(x)$

Montrer que $z \in \mathcal{C}_{\mathcal{R}}(y)$

D'après H_1 , $\exists t \in E, \ t \in \mathcal{C}_{\mathcal{R}}(x) \cap \mathcal{C}_{\mathcal{R}}(y)$

 $\underline{\mathbf{H}_3}$: Soit $t_{\scriptscriptstyle 0}\in E$ tel que $t_{\scriptscriptstyle 0}\in\mathcal{C}_{\mathcal{R}}(x)$ et $t_{\scriptscriptstyle 0}\in\mathcal{C}_{\mathcal{R}}(y)$

Montrer que: $z \in \mathcal{C}_{\mathcal{R}}$

$$\iff z \mathcal{R} y$$

D'après H_2 : $z \mathcal{R} x$

D'après H_3 : $t_0 \mathcal{R} x$

Par symétrie et transitivité: $z \mathcal{R} t_0$

D'après H_2 : $t_0 \mathcal{R} y$ Par transitivité: $z \mathcal{R} y$

Conclusion 1: $z \in \mathcal{C}_{\mathcal{R}} \Rightarrow z \in \mathcal{C}_{\mathcal{R}}$

Conclusion 2: Ceci étant vrai pour tout z dans E:

$$\mathcal{C}_{\mathcal{R}}(x) \subset \mathcal{C}_{\mathcal{R}}(y)$$

b) Montrer que $\mathcal{C}_{\mathcal{R}}(y) \subset \mathcal{C}_{\mathcal{R}}(x)$

En échangeant les rles de x et y, et par une démonstration analogue, on obtient:

 $\mathcal{C}_{\mathcal{R}}(y) \subset \mathcal{C}_{\mathcal{R}}(x)$

Finalement: $C_{\mathcal{R}}(x) = C_{\mathcal{R}}(y)$

Conclusion Générale: $\forall (x,y) \in E^2, \ \mathcal{C}_{\mathcal{R}}(x) \cap \mathcal{C}_{\mathcal{R}}(y) \neq \varnothing \Rightarrow \mathcal{C}_{\mathcal{R}} = \mathcal{C}_{\mathcal{R}}$

La famille $(\mathcal{C}_{\mathcal{R}}(x))_{x\in E}$ est une partition de E.

Propriete 2.0.2

Soit $(A_i)_{i\in I}$ une partition de E, alors, il existe une relation d'équivalence \mathcal{R} dont la famille des classes d'équivalences est cette partition.

Soit \mathcal{R} une relation binaire définie par:

$$\forall (x,y) \in E^2, \ x \mathcal{R} y \iff \exists i \in I, \ x \in A_i \text{ et } y \in A_i$$

- ① Montrer que \mathcal{R} est une relation d'équivalence sur E.
 - a) Montrer que \mathcal{R} est réflective

$$\iff \forall x \in E, \ x \mathcal{R} x$$

 $\underline{\mathbf{H_1}} \text{: Soit } x$ un élément de E

Montrer que: $\exists i \in I, x \in A_i$

 A_i est une partition de de E, donc d'après H_1 ,

 $\exists i \in I, \ x \in A_i$

b) Montrer que \mathcal{R} est symétrique

$$\iff \forall (x,y) \in E^2, \ (x \mathcal{R} y) \Rightarrow (y \mathcal{R} x)$$

 H_1 : Soit $(x, y) \in E^2$ tel que $x \mathcal{R} y$

 $\overline{H_2}$: $\exists i \in I, x \in A_i \text{ et } y \in A_i \iff \exists i \in I, y \in A_i \text{ et } x \in A_i$

On a donc $y \mathcal{R} x$

Donc \mathcal{R} est symétrique.

c) Montrer que \mathcal{R} est transitive

$$\iff \forall (x, y, z) \in E^3, \ (x \mathcal{R} y \text{ et } y \mathcal{R} z) \Rightarrow (x \mathcal{R} z)$$

 $\underline{\mathbf{H}_1}$: Soit x, y et z trois éléments de E tels que $x \mathcal{R} y$ et $y \mathcal{R} z$ \mathbf{H}_1 : $\exists i \in I, (x \in A_I)$ et $(\exists j \in I, y \in A_j)$ et $z \in A_j$

 $\underline{\mathbf{H}_2} \text{: Soit } i_0 \text{ et } i_0' \text{ deux éléments de } I \text{ tels que } \begin{cases} x \in A_{i_0}, & y \in A_{i_0} \\ y \in A_{i_0'}, & z \in A_{i_0'} \end{cases}$

Donc $y \in A_{i_0} \cap A_{i'_0}$

Or $(A_i)_{i \in I}$ est une partition de E

Donc $A_{i_0} = A_{i'_0}$

Donc x, y et z sont des éléments de A_{i_0} ,

Donc $x \mathcal{R} z$ Donc \mathcal{R} est transitive.

Conclusion ①: \mathcal{R} est une relation d'équivalence.

(2) Montrer que les A_i sont les classes d'équivalences suivant \mathcal{R}

$$\iff \forall i \in I, \ \exists x \in E, \ A_i = C_{\mathcal{R}}(x)$$

 H_1 : Soit i un élément de I.

 $\overline{\text{Montrer que }} \exists x \in E, A_i = C_{\mathcal{R}}(x)$

 $(A_i)_{i\in I}$ est une partition de E, donc en particulier

 A_i non vide, écrit:

 $\exists x \in E, x \in A_i$

 H_2 : Soit x_0 un élément de A_i fixé.

 $\overline{\text{Montrer que }} A_i = C_{\mathcal{R}}(x_0)$

$$\iff (A_i \subset C_{\mathcal{R}}(x_0)) \text{ et } (C_{\mathcal{R}}(x_0) \subset A_i)$$

a) Montrer que $A_i \subset C_{\mathcal{R}}(x_0)$

$$\iff \forall y \in E, \ y \in A_i \Rightarrow y \in C_{\mathcal{R}}(x_0)$$

 $\underline{\mathbf{H}_3}$: Soit y un élément de A_i .

 $\overline{\text{Montrer que } y \in C_{\mathcal{R}}(x_0)}$

D'après H_1 et H_2 , on a $y \in A_i$ et $x \in A_i$

Donc $x \mathcal{R} y$ par définition de \mathcal{R}

Cela étant valable pour tout i dans I et pour tout y dans A_i ,

 $A_i \subset C_{\mathcal{R}}(x_0)$

b) Montrer que $C_{\mathcal{R}}(x_0) \subset A_i$

$$\iff \forall j \in E, \ y \in C_{\mathcal{R}}(x_0) \Rightarrow y \in A_j$$

 $\underline{\mathbf{H}}_4$: Soit y un élément de $C_{\mathcal{R}}(x_0)$

 $\overline{\text{Montrer que }} y \in A_i$

 H_4 : $y \mathcal{R} x_0$, autrement dit:

$$\exists j \in I, \ y \in A_j \text{ et } x_0 \in A_j$$

 $\underline{\mathbf{H}_5}\!:$ Soit $j_{\scriptscriptstyle 0}$ un élément de I tel que $y\in A_j$ et $x_{\scriptscriptstyle 0}\in A_j$

 $\overline{\mathrm{D'après}}\ \mathrm{H_2}:\ x_0\in A_i$

Avec H_2 et H_3 , on en déduit que $x_0 \in A_i \cap A_{j_0}$

Or $(A_i)_{i\in I}$ est une partition de E, donc $A_i = A_{j_0}$

Montrer que $y \in A_i$ Or, $y \in A_{j_0}$, donc $y \in A_i$ Cela étant valable pour tout y dans A_i , $C_{\mathcal{R}}(x_0) \subset A_i$ Conclusion ②: $\forall i \in I, \ \exists x \in E, \ A_i = C_{\mathcal{R}}(x)$ Conclusion générale: Par raisonnement sur des conditions nécessaires et suffisantes, la propriété est démontrée

3 Partition associée a une application

Soit E un ensemble non vide, soit F un ensemble.

Soit une application $f: E \longrightarrow F$

$$x \longmapsto f(x)$$

Definition 3.0.7

On appelle relation d'équivalence associée a f la relation définie par:

$$\forall (x,y) \in E^2, \ x \mathcal{R} y \iff f(x) = f(y)$$

Definition 3.0.8

On appelle partition associée a f la famille des classes d'équivalences suivant \mathcal{R}_f