Information Security Abbreviation and Concepts flashcards

Browser Security 101

Abbreviation List

Owasp - Open Web Application Security

Project

XSS - cross side scripting

CSRF - Cross Site Request Forgery SOP - Same Origin Policy

CSP - Content Security Policy

SSL - Secure Sockets Layer

TLS - Transport Layer Security

Some Example Attacks on Web Browsers

POODLE - Padding Oracle On Downgraded

Legacy Encryption

SLOTH - Security Losses From Obsolete and

Truncated Transcript

CRIME - Compression Ratio Info-Leak Mass

Exploitation

BEAST - Browser Exploit Against SSL/TLS

BREACH - Browser Reconnaissance and

Exfiltration via Adaptive Compression of Hypertext

Information Security Keywords and Definitions

Threat: Generic term for objects, People who pose a potential danger to an asset.

Vulnerability: Weakness or fault that can lead to an exposure

Risk: Probability that "something bad" happens times

expected damage
Vector: How the attack was carried out.

Poodle Attack

The POODLE attack is a man-in-the-middle exploit, which takes advantage of Internet and Security Software clients fall to SSL 3.0

Prevention: Disable SSL 3.0 on the client side and the Server Side.

FREAK

Factoring RSA Export Keys

The FREAK attack is possible because some servers, browsers and other SSL implementations still support and use the weaker export-grade cryptographic suites. Which lets a MITM force these clients to use export-grade keys even if they didn't ask for export grade encryption.

FREAK

Contd...

Once the encryption of the session is cracked, the MITM can steal any 'secured' information from session.

It is possible

- -at server: The Server must support RSA export cipher suites;
- -at client: 1) Offers an RSA export suite
 - 2) be using a vulnerable version of

OpenSSL

SLOTH

Security Losses from Obsolete and truncated hashes.

SLOTH can force clients/servers to downgrade to a weaker Hash algorithm.

TLS 1.2 introduced a new signature and Hash algorithm field in the serverkeyexchange message to allow the server to specify which signature and hash algorithms the client must use.

SLOTH

contd...

Unfortunately, this also allows attackers to force the clients to downgrade to a weaker hash algorithm, like MD5

Thank You