Apprentissage statistique TP5 : Réseaux de neurones

Olivier Schwander <olivier.schwander@lip6.fr>

2018-2019

Préliminaire pour la salle 401

Attention: ça ne fonctionne pas avec des comptes invités.

Dans un terminal, exécuter la commande suivante :

echo "export KERAS_BACKEND=tensorflow" >>~/.bashrc

Attention: relancer impérativement le terminal!

Ensuite, à chaque séance, il faudra taper la commande :

source /users/home/schwander/apprentissage/bin/activate

On pourra ensuite lancer normalement python3 et spyder3 (spyder*3* uniquement) ou jupyter à partir de ce terminal.

Exercice 1 Prise en main de Keras

La plateforme Keras est une surcouche de haut niveau pour la plateforme de deep learning Tensorflow, qui permet de construire très facilement des modèles à base de réseaux de neurones et de réaliser l'apprentissage. De nombreux outils supplémentaires facilitent la réalisation d'expériences.

On peut vérifier que tout fonctionne bien en téléchargeant l'exemple suivant :

https://raw.githubusercontent.com/fchollet/keras/master/examples/mnist_cnn.py

et en l'éxécutant avec la commande :

/usr/bin/python3 mnist_cnn.py

La documentation, à laquelle il faudra se référer régulièrement, est disponible à l'adresse https://keras.io/.

Question 1

Laisser tourner l'exemple quelques minutes. Que représentent les informations affichées?

Exercice 2 Réseaux denses

Question 1 Perceptron

Construisez un perceptron à plusieurs sorties (Dense dans le vocabulaire Keras).

Quelle fonction calcule ce perceptron?

Question 2 Couches cachées

Empilez plusieurs couches denses.

Quelle fonction calcule ce réseau?

Question 3 Non-linéarités

Pour rendre intéressantes les couches cachées, on a besoin d'introduire des non-linéarités dans l'empilement. Les plus courantes sont :

- la tangente hyperbolique,
- la sigmoïde $S(x) = \frac{1}{1+e^{-x}}$, le rectifieur $f(x) = \max(0, x)$ (en anglais, *Rectified Linear Unit, ReLU*), c'est cette fonction qui est la plus utilisée en pratique.

Rajoutez des non-linéarités.

Question 4 Soft-max

Pour réaliser un classifier multi-classes à partir d'un réseau à K sorties z_1, \dots, z_K , on utilise en général la function soft-max:

$$\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$

Quel est l'intérêt de cette fonction par rapport un simple maximum?

Question 5

Expérimentez et comparez différent modèles à couches cachées pour les données USPS.

On utilisera comme pénalité l'entropie croisée (disponible en utilisant categorical_crossentropy comme paramètre loss):

$$L = \sum_{i=1}^{K} \sum_{j=1}^{N} t_{j}^{(i)} \log z_{j}^{(i)}$$

où $t_j = (0, \dots, 0, \underbrace{1}_{j_*}, 0, \dots, 0)$ si l'observation j appartient à la classe k.

On pourra utiliser également la base d'image MNIST (accessible directemennt dans Keras, cf https: //keras.io/datasets/#mnist-database-of-handwritten-digits).

Question 6

Utilisez l'historique renvoyé par la méthode fit pour tracer les courbes d'apprentissage (fonction de coût, précision en fonction des itérations).

Exercice 3 Réseaux convolutionnels

Question 1

Quel est le nombre de paramètres d'un réseau dense à plusieurs couches cachées?

Question 2

Quel est le nombre de paramètres pour un réseau convolutionnel avec le même nombre de couches? Commentez.

${\bf Question} \ {\bf 3}$

Construisez un réseau convolutionnel pour la classification MNIST.