PHYS2350: Forces

Dr. Wolf

Fall 2024

1/10

What is a force?

- A push or a pull (it is a vector)
- An interaction between two things

Dr. Wolf PHYS2350: Forces Fall 2024 2 / 10

What is a force?

- A push or a pull (it is a vector)
- An interaction between two things

How do you remember good ideas?

2/10

What is a force?

- A push or a pull (it is a vector)
- An interaction between two things

How do you remember good ideas?

Develop a notation to describe forces

• Write force as a vector thing: \vec{F}

2/10

What is a force?

- A push or a pull (it is a vector)
- An interaction between two things

How do you remember good ideas?

Develop a notation to describe forces

- Write force as a vector thing: \vec{F}
- ullet Indicate that there are two interacting entities: $ec{F}_{\mathsf{Book},\mathsf{Table}}$

Dr. Wolf PHYS2350: Forces Fall 2024 2 / 10

What kinds of forces are there?

Contact Forces

Non-contact forces

3/10

What kinds of forces are there?

- Contact Forces
 - ► Friction
 - "Normal" force
 - ► Tension
 - Air resistance
 - Spring force
- Non-contact forces

What kinds of forces are there?

- Contact Forces
 - Friction
 - "Normal" force
 - ▶ Tension
 - ► Air resistance
 - Spring force
- Non-contact forces
 - Gravity/Weight
 - Electric Force
 - Magnetic Force
 - Nuclear Force

What kinds of forces are there?

- Contact Forces
 - ► Friction
 - "Normal" force
 - ▶ Tension
 - ► Air resistance
 - Spring force
- Non-contact forces
 - Gravity/Weight
 - ► Electric Force
 - Magnetic Force
 - Nuclear Force

Force notation:

 $\vec{F}_{A,B}^{(\text{type})}$

Rules for good Free-Body diagrams

1 Use our force notation to label each force

$$\vec{F}_{A,B}^{(\mathrm{type})}$$

- ② Draw a vector in the *direction* that the force is going in. Don't worry about the length.
- 3 Put the tail of the force vector on the object.

Part I

Free body diagram for box being pushed/pulled by Pam and Chris

Symbol key:

- \bullet P = Pam
- \circ C = Chris
- F = Floor

- B = Block
- \bullet E = Earth

Part II

Free body diagram for book on table

Symbol key:

- B = Book
- T = Table
- \bullet E = Earth

Part II

Free body diagram for books on table

Symbol key:

- $\bullet \ \mathsf{UB} = \mathsf{Upper} \ \mathsf{Book}$
- LB = Lower Book
- T = Table
- \bullet E = Earth

7/10

Part III

Why did I make these vectors red?

Symbol key:

- UB = Upper Book
- LB = Lower Book
- \bullet T = Table
- \bullet E = Earth

Newton's 3rd Law

How does our notation make identifying 3rd law pairs easy?

Part IV: Contact and non-contact forces

Free-body diagram for magnet 2:

Dr. Wolf PHYS2350: Forces Fall 2024 9 / 10

Part IV: Contact and non-contact forces

Free-body diagram for iron rod:

Free-body diagram for magnet

10 / 10